# 第六章

二次型与正定矩阵



### 问题的提出

什么是二次型? 二次型研究的主要内容是什么?

解析几何中, 以原点为中心的二次曲线方程是:

二次型: x,y的二次齐次多项式

$$ax^2 + bxy + cy^2 = 1 \quad \text{SH2}?$$

a',c'>0, 椭圆

$$a' = c' > 0$$
,  $\square$ 

 $a' \cdot c' < 0$ , 双曲线



线性变换 坐标变换

$$-a'x'^2 + c'y'^2 = 1$$
  
标准形

$$\begin{cases} x = \cos \theta \ x' - \sin \theta \ y' \\ y = \sin \theta \ x' + \cos \theta \ y' \end{cases}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

正交矩阵 正交变换

正义又19

二次型的主要任务: 化简二次型

- 6.1 二次型的定义及其矩阵表示
- 6.2 二次型的标准形
- × 6.3 惯性定理和二次型的规范形
  - 6.4 实二次型的定性

教学计划: 1次课-3学时



- 6.1 二次型的定义及其矩阵表示
  - 6.2 二次型的标准形
  - 6.4 实二次型的定性



6.1 二次型的定义及其矩阵表示



■ 二次型的矩阵表示



### 1. 二次型的定义

定义6.1 含n个变量  $x_1, x_2, \dots, x_n$  的二次齐次多项式

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n$$
$$+a_{22}x_2^2 + \dots + 2a_{2n}x_2x_n$$
$$+a_{nn}x_n^2$$

称为n元二次型,简称二次型.

当系数  $a_{ii}$  均为实数时, 称为实二次型.

只含有平方项的二次型  $f(y_1, y_2, \dots, y_n) = k_1 y_1^2 + k_2 y_2^2 + \dots + k_n y_n^2$  称为n元二次型的标准形。

例如  $f(x_1,x_2,x_3) = x_1x_2 + x_1x_3 + x_2x_3$  是3元二次型;  $f(x_1,x_2,x_3) = x_1^2 + 4x_2^2 + 4x_3^2$  是3元二次型的标准形.



- 6.1 二次型的定义及其矩阵表示
  - 二次型的定义
  - 二次型的矩阵表示



### 1. 二次型的定义

定义6.1 含n个变量  $x_1, x_2, \dots, x_n$  的二次齐次多项式

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n$$
$$+a_{22}x_2^2 + \dots + 2a_{2n}x_2x_n$$
$$+a_{nn}x_n^2$$

称为n元二次型,简称二次型.

只含有平方项的二次型  $f(y_1, y_2, \dots, y_n) = k_1 y_1^2 + k_2 y_2^2 + \dots + k_n y_n^2$  称为n元二次型的标准形。



### 2. 二次型的矩阵表示

$$\Rightarrow a_{ij} = a_{ji}$$

$$f(x_{1},x_{2},x_{3}) = a_{11}x_{1}^{2} + a_{22}x_{2}^{2} + a_{33}x_{3}^{2} + 2a_{12}x_{1}x_{2} + 2a_{13}x_{1}x_{3} + 2a_{23}x_{2}x_{3}$$

$$= a_{11}x_{1}^{2} + a_{12}x_{1}x_{2} + a_{13}x_{1}x_{3} = x_{1}(a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3})$$

$$+ a_{21}x_{2}x_{1} + a_{22}x_{2}^{2} + a_{23}x_{2}x_{3} + x_{2}(a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3})$$

$$+ a_{31}x_{3}x_{1} + a_{32}x_{3}x_{2} + a_{33}x_{3}^{2} + x_{3}(a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3})$$

