Modelo de Datos Relacional

Profesora: Mónica Caniupán

Base de Datos - UBB

2024

Introducción

- ☐ El modelo relacional se basa en el concepto de relación
- ☐ Una relación es una tabla con filas y columnas
- ☐ Una BD es una colección de una o más relaciones distintas

Esquema e Instancia

- □ Un esquema:
 - Nombre de la relación,
 - Nombre de los atributos,
 - Dominios:
 - □ Tiene un nombre e.g. integer, string, etc.
 - □ Un conjunto de valores posibles
- □ Una Instancia:
 - Conjunto de tuplas distintas,
 - Una tabla con filas y columnas
 - ☐ Las filas especifican la cardinalidad de la relación
 - □ Las columnas especifican la aridad o grado de una relación

Relación ALUMNOS

1. Esquema:

ALUMNOS(ID: integer, NOMBRE: varchar(20), EDAD: integer, DIRECCION: varchar(20))

2. Instancia:

ID	NOMBRE	EDAD	DIRECCION
11	Pedro	20	Rengo 1, Concepción
12	María	22	Prat 42, Concepción
13	Antonio	21	Prat 33, Concepción

Relación ALUMNOS

Atributos

Т	ID	NOMBRE	EDAD	DIRECCION
u p	11	Pedro	20	Rengo 1, Concepción
i	12	María	22	Prat 42, Concepción
a \	13	Antonio	21	Prat 33, Concepción

- ☐ Aridad= 4, la relación ALUMNOS tiene 4 atributos
- □ Cardinalidad= 3, existen tres tuplas, todas distintas!!!
- Generalmente nos referimos a la instancia de una relación como la relación

Importante

- □ No existe un orden entre los atributos de una relación
 - Tampoco entre las tuplas
- □ Los SGBDs exigen orden en los atributos cuando se insertan tuplas
 - Los atributos deben tomar valores de acuerdo al correspondiente dominio del atributo

Restricciones de Integridad

- □ Una Restricción de Integridad (RI):
 - Es una condición especificada sobre la BD
 - Debe ser satisfecha por toda instancia de la BD
 - Las RI son definidas junto con el esquema de la BD
- ☐ Una BD es consistente si satisface todas sus RI
- ☐ Un SGBD no debería permitir instancias inconsistentes

Clave Primaria

- □ Un conjunto de atributos es una clave primaria si:
 - Dos tuplas distintas no tienen el mismo valor para los atributos en la clave
 - Ningún subconjunto de atributos en la clave identifica de manera unívoca a cada tupla
- □ **Ejemplo:** ALUMNOS(ID, NOMBRE, EDAD, DIRECCION)
 - El conjunto {ID,NOMBRE} no es una clave, sí lo es {ID}
 - {ID, NOMBRE} es una SUPER CLAVE, es decir, un conjunto de atributos que contiene una clave

Clave Candidata

- □ Un conjunto de atributos que identifica una tupla de manera unívoca es una clave candidata o simplemente clave
- ☐ Una relación puede tener varias claves candidatas, en cuyo caso, se elige una de ellas para ser la clave primaria de la relación

Del MER al Modelo Relacional

- Cada entidad es una relación (tabla) con el mismo nombre
- 2. Los atributos de la entidad pasan a ser los atributos de la relación
- 3. El identificador de la entidad es la clave primaria de la relación

Relaciones en MER

- □ ¿Deberíamos mapear cada relación en el MER a una tabla?
- ☐ La cardinalidad de las relaciones es fundamental para tomar una decisión

Relaciones N a N

- 1. Si una relación binaria R entre las entidades E_1 y E_2 es N a N (muchos a muchos), entonces R es mapeada a una tabla T
- 2. La tabla T contiene las claves primarias de las tablas asociadas a las entidades E_1 y E_2
- 3. Si la relación *R* tiene atributos, estos pasan a ser atributos de la tabla *T*

Relaciones N a 1

□ La relación no se crea si:

CARRERAS

IDCA	NOM_CA	IDU	•La clav
			CARRE

 La clave de CARRERAS es IDCA
 IDU es clave foránea en CARRERAS

Relaciones N a 1

- 1. Si una relación binaria R entre las entidades E_1 y E_2 es N a 1, R no se transforma en una tabla
- 2. Si la cardinalidad mínima de la relación entre R y E_2 es 1, entonces la tabla E_2 contendrá la clave primaria de la tabla E_1
- 3. Los atributos de la relación R (si los hay) también se incluyen en la tabla E_2
- 4. Sin embargo, si la cardinalidad mínima de la relación entre R y E_2 es 0, se recomienda crear una tabla para R

