Introdução a Teoria da Informação TI0056 2014.1

Codificação de Fonte

Prof. Walter C. Freitas Jr

walter@gtel.ufc.br

Curso de Graduação em Engenharia de Teleinformática (CGETI)

Codificação de Fonte

Introdução

Idéia: transformar as mensagens de uma fonte em um conjunto de símbolos de modo que seja "ocupado menos espaço" ou que a informação da fonte "demore menos tempo a ser transmitida". Queremos fazê-lo sem perdas: a operação inversa de decodificação ou descompressão deve dar origem exatamente às mesmas mensagens originais.

- 1. A caracterização de uma fonte discreta é fácil se os símbolos forem independentes e equiprováveis (a entropia é máxima).
- Essa caracterização já é mais difícil se os símbolos não forem independentes (a probabilidade de um símbolo depende dos símbolos passados e a entropia é menor).
- 3. Shannon provou que, se dividirmos a mensagem em blocos de letras ou palavras (no caso de texto), podemos calcular a entropia de cada bloco (= símbolo) pela mesma fórmula usada com símbolos independentes e assim aproximar-nos da entropia da fonte, considerando os blocos muito compridos.

Codificação de Fonte Introducão

Existe uma relação entre a entropia e o número médio de dígitos binários por símbolo necessários para codificar uma mensagem

- A questão está em descobrir como codificar eficientemente os símbolos da fonte, tendo cada um uma certa probabilidade de ocorrer. No caso dos símbolos da fonte não serem equiprováveis o código ótimo tem em conta as diferentes probabilidades de ocorrência usando palavras com comprimentos variáveis.
- 2. Convém agrupar os símbolos da fonte antes de codificar ou comprimir.

Representação de símbolos por dígitos binários

Exemplos

1. 26 letras + SPACE + 10 dígitos (0,1, ..., 9) = 37 símbolos

- i. Precisaríamos de $\log_2 37 = 5,21$ bits/símbolo.
- ii. A codificação faz-se atribuindo um número binário com 6 dígitos ($2^5 < 37 < 2^6$) a cada símbolo (desperdiçando $2^6 37 = 27$ números binários palavras código).
- Como se vê, a informação média por símbolo é inferior ao comprimento da palavra de código indicando que este código corresponde a uma representação redundante do alfabeto considerado.
- iv. Consideremos agora um novo alfabeto (extensão de 2da ordem) em que cada símbolo estendido corresponde a um dos 37^2 pares de símbolos do alfabeto original.
 - v. Número de símbolos $37^2 = 1369$, $2^{10} = 1024 < 1369$, $2^{11} = 2048 > 1369$.
- vi. Para codificar cada um dos símbolos da extensão são necessários 11 bits, enquanto que a respectiva entropia é agora $H(S^2) = \log_2 37^2 = 10.42$ bit/símbolo estendido. Isto corresponde de fato a usar, em média, 5.5 (11/2) bits por cada símbolo original, resultando numa estratégia de codificação mais eficiente.

Conclusão: agrupando os símbolos a compressão ou codificação é mais eficiente.

2. Inglês (26 letras + espaço)

- i. Codificação letra a letra, consideradas equiprováveis: são precisos 4,76 dígitos binários/carácter
- iii. Codificação letra a letra tendo em conta as probabilidades relativas de ocorrência: são precisos 4,03 dígitos binários/carácter
- Codificação palavra a palavra tendo em conta a frequência relativa das palavras: São precisos 1,66 dígitos binários/carácter
 - Shannon calculou a entropia do inglês entre 0.6 e 0.13 bits/carácter.

Eficiência da codificação de alfabetos estendidos

ordem da extensão	entropia	comprimento da palavra de código	comprimento médio por símbolo
1	5.21	6	6.00
2	10.42	11	5.50
3	15.63	16	5.33
4	20.84	21	5.25
5	26.05	27	5.40
6	31.26	32	5.33
7	36.47	37	5.29
8	41.68	42	5.25
9	46.89	47	5.22
10	52.09	53	5.30

- A medida que aumenta a ordem da extensão, vai diminuindo o número médio de bits necessários para codificar cada símbolo do alfabeto original;
- Esta diminuição não é uniforme, embora pareça convergir para a entropia do alfabeto original.