### 2. 二次型的矩阵表示

$$\Leftrightarrow a_{ij} = a_{ji}$$

$$f(x_{1},x_{2},x_{3}) = a_{11}x_{1}^{2} + a_{22}x_{2}^{2} + a_{33}x_{3}^{2} + 2a_{12}x_{1}x_{2} + 2a_{13}x_{1}x_{3} + 2a_{23}x_{2}x_{3}$$

$$= a_{11}x_{1}^{2} + a_{12}x_{1}x_{2} + a_{13}x_{1}x_{3} = x_{1}(a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3})$$

$$+ a_{21}x_{2}x_{1} + a_{22}x_{2}^{2} + a_{23}x_{2}x_{3} + x_{2}(a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3})$$

$$+ a_{31}x_{3}x_{1} + a_{32}x_{3}x_{2} + a_{33}x_{3}^{2} + x_{3}(a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3})$$

$$= (x_{1}, x_{2}, x_{3}) \begin{pmatrix} a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} \\ a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} \\ a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} \\ a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} \end{pmatrix}$$



**例1** 写出二次型  $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - 3x_3^2 + 4x_1x_2 - 6x_2x_3$  的矩阵

$$f(1,0,1) = 1 + 0 - 3 \times 1 + 4 \times 1 \times 0 - 6 \times 0 \times 1 = -2$$

$$f(x_1, x_2, x_3) = x^T A x = (x_1, x_2, x_3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & -3 \\ 0 & -3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$f(1,0,1) = (1,0,1) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & -3 \\ 0 & -3 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = (1,0,1) \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} = -2$$

### 例2 求二次型的标准形的矩阵.

$$f(y_1, y_2, \dots, y_n) = k_1 y_1^2 + k_2 y_2^2 + \dots + k_n y_n^2 = y^T \Lambda y$$

$$= (y_1, y_2, \dots, y_n) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \begin{pmatrix} k_1 y_1 \\ k_2 y_2 \\ \vdots \\ k_n y_n \end{pmatrix}$$

$$\mathbf{y}^T \qquad \Lambda \qquad \mathbf{y}$$

结论: 标准形的矩阵是对角阵.



- 6.1 二次型的定义及其矩阵表示
  - ✓二次型的定义
  - ✓二次型的矩阵表示



- 6.1 二次型的定义及其矩阵表示
- 6.2 二次型的标准形
  - 6.4 实二次型的定性



### 6.2 二次型的标准型

- **线性变换及正交变换** 
  - 用正交变换化二次型为标准形



### 1. 线性变换及正交变换

(1) 线性变换 
$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{cases}$$

称为从变量  $x_1, x_2, \dots x_n$  到变量  $y_1, y_2, \dots, y_n$  的线性变换,  $A = (a_{ii})_{m \times n}$  称为线性变换的系数矩阵.

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ A & & & & & & \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ n \times 1 \end{pmatrix}$$

$$y = A x$$



### (2) 正交变换 y = Ax

正交变换: y = Px, 其中P为正交矩阵.

 $P^TP = E$ 

正交变换的性质: 正交变换保持向量长度不变. (保持图形的几何形状不变)

证明: 
$$|y| = \sqrt{y^T y} = \sqrt{(Px)^T (Px)} = \sqrt{x^T P^T Px} = \sqrt{x^T x} = |x|$$

正交变换  $\eta = P\xi$ 

正交变换 
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$





### 6.2 二次型的标准型

- 线性变换及正交变换
- 用正交变换化二次型为标准形



$$P^{-1}AP = B \implies AP = PB$$

$$P^{-1}AP = B \implies AP = PB$$
 线性无关 
$$P^{-1}AP = \Lambda \implies A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3)B$$

$$\Rightarrow (A\alpha_1, A\alpha_2, A\alpha_3) = (\alpha_1, \alpha_2, \alpha_3)B$$
 **B**---坐标矩阵

$$\Rightarrow (A\alpha_{1}, A\alpha_{2}, A\alpha_{3}) = (\alpha_{1}, \alpha_{2}, \alpha_{3})B \qquad b = \pm 4N$$

$$\Rightarrow (A\alpha_{1}, A\alpha_{2}, A\alpha_{3}) = (\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix}$$

$$\begin{pmatrix} \lambda_{1} & 0 & 0 \end{pmatrix}$$

$$\Rightarrow (A\alpha_{1}, A\alpha_{2}, A\alpha_{3}) = (\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix}$$

