报名

- 1. 注册华为账号
- 2. 点击比赛网址,创建队伍并按照要求提供团队信息
- 3. 报名:广告-信息流跨域CTR预估
- 4. 下载比赛数据,共包含四个csv文件

赛题理解

1. 什么是CTR:

Click-Through-Rate 点击通过率,指网络广告的点击到达率

$$CTR = rac{\Gamma$$
告的实际点击次数 Γ 告的展现量

2. 为什么要做CTR预测:

在广告实际投放情况中,需要综合考虑CTR以及平均点击价格ACP,决定广告的投放量

3. 什么是比赛数据中的目标域和源域数据:

目标域:收集广告任务产生的历史数据,但是用户行为数据稀疏,行为类型相对单一(用户个人信息、用户所点击的广告信息等)

目	标域用户行为数据					
	字段名称	字段含义	是否可为空	字段类型	取值样 例	
	label	是否点击, 0: 否, 1: 是	否	int	0, 1	
	user_id	用户id	否	String	1, 2	
	age	年龄	是	String	1, 2, 3	
	gender	性别	是	String	1, 2	
	residence	常住地-省份	是	String	1, 2	
	city	常住地-市-编号	是	String	1, 2	
	city_rank	常住地-市-等级	是	String	1, 2	

源域:同一媒体的跨域数据,可以通过同一广告用户在其他域的行为数据,深度挖掘用户兴趣,丰富用户行为特征

源域用户行为数据								
	字段名称	字段含义	是否可为空	字段类型	取值样例			
	u_userId	用户标识	否	String	0001			
	u_phonePrice	用户手机价格	是	String	13			
	u_browserLifeCyc le	浏览器用户活跃度	是	String	10			
	u_browserMode	浏览器业务类型	是	String	11			
	u_feedLifeCycle	信息流用户活跃度	是	String	12			
	u_refreshTimes	信息流日均有效刷新次数	是	String	16			
	u_newsCatIntere sts	信息流图文点击分类偏好	是	[String,]	[1^2]			

4. 赛题任务:

根据历史的用户行为特征(两个域的数据),预测是否会点击广告(二分类问题) 不可以使用穿越信息(T时刻样本使用T时刻之前的信息,不能使用T时刻未来的信息)

5. 评价指标:

 $xAUC = \alpha * GAUC + \beta * AUC$, 越高越优(初赛 $\alpha = 0.7, \beta = 0.3$)

下面结合**这篇文章**,介绍一下ROC、AUC、GAUC

(a) ROC前身:通用的对分类模型的评价

在对每一个样本计算出一个预测概率后,若选择不同的阈值,我们会得到不同的分类结果

(b) ROC曲线:

在上面的情况中,我们可以遍历所有的阈值,查看每一个阈值下的分类情况,并绘制ROC曲线

纵坐标: $TPR = \frac{TP}{TP+FN}$

横坐标: $FPR = \frac{FP}{FP+TN}$

(c) AUC:

在绘制出ROC曲线后,我们就可以计算出AUC的值

 $AUC = rac{ROC}{\pm x * y}$ 区域面积

将上面公式的积分过程拆开,我们可以用另一个角度计算AUC

第一节中,原始有五个正样本:

p=0.9的真实正样本,它在所有5个负样本前面,因此记为5

p=0.8的真实正样本,它在所有5个负样本前面,因此记为5

p=0.7的真实正样本,它在所有5个负样本前面,因此记为5

p=0.6的真实正样本,它在4个负样本前面,因此记为4

p=0.4的真实正样本,它在3个负样本前面,因此记为3

交叉区域记为5*5=25

因此最终的AUC记为

$$AUC = \frac{5+5+5+4+3}{5*5} = 0.88$$

(d) GAUC:

在广告推荐领域虽然仍是二分类模型,但是是更细粒度的二分类(对每个人进行二分类),因此传统的粗粒度的AUC并不适用

GAUC其实是计算每一个用户的AUC,然后加权平均,这样可以减少不同用户之间不好比较的影响 (因为不同用户之间对于广告偏好差距较大)

实际处理时权重一般可以设为每个用户view或click的次数,而且会过滤掉单个用户全是正样本或负样本的情况