вариант	ф. номер	група	поток	курс	специалност	минала година
1						
Име:		•		•		

Първо контролно по Дизайн и анализ на алгоритми (част 2) 22.04.2023 г.

Алгоритми, които не са представени формално и/или не са съпътствани с аргументация/доказатателство за коректност, завършване и/или оценка на времевата сложност, може да не бъдат оценявани.

Задача 1. (2.5 m.) Нека n>1 е естествено число. С $H_n=(V_n,E_n)$ бележим графа с върхове $V_n=\{0,1\}^n$ и ребра точно онези двуелементни множества $\{u,v\}\subseteq V_n$, които се различават точно в една позиция, която означаваме с $\delta(u,v)$.

Път в H_n наричаме всяка редица $\pi = (v_0, v_1, \dots, v_m)$ от върхове на H_n , за която $\{v_i, v_{i+1}\} \in E_n$ за всяко $0 \le i < m$. С $|\pi| = m$ бележим дължината на път от u до v в H_n .

За естествени числа x_1, x_2, \ldots, x_n и функция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ устойчивост на пътя $\pi = (v_0, v_1, \ldots, v_m)$ ще наричаме:

$$s_{f,x}(\pi) = \sum_{i=0}^{m-2} f(x_{j_i}, x_{j_{i+1}}),$$
 където $j_i = \delta(v_i, v_{i+1})$ за всяко $i < m-1.$

- 1. Ако $u, v \in V_n$ и $\rho(u, v) = k$, колко са най-късите пътища от u до v в H_n ? Защо?
- 2. За функция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ дефинираме проблема MAXRESISTIBILITY:

Вход: U[1..n], V[1..n] масиви от 0 и 1 и X[1..n] масив от естествени числа Изход: s максималната стойност на устойчивост, $s_{f,X}(\pi)$, на най-къс път π , който свързва U с V.

Ако f(a,b) = (a+b)(a-b), да се предложи алгоритъм с времева сложност O(n), който решава проблема MAXRESISTIBILITY.

3. Нека отново f(a,b) = (a+b)(a-b). Да се предложи алгоритъм, който решава следния проблем с времева сложност $O(n+\rho(U,V)\log K)$:

Вход: U[1..n], V[1..n] масиви от 0 и 1, X[1..n] масив от естествени числа, цяло число $K \geq 1$

Изход:0, ако броят на най-късите пътища от U до V е по-малък от K, K-тата в намаляващ ред стойност на устойчивост, $s_{f,X}(\pi)$, на най-къс път π , който свързва U с V, иначе.

4. Да се предложи алгоритъм със времева сложност $O(n \log n)$, който решава MAXRESISTIBILITY в случая, когато f(a,b) = (a+b)(a+b).

Да се докаже коректността и времевата сложност на предложените алгоритми.

Пример: Ако n=3, а $v_0=(0,0,0)$, $v_1=(0,1,0)$, $v_2=(1,1,0)$, $v_3=(1,1,1)$, то $\pi=(v_0,v_1,v_2,v_3)$ е път в H_3 от v_0 до v_3 с дължина $|\pi|=3$. Тъй като v_0 и v_1 се различават в позиция 2, то $\delta(v_0,v_1)=2$. Тъй като v_1 и v_2 се различават в позиция 1, то $\delta(v_1,v_2)=1$. Тъй като v_2 и v_3 се различават в позиция 3, то $\delta(v_2,v_3)=3$. Също $\rho(v_0,v_3)=|\pi|=3$.

Поради това: $s_{f,x}(\pi) = f(x_2, x_1) + f(x_1, x_3)$.

При f(a,b)=(a-b)(a+b), функцията $s_{f,x}(\pi)$ за път $\pi=(v_0,v_1,\ldots,v_m)$ изглежда така:

$$s_{f,x}(\pi) = \sum_{i=0}^{m-2} (x_{j_i} - x_{j_{i+1}})(x_{j_i} + x_{j_{i+1}})$$
 където $j_i = \delta(v_i, v_{i+1})$ за всяко $i < m-1$.

При m < 2, тази сума е тъждествено равна на 0, понеже в нея няма събираеми.

вариант	ф. номер	група	поток	курс	специалност	минала година
2						
Име:						

Първо контролно по Дизайн и анализ на алгоритми (част 2) 22.04.2023 г.

Алгоритми, които не са представени формално и/или не са съпътствани с аргументация/доказатателство за коректност, завършване и/или оценка на времевата сложност, може да не бъдат оценявани.

Задача 1. (2.5 m.) Нека n > 1 е естествено число. С $H_n = (V_n, E_n)$ бележим графа с върхове $V_n = \{0,1\}^n$ и ребра точно онези двуелементни множества $\{u,v\} \subseteq V_n$, които се различават точно в една позиция, която означаваме с $\delta(u,v)$.

Път в H_n наричаме всяка редица $\pi = (v_0, v_1, \dots, v_m)$ от върхове на H_n , за която $\{v_i, v_{i+1}\} \in E_n$ за всяко $0 \le i < m$. С $|\pi| = m$ бележим дължината на път от u до v в H_n .

За естествени числа x_1, x_2, \ldots, x_n и функция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ устойчивост на пътя $\pi = (v_0, v_1, \ldots, v_m)$ ще наричаме:

$$s_{f,x}(\pi) = \sum_{i=0}^{m-2} f(x_{j_i}, x_{j_{i+1}}),$$
 където $j_i = \delta(v_i, v_{i+1})$ за всяко $i < m-1.$

- 1. Ако $u, v \in V_n$ и $\rho(u, v) = k$, колко са най-късите пътища от u до v в H_n ? Защо?
- 2. За функция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ дефинираме проблема MinResistability:

Вход: U[1..n], V[1..n] масиви от 0 и 1 и X[1..n] масив от естествени числа Изход: s минималната стойност на устойчивост, $s_{f,X}(\pi)$, на най-къс път π , който свързва U с V.

Ако f(a,b) = (a+b)(a-b), да се предложи алгоритъм с времева сложност O(n), който решава проблема MINRESISTABILITY.

3. Нека отново f(a,b) = (a+b)(a-b). Да се предложи алгоритъм, който решава следния проблем с времева сложност $O(n+\rho(U,V)\log K)$:

Вход: U[1..n], V[1..n] масиви от 0 и 1, X[1..n] масив от естествени числа, цяло число $K \geq 1$

Изход:0, ако броят на най-късите пътища от U до V е по-малък от K, K-тата в нарастващ ред стойност на устойчивост, $s_{f,X}(\pi)$, на най-къс път π , който свързва U с V, иначе.

4. Да се предложи алгоритъм със времева сложност $O(n \log n)$, който решава MINRESISTABILITY в случая, когато f(a,b) = (a+b)(a+b).

Да се докаже коректността и времевата сложност на предложените алгоритми.

Пример: Ако n=3, а $v_0=(0,0,0)$, $v_1=(0,1,0)$, $v_2=(1,1,0)$, $v_3=(1,1,1)$, то $\pi=(v_0,v_1,v_2,v_3)$ е път в H_3 от v_0 до v_3 с дължина $|\pi|=3$. Тъй като v_0 и v_1 се различават в позиция 2, то $\delta(v_0,v_1)=2$. Тъй като v_1 и v_2 се различават в позиция 1, то $\delta(v_1,v_2)=1$. Тъй като v_2 и v_3 се различават в позиция 3, то $\delta(v_2,v_3)=3$. Също $\rho(v_0,v_3)=|\pi|=3$.

Поради това: $s_{f,x}(\pi) = f(x_2, x_1) + f(x_1, x_3)$.

При f(a,b)=(a-b)(a+b), функцията $s_{f,x}(\pi)$ за път $\pi=(v_0,v_1,\ldots,v_m)$ изглежда така:

$$s_{f,x}(\pi) = \sum_{i=0}^{m-2} (x_{j_i} - x_{j_{i+1}})(x_{j_i} + x_{j_{i+1}})$$
 където $j_i = \delta(v_i, v_{i+1})$ за всяко $i < m-1$.

При m < 2, тази сума е тъждествено равна на 0, понеже в нея няма събираеми.