CS3319 Foundations of Data Science

3. MapReduce

Jiaxin Ding John Hopcroft Center

Single Node Architecture

Distributed Computing

MapReduce

Google Example

- 50+ billion web pages x 20KB = 1000+ TB
 - 1 computer reads 300 MB/sec from disk, ~1 months to read the web
 - ~1,000 hard drives to store the web
- Solving such problems with a standard architecture:
 - Cluster of commodity Linux nodes
 - Commodity network to connect them

Cluster Architecture

Each rack contains 16-64 nodes

Large-scale Computing Challenges

- Large-scale computing on commodity hardware
- Challenges:
 - Latency issues:
 - Copying data over a network takes time
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~2.5 M machines in 2019
 - 2,500 machines fail every day!

Solutions

• Idea:

- Latency: bring computation close to the data
- Computation: a new computation and programming framework
- Machine failure: store files multiple times for reliability

Solutions

- Storage: File system
 - Google: GFS. Hadoop: HDFS
- Computing: Programming model
 - MapReduce: Google and Hadoop

Storage

Distributed File System:

- Provides global file namespace
- Google GFS; Hadoop Distributed File System (HDFS);

Typical usage pattern

- Huge files (100s of GB to TB)
- Write Once Read Many Philosophy
 - Data is rarely updated in place
 - Reads and appends are common

Hadoop Distributed File System

- Name Node
- Data Node

Hadoop Distributed File System

Blocks

- HDFS stores each file as blocks which are scattered throughout the Apache Hadoop cluster. The default size of each block is 128 MB (Compared to Linux 4KB).
- Replication management to recovery failures.
 - How many replicas are needed?
 - How to store replicas?
- Bring computation to data.

Programming Model: MapReduce

- MapReduce is a style of programming design for
 - Easy parallel programming
 - Invisible management of hardware and software failures
 - Easy management of large-scale data
- Implementations
 - Google MapReduce
 - Hadoop
 - Spark (improved)

MapReduce: Overview

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key:
 - Sort and shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result to disks

MapReduce: The Map Step

MapReduce: The Reduce Step

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) \rightarrow <k', v'>*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v">*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

MapReduce: Word Counting

- We have huge text document
- Count the number of times each distinct word appears in a file

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a iong-term space-based man/mache partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need

Big document

Provided by the programmer

MAP:

Read input and produces a set of key-value pairs

(The, 1) (crew, 1) (of, 1) (the, 1) (space, 1) (shuttle, 1) (Endeavor, 1) (recently, 1)

(key, value)

Group by key:

Collect all pairs with same key

```
(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the, 1)
(shuttle, 1)
(recently, 1)
```

(key, value)

Provided by the programmer

Reduce:

Collect all values belonging to the key and output

```
(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)
```

(key, value)

Sequentially collect to get the result

Word Count Using MapReduce

Your programs:

Provided by the programmer

MAP:

Read input and produces a set of key-value pairs

```
(The, 1)
  (crew, 1)
  (of, 1)
  (the, 1)
  (space, 1)
  (shuttle, 1)
  (Endeavor, 1)
  (recently, 1)
  ...
```

(key, value)

map(key, value):

```
// key: document name; value: text of the document
for each word w in value:
    emit(w, 1)
```

reduce(key, values):

```
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

Provided by the programmer

Reduce:

Collect all values belonging to the key and output

```
(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)
```

(key, value)

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Refine tasks by intermediate combiners
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

MAP:

Read input and produces a set of key-value pairs

Intermediate

Group by key:

Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

Reduce:

Collect all values belonging to the key and output

Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c), join R and S by the same b, and output the results of (a,c)

Α	В		В	С		Α	С
a ₁	b_1		b ₂	C ₁	Ī	a_3	C ₁
a_2	b_1	\bowtie	b_2	C_2		a_3	C_2
a_3	b_2		b_3	c_3		a_4	c_3
a_4	b_3		Ç	3			
F	₹			,			

Join by MapReduce

- A Map process turns:
 - Each input tuple *R(a,b)* into key-value pair *(b,(a,R))*
 - Each input tuple *S(b,c)* into *(b,(c,S))*
- Group by keys:
 - Use a hash function h from B-values to 1...k, Map processes send each key-value pair with key b to Reduce process h(b)
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,c).

Problems with MapReduce

 Hadoop MapReduce is inefficient for applications that repeatedly reuse a working set of data:

• Iterative algorithms (machine learning, graphs): incurs substantial overheads due to data replication, disk I/O

• Interactive data mining tools: all Java codes; R, Python

not supported

Problems with MapReduce

- Data flow is not flexible enough
 - MapReduce uses only two types of tasks: Map and Reduce; data flows are always from Map to Reduce.

Solution: Spark

- Allow apps to keep working sets in memory for efficient reuse
- Retain the attractive properties of MapReduce
 - Fault tolerance, data locality, scalability
- Additions to MapReduce model:
 - Richer functions than just map and reduce
 - Better data flow scheduler

Spark Overview

• Spark is a unified analytics engine for large-scale data processing.

100x Faster

- RDD: resilient distributed datasets(弹性分布式数据集), core building block.
- DAG: directed acyclic graph(有向无环图), general execution graph scheduler.

Ease of use

- Spark provides data focused API which makes writing large-scale programs easy, such as DataFrames & DataSets
- Compatible with Scala, Java, R, Python

Core Concept: RDD

Resilient distributed datasets (RDDs): Primary abstraction

- Immutable, partitioned collections of objects
 - Generalized key-value pairs
- Caching in memory

