

Misura di temperatura con sensore Pt100 e scheda Arduino Uno

Obiettivo dell'esperienza

- > Sviluppare un termometro digitale usando
 - un sensore resistivo di temperatura
 - ✓ Pt100 a film sottile classe II (B)
 - una scheda Arduino
 - ✓ Arduino UNO
- Progettare il circuito di condizionamento del sensore
- Valutare l'incertezza attesa

II sensore

- > Pt100 a 4 fili
 - $\checkmark R_0 = 100 \Omega$
 - \checkmark A = 3.9083·10⁻³ (°C)⁻¹
 - ✓ $B = -5.775 \cdot 10^{-7} \, (^{\circ}\text{C})^{-2}$
- Classe II (B)

$$\checkmark \delta\theta = \pm (0.3 + 0.005 \cdot |\theta|) ^{\circ}C$$

Resistenza termica: 100 °C/W

Divisore di tensione

Relazione ingresso/uscita

$$V_{F} = V_{S} \cdot \frac{R_{F}}{R_{F} + R_{\theta}} =$$

$$= V_{S} \cdot \frac{R_{F}}{R_{F} + R_{0} \cdot (1 + A \cdot \theta + B \cdot \theta^{2})}$$

Divisore di tensione

$$V_{\rm F} = V_{\rm S} \cdot \frac{R_{\rm F}}{R_{\rm F} + R_0 \cdot \left(1 + A \cdot \theta + B \cdot \theta^2\right)}$$

 $\gt V_{\rm S}? R_{\rm F}?$

Criterio di progetto: massimizzare la

sensibilità

$$S_{V_{\rm F}}^{\theta} = \frac{\partial V_{\rm F}}{\partial \theta} \quad \left(V_{\rm C} \right)$$

$$S_{V_{\rm F}}^{\theta} = -V_{\rm S} \cdot R_{\rm F} \cdot R_0 \cdot \frac{A + 2 \cdot B \cdot \theta}{\left[R_{\rm F} + R_0 \cdot \left(1 + A \cdot \theta + B \cdot \theta^2\right)\right]^2}$$
 Termine da massimizzare

Elevata tensione di alimentazione, ma prestando attenzione all'autoriscaldamento

Divisore di tensione

$$S_{V_{\rm F}}^{\theta} = -V_{\rm S} \cdot R_{\rm F} \cdot R_0 \cdot \frac{A + 2 \cdot B \cdot \theta}{\left[R_{\rm F} + R_0 \cdot \left(1 + A \cdot \theta + B \cdot \theta^2\right)\right]^2}$$
 Termine da massimizzare
$$\frac{\partial (\cdot)}{\partial R_{\rm F}} = 0$$

Divisore di tensione

$$R_F = R_0 = 100 \Omega$$

$$V_S ?$$

Criterio: rendere trascurabile l'autoriscaldamento rispetto all'incertezza del sensore (0.3 °C)

$$P_{R_0} = \frac{V_{\rm S}^2}{4} \cdot \frac{1}{R_0}$$

del sensore (0.3 °C)
$$P_{R_0} = \frac{V_S^2}{4} \cdot \frac{1}{R_0} \longrightarrow \Delta \theta_{s-o} = P_{R_0} \cdot 100 \left({^{\circ}C}_{W} \right) = \frac{V_S^2}{4} \cdot \frac{1}{R_0} \cdot 100 << 0.3 °C$$

$$V_S << 1.1 V$$

$$\longrightarrow \dots \text{ bassa sensibilità}$$

Divisore di tensione

$$> R_{\rm F} = R_0 = 100 \ \Omega$$

- Divisore di tensione
 - $> R_F > R_0 \rightarrow$ valori più elevati di V_S

$$V_{\rm S} = 5 \, \rm V$$

 $R_{
m F}$ $5~{
m k}\Omega$ $2~{
m k}\Omega$ $1~{
m k}\Omega$

 $S_{V_{
m F}}^{ heta}$ - 0.36 mV/°C - 0.86 mV/°C - 1.54 mV/°C

- Divisore di tensione
 - > Possibile scelta:

$$\checkmark$$
 $V_S = 5 \text{ V}$

$$\checkmark R_F = 1 k\Omega$$

$$S_{V_{\rm F}}^{\theta} = -1.54 \,\text{mV/°C}$$

$$\Delta \theta_{\text{s-o}} \approx 0.2 \,\text{°C}$$

Funzione di taratura:

$$\theta = -\frac{A}{2 \cdot B} - \sqrt{\frac{A^2}{4 \cdot B^2} - \frac{1}{R_0 \cdot B} \cdot \left(R_0 + R_F - \frac{V_S}{V_F} \cdot R_F\right)}$$

