Robust minimization

Non-exhaustive list of "Robust" Objectives

• Worst case [?]:

$$\min_{\theta \in \Theta} \left\{ \max_{u \in \mathbb{U}} J(\theta, u) \right\}$$

• M-robustness [?]:

$$\min_{\theta \in \Theta} \mathbb{E}_{U}\left[J(\theta, U)\right]$$

• V-robustness [?]:

$$\min_{\theta \in \Theta} \mathbb{V}\mathrm{ar}_{U}\left[J(\theta,U)\right]$$

• Multiobjective [?]:

Pareto frontier

ullet Best performance achievable given $u \sim U$

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

The minimizer can be seen as a random variable:

$$\theta^*(U) = \operatorname*{arg\,min}_{\theta \in \Theta} J(\theta, U)$$

 \longrightarrow estimate its density (how often is the value θ a minimizer)

$$p_{\theta^*}(\theta) = "\mathbb{P}_U [J(\theta, U) = J^*(U)]"$$

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

The minimizer can be seen as a random variable:

$$\theta^*(U) = \operatorname*{arg\,min}_{\theta \in \Theta} J(\theta, U)$$

 \longrightarrow estimate its density (how often is the value θ a minimizer)

$$p_{\theta^*}(\theta) = "\mathbb{P}_U [J(\theta, U) = J^*(U)]"$$

How to take into account values not optimal, but not too far either \longrightarrow relaxation of the equality with $\alpha>1$:

$$\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}\left[J(\theta, U) \leq \alpha J^{*}(U)\right]$$

• Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$

- Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$
- Set of conditional minimisers: $\{(\theta^*(u), u) \mid u \in \mathbb{U}\}$

- Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$
- Set of conditional minimisers: $\{(\theta^*(u), u) \mid u \in \mathbb{U}\}$
- Set $\alpha > 1$

- Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$
- Set of conditional minimisers: $\{(\theta^*(u), u) \mid u \in \mathbb{U}\}$
- Set $\alpha > 1$
- $R_{\alpha}(\theta) = \{u \mid J(\theta, u) \leq \alpha J^*(u)\}$
- $\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}[U \in R_{\alpha}(\theta)]$

Getting an estimator

 $\Gamma_{\alpha}(\theta)$: probability that the cost (thus θ) is α -acceptable

• If α known, maximize the probability that θ gives acceptable values:

$$\max_{\theta \in \Theta} \Gamma_{\alpha}(\theta) = \max_{\theta \in \Theta} \mathbb{P}_{U} \left[J(\theta, U) \le \alpha J^{*}(U) \right] \tag{1}$$

• Set a target probability $1 - \eta$, and find the smallest α .

$$\inf\{\alpha \mid \max_{\theta \in \Theta} \Gamma_{\alpha}(\theta) \ge 1 - \eta\} \tag{2}$$

Relative-regret family of estimators

$$\left\{ \hat{\theta} \mid \hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \, \Gamma_{\alpha}(\theta), \alpha > 1 \right\} \tag{3}$$

Interpretation

If we either set α or η

$$\hat{\theta} = \arg\max \Gamma_{\alpha} \tag{4}$$

$$\max \Gamma_{\alpha} = \Gamma_{\alpha}(\hat{\theta}) = 1 - \eta \tag{5}$$

The maximal relative regret J/J^* of the function will be α , except for the $100\eta\%$ least favourable cases.

 $\bullet \ \alpha \ {\rm and} \ \eta$

5

Why the relative regret ?

- Relative regret
 - α -acceptability regions large for flat and bad situations ($J^*(u)$ large)
 - ullet Conversely, puts high confidence when $J^*(u)$ is small
 - No units → ratio of costs