$$\Rightarrow (A\alpha_{1}, A\alpha_{2}, A\alpha_{3}) = (\lambda_{1}\alpha_{1}, \lambda_{2}\alpha_{2}, \lambda_{3}\alpha_{3}) \Rightarrow \begin{cases} A\alpha_{1} = \lambda_{1}\alpha_{1} \\ A\alpha_{2} = \lambda_{2}\alpha_{2} \\ A\alpha_{3} = \lambda_{3}\alpha_{3} \end{cases}$$

$$\Rightarrow (A\alpha_1, A\alpha_2, A\alpha_3) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \lambda_3\alpha_3) \Rightarrow \begin{cases} A\alpha_1 = \lambda_1\alpha_1 \\ A\alpha_2 = \lambda_2\alpha_2 \\ A\alpha_3 = \lambda_3\alpha_3 \end{cases}$$

 $\lambda_1, \lambda_2, \lambda_3$  是A的特征值,  $\alpha_1, \alpha_2, \alpha_3$  是A的三个线性无关的特征向量.



### 1. 实对称矩阵的性质

- 属于不同特征值的特征向量正交;
- 每一特征值的几何重数=代数重数;
- 必存在正交矩阵Q,将其化为对角矩阵,  $Q^{-1}AQ = \Lambda$

### 2. 实对称矩阵对角化的步骤:

### 步骤:

- (1) 求A的特征值:  $\lambda_1 = \lambda_2$ ,  $\lambda_3$
- (2) 求  $(\lambda_i E A)x = 0$  基础解系:

$$\lambda_1(2重)$$
:  $\xi_1, \xi_2$  正交单位化  $p_1, p_2$   $\lambda_3(单根)$ :  $\xi_3$  单位化  $p_3$ 

(4) 得到正交矩阵:  $Q = (p_1, p_2, p_3), Q^{-1}AQ = \lambda_2$ 



$$Q^T Q = E \longrightarrow Q^{-1} = Q^T$$

### 2. 用正交变换化二次型为标准形

对任意实对称阵 A , 总有正交阵 Q , 使得  $Q^{-1}AQ = Q^TAQ = A$ 

**定理6.1** 任给二次型 $f = x^T A x$ , 总有正交变换 x = Q y使f化为标准形:

$$f = x^{T} A x = (Q y)^{T} A (Q y) = (y^{T} Q^{T}) A (Q y) = y^{T} (Q^{T} A Q) y$$

$$= (y_1, y_2, \dots, y_n) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$= \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

$$\Rightarrow \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} b_1 & & \\ & b_2 & \\ & & b_3 \end{bmatrix}$$

 $\lambda_1, \lambda_2, \dots, \lambda_n$  是矩阵 A 的特征值.

相似: 
$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$
合同:  $C^TAC = \begin{pmatrix} b_1 & \\ & b_2 & \\ & & b_3 \end{pmatrix}$ 

### 用正交变换化二次型为标准形的具体步骤: $Q^{-1}AQ = Q^TAQ = A$

- (1) 求二次型  $f = x^T A x$  的矩阵A; 实对称矩阵
- (2) 求 $\Lambda$ 的特征值:  $\lambda_1 = \lambda_2$ ,  $\lambda_3$
- (3) 求  $(\lambda_i E A)x = 0$  基础解系:

实对称阵正 交对角化

$$\lambda_1(2重)$$
:  $\xi_1,\xi_2$  正交单位化  $p_1,p_2$ 

$$\lambda_3$$
(单根):  $\xi_3$  单位化  $p_3$ 

(4) 得到正交矩阵: 
$$Q = (p_1, p_2, p_3)$$
,  $Q^{-1}AQ = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$ 

(5) 作正交变换 x = Qy,得标准形:

$$f = x^{T}Ax = y^{T}(Q^{T}AQ)y = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \lambda_{3}y_{3}^{2}$$



**例3** 将二次型  $f = 17x_1^2 + 14x_2^2 + 14x_3^2 - 4x_1x_2 - 4x_1x_3 - 8x_2x_3$ 

通过正交变换 x = Py 化成标准形.

