

Clipping in 2D

- · Clipping can also be performed in 2D
- · But it is usually less effective
 - Discard all polygons behind the camera
 - Project on the clipping plane
 - Clip polygons in 2D (on the projection plane)
- We can also clip in the Frame buffer (scissoring)
- Most approaches for 2D clipping can be extended to 3D

Algorithms

- Some well known clipping algorithms
 - Cohen-Sutherland
 - Liang-Barsky
 - Sutherland-Hodgeman
 - Weiler-Atherton
 - Cvrus-Beck
- We will look at the 2D version for Line clipping and discuss extensions to polygon clipping in 3D

Example

The endpoints are assigned an outcode
 1000 and 0101 in this case

Assignment

 The outcode o₁=outcode(x₁, y₁)=(b₀b₁b₂b₃) is easily assigned:

$$\begin{split} b_0 &= \begin{cases} 1 & \text{if } y > y_{\text{max}}, \\ 0 & \text{otherwise.} \end{cases} \\ b_1 &= \begin{cases} 1 & \text{if } y < y_{\text{min}}, \\ 0 & \text{otherwise.} \end{cases} \\ b_2 &= \begin{cases} 1 & \text{if } x > x_{\text{max}}, \\ 0 & \text{otherwise.} \end{cases} \\ b_3 &= \begin{cases} 1 & \text{if } x < x_{\text{min}}, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Anders Hast

ecision based on the outcode

o₁=o₂=0

Both endpoints are inside the clipping window

Decision based on the outcode

• o₁=o₂=0

Both endpoints are inside the clipping window

ecision based on the outcode

- o₁!=0, o₂=0; or vice versa
 One endpoint is inside and the other is
 - The line segment must be shortened

Decision based on the outcode

- o₁!=0, o₂=0; or vice versa
 One endpoint is inside and the other is outside
 - The line segment must be shortened

ecision based on the outcode

• $o_1 & o_2! = 0$

outside

Both endpoints are on the same side of the clipping window

- Trivial Reject

Decision based on the outcode

• $o_1 & o_2! = 0$

Both endpoints are on the same side of the clipping window

- Trivial Reject

ecision based on the outcode

• $o_1 & o_2 = 0$

Both endpoint are outside but outside different edges

- The line segment must be investigated further

Decision based on the outcode

• $o_1 & o_2 = 0$

Both endpoint are outside but outside different edges

- The line segment must be investigated further

9

Parametric Lines

 Intersections with can easily be computed by regarding the line as a parametric line

 $p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$

This is a linear interpolation with

 $0 \ge \alpha \ge 1$

Intersection computation

Example: Intersection with right border x_{max}

 The parameter can easily be computed $x_{\text{max}} = (1 - \alpha)x_1 + \alpha x_2$ $x_{\text{max}} = x_1 + \alpha(x_2 - x_1)$

 $x_{\text{max}} = x_1 + \alpha(x_2 - x_1)$ $x_{\text{max}} - x_1 = \alpha(x_2 - x_1)$

 $\alpha = \frac{x_{\text{max}} - x_1}{x_2 - x_1}$

ρ,

Intersection computation

 Finally we compute the *y-coordinate* by putting the parameter into the line equation

 $y = y_1 + \alpha(y_2 - y_1), \quad \alpha = \frac{x_{\text{max}} - x_1}{x_2 - x_1}$

The two point formula!

Intersections

- We can therefore compute intersections with the border using the *two point formula*
- We will obtain similar equations for the other borders
- What happens if we have no intersections with the view port?
 - The parameter is out of range!

3D

• A little bit more complicated.... 27 regions with a 6 bit code

Intersections in 3D

If we write the line and plane equations in matrix form (where n is normal to the plane and p_0 is a point on the plane), we must solve the equations $p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$

$$n \cdot (p(\alpha) - p_0) = 0$$

Intersections in 3D

· The first equation into the second equation

$$n \cdot ((1 - \alpha)p_1 + \alpha p_2 - p_0) = 0 \Rightarrow$$

$$n \cdot (p_1 - \alpha p_1 + \alpha p_2 - p_0) = 0 \Rightarrow$$

$$n \cdot (p_1 - p_0 + \alpha(p_2 - p_1)) = 0 \Rightarrow$$

$$n \cdot (p_1 - p_0) + n \cdot (\alpha(p_2 - p_1)) = 0 \Rightarrow$$

$$\alpha(n \cdot (p_2 - p_1)) = n \cdot (p_0 - p_1) \Rightarrow$$

$$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}.$$

A hybrid approach

- Use 3D Cohen Sutherland for trivial Reject and trivial Accept
- · Then project onto viewport
- And finally do final clipping in 2D
 Trivial cases need not to be handled!
- Or perhaps even use scissoring instead?

Liang Barsky

- Uses the parametric line!
- Compute α for each border in a clockwise

Liang Barsky

 Note the changed order!

Liang Barsky

- Similar equations can be derived for all possible cases
- Clip using the computed α's
- 3D: just add one dimension in the parametric line

$$z(\alpha) = (1 - \alpha)z_1 + \alpha z_2$$

Computing intersections

Use the two-point formula for intersection computations

$$y_3 - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x_3 - x_1),$$

$$y_3 = y_{max} \Rightarrow$$

$$x_3 = (y_{max} - y_1) \frac{x_2 - x_1}{y_2 - y_1} + x_1$$

Polygon clipping

- The previous explained approaches can be used for clipping polygons with some modifications
- Note that a triangle can have more vertices after clipping

Acceleration techniques

· Imagine an object with many polygons

The Stanford Bunny

- It is not so funny to check thousands of polygons for intersections! (69451 to be exact)
- · We need some acceleration technique

Bounding Volumes

Create the smallest box that contains the bunny

A boxed Bunny

Check eight sides for intersections instead!

Anders Hast

Bounding Spheres

- Only one center and a radius have to be checked!
- But not all objects are suitable for spheres...

Bounding Spheres

Make a hierarchy of spheres for elongated objects!

Some final words...

- Not only 3D Objects need to be clipped

 Also splines, letters etc...
- A mirror or a portal in a game can have
- A mirror or a portal in a game can have non rectangular shape
 - Clipping is needed
- Even though clipping is implemented in hardware, it is essential to understand the basics of it!

Anders Hast 7