## School Name Mathematics Test 2017

Year 8

#### Pythagoras Theorem

Calculator Allowed
Test

| Skills and | Knowledge | Assessed: |
|------------|-----------|-----------|
|------------|-----------|-----------|

- Investigate Pythagoras' theorem and its application to solving simple problems involving right angled triangles (ACMMG222)
- Investigate the concept of irrational numbers, including  $\pi$  (ACMMG186)

Answer all questions in the spaces provided on this test paper by:

Writing the answer in the box provided.

or

Shading in the bubble for the correct answer from the four choices provided.

Show any working out on the test paper. Calculators are allowed.

Diagrams are not to scale.

| 1. | Which side is the hypotenuse of the triangle shown below? |
|----|-----------------------------------------------------------|
|    |                                                           |



 $\square$  XZ

 $\square$  YX



Write a statement of Pythagoras Theorem for the triangle shown.



3. Which calculation could be used to find the value of *d*?



$$d^2 = 196 - 81$$

$$d^2 = 196 + 81$$



4. Find the value of q.



5. Find the length of *BC*.



6. What is the length of *XY*?



7. Write a statement of Pythagoras Theorem for the right triangle *RST*.



8. Find the length of *ST* (correct to 1 decimal place) in the triangle below.



24.0 cm

35.0 cm

48.0 cm



9. Find the distance *CD* to the nearest tenth of a metre.



10. A crate which measures 1.6 metres by 1.2 metres, has a supporting brace which goes from P to Q as shown on the diagram.

What is the distance PQ?



11. Which of these is a rational number?

 $\Box$   $\sqrt{255}$ 

□ √484

□ √567

 $\Box$   $\sqrt{700}$ 

12. A plane P passes directly above a point M.

A radar is located at N, which is 3.4 km from M.

The radar records the direct distance to the plane to be 6.5 km

What is the altitude of the plane, *PM*?





13. A power pole AK is to be supported by a 20.5 m long wire, which is attached to the pole at J.

The wire is attached to the ground at C, which is 13.8 m from *A*.

How far above the ground, is the point J, correct to the nearest  $10^{th}$  of a metre?



14. Which of the triangles below are right angled?





- ☐ Both triangles are right angled.
- ☐ Neither triangle is right angled.
- $\square$  Only triangle A is right angled.
- $\square$  Only triangle *B* is right angled.

| 15. | Which of the following are                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|-----|---------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|     | More than one could be a F                              | ythagorean triad, so i | mark all that are.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|     | <b>48</b> , 68, 88                                      | <b>48</b> , 90, 102    | <b>48</b> , 64, 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>48</b> , 84, 100 |
| 16. | Find the length of <i>XY</i> .  1.8 m 3.6 m 5.2 m 7.2 m |                        | X m Z.5 m Z.5. m | Y                   |
|     |                                                         |                        | Z <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 17. | Is a triangle with the dimental Explain why.            | sions below, right an  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 m                 |
|     |                                                         |                        | 39 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 m                 |
|     |                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|     |                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 18. | Find the value of $k$ .                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|     |                                                         |                        | k cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|     |                                                         |                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16 cm               |
|     |                                                         |                        | 34 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |

A fire engine has a ladder which is 48.5 m long and is mounted 1.5 m above ground level.

For safety reasons the engine must park at least 10.4 m back from a burning building when using its ladder.

How far above the ground could the ladder reach up the side of a building?



20. What is the value of *y* in the triangle shown?

 $v = \sqrt{85}$ 

 $y = \sqrt{113}$ 

y = 85



What is the perimeter of the triangle PQR?





A footrace course has four legs as shown in the diagram.

Three of the legs run due East, North and South respectively.

Calculate the total length of the course.









# School Name Mathematics Test 2017

### Year 8 Pythagoras Theorem

#### **ANSWERS**

| Question | Working and Answer                                                                 |
|----------|------------------------------------------------------------------------------------|
| 1.       | Hypotenuse is YZ  4 <sup>th</sup> Answer                                           |
| 2.       | w is the hypotenuse, so $w^2 = v^2 + x^2$                                          |
| 3.       | d is the hypotenuse, so $d^2 = 14^2 + 9^2$<br>$d^2 = 196 + 81$                     |
|          | 4 <sup>th</sup> Answer                                                             |
| 4.       | $q^{2} = 20^{2} + 21^{2}$ $= 400 + 441$ $= 841$ $q = \sqrt{841} = 29$              |
| 5.       | $BC^2 = 34^2 - 16^2$<br>= 1156 + 256<br>= 900<br>$BC = \sqrt{900} = 30 \text{ cm}$ |
| 6.       | $XY^{2} = 14^{2} + 48^{2}$ $= 196 + 2304$ $= 2500$ $XY = \sqrt{2500} = 50 m$       |

