## Gestion de Portefeuille

TP-4: Impact de la matrice de covariance dans le modèle MV

#### Patrick Hénaff

#### Février-Mars 2021

## Données

On utilise la base de données "MultiAsset" du paquet FRAPO:

```
library(FRAPO)
data(MultiAsset)
R <- returnseries(MultiAsset, percentage=F, trim=T)</pre>
```

Quelques statistiques descriptives sont résumées ci-dessous:

Table 1: Summary Statistics

|                      | mean       | std dev   | skewness   | kurtosis   |
|----------------------|------------|-----------|------------|------------|
| GSPC                 | 0.0007196  | 0.0483492 | -0.8809988 | 1.7602430  |
| RUA                  | 0.0011323  | 0.0503202 | -0.8975063 | 1.8397675  |
| GDAXI                | 0.0046327  | 0.0597951 | -0.9841812 | 1.9749395  |
| FTSE                 | 0.0018748  | 0.0437702 | -0.6912771 | 0.4962667  |
| N225                 | -0.0030518 | 0.0623081 | -1.0447685 | 2.8567460  |
| EEM                  | 0.0085561  | 0.0807882 | -0.7309404 | 1.2765558  |
| DJCBTI               | 0.0037850  | 0.0167642 | 0.7542986  | 2.7505223  |
| GREXP                | 0.0037178  | 0.0101831 | 0.1244254  | -0.4231236 |
| BG05.L               | 0.0013854  | 0.0151824 | 0.2047405  | 1.1789559  |
| $\operatorname{GLD}$ | 0.0158004  | 0.0547407 | -0.4762910 | 0.7606515  |

#### Etude de la matrice de covariance

On se propose d'étudier la matrice de covariance à l'aide de la formule de Stevens pour la matrice d'information  $\mathcal{I} = \Sigma^{-1}$ .

• Pour chaque actif, estimer le modèle

$$R_{i,t} = \beta_0 + \beta_i^T R_t^{(-i)} + \epsilon_{i,t}$$

avec  $R_t^{(-i)}$  vecteur de rendement de tous les actifs sauf l'actif  $i, \, \epsilon_{i,t} \sim \mathcal{N}(0, s_i^2)$ 

```
##
                      GSPC
                                      RUA
                                                                 FTSE
                                                                               N225
                                                 GDAXI
## Intercept -0.0003723292
                             0.0003145585
                                           0.007554474 -5.117019e-06 -0.006116991
                             0.9944359962 -0.489100528
  GSPC
              0.000000000
                                                         6.433106e-01 -2.277604558
## RUA
                             0.000000000
                                           0.902956260
                                                       -3.099280e-01
                                                                       2.376140673
              0.9786625921
##
  GDAXI
             -0.0071170223
                             0.0133509066
                                           0.00000000
                                                         2.084721e-01
                                                                       0.290168646
## FTSE
              0.0188581255 -0.0092317173
                                           0.419977032
                                                         0.000000e+00
                                                                       0.325262898
## N225
             -0.0144138055
                             0.0152797528
                                           0.126197462
                                                         7.021939e-02
                                                                       0.00000000
## EEM
             -0.0080378664
                             0.0141739831
                                           0.080295840
                                                         1.474742e-01
                                                                       0.110950338
## DJCBTI
              0.0616101124 - 0.0527297391 - 0.242018201 - 5.937445e - 02 - 0.156916259
  GREXP
             -0.0353573242
                             0.0304397687 -0.647076213
                                                         1.739383e-01 -0.143153045
## BG05.L
             -0.0053052277 -0.0038080739
                                           0.512956121
                                                         1.156949e-01
                                                                       0.114462375
                                                       -5.237503e-02
##
  GLD
             -0.0055844066
                             0.0047264909
                                          -0.131036034
                                                                       0.004920328
##
                      EEM
                                  DJCBTI
                                                GREXP
                                                             BG05.L
                                                                              GLD
              0.001031376
                                          0.002767243 -0.002184974
  Intercept
                            0.0006139235
                                                                     0.008845179
  GSPC
##
             -0.927867482
                            0.6719678083 -0.181516577 -0.062625394 -1.112069220
## RUA
              1.610249722 -0.5659893271
                                          0.153792233 -0.044239271
                                                                     0.926295957
## GDAXI
              0.134877160 -0.0384100340 -0.048338429
                                                        0.088110337 -0.379704480
  FTSE
              0.499044061 -0.0189833929
                                          0.026176406
                                                        0.040034875 -0.305743214
## N225
              0.081053940 -0.0108309050 -0.004650909
                                                        0.008550855
                                                                     0.006200821
## EEM
              0.000000000 -0.0290964290 -0.001658718
                                                        0.007940600
                                                                     0.682663686
##
  DJCBTI
             -0.307955804
                           0.000000000
                                          0.253450624
                                                        0.542474249
                                                                     1.226678966
  GREXP
                                          0.00000000
                                                        0.377600655 -0.257582799
             -0.037297589
                            0.5384593558
## BG05.L
              0.077651889
                            0.5012208699
                                          0.164218921
                                                        0.00000000 -0.338107962
## GLD
              0.395728368
                           0.0671850430 -0.006640472 -0.020042277 -0.338107962
```

• Trier les modèles par  $R_i^2$  décroissant. En déduire les actifs qui sont susceptibles de recevoir un poids important dans le portefeuille optimal MV.

