In [1]:

Air Quality Index In India

This is the project on AQI in India of last few year(2015-2020). The dataset consists of AQIs of some of the cities. I got this dataset for this project from Kaggle[https://www.kaggle.com/rohanrao/air-quality-data-in-india] (https://www.kaggle.com/rohanrao/air-quality-data-in-india%5D) and was recommended by jovian itself in thier forum. I tried to extract a lot of information from the datset using Pandas, matplotlib, seaborn etc; about the deviation of AQI in some years, how it was deviating in various months, how it is different in various Cities, which city got the highest AQI during these years, etc

I really want to thank <u>Data Analysis with Python: Zero to Pandas (zerotopandas.com)</u> which helped me in learning a lot aboout Data Analysis, I have learned various operations which can be done by importing various modules and libraries so that information can be easily extraxted out of the dataset.

Downloading the Dataset

I have downloaded the dataset from the Kaggle(https://www.kaggle.com/rohanrao/air-quality-data-in-india) regarding the AQI index in some cities in India. It is the CSV file.

```
!pip install jovian opendatasets --upgrade --quiet
Let's begin by downloading the data, and listing the files within the dataset.
In [2]:
                                                                                          H
   dataset_url = 'https://www.kaggle.com/rohanrao/air-quality-data-in-india'
In [4]:
                                                                                          H
    import opendatasets as od
   od.download(dataset url)
Please provide your Kaggle credentials to download this dataset. Learn more:
http://bit.ly/kaggle-creds (http://bit.ly/kaggle-creds)
Your Kaggle username: vedangisharma
Your Kaggle Key: ······
  8%
                6.00M/72.9M [00:00<00:01, 61.3MB/s]
Downloading air-quality-data-in-india.zip to ./air-quality-data-in-india
     72.9M/72.9M [00:01<00:00, 64.8MB/s]
```

The dataset has been downloaded and extracted.

H

In [5]:

```
1 data_dir = './air-quality-data-in-india'
In [6]:
                                                                                            H
   import os
 1
    os.listdir(data_dir)
Out[6]:
['city_hour.csv',
 'city_day.csv',
 'station_day.csv',
 'stations.csv',
 'station_hour.csv']
Let us save and upload our work to Jovian before continuing.
In [7]:
                                                                                            M
   project_name = "aqi-in-india"
In [8]:
                                                                                            M
   !pip install jovian --upgrade -q
In [9]:
    import jovian
In [10]:
                                                                                            И
   jovian.commit(project=project_name)
<IPython.core.display.Javascript object>
[jovian] Attempting to save notebook..
[jovian] Updating notebook "vedangi001/aqi-in-india" on https://jovian.ai (h
ttps://jovian.ai)
[jovian] Uploading notebook..
[jovian] Committed successfully! https://jovian.ai/vedangi001/aqi-in-india
 (https://jovian.ai/vedangi001/aqi-in-india)
Out[10]:
'https://jovian.ai/vedangi001/aqi-in-india'
```

Data Preparation and Cleaning

the dataset consists the data of various cities in each day for past few years. Some rows have a lot of NAN values, so we need to remove them, as we can not gather a lot of information from those rows.

H

In [11]:

1 import pandas as pd

In [12]:

1 dataset=pd.read_csv('air-quality-data-in-india/city_day.csv')

In [13]:

1 dataset

Out[13]:

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	СО	SO2	О3	В
0	Ahmedabad	2015- 01-01	NaN	NaN	0.92	18.22	17.15	NaN	0.92	27.64	133.36	
1	Ahmedabad	2015- 01-02	NaN	NaN	0.97	15.69	16.46	NaN	0.97	24.55	34.06	
2	Ahmedabad	2015- 01-03	NaN	NaN	17.40	19.30	29.70	NaN	17.40	29.07	30.70	
3	Ahmedabad	2015- 01-04	NaN	NaN	1.70	18.48	17.97	NaN	1.70	18.59	36.08	
4	Ahmedabad	2015- 01-05	NaN	NaN	22.10	21.42	37.76	NaN	22.10	39.33	39.31	
29526	Visakhapatnam	2020- 06-27	15.02	50.94	7.68	25.06	19.54	12.47	0.47	8.55	23.30	
29527	Visakhapatnam	2020- 06-28	24.38	74.09	3.42	26.06	16.53	11.99	0.52	12.72	30.14	
29528	Visakhapatnam	2020- 06-29	22.91	65.73	3.45	29.53	18.33	10.71	0.48	8.42	30.96	
29529	Visakhapatnam	2020- 06-30	16.64	49.97	4.05	29.26	18.80	10.03	0.52	9.84	28.30	
29530	Visakhapatnam	2020- 07-01	15.00	66.00	0.40	26.85	14.05	5.20	0.59	2.10	17.05	

