Analysis

Erzhuo Wang

November 17, 2024

Contents

1	Foundation 5				
	1.1	Construction of Real Number	5		
	1.2	Point-Set Topology	8		
		1.2.1 Definition	8		
		1.2.2 Metric space	1		
		1.2.3 Compactness	2		
		1.2.4 Connectness	4		
		1.2.5 Countability	15		
		1.2.6 Separation	6		
		1.2.7 Completeness	6		
	1.3	Limit	8		
		1.3.1 Limit Superior and Limit Inferior	8		
		1.3.2 Series	8		
	1.4	Functions of Single variable	21		
		1.4.1 Monotone Functions	21		
		1.4.2 Power Series	21		
		1.4.3 Differentiation in One Variable	24		
		1.4.4 Sequences of Functions	29		
	1.5	Functions of Several Variables	32		
2	Mea	${f sure}$	3		
	2.1	Measure Space	33		
	2.2	Intergration	37		
	2.3	Signed Measure and Complex Measure	13		
	2.4	Function of bounded variation	16		
	2.5		18		
	2.6		18		
3	Con	plex Analysis 5	1		
	3.1	ī vienas vie	51		
	3.2	Multiple Variables	52		

4	CONTENTS
---	----------

4	Fun	ctional Analysis	53
-		·	
	4.1	Foundation	53
	4.2	Topological vector space	55
	4.3	Hilbert Space	56
	4.4	Spectrum of Opertor	56
5	Har	emonic Analysis	57
	5.1	Fourier Transform	57

Chapter 1

Foundation

1.1 Construction of Real Number

Definition 1.1.1 (ordered ring). Thus, a ring(field) $R \neq 0$ with an order < is called an ordered ring(field) if the following holds:

- (1) (R, <) is totally ordered
- (2) $x < y \Rightarrow x + z < y + z, z \in R$
- (3) $x, y > 0 \Rightarrow xy > 0$

Of course, an element $x \in R$ is called positive if x > 0 and negative if x < 0. We gather in the next proposition some simple properties of ordered fields.

Proposition 1.1.2. Let K be an ordered field, then for $x, y, a, b \in K$.

- $(1) x > y \Leftrightarrow x y > 0.$
- (2) If x > y and a > b, then x + a > y + b.
- (3) If a > 0 and x > y, then ax > ay.
- (4) If x > 0, then -x < 0. If x < 0, then -x > 0.
- (5) Let x > 0. If y > 0, then xy > 0. If y < 0, then xy < 0.
- (6) If a < 0 and x > y, then ax < ay.
- (7) $x^2 > 0$ for all $x \neq 0$. In particular, 1 > 0.
- (8) If x > 0, then $x^{-1} > 0$.
- (9) If x > y > 0, then $0 < x^{-1} < y^{-1}$ and $xy^{-1} > 1$.

Definition 1.1.3. K is a ordered field, K is said to be Archimedes if and only if for x, y > 0 there's $n \in \mathbb{Z}$ such that nx > y.

Example 1.1.4. \mathbb{Q} is a Archimedes ordered field with original order.

Proposition 1.1.5. For an ordered field K, the absolute value function, $|\cdot|: K \to K$ and the sign function, $\operatorname{sign}(\cdot): K \to K$ are defined by

$$|x| := \begin{cases} x, & x > 0, \\ 0, & x = 0, \\ -x, & x < 0, \end{cases} \text{ sign } x := \begin{cases} 1, x > 0, \\ 0, x = 0, \\ -1, x < 0. \end{cases}$$

Let K be an ordered field and $x, y, a, \varepsilon \in K$ with $\varepsilon > 0$.

- (1) $x = |x|\operatorname{sign}(x), |x| = x\operatorname{sign}(x).$
- (2) $|x| = |-x|, \quad x \le |x|.$
- (3) |xy| = |x||y|.
- (4) $|x| \ge 0$ and $(|x| = 0 \Leftrightarrow x = 0)$.
- (5) $|x a| < \varepsilon \Leftrightarrow a \varepsilon < x < a + \varepsilon$.
- (6) |x+y| < |x| + |y| (triangle inequality).
- (7) $|x y| \ge ||x| |y||, \quad x, y \in K$

Definition 1.1.6. A ring homomorphism f between ordered field is said to be order-preserving if

$$a < b \iff f(a) < f(b)$$

.

Definition 1.1.7. A sequence $r = (x_n)_{n \in \mathbb{Z}_{>0}}$ is a Cauchy sequence if for all $\epsilon \in \mathbb{Q} > 0$, there's N > 0 such that for all m, n > N, $|x_n - x_m| < \epsilon$.

Proposition 1.1.8. Cauchy sequence is bounded.

Definition 1.1.9. Let

$$\mathcal{R} = \{(x_n) \in \mathbb{Q}^{\mathbb{Z}_{>0}} : (x_n) \text{ is a Cauchy sequence}\}$$

and

$$\mathbf{c}_0 = \{(x_n) \in \mathbb{Q}^{\mathbb{Z}_{>0}} : \text{for all } \epsilon > 0, \text{ there's } N > 0 \text{ such that for all } n > N, |x_n| < \epsilon \}$$

It's clear that $\mathbf{c}_0 \subset \mathcal{R}$ is a maximal ideal of \mathcal{R} . Hence \mathcal{R}/\mathbf{c}_0 is a field and we denote it by \mathbb{R} . For convenience, we usually denote $(a_n) + \mathbf{c}_0$ by (a_n) .

Definition 1.1.10. Now we define a order on \mathbb{R} , for (a_n) , (b_n) in \mathbb{R} , $(a_n) > (b_n)$ if there's $\epsilon > 0$, a sufficiently large integer N, such that $a_n - b_n > \epsilon$ for n > N. And denote this order by <. It's esay to check that '<' is well-defined and totally ordered.

Proposition 1.1.11. $(\mathbb{R}, <)$ is a Archimedes ordered field. And the embedding $l : \mathbb{Q} \to \mathbb{R}$ given by

$$r \mapsto (r, r, r, \dots)$$

is an order-preserving ring homomorphism.

Definition 1.1.12. For a sequence $(A_n) \in \mathbb{R}$, we say $A_n \to A$ if for all $\epsilon \in \mathbb{R} > 0$, there's N > 0 such that for all n > N, $|A_n - A| < \epsilon$. And we say (A_n) is a Cauchy sequence if for all $\epsilon \in \mathbb{R}_{>0}$, there's N > 0 such that for all m, n > N, $|x_n - x_m| < \epsilon$.

Proposition 1.1.13 (dense). For all $a, b \in \mathbb{R}$, if a < b, there's $c \in \mathbb{Q}$ such that a < l(c) < b.

Proposition 1.1.14 (completeness). (A_n) is a Cauchy sequence in \mathbb{R} if and only if there's $A \in \mathbb{R}$ such that $A_n \to A$.

Proof: 'if' is obvious.

'only if': Take $x_n \in \mathbb{Q}$ such that:

$$A_n < l(x_n) < A_n + l(\frac{1}{n})$$

It's cleat that $a = (x_n) + \mathbf{c}_0 \in \mathbb{R}$.

Notice that $A_n \to a$, we have \mathbb{R} is complete.

Now we identity \mathbb{Q} with a subfield of \mathbb{R} in the following content.

Proposition 1.1.15. (1) E is a non-empty subset of \mathbb{R} and if E is lower-bounded, then E has a infimum; if E is upper-bounded, then E has a supremum.

- (2) Every incresing bounded sequence $(x_n) \in \mathbb{R}$ has a limit.
- (3) (Bolzano-Weierstress) Every bounded sequence has a convergent subsequence.
- (4) if

$$[a,b] \subset \bigcup_{i \in I} (a_i,b_i)$$

, then

$$[a,b] \subset \bigcup_{k \in J} (a_k,b_k)$$

for some finite subset J of I.

Proposition 1.1.16. a > 0, $n \in \mathbb{Z}_{>0}$, then there's unique $x \in \mathbb{R}_{>0}$ such that $x^n = a$. We denote the unique positive root by $\sqrt[n]{a}$. And for all $a \in \mathbb{R}$ and $r = \frac{p}{q} \in \mathbb{Q}$, define $a^r = \sqrt[q]{a^p}$. It's easy to check that $\sqrt[q]{a^p} = (\sqrt[q]{a})^p$.

Definition 1.1.17 (complex number). Let $\mathbb{C} = \mathbb{R} \times \mathbb{R}$, define $(a,b) \cdot (c,d) = (ac-bd,bc+ad)$. Then \mathbb{C} is a field under this operator and \mathbb{R} is a subfield of \mathbb{C} .

1.2 Point-Set Topology

Munkres's Topology is a good reference for this section.

1.2.1 Definition

Definition 1.2.1. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \varnothing and X are in \mathcal{T} .
- (2) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (3) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a topological space.

Definition 1.2.2. If X is a set, a basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis elements) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology T generated by \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

Definition 1.2.3. Let X be a topological space with topology \mathcal{T} . If Y is a subset of X, the collection

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

is a topology on Y, called the subspace topology. With this topology, Y is called a subspace of X; its open sets consist of all intersections of open sets of X with Y.

Definition 1.2.4. X is Hausdorff if for any two elements $x \neq y$ in X, there's U, V open in X such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 1.2.5 (convergence).

Proposition 1.2.6. If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Example 1.2.7. Let X be a ordered set; assume X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

- (2) All intervals of the form $[a_0, b)$, where a_0 is the smallest element (if any) of X.
- (3) All intervals of the form $(a, b_0]$, where b_0 is the largest element (if any) of X. The collection \mathcal{B} is a basis for a topology on X, which is called the order topology.

Example 1.2.8. $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}.$

Proposition 1.2.9. Given a subset A of a topological space X, the interior of A is defined as the union of all open sets contained in A, and the closure of A is defined as the intersection of all closed sets containing A.

Let Y be a subspace of X; let A be a subset of Y; let \bar{A} denote the closure of A in X. Then the closure of A in Y equals $\bar{A} \cap Y$.

Definition 1.2.10. If A is a subset of the topological space X and if x is a point of X, we say that x is a limit point of A if every neighborhood of x intersects A in some point other than x itself. Said differently, x is a limit point of A if it belongs to the closure of $A - \{x\}$. The point x may lie in A or not; for this definition it does not matter. Let A be a subset of the topological space X; let A' be the set of all limit points of A. Then

$$\bar{A} = A \cup A'$$
.

Proposition 1.2.11. Let X and Y be topological spaces; let $f: X \to Y$. Then the following are equivalent:

- (1) f is continuous.(U open in X implies $f^{-1}(U)$ open in Y)
- (2) For every subset A of X, one has $f(\bar{A}) \subset \overline{f(A)}$.
- (3) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$. If the condition in (4) holds for the point x of X, we say that f is continuous at the point x.

Definition 1.2.12. Consider $(X_i)_{i\in I}$ be a family of topology spaces, then the sets of the form

$$\prod_{i\in I} U_i$$

 $U_i = X_i$ for all but finite i, form a basis of $\prod_{i \in I} X_i$. We call it the topology induced by this product topology.

In language of category, product topology with projection $p_i: \prod_{i\in I} X_i \to X_i$ is the product object in the category of topological space.

Proposition 1.2.13. If each space X_{α} is Hausdorff space, then $\prod X_{\alpha}$ is a Hausdorff space in product topology.

Proposition 1.2.14. Let $\{X_{\alpha}\}$ be an indexed family of spaces; let $A_{\alpha} \subset X_{\alpha}$ for each α . If $\prod X_{\alpha}$ is given the product topology, then

$$\prod \bar{A}_{\alpha} = \overline{\prod A_{\alpha}}$$

Theorem 1.2.15. Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation

$$f(a) = (f_{\alpha}(a))_{\alpha \in J},$$

where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.

Definition 1.2.16 (locally closed). A subset E of a topological space X is said to be locally closed if any of the following equivalent conditions are satisfied:

- (1) E is the intersection of an open set and a closed set in X.
- (2) For each point $x \in E$, there is a neighborhood U of x such that $E \cap U$ is closed in U.
- (3) E is open in its closure \bar{E} .
- (4) The set $\bar{E} \backslash E$ is closed in X.

Proof: (2) implies (1): For all $x \in E$, choose U_i open in X such that $E = \cap U_i = U_i \cap V_i$ for some V_i closed in X. Then consider

$$(\bigcup_{i\in I} U_i)\cap \bar{E}$$

For $x \in U_i \cap \bar{E}$, if $x \notin E$, then $x \in U_i \cap V_i^c$. Notice that

$$U_i \cap V_i^c \cap E = \emptyset$$

which contradicts to $x \in \bar{E}$.

(3) implies (4): If $\bar{E} \cap U = E$ for some U open in X, then $\bar{E} - E = \bar{E} \cap E^c = \bar{E} \cup U^c$.

Proposition 1.2.17. E is a locally closed subset in X, then E closed in the open subset $X - \bar{E} \setminus E$ and $X - \bar{E} \setminus E$ is the largest open subset contains E such that E is closed in it.

Proof: Since

$$X - \bar{E} \backslash E = (\bar{E})^c \cup E$$

and $((\bar{E})^c \cup E) \cap \bar{E} = E$, we have E closed in $X - \bar{E} \setminus E$.

In addition, if there's V open in X such that E closed in V,

$$E = \bar{E} \cap V$$

Hence, $V = (V \cap \bar{E}^c) \cup (V \cap \bar{E}) = E \cup (V \cap \bar{E}^c) \subset E \cup \bar{E}^c$.

1.2.2 Metric space

Definition 1.2.18. A metric on a set X is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

having the following properties:

- (1) $d(x,y) \ge 0$ for all $x,y \in X$; equality holds if and only if x = y.
- (2) d(x,y) = d(y,x) for all $x, y \in X$.
- (3) (Triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$, for all $x,y,z \in X$.

Given a metric d on X, the number d(x, y) is often called the distance between x and y in the metric d. Given $\epsilon > 0$, consider the set

$$B_d(x,\epsilon) = \{ y \mid d(x,y) < \epsilon \}$$

of all points y whose distance from x is less than ϵ . It is called the ϵ -ball centered at x. Sometimes we omit the metric d from the notation and write this ball simply as $B(x, \epsilon)$, when no confusion will arise.

If d is a metric on the set X, then the collection of all ϵ -balls $B_d(x, \epsilon)$, for $x \in X$ and $\epsilon > 0$, is a basis for a topology on X, called the metric topology induced by d.

Example 1.2.19. \mathbb{R}^n is a metric space with distance d(x,y) = ||x-y||

Theorem 1.2.20. Let X be a topological space; let $A \subset X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$; the converse holds if X is metrizable.

Let $f: X \to Y$. If the function f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is metrizable.

Theorem 1.2.21. Let $f_n: X \to Y$ be a sequence of functions from the set X to the metric space Y. Let d be the metric for Y. We say that the sequence (f_n) converges uniformly to the function $f: X \to Y$ if given $\epsilon > 0$, there exists an integer N such that

$$d\left(f_n(x), f(x)\right) < \epsilon$$

for all n > N and all x in X.

Let $f_n: X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If (f_n) converges uniformly to f, then f is continuous.

Proposition 1.2.22. If $f \in B(X)$, we define the uniform norm of f to be

$$||f||_u = \sup\{|f(x)| : x \in X\}.$$

The function $\rho(f,g) = \|f - g\|_u$ is easily seen to be a metric on B(X), and convergence with respect to this metric is simply uniform convergence on X.B(X) is obviously complete in the uniform metric: If $\{f_n\}$ is uniformly Cauchy, then $\{f_n(x)\}$ is Cauchy for each x, and if we set $f(x) = \lim_n f_n(x)$, it is easily verified that $\|f_n - f\|_u \to 0$.

