אלגוריתמים הרצאה 10

תכנון דינאמי - המשך

דוגמה 3:

מסלולים קלים ביותר בין כל זוגות הצמתים בגרף

G = (V, E) נתון: גרף מכוון

(נניח שאין מעגלים שליליים) $w:E o \mathbb{R}$ פונקציית משקל

vמטרה: לכל שני צמתים u ורv, נרצה לחשב את אורך המסלול הקל ביותר ב-v מרu

n מכל צומת Bellman Ford מכל צומת פתרון פשוט:

 $O(|V|^2 \cdot |E|)$ פיבוכיות:

שאלה:

כיצד להגדיר תתי־בעיות?

. במתי ההתחלה וצומת ב־p פרט לצומת ההתחלה וצומת ממתי צמתי ביש מסלול מהיום.

מסלול

 $.\{v_1,\dots,v_k\}$ מבין מחוד שלהם שלהם שצמתי הביניים שצמתי כל מבין מבין מבין מר v_J לי

$$D_k(i,j) = \begin{cases} 0 & k = 0, i = j \\ w_{i,j} & k = 0, i \neq j, (v_i, v_j) \in E \\ \infty & k = 0, i \neq j, (v_i, v_j) \notin E \\ min\{D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j) & \text{otherwise} \end{cases}$$

:טענה

$$k \in \{0,1,\ldots,n\}$$
 לכל $1 \leq i,j \leq n$ לכל $D_k(i,j) = \delta_k(i,j)$

(באופן מהיר) ? שאלה: לחשבת לחשבת לחשבת \star חישוב כל מטריצה לוקח $O(n^2)$ זמן $O(n^3)$ סה"כ \Leftarrow

$$\underbrace{\begin{bmatrix} D_0(i,j) \\ (nxn) \end{bmatrix}}_{\text{(stop cond.)}} \Rightarrow \underbrace{\begin{bmatrix} D_1(i,j) \\ (nxn) \end{bmatrix}}_{k=1} \Rightarrow \cdots \Rightarrow \underbrace{\begin{bmatrix} D_n(i,j) \\ (nxn) \end{bmatrix}}_{k=n}$$

. במקום $O(n^2)$ במקום אלגוריתם צורך \star

.Floyd Warshall אלגוריתם זה נקרא

הוכחה:

.k באינדוקצייה על

 $D_0(i,j)$ ו־ $\delta_0(i,j)$ ו־ k=0 בסיס: k=0 נובע מידי מהגדרת

 v_j י v_i ונזכר ש־ v_i ונזכר שהמסלול הקל הוא אורך המסלול הקל ונזכר שי v_i ונזכר שי v_i ונזכר שבמתי הביניים שלו לקוחים מתוך ונזכר v_i יהי שמסלול כזה. ב־ v_i מסלול כזה. ב־ v_i מקרים:

 $v_i \longrightarrow v_k \longrightarrow v_j$ נניח כי v_k נמצא ביק, נשים לב ש־ v_K מופיע נעיח ניח געלים איליים שמסלול קל ביותר הוא פשוט. ב־ v_i

 $=\delta_k(i,j)$

=pסך משקלי הקשתות ב־

 v_k סך משקלי הקשתות בסיפא מי v_i ל לי v_k סך משקלי הקשתות בסיפא מי v_i ל מילי משקלי הקשתות בסיפא מילי מילי

 $\delta_k(i,j) = \delta_{k-1}(i,k) + \delta_{k-1}(k,j)$

שצמתי הביניים שלו מתוך $\{v_i,\dots,v_{k-1}\}$ בסתירה לאופטימליות של $\delta_{k-1}(k,j)$. באופן דומה, סך משקלי הקשתות של הסיפא של p מ־ v_J טלי שווה לי

$$\delta_k(i,j) = \delta_{k-1}(i,j) + \delta_{k-1}(i,j) \underbrace{=}_{\text{induction}} D_{k-1}(i,k) + D_{k-1}(k,j)$$

$$D_{k-1}(i,j) \ge D_{k-1}(i,k) + D_{k-1}(k,j)$$
 נראה ש־

$$D_{k-1}(i,j) = \delta_{k-1}(i,j) \ge \delta_k(i,j) = D_{k-1}(i,k) + D_{k-1}(k,j)$$
induction

$$.\delta_k(i,j) = D_k(i,j) \Leftarrow$$

.pניח כי v_K לא נמצא ב-2.