| Question | Working and Answer                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.       | $RT^2 + ST^2 = RS^2$<br>or variations on the same equation.<br>or $r^2 + s^2 = t^2$                                                                   |
| 8.       | $ST^2 = 18^2 + 30^2$<br>= 324 + 900<br>= 1224<br>$ST = \sqrt{1224}$<br>= 34.985 = 35.0 cm<br>$3^{rd}$ Answer                                          |
| 9.       | $CD^{2} = 50^{2} - 38^{2}$ $= 2500 - 1444$ $= 1056$ $CD = \sqrt{1056}$ $= 32.496 = 32.5 \text{ m (nearest 10th m)}$                                   |
| 10.      | $PQ^{2} = 1.6^{2} + 1.2^{2}$ $= 2.56 + 1.44$ $= 4$ $PQ = \sqrt{4}$ $= 2 \text{ m}$                                                                    |
| 11.      | Using a calculator, $\sqrt{484} = 22$ and the others give non recurring or terminating decimals, so $\sqrt{484}$ is rational.  2 <sup>nd</sup> Answer |
| 12.      | $PM^{2} = 6.5^{2} - 3.4^{2}$ $= 42.25 - 11.56$ $= 30.69$ $PM = \sqrt{30.69}$ $= 5.53955 = 5.5 \text{ km ( nearest 10th km)}$                          |
| 13.      | $AJ^{2} = 20.5^{2} - 13.8^{2}$ $= 420.25 - 190.44$ $= 229.81$ $AJ = \sqrt{229.81}$ $= 15.1594 \text{ m}$ $= 15.2 \text{ m}$                           |

| Question | Working and Answer                                                                                                                                                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14.      | $10^{2} + 24^{2} = 100 + 576 = 676 = 26^{2}$<br>So $\Delta$ A is right angled<br>$8^{2} + 24^{2} = 64 + 576 = 640 \neq 25^{2}$<br>So $\Delta$ B is not right angled<br>Only A is right angled.<br>$3^{rd}$ Answer |
| 15.      | $48^{2} + 68^{2} = 6928 \neq 88^{2}$<br>$48^{2} + 90^{2} = 10404 = 102^{2}$<br>$48^{2} + 64^{2} = 6400 = 80^{2}$<br>$48^{2} + 84^{2} = 9360 \neq 100^{2}$<br>$2^{\text{nd}}$ and $3^{\text{rd}}$ Answers          |
| 16.      | $XY^2 = 4.5^2 - 2.7^2$<br>= 20.25 - 7.29<br>= 12.96<br>$XY = \sqrt{12.96}$<br>= 3.6 m<br>$2^{nd}$ Answer                                                                                                          |
| 17.      | $39^2 + 80^2 = 1521 + 6400$<br>= 7921<br>$89^2 = 7921$<br>∴ it is a right triangle because the sum of the squares of the shorter sids is equal to the square of the longer side.                                  |
| 18.      | $k^{2} = 34^{2} - 16^{2}$ $= 1156 - 256$ $= 900$ $k = \sqrt{900}$ $= 30$                                                                                                                                          |

| Question | Working and Answer                                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19.      | Call height from truck to top of ladder $h$ $h^2 = 48.5^2 - 10.4^2$ $= 2352.25 - 108.16$ $= 2244.09$ $DF = \sqrt{2244.09}$ $= 47.371 m$ $= 47.4 m (1 d p)$ Height from ground = 47.4 + 1.5 $= 48.9 m$                                                         |
| 20.      | $y^{2} = (\sqrt{77})^{2} + 6^{2}$<br>= 77 + 36<br>= 113<br>$p = \sqrt{113}$<br>2 <sup>nd</sup> Answer                                                                                                                                                         |
| 21.      | $PR^{2} = 99^{2} + 20^{2}$ $= 9801 + 400$ $= 10201$ $l = \sqrt{10201} = 101$ Perimeter = 99 + 20 + 101 $= 220 \text{ m}$                                                                                                                                      |
| 22.      | Difference in North and south legs = $8.3 - 7.1 = 1.2$<br>Call oblique leg $l$<br>$l^2 = 3.5^2 + 1.2^2$<br>= $12.25 + 1.44$<br>= $13.69$<br>$DF = \sqrt{13.69}$<br>= $3.7 \text{ km}$<br>Perimeter of Course = $3.5 + 7.1 + 3.7 + 8.3$<br>= $22.6 \text{ km}$ |
| 23.      | $IJ^{2} = 15.7^{2} - 8.5^{2}$ $= 246.49 - 72.25$ $= 174.24$ $EF = \sqrt{174.24} = 13.2 \text{ cm}$ $Area = \frac{1}{2} \times 8.5 \times 13.2$ $= 56.1 \text{ cm}^{2}$                                                                                        |

| Question | Working and Answer                                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.      | $15^2 + 20^2 = 625 = 25^2$ so $\Delta$ <i>EFH</i> is right angled.<br>$15^2 + 36^2 = 1521 = 39^2$ so $\Delta$ <i>FGH</i> is right angled $\Delta$ <i>EFH</i> and $\Delta$ <i>FGH</i> are both right angled triangles.<br><b>1</b> <sup>st</sup> <b>Answer</b> |
| 25.      | $QN^{2} = 30^{2} - 18^{2}$ $= 900 - 324$ $= 576$ $QN = \sqrt{576} = 24$ $PN^{2} = 24^{2} + 32^{2}$ $= 576 + 1024 = 1600$ $PN = \sqrt{1600} = 40 m$                                                                                                            |
| 26.      | $EG^{2} = 28^{2} + 45^{2}$ $= 784 + 2025$ $= 2809$ $EG = \sqrt{2809} = 53$ $EF^{2} = 53^{2} + 32^{2}$ $= 2809 + 1024 = 3833$ $EF = \sqrt{3833} = 61.9112 = 61.9 \text{ cm (1 d p)}$                                                                           |
| 27.      | $BD^{2} = 45^{2} - 27^{2}$ $= 1296$ $BD = \sqrt{1296} = 36 m$ $BC^{2} = 36^{2} + 15^{2}$ $= 1521$ $BC = \sqrt{1521} = 39 \text{ "m"}$ Perimeter = $45 + 27 + 15 + 39 = 126 \text{ m}$                                                                         |