CSC 411 Design and Analysis of Algorithms

Chapter 4 Decrease-and-Conquer - Part 1

Instructor: Minhee Jun

junm@cua.edu

Decrease-and-Conquer

Exploit the relationship between <u>a solution to a given instance</u> of a problem and <u>a solution to tis smaller instance</u>.

- 1. Reduce problem instance to smaller instance of the same problem
- 2. Solve smaller instance
- Extend solution of smaller instance to obtain a solution to original instance
- Can be implemented either top-down or bottom-up
 - Top-down: a recursive implementation
 - Bottom-up: implemented iteratively, starting from the smallest instance
- Also referred to as incremental approach

Three major variations of Decrease-and-Conquer

- Decrease by a constant
 - The size of an instance is recused by the same constant (usually by 1) on each iteration of the algorithm
- Decrease by a constant factor
 - reduce a problem instance by the same constant factor (usually by half) on each iteration of the algorithm.
- Variable size decrease
 - The size-reduction pattern varies from one iteration of an algorithm to another

What's the difference?

Consider the exponentiation problem of computing a^n .

 $(a \neq 0)$, and a nonnegative integer n)

- Decrease-by-a-constant
 - The size of an instance is recused by the same constant (usually by 1) on each iteration of the algorithm
- Decrease-by-a-constant-factor
 - reduce a problem instance by the same constant factor (usually by half) on each iteration of the algorithm.

What is the concept of each design strategy?

Decrease by a constant

Recursive definition:

$$f(n) = \begin{cases} f(n-1) \cdot a & \text{if } n > 0 \\ 1 & \text{if } n = 0 \end{cases}$$

FIGURE 4.1 Decrease-(by one)-and-conquer technique.

Decrease by a constant factor

$$a^{n/2} \cdot a^{n/2} = a^n$$

Recursive definition:

$$f(n) = \begin{cases} f(n/2)^2 & \text{if } n \text{ is even} \\ f((n-1)/2)^2 \cdot a & \text{if } n \text{ is odd} \\ 1 & \text{if } n = 0 \end{cases}$$

Efficiency: $\Theta(\log n)$

FIGURE 4.2 Decrease-(by half)-and-conquer technique.

What's the difference?

Consider the problem of exponentiation: Compute an

- Brute Force:
 - $a^n = a \times a \times a \times a \times \dots \times a$
- Divide and Conquer:
 - $a^{n}=a^{n/2}\times a^{n/2}$ (more accurately, $a^{n}=a^{\lfloor n/2\rfloor}\times a^{\lceil n/2\rceil}$)
- Decrease by one:
 - $a^n = a^{n-1} \times a$
 - $f(n)=f(n-1) \times a$ if n>1, and f(1)=a

Master Theorem:

If $a < b^d$, $T(n) \in \Theta(n^d)$

If $a = b^d$, $T(n) \in \Theta(n^d \log n)$

If $a > b^d$, $T(n) \in \Theta(n^{\log b^a})$

- Decrease by constant factor:
 - $a^n = (a^{n/2})^2$ if n is even
 - $a^n = (a^{(n-1)/2})^2 \times a$ if n is odd

More of this design strategy will be explained later in chapter 5.

Variable-size decrease

- The size-reduction pattern varies from one iteration of an algorithm to another
- Example: Euclid's algorithm
 - $gcd(m,n) = gcd(n, m \mod n)$
 - The value on the right-hand side is always smaller than the value on the left-hand side.
 - It decreases neither by a constant nor by a constant factor

Three major variations of Decrease-and-Conquer

- <u>Decrease by a constant</u> (usually by 1):
 - Graph traversal algorithms (DFS and BFS)
 - Insertion sort
 - Topological sorting
 - Algorithms for generating combinatorial objects
- <u>Decrease by a constant factor</u> (usually by half)
 - Binary search
 - Fake-Coin Problem
 - Russian Peasant Multiplication
 - Josephus Problem
- Variable size decrease
 - Computing a Median and the Selection Problem
 - Interpolation Search
 - Searching and Insertion in a Binary Search Tree
 - The Game of Nim

