Xmoto - Solutie

Autori: Duta Vlad si Savin Tiberiu

Pentru fiecare tronson i, functia consum definita

$$f(v) = a_i * v + k_i, v <= v_i$$

$$f(v) = b_i * v + q_i, v > v_i$$

este formata din doua functii **liniare** si **monotone**. Cateva exemple de grafice ale acestor functii:

Daca sortam toate functiile fi dupa vi si suprapunem graficele obtinem o figura asemanatoare cu

Se observa ca pe fiecare interval $(v_i, v_{i+1}]$ consumul total $C(v) = suma(f_j(v))$ este o suma de functii liniare si monotone, deci este tot o functie liniara si monotona

De altfel, pe fiecare interval $(v_i, v_{i+1}]$, consumul total $C(v) = suma(x_i) * v + suma(y_i)$, unde

$$x_i = a_i$$
, $v \le v_i$, $x_i = b_i$ altfel

$$y_i = k_i$$
, $v \le v_i$, $y_i = q_i$ altfel

Daca $min(C(v_i), C(v_{i+1})) \le L \le max(C(v_i), C(v_{i+1}))$ atunci cu siguranta exista o valoare v in intervalul $(v_i, v_{i+1}]$ astfel incat C(v) = L. Valoarea efectiva se poate calcula fie prin calcul direct, fie prin cautare binara.

Orice solutii corecte de complexitate O(NlogN) sau O(NlogV) obtin 100 puncte Solutii de complexitate $O(N^2)$, $O(N^*V)$ obtin 50-60 puncte O solutie care trateaza doar cazul in care functia este monotona pe intreg intervalul [0, Vmax] si calculeaza rezultatul in O(NlogV) obtine 25 puncte Exista multe alte abordari ale problemei care in functie corectitudine si diverse optimizari obtin pana la 50 de puncte.