Redundância e Entropia

- A influência entre símbolos reduz a entropia.
 Exemplo: linguagem, textos escritos: cada letra depende da(s) precedente(s) ou até das palavras anteriores, devido as regras impostas pela linguagem. A seguir à letra Q vem sempre U.
- 2. A influência mútua reduz a incerteza, logo, reduz a quantidade de informação. Trata-se de uma fonte redundante: significa "qe há símbolos produzidos pla font qe não são absolutament" essenciais para a transmissão da informação.
- 3. A redundância de uma seqüência de símbolos mede-se em função da redução de entropia ocorrida:

Redundância:
$$E = 1 - \frac{\mathcal{H}(Y|X)}{\mathcal{H}(X)}$$

- 4. Em uma comunicação eficiente a redundância é indesejável (a mesma informação poderá ser transmitida usando menos símbolos).
- 5. A codificação para transmissão ótima pretende:
 - i. reduzir a redundância "ineficiente" → códigos de fonte (compressão)
 - ii. acrescentar redundância "eficiente" \rightarrow códigos de canal

Considerações

- Codificação de fonte é a representação dos dados da fonte de forma eficiente
- O dispositivo responsável por esta tarefa é chamado codificador de fonte
- Código Eficientes
 - Símbolos mais freqüentes com palavras menores
 - Símbolos menos freqüentes (raros) com palavras maiores
- ► Códigos de tamanho variável
- Exemplo: código Morse (língua inglesa)

- ▶ Letra mais freqüente: E ('.')
- ▶ Letra menos freqüente: Q ('- . -')

Codificador de fonte

- Palavras código são dadas na forma binária
- Código da fonte é unicamente decodificável tal que a seqüência de símbolos original pode ser reconstruída perfeitamente da seqüência binária codificada
- Subsistema:

Codificador de fonte

- Consideremos uma fonte discreta de entropia $\mathcal{H}(X)$ a gerar símbolos à cadência de r símbolos/s. O ritmo de informação é, como se sabe, $R = r\mathcal{H}(X)$ bits/s.
- ► E se quisermos codificar estes símbolos através de dígitos binários?
- ▶ Shannon mostrou que a informação proveniente de qualquer fonte discreta sem memória pode ser codificada como dígitos binários e transmitida através de um canal sem ruído à taxa binária de $r_b \geq R$ dígitos binários/s. Não é possível fazê-lo a uma taxa inferior $(r_b \leq R)$.
- Esta é uma manifestação do famoso "teorema da codificação de fonte", de Shannon, demonstrado mais adiante.

Converte os símbolos da fonte em palavras de código constituídas por n_i dígitos binários produzidos a uma taxa r_b

Codificador de fonte - Exemplo

Uma fonte emite $r=2000\,$ símbolos/s selecionados de um alfabeto de $M=4\,$ elementos, com as probabilidades de ocorrência indicadas. Se quisermos codificar estes símbolos através de dígitos binários qual é o número mínimo de binits que podemos transmitir por unidade de tempo?

$$\begin{split} \mathcal{H}(X) &= \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1,75 \text{bits/símbolo} \\ &\Rightarrow R = 2000 \cdot 1,75 = 3500 \text{bits/s} \end{split}$$

Uma codificação de fonte apropriada permitirá transmitir a informação da fonte a uma taxa binária rb = 3500 binits/s. Não é possível transmitir com menos dígitos binários por unidade de tempo. Repare-se nas dimensões que aparecem neste exemplo:

[r] - símbolos/s, [R] - bits/s, [rb] - binits/s

Teorema da Codificação de Fonte

- Seja uma fonte de K símbolos equiprováveis produzidos ao ritmo $r \to R = r \log_2 K$
- ► Fonte de símbolos com diferentes probabilidades $p_k \to R = r\mathcal{H}(X) < r\log_2 K$

$$p_k \to R = t \operatorname{St}(X) \setminus t \log_2 R$$

Codificação de Fonte - classificação

 Singularidade - cada elemento do alfabeto da fonte é mapeado em uma palavra código diferente, i.e.,

$$s_i \neq s_j \Rightarrow C(s_i) \neq C(s_j), i \neq j$$

- Unicidade na decodificação a extensão de um código mantém a característica da singularidade
- Prefixação nenhuma palavra código se apresenta como prefixo de qualquer outra (também conhecido como códigos instantâneos)

Codificador de fonte - hipóteses (I)

