强化学习中值迭代算法的实现

重点

算法实现的重点是理解:值迭代算法和策略迭代算法都是交替进行value update和policy update,来求解最优策略。两个策略的原理具体可以参考文章 什么是值迭代和策略迭代算法?

一、算法实现

这次我们来实现Value迭代算法

迭代链路: $V_0 \rightarrow \pi_0 \rightarrow V_1 \rightarrow \pi_1 \dots$

已知条件:

- p(r|s,a) agent在状态s采取动作a的奖励r的概率,也就是及时奖励分布函数
- P(s'|s,a) agent在状态s采取动作a之后转移到状态s'的概率,也就是状态转移分布函数
- 初始化的\/

值迭代算法伪代码

While
$$\|V_{k+1} - V_k\| < \theta$$
:

For s in S:

#遍历每一个状态

For a in Action(s):

#利用 state value 求 action value

$$q(s,a) = \sum_{r} p(r \mid s,a)r + \gamma \sum_{s'} p(s' \mid s,a)V_{k}(s')$$

#对于状态 s, 求解 action value 中的最大值

$$a^* = \arg\max q(s, a)$$

#策略更新 policy update,将策略指向刚才求出的最大值

 π (a|s) = 1 if a=a* else 0

#值更新 value update, 利用刚才的策略, 重新计算新的 state value V= max q(s,a)

里面的变量V代表state value,在每轮迭代中的值都不一样,实际编程需要加上迭代轮次k。

停止迭代的条件,是评估两轮之间的V的差值是否足够小, θ 是一个很小的数,实际计算是通过求差值的最大值小于 θ 来实现控制条件 $\|V_{k+1}-V_k\|\leq \theta$ 求的是。

二、python实现

```
def value iteration(grid, theta=1e-4, max iter = 1000):
#值迭代算法
#初始化state 函数
V = np.zeros((grid.rows, grid.cols))
for Iter in range(max_iter):
    delta = 0
    new_V = np.copy(V)
    print("-----", Iter)
    for i in range(grid.rows):
        for j in range(grid.cols):
           state = (i,j)
           if state in grid.terminal states:
               #终止状态不更新
               #动作为原地不动
               new V[i,j] = 1.0 + grid.gamma*V[i,j]
               continue
           #计算所有可能动作的值函数
           max value = -np.inf
           for action in grid.actions:
               next state = grid.get next state(state, action)
               reward = grid.get reward(state, next state, action)
               #贝尔曼最优方程更新 求解statue value
               value = reward + grid.gamma * V[next_state]
               if value > max value:
                   max value = value
```

value_iteration函数是我们的值迭代算法的核心代码。现在我们以网格世界为例子,了解这个算法是怎么找到最优策略的。

三、一个简单的网格世界例子

网格世界中,agent需要找到到达终点的最优策略。

首先我们有第一种最简单的网格,就是只有一个终点,并且奖励函数也比较简单,到达终点奖励1,其他状态奖励0。

		tate Values , delta=1.			
1	0.000	0.000	0.000	0.000	0.000
2 -	0.000	0.000	0.000	0.000	0.000
3 -	0.000	0.000	1.000	0.000	0.000
4 -	0.000	1.000	1.000 T	1.000	0.000
5 -	0.000	0.000 1	1.000	0.000	0.000

图1: 最简单的网格 图2: 1轮迭代后的state value分布和策略

那么我们现在开始在这个网格上运行这个算法,看一下state value和policy的变化。从图2中可以看到,经过一次迭代之后,部分网格中的state value已经从初始值0改变为1.0。网格中的箭头,代表agent在这个state找到的最优方向,没有箭头的代表算法现在还没有计算到。我们可以看到刚开始的时候,大部分state value都是0。state value=1.0的网格有五个,坐标分别是(3,3),(4,2),(4,4),(5,3)和终点(4,3)。

那么为什么1轮迭代之后,这些网格的state value是1.0呢?

下面我们通过代码和贝尔曼方程计算一下。 首先从上节课回顾state value的定义:

状态价值函数: state value function也叫做**state value 对应标识V,这个V和状态函数s和策略π有关,代表在给定策略π的情况下,状态s的期望价值(从当前状态开始到最终状态时走完一条trace,agent所获得的累加回报的期望。)

return的定义: return是从某个时刻开始, agent未来获得的所有奖励的累计值。在数学上用Gt表示。 公式如下:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

先看下终点网格(4,3),由于是终点,所以及时奖励 $R_{t+1}=1$,当agent到达终点时,我们肯定是期望agent保持在这个位置,所以 R_{t+2},R_{t+3} 都是对应状态(4,3)的value,由于初始化V=0,第一轮迭代时, $V_0[4,3]=0$ 所以

$$V_1[4,3] = 1 + \gamma V_0[4,3] + \gamma^2 V_0[4,3] + \dots$$

= 1 + 0 + 0 + \dots
= 1

在看下网格(3,3),由于策略是向下,所以及时奖励 $R_{t+1}=1$,由于初始化V=0,第一轮迭代时, $V_0=0$ 所以 R_{t+2} , R_{t+3} 无论是哪个状态s的value 值都是0。

$$V_1[3,3] = 1 + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = 1 + 0 + 0 + \dots = 1$$

对应网格(3,3)我们可以看到如果agent选择其他动作('0','↑', '←', '→')对应的及时奖励都是0,所以按照value 迭代的算法,策略会被更新为奖励最大的动作,即'↓',也是图2中展示的策略。 同样对应其他网格(4,2),(4,4),(5,3)可以同样计算。

			and Policy 0.3486784								Visualizatio						and Policy		
	3.423 ↓	4.152 ↓	4.962 ↓	4.152 J	3.423		1	5.467 ↓	6.196 ↓	7.006 J	6.196 J	5.467 ↓		1-	6.179 ↓	6.908 ↓	7.718 J	6.908 J	6.179
! -	4.152 ↓	4.962 ↓	5.862	4.962 ↓	4.152 ↓		2 -	6.196 ↓	7.006 ↓	7.906 J	7.006	6.196 ↓	4,00	2 -	6.908 ↓	7.718 ↓	8.618 J	7.718 J	6.908
	4.962 ↓	5.862 ↓	6.862	5.862	4.962 ↓		3 -	7.006 ↓	7.906 J	8.906 J	7.906 J	7.006 ↓		3 -	7.718 ↓	8.618 J	9.618 J	8.618 J	7.718
ı -	5.862 →	6.862 →	6.862 T	6.862 ←	5.862 ←		4 -	7.906 →	8.906 →	8.906 T	8.906 ←	7.906 ←		4 -	8.618 →	9.618 →	9.618 T	9.618 ←	8.618 ←
-	4.962 ↑	5.862 ↑	6.862 †	5.862 ↑	4.962 1		5 -	7.006 ↑	7.906 †	8.906 †	7.906 †	7.006 1		5 -	7.718 ↑	8.618 †	9.618 †	8.618	7.718
-			and Policy 0.0147808			-	+				Visualizatio		-				and Policy 0.0017970		
	6.428 ↓	7.157 ↓	7.967 J	7.157	6.428 ↓		1	6.515	7.244 J	8.054 J	7.244 J	6.515 ↓		1	6.545 ↓	7.274 J	8.084 J	7.274 J	6.545
! -	7.157 ↓	7.967 ↓	8.867 J	7.967 J	7.157 J		2 -	7.244 ↓	8.054 J	8.954 J	8.054 J	7.244 J		2 -	7.274 ↓	8.084 J	8.984 J	8.084	7.274
1-	7.967 ↓	8.867	9.867 J	8.867 J	7.967 ↓		3 -	8.054	8.954 J	9.954 ↓	8.954 J	8.054 J		3 -	8.084	8.984 J	9.984 J	8.984 J	8.084
1-	8.867 →	9.867 →	9.867 T	9.867 ←	8.867 ←		4 -	8.954 →	9.954 →	9.954 T	9.954 ←	8.954 ←		4 -	8.984 →	9.984	9.984 T	9.984 ←	8.984 ←
	7.967	8.867	9.867	8.867	7.967		5 -	8.054	8.954	9.954	8.954	8.054		5 -	8.084	8.984	9.984	8.984	8.084

在iter=40的时候,delta已经是0.0147,代表两轮算法之间state value变化已经很小了。

		tate Values), delta=0 2			
1	6.555	7.284	8.094	7.284	6.555
	↓	J	↓	J	↓
2 -	7.284	8.094	8.994	8.094	7.284
	↓	↓	↓	↓	↓
3 -	8.094	8.994	9.994	8.994	8.094
	↓	↓	↓	↓	↓
4 -	8.994	9.994	9.994	9.994	8.994
	→	→	T	←	←
5 -	8.094	8.994 †	9.994 †	8.994 ↑	8.094 ↑

+	Iter=80), delta=0	0.0002184	7450052	892015
	6.559 ↓	7.288 J	8.098 J	7.288 J	6.559
! -	7.288	8.098	8.998	8.098	7.288
	↓	J	J	↓	↓
3 -	8.098	8.998	9.998	8.998	8.098
	J	↓	↓	↓	J
1 -	8.998	9.998	9.998	9.998	8.998
	→	→	T	←	←
5 -	8.098	8.998 †	9.998 †	8.998 †	8.098

-				Visualizatio	
1 -	6.560 ↓	7.289 ↓	8.099 ↓	7.289 ↓	6.560 ↓
2 -	7.289 ↓	8.099 ↓	8.999 ↓	8.099	7.289 ↓
3 -	8.099 ↓	8.999 ↓	9.999 J	8.9 99	8.099
4 -	8.999	9.999 →	9.999 T	9.999 ←	8.999 ←
5 -	8.099 †	8.999 ↑	9.999 ↑	8.999 ↑	8.099 ↑

最终经过88次迭代之后,delta已经到了我们规定的最小值,state value也基本上没有变化了,说明我们已经找到了最优值。下面看一下最优策略和对应的state value。

图3: 最优策略和state value

图4: 网格世界升级版GridV3

观察图3可以看出,无论是在哪个网格,算法所找出的最优策略都是指向终点的。这个也是value迭代算法的价值。 当然这个是最简单的网络,最优策略的训练也比较简单,但是可以很好的帮助我们理解value 迭代算法的过程。

四、复杂的网格世界例子

下面我们换一个复杂的网格世界,看下value 迭代算法怎么找到最优路径。

如图4所示,这个就是我们网格世界的升级版GridV3,这个和上个网格的区别是,增加了禁止区域(红色网格,agent进入之后会获得的奖励分数是负的),增加了边界检测(agent试图突破边界时,获得的奖励也是负的)。

+			and Policy .0000000		
1	0.000	0.000 0	0.000	0.000	0.000
2 -	0.000	0.000	0.000	0.000	0.000
3 -	0.000	0.000	1.000	0.000	0.000
4 -	0.000	1.000	1.000 T	1.000	0.000 0
5 -	0.000	0.000	1.000 †	0.000	0.000

			and Policy).3486784		
1-	0.349 →	0.736 →	1.167 →	1.645 ↓	2.176 J
2 -	0.000	0.349	1.645	2.176 ↓	2.767
3 -	0.000	0.000	6.862	2.767 →	3.423 ↓
4 -	0.000	6.862	6.862 T	6.862	4.152 ↓
5 -	0.000	5.862	6.862 †	5.862 ←	4.962 ←

+			and Policy .1215766		
1-	2.393	2.780 →	3.210 →	3.689 ↓	4.220 ↓
2 -	2.044	2.393	3.689	4.220 ↓	4.811 ↓
3 -	1.730 ↑	1.448 ←	8.906	4.811 →	5.467 ↓
4 -	1.448 ↑	8.906	8.906 T	8.906	6.196 ↓
5 -	1.193 †	7.906	8.906 1	7.906 ←	7.006 ←

+			and Policy 0.0147808		
1	3.354	3.741 →	4.172 →	4.650 ↓	5.181 ↓
2 -	3.005 ↑	3.354	4.650	5.181 ↓	5.772 ↓
3 -	2.691 †	2.409 ←	9.867	5.772 →	6.428 J
4 -	2.409 †	9.867	9.867 T	9.867	7.157
5 -	2.155 †	8.867	9.867 ↑	8.867 ←	7.967 ←

+			and Policy 0.0051537		
	3.440 →	3.828 →	4.258 →	4.737 ↓	5.268 ↓
? -	3.092 ↑	3.440	4.737	5.268 ↓	5.859
1-	2.778 ↑	2.495 ←	9.954	5.859 →	6.515 ↓
1-	2.495 †	9.954	9.954 T	9.954	7.244 ↓
-	2.241	8.954	9.954 ↑	8.954 ←	8.054 ←

+			and Policy 0.0017970		
1	3.471 →	3.858 →	4.288 →	4.767 ↓	5.298 ↓
2 -	3.122 †	3.471	4.767	5.298 ↓	5.889 ↓
3 -	2.808	2.526 ←	9.984	5.889 →	6.545 ↓
4 -	2.526	9.984	9.984 T	9.984	7.274 ↓
5 -	2.272	8.984	9.984 †	8.984 ←	8.084 ←

图5: 系统误差和迭代次数

图6: 网格世界升级版GridV3 最佳策略

我们从图5可以观察到,两轮迭代之间的差值delta 是越来越小的,最后接近为0,说明最终算法已经收敛。 在图6中,可以看到agent已经感知到禁止区域,并且能够绕过禁止区域,找到终点。

五、思考与总结

通过这两个例子和上节的算法讲解,我们可以完全理解算法的python实现了。 最重要的是通过value 迭代算法理解强化学习中的利用Bootstrap思想来优化策略,完全不需要外界的标注数据。 (这个思考点留给刚从深度学习转过来的同学,可以参考这篇文章 为什么强化学习不需要标注样本?) 另外就是熟悉强化学习中交替进行value update和policy update的套路,后面学习的算法形式上都是如此, 具体改变在于使用什么模型和方法进行update,但是形式并没有发生变化。

好了,下一篇是关于policy 迭代算法和实现!