## Supplementary Material

Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information

Jakob Runge



Figure S1: Runtime per estimate [in s] for the same setup as in Fig. 3 but with n = 1,000. For  $k_{\text{perm}} = n$  a computationally cheaper full permutation scheme was used.



Figure S2: Same as in Fig. 3, but for more sample sizes from n = 50 (top) to n = 1000 (bottom).



Figure S3: Same as in Fig. 3, but for KS and AUPC metrics and more sample sizes from n = 50 (top) to n = 1000 (bottom).



Figure S4: As in Fig. 4 but for false positive rates (FPR) and true positive rates (TPR) at an  $\alpha = 0.05$  significance level.



Figure S5: As in Fig. 5 but for false positive rates (FPR) and true positive rates (TPR) at an  $\alpha=0.05$  significance level.



Figure S6: Numerical experiments for a version of model (6) where Z is independent of X and Y when X and Y are dependent under  $H_1$ , that is  $X = g_X(c\epsilon_b + \epsilon_X)$  and  $Y = g_Y(c\epsilon_b + \epsilon_Y)$ , which is the setup studied in Zhang et al. (2011); Strobl et al. (2017). Additionally, we show results for the kernel measures combined with the proposed nearest-neighbor permutation test with  $k_{\text{perm}} = 5$ . The upper two rows depict KS and AUPC for different sample sizes and  $D_Z = 1, 8$ . The two bottom panels show different dimensions  $D_Z$  for n = 1000.



Figure S7: Choice of number of fourier features  $(n_{\rm ff})$  for random fourier-feature based kernel-measures for model (6). Shown are KS (left column), AUPC (center column), and runtime (right column) for a sample size experiment with  $D_Z=1$  (top row) and  $D_Z=8$  (bottom row).  $n_{\rm ff}$  corresponds to the number of features in subspace Z, the number of fourier features in subspaces X and Y is fixed to 5 as implemented in https://github.com/ericstrobl/RCIT. While for  $D_Z=1$   $n_{\rm ff}>10$  yields similar results, for  $D_Z=8$  both the KS and AUPC metrics are more sensitive to the choice of  $n_{\rm ff}$ . The default  $n_{\rm ff}=25$  here gives the most well-calibrated result, but this calibration is quite unstable for smaller or larger  $n_{\rm ff}$  values. The runtime of RCIT and RCoT scales roughly quadratically in the number of fourier features.

Table S1: Results from Wang et al. (2015) together with results from RCoT and the CMIknn test. The experiments are described in Wang et al. (2015). Examples 1–4 correspond to conditional independence showing false positives and Examples 5–8 to dependent cases showing true positives at the 5% significance level. CMIknn was run with  $k_{\rm CMI}=0.2n$  and  $k_{\rm perm}=5,10$ . The numbers 50..250 denote the sample size.

