ER & Relational Models

Limitations of ER

- ∠ ER has no formal semantics unclear whether this is a bug or a feature (natural language has no formal semantics either)
- ✓ No way to express relationships between sets of entities e.g., existence of person depends on a set of organs sets of sets are notoriously hard to model (more on that when we talk about 4 NF)
- ✓ No way to express negative rules e.g., same entity cannot be an Assistant and Professor again, negation notoriously hard (e.g., 2nd-order logic)
- ✓ ER has been around for 30+ years maybe, ER hit sweet spot of expressivity vs. simplicity (UML class diagrams inherit same weaknesses)

ER Modelling: Summary

- ∠ ER describes the world (the set of possible worlds) what it is and the laws of this world ER is static: it does not describe (legal) transitions
- ∠ Useful for two purposes build software to answer questions about the world judge whether something is legal or illegal
- ∠ Use Case 1: build software to answer questions we will learn that methodology next (ER->relational)
- ✓ Use Case 2: judge what is legal you need a mapping from ER to the real world What does "drink" mean? What does "has" mean? ... you need to be consistent with that mapping.

Main tools of modelling: scissors (abstraction & classification)

Data Modelling with UML

- Unified Modelling Language UML
- De-facto standard for object-orientierted design
- ✓ Data modelling is done with "class diagramms" Class in UML ~ Entity in ER Attribute in UML ~ Attribute in ER Association in UML ~ Relationship in ER Composition in UML ~ Weak Entity in ER Generalization in UML ~ Generalization in ER
- Key differences between UML class diagrams and ER Methods are associated to classes in UML
 Keys are not modelled in UML
 UML explicitly models aggregation (part-of)
 UML supports the modelling of instances (object diagrams)
- ∠ UML has much more to offer (use cases, sequence diagr., ...)

Exercise

ER and UML modelling

- ∠ 1. An apartment is located in a house in a street in a city in a country.
- ∠ 2. Two teams play football against each other. A
 referee makes sure the rules are followed.
- ∠ 3. Men and women have a father and a mother each.

Relational Data Model

∠ Relation:

 $R \subseteq D_1 \times ... \times D_n$ (a set of elementary types linked with attri)

 $D_1, D_2, ..., D_n$ are domains

Example: AddressBook ⊆ string x string x integer

 $ule{}$ **Tuple**: $t \in R$ (R:a set of tuples with defined schema)

Example: *t* = ("Mickey Mouse", "Main Street", 4711)

∠ Schema: associates labels to domains

Example:

AddrBook: {[Name: string, Address: string, Tel#:integer]}

AddrBook				
Name Street <u>Tel#</u>				
Mickey Mouse	Main Street	4711		
Minnie Mouse	Broadway	94725		
Donald Duck	Broadway	95672		

Instance: the state of the database

Key: minimal set of attributes that identify each tuple uniquely

E.g., {Tel#} or {Name, BirthDate}

Primary Key: (marked in schema by underlining)

- > select one key
- use primary key for references

Rule #1: Implementation of Entities

Student:{[StuID:integer, Name: string, Semester: integer]}

Lecture: {[LecID:integer, Title: string, CP: integer]}

Professor: {[PersID:integer, Name: string, Level: string,

Room: integer]}

Researcher: {[PersID:integer, Name: string, Area: string]}

Rule #2: Relationships

Implementation of Relationships

```
attends: {[StuID: integer, LecID: integer]}
gives: {[PerID: integer, LecID: integer]}
works-with: {[ResPersID: integer, ProfPersID: integer]}
requires: {[prerequisite: integer, follow-up: integer]}
tests: {[StuID: integer, LecID: integer, PersID: integer,
           Grade: decimal]}
```

Instance of attends

Student		
StuID		
26120		
27550		

attends		
StuID	LecID	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5052	
28106	5216	
28106	5259	
29120	5001	
29120	5041	
29120	5049	
29555	5022	
25403	5022	
29555	5001	

Lecture		
LecID		
5001		
4052		

StuID

Student

attends

M

Lecture

Rule 2: How to name the attributes

- ∠ If the ER specifies roles

 use the names of the roles
- ∠ Otherwise

 use the names of the key attributes in the entities
 - in case of ambiguity, invent new names
- Example: friend : {[ProfPersID: integer, ResPersID: integer]}

Exercise

∠ Implement the following ER diagram using the relational data model

Rule #3: Merge relations with the same key

Professor 1 gives N Lecture

∠ Implementation according to Rule #2

Lecture: {[LecID, Title, CP]}

Professor: {[PersID, Name, Level, Room]}

gives: {[LecID, PersID]} why not both as a key?

