BEST AVAILABLE COPY

PCT

世界知的所有権機関

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5 C07D 215/00, 215/00, 235/00 C07D 239/72, 239/84, 239/94 C07D 239/95, A61K 31/47 A61K 31/505

(11) 国際公開番号

WO 93/07124

(43) 国際公開日

1993年4月15日(15.04.1993)

(21)国際出題番号 (22)国際出願日

PCT/JP92/01258 1992年9月30日(30.09.92)

A1

(30) 優先権データ

特顯平3/320853

1991年9月30日(30,09,91)

J P

(71) 出願人(米国を除くすべての指定国について)

エーザイ株式会社(EISAI CO., LTD.)[JP/JP]

〒112-88 東京都文京区小石川4丁目6番10号 Tokyo. (JP)

(72)発明者;および

(75)発明者/出願人(米国についてのみ)

高瀬保孝(TAKASE, Yasutaka)[JP/JP]

〒305 茨城県つくは市春日4-19-13 エーザイ紫山寮308

Ibaraki, (JP)

遊辺信久(WATANABE, Nobuhisa)[JP/JP]

〒305 茨城県つくば市天久保2-23-5 メゾン学園105

Ibaraki, (JP)

松井 誠(MATSUI, Makoto)[JP/JP]

〒466 愛知県名古屋市昭和区山里町69番地 Aichi, (JP)

生田博惠(IKUTA, Hironori)[JP/JP]

〒300-12 茨城県牛久市栄町2-35-12 Ibaraki, (JP)

木村禎治(KIMURA, Teiji)[JP/JP]

〒305 茨城県つくは市梅園 2-16-1 ルンピーニ梅園 604

Ibaraki, (JP)

佐伯隆生(SAEKI, Takao)[JP/JP]

〒302-01 茨城県北相馬郡守谷町松前台2-9-6 Ibaraki, (JP)

足立秀之(ADACHI, Hideyuki)[JP/JP]

〒300-03 茨城県稲敷郡阿見町中央7-7-18 Ibaraki, (JP)

徳村忠一(TOKUMURA, Tadakazu)[JP/JP]

〒300 茨城県土浦市桜ヶ丘町32-5 Ibaraki, (JP)

餅田久利(MOCHIDA, Hisatoshi)[JP/JP]

〒483 愛知県江南市藤ケ丘7-1-2 江南団地216-106

Aichi. (JP)

秋田靖典(AKITA, Yasunori)[JP/JP]

〒300-24 茨城県筑波郡谷和原村下小目122 Ibaraki, (JP)

左右田茂(SOUDA, Shigeru)[JP/JP]

〒300-12 茨城県牛久市牛久町1687-21 Ibaraki。(JP)

并理士 古谷 磬,外(FURUYA, Kaoru et al.)

〒103 東京都中央区日本橋堀留町1-8-11 日本橋TMビル

Tokyo, (JP)

(81) 指定国

AT(欧州特許)。AU、BE(欧州特許)。CA、CH(欧州特許)。

DE(欧州特許), DK(欧州特許), ES(欧州特許), FI,

FR(欧州特許), GB(欧州特許), GR(欧州特許), HU,

IE(欧州特許), IT(欧州特許), JP, KR, LU(欧州特許),

NL(欧州特許)。NO, RU, SE(欧州特許), US.

添付公開書類

国際調査報告律

(54) Title: NITROGENOUS HETEROCYCLIC COMPOUND

(54) 発明の名称 含窒素视索摄化合物

$$\begin{array}{c} \mathbf{R}^{10} \\ -\mathbf{N} - (\mathbf{C}\mathbf{H}_2) \mathbf{r} & \mathbf{R}^{20} \\ \mathbf{R}^{21} \end{array} \qquad (\mathbf{A})$$

(57) Abstract

A nitrogenous heterocyclic compound represented by general formula (I) or a pharmacologically acceptable salt thereof, efficacious in treating various ischemic cardiac diseases, wherein ring A represents a benzene, pyridine or cyclohexane ring; ring B represents a pyridine, pyrimidine or imidazole ring; R¹, R², R³ and R⁴ represent each hydrogen, halogen, lower alkoxy, etc.; R⁵ represents -NR¹¹R¹² (wherein R¹¹ and R¹² represent each hydrogen, lower alkyl, etc.), etc.; and R⁶ represents (a) (wherein R¹⁹ represents hydrogen, lower alkyl, etc.; R²⁰, R²¹ and R²² represent each hydrogen, halogen, hydroxy, etc.; and r represents an integer of 0.1 to 8), etc.

(57) 要約

種々の虚血性心疾患などに有効な、下配式(1)で表される含窒 素複素環化合物またはその薬理学的に許容できる塩を提供する。

〔式(1)中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環、環Bはピリジン環、ピリミジン環又はイミダゾール環を意味する。 R^1 、 R^2 、 R^3 及び R^4 は水素原子、ヘロゲン原子、低級アルコキシ基等の基を意味し、 R^5 は式 $-NR^{11}$ R^{12} (式中、 R^{11} 、 R^{12} は水素原子、低級アルキル基等の基を意味する。)で示される基等

素原子、低級アルキル基等的基、R²⁰、R²¹、R²² は水素原子、ヘロゲン原子、水酸基等的基を意味する。 rは 0 又は 1 ~8 の整数を意味する。) で示される基等を意味する。)

情報としての用途のみ

PCTに基づいて公開される国際出額のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストリア AU オーストリア BB ペーストラス BB ペールギード BF ブルルギーツ BG ブルキナリア BR ブカナン BR ブカナン BR ブカナン CCF 中央ンゴス CCF 中央ンゴス CH スコート・ジーン CM カチェッコ CC オール・ツコ サイン CC チェッコ DE ドディン・シーク FI フィーイン FR フランス GA フランス GB イギニリス GR ギンス GR ギンア・ヤー IE ア・リンイルー IE ア・イラン IE ア・イー IE エキ WE サレー IE エキ WE サレー IE エキ WE サレー II と ファイン II と ファイン MC マッリンフ MC マット MC マッ NL オランダー NO / ユュウ・ニット PL ホーーラがニャ PT ホーマア・ド PT ホーマア・ボー SD スウェーア SD スウェーア・ファイ SD スウェーア・ファイ SN セースフローグ・エード TD オークター VN ヴィーゴ イ US 米国 トナーク US 米国 トナーク US 米国 トナーク US 米 フィーグ・エーター VN ヴィー エ

明 細 膏

含窒素複素環化合物

[産業上の利用分野]

本発明は、医薬として優れた作用を有する含窒素複素環化合物に関する。 〔発明の背景及び先行技術〕

虚血性心疾患の1つである狭心症は、これまで高齢者に多い疾患として知られてきた。その治療剤としては、硝酸及び亜硝酸化合物、カルシウム拮抗剤、βー 遮断剤などが使われてきたが、狭心症治療や心筋梗塞への進展予防にはまだまだ効果が不十分である。さらに最近、生活形態の変化、社会の複雑化に伴うストレスの増大などにより、狭心症患者の年齢の低下、病態の複雑化などがみられるようになり、新しいタイプのより優れた薬剤が渇望されている。

現在使用されている先に挙げた薬剤のうち、硝酸及び亜硝酸化合物の作用は、細胞内セカンドメッセンジャーとして知られているサイクリックヌクレオチドの中のサイクリックGMP(以下 c GMPと略す)が関与していると考えられている。 c GMPについては血管平滑筋ならびに気管支平滑筋の弛緩作用がよく知られている。これらの薬剤の作用機序は必ずしも明らかではないが、この c GMPの活性はグアニレートシクラーゼを活性化し、 c GMP合成を促進することに起因するものと一般に考えられている。しかし、これらの薬剤は、生物学的利用率が低く、比較的作用時間が短い。また、耐性を生じることが報告されており、臨床上問題となっている。

このような実情に鑑み、本発明者等は新しいタイプのより優れた薬剤を開発すべく探索研究に着手した。

すなわち本発明者らは、cGMPホスホジエステラーゼ(以下cGMP-PD

WO 93/07124 PCT/JP92/01258

Eと略す) 阻害作用に着目し、これらの作用を有する化合物について長年にわたって鋭意研究を重ねてきた。その結果下記に示す含窒素複素環化合物がこれらの作用を有し、種々の虚血性心疾患などに有効であることを見出し、本発明を完成した。

医薬として有用なキナゾリン誘導体としては、例えば特表平2-502462 号が挙げられるが、本発明化合物とは構造・作用共に異にするものである。

(発明の開示)

本発明は、下記一般式(1) で表される含窒素複素環化合物またはその薬理学的 に許容できる塩を提供する。

(式(1) 中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環を意味する。 環Bはピリジン環、ピリミジン環又はイミダゾール環を意味する。

ただし、環Aと環Bは2つの原子を共有して結合しており、その共有する原子は炭素原子でも窒素原子でもよい。

なお、環Aがピリジン環の場合であって、このピリジン環の窒素原子を環B

が共有して結合している場合以外のときは、環Aは R² で示される

ものとする。

 R^1 、 R^2 、 R^3 及び R^4 は同一又は相異なる水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい低級アルキル基、置換されていてもよいシクロアル

 $(0)_{n}$

キル基、低級アルコキシ基、ハイドロキシアルキル基、ニトロ基、シアノ基、

アシルアミノ基、保護されていてもよいカルボキシル基、式 $-\ddot{S}-R^7$ (式中、 R^7 は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示さ

れる基、又は、式-N< R^{45} (式中、 R^{45} 、 R^{46} は同一又は相異なる水素原子

あるいは低級アルキル基を意味する。 R^{46} と R^{46} が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。また、 R^1 、 R^2 、 R^3 及び R^4 のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル基、保護されていてもよいカルボキシ

 $(0)_m$ 川 ル基、式 $-S-R^s$ (式中、 R^s は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^s$ (式中、 R^s は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又は

置換されていてもよいベンジル基を意味する。)で示される基、式 -

(式中、R²³ は水酸基、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。)で示される基、置換されていてもよいへテロアリール基、置換されていてもよい1,3-ベンズジオキソリル基、置換されていてもよい1,4-ベンズジオキシル基、置換さ

れていてもよい 1 、 3 - ベンズジオキソリルアルキル基、置換されていてもよい 1 、 4 - ベンズジオキシルアルキル基、式- $C(R^{24})$ = X (式中、 X は酸素原子、硫黄原子又は式= N - R^{10} (式中、 R^{10} は水酸基、シアノ基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 R^{24} は水素原子又は低級アルキル基を意味する。〕で示される基、又は式 - $NR^{11}R^{12}$ (式中、 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、保護されていてもよいカルボキシアルキルカルバモイル基、置換されていてもよいヘテロアリールアルキル基、 1 、 3 - ベンズオキソリルアルキル基又は 1 、 4 - ベンズジオキシルアルキル基を意味する。さらに、 R^{11} $ext{ }$ $ext{ }$ ext

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェ

は相異なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに、 R^{13} 、 R^{14} は一緒になってメチレンジオキシ又はエチレンジオキシを形成

していてもよい。)で示される基、式
$$-N$$
 で示される基、 R^{15} R^{15}

式
$$-N$$
 R^{15} で示される基、式 $-N$ R^{16} で示される基、

 R^{16} で示される基(これらの式中、 R^{16} 、 R^{16} は、同一又は相異

なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに R^{16} と R^{16} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2'-ジオキサン-1-イル基、式

-Z-(CH₂)。- (式中、 R^{48} 、 R^{49} は同一又は相異なる水素原子、

低級アルキル基又は低級アルコキシ基を意味する。さらに、 R^{48} と R^{49} は、一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。 Zは

硫黄原子又は酸素原子を意味する。)で示される基、式-N (式中、 R^{50}

R⁵⁰ は水酸基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、シアノ基、ハイドロキシアルキル基又はカルボ

キシアルキル基を意味する。)で示される基、式 $-N-Y-R^{18}$ 〔式中、 R^{17} は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)$ 。 (式中、Qは0又は $1\sim8$ の整数を意味する)で示される基、

又は式-C-で示される基を意味する。さらに式-(CH₂)。- で示される基において、qが1~8の整数のとき、それぞれの炭素は1~2個の置換基を有していてもよい。R¹⁸ は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換されていてもよいヘテロアリール基又は置換されていてもよいシクロアルキル基を意味する。〕で示される基、又は

PCT/JP92/01258

$$R^{19}$$
 | R^{20} | 式 $-N^{-}(CH_2)$ R^{21} (式中、 R^{19} は水素原子、低級アルキル基、低級 R^{21}

アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R²⁰、 R²¹、 R²²は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシルズミノ基、アルキルスルホニルアミノ基、ヒドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R²⁰、 R²¹、 R²²のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。]

前記一般式(1) で表される含窒素複素環化合物又はその薬理学的に許容できる 塩の好ましい態様の一つとして、下記一般式(I)で表されるキナゾリン誘導体 又はその薬理学的に許容できる塩が挙げられる。

〔式(I)中、R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、 低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基、シアノ基、ア

(0)。 | シルアミノ基、保護されていてもよいカルボキシル基、式-S-R'(式中、R' WO 93/07124 PCT/JP92/01258

は低級アルキル基を意味し、nは0又は $1\sim2$ の整数を意味する。)で示される基を意味する。また、 R^1 、 R^2 、 R^3 及び R^4 のうちの2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル

 $(0)_{m}$

基、保護されていてもよいカルボキシル基、式 $-\ddot{S}-R^s$ (式中、 R^s は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^s$ (式中、 R^s は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又はベンジル基を意味する。)で示される

基、式 - (式中、R²³ は水酸基、低級アルキル基、低級アルコキシ

が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子 を含んでいてもよい環を形成することができる。また、この環は置換されてい てもよい。)で示される基を意味する。

R[®]は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級ア ルコキシ基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズ ジオキシルアルキルオキシ基、置換されていてもよいフェニルアルキルオキシ

基、式-N R^{13} (式中、 R^{13} 、 R^{14} は同一又は相異なる水素原子、 R^{14}

低級アルキル基又は低級アルコキシ基を意味する。さらに、R¹³、R¹⁴ は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)で

示される基、式
$$-N$$
 で示される基、式 $-N$ で示される基、 R^{16} R^{16}

式
$$-N$$
 R^{15} R^{16} で示される基、式 $-N$ R^{16} で示される基(これらの式

中、 R^{15} 、 R^{16} は、水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに R^{15} と R^{16} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジンー 4 - スピロー2' - ジオキサンー 1 -

|| 又は1~8の整数を意味する)で示される基、又は式-C-で示される基を意 味する。さらに式-(CH₂)。- で示される基において、qが1~8の整数のとき、 それぞれの炭素は1~2個の置換基を有していてもよい。R18 は水素原子、水 酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換され

$$R^{19}$$
 | R^{20} る。)で示される基、又は式 $-N^{-}(CH_2)$, R^{20} (式中、 R^{19} は水素

原子、低級アルキル基、低級アルコキシアルキル基、アシル基、保護されてい てもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R²⁰、 R^{21} 、 R^{22} は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、 ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、 低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、 ヒドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキル オキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味 する。また、 R²⁰、 R²¹、 R²²のうち 2 つが一緒になって窒素原子、硫黄原子 又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。

rは0又は1~8の整数を意味する。)で示される基を意味する。]

また、本発明は、前記含窒素複素環化合物及び/又はその薬理学的に許容でき る塩を有効成分とする、ホスホジエステラーゼ阻害作用が有効な、特にサイクリ ックーGMPホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤を提供 する。

そのような疾患として、虚血性心疾患、具体的には狭心症、高血圧、心不全及 び喘息が挙げられる。

さらに、本発明は、治療に有効な量の前記含窒素複素環化合物及び/又はその 薬理学的に許容できる塩と、薬理学的に許容される賦形剤とからなる医薬組成物 を提供する。

そして、本発明は、ホスホジエステラーゼ阻害作用が有効な疾患の治療薬を製造するという含窒素複素環化合物又はその薬理学的に許容できる塩の用途、及び、*ホスホジエステラーゼ阻害作用が有効な疾患に罹患している患者に、含窒素複素環化合物及び/又はその薬理学的に許容できる塩を、治療に有効な量投与することからなる疾患の治療方法を提供する。

本発明化合物(1) における上記の定義において、R¹、R²、R²、R⁴、R⁵、R⁵、R²、R²、R²、R²¹、R¹²、R¹³、R¹⁴、R¹³、R¹ª、R¹¹、R¹²、R²¹、R²²、R²²、R²²、R²²、R²²、R²²、R²⁴、R⁴³、R⁴³、R⁴³、R⁵°の定義にみられる低級アルキル基とは、炭素数1~8の直鎖もしくは分枝状のアルキル基、例えばメチル基、エチル基、プロビル基、イソプロビル基、プチル基、イソプチル基、secープチル基、tertープチル基、ペンチル基(アミル基)、ネオペンチル基、tertーペンチル基、2ーメチルプチル基、3ーメチルプチル基、1,2ージメチルプロビル基、ヘキシル基、イソヘキシル基、1ーメチルペンチル基、2・メチルペンチル基、3・メチルペンチル基、2・メチルプチル基、3・メチルペンチル基、2・メチルプチル基、3・メチルペンチル基、2・スチルプチル基、3・スチールペンチルを、1・1・2・トリメチルプロビルを、1・エチルー1ーメチルプロビル基、1・エチルー2ーメチルプロビル基、ヘブチル基、オクチル基などを意味する。これらのうち好ましい基としては、メチル基、エチル基、プロビル基、イソプロビル基、エチル基を挙げることができる。これらのうち特に好ましい基としては、メチル基、エチル基を挙げることができる。

また、これら低級アルキル基は、末端の炭素原子がスルホン酸基(-SO₃H) や式 -ONO₂ で示される基で置換されていてもよい。さらに、スルホン酸基は、式 -SO₃Na、式-SO₃K で示される基のような塩を形成していてもよい。

 R^1 、 R^2 、 R^3 および R^4 の定義にみられるハロゲン原子で置換されていてもよい低級アルキル基とは、上記低級アルキル基の水素原子が1 個または2 個以上ハロゲン原子で置換されていてもよい低級アルキル基を意味する。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{13} 、 R^{14} 、 R^{15} 、 R^{16} 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{23} 、 R^{48} 、 R^{48} 、 R^{50} の定義の中にみられる低級アルコキシ基とは、炭素数 $1 \sim 8$ の 直鎖もしくは分枝状のアルコキシ基、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、 sec-プトキシ基、tert-プトキシ基、2-メチルプトキシ基、2, 3-ジメチルプトキシ基、ヘキシルオキシ基などを意味する。これらのうち好ましい基としては、メトキシ基、エトキシ基などを挙げることができる。

R⁵、R⁶、 R²⁰、 R²¹、 R²²の定義にみられる低級アルケニル基とは、上記低級アルキル基から誘導される基、例えばエチレン基、プロピレン基、プチレン基、イソプチレン基などを挙げることができる。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{11} 、 R^{12} 、 R^{12} 、 R^{12} 、 R^{13} 、 R^{23} 、 R^{50} の定義にみられる ハイドロキシアルキル基とは、上記の低級アルキル基から誘導される基を意味する。

R®の定義において、保護されていてもよいハイドロキシアルキル基とは、ハイドロキシアルキルにおける水酸基が、例えばニトロ基で保護された基である場合や、メチル基、エチル基など上記に掲げた低級アルキル基で保護された基である場合や、アセチル基、プロピオニル基、ブチロイル基、ピバロイル基、ニコチノイル基などのアシル基で保護された基である場合や、その他cGMP-PDE阻害活性を有すると思われる基で保護された基である場合が挙げられる。また、こ

れらの保護基は生体内ではずれて又はそのままで薬効を発揮する。

R¹⁷、R¹⁸、R¹⁰、R²⁰、R²¹、R²²の定義にみられるアシル基とは、脂肪族、 芳香族、複素環から誘導されたアシル基、例えばホルミル基、アセチル基、プロ ピオニル基、プチリル基、バレリル基、イソバレリル基、ピバロイル基などの低 級アルカノイル基、ベンゾイル基、トルオイル基、ナフトイル基などのアロイル 基、フロイル基、ニコチノイル基、イソニコチノイル基などのヘテロアロイル基 などを挙げることができる。これらのうち好ましくは、ホルミル基、アセチル基、 ベンゾイル基などを挙げることができる。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{18} 、 R^{50} の定義においてカルボキシル基の保護基とし ては、メチル、エチル、t-ブチルなどの低級アルキル基;p-メトキシベンジ ル、p-ニトロベンジル、3, 4-ジメトキシベンジル、ジフェニルメチル、ト リチル、フェネチルなどの置換基を有していても良いフェニル基で置換された低 ′級アルキル基;2,2,2-トリクロロエチル、2-ヨードエチルなどのハロゲ ン化低級アルキル基;ピパロイルオキシメチル、アセトキシメチル、プロピオニ ルオキシメチル、プチリルオキシメチル、バレリルオキシメチル、1-アセトキ シエチル、2-アセトキシエチル、1-ビバロイルオキシエチル、2-ビバロイ ルオキシエチルなどの低級アルカノイルオキシ低級アルキル基;パルミトイルオ キシエチル、ヘプタデカノイルオキシメチル、1 - パルミトイルオキシエチルな どの高級アルカノイルオキシ低級アルキル基;メトキシカルボニルオキシメチル、 1-プトキカルボニルオキシエチル、1-(イソプロポキシカルボニルオキシ) エチル等の低級アルコキシカルボニルオキシ低級アルキル基;カルボキシメチル、 2-カルボキシエチル等のカルボキシ低級アルキル基;3-フタリジル等の複素 環基;4-グリシルオキシベンゾイルオキシメチル、4-〔N-(t-プトキシ カルボニル) グリシルオキシ] ベンゾイルオキシメチル等の置換基を有していて も良いベンゾイルオキシ低級アルキル基; (5-メチルー2-オキソー1, 3ジオキソレン-4-イル)メチル等の(置換ジオキソレン)低級アルキル基;1
-シクロヘキシルアセチルオキシエチル等のシクロアルキル置換低級アルカノイルオキシ低級アルキル基、1-シクロヘキシルオキシカルボニルオキシエチル等のシクロアルキルオキシカルボニルオキシ低級アルキル基などが挙げられる。

更に、種々の酸アミドとなっていても良いが、生体内で分解してカルボキシル 基になりうる保護基であればいかなるものでも良い。これらの保護基は、生体内 ではずれて又はそのままで薬効を発揮する。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{18} の定義にみられる置換されていてもよいシクロアルキル基とは、炭素数 $3\sim 8$ のものを意味するが、好ましくは炭素数 $3\sim 6$ のものである。

R⁵、R¹⁸、R²⁰、R²¹ およびR²² の定義にみられる置換されていてもよいヘテロアリール基においてヘテロアリールとは、ヘテロ原子として1~2個の酸素原子、窒素原子または硫黄原子を含んだ5~7員環の単環基または縮合ヘテロ環基をいい、例えばフリル基、ピリジル基、チエニル基、イミダゾリル基、キナゾリル基、ベンゾイミダゾリル基などが挙げられる。

R¹¹、R¹²の定義にみられる置換されていてもよいヘテロアリールアルキル基においてヘテロアリールとは、上記のヘテロアリール基と同様の意味を有する。 また、この場合のアルキル基とは、上記低級アルキル基と同様の意味を有する。

R¹¹, R¹²及び R⁴⁶, R⁴⁶の定義に見られる「R¹¹(⁴⁵) とR¹²(⁴⁶) が結合している 窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成 することができる」とは、具体的に例を挙げれば、ピペリジノ基、ピペラジノ基、 モルホリノ基などを意味する。さらにこの環に置換しうる置換基としては、水酸 基;塩素原子、フッ素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル、 エチル、 t ーブチルなどの低級アルキル基;メトキシ、エトキシ、t ーブトキシ などの低級アルコキシ基;シアノ基;保護されていてもよいカルボキシル基;ヒ ドロキシアルキル基:カルボキシアルキル基:テトラゾリル基などのヘテロアリール基などを挙げることができる。これら置換基は、上記環に1~2個有することができる。

また、 R^5 , R^{18} , R^{20} , R^{21} , R^{22} の定義に見られる「置換されていてもよいへテロアリール基」、 R^6 の定義にみられる「置換されていてもよいフェニルアルキルオキシ基」、 R^5 の定義にみられる「置換されていてもよい1,3 ーベンズジオキソリル基、置換されていてもよい1,4 ーベンズジオキシル基、置換されていてもよい1,3 ーベンズジオキソリルアルキル基、置換されていてもよい1,4 ーベンズジオキシルアルキル基」、 R^0 の定義にみられる「置換されていてもよいベンジル基」、 R^{11} 、 R^{12} の定義にみられる「置換されていてもよいヘテロアリールアルキル基」において、置換基としては、例えば、水酸基;ニトロ基;塩素原子、フッ素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル、エチル、tープチルなどの低級アルキル基;メトキシ、エトキシ、tープトキシなどの低級アルコキシ基;保護されていてもよいカルボキシル基;ヒドロキシアルキル基;カルボキシアルキル基;テトラブリル基などを挙げることができる。

更に Yの定義にみられる「式-(CH₂)。-で示される基において、q が $1 \sim 8$ の整数のとき、それぞれの炭素は $1 \sim 2$ 個の置換基を有していてもよい。」において、置換基とは、上記の置換基と同様の意味を有する。

 R^1 、 R^2 、 R^3 、 R^4 、 R^{20} 、 R^{21} 、 R^{22} の定義においてアシルアミノ基とは、上記のアシル基がアミノ基の窒素原子に結合した基、すなわちモノ置換-アシルアミノ基、ジ置換のアシルアミノ基を意味するが、モノ置換のアシルアミノ基が好ましい。

 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{50} の定義においてハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味する。

 R^5 、 R^9 、 R^{10} 、 R^{11} 、 R^{12} 、 R^{17} 、 R^{19} の定義において保護されていてもよい

カルボキシアルキル基とは、上記カルボキシル基の保護基によって保護されていてもよいカルボキシアルキル基を意味する。また、このカルボキシアルキルにおけるカルボキシ基は上記低級アルキル基のいずれかの炭素原子に1~2個結合していてよいものとする。

R⁵の定義において保護されていてもよいカルボキシアルケニル基とは、上記カルボキシル基の保護基によって保護されていてもよいカルボキシアルケニル基を意味する。また、このカルボキシアルケニルにおけるカルボキシル基は、上記低級アルケニル基のいずれかの炭素原子に1~2個結合していてよいものとする。

 R^{17} 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{22} の定義において低級アルコキシアルキル基とは、上記の低級アルキル基より誘導される基、例えばメトキシメチル基、メトキシエチル基、メトキシブチル基、エトキシエチル基などを挙げることができる。

R¹¹、R¹² の定義においてアミノアルキル基とは、上記の低級アルキル基を構成しているいずれかの炭素原子にアミノ基が置換している基を意味する。

R¹¹、R¹² の定義においてアルキルカルバモイル基とは、上記低級アルキル基より誘導される基を意味する。

R¹¹、R¹²の定義にみられる保護されていてもよいカルボキシアルキルカルバモイル基とは、上記アルキルカルバモイル基のアルキルのいずれかの炭素に保護されていてもよいカルボキシが結合しているものを意味する。

R²⁰、 R²¹、R²² の定義においてアルキルスルホニルアミノ基とは、上記低級アルキル基より誘導される基を意味する。

 R^{20} 、 R^{21} 、 R^{22} の定義にみられるヒドロキシイミノアルキル基とは、上記低級アルキル基のいずれかの炭素原子にヒドロキシイミノ基が結合したものをいう。

R²⁰、 R²¹、R²² の定義にみられるアルキルオキシカルボニルアミノ基とは、 上記低級アルキル基から誘導されたアルキルオキシカルボニルがアミノ基の窒素 原子にモノあるいはジ置換したものをいうが、モノ置換のアルキルオキシカルボ ニルアミノ基の方が好ましい。

R²⁰、 R²¹、R²² の定義にみられるアルキルオキシカルボニルオキシ基とは、 上記低級アルキル基から誘導されたアルキルオキシカルボニルが酸素原子に結合 している基を意味する。

R²³の定義にみられるハイドロキシアルキルオキシ基とは、上記ハイドロキシアルキル基より誘導される基を意味する。

本発明化合物群は、環Aと環Bが一緒になって、2環性の、又は環Aの置換基のうちの2つが一緒になって環を形成する場合には3環以上の環部を形成するものであるが、これらの中で好ましいものは以下のものである。

a) b)
$$\bigcirc N \qquad \bigcirc N$$

この中でもさらに好ましいものは、a)、b)、c)、e)を挙げることができ、更に 好ましくはa)、b)、c)を挙げることができる。最も好ましいのはa)である。

薬理学的に許容できる塩とは、例えば塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩 等の無機酸塩、例えば酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、 ベンゼンスルホン酸塩、トルエンスルホン酸塩等の有機酸塩、又は例えばアルギ ニン、アスパラギン酸、グルタミン酸等のアミノ酸との塩などを挙げることができる。更に化合物によってはNa、K、Ca、Mg等の金属塩をとることがあり、本発明の薬理学的に許容できる塩に包含される。

また、本発明化合物群は置換基の種類や組み合わせなどによって、シス体、トランス体などの幾何異性体や、d体、1体などの光学異性体等の各種異性体をとり得るが、いずれの異性体も本発明化合物群に包含されることは言うまでもない。

本発明の理解を容易にするために、本発明の好ましい化合物群の一例を具体的に示すが、これらは本発明の化合物を限定するものではないことは言うまでもない。

最も好ましい化合物群を具体的に示すと、下記の一般式(A) で表される化合物 及びその薬理学的に許容できる塩である。

〔一般式(A) において、 R^1 、 R^2 、 R^3 、 R^4 、 R^{11} 、 R^{12} 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{22} およびr は一般式(1) におけるこれら各々と同様の意味を有する。〕

 R^1 、 R^2 、 R^3 および R^4 としては、同一又は相異なる水素原子、ハロゲン原子又はシアノ基が好ましく、その中でもさらに好ましくは水素原子、シアノ基、塩素原子である。

 R^1 、 R^2 、 R^3 及び R^4 の好ましい組み合わせは、 R^1 、 R^2 、 R^3 、 R^4 のいずれか 1 つがシアノ基又は塩素原子であり、残りの 3 つが水素原子である場合であり、その中でも R^2 がシアノ基又は塩素原子であり、 R^1 、 R^3 及び R^4 が水素原子である場合が最も好ましい。

 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、保護されていてもよいカルボキシアルキル基である場合が好ましく、また、これらの中でも水素原子、メチル基、3-カルボキシプロピル基が好ましい。

更に最も好ましい R¹¹とR¹² は、結合している窒素原子と一緒になって置換されていてもよい環を形成する場合であり、この中でもピペリジン環が最も好ましい。まこ、この環は低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、水酸基、ハロゲン原子、ヒドロキシアルキル基、カルボキシアルキル基などの置換基で置換されているとさらに好ましく、この中でも特に好ましくは、保護されていてもよいカルボキシル基である。

R¹⁸ は水素原子又はメチル基、エチル基などの低級アルキル基が好ましいが、 特に水素原子が好ましい。

rは0、1または2が好ましく、1が最も好ましい。

 R^{20} 、 R^{21} 及び R^{22} は、水素原子、低級アルキル基、低級アルコキシ基、ハロゲン原子、又は R^{20} 、 R^{21} もしくは R^{22} のうち 2 つが一緒になってメチレンジオキシもしくはエチレンジオキシを形成するものが好ましい。

〔製造方法〕

以下に本発明化合物の代表的な製造方法を示す。

以下においては、主にキナゾリン骨格を有する化合物について説明するが、環 部がその他の骨格の場合にも、同様に適用できる。

製造方法1

一般式(I)において、R⁵が水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基の中から選択される基のとき、以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^2 & N \\
R^3 & R^4 & N
\end{array}$$
(11)

オキシ塩化リン 又は オキシ塩化リン+五塩化リン/加熱

$$\begin{array}{c|c}
R^2 & C1 \\
R^3 & R^4 & R^5
\end{array}$$
(111)

(一連の式中、 R^5 。は前記 R^5 において、水素原子、ハロゲン原子及び前記キナゾリン骨格に直接炭素原子で結合する基から選択される基を示す。 R^1 、 R^2 、 R^3 及び R^4 は前記の意味を有する。)

すなわち、一般式(II)で表されるキナゾリン誘導体にオキシ塩化リンを作用させるか、五塩化リン存在下オキシ塩化リンを作用させ加熱することにより、一般式(III)で表されるキナゾリン誘導体を得る反応である。

製造方法2

一般式(I)において、 R^s が水素原子、ハロゲン原子、 式 $-S-R^s$ (式中、 R^s 、 mは前記の意味を有する)で示される基、式 $-0-R^s$ (式中、 R^s は前記の意味を有する。)で示される基、置換されていてもよいヘテロアリール基、環部に直接炭素原子で結合する基(例えば、低級アルキル基、保護されていてもよいカルボキシル基、置換されていてもよい1, 3-ベンゾジオキソリル基、置換されて

いてもよい 1、4 -ベングジオキシル基、置換されていてもよい 1、3 -ベングジオキソリルアルキル基及び置換されていてもよい 1、4 -ベングジオキシルアルキル基)から選択される基であり、 R^6 が前記 R^6 の定義から水素原子、ハロゲン原子、低級アルキル基を除いた中から選択される基のとき、以下の方法で得ることができる。

$$R^2$$
 R^1 R^5 R^4 R^5 R^5 R^4 R^5 R^5 R^4 R^5 R^5 R^4 R^5 R^5 R^6 $R^$

【一連の式中、R¹、R²、R³及びR⁴は前記の意味を有する。R⁵。は水素原子、ハ

(0) m || ロゲン原子、式ーSーR®(式中、R®、 mは前記の意味を有する。)で示される 基、式-O-R®(式中R®は前記の意味を有する。)で示される基、置換されていてもよいヘテロアリール基、及び環部に直接炭素原子で結合する基(例えば、低級アルキル基、保護されていてもよいカルボキシル基、置換されていてもよい1、3ーベンゾジオキソリル基、置換されていてもよい1、4ーベンゾジオキシル基、置換されていてもよい1、4ーベンゾジオキシルアルキル基及び 置換されていてもよい1、4ーベンゾジオキシルアルキル基)の中から選択さ

れる基を意味する。R⁶。は前記R⁶の定義から水素原子、ハロゲン原子、低級アルキル基を除いた中から選択される基を意味する。 Bは脱離基を意味する。 J すなわち、一般式 (IV) で表されるキナゾリン誘導体と一般式 (VI) で表される化合物を縮合させることにより、目的化合物 (V) を得るという方法である。

式中 Bで表される脱離基としては、ハロゲン原子、アルコキシ基が挙げられる。 本方法は必要により、塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム t - ブトキシド等のアルコキシド類等が挙げられる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用できるが、例として エタノール、イソプロピルアルコール、テトラヒドロフラン、ジメチルホルムア ミド、ジメチルスルホキシド等を挙げることができる。また、本方法は、場合に よって反応溶媒が存在しなくても反応をすすめることができる。

反応温度は-20℃~ 300℃が好ましい。

製造方法3

一般式(I)において、R⁵が前記R⁵の定義から水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基を除いた中から選択される基であり、R⁵が前記R⁶の定義からハロゲン原子を除いた中から選択される基であるときは、以下の方法で製造することができる。

(一連の式中、 R^1 、 R^2 、 R^3 及び R^4 は前記の意味を有する。 R^5 。は前記 R^5 の定義から水素原子、ハロゲン原子及びキナゾリン骨格に直接炭素原子で結合する基を除いた中から選択される基を意味する。

R⁶。は前記R⁶の定義からハロゲン原子を除いた中から選択される基を意味する。

Fは脱離基を意味する。)

すなわち、一般式(VII) で表される化合物と一般式(IX) で表される化合物を縮合させることにより、目的化合物(VIII)を得るという方法である。

式中 Fで表される脱離基としては、ハロゲン原子、アルキルチオ基などを例と して挙げることができる。

本方法は、必要により塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム t ープトキシドなどのアルコキシド類などを挙げることができる。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用できるが、例を挙げればエタノール、イソプロパノール、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。

反応温度は0℃~ 300℃が好ましい。

製造方法 4

| 一般式(I)において、R⁵が式-C-R²⁴ (式中、R²⁴ は水素原子、低級アルキル基を意味する。)で示される基のときは、以下の方法でも製造することができる。

$$R^2$$
 R^1 R^6 R^2 R^3 R^4 R^6 R^2 R^4 R^6 R^2 R^4 R^6 R^4 R^6 R^8 $R^$

(一連の式中、 R^1 、 R^2 、 R^3 、 R^4 及び R^6 は前記の意味を有する。 R^{24} 、 R^{25} は同一又は相異なる水素原子又は低級アルキル基を意味する。)

すなわち、一般式(X)で表される化合物を通常の還元剤や求核試薬により、 直接又は場合によってはアルコール体(XII)を経由して酸化して目的化合物(XI) を得る方法である。

還元剤としては、リチウムアルミニウムハイドライド、水素化ホウ素ナトリウム、ジイソプチルアルミニウムハイドライドなどを挙げることができる。

WO 93/07124 PCT/JP92/01258

求核試薬としては、メチルリチウム、メチルマグネシウムプロミド等の低級ア ルキル金属などを挙げることができる。

アルコールを経由した場合の酸化剤としては、重クロム酸カリウムー硫酸、ジメチルスルホキシドーオキザリルクロリド等が挙げられる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は0℃から溶媒の還流温度である。

製造方法5

一般式 (I) において、R⁵が式-C=N-OR¹⁰ (式中、 R¹⁰、R²⁴ は前記の意 | | R²⁴

味を有する。)で示される基のときは、以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^{2} & R^{1} & R^{6} \\
R^{2} & N & C - R^{24}
\end{array}$$

$$\begin{array}{c|c}
NH_{2}OH \\
R^{2} & N & C = NOR^{10} \\
R^{3} & R^{4} & R^{6}
\end{array}$$
(XIII)

(一連の式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^6 、 R^{10} 及び R^{24} は前記の意味を有する。) すなわち、一般式 (XI) で表される化合物とヒドロキシアミンを反応させて、 の 一般式 (XIII) で表される化合物を得る方法である。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

反応温度は0℃から溶媒の還流温度である。

製造方法 6

一般式(
$$I$$
)において、 R^5 が式 $-C=C$
 R^{26}
(式中、 R^{24} は前記の意味を有

する。 R²⁶は水素原子又は低級アルキル基を意味する。 R²⁷は水素原子、低級アルキル基、保護されていてもよいカルボキシル基、保護されていてもよいカルボキシアルキル基を意味する。)で示される基のとき、以下の方法によっても製造することができる。

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{N} C \xrightarrow{0} R^{24}$$

$$(Ph0)_{2}PCH \xrightarrow{R^{2}} (XVI) \times Id$$

$$Ph \xrightarrow{Ph} P = C \xrightarrow{R^{2}} (XVII)$$

$$R^{2} \xrightarrow{R^{1}} R^{6}$$

$$R^{2} \xrightarrow{R^{2}} (XVII)$$

$$R^{2} \xrightarrow{R^{2}} R^{4} \qquad (XV)$$

$$R^{2} \xrightarrow{R^{2}} R^{4} \qquad (XV)$$

(一連の式中、R¹、R²、R³、R⁴、R⁶、 R²⁴、 R²⁶、R²⁷ は前記の意味を有する。 Phはフェニル基を意味する。)

すなわち、一般式 (XIV)で表される化合物を一般式(XVI) 又は一般式(XVII)で表される化合物とウィティッヒ反応により反応させ、一般式(XV)で表される化合

WO 93/07124 PCT/JP92/01258

物を得る方法である。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

反応温度は0℃から溶媒の還流温度までである。

製造方法7

一般式(I)において、
$$R^5$$
が式 $-CH-CH$ R^{2^6} (式中、 R^{2^4} 、 R^{2^6} 、 R^{2^7} は R^{2^4}

前記の意味を有する。)で示されるとき、以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^2 & R^1 & R^6 \\
R^3 & R^4 & R^6 \\
R^2 & R^{26} \\
R^{27} & R^{27}
\end{array}$$

$$\begin{array}{c|c}
R^{2} & R^{1} & R^{6} \\
\hline
R^{3} & R^{4} & R^{2} & R^$$

(一連の式中、R¹、R²、R³、R⁴、R⁶、 R²⁴、R²⁶ 及び R²ⁿは前記の意味を有する。)

すなわち、製造方法6で得られた一般式(XV)で表される化合物を還元することによって、目的化合物(XVIII)を得る方法である。

還元は通常の方法、例えばパラジウムー炭素あるいは白金触媒による接触還元

などによって行われる。

反応溶媒は、反応に関与しないあらゆる溶媒が用いられる。

製造方法8

 R^{21} 及びr は前記の意味を有する。)で示される基のときは、以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^{19} & R^{20} \\
R^{2} & N - (CH_{2}), \\
R^{3} & N \\
R^{4} & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{19} & R^{20} \\
R^{5} & R^{21} \\
R^{19} & R^{20} \\
R^{2} & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & R^{21} \\
R^{20} & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{21} & R^{20} \\
R^{21} & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & R^{21} \\
N & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & R^{21} \\
N & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & R^{21} \\
N & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & R^{21} \\
N & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & R^{21} \\
N & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{20} & N \\
\end{array}$$

(一連の式において、R¹、R²、R³、R⁴、R⁵、 R¹⁸、 R²⁰、R²¹ 及びrは前記の 意味を有する。)

すなわち、一般式(XIX) で表される化合物を還元して、目的化合物(XX)を得る . 方法である。 WO 93/07124 PCT/JP92/01258

還元は通常の方法、例えばパラジウムー炭素あるいは白金触媒による接触還元 又は鉄、スズを用いた還元などで行われる。

反応溶媒は、反応に関与しないあらゆる溶媒を使用することができる。

製造方法 9

一般式(I)において、R⁵が式-O-R⁹ (式中、R⁹ は保護されていてもよいカルボキシアルキル基を意味する。)で示される基のとき、以下の方法で製造することができる。

(第一工程)

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 及び R^6 は前記の意味を有する。 mは 0 又は $1\sim 2$ の整数を意味する。)

すなわち、一般式(XXI) で表される化合物を通常の方法で酸化して、一般式(XXII)で表される化合物を得る反応である。

酸化剤としては、通常用いられる酸化剤ならばあらゆるものが使用できるが、

例えば六価クロム、ジメチルスルホキシド、オキザリルクロリド等を挙げること ができる。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用することができる。 反応温度は0℃から溶媒の還流温度までである。

(第二工程)

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 、 R^6 及び mは前記の意味を有する。 R^{28} 、 R^{29} 、 R^{30} は同一又は相異なる水素原子又は低級アルキル基を意味する。)

WO 93/07124 PCT/JP92/01258

すなわち、第一工程で得られた化合物(XXII)にウィティッヒ試薬(XXIII) 又は (XXIII) と反応させて、一般式(XXIV)で表される化合物を得る方法である。

反応溶媒は、反応に関与しないあらゆるものを用いることができる。 反応温度は0℃から溶媒の還流温度までである。

(第三工程)

$$R^2$$
 R^1 R^6 R^6 R^2 R^4 R^6 R^2 R^2 R^4 R^6 R^8 R^8

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 、 R^6 、 R^{29} 、 R^{30} 及び mは前記の意味を有する。)

すなわち、第二工程で得られた化合物(XXIV)を還元して、目的化合物(XXV)を 得るという方法である。

還元は通常の方法により行われるが、例えばパラジウムー炭素あるいは白金触 媒による接触還元などが挙げられる。

製造方法10

R²¹ 及びr は前記の意味を有する。 R³¹はアシル基、低級アルキルスルホニル基、低級アルキルオキシカルボニル基を意味する。) で示される基のときは、以下の方法でも製造することができる。

(一連の式において、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{31} 及びr は前記の意味を有する。)

すなわち、製造方法8で得られた一般式(XX)で表される化合物を塩基存在下、 通常の方法によるアシル化、スルホニル化又はアルコキシカルボニル化すること により、目的化合物(XXVI)を得る方法である。 WO 93/07124 PCT/JP92/01258

アシル化剤としては、酸クロリド、酸無水物、混合酸無水物などのカルボン酸 活性体、ジシクロヘキシルカルボジイミドなどの縮合剤等、通常用いられるあら ゆるアシル化剤が用いられる。

スルホニル化剤としては、通常用いられるあらゆるスルホニル化剤が使用可能 *だが、例を挙げれば、低級アルキルスルホニルクロリド、低級アルキルスルホン :酸無水物などである。

アルコキシカルボニル化剤としては、通常用いられるあらゆるアルコキシカルボニル化剤、例えば低級アルキルオキシカルボニルクロリド、低級アルキルピロカーボネートなどを挙げることができる。

塩基としては、あらゆる塩基が使用可能だが、例えばピリジン、トリエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基などを挙げることができる。

製造方法11

一般式(1) において、環Aがベンゼン環、ビリジン環、シクロヘキサン環のいずれかから選択され、環Bがビリジン環、ビリミジン環、イミダゾール環から選択され、かつR⁵が前記R⁵の定義のうち環部に直接炭素原子で結合する基を除いたものから選択される基を意味し、R⁶が前記R⁶の定義のうち環部に直接炭素原子で結合する基を除いたものから選択される基のとき、一般式(1)で表される化合物は、以下の方法でも製造することができる。尚、以下には上記の代表として環部がキナゾリン骨格を形成している場合を示す。

(第一工程)

$$R^{2} \xrightarrow{R^{1}} X$$

$$R^{3} \xrightarrow{R^{4}} N$$

$$(XXVII)$$

$$\begin{array}{c|c}
R^{5} - H \\
R^{2} & N \\
R^{3} & N
\end{array}$$
(XXVIII)

(一連の式中、 R^1 , R^2 , R^3 , R^4 は前記の意味を有する。 R^5 。は前記 R^5 の定義のうち、環部に直接炭素原子で結合する基を除いたものの中から選択される基を意味する。 Xはハロゲン原子を意味する。)

すなわち、通常の方法による縮合反応である。

反応溶媒は、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミドなどを用いるのが好ましいが、反応に関与しないあらゆる有機溶媒を用いることができる。

R⁵。が窒素原子で環部に結合する場合は、トリエチルアミン等の3級アミン存在下で加熱還流して発生する HCIを除去しながら反応をすすめるのが好ましい。また、R⁵。が酸素原子や硫黄原子で環部に結合する場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

(第二工程)

$$\begin{array}{c|c}
R^{6} - H \\
R^{2} & N \\
R^{3} & R^{4}
\end{array}$$
(XXIX)

(一連の式中、 R^1 , R^2 , R^3 , R^4 , R^5 , Xは前記の意味を有する。 R^6 。は前記 R^6 の定義の中から、環部に直接炭素原子で結合する基を除くものから選択される基を意味する。)

第一工程で得られた化合物(XXVIII)を通常の方法で一般式 R⁶₄-Hで示される化合物と縮合させる反応である。

反応溶媒は、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミドなどを用いるのが好ましいが、反応に関与しないあらゆる有機溶媒を用いることができる。

R⁶. が窒素原子で環部に結合する場合は、トリエチルアミン、ピリジン、エチルジイソプロピルアミンなどの有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、水酸化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tーブトキシド等のアルコキシド等の存在下で加熱還流して反応をすすめるのが好ましい。また、R⁶. が酸素原子や硫黄原子で環部に結合する場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

製造方法12

一般式(1) で示される化合物が次の一般式(XXXII) :

$$\begin{array}{c|c}
R^1 & R^6 \\
R^2 & N \\
R^3 & N
\end{array}$$

$$\begin{array}{c}
R^5 \\
N \\
R^5
\end{array}$$

$$\begin{array}{c}
(XXXII)
\end{array}$$

で示される化合物であるとき、この化合物は以下の方法でも製造することができる。

$$\begin{array}{c|cccc}
R^{2} & & & & & & & & & \\
R^{2} & & & & & & & & \\
R^{3} & & & & & & & & \\
R^{4} & & & & & & & & \\
R^{6} & & & & & & & & \\
R^{6} & & & & & & & & \\
R^{1} & & & & & & & & \\
R^{6} & & & & & & & & \\
R^{2} & & & & & & & & \\
R^{3} & & & & & & & & \\
R^{3} & & & & & & & & \\
R^{4} & & & & & & & & \\
R^{6} & & & & & & & & \\
R^{6} & & & & & & & & \\
R^{5} & & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & & & & \\
R^{5} & & & & \\
R^{5} & & & & \\
R^{5} & & & & \\
R^{5} & & & & & \\
R^{5} & & & & & \\
R^{5} & & & & \\
R^{5}$$

(一連の式中、R¹, R², R³, R⁴ およびR⁵は前記の意味を有する。R⁶。は前記R⁶の 定義中、環部に直接炭素原子で結合する基から選択される基を意味する。) すなわち、アルカリ存在下、通常の方法で、例えばピペロニルクロライド (XXXI)を一般式(XXX) で示されるベンズイミダゾール誘導体と反応させて、目的 化合物を得る反応である。

アルカリとしては、ヨウ化ナトリウムなどが好ましい。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用可能であるが、好ま

しくはジメチルホルムアミドなどの極性溶媒を挙げることができる。 反応温度は約60~ 100℃が好ましく、特に好ましくは約70~80℃である。

製造方法13

本発明化合物は、以下の方法でも製造することができる。

(第一工程)

$$R^{2}$$
 R^{3}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

(一連の式中、 R^1 , R^2 , R^3 , R^4 は前記の意味を有する。 R^6 。は前記 R^6 の定義から 環部に直接炭素原子で結合する基を除いたものの中から選択される基を意味す る。 Q及び Q^* はハロゲン原子を意味する。)

第一工程は、通常の方法による縮合反応である。

R⁶ a が窒素原子で環部に結合する場合は、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水 素ナトリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tープトキシド等のアルコキシド類等の存在下で加熱還流して反応をすすめるのが好ましい。また、R⁶ a が酸素原子や硫黄原子で環部に結

合する場合、水酸化ナトリウム、炭酸ナトリウムなどの無機塩基存在下で加熱還流して反応を進行させるのが好ましい。

反応溶媒としては、反応に関与しないあらゆる溶媒を使用できるが、例としてエタノール、イソプロピルアルコールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルスルホキシド等を挙げることができる。また、本方法は、場合によって反応溶媒が存在しなくても反応をすすめることができる。

(第二工程)

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

(一連の式中、 R^1 , R^2 , R^3 , R^4 , R^6 _a, Qは前記の意味を有する。 R^5 _aは前記 R^5 の定義中から環部に直接炭素原子で結合する基を除くものから選択される基を意味する。)

すなわち、第一工程で得られた化合物と一般式R⁵。-Hで表される化合物を縮合させることにより、目的化合物を得るという方法である。

本方法は、必要により塩基の存在下で反応をすすめることができる。

塩基としては、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、ナトリウムメトキシド、カリウム t **
ープトキシドなどのアルコキシド類などを挙げることができる。

反応溶媒としては、反応に関与しないあらゆる溶媒が使用できるが、例を挙げればエタノール、イソプロパノールなどのアルコール系溶媒、テトラヒドロフランなどのエーテル系溶媒、ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。

反応温度は0℃~ 300℃が好ましい。

 R^5 。が窒素原子で環部に結合する基の場合は、トリエチルアミン等の3級アミン存在下で加熱還流して反応をすすめるのが好ましい。また、 R^5 。が酸素原子や硫黄原子で環部に結合する基の場合、水酸化ナトリウム、炭酸ナトリウムなどのアルカリ存在下で加熱還流して反応を進行させるのが好ましい。

以上製造方法1~13で得られた化合物は、水酸化ナトリウムや水酸化カリウム、メタンスルホン酸クロルなどを加えるなど、通常行われる方法によって塩をつくることができる。

次に製造方法で用いた原料化合物の製造方法を示す。

製造方法A

製造方法13で用いた出発物質のうち、環部がキナゾリン環であり、 Q及びQ' が塩素原子である化合物は以下の方法でも製造することができる。

$$\begin{array}{c|c}
R^2 & R^1 \\
\hline
R^3 & NH_2
\end{array}$$
(a)

(一連の式中、R¹, R², R³, R⁴ は前記の意味を有する。X'は水酸基、アルコキシ 基又はアミノ基のいずれかの基を意味する。)

すなわち、化合物(a) を通常行われる方法で閉環し、化合物(b) を得、その後通常の方法で塩素化することにより、目的化合物(c) を得る方法である。

第一工程は、閉環反応である。尿素と化合物(a)を反応させて化合物(b)を得る工程である。この場合の反応温度は約 170~ 190℃が好ましく、反応溶媒は反応に関与しないものであればあらゆる有機溶媒を用いることができるが、好ましくはN-メチルピロリドンなどを挙げることができる。また、本工程は無溶媒でも反応を進行させることができる。

さらに、X'がアミノ基である時は、カルボニルジイミダゾールなどにより環化 させるか、あるいはクロロギ酸エステルなどでウレタンにした後、酸あるいは塩 基性条件下環化させることによっても得ることができる。 第二工程は、塩素化反応である。この工程は、通常行われる方法で行うことができるが、例えば、五塩化リンおよびオキシ塩化リン、又は、オキシ塩化リンと、 攪拌下加熱還流して塩素化する方法などを挙げることができる。

製造方法B

製造方法1で用いた出発物質(II)は以下の方法で製造することができる。

(一連の式中、 R¹, R², R³, R⁴は前記の意味を有する。 R⁵。は前記R⁵の定義中、 ハロゲン原子、環部に炭素原子で結合する基の中から選択される基を意味する。) すなわち、第一工程で通常の方法によりアミド体を得、第二工程で酸又は塩基 の存在下で閉環させる反応である。

アミド体(e) は通常の方法で得ることができるが、例えば、塩基存在下、化合物(d) を R^5 。-COCI で示される酸塩化物等のアシル化剤と反応させることにより得ることができる。

塩基としては、好ましくはトリエチルアミン等の3級アミンやピリジンなどの 有機塩基を挙げることができる。

アシル化剤としては、具体的には、ベンゾイルクロリド、アセチルクロリド、 エチルオキサリルクロリド、ベンジルオキシアセチルクロリドなどの酸塩化物等 を挙げることができる。

反応温度は約0℃~30℃が好ましい。

第二工程においては、第一工程で得られた化合物(e) を、酸又は塩基存在下、加熱還流することによって、化合物(f) が得られる。

酸としては、無水酢酸などを挙げることができる。

塩基としては、水酸化ナトリウムなどを挙げることができる。

製造方法C

製造方法1において、R⁵。が水素原子のとき、出発物質(II)は以下の方法でも製造することができる。

 $(-連の式中、 R^1, R^2, R^3, R^4$ は前記の意味を有する。X''は水酸基又は低級アルコキシ基を意味する。)

