

FAIR data management and Disqoverability

iRODS UGM 2018

Maarten Coonen

Data Architect DataHub Maastricht

m.coonen@maastrichtuniversity.nl https://datahub.mumc.maastrichtuniversity.nl Peter Debyelaan 15, 6229 HX Maastricht, The Netherlands (route 11 MUMC+, 2nd floor)

DataHub Maastricht

Community at Maastricht UMC+

Characteristics

- Service organization
- · For hospital and university
- Data broker
- Scope = data management (not data science)
 - Consultancy and Legislation (GDPR)
 - Data management planning
 - (Meta)data modelling
- · Decentral data stewards

Paul van Schayck @UGM2017

DataHub is more than iRODS alone:

- + Web portal
- Metadata entry
- Ontology Lookup Service
- + Pseudonimysation
- + Search Index (Solr)
- + And other (dockerized) microservices

DataHub (iRODS) milestones

DataHub strives

- to be FAIR across research disciplines;
- share data in regulated fashion between organizations;
- to hold data sets that are both human and machine readable.

DataHub implementation	F	Α	I	R
Each data set in iRODS has a unique and persistent identifier (PID)	F1 F3			
Metadata structuring and ontology enrichment using EBI-OLS	F2		11,12,13	R1,R1.3
Metadata registered in iRODS and indexed in DISQOVER	F4			
Metadata retrievable by their PID using HTTP landing page		A1,A1.1,A1.2		
Metadata accessible, even when data is deleted or protected by authorization in iRODS		A2		

Gaps: data license (R1.1), extended metadata about provenance (R1.2)

Data sets that are both human and **machine** readable

Ontologies enable machine-readability

Find all information regarding mammals

The Linked Data Cloud

Legend

Together, we are building a massive decentralized knowledge graph

7 Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://od-cloud.net

DISQOVER in the Linked Data cloud

Legend

on-premises data

Remote federated data

on-premises Linked data

ONTOFORCE DISQOVER

Characteristics

- Semantic search application on linked data
- User-friendly interface and visualizations
- End-user does not need SPARQL expertise
- Use of dynamic filters / facets to construct the search query
- Aggregates linked data from public and private (local) data sources

Public data sources

- PubMed
- NCBI Gene
- ChEMBL
- ClinicalTrials.gov
- ORCiD
- MesH
- DailyMed
- and many more (130+)

iRODS – DISQOVER workflow

Converting iRODS AVU's to RDF


```
iRODS rule
```

```
JSON
{
    "project": "P000000002",
    <...>
    "title": "DataHub demo"
}
```

```
Python ETL script
```

TTL

```
@prefix nspj: <http://ns.ontoforce.com/ontologies/project/> .
@prefix nspjc: <http://ns.maastrichtuniversity.nl/ontologies/project/classes/> .
@prefix disq: <http://ns.ontoforce.com/2013/disqover#> .
<http://ns.maastrichtuniversity.nl/project/P000000002> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> nspjc:metadata;
    nspj:title "DataHub demo";
    disq:preferredLabel "DataHub demo".
```


Converting XML-file to RDF

metadata.xml

Python ETL script

TTL

```
@prefix ns: <http://ns.ontoforce.com/ontologies/collection/> .
@prefix nst: <http://ns.maastrichtuniversity.nl/ontologies/collection/classes/> .
@prefix nstp: <http://ns.ontoforce.com/ontologies/person/classes/> .
@prefix disq: <http://ns.ontoforce.com/2013/disqover#> .
@prefix nsp: <http://ns.ontoforce.com/ontologies/person/> .
@prefix org: <http://ns.ontoforce.com/organization/> .
<http://ns.maastrichtuniversity.nl/collection/P000000002-C000000001>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> nst:metadata;
   ns:project <a href="http://ns.maastrichtuniversity.nl/project/P000000002">http://ns.maastrichtuniversity.nl/project/P000000002</a>;
                          "ATGL and CGI-58 Western Blot";
   disg:preferredLabel
   ns:description "CGI-58 is involved in the regulation of energy metabolism in skeletal
muscle. This investigation consists of various Western Blots targeted at both ATGL and CGI-58
in human myoblasts.";
   ns:date
               "2010-05-11";
                   <http://purl.obolibrary.org/obo/NCBITaxon 9606>.
   ns:organism
```


Screencast

The DataHub team

DataHub

Maarten Coonen Data Architect

Data Architect
DataHub Maastricht

m.coonen@maastrichtuniversity.nl https://datahub.mumc.maastrichtuniversity.nl Peter Debyelaan 15, 6229 HX Maastricht, The Netherlands (route 11 MUMC+, 2nd floor)

Backup slides

Machines that reason over data

Prof. Dr. Michel Dumontier, Maastricht

How can we <u>automatically</u> find the <u>evidence</u> that support or dispute a <u>hypothesis</u> using the totality of available <u>data</u>, tools and scientific knowledge?

FAIR data principles

Set of 15 principles that form a guideline for proper research data management and data stewardship.

Gaining more and more interest of researchers, publishers, funding and government agencies worldwide.

Funding agencies

- H2020
- NWC
- etc.

