# Korektnosť a úplnosť výrokovologických tabiel

6. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Jozef Šiška Letný semester 2019/2020

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

# Obsah 6. prednášky

Dôkazy a výrokovologické tablá

Výrokovologické tablá – opakovanie

Korektnosť tabiel

Testovanie nesplniteľnosti, splniteľnosti a falzifikovateľnosti

Úplnosť

### Rekapitulácia

#### Pred dvoma týždňami:

- Sformalizovali sme dôkazy sporom pomocou tabiel.
- Vyslovili, ale nedokázali tvrdenie o korektnosti tabiel: uzavreté tablo dokazuje výrokovologickú nesplniteľnosť
- a dôsledky pre dokazovanie vyplývania a tautológií.

#### Dnes:

- Dokážeme korektnosť tabiel.
- Preskúmame, čo vedia tablá povedať o splniteľnosti.
- Dokážeme úplnosť tabiel.

Dôkazy a výrokovologické tablá

# Dôkazy a výrokovologické tablá

Výrokovologické tablá – opakovanie

# Tablo pre množinu označených formúl

#### Definícia 5.1

Analytické tablo pre množinu označených formúl  $S^+$  (skrátene tablo pre  $S^+$ ) je binárny strom, ktorého vrcholy obsahujú označené formuly

 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A<sup>+</sup> z S<sup>+</sup> je tablom pre S<sup>+</sup>.

a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:

- Nech  $\mathcal T$  je tablo pre  $S^+$  a y je nejaký jeho list. Potom tablom pre  $S^+$  je aj každé *priame rozšírenie*  $\mathcal T$  ktorýmkoľvek z pravidiel:
  - lpha: Ak sa na vetve  $\pi_y$  (ceste z koreňa do y) vyskytuje nejaká označená formula lpha, tak ako jediné dieťa y pripojíme nový vrchol obsahujúci  $lpha_1$  alebo  $lpha_2$ .
  - $m{eta}$ : Ak sa na vetve  $\pi_y$  (ceste z koreňa do y) vyskytuje nejaká označená formula  $m{eta}$ , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať  $m{eta}_1$  a pravé  $m{eta}_2$ .
  - $S^+$ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu  $A^+ \in S^+$ .
- Nič iné nie je tablom pre  $S^+$ .

Tablá a tablové pravidlá



*Legenda*: y je list v table  $\mathcal{T}$ ,  $\pi_y$  je cesta od koreňa k y

# Tablá a tablové pravidlá (pokračovanie)

#### Pôvodné tablo Možné priame rozšírenie Pravidlá a označené formuly v nich



Legenda: y je list v table  $\mathcal{T}, \pi_y$  je cesta od koreňa k y

# Uzavretosť a otvorenosť vetvy a tabla

#### Definícia 5.2

 ${\it Vetvou}$  tabla  ${\mathcal T}$  je každá cesta od koreňa  ${\mathcal T}$  k niektorému listu  ${\mathcal T}$ .

Označená formula  $X^+$  sa vyskytuje na vetve  $\pi$  v  $\mathcal{T}$  vtt  $X^+$  sa nachádza v niektorom vrchole na  $\pi$ .

Skrátene to budeme zapisovať  $X^+ \in \text{formulas}(\pi)$ .

Tablo  $\sim$  dôkaz sporom. Vetvenie  $\sim$  rozbor možných prípadov.

⇒ Spor musí nastať vo všetkých vetvách.

#### Definícia 5.3

extstyle ex

Inak je  $\pi$  otvorená.

**Tablo**  $\mathcal T$  **je uzavreté** vtt každá jeho vetva je uzavretá.

Naopak,  $\mathcal{T}$  je otvorené vtt aspoň jedna jeho vetva je otvorená.

# Dôkazy a výrokovologické tablá

Korektnosť tabiel

### Korektnosť tablového kalkulu

### Veta 5.16 (Korektnosť tablového kalkulu)

Nech  $S^+$ je množina označených formúl a  $\mathcal T$  je uzavreté tablo pre  $S^+$ . Potom je množina  $S^+$  nesplniteľná.

