Simulação de Fluxo em Tubo Cilíndrico: Newtoniano e Não Newtoniano considerando escoamento Laminar e Turbulento

Rodrigo e Gabriel

25 de fevereiro de 2025

Resumo

Este trabalho tem como objetivo simular o fluxo em um tubo cilíndrico para condições laminares e turbulentas, considerando fluidos Newtonianos e não Newtonianos modelados pela Lei de Potência. A solução numérica será comparada com a solução analítica, e os resultados serão visualizados utilizando Python. Além disso, serão derivadas as equações de perfil de velocidade baseadas nas equações de Cauchy, e um relatório técnico será produzido para discutir a derivação e os resultados obtidos.

1 Introdução

A modelagem de escoamentos internos é um problema fundamental na mecânica dos fluidos, sendo essencial para aplicações industriais e acadêmicas. A formulação das equações governantes e a escolha de modelos adequados para diferentes regimes de fluxo são cruciais para a compreensão e predição do comportamento do fluido.

Neste estudo, analisamos o escoamento de fluidos com comportamentos distintos: um fluido Newtoniano, o mel, e um fluido não Newtoniano, representado por uma lama de perfuração.

Para o mel, segundo dados disponíveis no site Engineering Toolbox (Viscosity - Absolute (Dynamic) vs. Kinematic), a viscosidade cinemática é de

$$\nu = 2200 \times 10^{-6} \text{ m}^2/\text{s} = 2.2 \times 10^{-3} \text{ m}^2/\text{s}.$$

A Figura 1 apresenta alguns valores típicos de viscosidade cinemática para diversos fluidos conforme o Engineering Toolbox..

centiStokes (cSt, 10 ⁻⁶ m ² /s, mm ² /s)	Saybolt Second Universal (SSU, SUS)	Typical liquid
0.1		Mercury
1	31	Water (20 °C)
4.3	40	Milk SAE 20 Crankcase Oil SAE 75 Gear Oil
15.7	80	No. 4 fuel oil
20.6	100	Cream
43.2	200	Vegetable oil
110	500	SAE 30 Crankcase Oil SAE 85 Gear Oil
220	1000	Tomato Juice SAE 50 Crankcase Oil SAE 90 Gear Oil
440	2000	SAE 140 Gear Oil
1100	5000	Glycerine (20 °C) SAE 250 Gear Oil
2200	10000	Honey
6250	28000	Mayonnaise
19000	86000	Sour cream

Figura 1: Tabela de dados de viscosidade cinemáticas segundo Engineeringtoolbox.

No caso do fluido não Newtoniano, utiliza-se uma lama de perfuração conforme os dados de Vale et al. [?], que obteve os parâmetros da Lei de Potência como:

$$k = 0.1164 \text{ Pa} \cdot \text{s}^n \text{ e } n = 0.6976.$$

Esta lama possui massa específica de 9,1 lb/gal. Para converter essa densidade para o Sistema Internacional, utiliza-se a relação aproximada:

$$1 \text{ lb/gal} \approx 119.76 \text{ kg/m}^3$$

resultando em:

$$\rho = 9.1 \times 119.76 \approx 1089.5 \text{ kg/m}^3.$$

Dessa forma, para converter o coeficiente k para uma viscosidade cinemática (de forma análoga ao caso Newtoniano, em que μ/ρ representa a viscosidade cinemática), divide-se k pela massa específica:

$$k_{\text{cinemático}} = \frac{k}{\rho} = \frac{0.1164 \text{ Pa} \cdot \text{s}^n}{1089.5 \text{ kg/m}^3} \approx 1.07 \times 10^{-4} \text{ (m}^2 \text{s}^{n-2}).$$

Observa-se que, para um fluido Newtoniano (onde n=1), o coeficiente resultante possuiria unidades de m^2/s , enquanto, de forma geral, as dimensões de k seguem

$$[k] = m^2 s^{n-2},$$

garantindo a consistência dimensional na aplicação do modelo Power Law no OpenFOAM.

Para o escoamento laminar de fluidos Newtonianos, a solução analítica clássica apresenta um perfil de velocidade parabólico. Já para fluidos não Newtonianos, o perfil é ajustado de acordo com a relação entre viscosidade e taxa de cisalhamento. Quando o fluxo atinge o regime turbulento, é necessário utilizar modelos de turbulência, como o RANS (Reynolds-Averaged Navier-Stokes), que introduz a viscosidade turbulenta ν_t para modelar a transferência de momento adicional devido à turbulência.

Neste trabalho, emprega-se o modelo de turbulência k- ω SST, o qual utiliza duas equações transportadas: uma para a energia cinética turbulenta, k, e outra para a taxa específica de dissipação, ω . Esse modelo combina as vantagens do k- ω na região próxima à parede com as do k- ε para o escoamento livre, sendo amplamente empregado devido à sua robustez e à capacidade de prever com precisão tanto a transição quanto o comportamento turbulento em diversos tipos de escoamento.

A abordagem numérica adotada baseia-se no método dos volumes finitos, permitindo a solução das equações governantes para diferentes condições de contorno e regimes de escoamento, utilizando-se do simulador aberto OpenFOAM. Além disso, os resultados numéricos serão comparados com as soluções analíticas disponíveis para validar a modelagem proposta.

2 Estimativa da Velocidade Crítica para a Transição para o Escoamento Turbulento

Para determinar a velocidade crítica U_{cr} na qual o escoamento transita para o regime turbulento, utiliza-se o número de Reynolds. Adotamos como critério a transição para

$$Re_{cr} = 2300$$

no caso do fluido Newtoniano, e, segundo Darby (2001), para o fluido não Newtoniano utiliza-se:

$$(Re_{MR})_{crit} = 2100 + 875 (1 - n).$$

2.1 Fluido Newtoniano (mel)

Conforme apresentado na Seção de Introdução, para o mel a viscosidade cinemática é:

$$\nu = 2200 \times 10^{-6} \ \mathrm{m^2/s} = 2.2 \times 10^{-3} \ \mathrm{m^2/s}.$$

Adotando a definição clássica do número de Reynolds:

$$Re = \frac{UD}{\nu},\tag{1}$$

onde:

- *U* é a velocidade média;
- D é o diâmetro do tubo. Considerando $R=0.5\,\mathrm{m}$, temos $D=1.0\,\mathrm{m}$;
- $\nu = 2.2 \times 10^{-3} \,\mathrm{m}^2/\mathrm{s}$.

