Projet d'analyse et Prédiction du CAC40 et du Bitcoin en R par Mohamed Falilou Fall

Mohamed Falilou Fall

2024-07-24

Sommaire

L PRE-TRAITEMENT DE SERIES CHRONOLOGIQUES	3
1.1 Transformations	3
1. Importation et stockage des donnees	3
2. Isolation du temps et des mesures y(i) pour les visualiser	3
4. Calcul du MSE d'un modele de regression lineaire pour evaluer si la serie bru forme lineaire	
5.Transformation logarithmique	<i>6</i>
6.Le MSE relatif a la transformaion racine carre	<i>(</i>
7. Le MSE relatif a la transformation exponentielle	7
8. Determination de la transformation qui permet le plus de se rapprocher d'un chronologique avec une forme lineaire au regard des differentes valeures de M	
1.2 Series des differences	8
1. Import et stockage du fichier CAC40_sans_weekend.csv	8
2. Tracage de la serie_brute	8
3. Calcul de la serie des differences	10
4. Visualisation de la serie des differences	11
6. Visualisation de la serie_diff_relative avec la fonction `plot	13
1.3 Evolution du Prix du Bitcoin	13
1. Installation du package coindeskr	13
2. Telechargement des donnees du Bitcoin depuis internet	13
3. Presentation de la serie chronologique	14
4. Calcul et Plot de la serie des differences pour le prix du Bitcoin	14
2. LISSAGE DE SERIES CHRONOLOGIQUES	17
2.1 Lissage par la moyenne	17

1. La fonction	17
2. Importation du fichier CAC40 et stockage dans un un objet CAC40_NA	18
3. Calcul de la moyenne mobile hebdomadaire (d'ordre 3)	19
4. Graphe de la serie chronologique de l'indice du CAC40 et la serie de la moyenne mobile(en rouge)	
5. Calcul et graphe des residus de la moyenne mobile	
2.2 Lissage exponentielle	23
1. Fonction	23
2. Calcul de la serie lissee par lissage exponentielle simple les	24
3. Calcul de la serie lissee par lissage exponentielle double (LED)	25
4. Tracage de la serie chronologique et les series lissees par LES et LED	26
5. Graphe des residus de chacune des series lissees	27
3. TENDANCE ET PERIODICITE	
1. Importation des prix du Bitcoin depuis le 12 Mars 2020 :	28
2. La tendance lineaire de cette serie chronologique avec la fonction lm et stockag resultats dans un objet tendance	
3. Les residus de la tendance lineaire :	30
5. Application de la fonction sur la serie tendancee	30
6. Representation de la Periodicite de la serie detendancee	31
4. MODELE ADDITIF POUR PREDIRE L'EVOLUTION DU PRIX DU BITCOIN	
4.1 Rappel du model additif	32
4.2 Calcul des predictions du modele additif et sa courbe	32
4.4 Previsions sur l'evolution des prix du bitcoin pour les 10 prochains jours	35
4.5. La valeur de la periodicite pour les jours a venir	36
L'opération %% en R correspond à l'opérateur de modulo. Elle calcule le reste de division entière de deux nombres	
L'utilisation de l'opérateur modulo (%%) dans la ligne moment_periode <- nouveau_jours %% 7 + 1 est nécessaire pour gérer la périodicité dans les données Voici pourquoi :	
- Détermination du Cycle Hebdomadaire : En appliquant l'opérateur modulo 7 à cl valeur de nouveau_jours, vous obtenez un résultat qui indique la position du jour une semaine de 7 jours. Par exemple, un résultat de 1 correspond au premier jour cycle (jour 1), un résultat de 2 correspond au deuxième jour (jour 2), et ainsi de si jusqu'à 7, après quoi le cycle recommence à 1	dans du uite
- Ajustement de l'Indexation : Le +1 après le modulo ajuste l'indexation pour qu'el commence à 1 au lieu de 0 (ce qui serait le cas avec un simple modulo). Cela est ut les éléments de periodicite sont indexés de 1 à 7 (plutôt que de 0 à 6)	tile si

 Utilisation de la Périodicité : moment_periode est ensuite utilisé pour accéder aux valeurs correspondantes dans periodicite, ce qui permet d'extraire la valeur de la périodicité pour chaque jour spécifié dans nouveau_jours36
En résumé, cette ligne de code est utilisée pour s'assurer que chaque jour dans nouveau_jours est correctement mappé à une position dans un cycle hebdomadaire de 7 jours, permettant ainsi d'extraire les valeurs correspondantes dans periodicite36
4.6. Calcul des previsions du modele pour les 10 jours a venir et stockage dans un objet prevision_modele_add36
4.7. Visualisation de l'evolution du Prix du bitcoin39
1. PRE-TRAITEMENT DE SERIES CHRONOLOGIQUES
1.1 Transformations
1. Importation et stockage des donnees
<pre>1.1 CAC40 CAC40 <- read.csv("CAC40.csv") head(CAC40,3)</pre>
Date Indice ## 1 2020-02-10 6015.67 ## 2 2020-02-11 6054.76 ## 3 2020-02-12 6104.73
1.2 CAC40_sans_weekend
CAC40_sans_weekend <- ("CAC40_sans_weekend.csv") head(CAC40_sans_weekend,3)
[1] "CAC40_sans_weekend.csv"
<pre>1.3 serie chronologique serie_chronologique <- read.csv("serie_chronologique.csv") head(serie_chronologique,3)</pre>
t y ## 1 3.982630 0.1922834 ## 2 5.581858 0.2234694 ## 3 8.592800 0.3014963
2. Isolation du temps et des mesures y(i) pour les visualiser
t <- serie_chronologique\$t y <- serie_chronologique\$y

plot(t,y)

3. Visualisation

des transformations suivantes: exponentielle, logarithmique ou racine

1. Exponentielle plot(t,exp(y))

2.

logarithmique

plot(t,log(y))

3. Racine

```
plot(t,sqrt(y))
```


4. Calcul du MSE d'un modele de regression lineaire pour evaluer si la serie brute a une forme lineaire.

```
res_lm <- lm(y~t)
residus <- y - res_lm[["fitted.values"]]
MSE <- sum(residus^2)
print(MSE)
## [1] 0.1403793</pre>
```

5.Transformation logarithmique

```
res_lm_log <- lm(log(y)~t)
residus_log <- y - exp(res_lm_log[["fitted.values"]])
MSE_log <- sum(residus_log^2)
print(MSE_log)
## [1] 0.01485173</pre>
```

6.Le MSE relatif a la transformaion racine carre

```
y_sqrt <- sqrt(y)
res_lm_sqrt <- lm(y_sqrt ~ t)
residus_sqrt <- y - (res_lm_sqrt[["fitted.values"]])^2
MSE_sqrt <- sum(residus_sqrt^2)
print(MSE_sqrt)</pre>
```

```
## [1] 0.05834192
```

