TITLE TITLE TITLE TITLE

author xxxxxx@xxx.com

2022年5月23日

BLOCK & IMAGE¹

DEFINITION

A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set.

Minimum Vertex Cover

2/9

¹ FOOTNOTE

CODE EXAMPLE

```
bool dfs(int x) {
   for (auto &y:e[x])
   if (!used[y]) {
      used[y] = true;
      if (link[y] == -1 || dfs(link[y])) {
        link[y] = x;
      return true;
      }
   }
   return false;
}
```

```
int hungary() {
   int res = 0;
   memset(link, -1, sizeof(link));
   for (int i = 1; i <= n; ++i) {
        memset(used, false, sizeof(used));
        if (dfs(i)) ++res;
   }
   return res;
}</pre>
```

PSEUDOCODE 伪代码

- $\bullet\,$ numerical analysis, computational geometry...
- time complexity $O(\log((R-L)/\epsilon))$

```
1: procedure BINARYSEARCHONREALNUMBERS(L, R)
2: while R - L > \epsilon do
3: mid \leftarrow (L + R)/2
4: if LESSTHANANS(mid) then
5: L \leftarrow mid
6: else
7: R \leftarrow mid
return L
```

• 测试一下pause语句的功能

任务

统计及格学生的平均成绩(不计不及格的学生和分数

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score < 60:
        continue
    sum_ += score
    count += 1
print('平均成绩为:', sum_/count)
```

```
1 scores = [76, 83, 89, 45, 67, 89, 85, 77]
2 sum_, count = 0, 0
3 for score in scores:
4 if score >= 60:
5 sum_ += score
6 count += 1
7 print('平均成绩为:', sum_/count)
```

• 测试一下pause语句的功能

任务

统计及格学生的平均成绩(不计不及格的学生和分数)

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score < 60:
        continue
    sum_ += score
    count += 1
print('平均成绩为:', sum_/count)
```

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score >= 60:
        sum_ += score
        count += 1
print('平均成绩为:', sum_/count)
```

• 测试一下pause语句的功能

任务

统计及格学生的平均成绩(不计不及格的学生和分数)

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score < 60:
        continue
    sum_ += score
    count += 1
print('平均成绩为:', sum_/count)
```

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score >= 60:
        sum_ += score
        count += 1
print('平均成绩为:', sum_/count)
```

• 测试一下pause语句的功能

任务

统计及格学生的平均成绩(不计不及格的学生和分数)

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score < 60:
        continue
    sum_ += score
    count += 1
print('平均成绩为:', sum_/count)
```

```
scores = [76, 83, 89, 45, 67, 89, 85, 77]
sum_, count = 0, 0
for score in scores:
    if score >= 60:
        sum_ += score
        count += 1
print('平均成绩为:', sum_/count)
```

TIKZ

任务

将正则表达式 $(a \mid b) * a(a \mid b \mid \epsilon)$ 转化成一个 DFA 并最小化

先构造出 NFA, 之后使用**子集构造法**转 DFA

最小化 1: {A, C}, 2: {B, D}, 3: {E}

MATH FORMULA

本页的字体大小为 12pt, vskip 为 14pt

• 欧拉公式:

$$e^{i\pi} + 1 = 0$$

• 拉格朗日插值:

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

TABLE

Algorithm	TIME (WORST)	TIME (AVG.)	SPACE	STABLE	IN-PLACE
insertion sort merge sort heapsort quick sort	$\Theta(n^2)$ $\Theta(n \log n)$ $O(n \log n)$ $\Theta(n^2)$	$ \Theta(n^2) \Theta(n \log n) O(n \log n) \Theta(n \log n) $	O(1) O(N) O(1) O(N)	yes yes no no	yes no yes yes
counting sort radix sort bucket sort	$\Theta(k+n)$ $\Theta(d(k+n))$ $\Theta(n^2)$	$ \Theta(k+n) \\ \Theta(d(k+n)) \\ \Theta(n) $	$O(\log N)$ $O(k)$ $O(k+n)$ $O(n)$	yes - yes	no no no

OTHER TABLES

i	0	1	2	3	4	5
\mathbf{s}	\$	#	a	#	a	#

表 1: A realistic table I have built

Small col		Big col		
Grouped items	Item 1			
	Item 2			
Usual row	Spam	Bacon	Eggs	