Digital Logic Circuits

• Combinatorial:

Output depends on combination of inputs

• Sequential:

 Output depends on inputs as well as a clock signal (sequenced operation)

• Digital Signals:

- *Discrete*, having values of only 0 and 1 (binary)
- Hi (*Logic 1*) and Lo (*Logic 0*)
- There is a region in between which is indeterminate (non-discernible)

Binary Number System:

- * Based on powers of 2: contrast with decimal number system, which is based on powers of 10
- * Uses only two digits: 0 and 1
- * Representation and Place Value:
 - Integer Part:

$$\cdots$$
 2⁴ (16) 2³ (8) 2² (4) 2¹ (2) 2⁰ (1).

• Fractional Part:

$$2^{-1}$$
 (0.5) 2^{-2} (0.25) 2^{-3} (0.125) 2^{-4} (0.0625) ...

* *Example*: 101.101 = 5.625

* Example: Binary to Decimal Conversion:

1 1 0 0 1 =
$$(1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0) = 25$$

* Example: Decimal to Binary Conversion:

$$15 = (1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0) = 11111$$

* Fractional Numbers: Binary to Decimal:

$$11.101 = (1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-3}) = 3.625$$

* Fractional Numbers: Decimal to Binary:

$$0.4475 = (1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}) = 0.0111$$

- * Note: The decimal equivalent of 0.0111 is 0.4375, but we started with 0.4475 ⇒ Known as Conversion (or Quantization) Error (QE): The number of bits is not sufficient, we need to increase it to reduce the error * Note:
 - 1 bit numbers: 0 and 1 (*Decimal equivalent*: 0 and 1)
 - 2 bit numbers: 00 01 10 and 11 (*Decimal equivalent*: 0 to 3)
 - 3 bit numbers: 000 ... 111 (Decimal equivalent: 0 to 7)
 - 4 bit numbers: 0000 ... 1111 (*Decimal equivalent*: 0 to 15)

- * Inference: With N number of bits, we can represent decimal numbers ranging from 0 to $(2^N 1)$
- * The *leftmost bit* is known as the **Most Significant**Bit (*MSB*), while the *rightmost bit* is known as the
 Least Significant Bit (*LSB*)
- * Definitions:
 - 4 Bits \rightarrow 1 Nibble
 - 8 Bits or 2 Nibbles $\rightarrow 1$ Byte
 - 16 Bits or 2 Bytes or 4 Nibbles \rightarrow 1 Word

* Addition of Binary Numbers:

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=0$ (with a carry of 1)

* Subtraction of Binary Numbers:

$$0-0=0$$
, $1-0=1$, $1-1=0$, $0-1=1$ (with a borrow of 1)

* *Example*:
$$5 + 6 \Rightarrow 101 + 110 = 1011 \Rightarrow 11$$

 $9 - 5 \Rightarrow 1001 - 101 = 0100 \Rightarrow 4$

* Multiplication of Binary Numbers:

$$0 \times 0 = 0$$
, $0 \times 1 = 0$, $1 \times 0 = 0$, $1 \times 1 = 1$ (no carry)

* Division of Binary Numbers:

$$0 \div 1 = 0$$
, $1 \div 1 = 1$, Division by zero not allowed (*overflow*)

* Some more examples:

• Convert decimal 35 to binary (by division):

$$35 \div 2 = 17 + 1$$
 (LSB), $17 \div 2 = 8 + 1$ (next bit), $8 \div 2 = 4 + 0$, $4 \div 2 = 2 + 0$, $2 \div 2 = 1 + 0$, $1 \div 2 = 0 + 1$ (MSB)

- \Rightarrow Final binary representation: 100011
- Express 0.9×2 in binary:
 - 1.8 = 1 (the lone digit in the integer part) + 0.8
 - $0.8 \times 2 = 1$ (the first digit in the fractional part) +
 - $0.6, 0.6 \times 2 = 1 + 0.2, 0.2 \times 2 = 0 + 0.4, \dots$
 - \Rightarrow Final binary representation: 1.1100...