If X is a topological space, $BC(X) = B(X) \cap C(X)$ is a closed subspace of B(X) in the uniform metric; in particular, BC(X) is complete.

1.2.3 Compactness

Definition 1.2.23. A collection \mathcal{A} of subsets of a space X is said to cover X, or to be a covering of X, if the union of the elements of \mathcal{A} is equal to X. It is called an open covering of X if its elements are open subsets of X.

A space X is said to be compact if every open covering \mathcal{A} of X contains a finite subcollection that also covers X.

Proposition 1.2.24. Every closed subspace of a compact space is compact. Every compact subspace of a Hausdorff space is closed.

Theorem 1.2.25. The image of a compact space under a continuous map is compact.

Corollary 1.2.26. X is a compact space, Y is a Hausdorff space, then continuous $f: X \to Y$ is closed.

Corollary 1.2.27. Let $f: X \to Y$ be a continuous bijection. X is a compact space, Y is a Hausdorff space, then f is homemorphism.

Lemma 1.2.28 (Lebesgue number lemma). Let \mathcal{A} be an open covering of the metric space (X, d). If X is compact, there is a $\delta > 0$ such that for each subset of X having diameter less than δ , there exists an element of \mathcal{A} containing it. The number δ is called a Lebesgue number for the covering \mathcal{A} .

Theorem 1.2.29. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact(infinite subset has a limit point).
- (3) X is sequentially compact(every sequence has a convergent subsequence).

Theorem 1.2.30 (Tychonoff theorem). An arbitrary product of compact spaces is compact in the product topology.

Definition 1.2.31. A function f from the metric space (X, d_X) to the metric space (Y, d_Y) is said to be uniformly continuous if given $\epsilon > 0$, there is a $\delta > 0$ such that for every pair of points x_0, x_1 of X,

$$d_X(x_0, x_1) < \delta \Longrightarrow d_Y(f(x_0), f(x_1)) < \epsilon.$$

Theorem 1.2.32. Let $f: X \to Y$ be a continuous map of the compact metric space (X, d_X) to the metric space (Y, d_Y) . Then f is uniformly continuous.

Proposition 1.2.33 (finite intersection). A collection C of subsets of X is said to have the finite intersection property if for every finite subcollection

$$\{C_1,\ldots,C_n\}$$

of C, the intersection $C_1 \cap \cdots \cap C_n$ is nonempty.

Let X be a topological space. Then X is compact if and only if for every collection \mathcal{C} of closed sets in X having the finite intersection property, the intersection $\bigcap_{C \in \mathcal{C}} C$ of all the elements of \mathcal{C} is nonempty.

Definition 1.2.34 (locally compact). A space X is said to be locally compact at x if there is some compact subspace C of X that contains a neighborhood of x. If X is locally compact at each of its points, X is said simply to be locally compact.

Definition 1.2.35 (one-point compactification). Let X be a space. Then X is locally compact Hausdorff if and only if there exists a space Y satisfying the following conditions:

- (1) X is a subspace of Y.
- (2) The set Y X consists of a single point.
- (3) Y is a compact Hausdorff space.

If Y and Y' are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y' that equals the identity map on X.

Proof: We only provide the form of the open sets in Y: U open in Y if and only if U open in X, or U is the complement of a compact subset in X.

Definition 1.2.36. If Y is a compact Hausdorff space and X is a proper subspace of Y whose closure equals Y, then Y is said to be a compactification of X. If Y - X equals a single point, then Y is called the one-point compactification of X.

Proposition 1.2.37. Let X be a Hausdorff space. Then X is locally compact if and only if given x in X, and given a neighborhood U of x, there is a neighborhood V of x such that \bar{V} is compact and $\bar{V} \subset U$.

Corollary 1.2.38. If X is an LCH space and $K \subset U \subset X$ where K is compact and U is open, there exists a precompact open V such that $K \subset V \subset \bar{V} \subset U$.

Proposition 1.2.39. Let X be locally compact Hausdorff; let A be a subspace of X. If A is closed in X or open in X, then A is locally compact.

Proposition 1.2.40. In a locally compact Hausdorff space E, a subset A is closed if and only if its intersection with every compact set is compact

Proof: Let $A \subseteq E$ have the property that $A \cap K$ is closed in K for all compact $K \subseteq E$. We want to show that A is closed whenever E is locally compact Hausdorff, so we will show that E - A is open.

Let $x \in E - A$, let K be a compact neighbourhood of x, and let $U \subseteq K$ be an open neighbourhood of x. Then $x \in U - K \cap A$ and $U - K \cap A$ is open in X. Hence E - A is open in X.

Theorem 1.2.41 (Usysohn's Lemma, Locally Compact Version). If X is an LCH space and $K \subset U \subset X$ where K is compact and U is open, there exists $f \in C(X, [0, 1])$ such that f = 1 on K and f = 0 outside a compact subset of U.

Definition 1.2.42. If X is a topological space and $f \in C(X)$, the support of f, denoted by supp(f), is the smallest closed set outside of which f vanishes, that is, the closure of $\{x: f(x) \neq 0\}$. If supp(f) is compact, we say that f is compactly supported, and we define

$$C_c(X) = \{ f \in C(X) : \operatorname{supp}(f) \text{ is compact } \}.$$

Moreover, if $f \in C(X)$, we say that f vanishes at infinity if for every $\epsilon > 0$ the set $\{x : |f(x)| \geq \epsilon\}$ is compact, and we define

$$C_0(X) = \{ f \in C(X) : f \text{ vanishes at infinity } \}.$$

Clearly $C_c(X) \subset C_0(X)$. Moreover, $C_0(X) \subset BC(X)$, because for $f \in C_0(X)$ the image of the set $\{x : |f(x)| \ge \epsilon\}$ is compact, and $|f| < \epsilon$ on its complement.

Proposition 1.2.43. If X is an LCH space, $C_0(X)$ is the closure of $C_c(X)$ in the uniform metric.

Proof: If $\{f_n\}$ is a sequence in $C_c(X)$ that converges uniformly to $f \in C(X)$, for each $\epsilon > 0$ there exists $n \in \mathbb{N}$ such that $||f_n - f||_u < \epsilon$. Then $|f(x)| < \epsilon$ if $x \notin \text{supp}(f_n)$, so $f \in C_0(X)$. Conversely, if $f \in C_0(X)$, for $n \in \mathbb{N}$ let $K_n = \{x : |f(x)| \ge n^{-1}\}$. Then K_n is compact, so by Usysohn's Lemma, there exists $g_n \in C_c(X)$ with $0 \le g_n \le 1$ and $g_n = 1$ on K_n . Let $f_n = g_n f$. Then $f_n \in C_c(X)$ and $||f_n - f||_u \le n^{-1}$, so $f_n \to f$ uniformly.

1.2.4 Connectness

Definition 1.2.44. Given X, define an equivalence relation on X by setting $x \sim y$ if there is a connected subspace of X containing both x and y. The equivalence classes are called the components (or the "connected components") of X. The components of X are connected disjoint subspaces of X whose union is X, such that each nonempty connected subspace of X intersects only one of them.

Definition 1.2.45. We define another equivalence relation on the space X by defining $x \sim y$ if there is a path in X from x to y. The equivalence classes are called the path components of X. The path components of X are path-connected disjoint subspaces of X whose union is X, such that each nonempty path-connected subspace of X intersects only one of them.

Definition 1.2.46. A space X is said to be locally connected at x if for every neighborhood U of x, there is a connected neighborhood V of x contained in U. If X is locally connected at each of its points, it is said simply to be locally connected. Similarly, a space X is said to be locally path connected at x if for every neighborhood U of x, there is a path-connected neighborhood V of x contained in U. If X is locally path connected at each of its points, then it is said to be locally path connected.

Proposition 1.2.47. (1) A space X is locally connected if and only if for every open set U of X, each component of U is open in X.

- (2) A space X is locally path connected if and only if for every open set U of X, each path component of U is open in X.
- (3) If X is a topological space, each path component of X lies in a component of X. If X is locally path connected, then the components and the path components of X are the same.

Proposition 1.2.48. The union of a collection of connected subspaces of X that have a point in common is connected.

Proposition 1.2.49. Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then B is also connected.

Proposition 1.2.50. The image of a connected space under a continuous map is connected.

Theorem 1.2.51 (Intermediate Value Theorem). Let $f: X \to Y$ be a continuous map, where X is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y lying between f(a) and f(b), then there exists a point c of X such that f(c) = r.

Theorem 1.2.52 (Extreme value theorem). Let $f: X \to Y$ be continuous, where Y is an ordered set in the order topology. If X is compact, then there exist points c and d in X such that $f(c) \leq f(x) \leq f(d)$ for every $x \in X$.

1.2.5 Countability

Definition 1.2.53. A space X is said to have a countable basis at x if there is a countable collection B of neighborhoods of x such that each neighborhood of x contains at least one of the elements of B. A space that has a countable basis at each of its points is said to satisfy the first countability axiom, or to be first-countable.

Proposition 1.2.54. Let X be a topological space.

- (1) Let A be a subset of X. If there is a sequence of points of A converging to x, then $x \in \bar{A}$; the converse holds if X is first-countable.
- (2) Let $f: X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is first countable.

Definition 1.2.55. If a space X has a countable basis for its topology, then X is said to satisfy the second countability axiom, or to be second-countable.

Definition 1.2.56. A subset A of a space X is said to be dense in X if $\bar{A} = X$.

Definition 1.2.57. Suppose that X has a countable basis. Then:

- (1) Every open covering of X contains a countable subcollection covering X.(Lindelof space)
- (2) There exists a countable subset of X that is dense in X (separable)
- **Proposition 1.2.58.** (1) Every metrizable space with a countable dense subset has a countable basis.
- (2) Every metrizable Lindelöf space has a countable basis.

1.2.6 Separation

Definition 1.2.59. Suppose that one-point sets are closed in X. Then X is said to be regular if for each pair consisting of a point x and a closed set B disjoint from x, there exist disjoint open sets containing x and B, respectively.

The space X is said to be normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B, respectively.

Proposition 1.2.60. Let X be a topological space. Let one-point sets in X be closed.

- (1) X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\bar{V} \subset U$.
- (2) X is normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A such that $\bar{V} \subset U$.

Proposition 1.2.61. (1) Every metrizable space is normal.

(2) Every compact Hausdorff space is normal.

Theorem 1.2.62 (Usysohn's lemma). Let X be a normal space; let A and B be disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then there exists a continuous map

$$f: X \longrightarrow [a, b]$$

such that f(x) = a for every x in A, and f(x) = b for every x in B.

Theorem 1.2.63 (Tietze extension theorem). Let X be a normal space; let A be a closed subspace of X.

- (1) Any continuous map of A into the closed interval [a, b] of \mathbb{R} may be extended to a continuous map of all of X into [a, b].
- (2) Any continuous map of A into \mathbb{R} may be extended to a continuous map of all of X into \mathbb{R} .

1.2.7 Completeness

Definition 1.2.64. Let (X, d) be a metric space. A sequence (x_n) of points of X is said to be a Cauchy sequence in (X, d) if it has the property that given $\epsilon > 0$, there is an integer N such that

$$d(x_n, x_m) < \epsilon$$
 whenever $n, m \ge N$.

The metric space (X, d) is said to be complete if every Cauchy sequence in X converges.

Theorem 1.2.65. A metric space (X, d) is compact if and only if it is complete and totally bounded.

Theorem 1.2.66 (extension theorem). Suppose Y and Z are metric spaces, and Z is complete. Also suppose X is a dense subset of Y, and $f: X \to Z$ is uniformly continuous. Then f has a uniquely determined extension $\bar{f}: Y \to Z$ given by

$$\bar{f}(y) = \lim_{\substack{x \to y \\ x \in X}} f(x)$$
 for $y \in Y$

and \bar{f} is also uniformly continuous.

Definition 1.2.67. Let X be a metric space. If $h: X \to Y$ is an isometric imbedding of X into a complete metric space Y, such that h(X) dense in Y. Then Y is called the completion of X. By extension theorem, the completion of X is uniquely determined up to an isometry.

Definition 1.2.68. A space X is said to be a Baire space if the following condition holds: Given any countable collection $\{A_n\}$ of closed sets of X each of which has empty interior in X, their union $\bigcup A_n$ also has empty interior in X.

Theorem 1.2.69 (Baire Category Theorem). If X is a compact Hausdorff space or a complete metric space, then X is a Baire space.

Theorem 1.2.70. Any open subspace Y of a Baire space X is itself a Baire space.

Theorem 1.2.71. Let X be a space; let (Y,d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions such that $f_n(x) \to f(x)$ for all $x \in X$, where $f: X \to Y$. If X is a Baire space, the set of points at which f is continuous is dense in X.

1.3 Limit

1.3.1 Limit Superior and Limit Inferior

We work on $\bar{\mathbb{R}}$ in this subsection.

Definition 1.3.1. We call $a \in \mathbb{R}$ a cluster point of (x_n) if every neighborhood of a contains infinitely many terms of the sequence.

Definition 1.3.2. A point a is a cluster point of a sequence (x_n) if and only if there is some subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of (x_n) which converges to a.

Definition 1.3.3. Let (x_n) be a sequence in \mathbb{R} . We can define two new sequences (y_n) and (z_n) by

$$y_n := \sup_{k \ge n} x_k := \sup \{x_k; k \ge n\}$$

$$z_n := \inf_{k \ge n} x_k := \inf \left\{ x_k; k \ge n \right\}$$

Clearly (y_n) is a decreasing sequence and (z_n) is an increasing sequence in $\overline{\mathbb{R}}$. These sequences converge in $\overline{\mathbb{R}}$

$$\limsup_{n \to \infty} x_n := \overline{\lim}_{n \to \infty} x_n := \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right)$$

the limit superior, and

$$\liminf_{n \to \infty} x_n := \underline{\lim}_{n \to \infty} x_n := \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)$$

the limit inferior.

Theorem 1.3.4. Any sequence (x_n) in \mathbb{R} has a smallest cluster point x_* and a greatest cluster point x^* in $\overline{\mathbb{R}}$ and these satisfy

$$\lim\inf x_n = x_* \quad \text{ and } \quad \lim\sup x_n = x^*$$

1.3.2 Series

In the following theorem, \mathbb{K} is \mathbb{R} or \mathbb{C} , $(E, |\cdot|)$ is a Banach space over \mathbb{K} and (x_n) is a sequence in E.

Proposition 1.3.5. For a series $\sum x_k$ in a Banach space $(E, |\cdot|)$, the following are equivalent:

- (1) $\sum x_k$ converges.
- (2) For each $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that

$$\left| \sum_{k=n+1}^{m} x_k \right| < \varepsilon, \quad m > n \ge N.$$

1.3. LIMIT 19

Proposition 1.3.6. Let $\sum x_k$ be a series in E and $\sum a_k$ a series in \mathbb{R}^+ . Then the series $\sum a_k$ is called a majorant (or minorant) for $\sum x_k$ if there is some $K \in \mathbb{N}$ such that $|x_k| \leq a_k$ (or $a_k \leq |x_k|$) for all $k \geq K$. If a series in a Banach space has a convergent majorant, then it converges absolutely.

Proposition 1.3.7 (Abel). Let $(a_n)_{n\in\mathbb{Z}}$, $(b_n)_{n\in\mathbb{Z}}$ be two sequences in E, then

$$\sum_{M < n \le M+N} a_n b_n = a_{M+N} B_{M+N} + \sum_{M < n \le M+N-1} (a_n - a_{n+1}) B_n,$$

where $B_n = \sum_{M < k \leq n} b_k$.

