

Chapter 4 Sampling and Aliasing

SYSTEMS Process Signals.

- PROCESSING GOALS:
 - Change x(t) into y(t).
 - For example, more BASS
 - Improve x(t), e.g., image deblurring

• Extract information from x(t).

System IMPLEMENTATION

- Discrete-time signal
 - The time variable is discrete.
- DIGITAL/MICROPROCESSOR
 - Digital signal: The amplitude is also discrete.
- A-to-D
 - Convert x(t) to numbers stored in memory.
- D-to-A
 - Convert y[n] back to a "continuous-time" signal, y(t).
 - y[n] is called a "discrete-time" signal.

SAMPLING x(t)

SAMPLING PROCESS

- Convert x(t) to numbers x[n].
- "n" is an integer; x[n] is a sequence of values.
- Think of "n" as the storage address in memory.
- UNIFORM SAMPLING at $t = nT_s$
 - IDEAL: $x[n] = x(nT_s)$
- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$: NUMBER of SAMPLES PER SECOND
 - □ T_s = 125 microsec $\rightarrow f_s$ = 8000 samples/sec = 8000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s) = x(n/f_s)$

SAMPLING RATE, f_s

5 CH 학교 NG UNIVERSITY

STORING DIGITAL SOUND

- x[n] is a SAMPLED SINUSOID.
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second.
 - 16-bit samples
 - Stereo uses 2 channels.
- The number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes.

SAMPLING THEOREM

- HOW OFTEN?
 - DEPENDS on the FREQUENCY of the SINUSOID.
 - ANSWERED by NYQUIST-SHANNON Theorem.
 - ALSO DEPENDS on "<u>RECONSTRUCTION</u>".

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

- Nyquist rate
 - The minimum sampling rate of 2f_{max}

Reconstruction? Which One?

• Given the samples, draw a sinusoid through the values.

$$x[n] = \cos(0.4\pi n)$$
 When n is an integer, $\cos(0.4\pi n) = \cos(2.4\pi n)$.

DISCRETE-TIME SINUSOID

- Change x(t) into x[n].
- DERIVATION

$$x(t) = A\cos(\omega t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$$

$$x[n] = A\cos((\omega T_s)n + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$

DEFINE DISCRETE-TIME(DIGITAL) FREQUENCY.

DISCRETE-TIME(DIGITAL) FREQUENCY $\hat{\omega}$

- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency.
- Since the signal is assumed to contain only components with frequencies up to $f_s/2$, $\hat{\omega}$ varies from $-\pi$ to π .
- UNITS are radians, <u>not</u> rad/sec.
 - DIGITAL FREQUENCY is **NORMALIZED**.

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

SPECTRUM (DIGITAL) (1)

100-Hz Cosine Wave: Sampled with $T_s = 1$ msec (1000 Hz)

$$f_s = 1 \,\mathrm{kHz}$$

$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$

$$\hat{\omega} = 2\pi \frac{f}{f_s}$$

SPECTRUM (DIGITAL) (2)

100-Hz Cosine Wave: Sampled with $T_s = 10 \text{ msec } (100 \text{ Hz})$

$$f_s = 100 \,\mathrm{Hz}$$

$$x[n] = A\cos(2\pi(100)(n/100) + \varphi)$$

x[n] is zero frequency???

$$\hat{\omega} = 2\pi \frac{f}{f_s}$$

The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential.
 - Called <u>ALIASING</u>
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with a period 2π because

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

ALIASING DERIVATION (1)

• Other frequencies give the same $\hat{\omega}$.

$$x_1(t) = \cos(400\pi t)$$
 sampled at $f_s = 1000$ Hz $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$ $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000$ Hz $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$ $x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$ $\Rightarrow x_2[n] = x_1[n]$ $2400\pi - 400\pi = 2\pi(1000)$

• Other frequencies give the same $\hat{\omega}$.

$$x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$$

$$x(n/f_s) = A\cos(2\pi(f + \ell f_s)n/f_s + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

$$\hat{\omega} = \frac{2\pi (f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

ALIASING CONCLUSIONS

- ADDING f_s , $2f_s$, or $-f_s$ to the FREQ. of x(t) gives exactly the same x[n].
 - The samples, $x[n] = x(n/f_s)$ are EXACTLY THE <u>SAME VALUES</u>.
- GIVEN x[n], WE CAN'T DISTINGUISH f_o FROM $(f_o + f_s)$ or $(f_o + 2f_s)$.

NORMALIZED FREQUENCY

DIGITAL FREQUENCY

Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

Normalized Cyclic Frequency

$$\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$$

SPECTRUM for x[n]

- PLOT versus NORMALIZED FREQUENCY
- INCLUDE ALL SPECTRUM LINES.
 - ALIASES
 - ADD MULTIPLES of 2π.
 - SUBTRACT MULTIPLES of 2π.
 - FOLDED ALIASES
 - ALIASES of NEGATIVE FREQS.

SPECTRUM (MORE LINES)

100-Hz Cosine Wave: Sampled with $T_s = 1$ msec (1000 Hz)

$$x[n] = A\cos(2\pi(100)(n/1000) + \varphi)$$

SPECTRUM (MORE LINES) (2)

- $x[n] = A\cos(0.2\pi n + \phi)$
- FREQS @ 0.2π and -0.2π
- ALIASES:
 - $[2.2\pi, 4.2\pi, 6.2\pi, ...]$ & $\{-1.8\pi, -3.8\pi, ...\}$
 - EX: $x[n] = A\cos(4.2\pi n + \phi)$
- ALIASES of NEGATIVE FREQ.:
 - $(1.8\pi, 3.8\pi, 5.8\pi, ...) & \{-2.2\pi, -4.2\pi, ...\}$

SPECTRUM (ALIASING CASE)

100-Hz Cosine Wave: Sampled with $T_s = 12.5$ msec (80 Hz)

$$x[n] = A\cos(2\pi(100)(n/80) + \varphi)$$

FOLDING DERIVATION

• Negative frequencies can give the same $\hat{\omega}$.

$$x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$$

$$x(t) = A\cos(2\pi(-f + \ell f_s)t - \varphi)$$

$$x[n] = x(nT_s) = A\cos(2\pi(-f + \ell f_s)nT_s - \varphi)$$

$$x[n] = A\cos((-2\pi fT_s)n + (2\pi \ell f_sT_s)n - \varphi)$$

$$x[n] = A\cos((2\pi fT_s)n - 2\pi \ell n + \varphi) \cos(-\theta) = \cos\theta$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$
SAME DIGITAL SIGNAL

FOLDING (a type of ALIASING)

- MANY x(t) give IDENTICAL x[n].
- CAN'T TELL f_o FROM (f_s-f_o) , $(2f_s-f_o)$, or $(3f_s-f_o)$.
- EXAMPLE:
 - y(t) has a 1000 Hz component.
 - SAMPLING FREQ = 1500 Hz
 - WHAT is the "FOLDED" ALIAS?

$$-1000 + 1500 \rightarrow 500$$

DIGITAL FREQUENCY

• DIGITAL FREQUENCY $\hat{\omega}$

Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell \qquad \text{ALIASING}$$

$$\hat{\omega} = \omega T_s = -\frac{2\pi f}{f_s} + 2\pi \ell$$

FOLDED ALIAS

SPECTRUM (FOLDING CASE)

100-Hz Cosine Wave: Sampled with $T_s = 8$ msec (125 Hz)

$$x[n] = A\cos(2\pi(100)(n/125) + \varphi)$$

FOLDING DIAGRAM

Figure 4-12 Folding of a sinusoid sampled at $f_s = 2000$ samples/sec. The apparent frequency is the lowest frequency of a sinusoid that has exactly the same samples as the input sinusoid.

