Correlação e Regressão Linear com Pandas

Coeficiente de Correlação

• Mede a direção e a força de uma relação linear

Imagem: https://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Correlation_coefficient.png/600px-Correlation_coefficient.png

Cálculo do Coeficiente de Correlação

Α	В	C	D	E	F	
Aluno	Altura (cm)	Peso (kg)	Altura em unidade- padrão	Peso em unidade- padrão	(Peso em unidades- padrão) × (Altura em unidades-padrão)*	
Nick	185	88	1,34	1,05	1,41	
Elana	165	60	-0,49	-0,74	0,36	
Dinah	170	70	-0,03	-0,09	0,01	
Rebecca	172	67	0,15	-0,29	-0,04	
Ben	183	80	1,16	0,54	0,63	
Charu	175	58	0,43	-0,87	-0,37	
Sahar	150	45	-1,86	-1,69	3,14	
Maggie	158	58	-1,13	-0,87	0,98	
Faisal	168	77	-0,21	0,35	-0,07	
Ted	175	83	0,43	0,73	0,31	
Narciso	175	81	0,43	0,61	0,26	
Katrina	175	54	0,43	-1,12	-0,48	
CJ	187	103	1,52	2,01	3,05	
Sophia	155	53	-1,41	-1,18	1,67	
Will	185	96	1,34	1,56	2,09	
Média	170,34	71,53			Total = 12,95	
Desvio padrão	10,91	15,66		Coeficiente de correlação = Total/n = 12,95/15 = 0,86		

Medição em unidade padrão é a distância à média medida em termos de desvio padrão. Calcula-se assim:

$$\frac{x-\bar{x}}{\sigma}$$

Fórmula:

$$r_{xy} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

Interpretação da Correlação

- Há alta correlação quando
 - a distância à média de uma variável oscilar consistentemente com a distância da outra variável.
- Não depende de unidade de medida
 - Pode-se medir a correlação entre
 - ✓ Peso e altura;
 - ✓ Quantidade de televisores em casa e o desempenho no ensino médio.
 - Isso porque o score padronizado (z-score)
 - √ é adimensional

$$z_i = \frac{x_i - \bar{x}}{\sigma}$$

Dataset tips (gorjetas)

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Cálculo da Correlação com o Pandas

```
1 # Calcule a correlação entre a
2 tips.corr()
```

	total_bill	tip	size
total_bill	1.000000	0.675734	0.598315
tip	0.675734	1.000000	0.489299
size	0.598315	0.489299	1.000000

Mapa de Calor da Correlação

3 sns.heatmap(tips.corr(), annot=True)

<AxesSubplot:>

Variável Dependente e Independente

Variável Independente

- É a variável que mede uma grandeza que está sendo manipulada num experimento, ou seja,
 - √ é aquela que você está estudando os seus efeitos sobre outras variáveis.
- Sinônimos: variáveis explicativas ou de controle.

Variável Dependente

- É a que está sendo explicada,
 - ✓ que depende de outros fatores

Exemplos:

- Viscosidade e o atrito de uma esfera em queda livre num líquido;
- Consumo percapita de chocolate e prêmios nobel.

Confounding Variable (Variável de confusão)

- Em investigação de causa e efeito,
 - o uma variável de confusão é uma terceira variável não medida
 - ✓ que influencia tanto a suposta causa quanto o suposto efeito.

