生物信息学

数据库检索与序列比对

张礼斌 华中科技大学生命科学与技术学院

Email: libinzhang@hust.edu.cn

检索数据库的方法

◆ 用关键词或词组进行数据库检索

(Text-based database searching)

◆ 用核苷酸或蛋白质序列进行数据库检索

(Sequence-based database searching)

G-IISKILRKE-KGGYEITIVDASNERQVID GKIVAITALSEKKGGFEVSIEKA-NGEVVVD

关键词或词组为基础的数据库检索

(DBGET) (日本GenomeNet)

检索须知(1)

◆ 连接词 AND, OR, NOT (Boolean operators)

A AND B (同时包含检索词A和检索词B的信息)

A NOT B (含有A但不含有B的信息)

A OR B (含有A 或含有B 的信息)

注意事项:

- 1、AND, OR, NOT must be entered in UPPERCASE
- 2. Boolean operators are processed in a left-to-right sequence

1

rice AND microarray OR expression profile

PubMed

rice AND (microarray OR expression profile)

检索须知(2)

- ◆ 用引号将两个单词组成一个词组
 - 16S rRNA = 16S AND rRNA
 - "16S rRNA"

exact match

Nucleotide

16S rRNA

"16S rRNA"

◆ *放在单词后使检索范围扩大,但专一性降低

pseudopod* =pseudopod OR pseudopodia OR pseudopodium

http://www.ncbi.nlm.nih.gov/gquery/

NCBI 的检索体系

优点: 三种检索体系中最容易操作的体系

缺点: 检索范围有限

Entrez可对8大类40个数据库进行检索

Sequence, Structure, Expression...

	•		,	
	Nucleotide: Core subset of nucleotide sequence records	0	dbGaP: genotype and phenotype	0
⇒€	EST: Expressed Sequence Tag records	0	UniGene: gene-oriented clusters of transcript sequences	0
(<u>‡</u> ()-	GSS: Genome Survey Sequence records	0	CDD: conserved protein domain database	0
	Protein: sequence database	0	UniSTS: markers and mapping data	0
	Genome: whole genome sequences	0	PopSet: population study data sets	0
3	Structure: three-dimensional macromolecular structures	0	GEO Profiles: expression and molecular abundance profiles	0
Θ	Taxonomy: organisms in GenBank	0	GEO DataSets: experimental sets of GEO data	0
(iii)	SNP: single nucleotide polymorphism	0	Epigenomics: Epigenetic maps and data sets	0
V	dbVar: Genomic structural variation	0	Cancer Chromosomes: cytogenetic databases	0
	Gene: gene-centered information	0	PubChem BioAssay: bioactivity screens of chemical substances	0
(III)	SRA: Sequence Read Archive	0	PubChem Compound: unique small molecule chemical structures	0
>	BioSystems: Pathways and systems of interacting molecules	0	PubChem Substance: deposited chemical substance records	0
	HomoloGene: eukaryotic homology groups	0	Protein Clusters: a collection of related protein sequences	0
	GENSAT: gene expression atlas of mouse central nervous system	0	Peptidome: MS/MS proteomic experiments	0
	Probe: sequence-specific reagents	0	OMIA: online Mendelian Inheritance in Animals	0
選	Genome Project: genome project information	0	BioSample: biological material descriptions	0

检索方法 (1) : 跨库检索 (cross-database search)

Entrez系统中数据库之间的连接

NCBI主页选择 "All Databases"或Entrez主页,输入关键词

各个数据库中检索到的信息数量

点击相应数据库查看信息目录, 每一条信息与其它数据库的相关 信息链接

检索方法(2):选择数据库检索

NCBI主页选择数据库,输入关键词

↓

检索到的信息目录,每一条信息 与其它数据库的相关信息链接

查看信息内容

应用举例

- 文本检索
 - 获取视黄醇结合蛋白(Retinol binding protein, RBP4)Entrez中的条目
 - 直接检索: rbp4

2. SRS (Sequence Reterieval System)

https://www.ebi.ac.uk/ European Bioinformatics Institute (EBI) 的检 索体系

优点: 检索面宽

缺点:操作复杂

17大类194个数据库与 SRS 体系相连

- **♦** Literature, Bibliography and Reference databases
- Nucleotide sequence databases
- Uniprot Universal Protein Resource
- Other protein sequence databases
- Deprecated Protein Databases
- Nucleotide related databases
- Protein function databases
- Protein structure databases
- **Enzymes, reactions and metabolic pathway databases**
- Mutation and SNP databases
- **♦** Gene ontology resources
- Biological Resources Catalogues
- Mapping databases
- Other databases
- User owned databases
- Application result databases
- EMBOSS result databases

