First Order Bayesian Regret Analysis of Thompson Sampling

Mark Sellke

Joint with Sébastien Bubeck (MSR) ALT 2020

Overview

- Problem Formulation and Results
- 2 Full Feedback Analysis of [RVR16]
- 3 Full Feedback First Order Regret
- Partial Feedback
- Open Problems

• Finite set $[n] = \{1, 2, ..., n\}$ of arms.

- Finite set $[n] = \{1, 2, ..., n\}$ of arms.
- Oblivious adversary chooses T loss functions $\ell_t : [n] \to [0,1]$.

- Finite set $[n] = \{1, 2, ..., n\}$ of arms.
- Oblivious adversary chooses T loss functions $\ell_t : [n] \to [0,1]$.
- Each round, player picks $i_t \in [n]$, pays loss $\ell_t(i_t)$.

- Finite set $[n] = \{1, 2, ..., n\}$ of arms.
- Oblivious adversary chooses T loss functions $\ell_t : [n] \to [0,1]$.
- Each round, player picks $i_t \in [n]$, pays loss $\ell_t(i_t)$.
- \bullet Full-feedback: observe the entire vector $\ell_t.$

Bandit: observe only $\ell_t(i_t)$.

Semi-bandit: choose m arms at once and observe all m losses.

- Finite set $[n] = \{1, 2, ..., n\}$ of arms.
- Oblivious adversary chooses T loss functions $\ell_t : [n] \to [0,1]$.
- Each round, player picks $i_t \in [n]$, pays loss $\ell_t(i_t)$.
- Full-feedback: observe the entire vector ℓ_t . Bandit: observe only $\ell_t(i_t)$. Semi-bandit: choose m arms at once and observe all m losses.
- Arm i has a total loss $L_{i,T} = \sum_{t=1}^{T} \ell_t(i)$. Player has total loss $L_T = \sum_{t=1}^{T} \ell_t(i_t)$.

- Finite set $[n] = \{1, 2, ..., n\}$ of arms.
- Oblivious adversary chooses T loss functions $\ell_t : [n] \to [0,1]$.
- Each round, player picks $i_t \in [n]$, pays loss $\ell_t(i_t)$.
- Full-feedback: observe the entire vector ℓ_t . Bandit: observe only $\ell_t(i_t)$. Semi-bandit: choose m arms at once and observe all m losses.
- Arm i has a total loss $L_{i,T} = \sum_{t=1}^{T} \ell_t(i)$. Player has total loss $L_T = \sum_{t=1}^{T} \ell_t(i_t)$.
- Let i^* be the arm with smallest loss L^* .

- Finite set $[n] = \{1, 2, ..., n\}$ of arms.
- Oblivious adversary chooses T loss functions $\ell_t : [n] \to [0,1]$.
- Each round, player picks $i_t \in [n]$, pays loss $\ell_t(i_t)$.
- Full-feedback: observe the entire vector ℓ_t . Bandit: observe only $\ell_t(i_t)$. Semi-bandit: choose m arms at once and observe all m losses.
- Arm i has a total loss $L_{i,T} = \sum_{t=1}^{T} \ell_t(i)$. Player has total loss $L_T = \sum_{t=1}^{T} \ell_t(i_t)$.
- Let i^* be the arm with smallest loss L^* .
- Goal: small expected regret $\mathbb{E}[R_T] = \mathbb{E}[L_T L^*]$.

• Adversarial Bayesian setting: known prior over oblivious adversaries. Goal is low Bayesian regret $\mathbb{E}[R_T]$ against this prior.

- Adversarial Bayesian setting: known prior over oblivious adversaries. Goal is low Bayesian regret $\mathbb{E}[R_T]$ against this prior.
- Minimax theorem says adversarial Bayesian guarantees must hold for some frequentist algorithm.

- Adversarial Bayesian setting: known prior over oblivious adversaries. Goal is low Bayesian regret $\mathbb{E}[R_T]$ against this prior.
- Minimax theorem says adversarial Bayesian guarantees must hold for some frequentist algorithm.
- Thompson sampling (TS): play next action from current distribution $p_t(\cdot)$ of the (eventual) best arm i^* .