localhost:8888/notebooks/zerotopandas-course-project.ipynb

29531 rows × 16 columns

```
In [14]:
```

1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29531 entries, 0 to 29530
Data columns (total 16 columns):

Data	columns	(total 16	columns):	
#	Column	Non-Nu	ull Count	Dtype
0	City	29531	non-null	object
1	Date	29531	non-null	object
2	PM2.5	24933	non-null	float64
3	PM10	18391	non-null	float64
4	NO	25949	non-null	float64
5	NO2	25946	non-null	float64
6	NOx	25346	non-null	float64
7	NH3	19203	non-null	float64
8	CO	27472	non-null	float64
9	S02	25677	non-null	float64
10	03	25509	non-null	float64
11	Benzene	23908	non-null	float64
12	Toluene	21490	non-null	float64
13	Xylene	11422	non-null	float64

15 AQI_Bucket 24850 non-null object

24850 non-null float64

dtypes: float64(13), object(3)

memory usage: 3.6+ MB

In [15]:

1 dataset.describe()

Out[15]:

14 AQI

	PM2.5	PM10	NO	NO2	NOx	NH3	
count	24933.000000	18391.000000	25949.000000	25946.000000	25346.000000	19203.000000	27
mean	67.450578	118.127103	17.574730	28.560659	32.309123	23.483476	
std	64.661449	90.605110	22.785846	24.474746	31.646011	25.684275	
min	0.040000	0.010000	0.020000	0.010000	0.000000	0.010000	
25%	28.820000	56.255000	5.630000	11.750000	12.820000	8.580000	
50%	48.570000	95.680000	9.890000	21.690000	23.520000	15.850000	
75%	80.590000	149.745000	19.950000	37.620000	40.127500	30.020000	
max	949.990000	1000.000000	390.680000	362.210000	467.630000	352.890000	
4							•

In [16]:

1 dataset.AQI[dataset.AQI==2049]

Out[16]:

1145 2049.0

Name: AQI, dtype: float64

In [17]:

```
df=dataset[dataset.AQI_Bucket=='Severe']
df
```

Out[17]:

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	СО	SO2	О3	Benz
30	Ahmedabad	2015- 01-31	94.52	NaN	24.39	32.66	52.61	NaN	24.39	67.39	111.33	
31	Ahmedabad	2015- 02-01	135.99	NaN	43.48	42.08	84.57	NaN	43.48	75.23	102.70	
32	Ahmedabad	2015- 02-02	178.33	NaN	54.56	35.31	72.80	NaN	54.56	55.04	107.38	
33	Ahmedabad	2015- 02-03	139.70	NaN	30.61	28.40	56.73	NaN	30.61	33.79	73.60	
43	Ahmedabad	2015- 02-13	103.36	NaN	18.18	39.56	57.33	NaN	18.18	80.43	40.11	1
26454	Talcher	2019- 02-15	68.38	336.82	35.57	NaN	29.15	7.66	2.52	16.17	7.50	
26461	Talcher	2019- 02-22	116.52	768.16	27.89	NaN	24.94	7.23	4.20	16.71	3.71	
26463	Talcher	2019- 02-24	71.07	369.02	32.85	NaN	27.66	7.52	2.96	6.63	8.00	
26719	Talcher	2019- 11-07	48.32	512.41	41.82	1.21	41.62	8.49	2.11	36.43	13.67	
26720	Talcher	2019- 11-08	57.45	493.34	39.71	1.90	40.38	8.35	1.68	36.34	13.75	
1338 ro	ws × 16 colu	ımns										
4												>

The dataset consist of so many rows having different AQIs but this project is mainly for the cities having higher AQI or where conditions is severe. So, the other AQI rows where condition is not so Severe can be removed

```
In [18]:

1 columns=['City','Date','PM2.5','NO','NO2','NOx','CO','SO2','O3','AQI']
```