Table 2: Asset sorted by variance of their modelisation in decreasing order

|        | Résidual variance | Variance  |
|--------|-------------------|-----------|
| GLD    | 0.0018018         | 0.0597104 |
| N225   | 0.0014297         | 0.0059093 |
| EEM    | 0.0010445         | 0.0023558 |
| GDAXI  | 0.0006218         | 0.0103910 |
| FTSE   | 0.0003087         | 0.0018289 |
| BG05.L | 0.0001068         | 0.0001406 |
| DJCBTI | 0.0000987         | 0.0001465 |
| GREXP  | 0.0000465         | 0.0004547 |
| RUA    | 0.0000092         | 0.0024898 |
| GSPC   | 0.0000090         | 0.0024083 |

Les poids des actifs étant inversement proportionnels à la variance de leur modélisation (mieux un actif est modélisé plus on lui donne un fort poids dans notre portefeuille). Ainsi, le modèle MV donnera des poids de plus en plus fort à mesure que l'on descend dans le tableau.

• Calculer les poids optimaux du modèle MV, et comparer avec les résultats des régressions.

On considère que le risk free rate vaut 3%.

# Frontière de marché (selon contraintes)



Table 3: Composition du portefeuille optimal selon modèle MV

|                      | Proportion (%) |
|----------------------|----------------|
| GSPC                 | -336.05        |
| RUA                  | 264.52         |
| GDAXI                | 75.46          |
| FTSE                 | -3.84          |
| N225                 | -35.99         |
| EEM                  | 16.48          |
| DJCBTI               | 67.16          |
| GREXP                | 182.74         |
| BG05.L               | -160.93        |
| $\operatorname{GLD}$ | 30.44          |

### Interpretation

Pour les trois plus gros poids en valeurs absolues, on retrouve bien les actifs aillant les variances résiduelles les plus faible. En revanche, l'ordre est chamboulé pour le reste des actifs car les poids ne sont pas calculé qu'à partir de cette variance résiduelle. Ainsi, d'autres facteurs deviennent prépondérants.

#### Lien avec l'ACP

• Effectuer une ACP de la matrice de covariance des rendements.



Table 4: Composition of PCs

| Tickers              | PC1    | PC2    | PC3    | PC4    | PC5    | PC6    | PC7    | PC8    | PC9    | PC10   |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| GSPC                 | -33.74 | -4.03  | -10.63 | 29.08  | -19.91 | 23.75  | 38.92  | -4.99  | -40.13 | 61.45  |
| RUA                  | -33.76 | -4.32  | -10.62 | 26.42  | -19.25 | 21.79  | 37.75  | -2.64  | 71.53  | -25.23 |
| GDAXI                | -33.64 | 7.12   | -22.21 | 3.37   | 45.54  | 20.08  | -45.31 | 48.00  | 22.77  | 31.01  |
| FTSE                 | -33.79 | 0.11   | -19.78 | 12.00  | -2.86  | -17.36 | -47.70 | -75.31 | 5.71   | 5.96   |
| N225                 | -32.92 | 0.99   | 0.21   | -85.06 | -36.73 | 13.84  | -1.27  | 1.42   | 6.08   | 9.91   |
| EEM                  | -32.68 | -22.08 | -32.63 | 13.80  | -33.69 | -55.15 | -8.08  | 40.56  | -23.01 | -27.79 |
| DJCBTI               | 33.01  | -18.48 | -17.26 | 18.51  | -53.40 | 54.23  | -44.44 | 9.40   | -4.55  | -7.16  |
| GREXP                | 33.84  | -2.87  | 5.23   | 3.09   | -30.36 | -45.51 | -6.20  | 7.74   | 45.89  | 60.11  |
| BG05.L               | 32.42  | 8.53   | -86.57 | -19.63 | 15.86  | 0.57   | 24.80  | -11.09 | 1.51   | 1.98   |
| $\operatorname{GLD}$ | 3.13   | -94.89 | 2.27   | -11.74 | 25.34  | 3.33   | 6.11   | -8.64  | 5.21   | 7.19   |

Table 5: Contribution and return by PC

|                            | PC1      | PC2      | PC3     | PC4      | PC5      | PC6      | PC7     | PC8     | PC      |
|----------------------------|----------|----------|---------|----------|----------|----------|---------|---------|---------|
| contribution au risque (%) | 86.76854 | 10.98363 | 1.01477 | 0.77584  | 0.21869  | 0.13354  | 0.05658 | 0.04840 | 0.00002 |
| rendement $(\%)$           | 0.11790  | 1.33505  | 0.29659 | -3.30179 | -0.09190 | -1.64836 | 0.77994 | 7.39759 | 0.20955 |

• Identifier un vecteur propre qui est un facteur d'arbitrage caractérisé

Les vecteurs 7 et 8 se compense quasiment en terme de risque. Ainsi, si l'on compose un portefeuille comprenant  $1 \times PC8 + (-1) \times PC7$  on aurait un risque quasiment nul mais une espérence de rendement d'environs 6.3%. Un bel arbitrage donc...

• Faire le lien entre cette observation et les poids optimaux du modèle MV.

| ## |        | Compositions |
|----|--------|--------------|
| ## | GSPC   | -43.901403   |
| ## | RUA    | -40.392450   |
| ## | GDAXI  | 93.305674    |
| ## | FTSE   | -27.610047   |
| ## | N225   | 2.686927     |
| ## | EEM    | 48.647202    |
| ## | DJCBTI | 53.840503    |
| ## | GREXP  | 13.939992    |
| ## | BG05.L | -35.891673   |
| ## | GLD    | -14.756288   |