捏型气体的皲块状三额:								
$\Omega(E,V,N) = \frac{V^{N}}{h^{\frac{3N}{N}}} \cdot \left(2mE\right)^{\frac{3N-1}{2}} \cdot \frac{2\lambda^{\frac{3n}{2}}}{\Gamma(\frac{3n}{2})} \cdot \sqrt{\frac{m}{\nu E}} \cdot \Delta$								
$= \left(\frac{V}{N^{\frac{2}{5}}}\right)^{N} \cdot \frac{(\lambda \lambda m E)^{\frac{N}{5}}}{\Gamma(\frac{N}{2})} \cdot \left(\frac{\Delta}{E}\right)$								
然 们看 Ω∝ E ^挫 .								
·指额成和(大从极限)								
考虑 I= ≝ e ^{N\$i} , N→∞.								
$e^{N\phi_{\text{max}}} \leq I \leq M \cdot e^{N\phi_{\text{max}}}$ $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$								
$\phi_{\text{max}} \leq \frac{\text{In } 1}{N} \leq \phi_{\text{max}} + \frac{\text{In } M}{N}$, $\beta 35 \rightarrow 0$.								
结??: I ^{N→00} ≈ e ^{Nфmox} .								
• 黏上积分 [鞜五: 反复函数份极值五一页复略]	4.)							
$I = \int dx e^{N\phi(x)}$. $N \to \infty$								
x=xn, φ(x) 极大								
⇒ ゆ(x) = ゆ(xm) + をゆ"(xm) (x-xm)*+··								
$= \phi(x_m) - \frac{1}{2}a(x-x_m)^2$. $a>0$.								
$I = \int dx \cdot e^{N(\phi(x_m) - \frac{1}{2}\alpha(x - x_m)^2)}$								
$= e^{N\phi(X_m)} \cdot \int dx e^{-\frac{N\alpha}{2}(x-X_m)^2}$								
$= \sqrt{\frac{22}{N \psi' }} \cdot e^{N\Phi(x_m)}$								
及高所昭建正: 立中"(xm)(x-xm)5+··								
$I = \int dx \ e^{N(\Phi(x_{n}) - \frac{1}{2}\alpha(x - x_{n})^{2})} \left[1 + \frac{N}{3!} \Phi^{n} \cdot (x - x_{n})^{2}\right] dx$	3 + O(x-x-)4]							
	正王分孙昭4月7天三:~(T4. 后面汲劝应更高F	新延 .					
	$\sigma^2 = \frac{1}{N\alpha}, \ \sigma^4 = \frac{1}{N^2\alpha^2}.$							
$= \sqrt{\frac{\nu \lambda}{N \phi' }} \cdot e^{N \phi(x_{\bullet})} \cdot \left(1 + O(\frac{1}{N})\right).$	荷面远氟3N→O(扩),						
取对敌,73								
$\frac{\ln I}{N} = \phi(x_m) - \frac{1}{2N} \ln \frac{N \phi'' }{2\lambda} + O(\frac{1}{N^2}).$								
[运气致分十分至居!因为在饱记物准中,人们只会做高期积分,因此要把后面的政展于,得到一些Grouss做忧]								
• 斯格林近似:N→の吋对从170近似								
$N! = T(N+1) = \int_0^{+\infty} dx x^N e^{-x} = \int_0^{+\infty} dx e^{N(\ln x - \frac{x}{N})}$	<u>}</u> • ∳ (%).							
$\Phi'(x_m) = 0 \Rightarrow \frac{N}{x_m} - 1 = 0, x_m = N.$								
$\Phi''(x_m) = -\frac{1}{N^2}.$								
$\phi(x_m) = nN- $								
$\Rightarrow N! = e^{N(\ln N - 1)} \int_{0}^{+\infty} dx \ e^{-\frac{1}{2N}(x - x_m)^2}$								
$\Rightarrow N! = e^{N(\ln N - 1)} \int_{0}^{10} dx \ e^{-\frac{1}{2N}(x - x_m)^2}$ $= e^{N(\ln N - N)} \cdot \sqrt{2\lambda N} \cdot (\frac{3}{2} \frac{2}{3} \frac{1}{10} \frac{1}{12} \frac{1}{2} \times 2 \times 1) \frac{1}{10} \frac{1}{10}.$	N足够大,可以当全宝阳) 							