7. Le MSE relatif a la transformation exponentielle

```
res_lm_log <- lm(log(y) ~ t)
fitted_exp <- exp(res_lm_log[["fitted.values"]])
residus_exp <- y - fitted_exp
MSE_exp <- sum(residus_exp^2)
print(MSE_exp)
## [1] 0.01485173</pre>
```

8. Determination de la transformation qui permet le plus de se rapprocher d'une serie chronologique avec une forme lineaire au regard des differentes valeures de MSE

8.1 Comparaison des MSE

```
# Comparaison des MSE
MSE_values <- c(MSE, MSE_log, MSE_sqrt, MSE_exp)</pre>
names(MSE_values) <- c("Linéaire", "Logarithmique", "Racine carrée",</pre>
"Exponentielle")
# Affichage des MSE
print("Comparaison des MSE:")
## [1] "Comparaison des MSE:"
print(MSE values)
##
        Linéaire Logarithmique Racine carrée Exponentielle
##
      0.14037933
                    0.01485173
                                   0.05834192
                                                 0.01485173
# Conclusion
best_transformation <- names(MSE_values)[which.min(MSE_values)]</pre>
print(paste("La transformation qui permet le plus de se rapprocher d'une
serie chronologique avec une forme lineaire est, la transformation:",
best transformation))
## [1] "La transformation qui permet le plus de se rapprocher d'une serie
chronologique avec une forme lineaire est, la transformation: Logarithmique"
```

8.2 A l'aide des traces des MSE

```
library(ggplot2)
## Warning: le package 'ggplot2' a été compilé avec la version R 4.3.3

mse_data <- data.frame(
    Transformation = c("Linéaire", "Logarithmique", "Racine carrée",
    "Exponentielle"),
    MSE = c(MSE, MSE_log, MSE_sqrt, MSE_exp)
)

ggplot(mse_data, aes(x = Transformation, y = MSE, fill = Transformation)) +
    geom_bar(stat = "identity") +</pre>
```

Comparaison des MSE pour les différentes transforma

1.2 Series des differences

1. Import et stockage du fichier CAC40 sans weekend.csv

```
serie_brute <- read.csv("CAC40_sans_weekend.csv")</pre>
summary(serie_brute)
##
        Date
                           Indice
                       Min. :3755
## Length:39
   Class :character
                       1st Qu.:4232
##
   Mode :character
                       Median :5139
##
##
                       Mean
                             :5017
##
                       3rd Qu.:5904
                       Max. :6111
```

2. Tracage de la serie_brute

```
Date <- serie_brute$Date
Indice <- serie_brute$Indice

serie_brute$Date <- as.Date(serie_brute$Date, format="%Y-%m-%d")
serie_brute <- na.omit(serie_brute)</pre>
```

Évolution de l'Indice CAC40 sur le Temps


```
print(serie_brute)
##
            Date Indice
## 1
      2020-02-10 6015.67
## 2
      2020-02-11 6054.76
## 3
     2020-02-12 6104.73
     2020-02-13 6093.14
## 4
## 5
     2020-02-14 6069.35
## 6
     2020-02-17 6085.95
      2020-02-18 6056.82
## 7
## 8
      2020-02-19 6111.24
      2020-02-20 6062.30
## 9
## 10 2020-02-21 6029.72
## 11 2020-02-24 5791.87
## 12 2020-02-25 5679.68
## 13 2020-02-26 5684.55
## 14 2020-02-27 5495.60
## 15 2020-02-28 5309.90
## 16 2020-03-02 5333.52
## 17 2020-03-03 5393.17
## 18 2020-03-04 5464.89
## 19 2020-03-05 5361.10
## 20 2020-03-06 5139.11
```

```
## 21 2020-03-09 4707.91
## 22 2020-03-10 4636.61
## 23 2020-03-11 4610.25
## 24 2020-03-12 4044.26
## 25 2020-03-13 4118.36
## 26 2020-03-16 3881.46
## 27 2020-03-17 3991.78
## 28 2020-03-18 3754.84
## 29 2020-03-19 3855.50
## 30 2020-03-20 4048.80
## 31 2020-03-23 3914.31
## 32 2020-03-24 4242.70
## 33 2020-03-25 4432.30
## 34 2020-03-26 4543.58
## 35 2020-03-27 4351.49
## 36 2020-03-30 4378.51
## 37 2020-03-31 4396.12
## 38 2020-04-01 4207.24
## 39 2020-04-02 4220.96
3. Calcul de la serie des differences
diff(serie_brute$Indice)
## [1]
          39.09
                  49.97 -11.59 -23.79
                                           16.60 -29.13
                                                           54.42 -48.94 -
32.58
```

4.87 -188.95 -185.70 ## [10] -237.85 -112.19 23.62 59.65 71.72 -103.79 ## [19] -221.99 -431.20 -71.30 -26.36 -565.99 74.10 -236.90 110.32 -236.94 ## [28] 100.66 193.30 -134.49 328.39 189.60 111.28 -192.09 27.02 17.61 ## [37] -188.88 13.72 serie diff <- data.frame(</pre> Date = serie brute\$Date[-1], Indice diff = diff(serie brute\$Indice)) serie_diff ## Date Indice_diff ## 1 2020-02-11 39.09 ## 2 2020-02-12 49.97 ## 3 2020-02-13 -11.59 ## 4 2020-02-14 -23.79 ## 5 2020-02-17 16.60 ## 6 2020-02-18 -29.13 ## 7 2020-02-19 54.42 ## 8 2020-02-20 -48.94 ## 9 2020-02-21 -32.58 ## 10 2020-02-24 -237.85 ## 11 2020-02-25 -112.19 ## 12 2020-02-26 4.87 ## 13 2020-02-27 -188.95

```
## 14 2020-02-28
                     -185.70
## 15 2020-03-02
                       23.62
## 16 2020-03-03
                       59.65
## 17 2020-03-04
                       71.72
## 18 2020-03-05
                     -103.79
## 19 2020-03-06
                     -221.99
## 20 2020-03-09
                     -431.20
## 21 2020-03-10
                     -71.30
## 22 2020-03-11
                      -26.36
## 23 2020-03-12
                     -565.99
## 24 2020-03-13
                       74.10
## 25 2020-03-16
                     -236.90
## 26 2020-03-17
                     110.32
## 27 2020-03-18
                     -236.94
## 28 2020-03-19
                     100.66
## 29 2020-03-20
                     193.30
## 30 2020-03-23
                    -134.49
## 31 2020-03-24
                     328.39
## 32 2020-03-25
                     189.60
## 33 2020-03-26
                     111.28
## 34 2020-03-27
                    -192.09
## 35 2020-03-30
                       27.02
## 36 2020-03-31
                       17.61
## 37 2020-04-01
                     -188.88
## 38 2020-04-02
                       13.72
```

Explications: Le champ date recoit les dates de la serie brute privee du premier element parceque la serie des differences est la serie des mesures zi = yi - yi-1 pour i>1 donc la Date est egale a Date[-1] c'est a dire la date du jour precedent. La serie de date de la serie_diffcommence a Date[+1] de la serie brute.

```
4. Visualisation de la serie des differences
plot(serie_diff)
abline(h=0, col='gray50')
```


