```
Math 55b Lecture 16 - Monday March 8 - Real analysis!

References: - Rudin "Principles of mathematical analysis" (today ch. 3, beginning of ch. 7&8)

- McMullen's 55b notes

review sec. 3, today sec. 4, start 5 (+ start ch. 5: differentiation) power series

Basic object of real analysis = Ruchions f: R-1 R (or a subset of R, the doman of f)

+ their as hinth discounted.
                                                + their continuity, differentiability, integrals, ... + sequeres and seins of Ructions.
Review: red functions
* Continuity at \infty (Ye>0 35 st. \forall y, |x-y|<5 \Rightarrow |f(x)-f(y)|<\epsilon) \iff f'''' f(f)=f(x).
 more general limits: lim f(x), lim f(t), ...; infinite limits and limits at infinity
   can be understood as taking place in compactification Ru (±00), or explicitly, eg.
       lim f(x) = 00 nears YM>0 38 st. Yx, 0<x<8=1 f(x)>M.
* Things we've already seen, using compartness & connectedness of [a, b] = R:
    · continuous functions f: [a, b] → IR are uniformly continuous (some & works at all x).

b (∀E ∀x ∃S/∀y, |x-y|<S ⇒ |f(x)-f(y)|<E) b (∀E ∃S/∀x,y, |x-y|<S ⇒ |f(x)-f(y)|<E)
   · internedate value theorem f([a,6]) is connected as contains all reals between f(a)& f(6).
    · extreme value theorem f([a,b]) is compact => bounded and contains its influsp.
 + Two topologies on spaces of functions so far (here R-R, but similarly for R"-> R").
     · fn -s f pointwise if \forall x f_n(x) - f(x) in R (= product topology)
     · fn - f uniformly if ||fn-f|| := sup |fn(x)-f(x)| -> 0 (= uniform topology).
     We've seen: I for continuous + for f uniformly > f is continuous. (Lecture 4)
   + space of fuctions RMR, [a,5] - R (RM-RM) with uniform topology are
        complete metric spaces, C° (continuous linitions) are a closed subspace hence complete as well (but ... unless we reduct to bounded functions, sup If-g| isn't quite a metric).
    Analysis consider many differed spaces of functions (bounded, integrable, continuous, differtiable) and topologies (often but not always metrics) on them.
 * Beyond polynomials & a few other explicit examples, many functions are defined hing limits of sequences or series. A key example (also for complex analysis!):
        Power series = expussions of the form f(x) = \sum_{n=0}^{\infty} a_n x^n for some coeffer a_n \in \mathbb{R}.
          ( Witing this expassion doesn't in itself granatee the series converges for any x fo!)
      We'll count to undestand convergence (pointwise, uniformly over certain subsets of IR, ...)
       = basic facts about real sequences & seies in R come in handy.
```

- + R is complete => a sequence in R conveys iff it is Canthy
- * compartness of [-M, M] => every bounded sequence in R has conveyed subsequences.
- a monotonic sequence (eg. an ≤anxi) converges iff it is bounded (⇒ lim an = sup {an})
- * sometimes write $a_n \to +\infty$ or $-\infty$; can interpret as converges in compactification $\mathbb{R} \cup \{\pm \infty\}$. Such a sequence is still said to diverge.
- * if (an) bounded then Mn = sup {ak, k≥n} &,

limsup an := lim Mn = largest limit of a conveyant subsequence of (an) Similarly liminf.

Ex: $a_n = \sin(\sqrt{n}\pi)$ or $(-1)^n \left(1 + \frac{1}{n}\right)$ both have $\lim \sup = 1$, $\lim \inf = -1$.

- * Recall a series Σ an converge iff its partial sums $s_n = \sum_{k=0}^n a_k$ form a convergent sequence, and then we write $\sum_{n=0}^{\infty} a_n$ for the limit.
 - If Σa_n converges then $a_n \to 0$ (by Cauchy without for (S_n) ; $|S_n S_{n-1}| \to 0$). but not vice versa $(\Sigma 1/n)$ diverges even though $1/n \to 0$)
 - · For a, ≥0, I am conveyes iff partial sums are bounded. (since sn 1)
 - Hence: 0≤ an ≤ bn, ∑bn convergent ⇒ ∑an convergent
 ∑an diversent ⇒ ∑bn divergent (comparison criterion)
 - The geometric series: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{if } |x| < 1 \quad (\text{does not converge if } |x| > 1,$ in fact terms 40!).
 - $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converges iff x>1. (proof is a variant of compassion argument:

 $\frac{2^{k}}{(2^{k})^{N}} \leq \sum_{n=2^{k}+1}^{k+1} \frac{1}{n^{\alpha}} \leq \frac{2^{k}}{(2^{k})^{\alpha}} \quad \text{so} \quad 2^{-\alpha} \sum_{k=0}^{m} 2^{(1-\alpha)k} \leq \sum_{n=2}^{m} \frac{1}{n^{\alpha}} \leq \sum_{k=0}^{m} 2^{(1-\alpha)k} \quad \text{geometric series}.$

=> partial sums are bounded iff 21-x<1).

