电磁感应报告

2024年6月12日

摘要

本实验欲对线圈的自感/互感的相关参量及规律进行测量研究。通过对含电感电路的相关的参数的测量,计算了指定电感线圈在有铝芯和无铝芯情况下的电阻和电感。并通过搭建互感电路,测定了互感系数和次级线圈的反射等参量。并进一步探究了它们之间的关系。最后,对涡流进行了简单的分析。

1 线圈电阻和电感及互感系数

原理

为测量感抗和电阻,我们对线圈串联一个已知电阻以获得电流。根据电磁感应的知识,可推出线圈电阻的表达式:

$$R = \frac{R'}{2} \left(\frac{V_A^2 - V^2}{V_{R'}^2} - 1 \right) \tag{1}$$

其中,R' 与 $V_{R'}$ 表示已知电阻及两端电压, V_A 为输出电压,V 为线圈两端电压。同时,可根据下式计算出阻抗 Z 及感抗 X:

$$Z = \frac{V}{V_{R'}}R'$$

$$X = \sqrt{Z^2 - R^2}$$
(2)

而电感 $L=\frac{X}{U}$, 已知频率,便可得出电感。在次级线圈处,测出电压 V_O ,根据:

$$\omega M I_P = I_S Z_S \tag{3}$$

(其中 P-初级线圈, S-次级线圈) 根据电压和所计算的电阻, 感抗, 即可得到互感系数 M。

实验步骤及数据处理

在此部分以及下面的各部分中,我们将电源(信号发生器)调整为 1000 Hz, 7V 有效值的正弦波输出。按照原理部分搭建电路,最终通过所测得数据即可计算出电阻,电感以及互感系数。(为测量精准,我们通过调整电阻,人为保证 $V \approx V_{R'}$)

测量数据如表附表 1, 而计算结果如下:

	$R(\Omega)$	$Z(\Omega)$	$X(\Omega)$	L(H)
线圈 1 无铝芯	52.50	574.5	572.1	0.572
线圈 2 无铝芯	54.62	623.0	620.6	0.621
线圈 1+ 铝芯	86.72	477.0	469.1	0.469
线圈 2+ 铝芯	129.8	411.2	390.2	0.390

表 1: 线圈的电阻, 阻抗, 电感

进一步,根据上述表格,求出 I_P , I_S ,进一步求出 M,如下表:

数据来源	$I_P(mA)$	$I_S(mA)$	M(H)
线圈 1 无铝芯	8.057	6.157	0.4761
线圈 1+ 铝芯	9.196	7.295	0.3262

表 2: 线圈的互感系数

由于耦合线圈的互感和自感之间的关系为 $M=k(L_1L_2)^{\frac{1}{2}}$, 可求出, 无铝芯耦合常数 k=0.799, 有铝芯时 k=0.763。

2 互感与次级线圈感抗

原理

还有一种方法可以获得互感与次级线圈感抗、根据3式、将2式带入、可获得:

$$(R_s + R_L)^2 = \omega^2 M^2 (\frac{I_P}{I_S})^2 - X_s^2$$
(4)

这是一条直线,故可通过调整 R_L (负载)获得多组值,从而进行直线拟合以求出互感 M 与次级线圈感抗 X_S 。

实验步骤及数据处理

取出铝芯,如下图搭建电路,其中 $R'=300\Omega$, R_L 可调,从 100Ω 到 1000Ω 间隔 100Ω , 共 10 组数据。

图 1: 电路图

电源输出不变,不断按上面所述调整 R',得到的数据见附表 2,通过对应电阻求出 I_P , I_S ,根据2式求出 X_S ,根据4式对相应数据进行拟合,结果如图:

图 2: 互感与次级线圈感抗拟合结果

对应的 $\omega^2 M^2 = 228710.63$,即 M = 0.4782H,对比2,无铝芯情况下 M = 0.4761H,相

差仅 0.44%, 精度很高。

对应的 $X_S^2=387230.07$, $X_S=622.3\Omega$, 对比1, 无铝芯下, 线圈二 $X_S=620.6\Omega$, 相差仅 0.27%, 仍然精度很高。

