

Chpt.7 Statistical Inference: Parameter Estimation

第七章参数估计

上节回顾

称随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 为参数 θ 的置信水平为 $1-\alpha$ 的双侧置信区间 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} \ge 1-\alpha$

如反复抽样10000次,当 α =0.05,即置信水平为95%时,10000个区间中包含 θ 真值的约为9500个;当 α =0.01,即置信水平为99%时,10000个区间中包含 θ 的真值的约为9900个.

区间估计的一般步骤:

STEP 1: 找一个合适的枢轴量 \hat{W} ,要求满足

[1] 含有样本与待估参数;

[2] 其分布是已知的,且不依赖于样本与待估参数

STEP2: 对于置信水平 $1-\alpha$, 定义常数a和b, 使得概率 $P\{a < \widehat{W} < \emptyset \}$

$$b\} = 1 - \alpha$$

STEP3: 反解出 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} \ge 1-\alpha$

STEP4: $(\hat{\theta}_1, \hat{\theta}_2)$ 就是置信水平1- α 的置信区间(用样本观测值表示)

几类抽样分布 $X \sim N(\mu, \sigma^2)$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$\frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \sim \chi^{2}(n)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

正态总体的区间估计 $X \sim N(\mu, \sigma^2)$

待估参数	前提条件	枢轴量	置信区间
+欠/古	方差已知	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left(\overline{x} - \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}, \overline{x} + \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2} \right)$
均值 	方差未知	$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$\left(\frac{-}{x} - \frac{s}{\sqrt{n}} t_{\alpha/2}, \frac{-}{x} + \frac{s}{\sqrt{n}} t_{\alpha/2}\right)$
	均值已知	$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$	$\left(\frac{\sum_{i=1}^{n}(x_{i}-\mu_{0})^{2}}{\chi_{\alpha/2}^{2}},\frac{\sum_{i=1}^{n}(x_{i}-\mu_{0})^{2}}{\chi_{1-\alpha/2}^{2}}\right)$
<i>八</i> 左	均值未知	$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$	$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\right)$

习题1:

设总体 $X\sim N(\mu,9)$, (X_1,\cdots,X_n) 是取自总体X的样本。欲使 μ 的 $1-\alpha$ 置信区间长度L不超过2,问在以下两种情况下,样本容量n至少应取多少?

(1) $\alpha = 0.1$ (2) $\alpha = 0.01$

pp. 6

习题:置信区间与n的关系

设总体 $X\sim N(\mu,9)$, (X_1,\cdots,X_n) 是取自总体X的样本欲使 μ 的 $1-\alpha$ 置信区间长度L不超过2,问在以下两种情况下两种情况下样本容量n至少应取多少?

(1)
$$\alpha = 0.1$$
 (2) $\alpha = 0.01$

解 给出 $\sigma^2 = 9$ 已知,μ的置信区间

$$(\overline{X}-z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}},\ \overline{X}+z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}})$$

其区间长度

$$L = 2z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

对于给定α,欲使

$$L = 2z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le 2$$

必须

$$n \ge (z_{\underline{\alpha}} \cdot \sigma)^2$$

对于
$$\alpha = 0.1$$
与 $\alpha = 0.01$,

$$z_{0.05} = 1.64, \ z_{0.005} = 2.58,$$

计算可得

$$n_1 \ge \sigma^2 \mu_{0.05}^2 = 24.2$$

$$n_2 \ge \sigma^2 \mu_{0.005}^2 = 59.9$$

故样本容量n分别至少应取25与60.

请讨论区间长度与n的关系

习题2:

随机从某毛纺厂生产的羊毛锭中抽测10个样品的含脂率%,得到样本均值 \bar{x} =7.7,样本方差 S^2 =0.64,假定含脂率服从正态分布。试分别在下面的置 信度下给出平均含脂率的置信区间。(1)1- α =90%; (2)1- α =95%;

习题:不同置信度下区间的变化

随机从某毛纺厂生产的羊毛锭中抽测10个样品的含脂率%,得到样本均值 \bar{x} =7.7,样本方差 S^2 =0.64,假定含脂率服从正态分布。试分别在下面的置信度下给出平均含脂率的置信区间。(1)1- α =90%;(2)1- α =95%; **解** 由题意, σ 未知,平均含脂率 μ 的1- α 置信区间为

$$(\overline{X} - t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}})$$

这里n=10, \bar{x} =7.7,S=0.8,对于 α = 0.10与 α = 0.05,

查附表 $t_{0.05}(9) = 1.833$, $t_{0.025}(9) = 2.262$,分别代入计算可得

$$\bar{x} \pm t_{0.05}(9) \cdot \frac{S}{\sqrt{n}} = 7.7 \pm 0.46$$
 $\bar{x} \pm t_{0.025}(9) \cdot \frac{S}{\sqrt{n}} = 7.7 \pm 0.57$

故所求置信区间分别为(7.24,8.16), (7.13,8.27)

请比对理解区间长度和置信度

置信水平、置信区间长度、样本容量的关系

置信水平越高, 可靠度越大

置信区间长度 2.r

置信区间越短, 精确度越高

结论:

- ▶ 样本数量不变,置信水平越高,就会导致置信区间越长;反之,置信区间越短,就会导致置信水平越低。
- ▶ 在相同的置信水平下,要让置信 区间越短,就要增加样本数量, 这样采样成本就会越大。

单侧置信区间

前面讨论的估计量的置信区间都是双侧的,在有些实际问题中,例如某元件的使用寿命,平均寿命越长越好,在这种情况下,可将置信上限取为+∞,而只关心置信下限。与之相反,在考虑化学药品中杂质含量时,杂质越少越好,只关心置信上限。因此引出了单侧置信区间的概念。

单侧置信区间

对于给定的 $(0<\alpha<1)$,根据样本确定的统计量 $\underline{\theta}(X_1,\cdots,X_n)$,对于任意的 $\theta\in\Theta$ 有 $P\{\theta>\underline{\theta}\}\geq 1-\alpha$,则随机区间 $(\underline{\theta},+\infty)$ 称做参数 θ 的置信水平为 $1-\alpha$ 的单 侧置信区间;其中 $\underline{\theta}$ 叫做置信水平为 $1-\alpha$ 的单侧置信下限。

又若,统计量 $\overline{\theta}(X_1,\dots,X_n)$,对于任意的 $\theta\in\Theta$ 有 $P\{\theta<\overline{\theta}\}\geq 1-\alpha$,则随机区间 $(-\infty,\overline{\theta})$ 称做参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间;其中 $\overline{\theta}$ 叫做置信水平为 $1-\alpha$ 的单侧置信上限.

单侧置信区间

例 从一批灯泡中随机地取 5 只作寿命试验,测得寿命(以 h 计)为 1 050 1 100 1 120 1 250 1 280

设灯泡寿命服从正态分布. 求灯泡寿命平均值的置信水平为 0.95 的单侧置信下限.

例 从一批灯泡中随机地取5只作寿命试验,测得寿命(以 h 计)为

1 050 1 100 1 120 1 250 1 280

设灯泡寿命服从正态分布. 求灯泡寿命平均值的置信水平为 0.95 的单侧置信下限.

解 $1-\alpha=0.95, n=5, t_{\alpha}(n-1)=t_{0.05}(4)=2.1318, \overline{x}=1160, s^2=9950.$ 由(7.4)式得所求单侧置信下限为

$$\underline{\mu} = \overline{x} - \frac{s}{\sqrt{n}} t_{\alpha}(n-1) = 1 \ 065.$$

pp. 14

7.5 两个正态总体均值差与方差比的区间估计

不同工艺生产的两批同类产品,可以认为是来自两个相互独立的不同总体. 有时我们要对其某个质量指标作比较,分析它们是否有显著的差异.这时可观察 $\mu_1 - \mu_2$ 和 σ_1^2/σ_2^2 的置信区间.

以下讨论两个正态总体<mark>均值差与方差比</mark>的区间估计问题.

设总体 $X \sim N(\mu_1, \sigma_1^2)$,且 $Y \sim N(\mu_2, \sigma_2^2)$ 和 $(x_1, x_2, \dots, x_{n_1})$ $(y_1, y_2, \dots, y_{n_2})$ 分别是总体X与Y的样本观察值.

几类抽样分布
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

[1]
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

[2] 当
$$\sigma_1 = \sigma_2 = \sigma$$
时
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

$$\frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2 \sigma_2^2} \sim F(n_1, n_2)$$
[4]
$$\frac{S_1^2}{\sigma_1^2} = \frac{S_1^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$

(1)设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 σ_1, σ_2 , 求 $\mu_1 - \mu_2$ 的区间估计

选择包含
$$\mu_1$$
一 μ_2 随机变量

选择包含
$$\mu_1 - \mu_2$$
随机变量
$$V = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

对于给定的置信水平1- α ,取区间($-z_{\alpha/2}, z_{\alpha/2}$),使

$$P\left\{-z_{\alpha/2} \le \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \le z_{\alpha/2}\right\} = 1 - \alpha$$

pp. 17 南开大学 计算机学院

(1)设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 σ_1, σ_2 , 求 $\mu_1 - \mu_2$ 的区间估计

把关于随机事件的概率描述转化为关于 $\mu_1 - \mu_2$ 的概率描述

$$P\left\{\overline{X} - \overline{Y} - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le \overline{X} - \overline{Y} + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right\} = 1 - \alpha$$

得置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间:

$$\left(\frac{z-y-z_{\alpha/2}}{n_1}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}, \ z-y+z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}\right)$$

注: 若 σ_1 , σ_2 未知且 n_1 与 n_2 很大时,可用 s_1^2 , s_2^2 分别代替 σ_1^2 , σ_2^2 ,仍使用上式作 $\mu_1 - \mu_2$ 的区间估计.

(2)设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 未知 σ_1, σ_2 , 但是

$$\sigma_1 = \sigma_2$$
,求 $\mu_1 - \mu_2$ 的区间估计。

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

对于给定的置信水平1- α ,我们取区间 $(-t_{\alpha/2}, t_{\alpha/2})$,使

$$P\left\{\frac{\left|(\bar{X} - \bar{Y}) - (\mu_{1} - \mu_{2})\right|}{S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \le t_{\alpha/2}\right\} = 1 - \alpha$$

把关于随机事件的概率描述转化为关于 $\mu_1 - \mu_2$

$$P\left\{\overline{X} - \overline{Y} - t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \le \mu_{1} - \mu_{2} \le \overline{X} - \overline{Y} + t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right\} = 1 - \alpha$$

得置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间(用样本观测值)

$$\left(\frac{1}{x} - \frac{1}{y} - t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \frac{1}{x} - \frac{1}{y} + t_{\alpha/2}S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right)$$

例2 两台机床生产同一个型号的滚珠,从甲机床生产的滚珠中抽取8个,

从乙机床生产的滚珠中抽取9个,测得这些滚珠的直径(毫米)如下:

甲机床: 15.0, 14.8, 15.2, 15.4, 14.9, 15.1, 15.2, 14.8;

乙机床: 15.2, 15.0, 14.8, 15.1, 15.0, 14.6, 14.8, 15.1, 14.5.

设两台机床生产的滚珠直径服从正态分布

求: 这两台机床生产的滚珠直径均值差 $\mu_1 - \mu_2$ 的对应于置信水平**0.90** 的置信区间, 如果:

- (1) 已知两台机床生产的滚珠直径的标准差分别是 σ_1 =0.18(毫米)及 σ_2 =0.24(毫米);
- (2) 未知 σ_1 及 σ_2 ,但假设 $\sigma_1 = \sigma_2$.

 \mathbf{m} (1) σ_1 及 σ_2 已知,估计 $\mu_1 - \mu_2$,采用统计量

$$V = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

置信水平为1- α 的 $\mu_1 - \mu_2$ 的置信区间

$$\left(\frac{z}{x} - \frac{z}{y} - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \frac{z}{x} - \frac{z}{y} + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

查正态分布表得 $z_{0.05}$ =1.645,代入上式得所求的置信区间(-0.018,0.318)

 \mathbf{m} (2) σ_1 , σ_2 未知,但 $\sigma_1 = \sigma_2$, 估计 $\mu_1 - \mu_2$,采用统计量

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

置信水平为 $1-\alpha$ 的 $\mu_1 - \mu_2$ 的置信区间

$$\left(\frac{1}{x} - \frac{1}{y} - t_{\alpha/2}S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \frac{1}{x} - \frac{1}{y} + t_{\alpha/2}S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

取自由度k=8+9-2=15,查t 分布表得 $t_{0.05}=1.753$,再计算 $S_w=0.228$,

代入上式得所求的置信区间为(-0.044, 0.344).

(1)设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 μ_1, μ_2 ,求 σ_1^2/σ_2^2 的区间估计

利用随机变量

$$F = \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2 \sigma_2^2} \sim F(n_1, n_2)$$

对于给定的置信水平1- α ,构造置信区间 $(F_{1-\alpha/2},F_{\alpha/2})$

$$P\left\{F_{1-\alpha/2} \leq \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2 \sigma_2^2} \leq F_{\alpha/2}\right\} = 1 - \alpha$$

(1)设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 已知 μ_1, μ_2 ,求 σ_1^2/σ_2^2 的区间估计

把上述对于事件的描述转化为关于对方差比的描述

$$P\left(\frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{F_{\alpha/2} \sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{F_{1-\alpha/2} \sum_{j=1}^{n_2} (Y_j - \mu_2)^2 / n_2}\right) = 1 - \alpha$$

得置信水平为1- α 的 σ_1^2/σ_2^2 的置信区间:

$$\left(\frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1}{F_{\alpha/2} \sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2}, \frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1}{F_{1-\alpha/2} \sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2}\right)$$

(2)设两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 未知 μ_1, μ_2 , 求 σ_1^2/σ_2^2 的区间估计

由于二者的总体均值未知,替代为样本均值,采用随机变量:

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

对于给定的置信水平1- α ,构造置信区间 $(F_{1-\alpha/2},F_{\alpha/2})$

得置信水平为1- α 的 σ_1^2/σ_2^2 的置信区间

$$\left(rac{s_{1}^{2}}{F_{lpha/2}s_{2}^{2}}, \;\; rac{s_{1}^{2}}{F_{1-lpha/2}s_{2}^{2}}
ight)$$

例3 两台机床生产同一个型号的滚珠,从甲机床生产的滚珠中抽取8个,

从乙机床生产的滚珠中抽取9个,测得这些滚珠的直径(毫米)如下:

甲机床: 15.0, 14.8, 15.2, 15.4, 14.9, 15.1, 15.2, 14.8;

乙机床: 15.2, 15.0, 14.8, 15.1, 15.0, 14.6, 14.8, 15.1, 14.5.

设两台机床生产的滚珠直径服从正态分布

求: 这两台机床生产的滚珠直径方差比 σ_1^2/σ_2^2 的对应于置信水平 $1-\alpha=0.90$ 的置信区间, 如果:

- (1) 已知两台机床生产的滚珠直径的均值分别是 μ_1 =15.0(毫米)及 μ_2 =14.9(毫米);
- (2) 未知 μ_1 及 μ_2 .

(1) 取自由度 $\mathbf{n_1}$ =8, $\mathbf{n_2}$ =9,查F 分布表得 $F_{\alpha/2} = F_{0.05}(8,9) = 3.23$

利用
$$F$$
分布的性质计算 $F_{1-\alpha/2} = F_{0.95}(8,9) = \frac{1}{F_{0.05}(9,8)} = \frac{1}{3.39} = 0.295$

再计算

$$\sum_{i=1}^{8} (x_i - \mu_1)^2 = 0.34, \quad \sum_{j=1}^{9} (y_j - \mu_2)^2 = 0.46$$

代入求得置信区间(0.257, 2.819).

解 已知 n₁=8, n₂=9, α=0.10,

(2) 取自由度 $\mathbf{n_1}$ =8-1, $\mathbf{n_2}$ =9-1,查F分布表得 $F_{\alpha/2} = F_{0.05}(7,8) = 3.50$

利用F分布的性质计算

$$F_{1-\alpha/2} = F_{0.95}(7,8) = \frac{1}{F_{0.05}(8,7)} = \frac{1}{3.73} = 0.268$$

再计算

$$s_1^2 = 0.0457, \quad s_2^2 = 0.0575$$

代入求得置信区间(0.227, 2.966).

• • •	待估参数	前提条件	枢轴量
	均值 $\mu_1 - \mu_2$	方差已知	$V = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$
		方差未知, 但两个方 差相等	$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$
	方差 σ_1^2/σ_2^2	均值已知	$\frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 / n_1 \sigma_1^2}{\sum_{j=1}^{n_2} (y_j - \mu_2)^2 / n_2 \sigma_2^2} \sim F(n_1, n_2)$
		均值未知	$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$

表 7-1 正态总体均值、方差的置信区间与单侧置信限(置信水平为 $1-\alpha$)

	农,I 正心心中为医(力を附至旧位间与丰民重旧版\重旧水干为I—α)								
	待估 参数	其他 参数	枢轴量 W 的分布	置信区间	单侧置信限				
一个正态总体	μ	♂ 已知	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left(\overline{X}\pm rac{\sigma}{\sqrt{n}}z_{a/2} ight)$	$\bar{\mu} = \bar{X} + \frac{\sigma}{\sqrt{n}} z_a \mu = \bar{X} - \frac{\sigma}{\sqrt{n}} z_a$				
	μ	σ² 未知	$t = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$	$\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{a/2}(n-1)\right)$	$\overline{\mu} = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$ $\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$				
	σ^2	μ未知	$\chi^{2} = \frac{(n-1)S^{2}}{\sigma^{2}}$ $\sim \chi^{2}(n-1)$	$\left(\frac{(n-1)S^2}{\chi_{a/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-a/2}^2(n-1)}\right)$	$\overline{\sigma^2} = \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)} \underline{\sigma}^2 = \frac{(n-1)S^2}{\chi^2_{\alpha}(n-1)}$				
两个正态总体	$\mu_1-\mu_2$	σ_1^2 , σ_2^2 已知	$Z = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim N(0, 1)$	$\left(\overline{X}-\overline{Y}\pm z_{\sigma/2}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}} ight)$	$egin{aligned} \overline{\mu_1-\mu_2} &= \overline{X}-\overline{Y}+z_a\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}} \ \underline{\mu_1-\mu_2} &= \overline{X}-\overline{Y}-z_a\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}} \end{aligned}$				
	$\mu_1-\mu_2$	$ \sigma_1^2 = \sigma_2^2 $ $ = \sigma^2 $ 未知	$t = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $\sim t(n_1 + n_2 - 2)$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$	$\overline{\mu_{1} - \mu_{2}} = \overline{X} - \overline{Y}$ $+ t_{a}(n_{1} + n_{2} - 2)S_{w} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$ $\underline{\mu_{1} - \mu_{2}} = \overline{X} - \overline{Y}$ $- t_{a}(n_{1} + n_{2} - 2)S_{w} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$				
	$\frac{\sigma_1^2}{\sigma_2^2}$	μı ,μ ₂ 未知	$F = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$	$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$	$ \frac{\overline{\frac{\sigma_1^2}{\sigma_2^2}}}{\frac{\sigma_2^2}{\sigma_2^2}} = \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha}(n_1 - 1, n_2 - 1)} $ $ \frac{\sigma_1^2}{\frac{\sigma_2^2}{\sigma_2^2}} = \frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha}(n_1 - 1, n_2 - 1)} $				

7.6 非正态总体参数的区间估计

若总体不服从正态分布时,一般很难确定总体中的未知参数的区间估计;

但当样本容量 n 很大时,中心极限定理告诉我们 $\frac{X-\mu(\theta)}{\sigma(\theta)/\sqrt{n}}$ 近似

$$\frac{\overline{X} - \mu(\theta)}{\sigma(\theta) / \sqrt{n}}$$
 近似

<mark>服从标准正态分布 N(0,1)</mark>. 可利用此作出近似的区间估计.

设总体X服从某一分布,其概率函数或密度函数中含有未知参数 θ ,则总

体均值与方差都依赖于参数 θ . 对于样本 X_1, X_2, \dots, X_n , 它们相互

独立且与总体同分布,设

$$E(X_i) = \mu(\theta), \ D(X_i) = \sigma^2(\theta), \ (i = 1, 2, \dots, n)$$

pp. 32 南开大学 计算机学院

7.6 非正态总体参数的区间估计

当样本容量n充分大(≥ 50)时,由列维定理知,样本函数 $\frac{X-\mu(\theta)}{\sigma(\theta)/\sqrt{n}}$ 近似

因此,对给定的置信水平 $1-\alpha$,有

服从标准正态分布N(0,1).

$$P\left\{\frac{\left|\overline{X} - \mu(\theta)\right|}{\sigma(\theta)/\sqrt{n}} \le z_{\alpha/2}\right\} \approx 1 - \alpha$$

若能从不等式 $\frac{\left|x-\mu(\theta)\right|}{\sigma(\theta)/\sqrt{n}} \le z_{\alpha/2}$ 解出参数 θ ,把关于随机事件的概

率描述转换为关于参数 θ 的描述,从而得到参数 θ 的近似置信水平为 $1-\alpha$ 的置信区间。

服从0-1分布的总体参数p的区间估计

设总体X服从 "0-1"分布: x=0 或者 x=1,其中参数 p 未知. 则E(X)=p

D(X) = p(1-p)。对给定的置信水平1- α ,得

$$P\left\{\frac{\left|\overline{X}-p\right|}{\sqrt{p(1-p)}/\sqrt{n}} \le z_{\alpha/2}\right\} \approx 1-\alpha$$

对不等式 $\frac{\left|x-p\right|}{\sqrt{p(1-p)}/\sqrt{n}} \le z_{\alpha/2}$ 两边平方并整理得

$$n(\overline{x}-p)^2 \le p(1-p)z_{\alpha/2}^2$$

再化作关于p的二次不等式

$$(n+z_{\alpha/2}^2)p^2 - (2nx + z_{\alpha/2}^2)p + nx^{-2} \le 0$$

服从0-1分布的总体参数p的区间估计

$$(n+z_{\alpha/2}^2)p^2 - (2nx + z_{\alpha/2}^2)p + nx^{-2} \le 0$$

$$\Leftrightarrow a = n + z_{\alpha/2}^2, b = -(2nx + z_{\alpha/2}^2), c = nx^{-2}$$

因为各 x_i 取值0或1,故 $0 \le x \le 1$,从而判别式

$$b^{2} - 4ac = 4nx(1-x)z_{\alpha/2}^{2} + z_{\alpha/2}^{4} > 0$$

$$\widehat{p}_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$\widehat{p}_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

则参数 p 的近似置信区间为 $(\widehat{p_1},\widehat{p_2})$

服从0-1分布的总体参数p的区间估计

例4:从一批产品中,抽取100个样品,发现其中有75个优质品 求 这批产品的优质品率 p 对应于置信水平 0.95 的置信区间.

$$\mathbf{R}$$
 设总体 $X = \begin{cases} 0 & \text{取到非优质品} \\ 1 & \text{取到优质品} \end{cases}$

则 X 服从 "0-1"分布: $P\{X = x\} = p^x (1-p)^{1-x}$ x=0 或者 x=1

其中p为这批产品的优质品率.

按题意,样本容量n=100,在样本观测中恰有25个0与75个1,所以 x=0.75 查表得 $z_{\alpha/2}=z_{0.025}=1.96$,于是代入公式计算得

$$a = 100 + 1.96^{2} = 103.8406$$

 $b = -(2 \times 100 \times 0.75 + 1.96^{2}) = -153.8416$
 $c = 100 \times 0.75^{2} = 56.25$

由此得 $\widetilde{p_1} = 0.657, \widetilde{p_2} = 0.825$ 参数 p 的近似置信区间为(0.657,0.825)

服从<mark>指数分布</mark>的总体参数θ的区间估计

总体X 服从指数分布 $e(\theta)$, 其中参数 θ 未知, 则 $E(X) = \theta$, $D(X) = \theta^2$.

对给定的置信水平1-
$$\alpha$$
,有 $P\left\{\frac{\left|\overline{X}-\theta\right|}{\theta/\sqrt{n}} \le Z_{\alpha/2}\right\} \approx 1-\alpha$

$$P\left\{\frac{\overline{X}}{1 + \frac{z_{\alpha/2}}{\sqrt{n}}} \le \theta \le \frac{\overline{X}}{1 - \frac{z_{\alpha/2}}{\sqrt{n}}}\right\} \approx 1 - \alpha$$

故参数 θ 的近似置信区间为

$$\left(\frac{\frac{z}{x}}{1+\frac{z_{\alpha/2}}{\sqrt{n}}}, \frac{\frac{z}{x}}{1-\frac{z_{\alpha/2}}{\sqrt{n}}}\right)$$

南开大学 计算机学院

服从<mark>指数分布</mark>的总体参数 θ 的区间估计

例5: 从一批电子元件中,随机抽取 50 个样品,测得它们的平均寿命为 1200 小时,设电子元件的使用寿命服从指数分布 $e(\theta)$,求参数 θ 相应 于置信水平 0.99 的置信区间.

解 已知 n = 50, $\bar{x} = 1200$, $\alpha = 0.01$, 查正态分布表得 $Z_{0.005} = 2.576$.

$$\hat{\theta}_1 = \frac{\overline{x}}{1 + \frac{z_{\alpha/2}}{\sqrt{n}}} = \frac{1200}{1 + \frac{2.576}{\sqrt{50}}} = 879.571$$

$$\hat{\theta}_2 = \frac{\overline{x}}{1 - \frac{z_{\alpha/2}}{\sqrt{n}}} = \frac{1200}{1 - \frac{2.576}{\sqrt{50}}} = 1887.687$$

故所求参数 θ 的置信区间为 (879.571, 1887.687).

Review1

统计任务:

[1] 参数估计

- -- 点估计
- -- 区间估计

[2] 假设检验

- -- 关于参数的假设
- -- 关于分布的假设

基本概念

- □ 对某一数量(或几个)指标进行随机实验、观察, 将试验的全部可能的观察值称为<u>总体</u>。
- □ 每个可能的观察值称为<u>个体</u>

总体 ◆ 随机变量

Review2

抽样:对总体进行一次观察并记录其结果,称为一次抽样;

对X独立进行n次观察,并将结果按顺序记为

$$X_1, \dots, X_n$$

样本: 随机抽取部分个体, 以用于推断总体的特性。

样本与总体是同分布的

样本之间是独立的

统计量: 样本的函数,除了样本、样本的参数外,不含有 其他未知量

抽样分布: 统计量的分布称为抽样分布

Review3

参数估计

▶ 点估计: 总体X的形式已知, 但有参数未知;

借助总体X的样本来估计总体分布中的未知参数θ

矩估计

最大似然估计

 \triangleright 区间估计:确定两个估计量 $\hat{\theta}_1(X_1,\dots,X_n),\hat{\theta}_2(X_1,\dots,X_n)$ 并给出落在此区间的概率 $1-\alpha$ 。

 $\pi(\hat{\theta}_1,\hat{\theta}_2)$ 为置信水平为 $1-\alpha$ 的置信区间。

pp. 41 南开大学 计算机学院