Table Tennis Project Report

Tao Chen chent@slxrobot.com

Shanghai LingXian Robotics

Apr 07, 2017

Outline

Background

Prediction Neural Network

Outline

Background

Prediction Neural Network

Mission Statement

- ► Mission: Given several initial dual-camera frames, predict the table tennis ball's position in future frames
- ▶ In experiments:
 - Camera sampling frequency: 30 Hz
 - Algorithm's input: 14 initial frames
 - Algorithm's output: ball's positions in 33th-38th frames

Basics

MDN

- ▶ Supervised learning \rightarrow model a conditional distribution p(t|x)
- ► Unimodal distribution:
 - p(t|x) is often chosen to be Gaussian
- Multimodal Distribution:
 - p(t|x) can be mixture density network (MDN)

Figure: Unimodal and Multimodal

Basics MDN

MDN Formulation:

$$p(\boldsymbol{t}|\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k(\boldsymbol{x}) \mathcal{N}(\boldsymbol{t}|\mu_k(\boldsymbol{x}), \sigma_k^2(\boldsymbol{x}))$$

s.t.

$$\sum_{k=1}^{K} \pi_k(\boldsymbol{x}) = 1, \quad 0 \le \pi_k(\boldsymbol{x}) \le 1$$
$$\sigma_k^2(\boldsymbol{x}) \ge 0$$

To satisfy the constraints:

$$\pi_k(oldsymbol{x}) = rac{e^{a_k^\pi}}{\sum_{\ell=1}^K e^{a_\ell^\pi}}, \quad \sigma_k(oldsymbol{x}) = e^{a_k^\sigma}$$

Basics MDN

MDN Loss: Maximum Likelihood

$$E(oldsymbol{w}) = -\sum_{n=1}^N \ln \left\{ \sum_{k=1}^K \pi_k(oldsymbol{x}_n, oldsymbol{w}) \mathcal{N}(oldsymbol{t}_n | \mu_k(oldsymbol{x}_n, oldsymbol{w}), \sigma_k^2(oldsymbol{x}_n, oldsymbol{w}))
ight\}$$

Basics

Highway Networks

- ► Training deeper networks is not as straightforward as simply adding layers
- ► Highway Networks enables the optimization of networks with virtually arbitrary depth
- Key: gating mechanism (inspired by LSTM)

$$\boldsymbol{y} = H(\boldsymbol{x}, \boldsymbol{W_H}) \cdot T(\boldsymbol{x}, \boldsymbol{W_T}) + \boldsymbol{x} \cdot (1 - T(\boldsymbol{x}, \boldsymbol{W_T}))$$

where ${\cal H}$ can be an affine transform followed by a non-linear activation function and:

$$T(\boldsymbol{x}) = \sigma(\boldsymbol{W}_{\boldsymbol{T}}^T \boldsymbol{x} + \boldsymbol{b}_{\boldsymbol{T}})$$

Basics

Highway Networks

Basics LSTM

Figure: LSTM

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Outline

Background

Prediction Neural Network

Function

- ▶ Two similar neural networks were designed and trained
- ▶ One is to predict the ball's position in a single future frame
- ► The other one is to predict the ball's positions in multiple future frames simultaneously

Prediction Neural Network

Single Frame Prediction

- Single future frame prediction
- Input: 14 initial frame data
- Output: ball's position distribution in 38th frame

Training Process

Single Frame Prediction

Figure: Training Loss

Figure : Evaluation Loss

Prediction Neural Network

Multiple Frame Predictions

- Multiple future frame predictions
- ▶ Input: 14 initial frame data
- Output: ball's position distributions in 33th-38th frames

Training Process

Multiple Frame Predictions

Figure: Training Loss

Figure: Evaluation Loss

Outline

Background

Prediction Neural Network

How to Measure

➤ To get an appropriate threshold value of the distance between true position and predicted position, the training data distribution should be considered

Training Data Distribution

- As the Gazebo model is not perfect yet, the table tennis ball cannot repeat its trajectory with high accuracy even under same force condition
- When collecting the training and testing data, each force condition is applied to the ball 50 times (get 50 similar trajectories)
- ► The degree of repeatability of each 50 trajectories is measured by the average distance from each trajectory to the median trajectory at each time step
- ▶ 480 force conditions were applied and collected, resulting in 24000 trajectories

Training Data Distribution

Figure: Violin-plots of Average Distance to Median Trajectory

- Most trajectories from the training data are close to each other by the upper bound: $1.5~{\rm cm}\times 2=3~{\rm cm}$
- Single Frame Prediction

Data Source	1 cm error	2 cm error	3 cm error
Training	58.94 %	85.05 %	93.11 %
Testing	57.22 %	82.62 %	91.17 %

Multiple Frame Prediction Training Data:

Data Source	1 cm error	2 cm error	3 cm error
33th frame	69.15 %	89.86 %	97.04 %
34th frame	65.62 %	89.11 %	96.95 %
35th frame	65.05 %	88.09 %	96.01 %
36th frame	63.00 %	86.77 %	95.24 %
37th frame	62.07 %	86.23 %	94.73 %
38th frame	56.97 %	84.46 %	94.33 %

Multiple Frame Prediction Testing Data:

Data Source	1 cm error	2 cm error	3 cm error
33th frame	68.72 %	89.21 %	96.33 %
34th frame	65.21 %	87.85 %	96.33 %
35th frame	64.35 %	87.36 %	95.64 %
36th frame	61.85 %	86.14 %	94.64 %
37th frame	60.36 %	85.56 %	94.32 %
38th frame	56.74 %	83.32 %	93.57 %

Single Frame Prediction

Figure : Offline Testing Data Test Figure : Gazebo Real-time Test

Multiple Frame Predictions

Figure : Offline Testing Data Test Figure : Gazebo Real-time Test