检索方法

- ❖ 操作简单,检索数据库有限
- ❖ 适用于目标明确的检索

在SRS主页选择检索类别,输入关键词

检索到的信息目录,每一条信息 与其它数据库的相关信息链接

查看信息内容

3. DBGET (Integrated database retrieval system)

http://www.genome.jp/dbget/

日本GenomeNet的检索体系

优点: 与 Kyoto Encyclopedia of Genes and Genomes

(KEGG) database 相连

操作较SRS简单

缺点:检索面较 SRS 窄

DBGET与40多个数据库相连

DBGET检索体系中数据库之间的连接

检索方法

在DBGET主页选择一个数据库 输入关键词检索 查看检索到的信息目录 查看信息详细内容

不是总能得到你所需要的信息

◆ 关键词的使用

retrotransposon

retro-transposon

- ◆ 数据库所包含数据的多少和范围
- ◆ 不同的数据库包含内容有限
- ◆ 关键词的拼写错误

核苷酸和蛋白质序列比对

核苷酸和蛋白质序列为基础的数据库检索

- ◆ 序列对位排列 (sequence alignment)
- ◆ 将两条或多条序列对位排列,突出相似的结构 区域

表示序列的字符

Most Common Letters Used for DNA Nucleotide Sequences					
1-Letter Code	Nucleotide Name	Category			
A	Adenine	Purine			
С	Cytosine	Pyrimidine			
G	Guanine	Purine			
Т	Thymine	Pyrimidine			
N	Any nucleotide (any base)	(n/a)			
R	A or G	Purine			
Υ	C or T	Pyrimidine			
		None (gap)			

Nonpolar Amino Acids (hydrophobic)

amino acid	three letter code	single letter code
glycine	Gly	G
alanine	Ala	A
valine	Val	V
leucine	Leu	L
isoleucine	Ile	I
methionine	Met	M
phenylalanine	Phe	F
tryptophan	Trp	W
proline	Pro	P

Polar (hydrophilic)

serine	Ser	S
threonine	Thr	T
cysteine	Cys	C
tyrosine	Tyr	Y
asparagine	Asn	N
glutamine	Gln	Q

Electrically Charged (negative and hydrophilic)

aspartic acid	Asp	D	
glutamic acid	Glu	E	

Electrically Charged (positive and hydrophilic)

lysine	Lys	K
arginine	Arg	R
histidine	His	H

两条蛋白质序列对位排列分析

序列 1: 192 NYLTGSIPDDLFNNTPLLTYLNVGNNSLSGLIPGCIGSLPILGHLNFQANNLTGAVPPAI 251
NYLTG IP+ LFNNTP L +L +GNNSLSG IP CIGSLP+L+ L Q NNLTG VPP+I
序列 2: 183 NYLTGLIPNGLFNNTPSLKHLIIGNNSLSGPIPSCIGSLPLLERLVLGCNNLTGPVPPSI 242
序列 1: 252 FNMSKLSTISLISNGLTGPIPGNTSFSLPVLRWFAISKNNFFGQIPLGLAACPYLQVIAM 311
FNMS+L I+L SNGLTGPIPGN SF LP+L++F++ N F GQIPLGLAAC +L+V ++
字列 2: 243 FNMSRLHVIALASNGLTGPIPGNKSFILPILGFFSLDYNYFTGQIPLGLAACRHLKVFSL 302
序列 1: 312 PYNLFEGVLPPWLGRLTNLDAISLGGNNFDAGPIPTELSNLTMLTVLDLTTCNLTGNIPA 371
NL EG LP WLG+LT L+ ISLG N GPI LSNLTML LDL CNLTG IPA
字列 2: 303 LDNLIEGPLPSWLGKLTKLNVISLGENLLVVGPIRDALSNLTMLNFLDLAMCNLTGAIPA 362