. 鞍正997多湾

10:12(E,VN) 与物理发际号的支票?				
E1 E2 No.V. 用名				
1+2 至其做欢压敌:				
$\mathcal{N}(E) = \int dE_1 \Omega_1(E_1) \cdot \Omega_2(E - E_1)$				
グ R1(E1*)·N2(E-E1*)。 E1*:N1·N2, 最大的	2. 7. 6			
ス Va(E(*)・Va(E-E(*))。 E(*) VA(VA, MA)、MA)、MA) を でき	710.			
$\frac{d\Omega_1}{dE_1} \cdot \Omega_2 - \frac{d\Omega_2}{dE_2} \cdot \Omega_1 = 0$				
$\Rightarrow \frac{1}{\sqrt{\Omega_1}} \frac{d\Omega_1}{dE_1} = \frac{1}{\sqrt{\Omega_2}} \frac{d\Omega_2}{dE_2}.$				
13亿丝力等高系反阵:年83年,对应昭亳相争,:	习湿度.			
3714				
$\left(\frac{\partial S}{\partial E}\right)_{NV} = \frac{1}{T}$ $\frac{\partial \ln \Omega}{\partial E} = \frac{1}{keT}$ (?)				
)到这可以认为:				
$S(E,N,V) = k_B \ln \Omega(E,N,V)$.				
• 猩想怎体的熵				
$\mathcal{L}(E,V,N) = \left(\frac{1}{N^2}\right)^N \cdot \frac{(22mE)^{\frac{NN}{2}}}{\Gamma(\frac{NN}{2})} \cdot \left(\frac{\triangle}{E}\right).$				
$S(E_1V_1N) = Nk_B \cdot ln\left[\frac{V}{h^3}(ZZME)^{\frac{N}{2}}\right] - k_B ln\left(\frac{3M}{2}-1\right)!$	+In(슬).			
	O ()Aded~poly(N)	知沒问题)		
$= Nk_{B} \cdot \ln \left[V \cdot \left(\frac{4 \lambda mE}{3 Nh^{2}} \right)^{3/4} \right] + \frac{3}{2} Nk_{B}.$				
问题: S7.又广巡号!				
$S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N) + \lambda \cdot N k_8 \ln \lambda$ $\underbrace{\lambda \cdot N k_8 \ln \lambda}_{12} \underbrace{12}_{-12} \underbrace{12}_{-12}$	₹¥ }.			
• 混合熵问题				
劾五:丁抽易:狸丝=钵(汤种3周) 至于隔板.写体混合				
朝昭:3河通过程, as>0.				
独花竹箅, 初三:				
$S_{i} = S_{1} + S_{2}$				
$= N_1 k_B \ln \left[V_1 \left(\frac{43mE_1}{3Mh^2} \right)^{3/p} \right] + N_2 k_B \ln \left[Y_2 \left(\frac{43m}{3Mh^2} \right)^{3/p} \right]$	m Ez /2hz) > + 3 NKB.			
末年(内でそき,因为无相五作用):				
$S_f = N_1 k_B \ln \left[V \cdot \left(\frac{4 \lambda m E_1}{3 N_1 h^2} \right)^{\frac{1}{2}} \right] + N_2 k_B \ln \left[V \cdot \left(\frac{4 \lambda}{3 N_1} \right)^{\frac{1}{2}} \right]$				
- ($\frac{mE_z}{(2h^2)^{\frac{1}{2}}}$ + $\frac{3}{2}Nk_B$.			
$\Rightarrow \Delta S = S_{\Gamma} - S_{i} = N_{i} k_{B} \ln \frac{V}{V_{i}} + N_{2} k_{B} \ln \frac{V}{V_{2}} > 0.$	$\frac{mE_x}{(sh^2)}$ $+\frac{3}{2}Nk_B$.			
$\Rightarrow \Delta S = S_F - S_i = N_i k_B \ln \frac{V}{V_1} + N_2 k_B \ln \frac{V}{V_2} > 0.$				
⇒ △S=Sg-Si= NikBIn√i+ NikBIn√2 > 0. [in]: 3737-11115-2525-2631-1111-1111-1111-1111-1111-1111-1111	P. 斯·泽·隆			
⇒ △S=Sg-Si = NikeIn√i + NekeIn√i > 0. in: 373- <u>机多效应的国种与体</u> ? △S=0? ⇒ 至7 M科莱佐耳微块鞋子的含圆性 (号子力子)	分 斯(库)漫			

逐时,	Sβ	のお	13	3	テ	32 ·	忹	
-----	----	----	----	---	---	------	---	--

S(ZE, ZN, 对多理型气体	スレ) = ス·S(E,N,V).				
- 当种夏子同四		兵郡子敌.			
	ν) $\ln \frac{\nu}{N} - N_i k_B \ln \frac{\nu_i}{N_i} - i$				
回到当初,左角					
$\alpha \Gamma = \frac{\iint_{\mathbb{R}^{3}} dp_{i}}{h^{3N}}.$. dq;				
•	•				