FAKULTA MECHATRONIKY, INFORMATIKY A MEZIOBOROVÝCH STUDIÍ <u>TUL</u>

Polynomy a jejich kořeny

SEM2 - LS 2023/2024

Pavel Exner, Petr Rálek NTI, FM TUL

pavel.exner@tul.cz, petr.ralek@tul.cz

[edit: 25. března 2024]

Kategorizace funkcí

Funkce můžeme obecně rozdělit na:

algebraické – takové funkce, které lze vyjádřit pomocí polynomu, tedy

$$y = f(x) = p_n(x)$$

n je stupeň (řád) polynomu $p_n(x)$

transcendentní – ty, které nejsou algebraické:

 \sin , \cos , \log , \exp , \ldots

Vyhodnocování polynomu

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

$$a_i \in \mathbb{R}, \ \forall i = 0, \dots n, \ x \in \mathbb{C}, \ n \in \mathbb{N}$$

Polynom je definován svými koeficienty $[a_nx^n, a_{n-1}x^{n-1}, a_{n-2}, \dots, a_1, a_0]$. Jak efektivně vyhodnotit polynom?

- prosté dosazení (výpočet mocnin)
- mocniny nahradit součinem
- co počítá funkce polyval
- ...?

Úkol: Pokuste se sami porovnat tyto přístupy (skript polynomials.m). Změřte čas v Matlabu pomocí tic - toc (měřte alespoň 10^5 vyhodnocení).

Hornerovo schéma

Upravme polynom postupným vytýkáním:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$
$$= \left(\left(\left(\dots (a_n x + a_{n-1}) x + a_{n-2} \right) x + \dots + a_2 \right) x + a_1 \right) x + a_0$$

- vyhodnocení pak provedeme od středu ven (od a_n po a_0)
- vyhodnocení pak stojí n součinů a n součtů

Při výpočtu na papír je vhodné uspořádat výpočet do tabulky:

		a_n	a_{n-1}	 a_2	a_1	a_0
α	r_0	a_n	$b_n x_0 + a_{n-1}$	 $b_3x_0 + a_2$	$b_2 x_0 + a_1$	$b_1 x_0 + a_0$
		$= b_n$	$= b_{n-1}$	 $=b_2$	$= b_1$	$= b_0$

Hornerovo schéma – příklad

$$p_5(x) = x^5 - 4x^4 + 2x^3 + 2x^2 + x + 6$$

	1	-4	2	2	1	6
1	1	1 * 1 - 4	-3*1+2	-1*1+2	1 * 1 + 1	2*1+6
		=-3	=-1	=1	=2	=8

- $b_0 = 8$ odpovídá hodnotě polynomu $p_5(x_0 = 1)$
- na tento postup se můžeme také dívat jako na dělení polynomů:

$$(x^5 - 4x^4 + 2x^3 + 2x^2 + x + 6) : (x - 1)$$
$$= (x^4 - 3x - x^2 + x + 2) + 8/(x - 1)$$

• $b_0 = 8$ je potom zbytek po dělení polynomem (x-1)

Hledání kořenů polynomu

Nalezení kořenů polynomu odpovídá řešení algebraické rovnice:

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 = 0$$

- je-li $a_n = 1$, nazýváme polynom *normovaným*
- řešením rovnice jsou všechna $x \in \mathbb{C}$, která jsou kořenem polynomu $p_n(x)$
- rovnice má tedy n řešení (mohou být násobné)
- pomocí vzorců umíme řešit rovnice nejvýše řádu $n=4\,$
- vyzkoušejte v Matlabu funkci roots

Poznámka k vlastním číslům

Problém vlastních čísel odpovídá nalezení kořenů charakteristického polynomu. Uvažujme normovanou rovnici $p_n(x)=0$. Existuje taková matice $\textbf{\textit{C}}_{\text{r}}$ aby $p_n(x)$ byl jejím charakteriským polynomem?

$$p_n(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0 = 0$$

Ano, existuje – **Companion matrix**.

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

Úkol: Zvolte si $p_n(x)$, vytvořte C, porovnejte výsledky roots[p] a eig[C].

Odhady řešení algebraických rovnic l

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 = 0$$

- v některých speciálních případech umíme odhadnout řešení
- např. jsou-li všechna $a_i \in \mathbb{Z}$ (celá čísla), umíme snadno nalézt všechny celočíselné kořeny $x \in \mathbb{Z}$

Věta (nutná podmínka pro celočíselné kořeny)

Nechť $a_i \in \mathbb{Z}, \ \forall i = 0, \ldots, n$. Pokud je $x_j \in \mathbb{Z}$ kořenem p_n , pak je x_j dělitelem a_0 .

Odhady řešení algebraických rovnic II

Věta (omezenost kořenů)

Nechť $x_j \in \mathbb{C}, \ \forall j = 1, \dots, n$ jsou kořeny polynomu p_n . Pro velikost kořenů platí:

$$|x_j| < 1 + \frac{A}{|a_n|}, \qquad A = \max\{|a_i|, i = 0, \dots, n-1\}$$

Věta (Descarteova)

Počet kladných kořenů polynomu je roven počtu znaménkových změn v posloupnosti koeficientů $a_n, a_{n-1}, \ldots, a_0$, nebo o sudé číslo menší. Případné nulové a_i neuvažujeme.

Odhady řešení algebraických rovnic III

Příklad:

$$p(x) = 2x^6 - x^3 + 4x^2 + x - 6$$

- potenciální celočíselné kořeny = dělitelé a_0 : $\pm 1, \pm 2, \pm 3, \pm 6$
- omezenost kořenů:

$$|x_j| < 1 + \frac{\max\{|-1|, 4, 1, |-6|\}}{2} = 1 + \frac{6}{2} = 4$$

- 3 kladné kořeny $2x^6 x^3 + 4x^2 + x 6$
- pro rychlé otestování můžeme použít Hornerovo schéma

Příklad Hornerovo schéma I

Určete celočíselné kořeny polynomu $p(x)=x^5-4x^4+2x^3+2x^2+x+6$. potenciální kořeny: $\pm 1,\pm 2,\pm 3,\pm 6$, kladné 2

x	a_5	a_4	a_3	a_2	a_1	a_0
	1	-4	2	2	1	6
1	1	-3	-1	1	2	8
-1	1	-5	7	-5	6	0
-1	1	-6	13	-18	-24	
2	1	-3	1	-3	0	
3	1	0	1	0		

Příklad Hornerovo schéma II

Pozn.:

- -1 jsme zkoušeli $2\times$, mohla být násobným kořenem
- když najdeme kořen, daný řadek udává vydělený polynom

 pracujeme dále rovnou s ním
- po nalezení dvojky, přicházely do úvahy pouze dělitele -3: ± 1 jsme již testovali, tedy pouze ± 3
- zbývající polynom x^2+1 již nemá celočíselné kořeny (dokonce ani reálné)
- výsledný rozklad polynomu: $(x+1)(x-2)(x-3)(x^2+1)=0$