Internal Guide:

Coordinator:

CERTIFICATE

This is certifying that the practical entitled, "Machine Learning", is bonafied work of Nasreen Khan bearing Roll. No: (609). Submitted in partial fulfilment of the requirements for the award of degree of MASTER OF SCIENCE IN INFORMATION TECHNOLOGY from University of Mumbai.

	External Examiner:	
Date:		College Seal:

INDEX

Sr.No	Name	Date	Remark
1	a. Design a simple machine learning model to train the training instances and test the same.		
	b. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a. CSV file		
2	a. Perform Data Loading, Feature selection(Principal Component Analysis), and FeatureScoring and Ranking		
	b. For a given set of training data examples stored in a. CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.		
3	a. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a . CSV file. Compute the accuracy of the classifier, considering few test data sets		
	b. Write a program to implement a Decision Tree and Random Forest with Prediction, Test Score, and Confusion Matrix		
4	a. For a given set of training data examples stored in a .CSV file implement Least Square Regression algorithm		
	b. For a given set of training data examples stored in a .CSV file implement Logistic Regression algorithm		
5	a. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.		
	b. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set.		
6	a. Implement the different Distance methods (Euclidean) with Prediction, Test Score and Confusion Matrix.		

	b. Implement the classification model using		
	clustering for the following techniques with K		
	means clustering with Prediction, Test Score		
	and Confusion Matrix.		
7	a. Implement the classification model using		
_	clustering for the following techniques with		
	hierarchical clustering with Prediction, Test		
	Score and Confusion Matrix		
8	a. Write a program to construct a Bayesian		
	network considering medical data. Use this		
	model to demonstrate the diagnosis of heart		
	patients using standard Heart Disease Data		
	Set.		
	b. Implement the non-parametric Locally		
	Weighted Regression algorithm in order to fit		
	data points. Select appropriate data set for		
	your experiment and draw graphs.		
9	a. Build an Artificial Neural Network by		
	implementing the Back propagation		
	algorithm and test the same using		
	appropriate data sets.		
	b. Assuming a set of documents that need to		
	be classified, use the naïve Bayesian Classifier		
	model to perform this task		
		•	

Practical 1(A)

Aim: Design a simple machine learning model to train the training instances and test the same.

```
from random import randint
TRAIN SET LIMIT=1000
TRAIN_SET_COUNT=100
TRAIN INPUT = list()
TRAIN OUTPUT = list()
for i in range (TRAIN SET COUNT):
 a = randint(0, TRAIN_SET_LIMIT)
 b = randint(0, TRAIN SET LIMIT)
 c = randint(0, TRAIN SET LIMIT)
 op = a + (2 * b) + (3 * c)
  TRAIN INPUT.append([a ,b, c])
 TRAIN_OUTPUT.append(op)
from sklearn.linear model import LinearRegression
predictor = LinearRegression(n jobs =-1)
predictor.fit(X = TRAIN INPUT, y = TRAIN OUTPUT)
X_{\text{Test}} = [[20,40,60]]
outcome = predictor.predict(X = X Test)
coefficients = predictor.coef_
print('Outcome : {} \nCoefficients : {}'.format( outcome ,coefficients))
```


Practical 1(B)

Aim: Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file

```
import csv
num attributes = 6
a =[]
print("\n The Given Training Data Set \n")
with open('enjoysports.csv','r') as csvfile:
   reader = csv.reader(csvfile)
   for row in reader:
      a.append (row)
      print(row)
print("\n the initial value of hypothesis :")
hypothesis = ['0'] * num attributes
print(hypothesis)
for j in range (0,num attributes):
  hypothesis[j] = a[0][j];
print("\n Find S: Finding a Maximally Specific Hypothesis\n")
for i in range(0, len(a)):
   if a[i] [num attributes] =='yes':
         for j in range (0, num attributes):
             if a[i][j]!= hypothesis[j] :
                  hypothesis[j] ='?'
             else: hypothesis[j] = a[i][j]
   print(" for training instance No:{0} the Hypothesis is".format(1), hypothesis)
   print("\n The Maximally Specific Hypothesis for a given Training Examples :\n")
   print(hypothesis)
                            ratory - Colal 🗴 | 🚥 practical2a.ipynb - Colaboratory 🗴 🚾 Untitled1.ipynb - Colaboratory 🗴 🚾 PCA clearly explained —When, 🖖 🗶 🕂
    ← → C 🕯 colab.research.google.com/drive/11N63tmuA3N2mnCHzByz_qdYMllzWMVqI
                                                                                                                                                                                                         Error :
  CO Louitled1.ipynb
                                                                                                                                                                                                      ■ Comment 😃 Share 🌣 N
             File Edit View Insert Runtime Tools Help Last edited on July 21
                                                                                                                                                                                                       The Given Training Data Set
                                                                                                                                                                                                                ↑ ↓ © 目 $ 🗓 🔋 :
 {x}
  Find S: Finding a Maximally Specific Hypothesis
                    for training instance No:1 the Hypothesis is ['sunny', 'warm', 'Normal', 'Strong', 'warm', 'same ']
                    The Maximally Specific Hypothesis for a given Training Examples :
                  ['sunny', 'warm', 'Normal', 'Strong', 'warm', 'same '] for training instance No:1 the Hypothesis is ['sunny', 'warm', 'Normal', 'Strong', 'warm', 'same ']
                    The Maximally Specific Hypothesis for a given Training Examples :
                   ['sunny', 'warm', 'Normal', 'Strong', 'warm', 'same '] for training instance No:1 the Hypothesis is ['sunny', 'warm', 'Normal', 'Strong', 'warm', 'same ']
                    The Maximally Specific Hypothesis for a given Training Examples :
                   ['sunny', 'warm', 'Normal', 'Strong', 'warm', 'same '] for training instance No:1 the Hypothesis is ['sunny', 'warm', '?', 'Strong', '?', '?']
                    The Maximally Specific Hypothesis for a given Training Examples :

    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 
    O 

    O 
    O 
    O 
    O 

    O 

    O 

    O 

    O 

   O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O 

    O
```


