

https://lukacrnic.com/monotonicity

- logic in reasoning
- logic in grammar

logic in grammar

lessons learned (and still learning)

- no autonomy of grammar from logic
- (partly) unfortunate split of the two endeavors

what we will (re)learn here

- intricate ways in which logic affects language
 - monotonicity-sensitive phenomena (esp. npis)
 - description requires environments (not operators)
 - + hint at why this may be the case (explanation)
 - focus on modal and comparative sentences

logic in language processing

lessons learned (and still learning)

• grammatical processes significantly affect language processing, and they have a pronounced reflection in the brain (and similarly for logical processes).

what we will (re)learn here

- logic and quantification in behavioral and fMRI experiments
 - monotonicity-related experiments
 - description requires environments (not operators)
 - (possible) neural locus of processing monotonicity

convergence of results in grammar/logic/processing!

ancient logic and monotonicity patterns

the organon

- includes Aristotle's theory of inference ("the syllogistic")
- syllogisms involving quantificational operators: all, none, some (not)
- representation of their monotonicity properties (environment-based)

peripatetics

- (wholly) hypothetical syllogisms
- (pre) modus tollens (esp Theophrastus)
- representation of their monotonicity properties (environment-based)

syllogisms and monotonicity patterns in quantified sentences

Table 1: Barbara

Table 2: DM in the "subject" predicate, UM in the "predicate" predicate

 prelim terminology: if replacing a predicate (A) with a weaker predicate (B, where A⊆B) in a sentence S results in a stronger/weaker meaning of S, we say that we have 'Downward-Monotonicity'/'Upward-Monotonicity' in S with respect to A.

syllogisms and monotonicity patterns in quantified sentences

Table 3: Celarent (modified order); DM in the "subject" predicate

Table 4: Camestres; DM in the "predicate" predicate

syllogisms and monotonicity patterns in quantified sentences (w negation)

Table 5: Darii; UM in the "predicate" predicate

Table 6: Baroco; DM in the (negated) "predicate" predicate

syllogisms and monotonicity patterns in conditional sentences

Table 7: Syllogism 'from a hypothesis'; DM in the "predicate" predicate

Table 8: Wholly hypothetical syllogism; DM in antecedent, UM in consequent

(cf. Bobzien 2000, 2002, ia)

sourcing logic in language

- impression from the preceding: logic as something we do with language
- but: logic (also) as something we do in language (constantly, unawares*)
- demonstrable in many ways: scalar implicatures, weak islands and their obviation, aspectual modification, exceptive modification, scope economy, definiteness effect, moore sentences, embedding epistemic modals, etc.
- we will focus on a specific class of such phenomena, ie, on specific expressions whose acceptability depends on more than their syntactic properties:
 - so-called negative polarity items (npis; any, ever, etc)

suggestive parallels: npis - monotonicity patterns

generalization from suggestive parallels

- (1) An NPI is acceptable iff it is contained in a term of a quantificational or a conditional sentence that exhibits downward-monotonicity wrt the term.
- (2) Conditional sentence:
 - If [A Aristotle is anyone of significance], Boethius is happy is DM wrt A; anyone of significance is contained in A

obvious undergeneration issues

- (3) a. *Aristotle gave talks after he was as anyone of significance.
 - b. Aristotle gave talks before he was anyone of significance.
- (4) a. Boethius was smarter than any other philosopher was.
 - b. Boethius was as smart as any other philosopher was.

classical entailment

(5) A sentence S entails another sentence S' iff
 for every point of evaluation α, [S]^α → [S']^α.
 (sloppy terminology: entailment between syntactic, semantic objects)

generalizing entailment

- (6) conjoinable/boolean types
 - a. t is a conjoinable type
 - b. if α is a type, and β is a conjoinable type, $(\alpha\beta)$ is a conjoinable type
- (7) An object C entails another object C', C \Rightarrow C', iff
 - i) C and C' are of type t and C \rightarrow C', or
 - ii) C and C' are of a conjoinable type $(\alpha\beta)$, and for all X of type α s.t. [C](X) and [C'](X) are defined, $C(X) \Rightarrow C'(X)$.

