

Airframe

Vehicle Summary

- Overall length: 8' 7"
- Total Weight: 32.06 lbs
 - Expected Weight Range: 30-34 lbs
- Diameter: 6"
- Nose cone length (ogive): 24"
- Payload section length: 18"
- Avionics section length: 15"
- Recovery section length: 18"
- Booster section length: 2' 3"

- Motor type: Aerotech L1150 motor
- CG: 59.85" from nose cone tip
- CP: 76.56" from nose cone tip
- Stability margin: 2.78 calibers
- Thrust to weight ratio: 8.064
- Launch rod size: 12' 1515 rail
- Rail exit velocity: 78.7 ft/s

Materials

- Main body
 - Blue Tube
- Nose cone
 - Dome shaped tip is Polyethylene terephthalate glycol-modified (PET-G)
 - To facilitate camera viewing through the nose cone, as required by our payload experiment.
 - Lower portion fiberglass
- Fins
 - G-10 Fiberglass with carbon fiber/glue reinforcement
- Motor Mount Tube
 - Kraft Phenolic
 - Plywood centering rings/bulkheads
- Glue
 - West System 105/205 Epoxy Resin/JB Weld

Booster Section

- 1. G-10 Fiberglass Fins
- 2. Kraft Phenolic Motor Mount
- 3. Plywood Centering Rings
- 4. 75mm Motor Retainer
- 5. Carbon Fiber Fillets
- 6. Plywood Bulkhead
- 7. 1515 Rail Buttons

Target Detection and Upright Landing

- Detect and differentiate ground targets with camera mounted in nose cone
- Deploy landing legs
 - Deploy three parachutes

Landing Leg Assembly

- 1) Parachute container
- 2) Parachute spring board
- 3) Rail
- 4) Rail carriage
- 5) Support leg
- 6) Lower bulkhead
- 7) Landing leg
- 8) Landing leg frame
- 9) Torsion spring
- 10) Solenoid actuator

Payload Recovery System

- Parachute containers mounted to upper payload tube
 - Redundant deployment
 - Spring board
 - Nylon cord

Target Detection Procedure:

The algorithm will follow these steps for each image taken:

- Search the image captured for the three targets (regions of color in the image) by sampling pixels at regular intervals.
- If any targets are found, save the image to the file system, along with a timestamp and the positions of the detected targets. If no targets are found, don't save anything to the file system.

Some exceptions do apply - under conditions that would cause undue glare, such as the camera being pointed at the sun (see top left image), the algorithm will skip so as not to generate a false positive.

Photos from subscale launch:

The camera experienced glare often,

But was still able to pick out small features on the ground

Payload/Recovery

PHASE	EVENT	
1	Ignition.	
2	Powered flight.	
3	Coasting.	
4	Drogue parachute deployed at apogee (projected at 5,322 ft. AGL)	
5	Main parachute deployed at an altitude of 1,000 ft. AGL.	
6	Camera in the nosecone of the rocket begins target spotting.	
7	Payload section deploys itself from rocket and deploys its legs and three parachutes.	
8	All sections of the rocket land with a KE under 75 ft-lbf.	

Recovery

Recovery

Avionics Bay External Design

- removable door
- covered by anO-ring

<u>Internal Design</u>

- 3D printed sled
- two rod system

Calculating Parachute Sizes

- Drogue Parachute
 - Optimally velocity 50 mph (or 73 ft/s)
 - 1x 24" diameter elliptical parachute with C_d = 1.5
- Main Parachute
 - Payload will detach before rocket lands
 - 1x 72" diameter toroidal parachute with $C_d = 2.2$
- Payload Parachute
 - o 3 parachutes for stabilization
 - 3x 36" diameter elliptical parachute with $C_d = 2.2$

$$V_{Terminal} = \sqrt{\frac{(2m_{total}g)}{\rho C_1 A_1}}$$

$$m_{total(w/o \ payload)}g = \frac{1}{2}\rho v_{max}^{2}C_{1}A_{1} + \frac{1}{2}\rho v_{max}^{2}C_{2}A_{2}$$

Tender Descender System

- Connected in series
- ¼" tubular kevlar
- Detachable wires
- Quicklinks

GPS

- Operating at 923.000 MHz
- Mounted on same rods as altimeter sled
- Separated from altimeters with bulkhead
- Used for booster and avionics section