```
>>> data = [1, 2, 3, 4, 5]
>>> data
[1, 2, 3, 4, 5]
>>> distData = sc.parallelize(data)
>>> distData
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:229
```

- There are currently two types:
 - parallelized collections
 - take an existing collection and run functions on it in parallel
 - Hadoop datasets run functions on each record of a file in Hadoop distributed file system or any other storage system supported by Hadoop

```
>>> distFile = sc.textFile("README.md")
```

Spark RDD Operations

Operations on RDDs:

- Transformations: build RDDs from other RDDs
 - Transformations create a new RDD from an existing one
 - Transformations are lazy: nothing computed until an action requires it.
 - map, filter, groupBy, join, union, intersection, ...
- Actions: get results
 - A transformed RDD gets recomputed when an action is run on it
 - reduce, count, collect, save, ···

RDD Transformation

• Transform a file into RDD

```
distFile = sc.textFile("README.md")
distFile.map(lambda x: x.split(' ')).collect()
distFile.flatMap(lambda x: x.split(' ')).collect()
```

README.md: Spark is easy

map:

[["Spark", "is"], ["easy"]]

flatmap: ["spark", "is", "easy]

transformation	description
map(func)	return a new distributed dataset formed by passing each element of the source through a function func
filter(func)	return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true
flatMap(func)	similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item)
<pre>sample(withReplacement, fraction, seed)</pre>	sample a fraction fraction of the data, with or without replacement, using a given random number generator seed
union(otherDataset)	return a new dataset that contains the union of the elements in the source dataset and the argument
<pre>distinct([numTasks]))</pre>	return a new dataset that contains the distinct elements of the source dataset

RDD Action

Word Count

action	description
reduce(func)	aggregate the elements of the dataset using a function func (which takes two arguments and returns one), and should also be commutative and associative so that it can be computed correctly in parallel
collect()	return all the elements of the dataset as an array at the driver program — usually useful after a filter or other operation that returns a sufficiently small subset of the data
count()	return the number of elements in the dataset
first()	return the first element of the dataset – similar to $take(I)$
take(n)	return an array with the first n elements of the dataset – currently not executed in parallel, instead the driver program computes all the elements
<pre>takeSample(withReplacement, fraction, seed)</pre>	return an array with a random sample of <i>num</i> elements of the dataset, with or without replacement, using the given random number generator seed

```
from operator import add
f = sc.textFile("README.md")
words = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))
words.reduceByKey(add).collect()
```

Spark DAG Scheduler

- Supports general task graph scheduling
- Pipelines functions within a stage
 - Narrow vs Wide dependency
 - Divide into stages where there is a wide dependency (can not use pipeline)
- Cache-aware work reuse & locality

Wide Dependency:

1 parent RDD->many child RDDs

Narrow Dependency:

1 parent RDD->1 child RDD, Pipeline is possible.

Spark ecosystem

Useful libraries

Summary

Big data processing:

- MapReduce: distributed programming/computing framework
 - HDFS
 - Map and Reduce
 - System handles all other processes
 - Save results to file systems
- Spark: improved over MapReduce
 - RDD: distributed in memory
 - DAG scheduling
 - Programming friendly
- Reading "Mining of Massive Datasets", Chapter 2.

Spark Programming

Spark Programming Essentials

Basic concepts in

https://spark.apache.org/docs/latest/rdd-programming-guide.html

- After installing spark
 - ./bin/pyspark for Python
 - You can configure on your jupyter notebook

Spark Essentials: SparkContext

- First thing that a Spark program does is create a SparkContext object, which tells Spark how to access a cluster
 - In the shell for Python, this is the sc variable, which is created automatically
 - Other programs must use a constructor to instantiate a new SparkContext. SparkContext gets used to create other variables

Python:

```
>>> sc
<pyspark.context.SparkContext object at 0x7f7570783350>
```

Spark Essentials: Master

 The master parameter for a SparkContext determines which cluster to use

Python:

```
conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)
```

master	description
local	run Spark locally with one worker thread (no parallelism)
local[K]	run Spark locally with K worker threads (ideally set to # cores)
spark://HOST:PORT	connect to a Spark standalone cluster; PORT depends on config (7077 by default)

Spark Essentials: Master

- Connects to a cluster manager which allocate resources across applications
- Acquires executors on cluster nodes worker processes to run computations and store data
- Sends app code to the executors
- Sends tasks for the executors

RDD

Create RDDs from a collection

```
>>> data = [1, 2, 3, 4, 5]
>>> data
[1, 2, 3, 4, 5]
>>> distData = sc.parallelize(data)
>>> distData
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:229
```

Create RDDs from a document

```
>>> distFile = sc.textFile("README.md")
```

RDD Transformation

- All transformations in Spark are *lazy*: they do not compute their results right away – instead they remember the transformations applied to some base dataset
 - optimize the required calculations
 - recover from lost data partitions

transformation	description
map(func)	return a new distributed dataset formed by passing each element of the source through a function func
filter(func)	return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true
flatMap(func)	similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item)
<pre>sample(withReplacement, fraction, seed)</pre>	sample a fraction fraction of the data, with or without replacement, using a given random number generator seed
union(otherDataset)	return a new dataset that contains the union of the elements in the source dataset and the argument
<pre>distinct([numTasks]))</pre>	return a new dataset that contains the distinct elements of the source dataset

transformation	description
<pre>groupByKey([numTasks])</pre>	when called on a dataset of (K, V) pairs, returns a dataset of $(K, Seq[V])$ pairs
reduceByKey(func, [numTasks])	when called on a dataset of $(\kappa, \ v)$ pairs, returns a dataset of $(\kappa, \ v)$ pairs where the values for each key are aggregated using the given reduce function
<pre>sortByKey([ascending], [numTasks])</pre>	when called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument
<pre>join(otherDataset, [numTasks])</pre>	when called on datasets of type (K, V) and (K, W) , returns a dataset of $(K, (V, W))$ pairs with all pairs of elements for each key
<pre>cogroup(otherDataset, [numTasks])</pre>	when called on datasets of type (K, V) and (K, W) , returns a dataset of $(K, Seq[V], Seq[W])$ tuples — also called groupWith
cartesian(otherDataset)	when called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements)

RDD Transformation

• Transform a file into RDD

RDD Action

A transformed RDD gets recomputed when an action is run on it

action	description
reduce(func)	aggregate the elements of the dataset using a function func (which takes two arguments and returns one), and should also be commutative and associative so that it can be computed correctly in parallel
collect()	return all the elements of the dataset as an array at the driver program – usually useful after a filter or other operation that returns a sufficiently small subset of the data
count()	return the number of elements in the dataset
first()	return the first element of the dataset – similar to $take(I)$
take(n)	return an array with the first n elements of the dataset – currently not executed in parallel, instead the driver program computes all the elements
<pre>takeSample(withReplacement, fraction, seed)</pre>	return an array with a random sample of <i>num</i> elements of the dataset, with or without replacement, using the given random number generator seed

action	description
<pre>saveAsTextFile(path)</pre>	write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call tostring on each element to convert it to a line of text in the file
saveAsSequenceFile(path)	write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. Only available on RDDs of key-value pairs that either implement Hadoop's Writable interface or are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).
countByKey()	only available on RDDs of type (K, V). Returns a 'Map' of (K, Int) pairs with the count of each key
<pre>foreach(func)</pre>	run a function func on each element of the dataset – usually done for side effects such as updating an accumulator variable or interacting with external storage systems

RDD Action

• Word Count

```
from operator import add
f = sc.textFile("README.md")
words = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))
words.reduceByKey(add).collect()
```

RDD Persistence

- Spark can persist (or cache) a dataset in memory across operations
- Each node stores in memory any slices of it that it computes and reuses them in other actions on that dataset – often making future actions more than 10x faster

```
from operator import add
f = sc.textFile("README.md")
w = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1)).cache()
w.reduceByKey(add).collect()
```

RDD Fault Tolerance

- The cache is fault-tolerant
 - if any partition of an RDD is lost, it will automatically be recomputed using the transformations that originally created it
 - RDDs maintain *lineage* information that can be used to reconstruct lost partitions

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
Base RDD
                                                            Transformed RDD
 lines = spark.textFile("hdfs://...")
 errors = lines.filter (lambda s:s.startsWith("ERROR"))
                                                                            Worker
                                                                 results
 messages = errors.map (lambda s:s.split(' ')[2])
                                                                      tasks
                                                                            Block 1
 cachedMsgs = messages.cache()
                                                             Driver
                                                              Action
cachedMsgs.filter (lambda s:.contains("foo")). count()
cachedMsgs.filter (lambda s:s.contains("bar")).count()
                                                                           Worker
                                                                           Block 2
                                                           Worker
                                                           Block 3
```

Summary

- MapReduce
- Spark
 - RDD
 - Transformation
 - Action
 - DAG scheduler
 - Libraries