

# Microwave and Infrared Spectra, Adjusted $r_0$ Structural Parameters, Conformational Stabilities, Vibrational Assignments, and Theoretical Calculations of Cyclobutylcarboxylic Acid Chloride

Joshua J. Klaassen,<sup>†,§</sup> Ikhlas D. Darkhalil,<sup>†,⊥</sup> Bhushan S. Deodhar,<sup>†,¶</sup> Todor K. Gounev,<sup>†</sup> Ranil M. Gurusinghe,<sup>‡</sup> Michael J. Tubergen,<sup>‡</sup> Peter Groner,<sup>†</sup> and James R. Durig<sup>\*,†</sup>

Supporting Information

ABSTRACT: The FT-microwave spectrum of cyclobutylcarboxylic acid chloride, c-C<sub>4</sub>H<sub>7</sub>C(O)Cl, has been recorded and 153 transitions for the <sup>35</sup>Cl and <sup>37</sup>Cl isotopologues have been assigned for the gauche-equatorial (g-Eq) conformation. The ground state rotational constants were determined for  $^{35}$ Cl [ $^{37}$ Cl]: A = 4349.8429(25)[4322.0555(56)] MHz, B = 1414.8032(25) [1384.5058(25)] MHz, and C = 1414.8032(25)1148.2411(25) [1126.3546(25)] MHz. From these rotational constants and ab initio predicted parameters, adjusted  $r_0$  parameters are reported with distances (Å)  $rC_\alpha - C =$ 1.491(4), rC = O = 1.193(3),  $rC_{\alpha} - C_{\beta} = 1.553(4)$ ,  $rC_{\alpha} - C_{\beta'} = 1.540(4)$ ,  $rC_{\gamma} - C_{\beta} = 1.547(4)$ ,  $rC_{\gamma} - C_{\beta'} = 1.546(4)$ , rC - CI = 1.801(3) and angles (deg)  $\tau C_{\gamma} C_{\beta} C_{\beta'} C_{\alpha} = 1.547(4)$ 30.9(5). Variable temperature (-70 to -100 °C) infrared spectra (4000 to 400 cm<sup>-1</sup>) were recorded in liquid xenon and the g-Eq conformer was determined the most stable



form, with enthalpy differences of  $91 \pm 9$  cm<sup>-1</sup> (1.09  $\pm$  0.11 kJ/mol) for the gauche-axial (g-Ax) form and 173  $\pm$  17 cm<sup>-1</sup> (2.07  $\pm$  0.20 kJ/mol) for the trans-equatorial (t-Eq) conformer. The relative amounts at ambient temperature are 54% g-Eq, 35  $\pm$  1% g-Ax, and  $12 \pm 1\%$  t-Eq forms. Vibrational assignments have been provided for the three conformers and theoretical calculations were carried out. The results are discussed and compared to corresponding properties of related molecules.

## 1. INTRODUCTION

Our interest in the conformational stabilities and structural parameters of small ring compounds, particularly monosubstituted four- and five-membered-ring molecules, has led us to reinvestigate some of these molecules where there is considerable controversy of the most stable conformers. One such molecule is the monosubstituted four-membered-ring cyclobutylcarboxylic acid chloride where there have been four different conformers/structure studies reported. These four possible conformers are the gauche-equatorial (g-Eq), gaucheaxial (g-Ax), trans-equatorial (t-Eq), and trans-axial (t-Ax) where the three stable conformers (g-Eq, g-Ax, and t-Eq) are shown in Figure 1.

The earlier structural determination of this molecule in the vapor state was obtained by the electron diffraction technique by Adam and Bartell<sup>1</sup> in 1971. These scientists were interested in the structure and conformations of the series R-COX and concluded that the cyclobutyl derivative exists almost entirely as the gauche conformations. From this study it was concluded that there was coupling between the ring bending and torsional displacements based on the electron diffraction intensities. From these couplings it was observed that the gauche conformation aligned toward the cis side favored the equatorial puckered ring and those on the trans side favored the axial puckered ring. Bond lengths and bond angles were determined and it was concluded that they were "normal" which indicates

that they were similar to those obtained in "unstrained" alkyl carboxaldehydes, 5-7 which is rather surprising since cyclobutyl compounds are moderately strained.

Following this initial structural investigation there were three<sup>2-4</sup> additional structural investigations with two of them vibrational studies<sup>2,3</sup> and the other a microwave and vibrational study.<sup>4</sup> In the first vibrational study<sup>2</sup> the spectra were recorded of the condensed phases (liquid and solid) and it was concluded that there was a single conformer present in both phases and it was the same form.

A subsequent vibration investigation<sup>3</sup> was reported that included the infrared spectrum of the gas as well as the spectra of the liquid and solid and the Raman spectrum of the liquid. From this study there was clear evidence from the temperature dependence of the spectrum of the liquid that multiple conformers exist in the fluid state. For example, some bands increased where others decreased as the temperature was decreased and one band disappeared in the spectrum of the crystal. From these studies it was assumed that the proposed three conformers from the electron diffraction investigation were probably nearly equal concentrations.

Received: May 7, 2013 Revised: June 18, 2013 Published: June 18, 2013

<sup>&</sup>lt;sup>†</sup>Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States

<sup>&</sup>lt;sup>‡</sup>Department of Chemistry, Kent State University, Kent, Ohio 44242, United States

Axial Equatorial
$$H_{1} \xrightarrow{H_{1} \times G_{\beta}} H_{2} \xrightarrow{H_{1} \times G_{\beta}} H_{2} \xrightarrow{H_{2} \times G_{\beta}} H_{$$

Figure 1. Labeled conformers of cyclobutylcarboxylic acid chloride with atomic numbering

From a later microwave and vibrational investigation<sup>4</sup> only the microwave spectrum of the <sup>35</sup>Cl isotope of the g-Eq form was assigned and there was no microwave data for the <sup>37</sup>Cl species or other conformers. From this microwave data a partial structure was reported for the g-Eq conformer. Also, in this study<sup>4</sup> an investigation of the Raman spectrum of the liquid was reported and the energy difference between the preferred g-Eq form and high-energy (assumed to be t-Eq) conformer was determined to be 1.4 kcal mol<sup>-1</sup> (490 cm<sup>-1</sup>). Therefore from the four reported studies to date, there are at least two and possibly three conformers present in the fluid phases but there is still a question which conformer is the most stable form and what are the energy differences, as well as, to assign the microwave spectral transitions of the <sup>37</sup>Cl isotopologue for the g-Eq form and determine a complete set of structural parameters from the microwave data. Thus, a microwave and vibration investigation has been initiated to answer these questions.

To aid in identifying the fundamental vibrations for the additional conformers and to assign fundamentals for the less stable conformers for use in determining the enthalpy differences ab initio calculations have been utilized. The harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies were obtained from MP2/6-31G(d) ab initio calculations with full electron correlation. Additionally both MP2(full) ab initio and Density Functional Theory (DFT) calculations by the B3LYP method have been carried out with a variety of basis sets up to aug-cc-pVTZ as well as with diffuse functions to predict the conformational stabilities. The results of these spectroscopic, structural, and theoretical studies of cyclobutylcarboxylic acid chloride are reported herein.

## 2. EXPERIMENTAL AND THEORETICAL METHODS

The sample of cyclobutylcarboxylic acid chloride was purchased from Sigma-Aldrich Chemical Co., with stated purity of 98%.

The sample was further purified by low-temperature, low-pressure fractionation column and the purity of the sample was verified by comparing the infrared spectrum with that previously reported.<sup>4</sup>

Microwave spectra were recorded by using a "mini-cavity" Fourier-transform microwave spectrometer<sup>8,9</sup> at Kent State University. The Fabry—Perot resonant cavity is established by two 7.5-in.-diameter diamond-tip finished aluminum mirrors with a 30.5-cm spherical radius. The Fabry—Perot cavity resides inside a vacuum chamber formed by a 6-way cross and a 15-in. long, 8-in. diameter extension tube. The two cavity mirrors are nominally separated by 30 cm.

The sample was entrained in a 70:30 Ne—He carrier gas mixture at 2 atm and expanded into the cavity to attain 4K by using a reservoir nozzle made from a modified Series-9 General Valve. The reservoir nozzle is mounted in a recessed region of the mirror flange, external to the vacuum chamber, and the expansion passes through a 0.182-in.-diameter hole into the resonant cavity. The center of the expansion is offset from the center of the mirror by 1 in.

The sample was irradiated by microwave radiation generated by an Agilent Technologies E8247C PSG CW synthesizer; details of the irradiation and heterodyne detection circuitry can be found in ref 10. The vacuum system can accommodate pulse repetition rates of up to 15 s<sup>-1</sup> while maintaining a pressure below  $10^{-4}$  Torr, and the instrument can scan 450 MHz in 6 h while averaging 100 shots per scan segment. The frequencies for the measured transitions in the region of 10 500 to 22 000 MHz are listed in Tables 1 and 2 along with their assignments.

The infrared spectrum of the gas (Figure 2A) was obtained from 4000 to 220 cm<sup>-1</sup> on a Perkin-Elmer model 2000 Fourier transform spectrometer equipped with a Ge/CsI beamsplitter and a DTGS detector. Atmospheric water vapor was removed from the spectrometer housing by purging with dry nitrogen. The spectrum of the gas was obtained with a theoretical

Table 1. Microwave Spectrum for the g-Eq Form of c-C<sub>4</sub>H<sub>7</sub>C(O)<sup>35</sup>Cl<sup>a</sup>

|                            | •   |      | 0 1        | 7 /            | ` '                           |     |      |            |                |
|----------------------------|-----|------|------------|----------------|-------------------------------|-----|------|------------|----------------|
| transition                 | 2F' | 2F'' | obsd (MHz) | $\Delta$ (kHz) | transition                    | 2F′ | 2F'' | obsd (MHz) | $\Delta$ (kHz) |
| $5_{05} \leftarrow 4_{04}$ | 11  | 9    | 12488.0928 | 0.0            | $5_{23} \leftarrow 4_{22}$    | 11  | 11   | 13102.2947 | -9.0           |
|                            | 7   | 5    | 12488.4513 | 0.0            |                               | 11  | 9    | 13102.8295 | 0.0            |
|                            | 13  | 11   | 12488.8314 | 0.0            |                               | 9   | 7    | 13102.9112 | 1.0            |
|                            |     |      |            |                |                               | 13  | 11   | 13103.2076 | 0.0            |
| $4_{23} \leftarrow 4_{04}$ | 7   | 5    | 12510.4984 | -1.0           |                               | 7   | 5    | 13103.2512 | 1.0            |
|                            | 5   | 5    | 12512.2725 | -3.0           |                               | 7   | 7    | 13103.7903 | -3.0           |
|                            | 11  | 11   | 12513.7552 | 2.0            |                               |     |      |            |                |
|                            | 9   | 7    | 12515.6503 | 2.0            | $6_{06} \leftarrow 5_{15}$    | 9   | 7    | 13298.0792 | -2.0           |
|                            |     |      |            |                |                               | 15  | 13   | 13298.7292 | 1.0            |
| $5_{24} \leftarrow 5_{05}$ | 7   | 7    | 12801.0148 | 0.0            |                               | 11  | 9    | 13299.1049 | -2.0           |
|                            | 13  | 13   | 12801.9124 | 1.0            |                               | 13  | 11   | 13299.7042 | -1.0           |
|                            | 9   | 9    | 12804.5374 | 0.0            |                               |     |      |            |                |
|                            | 11  | 11   | 12805.6276 | -3.0           | $5_{14} \leftarrow 4_{13}$    | 11  | 9    | 13397.6336 | -1.0           |
|                            |     |      |            |                |                               | 9   | 7    | 13397.7486 | 2.0            |
| $5_{42} \leftarrow 4_{41}$ | 11  | 9    | 12851.4369 | 1.0            |                               | 13  | 11   | 13398.1012 | 0.0            |
|                            | 9   | 7    | 12852.8816 | -1.0           |                               | 7   | 5    | 13398.1832 | 1.0            |
|                            | 13  | 11   | 12854.9682 | 0.0            |                               |     |      |            |                |
|                            | 7   | 5    | 12856.3981 | 1.0            | $8_{35} \leftarrow 8_{26}$    | 17  | 17   | 13543.8893 | -1.0           |
|                            |     |      |            |                |                               | 15  | 15   | 13544.1742 | -1.0           |
| $5_{41} \leftarrow 4_{40}$ | 11  | 9    | 12851.6285 | 1.0            |                               | 19  | 19   | 13545.0002 | -1.0           |
|                            | 9   | 7    | 12853.0725 | -1.0           |                               | 13  | 13   | 13545.0375 | 0.0            |
|                            | 13  | 11   | 12855.1571 | -1.0           |                               |     |      |            |                |
|                            | 7   | 5    | 12856.5838 | -3.0           | $6_{33} \leftarrow 6_{24}$    | 13  | 13   | 14581.4210 | -4.0           |
|                            |     |      |            |                |                               | 11  | 11   | 14581.4906 | -3.0           |
| $5_{33} \leftarrow 4_{32}$ | 11  | 9    | 12866.4754 | 1.0            |                               | 9   | 9    | 14581.5304 | -1.0           |
| 00                         | 9   | 7    | 12867.4525 | -2.0           |                               | 15  | 15   | 14581.5809 | 2.0            |
|                            | 11  | 11   | 12868.2870 | 0.0            |                               |     |      |            |                |
|                            | 13  | 11   | 12868.6320 | 2.0            | $6_{06} \leftarrow 5_{05}$    | 11  | 9    | 14837.8797 | 1.0            |
|                            | 7   | 5    | 12869.0708 | 1.0            |                               | 13  | 11   | 14838.0792 | 1.0            |
| $5_{32} \leftarrow 4_{31}$ | 11  | 9    | 12881.2035 | 3.0            | $4_{31} \leftarrow 4_{22}$    | 5   | 5    | 15145.9291 | 3.0            |
|                            | 9   | 7    | 12881.7769 | 5.0            |                               | 11  | 11   | 15146.7867 | 0.0            |
|                            | 13  | 11   | 12883.0272 | 4.0            |                               | 7   | 7    | 15148.3560 | 2.0            |
|                            | 7   | 5    | 12883.7434 | -2.0           |                               | 9   | 9    | 15149.1610 | 1.0            |
| $9_{36} \leftarrow 9_{27}$ | 19  | 19   | 12938.1931 | 2.0            | $10_{29} \leftarrow 10_{110}$ | 23  | 23   | 16847.3301 | 0.0            |
| 50 27                      | 17  | 17   | 12938.3418 | 1.0            | 2) 110                        | 19  | 19   | 16850.9893 | 0.0            |
|                            | 21  | 21   | 12939.1964 | 1.0            |                               | 21  | 21   | 16851.6156 | 0.0            |
|                            | 15  | 15   | 12939.3744 | -2.0           |                               |     |      |            |                |
|                            |     |      |            |                | $7_{07} \leftarrow 6_{06}$    | 13  | 11   | 17144.2289 | 1.0            |
| $7_{26} \leftarrow 7_{17}$ | 11  | 11   | 13089.0202 | -1.0           | 0, 00                         | 15  | 13   | 17144.3366 | 2.0            |
| 20 1/                      | 13  | 13   | 13093.7375 | 2.0            |                               | 11  | 9    | 17144.8521 | -2.0           |
|                            | 15  | 15   | 13094.7280 | 0.0            |                               |     |      |            |                |
|                            |     |      |            |                |                               |     |      |            |                |

"Observed frequencies of hyperfine components of rotational transitions (MHz) and deviations of calculated values (kHz).

resolution of  $0.5~{\rm cm}^{-1}$  for the gas with 128 interferograms added and truncated.

The mid-infrared spectra (4000 to 400 cm<sup>-1</sup>) of the sample dissolved in liquid xenon (Figure 2B) were recorded on a Bruker model IFS-66 Fourier transform spectrometer equipped with a globar source, a Ge/KBr beamsplitter, and a DTGS detector. In all cases, 100 interferograms were collected at 1.0 cm<sup>-1</sup> resolution, averaged, and transformed with a boxcar truncation function. For these studies, a specially designed cryostat cell was used. It consists of a copper cell with a path length of 4 cm with wedged silicon windows sealed to the cell with indium gaskets. The copper cell was enclosed in an evacuated chamber fitted with KBr windows. The temperature was maintained with boiling liquid nitrogen and monitored by two Pt thermo resistors. After being cooled to the designated temperature, a small amount of the sample was condensed into the cell and the system was then pressurized with the noble gas,

which condensed in the cell, allowing the compound to dissolve. All of the observed bands in the infrared spectra of the gas along with their proposed assignments of the g-Eq, g-Ax, and t-Eq conformers are listed in Tables 3, 4 and 5, respectively.