4.1 Insertion Sort

- A decrease-by-one technique to sort array A[0..n-1],
 - sort A[0..n-2] recursively, and then
 - insert A[n-1] in its proper place among the sorted A[0..n-2]

Example: Sort 6, 4, 1, 8, 5

Insertion Sort: Example

Example: Sort 89, 45, 68, 90, 25, 34, 17 (total n=7)

```
Index. 0
                       3
                                5
                                     6
      89 I
           45
                          29
                68
                     90
                               34
                                    17
      45
           89 I
                68
                     90
                          29
                               34
                                    17
      45
           68
                89 I
                     90
                          29
                               34
                                    17
      45
                89
                               34
                                    17
           68
                     90 I
                          29
      29
           45
                68
                     89
                               34
                          90 |
                                    17
      29
           34
                45
                     68
                          89
                               90
                                    17
      17
           29
                34
                     45
                          68
                               89
                                     90
```

Example of sorting with insertion sort. A vertical bar separates the sorted part of the array from the remaining elements; the element being inserted is in bold.

Insertion Sort: Pseudocode

```
ALGORITHM InsertionSort(A[0..n-1])

//Sorts a given array by insertion sort

//Input: An array A[0..n-1] of n orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

for i \leftarrow 1 to n-1 do

v \leftarrow A[i]

j \leftarrow i-1

while j \geq 0 and A[j] > v do

A[j+1] \leftarrow A[j]

j \leftarrow j-1

A[j+1] \leftarrow v
```

$$A[0] \le \cdots \le A[j] < A[j+1] \le \cdots \le A[i-1] \mid A[i] \cdots A[n-1]$$
smaller than or equal to $A[i]$ greater than $A[i]$

Insertion Sort: Efficiency

- Time efficiency?
 - # key comparison (A[j] > v) depends on the nature of input.
 - Worst case:

$$C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} \in \Theta(n^2).$$

Best case:

$$C_{best}(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n).$$

Average case:

$$C_{avg}(n) \approx \frac{n^2}{4} \in \Theta(n^2).$$

Exercise 4.1

7. Apply insertion sort to sort the list E, X, A, M, P, L, E in alphabetical order.

4.2 Topological Sorting

- Topological sorting algorithms were first studied in the early 1960s in the context of the <u>PERT</u> (program evaluation review technique) for scheduling in project management (Jarnagin 1960).
- The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started.

The graph shown to the left has many valid topological sorts, including:

- 7, 5, 3, 11, 8, 2, 9, 10 (visual left-to-right, top-to-bottom)
- 3, 5, 7, 8, 11, 2, 9, 10 (smallest-numbered available vertex first)
- 3, 7, 8, 5, 11, 10, 2, 9
- 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first)
- 7, 5, 11, 3, 10, 8, 9, 2 (largest-numbered available vertex first)
- 7, 5, 11, 2, 3, 8, 9, 10

Directed Graph (Digraph)

A directed graph:
 a graph with directions specified for all its edge.

- adjacent matrix:
 not symmetric for digraph
- adjacency list:
 an edge has just one corresponding nodes

Directed Graph (Digraph)

• DFS and BFS can be applied to a directed graph:

Directed Acyclic Graph

A directed graph (digraph):

 a graph with directions specified for all its edge.
 i.e. a directed graph with no (directed) cycles

Topological Sorting

- Topological Sorting: can we list a DAG's vertices as follows?
 - for every edge, its starting vertex is listed before its ending vertex.
- The topological sorting problem cannot have a solution if a digraph has a directed cycle.
 - Being a dag is necessary for topological sorting.
 - determine a directed graph is a dag or not
- Arise in modeling many problems that involve prerequisite constraints (construction projects, document version control)

Topological Sorting

- Two algorithms to solve the topological sorting problem
 - DFS-based Algorithm
 - Source Removal Algorithm
- Example: a digraph representing the prerequisite structure of five courses

Topological Sorting: DFS - Example

- When a vertex v is popped off a DFS stack,
 - no vertex u with an edge from u to v can be among the vertices popped off before v.
 - Any such vertex u will be listed after v in the popped-off order list, and before v in the <u>reversed</u> list.