Practical 2(A)

<u>Aim: Perform Data Loading, Feature selection (Principal Component analysis)</u> and Feature Scoring and Ranking.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
import pandas as pd
from sklearn.preprocessing import StandardScaler
plt.style.use('ggplot')
# Load the data
iris = datasets.load_iris()
X = iris.data
v = iris.target
# Z-score the features
scaler = StandardScaler()
scaler.fit(X)
X = scaler.transform(X)# The PCA model
pca = PCA(n components=2) # estimate only 2 PCs
X_new = pca.fit_transform(X)
fig, axes = plt.subplots(1,2)
axes[0].scatter(X[:,0], X[:,1], c=y)
axes[0].set_xlabel('x1')
axes[0].set_ylabel('x2')
axes[0].set title('Before PCA')
axes[1].scatter(X new[:,0], X new[:,1], c=y)
axes[1].set xlabel('PC1')
axes[1].set ylabel('PC2')
axes[1].set_title('After PCA')
plt.show()
           ory - Colal X CO prectical 1b2.ipynb - Colaboratory X CO practical 2a.ipynb - Colaboratory X PCA clearly explained —When, VI X +
     ♠ practical2a.ipynb ☆
                                                                     ■ Comment 😃 Share 🌣 N
     File Edit View Insert Runtime Tools Help Last saved at 9:12 AM
                                                                      RAM Editing
                                                                         1 4 9 9 9 1 1 1
                    🥠 🔾 o 🛱 🥲 🖫 🚍 🕥 😘 🧞 🖷
```

Practical 2(B)

Aim: For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
import csv
with open("sample data/enjoysports.csv") as f:
  csv file=csv.reader(f)
  data=list(csv file)
  s=data[1][:-1]
  g=[['?' for i in range(len(s))] for j in range(len(s))]
for i in data:
    if i[-1]=="Yes":
       for j in range(len(s)):
         if i[j]!=s[j]:
            s[i]='?'
            g[j][j]='?'
    elif i[-1]=="No":
       for j in range(len(s)):
         if i[j]!=s[j]:
            g[j][j]=s[j]
         else:
           g[j][j]="?"
    print("\nSteps of Candidate Elimination Algorithm",data.index(i)+1)
    print(s)
    print(g)
  gh=[]
  for i in g:
   for j in i:
     if j!='?':
        gh.append(i)
        break
  print("\nFinal specific hypothesis:\n",s)
  print("\nFinal general hypothesis:\n",gh)
```

```
Steps of Candidate Elimination Algorithm 1
['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['?', '?'], ['?'], ['?'], '?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'], ['?'
```

Practical 3(A)

Aim: Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```
import numpy as np
import pandas as pd
from sklearn import datasets
wine= datasets.load wine()
print(wine)
print("Feature:", wine.feature names)
print("Labels:",wine.target names)
X=pd.DataFrame(wine['data'])
print(X.head(0))
print(wine.data.shape)
y=print(wine.target)
from sklearn.model selection import train test split
X_train, X_test, y_train,y_test = train_test_split(wine.data,wine.target,test_size=0.30,rando
m state=109)
from sklearn.naive bayes import GaussianNB
gnb=GaussianNB()
gnb.fit(X_train ,y train)
y_pred =gnb.predict(X_test)
print(y_pred)
from sklearn import metrics
print("Accuracy:",metrics.accuracy_score(y_test,y_pred))
from sklearn.metrics import confusion matrix
cm=np.array(confusion_matrix(y_test ,y_pred))
cm
```

Practical 3(B)

Aim: Write a program to implement Decision Tree and Random forest with Prediction, Test Score and Confusion Matrix.

Ms. Nasreen Khan

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set style("whitegrid")
plt.style.use("fivethirtyeight")
df = pd.read csv("sample data/WA Fn-UseC -HR-Employee-Attrition.csv")
df.head()
sns.countplot(x='Attrition', data=df)
df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis="columns", i
nplace=True)
categorical col = []
for column in df.columns:
  if df[column].dtype == object and len(df[column].unique()) <= 50:
    categorical col.append(column)
df['Attrition'] = df.Attrition.astype("category").cat.codes
categorical col.remove('Attrition')
from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
for column in categorical col:
  df[column] = label.fit transform(df[column])
```


