PROBLEM 6.1

KNOWN: Variation of h_X with x for laminar flow over a flat plate.

FIND: Ratio of average coefficient, \overline{h}_X , to local coefficient, h_X , at x.

SCHEMATIC:

ANALYSIS: The average value of h_X between 0 and x is

$$\begin{split} \overline{h}_{x} &= \frac{1}{x} \int_{0}^{x} h_{x} dx = \frac{C}{x} \int_{0}^{x} x^{-1/2} dx \\ \overline{h}_{x} &= \frac{C}{x} 2x^{1/2} = 2Cx^{-1/2} \\ \overline{h}_{x} &= 2h_{x}. \end{split}$$

Hence,

$$\frac{\overline{h}_{x}}{h_{x}} = 2.$$

COMMENTS: Both the local and average coefficients decrease with increasing distance x from the leading edge, as shown in the sketch below.

