- $1. \ \, {\it The-Real-and-Complex-Number-Systems}$ 
  - 1.1. Definition of Rational Numbers
  - 1.2. Rationals are Inadequate

# **Note Information**

- ID: 202501131947
- Timestamp: Tuesday 14th January, 2025 08:49
- Tags: Mathematics, Analysis-I, The-Real-and-Complex-Number-Systems
- References:
  - Analysis I
  - Rudin W., Principles of Mathematical Analysis

# **Main Content**

### Main Idea

Rational numbers are of the form  $\frac{m}{n}$ , where m and n are integers and  $n \neq 0$ .

### Explanation

# Review

1. Define the rational number system.

## Links to Other Notes

•

# **Table of Contents**

• TOC

### **Note Information**

• ID: 202501132004

• Timestamp: Tuesday 14th January, 2025 08:49

• Tags: Mathematics, Analysis-I, The-Real-and-Complex-Number-System

• References:

- Analysis I

- Rudin W., Principles of Mathematical Analysis

### **Main Content**

#### Main Idea

The rational number system is inadequate for many purposes, both as a field and as an ordered set.

#### Explanation

For example, there is no rational p such that  $p^2 = 2$ .

**Proof 0.1** Suppose on the contrary there was a p that satisfied  $p^2 = 2$ . We could write  $p = \frac{m}{n}$ , where m and n are integers and coprime. The original expression implies

$$\left(\frac{m}{n}\right)^2 = 2$$

$$\frac{m^2}{n^2} = 2$$

$$m^2 = 2n^2$$

From this expression, we see that  $m^2$  is even, and thus, m is even. Plugging 2k in for m, it is clear that  $m^2$  is divisible by 4. It follows that  $2n^2$  is divisible by 4 as well, which implies  $n^2$  is even, and thus, n is even. Therefore, our assumption leads to a contradiction that both m and n are even, thus violating the coprime property of m and m. Hence, it is impossible for m to be rational.

**Proof 0.2 (Alternative)** Let A be the set of all positive rationals p such that  $p^2 < 2$  and let B consist of all positive rationals p such that  $p^2 > 2$ . By showing there is no largest element in A and no smallest element in B, we effectively partion the set of rational numbers, thus implying there is no rational p that falls outside these two sets, therefore satisfying  $p^2 = 2$ .

To prove that for every p in A we can find a rational q in A such that p < q, we associate with each rational p > 0 the number

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}. (1)$$

Then

$$q^2 - 2 = \frac{2(p^2 - 2)}{(p+2)^2}. (2)$$

If p is in A then  $p^2 - 2 < 0$ , (1) shows that q > p, and (2) shows that  $q^2 < 2$ . Thus q is in A. If p is in B then  $p^2 - 2 > 0$ , (1) shows that 0 < q < p, and (2) shows that  $q^2 > 2$ . Thus q is in B.

## Review

1. Prove that there is no rational p such that  $p^2 = 2$  in two different ways.

### Links to Other Notes

• Definition of Rational Numbers

# **Table of Contents**

• TOC