Passejos aleatoris en grafs

Gerard Castro, Kim López, Gal·la Mora, Arnau Mas

5 de desembre de 2018

Esquema

- Introducció
- Distribucions estacionàries
- PageRank
- El teorema de Pólya

Introducció

Definició

Definició

Un passeig aleatori a un graf G és una seqüència de vèrtexs $v_1, v_2, \cdots, v_n, \cdots$, tal que $v_k v_{k+1}$ es tria uniformement d'entre les arestes incidents a v_k .

Aspectes probabilístics

V(t) és la variable aleatòria que representa la posició del passeig a l'instant t

Aspectes probabilístics

V(t) és la variable aleatòria que representa la posició del passeig a l'instant t Les probabilitats de transició

$$\mathsf{P}(V(t) = u \mid V(t-1) = v)$$

determinen el passeig:

Aspectes probabilístics

V(t) és la variable aleatòria que representa la posició del passeig a l'instant t Les probabilitats de transició

$$\mathsf{P}(V(t) = u \mid V(t-1) = v)$$

determinen el passeig:

$$P(V(t) = u) = \sum_{v \in V(G)} P(V(t) = u \mid V(t-1) = v) P(V(t-1) = v).$$

Probabilitats de transició

Com que

$$\mathsf{P}(V(t) = u \mid V(t-1) = v) = \frac{\mathsf{a}(u,v)}{\mathsf{gr}(v)},$$

Probabilitats de transició

Com que

$$\mathsf{P}(V(t)=u\mid V(t-1)=v)=\frac{\mathsf{a}(u,v)}{\mathsf{gr}(v)},$$

tenim

$$P(V(t)=u)=\sum_{v\in V(G)}\frac{a(u,v)}{\operatorname{gr}(v)}P(V(t-1)=v).$$

$$P(V(0) = i_1) = 1$$

$$P(V(1) = i_2) = P(V(1) = i_3)$$

= $P(V(1) = i_4) = \frac{1}{3}$

$$P(V(3) = i_1) = 1$$

Matriu de transició

Definim
$$\mathbf{p}_t \in \mathbb{R}^{V(G)}$$
 com $\mathbf{p}_t(u) = P(V(t) = u)$.

Matriu de transició

Definim $\mathbf{p}_t \in \mathbb{R}^{V(G)}$ com $\mathbf{p}_t(u) = P(V(t) = u)$. Aleshores, en forma matricial $\mathbf{p}_t = AD^{-1}\mathbf{p}_{t-1}$.

A és la matriu d'adjacència i D la matriu dels graus. $P = AD^{-1}$ és la matriu de transició.

Matriu de transició

Definim $\mathbf{p}_t \in \mathbb{R}^{V(G)}$ com $\mathbf{p}_t(u) = P(V(t) = u)$. Aleshores, en forma matricial

$$\mathbf{p}_t = AD^{-1}\mathbf{p}_{t-1}.$$

A és la matriu d'adjacència i D la matriu dels graus. $P = AD^{-1}$ és la matriu de transició.

Per tant

$$\mathbf{p}_t = P^t \mathbf{p}_0.$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} D = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{p}_0 = (1, 0, 0, 0)$$

$$\mathbf{p}_1 = \left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) = P\mathbf{p}_0$$

$$\mathbf{p}_2 = (1, 0, 0, 0) = P\mathbf{p}_1 = P^2\mathbf{p}_0$$

Distribucions estacionàries

Com és el passeig per a temps grans?

Com és el passeig per a temps grans?

Definició

Una distribució és estacionària si P(V(t) = u) = P(V(t-1) = u) per tot $u \in V(G)$.

Com és el passeig per a temps grans?

Definició

Una distribució és estacionària si P(V(t) = u) = P(V(t-1) = u) per tot $u \in V(G)$.

En termes de la matriu de transició,

$$P\pi = \pi$$
.

Com és el passeig per a temps grans?

Definició

Una distribució és estacionària si P(V(t) = u) = P(V(t-1) = u) per tot $u \in V(G)$.

En termes de la matriu de transició,

$$P\pi = \pi$$
.

Per tant

$$\pi(u) = \sum_{v \in V(G)} \frac{a(u, v)}{\operatorname{gr}(v)}$$

Teorema

Tot graf connex admet una única distribució estacionària.

Teorema

Tot graf connex admet una única distribució estacionària.

Demostració.

 π estacionària. Veurem que $\pi(u) \propto \operatorname{gr} u$.

Teorema

Tot graf connex admet una única distribució estacionària.

Demostració.

 π estacionària. Veurem que $\pi(u) \propto \operatorname{gr} u$. Sigui u^* tal que $\frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ és màxim:

Teorema

Tot graf connex admet una única distribució estacionària.

Demostració.