#### Dôsledok 5.17

Nech S je výrokovologická teória a X je výrokovologická formula. Ak existuje uzavreté tablo pre  $\{\mathbf{T} A \mid A \in S\} \cup \{\mathbf{F} X\}$  (skrát.  $S \vdash_p X$ ), tak z S výrokovologicky vyplýva X ( $S \vDash_p X$ ).

#### Dôsledok 5.18

Nech X je výrokovologická formula.

Ak existuje uzavreté tablo pre  $\{FX\}$  (skrátene  $\vdash_p X$ ), tak X je tautológia  $(\models_p X)$ .

Korektnosť – idea dôkazu

Aby sme dokázali korektnosť tabiel, dokážeme postupne dve lemy:

K1: Ak máme tablo pre splniteľnú množinu  $S^+$  s aspoň jednou splniteľnou vetvou, tak každé jeho priame rozšírenie má tiež splniteľnú vetvu.

K2: Každé tablo pre splniteľnú množinu  $S^+$  má aspoň jednu splniteľnú vetvu.

Z toho ľahko sporom dokážeme, že množina, pre ktorú sme našli uzavreté tablo je nesplniteľná.

# Korektnosť – pravdivosť priameho rozšírenia tabla

Všimnime si:

Vetva sa správa ako konjunkcia svojich označených formúl – všetky musia byť naraz pravdivé.

Tablo sa správa ako disjunkcia vetiev — niektorá musí byť pravdivá.

#### Definícia 5.19

Nech  $S^+$  je množina označených formúl v jazyku  $\mathcal{L}$ , nech  $\mathcal{T}$  je tablo pre  $S^+$ , nech  $\pi$  je vetva tabla  $\mathcal{T}$  a nech v je výrokovologické ohodnotenie pre  $\mathcal{L}$ . Potom:

- vetva  $\pi$  je pravdivá vo v ( $v \models_p \pi$ ) vtt vo v sú pravdivé všetky označené formuly vyskytujúce sa na vetve  $\pi$ .
- tablo T je pravdivé vo v (v \( \mathbb{F}\_p \) T) vtt
  niektorá vetva v table T je pravdivá.

Korektnosť – pravdivosť priameho rozšírenia tabla

Pomocou predchádzajúcej definície sformulujeme lemu K1 takto:

#### Lema 5.20 (K1)

Nech  $S^+$  je množina označených formúl v jazyku  $\mathcal{L}$ , nech  $\mathcal{T}$  je tablo pre  $S^+$  a nech v je výrokovologické ohodnotenie pre  $\mathcal{L}$ .

Ak  $S^+$  a  $\mathcal{T}$  sú pravdivé vo v,

tak aj každé priame rozšírenie  $\mathcal T$  je pravdivé vo  $\upsilon.$ 

#### Dôkaz lemy K1.

Nech  $v \models_p S^+$  a nech  $\mathcal{T}$  je pravdivé vo v. Potom je pravdivá niektorá vetva v  $\mathcal{T}$ . Zoberme jednu takú vetvu a označme ju  $\pi$ . Nech  $\mathcal{T}_1$  je priame rozšírenie  $\mathcal{T}$ . Nastáva jeden z prípadov:

•  $\mathcal{T}_1$  vzniklo z  $\mathcal{T}$  pravidlom  $\alpha$ , pridaním nového dieťaťa z nejakému listu y v  $\mathcal{T}$ , pričom z obsahuje  $\alpha_1$  alebo  $\alpha_2$  pre nejakú formulu  $\alpha$  na vetve  $\pi_v$ .



Ak  $\pi \neq \pi_y$ , tak  $\mathcal{F}_1$  obsahuje  $\pi$ , a teda aj  $\mathcal{F}_1$  je pravdivé vo v.



