

Dynamic Programming (DP)

- 01. Dynamic Programming(DP, 동적 프로그래밍)이 무엇인가?
- 02. P(N)을 구하기 위해 P(N-1)을 활용하는 예
- 03. P(N)을 구하기 위해 P(N-i), i>1,를 활용하는 예

Copyright © by Sihyung Lee - All rights reserved.

이번주에는 많이 사용되는 알고리즘 기법 중 하나인 Dynamic Programming에 대해 배워보겠습니다.

특히 다양한 예를 보며 Dynamic Programming의 개념과 특성에 익숙해 지는 것을 목표로 하겠습니다.

'Dynamic programming'은 위 오른쪽 그림과 같이 <u>작은 문제에 대한 답을 기억</u>해 두었다가 <u>더 큰 문제를 풀기 위해 재사용</u>함으로써 문제를 보다 효율적으로 풀어내는 알고리즘을 통칭합니다. 앞으로 dynamic programming을 줄여서 **DP**라 하겠습니다.

DP는 보통 하나의 문제를 풀어야 하는 경우보다는 여러 다른 크기의 문제를 함께 풀어야 하는 경우에 적용됩니다 (예: 크기 1~N까지의 문제를 모두 풀어야 하는 경우). 이러한 경우 작은 문제와 큰 문제 간의 연관성을 파악할 수 있다면 작은 문제에 대한 해를 재사용함으로써 다음으로 풀어야 할 보다 큰 문제를 더 빠르게 풀어낼 수 있습니다. 예를 들어 크기 1인 문제를 풀어 이에 대한 해 P(1)을 얻었다면 이를 사용해 P(2)를 빨리 계산해 냅니다. 이번에는 P(2)를 사용해 다음으로 풀어야할 P(3)을 빨리 계산해 냅니다.

만약 같은 상황에서 DP를 사용하지 않는다면 위 왼쪽 그림과 같이 기존 문제의 해를 재사용하지 않고 각 문제를 독립적으로 풀어야 하므로 시간이 더 걸리게 됩니다.

DP를 적용하기 위해서는 <u>서로 다른 크기의 문제 간의 연관성을 잘 발견</u>할 수 있어야합니다. 그래서 앞으로는 몇 가지 문제에 대해 이러한 연관성의 예를 보도록하겠습니다.

DP가 도움이 되는 첫 번째 예로 n-factorial 계산을 보겠습니다. 특히 n=1~N 까지 N개의 n-factorial을 구해야 한다고 가정하겠습니다.

(1) DP를 사용하지 않는 경우(위 왼쪽 그림): 각 factorial을 독립적으로 계산합니다. 각 n-factorial을 구하기 위해서는 n-1번의 곱셈이 필요합니다. 예를 들어 2! = 1×2를 계산하려면 (2-1)=1번의 곱셈이 필요하고 3!=1×2×3을 계산하려면 (3-1)=2번의 곱셈이 필요합니다. 따라서 n=1~N까지 N개의 factorial을 구하기 위해서는 0+1+2+···+(N-1)=(N-1)×N/2 번의 곱셈이 필요하며 이는 N²에비례합니다.

앞으로 P(n)을 크기 n인 문제에 대해 우리가 구하고자 하는 답이라 가정하겠습니다. 따라서 factorial 문제에서는 P(n)=n! 입니다.

(2) DP를 사용하는 경우(위 오른쪽 그림): P(n)과 P(n-1) 간의 관계, 즉 P(n)=n×P(n-1) (예: P(4) = 4×3×2×1 = 4×P(3))를 활용합니다. 이 관계를 활용하면 P(n-1)에 n을 곱해 P(n)을 얻을 수 있으므로 각 P(n)을 얻는데 1번의 곱셈만 필요합니다. 단초기값인 P(1)=1을 구할 때는 곱셈이 필요하지 않습니다. 따라서 n=1~N까지 N개의 factorial을 구하기 위해서는 N-1번의 곱셈이 필요하며 이는 N에 비례합니다.

