EBU7240 Conspirate Exmission

- Introduction to Deep Learning -

Add WeChat powcoder

Semester 1, 2021

Changjae Oh

Outline

- Machine learning basics++
- Introduction to deep learning
- Linear classifier

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What is Machine Learning?

Learning = Looking for a Function

Prediction task

- Regression: returns a specific value
- Classification: returns a class label

Training data

$$X = \{x_1 = (2.0), x_2 = (4.0), x_3 = (6.0), x_4 = (8.0)\}$$

 $Y = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

Training the model with data

- Finding optimal parameters
- Starting at a random value, increasing accuracy to compute optimal parameters

Assignment Project Exam Help

y = wx + bhttps://powcoder.com

Time

Optimal parameter w=0.5 b=2.0

Add WeChat powcoder

Goal

- Minimize errors for new samples (test set)
- Generalization refers to high performance for test sets

- Multi-dimensional feature space
 - d-dimensional data: $\mathbf{x} = (x_1, x_2, \dots, x_d)^T$

Note) d=784 in MNIST data

- Linear classifier for d-dimensional data Assignment Project Exam Help 1-D linear classifier # of variables = d+1

- Widely used in machine learning https://powcoder.com

$$y = w_1 x_1 + w_2 x_2 + \cdots + A d d W$$
eChat powcoder

2-D linear classifier

of variables =
$$\frac{(d+1)(d+2)}{2}$$

$$y = \underline{w_1}x_1^2 + \underline{w_2}x_2^2 + \dots + \underline{w_d}x_d^2 + \underline{w_{d+1}}x_1x_2 + \dots + \underline{w_{\underline{d(d+1)}}}x_{d-1}x_d + \underline{w_{\underline{d(d+1)}}}_{\underline{2}} + \underline{x_1} \dots + \underline{w_{\underline{d(d+1)}}}_{\underline{2}} + \underline{d}x_d + \underline{b}$$

Feature space transformation

Map a linearly non-separable feature space into separable space

Original feature space

Representation learning

Aims to find good feature space automatically

Deep learning finds a hierarchical feature space by using neural networks with

multiple hidden layers.

• The first hidden layer has low-level features (edge, corner points, etc.), and the right-hand side features advanced features (face, wheel, etc.) https://powcoder.com

Data for Machine Learning

The quality of the training data

- To increase estimation accuracy, diverse and enough data should be collected for a given application.
- Ex) After learning from a database with a frontal face only, the recognition accuracy of side face will be degraded ment Project Exam Help

MNIST database

Handwritten numeric database

- Training data: 60,000

- Test data: 10,000

Data for Machine Learning

- Database size vs. training accuracy
 - Ex) MNIST: 28*28 binary image
 - \rightarrow The total number of possible samples is 2^{784} , but MNIST has 60,000 training images.

Data for Machine Learning

- How does a small database achieve high performance?
 - In a feature space, the actual data is generated in a very small subspace
 - ۶,
- ~

is unlikely to happen.

Assignment Project Exam Help

Manifold assumption

Smooth change according to certain rules like

Add WeChat powcoder

Training Model: under-fitting vs. over-fitting

Under-fitting

- Model capacity is too small to fit the data accordingly.
- Model with higher order can be used.

Training Model: under-fitting vs. over-fitting

Over-fitting

- 12th order polynomial model approximates perfectly for the training set.
- But if you anticipate "new" data, there's a big problem.
- Since the model capacity is large, the training process also accepts data noise.
- The model with the appropriate capacity should be selected.

https://powcoder.com

Training Model: under-fitting vs. over-fitting

- 1st and 2nd order model show poor performance for both the training and the test set.
- 12th order model shows high performance in training set, but low performance in test set. → low generalization ability
- 3rd and 4th order model are lower than the 12th order model for the training set, but the test set has high performance and the property of the training set, but the

Spectrum of supervision

Spectrum of supervision

Supervised learning

- Both the feature vector X and the output Y are given.
- Regression and classification problem

Assignment Project Exam Help

Unsupervised learning

- The feature vector X is given, but the output Y is not given.
- Ex) Clustering, density estimation Ex) Clustering, density estimation

Spectrum of supervision

Reinforcement learning

- The output is given, but it is different from supervised learning.
- Ex) Go
 - Once the game is over, you get a point (credit).

