Math 100: Problem Set 9

Owen Jones

12/6/2023

- (Q-1) Show $f(2^{\frac{n}{2}}) = [f(1)]^{2^n}$ by induction. Base case: $f(\sqrt{1^2 + 1^2}) = f(2^{\frac{1}{2}}) = f(1)f(1) = [f(1)]^{2^1}$ Induction hypothesis: Assume for some n $f(2^{\frac{n}{2}}) = [f(1)]^{2^n}$ Induction step: WTS claim holds for $n \pm 1$. $(n-1): [f(1)]^{2^{n-1}} = ([f(1)]^{2^n})^{\frac{1}{2}} = (f(2^{\frac{n}{2}}))^{\frac{1}{2}} = (f(\sqrt{2^{n-1}+2^{n-1}}))^{\frac{1}{2}} = (f(2^{\frac{n-1}{2}})f(2^{\frac{n-1}{2}}))^{\frac{1}{2}} = f(2^{\frac{n-1}{2}})$ $(n+1): f(2^{\frac{n+1}{2}}) = f(\sqrt{2^n + 2^n}) = f(2^{\frac{n}{2}})^2 = [f(1)]^{2^{n+2}} = [f(1)]^{2^{n+1}}$ Lemma: $f(\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}) = f(x_1)f(x_2) \dots f(x_n)$ Base case: $f(\sqrt{x^2 + y^2}) = f(x)f(y)$ is given. Induction hypothesis: Assume $f(\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}) = f(x_1)f(x_2) \cdots f(x_n)$ Induction step: $f(\sqrt{x_1^2 + x_2^2 + \dots + x_n^2 + x_{n+1}^2}) = f((\sqrt{x_1^2 + x_2^2 + \dots + x_n^2})^2 + \frac{1}{2})$ $x_{n+1}^2) = f(\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}) f(x_{n+1}) = f(x_1) f(x_2) \dots f(x_n) f(x_{n+1})$ Thus, the claim holds for all n. WTS $f(\sqrt{\frac{m}{2^n}}) = [f(1)]^{\frac{m}{2^n}}$ by induction on mBase case: $f(\sqrt{2^{-n}}) = [f(1)]^{2^{-n}}$ by previous proof. Induction hypothesis: Assume for some m $f(\sqrt{\frac{m}{2^n}}) = [f(1)]^{\frac{m}{2^n}}$ is true. Induction step: WTS claim holds for $m\pm 1$ $(m+1): f(\sqrt{\tfrac{m+1}{2^n}}) = f(\sqrt{\tfrac{m}{2^n} + \tfrac{1}{2^n}}) = [f(1)]^{\tfrac{m}{2^n}} [f(1)]^{\tfrac{1}{2^n}} = [f(1)]^{\tfrac{m+1}{2^n}}$ $(m-1):[f(1)]^{\frac{m-1}{2^n}}=([f(1)]^{\frac{m}{2^n}})^{\frac{m-1}{m}}=(f(\sqrt{\tfrac{m}{2^n}}))^{\frac{m-1}{m}}=((f(\sqrt{\tfrac{1}{2^n}}))^m)^{\frac{m-1}{m}}=$ $([f(1)]^{\frac{1}{2^n}})^{m-1} = [f(1)]^{\frac{m-1}{2^n}}$ For any $x \in \mathbb{R}$ we can can construct a sequence S_k where each s_k is of the form $\sqrt{\frac{m}{2^n}}$ that converges to x. By the continuity of f, $\lim_{k\to\infty} S_k = x \Rightarrow$
- (Q-2) (a) Let $x_0 \in [0,1] \cap \mathbb{Q}$ be arbitrary, and let $\epsilon = f(x_0)$. Suppose $\delta > 0$. By the denseness of real numbers, there exists $x \in \mathbb{I}$ s.t $|x - x_0| < \delta$. It follows $|f(x) - f(x_0)| = f(x_0) \ge \epsilon$. Hence, f(x) is discontinuous for all rationals in [0,1].
 - (b) Let $x_0 \in [0,1] \cap \mathbb{I}$ be arbitrary and let $\epsilon > 0$.