 π estacionària. Veurem que $\pi(u) \propto \operatorname{gr} u$. Sigui u^* tal que $\frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ és màxim:

$$\pi(u^*) = \sum_{v \in V(G)} \frac{\mathsf{a}(u^*, v)}{\mathsf{gr}(v)} \pi(v)$$

Teorema

Tot graf connex admet una única distribució estacionària.

Demostració.

 π estacionària. Veurem que $\pi(u) \propto \operatorname{gr} u$. Sigui u^* tal que $\frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ és màxim:

$$\pi(u^*) = \sum_{v \in V(G)} \frac{\mathsf{a}(u^*, v)}{\mathsf{gr}(v)} \pi(v) \leq \frac{\pi(u^*)}{\mathsf{gr}(u^*)} \sum_{v \in V(G)} \mathsf{a}(u^*, v)$$

Teorema

Tot graf connex admet una única distribució estacionària.

Demostració.

 π estacionària. Veurem que $\pi(u) \propto \operatorname{gr} u$. Sigui u^* tal que $\frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ és màxim:

$$\pi(u^*) = \sum_{v \in V(G)} rac{\mathsf{a}(u^*,v)}{\mathsf{gr}(v)} \pi(v) \leq rac{\pi(u^*)}{\mathsf{gr}(u^*)} \sum_{v \in V(G)} \mathsf{a}(u^*,v) = \pi(u^*)$$

Aleshores

$$\sum_{v \in V(G)} a(u^*, v) \frac{\pi(v)}{\operatorname{gr}(v)} = \sum_{v \in V(G)} a(u^*, v) \frac{\pi(u^*)}{\operatorname{gr}(u^*)}.$$

Demostració.

Per tant $\frac{\pi(v)}{\operatorname{gr}(v)} = \frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ per tot v adjacent a u^* .

Demostració.

Per tant $\frac{\pi(v)}{\operatorname{gr}(v)} = \frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ per tot v adjacent a u^* . Podem extendre l'argument a tots els vèrtexs de G fent servir que és connex.

Demostració.

Per tant $\frac{\pi(v)}{\operatorname{gr}(v)} = \frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ per tot v adjacent a u^* . Podem extendre l'argument a tots els vèrtexs de G fent servir que és connex.

Com que $\pi(u) \propto \operatorname{gr}(u)$ aleshores $\pi(u) = C \operatorname{gr}(u)$.

Demostració.

Per tant $\frac{\pi(v)}{\operatorname{gr}(v)} = \frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ per tot v adjacent a u^* . Podem extendre l'argument a tots els vèrtexs de G fent servir que és connex.

Com que $\pi(u) \propto \operatorname{gr}(u)$ aleshores $\pi(u) = C \operatorname{gr}(u)$.

Si imposem que $\sum_{u \in V(G)} \pi(u) = 1$ podem determinar C i

$$\pi(u) = \frac{\operatorname{gr}(u)}{\sum_{v \in V(G)} \operatorname{gr}(v)}$$

Existència i unicitat de distribucions estacionàries

Demostració.

Per tant $\frac{\pi(v)}{\operatorname{gr}(v)} = \frac{\pi(u^*)}{\operatorname{gr}(u^*)}$ per tot v adjacent a u^* . Podem extendre l'argument a tots els vèrtexs de G fent servir que és connex.

Com que $\pi(u) \propto \operatorname{gr}(u)$ aleshores $\pi(u) = C \operatorname{gr}(u)$.

Si imposem que $\sum_{u \in V(G)} \pi(u) = 1$ podem determinar C i

$$\pi(u) = \frac{\operatorname{gr}(u)}{\sum_{v \in V(G)} \operatorname{gr}(v)} = \frac{\operatorname{gr}(u)}{2|E(G)|}$$

Teorema

Tota distribució de probabilitats en un graf connex no bipartit convergeix a la distribució estacionària.

Teorema

Tota distribució de probabilitats en un graf connex no bipartit convergeix a la distribució estacionària.

Demostració.

P és similar a una matriu simètrica:

$$D^{-1/2}PD^{1/2} = D^{-1/2}AD^{-1/2}$$
.

Teorema

Tota distribució de probabilitats en un graf connex no bipartit convergeix a la distribució estacionària.

Demostració.

P és similar a una matriu simètrica:

$$D^{-1/2}PD^{1/2} = D^{-1/2}AD^{-1/2}$$
.

Per tant diagonalitza.

Teorema

Tota distribució de probabilitats en un graf connex no bipartit convergeix a la distribució estacionària.

Demostració.

P és similar a una matriu simètrica:

$$D^{-1/2}PD^{1/2} = D^{-1/2}AD^{-1/2}$$
.

Per tant diagonalitza. π és l'únic vector propi de valor propi 1. Posem

$$\mathbf{p}_0 = \alpha_1 \boldsymbol{\pi} + \sum_k \alpha_k \mathbf{v}_k$$

Demostració.

Es pot demostrar que $\alpha_1 = 1$.

Demostració.

