

Complex Numbers

CONTENTS

Complex numbers	1
Complex numbers	1
Addition and Subtraction of Complex Numbers	2
Multiplication of Complex Numbers	2
Complex Conjugates	2
Properties of Conjugates:	
Division of complex numbers	3
Polar Form of a Complex Number	7
Rectangular and Polar Form	7
Rectangular and Polar Form Modulus of z	7
The argument and Argument of z	8
Operations on Complex Numbers in Polar Form	9
Addition and Subtraction	
Multiplication and Division	9
De Moivre's Theorem	11
Integral Powers of Complex Numbers	
Roots of a Complex Number	

COMPLEX NUMBERS

Real and complex numbers

Equations such as x + 1 = 7, 3x = 10 and $x^2 - 7 = 0$ can all be solved within the real number system.

But there is no real number which satisfies $x^2 + 1 = 0$. To obtain solutions to this and other similar equations the complex numbers were developed.

The imaginary number i is defined such that $i^2 = -1$

i.e.

$$i = \sqrt{-1}$$

NB: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, etc.

A number z of the form z = x + yi, where x and y are real numbers is called a complex number

- x is called the real part of z, denoted by $Re\{z\}$, and
- y is called the imaginary part of z, denoted by $Im\{z\}$

Examples

- 1. If z = 5 3i then $Re\{z\} = 5$ and $Im\{z\} = -3$
- 2. If $z = \sqrt{3}i$ then $Re\{z\} = 0$ and $Im\{z\} = \sqrt{3}$

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal:

i.e.

$$a + bi = c + di$$
 if and only if $a = c$ and $b = d$

1

Example

If $z_1 = x - \frac{i}{3}$, $z_2 = \sqrt{2} + yi$ and $z_1 = z_2$ find the values of x and y.

$$Re\{z_1\} = Re\{z_2\} \Rightarrow x = \sqrt{2}$$

and
$$Im\{z_1\} = Im\{z_2\} \Rightarrow y = -\frac{1}{3}$$

$$\therefore x = \sqrt{2}$$
 and $y = -\frac{1}{3}$

Addition and Subtraction of Complex Numbers

To add or subtract complex numbers we add or subtract the real and imaginary parts separately:

$$(a + bi) \pm (c + di) = (a \pm c) + (b \pm d)i$$

Examples

1.
$$(2+3i) + (4-i) = (2+4) + (3-1)i$$

= 6+2i

2. If
$$z_1 = 1 - i$$
 and $z_2 = 3 - 5i$ find $z_1 - z_2$

$$z_1-z_2 = (1-i) - (3-5i)$$

= $(1-3) + (-1-(-5))i$
 $z_1-z_2 = -2 + 4i$

See Exercise 1

Multiplication of Complex Numbers

If $z_1 = a + bi$ and $z_2 = c + di$ are two complex numbers then

$$kz_1 = k(a + bi)$$

$$= ka + kbi$$
and
$$z_1z_2 = (a + bi)(c + di)$$

$$= ac + adi + bci + bdi^2$$

$$= (ac - bd) + (ad + bc)i$$
 [since $i^2 = -1$]

Examples

- 1. Expand and simplify i(3 + 4i) $i(3 + 4i) = 3i + 4i^2$ i(3 + 4i) = -4 + 3i
- 2. If $z_1 = 1 i$ and $z_2 = 3 5i$ find $z_1 z_2$ $z_1 z_2 = (1 - i)(3 - 5i)$ $= 3 - 3i - 5i + 5i^2$ $z_1 z_2 = 3 - 8i - 5$ = -2 - 8i

See Exercise 2

Complex Conjugates

A pair of complex numbers of the form a + bi and a - bi are called complex conjugates.

