UNIVERSIDADE PRESBITERIANA MACKENZIE

FELIPE NERES SILVA BEZERRA GUILHERME DA SILVA BREVILATO ISABELA KAZUE SINODUKA PEDRO HENRIQUE BITTENCOURT DE FREITAS

PREVISÃO DE PERFORMANCE DE IMAGENS EM CAMPANHAS DE MARKETING DIGITAL

UNIVERSIDADE PRESBITERIANA MACKENZIE

FELIPE NERES SILVA BEZERRA GUILHERME DA SILVA BREVILATO ISABELA KAZUE SINODUKA PEDRO HENRIQUE BITTENCOURT DE FREITAS

HAMBURGUERIA GALLIATE

PREVISÃO DE PERFORMANCE DE IMAGENS EM CAMPANHAS DE MARKETING DIGITAL

Artigo apresentado à Universidade Presbiteriana Mackenzie como parte das exigências da matéria de "Projeto Aplicado II" do curso de Tecnologia em Ciência de Dados, do 3º semestre de 2025.

Docente: Prof. Felipe Albino dos Santos

São Paulo

RESUMO

O setor de hamburguerias artesanais apresenta crescimento acelerado no Brasil, impulsionado pela popularização do delivery e pela busca por experiências gastronômicas diferenciadas. Nesse cenário competitivo, estratégias de marketing digital tornam-se fundamentais para otimizar investimentos em tráfego pago e orientar decisões estratégicas. Este trabalho tem como objetivo desenvolver um modelo preditivo capaz de antecipar a performance de criativos e postagens do instagram, utilizando imagens dos produtos e dados históricos de campanhas anteriores. Para isso, será aplicada uma abordagem de visão computacional baseada em redes neurais convolucionais (CNN), dada sua eficiência na identificação de padrões visuais relevantes. A proposta integra análise de imagens, dados temporais e metadados de marketing para prever métricas como CTR, taxa de conversão, CPA e ROAS, além de indicar o melhor timing para publicação e ranquear criativos conforme o potencial de retorno sobre o investimento, evitando assim testes por tentativa e erro (teste A/B). Espera-se, com isso, oferecer uma ferramenta inteligente que auxilie empresas do setor na tomada de decisões mais precisas e eficientes, contribuindo para maior competitividade e expansão sustentável.

Palavras-chave: Marketing digital; Previsão de performance; Redes neurais convolucionais; Análise de dados; Redes sociais; Teste A/B.

Sumário

RESUMO	3
1. INTRODUÇÃO	8
2. DEFINIÇÃO DA ORGANIZAÇÃO: Hamburgueria Galliate	9
3. OBJETIVO	10
Cenário de Aplicação	10
4. DADOS	11
Publicações	11
Tensores	11
5. REPOSITÓRIO	13
Diretórios	
6. CRONOGRAMA	14
Milestones da Etapa 1	14
7. REFERÊNCIAS	15
Índice de Ilustrações	
Figura 1: Logotipo da Empresa	
Figura 2: Gráfico de valor investido por dia	
Figura 3: Gráfico de alcance por gênero Figura 4: Gráfico de alcance por idade	
rigura 4. Grafico de dicance por ladae	12
Índice de Tabelas	
Tabela 1: Relatório de anuncios	
Tabela 2: Relatório de campanhas	
Tabela 3: Relatório de alcance no Instagram	12

1. INTRODUÇÃO

No Brasil, o mercado de hamburguerias artesanais vem crescendo de forma acelerada, impulsionado por consumidores cada vez mais exigentes e atentos às tendências do setor. Entre os principais movimentos que se destacam estão a expansão do delivery, que exige eficiência e agilidade para garantir a satisfação do cliente; a inovação nos cardápios, com a inclusão de opções vegetarianas, veganas e plant-based; além da valorização da qualidade das carnes utilizadas na produção¹.

Apesar do potencial, esse segmento enfrenta desafios significativos, como o aumento da concorrência e a necessidade constante de diferenciação. Nesse contexto, estratégias de marketing digital desempenham um papel central para atrair clientes, fortalecer a marca e otimizar investimentos em mídia paga. No entanto, a definição de quais criativos apresentam maior probabilidade de gerar bons resultados ainda ocorre, em muitos casos, como testes A/B, o que pode resultar em desperdício de recursos e decisões pouco assertivas.

Com os avanços recentes em ciência de dados e inteligência artificial, especialmente no campo da visão computacional, existem novas possibilidades para enfrentar esse desafio. Entre as técnicas disponíveis, as redes neurais convolucionais (CNN)² se destacam por sua capacidade de extrair padrões visuais complexos de imagens, tornando-se particularmente adequadas para prever o desempenho de criativos em campanhas de marketing.

