Лабораторная работа 4.3.4. ПРЕОБРАЗОВАНИЕ ФУРЬЕ В ОПТИКЕ

Хайдари Фарид, Б01-901 $2\ {\rm мартa}\ 2021\ {\rm \Gamma}.$

Содержание

1	Теоретические сведения		3
	1.1	Спектр функции пропускания амплитудной синусоидальной решётки	3
	1.2	Спектр функции пропускания щелевой диафрагмы и периодической последовательности таких функций	6
	1.3	Метод Аббе	8
		Мультипликация изображения предмета	9
2	Экс	спериментальная установка	10
3	Xoz	д работы	12

Цель работы: исследование особенностей применения пространственного преобразования Фурье для анализа дифракционных явлений.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

1 Теоретические сведения

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например,представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

1.1 Спектр функции пропускания амплитудной синусоидальной решётки

Рассмотрим вначале простой пример: дифракцию плоской монохроматической волны на синусоидальной амплитудной решётке. Пусть решётка с периодом d расположена в плоскости Z=0, а её штрихи ориентированы вдоль оси Y. Функция пропускания такой решётки имеет вид

$$t(x) = \beta + \alpha \cos(ux) = \beta + \alpha \frac{e^{iux} + e^{-iux}}{2}$$
 (1)

с постоянными $\alpha,\,\beta$ и $u~(u=2\pi/d$ - пространственная частота)

Если на решётку падает плоская монохроматическая волна, распространяющаяся вдоль оси Z,

$$E(\vec{r},t) = E_0 e^{-i(\omega t - kz)}$$
(2)

где ω — круговая частота, k — волновой вектор ($k=2\pi/\lambda$), E_0 — амплитуда, то на выходе из решётки мы получим три плоских волны:

$$E_1 = \beta \cdot E_0 e^{-i(\omega t - kz)};$$

$$E_2 = \frac{\alpha}{2} \cdot e^{-i(\omega t - ux - z\sqrt{k^2 - u^2})};$$

$$E_3 = \frac{\alpha}{2} \cdot e^{-i(\omega t + ux - z\sqrt{k^2 - u^2})}.$$
(3)

Действительно, легко видеть, что в плоскости Z=0 амплитуда колебаний, создаваемая суммой этих волн, описывается функцией (1), а фаза колебаний постоянна. Таким образом, в силу единственности решения волнового уравнения при заданных граничных условиях мы нашли искомую суперпозицию плоских волн. Каждая из этих трёх плоских волн фокусируется линзой в точку в задней фокальной плоскости.

Волна $E_1 = \beta \cdot E_0 \, \mathrm{e}^{-i(\omega t - kz)}$, распространяющаяся вдоль оси линзы (оси Z), фокусируется в начало координат, а волны E_2 и E_3 , распространяющиеся в направлении $\sin \theta = \pm (u/k)$, фокусируются в точках $x_{1-2} = \pm Fu/k = \pm F\lambda/d$ (F – фокусное расстояние линзы).

Функция t(x) с самого начала задана в виде суммы гармонических составляющих, т.е. в виде ряда Фурье. Каждой гармонической составляющей мы поставили в соответствие с (3) плоскую волну, собираемую линзой в точку в задней фокальной плоскости (её обычно называют фурье-плоскостью). Проводя аналогию с «временной» координатой, мы можем заключить, что спектр функции t(x) представлен в фурье-плоскости тремя пространственными частотами: 0, +u, -u; с амплитудами соответственно: $\beta, \alpha/2, \alpha/2$.

Теорема Фурье, доказываемая в курсе математического анализа, утверждает, что широкий класс периодических функций t(x) может быть представлен в виде суммы бесконечного множества гармонических составляющих, имеющих кратные частоты, т. е. в виде ряда Фурье. В комплексной форме этот ряд имеет вид

$$t(x) = \sum_{n = -\infty}^{\infty} c_n e^{inux}$$
 (4)

Рассуждая так же, как в случае амплитудной синусоидальной решётки, мы придём к выводу, что картина, наблюдаемая в фурьеплоскости, представляет собой эквидистантный набор точек с координатами

$$x_n = \frac{Fu}{k}n = \frac{F\lambda}{d}n$$

и амплитудами, пропорциональными c_n . Таким образом, с помощью линзы в оптике осуществляется пространственное преобразование Фурье: при освещении транспаранта плоской монохроматической волной картина, наблюдаемая в задней фокальной плоскости линзы, установленной за транспарантом, представляет собой фурье-образ функции пропускания транспаранта.

