

Analysis and approximation of the nematic Helmholtz–Korteweg equation

Patrick E. Farrell¹, <u>Tim van Beeck</u>², Umberto Zerbinati¹

¹University of Oxford; ²University of Göttingen

Applied Mathematics Seminar, Pavia, Dec. 10th, 2024

• Goal: describe time-harmonic acoustic wave propagation in a nematic liquid crystal

W. Wang, L. Zhang, P. Zhang, Modelling and computation of liquid crystals. Acta Numerica, 2021.

- Goal: describe time-harmonic acoustic wave propagation in a nematic liquid crystal
- Korteweg-fluid: $\underline{\underline{\sigma}} = p\underline{\underline{l}} u_1 \rho (\nabla \rho \otimes \nabla \rho)$

W. Wang, L. Zhang, P. Zhang, Modelling and computation of liquid crystals. Acta Numerica, 2021.

- Goal: describe time-harmonic acoustic wave propagation in a nematic liquid crystal
- Korteweg-fluid: $\underline{\sigma} = p\underline{I} u_1 \rho (\nabla \rho \otimes \nabla \rho)$
- nematic LC can be considered as a Korteweg-fluid:

$$\underline{\underline{\sigma}} = p\underline{\underline{l}} - u_1 \rho (\nabla \rho \otimes \nabla \rho) - u_2 (\nabla \rho \cdot \boldsymbol{n}) \nabla \rho \otimes \boldsymbol{n}$$

W. Wang, L. Zhang, P. Zhang, Modelling and computation of liquid crystals. Acta Numerica, 2021.

- Goal: describe time-harmonic acoustic wave propagation in a nematic liquid crystal
- Korteweg-fluid: $\underline{\sigma} = p\underline{I} u_1\rho(\nabla\rho\otimes\nabla\rho)$
- nematic LC can be considered as a Korteweg-fluid:

$$\underline{\underline{\sigma}} = p\underline{\underline{l}} - u_1 \rho (\nabla \rho \otimes \nabla \rho) - u_2 (\nabla \rho \cdot \boldsymbol{n}) \nabla \rho \otimes \boldsymbol{n}$$

- → time harmonic acoustic waves described by the nematic Helmholtz–Korteweg equations!
- → how does the alignment of the nematic field influence the propagation of the acoustic wave?

W. Wang, L. Zhang, P. Zhang, Modelling and computation of liquid crystals. Acta Numerica, 2021.

Nematic Helmholtz–Korteweg equation¹

Given $f \in L^2(\Omega)$, find $u : \Omega \to \mathbb{C}$ s.t.

$$\alpha \Delta^2 u + \beta \nabla \cdot \nabla (\mathbf{n}^T (\mathcal{H} u) \mathbf{n}) - \Delta u - k^2 u = f \quad \text{in } \Omega,$$

$$\mathcal{B} u = (0, 0) \quad \text{on } \partial \Omega.$$

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, bounded Lipschitz domain;
- α, β : constitution parameters;
- \mathcal{H} : Hessian;
- n: orientation of the nematic field (||n|| = 1);
- $k = \omega/c$: (classic) wave-number;
- *B*: encodes the boundary conditions;

P.E. Farrell, U. Zerbinati, Time-harmonic waves in Korteweg and nematic-Korteweg fluids. arXiv, 2024.

Boundary conditions²

- → 4th-order PDE, so we need two boundary conditions
 - 1. *sound soft:*

$$\mathcal{B}u := (u, \Delta u + \frac{eta}{lpha} m{n}^{\mathsf{T}} (\mathcal{H}u) m{n})$$

2. *sound hard:*

$$\mathcal{B}u := (\partial_{m{
u}}u, \partial_{m{
u}}\Delta u + rac{eta}{lpha}\partial_{m{
u}}(m{n}^{m{ au}}(\mathcal{H}u)m{n}))$$

3. impedance:

$$\mathcal{B}u := (\partial_{\boldsymbol{\nu}}u - i\theta u, \partial_{\boldsymbol{\nu}}\Delta u - i\theta(\frac{\beta}{\alpha}\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n} - \frac{\beta}{\alpha}\partial_{\boldsymbol{\nu}}(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n})))$$

→ our analysis covers all cases!