The LCAO-MO-SCF restricted Hartree–Fock calculations were performed with the Gaussian-03 program<sup>11</sup> with Gaussian-type basis functions. The energy minima with respect to nuclear coordinates were obtained by the simultaneous relaxation of all geometric parameters by using the gradient method of Pulay.<sup>12</sup> Several basis sets as well as the corresponding ones with diffuse functions were employed with the Møller–Plesset perturbation method<sup>13</sup> to second order (MP2(full)) as well as with the density functional theory by the B3LYP method. The predicted conformational energy differences are listed in Table 6.

Table 2. Microwave Spectrum for the g-Eq Form of c-C<sub>4</sub>H<sub>7</sub>C(O)<sup>37</sup>Cl<sup>a</sup>

| ransition                  | 2F′ | 2F'' | obsd (MHz)  | $\Delta$ (kHz) | transition                 | 2F′ | 2F'' | obsd (MHz) | $\Delta$ (kH |
|----------------------------|-----|------|-------------|----------------|----------------------------|-----|------|------------|--------------|
| $5_{15} \leftarrow 4_{14}$ | 9   | 7    | 11843.7145  | 0.0            | $7_{26} \leftarrow 7_{17}$ | 11  | 11   | 12959.0087 | -1.0         |
|                            | 7   | 5    | 11844.1191  | -2.0           |                            | 17  | 17   | 12959.7415 | 2.0          |
|                            | 11  | 9    | 11844.1191  | 6.0            |                            | 13  | 13   | 12962.6624 | 0.0          |
|                            | 13  | 11   | 11844.3502  | 0.0            |                            | 15  | 15   | 12963.4274 | -1.0         |
|                            | 9   | 9    | 11845.9516  | -1.0           |                            |     |      |            |              |
|                            | 7   | 7    | 11850.3009  | 0.0            | $6_{06} \leftarrow 5_{15}$ | 9   | 7    | 12981.6414 | -1.0         |
|                            |     |      |             |                |                            | 15  | 13   | 12982.1523 | 1.0          |
| $l_{14} \leftarrow 3_{03}$ | 9   | 9    | 11854.2267  | -3.0           |                            | 11  | 9    | 12982.4399 | -1.0         |
|                            | 9   | 7    | 11858.5569  | 0.0            |                            | 13  | 11   | 12982.9145 | 0.0          |
|                            | 7   | 5    | 11858.7653  | -2.0           |                            |     |      |            |              |
|                            | 11  | 9    | 11860.5299  | -1.0           | $5_{14} \leftarrow 4_{13}$ | 11  | 9    | 13121.1218 | -2.0         |
|                            | 5   | 3    | 11860.6000  | 5.0            |                            | 9   | 7    | 13121.2000 | 6.0          |
|                            |     |      |             |                |                            | 13  | 11   | 13121.4873 | 1.0          |
| $5_{05} \leftarrow 4_{04}$ | 9   | 7    | 12246.1823  | 0.0            |                            | 7   | 5    | 13121.5366 | 0.0          |
|                            | 11  | 9    | 12246.3667  | 1.0            |                            |     |      |            |              |
|                            | 7   | 5    | 12246.6679  | -1.0           | $6_{06} \leftarrow 5_{05}$ | 11  | 9    | 14554.8534 | -2.0         |
|                            | 13  | 11   | 12246.8701  | 2.0            |                            | 13  | 11   | 14554.9830 | 3.0          |
|                            | 9   | 9    | 12247.8543  | -2.0           |                            | 9   | 7    | 14555.3695 | -2.0         |
|                            | 7   | 7    | 12251.4504  | -2.0           |                            | 15  | 13   | 14555.4882 | 2.0          |
| $5_{24} \leftarrow 4_{23}$ | 11  | 9    | 12517.5782  | -1.0           | $6_{52} \leftarrow 5_{51}$ | 13  | 11   | 15104.3045 | 7.0          |
| 21 25                      | 9   | 7    | 12517.7214  | 1.0            | 32 31                      | 11  | 9    | 15105.1831 | 3.0          |
|                            | 13  | 11   | 12518.4264  | -1.0           |                            | 15  | 13   | 15106.9214 | 2.0          |
|                            | 7   | 5    | 12518.5449  | 2.0            |                            | 9   | 7    | 15107.7958 | 0.0          |
|                            | 7   | 7    | 12520.1200  | -2.0           |                            |     |      |            |              |
|                            |     |      |             |                | $6_{51} \leftarrow 5_{50}$ | 13  | 11   | 15104.3045 | 1.0          |
| $5_{42} \leftarrow 4_{41}$ | 11  | 9    | 12588.5521  | 1.0            | 31 30                      | 11  | 9    | 15105.1831 | -4.0         |
| 72 71                      | 9   | 7    | 12589.7455  | -2.0           |                            | 15  | 13   | 15106.9214 | -4.0         |
|                            | 13  | 11   | 12591.4810  | -1.0           |                            | 9   | 7    | 15107.7958 | -6.0         |
|                            | 7   | 5    | 12592.6693  | 0.0            |                            |     |      |            |              |
|                            |     |      |             |                | $6_{43} \leftarrow 5_{42}$ | 13  | 11   | 15119.1757 | 0.0          |
| $5_{41} \leftarrow 4_{40}$ | 11  | 9    | 12588.7204  | 1.0            | 10 12                      | 11  | 9    | 15119.6815 | 0.0          |
| 41 40                      | 9   | 7    | 12589.9163  | 0.0            |                            | 15  | 13   | 15120.8317 | 1.0          |
|                            | 13  | 11   | 12591.6493  | 0.0            |                            | 9   | 7    | 15121.3266 | 2.0          |
|                            | 7   | 5    | 12592.8426  | 6.0            |                            | ,   |      |            |              |
|                            |     |      |             |                | $6_{42} \leftarrow 5_{41}$ | 13  | 11   | 15119.9299 | -2.0         |
| $5_{33} \leftarrow 4_{32}$ | 11  | 9    | 12602.7191  | -1.0           | 142 -41                    | 11  | 9    | 15120.4393 | 2.0          |
| 33 -32                     | 9   | 7    | 12603.3464  | 1.0            |                            | 15  | 13   | 15121.5822 | -1.0         |
|                            | 13  | 11   | 12604.3872  | 1.0            |                            | 9   | 7    | 15122.0754 | -1.0         |
|                            | 7   | 5    | 12604.8893  | -1.0           |                            |     | ,    | 1012210701 |              |
|                            | ,   | Ü    | 1200 (100)0 | 110            | $6_{34} \leftarrow 5_{33}$ | 13  | 11   | 15137.0321 | -2.0         |
| $5_{32} \leftarrow 4_{31}$ | 11  | 9    | 12616.1242  | -1.0           | 34 . 333                   | 11  | 9    | 15137.1476 | 0.0          |
| -32 ' '31                  | 9   | 7    | 12616.5958  | -2.0           |                            | 15  | 13   | 15137.8741 | 0.0          |
|                            | 13  | 11   | 12617.6440  | -2.0           |                            | 9   | 7    | 15138.1516 | -3.0         |
|                            | 7   | 5    | 12618.2493  | 0.0            |                            | ,   | ,    | 13133.1310 | 5.0          |
|                            | ,   | 3    | 12010.2773  | 5.0            | $6_{33} \leftarrow 5_{32}$ | 13  | 11   | 15172.4394 | 1.0          |
| $5_{23} \leftarrow 4_{22}$ | 11  | 11   | 12824.7289  | -7.0           | 333 332                    | 11  | 9    | 15172.6830 | -2.0         |
| ′23 ` ¬ <b>r</b> 22        | 11  | 9    | 12825.2798  | -7.0<br>-2.0   |                            | 15  | 13   | 15173.3002 | -2.i         |
|                            | 9   | 7    | 12825.3557  | 6.0            |                            | 9   | 7    | 15173.4499 | 3.0          |
|                            | 13  | 11   |             | -1.0           |                            | 7   | /    | 131/3.4477 | 3.0          |
|                            |     | 11   | 12825.6322  | -1.0           |                            |     |      |            |              |
|                            | 7   | 5    | 12825.6801  | 0.0            |                            |     |      |            |              |

<sup>&</sup>lt;sup>a</sup>Observed frequencies of hyperfine components of rotational transitions (MHz) and deviations of calculated values (kHz).

To obtain a complete description of the molecular motions involved in the fundamental modes of cyclobutylcarboxylic acid chloride, a normal coordinate analysis has been carried out. The force field in Cartesian coordinates was obtained with the Gaussian 03 program  $^{11}$  at the MP2(full) level with the 6-31G(d) basis set. The internal coordinates used to calculate the  $\boldsymbol{G}$  and  $\boldsymbol{B}$  matrices are given in Table 7 with the atomic

numbering shown in Figure 1. By using the **B** matrix, <sup>14</sup> the force field in Cartesian coordinates was converted to a force field in internal coordinates. Subsequently, a scaling factor of 0.88 for the CH stretches,  $\beta$ -CH<sub>2</sub> and  $\gamma$ -CH<sub>2</sub> deformations and 0.90 for all other modes excluding the heavy atom bending modes were used, along with the geometric average of the scaling factors for the interaction force constants, to obtain the



**Figure 2.** Midinfrared spectra of cyclobutylcarboxylic acid chloride (A) spectrum of gas; (B) spectrum of xenon solution at  $-80\,^{\circ}$ C with bands used in the enthalpy determination assigned on spectra.

fixed scaled force field and resultant wavenumbers. A set of symmetry coordinates was used for the g-Eq and g-Ax forms (Table S1) and another set for the symmetric t-Eq conformer (Table S2) to determine the corresponding potential energy distributions (P.E.D.s).

The vibrational spectra were predicted from the MP2(full)/ 6-31G(d) calculations. The predicted scaled wavenumbers were used together with a Lorentzian function to obtain the simulated spectra. Infrared intensities were obtained based on the dipole moment derivatives with respect to Cartesian coordinates. The derivatives were transformed with respect to normal coordinates by  $(\partial \mu_{\rm u}/\partial Q_i) = \sum_i (\partial \mu_{\rm u}/\partial X_i) \mathbf{L}_{ii}$ , where  $Q_i$  is the *i*th normal coordinate,  $X_i$  is the *j*th Cartesian displacement coordinate, and Lii is the transformation matrix between the Cartesian displacement coordinates and the normal coordinates. The infrared intensities were then calculated by  $(N\pi)/$  $(3c^2)[(\partial \mu_x/\partial Q_i)^2 + (\partial \mu_y/\partial Q_i)^2 + (\partial \mu_z/\partial Q_i)^2]$ . The resulting simulated spectra are shown in Figure 3 and are compared to the infrared spectra of the xenon solutions at three different temperatures where the simulated spectrum of the mixture of conformers should be comparable to the experimental infrared spectra. It is interesting to note that whereas the band positions are reasonably predicted the band intensities are relatively poorly predicted.

### 3. MICROWAVE RESULTS

The Cl atom in cyclobutylcarboxylic acid chloride contains a nucleus with a spin quantum number  $I={}^3/_2$  and, therefore, a nuclear quadrupole moment that interacts with the electric field gradient created by the electrons of the rotating molecule. The quadrupole moments of  ${}^{35}$ Cl and  ${}^{37}$ Cl are not equal. The angular momentum J of the rotating molecule couples with the angular momentum I of the nuclear spin to create an overall angular momentum F whose quantum number F can assume any of the values F = J + I, J + I - 1, ..., |J - I|. Only F is an exact quantum number whereas J is only an approximate value. Therefore, a rotational level with quantum number J in the

absence of quadrupole coupling splits into sublevels that can be labeled by the exact quantum number F when a nuclear quadrupole is present. Each rotational level with J>1 splits into 4 components (1 and 3 components for J=0 and 1, respectively). The selection rules for rotational transitions are  $\Delta F=0,\pm 1$  and the strongest components are those given by  $\Delta F=\Delta J$ .

The frequencies of the components of the split rotational transitions were used in a least-squares fit to determine rotational, centrifugal distortional, and quadrupole coupling constants. For that purpose, a computer program developed for molecules with one or two quadrupole nuclei in a plane of symmetry 15,16 was used. Of course, g-Eq cyclobutylcarboxylic acid chloride does not have a molecular symmetry plane. Because ab initio calculations performed by using the MP2(full) method with the 6-311+G(d,p) basis set predicted the full nuclear quadrupole coupling tensor with rather small values for the off-diagonal elements  $\chi_{ac}$  and  $\chi_{bc}$  (a few MHz) but a significant  $\chi_{ab}$  (tens of MHz), fitting the spectrum with this program seemed worth a trial. The rotational and centrifugal distortion constants reported earlier<sup>4</sup> from conventional microwave spectroscopy for the Cl isotopologue together with quadrupole coupling constants from ab initio calculations were used to predict the spectrum for initial assignments. The final results of the least-squares fits (Table 8) justified the use of this program. The Fit 1 for the 35Cl isotopologue of 69 components of 18 rotational transitions ended with a standard deviation of 2.2 kHz and for the Fit 2 included transitions from ref 4 and transition from this study where the hyperfine components could not be resolved. For the fit of the <sup>37</sup>Cl substituted species, 84 components of 19 transitions led to a standard deviation of 2.6 kHz. The frequencies of the assigned components of the observed transitions with their residuals in the least-squares fit are listed in Tables 1 and 2 and are excellent with errors equal to or less than 4 kHz for <sup>35</sup>Cl and 7 kHz for the <sup>37</sup>Cl. With accurately determined rotational constants the adjusted  $r_0$  structure may also be determined. It should, however, be noted that the fit of these rotational constants is probably better than the experimental data can achieve where the digital precision for the instrument used is 2.5 kHz. Therefore, the rotational constants are reported for the  $^{35}C1$  [ $^{37}C1$ ] isotope (MHz): A = 4349.8429(25)[4322.0555(56)], B = 1414.8032(25) [1384.5058(25)], and C = 1148.2411(25) [1126.3546(25)].

## 4. VIBRATIONAL ASSIGNMENT

An earlier vibrational assignment<sup>4</sup> for cyclobutylcarboxylic acid chloride was made by utilizing the Raman spectra of liquid and solid and the infrared spectra of the gas and solid for a complete assignment of the g-Eq conformer fundamentals and to assign two fundamentals for the high-energy conformer which could not be determined but it was assumed to be t-Eq. By the utilization of MP2(full)/6-31G(d) fundamental wavenumber predictions along with ab initio predicted intensities, and infrared data from xenon solutions it has been possible to assign nearly all of the fundamentals for the g-Eq conformer in the current study. Additionally, a nearly complete assignment of the fundamentals of the g-Ax form was made and a significant number of fundamentals for the t-Eq conformer were assigned. These assignments are important for obtaining the enthalpy differences since the fundamentals which are used in the variable temperature study need to be identified correctly for a single conformer. Therefore, an attempt was made to assign the