- Adversarial Bayesian setting: known prior over oblivious adversaries. Goal is low Bayesian regret $\mathbb{E}[R_T]$ against this prior.
- Minimax theorem says adversarial Bayesian guarantees must hold for some frequentist algorithm.
- Thompson sampling (TS): play next action from current distribution $p_t(\cdot)$ of the (eventual) best arm i^* .
- Easy to simulate, used lots in practice. TS known to attain optimal $O(\sqrt{T})$ and gap-dependent guarantees in various settings, and more. [RVR16, AG12, KMN12].

- Adversarial Bayesian setting: known prior over oblivious adversaries. Goal is low Bayesian regret $\mathbb{E}[R_T]$ against this prior.
- Minimax theorem says adversarial Bayesian guarantees must hold for some frequentist algorithm.
- Thompson sampling (TS): play next action from current distribution $p_t(\cdot)$ of the (eventual) best arm i^* .
- Easy to simulate, used lots in practice. TS known to attain optimal $O(\sqrt{T})$ and gap-dependent guarantees in various settings, and more. [RVR16, AG12, KMN12].
- Some frequentist algorithms (EXP3, MD with log barrier) achieve more refined *first order* regret $\mathbb{E}[R_T] = O(\sqrt{L^*})$. What about TS?

Main Theorem

Thompson sampling has optimal first order regret guarantees in full-feedback, bandit, and semi-bandit setting.

Main Theorem

Thompson sampling has optimal first order regret guarantees in full-feedback, bandit, and semi-bandit setting.

Proofs build on $O(\sqrt{T})$ entropic analysis of [RVR16].

Main Theorem

Thompson sampling has optimal first order regret guarantees in full-feedback, bandit, and semi-bandit setting.

Proofs build on $O(\sqrt{T})$ entropic analysis of [RVR16].

Three Key Techniques:

Main Theorem

Thompson sampling has optimal first order regret guarantees in full-feedback, bandit, and semi-bandit setting.

Proofs build on $O(\sqrt{T})$ entropic analysis of [RVR16]. Three Key Techniques:

• Refinement of Pinsker's inequality turns $O(\sqrt{T})$ arguments into $O(\sqrt{L^*})$ arguments.

Main Theorem

Thompson sampling has optimal first order regret guarantees in full-feedback, bandit, and semi-bandit setting.

Proofs build on $O(\sqrt{T})$ entropic analysis of [RVR16].

Three Key Techniques:

- Refinement of Pinsker's inequality turns $O(\sqrt{T})$ arguments into $O(\sqrt{L^*})$ arguments.
- "Self-awareness" of TS: shows that arm i is discarded when its total (observed or unobserved) loss is much larger than L^* .

Main Theorem

Thompson sampling has optimal first order regret guarantees in full-feedback, bandit, and semi-bandit setting.

Proofs build on $O(\sqrt{T})$ entropic analysis of [RVR16]. Three Key Techniques:

- Refinement of Pinsker's inequality turns $O(\sqrt{T})$ arguments into $O(\sqrt{L^*})$ arguments.
- "Self-awareness" of TS: shows that arm i is discarded when its total (observed or unobserved) loss is much larger than L^* .
- Extensions of Shannon entropy for the semi-bandit setting.

	Full Feedback	Bandit	Semi-bandit
Minimax	$\sqrt{T \log n}$	\sqrt{Tn}	\sqrt{Tnm}
First Order	$\sqrt{L^* \log n}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n)})$
TS	$\sqrt{TH(p_0)}$	\sqrt{Tn}	$\tilde{O}(\sqrt{T_{nm}})$
First Order TS	$\sqrt{L^*H(p_0)}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n})$

	Full Feedback	Bandit	Semi-bandit
Minimax	$\sqrt{T \log n}$	\sqrt{Tn}	\sqrt{Tnm}
First Order	$\sqrt{L^* \log n}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n)})$
TS	$\sqrt{TH(p_0)}$	\sqrt{Tn}	$\tilde{O}(\sqrt{T_{nm}})$
First Order TS	$\sqrt{L^*H(p_0)}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n})$

• Bottom line is new for TS.