Последнее утверждение нуждается в уточнении. Распределение света в задней фокальной плоскости линзы будет воспроизводить распределение амплитуд плоских волн, продифрагировавших на транспаранте, но фазовые соотношения при этом, вообще говоря, оказываются искажёнными и не соответствуют аргументам комплексных амплитуд в выражении (4). При изменении расстояния между транспарантом и линзой фазовые соотношения изменяются. Можно доказать, что если транспарант установлен в передней фокальной плоскости линзы, то в её задней фокальной плоскости восстанавливаются и амплитудные, и фазовые соотношения между плоскими волнами, и таким образом строго осуществляется комплексное фурье-преобразование (4).

Во многих практически важных случаях функция пропускания транспаранта чисто амплитудная, как, например, в случае амплитудной синусоидальной решётки (1). Тогда для того, чтобы найти фурье-образ функции пропускания транспаранта, достаточно определить только пространственные частоты и соотношение между амплитудами плоских волн на выходе из транспаранта. Для амплитудной синусоидальной решётки мы получили три плоских волны с пространственными частотами 0, +u, -u и амплитудами, пропорциональными $\beta, \alpha/2, \alpha/2$. В соответствии с (1) мы можем утверждать, что нашли пространственный фурье-образ функции пропускания амплитудной синусоидальной решётки.

Интересно заметить, что наблюдаемая визуально картина фраунгоферовой дифракции в задней фокальной плоскости линзы не зависит от расстояния между транспарантом и линзой, так как глаз не реагирует на фазу волны, а регистрирует только интенсивность (усреднённый по времени квадрат амплитуды поля). Условия наблюдения дифракции Фраунгофера можно выполнить и без применения линзы, если наблюдать дифракционную картину на достаточно удалённом экране. Таким образом, пространственное преобразование Фурье может осуществляться и в свободном пространстве при наблюдении дифракции Фраунгофера.

1.2 Спектр функции пропускания щелевой диафрагмы и периодической последовательности таких функций

Картина дифракции Фраунгофера на щели и на дифракционной решётке, имеющей вид периодического набора щелей, хорошо известна из курса оптики. Спектр дифракционной решётки представлен на рис. 1. Если размеры дифракционной решётки неограничены, то дифракционные максимумы в спектре бесконечно узки. Чем меньше размер решётки (полное число щелей), тем шире каждый отдельный максимум.

Рис. 1: а) $g_1(x)$ — функция пропускания дифракционной решётки (последовательности прозрачных и непрозрачных полос); б) $G_1(u)$ — спектр функции пропускания дифракционной решётки

Направление на главные максимумы $\theta_n = un/k = \lambda n/d$ (n – целое число) определяется периодом решётки d, а распределение амплитуд в спектре (огибающая) – фурье-образом функции пропускания отдельного штриха.

$$g_2(x) = \begin{cases} 1, -D/2 \le x \le D/2; \\ 0, -D/2 > x > D/2. \end{cases}$$
 (5)

Так как функция $g_2(x)$ непериодична, её фурье-образ представляется непрерывным множеством точек и определяется интегральным преобразованием Фурье:

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(u) e^{iux} du,$$

$$G(u) = \int_{-\infty}^{\infty} g(x) e^{-iux} dx.$$
(6)

Говорят, что в таком виде g(x) и G(u) представляют собой пару преобразований Фурье: G(u) — спектр или фурье-образ функции g(x).

Рис. 2: а) $g_1(x)$ — функция пропускания щелевой диафрагмы; б) $G_1(u)$ — спектр функции пропускания щелевой диафрагмы

Спектр функции $g_2(x)$ хорошо известен, он соответствует картине дифракции Фраунгофера на щели и описывается функцией вида $\frac{\sin x}{x}$ (рис. 2).

Получим спектр $G_2(u)$ ещё раз с помощью преобразования Фурье:

$$G_2(u) = \int_{-\infty}^{\infty} g_2(x) e^{-iux} dx = \int_{D/2}^{D/2} e^{-iux} dx = D \frac{\sin(uD/2)}{uD/2}.$$

Отсюда видно, что направление на первый минимум θ_1 в огибающей спектра пропускания дифракционной решётки определяется шириной функции пропускания отдельного штриха: $\theta_1 = u/k = \lambda/D$. Если ввести понятия протяжённости функции пропускания транспаранта по координате (Δx) и ширины её спектра (Δu) , то

$$\Delta u \cdot \Delta x = const. \tag{7}$$

Для частного случая функции пропускания щелевой диафрагмы, определяя ширину её спектра по первому нулю функции $\frac{\sin(uD/2)}{uD/2}$, получаем

$$\Delta u \cdot \Delta x = \frac{2\pi}{D} \cdot D = 2\pi.$$

Соотношение (7) в волновой физике играет чрезвычайно важную роль. Его называют соотношением неопределённости.

Измерив на удалённом экране расстояния между максимумами или минимумами в спектре пропускания щели (рис. 26) или решётки (рис. 16), можно рассчитать размер щели или период решётки.