앞 페이지에서 n-factorial을 계산할 때 DP를 사용하지 않는다면 N^2 에 비례한 수의 곱셈이 필요하며 DP를 사용한다면 N에 비례한 수의 곱셈이 필요함을 보았습니다. 이 두 값은 위 그래프에서와 같이 N이 증가할수록 그 차이가 더 커집니다.

따라서 풀어야 할 문제의 크기가 커질수록 처리 속도를 높이기 위해서는 효율적인 알고리즘을 찾는 것이 중요함을 알 수 있습니다.

다음으로 factorial 계산과 유사한 문제를 하나 더 보겠습니다. 특히 현대 암호 시스템에서 자주 사용되는 지수+mod 연산이 사용되는 경우를 보겠습니다. mod 연산은 주어진 수로 나누었을 때 나머지를 구하는 연산으로 %로 자주 표기합니다.

S=1~N에 대해 3°%7을 계산해야 한다고 가정하겠습니다.

이번에도 DP를 사용하지 않는 경우와 DP를 사용하는 경우에 곱셈 연산의 수를 비교해 보겠습니다.

- (1) DP를 사용하지 않는 경우(위 왼쪽 그림): s=1~N까지의 각 s에 대해 거듭제곱 3^s (3의 s승)를 계산한 후 mod 연산을 수행합니다. 3^s 을 구하기 위해서는 s-1번의 곱셈이 필요합니다. 예를 들어 $3^2=3$ ×3을 계산하려면 (2-1)=1번의 곱셈이 필요하고 $3^3=3$ ×3×3을 계산하려면 (3-1)=2번의 곱셈이 필요합니다. 따라서 n=1~N까지 N개의 factorial을 구하기 위해서는 $0+1+2+\cdots+(N-1)=(N-1)$ ×N/2 번의 곱셈이 필요하며 이는 N^2 에 비례합니다.
- (2) DP를 사용하는 경우(위 오른쪽 그림): P(n)과 P(n-1) 간의 관계, 즉 P(n)=3×P(n-1) %7을 활용합니다. 예를 들어 P(2) = 3² % 7 = (3×3) % 7 = (3%7)×(3%7) %7 = 3×P(1) % 7 입니다. 이 관계를 활용하면 P(n-1)에 3을 곱하고 %7 하면 바로 P(n)을 얻을 수 있으므로 각 P(n)을 얻는데 1번의 곱셈만 필요합니다. 단 초기값인 P(1)=3을 구할 때는 곱셈이 필요하지 않습니다. 따라서 s=1~N까지 N개의 3^s%7을 구하기 위해서는 N-1번의 곱셈이 필요하며 이는 N에 비례합니다.

정리하면 이번에도 DP를 사용하면 DP를 사용하지 않는 경우보다 더 빠르게 계산을 완료할 수 있음을 볼 수 있습니다.

※ 위 (2)의 예제에 사용된 아래 등식은 두 양의 정수 a와 b의 곱에 대해 일반적으로 성립하는 등식입니다. a=cp+q로 치환하고 b=cp'+q'로 치환하면 증명할 수 있습니다.

 $(a \times b) \% c = (a \% c) \times (b \% c) \% c$

※ 위 예에서는 (1) DP를 사용하지 않는 경우와 (2) DP를 사용한 경우에 대해 **곱셈** 연산의 수만을 비교하였고 mod 연산의 수는 비교하지 않았습니다. 곱셈 연산은 (1)과 (2)에서 수행하는 횟수가 다르므로 비교의 의미가 있지만 mod 연산은 (1)과 (2)에서 같은 횟수만큼 수행하므로(각 s 값에 대해 %7을 한 번씩 동일하게 수행) 비교하지 않았습니다.

[Q] s=1~N에 대해 P(s) = 5^s % 7를 계산해야 한다. P(1)과 P(2)를 구했다고 가정하자. P(3)을 구하는 방법 중 정확한 답을 내면서 가장 효율적인 방법은?

