

窩

刘振岩 zhenyanliu@bit.edu.cn

第一篇 数理逻辑

- 数理逻辑是用数学方法研究推理(即研究人类思维的形式结构和规律)的科学,它是在传统逻辑(自然语言)的基础上从17世纪70年代开始发展起来的,它采用数学符号化的方法,也称为现代逻辑或符号逻辑。
- 数理逻辑着重于研究从"前提"到"结论"的推理过程 是否正确,而不是"前提"或"结论"本身是否正确。
- 从广义上讲,数理逻辑包括:逻辑演算、公理集合论、模型论、递归论、证明论。其中最基本也是最重要的部分是逻辑演算(命题逻辑和一阶逻辑(谓词逻辑))

第一篇 数理逻辑

命题逻辑

研究由<mark>命题</mark>为基本单位构成的 <mark>前提和结论</mark>之间的可推导关系

前提: 1. 或是天晴,或是下雨。

2. 若天晴,我去看电影。

3. 若我去看电影,我就不看书。

结论: 若我在看书,则天在下雨。

一阶逻辑

命题逻辑的扩充和发展

所有的人都是要死的, 苏格拉底是人, 所以,苏格拉底是要死的。

♥1数理逻辑

第一部分 数理逻辑

 1.1命题与联结词 ● ch1命题逻辑的基本概念 1.2 命题公式及其赋值 ⊕ 2.1等值式 ⊕ 2.2析取范式与合取范式 🕀 ch2命题逻辑的等值演算 2.3 联结词完备集 💩 2.4 可满足性问题与消解法 🕕 3.1推理的形式结构 🕕 ch3命题逻辑的推理理论 3.2自然推理系统P ⊕ 4.1一阶逻辑命题符号化 ⊕ ch4一阶逻辑的基本概念 4.2一阶逻辑公式及其解释 ⊕ 5.1 一阶逻辑等值式与置换规则 ⊕ ch5一阶逻辑的等值演算和推理 5.2 一阶逻辑前束范式 ⊕ 5.3 一阶逻辑的推理理论 ⊕

离散数学

第一章 命题逻辑的基本概念

主要内容

- 1.1 命题与联结词
 - > 命题及其分类
 - ▶ 联结词与复合命题
- 1.2 命题公式及其赋值

离散数学

第一章 命题逻辑的基本概念

主要内容

- 1.1 命题与联结词
 - > 命题及其分类
 - ▶ 联结词与复合命题
- 1.2 命题公式及其赋值

1.1 命题与联结词

- 命题与真值
 - ▶命题:判断结果唯一的陈述句
 - > 命题的真值:判断的结果
 - ▶ 真值的取值:真与假
 - > 真命题与假命题
- 注意:
 - > 感叹句、祈使句、疑问句都不是命题
 - > 陈述句中的悖论,判断结果不唯一确定的不是命题

命题概念

例1 下列句子中那些是命题?

(1) $\sqrt{2}$ 是有理数.

(2) 北京是中国的首都.

(3) x + 5 > 3.

(4) 你去教室吗?

(5) 这个苹果真大呀!

(6) 请不要讲话!

(7) 2050年元旦下大雪.

(8) 我正在说假话

假命题

真命题

不是命题

不是命题

不是命题

不是命题

是命题,但真值现在不知道

不是命题,是悖论

说谎者悖论

如果这个人说的是真话,那么根据他的话可以推知他说的是假话,矛盾。如果这个人说的是假话,即"我没有说假话",也就是他说的是真话,矛盾。

理发师悖论

我只给村里所有那些 不给自己理发的人 理发

若理发师不给自己理发

若理发师给自己理发

悖论的抽象公式

悖论的抽象公式是:如果事件A发生,则推导出非A,非A发生则推导出A。

说谎者悖论: "我正在说假话" 如果这个人说的是真话,那么根据他的话可以推知:他说的是假话,矛盾 如果这个人说的是假话,即"我没有说假话",也就是他说的是真话,矛盾