from sklearn.model_selection import train_test_split
X = df.drop('Attrition', axis=1)
y = df.Attrition

```
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
from sklearn.metrics import accuracy score, confusion matrix, classification report
def print_score(clf, X_train, y_train, X_test, y_test, train=True):
  if train:
    pred = clf.predict(X train)
    clf report = pd.DataFrame(classification report(y train, pred, output dict=True))
    print(f"Accuracy Score: {accuracy score(y train, pred) * 100:.2f}%")
    print("
    print(f"CLASSIFICATION REPORT:\n{clf report}")
    print("
    print(f"Confusion Matrix: \n {confusion matrix(y train, pred)}\n")
  elif train==False:
    pred = clf.predict(X test)
    clf report = pd.DataFrame(classification report(y test, pred, output dict=True))
    print("Test Result:\n===========")
    print(f"Accuracy Score: {accuracy score(y test, pred) * 100:.2f}%")
    print(f"CLASSIFICATION REPORT:\n{clf report}")
    print("
    print(f"Confusion Matrix: \n {confusion matrix(y test, pred)}\n")
from sklearn.tree import DecisionTreeClassifier
tree clf = DecisionTreeClassifier(random state=42)
tree_clf.fit(X_train, y_train)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=True)
print score(tree clf, X train, y train, X test, y test, train=False)
```


from sklearn.ensemble import RandomForestClassifier

rf_clf = RandomForestClassifier(n_estimators=100)

rf_clf.fit(X_train, y_train)

print_score(rf_clf, X_train, y_train, X_test, y_test, train=True)

print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)

import numpy as np

Practical 4(A)

<u>Aim:</u> For a given set of training data examples stored in a .CSV file implement <u>Least Square Regression algorithm.</u>

```
import pandas as pd
import matplotlib.pyplot as plt
data=pd.read_csv("/content/sample_data/headbrain.csv")
print(data.shape)
(237, 4)
print(data.head())
       Gender Age Range Head Size(cm^3) Brain Weight(grams)
                                           4512
   0
             1
                          1
   1
             1
                          1
                                           3738
                                                                     1297
   2
             1
                          1
                                           4261
                                                                     1335
   3
             1
                          1
                                           3777
                                                                     1282
   4
             1
                          1
                                           4177
                                                                     1590
X=data['Head Size(cm^3)'].values
Y=data['Brain Weight(grams)'].values
mean x=np.mean(X)
mean y=np.mean(Y)
n=len(X)
numer = 0
denom = 0
for i in range(n):
numer+= (X[i] - mean x) * (Y[i] - mean y)
denom +=(X[i] - mean_x) ** 2
m = numer/denom
c= mean y -( m * mean x)
print("Coefficients")
print(m,c)
   Coefficients
   0.26342933948939945 325.57342104944223
max_x = np.max(X) + 100
min x = np.min(X) - 100
x= np.linspace(min_x ,max_x , 1000)
y=c+m*x
plt.plot(x, y, color='#58b970', label='Regression Line')
plt.scatter(X,Y,c='#ef5423',label='Scatter plot')
```

plt.xlabel('Head Size in cm3')
plt.ylabel('Brain Weight in grams')
plt.legend()
plt.show()

Practical 4(B)

<u>Aim:</u> For a given set of training data examples stored in a .CSV file implement Logistic Regression algorithm

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('https://raw.githubusercontent.com/mk-
gurucharan/Classification/master/DMVWrittenTests.csv')
X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values
dataset.head(5)
```

	DMV_Test_1	DMV_Test_2	Results
0	34.623660	78.024693	0
1	30.286711	43.894998	0
2	35.847409	72.902198	0
3	60.182599	86.308552	1
4	79.032736	75.344376	1

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, y_train)

LogisticRegression()

```
y_pred = classifier.predict(X_test)
y_pred
```

```
array([1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0])
```

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
from sklearn.metrics import accuracy_score
print ("Accuracy: ", accuracy_score(y_test, y_pred))
cm
 Accuracy: 0.88
 array([[11, 0],

[3, 11]])

Practical 5(A)

Aim: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
import numpy as np
import pandas as pd
eps = np.finfo(float).eps
from numpy import log2 as log
df tennis = pd.read csv('sample data/play tennis.csv')
print( df_tennis)
  Ŀ
          day
                outlook temp humidity
                                          wind play
          D1
                 Sunny Hot
                                  High
                                         Weak
      1
          D2
                 Sunny Hot
                                  High Strong
      2
          D3 Overcast Hot
                                  High
                                         Weak Yes
                   Rain Mild
      3
          D4
                                 High
                                         Weak Yes
      4
          D5
                   Rain Cool Normal
                                         Weak Yes
```

D7 Overcast Cool

11 D12 Overcast Mild

12 D13 Overcast Hot

Sunny Mild

Rain Mild

Sunny Mild

Rain Mild

den = len(df[attribute][df[attribute]==variable])

Sunny Cool Normal

Rain Cool Normal Strong

High

Normal

Normal

Normal Strong Yes

High Strong Yes

Normal Strong

High Strong

Weak

Weak Yes

Weak Yes

Weak Yes

No

Yes

No

5

6 7

8

9

or

D6

D8

D9

D10

10 D11

13 D14

```
df = pd.DataFrame(df_tennis,columns=['outlook','temp','humidity','wind','play'])
##1. claculate entropy o the whole dataset
entropy_node = 0 #Initialize Entropy
values = df.play.unique() #Unique objects - 'Yes', 'No'
for value in values:
    fraction = df.play.value_counts()[value]/len(df.play)
    entropy_node += -fraction*np.log2(fraction)

def ent(df,attribute):
    target_variables = df.play.unique()
    variables = df[attribute].unique()
    entropy_attribute = 0
    for variable in variables:
    entropy_each_feature = 0
    for target_variable in target_variables:
```

num = len(df[attribute][df[attribute]==variable][df.play ==target variable]) #numerat

```
#denominator
      fraction = num/(den+eps) #pi
      entropy each feature += -fraction*log(fraction+eps)
#This calculates entropy for one feature like 'Sweet'
    fraction2 = den/len(df)
    entropy attribute += -fraction2*entropy each feature
 #Sums up all the entropy ETaste
  return(abs(entropy attribute))
a_entropy = {k:ent(df,k) for k in df.keys()[:-1]}
a entropy
     {'outlook': 0.6935361388961914,
       'temp': 0.9110633930116756,
       'humidity': 0.7884504573082889,
       'wind': 0.892158928262361}
def ig(e dataset,e attr):
  return(e dataset-e attr)
#entropy node = entropy of dataset
#a entropy[k] = entropy of k(th) attr
IG = {k:ig(entropy_node,a_entropy[k]) for k in a entropy}
IG
     {'outlook': 0.24674981977443955,
      'temp': 0.029222565658955313,
      'humidity': 0.15183550136234203,
      'wind': 0.04812703040826993}
def find entropy(df):
 Class = df.keys()[-1] #To make the code generic, changing target variable class name
  entropy = 0
  values = df[Class].unique()
 for value in values:
    fraction = df[Class].value counts()[value]/len(df[Class])
    entropy += -fraction*np.log2(fraction)
  return entropy
def find_entropy_attribute(df,attribute):
 Class = df.keys()[-1]
 target variables = df[Class].unique() #This gives all 'Yes' and 'No'
 variables = df[attribute].unique()
 entropy2 = 0
 for variable in variables:
   entropy = 0
   for target variable in target variables:
     num = len(df[attribute][df[attribute]==variable][df[Class] ==target variable])
     den = len(df[attribute][df[attribute]==variable])
```

```
fraction = num/(den+eps)
     entropy += -fraction*log(fraction+eps)
   fraction2 = den/len(df)
   entropy2 += -fraction2*entropy
 return abs(entropy2)
def find winner(df):
  Entropy att = []
  IG = []
 for key in df.keys()[:-1]:
#Entropy att.append(find entropy attribute(df,key))
    IG.append(find entropy(df)-find entropy attribute(df,key))
  return df.keys()[:-1][np.argmax(IG)]
def get subtable(df, node,value):
 return df[df[node] == value].reset index(drop=True)
def buildTree(df,tree=None):
 Class = df.keys()[-1]
  #Get attribute with maximum information gain
  node = find winner(df)
#Get distinct value of that attribute e.g Salary is node and Low, Med and High are values
  attValue = np.unique(df[node])
  #Create an empty dictionary to create tree
 if tree is None:
    tree={}
    tree[node] = {}
#We make loop to construct a tree by calling this function recursively.
  #In this we check if the subset is pure and stops if it is pure.
  for value in attValue:
    subtable = get subtable(df,node,value)
    clValue,counts = np.unique(subtable['play'],return counts=True)
    if len(counts)==1:#Checking purity of subset
      tree[node][value] = clValue[0]
    else:
      tree[node][value] = buildTree(subtable)
  return tree
t=buildTree(df)
import pprint
pprint.pprint(t)
     {'outlook': {'Overcast': 'Yes',
                    'Rain': {'wind': {'Strong': 'No', 'Weak': 'Yes'}},
                    'Sunny': {'humidity': {'High': 'No', 'Normal': 'Yes'}}}
```

Practical 5(B)

Aim: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
import pandas as pd
import numpy as np
import operator
import matplotlib.pyplot as plt
data = pd.read_csv('sample_data/Iris.csv', header=None, names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])
print(data)
```

	sepal_length	sepal_width	petal_length	petal_width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	Rectangulas Sr	nip 5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

```
indices = np.random.permutation(data.shape[0])
div = int(0.75 * len(indices))
```

development id, test id = indices[:div], indices[div:]

development_set, test_set = data.loc[development_id,:], data.loc[test_id,:]
print("Development Set:\n", development set, "\n\nTest Set:\n", test set)

Devel	opment Set:				
	sepal_length	sepal_width	petal_length	petal_width	class
140	6.7	3.1	5.6	2.4	Iris-virginica
16	5.4	3.9	1.3	0.4	Iris-setosa
139	6.9	3.1	5.4	2.1	Iris-virginica
88	5.6	3.0	4.1	1.3	Iris-versicolor
20	5.4	3.4	1.7	0.2	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
87	6.3	2.3	4.4	1.3	Iris-versicolor
138	6.0	3.0	4.8	1.8	Iris-virginica
60	5.0	2.0	3.5	1.0	Iris-versicolor
55	5.7	2.8	4.5	1.3	Iris-versicolor

[112 rows x 5 columns]