- 5 x P(2)
- (5 x P(2)) % 7
- 5³ % 7
- **■** 5³

Copyright © by Sihyung Lee - All rights reserved.

이 자료에서 [Q]로 제시된 문제는 학습 후 풀이하는 온라인 퀴즈에 그대로 나오니학습하면서 그때그때 문제를 미리 풀어 두세요.

온라인 퀴즈에서 보기의 순서는 바뀔 수 있으니 유의하세요. (예: 보기 1이 보기 2가 되고, 보기 2가 보기 1이 될 수도 있음)

이번에 볼 DP 문제는 '하노이의 탑' 문제입니다.

이 문제의 목표는 왼쪽의 막대 @에 있는 N개의 디스크를 오른쪽의 막대 ⓒ로 모두 옮기는 것입니다.

각 디스크는 크기가 서로 다른데, 이들을 옮기는 과정 중에는 다음 **규칙 ①~②를** 반드시 지켜야 합니다:

① 한 번에 한 디스크만 옮길 수 있으며 가운데의 막대 ⑤로 옮기는 것도 가능함 ② 작은 디스크는 큰 디스크 위에 올 수 있지만 큰 디스크는 작은 디스크 위에 올 수 없음

하노이의 탑 문제는 인도의 사원에서 N=64개의 디스크를 사용해 실제로 수행되고 있다고 하며, 이들을 모두 옮길 때 세상의 종말이 온다는 전설이 있습니다.

하노이의 탑 문제에 DP를 적용하게 위해 작은 문제(디스크 수 N 값이 작은 문제)와 큰 문제(N 값이 큰 문제) 간의 연관성을 찾아보겠습니다.

N=2인 간단한 경우(디스크가 2개인 경우)에서 분석을 시작해 보겠습니다. 큰 디스크(그림에서 붉은 색 디스크)가 최종적으로 막대 ⓒ 아래에 와야 하므로

- ① 먼저 작은 디스크(그림에서 푸른 색 디스크)를 가운데 막대 ⓑ로 옮기고
- ② 큰 디스크를 막대 ⓒ로 옮긴 후
- ③ 마지막으로 작은 디스크를 막대 ⑤에서 막대 ⓒ로 옮기면 됩니다.

여기서 중요한 부분은 '규칙에 따라 큰 디스크를 @에서 ⓒ로 옮기기 위해서 작은 디스크를 임시로 두기 위한 경유지가 필요'했으며, '가운데 막대 ⑤를 이러한 경유지로 활용'했다는 것입니다.

이제 N을 1 증가시킨 N=3인 경우(디스크가 3개인 경우)를 보겠습니다. 이 경우도 해법은 N=2인 경우와 유사합니다.

가장 큰 디스크가 최종적으로 막대 ② 아래에 와야 하므로

- ① 먼저 2개의 작은 디스크를 가운데 막대 ⓑ로 옮기고
- ② 가장 큰 디스크를 막대 ⓒ로 옮긴 후
- ③ 2개의 작은 디스크를 막대 ⑥에서 막대 ⓒ로 옮기며 가장 큰 디스크 위에 쌓으면 됩니다.

위의 단계 ①을 수행하기 위해서는 2개의 작은 디스크를 막대 @에서 ⑤로 옮겨야합니다. 이를 위해 N=2일 때의 해법 P(2)를 사용하되 막대 ⓒ를 경유지로 사용하면됩니다.

위의 단계 ③을 수행하기 위해서는 2개의 작은 디스크를 막대 ⑤에서 ⓒ로 옮겨야합니다. 이를 위해 N=2일 때의 해법 P(2)를 사용하되 막대 ④를 경유지로 사용하면됩니다.

정리하면 N=3인 경우의 해법 P(3)에서는 ① 먼저 P(2)를 사용하고, ② 가장 큰 디스크를 @에서 ⓒ로 옮긴 후, ③ P(2)를 한 번 더 사용하면 됩니다.

지금까지 본 해법을 임의의 N 값에 대해 일반화 해 보겠습니다.

