1 Lecture 20-21

1.1 Topics

- Infinite Series
- Telescoping Series, Geometric Series
- $\bullet\,$ Algebraic Limit Theorem for Series
- Divergence Test
- Cauchy Criterion for Series
- Absolute Convergence Test

1.2 Infinite Series

Consider the following expression:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

How can we make sense of the infinite sum above? More generally, let (a_n) be a sequence of real numbers. Then what does the following expression mean?

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots ?$$

Definition (Infinite Series). Let $(X, \|\cdot\|)$ be a normed space. Let (x_n) be a sequence in X.

(*) An expression of the form

$$\sum_{n=1}^{\infty} x_n = x_1 + x_2 + x_3 + \cdots$$

is called an infinite series.

- (*) x_1, x_2, \ldots are called the **terms** of this infinite series.
- (*) The corresponding sequence of **partial sums** is defined by

 $\forall m \in \mathbb{N} \ s_m = \text{(finite) sum of the first } m \text{ terms of the series;}$

that is,

$$s_{1} = x_{1}$$

$$s_{2} = x_{1} + x_{2}$$

$$s_{3} = x_{1} + x_{2} + x_{3}$$

$$\vdots$$

$$s_{m} = x_{1} + x_{2} + \dots + x_{m}$$

$$\vdots$$

- 1. We say that the infinite series $\sum_{n=1}^{\infty} x_n$ converges to $L \in X$ (and we write $\sum_{n=1}^{\infty} x_n = L$) if $\lim_{n \to \infty} s_m = L$.
- 2. We say that the infinite series **diverges**, if (s_m) diverges.
- 3. If $X = \mathbb{R}$ and $s_m \to \infty$, we write $\sum_{n=1}^{\infty} x_n = \infty$.
- (*) If $X = \mathbb{R}$ and $s_m \to -\infty$, we write $\sum_{n=1}^{\infty} x_n = -\infty$.

Remark (1). Given an infinite series $\sum_{n=1}^{\infty} x_n$, it is important to keep a clear distinction between

- (a) the sequence of terms: $(x_1, x_2, x_3, ...)$
- (b) the sequence of partial sums: $(s_1, s_2, s_3, ...)$.

Remark (2). We may sometimes consider infinite series where the summation begins with n = 0 or $n = n_0$ for some integer n_0 different from 1.

As we shall see, some of our theorems apply specifically to series in \mathbb{R} or to series with terms in $[0, \infty)$. Also, in our examples, we will primarily focus on series in \mathbb{R} ; however, we will also consider encounter highly useful theorems that hold in more general normed spaces.

In most cases it is difficult (or even impossible) to find a simple formula for the partial sum s_m . However, there are two types of series for which we can easily find a simple formula for the partial sums. These two types are:

- (1) Telescoping Series
- (2) Geometric Series

1.3 Telescoping Series, Geometric Series

Example. Consider the following series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Notice that $x_n = \frac{1}{n} - \frac{1}{n+1}$. The corresponding sequence of partial sums is

$$s_1 = 1 - \frac{1}{2}$$

$$s_2 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

$$s_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 - \frac{1}{4}$$

:

$$s_m = \sum_{n=1}^m \left(\frac{1}{n} - \frac{1}{n+1}\right) = \left(\sum_{n=1}^m \frac{1}{n}\right) - \left(\sum_{n=1}^m \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{m+1}.$$

Clearly, we see that

$$\lim_{m \to \infty} s_m = \lim_{m \to \infty} \left[1 - \frac{1}{m+1} \right] = 1.$$

Hence, $\sum_{n=1}^{\infty \frac{1}{n(n+1)}}$ converges to 1.