Table 3. Observed" and Predicted Fundamental<sup>b</sup> Frequencies for the g-Eq Conformer of Cyclobutylcarboxylic Acid chloride

|               |                                             |           |                   |         |                |             |      | IR      |                  |                    |                           |                                                                | ban | band contour | 11. |
|---------------|---------------------------------------------|-----------|-------------------|---------|----------------|-------------|------|---------|------------------|--------------------|---------------------------|----------------------------------------------------------------|-----|--------------|-----|
|               | fundamental                                 | ab initio | fixed scaled $^c$ | IR int. | Raman act.     | dp ratio    | gas  | Xe soln | gas <sub>d</sub> | solid <sup>d</sup> | Raman liquid <sup>d</sup> | $P.E.D.^f$                                                     | A   | В            | С   |
| $\nu_1$       | $\beta$ -CH $_2$ antisymmetric stretch      | 3213      | 3014              | 25.2    | 45.8           | 99.0        | 3003 | 3000    | 3004             | 3002               | 3004                      | 73S <sub>D</sub> 25S <sub>2</sub>                              |     | 16           | 84  |
| $\nu_2$       | $\beta$ -CH $_2$ antisymmetric stretch      | 3207      | 3008              | 13.2    | 62.4           | 0.75        | 2996 | 2994    | 2995             | 2995               |                           | 97S <sub>2</sub>                                               | 9   | 75           | 19  |
| $\nu_3$       | $\gamma$ -CH $_2$ antisymmetric stretch     | 3194      | 2996              | 7.7     | 78.1           | 0.48        | 2986 | 2984    |                  | 2980               | 2984                      | $73S_{3}$ , $23S_{1}$                                          | 70  |              | 30  |
| 47            | $\alpha$ -CH stretch                        | 3147      | 2952              | 2.1     | 30.7           | 69.0        | 2961 | 2959    | 2964             | 2952               | 2956                      | 88S4,11S5                                                      | 45  | 16           | 39  |
| $\nu_{\rm s}$ | $\beta$ -CH $_2$ symmetric stretch          | 3141      | 2946              | 12.9    | 122.0          | 60.0        | 2945 | 2944    |                  |                    |                           | 48S <sub>5</sub> ,42S <sub>7</sub>                             | 23  | 65           | 12  |
| $ u_6 $       | $\gamma$ -CH <sub>2</sub> symmetric stretch | 3134      | 2940              | 25.6    | 8.86           | 0.14        | 2943 | 2943    |                  |                    |                           | 93S <sub>6</sub>                                               | 9/  | 24           |     |
| $ u_{7} $     | $\beta$ -CH $_2$ symmetric stretch          | 3133      | 2939              | 14.4    | 54.1           | 0.24        | 2926 | 2926    | 2887             | 2866               | 2879                      | 51S <sub>7,38S<sub>5</sub></sub>                               | 27  | 31           | 45  |
| $V_8$         | C=O stretch                                 | 1853      | 1760              | 205.2   | 14.2           | 0.53        | 1807 | 1807    | 1808             | 1792               | 1805                      | $92S_8$                                                        | 3   | 93           | 4   |
| 70            | $\beta$ -CH $_2$ deformation                | 1575      | 1483              | 2.0     | 5.3            | 0.73        | 1470 | 1469    |                  | 1467               | 1466                      | 62S <sub>9</sub> ,34S <sub>10</sub>                            | 23  | 36           | 41  |
| $ u_{10} $    | $\gamma$ -CH <sub>2</sub> deformation       | 1550      | 1459              | 5.2     | 17.8           | 0.74        | 1453 | 1453    | 1451             | 1446               | 1452                      | 64S <sub>10</sub> ,34S <sub>9</sub>                            | ∞   | 45           | 20  |
| $ u_{11} $    | $\beta$ -CH <sub>2</sub> deformation        | 1542      | 1452              | 2.3     | 5.6            | 0.74        | 1442 | 1442    | 1451             | $1446^{e}$         |                           | 98S <sub>11</sub>                                              | 56  | 42           | 56  |
| $ u_{12} $    | $\alpha$ -CH in plane bend                  | 1404      | 1337              | 17.9    | 8.9            | 0.56        | 1324 | 1322    | 1328             | 1319               | 1328                      | $56S_{12},11S_{20},10S_{14}$                                   | 94  | S            | _   |
| $ u_{13} $    | $\gamma$ -CH <sub>2</sub> wag               | 1320      | 1254              | 5.0     | 5.5            | 0.73        | 1247 | 1246    | 1252             | 1246               | 1250                      | $63S_{13},10S_{16},10S_{21}$                                   | 9   | 82           | 12  |
| $ u_{14} $    | $eta$ -CH $_2$ wag                          | 1315      | 1251              | 11.4    | 9.0            | 09.0        | 1245 | 1244    | $1252^{e}$       | $1242^e$           | 1250                      | $72S_{14},10S_{25}$                                            | 78  | 19           | 3   |
| $ u_{15} $    | $eta$ -CH $_2$ wag                          | 1294      | 1229              | 6.0     | 4.3            | 0.73        | 1232 | 1232    |                  | $1228^e$           | $1232^e$                  | $43S_{15}$ , $22S_{18}$ , $14S_{17}$ , $10S_{23}$              | 13  | 87           |     |
| $ u_{16} $    | lpha-CH out of plane bend                   | 1282      | 1217              | 1.4     | 9.9            | 0.75        | 1213 | 1213    | 1209             | 1215               | 1217                      | $37S_{16},14S_{17},14S_{13},10S_{18},10S_{15}$                 | 25  | 75           |     |
| $ u_{17} $    | $\beta$ -CH $_2$ twist                      | 1268      | 1205              | 4.8     | 5.9            | 0.72        | 1204 | 1201    |                  | 1198               | 1208                      | $43S_{17},18S_{16},12S_{28},10S_{23}$                          | 87  | 4            | 6   |
| $ u_{18} $    | $\gamma$ -CH $_2$ twist                     | 1239      | 1179              | 3.4     | 8.7            | 0.75        | 1177 | 1176    |                  | 1176               | 1190                      | $31S_{18},39S_{15},10S_{21},10S_{23}$                          | 53  | 45           | 7   |
| $\nu_{19}$    | $\beta$ -CH <sub>2</sub> rock               | 1170      | 1120              | 23.9    | 4.2            | 90.0        | 1110 | 1108    | 1110             | 1104               | 1109                      | $37S_{19}, 14S_{22}, 11S_{28}, 11S_{35}$                       | 86  | 2            |     |
| $ u_{20} $    | C-C stretch                                 | 1127      | 1075              | 9.79    | 4.4            | 0.35        | 1069 | 1067    | 1071             | 1070               | 1071                      | $25S_{20}, 21S_{12}, 11S_{22}$                                 | 28  | 22           |     |
| $ u_{21} $    | ring deformation                            | 1078      | 1032              | 3.8     | 5.2            | 0.33        | 1027 | 1026    | 1030             | 1017               | 1025                      | $22S_{21}, 21S_{24}, 17S_{23}, 14S_{22}, 10S_{20}$             | 96  | 2            | 7   |
| $\nu_{22}$    | ring breathing                              | 1013      | 026               | 52.9    | 6.7            | 0.07        | 096  | 856     | 955              | 954                | 962                       | $45S_{22}$ , $18S_{25}$ , $11S_{20}$                           | 06  | 10           |     |
| $\nu_{23}$    | $\beta$ -CH $_2$ twist                      | 994       | 946               | 6.0     | 2.5            | 0.72        | 946  | 946     |                  |                    |                           | $37S_{23}$ , $23S_{16}$ , $16S_{18}$ , $10S_{24}$ , $10S_{21}$ | 1   | 89           | 31  |
| $\nu_{24}$    | ring deformation                            | 975       | 932               | 1.7     | 10.1           | 0.75        | 933  | 933     |                  | 923                | $930^e$                   | $51S_{24}$ , $29S_{21}$ , $10S_{13}$                           |     | 83           | 17  |
| $\nu_{25}$    | ring deformation                            | 942       | 911               | 7.7     | 2.1            | 0.47        | 688  | 887     | 888              | 888                | 891                       | $33S_{25}$ , $24S_{30}$ , $13S_{28}$ , $11S_{19}$ , $10S_{14}$ | 46  | 51           | 8   |
| $\nu_{26}$    | COCI scissors                               | 847       | 823               | 152.8   | 2.4            | 0.30        | 808  | 807     | 810              | 462                | 804                       | $19S_{26}$ , $14S_{30}$ , $13S_{25}$ , $12S_{28}$              | 83  | 17           |     |
| $ u_{27} $    | $\beta$ -CH <sub>2</sub> rock               | 818       | 622               | 7.3     | 6:0            | 0.72        | 778  | 922     | 775              | 477                | 784                       | $68S_{27}$ , $11S_{18}$                                        | 06  |              | 10  |
| $ u_{28} $    | $\gamma$ -CH <sub>2</sub> rock              | 750       | 728               | 36.5    | 4.6            | 0.26        | 721  | 720     | 721              | 722                | 721                       | $30S_{28}, 13S_{29}, 12S_{33}, 10S_{17}, 10S_{32}$             | 98  | 14           |     |
| $\nu_{29}$    | COCI wag                                    | 661       | 651               | 8.2     | 2.4            | 0.10        | 645  | 645     | 949              | 640                | 651                       | $48S_{29},11S_{30},11S_{19}$                                   | 69  | 2            | 56  |
| $\nu_{30}$    | ring deformation                            | 591       | 878               | 6.9     | 3.7            | 0.14        | 698  | 698     | 570              | 999                | 572                       | $31S_{30},16S_{32},13S_{19},11S_{20}$                          | 43  | 52           | S   |
| $\nu_{31}$    | C-Cl stretch                                | 446       | 432               | 24.0    | 12.0           | 0.41        | 433  | 431     | 437              | 433                | 434                       | $61S_{31},35S_{26}$                                            | 41  | 98           | 3   |
| $\nu_{32}$    | COCI rock                                   | 345       | 339               | 19.1    | 5.8            | 0.36        | 340  |         | 338              | 338                | 343                       | $11S_{32}$ , $22S_{26}$ , $19S_{31}$ , $19S_{34}$ , $11S_{20}$ | 28  | 22           |     |
| $\nu_{33}$    | ring-COCl bend                              | 304       | 298               | 5.6     | 0.5            | 0.72        |      |         | 278              | 282                | 290                       | $26S_{33},35S_{35},13S_{32},12S_{29}$                          | 82  |              | 18  |
| $ u_{34} $    | ring-COCI bend                              | 163       | 163               | 1.1     | 9.0            | 0.74        |      |         | 168              | 176                | 181                       | 55S <sub>34</sub> ,33S <sub>32</sub>                           | 21  | 45           | 34  |
| $\nu_{35}$    | ring puckering                              | 145       | 144               | 1.7     | 0.4            | 0.42        |      |         |                  | 153                |                           | 48S <sub>35</sub> ,40S <sub>33</sub>                           | 39  |              | 61  |
| $\nu_{36}$    | COCI assymetric torsion                     | 47        | 47                | 0.0     | 1.0            | 0.73        |      |         |                  | 83                 |                           | $100S_{36}$                                                    | 3   | 09           | 37  |
| a Objection   | Liles Land V con London Liles               | E .       | G . I .           | DA      | 716 7/ (11-3/0 | 1. 1. (I) r | 11   | 1       |                  |                    | 1                         | 4 % / · · · · · · · · · · · · · · · · · ·                      | 1   | -            |     |

<sup>a</sup>Observed spectra: gas, Xe, and solid are IR while liquid is Raman.  $^bMP2(full)/6-31G(d)$  ab initio calculations, scaled frequencies, infrared intensities (km/mol), Raman activities ( $A^4/u$ ), depolarization ratios (dp), and potential energy distributions (P.E.D.s). <sup>c</sup>Scaled frequencies with scaling factors of 0.88 for the CH stretches,  $\beta$ -CH<sub>2</sub> and  $\gamma$ -CH<sub>2</sub> deformations and 0.90 for all other modes except the heavy atom bending modes. <sup>d</sup>Reference 4. <sup>e</sup>Our assignment. <sup>f</sup>Symmetry coordinates with P.E.D. contribution less than 10% are omitted.

Table 4. Observed<sup>a</sup> and Predicted Fundamental<sup>b</sup> Frequencies for the g-Ax Conformer of Cyclobutylcarboxylic Acid Chloride

|        |                                         |              |                              |         |               |             |           |             |                                                                                               | ban | d cont | our |
|--------|-----------------------------------------|--------------|------------------------------|---------|---------------|-------------|-----------|-------------|-----------------------------------------------------------------------------------------------|-----|--------|-----|
|        | fundamental                             | ab<br>initio | fixed<br>scaled <sup>c</sup> | IR int. | Raman<br>act. | dp<br>ratio | IR gas    | IR Xe soln. | P.E.D. <sup>e</sup>                                                                           | A   | В      | С   |
| 1      | $\beta$ -CH $_2$ antisymmetric stretch  | 3214         | 3015                         | 23.6    | 49.7          | 0.71        | 3012      | 3012        | 48S <sub>1</sub> ,42S <sub>3</sub> ,10S <sub>2</sub>                                          | 47  | 43     | 10  |
|        | $\beta$ -CH $_2$ antisymmetric stretch  | 3205         | 3007                         | 8.9     | 62.8          | 0.66        | 3008      | 3007        | 76S <sub>2</sub> ,21S <sub>3</sub>                                                            | 74  | 6      | 20  |
|        | $\gamma$ -CH $_2$ antisymmetric stretch | 3195         | 2997                         | 4.8     | 62.4          | 0.72        | 3002      | 2999        | 35S <sub>3</sub> ,49S <sub>1</sub> ,13S <sub>2</sub>                                          | 18  | 2      | 80  |
|        | lpha-CH stretch                         | 3165         | 2969                         | 4.6     | 79.4          | 0.16        | 2963      | 2963        | 96S <sub>4</sub>                                                                              | 38  | 5      | 57  |
|        | $\gamma$ -CH $_2$ symmetric stretch     | 3142         | 2947                         | 21.4    | 112.8         | 0.08        | 2945      | 2944        | 96S <sub>6</sub>                                                                              | 61  |        | 39  |
|        | $\beta$ -CH $_2$ symmetric stretch      | 3138         | 2944                         | 14.7    | 84.8          | 0.23        | 2944      | 2943        | 58S <sub>5</sub> ,35S <sub>7</sub>                                                            | 23  | 6      | 71  |
|        | $\beta$ -CH $_2$ symmetric stretch      | 3134         | 2940                         | 18.8    | 41.9          | 0.23        | 2943      | 2943        | 63S <sub>7</sub> ,34S <sub>6</sub>                                                            | 5   | 86     | 9   |
|        | C=O stretch                             | 1847         | 1754                         | 189.8   | 10.1          | 0.49        | 1760      | 1759        | 91S <sub>8</sub>                                                                              | 15  | 82     | 3   |
| )      | $\gamma$ -CH $_2$ deformation           | 1572         | 1480                         | 2.8     | 7.6           | 0.72        | 1468      | 1468        | 53S <sub>10</sub> ,44S <sub>9</sub>                                                           | 39  | 33     | 28  |
|        | $\beta$ -CH $_2$ deformation            | 1550         | 1459                         | 3.7     | 15.7          | 0.75        | 1458      | 1457        | 47S <sub>10</sub> ,44S <sub>10</sub>                                                          | 3   | 54     | 43  |
|        | $\beta$ -CH $_2$ deformation            | 1535         | 1445                         | 5.2     | 7.2           | 0.75        | 1446      | 1443        | 90S <sub>11</sub> ,10S <sub>9</sub>                                                           | 21  | 43     | 36  |
| 2      | lpha-CH in plane bend                   | 1402         | 1334                         | 24.9    | 3.8           | 0.61        | 1339      | 1337        | 54S <sub>12</sub> ,15S <sub>17</sub> ,11S <sub>22</sub>                                       | 94  |        | 6   |
| +      | $\beta$ -CH <sub>2</sub> wag            | 1331         | 1266                         | 2.8     | 0.4           | 0.29        | 1260      | 1259        | 60S <sub>14</sub> ,17S <sub>13</sub> ,10S <sub>25</sub>                                       |     | 1      | 99  |
| 3      | γ-CH <sub>2</sub> wag                   | 1322         | 1257                         | 3.3     | 1.2           | 0.63        | 1251      | 1248        | 49S <sub>13</sub> ,20S <sub>14</sub>                                                          | 1   | 99     |     |
| 5      | $\beta$ -CH <sub>2</sub> wag            | 1293         | 1227                         | 0.0     | 0.3           | 0.75        |           |             | $70S_{15}$ , $14S_{13}$ , $10S_{16}$                                                          | 44  | 15     | 41  |
| 3      | γ-CH <sub>2</sub> twist                 | 1282         | 1219                         | 3.6     | 15.3          | 0.75        | 1209      | 1208        | $39S_{18}, 24S_{16}, 14S_{17}, 10S_{21}$                                                      | 5   | 89     | 6   |
|        | $\beta$ -CH <sub>2</sub> twist          | 1265         | 1203                         | 3.9     | 9.8           | 0.71        | 1200      | 1199        | 43S <sub>17</sub> ,17S <sub>28</sub> ,11S <sub>12</sub> ,10S <sub>19</sub>                    | 41  | 59     |     |
|        | $\alpha$ -CH out of plane bend          | 1207         | 1147                         | 1.4     | 3.7           | 0.73        | 1145      | 1143        | 27S <sub>16</sub> ,18S <sub>23</sub> ,16S <sub>15</sub> ,13S <sub>24</sub> ,11S <sub>18</sub> | 17  | 83     |     |
|        | $\beta$ -CH <sub>2</sub> rock           | 1155         | 1105                         | 5.6     | 3.2           | 0.38        | 1090      | 1089        | 30S <sub>19</sub> ,17S <sub>12</sub> ,17S <sub>33</sub> ,10S <sub>20</sub> ,10S <sub>28</sub> | 22  | 61     | 17  |
|        | $\beta$ -CH <sub>2</sub> twist          | 1117         | 1069                         | 52.7    | 6.5           | 0.35        | 1065      | 1063        | 37S <sub>23</sub> ,10S <sub>27</sub> ,10S <sub>22</sub>                                       | 92  | 8      |     |
|        | ring breathing                          | 1075         | 1022                         | 31.0    | 14.0          | 0.08        | 1021      | 1020        | 51S <sub>22</sub> ,14S <sub>23</sub> ,10S <sub>20</sub>                                       | 100 |        |     |
|        | C–C stretch                             | 999          | 956                          | 88.8    | 5.9           | 0.36        | 957       | 956         | 10S <sub>20</sub> ,26S <sub>25</sub> ,23S <sub>22</sub>                                       | 98  | 2      |     |
|        | ring deformation                        | 985          | 938                          | 22.9    | 11.1          | 0.75        | 940       | 938         | 69S <sub>24</sub>                                                                             | 100 |        |     |
|        | ring deformation                        | 966          | 930                          | 2.2     | 0.3           | 0.74        | $933^{d}$ | 932         | 52S <sub>21</sub> ,12S <sub>16</sub> ,11S <sub>23</sub> ,10S <sub>13</sub> ,10S <sub>27</sub> | 18  | 54     | 28  |
|        | ring deformation                        | 940          | 907                          | 47.9    | 2.3           | 0.53        | 903       | 902         | 32S <sub>25</sub> ,16S <sub>28</sub> ,15S <sub>30</sub> ,10S <sub>14</sub>                    | 87  | 8      | 5   |
|        | COCl scissors                           | 896          | 872                          | 47.5    | 1.4           | 0.70        | 875       | 873         | 10S <sub>26</sub> ,40S <sub>30</sub> ,17S <sub>19</sub> ,10S <sub>25</sub>                    | 92  | 7      | 1   |
| ,      | β-CH <sub>2</sub> rock                  | 804          | 767                          | 0.9     | 0.3           | 0.08        | 773       | 773         | 58S <sub>27</sub> ,17S <sub>24</sub> ,13S <sub>18</sub>                                       | 100 |        |     |
|        | γ-CH <sub>2</sub> rock                  | 746          | 723                          | 58.0    | 3.3           | 0.41        | $721^{d}$ | 719         | 31S <sub>28</sub> ,11S <sub>17</sub> ,11S <sub>32</sub> ,10S <sub>33</sub>                    | 95  | 5      |     |
|        | COCI wag                                | 669          | 654                          | 18.7    | 4.7           | 0.08        | 662       | 660         | 35S <sub>29</sub> ,12S <sub>34</sub> ,11S <sub>20</sub> ,10S <sub>32</sub> ,10S <sub>27</sub> | 71  | 23     | 6   |
| ,      | ring deformation                        | 635          | 623                          | 14.5    | 2.1           | 0.38        | 625       | 624         | 33S <sub>30</sub> ,20S <sub>29</sub> ,19S <sub>19</sub> ,10S <sub>28</sub>                    | 67  | 25     | 8   |
|        | C–Cl stretch                            | 452          | 439                          | 18.3    | 10.9          | 0.40        | 439       | 437         | 52S <sub>31</sub> ,44S <sub>26</sub>                                                          | 54  | 43     | 3   |
|        | COCl rock                               | 354          | 347                          | 20.7    | 5.8           | 0.32        | 345       |             | 11S <sub>32</sub> ,25S <sub>31</sub> ,22S <sub>34</sub> ,14S <sub>26</sub>                    | 86  | 11     | 3   |
|        | ring-COCl bend                          | 300          | 297                          | 1.2     | 0.8           | 0.50        | 293       |             | 26S <sub>33</sub> ,32S <sub>35</sub> ,23S <sub>32</sub> ,10S <sub>29</sub>                    | 90  |        | 10  |
| ;<br>; | ring-COCl bend                          | 200          | 200                          | 0.7     | 0.7           | 0.65        | _,,       |             | 51S <sub>34</sub> ,26S <sub>32</sub> ,12S <sub>29</sub>                                       | 4   | 34     | 62  |
| ;      | ring puckering                          | 153          | 150                          | 1.5     | 0.2           | 0.68        |           |             | 52S <sub>35</sub> ,38S <sub>33</sub>                                                          | 78  | ٠.     | 22  |
| -      | COCl assymetric torsion                 | 55           | 55                           | 0.0     | 1.2           | 0.74        |           |             | 100S <sub>36</sub>                                                                            | , 3 | 31     | 69  |
| 36     | CC C. assymetric torsion                | 55<br>h      | 55                           | 0.0     | 1.2           | 0.7 7       |           |             | 200036                                                                                        |     | 51     | 0)  |