가장 큰 디스크가 최종적으로 막대 ⓒ 아래에 와야 하므로

- ① 먼저 N-1개의 작은 디스크를 가운데 막대 (D)로 옮기는데, 이 때 N-1개 디스크에 대한 해법 (P)이는 활용하고
- ② 가장 큰 디스크를 막대 ⓒ로 옮긴 후
- ③ N-1개의 작은 디스크를 막대 ⑤에서 막대 ⓒ로 옮기기 위해 N-1개 디스크에 대한 해법 P(N-1)을 다시 활용합니다.

정리하면 작은 문제와 큰 문제 간의 연관성을 발견하고 이를 활용한다면 여러 다른 크기의 문제를 보다 간단하고 체계적으로 풀어낼 수 있습니다.

지금까지는 P(N)을 구하기 위해 직전 문제에 대한 해법 P(N-1)을 활용하는 예를 보았습니다.

하지만 DP를 적용할 때는 반드시 P(N-1)만을 활용해야 하는 것은 아니며, 필요에 따라 임의의 P(N-i), i>=1,도 활용 가능합니다. 즉 **직전 문제보다 더 이전 문제에 대한 해법을 활용해 P(N)을 구할 수도 있습니다**. 예를 들어 P(10)을 구하기 위해 P(8)이나 P(4) 등을 활용할 수도 있습니다.

또한 이에 더해서 반드시 "하나의" 이전 문제에 대한 해법 만을 활용해야 하는 것도 아닙니다. **둘 이상의 서로 다른 이전 문제에 대한 해법을 활용할 수도 있습니다**. 예를 들어 P(N-i)와 P(N-j), $i\neq j$,를 함께 활용해 P(N)을 구할 수도 있습니다.

이러한 경우의 예를 보겠습니다.

How many rabbit pairs do we have on month N(P(n))?

"A baby rabbit pair grows into adults in one month, then they give birth to a pair of (female and male) rabbits every month"

Month M	Adult Rabbit Pairs (Can produce babies)	Baby Rabbit Pairs	Total # of Pairs P(M)
0			1
1			1
2			2
3	4444		3
4			
5			

Copyright © by Sihyung Lee - All rights reserved.

생물학자들은 토끼 개체 수의 증가를 모델링 하기 위해 다음과 같은 가설을 세웠습니다:

- 막 태어난 아기 토끼는 1달 후에 성체가 되며
- 성체가 된 토끼 한 쌍은 매달 한 쌍의 아기 토끼를 낳는다(암수 각 하나씩).

위와 같은 가설에 따라 토끼 개체 수가 어떻게 증가하는지 보겠습니다. 처음(month #0)에는 위 표와 같이 막 태어난 한 쌍의 아기 토끼가 암수 각 하나씩 있다고 가정하겠습니다.

Month #0→1: 아기 토끼 한 쌍이 성체 한 쌍으로 자라납니다. 성체로 자라날 때 까지는 새로운 아기 토끼를 낳을 수 없으므로 month #1에는 아기 토끼가 없습니다.

Month #1→2: 성체가 된 토끼 한 쌍이 아기 토끼 한 쌍을 낳습니다. 따라서 month #2에는 성체 한 쌍 + 아기 한 쌍 = 총 두 쌍의 토끼가 존재합니다.

Month #2→3: 성체 토끼 한 쌍이 새로운 아기 토끼 한 쌍을 낳습니다. month #2에 새로 태어났던 아기 한 쌍은 month #3에 성체로 자라납니다. 따라서 month #3에는 성체 두 쌍 + 아기 한 쌍 = 총 세 쌍의 토끼가 존재합니다.

How many rabbit pairs do we have on month N(P(n))?

"A baby rabbit pair grows into adults in one month, then they give birth to a pair of (male and female) rabbits every month"

Month M	Adult Rabbit Pairs (Can produce babies)	Baby Rabbit Pairs	Total # of Pairs P(M)	
0			1	
1			1	
2	à à		2	
3	2000		3	
4			5	
5			8	

Copyright © by Sihyung Lee - All rights reserved.

