Nome: João Vitor de Freitas Barbosa

DRE: 117055449

Nome: Leonardo Emerson André Alves.

DRE: 117062624.

# Computação Concorrente

Trabalho 1 - Relatório

Cálculo de integrais definidas

#### Descrição do problema:

Soma de Riemann: A integral de f(x) no intervalo [a, b] é igual ao limite do somatório de cada um dos valores que a função f(x) assume, de 0 a n, multiplicados por  $\Delta x$ . O que se espera é que quando n for muito grande o valor da soma se aproxime do valor da área abaixo da curva e, portanto, da integral de f(x) no intervalo. Ou seja, que o limite esteja definido. A definição de integral aqui apresentada é chamada de soma de Riemann e é a abordagem que iremos utilizar.

$$\int_a^b f(x) dx = \lim_{\Delta x o 0} \sum_{i=0}^n f(x_i^*) \Delta x$$

onde

 $\Delta x = \frac{b-a}{n}$  é o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos nos quais se divide o comprimento dos pequenos subintervalos se comprimento dos pequenos subintervalos se comprimento dos pequenos de comprimento de comprin intervalo [a, b]. Os extremos destes intervalos são os números  $x_0 (=a)$ ,  $x_1$ , ...,  $x_n (=b)$ .

 $x_i^* = \lim_{\Delta x \to 0} i \cdot \Delta x + a$ equivale a um ponto no intervalo de a até bda função quando o valor do número de termos n tende a infinito ou equivalentemente quando o valor

de  $\Delta x$  tende a 0.

onde

 $f(x_i^*)$  é o valor ("altura") da função f(x) quando xé igual ao ponto amostral  $x_i^*$ , definido como um ponto que está no subintervalo  $[x_{i-1}, x_i]$  (podendo até mesmo ser um destes pontos extremos do subintervalo.

A soma é dada pela divisão da região a ser calculada em formas (retângulos, trapézios, parábolas ou cubos) que juntos formam uma região que é similar àquela a ser medida, então calcula-se a área de cada uma das formas, e finalmente soma-se todas essas áreas menores juntas. Essa abordagem pode ser usada para encontrar uma aproximação numérica para a integral definida mesmo se o teorema fundamental do cálculo não ajudar a encontrar uma forma fechada.

Tendo em vista que a região preenchida pelas formas menores geralmente não corresponde a exata forma da região a ser medida, a Soma de Riemann será diferente desta. Esse erro pode ser reduzido se a região for mais dividida, usando formas cada vez menores. Ao passo que as formas ficam menores, a soma se aproxima a Integral de Riemann.

Como queremos uma boa aproximação para o cálculo de nossa integral, teremos uma entrada N bem grande, então a carga de trabalho para apenas uma thread seria grande demais. Intercalando a carga de trabalho para mais de 1 thread, sendo que cada uma pegaria pedaços diferentes de (b - a)/N para calcular.,

O método utilizado por ser visualizado neste link.

Dados de entrada do nosso programa concorrente:

./trabalho1 <a> <b> <subintervalos N> <número de threads>

onde a e b são os limites de integração, sendo a < b

Dados de entrada do nosso programa sequencial: ./trabalho1Sequencial <a> <b> <subintervalos N>

A saída esperada de ambos os programas é o valor da integração e o tempo que foi gasto no cálculo.

### Projeto da Solução Concorrente

Temos no escopo global o número de threads - nThreads

O valor N que é a divisão da região a ser calculada - N

As variáveis tipo  $double\ a,\ b$  representando o intervalo em que a integral deve ser calculada Temos também um método chamado funcao que retorna o valor em double da função que queremos calcular no ponto x.

As threads receberão como parâmetro apenas o identificador para calcular seus respectivos "quadrados" e irá retornar um valor chamado somaLocal que consiste no somatório do valor da função desejada naquele ponto vezes (b - a)/N.

Algo como y \* (b-a)/N. Não há diferenciação no segundo fator da multiplicação pois todas as threads multiplicam pelo mesmo tamanho da base do quadrado, o que muda é apenas o valor da função no ponto determinado, que é dado em  $i = a + ((b-a)/N)^*id$ , tornando assim possível saber em qual parte a thread está calculando e saber o valor da função naquele ponto específico. Por isso, logo após faço uma variável x receber esse i e depois passo para y = funcao(x), recebendo assim, o valor da função naquele ponto. Já na main, há um variável que recebe o retorno das threads em somaConc que é o resultado de todas threads, ou seja, o resultado da nossa integral desejada.

Na solução sequencial teríamos um loop começando em a e indo até b. Com nossa variável de iteração sendo somada de (b-a)/N

Algo como: for (double i = a; i < b; i += (b - a) / N)

Já na solução concorrente, cada thread deve começar na sua respectiva área e ir calculando as outras de acordo com a quantidade de threads.