	Full Feedback	Bandit	Semi-bandit
Minimax	$\sqrt{T \log n}$	\sqrt{Tn}	\sqrt{Tnm}
First Order	$\sqrt{L^* \log n}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n)})$
TS	$\sqrt{TH(p_0)}$	\sqrt{Tn}	$ ilde{O}(\sqrt{Tnm})$
First Order TS	$\sqrt{L^*H(p_0)}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n})$

- Bottom line is new for TS.
- $\tilde{O}(\sqrt{Tnm})$ matches previous work in more generality: previously prior had to be independent over arms. Same generalization for contextual bandit, but first order bound does not hold for TS.

	Full Feedback	Bandit	Semi-bandit
Minimax	$\sqrt{T \log n}$	\sqrt{Tn}	\sqrt{Tnm}
First Order	$\sqrt{L^* \log n}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n)})$
TS	$\sqrt{TH(p_0)}$	\sqrt{Tn}	$\tilde{O}(\sqrt{T_{nm}})$
First Order TS	$\sqrt{L^*H(p_0)}$	$\sqrt{L^*n}$	$\tilde{O}(\sqrt{L^*n})$

- Bottom line is new for TS.
- $O(\sqrt{Tnm})$ matches previous work in more generality: previously prior had to be independent over arms. Same generalization for contextual bandit, but first order bound does not hold for TS.
- First column highlights that TS adapts to informative priors if $H(p_0) \ll \log(n)$. Similar results hold for partial feedback.

We show two types of first order regret bound.

- We show two types of first order regret bound.
- Easier formulation: suppose that (an upper bound on) L^* is known, show $O(\sqrt{L^*})$ regret.

- We show two types of first order regret bound.
- Easier formulation: suppose that (an upper bound on) L^* is known, show $O(\sqrt{L^*})$ regret.
- All technical points today will be for this version.

- We show two types of first order regret bound.
- Easier formulation: suppose that (an upper bound on) L^* is known, show $O(\sqrt{L^*})$ regret.
- All technical points today will be for this version.
- If L^* is known, can achieve fully T-independent regret using thresholded TS. Never play arm i if $p_t(i) \leq \gamma$ for γ a small constant. Ordinary TS has mild $\log(T)$ dependence. Same story already existed for (thresholded) EXP3.

- We show two types of first order regret bound.
- Easier formulation: suppose that (an upper bound on) L^* is known, show $O(\sqrt{L^*})$ regret.
- All technical points today will be for this version.
- If L^* is known, can achieve fully T-independent regret using thresholded TS. Never play arm i if $p_t(i) \leq \gamma$ for γ a small constant. Ordinary TS has mild $\log(T)$ dependence. Same story already existed for (thresholded) EXP3.
- Harder formulation: unknown L^* , prove $O(\sqrt{\mathbb{E}[L^*]})$ regret. We show this for TS also, seems to require log-barrier instead of entropy.

- We show two types of first order regret bound.
- Easier formulation: suppose that (an upper bound on) L^* is known, show $O(\sqrt{L^*})$ regret.
- All technical points today will be for this version.
- If L^* is known, can achieve fully T-independent regret using thresholded TS. Never play arm i if $p_t(i) \leq \gamma$ for γ a small constant. Ordinary TS has mild $\log(T)$ dependence. Same story already existed for (thresholded) EXP3.
- Harder formulation: unknown L^* , prove $O(\sqrt{\mathbb{E}[L^*]})$ regret. We show this for TS also, seems to require log-barrier instead of entropy.
- $O(\sqrt{\mathbb{E}[L^*]})$ analysis is based on recent connection between TS and mirror descent from [LZ19]. For known L^* , can similarly remove logs with Tsallis entropy instead of Shannon.

