ESTRUCTURAS DISCRETAS

Practica 2 MATH MATH

Oscar Andrés Rosas Hernandez

Agosto 2018

■ Teorema Fundamental del Cálculo:

$$\frac{d}{dx} \int_{a}^{x} f(s)ds = f(x)$$

Series de Taylor

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}$$

- \blacksquare Ecuaciones de rotación: $\omega=\omega_0+\alpha$ y $\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2$
- \blacksquare Máquina de Turing $M=(Q,\Sigma,\Gamma,s,b,F,\delta)$
- \blacksquare Expresión del Cálculo Lambda: $e:=x\ |\ \lambda x.e\ |\ ee$

Ahora vamos a alinear:

$$\frac{d}{dx} \int_{a}^{x} f(s)ds = f(x) \tag{1}$$

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^i$$
 (2)

$$\omega = \omega_0 + \alpha \tag{3}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \tag{4}$$

$$M = (Q, \Sigma, \Gamma, s, b, F, \delta) \tag{5}$$

$$e := x \mid \lambda x.e \mid ee \tag{6}$$

2. 2

Matrices con multiples tipos de parentesis

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

2

3. 3

X	f(x)
-2	7
-1.5	5.25
-1	4
-0.5	3.25
0	3
0.5	3.5
1	4
1.5	5.25
2	7

Ahora, como f(0)=3entonces f(x)=g(x)+3y nota que ahora es facil ver que $f(x)=x^2+3$