Teríamos algo como: for(double i = a+((b-a)/N)\*id; i < b; i+= ((b-a)/N)\*nThreads ) onde id representa o identificador da thread atual e nThreads é o número de threads da execução do programa.



Uma outra forma de dividir a tarefa de maneira concorrente, seria atribuir um pedaço contínuo de (b-a)/N para cada thread, ao invés de fazê-las calcular pedaços intercalados.

#### Casos de teste

Os testes foram realizados em um sistema ubuntu 20.04.2 LTS com processador intel core i5-4440 com 3.10GHZ x 4

Consideramos 8 valores para o número de subintervalos que o método utiliza, sendo n = 10^3, 10^4, 10^5, 10^6, 10^7, 10^8, 10^9, 10^10. Com isso, executamos o código 5 vezes e registramos o menor tempo. A seguir temos um quadro com os valores, e após o quadro realizamos uma investigação sobre o desempenho do programa concorrente em relação ao programa sequencial.

O programa será executado com os seguintes casos:

$$\int_{a}^{b} cos(5x) dx, \text{ com a = 2 e b = 5}$$

$$\int_{a}^{b} e^{(1-x^{2})} dx, \text{ com a = 2 e b = 5}$$

$$\int_{a}^{b} \sqrt{1 + cos(4x)} dx, \text{ com a = 0 e b = pi}$$

Em todos os casos usaremos a biblioteca math.h para calcular o valor da função no ponto em questão. E também verificaremos a corretude dos valores obtidos no wolfram e symbolab.

Usaremos algo como cos(5 \* x), exp(1 - (x \* x)) e sqrt(1 + cos(4 \* x)) para calcular o valor da função no ponto desejado usando a biblioteca math.h

### Avaliação de desempenho com relação ao tempo

Usaremos a Lei de Amdahl para estimar o ganho de desempenho, que consiste em

$$\frac{T_{sequencial}}{T_{concorrente}}$$
,

onde  $T_{sequencial}$  é o tempo total de execução do programa sequencial e  $T_{concorrente}$  é o tempo total de execução do programa concorrente.

$$\int_{a}^{b} \cos(5x) \ dx, \ \cos a = 2 e b = 5$$

Corretude: 0.0823338721583194 (valor obtido no wolfram)

Alguns dos valores obtidos variando o número de threads e o valor de N: 0.082333870886072, 0.082333865191473, 0.082333865191472, 0.082333865191481, 0.082333865028385, 0.082333878455364

|       | Sequencial | 1 Thread | 2 Threads | 3 Threads | 4 Threads |
|-------|------------|----------|-----------|-----------|-----------|
| 10^3  | 0.0000447  | 0.001271 | 0.001360  | 0.001651  | 0.002097  |
| 10^4  | 0.000718   | 0.001630 | 0.001551  | 0.001372  | 0.002160  |
| 10^5  | 0.00296    | 0.003910 | 0.002508  | 0.002098  | 0.002006  |
| 10^6  | 0.03134    | 0.026487 | 0.0208    | 0.01690   | 0.01725   |
| 10^7  | 0.3118     | 0.3449   | 0.1718    | 0.1243    | 0.1143    |
| 10^8  | 3.10333    | 3.6975   | 1.8405    | 1.2384    | 0.9728    |
| 10^9  | 31.3287    | 38.1514  | 18.632    | 12.358    | 9.7052    |
| 10^10 | 311.4633   | 373.8969 | 202.7465  | 149.3058  | 107.4242  |

## Tabela de ganhos:

|       | 1 Thread | 2 Threads | 3 Threads | 4 Threads |
|-------|----------|-----------|-----------|-----------|
| 10^3  | 0,0351   | 0,0328    | 0,0270    | 0,0213    |
| 10^4  | 0.44049  | 0.4629    | 0.5233    | 0.33240   |
| 10^5  | 0.7570   | 1.1802    | 1.4108    | 1.4755    |
| 10^6  | 1.1832   | 1.5067    | 1.8544    | 1.81681   |
| 10^7  | 0.9040   | 1.8149    | 2.5084    | 2.7279    |
| 10^8  | 0.83930  | 1.6861    | 2.5059    | 3.1901    |
| 10^9  | 0.82116  | 1.6814    | 2.53509   | 3.22803   |
| 10^10 | 0,83301  | 1,5362    | 2,086     | 2,8993    |

Podemos ver que para os valores de N menor que 10^5, os ganhos significativos no corrente passam a ser irrelevantes.

$$\int_{a}^{b} e^{(1-x^{2})} dx$$
, com a = 2 e b = 5

Corretude: 0.011268731614284087991 (valor obtido no wolfram)

