

Proiect la Identificarea Sistemelor

Coordonator: Prof. Dr. Ing. Petru Dobra Student: Ardelean Alexandra Grupa 30131,An 3

Cuprins

Cuprins

1.	1. Identificarea unui circuit electric		
	1.1	Obtinerea datelor experimentale	
		1.1.1 Introducere	
		1.1.2 Achizitia datelor de intrare-iesire	
		1.1.3 Desfasurarea experimentelor	
	1.2	Procesarea datelor experimentale	
		1.2.1 Determinarea modelului pentru intrare de tip treapta 5	
		1.2.2 Determinarea modelului pentru intrare de tip impuls	
	1.3	Validarea modelelor	
	1.4	Script MatLab utilizat	

Identificarea unui circuit electric

1.1 Obtinerea datelor experimentale

1.1.1 Introducere

Se considera circuitul electric din figura 1.1, avand urmatoarele caracteristici electrice: $U_a = 10 \text{ [V]}$;

 $U_{in} \in [-U_a; U_a] \; ; U_{out} \in [-U_a; U_a].$

Figura 1.1 Circuitul electric

Aparatura utilizata: sursa de alimentare, multimetru, generator de semnal, osciloscop (vezi figura 1.2).

Figura 1.2. Aparatura utilizata

1.1.2 Achizitia datelor de intrare-iesire

Utilizand aparatura din dotare se vor genera semnalele necesare identificarii experimentale a circuitului electric si se vor achizitiona datele intrare-iesire in vederea procesarii ulterioare.

1.1.3 Desfasurarea experimentelor

- 1. Se alimenteaza circuitul
- 2. Se efectueaza urmatoarele experimente:

Experiment A

- A.1 Se genereaza un semnal de tip impuls avand caracteristicile corelate cu dinamica circuitului electric si tensiunea de alimentare a acestuia;
- A.2 Se vizualizeaza si se masoara sincron intrarea si iesirea circuitului, obtinand datele experimentale: [t_k , u_k , y_k] k = 1, 2, ...

Experiment B

- B.1 Se genereaza un semnal de tip treapta avand caracteristicile corelate cu dinamica circuitului electric si tensiunea de alimentare a acestuia;
- B2. Se vizualizeaza si se masoara sincron intrarea si iesirea circuitului, obtinand datele experimentale: $[t_k, u_k, y_k] k = 1, 2, \dots$

1.2 Procesarea datelor experimentale

Vizualizarea datelor experimentale utilizand: MS Excel, MatLab etc.

In functie de datele experimentale obtinute ($[t_k, u_k, y_k] k = 1, 2, ...$) se pot efectua urmatoarele operatii: filtrare antidistorsiune de tip medie alunecatoare, eliminarea componentelor continue stationare sau cvasistationare, scalarea intrarilor si iesirilor.

Se va determina functia de transfer in "s" a unui model de ordinul doi pe baza raspunsurilor la semnal de tip impuls real (a se vedea figura 1.3.a) si semnal de tip treapta (a se vedea figura 1.3.b).

1.2.1 Experiment A

Se va determina functia de transfer a unui sistem de oridinul 2 pe baza raspunsului la intrare de tip treapta:

Fig.2.1 Achizitia de date intrare-iesire pentru un semnal de tip treapta

Pentru a stabili valoarea stationara dupa aplicarea impulsului, alegem patru puncte ca in figura urmatoare:

Fig.2.2 Alegerea punctelor din regimul stationar

Idecsii sunt:

i1=438

i2 = 489

i3=901

i4=961

Cu ajutorul acestor puncte vom calcula valorile medii pt yst, ust:

1. Valoarea medie a intrarii si iesirii in momentul initial:

2. Valoarea medie a intrarii si iesirii in regim stationar:

3. Factorul de proportionalitate:

$$k = \frac{y_{st} - y_0}{u_{st} - u_0}$$
 k= 0.9713

4. Determinarea suprareglajului

$$\sigma = \frac{y_{max} - y_{st}}{y_{st} - y_0} \qquad \sigma = 0.2969 \quad (29,7\%)$$

sigma = (y(i6)-yst)/(yst-y0)

In figura 2.3 sun evidentiati timpii i5(primul maxim) si i6.

