:

Estructuras Discretas 2017-1 Tarea 5

Alumno: Luis Alberto Martinez Monroy

N cuenta: 314212391

1.- Establezca la validez de los sigueintes argumentos usando sólo las principales reglas de inferencia y especificando que regla se usa en cada paso (*)

$$a)(p \land (p \rightarrow q) \land (\neg q \lor r)) \rightarrow r$$

1.
$$(p \land (p \rightarrow q) \land (\neg q \lor r))$$
 PREMISA

2.
$$p \wedge (p \rightarrow q) \ PorE \wedge (1)$$

3.
$$(\neg q \lor r) PorE \land (1)$$

4.
$$pPorE \wedge (2)$$

5.
$$(p \rightarrow q) \ PorE \land (2)$$

6.
$$q \ PorMP(4)y(5)$$

7.
$$r \, PorSD(3)y(6)$$

b)
$$p \land q, p \rightarrow (r \land q), r \rightarrow (s \lor t), \neg s : t$$

1.
$$p \wedge q$$
 PREMISA

2.
$$p \to (r \land q)$$
 PREMISA

3.
$$r \to (s \lor t)$$
 PREMISA

4.
$$\neg s$$
 PREMISA

5.
$$p PorE \wedge (1)$$

6.
$$(r \wedge q)$$
 Por MP (1) y (5)

7.
$$r PorE \wedge (6)$$

8.
$$(s \lor t)$$
 Por MP (3) y (7)

$$c)p \rightarrow (q \rightarrow r), \neg q \rightarrow \neg p, p : r(**)$$

1.
$$p \to (p \to r)$$
 PREMISA

2.
$$\neg q \rightarrow \neg p$$
 PREMISA

$$3. P$$
 PREMISA

4.
$$(q \rightarrow r)$$
 Por MP (1) y (3)

5.
$$\neg p \lor r$$
 Por Inferencia especial (**) (2) y (4)

6.
$$r \text{ Por SD } (3) \text{ y } (5)$$

$$(**)=A \rightarrow B, \neg A \rightarrow C/B \lor C$$

$$d)p \wedge q, r, p \wedge r \rightarrow s : s$$

1.
$$p \wedge q$$
 PREMISA

$$2. r$$
 PREMISA

3.
$$p \wedge r \rightarrow s$$
 PREMISA

4.
$$p PorE \wedge (3)$$

5.
$$r \rightarrow s \ PorE \wedge (3)$$

6.
$$s \text{ Por MP } (2) \text{ y } (5)$$

$$\mathbf{e})p \vee (\neg q \wedge s) \rightarrow s, t, (s \wedge t) \rightarrow u, u \rightarrow \neg w, (\neg p \wedge \neg s) \rightarrow (l \vee \neg k), i \rightarrow (\neg l \wedge k), w :: \neg i \rightarrow (l \vee \neg k), i \rightarrow (l \vee \neg k)$$

1.
$$p \lor (\neg q \land s) \to s \text{ PREMISA}$$

3.
$$(s \wedge t) \rightarrow u$$
 PREMISA

4.
$$u \to \neg w$$
 PREMISA

5.
$$(\neg p \land \neg s) \rightarrow (l \lor \neg k)$$
 PREMISA

6.
$$i \to (\neg l \land k)$$
 PREMISA

8.
$$(s \wedge t) \rightarrow \neg w \text{ Por SH } (3) \text{ Y } (4)$$

- 9. $\neg(s \land t) \equiv \neg s \lor \neg t$ Por MT (7) y (8) y equivalente por ley de morgan
- 10. $\neg s \text{ Por SD } (9) \text{ y } (2)$
- 11. $\neg(p \lor \neg(q \land s)) \equiv \neg p \land \neg(\neg q \land s)$ Por MT (1) y (10) y equivalencia por ley de morgan
- 12. $\neg p$ Por E \wedge de (11)
- 13. $\neg p \land \neg s$ Por I \land de (12) y (10)
- 14. $(l \vee \neg k) \equiv (\neg \neg l \vee \neg k) \equiv \neg (\neg l \wedge k)$ Por MP (13) y (5)
- 15. $\neg i \text{ Por MT (14) y (6)}$

2.- Demostrar las siguientes propiedades:

a) sea Γ , ϕ un conjunto de formulas y P una expresión lógica, demuestre que si $\Gamma \models P$ y $\Gamma \subseteq \phi$ entonces $\phi \models P$.

$$\Gamma \models P, \Gamma \subseteq \phi : \phi \models P$$

Tenemos que la premisa $\Gamma \models P$, y sabemos que hay una propiedad de consecuencia lógica que dice que $A \in \Gamma \to \Gamma \models A$.

Por lo que podemos decir que es necesario $\Gamma \models P$ para $P \in \Gamma$.

Si supodemos que $\Gamma \models P$ es cierta, necesariamente $P \in \Gamma$ es cierta.

Tenemos que la premisa $\Gamma \subseteq \phi$, dado que $\Gamma y \phi$ es un conjunto de formulas, podemos interpretar que $\Gamma \subseteq \phi$ nos dice que para el conjunto de formulas ϕ , Γ es un elemento, lo que quiere decir que Γ es subconjunto de ϕ .

Sabemos que $\phi = \{\{\Gamma\}\}\$ Sabemos que $P \in \Gamma$ Sabemos que $\Gamma = \{P_0 \land ... \land P\}$ Por lo que podemos deducir que $\phi = \{\{P_0 \land ... \land P\}\}$ y deducimos $\Gamma \in phi$, por lo tanto $P \in \phi$. Por ultimo concluimos que como $P \in \phi, \phi \models P$

b) Sea Γ , ϕ , Δ un conjunto de fórmulas, demuestre que: Si $\Gamma \models \phi$ y $\phi \models \Delta$ entonces $\Gamma \models \Delta$

Ya sabemos que para que se cumpla $\Gamma \models A$, es necesario $A \in \Gamma$, por lo que sustituimos y a A por ϕ y nos queda que $\phi \in \Gamma$.

Aplicamos la misma formula $A \in \Gamma$ y cambiamos A por Δ y Γ por ϕ , lo que nos queda $\Delta \in \phi$. Ya sabiendo esto podemos decir que al ser Δ un elemento de ϕ y ϕ un elemento de Γ , podemos deducir que $\Delta \in \Gamma$.

Por lo que concluimos que al ser Δ un elemento de Γ , $\Gamma \models \Delta$