In general, a telescoping series is an infinite series where partial sums eventually have a finite number of terms after cancellation. For example, if (y_n) is a sequence in the normed space $(X, \|\cdot\|)$, then $\sum_{n=1}^{\infty} (y_n - y_{n+1})$ is a telescoping series; that is,

$$s_m = \sum_{n=1}^m (y_n - y_{n+1}) = \left(\sum_{n=1}^m y_n\right) - \left(\sum_{n=1}^m y_{n+1}\right) = [y_1 + y_2 + \dots + y_m] - [y_2 + y_3 + \dots + y_{m+1}]$$
$$= y_1 - y_m.$$

1.4 Geometric Series 1 LECTURE 20-21

1.4 Geometric Series

Let k be a fixed integer and let $r \neq 0$ be a fixed real number. The infinite series $\sum_{n=k}^{\infty} r^n = r^k + r^{k+1} + r^{k+2} + \cdots$ is called a **geometric series** with common ration "r". For example,

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \text{ is a geometric series with common ratio } \frac{1}{2}.$$

Another example is that

$$\sum_{n=1}^{\infty} \frac{7^n}{29^n}$$
 is a geometric series with common ratio $\frac{7}{29}$.

A non-example is the following:

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

We can easily find a formula for the $m{\rm th}$ partial sum of $\sum_{n=k}^{\infty} r^k$ where

$$s_{1} = r^{k}$$

$$s_{2} = r^{k} + r^{k+1}$$

$$s_{3} = r^{k} + r^{k+1} + r^{k+2}$$

$$\vdots$$

$$s_{m} = r^{k} + r^{k+1} + \dots + r^{k+m-1}$$
(*)

Now, if r = 1, we have

$$s_m = \underbrace{1 + 1 + \dots + 1}_{m \text{summands}} = m.$$

If $r \neq 1$, then multiply both sides of (*) by r:

$$rs_m = r^{k+1} + r^{k+2} + \dots + r^{k+m}.$$
 (**)

Subtracting (**) from (*), we get

$$s_m - rs_m = r^k - r^{k+m}.$$

Since $r \neq 1$, we have

$$s_m = \frac{r^k - r^{k+m}}{1 - r} = \frac{r^k (1 - r^m)}{1 - r}.$$

Note that

- (i) If |r| < 1, then $\lim r^m = 0$.
- (ii) If |r| > 1 or r = -1, then $\lim_{n \to \infty} r^m$ does not exists.

Hence, we have

$$\lim_{m \to \infty} s_m = \begin{cases} \frac{r^k}{1-r} & \text{if} |r| < 1\\ \text{DNE} & \text{if} |r| \geq 1. \end{cases}$$

Thus,

$$\sum_{n=k}^{\infty} r^n = \begin{cases} \frac{r^k}{1-r} & \text{if} |r| < 1\\ \text{diverges} & \text{if} |r| \geq 1. \end{cases}$$

Example. •
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

Observe that

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\left(\frac{1}{2}\right)^1}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

• $\sum_{n=4}^{\infty} \left(\frac{1}{2}\right)^n$

Observe that

$$\sum_{n=4}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\left(\frac{1}{2}\right)^4}{1 - \frac{1}{2}} = \frac{\left(\frac{1}{2}\right)^4}{\left(\frac{1}{2}\right)} = \frac{1}{8}.$$

1.5 Algebraic Limit Theorem for Series

Theorem. Let $(X, \|\cdot\|)$ be a normed space. Let (a_n) and (b_n) be two sequence in X. Suppose that

$$\sum_{n=1}^{\infty} a_n = A \ (A \in X), \ \sum_{n=1}^{\infty} b_n = B \ (B \in X).$$

Then

- (i) For any scalar λ , $\sum_{n=1}^{\infty} (\lambda a_n) = \lambda A$.
- (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = A + B$.

Proof. Can easily be proven via the Algebraic Limit Theorem for Sequences.

1.6 Divergence Test

Theorem (Divergence Test). Let $(X, \|\cdot\|)$ be a normed space. Let (x_n) be a sequence in X. If $\sum_{n=1}^{\infty} x_n$ converges, then $\lim_{n\to\infty} x_n = 0$.

Proof. Let $s_n = x_1 + \cdots + x_n$. Let $L = \sum_{n=1}^{\infty} x_n$. Note that

$$\sum_{n=1}^{\infty} x_n = L \Longrightarrow \lim_{n \to \infty} s_n = L.$$

Also, note that

$$\forall n \ge 2 \ x_n = s_n - s_{n-1}.$$

Note that $\lim s_n = L$ and $\lim s_{n-1} = L$. Therefore,

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (s_n - s_{n-1}) = L - L = 0$$

by the Algebraic Limit Theorem for normed spaces.