5. Calcul de la

serie des differences relatives denomme serie_diff_relative

```
# Calcul des différences relatives
# Créer un vecteur pour les différences relatives
serie_diff_relative <- numeric(length(serie_diff$Indice_diff) - 1)</pre>
# Calculer les différences relatives
for (i in 2:length(serie_diff$Indice_diff)) {
  serie_diff_relative[i - 1] <- (serie_diff$Indice_diff[i] -</pre>
serie_diff$Indice_diff[i - 1]) / serie_diff$Indice_diff[i - 1]
}
# Ajouter des NA pour le premier élément
serie_diff_relative <- c(NA, serie_diff_relative)</pre>
# Afficher les premières valeurs de la série des différences relatives
print(serie_diff_relative)
##
    [1]
                        0.27833205
                                    -1.23193916
                                                   1.05263158
                                                                -1.69777217
                   NA
##
   [6]
         -2.75481928
                       -2.86817714
                                    -1.89930173
                                                  -0.33428688
                                                                 6.30049110
         -0.52831617
## [11]
                       -1.04340850 -39.79876797
                                                  -0.01720032
                                                                -1.12719440
## [16]
          1.52540220
                        0.20234702
                                    -2.44715561
                                                   1.13883804
                                                                 0.94242984
         -0.83464750
                      -0.63029453 20.47154780
                                                  -1.13092104
                                                                -4.19703104
## [21]
```

```
## [26] -1.46568172 -3.14775199 -1.42483329 0.92032585 -1.69575789
## [31] -3.44174288 -0.42263772 -0.41308017 -2.72618620 -1.14066323
## [36] -0.34826055 -11.72572402 -1.07263871
```

6. Visualisation de la serie diff relative avec la fonction 'plot

`

```
plot(serie_diff_relative)
abline(h=0, col='gray50')
```


1.3 Evolution du Prix du Bitcoin

```
1. Installation du package coindeskr
```

```
#install.packages("devtools")
#devtools::install_github("amrrs/coindeskr")
library(coindeskr)
```

2. Telechargement des donnees du Bitcoin depuis internet

```
bitcoin_data$Date <- as.Date(rownames(bitcoin_data))
head(bitcoin_data,3)

## Price Date
## 2021-01-01 29333.61 2021-01-01
## 2021-01-02 32154.17 2021-01-02
## 2021-01-03 33002.54 2021-01-03
```

3. Presentation de la serie chronologique

```
plot(bitcoin_data$Date, bitcoin_data$Price, col = "blue", pch = 19, main =
"Presentation de la Serie Chronologique : Prix du Bitcoin", xlab = "Date",
ylab = "Prix")
```

Presentation de la Serie Chronologique : Prix du Bite

4. Calcul et Plot de la serie des differences pour le prix du Bitcoin

4.1 Calcul de la serie des differences pour le prix du Bitcoin

```
diff(bitcoin_data$Price)
##
    [1]
        2820.5623
                     848.3690 -1570.9241
                                          3001.9942
                                                     1842.1498
                                                                3437.7516
##
   [7]
         805.9407
                    -260.5246 -1549.1586 -4300.1230
                                                     -195.0321
                                                                2802.3972
        1418.8560 -1684.2785 -734.8054
## [13]
                                                      -29.2019
                                                                 230.9101
                                           359.0318
                                                                 214.5299
## [19] -1572.9870 -4398.3499 2762.1832 -1298.2685
                                                      215.6287
## [25]
         -175.7003 -1789.5563 2873.2189
                                          1434.3391
                                                     -220.1842 -1535.0033
                                          -141.1743
## [31]
         525.9509 2019.5812 1764.5244
                                                      595.3445
                                                                2451.2032
## [37] -1841.1184 6255.0041 1958.1662 -1437.3760
                                                     2263.4218
                                                                 383.2854
## [43]
         -878.9923
                    2145.9770 -1025.1754
                                           714.4223
                                                     3324.8881
                                                                -436.7938
## [49]
        3990.6956 -917.5558 2326.9940 -2946.7280 -6009.0371
                                                                 572.5555
```

```
## [55]
         -454.0209 -2539.2972
                                 890.4912 -1549.7995
                                                       4156.1074 -1348.1371
## [61]
         2911.0783 -2552.3681
                                 890.2437
                                            -270.5789
                                                       1715.5467
                                                                    908.5595
## [67]
         2954.7797
                    2457.1361
                                 721.5841
                                            -330.5917
                                                       3436.8755
                                                                   -545.1398
## [73] -3897.5679
                      339.4498
                                1927.4999
                                            -584.1891
                                                        468.6368
                                                                    141.8710
## [79]
         -797.1351 -3467.1088
                                 464.9391 -2006.5522
                                                       -613.8775
                                                                   2309.1777
## [85]
         1751.3104
                     -890.4303
                                2283.7534
                                            1106.7962
                                                         -9.8109
serie diff bitcoin <- data.frame(</pre>
Date = bitcoin data$Date[-1], Indice diff = diff(bitcoin data$Price))
serie_diff_bitcoin
##
            Date Indice_diff
## 1
      2021-01-02
                    2820.5623
## 2
     2021-01-03
                     848.3690
## 3
      2021-01-04
                  -1570.9241
## 4
     2021-01-05
                   3001.9942
## 5
      2021-01-06
                   1842.1498
## 6
      2021-01-07
                    3437.7516
## 7
      2021-01-08
                    805.9407
## 8
      2021-01-09
                    -260.5246
## 9
      2021-01-10
                   -1549.1586
## 10 2021-01-11
                   -4300.1230
## 11 2021-01-12
                   -195.0321
## 12 2021-01-13
                    2802.3972
## 13 2021-01-14
                   1418.8560
## 14 2021-01-15
                   -1684.2785
## 15 2021-01-16
                    -734.8054
## 16 2021-01-17
                    359.0318
## 17 2021-01-18
                     -29.2019
## 18 2021-01-19
                    230.9101
## 19 2021-01-20
                   -1572.9870
## 20 2021-01-21
                   -4398.3499
## 21 2021-01-22
                   2762.1832
## 22 2021-01-23
                   -1298.2685
## 23 2021-01-24
                    215.6287
## 24 2021-01-25
                     214.5299
## 25 2021-01-26
                    -175.7003
## 26 2021-01-27
                   -1789.5563
## 27 2021-01-28
                   2873.2189
## 28 2021-01-29
                   1434.3391
## 29 2021-01-30
                   -220.1842
## 30 2021-01-31
                   -1535.0033
## 31 2021-02-01
                    525.9509
## 32 2021-02-02
                   2019.5812
## 33 2021-02-03
                    1764.5244
## 34 2021-02-04
                    -141.1743
## 35 2021-02-05
                    595.3445
## 36 2021-02-06
                    2451.2032
## 37 2021-02-07
                   -1841.1184
## 38 2021-02-08
                   6255.0041
```

```
1958.1662
## 39 2021-02-09
## 40 2021-02-10
                   -1437.3760
## 41 2021-02-11
                    2263.4218
## 42 2021-02-12
                     383.2854
## 43 2021-02-13
                    -878.9923
## 44 2021-02-14
                    2145.9770
## 45 2021-02-15
                   -1025.1754
## 46 2021-02-16
                     714.4223
## 47 2021-02-17
                    3324.8881
## 48 2021-02-18
                    -436.7938
## 49 2021-02-19
                    3990.6956
## 50 2021-02-20
                    -917.5558
## 51 2021-02-21
                    2326.9940
## 52 2021-02-22
                   -2946.7280
## 53 2021-02-23
                   -6009.0371
## 54 2021-02-24
                     572.5555
## 55 2021-02-25
                    -454.0209
## 56 2021-02-26
                   -2539.2972
## 57 2021-02-27
                     890.4912
## 58 2021-02-28
                   -1549.7995
## 59 2021-03-01
                    4156.1074
## 60 2021-03-02
                   -1348.1371
## 61 2021-03-03
                    2911.0783
## 62 2021-03-04
                   -2552.3681
## 63 2021-03-05
                     890.2437
## 64 2021-03-06
                    -270.5789
## 65 2021-03-07
                    1715.5467
## 66 2021-03-08
                     908.5595
## 67 2021-03-09
                    2954.7797
## 68 2021-03-10
                    2457.1361
## 69 2021-03-11
                     721.5841
## 70 2021-03-12
                    -330.5917
## 71 2021-03-13
                    3436.8755
## 72 2021-03-14
                    -545.1398
## 73 2021-03-15
                   -3897.5679
## 74 2021-03-16
                     339.4498
## 75 2021-03-17
                    1927.4999
## 76 2021-03-18
                    -584.1891
## 77 2021-03-19
                     468.6368
## 78 2021-03-20
                     141.8710
## 79 2021-03-21
                    -797.1351
                   -3467.1088
## 80 2021-03-22
## 81 2021-03-23
                     464.9391
## 82 2021-03-24
                   -2006.5522
## 83 2021-03-25
                    -613.8775
## 84 2021-03-26
                    2309.1777
## 85 2021-03-27
                    1751.3104
## 86 2021-03-28
                    -890.4303
## 87 2021-03-29
                    2283.7534
```

```
## 88 2021-03-30 1106.7962
## 89 2021-03-31 -9.8109
```

