

第二次作业分享

分工:

陈怀玉 必做题1,2(1)

张霁辰 必做题2(2)(3)

张秋迎 练习题

- BLAST数据库简介
- •什么是Bootstrap?
- 系统发育树构建算法原理
- PAM矩阵简介

- BLAST数据库简介
- •什么是Bootstrap?
- 系统发育树构建算法原理
- PAM矩阵简介

NCBI中BLAST 常见程序

• BLASTP:蛋白序列到蛋白库

• BLASTN:核酸序列到核酸库

• BLASTX:核酸序列到蛋白库

• TBLASTN:蛋白序列到核酸库

• TBLASTX:核酸序列到核酸库

BLASTP中常见数据库

- Nr: All non-redundant GenBank CDS translations + RefSeq
 Proteins + PDB + SwissProt + PRF
- Refseq
- Swissprot
- Pat
- Pdb
- Month
- Evn nr

BLASTN中常见数据库

- Nr : All GenBank + RefSeq Nucleotides + EMBL + DDBJ + PDB
- Refseq_rna
- Refseq_genomic
- Est : ex:est human, est mouse, est others
- Htgs
- Pat、pdb、month等常见核酸数据库

- •什么是Bootstrap?
- 系统发育树构建算法原理
- PAM矩阵简介

Bootstrap Test

- 实质:对观测信息进行再抽样,进而对总体的分布特性进行统计推断
- 充分利用给定的观测信息
- 具稳健性和高效率
- 机器学习领域应用广泛

Bradley Efron,著名统计学家

Bootstrap Consensus Tree

- 多次bootstrap test得到的平均结果
- 无遗传距离信息
- 数字代表频率参数
- 频率参数反应进化树是否可靠

Bootstrap Consensus Tree vs. Original Tree

Original tree

- 最优系统树,树枝长短精确表示遗传距离数据,可显示频率参数;可确定树根
- 是bootstrap test构建的 N次株树中的一株,未经过多棵树合并

Bootstrap consensus tree

• N次株树的该树枝的出现频率, 反应该树枝的可信度

- BLAST数据库简介
- •什么是Bootstrap?
- 系统发育树构建算法原理
- PAM矩阵简介

• 距离法

- 以邻接法为例(Neighbor-Joining, NJ)
 - 确定距离最近的成对分类单元从而使系统树的总距离达到最小
 - 优点:速度最快
 - 缺点:序列上的所有位点等同对待,且所分析的序列的进化距离不能太大

- 最大简约法(Maximum parsimony, MP)
 - "解释一个过程的最好理论是所需假设数目最少的那一个"
 - 依托于进化过程中所需核苷酸或氨基酸替代数目最少的假说,首先计算所有可能的拓扑结构,然后挑选出所需替代数最小的那个拓扑结构作为最优树。

• 在分析序列上存在较多的回复突变或平行突变,而被检验的序列位点数又比较少的时候,最大简约法可能会给出一个不合理的或者错误的进化树推导结果。

- 最大似然法(Maximum likelihood,ML)
 - 基本思想:当从模型总体随机抽取n组样本观测值后,最合理的参数估计 量应该使得从模型中抽取该n组样本观测值的概率最大。
 - 似然函数:参数给定时观测数据的概率

例子: 抛硬币10次,得到:反正正正正反正正正反

假设: 正面朝上的概率为p, 反面则为1-p

P(反正正正反正正反)=(1-p)*p*p*p*p*(1-p)*p*p*p*(1-p)= $p^7 \times (1-p)^3$

当p=0.7时,该函数取得最大值,即P(..)最有可能发生

- 最大似然法(Maximum likelihood,ML)
 - 将每个位点所有可能出现的残基替换概率进行累加,产生特定位点的似然值, 对所有可能的树都计算似然函数,选取似然函数最大的那棵树
 - 假定所有序列都是从一条碱基进化而来,拥有共同祖先,给定一定的进化模型 后,什么样的拓扑结构、多长的树枝、什么样的模型参数最有可能产出当前各 序列

- 优点:在进化模型确定的情况下,与进化事实吻合最好
- 缺点:计算耗时,速度慢

不同算法的选择

• 一般情况,若有合适模型,ML的效果较好

• 近缘序列:一般使用MP(基于的假设少)

• 远缘序列:一般使用NJ或ML

以同样的方法分析同样的数据, 所产生的树有可能存在不同吗?

