به نام خدا

گزارش کار آزمایشگاه معماری کامپیوتر

أزمايش جلسه هشتم

عنوان آزمایش: Receive Data from Serial Port

نام استاد:

استاد على جوادى

اعضای گروه:

غزل عربعلی - بهاره کاوسی نژاد

آزمایش: Receive Data from Serial Port

هدف آزمایش: دریافت دیتا از پورت سریال

تئورى آزمايش:

در این آزمایش میخواهیم یک عدد هشت بیتی را در برنامه Docklight به پورت سریال بدهیم و روی LEDها نمایش دهیم.

روش کار پروتکل مانند آزمایش قبل به این صورت است که برای مشخص ساختن بیت اول ابتدا یک بیت 0 و برای مشخص ساختن پایان نیز 01 ارسال می کند. همچنین برای اطمینان از دریافت دیتای درست، پس از مشاهده اولین 0، نیم کلاک جلو می رویم.

Accurate Measurement (Fault Tolerant)

روش و چگونگی انجام آزمایش:

در ابتدا ورودیها و خروجی را مشخص می کنیم:

- GCLK: ورودى
- RX: ورودی برای دریافت دیتا توسط RX:
 - LED: خروجی

کلاک جدید که نصف کلاک آزمایش قبل است:

```
architecture Behavioral of RXSerialRead is
signal CLOCK87 : STD LOGIC := '0';
signal started : bit := '0';
--signal started : STD_LOGIC := '0';
begin
process (GCLK)
   variable CounterClock87 : integer range 0 to 100000 := 0;
      if(falling edge(GCLK)) then
         if(CounterClock87 < 87) then
            CounterClock87 := CounterClock87 + 1;
         else
            CounterClock87 := 0;
            CLOCK87 <= not CLOCK87;
         end if;
      end if;
end process;
```

دریافت دیتا:

```
process (CLOCK87)
variable DataBits : integer range 0 to 7 := 0;
-- 1 start(=0) + 8 bit + 2 stop(=01) => 11 bits
variable BitCounter : integer range 0 to 10 := 1;
variable ClockCycle : integer range 0 to 80000 := 0;
--variable result : STD LOGIC VECTOR(7 downto 0); -- 8 data bit
begin
   if(falling edge(RX)) then
         started <= '1';
   end if;
   if (falling edge(ClOCK87)) then
     if(ClockCycle = 8000) then
      if(started = '1') then
         if (BitCounter = 0) then
            ClockCycle := ClockCycle + 1;
         else
            if (BitCounter < 9) then
              LED(BitCounter - 1) <= RX;
            end if;
            if(DataBits < 8) then
               DataBits := DataBits + 1;
            else
               DataBits := 0;
            end if;
            ClockCycle := ClockCycle + 2;
         if (BitCounter < 10) then
            BitCounter := BitCounter + 1;
         else
           BitCounter := 0;
           started <= '0';
          end if;
        end if;
       end if;
      end if;
   end if;
   if (ClockCycle < 8000) then
```

```
if (ClockCycle < 8000) then
      ClockCycle := ClockCycle + 1;
   if (started = '1' and ClockCycle = 8000 and falling edge(CLOCK87)) then
      if (BitCounter = 0) then
         ClockCycle := ClockCycle + 1;
     else
         if (BitCounter < 9) then
            LED(BitCounter - 1) <= RX;
         if(DataBits < 8) then
            DataBits := DataBits + 1;
         else
            DataBits := 0;
         end if;
         ClockCycle := ClockCycle + 2;
     end if;
   end if;
end process;
end Behavioral;
```

بحث و نتیجه گیری:

در انتها با استفاده از Docklight، ورودی ها را به مدار داده و نتیجه را روی LEDها مشاهده می کنیم.