"Observed spectra: gas and Xe are IR.  $^b$ MP2(full)/6-31G(d) ab initio calculations, scaled frequencies, infrared intensities (km/mol), Raman activities (Å $^4$ /u), depolarization ratios (dp), and potential energy distributions (P.E.D.s). Scaled frequencies with scaling factors of 0.88 for the CH stretches, β-CH<sub>2</sub> and γ-CH<sub>2</sub> deformations and 0.90 for all other modes except the heavy atom bending modes. This band is also assigned as a g-Eq conformer fundamental. Symmetry coordinates with P.E.D. contribution less than 10% are omitted.

fundamentals in the region from 1200 to  $400~\rm cm^{-1}$  for the three most stable conformers, where the overtone and combination bands are greatly reduced in this region compared to those possible in the higher wavenumber region. It is also interesting to determine what effect the acid chloride group will have on the fundamental frequencies, particularly those which involve the ring modes. The vibrations of the CH<sub>2</sub> groups are expected to be very similar to those found in the usual four-membered-ring molecules and a discussion of their assignments in detail is usually not necessary.

The most interesting assignments will be for the heavy atom fundamentals but these are in the region where the lower frequency  $CH_2$  bending modes will undoubtedly interact with these heavy atom vibrations. Therefore, these modes are expected to have contributions of three or four motions. For example, in the case of the  $\beta$ -CH<sub>2</sub> twist for the g-Eq form the band at 946 cm<sup>-1</sup> in the infrared spectra of the gas has

contributions from two of the heavy atom ring deformation modes

Four-membered carbon-atom rings have well-known ring deformations usually occurring in a pattern of one near 1000 cm<sup>-1</sup> and three near 900 cm<sup>-1</sup>. This pattern makes the assignment of these modes relatively simple for the g-Eq conformer where they are predicted at 1032, 932, and 911 cm<sup>-1</sup> and observed at 1027, 933, and 889 cm<sup>-1</sup> in the infrared spectra of the gas. The ring breathing mode usually occurs in this region as well and it is predicted at 970 cm<sup>-1</sup> for the g-Eq form and assigned at 960 cm<sup>-1</sup> in the infrared spectra of the gas. This mode was predicted to have an "A" type band contour and the band in the spectra of the gas corresponds clearly to an "A" type band contour and it was assigned based on this prediction.

For the g-Eq conformer there are some assignments necessary for bands in the infrared spectra of the gas since from the previous study<sup>4</sup> there were four fundamentals in the

Table 5. Observed<sup>a</sup> and Predicted Fundamental<sup>b</sup> Frequencies for the t-Eq Conformer of Cyclobutylcarboxylic Acid Chloride

|                    |            |                                            |              |                              |         |               |             |                  |                  |                                                         |    | and<br>itour |
|--------------------|------------|--------------------------------------------|--------------|------------------------------|---------|---------------|-------------|------------------|------------------|---------------------------------------------------------|----|--------------|
|                    |            | fundamental                                | ab<br>initio | fixed<br>scaled <sup>c</sup> | IR int. | Raman<br>act. | dp<br>ratio | IR gas           | IR Xe<br>soln.   | P.E.D. <sup>e</sup>                                     | A  | В            |
| $\mathbf{A}'$      | $ u_1$     | $\beta$ -CH $_2$ antisymmetric stretch     | 3217         | 3018                         | 22.2    | 33.3          | 0.65        | 3014             | 3014             | 79S <sub>1</sub> ,19S <sub>2</sub>                      | 1  | 99           |
|                    | $\nu_2$    | $\gamma$ -CH $_2$ antisymmetric stretch    | 3195         | 2997                         | 8.6     | 70.6          | 0.56        | 2997             | 2995             | 79S <sub>2</sub> ,19S <sub>1</sub>                      | 12 | 88           |
|                    | $\nu_3$    | $\alpha$ CH stretch                        | 3148         | 2953                         | 3.3     | 54.2          | 0.52        | 2961             | 2960             | 93S <sub>3</sub>                                        | 39 | 61           |
|                    | $ u_4$     | $\beta$ -CH $_2$ symmetric stretch         | 3144         | 2949                         | 1.8     | 198.7         | 0.07        | 2945             | 2944             | 91S <sub>4</sub>                                        | 2  | 98           |
|                    | $\nu_5$    | γ-CH <sub>2</sub> symmetric stretch        | 3135         | 2941                         | 25.6    | 66.3          | 0.29        | 2924             | 2922             | 94S <sub>5</sub>                                        | 99 | 1            |
|                    | $\nu_6$    | C=O stretch                                | 1841         | 1748                         | 229.8   | 21.1          | 0.49        | 1750             | 1750             | 92S <sub>6</sub>                                        | 98 | 2            |
|                    | $\nu_7$    | $\beta$ -CH $_2$ deformation               | 1574         | 1482                         | 1.0     | 4.1           | 0.69        | 1468             | 1465             | 52S <sub>7</sub> ,46S <sub>8</sub>                      | 10 | 90           |
|                    | $ u_8$     | $\gamma$ -CH $_2$ deformation              | 1550         | 1459                         | 5.0     | 23.3          | 0.72        | 1453             | 1451             | 53S <sub>8</sub> ,47S <sub>7</sub>                      | 8  | 92           |
|                    | $\nu_9$    | lpha CH in plane bend                      | 1389         | 1320                         | 1.0     | 6.6           | 0.64        | 1321             | 1320             | 66S <sub>9</sub> ,14S <sub>10</sub> ,10S <sub>15</sub>  | 30 | 70           |
|                    | $ u_{10} $ | $\beta$ -CH $_2$ wag                       | 1312         | 1248                         | 0.8     | 1.1           | 0.66        | 1248             | 1245             | 70S <sub>10</sub> ,12S <sub>9</sub>                     | 99 | 1            |
|                    | $ u_{11}$  | $\beta$ -CH $_2$ twist                     | 1282         | 1220                         | 3.3     | 10.7          | 0.75        | 1222             | 1221             | 73S <sub>11</sub> ,13S <sub>16</sub>                    | 56 | 44           |
|                    | $\nu_{12}$ | $\beta$ -CH $_2$ rock                      | 1198         | 1149                         | 84.7    | 2.5           | 0.38        | 1140             | 1137             | $25S_{12}, 22S_{13}, 19S_{22}, 10S_{18}, 10S_{16}$      | 8  | 92           |
|                    | $\nu_{13}$ | C-C stretch                                | 1155         | 1101                         | 50.1    | 9.4           | 0.08        | 1081             | 1079             | 24S <sub>13</sub> ,37S <sub>14</sub> ,13S <sub>12</sub> | 42 | 58           |
|                    | $ u_{14} $ | ring breathing                             | 1018         | 975                          | 27.8    | 12.2          | 0.14        | 964              | 962              | $46S_{14}, 19S_{15}, 10S_{12}, 10S_{10}$                | 80 | 20           |
|                    | $\nu_{15}$ | ring deformation 1                         | 948          | 917                          | 11.0    | 2.0           | 0.73        | 919              | 919              | $31S_{15}, 26S_{17}, 15S_{12}, 12S_{16}, 10S_{10}$      | 69 | 31           |
|                    | $\nu_{16}$ | $\gamma$ -CH $_2$ rock                     | 835          | 805                          | 67.0    | 1.1           | 0.74        | 803              | 801              | $30S_{16}, 16S_{15}, 13S_{11}, 11S_{20}, 10S_{17}$      | 19 | 81           |
|                    | $\nu_{17}$ | ring deformation 2                         | 688          | 670                          | 67.1    | 2.9           | 0.29        | 666              | 666              | $32S_{17}, 23S_{16}, 14S_{12}, 13S_{20}$                | 46 | 54           |
|                    | $ u_{18} $ | COCl rock                                  | 527          | 517                          | 0.2     | 4.0           | 0.30        | ~500             | 500              | $17S_{18}, 34S_{22}, 21S_{20}, 10S_{12}$                | 35 | 65           |
|                    | $\nu_{19}$ | C-Cl stretch                               | 502          | 481                          | 47.7    | 12.1          | 0.14        | 490              | 488              | $47S_{19}, 17S_{17}, 16S_{13}, 10S_{12}$                | 46 | 54           |
|                    | $\nu_{20}$ | COCl scissors                              | 414          | 403                          | 9.8     | 6.0           | 0.70        | 389              |                  | $29S_{20}, 37S_{19}, 10S_{18}, 10S_{13}$                | 24 | 76           |
|                    | $\nu_{21}$ | ring puckering                             | 264          | 261                          | 0.8     | 1.1           | 0.71        |                  |                  | $39S_{21}, 33S_{18}, 11S_{20}$                          | 2  | 98           |
|                    | $\nu_{22}$ | ring-COCl bend                             | 137          | 136                          | 0.7     | 0.6           | 0.57        |                  |                  | 42S <sub>22</sub> ,38S <sub>21</sub> ,16S <sub>18</sub> | 48 | 52           |
| $A^{\prime\prime}$ | $\nu_{23}$ | $\beta'$ -CH $_2$ antisymmetric stretch    | 3211         | 3012                         | 12.0    | 56.4          | 0.75        | 3014             | 3014             | 100S <sub>23</sub>                                      |    |              |
|                    | $\nu_{24}$ | $\beta$ -CH <sub>2</sub> symmetric stretch | 3142         | 2948                         | 32.8    | 5.5           | 0.75        | 2945             | 2945             | 100S <sub>24</sub>                                      |    |              |
|                    | $\nu_{25}$ | $\beta$ -CH $_2$ deformation               | 1539         | 1449                         | 2.3     | 5.1           | 0.75        |                  |                  | 100S <sub>25</sub>                                      |    |              |
|                    | $\nu_{26}$ | $\gamma$ -CH $_2$ wag                      | 1324         | 1259                         | 3.9     | 6.8           | 0.75        |                  |                  | $53S_{26}, 23S_{27}, 10S_{33}, 10S_{29}$                |    |              |
|                    | $\nu_{27}$ | $\alpha$ CH out of plane bend              | 1298         | 1233                         | 0.0     | 2.0           | 0.75        |                  |                  | $34S_{27}, 23S_{30}, 21S_{28}, 11S_{26}, 10S_{29}$      |    |              |
|                    | $\nu_{28}$ | $\beta$ -CH <sub>2</sub> wag               | 1289         | 1224                         | 0.0     | 2.9           | 0.75        |                  |                  | $40S_{28}$ , $21S_{29}$ , $19S_{26}$ , $14S_{27}$       |    |              |
|                    | $\nu_{29}$ | $\gamma$ -CH $_2$ twist                    | 1241         | 1181                         | 0.6     | 7.9           | 0.75        |                  |                  | $33S_{29}, 33S_{28}, 14S_{30}, 10S_{31}$                |    |              |
|                    | $\nu_{30}$ | $\beta$ -CH <sub>2</sub> twist             | 1072         | 1029                         | 0.6     | 0.9           | 0.75        | 1031             | 1029             | $35S_{30}, 22S_{31}, 21S_{32}, 10S_{34}, 10S_{35}$      |    |              |
|                    | $\nu_{31}$ | ring deformation 2                         | 988          | 944                          | 0.8     | 0.7           | 0.75        | 946 <sup>d</sup> | 946 <sup>d</sup> | $32S_{31}, 22S_{30}, 19S_{27}, 16S_{29}$                |    |              |
|                    | $\nu_{32}$ | ring deformation 1                         | 977          | 931                          | 1.5     | 13.7          | 0.75        | 933              | 932              | 65S <sub>32</sub> ,13S <sub>31</sub> ,10S <sub>26</sub> |    |              |
|                    | $\nu_{33}$ | $\beta$ -CH <sub>2</sub> rock              | 824          | 785                          | 2.3     | 1.1           | 0.75        | 778              | 776 <sup>d</sup> | $72S_{33}$ , $12S_{29}$                                 |    |              |
|                    | $\nu_{34}$ | COCI wag                                   | 660          | 654                          | 0.7     | 0.1           | 0.75        |                  |                  | 61S <sub>34</sub> ,14S <sub>31</sub> ,13S <sub>35</sub> |    |              |
|                    | $\nu_{35}$ | ring-COCl bend                             | 217          | 217                          | 2.1     | 0.6           | 0.75        |                  |                  | 64S <sub>35</sub> ,28S <sub>34</sub>                    |    |              |
|                    | $\nu_{36}$ | COCl torsion                               | 54           | 54                           | 0.6     | 1.0           | 0.75        |                  |                  | 90S <sub>36</sub> ,10S <sub>35</sub>                    |    |              |

"Observed spectra: gas and Xe are IR.  $^b$ MP2(full)/6-31G(d) ab initio calculations, scaled frequencies, infrared intensities (km/mol), Raman activities (Å $^4$ /u), depolarization ratios (dp), and potential energy distributions (P.E.D.s). "Scaled frequencies with scaling factors of 0.88 for the CH stretches,  $\beta$ -CH<sub>2</sub> and  $\gamma$ -CH<sub>2</sub> deformations and 0.90 for all other modes except the heavy atom bending modes.  $^d$ This band is also assigned as a g-Eq conformer fundamental. "Symmetry coordinates with P.E.D. contribution less than 10% are omitted.

fingerprint region that were not assigned in the infrared spectra of the gas. Three of these fundamentals are CH<sub>2</sub> bending modes and they are now assigned based on frequencies observed in the spectra of the xenon solutions and are in agreement with the CH<sub>2</sub> bending modes of the usual four-membered-ring molecules and the previous assignment from the infrared and/or Raman spectra of the liquid and solid. The ring deformation fundamental is predicted at 932 cm<sup>-1</sup> and is now assigned at 933 cm<sup>-1</sup> in the infrared spectra of the gas. This band has a predicted Raman activity of 10.1 and was previously assigned at 927 cm<sup>-1</sup> in the Raman spectra of the liquid. This assignment is further away than expected and the previous assignment is for a shoulder of a much stronger band, therefore, we have reassigned the band center to 930 cm<sup>-1</sup> by using the previously reported Raman spectra of the liquid.