序列比对的用途

- * 分析功能
- * 分析物种进化
- * 检测突变、插入或缺失
- * 序列延长
- * 序列定位
- * 基因表达谱分析

序列对位排列分析的种类

- * 两序列对位排列分析
- * 序列对库对位排列分析
 - ✓ 从数据库中寻找同源序列
 - ✓ 主要涉及核苷酸数据库和蛋白质数据库
- * 多序列对位排列分析

(一) 序列对位排列分析的基本原理

- 1、记分矩阵 (scoring matrix)
- ◆ 记分矩阵中含有两条序列对位排列时具体使用 的分值
- ◆ 长度一定时,分数越高,两条序列匹配越好

DNA序列对位记分

```
序列1 A C G T T A
序列2 A C T T T G
记分 2 2 -3 2 2 -3 =2
```

1、记分矩阵 (scoring matrix)

- ◆ 蛋白质序列对位排列分析记分复杂
- ◆ 一致氨基酸的记分不同
 - ❖ 稀有氨基酸 (C) , 分值高
 - ❖ 普通氨基酸 (S) , 分值低
- ◆ 相似氨基酸也记分,如R-K

蛋白质序列对位记分

```
序列1 V D S C Y
序列2 V N W C Y
记分 4 1-3 9 7 =18
```

记分矩阵 (scoring matrix)

- ◆ 蛋白质有多种记分矩阵
 - ❖ PAM矩阵 (如PAM30、PAM70)
 - ❖ BLOSUM矩阵 (如BLOSUM62、BLOSUM80)

BLOSUM62 amino acid scoring matrix

	_	_	_	_		_		_	_	_		_	1.0					_			
	C	S	Т	P	Α	G	N	D	E	Q	Η	R	K	M	1	L	V	F	Υ	W	
С	9																				С
S	-1	4																			S
Т	-1	1	5																		Т
P	-3	-1	-1	7																	Р
Α	0	1	0	-1	4																Α
G	-3	0	-2	-2	0	6															G
N	-3	1	0	-2	-2	0	6														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2	5												Е
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8										Н
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	٦-	2	5								K
M	۲-	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							M
I	۲-	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						I
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		Υ
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W

BLAST默认scoring matrix

2、空位 (间隔) 罚分 (gap penalty)

◆ 基因进化过程中产生突变

```
      ★ 插入
      A T G T G A

      序列1 A T G C T G A

      ◆ 缺失
      序列2 A T G G A
```

- ◆ 序列对位排列分析时允许插入空位
- ◆ 空位罚分

```
序列1 A T G C T G A
序列2 A T G - - G A
2 2 2 -5 -2 2 2 = 3
```

(二) 序列对库对位排列分析

- ◆ 用待分析序列对数据库进行相似性分析
- ◆ 两两序列对位排列分析
- ◆ 从数据库中找出所有同源序列
- ◆ 主要检索体系
 - **BLAST**
 - * FASTA
 - Other methods

1、基本概念

(1) Sequence identity **‡**□ sequence similarity

Identity: 两条序列在同一位点上的核苷酸或

氨基酸残基完全相同

Similarity: 两条序列在同一位点上的

氨基酸残基的化学性质相似

(2) Global alignment 和 local alignment

Global alignment: 两条完整的序列相比较

Local alignment: 两条序列中相似程度最高的部分

Query
Subject
Local FTFTALILLAVAV
---FTAL-LLAAV--

(3) Gapped alignment 和 ungapped alignment

Gapped alignment: 为达到最佳 alignment, 序列中加入空位

Ungapped alignment: 相比较序列的核苷酸或氨基酸序列连续

Query
Subject

(4) Alignment score 和 E (expect) value

衡量两条相比较序列相似程度的标准

(bits) Score: 分值越大,两个比较序列相似程度越高

E value: 期望得到的、完全由机会造成的、相当于或大于目

前分值的alignment 次数

试验组存活率比对照组高20% (p<0.05)

