1. Na trkalniku LHC s trki protonov nastajajo bozoni Z z maso 91 GeV, ki razpadejo v $Z \to \tau^+\tau^-$, kjer sta $m_\tau c^2 = 1,8$ GeV in lastni razpadni čas $\tau_\tau = 3 \times 10^{-13}$ s. Kolikšni sta energija in gibalna količina delcev τ v GeV pri dogodkih, kjer bozon Z miruje v laboratorijskem sistemu? Izvrednoti faktor γ in določi hitrost delcev τ . Izračunaj povprečno prosto pot, ki jo opravijo v detektorju.

Rešitev: Pri dvodelčnem razpadu $Z \to \tau^+ \tau^-$ sledi iz ohranitve gibalne količine

$$(M_Z,0)=(2E,p-p)$$
, [1/4 točke]
$$E=\frac{M_Z}{2}=45.5~{\rm GeV}$$
, [1/8 točke]
$$cp=\sqrt{E^2-m^2}\simeq 45.5~{\rm GeV}$$
.[1/8 točke]

Z energijo in gibalno količino dobimo faktorja γ in hitrost $v=\beta c$, kjer sta

$$\gamma = \frac{E}{m} = \frac{M_Z}{2m} = \frac{90 \text{ GeV}}{2 \times 1.8 \text{ GeV}} = 25.3, [1/8 \text{ točke}]$$
$$\beta = \sqrt{1 - \frac{1}{\gamma^2}} \simeq 1 - \frac{1}{2\gamma^2} = 0.9992.[1/8 \text{ točke}]$$

Povprečna prosta pot je enaka produktu hitrosti in podaljšanega razpadnega časa

$$l = \beta c \gamma \tau_{\tau} \simeq 1 \times 3 \times 10^8 \frac{\text{m}}{\text{s}} \times 25 \times 10^{-12} \text{ s} = 0.2 \text{ cm}. [1/4 \text{ točke}]$$

2. Zanima nas produkt nedoločenosti $\delta p \delta r$ za elektron v atomu vodika v vzbujenem stanju n=3 in l=1. Izračunaj $\langle r^n \rangle$ za poljuben $n \in \mathbb{Z}$ in ga uporabi za δr ter $\langle V \rangle$. $\langle p^2 \rangle$ lahko dobiš z direktnim računom ali z virialnim teoremom preko $\langle T \rangle$. Velja:

$$\psi_{310} = \frac{1}{81} \sqrt{\frac{2}{\pi r_B^7} r^2 \left(6\frac{r_B}{r} - 1\right) \cos\theta \exp\left(-\frac{r}{3r_B}\right)}, \qquad r_B = \frac{\hbar c}{\alpha m_e c^2}.$$

Razloži, zakaj vrednost m_l ni pomembna za zgornji izračun.

Rešitev: Najprej izračunamo $\langle r^n \rangle$ po definiciji

$$\langle r^n \rangle = \int dV \, \psi_{nlm}^* r^n \psi_{nlm} \,,$$

od koder je jasno, da m_l ne vpliva ne rezultat, ker v valovno funkcijo vstopi s faktorjem $e^{im_l\phi}$ in se pokrajša s kompleksno konjugacijo. Sedaj izračunamo

$$\langle r^n \rangle = 2\pi \frac{1}{81^2} \frac{2}{\pi r_B^7} \underbrace{\int_{-1}^1 d\cos\theta \, \cos^2\theta}_{=2/3} \int_0^\infty dr \, r^2 \, r^n \, r^4 \left(6 \frac{r_B}{r} - 1 \right)^2 \exp\left(-\frac{2r}{3r_B} \right)$$

$$= \frac{3^{n-2}}{2^{n+4}} r_B^n \int_0^\infty dt \, t^{n+6} \left(\frac{4}{t} - 1 \right)^2 e^{-t} \, ,$$

kjer smo trivialno integrirali po ϕ , izvedli integral po d $\cos \theta$ in uvedli novo spremenljivko za eksponent $t = 2r/(3r_B)$. V preostalem delu uporabimo definicijo gamma funkcije za cela števila

$$\langle r^n \rangle = \frac{3^{n-2}}{2^{n+4}} r_B^n(n+4)! \left(16 - 8(n+5) + (n+5)(n+6) \right)$$
$$= \frac{3^{n-2}}{2^{n+4}} \left(n^2 + 3n + 6 \right) (n+4)! r_B^n, [1/4 \text{ točke}]$$