If z = x + yi then the conjugate of z is denoted by $\bar{z} = x - yi$

Eg: 2 + 3i and 2 - 3i are a conjugate pair 1 - i and 1 + i are a conjugate pair -4i and 4i are a conjugate pair

NB:

The product of a conjugate pair of complex numbers is a real number

$$z\bar{z} = (x + yi)(x - yi) = x^2 + y^2$$

Properties of Conjugates:

If z_1 and z_2 represent two conjugate numbers then

(i)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

(ii) $\overline{z_1} \overline{z_2} = \overline{z_1} \overline{z_2}$
(iii) $\overline{\overline{z}} = z$

(ii)
$$\overline{z_1} \, \overline{z_2} = \overline{z_1} \overline{z_2}$$

(iii)
$$\bar{z} = z$$

Examples

If
$$z = 2 - i$$
 and $w = -3 + 4i$ find

1.
$$\bar{z}$$

2.
$$\bar{z} - \bar{w}$$

3.
$$\overline{z+w}$$

Solutions

1.
$$\bar{z} = 2 + i$$

2.
$$\bar{z} - \bar{w} = (2+i) - (-3-4i)$$

= 2 + 3 + i + 4i

$$\bar{z} - \bar{w} = 5 + 5i$$

3.
$$\overline{z+w} = \overline{2-i+(-3+4i)}$$

= $\overline{-1+3i}$
= $-1-3i$

See Exercise 3

Division of complex numbers

If
$$z_1 = a + bi$$
 and $z_2 = c + di$, then $\frac{z_1}{z_2} = \frac{a+bi}{c+di}$.

To express $\frac{z_1}{z_2}$ in the form x + yi we make use of the conjugate to change the denominator into a real number.

3

Examples

1. Express
$$\frac{2-i}{1+3i}$$
 in the form $x + yi$

$$\frac{2-i}{1+3i} = \frac{2-i}{1+3i} \times \frac{1-3}{1-3}$$

$$= \frac{2-i-6i-3}{1+9}$$

$$= \frac{-1-7i}{10}$$

$$= -\frac{1}{10} - \frac{7}{10}i$$

Operations on fractions involving complex numbers follow the same rules as algebraic fractions

2. Simplify
$$\frac{i}{1-4i} + \frac{2}{3+i}$$

$$\frac{i}{1-4i} + \frac{2}{3+i} = \frac{i}{1-4i} \times \frac{1+4i}{1+4i} + \frac{2}{3+i} \times \frac{3-i}{3-i}$$

$$= \frac{i-4}{1+16} + \frac{6-2i}{9+1}$$

$$= \frac{i-4}{17} \times \frac{10}{10} + \frac{6-2i}{10} \times \frac{17}{17}$$

$$= \frac{10i-40}{170} + \frac{102-34i}{170}$$

$$= \frac{10i-40+102-34i}{170}$$

$$+ \frac{2}{3+i} = \frac{62-24i}{170}$$

$$+ \frac{2}{3+i} = \frac{2(31-12i)}{170}$$

$$+ \frac{2}{3+i} = \frac{31-12i}{85}$$

See Exercise 4

An Argand Diagram is a geometrical representation of the set of complex numbers. The complex number z = x + yi can be plotted as a point represented by the ordered pair (x, y) on the complex number plane:

Exercises

Exercise 1

- 1. Express the following in terms of i in simplest surd form
 - (a) $\sqrt{-9}$
- (b) $\sqrt{-2}$ (c) $\sqrt{-5} \times \sqrt{3}$
- (d) $\sqrt{-5} \times \sqrt{10}$ (e) $\sqrt{-6} \times \sqrt{12}$
- 2. Evaluate
 - (a) i^4

- (b) i^9 (c) $i^7 i^{11}$ (d) $i^5 + i^6 i^7$ (e) $2i i^6 + 2i^7$
- 3. State the value of $Re\{z\}$ and $Im\{z\}$ for these complex numbers:

 - (a) 2 + 7i (b) 10 i (c) $\pi + 3i$ (d) $\frac{i}{6}$

- 4. Find the values of *x* and *y*
 - (a) x + yi = 4 + 9i
- (b) x + yi = 3 i
- (c) x + yi = 23
- (d) $x + yi = -\sqrt{2}i$
- (e) x + i = -5 + yi

Exercise 2

- 1. Expand and simplify
- (a) i(3-2i) (b) $2i^3(1-5i)$ (c) (8-3i)(2-5i) (d) $(4-3i)^2$ (e) (3+2i)(3-2i)

- 2. If $z_1 = -1 + 3i$ and $z_2 = 2 i$ find each of the following
- (b) $2z_1 z_2$ (c) $(z_1 z_2)^2$
- 3. Find the value of x and y if (x + yi)(2 3i) = -13i

Exercise 3

- 1. Find the conjugate of each of the following complex numbers:

 - (a) 4+9i (b) -3-15i (c) $\sqrt{3}-4i$
- 2. Find the conjugate of (2 i)(4 + 7i)
- 3. If z = 2 i and w = 1 + 2i express the following in the form x + yi:
 - (a) \bar{z}
- (b) $\overline{z+w}$ (c) $\overline{z}+\overline{w}$ (d) \overline{zw} (e) $\overline{z}-\overline{w}$

Exercise 4

- 1. Express the following in the form x + yi

- (a) $\frac{4-9i}{3}$ (b) $\frac{1}{3-i}$ (c) $\frac{5+i}{2-7i}$ 2. Simplify $\frac{2}{1-i} + \frac{3+i}{i}$
- 3. If w = -1 + 6i express $\frac{w+1}{w-i}$ in the form x + yi

Exercise 5

If z = 2 - 3i and w = 1 + 4i, illustrate on an Argand diagram

- 1. z

- 2. w 3. z+w 4. $\overline{z+w}$
- 5. 2z w

Answers

Exercise 1

- 1. (a) 3i
- (b) $\sqrt{2}i$
- (c) $\sqrt{15}i$
- (d) $5\sqrt{2}i$
- (e) $6\sqrt{2}i$

- 2. (a) 1
- (b) i
- (c) 0
- (d) 2i -1
- (e) 1

- 3. (a) $Re\{z\} = 2$, $Im\{z\} = 7$
- (b) $Re\{z\} = 10$, $Im\{z\} = -1$
- (c) $Re\{z\} = \pi$, $Im\{z\} = 3$
- (d) $Re\{z\} = 0$, $Im\{z\} = \frac{1}{6}$
- (e) $Re\{z\} = -8$, $Im\{z\} = 0$
- 4. (a) x = 4, y = 9
- (b) x = 3, y = -1
- (c) x = 23, y = 0
- (d) x = 0, $y = -\sqrt{2}$
- (e) x = -5, y = 1

Exercise 2

- 1 (a) 2 + 3i
- (b) -10 2i
- (c) 1 46i
- (d) 7 24i
- (e) 13

- 2. (a) 1 + 7i
- (b) -4 + 7i
- (c) -7 24i
- 3 x = 3, y = -2

Exercise 3

- 1 (a) 4 9i
- (b) -3 + 15i
- (c) $\sqrt{3} + 4i$

- 2. 15 10i
- 3. (a) 2 + i
- (b) 3 i
- (c) 3 i

- (d) 4 3i
- (e) 1 3i

Exercise 4

- 1. (a) $\frac{4}{3} 3i$ (b) $\frac{3}{10} + \frac{1}{10}i$ (c) $\frac{3}{53} + \frac{37}{53}i$

- 2. 2 2i
- 3. $\frac{15}{13} \frac{3}{13}i$

Exercise 5

POLAR FORM OF A COMPLEX NUMBER

Rectangular and Polar Form

When a complex number is expressed in the form z = x + yi it is said to be in rectangular form.

But a point P with Cartesian coordinates (x, y) can also be represented by the polar coordinates (r, θ) where r is the distance of the point P from the origin and θ is the angle that \overrightarrow{OP} makes with the positive x-axis. Note that all angles are expressed in radians unless there is a degrees symbol °.

NB:
$$x = r \cos \theta$$
 and $y = r \sin \theta$
and $x^2 + y^2 = r^2$ or $r = \sqrt{x^2 + y^2}$

To express a complex number z in polar form:

$$z = x + yi$$

= $r \cos \theta + r \sin \theta i$
= $r(\cos \theta + i \sin \theta)$
which we abbreviate to $z = rcis\theta$

So, the polar form of the complex number z is

$$z = rcis\theta$$

where
$$r = \sqrt{x^2 + y^2}$$

and $\theta = \tan^{-1} \left(\frac{y}{x}\right)$

Modulus of z

The modulus of z, |z| is the distance of the point z from the origin.

$$\text{mod } z = |z| = |x + yi| = \sqrt{x^2 + y^2} = r$$

The argument and Argument of z

The argument of z, arg z, is the angle measured from the positive direction of the x-axis to \overrightarrow{OP}

If arg $z = \theta$ then $\sin \theta = \frac{y}{|z|}$ and $\cos \theta = \frac{x}{|z|}$ and $\tan \theta = \frac{y}{x}$

An infinite number of arguments of
$$z$$
 exist e.g. If $z=i$ then $\arg z=\frac{\pi}{2},\frac{5\pi}{2},\frac{9\pi}{2},\frac{13\pi}{2},\dots$

We define the Argument of *z*:

$$Arg z = \theta \text{ where } -\pi < \theta \leq \pi$$

Examples

1. Express z = 1 - i in polar form

$$x = 1, y = -1$$
 [NB: z is in the 4th quadrant]

$$r = |z| = \sqrt{x^2 + y^2} = \sqrt{1 + 1} = \sqrt{2}$$

$$\tan \theta = \frac{y}{x} = \frac{-1}{1} = -1$$

$$\theta = \tan^{-1}(-1) = \frac{-\pi}{4}$$

 $\theta = \tan^{-1}(-1) = \frac{-\pi}{4}$ [since z is in the 4th quadrant]

$$z = rcis\theta$$
$$\therefore z = \sqrt{2}cis\left(\frac{-\pi}{4}\right)$$

2. Express $z = 2cis\left(\frac{4\pi}{3}\right)$ in rectangular form i.e in the form z = x + yi

$$2cis\left(\frac{4\pi}{3}\right) = 2\left[\cos\left(\frac{4\pi}{3}\right) + \sin\left(\frac{4\pi}{3}\right)i\right]$$
$$= 2\left(-\frac{1}{2}\right) + 2\left(-\frac{\sqrt{3}}{2}\right)i$$
$$= -1 - \sqrt{3}i$$

Operations on Complex Numbers in Polar Form

Addition and Subtraction

Complex numbers in polar form are best converted to the form x + yi before addition or subtraction

Multiplication and Division

If $z_1=r_1cis\theta_1$ and $z_2=r_2cis\theta_2$ then it can be shown using trigonometric identities that

$$z_1z_2=r_1r_2cis(\theta_1+\theta_2)$$
 and

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} cis(\theta_1 - \theta_2)$$

Exercises

1. If $z_1=2cis\left(\frac{\pi}{4}\right)$ and $z_2=3cis\left(\frac{5\pi}{6}\right)$ find z_1z_2 in polar form, where $-\pi<\theta\leq\pi$

$$z_1 z_2 = 2 cis \left(\frac{\pi}{4}\right) \times 3 cis \left(\frac{5\pi}{6}\right)$$

$$= (2 \times 3) cis \left(\frac{\pi}{4} + \frac{5\pi}{6}\right)$$

$$= 6 cis \left(\frac{13\pi}{12}\right)$$

$$= 6 cis \left(\frac{13\pi}{12} - 2\pi\right) \quad [\text{so that } -\pi < \theta \le \pi]$$

$$= 6 cis \left(\frac{-11\pi}{12}\right)$$

2. If u=1+3i and v=2-i find $\frac{u}{v}$ in polar form with $-\pi < \theta \leq \pi$. Two approaches are possible:

$$u = 1 + 3i \text{ i.e } x = 1, y = 3$$

$$r = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$\theta = \tan^{-1} \left(\frac{3}{1}\right) = 1.25$$

$$\therefore u = \sqrt{10}cis(1.25)$$

$$v = 2 - 1 \text{ i.e } x = 2, y = -1$$

$$r = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

$$\theta = \tan^{-1} \left(\frac{-1}{2}\right) = -0.46$$

$$\therefore v = \sqrt{5}cis(-0.46)$$
Then $\frac{u}{v} = \frac{\sqrt{10}cis(1.25)}{\sqrt{5}cis(-0.46)}$

$$= \frac{\sqrt{10}}{\sqrt{5}}cis(1.25 + 0.46)$$

$$= \sqrt{2}cis(1.71)$$

$$\frac{u}{v} = \frac{1+3i}{2-i}$$

$$= \frac{1+3i}{2-i} \times \frac{2+i}{2+i}$$

$$= \frac{-1+7i}{4+1}$$

$$= \frac{-1+7i}{5}$$

$$= -\frac{1}{5} + \frac{7}{5}i$$

$$\therefore x = -\frac{1}{5} = -0.2, y = \frac{7}{5} = 1.4$$

$$r = \sqrt{(-0.2)^2 + 1.4^2} = \sqrt{2}$$

$$\theta = \tan^{-1}\left(\frac{1.4}{-0.2}\right) = 1.71$$

$$\frac{u}{v} = \sqrt{2}cis(1.71)$$

Exercises

Exercise 1

1. Find the polar form (in radians) of the following complex numbers:

(a)
$$z = -1 + i$$

(b)
$$z = -\sqrt{3} + i$$

(c)
$$z = -3i$$

(d)
$$z = -2 - 4i$$

2. Express each of the following complex numbers in rectangular form

(a)
$$3cis\left(\frac{\pi}{4}\right)$$

(b)
$$\sqrt{7}cis(\pi)$$

(c)
$$8cis\left(\frac{\pi}{2}\right)$$

3. If z = 2 + i and w = 1 - 4i find each of the following in polar form using radians where appropriate:

(a)
$$|z|$$

- (b) |w| (c) Arg|z|
- (d) $|\overline{w}|$ (e) Arg(zw) (f) zw

Exercise 2

1. Simplify

(a)
$$4cis\left(\frac{\pi}{3}\right) \times 3cis\left(\frac{\pi}{4}\right)$$
 (b) $\frac{3cis\left(\frac{5\pi}{6}\right)}{12cis\left(\frac{\pi}{6}\right)}$

(b)
$$\frac{3cis\left(\frac{5\pi}{6}\right)}{12cis\left(\frac{\pi}{6}\right)}$$

- 2. If $u = 6cis\left(\frac{3\pi}{4}\right)$ and $v = 4cis\left(-\frac{\pi}{4}\right)$ express $\frac{u}{v}$ in polar form
- 3. If $z = 1 \sqrt{3i}$, find \bar{z} and express both z and \bar{z} in polar form using radians.

Answers

Exercise 1

- 1. (a) $\sqrt{2}cis\left(\frac{3\pi}{4}\right)$ (b) $2cis\left(\frac{5\pi}{6}\right)$ (c) $3cis\left(-\frac{\pi}{2}\right)$ (d) $\sqrt{20}cis(-2.03)$ 2. (a) $\frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}i$ (b) $-\sqrt{7}$ (c) 8i (d) 9.2 + 4i

- (c) 8i
- (d) 9.2 + 4i
- 3. (a) $\sqrt{5}$ (d) $\sqrt{17}$
- (b) $\sqrt{17}$ (e) -0.86
- (c) 0.46(f) 9.22cis(-0.86)

Exercise 2

- 1. (a) $12cis\left(\frac{7\pi}{12}\right)$
- (b) $\frac{1}{4} cis\left(\frac{2\pi}{3}\right)$
- 2. (a) $\frac{3}{2} cis(\pi)$
- $3. z = 2 cis \left(-\frac{\pi}{3}\right) \quad \bar{z} = 2 cis \left(\frac{\pi}{3}\right)$

DE MOIVRE'S THEOREM

Integral Powers of Complex Numbers

De Moivre's theorem states that:

$$(cis\theta)^n = cis(n\theta)$$

We make use of this result to calculate an integral power of a complex number:

If
$$z = rcis\theta$$

then
 $z^n = r^n cis(n\theta)$

Examples

1. Express $(1-i)^6$ in the form x + yi

$$(1-i)^6 = \left[\sqrt{2}cis\left(\frac{-\pi}{4}\right)\right]^6$$
 [change to polar form]

$$= \sqrt{2}^6 cis\left(6 \times \frac{-\pi}{4}\right)$$
 [by De Moivre's theorem]

$$= 8cis\left(\frac{-3\pi}{2}\right)$$

$$= 8i$$

2. Simplify $\frac{\left(\sqrt{3}-i\right)^6}{(1+i)^8}$ and give the answer in rectangular form $\sqrt{3}-i=2cis\left(-\frac{\pi}{6}\right)$ [change to polar form] $\left(\sqrt{3}-i\right)^6=64cis(-\pi)$ [by De Moivre's theorem]

and

$$1 + i = \sqrt{2}cis\left(\frac{\pi}{4}\right)$$
 [change to polar form]

$$(1 + i)^8 = 16cis(2\pi)$$
 [by De Moivre's theorem]

$$\therefore \frac{\left(\sqrt{3} - i\right)^6}{(1+i)^8} = \frac{64cis(-\pi)}{16cis(2\pi)}$$
 [by De Moivre's theorem]

$$= \frac{64}{16}cis(-\pi - 2\pi)$$
 [by De Moivre's theorem]

$$= 4cis(-3\pi)$$

$$= -4$$

Roots of a Complex Number

 $z^n = rcis\theta$ will have *n* solutions of the form

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} cis\left(\frac{\theta + 2\pi k}{n}\right), \qquad k = 0, 1, \dots, n - 1$$

