验证性因素分析作业

--基于 KIMS 问卷数据

第三大组-第三小组

1.基本信息

肯塔基州正念(觉知)量表(Kentucky Inventory of Mindfulness Skills)是用于测量日常生活事件中体现出来的正念态度。该问卷共 39 个项目,5 点评分: 1=非常不正确,2=很少正确,3=有点正确,4=经常正确,5=非常正确。原始问卷共四个维度:观察(Observing)、描述(Describing)、有觉知行动(Act With Awareness)、无评价接纳(Accept Without Judgment)。对被试的年龄进行划分(1=14~30,2=31~50,3=51 以上),性别也进行收集(1=男,2=女),最后共有 601 名被试填答 KIMS 问卷的数据。

2.探索性因素分析

2.1 目的

运用结构方程模型进行验证性因素分析的目的是为了评估 KIMS 在测量日常生活事件中体现出来的正念态度的有效性以及确定与该量表拟合较好的测度模型。

2.2 数据处理工具

本研究中进行的探索性因素分析和结构方程模型均在 spss20.0 和 mplus7 软件中进行操作。

2.3数据清理

有两名被试的缺失率超过30%,即删除100和187号被试。(如下表所示)

表1 nmiss Frequency Percent Valid Percent **Cumulative Percent** .00 86.7 86.7 86.7 521 1.00 59 9.8 9.8 96.5 2.00 14 2.3 2.3 98.8 4 .7 .7 3.00 99.5 Valid 4.00 .2 .2 99.7 14.00 1 .2 .2 99.8 22.00 1 .2 .2 100.0 Total 100.0 100.0

39个变量的缺失比例均未超过10%,说明缺失值对结果将不造成影响。(如下表所示)

表2 Univariate Statistics

				Missing		No. of Extremes ^a	
	N	Mean	Std. Deviation	Count	Percent	Low	High
Q1	601	3.61	.983	0	.0	17	0
Q2	598	3.61	1.034	3	.5	14	0
Q3	599	3.44	1.023	2	.3	17	0
Q4	598	3.04	1.224	3	.5	0	0
Q5	596	3.20	1.054	5	.8	0	0
Q6	598	3.79	1.031	3	.5	0	0
Q7	598	3.00	1.014	3	.5	0	0
Q8	600	3.79	.981	1	.2	0	0
Q9	599	3.05	1.129	2	.3	0	0
Q10	598	3.65	1.021	3	.5	14	0
Q11	601	3.02	1.057	0	.0	0	0
Q12	597	2.95	1.226	4	.7	0	0
Q13	597	3.32	1.134	4	.7	0	0
Q14	599	2.42	1.107	2	.3	0	30
Q15	599	3.67	1.023	2	.3	14	0
Q16	600	2.62	1.309	1	.2	0	0
Q17	598	3.23	1.165	3	.5	0	0
Q18	596	2.49	1.149	5	.8	0	28
Q19	593	3.05	.972	8	1.3	0	0
Q20	599	3.07	1.268	2	.3	0	0
Q21	598	3.83	.963	3	.5	0	0
Q22	596	2.37	1.045	5	.8	0	19
Q23	595	2.82	1.084	6	1.0	0	0
Q24	598	3.02	1.217	3	.5	0	0
Q25	594	3.76	1.021	7	1.2	0	0
Q26	596	3.47	1.141	5	.8	33	0
Q27	598	3.78	1.001	3	.5	0	0
Q28	597	2.70	1.288	4	.7	0	0
Q29	596	3.99	.931	5	.8	43	0
Q30	594	3.41	1.134	7	1.2	34	0
Q31	594	3.21	1.046	7	1.2	34	0
Q32	599	2.59	1.300	2	.3	0	0
Q33	597	3.98	1.011	4	.7	0	0
Q34	595	3.42	1.158	6	1.0	32	0
Q35	596	3.32	1.046	5	.8	26	0
Q36	597	2.78	1.305	4	.7	0	0
Q37	599	3.69	1.011	2	.3	11	0
Q38	598	3.09	.971	3	.5	0	0
Q39	599	3.76	.945	2	.3	11	0

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR).

MCAR 检验 p=0.010<0.05, 拒绝零假设, 缺失类型非 MCAR。

最终被试的年龄及性别分布如表 3。其中男性 299 人,女性 300 人;年龄在 14~30 的占 36.9%,年龄在 31~50 的占 38.4%,年龄在 50~的占 24.7%。共有 39 个变量,根据文献可知 Q3、Q4、Q8、Q11、Q12、Q14、Q16、Q18、Q20、Q22、Q23、Q24、Q27、Q28、Q31、Q32、Q35、Q36 为反向计分项目,对其进行反向计分。

表 3 被试的年龄及性别统计

		Frequency	Percent	Cumulative Percent
	14~30	221	36.9	36.9
Age	31~50	230	38.4	75.3
Age	51~	148	24.7	100.0
	Total	599	100.0	
	male	299	49.9	49.9
Gender	female	300	50.1	100.0
	Total	599	100.0	

2.4 验证性因素分析

DATA: FILE IS mm.txt;

LISTWISE = ON

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q10 Q14 Q18 Q22 Q26 Q34;

Acting BY Q3 Q7 Q11 Q15 Q19 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q8 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

该量表共 39 题(Q1-Q39),包含以下四个维度: Observing:Q1、Q5、Q9、Q13、Q17、Q21、Q25、Q29、Q30、Q33、Q37、Q39; Describing: Q2、Q6、Q10、Q14、Q18、Q22、Q26、Q34; Acting: Q3、Q7、Q11、Q15、Q19、Q23、Q27、Q31、Q35、Q38; Accepting: Q4、Q8、Q12、Q16、Q20、Q24、Q28、Q32、Q36。

使用 listwise 方式处理缺失值,共有 521 个被试数据被保留。

整体拟合指数如下表所示,表明整体拟合一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	2362.962	696	3.395	0.830	0.819	0.068

因子载荷如下表所示, 其中 Q11 和 Q8 载荷较低。

	lization

STOTA Standardization			5 . /0 5	
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY				
Q1	0.564	0.033		
Q5	0.630	0.030		
Q9	0.643	0.029	22.023	0.000
Q13	0.611	0.031	19.678	0.000
Q17	0.580	0.032	17.982	0.000
Q21	0.731	0.024	30.114	0.000
Q25	0.609	0.031	. 19.736	0.000
Q29	0.612	0.031	. 19.876	0.000
Q30	0.584	0.032	18.080	0.000
Q33	0.586	0.032	18.260	0.000
Q37	0.607	0.031	. 19.426	0.000
Q39	0.502	0.036	13.882	0.000
DESCRIBI BY				
Q2	0.764	0.021	36.464	0.000
Q6	0.769	0.021	37.237	0.000
Q10	0.692	0.025	27.168	0.000
Q14	0.776	0.020	38.085	0.000
Q18	0.807	0.018	44.053	0.000
Q22	0.682	0.026	26.343	0.000
Q26	0.724	0.023	30.891	0.000
Q34	0.612	0.030	20.521	0.000
ACTING BY				
Q3	0.631	0.032	19.661	0.000
Q7	0.702	0.029	24.225	0.000
Q11	0.281	0.045	6.211	0.000
Q15	0.417	0.040	10.297	0.000
Q19	0.536	0.039	13.857	0.000
Q23	0.617	0.033	18.589	0.000
Q27	0.527	0.037	14.315	0.000
Q31	0.506	0.036		
Q35	0.732	0.026		
Q38	0.654	0.033		
ACCEPTIN BY				
Q4	0.669	0.026	26.067	0.000
Q8	0.283	0.042	6.792	0.000
Q12	0.808	0.017	48.087	0.000
Q16	0.871	0.012	71.075	0.000
Q20	0.770	0.019	39.736	0.000

