Resources:

- Dr Rawat (UCF)
- Ms. Adeela (PhD scholar PUCIT)
- Dr Shree Nayar (Columbia University)

Lecture 3

Outline

- Image digitization
 - Sampling
 - Quantization
- Image as a function
- Image processing
 - Histogram
 - Histogram equalization

Need of digitization

- Every scene around us is a continuous image that can be represented by infinite number of image points (resolution)
- Each such image points may contain infinitely many possible intensities
- That needing an infinite number of bits for storage
- Theory of real number: Between any 2 given points there infinite number of points
- Obviously such a representation is not possible in any digital computer.

8/30/2021

Digitization

Issues with continuous image

- Infinite sizes values between two real numbers
- Infinite intensity values between two real numbers
- The process of transforming <u>continuous space</u> into <u>discrete space</u> is called <u>digitization</u>
- Vision algorithms use a discrete form of the images

8/30/2021

Digitization

Function

$$y = f(x)$$

- Domain of a function(x)
- Range of a function (y=f(x))
- Sampling
 - Discretization of domain
- Quantization
 - Discretization of range

Digitization of 1D function

quantization sampling t_1 t_2 t_3 ... continuous signal → digitized signal

one-dimensional

Generating a digital image.

- (a) Continuous image.
- (b) A scaling line from A to B in the continuous image is used to illustrate the concepts of sampling and quantization.
- (c) sampling and quantization.
- (d) Digital scan line.

Credit: https://sisu.ut.ee/imageprocessing/book/2

Digitization of 2D function

Digitization of 3D function

Image as 2D array

(a) Image

(b) as 2D array

Digitization of image in 2D array

Sampling

Resize the sampling images

Python: cv2.resize(img, (1024, 1024))

Quantization

7-bit

6-bit

5-bit

4-bit

3-bit

2-bit

1-bit

cv2.kmeans()

k= 2 for creating 2 cololr image using the **1-bit level image.**

K= 4 for creating 4 color image using **2-bits level image**

Quantization -Image Intensity

The number of bits used to store that value of the pixel identifies the number of grey levels (or possible grey level values) used to describe a pixel.

Available pixel intensities for, 2-bit, 3-bit, and 4-bit image data

1-bit : 2^1 =2 grey lever

2-bit: $2^2 = 4$

3-bit : $2^3 = 8$

4-bit: $2^4 = 16$

Generally gray images uses 8-bit: 2⁶ =256

Intensity values after quantization of grayscale

Types of Images

- Binary
- Gray-scale
- Color

Types of Images

Binary Images

- A binary image is a digital image that has only two possible values for each pixel
- Binary images are also called bi-level or two-level (1bit)
- Binary images often arise as a result of certain operations such as segmentation, thresholding

Binary Image Representation

Image credits: Ulas Bagci

Gray-scale Images

- A gray-scale image is composed of shades of gray
- Shades of gray vary from black as the weakest intensity to the white as strongest
- The values of image intensity range from 0 to 255 (8 bits)

Gray-scale Image Representation

Color Images

- Color image is stored as row × cols × 3 array (3 2D array) that defines red, green, and blue color components for each individual pixel
- This model is based on a Cartesian coordinate system

Color Image Representation

Image credits: Ulas Bagci

RGB color cube: mixture of RGB color intensities

Green

Color	Red number	Green number	Blue numbe
red	255	0	0
purple	255	0	255
yellow	255	255	0
dark yellow	100	100	0
white	255	255	255
black	0	0	0

Color image

Pixel values

Color image

Summary: Color intensities for Gray Scalar and Binary images

A scalar image has integer values

$$u \in \{0, 1, ..., 2^a - 1\}$$

- a: level (bit)
- Ex. If 8 bit (a=8)
 - image spans from 0 to 255
 - 0 black and 255 white
- Ex. If 1 bit (a=1)
 - it is binary image
 - 0 and 1 only

Image Type: RGB (red, green, blue)

• Each channel spans a-bit values.

Human Cone-cells (normalized) responsivity spectra

What is "Color"?

Human Response to different wavelengths

Visible light:

Do We recover spectral distribution $p(\lambda)$?

Sensors in the human eye: Rods & Cones

Color

Color

- If there is no light, there is no color!
- Human vision can only discriminate a few dozens of grey levels on a screen, but hundreds of thousands of different colors.
 - RED -> ~625 to 780 nm
 - ORANGE -> ~ 590 to 625 nm
 - YELLOW -> ~565 to 590 nm
 - GREEN -> ~ 500 to 565 nm
 - CYAN -> ~485 to 500 nm
 - BLUE -> ~440 to 485 nm
 - VIOLET -> ~330 to 440 nm

[long wavelength]

[long wavelength]

[middle range wavelength]

[middle range wavelength]

[middle range wavelength]

[short wavelength]

[very short wavelength]

Image (2D matrix) – other examples

Danny Alexander

Image as Function

- f(x, y) gives the intensity at position (x, y)
 - Single intensity information
- A color image is just three functions pasted together
 - $f(x, y) = [f_r(x, y), f_g(x, y), f_b(x, y)]$
 - Vector information

Image processing

- Image processing usually defines a new image in terms of the existing Image f
- Image processing involves converting an original image into a modified image that is easier to analyze.
- Image processing improves images by fixing problems like noise, motion blur, and defocus blur.
- f'(x, y) = g (f (x, y)) is an example of a simple operation that transforms each image pixel individually

Histograms

- An image histogram is a graphical representation of pixel intensities count
- The x-axis shows the potential intensity values, while the y-axis displays their corresponding counts.

Histogram of a Binary Image

- The first line in the histogram, at gray level 0, shows 4 black pixels in the image.
- The next line indicates 12 white pixels.

Histogram of a Gray-scale Image

• The four-pixel intensities of this image are represented by the four vertical lines of the associated histogram. Pure black, Pure white, dark gray, light gray

Here the x-axis values span from 0 to 255, which means that there are 256 (= 2^8) possible pixel intensities.

Image Histogram- for 8 bit image

Python code to plot histogram

import cv2 as cv
import matplotlib.pyplot as plt
img = cv.imread('parrot.png')
plt.imshow(img)
plt.hist(img.ravel(), bins =255)
plt.show()

Histogram Example

Histogram Applications

- Check image brightness
- Check image darkness
- Histogram equalization to enhance the image
- Apply thresholding generate binary image

Check Image Brightness

- One can get a general idea of the brightness of an image by looking at the histogram
- If the histogram values are concentrated toward the right, the image is brighter

Figure credits: Sneha H.L.

Check Image darkness

 If the histogram values are concentrated toward the left, the image is darker

The contrast of the Image

A histogram in which the **pixel counts evenly cover a broad range of gray-scale levels** indicates an image with good/high contrast

Figure 1: High contrast image

Figure credits: Sneha H.L.

The contrast of the Image

A histogram in which the **pixel counts are not evenly cover a broad range of gray-scale levels** indicates an image with *low contrast*

Figure 2: Low contrast image

Figure credits: Sneha H.L.

- Enhance the quality of the image by spreading the most frequent intensity values using the following steps:
- 1. Calculate the frequency against each intensity value
- 2. Compute the probability of each frequency
- 3. Compute Cumulative Probability or Cumulative Distribution Function (CDF)
- 4. Multiply the CDF with the required intensity levels
- 5. Round the resultant value to floor

Histogram Equalization for Image

Suppose this matrix is representing pixel intensities

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

- Intensity if pixels range between 1 8
- Suppose we want to apply histogram equalization and scale the intensity to 1 20

Example

1. Calculate the frequency against each intensity value

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

Intensity	1	2	3	4	5	6	7	8
Count	1	3	3	2	2	1	3	1

Example

2. Compute the probability of each frequency

$$probability = \frac{\text{No. of pixels associated to a particular intensity}}{\text{Total pixels}}$$

2. Compute the probability of each frequency

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

Intensity	1	2	3	4	5	6	7	8
Count	1	3	3	2	2	1	3	1
Probability	.062	.187	.187	.125	.125	.062	.187	.062

Example

3. Compute Cumulative Distribution Function (CDF) i.e. cumulative probabilities

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

	Intensity 1 2 3 4 5 6 7 8
	Count 1 3 3 2 2 1 3 1
Probabilit	
Cumulative Probability	

Histogram Equalization for Image Enhancement 4. Multiply the CDF with the required intensity levels

- - ► As we want to increase the intensity to the range 1-20, multiply each cumulative probability by 20

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

Intensity 1	2	3	4	5	6	7	8
Count 1	3	3	2	2	1	3	1
Probability Cumulative Probability							.125 .125 .0625 .1875 .0625 .5625 .6875 .75 .9375 1
CP x 20	1.2	5	5		8	.75	5 11.25 13.75 15 18.75 20

Example

5. Round the resultant value to the floor

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

Intensity	1	2	3	4	5	6	7	8
Count	1	3	3	2	2	1	3	1
Probability	.0625	.1875	.1875	.125	.125	.0625	.1875	.0625
Cumulative Probability	.0625	.25	.4375	.5625	.6875	.75	.9375	1
CP x 20	1.25	5	8.75	11.25	13.75	15	18.75	20
Floor Rounding	1	5	8	11	13	15	18	20

Example

Original Image has been transformed to equalized image with different intensities

3	2	4	5
7	7	8	2
3	1	2	3
5	4	6	7

Before

8	5	11	13
18	18	20	5
8	1	5	8
13	11	15	18

After

Python function for Histogram Equalization

```
# Importing libraries
import cv2 as cv

# OpenCV function
cv.equalizeHist(image)
```

```
# Importing libraries
import cv2
import matplotlib.pyplot as plt
def histogram_equalize(img):
  b, g, r = cv2.split(img)
  red = cv2.equalizeHist(r)
  green = cv2.equalizeHist(g)
  blue = cv2.equalizeHist(b)
  return cv2.merge((blue, green, red))
img = cv2.imread('eq.jpg')
plt.imshow(img)
img.shape
equ = histogram equalize(img)
equ.shape
res = np.hstack((img,equ)) #stacking images side-by-side
plt.imshow(res)
```


Take-Home Quiz 1

a. Read and convert color(RGB) image to gray-scale image

$$f'(x, y) = g(f(x, y))$$

where f'(x, y) is the gray-scale image and f in representing a color image, whereas g is a function that is used to convert the color image to gray-scale

b. Apply the provide code (shown in previous slides) to enhance contrast of any low contrast image (dark or bright)

Intensity profiles for selected (two) rows

Image noise

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens

- Noise is random,
 - it occurs with some probability
- It has a distribution

Noise

- I_{original}(x,y) true pixel value at (x,y)
- n(x,y) noise at (x,y)
- $I_{observed}(x,y) = I_{original}(x,y) + n(x,y)$ additive noise

Noise

- I_{original}(x,y) true pixel value at (x,y)
- n(x,y) noise at (x,y)
- $I_{observed}(x,y) = I_{original}(x,y) * n(x,y)$ multiplicative noise

Gaussian Noise

$$n(x, y) \approx g(n) = e^{\frac{-n^2}{2\sigma^2}}$$

Probability Distribution *n* is a random variable

Uniform distribution

Salt and pepper noise

 Each pixel is randomly made black or white with a uniform probability distribution

Salt-pepper

So.... How do we detect an object in an image?

Naïve approach: Template Matching

Find the chair in this image

Output of correlation

This is a chair

Template Matching

Find the chair in this image

Template Matching

Epic fail!
Simple template matching is not going to make it

Template Matching

Simple template matching is not going to make it

Idea

- Instead of comparing raw image pixels:
 - First map those pixels into another (more robust) form,
 - And then compare those mapped forms.
 - Finally, select the closest image map (how do you define "closest"? Metrics).
- Features, examples:
 - compute edges
 - compute color histograms
 - gradients
 - HOG
 - SIFT
 - •

Image filtering

 Image filtering: compute function of local neighborhood at each position

h=output f=filter I=image
$$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$
 2d coords=k,l 2d coords=m,n

Image filtering

 Image filtering: compute function of local neighborhood at each position

- Enhance images
 - Denoise, resize, increase contrast, etc.
- Extract information from images
 - Texture, edges, distinctive points, etc.
- Detect patterns
 - Template matching

Filtering

Modify pixels based on some function of neighborhood

Filtering

Output is linear combination of the neighborhood pixels

Image				. K	Cernel	•		Fil	ter Oı	ıtput
4	1	1		1	0	-1				
2	10	2	\otimes	1	0.1	-1	=		5	
1	3	0		1	0	-1				

Derivatives and Average

- Derivative: rate of change
 - Speed is a rate of change of a distance, X=V.t
 - Acceleration is a rate of change of speed, V=a.t
- Average: mean
 - Dividing the sum of N values by N

Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Discrete Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Discrete Derivative / Finite Difference

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

Central difference

Example: Finite Difference

$$f(x) = 10$$
 15 10 10 25 20 20 20
 $f'(x) = 0$ 5 -5 0 15 -5 0 0
 $f''(x) = 0$ 5 10 5 15 -20 5 0

Derivative Masks

```
Backward difference [-1 1]
Forward difference [1 -1]
Central difference [-1 0 1]
```

Derivative in 2-D

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f \\ f_y \end{bmatrix}$$

Gradient magnitude

$$|\nabla f(x,y)| = \int_{-\infty}^{\infty}$$

Gradient direction

$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

Derivative of Images

Derivative masks
$$f_x$$

$$f_x \Rightarrow \frac{1}{3} \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

$$f_{x} \Rightarrow \frac{1}{3} \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix} \qquad f_{y} \Rightarrow \frac{1}{3} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{vmatrix}$$

$$I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix}$$

Derivative of Images

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Averages

Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

Weighted mean

$$I = \frac{w_{1}I_{1} + w_{2}I_{2} + \ldots + w_{n}I_{n}}{n} = \frac{\sum_{i=1}^{n} w_{i}I_{i}}{n}$$

Example

- a. Original image
- b. Laplacian operator
- c. Horizontal derivative
- d. Vertical derivative

Correlation (linear relationship)

$$f \otimes h = \sum \sum f(k)$$

 \otimes

$$f = Image$$

h = Kernel

	$f \otimes h = f_1 h_1 + f_2 h_2 + f_3 h_3$
>	$+ f_4 h_4 + f_5 h_5 + f_6 h_6$
	$+f_7h_7+f_8h_8+f_9h_9$

Convolution

$$f*h = \sum \sum f(k, l)$$

$$f = Image$$

$$h = Kernel$$

$$h_{7}$$

$$h_{8}$$

$$h_{9}$$

$$h_{4}$$

$$h_{5}$$

$$h_{6}$$

$$h_{1}$$

$$h_{2}$$

$$h_{3}$$

$$Y - flip$$

$$f*h = f_{1}h_{9} + f_{2}h_{8} + f_{3}h_{7}$$

$$+ f_{4}h_{6} + f_{5}h_{5} + f_{6}h_{4}$$

$$+ f_{7}h_{3} + f_{8}h_{2} + f_{9}h_{1}$$

Convolution

Convolution is associative

$$F*(G*I) = ($$

Correlation and Convolution

- Convolution is a filtering operation
 - expresses the amount of overlap of one function as it is shifted over another function

- Correlation compares the similarity of two sets of data
 - relatedness of the signals!

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)}{2o^2}}$$

$$g(x) = \begin{bmatrix} .011 & .13 & .6 & 1 & .6 & .13 & .011 \end{bmatrix}$$

Gaussian filter - properties

Most common natural model

Female Shoe Sales

https://studiousguy.com/real-life-examples-normal-distribution/

Female Shoe Sales, by Size

Gaussian filter - properties

- Most common natural model
- Smooth function, it has infinite number of derivatives
- It is Symmetric
- Fourier Transform of Gaussian is Gaussian.
- Convolution of a Gaussian with itself is a Gaussian.
- Gaussian is separable; 2D convolution can be performed by two 1-D convolutions
- There are cells in eye that perform Gaussian filtering.

0	0	0
1	0	0
0	0	0

1	1	1
1	1	1
1	1	1

5	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

Gaussian Smoothing

Gaussian Smoothing

Smoothing by Averaging

After additive Gaussian Noise

After Averaging

After Gaussian Smoothing

Questions?

Sources for this lecture include materials from works by Mubarak Shah, S. Seitz, James Tompkin and Ulas Bagci