Ak  $\pi=\pi_y$ , tak  $\alpha$  je pravdivá vo v, pretože  $\alpha$  je na  $\pi$ . Potom aj  $\alpha_1$  a  $\alpha_2$  sú pravdivé vo v (pozorovanie 5.8). Vetva  $\pi_z$  v table  $\mathcal{F}_1$  rozširuje vetvu  $\pi$  pravdivú vo v o vrchol z obsahujúci ozn. formulu  $\alpha_1$  alebo  $\alpha_2$  pravdivú vo v. Preto  $\pi_z$  je pravdivá vo v, a teda aj tablo  $\mathcal{F}_1$  je pravdivé vo v.

#### Dôkaz lemy K1.

Nech  $v \models_p S^+$  a nech  $\mathcal T$  je pravdivé vo v. Potom je pravdivá niektorá vetva v  $\mathcal T$ . Zoberme jednu takú vetvu a označme ju  $\pi$ . Nech  $\mathcal T_1$  je priame rozšírenie  $\mathcal T$ . Nastáva jeden z prípadov:

•  $\mathcal{T}_1$  vzniklo z  $\mathcal{T}$  pravidlom  $\beta$ , pridaním detí  $z_1$  a  $z_2$  nejakému listu y v  $\mathcal{T}$ , pričom  $z_1$  obsahuje  $\beta_1$  a  $z_2$  obsahuje  $\beta_2$  pre nejakú formulu  $\beta$  na vetve  $\pi_y$ .



Ak  $\pi \neq \pi_y$ , tak  $\mathcal{T}_1$  obsahuje  $\pi$ , a teda aj  $\mathcal{T}_1$  je pravdivé vo v.



Ak  $\pi=\pi_y$ , tak  $v\models_{\rm p}\beta$ , pretože  $\beta$  je na  $\pi$ . Potom  $v\models_{\rm p}\beta_1$  alebo  $v\models_{\rm p}\beta_2$  (poz. 5.11).

 $\begin{aligned} & \text{Ak } v \models_{\text{p}} \beta_{1}, \\ & \text{tak } v \models_{\text{p}} \pi_{z_{1}}, \text{a teda } v \models_{\text{p}} \mathcal{T}_{1}. \\ & \text{Ak } v \models_{\text{p}} \beta_{2}, \end{aligned}$ 

tak  $v \models_{\mathfrak{p}}^{\mathfrak{p}} \pi_{z_2}$ , a teda  $v \models_{\mathfrak{p}} \mathcal{T}_1$ .

#### Dôkaz lemy K1.

Nech  $v \models_p S^+$  a nech  $\mathcal T$  je pravdivé vo v. Potom je pravdivá niektorá vetva v  $\mathcal T$ . Zoberme jednu takú vetvu a označme ju  $\pi$ . Nech  $\mathcal T_1$  je priame rozšírenie  $\mathcal T$ . Nastáva jeden z prípadov:

•  $\mathcal{T}_1$  vzniklo z  $\mathcal{T}$  pravidlom  $S^+$ , pridaním nového dieťaťa z nejakému listu y v  $\mathcal{T}$ , pričom z obsahuje formulu  $A^+ \in S^+$ .



Ak  $\pi \neq \pi_y$ , tak  $\mathcal{F}_1$  obsahuje  $\pi$ , a teda aj  $\mathcal{F}_1$  je pravdivé vo v.



Ak  $\pi=\pi_y$ , tak  $\pi_z$  v table  $\mathcal{F}_1$  je pravdivá vo v, pretože je rozšírením vetvy  $\pi$  pravdivej vo v o vrchol z obsahujúci formulu  $A^+$  pravdivú vo v (pretože  $v \models_p S^+$  a  $A^+ \in S^+$ ). Preto tablo  $\mathcal{F}_1$  je pravdivé vo v.

# Korektnosť – pravdivosť množiny a tabla pre ňu

#### Lema 5.21 (K2)

Nech  $S^+$ je množina označených formúl v jazyku  $\mathcal{L}$ , nech  $\mathcal{T}$  je tablo pre  $S^+$  a nech v je ohodnotenie pre  $\mathcal{L}$ .

