priemgetallen

Een positief getal p wordt eeen priemgetal genoemd als p precies 2 positieve delers bezit (1 en zichzelf). 1 is geen priemgetal.

Elk getal kan dus geschreven worden als het product van 2 priemgetallen.

bewijs

We passen het principe van het kleinste tegenvoorbeeld toe.

veronderstel dus dat m het kleinste getal is in N{0,1} dat niet te schrijven is als het product van priemfactoren.

Dan kan m vanzelfsprekend geen priemgetal zijn, en dus moet m samengesteld zijn: stel m = m_1m_2 met m_1 , $m_2 \in \mathbb{N}$ {2,m-1}. Aangezien echter m het kleinste tegenvoorbeeld was, bezitten zowel m_1 als m_2 elk een ontbinding in priemfactoren. Hieruit kunnen we afleiden dat m zelf ook een ontbinding van priemfactoren bevat en dat is tegen de veronderstelling dat m het kleinste tegenvoorbeeld was. Hiermee hebben we de stelling bewezen

stelling van euclides:

De verzameling van de priemgetallen is een oneindige verzameling.

bewijs

veronderstel dat de verzameling van priemgetallen een eindige verzameling is $\{p_1, p_2, ..., p_n\}$. Stel m = het product van alle priemgetallen in deze verzameling, dan is m+1 dus geen priemgetal en dus bezit m+1 eigenlijke delers.

noem q de kleinste positieve eigenlijke deler van m+1. Dan is q dus een deler van m. Bijgevolg is q een deler van (m+1)-m=1. Dit is een tegenstrijdigheid. Bijgevolg is de verzameling van de priemgetallen een oneindige verzameling.

de zeef van Eratosthenes

Een snelle manier om de priemgetallen te vinden tot aan een bepaald natuurlijk getal n is door alle even getallen te schrappen <=n buiten 2, dan de overgebleven oneven getallen verschillend van 1 te ranschikken van klein naar groot en voor elk getal dat niet geschrapt is de veelvouden van dit getal te schrappen >het getal zelf.

Uiteindelijk komen we met de niet gescrapte getallen de priemgetallen tot en met n uit