Please check the examination details belo	low before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu	umber
Pearson Edexcel Inter	national Advanced Leve
Time 1 hour 30 minutes	Paper reference WMA12/01
Mathematics	
International Advanced Su Pure Mathematics P2	ubsidiary/Advanced Level
T di e Matricinatics i 2	
You must have: Mathematical Formulae and Statistica	al Tables (Yellow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

- 1. Given that a, b and c are integers greater than 0 such that
 - c = b + 2
 - $\bullet \quad a+b+c=10$

Prove, by exhaustion, that the product of a, b and c is always even.

You may use the table below to illustrate your answer.

(3)

You may not need to use all rows of this table.

а	ь	С
	1	
	2	

D	6	ο 1	5	7 A	Λ.	2	2	

(Total for Question 1 is 3 marks)	Question 1 continued
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
(Total for Question 1 is 3 marks)	
	(Total for Question 1 is 3 marks)

2. A curve C has equation y = f(x) where

$$f(x) = (2 - kx)^5$$

and k is a constant.

Given that when f(x) is divided by (4x - 5) the remainder is $\frac{243}{32}$

(a) show that $k = \frac{2}{5}$

(2)

(b) Find the first three terms, in ascending powers of x, of the binomial expansion of

$$\left(2-\frac{2}{5}x\right)^5$$

giving each term in simplest form.

(3)

Using the solution to part (b) and making your method clear,

(c) find the gradient of C at the point where x = 0

(2)

Question 2 continued

Question 2 continued

Question 2 continued
(Total for Question 2 is 7 marks)

3. A sequence a_1, a_2, a_3, \dots is defined by

$$a_n = \cos^2\left(\frac{n\pi}{3}\right)$$

Find the exact values of

- (a) (i) a_1
 - (ii) *a*₂
 - (iii) a_3

(3)

(b) Hence find the exact value of

$$\sum_{n=1}^{50} \left\{ n + \cos^2\left(\frac{n\pi}{3}\right) \right\}$$

You must make your method clear.

(4)

Question 3 continued	
	(Total for Question 3 is 7 marks)

4. The weight of a baby mammal is monitored over a 16-month period.

The weight of the mammal, wkg, is given by

$$w = \log_a(t+5) - \log_a 4$$

$$2 \leqslant t \leqslant 18$$

where t is the age of the mammal in months and a is a constant.

Given that the weight of the mammal was 10 kg when t = 3

(a) show that a = 1.072 correct to 3 decimal places.

(3)

Using a = 1.072

(b) find an equation for t in terms of w

(3)

(c) find the value of t when w = 15, giving your answer to 3 significant figures.

(2)

Question 4 continued	
(Tota	l for Question 4 is 8 marks)

5. In this question you must show detailed reasoning.

Solutions relying entirely on calculator technology are not acceptable.

(a) Show that the equation

$$(3\cos\theta - \tan\theta)\cos\theta = 2$$

can be written as

$$3\sin^2\theta + \sin\theta - 1 = 0$$

(3)

(b) Hence solve for $-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}$

$$(3\cos 2x - \tan 2x)\cos 2x = 2$$

(5)

Question 5 continued

Question 5 continued

Question 5 continued	
	Total for Question 5 is 8 marks)
	iotai ioi Question 3 is o maiks)

The curve C_1 has equation y = f(x).

A table of values of x and y for y = f(x) is shown below, with the y values rounded to 4 decimal places where appropriate.

x	0	0.5	1	1.5	2
y	3	2.6833	2.4	2.1466	1.92

(a) Use the trapezium rule with all the values of y in the table to find an approximation for

$$\int_0^2 f(x) dx$$

giving your answer to 3 decimal places.

(3)

Figure 2

The region R, shown shaded in Figure 1, is bounded by

- the curve C_1
- the curve C_2 with equation $y = 2 \frac{1}{4}x^2$
- the line with equation x = 2
- the *y*-axis

The region *R* forms part of the design for a logo shown in Figure 2.

The design consists of the shaded region R inside a rectangle of width 2 and height 3 Using calculus and the answer to part (a),

(b) calculate an estimate for the percentage of the logo which is shaded.

(4)

Question 6 continued

Question 6 continued	
	(Total for Question 6 is 7 marks)

7. The curve C has equation

$$y = \frac{12x^3(x-7) + 14x(13x-15)}{21\sqrt{x}}$$
 $x > 0$

(a) Write the equation of C in the form

$$y = ax^{\frac{7}{2}} + bx^{\frac{5}{2}} + cx^{\frac{3}{2}} + dx^{\frac{1}{2}}$$

where a, b, c and d are fully simplified constants.

(3)

The curve *C* has three turning points.

Using calculus,

(b) show that the x coordinates of the three turning points satisfy the equation

$$2x^3 - 10x^2 + 13x - 5 = 0$$
(3)

Given that the x coordinate of one of the turning points is 1

(c) find, using algebra, the exact x coordinates of the other two turning points.

(Solutions based entirely on calculator technology are not acceptable.)

(3)

Question 7 continued

Question 7 continued

Question 7 continued	
	Total for Question 7 is 9 marks)
	Total for Question / 15 / marks)

8. A geometric sequence has first term a and common ratio r

Given that $S_{\infty} = 3a$

(a) show that $r = \frac{2}{3}$

(2)

Given also that

$$u_2 - u_4 = 16$$

where u_k is the k^{th} term of this sequence,

(b) find the value of S_{10} giving your answer to one decimal place.

(5)

Question 8 continued	
	(Total for Question 8 is 7 marks)

9. In this question you must show detailed reasoning.

Solutions relying entirely on calculator technology are not acceptable.

Figure 3

Figure 3 shows

- the curve C_1 with equation $y = x^3 5x^2 + 3x + 14$
- the circle C_2 with centre T

The point T is the minimum turning point of C_1

Using Figure 3 and calculus,

(a) find the coordinates of T

(3)

The curve C_1 intersects the circle C_2 at the point A with x coordinate 2

(b) Find an equation of the circle C_2

(3)

The line l shown in Figure 3, is the tangent to circle C_2 at A

(c) Show that an equation of l is

$$y = \frac{1}{3}x + \frac{22}{3} \tag{3}$$

The region R, shown shaded in Figure 3, is bounded by C_1 , l and the y-axis.

(d) Find the exact area of R.

(3)

Question 9 continued

Question 9 continued

Question 9 continued					
ſ	Total for Question 9 is 12 marks)				
	Zumini Zumini / 15 12 maiks)				

- **10.** Given $a = \log_2 3$
 - (i) write, in simplest form, in terms of a,
 - (a) $log_2 9$
 - (b) $\log_2\left(\frac{\sqrt{3}}{16}\right)$

(3)

(ii) Solve

$$3^x \times 2^{x+4} = 6$$

giving your answer, in simplest form, in terms of a.

(4)

Question 10 continued

Question 10 continued					
	(Total for Question 10 is 7 marks)				
	TOTAL FOR PAPER IS 75 MARKS				