If in particular $E=\mathbb{C}$ and (a_n) is a monotone sequence in \mathbb{R} , and

$$\sup_{M < n \le M + N} |B_n| \le \rho,$$

we have

$$\left| \sum_{M < n \le M+N} a_n b_n \right| \le \rho \left(|a_{M+1}| + 2 |a_{M+N}| \right).$$

Example 1.3.8 (base g expansion). Suppose that $g \ge 2$. Then every real number x has a base g expansion. This expansion is unique if expansions satisfying $x_k = g - 1$ for almost all $k \in \mathbb{N}$ are excluded (for example, if g = 10, 0.999... is excluded). Moreover, x is a rational number if and only if its base g expansion is periodic.

Theorem 1.3.9. Every rearrangement of an absolutely convergent series $\sum x_k$ is absolutely convergent and has the same value as $\sum x_k$.

Theorem 1.3.10. There is a bijection $\alpha: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. If α is such a bijection, we call the series $\sum_{n} x_{\alpha(n)}$ an ordering of the double series $\sum_{k} x_{jk}$. If we fix $j \in \mathbb{N}$ (or $k \in \mathbb{N}$), then the series $\sum_{k} x_{jk}$ (or $\sum_{j} x_{jk}$) is called the j^{th} row series (or j^{th} column series) of $\sum_{k} x_{jk}$. If every row series (or column series) converges, then we can consider the series of row sums $\sum_{j} (\sum_{k=0}^{\infty} x_{jk})$ (or the series of column sums $\sum_{k} (\sum_{j=0}^{\infty} x_{jk})$). Finally we say that the double series $\sum_{j} x_{jk}$ is summable if

$$\sup_{n\in\mathbb{N}}\sum_{j,k=0}^n|x_{jk}|<\infty.$$

Let $\sum x_{jk}$ be a summable double series.

- (1) Every ordering $\sum_{n} x_{\alpha(n)}$ of $\sum_{jk} x_{jk}$ converges absolutely to a value $s \in E$ which is independent of α .
- (2) The series of row sums $\sum_{j} (\sum_{k=0}^{\infty} x_{jk})$ and column sums $\sum_{k} (\sum_{j=0}^{\infty} x_{jk})$ converge absolutely, and

$$\sum_{j=0}^{\infty} \left(\sum_{k=0}^{\infty} x_{jk} \right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{\infty} x_{jk} \right) = s$$

Theorem 1.3.11. Suppose that the series $\sum x_j$ and $\sum y_k$ in \mathbb{K} converge absolutely. Then the Cauchy product $\sum_{n} \sum_{k=0}^{n} x_k y_{n-k}$ of $\sum x_j$ and $\sum y_k$ converges absolutely, and

$$\left(\sum_{j=0}^{\infty} x_j\right) \left(\sum_{k=0}^{\infty} y_k\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} x_k y_{n-k}$$

Example 1.3.12. Let $k \in \mathbb{N}$ and $a \in \mathbb{C}$ be such that |a| > 1. Then

$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0$$

that is, for |a| > 1 the function $n \mapsto a^n$ increases faster than any power function $n \mapsto n^k$.

Example 1.3.13. For all $a \in \mathbb{C}$,

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0$$

The factorial function $n \mapsto n$! increases faster than the function $n \mapsto a^n$.

1.4 Functions of Single variable

1.4.1 Monotone Functions

Theorem 1.4.1. Suppose that $I \subseteq \mathbb{R}$ is a nonempty interval(connected subset of \mathbb{R}) and $f: I \to \mathbb{R}$ is continuous and strictly increasing (or strictly decreasing).

- (1) J := f(I) is an interval.
- (2) $f: I \to J$ is bijective.
- (3) $f^{-1}: J \to I$ is continuous and strictly increasing (or strictly decreasing).

Example 1.4.2. For each $n \in \mathbb{N}^{\times}$, the function

$$\mathbb{R}^+ \to \mathbb{R}^+, \quad x \mapsto \sqrt[n]{x}$$

is continuous and strictly increasing. In addition, $\lim_{x\to\infty} \sqrt[n]{x} = \infty$.

1.4.2 Power Series

Definition 1.4.3. Let

$$a := \sum a_k X^k := \sum_k a_k X^k$$

be a (formal) power series in one indeterminate with coefficients in \mathbb{K} . Then, for each $x \in \mathbb{K}$, $\sum a_k x^k$ is a series in \mathbb{K} . When this series converges we denote its value by $\underline{a}(x)$, the value of the (formal) power series at x. Set

$$dom(\underline{a}) := \left\{ x \in \mathbb{K}; \sum a_k x^k \text{ converges in } \mathbb{K} \right\}$$

Then $\underline{a}: \text{dom}(\underline{a}) \to \mathbb{K}$ is a well defined function:

$$\underline{a}(x) := \sum_{k=0}^{\infty} a_k x^k, \quad x \in \text{dom}(\underline{a})$$

Note that $0 \in \text{dom}(\underline{a})$ for any $a \in \mathbb{K}[[X]]$. The following examples show that each of the cases

$$dom(\underline{a}) = \mathbb{K}, \quad \{0\} \subset dom(\underline{a}) \subset \mathbb{K}, \quad dom(\underline{a}) = \{0\}$$

is possible.

Proposition 1.4.4. For a power series $a = \sum a_k X^k$ with coefficients in \mathbb{K} there is a unique $\rho := \rho_a \in [0, \infty]$ with the following properties:

(1) The series $\sum a_k x^k$ converges absolutely if $|x| < \rho$ and diverges if $|x| > \rho$.

(2) Hadamard's formula holds:

$$\rho_a = \frac{1}{\lim_{k \to \infty} \sqrt[k]{|a_k|}}$$

The number $\rho_a \in [0, \infty]$ is called the radius of convergence of a, and

$$\rho_a \mathbb{B}_{\mathbb{K}} = \{ x \in \mathbb{K}; |x| < \rho_a \}$$

is the disk of convergence of a.

Proposition 1.4.5. Let $a = \sum a_k X^k$ be a power series such that $\lim_{n\to\infty} |a_k/a_{k+1}|$ exists in $\overline{\mathbb{R}}$. Then the radius of convergence of a is given by the formula

$$\rho_a = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

Theorem 1.4.6. Let $a = \sum a_k X^k$ and $b = \sum b_k X^k$ be power series with radii of convergence ρ_a and ρ_b respectively. Set $\rho := \min(\rho_a, \rho_b)$. Then for all $x \in \mathbb{K}$ such that $|x| < \rho$ we have

$$\sum_{k=0}^{\infty} a_k x^k + \sum_{k=0}^{\infty} b_k x^k = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$
$$\left[\sum_{k=0}^{\infty} a_k x^k \right] \left[\sum_{k=0}^{\infty} b_k x^k \right] = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j} \right) x^k$$

Proposition 1.4.7. Let $\sum a_k X^k$ be a power series with positive radius of convergence ρ_a . If there is a null sequence (y_j) such that $0 < |y_j| < \rho_a$ and

$$\underline{a}(y_j) = \sum_{k=0}^{\infty} a_k y_j^k = 0, \quad j \in \mathbb{N}$$

then $a_k = 0$ for all $k \in \mathbb{N}$, that is, $a = 0 \in \mathbb{K}[[X]]$.

Proposition 1.4.8. Let $a = \sum a_k X^k$ be a power series with positive radius of convergence ρ_a . Then the function \underline{a} represented by a is continuous on $\rho_a \mathbb{B}$.

Definition 1.4.9.

$$\exp: \mathbb{C} \to \mathbb{C}, \quad z \mapsto \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

converges absolutely for all $z \in \mathbb{C}$.

Corollary 1.4.10.

$$\exp(x+y) = \exp(x)\exp(y)$$

for $x, y \in \mathbb{C}$

Definition 1.4.11.

$$\cos: \mathbb{C} \to \mathbb{C}, \quad z \mapsto \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

and

$$\sin : \mathbb{C} \to \mathbb{C}, \quad z \mapsto \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

are called the cosine and sine functions.

Definition 1.4.12. The sequence $((1+1/n)^n)$ converges and its limit

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

the Euler number, satisfies $2 < e \le 3$. Moreover, we can show that

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$

Proposition 1.4.13. As an application of this property of the exponential function, we determine the values of the exponential function for rational arguments. Namely,

$$\exp(r) = e^r, \quad r \in \mathbb{Q}$$

that is, for a rational number $r, \exp(r)$ is the r^{th} power of e.

Proposition 1.4.14 (Euler's formula).

$$e^{iz} = \cos z + i \sin z, \quad z \in \mathbb{C}$$

Theorem 1.4.15. For all $z, w \in \mathbb{C}$ we have ³

$$\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w$$
$$\sin(z \pm w) = \sin z \cos w \pm \cos z \sin w$$

$$\sin z - \sin w = 2\cos\frac{z+w}{2}\sin\frac{z-w}{2}$$
$$\cos z - \cos w = -2\sin\frac{z+w}{2}\sin\frac{z-w}{2}$$

Proposition 1.4.16. Define $\exp_{\mathbb{R}} := e^z|_{\mathbb{R}}$.

- (1) If x < 0, then $0 < e^x < 1$. If x > 0, then $1 < e^x < \infty$.
- (2) $\exp_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}^+$ is strictly increasing.
- (3) For each $\alpha \in \mathbb{Q}$,

$$\lim_{x \to \infty} \frac{e^x}{x^\alpha} = \infty$$

that is, the exponential function increases faster than any power function.

(4) $\lim_{x \to -\infty} e^x = 0$.

Proposition 1.4.17. For all a > 0 and $r \in \mathbb{Q}$

$$a^r = e^{r \log a}.$$

Proposition 1.4.18. For all $\alpha > 0$,

$$\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0 \quad \text{and} \quad \lim_{x \to 0+} x^{\alpha} \log x = 0.$$

In particular, the logarithm function increases more slowly than any (arbitrarily small) positive power function.

Definition 1.4.19 (Definition of π). Firstly, notice that

$$\left|e^{it}\right|^2 = e^{it}\overline{(e^{it})} = e^{it}e^{-it} = e^0 = 1, \quad t \in \mathbb{R},$$

Hence, define

$$cis : \mathbb{R} \to \mathbb{S}^1, \quad t \mapsto e^{it}$$

Now we show that cis is surjective:

Next step, we claim the set $M := \{t > 0; e^{it} = 1\}$ has a minimum element. First we show that M is nonempty. Since, there is some $t \in \mathbb{R}^{\times}$ such that $e^{it} = -1$. Because

$$e^{-it} = \frac{1}{e^{it}} = \frac{1}{-1} = -1$$

we can suppose that t > 0. Then $e^{2it} = (e^{it})^2 = (-1)^2 = 1$ and M is nonempty. Next we show that M is closed in \mathbb{R} . To prove this, choose a sequence (t_n) in M which converges to $t^* \in \mathbb{R}$. Since t_n is positive for all n, we have $t^* \geq 0$. In addition, the continuity of cis implies

$$e^{it^*} = \operatorname{cis}(t^*) = \operatorname{cis}(\lim t_n) = \lim \operatorname{cis}(t_n) = 1$$

To prove that M is closed, it remains to show that t^* is positive. Suppose, to the contrary, that $t^* = 0$. Then there is some $m \in \mathbb{N}$ such that $t_m \in (0,1)$. From Euler's formula we have $1 = e^{it_m} = \cos t_m + i \sin t_m$ and so $\sin t_m = 0$.

$$\sin t = t - \frac{t^3}{6} + (\frac{t^5}{5!} - \frac{t^7}{7!}) + \dots \ge t - \frac{t^3}{6}$$

we get

$$\sin t \ge t \left(1 - t^2/6 \right), \quad 0 < t < 1.$$

For t_m , this yields $0 = \sin t_m \ge t_m (1 - t_m^2/6) > 5t_m/6$, a contradiction. Thus M is closed. Since M is a nonempty closed set which is bounded below, it has minimum element.

The preceding lemma makes it possible to define a number π by

$$\pi := \frac{1}{2} \min \left\{ t > 0; e^{it} = 1 \right\}$$

Definition 1.4.20. The tangent and cotangent functions are defined by

$$\tan z := \frac{\sin z}{\cos z}, \quad z \in \mathbb{C} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right), \quad \cot z := \frac{\cos z}{\sin z}, \quad z \in \mathbb{C} \setminus \pi \mathbb{Z}.$$

1.4.3 Differentiation in One Variable

Setting: $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , X be a subset of \mathbb{K} and E be a normed vector space over \mathbb{K} . a is a limit point of X.

Definition 1.4.21. A function $f: X \to E$ is called differentiable at a if the limit

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists in E. When this occurs, $f'(a) \in E$ is called the derivative of f at a. Besides the symbol f'(a), many other notations for the derivative are used:

$$\dot{f}(a)$$
, $\partial f(a)$, $Df(a)$, $\frac{df}{dx}(a)$.

Proposition 1.4.22. (1) (linearity) Let $f, g: X \to E$ be differentiable at a and $\alpha, \beta \in \mathbb{K}$. Then the function $\alpha f + \beta g$ is also differentiable at a and

$$(\alpha f + \beta g)'(a) = \alpha f'(a) + \beta g'(a).$$

In other words, the set of functions which are differentiable at a forms a subspace V of E^X , and the function $V \to E$, $f \mapsto f'(a)$ is linear.

(2) (product rule) Let $f, g: X \to \mathbb{K}$ be differentiable at a. Then the function $f \cdot g$ is also differentiable at a and

$$(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a).$$

The set of functions which are differentiable at a forms a subalgebra of \mathbb{K}^X .

(3) (quotient rule) Let $f, g: X \to \mathbb{K}$ be differentiable at a with $g(a) \neq 0$. Then the function f/g is also differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{[g(a)]^2}$$

Definition 1.4.23. X be a topological space, A is perfect if for all $a \in A$, a is a limit point.

Proposition 1.4.24. Suppose that $f: X \to \mathbb{K}$ is differentiable at a, and f(a) is a limit point of Y with $f(X) \subseteq Y \subseteq \mathbb{K}$. If $g: Y \to E$ is differentiable at f(a), then $g \circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a))f'(a).$$

Proposition 1.4.25 (differentiability of inverse functions). Let $f: X \to \mathbb{K}$ be injective and differentiable at a. Then, f(a) is a limit point of Y = f(X). Suppose that $f^{-1}: f(X) \to X$ is continuous at b := f(a). Then f^{-1} is differentiable at b if and only if f'(a) is nonzero. In this case,

$$(f^{-1})'(b) = \frac{1}{f'(a)}, \quad b = f(a)$$

Proof:

Setting: Let $X \subseteq \mathbb{K}$ be perfect.

Definition 1.4.26. $f: X \to E$ is called differentiable on X if f is differentiable at each point of X. The function

$$f': X \to E, \quad x \mapsto f'(x)$$

is called the derivative of f. It is also denoted by \dot{f} , ∂f , Df and df/dx.

If $f: X \to E$ is differentiable, then it is natural to ask whether the derivative f' is itself differentiable. When this occurs f is said to be twice differentiable and we call $\partial^2 f := f'' := \partial(\partial f)$ the second derivative of f. Repeating this process we can define further higher derivatives of f. Specifically, we set

$$\partial^{0} f := f^{(0)} := f, \quad \partial^{1} f(a) := f^{(1)}(a) := f'(a)$$
$$\partial^{n+1} f(a) := f^{(n+1)}(a) := \partial (\partial^{n} f)(a)$$

for all $n \in \mathbb{N}$. The element $\partial^n f(a) \in E$ is called the n^{th} derivative of f at a. The function f is called n-times differentiable on X if the n^{th} derivative exists at each $a \in X$. If f is n-times differentiable and the n^{th} derivative

$$\partial^n f: X \to E, \quad x \mapsto \partial^n f(x)$$

is continuous, then f is n-times continuously differentiable. The space of n-times continuously differentiable functions from X to E is denoted by $C^n(X, E)$. In particular, $C^0(X, E) = C(X, E)$ is the space of continuous E-valued functions on X. Finally

$$C^{\infty}(X, E) := \bigcap_{n \in \mathbb{N}} C^n(X, E)$$

If $E = \mathbb{K}$, we simply write $C^n(X, E)$ by $C^n(X)$.

