Η έννοια του πολυωνύμου

ΑΣΚΗΣΕΙΣ

Βασικές έννοιες

1. Για καθένα από τα παρακάτω πολυώνυμα να βρείτε τους όρους, τους συντελεστές, το σταθερό όρο και το βαθμό.

$$\alpha. P(x) = 2x^3 - 4x^2 + 5x - 7$$

$$\beta. \ O(x) = x^2 + 5x - 2$$

$$y. S(x) = -x^4 + x^3 - 5x + 8$$

$$\delta. K(x) = x^2 - x^3 + 1$$

$$\epsilon. \ M(x) = \frac{x^3}{4} - \sqrt{2}x^2 + \frac{3x}{5}$$

2. Βρείτε το βαθμό σε καθένα από τα παρακάτω πολυώνυμα.

$$\alpha. P(x) = 3x - x^3 + 5 + x^2$$

$$\beta. \ Q(x) = 4x^2 + 0x^4 - x^3 + 7$$

$$R(x) = x^4 - 2x^2 + 4x^3 - x^4 + 7 - 5x$$

$$\delta. S(x) = 0x^2 + 0x + 3$$

$$\epsilon$$
. $K(x) = -5$

$$στ. G(x) = 0$$

3. Δίνεται το πολυώνυμο

$$P(x) = (\lambda^2 - 3\lambda) x^3 - (\lambda - 3)x^2 + (9 - \lambda^2) x + 2\lambda - 6$$

με $\lambda \in \mathbb{R}$. Να βρείτε το βαθμό του P(x) για κάθε τιμή της παραμέτρου λ .

Ισότητα πολυωνύμων

4. Βρείτε τις τιμές της παραμέτρου $a \in \mathbb{R}$ έτσι ώστε το πολυώνυμο

$$P(x) = (|a|-1)x^3 + (a^2-a)x^2 + (2a-2)x + a^2 - 1$$

να είναι το μηδενικό πολυώνυμο.

5. Να υπολογίσετε τις τιμές της παραμέτρου $\lambda \in \mathbb{R}$ έτσι ώστε τα πολυώνυμα

$$A(x) = (\lambda + 1)x^3 + (\lambda^2 + 2)x^2 + 2\lambda x - 3$$
 και

$$B(x) = (\lambda^{2} - 1) x^{3} + 3\lambda x^{2} + 4x - 1 - \lambda$$

να είναι ίσα.

6. Να βρεθούν οι τιμές της παραμέτρου *a* ώστε τα παρακάτω πολυώνυμα να είναι ίσα.

$$P(x) = (a^2 - 3a)x^3 + x^2 + a$$
 και

$$Q(x) = -2x^3 + a^2x^2 + (a^3 - 1)x + 1$$

Τιμές - Ρίζες πολυωνύμων

7. Δίνεται το πολυώνυμο $P(x) = x^3 - 3x^2 + 7x - 10$.

α. Να υπολογίσετε τις τιμές P(-2), P(1), P(0) και P(3).

β. Να βρεθεί η τιμή της παράστασης $3P^2(2) - 4P(-1) + P(0)$.

8. Δίνεται το πολυώνυμο $P(x) = x^3 - 4x^2 + x + 6$. Να εξετάσετε ποιοι από τους αριθμούς $\pm 1, \pm 2, \pm 3$ είναι ρίζες του P(x).

9. Δίνεται το πολυώνυμο

$$P(x) = x^3 + ax^2 - (2a - 1)x - 3$$
, $\mu \in a \in \mathbb{R}$,

για το οποίο ισχύει P(2) = 7.

α. Να δείξετε ότι a=3.

β. Να γράψετε τους όρους και τους συντελεστές του P(x).

γ. Να υπολογίσετε τις τιμές P(3), P(-1), P(0) και P(-4).

10. Δίνεται το πολυώνυμο

$$P(x) = x^3 - (3 - a)x^2 + a^2x - 4$$

με $a \in \mathbb{R}$, το οποίο έχει ρίζα τον αριθμό 1.

α. Να δείξετε ότι a=2.

β. Να βρεθούν οι τιμές P(-1), P(2) και P(0).

11. Δίνεται το πολυώνυμο 3ου βαθμού

$$P(x) = (a^2-1)x^3 + (a^2-3a+2)x^2 + (a+2)x-8$$

με $a \in \mathbb{R}$, για το οποίο ισχύει $P(1) = -1$.

α. Να δείξετε ότι a=2.

β. Να γράψετε τους όρους και τους συντελεστές του P(x).

γ. Να βρεθεί η τιμή της παράστασης

$$\frac{2P(2) - P^2(-1)}{P(0)}$$

12. Δίνεται το πολυώνυμο

$$P(x) = ax^3 + \beta x^2 + 2x + 5$$

με $a, \beta \in \mathbb{R}$, για το οποίο ισχύει P(2) = -1 και P(-1) = 2.

α. Να δείξετε ότι a = 1 και β = -2.

β. Να βρεθεί η τιμή της παράστασης P(P(1)).

Πράξεις πολυωνύμων

13. Δίνονται τα ακόλουθα πολυώνυμα $A(x) = x^3 - 2x^2 - 5x + 4$, $B(x) = -x^3 + 3x^2 + 8x - 10$ και $\Gamma(x) = 3x - 4$.

α. Να υπολογίσετε τα πολυώνυμα

i.
$$P(x) = A(x) + B(x)$$

ii.
$$Q(x) = B(x) - A(x)$$

iii.
$$R(x) = \Gamma(x) \cdot A(x)$$

β. Ποιος είναι ο βαθμός αυτών των πολυωνύμων;

14. Έστω P(x) ένα πολυώνυμο τέτοιο ώστε

$$(x-2) \cdot P(x) = x^3 - 2x^2 + x - 1$$

α. Να προσδιορίσετε το πολυώνυμο P(x).

β. Υπολογίστε την τιμή της παράστασης $2P(-1) + P^2(0)$.

15. Δίνονται τα πολυώνυμα $A(x) = x^2 - 3x + 2$ και $B(x) = x^3 - x^2 + 4x - 3$. Να βρεθούν τα πολυώνυμα

$$\alpha. P^2(x)$$

$$\gamma$$
. $P^2(x) - xQ(x)$

$$\beta. P(x) \cdot Q(x)$$

$$\delta . xP(x) - Q(x)$$

16. Δίνεται το πολυώνυμο

$$P(x) = x^4 - 2x^3 - 3x^2 + 4x + 4$$

Να βρεθεί πολυώνυμο Q(x) έτσι ώστε να ισχύει $Q^2(x) = P(x)$.

17. Δίνεται το πολυώνυμο

$$P(x) = x^3 + ax^2 + \beta x + 3$$

με $a, \beta \in \mathbb{R}$, για το οποίο ισχύει P(-2) = 7 και P(1) = 10.

α. Να δείξετε ότι a=4 και $\beta=2$.

β. Να βρεθεί το πολυώνυμο (x-1)P(x).