理发师悖论: "我只给村里所有那些 不给自己理发的人 理发"如果他不给自己理发,他就属于"不给自己理发的人",他就要给自己理发,矛盾如果他给自己理发,他就属于"给自己理发的人",而按题意他不该给自己理发,矛盾

"此命题是假"也是悖论 如果这个命题是真,即此命题是假,矛盾 如果这个命题是假,即此命题是真,矛盾

命题分类

命题分类:

- 简单命题(也称原子命题,不能被分解成更简单的命题)
- 复合命题(由简单命题通过联结词联结而成的命题)

简单命题符号化

- 用小写英文字母 $p, q, r, ..., p_i, q_i, r_i$ ($i \ge 1$)表示简单命题
- 用 "1"表示真(T), 用 "0"表示假(F)

例如,令

 $p:\sqrt{2}$ 是有理数,则p的真值为0,

q: 北京是中国的首都,则 q 的真值为1

联结词

- 在数理逻辑中,复合命题是由原子命题与逻辑联结词组合而成的,联结词是复合命题中的重要组成部分。
 - 1. 否定 🦳
 - 2. 合取 🔨
 - 3. 析取 V
 - 4. 蕴涵 →
 - 5. 等价 ↔

1. 否定 ¬

定义1.1 设p为命题,复合命题"非p"(或"p的否定")称为p的否定式,记作 $\neg p$,符号 \neg 称作否定联结词.

规定: $\neg p$ 为真 当且仅当 p为假.

■ 否定是一个一元运算。

真值表

p	¬ p
0	1
1	0

1. 否定 ¬ (续)

真值表

p	$\neg p$
0	1
1	0

逻辑非举例状态表

开关S	灯
断	 亮
合	灭

1. 否定 ¬ (例1)

例1:

p: 北京是一个大城市。

则:

 $\neg p$: 北京不是一个大城市。

或 $\neg p$: 北京是一个不大的城市。

1. 否定 ¬ (例2)

例2:

q:每个自然数都是偶数。

不是

 $\neg q$:

每个自然数都不是偶数。 X

而是

 $\neg q$:

并非每个自然数都是偶数。

2.合取 ∧

定义1.2 设p,q为两个命题,复合命题 "p并且q"(或 "p与 q") 称为p与q的合取式,记作p∧q,∧称作合取联结词.

规定: $p \land q$ 为真当且仅当 $p \vdash q$ 同时为真.

真值表

p	$oldsymbol{q}$	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

2.合取 A (续)

真值表

p	$oldsymbol{q}$	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

逻辑与举例状态表

开关S ₁	开关 \mathbf{S}_2	灯
断	断	灭
断	合	灭
合	断	灭亮
合	合	亮

2.合取 ∧(例1)

例1: 将下列命题符号化.

- (1) 吴颖既用功又聪明.
- (2) 吴颖不仅用功而且聪明.
- (3) 吴颖虽然聪明,但不用功.
- (4) 吴颖不是不聪明,而是不用功。
- (5) 张辉与王丽都是三好生.

(6) 张辉与王丽是同学.

解: 令*p*:吴颖用功 *q*:吴颖聪明

- $(1) p \wedge q$
- $(2) p \wedge q$
- $(3) \neg p \land q$
- $(4) \neg p \land \neg (\neg q)$

or $\neg p \land q$

(5) 设 p:张辉是三好生,

q:王丽是三好生

则: $p \wedge q$

(6) p:张辉与王丽是同学

2.合取 ∧(例2)

例2: 设p: 今天下雨。

q: 明天下雨。

则有

 $p \wedge q$: 今天下雨而且明天下雨。

 $p \wedge q$: 今天与明天都下雨。

 $p \wedge q$: 这两天都下雨。

表示合取关系常用词:

- •与、和、且、都
- •一边…一边…
- •不仅…而且…
- •既…又…
- •虽然…但是…
- 不是...而是...

例3:

p: 我去看电影

q:房间里有十张桌子

则有

p ^ q: 我去看电影和房间里有十张桌子

注意:

在逻辑学中是允许的, 但是,在自然语言中,此命题没有意义, 因为p和q没有内在联系。

定义1.3 设p,q为两个命题,复合命题"p或q"称作p与q的析取式,记作pVq,V称作析取联结词.

规定: $p \lor q$ 为假当且仅当 $p \vdash q$ 同时为假.

真值表

p	\boldsymbol{q}	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

3. 析取 v (续)

真值表

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

逻辑或举例状态表

开关 S_1	开关 \mathbf{S}_2	灯
断	断	灭
断	合	亮
合合	断	亮 亮 亮
合	合	亮

3.析取 V(例1)

例1 将下列命题符号化

- (1) 2 或 4 是素数.
- (2) 2 或 3 是素数.
- (3)4或6是素数.

- •析取表示可兼或
- •而自然语言中"或" 既可以表示"可兼或" 也可表示"不可兼或"
- (4) 今天晚上我在家看电视或去影院看电影.
- (5) 王小红生于 1975 年或 1976 年.
- (1)—(3) 为:可兼或(相容或)
- (4)—(5) 为:不可兼或(排斥或)

离散数学

3.析取 V(例1)

例1 将下列命题符号化

- (1) 2 或 4 是素数.
- (2) 2 或 3 是素数.
- (3) 4 或 6 是素数.

解

- (1) 令 p:2是素数, q:4是素数, $p\lor q$
- (2) 令 p:2是素数, q:3是素数, $p\lor q$
- (3) 令 p:4是素数, q:6是素数, $p \lor q$

3.析取 V(例1)

例1 将下列命题符号化

- (4) 今天晚上我在家看电视或去影院看电影.
- (5) 王小红生于 1975 年或 1976 年.

解

(4) 令p:今天晚上我在家看电视,q:今天晚上我去影院看电影 $(p \land \neg q) \lor (\neg p \land q)$

(5) p:王小红生于 1975 年, q:王小红生于1976 年, (p∧¬q)∨(¬p∧q)

注意:他做了二十或三十道题.

这是一个原子命题,"或"是大约的意思

4.蕴涵—

定义1.4 设p, q为两个命题,复合命题"如果p, 则q"称作p与q的 蕴涵式,记作 $p \rightarrow q$,并称p是蕴涵式的前件,q为蕴涵式的后件, \rightarrow 称作蕴涵联结词.

规定: $p \rightarrow q$ 为假当且仅当 p为真q为假.

真值表

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

前真后假则假

离散数学

4.蕴涵→

- (1) $p \rightarrow q$ 的逻辑关系: $p \rightarrow q$ 的充分条件, 或者: $q \rightarrow p$ 的必要条件。
- (2) "如果p,则q"有很多不同的表述方法:

若 p, 就 q只要 p, 就 q只有 $q, \forall p$ 除非 $q, \forall p$ 除非 $q, \Leftrightarrow q$ 子则非pp仅当q

- a ste st Attent
- (3) 当 p 为假时, $p \rightarrow q$ 恒为真,称为空证明
- (4) 常出现的错误:不分充分与必要条件

4. 蕴涵 → (例1)

例1 设p: 天冷,q: 小王穿羽绒服,将下列命题符号化

(1) 只要天冷,小王就穿羽绒服.

$$p \rightarrow q$$

p	$oldsymbol{q}$	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

(2) 只有天冷,小王才穿羽绒服。 $q \rightarrow p$

p	$oldsymbol{q}$	$q \rightarrow p$
0	0	1
0	1	0
1	0	1
1	1	1

例1 设p: 天冷,q: 小王穿羽绒服,将下列命题符号化

(3) 因为天冷,所以小王穿羽绒服.

$$p \rightarrow q$$

(4) 若小王不穿羽绒服,则天不冷.

$$\neg q \rightarrow \neg p$$
or $p \rightarrow q$

注意: $p \rightarrow q$ 与 $\neg q \rightarrow \neg p$ 等值(真值相同)

4.蕴涵→(例1)

例1 设p: 天冷,q: 小王穿羽绒服,将下列命题符号化

(5) 除非天冷,小王才穿羽绒服.

- $\neg p \rightarrow \neg q$ or $q \rightarrow p$
- (6) 除非小王穿羽绒服,否则天不冷. 可
 - $\neg q \rightarrow \neg p$ or $p \rightarrow q$
- (7) 如果天不冷,则小王不穿羽绒服. $\neg p \rightarrow \neg q$ or $q \rightarrow p$
- (8) 小王穿羽绒服仅当天冷的时候. $q \rightarrow p$

4.蕴涵→(例2)

例2

- 如果今天是星期天,那么2+3=5.(永为真)
- 如果今天是星期天,那么2+3=6.(除星期天外,天天真)

•在自然语言中, "如果…,则…"是有因果关系的。 但在数理逻辑中,只要p和q能够分别确定真值(不管p和q是否有内在关系),则 $p \rightarrow q$ 即成为命题.

定义1.5 设 p, q为两个命题,复合命题 "p当且仅当q"称作 p与q的等价式,记作 $p \leftrightarrow q$, \leftrightarrow 称作等价联结词.

规定 $p\leftrightarrow q$ 为真当且仅当p与q同时为真或同时为假.

 $p \leftrightarrow q$ 的逻辑关系: p = q 互为充分必要条件.

真值表

p	\boldsymbol{q}	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

5.等价↔ (例1)

例1 求下列复合命题的真值

$$(1)$$
 2 + 2 = 4 当且仅当 3 + 3 = 6.

$$(2)$$
 2 + 2 = 4 当且仅当 3 是偶数.

$$(3)$$
 2 + 2 = 4 当且仅当 太阳从东方升起.

$$(4) 2 + 2 = 4$$
 当且仅当 美国位于非洲.

(5) 函数 f(x) 在 x_0 可导的充要条件是 它在 x_0 连续.

0

例2

- 如果两个三角形全等,则它们的三组对应边相等; 反之亦然。
- 当王晓红心情愉快时,她就唱歌;反之,当她唱歌时,一定心情愉快。

表示 $p \leftrightarrow q$ 的常用词:

- $\cdot p$ 当且仅当q.
- $\cdot p$ 是q的充要条件.
- ·如果p则q;反之亦然.

- 本小节中p,q,r,... 均表示命题.
- 联结词集为 $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$, $\neg p, p \land q, p \lor q, p \rightarrow q, p \leftrightarrow q$ 为 基本复合命题. 其中要特别注意理解 $p \rightarrow q$ 的涵义.
- 反复使用 $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ 中的联结词组成更为复杂的复合命题.
- 联结词的运算顺序: ¬,∧,∨,→,↔,同级按先出现者先运算.

课堂练习:

设 $p:\sqrt{2}$ 是无理数,q:3是奇数,r: 苹果是方的, s: 太阳绕地球转则复合命题 $(p\to q)\leftrightarrow ((r\land \neg s)\lor \neg p)$ 的真值?

离散数学

联结词 小结(续)

逻辑联结词	记作	读作	常用的汉语表示词语	运算
一	$\neg \rho$	非 p	不,并非	一元
^	$p \wedge q$	p 且q	与、和、且、都	二元
			一边一边	
			不仅…而且…	
			既…又…	
			虽然但是	
			不是…而是…	
V	$p \vee q$	p 或 q	或	二元
			或者	
\rightarrow	$p \rightarrow q$	如果 p ,则 q	如果 p ,那么 q	二元
			若 P ,则 9	
			只要 p ,就 q 只有 q ,才 p	
			p仅当q	
			除非 q ,才 p	
			除非 9, 否则非p	
\leftrightarrow	$p \leftrightarrow q$	p 当且仅当 q	如果 p 则 q ;反之亦然	二元

联结词 小结(续)

- 否定 ¬
- 合取 ∧ 同真则真,有假则假(11 1)
- 析取 v 同假则假,有真则真(000)
- 蕴涵 → 前真后假则假(100)
- 等价 ↔ 同则真,异则假

p	\boldsymbol{q}	$\neg p$	$p \land q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

