Estrategias para la exploración coordinada multi-VANT

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 18 de agosto de 2023

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Problemática

(a) Trabajos contra reloj en búsqueda de sobrevivientes.

(b) Desastre ocurrido 4:17 am. de un Lunes por la mañana según medios internacionales.

Figura: Terremoto Turquía y norte de Siria Febrero 2023.

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Descripción del proyecto Colaboración

Descripción del proyecto

- Colaboracion
- Colaboracion

Figura: Cuadricópteros en una red descentralizada¹

Descripción del proyecto

- Colaboracion
- Colaboracion
- Colaboracion

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Arquitectura híbrida

^{† &}lt;sup>†</sup>This is the footnote text

⁰Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment Curiel-Ramirez et al. (2019)

Planificación de trayectorias

Erickson and LaValle (2013)[3] Dieudonné et al. (2010)[2]Calcular la ruta más corta entre dos puntos en un ambiente 3D es un problema NP-HARD. La mayoria de planificadores de rutas hacen uso de heuristicas y metaheuristicas para generar el óptimo más cercano

Beneficios coordinación múlti-VANT

- Eficiencia y cobertura
- Redundancia y tolerancia a fallos
- Adaptabilidad a entornos dinámicos
- Distribución de carga de trabajo
- Aprendizaje colaborativo

Comparación de métodos							
Metodo	Completo	Óptimo	Escalable	Notas			
Grafo de Visibi- lidad	Si	Si	No	Poca escalabilidad, el robot pasa cerca de los obstaculos			
Diagramas de Voronoi	Si	No	No	Poca escalabilidad			
Campo de po- tencial artificial	Si	No	Depende del ambiente	Fácil de implementar, suceptible a minimos locales			
Dijkstra/A*/D*	Si	Grafo	No	A* usa una función heuristica que guía la búsqueda más eficiente, Poca escalabilidad			
PRM	Si	Grafo	Si	Eficiente para multi-busquedas, completez probabilistica			
RRT	Si	No	Si	Eficiente para problemas simples, completez probabilistica			

Panorama Planificación de trayectorias

Figura: 1

¹Cooperación en robots heterogeneos Sánchez-Ibáñez et al. (2021)

Representación del ambiente

Figura: Mapa probabilistico 3D¹

¹Cooperación en robots heterogeneos Sánchez-Ibáñez et al. (2021)

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- Ontribuciones o resultados esperados

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de $\mathcal V$ vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

 Coordinación - Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de $\mathcal V$ vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de $\mathcal V$ vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.
- Asignación de tareas Se busca evitar la duplicación de esfuerzos optimizando el uso de recursos disponibles.

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Objetivos generales y específicos del proyecto

General

Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

Objetivos generales y específicos del proyecto

- ① General Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- 2 Particulares
 - Construcción de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).

Objetivos generales y específicos del proyecto

- ① General Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- 2 Particulares
 - Construcción de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).
 - Comparación y análisis (escalabilidad, robustez y recursos computacionales).

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Metodología

- 1 Análisis y diseño de la solución propuesta
 - Revisión a grano fino del estado del arte
 - Evaluación de aptitudes
 - Elaboración de la solución

Metodología

- 1 Análisis y diseño de la solución propuesta
 - Revisión a grano fino del estado del arte
 - Evaluación de aptitudes
 - Elaboración de la solución
- 2 Implementación y validación
 - Selección de Simulador
 - Visualización de información (Construcción OctoMap)
 - Control de desplazamientos (1 VANT, 2 VANT,..N)
 - Exploración 1 VANT
 - Exploración multi-VANT

Metodología

- 1 Análisis y diseño de la solución propuesta
 - Revisión a grano fino del estado del arte
 - Evaluación de aptitudes
 - Elaboración de la solución
- 2 Implementación y validación
 - Selección de Simulador
 - Visualización de información (Construcción OctoMap)
 - Control de desplazamientos (1 VANT, 2 VANT,..N)
 - Exploración 1 VANT
 - Exploración multi-VANT
- 3 Evaluación experimental, resultados y conclusiones
 - Experimentación de solución
 - Recopilación de información
 - Divulgación

