# A crash course in language models

Sebastian Schuster Saarland University

March 20, 2023

Slides available at: TODO

## Plan for today

- What are language models?
- One type of neural language models (NLMs): Recurrent NLMs
- Using them for linguistic research
  - As tools
  - To test hypotheses about human language processing/ learning

## What is a language model?

P(next word | context)

A conditional probability distribution over the **next word** from a fixed vocabulary,

given a sequence of previous words.

# What is a language model?

# P(next word | "The cat")

| Next word | P(next word   context) |
|-----------|------------------------|
| а         | 0.000006               |
| aardvark  | 0.00002                |
| aarhus    | 0.000001               |
|           |                        |
| mat       | 0.000003               |
|           |                        |
| on        | 0.004                  |
| * * *     |                        |
| sat       | 0.1                    |
|           |                        |
| zebra     | 0.00007                |

### Scoring words and sequences

### **Scoring words:**

P(next word | context )

### **Scoring sequences:**

```
P(on \ a \ mat \mid the \ cat \ sat)
= P(on \mid the \ cat \ sat)
```

### the cat

| Next word | P(next word   the cat) |  |  |  |  |
|-----------|------------------------|--|--|--|--|
| a         | 0.000006               |  |  |  |  |
| aardvark  | 0.00002                |  |  |  |  |
| aarhus    | 0.000001               |  |  |  |  |
|           |                        |  |  |  |  |
| mat       | 0.000003               |  |  |  |  |
|           |                        |  |  |  |  |
| on        | 0.004                  |  |  |  |  |
| * * *     |                        |  |  |  |  |
| sat       | 0.1                    |  |  |  |  |
|           |                        |  |  |  |  |
| zebra     | 0.00007                |  |  |  |  |

### the cat sat

| Next word | P(next word   the cat) |  |  |  |  |
|-----------|------------------------|--|--|--|--|
| a         | 0.000006               |  |  |  |  |
| aardvark  | 0.000002               |  |  |  |  |
| aarhus    | 0.000001               |  |  |  |  |
| •••       |                        |  |  |  |  |
| mat       | 0.000003               |  |  |  |  |
|           |                        |  |  |  |  |
| on        | 0.004                  |  |  |  |  |
|           |                        |  |  |  |  |
| sat       | 0.1                    |  |  |  |  |
|           |                        |  |  |  |  |
| zebra     | 0.00007                |  |  |  |  |

### the cat sat

| Next word | P(next word   the cat sat) |  |  |  |  |
|-----------|----------------------------|--|--|--|--|
| a         | 0.000006                   |  |  |  |  |
| aardvark  | 0.000002                   |  |  |  |  |
| aarhus    | 0.000001                   |  |  |  |  |
|           |                            |  |  |  |  |
| mat       | 0.000003                   |  |  |  |  |
|           |                            |  |  |  |  |
| on        | 0.15                       |  |  |  |  |
|           |                            |  |  |  |  |
| sat       | 0.0001                     |  |  |  |  |
|           |                            |  |  |  |  |
| zebra     | 0.00007                    |  |  |  |  |

### the cat sat on

| Next word | P(next word   the cat sat on) |  |  |  |
|-----------|-------------------------------|--|--|--|
| а         | 0.2                           |  |  |  |
| aardvark  | 0.00002                       |  |  |  |
| aarhus    | 0.000001                      |  |  |  |
|           |                               |  |  |  |
| mat       | 0.000003                      |  |  |  |
|           |                               |  |  |  |
| on        | 0.000015                      |  |  |  |
|           |                               |  |  |  |
| sat       | 0.0001                        |  |  |  |
|           |                               |  |  |  |
| zebra     | 0.00007                       |  |  |  |

### the cat sat on a

| Next word | P(next word   the cat sat on a) |  |  |  |  |
|-----------|---------------------------------|--|--|--|--|
| a         | 0.00004                         |  |  |  |  |
| aardvark  | 0.000002                        |  |  |  |  |
| aarhus    | 0.000001                        |  |  |  |  |
|           |                                 |  |  |  |  |
| mat       | 0.1                             |  |  |  |  |
|           |                                 |  |  |  |  |
| on        | 0.000015                        |  |  |  |  |
|           |                                 |  |  |  |  |
| sat       | 0.0001                          |  |  |  |  |
|           |                                 |  |  |  |  |
| zebra     | 0.007                           |  |  |  |  |

the cat sat on a mat

### Where do the probabilities come from?

### Pre-2015ish:

- Counting short sequences in large corpora
- One problem: Estimates are very poor for very rare sequences/sequences that don't appear in the corpus