すなわち、通常の方法による閉環反応である。

例えば、原料化合物(g) をホルムアミドと加熱還流して縮合させるか、ギ酸と 加熱することにより、目的化合物(h) を合成することができる。

(発明の効果)

次に本発明化合物の効果を詳述するために、実験例を掲げる。

実験例

プタ大動脈より得たcGMP-PDEを用いた酵素阻害作用

1. 実験方法

プタ大動脈より調製した c GMP-PDEの酵素活性を、Thompsonらの方法 (1) に準じて測定した。 1 mM EGTA存在下、 1 μ M c GMPを基質として測定した。本発明化合物は、DMSOで溶解し反応液に加え、阻害活性をみた。なお、反応液中のDMSOの最終濃度は 4 %以下とした。

(1) Thomson.W.J. and Strada, S.J., Cyclic Nucleotide Phosphodiesterase (PDE), in Methods of Enzymatic analysis, vol 4, p127-234, 1984 c GMP-PDEの調製

ブタ大動脈を細断し、Buffer A(20mM Tris/HCl, 2mM Mg acetate, 1mM Dithiothreitol, 5mM EDTA, 1400TIU/リットルaprotinin, 10mg/リットル leupeptin, 1mM benzamidine, 0.2mM PMSF, pH 7.5) の10倍容を加え、ホモジネートした。ホモジネートを10万×g、1時間で遠心し、得られた上清

をDEAE-Toyopearl 650S(Tosoh, Tokyo, Japan) カラムにかけた。Buffer B(50mM Tris/HCl, 0.1mM EGTA, 2mM Mg acetate, 1mM Dithiothreitol, 0.2mM PMSF, pH 7.5) でカラムを洗浄した後、0.05~0.4M NaCl のグレージェントをかけて溶出し、CaM-independent cGMP-PDE分画を得た。

2. 実験結果

表 1-6B に本発明化合物における実験結果を示す。

表 1

実施例No	I C 50 (μM)
7	1.0
1 9	0. 39
2 2	0.36
2 5	0.78
3 3	0.37
3 8	0.42
4 0	0. 65
4 1	0.35
4 2	0.19
4 5	0.41
4 6	0.24
4 9	0.041
5 0	0.032
5 1	0.069
5 2	0.069
5 3	0.12
5 4	0. 47
5 5	0.030
5 7	0.038
5 8	0.042
5 9	0.27
6 0	0.18
6 1	0.42

- 4 4 -

表 2

実施例No	I C 50 (μM)
6 4	0. 38
6 5	0.093
6 7	0.14
6 8	0.62
6 9	0.19
7 0	0.84
7 1	0. 81
7 2	0.73
7 3	0. 94
7 4	0. 35
7 8	0.50
8 1	0.44
8 2	0.55
8 3	0.024
8 4	0.22
8 6	0.96
8 7	0.68
8 9	0.16
9 1	0.036
9 2	0.094
9 3	0.032
9 5	0.20
9 7	0.79

表 3

I C 50 (μM)
0.062
0.010
0.18
0.0040
0.0030
0.0020
0.0020
0.0010
0. 65
0.0050
0. 031
0.0080
0.0090
0.0010
0.11
0. 30
0.77
0.0050
0. 93
0. 38
0.81
0.021
0. 68

表 4

実施例No.	I C 50 (μM)
1 4 6	0015
1 5 0	0.0072
1 5 1	0.081
1 5 2	0.11
1 6 4	0.0080
1 6 5	0.016
1 6 6	0.026
1 6 7	0.56
1 6 8	0.011
1 6 9	0.011
1 7 0	0. 029
1 7 1	0.00040
1 7 2	0.095
1 7 4	0.0040
1 7 5	0.0060
1 7 6	0.0030
177	0.012
178	0. 011
179	0.0020
1 8 0	0.0090
1 8 1	0.0050
1 8 2	0.0080
1 8 3	0.00040

表 5

実施例Na	I C 50 (μM)
1 8 4	0.0060
1 8 5	0.010
1 8 7	0.12
1 8 8	0.029
1 8 9	0.016
1 9 0	0.0050
1 9 1	0.019
1 9 2	0.020
1 9 3	0.00080
1 9 4	0.0040
1 9 7	0.066
2 0 0	0.064
2 0 1	0.049
202	0.0020
2 0 3	0.028
2 0 4	0.0040
2 0 6	0.029
2 0 8	0.00019
2 1 3	0. 023
2 1 4	0.0090
2 1 6	0.017
2 2 0	0.00024
2 2 2	0.0065

表 6 A

実施例No	Ι С 50 (μΜ)
2 2 7	0.0026
2 2 8	0.00052
2 3 0	0.0058
2 3 1	0.41
2 3 2	0.044
2 3 3	0.013
2 3 4	0.0060
2 3 5	0.0020
2 3 6	0.0060
2 3 7	0.014
2 3 8	0.0050
2 3 9	0.0080
2 4 0	0.0040
2 4 1	0.18
2 4 3	0.00015
2 4 4	0.0090
2 4 5	0.10

表 6B

I C 50 (μM)
0.032
0.0021
0.00016
0.88
0.11
0. 25
0. 25
0.021

上記の実験例から、本発明化合物は、PDE、ことにcGMP-PDE阻害作用を有することが明らかとなった。すなわち、本発明化合物は、cGMP-PDE阻害作用を示すことにより、cGMPの生体内濃度を上昇させる効果を有することが明らかとなった。従って、本発明化合物である含窒素複素環化合物は、cGMP-PDE阻害作用が有効である疾患の予防及び治療に有効である。これらの疾患として例を挙げれば、例えば、狭心症、心筋梗塞、慢性および急性心不全などの虚血性心疾患、肺性心を併発していてもよい肺高血圧症、その他あらゆる成因による高血圧症、末梢循環不全、脳循環不全、脳機能不全および気管支喘息、アトピー性皮膚炎若しくはアレルギー性鼻炎等のアレルギー性疾患等を挙げることができる。

また、本発明化合物群の中にはカルモジュリン依存型PDEを阻害するものも 含まれている。この作用が有効な疾患は上述の c GMP-PDE阻害作用が有効 な疾患と同様の可能性が高く、この点からも、本発明化合物は、上記疾患の予防 および治療に使用できるものであるといえる。 また、本発明化合物は、毒性が低く安全性も高いので、この意味からも本発明価値が高い。

本発明化合物をこれらの医薬として使用する場合は、経口投与若しくは非経口 投与により投与される。投与量は、症状の程度;患者の年令、性別、体重、感受 性差;投与方法;投与の時期、間隔、医薬製剤の性質、調剤、種類;有効成分の 種類などによって異なり、特に限定されない。

経口投与の場合は、通常成人 1 日あたり約 $1 \sim 1,000$ mg 、好ましくは約 $5 \sim 500$ mg 、更に好ましくは $10 \sim 100$ mg であり、これを通常 1 日 $1 \sim 3$ 回にわけて投与する。

注射の場合は、通常 $1 \mu g / kg \sim 3.000 \mu g / kg$ であり、好ましくは約 $3 \mu g / kg \sim 1.000 \mu g / kg$ である。

経口用固形製剤を調製する場合は、主薬に賦形剤、更に必要に応じて結合剤、 崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠 剤、顆粒剤、散剤、カプセル剤などとする。

賦形剤としては、例えば乳糖、コーンスターチ、白糖、ブドウ糖、ソルビット、結晶セルロース、二酸化ケイ素などが、結合剤としては、例えばポリビニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリン、ペクチン等が、滑沢剤としては、例えばステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化植物油等が、着色剤としては医薬品に添加することが許可されているものが、矯味矯臭剤としては、ココア末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末等が用いられる。これらの錠剤、顆粒剤には糖衣、ゼラチン衣、その他必要により適宜コーティングすることは勿論差し支えない。

注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剤、懸濁化剤、

溶解補助剤、安定化剤、等張化剤、保存剤などを添加し、常法により静脈、皮下、 筋肉内注射剤とする。その際必要により、常法により凍結乾燥物とすることも必 要である。

溶解補助剤としては、例えばポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

(実施例)

次に本発明の実施例を掲げるが、本発明がこれらのみに限定されることがないことは言うまでもない。また、実施例に先立って、本発明の化合物の原料化合物の製造例を掲げる。尚、Meはメチル基、Btはエチル基、 Bzlはベンジル基、Acはアセチル基を示す。

製造例1

2-エトキシカルボニルー6-クロロキナゾリンー4(3H)-オン

2-アミノ-5-クロロベンズアミド2.50g (0.0147モル)をピリジン15mlに 溶解させ、室温攪拌下、エチルオキサリルクロリド 2.0mlを滴下する。数時間攪 拌後、溶媒を減圧下留去し、得られる残渣をそのまま次の反応に使用した。

残渣を酢酸50mlに溶解させ、これに無水酢酸5mlを加え一昼夜加熱還流する。

溶媒を減圧下留去し、得られる結晶にエタノールを加え、結晶を濾取する。エタ ノール、エーテルで洗い、風乾して、標題化合物の淡黄色晶2.78gを得た。

•収率;75%

・融 点:239~240℃

• Mass: $253(M+H)^+$

• NMR δ (DMSO-d₆);

1.36(3H, t, J=7.2Hz), 4.39(2H, q, J=7.2Hz), 7.86(1H, d, J=8.8Hz),

7. 92(1H, dd, J=8.8Hz, 2.4Hz), 8.11(1H, d, J=2.4Hz), 12.85(1H, brs)

実施例1

4-クロロー6-シアノキナゾリン

4-ヒドロキシー6-カルバモイルキナゾリン2g、塩化チオニル30ml及びオキシ塩化リン60mlの混合物を20時間加熱還流した。反応液を減圧下濃縮し、得られた残渣を酢酸エチル 100mlに溶解した。これを水洗(150ml) 後、硫酸マグネシウムで乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィーに付した。酢酸エチル及びアセトンで溶出し、標題化合物を800mg 得た。

·分子式: C_sH₄N₃Cl (189.5)

・収 率;40%

・融 点:>290 ℃

• Mass: $190(M+1)^+$

• NMR δ (DMSO-d₆):

7.79(1H, d, J=8.8Hz), 8.16(1H, dd, J=8.8Hz, 2.0Hz), 8.26(1H, s),

8. 49(1H, d, J=2. 0Hz)

実施例2

2, 4-ジクロロー6-シアノキナゾリン

2, 4-ジヒドロキシー6-カルバモイルキナゾリン12g及び五塩化リン48.8 gをオキシ塩化リン 200ml及び塩化チオニル70mlに懸濁し、24時間加熱還流した。 反応液を減圧下濃縮し、得られた結晶性残渣を酢酸エチル 100ml及びn-ヘキサン 100mlで洗い、標題化合物を 6.8g得た。

·分子式; C₉H₃Cl₂N₃

・収率:52%

・融 点:161~163℃

• Mass: $224(M+1)^+$

• NMR δ (CDCl₃):

7.94(1H, d, J=8.0Hz), 8.00(1H, dd, J=8.0Hz, 2.0Hz), 8.49((1H, d, J=2.0Hz)

実施例3

2-エトキシカルボニル-4,6-ジクロロキナゾリン

製造例 1 で得られた 2 - エトキシカルボニルー 6 - クロロキナゾリンー 4 (3 H) - オン2. 68 g (0.0106モル)をオキシ塩化リン40mlに懸濁させ、1 時間加熱

還流する。溶媒を減圧下留去し、残渣を酢酸エチルに溶解させ、飽和重曹水にて洗う。有機層を分液し、無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去し、標題化合物の淡黄色晶2.82gを得た。

· 収率(%);98

・融点 (℃) ;129 ~130

• Mass : $271(M+1)^+$

• NMR δ (CDC1₃);

1.50(3H. t, J=7.2Hz), 4.60(2H, q, J=7.2Hz), 7.99(1H, dd, J=8.8Hz, 2.4Hz),

8. 25(1H, d, J=8. 8Hz), 8. 34(1H, d, J=2. 4Hz)

実施例 4

<u>4-(3,4-メチレンジオキシベンジル)アミノ-6,7,8-トリメトキシ</u> キナブリン

4-クロロー6, 7, 8-トリメトキシキナゾリン21.2g(0.083モル)、ピペロニルアミン17.0g(0.112モル)、炭酸ナトリウム13.5g(0.127モル)をイソプロピルアルコール 400mlに混合し、一昼夜加熱還流した。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製後、酢酸エチルより再結晶して、標題化合物の淡黄色針状晶21.3gを得た。

·分子式; C19H19N3O5

· 収率(%);69

・融点 (℃) ;197~198

· Mass ; 370(M+H)+

• NMR δ (CDCl₃));

3.94(3H, s), 4.03(3H, s), 4.12(3H, s), 4.76(2H, d, J=8.0Hz),

5.55(1H.brs), 5.97(2H.s), 6.64(1H.s), 6.80(1H.d.J=8.0Hz),

6.87(1H, d, J=8.0Hz), 6.91(1H, s), 8.66(1H, s)

実施例 5~48

実施例4の方法に準じて次の化合物を合成した。

実施例5

4-(3, 4-メチレンジオキシフェニル) アミノ<math>-6, 7, 8-トリメトキシ キナソリン

·分子式; C18H17N3O5

• 収率(%);58

・融点(℃);254~255 (分解)

• Mass : $356(M+H)^+$

• NMR δ (CDCl₃);

4.02(3H.s), 4.05(3H.s), 4.13(3H.s), 5.99(2H.s),

6.83(1H.d.J=7.6Hz), 7.02(1H.d.J=7.6Hz), 7.32(1H.s), 7.33(1H.s),

8.49(1H.brs), 8.63(1H.s)

実施例 6

4-ベンジルアミノー6,7,8-トリメトキシキナゾリン

·分子式; C18H19N3O3

· 収率(%);91

・融点(℃);180~181

• Mass ; 326(M+H)+

• NMR δ (CDCl₃);

3.94(3H,s), 4.03(3H,s), 4.13(3H,s), 4.87(2H,d,J=5.2Hz),

5.62(1H, brs), 6.65(1H, s), 7.4(5H, m), 8.67(1H, s)

実施例7

4-(4-メトキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C19H21N3O4

· 収率(%);97

・融点(℃):174~175

· Mass : 356(M+H)+

• NMR δ (CDCl₃) :

3.82(3H, s), 3.93(3H, s), 4.03(3H, s), 4.13(3H, s),

4.79(2H, d. J=4.8Hz), 5.53(1H, brs), 6.63(1H.s),

6.92(2H, d, J=8.4Hz), 7.35(2H, d, J=8.4Hz), 8.67(1H, s)

実施例8

4-(3-メトキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C18H21N3O4

• 収率(%);89

・融点 (℃) ;142 ~143

• Mass : $356(M+H)^+$

• NMR δ (CDCl₃);

3.80(3H.s). 3.96(3H.s), 4.03(3H.s), 4.12(3H.s).

4.85(2H, d, J=4.8Hz). 5.96(1H, brs), 6.76(1H, s).

6.86(1H, d, J=8.0Hz), 6.99(1H, d, J=8.0Hz), 7.02(1H, s),

7.29(1H, t, J=8.0Hz), 8.65(1H, s)

実施例9

4-(4-ニトロベンジル)アミノー6,7,8-トリメトキシキナゾリン

$$\begin{array}{c} \text{Me0} \\ \text{Me0} \\ \text{Me0} \end{array}$$

·分子式 ; C18H18N4O5

• 収率 (%);28

・融点(℃);210~212

• Mass : $371(M+H)^+$

• NMR δ (CDCl₃);

3.97(3H,s), 4.05(3H,s), 4.13(3H,s), 5.01(2H,d,J=5.6Hz),

5.96(1H, brs), 6.76(1H, s), 7.54(2H, d, J=8.8Hz).

8.17(2H, d, J=8.8Hz), 8.62(1H, s)

実施例10

4-(3-ニトロベンジル)アミノー6,7,8-トリメトキシキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C18H18N4O5

・収率(%);30

・融点(℃):159~160

· Mass ; 371(M+H)+

• NMR δ (CDCl₃) ;

3.97(3H, s). 4.04(3H, s). 4.12(3H, s), 4.99(2H, d, J=5.6Hz),

6.06(1H.brs), 6.79(1H.s), 7.51(1H.t, J=8.0Hz),

7.76(1H. d. J=8.0Hz), 8.12(1H. d. J=8.0Hz), 8.22(1H. s), 8.63(1H. s)

実施例11

4-(4-クロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C18H18N3O3Cl

• 収率 (%);61

・融点(℃);181~182

• Mass ; 360(M+H) +

• NMR δ (CDCl₃) :

3.94(3H,s). 4.03(3H,s), 4.12(3H,s), 4.85(2H,d,J=5.6Hz),

5.76(1H.brs), 6.70(1H.s), 7.32(4H.brs), 8.64(1H.s)

実施例12

4-(3-クロロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

۶.

·分子式 ; C18H18N3O3Cl

• 収率(%);85

・融点(℃);161~162

• Mass ; $360(M+H)^+$

· NMR δ (CDCl₃) :

3.97(3H.s), 4.04(3H.s), 4.13(3H.s), 4.87(2H.d.J=5.2Hz),

5.66(1H.brs), 6.68(1H.s), 7.29(3H.s), 7.39(1H.s), 8.65(1H.s)

実施例13

4-フルフリルアミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C16H17N3O4

・収率(%);81

・融点(℃);198~199

• Mass ; $316(M+H)^+$

· NMR & (CDCl3) :

3.97(3H.s). 4.03(3H.s). 4.12(3H.s). 4.87(2H.d.J=5.2Hz).

5.67(1H.brs). 6.37(2H.m). 6.68(1H.s). 7.42(1H.s). 8.67(1H.s)

実施例14

4-(4-ピコリル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C₁₇H₁₈N₄O₃

· 収率(%);76

・融点(℃);166~168

· Mass ; 327(M+H)+

• NMR δ (CDCl₃):

3.97(3H, s), 4.05(3H, s), 4.12(3H, s), 4.92(2H, d, J=6.0Hz),

6.06(1H.brs), 6.80(1H,s), 7.28(2H,d,J=6.0Hz),

8.55(2H, d, J=6.0Hz), 8.62(1H, s)

実施例15

4-(4-エチルベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C20H23N3O3

• 収率(%);88

・融点(℃);195~196

• Mass ; $354(M+H)^+$

• NMR δ (CDCl₃);

1.25(3H, t. J=7.6Hz), 2.67(2H, q, J=7.6Hz), 3.94(3H, s), 4.03(3H, s),

4.13(3H,s), 4.83(2H,d,J=4.8Hz), 5.56(1H,brs), 6.63(1H,s),

7. 23(2H, d, J=8. 0Hz), 7. 35(2H, d, J=8. 0Hz), 8. 67(1H, s)

実施例16

4-(インダン-5-イルメチル)アミノー6,7,8-トリメトキシキナゾリ

<u> </u>

·分子式 ; C21H23N3O3

・収率(%);61

・融点(℃);198~~199

• Mass : $366(M+H)^+$

• NMR δ (CDC1₃);

2.11(2H, quintet, J=7.2Hz), 2.93(4H, t, J=7.2Hz), 3.94(3H, s),

4.04(3H,s), 4.14(3H,s), 4.83(2H,d,J=4.4Hz), 5.55(1H,brs),

6.64(1H,s), 7.2~7.3(3H,m), 8.68(1H,s)

実施例17

4-(4-カルボキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C19H19N3O5

· 収率(%);86

・融点(℃);227~228 (分解)

• Mass ; 370(M+H) +

• NMR δ (DMSO-d₆) :

3.89(3H,s), 3.92(3H,s), 3.98(3H,s), 4.86(2H,d,J=5.6Hz),

7.46(2H.d.J=8.0Hz). 7.54(1H.s). 7.90(2H.d.J=8.0Hz).

8.35(1H,s), 8.67(1H,brs)

実施例 1 8

·分子式 ; C19H21N3O4

• 収率(%):86

・融点(℃);アモルファス

• Mass ; $356(M+H)^+$

• NMR δ (CDCl₃);

3.93(3H,s), 4.03(3H,s), 4.12(3H,s), 4.70(2H,s),

4.86(2H, d, J=5.2Hz), 5.82(1H, brs), 6.72(1H, s), 7.3~7.4(4H, m),

8.63(1H, s)

実施例 1 9

<u>4-(3, 4-ジクロロベンジル) アミノ-6, 7, 8-トリメトキシキナブリン</u>

·分子式 ; C18H17N3O3Cl2

· 収率(%);85

・融点(℃):205~206

· Mass ; 394(M+H)+

· NMR δ (CDCl₃);

3.97(3H, s), 4.04(3H, s), 4.12(3H, s), 4.84(2H, d, J=5.6Hz),

5.88(1H, brs), 6.74(1H, s), 7.24(1H, d, J=8.4Hz),

7. 40(1H, d, J=8. 4Hz), 7. 47(1H, s), 8. 63(1H, s)

実施例20

4-(3-クロロ-4-メトキシベンジル) アミノ-6, 7, 8-トリメトキシ キナゾリン

·分子式 ; C19H20N3O4CI

• 収率(%);83

・融点(℃);164~165

· Mass : 390(M+H)+

·NMR δ(CDCl₃);

3.90(3H.s), 3.97(3H.s), 4.04(3H,s), 4.13(3H.s),

4.80(2H.d.J=5.2Hz), 5.90(1H.brs), 6.75(1H.s).

6.91(1H.d, J=8.8Hz), 7.30(1H.dd, J=8.8Hz, 2.0Hz),

7.43(1H, d, J=2.0Hz), 8.65(1H, s)

実施例<u>21</u>

4-(3,4-ジフルオロベンジル)アミノ-6,7,8-トリメトキシキナゾ

<u>リン</u>

·分子式 ; C18H17N3O3F2

・収率(%);96

・融点(℃);175~177

• Mass : $362(M+H)^+$

• NMR δ (CDCl₃);

3.97(3H, s), 4.04(3H, s), 4.13(3H, s), 4.85(2H, d, J=5.2Hz).

5. 73(1H, brs), 6. 69(1H, s), 7. $1 \sim 7$. 3(3H, m), 8. 64(1H, s)

実施例22

4-(3-フルオロ-4-メトキシベンジル) アミノー6, 7, 8-トリメトキ シキナゾリン

·分子式 ; C19H20N3O4F

・収率(%);82

・融点(℃);171~172

• Mass ; $374(M+H)^+$

• NMR δ (CDCl₃);

3.89(3H, s), 3.98(3H, s), 4.04(3H, s), 4.12(3H, s),

4.81(2H, d, J=5.6Hz), 6.27(1H, brs), 6.86(1H, s), 6.94(1H, m),

 $7.14 \sim 7.19(2H, m)$, 8.64(1H, s)

実施例23

4-(3, 4-ジメトキシベンジル) アミノ-6, 7, 8-トリメトキシキナゾ

<u>リン</u>

·分子式 ; C20H23N3O5

・収率(%);32

・融点 (℃) ;171 ~172

• Mass ; 386(M+H)+

• NMR δ(CDCl₃) ;

3.87(3H,s), 3.89(3H,s), 3.94(3H,s), 4.03(3H,s), 4.13(3H,s),

4.79(2H.d.J=5.2Hz), 5.67(1H.brs), 6.69(1H.s).

6.86(1H, d, J=8.8Hz), 6.96(1H, s), 6.98(1H, d, J=8.8Hz), 8.67(1H, s)

実施例 2 4

4-(4-ヒドロキシ-3-メトキシベンジル) アミノー6, 7, 8-トリメト キシキナゾリン

·分子式 ; C19H21N3O5

・収率(%);16

・融点(℃):201~202 (分解)

• Mass ; $372(M+H)^+$

• NMR δ (CDCl₃);

3.88(3H,s), 3.96(3H,s), 4.03(3H,s), 4.12(3H,s),

4.78(2H, d, J=5.2Hz), 6.00(1H, brs), 6.77(1H, s), 6.91(1H, s),

6.92(1H, s), 6.97(1H, s), 8.65(1H, s)

実施例25

<u>4-(3, 4-エチレンジオキシベンジル) アミノ-6, 7, 8-トリメトキシ</u> キナブリン

·分子式 ; C20H21N3O5

· 収率(%);92

・融点(℃);217~219

• Mass : $384(M+H)^+$

• NMR δ (CDCl₃) :

3.95(3H,s), 4.03(3H,s), 4.13(3H,s), 4.26(4H,s),

4.75(2H. d. J=5.2Hz), 5.54(1H, brs), 6.64(1H, s).

6.87(1H, d, J=8.0Hz), 6.90(1H, d, J=8.0Hz).

6.94(1H.s), 8.66(1H.s)

実施例 2 6

·分子式 ; C23H27N3O5

·収率(%);49

・融点(℃):120~121

• Mass ; $426(M+H)^+$

· NMR δ (CDCI₃) :

3.41(2H, d, J=6.8Hz), 3.48(3H, s), 3.94(3H, s), 4.03(3H, s),

4.12(3H.s). 4.77(2H.d.J=5.2Hz). 5.06(2H.m). 5.21(2H.s).

5.78(1H, brs), 5.98(1H.m), 6.71(1H,s), 7.07(1H,d,J=8.4Hz),

7.23(1H.s), 7.24(1H.d.J=8.4Hz), 8.65(1H.s)

実施例<u>27</u>

4 - (ベンズイミダゾール-5-イルメチル) アミノー<math>6, 7, 8 - トリメトキ シキナゾリン

·分子式 ; C19H19NsOs

• 収率(%);52

・融点(℃);235~240 (分解)

• Mass : 366(M+H)+

• NMR δ (DMSO-d₆);

3.93(3H, s), 3.95(3H, s), 3.98(3H, s), 4.97(2H, d, J=6.0Hz),

7. 30(1H, dd, J=8. 4Hz, 1. 6Hz), 7. 57(1H, d, J=8. 4Hz), 7. 63(1H, d, J=1. 6Hz),

7.83(1H,s). 8.31(1H,s), 8.36(1H,brs), 8.52(1H,s), 9.76(1H,brs)

<u>実施例28</u>

4-(4-ベンジルオキシ-3-ニトロベンジル) アミノー6, 7, 8-トリメ トキシキナゾリン

·分子式 ; C₂₅H₂₄N₄O₆

· 収率(%);81

・融点(℃);181~182

• Mass ; $477(M+1)^+$

• NMR δ (CDCl₃);

3.98(3H, s), 4.03(3H, s), 4.10(3H, s), 4.85(2H, d, J=5.2Hz),

5.21(2H, s), 6.54(1H, brs), 6.93(1H, s), 7.06(1H, d, J=8.4Hz),

7. $30 \sim 7.45(5 \text{H. m})$, 7. 60(1 H. dd. J=8.4 Hz, 2.4 Hz), 7. 87(1 H. d. J=2.4 Hz),

8.61(1H.s)

実施例 2 9

<u>4-(4-クロロー3-ニトロベンジル) アミノー6, 7, 8-トリメトキシキナゾリン</u>

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{MeO} \end{array}$$

·分子式 ; C18H17N4O5Cl

• 収率(%);88

・融点(℃);218~219 (分解)

• Mass : 405(M+H)+

• NMR δ (CDCl₃);

3.98(3H, s), 4.04(3H, s), 4.13(3H, s), 4.93(2H, d, J=6.0Hz),

5.98(1H.brs), 6.75(1H.s), 7.50(1H,d,J=8.4Hz),

7.58(1H. dd, J=8.4Hz.2.0Hz), 7.87(1H. d, J=2.0Hz), 8.61(1H.s)

実施例30

4-(2-プロポキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C21H25N3O4

・収率(%):80

・融点(℃);139~140

• Mass ; $384(M+H)^+$

· NMR δ (CDCl₃);

1.07(3H, t, J=7.4Hz), 1.85(2H, m), 3.95(3H, s), 4.02(3H, s),

4.02(2H, t, J=6.4Hz), 4.10(3H, s), 4.89(2H, d, J=5.6Hz), 6.72(1H, s),

6.9(2H.m), 7.28(1H.m), 7.38(1H.d.J=7.2Hz), 8.64(1H.s)

実施例31_

<u>4-(2, 4, 6-トリメトキシベンジル) アミノー6, 7, 8-トリメトキシ</u> キナゾリン

·分子式 ; C21H25N3O6

・収率(%);64

・融点(℃);213~215

• Mass ; $416(M+H)^+$

· NMR δ (CDCl₃);

3.85(9H,s), 3.92(3H,s), 4.01(3H,s), 4.11(3H,s),

4.79(2H, d, J=4.4Hz), 5.65(1H, brs), 6.20(2H, s), 6.60(1H, s),

8.68(1H,s)

実施例<u>32</u>

<u>4-(3, 4, 5-トリメトキシベンジル) アミノ-6, 7, 8-トリメトキシ</u>キナゾリン

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \text{MeO} & & & \\ \end{array}$$

·分子式 ; C₂₁H₂₅N₃O₆

・収率(%);60

・融点(℃);153~154

• Mass ; $416(M+H)^+$

• NMR δ (CDC1₃) :

3.85(9H.s), 3.97(3H.s), 4.03(3H.s), 4.13(3H.s),

4.80(2H, d, J=5.6Hz), 6.66(2H, s), 6.80(1H, s), 8.66(1H, s)

実施例 3 3

4-(2-0ロロー4, 5-メチレンジオキシベンジル) アミノー<math>6, 7, 8-トリメトキシキナプリン

·分子式 ; C19H18N3O5Cl

• 収率(%);76

・融点(℃);220~221

• Mass ; $404(M+H)^+$

• NMR δ (CDCl₃);

3.97(3H,s), 4.02(3H,s), 4.11(3H,s), 4.86(2H,d,J=6.0Hz),

5.95(2H.s), 6.70(1H.brt, J=6.0Hz), 6.86(1H.s), 6.95(1H.s),

6.98(1H, s), 8.61(1H, s)

実施例34

4-(4, 5-メチレンジオキシ-2-ニトロベンジル) アミノー<math>6, 7, 8-トリメトキシキナブリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{N} \end{array}$$

·分子式 ; C19H18N4O7

· 収率 (%);15

・融点 (℃) ;182 ~183

• Mass : $415(M+H)^+$

• NMR δ (CDCl₃);

3.99(3H,s), 4.02(3H,s), 4.10(3H,s), 5.08(2H,d,J=6.4Hz),

6.09(2H.s), 6.82(2H.s & brs), 7.27(1H.s), 7.57(1H.s), 8.61(1H.s)

実施例35

4- [2- (4-ニトロフェニル) エチル] アミノー 6, 7, 8-トリメトキシ キナゾリン

·分子式 ; C19H20N4O5

· 収率 (%);58

・融点(℃);152~153

• Mass ; 385(M+H)+

• NMR δ (CDC1₃) :

3.18(2H, t, J=7.2Hz), 3.92(3H,s), 3.96(3H,m), 4.04(3H,s),

4.13(3H,s), 5.57(1H,brs), 6.58(1H,s), 7.41(2H,d,J=8.8Hz),

8.17(2H, d, J=8.8Hz). 8.66(1H, s)

実施例 3 6

4 - [2 - (3, 4 - メチレンジオキシフェニル) エチル] アミノー <math>6, 7, 8

<u>-トリメトキシキナゾリン</u>

·分子式 ; C20H21N3O5

・収率(%);68

・融点(℃);193~194

• Mass : $384(M+H)^+$

· NMR δ (CDCl₃);

2.96(2H. t, J=6.8Hz), 3.87(2H.m), 3.93(3H.s), 4.03(3H.s),

4.12(3H, s), 5.43(1H, brs), 5.95(2H, s), 6.52(1H, s),

6.71(1H, d, J=8.0Hz), 6.77(1H, s), 6.78(1H, d, J=8.0Hz),

8.65(1H.s)

実施例37

4- (2- (イミダゾール-4-イル) エチル) アミノー 6, 7, 8-トリメト キシキナゾリン

·分子式 ; C16H18N5O3

· 収率(%);77

·融点(°C);164~166(分解)

• Mass : $330(M+H)^+$

· NMR δ (DMSO-d₆);

3.00(2H, t, J=7.2Hz), 3.81(2H, m), 3.87(3H, s), 3.92(3H, s),

3.97(3H.s), 7.25(1H.s), 7.56(1H.s), 8.39(1H.s), 8.45(1H.s),

8.50(1H, brs)

実施例38

4

トリメトキシキナゾリン

·分子式 ; C20H21N3O5

• 収率 (%);67

・融点(℃);200~201

· Mass ; 384(M+H)+

• NMR δ (CDCl₃);

1.67(2H, d, J=6.8Hz), 3.99(3H, s), 4.04(3H, s), 4.13(3H, s),

5.47(1H, brs), 5.57(1H, t, J=6.8Hz), 5.97(2H, s), 6.65(1H, s),

6.81(1H, d, J=7.6Hz), 6.94(1H, d, J=7.6Hz), 6.95(1H, s), 8.63(1H, s)

実施例 3 9

- 6, 7, 8 - トリメトキシキナゾリン

・分子式 ; C21H23N3O5

·収率(%);4

・融点(℃);191~192.

• Mass ; 398(M+H)+

• NMR δ (CDCl₃);

1.90(6H, s), 4.03(3H, s), 4.03(3H, s), 4.09(3H, s), 5.93(2H, s),

6.74(1H, d, J=7.6Hz), 6.82(1H, s), 6.92(2H, m), 8.46(1H, s)

実施例40

8-トリメトキシキナゾリン

·分子式 ; C21H23N3O5

・収率(%);73

・融点(℃):100~101

• Mass ; $398(M+H)^+$

• NMR δ (CDCl₃):

1.37(3H, t, J=7.0Hz), 3.56(3H, s), 3.67(2H, q, J=7.0Hz), 4.03(3H, s).

4.11(3H, s), 4.79(2H, s), 5.98(2H, s), 6.85(1H, d, J=7.2Hz),

6. 93(1H, s), 6. 93(1H, d, J=7. 2Hz), 6. 97(1H, s), 8. 69(1H, s)

実施例41

4 - (N - (x + 2) + 2) + (3, 4 - x + 2) + (3, 4 - x + 2) N - (x + 2) + (3, 4 - x + 2) + (3, 4 - x + 2) N - (x + 2) + (3, 4 - x + 2)

·分子式 ; C23H25N3O7

• 収率 (%);41

・融点(℃);油状物質

· Mass : 456(M+H)+

• NMR δ (CDCl₃) :

1.29(3H, t, J=7.2Hz), 3.44(3H, s), 4.02(3H, s), 4.10(3H, s),

4.20(2H,s), 4.25(2H,q,J=7.2Hz), 4.98(2H,s), 6.00(2H,s),

6.88(1H, d, J=8.0Hz), 6.97(1H, s), 7.01(1H, d, J=8.0Hz), 8.64(1H, s)

実施例 4 2

4 - (N - (2 - メトキシエチル) - (3, 4 - メチレンジオキシベンジル) ア

ミノ) -6,7,8-トリメトキシキナゾリン

·分子式 : C22H25N3O6

・収率(%);21

・融点(℃);87~88

· Mass : 428(M+H)+

• NMR δ (CDCl₃) :

3.36(3H, s), 3.58(3H, s), $3.80\sim3.85(4H, m)$, 4.02(3H, s),

4.10(3H, s), 4.92(2H, s), 5.97(2H, s), 6.83(1H, d, J=7.6Hz),

6. 92(1H, d, J=7. 6Hz), 6. 94(1H, s), 7. 19(1H, s), 8. 67(1H, s)

実施例 4 3

· 分子式 ; C₂₂H₂₅N₃O₅

・収率(%);79

・融点(℃);157~158

• Mass : $412(M+H)^+$

· NMR δ (CDCl₃);

3.11(2H, t, J=5.8Hz), 3.87(3H, s), 3.89(3H, s), 3.96(2H, t, J=5.8Hz),

3.99(3H,s), 4.07(3H,s), 4.14(3H,s), 4.80(2H,s), 6.67(1H,s),

6.71(1H, s), 7.03(1H, s), 8.74(1H, s)

実施例44

<u>4- (4- (1-ヒドロキシエチル) ベンジル) アミノー 6-メトキシキナゾリン</u>

·分子式 ; C18H19N3O2

• 収率(%):46

・融点 (℃);アモルファス

· Mass ; 310(M+H)+

• NMR δ (CDC1₃) :

1.47(2H, d, J=6.4Hz), 3.91(3H, s), 4.87(2H, d, J=5.2Hz),

4.84~4.94(1H.m), 7.34~7.42(6H.m), 7.59(1H.brs).

7.79(1H. d. J=8.8Hz). 8.52(1H. s)

実施例 4 5

4-(ベンズイミダゾール-5-イルメチル)アミノ-6-メトキシキナゾリン

・分子式 ; C₁₇H₁₅N₅O

• 収率 (%);18

・融点(℃);254~255

· Mass ; 306(M+1)+

• NMR δ (DMSO-d₆) ;

3.88(3H.s). 4.91(2H.d.J=6.0Hz). 7.24(1H.d.J=8.4Hz).

7. 40(1H, dd, J=9. 2Hz, 2. 8Hz), 7. 54(1H, d, J=8. 4Hz), 7. 56(1H, s),

7. 63(1H, d, J=9. 2Hz), 7. 73(1H, d, J=2. 8Hz), 8. 16(1H, s), 8. 37(1H, s),

8.67(1H, t. J=6.0Hz), 12.33(1H, brs)

実施例 4 6

4-(3,4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン

$$Me0 \longrightarrow N \longrightarrow 0$$

·分子式 ; C₁₇H₁₅N₃O₃

· 収率(%);86

・融点(℃);207~208

- Mass ; $310(M+H)^+$

• NMR δ (CDCl₃);

3.89(3H, s), 4.78(2H, d, J=5.2Hz), 5.70(1H, brs), 5.97(2H, s),

6.80(1H, d, J=7.6Hz), 6.9(3H, m), 7.40(1H, d, J=9.2Hz),

7. 80(1H, d, J=9.2Hz), 8. 63(1H, s)

実施例47

$$Me0 \longrightarrow N \longrightarrow 0$$

·分子式 ; C20H19N3O3

· 収率 (%);85

・融点(℃);油状物質

· Mass ; 350(M+1)*

· NMR δ (CDCl₃):

1.95~2.10(3H, m), 2.37(1H, m), 3.58(3H, s), 4.05~4.20(2H, m),

5.58(1H, m), 5.93(1H, s), 5.94(1H, s), 6.78(1H, d, J=8.4Hz),

6.84(1H,s), 6.85(1H,d,J=8.4Hz), 7.30(1H,d,J=10.0Hz), 7.35(1H,s),

7.74(1H.d. J=10.0Hz), 8.53(1H.s)

実施例48

4-(4-メトキシ-3-ニトロベンジル)アミノ-6-メトキシキナゾリン

·分子式 ; C17H16N4O4

·収率(%);22

・融点(℃);205~206 (分解)

• Mass : $341(M+1)^+$

• NMR δ (CDCl₃);

3.93(3H.s), 3.94(3H.s), 4.91(2H.d, J=6.0Hz).

7.07(1H. dd. J=8.4Hz. 1.2Hz). 7.21(1H. d. J=1.2Hz).

7.39(1H. dd, J=9.2Hz, 2.4Hz). 7.53(1H, d, J=2.4Hz).

7.75(1H.d.J=9.2Hz). 7.82(1H.d.J=8.4Hz). 8.03(1H.brs). 8.51(1H.s)

実施例 4 9

4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルチオキナゾリン

4-クロロー6-メチルチオキナゾリン4.12g(0.0196モル)、ピペロニルアミン3.70g(0.0245モル)、炭酸ナトリウム3.50g(0.0330モル)をイソプロピルアルコール 100mlに混合し、一昼夜加熱還流する。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルーn-ヘキサン)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶5.32gを得た。

·分子式 ; C17H15O2N3S

• 収率(%):83

・融点(℃);174~175

• Mass : $326(M+H)^+$

• NMR δ (CDC1₃) :

2.59(3H.s), 4.79(2H.d.J=5.6Hz), 5.93(2H.s), 6.77(1H.d.J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.94(1H, s), 7.62(1H, dd, J=8.8Hz, 2.0Hz),

7.75(1H, d, J=8.8Hz), 7.97(1H, d, J=2.0Hz), 8.10(1H, brs), 8.56(1H, s)

実施例50~54

実施例49の方法に準じて次の化合物を合成した。

実施例50

4-(3,4-ジクロロベンジル)アミノー6-メチルチオキナゾリン

·分子式 ; C16H13N3SCl2

• 収率(%);85

・融点(℃);184~185

• Mass ; $350(M+H)^+$

• NMR δ (CDCl₃);

2.61(3H.s), 4.83(2H.d, J=5.6Hz), 7.28(1H.dd, J=8.4Hz, 2.0Hz),

7.40(1H. d. J=8.4Hz), 7.51(1H. d. J=2.0Hz), 7.64(1H. dd. J=8.8Hz, 2.0Hz),

7.76(1H. d. J=8.8Hz), 7.97(1H. d. J=2.0Hz), 8.19(1H. brs), 8.55(1H. s)

実施例 5 1

<u>4-(3-フルオロ-4-メトキシベンジル) アミノー6-メチルチオキナゾリン</u>

·分子式 ; C17H16N3OSF

・収率(%);89

・融点(℃);168~169

• Mass : $330(M+H)^+$

• NMR δ (CDC1₃);

2.58(3H,s), 3.90(3H,s), 4.82(2H,d,J=5.6Hz), 6.29(1H,brs),

6.95(1H.m), 7.13~7.18(2H.m), 7.54(1H.s), 7.63(1H.d.J=8.8Hz),

7. 79(1H. d. J=8. 8Hz), 8. 64(1H. s)

実施例52

4- (ベンズイミダゾール-5-イルメチル) アミノー6-メチルチオキナゾリ

<u>ン</u>

·分子式 ; C17H15N6S

・収率(%);48

・融点(℃);271~275 (分解)

• Mass ; 322(M+H)*

• NMR δ (DMSO-d₆):

2.67(3H.s), 5.06(2H.d, J=5.6Hz), 7.47(1H.d, J=8.4Hz),

7.68(1H.d.J=8.8Hz), 7.77(2H.m), 7.87(1H.d.J=8.8Hz),

8.40(1H,s), 8.77(1H,s), 8.84(1H,s), 10.68(1H,brs)

実施例53

$$\begin{array}{c} \text{MeO} \\ \text{MeS} \\ \end{array} \begin{array}{c} \text{N} \\ \text{O} \\ \end{array}$$

·分子式 ; C20H21N3O3S

• 収率 (%);27

・融点(℃):92~93

• Mass ; 384(M+H)+

• NMR δ (CDCl₃) :

2.16(3H,s), 3.35(3H,s), 3.82(2H,t,J=5.0Hz), 3.89(2H,t,J=5.0Hz),

5.01(2H.s), 5.98(2H.s), 6.84(1H.d.J=8.4Hz), 6.89(1H.d.J=8.4Hz).

6.90(1H.s), 7.56(1H.dd.J=8.8Hz.2.0Hz), 7.66(1H.d,J=2.0Hz),

7.82(1H, d, J=8.8Hz)

実施例54

$$\begin{array}{c|c} H0 & & & \\ & N & & \\ MeS & & N & \\ \end{array}$$

·分子式 ; C19H19N3O3S

・収率(%);21

・融点(℃);146~147 (分解)

· Mass : 370(M+H)

• NMR δ (CDCl₃);

2.00(3H, s), 3.93(2H, t, J=4.2Hz), 4.01(2H, t, J=4.2Hz), 5.00(2H, s),

6.01(2H, s), 6.89(3H, m), 7.57(2H, m), 7.82(1H, d, J=9.2Hz), 8.55(1H, s)

実施例55

4-(4-クロロ-3-ニトロベンジル)アミノ-6-クロロキナゾリン

4, 6-ジクロロキナゾリン3.00g(0.015モル)、4-クロロ-3-ニトロベンジルアミン 塩酸塩3.80g(0.0170モル)を、イソプロピルアルコール 100ml、トリエチルアミン15mlに溶解させ、一昼夜加熱還流する。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム-酢酸エチル)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶4.85gを得た。

·分子式 ; C₁₅H₁₀N₄O₂Cl₂

・収率(%);92

・融点(℃);199~200

• Mass ; $349(M+H)^+$

· NMR δ (CDCl₃);

4.85(2H, d, J=6.0Hz), 7.49(1H, d, J=8.4Hz), 7.61(1H, dd, J=8.4Hz, 2.0Hz),

7.66(1H. dd. J=8.8Hz. 2.0Hz), 7.76(1H. d. J=8.8Hz), 7.96(1H. d. J=2.0Hz),

8, 20(1H. d, J=2.0Hz), 8, 23(1H, brt, J=6.0Hz), 8, 58(1H, s)

実施例 5 <u>6</u>

4, 6-ジクロロキナゾリン704mg に2-プロパノール30ml、トリエチルアミン1.07g、α-エトキシカルボニル-3, 4-メチレンジオキシベンジルアミン1.01gを加え、4時間還流した。水を加え、クロロホルムで3回抽出し、合わせた有機層を硫酸マグネシウムで乾燥後、溶媒を減圧留去し、残渣を再結晶(エタノールー酢酸エチル-ヘキサン)し、標題化合物 1.167gを得た。

·分子式 ; C19H16N3O4Cl

• 収率(%);86

・融点(℃);169~170

· Mass m/e ; 386(M+1)

· NMR δ (CDCl₂) :

1.28(3H.t.J=7.2Hz), 4.27(2H.m), 5.85(1H.d.J=6.4Hz), 5.98(2H.s),

6.70(1H.brs), 6.81(1H.d.J=8.8Hz), 6.99(2H.m),

7. 10(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 83(1H, d, J=2. 4Hz).

8.85(1H.d.J=8.8Hz), 8.63(1H.s)

実施例57~64

実施例55~56の方法に準じて次の化合物を合成した。

実施<u>例 5 7</u>

4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C16H12N3O2Cl

・収率(%);76

・融点(℃);199~200

• Mass $: 314(M+H)^+$

·NMR δ(CDCl₃);

4.76(2H, d, J=5.6Hz), 5.82(1H, brs), 5.98(2H, s), 6.81(1H, d, J=8.0Hz),

6.87(1H.d.J=8.0Hz), 6.89(1H.s), 7.67(1H.s), 7.69(1H.d.J=8.0Hz),

7.81(1H, d, J=8.0Hz), 8.70(1H, s)

実施例58

4-(3,4-ジクロロベンジル)アミノ-6-クロロキナゾリン

$$C1 \xrightarrow{HN} C1$$

·分子式 ; C15H10N3Cl3

· 収率(%);72

・融点(℃);215~216

• Mass ; 338(M+H) +

·NMR δ(CDCl₃) :

4.85(2H.d.J=5.6Hz), 5.94(1H.brs), 7.24(1H.d.J=8.4Hz).

7.43(1H.d.J=8.4Hz), 7.70(1H.d,J=9.2Hz), 7.72(1H.s),

7.83(1H.d.J=9.2Hz). 8.68(1H.s)

実施例 5_9

4-(3,4-ジメトキシベンジル)アミノー6-クロロキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C17H16N3O2Cl

·収率(%);73

・融点(℃);174~175

· Mass : 330(M+H)+

• NMR δ (CDC1₃);

3.87(6H,s), 4.78(2H,d,J=5.2Hz), 6.85(1H,d,J=8.0Hz).

6.96(1H, d. J=8.0Hz), 6.98(1H, s), 7.34(1H, brs).

7.65(1H, dd, J=9.2Hz, 2.0Hz). 7.78(1H, d, J=9.2Hz).

8.08(1H, d, J=2.0Hz), 8.65(1H, s)

実施例 6 0

4-(ベンズイミダゾール-5-イルメチル)アミノ-6-クロロキナゾリン

·分子式 ; C16H12N6Cl

・収率(%);76

・融点(℃);243~244 (分解)

• Mass : $310(M+H)^+$

• NMR δ (DMSO-d₆);

4.89(2H, d, J=5.6Hz), 7.27(1H, d, J=8.4Hz), 7.55(1H, d, J=8.4Hz),

7.59(1H, s), 7.72(1H, d, J=8.8Hz), 7.80(1H, dd, J=8.8Hz, 2.4Hz),

8.25(1H.s), 8.50(1H.s), 8.53(1H.d, J=2.4Hz), 9.07(1H, brt, J=5.6Hz)

実施例 6 1

·分子式 ; C₁₈H₁₆N₃O₂Cl (341.798)

• 収率(%);53

・融点(℃);178~179

• Mass ; $342(MH^+)$

• NMR δ (DMSO-d₆) :

2.88(1H.dd, J=2.0Hz, 17.0Hz). 3.28~3.34(1H.m), 4.68(1H.d, J=5.7Hz),

5.68(1H, dd, J=2.0Hz, 6.6Hz), 6.79(1H, d, J=8.2Hz), 7.14(1H, d, J=8.2Hz),

7.24(1H.s), 7.70(1H.d.J=9.0Hz), 7.79(1H.dd.J=2.2Hz.9.0Hz),

8.46(1H.d.J=2.2Hz). 8.48(1H.s). 8.82(1H.t.J=5.7Hz)

実施例 6 2

4-(2-メチルベンズイミダゾール-5-イルメチル) アミノー6-クロロキ ナブリン

$$C1 \xrightarrow{HN \\ N} Me$$

·分子式 ; C17H14N5Cl

•収率(%);17

・融点(℃):273~274 (分解)

• Mass ; 324(M+H) +

-NMR δ (DMSO-d₆);

2.71(3H, s). 4.94(2H, d, J=5.6Hz), 7.48(1H, d, J=8.4Hz).

7.63(1H.d.J=8.4Hz). 7.70(1H.s), 7.77(1H.d.J=8.8Hz).

7.86(1H, dd, J=8.8Hz, 2.0Hz), 8.58(1H, s), 8.65(1H, d, J=2.0Hz),

9.65(1H.brs)

実施例 6 3

 $4 - (1 - \cancel{y} + \cancel{y} - 1 - (3, 4 - \cancel{y} + \cancel{y} +$

・分子式 ; C18H16N3O2Cl

・収率(%);32

・融点(℃):175~176

• Mass ; 342(M+H) +

• NMR δ (CDCl₃);

1.92(6H,s), 5.95(2H,s), 6.14(1H,brs), 6.76(1H,d,J=7.6Hz),

6.92(1H, d, J=7.6Hz), 6.93(1H, s), 7.67(1H, dd, J=8.8Hz),

7.77(1H, d, J=2.0Hz), 7.86(1H, d, J=8.8Hz), 8.50(1H, s)

実施例 6 4

4-(3,4-メチレンジオキシベンジル)アミノ-6-エトキシキナゾリン

·分子式 ; C18H17N3O3

・収率(%):44

・融点(℃);190~191

• Mass : $324(M+H)^+$

• NMR δ (CDCl₃);

1.46(3H, t. J=6.8Hz), 4.10(2H, q. J=6.8Hz), 4.77(2H, d, J=5.2Hz),

5.68(1H.brs), 5.97(2H.s), 6.80(1H.d.J=8.0Hz), 6.87~6.92(3H.m),

7.39(1H, dd, J=9.2Hz, 2.8Hz), 7.79(1H, d, J=9.2Hz), 8.62(1H, s)

実施例 6_5_

4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン

4-クロロー6-シアノキナゾリン140mg にイソプロピルアルコール15ml、トリエチルアミン75mg及びピペロニルアミン125mg を加え、5時間加熱還流した。 沈殿物を濾取し、シリカゲルカラムクロマトグラフィーに付した。酢酸エチルで 溶出し、標題化合物を200mg 得た。

·分子式 ; C₁₇H₁₂N₄O₂

・収率(%);89

・融点(℃);243~244

• Mass : $305 (M+1)^+$

· NMR δ (DMSO-d₆);

4.67(2H, d. J=5.6Hz), 5.96(2H, s), 6.84(2H, s), 6.95(1H, s),

7.77(1H, d. J=8.4Hz), 8.56(1H.s), 8.89(1H.s), 9.04(1H.br)

実施例 6 6~87

実施例65の方法に準じて以下の化合物を合成した。

<u>実施例 6 6</u>

4- (3-(1-イミダゾリル) プロピル) アミノー6-シアノキナゾリン

·分子式 ; C15H14N6

・収率(%);22

・融点(℃);196~197

• Mass m/e; 279(M+1)

• NMR δ (CDCl₂);

2.27(2H.quintet, J=6.4Hz), 3.66(2H,q,J=6.4Hz), 4.17(2H,t,J=6.4Hz),

7.07(1H.s), 7.11(1H.s), 7.82(1H.s), 7.82(1H.s), 8.09(1H.s),

8.37(1H, brs), 8.66(1H, s), 8.84(1H, s)

実施例67

4 - (ベンズイミダゾールー5-イル) メチルアミノー6-シアノキナゾリン

·分子式 ; C₁₇H₁₂N₆

・収率(%);68

・融点(℃);274~277

• Mass ; $301 (M+1)^+$

• NMR δ (DMSO-d₆);

4.88(2H, d, J=5.6Hz), 7.21~7.24(1H, m), 7.35~7.76(2H, m),

7.78(1H.d, J=8.8Hz), 7.06(1H.dd, J=8.8Hz, 1.6Hz), 8.15(1H, s),

8.57(1H.s). 8.92(1H.s). 9.14(1H.m). 12.32(1H.m)

実施<u>例 6 8</u>

<u>4-(3,4-メチレンジオキシベンジル)アミノ-6-エトキシカルボニルキ</u>ナ<u>ブリン</u>

·分子式 ; C19H17N3O4

• 収率 (%);48

・融点(℃);156~157

• Mass ; 352(M+H)+

· NMR δ (CDCl₃) :

1.43(3H, t, J=7.2Hz), 4.44(2H, q. J=7.2Hz), 4.79(2H, d, J=5.2Hz),

5.98(2H,s), 6.14(1H,brs), 6.82(1H,d,J=8.0Hz), 6.89(1H,d,J=8.0Hz),

6.90(1H, s), 7.87(1H, d, J=8.8Hz), 8.33(1H, d, J=8.8Hz), 8.46(1H, s),

8.74(1H,s)

実施例69

4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルキナゾリン

·分子式 ; C17H15N3O2

· 収率(%);68

・融点(℃);203~204

• Mass ; 294(M+H) +

• NMR δ (CDCl₃);

2.49(3H,s), 4.76(2H,d,J=5.6Hz), 5.79(1H,brs), 5.96(2H,s),

6.81(1H.d.J=8.0Hz), 6.88(1H.d.J=8.0Hz), 6.91(1H.s), 7.44(1H.s),

7.57(1H.d, J=8.4Hz), 7.76(1H,d,J=8.4Hz), 8.66(1H,s)

実施例70

<u>4-(3, 4-メチレンジオキシベンジル) アミノ-6, 7-ジメトキシキナゾリン</u>

$$\begin{array}{c|c} & & & \\ \text{MeO} & & & \\ & & & \\ \text{MeO} & & & \\ \end{array}$$

·分子式 ; C18H17N3O4

・収率(%);77

・融点(℃);221~222

• Mass : $340(M+H)^+$

-NMR δ (DMSO-d₆) ;

3.88(3H.s), 3.89(3H.s), 4.68(2H.d.J=6.0Hz), 5.97(2H.s),

6.85(2H.s), 6.94(1H,s), 7.09(1H,s), 7.64(1H,s), 8.33(1H,s),

8.37(1H, t, J=6.0Hz)

実施例71

<u>リン</u>

·分子式 ; C18H17N3O4

· 収率 (%);88

・融点(℃);217~218

· Mass : 340(M+H) +

-NMR δ (CDC1₃) :

3.89(3H,s). 4.01(3H,s). 4.77(2H,d,J=5.2Hz), 5.63(1H,brs),

5. 97(2H. s), 6. 42(1H. d. J=2. 4Hz), 6. 77(1H. d. J=2. 4Hz).

