Notations. Let G be a simple Lie group of rank r. Let $i = 1 \dots r$ label the nodes of Dynkin graph. Let $\lambda_i^{\vee} : \mathbb{C}^{\times} \to T_G$ be fundamental coweights, and $\lambda_i : T_G \to \mathbb{C}^{\times}$ be fundamental weights. Let $\rho_i : G \to \operatorname{End}(V_i)$ be irreducible representation of G, i.e. V_i is irreducible G-module with highest weight λ_i . Let χ_i be the character of ρ_i , that is $\rho_i(g) = \operatorname{tr}_{V_i} \rho_i(g)$.

Conjecture 1. The moduli space $M_{G,\mathbf{n},g_{\infty}}$ of smooth G-monopoles on $\mathbb{C}_x \times S^1$ with fixed charge $\mathbf{n} = (n_1,\ldots,n_r) \in \mathbb{Z}_{>=0}^r$ at infinity $x = \infty$ in the asymptotic sector $g_{\infty} \in T_G/W$ is the subspace of analytic maps $g: \mathbb{C}_x \to G$ restricted by the conditions

- 1) The matrix elements of $\rho_i(g(x))$ are polynomials of x of degree n_i
- 2) The coefficient at x^n of $\chi_i(g(x))$ is fixed to be $\chi_i(g_\infty)$.

Conjecture 2. The dim_C $M_{G,\mathbf{n},g_{\infty}} = 2\sum_{i=1}^{r} n_i$

Conjecture 3. The coefficients $u_{i,k}$ for $k = 1, \dots n_i$ in the character polynomials

$$\chi_i(g(x)) = \chi_i(g_\infty)(x^{n_i} + u_{i,1}x^{n_i-1} + \dots u_{i,n_i})$$
(0.1)

are algebraically independent Poisson commuting functions on $M_{G,\mathbf{n},\mathfrak{g}_{\infty}}$ which provide a non-degenerate map $u: M_{G,\mathbf{n},\mathfrak{g}_{\infty}} \to U$ where $\dim_{\mathbb{C}} U = \sum_{i=1}^r n_i$.

Hence $M_{G,\mathbf{n},\mathfrak{g}_{\infty}}$ is the phase space of algebraic completely integrable system with the base U.

Conjecture 4. The $M_{G,\mathbf{n},\mathfrak{g}_{\infty}}$ is a holomorphic symplectic leaf of holomorphic Poisson-Lie group $G[\mathbb{C}]$ with quasi-triangular rational r-matrix type Poisson bracket.

Conjecture 5. The holomorphic symplectic structure on M is isomorphic to the holomorphic symplectic structure defined by the hyperKahler definition of M as the moduli space of solutions of the Bogomolny equations on $\mathbb{R}^2 \times S^1$ of the form

$$d_A \Phi = \star F_A \tag{0.2}$$

with a certain fixed asymptotics of the solutions at ∞ (fix the topological sector n) and the asymptotics of the field Φ at $x \to \infty$ such that $\exp(\Phi) = g_{\infty}$.

Conjecture 6. (Example). For G = SL(2) the complex variables $(p_i, \phi_i)|_{i=1,...,n}$ with $p_i \in \mathbb{C}$ and $\phi_i \in \mathbb{C}/(2\pi\sqrt{-1}\mathbb{Z})$ are Darboux coordinates on $M_{G,n,1}$ with the parametrization

$$g(x) = \prod_{i=1}^{n} \begin{pmatrix} p_i - x & e^{\phi_i} \\ e^{-\phi_i} & 0 \end{pmatrix} \tag{0.3}$$