Proposition 1.4.27. Let $X \subseteq \mathbb{K}$ be perfect, $k \in \mathbb{N}$ and $n \in \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

(1) (linearity) For all $f, g \in C^k(X, E)$ and $\alpha, \beta \in \mathbb{K}$,

$$\alpha f + \beta g \in C^k(X, E)$$
 and $\partial^k (\alpha f + \beta g) = \alpha \partial^k f + \beta \partial^k g$.

Hence $C^n(X, E)$ is a subspace of C(X, E) and the differentiation operator

$$\partial: C^{n+1}(X, E) \to C^n(X, E), \quad f \mapsto \partial f$$

is linear.

(2) (Leibniz' rule) Let $f, g \in C^k(X)$. Then $f \cdot g$ is in $C^k(X)$ and

$$\partial^k(fg) = \sum_{j=0}^k \binom{k}{j} \left(\partial^j f\right) \partial^{k-j} g$$

Hence $C^n(X)$ is a subalgebra of \mathbb{K}^X .

Theorem 1.4.28 (mean value theorem). If $f \in C([a,b],\mathbb{R})$ is differentiable on (a,b), then there is some $\xi \in (a,b)$ such that

$$f(b) = f(a) + f'(\xi)(b - a).$$

Theorem 1.4.29 (mean value theorem, second version). Suppose that E is a normed vector space and $f \in C([a,b],E)$ is differentiable on (a,b). Then

$$||f(b) - f(a)|| \le \sup_{t \in (a,b)} ||f'(t)|| (b-a).$$

Proposition 1.4.30. Suppose that I is a perfect interval and $f \in C(I, \mathbb{R})$ is differentiable on I° .

(1) f is increasing (or decreasing) if and only if $f'(x) \ge 0$ (or $f'(x) \le 0$) for all $x \in I^{\circ}$.

(2) If f'(x) > 0 (or f'(x) < 0) for all $x \in I^{\circ}$, then f is strictly increasing (or strictly decreasing).

Proposition 1.4.31. Suppose that I is a perfect interval and $f: I \to \mathbb{R}$ is differentiable with $f'(x) \neq 0$ for all $x \in I$.

- (1) f is strictly monotone.
- (2) J := f(I) is a perfect interval.
- (3) $f^{-1}: J \to \mathbb{R}$ is differentiable and $(f^{-1})'(f(x)) = 1/f'(x)$ for all $x \in I$.

Definition 1.4.32. Define

$$\arcsin := (\sin \mid (-\pi/2, \pi/2))^{-1} : (-1, 1) \to (-\pi/2, \pi/2),$$

$$\arccos := (\cos \mid (0, \pi))^{-1} : (-1, 1) \to (0, \pi),$$

$$\arctan := (\tan \mid (-\pi/2, \pi/2))^{-1} : \mathbb{R} \to (-\pi/2, \pi/2),$$

$$\operatorname{arccot} := (\cot \mid (0, \pi))^{-1} : \mathbb{R} \to (0, \pi).$$

To calculate the derivatives of the inverse trigonometric functions we use Theorem 2.8(iii). For the arcsine function this gives

$$\arcsin' x = \frac{1}{\sin' y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}, \quad x \in (-1, 1),$$

where we have set $y := \arcsin x$ and used $x = \sin y$. Similarly, for the arctangent function,

$$\arctan' x = \frac{1}{\tan' y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}, \quad x \in \mathbb{R},$$

where $y \in (-\pi/2, \pi/2)$ is determined by $x = \tan y$.

The derivatives of the arccosine and arccotangent functions can be calculated the same way and, summarizing, we have

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}, \quad \arccos' x = \frac{-1}{\sqrt{1 - x^2}}, \quad x \in (-1, 1),$$

 $\arctan' x = \frac{1}{1 + x^2}, \quad \operatorname{arccot}' x = \frac{-1}{1 + x^2}, \quad x \in \mathbb{R}.$

Setting: D convex perfect subset of \mathbb{K} , E be a Banach space, $f:D\to E$ be a function.

Theorem 1.4.33. Let D be convex and $n \in \mathbb{N}^{\times}$. Then, for each $f \in C^n(D, E)$ and $a \in D$, there is a function $R_n(f, a) \in C(D, E)$ such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(f,a)(x), \quad x \in D$$

The remainder function $R_n(f, a)$ satisfies

$$||R_n(f,a)(x)|| \le \frac{1}{(n-1)!} \sup_{0 < t < 1} ||f^{(n)}(a+t(x-a)) - f^{(n)}(a)|| ||x-a||^n$$

for all $x \in D$.

Setting: $\mathbb{K} = \mathbb{R}$ and $E = \mathbb{R}$.

Theorem 1.4.34 (Schlömilch remainder formula). Let I be a perfect interval, $a \in I$, p > 0 and $n \in \mathbb{N}$. Suppose that $f \in C^n(I, \mathbb{R})$ and $f^{(n+1)}$ exists on I° . Then, for each $x \in I \setminus \{a\}$, there is some $\xi := \xi(x) \in (\min\{x, a\}, \max\{x, a\})$ such that

$$R_n(f,a)(x) = \frac{f^{(n+1)}(\xi)}{pn!} \left(\frac{x-\xi}{x-a}\right)^{n-p+1} (x-a)^{n+1}.$$

In particular, take p = n + 1 and p = 1 respectively, we obtain

$$R_n(f,a)(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$
 (Lagrange)

and

$$R_n(f,a)(x) = \frac{f^{(n+1)}(\xi)}{n!} \left(\frac{x-\xi}{x-a}\right)^n (x-a)^{n+1} \quad \text{(Cauchy)}$$

Example 1.4.35. Taylor series expansion for the general power function:

$$(1+x)^s = \sum_{k=0}^{\infty} {s \choose k} x^k, \quad x \in (-1,1)$$

Proof: Step 1: Notice that we only need to check the case when s < 0. Step 2: Show that

$$\binom{s}{n} = \prod_{k=1}^{n} (1 - (s+1)/n) = \mathcal{O}(n)$$

.

Step 3: Show that, for each x > -1, there are some $\tau \in (0,1)$ and $\tau' \in (0,1)$ such that

$$(1+x)^s = \sum_{k=0}^n {s \choose k} x^k + {s \choose n+1} \frac{x^{n+1}}{(1+\tau x)^{n+1-s}}$$
 (Lagrange)

and

$$(1+x)^s = \sum_{k=0}^n \binom{s}{k} x^k + \binom{s}{n+1} (n+1)(1+\tau'x)^{s-1} x (\frac{x-\tau'x}{1+\tau'x})^n \text{ (Cauchy)}$$

Step 4: For -1 < x < 0,

$$\frac{x - \tau' x}{1 + \tau' x} = 1 - \frac{x + 1}{1 + \tau' x} < -x < 1$$

1.4.4 Sequences of Functions

Setting: X is a set and E be a Banach space over \mathbb{K} .

Definition 1.4.36. An E-valued sequence of functions on X is simply a sequence (f_n) in E^X . If the choice of X and E is clear from the context (or irrelevant) we say simply that (f_n) is a sequence of functions.

The sequence of functions (f_n) converges pointwise to $f \in E^X$ if, for each $x \in X$, the sequence $(f_n(x))$ converges to f(x) in E.

Definition 1.4.37. A sequence of functions (f_n) converges uniformly to f if, for each $\varepsilon > 0$, there is some $N = N(\varepsilon) \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \varepsilon, \quad n \ge N, \quad x \in X.$$

Definition 1.4.38. Define B(X, E) be the space of bounded functions. There's a natural norm

$$f \mapsto \sup_{x \in X} |f(x)|$$

on B(X, E) and we denote it by $||\cdot||_{\infty}$. It's easy to check $(B(X, E), ||\cdot||_{\infty})$ forms a Banach space.

If f_n and f are in B(X, E), then (f_n) converges uniformly to f if and only if (f_n) converges to f in B(X, E).

Proposition 1.4.39. The following are equivalent:

- (1) The sequence of functions (f_n) converges uniformly.
- (2) For each $\varepsilon > 0$, there is some $N := N(\varepsilon) \in \mathbb{N}$ such that

$$||f_n - f_m||_{\infty} < \varepsilon, \quad n, m \ge N.$$

Definition 1.4.40. Let (f_k) be an E-valued sequence of functions on X, that is, a sequence in E^X . Then

$$s_n := \sum_{k=0}^n f_k \in E^X, \quad n \in \mathbb{N}$$

and so we have a well defined sequence (s_n) in E^X .

The series $\sum f_k$ is called

pointwise convergent $:\Leftrightarrow \sum f_k(x)$ converges in E for each $x\in X$, absolutely convergent $:\Leftrightarrow \sum |f_k(x)|<\infty$ for each $x\in X$, uniformly convergent $:\Leftrightarrow (s_n)$ converges uniformly, norm convergent $:\Leftrightarrow \sum \|f_k\|_{\infty}<\infty$.

Remark 1.4.41. If f_k is norm convergent, then by Proposition 4.1.4, $f_k \mapsto f$ for some $f \in B(X, E)$. Hence, f_k is uniformly convergent and absolutely convergent.

Theorem 1.4.42 (Weierstrass majorant criterion). Suppose that $f_k \in B(X, E)$ for all $k \in \mathbb{N}$. If there is a convergent series $\sum \alpha_k$ in \mathbb{R} such that $||f_k||_{\infty} \leq \alpha_k$ for almost all $k \in \mathbb{N}$, then $\sum f_k$ is norm convergent. In particular, $\sum f_k$ converges absolutely and uniformly.

Theorem 1.4.43. Let $\sum a_k Y^k$ be a power series with positive radius of convergence ρ and $0 < r < \rho$. Then the series $\sum a_k Y^k$ is norm convergent on $r\overline{\mathbb{B}}_{\mathbb{K}}$. In particular, it converges absolutely and uniformly.

Setting: X metric space, E be a Banach space.

Definition 1.4.44. A sequence of functions (f_n) is called locally uniformly convergent if each $x \in X$ has a neighborhood U such that $(f_n \mid U)$ converges uniformly. A series of functions $\sum f_n$ is called locally uniformly convergent if the sequence of partial sums (s_n) converges locally uniformly.

Theorem 1.4.45. If a sequence of continuous functions (f_n) converges locally uniformly to f, then f is also continuous. In other words, locally uniform limits of continuous functions are continuous.

Theorem 1.4.46 (differentiability of the limits of sequences of functions). Let X be an open subset of \mathbb{K} and $f_n \in C^1(X, E)$ for all $n \in \mathbb{N}$. Suppose that there are $f, g \in E^X$ such that

- (1) (f_n) converges pointwise to f, and
- (2) (f'_n) converges locally uniformly to g.

Then f is in $C^1(X, E)$, and f' = g. In addition, (f_n) converges locally uniformly to f.

Proof: Step 1: $f'_n \in C(X, E)$ converges locally uniformly to g, then $g \in C(X, E)$

Step 2: Let $a \in X$. Then there is some r > 0 such that (f'_n) converges uniformly to g on $B_r := \mathbb{B}_{\mathbb{K}}(a,r) \subset X$. Thus, for each $x \in B_r$, we can apply the mean value theorem to the function

$$[0,1] \to E, \quad t \mapsto f_n(a + t(x-a)) - tf'_n(a)(x-a)$$

to get

$$|f_n(x) - f_n(a) - f'_n(a)(x - a)| \le \sup_{0 \le t \le 1} |f'_n(a + t(x - a)) - f'_n(a)| |x - a|.$$

Taking the limit $n \to \infty$ we get

$$|f(x) - f(a) - g(a)(x - a)| \le \sup_{0 \le t \le 1} |g(a + t(x - a)) - g(a)||x - a||$$

for each $x \in B_r$. Step 1 shows that g is in C(X, E), so it follows from (2.1) that

$$f(x) - f(a) - g(a)(x - a) = o(|x - a|)(x \to a).$$

Hence f is differentiable at a and f'(a) = g(a). Since this holds for all $a \in X$, we have shown that $f \in C^1(X, E)$.

Step 3: Now we show that f is locally uniquely continous: for $x \in B_r$,

$$|f_n(x) - f(x)| \le |f_n(x) - f(x) - (f_n(a) - f(a))| + |f_n(a) - f(a)|$$

$$\le r \sup_{0 < t < 1} |f'_n(a + t(x - a)) - f'(a + t(x - a))| + |f_n(a) - f(a)|$$

Corollary 1.4.47. Suppose that $X \subseteq \mathbb{K}$ is open, and (f_n) is a sequence in $C^1(X, E)$ for which $\sum_n f_n$ converges pointwise and $\sum f'_n$ converges locally uniformly. Then the sum $\sum_{n=0}^{\infty} f_n$ is in $C^1(X, E)$ and

$$\left(\sum_{n=0}^{\infty} f_n\right)' = \sum_{n=0}^{\infty} f_n'$$

In addition, $\sum f_n$ converges locally uniformly.

Setting: Let $a = \sum_k a_k X^k \in \mathbb{K}[\![X]\!]$ be a power series with radius of convergence $\rho = \rho_a > 0$, and \underline{a} the function on $\rho \mathbb{B}_{\mathbb{K}}$ represented by a. When no misunderstanding is possible, we write \mathbb{B} for $\mathbb{B}_{\mathbb{K}}$.

Theorem 1.4.48. Let $a = \sum_k a_k X^k$ be a power series. Then \underline{a} is continuously differentiable on $\rho \mathbb{B}$. The 'termwise differentiated' series $\sum_{k>1} k a_k X^{k-1}$ has radius of convergence ρ and

$$\underline{a}'(x) = \left(\sum_{k=0}^{\infty} a_k x^k\right)' = \sum_{k=1}^{\infty} k a_k x^{k-1}, \quad x \in \rho \mathbb{B}.$$

Corollary 1.4.49. If $a = \sum a_k X^k$ is a power series with positive radius of convergence ρ , then $\underline{a} \in C^{\infty}(\rho \mathbb{B}, \mathbb{K})$ and $a_k = \underline{a}^{(k)}(0)/k!$.

Definition 1.4.50. Let D be open in \mathbb{K} . A function $f: D \to \mathbb{K}$ is called analytic (on D) if, for each $x_0 \in D$, there is some $r = r(x_0) > 0$ such that $\mathbb{B}(x_0, r) \subseteq D$ and a power series $\sum_k a_k X^k$ with radius of convergence $\rho \geq r$, such that

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k, \quad x \in \mathbb{B}(x_0, r).$$

In this case, we say that $\sum_k a_k (X - x_0)^k$ is the power series expansion for f at x_0 . The set of all analytic functions on D is denoted by $C^{\omega}(D, \mathbb{K})$, or by $C^{\omega}(D)$ if no misunderstanding is possible. Further, $f \in C^{\omega}(D)$ is called real (or complex) analytic if $\mathbb{K} = \mathbb{R}$ (or $\mathbb{K} = \mathbb{C}$).

1.5 Functions of Several Variables

Chapter 2

Measure

2.1 Measure Space

Definition 2.1.1. Let X be a nonempty set. An algebra of sets on X is a nonempty collection \mathcal{A} of subsets of X that is closed under finite unions and complements; in other words, if $E_1, \ldots, E_n \in \mathcal{A}$, then $\bigcup_{1}^{n} E_j \in \mathcal{A}$; and if $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$. A σ -algebra is an algebra that is closed under countable unions.

We observe that since $\bigcap_j E_j = \left(\bigcup_j E_j^c\right)^c$, algebras (resp. σ -algebras) are also closed under finite (resp. countable) intersections. Moreover, if \mathcal{A} is an algebra, then $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$, for if $E \in \mathcal{A}$ we have $\emptyset = E \cap E^c$ and $X = E \cup E^c$.

