The Relational Model (Part II)

What We have Learned

- Basic concepts of relational models
 - Schemas
 - Tables
- Use SQL to create schema/tables
- Integrity constraints
 - Keys
 - Domain constraints

Integrity Constraints

- Integrity constraints (ICs): conditions specified on a database schema
- Legal instances: instances that satisfy ICs
- Types of ICs
 - Domain constraints: (e.g., age of students must be at least 18)
 - Keys
 - Foreign keys

Primary Keys

- A set of fields is a <u>superkey</u> if:
 - No two distinct tuples can have same values in all key fields
- A set of fields is a <u>key</u> for a relation if :
 - It is a superkey
 - No subset of the fields is a superkey
 - i.e., a minimal superkey
- >1 key for a relation?
 - One of the keys is chosen (by DBA) to be the primary key.
 - The primary key of a relation cannot contain a NULL value as a value for their components

Exercise

• Based on following instance, give some examples of (sets of) atttributes that are *NOT keys for sure.*

SID	Name	Login	Age	GPA
53666	Jones	Jones@cs	18	3.4
53668	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	18	3.2

Primary Keys in SQL

```
When >1 key for a relation, one of the keys is
chosen (by DBA) to be the primary key.
Syntax for Primary Key definition:
  CREATE TABLE <name> (
      <field1> <domain>,
      <field2> <domain>,
      PRIMARY KEY (keyfield1, keyfield2,...)
```


- The schema of the Enrolled Relation is
 - Enrolled (sid: string, cid: string, grade: real)
- Fact about data:
 - For a given student and a specific course, there is a single grade.
- Questions:
- (1) What's the primary key?
- (2) Write SQL to create the table with the key constraint.

Is Primary Key Necessary?

- The primary key serves three purposes:
 - indicates that the column(s) should be unique
 - indicates that the column(s) should be non-null
 - document the intent that this is the unique identifier of the row
- When the primary keys are necessary?
 - Join the table with other tables
 - Construct index on the table

Add/Drop Primary Key

Syntax for adding primary Key:

```
ALTER TABLE < Table_Name > ADD PRIMARY KEY (keyfield1, keyfield2,...);
```

Syntax for Dropping Primary Key:

ALTER TABLE < Table_Name > DROP PRIMARY KEY;

Syntax for showing the primary key:

SHOW COLUMNS FROM *Table_Name*;

OR

SHOW KEYS FROM Table_Name:

Candidate Keys in SQL

 When >1 key for a relation, all keys are called <u>candidate keys</u> (one of which is chosen as the <u>primary key</u>).

```
CREATE TABLE <name> (
   <field1> <domain>,
   <field2> <domain>,
   PRIMARY KEY (field1, field2,...),
   UNIQUE (Candidate_Key_1_field1,
Candidate_Key_1_field2, ...),
   UNIQUE (Candidate_Key_2_field1,
Candidate_Key_2_field2, ...)
);
```


- The schema of the Enrolled Relation is Enrolled (sid: string, cid: string, grade: real)
- Facts:
 - Students are of unique IDs.
 - Each student can take only one course, and receive a single grade for that course.
 - No two students in the same course receive the same grade.
- CREATE TABLE Enrolled Question: what are the candidate keys? (sid CHAR(20),
 - SID (primary key)
 - CID + grade

```
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY(sid),
UNIQUE(cid, grade));
```

Add/Drop Candidate Key (in MySQL)

Syntax for Adding Candidate Key:

```
ALTER TABLE < Table_Name > ADD UNIQUE (keyfield1, keyfield2,...);
```

Syntax for dropping candidate key:

(note: Unique key is dropped as INDEX)

- Step 1: SHOW INDEX FROM Table_Name; // find the index name of the candidate key;
- <u>Step 2</u>: ALTER TABLE < Table_Name > DROP INDEX index_name; //index_name = name of the candidate key

Foreign Keys

• A foreign key of relation R is a set of attributes that are the keys of relation S.

Enrolled Students

sid	cid	grade						
53666	Carnatic101	C ~		sid	name	login	age	gpa
53666	Reggae203	В -		53666	Jones	jones@cs	18	3.4
53650	Topology112	Α _		53688	Smith	smith@eecs	18	3.2
53666	History105	В /		53650	Smith	smith@math	19	3.8
Key: (sid, cid)			-		Ke	y: (sid)	l	1

- sid is not the key of Enrolled table, but the key of Students table.
- Thus sid is the foreign key of Enrolled table.

Foreign Keys in SQL

Table1*: the table whose primary key is the specified foreign key.

Foreign Keys in SQL

- In the Enrolled Relation, only students listed in the Students relation should be allowed to enroll for courses.
 - Enrolled.sid is a foreign key!

```
CREATE TABLE Enrolled
  (sid CHAR(20), cid CHAR(20), grade float,
    PRIMARY KEY (sid,cid),
    FOREIGN KEY (sid) REFERENCES Students);
```

Enrolled

sid	cid	grade		Students				
53666	Carnatic 101	C ~		sid	name	login	age	gpa
	Reggae203	В -		53666	Jones	jones@cs	18	3.4
	Topology112	A _	7	53688	Smith	smith@eecs	18	3.2
	History 105	B	\	53650	Smith	smith@math	19	3.8

Add/Drop Foreign Keys (in MySQL)

Syntax for adding foreign keys:

```
ALTER TABLE <Table_Name> ADD FOREIGN KEY (keyfield1, keyfield2,...) REFERENCES table1
[ON DELETE reference_option]
[ON UPDATE reference_option];
```

Syntax for dropping candidate key:

ALTER TABLE *<Table_Name>* DROP FOREIGN KEY key_name;

Referential Integrity

- E.g. sid is a foreign key referring to Students:
 - Enrolled(sid: string, cid: string, grade: string)
 - If all foreign key constraints are enforced, <u>referential</u> <u>integrity</u> is achieved (i.e., no dangling references.)

Enforcing Referential Integrity

- Remember Students and Enrolled; sid in Enrolled is a foreign key that references Students.
 - i.e., any enrolled student must be a student first.
- What should be done if an Enrolled tuple with a non-existent student id is inserted?
 - Reject it!Enrolled

			Studen	115				
sid	cid	grade		Studen			I	
53666	Carnatic 101	C -		sid	name	login	age	gpa
	Reggae203	В -		53666	Jones	jones@cs	18	3.4
	Topology112	A ~	<i></i>	53688	Smith	smith@eecs	18	3.2
	History 105	B		53650	Smith	smith@math	19	3.8

Enforcing Referential Integrity (cont.)

What should be done if a Students tuple is deleted?

- Option 1: Also delete all Enrolled tuples that refer to it.
- Option 2: Disallow deletion of a Students tuple that is referred to.
- Option 3: Set sid in Enrolled tuples that refer to it to a default sid.
- Option 4: Set sid in Enrolled tuples that refer to it to a special value *null*, denoting `*unknown*' or `*inapplicable*'.
- Similar if primary key of Students tuple is updated.

Enrolle	d			0. 1				
sid	cid	grade		Stude	ats			
53666	Carnatic101	С ~		sid	name	login	age	gpa
53666	Reggae203	в -	**	53666	Jones	jones@cs	18	3.4
	Topology112	Α _		53688	Smith	smith@eecs	18	3.2
	History105	В /	\	53650	Smith	smith@math	19	3.8