Exercices

DÉRIVATION ET ÉTUDE DE FONCTIONS

Exercice 1

f est la fonction définie sur \mathbb{R} par $f(x) = x^2 + 4x - 5$. f' est la fonction dérivée de f sur \mathbb{R} .

- 1. Déterminer l'expression de f'.
- **2.** Étudier le signe de f' puis en déduire les variations de f.
- 3. En déduire les potentiels extremums locaux. Sont-ils globaux?

Correction

1. Soit $x \in \mathbb{R}$, on a : f'(x) = 2x + 4.

2.

х	$-\infty$		-2		+∞
f'(x)		-	0	+	
f(x)	+∞		-9		+∞

3. f(x) est un extremum local $\Rightarrow f'(x) = 0$.

Ainsi, le seul candidat ici est f(-2) qui est un minimum global à partir du tableau de variations.

Exercice 2

Étudier les variations des fonctions suivantes. En déduire les potentiels extremums locaux et indiquer lesquels sont globaux.

- 1. f définie sur \mathbb{R} par $f(x) = (-3x+2)^3$.
- **2.** g définie sur \mathbb{R}^* par $g(x) = -\frac{2}{x}$.
- **3.** *h* définie sur [2; +\infty] par $h(x) = -\sqrt{2x-4}$.

Correction

1. Soit $x \in \mathbb{R}$, on a $f'(x) = -3 \times 3(-3x+2)^2 = -9(-3x+2)^2$. On peut ainsi donner le tableau de variations.

 $f'\left(\frac{2}{3}\right) = 0$ donc $f\left(\frac{2}{3}\right)$ pourrait être un extremum local mais on voit sur le tableau de variations qu'il n'en est pas un.

2. Soit $x \in \mathbb{R}^*$, on a $g'(x) = \frac{2}{x^2}$.

On peut ainsi donner le tableau de variations.

x	$-\infty$		0)	+∞
g'(x)		+		+	
g(x)	-∞		+∞		+∞

Il n'y aucun extremum local car la dérivée est strictement positive.

3. Soit $x \in \mathbb{R}$, on a $h'(x) = -\frac{2}{2\sqrt{2x-4}} = -\frac{1}{\sqrt{2x-4}}$.

On peut ainsi donner le tableau de variations.

x	2	+∞
h'(x)	_	
h(x)	0	-∞

h(2) est un maximum global.

Exercice 3

Soit f définie par $f(x) = \frac{x^2 + 3}{x + 1}$.

- 1. Préciser l'ensemble de définition de f.
- 2. Cacluler f'(x) puis vérifier que $f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$.
- **3.** Dresser le tableau de variations de f.
- **4.** Donner l'équation réduite de la tangente de la courbe de f au point d'abscisse 3.

Correction

- **1.** f est définie sur $I = \mathbb{R} \setminus \{-1\} =]-\infty; 1[\cup]1; +\infty[$ car 1 est valeur interdite.
- **2.** On dérive un quotient. Soit $x \in I$.

$$f'(x) = \frac{2x(x+1) - 1 \times (x^2 + 3)}{(x+1)^2} = \frac{x^2 + 2x - 3}{(x+1)^2}$$

Si on développe (x-1)(x+3), alors $\frac{(x-1)(x+3)}{(x+1)^2} = \frac{x^2+2x-3}{(x+1)^2} = f'(x)$.

3. Étudions d'abord le signe de la dérivée f'.

x	$-\infty$		-3		-1		1		+∞
x – 1		_		_		_	0	+	
x + 3		-	0	+		+		+	
$(x+1)^2$		+		+	0	+		+	
f'(x)		+	0	_		_	0	+	

On peut maintenant donner les variations de f.

X	-∞ -3	-1	1	+∞
f'(x)	+ 0	_	- 0	+
f(x)				

4. Une équation de la tangente de la courbe de f au point d'abscisse 3 est donnée par :

$$T_3(f): y = f'(3)(x-3) + f(3).$$

On a
$$f'(3) = \frac{(3-1)(3+3)}{(3+1)^2} = \frac{2\times 6}{16} = \frac{2}{3}$$
 et $f(3) = \frac{3^2+3}{3+1} = 4$.

Ainsi,
$$T_3(f)$$
: $y = \frac{2}{3}(x-3) + 4 = \frac{2}{3}x + 2$.

Exercice 4

Soit f_m définie sur \mathbb{R} par $f_m(x) = mx^4 + x^2 - m$ où $m \in \mathbb{R}^*$. \mathscr{C}_m est la courbe représentative de f_m dans un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$.

1. Démontrer que les deux courbes \mathscr{C}_1 et \mathscr{C}_{-1} ont deux points d'intersection A et B dont on précisera les coordonnées.

On notera A le point dont l'abscisse est positive.

- **2.** Vérifier que, pour tout $m \in \mathbb{R}^*$, \mathscr{C}_m passe par les deux points A et B.
- **3.** Calculer m pour que la droite (OA) soit tangente à \mathscr{C}_m en A.
- **4.** Dans quel ensemble doit se trouver m pour que la fonction f_m admette un seul extremum?
- **5.** Deux courbes sont dites tangentes en un point M lorsque le point M appartient aux deux courbes et les deux courbes admettent en M une tangente commune.