Definition 2.1.2. If X is any topological space, the σ -algebra generated by the family of open sets in X is called the Borel σ -algebra on X and is denoted by \mathcal{B}_X . Its members are called Borel sets. \mathcal{B}_X thus includes open sets, closed sets, countable intersections of open sets, countable unions of closed sets, and so forth.

There is a standard terminology for the levels in this hierarchy. A countable intersection of open sets is called a G_{δ} set; a countable union of closed sets is called an F_{σ} set.

Definition 2.1.3. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be an indexed collection of nonempty sets, $X=\prod_{{\alpha}\in A}X_{\alpha}$, and $\pi_{\alpha}: X \to X_{\alpha}$ the coordinate maps. If \mathcal{M}_{α} is a σ -algebra on X_{α} for each α , the product σ -algebra on X is the σ -algebra generated by

$$\left\{\pi_{\alpha}^{-1}\left(E_{\alpha}\right):E_{\alpha}\in\mathcal{M}_{\alpha},\alpha\in A\right\}.$$

We denote this σ -algebra by $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$. (If $A = \{1, ..., n\}$ we also write $\bigotimes_{1}^{n} \mathcal{M}_{j}$ or $\mathcal{M}_{1} \otimes \cdots \otimes \mathcal{M}_{n}$.

Proposition 2.1.4. If A is countable, then $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$ is the σ -algebra generated by

$$\left\{ \prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{M}_{\alpha} \right\}$$

.

Proposition 2.1.5. Let X_1, \ldots, X_n be topological spaces and let $X = \prod_1^n X_j$, equipped with the product topology. Then $\bigotimes_1^n \mathcal{B}_{X_j} \subset \mathcal{B}_X$. If the X_j 's are secound countable, then $\bigotimes_1^n \mathcal{B}_{X_j} = \mathcal{B}_X$

Proposition 2.1.6. Define an elementary family to be a collection \mathcal{E} of subsets of X such that

- $(1) \varnothing \in \mathcal{E},$
- (2) If $E, F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$,
- (3) If $E \in \mathcal{E}$ then E^c is a finite disjoint union of members of \mathcal{E} .

If \mathcal{E} is an elementary family, the collection \mathcal{A} of finite disjoint unions of members of \mathcal{E} is an algebra.

Proposition 2.1.7. X is a topological space, $Y \in B_X$ be a measurable set. Give Y the subspace topology from X, then B_Y equals to the σ -algebra $\{Y \cap E : E \in B_X\}$

Definition 2.1.8. Let X be a set equipped with a σ -algebra \mathcal{M} . A measure on \mathcal{M} (or on (X, \mathcal{M}) , or simply on X if \mathcal{M} is understood) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

- (1) $\mu(\emptyset) = 0$,
- (2) if $\{E_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{M} , then $\mu\left(\bigcup_1^{\infty} E_j\right) = \sum_1^{\infty} \mu\left(E_j\right)$.

If X is a set and $\mathcal{M} \subset \mathcal{P}(X)$ is a σ -algebra, (X, \mathcal{M}) is called a measurable space and the sets in \mathcal{M} are called measurable sets. If μ is a measure on (X, \mathcal{M}) , then (X, \mathcal{M}, μ) is called a measure space.

Definition 2.1.9. Let (X, \mathcal{M}, μ) be a measure space. Here is some standard terminology concerning the "size" of μ . If $\mu(X) < \infty$ (which implies that $\mu(E) < \infty$ for all $E \in \mathcal{M}$ since $\mu(X) = \mu(E) + \mu(E^c)$), μ is called finite. If $X = \bigcup_{1}^{\infty} E_j$ where $E_j \in \mathcal{M}$ and $\mu(E_j) < \infty$ for all j, μ is called σ -finite. More generally, if $E = \bigcup_{1}^{\infty} E_j$ where $E_j \in \mathcal{M}$ and $\mu(E_j) < \infty$ for all j, the set E is said to be σ -finite for μ .

If for each $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ with $F \subset E$ and $0 < \mu(F) < \infty, \mu$ is called semifinite. (σ -finite is semi-finte)

Example 2.1.10. Let X be any nonempty set, $\mathcal{M} = \mathcal{P}(X)$, and f any function from X to $[0,\infty]$. Then f determines a measure μ on \mathcal{M} by the formula $\mu(E) = \sum_{x \in E} f(x)$. Two special cases are of particular significance: If f(x) = 1 for all x, μ is called counting measure; and if, for some $x_0 \in X$, f is defined by $f(x_0) = 1$ and f(x) = 0 for $x \neq x_0$, μ is called the point mass or Dirac measure at x_0 .

Proposition 2.1.11. Let (X, \mathcal{M}, μ) be a measure space.

- (1) (Monotonicity) If $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) \leq \mu(F)$.
- (2) (Subadditivity) If $\{E_j\}_1^{\infty} \subset \mathcal{M}$, then $\mu(\bigcup_1^{\infty} E_j) \leq \sum_1^{\infty} \mu(E_j)$.

- (3) (Continuity from below) If $\{E_j\}_1^{\infty} \subset \mathcal{M} \text{ and } E_1 \subset E_2 \subset \cdots$, then $\mu(\bigcup_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- (4) (Continuity from above) If $\{E_j\}_1^{\infty} \subset \mathcal{M}, E_1 \supset E_2 \supset \cdots$, and $\mu(E_1) < \infty$, then $\mu(\bigcap_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.

Definition 2.1.12. If (X, \mathcal{M}, μ) is a measure space, a set $E \in \mathcal{M}$ such that $\mu(E) = 0$ is called a null set. By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently. If a statement about points $x \in X$ is true except for x in some null set, we say that it is true almost everywhere (abbreviated a.e.), or for almost every x. (If more precision is needed, we shall speak of a μ -null set, or μ -almost everywhere).

Definition 2.1.13. If $\mu(E) = 0$ and $F \subset E$, then $\mu(F) = 0$ by monotonicity provided that $F \in \mathcal{M}$, but in general it need not be true that $F \in \mathcal{M}$. A measure whose domain includes all subsets of null sets is called complete. Completeness can sometimes obviate annoying technical points, and it can always be achieved by enlarging the domain of μ , as follows.

Theorem 2.1.14. Suppose that (X, \mathcal{M}, μ) is a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}$. Then $\overline{\mathcal{M}}$ is a σ -algebra, and there is a unique extension $\bar{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

Definition 2.1.15 (outer measure). The abstract generalization of the notion of outer area is as follows. An outer measure on a nonempty set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ that satisfies

- (1) $\mu^*(\emptyset) = 0$,
- (2) $\mu^*(A) < \mu^*(B)$ if $A \subset B$,
- (3) $\mu^* \left(\bigcup_{1}^{\infty} A_j \right) \le \sum_{1}^{\infty} \mu^* \left(A_j \right).$

Proposition 2.1.16. Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}$, and $\rho(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \mu(E_j) : E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{1}^{\infty} E_j \right\}.$$

Then μ^* is an outer measure.

Proposition 2.1.17. If μ^* is an outer measure on X, a set $A \subset X$ is called μ^* -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
 for all $E \subset X$.

Theorem 2.1.18 (Carathéodory's Theorem). If μ^* is an outer measure on X, the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.

Definition 2.1.19. If $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra, a function $\mu_0 : \mathcal{A} \to [0, \infty]$ will be called a premeasure if

- (1) $\mu_0(\emptyset) = 0$,
- (2) if $\{A_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{A} such that $\bigcup_1^{\infty} A_j \in \mathcal{A}$, then $\mu_0(\bigcup_1^{\infty} A_j) = \sum_1^{\infty} \mu_0(A_j)$.

In particular, a premeasure is finitely additive since one can take $A_j = \emptyset$ for j large. The notions of finite and σ -finite premeasures are defined just as for measures.

Theorem 2.1.20. If μ_0 is a premeasure on $\mathcal{A} \subset \mathcal{P}(X)$, it induces an outer measure on X, namely,

$$\mu^*(E) = \inf \left\{ \sum_{1}^{\infty} \mu_0(A_j) : A_j \in \mathcal{A}, E \subset \bigcup_{1}^{\infty} A_j \right\}.$$

then every set in \mathcal{A} is μ^* measurable and $\mu^* \mid \mathcal{A} = \mu_0$.

Theorem 2.1.21. Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, μ_0 a premeasure on \mathcal{A} , and \mathcal{M} the σ -algebra generated by \mathcal{A} . There exists a measure μ on \mathcal{M} whose restriction to \mathcal{A} is μ_0 - namely, $\mu = \mu^* \mid \mathcal{M}$ where μ^* is given by Proposition 2.1.15. If μ_0 is σ -finite, then μ is the unique extension of μ_0 to a measure on \mathcal{M} and the completion of μ is $\mu^* \mid \mathcal{M}^*$ where \mathcal{M}^* is the μ^* -measurable sets.

Example 2.1.22 (Lebesgue-Stieltjes measure). Consider sets of the form (a, b] or (a, ∞) or \emptyset , where $-\infty \le a < b < \infty$. In this section we shall refer to such sets as h-intervals (h for "half-open"). Clearly the intersection of two h-intervals is an h-interval, and the complement of an h-interval is an h-interval or the disjoint union of two h-intervals. Hence the collection \mathcal{A} of finite disjoint unions of h-intervals is an algebra. Notice that he σ -algebra generated by \mathcal{A} is $\mathcal{B}_{\mathbb{R}}$.

Let $F : \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. If $(a_j, b_j]$ (j = 1, ..., n) are disjoint h-intervals, let

$$\mu_0 \left(\bigcup_{1}^{n} (a_j, b_j] \right) = \sum_{1}^{n} \left[F(b_j) - F(a_j) \right]$$

and let $\mu_0(\emptyset) = 0$. Then μ_0 is a premeasure on the algebra \mathcal{A} .

Example 2.1.23. If $F : \mathbb{R} \to \mathbb{R}$ is any increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a)$ for all a,b. If G is another such function, we have $\mu_F = \mu_G$ iff F - G is constant. Conversely, if μ is a Borel measure on \mathbb{R} that is finite on all bounded Borel sets and we define

$$F(x) = \begin{cases} \mu((0,x]) & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -\mu((-x,0]) & \text{if } x < 0 \end{cases}$$

then F is increasing and right continuous, and $\mu = \mu_F$.

2.2. INTERGRATION 37

Example 2.1.24 (Lebesgue measure). This is the complete measure μ_F associated to the function F(x) = x, for which the measure of an interval is simply its length. We shall denote it by m. The domain of m is called the class of Lebesgue measurable sets, and we shall denote it by \mathcal{L} . We shall also refer to the restriction of m to $\mathcal{B}_{\mathbb{R}}$ as Lebesgue measure.

Proposition 2.1.25. If $E \in \mathcal{L}$, then $E + s \in \mathcal{L}$ and $rE \in \mathcal{L}$ for all $s, r \in \mathbb{R}$. Moreover, m(E + s) = m(E) and m(rE) = |r|m(E).

2.2 Intergration

Proposition 2.2.1. $f: X \to Y$ between two sets induces a mapping $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$, defined by $f^{-1}(E) = \{x \in X : f(x) \in E\}$, which preserves unions, intersections, and complements. Thus, if \mathcal{N} is a σ -algebra on Y, $\{f^{-1}(E) : E \in \mathcal{N}\}$ is a σ -algebra on X. If (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, a mapping $f: X \to Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable, or just measurable when \mathcal{M} and \mathcal{N} are understood, if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

If \mathcal{N} is generated by \mathcal{E} , then $f: X \to Y$ is $(\mathcal{M}, \mathcal{N})$ -measurable iff $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$.

Definition 2.2.2. If (X, \mathcal{M}) is a measurable space, a real- or complex-valued function f on X will be called \mathcal{M} -measurable, or just measurable, if it is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ or $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ measurable. $\mathcal{B}_{\mathbb{R}}$ or $\mathcal{B}_{\mathbb{C}}$ is always understood as the σ -algebra on the range space unless otherwise specified. In particular, $f: \mathbb{R} \to \mathbb{C}$ is Lebesgue (resp. Borel) measurable if is $(\mathcal{L}, \mathcal{B}_{\mathbb{C}})$ (resp. $(\mathcal{B}_{\mathbb{R}}, \mathcal{B}_{\mathbb{C}})$) measurable;

Proposition 2.2.3. If (X, \mathcal{M}) is a measurable space and $f: X \to \mathbb{R}$, the following are equivalent:

- (1) f is \mathcal{M} -measurable.
- (2) $f^{-1}((a, \infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (3) $f^{-1}([a,\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (4) $f^{-1}((-\infty, a)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (5) $f^{-1}((-\infty, a]) \in \mathcal{M}$ for all $a \in \mathbb{R}$.

Corollary 2.2.4. $f: X \to Y$ is continuous, then f is (B_X, B_Y) -measurable.

Proposition 2.2.5. A function $f: X \to \mathbb{C}$ is \mathcal{M} -measurable iff Re f and Im f are \mathcal{M} -measurable.

Definition 2.2.6. It is sometimes convenient to consider functions with values in the extended real number system $\overline{\mathbb{R}} = [\infty, \infty]$ (with order topology). It is easily verified that $\mathcal{B}_{\overline{\mathbb{R}}}$ is generated by the rays $(a, \infty]$ or $[-\infty, a)(a \in \mathbb{R})$, and we define $f: X \to \overline{\mathbb{R}}$ to be \mathcal{M} -measurable if it is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. And we always define $0 \cdot \infty$ to be 0.

Proposition 2.2.7. If $f, g: X \to \mathbb{C}$ are \mathcal{M} -measurable, then so are f + g and fg.

Proposition 2.2.8. If $\{f_j\}$ is a sequence of $\overline{\mathbb{R}}$ -valued measurable functions on (X, \mathcal{M}) , then the functions

$$g_1(x) = \sup_j f_j(x), \quad g_3(x) = \overline{\lim}_{j \to \infty} f_j(x),$$

 $g_2(x) = \inf_j f_j(x), \quad g_4(x) = \underline{\lim}_{j \to \infty} f_j(x)$

are all measurable.

Corollary 2.2.9. If $f, g: X \to \overline{\mathbb{R}}$ are measurable, then so are $\max(f, g)$ and $\min(f, g)$.

If $\{f_j\}$ is a sequence of complex-valued measurable functions and $f(x) = \lim_{j \to \infty} f_j(x)$ exists for all x, then f is measurable.

Definition 2.2.10. We now discuss the functions that are the building blocks for the theory of integration. Suppose that (X, \mathcal{M}) is a measurable space. If $E \subset X$, the characteristic function χ_E of E (sometimes called the indicator function of E and denoted by 1_E) is defined by

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

It is easily checked that χ_E is measurable iff $E \in \mathcal{M}$. A simple function on X is a finite linear combination, with complex coefficients, of characteristic functions of sets in \mathcal{M} . (We do not allow simple functions to assume the values $\pm \infty$.) Equivalently, $f: X \to \mathbb{C}$ is simple iff f is measurable and the range of f is a finite subset of \mathbb{C} . Indeed, we have

$$f = \sum_{1}^{n} z_j \chi_{E_j}$$
, where $E_j = f^{-1}(\{z_j\})$ and range $(f) = \{z_1, \dots, z_n\}$.

We call this the standard representation of f. It exhibits f as a linear combination, with distinct coefficients, of characteristic functions of disjoint sets whose union is X. Note: One of the coefficients z_j may well be 0, but the term $z_j\chi_{E_j}$ is still to be envisioned as part of the standard representation, as the set E_j may have a role to play when f interacts with other functions.

