Análisis de derivabilidad de carga del modo vial al modo ferroviario

Año base 2014

Análisis de derivabilidad de carga del modo vial al modo ferroviario Año base 2014

INDICE DE CONTENIDO

1. INTRODUCCIÓN	3
2. ANÁLISIS DE DEMANDA	4
2.1. ZONIFICACIÓN	4
2.2. DEMANDA POTENCIAL DERIVABLE DEL MODO VIAL	7
2.2.1. MATRICES OD VIALES	7
2.2.2. CRITERIOS DE DERIVABILIDAD	11
2.3. RESULTADOS	12
2.4. IMPACTO REGIONAL	21

INDICE DE ILUSTRACIONES

Ilustración 1 Mapa de zonas y centroides	5
Ilustración 2 Asignación de carga a la red vial (2014)	. 10
Ilustración 3 Lineas de deseo de demanda potencial Total	. 14
Ilustración 4 Lineas de deseo de demanda potencial Granos	. 15
llustración 5 Lineas de deseo de demanda potencial Industrializados	. 16
llustración 6 Lineas de deseo de demanda potencial Minería	. 17
Ilustración 7 Lineas de deseo de demanda potencial Regionales	. 18
Ilustración 8 Lineas de deseo de demanda potencial Semiterminados	. 19
Ilustración 9 Zonas impactadas como origen de carga	. 21
Ilustración 10 Zonas impactadas como destino de carga	. 22

INDICE DE TABLAS

Tabla 1 Códigos de zonas	6
Tabla 2 Listado de productos estimados en relevamiento de OD vial	8
Tabla 3 Porcentajes de derivación por grupo de productos	12
Tabla 4 Principales orígenes y destinos de la carga derivable	13
Tabla 5 Matriz OD de carga notencialmente derivable al FECC	20

1. INTRODUCCIÓN

El presente informe expone un trabajo de generación de bases de información y desarrollos metodológicos, útiles a la discusión y al análisis sobre el potencial del sistema ferroviario de cargas en el país.

La red ferroviaria argentina es extensa y compleja y lo fue aún más en el pasado, llegando a una longitud del orden de los 45.000 km. Actualmente se explotan aproximadamente 19 mil kilómetros (sumando los que corresponden a servicios interurbanos de todo el país y metropolitanos del AMBA). El resto se encuentra desactivado o depredado. Esa longitud, el diferimiento casi permanente de mantenimiento e inversiones, así como las complejidades propias de la geografía y de las diferentes características técnicas, hacen que el estado general de la red sea deficiente.

Concomitantemente, una de principales limitaciones del Sistema Ferroviario Nacional de Cargas (SFC) es la baja densidad, en referencia a la cantidad de toneladas que circulan en promedio por cada kilómetro de red en operación, que está en el orden de las 475 mil¹ toneladas por año por kilómetro de vía. Esto genera una limitación estructural en la capacidad del SFC de proveer los recursos necesarios para su mejora y expansión, principalmente en lo que se refiere a la infraestructura.

Los sistemas de gestión (empresa pública, concesiones integrales, sus respectivas renegociaciones y el rol del Estado desempeñado en cada caso) no han sido capaces de lograr un esquema sustentable de mantenimiento y renovación de la infraestructura ferroviaria. El SFC solo ha sido capaz de proveer al mantenimiento parcial de la red y hay creciente consenso respecto a que la inversión pública tendrá que tener un rol sustantivo en la inversión en infraestructura ferroviaria.

En este marco, como primer paso a la hora de avanzar desde el planteo de objetivos genéricos hacia lineamientos de política realizables para el sector, resulta necesario establecer el potencial de demanda del sistema ferroviario de cargas.

En relación a ello, es necesario señalar que el potencial de demanda del FFCC está definido, principalmente, por la carga que actualmente se transporta en modo vial, y que podría derivarse al modo ferroviario.