A partir disto, este projeto tem como objetivo desenvolver um modelo capaz de prever a performance de publicações pagas e orgânicas, a partir da análise de imagens de produtos e do histórico de campanhas anteriores. A proposta busca oferecer uma ferramenta que permita identificar, de forma antecipada, quais criativos apresentam maior potencial de engajamento e conversão, possibilitando decisões mais precisas e estratégicas para empresas do setor.

¹ CNN BRASIL, 2025.

² TENSORFLOW, 2024.

2. DEFINIÇÃO DA ORGANIZAÇÃO: Hamburgueria Galliate

A Hamburgueria Galliate³ tem sua origem do Norte do Paraná.

Quando tudo parecia estável, a vida surpreendeu Thomas Louzano com uma notícia que mudaria tudo: sua esposa estava grávida — e de gêmeas. Mais do que emoção, o momento despertou nele um senso profundo de responsabilidade. Era hora de transformar planos em ação, sonhos em realidade, e buscar uma nova fonte de sustento e legado para sua família.

Figura 1: Logotipo da Empresa

Com espírito empreendedor e muita coragem, Thomas foi em busca de uma oportunidade real de investimento. Apaixonado

por gastronomia e atento às tendências do mercado, decidiu apostar no que muitos consideram uma arte: o hambúrguer artesanal.

Sem sócios, sem equipe, apenas com vontade de vencer, iniciou a operação em Ribeirão do Pinhal (PR) — uma cidade pequena, mas cheia de potencial. Lá, montou a primeira versão da Hamburgueria Galliate, fazendo tudo sozinho: do preparo na chapa ao atendimento. Cada lanche carregava um pouco da sua história, cuidado e dedicação.

E o resultado? Sucesso imediato.

Os moradores aprovaram a proposta, os elogios começaram a circular, e o nome Galliate rapidamente ganhou força. A demanda cresceu e cruzou os limites da cidade.

Percebendo o interesse dos moradores da vizinha Santo Antônio da Platina, Thomas decidiu dar um passo ousado: abrir uma nova operação ali. Foi o início de uma nova fase. Com organização, padrão de qualidade e atendimento ágil, a Galliate se consolidou.

Hoje, a hamburgueria realiza mais de 2 mil pedidos por mês, com um faturamento médio de R\$ 115 mil. Mas mais importante do que os números é a visão de futuro: Thomas entende que o próximo grande passo é conhecer profundamente seus clientes — entender seus gostos, hábitos, horários e preferências — para que possa oferecer experiências ainda mais personalizadas e expandir a Galliate para novas cidades.

O que começou com a chegada inesperada de duas filhas, se tornou a semente de um negócio sólido, com propósito e sabor. A Galliate não é apenas uma hamburgueria — é uma história de amor, coragem e visão empreendedora.

3. OBJETIVO

O objetivo deste projeto é desenvolver um modelo capaz de prever a performance de publicações pagas em redes sociais, utilizando imagens dos produtos ofertados pelo cliente e dados históricos de campanhas anteriores. Com base nessas análises preditivas, será possível identificar antecipadamente quais criativos apresentam maior potencial de retorno sobre o investimento (ROAS), permitindo a otimização dos recursos investidos em tráfego pago e tornando as decisões mais precisas e eficientes⁴.

O projeto integra análise de imagens, dados temporais e metadados de campanhas de marketing digital para oferecer um sistema inteligente de predição, capaz de:

- Prever métricas de performance: como CTR (taxa de clique), taxa de conversão, CPA (custo por aquisição) e ROAS (retorno sobre investimento) antes do lançamento dos anúncios.
- Otimizar o timing de publicações: identificando os melhores horários e dias da semana para cada criativo, aumentando as chances de engajamento e conversão.
- Rankear criativos por performance esperada: facilitando a priorização dos materiais que têm maior probabilidade de gerar resultados positivos para a marca.

Cenário de Aplicação

A equipe de marketing frequentemente recebe um portfólio extenso de materiais criativos, provenientes de fotógrafos e designers, em quantidade superior ao que será utilizado em campanhas de mídia paga. Como resultado do projeto, será entregue uma aplicação capaz de quantificar e estimar, de forma prévia e automatizada, a probabilidade de sucesso de cada imagem, garantindo que apenas os criativos com melhores estimativas de performance sejam selecionados para veiculação.

4. DADOS

Os dados que serão utilizados foram fornecidos pelo cliente, onde encontram-se dados de post, interações e alcance nas redes, e também valores e custos investidos em cada segmento dentro deste negócio.

A analise será feita em etapas, extraindo dados numéricos das informações fornecidas, juntamente com métricas fornecidas pela plataforma de anúncios que servirão de variáveis resposta.