- 有可能
- 最大简约法和最大似然法为了节约运算成本,会采用近似最优的 启发式搜索等方法。如果算法是随机选取道路搜索起点的,则将 有可能每次获得的近似最优解不同
- 在构建Bootstrap consensus tree的过程中,会随机产生1000次取样,因此用同样的方法分析同样的数据,也会产生不完全相同的树

- BLAST数据库简介
- •什么是Bootstrap?
- 系统发育树构建算法原理
- PAM矩阵简介

- Margaret Belle (Oakley) Dayhoff
- 1925-1983
- 生物信息学奠基人
 - PAM矩阵
 - 世界上第一个在线蛋白数据库
 - 氨基酸单字母代码
 - 用计算机构建系统发育树
 -
- 美国生物物理学协会前主席、秘书长

A Model of Evolutionary Change in Proteins

M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt

References

- Dayhoff, M.O., Eck, R.V., and Park, C.M., in Atlas of Protein Sequence and Structure 1972, Vol.5, ed. Dayhoff, M.O., pp.89-99, Nat. Biomed. Res. Found., Washington, D.C., 1972
- Schwartz, R.M., and Dayhoff, M.O., in Evolution of Protein Molecules, ed. Matsubara, H., and Yamanaka, T., pp.1-16, Japan Sci. Soc. Press, Tokyo, 1978
- Schwartz, R.M., and <u>Dayhoff</u>, M.O., in Origin of Life, ed. Noda, H., pp.457-469, Center for Academic Pub. Japan/Japan Sci. Soc. Press, Tokyo, 1978
- Dayhoff, M.O., and Eck, R.V., Atlas of Protein Sequence and Structure 1967-68, pp.33-45, Nat. Biomed. Res. Found., Silver Spring, Md., 1968

Dayhoff, M., Schwartz, R., & Orcutt, B. (1978). a model of evolutionary change in proteins. *Atlas of protein sequence and structure*, 5, 345-352.

- 'Accepted Point Mutation'
- 由大量观察数据得来
 - 71棵进化树
 - 差异小于15%
- i,j替换出现次数A(i,j)
- i氨基酸出现频率f(i)
- i氨基酸的相对突变性m(i)

- 突变概率矩阵M(i,j)
 - 非对角线元素: 氨基酸j变为氨基酸i的概率
 - 对角线元素: 氨基酸i保持不变的概率
 - 保持总概率为1
 - $\sum f(i)M(i,i)$ 的含义?
 - 在一段时间间隔内,某个未知氨基酸不发生突变的概率
 - 在1PAM的时间间隔内, 这个概率被定义为0.99, 由此求解出λ

		ORIGINAL AMINO ACID A R N D C Q E G H I L K M F P S T W Y																				
					N	D	С	Q	Ε	G	Н	I	L	К	М	F	Р	S	T	W	Y	V
L			Ala	Arg	Asn	Asp	Cys	Gln	G1 u	ļ	His	Ile	Leu	Lys	Met	Phe	Pro	Ser	Thr	Tr	Tyr	· Val
			9867	2		10	3		-	21	2		4	2	6	2	22	35	32	2	9 3	2 18
		Arg		9913		0	1		0						4	1	4	6	1	. 8	8 (
		Asn	4	1		36	0	4	6		21	3	1			1	2	20	9	1	4	
		Asp	6	0		9859	0	6	53	6	4	1	0	3	0	0	1	5	3			
		ys iln	3	1 9	0		9973	0	0	0	1	1	0	0	0	0	1	5	1		3	
		il u	10		4	5		9876	27	1	23	1	3	6	4	0		2	2			
		ily	21	0	7	56	0		9865	4	2	3	1	4	1	0	3	4	2	0	1	
		is	1	1	12	11	1	3	7	9935	1	0	1	2	1	1	3	21	3	C	0	
		le le	2	8	18	3	1	20	1		9912	0	1	1	0	2	3	1	1	1	4	
		eu	3	2	3	0	2	1	2	0		9872	9	2	12	7	0	1	7	0	1	3:
		ys	2	37	25	6	0	6	1	1	4	22	9947	2	45	13	3	1	3	4	2	1
		et	1	1	0	0	0	12	7	2	2	4		9926	20	0	3	8	11	0	1	
F		he	1	1	1	0	0	0	0	0	0	5	8		9874	1	0	1	2	0		1
P		ro	13	5	2	1	1	8	3	1	2	8	6	0		9946	0	2	1	3		
S		er	28	11	34	7	11	4	6	16	5	2	2	2	1	1	9926	12	4	0		1
	Th		22	2	13	4	1	3	2	2	1	11	1 2	7	4	3		9840	38	5	2	1
W			0	2	0	0	0	0	0	0	0	0		8	6	1	5		9871	0	2	9
			1	0	3	0	3		1	0	4	1	0	0	0	1	0	1		9976	1	0
v			13	2	1	1	3	2	2	3	3	57	11	0	17	21	3	2	10	0	9945	9901