Para determinar dicha carga, se recurrió a la base de información recopilada en el documento "Estudio Nacional de Cargas – Matrices origen destino" desarrollado por la actual Dirección Nacional de Planificación de Transporte de Cargas y Logística del Ministerio de Transporte de la Nación. La misma contiene la estimación de matrices OD viales con información productiva y de transporte para el año 2014³. Luego se establecieron criterios que permiten, bajo supuestos generales, establecer la potencialidad de derivación de carga del modo vial al modo ferroviario.

Más allá de la justeza o corrección de estos valores, que han sido objeto de varias revisiones y ajustes antes de su publicación, entendemos que el aporte de este documento está dado por explicitar criterios técnicos, fuentes, valores y métodos de estimación, de manera tal que pueda ser objeto de evaluación y, sobre todo, ser utilizado como insumo para, entre otras cosas, el desarrollo de un plan de inversiones para el sector.

³ Último año con información completa disponible al momento de elaboración del Informe. La actualización al 2016 del Estudio de Matrices OD se publicará a la brevedad, y con ella podrá realizarse una revisión del presente.

¹ Aunque se advierten grandes diferencias al analizar cada línea en forma separada. Según datos de CNRT del año 2016, los valores correspondientes a cada una, son (en miles):

FEPSA FERROSUR ROCA BCYL URQUIZA NCA BCYL SAN MARTÍN BCYL BELGRANO
593 646 56 1032 339 141

² Disponible en https://www.argentina.gob.ar/transporte/cargas-y-logistica/modelo-de-transporte/matrices-origen-destino-de-cargas

2. ANÁLISIS DE DEMANDA

Como se mencionara, resulta indispensable alcanzar un entendimiento cabal de la dinámica de los flujos actuales y potenciales de transporte ferroviario de cargas, a fin de identificar las intervenciones necesarias en la infraestructura y establecer un orden de prioridad de las mismas.

Para el caso de la carga que actualmente utiliza el modo ferroviario, se cuenta con las bases de información de la CNRT confeccionadas con las declaraciones de los distintos operadores, que cuentan con el detalle de trenes corridos a lo largo del año, tipo de carga, volumen transportado, origen-destino (OD) por estaciones, entre otros datos. El Informe "Transporte Ferroviario de Cargas en Argentina" realizado por esta Dirección Nacional contiene un análisis al respecto⁴.

Para determinar la carga potencial del modo, en primer lugar se recurrió a la base de información recopilada en el "Estudio Nacional de Cargas – Matrices origen destino" desarrollado por la actual Dirección Nacional de Planificación de Transporte de Cargas y Logística del Ministerio de Transporte de la Nación. Dicha base contiene la estimación de matrices OD viales con información productiva y de transporte para el año 2014.

Sobre dicha base se establecieron determinados criterios que permiten, bajo supuestos generales, establecer la potencialidad de derivación de carga del modo vial al modo ferroviario.

A continuación se desarrolla la metodología utilizada, y los resultados obtenidos.

2.1. ZONIFICACIÓN

El análisis de demanda (tanto actual como potencial) a partir de matrices OD requiere, en primer lugar, la zonificación del área de estudio. En este sentido, se establece en el "Estudio Nacional de Cargas – Matrices origen destino":

"Como primer paso para la elaboración de matrices OD, es necesario contar con una zonificación, a estos fines el territorio nacional fue dividido en 123 zonas de tráfico compuestas por grupos de departamentos o partidos, con un criterio de homogeneidad⁶. Para cada zona se determinó un centroide que se corresponde con los centros de población donde está representado el grueso de la generación o atracción de tráfico.

Dicha zonificación fue elaborada sobre la base de la empleada en el estudio "Transporte Automotor de Cargas en Argentina: una Estimación de Orígenes y Destinos – 2010" realizado por Alberto Müller y Agustín Benassi (2014 CESPA – FCE – UBA). Se han agregado zonas que allí no existían, por estar concentrado ese estudio en la problemática ferroviaria. Asimismo, se han introducido redefiniciones con el propósito de preservar la integridad del territorio provincial, evitando la posibilidad de que una zona abarque más de una Provincia. La única excepción a este criterio ha sido el caso de la CABA, que se ha fusionado con el área de la Provincia de Buenos Aires comprendida por la Región Metropolitana.