$$\Rightarrow \delta_k(i,j) = \Sigma(\text{weights in p}) \underbrace{=}_{v_k \text{not in p}} \delta_{k-1}(i,j) \underbrace{=}_{\text{induction}} D_{k-1}(i,j)$$

$$D_{k-1}(i,j) \leq D_{k-1}(i,k) + D_{k-1}(k,j)$$
נראה ש־

$$D_{k-1}(i,j) + D_{k-1}(k,j) \underbrace{=}_{\text{induction}} \delta_{k-1}(i,k) + \delta_{k-1}(k,j) \underbrace{\geq}_{\text{definition}} \delta_k(i,j) = D_{k-1}(i,j)$$

$$\delta_k(i,j) = D_k(i,j) \Leftarrow$$

 $\{v_1, \dots v_k\}$ מסלול מהיניים שלו הביניים שלו מהיעל־ v_i ל מסלול מהיעל המקרה הנותר הנותר מסלול מהיעל־ $.\delta_k(i,j)=\infty$ כלומר.

 $D_k(i,j) = \infty$ נראה שמתקיים

נניח בשלילה שלא, ולכן לפי הגדרת D מתקיים:

סופי. $D_{k-1}(i,k) + D_{k-1}(k,j)$ סופי או $D_k(i,j)$

לפי הנחת האינדוקצייה, אם זה המצב אזי יש מסלול מ v_i לבי הנחת אם זה המצב אזי יש מסלול מ בסתירה להנחת השלילה. $\{v_1,\ldots,v_k\}$

Sequence Alignment 4 דוגמה

."ocurrence" ומוצע למשתמש "ocurrance" א דוגמה: הוקלדה המחרוזת \star

? כיצד נתאים בין שתי המחרוזות

o	c	-	u	r	r	a	-	n	c	e	
0	c	c	u	r	r	e	e	n	c	e	
שלושה תוים שלא התאימו											
0	c	-	u	r	r	a	n	c	e		
О	c	c	u	r	r	e	n	c	e		
תו אחד שלא התאים + התאמה שאינה בין אותו תו											

$$x=x_1x_2\dots x_n$$
 נתון: שתי מחרוזות $y=y_1y_2\dots y_m$ שידוך $y=y_1y_2\dots y_m$ בין $\{1,\dots,n\}$ יהיה חוקי אם:

Mב אחת בים אחת לכל היותר מופיע לכל מופיע.1

$$j < j' \Leftarrow i < i' \land (i, j), (i', j') \in M$$
 .2

שאלה:

כיצד נכמת ערך שידוך חוקי?

 $.\delta>0$ אילו שאינו מותאם, אזי מיקום שאינו אילו אילו אילו

 $\alpha(x_i,y_i)$ קיימת שמציימת מהי עלות השידוך של $\alpha(x_i,y_i)$ קיימת טבלה שמציימת מהי

yל x לכיותר בין אידוך חוקי אול ביותר בין למצוא מטרה:

אזי: $y=y_1\dots y_m$ ו־ $x=x_1\dots,x_n$ אזיי: מתונות

או שלפחות אחד מ־ x_n ו־ y_n לא משודך (הוכחה, כיוון שאין הצטלבויות). $(n,m)\in M$ (jו iי"י ע"י ורעיות הבעיות שעניינו אותנו הן רשאיות הבעיות שעניינו

$$\begin{cases} x_1 \dots x_i \\ y_1 \dots y_j \end{cases}$$

 $(y_1 \dots y_j)$ ביותר בין $(x_1 \dots x_i)$ להיות עלות שידוך הוקי אול להיות את להיות להיות עלות אידוך את

$$B(i,j) = \begin{cases} \delta \cdot j & i = 0 \\ \delta \cdot i & j = 0 \\ \min\{\alpha(x_i,y_j) + B(i-1,j-1), \delta + B(i-1,j), \delta + B(i,j-1)\} & \text{otherwise} \end{cases}$$

$$A(i,j) = B(i,j) : 1 \leq j \leq m$$
לכל 1 לכל 1 לכל 1

שאלה:

B כיצד לחשב את

				12 2111 20112 1		
	1	2	3		m	
1	0	δ	2δ		$m\delta$	
2	δ					
3	2δ					
:						
n	$n\delta$?	

 $O(n\cdot m)$ קיימים מספר סדרים עבורם זמן הריצה הוא $O(m\cdot m)$. סיבוכיות זכרון $O(min\{n,m\})$