Reservaciones de hotel

Machine Learning Perla Conchita Peña Campos

Industria hotelera Portugal

4, 983 millones de euros

VENTAS DE ALOJAMIENTO 2018

67%

PROVIENE DE LA INDUSTRIA HOTELERA

Gestión hotelera

PRINCIPAL PROBLEMA

Contenido

El data set contiene información de dos hoteles de Portugal, resort (H1) y de ciudad (H2). Cuenta con 31 variables que describen 40,060 observaciones para el de resort y 79,330 observaciones para el de ciudad (H2). Comprende información del 01 julio del 2015 al 31 de agosto del 2017

.https://www.sciencedirect.com/science/article/pii/S2352340918315191

Densidad de precio por noche en reservaciones no canceladas y canceladas

Variables númericas

```
['lead_time',
'stays_in_weekend_nights',
'stays_in_week_nights',
'adults',
'children',
'babies',
'is_repeated_guest',
'previous_cancellations',
'previous_bookings_not_canceled',
'adr',
'required_car_parking_spaces',
'total_of_special_requests']
```

Variables categóricas

```
['hotel',
'arrival_date_month',
'meal',
'market_segment',
'distribution_channel',
'reserved_room_type',
'deposit_type',
'customer_type']
```


Modelo predictivo

Predecir la cancelación de una reservación

Training test split y preprocessing

- 1. Outliers
- 2. Data set de test y train
- 3. Preprocessing test y train (Pipeline):
 - a. Standar Scalar (numéricas)
 - b. OneHotEncoder (categóricas)

ML

- 1. Regresión logística
- 2. Árboles de decisión
- 3. Random Forest
- 4. Support Vector Classification
- 5. Redes neuronales artificiales

Conclusiones

- 1.ML extra (K medias, imágenes)
- 2. Personales

ML accuracy

Accuracy

Matriz de confusión

Modelos de clasificación Cancelación de las reservaciones

Modelo	Sensibilidad	Especificidad
Regresión Logística	0.58	0.93
Árbol de decisión	0.74	0.84
Random Forest	0.74	0.91
Random Forest (Tuning)	0.35	0.99
Árbol de decisión	0.74	0.84

Modelos ML

Modelo	Sensibilidad	Especificidad
Support Vector Classification	0.60	0.93
Support Vector Classification (Kener Poly)	0.60	0.93
Support Vector Classification (Tuning)	0.63	0.94
Red neuronal artificial (Tuning)	0.61	0.88
Red neuronal artificial (layers Tuning)	0.63	0.91

Conclusiones

Repositorio