Размер малого объекта можно рассчитать, если получить его изображение, увеличенное с помощью линзы.

1.3 Метод Аббе

Рассмотрим кратко схему образования изображения. Пусть предмет расположен в плоскости P_1 на расстоянии от линзы большем, чем фокусное. Тогда существует сопряжённая предметной плоскости P_1 плоскость P_2 , где образуется изображение предмета-щели.

Рис. 3: Схема, поясняющая метод Аббе построения изображения

Аббе предложил рассматривать схему прохождения лучей от предмета к изображению в два этапа. Сначала рассматривается изображение спектр в задней фокальной плоскости Φ линзы $_1$ (это изображение Аббе назвал первичным).

Затем это изображение рассматривается как источник волн, создающий изображение предмет а в плоскости P_2 (вторичное изображение). Такой подход опирается на принцип Гюйгенса-Френеля, согласно которому любой участок волнового фронта можно рассматривать как источник излучения.

Картина, наблюдаемая в плоскости P_2 , зависит от распределения амплитуды и фазы в плос кости Φ – в первичном изображении. Если плоскость P_2 со- пряжена с предметной плоскостью P_1 , то фазовые соотношения в первичном изображении оказываются именно такими, что в плоскости P_2 мы наблюдаем соответственно увеличенное или уменьшенное изображение предмета. Поэтому иногда говорят, что линза дважды осуществляет преобразование Φ урье: сначала в задней

Рис. 4: а) $G_2(x)$ – спектр функции пропускания щелевой диафрагмы; x – координаты в задней фокальной плоскости линзы;

- б) $\Phi_1(x)$ функция пропускания решетки, установленной в фурьеплоскости линзы;
- в) $G_1(x)$ отфильтрованный спектр щелевой диафрагмы (ср. с рис. 1)

фокальной плоскости Φ линзы получается световое поле, соответствующее фурье-образу функции пропускания предмета (с точностью до фазы), а затем на промежутке между фокальной плоскостью Φ и плоскостью изображений P_2 осуществляется обратное преобразование Φ урье, и в плоскости P_2 восстанавливается таким образом изображение предмета.

1.4 Мультипликация изображения предмета

Рассмотрим, что произойдёт с изображением предмета, если мы установим в задней фокальной плоскости линзы решётку. Сопоставим вначале спектры щелевой диафрагмы (рис. 2)и периодической после-

довательности щелевых диафрагм (рис. 1).

Легко видеть, что спектр, изображённый на рис. 1, можно получить из спектра, изображённого на рис. 2, если исключить из него часть пространственных частот, поместив в фурье-плоскость решётку – последовательность прозрачных и непрозрачных линий (рис. 4).

Отфильтрованный таким образом спектр не будет отличаться ни по амплитуде, ни по фазе от спектра периодической последовательности щелевых диафрагм, и в плоскости P_2 мы получим вместо изображения одиночной щели изображение периодической последовательности шелей.

Эти рассуждения можно повторить и для предмета с произвольным спектром, необходимо только, чтобы период решётки был заметно меньше ширины спектра (точное соотношение можно получить из теоремы Котельникова). Таким образом, установив в задней фокальной плоскости линзы решётку, мы вместо изображения одиночного предмет а получим эквидистантный набор изображений таких предметов, т. е. осуществим мультипликацию изображения предмета (увидим изображение несуществующей «фиктивной» решётки).

Поменяв местами сетку и щель, можно проследить влияние размера щели на изображение сетки.

2 Экспериментальная установка

Схема установки представлена на рис. 5. Щель переменной ширины D, снабжённая микрометрическим винтом B, освещается параллельным пучком света, излучаемым лазером (радиус кривизны фронта волны велик по сравнению с фокусными расстояниями используемых в схеме линз).

Рис. 5: Схема для определения ширины щели с помощью линзы

Увеличенное изображение щели с помощью линзы 1 проециру-

ется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета – a_1 и до изображения – b_1 , т. е. от увеличения Γ системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1} \tag{8}$$

Изображение спектра щели образуется в задней фокальной плоскости Φ линзы $_1$. Размещая в плоскости Φ двумерные решётки-сетки, можно влиять на первичное изображение и получать мультиплицированное изображение щели.

Рис. 6: Схема для определения ширины щели по спектру

Рис. 7: Схема определения периода решётки по увеличенному изображению спектра

Убрав линзу, можно наблюдать на экране спектр щели (рис. 6), а если заменить щель решёткой – спектр решётки. Крупные решётки дают на экране очень мелкую картину спектра, которую трудно промерить. В этом случае используют две линзы (рис. 7): первая (длиннофокусная) формирует первичное изображение — спектр, вторая (короткофокусная) — проецирует на экран увеличенное изображение спектра.

3 Ход работы