安徽大学 2015—2016 学年第一学期

《高等数学 C(三)》考试试卷(A卷)

(闭卷 时间 120 分钟)

考场登记表序号

题 号	_	=	三	四	总分
得 分					
阅卷人					

一、选择题(每小题3分,共15分)

分 得

- B. $p_2 p_1$; C. $p_3 p_2$; D. $p_1(1 p_2)$.
- 2. 设连续随机变量 X 分布函数为 F(x),则函数 Y = aX + b (a < 0) 的分布函数为 ().

- A. $F(\frac{1}{a}(y-b))$; B. aF(y)+1; C. $\frac{1}{a}(F(y)-1)$; D. $1-F(\frac{1}{a}(y-b))$.
- 3. 设随机变量 X 与 Y 的分布列分别是 $\begin{pmatrix} -1 & 0 & 1 \\ 1/4 & 1/2 & 1/4 \end{pmatrix}$ 与 $\begin{pmatrix} 0 & 1 \\ 5/8 & 3/8 \end{pmatrix}$,若 P(XY=0)=1,则

$$P(X=Y)=\ (\ \).$$

- A. 1/4; B. 1/8; C. 1/2; D. 5/8.

- 4. 设随机变量 $X_1, X_2, \mathbf{L}, X_n$ 相互独立, $S_n = \sum_{i=1}^n X_i$,则根据林德伯格-列维中心极限定理,

当n充分大时, S_n 近似服从正态分布,只需 $X_1, X_2, \mathbf{L}, X_n$ ().

A. 有相同的数学期望;

B. 有相同的方差;

C. 服从同一种指数分布;

D. 服从同一种离散分布.

5. 设 X_1, X_2, X_3, X_4 都是来自正态总体 $N(0, 2^2)$ 的样本, $X = a(X_1 + X_2)^2 + b(X_3 - X_4)^2$,若 X 服从 c^2 分布,则().

A.
$$a = \frac{1}{8}, b = \frac{1}{8}$$
;

B.
$$a = 8, b = 8$$
;

C.
$$a = \frac{1}{\sqrt{8}}, b = \frac{1}{\sqrt{8}};$$

D.
$$a = \sqrt{8}, b = \sqrt{8}$$
.

二、填空题(每小题3分,共15分)

得 分

- 6. 一批产品中有 10 件正品和 2 件次品,不放回地抽取 3 次,则第 3 次抽到次品的概率为______.
- 7. 设随机变量 X 在区间 (0,5) 上服从均匀分布,用 Y 表示对 X 的 3 次独立重复观察中,事件 $\{X \ge 3\}$ 出现的次数,则 $P(Y = 2) = ______.$
- 8. 设 X , Y 为随机变量, X 服从二项分布 $B(100,\frac{1}{5})$, Y 服从泊松分布 P(3) , 则 E(X-2Y+3)= ______.
- 9. 设随机变量 X 服从参数为 0.5 的指数分布,利用 Chebyshev 不等式估计概率 $P(-2 \le X \le 6) \ge _____.$
- 10. 某车间生产的滚珠直径 $X: N(\textbf{m}, \textbf{s}^2)$,现从中随机抽取 6 件,测得它们的直径为(单位:mm): 14.6 ,15.1 ,14.9 ,14.8 ,15.2 ,15.1

若已知 $s^2 = 0.06$,则平均直径m的置信度为 0.95 的置信区间为_____.

(标准正态分布函数值 Φ (1.96)=0.975)

三、计算题(每题10分,共60分)

得 分

- 11. 设一批零件由甲、乙两厂共同生产,两厂生产的零件数比例为 3:2. 若甲厂生产的零件次品率为 5%, 乙厂生产的零件次品率为 1%, 试求:
- (1)从这批零件中任取一件,该零件为次品的概率是多少?
- (2) 若取出的零件是次品,该零件是由甲厂生产的概率是多少?

- 12. 设随机变量 X: N(3,4),则
- (1) 求 $P(|X| \le 2)$; (2)若 $P(X > c) = P(X \le c)$, 求常数c.

$$(\Phi(0.5) = 0.6915, \Phi(2.5) = 0.9938)$$

- 13. 设 X 的概率密度为 $p(x) = \begin{cases} k|x|, & -1 \le x < 1, \\ 0, & \text{其他.} \end{cases}$
- 求: (1) 常数 k; (2) $P(-\frac{1}{2} < X \le \frac{3}{2})$; (3) X 的分布函数 F(x).

14. 已知二维随机变量(X,Y)的概率分布列为

X	0	1	2
-1	0.1	0.2	0.1
0	а	0.2	0.1
1	0.1	b	0

且 $P(X \le 0, Y \le 1) = 0.5$, 试求:

(1) 常数 a 和 b.

(2) Z = X + Y 的分布列.

(3)判断 X,Y 是否独立?

15. 设二维随机变量(X,Y)的概率分布列为

X	0	1	2
0	0.1	0	0.2
1	0	0.1	0
2	0.2	0.2	0.2

(1) 求cov(X,Y);

(2)求D(X+Y).

16. 设二维随机变量(X,Y)的概率密度函数为

$$p(x,y) = \begin{cases} 2 - x - y, & 0 < x, y < 1, \\ 0, & 其他. \end{cases}$$

- (1) 求(X,Y)的边缘密度函数;
- (2) 求 $P(X \ge 2Y)$.

四、解答题(每小题10分,共10分)

得分

17. 设总体 X 的概率密度为 $p(x,q) = \begin{cases} (q+1)x^q, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$ 其中 q > -1 是未知参数,

 $X_1, X_2, \mathbf{L}, X_n$ 是来自总体 X 的一个样本容量为 n 的简单随机样本,分别用矩估计法和极大似然估计法求 q 的估计量.