Remark. Note that the divergence test is just the contrapositive of the above.

Example. • $\sum_{n=1}^{\infty} (-1)^n$ diverges because $\lim_{n\to\infty} (-1)^n$ does not exist.

• $\sum_{n=1}^{\infty} \frac{3n+1}{7n-4}$ diverges because $\lim_{n\to\infty} \frac{3n+1}{7n-4} = \frac{3}{7} \neq 0$.

From the above statements, we can now see make two key observations:

- If $\lim_{n\to\infty} x_n = 0$, then $\sum_{n=1}^{\infty} x_n$ may or may not converge.
- If $\lim_{n\to\infty} x_n \neq 0$, then $\sum_{n=1}^{\infty} x_n$ diverges.

As for the first observation above, we see that $\sum \frac{1}{n}$ diverges, but $\sum \frac{1}{n^2}$ converges.

1.7 Cauchy Criterion for Series

Theorem (Cauchy Criterion). Let $(X, \|\cdot\|)$ be a complete normed space. Let (x_n) be a sequence in X. Then

$$\sum_{k=1}^{\infty} x_k \text{ converges } \Longleftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > m > N \quad \|\sum_{k=1}^n x_k\| < \varepsilon.$$

Proof. Let $s_n = x_1 + \cdots + x_k$. Assuming that

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n x_k \right\|$$

where n > m and from the fact that

$$s_n - s_m = (x_1 + \dots + x_m + \dots + x_n) - (x_1 + \dots + x_m)$$

= $\sum_{k=m+1}^n s_k$.

Then we have

$$\sum_{k=1}^{\infty} x_k \text{ converges} \iff (s_k) \text{ converges}$$

$$\iff (s_k) \text{ is Cauchy}$$

$$\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > m > N \quad \|s_n - s_m\| < \varepsilon$$

$$\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > m > N \quad \|\sum_{k=m+1}^n x_k\| < \varepsilon$$

as desired.

From here, we will refer to complete normed spaces as Banach spaces.

1.8 Absolute Convergence Test

Theorem (Absolute Convergence Test). Let $(X, \|\cdot\|)$ be a Banach Space. Let (x_n) be a sequence in X. If $\sum_{n=1}^{\infty} \|x_n\|$ converges, then $\sum_{n=1}^{\infty} x_n$ converges.

Proof. By the Cauchy Criterion for series, it suffices to show that

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > m > N \Big\| \sum_{k=m+1}^{n} x_k \Big\| < \varepsilon.$$
 (*)

Since $\sum_{k=1}^{\infty} ||x_k||$ converges, and since \mathbb{R} is complete, it follows from the Cauchy Criterion for series that there exists \hat{N} such that

$$\forall n > m > \hat{N} \mid \sum_{k=m+1}^{n} ||x_k||| < \varepsilon.$$

We claim that \hat{N} is the same N we were looking for. Hence, if $n > m > \hat{N}$, then we have

$$\left\| \sum_{k=m+1}^{n} x_{k} \right\| \leq \sum_{k=m+1}^{n} \|x_{k}\| = \left| \sum_{k=m+1}^{n} \|x_{k}\| \right| < \varepsilon$$

as desired.

Please take note of the following observations:

- (1) If $\sum_{n=1}^{\infty} ||x_n||$ converges, then $\sum_{n=1}^{\infty} x_n$ converges (in Banach spaces).
- (2) If $\sum_{n=1}^{\infty} ||x_n||$ diverges, then $\sum_{n=1}^{\infty} x_n$ may converge or diverge.

From (2), we shall see (in the next lecture) that

- (1) $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right|$ diverges but $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.
- (2) $\sum_{n=1}^{\infty} |(-1)^n|$ diverges, also $\sum_{n=1}^{\infty} (-1)^n$ diverges (by the divergence test).

Definition (Absolute Convergence and Conditional Convergence). We say that a series $\sum x_n$ absolutely converges if $\sum ||x_n||$ converges and $\sum x_n$ converges. We say that $\sum x_n$ conditionally converges if $\sum ||x_n||$ diverges but $\sum x_n$ converges.

Example (Conditionally Convergent). Consider $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. We see that this series is conditionally convergent since

$$\left|\frac{(-1)^{n+1}}{n}\right| = \frac{1}{n} \to 0$$

which tell us that the above series diverges by the divergence test. But the above series converges via the Leibniz Test (As we shall see in the next lecture).

2 Lecture 21-22

2.1 Topics

- Cauchy Condensation Test
- Comparison Test
- More on \limsup and \liminf
- Root Test
- Ratio Test
- Dirichlet's Test

Theorem (Cauchy Condensation Test). Assume $a_n \ge 0$ for all n, and (a_n) is a decreasing sequence. Then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \sum_{n=0}^{\infty} 2^n a_{2^n} = a_1 + 2a_2 + 4a_4 + 8a_8 + 16a_{16} + \cdots \text{ converges.}$$

Proof. Let $s_m = a_1 + \dots + a_m$ and $t_m = a_1 + 2a_2 + 4a_4 + \dots + 2^{m-1}a_{2^{m-1}}$. Using the fact that (a_n)

is a decreasing sequence, we can see that

$$\begin{split} s_{2^k} &= a_1 = a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k}) \\ &\geq a_1 + a_2 + (a_4 + a_4) + (a_8 + a_8 + a_8 + a_8) + \dots + (a_{2^k} + \dots + a_{2^k}) \\ &= a_1 + a_2 + 2a_4 + 4a_8 + \dots + 2^{k-1}a_{2^k} \\ &= a_1 + \frac{1}{2} \left[t_{k+1} - a_1 \right] \\ &= a_1 + \frac{1}{2} t_{k+1} - \frac{1}{2} a_1 \\ &= \frac{1}{2} (a_1 + t_{k+1}) \\ &\geq \frac{1}{2} t_{k+1}. \end{split}$$

Thus, we have

$$s_{2^k} \ge \frac{1}{2} t_{k+1}. \tag{*}$$

Similarly, we have

$$s_{2^{k}-1} = a_{1} + (a_{2} + a_{3}) + (a_{4} + a_{5} + a_{6} + a_{7}) + \dots + (a_{2^{k-1}} + \dots + a_{2^{k}-1})$$

$$\leq a_{1} + (a_{2} + a_{2}) + (a_{4} + a_{4} + a_{4} + a_{4}) + \dots + (a_{2^{k-1}} + \dots + a_{2^{k-1}})$$

$$= a_{1} + 2a_{2} + 4a_{4} + \dots + 2^{k-1}a_{2^{k-1}}$$

$$= t_{k}.$$

Thus, we have that

$$s_{2^k-1} \le t_k. \tag{**}$$

(\Leftarrow) Assume that $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges $((t_m) \text{ converges})$. Our goal is to show that $\sum_{n=1}^{\infty} a_n$ converges; that is, (s_m) converges. Note that since $a_n \geq 0$, both (s_m) and (t_m) are increasing sequences. It follows from the Monotone Convergence Theorem that in order to prove (s_n) converges, it suffices to show that (s_m) is bounded.

Since (t_m) converges, we have that (t_m) is bounded. Hence, there exists R > 0 such that $t_m \leq R$ for all $m \in \mathbb{N}$. In what follows, we will show that R is an upper bound for (s_m) as well. Indeed, let $m \in \mathbb{N}$ be given. Choose k large enough so that $m < 2^k - 1$, then

$$s_m \le s^{2^k - 1} \le t_k \le R.$$

Thus, for all $m \in \mathbb{N}$, $0 \le s_m \le R$. Hence, (s_m) is bounded and so (s_m) converges by MCT.

 (\Longrightarrow) Assume that $\sum_{n=1}^{\infty} a_n$ $((s_m)$ converges). Our goal is to show that $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges; that is, (t_m) converges.

We will prove the contrapositive: we will show that if (t_m) diverges then (s_m) diverges. Suppose (t_m) is divergent. Let R >) be given. We will show that there is a term in the nonnegative sequence (s_m) that is larger than R. Since (t_m) diverges and (t_m) is an increasing sequence (where $t_m \geq 0$), we see that (t_m) cannot be bounded above by the Monotone Convergence Theorem. Hence, there exists $k \in \mathbb{N}$ such that $t_{k+1} > 2R$. Now, we have

$$s_{2^k} \ge \frac{1}{2} t_{k+1} ? \frac{1}{2} (2R) = R.$$

Thus, (s_m) is not bounded.

2.2 Applications of the Cauchy-Condensation Test

Example (P-series Test). Let p>0. One can show that the sequence $\left(a_n=\frac{1}{n^p}\right)$ is a decreasing

nonnegative sequence. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges} \iff p > 1.$$

Proof. Using the Cauchy Condensation test, we have

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges} \iff \sum_{n=0}^{\infty} 2^n \frac{1}{(2^n)^p} \text{ converges}$$

$$\iff \sum_{n=0}^{\infty} \frac{1}{2^{np-n}} \text{ converges}$$

$$\iff \sum_{n=0}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n \text{ converges}$$

$$\iff \left|\frac{1}{2^{p-1}}\right| < 1$$

$$\iff 1 < 2^{p-1}$$

$$\iff 0 < p-1$$

$$\iff 1 < p.$$

In the fourth equivalence statement, we used the fact $\sum_{n=0}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n$ is a geometric series with common ratio $\frac{1}{2^{p-1}}$.

Example. Let p > 0. One can show that the sequence $\left(a_n = \frac{1}{n(\ln n)^p}\right)_{n \ge 2}$ is a decreasing nonnegative sequence. Prove that

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \text{ converges} \Longleftrightarrow p > 1.$$

Proof. By the Cauchy Condensation Test, we see that

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \text{ converges} \iff \sum_{n=1}^{\infty} 2^n \frac{1}{2^n(\ln(2^n))^p} \text{ converges}$$

$$\iff \sum_{n=1}^{\infty} \frac{1}{(n\ln 2)^p} \text{ converges}$$

$$\iff \frac{1}{(\ln 2)^p} \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges}$$

$$\iff p > 1.$$

Theorem (Comparison Test). Assume there exists an integer n_0 such that $0 \le a_n \le b_n$ for all $n \ge n_0$.

- (i) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Proof. Notice that (ii) is just the contrapositive of (i). So, it suffices to show (i).

By the Cauchy Criterion for convergence of series, it is enough to show that

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > m > N \ \left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon.$$
 (*)

To this end, let $\varepsilon > 0$ be given. Our goal is to find an N such that (*) holds. Since $\sum_{n=1}^{\infty} b_n$ converges, it follows from the Cauchy Criterion for series that

$$\exists \hat{N} \text{ such that } \forall n > m > \hat{N} \mid \sum_{k=m+1} b_k \mid < \varepsilon.$$

Let $N = \max\{n_0, \hat{N}\}$. If $k \ge n_0$ where $a_k, b_k \ge 0$, we see that

$$\left| \sum_{k=m+1}^{n} a_k \right| = \sum_{k=m+1}^{n} a_k \text{ and } \left| \sum_{k=m+1}^{n} a_k \right| = \sum_{k=m+1}^{n} b_k.$$
 (1)

Furthermore, if $k \geq n_0$, we have $a_k \leq b_k$, we have

$$\sum_{k=m+1}^{n} a_k \le \sum_{k=m+1}^{n} b_k. \tag{2}$$

If n > m > N, we see that (1) and (2) imply that

$$\left| \sum_{k=m+1}^{n} a_k \right| = \sum_{k=m+1}^{n} a_k \le \sum_{k=m+1}^{n} b_k = \left| \sum_{k=m+1}^{n} b_k \right| < \varepsilon.$$

Example. (*) Does $\sum_{n=1}^{\infty} \frac{1}{n+5^n}$ converge?

Indeed, for all $n \in \mathbb{N}$, we have

$$0 \le \frac{1}{n+5^n} \le \frac{1}{5^n}$$
.