6.80(1H, d, J=7.6Hz), 6.88(1H, dd, J=7.6Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz),

8.65(1H.s)

実施例72

 $4 - (3, 4 - \cancel{y} + \cancel$

$$\begin{array}{c} \text{MeO} & \text{HN} \\ \text{MeO} & \text{N} \\ \end{array}$$

・分子式 ; C18H17N3O4

・収率(%);74

・融点(℃);122~123

• Mass ; $340(M+1)^+$

• NMR δ (CDCl₃) :

3.97(6H, s), 4.77(2H, d. J=5.2Hz), 5.97(2H, s), 6.81(1H, d. J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz), 7.49(1H, d, J=8.8Hz),

7.82(1H, d, J=8.8Hz), 8.51(1H, s), 8.64(1H, brs)

実施例 7 3

·分子式 ; C₁, H₁, N₄O₄

・収率(%):66

・融点(℃):164~165

• Mass ; $367(M+H)^{+}$

• NMR δ (CDCl₃) :

2.26(3H,s), 4.04(3H,s), 4.76(2H,d,J=5.6Hz), 5.95(2H,s),

6.22(1H, brs), 6.77(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz),

6.89(1H.s), 7.31(1H.s), 8.02(1H.brs), 8.59(1H.s), 8.81(1H.s)

実施例74

<u>4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルチオ-7-メト</u> キシキナゾリン

·分子式 ; C18H17N3O3S

• 収率 (%);39

・融点(℃);200~205 (分解)

· Mass ; 356(M+H) +

• NMR δ (CDCl₂);

2.50(3H, s), 4.01(3H, s), 4.78(2H, d, J=5.6Hz), 5.95(2H, s).

6.13(1H.brs), 6.79(1H.d.J=8.0Hz), 6.88(1H.d.J=8.0Hz).

6.91(1H.s), 7.15(1H.s), 7.33(1H.s), 8.56(1H.s)

実施例 7 5

4-(3,4-メチレンジオキシベンジル)アミノキナゾリン

·分子式 ; C16H13N3O2

• 収率(%);69

・融点(℃);197~198

• Mass : $280(M+H)^+$

· NMR δ (CDCl₃);

4.78(2H, d, J=5.2Hz), 5.85(1H, brs), 5.96(2H, s), 6.80(1H, d, J=8.0Hz),

6.88(1H, d, J=8.0Hz). 6.91(1H.s), 7.46(1H,t,J=8.0Hz),

7.68(1H.d., J=8.0Hz), 7.75(1H.t., J=8.0Hz), 7.87(1H.d., J=8.0Hz),

8.71(1H.s)

実施例76

4-(3,4-メチレンジオキシベンジル)アミノ-8-メトキシキナゾリン

·分子式 ; C17H15N3O3

・収率(%);76

・融点(℃);195~196

• Mass : $310(M+H)^+$

· NMR δ (CDCl₃) ;

4.03(3H, s). 4.78(2H, d, J=5.6Hz), 5.94(2H, s). 6.77(1H, d, J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.92(1H, s), 6.95(1H, brs), 7.12(1H, d, J=8.0Hz),

7.39(1H. t. J=8.0Hz), 7.48(1H. d. J=8.0Hz), 8.70(1H. s)

実施例<u>77</u>

4-(3,4-メチレンジオキシベンジル)アミノ-7-クロロキナゾリン

·分子式 ; C21H22N3O2Cl

• 収率 (%);62

・融点(℃):209~210

• Mass ; $314(M+H)^+$

· NMR δ (CDCl₃) :

4.77(2H.d. J=5.6Hz), 5.95(2H.s), 6.78(1H.d.J=8.0Hz),

6.88(1H, d. J=8.0Hz), 6.92(1H, s), 7.39(1H, dd, J=8.8Hz, 2.0Hz),

7.4(1H. brs), 7.83(1H. d. J=2.0Hz), 7.96(1H. d. J=8.8Hz), 8.63(1H. s)

\$

実施例78

4-(3, 4-メチレンジオキシベンジル) アミノベンゾ [g] キナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C₂₀H₁₅N₃O₂ (329)

· 収率(%);45

・融点(℃);265 (分解)

• Mass $: 330(M+1)^+$

• NMR δ (DMSO-d₆);

4. 92(2H, d, J=6. 0Hz), 5. 97(2H, s), 6. 88(1H, d, J=8. 0Hz),

6.94(1H, dd, J=8.0Hz, 1.6Hz), 7.06(1H, d, J=1.6Hz), 7.68~7.81(2H, m),

8.11(1H.d.J=8.4Hz), 8.21(1H.d.J=8.4Hz), 8.33(1H.s), 8.90(1H.s),

9.36(1H,s), 11.09(1H,br)

実施例 <u>7 9</u>

·分子式 ; C₁₇H₁₃N₃O₄ (323)

・収率(%);55

・融点(℃);229~231

• Mass : $324(M+1)^+$

• NMR δ (DMSO- d_6);

4. 62(2H, d, J=5. 6Hz), 5. 94(2H, s), 6. 16(2H, s), 6. 79(1H, d, J=8. 0Hz).

6.82(1H, dd, J=8.0Hz, 2.0Hz), 6.89(1H, d, J=2.0Hz), 7.06(1H, s),

7. 68(1H, s), 8. 26(1H, brt. J=5. 6Hz), 8. 28(1H, s)

実施例 8 0

4-(3, 4, 5-トリメトキシベンジル) アミノー 6, 7-メチレンジオキシ

キナゾリン

・分子式 ; C19H19N3O5 (369)

• 収率(%);59

・融点(℃):240~241

• Mass ; $370(M+1)^+$

• NMR δ (DMSO-d₆);

3.61(3H.s). 3.70(6H.s). 4.65(2H.d.J=6.0Hz). 6.16(2H.s).

6.675(2H.s), 7.06(1H.s), 7.72(1H.s), 8.23(1H.brt, J=6.0Hz),

8.30(1H,s)

実施例 8 1

2-メチル-4-(3, 4-メチレンジオキシベンジル) アミノ-6, 7, 8-

トリメトキシキナゾリン

・分子式 ; C₂₀H₂₁N₃O₅

・収率(%);58

・融点(℃);190~191

• Mass : $384(M+H)^+$

· NMR δ (CDCl₃);

2.67(3H,s). 3.93(3H,s). 4.01(3H,s), 4.11(3H,s).

4.77(2H, d, J=5.2Hz), 5.96(2H, s), 6.70(1H, s), 6.79(1H, d, J=7.6Hz),

6.89(1H, d, J=7.6Hz), 6.93(1H, s)

実施例82

2-イソプロピル-4-(3,4-メチレンジオキシベンジル)アミノ-6-メ

トキシキナゾリン

·分子式 ; C20H21N3O3

· 収率(%);84

・融点(℃);157~158

• Mass ; $352(M+1)^+$

• NMR δ (CDCl₃):

*

1.36(6H.d.J=6.8Hz), 3.15(1H.septet.J=6.8Hz), 3.88(3H.s),

4.81(2H.d.J=5.6Hz), 5.94(2H.s), 6.78(1H.d.J=8.0Hz),

6.91(1H. dd, J=8.0Hz, 2.0Hz). 6.96(1H. d, J=2.0Hz).

6.99(1H, brd, J=2.4Hz), 7.32(1H, dd, J=9.2Hz, 2.4Hz),

7. 79(1H, d. J=9. 2Hz)

実施例83

 $\frac{2-(2-プロポキシフェニル)-4-(3,4-メチレンジオキシベンジル)}{rミノ-6-クロロキナゾリン}$

·分子式 ; C25H22N3O3Cl

•収率(%);20

・融点 (℃) ; 208 ~209

• Mass : $446(M+1)^+$

- NMR δ (CDCl₃);

0.97(3H, t, J=7.6Hz). 1.71~1.81(2H, m). 4.01(2H, t, J=6.4Hz).

4.81(2H, brs), 5.80(1H, br), 5.96(2H, s), 6.79~7.86(10H, m)

実施例 8 4

2-(2-プロポキシフェニル)-4-(3, 4-メチレンジオキシベンジル)アミノキナゾリン

·分子式 ; C₂₅H₂₃N₃O₃ (413)

・収率(%);15

・融点(℃);130~131

• Mass : $414(M+1)^+$

· NMR δ (CDCl₃) :

0.96(3H, t. J=7.2Hz), 1.71~1.77(2H, m), 4.00(2H, t. J=6.4Hz),

4.83(2H,s). 5.95(2H,s). 6.77~7.93(12H,m)

実施例 8 5

4-(3,4-メチレンジオキシベンズアミド)-6,7,8-トリメトキシキ ナゾリン

·分子式 ; C19H17N2O6

・収率(%);13

・融点(℃);190~192

• Mass : $384(M+H)^+$

• NMR δ (CDCl₃);

4.10(6H,s). 4.12(3H,s). 6.07(2H,s). 6.91(1H,d,J=8.0Hz).

7.86(1H,s), 7.90(1H,s), 8.06(1H,d,J=8.0Hz), 8.18(1H,s)

実施例86

4-(3, 4-メチレンジオキシベンジル) オキシ-6, 7, 8-トリメトキシ

キナゾリン

·分子式 ; C19H18N2Os

・収率(%);49

・融点(℃);141~142

· Mass : 371(M+H)+

• NMR δ (CDCl₃);

3.97(3H, s), 4.05(3H, s), 4.13(3H, s), 5.53(2H, s), 5.99(2H, s),

6.84(1H, d, J=8.0Hz). 7.00(1H, dd, J=8.0Hz, 2.0Hz). 7.02(1H, d, J=2.0Hz),

7.20(1H, s), 8.74(1H, s)

実施例 8 7

4-(3,4-メチレンジオキシベンジル)オキシー6-メチルチオキナゾリン

·分子式 ; C17H14N2O3Cl

・収率(%);69

・融点(℃);104~105

• Mass ; $327(M+H)^{+}$

• NMR δ (CDCl₃);

2.59(3H, s), 5.56(2H, s), 6.00(2H, s), 6.85(1H, d, J=8.0Hz).

7.01(1H, dd, J=8.0Hz, 1.6Hz), 7.03(1H, d, J=1.6Hz),

7.72(1H, dd, J=8.8Hz, 1.6Hz), 7.88(1H, d, J=8.8Hz), 7.89(1H, d, J=1.6Hz).

8.78(1H, s)

実施例 8 8

2, 4, 6-トリメトキシキナゾリン

2, 4-ジクロロー6-メトキシキナゾリン 5.0g(0.022モル)をメタノール 150 m1に懸濁させ、水素化ナトリウム 3.5gを徐々に加えた後、加熱還流する。 数時間後、反応液を減圧濃縮し、水を加えて析出晶を濾取し、水で洗い風乾して、標題化合物の粗黄色晶 4.8gを得た。

・融点(℃);143~144

• Mass ; $221(M+1)^+$

• NMR δ (CDCl₃) :

3.90(3H, s), 4.08(3H, s), 4.18(3H, s), 7.36(1H, d, J=2.8Hz),

7. 39(1H. dd, J=8. 8Hz, 2. 8Hz). 7. 67(1H. d, J=2. 8Hz)

実施例 8 9

2, 6-ジメトキシー4-(3, 4-メチレンジオキシベンジル) アミノキナゾ リン

WO 93/07124

$$\begin{array}{c|c} & & & \\ & & & \\ Me0 & & & \\ & & & \\ N & & \\ OMe & & \\ \end{array}$$

·分子式 ; C18H17N3O4

· 収率 (%);18

・融点(℃);166~167

• Mass ; $340(M+1)^+$

• NMR δ (CDCl₃);

3.89(3H,s), 4.03(3H,s), 4.77(2H,d,J=5.2Hz), 5.94(2H,s),

6.76(1H. d. J=8.0Hz), 6.89(1H. dd. J=8.0Hz, 1.2Hz), 6.93(1H. d. J=1.2Hz),

7.29(1H. dd, J=8.8Hz.2.8Hz), 7.32(1H. brs), 7.59(1H. d, J=8.8Hz)

実施例 9 0

2, 4-ビスベンジルオキシ-6-メトキシキナゾリン

ベンジルアルコール 3 mlをテトラヒドロフラン50mlに溶解させ、水素化ナトリ

ウム 1.0gを加えて30分間40~50℃にて攪拌した後、2, 4 - ジクロロー6 - メトキシキナゾリン2.50g (0.0109モル)を加え、数時間加熱還流する。反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥する。 濾過、減圧下溶媒を留去し、得られる結晶をクロロホルム-n-ヘキサンより再 結晶して、標題化合物の黄色晶3.84gを得た。

・収率(%);95

・融点(℃);144~145

• Mass ; $373(M+1)^+$

• NMR δ (CDCl₂);

3.87(3H, s), 5.53(2H, s), 5.62(2H, s), 7.31~7.55(12H, m),

7. 70(1H, d, J=8.8Hz)

実施例91

 $2 - \langle x \rangle + \langle x \rangle +$

実施例 9 0 で得られた 2 、 4-ビスベンジルオキシ-6-メトキシキナゾリン 1.00g (2.69ミリモル)のジメチルスルホキシド (10ml)溶液にピペロニルアミン1.25g (8.27ミリモル)を加え、160~ 180℃で攪拌する。1時間後、反応液をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、酢酸エチル-n-ヘキサンより再結晶して、標題化合物の無色針状晶0.20 gを得た。

WO 93/07124

·分子式 ; C24H21N3O4

• 収率(%);18

・融点(℃):163~164

· Mass ; 416(M+H)+

·NMR δ(CDCl₃);

3.86(3H,s), 4.75(2H,d,J=5.2Hz), 5.49(2H,s), 5.68(1H,brs),

5.96(2H.s), 6.79(1H.d.J=8.0Hz), 6.84~6.87(3H.m),

7.28~7.36(4H,m), 7.51~7.53(2H,m), 7.63(1H,d,J=9.2Hz)

実施例92

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル) アミノキナゾリ ン

$$C1$$
 N
 $C1$
 0

2, 4, 6 - トリクロロキナゾリン 3. 6 g、ピペロニルアミン 2. 4 g、トリエチルアミン 1. 6 g 及びイソプロピルアルコール50 mlの混合物を 1. 5 時間加熱還流した。熱時、沈殿物を濾取して、標題化合物を 5. 2 g 得た。

·分子式 ; C16H11N3O2Cl2

・収率(%);98

・融点(℃);215

· Mass : 349 (M+1)+

• NMR δ (DMSO-d₆);

4.61(2H.s), 5.97(2H.s), 6.85(2H.s), 6.95(1H.s),

7. 63(1H, d, J=8.8Hz), 7. 80(1H, dd, J=8.8Hz, 2.4Hz),

8. 45(1H, d, J=2. 4Hz), 9. 24(1H, br)

実施例<u>93</u>

2-2-1-4-(3, 4-1) 4-1 4-

2, 4-ジクロロー6-シアノキナゾリン2gにイソプロピルアルコール35ml、トリエチルアミン900mg 及びピペロニルアミン1.35gを加え、 1.5時間加熱還流した。熱時、反応混合物中の沈殿物を濾取して、標題化合物を 2.4g得た。

·分子式 ; C₁₇H₁₁N₄O₂Cl

・収率(%);79

・融点(℃);234~236 (分解)

• Mass : $339 (M+1)^+$

• NMR δ (DMSO-d₆) :

4. 63(2H, d, J=5. 6Hz), 5. 97(2H, s), 6. 86(2H, s), 6. 97(1H, s),

7.72(1H, d, J=8.4Hz), 8.10(1H, dd, J=8.4Hz, 1.8Hz),

8.90(1H, d, J=1.8Hz), 9.50(1H, br)

実施例94

<u>2-クロロー4-(3-クロロー4-メトキシベンジル) アミノー6-シアノキ</u>ナゾリン

2, 4-ジクロロー6-シアノキナゾリン4gに3-クロロー4-メトキシベンジルアミン3.9g、トリエチルアミン3.97g、2-プロパノール200mlを加え30分間還流した。反応混合物を室温まで冷し、析出した結晶を逮取し、水、クロロホルムで順次洗浄し、標題化合物を5.563g得た。

·分子式 ; C17H12N4OCI2

• 収率(%);87

・融点(℃);264~266

• Mass m/e ; 359(M+1)

• NMR δ (CDCl₃) :

3.90(3H, s), 4.73(2H, d, J=5.2Hz), 6.92(1H, d, J=8.4Hz),

7.33(1H. dd. J=8.4Hz.2.0Hz), 7.45(1H. d, J=2.0Hz), 7.74(1H. d, J=8.4Hz),

7.83(1H, dd, J=8.4Hz, 1.6Hz), 8.78(1H, d, J=1.6Hz), 8.85(1H, brs)

実施例95~105

実施例88~94の方法に準じて次の化合物を合成した。

実施例 9 <u>5</u>

2-2ロロー4-(3, 4-メチレンジオキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C1.9H1.8N3O.6Cl

· 収率(%);50

・融点 (℃);193~194

• Mass : $404(M+H)^+$

• NMR δ (CDCl₃) :

3.94(3H, s), 4.03(3H, s), 4.10(3H, s), 4.75(2H, d, J=5.2Hz),

5.65(1H.brs), 5.98(2H.s), 6.59(1H.s), 6.81(1H.d.J=8.0Hz),

6. 89(1H, d, J=8.0Hz), 6. 91(1H, s)

実施例 9 6

2-クロロ-4-(3-クロロ-4-メトキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C19H18Cl2N3O4

· 収率(%):45

・融点(℃):199~200

• Mass ; $424(M+1)^+$

• NMR δ (CDC1₃) :

3.89(3H.s). 3.95(3H.s). 4.02(3H.s), 4.08(3H.s).

4.76(2H.d.J=5.6Hz), 6.39(1H.brs), 6.83(1H.s), 6.89(1H.d.J=8.3Hz),

7. 31(1H. dd. J=8. 4Hz. 2. 0Hz), 7. 40(1H. d. J=2. 0Hz)

実施例 9 7

2-クロロー4-(3, 4-メチレンジオキシベンジル) アミノー6, 7-ジメトキシキナブリン

$$\begin{array}{c} \text{MeO} & \begin{array}{c} \text{HN} \\ \text{N} \\ \text{C1} \end{array}$$

·分子式 ; C18H16N3O4Cl

·収率(%);97

・融点(℃);177~178

· Mass : 374(M+H)+

· NMR & (CDCI3);

3.95(3H,s), 3.97(3H,s), 4.75(2H,d,J=5.2Hz), 5.74(1H,brt,J=5.2Hz),

5.97(2H.s), 6.80(1H.d, J=8.0Hz), 6.81(1H.s),

6.88(1H, dd, J=8.0Hz, 2.0Hz), 6.91(1H, d, J=2.0Hz), 7.14(1H, s)

実施例 9 8

2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシ キナゾリン

·分子式 ; C17H14N3O3Cl

• 収率(%);80

・融点(℃);202~203

· Mass : 344(M+1)*

• NMR δ (CDCl₃) :

3.91(3H,s), 4.77(2H,d,J=5.6Hz), 5.94(2H,s), 6.76(1H,d,J=8.0Hz),

6.91(1H.dd, J=8.0Hz, 1.6Hz). 6.95(1H.d. J=1.6Hz).

7.35(1H.dd, J=9.2Hz, 2.8Hz), 7.46(1H.brd, J=2.8Hz),

7.69(1H, d, J=9.2Hz), 7.90(1H, brs)

実施例 9 9

2-クロロ-4-(3-クロロ-4-メトキシベンジル) アミノー6-メトキシ キナゾリン

·分子式 ; C₁₇H₁₅N₃O₂Cl₂

· 収率(%);88

・融点(℃);171~172

· Mass ; 364(M+1)*

• NMR δ (DMS0):

3.83(3H,s), 3.88(3H,s), 4.68(2H,d,J=5.6Hz), 7.13(1H,d,J=8.8Hz).

7. 33(1H. dd, J=2. 4Hz, 8. 8Hz), 7. 44(1H, dd, J=2. 8Hz, 9. 2Hz),

7.46(1H, d, J=2.4Hz). 7.58(1H, d, J=9.2Hz), 7.72(1H, d, J=2.8Hz),

9. 05(1H, t, J=5. 6Hz)

実施例 1 0 0

2, 6-ジクロロー4-ベンジルアミノキナゾリン

·分子式 ; C15H11N3Cl2

• 収率(%);77

・融点(℃);227~228

·NMR δ(CDCl₃);

4.85(2H.d.J=5.2Hz). 5.97(1H.brs), 7.33~7.43(5H.m),

7.62(1H.d, J=2.0Hz), 7.68(1H, dd, J=8.8Hz, 2.0Hz),

7.74(1H, d, J=8.8Hz)

実施例 1 0 1

$$C1$$
 N
 $C1$
 N
 $C1$

·分子式 ; C17H18N3O2Cl2

• 収率(%);71

・融点(℃);228~229

• NMR δ (DMSO-d₆);

2.88(2H, t, J=7.4Hz), 3.68(2H, m), 5.96(2H, s),

6.70(1H. dd, J=8.0Hz, 1.6Hz), 6.81(1H. d, J=8.0Hz), 6.87(1H. d, J=1.6Hz),

7.63(1H.d.J=8.8Hz), 7.80(1H.dd.J=8.8Hz.2.0Hz), 8.40(1H.d.J=2.0Hz),

8.86(1H, d, J=5.2Hz)

実施例102

2, 6-ジクロロ-4-(3-クロロ-4-メトキシベンジル) アミノキナゾリ ン

$$C1$$
 N
 $C1$
 OMe

·分子式 ; C16H12N3OCl3

・収率(%);93

・融点(℃);207~208

• Mass m/e; 368(M+1)

• NMR δ (CDCl₃) :

3.90(3H.s), 4.73(2H.d.J=5.6Hz), 6.91(1H.d.J=8.4Hz),

7. 32(1H. d. J=8. 4Hz, 2. 0Hz), 7. 45(1H, d. J=2. 0Hz).

7.62(1H, dd, J=8.8Hz, 2.0Hz), 7.66(1H, d, J=8.8Hz),

8.07(1H, brs), 8.16(1H.d. J=2.0Hz)

実施例103

2, 6-ジクロロー4- (ベンズイミダゾール-5-イル) メチルアミノキナゾ リン

·分子式 ; C16H11N5Cl2 (344.205)

·収率(%);81

・融点(℃);>290

• Mass : $344(M+1)^+$

• NMR δ (DMSO);

4.85(2H, d, J=6.0Hz), 7.25(1H, dd, J=1.6Hz, 6.4Hz),

7.57(1H. d. J=6.4Hz). 7.60(1H.s), 7.66(1H.d.J=8.8Hz),

7.83(1H.dd, J=2.0Hz, 8.8Hz), 8.21(1H.s), 8.44(1H.brs),

8.52(1H, d, J=2.0Hz). 9.37(1H, t, J=6.0Hz)

実施例 1 0 4

<u>2-クロロー4-(ベンズイミダゾール-5-イル)メチルアミノー6-シアノ</u> キナゾリン

·分子式 ; C17H11N6Cl (334.5)

・収率(%);58

・融点(℃);>290

• Mass ; $335 (M+1)^+$

• NMR δ (DMSO-d₆)

4.81(2H.s), 7.21~7.68(3H,m), 7.73(1H,d,J=8.8Hz),

8.10(1H, d, J=8.8Hz), 8.17(1H.s), 8.91(1H,s), 9.55(1H,br)

実施例105

$$\begin{array}{c} H0 \\ Me0 \\ Me0 \\ Me0 \end{array}$$

·分子式 ; C21H22N3O6Cl

• 収率(%);55

• Mass : $448(M+H)^+$

• NMR δ (CDCl₃);

3.38(3H.s), 3.88(2H.t, J=4.4Hz), 4.01(2H,t, J=4.4Hz), 4.03(3H,s),

4.07(3H,s), 4.92(2H,s), 6.01(2H,s), 6.88~6.91(3H,m), 7.00(1H,s)

実施例 1 0 6

2-ホルミルー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロ キナゾリン

2-エトキシカルボニル-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン0.50g(0.0013モル) を塩化メチレン20ml、テトラヒドロフラン20mlの混合溶媒に溶解させ、-78℃攪拌下、水素化ジイソブチルアルミニウムの 1.0Mトルエン溶液を 2.6ml滴下する。数時間-78℃にて攪拌後、反応液にメタノール20mlを加え、減圧下溶媒を留去する。残渣をシリカゲルカラムクロマトグラフィーにて精製した後、酢酸エチル-n-ヘキサンより再結晶し、標題化合物の淡黄色晶0.23gを得た。

・収率(%);52

・融点(℃);200~202 (分解)

• Mass ; $342(M+1)^+$

• NMR δ (CDCl₃);

4.86(2H, d, J=5.2Hz), 5.98(2H, s), 6.81(1H, d, J=7.6Hz),

6.90(1H.d. J=7.6Hz), 6.92(1H.s), 7.72(1H.d. J=2.0Hz).

7.77(1H. dd. J=8.8Hz, 2.0Hz), 8.01(1H. d, J=8.8Hz), 10.05(1H. s)

実施例107

2-xトキシカルボニルー4-(3, 4-xチレンジオキシベンジル) アミノー6-2ロロキナゾリン

2-xトキシカルボニルー 4, 6-ジクロロキナゾリン2.72g(0.0100モル)、ピペロニルアミン1.75g(0.0116モル)、炭酸ナトリウム1.60g(0.0151モル)をイソプロピルアルコール 100m1にて混合し、一昼夜加熱還流する。溶媒を減圧下留去し、得られる残渣をシリカゲルカラムクロマトグラフィーにより精製した後、クロロホルム-n-ヘキサンより再結晶し、標題化合物の無色針状晶3.56gを得た。

·分子式 ; C19H18N2O4Cl

· 収率(%);92

・融点(℃);212~213

• Mass : $386(M+H)^+$

• NMR δ (CDCl₃);

1.49(3H, t, J=7.2Hz), 1.54(2H, q, J=7.2Hz), 4.83(2H, d, J=5.6Hz),

5.96(1H, brs), 5.97(2H, s), 6.80(1H, d, J=8.0Hz),

6.91(1H, dd, J=8.0Hz, 1.6Hz), 6.97(1H, d, J=1.6Hz), 7.70(1H, d, J=2.0Hz),

7. 72(1H, dd, J=8. 8Hz, 2. 0Hz). 8. 00(1H, d, J=8. 8Hz)

実施例108~11_1

実施例106又は実施例107の方法に準じて以下の化合物を得た。

実施例108

2-エトキシカルボニルー4-(3-クロロー4-メトキシベンジル)アミノー 6-クロロキナゾリン

·分子式 ; C19H17N2O3Cl2

·収率(%);88

・融点(℃);185~186

· Mass : 406(M+1)*

· NMR δ (CDCl₃);

1.49(3H, t, J=7.2Hz), 3.90(3H, s), 4.54(2H, q, J=7.2Hz),

4.84(2H.d.J=5.2Hz), 6.09(1H.brs), 6.90(1H.d.J=8.4Hz),

7. 33(1H. dd. J=8. 4Hz, 2. 4Hz), 7. 48(1H. d, J=2. 4Hz).

7.72(1H, dd, J=8.8Hz, 2.4Hz), 7.74(1H, d, J=2.4Hz).

7.99(1H, d, J=8.8Hz)

実施例<u>109</u>

2-エトキシカルボニルー 4- (3 , 4-メチレンジオキシベンジル) アミノ-

6, 7, 8-トリメトキシキナゾリン

·分子式 ; C22H23N3O7

・収率(%);定量的

・融点(℃):163~165(分解)

• Mass : $442(M+1)^+$

• NMR δ (CDCl₃);

1.45(3H, t, J=7.2Hz), 3.94(3H, s), 4.02(3H, s), 4.18(3H, s),

4.46(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz), 5.89(1H, brt, J=5.2Hz),

5.94(2H, s), 6.74(1H, d, J=7.6Hz), 6.76(1H, s),

6.86(1H, dd, J=7.6Hz, 1.6Hz), 6.94(1H, d, J=1.6Hz)

実施例 1 1 <u>0</u>

2-xトキシカルボニル-4-(3-2)000-4-メトキシベンジル) アミノー 6-xトキシキナゾリン

·分子式 ; C20H20N3O4Cl

· 収率 (%);73

・融点(℃);192~193

• Mass : $402(M+1)^+$

· NMR δ (CDCl₃);

1.49(3H, t, J=7.2Hz), 3.90(3H, s), 3.91(3H, s), 4.53(2H, q, J=7.2Hz),

4.86(2H, d, J=5.6Hz), 5.90(1H, brt, J=5.6Hz), 6.90(1H, d, J=8.4Hz),

6.96(1H, d, J=2.4Hz), 7.36(1H, dd, J=8.4Hz, 2.4Hz),

7. 44(1H. dd. J=9. 2Hz. 2. 4Hz), 7. 49(1H. d. J=2. 4Hz), 8. 00(1H. d. J=9. 2Hz)

実施例 1 1 1

2-xトキシカルボニルー 4-(ベンズイミダゾールー5-イルメチル) アミノ-6-メトキシキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ \text{MeO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

·分子式 ; C20H19N5O3

• 収率(%);48

・融点(℃);244~245 (分解)

· Mass :: 378(M+1)+

• NMR δ (DMS0-d₆):

1.35(3H, t, J=7.2Hz), 3.90(3H, s), 4.33(2H, q, J=7.2Hz),

4.94(2H, d. J=6.0Hz), 7.31(1H, d. J=8.0Hz), 7.47(1H, dd, J=8.8Hz, 2.8Hz),

7.53(1H. d. J=8.0Hz), 7.65(1H. brs), 7.77(1H. d. J=8.8Hz), 7.78(1H. s),

8.17(1H,s), 8.89(1H,brt,J=6.0Hz)

<u>実施例112</u>

(E) - 2 - (2 - x + y) + y + (2 - x + y) +

ŝ

2-ホルミルー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナブリン4.00g (0.0117モル) のテトラヒドロフラン 250ml溶液に、水素化ナトリウム0.52g(0.013モル) を加え、氷冷攪拌下、トリエチル 2-ホスホノプロピオネート 2.8ml(0.013モル) を滴下する。しばらく氷冷攪拌を続けた後、室温まで昇温し、さらに1時間攪拌した。8 M塩酸-エタノール 1.5mlを加え、少量のシリカゲルを通した後、減圧下溶媒を留去し、残渣をカラムクロマトグラフィー(酢酸エチルーn-ヘキサン)により精製し、クロロホルムーn-ヘキサンより再結晶して、標題化合物2.00gを得た。

· 分子式 ; C₂₂H₂₀N₃O₄Cl

・収率(%):40

・融点(℃):179~180 (分解)

• Mass : $426(M+1)^+$

• NMR δ (CDCl₃);

- 1.35(3H, t, J=7.2Hz), 2.50(3H, d, J=1.6Hz), 4.29(2H, q, J=7.2Hz),
- 4.78(2H, d, J=5.2Hz), 5.77(1H.brt, J=5.2Hz), 5.97(2H, s),
- 6.81(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 1.6Hz), 6.89(1H, d, J=1.6Hz),
- 7. 62(1H, q, J=1. 6Hz), 7. 64(1H, d, J=2. 0Hz), 7. 68(1H, dd, J=8. 8Hz, 2. 0Hz).
- 7. 81 (1H, d, J=8. 8Hz)

実施例113~119

実施例112の方法に準じて以下の化合物を得た。

実施例113

·分子式 ; C22H20N3O4Cl

•収率(%);13

·収量(g);0.64

・融点 (℃) ;162 ~164 (分解)

· Mass ; 426(M+1)+

• NMR δ (CDCl₃);

1. 20(3H, t, J=7. 2Hz), 2. 17(3H, d, J=1. 6Hz), 4. 21(2H, q, J=7. 2Hz),

4.70(2H. d. J=4.8Hz), 5.64(1H. brs), 5.97(2H. s), 6.53(1H. q. J=1.6Hz),

6.81(1H, d, J=7.6Hz), 6.85(1H, dd, J=7.6Hz, 1.6Hz), 6.87(1H, d, J=1.6Hz),

7.58(1H, d, J=2.4Hz), 7.62(1H, dd, J=8.8Hz, 2.4Hz), 7.71(1H, d, J=8.8Hz)

<u>実施例114</u>

·分子式 ; C21H18N3O4Cl

・収率(%);67

・融点 (℃) ;195 ~196

• Mass ; $412(M+1)^+$

·NMR δ (CDCl₃);

1.35(3H, t. J=7.2Hz), 4.29(2H, q. J=7.2Hz), 4.80(2H, d. J=5.2Hz),

5.77(1H. brs), 5.97(2H.s), 6.81(1H.d.J=7.6Hz), 6.89(1H.d.J=7.6Hz),

6.90(1H.s), 7.21(1H,d,J=15.6Hz), 7.64(1H,d,J=2.0Hz),

7. 66(1H, d, J=15. 6Hz), 7. 68(1H, dd, J=9. 2Hz, 2. 0Hz), 7. 82(1H, d, J=9. 2Hz)

実施例115

 $\underline{(E)-2-(2-x++y)}$ ルボニルビニル $\underline{(E)-4-(3-p)}$ キシベンジル $\underline{(E)-6-p}$ アミノー $\underline{(E)-4-y}$

·分子式 ; C21H19N3O3Cl2

· 収率(%);74

・融点(℃);211~212

• Mass ; $432(M+1)^+$

• NMR δ (CDCl₃) :

1.35(3H, t. J=7.2Hz), 3.89(3H, s), 4.28(2H, q, J=7.2Hz),

4.79(2H. d. J=5.6Hz), 6.91(1H. d. J=8.4Hz), 7.16(1H. d. J=15.6Hz),

7. 33(1H, dd, J=8. 4Hz, 2. 0Hz). 7. 46(1H, d, J=2. 0Hz).

7. 62(1H, d. J=15. 6Hz), 7. 64(1H, dd, J=8. 8Hz, 2. 4Hz),

7.75(1H.d.J=8.8Hz), 7.77(1H.brs), 8.16(1H.d.J=2.4Hz)

実施例 1 1 6

(E) -2-(2-xトキシカルボニル-1-プロペニル)-4-(3-クロロ-4-メトキシベンジル)アミノ-6-クロロキナゾリン

·分子式 ; C22H21N3O3Cl2

・収率(%);54

・融点(℃);154~155

· Mass : 446(M+1)+

• NMR δ (CDC1₃) :

1.35(3H, t, J=7.2Hz), 2.48(3H, d, J=1.6Hz), 3.91(3H, s),

4.29(2H, q, J=7.2Hz), 4.80(2H, d, J=5.2Hz), 5.82(1H, brt, J=5.2Hz),

6. 92(1H, d, J=8.8Hz), 7.27(1H, dd, J=8.8Hz, 2.0Hz).

7.42(1H, d, J=2.0Hz), 7.62(1H, q, J=1.6Hz), 7.67(1H, d, J=2.4Hz),

7. 69(1H. dd, J=8. 8Hz, 2. 4Hz), 7. 82(1H, d, J=8. 8Hz)

実施例 1 1 7

(Z) - 2 - (2 - x + 2) カルボニルー1 - 7 ロペニル) -4 - (3 - 2) ロロークロロキナゾリン

·分子式 ; C22H21N3O3Cl2

• 収率(%);11

・融点(℃);141~142

• Mass ; $446(M+1)^+$

· NMR δ (CDC1₃);

1.19(3H, t, J=7.2Hz), 2.17(3H, d, J=1.6Hz), 3.91(3H, s),

4.19(2H, q, J=7.2Hz), 4.73(2H, d, J=5.2Hz), 5.69(1H, brt, J=5.2Hz),

6.53(1H, q, J=1.6Hz), 6.92(1H, d, J=8.4Hz), 7.26(1H, dd, J=8.4Hz, 2.0Hz),

7.40(1H, d, J=2.0Hz), 7.60(1H, d, J=2.0Hz), 7.63(1H, dd, J=8.8Hz, 2.0Hz),

7. 71(1H, d, J=8.8Hz)

実施例118

(E) -2-(2-エトキシカルボニル-1-プロペニル) <math>-4-(3, 4-x) チレンジオキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C25H27N3O7

• 収率(%);51

・融点(℃);175~176

• Mass ; $482(M+1)^+$

• NMR δ (CDCl₃);

1.35(3H, t. J=7.2Hz), 2.52(3H, d. J=1.6Hz), 3.95(3H, s), 4.04(3H, s),

4.14(3H,s), 4.28(2H,q,J=7.2Hz), 4.80(2H,d,J=5.2Hz),

5.60(1H.brt.J=5.2Hz), 5.96(2H.s), 6.67(1H.s), 6.80(1H.d.J=8.0Hz),

6.87(1H, dd, J=8.0Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.69(1H, q, J=1.6Hz)

実施例 1 1 9

·分子式 ; C₂₅H₂₇N₃O₇

·収率(%);11

・融点(℃);157~158 (分解)

• Mass : $482(M+1)^+$

• NMR δ (CDC1₃);

1.19(3H, t, J=7.2Hz), 2.16(3H, s), 3.92(3H, s), 4.02(3H, s),

4.09(3H.s), 4.21(2H,q,J=7.2Hz), 4.72(2H,d,J=5.2Hz), 5.43(1H,brs),

5.96(2H,s), 6.59~6.61(2H,m), 6.80(1H,d,J=8.0Hz), 6.86~6.89(2H,m)

実施例120

(E) -2-(2-カルボキシ-1-プロペニル) -4-(3,4-メチレンジ オキシベンジル) アミノー6-クロロキナゾリン

(E) -2-(2-xトキシカルボニルプロペニル) -4-(3,4-x)チレンジオキシベンジル) アミノー6-クロロキナゾリン1.00g (0.0023モル) をテトラヒドロフラン5ml、エタノール20mlに溶解させ、1N水酸化ナトリウム水溶液20mlを加えて数時間室温攪拌した。1N塩酸20mlにて中和し、減圧下濃縮して析出する結晶を濾取し、水で洗って風乾し、標題化合物0.85gを得た。

·分子式 ; C20H16N3O4Cl

・収率(%);91

・融点(℃);145~146

• Mass : $398(M+1)^+$

• NMR δ (DMSO-d₆);

2.36(3H, d, J=1.6Hz), 4.70(2H, d, J=5.6Hz), 5.97(2H, s), 6.85(2H, s),

6.95(1H, s), 7.34(1H, q, J=1.6Hz), 7.72(1H, d, J=8.8Hz),

7.79(1H, dd, J=8.8Hz, 2.0Hz), 8.46(1H, d, J=2.0Hz),

8.86(1H, brt, J=5.6Hz)

実施例121~128

実施例120の方法に準じて以下の化合物を得た。

実施例121

2-カルボキシ-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロ ロキナゾリン

·分子式 ; C17H12N3O4Cl

· 収率 (%);定量的

·融点(℃);240 (分解)

• Mass ; $402(M-1+2Na)^+$

• NMR δ (DMSO-d₆):

4.71(2H, d, J=5.6Hz), 5.96(2H, s), 6.83(1H, d, J=8.0Hz),

6.89(1H, dd, J=8.0Hz, 1.2Hz), 7.06(1H, d, J=1.2Hz),

7.75(1H. dd. J=8.8Hz. 2.4Hz), 7.90(1H. d. J=8.8Hz).

8.48(1H, d, J=2.4Hz), 8.82(1H, brt, J=5.6Hz)

実施例 1 2 2

(E) − 2 − $(2 - \pi)$ ルボキシビニル) − 4 − (3, 4 - x) ← x ← y

ŗ

ジル) アミノー6-クロロキナゾリン

·分子式 ; C19H14N3O4Cl

・収率(%):43

・融点(℃);114~115

• Mass : 428(M-1+2Na)*

- NMR δ (DMSO-d₆);

4.71(2H, d, J=5.6Hz), 5.96(2H, s), 6.84(1H, d, J=8.0Hz),

6.90(1H, dd, J=8.0Hz, 1.6Hz), 6.99(1H, d, J=1.6Hz),

7.02(1H, d, J=15.6Hz), 7.23(1H, d, J=15.6Hz), 7.73(1H, d, J=9.2Hz),

7.78(1H, dd, J=9.2Hz, 2.0Hz), 8.44(1H, d, J=2.0Hz),

8.89(1H, brt. J=5.6Hz)

実施例123

・分子式 ; C20H16N3O4Cl

• 収率 (%);定量的

・融点(℃);195~196 (分解)

• Mass ; $398(M+1)^+$

• NMR δ (DMSO-d₆);

2.10(3H, d, J=1.6Hz), 4.70(2H, d, J=5.6Hz), 5.97(2H, s),

6.56(1H, d, J=1.6Hz), 6.86(1H, d, J=8.0Hz), 6.91(1H, dd, J=8.0Hz, 1.6Hz),

7.00(1H, d, J=1.6Hz), 7.65(1H, d, J=9.2Hz), 7.81(1H, dd, J=9.2Hz, 2.4Hz),

8.46(1H, d, J=2.4Hz), 8.96(1H, brt, J=5.6Hz)

実施例124

4

(E) -2-(2-カルボキシビニル) -4-(3-クロロ-4-メトキシベンジル) アミノー<math>6-クロロキナゾリン

·分子式 ; C19H15N3O3Cl2

・収率(%);定量的

・融点(℃);109~110

• Mass ; $448(M-1+2Na)^+$

· NMR δ (DMSO-d₆);

3.81(3H.s), 4.73(2H.d, J=5.6Hz), 6.95(1H.d, J=15.6Hz),

7.05(1H. d, J=15.6Hz), 7.08(1H. d, J=8.4Hz).

7.37(1H. dd. J=8.4Hz, 2.0Hz). 7.48(1H. d. J=2.0Hz).

7.68(1H.d.J=8.8Hz), 7.73(1H.dd,J=8.8Hz,2.0Hz).

8.42(1H.d., J=2.0Hz), 8.91(1H.brt, J=5.6Hz)

実施例125

(E) - 2 - (2 - カルボキシー <math>1 - プロペニル) - 4 - (3 - クロロー 4 - メ)トキシベンジル) アミノー6 - クロロキナゾリン

·分子式 ; C20H17N3O3Cl2

• 収率(%);定量的

・融点(℃);151~152

• Mass ; $462(M-1+2Na)^+$

• NMR δ (DMSO-d₆):

2. 33(3H. d. J=1. 2Hz), 3. 82(3H. s), 4. 72(2H. d. J=5. 6Hz).

7.09(1H, d, J=8.4Hz), 7.20(1H, d, J=1.2Hz), 7.32(1H, dd, J=8.4Hz, 2.0Hz),

7. 44(1H, d, J=2. 0Hz), 7. 67(1H, d, J=8. 8Hz), 7. 74(1H, dd, J=8. 8Hz, 2. 4Hz),

8. 43(1H, d, J=2. 4Hz), 8. 87(1H, brt, J=5. 6Hz)

実施例126

(Z) - 2 - (2 - カルボキシー1 - プロペニル) - 4 - (3 - クロロー4 - メ)トキシベンジル) アミノー6 - クロロキナゾリン

·分子式 ; C20H17N3O3Cl2

· 収率(%);定量的

·融点(°C);207~208(分解)

• Mass : $418(M+1)^+$

• NMR δ (DMSO-d₆) :

2.10(3H, d, J=1.4Hz), 3.83(3H, s), 4.72(2H, d, J=5.2Hz).

6.54(1H, d, J=1.4Hz), 7.10(1H, d, J=8.4Hz), 7.38(1H, dd, J=8.4Hz),

7. 49(1H, d, J=2.4Hz), 7. 65(1H, d, J=8.8Hz), 7. 81(1H, dd, J=8.8Hz, 2.4Hz),

8.44(1H, d, J=2.4Hz), 8.95(1H, brt, J=5.2Hz)

実施例127

(E) −2 − $(2-\pi \nu \vec{x}+\nu -1-\tau \vec{x}-\nu)$ −4 − $(3, 4-\nu \vec{x}+\nu \vec{x}-\nu)$ オキシベンジル) アミノー6, 7, 8 − トリメトキシキナゾリン

·分子式 ; C23H23N3O7

· 収率 (%);91

- 融点(℃);200~201 (分解)

• Mass : $454(M+1)^+$

• NMR δ (DMSO-d₆);

2.38(3H.s), 3.89(3H.s), 3.92(3H.s), 4.01(3H.s),

4.71(2H, d, J=5.6Hz), 5.97(2H, s), 6.85(2H, s), 6.93(1H, s),

7.37(1H.s), 7.53(1H.s), 8.53(2H.brt, J=5.6Hz), 12.55(1H.brs)

実施例128

 $(Z) - 2 - (2 - \pi \mu \pi + \nu - 1 - \pi \mu \pi - \mu) - 4 - (3, 4 - \mu + \mu + \nu)$ オキシベンジル) アミノー 6, 7, $8 - \mu + \nu$

·分子式 ; C23H23N3O7

· 収率 (%);90

・融点(℃);237~238 (分解)

• Mass ; $454(M+1)^+$

• NMR δ (DMSO-d₆) :

2.11(3H, d, J=1.2Hz), 3.92(3H, s), 3.93(3H, s), 3.94(3H, s).

4. 76(2H, d, J=5.6Hz), 5. 98(2H, s), 6. $8\sim6.9(3H, m)$, 6. 97(1H, s),

7. 61(1H, s), 9. 08(1H, brt, J=5.6Hz)

実施例129

 $4-(\alpha-x)$ トキシカルボニルー 3、4-xチレンジオキシベンジル)アミノー 6-0 ロロキナゾリン 100 mgにエタノール10 ml、水 5 ml、水酸化ナトリウム20 mgを加え、10 分間還流した。反応液を減圧濃縮し、水20 mlを加えた後、1 N塩酸で中和した。析出した結晶を濾取し、標題化合物45 mgを得た。

·分子式 ; C₁₇H₁₂N₃O₄Cl

· 収率(%);49

・融点(℃);235~236

· Mass m/e : 358(M+1)

• NMR δ (DMSO-d₆) :

5.75(1H.d.J=6.4Hz), 6.01(2H.s), 6.89(1H.d,J=8.0Hz),

7.00(1H.d.J=8.0Hz), 7.08(1H.s), 7.70(1H.d.J=8.8Hz),

7.75(1H. dd. J=1.6Hz, 8.8Hz), 8.49(1H.s), 8.59(1H.d. J=6.4Hz),

8.70(1H, d, J=1.6Hz)

実施例130~131

実施例129の方法に準じて以下の化合物を得た。

実施例 1 3 0

4 - (N - (カルボキシメチル) - (3, 4 - メチレンジオキシベンジル) アミノ) - 6, 7, 8 - トリメトキシキナゾリン

·分子式 ; C21H2iN3O7

·収率(%);90

・融点(℃);134~136

· Mass ; 428(M+H)+

· NMR δ (CDCl₃);

3.43(3H.s), 4.06(3H.s), 4.17(3H.s), 4.62(2H.s), 5.16(2H.s),

6.03(2H,s), 6.87(1H,s), 6.91(2H,s), 7.06(1H,s), 8.87(1H,s)

実施例131

4-(3,4-メチレンジオキシベンジル)アミノ-6-カルボキシキナゾリン

·分子式 ; C17H13N3O4

· 収率 (%);98

・融点(℃);247~248(分解)

• Mass ; $324(M+H)^+$

• NMR δ (DMSO-d₆);

4.86(2H, d, J=5.6Hz), 5.99(2H, s), 6.89(1H, d, J=8.0Hz),

6.92(1H, d, J=8.0Hz), 7.02(1H, s), 7.92(1H, d, J=8.8Hz),

8.46(1H, d, J=8.8Hz), 8.96(1H, s), 9.20(1H, s), 10.88(1H, brs)

実施例132

 $4-(\alpha-x$ トキシカルボニル-3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 200mgに10%のアンモニアエタノール溶液20m1を加え、室温で3日間攪拌した。析出している結晶を濾取し、標題化合物60mgを得た。

·分子式 ; C17H13N4O3Cl

7

WO 93/07124

・収率(%);32

- 融点 (℃) ;230 ~231

· Mass m/e ; 357(M+1)

• NMR δ (CDCl₃+DMS0-d₆);

5.96(3H.m), 6.42(1H.brs), 6.79(1H.d.J=8.0Hz),

7.09(1H. dd. J=8.0Hz. 1.6Hz), 7.14(1H. d. J=1.6Hz), 7.15(1H. brs).

7.67(1H.dd, J=8.8Hz, 2.0Hz), 7.75(1H,d, J=8.8Hz), 8.28(1H,d, J=2.0Hz),

8,57(1H,s)

実施例133~134

実施例132の方法に準じて以下の化合物を得た。

実施例133

4-(3,4-メチレンジオキシベンジル)アミノー6-カルバモイルキナゾリ

<u>ン</u>

$$\begin{array}{c|c} & & & \\ & & & \\ 0 & & & \\ H_2N & & & \\ N & & & \\ \end{array}$$

· 分子式 ; C17H14N4O3

• Mass ; 323(M+H)+

• NMR δ (DMSO-d₆):

4.68(2H, d, J=6.0Hz), 5.97(2H, s), 6.85(1H, d, J=8.0Hz).

6.88(1H.d.J=8.0Hz), 6.97(1H.s), 7.55(1H.brs), 7.70(1H.d.J=8.4Hz),

7.97(1H.brs), 8.18(1H.dd.J=8.4Hz,1.6Hz), 8.50(1H.s),

8.84(1H.d, J=1.6Hz), 8.92(1H.brt, J=6.0Hz)

実施例134

·分子式 ; C17H13C1N4O3

· 収率(%):71

・融点(℃);245~247(分解)

• Mass : 357(M+1)

• NMR δ (DMSO-d₆);

4.77(2H.d., J=5.2Hz), 5.97(2H.s), 6.85(1H.d., J=8.0Hz).

6.92(1H, d, J=8.0Hz), 7.04(1H, s), 7.66(1H, brs), 7.83(2H, m),

8.07(1H, brs), 8.49(1H, s), 8.99(1H, brs)

実施例135

-6-クロロキナゾリン 200mgにエタノール10ml、水素化ホウ素ナトリウム 197mgを加え、30分間還流した。水5mlを加え、溶媒を減圧濃縮した後、再び水10mlを加えた。析出した結晶を減取し、標題化合物30mgを得た。

•分子式 ; C17H14N3O3Cl

·収率(%);17

・融点(℃):204~205

• Mass m/e; 344(M+1)

• NMR δ (CDCl₃(+DMS0-d₆));

3.95(2H, m), 5.43(1H, q, J=4.4Hz), 5.92(1H, d, J=1.6Hz).

5.93(1H, d, J=1.6Hz), 6.76(1H, d, J=8.0Hz). 6.90(1H, dd, J=8.0Hz, 1.6Hz),

6.95(1H, d, J=1.6Hz), 7.60(1H, brs), 7.65(1H, dd, J=8.4Hz, 2.4Hz),

7.74(1H. d. J=8.4Hz). 8.31(1H. d. J=2.4Hz). 8.53(1H. s)

実施例136

4- ((3, 4-メチレンジオキシベンジル) アミノー6-ヒドロキシメチルキナゾリン

実施例135の方法に準じて標題化合物を得た。

·分子式 ; C17H15N3O3

• 収率(%);34

・融点(℃);176~177

• Mass m/e ; 310(M+1)

'n ż • NMR δ (DMSO-d₆):

4. 62(2H, d, J=5. 6Hz), 4. 65(2H, d, J=5. 6Hz), 5. 36(1H, t, J=5. 6Hz),

5.94(2H, s), 6.82(1H, s), 6.82(1H, s), 6.92(1H, s),

7.63(1H, d, J=8.4Hz), 7.70(1H, d, J=8.4Hz), 8.20(1H, s), 8.41(1H, s),

8. 74(1H, t, J=5. 6Hz)

実施例137

<u>4 - (3, 4 - メチレンジオキシベンジル)アミノ - 6 - メチルスルフィニルキ</u> ナゾリン

$$\begin{array}{c|c} 0 & HN & 0 \\ \parallel & \parallel & 0 \\ Me-S & N & 0 \\ \end{array}$$

4-(3,4-メチレンジオキシベンジル)アミノー6-メチルチオキナゾリン1.80g(5.53ミリモル)のクロロホルム(100ml)溶液に、氷冷攪拌下、m-クロロ過安息香酸1.20g(6.95ミリモル)のクロロホルム(30ml)溶液を滴下する。数時間氷冷攪拌した後、反応液を飽和重曹水で洗い、無水硫酸マグネシウムで乾燥する。濾過後、シリカゲルカラムクロマトグラフィー(酢酸エチルーアセトン)にて精製し、クロロホルム-n-ヘキサンより再結晶して、標題化合物の淡黄色晶1.51gを得た。

·分子式 ; C₁₇H₁₅N₃O₃S

・収率(%);80

・融点(℃);154~155

• Mass : $342(M+H)^+$

· NMR δ (CDC1₃);

2.75(3H,s), 4.80(2H,d,J=5.2Hz), 5.96(2H,s), 6.80(1H,d,J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.91(1H, s), 7.06(1H, brs), 7.64(1H, d, J=8.8Hz),

7.98(1H.d., J=8.8Hz), 8.43(1H.s), 8.74(1H.s)

実施例138

4-(3,4-メチレンジオキシベンジル)アミノ-6-メチルスルホニルキナ プリン

$$\operatorname{MeSO}_2 \xrightarrow{\operatorname{HN}} 0$$

実施例 1 3 7 で得られた 4 ー (3, 4 ー メチレンジオキシベンジル) アミノー 6 ー メチルスルフィニルキナゾリン1.00g(2.93ミリモル)のクロロホルム(50 ml)溶液に、室温攪拌下、m ークロロ過安息香酸 0.65g(3.8ミリモル)のクロロホルム(20ml)溶液を滴下する。数時間室温攪拌した後、反応液を飽和重曹水で洗い、無水硫酸マグネシウムで乾燥する。濾過後、シリカゲルカラムクロマトグラフィー(酢酸エチル)にて精製し、クロロホルムーn ーヘキサンより再結晶して、標題化合物の黄色晶 0.85gを得た。

·分子式 ; C17H15N3O4S

•収率(%);81

・融点 (℃) ;192 ~193

• Mass ; $358(M+H)^+$

• NMR δ (CDCl₃);

3.13(3H,s), 4.80(2H,d,J=5.2Hz), 5.95(2H,s), 6.79(1H,d,J=8.0Hz),

.