(Strawson entailment, see below; von Fintel 1999)

monotonicity of operators

upward monotonicity

(8) A function F of type $(\alpha\beta)$ is upward-monotone (UM) iff α and β are conjoinable types, and for all A, A' of type α : A \Rightarrow A', F(A) \Rightarrow F(A').

downward monotonicity

(9) A function F of type $(\alpha\beta)$ is downward-monotone (DM) iff α and β are conjoinable types, and for all A, A' of type α : $A \Rightarrow A'$, $F(A') \Rightarrow F(A)$.

monotonicity of operators

- (10) $[\![not]\!] = [\lambda p. \neg p]$ is a DM function. For any S,S': if S \Rightarrow S' and $[\![not]\!]$ (S'), then $[\![not]\!]$ (S) (modus tollens).
- [12) [[every student]] = $[\lambda P. \ \forall x: \ student(x) \rightarrow P(x)]$ is a UM function. Assume $P \Rightarrow P'$, [[every student]](P) and \neg [[every student]](P'). Hence: $\exists x: \ student \ x \land \neg P'(x)$. Hence: \neg [[every student]](P). \not

operator condition on npis

(13) Op-Condition: An npi is acceptable iff it is c-commanded at LF by a constituent that denotes a downward-monotone function.

predictions 1: any-DP acceptable in the scope of not, every, if

not [Aristotle is anyone of significance]]
not c-commands anyone of significance, and [not] is a DM function

[[Every student who read any book]] smiled]

every c-commands any book, and [[every]] is a DM function

[[no medieval philosopher] [was anyone of significance]]

no medieval philosopher c-commands anyone of significance, and
[no medieval philosopher] is a DM function

operator condition on npis

(13) **Op-Condition:** An NPI is acceptable iff it is c-commanded at LF by a constituent that denotes a downward-monotone function.

predictions 2: any-DP unacceptable in the (immediate) scope of every NP, if S

*[[Every student] [is anyone of significance]]

every student is the only pertinent expression that c-commands

anyone of significance, and [every student] is a UM function

The meanings of *before, after, as, more*, etc., (or the meanings of their *compositiones*) must yet be provided in order to determine the predictions. See below.

monotonicity of environments (wrt a position of a phrase)

upward monotonicity

(14) A constituent C of a conjoinable type β is upward-monotone with respect to the position of a constituent A of a conjoinable type α that C dominates iff $[\lambda X_{\alpha}, [C]]^{[A \to X]}$ is a UM function. (cf. Gajewski 2005)

alternative statement (not equivalent!)

(15) A constituent C of a conjoinable type β is upward-monotone with respect to a constituent A of a conjoinable type α that C dominates iff $\forall X: [A] \Rightarrow [X] \rightarrow [C] \Rightarrow [C[A/X]]$ (or $\forall X: [X] \Rightarrow [A] \rightarrow [C[A/X]] \Rightarrow [C]$)

terminological convention: upward-monotonicity wrt the position of a phrase

monotonicity of environments (wrt a position of a phrase)

downward monotonicity

(16) A constituent C of a conjoinable type β is downward-monotone with respect to the position of a constituent A of a conjoinable type α that C dominates iff $[\lambda X_{\alpha}, [\![C]\!]^{[A \to X]}]$ is a DM function. (cf. Gajewski 2005)

alternative statement (not equivalent!)

(17) A constituent C of a conjoinable type β is downward-monotone with respect to a constituent A of a conjoinable type α that C dominates iff $\forall X: [A] \Rightarrow [X] \rightarrow [C[A/X]] \Rightarrow [C]$ (or $\forall X: [X] \Rightarrow [A] \rightarrow [C] \Rightarrow [C[A/X]]$)

terminological convention: downward-monotonicity wrt the position of a phrase

monotonicity of environments

- (18) [not S] is DM wrt S. $\lambda X. [not S]^{[S \to X]} = [neg]. [neg] is a DM function (see above).$
- (19) [every NP] is DM wrt NP, for any NP. $\lambda X. \text{[[every NP]]}^{[NP \to X]} = \text{[[every]]}. \text{[[every]]} \text{ is a DM function (see above)}.$
- (20) [every student who read a book] is DM wrt a book. λX . [every student who read a book] [a book $\rightarrow X$] = [$\lambda X . \lambda P$. $\forall x$: $X(\lambda z$. student x read z) $\rightarrow P(x)$] is a DM function.

Assume: $Z\Rightarrow Z'$, $[\forall x:\ Z'(\lambda z.\ student\ x\ read\ z)\to P(x)]$ for some P, and $[\neg\forall x:\ Z(\lambda z.\ student\ x\ read\ z)\to P(x)].$

Hence: $\exists x$: $Z(\lambda z$. student x read z) $\land \neg P(x)$.

Hence: $\exists x$: $Z'(\lambda z$. student x read z) $\land \neg P(x)$.

Hence: $\neg \forall x$: $Z'(\lambda z$. student x read $z) \rightarrow P(x)$. $\mbox{\it \idarkapp1.5ex}$

environment condition on npis

(21) **Env-Condition:** An npi is acceptable iff it occurs at LF in a constituent that is downward-monotone with respect to its position.

predictions 1: any-DP acceptable in the scope of every, not, if (in our above examples, not in every other configuration)

 $[s ext{ not } [Aristotle is anyone of significance]]$

S is DM wrt anyone of significance.

 $[s \ [DP \ \text{every student who read any book}]]$ smiled]

Both S and DP are DM wrt any book.