Impondo Re = 2300, a velocidade crítica para o escoamento do mel é dada por:

$$U_{cr}^{(N)} = \frac{2300 \times \nu}{D} = \frac{2300 \times 2.2 \times 10^{-3}}{1.0} \approx 5.06 \,\text{m/s}.$$

2.2 Fluido Não Newtoniano (Lama de Perfuração)

Para a lama de perfuração, conforme os dados de Vale et al. [?], a lei de potência que rege seu comportamento reológico é caracterizada pelos parâmetros

$$k = 0.1164 \text{ Pa} \cdot \text{s}^n \text{ e } n = 0.6976.$$

A massa específica da lama é de 9,1 lb/gal. Convertendo para o Sistema Internacional, utilizando a relação

$$1 \text{ lb/gal} \approx 119.76 \text{ kg/m}^3$$

obtém-se:

$$\rho = 9.1 \times 119.76 \approx 1089.5 \,\mathrm{kg/m}^3$$

2.2.1 Forma Dinâmica (com ρ e k no modelo)

Quando o coeficiente de consistência k está em unidades dinâmicas (por exemplo, Pa· s^n) e a massa específica ρ é considerada explicitamente, o número de Reynolds generalizado para fluidos power-law, segundo o modelo de Metzner-Reed [6], é dado por:

$$Re_{MR} = \frac{8 \rho U^{2-n} D^n}{k \left(6 + \frac{2}{n}\right)^n}.$$
 (2)

Segundo Darby (2001), o limite crítico para a transição para o regime turbulento é:

$$(Re_{MR})_{crit} = 2100 + 875 (1 - n).$$

Para n = 0.6976, tem-se:

$$(Re_{MR})_{crit} \approx 2100 + 875 \times (1 - 0.6976) \approx 2364.6.$$

Considerando um tubo de diâmetro $D = 1.0 \,\mathrm{m}$ (ou seja, $D^n = 1$) e impondo $Re_{MR} = (Re_{MR})_{crit}$ na equação (2), a velocidade crítica pode ser obtida por:

$$U_{cr}^{(NN)} = \left[\frac{k \left(6 + \frac{2}{n} \right)^n (Re_{MR})_{crit}}{8 \rho} \right]^{\frac{1}{2-n}}.$$

Substituindo os valores numéricos:

$$k = 0.1164 \text{ Pa} \cdot \text{s}^n$$
, $n = 0.6976$, $\rho \approx 1089.5 \text{ kg/m}^3$, $(Re_{MR})_{crit} \approx 2364.6$,

$$6 + \frac{2}{n} = 6 + \frac{2}{0.6976} \approx 8.868, \quad \left(6 + \frac{2}{n}\right)^n \approx (8.868)^{0.6976} \approx 4.57.$$

Logo,

$$\frac{k\left(6 + \frac{2}{n}\right)^n (Re_{MR})_{crit}}{8 \rho} \approx \frac{0.1164 \times 4.57 \times 2364.6}{8 \times 1089.5} \approx 0.1443,$$

e, como 2 - n = 1.3024,

$$U_{cr}^{(NN)} \approx (0.1443)^{\frac{1}{1.3024}} \approx (0.1443)^{0.7677} \approx 0.226 \,\mathrm{m/s}.$$

2.2.2 Forma Cinemática (com $k_{\text{cinemático}} = \frac{k}{\rho}$)

Note que o mesmo resultado poderia ser obtido trabalhando diretamente com a consistencia *cinemático* análogo à viscosidade cinemática dos fluidos Newtonianos, dado por:

$$k_{\text{cinemático}} = \frac{k}{\rho} \approx \frac{0.1164 \text{ Pa} \cdot \text{s}^n}{1089.5 \text{ kg/m}^3} \approx 1.07 \times 10^{-4} \text{ m}^2 \text{ s}^{n-2}.$$

Nesse caso, a equação de Metzner–Reed pode ser reescrita sem a presença explícita de ρ : Note que esta forma já incorpora a divisão por ρ em $k_{\text{cinemático}}$. Impondo $Re_{MR} = (Re_{MR})_{crit} \approx 2364.6$ e D = 1.0 m, a velocidade crítica fica:

$$U_{cr}^{(NN)} = \left[\frac{(Re_{MR})_{crit} k_{\text{cinemático}} \left(6 + \frac{2}{n}\right)^n}{8} \right]^{\frac{1}{2-n}}.$$

Substituindo $k_{\text{cinemático}} \approx 1.07 \times 10^{-4} \,\text{m}^2 \,\text{s}^{n-2}$, $n = 0.6976 \,\text{e} \,(Re_{MR})_{crit} \approx 2364.6$, recuperse, naturalmente, o mesmo valor:

$$U_{cr}^{(NN)} \approx 0.226 \,\text{m/s}.$$

2.3 Discussão sobre as Condições de Velocidade

Para a análise comparativa dos perfis de velocidade, adotou-se uma abordagem baseada na fixação do número de Reynolds em dois valores de interesse, sem impor uma velocidade comum para ambos os fluidos. Em outras palavras, cada fluido é analisado na velocidade que resulta no número de Reynolds desejado, considerando suas propriedades reológicas. As duas situações estudadas são:

- 1. Situação Laminar: Re = 100 para o fluido Newtoniano e $Re_{MR} = 100$ para o fluido não Newtoniano (power-law);
- 2. **Situação Turbulenta:** $Re = 2 \times Re_{cr}^{(N)}$ para o fluido Newtoniano e $Re_{MR} = 2 \times (Re_{MR})_{crit}$ para o fluido não Newtoniano.