Q24	0.583	0.030	19.260	0.000
Q28	0.888	0.011	80.361	0.000
Q32	0.889	0.011	80.670	0.000
Q36	0.740	0.021	34.727	0.000

载荷模型图如下图所示。

查看修正结果分析,如下表所示,Q8 可归属于多个维度,且各维度载荷都较低,所以 先删除Q8,重做CFA。

	M.I.	E.P.C. S	Std E.P.C. St	tdYX E.P.C.
BY Statements				
OBSERVIN BY Q2	4.318	0.142	0.079	0.076
OBSERVIN BY Q3	4.804	-0.168	-0.094	-0.091
OBSERVIN BY Q8	55.303	-0.583	-0.325	-0.335
OBSERVIN BY Q10	78.754	0.655	0.365	0.352
OBSERVIN BY Q11	15.838	0.368	0.205	0.193

OBSERVIN BY Q14	23.875	-0.340	-0.189	-0.176
OBSERVIN BY Q18	14.229	-0.264	-0.147	-0.130
OBSERVIN BY Q20	14.575	-0.271	-0.151	-0.119
OBSERVIN BY Q26	4.974	0.171	0.095	0.085
OBSERVIN BY Q27	4.487	-0.167	-0.093	-0.094
OBSERVIN BY Q36	4.324	0.160	0.089	0.068
DESCRIBI BY Q4	7.773	0.160	0.127	0.104
DESCRIBI BY Q8	23.556	-0.279	-0.222	-0.229
DESCRIBI BY Q9	7.534	-0.164	-0.130	-0.114
DESCRIBI BY Q13	6.174	-0.152	-0.121	-0.106
DESCRIBI BY Q20	9.446	-0.161	-0.128	-0.101
DESCRIBI BY Q23	16.036	0.229	0.182	0.168
DESCRIBI BY Q27	7.279	-0.150	-0.119	-0.120
DESCRIBI BY Q30	8.687	0.183	0.145	0.128
DESCRIBI BY Q33	4.386	0.114	0.091	0.091
DESCRIBI BY Q37	6.266	0.135	0.107	0.107
DESCRIBI BY Q39	6.867	0.144	0.114	0.119
ACTING BY Q2	10.515	-0.188	-0.122	-0.117
ACTING BY Q8	5.819	-0.190	-0.123	-0.127
ACTING BY Q18	7.061	0.158	0.103	0.091
ACTING BY Q25	5.167	-0.152	-0.099	-0.096
ACTING BY Q33	4.018	0.132	0.086	0.086
ACTING BY Q34	6.561	-0.190	-0.123	-0.108
ACTING BY Q39	4.557	0.142	0.092	0.096
ACCEPTIN BY Q6	8.946	-0.126	-0.103	-0.100
ACCEPTIN BY Q10	9.047	-0.140	-0.114	-0.110
ACCEPTIN BY Q14	5.610	0.104	0.085	0.079
ACCEPTIN BY Q18	14.768	0.169	0.138	0.122
ACCEPTIN BY Q19	23.993	-0.269	-0.220	-0.225
ACCEPTIN BY Q22	14.070	0.176	0.144	0.139
ACCEPTIN BY Q23	12.161	0.202	0.165	0.153
ACCEPTIN BY Q33	9.643	0.145	0.118	0.118
ACCEPTIN BY Q34	17.441	-0.229	-0.187	-0.164
ACCEPTIN BY Q35	7.493	0.143	0.116	0.111
ACCEPTIN BY Q38	11.591	-0.173	-0.141	-0.145

DATA: FILE IS mm.txt;
LISTWISE = ON;
VARIABLE:
NAMES ARE Q1-Q41;
USEVAR = Q1-Q7 Q9-Q39;
MISSING = ALL(0);
ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q10 Q14 Q18 Q22 Q26 Q34;

Acting BY Q3 Q7 Q11 Q15 Q19 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 522 个被试数据被保留。

整体拟合指数如下表所示,相较于原始模型有轻微提升,但整体拟合仍一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	2223.213	659	3.374	0.838	0.828	0.067

Estimate S.E. Est./S.E. Two-Tailed P-Value

因子载荷如下表所示,其中 Q11 载荷较低。

		•		
OBSERVIN BY				
Q1	0.565	0.033	17.041	0.000
Q5	0.632	0.030	21.146	0.000
Q9	0.645	0.029	22.162	0.000
Q13	0.612	0.031	19.758	0.000
Q17	0.581	0.032	18.041	0.000
Q21	0.732	0.024	30.220	0.000
Q25	0.609	0.031	19.695	0.000
Q29	0.608	0.031	19.610	0.000
Q30	0.579	0.033	17.752	0.000
Q33	0.585	0.032	18.207	0.000
Q37	0.601	0.031	19.087	0.000
Q39	0.500	0.036	13.811	0.000
DESCRIBI BY				
Q2	0.764	0.021	36.493	0.000
Q6	0.769	0.021	37.315	0.000
Q10	0.692	0.025	27.223	0.000
Q14	0.775	0.020	38.090	0.000
Q18	0.807	0.018	44.073	0.000
Q22	0.683	0.026	26.388	0.000
Q26	0.725	0.023	31.051	0.000
Q34	0.612	0.030	20.533	0.000
ACTING BY				
Q3	0.636	0.032	20.031	0.000
Q7	0.692	0.030	23.404	0.000
Q11	0.289	0.045	6.405	0.000
Q15	0.409	0.041	10.035	0.000
Q19	0.530	0.039	13.587	0.000
Q23	0.622	0.033	18.953	0.000
			_	

Q27	0.532	0.036	14.568	0.000
Q31	0.508	0.036	14.001	0.000
Q35	0.735	0.026	28.527	0.000
Q38	0.648	0.033	19.558	0.000
ACCEPTIN BY				
Q4	0.670	0.026	26.170	0.000
Q12	0.809	0.017	48.254	0.000
Q16	0.870	0.012	70.560	0.000
Q20	0.768	0.019	39.407	0.000
Q24	0.576	0.031	18.828	0.000
Q28	0.890	0.011	81.304	0.000
Q32	0.891	0.011	81.781	0.000
Q36	0.740	0.021	34.851	0.000