1PAM=1%差异

Correspondence between Observed Differences and the Evolutionary Distance

Observed Percent difference	Evolutionary Distance in PAMs	y
1	1	
5	5	
10	11	
15	17	
20	23	
25	30	
30	38	
35	47	
40	56	
45	67	
50	80	
55	94	
60	112	
65	133	
70	159	
75	195	
80	246	
 85	328	

										0	RIGIN	AL AM	INO A	CID								
			А	R	N	D	С	Q	Ε	G	Н	I	L	К	М	F	Р	S	T	W	Υ	٧
			Ala	Arg	Asn	Asp	Cys	G1 n	G1 u	Gly	His	Ile	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Va1
	Α	Ala	13	6	9	õ	5	8	9	12	6	8	6	7	7	4	11	11	11	2	4	9
	R	Arg	3	17	4	3	2	5	3	2	6	3	2	9	4	1	4	4	3	7	2	2
	N	Asn	4	4	6	7	2	5	6	4	6	3	2	5	3	2	4	5	4	2	3	3
	D	Asp	5	4	8	11	1	7	10	5	6	3	2	5	3	1	4	5	5	1	2	3
	С	Cys	2	1	1	1	52	1	1	2	2	2	1	1	1	1	2	3	2	1	4	2
	Q	Gln	3.	5	5	6	1	10	7	3	7	2	3	5	3	1	4	3	3	1	2	3
	E	Glu	5	4	7	11	1	9	12	5	6	3	2	5	3	1	4	5	5	1	2	3
AC I D	G	G1 y	12	5	10	10	4	7	9	27	5	5	4	6	5	3	8	11	9	2	3	7
AMINO		His	2	5	5	4	2	7	4	2	15	2	2	3	2	2	3	3	2	2	3	2
	I	He	3	2	2	2	2	2	2	2	2	10	6	2	6	5	2	3	4	1	3	9
REPLACEMENT	L	Leu	6	4	4	3	2	6	4	3	5	15	34	4	20	13	5	4	6	6	7	13
PLAC	K	,	6	18	10	8	2	10	8	5	8	5	4	24	9	2	6	8	8	4	3	5
RE	М		1	1	1	1	0	1	1	1	1	2	3	2	6	2	1	1	1	1	1	2
	F	Phe	2	1	2	1	1	1	1	1	3	5	6	1	4	32	1	2	2	4	20	3
	Р	Pro	7	5	5	4	3	5	4	5	5	3	3	4	3	2	20	6	5	1	2	4
	S	Ser	9	6	8	7	7	6	7	ġ	6	5	4	7	5	3	9	10	9	4	4	6
	T	Thr	8	5	6	6	4	5	5	6	4	6	4	6	5	3	6	8	11	2	3	6
	W	Trp	0	2	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	55	1	0
	Y	Tyr	1	1	2	1	3	1	1	1	3	2	2	1	2	15	1	2	2	3	31	2
l	V	Val	7	4	4	4	4	4	4	5	4	15	10	4	10	5	5	5	7	2	4	17

非对称性的 PAM250矩阵

- 非对称性PAM250的缺点:
 - M(i,j)的值受到f(i)的影响

•
$$R(i,j) = \frac{M(i,j)}{f(i)} = \frac{f(j) \cdot M(i,j)}{f(j) \cdot f(i)} = \frac{f(i) \cdot M(j,i)}{f(i) \cdot f(j)}$$

- $\bullet = R(j, i)$
- 概率乘法, 难以计算
 - PAM(i,j) = logR(i,j)
- 由此得到对称性PAM250
 - 失去了数值实际意义
 - 方便了计算和储存

