G = (V, E) sei gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

G = (V, E) sei gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Definition 5.16

Es seien $s \in V$ und $t \in V$ zwei beliebige Knoten und es sei $P = (v_0, v_1, \dots, v_\ell)$ ein Weg von s nach t. Wir definieren die Länge von P als $w(P) = \sum_{i=0}^{\ell-1} w(v_i, v_{i+1})$.

G = (V, E) sei gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Definition 5.16

Es seien $s \in V$ und $t \in V$ zwei beliebige Knoten und es sei $P = (v_0, v_1, \dots, v_\ell)$ ein Weg von s nach t. Wir definieren die Länge von P als $w(P) = \sum_{i=0}^{\ell-1} w(v_i, v_{i+1})$. Wir sagen, dass P ein kürzester Weg von s nach t ist, falls es keinen Weg P' von s nach t mit w(P') < w(P) gibt.

G = (V, E) sei gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Definition 5.16

Es seien $s \in V$ und $t \in V$ zwei beliebige Knoten und es sei $P = (v_0, v_1, \dots, v_\ell)$ ein Weg von s nach t. Wir definieren die Länge von P als $w(P) = \sum_{i=0}^{\ell-1} w(v_i, v_{i+1})$. Wir sagen, dass P ein kürzester Weg von s nach t ist, falls es keinen Weg P' von s nach t mit w(P') < w(P) gibt. Wir nennen die Länge w(P) des kürzesten Weges P die Entfernung von s nach t und bezeichnen diese mit $\delta(s,t)$. Existiert kein s-t-Weg, so gelte $\delta(s,t) = \infty$.

Kürzeste-Wege-Probleme:

1. Im Single-Source Shortest Path Problem (SSSP) ist zusätzlich zu G und w ein Knoten $s \in V$ gegeben und wir möchten für jeden Knoten $v \in V$ einen kürzesten Weg von s nach v und die Entfernung $\delta(s, v)$ berechnen.

Kürzeste-Wege-Probleme:

- 1. Im Single-Source Shortest Path Problem (SSSP) ist zusätzlich zu G und w ein Knoten $s \in V$ gegeben und wir möchten für jeden Knoten $v \in V$ einen kürzesten Weg von s nach v und die Entfernung $\delta(s, v)$ berechnen.
- 2. Im All-Pairs Shortest Path Problem (APSP) sind nur G und w gegeben und wir möchten für jedes Paar $u, v \in V$ von Knoten einen kürzesten Weg von u nach v und die Entfernung $\delta(u, v)$ berechnen.

Kürzeste-Wege-Probleme:

- 1. Im Single-Source Shortest Path Problem (SSSP) ist zusätzlich zu G und w ein Knoten $s \in V$ gegeben und wir möchten für jeden Knoten $v \in V$ einen kürzesten Weg von s nach v und die Entfernung $\delta(s, v)$ berechnen.
- 2. Im All-Pairs Shortest Path Problem (APSP) sind nur G und w gegeben und wir möchten für jedes Paar $u, v \in V$ von Knoten einen kürzesten Weg von u nach v und die Entfernung $\delta(u, v)$ berechnen.

Für den Spezialfall, dass w(e) = 1 für alle Kanten $e \in E$ gilt, haben wir mit Breitensuche bereits einen Algorithmus kennengelernt, der das SSSP löst.

Lemma 5.17

Sei $P = (v_0, \dots, v_\ell)$ ein kürzester Weg von $v_0 \in V$ nach $v_\ell \in V$. Für jedes Paar i, j mit $0 \le i \le j \le \ell$ ist $P_{ii} = (v_i, v_{i+1}, \dots, v_i)$ ein kürzester Weg von v_i nach v_i .

Lemma 5.17

Sei $P = (v_0, \dots, v_\ell)$ ein kürzester Weg von $v_0 \in V$ nach $v_\ell \in V$. Für jedes Paar i, j mit $0 \le i \le j \le \ell$ ist $P_{ij} = (v_i, v_{i+1}, \dots, v_j)$ ein kürzester Weg von v_i nach v_j .

Beweis:

Zerlege *P* wie folgt:

$$P = v_0 \stackrel{P_{0j}}{\leadsto} v_i \stackrel{P_{jj}}{\leadsto} v_j \stackrel{P_{j\ell}}{\leadsto} v_\ell.$$

Dann gilt $w(P) = w(P_{0i}) + w(P_{ij}) + w(P_{j\ell})$.