并指出  $f(x_1, x_2, x_3) = 1$  表示何种二次曲面.

### 解 1. 写出二次型的矩阵

$$Q^{-1}AQ = A$$

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$
实对称阵

### 2. 求特征值

$$|\lambda E - A| = \begin{vmatrix} \lambda - 17 & 2 & 2 \\ 2 & \lambda - 14 & 4 \\ 2 & 4 & \lambda - 14 \end{vmatrix} = \begin{vmatrix} \lambda - 17 & 0 & 2 \\ 2 & \lambda - 18 & 4 \\ 2 & 18 - \lambda & \lambda - 14 \end{vmatrix}$$



$$|\lambda E - A| = \begin{vmatrix} \lambda - 17 & 2 & 2 \\ 2 & \lambda - 14 & 4 \\ 2 & 4 & \lambda - 14 \end{vmatrix}$$

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$

$$= \begin{vmatrix} \lambda - 17 & 0 & 2 \\ 2 & \lambda - 18 & 4 \\ 2 & 18 - \lambda & \lambda - 14 \end{vmatrix} = (\lambda - 18) \begin{vmatrix} \lambda - 17 & 0 & 2 \\ 2 & 1 & 4 \\ 2 & -1 & \lambda - 14 \end{vmatrix}$$

$$= (\lambda - 18) \begin{vmatrix} \lambda - 17 & 0 & 2 \\ 2 & 1 & 4 \\ 4 & 0 & \lambda - 10 \end{vmatrix} = (\lambda - 18) \begin{vmatrix} \lambda - 17 & 2 \\ 4 & \lambda - 10 \\ (\lambda - 17)(\lambda - 10) - 8 \end{vmatrix}$$

$$= (\lambda - 18)(\lambda^2 - 27\lambda + 162) = (\lambda - 18)^2(\lambda - 9) = 0$$

特征值: 
$$\lambda_1 = 9$$
,  $\lambda_2 = \lambda_3 = 18$  验算:  $\lambda_1 + \lambda_2 + \lambda_3 = 45$ 



3. 求特征向量 
$$Q^{-1}AQ = \Lambda$$

$$(\lambda E - A)x = 0$$

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$

$$\lambda_1 = 9$$
 求解  $(9E - A)x = 0$  的基础解系

$$9E - A = \begin{pmatrix} 9 - 17 & 2 & 2 \\ 2 & 9 - 14 & 4 \\ 2 & 4 & 9 - 14 \end{pmatrix} = \begin{pmatrix} -8 & 2 & 2 \\ 2 & -5 & 4 \\ 2 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 0 & -1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

得基础解系 
$$\xi_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

$$n-r(9E-A)=3-2=1$$
  
几何重数 = 1

$$\begin{pmatrix} 1/2 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$



3. 求特征向量 
$$Q^{-1}AQ = \Lambda$$

$$(\lambda E - A)x = 0$$

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$

$$\lambda_2 = \lambda_3 = 18$$
 求解  $(18E - A)x = 0$  的基础解系

$$18E - A = \begin{pmatrix} 18 - 17 & 2 & 2 \\ 2 & 18 - 14 & 4 \\ 2 & 4 & 18 - 14 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

得基础解系 
$$\xi_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
  $\xi_3 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$  几何重数 = 2

$$n-r(18E-A)=3-1=2$$
  
几何重数 = 2



2. 求特征值 
$$\lambda_1 = 9$$
  $\lambda_2 = \lambda_3 = 18$ 

$$\lambda_1 = 9$$

$$\lambda_2 = \lambda_3 = 18$$

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$

$$\xi_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

3. 求特征向量 
$$\xi_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
  $\xi_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$   $\xi_3 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$   $\xi_1^T \xi_2 = 0$ ,  $\xi_1^T \xi_3 = 0$ 

