Results

Descriptives

Descriptives

	No_Cloak	Cloak
N	12	12
Missing	0	0
Mean	3.75	5.00
Median	4.00	5.00
Mode	4.00 a	5.00
Standard deviation	1.91	1.65
Variance	3.66	2.73
Range	6.00	6.00
Minimum	0.00	2.00
Maximum	6.00	8.00
Skewness	-0.789	0.00
Std. error skewness	0.637	0.637
Kurtosis	-0.229	0.161
Std. error kurtosis	1.23	1.23
Shapiro-Wilk W	0.913	0.973
Shapiro-Wilk p	0.231	0.936
25th percentile	2.75	4.00
50th percentile	4.00	5.00
75th percentile	5.00	6.00

^a More than one mode exists, only the first is reported

Plots

No_Cloak

Cloak

Repeated Measurements

You have entered two related numeric variables. Hence, the <u>paired sample t test</u> seems to be a good option for you! In order to run this test in jamovi, go to: T-Tests > Paired Samples T-Test

- Drop the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
- Under Hypothesis, select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric Wilcoxon signed rank test. Click on the links to learn more about these tests!

Scatter Plot

Paired Samples T-Test

Paired Samples T-Test

											95% Confidence Interval				95% Confidence Interval	
			Statistic	±%	df	р	Mean difference	SE difference	Lower	Upper	-	Effect Size	Lower	Upper		
No_Cloak	Cloak	Student's t	-3.80		11.0	0.003	-1.25	0.329	-1.97	-0.527	Cohen's d	-1.10	-1.81	-0.358		
		Bayes factor ₁₀	16.3	4.03e- 8												
		Wilcoxon W	2.50 ª			0.011	-1.50	0.329	-2.00	-0.500	Rank biserial correlation	-0.909				

Note. $H_a \mu_{Measure 1}$ - Measure 2 \neq 0

^a 2 pair(s) of values were tied

Normality Test (Shapiro-Wilk)

			W	р
No_Cloak	-	Cloak	0.912	0.228

Note. A low p-value suggests a violation of the assumption of normality

Descriptives

	N	Mean	Median	SD	SE
No_Cloak	12	3.75	4.00	1.91	0.552
Cloak	12	5.00	5.00	1.65	0.477

Plots

No_Cloak - Cloak

Robust Paired Samples T-Test

Robust Paired Samples T-Test

							95% Confide	_	
		t	df	р	Mean difference	SE	Lower	Upper	Cohen's d
No_Cloak	Cloak	-2.70	7.00	0.031	-1.00	0.370	-1.87	-0.125	0.398

Bayesian Paired Samples T-Test

Bayesian Paired Samples T-Test

			BF ₁₀	error %
No_Cloak	-	Cloak	16.3	4.03e-6

[6] [3] [4]

Descriptives

Descriptives Plot

No_Cloak - Cloak

Inferential Plots

No_Cloak - Cloak

Prior and Posterior

Bayes Factor Robustness Check

max BF₁₀: 16.738 at r = 0.9288
wide prior: BF₁₀ = 16.705

wide prior: BF₁₀ = 16.705
user prior: BF₁₀ = 16.289
ultrawide prior: BF₁₀ = 15.664

References

- [1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.
- [2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).
- [3] Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of Bayes Factors for Common Designs. [R package]. Retrieved from https://cran.r-project.org/package=BayesFactor.
- [4] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.
- [5] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 2165–2228.
- [6] JASP Team (2018). JASP. [Computer software]. Retrieved from https://jasp-stats.org.