3 初级线圈的等效阻抗和次级线圈的若干反射物理量之间的关系

原理

初级线圈的等效电阻 R_{PE} 和等效电感 L_{PE} 与来自于次级线圈的"反射"电阻 R_R 和"反射"电感 L_R 有关。反射电阻与反射电感满足:

$$I_P^2 R_R = I_S^2 (R_S + R_L) (5)$$

$$\frac{1}{2}L_R I_P^2 = \frac{1}{2}L_S I_S^2 \tag{6}$$

实验步骤及数据处理

对1的上半部分电路使用第一部分的方法(式1、2)即可得到初级线圈等效电阻 R_{PE} 和等效感抗 X_{PE} ,如下表:

$R_L(\Omega)$	$R_{PE}(\Omega)$	$X_{PE}(\Omega)$
100	135.6	228.7
200	179.1	259.4
300	209.0	296.1
400	226.3	333.6
500	233.7	368.6
600	234.9	398.5
700	232.3	424.1
800	227.1	445.5
900	220.5	463.3
1000	213.4	478.1

表 3: 初级线圈的等效阻抗

根据式5、6, 求出反射电阻和反射感抗, 如下表:

$R_L(\Omega)$	$R_R(\Omega)$	$L_R(\Omega)$	$X_R(\Omega)$
100	85.48	0.3433	343.3
200	129.1	0.3148	314.8
300	158.4	0.2773	277.3
400	175.4	0.2395	239.5
500	182.7	0.2046	204.6
600	183.5	0.1741	174.1
700	180.3	0.1484	148.4
800	174.9	0.1271	127.1
900	168.2	0.1094	109.4
1000	160.8	0.09470	94.70

表 4: 反射电阻、反射电感、反射感抗

等效感抗与反射感抗有关,为探究其关系,作图并拟合,如下图:

图 3: 等效感抗与反射感抗关系

其关系为 $X_R = -1.00 X_{PE} + 573.72 \Omega$,而 573.72Ω 恰好与线圈一的感抗十分接近,可以猜测 $X_R + X = X_{PE}$ 。这在物理上也很合理,即等效感抗等于本身的感抗加上另一个线圈的反射感抗,是一个很自然的物理图像。

 R_R 也会随 R_L 变化而变化,为了更史观的展示这一点,做出 $R_R - R_L$ 图,如下图:

图 4: $R_R - R_L$ 图

这里,由散点图观察到是一个偏态峰,按照把偏态数据拉回正态的思路,在标准正态分布中取 $\ln x$ 近似得到一个偏态拟合。由拟合及正态分布知,当 $\ln x = b$ 时,y 最大,即当反射电阻最大时, $R_L = 562.3\Omega$ 。

4 涡流效应

当带电线圈中放入铝芯后,铝芯上产生的涡流使线圈感受到的电感和电阻发生改变。先求 L_{Al} 和 R_{Al} 的比值。第一部分实际上测出了等效值,故只需 $\frac{L_{Al}}{R_{Al}} = |\frac{\Delta L}{\Delta R}|$,带入,对于线圈 1, $\frac{L_{Al}}{R_{Al}} = 3.010 \times 10^{-3}$;对于线圈 2, $\frac{L_{Al}}{R_{Al}} = 3.073 \times 10^{-3}$ 。

涡流还会造成铝芯功率损耗。我们在第二部分的基础上插入铝芯,再次测量,得到的结果如附表 3。根据 $\Delta P = I_P^2 R_{PE} - I_P^2 R_P - I_S^2 (R_S + R_L)$,带入数据,有 $\Delta P = -1.524 \times 10^{-3} J$

5 讨论

测量时,由于接头松动,移动接头将会导致不稳定,下分析这一不稳定对结果产生的影响。

对于部分二,我还测出了频繁插拔接头的另一组数据。测量时,仪器并不能有一个稳定的读数(处于周期震荡的状态),采用肉眼目测取平均的方式来获得大致读数。用相同的方式拟合,如图:

图 5: 稳定与不稳定

黄色点的测量方法避免了频繁插拔,而蓝色点存在频繁插拔。可见蓝色存在一个明显离群的数据,存在较大误差。但是,如果排除该离群数据,误差其实是很小的。(甚至很多蓝/黄色点几乎重合)从这个角度看,仪器读数不稳定造成的误差微乎其微,只需要用肉眼取平均就能很容易修正。虽然交流电对这样的松动比较敏感,但实际上仪器还是比较好的连接好了。(虽然存在松动)

