Trabajo Práctico 0

A- Sistemas de numeración

A.01 Escriba los dígitos que componen los siguientes sistemas de numeración (se brindan como ejemplo los vistos en la teoría)

Base	Dígitos
2	0,1
3	
4	0,1,2,3
7	
8	0,1,2,3,4,5,6,7
10	0,1,2,3,4,5,6,7,8,9
12	
16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

A.02 Escriba la definición de dígitos y de base de un sistema de numeración.

A.03 Convierta los siguientes números a su valor en decimal (como el ejemplo planteado).

•
$$4301_5 = 4 * 5^3 + 3 * 5^2 + 0 * 5^1 + 1 * 5^0 = 4 * 125 + 3 * 25 + 0 + 1 = 576_{10}$$

4301 ₆	4301,	4301 ₁₆
3FFF ₁₆	101001102	6502 ₈
8000 ₁₆	111 ₂	10 ₁₆
7A3C ₁₆	102	F ₁₆
000110002	104	20 ₁₆

A.04 Complete los casos faltantes de conversión entre bases.

Base 2	Base 16	Base 10
01100000		
1111111111	7FF	
		65535
		65536
		255
		256
	7F	
10000000		
110000		

A.05 Escriba los siguientes números como potencias de 2

$$65536 \rightarrow 2^{16}$$
 , $4096 \rightarrow 2$, $~1024$ \rightarrow 2 , 512 \rightarrow 2 , $256 \rightarrow$ 2 , 128 \rightarrow 2 , $16 \rightarrow$ 2

$$32768 \rightarrow 2$$
 , $16384 \rightarrow 2$, $1048576 \rightarrow 2$, $4294967296 \rightarrow 2$

A.06 Escriba los siguientes números como potencias de 2 simplificadas

$$2^{16}
ightarrow 64 K$$
 , $2^{20}
ightarrow$, $2^{10}
ightarrow$, $2^{32}
ightarrow$, $2^{40}
ightarrow$

A.07 Convierta los siguientes números decimales a binario (como el ejemplo dado) indicando cuántos bits son necesarios para la representación en binario.

Número	Base	Resultado	Resto
19	2	9	1
9	2	4	1
4	2	2	0
2	2	1	0
1	2	0	1

10011 5 bits

$$16+2+1=19$$

128, 127, 65540, 65536, 65535, 20, 63, 64, 70, 1000, 1023, 1024, 1030

A.08 Indique si los siguientes números son par o impar (sin dividir por 2).

10100110 ₂ PAR	10100111 ₂ IMPAR	4301 ₁₆
3FFF ₁₆	10110 ₂	6502 ₈
8000 ₁₆	101112	10 ₁₆
7A3C ₁₆	7BB7 ₁₆	F ₁₆
000110002	DE3B ₁₆	20 ₁₆

A.09 Indique la cantidad de elementos que pueden representarse y cual es el menor y el mayor de ellos para sistemas sin signo que utilizan

Sistema	Cantidad de elementos	Menor	Mayor
2 dígitos decimales	100	0	99
4 dígitos decimales			
2 bits	4	0	3 (11 ₂)
4 bits			
7 bits			
8 bits			
16 bits			
24 bits			
32 bits	4 G Elementos		
2 dígitos base 16	256 elementos	0	255 (FF ₁₆)
4 dígitos base 16			
6 dígitos base 16			

8 dígitos base 16		
o digitos base to		

A.10 Utilice la fórmula generalizada para calcular la cantidad de elementos y el mayor siendo N la cantidad de dígitos y B la base (todas las combinaciones)

$$N=1, 2, 5, 7, 9, 12, 20$$

A.11 Represente los siguientes números en 8 bits y en 16 bits (sin signo)

$$25_{10} \; , \; 12_{10} \; , \; 8_{10} \; , \; 65_{10} \; , \; 96_{10} \; , \; 255_{10} \; , \; 250_{10} \; , \; 128_{10} \; , \; 127_{10} \; , \; 129_{10}$$

A.12 Complete la tabla con todos los valores posibles en 4 bits sin signo y su valor decimal

4 bits	Decimal
0000	0
1111	15

A.13 Dados A y B (c/u 4 bits sin signo) realice la operación e indique el resultado

А	В	Operación	Carry / Borrow	Resultado	A=B	A>B	A <b< th=""></b<>
1001	1010	A - B	Borrow	1111	No	No	Si
1001		A + B	Carry	0011	INO	INO	31
0100	0011	A - B	No	0001	No	:	No
0100	0011	A + B	No	0111	No	Si	No

1000	4000	A - B			
1000	1000	A + B			
0111	1000	A - B			
0111	1000	A + B			
1101	0110	A - B			
1101	0110	A + B			
0000	4444	A - B			
0000	1111	A + B			
1011	1101	A - B			
1011	1101	A + B			
0111	0111	A - B			
0111	UIII	A + B			

A.14 Dados A y B (c/u 8 bits sin signo) realice la operación e indique el resultado

Α	В	Operación	Carry / Borrow	Resultado	A=B	A>B	A <b< th=""></b<>
00101000	01000000	A - B	Borrow	11101000	No	No	Si
00101000	01000000	A + B	No	01101000	INO	INO	SI
0100000	00101000	A - B	No	00011000	No	Si	No
0100000	00101000	A + B	No	01101000	No	31	INO
10001010	10001110	A - B					
10001010	10001110	A + B					
01111010	04444040	A - B					
01111010	01111010	A + B					
11011111	01101111	A - B					
11011111	01101111	A + B					
00000000	11111111	A - B					
0000000	11111111	A + B					
10111100	11010001	A - B					
10111100	11010001	A + B					
01111010	4444040						
01111010	01110101	A + B					

A.15 Indique para cada número su base, base menos uno y calcule ambos complementos.

Número	Base	Base - 1	C.B1	С. В.
15234 ₁₀	100000 ₁₀	99999 ₁₀	84765 ₁₀	84766 ₁₀
7245 ₈				
1001102				
FD300A14 ₁₆				
BA2321A0 ₁₂				
100000002				

A.16 Calcule los complementos acotados a 8 dígitos

Número	Base	Base - 1	C.B1	С. В.
89234120 ₁₀	100000000 ₁₀	99999999 ₁₀	10765879 ₁₀	10765880 ₁₀
ABEF7240 ₁₆				
9000000010				
100000012				
10000000 ₂				
01111111 ₂				
010000002				
11111111 ₂				

A.17 Complete la tabla con los complementos para los números de 4 bits e indique su valor en decimal si se utilizan números signados en complemento a la base

4 bits	C.B1	C.B.	Decimal
0000	1111	0000	0
0001	1110	1111	1
0111	1000	1001	7
1000	0111	1000	-8

1110	0001	0010	-2
1111	0000	0001	-1

A.18 Indique la cantidad de elementos que pueden representarse y cual es el menor y el mayor de ellos para sistemas signados en C.B. que utilizan

Sistema	Cantidad de elementos	Menor	Mayor
2 bits	4	-2 (10 ₂)	1 (01 ₂)
4 bits			
7 bits			
8 bits			
16 bits			
24 bits			
32 bits	4 G Elementos		

A.20 Dados A y B (4 bits signados en C.B.) realice la operación e indique el resultado

	· · · · · · · · · · · · · · · · · · ·								
Α	В	OP	C/B	Res	V	Ν	A=B	A>B	A <b< th=""></b<>
1 100 (-4)	0 101 (5)	А-В	No	0 111 (7)	Si	No	No	No	Si
1100 (-4)	0101 (5)	A+B	С	0001 (1)	No	No	No	No	Si
0 011 (3)	1 001 (-7)	А-В	В	1 010 (-6)	Si	Si	No	Si	No
0011 (3)	1001 (-7)	A+B	No	1100 (-4)	No	Si	No	Si	No
0001	0001	A-B							
0111	1000	А-В							
1000	1000	A-B							
1000	0001	A+B							
1000	0000	A-B							

1111	1110	А-В				
1110	1111	A-B				
1111	1111	A+B				
0000	0000	А-В				

A.21 Dados A y B (8 bits signados en C.B.) realice la operación e indique el resultado

Α	В	OP	C/B	Res	V	Ν	A=B	A>B	A <b< th=""></b<>
1 1000000	0 1010000	А-В	No	0 1110000	Si	No	No	No	Si
11000000	01010000	A+B	С	00010000	No	No	No	No	Si
11110001	11110001	А-В							
11110111	11111000	А-В							
11111001	11111000	А-В							
11111000	11110001	А-В							
11111000	11111000	A+B							

A.22 Exprese los siguientes números binarios en decimal

Ej:
$$1,11010_2 = 1 * 2^0 + 1 * 2^{-1} + 1 * 2^{-2} + 0 * 2^{-3} + 1 * 2^{-4} + 0 * 2^{-5} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} = 1,8125_{10}$$

101,001102	1010,01112	1010011,02
10,1001102	0,101102	101001,102
10100,1102	0,101112	10100,1111112

A.23 Exprese los siguientes números decimales en binario. Utilice como máximo 8 bits en su parte fraccionaria. En caso de no poder representarse indique qué valor se representa.