٠<u>٠</u>

6.91(1H.d.J=8.0Hz), 6.95(1H.s), 8.05(1H.d.J=8.8Hz),

8.17(1H. d. J=8.8Hz), 8.72(1H. s), 8.81(1H. brs), 8.98(1H. s)

実施例139

2-ヒドロキシメチルー4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシキナゾリン

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

2-ベンジルオキシメチル-4-(3, 4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン1.26g(2.93ミリモル)の酢酸エチル-エタノール溶液(20m1-20m1)に10%パラジウム-カーボン粉末 1.5gを加え、水素気流下一昼夜室温攪拌する。反応液をセライト濾過し、熱酢酸エチル-エタノールで洗って、濾液と洗液とを減圧下溶媒留去し、標題化合物の淡黄色晶0.89gを得た。

·分子式 ; C18H17N3O4

収率(%);89

・融点(℃);216~218

• Mass : $340(M+H)^+$

• NMR δ (CDCl₃);

3.91(3H, s), 4.15(1H, brs), 4.68(2H, brs), 4.77(2H, d, J=5.6Hz),

5.95(2H, s), 6.79(1H, d, J=7.6Hz), 6.85(1H, brs),

6.88(1H, dd, J=7.6Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz), 7.21(1H, d, J=2.8Hz),

7. 37(1H, dd, J=9. 2Hz, 2. 8Hz). 7. 72(1H, d, J=9. 2Hz)

実施例140

2-ヒドロキシ-4-(3.4-メチレンジオキシベンジル)アミノー6-メト

キシキナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ \text{MeO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

実施例139の方法に準じて標題化合物を得た。

·分子式 ; C₁₇H₁₅N₃O₄

・収率(%);16

・融点(℃);215~217 (分解)

· Mass ; 326(M+H)+

• NMR δ (DMSO-d₆) ;

3.79(3H.s), 4.62(2H,d,J=5.6Hz), 5.98(2H,s), 6.84~6.87(2H,m),

6.94(1H, s), 7.09(1H, d, J=8.8Hz), 7.22(1H, dd, J=8.8Hz, 2.8Hz),

7.60(1H.d.J=2.8Hz), 8.65(1H.brt,J=5.6Hz), 10.55(1H.s)

実施例 1 4 1

2-ホルミル-4-(3, 4-メチレンジオキシベンジル) アミノー<math>6-メトキ シキナゾリン

塩化オキサリル 1.0ml (11ミリモル) の塩化メチレン10ml溶液に、-78℃攪拌 ざ 下ジメチルスルホキシド 1.5mlの塩化メチレン5ml溶液を滴下する。-78℃にて 15分間攪拌後、2-ヒドロキシメチル-4-(3,4-メチレンジオキシベンジル)アミノ-6-メトキシキナゾリン0.74g(2.2ミリモル)のジメチルスルホキシド7ml溶液を滴下する。-78℃にて20分間攪拌後、トリエチルアミン5mlを滴下して室温まで昇温させながら30分間攪拌する。反応液に水を加え、クロロホルムで抽出し、有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去して、標題化合物の粗茶褐色油状物0.74gを得た。

・分子式 ; C18H15N3O4

・収率(%);定量的

• NMR δ (CDCl₃):

3.93(3H,s), 4.86(2H,d,J=5.6Hz), 5.95(2H,s), 6.28(1H.brs),

6.78(1H, d, J=8.0Hz), 6.89(1H, dd, J=8.0Hz, 1.6Hz),

6. 92(1H, d, J=1.6Hz), 7. 09(1H, d, J=2.8Hz), 7. 47(1H, dd, J=9.2Hz.2.8Hz),

7. 97(1H, d, J=9. 2Hz), 10. 02(1H, s)

実施例142

2-カルボキシ-4-(3, 4-メチレンジオキシベンジル) アミノ-6-メトキシキナゾリン

実施例 141 で得られた 2-ホルミル-4-(3,4-メチレンジオキシベンジル) アミノー<math>6-メトキシキナゾリン0.59g(1.8ミリモル) の 1,4-ジオキサン20m1溶液に、酸化銀(I)1.00g、<math>1N水酸化ナトリウム水溶液15m1を加え、60 でにて攪拌する。30分後、反応液をセライトにて濾過し、少量のジオキサン、

水で洗って、濾液と洗液とを1N塩酸にて中和し、クロロホルム-エタノールで抽出する。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧下溶媒留去して、得られる結晶を濾取し、クロロホルムで洗い、標題化合物の淡黄色晶0.34gを得た。

·分子式 ; C18H15N3O5

•収率(%);55

・融点 (℃) ;190 ~191 (分解)

• Mass ; $354(M+H)^+$

• NMR δ (DMSO-d₆):

3.90(3H.s). 4.77(2H.d.J=5.6Hz). 5.97(2H.s). 6.86(1H.d.J=8.0Hz).

6. 92(1H. d. J=8. 0Hz), 7. 05(1H. s), 7. 49(1H. dd, J=9. 2Hz, 2. 8Hz),

7.76(1H. d. J=2.8Hz). 7.79(1H. d. J=9.2Hz), 8.91(1H. brt, J=5.6Hz)

実施例143~145

実施例141~142の方法に準じて以下の化合物を得た。

実施例 1 4 3

4-(3-ホルミルベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C19H19N3O4

· 収率(%);定量的

·融点(℃);油状物質

· NMR δ (CDC1₃);

3.96(3H, s). 4.04(3H, s), 4.13(3H, s). 4.97(2H, d, J=5.6Hz),

5. 97(1H, brt, J=5. 6Hz), 6. 76(1H, s), 7. 53(1H, t, J=7. 6Hz),

7.70(1H. d. J=7.6Hz), 7.81(1H. d. J=7.6Hz), 7.91(1H. s), 8.64(1H. s),

10.00(1H, s)

実施例144

4-(3-カルボキシベンジル)アミノー6,7,8-トリメトキシキナゾリン

·分子式 ; C19H19N3O5

· 収率(%);45

・融点(℃);245~246(分解)

• Mass ; $370(M+H)^+$

• NMR δ (DMSO-d₆);

3.89(3H, s), 3.93(3H, s), 3.98(3H, s), 4.86(2H, d, J=5.6Hz),

7. 46(1H, d, J=7.6Hz), 7. 56(1H, s), 7. 62(1H, d, J=7.6Hz).

7.83(1H, d, J=7.6Hz), 7.95(1H, s), 8.39(1H, s), 8.83(1H, brs)

実施例145

4-(4-アセチルベンジル)アミノー6-メトキシキナゾリン

$$\begin{array}{c|c} & & & \\ \text{Me} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

·分子式 ; C18H17N3O2

• 収率(%);41

・融点(℃):204~206

• Mass : 308(M+H)+

· NMR δ (CDCl₃);

2.60(3H,s), 3.91(3H,s), 4.97(2H,d,J=5.6Hz), 5.96(1H,brs).

6.98(1H, s). 7.42(1H, d, J=9.2Hz). 7.50(2H, d, J=8.0Hz).

7.82(1H.d.J=9.2Hz). 7.94(2H.d.J=8.0Hz). 8.61(1H.s)

実施例146

2-ヒドロキシイミノメチルー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

 $2- \pi N \in \mathcal{N} - 4 - (3, 4- y \in \mathcal{N})$ アミノー $6- 9 \cap \mathcal{N}$ ロキナゾリン1.00g ($2.93 \in \mathcal{N}$) のエタノー \mathcal{N} の $2 \cap \mathcal{N}$ の $2 \cap$

·分子式 ; C17H13N4O3Cl

・収率(%);96

・融点(℃):245~246 (分解)

· Mass : 357(M+1)

• NMR δ (DMSO-d₆) :

4. 69(2H, d, J=6. 0Hz), 5. 96(2H, s), 6. 84(1H, d, J=7. 6Hz),

6. 91(1H, d, J=7. 6Hz, 1. 6Hz), 7. 05(1H, d, J=1. 6Hz),

7.72(1H, d, J=8.8Hz), 7.78(1H, dd, J=8.8Hz, 2.0Hz), 7.96(1H, s),

8.45(1H, d, J=2.0Hz), 8.91(1H, brt, J=6.0Hz), 11.83(1H, s)

実施例147~149

実施例146の方法に準じて以下の化合物を得た。

実施例147

·分子式 ; C18H16N4O4

· 収率(%);46

・融点(℃);229~230 (分解)

• Mass ; $353(M+H)^+$

• NMR δ (DMSO-d₆);

3.88(3H, s), 4.72(2H, d, J=5.6Hz), 5.96(2H, s), 6.85(1H, d, J=8.0Hz).

6. 91(1H, d, J=8. 0Hz), 7. 05(1H, s), 7. 40(1H, dd, J=9. 2Hz, 2. 8Hz).

7. 66(1H, d, J=9. 2Hz), 7. 69(1H, d, J=2. 8Hz), 7. 94(1H, s),

8. 62(1H, brt, J=5. 6Hz). 11. 63(1H, s)

実施例148

<u>4-(3-ヒドロキシイミノメチルベンジル) アミノー6, 7, 8-トリメトキシキナゾリン</u>

·分子式 ; C18H20N4O4

・収率(%);56

・融点(℃);231~232 (分解)

· Mass : 369(M+H)+

• NMR δ (DMSO-d₆);

3.88(3H.s), 3.91(3H.s), 3.98(3H.s), 4.80(2H.d, J=6.0Hz),

7.3~7.5(3H,m), 7.52(1H,s), 7.60(1H,s), 8.11(1H,s), 8.35(1H,s),

8.60(1H, brs), 11.17(1H, s)

実施例 1 4 9

<u>4- (4- (1-ヒドロキシイミノエチル) ベンジル) アミノー 6-メトキシキ</u>ナゾリン

·分子式 ; C18H18N4O2

· 収率 (%);定量的

・融点(℃);245~246 (分解)

• Mass : 323(M+H)*

• NMR δ (DMSO-d₆);

2.13(3H, s). 3.95(3H, s). 4.97(2H, d, J=5.6Hz). 7.44(2H, d, J=8.4Hz),

7. 63(2H, d, J=8. 4Hz), 7. 68(1H, dd, J=9. 2Hz, 2. 8Hz),

7.83(1H, d, J=9.2Hz), 8.14(1H, d, J=2.8Hz), 8.84(1H, s), 10.75(1H, brs),

11.18(1H.s)

実施例150

2-xトキシカルボニルメトキシイミノメチルー4-(3, 4-x)チレンジオキシベンジル) アミノー6-2ロロキナゾリン

2-ヒドロキシイミノメチルー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン0.50g(1.4ミリモル)のジメチルホルムアミド25ml 懸濁液に水素化ナトリウム0.10g(2.5ミリモル)を加え攪拌する。30分後プロモ酢酸エチルの25ml(2.3ミリモル)を滴下し、数時間室温攪拌した後、反応液に水を加え、酢酸エチルで抽出する。有機層を無水硫酸マグネシウムで乾燥後、濾過し、滤液を減圧下溶媒留去する。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)にて精製し、標題化合物の淡黄色晶0.52gを得た。

·分子式 ; C21H18N4O6Cl

・収率(%):84

・融点(℃);154~155

• Mass : 443(M+1)

• NMR δ (CDCl₃):

1.29(3H. t. J=7.2Hz), 4.23(2H. q. J=7.2Hz), 4.74(2H. d. J=5.2Hz).

4.88(2H.s), 5.96(2H.s), 6.03(1H.brt, J=5.2Hz), 6.78(1H.d, J=7.6Hz),

6.87(1H. d. J=7.6Hz. 1.6Hz), 6.93(1H, d. J=1.6Hz),

7.65(1H.dd, J=8.8Hz.2.0Hz), 7.70(1H.d, J=2.0Hz), 7.84(1H.d, J=8.8Hz),

8.25(1H, s)

実施例151

4-(3-アミノ-4-クロロベンジル) アミノー6-クロロキナゾリン

4-(4-クロロ-3-ニトロベンジル) アミノー6-クロロキナゾリン1.00 g(2.86ミリモル)、鉄粉0.85g、酢酸10ml、エタノール50mlの混合物を数時間加熱還流する。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、標題化合物の淡黄色晶0.91gを得た。

·分子式 ; C15H12N4Cl2

・収率(%);定量的

・融点(℃);226~229 (分解)

· Mass ; 319(M+H)+

· NMR δ (CDCl₃) :

4.19(2H, brs), 4.73(2H, d, J=6.0Hz), 6.71(1H, dd, J=8.0Hz, 2.0Hz),

6. 83(1H, d, J=2. 0Hz), 7. 18(1H, d, J=8. 0Hz), 7. 64(1H, dd, J=8. 8Hz, 2. 0Hz), 7. 72(1H, brs), 7. 74(1H, d, J=8. 8Hz), 8. 19(1H, d, J=2. 0Hz), 8. 60(1H, s)

実施例 1 5 2

4-(4-クロロ-3-ホルムアミドベンジル)アミノー6-クロロキナゾリン

実施例151で得られた4-(3-アミノ-4-クロロベンジル)アミノ-6-クロロキナゾリン0.90g(2.82ミリモル)を蟻酸15mlに溶解させ、無水酢酸1mlを加えて数時間室温攪拌した。減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)により精製後、酢酸エチルより再結晶して、標題化合物の淡黄色晶0.64gを得た。

·分子式 ; C16H12N4OCl2

·収率(%);65

・融点(℃);229~230

• Mass : $347(M+H)^+$

· NMR δ (DMSO-d₆);

4.74(2H, d, J=5.6Hz), 7.15(1H, dd, J=8.4Hz, 2.0Hz), 7.43(1H, d, J=8.4Hz).

7.72(1H, d, J=8.8Hz), 7.80(1H, dd, J=8.8Hz, 2.0Hz), 8.16(1H, d, J=2.0Hz),

8.32(1H, d, J=2.0Hz), 8.45(1H, s), 8.46(1H, s), 8.95(1H, brs),

9.83(1H, brs)

実施例 1 5 3

4-(3-ホルムアミド-4-メトキシベンジル) アミノー6-クロロキナゾリ

PCT/JP92/01258

Ĭ

WO 93/07124

<u>ン</u>

4-(3-ニトロー4-メトキシベンジル)アミノー6-クロロキナゾリン1g、酢酸4ml、水4ml、エタノール40mlの混合物をゆるやかに加熱還流しながら鉄粉末1gを少量ずつ加え、2時間加熱還流した。反応液の不溶物を遮去し、褐色の遮液に濃塩酸を少しずつ加え黄色澄明液を得、氷冷して析出した結晶を遮取、乾燥して、4-(3-アミノー4-メトキシベンジル)アミノー6-クロロキナゾリン塩酸塩を1.1g得た。この塩酸塩をエタノールー水に溶解し、15%水酸化ナトリウム水溶液を少しずつ加えアルカリ性にし、次いで水を少しずつ加え、生じた結晶を遮取、水洗、乾燥して、4-(3-アミノー4-メトキシベンジル)アミノー6-クロロキナゾリン(アニリン体)770mgを得た。次に氷冷下無水酢酸2mlに蟻酸1mlを滴下し、その後50℃で15分間加熱し、直ちに氷冷し、その混合物に上記アニリン体200mgを結晶のまま加えた。同温で1時間、次いで室温で1時間反応し、水を加えて生じた結晶を滤取、水洗、乾燥し、標題化合物を130mg得た。

·分子式 ; C17H15N4O2Cl (342.786)

·収率(%);60

・融点(℃);208~209

· Mass : 343 (MH) +

• NMR δ (DMSO-d₆);

3.82(3H, s), 4.68(2H, d, J=5.7Hz), 6.98(1H, d, J=8.2Hz),

7. 09(1H, dd, J=2. 0Hz, 8. 2Hz), 7. 71(1H. d, J=9. 0Hz),

7.79(1H, dd, J=2.4Hz.9.0Hz), 8.23(1H, d, J=2.0Hz),

8.27(1H.d., J=2.4Hz), 8.47(2H.s), 8.88(1H.t., J=5.7Hz), 9.62(1H.brs)

実施例154

4-(3-メタンスルホニルアミノ-4-クロロベンジル) アミノ-6-クロロ キナゾリン

$$C1$$
 HN
 $C1$
 $C1$
 $C1$

4-(3-アミノ-4-クロロベンジル)アミノ-6-クロロキナゾリン 100 mg、ピリジン3mlの混合物にメタンスルホニルクロリド75μ1を加え、室温で 1.5 時間攪拌した。反応混合物に水20mlを少しずつ加え、生じた結晶を濾取し、水洗、乾燥し、標題化合物 109mgを得た。

·分子式 ; C16H14N4O2SCl2 (397.284)

• 収率(%);88

・融点(℃);209~210

· Mass : 397 (MH) +

• NMR δ (DMSO-d₆);

3.01(3H, s), 4.75(2H, d, J=5.7Hz), 7.23(1H, dd, J=2.2Hz, 8.2Hz),

7. 45(1H. d. J=8. 2Hz), 7. 46(1H. d. J=2. 2Hz), 7. 73(1H. d. J=9. 0Hz).

7. 81(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 45(1H, d, J=2. 4Hz), 8. 47(1H, s),

8. 97(1H, brt, J=5. 7Hz). 9. 4(1H, brs)

実施例155~161

実施例151~154の方法に準じて以下の化合物を得た。

実施例 1 5 5

4-(3-アミノ-4-ヒドロキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \end{array}$$

·分子式 ; C18H20N4O4

· 収率 (%);定量的

・融点(℃):アモルファス

 $Mass : 357(M+H)^{+}$

• NMR δ (CDC1₃):

3.68(1H, brs), 3.82(1H, brs), 3.95(3H, s), 4.02(3H, s), 4.11(3H, s),

4.68(2H, d, J=4.4Hz), 6.61(1H, brs), 6.64(1H, d, J=7.6Hz),

6.77(1H.d., J=7.6Hz), 7.01(1H.s), 8.50(1H.brs), 8.60(1H.s)

実施例 1 5 6

 $\frac{4-(3-x)+2)}{7+2}$ $\frac{4-(3-x)+2)}{7+2}$

**

·分子式 ; C24H28N4O8

• 収率(%);54

・融点(℃):229~230 (分解)

• Mass ; $501(M+H)^+$

• NMR δ (CDCl₃);

1.31(3H, t, J=7.2Hz), 1.40(3H, t, J=7.2Hz), 3.95(3H, s), 4.03(3H, s),

4.11(3H, s), 4.21(2H, q, J=7.2Hz), 4.35(2H, q, J=7.2Hz),

4.81(1H, d, J=5.2Hz), 5.80(1H, brt, J=5.2Hz), 6.74(1H, s), 6.87(1H, s),

7.13(1H, d, J=8.0Hz), 7.20(1H, d, J=8.0Hz), 8.18(1H, brs), 8.64(1H, s)

実施例 1 5 7

4 - [ベンズオキサゾール-2(3H)-オン-5-イルメチル] アミノー<math>6,

7,8-トリメトキシキナゾリン

$$\begin{array}{c} H \\ N \\ Me0 \\ Me0 \end{array}$$

·分子式 ; C19H18N4O5

• 収率(%);62

· .

・融点(℃);232~233 (分解)

• Mass : $383(M+H)^+$

• NMR δ (DMSO-d₆);

3.87(3H,s), 3.90(3H,s), 3.96(3H,s), 4.78(2H,d,J=5.6Hz),

7.06(1H.s), 7.07(1H, d. J=8.0Hz), 7.20(1H, d. J=8.0Hz), 7.50(1H, s),

8.35(1H.s), 8.58(1H, brt, J=5.6Hz), 11.48(1H, brs)

実施例158

MeO MeO MeO

·分子式 ; C19H22N4O6S

• 収率(%):56

・融点 (℃); 215 ~216 (分解)

• Mass ; 435(M+H)+

• NMR δ (DMSO-d₆);

2.91(3H.s), 3.86(3H.s), 3.89(3H.s), 3.96(3H.s),

4.65(2H, d, J=5.6Hz), 6.83(1H, d, J=8.0Hz), 7.04(1H, dd, J=8.0Hz, 2.0Hz),

7.22(1H, d, J=2.0Hz), 7.50(1H, s), 8.34(1H, s), 8.52(1H, brt, J=5.6Hz),

8.66(1H.brs), 9.75(1H.brs)

実施例159

4-(3-アミノ-4-クロロベンジル) アミノー6, 7, 8-トリメトキシキ ナゾリン

j.

·分子式 ; C18H19N4O2Cl

· 収率(%);86

・融点(℃);181~182 (分解)

• Mass ; $375(M+H)^+$

- NMR δ (CDCl₃) :

3.95(3H, s), 4.03(3H, s), 4.08(2H, brs), 4.13(3H, s),

4.75(2H. d. J=5.6Hz), 5.65(1H. brs), 6.67(1H. s),

6.72(1H, dd, J=8.0Hz, 2.0Hz), 6.81(1H, d, J=2.0Hz), 7.23(1H, d, J=8.0Hz),

8.65(1H.s)

実施例160

<u>4-(4-クロロ-3-ホルムアミドベンジル) アミノー6, 7, 8-トリメト</u> キシキナゾリン

・分子式 ; C19H19N4O4Cl

· 収率(%);68

・融点(℃);202~204 (分解)

• Mass : $403(M+H)^+$

• NMR δ (DMSO-d₆) :

3.88(3H,s), 3.91(3H,s), 3.98(3H,s), 4.75(2H,d,J=5.6Hz),

7.14(1H, dd, J=8.4Hz, 2.0Hz), 7.42(2H, d, J=8.4Hz), 7.52(1H, s),

8.15(1H.d.J=2.0Hz), 8.32(1H.s), 8.35(1H.s), 8.67(1H.brs),

9.83(1H, brs)

実施例 1 6 1

4-(3-アセタミド-4-クロロベンジル)アミノー6-クロロキナゾリン

·分子式 ; C₁₇H₁₄N₄OCl₂ (361.232)

• 収率(%);77

・融点 (℃) ; 267 ~268

· Mass : 361 (MH)+

• NMR δ (DMSO-d₆):

2.06(3H, s), 4.74(2H, d, J=5.7Hz), 7.17(1H, dd, J=2.0Hz, 8.2Hz),

7.42(1H, d, J=8.2Hz), 7.69(1H, brs), 7.72(1H, d, J=9.0Hz),

7.81(1H, dd, J=2.4Hz, 9.0Hz), 8.45(1H, d, J=2.4Hz), 8.46(1H, s).

8.96(1H, brt, J=5.7Hz), 9.48(1H, brs)

実施例162

4-(3,4-ジヒドロキシベンジル)アミノ-6,7,8-トリメトキシキナ

ゾリン 塩酸塩

4-(3,4-メチレンジオキシベンジル)アミノー6,7,8-トリメトキシキナゾリン2.00g(5.41ミリモル)のクロロホルム150ml溶液に、三塩化ホウ素の1.0M塩化メチレン溶液30mlを室温攪拌下滴下した。2日間室温攪拌した後にメタノールを加え、減圧下溶媒留去した。この操作を3回繰り返した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルムーn-ヘキサン)により精製した。溶出液に塩酸-エタノールを加えて、減圧下溶媒留去後、エタノールを加えて結晶を濾取し、標題化合物の無色針状晶0.59gを得た。

・分子式 ; C18H19N3O5・HCl

・収率(%);28

・融点(℃);204~205 (分解)

• Mass : $358(M+H)^+$

·NMR δ (DMSO-d₆);

3.98(3H, s), 3.99(3H, s), 3.99(3H, s), 4.78(2H, d, J=5.6Hz),

6.65~7.71(2H, m), 6.79(1H, s), 7.94(1H, s), 8.71(1H, s),

8.90(2H, brs), 10.54(1H, brs), 14.06(1H, brs)

実施例163

4-(3,4-ジヒドロキシベンジル)アミノー6-クロロキナゾリン 塩酸塩

4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 2.00g(6.37ミリモル)のクロロホルム 150ml溶液に、三塩化ホウ素の 1.0M塩化メチレン溶液40mlを室温攪拌下滴下した。2日間室温攪拌した後にメタノールを加え、減圧下溶媒留去した。この操作を2回繰り返した後、析出晶をメタノールで洗い、エタノールより再結晶して、標題化合物の黄色晶1.53gを得た。

·分子式 ; C15H12N3O2Cl·HCl

・収率(%);71

・融点(℃);154~155 (分解)

• Mass ; 302(M+H)+

• NMR δ (DMSO-d₆):

4.74(2H, d, J=5.6Hz), 7.67(1H, dd, J=8.0Hz, 2.0Hz), 6.70(1H, d, J=8.0Hz),

6.81(1H, d, J=2.0Hz), 7.87(1H, d, J=8.8Hz), 8.02(1H, dd, J=8.8Hz, 2.0Hz),

8.76(1H. d. J=2.0Hz). 8.85(1H.s). 8.90(2H.brs). 10.42(1H.brs)

実施例164

2-(2-xトキシエトキシ) -4-(3, 4-xチレンジオキシベンジル) アミノ-6-0ロロキナゾリン

$$C1$$
 N
 0
 0
 0
 0
 0
 0
 0

エチレングリコールモノメチルエーテル20mlと55%水素化ナトリウム70mgの混合物を 100℃に加熱し、2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキナゾリン 500mgとエチレングリコールモノメチルエーテル5ml の混合物を加え、2時間加熱還流した。反応液を水50ml中に注ぎ、酢酸エチル50mlで2回抽出した。有機層を塩化ナトリウム水溶液70mlで2回洗い、硫酸マグネシウムで乾燥し、減圧下濃縮して結晶性残渣を得た。残渣を酢酸エチルーnーへキサンより再沈殿させ、標題化合物を 420mg得た。

·分子式 ; C19H18N2O4C1

• 収率(%);75

・融点(℃);138~139

• Mass ; 388 (M+1)*

• NMR δ (CDCl₃) :

3.43(3H,s), 3.78~3.81(2H,m), 4.57~4.61(2H,m).

4.73(2H, d, J=5.2Hz), 5.72(1H.br), 5.96(2H,s), 6.79~6.87(3H,m),

7.52~7.58(3H, m)

実施例165~177

実施例162~164の方法に準じて以下の化合物を得た。

実施例165

2-メトキシ-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロ キナゾリン

·分子式 ; C₁₇H₁₄N₃O₃Cl

・収率(%);15

・融点(℃);187~189

Mass : 344 (M+1)+

• NMR δ (CDCl₃) :

4.03(3H,s), 4.50(2H,d,J=5.6Hz), 5.91(1H,br), 5.96(2H,s).

6.78(1H. d. J=7.6Hz), 6.81(1H. dd, J=7.6Hz, 1.6Hz), 6.82(1H. d. J=1.6Hz),

7.58~7.60(3H, m)

実施例166

キ<u>ナゾリン</u>

2-メトキシ-4-(3, 4-メチレンジオキシベンジル)アミノ-6-シアノ

·分子式 ; C₁₈H₁₄N₄O₃ (334)

• 収率(%);23

・融点(℃);224 (分解)

· Mass ; 335 (M+1) +

• NMR δ (DMS0-d₆):

3.87(3H,s), 4.60(2H,brs), 5.95(2H,s), 6.84(2H,s), 6.95(1H,s),

7.55(1H. d. J=8.8Hz). 7.94(1H. dd. J=8.8Hz.1.6Hz). 8.83(1H. d. J=1.6Hz),

ř

9.18(1H. br)

実施例 1 6 7

2, 6, 7, 8-テトラメトキシー4-(3, 4-メチレンジオキシベンジル) -アミノキナゾリン

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{MeO} \end{array}$$

·分子式 ; C20H21N3O6

・収率(%);28

・融点(℃);128~129

· Mass ; 400(M+H)+

• NMR δ (CDCl₃);

3.91(3H, s), 4.04(3H, s), 4.07(3H, s), 4.14(3H, s),

4.75(2H, d, J=5.2Hz), 5.51(1H, brs), 5.97(2H, s), 6.60(1H, s),

6.80(1H, d, J=8.0Hz), 6.87(1H, dd, J=8.0Hz, 2.0Hz), 6.90(1H, d, J=2.0Hz)

実施例168

2-(2-ヒドロキシエトキシ)-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C18H16N3O4Cl (373.5)

• 収率 (%);97

・融点 (℃) ;191 ~193

• Mass : 374 (M+1) +

• NMR δ (DMSO-d_e) :

3.65~3.69(2H, m), 4.27(2H, dd, J=8.8Hz, 5.6Hz), 4.60(2H, d, J=5.2Hz),

4.82(1H.t.J=5.6Hz), 5.95(2H.s), 6.81~6.84(2H.m), 6.92(1H.s),

7. 47(1H. d. J=8. 8Hz), 7. 65(1H. dd. J=8. 8Hz. 2. 2Hz), 8. 34(1H. d. J=2. 2Hz),

8.82(1H.br)

実施例 1 6 9

2-(2-ヒドロキシエトキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン

·分子式 ; C19H16N4O4 (364)

• 収率(%);94

・融点(℃);227~229

· Mass ; 365 (M+1)+

• NMR δ (DMSO-d₆);

3.68(2H. t. J=5.2Hz), 4.30(2H. t. J=5.2Hz), 4.44(1H. br), 5.97(2H. s).

6.82(2H.s), 6.95(1H.s), 7.54(1H.d.J=8.4Hz),

7.95(1H. dd. J=8.4Hz, 1.6Hz), 8.78(1H. d. J=1.6Hz), 9.04(1H. br)

実施例170

·分子式 ; C20H21N3O5 (383)

• 収率(%);68

・融点(℃);118~119

• Mass : $384 (M+1)^+$

• NMR δ (DMSO-d₆);

3.26(3H, s), 3.60(2H, t, J=4.8Hz), 3.61(3H, s), 4.33(2H, t, J=4.8Hz),

4. 63(2H, d, J=6. 0Hz), 5. 95(2H, s), 6. 81(1H, d, J=7. 6Hz),

6.84(1H, dd, J=7.6Hz, 0.4Hz), 6.91(1H, d, J=0.4Hz),

7.29(1H, dd, J=8.8Hz.2.8Hz), 7.40(1H, d, J=8.8Hz), 7.63(1H, d, J=2.8Hz),

8.62(1H, br)

実施例171

2-(2-x++シェトキシ) - 4-(ベンズイミダゾール-5-イル) メチルアミノー<math>6-シァノキナゾリン

·分子式 ; C₂₀H₁₈N₅O₂ (374)

· 収率 (%);68

・融点(℃);267 (分解)

· Mass : 375 (M+1)+

• NMR δ (DMSO-d₆);

3.21(3H,s), 3.60(2H,s), 4.40(2H,s), 4.82(2H,s), 7.17~7.66(4H,m),

7.94(1H.d.J=9.6Hz), 8.16(1H.s), 8.81(1H.s), 9.15(1H.br)

実施例172

2-プロポキシー4-(3, 4-メチレンジオキシベンジル) アミノー6, 7, 8-トリメトキシキナゾリン

·分子式 ; C22H25N3O6

・収率(%);6

・融点(℃);122~123

· Mass ; 428(M+H) +

·NMR δ(CDCl₃);

1.05(3H, t, J=7.4Hz), 1.89(2H, m), 3.90(3H, s), 4.03(3H, s),

4.13(3H,s). 4.41(2H,t,J=7.0Hz). 4.76(2H,d,J=5.2Hz), 5.49(1H,brs),

÷.

5.97(2H,s), 6.60(1H,s), 6.80(1H,d,J=8.0Hz), 6.87(1H,d,J=8.0Hz),

6.90(1H.s)

実施例 1 7 3

2-(3-ヒドロキシプロポキシ)-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

$$C1$$
 N
 0
 0
 0
 0
 0
 0
 0

·分子式 ; C18H18N3O4Cl (387.5)

・収率(%);60

・融点(℃);118~120

• Mass : $388 (M+1)^+$

·NMR δ(CDCl₃);

2.02(2H, tt, J=5.6Hz, 5.6Hz), 3.70(2H, t, J=5.6Hz), 3.95(1H.br),

4.66(2H, t, J=5.6Hz), 4.71(2H, d, J=5.2Hz), 5.95(2H, s), 6.08(1H, br),

6.77(1H, d, J=8.0Hz), 6.83(1H, d, J=8.0Hz), 6.85(1H, s),

7.51(1H. d. J=8.8Hz), 7.56(1H. dd. J=8.8Hz. 2.0Hz), 7.61(1H. d. J=2.0Hz)

実施例174

2-(4-ヒドロキシプトキシ)-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

$$C1$$
 N
 0
 0
 0
 0
 0
 0
 0

·分子式 ; C20H20N3O4CI (401.5)

è

WO 93/07124

• 収率(%);23

・融点 (℃) ;121 ~124

· Mass ; 402 (M+1) +

• NMR δ (CDC1₃) :

1.47~1.73(4H.m), 3.40~3.47(2H.m), 4.20(2H.t, J=6.7Hz).

4.55(2H, d, J=5.2Hz), 5.72(2H, s), 6.56(1H, d, J=8.0Hz),

6.66(1H.dd, J=8.0Hz.1.6Hz), 6.71(1H.d, J=1.6Hz), 7.30(2H.s).

7.88(1H.brt.J=5.2Hz), 7.99(1H.s)

実施例 1 7 5

·分子式 ; C21H22N2O4Cl (415.5)

• 収率 (%);26

・融点 (℃) ;120 ~123

· Mass : 416 (M+1) +

• NMR δ (CDCl₃);

1.77(2H, tt. J=8.8Hz, 6.8Hz), 1.90(2H, tt. J=8.8Hz, 6.8Hz), 3.34(3H, s),

3.44(2H. t. J=6.8Hz). 4.44(2H. t. J=6.8Hz). 4.72(2H. d. J=5.2Hz).

5.71(1H, br), 5.96(2H, s), 6.79(1H, d, J=8.0Hz),

6.84(1H, dd, J=8.0Hz, 1.8Hz), 6.87(1H, d, J=1.8Hz), 7.53~7.59(3H, m)

実施例176

2-(6-Eドロキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル) アミノ-<math>6-クロロキナゾリン

$$C1$$
 N
 0
 0
 0
 0
 0
 0
 0

·分子式 ; C22H24N3O4Cl (429.5)

· 収率 (%);66

・融点(℃);144~146

• Mass : $430 (M+1)^+$

• NMR δ (CDCl₃);

1.14~1.40(6H, m), 1.58~1.64(2H.m), 3.06(1H.br), 3.38(2H.br),

4.17(2H, t, J=6.8Hz), 4.52(2H, d, J=5.6Hz), 5.73(2H, s),

6.56(1H, d, J=8.0Hz), 6.66(1H, dd, J=8.0Hz, 1.6Hz),

6.71(1H.d, J=1.6Hz), 7.30(2H.s), 7.85(1H.br), 7.96(1H.s)

実施例177

2-ヒドロキシ-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン

・分子式 ; C16H12N3O3Cl (329.5)

・融点(℃);257 (分解)

• NMR δ (DMS0-d₆) :

4.668(2H.d.J=5.6Hz). 5.967(2H.s), 6.846~6.905(2H.m).

6.995(1H.s), 7.821~7.859(2H.m), 8.508(1H.s), 10.103(1H.br),

11.916(1H, s)

実施例 1 7 8

2-(2, 3-3)ヒドロキシプロピル) オキシ-4-(3, 4-3)ナンジオキシベンジル) アミノー6-2ロロキナゾリン

5ーヒドロキシー2ーフェニルー1、3ージオキサン 300mgとジメチルホルム アミド5mlの混合物に水素化ナトリウム 100mgを加え、80℃に加熱して発泡がお さまったら、2、6ージクロルー4ー(3、4ーメチレンジオキシベンジル)ア ミノキナゾリン 300mgを結晶のまま加え、その後 140℃、2 時間加熱した。冷後 水を加え酢酸エチルで抽出し、酢酸エチルーベンゼン系溶媒でシリカゲルカラム クロマトグラフィーにより精製し、2ー(2ーフェニルー1、3ージオキサンー 5ーイル)オキシー4ー(3、4ーメチレンジオキシベンジル)アミノー6ーク ロロキナゾリンを 118mg得た。この化合物 100mgを常法により濃塩酸ーエタノールで加水分解したところ、転移して標題化合物60mgを得た。

ž

·分子式 ; C19H18ClN3O5

・収率(%);73

・融点(℃);106~107

• Mass : $404(MH^+)$

• NMR δ (DMSO-d₆) :

3.42(2H, t, J=5.7Hz), 3.79(1H, sextet, J=5Hz),

4. 17(1H, dd, J=6. 6Hz, 11. 0Hz), 4. 31(1H, dd, J=4. 2Hz, 11. 0Hz),

4. 63(2H, d, J=5.7Hz), 4. 66(1H, t, J=6.0Hz), 4. 94(1H, d, J=5.3Hz),

5.98(2H, s), 6.85(2H, s), 6.95(1H, s), 7.49(1H, d, J=9.0Hz),

7. 68(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 37(1H, d, J=2. 4Hz), 8. 83(1H, t, J=5. 7Hz)

実施例179

 $2-(3-\pi)$ ルボキシプロピル) オキシ-4-(3,4-x+1)ジル) アミノ-6-2アノキナゾリン

オキザリルクロリド 150μ1 と塩化メチレン15mlの混合物をドライアイス-アセトン浴で冷却しておき、まずジメチルスルホキシド 250μ1 をゆっくり滴下し、次いで10分後同温で2-(2-ヒドロキシエチル)オキシー4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 500mgのジメチルスルホキシド1mlに溶解した溶液を滴下し、さらに10分後同温でN,N-ジイソプロピルエチルアミン 1.4mlを滴下した。同温で10分間攪拌した後、室温に戻し、20分後にエトキシカルボニルメチレントリフェニルホスホラン600mg を結晶のまま加え、30分間反応させた。反応液に水を加え酢酸エチルで抽出し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(3-

WO 93/07124 PCT/JP92/01258

エトキシカルボニルー 2 - プロペニル)オキシー 4 - (3, 4 - メチレンジオキシベンジル)アミノー 6 - シアノキナゾリン (cis/trans mixture)を400mg 得た。

上記化合物全量を酢酸エチル30mlに溶解し、10%パラジウムー炭素を触媒に用いて常圧接触還元し、酢酸エチルーベンゼン系溶媒でシリカゲルカラムクロマトグラフィーにより精製し、2-(3-エトキシカルボニルプロピル)オキシー4-(3,4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン(飽和エステル)を250mg得た。

上記飽和エステル 250mgをエタノール50mlに溶解し、1N水酸化ナトリウム水溶液 1.7mlを加え、室温で10時間、次いで40℃で2時間反応し、冷後、1N塩酸水 1.7mlを加えて中和し、さらに水を加えて生じた結晶を逮取した。これをエタノールー水で再結晶し、標題化合物 200mgを得た。

·分子式 ; C21H18N4O5 (406.398)

• 収率(%);86

・融点(℃);>290

· Mass ; 407(MH+)

• NMR δ (DMS0):

- 1.93(2H, quintet, J=7Hz), 2.35(2H, t, J=7.3Hz), 4.32(2H, t, J=6.6Hz),
- 4.64(2H, d, J=5.7Hz), 5.98(2H, s), 6.87(2H, s), 6.97(1H, s),
- 7.56(1H, d, J=8.8Hz), 7.96(1H, dd, J=1.8Hz, 8.8Hz), 8.80(1H, d, J=1.8Hz),
- 9. 05(1H, t, J=5.7Hz)

実施例180

<u>2-メチルチオー4-(3,4-メチレンジオキシベンジル)アミノー6-クロ</u>ロキナゾリン

2, 6-ジクロロ-4-(3, 4-メチレンジオキシベンジル) アミノキナゾ リン1gにN, N-ジメチルホルムアミド20ml、ナトリウムチオメトキシド 221 mgを加え 110℃で1時間攪拌した。1 N塩酸を加え中和し、室温で1時間攪拌した後、水を加えた。析出した結晶を濾取し、標題化合物 780mgを得た。

·分子式 ; C17H14ClN3O2S

· 収率(%);76

・融点(℃);214~216

· Mass m/e; 360(M+1)

• NMR δ (CDCl₃);

2.66(3H,s), 4.85(2H,d,J=5.6Hz), 5.93(2H,s), 6.73(1H,d,J=8.0Hz),

6.89(1H, d, J=8.0Hz), 6.93(1H, s), 7.64(1H, dd, J=8.8Hz, 2.0Hz),

8. 16(1H, d, J=8. 8Hz). 8. 77(1H, d, J=2. 0Hz)

実施例181

2-クロロー4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 338mg、モルホリン 435mg及びイソプロピルアルコール20mlの混合物を3時間加熱還流した。加熱したまま水30mlを加え、沈殿物を濾取した。沈殿物を水30ml及び酢酸エチル30mlで洗滌し、標題化合物を 310mg得た。

·分子式 ; C21H19N5O3 (389)

• 収率(%);80

・融点(℃);270~272 (分解)

· Mass ; 390 (M+1) +

• NMR δ (DMS0-d₆):

3.57~3.61(4H.m), 3.73~3.79(4H.m), 4.57(2H.d.J=5.6Hz),

5.95(2H.s), 6.82(1H.d.J=8.0Hz), 6.85(1H.d,J=8.0Hz), 6.93(1H.s),

7.27(1H, d. J=8.8Hz), 7.74(1H, dd, J=8.8Hz.1.6Hz), 8.56(1H, d, J=1.6Hz),

8.75(1H, brt, J=5.6Hz)

実施例182~183

実施例181の方法に準じて以下の化合物を合成した。

実施例182

2-モルホリノー4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン

·分子式 ; C20H18N4O3Cl (398.850)

• 収率(%);96

・融点(℃);208~209

• Mass ; 399 (MH) +

• NMR δ (DMSO-d₆);

3.61(4H, t, J=5Hz), 3.72(4H, t, J=5Hz), 4.58(2H, d, J=5.7Hz),

5. 97(2H, s), 6. 85(2H, s), 6. 95(1H, s), 7. 28(1H, d, J=9. 0Hz),

7.51(1H, dd, J=2.4Hz, 9.0Hz), 8.18(1H, d, J=2.4Hz), 8.60(1H, t, J=5.7Hz)

実施例183

2-モルホリノー4-(3-クロロ-4-メトキシベンジル) アミノー6-シア ノキナゾリン

·分子式 ; C21H20N5O2Cl (407.5)

・収率(%):51

・融点(℃);222~223

· Mass ; 410 (M+1)+

• NMR δ (DMSO-d₆);

 $3.56\sim3.61(4H, m)$, $3.74\sim3.80(4H, m)$, 3.80(3H, s),

4.58(2H, d, J=5.2Hz), 7.27~7.32(2H, m), 7.44(1H, d, J=1.6Hz),

7.75(1H, dd, J=8.8Hz, 1.6Hz), 8.55(1H, d, J=1.6Hz),

8.80(1H, brt, J=5.2Hz)

WO 93/07124 PCT/JP92/01258

実施例184

2-(4-ヒドロキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン

2-クロロー4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 339mg、4-ヒドロキシピペリジン 500mg及びN, N-ジメチルホルムアミド20mlの混合物を5時間加熱還流した。反応液を水50ml中に注ぎ、酢酸エチル50mlを加え、不溶物を遮去した。遮液の有機層を硫酸マグネシウムで乾燥し、減圧下濃縮して結晶性残渣を得た。この残渣をクロロホルムで洗滌し、標題化合物を145mg 得た。

·分子式 ; C₂₂H₂₁N₅O₃ (403)

・収率(%);36

- 融点(℃);229

· Mass ; 404 (M+1)+

• NMR δ (DMSO-d₆) :

1.19~1.30(2H,m), 1.64~1.77(2H,m), 3.21~3.30(2H,m),

3.63~3.75(1H, m), 4.34~4.38(2H, m), 4.55(2H, d, J=5.6Hz),

4.66(1H.d.J=4.0Hz), 5.94(2H.s), 6.80~6.86(2H.m).

6.93(1H. d. J=0.8Hz). 7.24(1H. d. J=8.4Hz). 7.70(1H. dd, J=8.4Hz.1.6Hz).

8.52(1H, d, J=1.6Hz). 8.70(1H, br)

実施例185~191

実施例184の方法に準じて以下の化合物を得た。

実施例185

 $\frac{2-(4-ヒドロキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)}{-アミノ-6-クロロキナゾリン}$

·分子式 ; C21H21N4O3Cl (412.877)

• 収率(%);56

・融点(℃):157~158

· Mass ; 413(MH+)

• NMR δ (DMSO-d₆):

1.2~1.3(2H,m), 1.6~1.8(2H,m), 3.1~3.2(2H,m), 3.6~3.7(1H,m),

4.3~4.4(2H, m), 4.55(2H, d, J=5.7Hz), 4.65(1H, d, J=4.4Hz),

5.96(2H,s), 6.84(2H,s), 6.95(1H,s), 7.24(1H,d,J=9.0Hz),

7. 47(1H. dd. J=2. 4Hz, 9. 0Hz). 8. 13(1H. d. J=2. 4Hz), 8. 53(1H. t. J=5. 7Hz)

実施例186

2-(4-ヒドロキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー6-シアノキナゾリン

.*

·分子式 ; C₂₂H₂₂N₅O₂Cl (423.5)

• 収率(%);80

・融点(℃);207~208

· Mass ; 424 (M+1)+

• NMR δ (DMSO-d₆);

1.18~1.30(2H, m), 1.65~1.76(2H, m), 3.21~3.33(2H, m), 3.30(3H, s),

3.64~3.72(1H, m), 4.29~4.37(2H, m), 4.57(2H, d, J=5.6Hz).

4.66(1H.d.J=1.8Hz). 7.07(1H.d.J=8.4Hz). 7.24(1H.d.J=8.8Hz).

7. 29(1H, dd, J=8. 4Hz, 2. 0Hz). 7. 43(1H, d, J=2. 0Hz).

7.71(1H, dd, J=8.8Hz, 2.0Hz), 8.51(1H, d, J=2.0Hz).

8.74(1H, brt, J=1.8Hz)

実施例187

 $\frac{2-(2-ヒドロキシエチル)}{2-(2-ヒドロキシエチル)}$ アミノ $\frac{2-(3,4-)$

$$\begin{array}{c|c} & & & & \\ \text{MeO} & & & & \\ \text{MeO} & & & & \\ \text{MeO} & & & & \\ \end{array}$$

·分子式 ; C21H24N4O6

· 収率(%);38

・融点(℃);アモルファス

• Mass : $429(M+H)^+$

· NMR δ (CDCl₃);

3.60(2H.m), 3.88(3H.s & 1H.m), 3.99(3H.s), 4.01(3H.s),

4.67(2H, d, J=5.6Hz), 5.32(1H, brs), 5.53(1H, brs), 5.97(2H, s),

6.55(1H,s), 6.80(1H,d,J=8.0Hz), 6.85(1H,d,J=8.0Hz), 6.89(1H,s)

実施例188

·分子式 ; C18H17N4O3Cl

· 収率 (%);47

・融点(℃);138~139

• Mass m/e; 373(M+1)

• NMR δ (CDC1₃(+DMS0-d₆));

3.60(2H.m), 3.79(2H, t, J=4.8Hz), 4.65(2H, d, J=5.2Hz), 5.94(2H, s),

6.76(1H, d, J=8.0Hz), 6.85(1H, dd, J=8.0Hz, 2.0Hz), 6.90(1H, d, J=2.0Hz),

7.34(1H. d, J=8.8Hz), 7.44(1H. dd, J=8.8Hz, 2.4Hz), 8.02(2H. brs)

実施例189

WO 93/07124 PCT/JP92/01258

$2-(N-(2-E)^2+2)^2+2)^2+2(2-E)^2+2(2-$

·分子式 ; C19H19N4O3Cl

• 収率(%);48

・融点(℃);146~148

· Mass m/e ; 387(M+1)

• NMR δ (CDCl₃(+DMSO-d₆));

3.27(3H.s). 3.82(2H.t.J=4.8Hz). 3.89(2H.t.J=4.8Hz).

4.67(2H.d.J=5.6Hz). 5.95(2H.s), 6.77(1H.d.J=8.0Hz).

6.86(1H.dd, J=8.0Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.43(2H, m),

7.76(1H.brs)

実施例190

2-(2-ヒドロキシメチルピロリジン-1-イル)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C21H21N4O3Cl (412.877)

・収率(%);70

・融点(℃):182~183

• Mass ; 413(MH*)

• NMR δ (DMSO-d₆);

1.8~2.0(4H, br 2 peaks), $3.4 \sim 3.7(3H, br 2 peaks)$,

4.1~4.2(1H, brs), 4.58(2H, d, J=5.8Hz). 5.96(2H, s).

6,84(1H,d,J=8.0Hz), 6.88(1H,dd,J=1.3Hz,8.0Hz),

6.96(1H, d, J=1.3Hz), 7.23(1H, d, J=8.8Hz),

7. 47(1H, dd, J=2. 4Hz, 8. 8Hz), 8. 15(1H, d, J=2. 4Hz), 8. 4~8. 6(1H, brs)

実施例191

$2 - \forall z (2 - \forall z + \forall$

·分子式 ; C20H21N4O4Cl (416.865)

・収率(%):56

・融点(℃);167~168

· Mass : $417(MH^{+})$

• NMR δ (DMSO-d₆);

 $3.5 \sim 3.7(8 \text{H, br 2 peaks}), 4.56(2 \text{H, d, J=5.7Hz}), 5.96(2 \text{H, s}),$

6.85(2H, s), 6.93(1H, s), 7.22(1H, d, J=9.0Hz),

PCT/JP92/01258

7. 47(1H, dd, J=2. 4Hz, 9. 0Hz), 8. 15(1H, d, J=2. 4Hz).

8.55(1H, brt, J=5.7Hz)

実施例 1 9 2

WO 93/07124

2-(1-1) (3, 4-メチレンジオキシベンジル) アミノ -6-1 (1) -6 (1) -6 (2) -6 (3) -6 (3) -6 (3) -6 (4) -6 (5) -6 (7) -6 (7) -6 (8) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (9) -6 (1)

水素化ナトリウム 66mgのジメチルホルムアミド 6ml 懸濁液に 0 \mathbb{C} でイミダゾール 103mgを加え10分間攪拌した。室温にて 2 , 6-ジクロロー 4-(3 , 4-メチレンジオキシベンジル)アミノー 6-クロロキナゾリン 500mgを加え、 100 \mathbb{C} で20分間攪拌した。水を加え、析出した結晶を遮取し、水、エタノールーアセトンで順次洗浄し、標題化合物 325mgを得た。

·分子式 ; C18H14N5O2Cl

• 収率(%);59

・融点(℃);275~276 (分解)

• Mass m/e ; 380(M+1)

• NMR δ (DMSO-d₆);

4.74(2H.d.J=5.6Hz), 5.96(2H.s), 6.85(1H.d.J=8.0Hz),

6.95(1H, dd, J=8.0Hz, 1.6Hz), 7.03(1H, d, J=1.6Hz), 7.08(1H, d, J=1.2Hz),

7. 68(1H. d. J=8. 8Hz), 7. 78(1H. dd. J=8. 8Hz. 2. 4Hz). 7. 94(1H. d. J=1. 2Hz),

8.47(1H. d. J=2.4Hz), 8.58(1H, t. J=2.4Hz), 9.28(1H, t, J=5.6Hz)

実施例193~1<u>97</u>

実施例192の方法に準じて以下の化合物を得た。

実施例193

2-(1+3) 2-(

·分子式 ; C20H14N6O2 (370)

· 収率(%);81

・融点(℃);>290

• Mass ; $371 (M+1)^+$

• NMR δ (DMSO-d₆);

4.74(2H, d, J=6.0Hz). 5.95(2H, s). 6.86(1H, d, J=8.0Hz).

6.95(1H, dd, J=8.0Hz, 1.6Hz), 7.04(1H, d, J=1.6Hz),

7.09(1H, d, J=1.6Hz), 7.73(1H, d, J=8.4Hz), 7.95(1H, d, J=1.6Hz),

8.06(1H, dd, J=8.4Hz, 1.6Hz), 8.61(1H, d, J=1.6Hz), 8.87(1H, d, J=1.6Hz),

9.47(1H, brt, J=6.0Hz)

実施例194

 $2 - \mathcal{N} \cup \mathcal{$

·分子式 ; C21H23N4O2Cl

• 収率(%):97

・融点(℃);194~195

• Mass m/e; 399(M+1)

• NMR δ (CDCl₃) :

0.86(3H, t, J=7.2Hz), 1.29(4H, m), 1.58(2H, quintet, J=6.8Hz),

3.47(2H, q, J=6.8Hz), 4.78(2H, d, J=5.6Hz), 5.87(2H, s).

6.66(1H, d, J=8.0Hz), 6.89(1H, d, J=8.0Hz), 6.94(1H, s),

7.26(1H, d, J=8.8Hz), 7.41(1H, d, J=8.8Hz), 7.90(1H, t, J=5.6Hz),

8.55(1H.s), 9.53(1H.brs)

実施例195

 $2-(2-r \in J \perp f \perp h) r \in J-4-(3, 4-x \in J \perp h)$ $r \in J-6, 7, 8-h \mid y \mid h \mid h \mid h$

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{H} \end{array} \begin{array}{c} \text{NH}_2 \\ \text{H} \end{array}$$

·分子式 ; C₂₁H₂₅N₅O₅

・収率(%);87

・融点(℃);アモルファス

• Mass ; $428(M+H)^+$

• NMR δ (CDCl₃);

1.44(2H.s), 2.93(2H.t.J=6.0Hz), 3.57(2H.brs), 3.88(3H.s),

4.00(3H, s), 4.07(3H, s), 4.70(2H, d, J=4.8Hz), 5.16(1H, brs),

5.51(1H, brs), 5.96(2H, s), 6.56(1H, s), 6.80(1H, d, J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.90(1H, s)

実施例196

2-ヒドラジノ-4-(3, 4-メチレンジオキシベンジル) アミノ-6, 7,

8-トリメトキシキナゾリン

·分子式; C19H21N5O5

· 収率 (%);12

·融点(℃);油状物質

• Mass ; $400(M+H)^+$

• NMR δ (CDCI₃);

3.88(3H,s), 3.99(3H,s), 4.05(3H,s), 4.66(2H,d,J=3.6Hz),

5.92(2H.s), 6.75(1H.d, J=8.0Hz), 6.83(1H.d, J=8.0Hz), 6.87(1H.s).