 Assignment Project Exam Help

 If you win, get 1, and -1 otherwise.
 - The credit should be distributed to each sample of the gamen

• Semi-supervised Learning dd WeChat powcoder

- Some of data have both X and Y, but others have only X.
- It is becoming important, since it is easy to collect X, but Y requires manual tasks.

https://powcoder.com Deapwick a.v.ourng

From Wiki

Deep learning

is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using multiple processing layers, with complex structures or otherwise, composed of multiple non-linear transformations.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- Image classification
- Machine translation
- Speech recognition
- Speech synthesis
- Game playing

... and many, many more

- Image classification
- Machine translation
- Speech recognition
- Speech synthesis
- Game playing

.. and many, many more

- Image classification
- Machine translation
- Speech recognition
- Speech synthesis
- Game playing

Add WeChat powcoder

.. and many, many more

- Image classification
- Machine translation
- Speech recognition
- Game playing

Assignment Project

https://powcode

TO STEEL TO THE OF THE PROPERTY OF THE PROPERT

... and many, many more

Why deep learning?

Hand-crafted features vs. Learned features

Why now?

- Large datasets
- GPU hardware advances + Price decreases
- Improved techniques (algorithm)

What is Deep Learning?

- Stacked Functions Learned by Machine
 - End-to-end training: what each function should do is learned automatically
 - Deep learning usually refers to neural network based model

Assignment Project Exam Help

What is Deep Learning?

- Stacked Functions Learned by Machine
 - Representation Learning: learning features/representations
 - Deep Learning: learning (multi-level) features and an output

- Deep vs Shallow: Image Recognition
 - Shallow model using machine learning

- Deep vs Shallow: Image Recognition
 - Deep model using deep learning

Machine Learning vs. Deep Learning

Machine Learningssignification de Echiptor | Classifier

Feature: hand-crafted domain-specified how equat powcod his injury the classifier weights on features Describing your data with features that computer can understand

Ex) SIFT, Bag-of-Words (BoW), Histogram of Oriented Gradient (HOG)

Ex) Nearest Neighbor (NN), Support Vector Machine (SVM), Random Forest (RF)

Machine Learning vs. Deep Learning

Deep Learning Assigneature descriptorielp Classifier

https://powcoder.com

Feature: Representation <u>learned by machine</u> Chat powcooper mizing the classifier weights on Automatically learned internal knowledge features

Neural network based model

A series of linear classifiers and non-linear activations + Loss function

Deep Learning

A single neuron

Deep Learning

A single layer with multiple neurons

Deep Learning

Deep Neural Network

Cascading the neurons to form a neural network

Each layer consists of the linear classifier and activation function

Linear classifier

Parametric Approach

(Review) Unit 3 ML basics and classification

Image

3072X1 f(x,W) = Wx + bAssignment Project Exam Help 10X3072 https://powcoder.com Add WeChat powcoder

10 numbers giving class scores

10X1

Array of **32x32x3** numbers (3072 numbers total)

parameters (or weights)

Parametric Approach

(Review) Unit 3 recognition

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

What do we need now?

- Functions to measuring the error between the output of a classifier and the given target value.
 - Let's talk about designing error (a.k.a. loss) functions!

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

EBU7240 Camputager Exmission

https://powpoderioons -

Add WeChat powcoder

Semester 1, 2021

Changjae Oh

Loss function

Loss function

quantifies our unhappiness with the scores across the training data.

• Type of loss functionAssignment Project Exam Help

Hinge loss

Cross-entropy loss

Log likelihood loss

Regression loss

https://powcoder.com

Add WeChat powcoder

Binary hinge loss (=binary SVM loss)

$$L_i = \max(0, 1 - y_i \cdot s)$$
 $s = \mathbf{w}^T \mathbf{x_i} + b$
 $y_i = \pm 1$ for positive/negative samples
Assignment Project Exam Help

- Hinge loss (=multiclass SWM loss) wcoder.com
 - C: The number of class (> 2)Add WeChat powcoder

$$L_{i} = \sum_{j=1, j \neq y_{i}}^{C} \max(0, s_{j} - s_{y_{i}} + 1)$$

 x_i : input data (e.g. image) y_i : class label (integer, $1 \le y_i \le C$)

$$s = \mathbf{W} \mathbf{x}_i + \mathbf{b}$$

$$\mathbf{W} = \begin{pmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_C^T \end{pmatrix} \qquad \mathbf{s} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_C \end{pmatrix}$$

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, \mathbf{W}) = \mathbf{W}x + \mathbf{b}$ are

Given a dataset of examples

 $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$

 y_i : class label (integer)