Situação Laminar. Para o fluido Newtoniano (mel), cuja viscosidade cinemática é $\nu = 2.2 \times 10^{-3} \, \text{m}^2/\text{s}$ e com diâmetro do tubo $D = 1.0 \, \text{m}$, a definição clássica do número de Reynolds,

$$Re = \frac{UD}{\nu},$$

impõe que a velocidade axial seja

$$U_z^{(lam, N)} = \frac{100 \,\nu}{D} = \frac{100 \times 2.2 \times 10^{-3}}{1.0} \approx 0.22 \,\text{m/s}.$$

No caso da lama de perfuração, cuja reologia é descrita pela lei de potência com parâmetros n=0.6976, $k=0.1164\,\mathrm{Pa}\cdot\mathrm{s}^n$ e massa específica $\rho\approx 1089.5\,\mathrm{kg/m}^3$, utiliza-se o número de Reynolds generalizado,

$$Re_{MR} = \frac{8 \rho U^{2-n} D^n}{k \left(6 + \frac{2}{n}\right)^n}.$$

Ao impor $Re_{MR} = 100$, a velocidade característica do escoamento laminar é dada por

$$U_z^{(lam, NN)} = \left[\frac{100 k \left(6 + \frac{2}{n} \right)^n}{8 \rho} \right]^{\frac{1}{2-n}} \approx 0.02 \,\text{m/s}.$$

Situação Turbulenta. Para o regime turbulento, a velocidade é determinada de modo que o número de Reynolds seja igual a duas vezes o valor crítico de transição para cada fluido. No caso do mel, considerando $Re_{cr}^{(N)} = 2300$, temos

$$Re = 2 \times 2300 = 4600$$
,

de forma que a velocidade axial é

$$U_z^{(turb, N)} = \frac{4600 \,\nu}{D} = \frac{4600 \times 2.2 \times 10^{-3}}{1.0} \approx 10.12 \,\text{m/s}.$$

Para a lama de perfuração, o critério de Darby (2001) estima o número crítico generalizado como

$$(Re_{MR})_{crit} \approx 2100 + 875 (1 - n) \approx 2364.6.$$

Portanto, a condição turbulenta corresponde a

$$Re_{MR}^{(turb)} = 2 \times 2364.6 \approx 4729.2,$$

o que implica na velocidade

$$U_z^{(turb, NN)} = \left[\frac{4729.2 k \left(6 + \frac{2}{n}\right)^n}{8 \rho} \right]^{\frac{1}{2-n}} \approx 0.385 \,\text{m/s}.$$

Síntese dos Cenários. Em resumo, para cada situação de escoamento os fluidos são analisados nas velocidades que lhes correspondem ao número de Reynolds fixado:

- Situação Laminar (Re = 100):
 - Fluido Newtoniano (mel): $U_z \approx 0.22 \,\mathrm{m/s}$;
 - Fluido não Newtoniano (lama de perfuração): $U_z \approx 0.02 \,\mathrm{m/s}$.
- Situação Turbulenta ($Re = 2 \times Re_{cr}$):
 - Fluido Newtoniano (mel): $U_z \approx 10.12 \,\mathrm{m/s}$;
 - Fluido não Newtoniano (lama de perfuração): $U_z \approx 0.385\,\mathrm{m/s}.$

Essa abordagem possibilita a análise comparativa dos perfis de velocidade de forma consistente. Dessa forma, os perfis obtidos refletem de maneira adequada as características dos regimes laminar e turbulento para os fluidos em análise.

3 Equações de Cauchy

As equações de Cauchy são a forma geral do balanço da quantidade de movimento para um meio contínuo e podem ser escritas como:

$$\rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f},\tag{3}$$

onde:

- ρ é a densidade do fluido,
- u é o vetor velocidade,
- $\frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$ é a derivada material da velocidade,
- σ é o tensor de tensões, que engloba tanto os efeitos da pressão quanto das tensões viscosas,
- f representa as forças volumétricas externas.

Para fluidos newtonianos, o tensor de tensões pode ser decomposto como:

$$\boldsymbol{\sigma} = -p\mathbf{I} + \tau, \quad \tau = \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right), \tag{4}$$

onde p é a pressão e μ a viscosidade dinâmica.

3.1 Derivação do Perfil de Velocidade para Escoamento Laminar Newtoniano

Considerando um escoamento estacionário, totalmente desenvolvido e unidimensional (na direção axial z) em um tubo cilíndrico, assumimos:

- $\frac{\partial}{\partial t} = 0 \text{ e } \mathbf{u} = u(r) \mathbf{e}_z,$
- O gradiente de pressão é constante e, para escoamentos impulsionados por pressão, temos $\frac{dp}{dz} < 0$. Considerando um tubo de comprimento L e uma queda de pressão total ΔP , pode-se escrever:

$$\frac{dp}{dz} = -\frac{\Delta P}{L}.$$

A equação de Cauchy, reduzida para a direção z, torna-se:

$$\frac{1}{r}\frac{d}{dr}\left(r\,\tau_{rz}\right) = \frac{dp}{dz}.\tag{5}$$

Para um fluido Newtoniano, a tensão de cisalhamento é dada por:

$$\tau_{rz} = \mu \frac{du}{dr},\tag{6}$$

onde μ representa a viscosidade dinâmica.

Substituindo (6) em (5), obtemos:

$$\frac{1}{r}\frac{d}{dr}\left(r\,\mu\frac{du}{dr}\right) = \frac{dp}{dz}.\tag{7}$$

Como μ é constante, a equação simplifica para:

$$\frac{d}{dr}\left(r\frac{du}{dr}\right) = \frac{r}{\mu}\frac{dp}{dz}.\tag{8}$$

Primeira Integração

Integrando a equação (8) em relação a r, temos:

$$r\frac{du}{dr} = \frac{1}{2\mu}\frac{dp}{dz}r^2 + C_1. \tag{9}$$

Aplicando a condição de simetria no centro do tubo, onde $\frac{du}{dr}\Big|_{r=0}=0$, concluímos que $C_1=0$. Assim:

$$\frac{du}{dr} = \frac{1}{2\mu} \frac{dp}{dz} r. \tag{10}$$

Segunda Integração

Integrando novamente (22) em relação a r:

$$u(r) = \frac{1}{4\mu} \frac{dp}{dz} r^2 + C_2. \tag{11}$$

Aplicando a condição de não deslizamento na parede do tubo, u(R) = 0, obtemos:

$$C_2 = -\frac{1}{4\mu} \frac{dp}{dz} R^2. {12}$$

Substituindo C_2 na expressão de u(r), temos:

$$u(r) = \frac{1}{4u} \frac{dp}{dz} (r^2 - R^2).$$

Como $r^2 - R^2 = -(R^2 - r^2)$, reescrevemos a expressão como:

$$u(r) = -\frac{1}{4\mu} \frac{dp}{dz} \left(R^2 - r^2 \right).$$

Agora, substituindo $\frac{dp}{dz}$ por $-\Delta P/L,$ obtemos:

$$u(r) = -\frac{1}{4\mu} \left(-\frac{\Delta P}{L} \right) \left(R^2 - r^2 \right) = \frac{\Delta P}{4\mu L} \left(R^2 - r^2 \right).$$

