```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import scipy as stats
```

In [3]: df_jamboree=pd.read_csv('Jamboree.csv')
 df_jamboree.sample(10)

Out[3]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
257	258	324	100	3	4.0	5.0	8.64	1	0.78
85	86	319	103	4	4.5	3.5	8.66	0	0.76
99	100	323	113	3	4.0	4.0	8.88	1	0.79
159	160	297	100	1	1.5	2.0	7.90	0	0.52
445	446	328	116	5	4.5	5.0	9.08	1	0.91
218	219	324	110	4	3.0	3.5	8.97	1	0.84
14	15	311	104	3	3.5	2.0	8.20	1	0.61
340	341	312	107	3	3.0	3.0	8.46	1	0.75
346	347	304	97	2	1.5	2.0	7.64	0	0.47
467	468	318	101	5	3.5	5.0	8.78	1	0.78

```
In [4]: #shape of datasets
print("No of Rows:",df_jamboree.shape[0])
print("No of Columns:",df_jamboree.shape[1])
```

No of Rows: 500 No of Columns: 9

In [5]: df_jamboree.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	500 non-null	int64
1	GRE Score	500 non-null	int64
2	TOEFL Score	500 non-null	int64
3	University Rating	500 non-null	int64
4	SOP	500 non-null	float64
5	LOR	500 non-null	float64
6	CGPA	500 non-null	float64
7	Research	500 non-null	int64
8	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(5)
memory usage: 35.3 KB

Detect Null values and outliers

```
df_jamboree.isna().sum()
Out[8]: Serial No.
        GRE Score
                              0
        TOEFL Score
                              0
        University Rating
                              0
        SOP
                              0
                              0
        LOR
        CGPA
                              0
        Research
                              0
        Chance of Admit
        dtype: int64
```

checking duplicate values

```
In [11]: duplicate_rows=df_jamboree[df_jamboree.duplicated()]
    print(duplicate_rows.shape[0])
```

0

Data Exploration

```
In [13]: # Statistical summary of the dataset -
df_jamboree.describe(include='all').T
```

Out[13]:

	count	mean	std	min	25%	50%	75%	max
Serial No.	500.0	250.50000	144.481833	1.00	125.7500	250.50	375.25	500.00
GRE Score	500.0	316.47200	11.295148	290.00	308.0000	317.00	325.00	340.00
TOEFL Score	500.0	107.19200	6.081868	92.00	103.0000	107.00	112.00	120.00
University Rating	500.0	3.11400	1.143512	1.00	2.0000	3.00	4.00	5.00
SOP	500.0	3.37400	0.991004	1.00	2.5000	3.50	4.00	5.00
LOR	500.0	3.48400	0.925450	1.00	3.0000	3.50	4.00	5.00
CGPA	500.0	8.57644	0.604813	6.80	8.1275	8.56	9.04	9.92
Research	500.0	0.56000	0.496884	0.00	0.0000	1.00	1.00	1.00
Chance of Admit	500.0	0.72174	0.141140	0.34	0.6300	0.72	0.82	0.97

```
In [14]: | df_jamboree.head()
```

Out[14]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

```
In [15]: # Step 5: Correlation heatmap
    plt.figure(figsize=(10, 8))
    sns.heatmap(df_jamboree.corr(), annot=True, cmap="coolwarm")
    plt.title("Correlation Heatmap")
    plt.show()
```



```
In [17]: # Step 6: Pairplot of dataset
sns.pairplot(df_jamboree)
plt.show()
```


Test the assumptions of linear regression

```
In [35]: #Multicollinearity check by VIF score
    # Drop non-numeric or identifier columns
    df_clean = df_jamboree.drop(columns=["Serial No."]) # drop Serial No.

In [37]: # Independent variables only (exclude target)
    X = df_clean.drop(columns=["Chance of Admit "])
```

```
In [39]: | from statsmodels.stats.outliers_influence import variance_inflation_factor
         from sklearn.preprocessing import StandardScaler
In [40]: # Standardize the features (VIF is sensitive to scale)
         scaler = StandardScaler()
         X scaled = pd.DataFrame(scaler.fit transform(X), columns=X.columns)
In [41]: # Function to compute VIFs and drop variables > 5 iteratively
         def calculate_vif(X):
             vif = pd.DataFrame()
             vif["Variable"] = X.columns
             vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shar
             return vif
In [42]: max_vif = 10 # start with any number > 5
         while max_vif > 5:
             vif_data = calculate_vif(X_scaled)
             max_vif = vif_data["VIF"].max()
             if max_vif > 5:
                 drop_variable = vif_data.sort_values("VIF", ascending=False).iloc[0]['
                 print(f"Dropping '{drop_variable}' with VIF: {max_vif:.2f}")
                 X_scaled = X_scaled.drop(columns=[drop_variable])
             else:
                 print("All VIFs are below or equal to 5.")
         All VIFs are below or equal to 5.
         print("\nFinal variables after VIF filtering:")
In [43]:
         print(X_scaled.columns.tolist())
         Final variables after VIF filtering:
         ['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Re
         search'l
 In [ ]:
In [44]: # Step 7: Define features and target
         X1 = df_jamboree[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOF
         y1 = df_jamboree['Chance of Admit']
         #Note Serial No is not significant feature so not considering for model traini
In [45]: # Step 8: Split the data
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size=0.2, rar
In [46]: from sklearn.linear model import LinearRegression
         from sklearn.metrics import mean squared error,r2 score
```

```
In [47]:
         # Step 9: Train the Linear Regression model
         model = LinearRegression()
         model.fit(X_train, y_train)
Out[47]:
          ▼ LinearRegression
          LinearRegression()
In [48]: # Step 10: Predictions
         y_pred = model.predict(X_test)
In [49]: # Step 11: Model Evaluation
         mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
In [50]: print(f"Mean Squared Error: {mse:.4f}")
         print(f"R2 Score: {r2:.4f}")
         Mean Squared Error: 0.0037
         R<sup>2</sup> Score: 0.8188
In [51]: # Step 12: Coefficients of the model
         coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
         print(coefficients)
                             Coefficient
         GRE Score
                                0.002434
         TOEFL Score
                                0.002996
         University Rating
                                0.002569
         SOP
                                0.001814
         LOR
                                0.017238
         CGPA
                                0.112527
         Research
                                0.024027
```

```
In [34]: # Step 13: Plotting Actual vs Predicted
plt.figure(figsize=(6, 6))
plt.scatter(y_test, y_pred, alpha=0.7, color="blue")
plt.xlabel("Actual Chance of Admit")
plt.ylabel("Predicted Chance of Admit")
plt.title("Actual vs Predicted")
plt.plot([0, 1], [0, 1], '--r')
plt.grid(True)
plt.show()
```



```
In [53]: from statsmodels.stats.diagnostic import het_goldfeldquandt
   import statsmodels.api as sm
```

```
In [54]: # Add constant term for statsmodels
X_sm = sm.add_constant(X1)
```

```
In [55]: # Fit the model
model = sm.OLS(y, X_sm).fit()
```

```
In [56]: # Step 3: Get predicted values and residuals
predicted = model.predict(X_sm)
residuals = y - predicted
```

```
In [57]: plt.figure(figsize=(8, 5))
    sns.scatterplot(x=predicted, y=residuals)
    plt.axhline(y=0, color='r', linestyle='--')
    plt.xlabel("Predicted Values")
    plt.ylabel("Residuals")
    plt.title("Residuals vs Predicted Values")
    plt.show()
```

Residuals vs Predicted Values


```
In [58]: # Step 4: Goldfeld-Quandt Test
    gq_test = het_goldfeldquandt(residuals, X)
    print(f"Goldfeld-Quandt Test F-statistic: {gq_test[0]:.4f}")
    print(f"P-value: {gq_test[1]:.4f}")
```

Goldfeld-Quandt Test F-statistic: 0.4498

P-value: 1.0000

✓ No strong evidence of heteroscedasticity (Homoscedasticity is present).

```
# \( \text{Actionable Insights & Recommendations} \)
1. \( \text{O} \) Focus on Improving CGPA \( \text{Insight: CGPA has the strongest influence.} \)
Recommendation: Students should prioritize maintaining a high GPA (preferably 8.5+).
```

2. Enhance GRE and TOEFL Scores

Insight: These scores moderately affect admission chances.

Recommendation: Aim for GRE > 320 and TOEFL > 105 to stay competitive.

3. 🛕 Target Higher-Ranked Universities

Insight: Applicants from better-rated universities are slightly favored.

Recommendation: If possible, enroll in better-rated institutions or leverage exchange programs to enhance profile.

4. 🖍 Write a Strong SOP

Insight: A compelling SOP has a small but noticeable effect.

Recommendation: Spend quality time tailoring your SOP to each program, highlighting your academic strengths and goals.

5. 💀 🗓 Engage in Research

Insight: Research experience adds a competitive edge.

Recommendation: Get involved in research projects, internships, or publish papers to demonstrate academic maturity.

6. 🍑 Get Strong Letters of Recommendation

Top Priority: CGPA, GRE, TOEFL

Medium Priority: SOP, University Rating

Bonus Factors: Research, LOR

In []: