Expectation-Maximization

Who am 1?

网络, टाणिंग 이 게 → 게 바까 > 사 टाणिंग 들어오면 어떻게 게야할까

- ① 비슷한 데이터게리 잘 나뉘어 있을때 내 데이터가 어디속할것인가
- () label of क्षेत्रियम स्वाचिक कि कि कि कि

X

Who am I?

Observations $x_1 \dots x_n$

What if we know the source of each observation? Supervised

Latan SER classifier WEFRON AHZE MINER SATE

unsupervised manner

Observations $x_1 ... x_n$

What if we know the source of each observation?

What if we don't know the source of each observation?

Image segmentation

प्रकाशिक अध्या युर्भे मु

objecter background 구성 - Platanist clue로 찾아서 나누야합

Motif finding

〈동천 던지기〉

钗 Type: A,B

?HHHHTTHTHT

A, B 각각에 आ당하는 모델을 만들면 새로 동건을 던졌는데 A인지 B인지 안누있는

We need a model with parameter θ

Oata의 probability을 maximize 한구있는 연간은 찾아서 그 모델의 parameter 3 구겠다

We need a model with parameter θ

$${\stackrel{\wedge}{\theta}} = \underset{\theta}{\operatorname{argmax}} P(D|\theta)$$

Lutaes probability & mus sta D

$$P(D|\theta) = \theta^{h}(I-\theta)^{t}$$

 θ = prob. of heads h = # of head t = # of tail

We need a model for each class θ_A = prob. of heads in coin type A θ_B = prob. of heads in coin type B

$$hrac{1}{ heta} + trac{-1}{1- heta} = 0$$

$$\theta = \frac{h}{h+t} = \frac{\cancel{\text{tr}}}{\cancel{\text{NMI AIM}}} = \cancel{\text{trool up}}$$

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

estimation

$$\hat{\theta}_{A} = \frac{24}{24 + 6} = 0.80$$
막 명이 나는 빨갛

$$\hat{\theta}_{B} = \frac{9}{9 + 11} = 0.45$$

data의 학율은 maximize 할수있는 모델 TLY이터를 정할수있다

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_{A} = \frac{24}{24 + 6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9 + 11} = 0.45$$

$$\hat{y} = \hat{f}(\mathbf{x}) = rgmax_{c=1}^{C} p(y = c | \mathbf{x}, \mathcal{D})$$

? H H H H T T H T H T
$$h=6,\ t=4$$
 $P(y=A)=((\hat{ heta}_A)^h(1-\hat{ heta}_A)^t \quad \hat{ heta}_A=0.8$ $P(y=B)=((\hat{ heta}_B)^h(1-\hat{ heta}_B)^t \quad \hat{ heta}_B=0.45$. $P(y=A)>P(y=B)$

label 2 5/34 model parameter 2 78/2

Expectation-Maximization (EM) vs. MLE

Unsupervised

```
HTTTHHTHTH
HHHHTHHHHH
HTHHHHHTHH
HTHTTTHHTT
THHHTHHHTH
```

$$\hat{\theta}_{A} = ?$$

$$\hat{\theta}_{B}$$
= ? model estimation

? H H H H T T H T H T

[ahel, model parameter 完好是一 @ Maximization)

Expectation-Maximization (EM) vs. MLE

```
? HTTTHHTHH
\hat{\theta}_{A} = ?
? HHHHHHHHHHH
\hat{H} = ?
? HTHHHHHHHHHH
\hat{\theta}_{B} = ?
? THHHHHHHHHH
```

?HHHHTTHTHT

→ need to estimate hidden (latent, unobserved) variables and parameters

Expectation-Maximization (FM) variable, 32 22 24 EMAGE model parameter

EM is a procedure for learning hidden variables from partially observed data

X: observed variable

329 type (A/B)

 θ : parameters for model

D: data set

=> model parameter set 71% Supervised 272

global optimal 42t X

assign arbitrary values for parameters θ

iterate until convergence

E step: estimate the values of hidden variable Z by using θ and X

 $Z = \operatorname{argmax} P(Z \mid X, \theta)$

M step: obtain more accurate parameters θ using observed variable X and estimated Z

(use MLE for parameters) data 4 probability是有如此特色

 $\theta = \operatorname{argmax} P(D \mid \theta, Z_{\text{estimated}})$

model parameter = 75%

For example, $x^1 = 5$, $x^2 = 9$, $x^3 = 8$, $x^4 = 4$, $x^5 = 7$

 $Z = \{z^1, z^2, z^3, z^4, z^5\}$ is the type of coin, where $z^i \in \{A, B\}$,

 θ is the probability of heads

$$\hat{\theta_A} = \frac{\text{# of heads using coin A}}{\text{total # of flips using coin A}}$$

Is the first toss from A or B? $z^1 = A$ or B when $x^1 = 5$?

- \rightarrow Is the first toss more likely from the distribution of A or B?
- $\rightarrow P(z^{l} = A | d^{l}) > P(z^{l} = B | d^{l})$?

```
1 H T T T H H T H T H
2 H H H H H H H H H H
3 H T H H H H H H T H H
4 H T H T T T H H T T
5 T H H H T H H H T H
```

14101218

 $\theta_A = 0.6$, $\theta_B = 0.5$ (when parameters are given initially) calculate the likelihood for $P(z^i = A|d^i)$ by using $P(d^i \mid \theta_A)$ and $P(d^i \mid \theta_B)$

→whether coin A or B is more likely to generate the given result from tossing

 $\theta_A = 0.6$, $\theta_B = 0.5$ (when parameters are given initially) calculate the likelihood for $P(z^i = A|d^i)$ by using $P(d^i | \theta_A)$ and $P(d^i | \theta_B)$ \rightarrow whether coin A or B is more likely to generate the given result from tossing

$$P(z^{I} = A \mid d^{I}) \approx \frac{P(d^{I} \mid \theta_{A})}{P(d^{I} \mid \theta_{A}) + P(d^{I} \mid \theta_{B})}$$

$$P(d^{I} \mid \theta_{A}) = 10C5 \quad 0.6^{5} \quad 0.4^{5}$$

$$P(d^{I} \mid \theta_{B}) = 10C5 \quad 0.5^{5} \quad 0.5^{5}$$

$$P(z^{I} = A \mid d^{I}) = 0.45$$

$$P(z^{I} = B \mid d^{I}) = 0.55$$

$$P(d) = nCk \theta^k (1-\theta)^{n-k}$$

k is the number of heads-up
 θ is the probability of heads-up

1 H T T T H H T H T H 2 H H H H H H T H H H H 3 H T H H H H H H T H H 4 H T H T T T H H T T 5 T H H H T H H H T H

randomly assigned for the first iteration

$$\theta_A^{(0)} = 0.6$$
, $\theta_B^{(0)} = 0.5$ \rightarrow Zyzystní model parameter assign $P_A = P(z^1 = A \mid d^1, \theta_A)$

	X	Pa	Рв	Z
1	5	0.45	0.55	В
2	9	0.80	0.20	А
3	8	0.73	0.27	А
4	4	0.35	0.65	В
5	7	0.65	0.35	А

x is the number of heads

z is the type of coin

E-step: assign the expected

values to the hidden variable

based on the given model

randomly assigned for the first iteration

$$\theta_A^{(0)} = 0.6, \quad \theta_B^{(0)} = 0.5$$

observed data

un observed data estimation

UNIVE VE THY				
10.	X	Pa	Рв	Z
1	5	0.45	0.55	В
2	9	0.80	0.20	Α
3	8	0.73	0.27	А
4	4	0.35	0.65	В
5	7	0.65	0.35	А

	А	В	
1		5H5T	
2	9H)IT	5HST OHGEY	ved data
3	(8H)2T		DUNU
4		4H)6T	
5	7H 3 T		

x is the number of heads z is the type of coin

$$\theta_{A}^{(1)} = 24 / (24+6) = 0.8$$

 $\theta_{B}^{(1)} = 9 / (9+11) = 0.45$

E-step: assign the expected values to the hidden variable based on the given model

$$\Theta_{A}^{(1)} = 0.8, \quad \Theta_{B}^{(1)} = 0.45$$

	Х	А	В	Z
1	5	0.1	0.9	В
2	9			
3	8			
4	4			
5	7			

$$P(d^{1} | \theta_{A}^{(1)}) = {}_{10}C_{5} \quad 0.8^{5} \quad 0.2^{5} = 0.026$$

$$P(d^{1} | \theta_{B}^{(1)}) = {}_{10}C_{5} \quad 0.45^{5} \quad 0.55^{5} = 0.234$$

$$P(z^{1} = A | d^{1}) = \frac{P(d_{1} | \theta_{A}^{(1)})}{P(d^{1} | \theta_{A}^{(1)}) + P(d^{1} | \theta_{B}^{(1)})} = 0.1$$

E-step: assign the expected values to the hidden variable

$$\theta_{A}^{(1)} = 0.8, \quad \theta_{B}^{(1)} = 0.45$$

	Х	А	В	Z
1	5	0.1	0.9	В
2	9	0.98	0.02	Α
3	8			
4	4			
5	7			

$$P(d^{2} | \theta A^{(1)}) = 10C_{9} 0.8^{9} 0.2^{1} = 0.268$$

$$P(d^{2} | \theta B^{(1)}) = 10C_{9} 0.45^{9} 0.55^{1} = 0.004$$

$$P(z^{1} = A | d_{2}) = \frac{P(d^{2} | \theta A^{(1)})}{P(d^{2} | \theta A^{(1)}) + P(d^{2} | \theta B^{(1)})} = 0.98$$

$$P(d^{1} | \theta_{A}^{(1)}) = {}_{10}C_{5} \quad 0.8^{5} \quad 0.2^{5} = 0.026$$

$$P(d^{1} | \theta_{B}^{(1)}) = {}_{10}C_{5} \quad 0.45^{5} \quad 0.55^{5} = 0.234$$

$$P(z^{1} = A | d^{1}) = \frac{P(d^{1} | \theta_{A}^{(1)})}{P(d^{1} | \theta_{A}^{(1)}) + P(d^{1} | \theta_{B}^{(1)})} = 0.1$$

E-step: assign the expected values to the hidden variable

$$\theta_{A}^{(0)} = 0.6, \quad \theta_{B}^{(0)} = 0.5$$

Hard assignment

$\Theta_{A}^{(1)} = 0.8, \quad \Theta_{B}^{(1)} = 0.45$

	Х	А	В	Z
1	5	0.1	0.9	В
2	9	0.98	0.02	А
3	8			А
4	4			А
5	7			А

A B 1 5H5T 2 9H1T 3 8H2T 4 4H6T

7H3T

model parameter

estimation

$$\theta_A^{(2)} = 28 / (28 + 12) = 0.7$$

$$\theta_B^{(2)} = 5 / (5+5) = 0.5$$

5

$$P(d^{1} \mid \theta_{A}^{(1)}) = {}_{10}C_{5} \ 0.8^{5} \ 0.2^{5} = 0.026$$

$$P(d^{1} \mid \theta_{B}^{(1)}) = 10C_{5} \ 0.45^{5} \ 0.55^{5} = 0.234$$

$$P(z^{I} = A \mid d^{I}) = \frac{P(d^{I} \mid \theta A^{(I)})}{P(d^{I} \mid \theta A^{(I)}) + P(d^{I} \mid \theta B^{(I)})} = 0.1$$

E-step: assign the expected values to the hidden variable

Expectation-Maximization (EM)

EM is a procedure for learning hidden variables from partially observed data

X: observed variable

Z: hidden variable

 θ : parameters for model

assign arbitrary values for parameters θ

iterate until convergence

E step: estimate the values of hidden variable Z by using θ and X

$$Z = \operatorname{argmax} P(Z \mid X, \theta)$$

M step: obtain more accurate parameters θ using observed variable X and estimated Z

(use MLE for parameters)

$$\theta = \operatorname{argmax} P(D \mid \theta, Z_{\text{estimated}})$$

Types of assignments

- hard assignment
 - clusters do not overlap
 - element either belongs to a specific cluster or not
- soft assignment
 - clusters may overlap
 - the degree of association between clusters and instances

就需要是多少对至 optimal

EM: coin example for soft assignment

randomly assigned for the first iteration

$$\theta_A^{(0)} = 0.6, \quad \theta_B^{(0)} = 0.5$$

	X	Pa	Рв	Z
1	5	0.45	0.55	
2	9	0.80	0.20	
3	8	0.73	0.27	
4	4	0.35	0.65	
5	7	0.65	0.35	

	၁	/	0.65	0.33
)	x is 1	the nu	ımber o	f heads
7	z is tl	he typ	e of coi	n

भंभ कि के के ध्यापर

E-step: assign the expected values to the hidden variable based on the given model

	А	В
1		5H5T
2	9H1T	
3	8H2T	
4		4H6T
5	7H3T	

	А	В	
1	2.2H 2.2T	2.8H 2.8H	5H5T
2	7.2H 0.8T	1.8H 0.2T	9H1T
3	5.9H 1.5T	2.1H 0.5T	8H2T
4	1.4H 2.1H	2.6H 3.9T	4H6T
5	4.5H 1.9T	2.5H 1.1T	7H3T

$$\Theta_A^{(1)} = 21.3 / (21.3 + 8.6) = 0.71$$

$$\Theta_B^{(1)} = 11.7 / (11.7 + 8.4) = 0.58$$

Unsupervised learning

Discovering clusters

Clustering

$$z_i^* = \operatorname{argmax}_k p(z_i = k|\mathbf{x}_i, \mathcal{D})$$
 Latent variable Unknown Variable

Unsupervised learning

Clustering

- Clustering is a problem of identifying clusters of data points in a multidimensional space
- Considering a cluster as comprising a group of data points whose inter-point
 distances are small compared with the distance to the points outside of the cluster
- Optimal assignment to the latent cluster

Clustering in biomedical data

input: observed data x

When given a set of data $\{x^1, x^2, x^3, \ldots, x^N\}$, which is N examples of a

D-dimensional variable x, partition the data set into K clusters estimate

Dutput, unknown variable

→ Finding assignment of examples to clusters {rnk} and a set of vectors {μk}, such that the sum of the squares of the distances of each data point to its closest vector μk is minimum

e μk: prototype associated with the kth cluster, which represent the center of the cluster [] 回 图

 $\mathbf{r}_{nk} = \mathbf{I}$ if a data point \mathbf{x}^n is assigned to cluster k

 $\begin{array}{c} \text{data} \\ \text{point} \\ (r_{nk}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \text{cluster} & 1 & 0 & 0 \end{pmatrix} \text{ on a horizontal point}$

$$\sum_{k} r_{nk} = 1$$

$$\sqrt{2}J = \sum_{n=1}^{N} \sum_{n=1}$$

 $= \sum \sum r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$

 $n{=}1$ $k{=}1$ $k{=}1$ (0-11 $k{=}1$ Center $k{=}1$ $k{=}1$

의 자기가 assign된 k에 해당하는 그 가운데 있는 센터값라 자기의 거기를 전부 더함

K-means clustering

- K-means clustering uses EM approach
 - choose an initial values for μk
 - repeat two steps
 - E-step: assign each example to the nearest prototype by minimizing J; =center
 - \rightarrow determine r_{nk}

[wheling
$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$
 details the prototypes with the data points assigned:

- M-step: update the prototypes with the data points assigned;
 - \rightarrow determine μ_k with the new r_{nk}

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$
 distance $\frac{1}{2}$ $\frac{1}{2}$

$$2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$
 For each k, set the derivative of J to 0 with respect to μ_k

$$\mu_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$
 which the termseter set

(EMOIL 716/15/ clustering 16/14) K-means clustering ofgram urt assign Unknown variable model parameter set Random guess estimation (maximization) (c) (b) (a) 0 reset -2 Unknown variable 0 (d) (e) 0 reasignment center 0 0

EM for Gaussian mixture

- (a) example of 500 data points drawn from 3 Gaussian models
- (b) plotting only x values
- (c) the color represent the value of the responsibility $\gamma(z_{nk})$ associated with data point x^n