Dessa forma, considerando que $\Delta P > 0$ representa a queda de pressão ao longo do tubo, a solução clássica de Hagen-Poiseuille para o escoamento laminar em tubos é:

$$u(r) = \frac{\Delta P}{4\mu L} \left(R^2 - r^2 \right). \tag{13}$$

3.2 Adaptação da Equação para Utilizar a Viscosidade Cinemática e a Pressão Normalizada

No desenvolvimento original, o perfil de velocidade é expresso por:

$$u(r) = \frac{\Delta P}{4\mu L} \left(R^2 - r^2 \right),$$

onde μ representa a viscosidade dinâmica e ΔP é a queda de pressão ao longo de um tubo de comprimento L.

Como a viscosidade cinemática ν está relacionada à viscosidade dinâmica pela relação

$$\nu = \frac{\mu}{\rho},$$

pode-se reescrever μ como $\mu=\rho\nu$. Substituindo essa relação na equação original, obtemos:

$$u(r) = \frac{\Delta P}{4\rho \nu L} \left(R^2 - r^2 \right).$$

No OpenFOAM, a pressão é armazenada na forma normalizada, isto é, o campo de pressão é definido por

$$p^* = \frac{p}{\rho},$$

o que implica que a queda de pressão normalizada é dada por

$$\Delta p^* = \frac{\Delta P}{\rho}.$$

Dessa forma, a expressão para o perfil de velocidade pode ser reescrita em termos da pressão normalizada:

$$u(r) = \frac{\Delta p^*}{4\nu L} \left(R^2 - r^2 \right).$$

Assim, a forma adaptada para o perfil de velocidade, considerando a viscosidade cinemática ν e a pressão normalizada p^* , torna-se:

$$u(r) = \frac{\Delta p^*}{4\nu L} \left(R^2 - r^2 \right).$$
(14)

Observações sobre os Sinais

• Como o escoamento é impulsionado por uma queda de pressão, temos $\frac{dp}{dz} = -\Delta P/L < 0$. Dessa forma, o sinal negativo é incorporado na integração, garantindo que a ex-

pressão final para u(r) seja positiva.

• Na forma final, $R^2 - r^2$ é sempre positivo para $0 \le r < R$, o que assegura que u(r) > 0 (ou seja, a velocidade possui o sinal correto na direção do fluxo).

3.3 Derivação do Perfil de Velocidade para Fluido Não Newtoniano (Lei de Potência)

Consideremos um fluido não Newtoniano que obedece à Lei de Potência, cuja relação constitutiva é dada por

$$\tau_{rz} = k \left| \frac{du}{dr} \right|^{n-1} \frac{du}{dr},\tag{15}$$

onde m é o coeficiente de consistência e n o índice de comportamento do fluido.

Para escoamento totalmente desenvolvido em um tubo cilíndrico, o balanço de momento (na direção z) em coordenadas cilíndricas é:

$$\frac{1}{r}\frac{d}{dr}\left(r\,\tau_{rz}\right) = \frac{dp}{dz}.\tag{16}$$

Substituindo a equação (15) em (16) temos:

$$\frac{1}{r}\frac{d}{dr}\left[rk\left|\frac{du}{dr}\right|^{n-1}\frac{du}{dr}\right] = \frac{dp}{dz}.$$
(17)

3.3.1 Integração da Equação de Momento

Como a velocidade decresce do centro para a parede, temos

$$\frac{du}{dr} < 0 \implies \left| \frac{du}{dr} \right| = -\frac{du}{dr}.$$
 (18)

Portanto, podemos reescrever a tensão de cisalhamento como

$$\tau_{rz} = k \left(-\frac{du}{dr} \right)^n.$$

Multiplicando a equação (17) por r, obtemos:

$$\frac{d}{dr}\left[rk\left(-\frac{du}{dr}\right)^n\right] = r\frac{dp}{dz}.\tag{19}$$

Considerando que o gradiente de pressão é constante e, para um tubo de comprimento L com queda total de pressão ΔP , temos

$$\frac{dp}{dz} = -\frac{\Delta P}{L},$$

integrando a equação (19) de r=0 até um ponto genérico r e considerando a condição de simetria no centro $(\frac{du}{dr}\big|_{r=0}=0)$, obtemos:

$$r k \left(-\frac{du}{dr}\right)^n = \int_0^r \xi \frac{dp}{dz} d\xi = -\frac{\Delta P}{L} \int_0^r \xi d\xi = -\frac{\Delta P}{L} \frac{r^2}{2}.$$
 (20)

Definindo

$$G \equiv -\frac{dp}{dz} = \frac{\Delta P}{L} \quad (\text{com } G > 0), \tag{21}$$

a equação (20) torna-se:

$$r k \left(-\frac{du}{dr} \right)^n = \frac{G}{2} r^2.$$

Isolando a derivada da velocidade, temos:

$$\left(-\frac{du}{dr}\right)^n = \frac{G}{2k}r. \tag{22}$$

Ou, equivalentemente,

$$\frac{du}{dr} = -\left(\frac{G}{2k}r\right)^{\frac{1}{n}}. (23)$$

3.3.2 Determinação do Perfil de Velocidade

Para obter o perfil de velocidade, integraremos (23). Utilizando a condição de nãodeslizamento na parede, u(R) = 0, a velocidade em uma posição r é dada por:

$$u(r) = \int_{r}^{R} \left(-\frac{du}{d\xi} \right) d\xi = \int_{r}^{R} \left(\frac{G}{2k} \xi \right)^{\frac{1}{n}} d\xi.$$
 (24)

Realizando a integração:

$$u(r) = \left(\frac{G}{2k}\right)^{\frac{1}{n}} \int_{r}^{R} \xi^{\frac{1}{n}} d\xi$$

$$= \left(\frac{G}{2k}\right)^{\frac{1}{n}} \left[\frac{n}{n+1} \xi^{\frac{n+1}{n}}\right]_{r}^{R}$$

$$= \frac{n}{n+1} \left(\frac{G}{2k}\right)^{\frac{1}{n}} \left(R^{\frac{n+1}{n}} - r^{\frac{n+1}{n}}\right). \tag{25}$$

Definindo a velocidade máxima no centro do tubo como $u_{\text{max}} = u(0)$, temos:

$$u_{\text{max}} = \frac{n}{n+1} \left(\frac{G}{2k}\right)^{\frac{1}{n}} R^{\frac{n+1}{n}}.$$
 (26)

Portanto, o perfil de velocidade pode ser expresso de forma adimensional:

$$u(r) = u_{\text{max}} \left[1 - \left(\frac{r}{R} \right)^{\frac{n+1}{n}} \right]. \tag{27}$$

3.3.3 Expressão em Termos da Viscosidade Cinemática e Pressão Normalizada

No ambiente do OpenFOAM é comum trabalhar com a viscosidade na forma cinemática e com a pressão normalizada.

$$k_{\text{cinemático}} = \frac{k}{\rho},$$
 (28)

Observa-se que

$$\frac{dp}{dz} = \rho \, \frac{dp^*}{dz}.\tag{29}$$

Para um tubo de comprimento L com queda total de pressão ΔP , o gradiente de pressão é expresso por

$$\frac{dp}{dz} = -\frac{\Delta P}{L}.\tag{30}$$

Dessa forma, definindo

$$G \equiv -\frac{dp}{dz} = \frac{\Delta P}{L} \quad (\text{com } G > 0), \tag{31}$$

e substituindo $m=\rho\,k$ na expressão para a velocidade máxima

$$u_{\max} = \frac{n}{n+1} \left(\frac{G}{2k}\right)^{\frac{1}{n}} R^{\frac{n+1}{n}},$$

obtém-se

$$u_{\text{max}} = \frac{n}{n+1} \left(\frac{\Delta P}{2\rho \, k \, L} \right)^{\frac{1}{n}} R^{\frac{n+1}{n}}. \tag{32}$$

Alternativamente, definindo a queda de pressão normalizada por

$$\Delta P^* = \frac{\Delta P}{\rho},$$

temos que o gradiente de pressão normalizado pode ser escrito como

$$\frac{dp^*}{dz} = -\frac{\Delta P^*}{L} \implies -\frac{dp^*}{dz} = \frac{\Delta P^*}{L}.$$
 (33)

Dessa forma, a velocidade máxima pode ser reescrita como

$$u_{\text{max}} = \frac{n}{n+1} \left(\frac{\Delta P^*}{2k_{\text{cinemático}} L} \right)^{\frac{1}{n}} R^{\frac{n+1}{n}}.$$
 (34)

Portanto, o perfil de velocidade expresso em termos da viscosidade cinemática k e da pressão normalizada p^* é

$$u(r) = \frac{n}{n+1} \left(\frac{\Delta P^*}{2k_{\text{cinemático}} L} \right)^{\frac{1}{n}} R^{\frac{n+1}{n}} \left[1 - \left(\frac{r}{R} \right)^{\frac{n+1}{n}} \right].$$
 (35)

Observação: Nesta formulação assume-se que $\Delta P^*>0$ (ou, equivalentemente, que $\frac{dp^*}{dz}<0).$

3.4 Modelagem da Turbulência e Viscosidade Turbulenta

Em escoamentos turbulentos, a decomposição do campo de velocidade em uma parte média e em flutuações turbulentas leva à formulação das equações de Reynolds-Averaged Navier-Stokes (RANS). A equação média de quantidade de movimento é:

$$\rho\left(\mathbf{U}\cdot\nabla\mathbf{U}\right) = -\nabla P + \nabla\cdot\left[\left(\mu + \mu_t\right)\left(\nabla\mathbf{U} + (\nabla\mathbf{U})^T\right)\right],\tag{36}$$

onde μ_t é a viscosidade turbulenta, representando a transferência adicional de momento decorrente das flutuações turbulentas.

Neste trabalho, emprega-se o modelo de turbulência k- ω **SST**, um modelo de duas equações que combina as vantagens das formulações k- ω e k- ε , proporcionando boas previsões tanto na região próxima à parede quanto no escoamento livre. As duas equações transportadas são a do campo de energia cinética turbulenta, k, e a do taxa específica de dissipação, ω .

A equação transportada para a energia cinética turbulenta k é dada por:

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho k u_j)}{\partial x_j} = P_k - \beta^* \rho k \omega + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right], \tag{37}$$

onde P_k representa o termo de produção de k.

A equação transportada para a taxa específica de dissipação ω é dada por:

$$\frac{\partial(\rho\omega)}{\partial t} + \frac{\partial(\rho\omega u_j)}{\partial x_j} = \alpha \frac{\omega}{k} P_k - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial\omega}{\partial x_j} \right] + 2(1 - F_1) \rho \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial\omega}{\partial x_j}, \quad (38)$$

onde F_1 é uma função de mistura que garante a correta transição entre o regime k- ω próximo à parede e o regime k- ε no escoamento livre, e α , β , β^* , σ_k , σ_ω e $\sigma_{\omega 2}$ são constantes do modelo.

A viscosidade turbulenta μ_t é calculada pela seguinte expressão:

$$\mu_t = \frac{\rho k}{\omega} f_{\mu},\tag{39}$$

onde f_{μ} é uma função de atenuação que limita μ_t em regiões de forte gradiente, garantindo uma transição suave entre as regiões próximas à parede e o escoamento livre.

