AP Calculus AB 2010 Form B #5 No Calculator

#5 Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$.

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for -1 < x < 1, sketch the solution curve that passes through the point (0,-1).

(b) While the slope field in part (a) is drawn only at twelve points, it is defined at every point in the xy-plane for which $y \neq 0$. Describe all points in the xy-plane, $y \ne 0$, for which $\frac{dy}{dx} = -1$.

(c) Find the particular solution y = f(x) to the given differential

AP Calculus AB 2007 Form B #5 No Calculator

#5 Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y - 1$

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.

(c) Let y = f(x) be a solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, relative maximum, or neither at x = 0? Justify your answer. (d) Find the values of m and b for which y = mx + b is a solution to the differential equation.

AP Calculus AB 2010 #6 No Calculator

Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3 (1 + 3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

- (a) Write an equation of the line tangent to the graph of y = f(x) at x = 1.
- (b) Use the tangent line from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater or less than f(1.1)? Explain your reasoning. (c) Find the particular solution y = f(x) with the initial condition f(1) = 2.

AP Calculus AP 2009 #5 No Calculator

х	2	3	5	8	13
f(x)	1	4	-2	3	6

Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \le x \le 13$.

- (a) Estimate f'(4). Show the work that leads to your answer.
- (b) Evaluate $\int_{2}^{13} (3-5f'(x)) dx$. Show the work that leads to your answer.
- (c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) dx$. Show the work that leads to your answer.
- (d) Suppose that f'(5)=3 and f''(x)<0 for all x in the closed interval $5 \le x \le 8$. Use the line tangent to the graph of f at x=5 to show that $f(7) \le 4$. Use the secant line for the graph of f on $5 \le x \le 8$ to show that $f(7) \ge \frac{4}{3}$

AP Calculus AB 2006 #5 No Calculator

Consider the differential equation $\frac{dy}{dx} = \frac{1+y}{x}$, where $x \neq 0$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.
- (b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1)=1 and state its domain.