[s no medieval philosopher was anyone of significance]

S is DM wrt anyone of significance.

(21) **Env-Condition:** An NPI is acceptable iff it occurs at LF in a constituent that is downward-monotone with respect to its position.

predictions 2: any-DP unacceptable in the scope of every NP, if S (in our above examples, not in every other configuration)

 $\left[_{\mathcal{S}} \text{ every student } \left[_{\mathcal{VP}} \text{ is anyone of significance}\right]\right]$

Neither S nor VP are DM wrt anyone of significance.

The meanings of sentences with *before, after, more, as,* etc, (or the meanings of their subconstituents) must yet be provided to determine the predictions.

intermediate summary:	the players

Op-Condition: An npi is acceptable iff it is c-commanded at LF by a constituent that denotes a downward-monotone function.

Env-Condition: An npi is acceptable iff it occurs at LF in a constituent that is downward-monotone with respect to its position.

so far neither condition has an upper hand, they may appear indistinguishable

reminder: strength of entailment (in the conditions)

classical entailment

- (22) An object C (classically) entails another object C', $C \Rightarrow C'$, iff
 - i) C and C' are of type t and C \rightarrow C', or
 - ii) C and C' are of a conjoinable type $(\alpha\beta)$, and for all X of type α , $C(X) \Rightarrow C'(X)$

Strawson entailment (what we adopted)

- (23) An object C (Strawson) entails another object C', $C \Rightarrow C'$, iff
 - i) C and C' are of type t and C \rightarrow C', or
 - ii) C and C' are of a conjoinable type $(\alpha\beta)$, and for all X of type α s.t. $[\![C]\!](X)$ and $[\![C']\!](X)$ are defined, $C(X) \Rightarrow C'(X)$.

classical entailment \subseteq Strawson entailment $\Big(\subseteq$ contextual (Strawson) entailment $\Big)$

one puzzle about npis in before-clauses

- (24) Aristotle gave talks before he was anyone of significance.
- (25) ∃t: Aristotle gave talks at t ∧
 ∃t': t<t' Aristotle was of significance at t' ∧</p>
 ∀t": Aristotle was of significance at t" → t<t'</p>

Strawson entailment + conditions: weak enough veridical presupposition (cf Landman, Condoravdi, Ogihara)

- (26) [before] = $[\lambda p: \exists t(p(t). \ \lambda t. \ \forall t': \ p(t') \to t < t']$ is a DM function (hence, Op-Condition predicts acceptability)

(28) *The student who attended any class smiled.

Strawson entailment + conditions: too weak

- [29) [the] = [λ P: \exists !x(P(x)). λ Q. \exists x: P(x) \wedge Q(x)] is a DM function. Assume P \Rightarrow P', [the](P')(Q) and \neg [the](P)(Q) for some Q (hence all defined). Hence: $\neg\exists$ x:P(x) \wedge Q(x) and \exists !x:P'(x). Hence: $\neg\exists$ x:P'(x) \wedge Q(x). Hence: \neg [the](P')(Q). \not
- (30) λX . [the student who attended any class smiled] [any class $\rightarrow X$] $= [\lambda X: \exists ! x: X(\lambda z. \text{ student } x \text{ attended } z).$ $\exists x: X(\lambda z. \text{ student } x \text{ attended } z) \land \text{ student } x \text{ smiled})]$ is a DM function.

Assume $Z\Rightarrow Z'$, $[\exists x: Z'(\lambda z. student \times attended z) \land student \times smiled]$, $[\neg(\exists x: Z(\lambda z. student \times attended z) \land student \times smiled)]$, and $\exists !x: Z/Z'(\lambda z. student \times attended z)$. Hence: $[\neg\exists x: Z'(\lambda z. student \times attended z) \land student \times smiled)]$.

Strawson equivalence (unlike in all preceding examples)

counteracting excessive weakness (but why should this hold?!)

- (32) **Op-Condition:** An NPI is acceptable iff it is c-commanded at LF by a constituent that denotes a DM (and not UM) function.
- (33) **Env-Condition:** An NPI is acceptable iff it occurs at LF in a constituent that is DM (and not UM) with respect to its position.

illustration 3: embedding

(34) Never have fewer than 2 students attended any of my classes.