7.04(2H.brs)

WO 93/07124 PCT/JP92/01258

実施例197

 $2-(\pi n)(\pi + \pi n)$ アミノー $4-(3, 4-x + \pi n)(\pi n)$ アミノー $6-(\pi n)(\pi n)$

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C18H16N5O3Cl

• 収率(%);63

・融点(℃);259~260 (分解)

• Mass m/e : 386(M+1)

• NMR δ (DMSO-d₆);

4.02(2H, d, J=4.8Hz), 4.66(2H, d, J=5.6Hz), 5.97(2H, s),

6.86(1H, d, J=8.0Hz), 6.91(1H, d, J=8.0Hz), 6.99(1H, s), 7.19(1H, s),

7.50(1H, d, J=8.8Hz), 7.61(1H, s), 7.83(1H, d, J=8.8Hz), 8.09(1H, brs),

8.49(1H, brs), 10.03(1H, brs)

実施例198

2-(3, 4-メチレンジオキシベンジル) アミノ-4, 6, 7, 8-テトラメトキシキナゾリン

2-クロロ-4, 6, 7, 8-テトラメトキシキナゾリン1.00g(3.51ミリモル)、ピペロニルアミン0.60g(3.97ミリモル)、炭酸ナトリウム0.60gをイソプロピルアルコール30mlに混合し、一昼夜加熱還流する。反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製し、標題化合物の油状物質0.12gを得た。

·分子式 ; C20H21N3O6

・収率(%);9

・融点(℃);油状物質

• NMR δ (CDCl₃);

3.91(3H.s), 4.02(3H.s), 4.04(6H.s), 4.63(2H.d.J=6.0Hz),

5.30(1H, brs), 5.93(2H, s), 6.75(1H, d, J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.92(1H, d, J=1.6Hz), 7.06(1H, s)

実施例199

2-クロロー4, 6, 7, 8-テトラメトキシキナゾリン

2,4-ジクロロー6,7,8-トリメトキシキナゾリン5.00g(17.3ミリモル)をメタノール 100mlに懸濁させ、水素化ナトリウム 1.5gを徐々に加えた後、加熱還流する。数時間後、反応液を減圧濃縮し、水を加えて析出晶を濾取し、水で洗い、風乾して、標題化合物の淡桃色晶4.80gを得た。

・収率(%):97

・融点(℃):119~120

• Mass : $285(M+1)^+$

WO 93/07124 PCT/JP92/01258

• NMR δ (CDCl₃):

3.98(3H, s), 4.06(3H, s), 4.12(3H, s), 4.19(3H, s), 7.17(1H, s)

実施例200

<u>2-アミノー4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキ</u>ナゾリン

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル) アミノキナゾ リン 2.0gを圧力容器内のエタノール性アンモニア50ml中、 120℃で18時間加熱 した。冷却後、減圧下反応液を濃縮し、得られた残渣をシリカゲルカラムクロマ トグラフィーに付した。クロロホルム-メタノール(9:1) で溶出し、標題化 合物を 830mg得た。

·分子式 ; C16H12N4O2Cl

·収率(%);44

·融点(℃);285 (分解)

· Mass ; 329 (M+1)+

• NMR δ (CDCl₃) :

4.67(2H.d.J=5.6Hz), 4.98(2H.br), 5.74(1H.br), 5.96(2H.s).

6.78(1H.d., J=7.6Hz), 6.83(1H.dd., J=7.6Hz, 1.6Hz), 6.86(1H.d., J=1.6Hz),

7.38(1H, d, J=9.6Hz). 7.46~7.49(2H, m)

実施例201

2-アミノー4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキ

ナゾリン

実施例199~200の方法に準じて標題化合物を得た。

·分子式 ; C17H13N5O2 (319)

• 収率(%);60

・融点(℃);284 (分解)

· Mass : 320 (M+1)*

• NMR δ (CDC1₃):

4. 31(2H, d, J=5. 6Hz), 5. 25(2H, brs), 5. 58(2H, s), 6. 40(1H, d, J=7. 6Hz),

6.51(1H, dd, J=7.6Hz, 1.2Hz), 6.57(1H, d, J=1.2Hz), 6.95(1H, d, J=8.4Hz),

7.25(1H, dd, J=8.4Hz, 1.6Hz), 8.00(1H, br), 8.20(1H, d, J=1.6Hz)

実施例202

2-アミノ-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 500mgにジメチルスルホキシド<math>4ml、イソシアン酸メチル 260mgを加

え、50℃で3時間攪拌した。過剰のイソシアン酸メチルを減圧留去後、クロロホルム、水を加え、濾過し、その濾液をクロロホルムで2回抽出した。合わせた有機層を水で2回洗浄後、硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ベンゼンーアセトン)で精製し、さらに再結晶(ベンゼンークロロホルムーエタノール)し、標題化合物72mgを得た。

·分子式 ; C18H16N5O3Cl

• 収率 (%):12

・融点(℃);245~247

· Mass m/e; 386(M+1)

• NMR δ (DMSO-d₆);

2.75(3H.d.J=4.4Hz), 4.56(2H.d.J=6.0Hz), 5.95(2H.s),

6.82(1H.d., J=8.4Hz), 6.92(1H.d., J=8.4Hz), 7.11(1H.s),

7.56(1H.d., J=8.8Hz), 7.67(1H,dd,J=8.8Hz,1.6Hz), 8.27(1H,d,J=1.6Hz),

8.90(1H, t, J=6.0Hz), 9.20(1H, s), 9.38(1H, d, J=4.4Hz)

実施例203~204

実施例202の方法に準じて以下の化合物を得た。

実施例203

2-EZ(x+hhhhhiteleft) アミノー4-(3,4-x+hhiteleft) ジル) アミノー6-hhiteleft アミノー6-hhit

·分子式 ; C20H19N6O4Cl

・収率(%);8

· 収量 (mg);45

・融点(℃);243~245

• Mass m/e : 443(M+1)

• NMR δ (DMSO-d₆);

2.71(6H, d, J=4.8Hz), 4.53(2H, d, J=6.0Hz), 5.94(2H, s),

6.80(1H, d, J=8.0Hz), 6.85(1H, d, J=8.0Hz), 6.95(1H, s),

7.66(1H, d, J=8.8Hz), 7.72(1H, dd, J=8.8Hz.2.0Hz).

8.32(1H, dd, J=2.0Hz), 8.85(1H, dd, J=4.8Hz), 9.01(1H, t, J=6.0Hz)

実施例204

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C21H22N5O3Cl

・収率(%);40 |

・融点(℃);209~210

• Mass m/e ; 428(M+1)

• NMR δ (DMSO-d₆);

0.89(3H, t, J=7.2Hz), 1.33(2H, sextet, J=7.2Hz),

1.45(2H, quintet, J=7.2Hz), 3.18(2H, t, J=7.2Hz), 4.56(2H, d, J=6.0Hz),

WO 93/07124 PCT/JP92/01258

5.95(2H, s). 6.83(1H, d, J=8.0Hz). 6.91(1H. d, J=8.0Hz), 7.09(1H. s),

7.46(1H.d., J=8.8Hz), 7.66(1H.dd., J=8.8Hz, 2.0Hz), 8.27(1H.d., J=2.0Hz),

8.90(1H, t, J=6.0Hz), 9.17(1H, s), 9.58(1H, t, J=7.2Hz)

実施例<u>205</u>

実施例92で得られた2,6-ジクロロ-4-(3,4-メチレンジオキシベンジル)アミノキナゾリン1gにイソニペコチン酸メチル3.61g、トリエチルアミン2.32g及び2-プロバノール5mlを加え、100分間還流した。クロロホルムで2回抽出し、合わせた有機層を水で洗浄後、硫酸マグネシウムで乾燥した。溶媒を留去後、残渣を再結晶(エタノール-水)し、標題化合物1.31gを得た。

·分子式 ; C24H25ClN4O4

・収率(%);97

・融点 (℃) ;118 ~119

• Mass : 469(M+1)

• NMR δ (DMSO-d₆) :

1.18(3H, t, J=7.2Hz), 1.42(2H, m), 1.82(2H, m), 2.58(1H, m),

2.98(2H.m), 4.06(2H, q, J=7.2Hz), 4.56(2H, d, J=5.6Hz), 4.62(2H, m),

\$°

5.96(2H, s). 6.82(1H, d, J=8.0Hz). 6.86(1H, dd, J=8.0Hz, 1.6Hz).

6. 94(1H, d, J=1.6Hz), 7. 26(1H, d, J=9.2Hz), 7. 48(1H, dd, J=9.2Hz, 2. 4Hz), 8. 15(1H, d, J=2.4Hz), 8. 56(1H, brt, J=5.6Hz)

実施例206

2-(4-x)トキシカルボニルピペリジノ)-4-(3,4-x)チレンジオキシベンジル)アミノ-6-0ロロキナゾリン 塩酸塩

実施例205で得られた2-(4-エトキシカルボニルピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリンから、エタノ-ル-塩酸-エーテルを用い、標題化合物を得た。

·分子式 ; C24H25ClN4O4·HCl

・収率(%):97

・融点(℃):174~175

• NMR δ (DMSO-d₆):

1.20(3H, t, J=7.2Hz), 1.59(2H, m), 1.97(2H, m), 2.75(1H, m),

3.31(2H, m), 4.09(2H, q, J=7.2Hz), 4.53(2H, m), 4.67(2H, d, J=5.6Hz),

5.98(2H, s), 6.86(1H, d, J=8.0Hz), 6.90(1H, dd, J=8.0Hz, 1.6Hz),

7.01(1H, d, J=1.6Hz), 7.83(1H, dd, J=8.8Hz, 2.0Hz), 7.91(1H, d, J=8.8Hz).

8.52(1H, d, J=2.0Hz), 10.15(1H, brs), 12.28(1H, brs)

実施例207

2-(4-エトキシカルボニルピペリジノ)-4-(3,4-メチレンジオキシ

PCT/JP92/01258

÷

WO 93/07124

ベンジル) アミノー 6 – シアノキナゾリン

2-クロロー4-(3, 4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン1gにイソニペコチン酸エチル3.71g、トリエチルアミン2.38g及び2-プロパノール10mlを加え、1時間還流した。反応液を室温まで冷やした後、析出した結晶を濾取した。水、エーテルで順次洗浄し、標題化合物 1.126gを得た。

·分子式 '; C25H25N5O4

・収率(%);83

・融点(℃);192~193

• Mass : 460(M+1)

• NMR δ (CDC1₃) :

1.26(3H, t. J=7.2Hz). 1.71(2H, m). 1.99(2H, m). 2.59(1H, m).

3.12(2H. brt, J=12.0Hz). 4.15(2H. q. J=7.2Hz), 4.67(2H. d. J=5.2Hz).

4.82(2H, dt, J=13.2Hz, 3.6Hz), 5.96(2H, s), 6.79(1H, d, J=8.0Hz),

6.85(1H, dd, J=8.0Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz), 7.42(1H, brs),

7.61(1H, dd, J=8.8Hz, 1.6Hz), 7.84(1H, brs)

実施例208

2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシ ベンジル)アミノー6-シアノキナゾリン

2-クロロ-4-(3-クロロ-4-メトキシベンジル)アミノ-6-シアノキナゾリン1gにイソニペコチン酸エチル 3.5g、トリエチルアミン2.25g及び2-プロパノール30mlを加え、30分間還流した。反応液を室温まで冷やした後、析出した結晶を濾取し、水、エタノールで順次洗浄し、標題化合物1.13gを得た。

·分子式 ; C25H26N5O3Cl

・収率(%);85

・融点(℃);202~203

• Mass ; 480(M+1)

• NMR δ (CDC1₃):

1.26(3H, t, J=7.2Hz), 1.72(2H, m), 1.99(2H, m), 2.59(1H, m),

3.13(2H, brt, J=11.2Hz), 3.90(3H, s), 4.15(2H, q, J=7.2Hz),

4.69(2H, d, J=5.6Hz), 4.80(2H, m), 6.91(1H, d, J=8.4Hz),

7. 25(1H, dd. J=8. 4Hz, 2. 4Hz). 7. 42(1H, d, J=2. 4Hz), 7. 43(1H, brs),

7. 61(1H, dd, J=8, 8Hz, 1. 6Hz), 7. 87(1H, brs)

実施例209

2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-シアノキナゾリン 400mgにN-メチルー4-アミノ酪酸エチル塩酸塩 858mg、トリエチルアミン 238mg及び2-プロパノール4ml、N, N-ジメチルホルムアミド2mlを加え、1時間還流した。室温まで冷やした後、反応液を濾過し、滤液を減圧下溶媒留去した。残渣を再結晶(エタノール-水)し、標題化合物 410mgを得た。

·分子式 ; C24H25N5O4

・収率(%);78

・融点 (℃) ; 152 ~153

• Mass : 448(M+1)

• NMR δ (CDC1₃):

1.22(3H, t, J=6.8Hz), 1.97(2H, brs), 2.30(2H, brs), 3.24(3H, s),

3.75(2H. brs). 4.10(2H. q. J=6.8Hz). 4.68(2H. d. J=5.2Hz). 5.96(2H. s),

6.79(1H, d, J=8.0Hz). 6.84(1H, d, J=8.0Hz), 6.87(1H, s), 7.42(1H, brs),

7.60(1H.d.J=8.8Hz). 7.81(1H.brs)

実施例2<u>10~221</u>

実施例205~209の方法に準じて以下の化合物を得た。

実施例 2 1 0

2-(4-x)トキシカルボニルピペリジノ)-4-(3,4-x) ないジル)アミノー6,7,8-トリメトキシキナブリン 塩酸塩

·分子式 ; C27H32N4O7 · HC1

・収率(%);65

・融点(℃);148~150

• Mass ; 525(M+1)

• NMR δ (CDCl₃);

1.275(3H, t, J=7.2Hz), 1.76(2H, m), 2.03(2H, m), 2.63(1H, m),

3.38(2H, m), 3.99(3H, s), 4.08(3H, s), 4.12(3H, s),

4.17(2H. q. J=7.2Hz), 4.28(2H.m), 4.63(2H.d.J=6.0Hz), 5.88(2H.s),

6.68(1H.d.J=8.0Hz), 6.92(1H.dd.J=8.0Hz.1.6Hz), 6.97(1H.d.J=1.6Hz),

8.23(1H, s), 9.38(1H, brs), 11.1(1H, s)

実施例 2 1 1

2-(4-x)トキシカルボニルピペリジノ)-4-(3-2)ロロー4-xトキシベンジル)アミノー6, 7, 8-トリメトキシキナゾリン 塩酸塩

WO 93/07124

·分子式 ; C27H33N4O6Cl·HCl

• 収率(%);93

・融点(℃);177~178

• Mass ; 545(M+1)

• NMR δ (CDCl₃);

1.27(3H.t.J=7.2Hz). 1.80(2H.m), 2.06(2H.m), 2.67(1H.m),

3.40(2H, m), 3.82(3H, s), 3.98(3H, s), 4.07(3H, s), 4.11(3H, s),

4.17(2H, q, J=7.2Hz). 4.27(2H, m), 4.65(2H, d, J=6.0Hz).

6.84(1H. d. J=8.8Hz), 7.40(1H. d. J=2.0Hz), 7.48(1H, dd, J=8.8Hz, 2.0Hz),

8.23(1H.s), 9.26(1H.s), 11.27(1H.brs)

実施例 2 1 2

<u>2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロー4-メトキシ</u>ベンジル)アミノ-6-クロロキナゾリン 塩酸塩

·分子式 ; C24H26N4O3Cl2·HCl

・収率(%);97

・融点(℃);201~204

· Mass : 489(M+1)

• NMR δ (DMSO-d₆) ;

1.17(3H, t. J=7.2Hz), 1.56(2H, m), 1.93(2H, m), 2.71(1H, m),

3.30(2H, m), 3.80(3H, s), 4.06(2H, q, J=7.2Hz), 4.48(2H, m),

4.66(2H, d, J=5.2Hz), 7.09(1H, d, J=8.4Hz), 7.34(1H, dd, J=8.4Hz, 2.0Hz),

7.49(1H, d, J=2.0Hz), 7.83(2H, brs), 8.48(1H, brs), 10.8(1H, brs)

実施例213

2-(x++y) ルボニルメチル) アミノー4-(3, 4-x) チャンジオキシベンジル) アミノー6-0 ロロキナゾリン

·分子式 ; C20H19N4O4Cl

· 収率(%);55

・融点(℃);218~219 (分解)

• Mass m/e; 415(M+1)

• NMR δ (DMSO-d₆);

1.13(3H, t, J=7.2Hz), 4.07(2H, q, J=7.2Hz), 4.18(2H, brs),

4.63(2H, brd, J=4.0Hz), 5.97(2H, s), 6.85~6.92(3H, m), 7.53(1H, brs),

7.84(1H, brd, J=8.0Hz). 8.35(1H, brs). 8.50(2H, m)

実施例214

2-(3-1) (

·分子式 ; C22H23N4O4Cl

· 収率 (%);44

・融点(℃);96~98

· Mass m/e: 443(M+1)

• NMR δ (CDCl₃);

1.24(3H, t, J=6.8Hz), 1.96(2H, quintet, J=7.2Hz), 2.41(2H, t, J=7.2Hz),

3.54(2H, q, J=7.2Hz), 4.12(2H, q, J=6.8Hz), 4.66(2H, q, J=5.2Hz).

5.97(2H, s), 6.79(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.87(1H, s).

7.30(1H.d.J=8.0Hz), 7.44(1H.s), 7.47(1H.d.J=8.0Hz)

<u> 実施例215</u>

2-(N-(3-x)+2)カルボニルプロピル) -N-xチルアミノ)-4-(3, 4-xチレンジオキシベンジル) アミノー6-クロロキナゾリン 塩酸塩

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

・分子式 ; C23H25N4O4Cl・HCl

・収率(%);67

・融点(℃);182~183

• Mass ; 457(M+1)

• NMR δ (CDCl₃+DMSO-d₆) :

1.23(3H, t, J=7, 2Hz), 1.90(2H, brs), 2.25(2H, brs), 2.84(3H, brs).

3.56(2H, brs), 4.10(2H, q, J=7.2Hz), 4.70(2H, d, J=5.6Hz), 5.94(2H, s),

6.76(1H, d, J=7.6Hz), 6.87(2H, m), 7.54(1H, dd, J=9.2Hz, 2.0Hz),

8.40(1H, d, J=2.0Hz), 8.66(1H, d, J=9.2Hz), 9.69(1H, brs)

実施例216

·分子式 ; C24H27N4O4Cl

· 収率(%);46

・融点(℃);109~110

• Mass m/e : 471(M+1)

• NMR δ (CDCl₃);

1.25(3H, t, J=7.2Hz), 1.43(2H, quintet, J=7.6Hz), 1.66(4H, m),

2. 31(2H, t, J=7. 6Hz), 3. 49(2H, q, J=7. 6Hz), 4. 12(2H, q, J=7. 2Hz),

4. 68(2H, d, J=5. 2Hz), 5. 97(2H, s), 6. 79(1H, d, J=8. 0Hz),

6.84(1H, d, J=8.0Hz). 6.87(1H.s). 7.43(3H.m)

実施例217

WO 93/07124 PCT/JP92/01258

·分子式 ; C23H23N4O4Cl·HCl

• 収率(%);52

・融点(℃);206~208

• Mass ; 455(M+1)

• NMR δ (CDCl₃);

1.19(3H, t, J=7.2Hz). 2.17(3H, m), 2.32(1H, m), 4.12(2H, m),

4.24(2H, m), 4.62(2H, m), 4.67(1H, m), 5.93(2H, s),

6.77(1H, d, J=8.0Hz), 6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.89(1H, d, J=1.6Hz),

7.54(1H, d, J=8.8Hz), 8.38(1H, s), 8.64(1H, d, J=8.8Hz), 9.67(1H, brs),

13.38(1H, brs)

実施例218

2-(N-x++)カルボニルメチル-N-x++ルアミノ)-4-(3,4-x++)チレンジオキシベンジル)アミノ-6-シアノキナゾリン

٠, د

·分子式 ; C22H21N5O4

• 収率(%):75

・融点(℃);171~172

• Mass : 420(M+1)

• NMR δ (DMSO-d₆);

1.12(3H.m), 3.18(3H.s), 4.03(2H.m), 4.38(2H.m), 4.51(2H.m),

5.95(2H.s), 6.84(3H.m), 7.30(1H.m), 7.76(1H.m), 8.58(1H.s),

8.79(1H.m)

実施例219

·分子式 ; C₂₅H₂₇N₅O₄ (461.522)

• 収率(%);61

・融点 (℃) ;142 ~143

• Mass ; 462(M+1)

• NMR δ (DMSO-d₆) :

1.0~1.15(3H. br 2 peaks), 1.13(3H, t. J=7.1Hz).

1.65~1.9(2H, br 2 peaks). 2.15~2.35(2H, br 2 peaks). 3.58(4H, brs),

4.01(2H, q, J=7.1Hz), 4.58(2H, d, J=5.7Hz), 5.96(2H, s), 6.84(2H, s),

6.93(1H.s), 7.25(1H.brs), 7.72(1H.dd, J=1.8Hz, 8.8Hz),

8.56(1H, d, J=1.8Hz), 8.72(1H, t, J=5.7Hz).

実施例 2 2 0

·分子式 ; C24H26N5O3Cl

・収率(%);72

・融点(℃):127~128

· Mass : 468 (M+1)

· NMR δ (DMSO-d₆);

1.11(3H, t, J=7.2Hz), 1.74(2H, brs), 2.14(2H, brs), 3.09(3H, s),

3.62(2H, brs), 3.81(3H, s), 3.98(2H, q, J=7.2Hz), 4.61(2H, d, J=6.0Hz),

7.07(1H.d.J=8.8Hz). 7.20~7.36(2H.m), 7.42(1H.s).

7.72(1H. d, J=8.8Hz), 8.55(1H, s), 8.75(1H, t, J=6.0Hz)

実施例 2 2 1

4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 塩酸塩

·分子式 ; C24H23N5O4·HC1

· 収率(%);44

・融点(℃);231~232

• Mass : 446(M+1)

• NMR δ (CDCl₃);

1.21(3H, t, J=7.2Hz), 2.19(3H, m), 2.36(1H, m), 4.15(2H, m),

4.28(2H, m), 4.62(2H, m), 4.76(1H, m), 5.95(2H, s).

6.79(1H. d. J=8.0Hz), 6.86(1H. d. J=8.0Hz), 6.88(1H. s),

7.80(1H, dd, J=8.8Hz, 1.6Hz), 8.82(1H, d, J=1.6Hz), 8.87(1H, d, J=8.8Hz),

9.85(1H, brs), 13.81(1H, s)

実施例222

2-(4-エトキシカルボニルピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン1gにエタノール10ml、水5ml及び水酸化ナトリウム820mgを加え、20分間還流した。溶媒を減圧濃縮した後、1N塩酸を加え中和し、析出した結晶を濾取し、標題化合物920mgを得た。

·分子式 ; C₂₂H₂₁N₄O₄Cl

・収率(%);98

・融点 (℃);221 ~222

· Mass m/e ; 441(M+1)

• NMR δ (DMS0-d₆) :

1.38(2H,m), 1.80(2H,dd,J=13.2Hz,2.4Hz), 2.48(1H.m),

2.96(2H. t. J=12.0Hz). 4.54(2H. d. J=5.6Hz).

4.56(2H, dt, J=12.0Hz, 3.2Hz), 5.94(2H, s), 6.81(1H, d, J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.93(1H, s), 7.24(1H, d, J=9.2Hz),

7. 46(1H, dd, J=9. 2Hz, 2. 0Hz), 8. 13(1H, d, J=2. 0Hz), 8. 55(1H, t, J=5. 6Hz)

実施例 2 2 3

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン ナトリウム塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン5.00g(11.3ミリモル)に1N水酸化ナトリウム水溶液12ml、水40mlを加え、加熱溶解させた後、放冷する。析出晶を吸引濾取し、少量の水で洗った後、五酸化リン存在下減圧乾燥し、標題化合物4.34gを得た。

·分子式 ; C22H20ClN4O4Na

• 収率(%);83

• NMR δ (DMSO-d₆);

- 1.42(2H,m), 1.73(2H,m), 2.06(1H,m), 2.95(2H,m), 4.52(2H,m),
- 4.56(2H, d, J=5.6Hz), 5.95(2H, s), 6.81(1H, d, J=8.0Hz),
- 6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.95(1H, d, J=1.6Hz), 7.22(1H, d, J=9.2Hz),
- 7. 44(1H, dd, J=9. 2Hz, 2, 4Hz), 8. 13(1H, d, J=2. 4Hz),
 - 8.58(1H, brt, J=5.6Hz)

実施例224

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン カリウム塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン5.50g(12.5ミリモル)に1N水酸化カリウム水溶液12.5ml、水40mlを加え、加熱溶解させ、濾過した後、反応液を減圧下濃縮する。残渣にエタノール、エーテルを加えて析出する結晶を濾取し、エーテルで洗った後、五酸化リン存在下減圧乾燥し、標題化合物4.69gを得た。

·分子式 ; C22H20ClN4O4K

·収率(%);78

・融点(℃);230~234 (分解)

• NMR δ (DMSO-d₆);

1.39(2H.m). 1.69(2H.m). 1.96(1H.m), 2.94(2H,m), 4.48(2H,m),

4.55(2H.d.J=5.6Hz), 5.96(2H.s), 6.81(1H.d.J=8.0Hz),

6.86(1H, dd, J=8.0Hz, 1.6Hz), 6.94(1H, d, J=1.6Hz), 7.22(1H, d, J=8.8Hz).

7. 43(1H, dd, J=8. 8Hz, 2. 4Hz), 8. 11(1H, d, J=2. 4Hz).

8.50(1H, brt, J=5.6Hz)

実施例 2 2 5

 $2-(4-\pi)$ ルボキシピペリジノ) $-4-(3,4-\chi)$ アミノ $-6-\phi$ ロロキナゾリン 塩酸塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン2.00g(4.54ミリモル)をテトラヒドロフラン-エタノール(25ml-25ml)に加熱溶解させ、8 M HCl エタノール溶液 1.0mlを滴下する。放冷後、析出する結晶を遮取し、テトラヒドロフランで洗い、通風乾燥して、標題化合物1.87gを得た。

·分子式 ; C₂₂H₂₁N₄O₄Cl·HCl

• 収率(%);86

・融点(℃);284~286

- NMR δ (DMSO-d₆);

1.58(2H.m), 1.96(2H.m), 2.65(1H.m), 3.3(2H.m), 4.47(2H.m),

4. 67(2H, d, J=5. 6Hz), 5. 98(2H, s), 6. 87(1H, d, J=8. 0Hz).

6.90(1H. dd, J=8.0Hz. 1.6Hz), 7.00(1H. d, J=1.6Hz), 7.83(2H. brs),

8. 49(1H, brs), 10. 09(1H, brs), 12. 11(1H, brs), 12. 40(1H, brs)

実施例 2 2 6

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン メタンスルホン酸塩

実施例222で得られた2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノー6-クロロキナゾリン2.00g(4.54ミリモル)をテトラヒドロフラン-エタノール(25ml-25ml)に加熱溶解させ、メタンスルホン酸0.31ml(4.78ミリモル)を滴下する。放冷後、析出する結晶を遮取し、テトラヒドロフランで洗い、通風乾燥して、標題化合物2.21gを得た。

·分子式 ; C22H21N4O4Cl·CH4O3S

• 収率 (%); 91

- 融点 (℃) ; 265 ~266

• NMR δ (DMSO-d₆):

1.59(2H, m), 1.97(2H, m), 2.32(3H, s), 2.65(1H, m), 3.3(2H, m),

4.40(2H.m), 4.68(2H.d.J=5.6Hz), 5.98(2H.s), 6.87(1H.d.J=8.0Hz),

6.90(1H, dd, J=8.0Hz, 1, 6Hz), 6.98(1H, d, J=1.6Hz), 7.67(1H, d, J=8.8Hz),

7.84(1H.dd, J=8.8Hz, 2.0Hz), 8.42(1H.d, J=2.0Hz), 9.95(1H.brs),

11.76(1H, brs), 12.37(1H, brs)

実施例 2 2 7

 $2-(4-\pi)$ ルボキシピペリジノ) $-4-(3, 4-\chi)$ チレンジオキシベンジル) アミノ $-6-\psi$ アノキナゾリン

2-(4-エトキシカルボニルピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノ-6-シアノキナゾリン 318mgにエタノール20ml、1N水酸化ナトリウム水溶液 2.0mlを加え、50℃で30分間攪拌した。1N塩酸で中和した後、析出した結晶を濾取し、シリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)で精製し、標題化合物 116mgを得た。

·分子式 ; C23H21N5O4

• 収率(%);39

・融点(℃);269~271

• Mass m/e : 432(M+1)

· NMR δ (DMSO-d₆);

1.40(2H.m), 1.79(2H.m), 2.41(1H.m), 3.04(1H.dt, J=11.2Hz, 1.2Hz).

4.55(2H.d.J=5.6Hz), 4.57(2H.m), 5.95(2H.s), 6.82(1H.d.J=8.0Hz),

6.84(1H, d, J=8.0Hz), 6.94(1H, s), 7.25(1H, d, J=8.8Hz),

7.71(1H. d. J=8.8Hz), 8.53(1H.s), 8.72(1H.t.J=5.6Hz)

実施例228

 $\frac{2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル}$ アミノ-6-シアノキナブリン

2-(4-エトキシカルボニルピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノ-6-シアノキナゾリン 1.0gにテトラヒドロフラン30ml、エタノール30ml、1N水酸化ナトリウム水溶液14mlを加え、室温で16時間攪拌した。1N塩酸で中和し、水 100mlを加え、析出した結晶を逮取した。結晶をテトラヒドロフラン-エタノール-水で再結晶し、標題化合物 860mgを得た。

·分子式 ; C23H22N5O3Cl

• 収率 (%);91

・融点 (℃);277~278 (分解)

· Mass m/e; 452(M+1)

• NMR δ (DMSO-d₆):

1.40(2H.m), 1.84(2H.m), 2.51(1H.m), 3.05(2H.dt, J=12Hz, 2.4Hz),

3.82(3H, s), 4.59(2H, d, J=5.6Hz), 4.63(2H, m), 7.08(1H, d, J=8.4Hz),

7.28(1H, d, J=8.8Hz), 7.32(1H, dd, J=8.4Hz, 2.0Hz), 7.45(1H, d, J=2.0Hz),

7.74(1H. dd, J=8.8Hz, 2.0Hz), 8.54(1H, d, J=2.0Hz), 8.79(1H, t, J=5.6Hz)

実施例229

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー6-シアノキナゾリン ナトリウム塩

実施例228で得られた2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)アミノー6-シアノキナゾリン1.00g(2.21ミリモル)をテトラヒドロフラン-エタノール(30ml-40ml)に加熱溶解させ、1N水酸化ナトリウム水溶液 2.3ml、水 100mlを加え、減圧下濃縮する。析出する結晶を濾取し、水で洗い、通風乾燥して、標題化合物0.45gを得た。

·分子式 ; C23H21N5O3ClNa

・収率(%);43

• NMR δ (DMS0-d₆);

1.45(2H,m), 1.75(2H,m), 2.12(1H.m), 3.06(2H,m), 3.81(3H,s),

4.52(2H.m), 4.58(2H.d.J=5.6Hz), 7.07(1H.d.J=8.8Hz).

7. 24(1H, d, J=8. 4Hz), 7. 32(1H, dd, J=8. 4Hz, 2, 0Hz), 7. 45(1H, d, J=2. 0Hz),

7. 69(1H, dd, J=8.8Hz, 2, OHz), 8.54(1H, d, J=2.0Hz),

8.86(1H, brt, J=5.6Hz)

実施例230

, 3°

2- (N-(3-エトキシカルボニルプロピル)-N-メトキシアミノ)-4
-(3,4-メチレンジオキシベンジル)アミノー6-シアノキナゾリン 389mg
にエタノール20ml、1N水酸化ナトリウム水溶液2.61mlを加え、室温で4時間、
50℃で10分間攪拌した。1N塩酸で中和し、析出した結晶を遮取した。結晶をシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)で精製し、更にエタノールーアセトン-水で再結晶し、標題化合物 305mgを得た。

·分子式 ; C22H21N5O4

• 収率(%);84

・融点(℃);138~140

· Mass m/e ; 420(M+1)

• NMR δ (CDCl₃(+DMSO-d₆));

1.96(2H.brs). 2.31(2H.brs). 3.24(3H.s). 3.76(2H.brs).

4.67(2H, d, J=5.6Hz), 5.94(2H, s), 6.77(1H, d, J=8.0Hz),

6.86(1H, d, J=8.0Hz). 6.91(1H, s). 7.58(1H, brs). 7.61(1H, d, J=8.4Hz),

8.48(2H, m)

実施例231~245

実施例222~230の方法に準じて以下の化合物を得た。

実施例 2.3 1

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

-アミノー6,7,8-トリメトキシキナゾリン

・分子式 ; C25H28N4O7

・収率(%);73

・融点(℃);216~217

• Mass m/e ; 297(M+1)

• NMR δ (CDCl₃);

1.80(2H, m), 2.05(2H, m), 2.65(1H, m), 3.39(2H, dt, J=10.8Hz, 2.8Hz),

3.98(3H,s), 4.07(3H,s), 4.13(3H,s), 4.26(2H,m),

4.70(2H, d, J=6.0Hz), 5.88(2H, s), 6.69(1H, d, J=7.6Hz),

6. 95(1H, dd. J=7. 6Hz. 1. 6Hz), 7. 02(1H. d. J=1. 6Hz), 8. 38(1H. s),

9.36(1H,s), 11.24(1H,t,J=6.0Hz)

実施例232

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー 6, 7, 8-トリメトキシキナゾリン

WO 93/07124

·分子式 ; C25H29N4O6Cl

・収率(%);90

・融点(℃);197~198

· Mass m/e : 517(M+1)

• NMR δ (DMSO-d₆) :

1.45(2H.brs), 1.90(2H.brs), 2.59(1H.brs), 3.22(2H.brs).

3.80(3H.s), 3.90(6H.s), 3.92(3H.s), 4.39(2H.brs),

4.65(2H, d, J=5.2Hz), 7.05(1H, d, J=8.4Hz), 7.33(1H, d, J=8.4Hz),

7.45(1H.s), 7.76(1H.brs), 10.70(1H.brs)

実施例233

$\frac{2-(4-\pi)(3-4-\sqrt{3})}{(4-\pi)(3-4-\sqrt{3})}$ アミノー $\frac{6-\pi}{3}$

·分子式 ; C23H24N4O5 (436)

• 収率(%);79

・融点 (℃):263 (分解)

• Mass : $437 (M+1)^+$

• NMR δ (DMSO-d₆):

1.51~1.59(2H,m), 1.86~1.95(2H,m), 2.59~2.64(1H,m),

3.21~3.28(2H, m), 4.39~4.44(2H, m), 4.67(2H, d, J=5.6Hz).

5.78(2H, s), 6.85(1H, d. J=7.6Hz), 6.89(1H, d. J=7.6Hz).

6.99(1H, s). 7.42(1H, dd, J=9.2Hz, 1.6Hz). 7.72(1H, d, J=9.2Hz).

7.86(1H, d, J=1.6Hz), 10.02(1H, br), 11.89(1H, s)

実施例234

·分子式; C23H25N4O4Cl (456.930)

· 収率(%);81

·融点(℃);245 (分解)

• Mass : $457(MH^+)$

· NMR

1.3 \sim 1.5(2H, m), 1.79(2H, d, J=10Hz), 2.4 \sim 2.5(1H, m),

2. 91(2H, t, J=11Hz), 3. 81(3H, s), 4. 56(2H, d, J=13Hz),

4. 60(2H, d, J=5. 7Hz), 7. 09(1H, d, J=8. 6Hz), 7. 18(1H, dd, J=2. 7Hz, 9. 2Hz),

7. 24(1H, d, J=9. 2Hz), 7. 32(1H, dd, J=2. 2Hz, 8. 6Hz), 7. 45(1H, d, J=2. 2Hz),

7. 49(1H, d, J=2. 7Hz), 8. 42(1H, t, J=5. 7Hz), 12. 15(1H, brs)

実施例235

2- (4-カルボキシピペリジノ) -4- (3-クロロ-4-メトキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C22H22N4O3Cl2

・収率(%);92

・融点(℃);280~281

· Mass m/e : 461(M+1)

-NMR δ (DMSO-d₆);

1.59(2H, m), 1.94(2H, brd, J=11.6Hz), 2.62(1H, brs), 3.32(2H, m),

3.79(3H.s), 4.52(2H.d.J=13.6Hz), 4.64(2H.d.J=4.8Hz),

6.99(1H.d.J=8.4Hz), 7.30(1H.d.J=8.4Hz), 7.42(1H.s).

7.69(1H.d.J=8.8Hz), 8.00(1H.d.J=8.8Hz), 8.51(1H.s), 10.24(1H.s),

12. 42(1H, s)

実施例236

 $2-(4-\pi)$ ルボキシピペリジノ) -4-(ベンズイミダゾール-5-イル)メ チルアミノ $-6-\pi$

·分子式 ; C₂₂H₂₁N₆O₂Cl (436.903)

・収率(%);99

・融点(℃);230 (分解)

· Mass : 437 (MH) +

• NMR δ (DMSO-d₆);

1.3~1.5(2H, m), 1.82(2H, d, J=10Hz), 2.4~2.5(1H, m).

2. 98(2H, t, J=11Hz), 4. 60(2H, d, J=13Hz), 4. 77(2H, d, J=5. 7Hz),

7. 2 \sim 7. 3(2H, m), 7. 45 \sim 7. 6(3H, m), 8. 16(1H, s), 8. 19(1H, d, J=2. 4Hz),

8. 68(1H, t, J=5.7Hz), 12.17(1H, brs), 12.33(1H, brs)

実施例 2 3 7

·分子式 ; C18H15N4O4Cl

· 収率(%);64

1.

・融点(℃);260~261 (分解)

• Mass m/e; 387(M+1)

• NMR δ (DMSO-d₆);

4.00(2H.brs), 4.57(2H.d.J=5.6Hz), 5.93(2H.s), 6.79(1H.d.J=8.0Hz),

6.86(1H, d, J=8.0Hz), 6.95(1H, s), 7.35(1H, brs), 7.50(1H, brs),

8.30~8.50(2H, m)

実施例 2 3 8

2-(3-)ルボキシプロピル) アミノー4-(3, 4-)メチレンジオキシベンジル) アミノー6-クロロキナゾリン

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

·分子式 ; C20H18N4O4CI

· 収率(%);88

・融点(℃);170~172

· Mass m/e; 415(M+1)

- NMR δ (DMSO-d₆);

1.71(2H, brs), 2.23(2H, brs), 3.27(2H, brs), 4.56(2H, d, J=5.6Hz),

5.95(2H.s), 6.82(3H.m), 6.95(1H.s), 7.20(1H.brs).

7. 46(1H. dd. J=8. 8Hz. 1. 6Hz). 8. 12(1H, d. J=1. 6Hz)

実施例239

2-(5-カルボキシベンチル) アミノー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C22H23N4O4Cl

・収率(%);80

・融点(℃);190~192

• Mass m/e : 443(M+1)

• NMR δ (DMSO-d₆);

1.25(2H. brs), 1.47(4H. brs), 2.16(2H. brs), 3.31(2H. brs),

4.60(2H, brs), 5.94(2H, s), 6.84(2H, s), 6.96(1H, s), 7.33(1H, brs),

7.60(1H, brs), 8.25(1H, brs)

実施例240

2 - [N - (3 - カルボキシプロピル) - N - メチルアミノ] - 4 - (3, 4 - メチレンジオキシベンジル) アミノ<math>-6 - 2ロロキナゾリン

·分子式 ; C21H21N4O4Cl

· 収率(%);92

・融点(℃);143~144

• Mass m/e ; 429(M+1)

• NMR δ (DMSO-d₆(+CD₃OD));

1.79(2H, brs), 2.20(2H, brs), 3.21(3H, s), 3.71(2H, t, J=7.2Hz),

4.65(2H,s), 5.95(2H,s), 6.81(1H,d,J=8.0Hz), 6.86(1H,d,J=8.0Hz),

6. 95(1H, s), 7. 79(1H, d, J=8. 8Hz), 7. 85(1H, d, J=8. 8Hz), 8. 49(1H, s)

実施例 2 4 1

 $\frac{2-(N-カルボキシメチル-N-メチルアミノ)-4-(3,4-メチレンジ$ オキシベンジル) アミノー6-シアノキナゾリン

·分子式 ; C20H17N5O4

• 収率(%);68

・融点(℃);268~270

• Mass m/e : 392(M+1)

• NMR δ (DMSO-d₆):

3.11(3H.s). 4.13(2H.brs). 4.56(2H.m), 5.94(2H.s). 6.83(2H.m),

6.93(1H, d, J=14.4Hz). 7.20(1H, m), 7.66(1H, m), 8.51(1H, s),

8.62(1H, m)

実施例 2 4 2

·分子式 ; C₂₃H₂₃N₅O₄ (433.468)

• 収率(%);96

・融点(℃);186~187

• Mass : 434(M+1)

• NMR δ (DMSO-d₆);

1.0~1.15(3H. br 2 peaks), 1.65 ~1.85(2H. br 2 peaks),

 $2.1 \sim 2.25(2H, br 2 peaks), 3.57(4H, brs), 4.58(2H, d, J=5.7Hz),$

5.96(2H, s), 6.84(2H, s), 6.93(1H, s), 7.26(1H, d, J=8.8Hz).

7.72(1H, dd, J=1.8Hz, 8.8Hz), 8.56(1H, d, J=1.8Hz), 8.71(1H, brs)

実施例 2 4 3

2 - [N - (3 - カルボキシプロピル) - N - メチルアミノ] - 4 - (3 - クロロ - 4 - メトキシベンジル) アミノー<math>6 - シアノキナゾリン

·分子式 ; C₂₂H₂₂N₅O₃Cl

・収率(%);88

・融点(℃);108~109

• Mass : 440(M+1)

• NMR δ (DMSO-d₆):

1.73(2H. brs), 2.13(2H. brs), 3.11(3H. s), 3.63(2H. brs), 3.82(3H. s),

4. 61(2H, d, J=5. 6Hz), 7. 07(1H, d, J=8. 4Hz), 7. 27(1H, d, J=8. 8Hz),

7.31(1H.d.J=8.4Hz). 7.43(1H.s). 7.72(1H.s). 8.55(1H.s).

8.74(1H, brt, J=5.6Hz), 12.02(1H, brs)

実施例 2 4 4

2-(4-カルボキシピペリジノ)-4-(ベンズイミダゾール-5-イル)メ

チルアミノー6-シアノキナゾリン

NC N H COOH

·分子式 ; C23H21N7O2 (427)

• 収率 (%);50

- 融点(℃);>290

• Mass : 428 (M++1)

• NMR δ (DMS0-d₆);

1.29~1.42(2H,m), 1.76~2.20(2H,m), 2.39~2.51(2H,m),

2.99~3.07(3H, m), 4.60~4.64(2H, m), 4.76(2H, d. J=5.6Hz),

7.23(1H. d. J=8.4Hz). 7.25(1H. d. J=8.8Hz). 7.51(1H. d. J=8.4Hz).

7.56(1H.s), 7.71(1H.dd.J=8.4Hz,1.6Hz), 8.14(1H.s).

8.57(1H. d. J=1.6Hz). 8.82(1H.brt, J=5.6Hz)

実施例245

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

アミノー6-カルバモイルキナゾリン

·分子式 ; C23H23N5O5 (449)

· 収率(%);6

・融点(℃):180~182(分解)

• Mass : 450(M+1)

• NMR δ (DMS0-d₆):

1.39(2H.m), 1.81(2H.m), 2.48(1H.m), 2.99(2H.m),

4.55(2H, d, J=5.6Hz), 4.62(2H, m), 5.93(2H, s), 6.81(1H, d, J=7.6Hz),

6.85(1H, dd, J=7.6Hz, 1.6Hz), 6.95(1H, d, J=1.6Hz), 7.20(1H, d, J=8.8Hz),

7.27(1H, br), 7.71(1H, br), 7.92(1H, dd, J=8.8Hz, 2.0Hz),

8.57(1H, d, J=2.0Hz), 8.59(1H, brt, J=5.6Hz), 12.09(1H, br)

実施例246

9-ベンジルオキシメチルー4-クロロー6-メトキシキナゾリン

2-ベンジルオキシメチルー6-メトキシキナゾリンー4 (3 H) -オン1.50 g (5.06ミリモル) のアセトニトリル75ml 懸濁液にオキシ塩化リン30mlを加え、加熱還流する。1時間後、反応液を減圧下溶媒留去し、得られる残渣をクロロホ

ルムに溶解させ、飽和重曹水で洗う。有機層を無水硫酸マグネシウムで乾燥後、 濾過し、濾液を減圧下溶媒留去する。残渣をシリカゲルカラムクロマトグラフィ ー (酢酸エチルーnーヘキサン) により精製し、標題化合物の黄色晶1.10gを得 た。

·収率(%);69

・融点(℃);49~50

• Mass : $315(M+1)^+$

• NMR δ (CDCl₃);

3.98(3H,s), 4.79(2H,s), 4.84(2H,s), 7.42(1H,d,J=2.8Hz),

7.26~7.46(5H.m), 7.57(1H, dd, J=9.2Hz, 2.8Hz), 8.01(1H.d, J=9.2Hz)

実施例 2 4 7

2-ベンジルオキシメチルー4-(3、4-メチレンジオキシベンジル)-アミノー6-メトキシキナゾリン

実施例246で得られた2-ベンジルオキシメチル-4-クロロ-6-メトキシキナゾリン0.74g(2.4ミリモル)、ピペロニルアミン0.55g(3.6ミリモル)、 炭酸ナトリウム0.50gをイソプロピルアルコール20mlに混合し、加熱還流する。6時間後反応液を減圧下溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)により精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物の黄色晶1.01gを得た。

·分子式 ; C₂₅H₂₃N₃O₄

・収率(%);定量的

・融点(℃);158~159

• NMR δ (CDCl₃) :

3.91(3H, s), 4.69(2H, s), 4.77(2H, s), 4.79(2H, d, J=5.6Hz),

5.94(2H,s), 6.77(1H,d,J=7.6Hz), 6.90(1H,dd,J=7.6Hz,1.6Hz),

6.94(1H, d. J=1.6Hz), 7.10(1H, brs), 7.25~7.35(5H, m),

7.41~7.44(2H, m), 7.81(1H, d, J=9.2Hz)

実施例248~252

実施例222~230の方法に準じて以下の化合物を得た。

実施例248

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル) オキシキナゾリ

<u>ン</u>

3

$$C1$$
 N
 $C1$

·分子式 ; C16H10Cl2N2Os

・収率(%);55

・融点(℃);141~142

· Mass m/e : 349(M+1)

• NMR δ (CDCl₃) :

5.54(2H,s), 6.01(2H,s), 6.86(1H,d,J=8.8Hz), 7.01(1H,d,J=8.8Hz).

7.02(1H.s), 7.76(1H.dd, J=8.0Hz, 2.4Hz), 7.81(1H,dd, J=8.0Hz, 0.8Hz),

8.09(1H, dd, J=2.4Hz, 0.8Hz)

実施例249

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

オキシー6-クロロキナゾリン

C1 N N COOH

·分子式 ; C22H20ClN3O5

· 収率 (%);84

・融点 (℃) :; 145 ~147

· Mass m/e : 442(M+1)

• NMR δ (DMSO-d₆) :

1.47(2H, m), 1.88(2H, m), 2.49(1H, m), 3.10(2H, brt, J=13.2Hz).

4.60(2H, brd, J=13.2Hz), 5.43(2H, s), 6.01(2H, s),

6.91(1H. d. J=8.0Hz), 7.02(1H. d. J=8.0Hz), 7.11(1H.s),

7.39(1H.d, J=8.8Hz), 7.61(1H.dd, J=8.8Hz, 2.4Hz).

7.77(1H. d. J=2.4Hz)

実施例 2 5 0

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル)チオキナゾリン

$$C1 \xrightarrow{S} 0$$

·分子式 ; C16H10Cl2N2O2S

• 収率(%);92

・融点(℃):180~182

• Mass m/e : 365(M+1)

• NMR δ (CDCl₃);

4.55(2H.s), 5.96(2H.s), 6.77(1H.d.J=8.4Hz), 6.96(1H.s),

6.96(1H, d, J=8.4Hz), 7.77(1H, dd, J=8.8Hz, 2.0Hz),

7.82(1H, d, J=8.8Hz), 7.99(1H, d, J=2.0Hz)

実施例251

2-(4-カルボキシピペリジノ)-4-(3,4-メチレンジオキシベンジル)

チオー6-クロロキナゾリン

·分子式 ; C22H20ClN3O4S

・収率(%);98

・融点(℃);153~154

· Mass m/e ; 458(M+1)

• NMR δ (DMSO-d₆) :

1.50(2H, m), 1.82(2H, m), 2.39(1H, brs), 3.18(2H, m), 4.48(2H, s),

4.55(2H, brs), 5.96(2H, s), 6.82(1H, d, J=8.0Hz), 6.92(1H, d, J=8.0Hz),

6.99(1H, s), 7.41(1H, brd, J=8.8Hz), 7.62(1H, brd, J=8.8Hz),

7.69(1H, brs)

実施例 2 5 2

2-(4-ニトロキシピペリジノ)-4-(3, 4-メチレンジオキシベンジル)アミノー6-クロロキナブリン

·分子式 ; C21H20ClN505

・収率(%);11

・融点(℃);油状物質

· Mass m/e; 458(MH+)

· NMR δ (CDCl₃);

1.71~1.82(2H, m), 2.02~2.10(2H, m), 3.56~3.63(2H, m),

4.39~4.44(2H.m), 4.66(2H.d, J=5.2Hz), 5.18~5.22(1H.m).

5.61(1H.brt, J=5.2Hz), 5.96(2H.s), 6.79(1H.d, J=7.6Hz),

6.84(1H.dd, J=7.6Hz.1.2Hz). 6.87(1H.d, J=1.2Hz).

7. 39(1H. d. J=8. 8Hz). 7. 43~7. 47(2H. m)

実施例 2 5 3

2, 6-ジクロロー4-(3, 4-メチレンジオキシベンジル) アミノキノリン

$$C1$$
 N
 $C1$

a) 2, 4, 6-トリクロロキノリン

5-クロロアントラニル酸メチルエステルから出発して、ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー、68巻、1285頁(1946年)と同様な方法で標題化合物を得た。

- NMR δ (CDCl₃) :

7.55(1H.s), 7.74(1H.dd, J=9.0Hz, 2.2Hz), 7.98(1H, d, J=9.0Hz),

8. 19(1H. d. J=2. 2Hz)

a)で得られた化合物 500mg、3,4-メチレンジオキシベンジルアミン 350mg、N,N-ジイソプロピルエチルアミン1ml、N-メチル-2-ピロリドン4mlの混合物を 130℃の油浴中10時間反応させた。反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(5~20%酢酸エチル/ヘキサン)に付し、高極性成分として標題化合物 430mgを得た。

·分子式 ; C₁₇H₁₂Cl₂N₂O₃

・融点 (℃) ;198 ~199 ℃

• Mass m/e : 347(M+1)

- NMR δ (CDCl₃);

4. 39(2H. d. J=4. 9Hz), 5. 21(1H. t. J=4. 9Hz), 6. 00(2H. s), 6. 47(1H. s).

6.82~6.87(3H.m), 7.58(1H.dd.J=9.0Hz.2.2Hz), 7.65(1H.d.J=2.2Hz),

7.84(1H. d. J=9.0Hz)

同時に低極性成分として 4, 6-ジクロロ-2-(3, 4-メチレンジオキシベンジル) アミノキノリン <math>190mgを得た。

• NMR δ (CDC1₃) :

4.58(2H, d, J=5.7Hz), 5.00(1H, brt, J=5.7Hz), 5.94(2H, s), 6.74(1H, s).

6.77(1H, d, J=7.9Hz), 6.84(1H, dd, J=7.9Hz, 1.6Hz), 6.88(1H, d, J=1.6Hz),

7.50(1H, dd, J=9.0Hz, 2.4Hz), 7.62(1H, d, J=9.0Hz), 7.96(1H, d, J=2.4Hz)

実施例 2 5 4

2, 6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキノリン

$$C1$$
 N
 $C1$
 OMe

実施例253の方法に準じて標題化合物を得た。

·分子式 ; C17H13Cl3N2O

・収率(%);59

・融点(℃);204~205

• NMR δ (CDCl₃):

3.91(3H,s), 3.40(3H,s), 4.38(2H,d,J=5.1Hz), 4.97(1H,t,J=5.1Hz),

5.93(1H.s). 6.93(1H.d.J=8.4Hz), 7.24(1H.dd,J=8.4Hz,2.2Hz).

7. 40(1H, d, J=2. 2Hz), 7. 50(1H, dd, J=8. 8Hz. 2. 2Hz), 7. 59(1H, d, J=2. 2Hz).

