Сравнение методов сжатия линейных слоев с помощью SVD и CUR факторизации

Команда CUR-ник

Состав команды:

- Сенотова Юлия
- Мозговых Василий
- Филимонова Ирина

Постановка задачи

Цель:

Изучение методов декомпозиции SVD и CUR для сжатия линейных слоев моделей VGG и их сравнение с исходными VGG в задачах классификации изображений.

Актуальность:

Данный подход позволяет значительно уменьшить количество параметров модели, а также увеличить производительность сети, при этом не уступив в качестве.

Основная гипотеза и оценка качества

Гипотеза:

Модель будет обладать меньшим числом параметров, но сохранит ассигасу, при этом, в рассмотренной литературе, утверждалось, что CUR превосходит SVD. В наших экспериментах предполагаем, что достигнем схожих результатов.

Оценка качества:

Будет производиться на стандартных наборах данных для задачи классификации изображений по метрике accuracy для VGG-11:

- CIFAR10 (train: 50 000/test: 10 000)
- MNIST (train: 60 000/test: 10 000)

Архитектура нейросети VGG-11

Общее число параметров: 132 863 336

- Feature extractor: 9 220 480 (6.93%)
- Classifier: 123 642 856 (93.06%)

$$Accuracy = \frac{Correct\ prediction}{Total\ cases} \cdot 100\%$$

SVD decomposition

Метод SVD представляет входную матрицу весов в виде набора из трех матриц, которые при перемножении дают исходную матрицу.

$$A = U\Sigma V^*$$

- *U, V* унитарные матрицы
- Σ диагональная матрица

Сохраняя первые r сингулярных чисел, мы приближаем матрицу A

$$\widetilde{A} = \widetilde{U}\widetilde{S}\widetilde{V}^T \quad \widetilde{A} \in R^{m \times n}, \ \widetilde{U} \in R^{m \times r}, \ \widetilde{S} \in R^{r \times r}, \ \widetilde{V} \in R^{n \times r}$$

Детали реализации

Исходная весовая матрица содержит m*n параметров. Используя SVD получаем два слоя B и C без смещения.

$$A = B * C \Rightarrow B = \widetilde{U} \in \mathbb{R}^{m \times k}, C = \widetilde{S}\widetilde{V}^T \in \mathbb{R}^{k \times n}$$

Общее количество параметров в B и C равно k*(m+n)

Коэффициент сжатия:

$$CR = \frac{mn}{mk + nk}$$

Схема разложения линейного слоя

А - исходная весовая матрица линейного слоя

В, С - полученные слои

CUR decomposition

Методы CUR раскладывают входную весовую матрицу в виде набора из трех матриц, которые при перемножении приближают исходную матрицу.

$$A \in \mathbb{R}^{n \times d} \Rightarrow C \in \mathbb{R}^{n \times c}, U \in \mathbb{R}^{c \times d}, R \in \mathbb{R}^{r \times d}$$

Особенности:

- C, R состоят из столбцов и строк исходной матрицы, поэтому они лучше поддаются интерпретации
- Аппроксимация не уникальна, существуют разные алгоритмы для вычисления
 - LinearTimeCUR
 - LeverageScoreCUR
- Существуют алгоритмы с более низкой сложностью, чем SVD

Алгоритмы построения CUR

LTCUR LSCUR

$$p_i = ||A_i||/||A||_F$$
 SVD

$$A_i$$
с вероятностью p_i в C + нормирование p_i =(1/k) $\Sigma_j V_{ij}^{\ 2}$

$$Q = Alg(C)$$
 $A_i c$ вероятностью $min(1, cp_i)$ в C , нормирование

$$U = (C^T C_k)^{-1} Q$$

$$U = C^+ A R^+$$

	# PASSES	RUN TIME	SPACE USAGE	Error Bound
		$O(n(d+k/\varepsilon^2+1/\varepsilon^8)+d/\varepsilon^4)$		$ A - CUR _2 \le OPT_2 + \varepsilon A _F$
LTCUR[3]	2		$O(n/\varepsilon^4 + dk/\varepsilon^2)$	
		$O(n(d+k/\varepsilon^2+k^2/\varepsilon^8)+dk/\varepsilon^4)$		$ A - CUR _F \le OPT_F + \varepsilon A _F$
LSCUR[4]	2	$O(k\log k/\varepsilon^2 n^2 d + nd^2 k\log k/\varepsilon^2)$	O(nd)	$ A - CUR _F \le (2 + \varepsilon) \ OPT_F$

$$OPT_2 = ||A - A_k||_2$$
 $OPT_F = ||A - A_k||_F$

Детали реализации

Исходная весовая матрица содержит m^*n параметров. Используя CUR получаем два слоя D и E.

$$A = D * E \Rightarrow D = C \in \mathbb{R}^{m \times c}, E = U * R \in \mathbb{R}^{c \times n}$$

Общее количество параметров в D и E равно c * (m + n)

Коэффициент сжатия:

$$CR = \frac{mn}{mc + nc}$$

Схема разложения линейного слоя

А - исходная весовая матрица линейного слоя

D, E - полученные слои

Результаты (MNIST)

Compression rate

Compression rate

Результаты (MNIST)

Результаты (CIFAR10)

Результаты (CIFAR10)

MNIST						
Модель	Accuracy	Count Parameters	Best CR			
VGG-11	99,40%	132 863 336	1			
VGG-11 + SVD	99,44%	598 126	225			
VGG-11 + CUR	99,44%	4 162 058	29			

CIFAR-10						
Модель	Accuracy	Count Parameters	Best CR			
VGG-11	73,42%	132 863 336	1			
VGG-11 + SVD	75,08%	864 366	150			
VGG-11 + CUR	73,39%	10 000 906	12			

Вывод:

SVD и CUR позволяют сжимать линейные слои, не ухудшая общее качество модели

Выводы

- Сжатые модели не ухудшились по метрике на выбранных наборах данных
- SVD позволил значительно сжать слои VGG-11 без потери качества
- Гипотеза о том, что CUR разложение достигнет лучшего результата по сравнению с SVD, не подтвердилась (это может быть связано с использованием разных реализаций CUR)

Дальнейшие планы:

- Провести эксперименты с другими наборами данных и моделями
- Реализовать сжатие сверточных слоев

https://github.com/VasilyMozgovykh/nn_linear_compression

Литература

[1] Mai, An, et al. "VGG deep neural network compression via SVD and CUR decomposition techniques." 2020 7th NAFOSTED Conference on Information and Computer Science (NICS). IEEE, 2020.

[2] Hamm, Keaton, and Longxiu Huang. "Cur decompositions, approximations, and perturbations." (2019).

[3] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices iii:

Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1):184–206, 2006.

[4] Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009