离散数学

第一章 命题逻辑的基本概念

主要内容

- 1.1 命题与联结词
 - > 命题及其分类
 - ▶ 联结词与复合命题
- 1.2 命题公式及其赋值

1.2 命题公式及其赋值

命题变项与合式公式

- 命题变项
- 合式公式
- 合式公式的层次

公式的赋值

- 公式赋值
- 真值表
- 公式类型

1.2 命题公式及其赋值

命题变项与合式公式

- 命题变项
- 合式公式
- 合式公式的层次

公式的赋值

- 公式赋值
- 真值表
- 公式类型

命题变项

- 命题常项: 一个命题标识符表示确定的命题,该标识符称为 命题常项。
- 命题变项(命题变元): 命题标识符如仅是表示任意命题的 位置标志,就称为命题变项。
- 常项与变项均用 $p,q,r,...,p_i,q_i,r_i,...$, 等表示.

合式公式

定义1.6 合式公式(简称公式)的递归定义:

- (1) 单个命题变项和命题常项是合式公式, 称作原子命题公式
- (2) 若A是合式公式,则(¬A)也是
- (3) 若A, B是合式公式,则 $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ 也是
- (4) 只有有限次地应用(1)—(3) 形成的符号串才是合式公式

联结词的运算顺序: ¬,∧,∨,→,↔ 外层括号可以省去

合式公式的层次

定义1.7

- (1) 若公式A是单个命题变项,则称A为0层公式.
- (2) 称 A 是 n+1(n≥0) 层公式是指下面情况之一:
 - (a) $A=\neg B$, B 是 n 层公式;
 - (b) $A=B \land C$, 其中B,C 分别为 i 层和 j 层公式,且 $n=\max(i,j)$;
 - (c) $A=B\lor C$, 其中 B,C 的层次及 n 同(b);
 - (d) $A=B\rightarrow C$, 其中B,C 的层次及n 同(b);
 - (e) $A=B\leftrightarrow C$, 其中B,C 的层次及n 同(b).
- (3) 若公式A的层次为k,则称A为k层公式.

合式公式的层次

例如:公式

$$\blacksquare A=p$$

$$\blacksquare C = \neg p \rightarrow q$$

$$\blacksquare D = \neg (p \rightarrow q) \leftrightarrow r$$

$$\blacksquare E = ((\neg p \land q) \rightarrow r) \leftrightarrow (\neg r \lor s)$$

0层

1层

2层

3层

4层

合式公式的层次

公式 $(p \land (q \lor r)) \rightarrow (q \land (\neg s \lor r))$: 4层公式

1.2 命题公式及其赋值

命题变项与合式公式

- 命题变项
- 合式公式
- 合式公式的层次

公式的赋值

- 公式赋值
- 真值表
- 公式类型

公式赋值

定义1.8 设 p_1, p_2, \ldots, p_n 是出现在公式A中的全部命题变项,给 p_1, p_2, \ldots, p_n 各指定一个真值,称为对A的一个赋值或解释.

- 若使A为1,则称这组值为A的成真赋值;
- \blacksquare 若使A为0,则称这组值为A的成假赋值.

公式赋值的几点说明

- A中仅出现 $p_1, p_2, ..., p_n$,给A赋值 $\alpha = \alpha_1 \alpha_2 ... \alpha_n$ 是指 $p_1 = \alpha_1, p_2 = \alpha_2, ..., p_n = \alpha_n$, 其中, $\alpha_i = 0$ 或1, α_i 之间不加标点符号(i = 1, 2, ..., n)
- A中仅出现 p,q,r,...,给A赋值 $\alpha_1\alpha_2\alpha_3...$ 是指 $p=\alpha_1,q=\alpha_2,r=\alpha_3...$
- 含n个命题变项的公式有 2^n 个赋值. 如公式 $\neg(p\rightarrow q)\leftrightarrow r$ 有 2^3 =8个赋值。 其中:

000,010,101,110是成真赋值;001,011,100,111是成假赋值.

定义1.9 将命题公式A在所有赋值下取值的情况列成表,称作A的真值表。

构造真值表的步骤:

- (1) 找出公式中所含的全部命题变项 p_1, p_2, \ldots, p_n (若无下角标则按字母顺序排列),列出 2^n 个全部赋值,从00...0开始,按二进制加法,每次加1,直至11...1为止.
- (2) 按从低到高的顺序写出公式的各个层次.
- (3) 对每个赋值依次计算各层次的真值, 直到最后计算出公式的真值为止.

