Работа №6 Задача

$$F = 2x_1 + 1x_2 \to \min(\max)$$

$$\begin{cases} 4x_1 + x_2 \le 16 \\ x_1 + x_2 \le 5 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

1. Решение задачи геометрическим методом

Рис. 1: Графическое решение задачи

$$F_{\min} = F(0,0) = 0, \quad F_{\max} = F\left(\frac{11}{3}, \frac{4}{3}\right) = \frac{26}{3}$$

2. Решение задачи симплекс-методом

$$F_{\min} = -(-F)_{\max} = -F'_{\max}$$

$$\begin{cases} x_1 + 2x_2 + x_3 = 14 \\ -4x_1 + 3x_2 + x_4 = 12 \\ x_1 + x_5 = 6 \\ x_i \ge 0, i = \overline{1, 5} \end{cases}$$

Basis	C base	x0	x1	x2	x3	В	reduced_cost
A2	0 0	4	1	1	0	16	4
A3	0	1	1	0	1	5	5
	delta	2	1	0	0	0	
	delta c	2	1	0	0	0	

Basis	C base	x0	x1	x2	x3	В	reduced_cost
A0	2.0	1	0.25	0.25	0	4	16 1.33333
A3	0	0	0.75	-0.25	1	1	1.33333
	delta c	0	0.5	-0.5	0	8	
	c	2	1	0	0	0	

Basis	C base	x0	x1	x2	х3	В
A0	2.0	1	0	0.333333	-0.333333 1.33333	3.66667
A1	1.0	0	1	-0.333333	1.33333	1.33333
	delta	0	0	-0.333333	-0.666667	8.66667
	c	2	1	0	0	0

$$F_{\text{max}} = F\left(\frac{11}{3}, \frac{4}{3}\right) = \frac{26}{3}$$

Basis	C base	x0	x1	x2	x3	В
A2	0 0	4	1	1	0	16
A3	0	1	1	0	1	5
	delta c	-2	-1	0	0	0
	c	-2	-1	0	0	0

$$F_{\min} = F(0,0) = 0$$

3. Решение задачи методом отсечения Гомори

Добавляем неравенство:

$$\frac{2}{3} - \left(\frac{1}{3} \cdot x_2 + \frac{2}{3} \cdot x_3\right) \le 0$$

3.1 Геометрическим методом

Рис. 2: Графическое решение задачи с отсечением Гомори

$$F_{\text{max}} = F(3,2) = F(4,0) = 8$$

3.2 Симплекс-методом

Базис	В	x1	x2	х3	x4	x5
x 1	11/3	1	0	1/3	-1/3	0
x 2	4/3	0	1	-1/3	4/3	0
x 5	-2/3	0	0	-1/3	-2/3	1
x1 x2 x5 F(X0)	-26/3	0	0	-1/3	-2/3	0

$$\theta_3 = -1/3 : (-1/3) = 1\theta_4 = -2/3 : (-2/3) = 1$$

Базис		'				
x1 x2 x4 F(X0)	4	1	0	1/2	0	-1/2
x 2	0	0	1	-1	0	2
x4	1	0	0	1/2	1	-3/2
F(X0)	-8	0	0	0	0	-1

Получили, что $x_1 = 4$, $x_2 = 0$, $F(x_1, x_2) = 8$.