查看修正结果分析,如下表所示,Q11 可归属于 OBSERVING 维度,但归属该维度后载 荷预期较低,所以删除 Q11,重做 CFA。

M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
4.219	0.140	0.078	0.075
4.932	-0.170	-0.095	-0.092
78.606	0.653	0.364	0.351
15.906	0.369	0.205	0.193
23.955	-0.340	-0.190	-0.176
13.703	-0.260	-0.145	-0.127
15.467	-0.281	-0.156	-0.124
4.954	0.170	0.095	0.085
4.561	-0.168	-0.094	-0.094
7.550	0.158	0.126	0.103
7.453	-0.163	-0.129	-0.113
6.289	-0.153	-0.122	-0.107
9.631	-0.163	-0.130	-0.102
16.120	0.230	0.182	0.168
7.526	-0.152	-0.121	-0.121
8.117	0.178	0.141	0.124
4.979	0.123	0.097	0.097
5.832	0.130	0.103	0.103
6.770	0.143	0.113	0.119
10.654	-0.187	-0.123	-0.118
7.719	0.165	0.10	8 0.095
4.523	-0.142	-0.093	-0.090
4.543	0.140	0.09	2 0.091
6.992	-0.194	-0.127	-0.112
4.430	0.138	0.09	1 0.095
	4.219 4.932 78.606 15.906 23.955 13.703 15.467 4.954 4.561 7.550 7.453 6.289 9.631 16.120 7.526 8.117 4.979 5.832 6.770 10.654 7.719 4.523 4.543 6.992	4.219 0.140 4.932 -0.170 78.606 0.653 15.906 0.369 23.955 -0.340 13.703 -0.260 15.467 -0.281 4.954 0.170 4.561 -0.168 7.550 0.158 7.453 -0.163 6.289 -0.153 9.631 -0.163 16.120 0.230 7.526 -0.152 8.117 0.178 4.979 0.123 5.832 0.130 6.770 0.143 10.654 -0.187 7.719 0.165 4.523 -0.142 4.543 0.140 6.992 -0.194	4.219 0.140 0.078 4.932 -0.170 -0.095 78.606 0.653 0.364 15.906 0.369 0.205 23.955 -0.340 -0.190 13.703 -0.260 -0.145 15.467 -0.281 -0.156 4.954 0.170 0.095 4.561 -0.168 -0.094 7.550 0.158 0.126 7.453 -0.163 -0.129 6.289 -0.153 -0.122 9.631 -0.163 -0.130 16.120 0.230 0.182 7.526 -0.152 -0.121 8.117 0.178 0.141 4.979 0.123 0.097 5.832 0.130 0.103 6.770 0.143 0.113 10.654 -0.187 -0.123 7.719 0.165 0.10 4.523 -0.142 -0.093 4.543 0.140 0.09 6.992 -0.194 -0.127

ACCEPTIN BY Q6	9.088	-0.127	-0.104	-0.101
ACCEPTIN BY Q10	8.793	-0.137	-0.113	-0.109
ACCEPTIN BY Q14	5.329	0.101	0.083	0.077
ACCEPTIN BY Q18	15.462	0.174	0.142	0.125
ACCEPTIN BY Q19	23.773	-0.269	-0.220	-0.225
ACCEPTIN BY Q22	13.955	0.175	0.143	0.138
ACCEPTIN BY Q23	12.283	0.203	0.166	0.154
ACCEPTIN BY Q33	10.683	0.153	0.125	0.125
ACCEPTIN BY Q34	17.488	-0.229	-0.187	-0.165
ACCEPTIN BY Q35	6.890	0.137	0.112	0.106
ACCEPTIN BY Q38	11.378	-0.172	-0.141	-0.145

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q10 Q12-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q10 Q14 Q18 Q22 Q26 Q34;

Acting BY Q3 Q7 Q15 Q19 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 522 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型有轻微提升,但整体拟合仍一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA	
数值	2101.154	623	3.373	0.845	0.835	0.067	

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	0.565 0.631 0.645 0.612 0.581 0.732 0.609 0.608 0.579 0.585 0.601	0. 033 0. 030 0. 029 0. 031 0. 032 0. 031 0. 031 0. 033 0. 032 0. 031 0. 036	17. 035 21. 117 22. 138 19. 755 18. 052 30. 224 19. 697 19. 621 17. 752 18. 212 19. 088 13. 814	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY Q2 Q6 Q10 Q14 Q18 Q22 Q26 Q34	0.764 0.769 0.692 0.775 0.807 0.682 0.725 0.613	0. 021 0. 021 0. 025 0. 020 0. 018 0. 026 0. 023 0. 030	36, 500 37, 332 27, 227 38, 065 44, 034 26, 379 31, 064 20, 553	0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACTING BY Q3 Q7 Q15 Q19 Q23 Q27 Q31 Q35 Q38	0.613 0.719 0.421 0.565 0.595 0.507 0.507 0.720 0.680	0. 034 0. 028 0. 040 0. 038 0. 035 0. 038 0. 036 0. 028 0. 032	18. 238 25. 588 10. 452 14. 976 17. 085 13. 372 13. 945 26. 165 21. 547	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36	0.670 0.809 0.870 0.768 0.576 0.890 0.891	0.026 0.017 0.012 0.019 0.031 0.011 0.011	26. 155 48. 257 70. 525 39. 394 18. 815 81. 301 81. 860 34. 836	0.000 0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示,可以看出 Q10 在 observing 和 accepting 两个维度上均匀较大的修正指数,但估计载荷均较小,将其删除,重做 CFA。

Minimum M.I. value for	printing the	modifica	tion index	4.000
	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Statements				
DESCRIBI BY Q4 DESCRIBI BY Q9 DESCRIBI BY Q13 DESCRIBI BY Q20 DESCRIBI BY Q20 DESCRIBI BY Q27 DESCRIBI BY Q30 DESCRIBI BY Q30 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q39 ACTING BY Q2 ACTING BY Q25 ACTING BY Q38 ACTING BY Q33 ACTING BY Q34 ACTING BY Q34 ACTING BY Q39 ACCEPTIN BY Q10 ACCEPTIN BY Q10 ACCEPTIN BY Q10 ACCEPTIN BY Q10 ACCEPTIN BY Q19 ACCEPTIN BY Q19 ACCEPTIN BY Q19 ACCEPTIN BY Q22 ACCEPTIN BY Q23 ACCEPTIN BY Q27 ACCEPTIN BY Q27 ACCEPTIN BY Q33	4. 228 78. 592 24. 001 13. 759 15. 474 4. 969 4. 836 7. 541 7. 442 6. 285 9. 627 18. 955 5. 200 8. 117 4. 975 5. 831 6. 775 11. 033 6. 559 4. 800 4. 531 5. 040 4. 706 9. 078 8. 791 5. 318 15. 416 27. 194 21. 953 16. 822 4. 068 10. 690	0. 140 0. 653 -0. 341 -0. 261 -0. 171 0. 120 0. 158 -0. 163 -0. 153 -0. 128 0. 123 0. 123 0. 134 -0. 197 0. 152 0. 144 -0. 177 -0. 177 0. 173 -0. 173 -0. 279 0. 239 0. 135	0.097 0.103 0.113 -0.124 0.099 -0.096 0.092 -0.108 0.093 -0.104 -0.113 0.082 0.142 -0.229 0.143 0.196 0.093 0.195	0. 075 0. 351 -0. 176 -0. 128 -0. 124 0. 085 0. 092 0. 103 -0. 113 -0. 107 -0. 102 0. 185 -0. 102 0. 124 0. 097 0. 103 0. 119 -0. 120 0. 087 -0. 092 0. 091 -0. 098 -0. 101 -0. 109 0. 077 0. 125 -0. 234 0. 181 0. 093 0. 125
ACCEPTIN BY Q34 ACCEPTIN BY Q35 ACCEPTIN BY Q38	17. 426 10. 808 13. 439	-0.228 0.171 -0.181	-0.187 0.140 -0.148	-0.164 0.133 -0.153

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22 Q26 Q34;

Acting BY Q3 Q7 Q15 Q19 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 524 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型有轻微提升,但整体拟合仍一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	1942.627	588	3.304	0.852	0.842	0.066