• Denote the regret incurred in timestep *t* by

$$r_t = \ell_t(i_t) - \ell_t(i^*).$$

Denote the regret incurred in timestep t by

$$r_t = \ell_t(i_t) - \ell_t(i^*).$$

• By linearity, $\mathbb{E}[\sum_{t \leq T} r_t] = \mathbb{E}[R_T]$ is the expected total regret.

• Denote the regret incurred in timestep *t* by

$$r_t = \ell_t(i_t) - \ell_t(i^*).$$

- By linearity, $\mathbb{E}[\sum_{t < T} r_t] = \mathbb{E}[R_T]$ is the expected total regret.
- For full-feedback, $\mathbb{E}[r_t]$ is the inner product of loss and probability movement:

$$\mathbb{E}[r_t] = \mathbb{E}[\langle \ell_t, \rho_t - \rho_{t+1} \rangle] = \mathbb{E} \sum_i \left(\ell_t(i) \cdot (\rho_t(i) - \rho_{t+1}(i)) \right).$$

Denote the regret incurred in timestep t by

$$r_t = \ell_t(i_t) - \ell_t(i^*).$$

- By linearity, $\mathbb{E}[\sum_{t < T} r_t] = \mathbb{E}[R_T]$ is the expected total regret.
- For full-feedback, $\mathbb{E}[r_t]$ is the inner product of loss and probability movement:

$$\mathbb{E}[r_t] = \mathbb{E}[\langle \ell_t, p_t - p_{t+1} \rangle] = \mathbb{E} \sum_i \left(\ell_t(i) \cdot (p_t(i) - p_{t+1}(i)) \right).$$

• Reason: player's average loss is $\mathbb{E}^t \langle \ell_t, p_t \rangle$. After $\ell_t(\cdot)$ is known, average loss of i^* is $\mathbb{E}^{t+1}[\ell_t(i^*)] = \langle \ell_t, p_{t+1} \rangle$.

Denote the regret incurred in timestep t by

$$r_t = \ell_t(i_t) - \ell_t(i^*).$$

- By linearity, $\mathbb{E}[\sum_{t < T} r_t] = \mathbb{E}[R_T]$ is the expected total regret.
- For full-feedback, $\mathbb{E}[r_t]$ is the inner product of loss and probability movement:

$$\mathbb{E}[r_t] = \mathbb{E}[\langle \ell_t, p_t - p_{t+1} \rangle] = \mathbb{E} \sum_i \left(\ell_t(i) \cdot (p_t(i) - p_{t+1}(i)) \right).$$

- Reason: player's average loss is $\mathbb{E}^t \langle \ell_t, p_t \rangle$. After $\ell_t(\cdot)$ is known, average loss of i^* is $\mathbb{E}^{t+1}[\ell_t(i^*)] = \langle \ell_t, p_{t+1} \rangle$.
- Because $\ell_t(i) \in [0,1]$, we have

$$\mathbb{E}[r_t] \leq \mathbb{E}[||p_t - p_{t+1}||_{\ell^1}].$$

Denote the regret incurred in timestep t by

$$r_t = \ell_t(i_t) - \ell_t(i^*).$$

- By linearity, $\mathbb{E}[\sum_{t \leq T} r_t] = \mathbb{E}[R_T]$ is the expected total regret.
- For full-feedback, $\mathbb{E}[r_t]$ is the inner product of loss and probability movement:

$$\mathbb{E}[r_t] = \mathbb{E}[\langle \ell_t, \rho_t - \rho_{t+1} \rangle] = \mathbb{E} \sum_i \left(\ell_t(i) \cdot (\rho_t(i) - \rho_{t+1}(i)) \right).$$

- Reason: player's average loss is $\mathbb{E}^t \langle \ell_t, p_t \rangle$. After $\ell_t(\cdot)$ is known, average loss of i^* is $\mathbb{E}^{t+1}[\ell_t(i^*)] = \langle \ell_t, p_{t+1} \rangle$.
- Because $\ell_t(i) \in [0,1]$, we have

$$\mathbb{E}[r_t] \leq \mathbb{E}[||p_t - p_{t+1}||_{\ell^1}].$$

ullet To bound regret, estimate ℓ^1 (= TV) movement of p_t .

