일차논리 메타정리

임기정

1 Generalized Weakening

Let η be a variable renaming. Then,

$$\frac{\Gamma\subseteq\Gamma'\qquad\Gamma\vdash\varphi}{\Gamma'\left[\eta\right]\vdash\varphi\left[\eta\right]}$$

1.1 ∀-case

- (1) $y \notin FV(\Gamma)$
- (2) $y \notin FV((\forall x) \varphi)$
- (3) $\Gamma \vdash \varphi[x := y]$
- (4) $\Gamma \subset \Gamma'$
- (G) $\Gamma'[\eta] \vdash (\forall x\varphi)[\eta]$

Proof. Let z be a fresh variable. Since $\Gamma[y:=z] \subseteq \Gamma'[y:=z]$,

$$\begin{split} &\Gamma'[\eta] \vdash (\forall x \varphi) \left[\eta\right] \\ & \Leftarrow \quad \Gamma'\left[\eta\right] \vdash \forall x \left(\varphi\left[\eta\right]\right) \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[z := \eta\left(y\right) ; \eta\right] \vdash \forall x \left(\varphi\left[\eta\right]\right) \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[z := \eta\left(y\right) ; \eta\right] \vdash \forall x \left(\varphi\left[z := \eta\left(y\right) ; \eta\right]\right) \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[z := \eta\left(y\right) ; \eta\right] \vdash \varphi\left[z := \eta\left(y\right) ; \eta\right] \left[\!\left[x := z\right]\!\right] \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[z := \eta\left(y\right) ; \eta\right] \vdash \varphi\left[y := z ; z := \eta\left(y\right) ; \eta\right] \left[\!\left[x := z\right]\!\right] \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[z := \eta\left(y\right) ; \eta\right] \vdash \varphi\left[y := z ; z := \eta\left(y\right) ; \eta\right] \left[\!\left[x := y\right] \left[y := z ; z := \eta\left(y\right) ; \eta\right]\!\right] \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[z := \eta\left(y\right) ; \eta\right] \vdash \varphi\left[\!\left[x := y\right]\!\right] \left[y := z ; z := \eta\left(y\right) ; \eta\right] \\ & \Leftarrow \quad \Gamma'\left[y := z\right] \left[y := z ; z := \eta\left(y\right) ; \eta\right] \vdash \varphi\left[\!\left[x := y\right]\!\right] \left[y := z ; z := \eta\left(y\right) ; \eta\right] \\ & \Leftarrow \quad \left\{\Gamma'\left[y := z\right] \left[y := z ; z := \eta\left(y\right) ; \eta\right] \vdash \varphi\left[\!\left[x := y\right]\!\right] \left[y := z ; z := \eta\left(y\right) ; \eta\right] \\ & \Leftarrow \quad \left\{\Gamma'\left[y := z\right] , \\ \Gamma \vdash \varphi\left[\!\left[x := y\right]\!\right]. \end{split}$$

Discussion 1. Does it hold $\varphi[x := x; \eta] [\![x := z]\!] \equiv \varphi[\![x := y]\!] [y := z; z := \eta(y); \eta]$? I hope so... – 2024/07/15 09:46

 \dashv

Discussion 2. Consider $\varphi[x := x; \eta] [x := z]$.

$$\begin{split} & \varphi \left[x := x; \eta \right] \left[\! \left[x := z \right] \! \right] \\ & \equiv \varphi \left[x := x; z := \eta \left(y \right); \eta \right] \left[\! \left[x := z \right] \! \right] \\ & \equiv \varphi \left[x := z; z := \eta \left(y \right); \eta \right] \left[\! \left[x := z \right] \! \right] \\ & \equiv \varphi \left[x := z; y := z; z := \eta \left(y \right); \eta \right] \left[\! \left[x := z \right] \! \right] \\ & \equiv \varphi \left[x := z; y := z; z := \eta \left(y \right); \eta \right] \left[\! \left[x := z; y := z; z := \eta \left(y \right); \eta \right] \right] \\ & \equiv \varphi \left[\! \left[x := y \right] \! \left[x := z; z := z; z := \eta \left(y \right); \eta \right] \\ & \equiv \varphi \left[\! \left[x := z; z := z$$

Did I make a mistake? To check it out, let

- (a) $\varphi :\equiv \varphi(x, u)$ with $u \not\equiv x$;
- (b) $y \equiv x \lor (y \not\equiv x \land y \not\equiv u)$ i.e., $y \notin FV (\forall x \varphi)$;
- (c) η be a variable renaming i.e., $\eta \in \mathbb{L}(\mathbb{V} \times \mathbb{V})$; and
- (d) z be a fresh i.e., $z \not\equiv x \land z \not\equiv y \land z \not\equiv u \land z \not\in \text{Dom}(\eta) \cup \text{Cod}(\eta)$.

Then, the L.H.S. is

$$\varphi [x := x; \eta] [x := z] \equiv \varphi (x, u) [x := x; \eta] [x := z]$$
$$\equiv \varphi (x, \eta (u)) [x := z]$$
$$\equiv \varphi (z, (\eta (u)) [x := z]).$$

On the other hand, the R.H.S. is $\varphi(z, \eta(u)) \equiv \varphi[x := z; \eta]$.