Month #3→4: 성체 토끼 두 쌍이 각각 아기 토끼 한 쌍 씩 낳아 총 두 쌍의 아기 토끼가 새로 태어납니다. month #3에 새로 태어났던 아기 한 쌍은 month #4에 성체로 자라납니다. 따라서 month #4에는 성체 세 쌍 + 아기 두 쌍 = 총 다섯 쌍의 토끼가 존재합니다.

Month #4→5: 성체 토끼 세 쌍이 각각 아기 토끼 한 쌍 씩 낳아 총 세 쌍의 아기 토끼가 새로 태어납니다. month #4에 새로 태어났던 아기 두 쌍은 month #5에 성체로 자라납니다. 따라서 month #5에는 성체 5쌍 + 아기 3쌍 = 총 8쌍의 토끼가 존재합니다.

지금까지 본 예제에 따르면 P(M) (month M에 존재하는 총 토끼 쌍 수)과 이전문제에 대한 해 P(M-i)들 간에는 어떤 관계가 있을까요?

P(M)과 P(M-i) 간의 관계를 아래 ①~②와 같이 나누어 생각해 보겠습니다.

- ① month M에서 성체인 토끼 쌍의 수는 직전 달인 month M-1에서 성체인 토끼 쌍의 수 + 아기 토끼 쌍의 수입니다. 즉 month M에서 성체인 토끼 쌍의 수는 직전 달의 총 토끼 쌍 수인 P(M-1) 입니다. 직전 달 M-1에서 성체인 토끼는 이번 달 M에도 그대로 성체로 남아 있으며, 직전 달 M-1에서 아기인 토끼는 이번 달 M에 성체로 자라나기 때문입니다.
- ② month M에서 <u>아기인 토끼 쌍의 수</u>는 직전 달인 month M-1에서 성체였던 토끼 쌍의 수와 같습니다. 직전 달 M-1에서 성체였던 각 토끼 쌍이 이번 달 M이 되면서 아기 토끼 한 쌍 씩을 낳기 때문입니다. 직전 달 M-1에서 성체였던 토끼 쌍의 수는 ①에서 확인한 관계를 적용하면 그 전 달 M-2에서 총 토끼 쌍 수인 P(M-2) 입니다.
- 위 ①~②를 종합하면 month M에서 총 토끼 쌍 수 P(M) = ① + ② = P(M-1) + P(M-2)가 됩니다. 이 관계는 수학 교재에 종종 나오는 관계로 피보나치 수열(Fibonacci sequence)이라고 합니다. 피보나치 수열은 토끼 객체 수 뿐 아니라 다른 생물학적 현상을 모델링하는데도 사용 되고 있습니다.

[Q] 토끼 개체 수를 구하는 문제를 생각해 보자. 아래와 같은 숫자를 관찰했다면 month i+2에 _아기_ 토끼는 몇 쌍인가?

- P(i) = 4181
- P(i+1) = 6765
- P(i+2) = 10946
- P(i+3) = 17711

Copyright © by Sihyung Lee - All rights reserved.

이 자료에서 [Q]로 제시된 문제는 학습 후 풀이하는 온라인 퀴즈에 그대로 나오니학습하면서 그때그때 문제를 미리 풀어 두세요.

온라인 퀴즈에서 보기의 순서는 바뀔 수 있으니 유의하세요. (예: 보기 1이 보기 2가 되고, 보기 2가 보기 1이 될 수도 있음)

P(N)이 직전 해인 P(N-1) 뿐만 아니라 그 전의 해인 P(N-i), i>1도 활용하는 또다른 예를 보겠습니다.

1센트와 5센트 두 종류의 동전이 사용되고 있다고 가정하겠습니다. 물가가 상승하여 1센트로 구매할 수 있는 물건이 거의 없어지자 1센트 동전을 3센트 동전으로 대체하는 방안이 제안되었습니다. 즉 3센트와 5센트 두 종류의 동전을 사용하는 계획입니다.