4.2 Plot de la serie des differences pour le prix du Bitcoin

plot(serie_diff_bitcoin)

2. LISSAGE DE SERIES CHRONOLOGIQUES

2.1 Lissage par la moyenne

1. La fonction

```
moyenne_mobile <- function(serie_k){
# Determination de la taille de la serie
n <- length(serie)
# Definition du vecteur qui va recevoir la moyenne mobile d'ordre k
mm_k <- rep(NA, n)

# Boucle pour chaque indice i pour lequel on peut calculer une moyenne mobile
for(i in (k+1):(n-k)) {
    #La moyenne de la serie pour les 2k indices autour de l'indice i est
stockee
    # dans la ieme place du vecteur mm_k
    mm_k[i] <- mean(serie[(i-k): (i+k)], na.rm=True)</pre>
```

```
#L'option "na.rm=TRUE" de la fonction mean permet d'ignorer les valeures
manquantes
  # (notees NA sous R) potentiellement presente dans la serie
  }
# Renvoie du resultat
return(mm_k)
```

Importation du fichier CAC40 et stockage dans un un objet CAC40_NA

```
CAC40_NA <- read.csv("CAC40.csv")</pre>
CAC40 NA
##
            Date Indice
## 1 2020-02-10 6015.67
## 2 2020-02-11 6054.76
## 3 2020-02-12 6104.73
## 4 2020-02-13 6093.14
## 5 2020-02-14 6069.35
## 6 2020-02-15
                      NA
## 7
     2020-02-16
## 8 2020-02-17 6085.95
## 9 2020-02-18 6056.82
## 10 2020-02-19 6111.24
## 11 2020-02-20 6062.30
## 12 2020-02-21 6029.72
## 13 2020-02-22
                      NA
## 14 2020-02-23
                      NA
## 15 2020-02-24 5791.87
## 16 2020-02-25 5679.68
## 17 2020-02-26 5684.55
## 18 2020-02-27 5495.60
## 19 2020-02-28 5309.90
## 20 2020-02-29
                      NA
## 21 2020-03-01
                      NA
## 22 2020-03-02 5333.52
## 23 2020-03-03 5393.17
## 24 2020-03-04 5464.89
## 25 2020-03-05 5361.10
## 26 2020-03-06 5139.11
## 27 2020-03-07
                      NA
## 28 2020-03-08
                      NA
## 29 2020-03-09 4707.91
## 30 2020-03-10 4636.61
## 31 2020-03-11 4610.25
## 32 2020-03-12 4044.26
## 33 2020-03-13 4118.36
```

```
## 34 2020-03-14
                      NA
## 35 2020-03-15
                      NΑ
## 36 2020-03-16 3881.46
## 37 2020-03-17 3991.78
## 38 2020-03-18 3754.84
## 39 2020-03-19 3855.50
## 40 2020-03-20 4048.80
## 41 2020-03-21
                      NA
## 42 2020-03-22
                      NA
## 43 2020-03-23 3914.31
## 44 2020-03-24 4242.70
## 45 2020-03-25 4432.30
## 46 2020-03-26 4543.58
## 47 2020-03-27 4351.49
## 48 2020-03-28
## 49 2020-03-29
## 50 2020-03-30 4378.51
## 51 2020-03-31 4396.12
## 52 2020-04-01 4207.24
## 53 2020-04-02 4220.96
```

3. Calcul de la moyenne mobile hebdomadaire (d'ordre 3)

```
# Installation du Package `zoo`
#Pour calculer la moyenne mobile hebdomadaire d'ordre 3 en R, il est
nécessaire de s'assurer que la fonction moyenne mobile est définie ou
d'utiliser une fonction intégrée telle que `rollmean` du package zoo.
#install.packages("zoo")
library(zoo)
## Warning: le package 'zoo' a été compilé avec la version R 4.3.3
##
## Attachement du package : 'zoo'
## Les objets suivants sont masqués depuis 'package:base':
##
##
       as.Date, as.Date.numeric
# Le message d'erreur
#Erreur dans `$<-.data.frame`(`*tmp*`, Indice mm, value = c(6058.38666666667,
  #le tableau de remplacement a 51 lignes, le tableau remplacé en a 53
CAC40_NA$Indice_mm <- rollmean(CAC40_NA$Indice, 3, fill = NA, align =
"right")
```

