TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Zhaoyuan Yin¹, Pichao Wang², Fan Wang², Xianzhe Xu², Hanling Zhang³, Hao Li² Rong Jing²

 1 College of Computer Science and Electronic Engineering, Hunan University, China 2 Alibaba Group, China 3 School of Design, Hunan University, China

Bottom-up vs. Top-down.

Bottom-up manners:

- deduce semantic concepts from pixel features
- under the guide of pre-defined rules or visual cues.
- the result usually coarse.

Top-down manner:

- induce semantic concepts from ImageNet (SSL).
- maps to pixel-level features.
- Robust to object appearance variations.

Contributions

- We propose the first top-down framework for unsupervised semantic segmentation.
- We transfers the high-level semantic features obtained from SSL into low-level pixel-wise features to produce high-quality fine-grained segmentation results.
- This is the first work to apply unsupervised algorithms on real complex datasets (with a large number of classes).

Pipeline

Semantic concepts discovery.

- crop each $I_i \in I$ with different sizes of sliding windows to form I^c .
- use attention map A_L^{cls} in class-token feature x_i^{cls} as foreground prior when foreground (things) and background (stuff) are required to segmented separately.

• obtain K target semantic concepts S based on class-token feature of $x^{c,cls}$ by K-Means, K set as the number of classes w.r.t desired granularity levels.

Training.

• generate gradient on A_L^{cls} w.r.t S_k by maximizing the cosine similarity: $\min(1 - \frac{x_i^{cls}S_k^T}{\sqrt{d}})$.

- aggregate the output of Grad-CAM $\{M_i^k\}_1^K$ and teacher network \hat{P}_i to refine pseudo label $\{\hat{M}_i^k\}_1^K$.
- $M_i^{bg} = \text{Relu}(T^{bg} \max_{k \in [0,K]} M_i^k)$ is background probability if only foreground need to segmented:
- bootstrapping loss $\mathcal{L} = \mathcal{L}_{peer} + \omega_1 \cdot \mathcal{L}_{div} + \omega_2 \cdot \mathcal{L}_{unc}$.
- peer loss: $\mathcal{L}_{peer} = \text{CE}(P, \hat{M}) \alpha \cdot \text{CE}(P, \hat{M}')$
- -diversity loss: $\mathcal{L}_{div} = 1 + \frac{1}{K^2} \sum \frac{C \cdot C^T}{\sqrt{d}}$.
- -uncertainty loss: $\mathcal{L}_{unc} = 1 \frac{1}{hw} \sum_{(h',w')} (p'-p'')$.

Quantitative Results

Table 1:Results on four benchmarks. * indicates the results are evaluated on the "curated" samples. † denotes PiCIE trained without auxiliary clustering.

		1	
Dataset	Method	mIoU	Acc.
COCO-Stuff-27*	IIC	6.71	21.79
	PiCIE†	13.84	48.09
	PiCIE	14.36	49.99
	TransFGU	17.47	52.66
COCO-Stuff-27	IIC	2.36	21.02
	PiCIE	11.88	37.20
	TransFGU	16.19	44.52
COCO-Stuff-171	IIC	0.64	8.67
	PiCIE	4.56	24.66
	TransFGU	11.93	34.32
COCO-80	MaskContrast	3.73	8.81
	TransFGU	12.69	64.31
Cityscapes	IIC	6.35	47.88
	PiCIE	12.31	65.50
	TransFGU	16.83	77.92
Pascal-VOC	MaskContrast	35.00	79.84
	TransFGU	37.15	83.59
LIP-5	TransFGU	25.16	65.76
LIP-16	TransFGU	15.49	60.08
LIP-19	TransFGU	12.24	42.52

Quantitative Results

Image IIC PiCIE Ours GT Image MC Ours GT

Figure 1:Qualitative comparison on COCO-STuff-171 (left) and Pascal-VOC (right).