It should be noted that most of the bands which are reassigned in the current study in the infrared spectra of the gas are within a few wavenumber differences from the previously reported assignments except for  $\nu_{17}$ , the  $\beta\text{-CH}_2$  twist. This fundamental is predicted at 1205 cm $^{-1}$  but it was previously assigned at 1143 cm $^{-1}$  in the infrared spectra of gas but it is now reassigned to the band at 1204 cm $^{-1}$ . The band at 1143 cm $^{-1}$  is now assigned as  $\nu_{16}$  for the g-Ax conformer based on the predicted band position and the temperature dependence in the infrared spectra of the xenon solutions.

The vibrational assignments were also made for the g-Ax conformer, which is the second most abundant conformer. It should be noted that this conformer had not been mentioned in any of the previous reported vibrational studies.<sup>2–4</sup> Most of the fundamental frequencies assigned for this conformer are based on the spectra obtained from the xenon solutions. The C–C stretch from the g-Ax conformer is predicted with high intensity and assigned to the strong band at 957 cm<sup>-1</sup> from the spectra of the gas and it is mainly attributed to this heavy atom stretch.

Table 6. Calculated Energies<sup>a</sup> in (H) and Energy Differences (cm<sup>-1</sup>) for the Four Possible Conformers of Cyclobutylcarboxylic Acid Chloride

|                            |           | energy | y differen | ces, $\Delta^b$   |
|----------------------------|-----------|--------|------------|-------------------|
| method/basis set           | g-Eq      | g-Ax   | t-Eq       | t-Ax <sup>c</sup> |
| RHF/6-31G(d)               | -0.739087 | 287    | 551        | 952               |
| MP2(full)/6-31G(d)         | -1.729837 | 125    | 454        | 954               |
| MP2(full)/6-31+G(d)        | -1.748407 | 293    | 468        | 918               |
| MP2(full)/6-31G(d,p)       | -1.787077 | 153    | 433        | 1005              |
| MP2(full)/6-31+G(d,p)      | -1.804584 | 302    | 438        | 947               |
| MP2(full)/6-311G(d,p)      | -2.046919 | 120    | 509        | 1001              |
| MP2(full)/6-311+G(d,p)     | -2.058889 | 216    | 377        | 869               |
| MP2(full)/6-311G(2d,2p)    | -2.151748 | 83     | 425        | 834               |
| MP2(full)/6-311+G(2d,2p)   | -2.160468 | 171    | 310        | 702               |
| MP2(full)/6-311G(2df,2pd)  | -2.282393 | 82     | 383        | 818               |
| MP2(full)/6-311+G(2df,2pd) | -2.290185 | 168    | 279        | 693               |
| MP2(full)/aug-cc-pVTZ      | -2.293038 | 149    | 213        | 550               |
| B3LYP/6-31G(d)             | -3.147955 | 288    | 396        | 775               |
| B3LYP/6-31+G(d)            | -3.159073 | 335    | 363        |                   |
| B3LYP/6-311G(d,p)          | -3.249426 | 280    | 525        | 863               |
| B3LYP/6-311+G(d,p)         | -3.255032 | 345    | 400        |                   |
| B3LYP/6-311G(2d,2p)        | -3.261525 | 284    | 513        | 866               |
| B3LYP/6-311+G(2d,2p)       | -3.266090 | 334    | 417        |                   |
| B3LYP/6-311G(2df,2pd)      | -3.270451 | 294    | 522        |                   |
| B3LYP/6-311+G(2df,2pd)     | -3.274864 | 326    | 416        |                   |
| B3LYP/aug-cc-pVTZ          | -3.288942 | 320    | 410        |                   |
|                            |           |        |            |                   |

<sup>a</sup>Energy of conformer is given as -(E + 727) H. <sup>b</sup>Difference is relative to g-Eq form and given in cm<sup>-1</sup>. <sup>c</sup>Blank energy differences optimize to t-Eq conformer when using that method/basis set.

The COCl scissoring motion for this conformer is predicted at 872 cm<sup>-1</sup>, which is 49 cm<sup>-1</sup> higher frequency with respect to the corresponding mode of g-Eq conformer with approximately one-third the intensity and is therefore assigned at 875 cm<sup>-1</sup>.

There are only a few of the vibrational assignments which could be made for the t-Eq conformer. This is not unexpected since the intensity predictions are low and this conformer is present at ambient temperature as only  $12(\pm 1)\%$  of the sample. Again from the spectra of the xenon solutions, it was possible to assign the ring breathing mode and three of the ring deformational fundamentals and these fundamentals were observed at 964, 933, 919, and 672 cm<sup>-1</sup>, respectively. Once these vibrations were observed in the xenon solutions, it was possible to assign them in the infrared spectra of the gas. The mode predicted at 975 cm<sup>-1</sup> is observed at lower frequency than the corresponding modes of the two most abundant conformers and is now assigned to the band at 964 cm<sup>-1</sup>. The ring deformation assignments at 933 and 919 cm<sup>-1</sup> are in good agreement with the corresponding vibrations of the other two conformers. However, the band at 666 cm<sup>-1</sup> is assigned at a higher frequency compared to the band assignments of these fundamentals of the other two conformers. The fifth ring deformation,  $\nu_{31}$ , was not observed but it is believed to be at 946 cm<sup>-1</sup>, which is the same frequency for the corresponding mode for the g-Eq conformer.

# 5. CONFORMATIONAL STABILITY

To determine the enthalpy differences among the three observed conformers of cyclobutylcarboxylic acid chloride, the sample was dissolved in liquefied xenon and the infrared spectra were recorded as a function of temperature from -70 to -100 °C. Relatively small interactions are expected to occur between

xenon and the sample. Therefore, only small wavenumber shifts are anticipated for the xenon interactions when passing from the gas phase to the liquefied xenon, which is confirmed with an average shift of 1 cm $^{-1}$  for the fundamentals for the three observed conformers indicating this should not be a major influence on the enthalpy difference between the forms. A significant advantage of this study is that the conformer bands are better resolved in comparison with those in the infrared spectrum of the vapor. From ab initio calculations, the dipole moments of the three conformers are predicted to have similar values and the molecular sizes of the three conformers are nearly the same, and thus, the  $\Delta H$  value obtained from the temperature dependent infrared study is expected to be near that for the gas.  $^{18-22}$ 

Once confident assignments have been made for the fundamentals of three observed conformers the task was then to find pairs of bands from which the enthalpy difference could be obtained. The bands should be sufficiently resolved for determining their intensities. The selection of the bands to use in the enthalpy determination was complicated due to the presence of three conformers with each having several broad intense bands; however, it was significantly simplified by the exceptionally good predictions of the relative band positions for the g-Eq, g-Ax, and t-Eq fundamentals in the 1200 to 400 cm<sup>-1</sup> region of the spectra (Figure 3) where there are a limited number of overtone and combination bands possible. Examples of this are the fundamentals at 1177 and 1021 cm<sup>-1</sup> for the g-Eq and g-Ax forms where the bands are predicted at 1179 and 1022 cm<sup>-1</sup>, respectively. The g-Eq band at 1177 cm<sup>-1</sup> was found to not be significantly affected by the underlying t-Eq fundamental predicted at 1181 cm<sup>-1</sup> with a predicted intensity of 0.6 km/mol. The bands at 1137 and 1143 cm<sup>-1</sup> were assigned for the t-Eq and g-Ax fundamentals, respectively, where these assignments are based on their relative band positions and intensities. The g-Ax band at 1020 cm<sup>-1</sup> predicted at 1022 cm<sup>-1</sup> was found to not be significantly affected by the underlying t-Eq fundamental at 1029 cm<sup>-1</sup> which has a predicted intensity of 0.6 km/mol. Finally the band at 1108 cm<sup>-1</sup> was assigned to the g-Eq fundamental ( $\beta$ -CH<sub>2</sub> rock) predicted at 1120 cm<sup>-1</sup>, which was found to not be significantly affected by the broad band of the same conformer at 1066 cm<sup>-1</sup> nor the two fundamentals located beneath the 1065 cm<sup>-1</sup> band predicted at 1105 cm<sup>-1</sup> for the g-Ax conformer and 1101 cm<sup>-1</sup> for the t-Eq form and assigned at 1089 and 1079 cm<sup>-1</sup>, respectively.

The fundamentals at 569 cm<sup>-1</sup> for the g-Eq conformer and 488 cm<sup>-1</sup> for the t-Eq form are predicted to be free of any bands in near coincidence. The bands at 645, 660, and 666 cm<sup>-1</sup> were selected for the g-Eq, g-Ax, and t-Eq conformers, respectively, which can be confidently assigned based on their relative frequencies from the ab initio calculations. These four g-Eq, three g-Ax, and three t-Eq bands were used for the enthalpy determination as they were each found to not be significantly affected by any nearby predicted fundamentals. The assignment of these bands is shown in Figure 2, where the conformer assigned is labeled above the band.

The intensities of the individual bands were measured as a function of temperature and their ratios were determined. An example set of assigned fundamental bands with one from the g-eq (645 cm<sup>-1</sup>), g-Ax (873 cm<sup>-1</sup>), and t-eq (1137 cm<sup>-1</sup>) conformers each have been provided in Figure 4. The intensities of the g-Eq and t-Eq bands in the figure have been doubled to allow for better comparison of the bands, but this

Table 7. Structural Parameters (Å and deg), Rotational Constants (MHz), and Dipole Moments (Debye) for the g-Eq Form of Cyclobutylcarboxylic Acid Chloride

| ructural parameters                                                      | int. coord             | MP2(full)/6-311+G(d,p) | microwave <sup>a</sup> | $ED^c$        | adjusted $r_0$       |
|--------------------------------------------------------------------------|------------------------|------------------------|------------------------|---------------|----------------------|
| $rC_{\alpha}$ -C                                                         | $R_1$                  | 1.492                  | 1.509 <sup>b</sup>     | $1.490(3)^d$  | 1.491(4              |
| rC=O                                                                     | $R_2$                  | 1.193                  | 1.191 <sup>b</sup>     | 1.195(13)     | 1.193(3              |
| $rC_{\alpha}-C_{\beta}$                                                  | $R_3$                  | 1.555                  | 1.535 <sup>b</sup>     | $1.540(3)^d$  | 1.553(4              |
| $rC_{\alpha}-C_{\beta'}$                                                 | $R_4$                  | 1.542                  | 1.535 <sup>b</sup>     | $1.540(3)^d$  | 1.540(4              |
| $rC_{\gamma}-C_{\beta}$                                                  | $R_5$                  | 1.548                  | 1.55 <sup>b</sup>      | $1.540(3)^d$  | 1.547(4              |
| $rC_{\gamma}-C_{\beta'}$                                                 | $R_6$                  | 1.548                  | 1.55 <sup>b</sup>      | $1.540(3)^d$  | 1.546(4              |
| rC-Cl                                                                    | $R_7$                  | 1.798                  | $1.790^{b}$            | $1.793(6)^d$  | 1.801(3              |
| $rC_{\alpha}$ -H                                                         | $r_1$                  | 1.094                  | $1.10^{b}$             | $1.128(14)^d$ | 1.094(2              |
| $rC_{\beta}-H_1$                                                         | $r_2$                  | 1.094                  | 1.085 <sup>b</sup>     | $1.128(14)^d$ | 1.094(2              |
| $rC_{\beta'}-H_1$                                                        | $r_3$                  | 1.093                  | 1.085 <sup>b</sup>     | $1.128(14)^d$ | 1.093(2              |
| $rC_{\beta}-H_2$                                                         | $r_4$                  | 1.091                  | 1.085 <sup>b</sup>     | $1.128(14)^d$ | 1.091(2              |
| $rC_{\beta'}-H_2$                                                        | $r_5$                  | 1.091                  | 1.085 <sup>b</sup>     | $1.128(14)^d$ | 1.091(2              |
| $rC_{\gamma}^{\rho}-H_{1}$                                               | $r_6$                  | 1.091                  |                        | $1.128(14)^d$ | 1.091(2              |
| $rC_{\gamma}^{\prime}-H_{2}$                                             | $r_7$                  | 1.093                  |                        | $1.128(14)^d$ | 1.093(2              |
| ∠C <sub>a</sub> CO                                                       | $\phi_1$               | 128.0                  | 123.2(29)              | 127.0(15)     | 127.8(5)             |
| ∠ClCC <sub>α</sub>                                                       | $\phi_2$               | 111.1                  | 112.7(15)              | 111.0(20)     | 110.8(5)             |
| ∠ClCO                                                                    | $\phi_3$               | 120.8                  | (-0)                   | 122.0         | 121.2(5)             |
| $\angle C_{\beta}C_{\alpha}C$                                            | $\phi_4$               | 116.6                  |                        | 112.8         | 117.5(5)             |
| $\angle C_{\beta'}C_{\alpha}C$                                           | $\phi_5$               | 118.7                  |                        | 112.8         | 119.6(5)             |
| $\angle C_{\beta'}C_{\alpha}C_{\beta}$                                   | $	heta_1^{arphi_5}$    | 88.4                   |                        | 90.9          | 87.4(5)              |
| $\angle C_{\gamma}C_{\beta}C_{\alpha}$                                   | $	heta_2$              | 87.1                   |                        | 90.9          | 88.0(5)              |
| $\angle C_{\gamma}C_{\beta'}C_{\alpha}$                                  | $\theta_3$             | 87.6                   |                        | 90.9          | 88.6(5)              |
| $\angle C_{\beta'}C_{\gamma}C_{\beta}$                                   | $	heta_4$              | 88.4                   |                        | 90.9          | 87.5(5)              |
| $\angle HC_{\alpha}C_{\beta}$                                            |                        | 109.9                  |                        | 116.2         | 107.6(5)             |
| $\angle HC_{\alpha}C_{\beta'}$                                           | $\sigma_1$             | 112.6                  |                        | 116.2         | 113.7(5)             |
| $\angle HC_{\alpha}C$                                                    | $\sigma_2$             | 109.2                  | 110.07 <sup>b</sup>    | 107.5         | 109.2(5)             |
| $\angle H_1C_{\beta}C_{\alpha}$                                          | $\sigma_3 \ \lambda_1$ | 110.3                  | 110.07                 | 116.2         | 110.3(5)             |
| $\angle H_1C_{\beta'}C_{\alpha}$<br>$\angle H_1C_{\beta'}C_{\alpha}$     |                        | 110.3                  |                        | 116.2         | 110.3(3)             |
| $\angle H_1C_{\beta}C_{\alpha}$<br>$\angle H_1C_{\beta}C_{\gamma}$       | $\lambda_2$            | 111.1                  |                        | 116.2         | 111.4(5)             |
| $\angle H_1 C_{\beta'} C_{\gamma}$<br>$\angle H_2 C_{\beta'} C_{\gamma}$ | $\lambda_3$            | 111.4                  |                        | 116.2         | 111.7(5)             |
|                                                                          | $\lambda_4$            |                        |                        |               |                      |
| $\angle H_2C_\beta C_\alpha$                                             | $\lambda_5$            | 117.5                  |                        | 116.2         | 117.3(5)<br>117.9(5) |
| $\angle H_2C_{\beta'}C_{\alpha}$                                         | $\lambda_6$            | 117.7                  |                        | 116.2         |                      |
| $\angle H_2C_\beta C_\gamma$                                             | $\lambda_7$            | 119.3                  |                        | 116.2         | 118.4(5)<br>117.9(5) |
| $\angle H_2C_{\beta'}C_{\gamma}$                                         | $\lambda_8$            | 118.8                  |                        | 116.2         |                      |
| $\angle H_1C_\beta H_2$                                                  | $\lambda_9$            | 109.7                  |                        | 102.0         | 109.7(5)             |
| $\angle H_1C_{\beta'}H_2$                                                | $\lambda_{10}$         | 109.6                  |                        | 102.0         | 109.6(5)             |
| $\angle H_1C_{\gamma}C_{\beta}$                                          | $\pi_1$                | 117.7                  |                        | 116.2         | 118.1(5)             |
| $\angle H_1C_{\gamma}C_{\beta'}$                                         | $\pi_2$                | 118.0                  |                        | 116.2         | 118.3(5)             |
| $\angle H_2C_{\gamma}C_{\beta}$                                          | $\pi_3$                | 110.7                  |                        | 116.2         | 110.8(5)             |
| $\angle H_2C_{\gamma}C_{\beta'}$                                         | $\pi_4$                | 111.1                  |                        | 116.2         | 111.1(5)             |
| $\angle H_1C_{\gamma}H_2$                                                | $\pi_5$                | 109.5                  | 20.0(24)               | 102.0         | 109.5(5)             |
| $\tau C_{\gamma} C_{\beta} C_{\beta'} C_{\alpha}$                        | $	au_1$                | 31.3                   | 20.0(24)               | 21(5)         | 30.9(5)              |
| τHC <sub>α</sub> CO                                                      | $	au_2$                | 127.5                  | (1.(2.)                | 123           | 130.0(5)             |
| $\tau$ HC $_{\alpha}$ CCl                                                | $	au_3$                | 55.0                   | 61.1(24)               | 57(5)         | 55.0(5)              |
| $\tau \text{ClC}_2\text{C}_\alpha\text{O}$                               | $	au_4$                | 40 (0.55               | 10.10.5.((:=)          |               |                      |
| A (MHz)                                                                  |                        | 4368.30                | 4349.86(17)            |               | 4350.60              |
| B (MHz)                                                                  |                        | 1411.29                | 1414.78(1)             |               | 1414.66              |
| C (MHz)                                                                  |                        | 1150.70                | 1148.24(1)             |               | 1148.28              |
| $ \mu_{ m a} $                                                           |                        | 3.049                  |                        |               |                      |
| $ \mu_{ m b} $                                                           |                        | 1.743                  |                        |               |                      |
| $ \mu_{ m c} $                                                           |                        | 0.848                  |                        |               |                      |
| $ \mu_{ m t} $                                                           |                        | 3.613                  |                        |               |                      |

<sup>&</sup>lt;sup>a</sup>Proposed structural parameters, rotational constants, and dipole moments from ref 4. <sup>b</sup>Assumed values. <sup>c</sup>Proposed structural parameters from the electron diffraction study. <sup>1</sup> <sup>d</sup>C-C bond length values and all C-H distances are assumed to be the same. <sup>e</sup>Adjusted parameters using the microwave data from Table 1 for the given ground states.

doubling in no way affects the enthalpy determination. With the measured intensity values of the conformer fundamentals the enthalpy values were obtained by application of the van't Hoff equation  $-\ln K = \Delta H/(RT) - \Delta S/R$ . The enthalpy difference was determined from a plot of  $-\ln K$  versus 1/T, where  $\Delta H/R$  is the slope of the line and K is substituted with the appropriate



**Figure 3.** Experimental and predicted mid-infrared spectra of cyclobutylcarboxylic acid chloride: (A) observed spectra of xenon solutions at -80, -90, and -100 °C; (B) simulated spectrum of mixture of g-Eq, g-Ax ( $\Delta H = 91$  cm<sup>-1</sup>), and t-Eq ( $\Delta H = 173$  cm<sup>-1</sup>) conformers at -80 °C; (C) simulated g-Eq conformer; (D) simulated g-Ax conformer; and (E) simulated t-Eq conformer.

intensity ratios, i.e.  $I_{\rm conf-1}/I_{\rm conf-2}$ , etc. It was assumed that  $\Delta S$  and  $\alpha$  (thermal expansion constant) are not functions of temperature in the range studied.

These bands were utilized for the determination of the enthalpy difference by combining them to form 12 independent band pairs each for the g-Eq to g-Ax and for the g-Eq to t-Eq independent enthalpy values and 9 band pairs for the g-Ax to t-Eq independent enthalpy values. These values are listed for each band pair in Tables 9–11 and are within a relatively small

range. The intensity data from each band pair is combined with the other band pairs to form a single data set for each conformer pair. From this single data set for each pair of conformers the enthalpy differences and error limits were determined to be  $91 \pm 4$  cm<sup>-1</sup> from the g-Eq to the g-Ax form,  $173 \pm 4 \text{ cm}^{-1}$  from the g-Eq to the t-Eq conformer, and  $82 \pm 3$ cm<sup>-1</sup> from the g-Ax to the t-Eq conformer as listed in Tables 9-11. The error limit is derived from the statistical standard deviation of  $1\sigma$  of the measured intensity data taken as a single data set, but it does not take into account small associations with the liquid xenon or the possible presence of overtones and combination bands in near coincidence of the measured fundamentals. The variations in the individual values are undoubtedly due to these types of interferences, but by taking several pairs, the effect of such interferences should cancel. However, this statistical uncertainty is probably better than can be expected from this technique and, therefore, an uncertainty of about 10% in the enthalpy difference is probably more realistic, i.e.,  $91 \pm 9 \text{ cm}^{-1}$  from the g-Eq to the g-Ax conformer,  $173 \pm 17 \text{ cm}^{-1}$  from the g-Eq to the t-Eq form, and  $82 \pm 8$ cm<sup>-1</sup> from the g-Ax to the t-Eq conformer. From the enthalpy differences the conformer abundance is estimated to be 54% g-Eq.  $35(\pm 1)\%$  g-Ax, and  $12(\pm 1)\%$  t-Eq at ambient temperature.

## 6. STRUCTURAL PARAMETERS

An electron diffraction (ED) study<sup>1</sup> was the first study performed on cyclobutylcarboxylic acid chloride where the structure was determined for the g-Eq conformer with a mean C-C distance of 1.540(3) Å for all the carbons in the ring and +0.05 (1.590) Å for the C-C distance outside the ring. The remaining structural parameters have very large errors which makes them somewhat meaningless for comparison with other structures. This was followed by a combined microwave and vibrational study<sup>4</sup> where the <sup>35</sup>Cl isotopologue of the g-Eq conformer was observed and rotational constants were determined. In this microwave study the diagnostic least-squares adjusted structural parameters were determined by utilizing a combination of assumed parameters and parameters taken from the structure reported in the ED study.<sup>1</sup> The resulting extremely large uncertainties in the heavy atom angles

Table 8. Rotational Constants (MHz), Quadratic Centrifugal Distortion Constants (kHz), and Quadrupole Coupling Constants (MHz) for the <sup>35</sup>Cl and <sup>37</sup>Cl Isotopomers of the g-Eq Conformer of Cyclobutylcarboxylic Acid Chloride

|                    | c-(                    | $C_4H_7C(O)^{35}Cl$ |                |                | $c$ - $C_4H_7C(O)^{37}Cl$ |                 |
|--------------------|------------------------|---------------------|----------------|----------------|---------------------------|-----------------|
|                    | MP2(full)/6-311+G(d,p) | ref 4               | Fit 1          | Fit 2          | MP2(full)/6-311+G(d,p)    | fit             |
| A                  | 4368.2065              | 4349.86(17)         | 4349.84294(48) | 4349.8383(103) | 4339.5884                 | 4322.0555(56)   |
| В                  | 1411.2866              | 1414.78(1)          | 1414.80319(36) | 1414.8038(18)  | 1381.0680                 | 1384.50581(105) |
| C                  | 1150.6863              | 1148.24(1)          | 1148.24114(18) | 1148.2389(15)  | 1128.6613                 | 1126.35465(101) |
| $\Delta_{ m J}$    | 0.2999                 | 0.25(2)             | 0.2786(40)     | 0.2811(85)     | 0.2925                    | 0.2730(46)      |
| $\Delta_{ m JK}$   | -1.1256                | -2.44(49)           | -0.9523(32)    | -0.988(83)     | -1.167                    | -1.001(21)      |
| $\Delta_{ m K}$    | 5.047                  |                     | 4.741(37)      | 4.52(97)       | 5.2                       | 5.8(1)          |
| $\delta_{ m J}$    | 0.11171                | 0.088(16)           | 0.09685(96)    | 0.1034(32)     | 0.1092                    | 0.0994(77)      |
| $\delta_{	ext{K}}$ | 1.642                  |                     | 1.401(55)      | 1.61(26)       | 1.59                      | 1.44(19)        |
| $\chi_{ m aa}$     | -16.9372               |                     | -18.2005(43)   | -18.17(13)     | -14.0482                  | -15.0614(42)    |
| $\chi_{ m ab}$     | -44.63                 |                     | -46.21(11)     | -46.3(32)      | -35.08                    | -36.01(18)      |
| $\chi_{ m bb}$     | -6.2552                |                     | -5.9667(49)    | -5.88(14)      | -4.2349                   | -3.9980(59)     |
| $\chi_{cc}$        | 23.1924                |                     | 24.1672(56)    | 24.06(16)      | 18.2831                   | 19.0594(52)     |
| n                  |                        | 17                  | 69             | 95             |                           | 84              |
| S                  |                        | 64                  | 2.2            | 64             |                           | 2.6             |
| rsm (FT)           |                        | 8                   |                | 8              |                           |                 |
| rsm (MW)           |                        | 114                 |                | 114            |                           |                 |



Figure 4. Temperature-dependent  $(-70 \text{ to } -100 \text{ }^{\circ}\text{C})$  mid-infrared spectrum of cyclobutylcarboxylic acid chloride dissolved in liquid xenon.

Table 9. Temperature and Intensity Ratios of the g-Eq and g-Ax Bands of Cyclobutylcarboxylic Acid Chloride

|              | T (°C) | $1/T \ (\times 10^{-3} \ \text{K}^{-1})$ | $I_{569}/I_{660}$  | $I_{569}/I_{1020}$  | $I_{569}/I_{1143}$  | $I_{645}/I_{660}$  | $I_{645}/I_{1020}$  | $I_{645}/I_{1143}$  |
|--------------|--------|------------------------------------------|--------------------|---------------------|---------------------|--------------------|---------------------|---------------------|
| liquid xenon | -70    | 4.922                                    | 1.250              | 0.816               | 1.860               | 1.406              | 0.918               | 2.093               |
|              | -75    | 5.047                                    | 1.302              | 0.848               | 1.909               | 1.426              | 0.929               | 2.091               |
|              | -80    | 5.177                                    | 1.323              | 0.847               | 1.955               | 1.462              | 0.936               | 2.159               |
|              | -85    | 5.315                                    | 1.328              | 0.845               | 1.933               | 1.496              | 0.951               | 2.178               |
|              | -90    | 5.460                                    | 1.379              | 0.875               | 1.978               | 1.530              | 0.971               | 2.196               |
|              | -95    | 5.613                                    | 1.414              | 0.895               | 2.000               | 1.564              | 0.990               | 2.213               |
|              | -100   | 5.775                                    | 1.433              | 0.906               | 2.043               | 1.597              | 1.009               | 2.277               |
| $\Delta H^a$ |        |                                          | $107 \pm 9$        | $80 \pm 11$         | $67 \pm 9$          | $107 \pm 3$        | $78 \pm 4$          | $67 \pm 7$          |
|              | T (°C) | $1/T (\times 10^{-3} \text{ K}^{-1})$    | $I_{1108}/I_{660}$ | $I_{1108}/I_{1020}$ | $I_{1108}/I_{1143}$ | $I_{1176}/I_{660}$ | $I_{1176}/I_{1020}$ | $I_{1176}/I_{1143}$ |
| liquid xenon | -70    | 4.922                                    | 1.328              | 0.867               | 1.977               | 1.359              | 0.888               | 2.023               |
|              | -75    | 5.047                                    | 1.380              | 0.899               | 2.023               | 1.395              | 0.909               | 2.045               |
|              | -80    | 5.177                                    | 1.385              | 0.887               | 2.045               | 1.431              | 0.916               | 2.114               |
|              | -85    | 5.315                                    | 1.420              | 0.903               | 2.067               | 1.511              | 0.961               | 2.200               |
|              | -90    | 5.460                                    | 1.455              | 0.923               | 2.087               | 1.530              | 0.971               | 2.196               |
|              | -95    | 5.613                                    | 1.459              | 0.924               | 2.064               | 1.519              | 0.962               | 2.149               |
|              |        |                                          |                    |                     |                     |                    |                     |                     |
|              | -100   | 5.775                                    | 1.567              | 0.991               | 2.234               | 1.597              | 1.009               | 2.277               |

<sup>a</sup>Average value  $\Delta H = 91 \pm 4 \text{ cm}^{-1} \ (1.09 \pm 0.05 \text{ kJ mol}^{-1})$  with the g-Eq conformer the more stable form and the statistical uncertainty  $(1\sigma)$  obtained by utilizing all of the data as a single set.

determined are most likely a result of these assumed parameters and the parameters taken from the ED study. Therefore, we have determined the rotational constants for two isotopic species for the g-Eq conformer giving six constants available for the structural determination.

We have found that good structural parameters for hydrocarbons and many substituted ones can be determined by adjusting the structural parameters obtained from the ab initio MP2(full)/6-311+G(d,p) calculations to fit the rotational constants obtained from microwave experimental data by using

a computer program "A&M" (Ab initio and Microwave) developed<sup>23</sup> in our laboratory.

We<sup>24</sup> have shown that ab initio MP2(full)/6-311+G(d,p) calculations predict the carbon—hydrogen  $r_0$  structural parameters for more than fifty hydrocarbons to at least 0.002 Å compared to the experimentally determined<sup>25</sup> values from isolated CH stretching frequencies which agree with previously determined values from earlier microwave studies. Therefore, all of the carbon—hydrogen parameters can be taken from the MP2(full)/6-311+G(d,p) predicted values for the g-Eq conformer of cyclobutylcarboxylic acid chloride. To further reduce

Table 10. Temperature and Intensity Ratios of the g-Eq and t-Eq Bands of Cyclobutylcarboxylic Acid Chloride

|              | T (°C)                          | $1/T \ (\times 10^{-3} \ \mathrm{K}^{-1})$ | $I_{569}/I_{488}$                         | $I_{569}/I_{666}$                         | $I_{569}/I_{1137}$                        | $I_{645}/I_{488}$                         | $I_{645}/I_{666}$                         | $I_{645}/I_{1137}$                        |
|--------------|---------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| liquid xenon | -70                             | 4.922                                      | 0.842                                     | 0.833                                     | 0.792                                     | 0.947                                     | 0.938                                     | 0.891                                     |
|              | -75                             | 5.047                                      | 0.884                                     | 0.878                                     | 0.840                                     | 0.968                                     | 0.961                                     | 0.920                                     |
|              | -80                             | 5.177                                      | 0.915                                     | 0.901                                     | 0.860                                     | 1.011                                     | 0.995                                     | 0.950                                     |
|              | -85                             | 5.315                                      | 0.926                                     | 0.915                                     | 0.870                                     | 1.043                                     | 1.030                                     | 0.980                                     |
|              | -90                             | 5.460                                      | 0.989                                     | 0.959                                     | 0.919                                     | 1.098                                     | 1.065                                     | 1.020                                     |
|              | -95                             | 5.613                                      | 1.022                                     | 0.994                                     | 0.949                                     | 1.130                                     | 1.099                                     | 1.051                                     |
|              | -100                            | 5.775                                      | 1.043                                     | 1.018                                     | 0.980                                     | 1.163                                     | 1.134                                     | 1.092                                     |
| $\Delta H^a$ |                                 |                                            | $176 \pm 12$                              | $159 \pm 10$                              | 166 ± 11                                  | $176 \pm 8$                               | $158 \pm 4$                               | $166 \pm 3$                               |
|              | T (°C)                          | $1/T (\times 10^{-3} \text{ K}^{-1})$      | $I_{1108}/I_{488}$                        | $I_{1108}/I_{666}$                        | $I_{1108}/I_{1137}$                       | $I_{1176}/I_{488}$                        | $I_{1176}/I_{666}$                        | 1 /1                                      |
|              | 1 ( C)                          | 1/1 (×10 K)                                | 1108/ 1488                                | 1108/ 1666                                | 1108/11137                                | 1176/ 1488                                | 1176/ 1666                                | $I_{1176}/I_{1137}$                       |
| liquid xenon | -70                             | 4.922                                      | 0.895                                     | 0.885                                     | 0.842                                     | 0.916                                     | 0.906                                     | 0.861                                     |
| liquid xenon | ` ′                             | ,                                          |                                           |                                           |                                           |                                           |                                           |                                           |
| liquid xenon | -70                             | 4.922                                      | 0.895                                     | 0.885                                     | 0.842                                     | 0.916                                     | 0.906                                     | 0.861                                     |
| liquid xenon | -70<br>-75                      | 4.922<br>5.047                             | 0.895<br>0.937                            | 0.885<br>0.930                            | 0.842<br>0.890                            | 0.916<br>0.947                            | 0.906<br>0.940                            | 0.861<br>0.900                            |
| liquid xenon | -70<br>-75<br>-80               | 4.922<br>5.047<br>5.177                    | 0.895<br>0.937<br>0.957                   | 0.885<br>0.930<br>0.943                   | 0.842<br>0.890<br>0.900                   | 0.916<br>0.947<br>0.989                   | 0.906<br>0.940<br>0.974                   | 0.861<br>0.900<br>0.930                   |
| liquid xenon | -70<br>-75<br>-80<br>-85        | 4.922<br>5.047<br>5.177<br>5.315           | 0.895<br>0.937<br>0.957<br>0.989          | 0.885<br>0.930<br>0.943<br>0.977          | 0.842<br>0.890<br>0.900<br>0.930          | 0.916<br>0.947<br>0.989<br>1.053          | 0.906<br>0.940<br>0.974<br>1.040          | 0.861<br>0.900<br>0.930<br>0.990          |
| liquid xenon | -70<br>-75<br>-80<br>-85<br>-90 | 4.922<br>5.047<br>5.177<br>5.315<br>5.460  | 0.895<br>0.937<br>0.957<br>0.989<br>1.043 | 0.885<br>0.930<br>0.943<br>0.977<br>1.012 | 0.842<br>0.890<br>0.900<br>0.930<br>0.970 | 0.916<br>0.947<br>0.989<br>1.053<br>1.098 | 0.906<br>0.940<br>0.974<br>1.040<br>1.065 | 0.861<br>0.900<br>0.930<br>0.990<br>1.020 |

"Average value  $\Delta H = 173 \pm 4 \text{ cm}^{-1} (2.07 \pm 0.04 \text{ kJ mol}^{-1})$  with the g-Eq conformer the more stable form and the statistical uncertainty (1 $\sigma$ ) obtained by utilizing all of the data as a single set.

the number of independent variables, the structural parameters are separated into sets according to their types where bond distances in the same set keep their relative ratio, and bond angles and torsional angles in the same set keep their difference in degrees. This assumption is based on the fact that errors from ab initio calculations are systematic. Therefore, it should be possible to obtain "adjusted  $r_0$ " structural parameters for the eleven parameters of the seven heavy atoms by adjusting the C–C distances as a single set and adjusting the ∠CCC angles as another set leaving seven sets of parameters to adjust. This structure, however, must be evaluated by using parameters from similar molecules to help account for the relatively low number of rotational constants available and, thus, the -C(O)Clparameters have a limited range that they change from the ab initio predicted values as has been reported in the literature. This is particularly true for the C=O bond distance which changes very little from its molecular environment.