4. Graphe de la serie chronologique de l'indice du CAC40 et la serie de la moyenne mobile(en rouge)

```
ggplot(data = CAC40 NA, aes(x = Date)) +
  geom_line(aes(y = Indice, color = "Indice")) +
  geom line(aes(y = Indice mm, color = "Moyenne Mobile"), linetype =
"dashed", size = 1) +
  labs(title = "CAC40 - Indice et Moyenne Mobile",
       x = "Date",
       y = "Valeur") +
  scale_color_manual(values = c("Indice" = "blue", "Moyenne Mobile" = "red"))
  theme minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 14 rows containing missing values or values outside the
scale range
## (`geom_line()`).
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Warning: Removed 30 rows containing missing values or values outside the
scale range
## (`geom line()`).
## `geom line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

CAC40 - Indice et Moyenne Mobile

5. Calcul et graphe des residus de la moyenne mobile

5.1 Calcul des residus de la moyenne mobile

```
CAC40_NA$Residus <- CAC40_NA$Indice - CAC40_NA$Indice_mm
```

5.2 Graphe des residus de la moyenne mobile

```
ggplot(data = CAC40_NA, aes(x = Date)) +
  geom_line(aes(y = Indice, color = "Indice")) +
  geom_line(aes(y = Indice_mm, color = "Moyenne Mobile"), linetype =
"dashed", size = 1) +
  labs(title = "CAC40 - Indice et Moyenne Mobile",
       x = "Date",
       y = "Valeur") +
  scale_color_manual(values = c("Indice" = "blue", "Moyenne Mobile" = "red"))
  theme_minimal()
## Warning: Removed 14 rows containing missing values or values outside the
scale range
## (`geom_line()`).
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Warning: Removed 30 rows containing missing values or values outside the
scale range
## (`geom_line()`).
```

`geom_line()`: Each group consists of only one observation.
i Do you need to adjust the group aesthetic?

CAC40 - Indice et Moyenne Mobile

CAC40 - Résidus de la Moyenne Mobile

2.2 Lissage exponentielle

1. Fonction

```
#lissage_exponentielle <- function(serie, gamma) {</pre>
# Determination de la taille de la serie
  ##n <- length(serie)</pre>
# Definition du vecteur qui va recevoir le lissage exponentielle
  #Le_gamma <- rep(NA, n)
# (Ce vecteur est plus grand que la serie brute afin de pouvoir y stocker
# une valeure initiale (necessaire pour la formule de recursivite du lissage
# exponentielle ).
  #
# Cette partie du code permet de prendre en charge les donnees manquantes
# dans la serie brute.
# Il n'est pas necessaire de comprendre cette partie.
  #index <- NULL
  #if sum(is.na(serie))>0){
    #n tmp <- n
    #n <- sum(!is.na(serie))</pre>
    #Le_gamma <- rep(NA, n)</pre>
    #index <- which(!is.na(serie))</pre>
    #serie <- serie[index]</pre>
```

```
#}
# La valeur initiale de la serie lissee est la moyenne des trois premieres
valeurs
# de la serie brute.
#Le_gamma[1] <- mean(serie[1:3])
# Faire un boucle pour appliquer succesivement la formule de recursivite
# du lissage exponentielle
#for(k in 1:(n-1)) {
 #le qamma[k+1] \leftarrow qamma * serie[k+1] + (1-qamma)*le <math>qamma[k]
# Cette partie du code permet de remettre des valeurs manquantes aux bons
indices
# s'il y en avait dans la serie brute.
# Il n'est pas necessaire de comprendre cette partie.
#-----
#if(!is.null(index)){
 #Le_gamma_tmp <- Le_gamma
 #le_gamma <- rep(NA, n_tmp)</pre>
 #Le_gamma[index] <- Le_gamma_tmp</pre>
#}
# Renvoi du resultat
#return(le_gamma)
#}
```

2. Calcul de la serie lissee par lissage exponentielle simple 1es

```
2.1 Les packages requis
#install.packages("forecast")
#install.packages("ggplot2")
#install.packages("stats")
library(forecast)

## Warning: le package 'forecast' a été compilé avec la version R 4.3.3

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```

```
library(ggplot2)
library(stats)
2.2 Traitement des valeures manquantes
# Verification des valeurs NA, NaN
sum(is.na(CAC40_NA$Indice)) # Nombre de NA
## [1] 14
sum(is.nan(CAC40_NA$Indice)) # Nombre de NaN
## [1] 0
# Nettoyage des données en supprimant les lignes contenant NA, NaN
CAC40 NA <- CAC40 NA[!is.na(CAC40 NA$Indice) & !is.nan(CAC40 NA$Indice), ]
2.3 Calcul de la serie lissee par lissage exponentielle simple Les
# Application du lissage exponentiel simple avec HoltWinters
ts data <- ts(CAC40 NA$Indice, frequency = 30) # Ajustez La fréquence si
nécessaire
lissage_exponentiel <- HoltWinters(ts_data, beta = FALSE, gamma = FALSE)</pre>
# Extraction des valeurs lissées
Indice_les <- fitted(lissage_exponentiel)[, "xhat"]</pre>
# Ajustement des Longueurs
min_length <- min(length(CAC40_NA$Indice), length(Indice_les))</pre>
CAC40_NA$Indice_les <- NA # Créer la colonne avec des NA
CAC40 NA$Indice les[1:min length] <- Indice les[1:min length] # Remplacer
les valeurs lissées
# La Longueur
length(CAC40 NA$Indice)
## [1] 39
length(CAC40_NA$Indice_les)
## [1] 39
3. Calcul de la serie lissee par lissage exponentielle double (LED)
length(CAC40 NA$Indice) # Longueur des données originales
## [1] 39
lissage exponentiel double <- HoltWinters(CAC40 NA$Indice, beta = TRUE, gamma
= FALSE)
length(fitted(lissage_exponentiel_double)) # Longueur des valeurs lissées
## [1] 111
```

```
# Appliquer le lissage exponentiel double
library(forecast)
ts_data <- ts(CAC40_NA$Indice, frequency = 30)</pre>
lissage exponentiel double <- ets(ts data, model = "AAN")</pre>
# Extraire les valeurs lissées
valeurs led <- fitted(lissage exponentiel double)</pre>
# Vérifiez les valeurs lissées
#head(valeurs lisse)
# Ajuster la longueur
min length <- min(length(CAC40 NA$Indice), length(valeurs led))</pre>
CAC40 NA$Indice led <- NA # Créer une colonne avec des NA
CAC40_NA$Indice_led[1:min_length] <- valeurs_led[1:min_length]</pre>
# Vérifiez les dimensions
length(CAC40 NA$Indice)
## [1] 39
length(CAC40 NA$Indice led)
## [1] 39
4. Tracage de la serie chronologique et les series lissees par LES et LED.
# Tracer le graphique
ggplot(data = CAC40_NA, aes(x = Date)) +
  geom_line(aes(y = Indice, color = "Indice"), size = 1) +
  geom line(aes(y = Indice les, color = "LES (Lissage Exponentiel Simple)"),
linetype = "dashed", size = 1) +
  geom line(aes(y = Indice led, color = "LED (Lissage Exponential Double)"),
linetype = "dotted", size = 1) +
  labs(title = "CAC40 - Indice et Séries Lissées (LES et LED)",
       x = "Date",
       y = "Valeur") +
  scale_color_manual(values = c("Indice" = "blue",
                                 "LES (Lissage Exponentiel Simple)" = "green",
                                 "LED (Lissage Exponentiel Double)" = "red"))
  theme minimal()
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Warning: Removed 1 row containing missing values or values outside the
scale range
## (`geom line()`).
## `geom line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

`geom_line()`: Each group consists of only one observation.
i Do you need to adjust the group aesthetic?

CAC40 - Indice et Séries Lissées (LES et LED)

5. Graphe des residus de chacune des series lissees