- * Note that with 4 digits after the decimal point, the converted number is 1.75, which gives *QE* of 0.05, which is the same even if we had only 2 digits after the decimal point
 - ⇒ Concept of *Bit Optimization* depending on the **maximum allowed QE**
 - ⇒ Generally, increase in number of bits leads to lower QE, but not always, as this example clearly illustrates

Complements and Negative Numbers:

- * *Note*: X Y is same as X + (-Y)
- * Thus, before subtraction, if we *negate* the number that is to be subtracted, then we just need to do an *addition* operation \Rightarrow **simplifies circuitry**
- * Two methods of negation:
 - One's Complement
 - Two's Complement
- * One's Complement:
 - Just *invert* all the bits of the binary number
 - *Example*: +5 (0101) becomes -5 (1010)

- To get the original number back, apply *reverse process*, i.e., *invert* all the bits
- Not much used, since it returns both *positive and* $negative\ zero\ (+0\ and\ -0)\ (to\ be\ discussed)$
- * Two's Complement:
 - One's complement plus 1, i.e., invert all the bits, and add 1 to the LSB
 - *Example*: +5 (0101) becomes -5 (1011)
 - Avoids the problem of positive and negative zeros
 - Apply reverse process to get the original number back
 - Widely used by modern computer systems

Sign-Magnitude Convention:

- * In this convention, the *MSB* is reserved for the sign bit (0 for positive, and 1 for negative)
- * Thus, for an *N* bit number, with 1 bit reserved for sign, we can express 0 to $\pm (2^{N-1} 1)$
- * *Example*: An 8 bit number can represent θ to ± 127
- * One's Complement Notation:
 - *Example*: $+15 \rightarrow 01111$, $-15 \rightarrow 10000$
 - *Note*: $0000 \rightarrow +0, 1111 \rightarrow -0$
 - This is why one's complement notation is avoided

- * Two's Complement Notation:
 - *Example*: 3 7 = 3 + (-7) = -4
 - Note: To express −7 in two's complement notation,
 we need 4 bits
 - Add sign bit: $3 \rightarrow 0011$ $-7 \rightarrow 1001$ $Add \rightarrow 1100 \rightarrow -4$
 - *Note*: In two's complement notation, $+4 \rightarrow 0100$, while $-4 \rightarrow 1100 \Rightarrow Unique situation$
 - *Example*: 2 7 = 2 + (-7) = -5 $\Rightarrow 0010 + 1001 = 1011$, which is -5

The Hexadecimal Number System:

- * Abbreviated as *HEX* (H): *base 16*, and *grouped* in 4 bits each
- * Extremely convenient and all computer systems use HEX number system
- * 0000 to 1001: 0_D to 9_D : 0_H to 9_H , 1010: 10_D : A_H , 1011: 11_D : B_H , 1100: 12_D : C_H , 1101: 13_D : D_H , 1110: 14_D : E_H , and 1111: 15_D : F_H (*D*: *Decimal*)
- * Thus, $(1010\ 1111)_{B} \leftrightarrow (AF)_{H} (B:Binary)$

The Octal Number System:

- * Base 8, and grouped in 3 bits each
- * Can count only from 0 to 7 (000 to 111)

*
$$542_8 = 5 \times 8^2 + 4 \times 8^1 + 2 \times 8^0 = 320 + 32 + 2 = 354_{10}$$

* 542₈ grouped in 3 bits each: 101 100 010₂

*
$$101100010_2 = 2^8 + 2^6 + 2^5 + 2^1 = 256 + 64 + 32 + 2$$

= 354_{10}

* 101100010₂ grouped in 4 bits would result in HEX

*
$$0001\ 0110\ 0010_2 = 162_{16} = 1 \times 16^2 + 6 \times 16^1 + 2 \times 16^0$$

= $256 + 96 + 2 = 354_{10}$ (*Note*: Added 3 zeros to left)

* Neat, isn't it?

