Esame di Ricerca Operativa del 14/06/16

	<u> </u>	
(Cognome)	(Nome)	(Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -3 x_1 - x_2 \\ -2 x_1 - x_2 \le 4 \\ -x_1 + 2 x_2 \le -13 \\ -x_1 - x_2 \le 6 \\ 2 x_1 - x_2 \le 15 \\ 2 x_1 + x_2 \le 1 \\ x_1 + x_2 \le 2 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x =		
{2, 5}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3,4}					
2° iterazione						

Esercizio 3. Un caporeparto di una fabbrica deve decidere la composizione della sua squadra, avendo a disposizione operai, robot e terne composte da 2 operai + 1 robot. Nel reparto si producono quattro tipi di beni A, B, C e D, e bisogna produrre almeno 55 unitá di bene A, 20 di bene B, 20 di bene C e 50 di bene D. Ciascun operaio, robot o terna puó produrre ogni bene. Nella seguente tabella sono riportati i numeri di operai, robot e terne (2 operai +1 robot), necessari per produrre singolarmente un'unitá di ciascuno dei beni A, B, C e D. Nella tabella sono riportati anche i costi di manutenzione (per i robot), il salario (per un operaio) ed il costo globale di una terna che sono da minimizzare tenendo in considerazione che il numero totale di operai deve essere almeno 3 volte piú grande del numero di robot.

	operai	robot	terne
A	8	4	2
В	15	10	6
С	4	2	0.5
D	4	3	1
costi	8	7	20

	variabili decisionali:
ı	modello:
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	

C=	
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,3)$ $(3,7)$				
(4,3) (5,7) (6,7)	(1,2)	x =		
(1,2) (1,3) (2,5)				
(4,3) (5,7) (6,7)	(3,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

1° iterazione	2° iterazione
(1,4) (2,5) (3,5) (3,7) (4,6) (6,7)	
(5.7)	
(5,1)	

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 9 \ x_1 + 5 \ x_2 \\ 12 \ x_1 + 7 \ x_2 \le 58 \\ 8 \ x_1 + 13 \ x_2 \le 54 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 458 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	24	22	23	10	11	18
Volumi	354	315	48	291	31	65	64

a)	Calcolare una	valutazione	inferiore del	valore ottimo	applicando	l'algoritmo	greedy
----	---------------	-------------	---------------	---------------	------------	-------------	--------

sol. ammissibile =	$v_I(P) =$
	. ,

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 \le 0, \quad 1 - x_1^2 - x_2^2 - 2x_1x_2 \le 0\}.$$

Soluzioni del s	sistema LKT	Γ	Massimo		Mini	imo	Sella
x	λ	μ	globale	locale	globale	locale	
(0,-1)							
(1,0)							
(-1,0)							
(0,1)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max -6 \ x_1^2 - 6 \ x_2^2 - 3 \ x_1 - 9 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (4,-4), (-3,3), (-4,1) e (1,3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{10}{3}, \frac{7}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -3 x_1 - x_2 \\ -2 x_1 - x_2 \le 4 \\ -x_1 + 2 x_2 \le -13 \\ -x_1 - x_2 \le 6 \\ 2 x_1 - x_2 \le 15 \\ 2 x_1 + x_2 \le 1 \\ x_1 + x_2 \le 2 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (1, -6)	SI	NO
{2, 5}	$y = \left(0, \frac{1}{5}, 0, 0, -\frac{7}{5}, 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	${3, 4}$	(3, -9)	$\left(0,\ 0,\ \frac{5}{3},\ -\frac{2}{3},\ 0,\ 0\right)$	4	3, 8	1
2° iterazione	{1, 3}	(2, -8)	(2, 0, -1, 0, 0, 0)	3	1, 8	2