In [19]:

```
dfs=df[columns].copy()
dfs=dfs.dropna()
dfs
```

Out[19]:

	City	Date	PM2.5	NO	NO2	NOx	СО	SO2	О3	AQI
30	Ahmedabad	2015-01-31	94.52	24.39	32.66	52.61	24.39	67.39	111.33	514.0
31	Ahmedabad	2015-02-01	135.99	43.48	42.08	84.57	43.48	75.23	102.70	782.0
32	Ahmedabad	2015-02-02	178.33	54.56	35.31	72.80	54.56	55.04	107.38	914.0
33	Ahmedabad	2015-02-03	139.70	30.61	28.40	56.73	30.61	33.79	73.60	660.0
43	Ahmedabad	2015-02-13	103.36	18.18	39.56	57.33	18.18	80.43	40.11	510.0
26379	Talcher	2018-12-02	100.93	25.19	0.02	23.45	1.86	18.29	8.62	434.0
26429	Talcher	2019-01-21	99.88	23.55	0.03	22.54	2.34	31.05	10.45	456.0
26445	Talcher	2019-02-06	88.48	31.82	3.79	27.05	2.81	19.88	8.99	439.0
26719	Talcher	2019-11-07	48.32	41.82	1.21	41.62	2.11	36.43	13.67	401.0
26720	Talcher	2019-11-08	57.45	39.71	1.90	40.38	1.68	36.34	13.75	516.0

1146 rows × 10 columns

In [20]:

```
dfs['Date']=pd.to_datetime(dfs.Date)
dfs['year'] = pd.DatetimeIndex(dfs.Date).year
dfs['month'] = pd.DatetimeIndex(dfs.Date).month
dfs['day'] = pd.DatetimeIndex(dfs.Date).day
dfs['weekday'] = pd.DatetimeIndex(dfs.Date).weekday
```

In [21]:

1 dfs

Out[21]:

	City	Date	PM2.5	NO	NO2	NOx	СО	SO2	О3	AQI	year	mont
30	Ahmedabad	2015- 01-31	94.52	24.39	32.66	52.61	24.39	67.39	111.33	514.0	2015	
31	Ahmedabad	2015- 02-01	135.99	43.48	42.08	84.57	43.48	75.23	102.70	782.0	2015	
32	Ahmedabad	2015- 02-02	178.33	54.56	35.31	72.80	54.56	55.04	107.38	914.0	2015	
33	Ahmedabad	2015- 02-03	139.70	30.61	28.40	56.73	30.61	33.79	73.60	660.0	2015	
43	Ahmedabad	2015- 02-13	103.36	18.18	39.56	57.33	18.18	80.43	40.11	510.0	2015	
26379	Talcher	2018- 12-02	100.93	25.19	0.02	23.45	1.86	18.29	8.62	434.0	2018	1
26429	Talcher	2019- 01-21	99.88	23.55	0.03	22.54	2.34	31.05	10.45	456.0	2019	
26445	Talcher	2019- 02-06	88.48	31.82	3.79	27.05	2.81	19.88	8.99	439.0	2019	
26719	Talcher	2019- 11-07	48.32	41.82	1.21	41.62	2.11	36.43	13.67	401.0	2019	1
26720	Talcher	2019- 11-08	57.45	39.71	1.90	40.38	1.68	36.34	13.75	516.0	2019	1
1146 ro	ws × 14 colu	ımns										

In [22]:

1 import jovian

In [23]:

1 jovian.commit()

<IPython.core.display.Javascript object>

[jovian] Attempting to save notebook..

[jovian] Updating notebook "vedangi001/aqi-in-india" on https://jovian.ai (h
ttps://jovian.ai)

[jovian] Uploading notebook..

[jovian] Committed successfully! https://jovian.ai/vedangi001/aqi-in-india
 (https://jovian.ai/vedangi001/aqi-in-india)

Out[23]:

'https://jovian.ai/vedangi001/aqi-in-india'

Exploratory Analysis and Visualization

TODO In this section, I mainly tried to show the information using visual repersentations such as graphs and plots. Which can help to know out of last few years, when thr AQI was highest, the trend during various months,etc.