Boolean Algebra:

- * Developed by *George Boole*
- * Uses only two variables: 0 and 1: Binary
- * Mathematics associated with binary number system is *Boolean Algebra*
- * Positive Logic: 1 (*True Hi*) and 0 (*False Lo*)
- * Negative Logic: 1 (*False Hi*) and 0 (*True Lo*)
- * Logical Addition: *OR (+) Operation*:

•
$$0 + 0 = 0$$
, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 1$

- * Logical Multiplication: *AND* (·) *Operation*:
 - $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$

* Truth Table: Listing of all possible input combinations and corrersponding outputs OR Gate:

* Switches in parallel:

 \Rightarrow If *either* one of them is *on*, the light will *glow*

* Truth Table: A B F

$$0 1 1 F = A + B$$

AND Gate:

- * Switches in series:
 - \Rightarrow Light will *glow* only if *both* switches are *on*

$$0 \quad 1 \quad 0 \quad F = A \cdot B$$

* Note that the number of entries in the truth table is 2^N , where N = number of input variables

NOT Gate:

- * Simply an inverter
- * Truth Table: A F

$$0 1 F = A' \left(or \overline{A} \right)$$

1 0

Some Useful Rules:

$$0 + X = X, \quad 1 + X = 1, \quad X + X = X, \quad X + \overline{X} = 1,$$
 $0 \cdot X = 0, \quad 1 \cdot X = X, \quad X \cdot X = X, \quad X \cdot \overline{X} = 0, \quad \overline{\overline{X}} = X,$
 $X + Y = Y + X, \quad X \cdot Y = Y \cdot X, \quad X + (Y + Z)$
 $= (X + Y) + Z, \quad X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$

Some Useful Rules (Contd.):

$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z, \quad X + X \cdot Z = X, \quad X \cdot (X + Y)$$

$$= X, \quad (X + Y) \cdot (X + Z) = X + Y \cdot Z, \quad X + \overline{X} \cdot Y =$$

$$X + Y, \quad X \cdot Y + Y \cdot Z + \overline{X} \cdot Z = X \cdot Y + \overline{X} \cdot Z$$

$$\textbf{De Morgan's Theorem:}$$

* Two extremely important theorems:

•
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$
 and $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

* Thus, any logic function can be implemented by using either only OR and NOT gates, or only AND and NOT gates

- * AND and OR operations are DUAL of each other
- * Any function can be realized by just one of these basic two operations, along with the complement operation
- * Two families of logic functions:
 - Sum of Products (SOP) \rightarrow $(X \cdot Y) + (W \cdot Z)$
 - Product of Sums (*POS*) \rightarrow (A+B)·(C+D)
- * Any logical expression can be reduced to one of these two forms, which are actually equivalent

Logic Minimization by Simplification:

- * Consider f(A,B,C,D) = A'B'D + A'BD + BCD + ACD = A'D(B' + B) + BCD + ACD = A'D + BCD + ACD = (A' + AC)D + BCD = (A' + C)D + BCD = A'D + CD + BCD = A'D + CD(1 + B) = A'D + CD (SOP) = (A' + C)D (POS)
- * Note that in the final expression, B is not even there!
- * Applied prudently, logic minimization is immensely powerful, and saves a lot of hardware in implementing logic functions

Realization of Logic Function from Truth Table:

- * Need to form **SOP**
- * Pick rows for which Y = 1, and write A, B, and C in AND form, to produce Y = 1
- * For example, 2nd row would be:

$$Y = A'B'C$$

* Thus,
$$Y = A'B'C + A'BC + AB'C' + AB'C' + AB'C' + ABC' + ABC'$$

* Now, start *minimizing*:

$$Y = A'B'C + A'BC + AB'C' + AB'C + ABC' + ABC'$$

= $A'C(B' + B) + AB'(C' + C) + AB(C' + C)$
= $A'C + AB' + AB = A'C + A(B' + B)$
= $A'C + A = A + C$

- * Implementation is a simple *OR* gate with two inputs A and C (note that B doesn't even appear in the final expression)
- * Though both SOP and POS are valid representations, generally, SOP representation yields a lower gate count as compared to POS representation

