

Linear Regression

Practical Machine Learning (with R)

UC Berkeley Fall 2016

Agenda

- Administrativa
 - Assignment (due 10/19 midnight)
- Review
- New Topics
 - Linear Regression
 - Model Formula
 - Model Process

QUESTIONS

Amount of time spent on:

- Reading?
 - Did you work along with the example?
- Assignment?

What have you found:

- to be difficult?
- surprising?

• General auestions?

EXPECTATIONS

- Pulled changes from class Git Hub repository as of last Wednesday.
- Completed Reading
- Completed/Attempted exercises
 - git pull/add/commit/push

EXPECTATIONS

- You have tried
 - dplyr/tidyr and/or
 - data.table
- ⇒You know what %>% does and love it

- Understand basic table operations:
 - mutate
 - join
 - . . .

Expectations: Process

REVIEW

CONCEPTS

- Difference between
 - supervised and unsupervised models
 - semi-supervised
 - reinforcement / adaptive learning
- Difference between classification and regression
- Three components for ML algorithms ...

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- A restricted class of function (MODEL)
- A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

SIMPLE LINEAR REGRESSION

Errors:

Model:

Search Optimization:

ERRATA: LINEAR REGRESSION ERRORS

- Two different types of errors measured
 - For fitting models
 - For comparing models

 Minimize square error loss (SSE) sum of squared errrors

$$argmin_{\beta}\left(\sum (\hat{y}-y)^2\right)$$

 choose Beta such that the sum of squared errors is minimized.

READING REVIEW

Questions on the Reading?

EXAMPLE PREDICTING MEDICAL EXPENSES

Questions:

- What is the goal?
- What tools were used?
- What are some alternatives?

Steps:

- Step 1: Collect/Load Data
- Step 2: Explore and Prep the Data
- Step 3: Train Model
- Step 4: Evaluating Model Performance
- Step 5: Improve the Model

lm.summary

```
Call:
lm(formula = expenses ~ ., data = insurance)
Residuals:
    Min
             1Q Median
                              30
                                      Max
-11302.7 -2850.9 -979.6 1383.9 29981.7
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           987.8 -12.089 < 2e-16 ***
(Intercept)
              -11941.6
                256.8 11.9 21.586 < 2e-16 ***
age
              -131.3 332.9 -0.395 0.693255
sexmale
bmi
                339.3 28.6 11.864 < 2e-16 ***
            475.7 137.8 3.452 0.000574 ***
23847.5 413.1 57.723 < 2e-16 ***
children
smokeryes
regionnorthwest -352.8 476.3 -0.741 0.458976
regionsoutheast -1035.6 478.7 -2.163 0.030685 *
regionsouthwest -959.3 477.9 -2.007 0.044921 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6062 on 1329 degrees of freedom
Multiple R-squared: 0.7509, Adjusted R-squared: 0.7494
F-statistic: 500.9 on 8 and 1329 DF, p-value: < 2.2e-16
```

HOMEWORK SOLUTION

(MULTIPLE) LINEAR REGRESSION

SIMPLE LINEAR REGRESSION

Naïve Model

$$\hat{y} = mean(y)$$

Simple linear model:

$$\hat{y} = \beta_0 + \beta_1 x_1$$

LINEAR REGRESSION MODEL

→ Abstract to multiple dimensions

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

$$\hat{y} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

Mathy-r!!!

LINEAR REGRESSION (INTUITION)

• Which is the more important variable?

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.3541 0.4593 111.814 < 2e-16 ***

EngDispl -3.7454 0.2507 -14.941 < 2e-16 ***

NumCyl -0.5880 0.1722 -3.414 0.000664 ***
```

- Coefficients ... multiply then sum
- Number Line (in units of the response)
 - Start at intercept
 - Multiple term by value of the variable
 - Move those number of units of y.

LINEAR REGRESSION (INTUITION)

Data is generated by an unknown stochastic process that the model creates the data, i.e. x's

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

- Deterministic : always produces the same answer
- Stochastic: non-deterministic, contains some element of randomness, but not entirely random.

LINEAR REGRESSION NUMBER LINE

LINEAR REGRESSION

- train a linear regression model
- Interpret linear regression model
 - ""stars" (significance), Estimate, Std., Error, R-squared, Pr(>|t|) Call: lm(formula = FE ~ EngDispl, data = cars2010) Residuals: Min 1Q Median 3Q Max -14.486 -3.192 -0.365 2.671 27.215 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 50.5632 0.3985 126.89 <2e-16 *** EngDispl -4.5209 0.1065 -42.46 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 Residual standard error: 4.624 on 1105 degrees of freedom Multiple R-squared: 0.62, Adjusted R-squared: 0.6196

F-statistic: 1803 on 1 and 1105 DF, p-value: < 2.2e-16

LINEAR REGRESSION (PREDICTOR SIGNIFICANCE)

Probability that there is NO relationship between the predictor and the response

- Is expressed as a probability.
- Lower is "better" i.e. more significant

Think of it (loosely) as the probability of the coefficient being wrong. It's an estimate after-all.

INDICATION OF BAD MODEL FIT

These are signs of a bad model fit:

- No significant coefficients / predictors
- Many insignificant predictors
- Coefficients ... too large or too small
- Low R-squared
- Skewed or non-zero centered residuals

LINEAR REGRESSION LIMITATIONS

Limitation	Solution
Linear Response Does not fit higher order functions or interactions	 Transform data Express in Model Formula
Insignificant Predictors Left in the Model	 Use model variant that does feature selection Use Recursive Feature Elimination (RFE) routines
Sensitive to inputs: Outliers give outsized influence on model fit	 Remove outliers Transform Predictors Use Robust Regression
Highly correlated predictors yield non-sensical models	Use RegularizationRFE
Comparatively not sensitive	• ???

TRANSFORMATIONS

- Centering and Scaling: scale*
- Resolve skewness: log, sqrt, inv
- Resolve outliers: spatial sign, PCA

Some algorithms require scaling

Some are insensitive

Time consuming

Somewhat of an art

Genetic algorithms (GA)

Add complexity

Contribute to loss of interpretability

MODEL FORMULA

- DSL for expressing relationships between responses and predictors
- Precified by: ~
 response ~ predictor(s)

• Special functions/operators:

```
.,:, *, I
```

BEGIN ASSIGNMENT IN CLASS

APPENDIX

