

Chapter 7: ALU and CPU creation

Asst.Prof.Dr.Supakit Nootyaskool

Objective

- To understand the functioning and structure arithmetic logic circuits.
- To recognize the functional concept of the CPU design.
- · how apu was created?

CPU structure

1Bit Half Adder circuit

		XOIS	AND
A	В	Sum	Carry out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

1Bit Full adder circuit

Carry in	A	В	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4Bit adder circuit

1Bit Half Subtractor

A	В	Diff	Borrow O
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

1Bit Full Subtractor

2hr Exam

_	Α	В	Borrow I	Diff	Borrow O
_	0	0	0	0	0
	0	0	1	1	1
	0	1	0	1	1
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	0
	1	1	0	0	0
	1	1	1	1	1

A	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

INPUT			OUTPUT			
A1	A1 A0 B1 B0 A <b a="B" a<="" th=""><th>A>B</th>			A>B		
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

- A>B
 - A1B1' + A0B1'B0' + A1A0B0'
- A=B
 - A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 + A1A0'B1B0'
 - (A0 Ex-Nor B0) (A1 Ex-Nor B1)
- A<B
 - A1'B1 + A0'B1B0 + A1'A0'B0

B1E A1A0	30 00	A:	=B 11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	(-)	0
10	0.	Ó	0	1

Cascading Comparator circuit

4-BIT CPU CREATION

- Size: 4 Bits (≈1970s)
- 2 Register (A and B)

Register
(mor layer de variable)

- The register is used collecting data like as variable
- Register create from a memory (D-FF)
- Example Register A

Register

- Signal
 - Clock
 - Read/Write
 - Input and Output (Bidirectional data)

Instruction set क्षेत्र क्षेत्र हैं।

Inst. ID	Command
0 (000)	A = 0
1 (001)	B = 0
2 (010)	A = A +1
3 (011)	B = B + 1
4 (100)	A = A+B
5 (101)	A <b (cb)="1" and="" bit="" cb="0}</th" otherwise="" {compare="">
6 (110)	Out A Joan display
7 (111)	Out B

Inst. [000] A = 0

Inst. [001] B = 0

Bus

• A bus is a group of wires that uses in circuit design to reduce the number of the connection.

Inst. [010] A=A+1

• 1 Bit full-adder (FA)

Inst. [010] A=A+1

• 4 Bit adder circuit

Inst. [010] A=A+1 ___ CPU 27 2012 2005ts

Two clocks command

- Calculate A +1 and keeping in Latch
- Load data from latch to Register A

Inst. [011] B=B+1

Inst. [100] A = A+B

How do we build A = A+B circuit?

Inst. [100] A = A+B

Inst. [100] A = A+B

Inst. [101] A<B

• 1 Bit comparator circuit

Inst. [101] A<B

• 4 Bit comparator circuit

Inst. [101] A<B

Inst. [110] Out A Inst. [111] Out B

Control signals

- 8 Control signals
 - 001
 - 010
 - -011
 - Step1
 - Step2
 - **100**
 - Step1
 - Step2
 - **-** 101
 - Step1
 - Step2
 - **110**
 - **-** 111

Programmer writes a program

A = 0

B = 0

A = A+1

A = A+1

Out A

B = B+1

A = A + B

Out A

Out B

Inst. ID	Command
0 (000)	A = 0
1 (001)	B = 0
2 (010)	A = A +1
3 (011)	B = B + 1
4 (100)	A = A + B
5 (101)	A <b (cb)="1" and="" bit="" cb="0}</th" otherwise="" {compare="">
6 (110)	Out A
7 (111)	Out B

Compile

Keeping program to memory

a0	Data	Address
a1	0 (000)	0 (0000)
a2	1 (001)	1 (0001)
az	2 (010)	2 (0010)
a3	2 (010)	3 (0011)
	6 (110)	4 (0100)
	3 (011)	5 (0101)
	4 (100)	6 (0110)
d0	6 (110)	7 (0111)
d1	7 (111)	8 (1000)
d2	-	9 (1001)
uz	-	10 (1010)

- Memory
 - Address bus (a0-a3)
 - Data bus (d0-d2)
 - Read signal

Read memory with a counter

Decode instruction

Decoding instruction uses a decoder circuit

Instructions use two clocks

- Control circuit
 - Counter 2 clock
 - Control each step in each instruction.

