

局部自适应的特征增强体绘制新方法

林东升 郑玉健 伯彭波哈尔滨工业大学(威海)

Outline

Research Background

- Volume Rendering Based on Transfer Function
- Volume Rendering Based on NPR(Non Photorealistic Rendering)
- Problem Description
- Methodology
- Result
- Advantage and Limitation

Volume Rendering Based on Transfer Function

[Huang et al. 2003]

[Tzeng et al. 2005]

[Roettger G. 2005]

[Caban et al. 2008]

Volume Rendering Based on NPR

[David et al. 2000]

[Csébfalvi et al. 2001]

[Liang et al. 2012]

Outline

- Research Background
- Problem Description
- Methodology
- Result
- Advantage and Limitation

Problem Description

Outline

- Research Background
- Problem Description
- Methodology
 - Simple Transfer Function
 - Volume Illustration
 - Adaptive Local Boundary Enhancement
- Result
- Advantage and Limitation

Simple Transfer Function

Grayscale Raw Volume Data

Opacity Direct Volume Rendering

Volume Illustration

Same Tissue : Similar Grayscale

Different Tissue : Variant Grayscale

Boundary: Larger Gradient

Central difference method

$$G(P_i) = \frac{1}{2} \begin{pmatrix} f(x_{i+1}, y_i, z_i) - f(x_{i-1}, y_i, z_i) \\ f(x_i, y_{i+1}, z_i) - f(x_i, y_{i-1}, z_i) \\ f(x_i, y_i, z_{i+1}) - f(x_i, y_i, z_{i-1}) \end{pmatrix}$$

Volume Illustration

Always Positive Same β Everywhere

Boundary Enhancement

Direct Volume Rendering Volume Illustration

$$E = O_o \times ||G||^{\gamma}$$
 Boundary $: E > E_x$ $E_x = h \times ||\bar{G}||^{\gamma}$ Non-boundary $: E < E_x$

$$O_{new} = O_{old} + K \times (E - E_x)$$

Boundary: Opacity ↑

Non-boundary: Opacity ↓

$$O_{new} = O_{old} + K \times (E - E_x)$$

$$K = \frac{1}{C_k + \sigma}$$

Global Balanced Enhancement

Outline

- Research Background
- Problem Description
- Methodology
- Result
 - Heart
 - Abdomen
 - Head
- Advantage and Limitation

Result-Heart

Direct Volume Rendering

Volume Illustration

 K_1 =0.58, K_2 =0.8, K_3 =0.48, h=1 Ours

Result-Heart

Direct Volume Rendering

Volume Illustration

Ours

Result-Abdomen

Direct Volume Rendering

Volume Illustration

 K_1 =0.66, K_2 =1, K_3 =0.72, h=3.24 Ours

Result-Abdomen

Direct Volume Rendering

Volume Illustration

Ours

Result-Head

Direct Volume Rendering

Volume Illustration

 K_1 =0.66, K_2 =0.67, K_3 =0.34, h=1.12 Ours

Result-Head

Direct Volume Rendering

Volume Illustration

Ours

Outline

- Research Background
- Problem Description
- Methodology
- Result
- Advantage and Limitation
 - Advantage
 - Limitation

Advantage

Volume Illustration

Ours

Clearer Boundary

Advantage

Volume Illustration

Ours

Global Balanced Enhancement

Limitation

$$K = \frac{1}{C_k + \sigma}$$

How many Clustering center?

Limitation

No Color Information

Thank you