Ta splošni izraz lahko izvrednotimo za n = 1, 2 in n = -1, da dobimo

$$\langle r \rangle = \frac{25}{2} \, r_B \,, \\ [1/8 \text{ točke}] \qquad \qquad \langle r^2 \rangle = 180 \, r_B^2 \,, \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,. \\ [1/8 \text{ točke}] \qquad \langle V \rangle = -\alpha \hbar c \, \left\langle \frac{1}{r} \right\rangle = -\frac{\alpha \hbar c}{9 r_B} \,.$$

Z uporabo virialnega teorema dobimo

$$\begin{split} \langle T \rangle &= -\frac{1}{2} \langle V \rangle = \frac{\langle p^2 \rangle}{2m} = -\frac{\alpha \hbar c}{18 r_B} \,, \\ \langle p^2 \rangle &= \frac{\hbar^2}{9 \, r_B^2} \,, \\ [1/8 \text{ točke}] & \delta p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \frac{\hbar}{\sqrt{9} \, r_B} \,, \end{split}$$

in končno produkt nedoločenosti

$$\delta r \delta p = \frac{\sqrt{95}}{3} \frac{\hbar}{2} . [1/8 \text{ točke}]$$

3. Milijon elektronov postavimo v harmonični potencial $kx^2/2$ tako, da je ob času t=0 celoten vzorec v vzbujenem stanju z lastno energijo pri n=3. Po času $t=0,36\,\mu\mathrm{s}$ izmerimo 700.000 elektronov v stanju z n=3. Določi k ob predpostavki, da so se prehodi zgodili zaradi električnega dipolnega sevanja. Kolikšna je valovna dolžina izsevanih fotonov? Velja:

$$\langle i|x|j\rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{j+1}\delta_{ij+1} + \sqrt{j}\delta_{ij-1}\right), \qquad \omega^2 = \frac{k}{m}.$$

 $Re\check{s}itev$: Število elektronov v stanju z n=3 v odvisnosti od časa je podana z eksponentno odvisnostjo. Iz vhodnih podatkov lahko določimo razpadni čas

$$N(t) = N_0 e^{-t/\tau}$$
, $\tau = \frac{t}{\ln(N_0/N(t))} = \frac{0.36 \,\mu\text{s}}{\ln(1/0.7)} = 1.01 \,\mu\text{s} \cdot [1/8 \text{ točke}]$

Razpadni čas pri dipolnih sevalnih prehodih za harmonski oscilator je enak

$$\tau^{-1} = \frac{3\alpha}{3\hbar} E_{12}^3 \left(\frac{x_{12}}{\hbar c}\right)^2, \quad E_{12} = \hbar\omega(3-2) = \hbar\omega, \\ [1/8 \text{ točke}]$$

$$\tau = \frac{(mc^2)^2}{2\alpha \, \hbar c \, kc}$$

$$k = \frac{(mc^2)^2}{2\alpha \, \hbar c \, \tau c} = 0, \\ 3\frac{\text{eV}}{\text{nm}^2}, \\ [1/4 \text{ točke}]$$

kjer smo uporabili $\omega^2 = k/m$ ter splošen izraz za matrični element

$$x_{12} = \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n+1} \delta_{m\,n+1} + \sqrt{n} \delta_{m\,n-1} \right) \xrightarrow[m=3]{n=2} \sqrt{\frac{3\hbar}{2m\omega}} \cdot [1/8 \text{ točke}]$$