Let's begin by importing matplotlib.pyplot and seaborn.

```
In [24]:
                                                                                            M
 1
    import seaborn as sns
    import matplotlib
    import matplotlib.pyplot as plt
 4
    %matplotlib inline
 5
    sns.set_style('darkgrid')
 6
 7
    matplotlib.rcParams['font.size'] = 14
    matplotlib.rcParams['figure.figsize'] = (20,12)
 8
    matplotlib.rcParams['figure.facecolor'] = '#00000000'
```

The following graph shows in which year the AQI was highest

```
In [25]:

1 plt.title('AQI trend during the year 2015-2020')
2 sns.scatterplot(x=dfs.year, y=dfs.AQI);
```


The plot tells that the AQI decreases from 2015 to 2016 and then again started increasing, the AQI was highest during 2018 and its value in some cities was around 2000, we can hypothise out of this that the industrialisation, factory work maybe very high in this year, it again decreases in 2019 and even more less in 2020. The lower AQI in 2020 was because of lockdown, as factory works, industrial work, vehicles smoke emissions was very less.

The following plot shows the trend of AQI during various months

```
In [26]:

1    sns.scatterplot(x=dfs.month, y=dfs.AQI,hue=df.City);
2    plt.title('AQI during the months');
```


The above graph shows that the AQI is less during the summers and monsoon, where as the highes AQI was recorded during the winters, this maybe due to the fact that the air is more humid during the summers and monsoon and pollutants might have settled down keeping the air clear.

The next plot shows how was the AQI variation in different cities during the year 2018 the year 2018 was selected because that is the year when the air quality was very bad

```
In [27]:

1 year_2018=dfs[dfs.year==2018]
```

In [28]: ▶

1 year_2018

Out[28]:

	City	Date	PM2.5	NO	NO2	NOx	СО	SO2	О3	AQI	year	mo
1099	Ahmedabad	2018- 01-04	81.10	19.42	109.07	67.15	19.42	93.30	65.69	532.0	2018	
1100	Ahmedabad	2018- 01-05	73.61	25.96	173.08	103.80	25.96	93.86	36.51	534.0	2018	
1101	Ahmedabad	2018- 01-06	75.79	31.55	146.80	95.16	31.55	113.82	41.95	738.0	2018	
1102	Ahmedabad	2018- 01-07	77.87	23.19	137.62	84.44	23.19	107.58	50.46	622.0	2018	
1103	Ahmedabad	2018- 01-08	77.72	8.91	135.66	72.82	8.91	101.93	48.73	517.0	2018	
26374	Talcher	2018- 11-27	110.22	21.49	0.32	21.42	1.92	26.37	8.15	525.0	2018	
26375	Talcher	2018- 11-28	110.75	51.52	0.25	37.78	2.96	26.82	6.40	489.0	2018	
26377	Talcher	2018- 11-30	100.66	23.27	0.10	22.40	2.08	28.86	8.24	509.0	2018	
26378	Talcher	2018- 12-01	88.36	24.03	0.09	22.83	1.84	25.13	8.19	428.0	2018	
26379	Talcher	2018- 12-02	100.93	25.19	0.02	23.45	1.86	18.29	8.62	434.0	2018	

315 rows × 14 columns

```
In [29]:

1 sns.barplot(x=year_2018.month, y=year_2018.City, data=year_2018.AQI);
2
```


The above plot shows the average was very higher in Kolkata where as the higher deviation was seen in Patna, Lucknow and Gurugram

The following path comparably tells the AQI trend in the cities showing higher deviation

```
In [30]:

1  pt_df=df[df.City=='Patna']
2  lc_df=df[df.City=='Lucknow']
3  gr_df=df[df.City=='Gurugram']
```

```
In [31]:

1  plt.hist(pt_df.AQI, alpha=0.4);
2  plt.hist(lc_df.AQI, alpha=0.4);
3  plt.hist(gr_df.AQI, alpha=0.4);
```


Let us save and upload our work to Jovian before continuing

```
In [32]:
    import jovian

In [33]:
    jovian.commit()

<IPython.core.display.Javascript object>

[jovian] Attempting to save notebook..
[jovian] Updating notebook "vedangi001/aqi-in-india" on https://jovian.ai (https://jovian.ai)
[jovian] Uploading notebook..
[jovian] Committed successfully! https://jovian.ai/vedangi001/aqi-in-india (https://jovian.ai/vedangi001/aqi-in-india)

Out[33]:
```

Asking and Answering Questions

'https://jovian.ai/vedangi001/aqi-in-india'

In this section I have asked some common question which can be arise just by the looking data in its visual format till the time and tried to answer them.