Add WeChat powcodepss over the dataset is a

cat

3.2

1.3

2.2

sum of loss over examples:

car

5.1

4.9

2.5

frog

2.0

-3.1

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i(f(\boldsymbol{x}_i, \mathbf{W}), y_i)$$

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, \mathbf{W}) = \mathbf{W}x + \mathbf{b}$ are

Multiclass SVM loss (=hinge loss)

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j\neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Add WeChat powooler score vector $\mathbf{s} = f(\mathbf{x}_i, \mathbf{W})$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, \mathbf{W}) = \mathbf{W}x + \mathbf{b}$ are

Multiclass SVM loss (=hinge loss)

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

ent Project Exammak(0, 1.7 - 3.2 + 1) + max(0, -1.7 - 3.2 + 1) $= \max(0, 2.9) + \max(0, -3.9)$

der.com^{2.9} + 0 = 2.9

Add WeChat powcoder_x(0, -2.6) + max(0, -1.9)

 $= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$

= 0 + 0 = 0

3.2 cat

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

12.9

 $= \max(0, 2.2 - (-3.1) + 1) + \max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

Loss over full dataset is average

L = (2.9 + 0 + 12.9)/3 = 5.27

Loss Function: Log Likelihood Loss

Log likelihood loss

$$L_i = -\log p_j$$
 where j satisfies $z_{ij} = 1$

$$m{p} = egin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_C \end{pmatrix}$$
 probability for i^{th} image (It is assumed to be *normalized*, i.e. $|m{p}| = 1$.)

Assignment Project dissame Helpimage

 $(C \times 1 \text{ vector, } z_{ij} = 1 \text{ when } j = y_i \text{ and } 0 \text{ otherwise})$

https://powcoderacouldel (integer, $1 \le y_i \le C$)

Example

Suppose i^{th} image belongs to class 2 and C=10.

$$\mathbf{z}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} 0.1 \\ 0.7 \\ 0 \\ \vdots \\ 0.2 \end{pmatrix} \qquad \mathbf{L}_{i} = -\log 0.7$$

Loss Function: Cross-entropy Loss

Cross-entropy loss

$$L_{i} = -\sum_{j=1}^{C} \left(z_{ij}\log p_{j} + (1-z_{ij})\log(1-p_{j})\right)$$

$$Assignment Project Example (C × 1 vector, $z_{ij} = 1$ wh$$

$$m{p} = egin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_C \end{pmatrix}$$
 probability for i^{th} image (It is assumed to be *normalized*, i.e. $|m{p}| = 1$.)

($C \times 1$ vector, $z_{ij} = 1$ when $j = y_i$ and 0 otherwise)

https://powcoderacodel (integer, $1 \le y_i \le C$)

Example

Suppose i^{th} image belongs to class 2 and C = 10.

$$\mathbf{z}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\boldsymbol{p} = \begin{pmatrix} 0.1\\0.7\\0\\\vdots\\0.2 \end{pmatrix}$$

$$\mathbf{z}_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} 0.1 \\ 0.7 \\ 0 \\ \vdots \\ 0.2 \end{pmatrix} \qquad \mathbf{L}_{i} = -\log(1 - 0.1) - \log(0.7 - \log(1 - 0.2)$$

Softmax Activation Function

Softmax activation function

scores = unnormalized log probabilities of the classes.

Probability can be computed using scores as below.

Assignment Project Exam Help x_i

https://powcoder.com =
$$p_k = \frac{e^{s_k}}{\sum_{j=1}^C e^{s_j}}$$

Softmax activation function

unnormalized Arghabitie Chat powcoder x_i : image

3.2 24.5 cat normalize 0.87 car frog unnormalized log probabilities probabilities

 y_i : class label (integer, $1 \le y_i \le C$)

$$\mathbf{s} = \mathbf{W} \mathbf{x}_i + \mathbf{b}$$

$$\mathbf{W} = \begin{pmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_C^T \end{pmatrix}$$

Softmax + Log Likelihood Loss

$$L_{i} = -\log\left(\frac{e^{Sy_{i}}}{\sum_{j=1}^{C} e^{S_{j}}}\right)$$
Assignment Project Exam Help

1.7 0.18

unnormalized log probabilities

frog

probabilities

Softmax + Log likelihood loss: is often called 'softmax classifier'

