Partielle Ordnung / Halbordnung

Definition 5.1

 \not \sqsubseteq ist **reflexiv**: $\forall a \in A.a \sqsubseteq a$

 $\mathscr{F} \sqsubseteq \mathsf{ist}$ antisymmetrisch: $\forall a_1, a_2 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_1 \Rightarrow a_1 = a_2$

 \not \sqsubseteq ist transitiv: $\forall a_1, a_2, a_3 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_3 \Rightarrow a_1 \sqsubseteq a_3$

Satz 5.1

< ist eine partielle Ordnung auf $\mathbb N$

Beispiel Partielle Ordnung / Halbordnung

 \subset auf $\mathfrak{P}(M)$ für eine beliebige Grundmenge M.

🌽 Teilbarkeitsbeziehung | auf ℕ.

 \not Teilzeichenreihenbeziehung auf A^* definiert durch:

 $w' \sqsubseteq w \Leftrightarrow_{df} \exists w_1, w_2 \in A^*.w_1 \ w' \ w_2 = w$

(Beispiel: w' = "sdf", w = "asdfg")

Quasiordnungen / Präordnung

Definition 5.2

 \nearrow \sqsubseteq ist **reflexiv**: $\forall a \in A.a \sqsubseteq a$

 \nearrow \sqsubseteq ist transitiv: $\forall a_1, a_2, a_3 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_3 \Rightarrow a_1 \sqsubseteq a_3$

Beispiel Quasiordnungen / Präordnung

"kleiner oder gleich groß"-Beziehung bei Personen.

🌽 Teilbarkeitsbeziehung | auf Z.

31/01/2022

20:03

Notiz

Eine Quasiordnung $\sqsubseteq \subseteq A \times A$ induziert eine Äquivalenzrelation auf Adurch:

$$a_1 \sim a_2 \Leftrightarrow_{df} a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_1$$

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

Totale Quasiordnung

Definition totale Quasiordnung / Präferenzordnung

Eine Quasiordnung $\subseteq \subseteq A \times A$, in der **alle** Elemente vergleichbar sind, heißt totale Quasiordnung oder auch Präferenzordnung, d.h.:

$$\forall a_1, a_2 \in A.a_1 \sqsubseteq a_2 \lor a_2 \sqsubseteq a_1$$

Beispiel totale Quasiordnung / Präferenzordnung

Personen nach ihrer Größe geordnet.

 $\slash\hspace{-0.6cm}$ "Weniger mächtig"-Beziehung \le auf Mengensystemen.

Totale Ordnung

Definition totale Ordnung / lineare Ordnung

Eine partielle Ordnung $\sqsubseteq \subseteq A \times A$, in der **alle** Elemente vergleichbar sind, heißt totale Ordnung oder auch lineare Ordnung, d.h.:

$$\forall a_1, a_2 \in A.a_1 \sqsubseteq a_2 \lor a_2 \sqsubseteq a_1$$

Beispiel totale Ordnung / lineare Ordnung

< auf \mathbb{N} .

Striktordnungen

Definition Striktordnungen

Zu einer gegebenen Quasiordnung \sqsubseteq lässt sich die zugehörige *Striktordnung* \sqsubseteq definieren durch:

$$a_1 \sqsubset a_2 \Leftrightarrow a_1 \sqsubseteq a_2 \land a_1 \not\sim a_2$$

Lemma 5.1

 \not \sqsubseteq ist transitiv, d.h.: $\forall a_1, a_2, a_3 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_3 \Rightarrow a_1 \sqsubseteq a_3$

Folgerung: \Box ist **irreflexiv**, d.h.: $\forall a \in A.a \not\sqsubset a$

Partielle Ordnung aus Striktordnung

Definition Partielle Ordnung aus Striktordnung

Zu einer gegebenen Striktordnung \Box lässt sich die zugehörige partielle Ordnung definieren durch:

$$a_1 \sqsubseteq a_2 \Leftrightarrow_{df} a_1 \sqsubset a_2 \lor a_1 = a_2$$

Nachbarschaftsordnung

Definition

Wird eine Striktordnung auf die unmittelbar benachbarten Abhängigkeiten reduziert, so entsteht die Nachbarschaftsordnung \square_N , definiert durch:

$$a_1 \sqsubseteq_N a_2 \Leftrightarrow_{df} a_1 \sqsubseteq a_2 \land \not\exists a_3 \in A.a_1 \sqsubseteq a_3 \sqsubseteq a_2$$

Noethersche Quasiordnung

Definition

Eine Quasiordnung (M, \sqsubseteq) ist genau dann Noethersch, wenn es in M keine unendliche, echt absteigende Kette $x_0 \sqsupset x_1 \sqsupset x_2 \ldots$ gibt.

Beispiel

- 5.3 Noethersch partielle Ordnungen
 - ≤ auf N ist Noethersch, denn jede nichtleere Teilmenge enthält sogar ein kleinstes Element.
 - \red Die Teilzeichenreihenbeziehung auf A^* ist Noethersch.
 - $\mathscr{F}\subseteq\mathsf{ist}$ Noethersch auf $\mathfrak{P}(M)$ für jede endliche Grundmenge M.