Q1: What is the variation of AQI during the week in Delhi?

In [34]:

1 city=year_2018[year_2018.City=='Delhi']

H

In [35]:

1 city

Out[35]:

ouctos	,] .												
	City	Date	PM2.5	NO	NO2	NOx	со	SO2	О3	AQI	year	month	¢
11325	Delhi	2018- 01-01	303.41	62.76	63.92	11.79	1.80	18.58	68.75	462.0	2018	1	
11326	Delhi	2018- 01-02	277.48	31.26	53.73	4.26	1.52	12.43	68.68	439.0	2018	1	
11327	Delhi	2018- 01-03	217.01	37.98	52.24	2.87	1.29	10.28	54.94	405.0	2018	1	
11330	Delhi	2018- 01-06	252.57	65.27	59.12	8.53	1.59	18.15	39.65	403.0	2018	1	
11342	Delhi	2018- 01-18	276.25	48.32	55.08	85.75	2.04	21.02	72.89	411.0	2018	1	
11343	Delhi	2018- 01-19	253.70	41.26	49.45	81.11	1.82	22.27	73.60	451.0	2018	1	
11435	Delhi	2018- 04-21	119.24	9.64	30.99	35.73	0.89	12.08	61.05	444.0	2018	4	
11488	Delhi	2018- 06-13	261.77	11.58	25.75	30.62	0.77	6.91	27.45	453.0	2018	6	
11489	Delhi	2018- 06-14	225.49	11.75	25.37	29.01	0.72	7.22	43.38	522.0	2018	6	
11490	Delhi	2018- 06-15	153.28	12.05	24.61	29.31	0.70	7.31	40.15	593.0	2018	6	
11491	Delhi	2018- 06-16	127.32	10.15	25.00	29.76	0.68	7.29	45.76	531.0	2018	6	
11625	Delhi	2018- 10-28	205.00	81.11	57.66	100.04	2.45	15.62	52.78	403.0	2018	10	
11627	Delhi	2018- 10-30	263.39	98.50	70.46	119.07	2.90	17.62	50.55	456.0	2018	10	
11628	Delhi	2018- 10-31	225.17	99.90	68.02	122.87	2.91	18.11	47.05	422.0	2018	10	
11629	Delhi	2018- 11-01	236.67	106.68	71.63	133.14	2.97	20.12	45.98	433.0	2018	11	
11633	Delhi	2018- 11-05	361.98	26.22	48.25	48.80	1.88	14.63	45.00	424.0	2018	11	
11634	Delhi	2018- 11-06	177.88	23.48	43.78	44.84	1.29	15.37	45.01	411.0	2018	11	
11636	Delhi	2018- 11-08	420.30	89.10	64.57	106.68	2.45	26.52	38.35	452.0	2018	11	
11637	Delhi	2018- 11-09	300.91	89.45	68.25	109.68	2.65	17.41	47.94	487.0	2018	11	
11638	Delhi	2018- 11-10	288.86	99.32	79.50	127.11	3.01	18.01	42.55	430.0	2018	11	
11639	Delhi	2018- 11-11	256.68	91.92	70.55	113.81	2.89	16.20	51.68	454.0	2018	11	
11640	Delhi	2018- 11-12	271.70	75.93	71.88	101.50	2.85	17.40	53.37	437.0	2018	11	