Ak  $S^+$  je pravdivá vo v, tak aj  $\mathcal{T}$  je pravdivé vo v.

#### Dôkaz lemy K2.

Nech  $S^+$  je množina označených formúl, nech v je ohodnotenie a nech  $v \models_p S^+$ . Úplnou indukciou na počet vrcholov tabla  $\mathcal T$  dokážeme, že vo v je pravdivé každé tablo  $\mathcal T$  pre  $S^+$ .

Ak má  $\mathcal T$  jediný vrchol, tento vrchol obsahuje formulu  $A^+ \in S^+$ , ktorá je pravdivá vo v. Preto je pravdivá jediná vetva v  $\mathcal T$ , teda aj  $\mathcal T$ .

Ak  $\mathcal T$  má viac ako jeden vrchol, je priamym rozšírením nejakého tabla  $\mathcal T_0$ , ktoré má o 1 alebo o 2 vrcholy menej ako  $\mathcal T$ .

Podľa indukčného predpokladu je  $\mathcal{T}_0$  pravdivé vo v.

Podľa lemy K1 je potom vo v pravdivé aj  $\mathcal{T}.$ 

#### Korektnosť – dôkaz

#### Dôkaz vety o korektnosti 5.16.

Nech  $S^+$  je množina označených formúl a  $\mathcal T$  je uzavreté tablo pre  $S^+$ .

Sporom: Predpokladajme, že existuje ohodnotenie, v ktorom je  $S^+$  pravdivá. Označme ho  $\upsilon$ .

Potom podľa lemy K2 je vo v pravdivé tablo  $\mathcal{T}$ , teda vo v je pravdivá niektorá vetva  $\pi$  v  $\mathcal{T}$ .

Pretože  $\mathcal T$  je uzavreté, aj vetva  $\pi$  je uzavretá. Na  $\pi$  sa teda nachádzajú označené formuly  $\mathbf TX$  a  $\mathbf FX$  pre nejakú formulu X.

Pretože  $\pi$  je pravdivá vo v, musia byť vo v pravdivé všetky formuly na nej. Ale  $v \models_p \mathbf{T} X$  vtt  $v \models_p X$  a  $v \models_p \mathbf{F} X$  vtt  $v \not\models_p X$ .

Teda  $\mathbf{T}X$  a  $\mathbf{F}X$  nemôžu byť obe pravdivé, čo je spor.

# Dôkazy a výrokovologické tablá

Testovanie nesplniteľnosti, splniteľnosti a falzifikovateľnosti

# Úplná vetva a tablo

#### Príklad 5.22

Zistime tablom, či

```
 \big\{ \big( \big( \operatorname{rychly}(p) \vee \operatorname{spravny}(p) \big) \wedge \big( \operatorname{citatelny}(p) \vee \operatorname{rychly}(p) \big) \big) \big\} \vDash_p \\ \big( \operatorname{rychly}(p) \wedge \big( \operatorname{spravny}(p) \vee \operatorname{citatelny}(p) \big) \big).
```

Vybudujeme tablo pre množinu označených formúl:

```
\begin{split} & \big\{ T \big( \big( \texttt{rychly}(\texttt{p}) \lor \texttt{spravny}(\texttt{p}) \big) \land \big( \texttt{citatelny}(\texttt{p}) \lor \texttt{rychly}(\texttt{p}) \big) \big), \\ & F \big( \texttt{rychly}(\texttt{p}) \land \big( \texttt{spravny}(\texttt{p}) \lor \texttt{citatelny}(\texttt{p}) \big) \big) \big\} \end{split}
```

Podarí sa nám ho uzavrieť?

# Úplná vetva a tablo

Nech v príklade tablové pravidlá používame akokoľvek,

- nenájdeme uzavreté tablo, ale
- ak pravidlá nepoužívame opakovane na rovnakú formulu v rovnakej vetve, po čase vybudujeme úplné a otvorené tablo.

