

Table of Contents

- Introduction
- Analysis of SOTA
- Our Research
 - Motivation
 - Methodology
 - Summary of Result
- Conclusion / Limitation
- References

Introduction

Power estimation

$$P_{total} = P_{dynamic} + P_{static}$$
 $P_{dynamic} = P_{switching} + P_{short-circuit}$ $P_{switching} = lpha CV_{DD}^2 f$ performance-variant

- Simulation time scales with design size
 - Running PAR
 - Separate Power Analysis Tool such as Cadence Voltus

Introduction

- Switching Activity Estimator (SAE)
 - o Probabilistic approach to measure toggle rates of each register
 - Foregoes the need to perform cycle-by-cycle power calculation
 - Issues with accuracy, signal correlation or reconvergence
 - Clock domain crossing, etc.

[1] Y. Zhang, H. Ren and B. Khailany, "GRANNITE: Graph Neural Network Inference for Transferable Power Estimation,"

- GRANNITE: Graph Neural Network (GNN) Inference for Transferable Power Estimation (NVIDIA)
 - o Captures nonlinear behavior the purely probabilistic SAEs fails to do
 - > 18.7X speedup
 - < 5.5% error rate on benchmarks such as RISC-V Rocket Core (SmallCore), 32-bit full adders, etc.

- GRANNITE: Graph Neural Network (GNN) Inference for Transferable Power Estimation (NVIDIA)
 - Translate gate-level netlist to graph objects in their Neural Network architecture
 - Given a graph representation of the gate-level netlist, what will be the total switching power with some testbench?

[1] Y. Zhang, H. Ren and B. Khailany, "GRANNITE: Graph Neural Network Inference for Transferable Power Estimation,"

- GRANNITE: Graph Neural Network (GNN) Inference for Transferable Power Estimation (NVIDIA)
 - GPU-accelerated **Transferable** Power Estimator using Graph Convolutional Networks (GCN)

- GRANNITE: Graph Neural Network (GNN) Inference for Transferable Power Estimation (NVIDIA)
 - GPU-accelerated **Transferable** Power Estimator using Graph Convolutional Networks (GCN)

[1] Y. Zhang, H. Ren and B. Khailany, "GRANNITE: Graph Neural Network Inference for Transferable Power Estimation,"

- PRIMAL: <u>Power Inference using Machine Learning</u> (Cornell University, NVIDIA)
 - Cycle-to-cycle gate-level power estimation, non-transferable
 - o 15X Speedup

.....And many more that we won't cover for the interest of time

 PRIMAL: PoweR inference using MAchine Learning (Cornell University, NVIDIA)

 PRIMAL: PoweR inference using MAchine Learning (Cornell University, NVIDIA)

Our Research Project: Motivation

- Data collection is still time consuming
 - SOTA methodology: Supervised Learning
 - Data collection from post-PAR gate-level
 Power Analysis
 - Infeasible to mimic for a class project
 Can be applied to project that require
 quick power estimation
 - unless it is transferable likeGRANNITE

Our Research Project: SPEED

- Fast data collection via RTL PowerEstimation
 - As opposed to Gate-level Power Estimation
- Testing ML methods on representative combinational logic circuits

Methodology: Data Collection Pipeline

Methodology: Data Collection

■ Choice of combinational logic circuits:

opcode

- Collected ~ 5000 samples for each circuit
- Featurization: Using input switching activities
 - 0 if input bit remains the same
 - 1 if input bit switches state

Circuit	Number of Features	
ALU32	68	1
ALU64	132	
MUX32	66	7
7SEG	40	
		/

Methodology: Machine Learning Analysis

Linear regression

- Least Squares
- o Ridge Regression
- o LASSO

Trees and Ensemble Learning

- Decision Trees
- Random Forests
- AdaBoost for Decision Trees (Boosted Trees)

Neural Network

- o 0, 1, 2, or 3 hidden layers
- With or without dropout layers

■ Evaluation: NRMSE

$$NRMSE = \frac{1}{y_{max} - y_{min}} \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n}}$$

Results

Circuit	ALU32	ALU64	MUX32	7SEG	
Best Tree Depth (Boosted Decision Trees)	7	4	5	6	
# Trees (Random Forest)	100				

Best Neural Net architectures:

o ALU32:

ALU64:

MUX32:

o 7SEG:

Limitation/Future Work

Featurize switching activities from intermediate/output gates

Currently uses inputs (including opcode and sel inputs)

References

- [1] Y. Zhang, H. Ren and B. Khailany, "GRANNITE: Graph Neural Network Inference for Transferable Power Estimation," 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218643.
- [2] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany and Z. Zhang, "PRIMAL: Power Inference using Machine Learning," 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1-6.