²P.E. Farrell, U. Zerbinati, Time-harmonic waves in Korteweg and nematic-Korteweg fluids. arXiv, 2024.

Abstract framework

Indefiniteness of Helmholtz-like problems

Let X be a separable Hilbert space. For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

where $e(\cdot, \cdot)$ is s.t. the eigenvalue problem: find $u \in X$, $\lambda \in \mathbb{C}$ s.t.

$$e(u, v) = \lambda(u, v)_{L^2(\Omega)}$$

is well-posed and the associated solution operator is compact & self-adjoint.

Indefiniteness of Helmholtz-like problems

Let X be a separable Hilbert space. For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

where $e(\cdot, \cdot)$ is s.t. the eigenvalue problem: find $u \in X$, $\lambda \in \mathbb{C}$ s.t.

$$e(u, v) = \lambda(u, v)_{L^2(\Omega)}$$

is well-posed and the associated solution operator is compact & self-adjoint.

 \rightarrow the eigenfects. $\{e^{(i)}\}_{i\in\mathbb{N}}$ form an orthonormal basis of X

Indefiniteness of Helmholtz-like problems

Let *X* be a separable Hilbert space. For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^2(u,v)_{L^2(\Omega)} = (f,v)_{L^2(\Omega)} \quad \forall v \in X,$$
 (P)

where $e(\cdot, \cdot)$ is s.t. the eigenvalue problem: find $u \in X$, $\lambda \in \mathbb{C}$ s.t.

$$e(u, v) = \lambda(u, v)_{L^2(\Omega)}$$

is well-posed and the associated solution operator is compact & self-adjoint.

- \rightarrow the eigenfects. $\{e^{(i)}\}_{i\in\mathbb{N}}$ form an orthonormal basis of X
- → suppose $\exists i_*$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$, then (P) is indefinite:

$$a(e^{(i_*)}, e^{(i_*)}) = \lambda^{(i_*)} - k^2 < 0 < \lambda^{(i_*+1)} - k^2 = a(e^{(i_*+1)}, e^{(i_*+1)})$$

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X', X} = a(u, v) \ \forall u, v \in X$.

 \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X', X} = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism

³F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X', X} = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A* injective

³ F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X', X} = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A* injective
 - $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_{X'} \ge \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Let X be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X', X} = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A^* injective
 - $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_{X'} > \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$

$$\Leftrightarrow \underbrace{\inf_{u \in X} \sup_{v \in X} \frac{\left| \langle Au, v \rangle_{X', X} \right|}{\|u\|_X \|v\|_X} \ge \alpha > 0}_{\text{inf-sup condition}^3} \& A^* \text{ injective}$$

inf-sup condition

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Let *X* be a Hilbert space, $a: X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X', X} = a(u, v) \ \forall u, v \in X$.

- \rightarrow find $u \in X$ s.t. Au = f in X' is well-posed
 - \Leftrightarrow A is a bounded isomorphism
 - \Leftrightarrow A is injective & ran(A) is closed & A* injective
 - $\Leftrightarrow \ \exists \alpha > 0 \text{ s.t. } \|Au\|_{X'} \geq \alpha \|u\|_X \text{ for all } u \in X \ \& \ A^* \text{ injective}$

$$\Leftrightarrow \inf_{u \in X} \sup_{v \in X} \frac{|\langle Au, v \rangle_{X', X}|}{\|u\|_X \|v\|_X} \ge \alpha > 0 & A^* \text{ injective}$$

$$\inf_{\text{inf-sup condition}^3}$$

Theorem (Lax-Milgram)

A is coercive, i.e. $\exists \alpha > 0$ s.t. $\Re\{\langle Au, u \rangle_{X',X}\} \ge ||u||_X^2 \Rightarrow A$ is a bounded isomorphism

³ F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

 $^{{\}stackrel{4}{\text{e.g.}}}\ P.\ Ciarlet\ Jr.,\ T-coercivity:\ Application\ to\ the\ discretization\ of\ Helmholtz-like\ problems.\ CAMWA,\ 2012.$

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity⁴)

We call $A \in L(X, X')$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. $AT \in L(X, X')$ is coercive, i.e.

$$\Re\{\langle ATu, u\rangle_{X',X}\} \ge \alpha \|u\|_X^2$$

⁴e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity⁴)