- ❖ E值取决于 alignment 分值、相比较序列的长短 和数据库中数据的数量
- ❖ Blast中E的阈值为10。1e 66 = 1 × 10⁻⁶⁶
 E 值越小越好

2. BLAST (Basic Local Alignment Search Tool) 检索

http://blast.ncbi.nlm.nih.gov/

Basic BLAST

nucleotide blast	Search a nucleotide database using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast
protein blast	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast
<u>blastx</u>	Search protein database using a translated nucleotide query
<u>tblastn</u>	Search translated nucleotide database using a protein query
<u>tblastx</u>	Search translated nucleotide database using a translated nucleotide query

Specialized BLAST

- Make specific primers with <u>Primer-BLAST</u>
- Search trace archives
- Find conserved domains in your sequence (cds)
- Find sequences with similar conserved domain architecture (cdart)
- Search sequences that have gene expression profiles (GEO)
- Search <u>immunoglobulins</u> (lgBLAST)
- Search using SNP flanks
- Screen sequence for <u>vector contamination</u> (vecscreen)
- Align two (or more) sequences using BLAST (bl2seq)
- Search protein or nucleotide targets in PubChem BioAssay
- Search SRA transcript and genomic libraries
- Constraint Based Protein Multiple Alignment Tool
- Needleman-Wunsch Global Sequence Alignment Tool
- Search RefSeqGene
- Search WGS sequences grouped by organism

BLAST programs

blastn 用核苷酸序列检索核苷酸数据库

blastp 用蛋白质序列检索蛋白质数据库

blastx 将核苷酸序列通过 6 种阅读框翻译成不同的蛋白 质序列检索蛋白质数据库

tblastn 用蛋白质序列检索核苷酸数据库(数据库中的序列被翻译出不同的蛋白质序列)

tblastx 将核苷酸序列通过 6 种阅读框翻译成不同的蛋白 质序列检索核苷酸数据库 (数据库中的序列也被 翻译出不同的蛋白质序列)

BLAST databases

Human genomic plus transcript

人基因组和mRNA序列

Mouse genomic plus transcript

小鼠基因组和mRNA序列

nucleotide collection (nr/nt)

GenBank (无 EST, STS, GSS, HTGS)

non-redundant protein sequences (nr) 非冗余蛋白质数据库

refseq-rna

Reference mRNA sequences

refseq-genomic

Reference genomic sequences

refseq-protein

Reference protein sequences

est

EST 数据库

BLAST databases

est-others 非人和小鼠的EST数据库

gss GSS 数据库

htgs HTGS 数据库

pat 专利序列数据库

pdb 蛋白质三维结构数据库

alu_repeats Alu 重复序列数据库

swissprot swissprot蛋白质数据库

dbsts STS 数据库

wgs whole-genome shotgun reads

env_nt Environmental samples (nt)

env_nr Environmental samples (pro)

(1) BLASTN

- ◆ 将要查询的序列直接粘贴到序列框中或输入登陆号, GI 号
- ◆ 选择 database、organism
- ◆ 选择 Blast Algorithm
- ◆ 可进行其它项目的选择用于分析
 - ❖ 进一步选择检索范围: Limit by entrez query (如 protease NOT hivI [organism])
 - ❖ Filter (Human repeats): 遮盖重复序列可加快检索速度 (特别是 > 100 kb 的片段)
 - 结果页面

(2) BLASTP

◆ 基本操作同 blastn

450

150

(3) Primer-BLAST

http://www.ncbi.nlm.nih.gov/tools/primer-blast/

- ◆ 设计PCR引物
- ◆ 分析引物特异性
- ◆ 在GenBank检索结果页面中提供了链接
- ◆ 结果

>序列

>序列

MALVRLPVWIFVAALLIASSSTVPCASSLGPIASKSNSSDTDLAALLAFKAQLSDPNN ILAGNWTTGTPF CRWVGVSCSSHRRRRQRVTALELPNVPLQGELSS...