Relaciones N a 1 con mínimo 0

□ Si la cardinalidad mínima de la relación entre R y E_2 es 0, se recomienda crear una tabla para R

TRABAJA

IDA	IDU

- La clave de TRABAJA es {IDA,IDU}
- Ambos atributos IDA, IDU son claves foráneas

Relaciones 1 a 1

1. Las relaciones tienen cardinalidad mínima igual a 1

- Se puede crear una sola tabla que combina ambas entidades, para evitar claves foráneas
- Los atributos de la relación pasan a ser atributos de esta única tabla

Relaciones n-arias

- □ Crear una tabla *T* por la relación *R* entre entidades incluyendo como columnas las claves primarias de las entidades participantes
- □ Esta colección de claves primarias es la clave primaria de la tabla *T*
- \square Se van a obtener *n* claves foráneas!!!
- □ Los atributos de la relación *R* se agregan a la tabla *T*

Relaciones Débiles Se tratan como relaciones N a 1 sin crear la relación 0..N 1..1 CARGAS **ALUMNOS** POLIZA **IDCAR** NOMBRE **NOMBRE EDAD** DIRECCIÓN FECHA □ La clave primaria de la tabla dependiente contiene la clave primaria de la tabla "fuerte" y los atributos de la relación **CARGAS** IDCAR NOMBRE FECHA

Creación y Modificación de BDs

- ☐ En SQL una relación es una Tabla
- □ El Lenguaje de Definición de Datos es el subconjunto de SQL que permite:
 - Crear/eliminar/actualizar tablas
 - Insertar/eliminar/actualizar tuplas en las tablas

LDD

- CREATE TABLE
- □ INSERT INTO TABLE
- DELETE FROM TABLE
- UPDATE TABLE
- □ DROP TABLE
- □ ALTER TABLE

CREATE

□ La siguiente instrucción crea la relación ALUMNOS con clave primaria ID:

```
CREATE TABLE ALUMNOS (
ID integer,
NOMBRE varchar(20),
EDAD integer,
DIRECCION varchar(20),
PRIMARY KEY (ID));
```

INSERT

□ La siguiente instrucción inserta una tupla en la relación ALUMNOS:

INSERT

```
INTO ALUMNOS(ID, NOMBRE, EDAD, DIRECCION) VALUES (11, 'Pedro', 20, 'Rengo 1, Concepcion');
```

- Indicar el nombre de los atributos es opcional
- Si se omiten, los valores ingresados deben ser del tipo de datos para el atributo en la posición correspondiente

DELETE

□ La siguiente instrucción elimina todas las tuplas de ALUMNOS:

DELETE FROM ALUMNOS;

□ La siguiente instrucción elimina la tupla de ALUMNOS donde el identificador es igual a 10:

DELETE
FROM ALUMNOS
WHERE ID = 10;

UPDATE

□ La siguiente instrucción actualiza la edad de los alumnos con nombre "Pedro":

UPDATE ALUMNOS
SET EDAD= EDAD+1
WHERE NOMBRE = 'Pedro';

DROP

☐ La siguiente instrucción elimina el esquema y las tuplas de la relación ALUMNOS

DROP TABLE ALUMNOS;

ALTER TABLE

□ La siguiente instrucción agrega un atributo a la relación ALUMNOS:

ALTER TABLE ALUMNOS
ADD COLUMN APELLIDOS varchar(20);

- Esta columna tendrá el valor NULL para todas las tuplas en la tabla
- NULL en SQL significa que el valor es desconocido o no aplicable
- Para modificar el valor del atributo se debe usar el comando UPDATE TABLE

Especificación Claves Foráneas

CREATE TABLE CURSAN(

ID integer,

IDC integer,

NOTA integer,

PRIMARY KEY (ID, IDC),

FOREIGN KEY (ID) REFERENCES ALUMNOS,

FOREIGN KEY (IDC) REFERENCES CURSOS);

Claves Foráneas

- □ Las claves foráneas pueden hacer referencia a la misma relación
- □ ALUMNOS_2(ID: integer, NOMBRE: varchar(20), IDCG: integer)
 - IDCG hace referencia al ID de otro alumno de la relación
- □ CREATE TABLE ALUMNOS_2(

ID integer,

NOMBRE varchar(20),

IDCG integer,

ALUMNOS

PRIMARY KEY (ID),

FOREIGN KEY (IDCG) REFERENCES ALUMNOS_2);

Claves Foráneas

□ ALUMNOS_2

ID	NOMBRE	IDCG
11	Pedro	13
12	María	1000
13	Antonio	11

- □ Cada Alumno tiene un compañero de grupo
- □ Si un Alumno no tiene, el campo IDCG debe tomar un valor por defecto que no sea NULL (nulo)
 - En este caso 1000 significa no tiene compañero de grupo
 - Un atributo que es parte de una clave no puede tomar el valor NULL!!!

□ ¿Qué acciones deberíamos tomar si se inserta una tupla en CURSAN con un ID que no existe en la tabla ALUMNOS?

CURSAN

ID	IDC	NOTA
11	001	70
12	002	80
13	001	90
14	001	89

Operaciones que afectan las RI

□ La operación debe ser prohibida

CURSAN

ID	IDC	NOTA	
11	001	70	
12	002	80	
13	001	90	
14	001	89	4

□ ¿Qué acciones deberíamos tomar si se elimina una tupla en la tabla ALUMNOS?

CURSAN

ID	IDC	NOTA
11	001	70
12	002	80
13	001	90

ALUMNOS

ID	NOMBRE	EDAD	DIRECCION
11	Pedro	20	Rengo 1, Concepción
12	María	22	Prat 42, Concepción
40	At ! -	04	Dunt 00 Common side
13	Antonio	21	Prat 33, Concepción

Operaciones que afectan las RI

 Eliminar todas las tuplas en la tabla CURSAN que hacen referencia al ID eliminado

ID	IDC	NOTA
11	001	70
12	002	80
13	001	90
2		00

2. No permitir la eliminación de la tupla en ALUMNOS si existen tuplas en CURSAN que hacen referencia a ella

3. Asignar a la columna ID el valor de otro ID por defecto, por cada fila afectada

CURSAN

ID	IDC	NOTA
11	001	70
12	002	80
12	001	90

¿Problemas de esta solución?

Operaciones que afectan las RI

4. Asignar a la columna ID el valor NULL

CURSAN

ID	IDC	NOTA
11	001	70
12	002	80
NULL	001	90

¿Problemas de esta solución?

□ Las acciones nombradas anteriormente también se aplican cuando la clave primaria de una relación se modifica a través de UPDATE

Satisfacción de RI con SQL

- □ SQL nos permite especificar cada una de estas situaciones
- □ Para ello nos entrega cuatro opciones para las operaciones DELETE y UPDATE

Satisfacción de RI con SQL

- NO ACTION: tanto DELETE como UPDATE se prohíben si hay tuplas afectadas (es la opción por defecto)
 - □ Se permite una modificación de ID en ALUMNOS sólo si **no** existen tuplas en CURSAN que hagan referencia al ID
- 2. CASCADE: si se elimina (modifica) una tupla en ALUMNOS se eliminan (modifican) todas las tuplas en CURSAN que hagan referencia al alumno eliminado (modificado)

Satisfacción de RI con SQL

□ Ejemplo:

CREATE TABLE CURSAN(

ID integer,

IDC integer,

NOTA integer,

PRIMARY KEY (ID, IDC),

FOREIGN KEY (ID) REFERENCES ALUMNOS,

ON DELETE CASCADE,

ON UPDATE NO ACTION);

Se puede especificar lo mismo para el atributo IDC

Eliminación en Cascada

ALUMNOS

ID	NOMBRE	EDAD	DIRECCION
11	Pedro	20	Rengo 1, Concepción
12	María	22	Prat 42, Concepción
13	Antonio	21	Prat 33, Concepción

CURSAN

ID	IDC	NOTA
11	001	70
12	002	80
4.2	001	90
13	001	90

 Si se elimina la tupla en Alumnos con ID 13 se eliminan todas las tuplas en Cursan para ese alumno

Satisfacción de RI con SQL

- 3. ON DELETE SET DEFAULT: al eliminarse una tupla en ALUMNOS se asigna el ID del alumno por defecto a las tuplas afectadas en CURSAN
 - El valor por defecto se especifica cuando se crea la tabla ALUMNOS

CREATE TABLE ALUMNOS (
ID integer DEFAULT 4545 ...

4. ON DELETE SET NULL