```
# Calcul des résidus
CAC40 NA$Residus les <- CAC40 NA$Indice - CAC40 NA$Indice les
CAC40_NA$Residus_led <- CAC40_NA$Indice - CAC40_NA$Indice_led
# Graphe des residus
# Tracer les résidus
ggplot(data = CAC40_NA, aes(x = Date)) +
  geom_line(aes(y = Residus_les, color = "Résidus LES"), size = 1) +
  geom_line(aes(y = Residus_led, color = "Résidus LED"), linetype = "dashed",
size = 1) +
  labs(title = "CAC40 - Résidus des Séries Lissées (LES et LED)",
       x = "Date",
       v = "Résidus") +
  scale_color_manual(values = c("Résidus LES" = "green", "Résidus LED" =
"red")) +
  theme minimal()
## Warning: Removed 1 row containing missing values or values outside the
scale range
## (`geom line()`).
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

`geom_line()`: Each group consists of only one observation.
i Do you need to adjust the group aesthetic?

CAC40 - Résidus des Séries Lissées (LES et LED)

3. TENDANCE ET PERIODICITE

```
1. Importation des prix du Bitcoin depuis le 12 Mars 2020 :
```

```
library(coindeskr)
bitcoin_data <- get_historic_price(start="2021-03-12", end = "2021-04-07")</pre>
bitcoin_data$Date <- 1:length(bitcoin_data$Price)</pre>
print(bitcoin_data)
##
                 Price Date
## 2021-01-01 29333.61
                           1
## 2021-01-02 32154.17
                           2
## 2021-01-03 33002.54
                           3
## 2021-01-04 31431.61
                           4
## 2021-01-05 34433.61
                           5
## 2021-01-06 36275.76
                           6
## 2021-01-07 39713.51
                           7
## 2021-01-08 40519.45
                           8
## 2021-01-09 40258.92
                           9
## 2021-01-10 38709.77
                          10
## 2021-01-11 34409.64
                          11
## 2021-01-12 34214.61
                          12
## 2021-01-13 37017.01
                          13
## 2021-01-14 38435.86
                          14
```

```
## 2021-01-15 36751.58
                          15
## 2021-01-16 36016.78
                          16
## 2021-01-17 36375.81
                          17
## 2021-01-18 36346.61
                          18
                          19
## 2021-01-19 36577.52
## 2021-01-20 35004.53
                          20
## 2021-01-21 30606.18
                          21
## 2021-01-22 33368.37
                          22
## 2021-01-23 32070.10
                          23
## 2021-01-24 32285.73
                          24
## 2021-01-25 32500.26
                          25
## 2021-01-26 32324.56
                          26
## 2021-01-27 30535.00
                          27
## 2021-01-28 33408.22
                          28
                          29
## 2021-01-29 34842.56
## 2021-01-30 34622.37
                          30
## 2021-01-31 33087.37
                          31
## 2021-02-01 33613.32
                          32
                          33
## 2021-02-02 35632.90
## 2021-02-03 37397.43
                          34
## 2021-02-04 37256.25
## 2021-02-05 37851.60
                          36
## 2021-02-06 40302.80
                          37
## 2021-02-07 38461.68
                          38
## 2021-02-08 44716.69
                          39
## 2021-02-09 46674.85
                          40
## 2021-02-10 45237.48
                          41
## 2021-02-11 47500.90
                          42
## 2021-02-12 47884.18
                          43
                          44
## 2021-02-13 47005.19
## 2021-02-14 49151.17
                          45
## 2021-02-15 48125.99
                          46
                          47
## 2021-02-16 48840.41
## 2021-02-17 52165.30
                          48
## 2021-02-18 51728.51
                          49
## 2021-02-19 55719.20
                          50
## 2021-02-20 54801.65
                          51
## 2021-02-21 57128.64
                          52
                          53
## 2021-02-22 54181.91
## 2021-02-23 48172.88
                          54
## 2021-02-24 48745.43
                          55
## 2021-02-25 48291.41
                          56
## 2021-02-26 45752.11
                          57
## 2021-02-27 46642.61
                          58
## 2021-02-28 45092.81
                          59
## 2021-03-01 49248.91
                          60
## 2021-03-02 47900.78
                          61
## 2021-03-03 50811.86
                          62
## 2021-03-04 48259.49
                          63
## 2021-03-05 49149.73
                          64
```

```
## 2021-03-06 48879.15
                         65
## 2021-03-07 50594.70
                         66
## 2021-03-08 51503.26
                         67
## 2021-03-09 54458.04
                         68
## 2021-03-10 56915.17
                         69
## 2021-03-11 57636.76
                         70
## 2021-03-12 57306.17
                         71
## 2021-03-13 60743.04
                         72
                         73
## 2021-03-14 60197.90
## 2021-03-15 56300.33
                         74
## 2021-03-16 56639.78
                         75
## 2021-03-17 58567.28
                         76
## 2021-03-18 57983.09
                         77
                         78
## 2021-03-19 58451.73
                         79
## 2021-03-20 58593.60
## 2021-03-21 57796.47
                         80
## 2021-03-22 54329.36
                         81
## 2021-03-23 54794.30
                         82
## 2021-03-24 52787.75
                         83
## 2021-03-25 52173.87
                         84
## 2021-03-26 54483.05
                         85
## 2021-03-27 56234.36
                         86
## 2021-03-28 55343.93
                         87
## 2021-03-29 57627.68
                         88
## 2021-03-30 58734.48
                         89
## 2021-03-31 58724.66
                         90
```

2. La tendance lineaire de cette serie chronologique avec la fonction lm et stockage des resultats dans un objet tendance

```
# Conversion en série temporelle
ts_data_bitcoin <- ts(bitcoin_data$Price, frequency = 30)

# Calcul de la tendance linéaire
# Nous devons créer une variable de temps pour l'ajustement du modèle
linéaire
time_index <- seq_along(ts_data_bitcoin)
tendance_model <- lm(ts_data_bitcoin ~ time_index)

# Stocker les résultats dans un objet `tendance`
bitcoin_data$tendance <- fitted(tendance_model)</pre>
```

3. Les residus de la tendance lineaire :

```
bitcoin_data$Price_detrend <- bitcoin_data$Price -
tendance_model$fitted.values</pre>
```