								, ,		,			
	City	Date	PM2.5	NO	NO2	NOx	СО	SO2	О3	AQI	year	month	ď
11641	Delhi	2018- 11-13	265.06	85.28	74.72	111.18	2.74	18.72	37.80	454.0	2018	11	
11668	Delhi	2018- 12-10	264.63	89.36	66.58	121.45	2.75	16.74	42.51	431.0	2018	12	
11669	Delhi	2018- 12-11	274.97	93.61	68.87	124.90	2.78	15.49	41.90	464.0	2018	12	
11670	Delhi	2018- 12-12	209.63	56.21	55.10	80.05	1.95	14.64	36.34	443.0	2018	12	
11678	Delhi	2018- 12-20	258.10	114.21	68.97	139.08	2.64	17.68	40.50	423.0	2018	12	
11679	Delhi	2018- 12-21	252.20	74.98	66.03	103.06	2.22	15.90	38.38	422.0	2018	12	
11680	Delhi	2018- 12-22	326.79	85.55	78.71	117.64	2.59	18.47	44.98	468.0	2018	12	
11681	Delhi	2018- 12-23	401.58	112.95	77.63	145.67	3.36	18.21	50.65	557.0	2018	12	
11682	Delhi	2018- 12-24	378.68	123.73	75.26	152.77	3.36	17.86	43.25	577.0	2018	12	
11683	Delhi	2018- 12-25	268.20	45.37	61.20	74.60	1.90	14.14	36.37	475.0	2018	12	
11684	Delhi	2018- 12-26	241.00	59.69	65.20	89.51	1.99	15.37	39.09	405.0	2018	12	
11685	Delhi	2018- 12-27	290.10	110.91	78.43	143.91	2.87	18.03	40.96	458.0	2018	12	
11686	Delhi	2018- 12-28	249.23	39.19	60.59	68.50	1.66	14.80	37.38	413.0	2018	12	
11687	Delhi	2018- 12-29	248.12	74.28	64.97	102.00	1.96	16.49	39.29	420.0	2018	12	
11688	Delhi	2018- 12-30	336.42	127.84	76.89	157.78	2.94	19.91	42.87	484.0	2018	12	
11680	Delhi	2018-	210 60	1በፍ ኃዩ	70 5 <i>1</i>	122 ይ7	2 70	17	11 11	500 N	2∩1Ձ	10	•

In [36]:

sns.barplot(x=city.weekday,y=city.AQI);

Q2: Which pollutant has significantly increase during the years in Delhi??

```
In [37]:
```

```
plt.plot(city.Date,city.NO2);
plt.plot(city.Date,city.NOx);
plt.plot(city.Date,city.NO);
plt.plot(city.Date,city.CO);
plt.plot(city.Date,city.SO2);
plt.plot(city.Date,city.O3);
pm=city['PM2.5'];
plt.plot(city.Date,pm);
plt.legend(['NO2','Nox','NO','CO','SO2','O3','PM2.5']);
plt.title('Affect of Various pollutants on AQI');
```


The plot tells that the PM2.5 is the pollutant which is majorly affecting the AQI, the Nox is the gas which has signnificantly increased during past years.

Q3: When Ahemdabad shows the maximum AQI?

```
In [38]:

1 ahm=dfs[dfs.City=='Ahmedabad']
```

In [39]: ▶

1 ahm

Out[39]:

	City	Date	PM2.5	NO	NO2	NOx	CO	SO2	О3	AQI	year	month
30	Ahmedabad	2015- 01-31	94.52	24.39	32.66	52.61	24.39	67.39	111.33	514.0	2015	,
31	Ahmedabad	2015- 02-01	135.99	43.48	42.08	84.57	43.48	75.23	102.70	782.0	2015	2
32	Ahmedabad	2015- 02-02	178.33	54.56	35.31	72.80	54.56	55.04	107.38	914.0	2015	2
33	Ahmedabad	2015- 02-03	139.70	30.61	28.40	56.73	30.61	33.79	73.60	660.0	2015	2
43	Ahmedabad	2015- 02-13	103.36	18.18	39.56	57.33	18.18	80.43	40.11	510.0	2015	2
1886	Ahmedabad	2020- 03-01	53.06	22.34	59.64	45.76	22.34	70.80	41.70	475.0	2020	;
1887	Ahmedabad	2020- 03-02	56.20	23.13	62.85	47.92	23.13	81.42	34.18	508.0	2020	;
1888	Ahmedabad	2020- 03-03	77.58	21.26	60.32	45.29	21.26	119.95	39.83	460.0	2020	;
1903	Ahmedabad	2020- 03-18	58.54	15.45	44.39	33.18	15.45	42.86	81.35	487.0	2020	;
1904	Ahmedabad	2020- 03-19	101.09	15.07	43.66	31.13	15.07	42.07	44.44	988.0	2020	;

573 rows × 14 columns

In [40]: ▶

```
sns.scatterplot(x=ahm.month[ahm.year==2018],y=ahm.AQI);
plt.title('AQI index in Ahemdabad during the year 2018');
```


The Ahemedabad shows the highest AQI during the feb month of the year 2018

Q4: How was the variation of different pollutants during the various year in Kolkata?