	Cuatrimestre 1 ^a			Cuatrimestre 2				Cuatrimestre 3 ^c				
	1	2	3	4	1	2	3	4	1	2	3	4
Etapa 1		•										
E1.A1. Revisión literatura relevante ^d												
E1.A2. Selección de algoritmos												
E1.A3. Diseño de la arquitectura de software												
E1.A4. Documentación Etapa 1												
E1.A5. Revisión de tesis Etapa 1												
Etapa 2												
E2.A1. Selección Simulador												
E2.A2. Visualización de datos ^e												
E2.A3. Control de desplazamientos												
E2.A4. Desarrollo de algoritmo de exploración												
E2.A5. Implementación y simulación ^g												
E2.A6. Desarrollo de coordinación												
E2.A7. Implementación y sumulación h												
E2.A8. Documentación Etapa 2												
E2.A9. Revisión de tesis Etapa 2												
Etapa 3												
E3.A1. Experimentación de solución												
E3.A2. Recopilación resultados												
E3.A3. Documentación Etapa 3												
E3.A4. Revisión de tesis												
E3.A5. Divulgación ⁱ												
E3.A6. Proceso de titulación												

^aCorrespondiente a los meses de Septiembre, Octubre, Noviembre, Diciembre del 2023

(Abiente e conscien de displacation de consende con les activides de describución contel

^bCorrespondiente a los meses de Enero, Febrero, Marzo, Abril del 2024

^{&#}x27;Correspondiente a los meses de Mayo, Junio, Julio, Agosto del 2024

de de la companie de la companie de trabajos relacionados sobre la exploración y colaboración multi-VANT, evaluación de aptitudes en trabajos recientes

^eVisualización Octomap en Simulador

^fUn VANT

⁸Se considera un solo agente que resuelva la tarea de exploración autónoma con evación de obstáculos

hSe considerán los múltiples-VANT que resuelva la tarea de exploración autónoma con evación de obstáculos

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Prueba Video

REFERENCIA	MAPA	Planificador de rutas	Generación trayectoria	MULTI-VANT
Cieslewski et al. [2017] [41]	Octomap	Basado en fronteras	Control directo de velocidad	Х
Usenko et al. [2017] [42]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier	Х
Mohta et al. [2017] [43]	mapa 3D-Local y 2D-Global	A*	Progración cuadrática	Х
Lin et al. [2017] [44]	3D voxel array TSDF	A*	Optimización cuadrática	Х
Papachristos et al. [2017] [45]	Octomap	NBVP	Control directo de velocidad	Х
Oleynikova et al. [2018] [46]	Voxel Hashing TSDF	NBVP	Optimización cuadrática	Х
Gao et al. [2018] [47]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática	Х
Florence et al. [2018] [48]	Busqueda basada en visibilidad	2D A*	Control MPC	Х
Selin et al. [2019] [49]	Octomap	NBVP	Control directo de velocidad	Х
McGuire et al. [2019] [50]	NA	SGBA	Control directo de velocidad	Х
Collins and Michael [2020][51]	KD Tree + Mapa en Voxel	Búsqueda en Grafo	Movimientos suaves	Х
Campos-Macías et al. [2020][24]	Octree	RRT	Basado en contornos	Х
Zhou et al. [2023] [53]	Octomap HGrid	NBVP	Control directo de velocidad	/

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- **6** Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Simulación de la solución

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- Simulación de la solución
- 3 Tesis impresa

Bibliography I

- L. A. Curiel-Ramirez, R. A. Ramirez-Mendoza, J. Izquierdo-Reyes, M. R. Bustamante-Bello, and S. A. Navarro-Tuch. Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment. *International Journal on Interactive Design and Manufacturing (IJIDeM)*, 13(4):1647–1658, Oct. 2019. doi: 10.1007/s12008-019-00619-x. URL
 - https://doi.org/10.1007/s12008-019-00619-x.
- Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Deterministic robot-network localization is hard. *IEEE Transactions on Robotics*, 26(2):331–339, 2010. doi: 10.1109/TRO.2010.2042753.
- L. H. Erickson and S. M. LaValle. A simple, but np-hard, motion planning problem. In *Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence*, AAAI'13, page 1388–1393. AAAI Press, 2013.

Bibliography II

J. R. Sánchez-Ibáñez, C. J. P. del Pulgar, and A. García-Cerezo. Path planning for autonomous mobile robots: A review. *Sensors*, 21(23):7898, Nov. 2021. doi: 10.3390/s21237898. URL https://doi.org/10.3390/s21237898.