Detecção de URLs Maliciosas

Mineração de Dados Aplicada

Julio Cesar da Silva Rodrigues¹

¹Universidade Federal de São João del-Rei Curso de Ciência da Computação julio.csr.271@aluno.ufsj.edu.br

13 de Junho de 2023

- Novo Atributo
- 2 Balanceamento
- Resultados
- 4 Conclusão

- Novo Atributo
- 2 Balanceamento
 - I. Benign
 - II. Phishing
 - III. Defacement e Malware
 - IV. Base Final
- Resultados
- 4 Conclusão

Status das Páginas

- URLs maliciosas possuem curto tempo de vida;
- Código HTTP retornado pode ajudar a destacar URLs deste tipo;
- Impacto observado na classificação foi positivo;
- Redução nos falsos negativos (malware classificado como seguro).

Holdout 80 | 20

XGBoost				
Class	Precision	Recall	F1-Score	
Benign	0.93	0.98	0.95	
Defacement	0.94	0.97	0.95	
Phishing	0.96	0.89	0.93	
Malware	0.94	0.82	0.88	

- Balanceamento
 - I. Benign
 - II. Phishing
 - III. Defacement e Malware
 - IV. Base Final

- I. Benign
 - I. Defacement e Malware
- IV. Base Final

Classe benign

- Correspondem à quase 70% do total da base;
- Classes defacement e phishing em relação à benign possuem:
 - Macros F1 próximas;
 - Cada uma apresenta menos que 25% da quantidade de instâncias.
- Undersampling aleatório;
- Remover grande parte destas instâncias, deixando alguma margem;
- Evitar perca de informação.

II. Phishing

Phishing

IV. Base Final

Classe phishing

- PhishTank¹ para suprir o déficit de instâncias de phishing;
- Scraper básico coletando URLs;
- Vantagem em relação à oversampling aleatório.

 $^{{}^{1}}$ Disponível em: https://phishtank.org/phish_archive.php

Classes defacement e malware

- Dificuldade em encontrar bases de dados com a quantidade de instâncias necessária;
- Utilização de SMOTE [Bowyer et al., 2011] em vez de oversampling aleatório;
- Gerar novas instâncias com base em dados existentes;

I. Benign

. Defacement e Malware

IV. Base Final

Base de Dados Final

- 800 mil instâncias, totalmente balanceada;
- 8 atributos e 1 classe (4 valores distintos);
- Composta por URLs de bases de dados do Kaggle²e PhishTank.

- Novo Atributo
- 2 Balanceamento
 - I. Benign
 - II. Phishing
 - III. Defacement e Malware
 - IV. Base Final
- Resultados
- 4 Conclusão

Comparativo de Parciais

TP 2 - Parcial I				
Algoritmo	Média	Desvio Padrão		
Regressão Logística	0,5780295368328738	0,0021293237223429956		
XGBoost	0,8568910936179079	0,0017065729226258411		

TP 2 - Parcial II				
Algoritmo	Média	Desvio Padrão		
Regressão Logística	0,67668635532121	0,0015789916679593162		
XGBoost	0,9324923443237593	0,0008784997591179979		

Teste t de dupla cauda

- Valores:
 - **1** $\alpha = 0.05$;
- Hipótese nula rejeitada;
- Modelos estatisticamente distintos;
- XGBoost com nítida superioridade.

- Novo Atributo
- 2 Balanceamento
 - I. Benign
 - II. Phishing
 - III. Defacement e Malware
 - IV. Base Final
- Resultados
- 4 Conclusão

Faltou...

- Selecionar novos algoritmos para teste;
- Comparação com trabalhos relacionados;
- Busca por novos atributos?.

Referências

Bowyer, K. W., Chawla, N. V., Hall, L. O., and Kegelmeyer, W. P. (2011). SMOTE: synthetic minority over-sampling technique. CoRR, abs/1106.1813.