# Definícia 5.23 (Úplná vetva a úplné tablo)

Nech  $S^+$  je množina označených formúl a  $\mathcal{T}$  je tablo pre  $S^+$ .

Vetva  $\pi$  v table  $\mathcal{T}$  je úplná vtt má všetky nasledujúce vlastnosti:

- pre každú označenú formulu α, ktorá sa vyskytuje na π, sa obidve označené formuly α<sub>1</sub> a α<sub>2</sub> vyskytujú na π;
- pre každú označenú formulu  $\beta$ , ktorá sa vyskytuje na  $\pi$ , sa aspoň jedna z označených formúl  $\beta_1$ ,  $\beta_2$  vyskytuje na  $\pi$ ;
- každá  $X^+ \in S^+$  sa vyskytuje na  $\pi$ .

Tablo  $\mathcal T$  je úplné vtt každá jeho vetva je buď úplná alebo uzavretá.

# Otvorené tablo a splniteľnosť

Z otvoreného a úplného tabla pre  $S^+$  môžeme vytvoriť ohodnotenie v:

- 1. nájdeme otvorenú vetvu  $\pi$ ,
- 2. pre každý atóm A
  - ak sa na  $\pi$  nachádza **T** A, definujeme v(A) = t;
  - ak sa na  $\pi$  nachádza  $\mathbf{F} A$ , definujeme v(A) = f;
  - inak definujeme v(A) ľubovoľne.

V tomto v je pravdivá  $\pi$ , a preto je v ňom pravdivá aj  $S^+$  (všetky formuly z  $S^+$  sa vyskytujú na  $\pi$ , lebo  $\pi$  je úplná).

#### Otázka

- Dá sa vždy nájsť úplné tablo pre S<sup>+</sup>?
- Naozaj sa z úplného otvoreného tabla dá vytvoriť model S<sup>+</sup>?

Existencia úplného tabla

# Lema 5.24 (o existencii úplného tabla)

Nech  $S^+$  je konečná množina označených formúl.

Potom existuje úplné tablo pre  $S^+$ .

#### Dôkaz.

Vybudujme tablo  $\mathcal{T}_0$  pre  $S^+$  tak, že do koreňa vložíme niektorú formulu z  $S^+$  a opakovaním spravidla  $S^+$  postupne doplníme ostatné.

Potom tablo postupne rozširujeme tak, že vyberieme ľubovoľný list y tabla  $\mathcal{T}_i$ , ktorého vetva  $\pi_y$  je otvorená a nie je úplná. Potom nastane aspoň jedna z možností:

- Na π<sub>y</sub> sa nachádza nejaká formula α,
  ale nenachádza sa niektorá z formúl α<sub>1</sub> a α<sub>2</sub>.
- Na  $\pi_y$  sa nachádza nejaká formula  $\beta$ , ale nenachádza sa ani jedna z formúl  $\beta_1$  a  $\beta_2$ .

Ak platí prvá alebo obe možnosti, aplikujeme pravidlo  $\alpha$ .

Ak platí druhá možnosť, aplikujeme pravidlo  $\beta$ .

Získame tablo  $\mathcal{T}_{i+1}$ , s ktorým proces opakujeme.

Tento proces po konečnom počte krokov (prečo?) vytvorí nejaké tablo  $\mathcal{T}_n$ , v ktorom už neexistuje vetva, ktorá by bola otvorená a nebola úplná.

Teda každá vetva v  $\mathcal{T}_n$  je buď uzavretá alebo úplná, čiže  $\mathcal{T}_n$  je úplné.

