Module IV

Rajesh G.D.

July 17, 2024

Contents

1	Max	Maxwell's equations and EM waves														2							
	1.1	Topics	s to	be	e co	ver	ed.																
		1.1.1	N	Iax	wel	l's	equ	ati	ons														
		1.1.2	\mathbf{E}	Μ	Wa	ves																	
2 Fui		Fundamentals of vector calculus														2							
2.1 Dot product (scalar product)																							
		Cross																					

1 Maxwell's equations and EM waves

1.1 Topics to be covered.

1.1.1 Maxwell's equations

Fundamentals of vector calculus, Divergence and Curl of **E** and **B** (static), Gauss' divergence theorem and **Stokes'theorem**. Description of laws of electrostatics, Faraday's laws of **EMI**. Current density **J** and Equation of Continuity. Displacement current with derivation and Maxwell's equations in **vacuum**

1.1.2 EM Waves

The wave equation in differential form in free space (derivation using Maxwell's equations), Plane EM waves (in vacuum), Transverse Nature and Polarization of EM waves

2 Fundamentals of vector calculus

A *scalar* is a physical quantity with only magnitude.

A vector is a physical quantity with both magnitude and direction.

A unit vector like \hat{a} has a magnitude of 1

In Cartesian coordinates, $\vec{a} = a_1e_1 + a_2e_2 + a_3e_3$ where e_1, e_2 and e_3 are unit vectors.

Magnitude $|a| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

2.1 Dot product (scalar product)

$$a \cdot b = |a| \cdot |b| \cdot cos(\theta) = a_1b_1 + a_2b_2 + a_3c_3$$
 is a scalar

2.2 Cross product (vector product)

$$a\times b=|a||b|sin(\theta)\hat{n}$$

In terms of components a and b

$$a \times b = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$