Theorem 2.2.11. Let (X, \mathcal{M}) be a measurable space. If $f: X \to [0, \infty]$ is measurable, there is a sequence $\{\phi_n\}$ of simple functions such that $0 \le \phi_1 \le \phi_2 \le \cdots \le f, \phi_n \to f$ pointwise, and $\phi_n \to f$ uniformly on any set on which f is bounded.

If $f: X \to \mathbb{C}$ is measurable, there is a sequence $\{\phi_n\}$ of simple functions such that $0 \le |\phi_1| \le |\phi_2| \le \cdots \le |f|, \phi_n \to f$ pointwise, and $\phi_n \to f$ uniformly on any set on which f is bounded.

Definition 2.2.12. The following implications are valid iff the measure μ is complete:

- (1) If f is measurable and $f = g \mu$ -a.e., then g is measurable.
- (2) If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f \mu$ -a.e., then f is measurable.

2.2. INTERGRATION 39

Proposition 2.2.13. Let (X, \mathcal{M}, μ) be a measure space and let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be its completion. If f is an $\overline{\mathcal{M}}$ -measurable function on X, there is an \mathcal{M} -measurable function g such that $f = g\overline{\mu}$ -almost everywhere.

Definition 2.2.14. In this section we fix a measure space (X, \mathcal{M}, μ) , and we define

 L^+ = the space of all measurable functions from X to $[0, \infty]$.

If ϕ is a simple function in L^+ with standard representation $\phi = \sum_{1}^{n} a_j \chi_{E_j}$, we define the integral of ϕ with respect to μ by

$$\int \phi d\mu = \sum_{1}^{n} a_{j} \mu \left(E_{j} \right)$$

Proposition 2.2.15. Let ϕ and ψ be simple functions in L^+ .

- (1) If $c \ge 0$, $\int c\phi = c \int \phi$.
- (2) $\int (\phi + \psi) = \int \phi + \int \psi.$
- (3) If $\phi \leq \psi$, then $\int \phi \leq \int \psi$.

Definition 2.2.16. We now extend the integral to all functions $f \in L^+$ by defining

$$\int f d\mu = \sup \left\{ \int \phi d\mu : 0 \le \phi \le f, \phi \text{ simple } \right\}.$$

Theorem 2.2.17. If $\{f_n\}$ is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{n \to \infty} f_n$ (= $\sup_n f_n$), then $\int f = \lim_{n \to \infty} \int f_n$.

Corollary 2.2.18. If $\{f_n\}$ is a finite or infinite sequence in L^+ and $f = \sum_n f_n$, then $\int f = \sum_n \int f_n$.

Proposition 2.2.19. If $f \in L^+$, then $\int f = 0$ iff f = 0 a.e.

Lemma 2.2.20 (Fatou's lemma,). If $\{f_n\}$ is any sequence in L^+ , then

$$\int (\liminf f_n) \le \liminf \int f_n.$$

Proposition 2.2.21. The two definitions of $\int f$ agree when f is simple, as the family of simple functions over which the supremum is taken includes f itself and

$$\int f \leq \int g$$
 whenever $f \leq g$, and $\int cf = c \int f$ for all $c \in [0, \infty)$.

Definition 2.2.22. If f^+ and f^- are the positive and negative parts of f and at least one of $\int f^+$ and $\int f^-$ is finite, we define

$$\int f = \int f^+ - \int f^-.$$

We shall be mainly concerned with the case where $\int f^+$ and $\int f^-$ are both finite; we then say that f is integrable. Since $|f| = f^+ + f^-$, it is clear that f is integrable iff $\int |f| < \infty$

Next, if f is a complex-valued measurable function, we say that f is integrable if $\int |f| < \infty$. More generally, if $E \in \mathcal{M}$, f is integrable on E if $\int_{E} |f| < \infty$. Since $|f| \leq |\operatorname{Re} f| + |\operatorname{Im} f| \leq 2|f|$, f is integrable iff $\operatorname{Re} f$ and $\operatorname{Im} f$ are both integrable, and in this case we define

$$\int f = \int \operatorname{Re} f + i \int \operatorname{Im} f.$$

It follows easily that the space of complex-valued integrable functions is a complex vector space and that the integral is a complex-linear functional on it. We denote this space - provisionally - by $L^1(\mu)$ (or $L^1(X,\mu)$, or $L^1(X)$, or simply L^1 , depending on the context).

Proposition 2.2.23. If $f \in L^1$, then $\left| \int f \right| \leq \int |f|$.

Proposition 2.2.24. (1) If $f \in L^1$, then $\{x : f(x) \neq 0\}$ is σ -finite.

(2) If $f, g \in L^1$, then $\int_E f = \int_E g$ for all $E \in \mathcal{M}$ iff $\int |f - g| = 0$ iff f = g a.e.

Remark 2.2.25. (X, M, μ) is a measurable space. Take $E \in M$ and $(E, M \cap E, \mu|_E)$ is also measurable space. If $f \in L^1(E)$, then

$$f' = \begin{cases} f & x \in E \\ 0 & x \in E^c \end{cases}$$

is a function in $L^1(X)$ and $\int_X f' = \int_E f$.

Remark 2.2.26. (X, M, μ) is a measurable space. (X, M', τ) is another measurable space such that $M' \supset M$ and $\tau | M = \mu$. Then if $f \in L^1(X, M)$, $f \in L^1(X, M')$ and values of integration of f on both measurable spaces are the same. This follows from Theorem 2.2.11 and Monotone Convergence Theorem.

Theorem 2.2.27 (Dominated Convergence Theorem). Let $\{f_n\}$ be a sequence in L^1 such that (a) $f_n \to f$, and (b) there exists a nonnegative $g \in L^1$ such that $|f_n| \leq g$ for all n. Then $f \in L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

Proof: By Fatou's lemma.

Theorem 2.2.28. Suppose that $\{f_j\}$ is a sequence in L^1 such that $\sum_{1}^{\infty} \int |f_j| < \infty$. Then $\sum_{1}^{\infty} f_j$ converges a.e. to a function in L^1 , and $\int \sum_{1}^{\infty} f_j = \sum_{1}^{\infty} \int f_j$.

Theorem 2.2.29. If $f \in L^1(\mu)$ and $\epsilon > 0$, there is an integrable simple function $\phi = \sum a_j \chi_{E_j}$ such that $\int |f - \phi| d\mu < \epsilon$. (That is, the integrable simple functions are dense in L^1 in the L^1 metric.) If μ is a Lebesgue measure on \mathbb{R} , the sets E_j in the definition of ϕ can be taken to be finite unions of open intervals; moreover, there is a continuous function g that vanishes outside a bounded interval such that $\int |f - g| d\mu < \epsilon$.

2.2. INTERGRATION 41

Definition 2.2.30. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. We have already discussed the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$ on $X \times Y$; we now construct a measure on $\mathcal{M} \otimes \mathcal{N}$ that is, in an obvious sense, the product of μ and ν .

To begin with, we define a (measurable) rectangle to be a set of the form $A \times B$ where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Clearly

$$(A \times B) \cap (E \times F) = (A \cap E) \times (B \cap F), \quad (A \times B)^c = (X \times B^c) \cup (A^c \times B).$$

Therefore, by Proposition 2.1.6, the collection \mathcal{A} of finite disjoint unions of rectangles is an algebra, and of course the σ -algebra it generates is $\mathcal{M} \otimes \mathcal{N}$.

If we integrate with respect to x

$$\mu(A)\chi_B(y) = \int \chi_A(x)\chi_B(y)d\mu(x) = \sum \int \chi_{A_j}(x)\chi_{B_j}(y)d\mu(x)$$
$$= \sum \mu(A_j)\chi_{B_j}(y).$$

In the same way, integration in y then yields

$$\mu(A)\nu(B) = \sum \mu(A_j) \nu(B_j).$$

It follows that if $E \in \mathcal{A}$ is the disjoint union of rectangles $A_1 \times B_1, \ldots, A_n \times B_n$, and we set

$$\pi(E) = \sum_{1}^{n} \mu(A_j) \nu(E_j)$$

then π is well defined on \mathcal{A} (since any two representations of E as a finite disjoint union of rectangles have a common refinement), and π is a premeasure on \mathcal{A} . Therefore, π generates an outer measure on $X \times Y$ whose restriction to $\mathcal{M} \times \mathcal{N}$ is a measure that extends π . We call this measure the product of μ and ν and denote it by $\mu \times \nu$. Moreover, if μ and ν are σ -finite - say, $X = \bigcup_{1}^{\infty} A_{j}$ and $Y = \bigcup_{1}^{\infty} B_{k}$ with $\mu(A_{j}) < \infty$ and $\nu(B_{k}) < \infty$ - then $X \times Y = \bigcup_{j,k} A_{j} \times B_{k}$, and $\mu \times \nu(A_{j} \times B_{k}) < \infty$, so $\mu \times \nu$ is also σ -finite. Then $\mu \times \nu$ is the unique measure on $\mathcal{M} \otimes \mathcal{N}$ such that $\mu \times \nu(A \times B) = \mu(A)\nu(B)$ for all rectangles $A \times B$.

The same construction works for any finite number of factors. That is, suppose $(X_j, \mathcal{M}_j, \mu_j)$ are measure spaces for j = 1, ..., n. If we define a rectangle to be a set of the form $A_1 \times \cdots \times A_n$ with $A_j \in \mathcal{M}_j$, then the collection \mathcal{A} of finite disjoint unions of rectangles is an algebra, and the same procedure as above produces a measure $\mu_1 \times \cdots \times \mu_n$ on $\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_n$ such that

$$\mu_1 \times \cdots \times \mu_n (A_1 \times \cdots \times A_n) = \prod_{j=1}^n \mu_j (A_j).$$

Moreover, if the μ_j 's are σ -finite so that the extension from \mathcal{A} to $\bigotimes_1' \mathcal{M}_j$ is uniquely determined.

Proposition 2.2.31. If (X_j, \mathcal{M}_j) is a measurable space for j = 1, 2, 3, then $\bigotimes_1^3 \mathcal{M}_j = (\mathcal{M}_1 \otimes \mathcal{M}_2) \otimes \mathcal{M}_3$. Moreover, if μ_j is a σ -finite measure on (X_j, \mathcal{M}_j) , then $\mu_1 \times \mu_2 \times \mu_3 = (\mu_1 \times \mu_2) \times \mu_3$.

Proof: Consider $\{A \subset M_1 \otimes M_2 : A \times E_3 \in M_1 \otimes M_2 \otimes M_3\}$ for some $E_3 \in M_3$ is a σ -algebra.

Definition 2.2.32. We return to the case of two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) . If $E \subset X \times Y$, for $x \in X$ and $y \in Y$ we define the x-section E_x and the y-section E^y of E by

$$E_x = \{ y \in Y : (x, y) \in E \}, \quad E^y = \{ x \in X : (x, y) \in E \}.$$

Also, if f is a function on $X \times Y$ we define the x-section f_x and the y-section f^y of f by

$$f_x(y) = f^y(x) = f(x, y).$$

Proposition 2.2.33. If $E \in \mathcal{M} \otimes \mathcal{N}$, then $E_x \in \mathcal{N}$ for all $x \in X$ and $E^y \in \mathcal{M}$ for all $y \in Y$. If f is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then f_x is \mathcal{N} -measurable for all $x \in X$ and f^y is \mathcal{M} -measurable for all $y \in Y$.

Theorem 2.2.34. Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then the functions $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are measurable on X and Y, respectively, and

$$\mu \times \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y).$$

Theorem 2.2.35 (The Fubini-Tonelli Theorem). Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ finite measure spaces.

(1) (Tonelli) If $f \in L^+(X \times Y)$, then the functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$, respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

(2) (Fubini) If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X$, $f^y \in L^1(\mu)$ for a.e. $y \in Y$, Define

$$g(x) = \begin{cases} \int f_x & \text{if } f_x \in L^1(\nu) \\ 0 & \text{otherwise} \end{cases}$$
$$h(y) = \begin{cases} \int f^y & \text{if } f_x \in L^1(\nu) \\ 0 & \text{otherwise} \end{cases}$$

, we have $g(x) \in L^1(\mu)$, $h(y) \in L^1(\nu)$ and $\int g(x) d\mu = \int h(y) d\mu = \int f d(\mu \times \nu)$.

Definition 2.2.36. Lebesgue measure m^n on \mathbb{R}^n is the completion of the n-fold product of Lebesgue measure on \mathbb{R} with itself, that is, the completion of $m \times \cdots \times m$ on $\mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^n}$.

Proposition 2.2.37. Lebesgue measure is translation-invariant. More precisely, for $a \in \mathbb{R}^n$ define $\tau_a : \mathbb{R}^n \to \mathbb{R}^n$ by $\tau_a(x) = x + a$.

- (1) If $E \in \mathcal{L}^n$, then $\tau_a(E) \in \mathcal{L}^n$ and $m(\tau_a(E)) = m(E)$.
- (2) If $f: \mathbb{R}^n \to \mathbb{C}$ is Lebesgue measurable, then so is $f \circ \tau_a$. Moreover, if either $f \geq 0$ or $f \in L^1(m)$, then $\int (f \circ \tau_a) dm = \int f dm$.

Theorem 2.2.38. Suppose $T \in GL(n, \mathbb{R})$.

(1) If f is a Lebesgue measurable function on \mathbb{R}^n , so is $f \circ T$. If $f \geq 0$ or $f \in L^1(m)$, then

$$\int f(x)dx = |\det T| \int f \circ T(x)dx.$$

(2) If $E \in \mathcal{L}^n$, then $T(E) \in \mathcal{L}^n$ and $m(T(E)) = |\det T| m(E)$.

Theorem 2.2.39 (Change of Variables). Let $G = (g_1, \ldots, g_n)$ be a map from an open set $\Omega \subset \mathbb{R}^n$ into \mathbb{R}^n whose components g_j are of class C^1 . G is called a C^1 diffeomorphism if G is injective and D_xG is invertible for all $x \in \Omega$. In this case, the inverse function theorem guarantees that $G(\Omega)$ is open and $G^{-1}: G(\Omega) \to \Omega$ is also a C^1 diffeomorphism and that $D_x(G^{-1}) = \left[D_{G^{-1}(x)}G\right]^{-1}$ for all $x \in G(\Omega)$.

Suppose that Ω is an open set in \mathbb{R}^n and $G:\Omega\to\mathbb{R}^n$ is a C^1 diffeomorphism.

(1) If f is a Lebesgue measurable function on $G(\Omega)$, then $f \circ G$ is Lebesgue measurable on Ω . If $f \geq 0$ or $f \in L^1(G(\Omega), m)$, then

$$\int_{G(\Omega)} f(x)dx = \int_{\Omega} f \circ G(x) \left| \det D_x G \right| dx.$$

(2) If $E \subset \Omega$ and $E \in \mathcal{L}^n$, then $G(E) \in \mathcal{L}^n$ and $m(G(E)) = \int_E |\det D_x G| dx$.

2.3 Signed Measure and Complex Measure

Definition 2.3.1. Let (X, \mathcal{M}) be a measurable space. A signed measure on (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to [-\infty, \infty]$ such that

- (1) $\nu(\varnothing) = 0$
- (2) ν assumes at most one of the values $\pm \infty$;
- (3) if $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\nu\left(\bigcup_{1}^{\infty} E_j\right) = \sum_{1}^{\infty} \nu\left(E_j\right)$, where the latter sum converges absolutely if $\nu\left(\bigcup_{1}^{\infty} E_j\right)$ is finite.

Definition 2.3.2. If ν is a signed measure on (X, \mathcal{M}) , a set $E \in \mathcal{M}$ is called positive (resp. negative, null) for ν if $\nu(F) \geq 0$ (resp. $\nu(F) \leq 0$, $\nu(F) = 0$) for all $F \in \mathcal{M}$ such that $F \subset E$.