- ▶ Seqüência da fonte de informação possui K diferentes símbolos
- lacktriangle Probabilidade de ocorrência do k-ésimo símbolo (s_k) é denominada p_k
- lacktriangle A palavra código (binária) associada ao símbolo s_k tem tamanho l_k
- Comprimento médio da palavra código: número médio de bits por símbolo da fonte usado na codificação

$$L = \sum_{k=0}^{K-1} p_k \cdot l_k \tag{1}$$

Codificador de fonte - hipóteses (II)

- ▶ Valor mínimo possível de L: L_{\min}
- Eficiência de codificação do codificador de fonte

$$\eta = \frac{L_{\min}}{L} \tag{2}$$

- ▶ Codificador é dito eficiente quando $\eta \to 1$
- ▶ Como determinar o valor L_{\min} ?

Primeiro Teorema de Shannon: Teorema da codificação de fonte

- ► Também chamado de *Teorema da codificação sem ruído* trata da condição de codificação sem erros
- ▶ Responde a questão fundamental da codificação de fonte

Teorema:

Dada uma fonte de informação discreta com entropia $\mathfrak{H}(\mathcal{S})$, o tamanho médio da palavra código L para qualquer codificação de fonte sem distorção é limitado por

$$L \ge \mathcal{H}(\mathcal{S}) \tag{3}$$

Codificação de fonte - limites

Entropia da fonte

Limite fundamental no número médio de bits para representar cada símbolo da fonte

Limite mínimo

$$L_{\min} = \mathcal{H}(\mathcal{S}) \tag{4}$$

Eficiência de codificação

$$\eta = \frac{\mathcal{H}(\mathcal{S})}{L} \tag{5}$$

O que fazer para achar o código?

- ► Remoção da redundância de informação do sinal a ser transmitido
- ▶ Processo geralmente chamado de *compactação de dados* ou *compressão sem perdas*
- Como gerar códigos com comprimento médio próximo da entropia?

Codificação prefixo

- Restrição de codificação de fonte: ser unicamente decodificável
- Nenhuma seqüência de palavras código correspondente a uma dada seqüência da fonte pode ser associada a outra seqüência qualquer

Código prefixo

É um código no qual nenhuma palavra código é **prefixo** de qualquer outra palavra código

Seja $x_i=(x_{i,1},...,x_{i,n_i})$ a palavra de código de ordem i. Qualquer seqüência constituída por uma parte inicial de x_i (isto é, $(x_{i,1},...,x_{i,k}), k \leq n_i$) chama-se um prefixo de x_i .

Para decodificar uma seqüência de palavras de código gerada por um código sem prefixos começa-se no princípio de cada palavra e decodifica-se uma a uma. Sabemos que chega ao fim de cada palavra porque essa palavra de código não é prefixo de qualquer outra (exemplo).

Codificação prefixo - exemplos

Símbolo da fonte	Probabilidade de ocorrência	Código I	Código II	Código III
s_0	0.5	0	0	0
s_1	0.25	1	10	01
s_2	0.125	00	110	011
s_3	0.125	11	111	0111

► Código II é um código prefixo!

Decodificação - código prefixo

- ▶ Busca numa *árvore de decisão*
- ► Facilidade de decodificação
- ► Cada bit que é recebido move o detector para algum ponto da árvore e um respectivo símbolo da fonte
- ► São sempre unicamente decodificáveis

Árvore de decisão - exemplo

▶ Decodificar 1011111000

Códigos prefixo

- ▶ Fonte discreta sem memória: $\{s_0, s_1, \dots, s_{K-1}\}$
- ▶ Probabilidades dos eventos: $\{p_0, p_1, \dots, p_{K-1}\}$
- lacktriangle Tamanho das palavras código: $\{\ l_0,\ l_1,\ \cdots, l_{K-1}\ \}$

Inequação Kraft- McMillan

O tamanho das palavras códigos de um código prefixo devem satisfazer a seguinte inequação:

$$\sum_{k=0}^{K-1} 2^{-l_k} \le 1 \tag{6}$$

Tal condição é necessária, mas não suficiente!

Dica para a prova: usar a representação em árvore.

