Лабораторная работа 3.4.5. Петля гистерезиса (динамический метод).

Радькин Кирилл, Б01-005 04.12.21

Цель работы: изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

В работе используются: автотрансформатор, понижающий трансформатор (или реостат), интегрирующая ячейка, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, электронный осциллограф, тороидальные образцы с двумя обмотками.

Теоретическая справка:

К ферромагнетиками принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты — диэлектрики со структурой антиферромагнетика.

Магнитная индукция \vec{B} и напряжённость магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между индукцией и напряжённость поля типичного ферромагнетика на графике выражается петлёй гистерезиса (см. рис. 1).

Рис. 1. Петля гистерезиса ферромагнетика

Экспериментальная установка:

Схема установки изображена на рис. 2. Напряжение от сети с помощью трансформатора T подаётся на намагничивающуюся обмотку N_0 исследуемого образца.

Напряжённость H в образце определяется по теореме о циркуляции с помощью эффективного значения силы тока I_0 , измеряемого амперметром. Магнитная индукция B с помощью интегрирующей RC-цепочки.

Рис. 2. Схема установки для исследования намагничивания образцов

Ход работы:

- 1. Для наблюдения петли гистерезиса на экране ЭО соберём схему согласно рис. 2. Подготовим приборы к работе.
- 2. С помощью потенциометра подберём ток питания в намагничевающей обмотке так, чтобы на экране наблюдалась предельная петля гистерезиса. Подберём коэффициенты усиления каналов ЭО так, чтобы предельная петля занимала большую часть экрана. Сфотографируем и зарисуем на кальку предельную петлю и оси координат. Измерим все необходимые величины (согласно описанию работы). Нанесём кривую начального намагничивания.
- 3. Повторим предыдущий пункт для всех образцов (всего их 3: феррит, пермаллой (Fe-Ni) и кремнистое железо (Fe-Si)). Результаты см. на фотографиях кальки.

4. Проведём калибровку горизонтальной оси 90. Для этого «закоротим» обмотку N_0 и

подберём такой ток, при котором горизонтальная прямая занимает большую часть экрана. После чего найдём чувствительность канала по формуле:

$$K_{X-\text{pac}_{4}} = \frac{2R_{0} \cdot \sqrt{2} \cdot I_{\text{э}\Phi}}{2x}$$

Из информации на установке можно узнать: $R_0 = 0.22$ Ом. Итого получаем:

$$K_{X-O\ni}=20~{\rm MB}$$
 $I_{\ni \varphi}=290~{\rm MA}$ $2x=10$ $K_{X-{\rm pac}^{\rm q}}=18~{\rm MB}$ $K_{X-O\ni}=50~{\rm MB}$ $I_{\ni \varphi}=690~{\rm MA}$ $2x=9.7$ $K_{X-{\rm pac}^{\rm q}}=44~{\rm MB}$ $K_{X-O\ni}=0.1~{\rm B}$ $I_{\ni \varphi}=1.4~{\rm A}$ $2x=9.7$ $K_{X-{\rm pac}^{\rm q}}=89~{\rm MB}$

5. Разберём схему и измерим чувствительность канала Y по формуле:

$$K_{Y-\text{pac}_{\Psi}} = \frac{2\sqrt{2} \cdot U_{\text{э}\Phi}}{2y}$$

Результаты измерений приведены ниже:

$$K_{Y-O\ni} = 20 \text{ MB}$$
 $U_{\ni \varphi} = 23 \text{ MB}$ $2y = 6.6$ $K_{Y-pacq} = 10 \text{ MB}$ $K_{Y-O\ni} = 50 \text{ MB}$ $U_{\ni \varphi} = 87 \text{ MB}$ $2y = 6.4$ $K_{Y-pacq} = 38 \text{ MB}$

6. Найдём время интегрирующей цепочки. Для этого измерим её входное и выходное напряжение. $U_{\rm вx}=9{,}2{\rm B},\,U_{\rm выx}=72~{\rm mB}.$ Тогда получаем:

$$\tau = \frac{U_{\text{bx}}}{\omega \cdot U_{\text{bhy}}} = 0.4 \text{ c}$$

Обработка результатов:

7.

Материал	H	В	H_{max}	B_s	H_c	B_r
Феррит	38	0.067	108	0.2	19	0.087
Пермаллой	14	0.88	25.9	1.6	25.9	1.5
Кремнистое железо	103	0.4	57	0.7	57	0.36

Таблица 1. Полученные характеристики для каждого материала