

<u>Introducció</u>

- La segmentació consisteix en dividir la imatge en regions amb característiques similars
- Cada regió es representa com a una vora tancada
- 3 grans famílies:
 - Binaritzat
 - Segmentació basada en contorns
 - Segmentació basada en regions

Binaritzat

Binarization

Neduce number of grey levels to **two** (foreground and background)

- ☑ Objects segmented from background
- Textual images or document images
- ע Much `information' can be lost by binarization
- 3 Binary images are often simpler to process than grayscale images
- These arguments need to be traded of before choosing between binary and gray scale image processing approaches

Binaritzat

- Procés més senzill per a segmentar
- Ràpid, fàcilment implementable en temps real
- Es discrimina entre objectes i fons usant una constant anomenada *threshold*:

$$g(i,j)=1$$
 si $f(i,j) \ge T$
 $g(i,j)=0$ si $f(i,j) < T$

- El thresholds globals rarament funcionen bé. La il·luminació no és mai uniforme.

Binaritzat per llindar fixe

- No sol funcionar. (de fet, no funciona gaire bé mai)

Binaritzat per llindar. Alternatives

- Podem usar threshold local: La imatge es divideix en subimatges i cada una es processa amb el seu threshold.

- Podem usar doble threshold:
$$g(i,j) = X$$
 si $f(i,j) \ge T_H$ $g(i,j) = Y$ si $f(i,j) < T_L$ $g(i,j) = Z$ si $T_H > f(i,j) \ge T_L$

- 1. Seleccionar dos llindars: T_L i T_H.
- 2. Dividir la imatge en 3 regions:
 - R_L conté els píxels amb nivell de gris <T_L
 - R_M conté els píxels amb nivells de gris entre T_L i T_H
 - $R_{\rm H}$ conté els píxels amb nivells de gris $> T_{\rm H}$
- 3. Recórrer tots els píxels de R_M .
 - Si el píxel té un veí en R_L, llavors cal reasignar-lo a R_L.
- 4. Repetir el pas 3 fins que no es moguin píxels de lloc.
- 5. Reasignar tots els píxels que queden en R_M a R_H.

Selecció del llindar

- P-tile-thresholding: llindar que deixa p% píxels per sobre.
- A partir de <u>l'histograma bimodal</u>:

- 1. L'histograma no sempre és bimodal
- 2. És difícil determinar si un histograma és bimodal
- 3. Un histograma bimodal no garanteix una bona segmentació entre objectes i fons.

Selecció del llindar

- Optimal thresholding: aproximar l'histograma com la suma ponderada de dues normals.

Figure 5.4 Grey level histograms approximated by two normal distributions; the threshold is set to give minimum probability of segmentation error: (a) Probability distributions of background and objects, (b) corresponding histograms and optimal threshold.

#UPC

Selecció del llindar

- Otsu thresholding

- The aim is to find a threshold that minimizes the intra-class variance (i.e. minimum variation in the foreground + minimum variation in the background)
- ☑ Question: How?
- ☑ Answer: Exhaustive search.
- Within-class variance = foreground variance + background variance
- Minimizing the within-class variance is the same as maximizing the between-class variance

Selecció del llindar

Algorithm: Otsu Thresholding

- 1. Compute histogram and probabilities of each intensity level
- 2. Initialize class probabilities $w_i(0)$ and class means $\mu_i(0)$
- 3. Step through all possible thresholds t = 1 to 255
 - 1. Update w_i and μ_i
 - 2. Compute $\sigma_b^2(t) = \sigma^2 \sigma_w^2(t)$
- 4. The value of t which gives maximum $\sigma_b^2(t)$ is the desired Otsu's threshold
- 5. $\sigma_w^2(t) = w_1(t)\sigma_1^2(t) + w_2\sigma_2^2(t)$
- 6. $\sigma_b^2(t) = w_1(t)w_2(t)[\mu_1(t) \mu_2(t)]^2$

 $\underline{http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html}$

Moving averages

Local Thresholding

- ☑ Niblack's method: At each pixel position determine:
 - mean μ in a region of e.g. 15 x 15 pixels
 - standard deviation σ in the same region
 - set local threshold to $t = \mu 0.2\sigma$
- ☑ Sauvola's method is a variant of Niblack's

$$t = \mu \left(1 + k(\sigma/r - 1) \right)$$

k = 0.5r = 128

Tècniques diverses per trobar el llindar

Globals:

- Usant els pixels de contorn: Wezska (laplacià),
- Selecció iterativa: Ridler, Thrussel, ...
- Basats en histograma: Otsu, Dong, Kittler (min error)...
- Basats en la entropia: Pun, Kapur, ...
- Fuzzy sets: Huang, ...

Locals:

- Chow-Kaneko, moving averages...

- I quines propietats geomètriques tenen? Àrea, perímetre? Excentricitat?...
- Cal etiquetar els blobs abans de fer aquestes anàlisis

Labelling

- Operació que assigna un valor únic al píxels que pertanyen a la mateixa regió connexa.

- És un operador de pre-processat. Ens permetrà fer un anàlisi individual de les cel.les posteriorment.

Algorisme de labelling

- Scannejar la imatge per files
- Quan es trobi un nou pixel de foreground no etiquetat, assignar-li una etiqueta:
 - a) Si el pixel de l'esquerra era de backround, assignar-li una etiqueta nova.
 - b) Si el pixel de l'esquerra era d'algun blob etiquetat, assignar-li la mateixa etiqueta.
- Si el pixel veí de dalt era d'un blob amb diferent etiqueta, fusionar les etiquetes.

#UPC