Devido à complexidade das equações (37) e (38) – que envolvem termos de produção, dissipação, difusão e acoplamento via funções de mistura – a obtenção de uma solução analítica para o escoamento turbulento se mostra inviável. Assim, a resolução numérica das equações RANS acopladas ao modelo k- ω SST, por meio do método dos volumes finitos, é a abordagem adotada neste trabalho.

3.5 Resumo dos Perfis Analíticos Obtidos

• Fluido Newtoniano (laminar):

Conforme a Equação (14), a forma adaptada para o perfil de velocidade, considerando a viscosidade cinemática ν e a pressão normalizada p^* , é dada por

$$u(r) = \frac{\Delta p^*}{4\nu L} \left(R^2 - r^2 \right).$$

• Fluido Não Newtoniano (Lei de Potência, laminar):

Conforme a Equação (35), o perfil de velocidade é expresso por

$$u(r) = \frac{n}{n+1} \left(\frac{\Delta P^*}{2k_{\text{cinemático}} L} \right)^{\frac{1}{n}} R^{\frac{n+1}{n}} \left[1 - \left(\frac{r}{R} \right)^{\frac{n+1}{n}} \right].$$

Neste caso, u_{max} é determinado a partir da integração do balanço de momento, envolvendo os parâmetros k e n, e onde $\Delta P^* = \Delta P/\rho$ e $\frac{dp^*}{dz} = -\Delta P^*/L$.

Observação: As deduções apresentadas assumem condições ideais e simplificações (escoamento estacionário, totalmente desenvolvido e inalterado em temperatura).

4 Metodologia

Esta seção descreve simplificadamente a metodologia adotada para o estudo numérico dos escoamentos em tubulação, englobando tanto a implementação do caso laminar quanto o turbulento, para fluidos Newtonianos e não Newtonianos. A abordagem utilizada baseiase na configuração do caso Pitz-Daily, utilizando o solver simpleFoam do OpenFOAM, que é uma implementação para escoamentos estacionários e incompressíveis, baseada no algoritmo SIMPLE. Este solver possibilita o uso completo dos modelos de turbulência disponíveis na biblioteca incompressibleTurbulenceModels e dos modelos não Newtonianos presentes na biblioteca incompressibleTransportModels da distribuição padrão

do OpenFOAM. Deve-se notar que no caso em estudo, deseja-se representar uma tubulação, então grandes mudanças foram necessárias na malha, estas estão documentadas a seguir.

4.1 Procedimentos da Simulação Numérica

A metodologia compreende as seguintes etapas:

- Implementação da Solução Analítica: Inicialmente, foram implementadas as soluções analíticas para perfis de velocidade laminares, que servem de referência para a validação dos resultados numéricos.
- 2. Configuração do Caso Numérico: O caso de estudo foi desenvolvido sobre a base do teste Pitz-Daily, utilizando o solver simpleFoam para ambos os regimes (laminar e turbulento). Este solver, apropriado para escoamentos estacionários, é aplicado independentemente do regime de escoamento, bastando definir as condições de contorno e os parâmetros do modelo de turbulência, se aplicável.
- 3. Implementação do Modelo de Turbulência: Para os casos turbulentos, utilizouse o modelo RANS com o modelo kOmegaSST, configurado no arquivo turbulenceProperties na pasta constant.
- 4. Comparação entre Fluidos: Os escoamentos de fluidos Newtonianos (por exemplo, mel) e não Newtonianos (por exemplo, lama de perfuração) foram comparados, sendo cada um analisado na velocidade que gera o número de Reynolds pré-definido para as situações estudadas:
 - Situação Laminar: Re = 100 para o fluido Newtoniano e $Re_{MR} = 100$ para o fluido não Newtoniano;
 - Situação Turbulenta: $Re = 2 \times Re_{cr}^{(N)}$ para o fluido Newtoniano e $Re_{MR} = 2 \times (Re_{MR})_{crit}$ para o fluido não Newtoniano.
- 5. **Pós-processamento e Visualização:** Os resultados foram posteriormente visualizados e analisados utilizando scripts em Python, que facilitam a interpretação dos perfis de velocidade e a comparação entre as diferentes abordagens reológicas.

4.2 Configuração do Caso de Estudo

A configuração do caso de estudo no OpenFOAM seguiu a seguinte organização de pastas e arquivos:

Pasta system

Nesta pasta encontram-se os arquivos que controlam a malha, as condições de contorno e as estratégias de discretização e solução:

• blockMeshDict.m4: Arquivo de definição da malha, obtido e adaptado a partir do padrão disponível em https://www.ehsanmadadi.com/cylinder-mesh/. Para gerar o arquivo final blockMeshDict, foi executado o comando:

m4 blockMeshDict.m4 > blockMeshDict

Este procediemnto gera um block Mesh
Dict com malha cilíndrica, que é o objetivo do presente trabalho. A malha foi refinada mantendo o
 convertometer igual a 1, com raio do tubo de 0,5 m (resultando em diâmetro $D=1.0\,\mathrm{m}$) e comprimento do tubo $L=10\,\mathrm{m}$.

- controlDict: Define os parâmetros de controle da simulação, como tempo inicial, tempo final e tamanho do passo de tempo.
- fvSchemes: Especifica os esquemas de discretização utilizados para as derivadas espaciais.
- fvSolution: Contém as configurações dos solucionadores para os sistemas de equações.

Pasta 0

Na pasta 0 são definidos os campos iniciais e as condições de contorno para as variáveis primárias:

- Velocidade (U): As velocidades calculadas para cada situação de escoamento são aplicadas no patch inlet. Cada fluido é analisado na velocidade que resulta no número de Reynolds definido para o caso (por exemplo, $U \approx 0.22 \, \text{m/s}$ para o mel na situação laminar ou $U \approx 10.12 \, \text{m/s}$ para o mel na situação turbulenta).
- Pressão (p): No patch outlet, a pressão é especificada como uniform 0, representando a pressão ambiente.
- Paredes (walls): As condições de contorno para as paredes são impostas conforme a necessidade do caso, garantindo o comportamento físico adequado do escoamento.