Note that $\sum_{n=1}^{\infty} \frac{1}{5^n}$ converges (because it is a geometric series). Thus, the comparison test implies that $\sum_{n=1}^{\infty} \frac{1}{n+5^n}$ converges.

(*) Suppose $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} a_n^2$ converges.

Indeed, we see that

$$\sum_{n=1}^{\infty} a_n \text{ converges} \Longrightarrow \lim a_n = 0.$$

Hence, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $0 \leq a_n < 1$. Thus,

$$\forall n \geq n_0 \ 0 \leq a_n^2 \leq a_n$$
.

By the comparison test, we can conclude that $\sum_{n=1}^{\infty} a_n^2$ converges.

Remark (Some useful properties). Let (a_n) be a sequence of real numbers. Suppose $\lim_{n\to\infty} a_n = A \in \mathbb{R}$.

- (i) If $A < \beta$, then there exists $N \in \mathbb{N}$ such that for all n > N, $a_n < \beta$.
- (ii) If $\alpha < A$, then there exists N such that for all n > N, $\alpha < a_n$.

Theorem. Let (a_n) be a sequence of real numbers.

(i) Suppose $\beta \in \mathbb{R}$ is such that $\limsup a_n < \beta$. Then

 $\exists N \in \mathbb{N} \text{ such that } \forall n > N \ a_n < \beta.$

(ii) Suppose $\alpha \in \mathbb{R}$ is such that $\liminf a_n > \alpha$. Then

$$\exists N \in \mathbb{N} \text{ such that } \forall n > N \ a_n > \alpha.$$

Proof. Here we will prove (i). Since $\limsup a_n < \beta$, we have $\limsup a_n \neq \infty$. We may consider two cases:

- (1) Suppose $\limsup a_n = -\infty$. Since $\liminf a_n \leq \limsup a_n$, we can conclude that $\liminf a_n = -\infty$. Therefore, $\lim a_n = -\infty$. The claim immediately follows from the definition of $a_n \to -\infty$.
- (2) Suppose $A = \limsup a_n$. Let $A = \limsup a_n$ and $r = \frac{\beta A}{2}$. Since $\lim_{n \to \infty} \sup\{a_k : k \ge n\} = A$, there exists N such that

$$\forall n > N \quad \sup\{a_k : k \ge n\} < A + r.$$

In particular, we have

$$\forall n > N \quad \sup\{a_k : k \ge n\} < \beta.$$

Therefore, we have (noticing that $a_n \leq \sup\{a_k : k \geq n\}$),

$$\forall n > N \ a_n < \beta.$$

Note that the proof of (ii) is completely analogous to the proof of (i).

Theorem. Let (a_n) be a sequence of real numbers.

(i) Suppose $\limsup a_n > \beta$. Then, for infinitely many k, we have $a_k > \beta$. That is,

$$\forall n \in \mathbb{N} \ \exists k \geq n \text{ such that } a_k > \beta.$$

(ii) Suppose $\liminf a_n < \alpha$. Then, for infinitely many $k, a_k < \alpha$. That is,

$$\forall n \in \mathbb{N} \ \exists k \geq n \text{ such that } a_k < \alpha.$$

Proof. Here we will prove (i) (the proof for (ii) is completely analogous). Assume for contradiction that only for finitely many k, $a_k > \beta$. Then there exists an $N \in \mathbb{N}$ such that for all k > N, we have $a_k \leq \beta$. Therefore,

$$\limsup a_k \leq \limsup \beta = \lim \beta = \beta$$

which contradicts the assumption that $\limsup a_k > \beta$.

Theorem (Root Test (Version 1)). Let (a_n) be a sequence of real numbers. Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$.