In [41]: ▶

- 1 klk=dfs[dfs.City=='Kolkata']
- 2 klk

Out[41]:

	City	Date	PM2.5	NO	NO2	NOx	СО	SO2	О3	AQI	year	month
19244	Kolkata	2018- 11-08	276.33	24.08	65.65	89.73	1.48	17.82	46.50	431.0	2018	11
19273	Kolkata	2018- 12-07	267.93	135.62	104.89	231.23	1.74	24.28	31.93	425.0	2018	12
19275	Kolkata	2018- 12-09	227.13	134.63	107.29	214.57	1.11	12.85	26.85	418.0	2018	12
19276	Kolkata	2018- 12-10	199.91	134.22	84.86	204.40	1.24	9.08	34.42	407.0	2018	12
19301	Kolkata	2019- 01-04	264.84	88.23	124.79	155.73	1.13	17.16	38.73	431.0	2019	1
19309	Kolkata	2019- 01-12	264.75	152.42	94.91	244.34	1.42	18.51	29.41	405.0	2019	1
19311	Kolkata	2019- 01-14	282.90	155.42	124.83	252.14	1.67	26.99	28.09	408.0	2019	1
19312	Kolkata	2019- 01-15	217.59	76.15	107.24	151.68	1.10	17.35	32.47	406.0	2019	1
19316	Kolkata	2019- 01-19	269.06	95.75	111.71	210.46	1.99	19.80	28.38	421.0	2019	1
19317	Kolkata	2019- 01-20	252.42	161.72	95.09	207.49	1.64	19.09	27.88	407.0	2019	1
19318	Kolkata	2019- 01-21	266.10	155.98	103.21	237.22	2.32	19.00	27.81	425.0	2019	1
19319	Kolkata	2019- 01-22	304.74	197.73	148.03	236.91	2.75	20.10	26.05	463.0	2019	1
19320	Kolkata	2019- 01-23	282.80	163.39	105.50	213.42	2.44	12.30	26.88	475.0	2019	1
4												>

In [42]:

```
plt.plot(klk.Date,klk.NO2);
plt.plot(klk.Date,klk.NOx);
plt.plot(klk.Date,klk.NO);

plt.plot(klk.Date,klk.CO);
plt.plot(klk.Date,klk.SO2);

plt.plot(klk.Date,klk.O3);

pm=klk['PM2.5'];
plt.plot(klk.Date,pm);
plt.legend(['NO2','Nox','NO','CO','SO2','O3','PM2.5']);
plt.title('AQI index in Kolkata ');
```


As in Delhi, the NOx and the PM2.5 are the majorly affecting the AQI

Let us save and upload our work to Jovian before continuing.

```
In [43]:
    import jovian

In [44]:
    jovian.commit()

<IPython.core.display.Javascript object>

[jovian] Attempting to save notebook..
[jovian] Updating notebook "vedangi001/aqi-in-india" on https://jovian.ai (https://jovian.ai)
[jovian] Uploading notebook..
[jovian] Uploading notebook..
[jovian] Committed successfully! https://jovian.ai/vedangi001/aqi-in-india (https://jovian.ai/vedangi001/aqi-in-india)

Out[44]:
'https://jovian.ai/vedangi001/aqi-in-india'
```

Inferences and Conclusion

The inference I have taken out of this project is that the AQI of Ahemedabad was worst during past years, the highest Average was shown in Kolkata, also The PM2.5 and NOx was the major pollutant affecting the AQI.

```
In [45]:
                                                                                           H
   import jovian
                                                                                           M
In [46]:
    jovian.commit()
<IPython.core.display.Javascript object>
[jovian] Attempting to save notebook..
[jovian] Updating notebook "vedangi001/aqi-in-india" on https://jovian.ai (h
ttps://jovian.ai)
[jovian] Uploading notebook..
[jovian] Committed successfully! https://jovian.ai/vedangi001/aqi-in-india
 (https://jovian.ai/vedangi001/aqi-in-india)
Out[46]:
'https://jovian.ai/vedangi001/aqi-in-india'
In [47]:
                                                                                           Ы
   import jovian
```

In []:	M
1 jovian.commit()	
<ipython.core.display.javascript object=""></ipython.core.display.javascript>	
[jovian] Attempting to save notebook	
In []:	M
<pre>In []:</pre>	K
	H