课程编号: 100086022 北京理工大学 2018-2019 学年第二学期

2016 级计算机学院《数值分析》期末试卷 B 卷

班	E级_	学号		_姓名	成绩
注意		答题方式为闭卷。 请所有答案答在答题:			
		三题(每空 2 分,共	• •	坐 公平 10	加田四今工)取 - 竺工 2.1
1.	则求		为【】1		m,如果四舍五入取π等于3.1, 是差为【】%,圆面积计算
2.	用麦	麦克劳林展开	式 $\cos x = 1 - \frac{x}{2}$	$\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$	$+(-1)^n \frac{x^{2n}}{(2n)!}$ (截 断 误 差
	R = 0	$(-1)^{n+1} \frac{x^{2n+2}}{(2n+2)!} \cos \xi$)计算 cos(1.0)	的近似值,要	求计算结果总误差不超过 0.05,
	计算	公式应该取前【	_】项合适。		
3.	为提	高数值计算精度,当	正数 x 充分大同	时,应将ln(.	$(x-\sqrt{x^2-1})$ 改写为【】。
4.		_]的解,先把方程等价变换成]值 x ₁ =【】。
5.	用迭	代法解方程 x³-2x-	1=0在区间[1,	2]上的根,3	采用下面哪个公式进行迭代计算
					若取初始值为 1.000, 要求结果 】(计算中保留小数点后 3 位)
	A:	$x_{n+1} = \frac{x_n^3 - 1}{2}$ B:	$x_{n+1} = \frac{1}{x_n^2 - 2}$	C: x_n	$x_{-1} = \sqrt[3]{2x_n + 1}$
6.	设函	i数 <i>f(x)</i> 区间[a,b]内 ^z	有二阶连续导数	友,且 f(a)f(b)<0, 当【】时, 用
	双点	弦截法产生的解序列	可收敛到方程f(x)=0 的根。	
7. 8.		方程组 AX=B 能用 主元的方法解线性方			要条件是【】。 【】
9.	若系	数矩阵为 【	】矩阵,则高	5斯一赛德尔	迭代法必定收敛。
10.	用带	松弛因子的松弛法(<i>ω</i> =0.5)解方程组	$\{-x_1+4\}$	$x_2 + x_3 = -12$ 的迭代公式是 $x_2 + 2x_3 = 20$ $x_2 + 10x_3 = 3$

- 12. 向量 X=(1, -5, 2),则向量 X 的 1-范数||X||₁=【______】。
- 14. 用龙贝格积分计算 $\int_2^3 f(x)dx$,若 f(2)=0.51342,f(3)=0.36788,计算得 $T_4=0.43687$, C_1 =0.43662,则 f(2.5)=【 】。
- **15.** n 个求积节点的插值型求积公式的代数精确度至少为【_____】次, n 个求积节点的 高斯求积公式的代数精度为【_____】。
- 二、计算题(共60分)
- 1、采用**牛顿下山法**求方程 $x^3 2x 6 = 0$ 在区间[1,3]上的根,初始值 $x_0 = 1.4$,计算结果 准确到3位有效数字。
- 2、用列主元素法求解下面的线性方程组,计算结果保留小数后5位。

$$\begin{cases} x_1 - x_2 + x_3 = -4 \\ 5x_1 - 4x_2 + 3x_3 = -12 \\ 2x_1 + x_2 + x_3 = 11 \end{cases}$$

3、用高斯赛德尔方法求下列方程组的解,取初值 $x_0^{(0)}=0, x_1^{(0)}=0, x_2^{(0)}=0$,要求**计算过程** 和计算结果保留 3 位小数。

$$\begin{cases} 10x_1 - 2x_2 - x_3 = 3 \\ -2x_1 + 10x_2 - x_3 = 15 \\ -x_1 - 2x_2 + 5x_3 = 10 \end{cases}$$

4、下表为每隔 10 年的美国人口数量统计表,请根据下表数据估算 1955 年和 1988 年的 人口数量。

年	1950	1960	1970	1980	1990
人口数量(万)	15132	17932	20330	22654	24963

5、用三点高斯求积公式求 $I = \int_{-1}^{1} \sqrt{x + 1.5} dx$,要求**计算结果保留 6 位小数**。

n	节点	积分系数
2	±0.577350	1
3	0	0.888889
	±0.774597	0.55556

6、用复合辛卜生公式计算积分 $I = \int_0^2 \frac{1}{x+4} dx$,选取合适的 n 及 h 使截断误差小于 10^{-5} 。

(注: 辛卜生公式
$$R = -\frac{h^5}{90} f^{(4)}(\zeta)$$
)

附加题:

1、下表为高速公路监测区监测的一辆汽车的行驶信息

时刻 t(秒)	0	3	5
路程 s(英尺)	0	225	383
速度 ν(英尺/秒)	75	77	80

根据上述表格,预算出汽车在时刻 t=8 的路程及速度,计算过程保留小数点后 3 位。

课程编号: 100086022 北京理工大学 2018-2019 学年第二学期

2016 级计算机学院《数值分析》期末试卷 B 卷

班级	学号	姓名	成绩	
一、填空题				
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
二、计算题:				