Transfer Learning techniques in Robotics

Melissa Mozifian
Transfer Club Week 2

2018-11-02

Motivation

Why is it hard?

- Real-world is complicated.
- High-dimensional control.
- Noisy and partial observations.
- Flexibility

Primary concerns

Versatility

Sample Efficiency

How is this related to Transfer?

- Build robots by training **entirely** in simulation, followed by a **small amount of self-calibration** in the real world.
- We want robots to be able to **transfer knowledge** seamlessly, acquire many skills and adapt to many environments.

How do we solve this?

There are currently 3 things one can do:

- 1. Train on huge fleets of physical robots
- 2. Make simulators increasingly match the real world
- 3. Randomize the simulator to allow the model to generalize to the real-world.

How do we solve this?

There are currently 3 things one can do:

- 1. Train on huge fleets of physical robots
- 2. Make simulators increasingly match the real world
- 3. Randomize the simulator to allow the model to generalize

to the real-world.

Domain Randomization

Idea:

- Let's not try to model the real-world dynamics perfectly.
- Instead randomize relevant aspects of the environment.

Domain Randomization

- Randomize a large set of properties that determine the dynamics of the environment
- e.g.
 - Mass of each link in the robot's body
 - Friction & damping of the objects its being trained on
 - Latency between actions
 - Noise in observations

•

Learning Dexterous In-Hand Manipulation

Learning Dexterity - Dactyl

- Object manipulation task using a robot arm
- The network observes:
 - The coordinates of the fingertips
 - The images from three regular RGB cameras.

Learning Dexterity - Dactyl

Learning Dexterity - Dactyl

- Learning control policy from states
 - Policy as an **LSTM** trained with **PPO** (Proximal Policy Optimization)
- PPO requires training two networks
 - Policy network, maps observations to actions
 - Value network, predicts discounted sum of future rewards.
 - Asymmetric Actor-Critic

Ranges of physics parameter randomizations

Parameter	Scaling factor range	Additive term range
object dimensions	uniform([0.95, 1.05])	
object and robot link masses	uniform([0.5, 1.5])	
surface friction coefficients	uniform([0.7, 1.3])	
robot joint damping coefficients	loguniform([0.3, 3.0])	
actuator force gains (P term)	loguniform([0.75, 1.5])	
joint limits		$\mathcal{N}(0, 0.15) \text{ rad}$
gravity vector (each coordinate)		$\mathcal{N}(0,0.4)~\mathrm{m/s^2}$

What did we gain, at what cost?

- Gives the robot a variety of experiences rather than maximizing realism.
- Costs/challenges:
 - · Dynamics randomization slows down training.
 - How do you select the appropriate randomization?
 - Would this really work with a robot outside of a laboratory?
 - Still making assumptions about the real word ...
 - Real world experiments were used to tune the randomization.

Meta-learning / Learning-to-learn

"Meta-learning frames the learning problem at **two levels**. The first is quick acquisition of **knowledge within each separate task** presented. This process is guided by the second, which involves slower extraction of **information learned across all the tasks**."

(Ravi & Larochelle '17.)

Meta-learning / Learning-to-learn

"Process of **learning to learn**. Use **experience** to change certain aspects of a learning algorithm, or the learning method itself, such that the **modified learner is better** than the original learner at learning from additional experience."

(Scholarpedia, 5(6):4650.)

What-to-transfer?

- Meta-learner / parameters (of task functions)
 - Optimization-based
 - Initialization-based
- Embeds in a single function (task functions as meta-learner)
 - Model-based
 - Metric-based
- Random variables / random variables
 - graphical models

One-shot / few-shot learning

- In RL the goal of few-shot meta-learning is:
 - Enable an agent to quickly acquire a policy for a new task using a small amount of experience in the test setting.
- What is a new task?
 - Achieving a new goal or succeeding on the same task in a new environment.

One-shot / few-shot learning

	Classification	Regression	RL	
Task	Task	Task	MDP	
Learner	Classifier	Regressor	Policy	
K-shot samples	K examples per class (N-classes) = N-way K-shot Learning	K examples	K roll-outs (episodes)	

^{1.} Introduction to meta-learning - Jae Hyun Lim - MILA Reading Groups

K-shot N-way classification

- Given a **base-training** set:
 - N object classes with K examples
- Given a **base-test** set:
 - Same N object classes but different examples
- Goal:
 - Learn a classifier f_{θ} that minimizes the validation error with **limited data** available.

K-shot reinforcement learning

- Base-task corresponds to an environment and a reward function $R(s_t | a_t)$
- We are allowed to execute our policy **K** times.
- The task is to **learn a policy** $f_{\theta}(a_t|s_t)$ that **maximizes reward**, under limited interaction with the environment.

Few-shot image classification

Example meta-learning set-up for few-shot image classification, visual adapted from Ravi & Larochelle '17.

^{2.} Learning to learn - Chelsea Finn - https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

Model Agnostic Meta Learning

Chelsea Finn, Pieter Abbeel, Sergey Levine

MAML

- Key idea:
 - Train initial parameters s.t. the model has maximal performance
 on a new task after the parameters have been updated through
 one or more gradient steps, computed with a small amount of
 data from the new task.