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1	0.565	0.033	17.071	0.000
Q5	0.632	0.030	21.187	0.000
Q9	0.645	0.029	22.209	0.000
Q13	0.610	0.031	19.691	0.000
Q17	0.581	0.032	18.080	0.000
Q21	0.731	0.024	30.208	0.000
Q25	0.609	0.031	19.712	0.000
Q29	0.607	0.031	19.577	0.000
Q30	0.578	0.033	17.752	0.000
Q33	0.584	0.032	18.171	0.000
Q37 Q39 DESCRIBI BY	0.599 0.500	0.032 0.036	18.989 13.817	0.000 0.000
Q2	0.754	0.022	34.496	0.000
Q6	0.767	0.021	36.463	0.000
Q14	0.794	0.019	41.004	0.000
Q18	0.824	0.017	47.177	0.000
Q22	0.684	0.026	26.424	0.000
Q26	0.719	0.024	30.017	0.000
Q34	0.597	0.031	19.392	0.000
ACTING BY	0.610	0.034	18.056	0.000
Q7 Q15 Q19	0.720 0.421 0.567	0.034 0.028 0.040 0.038	25. 761 10. 492 15. 088	0.000 0.000 0.000
Q23	0.595	0.035	17.081	0.000
Q27	0.507	0.038	13.379	0.000
Q31	0.509	0.036	14.031	0.000
Q35	0.720	0.028	26.134	0.000
Q38	0.682	0.031	21.687	0.000
ACCEPTIN BY Q4 Q12	0.670 0.809	0.026 0.017	26.275 48.455	0.000 0.000
Q16	0.869	0.012	70.350	0.000
Q20	0.767	0.019	39.392	0.000
Q24	0.575	0.031	18.809	0.000
Q28	0.890	0.011	81.472	0.000
Q32 Q36	0.891 0.741	0.011 0.011 0.021	82.057 34.970	0.000 0.000

修正指数如下表所示,Q19在 acting 上载荷为 0.567, 且在 describing 上 MI 指数为 4.342,

在 accepting 维度上 MI 指数为 27.083, 但估计载荷均较小,删除 Q19, 重做 CFA。

Minimum M.I. value for printing the modification index 4.000

P.C.
25
34
81
24
30
10
06
10
97
90
07
97
94
30
09
26 10
83
91
92
96 96
75
19
05
32
28
80
95
23
71
30
50
1999 999 1189 992 11032 1389 1389 1389 1389 1389 1389 1389 1389

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q18 Q20-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22 Q26 Q34;

Acting BY Q3 Q7 Q15 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 526 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型有轻微提升,但整体拟合仍一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	1700.511	554	3.070	0.870	0.861	0.063

个体载荷如下表所示,除 Q15 之外,其他各题在对应维度上载荷均大于 0.4。

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	ВУ	0.566 0.633 0.646 0.609 0.582 0.732 0.610 0.607 0.579 0.582 0.600	0.033 0.030 0.029 0.031 0.032 0.024 0.031 0.033 0.033 0.032 0.031	17. 132 21. 341 22. 285 19. 669 18. 173 30. 281 19. 813 19. 564 17. 809 18. 098 19. 047 13. 852	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI Q2 Q6 Q14 Q18 Q22 Q26 Q34	ВҮ	0.754 0.766 0.794 0.824 0.684 0.719 0.598	0.022 0.021 0.019 0.017 0.026 0.024 0.031	34.568 36.487 41.231 47.445 26.482 30.084 19.463	0.000 0.000 0.000 0.000 0.000 0.000
ACTING Q3 Q7 Q15 Q23 Q27 Q31 Q35 Q38	ВҮ	0.670 0.643 0.381 0.658 0.552 0.502 0.761 0.577	0.029 0.031 0.042 0.030 0.035 0.037 0.024 0.035	23. 016 20. 575 9. 135 21. 927 15. 801 13. 630 31. 737 16. 631	0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36	ВҮ	0.668 0.808 0.869 0.766 0.576 0.889 0.890	0.026 0.017 0.012 0.020 0.031 0.011 0.011	26. 092 48. 346 70. 423 39. 238 18. 870 81. 411 81. 716 35. 058	0.000 0.000 0.000 0.000 0.000 0.000 0.000

各题修正指数如下表所示,Q15 未归属于其他维度,删除Q15,重做CFA。

Minimum M.I. value for	printing the	modifica	tion index	4.000
	M. I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Statements				
OBSERVIN BY Q2 OBSERVIN BY Q3 OBSERVIN BY Q14 OBSERVIN BY Q14 OBSERVIN BY Q18 OBSERVIN BY Q20 OBSERVIN BY Q26 OBSERVIN BY Q26 OBSERVIN BY Q27 OBSERVIN BY Q38 DESCRIBI BY Q4 DESCRIBI BY Q4 DESCRIBI BY Q13 DESCRIBI BY Q20 DESCRIBI BY Q20 DESCRIBI BY Q27 DESCRIBI BY Q30 DESCRIBI BY Q37 DESCRIBI BY Q39 ACTING BY Q39 ACTING BY Q25 ACTING BY Q25 ACTING BY Q39 ACCEPTIN BY Q39 ACCEPTIN BY Q39 ACCEPTIN BY Q39 ACCEPTIN BY Q18 ACCEPTIN BY Q22	12. 442 5. 528 15. 280 6. 189 16. 070 11. 916 4. 469 4. 728 7. 574 7. 476 5. 498 10. 980 14. 530 9. 284 9. 150 6. 789 8. 032 8. 830 9. 355 4. 414 4. 460 9. 066 5. 321 4. 721 12. 158 11. 017 11. 739 5. 950	0. 238 -0. 175 -0. 260 -0. 167 -0. 286 0. 259 -0. 163 0. 162 -0. 160 -0. 141 -0. 178 0. 139 0. 153 -0. 166 0. 171 -0. 131 -0. 131 -0. 143 -0. 195 -0. 146 0. 162	0. 132 -0. 098 -0. 145 -0. 093 -0. 159 0. 144 -0. 091 0. 127 -0. 126 -0. 111 -0. 140 0. 171 -0. 133 0. 145 0. 109 0. 120 -0. 114 0. 118 -0. 091 -0. 091 -0. 091 -0. 099 -0. 078 -0. 172 -0. 172 -0. 173 -0. 173 -0. 173 -0. 174 -0. 173 -0. 174 -0. 17	0. 127 -0. 095 -0. 134 -0. 082 -0. 126 -0. 130 -0. 092 -0. 93 -0. 104 -0. 110 -0. 158 -0. 134 -0. 128 -0. 109 -0. 126 -0. 110 -0. 109 -0. 126 -0. 110 -0. 103 -0. 088 -0. 90 -0. 130 -0. 104 -0. 075 -0. 119 -0. 104 -0. 128 -0. 104 -0. 128 -0. 109
ACCEPTIN BY Q33 ACCEPTIN BY Q34 ACCEPTIN BY Q38	10.392 18.399 6.755	0.151 -0.240 -0.142	0.123 -0.196 -0.116	0.123 -0.172 -0.120

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q14 Q16-Q18 Q20-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22 Q26 Q34;

Acting BY Q3 Q7 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 526 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型有轻微提升,但整体拟合仍一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	1591.679	521	3.055	0.877	0.867	0.063

