NETWORK SCANNING CON NMAP

Nell'esercizio di oggi siamo andati a scansionare la macchina metasploitable con il tool nmap. Abbiamo eseguito diversi tipi di scan:

- Scansione TCP sulle porte well-known
- Scansione SYN sulle porte well known
- Scansione con switch "-A" sulle porte well-known

Abbiamo trovato le porte well-known aperte sul nostro terminale Kali

PORT	STATE	SERVICE	
21	Open	ftp	
22	Open	ssh	
23	Open	telnet	
25	Open	smtp	
53	Open	domain	
80	Open	http	
111	Open	rpcbind	
139	Open	netbios-ssn	
445	Open	microsoft-ds	
512	Open	exec	
513	Open	login	
514	Open	shell	

Tab1

Durante la scansione abbiamo aperto Wireshark intercettando le richieste inviate dalla macchina sorgente.

Abbiamo filtrato per vedere solo le porte interessate (Tab1):

Fatte le ricerche per nmap "IP" -sT e per nmap "IP" -sS abbiamo fatto una scansione -A:


```
| Saids Nation | Part |
```

Abbiamo poi evidenziato le porte well-known nelle scansioni di Wireshark per notare le differenze:

Qui vediamo un esempio di scansione della stessa porta (porta 21) dove possiamo vedere come la scansione -sT, essendo più invasiva rispetto alla -sS, completa la connessione 3-way-handshake:

FONTE SCAN	TARGET SCAN	TIPO DI SCAN	RISULTATO OTTENUTO
192.168.32.100	192.168.32.101	nmap -sT	23 servizi aperte di cui 12 di porte well-known
192.168.32.100	192.168.32.101	nmap -sS	23 servizi aperte di cui 12 di porte well-known