7. 71 (1H. d. J=8. 8Hz)

実施例 2 5 5

 $2-(4-\pi)$ ルボキシピペリジノ) -4-(3, 4-x) 4-x 4-x

a) 2-(4-x++)カルボニルピペリジノ) -4-(3, 4-x++) オキシベンジル) x = 1 x = 1

2, 6-ジクロロ-4-(3, 4-メチレンジオキシベンジル) アミノキノリン 130mg、イソニペコチン酸エチルエステル 500μl、N-メチル-2-ピロリドン1mlの混合物を 150℃の油浴中 3 時間加熱した。反応液を冷却後、水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20~50%酢酸エチル/ヘキサン)で精製し、標題化合物 150mgを得た。

• NMR δ (CDCl₃) :

1. 26(3H, t, J=7.1Hz). 1. 70 \sim 1. 81(2H, m), 1. 95 \sim 2. 02(2H, m),

2.54(1H. tt, J=11.2Hz, 3.8Hz), 2.97~3.06(2H, m), 4.14(2H, q, J=7.1Hz),

4.32~4.39(4H, m), 4.86(1H, t, J=5.5Hz), 5.98(3H, s),

6.81(1H, d, J=7.7Hz), 6.84~6.89(2H, m), 7.39(1H, dd, J=9.0Hz, 2.4Hz),

7.47(1H, d, J=2.4Hz). 7.55(1H, d, J=9.0Hz)

ンジル) アミノー 6 - クロロキノリン

a) で得られた化合物 150mg、1 N水酸化ナトリウム水溶液 1 ml、エタノール 10mlの混合物を60℃の油浴中 2 時間加熱した。反応液を濃縮し、水を加え、さらに1 N塩酸 1 mlを加え中和し、生じた結晶を濾取し、水洗、乾燥することにより、標題化合物130mg を得た。

r.

4. Ç

·分子式 ; C23H22ClN3O4

・収率(%);92

・融点(℃);235~237

· Mass m/e : 440(M+1)

• NMR δ (DMSO-d₆) :

1.37~1.50(2H.m), 1.77~1.86(2H.m), 2.89~3.00(2H.br, 3 peak),

4.20~4.28(2H, br, 2 peak). 4.42(2H, d, J=5.7Hz), 5.96(2H, s),

5.97(1H.s), 6.85(1H.d.J=7.9Hz), 6.92(1H.dd,J=7.9Hz,1.5Hz),

6.98(1H, d, J=1.5Hz), 7.42(2H, brs), 7.58(1H, brs), 8.15(1H, brs)

実施例 2 5 6

2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル) アミノー6-クロロキノリン

実施例255の方法に準じて標題化合物を得た。

·分子式 ; C23H23Cl2N3O3

・融点(℃);282~283

• Mass m/e; 460(M+1)

• NMR δ (DMSO-d₆);

1.36~1.48(2H, m), 1.76~1.84(2H, m), 2.43~2.53(1H, m),

2.91(2H, t, J=11.2Hz). 4.26(2H, brd, J=13.2Hz). 4.44(2H, d, J=5.9Hz).

5. 97(1H, s), 7. 10(1H, d, J=8. 6Hz), 7. 36(1H, dd, J=8. 6Hz, 2. 2Hz),

7.38(2H, s), 7.50(2H, brs and d, J=2.2Hz). 8.11(1H, s)

実施例 2 5 7

2-メトキシー4-(3-クロロ-4-メトキシベンジル)アミノー6-クロロ キノリン

2,6-ジクロロー4-(3-クロロー4-メトキシベンジル)アミノキノリン 200mg、メタノール 0.5ml、カリウム tープトキシド 200mg、1,4-ジオキサン3mlの混合物を1時間加熱還流した。反応液を冷却後、水を加え、酢酸エチルで抽出し、酢酸エチル層は飽和食塩水で洗い、無水硫酸マグネシウムで乾燥後、濃縮した。シリカゲルカラムクロマトグラフィー(10~30%酢酸エチル/ヘキサン)で精製後、酢酸エチルーヘキサンから再結晶して、標題化合物 150mgを得た。

·分子式 ; C18H16Cl2N2O2

· 収率(%);76

・融点(℃):170~171

• NMR δ (CDCl₃);

3.93(3H.s). 4.42(2H.d.J=5.2Hz), 5.22(1H.t.J=5.2Hz), 6.46(1H.s),

6.96(1H, d, J=8.4Hz), 7.25(1H, dd, J=8.4Hz, 2.2Hz), 7.41(1H, d, J=2.2Hz),

7.59(1H. dd, J=9.0Hz, 2.2Hz), 7.66(1H, d, J=2.2Hz), 7.85(1H, d, J=9.0Hz)

実施例 2 5 8

2-(3, 4-xチレンジオキシベンジル) アミノー $4-(4-\pi)$ ルボキシピペリジノ) $-6-\pi$ 0 ロロキノリン

実施例 2530b)で副生した 4, 6-990ロロー2-(3, 4-メチレンジオキシベンジル)アミノキノリン 140mgを用いて実施例 255と同様の操作を行い、標題化合物 130mgを得た。

·分子式 ; C23H22ClN3O4

・収率(%);99

・融点(℃);270~272

• Mass m/e : 440(M+1)

• NMR δ (DMSO-d₆);

1.78~1.89(2H, m), 1.96~2.04(2H, m), 2.70~2.79(2H, m),

3.26~3.36(2H.m), 4.49(2H,d,J=5.7Hz), 5.96(2H,s), 6.37(1H,s),

6.85(2H.s). 6.94(1H.s). 7.37(1H.t.J=5.7Hz).

7.41(1H, dd, J=8.8Hz, 2.4Hz), 7.46(1H, d, J=8.8Hz), 7.60(1H, d, J=2.4Hz) 実施例 2 5 9

2-クロロ-4-(3-クロロ-4-メトキシベンジル) アミノー6-シアノキ ノリン

a) 4-ヒドロキシキノリン-2-オン-6-カルボン酸

4-アミノベンゼン-1, 4-ジカルボン酸ジメチルエステルから出発し、ジャーナル・オブ・アメリカン・ケミカル・ソサイアティー, 68巻, 1285頁(1946年)と同様の操作で標題化合物を得た。

• NMR δ (DMSO-d₆);

5. 79(1H, s), 7. 31(1H, d, J=8. 6Hz), 8. 02(1H, dd, J=8. 6Hz, 2. 0Hz),

8.39(1H, d, J=2.0Hz), 11.51(1H, s), 11.63(1H, brs), 12.86(1H, brs)

b) 2, 4-ジクロロキノリン-6-カルボキサミド

a)で得られた化合物 9 g、オキシ塩化リン50mlの混合物を 1 時間加熱還流した。反応液を濃縮し、残渣に酢酸エチルーアセトンを加えて均一の懸濁液とし、 氷冷した濃アンモニア水の中に攪拌しながらゆっくり注いだ。30分後、析出した 結晶を濾取し、水、酢酸エチルで洗った後、乾燥して、標題化合物8.96gを得た。

• NMR δ (DMSO-d₆);

7.72(1H, brs), 8.06(1H, s), 8.10(1H.d, J=8.8Hz),

8.34(1H, dd, J=8.8Hz, 2.0Hz), 8.43(1H, brs), 8.73(1H, d, J=2.0Hz)

(1) (2) (1-3)

PCT/JP92/01258

WO 93/07124

b)で得られた化合物3g、塩化リチウム 300mg、オキシ塩化リン30mlの混合物を2時間加熱還流した。反応液を濃縮し、ベンゼン 120mlを加え、飽和炭酸水素ナトリウム水溶液で洗い、ベンゼン層は飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、シリカゲルベッドを通して濾過後、シリカゲルはさらにベンゼンで洗い、合わせて濃縮し、残渣を酢酸エチルーへキサンから再結晶して、標題化合物2.15gを得た。

- · NMR δ (CDCl₃);
 - 7.65(1H, s), 7.95(1H, dd, J=8.8Hz, 1.8Hz), 8.14(1H, d, J=8.8Hz),
 - 8.60(1H.d.J=1.8Hz)

·分子式 ; C18H13Cl2N3O

・収率(%);38

・融点 (℃) ; 254 ~255

• NMR δ (CDCl₃):

- 3.94(3H, s). 4.45(2H, d, J=4.9Hz), 5.41(1H, d, J=4.9Hz), 6.54(1H, s).
- 6.98(1H. d. J=8.4Hz), 7.26(1H. dd, J=8.4Hz, 2.2Hz), 7.41(1H. d. J=2.2Hz),
- 7.80(1H, dd, J=8.8Hz, 1.6Hz), 7.97(1H, d, J=8.8Hz), 8.08(1H, d, J=1.6Hz)

実施例 2 6 0

<u>2-(4-カルボキシピペリジノ)-4-(3-クロロ-4-メトキシベンジル)</u> アミノー6-シアノキノリン

2-クロロー4-(3-クロロー4-メトキシベンジル)アミノー6-シアノキノリン 750mg、イソニペコチン酸 1.6ml、N-メチルー2-ピロリドン5mlの混合物を 130℃油浴中 3 時間加熱した。冷後、反応液に水を加え、酢酸エチルで抽出し、酢酸エチル層は水、飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(20~40%酢酸エチル/ヘキサン)に付し、次いで酢酸エチルーヘキサンから再結晶して、標題化合物 860mgを得た。

- NMR δ (CDCI₃) :

- 1.26(3H, t, J=7.1Hz), 1.68~1.79(2H, m), 1.95~2.03(2H, m),
- 2.58(1H, tt, J=11.0Hz, 4.0Hz), 3.03~3.12(2H, m), 3.92(3H, s),
- 4. 15(2H, q, J=7. 1Hz), 4. 36~4. 43(4H, m), 5. 08(1H, t, J=5. 1Hz).
- 5. 94(1H, s), 6. 95(1H, d, J=8. 4Hz), 7. 26(1H, dd, J=8. 4Hz, 2. 2Hz).
- 7. 42(1H, d, J=2.2Hz), 7. $55\sim7.61(2H, m)$, 7. 88(1H, s)

b) $2-(4-\pi)\pi+\nu + (3-\pi)\pi + (3-$

a) で得られた化合物 500mg、1 N水酸化ナトリウム水溶液 2 ml、テトラヒドロフラン20ml、エタノール25mlの混合物を50℃で 2 時間反応させた。1 N塩酸 2

mlを加え、約20ml程留去すると、結晶が析出してきた。この結晶を濾取し、水、 酢酸エチルで洗った後、乾燥して、標題化合物 460mgを得た。

·分子式 ; C24H23ClN3O3

· 収率 (%);98

・融点(℃);274~276 (分解)

• NMR δ (DMSO-d₆);

1.35~1.47(2H, m), 1.78~1.87(2H, m), 2.47~2.56(1H, m),

2.95~3.04(2H, m), 3.81(3H, s), 4.30~4.39(2H, m), 4.46(2H, d, J=5.7Hz),

6.01(1H, s), 7.11(1H, d, J=8.6Hz), 7.37(1H, dd, J=8.6Hz, 2.2Hz),

7. 40(1H. d. J=8.8Hz), 7. 52(1H. d. J=2.2Hz), 7. 65(1H. dd, J=8.8Hz, 1.6Hz),

7.68(1H, t. J=5.7Hz), 8.55(1H, d, J=1.6Hz), 12.20(1H, brs)

実施例261

2-クロロー8-(3, 4-メトキシジオキシベンジル) アミノビリド〔2, 3 -d] ビリミジン

2, 8-ジクロロビリド〔2, 3-d〕ビリミジン 118mgの20mlテトラヒドロフラン溶液にトリエチルアミン66mg、ピペロニルアミン89mgを加え、室温で16時間攪拌した。水を加え、析出した結晶を濾取し、標題化合物166mg を得た。

·分子式 ; C15H11ClN4O2

・収率(%);89

・融点(℃);200~202

• Mass m/e ; 315(M+1)

• NMR δ (DMSO-d₆);

4.64(1H, d, J=5.6Hz), 5.97(2H, s), 6.85(1H, d, J=8.0Hz).

6.87(1H, d, J=8.0Hz), 6.96(1H, s), 7.55(1H, dd, J=8.0Hz, 4.4Hz),

8.73(1H, dd, J=8.0Hz, 1.6Hz), 8.96(1H, dd, J=4.4Hz, 1.6Hz),

9. 46(1H, t, J=5. 6Hz)

実施例 2 6 2

2-(4-カルボキシピペリジノ)-8-(3,4-メチレンジオキシペンジル) アミノピリド (2,3-d) ピリミジン

2-クロロ-8-(3、4-メチレンジオキシベンジル)アミノビリド〔2、3-d〕ビリミジン 127mgの 8mlテトラヒドロフラン溶液にトリエチルアミン41

PCT/JP92/01258

WO 93/07124

mg、イソニペコチン酸エチル190mg を加え、2時間還流する。反応液に水を加え、クロロホルムで2回抽出し、合わせた有機層を硫酸マグネシウムで乾燥し、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、標題化合物 175mg(収率 100%)を得た。

·分子式 ; C₂₁H₂₁N₅O₄

· 収率(%);76

・融点(℃):255~256

• Mass m/e : 408(M+1)

• NMR δ (DMSO-d₆) :

1.39(2H, m), 1.80(2H, m), 2.51(1H, m), 3.01(2H, brt, J=11.2Hz),

4.56(2H.d.J=5.6Hz). 4.61(2H.brd.J=12.8Hz). 5.94(2H.s).

6.82(1H, d, J=8.0Hz), 6.84(1H, d, J=8.0Hz), 6.93(1H, s),

7.03(1H, dd, J=8.0Hz, 4.4Hz). 8.38(1H, dd, J=8.0Hz, 1.6Hz),

8.61(1H, dd, J=4.4Hz, 1.6Hz), 8.70(1H, t, J=5.6Hz), 12.16(1H, brs) 実施例 2 6 3

6-クロロ-2-メルカプトベンズイミダゾール8.89gをジメチルホルムアミド 150m1に溶解し、氷冷下、炭酸カリウム6.65gとヨウ化メチル6.15gを加え、同温で50分間攪拌した。水を加え、酢酸エチルで抽出した。乾燥後、減圧下濃縮し、粗 6-クロロ-2-メチルチオベンズイミダゾールを得た。

上で得られた租精製物を塩化メチレン 100mlに溶解し、80%m-CPBA 17.3 gを氷冷下加え、室温で一夜撹拌した。チオ硫酸ナトリウム7gを加え、室温で30分間撹拌し、水を加えた。有機層を分取し、乾燥後、シリカゲルカラムクロマトグラフィーに付して6-クロロ-2-メタンスルホニルベンズイミダゾール10 gを得た。

6-クロロ-2-メタンスルホニルベンズイミダゾール 2.3gをジメチルホルムアミド30m1に溶解し、氷冷下60%水素化ナトリウム 480mg、ピペロニルクロリド2.04gを加え、80℃で4時間加熱した。室温で一夜放置後、不溶物を遮去し、減圧下濃縮した。シリカゲルカラムクロマトグラフィーに付し、標題化合物を得た。

·分子式 ; C16H13ClN2O4S

WO 93/07124 PCT/JP92/01258

• 収率(%);25

・融点(℃);129~131

• Mass m/e ; 365(MH+)

• NMR δ (CDC1₃) :

3.48(3H, s). 5.64(2H, s). 5.91(2H, s). 6.73~6.76(3H, m).

7.27(1H. d. J=8.8Hz), 7.31(1H. dd, J=8.8Hz, 2.0Hz).

7.80(1H, d, J=2.0Hz)

実施例 2 6 4

6-2000-2-xタンスルホニルー<math>1-(3, 4-x+1)ジオキシベンジル)

3

3

<u>ベンズイミダゾール</u>

$$\begin{array}{c|c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

実施例 2 6 3 において、5 - クロロー 2 - メタンスルホニルー 1 - (3, 4 - メチレンジオキシベンジル) ベンズイミダゾール溶出後に更に溶出することにより、標題化合物を得た。

·分子式 ; C16H13ClN2O4S

・収率(%);22

・融点(℃);140~142

- Mass m/e ; 365(MH+)

• NMR δ (CDC1₃) ;

3.48(3H.s). 5.62(2H.s). 5.93(2H.s). 6.73~6.77(3H.m).

7. 32(1H, d, J=8. 4Hz), 7. 33(1H, d, J=1. 2Hz), 7. 74(1H, dd, J=8. 4Hz, 1. 2Hz)

実施例 2 6 5

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

5-クロロ-2-スルホニルメチル-1-(3, 4-メチレンジオキシベンジル)ベンズイミダゾールと6-クロロ-2-スルホニルメチル-1-(3, 4-メチレンジオキシベンジル)ベンズイミダゾールの混合物 448mgをメタノール20mlに溶解し、28%ナトリウムメトキシド10mlを加え、1.5時間加熱還流した。氷冷し、10%塩酸で中和し、酢酸エチルで抽出した。乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィーに付して標題化合物を得た。

·分子式 ; C16H13ClN2O3

· 収率(%):31

・融点(℃);117~118

• Mass m/e: 317(MH⁺)

• NMR δ (CDC1₃) ;

4.21(3H, s), 5.01(2H, s), 5.92(2H, s), 6.65(1H, d, J=1.6Hz),

6. 68(1H. dd. J=8. 0Hz, 1. 6Hz), 6. 73(1H. d. J=8. 0Hz),

6. 96(1H, d, J=8. 4Hz), 7. 05(1H, dd, J=8. 4Hz, 2. 0Hz).

7.51(1H, d, J=2.0Hz)

WO 93/07124 PCT/JP92/01258

実施例 2 6 6

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

実施例 2 6 5 において、5 - クロロー 2 - メトキシー 1 - (3, 4 - メチレン ジオキシベンジル) ベンズイミダゾール溶出後に更に溶出することにより、標題 化合物を得た。

·分子式 ; C16H13ClN2O3

• 収率(%);26

・融点 (℃) :133 ~134

· Mass m/e ; 317(MH+)

• NMR δ (CDCl₃);

4.21(3H,s), 4.99(2H,s), 5.92(2H,s), 6.65(1H,d,J=1.6Hz),

6.68(1H, dd, J=8.0Hz, 1.6Hz), 6.74(1H, d, J=8.0Hz), 7.05(1H, d, J=1.6Hz),

, ÷

7. 10(1H, dd, J=8.8Hz. 1.6Hz), 7. 43(1H, d, J=8.8Hz)

実施例267~280

実施例263~266の方法に準じて以下の化合物を得た。

実施例 2 6 7

1-(3,4-メチレンジオキシベンジル)ベンズイミダゾール

$$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\rangle$$

·分子式 ; C₁₅H₁₂N₂O₂

• 収率(%);34

・融点(℃):107~108

• Mass m/e ; 253(MH+)

· NMR δ (CDCl₃);

5.23(2H,s), 5.92(2H,s), 6.63(1H,d,J=1.6Hz),

6.70(1H, dd, J=8.0Hz, 1.6Hz), 6.76(1H, d, J=8.0Hz), 7.23~7.32(3H, m),

7.80~7.83(1H, m), 7.92(1H, s)

実施例268

1-(2-プロポキシベンジル) ベンズイミダゾール

·分子式 ; C17H18N2O

・収率(%):89

・融点(℃);85~86

· Mass m/e : 267(MH+)

• NMR δ (CDCI₃) :

1.02(3H, t. J=7.4Hz), 1.78~1.86(2H, m), 3.95(2H, t, J=6.6Hz),

5.35(2H.s). 6.86~6.90(2H.m). 7.06~7.09(1H.m).

7.23~7.28(3H,m), 7.40~7.43(1H,m), 7.79~7.82(1H,m),

7.99(1H.s)

実施例269

2-(3,4-メチレンジオキシベンジル)ベンズイミダゾール

·分子式 ; C₁₅H₁₂N₂O₂

• 収率 (%);62

・融点 (℃) :143 ~146

· Mass m/e ; 253(MH+)

• NMR δ (DMS0-d₆);

4.43(2H.s), 5.99(2H,s), 6.89~6.94(2H,m), 7.09(1H.s),

7.48~7.52(2H, m), 7.72~7.76(2H, m)

実施例270

1-(3,4-メチレンジオキシベンジル)-6-メトキシベンズイミダゾール

$$Me0 \xrightarrow{N} N$$

・分子式 ; C1 sH14N2O3

・収率(%);70

・融点(℃):134~135

• Mass $m/e : 283(M+1)^+$

• NMR δ (CDCl₃) :

3.82(3H,s), 5.21(2H,s), 5.95(2H,s), 6.64(1H,d,J=1.8Hz),

6.71(1H, dd, J=7.6Hz, 1.8Hz), 6.75(1H, d, J=2.4Hz), 6.78(1H, d, J=7.6Hz),

6. 93(1H, dd, J=8. 8Hz, 2. 4Hz), 7. 70(1H, d, J=8. 8Hz), 7. 90(1H, s)

実施例 2 7 1

$$\begin{pmatrix} c_1 & c_2 \\ c_1 & c_2 \\ c_2 & c_3 \end{pmatrix}$$

$$Me0 & c_1 & c_2 \\ N & c_3 & c_4 \\ N & c_4 & c_5 \\ N & c_5 & c_6 \\ N & c_6 & c_6 \\ N$$

·分子式 ; C16H13ClN2O3

· 収率(%);81

・融点(℃);108~109

• Mass m/e; $317(M+1)^+$

• NMR δ (CDCl₃):

3.84(3H.s), 5.322(2H.s), 5.97(2H.s), 6.40(1H.s), 6.80(1H.s),

6.91(1H, s), 6.95(1H, d, J=8.8Hz), 7.72(1H, d, J=8.8Hz), 7.96(1H, s)

実施例272

 $1 - (2 - (3, 4 - \cancel{y} + \cancel{y$

$$\mathbb{M} \in \mathbb{N} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$$

·分子式 : C17H16N2O3

·収率(%);69

・融点(℃);油状物質

• Mass m/e ; 297(M+1)+

• NMR δ (CDCl₃);

3.04(2H, t, J=6.8Hz), 3.87(3H, s), 4.31(2H, t, J=6.8Hz),

5.93(2H, s), 6.43(1H, dd, J=8.0Hz, 2.0Hz), 6.52(1H, d, J=2.0Hz),

6.68(1H, d, J=8.0Hz), 6.77(1H, d, J=2.4Hz), 6.92(1H, dd, J=8.8Hz, 2.4Hz),

7.57(1H, s), 7.67(1H, d, J=8.8Hz)

実施例 2 7 3

6-クロロ-1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$$

·分子式 ; C15H11ClN2O2

・融点(℃);122~123

• Mass m/e: 287(MH+)

• NMR δ (CDCl₃);

5.18(2H, s), 5.94(2H, s), 6.61(1H, d, J=1.2Hz),

6.68(1H, dd, J=8.0Hz, 1.2Hz), 6.77(1H, d, J=8.0Hz), 7.22~7.40(2H, m),

7.71(1H, d, J=8.8Hz), 7.90(1H, s)

実施例274

5-クロロ-1-(3, 4-メチレンジオキシベンジル)ベンズイミダゾール

$$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

·分子式 ; C₁₅H₁₁ClN₂O₂

· 収率(%);83

・融点(℃):113~114

· Mass m/e; 287(MH $^+$)

فاليد

• NMR δ (CDCl₃);

5.20(2H.s). 5.93(2H.s). 6.60(1H.d.J=1.6Hz).

6. 67(1H, dd, J=7. 6Hz, 1. 6Hz), 7. 76(1H, d, J=7. 6Hz), 7. 18~7. 20(2H, m),

7.78(1H.s), 7.93(1H.s)

実施例275

6-クロロー〔3-(3,4-メチレンジオキシフェニル)プロピル〕ベンズイ ミダゾール

·分子式 ; C17H15ClN2O2

・収率(%);40

・融点(℃);107~109

• Mass m/e ; 315(MH+)

• NMR δ (CDCl₃);

2.13~2.21(2H.m), 2.54(2H.t.J=7.4Hz), 4.11(2H.t.J=7.2Hz),

5.94(2H,s), 6.59(1H,dd,J=8.0Hz.1.6Hz), 6.64(1H,d,J=1.6Hz),

6.75(1H. d. J=8.0Hz). 7.24(1H. dd, J=8.4Hz, 2.0Hz).

7.31(1H. d. J=2.0Hz), 7.71(1H. d. J=8.4Hz), 7.84(1H. s)

実施例 2 7 6

6-クロロー2-ホルミルー1-(3,4-メチレンジオキシベンジル)ベンズ

イミダゾール

·分子式 ; C16H11ClN2O3

• 収率(%);55

・融点(℃);120~122

• Mass m/e : 315(MH+)

• NMR δ (CDCl₃);

5.71(2H, s), 5.93(2H, s), 6.64(1H, d, J=1.6Hz),

6.70(1H, dd, J=7.6Hz, 1.6Hz), 6.75(1H, d, J=7.6Hz).

7.36(1H, dd, J=8.8Hz, 2.0Hz), 7.46(1H, d, J=2.0Hz), 7.86(1H, d, J=8.8Hz),

10.11(1H.s)

実施例 2 7 7

2-アミノー6-クロロー1-(3, 4-メチレンジオキシベンジル) ベンズイ

$$C1$$
 NH_2

·分子式 ; C15H12ClN3O2

- 収率(%);10

・融点(℃);223~224

· Mass m/e : $302(MH^+)$

• NMR δ (DMSO-d₆);

5.13(2H, s), 5.95(2H, s), 6.68~6.71(3H, m), 6.77(1H, d, J=1.6Hz),

6.84(1H.d.J=7.6Hz), 6.90(1H.dd.J=8.4Hz, 2.4Hz), 7.07(1H.d.J=8.4Hz),

7. 18(1H, d, J=2. 4Hz)

実施例278

$$C1$$
 N
 N
 N
 N

·分子式 ; C18H13ClN4O2

・収率(%);41

・融点(℃);127~129

· Mass m/e ; 353(MH+)

-NMR δ (CDCl₃);

5. 20(2H, s), 5. 97(2H, s), 6. 48~6. 50(2H, m), 6. 76(1H, d, J=7. 2Hz).

7.23~7.35(4H, m), 7.72(1H, d, J=8.4Hz), 7.89(1H, s)

実施例 2 7_9

$2-(4-\pi)$ ルボキシピペリジノ) -5-0ロロ-1-(3, 4-x+1) キシベンジル) ベンズイミダゾール

·分子式 ; C21H20ClN3O4

·収率(%);84

・融点(℃);201~202

· Mass m/e ; 414(MH+)

• NMR δ (DMSO-d₆);

1.64~1.77(2H, m), 1.84~1.90(2H, m), 2.40~2.46(1H, m),

2.92~3.00(2H,m), 3.43~3.47(2H,m), 5.15(2H,s), 5.96(2H,s),

6.60(1H, dd, J=8.0Hz, 1.6Hz), 6.72(1H, d, J=1.6Hz), 6.82(1H, d, J=8.0Hz),

7.03(1H. dd, J=8.4Hz, 2.0Hz), 7.18(1H. d, J=8.4Hz), 7.42(1H. d, J=2.0Hz)

実施例280

2-(4-カルボキシピペリジノ)-6-クロロ-1-(3, 4-メチレンジオキシベンジル) ベンズイミダゾール

••

WO 93/07124

·分子式 ; C21H20ClN3O4

・融点(℃);アモルファス

· Mass m/e ; 414(MH+)

- NMR δ (DMSO-d₆);

1.70~1.79(2H.m), 1.80~1.89(2H.m), 2.31~2.42(1H.m),

2.90~2.97(2H,m), 3.39~3.45(2H,m), 5.15(2H,s), 5.96(2H.s).

6.61(1H, d, J=8.0Hz), 6.73(1H, s), 6.83(1H, d, J=8.0Hz).

7.06(1H, dd, J=8.4Hz, 2.0Hz), 7.30(1H, d, J=2.0Hz), 7.38(1H, d, J=8.4Hz)

実施例281~291

実施例88~94の方法に準じて以下の化合物を得た。

実施例 2 8 1

2-(4-カルボキシピペリジノ)-4-(3,5-ジクロロ-4-メトキシベンジル) アミノー<math>6-シアノキナゾリン

·分子式 ; C23H21Cl2N5O3

• 収率 (%);98

・融点(℃);255~256 (分解)

-Mass m/e : 486(M+1)+

• NMR δ (DMSO-d₆) :

1.36(2H, brm). 1.80(2H, brm). 2.52(1H, m), 3.03(2H, m), 3.78(3H, s),

4.59(2H.d. J=6.0Hz), 4.59(2H.brm), 7.29(1H.d. J=8.8Hz), 7.50(2H.s),

7.75(1H. dd, J=8.8Hz, 1.6Hz), 8.53(1H, d, J=1.6Hz),

8.85(1H, brt, J=6.0Hz), 12.18(1H, brs)

実施例282

2, 6-ジクロロー4-(4-エトキシカルボニルピペリジノ) キナゾリン

·分子式 ; C16H17Cl2N3O2

・収率(%);100

・融点(℃);101~103

• Mass m/e: 354(M+1)

• NMR δ (CDCl₃);

1.30(3H, t, J=7.2Hz), 1.99(2H, m), 2.14(2H, m), 2.69(1H, m),

3.35(2H, dt, J=11.2Hz, 2.4Hz), 4.20(2H, q, J=7.2Hz),

4.31(2H, dt, J=13.6Hz, 3.6Hz), 7.67(1H, dd, J=8.8Hz, 2.2Hz),

7.76(1H, d, J=8.8Hz). 7.79(1H, d, J=2.2Hz)

実施例283

2-(N-(2-(2-ピリジル) エチル)) メチルアミノー<math>4-(3, 4-x) チレンジオキシベンジル) アミノー6-クロロキナブリン 二塩酸塩

·分子式 : C24H22ClN5O2·2HCl

・収率(%);94

・融点(℃):234~236 (分解)

· Mass m/e ; 448(M+1)+

• $\dot{N}MR$ δ (DMSO-d₆);

3.2~3.3(5H.br), 4.12(2H.br), 4.61(2H.br), 5.97(2H.s),

6.82(1H, brd), 6.88(1H, brd), 7.00(1H, s), 7.74(2H, br),

7.86(1H. dd. J=9.2Hz. 2.0Hz). 8.01(1H. br). 8.26(1H. br).

8.57(1H, d, J=2.0Hz), 8.74(1H, br), 10.16(1H, brs), 12.12(1H, brs)

実施例284

2-(4-(カルボキシピペリジノ)-4-(3,4-ジヒドロキシベンジル) アミノー6-クロロキナゾリン

·分子式 ; C21H21ClN4O4

・収率(%);95

・融点(℃);216~218(分解)

• Mass m/e; $429(MH^+)$

• NMR δ (DMSO-d₆) :

1.38~1.47(2H.m), 1.80~1.84(2H.m), 2.44~2.49(1H.m),

2.93~3.00(2H, m), 4.48(2H, d, J=5.6Hz), 4.57~4.61(2H, m),

6.60~6.65(2H.m), 6.74(1H.d.J=1.6Hz), 7.24(1H.d.J=8.8Hz),

7.46(1H, dd, J=8.8Hz, 2.0Hz), 8.15(1H, d, J=2.0Hz), 8.48(1H, brs),

8.675(1H, s), 8.75(1H, s), 12.14(1H, brs)

実施例 2 8 5

2, 6-ジクロロー4-(5-ヒドロキシベンチル)アミノキナゾリン

·分子式 ; C13H15Cl2N30

・収率(%);82

・融点(℃);134~135

• Mass m/e; $300(M+1)^+$

• NMR δ (CDCl₃);

1.53(2H, m), 1.65(2H, m), 1.76(2H, m), 3.63(2H, m), 3.66(2H, m),

7.61(1H, dd, J=8.8Hz, 2.4Hz). 7.67(1H, d. J=8.8Hz), 7.85(1H, brs).

8. 20(1H, d, J=2.4Hz)

実施例286

WO 93/07124 PCT/JP92/01258

2-(4-カルボキシピペリジノ)-4-(5-ニトロキシペンチル)アミノー 6-クロロキナゾリン

·分子式 ; C19H24ClN5O5

・収率(%);80

・融点(℃);176~179 (分解)

· Mass m/e ; $438(MH^+)$

• NMR δ (DMSO-d₆);

1.34~2.00(10H, m), 2.57~2.64(1H, m), 3.18~3.59(4H, m),

4.44~4.58(4H,m), 7.72~7.86(2H,m), 8.39~8.41(1H,m).

12.31(2H, brs)

実施例 2 8 7

2- (カルボキシメチル) メチルアミノ-4- (3-ピリジルメチル) アミノー 6-クロロキナゾリン

·分子式 ; C17H16ClN5O2

・収率(%):97

・融点(℃);222~223

• Mass m/e : 358(M+1)

• NMR δ (DMSO-d₆):

3.10(3H.s), 4.22(2H.brs), 4.63(2H.brs), 7.31(2H.m), 7.48(1H.m).

7.72(1H.m), 8.14(1H.d.J=2.4Hz), 8.43(1H.d.J=4.8Hz), 8.59(1H.m),

8.66(1H, brs)

実施例288

2-(N-(3-カルボキシプロピル)-N-メチルアミノ<math>)-4-(3-ピリ ジルメチル) アミノ-6-クロロキナゾリン

·分子式 ; C19H20ClN5O2

・収率(%);41

・融点(℃);110~112

• Mass m/e : 386(M+1)

• NMR δ (DMSO-d₆);

1.67(2H.brs), 2.09(2H.m), 3.02(3H.s), 3.53(2H.t, J=6.8Hz),

4.67(2H.d.J=5.6Hz), 7.24(2H.d.J=8.8Hz), 7.31(1H.dd.J=8.0Hz.4.8Hz).

WO 93/07124 PCT/JP92/01258

7.47(1H, dd, J=8.8Hz, 2.0Hz), 7.73(1H, d, J=8.0Hz), 8.13(1H, d, J=2.0Hz),

8.41(1H, d, J=4.8Hz). 8.58(1H, s). 8.62(1H, brs). 12.04(1H, brs)

実施例 2 8 9

2-(4-カルボキシピペリジノ) - 4-(2-ピリジルメチル) アミノー<math>6-クロロキナゾリン

·分子式 ; C20H20ClN5O2

· 収率 (%);92

・融点(℃);235~237

· Mass m/e : 398(M+1)

- NMR δ (DMSO-d₆) :

1.25~1.45(2H.m), 1.71~1.83(2H.m), 2.45~2.54(1H.m),

2.93~3.10(2H, m), 4.37~4.48(2H, m), 4.77(2H, d, J=5.5Hz),

7.25(1H. dd, J=7.7Hz, 5.0Hz), 7.37(1H, d, J=7.7Hz), 7.48(1H, brs),

7.63(1H.brs), 7.73(1H.td.J=7.7Hz.1.6Hz), 8.34(1H.brs),

8.51(1H, brd, J=5.0Hz), 12.23(1H, brs)

<u> 実施例290</u>

2-(4-カルボキシピペリジノ)-4-(3-ピリジルメチル) アミノー<math>6-クロロキナゾリン

·分子式 ; C20H20ClN5O2

• 収率(%);93

・融点(℃);>250

• Mass m/e; 398(M+1)

• NMR δ (DMSO-d₆):

1.45~1.60(2H,m), 1.84~1.97(2H,m), 2.58~2.68(1H,m),

3. $25\sim3$. 45(2H, m), 4. $45\sim4$. 54(2H, m), 4. 80(2H, d, J=5.7Hz),

7.41(1H, dd, J=7.9Hz, 4.8Hz), 7.82(1H, dd, J=9.0Hz, 2.0Hz),

7.86 \sim 7.96(2H.m), 8.50(1H.d.J=4.8Hz), 8.55(1H.d.J=1.6Hz).

8. 69(1H, s)

実施例291

2- (4-カルボキシピペリジノ) - 4- (4-ピリジルメチル) アミノ-6-クロロキナゾリン

WO 93/07124

·分子式 ; C20H20ClN5O2

• 収率(%);89

・融点 (℃) ;167 ~168

· Mass m/e ; 398(M+1)

• NMR δ (DMSO-d₆) ;

1.24~1.36(2H,m), 1.68~1.77(2H,m), 2.40~2.49(1H,m),

2.86~2.96(2H, m). 4.42~4.50(2H, m). 4.66(2H, d, J=5.7Hz),

7.28(1H, d, J=9.0Hz), 7.34(2H, d, J=6.0Hz), 7.51(1H, dd, J=9.0Hz, 2.4Hz),

8.18(1H. d. J=2.4Hz). 8.47(2H. d. J=6.0Hz). 8.74(1H. t. J=5.7Hz)

実施例 2 9 2

2-(6-ヒドロキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 860mgをピリジン15mlに溶解し、氷冷下メチルクロリド 570mgを加え、10時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。乾燥後、溶媒を濃縮し、粗<math>2-(6-トシルオキシヘキシルオキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 1.2gを得た。

この租生成物にヨウ化ナトリウム3g、ジメチルホルムアミド30mlを加え、60 ℃で1時間加熱した。水を加え、酢酸エチルで抽出した。有機層を塩化ナトリウ ム水溶液で洗い、乾燥後、濃縮した。シリカゲルカラムクロマトグラフィーで精製し、2-(6-3-1)では、2

2-(6-ヨードへキシルオキシ)-4-(3, 4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 410mgをアセトニトリル15mlに懸濁し、硝酸銀 900mgを加え、60℃で1時間加熱した。水、酢酸エチルを加え、不溶物をセライト速去し、有機層を分取し、乾燥後、シリカゲルカラムクロマトグラフィーに付し、標題化合物を 340mg得た。

·分子式 ; C_{2 2}H_{2 3}C1N₄O₆ (474.5)

・収率(%):95

・融点(℃);121~122

· Mass : 475 (MH+)

• NMR δ (CDCl₃) :

1. $42\sim1.59(4H, m)$, 1. $70\sim1.89(4H, m)$, 4. 43(4H, q, J=6.8Hz),

4.73(2H, d, J=4.4Hz), 5.95(2H, s), 6.28(1H, br), 6.77(1H, d, J=8.0Hz),

6.83(1H, d, J=8.0Hz), 6.85(1H, s), 7.54(1H, d, J=8.8Hz),

7.58(1H, d, J=8.8Hz), 7.66(1H, s)

実施例293

2-(3-スルホキシプロポキシ)-4-(3,4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン ナトリウム塩

2-(3-ヒドロキシプロポキシ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン1g、三酸化硫黄トリメチルアミン錯体 540 mgをピリジン10mlに懸濁し、室温で一夜攪拌する。酢酸エチルを加え、結晶を遮取する。結晶をメタノールに懸濁し、1N水酸化ナトリウムを加え溶解する。この溶液にエーテルを加えると結晶が析出する。これを遮取して標題化合物を400 mg (32%) 得た。

·分子式 ; C18H17ClN3NaO7S (489.5)

- 収率(%):32

・融点(℃);190~192 (分解)

• Mass ; 490 (MH+)

• NMR δ (DMSO-d₆);

1.90~1.95(2H.m), 3.82(2H.t.J=6.4Hz), 4.28(2H,t,J=6.8Hz).

4.61(2H, d, J=5.6Hz), 5.95(2H, s), 6.84(2H, s), 6.98(1H, s),

7.50(1H, d, J=8.8Hz), 7.64(1H, dd, J=8.8Hz, 2.4Hz), 8.84(1H, d, J=2.4Hz),

8. 79(1H, t, J=1. 6Hz)

実施例294

2-(4-エトキシカルボニルピペリジノ) カルボニル-4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン 塩酸塩

2-カルボキシ-4-(3,4-メチレンジオキシベンジル)アミノー6-ク

ロロキナゾリン0.78g(2.2ミリモル)、イソニペコチン酸エチル0.50g(3.2ミリモル)のジメチルホルムアミド7μ1溶液に、氷冷攪拌下、シアノリン酸ジエチル0.50ml(3.3ミリモル)のジメチルホルムアミド3ml溶液、トリエチルアミン0.50ml(3.6ミリモル)を順次滴下し、30分間氷冷攪拌した後、室温にて3時間攪拌した。反応液に水を注ぎ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した。濾過後、減圧下溶媒を留去し、塩酸-エタノール-エーテルより結晶化させ、標題化合物0.96gを得た。

·分子式 ; C₂₅H₂₅ClN₄O₅·HCl

·収率(%);82

・融点(℃);205~206(分解)

• Mass $m/e : 497(M+1)^+$

• NMR δ (DMSO-d₆);

1.18(3H, t, J=7.2Hz), 1.51(2H, m), 1.70(1H, m), 1.95(1H, m), 2.66(1H, m),

3.02(1H.m), 3.11(1H.m), 3.62(1H.m), 4.08(2H.q.J=7.2Hz), 4.31(1H.m),

4.71(1H, dd, J=14.9Hz, 6.0Hz), 4.78(1H, dd, J=14.9Hz, 6.0Hz).

5.97(2H.s), 6.84(1H.d, J=8.0Hz), 6.87(1H.dd, J=8.0Hz, 1.2Hz).

6.97(1H, d. J=1.2Hz), 7.82(1H, d, J=9.2Hz), 7.97(1H, dd, J=9.2Hz, 2.0Hz),

8.67(1H, d, J=2.0Hz), 10.13(1H, brs)

実施例295

2-(N-(2-スルホエチル) カルバモイル) -4-(3, 4-メチレンジオ キシベンジル) アミノー<math>6-クロロキナゾリン 塩酸塩

2-カルボキシー4-(3, 4-メチレンジオキシベンジル) アミノー6-クロロキナゾリン0.50g(1.4ミリモル)、タウリンナトリウム塩0.28g(1.9ミリモル)のジメチルホルムアミド15ml溶液に、氷冷攪拌下、シアノリン酸ジエチル0.60ml(3.8ミリモル)、トリエチルアミン0.90ml(6.4ミリモル)を順次滴下し、数日間室温攪拌した。反応液に1N塩酸10mlを加え、水を加え、析出晶を遮取し、水で洗った後、風乾し、標題化合物0.61gを得た。

·分子式 ; C10H17ClN4O6S·HCl

• 収率(%);93

• NMR δ (DMSO-d₆);

2.76(2H, t. J=6.4Hz), 3.67(2H, q, J=6.4Hz), 5.01(2H, d, J=5.6Hz),

5.99(2H,s), 6.88(1H,d,J=7.6Hz), 7.05(1H,dd,J=7.6Hz),

7.11(1H, d, J=1.6Hz), 8.09(1H, dd, J=8.8Hz, 2.0Hz).

8.13(1H.d.J=8.8Hz), 8.68(1H.d.J=2.0Hz), 9.97(1H.t.J=5.6Hz),

10.55(1H.brs)

実施例296

2-(4-)スーカルボキシシクロヘキシル)-4-(3,4-)チレンジオキシベンジル)アミノー6-クロロキナゾリン

a) 2-(4-x)+2)カルボニルシクロヘキシルカルボニル) アミノー5- クロロベンツアミド

2-アミノー5-クロロベンツアミド 塩酸塩1.23g、N, N-ジイソプロピ

ルエチルアミン 3 ml、テトラヒドロフラン 100mlの混合物に、室温で、4-エトキシカルボニルシクロヘキサンカルボニルクロリド 1.5gを加え、室温で一晩反応させた。水を加え、酢酸エチルで抽出し、水、飽和食塩水で洗った後、硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(30~35%酢酸エチル/ヘキサン)に付し、標題化合物 1.5gを得た。(シス、トランスの混合物)

- a)で得た化合物 1.3gをエタノール20mlに懸濁し、そこへ室温でカリウム tープトキシド 320mgを3回に分けて加え、室温で一晩反応させた。反応液を一部濃縮し、水を加え、次いで1N塩酸 3.5mlを加え、析出した結晶を濾取し、水洗後、五酸化リン上で真空乾燥し、標題化合物1.16gを得た。(シス、トランスの混合物)
- c) 2-(4-シス-エトキシカルボニルシクロヘキシル)-4,6-ジクロロキナゾリン
- b)で得た化合物 1.0gにオキシ塩化リン20mlを加え、2時間加熱還流した。 反応液を濃縮し、残渣にクロロホルム50mlを加えて溶解し、氷冷した飽和炭酸水 素ナトリウム水溶液に注ぎ、クロロホルム層を取り、水層をクロロホルム30mlで 抽出し、合わせたクロロホルム層は飽和食塩水で洗い、硫酸マグネシウムで乾燥 後、シリカゲルベッドを通して濾過した。シリカゲルは10%酢酸エチル/ヘキサンで洗い、濾液を合わせて濃縮し、残渣をシリカゲルカラムクロマトグラフィー (5%酢酸エチル/ヘキサン)に付し、標題化合物 145mgを得た。
- NMR δ (CDCl₃) :
 - 1.28(3H, t, J=7.2Hz), 1.69 \sim 1.78(2H, m), 1.92 \sim 2.02(2H. m),
 - $2.05\sim2.21(4H, m)$, $2.61\sim2.68(1H, m)$, $3.05\sim3.13(1H, m)$,

PCT/JP92/01258

- 4.17(2H, q. J=7.2Hz), 7.83(1H.dd, J=9.2Hz, 2.4Hz), 7.94(1H, d, J=9.2Hz),
- 8. 19(1H. d. J=2. 4Hz)

同時により極性の高い成分として2-(4-トランス-エトキシカルボニルシクロヘキシル)-4, 6-ジクロロキナゾリン 470mgを得た。

- NMR δ (CDC1₃) :
 - 1.28(3H, t, J=7.2Hz). 1.57~1.69(2H, m), 1.71~1.84(2H, m),
 - 2.13~2.24(4H.m). 1.41(1H.tt.J=12.2Hz.3.5Hz).
 - 2.99(1H, tt. J=12.2Hz. 3.5Hz), 4.15(2H, q, J=7.2Hz),
 - 7.84(1H, dd. J=9.2Hz, 2.4Hz), 7.94(1H, d, J=9.2Hz), 8.20(1H, d, J=2.4Hz)
- d) 2-(4-)スーエトキシカルボニルシクロヘキシル) -4-(3, 4-) メチレンジオキシベンジル) アミノー6-クロロキナゾリン
- c)で得た化合物 145mg、3,4-メチレンジオキシベンジルアミン80mg、トリエチルアミン20μ1、イソプロピルアルコール5mlの混合物を80℃で3時間反応させ、反応液を濃縮し、酢酸エチルー水で抽出した。酢酸エチル層は、水、飽和食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15%酢酸エチル/ヘキサン)に付し、標題化合物190mg を得た。
- NMR δ (CDCl₃);
 - 1.25(3H, t. J=7.2Hz), 1.66~1.75(2H, m), 1.84~1.72(2H. m),
 - 2.05~2.23(4H.m), 2.60~2.66(1H.m), 2.85~2.93(1H.m).
 - 4. 15(2H, q, J=7. 2Hz). 4. 74(2H, d, J=5. 6Hz). 5. 72(1H, t, J=5. 6Hz),
 - 5.96(2H.s). 6.79(1H.d.J=8.0Hz). 6.85~6.90(2H.m). 7.58~7.62(2H.m).
 - 7.74(1H, d, J=9.6Hz)
- e) 2-(4-)-2-カルボキシシクロヘキシル) -4-(3, 4-)チレン ジオキシベンジル) アミノー 6-クロロキナゾリン

d)で得られた化合物にエタノール25ml、1N水酸化ナトリウム水溶液2mlを加え、60℃で8時間、さらに加熱還流で3時間反応させた。反応液を室温まで冷却し、1N塩酸水溶液2mlを加え、部分濃縮した。析出した結晶を遮取した後、水、ジエチルエーテルで洗い、五酸化リン上で真空乾燥し、標題化合物 138mgを得た。

· 分子式 : C23H22ClN3O4

· 収率(%):77

・融点(℃):152~153

• Mass m/e : 440(M+1)

• NMR δ (DMSO-d₆);

1.54~1.64(2H, m), 1.66~1.76(2H, m), 1.89~2.02(4H, m),

2.69~2.77(1H, m), 4.63(2H, d, J=5.6Hz), 5.96(2H, s),

6.84(1H, d, J=8.0Hz) 6.89(1H, dd, J=8.0Hz, 1.6Hz), 6.95(1H, d, J=1.6Hz),

7.63(1H, d, J=8.8Hz), 7.71(1H, dd, J=8.8Hz, 2.4Hz), 8.36(1H, d, J=2.4Hz),

8. 71 (1H. t. J=5. 6Hz)

実施例297

a) 2-(4-h)ランスーエトキシカルボニルシクロヘキシル) -4-(3, 4-x)

実施例296のc)で得られたトランス異性体 145mgを用い、実施例296のd)と同様の操作を行い、標題化合物 180mgを得た。

- NMR δ (CDCl₃) :
 - 1.27(3H, t, J=7.2Hz), 1.54~1.67(2H, m), 1.70~1.83(2H, m),
 - 2.08~2.17(4H, m), 2.39(1H, tt, J=12.2Hz, 3.2Hz).
 - 2.79(1H. tt. J=12.2Hz, 3.2Hz), 4.14(2H, q. J=7.2Hz), 4.76(2H, d. J=5.5Hz),

á,

- 5.82(1H. t, J=5.5Hz), 5.96(2H.s), 6.79(1H,d,J=7.9Hz).
- 6.86(1H, dd, J=7.9Hz, 1.6Hz), 6.90(1H, d, J=1.6Hz), 7.59~7.63(2H, m),
- 7. 73(1H, d, J=7. 9Hz)
- b) 2-(4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1) 2-(3, 4-1)
- a) で得られた化合物を実施例296のe) と同様に加水分解し、標題化合物163mg を得た。
- ·分子式 ; C23H22ClN3O4
- · 収率(%);96
- ・融点 (℃) ;245 ~246
- Mass m/e : 440(M+1)
- ·NMR δ(DMSO-d₆);
 - 1.38~1.50(2H,m), 1.55~1.68(2H,m), 1.94~2.04(4H,m),
 - 2.34(1H.tt, J=11.9Hz, 3.1Hz), 2.60(1H.tt, J=11.9Hz, 3.1Hz).
 - 4.66(2H, d, J=5.7Hz), 5.97(2H, s), 6.85(1H, d, J=8.1Hz),
 - 6.88(1H, dd, J=8.1Hz, 1.5Hz). 6.98(1H, d, J=1.5Hz). 7.63(1H, d, J=9.0Hz),
 - 7.72(1H. dd, J=9.0Hz. 2.4Hz). 8.37(1H. d, J=2.4Hz).
 - 8.71(1H.brt, J=5.7Hz), 12.04(1H.s)

実施例 2 9 8

2 - (4 - 1) + (3 - 1) +

a) $4 - (4 - \sqrt{1 + 2} + \sqrt{1 + 2$

4-アミノベンゼン-1, 3-ジカルボキサミド 3.6g、N, N-ジメチルアニリン5 ml、テトラヒドロフラン50mlの混合物に4-メトキシカルボニルシクロヘキサンカルボニルクロリド 5.1gを室温で加え、そのまま一晩反応させた。反応液に水を加え、析出した結晶を濾取し、水、ジエチルエーテルで洗った後、乾燥して、標題化合物5.77gを得た。

- b) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++) 2-(4-x++)
- a)で得た化合物 5.7gをメタノール 200mlに懸濁し、カリウム tープトキシド1.84gを加え、室温で一晩反応させた。反応液に水、濃塩酸を加え、酸性にして、生じた結晶を濾取した後、水、ジエチルエーテルで洗い、乾燥し、標題化合物5.04gを得た。
- c) <u>2-(4-トランス-メトキシカルボニルシクロヘキシル)-4-クロロ</u> -シアノキナゾリン
- b) で得た化合物 2.0g、塩化リチウム 2.0g、オキシ塩化リン40mlの混合物 を 6 時間加熱環流した。反応液中の不溶物を濾去した後、濃縮し、残渣をシリカゲルカラムクロマトグラフィー(10%酢酸エチル/ヘキサン)に付し、トランス

体とシス体と分離し、標題化合物を 180mg得た。

- NMR δ (CDC1₃) :
 - 1.57~1.70(2H.m), 1.72~1.84(2H.m), 2.12~2.26(4H.m),
 - 2. 43(1H, tt. J=12. 3Hz, 3. 2Hz), 3. 03(1H, tt. J=11. 9Hz, 3. 0Hz).
 - 3.71(3H,s), 8.04(1H,dd,J=8.8Hz,1.6Hz),
 - 8.08(1H.dd, J=8.8Hz.0.5Hz), 8.62(1H.dd, J=1.6Hz.0.5Hz)
- d) 2-(4-h) 2-(3-y) 2-(3-y)
- c)で得られた化合物 180mg、3,4-メチレンジオキシベンジルアミン 100mg、トリエチルアミン 200μ1、イソプロピルアルコール5mlの混合物を80℃で1時間反応させた。反応液を濃縮し、酢酸エチルー水で抽出した。酢酸エチル層は飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10%酢酸エチル/ベンゼン)に付し、標題化合物 157mgを得た。
- NMR δ (CDCl₃) :
 - 1.55~1.68(2H, m). 1.70~1.82(2H, m). 2.10~2.18(4H, m).
 - 2. 42(1H, tt, J=12. 3Hz, 3. 2Hz), 2.81(1H, tt, J=11.9Hz, 3.0Hz), 3.70(3H, s).
 - 4.78(2H, d. J=5.5Hz). 6.96(2H, s). 6.20(1H, t, J=5.5Hz).
 - 6.80(1H.d. J=7.9Hz). 6.88(1H.dd. J=7.9Hz.1.6Hz). 6.90(1H.d. J=1.6Hz).
 - 7.82(2H.s), 8.11(1H.s)
- e) 2-(4-1)ランスーカルボキシシクロヘキシル) -4-(3, 4-1) -4 -(3, 4-1) -(
- d) で得られた化合物 157mg、1 N水酸化ナトリウム水溶液 1 ml、メタノール 3 ml、テトラヒドロフラン 6 mlの混合物を室温で24時間反応させた。1 N塩酸 1 mlを加え、さらに水 5 mlを加えて析出した結晶を濾取し、水洗後、乾燥して、標

題化合物 138mgを得た。

·分子式 ; C24H22N4O4

• 収率(%);91

・融点(℃);269~270

· Mass m/e; 431(M+1)

• NMR δ (DMSO-d₆);

1.38~1.50(2H, m), 1.55~1.68(2H, m), 1.95~2.04(4H, m),

2.24(1H, tt, J=11.9Hz, 3.1Hz), 2.63(1H, tt, J=11.9Hz, 3.1Hz),

4.68(2H, d, J=5.7Hz), 5.97(2H, s), 6.86(1H, d, J=7.9Hz),

6.90(1H, dd, J=7.9Hz, 1.5Hz), 6.99(1H, d, J=1.5Hz), 7.71(1H, d, J=8.8Hz),

8.01(1H, dd, J=8.8Hz, 1.6Hz), 8.82(1H, d, J=1.6Hz), 8.95(1H, t, J=5.7Hz)

実施例299

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

実施例296と同様の操作で標題化合物を得た。

• NMR δ (CDCl₃);

1.27(3H, t, J=7.1Hz), 3.93(2H, s), 4.22(2H, q, J=7.1Hz),

٠.