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	0.566 0.634 0.646 0.609 0.582 0.731 0.610 0.606 0.579 0.582 0.600	0. 033 0. 030 0. 029 0. 031 0. 032 0. 031 0. 031 0. 032 0. 032 0. 031 0. 036	17. 150 21. 375 22. 281 19. 627 18. 173 30. 236 19. 818 19. 558 17. 814 18. 084 19. 057 13. 860	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY Q2 Q6 Q14 Q18 Q22 Q26 Q34	0.754 0.766 0.795 0.825 0.684 0.719 0.598	0.022 0.021 0.019 0.017 0.026 0.024 0.031	34.560 36.458 41.261 47.480 26.477 30.073 19.454	0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACTING BY Q3 Q7 Q23 Q27 Q31 Q35 Q38	0.675 0.623 0.668 0.573 0.492 0.769 0.553	0. 029 0. 032 0. 030 0. 034 0. 037 0. 024 0. 036	23. 335 19. 375 22. 621 16. 923 13. 202 32. 395 15. 486	0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36	0.668 0.808 0.869 0.766 0.576 0.889 0.890	0. 026 0. 017 0. 012 0. 020 0. 031 0. 011 0. 011 0. 021	26. 093 48. 334 70. 460 39. 240 18. 872 81. 398 81. 721 35. 071	0.000 0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示,Q34 在 accepting 维度上修正指数较大,但估计载荷较小,删除Q34, 重做 CFA。

	M. I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Statements				
DESCRIBI BY Q20 DESCRIBI BY Q23 DESCRIBI BY Q27 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q39 ACTING BY Q18 ACTING BY Q25 ACTING BY Q25 ACTING BY Q33 ACTING BY Q34 ACTING BY Q39 ACCEPTIN BY Q2 ACCEPTIN BY Q2 ACCEPTIN BY Q2 ACCEPTIN BY Q18 ACCEPTIN BY Q22 ACCEPTIN BY Q23 ACCEPTIN BY Q23 ACCEPTIN BY Q33 ACCEPTIN BY Q34 ACCEPTIN BY Q34 ACCEPTIN BY Q38	12. 477 5. 038 15. 267 6. 178 16. 077 11. 926 4. 953 5. 981 7. 575 7. 474 5. 492 10. 982 14. 325 11. 192 9. 138 6. 776 8. 029 9. 266 11. 004 4. 181 4. 240 10. 087 5. 926 4. 738 12. 181 11. 055 11. 707 4. 411 10. 376 18. 431 5. 343		-0.093 -0.144 -0.093 -0.159 0.144 -0.094 0.102 0.127 -0.126 -0.111 -0.145 0.169 -0.145 0.120 -0.117 0.128 -0.088 -0.156 0.106 0.1078 -0.123 0.119 0.132 0.101 0.123 -0.196	-0.110 -0.097 -0.110 0.156 -0.146 0.128 0.109 0.126 -0.113 0.112 -0.088 -0.137 0.109 -0.075 -0.119 0.105 0.127 0.093 0.123 -0.172
IS mm txt·				

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q14 Q16-Q18 Q20-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22 Q26;

Acting BY Q3 Q7 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(4) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 529 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型有轻微提升,但整体拟合仍一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA	
数值	1505.100	489	3.078	0.880	0.870	0.063	

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	0.567 0.634 0.648 0.611 0.580 0.733 0.609 0.606 0.580 0.582 0.597	0. 033 0. 030 0. 029 0. 031 0. 024 0. 031 0. 032 0. 032 0. 032 0. 032	17. 236 21. 454 22. 537 19. 811 18. 070 30. 463 19. 805 19. 567 17. 909 18. 122 18. 944 13. 911	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY Q2 Q6 Q14 Q18 Q22 Q26	0. 739 0. 752 0. 792 0. 837 0. 684 0. 702	0.023 0.022 0.020 0.017 0.026 0.025	32.105 34.001 40.325 49.511 26.308 27.945	0.000 0.000 0.000 0.000 0.000 0.000
ACTING BY Q3 Q7 Q23 Q27 Q31 Q35 Q38	0.677 0.622 0.670 0.570 0.491 0.766 0.552	0.029 0.032 0.029 0.034 0.037 0.024 0.036	23. 579 19. 395 22. 830 16. 792 13. 158 32. 130 15. 439	0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q20 Q24 Q28 Q32 Q36	0.670 0.808 0.870 0.765 0.578 0.890 0.891 0.741	0.025 0.017 0.012 0.019 0.030 0.011 0.011	26. 397 48. 341 70. 881 39. 273 19. 068 82. 376 82. 856 35. 137	0.000 0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示,Q20 在 observing 维度上修正指数较大,且预估载荷较小,并与其他题目相关较小,删除 Q20, 重做 CFA。

	M. I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Statements				
OBSERVIN BY Q2 OBSERVIN BY Q3 OBSERVIN BY Q14 OBSERVIN BY Q18 OBSERVIN BY Q20 OBSERVIN BY Q20 OBSERVIN BY Q27 OBSERVIN BY Q27 OBSERVIN BY Q36 OBSERVIN BY Q36 OBSERVIN BY Q37 OBSERVIN BY Q37 OBSERVIN BY Q37 DESCRIBI BY Q4 DESCRIBI BY Q4 DESCRIBI BY Q20 DESCRIBI BY Q20 DESCRIBI BY Q20 DESCRIBI BY Q20 DESCRIBI BY Q27 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q37 DESCRIBI BY Q39 ACTING BY Q18 ACTING BY Q18 ACTING BY Q29 ACCEPTIN BY Q2 ACCEPTIN BY Q23 ACCEPTIN BY Q23 ACCEPTIN BY Q23 ACCEPTIN BY Q23 ACCEPTIN BY Q33	12. 832 5. 104 12. 740 6. 998 16. 993 12. 966 4. 532 4. 250 6. 574 7. 397 6. 898 4. 924 11. 394 15. 332 9. 952 6. 517 9. 566 7. 682 6. 7682 6. 784 14. 164 7. 410 7. 235 4. 882 9. 353	0. 246 -0. 166 -0. 241 -0. 177 -0. 292 0. 276 -0. 167 0. 192 0. 165 -0. 157 -0. 136 -0. 189 0. 229 -0. 179 0. 125 0. 140 0. 177 0. 155 0. 151 -0. 118 -0. 167 0. 129 0. 129 0. 129 0. 129 0. 129 0. 129	0. 137 -0. 093 -0. 135 -0. 099 -0. 163 -0. 190 -0. 107 -0. 107 -0. 127 -0. 120 -0. 144 -0. 176 -0. 148 -0. 148 -0. 108 -0. 108 -0. 108 -0. 108 -0. 1097 -0. 137 -0. 199 -0. 106 -0. 106 -0. 106 -0. 106	0. 132 -0. 090 -0. 124 -0. 087 -0. 129 0. 138 -0. 091 0. 067 0. 111 0. 104 -0. 106 -0. 092 -0. 114 0. 163 -0. 193 0. 126 0. 096 0. 113 -0. 118 0. 094 0. 111 -0. 093 -0. 132 0. 086 0. 102 0. 096 0. 102 0. 096
ACCEPTIN BY Q38	4.780	-0.122	-0.100	-0.103

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q14 Q16-Q18 Q21-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22 Q26;

Acting BY Q3 Q7 Q23 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 530 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有一定变化,拟合情况一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	1419.093	458	3.098	0.880	0.870	0.063