Las zonas son entendidas como agregación de departamentos (partidos, en la Provincia de Buenos Aires). Estas tienen la funcionalidad de representar las áreas generadoras (origen) y atractoras (destinos) de viajes, para determinar el estudio de los flujos de movimientos entre las mismas (pares origen destino)".

⁴ Disponible en https://www.argentina.gob.ar/transporte/cargas-y-logistica/documentos-tecnicos

⁵ Disponible en https://www.argentina.gob.ar/transporte/cargas-y-logistica/modelo-de-transporte/matrices-origen-destino-de-cargas

⁶ Homogénea en términos de tráfico.

El resultado se ilustra en el siguiente mapa:

ILUSTRACIÓN 1 MAPA DE ZONAS Y CENTROIDES

La codificación es la siguiente:

TABLA 1 CÓDIGOS DE ZONAS

ID	CÓDIGO	PROVINCIA	CENTROIDE
1	ACA	Salta	Cafayate
2	ACP	Salta	Salta
3 4	AME	Salta	Metan
-	ATA	Salta	Tartagal
5	BAR	Buenos Aires	Arrecifes
6	BBB	Buenos Aires	Bahía Blanca
7	BBO	Buenos Aires	Bolívar
8	BBR	Buenos Aires	Bragado
9	BCA	Buenos Aires	Carhue
10	BCB	Buenos Aires	Chacabuco
11	BCH	Buenos Aires	Chascomus
12	BCP	Buenos Aires	Caba
13	BDA	Buenos Aires	Darregueira
14	BDO	Buenos Aires	Dorrego
15	BGV	Buenos Aires	Gral. Villegas
16	BJU	Buenos Aires	Junín
17	BLF	Buenos Aires	Las Flores
18	BLI	Buenos Aires	Lincoln
19	BLO	Buenos Aires	Lobos
20	BMA	Buenos Aires	Maipú
21	BME	Buenos Aires	Mercedes
22	ВМО	Buenos Aires	Monte
23	BMP	Buenos Aires	Mar Del Plata
24	BNE	Buenos Aires	Necochea
25	BNU	Buenos Aires	9 De Julio
26	BOL	Buenos Aires	Olavarría
27	BPE		
		Buenos Aires	Pergamino
28	BPI	Buenos Aires	Pigue
29	BPO	Buenos Aires	Pehuajo
30	BPR	Buenos Aires	Coronel Pringles
31	BSA	Buenos Aires	S.A. Areco
32	BSG	Buenos Aires	S.A. De Giles
33	BSN	Buenos Aires	San Nicolás
34	BSO	Buenos Aires	Saladillo
35	BSP	Buenos Aires	San Pedro
36	BTA	Buenos Aires	Tandil
37	BTL	Buenos Aires	Trenque Lauquen
38	BTR	Buenos Aires	Tres Arroyos
39	BZA	Buenos Aires	Zarate
40	CBV	Córdoba	Bell Ville
41	ССР	Córdoba	Córdoba
42	CDF	Córdoba	Dean Funes
43	CHR	Córdoba	Huinca Renanco
44	CLA	Córdoba	Laboulaye
45	CLC	Córdoba	La Carlota
46	CRC	Córdoba	Rio Cuarto
47	CSF	Córdoba	San Francisco
48	CVD	Córdoba	Villa Dolores
49	CVM	Córdoba	Villa Maria
50	DCH	La Rioja	Chepes
51	DCO	La Rioja	Chilecito
52	DCP	La Rioja	La Rioja
53	ECO	Entre Ríos	Concordia
54	ECP	Entre Ríos	Paraná
55	EGU	Entre Ríos	Gualeguaychu
56	ENO	Entre Ríos	Nogoya
57	ERT	Entre Ríos	Rosario Del Tala
	FCL		Clorinda
58		Formosa	
59	FCP	Formosa	Formosa
60	FLL	Formosa	Las Lomitas
61	GCD	Santiago Del Estero	C.Dora
62	GCP	Santiago Del Estero	Santiago Del Estero

	,		
ID	CÓDIGO	PROVINCIA	CENTROIDE
63	GFR	Santiago Del Estero	Frías
64	GMQ	Santiago Del Estero	Monte Quemado
65	GQU	Santiago Del Estero	Quimili
66	GSU	Santiago Del Estero	Sumampa
67	НСР	Chaco	Resistencia
68	HJC	Chaco	Juan Jose Castelli
69	HSP	Chaco	Presidencia Sáenz Peña
70	HVA	Chaco	Villa Ángela
71	JCP	San Juan	San Juan
72	JJA KAN	San Juan Catamarca	Jachal
73	KBE		Andalgala Belén
	KCP	Catamarca	
75 76	LBA	Catamarca San Luis	Catamarca
77	LCP	San Luis	Buena Esperanza San Luis
78	LVM	San Luis	V. Mercedes
79	MCP	Mendoza	Mendoza
80	MSR	Mendoza	San Rafael
81	NCP	Misiones	Posadas
82	NIG	Misiones	Iguazú
83	NOB	Misiones	Oberá
84	OCP	Tierra Del Fuego	Ushuaia
85	ORG	Tierra Del Fuego	Rio Grande
86	PCP	La Pampa	Sta. Rosa
87	PGA	La Pampa	Gral. Acha
88	PGP	La Pampa	Gral. Pico
89	PVE	La Pampa	25 De Mayo
90	QCP	Neuquén	Neuquén
91	QZA	Neuquén	Zapala
92	RBA	Rio Negro	Bariloche
93	RCP	Rio Negro	Viedma
94	RGR	Rio Negro	General Roca
95	RIJ	Rio Negro	Ing. Jacobacci
96	RRC	Rio Negro	Rio Colorado
97	RSA	Rio Negro	S.A. Oeste
98	SCE	Santa Fe	Ceres
99	SCG	Santa Fe	Cañada De Gómez
100	SCP	Santa Fe	Santa Fe
101	SRA	Santa Fe	Rafaela
102	SRE	Santa Fe	Vera
103	SRO	Santa Fe	Rosario
104		Santa Fe	San Justo
105	SVC	Santa Fe	Villa Constitución
	SVT	Santa Fe	Venado Tuerto
107	TCD	Tucumán	Concepción
108	TCP	Tucumán	Tucumán
109	TLA UCP	Tucumán Chubut	Lamadrid Trelew
111	UCR	Chubut	Comodoro Rivadavia
111	UES	Chubut	Esquel
113	WCP	Corrientes	Corrientes
114	WES	Corrientes	Esquina
115	WGO	Corrientes	Gova
116	WMC	Corrientes	Monte Caseros
117	WPL	Corrientes	Paso De Los Libres
118	YCP	Jujuy	Jujuy
119	YHU	Jujuy	Humahuaca
120	YLE	Jujuy	Ledesma
121	ZCO	Santa Cruz	Caleta Olivia
122	ZCP	Santa Cruz	Rio Gallegos
123	ZEL	Santa Cruz	El Calafate
		1	·

2.2. DEMANDA POTENCIAL DERIVABLE DEL MODO VIAL

El potencial de demanda del FFCC está definido principalmente por la carga que actualmente se transporta en modo vial y que, cumpliendo determinados criterios y bajo ciertas circunstancias, podría derivarse al modo ferroviario.

Cabe mencionar que al considerar exclusivamente la carga que en la actualidad utiliza el modo vial⁷, no se contempla la demanda que podría surgir en el futuro, y que hoy no existe. Esto tiene singular importancia en el caso de proyectos específicos, como por ejemplo Vaca Muerta. Por lo tanto, se puede entender que el presente análisis subestima el potencial real futuro del sistema.

2.2.1. MATRICES OD VIALES

Entonces, en primer lugar debe establecerse la carga que actualmente se transporta por modo vial. Para ello se utilizaron las estimaciones realizadas en el "Informe Matriz Origen-Destino vial de Transporte de Cargas" sobre el transporte vial.

En dicho Estudio, "se realizó un análisis de las actividades productivas principales de todas las provincias del país y en base a ello se determinaron 106 productos relevantes para la economía y el transporte. Primero se estableció la producción de cada uno en término de toneladas anuales y luego se la localizó geográficamente en las 123 zonas de transporte utilizando distintas fuentes de información primaria que garantizan la relevancia de los datos. Este procedimiento permite determinar los orígenes de la carga.

La determinación de los destinos, reviste una complejidad adicional. Para el caso de los granos, el dato de transporte, y por ende el destino de la carga, existe a partir del documento Carta de Porte. Para el resto de los productos que no son granos, fue necesario establecer una clasificación adicional dado que al no contar con información de transporte, los destinos deben inferirse a partir de supuestos respecto a los destinos de consumo interno o exportación.

Una vez determinados los orígenes y destinos de cada uno de los productos a estudiar⁸ se realizó la distribución al interior de cada una de las matrices, para ello fueron necesarios datos de la localización de actividades productivas afines (consumo industrial o intermedio) y la localización de los consumidores finales. Este procedimiento de distribución de cargas entre los pares OD, se realizó a partir de un complemento de Excel⁹ que permite resolver el problema de "minimización de costos" (expresado a partir de las distancias de transporte). Este problema se resuelve en dos etapas:

- Etapa I: se distribuyen las cargas de exportación, que recorren "distancias mínimas" a los puertos y a las fronteras.
- Etapa II: Se distribuye el resto del tonelaje entre los pares OD, sujeto a la distribución de tonelaje de exportación, teniendo en cuenta los niveles de Consumo Interno y Consumo Industrial de cada zona a partir de "recorridos mínimos". Existen casos especiales tales como los automóviles por ejemplo cuya producción se distribuye a partir de los niveles de Producto Bruto Geográfico de cada una de las zonas de transporte."10

¹⁰ Para profundizar los aspectos metodológicos y los resultados referidos a la estimación de las Matrices OD viales, consultar dicho Estudio.

⁷ Por "actualidad" debe entenderse el año base correspondiente a la información disponible

⁸ Bordes de la matriz.

⁹ Solver.

El proceso deriva en 106 matrices OD viales, una por cada producto relevado. A su vez, los productos fueron agrupados en 7 categorías. Los resultados son los siguientes:

TABLA 2 LISTADO DE PRODUCTOS ESTIMADOS EN RELEVAMIENTO DE OD VIAL

GRUPO	PRODUCTO	Toneladas	Dist. Medi
	Avícola	1.940.000	29
	Bovino	2.674.095	23
CARNES	Caprino	747	55
	Ovino	60.338	1.81
	Porcino	450.954	30
	Girasol	3.719.815	21
	Alpiste-Lenteja-Poroto-Mijo-Arveja-Otr.Leg	462.876	39
	Arroz	2.283.963	14
	Cebada	5.944.784	11
GRANOS	Maíz	40.820.556	23
	Soja	66.315.529	16
	Trigo	17.229.892	12
	Colza-Avena-Cártamo-Triticale	211.449	22
	Sorgo	3.086.743	17
	Maní-Lino-Centeno-Garbanzo-Otros	1.456.735	23
	Limón	953.179	75
	Mandarina	486.630	55
	Naranja	1.022.276	52
	Pomelo	131.000	98
	Ciruela	179.448	34
	Durazno	226.000	44
	Peras y Manzanas	1.770.000	88
	Papas	1.864.970	43
REGIONALES	Té	436.299	1.02
	Yerba	256.142	92
	Pescado	815.949	75
	Forestal	14.502.718	82
	Tabaco	228.212	59
	Lana Sucia	46.000	9!
	Vinos y Mostos	1.944.458	96
	Azúcar	1.997.268	1.12
	Algodón	485.856	7:
	Cuarzo	181.070	70
	Diatomita	189.772	98
	Esquisto Bituminoso	61.450	1.00
	Feldespato	163.792	72
	Grafito	900	1.00
	Granulado Volcánico	18.426	1.00
	Mica	209	7
	Perlita	22.679	1.00
	Piedra Pómez	7.320	9:
	Puzolana	54.254	1.03
	Talco	40.011	98
	Toba	58.580	1.00
	Tosca	8.988.445	46
	Vermiculita	90	6.
MINERÍA	Zeolita	848	9
	Arcillas	8.430.732	78
	Bentonita	275.432	78
	Caolín	46.386	97
	Pirofilita	5.873	93
	Arena p/ construcción	34.820.011	32
	Arena Silícea	673.253	49
	Canto Rodado	30.346.512	60
	Dolomita Triturada	1.269.454	36
	Triturados Pétreos	25.794.658	3!
	Carbón Mineral	173.848	2.55
	Turba		
		5.109	2.81
	Cadmio	115	91
	Cinc	28.038	95

Análisis de derivabilidad de carga del modo vial al modo ferroviario Año base 2014

GRUPO	PRODUCTO	Toneladas	Dist. Medi
	Plomo	29.911	98
	Asfaltita	28.381	1.21
	Baritina	16.265	1.54
	Boratos	388.796	1.09
	Calcita	192.824	78
	Celestina	700	1.65
	Fluorita	39.521	80
	Laterita	10.800	1.01
	Litio	7.317	1.13
	Sulfato de Magnesio	1.686	1.12
	Caliza	22.378.721	22
	Conchilla	573.749	61
	Yeso	1.424.420	62
	Arenisca	25.562	1.53
	Basalto	1.826.751	95
	Cuarcita	1.564.080	71
	Dolomita	948	68
	Granito	32.971	55
	Mármol Aragonita	25.688	91
	Mármol	20.924	95
	Mármol Ónix	252	1.19
	Piedra Laja	141.956	97
	Pórfido	6.095	1.44
	Serpentina	343.178	65
	Travertino	187.259	1.00
	Sal Común	1.503.008	68
	Sal de Roca	127	1.31
	Mineral de Hierro	502.798	1.05
	Plástico	1.845.557	41
	Caucho	68.972	46
	Aluminio Elaborado	295.921	73
	Aluminio Primario	457.920	17
EMITERMINADOS	Papel	4.382.629	52
	Acero	6.368.686	29
	Cemento	11.137.088	29
	Industria Maderera	7.943.861	20
	Maquinaria Agrícola	21.927	23
	Electrónica y electrodomésticos	200.054	1.74
	Vehículos	3.457.796	37
	Lácteos y derivados	1.671.802	25
NDUSTRIALIZADOS	Harinas y derivados	49.475.768	44
	Aceites y derivados	7.608.669	22
	Fertilizantes	2.986.232	35
	Cigarrillos	118.987	1.21
OMBUSTIBLES	Combustibles y Lubricantes	28.473.564	69
OTAL		443.452.434	55

Los flujos estimados entre pares OD para todo el país fueron asignados a la red vial utilizando el sistema de "caminos mínimos", ilustrando el resultado de dicho Estudio:

ILUSTRACIÓN 2 ASIGNACIÓN DE CARGA A LA RED VIAL (2014)

2.2.2. CRITERIOS DE DERIVABILIDAD

Una vez determinados los orígenes y destinos de la carga que utiliza el modo vial, se establecieron las restricciones y criterios que permiten constituir el potencial de derivación hacia el modo ferroviario.

En primer lugar, se establecieron restricciones sobre distancia mínima, y la máxima relación entre las distancias vial y ferroviaria, necesarias para permitir derivación. El cuadro que sigue debe interpretarse de la siguiente manera: por ejemplo, si la distancia ferroviaria entre un par O-D es de 700 kms, para que exista derivación la distancia vial debe ser, como mínimo, de 500 kms (es decir, la relación máxima entre ambas es de 1.4).