 $\lim_{k \to \infty} f(S_k) = f(x).$

On the interval (0,1), there are q-1 values of x such that $f(x)=\frac{1}{q}$. Since there are finitely many values of x s.t $f(x)=\frac{1}{q}$ for all $q\in\mathbb{N}$, we can pick a $\delta>0$ small enough s.t for all $|x-x_0|<\delta, |f(x)-f(x_0)|<\frac{1}{q}$ for all $q\in\mathbb{N}$. Thus, we can make $|f(x)-f(x_0)|<\epsilon$. Hence, f(x) is continuous for $x\in[0,1]\cap\mathbb{I}$.

- (Q-3) We assume f(0)>0 and f(1)<1. If either f(0)=0 or f(1)=1 are true, we are done. Let g(x):=f(x)-x. It follows g(0)=f(0)-0>0 and g(1)=f(1)-1<0, so g(1)<0< g(0). Note $x\in[0,1]$. By the continuity of g, there exists $\delta>0$ s.t $|g(x)-g(0)|<|g(0)|\Rightarrow g(x)<0$ for all $0< x<\delta$. Moreover, there exists $\delta>0$ s.t $|g(x)-g(1)|< g(1)\Rightarrow 0< g(x)$ for all $0<1-x<\delta$. Let $S:=\{x\in[0,1]:g(x)>0\}$, and let $c:=\sup(S)$. By the definition of c, there exists some $x_0\in(c-\delta,c)$ for $\delta>0$ s.t $g(x_0)>g(c)\geq 0$. If there wasn't, $\sup(S)< c$. In addition, for all $x\in(c,c+\delta)$ $g(x)\leq 0$. It follows $g(c+\delta)\leq 0\leq g(c)< g(x_0)$. By continuity, there exists $\delta>0$ s.t $0\leq g(c)\leq |g(c+\delta)-g(c)|<\epsilon\Rightarrow g(c)=0\Rightarrow f(c)=c$.
- (Q-4) Let $f: [7am, 5pm] \times [0, 1]$ and $g: [7am, 5pm] \times [0, 1]$ be continuous functions for the path the hiker takes from the bottom to the top and top to bottom. WTS there is a point $c \in [7am, 5pm]$ where f(c) = g(c). Let $h(x) := g(x) f(x) \Rightarrow h(7am) = 1, h(5pm) = -1$. By the IVT, there exists $c \in (7am, 5pm)$ s.t $h(c) = 0 \Rightarrow f(c) = g(c)$.
- (Q-5) (a) $g'(0) = \lim_{h \to 0} \frac{g(h) g(0)}{h} = \lim_{h \to 0} \frac{h + 2h^2 \sin(\frac{1}{h}) 0}{h} = \lim_{h \to 0} 1 + 2h \sin(\frac{1}{h})$. Since we are taking the limit as h goes to 0, we can assume h is small, i.e $|h| < \frac{1}{2}$. $\sin(x)$ is bounded between -1 and 1, so $|2h \sin(\frac{1}{h})| < 1 \Rightarrow g'(0) > 1$.
 - (b) WTS for $\delta>0$ there exists $0<|c|<\delta$ s.t g'(c)<0. $g'(c)=c+4c\sin(\frac{1}{c})-2\cos(\frac{1}{c})$. Let $c=\frac{1}{2\pi k}$ for $k\in\mathbb{N}$ sufficiently large s.t $c<\delta$. Thus, $g(c)=\frac{1}{2\pi k}-2<0$.
- (Q-6) (a) Let $f(x) := 5x^4 4x + 1$. It follows $f(\frac{1}{2}) = 5(\frac{1}{2})^4 4(\frac{1}{2}) + 1 = \frac{5}{16} 2 + 1 = \frac{21}{16} 2 < 0$ and f(1) = 2. It follows by the IVT, there exists a root between $[\frac{1}{2}, 1]$.
 - (b) Let $f(x) := a_0 + a_1 x + \dots + a_n x^n$ where $a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0$. Let $g(x) : \frac{a_0}{1} + \frac{a_1}{2} x + \dots + \frac{a_n x^{n+1}}{n+1}$ be an antiderivative of f(x). Observe g(0) = g(1) = 0. It follows by Rolle's Theorem that there exists a point on the interval [0,1] s.t g'(x) = f(x) = 0
- $\begin{aligned} &(\text{Q-7}) \ \lim_{n \to \infty} 4^n \left(1 \cos\left(\frac{\theta}{2^n}\right)\right) \\ &= \lim_{n \to \infty} 4^n \left(1 \sum_{k=0}^{\infty} \frac{\left(\frac{\theta}{2^n}\right)^{2k} (-1)^k}{(2k)!}\right) \\ &= \lim_{n \to \infty} 4^n \left(\sum_{k=1}^{infty} \frac{\left(\frac{\theta}{2^n}\right)^{2k} (-1)^{k-1}}{(2k)!}\right) \\ &= \lim_{n \to \infty} \sum_{k=1}^{infty} \frac{\theta^{2k} (-1)^{k-1}}{4^{nk-1} (2k)!} \\ &= \lim_{n \to \infty} \frac{\theta^2}{2} + \sum_{k=2}^{infty} \frac{\theta^{2k} (-1)^{k-1}}{4^{nk-1} (2k)!} = \frac{\theta^2}{2} + 0 = \frac{\theta^2}{2} \end{aligned}$

