

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently amended) **Carboxamides A carboxamide** of the formula (I)

in which

R¹ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or

(C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine, and/or

bromine atoms, or combinations thereof in each case; or -C(=O)C(=O)R²,
-CONR³R⁴ or -CH₂NR⁵R⁶,

R² stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₁-C₄-alkoxy-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case,

R³ and R⁴ stand independently of one another in each case for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or

R³ and R⁴, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁵ and R⁶ stand independently of one another for hydrogen, C₁-C₈-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or

R⁵ and R⁶, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄

alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁷ stands for hydrogen or C₁-C₆ alkyl,

M stands in each case for is a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R⁸ or for a thiazole ring substituted by R^{8-A},

R⁸ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl, or

R⁸ also stands for methoxy,

R^{8-A}—stands for hydrogen, methyl, methylthio or trifluoromethyl,

L¹ stands for C₁-C₁₀ alkylene (alkanediyl),

Q stands for O, S, SO, SO₂ or NR⁹,

L² stands for a direct link, SiR¹⁰R¹¹ or CO,

R stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl or C₃-C₆ cycloalkyl,

R⁹ stands for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl or C₃-C₆ cycloalkyl,

R¹⁰ and R¹¹ stand independently of one another for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or C₁-C₆ haloalkyl,

A ~~stands for the~~ is a group of the formula (A1)

(A1), in which

R¹² stands for hydrogen, cyano, halogen, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

R¹³ stands for hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy or C₁-C₄ alkylthio,

R¹⁴ stands for hydrogen, [[C]] C₁-C₄ alkyl, hydroxy-C₁-C₄ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄ haloalkyl, C₁-C₄-haloalkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkoxy-C₁-C₄-alkyl in each case with 1 to 5 halogen atoms, or phenyl,

or

A ~~stands for the~~ group of the formula (A2)

(A2), in which

~~R¹⁵ and R¹⁶ stand independently of one another for hydrogen, halogen,~~

~~C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,~~

~~R¹⁷ stands for halogen, cyano or C₁-C₄ alkyl, or C₁-C₄ haloalkyl or C₁-~~

~~C₄ haloalkoxy with 1 to 5 halogen atoms in each case,~~

or

~~A stands for the group of the formula (A3)~~

(A3), in which

~~R¹⁸ and R¹⁹ stand independently of one another for hydrogen, halogen,~~

~~C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,~~

~~R²⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with~~

~~1 to 5 halogen atoms,~~

or

~~A stands for the group of the formula (A4)~~

(A4), in which

R^{21} — stands for hydrogen, halogen, hydroxy, cyano, C_1-C_6 -alkyl, C_1-C_4

haloalkyl, C_1-C_4 -haloalkoxy or C_1-C_4 -haloalkylthio in each case

with 1 to 5 halogen atoms;

or

A — stands for the group of the formula (A5)

(A5), in which

R^{22} — stands for halogen, hydroxy, cyano, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkyl, C_1-C_4 -haloalkylthio or C_1-C_4 -haloalkoxy in each case with 1 to 5 halogen atoms,

R^{23} — stands for hydrogen, halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkyl, C_1-C_4 -haloalkoxy in each case with 1 to 5 halogen atoms, C_1-C_4 -alkylsulfinyl or C_1-C_4 -alkylsulfonyl,

or

A — stands for the group of the formula (A6)

(A6), in which

R^{24} — stands for C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen

atoms,

R^{25} — stands for C_1-C_4 -alkyl,

Q^+ — stands for S (sulfur), SO, SO_2 or CH_2 ,

p — stands for 0, 1 or 2, whereby R^{25} stands for identical or various groups if p is 2,

or

A — stands for the group of the formula (A7)

(A7), in which

R^{26} — stands for C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

or

A — stands for the group of the formula (A8)

(A8), in which

R^{27} — stands for C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

or

~~A~~ — stands for the group of the formula (A9)

~~R²⁸ and R²⁹ stand independently of one another for hydrogen, halogen, amino, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,~~

~~R³⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,~~

or

~~A~~ — stands for the group of the formula (A10)

~~R³¹ and R³² stand independently of one another for hydrogen, halogen, amino, nitro, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,~~

~~R³³ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,~~

or

A — stands for the group of the formula (A11)

(A11), in which

R³⁴ — stands for hydrogen, halogen, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl with 1 to 5 halogen atoms;

R³⁵ — stands for halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl with 1 to 5 halogen atoms;

or

A — stands for the group of the formula (A12)

(A12), in which

R³⁶ — stands for hydrogen, halogen, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl with 1 to 5 halogen atoms;

R³⁷ — stands for halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl with 1 to 5 halogen atoms;

or

~~A~~ stands for the group of the formula (A13)

(A13), in which

R^{38} stands for halogen, C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

or

~~A~~ stands for the group of the formula (A14)

(A14), in which

R^{39} stands for hydrogen or C_1-C_4 -alkyl,

R^{40} stands for halogen or C_1-C_4 -alkyl,

or

~~A~~ stands for the group of the formula (A15)

(A15), in which

R^{41} stands for C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

or

~~A~~ stands for the group of the formula (A16)

(A16), in which

R⁴² stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

~~A~~ stands for the group of the formula (A17)

(A17), in which

R⁴³ stands for halogen, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio or C₁-C₄ haloalkoxy with 1 to 5 halogen atoms in each case,

or

~~A~~ stands for the group of the formula (A18)

(A18), in which

R^{44} — stands for hydrogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl with 1 to 5 halogen atoms, C_1-C_4 -alkoxy C_1-C_4 -alkyl, hydroxy C_1-C_4 -alkyl, C_1-C_4 -alkylsulfonyl, di(C_1-C_4 -alkyl)aminosulfonyl, C_1-C_6 alkylcarbonyl or in each case possibly substituted phenylsulfonyl or benzoyl,

R^{45} — stands for hydrogen, halogen, C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

R^{46} — stands for hydrogen, halogen, cyano, C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

R^{47} — stands for hydrogen, halogen, C_1-C_4 -alkyl or C_1-C_4 -haloalkyl with 1 to 5 halogen atoms,

or

A — stands for the group of the formula (A19)

(A19), in which

R^{48} — stands for C_1-C_4 -alkyl.

2. (Currently amended) Carboxamides A carboxamide of the formula (I) according to Claim 1, in which R does not stand for alkoxy, if L^2 stands for a direct link

in which when L^2 is a direct link, R is hydrogen, C_1 - C_8 alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl or C_3 - C_6 cycloalkyl.

3. (Currently amended) Carboxamides A carboxamide of the formula (I) according to Claim 1 or 2, in which

R^1 stands for hydrogen, C_1 - C_6 alkyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 cycloalkyl; C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl with 1 to 13 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or (C_1 - C_6 alkyl)carbonyl, (C_1 - C_4 alkoxy)carbonyl, (C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, (C_3 - C_6 cycloalkyl)carbonyl; (C_1 - C_4 haloalkyl)carbonyl, (C_1 - C_4 haloalkoxy)carbonyl, (halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, (C_3 - C_6 halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine, and/or

bromine atoms, or combinations thereof in each case; or $-C(=O)C(=O)R^2$,

$-CONR^3R^4$ or $-CH_2NR^5R^6$,

R^2 stands for hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case,

R^3 and R^4 stand independently of one another for hydrogen, C₁-C₆ alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or

R^3 and R^4 , moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R^5 and R^6 stand independently of one another for hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or

R^5 and R^6 , moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄

alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁷ stands for hydrogen or C₁-C₄ alkyl,

M stands for one of the following cyclies

whereby the bond marked with an asterisk is linked to the amide,

R⁸ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl, or

R⁸ also stands for methoxy,

R^{8-A} stands for hydrogen, methyl, methylthio or trifluoromethyl,

L¹ stands for C₁-C₁₀ alkylene (alkanediyl),

Q stands for O, S, SO, SO₂ or NR⁹,

L² stands for a direct link, SiR¹⁰R¹¹ or CO,

R stands for hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl or C₁-C₄ haloalkyl or C₃-C₆ cycloalkyl,

R⁹ stands for hydrogen, C₁-C₆ alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl or C₃-C₆ cycloalkyl,

R¹⁰ and R¹¹ stand independently of one another preferably for C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl or C₁-C₃-alkylthio-C₁-C₃-alkyl,

A stands for the group of the formula (A1)

(A1), in which

R¹² stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine, and/or bromine atoms, or combinations thereof, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R^{14} stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine, and/or bromine atoms, or combinations thereof, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

or

A —stands for the group of the formula (A2)

(A2), in which

R^{15} and R^{16} stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R^{17} stands for fluorine, chlorine, bromine, cyano, methyl, ethyl, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A —stands for the group of the formula (A3)

(A3), in which

~~R¹⁸ and R¹⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,~~

~~R²⁰ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;~~

or

~~A stands for the group of the formula (A4)~~

~~(A4), in which~~

~~R²¹ stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-halealkoxy or C₁-C₂-haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,~~

or

~~A stands for the group of the formula (A5)~~

~~(A5), in which~~

R^{22} — stands for fluorine, chlorine, bromine, iodine, hydroxy, C_1-C_4

alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C_1-C_2 -haloalkyl or C_1-C_2 -haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

R^{23} — stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C_1-C_4 -alkyl, methoxy, ethoxy, methylthio, ethylthio, C_1-C_2 -haloalkyl or C_1-C_2 -haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, C_1-C_2 -alkylsulfinyl or C_1-C_2 -alkylsulfonyl,

or

A — stands for the group of the formula (A6)

R^{24} — stands for methyl, ethyl or C_1-C_2 -haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R^{25} — stands for methyl or ethyl,

