Test di Calcolo Numerico

Ingegneria Informatica 22/02/2014

COGNOME NOME		
Μ	IATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 22/02/2014

1) Siano $x \in [1, 2]$ e $y \in [-2, -1]$ e si consideri la funzione

$$f(x,y) = \frac{y}{x} .$$

Indicare come si deve eseguire l'operazione di divisione e con quale errore assoluto si devono introdurre x e y per avere $|\delta_f| \le 10^{-2}$.

2) È data la funzione

$$\phi(x) = \frac{-x^3 + 2x + 2}{x} \,.$$

Determinare i punti fissi della funzione $\phi(x)$.

A quali di tali punti fissi è assicurata la convergenza del metodo iterativo $x_{n+1} = \phi(x_n), n = 0, 1, 2, \dots$?

3) La matrice

$$A = \begin{pmatrix} 1+i & -1/2 & 0 & 0\\ 0 & 1-i & 1/2 & 0\\ 0 & 0 & -1-i & 1/2\\ -1/2 & 0 & 0 & -1+i \end{pmatrix}$$

ha autovalori reali?

4) È dato il sistema lineare sovradeterminato Ax = b con

$$A = \begin{pmatrix} \alpha & 1 \\ 1 & 1 \\ 1 & \alpha \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

Per quali valori reali α il sistema ha una unica soluzione nel senso dei minimi quadrati?

5) Determinare il peso a_0 ed il nodo x_1 per i quali la formula di quadratura

$$\int_{-1}^{1} f(x)dx = a_0 f(-1) + \frac{4}{3} f(x_1) + E_1(f)$$

ha grado di precisione massimo.

Indicare il grado di precisione m ottenuto.

SOLUZIONE

1) Il punto $P_0 = (x, y)$ appartiene all'insieme di indeterminazione $D = [1, 2] \times [-2, -1]$.

Risultano $A_x = \sup_{(x,y)\in D} \left| \frac{\partial f}{\partial x} \right| = 2$ e $A_y = \sup_{(x,y)\in D} \left| \frac{\partial f}{\partial y} \right| = 1$. Per ottenere la precisione richiesta basta quindi che risulti, per esempio,

$$|\delta_a| \le \frac{1}{2} 10^{-2}$$
, $A_x |\delta_x| \le \frac{1}{4} 10^{-2}$, $A_y |\delta_y| \le \frac{1}{4} 10^{-2}$.

Ne segue che basta arrotondare la divisione alla seconda cifra decimale introducendo le approssimazioni di x e y com massimo errore assoluto minore di 10^{-3} (che equivale ad introdurli troncandone i valori alla terza cifra decimale).

2) Per ottenere i punti fissi basta risolvere l'equazione

$$x = \frac{-x^3 + 2x + 2}{x} \,.$$

Le soluzioni sono $\alpha_1=-1,\ \alpha_2=\sqrt{2}$ e $\alpha_3=-\sqrt{2}.$ Risultando

$$\phi'(\alpha_1) = 0$$
, $\phi'(\alpha_2) = -(2\sqrt{2} + 1) (< -1)$, $\phi'(\alpha_1) = 2\sqrt{2} - 1 (> 1)$,

il metodo assicura la sua convergenza solo al punto fisso α_1 .

- 3) All'unione dei cerchi di Gershgorin non appartengono valori reali per cui la matrice data ha solo autovalori complessi.
- 4) La soluzione del sistema nel senso dei minimi quadrati risulta unica se la matrice A ha rango massimo e quindi uguale a 2. L'unico valore α che rende la matrice A di rango uguale a 1 è $\alpha = 1$.
- 5) Imponendo che la formula data sia esatta per f(x)=1 e f(x)=x si ha $a_0=\frac{2}{3}$ e $x_1=\frac{1}{2}$. Risultando $E_1(x^2)\neq 0$, il grado di precisione è m=1.