Problem Solving Set 1

Sven Bergmann

January 24, 2024

Warning: package 'knitr' was built under R version 4.3.2

```
set.seed(1401)
```

Part 1

```
n <- 120
series1 <- as.ts(rchisq(n, 2, ncp = 0))</pre>
series2 <- as.ts(rchisq(n, 2, ncp = 0))</pre>
series3 <- as.ts(rchisq(n, 2, ncp = 0))</pre>
series4 \leftarrow as.ts(rchisq(n, 2, ncp = 0))
series5 <- as.ts(rchisq(n, 2, ncp = 0))</pre>
# pdf.options() pdf('PS1TSPlotsPt1.pdf')
par(mfrow = c(3, 2))
plot(series1, xlab = expression("Time"), ylab = expression(paste("Y"[1][t])),
    main = expression(paste("Time Series Plot of Y"[1[t]])))
plot(series2, xlab = expression("Time"), ylab = expression(paste("Y"[2][t])),
    main = expression(paste("Time Series Plot of Y"[2[t]])))
plot(series3, xlab = expression("Time"), ylab = expression(paste("Y"[3][t])),
    main = expression(paste("Time Series Plot of Y"[3[t]])))
plot(series4, xlab = expression("Time"), ylab = expression(paste("Y"[4][t])),
    main = expression(paste("Time Series Plot of Y"[4[t]])))
plot(series5, xlab = expression("Time"), ylab = expression(paste("Y"[5][t])),
    main = expression(paste("Time Series Plot of Y"[5[t]])))
# dev.off()
```


- $\bullet\,$ spikes between 50 and 70
- ullet centered around 2
- no patterns / random scatter

Y_2

- more variation than Y_1
- \bullet still centered at 2
- no patterns

Y_3

- similar to Y_1
- spike at 70

Y_4

- ullet centered at 2
- spike near 60
- random scatter

- similar to Y_1, Y_3
- spike at / around 90

```
# pdf.options() pdf('PS1NPPlotsPt1.pdf')
par(mfrow = c(3, 2))
qqnorm(series1, main = expression(paste("Normal Probability Plot of Y"[1[t]])))
qqnorm(series2, main = expression(paste("Normal Probability Plot of Y"[2[t]])))
qqnorm(series3, main = expression(paste("Normal Probability Plot of Y"[3[t]])))
qqnorm(series4, main = expression(paste("Normal Probability Plot of Y"[4[t]])))
qqnorm(series5, main = expression(paste("Normal Probability Plot of Y"[5[t]])))
# dev.off()
```


- not linear, - heavy right tail -> skewed right

```
# pdf.options() pdf('PS1HistsPt1.pdf')
par(mfrow = c(3, 2))
hist(series1, xlab = expression(paste("Y"[1[t]])), main = expression(paste("Histogram of Y"[1[t]])))
hist(series2, xlab = expression(paste("Y"[2[t]])), main = expression(paste("Histogram of Y"[2[t]])))
hist(series3, xlab = expression(paste("Y"[3[t]])), main = expression(paste("Histogram of Y"[3[t]])))
hist(series4, xlab = expression(paste("Y"[4[t]])), main = expression(paste("Histogram of Y"[4[t]])))
hist(series5, xlab = expression(paste("Y"[5[t]])), main = expression(paste("Histogram of Y"[5[t]])))
# dev.off()
```


Expectations

- properties of a t-dist.
- look somewhat normal
- unimodal
- \bullet symmetric
- centered about 0
- random scatter / no patterns property of random sample

```
n <- 100
series1 <- as.ts(rt(n, 5, ncp = 0))
series2 <- as.ts(rt(n, 5, ncp = 0))
series3 <- as.ts(rt(n, 5, ncp = 0))
series4 <- as.ts(rt(n, 5, ncp = 0))
series5 <- as.ts(rt(n, 5, ncp = 0))</pre>
```

```
# pdf.options() pdf('PS1TSPlotsPt2.pdf')
par(mfrow = c(3, 2))
plot(series1, xlab = expression("Time"), ylab = expression(paste("Y"[1][t])),
    main = expression(paste("Time Series Plot of Y"[1[t]])))
plot(series2, xlab = expression("Time"), ylab = expression(paste("Y"[2][t])),
    main = expression(paste("Time Series Plot of Y"[2[t]])))
plot(series3, xlab = expression("Time"), ylab = expression(paste("Y"[3][t])),
    main = expression(paste("Time Series Plot of Y"[3[t]])))
```


- \bullet centered at 0
- spike at 50
- random scatter / no patterns

Y_2

- \bullet signs of uneven spread
- suggests nonstationary series
- centered at 0
- no patterns

Y_3

- centered at 0
- random scatter
- fairly even spread

- \bullet centered at 0
- possible periodic pattern
- fairly even spread

Y_5

- centered at 0
- random scatter
- fairly even spread

```
# pdf.options() pdf('PS1NPPlotsPt2.pdf')
par(mfrow = c(3, 2))
qqnorm(series1, main = expression(paste("Normal Probability Plot of Y"[1[t]])))
qqnorm(series2, main = expression(paste("Normal Probability Plot of Y"[2[t]])))
qqnorm(series3, main = expression(paste("Normal Probability Plot of Y"[3[t]])))
qqnorm(series4, main = expression(paste("Normal Probability Plot of Y"[4[t]])))
qqnorm(series5, main = expression(paste("Normal Probability Plot of Y"[5[t]])))
# dev.off()
```


Y_1

- heavy right tail
- left side tail resembles that of a normal distribution

- two heavy tails
- middle looks really normal

Y_3

- heavy tails
- middle looks okay
- lighter than tails of Y_2

Y_4

- both tails are heavy
- middle is linear

Y_5

• similar to Y_4

```
# pdf.options() pdf('PS1HistsPt2.pdf')
par(mfrow = c(3, 2))
hist(series1, xlab = expression(paste("Y"[1[t]])), main = expression(paste("Histogram of Y"[1[t]])))
hist(series2, xlab = expression(paste("Y"[2[t]])), main = expression(paste("Histogram of Y"[2[t]])))
hist(series3, xlab = expression(paste("Y"[3[t]])), main = expression(paste("Histogram of Y"[3[t]])))
hist(series4, xlab = expression(paste("Y"[4[t]])), main = expression(paste("Histogram of Y"[4[t]])))
hist(series5, xlab = expression(paste("Y"[5[t]])), main = expression(paste("Histogram of Y"[5[t]])))
# dev.off()
```