Topological Sorting: Source Removal - Example

The solution obtained is C1, C2, C3, C4, C5

- Direct implementation: repeatedly,
 - identify in a remaining digraph a source (vertex with no incoming edges)
 - Delete it along with all the edges outgoing from it.
- The order in which the vertices are deleted yields a solution.

Exercise 4.2

1. Apply the DFS-based algorithm to solve the topological sorting problem for the following digraphs:

4.3 Algorithms for Generating Combinatorial Objects

- We already encountered for exhaustive search
- Most important types:
 - Permutations
 - Combinations
 - Subsets
- A branch of discrete mathematics: combinatorics
- The number of combinatorial objects typically grows exponentially (or even faster) as a function of the problem size.

Generating Permutations

- Generating Permutations:
 - Bottom up algorithm
 - Generating all n! permutations of $\{1, 2, \dots, n\}$, first, generate all (n-1)! permutations.
- To satisfy the minimal-change requirement
 - Start with inserting n into $1, 2, \dots, (n-1)$
 - By moving right to left and then switch direction every time a new permutation of $\{1, 2, \dots, (n-1)\}$

start	1		
insert 2 into 1 right to left	12	21	
insert 3 into 12 right to left	123	132	312
insert 3 into 21 left to right	321	231	213

Exercise 4.3

- **2.** Generate all permutations of $\{1, 2, 3, 4\}$ by
 - **a.** the bottom-up minimal-change algorithm.

Johnson-Trotter Algorithm

- Without explicit generating permutations for smaller values of n:
 - Associating a direction with each element k in a permutation.
 - Indicate such a direction by a small arrow written above the element in question.
- Mobile: the element k if its arrow points to a smaller number adjacent to it
 - Example: 3 and 4 are mobile while 2 and 1 are not.

$$\overrightarrow{3}$$
 $\overleftarrow{2}$ $\overrightarrow{4}$ $\overleftarrow{1}$.

Johnson-Trotter Algorithm: Pseudocode

ALGORITHM JohnsonTrotter(n)

```
//Implements Johnson-Trotter algorithm for generating permutations
//Input: A positive integer n
//Output: A list of all permutations of \{1, \ldots, n\}
initialize the first permutation with 1 \ 2 \ldots n

while the last permutation has a mobile element do
find its largest mobile element k
swap k with the adjacent element k's arrow points to
reverse the direction of all the elements that are larger than k
add the new permutation to the list
```

- Example: n = 3 $\overbrace{1\ 2\ 3}$ $\overbrace{1\ 3\ 2}$ $\overbrace{3\ 1\ 2}$ $\overbrace{3\ 1\ 2}$ $\overbrace{3\ 2\ 1}$ $\overbrace{2\ 3\ 1}$ $\overbrace{1\ 3\ 3}$.
- Efficiency: $\Theta(n!)$
 - One of the most efficient permutation permutation

Exercise 4.3

- **2.** Generate all permutations of $\{1, 2, 3, 4\}$ by
 - **b.** the Johnson-Trotter algorithm.

Lexicographic-order Algorithm

- Lexicographic order: permutations were listed in increasing order
 - For alphabet letters, it would be listed in a dictionary
- 123 132 213 231 312 321.

