CS 440 Introduction to Artificial Intelligence

Lecture 18:

Hidden Markov Models (cont.)

March 26, 2020

- Average grades
 - Task 1: 5
 - Task 2: 9.9
 - Task 3: 9.9
 - Task 4: 14.4
 - Task 5: 9.8
 - Task 6: 19.4
 - Task 7: 19.65
 - Task 8: 9.3
 - Total: 96.1
- Will be releasing grades soon
- People who have not done demo yet should keep bugging us

Any questions about Midterm or Project 2?

RUTGERS

Hidden Markov Model: Example

- Consider the following model
 - If Bob has a paper deadline at time step i there is a .9 probability he will have a paper deadline at step i+1
 - If Bob has a no deadline at time step i there is a .1 probability he will have a paper deadline at step i+1
 - If Bob is sick at time step i there is a .8 probability he will be sick at step i+1
 - If Bob is not at time step i there is a .1 probability he will be sick at step i+1
- If we know the values of deadline and sick this is a Markov Chain

	Not Sick	Sick
Paper	.9	.6
No Paper	.7	.1

- One an ordinary day Bob has a .7 probability of being in his office
- If Bob is busy working on a paper deadline he has a .9 probability of being in his office
- If he is sick and there is no paper deadline he has a .1 probability of being in his office
- If he is sick but there is a paper deadline he has a .6 probability of being in his office
- John does not know if Bob has a paper deadline of if he is sick
 - He only knows if Bob is in his office
 - Can he infer the probability Bob has a paper deadline or is sick based on these observations?
 - Can he predict if Bob will be in his office?

Hidden Markov Model: Example

	Not Sick	Sick
Paper	.9	.6
No Paper	.7	.1

Model as Bayesian Infinite Network

- At each step Deadline and Sick are dependent on values in previous step
- Office depends on values of Deadline and Sick for that step
- Need to know probabilities of Deadline and Sick at initial step
 - Let $p(Deadline_0) = .1$
 - Let p(Sick_o)=.1
- At step i
 - Know value of Office,
 - Compute p(Deadline,) from p(Deadline,) and Office,
 - Compute p(Sick_i) from p(Sick_{i-1}) and Office_i

Hidden Markov Model: Solution

- At each step
 - Apply transition
 - Compute p(Deadline_i) given p(Deadline_{i-1})
 - Compute p(Sick_i) given p(Sick_{i-1})
 - Incorporate Observation
 - p(Deadline, | Office,)
 - p(Sick_i | Office_i)

	Initial	Transition 1	Observation 1
Observation			In office
p(Deadline)	.1	.18	.136
p(Sick)	.1	.17	.04

RUTGERS

Hidden Markov Model: Solution

- At each step
 - Apply transition
 - Compute p(Deadline_i) given p(Deadline_{i-1})
 - Compute p(Sick_i) given p(Sick_{i-1})
 - Incorporate Observation
 - p(Deadline, | Office,)
 - p(Sick_i | Office_i)

	Step i-1	Step i	Step i+1
Observation	O _{i-1}	O _i	O _{i+1}
p(Deadline)	p(Deadline _{i-1} Deadline _{i-2} , o _{i-1})	p(Deadline _i Deadline _{i-1} , o _i)	p(Deadline _{i+1} Deadline _i , o _{i+1})
p(Sick)	p(Sick _{i-1} Sick _{i-2} , o _{i-1})	p(Sick _i Sick _{i-1} , o _i)	$p(Sick_{i+1} Sick_{i},o_{i+1})$

Hidden Markov Model: General

	Step i-1	Step i	Step i+1
Observation	O _{i-1}	O _i	O _{i+1}
p(X)	p(X _{i-1})	p(X _i)	p(X _{i+1})
	$p(x_{i-1,0}), p(x_{i-1,1}),$	$p(x_{i,0}), p(x_{i,1}),$	$p(x_{i+1,0}), p(x_{i+1,1}),$

- Let X be the set of variable settings and $x \in X$ be one of those settings
 - Example
 - X={Sick\Deadline, Sick\¬Deadline, ¬Sick\Deadline, ¬Sick\¬Deadline}
 - x=Sick∧¬Deadline
- Intermediate step

$$- p(x_{i}') = \sum_{x_{i-1} \in X} p(x_{i-1}) * p(x_{i}' | x_{i-1})$$

- $p(x_i'|x_{i-1}) = transition probability$
- $p(x_i) = \sum_{x_i' \in X} p(x_i') * p(x_i | x_i', o_i) / \sum_{x_i' \in X} p(o_i | x_i')$
 - Bayes theorem

Hidden Markov Model Example 2

- Food at corner of grid
 - Don't know where food is
 - And has .3 probability of moving towards food and .1 probability of moving away

	.1		
.1		3	
	.3		