operators

- (35) [never [fewer than 2 students [attended any of my classes]]]
- (36) [fewer than 2 students] (P) = $|\{x \mid student(x) \land P(x)\}| < 2$ is a DM function

environments

- [never [fewer than 2 students [attended any of my classes]]]
- (38) λQ . [[fewer than 2 st. attended any of my classes]] [any of my classes $\rightarrow Q$] = λQ . $|\{x \mid Q(\lambda z. \text{ student } x \text{ attended } z)\}| < 2$ is a DM function

illustration 4: intervention

(39) a. If the students; liked any of their; classes, we are happy
 b. *If exactly 22 students; liked any of their; classes, we are happy

operators

- (40) Op-Condition is satisfied in both (a) and (b)!
- (41) $\llbracket if \rrbracket = [\lambda p.\lambda q. p \rightarrow q] \text{ is a DM function.}$

an additional constraint is needed: immediate scope constraint (Linebarger 1980)

illustration 4: intervention

(42) a. If the students_i liked any of their_i classes, we are happy b. *If exactly 22 students_i liked any of their_i classes, we are happy

environments

- (43) Env-Condition is satisfied in (a), but not in (b)!
- (44) λX . [if the st's liked any of their; classes, we are happy] [any.classes $\rightarrow X$] = [λX . $\neg (X(\lambda z. S \text{ liked z})) \lor (we are happy)] is a DM function.$
- (45) λX . [if ex22st liked any of their; classes, we are happy] [any..classes $\rightarrow X$] = [λX . \neg ([ex22st](λy . X(λz . y liked z))) \vee (we are happy)] is not a DM function

no additional constraint is needed here

illustration 5: plural definites and commitments

- (46) a. Every student who attended any ESSLLI courses had a blast.
 - b. The students who attended any ESSLLI courses had a blast.
- $(47) \qquad \forall x \colon (\exists y \colon \mathsf{student} \; \mathsf{x} \; \mathsf{attended} \; \mathsf{ESSLLI} \; \mathsf{course} \; \mathsf{y}) \to \mathsf{student} \; \mathsf{x} \; \mathsf{had} \; \mathsf{a} \; \mathsf{blast}$

operators

- (48) Op-Condition is satisfied in (a), but not (obviously) in (b)!
- (49) [every] is a DM function.
- (50) [the] is not of a conjoinable type (Frege, Strawson).

 (cf. not every student vs. *not the students)

possible path: dist operator c-commanding the definite description?

illustration 5: plural definites and commitments

- (51) a. Every student who attended any ESSLLI courses had a blast.
 - b. The students who attended any ESSLLI courses had a blast.
- (52) $\forall x$: ($\exists y$: student x attended ESSLLI course y) \rightarrow student x had a blast

environments

(53) $[\lambda X. \ \forall x: \ (X(\lambda z. \ student \ x \ attended \ z)) \rightarrow student \ x \ had \ a \ blast]$ is a DM function.

(cf Gajewski & Hsieh 2014 for some puzzles)

the candidate descriptions and their parameters

- (54) **Op-Condition:** An NPI is acceptable iff it is c-commanded at LF by a constituent that denotes a DM (and not UM) function.
- (55) **Env-Condition:** An NPI is acceptable iff it occurs at LF in a constituent that is DM (and not UM) with respect to its position.

are these conditions empirically adequate? distinguishable? necessary?

- we provide support for environments over operators on the basis of
 - npis in modal sentences
 - npis in comparative sentences
- we improve on Env-Condition (and hint at an explanation for it)
- · we connect our conclusions to those about continuous data

the free choice challenges, part 1

the acceptability and variation challenge

- (56) Tina is allowed to attend any class.
- (57) *Tina is allowed to ever attend a class.

operators and environments

- (58) [allowed] is not a DM function.
- (59) λX . [T is allowed to attend any class] [any class $\rightarrow X$] is not a DM function.

illustration of non-DMness

(60) Tina is allowed to attend a(ny) class

→ Tina is allowed to attend two classes/every class/most classes

the strength challenge

- (61) Tina is allowed to attend any class. (also: imperatives, generics)
- (62) *Tina is required to attend any class.

the plural/mass challenge

- (63) Tina is allowed to attend any class.
- (64) *Tina is allowed to attend any classes.
- (65) *Tina is allowed to donate any blood.

the guiding intuition

approaching the acceptability, variation, and strength challenge

- (66) Gali is allowed to attend any class
 - → Gali is allowed to attend two classes/every class/most classes
- (67) Gali is allowed to attend any class
 - ⇒ Gali is allowed to attend any difficult class/any logic class/etc
- (68) Gali is required to attend a class
 - → Gali is required to attend a difficult class/any logic class/etc.

potential revisions (cf Kadmon & Landman on any)

- (69) Env-Condition (old): An NPI is acceptable iff it occurs at LF in a constituent that is DM with respect to its position.
- (70) **Env-Condition-any:** An *any-DP* is acceptable iff it occurs at LF in a constituent that is DM with respect to the position of its complement.
- (71) **Env-Condition-ever:** An *ever*-AdvP is acceptable iff it occurs at LF in a constituent that is DM with respect to its position.

(all but) impossible revision

(72) **Op-Condition:** An NPI is acceptable iff it is c-commanded at LF by a constituent that denotes a DM function.