4.71(2H.d.J=5.5Hz), 5.83(1H.t.J=5.5Hz), 5.96(2H.s),

6.78(1H. d, J=7.9Hz), 6.85(1H. dd, J=7.9Hz, 1.6Hz),

6.89(1H.d.J=1.6Hz), 7.60~7.65(2H.m), 7.74(1H.d.J=9.0Hz)

b) $2-\pi \nu \sqrt{1+2\nu}$ $2-\pi \nu \sqrt{1+2\nu}$ $2-\pi \nu \sqrt{1+2\nu}$ $2-\pi \nu \sqrt{1+2\nu}$ $2-\pi \nu \sqrt{1+2\nu}$

a) で得られた化合物 200mg、エタノール20mlの混合物を氷冷し、ここにアンモニアガスを通じて飽和させ、ゆっくり室温に戻して3日間反応させた。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(0~20%エタノール/酢酸エチル)に付し、標題化合物24mgを得た。

実施例300

2-(4-カルバモイルピペリジノ)-4-(3,4-メチレンジオキシベンジル)アミノ-6-クロロキナゾリン 3.8g (0.0086モル)に塩化チオニル75ml、アセトニトリル 150mlを加え、1時間加熱還流した。反応液を減圧下溶媒留去し、残渣に飽和重曹水、トリエチルアミンを加え、酢酸エチルで抽出する。有機層を飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥し、濾過、減圧下溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル-n-ヘキサン)にて精製後、クロロホルム-n-ヘキサンより再結晶して、標題化合物 3.1gを

得た。

·分子式 ; C₂ 2H₂ 0 ClN 5 O₂

• 収率(%);85

・融点(℃);169~170

• NMR δ (CDC1₃) ;

1.88(2H, m), 1.95(2H, m), 2.87(1H, m), 3.73(2H, m), 4.25(2H, m),

4. 67(2H, d, J=5. 6Hz), 5. 65(1H, t, J=5. 6Hz), 5. 97(2H, s).

6.79(1H, d, J=8.0Hz), 6.84(1H, dd, J=8.0Hz.1.6Hz),

6.87(1H, d, J=1.6Hz), 7.39(1H, d, J=8.8Hz), 7.44(1H, d, J=2.4Hz),

7. 46(1H, dd, J=8. 8Hz, 2. 4Hz)

実施例301

2-(4-(1H-テトラゾール-5-イル) ピペリジノ) -4-(3,4-メ チレンジオキンベンジル) アミノー6-クロロキナゾリン 塩酸塩

2-(4-シアノピペリジノ)-4-(3, 4-メチレンジオキシベンジル) アミノ-6-クロロキナゾリン0.50g(0.0012モル)、トリメチルスタニルアジド0.50g(0.0024モル)にトルエン10mlを加え、二昼夜加熱還流した。反応液を減圧下溶媒留去し、残渣をエタノール10mlに懸濁させ、1 N塩酸10mlを加え、数時間室温にて攪拌した。結晶を濾取、水で洗った後、風乾し、標題化合物0.60g

WO 93/07124 PCT/JP92/01258

を得た。

·分子式 ; C22H21CIN8O2·HCI

· 収率(%);定量的

・融点(℃);212~214

• Mass m/e : 465(M+1)+

- NMR δ (DMSO-d₆);

1.80(2H, m), 2.17(2H, m), 3.45(2H, m), 4.62(2H, m), 4.69(2H, d, J=5.6Hz),

5.97(2H, s), 6.86(1H, d, J=7.6Hz), 6.91(1H, dd, J=7.6Hz, 1.6Hz),

7.01(1H. d, J=1.6Hz), 7.84(1H. dd, J=8.8Hz, 1.6Hz), 7.88(1H, d, J=8.8Hz),

8.51(1H.d., J=1.6Hz), 10.13(1H.brs), 12.28(1H.brs)

実施例302

2-(1H-テトラゾール-5-イル)-4-(3,4-メチレンジオキシベンジル) アミノー <math>6-クロロキナゾリン 塩酸塩

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

実施例301の方法に準じて標題化合物を得た。

·分子式 ; C17H12C1N7O2·HC1

• 収率(%);37

- 融点 (℃); 201~204 (分解)

· Mass m/e : 382(MH) +

• NMR δ (DMSO-d₆) :

4.90(2H, d, J=5.6Hz), 5.97(2H, s), 6.87(1H, d, J=8.0Hz),

6.98(1H, dd, J=8.0Hz, 2.0Hz), 7.11(1H, d, J=2.0Hz), 7.92~7.94(2H, m),

8.60(1H, d, J=1.6Hz), 9.53(1H.brs)

実施例303~410

前記のいずれかの方法で、以下に示す化合物を合成した。

実施例303

2-クロロ-4-(3, 4-メチレンジオキシベンジル) アミノー6-メトキシ -7-シクロペンチルオキシキナブリン

$$\begin{array}{c} & & & \\ & &$$

·分子式 ; C22H22C1N3O4

· 収率(%);88

・融点(℃):176~177

• Mass; $428(M+1)^+$

• NMR δ (CDCl₃);

1.64(2H,m), 1.82(2H,m), 1.93(2H,m), 2.02(2H,m), 3.90(3H,s),

4.74(2H, d, J=5.6Hz), 4.85(1H, m), 5.72(1H, t, J=5.6Hz), 5.96(2H, s),

6. 79(1H, d, J=7. 6Hz), 6. 79(1H, s), 6. 87(1H, dd, J=7. 6Hz, 1. 6Hz),

6. 90(1H, d, J=1, 6Hz), 7. 11(1H, s)

龜		
NMR	δ (DMSO-d _t); 1.70(2H, brs), 1.90(2H, m), 2.54(1H, m) 8.11(2H, m), 3.98(2H, m) 4.40(2H, d, J=6.4Hz), 5.93(2H, s) 6.80(2H, brs), 6.84(1H, brs) 7.02(1H, m), 7.28(1H, m), 7.44(1H, brs) 7.68(1H, d, J=8.8Hz), 12.24(1H, brs)	δ (DMSO-d ₄): 1.36(2H, m), 1.79(2H, m), 2.47(1H, m) 2.96(2H, t, J=11.2Hz) 4.55(2H, d, J=5.6Hz), 4.58(2H, m) 5.93(2H, s), 6.82(2H, s) 6.92(1H, s) 7.05(1H, dd, J=8.8Hz, 2.4Hz) 7.23(1H, d, J=2.4Hz) 8.00(1H, d, J=8.8Hz) 8.58(1H, t, J=5.6Hz), 12.15(1H, brs)
Mass	441 (M+1)	441 (M+1)
収容 (%)	97	97
融点収率(*C)(%)	264- 265	258- 259
ag.	-Мсоон	NH I
25 SA	NH -	-NC00H
. A	23	C1
実施例	304	305

-

殹

袱		
響		
NMR	δ (CDC1s) : 1. 25(3H, t, J=7. 2Hz), 1. 64-1. 77(2H, m) 1. 94-2. 01(2H, m), 2. 52-2. 61(1H, m) 3. 04-3. 14(2H, m), 3. 25(3H, s) 3. 91(3H, s), 4. 14(3H, q, J=7. 2Hz) 4. 72-4. 81(2H, m), 4. 74(2H, s) 6. 93(1H, d, J=8. 4Hz) 7. 19(1H, dd, J=8. 4Hz) 7. 37(1H, d, J=8. 4Hz) 7. 43(1H, d, J=8. 4Hz) 7. 43(1H, d, J=8. 4Hz) 7. 58(1H, dd, J=8. 4Hz) 8. 06(1H, d, J=2. 0Hz)	δ (DMSO-d ₆); 1. 35-1. 50(2H, m), 1. 79-1. 86(2H, m) 2. 50-2. 55(1H, m), 2. 99-3. 08(2H, m) 3. 30(3H, s), 4. 54-4. 62(2H, m) 4. 81(2H, s), 5. 98(2H, s) 6. 82(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 92(1H, d, J=1. 6Hz) 7. 33(1H, d, J=2. 4Hz) 7. 71(1H, dd, J=8. 4Hz, 1. 6Hz) 8. 27(1H, d, J=1. 6Hz)
Mass	494(MH+)	446(MH+)
(%)	93	44
題 点 (で)	ፓ €₿ファス	196- 198
R°	Me N C1	Me N N N N N N N N N N N N N N N N N N N
RS	-N∕-cooet	М
R²	N	CN
実施例	306	307
张	306	307

æ

表

金额		
NMR	δ (DNSO-d _e); 1. 97(2H, quintet, J=7. 4Hz) 2. 26(2H, t, J=7. 4Hz) 2. 72(2H, t, J=7. 4Hz) 3. 82(3H, s), 4. 67(2H, d, J=5. 7Hz) 7. 08(1H, d, J=8. 6Hz) 7. 34(1H, d, J=8. 6Hz) 7. 47(1H, d, J=2. 2Hz) 7. 64(1H, d, J=9. 0Hz) 7. 74(1H, d, J=9. 0Hz) 8. 37(1H, d, J=9. 0Hz) 8. 76(1H, t, J=5. 7Hz)	δ (DMSO-d ₄); 1. 28-1. 88(10H, m), 2. 46-2. 48(1H, m) 2. 91-3. 01(2H, m), 3. 35-3. 42(4H, m) 4. 39(1H, brs), 4. 57-4. 63(2H, m) 7. 22(1H, d, J=8. 8Hz) 7. 43(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 11(1H, brt, J=4. 0Hz) 8. 15(1H, d, J=2. 4Hz)
Mass	420 (M+1)	393(MH+)
収率 (%)	66	17
融点 収率(°C)(%)	180-	> 250
Re	IIN C1	HO NH
. R.	Н002	H000-C00H
7. 2.	10	5
张 福室	308	308

摋

米		
备		
NMR	δ (DNSO); 0. 23-0. 29(2H, m). 0. 41-0. 48(2H, m) 1. 11-1. 22(1H, m), 1. 40-1. 52(2H, m) 1. 81-1. 87(2H, m), 2. 45-2. 52(1H, m) 2. 93-3. 01(2H, m), 3. 26-3. 35(2H, m) 4. 60-4. 67(2H, m) 7. 25(1H, d, J=9. 2Hz) 7. 47(1H, dd, J=9. 2Hz, 2. 4Hz) 8. 14(1H, m), 8. 16(1H, d, J=2. 4Hz) 12. 18(1H, brs)	δ (DMSO-d _e) : 1.75(2H, m), 1.98(2H, m), 2.64(1H, m) 3.39(2H, m), 4.23(2H, brd, J=13.2Hz) 7.71(1H, d, J=8.8Hz) 7.84(1H, dd, J=8.8Hz, 2.0Hz) 7.93(1H, d, J=2.0Hz)
Mass	361 (MH+)	326(M+1)
坂裕 (%)	100	43
融点 収率 (°C) (%)	> 250	172- 174
R°	HE -	—N——Соон
č.	— N—Соон	C1
R².	: :	C]
	310	

ж<u>т</u>

备	塩酸塩	
NMR	δ (DNSO-d ₄); 1. 60(2H, m), 1. 74(2H, m) 1. 97(4H, brt, J=15. 2Hz), 2. 68(2H, m) 3. 32(2H, t, J=11. 6Hz) 3. 53(2H, t, J=11. 6Hz) 4. 36(2H, d, J=13. 6Hz) 4. 57(2H, d, J=13. 2Hz) 7. 82(1H, d, J=9. 2Hz) 7. 86(1H, s), 8. 18(1H, d, J=9. 2Hz) 13. 0(1H, brs)	δ (DMSO-d ₆); 1. 21(3H, t, j=7. 2Hz), 1. 75(2H, brm) 1. 95(2H, brm), 2. 65(1H, m) 3. 14(2H, brm), 4. 00(2H, brm) 4. 10(2H, q, j=7. 2Hz) 4. 43(2H, d, j=6. 0Hz), 5. 94(2H, s) 6. 80(2H, brs), 6. 91(1H, brs) 7. 34(1H, brd, j=9. 2Hz) 7. 43(1H, dd, j=9. 2Hz) 7. 51(1H, dd, j=2. 4Hz) 7. 62(1H, d, j=2. 4Hz)
Mass	419(M+1)	469(M+1) [*]
京略 (%)	91	26
融点収率(*C)(%)	260-	159- 160
R.	-N ← C00H	-N - C00Bt
Rs	нооо-(N	O H
R	13	C1
実猫例	312	313

μX

米	· · · · · · · · · · · · · · · · · · ·	·
龕		
NMR	δ (DNSO-d ₆); 1. 75(2H, brm), 1. 94(2H, brm) 2. 56(1H, m), 3. 14(2H, brm) 3. 99(2H, brm), 4. 43(2H, d, J=6. 4Hz) 5. 94(2H, s), 6. 81(2H, brs) 6. 91(1H, brs), 7. 34(1H, brd, J=8. 8Hz) 7. 43(1H, brs) 7. 51(1H, dd, J=8. 8Hz, 2. 4Hz) 7. 62(1H, d, J=2. 4Hz)	δ (DMSO); 1, 22-1, 33(2H, m), 1, 36-1, 51(4H, m) 1, 69-1, 82(4H, m), 2, 25-2, 81(1H, m) 2, 97-3, 06(2H, m), 3, 32-3, 52(4H, m) 4, 29-4, 52(3H, m), 4, 72(2H, brs) 5, 98(2H, s), 6, 80-6, 92(2H, m) 7, 29(1H, d, J=9, 2Hz), 7, 45(1H, dd, J=9, 2Hz), 7, 60(1H, d, J=1, 2Hz)
Mass	441(M+1)*	527 (MH+)
坂津 (%)	89	89
融 点 収率 (°C) (%)	238-239 (分解点)	170 (分解点)
Re	-N-C00H	HO
R°	N-N-N-	NC00H
R ²	CI	
実施例	314	315

		۵
<u>.</u>		√_
	>	<u>"</u>
	N .	

ŕ,

NMR	δ (CDC1,); 1. 26(3H, t, J=7. 2Hz) 1. 66-1. 77(2H, m), 1. 93-2. 01(2H, m) 2. 51-2. 62(1H, m), 3. 09-3. 13(2H, m) 3. 23(3H, s), 4. 14(2H, q. J=7. 2Hz) 4. 74-4. 80(2H, m), 4. 79(2H, s) 5. 98(2H, s), 6. 80-6. 84(3H, m) 7. 42(1H, d, J=8. 8Hz) 7. 57(1H, dd, J=8. 8Hz) 8. 05(1H, d, J=2. 0Hz),
Mass	474 (MH+)
(%)	定量的
融点収率(*C)(%)	金 多 多 角
	Me _N
R°	-N-C00Bt
R ²	CN
実施例	316

魒

∽

被		
龜		·
NMR	δ (DMSO-d ₆); 1. 49(2H, m), 1. 88(2H, m), 2. 53(1H, m) 3. 08(2H, m), 3. 74(3H, s) 4. 58(2H, d, J=5. 2Hz), 4. 61(2H, m) 6. 71(11H, d, J=8. 0Hz), 6. 80(1H, dd, J=8. 0Hz, 2. 0Hz), 6. 99(1H, d, J=2. 0Hz), 7. 38(1H, brs) 7. 56(1H, brs), 8. 25(1H, brs) 8. 86(1H, s), 12. 19(1H, brs)	δ (DMSO-d ₆): 1. 48(2H, m). 1. 88(2H, m), 2. 54(1H, m) 3. 10(2H, m). 3. 72(3H, s), 4. 54(2H, m) 4. 56(2H, d, J=5. 6Hz) 6. 77(1H, dd, J=8. 0Hz) 6. 82(1H, d, J=2. 0Hz) 6. 84(1H, d, J=8. 0Hz) 7. 45(1H, brs), 7. 60(1H, brs) 8. 28(1H, brs), 8. 90(1H, s) 12. 21(1H, brs)
Mass	443(M+1)	443(N+1) [*]
収率(%)	定量的	92
融 点 収率 (°C) (%)	244-	254- 255 (分解点)
R*	HN OMe	HN OMe
R°	— N — Соон	— М— соон
R²	13	15
実施例	317	318

R. R.

χ. 1 ¢

卷	
NMR	δ (DMSO-d ₄); 3. 71(3H, s), 4. 57(2H, d, J=5. 6Hz) 6. 74(1H, dd, J=2. 0Hz) 6. 77(1H, d, J=2. 0Hz) 6. 84(1H, d, J=8. 4Hz) 7. 62(1H, d, J=8. 8Hz) 7. 79(1H, dd, J=8. 8Hz) 7. 79(1H, dd, J=8. 8Hz) 8. 46(1H, d, J=2. 4Hz) 8. 91(1H, s), 9. 22(1H, t, J=5. 6Hz)
Mass	350(M+1) ⁺
収率 (%)	58
融 点 収率 (*C) (%)	193-
Re	HN OMe
Rs	. 61
R2	13
実施例	319

... 52

衷

靴		·
每		
NMR	δ (CDC1 _s) : 1. 26(3H, t, J=7. 2Hz), 1. 72(2H, m) 1. 98(2H, m), 2. 56(1H, m), 3. 05(2H, m) 3. 88(3H, s), 4. 15(2H, q, J=7. 2Hz) 4. 68(2H, d, J=5. 2Hz), 4. 82(2H, m) 5. 56(1H, t, J=5. 2Hz), 5. 65(1H, brs) 6. 90(3H, m), 7. 39(1H, d, J=8. 8Hz) 7. 42(1H, dd, J=2. 4Hz) 7. 44(1H, dd, J=8. 8Hz, 2. 4Hz)	δ (CDCl ₃): 1. 26(3H, t, J=7. 2Hz), 1. 72(2H, m) 1. 97(2H, m), 2. 55(1H, m), 3. 04(1H, m) 3. 90(3H, s), 4. 15(2H, q, J=7. 2Hz) 4. 66(2H, d, J=5. 2Hz), 4. 80(2H, m) 5. 57(1H, t, J=5. 2Hz), 5. 68(1H, brs) 6. 83(1H, d, J=8. 0Hz) 6. 97(1H, dd, J=2. 0Hz) 7. 38(1H, d, J=2. 0Hz) 7. 41(1H, d, J=2. 4Hz) 7. 43(1H, dd, J=2. 4Hz) 7. 43(1H, dd, J=2. 4Hz)
Mass	471 (M+1) ⁺	471 (N+1)*
収率(%)	78	91.
融点収率(*C)(%)	173-	170-
R°	HN OMe	HN OMe
Rs	−N√−c00Bt	−N→C00Et
R2	. 13	C1
张	320	321

金	塩酸塩	塩酸塩
NMR	δ (DMSO-d ₄); 1. 53(2H, m), 1. 90(2H, m), 2. 62(1H, m) 3. 29(2H, m), 4. 41(2H, m) 4. 83(2H, d, J=5. 6Hz) 7. 74(1H, d, J=8. 4Hz) 7. 76(1H, d, J=8. 4Hz) 7. 85(1H, d, J=8. 4Hz) 7. 90(1H, d, J=8. 4Hz) 8. 15(1H, d, J=8. 4Hz) 10. 34(1H, brs), 12. 28(1H, brs)	δ (DMSO-d ₆); 1. 58(2H, m), 1. 95(2H, m), 2. 63(1H, m) 3. 32(2H, m), 4. 45(2H, m) 4. 62(2H, d, J=5. 2Hz), 5. 38(2H, brs) 6. 58(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 13(1H, d, J=8. 0Hz) 7. 13(1H, d, J=8. 0Hz) 7. 85(1H, d, J=8. 8Hz) 7. 85(1H, d, J=8. 8Hz) 8. 51(1H, s), 10. 14(1H, brs) 12. 22(1H, brs)
Mass	476(M+1)*	446(M+1)*
反略	66	65
融 点 収率 (°C) (%)	> 260	> 260
· &	HN I	HN NH 2
28	−N−С00Н	-N-C00H
R2	ເວ	61
実施例	322	323

-

## (Fig. 1)	
Ê	
	6. 70 (1H, d. J=8. 0Hz) 6. 75 (1H, d. J=8. 0Hz. 1. 6Hz) 7. 00 (1H, d. J=1. 6Hz) 7. 61 (1H, d. J=8. 8Hz) 7. 78 (1H, dd. J=8. 8Hz, 2. 4Hz) 8. 46 (1H, d. J=2. 4Hz), 8. 87 (1H, s) 8. 19 (1H, t. J=5. 6Hz)
Mass 476(M+1)*	350 (M+1) ⁺
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	. 11
融 (°C) 218- 219 (分解点)	186- 187
R ⁸	HN OME
R6	C1
R2 C1	13
张福 室 25.	325

Re Re

1 8

罴

*~~~~	₹ R
<u>.</u>	

*	y E	塩砂塩	
	NMR 5 (DMSO-d _e); 1. 198(3H, t, J=7. 2Hz) 1. 203(3H, t, J=7. 2Hz), 1. 65(2H, m) 1. 78(2H, m), 2. 01(4H, m), 2. 76(1H, m) 2. 82(1H, m), 3. 31(2H, m), 3. 55(2H, m) 4. 09(2H, q, J=7. 2Hz), 4. 41(2H, m) 4. 10(2H, q, J=7. 2Hz), 4. 41(2H, m) 4. 53(2H, m) 7. 84(1H, dd, J=8. 8Hz, 1. 6Hz) 7. 90(1H, d, J=8. 8Hz)		δ (DMSO-d _a); 4. 81 (2H, d, J=5. 6Hz) 7. 67 (1H, d, J=8. 4Hz) 7. 71 (1H, dd, J=8. 4Hz) 7. 74 (1H, dd, J=8. 4Hz) 7. 84 (1H, dd, J=8. 4Hz) 8. 11 (1H, d, J=2. 0Hz) 8. 44 (1H, d, J=2. 0Hz) 9. 39 (1H, t, J=5. 6Hz)
, , , , , , , , , , , , , , , , , , ,	MI & S S	475(M+1) ⁺	383(M+1)*
収率	(%)	92	71
滚板	(%)	175- 176	220- 221
	R* -N-C00Bt		HN - C1
80	R°		61
2	Ä	13	13
実	联福室 828		327

命	超極	塩酸塩
NMR	δ (DMSO-d _e): 1. 20(3H, t, J=7. 2Hz), 1. 51(2H, m) 1. 89(2H, m), 2. 72(1H, m), 3. 27(2H, m) 4. 08(2H, q, J=7. 2Hz), 4. 44(2H, m) 4. 82(2H, d, J=5. 6Hz) 7. 73(1H, d, J=8. 4Hz) 7. 76(1H, dd, J=8. 4Hz, 2. 0Hz) 7. 85(1H, dd, J=8. 8Hz, 2. 0Hz) 7. 92(1H, d, J=8. 8Hz, 2. 0Hz) 8. 14(1H, d, J=2. 0Hz) 12. 35(1H, brs)	δ (DMSO-d ₆); 1. 58(2H, m), 1. 95(2H, m), 2. 63(1H, m) 3. 32(2H, m), 4. 45(2H, m) 4. 62(2H, d, J=5, 2Hz), 5. 33(2H, brs) 6. 58(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 18(1H, d, J=8. 0Hz) 7. 13(1H, d, J=8. 0Hz) 7. 85(1H, d, J=8. 8Hz) 7. 89(1H, d, J=8. 8Hz) 10. 14(1H, brs), 12. 22(1H, brs)
Mass	504(M+1)*	446(M+1)*
長後(%)	73	65
融 点 顷率 (°C) (%)	230-231	> 260
ጽ	HN NO2	HN NH.
Rs	-N -cooet	-и—-соон
R ²		C1
実施例	328	329

誤

響

NMR	δ (CDC1 ₄); 1.95-2.10(3H, m). 2.37(1H, m) 3.58(3H, s), 4.05-4.20(2H, m) 5.58(1H, m), 5.93(1H, s), 5.94(1H, s) 6.78(1H, d, J=8.4Hz), 6.84(1H, s) 7.30(1H, d, J=10.0Hz), 7.35(1H, s) 7.74(1H, d, J=10.0Hz), 8.53(1H, s)	6 (DMSO-d ₆); 1.44(2H, m), 1.82(2H, m), 2.03(2H, m), 2.46(1H, m), 2.94(2H, m), 3.59(2H, m), 3.96(2H, t, J=6.0Hz), 4.62(2H, m), 5.91(2H, s), 1=6.0Hz), 4.62(2H, m), 5.91(2H, s), 1=8.4Hz, 2.4Hz) 6.32(1H, d ₁ , J=2.4Hz) 6.75(1H, d ₂ , J=8.4Hz) 7.22(1H, d ₃ , J=8.8Hz) 7.44(1H, d ₄ , J=8.8Hz) 8.05(1H, brt), 8.08(1H, d ₃ , J=2.4Hz) 12.14(1H, brt),
Mass		485(M+1)*
反译 (%)	85	88
融 点 収率 (*C) (%)	A 今 今 安	139- 140
8		AH NH
R. 8	Н	— N——С00Н
R²	ОМе	61
実施例	330	331

2 1

妆	型 砂 車	
雙	祖	
NMR	δ (DMSO-d ₆); 1. 18(3H, t, J=7, 2Hz), 1. 59(2H, m) 1. 95(2H, m), 2. 05(2H, m), 2. 72(1H, m) 3. 3(2H, m), 3. 71(2H, m) 3. 98(2H, t, J=6.0Hz) 4. 07(2H, q, J=7, 2Hz), 4. 48(2H, m) 5. 91(2H, s) 6. 29(1H, dd, J=8. 4Hz, 2. 4Hz) 6. 52(1H, d, J=2. 4Hz) 6. 52(1H, d, J=8. 4Hz), 7. 81(2H, brs) 8. 41(1H, brs), 9. 59(1H, brs)	δ (CDC1 ₈); 2. 21(2H, m), 3. 88(2H, m) 4. 16(2H, t, J=5. 4Hz), 5. 94(2H, s) 6. 39(1H, dd, J=8. 4Hz, 2. 8Hz) 6. 56(1H, d, J=2. 8Hz), 6. 72(1H, brs) 6. 74(1H, d, J=8. 4Hz) 7. 63(1H, d, J=2. 0Hz) 7. 66(1H, dd, J=8. 8Hz, 2. 0Hz) 7. 70(1H, d, J=8. 8Hz, 2. 0Hz)
Mass	513(N+1) ⁺	392(M+1)*
坂海(%)	97	87
融点仰率(°C)(%)	184- 185	148- 149
Re	HN O O	O NH
R.	−N ← C00Et	61
R2	01	C1
実施例	332	333

"H	N R.

Ø

表

2

တ	
0	

*	<u>, </u>		
a M N		δ (DMSO-d ₀); 1. 39(2H, m), 1. 80(2H, m), 2. 47(1H, m) 2. 96(2H, d, J=5, 6Hz) 4. 66(2H, d, J=5, 6Hz) 7. 15-7. 45(6H, m) 7. 48(1H, dd, J=9. 2Hz, 1. 6Hz) 8. 17(1H, d, J=1. 6Hz), 8. 64(1H, brs) 12. 15(1H, brs)	δ (CDC1 ₁); 1. 62-1. 79(2H, m), 1. 96-2. 03(2H, m) 1. 57-1. 64(1H, m), 3. 08-3. 18(2H, m) 3. 25(3H, s), 3. 91(3H, s) 4. 70-4. 79(2H, m), 4. 80(2H, s) 6. 93(1H, d, J=8. 4Hz) 7. 19(1H, dd, J=8. 4Hz) 7. 36(1H, d, J=8. 0Hz) 7. 45(1H, d, J=8. 9Hz) 7. 58(1H, d, J=8. 8Hz) 8. 06(1H, d, J=2. 0Hz)
N o a	IVI ca s s	397 (M+1)*	466(MH+)
反容	(%)	09	40
融点	(%) (2.)	240- 241 (分解点)	176-
8 0	N	NH -	Me _N C1
90	×	H000-C00H	-и соон
2,0	<u> </u>	13	CN
张‡	官室	334	335

松		
· 每		
NMR	δ (DMSO-d ₆): 3. 42(3H, s), 4. 93(2H, s), 5. 99(2H, s) 6. 86(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 90(1H, d, J=8. 0Hz) 6. 98(1H, d, J=1. 6Hz) 7. 73(1H, d, J=8. 4Hz) 8. 08(1H, dd, J=8. 4Hz, 2. 0Hz) 8. 63(1H, dd, J=2. 0Hz)	δ (DMSO-d ₆); 3. 44(3H, s), 3. 83(3H, s), 4. 95(2H, s) 7. 13(1H, d, J=8. 8Hz) 7. 34(1H, dd, J=8. 8Hz.) 7. 50(1H, d, J=2. 4Hz) 7. 74(1H, d, J=8. 8Hz) 8. 08(1H, dd, J=8. 8Hz.) 8. 65(1H, d, J=1. 6Hz)
Mass	353(MH+)	373 (MH+)
収率(%)	88	98
融 点 収率(*C) (%)	156- 158	178- 175
R°	Me N 1	Me _N _C1
R ⁵	61	C1
R²	CS	CN
実施例	336	337

#K

₩		
每		
NMR	δ (DMSO-d ₆); 3. 83(3H, s). 4. 75(2H, d, J=5. 6Hz) 7. 10(1H, d, J=8. 4Hz) 7. 38(1H, dd, J=2. 4Hz) 7. 53(1H, d, J=2. 4Hz) 7. 84(1H, d, J=8. 8Hz) 7. 88(1H, dd, J=8. 8Hz) 8. 50(1H, d, J=2. 0Hz) 9. 15(1H, brt, J=5. 6Hz)	6 (DMSO-d _e) : 1. 97(2H, quintet, J=7. 4Hz) 2. 26(2H, t, J=7. 4Hz) 2. 72(2H, t, J=7. 4Hz) 2. 72(2H, t, J=7. 4Hz) 4. 67(2H, d, J=8. 6Hz) 7. 08(1H, d, J=8. 6Hz) 7. 34(1H, d, J=8. 6Hz) 7. 47(1H, d, J=2. 2Hz) 7. 64(1H, d, J=9. 0Hz) 7. 74(1H, d, J=9. 0Hz) 8. 37(1H, d, J=2. 4Hz) 8. 76(1H, d, J=2. 4Hz) 8. 76(1H, t, J=5. 7Hz)
Mass	378 (M+1) ⁺	420(M+1)*
坂母 (%)	93	66
融点収率(*C)(%)	187- 188	180-
Re	HN C1	HN C1
9 24	— СООН	COOH
R2	61	13
東福 例	8888	888

nor

	命	西 黎 西		
	NMR	δ (DMSO-d _θ); 1. 20(3H, t, J=7. 2Hz), 1. 67(2H, m) 2. 01(2H, m), 2. 77(1H, m) 2. 89(2H, t, J=7. 2Hz), 3. 39(2H, m) 3. 75(2H, m), 4. 10(2H, q, J=7. 2Hz) 4. 56(2H, m), 5. 96(2H, s) 6. 69(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 80(1H, d, J=1. 6Hz) 7. 85(1H, d, J=1. 6Hz) 7. 95(1H, d, J=8. 8Hz) 8. 44(1H, d, J=2. 4Hz), 9. 69(1H, brs) 12. 34(1H, brs)	δ (DMSO-d ₆); 1. 50(2H, m), 1. 88(2H, m), 2. 52(1H, m) 2. 86(2H, t, J=7. 4Hz), 3. 03(2H, m) 3. 63(2H, m), 4. 65(2H, m), 5. 96(2H, s) 6. 69(1H, d, J=8. 0Hz), 6. 83(1H, s) 7. 27(1H, d, J=9. 2Hz) 7. 48(1H, dd, J=9. 2Hz) 8. 10(1H, d, J=2. 4Hz), 8. 17(1H, brs) 12. 19(1H, brs)	
	Mass	483(M+1)*	455(M+1) [*]	
	収率 (%)	88	75	
	融点(*C)	173- 174	186- 187	
	R* R*		HIN O	
			-N-C00H	
	. C1		C1	
	秋福 室 340		341	

衺

畲	塩酸塩	相 即 即	
NMR	δ (DMSO-d ₈); 2Hz), 1.57(2H, m) 1.19(3H, t, J=7.2Hz), 1.57(2H, m) 1.94(2H, m), 2.73(1H, m), 3.31(2H, m) 4.08(2H, q, J=7.2Hz), 4.48(2H, m) 4.77(2H, d, J=5.6Hz) 7.25-7.45(5H, m), 7.85(2H, s) 8.52(1H, s), 10.19(1H, brs) 12.19(1H, brs)	δ (DMSO-d _e); 1. 12(3H, t, j=7. 2Hz), 1. 80(2H, brs) 2. 23(2H, brs), 3. 24(3H, s) 3. 73(2H, brs), 3. 82(3H, s) 3. 99(2H, q, j=7. 2Hz) 4. 71(2H, d, j=6. 0Hz) 7. 09(1H, d, j=8. 8Hz) 7. 35(1H, d, j=8. 4Hz), 7. 48(1H, s)	
Mass	425(M+1)*	477(M+1)*	
反语 (%)	95	41	
融 点 収略 (°C) (%)	166- 167	212- 213	
° œ	NH -	HN C1	
R°	N—Coort	-N L H Me	
R.ª	5	13	
実施例	342	343	

裝

析		
印		
NMR	δ (DMSO-d _a); 1.74(2H, brm), 1.59(2H, brm) 3.10(3H, s), 3.61(2H, t, J=7.2Hz) 3.81(3H, s), 4.61(2H, d, J=5.6Hz) 7.07(1H, d, J=8.4Hz) 7.31(1H, dd, J=8.4Hz) 7.36(1H, brs), 7.43(1H, d, J=2.0Hz) 7.55(1H, brs), 8.20(1H, brs) 12.03(1H, brs)	δ (DMSO-d ₄); 3. 81(3H, s), 4. 71(2H, d, J=5. 6Hz) 7. 55(2H, s), 7. 76(1H, d, J=8. 4Hz) 8. 14(1H, dd, J=8. 4Hz, 2. 0Hz) 8. 88(1H, d, J=2. 0Hz) 9. 49(1H, brt, J=5. 6Hz)
Mass	449(M+1)*	393(N+1)*
(%)	81	78
融点 収率(°C)(%)	140-	248- 249
æ	HN C1	HN C1
۳۵ چو	Me COOH	13
R2	C1	CN
実施例	344	345

K

1 2 ×	- 1		
NMR		δ (DNSO-d _t); 1. 17(3H, t, J=7. 2Hz), 1. 36(2H, brm) 1. 82(2H, brm), 2. 62(1H, m) 3. 03(2H, m), 3. 78(3H, s) 4. 05(2H, q, J=7. 2Hz) 4. 59(2H, brd, J=5. 6Hz) 4. 59(2H, brm), 7. 29(1H, d, J=8. 8Hz) 7. 50(2H, s) 7. 50(2H, s) 7. 75(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 53(1H, d, J=2. 0Hz) 8. 86(1H, brt, J=5. 6Hz)	δ (CDC1 ₃); 1. 25-2. 02(12H, m), 2. 47-2. 57(1H, m) 3. 02-3. 18(2H, m), 3. 50-3. 58(2H, m) 4. 42(2H, t, J=6. 6Hz) 4. 63-4. 74(2H, m), 4. 75(2H, s) 5. 47(2H, s), 6. 80-6. 81(3H, m) 7. 41(1H, dd, J=8. 0Hz, 2. 0Hz) 7. 50(1H, d, J=8. 0Hz) 7. 62(1H, d, J=2. 0Hz)
Mass		514(W+1)*	572(MH+)
長 公	(%)	88	19
海 (2	(%) (%)	207- 208	ን ቴ ሶን ተス
P.	HN C1 C1 C1 C1 C1		O ₂ NO
Re	R* -N\C00Bt		- N — Соон
R ²		CN	
実施	米		347

嵌

一新		
龜		
NMR	δ (DMSO-d ₈); 1. 40(2H, m), 1. 72(2H, m), 2. 34(1H, m) 2. 54(2H, t, J=7, 2Hz), 2. 89(2H, m) 3. 31(2H, m), 3. 82(3H, s) 4. 59(2H, d, J=5, 6Hz), 4. 78(2H, m) 7. 09(1H, d, J=8, 4Hz) 7. 28(1H, d, J=8, 4Hz) 7. 28(1H, dd, J=8, 4Hz) 7. 45(1H, dd, J=2, 0Hz) 7. 72(1H, dd, J=8, 4Hz, 2. 0Hz) 7. 72(1H, dd, J=5, 6Hz) 8. 54(1H, t, J=5, 6Hz) 8. 54(1H, t, J=5, 6Hz) 8. 77(1H, t, J=5, 6Hz)	δ (DMSO-d ₆); 1. 38-1. 47(2H, m), 1. 80-1. 84(2H, m) 2. 44-2. 49(1H, m), 2. 93-3. 00(2H, m) 4. 48(2H, d, J=5. 6Hz) 4. 57-4. 61(2H, m), 6. 60-6. 65(2H, m) 6. 74(1H, d, J=1. 6Hz) 7. 24(1H, d, J=8. 8Hz) 7. 46(1H, dd, J=8. 8Hz) 7. 46(1H, dd, J=8. 9Hz) 8. 15(1H, d, J=2. 0Hz), 8. 48(1H, brs) 8. 675(1H, s), 8. 75(1H, s) 12. 14(1H, brs)
Mass		429 (MH+)
収率(%)	62	. 82
融 点 (*C) > 250		216- 218 (分解点)
R ⁶ HN C1 HN OMe		HN I H
æ.	-N H S0sNa	H000
R²	NC	0.1
実施例	348	349

. npr

柳			
每			
NMR	δ (CDC1 ₃); 1.41(2H, m), 2.16(2H, m), 2.60(1H, m) 3.69(2H, m), 4.02(3H, s), 4.03(3H, s) 4.11(3H, s), 4.55(2H, m), 4.63(1H, s) 5.06(1H, s), 5.75(1H, brs) 6.83(1H, brs), 8.59(1H, s)	6 (CDC11,); 1.86(2H, m), 1.79(2H, m) 2.14(2H, dd, J=14, 4Hz, 5.6Hz) 2.27(1H, m), 3.68(2H, m), 3.99(3H, s) 4.02(3H, s), 4.11(3H, s), 4.50(2H, m) 4.62(1H, s), 5.03(1H, s), 5.78(1H, brs) 6.76(1H, s), 8.60(1H, s)	δ (CDC1 ₁); 1.87(2H, m), 1.99(2H, m), 2.63(1H, m) 3.73(2H, m), 4.00(3H, s), 4.03(3H, s) 4.11(3H, s), 4.58(2H, m), 4.80(1H, s) 5.17(1H, s), 6.14(1H, brs), 6.80(1H, s) 8.59(1H, s)
Mass	362(M+1) ⁺	376(M+1) [→]	362(M+1) ⁺
収略	70	37	70
斯 (C.	163-	173-	170- 171
•	H NH	H NH I	HNH III
ž	We 0	MeO	МеО
R³	MeO	MeO	MeO
R³	MeO	MeO	MeO
実施例	320	351	352

က —

搬

a NMR	δ (CDC1,) : 1.77(2H, m), 1.80(2H, m), 1.97(2H, m) 2.07(1H, m), 3.64(2H, m), 3.98(3H, s) 4.03(3H, s), 4.10(3H, s), 4.58(2H, m) 4.83(1H, s), 5.12(1H, s), 6.24(1H, brs) 6.92(1H, s), 8.60(1H, s)	δ (CDC1 _s); 2. 16(2H, quintet, J=6. 8Hz) 2. 52(1H, t, J=6. 8Hz) 3. 85(2H, dt, J=6. 8Hz, 6. 0Hz) 3. 99(3H, s), 4. 03(3H, s), 4. 10(3H, s) 6. 29(1H, brs), 6. 90(1H, s), 8. 60(1H, s)	δ (CDCL ₃); 1. 81 (2H, m), 1. 94 (2H, m) 2. 47 (2H, t, J=6. 8Hz) 3. 75 (2H, dt, J=6. 8Hz, 6. 0Hz) 4. 00 (3H, s), 4. 03 (3H, s), 4. 11 (3H, s) 5. 91 (1H, brs), 6. 82 (1H, s), 8. 60 (1H, s)
Mass	376(M+1)*	303(M+1)	317(M+1)*
長(%)	24	88	94
型 (C)	143-	139- 140	160- 161
R	HN IN	HN CN	HN
ž	MeO	MeO	МеО
B3	MeO	MeO	MeO
- 22	MeO	MeO	MeO
実施例	353	354	355

က

HX

* -	Z-	N _z
		⋛≟
*	<i>,</i>	, E

လ လ

袋

新			
. €	\$		_
NMR		δ (CDC1,); 1. 6-1.8(6H, m), 2. 40(2H, t, J=7.0Hz) 3. 70(2H, dt, J=7.0Hz, 5. 6Hz) 4. 00(3H, s), 4. 03(3H, s), 4. 11(3H, s) 6. 00(1H, brs), 6. 84(1H, s), 8. 60(1H, s)	
N C C	0 0 U	75 831 (M+1)*	
収率	(%)	75	
爾点	(%) (a)	155- 156	
ş a	£	HN	
R4		MeO	
R³		MeO	
R.		Me0	
実は	E	356	

¥	T.		·
#	=		
GWIN	Y MA	δ (DMSO-d ₆); 0.93(2H, m), 1.18(2H, m), 1.44(1H, m) 1.51(2H, m), 1.64(2H, brd, J=12.0Hz) 2.18(2H, t, J=7.6Hz), 2.75(2H, brt, J=12.0Hz) 4.53(2H, d, J=5.6Hz), 4.73(2H, brd, J=12.8Hz) 5.94(1H, s), 6.83(2H, s), 6.93(1H, s) 7.22(1H, d, J=8.8Hz) 7.45(1H, dd, J=8.8Hz) 8.11(1H, d, J=2.4Hz), 8.50(1H, t, J=5.6Hz)	δ (DMSO-d ₈); 1.90-1.95(2H, m), 8.82(2H, t, J=6.4Hz) 4.28(2H, t, J=6.8Hz), 4.61(2H, d, J=5.6Hz) 5.95(2H, s), 6.04(2H, s), 6.13(1H, s) 7.50(1H, d, J=8.8Hz) 7.64(1H, dd, J=8.8Hz, 2.4Hz) 8.54(1H, d, J=2.4Hz), 8.75(1H, t, J=1.6Hz)
Mass		483(M+1)	490 (MH+)
 (%)		82	32
ا ما		225- 227	190- 192 (分解点)
S CH		H0007	0 0
20	4	C1	10
実施例		357	358

വ

7,1	. 7			祖
***	- 1			塩酸塩
	Ē .			
NMR		δ (CDCl _s); 1. 42-1. 59(4H, m), 1. 70-1. 89(4H, m), 4. 43(4H, q, J=6. 8Hz), 4. 73(2H, d, J=4. 4Hz) 5. 95(2H, s), 6. 28(1H, br) 6. 77(1H, d, J=8. 0Hz), 6. 83(1H, d, J=8. 0Hz) 6. 85(1H, s), 7. 54(1H, d, J=8. 8Hz) 7. 58(1H, d, J=8. 8Hz), 7. 66(1H, s)	6 (DMSO-d _e); 2.66(4H, t, J=4.8Hz), 3.66(1H, t, J=4.8Hz) 4.54(2H, d, J=6.0Hz), 5.94(2H, s) 6.83(2H, s), 6.92(1H, s), 7.22(1H, d, J=8.8Hz) 7.46(1H, dd, J=8.8Hz, 2.4Hz) 8.12(1H, d, J=2.4Hz), 8.51(1H, t, J=6.0Hz)	δ (DMSO-d _a); 1.95(2H, m), 2.75(1H, m) 3.8(2H, m), 3.61(3H, s), 4.46(2H, m) 4.65(2H, d, J=5.6Hz), 5.96(2H, s) 6.84(1H, d, J=8.0Hz) 6.97(1H, dd, J=8.0Hz) 7.78(1H, brd, J=8.9Hz) 7.78(1H, brd, J=8.2Hz) 7.81(1H, brd, J=8.8Hz) 7.81(1H, brd, J=8.8Hz) 10.05(1H, brs), 12.05(1H, brs)
0 0	W a s s	475(MH+)	398 (M+1)	455(N+1)*
安母		95	86	93
隔点	(%) (2,)	121- 122	173- 175	233- 234
80	R* -0 0N02		HN N	-М-Сооме
D 2	<u> </u>	13	61	01
似 ‡	愈	359	360	361

<u></u>		
NH -		N N N N N N N N N N N N N N N N N N N
	R2	

_			
₩			
籗			
NMR		5 (DMSO-d ₄); 1.48(2H, m), 1.64(1H, m), 1.85(1H, m) 2.36(1H, m), 2.96(2H, m), 3.28(1H, m) 4.19(1H, m), 4.64(2H, d, J=5.6Hz) 5.95(2H, s), 6.82(2H, s), 6.93(1H, s) 7.71(1H, brd), 7.79(1H, brd), 8.47(1H, s) 9.04(1H, brs)	δ (CDC1 ₈); 6. 76(2H, d, J=5. 2Hz), 5. 97(2H, s) 6. 15(1H, brs), 6. 80(1H, d, J=8. 0Hz) 6. 87(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 89(1H, d, J=1. 6Hz) 7. 44(1H, ddd, J=8. 0Hz, 6. 8Hz, 1. 6Hz) 7. 66(1H, d, J=8. 0Hz), 7. 74(1H, t, J=6. 8Hz) 7. 78(1H, dd, J=6. 8Hz, 1. 6Hz)
M S S S			314(M+1)
坂本	(%)	12	94
中心	(%) (2,)		191- 192
R 8		N0	61
R2		C1	Ξ.
実施例		362	363

HIN		N N N N N N N N N N N N N N N N N N N
	2=	

糸		
每		
NMR	δ (DMSO-d _a); 1. 38(2H, m), 1. 79(2H, brd, J=12. 8Hz) 2. 47(1H, m), 2. 94(2H, brt, J=11. 2Hz) 4. 56(2H, d, J=5. 6Hz), 4. 61(2H, m) 5. 93(2H, s), 6. 81(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz), 7. 04(1H, t, J=8. 4Hz) 7. 24(1H, d, J=8. 4Hz), 7. 48(1H, t, J=8. 4Hz) 7. 98(1H, t, J=8. 4Hz), 8. 47(1H, brs) 12. 13(1H, brs)	δ (DMSO-d ₆); 1.12(3H, s), 1.25(2H, m), 1.88(2H, m) 3.23(2H, m), 4.20(2H, m), 4.53(2H, d, J=6.0Hz) 5.94(2H, s), 6.83(2H, s), 6.92(1H, s) 7.23(1H, d, J=9.2Hz) 7.46(1H, dd, J=9.2Hz, 2.4Hz) 8.12(1H, d, J=2.4Hz), 8.53(1H, t, J=6.0Hz)
Mass	407 (M+1)	455(M+1)
坂母 (%)	97	81
融 点 収率(*C)(%)	159-	243- 245
R°	-NC00H	-N C00H
2.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	æ	10
実施例	364	365

			- 8
	NMR	δ (DMSO-d ₆); 1. 66(2H, quintet, J=7. 2Hz) 2. 24(2H, t, J=7. 2Hz), 2. 29(2H, t, J=7. 2Hz) 2. 35(4H, m), 3. 72(4H, m), 4. 55(2H, d, J=5. 6Hz) 5. 95(2H, s), 6. 83(2H, s), 6. 93(1H, s) 7. 24(1H, d, J=8. 8Hz) 7. 47(1H, dd, J=8. 8Hz) 8. 14(1H, d, J=2. 4Hz), 8. 53(1H, t, J=5. 6Hz)	δ (DMSO-d _a); 2.79(3H, s), 3.14(2H, m), 3.54(2H, m) 3.62(2H, m), 4.71(2H, d, J=5.6Hz), 4.94(2H, m) 5.99(2H, s), 6.87(1H, d, J=8.0Hz) 6.94(1H, dd, J=8.0Hz, 1.6Hz) 7.03(1H, d, J=1.6Hz), 7.87(1H, brd) 8.07(1H, brs), 8.60(1H, brs), 10.29(1H, brs) 11.36(1H, brs), 13.13(1H, brs)
· .	Mass	484(N+1)	定量的 412(M+1)*
	収率 (%)	66	定量的
000	融点(*C)	174- 175	237- 239 (分解点)
R s s	R.	-N C00H	-N_N-We
	R2	10	. 61
·	実施例	366	367
			•

徭

5,

HIN	
C*	:

を				
NMR \$\delta (\text{DMSO-d_4}) ; \text{2.53(4H, m)}, \text{3.00(2H, brs}), \text{3.75(4H, m)} \text{4.53(2H, brd, J=6.0Hz)}, \text{5.94(2H, s)} \text{6.82(2H, brs)}, \text{6.92(1H, s)} \text{7.23(1H, d, J=8.8Hz)}, \text{7.47(1H, brd, J=8.8Hz)} \text{8.14(1H, brs)}, \text{8.55(1H, t, J=6.0Hz)} \text{9.60}		6	5 (DMSO-d ₆); 2. 56(2H, t, J=7.2Hz) 2. 39(6H, m), 2. 56(2H, d, J=7.2Hz) 3. 71(2H, brs), 4. 55(2H, d, J=5.6Hz) 1. 83(2H, s), 6. 93(1H, s), 7. 24(1H, d, J=8.8Hz) 7. 48(1H, dd, J=8.8Hz, 2.4Hz) 8. 14(1H, d, J=2.4Hz), 8. 55(1H, t, J=5.6Hz)	δ (DMSO-d ₆); 2. 86(2H, t, J=7. 2Hz), 3. 53(2H, q, J=8. 0Hz) 4. 74(2H, d, J=5. 2Hz), 5. 97(2H, s) 6. 86-6, 89(2H, m), 7. 01(1H, d, J=1. 2Hz) 7. 18-7. 32(5H, m), 7. 83(1H, d, J=8. 8Hz) 7. 86(2H, dd, J=8. 8Hz, 2. 0Hz) 8. 50(1H, d, J=2. 0Hz), 8. 70(1H, brt, J=5. 2Hz) 9. 02(1H, brt, J=5. 0Hz)
Mass		456 (M+1)	470(M+1)	461 (MH+)
収率	(% (%	986	06	80
型 、	(%) (2.)	193- 195	174- 176	166- 169 (分解点)
2	R°		N—N—C00H	- CONH
R ²		61	61	5
- 東福	室	368	369	370

裘

6

龜		
NMR	δ (DMSO-d _a) 3. 37(2H, q, J=6. 0Hz), 3. 53(2H, q, J=5. 8Hz) 4. 75(2H, d, J=6. 0Hz), 4. 82(1H, t, J=5. 4Hz) 5. 97(2H, s), 6. 86(1H, d, J=8. 0Hz) 6. 94(1H, d, J=8. 0Hz. 1. 6Hz) 7. 04(1H, d, J=1. 6Hz), 7. 81-7. 88(2H, m) 8. 50(1H, d, J=2. 0Hz), 8. 64(1H, t, J=6. 0Hz) 9. 04(1H, t, J=6. 0Hz)	δ (DMSO-d _e); 0.99(3H, t, J=7, 4Hz), 1.79-1.84(2H, m) 4.41(2H, t, J=6.6Hz), 4.83(2H, d, J=5.6Hz) 5.97(2H, s), 6.85(1H, d, J=28.0Hz) 6.93(1H, dd, J=8.0Hz, 1.6Hz) 7.03(1H, d, J=1.6Hz), 7.87(1H, d, J=8.8Hz) 7.91(1H, dd, J=8.8Hz, 2.2Hz) 8.56(1H, d, J=2.2Hz), 8.727(1H, brt, J=5.6Hz)
Mass	401 (MH+)	424(MH+)
収率 (%)	42	
融 点 収率 (°C) (%)	223- 225 (分解点)	199- 201 (分解点)
75 St	— CONH OH	- C0 N - CN
R2	C1	

.....A

表

HN	R.	S. W. B.

l .	£.			塩酸塩
	3			***
NMR		δ (DMSO-d _e); 4. 63(2H, d, J=5. 6Hz), 5. 99(2H, s), 6. 87(2H, s) 6. 97(1H, s), 7. 57(1H, d, J=8. 8Hz) 7. 92(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 61(1H, d, J=2. 0Hz), 9. 26(1H, t, J=5. 6Hz)	332(M+1)* 4.65(2H, d. J=5.6Hz), 5.99(2H, s), 6.87(2H, s) 6.97(1H, s), 7.71(2H, m), 8.17(1H, m) 9.14(1H, t, J=5.6Hz)	δ (DMSO-d _e) : 1. 17(3H, t, J=7. 2Hz), 1. 56(2H, m), 1. 94(2H, m) 2. 72(1H, m), 3. 3(2H, m), 4. 06(2H, q, J=7. 2Hz) 4. 49(2H, m), 4. 64(2H, d, J=6. 0Hz), 5. 95(2H, s) 6. 83(1H, d, J=8. 0Hz) 6. 87(1H, dd, J=8. 0Hz), 7. 80(1H, d, J=8. 8Hz) 7. 91(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 60(1H, d, J=2. 0Hz), 10. 10(1H, brs)
2	IN S	392(M+1)*	332(M+1)*	513(M+1)*
点収率	(%)	80	80	80
凝点	(%)	213- 214	192- 193	239- 240
R s		61	61	−N C00Et
R ²		Br	占	Br
実施例		373	374	375

W	 	
NMR	δ (DMSO-d ₆); 1. 38(2H, m), 1. 79(2H, m), 2. 46(1H, m) 2. 95(2H, m), 4. 53(2H, d, J=6. 0Hz), 4. 58(2H, m) 5. 93(2H, s), 6. 80(1H, d, J=8. 0Hz) 6. 83(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 55(1H, dd, J=1. 6Hz), 7. 16(1H, d, J=9. 2Hz) 7. 55(1H, dd, J=2. 4Hz), 8. 52(1H, t, J=6. 0Hz) 12. 13(1H, brs)	δ (CDC1 ₈); 1. 62(2H, m), 1. 73(4H, m), 3. 21(4H, t, J=5. 4Hz) 4. 76(2H, d, J=5. 2Hz), 5. 80(1H, t, J=5. 2Hz) 5. 97(2H, s), 6. 76(1H, d, J=2. 4Hz) 6. 91(1H, d, J=8. 0Hz) 6. 81(1H, dd, J=8. 0Hz) 6. 91(1H, d, J=1. 2Hz) 7. 48(1H, dd, J=9. 2Hz) 7. 66(1H, d, J=9. 2Hz)
Mass	485(M+1)*	397 (M+1)*
点 収率 (%)	96	38
融点収率(°C)(%)	210	200-
S	H000 - N -	61
R2	Br	

_			
°	` o		
\ <u> </u>	₹		
· ((\rangle		
<u></u>	』	<u>~</u>	
	. 7	≥-{	
Ĕ.	一《	Z	
	<i>)</i>	=	
		. //	
	/		
	~		

¥	ę.				
	A IAA K	5 (DMSO-d ₄); 2.99(6H, s), 4.63(2H, d, J=6.0Hz), 5.96(2H, s) 6.84(2H, s), 6.98(1H, s), 7.20(1H, d, J=2.8Hz)	7.46(1H, d, J=9.2Hz), 8.84(1H, t, J=6.0Hz)	δ (DMSO-d ₆); 2. 43(2H, t, J=6. 4Hz), 2. 56(2H, t, J=6. 4Hz) 3. 46(4H, brs), 3. 71(2H, brs), 3. 77(2H, brs)	4. 56(2H, d, J=5. 6HZ), 5. 95(2H, S) 6. 83(1H, d, J=8. 0Hz), 6. 86(1H, d, J=8. 0Hz) 6. 94(1H, s), 7. 27(1H, d, J=8. 8Hz) 7. 50(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 16(1H, d, J=2. 0Hz), 8. 61(1H, t, J=5. 6Hz)
2 0 7	N 2 N	357 (M+1)*		(11) 007	488(M+1)
収率	(%)	94		G	0
融点	(%) (a)	226- 227	(分解点)		185
90	N.	61		0=	HOOO N-
pa	€	Me N-	E E		5
実は	逐	378			379

- 3 2 4 -

響			
NMR	δ (DMSO-d ₆); 3. 44(6H, m), 3. 73(2H, m), 3. 78(2H, m) 4. 56(2H, d, J=5. 6Hz), 5. 93(2H, s) 6. 83(1H, d, J=8. 0Hz), 6. 85(1H, d, J=8. 0Hz) 6. 94(1H, s), 7. 27(1H, d, J=8. 8Hz) 7. 50(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 16(1H, d, J=2. 0Hz), 8. 61(1H, t, J=5. 6Hz)	δ (CDC1,); 1. 00(3H, t, J=7. 6Hz) 1. 00(3H, t, J=7. 6Hz) 1. 70(2H, sextet, J=7. 6Hz) 2. 36(2H, t, J=7. 6Hz), 3. 54(2H, brs) 3. 92(2H, t, J=4. 8Hz), 3. 89(2H, t, J=4. 8Hz) 3. 92(2H, brs), 4. 68(2H, d, J=5. 2Hz) 5. 65(1H, brs), 5. 97(2H, s) 6. 80(1H, d, J=8. 0Hz) 6. 84(1H, dd, J=8. 0Hz) 7. 48(1H, m) 7. 48(1H, m)	
Mass	484(N+1)	468(M+1)	
収率 (%)	82	62	
融点(°C)	193- 195	204- 205	
Rs	HOOO N		
R²	10	61	
東施例	380	381	
	R ² R ⁵ (%) Mass NMR	Rs (°C) (%) Mass NMR (°C) (%) Mass NM (°C) (%) (%) Mass NMS NMS (°C) (%) (%) 3.44(6H, m), 3.78(2H, m) 3.78(2H, m) 4.56(2H, d, J=5.6Hz), 5.93(2H, s) (°C) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	

<u></u>		
¥-	″. {₹	~ ₽
	R ²	

衛	塩酸塩	
NMR	δ (DMSO-d ₆); 1. 58(2H, m), 1. 95(2H, m), 2. 75(1H, m) 3. 3(2H, m), 3. 61(3H, s), 4. 46(2H, m) 4. 65(2H, d, J=5. 6Hz), 5. 96(2H, s) 6. 84(1H, d, J=8. 0Hz), 6. 96(2H, s) 6. 87(1H, dd, J=8. 0Hz, 1. 2Hz) 6. 97(1H, dd, J=1. 2Hz), 7. 78(1H, brd, J=8. 8Hz) 7. 81(1H, brd, J=8. 8Hz), 8. 45(1H, brs) 10. 05(1H, brs), 12. 05(1H, brs)	δ (CDC1 ₄); 1. 25(3H, t, J=7. 2Hz), 1. 54(1H, m), 1. 70(1H, m) 1. 78(1H, m), 2. 11(1H, m), 2. 52(1H, m), 2. 98(1H, m), 3. 14(1H, m), 4. 15(2H, q, J=7. 2Hz) 4. 66(2H, m), 4. 73(1H, m), 4. 98(1H, m) 5. 61(1H, brt), 5. 95(2H, s) 6. 78(1H, d, J=8. 0Hz), 6. 85(1H, m) 6. 85(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 88(1H, d, J=1. 6Hz), 7. 37-7. 44(3H, m)
Mass	455 (M+1)*	469(M+1)*
点 収率() (%)	93	66
融点収率(*C)(%)	233- 234	ንቴାንታス
R°	— N — СООМе	C00Et
R²	61	61
東補例	382	383

4.

