Bank Marketing Dataset - Data Dictionary

Dataset Information

Title: Bank Marketing (with social/economic context)

Source: UCI Machine Learning Repository **Created by:** Sérgio Moro (ISCTE-IUL), Paulo Cortez (Univ. Minho) and Paulo Rita (ISCTE-IUL) @ 2014

Citation

If you use this dataset, please include the following citation:

[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, In press, http://dx.doi.org/10.1016/j.dss.2014.03.001

Dataset Overview

- Number of Instances: 41,188 (bank-additional-full.csv)
- Number of Features: 20 input variables + 1 output variable
- Time Period: May 2008 to November 2010
- Target Variable: Binary classification predict if the client will subscribe a bank term deposit

Feature Descriptions

Bank Client Data

Variable	Туре	Description	Values
age	Numeric	Age of the client	Integer values
job	Categorical	Type of job	"admin.", "blue-collar", "entrepreneur", "housemaid", "management", "retired", "self-employed", "services", "student", "technician", "unemployed", "unknown"
marital	Categorical	Marital status	"divorced", "married", "single", "unknown" Note: "divorced" includes divorced or widowed
education	Categorical	Education level	"basic.4y", "basic.6y", "basic.9y", "high.school", "illiterate", "professional.course", "university.degree", "unknown"
default	Categorical	Has credit in default?	"no", "yes", "unknown"
housing	Categorical	Has housing loan?	"no", "yes", "unknown"
loan	Categorical	Has personal loan?	"no", "yes", "unknown"

Last Contact Information (Current Campaign)

Variable	Туре	Description	Values		
contact	Categorical	Contact communication type	"cellular", "telephone"		
month	Categorical	Last contact month of year	"jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec"		
day_of_week	Categorical	Last contact day of the week	"mon", "tue", "wed", "thu", "fri"		
duration	Numeric	Last contact duration (seconds)	Integer values Important: See note below		

Campaign Information

Variable	Туре	Description	Values
campaign	Numeric	Number of contacts performed during this campaign for this client	Integer (includes last contact)
pdays	Numeric	Days since client was last contacted from a previous campaign	Integer (999 = not previously contacted)
previous	Numeric	Number of contacts performed before this campaign for this client	Integer
poutcome	Categorical	Outcome of the previous marketing campaign	"failure", "nonexistent", "success"

Social and Economic Context Attributes

Variable	Туре	Description	Indicator Type
emp.var.rate	Numeric	Employment variation rate	Quarterly indicator
cons.price.idx	Numeric	Consumer price index	Monthly indicator
<pre>cons.conf.idx</pre>	Numeric	Consumer confidence index	Monthly indicator
euribor3m	Numeric	Euribor 3 month rate	Daily indicator
nr.employed	Numeric	Number of employees	Quarterly indicator

Target Variable

Variable	Type	Description	Values
у	Binary	Has the client subscribed a term deposit?	"yes", "no"

Important Notes

Duration Variable Warning

▲ Critical Note about duration variable:

- This attribute highly affects the output target (if duration=0 then y="no")
- Duration is not known before a call is performed
- After the call ends, the outcome (y) is obviously known
- Recommendation: This variable should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model

Missing Values

- Several categorical attributes contain missing values
- All missing values are coded with the label "unknown"
- These can be treated as:
 - A possible class label
 - Handled using deletion techniques
 - Handled using imputation techniques

Dataset Versions

The dataset comes in two versions:

- 1. **bank-additional-full.csv**: Full dataset with 41,188 examples (ordered by date)
- 2. **bank-additional.csv**: 10% sample with 4,119 examples (randomly selected)
 - Provided for testing computationally demanding algorithms (e.g., SVM)

Additional Resources

- Original Paper
- UCI Repository
- Banco de Portugal Statistics

Data Dictionary 📊

Variable Name	Role	Туре	Description
age	Feature	Numeric 🔢	Client's age.
job	Feature	Categorical <u>C</u>	Type of job: "admin.", "unknown", "unemployed", "management", "housemaid", "entrepreneur", "student", "blue-collar", "self-employed", "retired", "technician", "services".
marital	Feature	Categorical <u> </u>	Marital status: "married", "divorced", "single". Note: "divorced" includes widowed.
education	Feature	Categorical <u> </u>	Education level: "unknown", "secondary", "primary", "tertiary".
default	Feature	Binary X	Has credit in default?: "yes" or "no". 🛕
balance	Feature	Numeric 🔢	Average yearly balance. 🔞

Variable Name	Role	Туре	Description
housing	Feature	Binary X	Has a housing loan?: "yes" or "no". 🏠
loan	Feature	Binary X	Has a personal loan?: "yes" or "no".
contact	Feature	Categorical <u> </u>	Contact communication type: "unknown", "telephone", "cellular". 📞 🗏
day	Feature	Numeric 🔢	Last contact day of the month. 🔠
month	Feature	Categorical <u> </u>	Last contact month of the year: "jan", "feb", "mar",, "nov", "dec".
duration	Feature	Numeric 12	Last contact duration. 👨
campaign	Feature	Numeric 12	Number of contacts performed during this campaign for this client.
pdays	Feature	Numeric 12	Days since client was last contacted from a previous campaign (-1 means not previously contacted).
previous	Feature	Numeric 12	Number of contacts performed before this campaign for this client. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
poutcome	Feature	Categorical <u>•</u>	Outcome of the previous marketing campaign: "unknown", "other", "failure", "success". 📈 📐
у	Target	Binary X	Has the client subscribed to a term deposit?: "yes" or "no".

