

60 GHz Pulsed Gyrotron Complex for ECR Ion Source of New Generation

M.I.Bakulin, A.Chirkov*, G.Denisov*, A.G.Eremeev*, Z.Sh.Gasajniev, A.Gashturi*, V.V.Kholoptsev*, E.A.Kopelovich*, B.Z.Movshevich*, V.B.Orlov, M.Yu.Shmelev*, E.V.Sokolov, E.A.Soluyanova, E.M.Tai, T.Lamy**

Gycom Ltd, Nizhny Novgorod, Russia
*Institute of Applied Physics, Nizhny Novgorod, Russia
**LPSC, Grenoble, France

CONTENTS:

- 1. Application
- 2. Parameters of complex
- 3. Components of complex
- 4. Test results

Application

60 GHz ECR ion CAD

60 GHz ion source

Magnetic cusp

Parameters of gyrotron complex (contractual)

Operating frequency 60 GHz

Output power ≤300 kW

Regime of gyrotron oscillation pulse

Accelerating voltage <60 kV

Anode voltage <20 kV

Beam current <18 A

Maximum pulse duration 10 ms

Max freq. of pulse repetition 10Hz

Efficiency >45%

Output mode waveguide operating mode

Number of harmonic

Type of the magnet cryomagnet

Components of gyrotron complex

-gyrotron -matcing optics unit

-cryomagnet -RF quasioptical tract

-bench -power supplies

-calorimetric load -control system

Gyrotron design

Design features:

- -diode-type electron gun with high temperature LaB6 cathode
- -stainless steel body cooled by water
- -boron nitride output window with diameter 66 mm
- -recuperation of the residual energy of the electron beam
- -quasi-optical converter with Gaussian wavebeam output

Design parameters:

Operating mode	H7,3	Cathode voltage	-39 kV
Cathode diameter	45mm	Anode / cavity voltage	+19 kV
Beam current	18 A	Magnetic field	~2.3 T

Components of gyrotron complex Gyrotron Matching optics unit Ground (MDU) Cryomagnet Ground Cathode Filament

Gyrotron – bench – cryomagnet - MOU

Components of gyrotron complex

Cryomagnet

Gyrotron

MOU

Bench

Components of gyrotron complex

Gyrotron complex assembled

Scheme of RF quasioptical tract

Components of complex

Cathode power supply

Anode power supply

Components of complex

Control system

Operator workplace

Control rack

Components of complex

Gyrotron complex in Grenoble (France)

Test results

Output parameters

Power	303 kW
Cathode voltage	39.8 kV
Anode voltage	20 kV
Beam current	17.5 A
Anode current	52 mA
Frequency	60.089 GHz
Efficiency	45%
Pulse duration	50 ms

2.26T

Magnetic field

Test results

Experiment vs. Simulations

(field amplitude; aperture 340×340mm²)

TEM₀₀ content in the reconstructed field: $\eta_{a,\phi} = 97,79\%$

Designations:

Z – distance to window

ηa – mutual power between measured and simulated amplitude patterns