Example

Solve $z^4 = 1 - \sqrt{3}i$

$$1 - \sqrt{3}i = 2cis\left(-\frac{\pi}{3}\right)$$
 [change to polar form]

then
$$z^4 = 2cis\left(-\frac{\pi}{3}\right)$$
, $2cis\left(-\frac{\pi}{3} + 2\pi\right)$, $2cis\left(-\frac{\pi}{3} + 4\pi\right)$, $2cis\left(-\frac{\pi}{3} + 6\pi\right)$

[as four solutions are required]

ie
$$z^4 = 2cis\left(-\frac{\pi}{3}\right)$$
, $2cis\left(\frac{5\pi}{3}\right)$, $2cis\left(\frac{11\pi}{3}\right)$, $2cis\left(\frac{17\pi}{3}\right)$

$$\therefore z = 2^{\frac{1}{4}}cis\left(-\frac{\pi}{12}\right)$$
, $2^{\frac{1}{4}}cis\left(\frac{5\pi}{12}\right)$, $2^{\frac{1}{4}}cis\left(\frac{11\pi}{12}\right)$, $2^{\frac{1}{4}}cis\left(\frac{17\pi}{12}\right)$

The solutions may be represented graphically:

NB: The solutions of $z^n = rcis\theta$ lie on a circle with centre the origin and radius $r^{\frac{1}{n}}$ and they divide the circle into arcs of equal length. The symmetrical nature of the solutions can be used to find all solutions if one is known.

Exercises

Exercise 1

1. Evaluate giving your answers in polar form with $-\pi < \theta \le \pi$

(a)
$$\left(\sqrt{3}+i\right)^3$$

(b)
$$(1-i)^5$$

(c)
$$(-2\sqrt{3} + 2i)^2$$

2. Simplify each of the following giving the answer in polar form

(a)
$$(1+i)^4(2-2i)^3$$

(b)
$$\frac{(2-2\sqrt{3}i)^4}{(-1+i)^6}$$

Exercise 2

1. Solve giving the answers in polar form with $-\pi < \theta \leq \pi$

(a)
$$z^3 = -1$$

(b)
$$z^4 = 16i$$

(a)
$$z^3 = -1$$
 (b) $z^4 = 16i$ (c) $z^3 = \sqrt{6} - \sqrt{2}i$

2. If $\sqrt{3} + i$ is one solution of $z^3 = 8i$ use a diagram to find the other solutions in rectangular form.

Answers

Exercise 1

1. (a)
$$8cis\left(\frac{\pi}{2}\right)$$

1. (a)
$$8cis\left(\frac{\pi}{2}\right)$$
 (b) $2^{\frac{5}{2}}cis\left(\frac{3\pi}{4}\right)$ (c) $16cis\left(\frac{-\pi}{3}\right)$

(c)
$$16cis\left(\frac{-\pi}{3}\right)$$

2. (a)
$$2^{\frac{13}{2}} cis(\frac{\pi}{4})$$

(b)
$$32cis\left(\frac{\pi}{6}\right)$$

Exercise 2

1. (a)
$$cis\left(\frac{\pi}{3}\right)$$
, $cis(\pi)$, $cis\left(\frac{-\pi}{3}\right)$

(b)
$$2cis\left(\frac{\pi}{8}\right)$$
, $2cis\left(\frac{5\pi}{8}\right)$, $2cis\left(\frac{-7\pi}{8}\right)$, $2cis\left(\frac{-3\pi}{8}\right)$

(c)
$$\sqrt{2}cis\left(\frac{-\pi}{18}\right)$$
, $\sqrt{2}cis\left(\frac{11\pi}{18}\right)$, $\sqrt{2}cis\left(\frac{-13\pi}{18}\right)$

2.
$$-\sqrt{3} + i$$
 and $-2i$