Déterminer m pour que \mathscr{C}_m soit tangente en A à la parabole \mathscr{P} d'équation $y = -x^2 + 6x - 4$.

Correction

1. Chercher les points d'intersection de \mathscr{C}_1 et \mathscr{C}_{-1} revient à résoudre le système suivant.

$$\begin{cases} y = f_1(x) \\ y = f_{-1}(x) \end{cases} \Leftrightarrow \begin{cases} y = x^4 + x^2 - 1 \\ y = -x^4 + x^2 + 1 \end{cases}.$$

En additionnant les deux équations, on a : $2y = 2x^2 \Leftrightarrow y = x^2$. En remplaçant dans la seconde ligne, on a :

$$\begin{cases} y = f_1(x) \\ y = f_{-1}(x) \end{cases} \Leftrightarrow \begin{cases} y = x^2 \\ y = -x^4 + x^2 + 1 \end{cases} \Leftrightarrow \begin{cases} y = x^2 \\ x^2 = -x^4 + x^2 + 1 \end{cases} \Leftrightarrow \begin{cases} y = x^2 \\ x^4 = 1 \end{cases}.$$

Ainsi, les coordonnées des solutions sont A(1;1) et B(-1;1).

2. Soit $m \in \mathbb{R}^*$.

Vérifions que $A \in \mathcal{C}_m$, c'est-à-dire, $f_m(1) = 1$.

$$f_m(1) = m \times 1^4 + 1^2 - m = m + 1 - m = 1$$

Vérifions que $B \in \mathcal{C}_m$, c'est-à-dire, $f_m(-1) = 1$.

$$f_m(1) = m \times (-1)^4 + (-1)^2 - m = m + 1 - m = 1$$

3. Déterminons d'abord l'équation réduite de (*OA*).

Le coefficient directeur est égal à $\frac{1-0}{1-0} = 1$ et l'ordonnée à l'origine nulle car O(0;0). Donc (OA): y = x.

Déterminons maintenant l'équation de la tangente T de \mathscr{C}_m en A.

$$T: y = f'_m(1)(x-1) + f_m(1)$$

On a pour tout $x \in \mathbb{R}$, $f'_m(x) = 4mx^3 + 2x$ donc $f'_m(1) = 4m + 2$.

$$T: y = (4m+2)(x-1)+1 = (4m+2)x+(1-4m-2) = (4m+2)x-1-4m$$

Pour que T et (OA) aient la même équation réduite, cherchons m tel que 4m+2=1.

$$4m+2=1$$

$$4m=-1$$

$$m=-\frac{1}{4}$$

Pour
$$m = -\frac{1}{4}$$
, on a bien $T: y = x$.

4. Si $f_m(x)$ est un extremum local alors $f'_m(x) = 0$. Cherchons les potentiels extremums locaux pour f_m :

$$f'_m(x) = 0 \Leftrightarrow 4mx^3 + 2x = 0$$
$$\Leftrightarrow (4mx^2 + 2)x = 0$$
$$\Leftrightarrow x^2 = -\frac{1}{2m} \text{ ou } x = 0.$$

$1^{er} cas : m > 0$

Il n'y a qu'un seul extremum local potentiel : f(0) = -m et la dérivée ne change de signe qu'en 0 en étant strictement positive pour x > 0. Construisons un tableau de variations :

x	$-\infty$		0		+∞
f'(x)		-	0	+	
f(x)	+∞		-m		+∞

-m est l'unique extremum : le minimum global de f_m .

$2^{nd} cas: m < 0$

$$f_m'(x)$$
 possède trois racines : $-\sqrt{-\frac{1}{2m}}$, 0 et $\sqrt{-\frac{1}{2m}}$.

On a d'abord,
$$f_m\left(-\sqrt{-\frac{1}{2m}}\right) = f_m\left(\sqrt{-\frac{1}{2m}}\right) = m\frac{1}{4m^2} - \frac{1}{2m} - m = -\frac{1}{4m} - m$$

Construisons un tableau de variations :

x	-∞	-1	$\sqrt{-\frac{1}{2m}}$		0		$\sqrt{-\frac{1}{2m}}$		+∞
$4mx^2 + 2$		_	0	+		+	0	_	
x		_		_	0	+		+	
f'(x)		+	0	_	0	+	0	_	
f(x)	-∞	- - 4	$\frac{1}{m}-m$		-m	, /	$-\frac{1}{4m}-m$		` -∞

Il y a deux extremums locaux : $-\frac{1}{4m} - m$ atteint deux fois en un maximum global, et -m un minimum local mais pas global.

Pour conclure, $\boxed{m \text{ doit appartenir à }]-\infty;0[}$ pour que f_m n'admette qu'un seul extremum.

5. Déterminons l'équation de la tangente T' de \mathscr{P} en A.

On définit g telle que \mathcal{P} : $y = g(x) = -x^2 + 6x - 4$. g est dérivable sur \mathbb{R} et pour x réel, g'(x) = -2x + 6.

Finalement, T': y = g'(1)(x-1) + g(1) = 4(x-1) + 1 = 4x - 3.

T: y=(4m+2)x-1-4m et T': y=4x-3 ont la même équation réduite si, et seulement si, $m=\frac{1}{2}$.