CMPSCI 240: Reasoning about Uncertainty

Lecture 11: More Tail Bounds and Multiple Random Variables

Andrew McGregor

University of Massachusetts

Outline

- 1 Review
- 2 Tail Probabilities
- 3 More Examples of Tail Bounds
- 4 Multiple Random Variables
- 5 Expectation and Variance

Random Variables

- Formally, a random variable X is a mapping from Ω to \mathbb{R} .
- Given a random variable $X : \Omega \to \mathbb{R}$, we can define events $\{X = k\}$ for each value of $k \in \mathbb{R}$ and the probability of these events is the probability mass function.

$$P(X = k) = \sum_{o \in \Omega \text{ such that } X(o) = k} P(o)$$

It's often sufficient to just consider the probability mass function rather than the probabilities of every event.

Expectation and Variance

■ The expected value E[X] is a probability-weighted average of the possible values of the random variable X:

$$E[X] = \sum_{k} k P(X = k)$$

Multiple Random Variables

Variance measures how far we expect a random variable to be from its average.

$$var(X) = \sum_{k} (k - E[X])^2 \cdot P(X = k)$$

■ The **standard deviation** is the positive square root of the variance:

$$std(X) = \sqrt{var(X)}$$
.

- 2 Tail Probabilities

- 5 Expectation and Variance

• Given a random variable X, the **upper tail probability** is:

$$P(X \ge a) = \sum_{k \ge a} P(X = k)$$

Double Sided Risk

Sometimes we want to estimate the lower tail and the upper tail. Write $\mu = E(X)$, then

$$P(|X - \mu| \ge c) = P(X \le \mu - c) + P(X \ge \mu + c)$$

Markov's Inequality and Chebyshev's Inequality

■ Markov's Inequality: For any non-negative random variable X and tail threshold c > 0:

$$P(X \ge c) \le \frac{E[X]}{c}$$

• Chebyshev's Inequality: For any random variable X and tail threshold c > 0:

$$P(|X - \mu| \ge c) \le \frac{var(X)}{c^2}$$

where $\mu = E(X)$.

Intuition for Chebyshev: if random variable X has a small variance, then the probability that the value of X is far from μ is small.

First note that,

$$P(|X - \mu| \ge c) = P((X - \mu)^2 \ge c^2) = P(Y \ge c^2)$$

Multiple Random Variables

where $Y = (X - \mu)^2$.

■ Note that Y is a positive random variable and that

$$E[Y] = E[(X - \mu)^2] = var(X)$$
.

■ By Markov's Inequality, $P(Y \ge c^2) \le \frac{E[Y]}{c^2}$ and hence

$$P(|X - \mu| > c) < var(X)/c^2$$

Outline

- 3 More Examples of Tail Bounds

More Examples 1

- You turn up at 8pm to meet your friend but expect it'll be 5 minutes until he shows up. Which of the following is necessarily true?
 - A: The probability you'll wait ≥ 20 minutes is at most 1/4.
 - B: The probability you'll wait < 20 minutes is at most 1/4.
 - C: Neither of the above.
- Answer is A by appealing to the Markov Bound.

More Examples 2

Review

- You're in chemistry class and need to measure the pH of a mysterious substance which is actually 7. When you take reading, the expected value is 7 but the standard deviation is 2. Which of the following statements is true
 - A: The probability your reading is between 4 and 10 is at most 4/9.
 - B: The probability your reading is not between 4 and 10 is at most 4/9.
 - C: Neither of the above.
- Answer is B by appealing to the Chebyshev Bound.

More Examples 3

- Suppose you are playing poker tomorrow and expect to earn \$10. Which of the following is necessarily true?
 - A: The probability you win > \$30 is at most 1/3.
 - B: The probability you win < \$30 is at most 1/3.
 - C: Neither of the above.
- Answer is C because earnings can be negative and we don't know the variance.

- Multiple Random Variables

Review

Multiple Random Variables

- Consider two random variables, X and Y mapping from Ω to \mathbb{R} .
- X defines events of the form $\{X = i\} = \{o \in \Omega \mid X(o) = i\}$ and Y defines events of the form $\{Y = j\} = \{o \in \Omega \mid Y(o) = j\}$
- For $i, j \in \mathbb{R}$, we can define the event

$$\{X = i, Y = j\} = \{X = i\} \cap \{Y = j\} = \{o \in \Omega \mid X(o) = i \text{ and } Y(o) = j\}$$

■ The probabilities of these events give the joint PMF of X and Y:

$$P(X = i, Y = j) = P({X = i, Y = j})$$

Useful for describing multiple properties over the outcome space of a single experiment, e.g., pick a random student and let X be their height and Y be their test score.