Definition 2.3.3 (mutually singular). Two signed measures μ and ν on (X, \mathcal{M}) are mutually singular, or that ν is singular with respect to μ , if there exist $E, F \in \mathcal{M}$ such that $E \cap F = \emptyset$, $E \cup F = X$, E is null for μ , and F is null for ν . We express this relationship symbolically with the perpendicularity sign:

$$\mu \perp \nu$$
.

Theorem 2.3.4 (Jordan Decomposition Theorem). If ν is a signed measure, there exist unique positive measures ν^+ and ν^- such that $\nu = \nu^+ - \nu^-$ and $\nu^+ \perp \nu^-$.

Moreover, if ν omits $-\infty$, μ^- is finite and if ν omits ∞ , ν^+ is finite.

Remark 2.3.5. The measures ν^+ and ν^- are called the positive and negative variations of ν , and $\nu = \nu^+ - \nu^-$ is called the Jordan decomposition of ν . Furthermore, we define the total variation of ν to be the measure $|\nu|$ defined by

$$|\nu| = \nu^+ + \nu^-.$$

Definition 2.3.6. Integration with respect to a signed measure ν is defined in the obvious way: We set

$$L^{1}(\nu) = L^{1}(\nu^{+}) \cap L^{1}(\nu^{-})$$
$$\int f d\nu = \int f d\nu^{+} - \int f d\nu^{-} \quad (f \in L^{1}(\nu)).$$

One more piece of terminology: a signed measure ν is called finite (resp. σ -finite) if $|\nu|$ is finite (resp. σ -finite).

Proposition 2.3.7. $E \in \mathcal{M}$ is ν -null iff $|\nu|(E) = 0$, and $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$

Definition 2.3.8. Suppose that ν is a signed measure and μ is a positive measure on (X, \mathcal{M}) . We say that ν is absolutely continuous with respect to μ and write

$$\nu \ll \mu$$

if $\nu(E) = 0$ for every $E \in \mathcal{M}$ for which $\mu(E) = 0$. Absolute continuity is in a sense the

Proposition 2.3.9. $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^+ \ll \mu$ and $\nu^- \ll \mu$

Proposition 2.3.10. If $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu = 0$

Proposition 2.3.11. Let ν be a finite signed measure and μ a positive measure on (X, \mathcal{M}) . Then $\nu \ll \mu$ iff for every $\epsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \epsilon$ whenever $\mu(E) < \delta$.

Proof: If there's $\varepsilon > 0$ such that for all n > 0, there's $E_n \in M$ such that $\mu(E_n) < 2^{-n}$ and $\nu(E) \geq \varepsilon$. Consider the set

$$\lim \sup E_n = \bigcap_{n=1}^{\infty} \bigcup_{k > n} E_k$$

Corollary 2.3.12. If $f \in L^1(\mu)$, for every $\epsilon > 0$ there exists $\delta > 0$ such that $\left| \int_E f d\mu \right| < \epsilon$ whenever $\mu(E) < \delta$.

Definition 2.3.13. A complex measure on a measurable space (X, \mathcal{M}) is a map $\nu : \mathcal{M} \to \mathbb{C}$ such that

$$(1) \ \nu(\varnothing) = 0;$$

(2) if $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\nu\left(\bigcup_{1}^{\infty} E_j\right) = \sum_{1}^{\infty} \nu\left(E_j\right)$, where the series converges absolutely.

Example 2.3.14. If μ is a positive measure and $f \in L^1(\mu)$, then $f d\mu$ is a complex measure.

If ν is a complex measure, we shall write ν_r and ν_i for the real and imaginary parts of ν . Thus ν_r and ν_i are signed measures that do not assume the values $\pm \infty$; hence they are finite, and so the range of ν is a bounded subset of \mathbb{C} .

The notions we have developed for signed measures generalize easily to complex measures. For example, we define $L^1(\nu)$ to be $L^1(\nu_r) \cap L^1(\nu_i)$, and for $f \in L^1(\nu)$, we set $\int f d\nu = \int f d\nu_r + i \int f d\nu_i$. If ν and μ are complex measures, we say that $\nu \perp \mu$ if $\nu_a \perp \mu_b$ for a, b = r, i, and if λ is a positive measure, we say that $\nu \ll \lambda$ if $\nu_r \ll \lambda$ and $\nu_i \ll \lambda$.

Theorem 2.3.15 (Lebesgue-Radon-Nikodym Theorem). If ν is a complex measure and μ is a σ -finite positive measure on (X, \mathcal{M}) , there exist a complex measure λ and an $f \in L^1(\mu)$ such that $\lambda \perp \mu$ and $d\nu = d\lambda + f d\mu$. If also $\lambda' \perp \mu$ and $d\nu = d\lambda' + f' d\mu$, then $\lambda = \lambda'$ and $f = f' \mu$ -a.e.

Definition 2.3.16 (total variation of complex measure). If ν is a complex measure and ν_r and ν_i be the real part and imaginary part of ν . Take a σ -finite positive measure μ on X, for example $|\nu_r| + |\nu_i|$, such that $\nu \ll \mu$. By Lebesgue-Radon-Nikodym Theorem, $\nu = f d\mu$ for some $f \in L^1(\mu)$. Define total variation of ν by $|f|d\mu$. This definition is independent of the choice of f and μ .

Proposition 2.3.17. Let ν be a complex measure on (X, \mathcal{M}) .

- (1) $|\nu(E)| \le |\nu|(E)$ for all $E \in \mathcal{M}$.
- (2) $\nu \ll |\nu|$
- (3) $L^1(\nu) = L^1(|\nu|)$, and if $f \in L^1(\nu)$, then $|\int f d\nu| \le \int |f| d|\nu|$.

Definition 2.3.18. A measurable function $f: \mathbb{R}^n \to \mathbb{C}$ is called locally integrable (with respect to Lebesgue measure) if $\int_K |f(x)| dx < \infty$ for every bounded measurable set $K \subset \mathbb{R}^n$.

We denote the space of locally integrable functions by L^1_{loc} . If $f \in L^1_{loc}$, $x \in \mathbb{R}^n$, and r > 0, we define $A_r f(x)$ to be the average value of f on B(r, x):

$$A_r f(x) = \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) dy$$

Theorem 2.3.19 (The Lebesgue Differentiation Theorem). Let us define the Lebesgue set L_f of f to be

$$L_f = \left\{ x : \lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y) - f(x)| dy = 0 \right\}.$$

If $f \in L^1_{loc}$, then $m((L_f)^c) = 0$.

Definition 2.3.20. A family $\{E_r\}_{r>0}$ of Borel subsets of \mathbb{R}^n is said to shrink nicely to $x \in \mathbb{R}^n$ if $E_r \subset B(r,x)$ for each r; and there is a constant $\alpha > 0$, independent of r, such that $m(E_r) > \alpha m(B(r,x))$.

Theorem 2.3.21. Let ν be a regular complex Borel measure on \mathbb{R}^n , and let $d\nu = d\lambda + fdm$ be its Lebesgue-Radon-Nikodym representation. Thenfor m-almost every $x \in \mathbb{R}^n$,

$$\lim_{r \to 0} \frac{\nu\left(E_r\right)}{m\left(E_r\right)} = f(x)$$

where E_r shrinks nicely to 0.

2.4 Function of bounded variation

Definition 2.4.1. If $F: \mathbb{R} \to \mathbb{C}$ and $x \in \mathbb{R}$, we define

$$T_F(x) = \sup \left\{ \sum_{1}^{n} |F(x_j) - F(x_{j-1})| : n \in \mathbb{N}, -\infty < x_0 < \dots < x_n = x \right\}.$$

 T_F is called the total variation function of F.

 T_F is an increasing function with values in $[0, \infty]$. If $T_F(\infty) = \lim_{x \to \infty} T_F(x)$ is finite, we say that F is of bounded variation on \mathbb{R} , and we denote the space of all such F by BV.

Proposition 2.4.2. We observe that the sums in the definition of T_F are made bigger if the additional subdivision points x_j are added. Hence, if a < b, the definition of $T_F(b)$ is unaffected if we assume that a is always one of the subdivision points. It follows that

$$T_F(b) = T_F(a) + \sup \left\{ \sum_{1}^{n} |F(x_j) - F(x_{j-1})| : n \in \mathbb{N}, a = x_0 < \dots < x_n = b \right\}$$

Definition 2.4.3. Define BV([a,b]) to be the set of all functions on [a,b] whose total variation

$$\sup \left\{ \sum_{1}^{n} |F(x_{j}) - F(x_{j-1})| : n \in \mathbb{N}, a = x_{0} < \dots < x_{n} = b \right\}$$

is finite.

If $F \in BV$, the restriction of F to [a, b] is in BV([a, b]) for all a, b; indeed, its total variation on [a, b] is nothing but $T_F(b) - T_F(a)$. Conversely, if $F \in BV([a, b])$ and we set F(x) = F(a) for x < a and F(x) = F(b) for x > b, then $F \in BV$. By this device the results that we shall prove for BV can also be applied to BV([a, b]).

Proposition 2.4.4. (1) If $F: \mathbb{R} \to \mathbb{R}$ is bounded and increasing, then $F \in BV$.

- (2) If $F, G \in BV$ and $a, b \in \mathbb{C}$, then $aF + bG \in BV$.
- (3) If F is differentiable on \mathbb{R} and F' is bounded, then $F \in BV([a,b])$ for $-\infty < a < b < \infty$ (by the mean value theorem).

Proposition 2.4.5. Define the normalized bounded variation function space to be

$$NBV = \{ F \in BV : F \text{ is right continuous and } F(-\infty) = 0 \}$$

If $F \in BV$, then $T_F(-\infty) = 0$. If F is also right continuous, then so is T_F . If $F \in NBV$, T_F is also in NBV.

Proposition 2.4.6. If μ is a complex Borel measure on \mathbb{R} and $F(x) = \mu((-\infty, x])$, then $F \in NBV$. Conversely, if $F \in NBV$, there is a unique complex Borel measure μ_F such that $F(x) = \mu_F((-\infty, x])$. Moreover, $|\mu_F| = \mu_{T_F}$.

Proposition 2.4.7. A function $F: \mathbb{R} \to \mathbb{C}$ is called absolutely continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that for any finite set of disjoint intervals $(a_1, b_1), \ldots, (a_N, b_N)$,

$$\sum_{1}^{N} (b_j - a_j) < \delta \Longrightarrow \sum_{1}^{N} |F(b_j) - F(a_j)| < \epsilon.$$

More generally, F is said to be absolutely continuous on [a,b] if this condition is satisfied whenever the intervals (a_j,b_j) all lie in [a,b]. Clearly, if F is absolutely continuous, then F is uniformly continuous. On the other hand, if F is everywhere differentiable and F' is bounded, then F is absolutely continuous, for $|F(b_j) - F(a_j)| \leq (\max |F'|) (b_j - a_j)$ by the mean value theorem.

If $F \in NBV$, then F is absolutely continuous iff $\mu_F \ll m$.

Theorem 2.4.8. If $F \in NBV$, then F is differentiable almost m-everywhere(In this section we only consider Borel measure). Take a set $M \subset \mathbb{R}$ such that F is differentiable on M and its complement is Borel null-set. We have

$$F'(x) = \lim_{n \to \infty} \frac{F(x + \frac{1}{n}) - F(x)}{\frac{1}{n}} \cdot \chi_M \in L^1(m)$$

Moreover, $\mu_F \perp m$ iff F' = 0 a.e., and $\mu_F \ll m$ iff $F(x) = \int_{-\infty}^x F'(t) dt$.

Proof: Since total variation of μ_F is regular, the theorem follows from Theorem 2.3.21.

Theorem 2.4.9. If $f \in L^1(m)$, then the function $F(x) = \int_{-\infty}^x f(t)dt$ is in NBV and is absolutely continuous, and f = F' a.e. Conversely, if $F \in NBV$ is absolutely continuous, then $F' \in L^1(m)$ and $F(x) = \int_{-\infty}^x F'(t)dt$.

Theorem 2.4.10. If $-\infty < a < b < \infty$ and $F : [a, b] \to \mathbb{C}$, the following are equivalent:

- (1) F is absolutely continuous on [a, b].
- (2) $F(x) F(a) = \int_a^x f(t)dt$ for some $f \in L^1([a, b], m)$.
- (3) F is differentiable a.e. on $[a,b], F' \in L^1([a,b],m)$, and $F(x) F(a) = \int_a^x F'(t)dt$.

Theorem 2.4.11 (integrate by part). If F and G are in NBV and at least one of them is continuous, then for $-\infty < a < b < \infty$,

$$\int_{(a,b]} F dG + \int_{(a,b]} G dF = F(b)G(b) - F(a)G(a).$$

2.5 L^p Space

2.6 Radon measure

Definition 2.6.1. Let μ be a Borel measure on X and E a Borel subset of X. The measure μ is called outer regular on E if

$$\mu(E) = \inf \{ \mu(U) : U \supset E, U \text{ open } \}$$

and inner regular on E if

$$\mu(E) = \sup \{ \mu(K) : K \subset E, K \text{ compact } \}.$$

If μ is outer and inner regular on all Borel sets, μ is called regular.

A Radon measure on X is a Borel measure that is finite on all compact sets, outer regular on all Borel sets, and inner regular on all open sets.

Definition 2.6.2. A complex measure is regular if its total variation is regular.

Proposition 2.6.3. Every σ -finite Radon measure is regular.

Lemma 2.6.4. In C_2 LCH space X, every open subset is σ -compact.

Proof: Since in C_2 space, every open subspace is still C_2 hence Lindelöf.

By Proposition 1.2.37, for all $x \in U$, there's V_x open and precompact such that $x \in V_x \subset \overline{V_x} \subset U$. Take a countable subcovering of $\{V_x\}$ indexed by J, we have

$$\bigcup_{x \in J} \bar{V_x} = U$$

.

Proposition 2.6.5. Let X be a C_2 LCH space. Then every Borel measure on X that is finite on compact sets is regular and hence Radon.

Proposition 2.6.6. If μ is a Radon measure on $X, C_c(X)$ is dense in $L^p(\mu)$ for $1 \leq p < \infty$

Theorem 2.6.7 (The Riesz Representation Theorem). If U is open in X and $f \in C_c(X)$, we shall write

$$f \prec U$$

to mean that $0 \le f \le 1$ and $supp(f) \subset U$.

If I is a positive linear functional on $C_c(X)$, there is a unique Radon measure μ on X such that $I(f) = \int f d\mu$ for all $f \in C_c(X)$. Moreover, μ satisfies

$$\mu(U) = \sup \{ I(f) : f \in C_c(X), f \prec U \} \text{ for all open } U \subset X$$

and $\mu(K) = \inf \{ I(f) : f \in C_c(X), f \ge \chi_K \}$ for all compact $K \subset X$.

Corollary 2.6.8. There's one-to-one correspondence between bounded positive linear functional $C_c(X)$ and finite Radon measure on X. Moreover, since $C_c(X)$ is dense subset of Banach space $C_0(X)$, by Theorem 1.2.66, every bounded positive linear functional on $C_c(X)$ can be extended to $C_0(X)$ continuously.

Proof: If I is a bounded positive linear functional, by Riesz Representation Theorem,

$$\mu(X) = \sup \left\{ \int f d\mu : f \in C_c(X), 0 \le f \le 1 \right\} < \infty$$

Proposition 2.6.9. If μ is a σ -finite Radon measure on X and $A \in \mathcal{B}_X$, the Borel measure μ_A defined by $\mu_A(E) = \mu(E \cap A)$ is a Radon measure.

Proposition 2.6.10. Suppose that μ is a Radon measure on X. If $\phi \in L^1(\mu)$ and $\phi \geq 0$, then $\nu(E) = \int_E \phi d\mu$ is a Radon measure.