The resulting adjusted  $r_0$  parameters are listed in Table 7, where it is believed that the Cl–C and O=C distances should be accurate to  $\pm 0.003$  Å, the C–C distances accurate to  $\pm 0.004$  Å, the C–H distances accurate to  $\pm 0.002$  Å, and the uncertainties of the angles should be within  $\pm 0.5^{\circ}$ . The fit of the six determined rotational constants (Table 12) by the adjusted  $r_0$  structural parameters is good with variations of the differences with values being less than 0.9 MHz. Therefore, it is believed that the suggested uncertainties are realistic values and the determined structural parameters are probably as accurate as can be obtained for the molecule in the gas phase by either electron diffraction or microwave substitution methods. However, with more rotational constants from further isotopic substitutions the accuracy of the adjusted  $r_0$  parameter values could be improved.

## 7. DISCUSSION

The vibrational assignments reported herein are based on a significant amount of information with the infrared spectrum of the xenon solutions, band contours in the infrared spectra of the gas, and predictions of the fundamental frequencies from the scaled ab initio MP2(full)/6-31G(d) calculations as well as the predicted intensities. For the g-Eq conformer the ab initio

predicted frequencies differ by an average of 8 cm<sup>-1</sup>, which represents 0.6% error. The percent error for the predictions for the g-Ax conformer is 4 cm<sup>-1</sup> or 0.3% error. Thus the relatively small basis set of 6-31G(d) by the MP2(full) calculations with two scaling factors provides excellent predicted frequencies for aiding the vibrational assignments.

There are three repeated t-Eq frequencies which were assigned based on the most stable g-Eq conformer. These fundamentals are the C-C stretch, which is now assigned at 1110 cm<sup>-1</sup> in the infrared spectra of the gas, and the ring deformation, which is assigned at 946 cm<sup>-1</sup>. The third fundamental is the  $\beta$ -CH<sub>2</sub> rock, which is assigned to the band at 776 cm<sup>-1</sup> in the infrared spectra of the xenon solutions. The t-Eq -COCl wag motion is an interesting fundamental where this motion is predicted at 654 cm<sup>-1</sup> with a low infrared intensity of 0.7 km/mol and was not observed in the infrared spectra of the gas unlike the other two forms where this motion was observed at 645 and 662 cm<sup>-1</sup> for the g-Eq and g-Ax conformers, respectively. This is due to the low intensity of this fundamental as compared to the g-Eq fundamental with an intensity of 8.2 km/mol. These are several examples where the fundamentals of the g-Eq and g-Ax form have significantly different intensities than the same mode from the t-Eq conformer.

In general for the g-Eq conformer the mixing was extensive for the fundamentals starting at 1232 cm<sup>-1</sup> and lower frequencies. Most of the fundamentals have extensive contributions from three or four symmetry coordinates and several of the descriptions are more for bookkeeping than an accurate description of the molecular motions. The g-Ax conformer is similar, with extensive mixing starting from the vibration at 1209 cm<sup>-1</sup> and below. Similarly, several of the approximate descriptions for the fundamentals of the g-Ax form are again more for bookkeeping than providing descriptions of the molecular motions. Of significant note is the  $\nu_{20}$ fundamental where it has been assigned as S<sub>20</sub> (C-C stretch) despite only being 10% contribution and it has been described as such as any other placement results in several bookkeeping descriptions. However, for the t-Eq conformer, the descriptions are much more realistic than the other two conformers except

Table 11. Temperature and Intensity Ratios of the g-Ax and t-Eq Bands of Cyclobutylcarboxylic Acid Chloride

|                            | T (°C)            | $1/T \ (\times 10^{-3} \ \mathrm{K}^{-1})$                                                                                   | $I_{660}/I_{488}$          | $I_{660}/I_{666}$ | $I_{660}/I_{1137}$ | $I_{1020}/I_{488}$ | $I_{1020}/I_{666}$ | $I_{1020}/I_{1137}$      | $I_{1143}/I_{488}$                                                                                                                   | $I_{1143}/I_{666}$ | $I_{1143}/I_{1137}$ |
|----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|--------------------|--------------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| liquid xenon               | -20               | 4.922                                                                                                                        | 0.674                      | 0.667             | 0.634              | 1.032              | 1.021              | 0.970                    | 0.453                                                                                                                                | 0.448              | 0.426               |
|                            | -75               | 5.047                                                                                                                        | 6290                       | 0.674             | 0.645              | 1.042              | 1.034              | 0.990                    | 0.463                                                                                                                                | 0.460              | 0.440               |
|                            | -80               | 5.177                                                                                                                        | 0.691                      | 0.681             | 0.650              | 1.080              | 1.063              | 1.015                    | 0.468                                                                                                                                | 0.461              | 0.440               |
|                            | -85               | 5.315                                                                                                                        | 0.697                      | 0.688             | 0.655              | 1.096              | 1.082              | 1.030                    | 0.479                                                                                                                                | 0.473              | 0.450               |
|                            | -00               | 5.460                                                                                                                        | 0.717                      | 969.0             | 0.667              | 1.130              | 1.096              | 1.051                    | 0.500                                                                                                                                | 0.485              | 0.465               |
|                            | -95               | 5.613                                                                                                                        | 0.723                      | 0.703             | 0.672              | 1.141              | 1.110              | 1.061                    | 0.511                                                                                                                                | 0.497              | 0.475               |
|                            | -100              | 5.775                                                                                                                        | 0.728                      | 0.710             | 0.684              | 1.152              | 1.124              | 1.082                    | 0.511                                                                                                                                | 0.498              | 0.480               |
| $\Delta H^a$               |                   |                                                                                                                              | 69 ± 5                     | $51 \pm 1$        | $59 \pm 3$         | 97 ± 9             | 9 + 08             | 87 ± 6                   | $109 \pm 10$                                                                                                                         | $91 \pm 8$         | 8 + 66              |
| <sup>a</sup> Average value | $\Delta H = 82 +$ | <sup>a</sup> Average value $\Delta H = 82 + 3 \text{ cm}^{-1} (0.98 + 0.04 \text{ k} \text{I} \text{ mol}^{-1})$ with the g- | $kI \text{ mol}^{-1}$ with | the 9-Ax conforr  | ner the more sta   | ble form and the   | statistical uncer  | tainty $(1\sigma)$ obtai | Ax conformer the more stable form and the statistical uncertainty $(1\sigma)$ obtained by utilizing all of the data as a single set. | of the data as a   | single set.         |

Table 12. Comparison of Rotational Constants (MHz) Obtained from Modified Ab Initio MP2(full)/6-311+G(d,p) Structural Parameters and the Experimental Values from the Microwave Spectra of g-Eq Conformer of Cyclobutylcarboxylic Acid Chloride

| isotopomers           | rotational<br>constant | Fit 1 from<br>Table8 | adjusted $r_0$ | ΙΔΙ  |
|-----------------------|------------------------|----------------------|----------------|------|
| $c-C_4H_7C(O)^{35}Cl$ | A                      | 4349.8429(25)        | 4350.60        | 0.76 |
|                       | B                      | 1414.8032(25)        | 1414.66        | 0.14 |
|                       | C                      | 1148.2411(25)        | 1148.28        | 0.04 |
| $c-C_4H_7C(O)^{37}Cl$ | A                      | 4322.0555(56)        | 4321.22        | 0.84 |
|                       | В                      | 1384.5058(25)        | 1384.54        | 0.04 |
|                       | С                      | 1126.3546(25)        | 1126.43        | 0.08 |

for the  $\nu_{18}^{"}$  fundamental described as the COCl rock which have only 17%  $S_{18}(\text{COCl rock})$  with contributions of  $34\%S_{22}$ ,  $21\%S_{20}$ , and  $10\%S_{12}$  modes. The A'' modes are reasonably well described with no specific arbitrary descriptions necessary. This reduction of the mixing is largely due to the symmetry constraints due to the change from  $C_1$  to  $C_\nu$  symmetry going from gauche to trans. Therefore, the approximate descriptions for the normal modes provide reasonable information on the molecular motions of vibrations with several modes described more for bookkeeping purposes than as a complete description. It should be noted that this large change in mixing due to the symmetry constraints may be at least partially responsible for the significant differences in the fundamental intensities noted above

Because the measured information was just barely sufficient to determine all quadratic centrifugal distortion constants, another fit was made for the <sup>35</sup>Cl isotopologue that included 13 frequencies involving higher rotational constants from the earlier microwave investigation.<sup>17</sup> Each of these represented a blend of unresolved hyperfine components; each blend's frequency was assigned to the two innermost components of the predicted hyperfine quartet. (Four transitions from the previous study<sup>17</sup> were omitted because their hyperfine pattern consisted of a widely spaced pair of narrow doublets.) Of course this fit (Fit 2 in Table 8) had a much larger standard deviation of 64 kHz, but the root-mean-square of the residuals for the FT data was only 8.0 kHz whereas the rms of the lowresolution measurements was 114 kHz. The difference of any constant between Fit 1 and Fit 2 was smaller than the combined error limits except for  $\Delta I$  where the difference was only slightly larger.

The derived centrifugal distortion constants generally agree between the isotopic species and the ab initio predictions (Table 8). The same can be said for the quadrupole coupling constants, taking into account that the theoretical ratio  $\chi(^{35}\text{Cl})/\chi(^{37}\text{Cl})$  for any coupling constant  $\chi$  should be 1.269<sup>26</sup> provided there is no rotation of the principal inertial axes between the isotopologues.

The natural population analysis (NPA) was carried out for the g-Eq, g-Ax, and t-Eq conformers of cyclobutylcarboxylic acid chloride and for cyclobutane with the MP2(full) method at the 6-311+G(d,p) basis set. The C atoms for cyclobutane all carry a -0.34 charge. However the -C(O)Cl substitution of cyclobutane gives a charge distribution for the g-Eq form of  $C_{\alpha} = -0.32$ ,  $C_{\beta} = -0.31$ ,  $C_{\beta'} = -0.32$ ,  $C_{\gamma} = -0.33$ , Cl = -0.12, O = -0.59, and C = 0.69. The difference in NPA predicted for the other two stable conformers is less than 0.01 from those listed for the g-Eq form. The majority of the ring has similar charges

as those of cyclobutane indicating that -C(O)Cl has relatively little influence on the electron charge density in the ring.

Due to the relatively low number of rotational constants available for the g-Eq form of cyclobutylcarboxylic acid chloride the structural parameters must be evaluated for their accuracy and the number of parameters to change must be decreased. As stated in the structural parameters section the C-C distances were taken as a single set and the -C(O)Cl parameters were constrained within the limits determined from similar molecules. As can be seen in Table 13 the ab initio MP2(full)

Table 13. Structural Parameters<sup>a</sup> of a Few Acetyl Chloride Molecules of the Form R-C(O)Cl (Å and deg)

| structural<br>parameters               | $R = CH_3^b$        | $R = CH_2CH_3^c$ (cis) | $R = CH(CH_3)_2^d$ (cis) |
|----------------------------------------|---------------------|------------------------|--------------------------|
| rC=O                                   | 1.192<br>[1.189(3)] | 1.192 [1.192(3)]       | 1.193 [1.186(3)]         |
| rC-Cl                                  | 1.795<br>[1.794(3)] | 1.795 [1.796(4)]       | 1.798 [1.804(4)]         |
| $rC-C_{\alpha}$                        | 1.500<br>[1.499(3)] | 1.505 [1.506(3)]       | 1.510 [1.511(3)]         |
| $rC_{\alpha}-C_{\beta}$                |                     | 1.522 [1.523(3)]       | 1.525 [1.534(3)]         |
| $rC_{\alpha}-C_{\beta'}$               |                     |                        | 1.535 [1.540(3)]         |
| ∠OCCl                                  | 120.6<br>[120.4(5)] | 120.6 [120.7(6)]       | 120.3 [119.1(6)]         |
| ∠OCC                                   | 127.6<br>[127.2(5)] | 127.4 [127.2(7)]       | 127.2 [127.3(7)]         |
| ∠ClCC                                  | 111.9<br>[112.4(5)] | 111.9 [112.1(5)]       | 112.4 [113.6(5)]         |
| $\angle CC_{\alpha}C_{\beta}$          |                     | 112.3 [112.4(8)]       | 110.1 [109.7(8)]         |
| $\angle CC_{\alpha}C_{\beta'}$         |                     |                        | 108.9 [109.9(8)]         |
| $\angle C_{\beta}C_{\alpha}C_{\beta'}$ |                     |                        | 111.7 [113.8(27)]        |
|                                        |                     | _ 1                    |                          |

 $^{a}$ MP2(full)/6-311+G(d,p) [experimental].  $^{b}$ Adjusted  $r_{0}$  parameters determined from rotational constants taken from ref 26.  $^{c}$ Reference 27; adjusted  $r_{0}$  parameters.  $^{d}$ Reference 28; adjusted  $r_{0}$  parameters.

calculation at the 6-311+G(d,p) basis set does an excellent job predicting the bond distances and angles for this moiety. The predicted structural parameter values for the methyl<sup>27</sup> and ethyl compounds<sup>28</sup> for the distances are usually within 0.001 Å and within  $0.5^{\circ}$  for the angles of the  $r_0$  structural parameter values. The isopropyl molecule<sup>29</sup> shows larger differences between the predicted structural parameter values and the values from the  $r_0$ structural parameters. The structure was determined for the g-Eq form of cyclobutylcarboxylic acid chloride and the parameters where allowed to change in fitting of the rotational constants. As can be seen from Table 7 the differences between the MP2(full)/6-311+G(d,p) and the adjusted  $r_0$  structural parameter values for the -C(O)Cl bond distances and angles are less than the proposed experimental errors and are very close to the values for similar bond distances and angles in Table 13.

The ring parameters are much more variable where the ring distances and angles for four-membered rings are often relatively sensitive to substitution as shown in Table 14. As the charges in the ring are fairly consistent with those for the cyclobutane molecule the ring structural parameters should be comparable between the two. It can be seen that the  $C_v - C_\theta$ bond distances are  $\sim 0.008$  Å shorter for the -C(O)Clmolecule as opposed to unsubstituted cyclobutane. These are probably not due to the electronic effects in the rings as these effects are predicted to be relatively small but rather due to the steric effects of the larger -C(O)Cl molecule's ring puckering angle. The  $C_{\alpha}$ - $C_{\beta}$  bond distances in the -C(O)Cl molecule are different from each other due to the oxygen group overlapping one of the C-C bonds, this bond distance is drastically reduced due to the steric effects of this overlap. The other  $C_{\alpha}$ – $C_{\beta}$  bond distance is much longer and is within the experimental error to the value from the cyclobutane  $r_0$ structure. The ring structure of cyclobutylcarboxylic acid chloride is similar to that of cyclobutane as expected but with some logical departures brought on by the substitution of a -H with a -C(O)Cl group.