#### Post-2015ish:

Neural language models

## A neural language model



Context of previous words  $w_1, w_2, \ldots, w_k$ 

A neural network

$$P\left(w_{k+1}\right)$$

Probability distribution over the next word  $P\left(w_{k+1}\right)$ 

## Representing words

- Neural networks can only operate on numbers
- We therefore represent words as high-dimensional vectors
- Vectors for each word are stored in a lookup table (the embedding matrix)

$$\begin{pmatrix} 0.544 \\ -0.678 \\ 0.604 \\ 0.944 \\ 0.632 \end{pmatrix} \begin{pmatrix} -0.023 \\ 1.354 \\ -0.553 \\ -0.367 \\ 0.975 \end{pmatrix} \begin{pmatrix} -1.079 \\ -0.612 \\ 0.594 \\ -1.057 \\ -1.186 \end{pmatrix} \begin{pmatrix} -0.262 \\ -0.923 \\ 1.097 \\ -0.724 \\ -1.078 \end{pmatrix} \begin{pmatrix} 0.352 \\ -0.341 \\ 0.318 \\ 0.345 \\ -1.452 \end{pmatrix}$$

the cat sat on a

## A neural language model



 $P\left(w_{k+1}\right)$ 

Probability distribution over the next word  $P\left(w_{k+1}\right)$ 

## A neural language model



# Computing the probability of the next word: SoftMax



 $\emph{l}$ -dimensional vector representing the context  $\emph{c}$ 

Probability distribution over the next word  $P\left(w_{k+1}\right)$ 

Multinomial logistic
$$P(w_{k+1} \mid c) = \text{regression (aka SoftMax)}$$
classifier using features  $c$ 

### A neural language model



Context of previous words  $w_1, w_2, \ldots, w_k$ 

Matrix with word embeddings

#### A neural network

Vector *c* representing the context

Probability distribution over the next word  $P\left(w_{k+1}\right)$ 

### Two methods to compute context representations

#### Transformers:

- Central idea: Repeatedly compute weighted averages of word representations
- Recurrent Neural Networks (RNNs):
  - Central idea: Combine current word with a hidden state representing the previous words

### Recurrent Neural Networks



### A neural language model



### Training neural networks: Backpropagation

- A neural network has many **parameters** (e.g., for composition function, word embedding matrix, ...)
- During training the network makes guesses about the next word
- If the guess is far off, the parameters are updated so that if the network guesses again, it is more likely to make the correct guess
- This process is repeated millions or billions of times

### Pre-trained neural networks

- Medium-scale:
  - Available in Python on HuggingFace



- · Large-scale (e.g, GPT-3/4, ChatGPT, Claude):
  - Accessible in the Cloud



### How to use them?

- As tools for research tasks:
  - For helping with stimuli generation
  - · Developing classifiers, e.g., for social media analysis
- For testing hypotheses about language processing/ learning:
  - To test hypotheses about online
  - To test hypotheses about learnal



## For stimuli generation



h/t Brandon Waldon

### Automatic classification: Social media analysis

- Example classification task: code-switching (yes/no)
  - 1. Hand-label a small dataset
  - 2. Fine-tune a classifier using a pre-trained language model
  - 3. Automatically predict labels for the rest of the data

### Testing hypotheses about incremental processing

### COGNITIVE SCIENCE

A Multidisciplinary Journal



Cognitive Science 45 (2021) e12988 © 2021 Cognitive Science Society LLC

ISSN: 1551-6709 online DOI: 10.1111/cogs.12988

# Single-Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty

Marten van Schijndel, PhD,<sup>a</sup> • Tal Linzen, PhD<sup>b</sup>

<sup>a</sup>Department of Linguistics, Cornell University
<sup>b</sup>Department of Linguistics and Center for Data Science, New York University

Received 26 August 2020; received in revised form 21 April 2021; accepted 26 April 2021

# Some things to consider when using LMs as cognitive models

- Amount of training data: Recent models are trained on orders of magnitude more linguistic data than a human receives an input over the course of their life
- Autoregressive vs. bidirectional language models:
   There are also popular language models that predict a word based on the left and right context not a good model for left-to-right online processing!
- **Tokenization:** Most models split up words into smaller units (so-called subword tokens). Many of the not linguistically meaningful.

# Some things to consider when using LMs as cognitive models

- Memory constraints: Transformer-based models have perfect memory of hundreds, or even thousands of words
- Resist anthropomorphizing: Interacting with models such as ChatGPT can feel sometimes similar to interacting with humans — this doesn't mean the models produce responses like a human would.

•



### Takeaways

- Language models are conditional probability distributions over the next word, given a context
- Neural networks constitute a powerful method for learning such a distribution
- Language models can be used as tools for research tasks, and if well justified, for testing hypotheses about human language processing
  - More about that in my talk tomorrow!

### Thanks!

### Additional resources:

- Jurafksy & Martin: <u>Speech and Language Processing</u> (3rd ed)
- Giuliano Giacaglia: How Transformers Work
- Sasha Rush: The Annotated Transformer
- HuggingFace Model Hub
- Stanford CS224N Lectures

### Transformers: Self-attention

- Intuition: the output representation  $y_i$  of a word  $w_i$  should be a combination of its own representation and the representations of other words that it depends on (syntactically, in terms of meaning, ...)
- · We do this by computing an **attention vector**  $\alpha_i$
- The output representation  $y_i$  is a **weighted sum** of all the input representations

$$y_i = \sum_{0 \le j \le k} \alpha_{ij} w_j$$

### **Transformers**

- Instead of computing these weighted averages just once, Transformer models usually consist of multiple layers (in practice, usually somewhere between 5 and 20 layers)
- The input of layer l is the output of layer l-1

