Folyadékok sűrűségének mérése

Kalló Bernát

A mérés dátuma: **2012. 04. 11.** Leadás dátuma: **2012. 04. 18.** Mérőtárs neve: **Magony Miklós**

Mérőpár száma: 1.

A mérés célja. Ha két különböző anyagú folyadékot összekeverünk, bizonyos esetekben a keverék térfogata (V) eltér a két anyag térfogatának összegétől $(V \neq V_1 + V_2)$. Ezt a jelenséget kontrakciónak vagy dilatációnak nevezzük aszerint, hogy nagyobb vagy kisebb a keverék térfogata. Ha egyenlőség áll fenn, a keveréket ideális elegynek tekintjük.

A víz és alkohol keverékében kontrakció lép fel, a kísérletünkben ennek mértékét vizsgáljuk. A kontrakció jellemzésére a $\Delta \varrho = \varrho - \varrho_{\rm id}$ mennyiséget használjuk, ahol ϱ a keverék, $\varrho_{\rm id}$ pedig az ideális elegy sűrűsége. A keverékeket az

$$x = \frac{V_{\rm a}}{V_{\rm a} + V_{\rm v}}$$

névleges térfogati hányaddal jellemezzük, ebből az ideális keverék térfogata

$$\rho_{\rm id} = \rho_{\rm a} x + \rho_{\rm v} (1-x).$$

A mérés leírása. Kétféle módszerrel mérjük az elegyek sűrűségét. Először egy U alakú csősegítségével meghatározzuk az egyes elegyek sűrűségének arányát a vízéhez képest. Az U alakú csőkét végét vízbe ill. a mérendő keverékbe merítjük, és a közepén lévő csapon keresztül felszívunk valamennyi folyadékot mindkettőből. A két folyadékoszlop egyensúlyt tart a külső és a belső légnyomás között, ezért

$$\varrho_{\mathbf{v}}gh_{\mathbf{v}} = \varrho gh$$

$$\frac{\varrho}{\varrho_{\mathbf{v}}} = \frac{h_{\mathbf{v}}}{h}$$

A másik módszer a Mohr–Westphal mérleggel történik. A mérleghez tartozó üveg nehezékkel kiegyensúlyozzuk a mérleget, majd a nehezéket a vizsgált folyadékba merítjük. Ekkor a mérlegkarra még a nehezékre ható felhajtóerő forgatónyomatéka is fog hatni, ezt ki kell egyensúlyozzuk a mérlegkarra akasztott súlyokkal, az ún. lovasokkal. A lovasok helyzete megadja helyiértékenként a folyadék sűrűségét.

A mért adatok. A mért adatokat az alábbi két táblázat tartalmazza. A Mohr–Westphal mérleggel megmért víz sűrűségét használtuk fel, hogy az U alakú csővel mért arányokból konkrét értékeket kapjunk.

$V_{\rm a}:V_{ m v}$	$\varrho_{ m MW} \left({\it kg/m^3} ight)$
0:1	1000
1:4	982
2:3	963
1:1	942
3:2	922
4:1	873
1:0	825

1. táblázat. A Mohr-Westphal mérleggel végzett mérés

$V_{\rm a}:V_{ m v}$	$h_{\mathrm{v}}\left(\mathrm{m}\right)$	$h\left(\mathbf{m}\right)$	$arrho_{ m U}$ ($kg/{ m m}^3$)
0:1	_		1000
1:4	0.469	0.479	979.1
2:3	0.467	0.484	964.9
1:1	0.467	0.496	941.5
3:2	0.468	0.504	928.6
4:1	0.470	0.544	864.0
1:0	0.473	0.576	821.2

2. táblázat. Az U alakú csővel végzett mérés

Kiértékelés. Az alkohol sűrűsége $\varrho_{\rm MW}=825$ ill. $\varrho_{\rm U}=821.2$ kg/m³ lett. A $\varrho_{\rm id}(x)$ függvény

$$\varrho_{\rm id} = \varrho_{\rm a} x + \varrho_{\rm v} (1 - x)$$

alapján

$$\varrho_{\text{id MW}}(x) = 825x + 1000(1-x) = 1000 - 175x$$

ill.

$$\varrho_{\text{id U}}(x) = 821.2x + 1000(1-x) = 1000 - 179x$$

Ábrázoltuk a két mérés alapján kiszámolt $\Delta\varrho$ értékeket a következő grafikonon. A két méréshez a nekik megfelelő mérésből számított alkoholsűrűséget használtuk fel.

1. ábra. A kontrakció mértéke

$V_{\rm a}:V_{ m v}$	$\Delta arrho_{ m U} \left({}^{kg}\!\!\left/ { m m}^3 ight)$	$\sigma_{ m U}$	$\Delta \varrho_{ m MW} \left({ m kg/m^3} ight)$	$\sigma_{ m MW}$
0:1	0	0%	0	0%
1:4	15	1.5%	17	1.8%
2:3	36	3.9%	33	3.5%
1:1	31	3.4%	30	3.2%
3:2	36	4.0%	27	3.0%
4:1	7	0.8%	13	1.5%
1:0	0	0%	0	0%

3. táblázat. Eredménytáblázat

Diszkusszió. Az eredménytáblázatban σ -val jelöltük a kontrakciós együtthatót. Azt kaptuk, hogy maximum 36 kg/m³ eltérés volt az ideális oldattól (a 2:3 és a 3:2 esetben), ez 4.0%-os kontrakciós együtthatót jelent. Az irodalmi érték az 1:1 térfogatarányú keverékre 4%, tehát a 2:3 és 3:2 esetben jól mértünk. Az 1:1 arányú keveréknél viszont ennél kevesebbet mértünk, holott az irodalom szerint a kontrakció grafikonja egy konvex görbe kellene legyen. Úgyhogy lehet, hogy ennél a lépésnél mindkét mérésnél tévedtünk, vagy valószínűbb, hogy az 1:1 oldat nem volt pontos.

A jelenség magyarázata. Az etanolban és a hidrogénben is hasonló molekulák közötti hidrogénkötések lépnek fel, ezért a keverékükben is jól ki tudnak alakulni a hidrogénkötések a víz- és etanolmolekulák között is, tehát nagyjából ugyanolyanok lesznek a molekulák közötti kötéstávolságok. A

víz- és etanolmolekulák különböző méretűek, ezért el tudnak úgy rendeződni, hogy jobban kitöltik a teret, mint az egyes anyagok külön-külön. Ezt úgy lehetne modellezni, mintha kosárlabdákkal és teniszlabdákkal szeretnénk kitölteni a teret: a különböző méretek miatt nagyobb arányú kitöltést lehet elérni, mint azonos méretű gömbökkel. Ezért csökken tehát a keverék térfogata és lesz nagyobb a sűrűsége.