We call $A \in L(X, X')$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. $AT \in L(X, X')$ is coercive, i.e.

$$\Re\{\langle ATu, u\rangle_{X',X}\} \ge \alpha \|u\|_X^2$$

→ T-coercivity equivalent to well-posedness (necessary & sufficient)

⁴e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity⁴)

We call $A \in L(X, X')$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. $AT \in L(X, X')$ is coercive, i.e.

$$\Re\{\langle ATu, u\rangle_{X',X}\} \ge \alpha \|u\|_X^2$$

- → T-coercivity equivalent to well-posedness (necessary & sufficient)
- \rightarrow recover coercivity with T = Id

⁴e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity⁴)

We call $A \in L(X, X')$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. $AT \in L(X, X')$ is coercive, i.e.

$$\Re\{\langle ATu, u \rangle_{X',X}\} \ge \alpha \|u\|_X^2$$

- → T-coercivity equivalent to well-posedness (necessary & sufficient)
- \rightarrow recover coercivity with T = Id
- → not directly inherited to the discrete level

⁴e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u, v) := e(u, v) - k^{2}(u, v)_{L^{2}(\Omega)} = (f, v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
(P)

 \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
(P)

- \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$
- \rightarrow construct $T \in L(X)$ bijective, s.t.

$$Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}$$

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
 (P)

- \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$
- \rightarrow construct $T \in L(X)$ bijective, s.t.

$$Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}$$

 \rightarrow can show coercivity of $a(T \cdot, \cdot)$ since

$$a(Te^{(i)}, e^{(i)}) = \begin{cases} k^2 - \lambda^{(i)} & \text{if } i \leq i_* \\ \lambda^{(i)} - k^2 & \text{if } i > i_* \end{cases} > 0.$$

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t.

$$a(u,v) := e(u,v) - k^{2}(u,v)_{L^{2}(\Omega)} = (f,v)_{L^{2}(\Omega)} \quad \forall v \in X,$$
(P)

- \rightarrow $\{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$
- \rightarrow construct $T \in L(X)$ bijective, s.t.

$$Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}$$

 \rightarrow can show coercivity of $a(T \cdot, \cdot)$ since

$$a(Te^{(i)}, e^{(i)}) = \begin{cases} k^2 - \lambda^{(i)} & \text{if } i \le i_* \\ \lambda^{(i)} - k^2 & \text{if } i > i_* \end{cases} > 0.$$

→ what about boundary terms?

Definition (Compact operator)

We call an operator $K \in L(X, Y)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}} \subset Y$ has a convergent subsequence.

see e.g., M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Numerische Mathematik, 2021.

Definition (Compact operator)

We call an operator $K \in L(X, Y)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}} \subset Y$ has a convergent subsequence.

Definition (Weak T-coercivity⁵)

 $A \in L(X, X')$ is called *weakly T-coercive* if there $\exists T \in L(X)$ bijective, $K \in L(X, X')$ compact s.t. AT + K is coercive.

see e.g., M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Numerische Mathematik, 2021.

Definition (Compact operator)

We call an operator $K \in L(X, Y)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}} \subset Y$ has a convergent subsequence.

Definition (Weak T-coercivity⁵)

 $A \in L(X, X')$ is called *weakly T-coercive* if there $\exists T \in L(X)$ bijective, $K \in L(X, X')$ compact s.t. AT + K is coercive.

 \rightarrow i.e. AT = bij. + comp., so AT is Fredholm with index zero!

see e.g., M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Numerische Mathematik, 2021.

Definition (Compact operator)

We call an operator $K \in L(X, Y)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}} \subset Y$ has a convergent subsequence.

Definition (Weak T-coercivity⁵)

 $A \in L(X, X')$ is called *weakly T-coercive* if there $\exists T \in L(X)$ bijective, $K \in L(X, X')$ compact s.t. AT + K is coercive.

- \rightarrow i.e. AT = bij. + comp., so AT is Fredholm with index zero!
- \rightarrow if A is weakly T-coercive and injective, then A is bijective

see e.g., M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Numerische Mathematik, 2021.

The discrete level

→ (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform T_h -coercivity)

Let $\{X_h\}_h \subset X$ be a seq. of discrete spaces. We call A uniformly T_h -coercive on $\{X_h\}_h$ if there exists a family of bijective operators $\{T_h\}_h$, $T_h \in L(X_h)$ and α_* independent of h s.t.

$$\Re\{(AT_hu_h,u_h)_{X_h}\}\geq \alpha_*\|u_h\|_X^2,$$

The discrete level

→ (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform T_h -coercivity)

Let $\{X_h\}_h \subset X$ be a seq. of discrete spaces. We call A uniformly T_h -coercive on $\{X_h\}_h$ if there exists a family of bijective operators $\{T_h\}_h$, $T_h \in L(X_h)$ and α_* independent of h s.t.

$$\Re\{(AT_hu_h,u_h)_{X_h}\}\geq \alpha_*\|u_h\|_X^2,$$

Theorem

Let $A \in L(X)$ be injective and A = B + K, where $B \in L(X)$ is bijective and $K \in L(X)$ compact. If B is uniformly T_h -coercive on $\{X_h\}_h \subset X$, then there exists $h_0 > 0$ s.t. A is uniformly T_h -coercive on $\{X_h\}_h$ for $h \leq h_0$.

Continuous problem

Weak formulation

We want to find $u \in X$ s.t.

$$a(u,v) = (f,v)_{L^2(\Omega)} \qquad \forall v \in X,$$
 (CP)

where

$$a(u,v) := \underbrace{\alpha(\Delta u, \Delta v)_{L^{2}(\Omega)} + \beta(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^{2}(\Omega)} + (\nabla u, \nabla v)_{L^{2}(\Omega)}}_{=:e(u,v)} - k^{2}(u,v)_{L^{2}(\Omega)}$$

$$+ \langle Ku, v \rangle_{X'} \times$$

- \rightarrow $K \in L(X, X')$ encodes the boundary conditions
- ⇒ choice of X depends on BCs: sound soft: $X = H_0^2(\Omega) := H^2(\Omega) \cap H_0^1(\Omega)$, sound hard & impedance: $X = H^2(\Omega)$

Boundary conditions

- sound soft: K := 0
- sound hard:

$$\langle Ku, v \rangle_{X',X} := -\alpha(\Delta u, \nabla v \cdot \boldsymbol{\nu})_{L^2(\partial\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \nabla v \cdot \boldsymbol{\nu})_{L^2(\partial\Omega)}$$

• impedance:

$$\langle Ku, v \rangle_{X',X} := -\alpha(\Delta u, \nabla v \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} + \alpha i\theta(\Delta u, v)_{L^{2}(\partial\Omega)}$$

+ $\beta i\theta(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n}, v)_{L^{2}(\partial\Omega)} - \beta(\boldsymbol{n}^{T}(\mathcal{H}u)\boldsymbol{n}, \nabla v \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}$
- $i\theta(u, v)_{L^{2}(\partial\Omega)}$

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

→ self-adjointness, well-posedness, compact solution operator

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive;

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X, X')$ is compact;

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X, X')$ is compact;
- 4. Show that $A \in L(X, X')$, $\langle Au, v \rangle_{X', X} := a(u, v)$, is injective.

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X, X')$ is compact;

only sound hard

4. Show that $A \in L(X, X')$, $\langle Au, v \rangle_{X', X} := a(u, v)$, is injective \int

impedance BC

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H_0^2(\Omega);$$

- → self-adjointness, well-posedness, compact solution operator
- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X, X')$ is compact;

only sound hard

4. Show that $A \in L(X, X')$, $\langle Au, v \rangle_{X', X} := a(u, v)$, is injective \int

t impedance BC

 \Rightarrow A is weakly T-coercive and injective, so (CP) is well-posed.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

→ self-adjointness of $\beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)}$ by part. Int.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,

$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

- → self-adjointness of $\beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)}$ by part. Int.
- ⇒ coercivity of $e(\cdot, \cdot)$ on $H_0^2(\Omega)$ with C. S. and Poincaré ineq.

Find
$$u \in H_0^2(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,
$$e(u, v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}.$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

- → self-adjointness of $\beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)}$ by part. Int.
- ⇒ coercivity of $e(\cdot, \cdot)$ on $H_0^2(\Omega)$ with C. S. and Poincaré ineq.
- \rightarrow compactness follows from the compact emb. $H_0^2(\Omega) \hookrightarrow L^2(\Omega)$

→ ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X

- → ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X
- \rightarrow set $i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\}$ and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

- → ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X
- \rightarrow set $i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\}$ and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

→ T bijective & acts on eigenfcts. as $Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } \lambda^{(i)} < k^2; \\ +e^{(i)} & \text{if } \lambda^{(i)} > k^2. \end{cases}$

- → ∃ eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of X
- \rightarrow set $i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\}$ and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

- → *T* bijective & acts on eigenfects. as $Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } \lambda^{(i)} < k^2; \\ +e^{(i)} & \text{if } \lambda^{(i)} > k^2. \end{cases}$
- → We have that

$$e(Tu, u) - k^{2}(Tu, u)_{L^{2}}$$

$$= \sum_{i \leq i_{*}} C_{\lambda}(k^{2} - \lambda^{(i)})(u^{(i)})^{2} + \sum_{i \geq i_{*}} C_{\lambda}(\lambda^{(i)} - k^{2})(u^{(i)})^{2} \geq \gamma ||u||_{X}^{2}$$

Estimate each boundary term, e.g. for *sound hard* BCs ($\beta = 0$)

$$\begin{split} \|Ku\|_{X'} &= \sup_{\boldsymbol{v} \in X \setminus \{0\}} \frac{|\langle Ku, \boldsymbol{v} \rangle_{X', X}|}{\|\boldsymbol{v}\|_{H^{2}(\Omega)}} \\ &\leq \sup_{\boldsymbol{v} \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \|\gamma_{0} \nabla \boldsymbol{v} \cdot \boldsymbol{\nu}\|_{L^{2}(\partial \Omega)}|}{\|\boldsymbol{v}\|_{H^{2}(\Omega)}} \\ &\leq C |\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \end{split}$$

Estimate each boundary term, e.g. for sound hard BCs ($\beta = 0$)

$$\begin{split} \|Ku\|_{X'} &= \sup_{v \in X \setminus \{0\}} \frac{|\langle Ku, v \rangle_{X', X}|}{\|v\|_{H^2(\Omega)}} \\ &\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_0 \Delta u\|_{L^2(\partial \Omega)} \|\gamma_0 \nabla v \cdot \boldsymbol{\nu}\|_{L^2(\partial \Omega)}|}{\|v\|_{H^2(\Omega)}} \\ &\leq C |\alpha| \|\gamma_0 \Delta u\|_{L^2(\partial \Omega)} \end{split}$$

→ last step uses continuity of normal trace operator

Estimate each boundary term, e.g. for *sound hard* BCs ($\beta = 0$)

$$\begin{split} \|Ku\|_{X'} &= \sup_{v \in X \setminus \{0\}} \frac{|\langle Ku, v \rangle_{X', X}|}{\|v\|_{H^2(\Omega)}} \\ &\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_0 \Delta u\|_{L^2(\partial \Omega)} \|\gamma_0 \nabla v \cdot \boldsymbol{\nu}\|_{L^2(\partial \Omega)}|}{\|v\|_{H^2(\Omega)}} \\ &\leq C |\alpha| \|\gamma_0 \Delta u\|_{L^2(\partial \Omega)} \end{split}$$

- → last step uses continuity of normal trace operator
- \rightarrow Thus: $\forall (u_n)_{n\in\mathbb{N}}\subset H^2$ s.t. $u_n\stackrel{H^2}{\rightharpoonup} u\Rightarrow Ku_n\to Ku$, so K is compact

Estimate each boundary term, e.g. for *sound hard* BCs ($\beta = 0$)

$$\begin{split} \|Ku\|_{X'} &= \sup_{v \in X \setminus \{0\}} \frac{|\langle Ku, v \rangle_{X', X}|}{\|v\|_{H^2(\Omega)}} \\ &\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_0 \Delta u\|_{L^2(\partial \Omega)} \|\gamma_0 \nabla v \cdot \boldsymbol{\nu}\|_{L^2(\partial \Omega)}|}{\|v\|_{H^2(\Omega)}} \\ &\leq C |\alpha| \|\gamma_0 \Delta u\|_{L^2(\partial \Omega)} \end{split}$$

- → last step uses continuity of normal trace operator
- \rightarrow Thus: $\forall (u_n)_{n\in\mathbb{N}}\subset H^2$ s.t. $u_n\stackrel{H^2}{\rightharpoonup} u\Rightarrow Ku_n\to Ku$, so K is compact
- \rightarrow use similar arguments for $\beta > 0$ & the *impedance* case

