

AMENDED CLAIMS

[Received by the International Office on 30 May 2000 (30.05.00);
claims 1 to 29 replaced with amended claims 1 to 29 (6 pages)]

5 1. A process for the treatment of at least one thin brittle metal strip (1, 21a, 21b, 30) having a thickness of less than 0.1 mm, comprising at least one step in which the thin strip (1, 21a, 21b, 21c, 30) is subjected to stresses, characterized in that, prior to the step of the process in which the thin strip (1, 21a, 21b, 21c, 30) is subjected to stresses, at least one side of the strip is covered with a coating layer (3, 3', 13, 13', 31) made of at least one polymer film so as to obtain, 10 on the strip, an adhesive layer having a thickness of between 1 and 100 µm, modifying the deformation and fracture properties of the thin metal strip, and in that the step of the process in which the thin strip is subjected to stresses is carried out 15 on the strip covered with the coating layer.

20 2. The process as claimed in claim 1, characterized in that the coating layer (3, 3') made of at least one polymer film consists of a self-adhering plastic film precoated with adhesive.

25 3. The process as claimed in claim 2, characterized in that the self-adhering plastic film precoated with adhesive comprises a layer of a pressure-sensitive self-adhering substance and in that the self-adhering coating layer (3, 3') is made to adhere to the thin metal strip (1) by pressing the coating layer (3, 3') onto the thin metal strip 30 (1).

35 4. The process as claimed in either of claims 2 and 3, characterized in that the plastic film

consists of one of the following materials: polyester, polytetrafluoroethylene, polyimide.

5. The process as claimed in any one of claims 2 to
5, characterized in that one side of the thin
brittle metal strip (1) is brought into contact
with a first self-adhering polymer film (3), the
nanocrystalline strip (1) thus being able to be
handled, in that the second side of the thin
10 brittle metal strip (1) is brought into contact
with a second film (3') made of a self-adhering
plastic, in that pressure is applied to the
laminated strip (6) consisting of the thin brittle
metal strip (1) between the two films of polymer
15 material (3, 3') and in that a mechanical
operation, for example a cutting operation, is
carried out on the laminated strip (6).

20. The process as claimed in any one of claims 2 to
4, characterized in that a plurality of laminated
strips (6, 7a, 7b, 7c) each having a coating layer
consisting of a plastic film precoated with a
pressure-sensitive adhesive on at least one of its
25 sides are produced, in that the plurality of
laminated strips (6, 7a, 7b, 7c) are superposed
and joined together by adhesion in order to obtain
a laminated composite strip (11) and in that a
mechanical operation, for example a cutting
30 operation, is carried out on the laminated
composite strip (11).

7. The process as claimed in any one of claims 2
to 6, characterized in that the pressure-sensitive
35 adhesive substance of the self-adhering plastic
film precoated with adhesive is a crosslinkable
substance and in that a crosslinking heat
treatment is carried out on the coating layer
adhering to the thin metal strip.

8. The process as claimed in claim 1, characterized
in that the coating layer comprising at least one
polymer film consists of a thermoplastic non-self-
adhering polymer film precoated with adhesive on
one of its faces, in that such a thermoplastic
film precoated with adhesive is brought into
contact with at least one of the sides of the thin
metal strip (1) in order to obtain a laminated
strip (7a, 7b, 7c), in that a plurality of
laminated strips (7a, 7b, 7c) are manufactured in
this way, in that the plurality of laminated
strips (7a, 7b, 7c) are heated to a temperature of
less than 400°C, in that the strips of the
plurality of laminated strips (7a, 7b, 7c) heated
to obtain a composite laminated strip (11) are
superimposed and compressed one against another,
and in that a process step involving stresses,
such as a cutting operation, is carried out on the
composite laminated strip (11).

9. The process as claimed in claim 8, characterized
in that the thermoplastic film is made of one of
the following polymer materials: polyethylene
modified by acrylic acid or maleic anhydride;
grafted polypropylene; polyamide; polyurethane

10. The process as claimed in claim 1, characterized
in that the coating layer comprising at least one
polymer film consists of a reactive adhesive
polymer material, in that the coating layer is
deposited on at least one of the sides of the thin
brittle metal strip (1), in order to obtain a
laminated strip (16), in that a plurality of
laminated strips (16a, 16b, 16c) is produced in
this way, in that the laminated strips (16a, 16b,
16c) are heated to a temperature of less than
400°C, in that the laminated strips (16a, 16b,