Now entropy appears via Pinsker's Inequality:

$$||p_t - p_{t+1}||_{\ell^1}^2 \le \mathit{KL}[p_{t+1}; p_t].$$

Now entropy appears via Pinsker's Inequality:

$$||p_t - p_{t+1}||_{\ell^1}^2 \le KL[p_{t+1}; p_t].$$

Cauchy-Schwarz:

$$\mathbb{E}\left[\sum_{t=0}^{T-1}||\rho_t - \rho_{t+1}||_{\ell^1}\right] \leq \sqrt{T \cdot \mathbb{E}\left[\sum_{t=0}^{T-1}||\rho_t - \rho_{t+1}||_{\ell^1}^2\right]}$$

Now entropy appears via Pinsker's Inequality:

$$||p_t - p_{t+1}||_{\ell^1}^2 \le KL[p_{t+1}; p_t].$$

Cauchy-Schwarz:

$$\mathbb{E}\left[\sum_{t=0}^{T-1}||\rho_t-\rho_{t+1}||_{\ell^1}\right] \leq \sqrt{T\cdot\mathbb{E}\left[\sum_{t=0}^{T-1}||\rho_t-\rho_{t+1}||_{\ell^1}^2\right]}$$

Pinsker:

$$\mathbb{E}\left[\sum_{t=0}^{T-1}||p_t-p_{t+1}||_{\ell^1}^2\right]\leq \mathbb{E}\left[\sum_{t>0}\mathsf{KL}[p_{t+1};p_t]\right]\leq \mathsf{H}(p_0)\leq \mathsf{log}(n).$$

Theorem [RVR16]

In the full-feedback setting, Thompson Sampling has expected regret $\mathbb{E}[R_T] \leq \sqrt{T \cdot H(p_0)} \leq \sqrt{T \log(n)}$.

Theorem [RVR16]

In the full-feedback setting, Thompson Sampling has expected regret $\mathbb{E}[R_T] \leq \sqrt{T \cdot H(p_0)} \leq \sqrt{T \log(n)}$.

Upper bound relied on Pinsker's inequality:

$$||p_t - p_{t+1}||_{\ell^1}^2 \le \mathsf{KL}[p_{t+1}; p_t].$$

Theorem [RVR16]

In the full-feedback setting, Thompson Sampling has expected regret $\mathbb{E}[R_T] \leq \sqrt{T \cdot H(p_0)} \leq \sqrt{T \log(n)}$.

Upper bound relied on Pinsker's inequality:

$$||p_t - p_{t+1}||_{\ell^1}^2 \le KL[p_{t+1}; p_t].$$

2nd order Taylor expansion of KL suggests refined Pinsker:

$$\sum_{i} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)} \leq \mathbb{E}[\mathsf{KL}[p_{t+1}; p_t]].$$

Theorem [RVR16]

In the full-feedback setting, Thompson Sampling has expected regret $\mathbb{E}[R_T] \leq \sqrt{T \cdot H(p_0)} \leq \sqrt{T \log(n)}$.

Upper bound relied on Pinsker's inequality:

$$||p_t - p_{t+1}||_{\ell^1}^2 \le KL[p_{t+1}; p_t].$$

2nd order Taylor expansion of KL suggests refined Pinsker:

$$\sum_{i} \frac{(\rho_t(i) - \rho_{t+1}(i))^2}{\rho_t(i)} \leq \mathbb{E}[\mathsf{KL}[\rho_{t+1}; \rho_t]].$$

• This inequality is false. Fix by using $(p_t(i) - p_{t+1}(i))_+$ throughout (gives positive part of regret). Let's pretend it is true.