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY				
Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37	0.564 0.633 0.647 0.610 0.581 0.733 0.607 0.581 0.581 0.599 0.503	0.033 0.030 0.029 0.031 0.032 0.024 0.031 0.032 0.032 0.032	17. 112 21. 395 22. 442 19. 791 18. 152 30. 597 19. 873 19. 678 18. 022 18. 090 19. 068	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY				
Q2 Q6 Q14 Q18 Q22 Q26	0.740 0.752 0.790 0.837 0.684 0.703	0.023 0.022 0.020 0.017 0.026 0.025	32, 212 34, 073 39, 972 49, 554 26, 339 28, 058	0.000 0.000 0.000 0.000 0.000
ACTING BY Q3 Q7 Q23 Q27 Q27 Q31 Q35 Q38	0.677 0.623 0.669 0.568 0.491 0.766 0.553	0. 029 0. 032 0. 029 0. 034 0. 037 0. 024 0. 036	23. 543 19. 419 22. 755 16. 731 13. 182 32. 082 15. 494	0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q24 Q28 Q32 Q36	0.674 0.803 0.874 0.566 0.887 0.898 0.736	0.025 0.017 0.012 0.031 0.011 0.010	26. 604 46. 726 71. 891 18. 295 78. 706 85. 564 34. 226	0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示, Q23 的修正指数较大, 但预估载荷较小, 删除 Q23, 重做 CFA。

Minimum M.I. value fo	r printing the	modifica	tion index	10.000
	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Statements				
OBSERVIN BY Q2 OBSERVIN BY Q14 OBSERVIN BY Q26	12.702 13.286 13.251	0.246 -0.248 0.280	0.136 -0.138 0.156	0.131 -0.127 0.139
DESCRIBI BY Q23 ACCEPTIN BY Q6	14.915 14.011	0.226 -0.166	0.174 -0.137	0.161 -0.133

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22 Q26;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 534 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有一定变化,拟合情况一般。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	1294.946	428	3.026	0.888	0.878	0.062

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY				
Q1	0.569	0.033	17.461	0.000
Q5	0.639	0.029	21.939	0.000
Q9	0.648	0.029 0.030	22.687	0.000
Q13 Q17	0.616 0.586	0.030	20.286 18.580	0.000 0.000
Q21	0.736	0.024	31.169	0.000
Q25	0.612	0.030	20.144	0.000
Q29	0.607	0.031	19.803	0.000
Q30	0.585	0.032	18.344	0.000
Q33 Q37	0.586 0.604	0.032 0.031	18.474 19.549	0.000 0.000
Q39	0.510	0.035	14.463	0.000
-				
DESCRIBI BY				
Q2 Q6	0.739 0.755	0.023 0.022	32.347 34.581	0.000 0.000
Q0 Q14	0.700 0.791	0.022	40.311	0.000
Q18	0.836	0.017	49.744	0.000
Q22	0.684	0.026	26.445	0.000
Q26	0.706	0.025	28.524	0.000
ACTING BY				
Q3	0.629	0.032	19.532	0.000
Q7	0.661	0.032	20.415	0.000
Q27	0.528	0.037	14.312	0.000
Q31 Q35	0.507 0.769	0.037 0.026	13.633 29.488	0.000 0.000
Q38	0.709	0.026	29.400 17.652	0.000
400	0.010	0.000	11.002	0.000
ACCEPTIN BY				
Q4	0.673	0.025	26.636	0.000
Q12 Q16	0.802 0.871	0.017 0.012	46.482 70.763	0.000 0.000
Q24	0.561	0.031	18.053	0.000
Q28	0.886	0.011	78.201	0.000
Q32	0.896	0.011	84.153	0.000
Q36	0.736	0.021	34.449	0.000

修正指数如下表所示, Q26 的修正指数较大, 但预估载荷较小, 删除 Q26, 重做 CFA。

Minimum M. I. value for printing the modification index 10.000

M. I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

OBSERVIN BY Q2 11.053 0.227 0.127 0.122

OBSERVIN BY Q14 13.493 -0.248 -0.139 -0.127

OBSERVIN BY Q26 14.319 0.288 0.162 0.144

ACCEPTIN BY Q6 13.836 -0.164 -0.135 -0.131

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1-Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q2 Q6 Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 537 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况较好。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	1203.288	399	3.016	0.891	0.882	0.061

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	0.572 0.637 0.652 0.620 0.585 0.739 0.613 0.607 0.576 0.588 0.602	0. 032 0. 029 0. 028 0. 030 0. 031 0. 023 0. 030 0. 031 0. 032 0. 031 0. 035	17. 680 21. 907 23. 060 20. 665 18. 573 31. 571 20. 315 19. 837 17. 891 18. 696 19. 472 14. 310	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY Q2 Q6 Q14 Q18 Q22	0.714 0.739 0.808 0.850 0.685	0.025 0.023 0.019 0.017 0.026	28. 964 31. 776 42. 655 51. 122 26. 240	0.000 0.000 0.000 0.000 0.000
ACTING BY Q3 Q7 Q27 Q31 Q35 Q38	0.626 0.660 0.526 0.506 0.770 0.608	0. 032 0. 032 0. 037 0. 037 0. 026 0. 035	19.397 20.427 14.288 13.624 29.577 17.612	0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q24 Q28 Q32 Q36	0.676 0.803 0.872 0.566 0.885 0.896 0.738	0.025 0.017 0.012 0.031 0.011 0.011	27. 004 46. 858 71. 305 18. 396 78. 011 84. 190 34. 835	0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示, Q2 的修正指数较大, 但预估载荷较小, 删除 Q2, 重做 CFA。

Minimum M.I. value for	printing the	modifica	tion index	10.000
	M. I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY Statements				
OBSERVIN BY Q2 ACCEPTIN BY Q6 ACCEPTIN BY Q33	16.067 14.441 10.023	0.277 -0.172 0.145	0.156 -0.142 0.120	0.150 -0.138 0.119

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1 Q3-Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q6 Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 539 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况较好。

拟合指数 卡方 自由度 卡方/自由度 CFI TIL RMSEA	iΑ
----------------------------------	----

数值 1108.108 371 2.987 0.896 0.886 0.061

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	0.572 0.637 0.653 0.619 0.585 0.737 0.614 0.606 0.575 0.589 0.601	0. 032 0. 029 0. 028 0. 030 0. 031 0. 033 0. 031 0. 032 0. 031 0. 035	17. 720 21. 933 23. 195 20. 619 18. 599 31. 447 20. 407 19. 825 17. 868 18. 736 19. 451 14. 318	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY Q6 Q14 Q18 Q22	0.714 0.833 0.848 0.687	0.025 0.019 0.018 0.026	28. 651 44. 346 46. 981 26. 021	0.000 0.000 0.000 0.000
ACTING BY Q3 Q7 Q27 Q31 Q35 Q38	0.628 0.660 0.528 0.507 0.770 0.608	0.032 0.032 0.037 0.037 0.026 0.034	19.551 20.510 14.391 13.680 29.804 17.686	0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q24 Q28 Q32 Q36	0.678 0.804 0.871 0.567 0.886 0.896	0.025 0.017 0.012 0.031 0.011 0.011	27. 221 47. 231 71. 113 18. 502 78. 540 84. 495 34. 942	0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示,Q6的修正指数较大,但预估载荷较小,删除Q6,重做CFA。

```
Minimum M.I. value for printing the modification index 10.000
```

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

ACCEPTIN BY Q6 13.707 -0.175 -0.145 -0.141

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1 Q3-Q5 Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 542 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况较好。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA	
数值	1039.260	344	3.021	0.896	0.886	0.061	