Divisore di tensione

$$\theta = -\frac{A}{2 \cdot B} - \sqrt{\frac{A^2}{4 \cdot B^2} - \frac{1}{R_0 \cdot B} \cdot \left(R_0 + R_F - \frac{V_S}{V_F} \cdot R_F\right)}$$

Incertezza assoluta

$$\delta\theta = \left| S_{\theta}^{V_{S}} \right| \cdot \delta V_{S} + \left| S_{\theta}^{V_{F}} \right| \cdot \delta V_{F} + \left| S_{\theta}^{R_{F}} \right| \cdot \delta R_{F} + \delta\theta^{\text{sens}}$$

> Risoluzione di misura

$$\begin{split} \Delta\theta &= S_{\theta}^{V_{\mathrm{F}}} \cdot \Delta V_{\mathrm{F}} = S_{\theta}^{V_{\mathrm{F}}} \cdot V_{\mathrm{q}} \\ \Leftrightarrow & V_{\mathrm{FR}} = 5 \text{ V} \\ \Delta\theta &\approx \begin{cases} 0.2 \text{ °C} & \left(N_{\mathrm{b}} = 14\right) \\ 0.8 \text{ °C} & \left(N_{\mathrm{b}} = 12\right) \end{cases} \text{ Lettura singola} \\ 3.2 \text{ °C} & \left(N_{\mathrm{b}} = 10\right) \end{split}$$

- Divisore di tensione
 - > Schema elettrico suggerito

- Divisore di tensione
 - Misura raziometrica

$$D_{\text{out}} = \left\lfloor \frac{V_{\text{F}}}{V_{\text{q}}} \right\rfloor =$$

$$= V_{\text{CC}} \cdot \frac{R_{\text{F}}}{R_{\text{F}} + R_{\theta}} \cdot \frac{1}{V_{\text{q}}}$$

$$V_{q} = \frac{V_{FR}}{2^{N_{b}}} = \frac{V_{CC}}{2^{N_{b}}} \longrightarrow D_{out} = V_{CC} \cdot \frac{R_{F}}{R_{F} + R_{\theta}} \cdot \frac{2^{N_{b}}}{V_{CC}} = 2^{N_{b}} \cdot \frac{R_{F}}{R_{F} + R_{\theta}}$$

- Divisore di tensione
 - Misura raziometrica
 - ♥ Funzione di taratura

$$\theta = -\frac{A}{2 \cdot B} - \sqrt{\frac{A^2}{4 \cdot B^2} - \frac{1}{R_0 \cdot B} \cdot \left(R_0 + R_F - \frac{2^{N_b}}{D_{\text{out}}} \cdot R_F \right)}$$

L'incertezza dipende solo da D_{out} , R_{F} e dal sensore

$$\delta \theta = \left| S_{\theta}^{D_{\text{out}}} \right| \cdot \delta D_{\text{out}} + \left| S_{\theta}^{R_{\text{F}}} \right| \cdot \delta R_{\text{F}} + \delta \theta^{\text{sens}}$$

- Divisore di tensione
 - Misura raziometrica

$$\theta = -\frac{A}{2 \cdot B} - \sqrt{\frac{A^2}{4 \cdot B^2} - \frac{1}{R_0 \cdot B} \cdot \left(R_0 + R_F - \frac{2^{N_b}}{D_{\text{out}}} \cdot R_F\right)}$$

- Risoluzione pari a circa 3 °C nel caso di letture singole (N_b = 10, ΔD_{out} = 1 LSB)
 - Migliorabile mediante l'implementazione di un metodo a letture multiple (dithering basato sul rumore interno)

Firmware del micro-controllore

- Gestire la comunicazione seriale
 - Fissare il baud rate, usare la built-in function serialEvent(), ...
 - Vedere capitoli 3, 4 e 5 della guida Using Arduino boards in Measurements for dummies
- Configurare l'ADC
- Acquisire il segnale di tensione
 - built-in functions analogReference() e analogRead()
 - ♦ Vedere capitolo 6 della guida

Firmware del micro-controllore

- Implementare la funzione di taratura
 - Convertire il codice di uscita dell'ADC in misura di temperatura
 - Usare le opportune costanti di taratura (R_F, A, B, R_0)
 - ♦ Valutare l'incertezza di misura
- > Fornire le misure di temperatura
 - Inviare i risultati al serial monitor via USB

Caratterizzazione del sistema

- Valutare l'errore di misura a fronte di un termometro di riferimento
 - ✓ Lettura singola
 - ✓ Letture multiple
- Verificare la conformità rispetto all'incertezza attesa