| •                                                                                                                                       | Example 1                                                                                                      |                                                                                                                         |                                                                                            |                                                                                                 |                                                                                 | Example 2                                                                                         |                                                                                                                          |                                                                                                                         |                                                                                            |                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Test                                                                                                                                    | 50                                                                                                             | 100                                                                                                                     | 150                                                                                        | 200                                                                                             | 250                                                                             | 50                                                                                                | 100                                                                                                                      | 150                                                                                                                     | 200                                                                                        | 250                                                                                     |
| CDIT                                                                                                                                    | 0.035                                                                                                          | 0.034                                                                                                                   | 0.05                                                                                       | 0.057                                                                                           | 0.048                                                                           | 0.046                                                                                             | 0.053                                                                                                                    | 0.055                                                                                                                   | 0.048                                                                                      | 0.058                                                                                   |
| CI.test                                                                                                                                 | 0.041                                                                                                          | 0.051                                                                                                                   | 0.037                                                                                      | 0.054                                                                                           | 0.041                                                                           | 0.062                                                                                             | 0.046                                                                                                                    | 0.044                                                                                                                   | 0.045                                                                                      | 0.039                                                                                   |
| KCI.test                                                                                                                                | 0.039                                                                                                          | 0.043                                                                                                                   | 0.041                                                                                      | 0.04                                                                                            | 0.046                                                                           | 0.035                                                                                             | 0.004                                                                                                                    | 0.037                                                                                                                   | 0.047                                                                                      | 0.05                                                                                    |
| Rule-of-thumb                                                                                                                           | 0.017                                                                                                          | 0.027                                                                                                                   | 0.028                                                                                      | 0.033                                                                                           | 0.033                                                                           | 0.034                                                                                             | 0.052                                                                                                                    | 0.044                                                                                                                   | 0.042                                                                                      | 0.045                                                                                   |
| RCoT                                                                                                                                    | 0.074                                                                                                          | 0.059                                                                                                                   | 0.055                                                                                      | 0.043                                                                                           | 0.050                                                                           | 0.056                                                                                             | 0.056                                                                                                                    | 0.069                                                                                                                   | 0.055                                                                                      | 0.073                                                                                   |
| CMIknn $(k_{\text{perm}} = 5)$                                                                                                          | 0.064                                                                                                          | 0.055                                                                                                                   | 0.050                                                                                      | 0.053                                                                                           | 0.045                                                                           | 0.076                                                                                             | 0.060                                                                                                                    | 0.074                                                                                                                   | 0.061                                                                                      | 0.065                                                                                   |
| CMIknn $(k_{\text{perm}} = 10)$                                                                                                         | 0.058                                                                                                          | 0.061                                                                                                                   | 0.057                                                                                      | 0.058                                                                                           | 0.046                                                                           | 0.075                                                                                             | 0.066                                                                                                                    | 0.053                                                                                                                   | 0.057                                                                                      | 0.071                                                                                   |
