XE DOPING STATUS

John Mastroberti

March 16, 2022

REMINDER: KEY EFFECTS OF XE DOPING

- Scintillation wavelength: 128 nm \rightarrow 174 nm
- Scintillation time structure:

$$I(t) = I_f e^{-t/ au_f} + I_s e^{-t/ au_s} \hspace{1cm} ext{LAr} \ I(t) = I_f e^{-t/ au_f} + I_s e^{-t/ au_s} - I_d e^{-t/ au_d} \hspace{1cm} ext{XeDLAr}$$

with $au_f=6 ext{ns}$ for both, $au_s=1300 ext{ns} o\sim450 ext{ns}$ for XeDLAr, and $au_d\sim200 ext{ns}$ (XeDLAr only)

 Absorption length in the scintillator increases from 66 cm to 150 cm (was previously set to 20 m for undoped LAr)

XE DOPING IMPLEMENTATION IN cenns10geant4

- A new GDML file specifies the values of scintillation wavelength, time constants, and absorption length for XeDLAr
- CENNSScintillation has been modified to accommodate the more complicated scintillation time structure
- Caveats:
 - There is no correllation between scintillation time and wavelength (probably incorrect)
 - Finite rise time not supported
 - ullet I have guessed a value of $I_d/I_s=0.4$, will need to be tuned

COMPARISON PLOTS

ENERGY VS F90 PLOTS

TO-DO

- Try adjusting other sim parameters to accommodate reduced light yield from shorter absorption length
- Look at a smaller F parameter (e.g. F40)
- Consider correlation between scintillation time and wavelength
- Look for literature results to compare with

SOLO PLOTS (FOR COMPLETENESS)

Co57 source, no Xe, 66cm abs length

Co57 source, no Xe, 66cm abs length

Co57 source, no Xe, 66cm abs length

Co57 source, no Xe, 66cm abs length

Co57 source, no Xe, 20m abs length

Co57 source, no Xe, 20m abs length

Kr83 source, no Xe, 66cm abs length

Kr83 source, no Xe, 66cm abs length

Kr83 source, no Xe, 66cm abs length

Kr83 source, no Xe, 66cm abs length

Kr83 source, no Xe, 20m abs length

Kr83 source, no Xe, 20m abs length

Kr83 source, no Xe, 20m abs length

Kr83 source, no Xe, 20m abs length

Co57 source, Xe doping, 20m abs length

Co57 source, Xe doping, 20m abs length

Kr83 source, Xe doping, 20m abs length

Kr83 source, Xe doping, 20m abs length

Kr83 source, Xe doping, 20m abs length

Kr83 source, Xe doping, 20m abs length