Lexicographic-order Algorithm: Pseudocode

```
ALGORITHM LexicographicPermute(n)

//Generates permutations in lexicographic order

//Input: A positive integer n

//Output: A list of all permutations of \{1, \ldots, n\} in lexicographic order initialize the first permutation with 12 \ldots n

while last permutation has two consecutive elements in increasing order do let i be its largest index such that a_i < a_{i+1} //a_{i+1} > a_{i+2} > \cdots > a_n find the largest index j such that a_i < a_j //j \ge i + 1 since a_i < a_{i+1} swap a_i with a_j //a_{i+1}a_{i+2}\ldots a_n will remain in decreasing order reverse the order of the elements from a_{i+1} to a_n inclusive add the new permutation to the list
```

Exercise 4.3

- **2.** Generate all permutations of $\{1, 2, 3, 4\}$ by
 - c. the lexicographic-order algorithm.

Generating Subsets: Knapsack problem

- Knapsack problem
 - find the most valuable subset of items that fits a knapsack of a given capacity.
- Previously, exhaustive-search approach
 - Generate all subsets of a given set of items.
- Let's discuss
 - How can we generate all 2^n subsets of an abstract set

$$A = \{a_1, a_2, \dots, a_n\}$$

Generating Subsets: Knapsack problem

• How can we generate all 2^n subsets of an abstract set

$$A = \{a_1, a_2, \dots, a_n\}$$

- The straight-forward (or bottom up) implementation
- Let S_{n-1} be the set of all subsets of A,

•
$$S_{n-1} = \{A_1, A_2, \dots, A_m\}, m = 2^{n-1}$$

•
$$S_n = \{A_1, A_2, \dots, A_m, A_1 \cup a_n, A_2 \cup a_n, \dots, A_m \cup a_n\}$$

n				subse	ts		
0 1 2	$\{a_1\}$	(a.)	(a, a)				
2		_	$\{a_1, a_2\}$ $\{a_1, a_2\}$	$\{a_3\}$	$\{a_1, a_3\}$	$\{a_2, a_3\}$	$\{a_1, a_2, a_3\}$

Generating Subsets: Knapsack problem

• How can we generate all 2^n subsets of an abstract set

$$A = \{a_1, a_2, \dots, a_n\}$$

- The straight-forward (or bottom up) implementation
- Let S_{n-1} be the set of all subsets of A,

•
$$S_{n-1} = \{A_1, A_2, \dots, A_m\}, m = 2^{n-1}$$

•
$$S_n = \{A_1, A_2, \dots, A_m, A_1 \cup a_n, A_2 \cup a_n, \dots, A_m \cup a_n\}$$

- All 2^n bit strings b_1, b_2, \dots, b_n of length n.
 - One-to-one correspondence
 - $b_i = 1$ if a_i belongs to the subset
 - $b_i = 0$ if a_i does not belong to the subset

bit strings 000 001 010 011 100 101 110 111 subsets
$$\varnothing$$
 { a_3 } { a_2 } { a_2 , a_3 } { a_1 } { a_1 , a_3 } { a_1 , a_2 } { a_1 , a_2 } { a_1 , a_2 , a_3 }

Generating Subsets:Binary reflected Gray code

Binary reflected Gray code:

000

001

minimal-change algorithm for generating bit strings so that every one
of them differs from its immediate predecessor by only a single bit.

011 010 110 111

100.

000	001 01	1 010 110	111 1	100.
base	reflect	prepend	reflect	prepend
0	0	00	00	000
1	<u>1</u>	01	01	001
	1	11	11	011
	0	10	<u>10</u>	010
			10	<mark>1</mark> 10
			11	1 11
			01	<mark>1</mark> 01
			00	100

Binary reflected Gray code: Pseudocode

ALGORITHM BRGC(n)

```
//Generates recursively the binary reflected Gray code of order n
//Input: A positive integer n
//Output: A list of all bit strings of length n composing the Gray code
if n = 1 make list L containing bit strings 0 and 1 in this order
else generate list L1 of bit strings of size n - 1 by calling BRGC(n - 1)
copy list L1 to list L2 in reversed order
add 0 in front of each bit string in list L1
add 1 in front of each bit string in list L2
append L2 to L1 to get list L
```

Exercise 4.3

5. Generate all the subsets of a four-element set $A = \{a_1, a_2, a_3, a_4\}$ by each of the two algorithms outlined in this section.