|                                                                                                                                         | Example 3                                                                                                      |                                                                                                                         |                                                                                            |                                                                                                 |                                                                                 | Example 4                                                                                         |                                                                                                                          |                                                                                                                         |                                                                                            |                                                                                         |
| Test                                                                                                                                    | 50                                                                                                             | 100                                                                                                                     | 150                                                                                        | 200                                                                                             | 250                                                                             | 50                                                                                                | 100                                                                                                                      | 150                                                                                                                     | 200                                                                                        | 250                                                                                     |
| CDIT                                                                                                                                    | 0.035                                                                                                          | 0.048                                                                                                                   | 0.055                                                                                      | 0.053                                                                                           | 0.043                                                                           | 0.049                                                                                             | 0.054                                                                                                                    | 0.051                                                                                                                   | 0.058                                                                                      | $\frac{250}{0.053}$                                                                     |
| CI.test                                                                                                                                 | 0.039                                                                                                          | 0.363                                                                                                                   | 0.482                                                                                      | 0.603                                                                                           | 0.677                                                                           | 0.043                                                                                             | 0.064                                                                                                                    | 0.066                                                                                                                   | 0.050                                                                                      | 0.053                                                                                   |
| KCI.test                                                                                                                                | 0.058                                                                                                          | 0.047                                                                                                                   | 0.057                                                                                      | 0.061                                                                                           | 0.054                                                                           | 0.037                                                                                             | 0.035                                                                                                                    | 0.058                                                                                                                   | 0.039                                                                                      | 0.049                                                                                   |
| Rule-of-thumb                                                                                                                           | 0.019                                                                                                          | 0.038                                                                                                                   | 0.032                                                                                      | 0.039                                                                                           | 0.039                                                                           | 0.037                                                                                             | 0.04                                                                                                                     | 0.055                                                                                                                   | 0.059                                                                                      | 0.053                                                                                   |
| RCoT                                                                                                                                    | 0.074                                                                                                          | 0.047                                                                                                                   | 0.046                                                                                      | 0.053                                                                                           | 0.054                                                                           | 0.115                                                                                             | 0.072                                                                                                                    | 0.066                                                                                                                   | 0.061                                                                                      | 0.053                                                                                   |
| CMIknn $(k_{\text{perm}} = 5)$                                                                                                          | 0.044                                                                                                          | 0.043                                                                                                                   | 0.046                                                                                      | 0.046                                                                                           | 0.054                                                                           | 0.084                                                                                             | 0.071                                                                                                                    | 0.067                                                                                                                   | 0.079                                                                                      | 0.070                                                                                   |
| CMIknn $(k_{\text{perm}} = 10)$                                                                                                         | 0.063                                                                                                          | 0.065                                                                                                                   | 0.061                                                                                      | 0.076                                                                                           | 0.067                                                                           | 0.101                                                                                             | 0.113                                                                                                                    | 0.106                                                                                                                   | 0.098                                                                                      | 0.084                                                                                   |
|                                                                                                                                         | E1. F                                                                                                          |                                                                                                                         |                                                                                            |                                                                                                 |                                                                                 |                                                                                                   |                                                                                                                          |                                                                                                                         |                                                                                            |                                                                                         |