Softmax + Cross-entropy Loss

$$L_{i} = -\log\left(\frac{e^{s_{y_{i}}}}{\sum_{j=1}^{C} e^{s_{j}}}\right) - \sum_{k=1, k \neq y_{i}}^{C} \log(1 - \frac{e^{s_{k}}}{\sum_{j=1}^{C} e^{s_{j}}})$$

Assignment Project Exam Help

Loss Function: Regression Loss

Regression loss

- Using L1 or L2 norms
- Widely used in pixel-level prediction (e.g. image denoising)

$$L_i = |\mathbf{y}_i - \mathbf{s}_i|$$
 Assignment Project Exam Help
$$L_i = (\mathbf{y}_i - \mathbf{s}_i)^2$$
 https://powcoder.com

$$L_i = (\mathbf{y}_i - \mathbf{s}_i)^2$$
 https://powcoder.com

Add WeChat powcoder

$$y_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad s_{i} = \begin{pmatrix} 0.1 \\ 0.7 \\ 0 \\ \vdots \\ 0.2 \end{pmatrix} \qquad \downarrow \rangle \qquad L_{i} = |\mathbf{y}_{i} - \mathbf{s}_{i}| = |0 - 0.1| + |1 - 0.7| + |0 - 0.2|$$

Regularization

$$L_i = \sum_{i \neq v_i} \max(0, s_j - s_{y_i} + 1) \qquad \mathbf{s} = \mathbf{W}\mathbf{x} + \mathbf{b}$$

$$s = Wx + b$$

Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

hent Project Exam Help

Before:

der.com= max(0, 1.3 - 4.9 + 1) + max(0, 2.0 - 4.9 + 1) $= \max(0, -2.6) + \max(0, -1.9)$

Add WeChat powcoder + 0 = 0

cat

3.2

car

5.1

frog

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

With W twice as large:

 $= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1)$ $= \max(0, -6.2) + \max(0, -4.8)$ = 0 + 0 = 0

Regularization

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i(f(\mathbf{x}_i, \mathbf{W}), y_i) + \lambda R(\mathbf{W})$$

Data loss: Model predictions Project Exam Help Model should be "simple" should match training data/powctorevoid prefitting, so it works on test data

Regularization

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i(f(\mathbf{x}_i, \mathbf{W}), y_i) + \lambda R(\mathbf{W})$$

 λ : regularization strength (hyperparameter)

Assignment Project Exam Help

- L2 regularization: $R(\mathbf{W}) = \sum_{\mathbf{w}} W_{\mathbf{w}}^2 w_{\mathbf{w}} \cos \theta$
- L1 regularization: $R(\mathbf{W}) = \sum_{k,l} |W_{k,l}|$ Elastic net (L1 + L2): $R(\mathbf{W}) = \sum_{k,l} \beta W_{k,l}^2 + |W_{k,l}|$
- Max norm regularization: $|\mathbf{w}_i^T| < c$ for all j
- Dropout (will see later)
- Batch normalization, stochastic depth (will see later)

$$\mathbf{W} = \begin{pmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_C^T \end{pmatrix}$$

Optimization: Gradient Descent

Gradient Descent

- The simplest approach to minimizing a loss function

Vanilla Gradient Descent

while True:
 weights_grad = evaluate_gradient(loss_fun, data, weights)
 weights += - step_size * weights_grad # perform parameter update

Optimization: Gradient Descent

Optimization: Stochastic Gradient Descent (SGD)

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i(f(\mathbf{x}_i, \mathbf{W}), y_i) + \lambda R(\mathbf{W})$$

Full sum is too expensive when N is large!

$$\frac{\partial L}{\partial \mathbf{W}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_i(f(\mathbf{x}_i, \mathbf{W}), y_i)}{\partial \mathbf{W}} + \frac{\partial R(\mathbf{W})}{\partial \mathbf{W}}$$
 Instead, approximating sum using a https://powcodarrabatch of 32 / 64 / 128/ 256 examples is common Add WeChat powcoder

Vanilla Minibatch Gradient Descent while True: data batch = sample training data(data, 256) # sample 256 examples weights grad = evaluate gradient(loss fun, data batch, weights) weights += - step size * weights grad # perform parameter update

EBU7240 Computation

- Btack/propagation-

Add WeChat powcoder

Semester 1, 2021

Changjae Oh

Backpropagation

- A widely used algorithm for training feedforward neural networks.
- A way of computing gradients of expressions through recursive applicati on of chain rule.
 - Backpropagation computes the gradient of the loss function with respect to the weight of the network (model) for a single input-output example.

https://powcoder.com

Add WeChat powcoder • Gradient Descent

- - The simplest approach to minimizing a loss function

$$\mathbf{W}^{\mathrm{T+1}} = \mathbf{W}^{\mathrm{T}} - \alpha \frac{\partial L}{\partial \mathbf{W}^{\mathrm{T}}}$$

- α : step size (a.k.a. learning rate)

Optimization using derivative

1st order derivative

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- f'(x): The slope of the function, indicating the direction in which the value increases \rightarrow The minima of the objective function may exist in the direction of -f'(x).