Legend 🍃

- **Numeric**: Continuous or discrete numerical values
- **Categorical**: Discrete categories or labels
- **Binary**: Yes/No or True/False values
- **6** Target: The variable we want to predict
- **Important**: Credit default status critical risk indicator
- **6 Financial**: Money-related variable
- **Communication**: Contact method indicators
- **Ö Time**: Duration or time-related measurements

```
In [1]: import pandas as pd
    from tools import *
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from scipy import stats
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')

# Set pandas display options for better readability
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.wax_colwidth', 50)
```

```
# Configuración de visualización
         plt.style.use('default')
         sns.set palette("husl")
         plt.rcParams['figure.figsize'] = (12, 8)
         plt.rcParams['font.size'] = 12
         plt.style.use('seaborn-v0_8')
 In [2]: print("Step 1: Loading and preprocessing data...")
         df = load_and_preprocess_data('data/bank-additional-full.csv')
         basic_info = get_basic_info(df)
        Step 1: Loading and preprocessing data...
 In [3]: # Step 2: Data quality analysis
         print("Step 2: Analyzing data quality...")
         quality_analysis = analyze_data_quality(df)
         var_types = identify_variable_types(df)
        Step 2: Analyzing data quality...
In [4]: # Step 3: Target variable analysis
         print("Step 3: Analyzing target variable...")
         target_analysis = analyze_target_variable(df)
        Step 3: Analyzing target variable...
 In [5]: # Step 4: Numeric variables analysis
         print("Step 4: Analyzing numeric variables...")
         numeric_analysis_general = analyze_numeric_variables(df, var_types['numeric'])
        Step 4: Analyzing numeric variables...
 In [6]: # Step 5: Categorical variables analysis
         print("Step 5: Analyzing categorical variables...")
         categorical_analysis_general = analyze_categorical_variables(df, var_types['categorical'])
        Step 5: Analyzing categorical variables...
 In [7]: selected numeric='duration'
         selected_categorical='job'
 In [8]: # Step 6: Focused bivariate analysis
         print("Step 6: Performing bivariate analysis...")
         numeric_bivariate = analyze_numeric_vs_target(df, selected_numeric)
         categorical_bivariate = analyze_categorical_vs_target(df, selected_categorical)
        Step 6: Performing bivariate analysis...
In [9]: # Step 7: Correlation analysis
         print("Step 7: Computing correlations...")
         correlation_analysis = calculate_correlations(df, var_types['numeric'])
        Step 7: Computing correlations...
In [10]: # Step 8: Generate visualizations
         print("Step 8: Creating all required visualization types...")
         print(" → Generando Diagramas de Dispersión (variables numéricas)...")
         fig1 = create_scatter_plots_numeric(df, selected_numeric)
```

```
print(" → Generando Boxplots Comparativos (numérica vs categórica)...")

fig2 = create_comparative_boxplots(df, selected_numeric, selected_categorical)

print(" → Generando Heatmaps de Correlación (múltiples variables numéricas)...")

fig3 = create_correlation_heatmap(correlation_analysis)

print(" → Generando Gráficos de Barras y Stacked Charts (variables categóricas)...")

fig4 = create_categorical_bar_charts(df, selected_categorical)

# Additional: Target distribution for context

print(" → Generando distribución de variable objetivo...")

fig5 = create_target_distribution_plot(target_analysis)

plt.show()
```

Step 8: Creating all required visualization types...

- → Generando Diagramas de Dispersión (variables numéricas)...
- → Generando Boxplots Comparativos (numérica vs categórica)...
- → Generando Heatmaps de Correlación (múltiples variables numéricas)...
- → Generando Gráficos de Barras y Stacked Charts (variables categóricas)...
- → Generando distribución de variable objetivo...