个体载荷如下表所示,各题在对应维度上载荷均大于0.4。

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
OBSERVIN BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39	0.572 0.634 0.655 0.621 0.583 0.732 0.609 0.603 0.573 0.586 0.597	0. 032 0. 029 0. 028 0. 030 0. 032 0. 024 0. 030 0. 031 0. 032 0. 031 0. 035	17. 718 21. 695 23. 343 20. 736 18. 477 30. 870 20. 086 19. 642 17. 772 18. 598 19. 229 14. 282	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DESCRIBI BY Q14 Q18 Q22	0.805 0.863 0.698	0. 022 0. 020 0. 027	36.925 42.785 25.877	0.000 0.000 0.000
ACTIMG BY Q3 Q7 Q27 Q21 Q35 Q38	0.628 0.661 0.527 0.507 0.771 0.608	0. 032 0. 032 0. 037 0. 037 0. 026 0. 034	19.664 20.681 14.415 13.726 29.962 17.752	0.000 0.000 0.000 0.000 0.000 0.000
ACCEPTIN BY Q4 Q12 Q16 Q24 Q28 Q32 Q36	0.679 0.803 0.868 0.569 0.884 0.894	0.025 0.017 0.013 0.031 0.011 0.011	27. 461 46. 937 69. 345 18. 659 77. 337 83. 159 34. 421	0.000 0.000 0.000 0.000 0.000 0.000

修正指数如下表所示,不存在归属多个维度的题目,但部分题目与其他题目的相关较大, 其中 Q38 和 Q7MI 指数很大,预估相关为 0.535,重做 CFA。

		м. І.	E.P.C.	Std E.P.C.	StdYX E.P.C.
WITH S	tatements				
Q5 Q12 Q13 Q21 Q21 Q21 Q27 Q27 Q28 Q29 Q30 Q32 Q33 Q33 Q33 Q33 Q35 Q36 Q36 Q37 Q37 Q37 Q37 Q37 Q38 Q39 Q39	WITH Q1 WITH Q4 WITH Q4 WITH Q1 WITH Q1 WITH Q3 WITH Q4 WITH Q4 WITH Q4 WITH Q12 WITH Q13 WITH Q13 WITH Q25 WITH Q25 WITH Q25 WITH Q25 WITH Q30 WITH Q7 WITH Q4 WITH Q30 WITH Q4 WITH Q4 WITH Q4 WITH Q4 WITH Q4 WITH Q30 WITH Q7 WITH Q4 WITH Q30 WITH Q7 WITH Q30 WITH Q7 WITH Q30 WITH Q7 WITH Q13 WITH Q13	17.982 10.646 22.887 10.238	0. 257 0. 159 0. 264 -0. 097 -0. 108 0. 165 0. 114 0. 105 -0. 151 0. 083 -0. 151 0. 132 0. 078 0. 128 0. 128 0. 126 0. 164 0. 106 0. 120 0. 147 -0. 121 0. 147 -0. 121 0. 246 -0. 140 0. 312 -0. 153 0. 246 -0. 153 0. 215 0. 215	-0. 151 0. 150 0. 150 -0. 131 -0. 132 0. 078 0. 128 0. 122 -0. 115 -0. 164 0. 106 0. 120 0. 147 -0. 121 -0. 112 0. 246 -0. 144 0. 312 -0. 153	0. 191 0. 199 -0. 152 -0. 324 0. 188 0. 151 0. 248 -0. 167 -0. 169 0. 328 -0. 235 0. 535
Q39 Q39	WITH Q30 WITH Q33	23. 084 15. 480	0.168 -0.122	-0.122	0.220 -0.181
Q39	WITH Q37	42.174	0.199	0.199	0.299

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1 Q3-Q5 Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

Q38 WITH Q7;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值, 共有 542 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况较好。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	944.339	343	2.753	0.910	0.901	0.057

各题在对应维度上载荷均大于 0.4,不存在归属多个维度的题目,但部分题目与其他题目的相关较大,Q5 和 Q1MI 指数很大,预估相关为 0.388,重做 CFA。

Minimu	m M.I.	value	for	printing	the	modifica	tion index	10.000
				M. I.		E.P.C.	Std E.P.C.	StdYX E.P.C.
WITH S	tateme:	nts						
Q5 Q12 Q12 Q21 Q21 Q228 Q229 Q230 Q332 Q332 Q333 Q336 Q337 Q337 Q339 Q339	TIW	H Q4 H Q9 H Q1 H Q1 H Q5 H Q4 H Q12 H Q12 H Q13 H Q12 H Q25 H Q25 H Q29 H Q29		67. 8 50. 6 13. 5 15. 8 31. 1 21. 4 23. 6 11. 2 28. 3 10. 5 17. 9 10. 6 10. 4 21. 3 12. 4 13. 0 49. 4 10. 2 10. 5 11. 2 12. 4 13. 5 14. 5 15. 8 16. 9 10. 6 10. 6 10	711 222 711 255 261 271 271 271 271 271 271 271 271 271 27	0, 256 0, 159 0, 165 -0, 097 -0, 108 0, 166 -0, 131 0, 084 -0, 151 0, 170 0, 131 0, 079 0, 128 0, 122 -0, 115 0, 140 -0, 121 -0, 131 -0, 131 0, 079 0, 128 0, 122 -0, 109 0, 140 0, 120 0, 120 0, 168 -0, 122 0, 192 0, 192	0, 256 0, 159 0, 265 -0, 097 -0, 108 0, 166 -0, 131 0, 084 -0, 151 0, 150 -0, 131 -0, 131 -0, 131 0, 079 0, 122 -0, 115 0, 119 0, 140 -0, 121 -0, 131 0, 099 -0, 109 -0, 109	0. 388 0. 243 0. 343 -0. 182 -0. 201 0. 280 -0. 242 0. 191 -0. 233 0. 245 -0. 157 -0. 310 0. 199 -0. 152 0. 150 0. 254 -0. 167 -0. 170 0. 328 0. 178 -0. 148 -0. 148 -0. 120 -0. 189 -0. 120 -0. 189 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 170 -0. 120 -0. 180 -0. 120 -0. 180 -0. 180 -0. 180 -0. 299

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1 Q3-Q5 Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

Q38 WITH Q7;

Q5 WITH Q1

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值,共有 542 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况很好。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	875.815	342	2.561	0.920	0.912	0.054

各题在对应维度上载荷均大于 0.4,不存在归属多个维度的题目,但部分题目与其他题目的相关较大,Q13 和 Q9MI 指数很大,预估相关为 0.345,重做 CFA。

		м. І.	E.P.C.	Std E.P.C.	StdYX E.P.C.
WITH S	tatements				
99 Q12 Q13 Q21 Q27 Q28 Q29 Q30 Q30 Q32 Q33 Q33 Q33 Q36 Q37 Q37 Q37 Q38 Q39 Q39 Q39	WITH Q5 WITH Q4 WITH Q13 WITH Q4 WITH Q4 WITH Q4 WITH Q12 WITH Q25 WITH Q25 WITH Q22 WITH Q22 WITH Q22 WITH Q30 WITH Q35 WITH Q35 WITH Q30 WITH Q30 WITH Q30 WITH Q33	12. 578 25. 872 50. 666 27. 076 10. 423 21. 498 11. 388 25. 720 24. 690 12. 288 11. 076 28. 362 10. 557 15. 034 15. 739 11. 770 10. 414 21. 349 13. 497 13. 497 13. 815 50. 193 10. 067 23. 405 16. 659 42. 750	0. 113 0. 159 0. 267 0. 095 -0. 131 0. 084 -0. 157 0. 143 -0. 137 -0. 100 0. 79 0. 122 0. 113 -0. 121 0. 114 0. 126 -0. 116 0. 126 -0. 126 0. 129 0. 092 -0. 1170 -0. 120 0. 120	0. 113 0. 159 0. 267 0. 154 0. 995 -0. 131 0. 084 -0. 157 0. 143 -0. 137 -0. 100 -0. 131 0. 079 0. 122 0. 113 -0. 121 0. 119 0. 140 -0. 126 -0. 116 0. 1249 0. 192 -0. 114 0. 170 -0. 126 0. 202	0. 155 0. 243 0. 345 0. 267 0. 138 -0. 242 0. 191 -0. 245 0. 237 -0. 166 -0. 167 -0. 310 0. 226 0. 183 -0. 160 0. 155 -0. 176 0. 332 0. 177 -0. 135 0. 1222 -0. 188 0. 302
	401	22.100		3.000	0.002

