

- Día 2: Parte 2 - Control de Flujo y Reconocimiento

Prof. Oscar E. Ramos, Ph.D.

Universidad de Ingeniería y Tecnología (UTEC) Departamento de Ingeniería Electrónica 14 de febrero del 2018

• Flujo: "secuencia" de un programa

Para el NAO se usan los siguientes bloques

- If: "decisión"
- Switch case: selecciona entre sus entradas
- Counter: ejecuta una acción un número de veces

Objetivo:

El robot NAO mueve su cabeza 2 veces mientras saluda y luego (de que ambas acciones terminan) mueve la mano

Construir el siguiente diagrama

- El bloque "Nod" es de tipo "timeline"
 - Realizar un movimiento de cabeza: subir y bajar
 - No es necesario usar el robot real, se puede usar el robot virtual
- En el bloque "Counter", escribir 2 en "Final Value"

Ejecutar el programa

Macarena - Full

- Objetivo:
 Repetir el movimiento de Macarena 4 veces, con giro
- Realizar el diagrama (abrir el archivo macarena-full.pml)

- En "Move To" y "Counter" usar parámetros adecuados
- Al final del movimiento, apagar los motores

Detenerse Cuando hay Obstáculo

- ¿Cómo saber si hay un obstáculo?
 - Una alternativa: con el sensor de ultrasonido
- Sensor de ultrasonido en el NAO:

Conexión del sensor:

Detenerse Cuando hay Obstáculo

Hacer que el NAO camine indefinidamente (usar el bloque "Move Toward"). Cuando el sensor de ultrasonido detecta un obstáculo en frente, el robot se debe detener y debe decir un mensaje que detectó un obstáculo.

Nota: el bloque Move Toward hace que el robot se mueva de manera indefinida en la dirección especificada. Para detenerlo se requiere que su entrada "X" sea activada y que haya un bloque Move Toward que tenga todos los parámetros en cero.

Reconocimiento de marcadores

¿Qué son los marcadores?

También llamados "naomarks"

 Son elementos de referencia ("landmarks") con un patrón específico que el robot puede reconocer (usando su cámara + procesamiento de la imagen/visión computacional)

Reconocimiento de Marcadores

 Conectar un bloque de "NAOMark", mostrar diferentes marcadores y observar las salidas

 Luego seleccionar algunos marcadores y conectar un bloque "Switch" con diferentes bloques "Say"

Ejercicios

- → Hacer que el robot camine diferente cuando se le muestran diferentes marcadores
- → Usar marcadores para hacer para dar las siguientes instrucciones al robot: caminar, detenerse, girar a la derecha, girar a la izquierda (y que diga lo que está haciendo)

- Para reconocer objetos se requiere una biblioteca ("base de datos") de objetos conocidos:
 - Entrenamiento (aprendizaje, *training*): mostrar un objeto al robot para que lo aprenda
 - Prueba (testing): mostrar el objeto aprendido al robot para que lo reconozca
- ¿Cómo reconoce el robot?
 - Basado en puntos característicos de la imagen ("features") que son invariantes (ejemplo: SIFT, SURF, ...)

[Imagen de OpenCV: coldvision.io]

- ¿Cómo reconoce el robot?
 - Alternativamente se podría usar otros métodos de "deep learning" (ejemplo: redes neuronales convolucionales)

- Entrenamiento
 - Ir al monitor de video ("video monitor")
 - Click en "new vision recognition database"

- Click en play (de video monitor) y colocar un objeto frente a la cámara (algo plano con imágenes)
- Click en el botón "learn"
 - Hacer click en los bordes del objeto hasta segmentarlo por completo
 - Ingresar un nombre para el objeto
- Hacer click en el botón "send" para agregarlo a la biblioteca

Prueba

- Insertar un bloque "Vision Reco"
- Conectarlo y observar que el objeto sea detectado a su salida al mostrársele el objeto

Objetivo

Hacer que el robot camine hasta que vea un objeto que reconoce, y se le toque la cabeza

Ejercicio

→ Hacer que el robot mueva su cabeza hasta encontrar un objeto determinado

Break

Reconocimiento de Rostros

Reconocimiento de Rostros

- Entrenamiento: Insertar un bloque Learn Face (de vision),
 y Text Edit (de Data Edit).
 - Escribir un nombre en "Text Edit"
 - En el bloque Say superior hacer que el robot diga que aprendió; en el inferior, que hubo un problema

Luego cambiar y escribir otro nombre y mostrarle otro rostro

Reconocimiento de Rostros

- Prueba de reconocimiento
 - Reemplazar nombre1 y nombre2 por los nombres reconocidos
 - El bloque de arriba debe decir que vio a la persona 1, y el de abajo que vio a la persona 2.

Ejercicio

Hacer que el robot reconozca a tres personas y las salude por su nombre