Q^+ — stands for S (sulfur), SO_2 or CH_2-

p — stands for 0 or 1,

or

~~A~~ stands for the group of the formula (A7)

(A7), in which

~~R²⁶~~ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

~~A~~ stands for the group of the formula (A8)

(A8), in which

~~R²⁷~~ stands for methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl or trichloromethyl,

or

~~A~~ stands for the group of the formula (A9)

(A9), in which

~~R²⁸~~ and ~~R²⁹~~ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R^{30} — stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A — stands for the group of the formula (A10)

(A10), in which

R^{31} and R^{32} stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R^{33} — stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A — stands for the group of the formula (A11)

(A11), in which

R^{34} —stands for hydrogen, fluorine, chlorine, bromine, amino, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, cyano, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

R^{35} —stands for fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

or

A —stands for the group of the formula (A12)

R^{36} —stands for hydrogen, fluorine, chlorine, bromine, amino, C_1-C_4 alkylamino, di(C_1-C_4 alkyl)amino, cyano, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

R^{37} —stands for fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

or

A —stands for the group of the formula (A13)

~~R³⁸ — stands for fluorine, chlorine, bromine, methyl, ethyl or C₄-C₂~~~~haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,~~

or

~~A — stands for the group of the formula (A14)~~

(A14), in which

~~R³⁹ — stands for hydrogen, methyl or ethyl,~~~~R⁴⁰ — stands for fluorine, chlorine, bromine, methyl or ethyl,~~

or

~~A — stands for the group of the formula (A15)~~

(A15), in which

~~R⁴¹ — stands for methyl, ethyl or C₄-C₂ haloalkyl with 1 to 5 fluorine,~~~~chlorine and/or bromine atoms,~~

or

~~A — stands for the group of the formula (A16)~~

(A16), in which

~~R⁴²~~ stands for ~~hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,~~

or

A stands for the group of the formula (A17)

(A17), in which

~~R⁴³~~ stands for ~~fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,~~

or

A stands for the group of the formula (A18)

(A18), in which

R^{44} — stands for hydrogen, methyl, ethyl, C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, C_1-C_4 alkoxy C_1-C_4 -alkyl, hydroxymethyl, hydroxyethyl, methylsulfonyl or dimethylaminosulfonyl,

R^{45} — stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

R^{46} — stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

R^{47} — stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

or

A — stands for the group of the formula (A19)

(A19), in which

R^{48} — stands for methyl, ethyl, n-propyl or isopropyl.

4. (Currently amended) A process for synthesizing ~~the carboxamides~~ a carboxamide of the formula (I) according to Claim 1, characterized in that comprising

(a) reacting a carboxylic acid derivatives the derivative of formula (II)

in which

A has the meanings specified above is as defined in claim 1 and

X¹ stands for halogen or hydroxy,

are reacted with an aniline derivatives derivative of the formula (III)

in which

R¹, M, Q, L² and R have the meanings specified above, are as defined in claim 1 and

L³ stands for hydrogen or C₁-C₉ alkyl,

possibly optionally in the presence of a catalyst, possibly optionally in the presence a condensation agent, possibly optionally in the presence of an acid binder and possibly optionally in the presence of a diluent,

or

(b) carboxamides reacting a carboxamide of the formula (IV)

in which M, L¹, Q and A have the meanings specified above are as defined in claim 1

are reacted with a compound of the formula (V),

in which

L² and R have the meanings specified above are as defined in claim 1 and

Y stands for halogen, triflate (trifluoromethylsulfonyl), mesylate (methylsulfonyl) or tosylate (4-methylphenylsulfonyl),

in the presence of a base and in the presence of a dilution medium,

or

(c) carboxamides reacting a carboxamide of the formula (I-a)

in which M, L¹, Q, L², R and A have the meanings specified above are ad
defined in claim 1,

are reacted with halides a halide of the formula (VI)

in which

X² stands for chlorine, bromine or iodine,

R^{1-A} stands for C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case;

(C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl,

(C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or -C(=O)C(=O)R², -CONR³R⁴ or -CH₂NR⁵R⁶, whereby R², R³, R⁴, R⁵ and R⁶ have the meanings specified above are as defined in claim 1,

in the presence of a base and in the presence of a dilution medium.

5. (Currently amended) Media for combating undesirable microorganisms, characterized by containing A composition comprising at least one carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface active materials and one or more extenders, surface active materials, or combinations thereof.
6. (Cancelled)
7. (Currently amended) Processes A process for combating undesired microorganisms, characterized in that carboxamides comprising applying a carboxamide of the formula (I) according to claim 1 are applied to

microorganisms, and/or their environment, or a combination thereof in accordance with Claim 1.

8. (Currently amended) ~~Processes for synthesizing materials A process for preparing a composition to combat undesired microorganisms, characterized in that carboxamides comprising mixing a carboxamide of the formula (I) according to claim 1 with one or more extenders, surface active materials, or combinations thereof are mixed with extenders and/or surface active materials according to Claim 1.~~
9. (Cancelled)