|                                                                                                                                         |                                                                                                                | _                                                                                                                       | , ,                                                                                        | _                                                                                               |                                                                                 |                                                                                                   |                                                                                                                          |                                                                                                                         |                                                                                            |                                                                                         |
| T                                                                                                                                       | F0                                                                                                             |                                                                                                                         | Example                                                                                    |                                                                                                 | 250                                                                             | F0.                                                                                               |                                                                                                                          | xample (                                                                                                                |                                                                                            | 250                                                                                     |
| Test                                                                                                                                    | 50                                                                                                             | 100                                                                                                                     | 150                                                                                        | 200                                                                                             | 250                                                                             | 50                                                                                                | 100                                                                                                                      | 150                                                                                                                     | 200                                                                                        | 250                                                                                     |
| $\overline{	ext{CDIT}}$                                                                                                                 | 0.898                                                                                                          | 100<br>0.993                                                                                                            | 150                                                                                        | 200                                                                                             | 1                                                                               | 0.752                                                                                             | 100<br>0.995                                                                                                             | 150                                                                                                                     | 200                                                                                        | 1                                                                                       |
| CDIT<br>CI.test                                                                                                                         | 0.898<br>0.978                                                                                                 | 100<br>0.993<br>1                                                                                                       | 150<br>1<br>1                                                                              | 200<br>1<br>1                                                                                   | 1<br>1                                                                          | 0.752<br>0.468                                                                                    | 100<br>0.995<br>0.434                                                                                                    | 150<br>1<br>0.467                                                                                                       | 200<br>1<br>0.476                                                                          | 1<br>0.474                                                                              |
| CDIT<br>CI.test<br>KCI.test                                                                                                             | 0.898<br>0.978<br>0.158                                                                                        | 100<br>0.993<br>1<br>0.481                                                                                              | 150<br>1<br>1<br>0.557                                                                     | 200<br>1<br>1<br>0.602                                                                          | 1<br>1<br>0.742                                                                 | 0.752<br>0.468<br>0.296                                                                           | 100<br>0.995<br>0.434<br>0.862                                                                                           | 150<br>1<br>0.467<br>0.995                                                                                              | 200<br>1<br>0.476<br>1                                                                     | 1<br>0.474<br>1                                                                         |
| CDIT CI.test KCI.test Rule-of-thumb                                                                                                     | 0.898<br>0.978<br>0.158<br>0.368                                                                               | 100<br>0.993<br>1<br>0.481<br>0.793                                                                                     | 150<br>1<br>1<br>0.557<br>0.927                                                            | 200<br>1<br>1<br>0.602<br>0.983                                                                 | 1<br>1<br>0.742<br>0.994                                                        | 0.752<br>0.468<br>0.296<br>1                                                                      | 100<br>0.995<br>0.434<br>0.862<br>1                                                                                      | 150<br>1<br>0.467<br>0.995<br>1                                                                                         | 200<br>1<br>0.476<br>1<br>1                                                                | 1<br>0.474<br>1<br>1                                                                    |
| CDIT CI.test KCI.test Rule-of-thumb RCoT                                                                                                | 0.898<br>0.978<br>0.158<br>0.368<br>0.817                                                                      | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986                                                                            | 150<br>1<br>1<br>0.557<br>0.927<br>0.998                                                   | 200<br>1<br>1<br>0.602<br>0.983<br>1                                                            | 1<br>1<br>0.742<br>0.994<br>1                                                   | 0.752<br>0.468<br>0.296<br>1<br>0.301                                                             | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533                                                                             | 150<br>1<br>0.467<br>0.995<br>1<br>0.679                                                                                | 200<br>1<br>0.476<br>1<br>1<br>0.807                                                       | 1<br>0.474<br>1<br>1<br>0.860                                                           |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$                                                                        | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782                                                             | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981                                                                   | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998                                          | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1                                                       | 1<br>1<br>0.742<br>0.994<br>1                                                   | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806                                                    | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997                                                                    | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999                                                                       | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1                                                  | 1<br>0.474<br>1<br>1<br>0.860<br>1                                                      |
