Report - ADL HW1

網媒所碩一 R11944026 柯婷文

Q1. Data Processing

建立字典

我使用助教提供的sample code來建立字典(vocabulary)。

首先,用 json.loads() 去讀 train.json 、 eval.json 後,會各自讀出一個list of dictionary,每個 dict都是一筆data,欄位包含 text (存一個由許多token組成的句子), intent (這個句子的目的), 跟 id 。

而我們用一個名為 intents 的set來存出現過的intent,由於set的特性,不同的intent只會被紀錄一次。之後幫每個intent編號,做成dict,寫入 intent2idx.json 。

再來·需要計算每個token出現的次數以便做成Vocab。這裡我們先將所有data的 text 都用 split() 切分成許多token,再把他們放進一個list。之後把這個蒐集

了 train.json 、 eval.json 裡所有token的list放進一個叫 words 的 Counter ,計算每個token出現的次數,並使用 most_common() 取出最常出現的 vocab_size 個token,放在一個叫 common words 的 set。接著定義一個class Vocab ,他的第0個字跟第1個字分別是unknown及padding token,剩餘部份放進我們剛剛取出的 common words 。同時這個 Vocab 的class也定義

了 tokens 、 encode 、 encode_batch 等property function ,方便我們取得所有token 、將一串token 轉成id 、將一個batch的token轉成id 。如此一來,我們便可以利用此字典查找token對應的id ,但要注意的是,那些沒被列在 common words 裡的token將會被視為unknown來處理。

Slot tagging的部分也使用幾乎一樣的方式進行。

進行 Tokenize

建立好字典後,便是要將token轉換為id,這部分主要寫在 dataset.py 裡各自的 collate_fn ,也就是處理一個batch的data的部分。

Intent Classification

先將每個句子(text)用 split() 切成許多token,而每個batch又是由多個句子組成,所以切完之後會是List[List[str]]。接著使用 vocab 裡的 encode_batch 幫我們把整個batch的token轉換成id,此時資料型態由List[List[str]]轉為List[List[int]]。Intent的部分先把 intent2idx.json 讀出來轉換成dict,當

作mapping,再將整個batch的intent取出(一筆data有一個intent),再轉換成idx (List[int])。 值得注意的是, encode_batch() 會以batch裡面最長的seq_len為基準,幫我們做padding,所以不 用額外做。

Slot Tagging

句子處理的部分跟Intent Classification一樣,較不同的是tag的處理。slot tagging任務裡每個token都會有一個tag,所以整個batch裡的每筆data會有不同數量的tag。因此除了用mapping將tag轉換成編號,還使用了 utils.py 裡的 pad_to_len 做padding。而Padding value要設多少呢?原有的tag編號是編到num_class - 1(因為0-index),所以我將padding value設為num_class。如此一來,經過模型預測的tag值將會介在0~num_class。但為了不考慮這些padding位置的預測值,我還用了一個 ignore 的matrix紀錄padding的位置,有pad的地方會=1。

Embedding

使用GloVe提供的 glove.840B.300d.txt 這個已經pretrain好的embedding,他是用了Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download)的版本。每個token丟進去後會轉換成300-d的向量,而對於不在GloVe裡的token,其每個element的值將隨機設為 random()*2-1。

Q2. Intent Classification

我使用LSTM的模型·參數分別設定為hidden_size(512), num_layers(2), dropout(0.3), bidirectional(True)。

先將batch data轉換為一個embeds的embedding,此時維度是seq_len x batch_size x num_class*2,然後放進LSTM。

 $Istm_{out}$, $(h_{n_1}) = LSTM (embeds)$

 $Istm_{out}$ 是LSTM每個時間點的output,一個seq_len x batch_size x 2*hidden_size 的tensor。而 h_n 則為最後一個時間點的所有hidden states,維度是2 * num_layer x batch_size x hidden_size,我們用最後一個時間點出來的結果來當整筆data的預測值。

為了等等計算attention,將top-most layer的forward和backward的output concat起來。 h_n =concat(h_n [-1], h_n [-2])

得到hn的維度是batch_size x hidden_size*2。

接著,就可以把**lstm**out的維度轉換成batch_size x seq_len x 2*hidden_size,去計算Attention。也就是在比較需要關注的地方給予比較高的權重,計算加權後的分數。

 $attn_{out} = attention(Istm_{out}, h_n)$

此時維度是batch_size x hidden_size*2。

再接上fully connected layer,幫助我們判斷每筆data的判斷類別。

out=FC(attn_{out})

如此一來便得到一個batch_size x num_class的輸出,裡面每筆data被分到每個類別的機率分布。之後用cross entropy計算跟正確答案(label)間的loss。

batch_loss=CrossEntropy(out,label)

我使用Adam作為optimizer, learning rate設為0.2, batch size是256。

最終得到的public score為0.91688。

Q3. Slot Tagging

我使用LSTM的模型·參數分別設定為hidden_size(512), num_layers(2), dropout(0.3), bidirectional(True)。

先將batch data轉換為一個embeds的embedding,此時維度是seq_len x batch_size x num_class*2,然後放進LSTM。

Istm_{out}, _=LSTM(embeds)

Istm_{out}是LSTM每個時間點(也就是每個token)的output,一個seq_len x batch_size x 2*hidden_size 的tensor。這裡我們保留所有時間點的輸出,因為每個token都需要預測出一個類別。

再接上fully connected layer,幫助我們判斷每筆data的判斷類別。

out=FC(Istm_{out})