$$\xi_1^T \xi_2 = 0, \quad \xi_1^T \xi_3 = 0$$

$$\xi_2^T \xi_3 = 4 \neq 0$$

### 4. 将特征向量正交化及单位化

$$\xi_3 - \frac{(\alpha_2, \xi_3)}{(\alpha_2, \alpha_2)} \alpha_2$$

得正交向量组 
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
  $\alpha_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$   $\alpha_3 = \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix}$ 

$$oldsymbol{lpha}_2 = iggl|$$

$$\alpha_3 = \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix}$$

$$egin{aligned} \eta_1 = egin{pmatrix} 1/3 \ 2/3 \ 2/3 \end{pmatrix}, \qquad \eta_2 = 0. \end{aligned}$$

$$m{\eta}_1 = egin{pmatrix} 1/3 \ 2/3 \ 2/3 \end{pmatrix}, \quad m{\eta}_2 = egin{pmatrix} -2/\sqrt{5} \ 1/\sqrt{5} \ 0 \end{pmatrix}, \quad m{\eta}_3 = egin{pmatrix} 2/\sqrt{45} \ 4/\sqrt{45} \ -5/\sqrt{45} \end{pmatrix}.$$

正交单位化 
$$\eta_1 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}$$
,  $\eta_2 = \begin{pmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{pmatrix}$ ,  $\eta_3 = \begin{pmatrix} 2/\sqrt{45} \\ 4/\sqrt{45} \\ -5/\sqrt{45} \end{pmatrix}$ .

5. 得到正交矩阵
$$Q$$
 
$$Q = \begin{pmatrix} 1/3 & -2/\sqrt{5} & 2/\sqrt{45} \\ 2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & -5/\sqrt{45} \end{pmatrix}$$

满足 
$$Q^{-1}AQ = Q^{\mathrm{T}}AQ = \begin{pmatrix} 9 \\ 18 \\ 18 \end{pmatrix}$$

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$



### 6. 用正交变换将二次型化为标准形

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14 \end{pmatrix}$$

所求正交变换为x = Qy,即

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1/3 & -2/\sqrt{5} & 2/\sqrt{45} \\ 2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & -5/\sqrt{45} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

$$Q = \begin{pmatrix} 1/3 & -2/\sqrt{5} & 2/\sqrt{45} \\ 2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & -5/\sqrt{45} \end{pmatrix}$$

$$f = 17x_1^2 + 14x_2^2 + 14x_3^2 - 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$= x^T A x$$

$$= (Qy)^T A (Qy) = (y^T Q^T) A (Qy) = y^T (Q^T A Q) y$$

$$= (y_1, y_2, y_3) \begin{pmatrix} 9 & & \\ & 18 & \\ & & 18 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$= 9 y_1^2 + 18 y_2^2 + 18 y_3^2$$

$$Q^{-1}AQ = Q^{\mathrm{T}}AQ = \begin{pmatrix} 9 & & \\ & 18 & \\ & & 18 \end{pmatrix}$$



7. 指出  $f(x_1, x_2, x_3) = 1$  表示何种二次曲面.

正交变换 x = Qy,

化简二次型的作用:方便判断二次型的图形

$$Q = \begin{pmatrix} 1/3 & -2/\sqrt{5} & 2/\sqrt{45} \\ 2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 2/3 & 0 & -5/\sqrt{45} \end{pmatrix}$$



- 6.1 二次型的定义及其矩阵表示
- 6.2 二次型的标准形
- 6.4 实二次型的定性



6.4 实二次型的定性

正定二次型的概念

■ 正定二次型的判别



### 1. 正定二次型的概念

### 注意: 实对称阵才能是正定矩阵

定义6.2 设  $f(x_1,x_2,\dots,x_n) = x^T A x$  是一个实二次型,

若对于 $\forall x \neq 0$ ,

 $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ 

都有 $x^T A x > 0$ ,则称二次型为正定的,A为正定矩阵;

 $x^{T}Ax \geq 0$ ,则称二次型为半正定的,A为半正定矩阵;

**例4**  $z = f(x_1, x_2) = x_1^2 + x_2^2$  是正定二次型, E为正定矩阵.

正定二次型有唯一的全局极小点.