Códigos prefixo - continuação

► Usando o inverso da definição da inequação de Kraft-McMillan pode-se dizer que

Se os tamanhos das palavras código de um determinado código respeitam a inequação de Kraft-McMillan, então um código prefixo com aquelas palavras código pode ser construído

- Embora códigos prefixos sejam unicamente decodificáveis, o inverso não é verdade
- Outros códigos unicamente decodificáveis não permitem conhecer sempre o fim de uma palavra código
- ► Códigos prefixo são também chamados de códigos instantâneos

Codificação binária de uma fonte discreta sem memória - Exemplo

Seja uma fonte discreta sem memória produzindo 4 símbolos A,B,C e D com probabilidades 1/2,1/4,1/8 e 1/8, respectivamente. Tem-se muitas possibilidades de codificação. Eis quatro possíveis:

x_i	P_i	Código I	Código II	Código III	Código IV
A	1/2	00	0	0	0
В	1/4	01	1	01	10
C	1/8	10	10	011	110
D	1/8 11		11	0111	111
	\overline{N}	2,0	1,25	1,875	1,75
	K	1,0	1,5	0,9375	1,0

(comprimento fixo)

("comma code") ("tree code"

- $\mathcal{H}(X) = 1,75 \text{ bits/símbolo (exemplo anterior)}$
- Código I: Eficiência = $\frac{\mathcal{H}(X)}{L}$ =88%
- Código II: $\bar{N}=1,25<\Re(X), K=2^{-1}+2^{-1}+2^{-2}+2^{-2}=1,5>1$ ⇒ não é unicamente decifrável (ex.:10011 pode ser BAABB ou CABB ou CAD, etc.)
- lacktriangle Código III: É unicamente decifrável (cada palavra começa por 0). Eficiência $= \frac{\mathcal{H}(X)}{L} = 93\%$
- Código IV: Nenhuma palavra de código aparece como o prefixo de outra palavra de código. É um código ótimo para esta fonte porque $\bar{N}=\Re(X)$ e K=1. Eficiência = $\frac{\Re(X)}{L}$ =100% (Exemplo: 110010111 \leftrightarrow CABD)

Obs. Neste caso $\bar{N} = L$

Códigos prefixo - equacionamento

ightharpoonup Seja uma fonte discreta sem memória com entropia $\mathcal{H}(\mathcal{S})$, o tamanho médio da palavra código de um código prefixo é limitado por

$$\mathcal{H}(\mathcal{S}) \le L < \mathcal{H}(\mathcal{S}) + 1 \tag{7}$$

▶ O lado esquerdo de (7) é satisfeito com a igualdade sob a condição de

$$p_k = 2^{-l_k} \tag{8}$$

► Logo, pode-se escrever

$$\sum_{k=0}^{K-1} 2^{-l_k} \le \sum_{k=0}^{K-1} p_k = 1 \tag{9}$$

Códigos prefixo - equacionamento (cont.)

 Usando a inequação de Kraft-McMillan (construção do código), o tamanho médio da palavra código é

$$L = \sum_{k=0}^{K-1} \frac{l_k}{2^{l_k}} \tag{10}$$

Entropia da fonte

$$\mathcal{H}(\mathcal{S}) = -\sum_{k=0}^{K-1} \left(\frac{1}{2^{l_k}}\right) \log\left(2^{-l_k}\right)$$

$$= \sum_{k=0}^{K-1} \frac{l_k}{2^{l_k}}$$
(11)

► Código prefixo apresenta a codificação mais eficiente neste caso!

Códigos prefixo - equacionamento (cont.)

- Como encontrar o código prefixo para uma fonte arbitrária (probabilidades de ocorrência dos símbolos quaisquer valores)?
- ► Resposta: uso de **código estendido**.
- ▶ Seja L_n o tamanho médio da palavra código de um código prefixo estendido. Para um código unicamente decodificável L_n é o menor possível.
- Logo

$$\mathcal{H}(\mathcal{S}^n) \le L_n < \mathcal{H}(\mathcal{S}^n) + 1$$

$$n \cdot \mathcal{H}(\mathcal{S}) \le L_n < n \cdot \mathcal{H}(\mathcal{S}) + 1$$

$$\mathcal{H}(\mathcal{S}) \le \frac{L_n}{n} < \mathcal{H}(\mathcal{S}) + \frac{1}{n}$$
(12)

No limite, os limites inferior e superior convergem

$$\lim_{n \to \infty} \frac{L_n}{n} = \mathcal{H}(\mathcal{S}) \tag{13}$$

Códigos prefixo - equacionamento (cont.)

