Logika dla Informatyków (zaawansowana) Lista zadań nr 2

Przed rozwiązywaniem zapoznaj się z Definicjami 65 oraz 136 z MdZ.

Zadanie 1. Rozwiąż Zadanie 327 z MdZ.

Relacje na słowach

Niech Σ będzie skończonym zborem symboli ("alfabetem") i niech $L \subseteq \Sigma^*$. Relację $\sim_L \subseteq \Sigma^* \times \Sigma^*$ definiujemy w następujący sposób: $w \sim_L w'$ w.t.w gdy $\forall v \in \Sigma^*$ ($wv \in L \Leftrightarrow w'v \in L$).

Podobnie możemy zdefiniować relację \sim_L^{inf} . Mianowicie $w \sim_L^{inf} v$ zachodzi wtedy i tylko wtedy gdy $\forall x,y \in \Sigma^* \ (xwy \in L \Leftrightarrow xvy \in L)$.

Zadanie 2. Pokaż, że \sim_L i \sim_L^{inf} są relacjami równoważności.

Niech i_L (od słowa indeks) będzie równe $|\Sigma^*/\sim_L|$ (czyli i_L to liczba klas abstrakcji na jakie \sim_L dzieli Σ^*). Podobnie, niech $i_L^{inf}=|\Sigma^*/\sim_L^{inf}|$.

Zadanie 3. Znajdź przykłady zbioru L dla których i_L jest równe 4, 17 i jest nieskończone.

Kolejne zadania dotyczą wzajemnych relacji między liczbami i_L i $i_L^{inf}.$

Udowodnij, że jeśli jedna z liczb $i_L,\,i_L^{inf}$ jest skończona, to obie są skończone. Dokładniej mówiąc:

Zadanie 4. Udowodnij, że $i_L \leq i_L^{inf}$;

Zadanie 5* [3 pkt] Udowodnij, że $i_L^{inf} \leq (i_L)^{i_L}$.

Konstrukcje ilorazowe

Zadanie 6. Zdefiniuj mnożenie na liczbach rzeczywistych w postaci wprowadzonej na wykładzie.

Zadanie 7. Zdefiniuj (podobnie jak na wykładzie) liczby wymierne. Następnie zdefiniuj na nich dodawanie i mnożenie.

Zadanie 8. Rozwiąż Zadanie 333 z MdZ.