例 写出下列公式的真值表,并求它们的成真赋值和成假赋值:

- $(1) (p \lor q) \rightarrow \neg r$
- $(2) (q \rightarrow p) \land q \rightarrow p$
- $(3) \neg (\neg p \lor q) \land q$

(1)
$$A = (p \lor q) \rightarrow \neg r$$

p	q	r	p∨q	−1 *	$(p \lor q) \rightarrow \neg r$
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

成真赋值:000,001,010,100,110; 成假赋值:011,101,111

(2)
$$B = (q \rightarrow p) \land q \rightarrow p$$

p q	$q \rightarrow p$	$(q\rightarrow p) \land q$	$(q \rightarrow p) \land q \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

成真赋值:00,01,10,11; 无成假赋值

(3) $C = \neg (\neg p \lor q) \land q$ 的真值表

p q	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0 0	1	1	0	0
0 1	1	1	0	0
1 0	0	0	1	0
1 1	0	1	0	0

成假赋值:00,01,10,11; 无成真赋值

离散数学 构造 (p ^ ¬ q) ~ (¬p ^ q) 的真值表

今天晚上我在家看电视或去影院看电影。

解:设 p:今天晚上我在家看电视。

q: 今天晚上我去影院看电影。

本命题可表示为: $(p \land \neg q) \lor (\neg p \land q)$

不可以表示为: $p \vee q$

p	q	¬ p	$\neg q$	<i>p</i> ∧ ¬ <i>q</i>	- <i>p</i> ∧ <i>q</i>	$(p \land \neg q) \lor (\neg p \land q)$
0	0	1	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	1	0	0	0	0	0

真值表应用举例

p	\boldsymbol{q}	r	$p \land q \land r$	$p \lor q \lor r$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- 目前包括Google在 内的很多搜索引擎 在使用"软合取" 语义

公式的类型

定义1.10

- (1) 若A在它的任何赋值下均为真,则称A为重言式或永真式;
- (2) 若A在它的任何赋值下均为假,则称A为矛盾式或永假式;
- (3) 若A不是矛盾式,则称A是可满足式.
- ●重言式A的否定¬A是矛盾式;矛盾式A的否定¬A是重言式。
- ●重言式一定是可满足式,可满足式不一定是重言式。
- ●可满足式的否定不一定为不可满足式(即为矛盾式)。
- ●通过真值表可以求出公式的全部成真赋值与成假赋值,并判断公式的类型。

p q r	$p \lor q$	⊸ r	$(p \lor q) \rightarrow \neg r$
0 0 0	0	1	1
0 0 1	0	0	1
0 1 0	1	1	1
0 1 1	1	0	0
1 0 0	1	1	1
1 0 1	1	0	0
1 1 0	1	1	1
1 1 1	1	0	0

成真赋值:000,001,010,100,110; 成假赋值:011,101,111

(2)
$$B = (q \rightarrow p) \land q \rightarrow p$$

p q	$q \rightarrow p$	$(q\rightarrow p) \land q$	$(q \rightarrow p) \land q \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

成真赋值:00,01,10,11; 无成假赋值

(3) $C = \neg (\neg p \lor q) \land q$ 的真值表

p q	7	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0 0)	1	1	0	0
0 1		1	1	0	0
1 0)	0	0	1	0
1 1		0	1	0	0

成假赋值:00,01,10,11; 无成真赋值

判定问题

- 在逻辑研究和计算机推理以及决策判断中,人们对于所研究的命题,最关心的莫过于"真"、"假"问题,所以重言式在数理逻辑研究中占有特殊且重要的地位。
- 能否给出一个可行方法,对任意的公式,判定其是否是 永真公式称为判定问题。
- 因为一个命题公式的解释的数目是有穷的,所以命题逻辑的判定问题是可解的(可判定的,可计算的),亦即,命题公式的恒真、恒假性是可判定的。

离散数学第一章 命题逻辑的基本概念 (回顾)