- ightharpoonup Então, fazendo a ordem n de um código prefixo estendido grande o suficiente, o código pode representar, fidedignamente, uma fonte $\mathcal S$ tão próximo quanto se deseje
- Ou seja, o tamanho médio de uma palavra código de um código estendido pode ser tão pequeno quanto a entropia da fonte, dado que o código estendido tem um tamanho suficiente
- ► There is no free lunch!!!
- Complexidade de decodificação: aumenta na ordem do tamanho do código estendido

Codificação de Fonte - Considerações

- ► Embora não possamos controlar a estatística da fonte de informação, a codificação de fonte deve obedecer ao seguinte (como nos códigos de Morse, Huffman, etc.):
 - Aos símbolos mais frequentes devem corresponder palavras de código curtas; aos símbolos menos frequentes devem corresponder palavras compridas
- ▶ Entropia de fonte binária = 1 bit/símbolo se os símbolos forem equiprováveis
- Se os símbolos não forem equiprováveis a informação média por símbolo é inferior a um e a fonte apresenta redundância.
- ► A codificação da fonte reduz essa *redundância* por forma a aumentar a eficiência da comunicação
- ightharpoonup A codificação faz-se agrupando a seqüência de dígitos binários da fonte em blocos de n símbolos, passando a formar um novo conjunto de 2^n símbolos
- A probabilidade de cada um dos 2^n novos símbolos é calculada e atribui-se a palavra de código mais curta ao novo símbolo mais provável, e assim por diante: palavras mais compridas correspondem a símbolos menos freqüentes Ao conjunto de 2^n novos símbolos chama-se extensão de ordem n da fonte binária

Codificação de Huffman

- Idéia básica: associar a cada símbolo, uma seqüência de bits, aproximadamente igual a quantidade de informação existente no símbolo
- Tamanho médio da palavra código aproxima o limite (entropia)
- Substituição do conjunto de estatísticas da fonte por um conjunto mais simples
- ▶ Processo de redução interativo até que o restem apenas dois símbolos para os quais '0' e '1' é um código ótimo
- Construção do código é feita através da retropropagação

Codificação de Huffman - algoritmo

- Os símbolos da fonte são listados em ordem decrescente das probabilidades. Os dois símbolos com as menores probabilidades são assinalados como 0 e 1
- 2. Os dois símbolos anteriormente assinalados são *combinados* em um novo símbolo com a soma das probabilidades dos dois primeiros. A lista decrescente de probabilidades é novamente feita.
- 3. Procedimento se repete até sobrarem somente dois símbolos
- Do final para o início da tabela, a palavra código de cada símbolo é encontrada

Codificação de Huffman - exemplo

▶ Seja a fonte discreta com as seguintes probabilidades para seus símbolos

Símbolo	Probabilidade
s_0	0.4
s_1	0.2
s_2	0.2
s_3	0.1
s_4	0.1

► Entropia da fonte

$$\mathcal{H}(\mathcal{S}) = 2.12193$$

Pergunta

O código de Huffman vai fornecer um tamanho médio da palavra código próximo da entropia da fonte?

Codificação de Huffman - exemplo

Símbolo	Estágio I	Estágio II	Estágio III	Estágio IV
s_0	0.4	0.4	0.4	0.6 0
s_1	0.2	0.2	0.4 0	0.4 1
s_2	0.2	0.2 0	0.2	
s_3	0.1	0.2		
s_4	$0.1 \frac{1}{}$			

Codificação de Huffman - exemplo

Símbolo	Probabilidade	Palavra código
s_0	0.4	00
s_1	0.2	10
s_2	0.2	11
s_3	0.1	010
s_4	0.1	011

► Tamanho médio palavra código

$$L = 2.2$$

- ▶ L excede $\mathcal{H}(\mathcal{S})$ de apenas 3.67%
- ▶ L satisfaz $\mathcal{H}(S) \leq L < \mathcal{H}(A) + 1$

Codificação de Huffman - comentários

- A codificação de Huffman não é única!
- Maneiras
 - 1. Arbitrariedade da associação de 0 e 1
 - 2. Valor da probabilidade igual: colocação dos valores
 - 3. Diferentes tamanhos médios da palavra código
- Medida da variabilidade (variância) do tamanho médio das palavras código

$$\sigma^2 = \sum_{k=0}^{K-1} p_k (l_k - L)^2$$
 (14)