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN 18 PULICA COMMODA 1811 (1927)

 \rightarrow need to assume that $k^2 \notin \{\lambda^{(i)}\}_{i \in \mathbb{N}}$

- \rightarrow need to assume that $k^2 \notin \{\lambda^{(i)}\}_{i \in \mathbb{N}}$
- \rightarrow for impedance case: take $v \in \ker a(\cdot, \cdot)$, then

$$0 = |-\Im a(v,v)| \ge \left|\frac{\alpha\zeta}{2} \|\Delta v\|_{L^2(\partial\Omega)}^2 + \frac{\theta}{2\zeta} \|v\|_{L^2(\partial\Omega)}^2\right|$$

- \rightarrow need to assume that $k^2 \notin \{\lambda^{(i)}\}_{i \in \mathbb{N}}$
- \rightarrow for *impedance* case: take $v \in \ker a(\cdot, \cdot)$, then

$$0 = |-\Im a(v,v)| \ge \left|\frac{\alpha\zeta}{2}\|\Delta v\|_{L^2(\partial\Omega)}^2 + \frac{\theta}{2\zeta}\|v\|_{L^2(\partial\Omega)}^2\right|$$

 \rightarrow $\gamma_0 v = 0$ and $\gamma_0 \Delta v = 0$ on $\partial \Omega$, use unique continuation principle to conclude that v = 0 in Ω

- \rightarrow need to assume that $k^2 \notin \{\lambda^{(i)}\}_{i \in \mathbb{N}}$
- \rightarrow for impedance case: take $v \in \ker a(\cdot, \cdot)$, then

$$0 = |-\Im a(v,v)| \ge \left|\frac{\alpha\zeta}{2}\|\Delta v\|_{L^2(\partial\Omega)}^2 + \frac{\theta}{2\zeta}\|v\|_{L^2(\partial\Omega)}^2\right|$$

 $\rightarrow \gamma_0 v = 0$ and $\gamma_0 \Delta v = 0$ on $\partial \Omega$, use unique continuation principle to conclude that v = 0 in Ω

We have shown:

 \mathcal{A} is (weakly) T-coercive and injective \Rightarrow there $\exists ! u \in X$ s.t. $a(u, v) = (f, v)_{L^2(\Omega)}$ for all $v \in X$

Discrete problem

Discretization

Let $\{T_h\}_h$ be a family of shape regular, quasi-uniform, simplicial triangulations. We choose an H^2 -conforming finite element space, p > 4:

$$X_h := \{ v \in H^2(\Omega) : v|_T \in \mathcal{P}^p(T) \mid \forall T \in \mathcal{T}_h \}$$

- \rightarrow imposing essential BCs for \mathcal{C}^1 -conf. FEM challenging⁶;
- → use Nitsche's method to impose BCs (for *sound soft* & *sound hard*, not necessary for *impedance*)

Argyris-element,

$$p \ge 5$$

⁶R.C. Kirby, L. Mitchell, Code generation for generally mapped finite elements. ACM TOMS, 2019.

Discrete problem

Find
$$u_h \in X_h$$
 s.t. $a_h(u_h, v_h) = (f, v_h)_{L^2(\Omega)}$ for all $v_h \in X_h$, where
$$a_h(u_h, v_h) := a(u_h, v_h) + \epsilon (\mathcal{N}_h(u_h, v_h))$$

- \rightarrow $\epsilon = 0$ for impedance BCs, $\epsilon = 1$ for sound soft BCs
- → discrete analysis follows similar steps as the continuous case:
 - 1. analyse the discrete EVP (with potential Nitsche terms);
 - 2. construct T_h and show uniform T_h -coercivity;
- \rightarrow for *impedance* BCs ($\epsilon = 0$), we can neglect the compact term
- → sound hard BCs can be analyzed with similar arguments

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

natural boundary terms

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)}
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)}
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

natural boundary

symmetry terms

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \nu, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \nu, v_{h})_{L^{2}(\partial\Omega)}$$

$$+\beta(\nabla(\mathbf{n}^{T}(\mathcal{H}u_{h})\mathbf{n}) \cdot \nu, v_{h})_{L^{2}(\partial\Omega)}$$

$$+\alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \nu)_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \nu)_{L^{2}(\partial\Omega)}$$

$$+\beta(u_{h}, \nabla(\mathbf{n}^{T}(\mathcal{H}v_{h})\mathbf{n}) \cdot \nu)_{L^{2}(\partial\Omega)}$$

$$+\beta(u_{h}, \nabla(\mathbf{n}^{T}(\mathcal{H}v_{h})\mathbf{n}) \cdot \nu)_{L^{2}(\partial\Omega)}$$

$$+\alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

$$+\beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)}$$

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \nu, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \nu, v_{h})_{L^{2}(\partial\Omega)} \\
+ \beta(\nabla(\mathbf{n}^{T}(\mathcal{H}u_{h})\mathbf{n}) \cdot \nu, v_{h})_{L^{2}(\partial\Omega)} \\
+ \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \nu)_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \nu)_{L^{2}(\partial\Omega)} \\
+ \beta(u_{h}, \nabla(\mathbf{n}^{T}(\mathcal{H}v_{h})\mathbf{n}) \cdot \nu)_{L^{2}(\partial\Omega)} \\
+ \beta(u_{h}, \nabla(\mathbf{n}^{T}(\mathcal{H}v_{h})\mathbf{n}) \cdot \nu)_{L^{2}(\partial\Omega)} \\
+ \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\
+ \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\
\Rightarrow |\mathcal{N}_{h}(u_{h}, u_{h})| \gtrsim -\frac{\alpha\zeta_{1}}{h^{3}}||\Delta u_{h}||_{L^{2}(\Omega)}^{2} - \frac{\zeta_{2}}{h}||\nabla u_{h}||_{L^{2}(\Omega)}^{2} - \frac{\beta\zeta_{3}}{h^{3}}|u|_{H^{2}(\Omega)}^{2} \\
+ \left(\frac{\alpha\eta_{1}}{h^{3}} - \frac{\alpha}{\zeta_{1}} + \frac{\eta_{2}}{h} - \frac{1}{\zeta_{2}} + \frac{\beta\eta_{3}}{h^{3}} - \frac{\beta}{\zeta_{3}}\right)||u||_{L^{2}(\partial\Omega)}^{2}$$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$
$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

$$\rightarrow$$
 $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

$$\rightarrow$$
 $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$

$$\rightarrow$$
 Discrete norm: $||u_h||_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon ||u||_{L^2(\partial\Omega)}^2$

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$
$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

- \rightarrow $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$
- \rightarrow Discrete norm: $||u_h||_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon ||u||_{L^2(\partial\Omega)}^2$

Lemma

For η_i , i = 1, 2, 3, large enough, the bilinear form $e_h(\cdot, \cdot)$ is uniformly coercive on \tilde{X}_h w.r.t. $\|\cdot\|_{\epsilon}$.

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$

$$e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$$

- \rightarrow $\tilde{X}_h = X_h$ if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$
- \rightarrow Discrete norm: $||u_h||_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon ||u||_{L^2(\partial\Omega)}^2$

Lemma

For η_i , i = 1, 2, 3, large enough, the bilinear form $e_h(\cdot, \cdot)$ is uniformly coercive on \tilde{X}_h w.r.t. $\|\cdot\|_{\epsilon}$.

Proof.

Use the estimate for $\mathcal{N}_h(\cdot,\cdot)$ from the previous slide & choose ζ_i small enough, η_i large enough, i=1,2,3.

Discrete T_h-coercivity

$$\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$$

Discrete T_h -coercivity

- $\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$
- → as in the continuous case, we have that

$$e_h(T_h u_h, u_h) - k^2(T_h u_h, u_h)$$

$$= \sum_{0 \le i \le i_*} C_{\lambda_h}(k^2 - \lambda_h^{(i)})(u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h}(\lambda_h^{(i)} - k^2)(u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

Discrete T_h -coercivity

- $\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$
- → as in the continuous case, we have that

$$e_h(T_h u_h, u_h) - k^2(T_h u_h, u_h)$$

$$= \sum_{0 \le i \le i_*} C_{\lambda_h}(k^2 - \lambda_h^{(i)})(u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h}(\lambda_h^{(i)} - k^2)(u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

 \rightarrow (there $\exists h_0$ s.t. $\forall h \leq h_0$) $a_h(\cdot, \cdot)$ is uniformly T_h -coercive

Discrete T_h -coercivity

- $\rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$
- → as in the continuous case, we have that

$$e_h(T_h u_h, u_h) - k^2(T_h u_h, u_h)$$

$$= \sum_{0 \le i \le i_*} C_{\lambda_h}(k^2 - \lambda_h^{(i)})(u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h}(\lambda_h^{(i)} - k^2)(u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

- \rightarrow (there $\exists h_0$ s.t. $\forall h \leq h_0$) $a_h(\cdot, \cdot)$ is uniformly T_h -coercive
- \rightarrow the discrete problem has a unique solution for h small enough

Best approximation

 \rightarrow $a_h(\cdot,\cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^T \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

Best approximation

 \rightarrow $a_h(\cdot,\cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^T \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

 \rightarrow a_h is consistent, i.e. $a_h(u-u_n,v_h)=0$ for all $v_h\in X_h$

Best approximation

 \rightarrow $a_h(\cdot,\cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^T \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

- \rightarrow a_h is consistent, i.e. $a_h(u-u_n,v_h)=0$ for all $v_h\in X_h$
- → with classical arguments, we can show that

$$||u-u_h||_{h,\epsilon}\leq C\inf_{v_h\in X_h}||u-v_h||_{h,\epsilon}.$$

Numerical examples

Manufactured Solution

⇒ plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d} \cdot \mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. u solves the nematic Helmholtz–Korteweg eqs.

Manufactured Solution

- → plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d}\cdot\mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. u solves the nematic Helmholtz–Korteweg eqs.
- \rightarrow for $u \in H^5(\Omega)$, we can construct $I_h: u \to X_h$ s.t.

$$||u - I_h u||_{H^2(\Omega)} \le h^3 ||u||_{H^5(\Omega)}$$

Manufactured Solution

- → plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d}\cdot\mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. u solves the nematic Helmholtz–Korteweg eqs.
- \rightarrow for $u \in H^5(\Omega)$, we can construct $I_h: u \to X_h$ s.t.

$$||u - I_h u||_{H^2(\Omega)} \le h^3 ||u||_{H^5(\Omega)}$$

 \rightarrow dashed: k = 20, solid: k = 30

Gaussian pulse

 \rightarrow rhs: symmetric Gaussian pulse in (0,0), impedance BCs, k=40, $\alpha=10^{-2}$

Gaussian pulse

 \rightarrow rhs: symmetric Gaussian pulse in (0,0), impedance BCs, k=40, $\alpha=10^{-2}$

Mullen-Lüthi-Stephen experiment⁷

⁶ M.E. Mullen, B. Lüthi, M.J. Stephen, Sound velocity in a nematic liquid crystal. Physics review letters, 1972.

- → we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg equations
 - \rightarrow (weak) T-coercivity argument where T flips the sign of 'problematic' eigenfects.
 - → analysis appplies to sound soft, sound hard & impedance BCs

- → we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg equations
 - \rightarrow (weak) T-coercivity argument where T flips the sign of 'problematic' eigenfects.
 - → analysis appplies to sound soft, sound hard & impedance BCs
- \rightarrow we analysed the discretization with H^2 -conforming FEM
 - → imposition of essential BCs through Nitsche's method
 - → transfer T-coercivity arguments to the discrete level

- → we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg equations
 - \rightarrow (weak) T-coercivity argument where T flips the sign of 'problematic' eigenfets.
 - → analysis appplies to sound soft, sound hard & impedance BCs
- \rightarrow we analysed the discretization with H^2 -conforming FEM
 - → imposition of essential BCs through Nitsche's method
 - → transfer T-coercivity arguments to the discrete level
- numerical experiments to study the effect of the nematic field on the propagation of acoustic waves

- → we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg equations
 - \rightarrow (weak) T-coercivity argument where T flips the sign of 'problematic' eigenfets.
 - → analysis appplies to sound soft, sound hard & impedance BCs
- \rightarrow we analysed the discretization with H^2 -conforming FEM
 - → imposition of essential BCs through Nitsche's method
 - → transfer T-coercivity arguments to the discrete level
- numerical experiments to study the effect of the nematic field on the propagation of acoustic waves

Thank you for your attention!