$$(\mathbb{E}[R_t])^2 = \left(\sum_{t,i} \mathbb{E}\left[\ell_t(i) \cdot \left(p_t(i) - p_{t+1}(i)\right)
ight]
ight)^2$$

$$(\mathbb{E}[R_t])^2 = \left(\sum_{t,i} \mathbb{E}\left[\ell_t(i) \cdot (p_t(i) - p_{t+1}(i))\right]\right)^2$$

$$\leq \left(\mathbb{E}\left[\sum_{t,i} \ell_t(i)^2 \cdot p_t(i)\right]\right) \left(\mathbb{E}\left[\sum_{t,i} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)}\right]\right)$$

$$(\mathbb{E}[R_t])^2 = \left(\sum_{t,i} \mathbb{E}\left[\ell_t(i) \cdot (p_t(i) - p_{t+1}(i))\right]\right)^2$$

$$\leq \left(\mathbb{E}\left[\sum_{t,i} \ell_t(i)^2 \cdot p_t(i)\right]\right) \left(\mathbb{E}\left[\sum_{t,i} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)}\right]\right)$$

$$\leq \mathbb{E}[L_T] \cdot \mathbb{E}\sum_{t} KL[p_{t+1}; p_t] \leq \mathbb{E}[L_T] \cdot H(p_0).$$

• The new calculation, with Cauchy-Schwarz and refined Pinsker:

$$(\mathbb{E}[R_t])^2 = \left(\sum_{t,i} \mathbb{E}\left[\ell_t(i) \cdot (p_t(i) - p_{t+1}(i))\right]\right)^2$$

$$\leq \left(\mathbb{E}\left[\sum_{t,i} \ell_t(i)^2 \cdot p_t(i)\right]\right) \left(\mathbb{E}\left[\sum_{t,i} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)}\right]\right)$$

$$\leq \mathbb{E}[L_T] \cdot \mathbb{E}\sum_{t} KL[p_{t+1}; p_t] \leq \mathbb{E}[L_T] \cdot H(p_0).$$

• Hence $\mathbb{E}[R_T] \leq \sqrt{\mathbb{E}[L_T]H(p_0)}$. Almost what we want.

$$(\mathbb{E}[R_t])^2 = \left(\sum_{t,i} \mathbb{E}\left[\ell_t(i) \cdot (p_t(i) - p_{t+1}(i))\right]\right)^2$$

$$\leq \left(\mathbb{E}\left[\sum_{t,i} \ell_t(i)^2 \cdot p_t(i)\right]\right) \left(\mathbb{E}\left[\sum_{t,i} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)}\right]\right)$$

$$\leq \mathbb{E}[L_T] \cdot \mathbb{E}\sum_{t} KL[p_{t+1}; p_t] \leq \mathbb{E}[L_T] \cdot H(p_0).$$

- Hence $\mathbb{E}[R_T] \leq \sqrt{\mathbb{E}[L_T]H(p_0)}$. Almost what we want.
- Recalling $R_T = L_T L^*$, easy algebra shows what we want: $\mathbb{E}[R_T] = O(\sqrt{\mathbb{E}[L^*]H(p_0)})$

• Bandit: use refined Pinsker again. Analysis is a bit different.

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

In the bandit setting with known L^* , once arm i has total (observed plus unobserved) loss $\sum_{s < t} \ell_s(i) \gg L^*$, we will have $p_t(i) \approx 0$.

• With full-feedback, $p_t(i) = 0$ as soon as loss crosses L^* . Need to show TS can estimate unseen losses accurately.

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

- With full-feedback, $p_t(i) = 0$ as soon as loss crosses L^* . Need to show TS can estimate unseen losses accurately.
- A frequentist can use unbiased estimator $\sum_{t:a_t=i}^{\ell_t(i)}\frac{\ell_t(i)}{\rho_t(i)}$ for total loss, and tight frequentist confidence intervals (CIs) around it.

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

- With full-feedback, $p_t(i) = 0$ as soon as loss crosses L^* . Need to show TS can estimate unseen losses accurately.
- A frequentist can use unbiased estimator $\sum_{t:a_t=i}^{\ell_t(i)} \frac{\ell_t(i)}{\rho_t(i)}$ for total loss, and tight frequentist confidence intervals (CIs) around it.
- Turn out TS implicitly knows the Cls.

