Machine Learning

Reducción de dimensionalidad

Christian Oliva Moya Luis Fernando Lago Fernández

- A medida que aumenta el número de atributos (dimensiones) surgen ciertos problemas:
 - Densidad de datos: Conforme aumenta la dimensionalidad, la cantidad de datos para
 llenar ese espacio aumenta exponencialmente.
 - Sobreajuste: Con más dimensiones, los modelos pueden tener overfitting con más
 facilidad

- Veámoslo con un ejemplo:
 - Tengo mis datos en una única dimensión con 3 bloques:

en cada región del espacio tengo 3 puntos: OK

○ Aumentamos la dimensión a 2, por tanto tengo 3^2 = 9 bloques:

ahora cada región se ha quedado vacía. Necesito rellenar con más datos

relleno cada región del espacio con 3 puntos (3^3 = 27 en total): OK

- Veámoslo con un ejemplo:
 - Aumentamos la dimensión a 3, por tanto tengo 3^3 = 27 bloques:

cada región se ha quedado más vacía. Necesito rellenar:

relleno cada región del espacio con 3 puntos (3⁴ = 81 en total)

La densidad de datos necesita aumentar de forma exponencial

- ¿Qué puedo hacer con esta maldición?
 - Aumentar los datos de entrenamiento de forma exponencial
 - Reducir la dimensionalidad de mi dataset

Si tienes dos modelos con el mismo error, elige siempre el menos complejo

menos atributos → más fácil de interpretar

Reducción de la dimensionalidad

- Proceso por el cual se reduce el número de atributos originales. Hay dos estrategias:
 - Selección de atributos
 - Extracción de atributos

- En muchas aplicaciones reales, más que la predicción, lo interesante es encontrar una explicación. ¿Qué atributos influyen en mi resultado?
- Queremos encontrar una métrica de relevancia R(x) sobre la predicción de mi modelo M que nos indique cuánto contribuye el atributo x a la decisión de mi modelo
- ¿Para qué?
 - Entender el modelo para su interpretación
 - Seleccionar características para reducir la dimensionalidad

- Importancia por Permutación:
 - Calcula la pérdida en la métrica de evaluación cuando cambiamos los valores de un atributo x
 - Buscamos cuánto depende el modelo M del atributo x

- Importancia por Permutación (algoritmo):
 - Para cada atributo x repetir K veces:
 - Permutar los valores de x para generar un dataset alterado D'
 - Evaluar sobre D' para obtener un score s'
 - La relevancia de x es:

$$R(x) = s - \frac{1}{k} \sum_{i=1}^{n} s_i'$$

- Importancia por Permutación:
 - Ventaja: es independiente a la construcción del modelo
 - Desventaja: características con alta correlación pueden aparecer como no relevantes

- Selección por filtros:
 - Hacer un ranking individual de las características según una medida estadística
 - Elegir las N mejores
- Criterios frecuentes:
 - Buscar dependencias lineales con el target utilizando la correlación
 - \circ Determinar la independencia con un test χ^2
 - Determinar diferencias significativas con un test t-student

- Queremos transformar los atributos a un nuevo conjunto de menor dimensión sin perder la información inicial. Hay dos tipos:
 - Métodos lineales:
 - Linear Discriminant Analysis (LDA) → Supervisado
 - Principal Component Analysis (PCA) → No supervisado
 - Métodos no lineales:
 - Locally Linear Embedding (LLE)
 - Isomap

- Linear Discriminant Analysis (LDA) → Supervisado
 - Extrae nuevos atributos que mantengan la información de la clase
 - Maximiza la separabilidad entre clases

- Principal Component Analysis (PCA) → No supervisado
 - Extrae nuevos atributos que mantengan la varianza del espacio original
 - Intenta obtener variables no correlacionadas (componentes principales)
 - Las componentes quedan ordenadas en términos de la varianza explicada

Reducción de la dimensionalidad

Vamos a los notebooks:

7_1_feature_importance.ipynb

7_2_pca.ipynb