Elementy Modelowania Matematycznego

Wykład 8

Programowanie nieliniowe

Spis treści

Programowanie nieliniowe

- ◆ Zadanie programowania nieliniowego jest identyczne jak dla programowania liniowego, ale w przeciwieństwie do programowania liniowego, nie istnieje jeden uniwersalny algorytm rozwiązywania zadań programowania nieliniowego.
- Wynika to z faktu iż funkcje nieliniowe stanowią (w pewnym sensie) dużo bardziej obszerną rodzinę funkcji niż funkcje liniowe.

- Funkcje nieliniowe charakteryzują się następującymi cechami, które mogą utrudniać obliczenia:
 - występowanie tzw. ekstremów lokalnych (lokalne minima lub maksima),
 - występowanie tzw. punktów siodłowych, czyli takich, dla których funkcja osiąga maksimum dla jednej zmiennej, a minimum dla innej (na wykresie funkcji 2 zmiennych wyglądają one jak przełęcz lub siodło - stad nazwa),

- nieciągłości ('przerwy' w wykresach),
- osobliwości (funkcja dąży do plus lub minus nieskończoności dla skończonej wartości argumentu).
- Wszystko to powoduje, że poszukiwanie rozwiązania konkretnych zadań programowania nieliniowego zależy od szczególnej postaci tego zadania.

- Niektóre zadania programowania nieliniowego można rozwiązać:
 - przy pomocy specjalnego algorytmu, jeśli zadanie zalicza się do jednego z podtypów, dla których takie algorytmy są znane;
 - metodą simpleks, jeżeli istnieje możliwość przekształcenia w zadanie programowania liniowego np. tzw. Programowanie ilorazowe

- ◆ Przekształcając do postaci zadania programowania liniowego całkowitoliczbowego – przykładem może być zadanie transportowo-produkcyjne ze stałym kosztem uruchomienia produkcji czy zadanie optymalnej diety ze stałymi kosztami zakupu.
- W ogólnym przypadku nie ma niestety żadnej gwarancji, że zadanie da się rozwiązać.

- Zadanie programowania ilorazowego jest to maksymalizacja lub minimalizacja ilorazu dwóch funkcji liniowych przy ograniczeniach liniowych.
- Standardowa postać zadania programowania ilorazowego wygląda następująco:

$$\frac{c_0 + c_1 x_1 + \dots + c_n x_n}{d_0 + d_1 x_1 + \dots + d_n x_n} \to \min \quad \max$$

Przy ograniczeniach:

$$a_{11}x_1 + \cdots + a_{1n}x_n \le b_1$$

$$a_{m1}x_1 + \cdots + a_{mn}x_n \le b_m$$

 $x_1 \geq 0, \ldots x_n \geq 0$ Jeśli $d_0 + d_1x_1 + \cdots + d_nx_n \neq 0$ dla $(x_1, \ldots, x_n \in D)$ to zadanie programowania ilorazowego można sprowadzić do zadania programowania liniowego.

Wprowadźmy nowe zmienne:

$$y_{1} = \frac{x_{1}}{d_{0} + d_{1}x_{1} + \dots + d_{n}x_{n}}$$

$$y_{n} = \frac{x_{n}}{d_{0} + d_{1}x_{1} + \dots + d_{n}x_{n}}$$

$$t = \frac{1}{d_{0} + d_{1}x_{1} + \dots + d_{n}x_{n}}$$

Wtedy

$$x_i = \frac{y_i}{t}$$

 i poszukiwanie rozwiązania zadania programowania ilorazowego sprowadza się do rozwiązania zadania programowania liniowego.

Rozwiązywanie graficzne zadania programowania ilorazowego z dwiema zmiennymi wygląda analogicznie jak rozwiązywanie graficzne zadania programowania liniowego tzn. należy wykreślić w układzie współrzędnych zbiór rozwiązań dopuszczalnych, a następnie sprawdzać wartości funkcji celu dla współrzędnych wierzchołków.

Niemniej jednak przekształcenie w zadanie programowania liniowego w podany wyżej sposób nie jest akurat w tym przypadku ułatwieniem, ponieważ przekształcenie to wprowadza dodatkową zmienną t, co prowadziłoby do konieczności sporządzenia wykresu 3-wymiarowego.

 Programowanie ilorazowe jest stosowane przy problemach decyzyjnych wymagających pogodzenia ze sobą dwóch sprzecznych kryteriów optymalności np.

$$\frac{\text{zysk}}{\text{pracochłonność}} \rightarrow \text{max}$$

$$\frac{\text{przychód}}{\text{koszty}} \rightarrow \text{max}$$

$$\frac{\text{koszty paszy}}{\text{dzienny przyrost masy zwierząt}} \rightarrow \text{min}$$

Programowanie nieliniowe

- Szukanie ekstremum bezwarunkowego
- Funkcja celu f osiąga bezwarunkowe ekstremum w punkcie stacjonarnym w przypadku nieujemnej wartości wyznacznika macierzy drugich pochodnych funkcji celu f po poszczególnych zmiennych i ich kombinacjach.
- Ponadto wszystkie minory główne takiej macierzy muszą być dodatnie.

Programowanie nieliniowe

 Współrzędne punktu stacjonarnego można otrzymać przyrównując do zera wartości pierwszych pochodnych cząstkowych funkcji celu f po poszczególnych zmiennych.

$$\det\begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \cdots & \cdots & \cdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} \ge 0$$

$$\frac{\partial f}{\partial x_1} = 0, \quad \frac{\partial f}{\partial x_2} = 0, \dots, \frac{\partial f}{\partial x_n} = 0,$$

- Przykład:
- Wyznacz ekstrema lokalne

$$f(x, y) = 2x^3 + y^3 - 6x - 12y$$

Obliczamy pierwsze pochodne cząstkowe:

$$f_x = 6x^2 - 6$$

$$f_{v} = 3y^2 - 12$$

$$6x^2 - 6 = 0$$

$$3y^2 - 12 = 0$$

- Czyli:
- x = 1 lub x = -1
- y = 2 lub y = -2

Otrzymujemy cztery punkty stacjonarne:

$$egin{aligned} P_1(1,2) \ P_2(1,-2) \ P_3(-1,2) \ P_4(-1,-2) \end{aligned}$$

 W punktach tych mogą znajdować się ekstrema lokalne.

Następnie liczymy drugie pochodne cząstkowe:

$$f_{xx} = 12x$$

$$f_{xy} = 0$$

$$f_{yx} = 0$$

$$f_{yy} = 6y$$

Budujemy macierz drugich pochodnych:

$$egin{array}{c|c} f_{xx} & f_{xy} \ f_{yx} & f_{yy} \ \end{array}$$

• Czyli:

$$\begin{vmatrix} 12x & 0 \\ 0 & 6y \end{vmatrix}$$

- Sprawdzamy wyznaczniki macierzy dla kolejnych punktów stacjonarnych:
- $\Phi_1 \qquad \det = \begin{vmatrix} 12 & 0 \\ 0 & 12 \end{vmatrix} = 144$
- Dodatni wyznacznik oznacza istnienie ekstremum lokalnego w punkcie P₁
- Następnie liczymy minory (znak dodatni oznacza istnienie minimum, ujemny maksimum)

◆ W naszym przykładzie minory są dodatnie, co oznacza, że w punkcie P₁ mamy minimum lokalne

$$f(1,2)=2+8-6-24=-20$$

• Dla punktu $P_2(1,-2)$

$$\det = \begin{vmatrix} 12 & 0 \\ 0 & -12 \end{vmatrix} = -144$$

 Ujemny wyznacznik oznacza brak ekstremum lokalnego w tym punkcie.

• Dla punktu $P_3(-1,2)$

$$\det = \begin{vmatrix} -12 & 0 \\ 0 & 12 \end{vmatrix} = -144$$

 Ujemny wyznacznik oznacza brak ekstremum lokalnego w tym punkcie.

• Dla punktu $P_4(-1,-2)$

$$\det = \begin{vmatrix} -12 & 0 \\ 0 & -12 \end{vmatrix} = 144$$

Minory ujemne czyli jest maksimum

Funkcja Lagrange'a

 Funkcja Lagrange'a L wiąże funkcję celu f z funkcjami ograniczeń g_i, dzięki użyciu wektora tak zwanych nieoznaczonych mnożników Lagrange'a (λ)

$$L(x; \lambda) = f(x) + \lambda g$$

Funkcja Lagrange'a

• Dzięki wprowadzeniu funkcji L można zastąpić poszukiwania optymalnej warunkowej wartości funkcji celu f, poszukiwaniami odpowiadającej jej bezwarunkowej wartości optymalnej funkcji L.

Rozwiązanie optymalne

 Rozwiązanie optymalne otrzymuje sie rozwiazując następujący układ równań, zawierający n + r równań (n – liczba zmiennych decyzyjnych, r - liczba funkcji ograniczeń g_i):

$$\frac{\partial L}{\partial x} = 0, \qquad \frac{\partial L}{\partial \lambda} = 0$$

 W celu przekształcenia równań w nierówności, wprowadza się zmienne bilansujące, tzw. zmienne nieistotne u²

$$x_1 + x_2 \le 10 \rightarrow x_1 + x_2 + u^2 = 10$$

 $x_1 + x_2 \ge 10 \rightarrow x_1 + x_2 - u^2 = 10$

Rozwiązanie optymalne

$$\frac{\partial L}{\partial x} = 0, \quad \frac{\partial L}{\partial \lambda} = 0, \quad \frac{\partial L}{\partial u} = 0$$

◆ Twierdzenie Kuhna-Tuckera

$$f(x_1,x_2,\ldots x_n) o \min$$
 $g_i((x_1,x_2,\ldots x_n))\leq 0,\quad i=1,2,\ldots,r,\quad (x_1,x_2,\ldots x_n)\geq 0$ $L(x,\lambda)=f(x)+\lambda g$

Warunki Kuhna-Tuckera

$$\frac{\partial L}{\partial x} \ge 0$$
, $\frac{\partial L}{\partial x} x = 0$, $g(x) = 0$, $g\lambda = 0$, $x \ge 0$, $\lambda \ge 0$

◆ Twierdzenie Kuhna-Tuckera

Oznaczenia:

$$\frac{\partial L}{\partial x} = \nu, \qquad g(x) = w$$

Zmodyfikowane warunki Kuhna-Tuckera

$$\frac{\partial L}{\partial x} - \nu = 0$$
, $\nu x = 0$, $g(x) + w = 0$, $w \lambda = 0$, $x \ge 0$, $\lambda \ge 0$

- Rozwiązanie optymalne można uzyskać rozpatrując wszystkie możliwe (spełniające ograniczenia) kombinacje wartości składowych wektorów: v, λ oraz w.
- W tym celu należy rozwiązać poszczególne układy równań, wynikające z warunków Kuhna-Tuckera.

Modelowanie całkowitoliczbowe

- W modelach programowania matematycznego zmiennych całkowitoliczbowych używa się m.in.:
 - Do reprezentowania wielkości, które w swej naturze są całkowitoliczbowe, np. liczba produkowanych samochodów, samolotów, liczba budowanych domów, liczba zatrudnionych pracowników itp.

Modelowanie całkowitoliczbowe

 Do modelowania zmiennych decyzyjnych służących do wyboru decyzji ze zbioru możliwych decyzji. Są to najczęściej zmienne binarne. Np.

$$\delta = \begin{cases} 1 & \text{nale} \dot{z} y \text{ zbudować magazyn} \\ 0 & \text{nie budujemy} \end{cases}$$

lub też

$$\gamma = \begin{cases} 0 \geq 0 & \text{nic nie budujemy} \\ 1 & \text{należy zbudować magazyn A} \\ 2 & \text{należy zbudować magazyn A} \end{cases}$$

Modelowanie całkowitoliczbowe

- Do wyrażenia pewnych stanów zmiennych ciągłych w modelach liniowych. Są to binarne zmienne wskaźnikowe.
- Do modelowania warunków logicznych w rzeczywistych zagadnieniach.
- Do modelowania niektórych nieliniowych zależności.

Zmienne wskaźnikowe

 δ – zmienna wskaźnikowa związaną ze zmienną ciągłą x to zmienna binarna, której celem jest rozróżnienie pomiędzy stanem zmiennej x=, a stanem x>0.

Zmienne wskaźnikowe

Przykład. (Problem stałych kosztów).

Niech x będzie ilością wytwarzanego produktu po kosztach jednostkowych C_1 , a stałe koszty produkcji niech wynoszą C_2 . Całkowity koszt K_c wynosi zatem:

$$K_c = \begin{cases} 0 & \text{jeśli } x = 0 \\ C_1 x + C_2 & \text{jeśli } x > 0 \end{cases}$$

Koszt całkowity K_c nie jest funkcją liniową. Wprowadzając zmienną wskaźnikową δ taką, że $x>0\Rightarrow \delta=1$ otrzymujemy liniową funkcje celu

$$K_c(x) = C_1 x + C_2 \delta$$