Lemma 5.17

Sei $P=(v_0,\ldots,v_\ell)$ ein kürzester Weg von $v_0\in V$ nach $v_\ell\in V$. Für jedes Paar i,j mit $0\leq i\leq j\leq \ell$ ist $P_{ij}=(v_i,v_{i+1},\ldots,v_j)$ ein kürzester Weg von v_i nach v_j .

Beweis:

Zerlege *P* wie folgt:

$$P = v_0 \stackrel{P_{0i}}{\leadsto} v_i \stackrel{P_{ij}}{\leadsto} v_j \stackrel{P_{j\ell}}{\leadsto} v_\ell.$$

Dann gilt $w(P) = w(P_{0i}) + w(P_{ij}) + w(P_{j\ell})$.

Ist P_{ij} kein kürzester v_i - v_j -Weg, so sei Weg P'_{ii} ein kürzerer v_i - v_j -Weg.

Mit diesem erhalten wir einen v_0 - v_ℓ -Weg P' von v_0 nach v_ℓ :

$$P' = v_0 \stackrel{P_{0i}}{\leadsto} v_i \stackrel{P'_{ij}}{\leadsto} v_j \stackrel{P_{j\ell}}{\leadsto} v_\ell.$$

Lemma 5.17

Sei $P = (v_0, \dots, v_\ell)$ ein kürzester Weg von $v_0 \in V$ nach $v_\ell \in V$. Für jedes Paar i, j mit $0 \le i \le j \le \ell$ ist $P_{ij} = (v_i, v_{i+1}, \dots, v_j)$ ein kürzester Weg von v_i nach v_j .

Beweis:

Zerlege *P* wie folgt:

$$P = v_0 \stackrel{P_{0j}}{\leadsto} v_i \stackrel{P_{ij}}{\leadsto} v_j \stackrel{P_{j\ell}}{\leadsto} v_\ell.$$

Dann gilt $w(P) = w(P_{0i}) + w(P_{ij}) + w(P_{j\ell})$.

Ist P_{ij} kein kürzester v_i - v_j -Weg, so sei Weg P'_{ii} ein kürzerer v_i - v_j -Weg.

Mit diesem erhalten wir einen v_0 - v_ℓ -Weg P' von v_0 nach v_ℓ :

$$P' = v_0 \stackrel{P_{0i}}{\leadsto} v_i \stackrel{P'_{ij}}{\leadsto} v_i \stackrel{P_{j\ell}}{\leadsto} v_\ell.$$

Für diesen Weg gilt

$$w(P') = w(P) - w(P_{ii}) + w(P'_{ii}) < w(P)$$
. (Widerspruch)

Lemma 5.17

Sei $P = (v_0, \dots, v_\ell)$ ein kürzester Weg von $v_0 \in V$ nach $v_\ell \in V$. Für jedes Paar i, j mit $0 \le i \le j \le \ell$ ist $P_{ij} = (v_i, v_{i+1}, \dots, v_j)$ ein kürzester Weg von v_i nach v_j .

Korollar 5.18

Sei $P = (v_0, \dots, v_\ell)$ ein kürzester Weg von $v_0 \in V$ nach $v_\ell \in V$. Dann gilt

$$\delta(v_0, v_\ell) = \delta(v_0, v_{\ell-1}) + w(v_{\ell-1}, v_\ell).$$

Im Allgemeinen sind negative Kantengewichte erlaubt.

Im Allgemeinen sind negative Kantengewichte erlaubt.

Schwierigkeit: Kreise mit negativem Gesamtgewicht.

Im Allgemeinen sind negative Kantengewichte erlaubt.

Schwierigkeit: Kreise mit negativem Gesamtgewicht.

Kein negativer Kreis. ⇒ Kürzeste Wege einfach.

```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0; S = \emptyset;
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0: S = \emptyset:
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```



```
DIJKSTRA(G, w, s)
      for each (v \in V) \{ d(v) = \infty; \pi(v) = \text{null}; \}
      d(s) = 0: S = \emptyset:
 2
      while (S \neq V) {
 3
           Finde u \in V \setminus S, für das d(u) minimal ist.
 4
 5
           S = S \cup \{u\};
 6
           for each ((u, v) \in E) {
                if (d(v) > d(u) + w(u, v)) {
                     d(v) = d(u) + w(u, v);
8
                     \pi(v)=u;
9
10
```


Theorem 5.19

Der Algorithmus von Dijkstra terminiert auf gerichteten Graphen G=(V,E) mit nichtnegativen Kantengewichten $w:E\to\mathbb{R}_{\geq 0}$ und Startknoten $s\in V$ in einem Zustand, in dem $d(v)=\delta(s,v)$ für alle $v\in V$ gilt.

Theorem 5.19

Der Algorithmus von Dijkstra terminiert auf gerichteten Graphen G=(V,E) mit nichtnegativen Kantengewichten $w:E\to\mathbb{R}_{\geq 0}$ und Startknoten $s\in V$ in einem Zustand, in dem $d(v)=\delta(s,v)$ für alle $v\in V$ gilt.

Beweis:

Konvention: $w((u, v)) = \infty$ für $(u, v) \notin E$.

Theorem 5.19

Der Algorithmus von Dijkstra terminiert auf gerichteten Graphen G=(V,E) mit nichtnegativen Kantengewichten $w:E\to\mathbb{R}_{\geq 0}$ und Startknoten $s\in V$ in einem Zustand, in dem $d(v)=\delta(s,v)$ für alle $v\in V$ gilt.

Beweis:

Konvention: $w((u, v)) = \infty$ für $(u, v) \notin E$.

Invariante: Am Ende jeder Iteration der while-Schleife gilt Folgendes.

- 1. $\forall v \in S : d(v) = \delta(s, v),$
- 2. $\forall v \in V \setminus S : d(v) = \min\{\delta(s, x) + w(x, v) \mid x \in S\}.$

Theorem 5.19

Der Algorithmus von Dijkstra terminiert auf gerichteten Graphen G=(V,E) mit nichtnegativen Kantengewichten $w:E\to\mathbb{R}_{\geq 0}$ und Startknoten $s\in V$ in einem Zustand, in dem $d(v)=\delta(s,v)$ für alle $v\in V$ gilt.

Beweis:

Konvention: $w((u, v)) = \infty$ für $(u, v) \notin E$.

Invariante: Am Ende jeder Iteration der while-Schleife gilt Folgendes.

- 1. $\forall v \in S : d(v) = \delta(s, v)$,
- 2. $\forall v \in V \setminus S : d(v) = \min\{\delta(s, x) + w(x, v) \mid x \in S\}.$

Am Ende gilt S = V.

Die Invariante besagt dann, dass $d(v) = \delta(s, v)$ für alle Knoten $v \in S = V$ gilt.

Induktionsanfang (nach erstem Schleifendurchlauf):

Es gilt $S = \{s\}$ und $d(s) = \delta(s, s) = 0$.

Somit ist der erste Teil der Invariante erfüllt.

Induktionsanfang (nach erstem Schleifendurchlauf):

Es gilt $S = \{s\}$ und $d(s) = \delta(s, s) = 0$.

Somit ist der erste Teil der Invariante erfüllt.

Zweiter Teil der Invariante besagt:

$$\forall v \in V \setminus \{s\} : d(v) = \min\{\delta(s,x) + w(x,v) \mid x \in S\} = \delta(s,s) + w(s,v) = w(s,v).$$

Induktionsanfang (nach erstem Schleifendurchlauf):

Es gilt $S = \{s\}$ und $d(s) = \delta(s, s) = 0$.

Somit ist der erste Teil der Invariante erfüllt.

Zweiter Teil der Invariante besagt:

$$\forall v \in V \setminus \{s\} : d(v) = \min\{\delta(s,x) + w(x,v) \mid x \in S\} = \delta(s,s) + w(s,v) = w(s,v).$$

Die Gültigkeit dieser Aussage folgt daraus, dass für jeden direkten Nachfolger v von s in der for-Schleife Folgendes gesetzt wird:

$$d(v) = \min\{d(s) + w(s, v), \infty\} = w(s, v).$$

Induktionsschritt:

Wir betrachten Iteration, in der Knoten $u \in V \setminus S$ der Menge S hinzu gefügt wird.

Induktionsschritt:

Wir betrachten Iteration, in der Knoten $u \in V \setminus S$ der Menge S hinzu gefügt wird.

Wir beweisen zunächst den ersten Teil der Invariante: $\forall v \in S \cup \{u\} : d(v) = \delta(s, v)$.

Dafür genügt es für den Knoten u die Gleichung $d(u) = \delta(s, u)$ zu zeigen.

Induktionsschritt:

Wir betrachten Iteration, in der Knoten $u \in V \setminus S$ der Menge S hinzu gefügt wird.

Wir beweisen zunächst den ersten Teil der Invariante: $\forall v \in S \cup \{u\} : d(v) = \delta(s, v)$.

Dafür genügt es für den Knoten u die Gleichung $d(u) = \delta(s, u)$ zu zeigen.

Es gilt $d(u) \geq \delta(s, u)$:

Gemäß dem zweiten Teil der Invariante gilt $d(u) = \min\{\delta(s, x) + w(x, u) \mid x \in S\}.$

Induktionsschritt:

Wir betrachten Iteration, in der Knoten $u \in V \setminus S$ der Menge S hinzu gefügt wird.

Wir beweisen zunächst den ersten Teil der Invariante: $\forall v \in S \cup \{u\} : d(v) = \delta(s, v)$. Dafür genügt es für den Knoten u die Gleichung $d(u) = \delta(s, u)$ zu zeigen.

Es gilt $d(u) \geq \delta(s, u)$:

Gemäß dem zweiten Teil der Invariante gilt $d(u) = \min\{\delta(s, x) + w(x, u) \mid x \in S\}.$

Es gilt

$$\forall x \in S : \delta(s, u) \leq \delta(s, x) + w(x, u)$$

und damit

$$\delta(s,u) \leq \min\{\delta(s,x) + w(x,u) \mid x \in S\} = d(u).$$

Es gilt $d(u) \leq \delta(s, u)$:

• Sei P ein kürzester s-u-Weg.

Es gilt $d(u) \leq \delta(s, u)$:

- Sei P ein kürzester s-u-Weg.
- Sei y der erste Knoten auf dem Weg P, der nicht zu S gehört.
 Da u ∉ S, muss es einen solchen Knoten y geben.

Es gilt $d(u) \leq \delta(s, u)$:

- Sei P ein kürzester s-u-Weg.
- Sei y der erste Knoten auf dem Weg P, der nicht zu S gehört.
 Da u ∉ S, muss es einen solchen Knoten y geben.
- Weiterhin muss y einen Vorgänger haben, da der erste Knoten auf dem Weg P der Knoten $s \in S$ ist. Wir nennen diesen Vorgänger x.

Es gilt $d(u) \leq \delta(s, u)$:

- Sei P ein kürzester s-u-Weg.
- Sei y der erste Knoten auf dem Weg P, der nicht zu S gehört.
 Da u ∉ S, muss es einen solchen Knoten y geben.
- Weiterhin muss y einen Vorgänger haben, da der erste Knoten auf dem Weg P der Knoten $s \in S$ ist. Wir nennen diesen Vorgänger x.
- Den Teilweg von P von s zu x nennen wir P₁ und den Teilweg von y zu u nennen wir P₂. Diese Teilwege können auch leer sein.

P₁ ist kürzester s-x-Weg. Somit gilt

$$\delta(s,u) = w(P_1) + w(x,y) + w(P_2) = \delta(s,x) + w(x,y) + w(P_2) \ge d(y) + w(P_2) \ge d(y).$$

 P_1 ist kürzester s-x-Weg. Somit gilt

$$\delta(s,u) = w(P_1) + w(x,y) + w(P_2) = \delta(s,x) + w(x,y) + w(P_2) \ge d(y) + w(P_2) \ge d(y).$$

Da u ein Knoten aus $V \setminus S$ mit kleinstem d-Wert ist, muss $d(u) \leq d(y)$ gelten. Folglich gilt $\delta(s, u) \geq d(y) \geq d(u)$.

P₁ ist kürzester s-x-Weg. Somit gilt

$$\delta(s,u) = w(P_1) + w(x,y) + w(P_2) = \delta(s,x) + w(x,y) + w(P_2) \ge d(y) + w(P_2) \ge d(y).$$

Da u ein Knoten aus $V \setminus S$ mit kleinstem d-Wert ist, muss $d(u) \leq d(y)$ gelten. Folglich gilt $\delta(s, u) \geq d(y) \geq d(u)$.

Zusammengenommen zeigt dies den ersten Teil der Invariante: $d(u) = \delta(s, u)$.

Zweiter Teil der Invariante:

$$\forall v \in V \setminus (S \cup \{u\}) : d(v) = \min\{\delta(s, x) + w(x, v) \mid x \in (S \cup \{u\})\}.$$

Vorher: $\forall v \in V \setminus S : d(v) = \min\{\delta(s, x) + w(x, v) \mid x \in S\}$

Zweiter Teil der Invariante:

$$\forall v \in V \setminus (S \cup \{u\}) : d(v) = \min\{\delta(s, x) + w(x, v) \mid x \in (S \cup \{u\})\}.$$

Vorher:
$$\forall v \in V \setminus S : d(v) = \min\{\delta(s, x) + w(x, v) \mid x \in S\}$$

Im Inneren der for-Schleife wird Folgendes für $v \in V$ gesetzt:

$$d(v) = \min\{\min\{\delta(s, x) + w(x, v) \mid x \in S\}, \delta(s, u) + w(u, v)\}$$
$$= \min\{\delta(s, x) + w(x, v) \mid x \in S \cup \{u\}\}. \quad \Box$$