Example:

*
$$Y = A + BC (SOP) \implies$$

* Let's convert it to **POS** representation:

$$\overline{\overline{Y}} = \overline{A} + \overline{BC} = \overline{A} \cdot \overline{BC}$$

$$= \overline{A} \cdot (\overline{B} + \overline{C})$$

$$\overline{\overline{Y}} = \overline{Y} = \overline{\overline{A} \cdot (\overline{B} + \overline{C})}$$

⇒ POS Representation

- * *Note*: While SOP representation needed only *2 gates*, POS representation needed *6 gates*
 - ⇒ SOP representation preferred

NAND and NOR Gates:

- * Complements of AND and OR Gates, respectively
- * Called *Universal Gates*, since any logic function can be implemented using these two gates
- * *Gate Array* based designs have only *NAND* and *NOR*Gate Arrays only *interconnections* need to be changed to implement any logic function
 - ⇒ Extremely powerful and versatile
- * Special class of VLSI circuits known as Field Programmable Gate Array (FPGA)
 - ⇒ The interconnections can be done *in-situ*

* NAND: NOT AND: Performs logical addition of the complements of the inputs

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

* NOR: NOT OR: Performs logical multiplication of the complements of the inputs

$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Truth Tables of NAND and NOR Gates:

<u>NAND</u> :	A	В	AND	NAND	
	0	0	0	1	A — •
	0	1	0	1	A′
	1	0	0	1	NOT Gate
Odd one:	1	1	1	0	
NOR:	A	В	OR	NOR	
Odd one:	0	0	0	1	
	0	1	1	0	A — — — — A'
	1	0	1	0	NOT Coto
	1	1	1	0	NOT Gate

Exclusive-OR (XOR) and Exclusive-NOR (XNOR):

XOR: Basically OR gate, with one exclusion, i.e., when both inputs are 1, output is 0

Truth Table: A B Y $Y = A \oplus B = AB' + A'B$ 0 0 0 Either A high or B high,
0 1 1 but not both, would produce
1 0 1 a high output
1 1 0 Known as odd parity detector

XNOR: Basically NOR gate, with one exclusion, i.e.,

when both inputs are 1, output is 1

Truth Table: A B Y
$$Y = \overline{A \oplus B} = A'B' + AB$$

- 0 0 1 For output to be *high*,
- 0 1 0 **both** A and B should
- 1 0 0 either be high or low
- 1 1 1 Known as even parity detector

Karnaugh Map (K-Map) and Logic Design:

- * Named after its inventor *Maurice Karnaugh* (1953)
- * Extremely simple yet highly efficient
- * Used extensively for *logic minimization* to arrive at the **most optimal logic design**

- * For *N variables*, total number of grid boxes = 2^N
- * Rows and columns are assigned such that the adjacent terms *change by only 1 bit*, e.g., 00, 01, 11 (**note that it is not 10**), and 10
- * Each cell content is known as a **minterm**
 - *Example*: 3-variable minterms: A'B'C', A'B'C, A'BC', A'BC, AB'C', AB'C, ABC', and ABC
- * Grid boxes are filled by putting *either 0 or 1*, corresponding to the *input-output combination*

Example:

		<u> </u>	
X	Y	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

* K-map is foldable (left/right and up/down) \Rightarrow what is put in the first row/column is immaterial

X: MSB

Z: LSB

* Each cell is numbered (left top corner), corresponding to the decimal equivalent of the binary bits

Steps of Minimization:

- * Define a **supercube** (some books say *subcube*) as a set of 2^m adjacent cells, all of which have *logical* value 1, for m = 1, 2, 3, ..., N
- * Thus, a subcube can consist of 1, 2, 4, 8, 16, 32, ..., number of individual cubes
- * Identify the *largest possible* such supercubes (there may be more than one such supercube in a K-map)
- * How does it do the minimization?
 - Since (XY + X'Y) is always equal to Y
 - ⇒ X becomes immaterial (redundant)