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

- With full-feedback, $p_t(i) = 0$ as soon as loss crosses L^* . Need to show TS can estimate unseen losses accurately.
- A frequentist can use unbiased estimator $\sum_{t:a_t=i}^{\ell_t(i)} \frac{\ell_t(i)}{\rho_t(i)}$ for total loss, and tight frequentist confidence intervals (CIs) around it.
- Turn out TS implicitly knows the Cls.
- In general, $\mathbb{E}[\mathbb{P}^t[X]] = \mathbb{P}[X]$ for any event X. Letting X = "the CIs are accurate" \Longrightarrow TS believes CIs w.h.p.

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

- With full-feedback, $p_t(i) = 0$ as soon as loss crosses L^* . Need to show TS can estimate unseen losses accurately.
- A frequentist can use unbiased estimator $\sum_{t:a_t=i}^{\ell_t(i)} \frac{\ell_t(i)}{\rho_t(i)}$ for total loss, and tight frequentist confidence intervals (CIs) around it.
- Turn out TS implicitly knows the Cls.
- In general, $\mathbb{E}[\mathbb{P}^t[X]] = \mathbb{P}[X]$ for any event X. Letting X = "the CIs are accurate" \Longrightarrow TS believes CIs w.h.p.
- When loss $\gg L^*$, lower confidence bound for loss is $> L^*$ w.h.p.

• Bandit: use refined Pinsker again. Analysis is a bit different.

Key Lemma for Bandit (roughly)

- With full-feedback, $p_t(i) = 0$ as soon as loss crosses L^* . Need to show TS can estimate unseen losses accurately.
- A frequentist can use unbiased estimator $\sum_{t:a_t=i}^{t} \frac{\ell_t(i)}{p_t(i)}$ for total loss, and tight frequentist confidence intervals (CIs) around it.
- Turn out TS implicitly knows the Cls.
- In general, $\mathbb{E}[\mathbb{P}^t[X]] = \mathbb{P}[X]$ for any event X. Letting X = "the CIs are accurate" \Longrightarrow TS believes CIs w.h.p.
- When loss $\gg L^*$, lower confidence bound for loss is $> L^*$ w.h.p.
- Now $p_t(i) \leq \mathbb{P}[L_{i,T} \leq L^*] \leq 1 \mathbb{P}^t[X] \approx 0$ proving the lemma.

• Semi-bandit: choose, pay, and observe an m-set A_t of m arms.

- Semi-bandit: choose, pay, and observe an m-set A_t of m arms.
- (Maybe restricted to subset $\mathcal{A} \subseteq \binom{[n]}{m}$ of m-sets.) E.g. online shortest path.

- Semi-bandit: choose, pay, and observe an m-set A_t of m arms.
- (Maybe restricted to subset $\mathcal{A} \subseteq \binom{[n]}{m}$ of m-sets.) E.g. online shortest path.
- Natural to use $H(A^*)$, viewing each m-set separately. If arms are independent and we aim for $O(\sqrt{T})$ this is fine. Need changes for correlated priors and $O(\sqrt{L^*})$ regret.

- Semi-bandit: choose, pay, and observe an m-set A_t of m arms.
- (Maybe restricted to subset $\mathcal{A}\subseteq \binom{[n]}{m}$ of m-sets.) E.g. online shortest path.
- Natural to use $H(A^*)$, viewing each m-set separately. If arms are independent and we aim for $O(\sqrt{T})$ this is fine. Need changes for correlated priors and $O(\sqrt{L^*})$ regret.
- Correlations: decouple arms via coordinate entropy $H^c(A^*) = -\sum_i p_t(i \in A^*) \log(p_t(i \in A^*))$. These probabilities add to m, not 1.