Fig.2.3 Alegerea lui i5 si i6

5. Factorul de amortizare

$$\zeta = -\frac{\ln \sigma}{\sqrt{\pi^2 + \ln^2(\sigma)}} \qquad \qquad \zeta = 0.3606$$

zeta = -log(sigma)/(sqrt(pi*pi+log(sigma)*log(sigma)))

6. Perioada de oscilație

$$T_{osc}=2*(t(i6)-t(i5))$$

$$Tosc = 2.0400e-04$$

7. Pulsația naturală

$$\omega_n = \frac{2\pi}{T_{osc}\sqrt{1-\zeta^2}}$$

$$\omega_n = 3.3021 \text{e} + 04$$

Astfel, putem defini functia de transfer a sistemului :

 $H=tf(k*wn^2,[1,2*tita*wn,wn^2])$

$$H(s) = k \frac{\omega_n^2}{s^2 + 2\zeta \omega_n * s + \omega_n^2}$$

$$H(s) = \frac{1.059 \cdot 10^9}{s^2 + 2.381 \cdot 10^4 \cdot s + 1.09 \cdot 10^9}$$

Vom folosi reprezentarea in spațiul stărilor pentru a avea condiții inițiale nenule.

Cu urmatoarea secventa de cod obrinem modelul calculat la functia de transfer prezentata mai sus

ysim_tr = lsim(A,B,C,D,u,t,[y(1), 0])
figure
plot(t,[u y ysim_tr])

8. Eroarea medie pătratică la treaptă:

Emp =
$$sqrt(1/1000*sum((y-ysim1).^2));$$

Emp = 0.0687

9. Eroarea medie pătratică normalizată:

Empn = norm(y-ysim1)/norm(y-mean(y))Empn = 0.0715=7.1%

1.2.2 Experiment B

Se va determina functia de transfer a unui sistem de ordinul 2 pe baza raspunsului la intrare de tip impuls:

Fig. 3.1- Achizitia de date de intrare-iesire pt intrare de tip impuls

Pentru a stabili valoarea stationara dupa aplicarea impulsului, alegem doua puncte ca in figura urmatoare:

Fig. 3.2- Alegerea punctelor din regimul stationar

Idecsii sunt: i1=386 si i2=468

Cu ajutorul acestor puncte vom calcula valorile medii pt yst, ust:

1. Valoriile stationare medii ale intrarii si ale iesirii:

ust =
$$mean(u(i1:i2))=-0.8245$$
 [V]
yst = $mean(y(i1:i2))=-0.8180$ [V]

1. Factorul de proportionalitate:

$$K = \frac{y_{st}}{u_{st}} = 0.9922$$

Cu ajutorul indicilor din figura urmatoare vom calcula suprareglajul si perioadei oscilatiei si ariile (Aplus, Aminus).

Fig. 3.3 Puncte esentiale masurarii

Indecsii sunt:

i3=510

i4=609

i5=710

2. Calculul ariilor:

Aria pozitiva:

Apoz =
$$sum(abs((y(i3:i4)-yst)))*(t(2)-t(1)) = 2.3151e-05$$

Aria negativa:

Aneg =
$$sum(abs((y(i4:i5)-yst)))*(t(2)-t(1)) = 6.6303e-06$$

3. Suprareglajul:

$$\sigma = \frac{A_{-}}{A_{+}} = 0.2864 \approx 28 \%$$

4. Factorul de amortizare:

$$\zeta = \frac{-\ln(\sigma)}{\sqrt{\pi^2 + \ln^2(\sigma)}} = 0.3698$$

$$\zeta = (-\log(\sup r))/(\operatorname{sqrt}(\operatorname{pi}^2 + (\log(\sup r))^2))$$

Pentru perioada de oscilatie avem nevoie de tmax si tmin care sunt prezentati in figura urmatoare:

Fig.3.4 – Indecsii pentru perioada de oscilatie

Indecsii sunt:

i6=546

i7=649

5. Perioada de oscilatie:

6. Pulsatia naturala

$$wn = 2*pi/(Tosc*sqrt(1-tita*tita))=3.2828e+04$$

Acum putem defini functia de transfer pentru sistemul de oridin 2 identificat:

H=tf(k*wn^2,[1 2*tita*wn wn^2])

$$H(s) = k \frac{\omega_n^2}{s^2 + 2\zeta \omega_n * s + \omega_n^2}$$

$$H(s) = \frac{1.069 \cdot 10^9}{s^2 + 2.428 \cdot 10^4 \cdot s + 1.078 \cdot 10^9}$$

Modelul sistemului determinat la intrare determinat la semnal de intrare de tip impuls real, in spatial starilor:

$$A = \begin{pmatrix} 0 & 1 \\ -1.7586 \cdot 10^8 & -2 \cdot 10^4 \end{pmatrix} B = \begin{pmatrix} 0 \\ 1.2025 \cdot 10^8 \end{pmatrix} C = \begin{pmatrix} 1 & 0 \end{pmatrix} D = 0$$

Vom folosi reprezentarea in spațiul stărilor pentru a avea condiții inițiale nenule.

Cu urmatoarea secventa de cod obrinem modelul calculat la functia de transfer prezentata mai sus ysim1=lsim(A,B,C,D,u,t,[y(1) 0]); figure

plot(t,[u y ysim_im])

Fig.3.5 Aproximarea raspunsului circuitului electric la intrare de tip imuls printr-un sistem de ordinul 2

7. Eroarea medie patratica la impuls:

$$Emp = norm(y - ysim_im) = 0.3403$$

8. Eroarea medie patratica normalizata:

$$Empn = norm(y - ysim_im) / norm(y - mean(y)) = 0.0933 = 9.3\%$$

1.3 Validarea modelului

• Folosind functia de transfer identificata la intrarea de tip treapta vom simula raspunsul sistemului la intrarea de tip impuls:

Fig.4.1 Raspunsul sistemului la intrare de tip impuls calculate si pe baza modelului identificat la intrarea de tip treapta

• Folosind functia de transfer identificata la intrarea de tip impuls vom simula raspunsul sistemului la intrarea de tip treapta:

Fig.4.2 Raspunsul sistemului la intrarea de tip treapta calcuulat si pe baza modelului identificat la intrarea de tip impuls

Intrare de tip treapta	Intrare de tip impuls
ε_{MP} =0.0678	$\varepsilon_{MP}=0.3403$
ε_{MPN} =7.1%	$ \varepsilon_{MPN} = 9.3\% $
$ \epsilon_{MP(impuls-treapta)} = 0.0663 $	$ \varepsilon_{MP(treapta-impuls)} = 0.7337 $
$ \varepsilon_{MP(impuls-treapta)} = 6.28\% $	$ \varepsilon_{MP(treapta-impuls)} = 1.8\% $

In concluzie, pe baza tabelului cu erori vom valida modelul obtinut prin identificarea la treapta, deoarece acesta induce o eroare mai mic la modelul treptei decat cel al treptei la modelul impulsului.

