EXERCICE 1 (4 points)

Cet exercice porte sur les structures de données (pile).

La notation polonaise inverse (NPI) permet d'écrire des expressions de calculs numériques sans utiliser de parenthèse. Cette manière de présenter les calculs a été utilisée dans des calculatrices de bureau dès la fin des années 1960. La NPI est une forme d'écriture d'expressions algébriques qui se distingue par la position relative que prennent les nombres et leurs opérations.

Par exemple:

Notation classique	Notation NPI
3+9	3 9 +
8×(3+5)	8 3 5 + ×
(17+5) ×4	17 5 + 4 ×

L'expression est lue et évaluée de la gauche vers la droite en mettant à jour une pile.

- Les nombres sont empilés dans l'ordre de la lecture.
- Dès la lecture d'un opérateur (+, -, ×, /), les deux nombres au sommet de la pile sont dépilés et remplacés par le résultat de l'opération effectuée avec ces deux nombres. Ce résultat est ensuite empilé au sommet de la pile.

A la fin de la lecture, la valeur au sommet est renvoyée.

Exemple : l'expression 7 3 25 + x qui correspond au calcul 7x (3+25) s'évalue à 196 comme le montrent les états successifs de la pile créée, nommée p :

- On empile la valeur 7.
- On empile la valeur 3.
- On empile la valeur 25.
- On remplace les deux nombres du sommet de la pile (25 et 3) par leur somme 28
- On remplace les deux nombres du sommet de la pile (28 et 7) par leur produit 196.

Schéma descriptif des différentes étapes d'exécution.

1. En vous inspirant de l'exemple ci-dessus, dessiner le schéma descriptif de ce que donne l'évaluation par la NPI de l'expression 12 4 5 × +.

22-NSIJ2LR1 Page 2 sur 13

2. On dispose de la pile suivante nommée p1 :

25
3
7
р1

On rappelle ci-dessous les primitives de la structure de pile (LIFO : Last In First out) :

Fonction	Description
<pre>pile_vide()</pre>	Créé et renvoie une nouvelle pile vide
empiler(p, e)	Place l'élément e au sommet de la pile p.
depiler(p)	Supprime et renvoie l'élément se trouvant au sommet de p.
est_vide(p)	Renvoie un booléen indiquant si p est vide ou non.

On dispose aussi de la fonction suivante, qui prend en paramètre une pile ${\tt p}$:

```
def top(p) :
    x = depiler(p)
    empiler(p, x)
    return x
```

On exécute la ligne suivante temp = top(p1):

- a. Quelle valeur contient la variable temp après cette exécution?
- **b.** Représenter la pile p1 après cette exécution.
- **3.** En utilisant uniquement les 4 primitives d'une pile, écrire en langage Python la fonction addition (p) qui prend en paramètre une pile p d'au moins deux éléments et qui remplace les deux nombres du sommet d'une pile p par leur somme. Remarque : cette fonction ne renvoie rien, mais la pile p est modifiée.
- **4.** On considère que l'on dispose également d'une fonction multiplication (p) qui remplace les deux nombres du sommet d'une pile p par leur produit (on ne demande pas d'écrire cette fonction). Recopier et compléter, en n'utilisant que les primitives d'une pile et les deux fonctions addition et multiplication, la suite d'instructions (ci-dessous) qui réalise le calcul (3+5)×7 dont l'écriture en NPI est : 35+7×

```
p=pile_vide()
empiler(p,3)
```

22-NSIJ2LR1 Page 3 sur 13