序列

mngtldhpdqpdldaikmfvgqvprtwsekdlrelfeqygavyeinvlrdrsqnppqskgccfvtfytrkaaleaqnalhnmkvl pgmhhpiqmkpadseknn avedrklfigmiskkctendirvmfssfgqieecrilrgpdglsrgc

序列

mngtldhpdqpdldaikmfvgqvprtwsekdlrelfeqygavyeinilrdrsqnppaskgccfvtfytrkalleaqnalhnmkvlp gmhipiqmapadseknnavedrklfigmiskkctendirvmfssfgqieecrilrgpdglsrgc

序列

gttcgttgcaacaaattgatgagcaatgcttttttataatgccaactttgtacaaaaaag

3、FASTA 检索

http://www.ebi.ac.uk/Tools/sss/

Programs

BLAST 和 FASTA 检 索体系有时不能检测 出某些远缘序列的相 关性

一些特殊设计的序列 检索体系在发现基因 和蛋白质家族成员方 面可能更为可靠

FASTA	
FASTA ①	Sequence Similarity Search using the FASTA program. This tool is available for the following databases: Q Protein Q Nucleotide Q Proteomes Q Genomes Q Whole Genome Shotgun Q ASD Protein Q ASD Nucleotide Q LGIC Protein Q LGIC Nucleotide
SSEARCH ①	Sequence Similarity Search using the SSEARCH program. This tool is available for the following databases: Q Protein Q Nucleotide Q Proteomes Q Genomes Q Whole Genome Shotgun
	ASD Protein ASD Nucleotide ASD Protein ASD Nucleotide
PSI-Search (i)	PSI-Search combines the sensitivity of the Smith-Waterman search algorithm (SSEARCH) with the PSI-BLAST (blastpgp) iterative profile construction strategy to find distantly related protein sequences.
	Q Launch PSI-Search
GGSEARCH ①	GGSEARCH performs a sequence search using alignments that are global in the query and global in the database (Needleman-Wunsch). Q Protein Q Nucleotide
GLSEARCH ①	GLSEARCH performs a sequence search using alignments that are global in the query and local in the database. Q Protein Q Nucleotide
FASTM (i)	Peptide similarity searching using the FASTM/FASTS/FASTF programs. This tool is available for the following databases:

Q Proteomes

ASD Protein

Q Protein Q Nucleotide

(三) 两序列对位排列分析

Specialized BLAST

Align two (or more) sequences using BLAST (bl2seq)

Needleman-Wunsch Global Sequence Alignment Tool

- ◆ NCBI的分析工具
- ◆ 对任意两条序列进行对位排列分析
- ◆ 允许空位

BLAST 2 sequences

- ◆ 序列来源
 - ❖ 输入 Accession number
 - * 直接粘贴序列
- ◆ 适用于 blastn, blastp, blastx, tblastn, tblastx
 - ❖ blastn: 两条核苷酸序列相比较
 - ❖ blastp: 两条蛋白质序列相比较
 - ❖ tblastn: 比较蛋白质序列 (sequence 1) 和核苷酸序列 (翻译成蛋白质序列) (sequence 2)
 - ❖ blastx: 比较核苷酸序列 (翻译成蛋白质序列) (sequence 1) 和蛋白质序列 (sequence 2)
 - * tblastx: 两条核苷酸序列(翻译成蛋白质序列)比较

BLAST 2 sequences

- ◆ 结果格式
 - * 两种图形
 - * 两序列对位排列

上机

在NCBI中使用Entrez检索系统用ACE2(angiotensin-converting enzyme 2)搜索,观察所有数据库的响应,分别有多少核酸序列(Nucleotide),多少基因序列(gene),多少蛋白质序列(protein),多少论文(pubmed)?最新一篇论文是什么?

点击Nucleotide ,然后分别查看Homo sapiens和Mus musculus的ACE2前2条核酸序列(fasta格式),任选一条Homo sapiens和Mus musculus的ACE2核酸序列,点击进入,查看它编码蛋白质的信息,并在uniprot中查看它的功能信息和蛋白质三级结构信息。

分别用Homo sapiens的ACE2核酸序列与蛋白质序列进行blastn与blastp比对分析