如此一來便得到一個batch_size x seq_len x (num_class+1) 的輸出,裡面每筆data被分到每個類別的機率分布,這邊num_class有+1是因為padding的tag也會被視為一個類別。之後用cross entropy計算跟正確答案(label)間的loss。

batch_loss=CrossEntropy(out,label)

我使用Adam作為optimizer,learning rate設為0.2,weight_decay設為0.0001,batch size是16。 最終得到的public score為0.78659。

Q4. Sequence Tagging Evaluation

令TP(True Positive), TN(True Negative), FP(False Positive), FN(False Negative) seqeval提供四個指標·分別為

- Precision(準確率) = TP/(TP+FP)
- Recall(召回率) = TP/(TP+FN)
- F1-score = 2 * Precision * Recall / (Precision + Recall)
- Support = 該tag實際出現的次數

而下方的幾個平均數分別代表

- micro avg: 將所有tag的TP都加起來後,若是算precision就除以(TP+FP)的總數;若是算recall 就除以(TP+FN)的總數。
- macro avg: 每個類別各自計算自己的precision、recall後,取平均。
- weighted avg: 每個類別各自計算自己的precision、recall後,根據每個類別的樣本多寡,取加權平均

而兩種accuracy分別代表

- Joint accuracy: 以句子為單位,一個句子裡所有token都被預測正確才算對。計算正確句子占所有句子的比例。
- Token accuracy: 以token為單位,計算正確的token占所有token的比例。

也就是說,在token accuracy相同的情況下,若錯的token都集中在同一句話,joint accuracy可能還是可以不錯;但若錯的token分布在不同句話,將導致joint accuracy很低。

Q5. Compare with different configurations

參數調整

在Slot tagging的部分,因為觀察到資料筆數並不多,所以我先將batch_size調到16。然而在epoch=40的情況下,都有發生Training loss穩定下降,validation loss卻往上爬升,很明顯的overfit了。所以我加入L2 Regularization,將optimizer的weight_decay設為0.0001,發現這麼做可以顯著降低validation loss,然而也不能設太小,否則Accuracy又會降低。此外我也實驗了將LSTM改用GRU或RNN的結果。

以下為batch_size(16), epoch(40)的實驗結果

RNN-based layer	Weight decay	Dropout	Train acc	Val acc	Test acc
LSTM	0	0.3	0.993236	0.801000	0.72064
LSTM	0	0.4	0.995030	0.788000	0.72493
LSTM	0.0001	0.3	0.895638	0.790000	0.78659
LSTM	0.0005	0.3	0.809221	0.752000	0.73780
LSTM	0.00005	0.3	0.937051	0.758000	-
GRU	0	0.3	0.856295	0.781000	-
RNN	0	0.3	0.929183	0.757000	-

後來發現batch_size設這麼小容易overfit,所以將batch_size改回128。以下為batch_size(128), epoch(60)的實驗結果

RNN-based layer	Weight decay	Dropout	Train acc	Val acc	Test acc
LSTM	0.0001	0.3	0.918001	0.796000	0.79517
GRU	0.0001	0.3	0.934567	0.791000	-
RNN	0.0001	0.3	0.921452	0.784000	_

仿照Intent classification的結果,在embedding layer後多加了一層Dropout layer的結果

RNN-based layer	Weight decay	Dropout	Train acc	Val acc	Test acc
LSTM	0.0001	0.3	0.869685	0.802000	-
LSTM	0.0001	0.6	0.876311	0.808000	0.80911

Bonus

在Intent classification中,嘗試加入attention的機制,讓句子的不同部分對其他部分可以有不同程度的關注。也調整不同的dropout rate,觀察實驗結果。

Attention Layer	Dropout	Batch size	Epoch	Train acc	Val acc	Test acc
沒有	0.1	128	100	1.000000	0.902333	-
沒有	0.15	128	100	1.000000	0.911667	0.90044
沒有	0.2	128	100	1.000000	0.908667	-
有	0.1	128	100	1.000000	0.929333	0.87733
*有	0.3	128	100	1.000000	0.925333	-
有	0.3	15	100	1.000000	0.910667	-
*有	0.3	256	100	1.000000	0.927333	0.91688
有	0.3	256	20	0.997400	0.916000	-
有	0.3	256	10	0.993333	0.911000	-

發現加了Attention後表現有變好。為了解決overfit,也嘗試在Embedding後/FC層前額外加入了 Dropout Layer (Batch size = 128)

Dropout Layer(Embed後/FC前)	Dropout	Epoch	Train acc	Val acc	Test acc
X	0.3	100	1.000000	0.925333	-
X/O	0.3	80	1.000000	0.924000	-
X/O	0.4	80	1.000000	0.925000	-
0/0	0.4	80	0.996400	0.932000	-
0/0	0.6	80	0.994467	0.944667	0.92577

(Batch size = 256)

Dropout Layer(Embed後/FC前)	Dropout	Epoch	Train acc	Val acc	Test acc
X	0.3	100	1.000000	0.927333	0.91688
X/O	0.3	100	0.999733	0.927667	-
X/O	0.4	100	1.000000	0.925667	-
0/0	0.4	80	0.998600	0.937667	0.92888
0/0	0.6	80	0.995600	0.943000	-

結果發現在Embedding layer後加一層dropout layer的效果很好,都可以讓val acc提升0.1左右,也讓模型較不容易overfit。