- (i) If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem (Root Test (Version 2)). Let (a_n) be a sequence of real numbers. Assume that following limit exists:

$$\alpha = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

- (i) If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

- **Proof.** (i) Choose a number β such that $\alpha < \beta < 1$. We have $\limsup \sqrt[n]{|a_n|} < \beta$. Then there exists an $N \in \mathbb{N}$ such that for all n > N, we have $\sqrt[n]{|a_n|} < \beta$. Hence, we have for all n > N, $0 \le |a_n| < \beta^n$ and $\sum_{n=1}^{\infty} \beta^n$ converges (it is a geometric series with common ratio $0 < \beta < 1$). As a consequence, we see that $\sum_{n=1}^{\infty} |a_n|$ converges by the Comparison Test.
 - (ii) Choose a number β such that $1 < \beta < \alpha$. We have $\beta < \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. By Useful Theorem 2, we have for all $n \in \mathbb{N}$, we have

$$\exists k \geq n \text{ such that } \sqrt[k]{|a_k|} > \beta \Longrightarrow |a_k| > \beta^k$$

 $\Longrightarrow \sup\{|a_m| : m \geq n\} > \beta^k.$

Since $k \geq n$, we have $\beta^k \geq \beta^n$, and so

$$\forall n \in \mathbb{N} \sup\{|a_m| : m \ge n\} > \beta^n.$$

Since $\lim_{n\to\infty}\beta^n=\infty$ $(\beta>1)$, it follows from the order limit theorem (for $\overline{\mathbb{R}}$) that $\lim_{n\to\infty}\sup\{|a_m|:m\geq n\}=\infty$. So, $\limsup|a_n|=\infty$. This tells us that $\lim a_n\neq 0$ (Explanation of Fact). So, $\sum a_n$ diverges by the Divergence Test.

Remark. This is just the contrapositive of the following fact:

If $\lim a_n = 0$, then $\lim |a_n| = 0$, so $\lim \sup |a_n| = 0$.

Theorem (Ratio Test (Version 1)). Let (a_n) be a sequence of real numbers.

- (i) If $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (ii) If $\left|\frac{a_{m+1}}{a_m}\right| \ge 1$ for all $n \ge n_0$ (some integer n_0 , then $\sum_{n=1}^{\infty} a_n$ diverges).
- (iii) If $\liminf \left| \frac{a_{n+1}}{a_n} \right| \ge 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem (Ratio Test (Version 2)). Let (a_n) be a sequence of real numbers. Assume that the following limit exists:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- (i) If $\rho < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- (ii) If $\rho > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. (i) Choose a number β such that $\rho < \beta < 1$. We have

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}=\rho\Longrightarrow \exists N\in\mathbb{N}\text{ such that }\forall n\geq N\ \left|\frac{a_{n+1}}{a_n}\right|<\beta.$$

Thus, we have

$$|a_{N+1}| < \beta |a_N|$$

 $|a_{N+2}| < \beta |a_{N+1}| < \beta^2 |a_N|$
 $|a_{N+3}| < \beta |a_{N+2}| < \beta^3 |a_N|$
:

So, for all $n \in \mathbb{N}$, $|a_{N+n}| < \beta^n |a_N|$. Now, notice that

$$\sum_{n=1}^{\infty} \beta^n |a_N| = |a_N| \sum_{n=1}^{\infty} \beta^n \text{ converges.}$$

Now, notice that $\sum_{n=1}^{\infty} \beta^n |a_N| = |a_N| \sum_{n=1}^{\infty} \beta^n$ converges (since it is a geometric series with common ratio $0 < \beta < 1$). It follows from the Comparison Test that $\sum_{n=1}^{\infty} |a_{N+n}|$ converges. Considering that $\sum_{n=1}^{\infty} |a_{N+n}| = \sum_{n=N+1}^{\infty} |a_n|$, we can conclude that $\sum_{n=N+1}^{\infty} |a_n|$ converges. This immediately implies that $\sum_{n=1}^{\infty} |a_n|$ converges.