这一性质在最优化问题中有着广泛的应用.





- 6.4 实二次型的定性
  - 正定二次型的概念
  - ➡ 正定二次型的判别



### 2. 正定二次型的判别

**定理6.2** 实对称矩阵A 正定  $\Rightarrow$  A的特征值全都>0.

定理6.3 正定矩阵的行列式大于零.

证明 若A正定,则A的特征值全都>0.

所以,其行列式大于零.



例5 设A为正定矩阵,则  $A^{-1}$ , kA(k>0),  $A^*$  也正定矩阵.

# 证明:

定理6.2 实对称矩阵A正定  $\Leftrightarrow$  A的特征值全都 >0.

设A的特征值为  $\lambda_1, \lambda_2, \dots, \lambda_n$ , : A正定, :.  $\lambda_1, \lambda_2, \dots, \lambda_n > 0$ 

$$A^{-1}$$
的特征值为  $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n} > 0$ ,  $\therefore A^{-1}$  正定

kA 的特征值为  $k\lambda_1, k\lambda_2, \dots, k\lambda_n > 0$ ,  $\therefore kA$  正定

$$A^*$$
 的特征值为  $\frac{|A|}{\lambda_1}, \frac{|A|}{\lambda_2}, \dots, \frac{|A|}{\lambda_n} > 0$ ,  $\therefore A^*$  正定

#### 矩阵的子式

定义3.9 在 $m \times n$  矩阵A中,任取k行与k列( $k \le m, k \le n$ ),

位于这些行列交叉处的  $k^2$  个元素,不改变它们在A中的位置次序而得到的k阶行列式,称为矩阵A的k阶子式.

例如



A的2阶子式:

$$D_2 = \begin{vmatrix} 0 & 3 \\ 3 & 2 \end{vmatrix} = 0 - 9 = -9$$



### 2. 正定二次型的判别

### 主子式, 顺序主子式的定义:

设 $A \in n$  阶对称矩阵,  $1 \le i_1 < i_2 < \dots < i_k \le n$ ,

子式 
$$\begin{vmatrix} a_{i_1i_1} & a_{i_1i_2} & \cdots & a_{i_1i_k} \\ a_{i_2i_1} & a_{i_2i_2} & \cdots & a_{i_2i_k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_ki_1} & a_{i_ki_2} & \cdots & a_{i_ki_k} \end{vmatrix}$$
 称为 $A$ 的 $k$ 阶主子式.

而子式 
$$a_{11}$$
,  $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ ,  $\cdots$ ,  $\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$  称为 $A$ 的顺序主子式.

例: 设A = 5阶对称矩阵,

取A的第1, 3, 5行, 第2, 4, 5列 —— 3阶子式

取A的第1, 3, 5行, 第1, 3, 5列 —— 3阶主子式

取A的第1, 2, 3行, 第1, 2, 3列 —— 3阶顺序主子式



定理6.4 实对称矩阵正定⇔ 其顺序主子式均大于零.



# 小结

### 常用的等价条件:

- 1) 二次型  $x^T A x$  是正定二次型;
- 2) *A*是正定矩阵;
- 3) A的特征值都是正数;
- 4) A的顺序主子式都大于零.



例6 判断实对称矩阵  $\begin{pmatrix} 3 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 5 \end{pmatrix}$  是否正定.

解 由于

$$\begin{vmatrix} 3 & -1 \\ -1 & 4 \end{vmatrix} = 11 > 0, \begin{vmatrix} 3 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 5 \end{vmatrix} = 46 > 0,$$

根据定理6.4知,这个矩阵是正定的.

# 例7设二次型

$$f(x_1,x_2,x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 + 4x_2x_3 - 2x_1x_3$$
,  
当  $t$  为何值时,上述二次型为正定二次型.

