Lenses

https://github.com/heptagons/lenses

2023/12/29

Abstract

Lenses are equilateral hexagons resembling concave and convex optical lenses. The hexagons consecutive six internal angles are $(\theta_1, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3)$ where $\theta_1 = X\theta_0$, $\theta_2 = Y\theta_0$, and $\theta_3 = Z\theta_0$ where $\theta_0 = 2\pi/S$ is the base angle of symmetry S.

1 Lenses

2 Symmetry 5

Symmetry 5 uses as base the angle $\beta = \frac{2\pi}{5}$. Includes two rhombi **b** and **c** and two lenses **B** and **C**.

2.1 Rhombi b and c

Figure 1: Rhombi of the types b and c.

Figure 1 show rhombi \boldsymbol{b} and \boldsymbol{c} . \boldsymbol{b} is the rhombus with smallest internal angles equal to $\frac{\beta}{2} = \frac{\pi}{5}$. \boldsymbol{c} is the rhombus with smallest internal angles equal to $\beta = \frac{2\pi}{5}$. Figure (i) show a dissected star whose area equals to $10\boldsymbol{b}$. Figure (ii) show a dissected star whose area equals to $5\boldsymbol{c}$. Figure (iii) show a dissected regular decagon whose area equals to $5\boldsymbol{b} + 5\boldsymbol{c}$.

Figure 2: Regular pentagon and pentagram. Concave pentagon (in red).

Figure 2 show regular pentagon and pentagram dissected with rhombi b and c and a concave pentagon (in red). We calculate the areas of the regular pentagon, pentagram in function of rhombi b, c. Let x be the concave pentagon area. From the figures we note pentagon P_2 at (iii) is double the side and then four times the area of pentagon at (i) P_1 . From the figures we note the area of P_1 equals to x + c and the area of P_2 equals to 2x + b + 5c, then we compare the pentagons and isolate x to get:

$$4P_1 = P_2$$

$$4(x+c) = 2x + b + 5c$$

$$x = \frac{b+c}{2}$$
(1)

Then we can calculate the area of the pentagon P_1 and the pentagram P_G shown in figure (ii):

$$P_1 = x + c = \frac{b+c}{2} + c = \frac{b+3c}{2}$$
 (2)

$$P_G = 2x + \mathbf{b} = \frac{2(\mathbf{b} + \mathbf{c})}{2} + \mathbf{b} = 2\mathbf{b} + \mathbf{c}$$
 (3)

2.2 Lenses B and C

Figure 3: Lenses of types B and C.

Figure 3 show lenses \mathbf{B} and \mathbf{C} . Figure (i) show the lense \mathbf{B} with perimeter $\overline{B_1...B_6}$ which is formed adding two rhombi \mathbf{b} and adding one rhombus \mathbf{c} so its area equals to $2\mathbf{b} + \mathbf{c}$. Figure (ii) show the lense \mathbf{C} with perimeter $\overline{C_1...C_6}$ which is formed adding two rhombi \mathbf{c} and substracting one rhombus \mathbf{b} so its area equals to $2\mathbf{c} - \mathbf{b}$. Figure (iii) show a dissected star whose area equals to $2\mathbf{C} + \mathbf{B} = 5\mathbf{c}$. Figure (iv) show a dissected regular decayon whose area equals to $3\mathbf{B} + \mathbf{C} = 5\mathbf{b} + 5\mathbf{c}$.