Course Name: Embedded System EC5464

RA PRANJALE
LECTURER IN ELECTRONICS
GOVERNMENT POLYTECHNIC AMRAVATI

EMBEDDED SYSTEMS EC5464

CO6 :Interpret the features of REAL TIME OPERATING SYSTEM

Topic 6.1 : Operating System: General and Real time operating system.

Topic 6.2: Characteristics of Real Time Operating System: Consistency, Reliability, scalability, Performance, Predictability

Topic 6.3 Functions of RTOS: Task management, Scheduling, Resource allocation and interrupt handling.

Topic 6.4 Task synchronization and Mutual Exclusion, Multitasking

Topic 6.5: Features of RTOS: Watchdog timer, Semaphore, Deadlock. Starvation Deadlock, Multiple process

Scheduling: ROUND ROBIN ALGORITHM

- The name of this algorithm comes from the round-robin principle, where each person gets an equal share of something in turns. It is the oldest, simplest scheduling algorithm, which is mostly used for multitasking.
- In Round-robin scheduling, each ready task runs turn by turn only in a cyclic queue for a limited time slice. This algorithm also offers starvation free execution of processes.

- Round robin is a pre-emptive algorithm
- The CPU is shifted to the next process after fixed interval time, which is called time quantum/time slice.
- The process that is preempted is added to the end of the queue.
- Round robin is a hybrid model which is clock-driven
- Time slice should be minimum, which is assigned for a specific task that needs to be processed. However, it may differ OS to OS.
- It is a real time algorithm which responds to the event within a specific time limit.
- Round robin is one of the oldest, fairest, and easiest algorithm.
- Widely used scheduling method in traditional OS.

Advantage of Round-robin Scheduling

- •It doesn't face the issues of starvation.
- •All the jobs get a fair allocation of CPU.
- •It deals with all process without any priority
- •If you know the total number of processes on the run queue, then you can also assume the worst-case response time for the same process.
- •This scheduling method does not depend upon burst time. That's why it is easily implementable on the system.
- •Once a process is executed for a specific set of the period, the process is preempted, and another process executes for that given time period.
- •Allows OS to use the Context switching method to save states of preempted processes.
- •It gives the best performance in terms of average response time.

Disadvantages of Round-robin Scheduling

- ■If slicing time of OS is low, the processor output will be reduced.
- ■This method spends more time on context switching
- ■Its performance heavily depends on time quantum.
- Priorities cannot be set for the processes.
- ■Round-robin scheduling doesn't give special priority to more important tasks.
- Decreases comprehension
- ■Lower time quantum results in higher the context switching overhead in the system.
- •Finding a correct time quantum is a quite difficult task in this system.

- The name of this algorithm comes from the round-robin principle, where each person gets an equal share of something in turns.
- Round robin is one of the oldest, fairest, and easiest algorithms and widely used scheduling methods in traditional OS.
- Round robin is a pre-emptive algorithm
- The biggest advantage of the round-robin scheduling method is that If you know the total number of processes on the run queue, then you can also assume the worst-case response time for the same process.
- This method spends more time on context switching
- Worst-case latency is a term used for the maximum time taken for the execution of all the tasks.

Step 1) The execution begins with process P1, which has burst time 4. Here, every process executes for 2 seconds. P2 and P3 are still in the waiting queue.

Step 6) P2 has a burst time of 3. It has already executed for 2 interval. At time=9, P2 completes execution. Then, P3 starts execution till it completes.

Queue

Time Slice = 2