Pasta constant

Esta pasta contém os arquivos que definem as propriedades físicas e os modelos a serem utilizados na simulação:

- transportProperties: Neste arquivo são definidos o modelo reológico e os parâmetros correspondentes, informados em base cinemática. É especificado se o fluido é Newtoniano ou não Newtoniano; no caso dos fluidos não Newtonianos, o modelo adotado é selecionado e suas propriedades são informadas.
- turbulenceProperties: Aqui é escolhido o modelo de turbulência. Neste trabalho, optou-se pelo modelo RAS com o kOmegaSST, que permite a simulação adequada do regime turbulento.

Estimativa dos Parâmetros Turbulentos

Os valores de k, ε e ω para o modelo turbulento foram estimados a partir do site https://www.wolfdynamics.com/tools.html?id=110. Os dados de entrada para essa ferramenta foram:

• Intensidade Turbulenta (Tu): Calculada pela expressão

$$Tu = 0.16 (Re)^{-1/8},$$

onde Re é o número de Reynolds. O valor obtido deve ser convertido para porcentagem.

• Escala de Comprimento da Turbulência (TuL): Determinada por

$$TuL = 0.038 \, Dh$$
,

em que Dh representa o diâmetro hidráulico. Para tubulações, o diâmetro hidráulico é equivalente ao diâmetro real da tubulação.

• Velocidade de Fluxo Livre: Corresponde à velocidade U aplicada na situação turbulenta, conforme determinada nos cálculos da seção de análise dos regimes.

Com esses dados, a ferramenta estima os parâmetros k, ε e ω , que são então aplicados nas condições de contorno e configurações do modelo de turbulência.

Automatização e Scripts Auxiliares

Para otimizar o fluxo de trabalho, foram desenvolvidos diversos scripts (shells e batch) que facilitam:

- A geração automática dos gráficos de resíduo durante a simulação;
- A execução e limpeza das simulações de forma automatizada;
- A geração do arquivo cylinder.foam para visualização dos resultados.

Entre os scripts desenvolvidos, destacam-se:

- Allclean_Rod;
- Allgnu_F;
- Allrun_Rod.

5 Resultados

Nesta seção são apresentados e analisados os resultados numéricos obtidos por meio do solver simpleFoam do OpenFOAM para os escoamentos em tubulação, considerando fluidos Newtonianos (mel) e não Newtonianos (lama de perfuração). Os dados foram gerados para duas condições de fluxo, definidas em função do número de Reynolds: (i) escoamento laminar, com Re=100 para o fluido Newtoniano e $Re_{MR}=100$ para o fluido não Newtoniano; (ii) escoamento turbulento, com $Re=2\times Re_{cr}^{(N)}$ para o fluido Newtoniano e $Re_{MR}=2\times (Re_{MR})_{crit}$ para o fluido não Newtoniano. Assim, cada fluido foi simulado na velocidade que lhe corresponde para o número de Reynolds pré-definido, conforme discutido nas Seções anteriores.

5.1 Análise da Convergência dos Resíduos

Antes da extração dos perfis de velocidade, a convergência dos resíduos foi verificada. Durante as simulações, as variáveis U_x , U_y , U_z e a pressão p foram monitoradas. O script Allgnu_F, acionado pelo shell Allrun_Rod, gerou automaticamente as curvas dos resíduos para as seguintes condições:

- Caso 1: Escoamento laminar Newtoniano (Re = 100, $U \approx 0.22 \,\mathrm{m/s}$);
- Caso 2: Escoamento laminar não Newtoniano ($Re_{MR} = 100, U \approx 0.02 \, \text{m/s}$);
- Caso 3: Escoamento turbulento Newtoniano (Re = $2 \times Re_{cr}^{(N)}$, $U \approx 10.12 \,\mathrm{m/s}$);
- Caso 4: Escoamento turbulento não Newtoniano ($Re_{MR} = 2 \times (Re_{MR})_{crit}$, $U \approx 0.385 \, \text{m/s}$).

Inicialmente, os resíduos foram plotados individualmente, organizados em quatro gráficos dispostos lado a lado, conforme a estrutura na Figura 2.

Figura 2: Resíduos individuais para cada caso de simulação.

Para facilitar a interpretação, os dados dos resíduos foram condensados em um único gráfico, que apresenta as curvas de U_z e p, numa base logarítimica para os quatro casos, como pode ser observado na Figura 3.

Figura 3: Resíduos consolidados de U_z e p para as simulações realizadas.

A análise do gráfico consolidado evidencia a convergência dos resíduos, confirmando que as simulações atingiram o estado estacionário necessário para a extração dos perfis de velocidade.

5.2 Análise dos Perfis de Velocidade

Os perfis de velocidade foram extraídos ao longo do eixo axial da tubulação e comparados entre as condições laminar e turbulenta, bem como entre os fluidos Newtoniano e não Newtoniano.

5.2.1 Regime Laminar

No regime laminar, os dados simulados foram comparados com as soluções analíticas obtidas (conforme as equações 14 e 36). A Figura 4 ilustra os perfis de velocidade para os casos:

- Fluido Newtoniano: O mel apresenta um perfil parabólico com velocidade máxima próxima de $U \approx 0.22 \,\mathrm{m/s}$.
- Fluido não Newtoniano: A lama de perfuração, apesar de seguir um perfil parabólico, exibe uma velocidade máxima menor, em torno de $U \approx 0.02 \,\mathrm{m/s}$, em razão de suas características reológicas.

A comparação quantitativa foi realizada através do coeficiente de determinação (R²).

Foram obtidos:

$$R_{\text{Newtoniano}}^2 = 0.9998$$
 e $R_{\text{Não Newtoniano}}^2 = 0.9997$,

confirmando a alta correspondência entre os resultados numéricos e as soluções analíticas.

Figura 4: Perfil de velocidade no regime laminar para fluidos Newtoniano e não Newtoniano, com a respectiva solução analítica.

