ELETTRONICA 16 gennaio 2023

Del circuito seguente, considerando in ingresso invertente il segnale V_{in} riportato in figura, e considerando l'amplificatore operazionale ideale con tensione di alimentazione pari a $\pm V_{DD}$, graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'evoluzione temporale di $V_{out}(t)$.

Elettronica - 10 febbraio 2023

Del circuito seguente, considerando in ingresso il gradino di tensione riportato in figura, calcolare e graficare l'andamento nel tempo della tensione di uscita V_{out} .

OA ideale con
$$L^{+} = -L^{-} = 10V$$
 $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 1 \text{ V}; \lambda = 0)$

$$V_{DD} = 10V$$
 $R_S = 1 \text{ k}\Omega$ $R_D = 2 \text{ k}\Omega$ $R_I = 8 \text{ k}\Omega$ $R_2 = 5 \text{ k}\Omega$

Elettronica - 22 marzo 2023

Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare l'andamento nel tempo della tensione di uscita V_{OUT} .

OA ideale con
$$L^{+} = -L^{-} = 12V$$

 $R_{1} = 2 \text{ k}\Omega$ $R_{2} = 8 \text{ k}\Omega$ $C = 0.1 \text{ }\mu\text{F}$

Elettronica 16 giugno 2023

Del circuito seguente

- -calcolare il valore della resistenza di Source R_S per avere una tensione di uscita in continua $V_{OUT} = 0$ V;
- -con il valore ottenuto di R_S calcolare il guadagno di tensione per piccolo segnali $A_v = v_{out}/v_{in}$.

OA ideale con
$$L^+ = -L^- = 12V$$

OA ideale con
$$L^+ = -L^- = 12V$$
 $M_1 = (K = 0.5 \text{ mA/V}^2; V_T = 2 \text{ V}; \lambda = 0)$

$$R_G = 5k\Omega$$
 $R_D = 2.5k\Omega$ $R_1 = 1k\Omega$ $R_2 = 4k\Omega$; $C = \infty$ $V_{DD} = 5V$

$$R_2 = 4k\Omega; \quad C = \infty$$

$$V_{DD} = 5 \text{V}$$

Elettronica 8 luglio 2023

Del circuito seguente calcolare il valore della resistenza R_1 per avere un guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{in} = -6$.

OA ideale con
$$L^{+} = -L^{-} = 12V$$

 $M_{I} = (K = 0.5 \text{ mA/V}^{2}; V_{T} = 2 \text{ V}; \lambda = 0)$

$$\mathbf{V_{DD}} = 12 \mathbf{V}$$
 $\mathbf{I_I} = 2 \text{ mA}$ $\mathbf{C} = \infty$ $\mathbf{R_I} = ?$ $\mathbf{R_D} = 3 \text{ k}\Omega$ $\mathbf{R_S} = 1 \text{ k}\Omega$

Esame di Elettronica. 11 settembre 2023

Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

OA ideale con
$$L^+ = -L^- = 10V$$
 $M_1 = (K = 0.5 \text{ mA/V}^2 ; V_T = 1 \text{ V} ; \lambda = 0)$

$$V_{DD} = 5V$$
 $R_S = R_1 = R_2 = R_3 = 1k\Omega$ $C = 0.1 \mu F$

Esame di Elettronica. 11 settembre 2023

Nel circuito seguente, considerando in ingresso la tensione V_{IN} con l'andamento nel tempo riportato in figura, e considerando gli op-amp ideali, determinare l'evoluzione temporale e disegnare il grafico relativo della differenza di potenziale $V_{AB} = V_A - V_B$.

Amplificatori Operazionali ideali con $L^+ = -L^- = 12V$

 $R_{IN}=R_P=10~\mathrm{k}\Omega;~~R_I=2~\mathrm{k}\Omega;~~R_2=4~\mathrm{k}\Omega;~~R_3=0.5~\mathrm{k}\Omega;~~R_L=4~\mathrm{k}\Omega;~~C=10~\mathrm{nF}$