 - → Gradient descent algorithm ttps://powcoder.com

Add WeChat powcoder $y = f(x) = x^{2} - 4x + 3$ y' = f'(x) = 2x - 4 W^{T+1}

$$y = f(x) = x^2 - 4x + 3$$

$$y' = f'(x) = 2x - 4$$

$$\mathbf{W}^{\mathrm{T+1}} = \mathbf{W}^{\mathrm{T}} - \alpha \frac{\partial L}{\partial \mathbf{W}^{\mathrm{T}}}$$

Partial derivative

- Derivatives of functions with multiple variables
- Gradient: the vector of the partial derivative

Ex)
$$\nabla f$$
, $\frac{\partial f}{\partial \mathbf{x}}$, $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\mathrm{T}}$

Assignment Project Exam Help
$$f(\mathbf{x}) = f(x_1, x_2) = \left(4 - 2.1x_1^2 + \frac{x_1}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$

$$\text{https://powcoder.com}$$

$$\nabla f = f'(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}} = \left(\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2}\right) \nabla \bar{\mathbf{x}} = \left(\frac{2x_1^5}{2x_1^5} - \frac{8.4x_1^3}{2x_1^5} + 8x_1 + x_2, 16x_2^3 - 8x_2 + x_1\right)^{\text{T}}$$

Jacobian matrix

- 1st order partial derivative matrix for $\mathbf{f} : \mathbb{R}^d \mapsto \mathbb{R}^m$

$$\mathbf{J} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_d} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_d} \end{pmatrix}$$

$$\mathbf{Ex)} \mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{Fx} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_1^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^3 \quad \mathbf{f}(\mathbf{x}) = (2x_1 + x_1^2, -x_1^2 + 3x_1, -x_1^2 +$$

Hessian matrix

Add WeChat powcoder

2nd order partial derivative matrix

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 x_1} & \frac{\partial^2 f}{\partial x_1 x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2 x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} & \frac{\partial^2 f}{\partial x_n x_2} & \cdots & \frac{\partial^2 f}{\partial x_n x_n} \end{pmatrix}$$

Ex)
$$f(\mathbf{x}) = f(x_1, x_2)$$

 $= \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$
 $\mathbf{H} = \begin{pmatrix} 10x_1^4 - 25.2x_1^2 + 8 & 1\\ 1 & 48x_2^2 - 8 \end{pmatrix}$
 $\mathbf{H}|_{(0,1)^T} = \begin{pmatrix} 8 & 1\\ 1 & 40 \end{pmatrix}$

Chain rule

$$f(x) = g(h(x))$$

$$f(x) = g(h(i(x)))$$

$$f'(x) = g'(h(x))h'(x)$$

$$f'(x) = g'(h(i(x)))h'(i(x))i'(x)$$

Ex)
$$f(x) = 3(2x^2 - 1)^2 - 2(2x^2 - 1)^2 - 2$$

$$f'(x) = \underbrace{(3 * 2(2x^2 - 1) - 2)}_{g'(h(x))} \underbrace{(2http)_{s=/4}powcoder.com}_{h'(x)}$$

Add WeChat powcoder

Why are we talking about derivatives?

Gradient Descent

The simplest approach to minimizing a loss function


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

- Example) Applying chain rule to single-layer perceptron
 - Example of composite function
 - Back-propagation: use the chain rule to compute $\frac{\partial L}{\partial \mathbf{w}}$ and $\frac{\partial L}{\partial \mathbf{b}}$