Publicações

A coleta será realizada com o objetivo de garantir que os dados sejam relevantes, atualizados e representativos da área de estudo, e serão obtidos como segue:

Nome	Tipo	Descrição
id	sting	Identificador da publicação
criativo	png	Imagem da publicação
datetime	datetime	Momento da publicação, contendo minuto, hora, dia, mês e ano.
week	int	Dia da semana (0=Domingo, 6=Sábado)
impressions	int	Número de vezes que o anúncio foi exibido
clicks	int	Número de cliques recebidos
ctr	float	Taxa de clique: clicks / impressions
conversions	int	Número de conversões associadas
conversion_rate	float	Taxa de conversão: conversions / clicks
cost	float	Custo total investido (R\$ ou outra moeda)
срс	float	Custo por Clique: cost / clicks
cpm	float	Custo por mil impressões: cost / (impressions/1000)
roas	float	Retorno sobre o investimento: receita / cost
engagement	int	Número total de interações (comentários, shares etc)

Tabela 1: Relatório de anúncios.

Tensores⁵

Para processamento matemático, as imagens serão convertidas em matrizes tridimensionais (tensores):

Dimensão	Ordem	Descrição
eixo_x	De acordo com a resolução da imagem	Identifica o pixel da imagem no eixo X
eixo_y	De acordo com a resolução da imagem	Identifica o pixel da imagem no eixo X
rgb	3	Identifica o valor do pixel em cada uma das três cortes da escala rgb (vermelho, verde e azul)

Tabela 2: Dimensões das imagens convertidas em Tensores.

A fim de padronizar as ordens das dimensões, as imagens terão suas resoluções reduzidas, a depender do desempenho do modelo quando de seu ajuste.

5. REPOSITÓRIO

Todo material desenvolvido para este projeto poderá ser encontrado em: https://github.com/ISABELAKAZUE/ProjetoII

Como reproduzir o projeto:

- 1. Clone o repositório
- 2. Navegue até a pasta do projeto:
- 3. Instale as dependências necessárias listadas em requirements.txt;
- 4. Prepare os dados para ajuste do modelo na pasta data/raw/for_fit/;
- Prepare as imagens, cujas métricas se deseja, prever na pasta data/raw/for_predict/;
- 6. Ajuste os parâmetros iniciais do arquivo main.ipynb na pasta notebooks/ e execute-o:
- 7. Avalie os resultados no próprio arquivo main.ipynb ou dentre os relatórios em reports/.

Diretórios

roject-root/	
data/ raw/ # Dados brutos, imagens originais e metadados não processados for_fit/ # Dados para treino e teste do modelo for_predict/ # Imagens a serem previstas processed/ # Dados pré-processados prontos para uso (matrizes, fea	
— notebooks/ # Jupyter notebooks para exploração, análise e testes	
<pre>src/ # Código-fonte do projeto data_preprocessing/ # Scripts para carregamento e limpeza dos dado pré-processamento de imagens feature_extraction/ # Scripts para extração de features visuais e textuais models/ # Definição e treinamento dos modelos de deep learning evaluation/ # Scripts para avaliação de métricas e análise dos resultados utils/ # Funções utilitárias e helpers gerais inference/ # Código para gerar predições com modelos treinados</pre>	S,
experiments/ # Configurações, logs e resultados de experimentos de modelagem	
reports/ # Documentação do projeto, relatórios e apresentações	
requirements.txt # Lista de dependências necessárias para rodar o pr README.md # Apresentação do projeto e instruções principais gitignore # Arquivos e pastas ignorados pelo Git	ojeto

6. CRONOGRAMA

Abaixo encontra-se o cronograma preliminar das atividades que serão feitas durante o projeto com cada duração em dias, porém o cronograma será atualizado conforme andamento do projeto:

Figura 2: Cronograma

Milestones da Etapa 1

- Reunião de KickOff com o grupo para definição da organização e objetivos.
- Elaboração do documento com detalhes e objetivos do projeto em formato de artigo acadêmico.
- Repositório criado e sincronizado com todos os integrantes da equipe;
- Definição e extração de dados que serão utilizados tanto em texto quanto em imagem.
- Cronograma com tarefas e duração.

7. REFERÊNCIAS

CNN BRASIL. Dia do Hambúrguer: Dados e tendências mostram presença do lanche no país. 2025. Disponível em: https://www.cnnbrasil.com.br/viagemegastronomia/gastronomia/dia-do-hamburguer-dados-e-tendencias-mostram-presenca-do-lanche-no-pais/. Acesso em: 5 set. 2025.

TENSORFLOW. Rede Neural Convolucional (CNN) | TensorFlow Core. 2024. Disponível em: https://www.tensorflow.org/tutorials/images/cnn?hl=pt-br>. Acesso em: 5 set. 2025.

APVENDA. Métricas do Marketing Digital - CPA, ROAS, CPM, CPC, CTR. 2024. Disponível em: https://apvenda.com.br/metricas-do-marketing-digital-cpa-roas-cpm-cpc-ctr/>. Acesso em: 5 set. 2025.