```
Test Set:
      sepal_length sepal_width petal_length petal_width
                                                                       class
                                                                Iris-setosa
                                                           Iris-versicolor
77
              6.7
                           3.0
                                         5.0
                                                       1.7
68
                                         4.5
                                                       1.5 Iris-versicolor
              6.2
                           2.2
11
              4.8
                           3.4
                                         1.6
                                                      0.2
                                                               Iris-setosa
                                                            Iris-virginica
141
              6.9
                           3.1
                                         5.1
                                                      2.3
                                                       1.3 Iris-versicolor
58
              6.6
                           2.9
                                         4.6
                                                       2.3
                                                             Iris-virginica
              5.7
                                         4.2
                                                      1.2 Iris-versicolor
                           3.0
24
              4.8
                                         1.9
                                                       0.2
                                                               Iris-setosa
30
              4.8
                           3.1
                                         1.6
                                                      0.2
                                                                Iris-setosa
                                                      1.5 Iris-versicolor
66
              5.6
                           3.0
                                         4.5
                                         5.5
                                                      1.8
116
              6.5
                           3.0
                                                            Iris-virginica
                           2.5
              5.7
                                         5.0
                                                      2.0
                                                           Iris-virginica
113
                                                      2.1
                                                             Iris-virginica
              6.0
                                         4.0
                                                      1.0 Iris-versicolor
83
              6.0
                           2.7
                                         5.1
                                                      1.6 Iris-versicolor
33
                           4.2
                                         1.4
                                                      0.2
                                                                Iris-setosa
37
              4.9
                                         1.5
                                                      0.1
                           3.1
                                                                Iris-setosa
              6.9
                                         4.9
                                                      1.5 Iris-versicolor
                           3.1
                                                           Iris-virginica
                                         6.4
                                                      2.0
128
                                                       2.1
                                                            Iris-virginica
                                         5.6
50
              7.0
                           3.2
                                         4.7
                                                      1.4 Iris-versicolor
118
              7.7
                           2.6
                                         6.9
                                                      2.3
                                                            Iris-virginica
98
              5.1
                           2.5
                                         3.0
                                                      1.1 Iris-versicolor
                                                      1.2 Iris-versicolor
                                         4.0
92
              5.8
                           2.6
                                                      0.2
                                                                Iris-setosa
126
                                                      1.8
                                                            Iris-virginica
                                         4.6
                                                       1.5 Iris-versicolor
136
              6.3
                           3.4
                                         5.6
                                                      2.4
                                                            Iris-virginica
91
              6.1
                           3.0
                                         4.6
                                                      1.4 Iris-versicolor
```

```
mean development set = development set.mean()
mean test set = test set.mean()
std_development_set = development_set.std()
std test set = test set.std()
test class = list(test set.iloc[:,-1])
dev class = list(development set.iloc[:,-1])
def euclideanDistance(data 1, data 2, data len):
  dist = 0
  for i in range(data len):
    dist = dist + np.square(data 1[i] - data 2[i])
  return np.sqrt(dist)
def normalizedEuclideanDistance(data 1, data 2, data len, data mean, data std):
  n dist = 0
  for i in range(data len):
    n_dist = n_dist + (np.square(((data_1[i] - data_mean[i])/data_std[i]) - ((data_2[i] - data_
mean[i])/data std[i])))
  return np.sqrt(n dist)
def cosineSimilarity(data 1, data 2):
  dot = np.dot(data 1, data 2[:-1])
  norm data 1 = np.linalg.norm(data_1)
  norm_data_2 = np.linalg.norm(data_2[:-1])
  cos = dot / (norm data 1 * norm data 2)
  return (1-cos)
def knn(dataset, testInstance, k, dist method, dataset mean, dataset std):
  distances = {}
  length = testInstance.shape[1]
  if dist method == 'euclidean':
```

```
for x in range(len(dataset)):
      dist up = euclideanDistance(testInstance, dataset.iloc[x], length)
      distances[x] = dist up[0]
  elif dist method == 'normalized euclidean':
    for x in range(len(dataset)):
      dist up = normalizedEuclideanDistance(testInstance, dataset.iloc[x], length, dataset
mean, dataset std)
      distances[x] = dist_up[0]
  elif dist method == 'cosine':
    for x in range(len(dataset)):
      dist up = cosineSimilarity(testInstance, dataset.iloc[x])
      distances[x] = dist up[0]
  # Sort values based on distance
  sort distances = sorted(distances.items(), key=operator.itemgetter(1))
  neighbors = []
  # Extracting nearest k neighbors
  for x in range(k):
    neighbors.append(sort distances[x][0])
  # Initializing counts for 'class' labels counts as 0
  counts = {"Iris-setosa" : 0, "Iris-versicolor" : 0, "Iris-virginica" : 0}
  # Computing the most frequent class
  for x in range(len(neighbors)):
    response = dataset.iloc[neighbors[x]][-1]
    if response in counts:
      counts[response] += 1
    else:
      counts[response] = 1
  # Sorting the class in reverse order to get the most frequest class
  sort counts = sorted(counts.items(), key=operator.itemgetter(1), reverse=True)
  return(sort_counts[0][0])
# Creating a list of list of all columns except 'class' by iterating through the development set
row list = []
for index, rows in development set.iterrows():
  my list =[rows.sepal length, rows.sepal width, rows.petal length, rows.petal width]
  row list.append([my list])
# k values for the number of neighbors that need to be considered
k n = [1, 3, 5, 7]
# Distance metrics
distance methods = ['euclidean', 'normalized euclidean', 'cosine']
# Performing kNN on the development set by iterating all of the development set data point
s and for each k and each distance metric
obs k = \{\}
```