Es pot demostrar que $\alpha_1 = 1$. Aleshores

$$P^t \mathbf{p}_0 = \boldsymbol{\pi} + \sum_k \lambda_k^t \alpha_k \mathbf{v}_k.$$

Demostració.

Es pot demostrar que $\alpha_1 = 1$. Aleshores

$$P^t \mathbf{p}_0 = \pi + \sum_k \lambda_k^t \alpha_k \mathbf{v}_k.$$

Per qualsevol graf, $|\lambda_k| \leq 1$ i per un graf no bipartit $\lambda_k > -1$.

Demostració.

Es pot demostrar que $\alpha_1 = 1$. Aleshores

$$P^t \mathbf{p}_0 = \pi + \sum_k \lambda_k^t \alpha_k \mathbf{v}_k.$$

Per qualsevol graf, $|\lambda_k| \leq 1$ i per un graf no bipartit $\lambda_k > -1$. Per tant

$$P^t \mathbf{p}_0 \xrightarrow{t \to \infty} \boldsymbol{\pi}.$$

Pels grafs bipartits la convergència no es dóna, tal i com hem vist a l'exemple al principi.

Pels grafs bipartits la convergència no es dóna, tal i com hem vist a l'exemple al principi.

Si permetem repetir vèrtexs aleshores obtenim un passeig aleatori mandrós.

Si permetem repetir vèrtexs aleshores obtenim un *passeig aleatori mandrós*. La matriu de transició és

$$\frac{1}{2}(I+P)$$
.

PageRank

• Google desenvolupa un algoritme per determinar la rellevància de pàgines web.

- Google desenvolupa un algoritme per determinar la rellevància de pàgines web.
- Considera el graf dirigit dels híperenllaços entre pàgines i assigna a cada pàgina la probabilitat que li correspon a la distribució estacionària.

- Google desenvolupa un algoritme per determinar la rellevància de pàgines web.
- Considera el graf dirigit dels híperenllaços entre pàgines i assigna a cada pàgina la probabilitat que li correspon a la distribució estacionària.
- Per garantir la convergència es fan servir passejos mandrosos.

- Google desenvolupa un algoritme per determinar la rellevància de pàgines web.
- Considera el graf dirigit dels híperenllaços entre pàgines i assigna a cada pàgina la probabilitat que li correspon a la distribució estacionària.
- Per garantir la convergència es fan servir passejos mandrosos.
- Com que el passeig és dirigit ja no tenim l'expressió de la distribució estacionària per a grafs no dirigits.

El caminant es teletransporta a un vèrtex aleatori amb probabilitat α .

El caminant es teletransporta a un vèrtex aleatori amb probabilitat α .

$$P_{\mathsf{PR}} = \frac{\alpha}{2 |V(G)|} \mathbf{1} + \frac{1 - \alpha}{2} (I + P).$$

El caminant es teletransporta a un vèrtex aleatori amb probabilitat α .

$$P_{\mathsf{PR}} = \frac{\alpha}{2 \, |V(G)|} \mathbf{1} + \frac{1-\alpha}{2} (I+P).$$

A PageRank personalitzat ens trasalladem a un vèrtex concret: obtenim un rànquin relatiu a aquell vèrtex.

El caminant es teletransporta a un vèrtex aleatori amb probabilitat α .

$$P_{\mathsf{PR}} = \frac{\alpha}{2 \, |V(G)|} \mathbf{1} + \frac{1-\alpha}{2} (I+P).$$

A PageRank personalitzat ens trasalladem a un vèrtex concret: obtenim un rànquin relatiu a aquell vèrtex. En general podem teletransportar-nos seguint una distribució qualsevol i obtindrem resultats rellevants a aquesta.pause En general podem teletransportar-nos seguint una distribució qualsevol i obtindrem resultats rellevants a aquesta.

Grafs infinits

Podem considerar passejos a grafs infinits. L'exemple més senzill són passejos aleatoris a \mathbb{Z}^d

Passejos recurrents i transitoris

Definició

Anomenarem probabilitat d'escapament, $p_{\rm esc}$, a la probabilitat que el passeig aleatori mai retorni a l'origen.

Passejos recurrents i transitoris

Definició

Anomenarem probabilitat d'escapament, $p_{\rm esc}$, a la probabilitat que el passeig aleatori mai retorni a l'origen.

Definició

Un passeig aleatori és *recurrent* si i només si $p_{\rm esc}=0$. Un passeig aleatori és *transitori* si i només si $p_{\rm esc}>0$.

Teorema de Pólya

Teorema

Un passeig aleatori simple en una xarxa d-dimensional \mathbb{Z}^d és recurrent si d=1 o d=2, i transitori si d>3.

Teorema de Pólya

Teorema

Un passeig aleatori simple en una xarxa d-dimensional \mathbb{Z}^d és recurrent si d=1 o d=2, i transitori si d>3.

"A drunk man will find his way home, but a drunk bird may get lost forever." Shizuo Kakutani