- * For the example considered, first note that we have formed a *supercube* by combining adjacent 1s in the cubes
- YZ 00 01 11 10 0 0 1 31 20 1 40 51 71 60
- * Thus, f = 1 when either X'Y'Z or X'YZ or XYZ or XYZ is 1

$$\Rightarrow f = X'Y'Z + X'YZ + XY'Z + XYZ$$

$$= (Y' + Y)X'Z + (Y' + Y)XZ$$

$$= X'Z + XZ = (X' + X)Z = Z$$

- * From the K-map, we see that f = 1 only when Z = 1, and X and Y both are either 0 or 1
 - \Rightarrow X and Y are redundant and f = Z

Some More Examples:

$$f = X'Y' + XY$$

$$f = X'Y' + XY + YZ$$

$$W: MSB, Z: LSB \\ f = W'Y'Z' + W'XY' + W'XZ' \\ + WXYZ + WX'Y'Z + WX'YZ'$$

Tips:

- * Make sure that all 1s are accounted for
- * Pay special attention to the corner 1s and foldability
- * No supercube should have odd number of cubes (except 1 monocube)
- * Supercubes can be intersecting

$$f = Y'Z' + XY$$

$$f = X'$$

More Complicated Example:

- * K-map is an excellent tool for logic minimization
- * Consider f = XY + X'Z + YZ
 - Can't be minimized any more using Boolean algebra

* Note that the YZ term is *redundant* (the dotted supercube), since all 1s have already been accounted for using the two other supercubes

* Consider another case:

$$f = Y'Z + XZ + YZ'$$

- * This minimization is ok, however, *inefficient*, since it can be further reduced
 - Look for the *largest supercube*:

Product of Sums (POS) Realization & Minimization:

- * Resulting expression in the form $(A+B)\cdot(C+D)$
- * SOP and POS representations are completely equivalent, however, in general, SOP representation is more efficient

Algorithm for POS Representation:

- * Instead of 1, bunch θs in supercubes
- * Variables causing this θ is written in OR form
- * After identifying all such terms, AND them
- * Thus, the output will be θ only if all the results of the functions are θ

Example:

- * Term A will be zero if X or Y or Z or all are zero
 - \Rightarrow It is equivalent to (X + Y + Z)
- * Term B will be zero if X = 1 (X' = 0) and/or Y = 1 (Y' = 0), with Z immaterial
 - \Rightarrow It is equivalent to (X'+Y')
- * Thus, POS Representation:

$$f = (X + Y + Z) \cdot (X' + Y')$$

Formal Definitions:

- * Minterm: Boolean expression resulting in output *1* for a single cell or a group of cells (arranged in 2^N supercube)
- * Maxterm: Boolean expression resulting in output θ for a single cell or a group of cells (arranged in 2^N supercube)

Σ and π Notations:

- * Σ_{m} : **SOP** (m *minterms*)
- * π_{M} : POS (M maxterms)
- * Very compact means of describing *Truth Tables*

Example: $f(A,B,C,D) = \Sigma_m (0,1,3,4,5,7,12,13,15)$

$$f = A'C' + A'D + BC' + BD$$

Example:
$$f(A,B,C,D) = \pi_M (2,6,8,9,10,11,14)$$

$$f = (A' + B) \bullet (C' + D)$$

- * *Note*: Both representations yielded the *same final result*, which obviously, is expected!
- * <u>Care</u>: In **POS** minimization, make sure that all 0s are accounted for

DON'T CARE (X) Condition:

- * In digital logic design, there may be *some states* which may *never occur* in real situations or may be *completely redundant*
 - \Rightarrow These states are referred to as **DON'T CARE** (X) states, and can be assigned *either 0 or 1*, as per our convenience \Rightarrow *tremendous flexibility*
- * In *SOP* representation, it would be prudent to assign *1* to these states
- * In *POS* representation, it would be prudent to assign *0* to these states

Example:

Note: Both representations yielded the **same final result**, which obviously, is expected!

More Complicated Example (POS):

Exercise: Using this expression for f, show that for

$$A = B = C = D = 0, f = 1.$$