∠ Merge according to Rule #3

Lecture: {[LecID, Title, CP, PersID]}

Professor: {[PersID Name, Level, Room]}

Instance of *Professor* and

Lecture

Professor				
PersID	Name	Level	Room	
2125	Sokrates	FP	226	
2126	Russel	FP	232	
2127	Kopernikus	AP	310	
2133	Popper	AP	52	
2134	Augustinus	AP	309	
2136	Curie	FP	36	
2137	Kant	FP	7	

	Lecture			
LecID	Title	СР	PersID	
5001	Grundzüge	4	2137	
5041	Ethik	4	2125	
5043	Erkenntnistheorie	3	2126	
5049	Mäeutik	2	2125	
4052	Logik	4	2125	
5052	Wissenschaftstheorie	3	2126	
5216	Bioethik	2	2126	
5259	Der Wiener Kreis	2	2133	
5022	Glaube und Wissen	2	2134	
4630	Die 3 Kritiken	4	2137	

Professor

gives

Lecture

This will NOT work

Professor				
PersID	Name	Level	Room	gives
2125	Sokrates	FP	226	5041
2125	Sokrates	FP	226	5049
2125	Sokrates	FP	226	4052
2134	Augustinus	AP	309	5022
2136	Curie	FP	36	??

Lecture			
LecID	Title	СР	
5001	Grundzüge	4	
5041	Ethik	4	
5043	Erkenntnistheorie	3	
5049	Maeutik	2	
4052	Logik	4	
5052	Wissenschaftstheorie	3	
5216	Bioethik	2	
5259	Der Wiener Kreis	2	
5022	Glaube und Wissen	2	
4630	Die 3 Kritiken	4	

Professor 1 gives N Lecture

This will NOT work

	Professor				
PersID Name Level Room gives				gives	
2125	Sokrates	FP	226	5041	
2125	Sokrates	FP	226	5049	
2125	Sokrates	FP	226	4052	
2134	Augustinus	AP	309	5022	
2136	Curie	FP	36	??	
		3			

Lecture			
LecID	Title	СР	
5001	Grundzüge	4	
5041	Ethik	4	
5043	Erkenntnistheorie	3	
5049	Mäeutik	2	
4052	Logik	4	
5052	Wissenschaftstheorie	3	
5216	Bioethik	2	
5259	Der Wiener Kreis	2	
5022	Glaube und Wissen	2	
4630	Die 3 Kritiken	4	

Problem: Redundancy and Anomalies PersID is no longer key of Professor PersID is not a key of gives

(issue will be revisited when we talk about normal forms)

Rule #4: Generalization

Rule #4: Generalization

Employee: {[PersID, Name]}

Professor: {[PersID, Level, Room]}

Researcher: {[PersID, Area]}

Rule #4: Generalization-alternative

Employee: {[PersID, Name]}

What is better?

Professor: {[PersID, Name, Level, Room]}

Researcher: {[PersID, Name, Area]}

Rule #5: Weak Entities

Exam: {[StuID: integer, Part: string, Grade: integer]}

covers: {[StuID: integer, Part: string, LecID: integer]}

gives: {[StuID: integer, Part: string, PersID: integer]}

Weak Entities in detail: "takes"

∠ takes: {[StuID: int, ExamID: int, Part: string, LecID: int]}

- What is/are the key(s) of the "takes" relation?
- ∠ Why can it be merged with the "Exam" relation (Rule #3)?
- ∠ What happened to the "StuID" column as part of this merge?

Food for Thought: 00 vs. Relations

- ∠ How do Java and C++ implement ER?
 Are they a better match than the relational model?
- ✓ Specifically, how do Java and C++ implement Generalization?
 - Is it good or bad to have several possible ways?
- Concept of Reference: Compare Java and Relational Model
 - Which one is better?
- Life-time of objects: Compare Java and Relational Model Why different?

Relational Model of Uni-DB

_					
	Professor				
	PersID	Level	Room		
	2125	Sokrates	FP	226	
	2126	Russel	FP	232	
	2127	Kopernikus	AP	310	
	2133	Popper	AP	52	
	2134	Augustinus	AP	309	
	2136	Curie	FP	36	
	2137	Kant	FP	7	

2137		Kant	FP
	req	uires	
Prerequi	isite	Follow	-up
5001		504:	1
5001		5043	
5001		5049	9
5041		5216	5
5043		5052	2
5041		5052	2
5052		5259	9

tests						
StuID	Grade					
28106	5001	2126	1			
25403	5041	2125	2			
27550	4630	2137	2			

Student						
StuID	Name	Semester				
24002	Xenokrates	18				
25403	Jonas	12				
26120	Fichte	10				
26830	Aristoxenos	8				
27550	Schopenhauer	6				
28106	Carnap	3				
29120	Theophrastos	2				
29555	Feuerbach	2				

atte	ends
StuID	LecID
26120	5001
27550	5001
27550	4052
28106	5041
28106	5052
28106	5216
28106	5259
29120	5001
29120	5041
29120	5049
29555	5022
25403	5022

	Lecture							
LecID	Title	СР	PersID					
5001	Grundzüge	4	2137					
5041	Ethik	4	2125					
5043	Erkenntnistheorie	3	2126					
5049	Mäeutik	2	2125					
4052	Logik	4	2125					
5052	Wissenschaftstheorie	3	2126					
5216	Bioethik	2	2126					
5259	Der Wiener Kreis	2	2133					
5022	Glaube und Wissen	2	2134					
4630	Die 3 Kritiken	4	2137					

Researcher							
PersID	Name	Area	Supervisor				
3002	Platon	<u>Ideenlehre</u>	2125				
3003	Aristoteles	Syllogistik	2125				
3004	Wittgenstein	Sprachtheorie	2126				
3005	Rhetikus	Planetenbewegung	2127				
3006	Newton	Keplersche Gesetze	2127				
3007	Spinoza	Gott und Natur	2126				

Formal Definition of Relational Algebra

Atoms (basic expressions)

- ✓ Define a relation in the database
- A constant relation

Operators (composite expressions)

- Arr Projection: Π_S (E₁)
- ∠ Cartesian Product: E₁ x E₂
- ∠ Union: E₁ ∪ E₂
- Arr Minus: $E_1 E_2$

Relational Algebra

- Selection
- Projection
- X Cartesian Product
- Rename
- Set Minus
- Relational Division
- ∪ Union
- ⋉ Semi-Join (left)
- → Semi-Join (right)
- ⋈ left outer Join
- ⋈ right outer Join

Selection and Projection

Selection

 $\sigma_{Semester > 10}$ (Student)

$\sigma_{Semester > 10}$ (Student)						
StuID Name Semester						
24002	Xenokrates	18				
25403	Jonas	12				

Projection

 $\Pi_{Level}(Professor)$

Π_{Rang} (Professor)
Level
FP
AP

Cartesian Product

	L	
А	В	С
a ₁	b ₁	C ₁
a ₂	b ₂	C ₂

F	R					
D	Е					
d_1	e ₁					
d_2	e ₂					

	Result									
A	В	С	D	Е						
a_1	b ₁	C ₁	d_1	e ₁						
a_1	b ₁	C ₁	d ₂	e ₂						
a ₂	b ₂	C ₂	d_1	e_1						
a ₂	b ₂	C ₂	d ₂	e ₂						

Cartesian Product (ctd.)

Professor x attends

	attends				
PersID	Name	Raum	StuID	LecID	
2125	2125 Sokrates			26120	5001
2125	2125 Sokrates		226	29555	5001
2137	FP	7	29555	5001	

Huge result set (n * m)

Usually only useful in combination with a selection (-> Join)

Natural Join

Two relations:

$$R(A_1,..., A_m, B_1,..., B_k)$$

$$S(B_1,..., B_k, C_1,..., C_n)$$

$$R \bowtie S = \prod_{A1,...,Am, R.B1,...,R.Bk, C1,...,Cn} (\sigma_{R.B1=S.B1}, \ldots, R.Bk=S.Bk)$$

	$R \bowtie S$										
$R-S$ $R \cap S$ $S-R$							8				
A_1	A ₂	3000	A _m	B ₁	B ₂		B _k	C_1	C ₂	••••	Cn
•	:	:	1	:	:	1	:	:	:	:	:

Three-way natural Join

(Student ⋈ attends) ⋈ Lecture

	(Student ⋈ attends) ⋈ Lecture						
StuID	Name	Semester	LecID	Title	СР	PersID	
26120	Fichte	10	5001	Professor	4	2137	
27550	Jonas	12	5022	Researcher	2	2134	
28106	Carnap	3	4052	Administrator	3	2126	