Kürzeste-Wege-Bäume

Definition 5.20

Wir nennen G' = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$ einen Kürzeste-Wege-Baum mit Wurzel s, wenn die folgenden Eigenschaften erfüllt sind.

- 1. V' ist die Menge der Knoten, die von s aus in G erreichbar sind.
- 2. G' ist ein gewurzelter Baum mit Wurzel s. (Das bedeutet, dass G' azyklisch ist, selbst wenn wir die Richtung der Kanten ignorieren, und dass alle Kanten von s weg zeigen.)
- 3. Für alle $v \in V'$ ist der eindeutige Weg von s zu v in G' ein kürzester Weg von s nach v in G.

Kürzeste-Wege-Bäume

Definition 5.20

Wir nennen G' = (V', E') mit $V' \subseteq V$ und $E' \subseteq E$ einen Kürzeste-Wege-Baum mit Wurzel s, wenn die folgenden Eigenschaften erfüllt sind.

- 1. V' ist die Menge der Knoten, die von s aus in G erreichbar sind.
- 2. G' ist ein gewurzelter Baum mit Wurzel s. (Das bedeutet, dass G' azyklisch ist, selbst wenn wir die Richtung der Kanten ignorieren, und dass alle Kanten von s weg zeigen.)
- 3. Für alle $v \in V'$ ist der eindeutige Weg von s zu v in G' ein kürzester Weg von s nach v in G.

Speicherplatzbedarf: O(n)

Lemma 5.21

Betrachte das Ergebnis des Algorithmus von Dijkstra. Es seien

$$\textit{V}_{\pi} = \{\textit{v} \in \textit{V} \mid \pi(\textit{v}) \neq \textbf{null}\} \cup \{\textit{s}\} \quad \text{und} \quad \textit{E}_{\pi} = \{(\pi(\textit{v}),\textit{v}) \in \textit{E} \mid \textit{v} \in \textit{V}_{\pi} \setminus \{\textit{s}\}\}.$$

Dann ist der Graph (V_{π}, E_{π}) ein Kürzeste-Wege-Baum mit Wurzel s.

Implementierung und Laufzeit

Wir benötigen eine Datenstruktur, die die Menge $Q=V\setminus S$ verwalten kann. Sie sollte die folgenden Operationen unterstützen:

• INSERT(x, d): Füge ein neues Element x mit Schlüssel $d \in \mathbb{R}$ in die Menge Q ein.

Implementierung und Laufzeit

Wir benötigen eine Datenstruktur, die die Menge $Q = V \setminus S$ verwalten kann. Sie sollte die folgenden Operationen unterstützen:

- INSERT(x, d): Füge ein neues Element x mit Schlüssel $d \in \mathbb{R}$ in die Menge Q ein.
- EXTRACT-MIN(): Entferne aus Q ein Element mit dem kleinsten Schlüssel und gib dieses Element zurück.

Implementierung und Laufzeit

Wir benötigen eine Datenstruktur, die die Menge $Q = V \setminus S$ verwalten kann. Sie sollte die folgenden Operationen unterstützen:

- INSERT(x, d): Füge ein neues Element x mit Schlüssel $d \in \mathbb{R}$ in die Menge Q ein.
- EXTRACT-MIN(): Entferne aus Q ein Element mit dem kleinsten Schlüssel und gib dieses Element zurück.
- DECREASE-KEY (x,d_1,d_2) : Ändere den Schlüssel des Objektes $x \in Q$ von d_1 auf $d_2 < d_1$.

Implementierung und Laufzeit

Wir benötigen eine Datenstruktur, die die Menge $Q = V \setminus S$ verwalten kann. Sie sollte die folgenden Operationen unterstützen:

- INSERT(x, d): Füge ein neues Element x mit Schlüssel $d \in \mathbb{R}$ in die Menge Q ein.
- EXTRACT-MIN(): Entferne aus Q ein Element mit dem kleinsten Schlüssel und gib dieses Element zurück.
- DECREASE-KEY (x, d_1, d_2) : Ändere den Schlüssel des Objektes $x \in Q$ von d_1 auf $d_2 < d_1$.

Prioritätswarteschlangen mit Extract-Min statt Extract-Max und Decrease-Key statt Increase-Key.

Implementierung und Laufzeit

Wir benötigen eine Datenstruktur, die die Menge $Q=V\setminus S$ verwalten kann. Sie sollte die folgenden Operationen unterstützen:

- INSERT(x, d): Füge ein neues Element x mit Schlüssel $d \in \mathbb{R}$ in die Menge Q ein.
- EXTRACT-MIN(): Entferne aus Q ein Element mit dem kleinsten Schlüssel und gib dieses Element zurück.
- DECREASE-KEY (x, d_1, d_2) : Ändere den Schlüssel des Objektes $x \in Q$ von d_1 auf $d_2 < d_1$.

Prioritätswarteschlangen mit Extract-Min statt Extract-Max und Decrease-Key statt Increase-Key.

Laufzeit der Operationen: $O(\log n)$.

Theorem 5.22

Die Laufzeit des Algorithmus von Dijkstra beträgt $O((n+m)\log n)$, wenn der Graph als Adjazenzliste gegeben ist.

Theorem 5.22

Die Laufzeit des Algorithmus von Dijkstra beträgt $O((n+m)\log n)$, wenn der Graph als Adjazenzliste gegeben ist.

Beweis:

Initialisierung: $O(n \log n)$

Theorem 5.22

Die Laufzeit des Algorithmus von Dijkstra beträgt $O((n+m)\log n)$, wenn der Graph als Adjazenzliste gegeben ist.

Beweis:

Initialisierung: $O(n \log n)$

Jede Kante aus $(u, v) \in E$ wird einmal in den Zeilen 7 bis 10 betrachtet. Dann wird ggf. der Wert d(v) reduziert. Dies entspricht Aufruf von DECREASE-KEY mit Laufzeit $O(\log n)$.

Theorem 5.22

Die Laufzeit des Algorithmus von Dijkstra beträgt $O((n+m)\log n)$, wenn der Graph als Adjazenzliste gegeben ist.

Beweis:

Initialisierung: $O(n \log n)$

Jede Kante aus $(u, v) \in E$ wird einmal in den Zeilen 7 bis 10 betrachtet. Dann wird ggf. der Wert d(v) reduziert. Dies entspricht Aufruf von DECREASE-KEY mit Laufzeit $O(\log n)$.

Alle Aufrufe von Zeilen 7 bis 10 zusammen haben somit eine Laufzeit von $O(m \log n)$.

Theorem 5.22

Die Laufzeit des Algorithmus von Dijkstra beträgt $O((n+m)\log n)$, wenn der Graph als Adjazenzliste gegeben ist.

Beweis:

Initialisierung: $O(n \log n)$

Jede Kante aus $(u, v) \in E$ wird einmal in den Zeilen 7 bis 10 betrachtet. Dann wird ggf. der Wert d(v) reduziert. Dies entspricht Aufruf von DECREASE-KEY mit Laufzeit $O(\log n)$.

Alle Aufrufe von Zeilen 7 bis 10 zusammen haben somit eine Laufzeit von $O(m \log n)$.

Außerdem n Aufrufe von EXTRACT-MIN mit Gesamtlaufzeit von $O(n \log n)$.

All-Pairs Shortest Path Problem (APSP)

Sei G=(V,E) mit $V=\{1,\ldots,n\}$ gerichteter Graph mit Kantengewichten $w:E\to\mathbb{R}.$

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die **Zwischenknoten** von P.

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, ..., n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die Zwischenknoten von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, ..., n\}$ das folgende Teilproblem:

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, \dots, n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die Zwischenknoten von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, \dots, n\}$ das folgende Teilproblem:

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, \dots, n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die Zwischenknoten von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, ..., n\}$ das folgende Teilproblem:

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, \dots, n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die **Zwischenknoten** von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, ..., n\}$ das folgende Teilproblem:

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, \dots, n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die **Zwischenknoten** von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, ..., n\}$ das folgende Teilproblem:

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, \dots, n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die **Zwischenknoten** von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, ..., n\}$ das folgende Teilproblem:

All-Pairs Shortest Path Problem (APSP)

Sei G = (V, E) mit $V = \{1, \dots, n\}$ gerichteter Graph mit Kantengewichten $w : E \to \mathbb{R}$.

Für einen Weg $P = (v_0, \dots, v_\ell)$ nennen wir $v_1, \dots, v_{\ell-1}$ die Zwischenknoten von P.

Floyd-Warshall-Algorithmus basiert auf dynamischer Programmierung.

Löse für jedes Paar $i, j \in V$ und jedes $k \in \{0, \dots, n\}$ das folgende Teilproblem:

Sei P_{ij}^k der kürzeste *i-j*-Weg, der nur Zwischenknoten aus $\{1,\ldots,k\}$ besitzt. Sei $\delta_{ij}^{(k)}$ die Länge von P_{ij}^k .

Sei P_{ij}^k der kürzeste *i-j*-Weg, der nur Zwischenknoten aus $\{1,\ldots,k\}$ besitzt.

Sei $\delta_{ij}^{(k)}$ die Länge von P_{ij}^k .

1. Fall: P_{ii}^k enthält den Knoten k nicht als Zwischenknoten.

 P_{ij}^k enthält nur Knoten aus $\{1,\ldots,k-1\}$ als Zwischenknoten.

Sei P^k_{ij} der kürzeste i-j-Weg, der nur Zwischenknoten aus $\{1,\ldots,k\}$ besitzt.

Sei $\delta_{ij}^{(k)}$ die Länge von P_{ij}^k .

1. Fall: P_{ii}^k enthält den Knoten k nicht als Zwischenknoten.

 P_{ij}^{k} enthält nur Knoten aus $\{1,\ldots,k-1\}$ als Zwischenknoten.

Es gilt dann $\delta_{ij}^{(k)} = \delta_{ij}^{(k-1)}$ und $P_{ij}^k = P_{ij}^{k-1}$.

Sei P_{ij}^k der kürzeste *i-j*-Weg, der nur Zwischenknoten aus $\{1, \ldots, k\}$ besitzt.

Sei $\delta_{ij}^{(k)}$ die Länge von P_{ij}^k .

1. Fall: P_{ii}^k enthält den Knoten k nicht als Zwischenknoten.

 P_{ij}^k enthält nur Knoten aus $\{1,\ldots,k-1\}$ als Zwischenknoten.

Es gilt dann $\delta_{ij}^{(k)} = \delta_{ij}^{(k-1)}$ und $P_{ij}^k = P_{ij}^{k-1}$.

Sei P_{ij}^k der kürzeste *i-j*-Weg, der nur Zwischenknoten aus $\{1, \ldots, k\}$ besitzt. Sei $\delta_{ii}^{(k)}$ die Länge von P_{ii}^k .

1. Fall: P_{ii}^k enthält den Knoten k nicht als Zwischenknoten.

 P_{ij}^k enthält nur Knoten aus $\{1,\ldots,k-1\}$ als Zwischenknoten.

Es gilt dann $\delta_{ij}^{(k)} = \delta_{ij}^{(k-1)}$ und $P_{ij}^k = P_{ij}^{k-1}$.

2. Fall: P_{ii}^k enthält den Knoten k als Zwischenknoten.

Zerlege P_{ij}^k wie folgt:

 $\delta_{5,1}^{(3)} = 11$

2. Fall: P_{ii}^k enthält den Knoten k als Zwischenknoten.

Zerlege P_{ij}^k wie folgt:

$$\delta_{5,1}^{(3)} = 11$$

$$\delta_{5,3}^{(2)} = 2$$

$$\delta_{3,1}^{(2)} = 9$$

2. Fall: P_{ii}^k enthält den Knoten k als Zwischenknoten.

Zerlege P_{ij}^k wie folgt:

$$P_{ij}^{k} = i \stackrel{P}{\leadsto} k \stackrel{P'}{\leadsto} j.$$

$$\delta_{5,1}^{(3)} = 11$$

$$\delta_{5,3}^{(2)} = 2$$

$$\delta_{3,1}^{(2)} = 9$$

Da P_{ij}^k ein einfacher Weg ist, kommt k nur einmal vor. P und P' sind kürzeste i-k-Wege bzw. k-j-Wege, die nur Knoten aus $\{1, \ldots, k-1\}$ als Zwischenknoten benutzen:

$$\delta_{ij}^{(k)} = \delta_{ik}^{(k-1)} + \delta_{kj}^{(k-1)} \quad \text{und} \quad P_{ij}^{k} = i \stackrel{P_{ik}^{k-1}}{\leadsto} k \stackrel{P_{kj}^{k-1}}{\leadsto} j.$$

Rekursionsformel:

Für alle $i, j \in V$ gilt somit

$$\delta_{ij}^{(k)} = \begin{cases} w(i,j) & \text{für } k = 0, \\ \min\{\delta_{ij}^{(k-1)}, \delta_{ik}^{(k-1)} + \delta_{kj}^{(k-1)}\} & \text{für } k > 0. \end{cases}$$

Dabei sei $w(i,j) = \infty$ für $(i,j) \notin E$.

Rekursionsformel:

Für alle $i, j \in V$ gilt somit

$$\delta_{ij}^{(k)} = \begin{cases} w(i,j) & \text{für } k = 0, \\ \min\{\delta_{ij}^{(k-1)}, \delta_{ik}^{(k-1)} + \delta_{kj}^{(k-1)}\} & \text{für } k > 0. \end{cases}$$

Dabei sei $w(i,j) = \infty$ für $(i,j) \notin E$.

Lösung des APSP:

Für alle $i, j \in V$ gilt

$$\delta(i,j)=\delta_{ij}^{(n)}.$$

```
FLOYD-WARSHALL(W)
      D^{(0)} = W
      for (int k = 1; k \le n; k++) {
            Erzeuge (n \times n)-Nullmatrix D^{(k)} = (\delta_{ii}^{(k)}).
            for (int i = 1; i \le n; i++) {
                   for (int j = 1; j \le n; j++) {
                         \delta_{ii}^{(k)} = \min\{\delta_{ii}^{(k-1)}, \delta_{ik}^{(k-1)} + \delta_{ki}^{(k-1)}\};
      return D^{(n)}:
```

Theorem 5.23

Der Floyd-Warshall-Algorithmus löst das APSP für Graphen ohne Kreise mit negativem Gesamtgewicht, die als Adjazenzmatrix dargestellt sind, in Zeit $\Theta(n^3)$.

Theorem 5.23

Der Floyd-Warshall-Algorithmus löst das APSP für Graphen ohne Kreise mit negativem Gesamtgewicht, die als Adjazenzmatrix dargestellt sind, in Zeit $\Theta(n^3)$.

Negative Kreise:

G enthält negativen Kreis mit Knoten i und Knoten aus $\{1,\ldots,k\}$. $\iff \delta_{ii}^{(k)} < 0$ G enthält negativen Kreis. $\iff \exists i: \delta_{ii}^{(n)} < 0$

Theorem 5.23

Der Floyd-Warshall-Algorithmus löst das APSP für Graphen ohne Kreise mit negativem Gesamtgewicht, die als Adjazenzmatrix dargestellt sind, in Zeit $\Theta(n^3)$.

Negative Kreise:

G enthält negativen Kreis mit Knoten i und Knoten aus $\{1,\ldots,k\}$. $\iff \delta_{ii}^{(k)} < 0$ G enthält negativen Kreis. $\iff \exists i: \delta_{ii}^{(n)} < 0$

Vergleich zu Dijkstra:

Lösung des APSP mit Dijkstra: $O(nm \log n)$ Das ist besser für $m = o(n^2 / \log n)$.

Rekonstruktion der Pfade:

$$\delta_{ij}^{(k)} = \begin{cases} w(i,j) & \text{für } k = 0, \\ \min\{\delta_{ij}^{(k-1)}, \delta_{ik}^{(k-1)} + \delta_{kj}^{(k-1)}\} & \text{für } k > 0. \end{cases}$$

Sei $\pi_{ij}^{(k)}$ der Vorgänger von j auf $P_{ij}^{(k)}$.

Rekonstruktion der Pfade:

$$\delta_{ij}^{(k)} = \begin{cases} w(i,j) & \text{für } k = 0, \\ \min\{\delta_{ij}^{(k-1)}, \delta_{ik}^{(k-1)} + \delta_{kj}^{(k-1)}\} & \text{für } k > 0. \end{cases}$$

Sei $\pi_{ij}^{(k)}$ der Vorgänger von j auf $P_{ij}^{(k)}$.

$$\pi_{ij}^{(0)} = egin{cases} \mathsf{null} & \mathsf{falls} \ i = j \ \mathsf{oder} \ w_{ij} = \infty, \ & \mathsf{falls} \ i \neq j \ \mathsf{und} \ w_{ij} < \infty. \end{cases}$$

Rekonstruktion der Pfade:

$$\delta_{ij}^{(k)} = \begin{cases} w(i,j) & \text{für } k = 0, \\ \min\{\delta_{ij}^{(k-1)}, \delta_{ik}^{(k-1)} + \delta_{kj}^{(k-1)}\} & \text{für } k > 0. \end{cases}$$

Sei $\pi_{ij}^{(k)}$ der Vorgänger von j auf $P_{ij}^{(k)}$.

$$\pi_{ij}^{(0)} = egin{cases} \mathsf{null} & \mathsf{falls} \ i = j \ \mathsf{oder} \ w_{ij} = \infty, \ & \mathsf{falls} \ i \neq j \ \mathsf{und} \ w_{ij} < \infty. \end{cases}$$

Ist
$$\delta_{ij}^{(k)} < \delta_{ij}^{(k-1)}$$
, so gilt $P_{ij}^k = i \stackrel{P_{ik}^{k-1}}{\leadsto} k \stackrel{P_{kj}^{k-1}}{\leadsto} j$.

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{falls } \delta_{ij}^{(k)} = \delta_{ij}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{falls } \delta_{ij}^{(k)} < \delta_{ij}^{(k-1)}. \end{cases}$$