- $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \sum_{k=0}^{\infty} \frac{1}{k!}$ (equality comes from applying binomial theorem to $(1 + \frac{1}{n})^n$ and showing for fixed k, $\binom{n}{k}\binom{1}{n}^k$ 7 with n and $\frac{1}{k!}$ as $n \to \infty$.
 - e is irrational: because denoting the partial sum $\sum_{k=0}^{n} \frac{1}{k!} = \frac{Pn}{n!}$, $e \frac{Pn}{n!} \in (0, \frac{1}{n!})$ =) e isn't an integer multiple of 1/n! Vn, so not rational.
- * A seies is absolutely converged if Zlan converges. I land converges => I am converges (using cauchy: $|s_n - s_m| = \sum_{k=1}^{\infty} a_k |\leq \sum_{k=1}^{\infty} |a_k|$)

but not vicevasa, eg. alternsting series:

if | an has the same sign as (-1)"

| an decreasing with n,
| an ->0 then Ean conveges! (Proof: odd/even partial sums

7 and & towards Common limit)

Ex: $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots = \log 2$, $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \arctan(1) = \frac{\pi}{4}$. Absolutely converged seies can be safely rearranged ($\Sigma a_{ij(n)} = \Sigma a_n$), multiplied, etc.; others, not always. * Root test: if limsup |an| 1/n < 1 then \(\sigma \) an converges (absolutely) (comparison \) > 1 \\

This is used to any affect as This is noed to great effect for power series! Def: The radius of convergence of $\sum a_n x^n$ is $R = \frac{1}{\lim \sup(|a_n|^{1/n})} \in [0,\infty]$. Thm; | . $\Sigma_{q_1} \times^n$ converges pointwise $\forall x \in \mathbb{C}$ st. |x| < R. convergence is uniform on $\overline{B_r(0)} = \{x/|x| \le r\} \ \forall r < R \ (but not necess on <math>B_R(0)$) • thus $f(x) = \sum_{n} x^n$ is continuous over $B_R(0) = \{1x | < R\}$. · The seies diverges whenever |x|>R; at |x|=R it may converge or diverge. $\frac{Pf_i}{R}$. not test: $\lim \sup |a_n \kappa^n|^{\frac{1}{n}} = |\kappa| \lim \sup |a_n|^{\frac{1}{n}} = \frac{|\kappa|}{R}$. ⇒ converge for 1x1<R, diverge for 1x1>R. • uniform convergence: if $|x| \le r$ then $|f(x) - \sum_{k=0}^{n} a_k \times^k| = |\sum_{k=0}^{\infty} a_k \times^k| \le \sum_{k=0}^{\infty} |a_k| r^k$. The series $\Sigma |a_n| r^n$ converges by noot test, so $\epsilon_n \to 0$, $\sup \{ |f(x) - \sum_{n=1}^{\infty} a_k x^k |, |x| \le r \} \le \varepsilon_n \to 0 \implies \text{uniform convergence}.$ - partial sums are continuous, so f is continuous on {|x| \left| } by unif convergence. here continuous on $\bigcup_{r < R} \overline{B}_r = B_R(0)$ $\frac{E_{X_{1}}}{\sum_{n=1}^{\infty}} \frac{(-1)^{n+1} \frac{x^{n}}{n}}{n} = \log (1+x) \quad \text{for } |x| < 1 \quad \left(\begin{array}{c} n^{1/n} \rightarrow 1 \text{ so } R=1 \end{array} \right)$ $\text{converges at } x=1 \quad \text{(alternating peries)},$ converges at x=1 (alternating series), diverges at -1. $\sum_{n=0}^{\infty} \frac{x^n}{n!} = \exp(x) \text{ converges everywhere (uniformly over bounded subsets)}$ $(R=\infty) \text{ indeed } n!, > \left(\frac{n}{2}\right)^{n/2} \text{ so } (n!)^{1/n} > \left(\frac{n}{2}\right)^{1/2} \to \infty$ * Power series form a ring (can add (multiply);
facts about sums & products of numerical series \Rightarrow where convergent, sum/product as series are indeed equal to the sum/product as functions. Differentiation in one variable (Rudin ch 5 = Mc Muller \$5) Def: $f: [a,b] \rightarrow \mathbb{R}$ is differriable at x if $\lim_{t\to x} \frac{f(t)-f(x)}{t-x} = f'(x)$ exists. (ie. $\forall \xi \exists S \text{ st. } 0 < |\xi - x| < S \Rightarrow |\frac{\xi(\xi) - f(x)}{\xi - x} - f(x)| < \xi.$). • Prop: of differentiable at $x \Rightarrow f$ continuous at x. (The convent is false, eg. |x| at 0). $\frac{Pf}{f'(x)} = \frac{f(f) - f(x)}{t - x} \cdot (t - x)$ f'(x) as t - x f'(x) as t - x f'(x) as t - x f'(x) as f - x f'(x) as f - x f'(x) as f - x. Usual rules of calculation hold: derivatives of f+g, fg, ...; $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$ (see Rudin p 104-105). chain rule.