Calculating Final KE at landing

Section	Scenario	Kinetic Energy (ft-lbf)
Avionics Bay	Payload Detaches	12.42
Booster	Payload Detaches	34.91
Payload	Payload detaches and 3 parachutes deploy	23.97
*Avionics and Payload (attached)	Payload does NOT detach	64.64
*Booster	Payload does NOT detach	55.67
*Payload	Payload detaches and 1 parachute deploys	71.92

Vehicle Interfaces

Vehicle Interfaces

- Blue Tube couplers between booster av-bay, and av-bay - payload.
- 3.5" shoulder at av-bay payload interface; shear pinned
- 3.5" shoulder at payload nose cone interface; screwed together
- Shock cord between booster and av-bay

Flight Simulations

Simulation Results (Zero Wind)

Apogee	5322 ft
Velocity off Launch Rail	78.7 ft/s
Velocity at Parachute Deployment	61.2 ft/s
Maximum Velocity	683 ft/s (Mach 0.61)
Maximum Acceleration	271 ft/s ² (8.42 G's)
Ground Hit Velocity	18.3 ft/s
Time to Apogee	18 s
Total Flight Time	158 s

Simulated Flight Profile

Flight Simulations

Drift Simulation (Zero Wind)

Flight Simulations

• Maximum Drift: \sim 7.50 ft

Drift Simulation (5 mph Wind)

Flight Simulations

Maximum Drift: ~640 ft

Drift Simulation (10 mph Wind)

Flight Simulations

Maximum Drift: ~1330 ft

Drift Simulation (15 mph Wind)

Flight Simulations

Maximum Drift: ~2000 ft

Drift Simulation (20 mph Wind)

Flight Simulations

Maximum Drift: ~2800 ft

Subscale Flight

Vehicle Summary

- Scaling: ²/₃ length and diameter
- Length: 5' 5"
- Weight: 11.614 lbs
- Diameter: 4"
- Motor: Aerotech [800]

- CG: 37.845" from nose cone tip
- CP: 47.326" from nose cone tip
- Stability margin: 2.37 calibers
- Recovery system tested
- Camera hardware tested
- Payload simulated with ballast CG:38.556 in CP:47.326 in Parachutes/Recovery

Avionics

Booster

683 ft/s (Mach 0 61) Max. velocity: Max. acceleration: 476 ft/s2

A simple model rocket Length 65 in, max, diameter 4 in Mass with motors 191 oz

Payload

Launch Conditions/Flight Results

Subscale Flight

- December 4th, 2016
 - o 3:55 P.M. PST
- Temperature: 56 deg F
- Air Pressure: 30.2 inHg
- Wind: 0 mph
- Simulated Apogee: 4633 ft
 - o Actual Apogee: 4574 ft
- Velocity off Rail: 89.9 ft/s
- Maximum Velocity: Mach 0.63
- Maximum Acceleration: 15.3 G's

Impact on Final Design

- Nose cone tip design/manufacture
 - Better 3D mold
 - Different epoxy
 - Scratch resistant cover/spray
 - Reduce transparent area to decrease glare
- Motor Mount Construction
 - Step-by-step process ensures alignment of fins
 - Ensures all steps are carried out
 - Nothing is missed

Subscale Flight

Safety

General

Safety Officer: Grant Posner

Mentor: David Raimondi

- President of Livermore Unit of NAR (LUNAR)
 - Advises team
 - Owns project
 - Handles motor hardware

Personnel Hazards: Greatest Risks

Construction injuries

- Launch safety: energetic devices
 - Subscale tests
 - Full-scale tests/launches

Environmental Risk

- 1. Minimize any environmental issues during the design phase.
- 2. Be aware of applicable laws and regulations.
- 3. Identify and rate all risks.
- 4. Have containment and remediation plans.

Project Plan/ Outreach

Test Plans and Procedures

- Payload Tests
 - Camera/Target Identification
 - Received data from subscale flight
 - Drop Test/Upright Landing
 - Parachute Deployment Test
- Epoxy Strength Test
- Testing variables will ensure durability of design

- All design requirements fulfilled
 - Subscale vehicle and recovery test completed
 - Full-scale vehicle, payload, and recovery test scheduled for Feb. 4th, 2017 (alt. Launch on Feb. 18th)
- Redundant verification when possible

Outreach Plan

- Habitat for Humanity STEM Outreach Day
- KIPP Public Charter School
 - In contact with 7th grade teacher and program coordinator
- Currently signing up for more outreach programs
 - Expanding Your Horizons, UC Berkeley Engineers Week, etc.

Questions?

Thank You