5. Application de la fonction sur la serie tendancee

```
calcul_periodicite <- function(bitcoin_data, p) {
  n <- length(bitcoin_data)
  N <- floor(n / p)</pre>
```

```
periode <- rep(NA, p)</pre>
  for (i in 1:p) {
    indices <- i + (0:N) * p
    indices <- indices[indices <= n] # Pour éviter les indices dépassant la
longueur de bitcoin_data
    periode[i] <- mean(bitcoin data[indices], na.rm = TRUE)</pre>
  if (n == N * p) {
   Date <- rep(periode, N)
  } else {
    Date <- c(rep(periode, N), periode[1:(n - N * p)])</pre>
  return(Date)
periodicite <- calcul_periodicite(bitcoin_data$Price_detrend, 7)</pre>
6. Representation de la Periodicite de la serie detendancee
p <- 7
N <- floor(nrow(bitcoin_data) / p)</pre>
bitcoin_data$Jours <- as.Date(rownames(bitcoin_data))</pre>
plot(bitcoin_data$Price_detrend)
lines(periodicite)
for(i in 1:N) {
  rect(bitcoin data$Jours[3+(i-1)*p], -6000, bitcoin data$Jours[4+(i-1)*p],
6000,
       col = "gray", density = 20, border = NA)
  text(bitcoin_data$Jours[3.5+(i-1)*p], 500, labels = "Week-end", col =
"gray30")
```


4. MODELE ADDITIF POUR PREDIRE L'EVOLUTION DU PRIX DU BITCOIN

4.1 Rappel du model additif

```
# Le modèle additif avec une tendance linéaire et une périodicité de 7 jours s'écrit comme suit :

# Yt = (60 + 61t) + St + Et

# Ou St représente la composante saisonnière avec une période de 7 jours. Le nombre total de paramètres à estimer est de 9 :

# * 2 pour la tendance lineaire (60 et 61)

# * 7 pour la composante saisonnière (un pour chaque jour de la période).
```

4.2 Calcul des predictions du modele additif et sa courbe

```
calcul_periodicite <- function(bitcoin_data, p) {
    n <- length(bitcoin_data)
    N <- floor(n / p)
    periode <- rep(NA, p)

for (i in 1:p) {
    indices <- i + (0:N) * p
    indices <- indices[indices <= n] # Pour éviter les indices dépassant la
Longueur de bitcoin_data
    periode[i] <- mean(bitcoin_data[indices], na.rm = TRUE)
}</pre>
```

```
if (n == N * p) {
   Date <- rep(periode, N)
  } else {
    Date <- c(rep(periode, N), periode[1:(n - N * p)])</pre>
  }
 return(Date)
}
# Calcule de la périodicité
p <- 7
periodicite <- calcul periodicite(bitcoin data$Price detrend, p)
bitcoin_data$periodicite <- periodicite</pre>
print(bitcoin_data$periodicite)
##
   [1]
        277.79741 481.83456
                                69.89927 -480.24264 -418.38023
                                                                 83.69869
##
   [7]
        -15.82432 277.79741 481.83456
                                           69.89927 -480.24264 -418.38023
## [13]
         83.69869 -15.82432 277.79741 481.83456
                                                      69.89927 -480.24264
## [19] -418.38023
                     83.69869 -15.82432 277.79741 481.83456
                                                                 69.89927
## [25] -480.24264 -418.38023
                                83.69869 -15.82432
                                                     277.79741
                                                                481.83456
                                                     -15.82432
## [31]
         69.89927 -480.24264 -418.38023
                                           83.69869
                                                                277.79741
## [37] 481.83456
                    69.89927 -480.24264 -418.38023
                                                      83.69869
                                                                -15.82432
        277.79741 481.83456
## [43]
                                69.89927 -480.24264 -418.38023
                                                                 83.69869
        -15.82432 277.79741 481.83456
                                           69.89927 -480.24264 -418.38023
## [49]
## [55]
         83.69869
                   -15.82432 277.79741 481.83456
                                                      69.89927 -480.24264
## [61] -418.38023
                     83.69869 -15.82432
                                          277.79741
                                                     481.83456
                                                                 69.89927
## [67] -480.24264 -418.38023
                                83.69869
                                                     277.79741
                                          -15.82432
                                                                481.83456
## [73]
          69.89927 -480.24264 -418.38023
                                           83.69869
                                                     -15.82432
                                                                277.79741
                     69.89927 -480.24264 -418.38023
## [79]
        481.83456
                                                      83.69869
                                                                -15.82432
## [85]
        277.79741 481.83456
                                69.89927 -480.24264 -418.38023
                                                                 83.69869
plot(bitcoin data$Jours, bitcoin data$Price, type = "l", col = "blue",
     main = "Prix avec tendance linéaire et périodicité", xlab = "Date", ylab
= "Price")
lines(bitcoin_data$Jours, bitcoin_data$tendance, col = "red")
lines(bitcoin_data$Jours, bitcoin_data$periodicite, col = "green")
lines(bitcoin data$Jours, bitcoin data$hat Price, col = "purple", lty = 2)
legend("topleft", legend = c("Observed", "Trend", "Periodicite",
"Predictions"),
       col = c("blue", "red", "green", "purple"), lty = c(1, 1, 1, 2))
```

Prix avec tendance linéaire et périodicité

4.3. Calcul des

residus de ce modele et sa graphe

Résidus du Modèle Additif

4.4 Previsions sur l'evolution des prix du bitcoin pour les 10 prochains jours

```
n <- length(bitcoin data$Price)</pre>
nouveau_jours <- (n+1):(n+10)</pre>
# Conversion en série temporelle
ts_data_bitcoin <- ts(bitcoin_data$Price, nouveau_jours)</pre>
# Calcul de la tendance linéaire
# Nous devons créer une variable de temps pour l'ajustement du modèle
linéaire
time_index <- seq_along(ts_data_bitcoin)</pre>
tendance_model <- lm(ts_data_bitcoin ~ time_index)</pre>
# Stocker les résultats dans un objet `tendance`
bitcoin_data$tendance_10 <- fitted(tendance_model)</pre>
# Affichage des tendances pour les 10 prochains jours
head(bitcoin_data$tendance, 10)
## [1] 30686.71 31014.32 31341.93 31669.54 31997.15 32324.76 32652.37
32979.98
## [9] 33307.59 33635.20
```

4.5. La valeur de la periodicite pour les jours a venir

```
moment_periode <- nouveau_jours %% 7 + 1
prediction_periode <- periodicite[moment_periode]
print(prediction_periode)

## [1] 277.79741 481.83456 69.89927 -480.24264 -418.38023 83.69869
## [7] -15.82432 277.79741 481.83456 69.89927</pre>
```

L'opération %% en R correspond à l'opérateur de modulo. Elle calcule le reste de la division entière de deux nombres.

