Parallel Matrix Multiplication

Matteo Conti, Luca Falasca

Universita' degli Studi di Roma Tor Vergata

Roadmap

- 1 Introduzione
 - Descrizione del problema
 - Obiettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MPI
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- 3 CUDA
 - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- 4 MPI+CUDA
- 5 Analisi delle prestazioni
 - MPI
 - CUDA
 - MPI+CUDA

Introduzione - Descrizione del problema

Il progetto verte sull'implementazione di un nucleo di calcolo per effettuare il prodotto tra due matrici dense, definito come:

Definition

$$C = C + A \cdot B \tag{1}$$

MPI+CUDA

dove A, B e C sono matrici di dimensioni $M \times K$, $K \times N$ ed $M \times N$ rispettivamente, in particolare verranno considerate:

- Matrici quadrate
- Matrici rettangolari con M, N >> K con $K = \{32, 64, 128, 156\}$

Introduzione

Verranno analizzate le prestazioni di tre differenti implementazioni del prodotto, in particolare:

- MPI, utilizzando il paradigma SIMD per la parallelizzazione su CPU
- CUDA, sfruttando le potenzialità delle GPU per l'accelerazione computazionale
- MPI+CUDA, cercando di combinare i vantaggi delle due precedenti versioni

MPI+CUDA

Introduzione - Metriche di valutazione

Per valutare le prestazioni delle soluzioni sviluppate sono stati considerati i FLOPS definiti come:

Definition

$$FLOPS = \frac{2MNK}{exec_time} \tag{2}$$

Introduzione - Raccolta dei dati

I dati raccolti sono stati ottenuti eseguendo i vari nuclei di calcolo sul server di dipartimento il quale presenta le seguenti specifiche:

- CPU: 2 x Intel Xeon Silver 4210
- Memory: 64.0 GiB of RAM
- GPU: Nvidia Quadro RTX 5000
- CUDA version: 12.3
- MPI version: 4.1

Introduzione

00000

Roadmap

- Introduzione
 - Descrizione del problema
 - Obiettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MPI
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- - MPI
 - CUDA
 - MPI+CUDA

MPI

MPI

MPI - Implementazione del prodotto

MPI - Implementazione del prodotto - Implementazione Naive

MPI - Implementazione del prodotto - Implementazione Column blocked

Roadmap

Introduzione

- 1 Introduzione
 - Descrizione del problema
 - Obiettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MP
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- 3 CUDA
 - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- 4 MPI+CUDA
- 5 Analisi delle prestazioni
 - MPI
 - CUDA
 - MPI+CUDA

Analisi delle prestazioni

CUDA - 1 versione

CUDA - 3 versione

CUDA - Configurazione dei parametri - Thread

CUDA - Configurazione dei parametri - Bank conflit

Analisi delle prestazioni

Roadmap

- Introduzione
 - Descrizione del problema
 - Objettivi
 - Metriche di valutazione
 - Raccolta dei dati
- - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- 4 MPI+CUDA
- - MPI
 - CUDA
 - MPI+CUDA

MPI+CUDA

Roadmap

- 1 Introduzione
 - Descrizione del problema
 - Obiettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MP
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- 3 CUDA
 - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

4 MPI+CUDA

- 5 Analisi delle prestazioni
 - MPI
 - CUDA
 - MPI+CUDA

Analisi delle prestazioni - MPI

Analisi delle prestazioni - MPI - Matrici quadrate

Analisi delle prestazioni - CUDA

Analisi delle prestazioni - CUDA - Matrici quadrate

Analisi delle prestazioni - CUDA - Matrici rettangolari

Analisi delle prestazioni - MPI+CUDA - Matrici quadrate

Analisi delle prestazioni - MPI+CUDA - MPI+CUDA

Grazie per l'attenzione!

Introduzione

- Tutto il codice che implementa il progetto è disponibile al seguente repository: https://github.com/LucaFalasca/ParallelMatrixMultiplication
- contattaci a:
 - matteo.conti@students.uniroma2.eu
 - luca falasca@students.uniroma2.eu