```
for dist method in distance methods:
      development set obs k = \{\}
     for k in k n:
            development set obs = []
            for i in range(len(row list)):
                  development set obs.append(knn(development set, pd.DataFrame(row list[i]), k, di
st method, mean_development_set, std_development_set))
            development set obs k[k] = development set obs
     # Nested Dictionary containing the observed class for each k and each distance metric (ob
s k of the form obs k[dist method][k])
      obs k[dist method] = development set obs k
print(obs k)
  {'euclidean': {1: ['Iris-virginica', 'Iris-setosa', 'Iris-virginica', 'Iris-virginic
accuracy = {}
for key in obs k.keys():
     accuracy[key] = {}
     for k value in obs k[key].keys():
            #print('k = ', key)
            count = 0
            for i,j in zip(dev_class, obs_k[key][k_value]):
                        count = count + 1
                  else:
                        pass
            accuracy[key][k value] = count/(len(dev class))
# Storing the accuracy for each k and each distance metric into a dataframe
df res = pd.DataFrame({'k': k n})
for key in accuracy.keys():
     value = list(accuracy[key].values())
     df res[key] = value
print(df res)
                  k euclidean
                                                                normalized euclidean
                                                                                                                                                         cosine
```

Plotting a Bar Chart for accuracy

draw = df_res.plot(x='k', y=['euclidean', 'normalized_euclidean', 'cosine'], kind="bar", colorm ap='YlOrBr')

draw.set(ylabel='Accuracy')

Practical 6(A)

<u>Aim: Implement the different Distance methods (Euclidean) with Prediction,</u>
Test Score and Confusion Matrix.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sklearn
dataset = pd.read_csv('sample_data/Social_Network_Ads.csv')
X = dataset.iloc[:, [1, 2, 3]].values
y = dataset.iloc[:, -1].values
Χ
               19,
array([[1,
                     19000],
               35,
26,
                     20000],
          [0,
                    430001.
           o, 50,
          [0,
                     20000],
              36,
49,
                     330001
                    36000]], dtype=object)
У
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,
      0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1,
      1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,
      1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
      0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0,
      1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
      0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
      1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
      0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
      1, 1, 0, 1])
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit transform(X[:,0])
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size = 0.20, random state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit_transform(X_train)
X test = sc.transform(X test)
from sklearn.neighbors import KNeighborsClassifier
classifier=KNeighborsClassifier(n neighbors=5,metric='minkowski',p = 2)
classifier.fit(X train, y train)
y pred = classifier.predict(X test)
y_pred
```

y_test

from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
cm

Ac

0.95

Practical 6(B)

<u>Aim: Implement the classification model using clustering for the following techniques with K means clustering with Prediction, Test Score and Confusion Matrix.</u>

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt # for data visualization
import seaborn as sns # for statistical data visualization
%matplotlib inline
data = '/content/sample_data/Live.csv'
df = pd.read_csv(data)
df.shape

(7050, 12)
```

df.head()

status_id	status_type	status_published	num_reactions	num_comments	num_shares	num_likes	num_loves	num_wows	num_hahas	num_sads	num_angrys
0 246675545449582_1649696485147474	video	4/22/2018 6:00	529	512	262	432	92	3	1	1	0
1 246675545449582_1649426988507757	photo	4/21/2018 22:45	150	0	0	150	0	0	0	0	0
2 246675545449582_1648730588577397	video	4/21/2018 6:17	227	236	57	204	21	1	1	0	0
3 246675545449582_1648576705259452	photo	4/21/2018 2:29	111	0	0	111	0	0	0	0	0
4 246675545449582_1645700502213739	photo	4/18/2018 3:22	213	0	0	204	9	0	0	0	0

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7050 entries, 0 to 7049
Data columns (total 12 columns):
# Column
              Non-Null Count Dtype
                                  object
0 status id
                   7050 non-null
1 status_type 7050 non-null
                                  object
   status_published 7050 non-null
                                  object
   num_reactions
                    7050 non-null
                                   int64
   num_comments
                    7050 non-null
                                   int64
5
   num_shares
                    7050 non-null
                                  int64
6 num likes
                   7050 non-null
                                  int64
7
   num_loves
                   7050 non-null
                                  int64
8 num wows
                   7050 non-null
                                  int64
9 num_hahas
10 num_sads
                   7050 non-null
                                   int64
                   7050 non-null
                                   int64
11 num_angrys
                  7050 non-null
                                  int64
dtypes: int64(9), object(3)
```

df.isnull().sum()

```
status id
status_type
                    0
status published
num reactions
                    0
num comments
                    0
num_shares
                    0
num likes
num_loves
                    0
num wows
                    0
num_hahas
                    0
                    0
num sads
num_angrys
dtype: int64
```

df.describe()

	num_reactions	num_comments	num_shares	num_likes	num_loves	num_wows	num_hahas	num_sads	num_angrys
count	7050.000000	7050.000000	7050.000000	7050.000000	7050.000000	7050.000000	7050.000000	7050.000000	7050.000000
mean	230.117163	224.356028	40.022553	215.043121	12.728652	1.289362	0.696454	0.243688	0.113191
std	462.625309	889.636820	131.599965	449.472357	39.972930	8.719650	3.957183	1.597156	0.726812
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	17.000000	0.000000	0.000000	17.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	59.500000	4.000000	0.000000	58.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	219.000000	23.000000	4.000000	184.750000	3.000000	0.000000	0.000000	0.000000	0.000000
max	4710.000000	20990.000000	3424.000000	4710.000000	657.000000	278.000000	157.000000	51.000000	31.000000

df['status id'].unique()

array(['246675545449582_1649696485147474',

```
'246675545449582_1649426988507757',
        '246675545449582_1648730588577397', ...,
        '1050855161656896 1060126464063099',
        '1050855161656896 1058663487542730',
        '1050855161656896 1050858841656528'], dtype=object)
len(df['status_id'].unique())
df['status published'].unique()
len(df['status_published'].unique())
df['status_type'].unique()
len(df['status type'].unique())
df.drop(['status_id', 'status_published'], axis=1, inplace=True)
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7050 entries, 0 to 7049
Data columns (total 10 columns):
    Column
                    Non-Null Count
                                    Dtype
    status type
                    7050 non-null
                                     object
    num_reactions 7050 non-null
                                     int64
    int64
                                     int64
                                     int64
                                     int64
                                     int64
                                    int64
dtypes: int64(9), object(1)
memory usage: 550.9+ KB
```

