Project No #6

digit recognition using

Machine Learning

Using Supervised Algorithms

	1 dat	data.head()																	
0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8		pixel774	pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781	pixel782	pixel783
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import matplotlib.pyplot as plt
import seaborn as sns
```

:	1 0	lata=p	d.re	ad_cs	sv("D:\	\\Lesso	on\\sar	madhi :	sir wo	rks	hops\\Ma	chne Lea	aring py	thon\\me	tirials	and note	es\\AIML	Worksho	p Datase	ets\\Dig
:	1 data.head()																			
. 0	pixe	l1 pix	el2 p	ixel3	pixel4	pixel5	pixel6	pixel7	pixel8		pixel774	pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781	pixel782	pixel783
0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

Visualizing letters

Machine Learning

```
: 1 x=data.iloc[:,1:].values
2 y=data.iloc[:,0].values
: 1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=100)
: 1 model=DecisionTreeClassifier()
: 1 model.fit(x_train,y_train)
```

: DecisionTreeClassifier()

Predictions

```
: 1 y_pred=model.predict(x_test)
```

Validations

```
1 accuracy_score(y_test,y_pred)
```

0.8511904761904762

```
plt.imshow(x_test[0,:].reshape(28,28))
plt.show()
```



```
1 y_test[0]
5
```

```
1 y_pred[0]
```

5

```
confusion_matrix(y_test,y_pred)
array([[757,
                       14,
                              11,
                                     5,
                                          19,
                                                 16,
                                                        9,
                                                              4,
                                                                     8],
                  2,
           2, 870,
                         6,
                              12,
                                     4,
                                            2,
                                                  3,
                                                        6,
                                                             12,
                                                                     3],
                  9, 651,
                              38,
                                    15,
                                          12,
                                                 14,
                                                       17,
                                                             28,
          10,
                                                                     7],
                       23, 682,
                                                  5,
                                                                    23],
            5,
                  5,
                                     1,
                                          43,
                                                       11,
                                                             25,
                                            5,
            5,
                  7,
                        10,
                               8, 670,
                                                 12,
                                                       15,
                                                             15,
                                                                   48],
                                                 29,
                                                        9,
                 11,
                         6,
                              38,
                                    17, 647,
                                                             26,
                                                                    11],
          13,
                  4,
                       18,
                              4,
                                     7,
                                          18, 749,
                                                        1,
                                                             19,
                                                                     4],
           16,
                                                  1, 769,
                       18,
                                           3,
                                                             10,
                 13,
                              14,
                                     8,
                                                                    28],
                       27,
                              35,
                                          32,
                                    22,
                                                22,
            7,
                 14,
                                                       12, 647,
                                                                   25],
                                                            19, 708]], dtype=int64)
                                                      38,
         5,
                  З,
                         7,
                              24,
                                    34,
                                          15,
                                                  4,
     sns.heatmap(confusion_matrix(y_test,y_pred),annot=True,fmt="g")
  2 plt.xlabel("Predicted")
     plt.ylabel("Actual")
     plt.show()
   0 - 757
            2
                14
                    11
                             19
                                 16
                                      9
                                           4
                                               8
                                                       - 800
           870
                    12
                         4
                             2
                                  3
                                          12
        2
                                      6
                                               3
                                                       - 700
       10
                    38
                        15
                             12
                                 14
                                      17
                                          28
   2
                                                       600
                23
                                      11
                                          25
                                              23
                             43
                                                       - 500
                             5
                                 12
                                      15
                                          15
                                              48
                10
Actual
5 4
       13
           11
                        17
                                 29
                                      9
                                          26
                                              11
                                                       - 400
                6
                    38
                             18
       16
                                 749
                                          19
   9
                18
                                                       - 300
        5
                                    769
                                          10
           13
                18
                    14
                                              28
                                                       -200
           14
                    35
                                              25
                27
                         22
                             32
                                  22
   ^{\circ}
                                                       - 100
                                  4
                    24
                         34
                             15
                                      38
                                          19
                                              708
   σ'n
                     3
                         á
                             Ś
                                  6
                                      7
                                           8
                                               9
                2
            1
                        Predicted
```

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.92	0.90	0.91	845
1	0.93	0.95	0.94	920
2	0.83	0.81	0.82	801
3	0.79	0.83	0.81	823
4	0.86	0.84	0.85	795
5	0.81	0.80	0.81	807
6	0.88	0.89	0.88	840
7	0.87	0.88	0.88	869
8	0.80	0.77	0.79	843
9	0.82	0.83	0.82	857
accuracy			0.85	8400
macro avg	0.85	0.85	0.85	8400
ighted avg	0.85	0.85	0.85	8400

Appying for unseen data

: [1 2	4	data=p		_csv("	D:\Les	son\sa	madhi	sir wo	rkshop	os\Mack	nne	Learing	python\	metirial	s and no	otes\AIM	L Worksh	op Data:	sets\Digit ▶
:		pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9		pixel774	pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781 p
i	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0

5 rows × 784 columns

```
plt.imshow(new_data.iloc[0,:].values.reshape(28,28))
plt.show()
```


model.predict(new_data.iloc[0,:].values.reshape(1,784))

array([2], dtype=int64)