| CDIT CI.test KCI.test Rule-of-thumb RCoT                                                                                                | 0.898<br>0.978<br>0.158<br>0.368<br>0.817                                                                      | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986                                                                            | 150<br>1<br>1<br>0.557<br>0.927<br>0.998                                                   | 200<br>1<br>1<br>0.602<br>0.983<br>1                                                            | 1<br>1<br>0.742<br>0.994<br>1                                                   | 0.752<br>0.468<br>0.296<br>1<br>0.301                                                             | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533                                                                             | 150<br>1<br>0.467<br>0.995<br>1<br>0.679                                                                                | 200<br>1<br>0.476<br>1<br>1<br>0.807                                                       | 1<br>0.474<br>1<br>1<br>0.860                                                           |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$                                                                        | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782                                                             | 0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995                                                                 | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998                                          | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1                                                       | 1<br>1<br>0.742<br>0.994<br>1                                                   | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806                                                    | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995                                                           | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999                                                                       | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1                                                  | 1<br>0.474<br>1<br>1<br>0.860<br>1                                                      |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$                                                                        | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782                                                             | 0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995                                                                 | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1                                     | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1                                                       | 1<br>1<br>0.742<br>0.994<br>1                                                   | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806                                                    | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995                                                           | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1                                                                  | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1                                                  | 1<br>0.474<br>1<br>1<br>0.860<br>1                                                      |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$ CMIknn $(k_{perm} = 10)$                                               | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782<br>0.855                                                    | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995                                                          | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1                                     | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1<br>1                                                  | 1<br>1<br>0.742<br>0.994<br>1<br>1                                              | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806<br>0.805                                           | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995                                                           | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1                                                                  | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1<br>1                                             | 1<br>0.474<br>1<br>1<br>0.860<br>1                                                      |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$ CMIknn $(k_{perm} = 10)$ Test CDIT CI.test                             | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782<br>0.855                                                    | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995<br>E<br>100<br>0.998<br>0.984                            | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1<br>Example<br>150                   | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1<br>7<br>200                                           | 1<br>1<br>0.742<br>0.994<br>1<br>1<br>1                                         | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806<br>0.805                                           | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995                                                           | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1<br>example 8                                                     | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1<br>1<br>8                                        | 1<br>0.474<br>1<br>1<br>0.860<br>1<br>1<br>250<br>0.994<br>0.485                        |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$ CMIknn $(k_{perm} = 10)$ Test CDIT                                     | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782<br>0.855<br>50<br>0.918<br>0.953<br>0.574                   | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995<br>F<br>100<br>0.998<br>0.984<br>0.947                   | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1<br>Example<br>150<br>1              | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1<br>1<br>7<br>200<br>1                                 | 1<br>1<br>0.742<br>0.994<br>1<br>1<br>1<br>250                                  | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806<br>0.805                                           | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995<br>Example 100<br>0.731<br>0.476<br>0.401                 | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1<br>example 8<br>150<br>0.949                                     | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1<br>1<br>8<br>200<br>0.977                        | 1<br>0.474<br>1<br>1<br>0.860<br>1<br>1<br>250<br>0.994<br>0.485<br>1                   |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$ CMIknn $(k_{perm} = 10)$ Test CDIT CI.test KCI.test Rule-of-thumb      | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782<br>0.855<br>50<br>0.918<br>0.953                            | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995<br>F<br>100<br>0.998<br>0.984<br>0.947<br>0.302          | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1<br>0.983<br>0.998<br>0.385          | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1<br>1<br>7<br>200<br>1<br>0.995<br>1<br>0.514          | 1<br>1<br>0.742<br>0.994<br>1<br>1<br>1<br>1<br>250<br>1<br>0.987<br>1<br>0.515 | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806<br>0.805<br>50<br>0.361<br>0.456<br>0.089<br>0.043 | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995<br>E:<br>100<br>0.731<br>0.476<br>0.401<br>0.233          | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1<br>example 3<br>150<br>0.949<br>0.464<br>0.685<br>0.551          | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1<br>1<br>8<br>200<br>0.977<br>0.461<br>1<br>0.851 | 1<br>0.474<br>1<br>1<br>0.860<br>1<br>1<br>250<br>0.994<br>0.485<br>1<br>0.972          |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$ CMIknn $(k_{perm} = 10)$ Test CDIT CI.test KCI.test Rule-of-thumb RCoT | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782<br>0.855<br>50<br>0.918<br>0.953<br>0.574<br>0.073<br>0.594 | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995<br>E<br>100<br>0.998<br>0.984<br>0.947<br>0.302<br>0.880 | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1<br>0.983<br>0.998<br>0.385<br>0.962 | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1<br>1<br>7<br>200<br>1<br>0.995<br>1<br>0.514<br>0.985 | 1<br>1<br>0.742<br>0.994<br>1<br>1<br>1<br>250<br>1<br>0.987                    | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806<br>0.805<br>50<br>0.361<br>0.456<br>0.089          | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995<br>E:<br>100<br>0.731<br>0.476<br>0.401<br>0.233<br>0.392 | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1<br>example 8<br>150<br>0.949<br>0.464<br>0.685<br>0.551<br>0.470 | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1<br>1<br>8<br>200<br>0.977<br>0.461<br>1          | 1<br>0.474<br>1<br>1<br>0.860<br>1<br>1<br>250<br>0.994<br>0.485<br>1<br>0.972<br>0.654 |
| CDIT CI.test KCI.test Rule-of-thumb RCoT CMIknn $(k_{perm} = 5)$ CMIknn $(k_{perm} = 10)$ Test CDIT CI.test KCI.test Rule-of-thumb      | 0.898<br>0.978<br>0.158<br>0.368<br>0.817<br>0.782<br>0.855<br>50<br>0.918<br>0.953<br>0.574<br>0.073          | 100<br>0.993<br>1<br>0.481<br>0.793<br>0.986<br>0.981<br>0.995<br>F<br>100<br>0.998<br>0.984<br>0.947<br>0.302          | 150<br>1<br>1<br>0.557<br>0.927<br>0.998<br>0.998<br>1<br>0.983<br>0.998<br>0.385          | 200<br>1<br>1<br>0.602<br>0.983<br>1<br>1<br>1<br>7<br>200<br>1<br>0.995<br>1<br>0.514          | 1<br>1<br>0.742<br>0.994<br>1<br>1<br>1<br>1<br>250<br>1<br>0.987<br>1<br>0.515 | 0.752<br>0.468<br>0.296<br>1<br>0.301<br>0.806<br>0.805<br>50<br>0.361<br>0.456<br>0.089<br>0.043 | 100<br>0.995<br>0.434<br>0.862<br>1<br>0.533<br>0.997<br>0.995<br>E:<br>100<br>0.731<br>0.476<br>0.401<br>0.233          | 150<br>1<br>0.467<br>0.995<br>1<br>0.679<br>0.999<br>1<br>example 3<br>150<br>0.949<br>0.464<br>0.685<br>0.551          | 200<br>1<br>0.476<br>1<br>1<br>0.807<br>1<br>1<br>8<br>200<br>0.977<br>0.461<br>1<br>0.851 | 1<br>0.474<br>1<br>1<br>0.860<br>1<br>1<br>250<br>0.994<br>0.485<br>1<br>0.972          |