Problem 1.6

Theorem 1. Let $\alpha > 0$. Then $f(x) = x^{\alpha}$ is absolutely continuous on every subinterval $[a, b] \subseteq [0, \infty)$.

Solution

Proof. We have that f is differentiable on $(0, \infty)$ with derivative

$$f'(x) = \alpha x^{\alpha - 1}$$
.

Thus, f is differentiable almost everywhere on $[0, \infty)$. Now, let $[a, b] \subseteq [0, \infty)$. Since f' is continuous a.e. on [a, b], f' is integrable on [a, b]. Furthermore, we have for any $x \in [a, b]$,

$$\int_{a}^{x} f'(x)dx = \int_{a}^{x} \alpha x^{\alpha - 1} dx$$
$$= \alpha x^{\alpha} \Big|_{a}^{x}$$
$$= b^{\alpha} - x^{\alpha}$$
$$= f(x) - f(a).$$

Thus, by theorem 7.29 in our textbook, we have that f is absolutely continuous on any subinterval of $[0, \infty)$. \square

Problem 1.7

Theorem 2. A function f is absolutely continuous on [a,b] if and only if given $\epsilon > 0$, there exists $\delta > 0$ such that $|\sum [f(b_i) - f(a_i)]| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$.

Solution

Proof. Suppose f is absolutely continuous on [a,b], and let $\epsilon > 0$. Since f is absolutely continuous, there exists a $\delta > 0$ such that $\sum |[f(b_i) - f(a_i)]| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$. Thus, if we let $\{[a_i,b_i]\}$ be a set of nonoverlapping subintervals of [a,b] with $\sum (b_i - a_i) < \delta$, we have

$$\epsilon > \sum |[f(b_i) - f(a_i)]|$$

$$\geq |\sum [f(b_i) - f(a_i)]|,$$

Basic property of absolute value

and we have proven the forward direction.

Now, suppose that if we are given $\epsilon > 0$, there exists $\delta > 0$ such that $|\sum [f(b_i) - f(a_i)]| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. Let $\epsilon > 0$, and choose $\delta > 0$ such that $|\sum [f(b_i) - f(a_i)]| < \frac{\epsilon}{2}$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. Let $\{[a_i,b_i]\}$ be a set of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. We have

$$\sum_{i \in \{i: f(b_i) \ge f(a_i)\}} (b_i - a_i) < \delta,$$

which means that

$$\frac{\epsilon}{2} > \left| \sum_{i \in \{i: f(b_i) \ge f(a_i)\}} [f(b_i) - f(a_i)] \right|$$

$$= \sum_{i \in \{i: f(b_i) \ge f(a_i)\}} |f(b_i) - f(a_i)|.$$

Similarly, we have

$$\sum_{i \in \{i: f(b_i) < f(a_i)\}} (b_i - a_i) < \delta,$$

March 5, 2023

which implies

$$\frac{\epsilon}{2} > \left| \sum_{i \in \{i: f(b_i) < f(a_i)\}} [f(b_i) - f(a_i)] \right|$$

$$= \sum_{i \in \{i: f(b_i) < f(a_i)\}} |f(b_i) - f(a_i)|.$$

Finally, we have

$$\sum_{i} |f(b_{i}) - f(a_{i})| = \sum_{i \in \{i: f(b_{i}) < f(a_{i})\}} |f(b_{i}) - f(a_{i})| + \sum_{i \in \{i: f(b_{i}) \ge f(a_{i})\}} |f(b_{i}) - f(a_{i})|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

and we have shown that f is absolutely continuous. With this, our proof is complete.

Problem 1.8

Theorem 3. If f is of bounded variation on [a,b], and if the function V(x) = V[a,x] is absolutely continuous on [a,b], then f is absolutely continuous on [a,b].

Solution

Proof. Let $\epsilon > 0$. Since V(x) is absolutely continuous, we have that there exists $\delta > 0$ such that $\sum |V(b_i) - V(a_i)| < \epsilon$ for any finite collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. Let $\{[a_i,b_i]\}$ be a collection of nonoverlapping subintervals of [a,b] with $\sum (b_i-a_i) < \delta$. From Theorem 2.2 (part i) in our textbook, since f is of bounded variation, and V(x) is finite for all $x \in [a,b]$. We have

$$\begin{aligned} \epsilon &> \sum |V(b_i) - V(a_i)| \\ &= \sum (V[a,b_i] - V[a,a_i]) \\ &\geq \sum V[a,b_i] \\ &\geq \sum V[a_i,b_i] \end{aligned}$$
 Theorem 2.2 part i
$$&\geq \sum |f(b_i) - f(a_i)|,$$

and we have proven that f is absolutely continuous.

Problem 1.9

Theorem 4. If f is of bounded variation on [a, b], then

$$\int_{a}^{b} |f'| \le V[a, b].$$

Furthermore, if the equality holds in this inequality, then f is absolutely continuous.

Solution

Proof. Let N(x) and P(x) denote the negative and positive variations of f on [a, x], as in the proof of theorem 2.7 in our textbook. Then, we have

$$f(x) = [P(x) + f(a)] - N(x).$$

We note, that P(x) + f(a) and N(x) are increasing functions. Now, we have

$$\begin{split} \int_a^b |f'| &= \int_a^b |P'(x) - N'(x)| dx \\ &\leq \int_a^b P'(x) + \int_a^b N'(x) \\ &\leq P(b) - P(a) + N(b) - N(a) \\ &= V(b) - V(a) \end{split} \qquad \text{By theorem 7.21 in our textbook} \\ &\leq V(b) \\ &= V[a,b]. \end{split}$$

Now, suppose the equality holds. That is, suppose

$$\int_{a}^{b} |f'| = V[a, b].$$

By theorem 7.24 in our textbook, we have V'(x) = |f'(x)| almost everywhere for $x \in [a, b]$. Thus, we have

$$\int_{a}^{x} V'(t)dt = \int_{a}^{x} |f'(t)|dt$$

$$= V(x)$$

$$= V[a, x]$$

$$= V[a, x] + V[a, a]$$

$$= V(x) - V(a).$$
By theorem 2.2 ii

Thus, by theorem 7.29, V(x) is absolutely continuous. By the statement we proved in the previous problem, we can conclude that f is absolutely continuous.

Problem 1.10

Theorem 5. Part (a):

If f is absolutely continuous on [a,b] and Z is a subset of [a,b] with measure zero, then the image set defined by $f(Z) = \{w : w = f(z), z \in Z\}$ also has measure zero. Deduce that the image under f of any measurable subset of [a,b] is measurable. (Compare theorem 3.33)(Hint: use the fact that the image of an interval $[a_i,b_i]$ is an interval of length at most $V(b_i) - V(a_i)$.)

Part (b):

Give an example of a strictly increasing Lipschitz continuous function f and a set Z with measure 0 such that $f^{-1}(Z)$ does not have measure 0 (and cosequently, f^{-1} is not absolutely continuous). (Let $f^{-1}(x) = x + C(x)$ on [0,1], where C(x) is the Cantor-Lebesgue function.

Solution

Before we jump into the proof, we will prove a usefull lemma.

Lemma 1. If f is an absolutely continuous function on [a,b], and $[a_i,b_i] \subseteq [a,b]$, then the image of $[a_i,b_i]$ under f is an interval with $f([a_i,b_i]) \leq V(b_i) - V(a_i)$.

Proof. Since f is continuous, it follows immediately from the intermediate value theorem that $f([a_i, b_i])$ is an interval. By Theorem 7.27 in our textbook, we have that f is of bounded variation. Thus, by theorem 2.2, we have

$$V(b_i) - V(a_i) = V[a, b_i] - V[a, a_i]$$

= $V[a_i, b_i].$

By the extreme value theorem, there exist $c, d \in [a_i, b_i]$ such that the minimum and maximum values of f on $[a_i, b_i]$ are attained at c and d respectively. Define a partition of $[a_i, b_i]$ by

$$T = \{a_i, c, d, b_i\}.$$

Then

$$V[a_i, b_i] \ge V([a_i, b_i], T)$$

$$\ge |f(d) - f(c)|$$

$$= |[f(c), f(d)]|$$

$$= |f([a_i, b_i])|,$$

and we have proven the lemma.

Now we are ready for the main proof.

Proof. Part (a):

Let $\epsilon > 0$. Since f is absolutely continuous on [a, b], theorem 7.31 tells us that V(x) is absolutely continuous on [a, b]. Thus, there exists a $\delta > 0$ such that $\sum |V(b_i) - V(a_i)| < \epsilon$ for any countable collection $\{[a_i, b_i]\}$ of nonoverlapping subintervals of [a, b] with $\sum (b_i - a_i) < \delta$. Define an open set G such that $[a, b] \subseteq G$, with $|G| < \delta$. Since G is open, by theorem 1.11 in our textbook, there exists a countable collection $\{[a_i, b_i]\}$ of nonoverlapping subintervals of [a, b] whose union is $[a_i, b_i]$. Thus, since $\sum (b_i - a_i) < \delta$, we have

$$\epsilon > \sum |V(b_i) - V(a_i)|$$

$$\geq \sum |f([a_i, b_i])|$$

$$\geq \left|\bigcup f([a_i, b_i])\right|$$

$$\geq |f(G)|$$

$$\geq |f(Z)|.$$
By Lemma 1

Since this is true for all $\epsilon < 0$, we have that |f(Z)| = 0, and we have shown that f maps sets of measure zero to sets of measure zero.

Now, let E be any measurable set. Then, we use theorem 3.28 in our textbook write $E = H \cup Z$, where H is a set of type F_{σ} and Z is of measure zero. Since $f(E) = f(H) \cup f(Z)$, we have that TE is the union of two measurable sets, and is therefore measurable.

Part (*b*):

Let $g:[0,1]\to[0,2]$ be defined by

$$g(x) = x + C(x),$$

where $C:[0,1]\to[0,1]$ is the Cantor Lebesgue function. This function is injective, thus it's inverse function $f:[0,2]\to[0,1]$ is well defined. Since g is strictly increasing, we have that f is strictly increasing. We will first show that f is Lipschitz continuous. Let $x,y\in[0,2]$ with x< y. Then, we have

$$\left| \frac{y - x}{f(y) - f(x)} \right| = \frac{y - x}{f(y) - f(x)}$$
 Since f is increasing
$$= \frac{g(f(y)) - g(f(x))}{f(y) - f(x)}$$
$$= \frac{f(y) - f(x)}{f(y) - f(x)} + \frac{C(f(y)) - C(f(x))}{f(y) - f(x)}$$
$$= 1 + \frac{C(f(y)) - C(f(x))}{f(y) - f(x)}$$

Since the Cantor Lebesgue function is non decreasing.

Thus, we have

$$|f(y) - f(x)| \le |y - x|,$$

and we can conclude f is Lipschitz continuous.

Now, let \mathcal{C} be the Cantor set, and consider the set $[0,1]\setminus\mathcal{C}$. We have that $[0,1]\setminus\mathcal{C}$ is the sum of countably many disjoint intervals $\{I_i\}$, and C is constant on each one of these intervals. Let $C(x) = c_i$ for $x \in I_i$. Then, we have

$$g(I_i) = \{x + c_i : x \in I_i\}.$$

Thus, by translation invariance of the lebesgue outer measure, we have

$$|g(I_i)|_e = |I_i|.$$

With this, we have

$$|g([0,1] \setminus \mathcal{C})|_e = |g(\bigcup I_i)|$$

$$= |\bigcup g(I_i)|_e$$

$$= \sum_{i=1}^{\infty} |g(I_i)|_e$$

$$= 1.$$

Now, we know that $|\mathcal{C}| = 0$. Furthermore, we have g([0,1]) = [0,2]. Finally, we have

$$g([0,1]) = g(\mathcal{C}) \cup g([0,1] \backslash \mathcal{C}),$$

and by theorem 3.34 in our textbook, we can conclude that $|q(\mathcal{C})| = 1$.

Problem 2

Theorem 6. Let $f:[a,b] \to \mathbb{R}$ be monotone, and suppose f'(x) exists and is finite at every $x \in [a,b]$. Then f is absolutely continuous.

Solution

Proof. Proof is under development.

Problem 3

Theorem 7. A function $f:[a,b] \to \mathbb{R}$ is Lipschitz continuous on [a,b] if and only if f is an indefinite integral of a bounded measurable function on [a,b].

Solution

We will start with a useful lemma.

Lemma 2. Let $f:[a,b] \to \mathbb{R}$ be Lipschitz continuous on [a,b]. Then, the derivative of f is bounded.

Proof. Since f is Lipschitz continuous on [a, b], there exists an M > 0 such that for all $x, h \in [a, b]$, where f'(x) exists and $x + h \in [a, b]$, we have

$$|f(x+h) - f(x)| \le M|h| \implies \left| \frac{f(x+h) - f(x)}{h} \right| \le M.$$

Taking the limit as $h \to 0$, we have that $f'(x) \leq M$, and we have proven the lemma.

Now we are ready to prove the main theorem.

Proof. Suppose that f is Lipschitz continuous on [a, b]. Then, f is absolutely continuous, and by theorem 7.29 in our textbook that

$$f(x) - f(a) = \int_{a}^{x} f' \implies f(x) = \int_{a}^{x} f' + f(a)$$
$$\implies f(x) = \int_{a}^{x} \left(f' + \frac{f(a)}{x - a} \right).$$

Thus, combining this with the results of Lemma 2, we have shown that f is an indefinite integral of a bounded measurable function on [a, b].

Now, suppose that f is the indefinite integral of a bounded measurable function F. That is, suppose

$$f(x) = \int_{a}^{x} F,$$

for some function where $|F| \leq M$ for some M > 0. Then, for any $a_i < b_i \in [a, b]$, we have

$$|f(b_i) - f(a_i)| = \left| \int_a^{b_i} F - \int_a^{a_i} F \right|$$

$$= \left| \int_{a_i}^{b_i} F \right|$$

$$\leq \int_a^{b_i} |F|$$

$$= M(b_i - a_i).$$

Thus, f is Lipschitz continuous, and our proof is complete.

Problem 4

Theorem 8. Show that if $f[a,b] \to \mathbb{R}$ is continuous, and $|D^+f(x)| \leq M$ for all $x \in [a,b]$, where

$$D^+f(x) = \lim_{h > 0} \frac{f(x+h) - f(x)}{h},$$

then f satisfies a Lipschitz condition on [a, b].

Solution

Proof. Proof is still under development.

Problem 5

Theorem 9. A function $f:[a,b] \to \mathbb{R}$ satisfies a Lipschitz condition if and only if for all $\epsilon > 0$, there exists a $\delta > 0$, such that any finite collection of intervals $\{[a_i,b_i]\}_{i=1}^n$ in [a,b] (which are not necessarily nonoverlapping) satisfying

$$\sum_{i=1}^{n} (b_i - a_i) < \delta,$$

it holds that

$$\left| \sum_{i=1}^{n} (f(b_i) - f(a_i)) \right| < \epsilon.$$

Solution

Proof. Suppose that f is Lipschitz continuous with Lipschitz constant M. Let $\epsilon > 0$, and define $\delta = \epsilon/M$. Then, for any finite collection of intervals $\{[a_i, b_i]\}_{i=1}^n$ in [a, b] satisfying

$$\sum_{i=1}^{n} (b_i - a_i) < \delta,$$

we have

$$\left| \sum_{i=1}^{n} (f(b_i) - f(a_i)) \right| \le \sum_{i=1}^{n} |f(b_i) - f(a_i)|$$

$$\le \sum_{i=1}^{n} M|b_i - a_i|$$

$$= M \sum_{i=1}^{n} |b_i - a_i|$$

$$< M\delta$$

$$= M \frac{\epsilon}{M}$$

$$= \epsilon.$$

Thus, we have proven the forward direction.

Now we will prove the other direction by contrapositive. Suppose f is not Lipschitz continuous. Then, for any $\epsilon > 0$, there exists two points $x < y \in [a, b]$ such that

$$|f(y) - f(x)| > \frac{1}{\epsilon} |x - y|.$$

Fix an $\epsilon > 0$ and the corresponding x, y. Suppose first that $|y - x| < \epsilon$. Then, choose $n \in \mathbb{N}$ such that

$$\frac{\epsilon}{2} \le n|y - x| < \epsilon.$$

With this, we have

$$\frac{\epsilon}{2} \le \sum_{i=1}^{n} (y - x) < \epsilon,$$

and

$$\sum_{i=1}^{n} |f(y) - f(x)| \ge \sum_{i=1}^{n} \frac{1}{\epsilon} |y - x|$$

$$= \frac{1}{\epsilon} \sum_{i=1}^{n} (y - x)$$

$$\ge \frac{1}{\epsilon} \cdot \frac{\epsilon}{2}$$

$$= \frac{1}{2}.$$

Now suppose $|y-x| \ge \epsilon$. We will break [x,y] into n subintervals $[x_i,y_i]$ of equal length, satisfying

$$\frac{\epsilon}{2} \le \frac{y-x}{n} < \epsilon.$$

Suppose, for sake of contradiction, that for all i, we have $|f(y_i) - f(x_i)| \leq \frac{1}{\epsilon} |y_i - x_i|$. Then, by the triangle inequality, we have

$$|f(y) - f(x)| \le \sum_{i=1}^{n} |f(y_i) - f(x_i)|$$

$$\le \sum_{i=1}^{n} \frac{1}{\epsilon} |y_i - x_i|$$

$$\le \frac{1}{\epsilon} |y - x|,$$

which is a contradiction. Thus, for some $I \in \{1, ..., n\}$, we have

$$|f(y_I) - f(x_I)| > \frac{1}{\epsilon} |y_I - x_I|.$$

Then, we have

$$\frac{\epsilon}{2} \le \sum_{i=1}^{n} (y_I - x_I) < \epsilon,$$

and

$$\sum_{i=1}^{n} |f(y_I) - f(x_I)| \ge \sum_{i=1}^{n} \frac{1}{\epsilon} |y_I - x_I|$$

$$= \frac{1}{\epsilon} \sum_{i=1}^{n} (y_I - x_I)$$

$$\ge \frac{1}{\epsilon} \cdot \frac{\epsilon}{2}$$

$$= \frac{1}{2}.$$

With this, our proof is complete.

Problem 6

Use the function

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \in (0, \pi] \\ 0 & \text{if } x = 0 \end{cases}$$

to show that the following statement is not true: If $f : [a, b] \to \mathbb{R}$ is absolutely continuous on $[a + \epsilon, b]$ for any small $\epsilon > 0$, and f is continuous on [a, b], then f is absolutely continuous on [a, b].

Solution

For any small $\epsilon > 0$, we have for all $x \in [\epsilon, \pi]$,

$$|f'(x)| = \left| \sin \frac{1}{x} - \frac{\cos \frac{1}{x}}{x} \right|$$

$$\leq \left| \sin \frac{1}{x} \right| + \left| \frac{\cos \frac{1}{x}}{x} \right|$$

$$\leq 1 + \frac{1}{\epsilon}.$$

Thus, since f'(x) is bounded on $x \in [\epsilon, \pi]$, an easy argument using the mean value theorem allows us to conclude that f is Lipschitz continuous, and therefore absolutely continuous.

Now, let $\delta > 0$. Choose $n \in \mathbb{N}$ large enough that $\frac{2}{\pi(1+2n)} < \delta$, and define $x_i = \frac{2}{\pi(1+2i)}$ for $i \ge n$. Then, we have $\{[x_i, x_{i-1}]\}_{i=n+1}^{\infty}$ is a set of nonoverlapping subintervals of $[0, \pi]$ such that $\sum_{i=n+1}^{\infty} (x_i - x_{i-1}) < \delta$. Furthermore, since

$$\frac{1}{x_i} = \frac{\pi}{2} + i\pi,$$

we have that $f(x_i)$ alternates between 1 and -1. Assume, without loss of generality, that $f(x_n) = -1$. Then, we

have

$$\sum_{i=n+1}^{\infty} |f(x_i) - f(x_{i-1})| = \sum_{i=n+1}^{\infty} |x_i + x_{i-1}|$$

$$= \sum_{i=n+1}^{\infty} \left(\frac{2}{\pi (1+2i)} + \frac{2}{\pi (1+2(i-1))} \right)$$

$$= \frac{2}{\pi} \sum_{i=n+1}^{\infty} \left(\frac{1}{1+2i} + \frac{1}{2i-1} \right)$$

$$= \frac{2}{\pi} \sum_{i=n+1}^{\infty} \frac{2i-1+2i+1}{(1+2i)(2i-1)}$$

$$= \frac{2}{\pi} \sum_{i=n+1}^{\infty} \frac{4i}{4i^2-1}$$

$$\geq \frac{2}{\pi} \sum_{i=n+1}^{\infty} \frac{4i}{4i^2}$$

$$= \frac{2}{\pi} \sum_{i=n+1}^{\infty} \frac{1}{i}$$

Harmonic series does not converge.

Since this is true for any $\delta > 0$, we can conclude that f is not absolutely continuous (or even of bounded variation) on $[0, \pi]$.

Problem 7

Theorem 10. If $f:[a,b] \to \mathbb{R}$ is continuous, $f \in BV[a,b]$, and $f \in AC[a+\epsilon,b]$ for any small $\epsilon > 0$, then $f \in AC[a,b]$.

Solution

To prove this theorem, we will invoke a rather useful lemma.

Lemma 3. Let $f[a,b] \to \mathbb{R}$ be continuous, and of bounded variation. Then, V(x) is continuous.

Proof. Let $x_0 \in [a, b]$, and let $\epsilon > 0$. Define a partition $T = \{x_0 < x_1 < ... < x_n = b\}$ of $[x_0, b]$ such that

$$V[x_0, b] < V(f, T) + \epsilon/2.$$

Since f is continuous, there exists some $\delta_1 > 0$ such that for all $|f(x_0) - f(x)| < \epsilon/2$ if $|x - x_0| < \delta_1$. Define $\delta = \min\{\delta_1, x_1 - x_0\}$. Then,

$$V(b) - V(x_0) = V[x_0, b]$$
 By theorem 2.2 in our textbook
$$\leq V(f, T) + \epsilon/2$$

$$= \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| + \epsilon/2$$

$$= |f(x_1) - f(x_0)| + \sum_{i=2}^{n} |f(x_i) - f(x_{i-1})| + \epsilon/2$$

$$\leq |f(x_0) - f(x)| + |f(x_1) - f(x)| + \sum_{i=2}^{n} |f(x_i) - f(x_{i-1})| + \epsilon/2$$

$$\leq \epsilon/2 + V[x, b] + \epsilon/2$$

$$= \epsilon + V(b) - V(x).$$

Thus, we can conclude that $V(x) - V(x_0) < \epsilon$. Thus, it follows that V(x) is continuous.

Now we are ready to prove the main theorem.

Proof. Let $\epsilon > 0$. Since f is continuous, V(x) = V[a,x] is continuous for all $x \in [a,b]$. Thus, there exists a $\delta_1 > 0$ such that $V(a+\delta_1) < \epsilon/2$. Furthermore, since f is of bounded variation, on $[a+\delta_1,b]$, there exists a $\delta_2 > 0$ such that $\sum |f(b_i) - f(a_i)| < \epsilon/2$ for any countable collection $\{[a_i,b_i]\}$ of nonoverlapping subintervals of $[a+\delta_1,b]$ with $\sum (b_i-a_i) < \delta_2$.

Now, let $\{[a_i, b_i]\}$ be a set of nonoverlapping subintervals of [a, b] with $\sum (b_i - a_i) < \delta_2$. Assume, without loss of generality, that there is a single interval $[a_n, b_n]$ such that $a_n < a + \delta_1 < b_n$. Let $L = \{i : [a_i, b_i] \subseteq [a, a + \delta_1]\}$ and let $R = \{i : [a_i, b_i] \subseteq [a + \delta_1, b]\}$. Then, we have

$$\begin{split} \sum_{i} |f(b_i) - f(a_i)| &= \sum_{i \in L} |f(b_i) - f(a_i)| + \sum_{i \in R} |f(b_i) - f(a_i)| + |f(b_n) - f(a_n)| \\ &\leq \sum_{i \in L} |f(b_i) - f(a_i)| + \sum_{i \in R} |f(b_i) - f(a_i)| + |f(b_n) - f(a + \delta_1)| + |f(a + \delta_1) - f(a_n)| \\ &= \left(\sum_{i \in L} |f(b_i) - f(a_i)| + |f(a + \delta_1) - f(a_n)|\right) + \left(\sum_{i \in R} |f(b_i) - f(a_i)| + |f(b_n) - f(a + \delta_1)|\right) \\ &< V(a + \delta_1) + \frac{\epsilon}{2}, \text{ Left hand points can extend to a partition of } [a, a + \delta_1] \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{split}$$

Thus, we have proven that f is absolutely continuous on [a, b].