Si la distancia ferroviaria es	menor a 200 kms	no hay derivación	
	entre 200 y 400 kms	la relación entre la distancia	1,3
	entre 400 y 800 kms	ferroviaria y vial no puede ser mayor a	1,4
	mayor a 800 kms		1,5

Seguidamente se calcularon porcentajes de derivación dependientes de las características del flujo de cada par O-D:

- Tipo de producto: algunos productos tienen mayor "vocación ferroviaria" que otros. En el extremo con mayor potencial se encuentran los graneles agropecuarios y mineros, mientras que, con un criterio conservador, se establece que las carnes y los combustibles presentan nula capacidad de derivación.
- **Distancia de transporte**: se supone que a mayor distancia el FFCC es más competitivo, por lo que la derivación es mayor. El máximo potencial se alcanza a partir de los 500 kms, mientras que a menos de 200 kms no se admite derivación.
- Volumen anual transportado: el criterio es análogo al anterior. Cuanto mayor sea el volumen anual transportado, mayor será la derivación posible. El máximo se alcanza a partir de las 120 mil toneladas anuales, y es nula si no se alcanzan las 7 mil.

Para la determinación de los criterios mencionados (los porcentajes de derivación) se recurrió a información secundaria, comparaciones internacionales, y consultas a distintos actores involucrados en el sector.

La aplicación de estos criterios arrojó como resultado un universo de carga que podría derivarse al modo ferroviario, si el mismo contara con capacidad ilimitada, y las condiciones de operación fueran óptimas. Podría considerarse que dicho universo es el límite superior al que podría aspirar el ferrocarril en un escenario ideal sin restricciones de infraestructura, comerciales, operativas, de gestión, etc.

Los cuadros que siguen resumen los resultados de este ejercicio para cada grupo de productos. Los valores en porcentaje corresponden a la proporción de carga que se transporta por modo vial y que podría ser captada por el ferrocarril para cada tipo de producto y par origen-destino, de acuerdo a cada rango de distancia-volumen. Los productos que componen el grupo de Regionales, por sus características, fueron asociados individualmente a los otros Grupos.

TABLA 3 PORCENTAJES DE DERIVACIÓN POR GRUPO DE PRODUCTOS

Granos			Distanc	ia (km)	
Gra	1105	500	400	300	200
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	120.000	68,5%	57,4%	45,4%	34,3%
Volumen	82.333	57,4%	45,4%	34,3%	23,1%
anual (Top.)	44.667	45,4%	34,3%	23,1%	11,1%
(Ton.)	7.000	34,3%	23,1%	11,1%	0,0%

Minería			Distanc	cia (km)	
IVIIII	eria	500	400	300	200
\	120.000	51,0%	42,7%	33,8%	25,5%
Volumen	82.333	42,7%	33,8%	25,5%	17,2%
anual (Ton.)	44.667	33,8%	25,5%	17,2%	8,3%
(1011.)	7.000	25,5%	17,2%	8,3%	0,0%

Semiterminados		Distancia (km)			
		500	400	300	200
	120.000	40,3%	33,8%	26,7%	20,2%
Volumen anual (Ton.)	82.333	33,8%	26,7%	20,2%	13,6%
	44.667	26,7%	20,2%	13,6%	6,5%
	7.000	20,2%	13,6%	6,5%	0,0%

Industrializados			Distanc	ia (km)	
maustri	alizauos	500	400	300	200
Maliana	120.000	24,4%	20,4%	16,2%	12,2%
Volumen anual (Ton.)	82.333	20,4%	16,2%	12,2%	8,2%
	44.667	16,2%	12,2%	8,2%	4,0%
(1011.)	7.000	12,2%	8,2%	4,0%	0,0%

2.3. RESULTADOS

Como resultado del ejercicio se obtuvieron 106 matrices origen-destino de carga entre las 123 zonas del país, potencialmente derivables al modo ferroviario. En suma, se identificaron 55.056.285 toneladas (año base 2014), que representan el 12.4% de las cargas que se estimaron en el modo vial.

La composición por grupo de productos se presenta en los gráficos que continúan.

Se observa que los graneles, tanto del sector agropecuario como de la minería (sumados a algunos productos semiterminados, como el cemento), explican las tres cuartas partes de los volúmenes potenciales.

