GSI018 – SISTEMAS OPERACIONAIS

Operating Systems - William Stallings - 7th Edition

Chapter 09 - Uniprocessor Scheduling

Murielly Oliveira Nascimento – 11921BSI222 – murielly.nascimento@ufu.br

REVIEW QUESTIONS

9.2 What is usually the critical performance requirement in an interactive operating system?

Tempo de resposta.

9.3 What is the difference between turnaround time and response time?

Tempo de vazão é o total de tempo que um pedido gasta no sistema. Já o tempo de resposta é o lapso de tempo entre a submissão do pedido até a resposta começar a aparecer como saída.

9.5 What is the difference between preemptive and nonpreemptive scheduling?

No não preemptivo o processo não poderá ser interrompido por um terceiro enquanto não terminar ou executar uma operação que o leve ao estado bloqueado. Já no preemptivo o processo pode ser interrompido e conduzido ao estado de pronto para ser executado pelo sistema operacional.

PROBLEMS

9.1 Consider the following set of processes: A .. arrival time = 0; processing time = 3; B .. arrival time = 1; processing time = 5; C .. arrival time = 3; processing time = 2; D .. arrival time = 9; processing time = 5; E .. arrival time = 12; processing time = 5; Perform the same analysis as depicted in Table 9.5 and Figure 9.5 for this set.

	Process	Α	В	С	D	Е	Mean
	Arrival Time	0	1	3	9	12	
	Service Time(Ts)	3	5	2	5	5	
FCFS	Finish Time	3	8	10	15	20	
	Turnaround Time(Tr)	3	7	7	6	8	6.2
	Tr/Ts	1	1.4	3.5	1.2	1.6	1.74
RR q=1	Finish Time	6	11	7	19	20	
	Turnaround Time(Tr)						
	Tr/Ts						
RR q=4	FinishTime						
	Turnaround Time(Tr)						

	Tr/Ts						
SPN	Finish Time	3	5	10	15	20	
	Turnaround Time(Tr)	3	9	2	6	8	5.6
	Tr/Ts	1	1.8	1	1.2	1.6	1.32
SRT	Finish Time	3	5	10	15	20	
	Turnaround Time(Tr)	3	9	2	6	8	5.6
	Tr/Ts	1	1.8	1	1.2	1.6	1.32
HRRN	Finish Time	3	8	10	15	20	
	Turnaround Time(Tr)	3	7	7	6	8	6.2
	Tr/Ts	1	1.4	3.5	1.2	1.6	1.74
FB q=1	Finish Time	7	11	6	18	20	
	Turnaround Time	7	10	3	9	8	7.4
	Tr/Ts	2.33	2	1.5	1.8	1.6	1.85
FB	Finish Time	4	10	8	18	20	
q=2^i							
	Turnaround Time(Tr)	4	9	5	9	8	7
	Tr/Ts	1.33	1.8	2.5	1.8	1.6	1.81

9.3 Prove that, among nonpreemptive scheduling algorithms, SPN provides the minimum average waiting time for a batch of jobs that arrive at the same time. Assume that the scheduler must always execute a task if one is available.

Sendo o tempo de serviço dos trabalhos: t1<= t2<=...tn

Então, n usuários devem esperar a execução do trabalho 1. N-1 usuários devem esperar a execução do trabalho 2 e assim por diante. Logo, a média do tempo de resposta é

$$(n * t1 + (n-1) * t2 + ... + tn)/n$$

Se mudanças forem feitas nesse agendamento o tempo de resposta é aumentado pelo número. Em outras palavras, o tempo médio de resposta crescerá se o algoritmo SPN não for usado.

9.6 In the bottom example in Figure 9.5, process A runs for two time units before control is passed to process B. Another plausible scenario would be that A runs for three time units before control is passed to process B. What policy differences in the feedback-scheduling algorithm would account for the two different scenarios?

Depende se o processo A será colocado em uma pilha depois da primeira unidade de tempo ou não. Se sim então o processo A terá 2 unidades de tempo adicionais antes de ser preempted.