Лекция №2

ФИЗИЧЕСКИЕ ОСНОВЫ ВЫЧИСЛИТЕЛЬНЫХ УСТРОЙСТВ

Дисциплина: Архитектура вычислительных систем и компьютерные сети

Преподаватель: Миронов Константин Валерьевич

Поток: ПРО-3

Учебный год: 2024/25

Содержание лекции

- Аналоговые вычисления
- Элементная база цифровых вычислений
- Базовые логические функции

- Вычислительные устройства бывают аналоговые и цифровые
- Аналоговые появились раньше
 - Вычисления на основе конкретных физических параметров
 - На данный момент не являются универсальными, предназначены для решения конкретных задач
 - Исторические гидравлические, механические, пневматические, электромеханические
 - Современные электронные
 - Плюсы скорость реакции, возможность интегрировать и дифференцировать
 - Пример актуального приложения биологически правдоподобные нейроморфные вычисления
 - Аналоговые ЭВМ строятся на основе операционных усилителей

Операционный усилитель

- Усилители в целом это устройства, которые изменяют некоторый сильный выходной сигнал пропорционально слабому входному
- В операционном усилителе:

 U_+ - неинвертирующий вход

 U_- - инвертирующий вход

 U_{S+} - плюс источника питания

 U_{S-} - минус источника питания

 U_{OUT} - выход

 $G \rightarrow \infty$ – собственный коэффициент усиления

$$U_{OUT} = (U_+ - U_-) * G$$

• ОУ можно использовать как **компаратор**: если $U_{+} > U_{-}$ то $U_{OUT} > 0$ и наоборот

Аналоговая схемотехника на ОУ

Неинвертирующий усилитель

$$U_{OUT} = U_{+} * \frac{R_{1} + R_{2}}{R_{1}}$$

Повторитель – частный случай, когда $R_1 \to \infty$, $R_2 \to 0$ $U_{OIIT} = U_{+}$ (используется для снижения влияния нагрузки на источник)

Инвертирующий усилитель

$$U_{OUT} = -U_{-} * \frac{R_2}{R_1}$$

Инвертирующий R1 U out U in

 R_2 - сопротивление обратной связи

Аналоговая схемотехника на ОУ

• Сумматор

$$U_{OUT} = -R_{OC} * \left(\frac{U_1}{R_1} + \dots + \frac{U_n}{R_n}\right)$$

• Вычитатель

Аналоговая схемотехника на ОУ

• Интегратор

$$U_{OUT}(t) = U_{IN}(0) - \frac{1}{RC} \int_0^t U_{IN}(\tau) d\tau$$

$$U_{OUT} = -RC \frac{dU_{IN}}{dt}$$

U_{BX}

На практике параллельно конденсатору ставят дополнительный резистор

На практике параллельно резистору ставят дополнительный конденсатор

• Триггер Шмитта (компаратор с гистерезисом)

Исходный сигнал

Выход компаратора

Выход триггера Шмитта

Содержание лекции

- Аналоговые вычисления
- Элементная база цифровых вычислений
- Базовые логические функции

- Основа цифровых вычислений логические операции
- Для построения логических операций нужна возможность включать/отключать один сигнал с помощью другого
- Исторические способы реализации:
 - Электромагнитные реле (1930-е)
 - Вакуумные лампы (1940-50-е)
 - Биполярные транзисторы (ТТЛ(Ш), ЭСЛ, ИИЛ 1960-70-е)
 - Униполярные транзисторы (КМОП-логика, современность)

- Основа цифровых вычислений логические операции
- Для построения логических операций нужна возможность включать/отключать один сигнал с помощью другого
- Исторические способы реализации:
 - Электромагнитные реле (1930-е)
 - Сигнал переключается механическим замыканием / размыканием контактов – тактовая частота несколько Гц
 - Вакуумные лампы (1940-50-е)
 - Биполярные транзисторы (ТТЛ(Ш), ЭСЛ, ИИЛ 1960-70-е)
 - Униполярные транзисторы (КМОП-логика, современность)

- Основа цифровых вычислений логические операции
- Для построения логических операций нужна возможность включать/отключать один сигнал с помощью другого
- Исторические способы реализации:
 - Электромагнитные реле (1930-е)
 - Вакуумные лампы (1940-50-е)
 - Ток возможен только от катода к аноду (электроны летят через вакуум), но не наоборот (носители положительного заряда не перемещаются)
 - Управляя напряжением на сетке, можно перекрывать ток на аноде
 - Минус ламп большой размер
 - Биполярные транзисторы (ТТЛ(Ш), ЭСЛ, ИИЛ 1960-70-е)
 - Униполярные транзисторы (КМОП-логика, современность)

Логика на биполярных транзисторах

- ТТЛ(Ш), ЭСЛ, ИИЛ 1960-70-е
- n-р переход граница между полупроводниками с электронной и дырочной проводимостью
- Ток через переход возможен в одну сторону (электроны и дырки на переходе взаимно уничтожаются)
- Транзистор может находится в разных режимах, в зависимости от того, идет ли ток через эмиттер и/или коллектор

Рис. 2-31. Структура биполярных n-p-n и p-n-p транзисторов

КМОП-логика

- КМОП-логика основа современных цифровых схем
- Комплементарная структура Металл-Оксид-Полупроводник
- Основа униполярные (полевые) транзисторы
 - В отличие от вакуумных ламп n-р переход неидеален – в полупроводниках с дырочной проводимостью есть электроны и наоборот
 - Если подвести к затвору положительное напряжение, то заряд в подложке поляризуется и появится канал, по которому возможен ток от истока к стоку

Принцип работы МОП-транзистора

КМОП-логика

- На униполярных транзисторах можно строить логические элементы
- Сравнение с логикой на биполярных транзисторах
 - Меньше энергопотребление (управление напряжением, а не током)
 - Больше частота
 - Ниже точность (было критично для аналоговых вычислений)

Содержание лекции

- Аналоговые вычисления
- Элементная база цифровых вычислений
- Базовые логические функции

Базовые логические элементы

- УГО **у**словно-**г**рафическое **о**бозначение при начертании логических элементов и устройств на схемах
- Отечественная система прямоугольники
 - Модуль m минимальное расстояние между соседними элементами изображения (одна клетка при рисовании в тетради, 5-8 линий при верстке)
 - Слева изображаются входы, а справа выходы
 - Поворот элементов не допускается.
 - Полка дополнительное поле шириной в 1 модуль для указания в нем функции входа или выхода
 - Рядом с входами и выходами указываются номер микросхем

Базовые логические элементы

УГО

Отечественные Зарубежные

1) HE
$$\frac{1}{x}$$

2) ИЛИ-НЕ
$$\overline{x_1 + x_2}$$

Базовые логические элементы

4)
$$\mathbf{H}$$
 $x_1 * x_2$

5) И-НЕ
$$\overline{x_1 * x_2}$$
 2И-НЕ - число означает количество входов

6) Исключающее ИЛИ (XOR) (
$$A \oplus B$$
)