ALIASING & FOLDING

- $x(t) = SINUSOID @ f_o$
- SAMPLED SIGNAL: $x[n] = x(n/f_s)$
- ALIASING:
 - x[n] COULD BE FROM $(f_o + f_s)$, $(f_o f_s)$, $(f_o + 2f_s)$, $(f_o 2f_s)$, etc.
- FOLDING:
 - A type of <u>ALIASING</u>
 - ⁿ x[n] COULD BE FROM $(-f_o + f_s)$, $(-f_o f_s)$, $(-f_o + 2f_s)$, $(-f_o 2f_s)$, et c.

FREQUENCY DOMAINS

D-to-A Reconstruction

- Create continuous y(t) from y[n].
 - IDEAL
 - If you have a formula for y[n]
 - Problem Replace n in y[n] with $f_s t$. Recall $t = nT_s$ (UNIFORM SAMPLING).
 - $y[n] = A\cos(0.2\pi n + \phi)$ with $f_s = 8000$ Hz
 - $y(t) = A\cos(2\pi(800)t + \phi)$

D-to-A is AMBIGUOUS!

- ALIASING
 - Given y[n], which y(t) do we pick ? ? ?
 - INFINITE NUMBER of y(t)
 - PASSING THRU THE SAMPLES, y[n]
 - D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT.
- RECONSTRUCT THE SMOOTHEST ONE.
 - THE LOWEST FREQ, if y[n] is a sinusoid.

SPECTRUM (ALIASING CASE)

100-Hz Cosine Wave: Sampled with $T_s = 12.5$ msec (80 Hz)

$$x[n] = A\cos(2\pi(100)(n/80) + \varphi)$$

Reconstruction (D-to-A)

- CONVERT A STREAM of NUMBERS to x(t).
- "CONNECT THE DOTS"
- INTERPOLATION

SAMPLE & HOLD DEVICE

- CONVERT y[n] to y(t).
 - y[n] should be the value of y(t) at $t = nT_s$.
 - Make y(t) equal to y[n] for
 - nT_s 0.5 T_s < t < nT_s + 0.5 T_s

SQUARE PULSE CASE

Sampling and Zero-Order Reconstruction: $f_0 = 83 f_s = 200$

OVER-SAMPLING CASE

Sampling and Zero-Order Reconstruction: $f_0 = 83$ $f_s = 800$

Original and Reconstructed Waveforms

MATH MODEL for D-to-A

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t - nT_s)$$

SQUARE PULSE:

$$p(t) = \begin{cases} 1 & -\frac{1}{2}T_s < t \le \frac{1}{2}T_s \\ 0 & \text{otherwise} \end{cases}$$

EXPAND the SUMMATION.

$$\sum_{n=-\infty}^{\infty} y[n]p(t-nT_s) =$$

...+
$$y[0]p(t) + y[1]p(t - T_s) + y[2]p(t - 2T_s) + ...$$

- SUM of SHIFTED PULSES p(t-nT_s)
 - "WEIGHTED" by y[n]
 - CENTERED at t=nT_s
 - extstyle ext
 - RESTORES in a "REAL TIME".

Figure 4.17 Four different pulses for D-to-C conversion. The sampling period is $T_s = 0.005$, i.e., $f_s = 200$ Hz. Note that the duration of each pulse is approximately one or two times T_s .

TRIANGULAR PULSE (2 x the Nyquist rate)

OPTIMAL PULSE?

CALLED
"BANDLIMITED
INTERPOLATION"

$$p(t) = \frac{\sin \frac{\pi t}{T_s}}{\frac{\pi t}{T_s}} \quad \text{for } -\infty < t < \infty$$

$$p(t) = 0$$
 for $t = \pm T_s, \pm 2T_s,...$

D-to-A Reconstruction

- Create continuous y(t) from y[n].
 - REALISTIC CONSTRAINT: SMOOTH y(t).
 - Use the lowest possible frequency.
 - y[n] is a list of numbers.
 - How fast?
 - In MATLAB: soundsc(yy,fs)

Thank you

- Homework
 - P-4.1, 3, 4, 5, 6, 11, 12, 13, 17, & 18
- Reading assignment
 - Section 5-1, 2, & 3