Alguns dos valores obtidos variando o número de threads e o valor de N: 0.011269478435171, 0.011268739084111, 0.011268806295129, 0.011268732429814, 0.011268732408121

|       | Sequencial | 1 Thread | 2 Threads | 3 Threads | 4 Threads |
|-------|------------|----------|-----------|-----------|-----------|
| 10^5  | 0.00234    | 0.0068   | 0.00273   | 0.00172   | 0.00233   |
| 10^6  | 0.028728   | 0.0236   | 0.01554   | 0.01394   | 0.01251   |
| 10^7  | 0.23558    | 0.2100   | 0.1091    | 0.0793    | 0.0672    |
| 10^8  | 2.3448     | 2.0693   | 1.0336    | 0.6887    | 0.5576    |
| 10^9  | 22.2733    | 20.4836  | 10.2409   | 6.9249    | 5.4817    |
| 10^10 | 226.1559   | 209.0831 | 104.5796  | 71.0283   | 53.4909   |

Tabela de ganhos:

|       | 1 Thread | 2 Threads | 3 Threads | 4 Threads |
|-------|----------|-----------|-----------|-----------|
| 10^5  | 0.34411  | 0.85714   | 1.3604    | 1.0042    |
| 10^6  | 1.2172   | 1.8486    | 2.0608    | 2.2964    |
| 10^7  | 1.1218   | 2.1593    | 2.9707    | 3.5056    |
| 10^8  | 1.1331   | 2.2685    | 3.40467   | 4.2051    |
| 10^9  | 1.0873   | 2.17493   | 3.21640   | 4.0632    |
| 10^10 | 1.08165  | 2.16252   | 3.18402   | 4.2279    |

$$\int_{a}^{b} \sqrt{1 + \cos(4x)} \, dx, \text{ com a = 0 e b = pi}$$

Corretude: 2.82842712474619 (valor obtido no wolfram)

Alguns dos valores obtidos variando o número de threads e o valor de N: 2.828471552642511, 2.828431567613391, 2.828427568797326, 2.828427129481422, 2.828427056432002, 2.828426491340839, 2.828427128726428, 2.828426491340839

|       | Sequencial | 1 Thread | 2 Threads | 3 Threads | 4 Threads |
|-------|------------|----------|-----------|-----------|-----------|
| 10^5  | 0.00519    | 0.00966  | 0.00518   | 0.00198   | 0.00211   |
| 10^6  | 0.03255    | 0.0392   | 0.02224   | 0.01657   | 0.01524   |
| 10^7  | 0.32329    | 0.3369   | 0.17059   | 0.1354    | 0.1106    |
| 10^8  | 3.35532    | 3.3031   | 1.6655    | 1.1487    | 0.9309    |
| 10^9  | 32.2086    | 32.87986 | 16.32902  | 11.3205   | 8.7181    |
| 10^10 | 321.3424   | 330.6901 | 164.0940  | 110.9336  | 101.3710  |

## Tabela de ganhos:

|      | 1 Thread | 2 Threads | 3 Threads | 4 Threads |
|------|----------|-----------|-----------|-----------|
| 10^5 | 0.53726  | 1.0019    | 2.6212    | 2.4597    |
| 10^6 | 0.8303   | 1.4635    | 1.9643    | 2.1358    |
| 10^7 | 0.9596   | 1.8951    | 2.3876    | 2.9230    |
| 10^8 | 1.0158   | 2.0146    | 2.9209    | 3.6043    |
| 10^9 | 0.9795   | 1.9724    | 2.8451    | 3.6944    |

| 10^10 0.97173 1.9582 2.8967 3.1699 |
|------------------------------------|
|------------------------------------|

#### Discussão

Estes quadros de ganhos exemplificam muito que o objetivo de se implementar algoritmos concorrentemente é benéfico quando temos carga de processamento impactante. No primeiro exemplo, onde temos quantidades de subintervalos não muito grandes como 10^3 e 10^4 subintervalos é perceptível que o aumento do número de threads ao invés de auxiliar no aumento de desempenho, faz piorar, pois nestes casos o overhead de criação das threads é maior do que o ganho de implementar o código de forma concorrente. Porém quando aumentamos a quantidade de subintervalos para 10^5 é perceptível que começa a ocorrer um pequeno aumento de desempenho em decorrência do aumento de threads, isto é, a implementação concorrente começa a fazer sentido. Por fim, ao aumentarmos a quantidade de subintervalos até 10^10, vemos que a aceleração ao comparar o tempo sequencial e o concorrente (com 4 threads) é igual a 3.1699 (último caso de teste), chegando até a ter 4.2279 de ganho em relação ao sequencial no segundo caso de teste, isto é, temos uma aceleração condizente com o que se espera do ganho de desempenho do algoritmo.

#### Referências bibliográficas

```
acessado em 19 de abril - khanacademy.org - link 1

acessado em 19 de abril - ecalculo if usp - link 2

acessado em 19 de abril - Reimann sum - link 3

acessado em 19 de abril - Mathinsight - link 4

acessado em 20 de abril - sfu.ca - link 5
```