Theta-Join

Two Relations:

```
R(A1, \ldots, An)
```

$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

$$R \bowtie_{\theta} S$$

			$R\bowtie_{\theta}$	S			
R					9	5	
A_1	A ₂		A _n	B ₁	B ₂		B _m

Theta Join Example

∠ Exercise, write an example

natural join

L					
Α	В	С			
a_1	b_1	C ₁			
a_2	b_2	C ₂			

	R	
С	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

Result					
Α	В	С	D	Е	
a_1	b_1	C_1	d_1	e_1	

left outer join

П				
Α	В	С		
a_1	b_1	C_1		
a_2	b ₂	C_2		

R				
С	D	Е		
C_1	d_1	e_1		
C ₃	d_2	e_2		

	Result					
	Α	В	C	D	Е	
6	\mathbf{a}_1	b_1	C ₁	d_1	e_1	
6	32	b_2	C ₂	-	-	

right outer join

L				
Α	В	С		
a_1	b_1	C ₁		
a_2	b ₂	C ₂		

	Resultat					
Α	В	C	D	Е		
a_1	b_1	C_1	d_1	e_1		
-	-	C ₃	d_2	e_2		

(full) outer join

L					
Α	В	С			
a_1	b_1	C ₁			
a_2	b_2	C ₂			

	R	
С	D	Е
C ₁	d_1	e_1
C ₃	d_2	e_2

Resultat				
Α	В	С	D	Е
a_1	b_1	C_1	d_1	e_1
a_2	b ₂	C ₂	-	-
-	-	C ₃	d_2	e_2

left semi join

L		
Α	В	С
a_1	b_1	C ₁
a_2	b ₂	C ₂

$$\bowtie$$

R		
С	D	Е
C ₁	d_1	e_1
C ₃	d_2	e_2

Resultat		
Α	В	С
a_1	b_1	C ₁

right semi join

	L	
Α	В	С
a_1	b_1	C ₁
a_2	b ₂	C ₂

Rename Operator

Rename operator p

- Renaming of relation names
 - ➤ Needed to process self-joins and recursive relationships
 - ➤ E.g., two-level dependencies of lectures ("grandparents")

 $\Pi_{\text{L1.Prerequisite}}(\sigma_{\text{L2. Follow-up=5216}} \land \text{L1.Follow-up=L2.Prerequisite})$

 $(\rho_{L1} \text{ (requires)} \times \rho_{L2} \text{ (requires)))$

Renaming of attribute names

PRequirement ← Prerequisite (requires)

Intersection

$$\Pi_{\mathsf{PersID}}(\mathsf{Lecture}) \cap \Pi_{\mathsf{PersID}}(\sigma_{\mathsf{Level=FP}}(\mathsf{Professor}))$$

- ∠ Only works if both relations have the same schema
 Same attribute names and attribute domains
- ∠ Intersection can be simulated with minus:

$$R \cap S = R - (R - S)$$

Relational Division

Find students who attended all lectures with 4CP.

attends
$$\div \Pi_{LecID}(\sigma_{CP=4}(Lecture))$$

Definition of Division

 \angle t \in R \div S, iff for each ts \in S exists a tr \in R such that:

$$tr. S = ts. S$$

tr.	R		
	М	V	
	m_1	V_1	
	m_1	V ₂	
	m_1	V ₃	
	m_2	V ₂	
	m_2	V ₃	

$$\begin{array}{c|c}
S \\
V \\
V_1 \\
V_2
\end{array} = \begin{array}{c|c}
R \div S \\
M \\
m_1
\end{array}$$

$$R \div S = \Pi_{(R-S)}(R) - \Pi_{(R-S)}((\Pi_{(R-S)}(R) \times S) - R)$$

Division: Example

$$R \div S = \Pi_{(R-S)}(R) - \Pi_{(R-S)}((\Pi_{(R-S)}(R) \times S) - R)$$

- ∠ R = attends; S = Lecture
- ✓ Π_{StuID}(attends)
 All students (who attend at least one lecture)
- ∠ Π_{StulD}(attends) x Lecture

 All students attend all lectures
- ∠ (Π_{StulD}(attends) x Lecture) attends
 Lectures a student does not attend
- $\ \square_{StuID}((\Pi_{StuID}(attends) \times Lecture) attends):$ Students who miss at least one lecture

What happens if there are no lectures or no attendance?

Codd's Theorem

Impact of Codd's theorem

- ∠ SQL is based on the relational calculus
- SQL implementation is based on relational algebra
- Codd's theorem shows that SQL implementation is correct and complete.