- Semi-bandit: choose, pay, and observe an m-set A_t of m arms.
- (Maybe restricted to subset $A \subseteq \binom{[n]}{m}$ of *m*-sets.) E.g. online shortest path.
- Natural to use $H(A^*)$, viewing each m-set separately. If arms are independent and we aim for $O(\sqrt{T})$ this is fine. Need changes for correlated priors and $O(\sqrt{L^*})$ regret.
- Correlations: decouple arms via coordinate entropy $H^c(A^*) = -\sum_i p_t(i \in A^*) \log(p_t(i \in A^*))$. These probabilities add to m, not 1.
- $O(\sqrt{L^*})$: rank the m arms in A^* : $L_T(a_1) \ge L_T(a_2) \ge L_T(a_m)$.

- Semi-bandit: choose, pay, and observe an m-set A_t of m arms.
- (Maybe restricted to subset $A \subseteq \binom{[n]}{m}$ of *m*-sets.) E.g. online shortest path.
- Natural to use $H(A^*)$, viewing each m-set separately. If arms are independent and we aim for $O(\sqrt{T})$ this is fine. Need changes for correlated priors and $O(\sqrt{L^*})$ regret.
- Correlations: decouple arms via coordinate entropy $H^c(A^*) = -\sum_i p_t(i \in A^*) \log(p_t(i \in A^*))$. These probabilities add to m, not 1.
- $O(\sqrt{L^*})$: rank the m arms in A^* : $L_T(a_1) \ge L_T(a_2) \ge L_T(a_m)$.
- Use coordinate entropy on dyadic subsets $S_0 = \{a_1\}, S_1 = \{a_2, a_3\}, \dots, S_k = \{a_{2^k}, a_{2^{k+1}-1}\}.$

- Semi-bandit: choose, pay, and observe an m-set A_t of m arms.
- (Maybe restricted to subset $A \subseteq \binom{[n]}{m}$ of m-sets.) E.g. online shortest path.
- Natural to use $H(A^*)$, viewing each m-set separately. If arms are independent and we aim for $O(\sqrt{T})$ this is fine. Need changes for correlated priors and $O(\sqrt{L^*})$ regret.
- Correlations: decouple arms via coordinate entropy $H^c(A^*) = -\sum_i p_t(i \in A^*) \log(p_t(i \in A^*))$. These probabilities add to m, not 1.
- $O(\sqrt{L^*})$: rank the m arms in A^* : $L_T(a_1) \ge L_T(a_2) \ge L_T(a_m)$.
- Use coordinate entropy on dyadic subsets $S_0 = \{a_1\}, S_1 = \{a_2, a_3\}, \dots, S_k = \{a_{2^k}, a_{2^{k+1}-1}\}.$
- If $i \in S_k$ then $L_T(i) \le \frac{L^*}{2^k}$. So $p_t(i \in S_k) \approx 0$ quickly for larger k as in the previous slide. This means entropy is depleted fast for most of the ranks.

Open Problems

Open Problems

• For adversarial priors, TS can have $\Omega(T)$ regret with constant probability (and also $-\Omega(T)$). Also true for EXP3, but EXP3.P has low regret with high probability. Any corresponding TS variant?

Open Problems

- For adversarial priors, TS can have $\Omega(T)$ regret with constant probability (and also $-\Omega(T)$). Also true for EXP3, but EXP3.P has low regret with high probability. Any corresponding TS variant?
- Same story for contextual bandit. TS achieves $O(\sqrt{T})$ but not $O(\sqrt{L^*})$. But there is an algorithm with first order regret [ABL18]. Is there an analog of TS achieving this?

References

Lattimore and Zimmert

Connections Between Mirror Descent, Thompson sampling and the Information Ratio.

NeurIPS 2019.

Allen-Zhu, Bubeck, and Li

Make the Minority Great Again: first Order Regret Bound for Contextual Bandits. ICML 2018.

Russo and Van Roy

An Information-Theoretic Analysis of Thompson Sampling

The Journal of Machine Learning Research The Journal of Machine Learning Research 17.1 (2016): 2442-2471.

Kaufmann, Kordan, and Munos

Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis. ALT 2012

Agrawal and Goyal

Analysis of Thompson Sampling for the Multi-Armed Bandit Problem.