The *trace* of a square matrix is defined to be the sum of its diagonal entries. For example,

trace
$$\begin{pmatrix} 1 & 3 & -1 \\ 2 & 4 & 1 \\ 1 & -2 & 0 \end{pmatrix} = 5.$$

1. True or False?

The function trace : $\mathcal{M}_{3\times3} \to \mathbb{R}$ is linear.

The *trace* of a square matrix is defined to be the sum of its diagonal entries. For example,

trace
$$\begin{pmatrix} 1 & 3 & -1 \\ 2 & 4 & 1 \\ 1 & -2 & 0 \end{pmatrix} = 5.$$

True or False?

The function trace : $\mathcal{M}_{3\times3} \to \mathbb{R}$ is linear.

Follow-up. What is the dimension of the null space of this linear map?

Consider the map $d/dx: \mathcal{P}_3 \to \mathcal{P}_3$, and let A be the matrix representation of this linear map with respect to the standard basis $\langle 1, x, x^2, x^3 \rangle$ of \mathcal{P}_3 . Then $A^4 = 0$.

Let B denote the standard basis of \mathbb{R}^2 , $\pi_x: \mathbb{R}^2 \to \mathbb{R}^2$ is projection onto the x-axis and $\pi_y: \mathbb{R}^2 \to \mathbb{R}^2$ is projection onto the y-axis. Then

$$\mathsf{Rep}_{B,B}(\pi_x)\,\mathsf{Rep}_{B,B}(\pi_y)=0.$$

The only 2×2 matrices A such that $A^2 = I$ are the following:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

The matrix

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

has no left inverse.