(ii) Choose a number β such that $1 < \beta < \rho$. Then we have

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\Longrightarrow \exists N\in\mathbb{N}\text{ such that }\forall n\geq N\ \left|\frac{a_{n+1}}{a_n}\right|>\beta.$$

So, we have

$$|a_{N+1}| > \beta |a_N|$$

 $|a_{N+2}| > \beta |a_{N+1}| > \beta^2 |a_N|$
 $|a_{N+3}| > \beta |a_{N+2}| > \beta^3 |a_N|$
 \vdots

Thus, for each $n \in \mathbb{N}$, $|a_{N+n}| > \beta^n |a_N|$. Since $\beta > 1$, $\lim_{n \to \infty} \beta^n |a_N| = \infty$. So, $\lim_{n \to \infty} |a_{N+n}| = \infty$. Therefore, $\lim_{n \to \infty} a_{N+n} \neq 0$. Thus, $\lim_{n \to \infty} a_n \neq 0$ (because $(a_{N+n})_{n \geq 1}$) is a subsequence of $(a_n)_{n \geq 1}$. So, $\sum_{n=1}^{\infty} a_n$ diverges by the Divergence Test.

Example. Let $R \neq 0$ be a fixed number. Prove that the series $\sum_{n=1}^{\infty} \frac{R^n}{n!}$ converges. Indeed, we have

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{R^{n+1}}{(n+1)!}}{\frac{R^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{R^{n+1}n!}{R^n(n+1)!} \right|$$
$$= \lim_{n \to \infty} \left| \frac{R}{n+1} \right|$$
$$= |R| \lim_{n \to \infty} \frac{1}{n+1}$$

Thus, if $\rho = 0 < 1$, then $\sum_{n=1}^{\infty} \frac{R^n}{n!}$ is absolutely convergent. As a consequence, we have

$$\lim_{n \to \infty} \frac{R^n}{n!} = 0.$$

Remark. If (a_n) is a sequence and $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1$, then $\lim a_n=0$.

Theorem (Dirichlet's Test). Let (b_n) be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ be bounded, is a decreasing sequence of nonnegative numbers $(b_1 \geq b_2 \geq b_3 \geq \cdots \geq 0)$, and $\lim_{n \to \infty} b_n = 0$. Then we have $\sum_{n=1}^{\infty} a_n b_n$ converges.

Corollary (Leibniz Test). Let (b_n) be a sequence in \mathbb{R} . Suppose $b_1 \geq b_2 \geq b_3 \geq \cdots \geq 0$ and $\lim_{n\to\infty} b_n = 0$. Then we have $\sum_{n=1}^{\infty} (-1)^{n+1}b_n$ converges.

2.3 Rearrangements 2 LECTURE 21-22

Consider the infinite sum

$$1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \cdots$$
 (*)

and the following questions:

- (1) What is (s_n) ?
- (2) What is $\lim_{n\to\infty} s_n$?

Define the sequence of partial sums for the series in (*) (s_n) .

Consider the following partial sums

$$s_1 = 1$$

$$s_2 = 1 - 1 = 0$$

$$s_3 = 1 - 1 + \frac{1}{2} = \frac{1}{2}$$

$$s_4 = 1 - 1 + \frac{1}{2} - \frac{1}{2} = 0$$

$$s_5 = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{3} = \frac{1}{3}$$
:

which establishes (1). Looking at the even subsequence of (s_n) , we can see that for all $k \in \mathbb{N}$ $s_{2k} = 0$ and the odd subsequence $s_{2k-1} = \frac{1}{k}$, respectively. Clearly, we can see from these subsequences that

$$s_{2k} \to 0$$
 and $s_{2k-1} \to 0$

as $k \to \infty$. Hence, we can see that $s_n \to 0$ which establishes (2).

2.3 Rearrangements

Consider the following rearrangement of (*)

$$1 + \frac{1}{2} - 1 + \frac{1}{3} + \frac{1}{4} - \frac{1}{2} + \frac{1}{5} + \frac{1}{6} - \frac{1}{3} + \dots = \lim_{n \to \infty} s_n = \ln(2).$$

Consider the sequence of the partial sums of the above:

$$s_{1} = 1$$

$$s_{2} = \frac{3}{2}$$

$$s_{3} = \frac{1}{2}$$

$$\vdots$$

$$s_{2 \times 10^{2} + 2} \approx 0.6939$$

$$s_{3 \times 10^{4} + 2} \approx 0.6931$$

$$\vdots$$

Theorem. If a series converges absolutely, then for any $L \in \mathbb{R}$, there exists some rearrangement of $\sum_{n=1}^{\infty} a_n$ converges to L.