«Изучение единственности слабых решений системы Навье-Стокса»

Мукасеева Дарья Александровна

22.06.2020

Бакалаврская работа Направление 01.03.01 Математика Профиль Математическое моделирования

Понятие слабого решения

Пусть Ω — ограниченная область в пространстве R^n , где n=2,3, с достаточно гладкой границей $\partial\Omega$. Рассмотрим начально-краевую задачу для системы уравнений Навье-Стокса

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{n} v_i \frac{\partial v}{\partial x_i} - \nu \Delta v + \nabla p = f; \tag{1}$$

$$\operatorname{div} v = 0; \tag{2}$$

$$v|_{t=0}=v_0; (3)$$

$$v|_{(0,T)\times\partial\Omega}=0. \tag{4}$$

Введение необходимых функциональных пространств

 $L_p(\Omega)$ — множество измеримых функций, суммируемых с p-ой степенью, где $1\leq p<\infty$, и нормой $\|v\|_{L_p(\Omega)}=(\int\limits_{\Omega}|v(x)|^pdx)^{1/p}.$

Пространство $L_{\infty}(\Omega)$ состоит из измеримых существенно ограниченных функций $v:\Omega\to R^n$. Функция $v:\Omega\to R^n$ называется существенной ограниченной, если существует число $C_1<\infty$, что $|v(x)|\leq C_1$ при почти всех $x\in\Omega$. Норма в $L_{\infty}(\Omega)$ задается $\|v\|_{L_{\infty}(\Omega)}=ess\sup_{x\in\Omega}|v(x)|$.

 $W_p^m(\Omega)$ — где $m\geqslant 1,\; p\geqslant 1,\;$ пространство Соболева, состоящее из функции, которые со своими обобщенными частными производными до порядка m включительно принадлежат пространству $L_p(\Omega)$.

Норма в
$$W_p^m(\Omega)$$
 задается $\|v\|_{W_p^m(\Omega)} = \left(\sum_{|\alpha| \leqslant m} \int\limits_{\Omega} |D^{\alpha}v(x)|^p dx\right)^{1/p}$.

Введение необходимых функциональных пространств

 $L_p(a,b;X)$ — где $1 \leq p < \infty$ пространство суммируемых с p-ой степенью функций на [a,b] со значениями в банаховом пространстве X. Норма пространства $L_p(a,b;X)$ задается $\|v\|_{L_p(a,b;X)} = (\int\limits_0^T \|v(s)\|_X^p ds)^{1/p}$.

Через $L_\infty(a,b;X)$ будем обозначать множество всех измеримых существенно ограниченных функций $v:[a,b]\to X$. Множество $L_\infty(a,b;X)$ является банаховым пространством относительно нормы $\|v\|_{L_\infty(a,b;X)}= \underset{x\in\Omega}{\operatorname{ess}}\sup \|v(s)\|_X.$

Определение сильного решения

Определение

Сильным решением начально-краевой задачи (1)-(4) называется пара функций $v \in L_2(0,T;L_2(\Omega))$ и $p \in L_2(0,T;L_2(\Omega))$, удовлетворяющих следующим условиям:

- обобщенные частные производные функций, содержащихся в равенствах (1)-(4), принадлежат пространству $L_2(0, T; L_2(\Omega))$;
- **②** при подстановке функций уравнения (1)-(2) обращаются в равенства в пространстве $L_2(0, T; L_2(\Omega))$;
- **9** функция v удовлетворяет начальному условию (3) и граничному условию (4).

Определение слабого решения

Определение

Пусть $f \in L_2(0,T;L_2(\Omega))$ и $v_0 \in H$. Слабым решением задачи (1)-(4) называется функция $v \in L_2(0,T;V)$, удовлетворяющая для всех $\varphi \in V$ и для почти всех значений $t \in (0,T)$ равенству

$$\frac{d}{dt} \int_{\Omega} v\varphi dx - \sum_{i=1}^{n} \int_{\Omega} v_{i} v \frac{\partial \varphi}{\partial x_{i}} dx + \nu \int_{\Omega} \nabla v : \nabla \varphi dx = \int_{\Omega} f \varphi dx$$
 (5)

и условию

$$v(0) = v_0. (6)$$

Доказательство линейности и непрерывности оператора $\Delta: L_2(0, T; V)$ В $L_2(0, T; V^*)$

Лемма

③ Оператор $\Delta: L_2(0,T;V) \to L_2(0,T;V^*)$ линейный и непрерывный, причем

$$\|\Delta v\|_{L_{2}(0,T;V^{*})} = \|v\|_{L_{2}(0,T;V)}, \ \forall v \in L_{2}(0,T;V^{*}). \tag{7}$$

③ Оператор $K: L_2(0,T;V) o L_1(0,T;V^*)$ непрерывен и справедлива оценка

$$||K(v)||_{L_1(0,T;V^*)} \le C_2 ||v||_{L_2(0,T;V)}^2, \ \forall v \in L_2(0,T;V^*),$$
 (8)

для некоторой константы C_2 .

Вывод из леммы

По утверждению леммы $\nu \Delta v \in L_2(0,T;V^*), K(v) \in L_1(0,T;V^*)$, поэтому $\nu \Delta v(t) + K(v(t)) + f(t) \in L_1(0,T;V^*)$.

- lacktriangledown что функция v(t) имеет суммируемую производную v'(t);
- ullet в силу равенства $\frac{d}{dt}\langle\phi,u(t)\rangle=\langle\phi,g(t)\rangle;$

$$\frac{d}{dt}\langle v(t), \varphi \rangle = \langle v'(t), \varphi \rangle;$$

ullet равенство $rac{d}{dt}\langle v(t),arphi
angle = \langle \Delta v(t) + K(v(t)) + f(t),arphi
angle$ можно записать в виде

$$v'(t) = \nu \Delta v(t) + K(v(t)) + f(t).$$

Принадлежность v'(t)к пространству $L_1(0, T; V^*)$

Лемма

Для $p_0 \ge 1$, $p_1 \ge 1$ имеет место вложение $W_{p_0,p_1} = \{v \in L_{p_0}(a,b,X_0), \ v_1 \in L_{p_0}(a,b,X_0)\} \subset C([a,b],X_1)$ и это вложение непрерывно.

Лемма

Пусть X и Y — банаховы пространства, такие, что X — рефлективно и вложение $X \subset Y$ непрерывно. Если функция $v \in L_{\infty}(a,b;X)$ слабо непрерывна как функция со значениями в Y, то и слабо непрерывна и как функция со значениями в X.

Определение слабого решения

Определение

Пусть $n \leq 4$, $f \in L_2(0,T;L_2(\Omega))$ и $v \in H$. Слабым решением задачи (1)-(4) называется функция $v \in L_2(0,T;V) \cap L_\infty(0,T;H)$ и условию $v' \in L_1(0,T;V^*)$, удовлетворяющая при почти всех значений $t \in (0,T)$ равенству

$$v'(t) - \nu \Delta v(t) - K(v(t)) = f(t)$$
(9)

и начальному условию

$$v(0) = v_0. (10)$$

Для системы уравнений Навье-Стокса (1)-(4) Ж. Лере в 1934 был получен следующий результат:

Теорема

Пусть n=2,3. Для каждой функции $f\in L_2(0,T;V^*)$ и $v_0\in H$ начально-краевая задача (1)-(4) имеет хотя бы одно слабое решение v.

Единственность слабого решения

Теорема

Пусть Ω ограниченная область в R^2 с достаточно гладкой границей $\partial\Omega$. Тогда слабое решение v решение задачи (1)-(4) единственно.

Спасибо за внимание!