DIAGRAMAS DE DISPERSIÓN (Variable Numérica vs Target)

HEATMAP DE CORRELACIÓN (Variables Numéricas)

age	1.000	-0.001	0.005	-0.034	0.024	-0.000	0.001	0.129	0.011	-0.018	Interpret r < 0.3 0.3 ≤ r r ≥ (
duration	-0.001	1.000	-0.072	-0.048	0.021	-0.028	0.005	-0.008	-0.033	-0.045	[II] = V	
campaign	0.005	-0.072	1.000	0.053	-0.079	0.151	0.128	-0.014	0.135	0.144		0.8
pdays	-0.034	-0.048	0.053	1.000	-0.588	0.271	0.079	-0.091	0.297	0.373		0.6
previous	0.024	0.021	-0.079	-0.588	1.000	-0.420	-0.203	-0.051	-0.454	-0.501		0.4
emp.var.rate	-0.000	-0.028	0.151	0.271	-0.420	1.000	0.775	0.196	0.972	0.907		0.2
cons.price.idx	0.001	0.005	0.128	0.079	-0.203	0.775	1.000	0.059	0.688	0.522		0.0
cons.conf.idx	0.129	-0.008	-0.014	-0.091	-0.051	0.196	0.059	1.000	0.278	0.101		-0.2
euribor3m	0.011	-0.033	0.135	0.297	-0.454	0.972	0.688	0.278	1.000	0.945		-0.4
nr.employed	-0.018	-0.045	0.144	0.373	-0.501	0.907	0.522	0.101	0.945	1.000		
	aĝe	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed		

GRÁFICOS DE BARRAS Y STACKED CHARTS (Variables Categóricas)

Step 9: Generating reports...

Total Memory Usage: 30987.2 KB

Variable Types:

Numeric: 10 variables Categorical: 11 variables

Low Variability Variables: default: 3 unique values housing: 3 unique values

loan: 3 unique values
contact: 2 unique values
poutcome: 3 unique values

y: 2 unique values

Data Quality Summary:

	dtype	non_null	null_count	null_percentage	unique_values
Index	NaN	NaN	NaN	NaN	NaN
age	int64	41188.0	0.0	0.0	78.0
campaign	int64	41188.0	0.0	0.0	42.0
cons.conf.idx	float64	41188.0	0.0	0.0	26.0
cons.price.idx	float64	41188.0	0.0	0.0	26.0
contact	object	41188.0	0.0	0.0	2.0
day_of_week	object	41188.0	0.0	0.0	5.0
default	object	41188.0	0.0	0.0	3.0
duration	int64	41188.0	0.0	0.0	1544.0
education	object	41188.0	0.0	0.0	8.0
emp.var.rate	float64	41188.0	0.0	0.0	10.0
euribor3m	float64	41188.0	0.0	0.0	316.0
housing	object	41188.0	0.0	0.0	3.0
job	object	41188.0	0.0	0.0	12.0
loan	object	41188.0	0.0	0.0	3.0
marital	object	41188.0	0.0	0.0	4.0
month	object	41188.0	0.0	0.0	10.0
nr.employed	float64	41188.0	0.0	0.0	11.0
pdays	int64	41188.0	0.0	0.0	27.0
poutcome	object	41188.0	0.0	0.0	3.0
previous	int64	41188.0	0.0	0.0	8.0
у	object	41188.0	0.0	0.0	2.0

\

	memory_usage
Index	128
age	329504
campaign	329504
cons.conf.idx	329504
cons.price.idx	329504
contact	2692264
day_of_week	2471280
default	2473080
duration	329504
education	2871255
emp.var.rate	329504
euribor3m	329504
housing	2456618
job	2716564
loan	2441290
marital	2629076
month	2471280

```
nr.employed
                  329504
                   329504
pdays
poutcome
                  2778284
previous
                   329504
                   2434732
TARGET VARIABLE ANALYSIS
Distribution:
 no: 36548 (88.73%)
 yes: 4640 (11.27%)
Dataset Balance: Imbalanced
Imbalance Ratio: 7.9:1
Minority Class: yes
BIVARIATE ANALYSIS REPORT
DURATION vs TARGET:
Group Statistics:
    count mean median std min max
У
no 36548 220.84 163.5 207.10 0 4918
yes 4640 553.19 449.0 401.17 37 4199
Statistical Test (t-test):
 t-statistic: -89.9672
 p-value: 0.0000
 Significant: Yes
JOB vs TARGET:
Conversion Rates:
 student: 31.43%
 retired: 25.23%
 unemployed: 14.20%
 admin.: 12.97%
 management: 11.22%
 unknown: 11.21%
 technician: 10.83%
 self-employed: 10.49%
 housemaid: 10.00%
 entrepreneur: 8.52%
 services: 8.14%
 blue-collar: 6.89%
Chi-square Test:
 Chi-square: 961.2424
  p-value: 0.0000
 Significant: Yes
EXECUTIVE SUMMARY
==========
Dataset: 41188 records x 21 variables
Target Distribution: {'no': 88.73458288821988, 'yes': 11.265417111780131}
Data Quality: Good
Strong Correlations Found: 8
  pdays ↔ previous: -0.588
  previous ↔ nr.employed: -0.501
```

emp.var.rate ↔ cons.price.idx: 0.775

emp.var.rate ↔ euribor3m: 0.972 emp.var.rate ↔ nr.employed: 0.907 cons.price.idx ↔ euribor3m: 0.688 cons.price.idx ↔ nr.employed: 0.522 euribor3m ↔ nr.employed: 0.945

Limitations: