Outlier Analysis with Bayesian inference

Hao Chi Kiang

Outline

Outlier Analysis with Bayesian inference
Simple univariate normal location-scale model
Mixture of normals with outlier detection
Mixture of multivariate normals with outlier detection
Bayesian Regression with outlier detection

Normal location-scale model for outlier detection (Verdinelli and Wasserman 1991)

▶ Let $y = (y_i)_{i \in I}$ be a family of random quantities with density

$$p(y_i|\mu,\sigma^2,A_i) = (1-\epsilon)\phi(y_i;\mu,\sigma^2) + \epsilon\phi(y_i;\mu+A_i,\sigma^2)$$

- \bullet ϕ is the normal density.
- $m{\epsilon}$ is the probability of outlying and assumed to be known
- $\epsilon \in]0, \frac{1}{2}[$
- ► $A = (A_i)_{i \in I}$ are 'outliers' displacement'
- ▶ We know y_i and want to infer μ , σ and A

Re-expression of location-scale problem

► For each $i \in I$, let δ_i be independent Bernouli variable, with $E(\delta_i) = \epsilon$. Then the likelihood is:

$$y_i|\mu,\sigma^2,A,\delta\sim N(\mu+\delta_iA_i,\sigma^2)$$

- $\delta_i = 1$ means y_i is an outlier.
- ► Assume $(A_i)_{i \in I}$ are mutually independent
- We need 4 conditional distributions for Gibbs sampling

Conditional posteriors for Gibbs sampling (μ and σ^2)

- Let $y_i^* = y_i \delta_i A_i$, then $y_i^* \sim N(\mu, \sigma^2)$
- Semi-conjugate prior for μ and σ

$$\mu|A,\delta \sim N(\mu_0,\tau_0^2)$$
 $\sigma^2|A,\delta \sim \text{Scaled-inv-}\chi^2(\nu_0,\sigma_0^2)$

Posterior

$$\mu|y, \sigma^{2}, A, \delta \sim N\left(\frac{\tau_{0}^{2}\mu_{0} + \sigma^{-2}\sum_{i \in I}y_{i}^{*}}{\tau_{0}^{2} + n\sigma^{-2}}, \frac{1}{(\tau_{0}^{2} + n\sigma^{-2})}\right)$$

$$\sigma^{2}|\mu, y, A, \delta \sim \text{Scaled-inv-}\chi^{2}(\nu_{0} + n, \frac{\nu_{0}\sigma_{0}^{2} + \sum_{i \in I}(y_{i}^{*} - \mu)^{2}}{\nu_{0} + n})$$

$$n = |I|$$

Conditional posteriors for Gibbs sampling (δ and A)

▶ The Bernouli outlier assignments δ_i :

$$E(\delta_i|y,\mu,\sigma^2,A) = \frac{\epsilon\phi(y_i;\mu+A_i,\sigma^2)}{\epsilon\phi(y_i;\mu+A_i,\sigma^2) + (1-\epsilon)\phi(y_i;\mu,\sigma^2)}$$

- ► The outlier displacement *A*_i
 - Prior $A_i \sim N(0, \xi^{-2})$
 - Posterior

$$p(A_i|y, \mu, \sigma^2, \delta) = \delta_i \phi \left(A_i; y_i - \mu, (\xi^2 + \sigma^{-2})^{-1} \right) + (1 - \delta_i) \phi(A_i; 0, \xi^{-2})$$

Now we have all the posterior conditional distributions. Gibbs sampling!

Alternative: assuming unknown ϵ

- ▶ In practice, setting ϵ = 0.05 works well
- But we can treat it as random variable if we want
 - Assume ϵ depends only on δ
 - Prior

$$\epsilon \sim Beta(\alpha, \beta)$$

Posterior

$$\epsilon | \delta = Beta \left(\alpha + \sum_{i \in I} \delta_i, \ \beta + \sum_{i \in I} (1 - \delta_i) \right)$$

How to set α and β ?

- User set the $E(\epsilon)$ for the prior
- ▶ Additionally, we assume $p(\epsilon < \frac{1}{2}) = 0.99$
- Solve equations r.w.t α and β

$$\begin{cases} E(\epsilon) = \frac{\alpha}{\alpha + \beta} \\ \frac{\int_0^{\frac{1}{2}} t^{\alpha - 1} (1 - t)^{\beta - 1} dt}{\int_0^{1} t^{\alpha - 1} (1 - t)^{\beta - 1} dt} = 0.99 \end{cases}$$

► Can be done in R with 'uniroot()' and 'pbeta()' with three lines of codes

Probability of being outlier

Mixture of normals with outlier detection

- ► Multiple mixtures of normals $N(\mu_k, \sigma_k^2)$, $k \in K$
- ► Mixture Weights: $(w_k)_{k \in K}$
- Augment data with
 - ► Mixture indicator $(z_i)_{i \in I}$ where $z_i \in \{1, ..., k\}$
 - ▶ Outliers indicator $(\delta_i)_{i \in I}$
 - ▶ Outliers' displacement $(A_i)_{i \in I}$
- Likelihood becomes

$$p(y_i|z,\mu,\sigma,\delta,A,w) = \sum_{k \in K} w_k \phi(y_i;\mu_k + \delta_i A_i,\sigma_k^2)(z_i = k)$$

where (E) denotes indicator function of proposition E

▶ Note that A_i depends on z_i now

Mixture of normals with outlier detection (μ and σ)

▶ Let $y_i^* = y_i - \delta_i A_i$. Then

$$p(y_i^*|z,\mu,\sigma,\delta,A,w) = \sum_{k \in K} w_k \phi(y_i^*;\mu_k,\sigma_k^2)(z_i = k)$$

• Semi-conjugate prior for the μ 's and σ 's

$$\mu_k|A, \delta, w, z_i, \epsilon \sim N(\mu_0, \tau_0^2)$$

 $\sigma_k^2|A, \delta, w, z_i, \epsilon \sim \text{Scaled-inv-}\chi^2(\nu_0, \sigma_0^2)$

Mixture of normals with outlier detection (μ and σ)

► Conditional Posterior for the μ 's and σ 's

$$\mu_{k}|y, \sigma^{2}, A, \delta, w, z_{i}, \epsilon \sim N\left(\frac{\tau_{0}^{2}\mu_{0} + \sigma_{k}^{-2}\sum_{i \in I_{k}}y_{i}^{*}}{\tau_{0}^{2} + n_{k}\sigma_{k}^{-2}}, \frac{1}{(\tau_{0}^{2} + n_{k}\sigma_{k}^{-2})}\right)$$

$$\sigma_{k}^{2}|y, \mu, A, \delta, w, z_{i}, \epsilon \sim \text{Scaled-inv-}\chi^{2}\left(\nu_{0} + n_{k}, \frac{\nu_{0}\sigma_{0}^{2} + \sum_{i \in I_{k}}(y_{i}^{*} - \mu_{k})^{2}}{\nu_{0} + n_{k}}\right)$$

$$I_k = \{i \in I : z_i = k\}$$

$$n_k = |I_k|$$

Mixture of normals with outlier detection (z and w)

Conditional posterior for z

$$p(z_i|y, w, \mu, \sigma, w, A, \delta, \epsilon) = \sum_{k \in K} \frac{w_k \phi(y_i; \mu_k, \sigma_k^2)}{\sum_{m \in K} w_m \phi(y_i; \mu_m, \sigma_m^2)} (z_i = k)$$

- Conditional posterior for w
 - Depends only on z
 - Use the Dirichlet-Multinomial conjugate prior

$$w|y, \mu, \sigma, A, \delta, \epsilon$$
 Dirichlet (γ)

► Then posterior is

$$w|y, \mu, \sigma, z, A, \delta, \epsilon$$
 Dirichlet $((n_k + \gamma_k)_{k \in K})$

Mixture of normals with outlier detection (δ)

• Conditional posterior for δ_i

$$E(\delta_i|y,\mu,\sigma^2,w,z,A,\epsilon) = \frac{\epsilon\phi(y_i;\dot{\mu}_i+A_i,\dot{\sigma}_i^2)}{\epsilon\phi(y_i;\dot{\mu}_i+A_i,\dot{\sigma}_i^2) + (1-\epsilon)\phi(y_i;\dot{\mu}_i,\dot{\sigma}_i^2)}$$

$$\dot{\mu}_i = \sum_{k \in K} \mu_k(z_i = k)$$
$$\dot{\sigma}_i^2 = \sum_{k \in K} \sigma_k^2(z_i = k)$$

Mixture of normals with outlier detection (A and ϵ)

- ightharpoonup Conditional posterior for A_i
 - Prior $A_i \sim N(0, \xi^{-2})$

$$p(A_{i}|y, \mu, \sigma^{2}, w, z, \delta, \epsilon) = \delta_{i}\phi\left(A_{i}; y_{i} - \dot{\mu}_{i}, (\xi^{2} + \dot{\sigma}_{i}^{-2})^{-1}\right) + (1 - \delta_{i})\phi(A_{i}; 0, \xi^{-2})$$

- Completely the same as non-mixture version, except μ and σ becomes $\dot{\mu}_i$ and $\dot{\sigma}_i$
- **ightharpoonup** Considiton posterior of ϵ is the same as non-mixture version