Carga potencialmente derivable

Respecto a los principales orígenes y destinos de la carga potencial, tal como sucede con la carga que actualmente utiliza el modo ferroviario, se observa una marcada concentración: un tercio de la carga se origina en sólo 3 zonas, mientras que en el caso de los destinos, los 2 principales puertos de exportación explican dos tercios del total.

TABLA 4 PRINCIPALES ORÍGENES Y DESTINOS DE LA CARGA DERIVABLE

ORIGENES					DESTINOS			
ID	ZONA	TONELADAS	%	ID	ZONA	TONELADAS	%	
26	OLAVARRIA	8.684.792	16%	12	CABA	22.010.507	40%	
103	ROSARIO	5.856.971	11%	103	ROSARIO	14.860.742	27%	
79	MENDOZA	4.627.781	8%	6	BAHIA BLANCA	1.557.331	3%	
41	CORDOBA	4.331.184	8%	41	CORDOBA	1.095.702	2%	
49	VILLA MARIA	2.579.346	5%	106	VENADO TUERTO	971.958	2%	
64	MONTE QUEMADO	1.908.998	3%	118	JUJUY	841.538	2%	
12	CABA	1.675.398	3%	2	SALTA	838.182	2%	
45	LA CARLOTA	1.631.970	3%	79	MENDOZA	804.652	1%	
46	RIO CUARTO	1.576.333	3%	4	TARTAGAL	725.751	1%	
69	PRES. SAENZ PEÑA	1.355.002	2%	108	TUCUMAN	664.488	1%	
	RESTO	20.828.511	38%		RESTO	10.685.432	19%	
	TOTAL	55.056.285	100%		TOTAL	55.056.285	100%	

La representación gráfica de los resultados consiste en una de las mejores herramientas para continuar el análisis. Por ello, se generaron sendos mapas que representan las líneas de deseo (se señalan los principales pares OD y se los conecta con una línea recta cuyo grosor indica la importancia relativa de cada par) de la carga identificada total, y por cada grupo de productos: granos, minería, regionales, industrializados y semiterminados.

Esto permite identificar rápidamente los pares que presentan la mayor potencialidad.

ILUSTRACIÓN 3 LINEAS DE DESEO DE DEMANDA POTENCIAL TOTAL

ILUSTRACIÓN 4 LINEAS DE DESEO DE DEMANDA POTENCIAL GRANOS

ILUSTRACIÓN 5 LINEAS DE DESEO DE DEMANDA POTENCIAL INDUSTRIALIZADOS

ILUSTRACIÓN 6 LINEAS DE DESEO DE DEMANDA POTENCIAL MINERÍA

ILUSTRACIÓN 7 LINEAS DE DESEO DE DEMANDA POTENCIAL REGIONALES

ILUSTRACIÓN 8 LINEAS DE DESEO DE DEMANDA POTENCIAL SEMITERMINADOS

Análisis de derivabilidad de carga del modo vial al modo ferroviario Año base 2014

La tabla que sigue contiene la matriz OD completa entre las distintas zonas de transporte (las zonas omitidas no presentan carga derivable al FFCC), con el agregado de los 106 productos relevados. En el anexo se adjunta la misma información en formato de planilla de cálculo.

TABLA 5 MATRIZ OD DE CARGA POTENCIALMENTE DERIVABLE AL FFCC

2.4. IMPACTO REGIONAL

Los mapas que siguen representan, respectivamente, las zonas de origen y destino de la carga potencial que podría captar el FFCC. Esto nos ofrece un panorama general y una primera aproximación del impacto que se generaría a nivel territorial con la captación de dicha carga. La graduación de color indica la participación relativa de cada zona en el total.

ILUSTRACIÓN 9 ZONAS IMPACTADAS COMO ORIGEN DE CARGA

Análisis de derivabilidad de carga del modo vial al modo ferroviario Año base 2014

ILUSTRACIÓN 10 ZONAS IMPACTADAS COMO DESTINO DE CARGA