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) (2,3) (3,7)				
(4,3) (5,7) (6,7)	(1,2)	x = (4, 2, 0, 10, 0, 0, 11, -4, 0, -4, -2)	NO	NO
(1,2) (1,3) (2,5)				
(4,3) $(5,7)$ $(6,7)$	(3,7)	$\pi = (0, 10, 5, 0, 16, 18, 25)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione			
Archi di T	(1,4) (2,5) (3,5) (3,7) (4,6) (6,7)	(1,3) (1,4) (2,5) (3,5) (3,7) (4,6)			
Archi di U	(5,7)	(5,7)			
x	(0, 0, 6, 0, 6, 3, 0, 0, 2, 5, 0)	(0, 0, 6, 0, 6, 3, 0, 0, 2, 5, 0)			
π	(0, 10, 11, 8, 16, 13, 20)	(0, 4, 5, 8, 10, 13, 14)			
Arco entrante	(1,3)	(5,7)			
ϑ^+,ϑ^-	11,0	12, 3			
Arco uscente	(6,7)	(3,5)			

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	iter	: 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		4	:	(;	6	2	Ę	5	7	7
nodo 2	18	1	18	1	18	1	18	1	18	1	18	1	18	1
nodo 3	9	1	9	1	9	1	9	1	9	1	9	1	9	1
nodo 4	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 5	$+\infty$	-1	27	3	27	3	22	6	22	6	22	6	22	6
nodo 6	$+\infty$	-1	$+\infty$	-1	16	4	16	4	16	4	16	4	16	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	30	6	30	6	29	5	29	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4	, 5	2, 5	, 6	2, 5	5, 7	5,	7	7	7	())

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 5 - 7	5	(0, 5, 0, 0, 5, 0, 0, 0, 5, 0, 0)	5
1 - 4 - 6 - 7	9	(0, 5, 9, 0, 5, 0, 9, 0, 5, 0, 9)	14
1 - 2 - 4 - 6 - 7	1	(1, 5, 9, 1, 5, 0, 10, 0, 5, 0, 10)	15
1 - 2 - 4 - 6 - 5 - 7	5	(6, 5, 9, 6, 5, 0, 15, 0, 10, 5, 10)	20

Taglio di capacità minima:
$$N_s = \{1,3\}$$
 $N_t = \{2,4,5,6,7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 9 x_1 + 5 x_2 \\ 12 x_1 + 7 x_2 \le 58 \\ 8 x_1 + 13 x_2 \le 54 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{29}{6}, 0\right)$$
 $v_S(P) = 43$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(4,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 458 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	24	22	23	10	11	18
Volumi	354	315	48	291	31	65	64

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 0, 1, 0, 1, 1, 1)$$
 $v_I(P) = 61$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, 0, 1, \frac{250}{291}, 1, 1, 1\right)$$
 $v_S(P) = 80$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (0, 1, 1, 0, 1, 0, 1)

valore ottimo = 74

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 \le 0, \quad 1 - x_1^2 - x_2^2 - 2x_1x_2 \le 0\}.$$

Soluzioni del	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(0, -1)	$\left(\frac{1}{2},0\right)$		NO	NO	SI	SI	NO
(1, 0)	$\left(\frac{1}{2},\frac{1}{2}\right)$		NO	NO	NO	SI	NO
(-1, 0)	$\left(-\frac{1}{2}, -\frac{1}{2}\right)$		NO	SI	NO	NO	NO
(0, 1)	$\left(-\frac{1}{2},0\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max -6 x_1^2 - 6 x_2^2 - 3 x_1 - 9 x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\,P\,\,\grave{\mathrm{e}}\,\,\mathrm{il}\,\,\mathrm{poliedro}\,\,\mathrm{di}\,\,\mathrm{vertici}\,\,(4,-4)\,\,,\,(-3,3)\,\,,\,(-4,1)\,\,\mathrm{e}\,\,(1,3).\,\,\mathrm{Fare}\,\,\mathrm{una}\,\,\mathrm{iterazione}\,\,\mathrm{del}\,\,\mathrm{metodo}\,\,\mathrm{del}\,\,\mathrm{gradiente}\,\,\mathrm{proiettato}.$

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{10}{3}, \frac{7}{3}\right)$	(-2,1)	$\begin{pmatrix} 1/5 & 2/5 \\ 2/5 & 4/5 \end{pmatrix}$	$\left(-\frac{37}{5}, -\frac{74}{5}\right)$	$\frac{10}{111}$	$\frac{10}{111}$	(-4,1)