L'utilisation de l'opérateur modulo (%%) dans la ligne moment_periode <- nouveau_jours %% 7 + 1 est nécessaire pour gérer la périodicité dans les données. Voici pourquoi :

- Détermination du Cycle Hebdomadaire : En appliquant l'opérateur modulo 7 à chaque valeur de nouveau_jours, vous obtenez un résultat qui indique la position du jour dans une semaine de 7 jours. Par exemple, un résultat de 1 correspond au premier jour du cycle (jour 1), un résultat de 2 correspond au deuxième jour (jour 2), et ainsi de suite jusqu'à 7, après quoi le cycle recommence à 1.
- Ajustement de l'Indexation : Le +1 après le modulo ajuste l'indexation pour qu'elle commence à 1 au lieu de 0 (ce qui serait le cas avec un simple modulo). Cela est utile si les éléments de periodicite sont indexés de 1 à 7 (plutôt que de 0 à 6).
- Utilisation de la Périodicité : moment_periode est ensuite utilisé pour accéder aux valeurs correspondantes dans periodicite, ce qui permet d'extraire la valeur de la périodicité pour chaque jour spécifié dans nouveau_jours.

En résumé, cette ligne de code est utilisée pour s'assurer que chaque jour dans nouveau_jours est correctement mappé à une position dans un cycle hebdomadaire de 7 jours, permettant ainsi d'extraire les valeurs correspondantes dans periodicite.

4.6. Calcul des previsions du modele pour les 10 jours a venir et stockage dans un objet prevision modele add

```
# Nombre de jours à prévoir
moment_periode <- 10

# Créer une séquence pour les nouveaux jours
nouveau_jours <- (nrow(bitcoin_data) + 1):(nrow(bitcoin_data) +
moment_periode)

# Calculer la tendance projetée
tendance_previsions <- predict(tendance_model, newdata = data.frame(Jours = bitcoin_data$Jours[nrow(bitcoin_data)] + 1:moment_periode))

## Warning: 'newdata' avait 10 lignes mais les variables trouvées ont 90 lignes</pre>
```

```
# Calculer le moment de la période pour chaque nouveau jour
moment_periode <- nouveau_jours %% 7 + 1</pre>
# Appliquer la périodicité aux prévisions
prediction_periode <- periodicite[moment_periode]</pre>
# Calcul des prévisions finales
prevision_modele_add <- tendance_previsions + prediction_periode</pre>
# Stocker les prévisions dans un objet
prevision modele add <- data.frame(Jours =</pre>
bitcoin_data$Jours[nrow(bitcoin_data)] + 1:moment_periode,
                                    Previsions = prevision_modele_add)
## Warning in 1:moment_periode: numerical expression has 10 elements: only
the
## first used
print(prevision_modele_add)
##
           Jours Previsions
      2021-04-01
## 1
                   30964.51
## 2 2021-04-01
                   31496.16
## 3 2021-04-01
                   31411.83
## 4 2021-04-01
                   31189.30
## 5 2021-04-01
                   31578.77
## 6 2021-04-01
                   32408.46
## 7 2021-04-01
                   32636.55
## 8 2021-04-01
                   33257.78
## 9 2021-04-01
                   33789.42
## 10 2021-04-01
                   33705.10
## 11 2021-04-01
                   34240.61
## 12 2021-04-01
                   34772.25
## 13 2021-04-01
                   34687.93
## 14 2021-04-01
                   34465.39
## 15 2021-04-01
                   34854.86
## 16 2021-04-01
                   35684.55
## 17 2021-04-01
                   35912.64
## 18 2021-04-01
                   36533.87
## 19 2021-04-01
                   37065.52
## 20 2021-04-01
                   36981.19
## 21 2021-04-01
                   37516.70
## 22 2021-04-01
                   38048.34
## 23 2021-04-01
                   37964.02
## 24 2021-04-01
                   37741.49
## 25 2021-04-01
                   38130.96
## 26 2021-04-01
                   38960.65
## 27 2021-04-01
                   39188.73
## 28 2021-04-01
                   39809.96
## 29 2021-04-01
                   40341.61
```

```
## 30 2021-04-01
                    40257.28
## 31 2021-04-01
                    40792.79
## 32 2021-04-01
                    41324.44
## 33 2021-04-01
                    41240.11
## 34 2021-04-01
                    41017.58
## 35 2021-04-01
                    41407.05
                    42236.74
## 36 2021-04-01
## 37 2021-04-01
                    42464.83
## 38 2021-04-01
                    43086.06
## 39 2021-04-01
                    43617.70
## 40 2021-04-01
                    43533.38
## 41 2021-04-01
                    44068.88
## 42 2021-04-01
                    44600.53
## 43 2021-04-01
                    44516.20
## 44 2021-04-01
                    44293.67
## 45 2021-04-01
                    44683.14
## 46 2021-04-01
                    45512.83
## 47 2021-04-01
                    45740.92
## 48 2021-04-01
                    46362.15
## 49 2021-04-01
                    46893.80
## 50 2021-04-01
                    46809.47
## 51 2021-04-01
                    47344.98
## 52 2021-04-01
                    47876.62
## 53 2021-04-01
                    47792.30
## 54 2021-04-01
                    47569.76
## 55 2021-04-01
                    47959.24
## 56 2021-04-01
                    48788.92
## 57 2021-04-01
                    49017.01
## 58 2021-04-01
                    49638.24
## 59 2021-04-01
                    50169.89
## 60 2021-04-01
                    50085.56
## 61 2021-04-01
                    50621.07
## 62 2021-04-01
                    51152.72
## 63 2021-04-01
                    51068.39
## 64 2021-04-01
                    50845.86
## 65 2021-04-01
                    51235.33
## 66 2021-04-01
                    52065.02
## 67 2021-04-01
                    52293.10
## 68 2021-04-01
                    52914.34
## 69 2021-04-01
                    53445.98
## 70 2021-04-01
                    53361.66
## 71 2021-04-01
                    53897.16
## 72 2021-04-01
                    54428.81
## 73 2021-04-01
                    54344.48
## 74 2021-04-01
                    54121.95
## 75 2021-04-01
                    54511.42
## 76 2021-04-01
                    55341.11
## 77 2021-04-01
                    55569.20
## 78 2021-04-01
                    56190.43
## 79 2021-04-01
                    56722.07
```

```
## 80 2021-04-01
                   56637.75
## 81 2021-04-01
                   57173.26
## 82 2021-04-01
                   57704.90
## 83 2021-04-01
                   57620.58
## 84 2021-04-01
                   57398.04
## 85 2021-04-01
                   57787.52
## 86 2021-04-01
                   58617.20
## 87 2021-04-01
                   58845.29
## 88 2021-04-01
                   59466.52
                   59998.17
## 89 2021-04-01
## 90 2021-04-01
                   59913.84
```

4.7. Visualisation de l'evolution du Prix du bitcoin

```
xlim <- c(1, n + 10)
ylim <- range(c(bitcoin_data$Price, prevision_modele_add$Previsions), na.rm =
TRUE)

plot(bitcoin_data$Price, type = 'l', xlim = xlim, ylim = ylim, ylab =
"Price", xlab = "Days")

lines(bitcoin_data$hat_Price, col = 'blue')

lines(prevision_modele_add$Previsions, type = 'p', pch = 17)</pre>
```