解: 二次型的矩阵为 
$$A = \begin{pmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$
,

二次型正定的充要条件是A的各阶顺序主子式>0

1>0, 
$$\begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = (1-t^2) > 0$$
,  $|A| = \begin{vmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} = -5t^2 - 4t > 0$ ,

解得 
$$-\frac{4}{5} < t < 0$$
,  $\therefore -\frac{4}{5} < t < 0$  时, 二次型为正定二次型.

# 第六章 二次型与正定矩阵

# 6.4 实二次型的定性

- ✓正定二次型的概念
- ✓正定二次型的判别



# 第六章二次型与正定矩阵

- 6/1 二次型的定义及其矩阵表示
- 6√2 二次型的标准形
- 6√4 实二次型的定性



# 作业 习题六

| 授课内容        | 习题六                          |
|-------------|------------------------------|
| 6.1二次型矩阵表示  | 1(1)(2)(3), 2(2)(3),3        |
| 6.2 二次型的标准形 | 9(2)(3)正交变换                  |
| 6.4实二次型的正定性 | 19(1)(2), 21(2), 24(1)(2)(3) |
|             |                              |



(13, 11分)

设二次型 $f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$ 

记 
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

- (1) 证明二次型 f 对应的矩阵为  $2\alpha\alpha^T + \beta\beta^T$ ;
- (2) 若  $\alpha$ ,  $\beta$  正交且均为单位向量, 证明 f 在正交变换下的标准形为  $2y_1^2 + y_2^2$

记 
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$
 记  $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ 

(1) 证明二次型 f 对应的矩阵为  $2\alpha\alpha^T + \beta\beta^T$ ;

### 证明:

Fig.:
$$a_1 x_1 + a_2 x_2 + a_3 x_3 = (x_1, x_2, x_3) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = x^T \alpha = \alpha^T x = (a_1, a_2, a_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$b_1 x_1 + b_2 x_2 + b_3 x_3 = (x_1, x_2, x_3) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = x^T \beta = \beta^T x$$



记 
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$
 记  $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ 

(1) 证明二次型 f 对应的矩阵为  $2\alpha\alpha^T + \beta\beta^T$ ;

证明: 
$$f(x_1, x_2, x_3) = 2x^T \alpha \alpha^T x + x^T \beta \beta^T x$$
  
=  $x^T (2\alpha \alpha^T + \beta \beta^T) x = x^T A x$ ,  $A = 2\alpha \alpha^T + \beta \beta^T$ 

其中A是对称阵 
$$A^T = A \left(\alpha \alpha^T\right)^T = \left(\alpha^T\right)^T \alpha^T = \alpha \alpha^T$$

$$A^T = (2\alpha \alpha^T + \beta \beta^T)^T = 2(\alpha \alpha^T)^T + (\beta \beta^T)^T = 2\alpha \alpha^T + \beta \beta^T = A$$

所以二次型 f 对应的矩阵为  $A = 2\alpha\alpha^T + \beta\beta^T$ .



设二次型  $f(x_1,x_2,x_3) = x^T A x$   $A = 2\alpha\alpha^T + \beta\beta^T$ .

记 
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

(2) 若  $\alpha$ ,  $\beta$  正交且均为单位向量,证明 f 在正交变换下的标准形为  $2y_1^2 + y_2^2 \Longrightarrow A$ 的特征值为2,1,0.

(13,11分)

设二次型 
$$f(x_1,x_2,x_3) = x^T A x$$
  $A = 2\alpha\alpha^T + \beta\beta^T$ .

$$|\alpha| = \sqrt{\alpha^T \alpha}$$

记 
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

(2) 若  $\alpha$ ,  $\beta$  正交且均为单位向量,证明 f 在正交变换下的标准形为  $2y_1^2 + y_2^2 \longrightarrow A$ 的特征值为2,1,0.