df.head()

	status_type	num_reactions	num_comments	num_shares	num_likes	num_loves	num_wows	num_hahas	num_sads	num_angrys
0	video	529	512	262	432	92	3	1	1	0
1	photo	150	0	0	150	0	0	0	0	0
2	video	227	236	57	204	21	1	1	0	0
3	photo	111	0	0	111	0	0	0	0	0
4	photo	213	0	0	204	9	0	0	0	0

```
X = df
y = df['status type']
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X['status type'] = le.fit transform(X['status type'])
y = le.transform(y)
X.info()
X.head()
cols = X.columns
from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()
X = ms.fit_transform(X)
X = pd.DataFrame(X, columns=[cols])
X.head()
from sklearn.cluster import KMeans
kmeans = KMeans(n clusters=2, random state=0)
kmeans.fit(X)
kmeans.cluster centers
```

```
array([[3.28506857e-01, 3.90710874e-02, 7.54854864e-04, 7.53667113e-04, 3.85438884e-02, 2.17448568e-03, 2.43721364e-03, 1.20039760e-03, 2.75348016e-03, 1.45313276e-03], [9.54921576e-01, 6.46330441e-02, 2.67028654e-02, 2.93171709e-02, 5.71231462e-02, 4.71007076e-02, 8.18581889e-03, 9.65207685e-03, 8.04219428e-03, 7.19501847e-03]])
```

labels = kmeans.labels

check how many of the samples were correctly labeled
correct_labels = sum(y == labels)

print("Result: %d out of %d samples were correctly labeled." % (correct labels, y.size))

Result: 63 out of 7050 samples were correctly labeled.

```
print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))

Accuracy score: 0.01
```

```
from sklearn.cluster import KMeans
cs = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-
means++', max_iter = 300, n_init = 10, random_state = 0)
    kmeans.fit(X)
    cs.append(kmeans.inertia_)
plt.plot(range(1, 11), cs)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('CS')
plt.show()
```


from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4,random_state=0)
kmeans.fit(X)
labels = kmeans.labels__
check how many of the samples were correctly labeled
correct_labels = sum(y == labels)
print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size))
print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))

Result: 4340 out of 7050 samples were correctly labeled. Accuracy score: 0.62

Practical 7(A)

<u>Aim: Implement the classification model using clustering for the following techniques with hierarchical clustering with Prediction, Test Score and Confusion Matrix</u>

```
# Importing the libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('/content/sample_data/Mall_Customers.csv')
x = dataset.iloc[:, [3, 4]].values
#Finding the optimal number of clusters using the dendrogram
import scipy.cluster.hierarchy as shc
dendro = shc.dendrogram(shc.linkage(x, method="ward"))
mtp.title("Dendrogrma Plot")
mtp.ylabel("Euclidean Distances")
mtp.xlabel("Customers")
mtp.show()
```



```
#training the hierarchical model on dataset
from sklearn.cluster import AgglomerativeClustering
hc= AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
y_pred= hc.fit_predict(x)
#visulaizing the clusters
mtp.scatter(x[y_pred == 0, 0], x[y_pred == 0, 1], s = 100, c = 'purple', label = 'Cluster 1')
mtp.scatter(x[y_pred == 1, 0], x[y_pred == 1, 1], s = 100, c = 'green', label = 'Cluster 2')
mtp.scatter(x[y_pred == 2, 0], x[y_pred == 2, 1], s = 100, c = 'red', label = 'Cluster 3')
```

```
mtp.scatter(x[y_pred == 3, 0], x[y_pred == 3, 1], s = 100, c = 'yellow', label = 'Cluster 4')
mtp.scatter(x[y_pred == 4, 0], x[y_pred == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
mtp.title('Clusters of customers')
mtp.xlabel('Annual Income (k$)')
mtp.ylabel('Spending Score (1-100)')
mtp.legend()
mtp.show()
```


Practical 8(A)

Aim: Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.

```
import numpy as np
import pandas as pd
import csv
!pip install pgmpy
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
heartDisease = pd.read csv('sample data/heart.csv')
heartDisease = heartDisease.replace('?',np.nan)
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
  Attributes and datatypes
                          int64
 age
 gender
                          int64
```

```
int64
ср
trestbps
                   int64
chol
                   int64
fbs
                   int64
restecg
                   int64
thalach
                   int64
exang
                   int64
oldpeak
                 float64
slope
                   int64
                  object
ca
                  object
thal
heartdisease
                   int64
dtype: object
```

```
model= BayesianModel([('age','heartdisease'),('gender','heartdisease'),('exang','heartdisease'),('cp','heartdisease'),('heartdisease','restecg'),('heartdisease','chol')])
print('\nLearning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest_infer = VariableElimination(model)
print('\n 1. Probability of HeartDisease given evidence= restecg')
q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'restecg':1})
print(q1)
```

Probability of HeartDisease given evidence= restecg

print('\n 2. Probability of HeartDisease given evidence= cp ')
q2=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'cp':2})
print(q2)

2. Probability of HeartDisease given evidence= cp

Finding Elimination Order: :	0/3 [00:00 , ?it/s]</th	
Eliminating: exang: 100%		3/3 [00:00<00:00, 34.91it/s]
heartdisease	phi(heartdisease)	
heartdisease(0)	0.3610	
heartdisease(1)	0.2159	
heartdisease(2)	0.1373	
heartdisease(3)	0.1537	
heartdisease(4)	0.1321	