A 附录

	$R'(\Omega)$	$V_A(V)$	V(V)	$V_{R'}(V)$	$V_O(V)$
a) 测线圈 1, 无铝芯	560	6.753	4.629	4.512	3.836
c) 测线圈 1, 放入铝芯 (有铝芯)	470	6.694	4.386	4.322	3.000
b) 测线圈 2, 取下铝芯 (无铝芯)	630	6.778	4.570	4.621	3.492
d) 测线圈 2, 放入铝芯 (有铝芯)	410	6.641	4.100	4.088	3.250

表 附表 1: 第一部分测量数据

$R_L(\Omega)$	$R'(\Omega)$	$V_A(V)$	V(V)	$V_{R'}(V)$	$V_{R_L}(V)$
100	300	6.457	3.486	3.932	0.974
200	300	6.516	3.756	3.576	1.697
300	300	6.561	4.035	3.339	2.231
400	300	6.597	4.260	3.169	2.625
500	300	6.624	4.456	3.064	2.930
600	300	6.646	4.605	2.987	3.162
700	300	6.663	4.723	2.931	3.343
800	300	6.676	4.758	2.854	3.442
900	300	6.687	4.900	2.685	3.607
1000	300	6.696	4.972	2.848	3.707

表 附表 2: 第二部分测量数据

$R_L(\Omega)$	$R'(\Omega)$	$V_A(V)$	V(V)	$V_{R'}(V)$	$V_O(V)$
1000	300	6.645	4.779	3.221	2.94

表 附表 3: 第四部分测量数据

所有相关文件可通过清华云盘获得。

课堂上数据记录表如下: (似乎没必要, 看前面的表就行)

电磁感应数据表格, 2023秋, 6B703

1000

电磁感应数据表格,2023秋,6B70	13				
Part 1 f (kHz):	1				
	R' (Ω)	$V_A(V)$	V (V)	$V_{R'}(V)$	Vo(V)
a) 测线圈1,无铝芯	560	6.753	4.629	4.512	3.836
c) 测线圈1, 放入铝芯(有铝芯)	470	6.694	4.386	4.322	3.000
b) 左右调换线圈,测线圈2,取下 铝芯(无铝芯)	630	6.778	4.570	4.621	3.492
d) 测线圈2,放入铝芯(有铝芯)	410	6.641	4.100	4.088	3.250
Part2 (g): 左右调换线圈,测线圈 1	. 取下组:	芯(无铝芯);	R'= 6 \ 1 30	00党传电影	且; 改变RLi
$R_{\rm L}(\Omega)$	R'(Ω)	$V_A(V)$	V(V)	$V_{R'}(V)$	$V_{RL}(V)$
100	300	6.457	3.486	3.932	0.974
200	300	6.516	3.756	3.576	1.697
300	300	6.561	4.035	3.339	2.231
400	300	6.597	4.260	3.169	2.625
500	300	6.624	4.456	3.064	2.930
600	300	6.646	4.605	2.987	3.162
700	300	6.663	4.723	2.931	3.343
800	300	6.676	4.758	2.854	3.442
900	300	6.687	4.900	2.685	3.607
1000	300	6.696	4.972	2.848	3.707
Part4 (p): 放入铝芯(有铝芯),测线 R _L (Ω)	$R'(\Omega)$	$V_A(V)$	V (V)	$V_{R'}(V)$	V _o (V)
1000	300	6.647	4.775	3.22	2.938
Part2 (g): 改进测试方法 R _L (Ω)	$R'(\Omega)$	V _A (V)	V(V)	$V_{R'}(V)$	V _{RL} (V)
100	300	6.458	3.490	3.938	0.976
200	300	6.516	3.770	3.588	1.703
300	300	6.562	4.039	3.343	2.234
400	300	6.597	4.268	3.176	2.630
500	300	6.624	4.457	3.064	2.931
600	300	6.646	4.609	2.989	3.165
700	300	6.663	4.734	2.937	3.350
800	300	6.676	4.837	2.902	3.501
900	300	6.687	4.924	2.879	3.625
1000	300	6.697	4.998	2.864	3.728
	_				
Part4 (p): 放入铝芯(有铝芯),测线					
Th					** ***
R _L (Ω)	圏1; R' = 3 R' (Ω)	300Ω定制电 V _A (V)	.阻; RL = V(V)	= 1kΩ V _{R'} (V)	V ₀ (V)

300 6.645 4.779 3.221 2.94