# Dôkazy a výrokovologické tablá

Úplnosť

# Nadol nasýtené množiny a Hintikkova lemma

#### Definícia 5.25

Množina označených formúl  $S^+$  sa nazýva nadol nasýtená vtt platí:

 $\mathsf{H}_0$ : v  $S^+$  sa nevyskytujú naraz  $\mathbf{T} A$  a  $\mathbf{F} A$  pre žiaden predikátový atóm A;

 $\mathsf{H}_1$ : ak  $\alpha \in S^+$ , tak  $\alpha_1 \in S^+$  a  $\alpha_2 \in S^+$ ;

 $\mathsf{H}_2 \text{: ak } \beta \in S^+ \text{, tak } \beta_1 \in S^+ \text{ alebo } \beta_2 \in S^+.$ 

### Pozorovanie 5.26

Nech  $\pi$  je úplná otvorená vetva nejakého tabla  $\mathcal{T}.$ 

Potom množina všetkých formúl na  $\pi$  je nadol nasýtená.

#### Lema 5.27 (Hintikkova)

Každá nadol nasýtená množina  $S^+$  je splniteľná.

#### Dôkaz Hintikkovej lemy.

Chceme dokázať, že existuje ohodnotenie v, v ktorom sú pravdivé všetky označené formuly z  $S^+$ . Definujme v pre každý predikátový atóm A takto:

$$v(A) = \begin{cases} t, & \text{ak } \mathbf{T}A \in S^+; \\ f, & \text{ak } \mathbf{F}A \in S^+; \\ t, & \text{ak ani } \mathbf{T}A \text{ ani } \mathbf{F}A \text{ nie sú v } S^+. \end{cases}$$

v je korektne definované vďaka  $\mathsf{H}_0$  (každému atómu priradí t alebo f , žiadnemu nepriradí obe).

Indukciou na stupeň formuly dokážeme, že vo v sú pravdivé všetky formuly z  $S^+$ :

- 1. Všetky označené predikátové atómy z  $S^+$  sú pravdivé vo v.
- 2. Nech  $X^+ \in S^+$  a nech platí IP: Vo v sú pravdivé všetky formuly z  $S^+$  nižšieho stupňa ako  $X^+$ .  $X^+$  je buď  $\alpha$  alebo  $\beta$ :
  - Ak  $X^+$  je  $\alpha$ , potom obidve  $\alpha_1, \alpha_2 \in S^+$  (H<sub>1</sub>), sú nižšieho stupňa ako  $X^+$ , a teda podľa indukčného predpokladu sú pravdivé vo v,

preto (podľa poz. 5.8) je v ňom pravdivá aj  $\alpha$ . Ak  $X^+$  je  $\beta$ , potom aspoň jedna z  $\beta_1$ ,  $\beta_2$  je v  $S^+$  (H<sub>2</sub>). Nech je to ktorákoľvek, má nižší stupeň ako  $X^+$ , teda podľa IP je pravdivá vo v,

a preto (podľa poz. 5.11) je vo v pravdivá aj  $\beta$ .

# Úplnosť

# *Úplnosť* kalkulu neformálne:

Ak je nejaké tvrdenie pravdivé, tak existuje jeho dôkaz v kalkule.

#### Veta 5.28 (o úplnosti)

Nech  $S^+$  je konečná nesplniteľná množina označených formúl.

Potom existuje uzavreté tablo pre  $S^+$ .

#### Dôsledok 5.29

Nech S je konečná teória a X je formula.

 $\mathsf{Ak}\,S \vDash_{\mathsf{p}} X$ ,  $\mathsf{tak}\,S \vdash_{\mathsf{p}} X$ .

#### Dôsledok 5.30

Nech X je formula. Ak  $\models_p X$ , tak  $\vdash_p X$ .

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

# Úplnosť – dôkaz

#### Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl  $S^+$ .

Podľa lemy o existencii úplného tabla vieme pre  $S^+$  nájsť úplné tablo  $\mathcal{T}$ , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol uzavretá. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z  $S^+$ , bola by aj  $S^+$  splniteľná, čo je spor s nesplniteľnosťou  $S^+$ .

Preto musia byť všetky vetvy tabla  $\mathcal T$  uzavreté.

#### Literatúra

Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.