Tabular Representation of Joint PMFs

P(X,Y)					
X\Y	Y=1	Y=2	Y = 3	Y = 4	
X=1	0.1	0.1	0	0.2	
X=2	0.05	0.05	0.1	0	
<i>X</i> = 3	0	0.1	0.2	0.1	

- e.g., P(X=2, Y=3) = 0.1, P(X=3, Y=1) = 0, ...
- Given the joint PMF, how can we work out P(X = i) and P(Y = j)?

$$P(X = i) = \sum_{j} P(X = i, Y = j)$$

$$P(Y = j) = \sum_{i} P(X = i, Y = j)$$

If we start with the joint PMF of X and Y, we refer to P(X) as the marginal PMF of X and P(Y) as the marginal PMF of Y.

P(X,Y)					
$X \setminus Y$	1	2	3	4	
1	0.1	0.1	0	0.2	
2	0.05	0.05	0.1	0	
3	0	0.1	0.2	0.1	

X	P(X)
1	0.4
2	0.2
3	0.4

P(X,Y)					
X\Y	1	2	3	4	
1	0.1	0.1	0	0.2	
2	0.05	0.05	0.1	0	
3	0	0.1	0.2	0.1	

Y	1	2	3	4
P(Y)	0.15	0.25	0.3	0.3

Multiple Random Variables

Computing Marginals from the Joint Distribution

■ Suppose Y takes the values $j_1, j_2, ..., j_N$, then

$$\{Y = j_1\}, \{Y = j_2\}, \dots, \{Y = j_N\}$$

partition Ω .

■ Hence, $\{X = i\}$ can be partitioned into

$${X = i} \cap {Y = j_1}, {X = i} \cap {Y = j_2}, \dots, {X = i} \cap {Y = j_N}$$

Therefore.

$$P(X = i) = P(\{X = i\})$$

$$= P(\{X = i\} \cap \{Y = j_1\}) + P(\{X = i\} \cap \{Y = j_2\}) + \dots$$

$$\dots + P(\{X = i\} \cap \{Y = j_N\})$$

$$= \sum_{i} P(\{X = i\} \cap \{Y = j\}) = \sum_{i} P(X = i, Y = j)$$

Multiple Random Variables 0000000

P(X,Y)						
X\Y 1 2 3 4						
1	0.1	0.1	0	0		
2	0	0.05	0.1	0.05		
3	0.1	0.2	0.2	0.1		

What's the value of P(X = 2, Y = 3)?

A: 0

B: 0.1

C: 0.05

D: 0.2

E: 1

Answer is B.

Another Example 2

P(X,Y)					
X\Y 1 2 3 4					
1	0.1	0.1	0	0	
2	0	0.05	0.1	0.05	
3	0.1	0.2	0.2	0.1	

What's the value of P(X = 3)?

A: 0.1

B: 0.4

C: 0.05

D: 0.6

E: 1

Answer is D.

- 5 Expectation and Variance

Functions of Two Random Variables

■ Given two random variables X and Y and a function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

Multiple Random Variables

$$Z = f(X, Y)$$

is a new random variable where

$$E(Z) = \sum_{x,y} f(x,y)P(X = x, Y = y) \text{ and } var(Z) = E(Z^2) - (E(Z))^2.$$

■ Linearity of Expectation: If Z = X + Y,

$$E(Z) = E(X + Y) = E(X) + E(Y)$$

■ Linearity of Variance: If Z = X + Y,

$$var(Z) = var(X + Y) = var(X) + var(Y)$$

if X and Y are independent, i.e., for all i, j

$$P(X = i, Y = j) = P(X = i)P(Y = j)$$
.

Functions of Multiple Random Variables

■ Given random variables $X_1, X_2, ..., X_N$ and a function $f : \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} \to \mathbb{R}$,

$$Z = f(X_1, X_2, \dots, X_N)$$

Multiple Random Variables

is a new random variable.

■ Linearity of Expectation: If $Z = \sum_{i=1}^{N} X_i$,

$$E(Z) = E(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} E(X_i)$$

• Linearity of Variance: If $Z = \sum_{i=1}^{N} X_i$,

$$var(Z) = var(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} var(X_i)$$

if X_1, \ldots, X_N are pairwise independent, i.e., for all a, b

$$P(X_i = a, X_j = b) = P(X_i = a)P(X_j = b)$$
.

Expectation and Variance of the Binomial Distribution

■ Let X be the number of heads when tossing a coin n times that lands heads with probability p. Then X is a binomial random variable,

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

■ Let X_i be 1 if the ith coin toss is heads, then

$$X = X_1 + X_2 + X_3 + \ldots + X_n$$

- For each $E[X_i] = p$ and $var[X_i] = p(1-p)$
- Therefore.

$$E[X] = \sum_{i} E[X_i] = np$$

$$var[X] = \sum_{i} var[X_i] = np(1-p)$$