Practical 8(B)

Aim: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point, xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np.eye((m)))
  for j in range(m):
    diff = point - X[i]
    weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point, xmat, ymat, k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
# load data points
data = pd.read csv('sample data/10-dataset.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
#preparing and add 1 in bill
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T))
#set k here
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add subplot(1,1,1)
ax.scatter(bill,tip, color='green')
```

```
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
```


Practical 9(A)

<u>Aim: Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.</u>

```
import numpy as np
import pandas as pd
from sklearn.datasets import load iris
from sklearn.model selection import train test split
import matplotlib.pyplot as plt
# Load dataset
data = load iris()
# Get features and target
X=data.data
y=data.target
# Get dummy variable
y = pd.get dummies(y).values
y[:3]
  array([[1, 0, 0],
            [1, 0, 0],
            [1, 0, 0]], dtype=uint8)
#Split data into train and test data
X train, X test, y train, y test = train test split(X, y, test size=20, random state=4)
# Initialize variables
learning rate = 0.1
iterations = 5000
N = y train.size
# number of input features
input size = 4
# number of hidden layers neurons
hidden size = 2
# number of neurons at the output layer
output size = 3
results = pd.DataFrame(columns=["mse", "accuracy"])
# Initialize weights
np.random.seed(10)
# initializing weight for the hidden layer
W1 = np.random.normal(scale=0.5, size=(input size, hidden size))
# initializing weight for the output layer
W2 = np.random.normal(scale=0.5, size=(hidden size, output size))
def sigmoid(x):
  return 1/(1 + np.exp(-x))
```

```
def mean squared error(y pred, y true):
  return ((y_pred - y_true)**2).sum() / (2*y_pred.size)
def accuracy(y_pred, y_true):
  acc = y_pred.argmax(axis=1) == y_true.argmax(axis=1)
  return acc.mean()
for itr in range(iterations):
  # feedforward propagation
 # on hidden layer
 Z1 = np.dot(X train, W1)
 A1 = sigmoid(Z1)
 # on output layer
 Z2 = np.dot(A1, W2)
 A2 = sigmoid(Z2)
  # Calculating error
  mse = mean_squared_error(A2, y_train)
  acc = accuracy(A2, y_train)
 results=results.append({"mse":mse,"accuracy":acc},ignore_index=True)
  # backpropagation
  E1 = A2 - y train
  dW1 = E1 * A2 * (1 - A2)
  E2 = np.dot(dW1, W2.T)
  dW2 = E2 * A1 * (1 - A1)
  # weight updates
 W2 update = np.dot(A1.T, dW1) / N
  W1 update = np.dot(X train.T, dW2) / N
  W2 = W2 - learning_rate * W2_update
 W1 = W1 - learning_rate * W1_update
 results.mse.plot(title="Mean Squared Error")
```


results.accuracy.plot(title="Accuracy")

<matplotlib.axes._subplots.AxesSubplot at 0x7f01548eb390>

feedforward

 $Z1 = np.dot(X_test, W1)$

A1 = sigmoid(Z1)

Z2 = np.dot(A1, W2)

A2 = sigmoid(Z2)

acc = accuracy(A2, y_test)

print("Accuracy: {}".format(acc))

Accuracy: 0.8

Practical 9(B)

<u>Aim</u>: Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task.

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature extraction.text import CountVectorizer
from sklearn.naive bayes import MultinomialNB
from sklearn import metrics
msg=pd.read csv('sample data/data.csv',names=['message','label'])
print('The dimensions of the dataset',msg.shape)
msg['labelnum']=msg.label.map({'pos':1,'neg':0})
X=msg.message
y=msg.labelnum
   The dimensions of the dataset (18, 2)
xtrain,xtest,ytrain,ytest=train_test_split(X,y)
print ('\n the total number of Training Data:',ytrain.shape)
print ('\n the total number of Test Data:',ytest.shape)
   the total number of Training Data : (13,)
   the total number of Test Data : (5,)
cv = CountVectorizer()
xtrain dtm = cv.fit transform(xtrain)
xtest dtm=cv.transform(xtest)
print('\n The words or Tokens in the text documents \n')
print(cv.get feature names())
df=pd.DataFrame(xtrain_dtm.toarray(),columns=cv.get_feature_names())
 The words or Tokens in the text documents
['about', 'am', 'and', 'bad', 'beers', 'best', 'boss', 'can', 'dance', 'deal', 'do', 'enemy', 'feel', 'fun', 'good', 'great', 'have', 'holiday', 'horrible', 'house', 'is', 'juice', 'li
clf = MultinomialNB().fit(xtrain dtm,ytrain)
predicted = clf.predict(xtest dtm)
#printing accuracy, Confusion matrix, Precision and Recall
print('\n Accuracy of the classifier is',metrics.accuracy_score(ytest,predicted))
print('\n Confusion matrix')
print(metrics.confusion matrix(ytest,predicted))
print('\n The value of Precision', metrics.precision score(ytest, predicted))
print('\n The value of Recall', metrics.recall_score(ytest,predicted))
   Accuracy of the classifier is 0.6
   Confusion matrix
   The value of Precision 1.0
```

The value of Recall 0.3333333333333333

Ms. Nasreen Khan	Machine Learning	JVM's Degree College
	41	