In this current study, the adjusted  $r_0$  structural parameters have been determined for the g-Eq conformer; these should be comparable to the previously reported ED study.<sup>1</sup> In the ED study the structural parameters were obtained for the g-Eq form from a least-squares analysis of the anharmonic radial distribution function<sup>35</sup> in the interval  $r \approx 0.0$  to 1.95 Å. All of the parameters have very large errors except the mean ring C-C, out of ring C-C, and the C-Cl distances which equal 1.540(3), 1.590(3), and 1.793(6) Å, respectively. These values are in excellent agreement with the adjusted  $r_0$  structural parameters obtained in this study. The remaining parameters with large uncertainties are not meaningful though due to these large uncertainties, for the most part they agree within the stated errors with the adjusted  $r_0$  structural parameters.

A decade later, a microwave and vibrational study followed<sup>4</sup> where one isotopomer of the g-Eq conformer was observed and the rotational constants were determined. The structural parameters were determined by fixing all but five parameters where these assumptions were in part informed by using the ED study structural parameters. The five parameters were then determined with a diagnostic least-squares adjustment as described by Curl.<sup>35</sup> The structural parameters obtained have very large errors, which is partially due to the assumed parameters being off from the actual structure but also due to fitting three rotational constants with five parameters. The error is so large on these parameters that the ones that are far off from the adjusted  $r_0$  structural parameters are probably not meaningful.

One of the major goals of this current study was the determination of the enthalpy difference between the con-

Table 14. Structural Parameters<sup>a</sup> of a Few Four-Membered-Ring Molecules of the Form c-C<sub>4</sub>H<sub>7</sub>X (Å and deg)

|                          |                    |                   |                   | $X = F^e$        |                  | $X = SiH_3^f$    |                  |
|--------------------------|--------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|
| structural<br>parameters | $X = H^b$          | $X = OH^c (t-Eq)$ | $X = Br^{d} (Eq)$ | Eq               | Ax               | Eq               | Ax               |
| $rC_{\alpha}-C_{\beta}$  | 1.5478 [1.5555(2)] | 1.542 [1.547(3)]  | 1.535 [1.541(3)]  | 1.530 [1.543(3)] | 1.534 [1.546(3)] | 1.559 [1.562(3)] | 1.559 [1.561(3)] |
| $rC_{\beta}-C_{\gamma}$  | 1.5478 [1.5555(2)] | 1.548 [1.556(3)]  | 1.551 [1.552(3)]  | 1.551 [1.554(3)] | 1.552 [1.554(3)] | 1.546 [1.551(3)] | 1.547 [1.553(3)] |
| puckering angle          | 32.34 [28.58(9)]   | 28.5 [31.3(10)]   | 34.4 [29.8(5)]    | 34.0 [37.4(5)]   | 29.2 [20.7(5)]   | 31.6 [29.0(5)]   | 29.0 [23.5(5)]   |

"MP2(full)/6-311+G(d,p) [experimental]. <sup>b</sup>Reference 29;  $r_0$  parameters. <sup>c</sup>Reference 30; adjusted  $r_0$  parameters. <sup>d</sup>Reference 31; adjusted  $r_0$  parameters. <sup>d</sup>Reference 31; adjusted  $r_0$  parameters.

formers of the cyclobutylcarboxylic acid chloride where there had been different results reported. Fabregue<sup>2</sup> reported that the cyclobutylcarboxylic acid chloride exists in both the solid and liquid phases as the same nonsymmetrical isomer in which the COCl group is in the equatorial position with respect to the ring. From the ED study it was indicated that the molecule exists as a conformational equilibrium mixture of gauche-like axial and gauche-like equatorial conformers. A decade later, the vibrational spectra was reinvestigated<sup>3</sup> and it was found that the sample exists in a conformational equilibrium in the liquid and vapor phases. A few years later, the variable temperature Raman spectra of the liquid were studied<sup>4</sup> from which the enthalpy difference between the g-Eq and high-energy (assumed t-Eq) conformations was determined to be 1.4 kcal mol<sup>-1</sup> (490 cm<sup>-1</sup>). The enthalpy value obtained in this study from the Raman spectra of the liquid would give a population of 4% t-Eq at room temperature. This population is extremely small though with the assignment they propose it is not beyond reason. When compared to the vibrational assignment as determined in the current study it can be seen that this enthalpy value is far too large. In comparison the enthalpy determination between the g-Eq and t-Eq conformers is determined to be  $173 \pm 17$  cm<sup>-1</sup> in the current study where it was determined from 12 band pairs. This is nearly one-third of the value determined in the liquid state. However, enthalpy values determined from spectra of the liquid state are normally significantly higher than those determined for samples in the vapor state or in xenon solutions, and therefore, the difference in the determined enthalpy values may be largely due to the difference from the samples from which they were obtained.

The experimental values determined from the variable temperature infrared spectra of the xenon solutions should be near those of the gas which should be similar to those of the isolated molecule. Therefore it can be useful to compare the ab initio and DFT energy differences shown in Table 6 with the experimental enthalpy differences. The order of stability is well predicted by the ab initio and DFT calculations where the correct order of stability is predicted by both the MP2 and B3LYP methods for all basis sets. The energy differences determined by the calculations approximately doubles for the g-Eq to g-Ax difference with addition of diffuse functions for the MP2 method, where the largest basis set without diffuse functions is very close to the experimental value. The B3LYP method for the same energy difference predicts the energy difference significantly higher and over three times the experimental value. The g-Eq to t-Eq energy difference is predicted significantly too large for all basis sets and both calculation methods. This is an interesting phenomenon where the addition of more functions into the ab initio basis sets actually causes poorer results. However, as is previously stated the order of stability is predicted correctly for all the calculations attempted.

There are few molecular geometries of the carboxylic acid chloride derivatives determined in the literature, which lead to a scarcity of molecular structural parameters and conformational determinations with which the current molecule could be compared. This would be an interesting topic to research and the five-membered ring and open chain derivatives would be of particular interest.

## 8. CONCLUSIONS

The microwave spectra for the two isotopologues of g-Eq have been assigned and the rotational constants have been reported. From these rotational constants a complete structure has been determined which is made possible due to the reduction in the number of independent parameters as the C–H distances can be taken from the MP2(full)/6-311+G(d,p) structural parameters for substituted hydrocarbons.

The ring parameters appear to be largely determined due to steric effects rather than electrostatic effects. This is supported by the NPA predictions where the ring for cyclobutylcarboxylic acid chloride is nearly the same as cyclobutane in contrast to the significant difference in the ring puckering angle and  $C_{\alpha}-C_{\beta}$  bond distances.

The observed fundamentals for the g-Eq, g-Ax, and t-Eq conformers have been assigned based upon the variable temperature infrared spectra of the xenon solutions. From the band intensities of several of these assigned fundamentals the enthalpy differences have been determined. The relative amounts at ambient temperature are 54% g-Eq,  $35(\pm 1)\%$  g-Ax, and  $12(\pm 1)\%$  t-Eq forms. This relatively small difference in the amount of each conformer is in direct contrast to the results from previous studies<sup>2–4</sup> where the g-Ax and t-Eq conformers went largely unassigned and were assumed to be either high energy or transition states.

#### ASSOCIATED CONTENT

## S Supporting Information

. Symmetry coordinates for cyclobutylcarboxylic acid chloride g-Eq (Table S1) and cyclobutylcarboxylic acid chloride t-Eq (Table S2). This material is available free of charge via the Internet at http://pubs.acs.org.

## **AUTHOR INFORMATION**

#### **Corresponding Author**

\*Tel: 01-816-235-6038. Fax: 01 816-235-2290. E-mail: durigj@umkc.edu.

## Notes

The authors declare no competing financial interest.

§Taken in part from the thesis of Joshua J. Klaassen, which will be submitted in partial fulfillment of the Ph.D. degrees.

<sup>1</sup>Taken in part from the thesis of Ikhlas D. Darkhalil, which will be submitted in partial fulfillment of the Ph.D. degrees.

<sup>¶</sup>Taken in part from the thesis of Bhushan S. Deodhar, which will be submitted in partial fulfillment of the Ph.D. degrees.

#### ACKNOWLEDGMENTS

J.R.D. acknowledges the University of Missouri–Kansas City for a Faculty Research Grant for partial financial support of this research.

# REFERENCES

- (1) Adams, W. J.; Bartell, L. S. Electron Diffraction Study of the Structure and Internal Rotation of Cyclobutanecarboxylic Acid Chloride. *J. Mol. Struct.* **1971**, *8*, 199–209.
- (2) Fabregue, E. Vibrational Spectra and Conformational Behavior of Cyclobutanecarbonyl Chloride in Liquid and Solid States. *C. R. Acad. Sci., Ser. B* **1975**, *280*, *773*–*775*.
- (3) Hanai, K.; Katon, J. E. Vibrational Spectra of Cyclobutanecarbonyl Chloride and Bromide and Their  $\alpha$ -Deuterated Compounds. *J. Mol. Struct.* **1981**, *70*, 127–143.
- (4) Durig, J. R.; Badawi, H. M.; Bist, H. D.; Little, T. S. Spectra and Structure of Small Ring Compounds. LIII. Rotational and Vibrational Spectra and Conformational Stability of Cyclobutylcarboxylic Acid Chloride. *J. Mol. Struct.* **1988**, *190*, 475–488.

- (5) Guillory, J. P.; Bartell, L. S. Electron-Diffraction Study of the Structure and Internal Rotation of Isopropanecarboxaldehyde. *J. Chem. Phys.* **1965**, *43*, 654–657.
- (6) Kilb, R. W.; Lin, C.-C.; Wilson, E. B., Jr. Calculation of Energy Levels for Internal Torsion and over-All Rotation. II. Acetaldehyde-Type Molecules; Acetaldehyde Spectra. *J. Chem. Phys.* **1957**, 26, 1695–1703.
- (7) Lin, C. C.; Swalen, J. D. Internal Rotation and Microwave Spectroscopy. *Rev. Mod. Phys.* **1959**, *31*, 841–892.
- (8) Suenram, R. D.; Grabow, J. U.; Zuban, A.; Leonov, I. A Portable, Pulsed-Molecular-Beam, Fourier-Transform Microwave Spectrometer Designed for Chemical Analysis. *Rev. Sci. Instrum.* 1999, 70, 2127–2135.
- (9) Suenram, R. D.; Lovas, F. J.; Plusquellic, D. F.; Lesarri, A.; Kawashima, Y.; Jensen, J. O.; Samuels, A. C. Fourier Transform Microwave Spectrum and Ab Initio Study of Dimethyl Methylphosphonate. J. Mol. Spectrosc. 2002, 211, 110–118.
- (10) Conrad, A. R.; Teumelsan, N. H.; Wang, P. E.; Tubergen, M. J. A Spectroscopic and Computational Investigation of the Conformational Structural Changes Induced by Hydrogen Bonding Networks in the Glycidol-Water Complex. *J. Phys. Chem. A* **2010**, *114*, 336–342.
- (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C., et al. *Gaussian 03*, Revision E.01, 2003.
- (12) Pulay, P. Ab Initio Calculation of Force Constants and Equilibrium Geometries in Polyatomic Molecules. I. Theory. *Mol. Phys.* **1969**, *17*, 197–204.
- (13) Møller, C.; Plesset, M. S. Note on the Approximation Treatment for Many-Electron Systems. *Phys. Rev.* **1934**, *46*, 618–622. (14) Guirgis, G. A.; Zhu, X.; Yu, Z.; Durig, J. R. Raman and Infrared Spectra, Conformational Stability, Normal Coordinate Analysis, Vibrational Assignment, and Ab Initio Calculations of 3,3-Difluor-obutene. *J. Phys. Chem. A* **2000**, *104*, 4383–4393.
- (15) Groner, P.; Nanaie, H.; Durig, J. R. Microwave Spectrum, Quadrupole Coupling Constants, and Structure of N-Chlorodifluoromethanimine. J. Mol. Struct. 1987, 160, 37–56.
- (16) Groner, P.; Durig, J. R.; DesMarteau, D. D.; Hwang, S. H. n-Chlorodifluoromethanimine, CF<sub>2</sub>:NCl: Quadrupole Coupling and r<sub>0</sub> Structure. *J. Chem. Phys.* **1999**, *110*, 9411–9417.
- (17) Bulanin, M. O. Infrared Spectroscopy in Liquefied Gases. *J. Mol. Struct.* **1973**, *19*, 59–79.
- (18) Van der Veken, B. J.; DeMunck, F. R. An Infrared Study of Monomeric and Oligomeric (N = 2, 3, and 4) Hydrogen Chloride in Liquefied Noble Gases. *J. Chem. Phys.* **1992**, *97*, 3060–3071.
- (19) Herrebout, W. A.; Van der Veken, B. J.; Wang, A.; Durig, J. R. Enthalpy Difference between Conformers of *n*-Butane and the Potential Function Governing Conformational Interchange. *J. Phys. Chem.* **1995**, *99*, 578–585.
- (20) Bulanin, M. O. Spectroscopy of Molecules in Liquid Noble Gases. J. Mol. Struct. 1995, 347, 73-82.
- (21) Herrebout, W. A.; Van der Veken, B. J. Solute-Solvent Interactions in Liquid Noble Gases as Probed by the Conformational Equilibrium of Some 1,2-Disubstituted Ethanes. *J. Phys. Chem.* **1996**, 100, 9671–9677.
- (22) Van der Veken, B. J.; Herrebout, W. A.; Durig, D. T.; Zhao, W.; Durig, J. R. Conformational Stability of 3-Fluoropropene in Rare Gas Solutions from Temperature-Dependent FT-IR Spectra and Ab Initio Calculations. *J. Phys. Chem. A* **1999**, *103*, 1976–1985.
- (23) Durig, J. R.; Ng, K. W.; Zheng, C.; Shen, S. Comparison of Ab Initio MP2/6-311+G(d,p) Predicted Carbon-Hydrogen Bond Distances with Experimentally Determined  $r_0(C-H)$  Distances. *Struct. Chem.* **2004**, *15*, 149–157.
- (24) McKean, D. C. New Light on the Stretching Vibrations, Lengths and Strengths of CH, SiH and GeH Bonds. *J. Mol. Struct.* **1984**, *113*, 251–266.
- (25) Mills, I.; Cvitaš, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, Units, and Symbols in Physical Chemistry; Blackwell Science Ltd: Oxford, UK, 1993.

- (26) Hayashi, M.; Inada, N.; Niide, Y. Microwave Spectrum, Structure, Internal Rotation, and Nuclear Quadrupole Coupling Constant Tensor of Acetyl Chloride. *J. Mol. Struct.* **1995**, 352/353, 325–334
- (27) Karlsson, H. Microwave Spectrum of Propionyl Chloride. *J. Mol. Struct.* **1976**, 33, 227–237.
- (28) Aarset, K.; Faksnes, L. G.; Nygaard, I.; Hagen, K. Molecular Structure and Conformational Composition of 2-Methylpropanal and 2-Methylpropionyl Chloride: A Gas-Phase Electron Diffraction and Ab Initio Investigation. *J. Phys. Chem.* **1994**, *98*, 2848–2852.
- (29) Vogelsanger, B.; Caminati, W.; Bauder, A. The Pure Rotational Spectrum of Cyclobutane-D1 Observed by Microwave Fourier Transform Spectroscopy. *Chem. Phys. Lett.* **1987**, *141*, 245–250.
- (30) Lin, W.; Ganguly, A.; Minei, A. J.; Lindeke, G. L.; Pringle, W. C.; Novick, S. E.; Durig, J. R. Microwave Spectra and Structural Parameters of Equatorial-Trans Cyclobutanol. *J. Mol. Struct.* **2009**, 922. 83–87.
- (31) Durig, J. R.; Klaassen, J. J.; Ganguly, A.; Gounev, T.; Groner, P. The  $r_0$  Structural Parameters, Conformational Stability, and Vibrational Assignment of Equatorial and Axial Bromocyclobutane. *J. Mol. Struct.* **2009**, 934, 66–78.
- (32) Ganguly, A.; Klaassen, J. J.; Guirgis, G. A.; Gounev, T. K.; Durig, J. R. Conformational Stability, r<sub>0</sub> Structural Parameters, and Vibrational Assignments of Mono-Substituted Cyclobutanes: Fluorocyclobutane. *Spectrochim. Acta, Part A* **2011**, *79*, 831–840.
- (33) Klaassen, J. J.; Panikar, S. S.; Guirgis, G. A.; Dukes, H. W.; Wyatt, J. K.; Durig, J. R. Conformational and Structural Studies of Cyclobutylsilane from Temperature Dependent Infrared Spectra of Xenon Solutions and Ab Initio Calculations. *J. Mol. Struct.* **2013**, *1032*, 254–264
- (34) Bartell, L. S.; Kohl, D. A.; Carroll, B. L.; Gavin, R. M., Jr. Least-Squares Determination of Structures of Gas Molecules Directly from Electron-Diffraction Intensities. *J. Chem. Phys.* **1965**, *42*, 3079–3084.
- (35) Curl, R. F., Jr. Diagnostic Least Squares. J. Comput. Phys. 1970, 6, 367–377.