Confounding Variable - Exemplo

duração da gestação

ganho de peso materno

peso do recém nascido

Confounding Variable – Exemplo (2)

Confounding Variable – Exemplo (2)

Outros exemplos de correlações espúrias

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)

Fonte: https://www.tylervigen.com/spurious-correlations

Outros exemplos de correlações espúrias (2)

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

Fonte: https://www.tylervigen.com/spurious-correlations

Regressão Linear

Baixo Controle e Doenças Cardíacas

- Num estudo longitudinal com servidores públicos britânicos
 - Trabalhadores com pouco controle sobre suas responsabilidades
 - √ o que significa que têm pouco a dizer sobre quais serviços executar ou como são executados
 - Têm uma taxa de mortalidade maior do que outros servidores com maior autoridade na tomada de decisões.
- Não é o estresse associado à responsabilidades importantes
 - que é mais prejudicial,
 - √ é o estresse associado a lhe dizerem o que fazer enquanto você tem pouco a
 dizer sobre como e quando fazer.
- Como se chegou a essa conclusão?
 - o Eliminando confounding variables e usando análise de regressão
 - ✓ Educação, hábitos de fumar

Metodologia de Cálculo da Regressão Linear

Quais valores de a e b que minimizam a soma dos resíduos ?

$$y = ax + b$$

Um método chamado Mínimos Quadrados Ordinários encontra a resposta.

Fonte: WHEELAN, C. Estatística, o que é, para que serve, como funciona.

Regressão como ferramenta de Administração/Controle

Notas de Simulados de Portugês em 2012

Coeficiente de Regressão (Coef)

- Tamanho do efeito observado representado pelo
 - o é o parâmetro A na equação

$$y = Ax + B$$

• Exemplo:

$$PESO = A \times ALTURA + B$$

 $PESO = 0.8 \times ALTURA - 60$
3537 amostras (Changing Lives)

^{*} ALTURA em centímetros

R² da Regressão Linear

- É uma medida do tamanho total da variação
 - o explicado pela equação de regressão
 - ✓ varia de 0 a 1
- Quanto maior o valor de R²
 - mais explicativo é o modelo
 - ✓ ou a variável independente (no caso de uma regressão simples)

Erro padrão do Coeficiente de Regressão Linear

- É uma medida da dispersão dos valores do coeficiente de regressão (Coef)
 - o ou seja, o desvio padrão desses valores y = Ax + B
 - ✓ representa a distância média que os valores observados desviam da linha de regressão.
 - S ou SE (Standard Error)
- Diferentemente do R²
 - o erro padrão (SE) pode ser usado para avaliar a precisão das predições
 - Aproximadamente 95% das observações devem cair dentro do intervalo
 - ✓ ± 2 * SE

Outras estatísticas da Regressão Linear

- P-Value
 - a probabilidade de se obter

- Estatística t
 - Calculado por: SE / p-value

- Intervalo de confiança medido em termos do erro padrão
 - Intervalo de 95%

$$Coef \pm 2 * SE$$

Regressão linear com Statsmodel (Python)

Boston House Prices dataset

CRIM	per capita crime rate by town
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS	proportion of non-retail business acres per town
CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX	nitric oxides concentration (parts per 10 million)
RM	average number of rooms per dwelling
AGE	proportion of owner-occupied units built prior to 1940
DIS	weighted distances to five Boston employment centres
LSTAT	% lower status of the population
MEDV	Median value of owner-occupied homes in \$1000's

Tratamento de Exceção em Python

- Divisão por zero gera uma exceção
 - Como fazer para o seu programa continuar a execução,
 - ✓ e falhar graciosamente ?

```
2/2
1.0
a = 0 / 0
print("Passou aqui")
ZeroDivisionError
                                           Traceback (most recent call last)
<ipython-input-23-efda217e1f08> in <module>
---> 1 a = 0 / 0
      2 print("Passou agui")
ZeroDivisionError: division by zero
```

Tratamento de Exceção em Python

- Use a sintaxe de tratamento de exceção com
 - try e except, conforme o exemplo a seguir
- Boas práticas
 - Coloque poucas linhas de código dentro do escopo do try/except
 - Capture exceções específicas

```
try:
    a = 0/0
    print("resultado: {0}".format(i))
except ZeroDivisionError as e:
    print(e)
    print("deu erro.")
    pass
```

```
division by zero deu erro.
```

Prática no Jupyter Notebook

- Faça os exercícios da aula;
- Há exercícios extra.