Assignment-Project¹Exam Help

$$\frac{\partial L}{\partial \boldsymbol{p}} \qquad \frac{\partial L}{\partial \boldsymbol{s}} = \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{s}} \frac{\partial L}{\partial \boldsymbol{p}} \qquad \frac{\partial L}{\partial \boldsymbol{w}_j} = \frac{\partial \boldsymbol{s}}{\partial \boldsymbol{w}_j} \frac{\partial L}{\partial \boldsymbol{s}} \qquad \frac{\partial L}{\partial \boldsymbol{w}} = \left(\frac{\partial L}{\partial \boldsymbol{w}_1} \quad \frac{\partial L}{\partial \boldsymbol{w}_2} \quad \cdots \quad \frac{\partial L}{\partial \boldsymbol{w}_n}\right)^{\mathrm{T}}$$

$$\frac{\partial L}{\partial \boldsymbol{b}} = \frac{\partial \boldsymbol{s}}{\partial \boldsymbol{b}} \frac{\partial L}{\partial \boldsymbol{s}} = \frac{\partial L}{\partial \boldsymbol{s}}$$

Analytic Gradient: Linear Equation

$$s = \mathbf{W}\mathbf{x} + \mathbf{b}$$

$$s_1 = \mathbf{w}_1^{\mathsf{T}}\mathbf{x} + b_1$$

$$s_2 = \mathbf{w}_2^{\mathsf{T}}\mathbf{x} + b_2$$

$$\vdots$$

$$s_n = \mathbf{w}_n^{\mathsf{T}}\mathbf{x} + b_n$$

$$s_n = \mathbf{w}_n^{\mathsf{T}}\mathbf{x} + b_n$$
Assignment Project Exam Help

$$\frac{\partial s_1}{\partial \mathbf{w}_1} = \mathbf{x}$$

$$\frac{\partial s_2}{\partial \mathbf{w}_1} = \mathbf{0}$$

$$\frac{\partial s_n}{\partial \mathbf{w}_1} = \mathbf{0}$$

https://powcoder.com

$$\frac{\partial s}{\partial w_1} = [x \ \mathbf{0} \ \mathbf{0} \ \cdots \mathbf{0}] \in \mathbb{R}^{d \times n}$$

$$\frac{\partial \mathbf{s}}{\partial \mathbf{b}} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} = \mathbf{I} \in \Re^{n \times n}$$

$$\frac{\partial s}{\partial w_1} = [x \ \mathbf{0} \ \mathbf{0} \ \cdots \mathbf{0}] \in \Re^{d \times n}$$

$$\frac{\partial s}{\partial w_j} = [\mathbf{0} \ \mathbf{0} \ x \ \cdots \mathbf{0}] \in \Re^{d \times n}$$

Analytic Gradient: Linear Equation

$$s = \mathbf{W}\mathbf{x} + \mathbf{b} \longrightarrow \begin{array}{c} s_1 = \mathbf{w}_1^T \mathbf{x} + b_1 \\ s_2 = \mathbf{w}_2^T \mathbf{x} + b_2 \\ \vdots \\ s_n \end{array} \quad \mathbf{w} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_{n1} & w_{n2} & \cdots & w_{1d} \\ w_{21} & w_{22} & \cdots & w_{2d} \\ \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nd} \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$s_n = \mathbf{w}_n^T \mathbf{x} + b_n$$

$$\frac{\partial s_1}{\partial x} = w_1$$

$$\frac{\partial s_2}{\partial x} = w_2$$

$$\frac{\partial s_n}{\partial \mathbf{x}} = \mathbf{w}_n$$

https://powcoder.com

$$\partial s$$
 Add WeChat powcode

Add WeChat powcoder
$$\frac{\partial s}{\partial x} = [w_1 \ w_2 \ \cdots w_n] = \mathbf{W}^{\mathrm{T}} \in \Re^{d \times n}$$

Analytic Gradient: Sigmoid Function

Sigmoid function

For a scalar *x*

$$\sigma(x) = \frac{1}{1 + e^{-x}} \rightarrow \frac{\partial \sigma(x)}{\text{Assign}} = \frac{e^{-x}}{\text{Tent Project}} = \frac{1 + e^{-x} - 1}{\text{ExameHelp}} \frac{1}{1 + e^{-x}} = (1 - \sigma(x))\sigma(x)$$

Similarly, for a vector $\mathbf{s} \in \Re^{n \times 1}$

https://powcoder.com

$$\boldsymbol{p} = \sigma(\boldsymbol{s}) = \frac{1}{1 + e^{-\boldsymbol{s}}} \rightarrow \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{s}} = \frac{\text{Add WeChat powco}}{\operatorname{diag}((1 - \sigma(s_j))\sigma(s_j))} = \begin{bmatrix} \frac{\partial \boldsymbol{p}}{\partial s} - \sigma(s_1))\sigma(s_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & (1 - \sigma(s_n))\sigma(s_n) \end{bmatrix}$$