COD MATLAB:

```
%Rasp la treapta
t = scope24{:,1};
u = scope24\{:, 2\};
y = scope24\{:, 3\};
plot(t,[u,y])
title('Raspunsul sistemului de ordin II la semnal de tip
treapta'), grid;
legend('semnal treapta', 'raspunsul sistemului');
i1=438;
i2=489;
i3=901;
i4=961;
y0=mean(y(i1:i2))
u0=mean(u(i1:i2))
yst=mean(y(i3:i4))
ust=mean(u(i3:i4))
%calcul factor de proportionalitate
k = (yst - y0) / (ust - u0)
hold on
figure
plot(t,yst*ones(1,length(t)),'--');
hold on
plot(t,[u,y],t,yst*ones(length(y)),'--')
i5=505
i6=607
%Calcul suprareglaj
sigma=(y(i6)-yst)/(yst-y0)
```

```
%Calcul factor de amortizare
zeta = -log(sigma) / (sqrt(pi*pi+log(sigma)*log(sigma)))
T \text{ osc}=2*(t(i6)-t(i5))
% Pulsatia oscilatiilor amortizate
w osc=2*pi/T osc
% Pulsatia naturala a oscilatiilor neamortizate
wn = w osc/sqrt(1-zeta^2)
%fct tranf
H=tf(k*wn^2,[1,2*zeta*wn,wn^2])
%cond nenule
A=[0 1 ; -wn^2 -2*zeta*wn]
B = [0; k*wn^2]
C = [1 \ 0];
D=0;
ysim tr = lsim(A,B,C,D,u,t,[y(1), 0])
figure
plot(t,[u y ysim tr])
title('Raspunsul la treapta')
xlabel('t (sec)')
ylabel('u(V), y(V)')
J = sqrt(1/1000*sum((y-ysim tr).^2));
e=norm(y-ysim tr)/norm(y-mean(y))
%impuls-treapta
ysim im=lsim(A1,B1,C,D,u,t,[y(1),0]);
hold on
plot(t,[u y ysim tr ysim im])
title('Raspunsul la treapta')
xlabel('t (sec)')
ylabel('u(V), y(V)')
eroarea treapta=norm(y-ysim im)/norm(y-mean(y))
J impuls=norm(y-ysim im)/sqrt(1000)
```

```
%Rasp la impuls
t1=scope23{:,1}; %timpul
u1=scope23{:,2}; %intrarea
y1=scope23{:,3}; %iesirea
```

```
plot(t1, [u1, y1]);
title('Date exp. la identificarea pe baza de intrare de
tip impuls')
xlabel('t (sec)')
ylabel('u(V),y(V)'), grid
i1=386;
i2=468;
ust1=mean(u1(i1:i2)) %media dintre cele 2 val ale
regimului stationar
yst1=mean(y1(i1:i2)) %unde e stationar
hold on
figure
plot(t1, yst1*ones(length(t1)), 'r')
%factorul de proportionalitate
K=yst1/ust1
%suprareglajul
i3=510;
i4=609;
i5=710;
DT = t1(2) - t1(1);
Aminus = sum(abs(yst1-y1(i4:i5))*DT)
Aplus = sum(abs(yst1-y1(i3:i4))*DT)
sigma1 = Aminus/Aplus
%Fact amortizare
zeta1=-log(sigma1)/sqrt(pi*pi+log(sigma1)*log(sigma1))
%Per osc
i6=546;
i7 = 649;
Tosc1=2*(t1(i7)-t1(i6))
wosc1=2*pi/Tosc1
%Pulsatie naturala
wn1=wosc1/sqrt(1-zeta1*zeta1)
%Functia de transfer
H1=tf(K*wn1^2,[1 2*zeta1*wn1 wn1^2])
% Conditii nule
A1 = [0 \ 1; -wn1*wn1 \ -2*(zeta1*wn1)]
B1 = [0; K*wn1*wn1]
```

```
C1 = [1 \ 0]
D1=0;
ysim im=lsim(A1,B1,C1,D1,u1,t1,[y1(1) 0]);
figure
plot(t1,[u1 y1 ysim im]), grid
title('Raspunsul la impuls')
xlabel('t (sec)')
ylabel('u(V), y(V)')
J1=norm(y1-ysim im) %eroare medie patratica
E1=norm(y1-ysim im)/norm(y1-mean(y1)) %eroare medie
patratica normalizata
%treapta-impuls
ysim tr=lsim(A,B,C,D,u1,t1,[y1(1),0]);
hold on
figure
plot(t1,[u1 y1 ysim im ysim tr]) ,grid
title('Raspunsul la impuls');
xlabel('t (sec)')
ylabel('u(V),y(V)')
eroarea impuls=norm(y1-ysim tr)/norm(mean(y1))
J treapta=norm(y1-ysim tr)/sqrt(1000)
```