 $A\alpha = \lambda \alpha$ 

证明: 因为  $\alpha,\beta$  正交且均为单位向量,所以

$$\alpha^T \beta = \beta^T \alpha = 0, \quad |\alpha| = 1 \Rightarrow \alpha^T \alpha = 1, \quad |\beta| = 1 \Rightarrow \beta^T \beta = 1$$

$$A\alpha = (2\alpha\alpha^T + \beta\beta^T)\alpha = 2\alpha\alpha^T\alpha + \beta\beta^T\alpha = 2\alpha$$
 所以2是A的特征值.

$$A\beta = (2\alpha\alpha^T + \beta\beta^T)\beta = 2\alpha\alpha^T\beta + \beta\beta^T\beta = \beta$$
 所以1是A的特征值.  
于是A有特征值为2,1.



设二次型 
$$f(x_1, x_2, x_3) = x^T A x$$
  $A = 2\alpha \alpha^T + \beta \beta^T$ . (13, 11分)

$$i \exists \alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \alpha \alpha^T = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} (a_1, a_2, a_3) = \begin{pmatrix} a_1 a_1 & a_1 a_2 & a_1 a_3 \\ a_2 a_1 & a_2 a_2 & a_2 a_3 \\ a_3 a_1 & a_3 a_2 & a_3 a_3 \end{pmatrix} \rightarrow \begin{pmatrix} a_1 a_1 & a_1 a_2 & a_1 a_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(2) 若  $\alpha$ ,  $\beta$  正交且均为单位向量,证明 f 在正交变换下的标准形 为  $2y_1^2 + y_2^2 \Longrightarrow A$ 的特征值为2, 1, 0.  $\Longrightarrow |A| = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = 0$ 

证明: A有特征值为2,1.  $r(A+B) \le r(A) + r(B)$ 

因为 
$$r(A) = r(2\alpha\alpha^T + \beta\beta^T) \le r(2\alpha\alpha^T) + r(\beta\beta^T) = 2 < 3$$

所以|A|=0 所以0是A的特征值. 于是A的特征值为2,1,0.

因此 f 在正交变换下的标准形为  $2y_1^2 + y_2^2 + 0y_3^2$ 



$$r(A) = 1$$

二次型  $f(x_1,x_2,x_3) = x^T A x$  的秩为1, A 的各行元素之和为3,则 f 在正交变换 x = Q y 下的标准形为  $\frac{\lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2}{2}$ 

解:  $\bar{x}A$ 的特征值

$$A\alpha = \lambda \alpha$$

设 
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

所以3是A的一个特征值.



$$r(A) = 1$$

二次型  $f(x_1, x_2, x_3) = x^T A x$  的秩为1, A 的各行元素之和为3,

 $3y_1^2$ 则 f 在正交变换 x = Qy 下的标准形为

解: 3 = A的一个特征值.

$$A\alpha = \lambda \alpha$$

因为r(A) = 1, 所以|A| = 0, 所以0是A的特征值.

$$|A| = \lambda_1 \cdot \lambda_2 \cdot \lambda_3$$

下面证明: 0 = A 的 2 重特征值.

$$Ax = 0$$

0的代数重数 ≥它的几何重数 n-r(A)=3-1=2  $(\lambda E-A)x=0$ 

$$(\lambda E - A)x = 0$$

所以0是矩阵A的2重特征值.

即A的3个特征值为: 3, 0, 0

因此, 正交变换下的标准形为  $3y_1^2 + 0y_2^2 + 0y_3^2$ 

# 任一特征值的几何重数 < 它的代数重数



已知实二次型 $f(x_1,x_2,x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ 经正交变换x = Py 可化为标准形  $f = 6y_1^2$ , 则 a = 2

#### 解:

因为二次型  $x^T A x$  经正交变换化为标准形时,平方项的系数就是 A 的特征值,即

$$f = x^T A x = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$$
,  $\lambda_1, \lambda_2, \lambda_3$ 是A 的三个特征值.  $f = 6y_1^2 = 6y_1^2 + 0y_2^2 + 0y_3^2$ , 所以A 的特征值为6, 0, 0.

$$\therefore A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix} \therefore a + a + a = 6 + 0 + 0 \Rightarrow a = 2$$