Daily rain fall somewhere in Washinton

Probability of observation being outlier

Daily rain fall somewhere in Washinton

Probability of observation being outlier

Mixture of multivariate normals with outlier detection

- Everything is the same for multivariate, except μ and Σ
- Use Normal-Inverse-Wishart joint prior instead

$$\Sigma_{k}|A, \delta, w, z_{i}, \epsilon \sim IW(\nu_{0}, \Lambda_{0})$$

$$\mu_{k}|\Sigma, A, \delta, w, z_{i}, \epsilon \sim N\left(\mu_{0}, \frac{1}{\kappa_{0}}\Sigma_{k}\right)$$

$$\Sigma_{k}|y, A, \delta, w, z_{i}, \epsilon \sim IW\left(\nu_{0} + n_{k}, \Lambda_{0} + S_{k} + \frac{\kappa_{0}n_{k}}{\kappa_{0} + n_{k}}(m_{k} - \mu_{0})(m_{k} - \mu_{0})^{T}\right)$$

$$\mu_{k}|y, \Sigma, A, \delta, w, z_{i}, \epsilon \sim N\left(\frac{\kappa_{0}\mu_{0} + n_{k}m_{k}}{\kappa_{0} + n_{k}}, \frac{1}{\kappa_{0} + n_{k}}\Sigma_{k}\right)$$

$$m_{k} = \frac{1}{n_{k}} \sum_{i \in I_{k}} y_{i}^{*}$$

$$S_{k} = \sum_{i \in I_{k}} (y_{i}^{*} - m_{k})(y_{i}^{*} - m_{k})^{T}$$

Bayesian Regression with outlier detection

Simple linear regression model

$$y_i|\beta = \beta^T x_i + r_i$$

where $(r_i)_{i \in I}$ are mutually independent $N(0, \sigma^2)$

- But it hurts when there are outlying residuals
- Solution: Augment the data and redefine the likelihood

$$y_i|\beta, \sigma^2, A, \epsilon, (\delta_i = 0) = \beta^T x_i + r_i$$

 $y_i|\beta, \sigma^2, A, \epsilon, (\delta_i = 1) = A_i + r_i$

- Implication:
 - $E(r_i|\delta,A)=0+\delta_iA_i$
 - \triangleright β doesn't depend on outlying data any more

Bayesian Regression with outlier detection (β and σ)

▶ Joint prior for β and σ $\beta|\sigma^2, \delta, A, \epsilon \sim N(\mu_0, \sigma^2 \Omega_0^{-1}) \quad \sigma^2|\delta, A, \epsilon \sim \text{Scaled-inv-}\chi^2(\nu_0, \sigma_0^2)$

Posterior

$$\beta|y,\sigma^2,\delta,A,\epsilon\sim N\left(\mu_n,\sigma^2\Omega_n^{-1}\right)$$
 $\sigma^2|y,\delta,A,\epsilon\sim \text{Scaled-inv-}\chi^2\left(\nu_n,\sigma_n\right)$ where

$$\mu_{n} = \Omega_{n}^{-1} (\dot{X}^{T} \dot{y} + \Omega_{0} \mu_{0})$$

$$\sigma_{n} = \frac{1}{\nu_{n}} (\nu_{0} \sigma_{0}^{2} + (\dot{y}^{T} \dot{y} + \mu_{0}^{T} \Omega_{0} \mu_{0} - \mu_{n}^{T} \Omega_{n} \mu_{n}))$$

$$\nu_{n} = \nu_{0} + \sum_{i \in I} (\delta_{i} = 0)$$

$$\Omega_{n} = \dot{X}^{T} \dot{X} + \Omega_{0}$$

$$\dot{X} = \begin{bmatrix} x_{j_{1}} & x_{j_{2}} & \cdots \end{bmatrix}^{T}, \ j_{p} \in \{i : \delta_{i} = 0\}$$

$$\dot{y} = \begin{bmatrix} y_{j_{1}} & y_{j_{2}} & \cdots \end{bmatrix}^{T}$$

Bayesian Regression with outlier detection (δ)

• Conditional posterior of δ

$$E(\delta_i|y,\beta,\sigma^2,A,\epsilon) = \frac{\epsilon\phi(r_i;A_i,\sigma^2)}{\epsilon\phi(r_i;A_i,\sigma^2) + (1-\epsilon)\phi(r_i;0,\sigma^2)}$$

Note that r is given when both y, β are given:

$$r_i = y_i - \beta^T x_i$$

▶ Conditional posterior of A and ϵ are just same as before

Fuel efficiency of some cars vs. Engine displacement (mtcars data set in R)

Works Cited

Verdinelli, Isabella and Larry Wasserman (1991). "Bayesian analysis of outlier problems using the Gibbs sampler". In: *Statistics and Computing* 1, pp. 105–117.

Source code

https://github.com/hckiang/bayesian-outlier-model

