Section 3.2

First theorem just chant how row operations affect determinants. Why do we care?

Sturt with a metrix with difficult determinant.

Row reduce to upper triangular. Account for som reduces, determinant easier to find.

Theorem: A a square matrix (nxn)

O If a multiple of one row added to another

to get matrix B, det B = det A. (so det. unchanged)

© If two sows of A exchanged to produce B thin - det A = LetB.

Then det B = k det A

Add multiples of row to other rows

100 500 18ch (1) - 4 2) = B

def 13 = -15- def 14 = 15Lef 15 = 15

*	Theorem: A square metrix A is invertible
	if and only if let A + O.
	•
4	Theorem: If A is an non matrix then
	$de+A=de+A^{T}$
	T) TO 1 1
	Theorem: If A, B are non matrices then
	det (AB) = det (A) det (B).
	21 (11) / - 21 (1) 21 (1) D).