Ej: $8,51_{10} = 1000,10000010_2 = 8,5078125_{10}$

25,320 ₁₀	1023,0078125 ₁₀	0,01171875 ₁₀
16,625 ₁₀	256,03125 ₁₀	75,75 ₁₀
40,0625 ₁₀	0,00390675 ₁₀	2,2 ₁₀

A.24 Realice las siguientes sumas y restas de números binarios sin signo. Indique si la operación es imposible en números sin signo.

1101,110011 + 11001,00101	11,001010 – 01,100101	110101,01 + 0,11
1111 – 0,1111	110100,10101 — 1100111,101	1010,1010 — 1010,1010
0,1 – 1,0	11,11 – 01,11	0,001+0,0001

A.25 Exprese los siguientes números decimales en notación científica

1320322 ₁₀	1023,00781 ₁₀	12112,01171875 ₁₀
1 ₁₀	0,1 ₁₀	000000000075 ₁₀
0,000000000625 ₁₀	0,00390675 ₁₀	2,2 ₁₀

A.26 Dados los siguientes números en punto flotante IEEE754 de simple precisión , indique su valor en decimal. (Son simples, no utilice una calculadora o conversor)

Signo	Exponente	Mantisa	Decimal	
0	10000001	1100000 00000000 00000000	7	
0	10000010	1100000 00000000 00000000		
1	10000010	1100000 00000000 00000000		
0	01111111	1100000 00000000 00000000		

A.27 Convierta los siguientes números decimales a IEEE754 de simple precisión, en caso de no poder representarlo indique si el resultado tiene error. Represente también en resultado como un conjunto de dígitos hexadecimales

Número	Signo	Exponente	Mantisa	Error	Hexadecimal
1024,75	0	10001001	0000000 00011000 00000000	no	44801800
65535,2					
32768,1					
1,25					

A.28 Convierta los siguientes números representados en IEEE754 de simple precisión a IEEE754 de doble precisión (64 bits)

1 10001001 011000000000000000000000

0 10000011 1110000000000000000000000

A.29 Explique como el siguiente programa imprime en pantalla el número 1024,75 (solo para alumnos que hayan cursado Programación)

#include <stdio.h>

void main(){

unsigned int a = 0x44801800; // 1024,75

float f = *((float*)&a); // Contenido de Puntero a float apuntando a unsigned int.

printf("%f\n",f); // Imprime 1024,75

}

A.30 Caso real. Investigue los conceptos que desconozca.

En una línea de empaque automático se detectó una anomalía en el peso obtenido de una balanza dinámica. La cajas cuyo peso rondaba los 30 kg se pesaban normalmente, sin embargo algunas cajas cuyo peso rondaba los 35-36 kg eran rechazadas por no llegar al peso mínimo. El peso en el display de la balanza se presentó siempre normalmente, pero cuando se transmitía la *cadena de peso* al PLC se informaba como de 3 o 4 kgs. ¿Cuál era la causa? ¿Qué solución aportaría?

B-Códigos

- B.01 Escriba el código de Gray para 16 elementos. Indique la distancia del código.
- **B.02** Escriba el código Johnson para 10 elementos. Indique el módulo del código Johnson para N bits. Indique la distancia del código.
- **B.03** Investigue el código "one-hot" e implemente uno para 10 elementos. Indique el módulo del código para N bits. Indique la distancia del código.
- **B.04** Escriba en Binario, Decimal y hexadecimal los valores para los siguientes elementos codificados en ASCII (8 bits):

0,1,2,3,4,5,6,7,8,9, A,B,C,X,Y,Z,a,b,c,x,y,z

- B.05 Escriba el código BCD Exceso 3. Indique la distancia del código.
- **B.06** Realice las siguientes sumas representando los dígitos en BCD.

345+608; 1+999; 1923+8931; 1162 + 895

B.07 Realice las siguientes sumas representando los dígitos en BCD Exceso 3.

345+608; 1+999; 1923+8931; 1162 + 895

B.08 Agregue el bit de paridad de modo que las siguientes palabras queden con paridad par en los unos.

B.09 Se desean transmitir los siguientes elementos codificados en ASCII 8 bits. Indique qué valor representa en ASCII y luego genere un código de hamming de 12 bits para cada elemento.

00110110 ; 00110101 ; 00110000 ; 00110010

B.10 Se recibieron los siguientes 5 elementos codificados en ASCII 8 bits (extendidos con bits de paridad hamming). Indique que se recibió (en ASCII) haciendo correcciones de ser necesario.

110111010010

010011001001

010100010010

100111000101

110111110010