이 계획을 실행하기에 앞서 먼저 **어떤 가격의 물건이라도 3센트와 5센트 두 종류의 동전을 조합**하면 거스름돈 없이 **구매할 수 있음을 확인**하고 싶습니다. 예를 들어 9센트의 물건은 3센트 동전 3개로 구매할 수 있으며 (3×3=9), 10센트의 물건은 5센트 동전 2개로 구매할 수 있습니다 (5×2=10).

하지만 모든 가격에 대해서 이와 같이 지불이 가능할까요? 예를 들어 101센트, 277센트, 599 센트 등도 3센트와 5센트 동전 만으로 정확히 지불 가능할까요?

앞 문제에 대한 답을 알아보기에 앞서 한 가지 가정을 하겠습니다. **모든 상품은 8센트 혹은 그보다 높은 가격**에 판매되며, 8센트보다 낮은 가격의 제품은 없다고 하겠습니다.

우리가 풀어야 할 문제를 다시 정리하면 다음과 같습니다:

P(N)과 P(N-i)간의 관계를 찾고, 이를 활용해 8센트 혹은 그보다 높은 모든 가격이 3센트와 5센트만으로 지불 가능함을 확인

P(N)은 N센트를 지불하기 위한 3센트와 5센트 동전의 조합입니다. 예를 들어 P(8)={3,5} 이며, 8센트는 3센트 동전 하나와 5센트 동전 하나로 지불할 수 있다는 뜻입니다. P(9)={3,3,3} 이며, 9센트는 3센트 동전 3개로 지불할 수 있다는 뜻입니다.

먼저 위 표에서 N=10~12에 대해 P(N)을 구해 보세요. P(10)~P(12)를 구하면서 P(N)과 이전 문제의 해 P(N-i)들 간의 관계에 대해서도 생각해 보세요.

이제 P(N)과 P(N-i), i>1, 간의 관계를 찾아 보겠습니다.

우리가 사용할 수 있는 동전은 3센트와 5센트 두 종류이므로, P(N)=P(N-3)+{3} 혹은 P(N)=P(N-5)+{5} 두 가지 방법 중 하나로 P(N)을 구할 수 있습니다. 예를 들어 P(13)은 P(10)+{3}={5,5}+{3}={3,5,5}로 구할 수 있으며 또는 P(8)+{5}={3,5}+{5} = {3,5,5}로도 구할 수 있습니다. 두 가지 중 어느 방법을 사용하더라도 결국 P(13)={3,5,5}를 얻을 수 있습니다.

이와 유사하게

P(15)에 대해서는 두 가지의 다른 해를 찾을 수 있는데, 이는 15센트를 두 가지의 서로 다른 동전의 조합 중 하나로 지불할 수 있다는 뜻입니다.

정리하면 P(N)=P(N-3)+{3} 과 P(N)=P(N-5)+{5}이라는 관계를 찾음으로써 임의의 N에 대해 P(N)을 보다 체계적으로 구할 수 있게 되었습니다. 또한 8센트 혹은 그보다 높은 모든 가격에 대해 3센트와 5센트의 조합으로 지불 가능함도 확인할 수 있게 되었습니다.

이번에는 P(N)과 P(N-1) 간의 관계를 찾아 보겠습니다. 즉 바로 직전 문제의 해만을 사용하여 P(N)을 구하는 방법을 생각해 보겠습니다. 이 방법은 P(N-3)이나 P(N-5)를 사용하는 방법보다는 조금 더 복잡합니다. 아래와 같이 ①~② 두 가지경우로 나누어 생각해 보겠습니다.

① P(N-1)이 5센트 동전을 하나 이상 포함하는 경우입니다. 이 경우에는 5센트 하나를 3센트 2개로 대체함으로써 P(N)을 구할 수 있습니다. 예를 들어 P(8)={3,5}은 5센트 동전 하나를 포함하며, 이를 3센트 2개로 대체함으로써 P(9)={3,3,3}를 구할 수 있습니다. 위 그림의 화살표 ①을 참조하세요. 마찬가지로 P(10)={5,5}는 5센트 동전 하나 이상을 포함하며, 이 중 하나를 3센트 2개로 대체함으로써 P(11)={3,3,5}을 구할 수 있습니다.