Codificação de Huffman - não unicidade

Símbolo	Estágio I	Estágio II	Estágio III	Estágio IV
s_0	0.4	→ 0.4 —	→ 0.4	0.6 0
s_1	0.2	0.2	0.4 0	0.4 _1
s_2	0.2	→ 0.2 <u>0</u>	0.2	
s_3	0.1	0.2		
s_4	$0.1 \frac{1}{1}$			

Codificação de Huffman - não unicidade

Símbolo	Probabilidade	Palavra código
s_0	0.4	1
s_1	0.2	01
s_2	0.2	000
s_3	0.1	0010
s_4	0.1	0011

$$\sigma_1^2 = 0.16$$

$$\sigma_2^2=1.36$$

Codificação de Huffman - problemas

- 1. Requer conhecimento a priori do modelo probabilístico da fonte
- 2. Na prática, são poucas as situações que se conhece *a priori* as estatísticas da fonte
- 3. Além disso, em algumas aplicações, como modelos de texto escrito, a armazenagem impede o código de Huffman de capturar as relações entre palavras e frase comprometendo a eficiência do código
- 4. Alternativa??

Codificação de Shannon-Fano

- Semelhante ao código de Huffman
- Utiliza listagem das probabilidades
- Algoritmo:
 - Dividir o conjunto de probabilidades em subconjuntos de igual probabilidade
 - Atribuir a cada subconjunto os dígitos 0 e 1
 - Seguir o procedimento sucessivamente para cada subconjunto até restar apenas um símbolo em cada subconjunto

x_i	$p(x_i)$	$-log 2 p(x_i)$	$C(x_i)$
a	1/2	1	0
b	1/4	2	10
С	1/8	3	110
d	1/8	3	111

Codificação de Lempel-Ziv

- Codificação adaptativa por natureza
- ▶ Implementação mais simples que a de Huffman

Idéia básica

Organização da seqüência de dados da fonte em segmentos que são subseqüências menores não encontradas anteriormente

Codificação de Lempel-Ziv - exemplo

- Seqüência de dados: 000101110010100101
- Assume-se que os símbolos '0' e '1' já estão armazenados
- ► Logo, o início do algoritmo: Subseqüências armazenadas: 0, 1 Dados para organização: 00010111001010101
- Menor seqüência não armazenada?
 Subseqüências armazenadas: 0, 1, 00
 Dados para organização: 010111001010101
- Outra seqüência?
 Subseqüências armazenadas: 0, 1, 00, 01
 Dados para organização: 0111001010101
- Mais uma?
 Subseqüências armazenadas: 0, 1, 00, 01, 011
 Dados para organização: 10010100101

Codificação de Lempel-Ziv - exemplo

Tabela de codificação

Pos.:	1	2	3	4	5	6	7	8	9
Subseq.:	0	1	00	01	011	10	010	100	101
Rep. num.:			11	12	42	21	41	61	62
Blocos cod.:			0010	0011	1001	0100	1000	1100	1101

Codificação de Lempel-Ziv - palavra código

- 1. Contagem do número de seqüências diferentes
- 2. Cálculo do número de bits n_1 para representar as seqüências
- 3. Número de bits da palavra código: $n_1 + 1$
- 4. Identificação da inovação e do prefixo
- 5. Identificação da posição do prefixo na tabela
- 6. Palavra código: **prefixo** + **inovação**

Codificação de Lempel-Ziv - características

- O último símbolo de cada subsequência é chamado de símbolo de inovação - acrescenta à informação anterior e torna uma sequência distinta
- O último bit de cada seqüência codificada representa o símbolo de inovação da subseqüência considerada
- Os bits restantes fornecem a representação equivalente do ponteiro para as subseqüências originais
- Decodificação: utiliza o ponteiro para identificar a subsequência e adiciona o símbolo de inovação

Codificação de Lempel-Ziv - observações

- Código utiliza um número fixo de bits para representar um número variável de símbolos da fonte
- Na prática, 12 bits são utilizados, implicando num código de 4096 entradas
- Lempel-Ziv é o padrão de compactação de dados
- ▶ Para textos, Lempel-Ziv atinge uma compactação de aproximadamente 55% contra 43% de Huffman