裘

'n.

私		
磊		
NMR	δ (DNSO-d ₆); 1. 34(1H, m), 1. 56(1H, m), 1. 65(1H, m) 1. 97(1H, m), 2. 28(1H, m), 2. 85(1H, m) 2. 95(1H, m), 4. 53(2H, m), 4. 57(1H, m) 4. 81(1H, m), 5. 93(2H, s), 6. 78(1H, d, J=8. 0H2) 6. 84(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 91(1H, d, J=1. 6Hz), 7. 24(1H, d, J=8. 8Hz) 7. 45(1H, dd, J=8. 8Hz, 2. 4Hz) 8. 12(1H, d, J=2. 4Hz), 8. 55(1H, brs)	δ (CDC1,) ; 3. 18(1H, br), 4. 75(2H, d, J=5. 2Hz) 5. 97(2H, s), 6. 17(1H, br) 6. 81(1H, d, J=8. 4Hz) 6. 87(1H, dt, J=8. 4Hz, 1. 6Hz) 6. 88(1H, d, J=1. 6Hz), 7. 72(1H, d, J=2. 0Hz) 7. 75(1H, dd, J=8. 8Hz, 2. 0Hz) 7. 85(1H, d, J=2. 0Hz)
Mass	441(M+1)*	339(M+1)*
点 収率) (%)	88	35
融 点 収率 (°C) (%)	275- 276 (分解点)	198- 199
R°	C00H	- CN
R²		Ċ1
実施例	384	385

既

每			
NMR	\$\langle (CDC1,) : 2.59(3H, s), 4.79(2H, d, J=5.6Hz) 5.93(2H, s), 6.77(1H, d, J=8.0Hz) 6.89(1H, d, J=8.0Hz), 6.94(1H, s) 7.62(1H, dd, J=8.8Hz, 2.0Hz) 7.75(1H, d, J=8.8Hz), 7.97(1H, d, J=2.0Hz) 8.10(1H, brs), 8.56(1H, s)	δ (CDC1 ₃); 2. 75(3H, s), 4. 80(2H, d, J=5. 2Hz) 5. 96(2H, s), 6. 80(1H, d, J=8. 0Hz) 6. 89(1H, d, J=8. 0Hz), 6. 91(1H, s) 7. 06(1H, brs), 7. 64(1H, d, J=8. 8Hz) 7. 98(1H, d, J=8. 8Hz), 8. 43(1H, s), 8. 74(1H, s)	δ (DMSO-d ₆); 1. 68(2H, m), 3.11(3H, S), 3.40(2H, t, J=6.2Hz) 3. 65(2H, t, J=7.0Hz), 4. 60(2H, d, J=5.6Hz) 6. 83(1H, d, J=7.6Hz) 6. 87(1H, dd, J=7.6Hz, 1.2Hz) 6. 95(1H, d, J=1.2Hz), 7.31(1H, br) 7. 52(1H, br), 8.19(1H, br)
Mass	326(M+H) [→]	342(M+H) ⁺	401 (№1) ⁺
坂母 (%)	83	80	71
融 点 収率 (°C) (%)	174- 175	154- 155	154- 155
R\$	#	H	- N OH
R²	MeS	0 ↑ -S-Me	C1
実施例	386	387	388

Жı

4.1

Mass Mass NMR 6.04(2H, s), 6.95(1H, d, J=8.4Hz) 7.11(1H, dd, J=8.4Hz, 2.0Hz) 7.86(1H, dd, J=2.0Hz), 7.69(1H, d, J=8.8Hz) 7.86(1H, dd, J=2.0Hz), 7.69(1H, d, J=8.8Hz) 8.66(1H, d, J=2.4Hz), 10.13(1H, s) 8.66(1H, d, J=2.4Hz), 10.13(1H, s) 6.81-6.82(2H, m), 6.90(1H, s) 7.51(2H, d, J=5.6Hz), 7.57(1H, d, J=8.8Hz) 7.90(2H, d, J=8.0Hz), 7.57(1H, d, J=8.8Hz) 7.90(2H, d, J=8.0Hz), 9.10(1H, brt, J=5.1Hz) 8.79(1H, d, J=2.0Hz), 9.10(1H, brt, J=5.1Hz) 5.92-5.99(1H, m), 5.99(2H, s) 7.70(1H, d, J=8.8Hz), 0.00(1H, J=8.0Hz) 7.70(1H, d, J=8.8Hz), 0.00(1H, J=8.0Hz) 7.70(1H, d, J=8.8Hz), 0.00(1H, J=8.0Hz) 7.70(1H, d, J=8.8Hz), 0.00(1H, J=8.9Hz) 7.80(1H, dd, J=8.8Hz), 0.00(1H, J=8.9Hz), 0.00(1H, J=8.9Hz) 7.80(1H, dd, J=8.8Hz), 0.00(1H, J=8.9Hz), 0.00(1H, J=9.9Hz), 0.00(1H, J
掛 〇 m is
(%) 48 48 35 35
融 点 収率 (°C) (%) 194- 195 48 (分解点) (分解点) (分解点) 176- 176- 176- 179 35
C1 C10H
C C CS
秋福室 88 88 168

NH-) ~{	~ Rs.
		>

裘

*			
2	=		
MW	71 141 5.1	5 (DMSO-d ₄); 1. 69(2H, m), 2. 31(1H, m) 2. 54(2H, t, J=7. 2Hz), 2. 82(2H, m) 3. 31(2H, m), 4. 56(2H, d, J=5. 6Hz) 4. 74(2H, m), 5. 96(2H, s), 6. 83(1H, d, J=8. 0Hz) 6. 96(1H, d, J=8. 0Hz, 1. 6Hz) 7. 47(1H, d, J=8. 8Hz, 2. 4Hz) 7. 72(1H, t, J=5. 6Hz), 8. 14(1H, d, J=2. 4Hz) 8. 54(1H, t, J=5. 6Hz)	δ (DMSO-d _t); 1. 01(2H, m), 1. 66(2H, brd, J=13. 2Hz) 1. 90(1H, brs), 2. 12(2H, d, J=7. 2Hz) 2. 79(2H, brt, J=12. 0Hz) 4. 53(2H, d, J=5. 6Hz), 4. 71(2H, brd, J=13. 2Hz) 5. 94(2H, s), 6. 82(2H, m), 6. 92(1H, s) 7. 22(1H, d, J=8. 8Hz) 7. 45(1H, dd, J=8. 8Hz) 8. 11(1H, d, J=2. 4Hz), 8. 51(1H, t, J=5. 6Hz)
o M	0 0 0 W		455 (N+1)
		51	96
融点収率	(%) (0.)	230(分解点)	255- 256
Э		- N H SO.Na	H000 \N-
200	=	01	61
张挥	₹	392	393

箍		·
NMR	δ (DMSO-dε); 3.54(2H, s), 4.66(2H, d, J=5.7Hz) 5.97(2H, s), 6.84(1H, d, J=7.9Hz) 6.90(1H, dd, J=7.9Hz, 1.6Hz) 6.98(2H, brs, d, J=1.6Hz), 7.43(1H, brs) 7.66(1H, d, J=9.0Hz) 7.76(1H, dd, J=9.0Hz) 8.40(1H, d, J=2.2Hz), 8.77(1H, t, J=5.7Hz)	δ (DMSO-d _s); 4. 39(2H, d, J=6. 0Hz), 4. 55(2H, d, J=5. 6Hz) 5. 93(4H, d, J=8. 0Hz), 6. 77(5H, m) 6. 80(1H, br), 7. 20(2H, br) 7. 45(1H, dd, J=8. 8Hz, 0. 8Hz) 8. 11(1H, d, J=2. 4Hz), 8. 38(1H, br)
Mass	371 (M+1)	463(M+1)
収率(%)	13	54
融点収率(*C)(%)	222- 223	176- 177
Rs	CONH 2	$\begin{pmatrix} 0 \\ N \end{pmatrix}$
R²	61	0.1

NH-	} —₹`	N R
, 		

NII		"" " "
	<u>~</u>	ک

粉			
穆			
NMR		δ (CDC1 ₁); 3. 92(3H, s), 4.74(2H, d, J=5. 2Hz), 5. 58(2H, s) 5. 92–5. 99(1H, m), 5. 98(2H, s), 6. 60–6. 69(3H, m), 7. 57(2H, d, J=8. 0Hz) 7. 70(1H, d, J=8. 8Hz) 7. 80(1H, dd, J=8. 8Hz, 1. 6Hz) 7. 95(1H, d, J=1. 6Hz), 8. 03(2H, d, J=8. 0Hz)	δ (DMSO-d ₆); 4. 62(2H, d, J=5, 6Hz), 5. 47(2H, s), 5. 45(2H, s) 6. 81-6. 82(2H, m), 6. 90(1H, s) 7. 51(2H, d, J=8. 0Hz), 7. 57(1H, d, J=8. 8Hz) 7. 90(2H, d, J=8. 0Hz) 7. 91(1H, dd, J=8. 8Hz, 2. 0Hz) 8. 79(1H, d, J=2. 0Hz), 9. 10(1H, brt, J=5. 1Hz)
Mass		469(MH+)	455(MH+)
点版率	- & -	35	29
湿 (176- 179	298- 300 (分解点)
Rs		-0 C00Me	H0003
R ²		CN	CN
张福	livi.	396	397

വ

裘

			δ (DMSO-d.); 1.10(6H, s),	1. 76(2H, brs) 3. 97(2H, q, J	5. 97 (Zh. S). 7. 84(1H, dd 7. 93(1H, d, J
		Mass		485(M+1)	
	坂率	(%)		27	
	聚	(%) (2.)		236- 237	•
R ² HN N R ⁵	2	,	Me Me	- N COOBt	Me
	c c	*		13	
	実	皇医		398	

箍	塩酸塩	
NMR	δ (DMS0-d _e): 1.10(6H, s), 1.11(3H, t, J=7.2Hz) 1.76(2H, brs), 3.22(3H, s), 3.64(2H, m) 3.97(2H, q, J=7.2Hz), 4.71(2H, d, J=5.6Hz) 5.97(2H, s), 6.84(2H, s), 6.95(1H, s) 7.84(1H, dd, J=9.2Hz, 2.0Hz) 7.93(1H, d, J=9.2Hz), 8.53(1H, d, J=2.0Hz) 10.10(1H, brs), 11.95(1H, brs)	5 (DMSO-d _b); 1.086(6H, s), 1.66(2H, m), 3.03(3H, s) 3.54(2H, m), 4.59(2H, d, J=5.6Hz), 5.94(2H, s) 6.82(2H, s), 6.90(1H, s), 7.22(1H, d, J=9.2Hz) 7.45(1H, dd, J=9.2Hz, 2.0Hz) 8.12(1H, d, J=2.0Hz), 8.46(1H, brs)
Mass	485 (M+1)	457 (M+1)
(%)	27	78
融点 中部 (%)	236- 237	240- 241 (分解点)
R.	Me Me Ne	Me Me -N COOH I Ne
R ²	13	C1
実施例	398	399

e e e e e e e e e e e e e e e e e e e	R. J.	N R.
	œ	

鈱

	4		
	2		
NMN		δ (DMSO-d ₄); 1. 05(3H, d, J=6. 0Hz), 1. 51(1H, m), 1. 81(1H, m) 2. 26(1H, m), 3. 05(3H, s), 3. 57(2H, m) 4. 57(2H, d, J=5. 0Hz), 5. 94(2H, s), 6. 82(2H, s) 6. 91(1H, s), 7. 23(1H, d, J=8. 8Hz) 7. 46(1H, dd, J=8. 8Hz, 1. 2Hz) 8. 13(1H, d, J=1. 2Hz), 8. 49(1H, brs)	δ (CDC1,) : 2. 85(2H, t, J=7. OHz), 3. 72-3. 78(2H, m) 4. 85(2H, d, J=5. 2Hz), 5. 84(2H, s) 6. 35(1H, brt, J=5. 4Hz), 6. 66(1H, d, J=8. OHz) 6. 78(1H, dd, J=8. 0Hz, 1. 6Hz) 7. 61(1H, dd, J=1. 6Hz), 7. 18-7. 29(5H, m) 7. 61(1H, dd, J=8. 8Hz, 2. 2Hz) 7. 69-7. 72(2H, m), 7. 99(1H, br)
	N 8 8	443(W+1)	485(MH+)
収率 ,		21	80
原	(%)	148- 150	180- · 182 (分解点)
Se Se		Me COOH	H C - C - H N N N N N N N N N N N N N N N N N N
20	к-	13	61
実結例		400	401

	套		
	NMR	δ (DMSO-d ₆); 3.77-3.81(2H, m), 4.76(2H, t, J=5.2Hz) 4.92(2H, d, J=6.0Hz), 5.97(2H, s) 6.86(1H, d, J=8.0Hz) 6.97(1H, dd, J=8.0Hz), 7.83(1H, d, J=8.8Hz) 7.05(1H, d, J=2.0Hz), 7.83(1H, d, J=8.8Hz) 7.92(1H, dd, J=8.8Hz, 2.4Hz) 8.56(1H, d, J=2.4Hz), 9.04(1H, t, J=6.0Hz) 9.4848(1H, t, J=6.0Hz)	δ (DMSO-d ₆); 3. 44-3. 48(2H, m), 3. 56-3. 60(2H, m) 4. 37-4. 51(3H, m), 5. 94(2H, s) 6. 83(1H, d, J=8. 0Hz) 6. 94(1H, dd, J=8. 0Hz), 7. 02(1H, d, J=1. 6Hz), 7. 80(1H, d, J=8. 8Hz), 7. 89(1H, dd, J=8. 8Hz), 7. 89(1H, dd, J=8. 8Hz), 8. 53(1H, dd, J=2. 4Hz), 9. 20(1H, br)
	Mass	470(MH+)	425(MH+)
-	坂举 (%)	62	58
	融点収率(°C)(%)	169 (分解点)	243- 245 (分解点)
	R°	H - C-N N CN	N _ CN
	R²	C1	25
	実施例	402	403
_			

0	/	
<u> </u>	= (`	
		. 25
	بخ	-√_
`≅.	─()Z
)=	=\
	<u> </u>	_//
	~~ ~	

	.
<u>R</u>	

HIN) } _{	√ N → R.º
	R.	>

ស

商		
NMR	δ (DMSO-d _e); 4.41(2H, d, J=6. 0Hz), 4.66(2H, d, J=5. 6Hz) 4.84(1H, t, J=6. 0Hz), 5.95(2H, s) 6.83(1H, d, J=7. 6Hz) 6.86(1H, dd, J=7. 6Hz), 1.6Hz) 6.97(1H, d, J=1. 6Hz), 7.67(1H, d, J=8. 8Hz) 7.75(1H, dd, J=8. 8Hz, 2. 4Hz) 8.40(1H, d, J=2. 4Hz), 8.78(1H, t, J=5. 6Hz)	δ (DNSO-d ₆); 1. 97(2H, quintet, J=7. 4Hz) 2. 26(2H, t, J=7. 4Hz), 2. 72(2H, t, J=7. 4Hz) 4. 65(2H, d, J=5. 7Hz), 5. 97(2H, s) 6. 83(1H, d, J=8. 0Hz) 6. 88(1H, dd, J=8. 0Hz, 1. 6Hz) 6. 96(1H, d, J=1. 6Hz), 7. 63(1H, d, J=9. 0Hz) 7. 73(1H, dd, J=9. 0Hz, 2. 2Hz) 8. 39(1H, d, J=2. 2Hz), 8. 72(1H, t, J=5. 7Hz)
Mass	344 (MH+)	400(M+1)
収率(%)		97
融点収率(*C)(%)	210 213 (分解点)	191- . 192
R s	НО	нооэ
R ²	13	C1
実施例	404	405

	NMR	5 (DMSO-d ₆): 1. 98(2H, quintet, J=7. 4Hz) 2. 29(2H, t, J=7. 4Hz). 2. 75(2H, t, J=7. 4Hz) 4. 68(2H, d, J=5. 7Hz). 5. 97(2H, s) 6. 85(1H, d, J=7. 9Hz) 6. 89(1H, dd, J=7. 9Hz). 7. 72(1H, d, J=8. 6Hz) 8. 92(1H, dd, J=8. 6Hz). 7. 72(1H, d, J=8. 6Hz) 8. 84(1H, d, J=1. 6Hz), 8. 96(1H, t, J=5. 7Hz)	δ (DMSO-d ₆); 2. 71(2H, t, J=7.1Hz), 2. 96(2H, t, J=7.1Hz) 4. 65(2H, d, J=5.7Hz), 5. 97(2H, s) 6. 85(1H, d, J=7.9Hz) 6. 89(1H, dd, J=7.9Hz), 1. 6Hz) 6. 98(1H, d, J=1.6Hz), 7. 62(1H, d, J=9.0Hz) 7. 73(1H, dd, J=9.0Hz, 2. 2Hz) 8. 39(1H, d, J=3. 2Hz), 8. 73(1H, t, J=5.7Hz)
	Mass	391 (M+1)	386(M+1)
古 (1) 数	(% (%)	55	66
温	ยเ	245-246	201-
	R* COOH		H0002
	S S		. 13
#	秋福室 406		407

NH.]) {{\bar{\bar{\chi}}}	 - -
	2	>

命	塩酸塩	
δ (DMSO-d ₆); 1.40(2H, m), 1.71(2H, m), 2.34(1H, m) 2.82(2H, m), 4.56(2H, d, J=5.6Hz), 4.74(2H, m) 5.95(2H, s), 6.73(1H, brs) 6.82(1H, d, J=8.0Hz) 6.86(1H, dd, J=8.0Hz), 7.25(1H, brs) 7.25(1H, d, J=8.8Hz), 7.25(1H, brs) 7.47(1H, dd, J=8.8Hz), 7.25(1H, brs) 8.14(1H, d, J=2.4Hz), 8.53(1H, brt, J=5.6Hz)		δ (DMSO-d _e); 1.27(3H, t, J=7.0Hz), 3.21(3H, s) 4.30(2H, q, J=7.0Hz), 4.55(2H, brs) 4.97(2H, s), 5.89(2H, s), 6.52-8.42(10H, m) 12.20(1H, brs)
Mass	440(M+1)*	505 (MH+)
収率(%)	79	81
融 点 収率 (°C) (%)	231- 232 (分解点)	215 (分解点)
R\$	−N CONH2	-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
R²	13	61
张 指室 408		409

級

HIN	R ² N N N N N N N N N N N N N N N N N N N
	œ

松	
穩	
NMR	6 (DMS0-d ₆): 3.07(2H, s), 4.50(2H, brs), 4.81(2H, s) 5.89(2H, s), 6.51-6.88(3H, m) 7.22(2H, d, J=8.0Hz), 7.26(1H, d, J=9.2Hz) 7.48(1H, dd, J=9.2Hz, 2.4Hz) 7.80(2H, d, J=8.0Hz), 8.15(1H, d, J=2.4Hz) 8.58(1H, brs), 12.77(1H, brs)
Mass	91 477(MH+)
長後)	91
職 点 収料 (°C) (%)	279-280
Rs	-N- I Me
R 2	C1
実施例	410

WO 93/07124 PCT/JP92/01258

請求の範囲

1. 下記一般式(1) で表される含窒素複素環化合物またはその薬理学的に許容できる塩。

(式(1) 中、環Aはベンゼン環、ピリジン環又はシクロヘキサン環を意味する。 環Bはピリジン環、ピリミジン環又はイミダゾール環を意味する。

ただし、環Aと環Bは2つの原子を共有して結合しており、その共有する原子は炭素原子でも窒素原子でもよい。

なお、環Aがピリジン環の場合であって、このピリジン環の窒素原子を環B

 R^1 が共有して結合している場合以外のときは、環Aは R^2 で示され

ものとする。

R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、ハイドロキシアルキル基、ニトロ基、シアノ基、

 \mathbb{R}^{7} は低級アルキル基を意味し、 \mathbb{R}^{1} は \mathbb{R}^{1} は \mathbb{R}^{1} は \mathbb{R}^{1} と \mathbb{R}^{1} は \mathbb{R}^{1} と \mathbb{R}^{1} は \mathbb{R}^{1} と $\mathbb{R}^{$

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、置換されていてもよいシクロアルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル基、保護されていてもよいカルボキシ

(0) m \parallel ル基、式 $-S-R^8$ (式中、 R^8 は低級アルキル基を意味し、mは 0 又は 1 \sim 2 の整数を意味する。)で示される基、式 $-0-R^8$ (式中、 R^8 は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又は

置換されていてもよいベンジル基を意味する。)で示される基、式 (式中、R²³ は水酸基、低級アルキル基、低級アルコキシ基、ハイドロキシア

(式中、 R^{10} は水酸基、低級F ルキル基、低級F ルカーヤン素、ハイドロギンテルキル基と意味する。)で示される基、置換されていてもよいヘテロアリール基、置換されていてもよい 1 、 3 ーベンズジオキソリル基、置換されていてもよい 1 、 4 ーベンズジオキシル基、置換されていてもよい 1 、 4 ーベンズジオキシルアルキル基、置換されていてもよい 1 、 4 ーベンズジオキシルアルキル基、式ー $C(R^{24})=X$ (式中、 Xは酸素原子、硫黄原子又は式= $N-R^{10}$ (式中、 R^{10} は水酸基、シアノ基又は保護されて

WO 93/07124 PCT/JP92/01258

いてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 R^{24} は水素原子又は低級アルキル基を意味する。〕で示される基、又は式 $-NR^{11}R^{12}$ (式中、 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、保護されていてもよいカルボキシアルキルカルバモイル基、置換されていてもよいヘテロアリールアルキル基、1,3-ベンズオキソリルアルキル基又は1, $4-ベンズジオキシルアルキル基を意味する。さらに、<math>R^{11}$ と R^{12} が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェ

ニルアルキルオキシ基、式
$$-N$$
 R^{13} (式中、 R^{13} 、 R^{14} は同 $-X$

は相異なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに、 R^{13} 、 R^{14} は一緒になってメチレンジオキシ又はエチレンジオキシを形成

していてもよい。)で示される基、式
$$-N$$
 で示される基、 R^{15} R^{15} R^{16}

式-N
$$R^{15}$$
 で示される基、式-N R^{16} で示される基、 R^{16}

 R^{15} 式-N R^{15} で示される基(これらの式中、 R^{15} 、 R^{16} は、同一又は相異

なる水素原子、低級アルキル基又は低級アルコキシ基を意味する。 さらに R^{16} と R^{16} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2 - ジオキサン-1-イル基、式

-Z-(CH₂)。- R^{48} (式中、 R^{48} 、 R^{48} は同一又は相異なる水素原子、

低級アルキル基又は低級アルコキシ基を意味する。さらに、R⁴⁸とR⁴⁹は、一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。 2は

硫黄原子又は酸素原子を意味する。)で示される基、式-N R^{50} (式中、

R⁵⁰ は水酸基、ハロゲン原子、低級アルキル基、低級アルコキシ基、保護されていてもよいカルボキシル基、シアノ基、ハイドロキシアルキル基又はカルボ

キシアルキル基を意味する。)で示される基、式 $-N-Y-R^{18}$ 〔式中、 R^{17} は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式 $-(CH_2)$ 。 (式中、qは0又は $1\sim8$ の整数を意味する)で示され

る基、又は式-C-で示される基を意味する。さらに式 $-(CH_2)$ 。 で示される基において、q が $1 \sim 8$ の整数のとき、それぞれの炭素は $1 \sim 2$ 個の置換基を有していてもよい。 R^{18} は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換されていてもよいヘテロアリール基又は置換

されていてもよいシクロアルキル基を意味する。〕で示される基、又は

$$R^{19}$$
 | R^{20} | 式 $-N^{-}(CH_2)$ R^{21} R^{22} (式中、 R^{19} は水素原子、低級アルキル基、低級

アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R²⁰、 R²¹、 R²²は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R²⁰、 R²¹、 R²²のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。) で示される基を意味する。)

2. 下記一般式(2) で表される請求項1記載の含窒素複素環化合物又はその薬理 学的に許容できる塩。

 (式(2) 中のR¹、R²、R³、R⁴、R⁵及びR⁶は、各々、式(1) 中のR¹、R²、R³、R⁴、

 R⁶及びR⁶と同様の意味を有する。〕

3. 下記一般式(I)で表される請求項1記載の含窒素複素環化合物又はその薬

理学的に許容できる塩。

〔式(I)中、R¹、R²、R³及びR⁴は同一又は相異なる水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、ハイドロキシアルキル基、シアノ基、ア

シルアミノ基、保護されていてもよいカルボキシル基、式 $-S-R^7$ (式中、 R^7 は低級アルキル基を意味し、n は 0 又は $1\sim 2$ の整数を意味する。)で示される基を意味する。また、 R^1 、 R^2 、 R^3 及び R^4 のうちの 2つが一緒になってメチレンジオキシ、エチレンジオキシ又はフェニル環を形成してもよい。

R⁵は水素原子、ハロゲン原子、水酸基、ヒドラジノ基、低級アルキル基、低級アルコキシ基、低級アルケニル基、保護されていてもよいカルボキシアルキル基、保護されていてもよいカルボキシアルケニル基、ハイドロキシアルキル

 $(0)_{m}$

基、保護されていてもよいカルボキシル基、式 $-S-R^8$ (式中、 R^8 は低級アルキル基を意味し、mは0又は $1\sim2$ の整数を意味する。)で示される基、式 $-0-R^9$ (式中、 R^9 は保護されていてもよいハイドロキシアルキル基、保護されていてもよいカルボキシアルキル基又はベンジル基を意味する。)で示される

基、式 - (式中、R²³ は水酸基、低級アルキル基、低級アルコキシ

基、ハイドロキシアルキル基又はハイドロキシアルキルオキシ基を意味する。) で示される基、置換されていてもよいヘテロアリール基、置換されていてもよ い1、3 -ベンズジオキソリル基、置換されていてもよい1、4 -ベンズジオキソリルアルキル基、置換されていてもよい1、3 -ベンズジオキソリルアルキル基、置換されていてもよい1、4 -ベンズジオキシルアルキル基、式-C(R^{24})=X (式中、Xは酸素原子又は式=N- R^{10} (式中、 R^{10} は水酸基又は保護されていてもよいカルボキシアルキルオキシ基を意味する。)で示される基を意味し、 R^{24} は水素原子又は低級アルキル基を意味する。〕で示される基、又は式 $-NR^{11}R^{12}$ (式中、 R^{11} 、 R^{12} は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、1、3 -ベンズオキソリルアルキル基又は1、4 -ベンズジオキシルアルキル基を意味する。さらに、 R^{11} と R^{12} が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基を意味する。

R⁶は水素原子、ハロゲン原子、水酸基、アミノ基、低級アルキル基、低級アルコキシ基、1,3-ベンズジオキソリルアルキルオキシ基、1,4-ベンズジオキシルアルキルオキシ基、置換されていてもよいフェニルアルキルオキシ

低級アルキル基又は低級アルコキシ基を意味する。さらに、 R^{13} 、 R^{14} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)で

示される基、式
$$-N$$
 で示される基、式 $-N$ で示される基、 R^{15} R^{16}

式-N R^{15} R^{16} で示される基、式-N R^{16} で示される基(これらの式

中、 R^{15} 、 R^{16} は、水素原子、低級アルキル基又は低級アルコキシ基を意味する。さらに R^{15} と R^{16} は一緒になってメチレンジオキシ又はエチレンジオキシを形成していてもよい。)、ピペリジン-4-スピロ-2'-ジオキサン-1-

イル基、 $式-N-Y-R^{18}$ (式中、 R^{17} は水素原子、低級アルキル基、アシル基、低級アルコキシアルキル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 Yは式-(CH_2)。- (式中、Qは0又

は $1\sim8$ の整数を意味する)で示される基、又は式-C-で示される基を意味する。さらに式-(CH $_2$)。-で示される基において、qが $1\sim8$ の整数のとき、それぞれの炭素は $1\sim2$ 個の置換基を有していてもよい。 R^{18} は水素原子、水酸基、保護されていてもよいカルボキシル基、シアノ基、アシル基、置換され

ていてもよいヘテロアリール基又は式-(0) で示される基を意味する。

 R^{19} に示される基、又は式 -N-(CH_2), R^{29} に式中、 R^{19} は水素原子、低紀 R^{22}

アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R^{20} 、 R^{21} 、 R^{22} は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、ニトロ

WO 93/07124 PCT/JP92/01258

基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R^{20} 、 R^{21} 、 R^{22} のうち2つが一緒になって窒素原子、硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。)で示される基を意味する。〕

4. 下記一般式(3) で表される請求項1記載の含窒素復素環化合物又はその薬理学的に許容できる塩。

 (式(3) 中のR¹、R²、R³、R⁴、R⁵及びR⁶は、各々、式(1) 中のR¹、R²、R³、R⁴、

 R⁵及びR⁶と同様の意味を有する。〕

5. 下記一般式(4) で表される請求項1記載の含窒素復素環化合物又はその薬理 学的に許容できる塩。

$$\begin{array}{c|c}
R^{2} & R^{1} & R^{6} \\
R^{3} & R^{4} & R^{5}
\end{array}$$
(4)

 (式(4) 中のR¹、R²、R³、R⁴、R⁵及びR⁶は、各々、式(1) 中のR¹、R²、R³、R⁴、

 R⁵及びR⁶と同様の意味を有する。〕

6. 下記一般式(5) で表される請求項1記載の含窒素複素環化合物又はその薬理 学的に許容できる塩。

 (式(5) 中のR¹、R²、R³、R⁵及びR°は、各々、式(1) 中のR¹、R²、R³、R⁵及びR°と同様の意味を有する。〕

- 7. 前記一般式(1) において、R¹、R²、R³及びR⁴が同一又は相異なる水素原子、シアノ基、ハロゲン原子又は低級アルコキシ基である請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 8. 前記一般式(1) において、R¹、R²、R³及びR⁴のうちの1つがシアノ基、塩素原子又はメトキシ基である請求項1記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 9. 前記一般式(I)において、R¹、R²、R³及びR⁴が同一又は相異なる水素原子、シアノ基、ハロゲン原子又は低級アルコキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 10. 前記一般式(I) において、R¹、R²、R³及びR⁴のうちの1つがシアノ基、塩素原子又はメトキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 11. 前記一般式 (I) において、R²がシアノ基である請求項3記載の含窒素複素 環化合物又はその薬理学的に許容できる塩。
- 12. 前記一般式(I) において、R²がハロゲン原子である請求項3記載の含窒素 複素環化合物又はその薬理学的に許容できる塩。
- 13. 前記一般式(I) において、R2が塩素原子である請求項3記載の含窒素複素

環化合物又はその薬理学的に許容できる塩。

- 14. 前記一般式(I)において、R²が低級アルコキシ基である請求項3記載の含 窒素復素環化合物又はその薬理学的に許容できる塩。
- 15. 前記一般式(I)において、R²がメトキシ基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。
- 16. 前記一般式(I)において、R⁵が式-NR¹¹R¹² (式中、R¹¹、R¹² は同一又は相異なる水素原子、低級アルキル基、ハイドロキシアルキル基、アミノアルキル基、保護されていてもよいカルボキシアルキル基、アルキルカルバモイル基、1、3-ベンズジオキソリルアルキル基又は1、4-ベンズジオキシルアルキル基を意味する。さらに、R¹¹とR¹²が、それらが結合している窒素原子と一緒になって、別の窒素原子や酸素原子を含んでいてもよい環を形成することができる。また、この環は置換されていてもよい。)で示される基である請求項3記載の含窒素復素環化合物又はその薬理学的に許容できる塩。

$$R^{19}$$
 | R²⁰ | (式中、 R^6 が式 $-N^-$ (CH₂), R^{21} (式中、 R^{19}

は水素原子、低級アルキル基、低級アルコキシアルキル基、アシル基、保護されていてもよいカルボキシアルキル基又はハイドロキシアルキル基を意味する。 R^{20} 、 R^{21} 、 R^{22} は同一又は相異なる水素原子、ハロゲン原子、水酸基、アミノ基、二トロ基、低級アルキル基、低級アルコキシ基、低級アルコキシアルキル基、低級アルケニル基、アシル基、アシルアミノ基、アルキルスルホニルアミノ基、ハイドロキシイミノアルキル基、アルキルオキシカルボニルアミノ基、アルキルオキシカルボニルオキシ基又は置換されていてもよいヘテロアリール基を意味する。また、 R^{20} 、 R^{21} 、 R^{22} のうち2つが一緒になって窒素原子、

硫黄原子又は酸素原子を含んでいてもよい飽和又は不飽和の環を形成することができる。 rは0又は1~8の整数を意味する。)で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

- 18. 前記一般式(I)において、R⁵が式-N (式中、R⁶°は保護されてい てもよい水酸基、シアノ基、ハロゲン原子、低級アルキル基、低級アルコキシ基、 保護されていてもよいカルボキシル基、ハイドロキシアルキル基、カルボキシア ルキル基又はヘテロアリール基を意味する。)である請求項3に記載の含窒素複
- 19. 前記一般式 (I) において、R⁵が式-N -R⁶¹ (式中、R⁶¹ は保護されていてもよいカルボキシル基又はヘテロアリール基を意味する。) で示される基である請求項 3 記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

素環化合物又はその薬理学的に許容できる塩。

20. 前記一般式 (I) において、R⁵が式-N-(CH₂)_u-R⁶¹ (式中、R⁶¹ は保護されていてもよいカルボキシル基、uは3又は4を意味する。) で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

21. 前記一般式 (I) において、R⁶が式-NHCH₂ で示される基である

請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

22. 前記一般式 (I) において、R⁶が式 - NHCH₂ で示される基である OCH₃

請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

23. 前記一般式 (I) において、 R^1 、 R^3 及び R^4 が水素原子であり、 R^2 が塩素原子で

で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容 できる塩。

24. 前記一般式 (I) において、 R^1 、 R^3 及び R^4 が水素原子であり、 R^2 がシアノ基で

で示される基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容 できる塩。

25. 前記一般式 (I) において、 R^1 、 R^3 及び R^4 が水素原子であり、 R^2 がシアノ基で

基である請求項3記載の含窒素複素環化合物又はその薬理学的に許容できる塩。

- 26. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とするホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤。
- 27. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とするサイクリック-GMPホスホジエステラーゼ阻害作用が有効な疾患の予防・治療剤。
- 28. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容でき

る塩を有効成分とする虚血性心疾患予防・治療剤。

- 29. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする狭心症予防・治療剤。
- 30. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする高血圧予防・治療剤。
- 31. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる場を有効成分とする心不全予防・治療剤。
- 32. 請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を有効成分とする喘息予防・治療剤。
- 33. 治療有効な量の請求項1又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩と、薬理学的に許容される賦形剤とからなる医薬組成物。
- 34. ホスホジエステラーゼ阻害作用が有効な疾患の治療薬を製造するという請求項 1 又は3 記載の含窒素複素環化合物又はその薬理学的に許容できる塩の用途。
- 35. ホスホジエステラーゼ阻害作用が有効な疾患に罹患している患者に、請求項1 又は3記載の含窒素複素環化合物及び/又はその薬理学的に許容できる塩を、治療に有効な量投与することからなる疾患の治療方法。

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/01258

	·	International Application No PC	
	ON OF SUBJECT MATTER (if several classi		
According to Intern	ational Patent Classification (IPC) or to both Nat		20/04 220/04
Int. Cl ⁵	C07D215/00, 215/00, 239/95, A61K31/47, 3		39/84, 239/94,
II. FIELDS SEARC			
	Minimum Docume		
Classification System	<u> </u>	Classification Symbols	
IPC	C07D215/00, C07D235/ A61K31/47, 31/505	700, 239/72-95,	
	Documentation Searched other to the Extent that such Documents	than Minimum Documentation a are included in the Fleids Searched (
			:
	considered to be relevant 9 ation of Document, 11 with Indication, where app	propriate of the rejevant passages 12	Relevant to Claim No. 13
	A, 57-171973 (Rhone-Po		1, 4, 33, 34
Octo	ber 22, 1982 (22. 10. , A, 56766 & US, A, 44	82),	
Febr	A, 59-33264 (Pfizer Co uary 23, 1984 (23. 02. ily: none)	orp.), 84),	1, 4, 26-31, 33, 34
June	A, 53-71088 (Abbot Lab 24, 1978 (24. 06. 78) , A, 4093726 & GB, A,	•	1, 5, 30, 33 34
May	A, 58-79983 (Kanebo, I 13, 1983 (13. 05. 83), , A, 79545 & US, A, 44	,	1, 5, 33, 34
Apri & DE	A, 63-96174 (Beringer 1 27, 1988 (27. 04. 88 , A, 3634066 & EP, A, , A, 4882342	3),	1, 5, 26-31, 33, 34
	A, 64-74 (Otsuka Pharπ ory, Inc.),	naceutical	1, 5, 26-34
"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to be of particular relevance in the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step """ document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same patent family			
IV. CERTIFICATION		Date of Mailing of this Internations	i Search Report
	completion of the International Search 16, 1992 (16. 11. 92)	December 8, 1992	
International Search	ing Authority	Signature of Authorized Officer	
Japanese	Patent Office		

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET				
FURTHER	1000 (05 01 89).	1		
	January 5, 1989 (05. 01. 89), (Family: none)			
ļ	_			
x	JP, A, 55-160776 (Warnar-Lambert Co.),	1, 6, 30, 33		
_ ^	December 13, 1980 (13, 12, 80),	;34		
	& EP, A, 18151 & US, A, 4271164	1		
		1, 6, 26-31,		
x	JP, A, 61-167688 (Bayer AG.),	.33, 34		
ł	July 29, 1986 (29. 07. 86),			
	& EP, A, 189045 & US, A, 4621082			
	JP, A, 63-216884 (The Wellcome	1, 6, 33, 34		
X	Foundation Ltd.),			
	September 9, 1988 (09. 09. 88),			
V.X OB	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1			
This inter	ational search report has not been established in respect of certain claims under Article 17(2) (a) (or the following reasons:		
1.XI Clair	n numbers 35 , because they relate to subject matter not required to be sessitive by the			
""	Claim 35 pertains to a medical treatment of	the human		
	y by curing.			
DOG	y by curing.			
	n numbers , because they relate to parts of the international application that do not co	mply with the prescribed		
2. Clai	n numbers , because they relate to parts of the international application that course irements to such an extent that no meaningful international search can be carried out, speci	fically:		
requ				
1				
to the dia accordance with the second and third				
3. Claim numbers , because they are dependent claims and are not drafted in accordance with the second and third				
sentences of PCT Rule 6.4(a).				
	SERVATIONS WHERE UNITY OF INVENTION IS LACKING ²			
This Inter	national Searching Authority found multiple inventions in this international application as follows:	ows:		
1,113 11.161	······································			
1				
1.0	all required additional search fees were timely paid by the applicant, this international search re	port covers all searchable		
	of the international application.	1		
to delicional course fees were timely paid by the applicant, this international search report covers only				
2. As only some of the required additional sentin less were think specifically claims: those claims of the international application for which fees were paid, specifically claims:				
1				
a C Na	required additional search fees were timely paid by the applicant. Consequently, this international so	earch report is restricted to		
the	required additional search tees were times; but by the system of the claims; it is covered by claim numbers:	İ		
_	ill searchable claims could be searched without effort justifying an additional fee, the International S	earching Authority did not		
4. As a	ill searchable claims could be searched without effort justifying an additional fee. te payment of any additional fee.			
Remark o	n Protest			
☐ The	additional search fees were accompanied by applicant's protest.			
No	protest accompanied the payment of additional search fees.			

FURTHER IN	FORMATION CONTINUED FROM THE SECOND SHEET		
	EP, A, 279565 & US, A, 4618759		
F	<pre>JP, A, 61-33185 (Pfizer Corp.), February 17, 1986 (17. 02. 86), EP, A, 168151 & US, A, 4647565</pre>	1-3, 7-31, 33, 34	
I	<pre>IP, A, 61-140568 (Mitsui Petrochemical Industries, Ltd. and another), June 27, 1986 (27. 06. 86), EP, A, 188094 & US, A, 4734418</pre>	1-3, 7-25, 30, 33, 34	
1	JP, A, 3-17068 (Smithkline Beecham Intercredit B.V.), January 25, 1991 (25. 01. 91),	1-3, 7-25, 33, 34	
V. OBSER	VATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE '		
This internation	onal search report has not been established in respect of certain claims under Article 17(2) (a) to numbers . because they relate to subject matter not required to be searched by the searche	or the following reasons: iis Authority, namely:	
2. Claim n requirer	numbers , because they relate to parts of the international application that do not coments to such an extent that no meaningful international search can be carried out, speci	mply with the prescribed fically:	
3. Claim numbers , because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).			
VI. OBSER	IVATIONS WHERE UNITY OF INVENTION IS LACKING 2		
This International Searching Authority found multiple inventions in this international application as follows:			
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.			
2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:			
3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:			
4. As all se invite po	earchable claims could be searched without effort justifying an additional fee, the International S ayment of any additional fee. rotest	earching Authority did not	
☐ The add	ditional search fees were accompanied by applicant's protest. test accompanied the payment of additional search fees.		

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET			
& US, A, 5064833 & EP, A, 404322			
20(1) 12-17 (1985	1-3, 7-34		
X : J. Med. Chem., 28(1), 12 1, (250)			
<u>:</u>			
	,		
1	:		
<u> </u>			
)	į		
AND WEST FOUND UNSEARCHARLE	: 1		
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE			
This international search report has not been established in respect of certain claims	under Article 17(2) (a) for the following reasons:		
This international search report has not been established to subject matter not required 1. Claim numbers . because they relate to subject matter not required.	1 to de acqueited by time transmitting		
	·		
2 Claim numbers , because they relate to parts of the international app	olication that do not comply with the prescribed		
Claim numbers , because they relate to parts of the international appropriate requirements to such an extent that no meaningful international search call	n be carried out, specifically:		
·			
•			
	the she accord and third		
3. Claim numbers , because they are dependent claims and are not drafted in accordance with the second and third			
sentences of PCT Rule 6.4(a).			
VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING ?			
This International Searching Authority found multiple inventions in this internation	onal application as follows:		
1. As all required additional search fees were timely paid by the applicant, this	international search report covers all searchable		
a to the second food was timely paid by the sec	olicant, this international search report covers only cifically claims:		
As only some of the required additional search less were than your young those claims of the international application for which fees were paid, spethose claims of the international application for which fees were paid, spethose claims of the required additional search less were paid, spethose claims of the required additional search less were paid, spethose claims of the required additional search less were paid, spethose claims of the required additional search less were paid, spethose claims of the required additional search less were paid, spethose claims of the international application for which fees were paid, spethose claims of the international application for which fees were paid, spethose claims of the international application for which fees were paid, spethose claims of the international application for which fees were paid, spethose claims of the international application for which fees were paid, spethose claims of the international application for which fees were paid, spethose claims of the international application for the internation fo			
	and a second annual control to an addicted the		
No required additional search fees were timely paid by the applicant. Conseque the invention first mentioned in the claims; it is covered by claim number.	ntly, this international search report is restricted to '\$:		
the invention tirst mentioned in the definity, it is desired.			
	14 the International Sparrhing Authority did not		
As all searchable claims could be searched without effort justifying an additional invite payment of any additional fee.	Hiee, the international cooleaning Actional and Not		
Remark on Protest			
The additional search fees were accompanied by applicant's protest.			
No protest accompanied the payment of additional search fees.			

	明の属する分野の分類			
国際特許	分類 (IPC) Int. CL C C 07D2			
	239/72 239/8	4, 239/94, 239/9	5,	
	A61K31/47, 31,	/505		
TT (2) #	・ 条調査を行った分野			
П. Д		たるののでは、		
分類		類記号		
			, 	
IP	C07D215/00, C	0 7 D 2 3 5 / 0 0, 2 3 9 /	7 2 - 9 5,	
1 P	A61K31/47, 31	/ 5 0 5	·	
·	最小限資料以外の資	料で調査を行ったもの		
^				
III (A) : 4	望する技術に関する文献			
		しまい その原本ナス体でのセニ	請求の範囲の番号	
引用文献の カテゴリー ※	コール 対象 スケー の の の の の の の の の の の の の の の の の の の	こでは、ての民産する箇所の衣小	明永少製四の番号	
x	JP, A, 57-171973 (P	ーン・プーラン・サント)	1, 4, 33, 34	
•	22.10月.1982(22.10	. 82)		
	&EP. A. 56766 &US. A	, 4421920	1	
X	JP, A, 59-33264(77	イザー・コーポレーション),	1, 4, 26-31,	
	23. 2月. 1984(23. 02.	84), (ファミリーなし)	33, 34	
7.	JP, A, 53-71088(アポ	- ト・ラボラトリーズ).	1, 5, 30, 33,	
X	24.6月.1978(24.06.	78)	34	
	&US, A. 4093726&GB	, A, 1583357		
			ŀ	
х	JP. A. 58-79983(鐘紡		1, 5, 33, 34	
	13.5月.1983(13.05.			
	&EP, A. 79545&US. A	, 4430343		
	JP, A, 63-96174(~-	リンガー・コンハイム・ゲ	1. 5. 26-31	
X	JP, A, 63-96174(~-		7	
※ 引用文献のカテゴリー 「T」国際出願日又は優先日の後に公表された文献であって出				
「A」特に	関連のある文献ではなく、一般的技術水準を示すもの	願と矛盾するものではなく、発明の		
「E」先行文献ではあるが、国際出願日以後に公表されたもの のために引用するもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 「X」特に関連のある文献であって、当該文献のみで発明の新				
おしくは他の特別な理由を確立するために引用する文献 規性又は進歩性がないと考えられるもの				
(理由を付す) 「Y」特に関連のある文献であって、当該文献と他の1以上の「 「O」ロ頭による関示、使用、展示等に言及する文献 文献との、当業者にとって自明である組合せによって進				
「P」国際出願日前で、かつ優先権の主張の基礎となる出願の 歩性がないと考えられるもの				
日の後に公表された文献 「&」同一パテントファミリーの文献				
IV. 122	IV. IE IE			
国際調査を完了した日 国際調査報告の発送日				
16. 11. 92				
国際調査機能	X	権限のある職員	4C 7019	
		 特許庁審査官 4 mg	1 7 7 7 7 7	
. н	本国特許庁(ISA/JP)	村計厅審登官 佐 野	整博 @	

第2ページから続く情報				
	(Ⅲ欄の続き)			
	ゼルシャフト・ミット・ベシュレンクテル・ヘフツング), 27. 4月. 1988(27. 04. 88), &DE, A, 3634066&EP, A, 266558 &US, A, 4882342	33, 34		
х	JP, A, 64-74(株式会社 大塚製薬工場). 5.1月.1989(05.01.89), (ファミリーなし)	1, 5, 26-34		
x	JP, A, 55-160776(ワーナー・ランバート・コンパ ニ),	1, 6, 30, 33, 34		
V. V.	一部の請求の範囲について国際調査を行わないときの意見			
次の請求の範囲については特許協力条約に基づく国際出願等に関する法律第8条第3項の規定によりこの国際				
調査報告を作成しない。その理由は、次のとおりである。				
1. 🗾 請求の範囲 35 は、国際調査をすることを要しない事項を内容とするものである。				
	人の身体の治療による処置方法である。			
2	請求の範囲は、有効な国際調査をすることができる程度にまで所定の要	件を満たしていな		
	い国際出願の部分に係るものである。			
3. 🗌	請求の範囲は、従属請求の範囲でありかつ PCT 規則 6. 4(a)第 2 文の規類	どに従って起草され		
	ていない。			
VI 発明の単一性の要件を満たしていないときの意見				
次に述べるようにこの国際出願には二以上の発明が含まれている。				
1. 🗆	追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告は	、国際出願のすべ		
_	ての調査可能な請求の範囲について作成した。 追加して納付すべき手数料が指定した期間内に一部分しか納付されなかったので、こ	の国際調査報告は、		
2. 📙	追加して納付すべき手数科が指定した期間内に一部の じかれ けんしゅう 手数料の納付があった発明に係る次の請求の範囲について作成した。			
	詩文の範囲			
3.1 追加して納付すべき手数料が指定した期間内に納付されなかったので、この国際調査報告は、請求の範				
囲に最初に記載された発明に係る次の請求の範囲について作成した。				
, -	請求の範囲 追加して納付すべき手数料を要求するまでもなく、すべての調査可能な請求の範囲R	こついて混査するこ		
とができたので、追加して納付すべき手数料の納付を命じなかった。				
追加手数料異議の申立てに関する注意				
□ 追加して納付すべき手数料の納付と同時に、追加手数料異議の申立てがされた。 □ 追加して納付すべき手数料の納付に際し、追加手数料異議の申立てがされなかった。				
1 '-	担加し CMICI 、C I WALL WITH THE			

用文献の※	する技術に関する文献(第 2 ページからの続き) 引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
	13. 12月. 1980 (13. 12. 80) & EP. A, 18151 & US, A, 4271164	10.7. 10.0 E
x	JP, A, 61-167688(バイエル・アクチェンゲゼルシャフト), 29. 7月. 1986(29. 07. 86) & EP, A, 189045 & US, A, 4621082	1, 6, 26-3 33, 34
X	JP, A, 63-216884(ザ ウエルカム ファウンデーション リミテッド), 9. 9月, 1988(09, 09, 88) & EP, A, 279565 & US, A, 4618759	1, 6, 33, 3
x	JP、A、61-33185(ファイザー・コーポレーション)、 17、2月、1986(17、02、86) & EP、A、168151 & US、A、4647565	1-3, 7-31, 33, 34
	JP. A. 61-140568(三井石油化学工業株式会社外1名), 27. 6月. 1986(27. 06. 86) & EP, A. 188094&US, A. 4734418	1-3, 7-25, 30, 33, 34
x	JP, A, 3-17068(スミスクライン・ビーチャム・インタークレディット・ビー・ペー), 25. 1月, 1991(25, 01, 91) &US, A, 5064833&EP, A, 404322	1-3, 7-25, 33, 34
x	J. Med. Chem., 28(1), 12-17(1985)	1-3, 7-34
-		
		· · · · · ·