 $\frac{Ex}{f(0) = 0} \begin{cases} f(x) = x & \sin \frac{1}{x} & (x \neq 0) \\ f(0) = 0 \end{cases} \qquad \text{for } x \neq 0, \quad f'(x) = \sin(\frac{1}{x}) - \frac{1}{x} \cos(\frac{1}{x}) \qquad \text{for } x \neq 0, \quad f'(x) = \sin(\frac{1}{x}) - \frac{1}{x} \cos(\frac{1}{x}) \qquad \text{for } x \neq 0, \quad \text{for } x$ $\begin{cases} g(x) = x^2 \sin \frac{1}{x} \Rightarrow \\ g(0) = 0 \end{cases} \text{ if } f(x) = 0 \end{cases} \text{ if } g'(0) = 0 \end{cases} \text{ if } g'(0) = 0 \end{cases}$ • $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin(n! x)$ continuous (series conveges uniformly, since $\sum_{n=1}^{\infty} \cos(n! x)$, differentiable! (see also Rudin 7.18 for a related example). * Mean value theorem. | f: [a,b] - R differentiable =>] = (a,b) st. f(b) - f(a) = f'(c).(6-a). Follows logically from easier results:

(1) if $f: [a,b] \to \mathbb{R}$ has a local max (or min) at $x \in (a,b)$ (ie. max of f(x-6,x+6)) and f is differentiable at x, then f'(x)=0.

(because $\frac{f(t)-f(x)}{t-x}$ is $\geqslant 0$ for $t\in(x-\delta,x)$ = take lim. as $t\to x$ from left and from right.)

(2) | if $f: [a, b] \rightarrow \mathbb{R}$ is differentiable and f(a) = f(b) then $\exists c \in (a, b)$ st- f'(c) = 0. clear if f is constant; otherwise look at max or min of f over [9,6] & apply (1)

(3) mean val. then = apply (2) to $g(x) = f(x) - \frac{f(b) - f(a)}{b - a} \times .$

Corollay: mean value inequality: $m \in f'(x) \leq M$ $\forall x \in (a,b) \Rightarrow m(b-a) \leq f(b) - f(a) \leq M(b-a)$.

* Generalization: Taylor's heaven:

f: [a,b] -IR n times differentiable. The deg.(n-1) Taylor polynomial of f at a is; $P(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k. \quad \text{then } \exists c \in (a,b) \ \ \text{\sharp.} \ \ f(b) = P(b) + \frac{f^{(n)}(c)}{n!} (b-a)^n.$

Pf: - subtracting P(x) from both sites, we can reduce to the case $f(a) = f'(a) = ... = f^{(n-1)}(a) = 0$. • let $g(x) = f(x) - f(b) \frac{(x-a)^n}{(b-a)^n} \Rightarrow g(b) = g(a) = 0 + still have <math>g'(a) = ... = g^{(n-1)}(a) = 0$.

and so on until $\exists c = x_n \in (a, x_{n-1})$ st. $g^{(n)}(c) = 0$. Ie: $f^{(n)}(c) - \frac{n! f(b)}{(b-a)^n} = 0$. If

Rmle: . can conjune f(x) to P(x) by applying than to [a,x] instead!

· as with mean value inequality: a bound $|f^{(n)}| \le M$ gives a bound $|f(x)-P(x)| \le \frac{M(x-a)^n}{n!}$ over [a,b].

Robin there exist nowzero functions whose Taylor polynomials are all zero! eg. $f(x) = \exp(-\frac{1}{x^2})$, f(0) = 0; $f \in C^{\infty}$ (all derivative exist), $f^{(k)}(0) = 0$ $\forall k$ so the Taylor polynomials are all zero! The Taylor series of f at O conveyes but ff! (in other examples, it can also have R=0 ic never conveyed for xfa).