Proposition 2.6.11. Suppose that μ is a Radon measure on X and $\phi \in C(X, (0, \infty))$. Let $\nu(E) = \int_E \phi d\mu$, and let ν' be the Radon measure associated to the functional $f \mapsto \int f \phi d\mu$ on $C_c(X)$, then $\nu = \nu'$, and hence ν is a Radon measure.

Definition 2.6.12. A complex measure is Radon if its real and imaginary parts are difference of finite Radon measure.

Definition 2.6.13. M(X) is the space of all the complex Radon measures and for $\mu \in M(X)$, define

$$||\mu|| = |\mu|(X)$$

Then, $||\cdot||$ is a norm on vector space M(X).

Theorem 2.6.14. Let X be an LCH space, and for $\mu \in M(X)$, $I_{\mu} : f \in C_0(X) \mapsto \int f d\mu$ is a bounded linear functional on $C_0(X)$. Then $\mu \mapsto I_{\mu}$ is an bijective isometry between M(X) the space of complex Radon measure and space of bounded linear functional on $C_0(X)$.

Proposition 2.6.15. Suppose X, Y are LCH spaces.

- (1) $\mathcal{B}_X \otimes \mathcal{B}_Y \subset \mathcal{B}_{X \times Y}$.
- (2) If X and Y are second countable, then $\mathcal{B}_X \otimes \mathcal{B}_Y = \mathcal{B}_{X \times Y}$.
- (3) If X and Y are second countable and μ and ν are Radon measures on X and Y, then $\mu \times \nu$ is a Radon measure on $X \times Y$.
- (4) If $E \in \mathcal{B}_{X \times Y}$, then $E_x \in \mathcal{B}_Y$ for all $x \in X$ and $E^y \in \mathcal{B}_X$ for all $y \in Y$.
- (5) If $f: X \times Y \to \mathbb{C}$ is $\mathcal{B}_{X \times Y}$ -measurable, then f_x is \mathcal{B}_Y -measurable for all $x \in X$ and f^y is \mathcal{B}_X -measurable for all $y \in Y$.

Definition 2.6.16 (Radon product). Every $f \in C_c(X \times Y)$ is $\mathcal{B}_X \otimes \mathcal{B}_Y$ -measurable. Moreover, if μ and ν are σ -finite Radon measures on X and Y, then $C_c(X \times Y) \subset L^1(\mu \times \nu)$, and

$$\int f d(\mu \times \nu) = \iint f d\mu d\nu = \iint f d\nu d\mu \quad (f \in C_c(X \times Y)).$$

The formula $I(f) = \int f d(\mu \times \nu)$ defines a positive linear functional on $C_c(X \times Y)$, so it determines a Radon measure on $X \times Y$ by the Riesz representation theorem. We call this measure the Radon product of μ and ν and denote it by $\mu \hat{\times} \nu$.

Proposition 2.6.17. Suppose that μ and ν are σ -finite Radon measures on X and Y. If $E \in \mathcal{B}_{X \times Y}$, then the functions $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are Borel measurable on X and Y, and

$$\mu \widehat{\times} \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y).$$

Moreover, the restriction of $\mu \hat{\times} \nu$ to $\mathcal{B}_X \otimes \mathcal{B}_Y$ is $\mu \times \nu$.

Theorem 2.6.18. Suppose that, for each $\alpha \in A$, μ_{α} is a Radon measure on the compact Hausdorff space X_{α} such that $\mu_{\alpha}(X_{\alpha}) = 1$. Then there is a unique Radon measure μ on $X = \prod_{\alpha \in A} X_{\alpha}$ such that for any $\alpha_1, \ldots, \alpha_n \in A$ and any Borel set E in $\prod_{i=1}^{n} X_{\alpha_i}$,

$$\mu\left(\pi_{(\alpha_1,\dots,\alpha_n)}^{-1}(E)\right) = \left(\mu_{\alpha_1}\widehat{\times}\cdots\widehat{\times}\mu_{\alpha_n}\right)(E).$$

Chapter 3

Complex Analysis

3.1 Line Integration

Theorem 3.1.1 (Open mapping Theorem). If f is a holomorphic function and non-constant in a connected open set $\Omega \subset \mathbb{C}$, then f is open.

Proposition 3.1.2. U is an open subset of \mathbb{C} , $f:U\to\mathbb{C}$ is a injective holomorphic map, then $f'(z)\neq 0$ for all $z\in U$. By Open Mapping Theorem, the image of f is still open in \mathbb{C} , we denote it by V. Then $f:U\to V$ is a holomorphic bijective function. f^{-1} is also holomorphic and $(f^{-1})'(z)=\frac{1}{f(z)}$.

Proposition 3.1.3. f holomorphic, $f(a) \neq 0$, then f is local biholomorphic at a.

Proof: By inverse function theorem and Proposition 3.1.3.

3.2 Multiple Variables

Chapter 4

Functional Analysis

4.1 Foundation

Definition 4.1.1. Let K denote either \mathbb{R} or \mathbb{C} , and let X be a vector space over K. A seminorm on X is a function $x \mapsto ||x||$ from X to $[0, \infty)$ such that

- (1) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$ (the triangle inequality),
- (2) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\lambda \in K$.

The second property clearly implies that ||0|| = 0. A seminorm such that ||x|| = 0 only when x = 0 is called a norm, and a vector space equipped with a norm is called a normed vector space (or normed linear space).

Definition 4.1.2. Banach space is a complete normed vector space.

Definition 4.1.3 (quotient space). A related construction is that of quotient spaces. If \mathcal{M} is a vector subspace of the vector space X, it defines an equivalence relation on X as follows: $x \sim y$ iff $x - y \in \mathcal{M}$. The equivalence class of $x \in \mathcal{X}$ is denoted by $x + \mathcal{M}$, and the set of equivalence classes, or quotient space, is denoted by $X/\mathcal{M}.X/\mathcal{M}$ is a vector space with vector operations $(x + \mathcal{M}) + (y + \mathcal{M}) = (x + y) + \mathcal{M}$ and $\lambda(x + \mathcal{M}) = (\lambda x) + \mathcal{M}$. If \mathcal{X} is a normed vector space and \mathcal{M} is closed, X/\mathcal{M} inherits a norm from X called the quotient norm, namely

$$||x + \mathcal{M}|| = \inf_{y \in \mathcal{M}} ||x + y||$$

Proposition 4.1.4. A normed vector space is complete if and only if every absolutely convergent series converges.

Proposition 4.1.5. A linear map $T: X \to y$ between two normed vector spaces is called bounded if there exists $C \ge 0$ such that

$$||Tx|| \le C||x||$$
 for all $x \in \mathcal{X}$

If X and y are normed vector spaces and $T: X \to y$ is a linear map, the following are equivalent:

- (1) T is continuous.
- (2) T is continuous at 0.
- (3) T is bounded.

Definition 4.1.6. If X and Y are normed vector spaces, we denote the space of all bounded linear maps from X to Y by L(X,Y). It is easily verified that L(X,Y) is a vector space and that the function $T \mapsto ||T||$ defined by

$$||T|| = \sup\{||Tx|| : ||x|| = 1\}$$

$$= \sup\left\{\frac{||Tx||}{||x||} : x \neq 0\right\}$$

$$= \inf\{C : ||Tx|| \le C||x|| \text{ for all } x\}$$

is a norm on L(X,Y), called the operator norm.

Proposition 4.1.7. If Y is complete, so is L(X, Y).

Corollary 4.1.8. Let X be a vector space over K, where $K = \mathbb{R}$ or \mathbb{C} . A linear map from X to K is called a linear functional on X. If X is a normed vector space, the space L(X,K) of bounded linear functionals on X is called the dual space of X. Then X^* is a Banach space with the operator norm.

Proposition 4.1.9. Let X be a vector space over \mathbb{C} . If f is a complex linear functional on X and $u = \operatorname{Re} f$, then u is a real linear functional, and f(x) = u(x) - iu(ix) for all $x \in X$. Conversely, if u is a real linear functional on X and $f: X \to \mathbb{C}$ is defined by f(x) = u(x) - iu(ix), then f is complex linear. In this case, if X is normed, we have ||u|| = ||f||.

Definition 4.1.10. If X is a real vector space, a sublinear functional on X is a map $p: X \to \mathbb{R}$ such that

$$p(x+y) \le p(x) + p(y)$$
 and $p(\lambda x) = \lambda p(x)$ for all $x, y \in X$ and $\lambda \ge 0$

Theorem 4.1.11 (The Hahn-Banach Theorem). Let X be a real vector space, p a sublinear functional on \mathcal{X} , \mathcal{M} a subspace of \mathcal{X} , and f a linear functional on \mathcal{M} such that $f(x) \leq p(x)$ for all $x \in \mathcal{M}$. Then there exists a linear functional F on \mathcal{X} such that $F(x) \leq p(x)$ for all $x \in \mathcal{X}$ and $F \mid \mathcal{M} = f$.

Definition 4.1.12 (complex Hahn-Banach Theorem). Let X be a complex vector space, p a seminorm on \mathcal{X}, \mathcal{M} a subspace of \mathcal{X} , and f a complex linear functional on \mathcal{M} such that $|f(x)| \leq p(x)$ for $x \in \mathcal{M}$. Then there exists a complex linear functional F on X such that $|F(x)| \leq p(x)$ for all $x \in \mathcal{X}$ and $F \mid \mathcal{M} = f$.

Corollary 4.1.13. Let X be a normed vector space.

(1) If \mathcal{M} is a closed subspace of X and $x \in X \setminus \mathcal{M}$, there exists $f \in X^*$ such that $f(x) \neq 0$ and $f \mid \mathcal{M} = 0$. In fact, if $\delta = \inf_{y \in \mathcal{M}} \|x - y\|$, f can be taken to satisfy $\|f\| = 1$ and $f(x) = \delta$.

- (2) If $x \neq 0 \in X$, there exists $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||.
- (3) The bounded linear functionals on X separate points.
- (4) If $x \in X$, define $\widehat{x}: X^* \to \mathbb{C}$ by $\widehat{x}(f) = f(x)$. Then the map $x \mapsto \widehat{x}$ is a linear isometry from X into X^{**} (the dual of X^*).

Theorem 4.1.14 (open mapping theorem). Let X and Y be Banach spaces. If $T \in L(X, y)$ is surjective, then T is open.

Now we assume all the Banach spaces are over \mathbb{C} .

Definition 4.1.15. If X and Y are normed vector spaces and T is a linear map from X to Y, we define the graph of T to be

$$\Gamma(T) = \{(x, y) \in X \times Y : y = Tx\}$$

which is a subspace of $X \times Y$. We say that T is closed if $\Gamma(T)$ is a closed subspace of $X \times Y$. ClearlY, if T is continuous, then T is closed.

Theorem 4.1.16 (The Closed Graph Theorem). If X and Y are Banach spaces and $T: X \to Y$ is a closed linear map, then T is bounded.

Theorem 4.1.17 (The Uniform Boundedness Principle). Suppose that X and Y are normed vector spaces and \mathcal{A} is a subset of L(X,Y). If X is a Banach space and $\sup_{T\in\mathcal{A}} ||Tx|| < \infty$ for all $x \in X$, then $\sup_{T\in\mathcal{A}} ||T|| < \infty$.

4.2 Topological vector space

Definition 4.2.1. A topological vector space is a vector space X over the field $K (= \mathbb{R} \text{ or } \mathbb{C})$ which is endowed with a topology such that the maps $(x,y) \to x+y$ and $(\lambda,x) \to \lambda x$ are continuous from $X \times X$ and $K \times X$ to X. A topological vector space is called locally convex if there is a base for the topology consisting of convex sets (that is, sets A such that if $x,y \in A$ then $tx + (1-t)y \in A$ for 0 < t < 1). Most topological vector spaces that arise in practice are locally convex and Hausdorff.

Proposition 4.2.2. Let $\{p_{\alpha}\}_{{\alpha}\in A}$ be a family of seminorms on the vector space X. If $x\in X, {\alpha}\in A$, and ${\epsilon}>0$, let

$$U_{x\alpha\epsilon} = \{ y \in X : p_{\alpha}(y - x) < \epsilon \}$$

and let \mathcal{T} be the topology generated by the sets $U_{x\alpha\epsilon}$.

- (1) For each $x \in X$, the finite intersections of the sets $U_{x\alpha\epsilon}(\alpha \in A, \epsilon > 0)$ form a neighborhood base at x.
- (2) $x_i \to x$ iff $p_\alpha(x_i x) \to 0$ for all $\alpha \in A$.
- (3) (X, \mathcal{T}) is a locally convex topological vector space.

Proposition 4.2.3. Suppose X and y are vector spaces with topologies defined, respectively, by the families $\{p_{\alpha}\}_{\alpha\in A}$ and $\{q_{\beta}\}_{\beta\in B}$ of seminorms, and $T:X\to y$ is a linear map. Then T is continuous iff for each $\beta\in B$ there exist $\alpha_1,\ldots,\alpha_k\in A$ and C>0 such that $q_{\beta}(Tx)\leq C\sum_1^k p_{\alpha_j}(x)$

Proposition 4.2.4. Let X be a vector space equipped with the topology defined by a family $\{p_{\alpha}\}_{{\alpha}\in A}$ of seminorms. X is Hausdorff iff for each $x\neq 0$ there exists $\alpha\in A$ such that $p_{\alpha}(x)\neq 0$.

Definition 4.2.5. A topological vector space whose topology is defined by a countable family of seminorms is called a Fréchet space if it is Hausdorff and complete.(every Cauchy sequence converges.)

4.3 Hilbert Space

Definition 4.3.1. Let \mathcal{H} be a complex vector space. An inner product (or scalar product) on \mathcal{H} is a map $(x,y) \mapsto \langle x,y \rangle$ from $X \times X \to \mathbb{C}$ such that:

- (1) $\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle$ for all $x, y, z \in \mathcal{H}$ and $a, b \in \mathbb{C}$.
- (2) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in \mathcal{H}$.
- (3) $\langle x, x \rangle \in (0, \infty)$ for all nonzero $x \in X$.

A Hilbert space is a vector space over \mathbb{C} with a inner product such that the norm induced by this inner product is complete.

Proposition 4.3.2. If \mathcal{M} is a closed subspace of \mathcal{H} , then $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$; that is, each $x \in \mathcal{H}$ can be expressed uniquelyas x = y + z where $y \in \mathcal{M}$ and $z \in \mathcal{M}^{\perp}$. Moreover, y and z are the unique elements of \mathcal{M} and \mathcal{M}^{\perp} whose distance to x is minimal.

Theorem 4.3.3. If $f \in \mathcal{H}^*$, there is a unique $y \in \mathcal{H}$ such that $f(x) = \langle x, y \rangle$ for all $x \in X$.

Definition 4.3.4. If \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, a unitary map from \mathcal{H}_1 to \mathcal{H}_2 is an invertible linear map $U : \mathcal{H}_1 \to \mathcal{H}_2$ that preserves inner products:

$$\langle Ux, Uy \rangle_2 = \langle x, y \rangle_1$$
 for all $x, y \in \mathcal{H}_1$

4.4 Spectrum of Opertor

Chapter 5

Harmonic Analysis

5.1 Fourier Transform

Definition 5.1.1 (Schwartz space). The Schwartz space $\mathcal{S}(\mathbb{R}^n)$ consisting of those C^{∞} functions which, together with all their derivatives, vanish at infinity faster than any power of |x|. More precisely, for any nonnegative integer N and any multi-index α we define

$$||f||_{(N,\alpha)} = \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |\partial^{\alpha} f(x)|$$

then

$$S = S(\mathbb{R}^n) = \{ f \in C^{\infty} : ||f||_{(N,\alpha)} < \infty \text{ for all } N, \alpha \}$$

Proposition 5.1.2. $\mathcal{S}(\mathbb{R}^n)$ is a Fréchet Space and Fourier Transform is a linear bi-continous bijection between Schwartz space.