0.1 Checking for Multicollinearity

Before including all environmental factors in your analysis, you should check if two or even more variables are exact or highly correlated. We did

```
plotltr(xmpl.ltr, "dt/3600/3")
```

To cut our data at our desired interval, we need a function which defines "dt". Because we want to keep relocations which are only a few minutes "wrong", we added 10 extra minutes.

```
foo = function(dt) {return(dt> (3800*3))}
```

Then we split the object of class ltraj into smaller bursts using cutltraj and the function above. The bursts we had before applying this function still remain.

```
xmpl.cut <- cutltraj(xmpl.ltr, "foo(dt)", nextr = TRUE)</pre>
```

0.2 Testing for Autocorrelation

To understand the movement patterns of an animal, is it essential to check the parameters stored in the trajectory (dist, dx, dy, angle) for autocorrelation. A positive autocorrelation means, that values closer to each other tend to be more similar.

0.2.1 Linear Parameters

To test the three linear parameters (dist, dx, dy), the independence test of Wald and Wolfowitz (1994) can be used. It tests the sequential autocorrelation in a vector. It can be implemented as wawotest.ltraj for each burst in a ltraj object. This function removes all NAs before running the test. [?]

wawotest(xmpl.) ???? insert the right data!

To identify at which scales autocorrelation occurs, an autocorrelation function (ACF) can be used.