MAML

- Don't expand the number of learned parameters
- Don't place constraints on architecture
- Maximize the sensitivity of the loss functions of new tasks

w.r.t. the parameters

Formulation

Formally, each task,

$$T = \{L(x_1, a_1, \ldots, x_H, a_H), q(x_1), q(x_{t+1}|x_t, a_t), H\}$$

• For each task T_i model parameters become

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

Objective

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

MAML for Supervised Learning

```
Algorithm 2 MAML for Few-Shot Supervised Learning
                                                                                                                                                      T2: Classify
                                                                                                                T1: Classify Monkey,
Require: p(\mathcal{T}): distribution over tasks
                                                                                                                                                 Pedestrian, Bicycle,
                                                                                                                     Banana, Tree
Require: \alpha, \beta: step size hyperparameters
                                                                                                                                                          Car
  1: randomly initialize \theta
  2: while not done do
           Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
           for all \mathcal{T}_i do
                                                                                                                     {(image, class), (image, class)...}
               Sample K datapoints \mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i
  5:
                                                                                                                                   Base train
               Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) using \mathcal{D} and \mathcal{L}_{\mathcal{T}_i} in Equation (2)
  6:
               or (3)
               Compute adapted parameters with gradient descent:
                                                                                                                       Base SGD update using base-train
               \theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
               Sample datapoints \mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i for the
                                                                                                                       {(image, class), (image, class)...}
  8:
                                                                                                                                      Base test
               meta-update
           end for
  9:
           Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) using each \mathcal{D}_i'
10:
                                                                                                                       Meta SGD update using base-train
           and \mathcal{L}_{\mathcal{T}_i} in Equation 2 or 3
11: end while
```

MAML for RL

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta} \blacktriangleleft$ in \mathcal{T}_i

6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_{\varepsilon}}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_{\varepsilon}}$ in Equation 4

7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i

9: end for

10: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

11: end while

T1: Run forward

T2: Run backwards

Base SGD update using base-train

Meta SGD update using base-train

Loss Functions

Classification Loss

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

Regression Loss

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \|f_{\phi}(\mathbf{x}^{(j)}) - \mathbf{y}^{(j)}\|_2^2$$

RL Loss

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = -\mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t \sim f_{\phi}, q_{\mathcal{T}_i}} \left[\sum_{t=1}^{H} R_i(\mathbf{x}_t, \mathbf{a}_t) \right]$$

MAML for Regression Task

MAML RL Task

Meta-learning overview

Learning Unsupervised Learning Rules

Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Method	Inner loop updates	Outer loop updates, meta-		Generalizes to	
		parameters	objective	optimizer	
Our work — metalearning for unsupervised representation learning	many applications of an unsupervised update rule	parametric update rule	few shot classifica- tion after unsuper- vised pre- training	SGD	new base models (width, depth, nonlinearity), new datasets, new data modalities

 Treat the creation of the unsupervised update rule as a transfer learning problem.

Method	Inner loop updates	Outer loop updates, meta-			Generalizes to
		parameters	objective	optimizer	
Hyper parameter optimization [31, 32, 33, 34]	many steps of optimization	optimization hyper- parameters	training or validation set loss	Baysian methods, random search, etc	nothing, or test set within fixed dataset
Neural architecture search [35, 36, 37, 38, 39]	supervised SGD training using meta-learned architecture	architecture	validation set loss	RL or evolution	test loss within similar datasets
Task-specific optimizer (eg for quadratic function identification) [1]	adjustment of model weights by an LSTM	LSTM weights	task loss	SGD	similar domain tasks
Learned optimizers [31, 40, 41, 42, 43, 44, 45]	many steps of optimization of a fixed loss function	parametric optimizer	average or final loss	SGD or RL	new loss functions (mixed success)
Prototypical networks [29]	apply a feature extractor to a batch of data and use soft nearest neighbors to compute class probabilities	weights of the feature extractor	few shot performance	SGD	new image classes within similar dataset
MAML [28]	one step of SGD on training loss starting from a meta-learned network	initial weights of neural network	reward or training loss	SGD	new goals, similar task regimes with same input domain
Evolved Policy Gradient [46]	performing gradient descent on a learned loss	parameters of a learned loss function	reward	Evolutionary Strategies	new environment configurations, both in and not in meta-training distribution.
Few shot learning [25, 26, 27]	application of a recurrent model, e.g. LSTM, Wavenet.	recurrent model weights	test loss on training tasks	SGD	new image classes within similar dataset.
Meta-unsupervised learning for clustering [30]	run clustering algorithm or evaluate binary similarity function	clustering algorithm + hy- perparameters, binary similarity function	empirical risk mini- mization	varied	new clustering or similarity measurement tasks
Learning synaptic learning rules [22, 23]	run a synapse-local learning rule	parametric learning rule	supervised loss, or similarity to biologically- motivated network	gradient descent, simulated annealing, genetic algorithms	similar domain tasks

Follow-up Questions

- How to incorporate new information from target task?
- How to **autonomously make decisions** on whether to spend more time learning on the source task or the *target* task?
- How to predict a successful transfer?
- How to **estimate** how much knowledge is transferred?
- Assumptions about the source and target task distributions.