Analytic Gradient: Softmax Activation Function

Softmax function

score function
$$s = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

score function $s = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$ **Project Exam Help** $p = \begin{pmatrix} p_2 \\ \vdots \\ p_n \end{pmatrix}$ https://powcoder.com

1st order derivative of softmax function Add WeChat powcoder

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{s}} = \frac{diag(e^{\boldsymbol{s}}) \cdot \sum e^{\boldsymbol{s}_j} - e^{\boldsymbol{s}}(e^{\boldsymbol{s}})^{\mathrm{T}}}{(\sum e^{\boldsymbol{s}_j})^2} = \frac{1}{(\sum e^{\boldsymbol{s}_j})^2} \left\{ \begin{pmatrix} e^{\boldsymbol{s}_1} \sum e^{\boldsymbol{s}_j} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{\boldsymbol{s}_n} \sum e^{\boldsymbol{s}_j} \end{pmatrix} - \begin{pmatrix} e^{\boldsymbol{s}_1} e^{\boldsymbol{s}_1} & \cdots & e^{\boldsymbol{s}_1} e^{\boldsymbol{s}_n} \\ \vdots & \ddots & \vdots \\ e^{\boldsymbol{s}_n} e^{\boldsymbol{s}_1} & \cdots & e^{\boldsymbol{s}_n} e^{\boldsymbol{s}_n} \end{pmatrix} \right\}$$

Analytic Gradient: Softmax Activation Function

$$\mathbf{D} = \frac{\partial \mathbf{p}}{\partial \mathbf{s}} = \frac{diag(e^{\mathbf{s}}) \cdot \sum e^{s_j} - e^{\mathbf{s}}(e^{\mathbf{s}})^{\mathrm{T}}}{(\sum e^{s_j})^2} = \frac{1}{(\sum e^{s_j})^2} \left\{ \begin{pmatrix} e^{s_1} \sum e^{s_j} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{s_n} \sum e^{s_j} \end{pmatrix} - \begin{pmatrix} e^{s_1} e^{s_1} & \cdots & e^{s_1} e^{s_n} \\ \vdots & \ddots & \vdots \\ e^{s_n} e^{s_1} & \cdots & e^{s_n} e^{s_n} \end{pmatrix} \right\}$$

Assignment Project Exam Help

For
$$a = b$$

$$\frac{e^{s_a}(\sum e^{s_j} - e^{s_a})}{(\sum e^{s_j})^2} = p_a(1 - p_a)$$
For $a \neq b$

$$\frac{e^{s_a}(\sum e^{s_j} - e^{s_a})}{(\sum e^{s_j})^2} = p_a(1 - p_a)$$
For $a \neq b$

$$\frac{-\sum e^{s_j}}{(\sum e^{s_j})^2} = -p_a p_b$$

$$-\sum (\sum e^{s_j})^2 = -p_a p_b$$

$$-\sum (\sum e^{s_j})^2 = -p_a p_b$$

$$\delta_{ab} = \begin{cases} 1 & a = b \\ 0 & \text{otherwise} \end{cases}$$

Analytic Gradient: Hinge Loss

1st order derivative of binary hinge loss

$$s = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$$

$$L = \max(0, 1 - y \cdot s)$$

 $y = \pm 1$ for positive/negative samples

 $= \begin{cases} 1 - y \cdot s & \text{if } 1 - y \text{ Assignment Project Exam Help} \\ 0 & \text{otherwise} \\ & \text{https://powcoder.com} \end{cases}$

$$\frac{\partial L}{\partial s} = \begin{cases} -y & \text{if } 1 - y \cdot s > 0 \text{Add WeChat powcoder} \\ 0 & \text{otherwise} \end{cases}$$

Analytic Gradient: Hinge Loss

1st order derivative of hinge loss

$$s = \mathbf{W}x + \mathbf{b}$$

$$L = \sum_{j=1, j \neq y}^{n} \max(0, s_{j} - s_{y} + 1)$$

Assignment Project Exam Help y: class label (integer, $1 \le y \le n$) https://powcoder.com

$$\mathbf{W} = \begin{pmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_n^T \end{pmatrix} \qquad \mathbf{s} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