- $\begin{array}{l} \text{(Q-8)} \ \ L = \lim_{x \to \infty} x \int_0^x e^{t^2 x^2} dt = \infty \cdot 0 \ \text{because } \lim_{x \to \infty} x \int_0^x e^{t^2} dt = \infty \ \text{and} \\ \lim_{x \to \infty} e^{-x^2} = 0. \ \text{It follows by LH } \lim_{x \to \infty} x \int_0^x e^{t^2 x^2} dt = \lim_{x \to \infty} \frac{xe^{x^2} + \int_0^x e^{t^2} dt}{2xe^{x^2}} = \\ \frac{\infty}{\infty}. \ \text{By L'H } \lim_{x \to \infty} \frac{xe^{x^2} + \int_0^x e^{t^2} dt}{2xe^{x^2}} = \lim_{x \to \infty} \frac{2e^{x^2} + 2x^2e^{x^2}}{2e^{x^2} + 4x^2e^{x^2}} = \lim_{x \to \infty} \frac{1 + x^2}{1 + 2x^2} = \\ \frac{1}{2}. \end{array}$
- (Q-9) (a) $\lim_{n\to\infty}\sum_{k=1}^n\frac{n}{k^2+n^2}$. Observe $\frac{n}{k^2+n^2}\geq\frac{n}{2n^2}=\frac{1}{2n}$. The sum $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{2k}$ diverges, so $\lim_{n\to\infty}\sum_{k=1}^n\frac{n}{k^2+n^2}$ diverges.
 - (b) Let $L = \lim_{n \to \infty} \left(\prod_{k=1}^{n} (1 + \frac{k}{n}) \right)^{\frac{1}{n}} \Rightarrow \log(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \log(1 + \frac{k}{n}) = \int_{1}^{2} \log(x) dx = \log(\frac{4}{e}) \Rightarrow L = \frac{4}{e}$
- (Q-10) Let $f(x) := 2x \int_0^x f(t)dt 1$. WTS there is one root on the interval [0,1]. It suffices to show where f'(x) = 0. $f'(x) = 2 f(x) \Rightarrow e^x f'(x) + e^x f(x) = 2e^x \Rightarrow e^x f(x) = 2e^x + c \Rightarrow f(x) = 2 + ce^{-x}$. To find c we use $f(0) = -1 \Rightarrow c = -3 \Rightarrow f(x) = 2 3e^{-x}$. Because $f'(x) = 3e^{-x} > 0$, f is strictly increasing. Solving for $f(x) = 2 3e^{-x} = 0$, $f(x) = 2 3e^{-x} \Rightarrow 0$, $f(x) = 2 3e^{-x} \Rightarrow 0$.