5.2.2 Regime Turbulento

No regime turbulento, as equações analíticas não se aplicam; entretanto, a análise foca na verificação do formato do perfil de velocidade. Na Figura 5, são apresentados, em um único conjunto, os perfis obtidos para ambos os fluidos:

- Fluido Newtoniano: O mel apresenta um perfil achatado, característico do escoamento turbulento, com velocidade máxima de $U \approx 10.12 \,\mathrm{m/s}$.
- Fluido não Newtoniano: A lama de perfuração também exibe um perfil achatado, porém com velocidade máxima de $U \approx 0.385 \,\text{m/s}$, refletindo sua reologia.

Apesar das diferenças nos valores de velocidade, ambos os fluidos demonstram a tendência esperada de perfis mais uniformes na seção transversal, típica do escoamento turbulento.

Figura 5: Perfis de velocidade no regime turbulento para fluidos Newtoniano e não Newtoniano, apresentados em um único gráfico.

5.3 Discussão dos Resultados

A partir dos gráficos apresentados, podem ser destacadas as seguintes conclusões:

1. Convergência dos Resíduos: A análise dos resíduos, tanto para U_z quanto para p, confirma que as simulações atingiram a convergência, permitindo a extração de dados confiáveis.

2. Regime Laminar:

- Os perfis de velocidade simulados para o fluido Newtoniano e para o não Newtoniano se aproximam muito das soluções analíticas, conforme evidenciado pelos altos valores de R² (0.9998 e 0.9997, respectivamente).
- Ambos os fluidos apresentam perfis parabólicos, característicos do escoamento laminar, embora a magnitude da velocidade máxima seja consideravelmente menor para a lama de perfuração devido à sua não Newtonianidade.

3. Regime Turbulento:

- A Figura 5 evidencia o padrão típico de achatamento dos perfis de velocidade, que indica uma maior homogeneidade da velocidade na seção transversal da tubulação.
- As diferenças entre os fluidos permanecem evidentes: o mel, por ser Newtoniano, atinge velocidades muito maiores, enquanto a lama de perfuração apresenta um perfil correspondente à sua característica reológica, com velocidade máxima inferior.

4. Comparação Geral: A metodologia adotada, que integra a solução analítica, a simulação numérica e o pós-processamento automatizado (utilizando scripts em Python), mostrou-se robusta para a análise dos escoamentos internos. Os resultados obtidos são coerentes com as expectativas teóricas para os regimes laminar e turbulento, permitindo uma comparação consistente entre fluidos com diferentes comportamentos reológicos.

As Figuras 4 e 5 servem como evidência visual de que a abordagem numérica empregada é capaz de reproduzir com alta fidelidade os perfis de velocidade esperados, tanto para o regime laminar quanto para o turbulento, e de capturar as nuances introduzidas pela não Newtonianidade dos fluidos. Essa análise qualitativa e quantitativa reforça a validade dos modelos e métodos empregados no presente estudo.

Todos os códigos Python implementados para o desenvolvimento do presente trabalho encontram-se disponíveis para análise e validação no seguinte link: https://colab.research.google.com/drive/1Dd4RJttXvHY-ZE8AhnromEdMvMk8vd-A?usp=sharing.

6 Conclusão

O presente trabalho permitiu avaliar a implementação e adaptação do OpenFOAM para a simulação de escoamentos internos em tubulação, considerando fluidos Newtonianos (mel) e não Newtonianos (lama de perfuração). Durante o estudo, foi possível selecionar o solver adequado, definir as condições de contorno apropriadas e conectar os resultados numéricos com as soluções analíticas clássicas.

A revisão do desenvolvimento do perfil de velocidade, desde a formulação da equação de Cauchy em 3D até a obtenção dos perfis para fluidos Newtonianos e não Newtonianos (usando o modelo power law), demonstrou que:

- No regime laminar, os perfis simulados apresentam a forma parabólica esperada, corroborando as soluções analíticas.
- No regime turbulento, ambos os fluidos exibem perfis de velocidade mais achatados, conforme preconizado pela teoria.

Adicionalmente, a experiência adquirida com a utilização do OpenFOAM, bem como a manipulação dos dados de saída por meio do ParaView e de scripts em Python, evidenciou a importância de uma abordagem integrada entre a modelagem computacional e as soluções teóricas. Essa integração reforça o potencial da fluidodinâmica computacional para a resolução de problemas complexos e a aplicação de modelos numéricos em contextos industriais e acadêmicos.

Em síntese, o trabalho contribuiu para o aprimoramento do conhecimento prático na adaptação de códigos de CFD a problemas físicos específicos, destacando a versatilidade e eficácia do OpenFOAM na análise de escoamentos internos.

Referências

- [1] VALE, Mariana Martins do; GARNICA, Alfredo Ismael Curbelo; CURBELO, Fabíola Dias da Silva. Obtenção e estudo reológico de um fluido de perfuração à base de água. In: CONGRESSO NACIONAL DE ENGENHARIA DE PETRÓLEO, GAZ NATURAL E BIOCOMBUSTÍVEIS, 1.; WORKSHOP DE ENGENHARIA DE PETRÓLEO, 3. 2015, Campina Grande. Anais CONEPETRO... Campina Grande: Realize Editora, 2015. Disponível em: https://editorarealize.com.br/artigo/visualizar/10370. Acesso em: 20 fev. 2005.
- [2] SMITS, Alexander J. Viscous flows and turbulence. Princeton, NJ: [s.n], 2009.
- [3] VISCOSITY Absolute (Dynamic) vs. Kinematic: Viscosity is a fluid's resistance to flow and can be valued as dynamic (absolute) or kinematic. In: The engineering toolbox. Disponível em: https://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html. Acesso em: 18 fev. 2005.
- [4] OPENFOAM. *User Guide. Versão 12.* The OpenFOAM Foundation: Jul. 2024. Disponível em: https://openfoam.org. Acesso em: 17 fev. 2025.
- [5] BIRD, R. Byron; STEWART, Warren E.; LIGHTFOOT, Edwin N. *Transport phenomena*. 2. ed. Nova York: John Wiley & Sons, Inc., c2002.
- [6] RAMIREZ, Mateus Getirana. Uma equação de atrito explícita para escoamento turbulento de fluidos não newtonianos puramente viscosos. 2015. Dissertação (Mestrado em Engenharia Mecânica) – COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.