Add WeChat powcoder
$$\frac{\partial L}{\partial s_y} = -\sum_{j=1, j \neq y}^{n} 1(s_j - s_y + 1 > 0) \quad \text{for } j = y$$

$$1(F)$$

$$1(F) = \begin{cases} 1 & if F \text{ is true} \\ 0 & otherwise \end{cases}$$

$$\frac{\partial L}{\partial s_i} = 1(s_j - s_y + 1 > 0)$$

for
$$j \neq y$$

Analytic Gradient: Log Likelihood Loss

For simplicity of notation, the index of training image *i* is omitted here

$$L = -\log p_y$$
 where y satisfies $z_y = 1$

$$m{p} = egin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}$$
 probability for i^{th} image (It is assumed to be *normalized*, i.e. $|m{p}| = 1$.)

$$\frac{\partial L}{\partial \boldsymbol{p}} = -\begin{bmatrix} 0 \\ \vdots \\ 1/p_y \\ \vdots \\ 0 \end{bmatrix}$$

$$\frac{\text{Assignment Project Exam Help}}{\text{Assignment Project Exam Help}}$$

$$z: \text{ class probability for } i^{th} \text{ image}$$

$$\text{https://powcoder}(\boldsymbol{zom}. \ z_n)^T, z_y = 1 \text{ and } z_{k \neq y} = 0$$

Add WeChat powcoder

Suppose i^{th} image belongs to class 2 and n = 10. $\rightarrow y = 2$

$$\mathbf{z} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} 0.1 \\ 0.7 \\ 0 \\ \vdots \\ 0.2 \end{pmatrix} \qquad \frac{\partial L}{\partial \mathbf{p}} = - \begin{bmatrix} 0 \\ 1/0.7 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$L = -\sum_{j=1}^{n} \left(z_j \log p_j + (1-z_j) \log (1-p_j) \right) \qquad \boldsymbol{p} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix} \text{ probability for } i^{th} \text{ image}$$
 (It is assumed to be *normalized*, i.e. $|\boldsymbol{p}| = 1$.)

$$\frac{\partial L}{\partial \boldsymbol{p}} = -\begin{bmatrix} 1/(1-p_1) \\ \vdots \\ 1/p_y \\ \vdots \\ 1/(1-p_n) \end{bmatrix}$$
Assignment Project Exam Help

z: class probability for i^{th} image
$$\frac{\mathbf{z} \cdot \mathbf{class} \text{ probability for } i^{th} \text{ image}}{\mathbf{ttps://powcoder}} (1 \le y \le n)$$

$$\frac{\mathbf{z} \cdot \mathbf{class} \text{ probability for } i^{th} \text{ image}}{\mathbf{ttps://powcoder}} (1 \le y \le n)$$

$$\frac{\mathbf{z} \cdot \mathbf{class} \text{ probability for } i^{th} \text{ image}}{\mathbf{ttps://powcoder}} (1 \le y \le n)$$

$$\frac{\mathbf{z} \cdot \mathbf{class} \text{ probability for } i^{th} \text{ image}}{\mathbf{ttps://powcoder}} (1 \le y \le n)$$

$$\frac{\mathbf{z} \cdot \mathbf{class} \text{ probability for } i^{th} \text{ image}}{\mathbf{ttps://powcoder}} (1 \le y \le n)$$

$$\frac{\mathbf{z} \cdot \mathbf{class} \text{ probability for } i^{th} \text{ image}}{\mathbf{ttps://powcoder}} (1 \le y \le n)$$

Add WeChat powcoder

Suppose i^{th} image belongs to class 2 and n = 10. $\rightarrow y = 2$

$$\mathbf{z} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} 0.1 \\ 0.7 \\ 0 \\ \vdots \\ 0.2 \end{pmatrix} \qquad \frac{\partial L}{\partial \mathbf{p}} = - \begin{bmatrix} 1/(1-0.1) \\ 1/0.7 \\ 0 \\ \vdots \\ 1/(1-0.2) \end{bmatrix}$$

Analytic Gradient: Regression Loss

Regression loss

$$L = (y - s)^2$$

$$L = (\mathbf{y} - \mathbf{s})^{2}$$

$$\frac{\partial L}{\partial \mathbf{s}} = -2(\mathbf{y} - \mathbf{s})$$

$$\mathbf{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$\mathbf{s} = \begin{pmatrix} s_{1} \\ s_{2} \\ \vdots \\ s_{n} \end{pmatrix}$$
Assignment Project Exam Help $\begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ s_{n} \end{pmatrix}$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \mathbf{Help} y_n \end{pmatrix}$$

$$\mathbf{s} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

https://powcoder.com

Add WeChat powcoder

Why are we talking about derivatives?

Gradient Descent

- The simplest approach to minimizing a loss function


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```