۸ نوبت هشتم

تمرین ۴۱: فرض کنیم \mathfrak{M} مدلی ω اشباع باشد. آنگاه \mathfrak{N} (طبق تعریف تمرین ۱) به طور جزئی با \mathfrak{M} ایزومرف است اگروتنهااگر ω اشباع و همارز مقدماتی با آن باشد.

تمرین ۴۲:

- ۱. هرگاه \mathfrak{M} مدلی اشباع باشد و M باشد و M آنگاه $(a,b)\in \mathfrak{M}$ اگروتنهااگر اتومرفیسمی از \mathfrak{M} مانند σ موجود باشد، به طوری که $\sigma(a)=\sigma(b)$ (با تمرینِ ۱۱ مقایسه شود).
- ۲. بنابراین، عنصرِ a روی مجموعه ی A جبری است (تمرینِ ۱۵ را ببینید)، هرگاه دارای مداری .۲ متناهی نسبت به $\operatorname{Aut}(\mathfrak{M}/A)$ باشد؛ یعنی مجموعه ی زیر، متناهی باشد:

 $\{\sigma(a)|$ یک اتومرفیسم روی $\mathfrak M$ است که A را نقطهوار حفظ میکند $\sigma\}$.

تمرین ۴۳:

- ۱. گیریم تعداد تایپهای کاملِ تکمتغیره در یک تئوریِ T، دو عدد باشد. چند فرمولْ به هنگ همارزی نسبت به تئوریِ T موجود است؟
- ۲. نشان دهید که اگر تعداد تایپها نسبت به یک تئوری T متناهی باشد، آنگاه، به هنگ همارزی، تعداد متناهی فرمول داریم (یعنی تعداد متناهی فرمول موجود است که هر فرمول ِ دیگر، لزوماً با یکی از آنها معادل است).

ليندشتِرُم

تمرین ۴۴ (ادامه ی تمرین ۱۲): نشان دهید هرگاه تئوری T جازم باشد و دارای یک اصل بندی به صورت $\exists \forall T$ مدل است. (تئوری $\exists T$ را مدل کامل می خوانیم هرگاه همه ی مدلهای آن بسته ی وجودی باشند).