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1 Q3-Q5 Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

Q38 WITH Q7;

Q5 WITH Q1;

Q13 WITH Q9;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值, 共有 542 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况很好。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	825.416	341	2.421	0.928	0.920	0.051

各题在对应维度上载荷均大于 0.4,不存在归属多个维度的题目,但部分题目与其他题目的相关较大,Q37 和 Q30MI 指数很大,预估相关为 0.321,重做 CFA。

]	Minimum	M.I.	value	for	printing	the	modifica	tion index	10.000
					M. I.		E.P.C.	Std E.P.C.	StdYX E.P.C.
1	WITH Sta	atemen	nts						
	Q9 Q12 Q21 Q27 Q28 Q29 Q29 Q30 Q32 Q32 Q33 Q33 Q33 Q33	WITI WITI WITI WITI WITI WITI WITI WITI	H Q5 H Q4 H Q13 H Q5 H Q4 H Q12 H Q25 H Q25 H Q25 H Q29 H Q30 H Q30		16. 88 25. 8' 33. 98 10. 6 21. 44 11. 3' 16. 0; 22. 1' 12. 7' 28. 36 10. 5 14. 31 13. 7' 15. 0'	79 32 12 33 77 18 28 33 35 49 58 73 18	0. 125 0. 159 0. 166 0. 096 -0. 131 0. 083 -0. 117 0. 135 -0. 109 -0. 131 0. 079 0. 120 0. 105 -0. 137 0. 119	0. 125 0. 159 0. 166 0. 096 -0. 131 0. 083 -0. 117 0. 135 -0. 109 -0. 131 0. 079 0. 120 0. 105 -0. 137 0. 119	0. 164 0. 243 0. 273 0. 139 -0. 242 0. 191 -0. 178 0. 227 -0. 181 -0. 310 0. 226 0. 181 0. 177 -0. 184 0. 150
(Q36 Q37 Q37	WIT	H Q35 H Q25 H Q30		21. 41 17. 52 45. 82	24	0.140 -0.131 0.236	0.140 -0.131 0.236	0. 255 -0. 201 0. 321

DATA: FILE IS mm.txt;

LISTWISE = ON;

VARIABLE:

NAMES ARE Q1-Q41;

USEVAR = Q1 Q3-Q5 Q7 Q9 Q12-Q14 Q16-Q18 Q21 Q22 Q24 Q25 Q27-Q33 Q35-Q39;

MISSING = ALL(0);

ANALYSIS: ESTIMATOR = ML;

MODEL:

Observing BY Q1 Q5 Q9 Q13 Q17 Q21 Q25 Q29 Q30 Q33 Q37 Q39;

Describing BY Q14 Q18 Q22;

Acting BY Q3 Q7 Q27 Q31 Q35 Q38;

Accepting BY Q4 Q12 Q16 Q24 Q28 Q32 Q36;

Q38 WITH Q7;

Q5 WITH Q1;

Q13 WITH Q9;

Q37 WITH Q30;

OUTPUT:

MODINDICES(10) STANDARDIZED;

使用 listwise 方式处理缺失值, 共有 542 个被试数据被保留。

整体拟合指数如下表所示,相较于上一模型整体拟合指标有所变化,拟合情况很好。

拟合指数	卡方	自由度	卡方/自由度	CFI	TIL	RMSEA
数值	779.154	340	2.292	0.934	0.927	0.049

各题在对应维度上载荷均大于 0.4,不存在归属多个维度的题目,虽然存在部分题目与 其他题目的相关,但 MI 值低于 30,且相关估计较小,综合考虑不再进行其他操作。

Minimum	M.I.	value	for	printing	the	modific	ation in	dex	10.000	
				M. I.		E.P.C.	Std E.I	P.C.	StdYX E.	Р.С.
WITH Sta	temer	nts								
Q9 Q12 Q21 Q27 Q28 Q28 Q29 Q29 Q32 Q32 Q33 Q33 Q33 Q36 Q37 Q36 Q37	WITH WITH WITH WITH WITH WITH WITH WITH	H Q5 H Q4 H Q13 H Q4 H Q12 H Q25 H Q25 H Q25 H Q25 H Q25 H Q35 H Q35 H Q35 H Q35 H Q35		17. 3: 25. 8' 29. 8(10. 55 21. 44' 11. 3' 17. 8(19. 3: 28. 3: 10. 5: 11. 2(11. 10. 4' 21. 3: 12. 0- 10. 1' 10. 4'	75 06 53 94 79 00 31 99 17 17 31 41	0. 127 0. 154 0. 096 -0. 131 0. 084 -0. 124 0. 126 -0. 131 0. 079 0. 105 0. 094 0. 110 0. 140 -0. 103 0. 092 0. 109	0. : 0. : 0. : 0. : 0. : 0. : 0. : 0. :	154 096 131 084 124 126 131 079 105 094 119	0. 1 0. 2 0. 2 0. 1 -0. 2 0. 1 0. 2 -0. 3 0. 2 0. 1 0. 1 0. 2	243 263 242 291 290 215 225 262 255 555 78
Q39 Q39		H Q33 H Q37		18.86 29.69		-0.135 0.161	-0.: 0.:	135 161	-0.2 0.2	

模型载荷如下图所示。

3.总结

修正前后模型的拟合指数比较

模型	自由度	卡方	RMSEA	CFI	TIL	注
M-A	696	2362.962	0.068	0.83	0.819	原模型
M-B	659	2223.213	0.067	0.838	0.828	删除 Q8
M-C	623	2101.154	0.067	0.845	0.835	删除 Q11
M-D	588	1942.627	0.066	0.852	0.842	删除 Q10
M-E	554	1700.511	0.063	0.870	0.861	删除 Q19
M-F	521	1591.679	0.063	0.877	0.867	删除 Q15
M-G	489	1505.100	0.063	0.88	0.87	删除 Q34
M-H	458	1419.093	0.063	0.88	0.87	删除 Q20
M-I	428	1294.946	0.062	0.888	0.878	删除 Q23

第四次作业(1)160413

M-J	399	1203.288	0.061	0.891	0.882	删除 Q26
M-K	371	1108.108	0.061	0.896	0.886	删除 Q2
M-L	344	1039.26	0.061	0.896	0.886	删除 Q6
M-M	343	944.339	0.057	0.91	0.901	Q38 和 Q7 相关
M-N	342	875.815	0.054	0.92	0.912	Q5 和 Q1 相关
M-O	341	825.416	0.051	0.928	0.92	Q13 和 Q9 相关

各维度信度如下表所示。

维度	Cronbach's Alpha				
Observing	0.871				
Describing	0.832				
Acting	0.781				
Accepting	0.915				