Valovna dolžina izsevanega fotona je

$$\lambda = \frac{hc}{E_{\gamma}} = \frac{hc}{\hbar\omega(3-2)} = 2\pi\sqrt{\frac{mc^2}{k}} = 8.3\,\mu\text{m.} [1/4\text{ točke}]$$

4. Poglejmo si razcep energijskih nivojev zaradi sklopitve spin-tir za nekaj vrednosti spina s=1/2 ali s=1 ter orbitalne vrtilne količine l=1 ali l=2, torej štiri možne kombinacije (l,s). Za vsak par (l,s) določi j_{\min} , j_{\max} ter dovoljene j. Izračunaj število stanj (degeneracijo) n_j in skalarni produkt $\langle ls \rangle$ za vse vrednosti j pri posamezni kombinaciji (l,s). Pokaži, da je za vsak par (l,s) povprečni popravek k energiji, izpovprečen po vseh vrednostih j in utežen s številom stanj, enak nič:

$$\langle \Delta E_{ls} \rangle = \frac{\sum_{j} n_{j} \Delta E_{ls}(j)}{\sum_{j} n_{j}} = 0, \qquad \forall (l, s).$$

 $Re\check{s}itev$: Za vsak par vrednosti (l,s) velja $j_{\min}=|l-s|,\,j_{\max}=l+s,$ možne vrednosti za j gredo on j_{\min} do j_{\max} v korakih po 1, medtem ko je degeneracija za vsako vejo enaka $n_j=2j+1$. Splošna formula za povprečni skalarni produkt je

$$\langle ls \rangle = \frac{\hbar^2}{2} (j(j+1) - l(l+1) - s(s+1)) .$$

Za vsako od štirih možnih kombinacij določimo $j_{\min,\max} = |l - s|, l + s$, vse možne vrednosti j, število stanj n_j ter skalarni produkt $\langle ls \rangle$:

	s = 1/2, l = 1	s = 1/2, l = 2	s = 1, l = 1	s = 1, l = 2
$j_{ m min}$	1/2	3/2	0	1 [1/8 točke]
$j_{ m max}$	3/2	5/2	2	3 [1/8 točke]
j	$\{1/2, 3/2\}$	${3/2,5/2}$	$\{0, 1, 2\}$	$\{1, 2, 3\}$ [1/8 točke]
$n_j = 2j + 1$	$\{2,4\}$	$\{4, 6\}$	$\{1, 3, 5\}$	${3,5,7}$ [1/8 točke]
$\langle ls \rangle / \hbar^2$	$\{-1, 1/2\}$	$\{-3/2,1\}$	$\{-2, -1, 1\}$	$\{-3, -1, 2\}$ [1/4 točke]

Za povprečni popravek k energiji, utežen s številom stanj na posamezni veji za nek j velja

$$\langle \Delta E_{ls} \rangle \propto \frac{\sum_{j} n_{j} \langle ls \rangle}{\sum_{j} n_{j}} \stackrel{?}{=} 0 \,,$$

ker je proporcionalna konstanta pri $\Delta E_{ls}(j)$, ki pomnoži $\langle ls \rangle$ in vključuje $\langle r^{-3} \rangle$, neodvisna od j, medtem ko držimo (l,s) konstantni. Ko izvrednotimo popravke za vrednosti v zgornji tabeli, dobimo da je povprečje nič. [1/4 točke]

	s = 1/2, l = 1	s = 1/2, l = 2	
$\sum_{j} n_{j} \langle ls \rangle$	$2 \times (-1) + 4 \times 1/2 = 0$	$4 \times (-3/2) + 6 \times 1 = 0$	
	s = 1, l = 1	s = 1, l = 2	
$\sum_{j} n_{j} \langle ls \rangle$	$1 \times (-2) + 3 \times (-1) + 5 \times 1 = 0$	$3 \times (-3) + 5 \times (-1) + 7 \times 2 = 0$	

Ta rezultat velja v splošnem.