하지만 P(N-1)이 항상 5센트 동전을 포함하지는 않으며 이러한 경우는 ①의 방법을 적용할 수 없습니다. 예를 들어 P(9)= $\{3,3,3\}$ 에는 5센트 동전이 없으며, P(12)= $\{3,3,3,3\}$ 에도 5센트 동전은 없습니다. 이러한 경우 아래의 ②와 같이 P(N)을 구합니다.

② P(N-1)이 5센트 동전을 포함하지 않는 경우입니다. 즉 P(N-1)이 3센트 동전만으로 구성되어 있는 경우입니다. 이 경우는 반드시 3센트 동전이 3개 이상 있다고 볼 수 있습니다. 이에 해당하는 경우 중 N이 가장 작은 경우가 P(9)={3,3,3}이며, 다음으로 작은 경우가 P(12)={3,3,3,3}입니다. 따라서 이보다 큰 N에 대해서 5센트 동전을 볼 수 없다면 반드시 3센트 동전이 3개 이상 있다고 볼 수 있습니다.

②의 경우에는 **3센트 3개를 5센트 2개로 대체**함으로써 P(N)을 구할 수 있습니다. 예를 들어 P(9)={**3,3,3**}는 3센트 3개를 포함하며, 이들을 5센트 2개로 대체함으로써 P(10)={**5,5**}을 구할 수 있습니다. 마찬가지로 P(12)={3,**3,3,3**}는 3센트 4개를 포함하며 이 중 3개를 5센트 2개로 대체함으로써 P(13) = {3,**5,5**}을 구할 수 있습니다.

정리하면 P(N)은 직전 문제 P(N-1)과 관계가 있을 수도 있고 혹은 그 전의 문제와 관계가 있을 수도 있습니다. 어떤 관계를 사용하는 것이 더 간단한지는 문제에 따라 다릅니다. 따라서 늘 여러 가능한 경우를 고려해 보는 것이 좋습니다.

[Q] 3센트/5센트 동전 문제를 생각해 보자. P(8)은 {3,5} 한가지 조합으로만 표현될 수 있지만 P(15)는 {3,3,3,3,3}과 {5,5,5}의 서로 다른 두 가지 조합으로 표현될 수 있다. 아래중 서로 다른 두 가지 조합으로 표현될 수 있는 것은?

- P(14)
- P(16)
- P(17)
- P(18)

Copyright © by Sihyung Lee - All rights reserved.

이 자료에서 [Q]로 제시된 문제는 학습 후 풀이하는 온라인 퀴즈에 그대로 나오니학습하면서 그때그때 문제를 미리 풀어 두세요.

온라인 퀴즈에서 보기의 순서는 바뀔 수 있으니 유의하세요. (예: 보기 1이 보기 2가되고, 보기 2가 보기 1이 될 수도 있음)

[Q] Dynamic programming에 대한 설명으로 잘못된 것은?

- 이미 구한 작은 문제의 해를 활용해 더 큰 문제의 해를 효율적으로 구함
- DP를 적용하기 위해서는 서로 다른 크기의 문제들 간 관계를 잘 파악해야 함
- DP를 사용하면 DP를 사용하지 않는 경우에 비해 연산 횟수를 줄일 수 있음
- P(N)은 직전 문제의 해인 P(N-1)만을 활용할 수 있으며, 그 전 문제의 해인 P(N-i), i>1,은 활용할 수 없음

Copyright © by Sihyung Lee - All rights reserved.

이 자료에서 [Q]로 제시된 문제는 학습 후 풀이하는 온라인 퀴즈에 그대로 나오니학습하면서 그때그때 문제를 미리 풀어 두세요.

온라인 퀴즈에서 보기의 순서는 바뀔 수 있으니 유의하세요. (예: 보기 1이 보기 2가되고, 보기 2가 보기 1이 될 수도 있음)