C Cys 12 S Ser 0 2 T Thr -2 1 3 P Pro -3 1 0 6 A Ala -2 1 1 1 1 2 G Gly -3 1 0 -1 1 5 N Asn -4 1 0 -1 0 0 2 D Asp -5 0 0 0 -1 0 1 2 4 E Glu -5 0 0 -1 0 0 1 2 4 H His -3 -1 -1 0 0 -1 -2 2 1 1 3 6 K Lys -5 0 0 0 -1 -1 -2 2 1 1 2 2 4 K Lys -5 0 0 0 -1 -1 -2 2 1 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 3 -2 -2 -2 -2 -2 -2 2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -5 -3 -5 -4 -5 -4 -6 -5 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 Cys Ser Thr Pro Ala Gly Asn Asp Glu Gln His Arg Lys Met Ile Leu Val Phe Tyr Trp																							
T Thr -2 1 3	С	Cys	12																				
P Pro -3	S	Ser	0	2																			
A Ala	T	Thr	-2	1	3																		
G Gly -3 1 0 -1 1 5 N Asn -4 1 0 -1 0 0 2 D Asp -5 0 0 0 -1 0 1 2 4 E Glu -5 0 0 -1 0 0 1 2 4 H His -3 -1 -1 0 0 -1 -2 2 1 1 3 6 R Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6 K Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I IIe -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6 V Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -3 -5 -3 -5 -2 -4 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	Р	Pro	-3	1	0	6																	
N Asn -4 1 0 -1 0 0 2 D Asp -5 0 0 0 -1 0 1 2 4 E Glu -5 0 0 -1 0 0 1 2 4 H His -3 -1 -1 0 0 -1 -2 2 1 1 3 6 R Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6 K Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -2 2 5 L Leu -6 -3 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -3 -5 -3 -5 -2 -4 -4 -4 -4 0 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	Α	Ala	-2	1	1	1	2																
D Asp -5 0 0 0 -1 0 1 2 4 E Glu -5 0 0 0 -1 0 0 1 3 4 Q Gln -5 -1 -1 0 0 0 -1 1 2 2 4 H His -3 -1 -1 0 0 -1 -2 2 1 1 3 6 R Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6 K Lys -5 0 0 -1 -1 -2 1 0 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6 V Val -2 -1 0 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	G	G1 y	-3	1	0	-1	1	5	\geq														
E Glu -5 0 0 -1 0 0 1 3 4 Q Gln -5 -1 -1 0 0 -1 1 2 2 4 H His -3 -1 -1 0 0 -1 -2 2 1 1 3 6 R Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6 K Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -2 2 5 L Leu -6 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	N	Asn	-4	1	0	-1	0	0	2														
Q GIn	D	Asp	-5	0	0	-1	0	1	2	4													
H His -3 -1 -1 0 -1 -2 2 1 1 3 6 R Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6 K Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -2 2 5 V Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	Ε	G1 u	-5	0	0	-1	0	0	1	3	4												
R Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6 K Lys -5 0 0 -1 -1 -1 -2 1 0 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -2 -2 2 5 V Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 -4 0 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	Q	G1 n	-5	-1	-1	0	0	-1	1	2	2	4	\geq										
K Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5 M Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6 I Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5 L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -2 2 5 V Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	Н	His	-3	-1	-1	0	-1	-2	2	1	1	3	6										
M Met	R	Arg	-4	0	-1	0	-2	-3	0	-1	-1	1	2	6									
I IIe	K	Lys	-5	0	0	-1	-1	-2	1	0	0	1	0	3	5								
L Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -2 -3 -3 4 2 6 V Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	М	Met	-5	-2	-1	-2	-1	-3	-2	-3	-2	-1	-2	0	0	6							
V Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4 F Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	I	Пe	-2	-1	0	-2	-1	-3	-2	-2	-2	-2	-2	-2	-2	2	5						
F Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9 Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	L	Leu	-6	-3	-2	-3	-2	-4	-3	-4	-3	-2	-2	-3	-3	Å	2	6					
Y Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 -4 -4 -2 -1 -1 -2 7 10 W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	ν	Val	-2	-1	0	-1	0	-1	-2	-2	-2	-2	-2	-2	-2	2	4	2	4				
W Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 C S T P A G N D E Q H R K M I L V F Y W	F	Phe	-4	-3	-3	- 5	-4	-5	-4	-6	-5	-5	-2	-4	-5	0	1	2	-1	9			
CSTPAGNDEQHRKMILVFYW	Υ	Tyr	0	-3	-3	-5	-3	- 5	-2	-4	-4	-4	0	-4	-4	-2	-1	-1	-2	7	10		,
	W	Trp	-8	-2	-5	-6	-6	-7	-4	-7	-7	-5	-3	2	-3	-4	-5	-2	-6	. 0	0	17	
Cys Ser Thr Pro Ala Gly Asn Asp Glu Gln His Arg Lys Met Ile Leu Val Phe Tyr Trp			С	S	Т	Р	Α	G	N	D	Ε	Q	Н	R	K	М	I	L	٧	F	Υ	W	
			Cys	Ser	Thr	Pro	Ala	G1 y	Asn	Asp	Glu	G1 n	His	Arg	Lys	Met	Ile	Leu	Va1	Phe	Tyr	Trp	

谢谢大家!

Thank you for watching