成像与识别报告

安然 刘志远 司徒彦均

原理分析

距离-多普勒(RD)算法原理

算法原理

RD 算法的基本思想是将二维处理分解为两个一维处理的级联形式,其特点是将距离压缩后的数据沿方位向作FFT,变换到距离多普勒域(由于方位向的频率就是多普勒频率,因此我们将此时信号所处的域称为距离多普勒域),然后完成距离徙动校正和方位压缩。。

RD算法步骤包括三个主要步骤:

- 距离向压缩
- 距离徙动校正
- 方位向压缩,完成聚焦处理

RD 算法通过脉冲压缩获得了距离向和方位 向的高分辨率。与时域相关算法不同的是, RD 算法的相关是将信号和参考函数转换到 频域完成的,同时进行了距离徙动校正, 使方位压缩成为与距离向相互独立的一维 处理过程

算法原理

距离多普勒算法流程

方位向FFT

图 4.10 距离弯曲频域示意图

PART 01 算法原理

距离徙动校正:

计算每一行所选取部分到所属弧中 心的距离,将其作为偏移量,对所 选取部分进行搬移,使其变直

算法原理

距离徙动校正后,信号沿方位向的轨迹由曲线变为直线,方位压缩成为一维处理。方位压缩中的两个重要参数——多普勒中心频率fdc和调频率fdr从已采集的数据中获取。在正侧式情况下,fdc为0,只需要考虑fdr即可,由此计算方位向匹配滤波器并加窗。

方位压缩后的输出信号幅度是一个二维的sinc函数。 SAR回波信号经过RD算法处理得到复图像域数据,根据数据 的幅度就可以得到SAR 图像了。

PART 02

结果展示

R D 成 像 方 法 距 离 徙 动 矫 正 与 方 位 压 缩

参数

C=3e8;%光速

fc=77e9;%雷达载频

lambda=C/fc;%波长

V=1;%雷达移动速度

% La = 0.886*2*V/3e9;%合成孔径长度

% Ta=La/V;%合成孔径时间

H=4:%高度

Y=6;%雷达作用距离

Xmin=0;%目标区域方位向范围

Xmax=10;%[Xmin, Xmax]

PRF=2000;%脉冲重复频率

Nslow=PRF*(Xmax-Xmin)/V;%慢时间采样数

Br=3e9;%距离向带宽

Tr=52e-6;%发射信号时宽

K=Br/Tr;%调频斜率

La=2*pr;

Ta=La/V;%合成孔径时间

Fr=5e6;%距离向采样频率

rmin=sqrt(H^2+Y^2);

PART 02

实际情况模型图

飞行轨迹

雷达数据 (已经过距离向压缩)

PART 02

第二组数据

 $\times 10^{10}$ 距离向脉压: 方位向第17930处采样点截面 14 12 10 8 6 4 2 0 -2 160 180 200 220 240 140

实际情况模型图

距离向压缩横截面

距离向脉压之后有多个信号强度峰值,可以很好 地将四个目标区分出来 距离向的四个主瓣宏度均约等于7

PART 02 第二组数据

方位向傅里叶变换 转换到RD域

PART 02 第二组数据

模实际情况模型图

距离徙动矫正

PART 02 第二组数据

实际情况模型图 方位向压缩

PART 02

第二组数据

目标方

位向截面

1000

方位向

2000

3000

0

1000

2000

分析:由于四个角反都是正对雷达,成像出来四个目标点,且相对位置与实际情况基本相符

目标1: 主瓣宽度400, 峰值旁瓣比-15dB 目标2: 主瓣宽度470, 峰值旁瓣比-13dB 目标3: 主瓣宽度490, 峰值旁瓣比-16dB 目标4: 主瓣宽度330, 峰值旁瓣比-16dB

问题: 其中两个目标在方位压缩后未能完全压缩成一个点猜想: 相同方位向的目标在信号的发送与回传过程中发生

相互影响;窗的影响使目标的压缩不够集中

问题:成像目标的相对距离与实际不符

猜想: 无人机与目标之间的斜距

PART 02

第一组数据

雷达数据 (已经过距离向压缩)

压缩结果

PART 02

第三组数据

实际情况模型图

雷达数据 (已经过距离向压缩)

PART 02

分析: 有两个角反并未正对雷达, 成像出来能清晰看见的目标点只有两个

PART 02

第四组数据

0.5
1
1.5
2
2.5
3
3.5
4
100 200 300 400 500 600 700 800 900 1000

 $\times 10^4$

实际情况模型图

雷达数据 (已经过距离向压缩)

PART 02

实际情况模型图 压缩结果

分析: 自行车对信号散射, 回波信号中能看见不明显的自行车和角反目标点

PART 02

第五组数据

雷达数据 (已经过距离向压缩)

压缩结果

PART 03

不同窗对比

通过改变方位匹配滤波器加窗的类型观察成像效果

Window type	Properties of window spectrum		Specifications of resulting filter by windowing			
	Peak side- lobe level (dB)	Main-lobe width,	Peak error $\delta_p = \delta_s$	Maximum passband ripple, A _p (dB)	Minimum stopband attenuation, A _s (dB)	Transition- band width Δω
Rectangular	13	4π/(M+1)	0.0895	0.82	21	1.84π/M
Bartlett	25	8π/(M+1)	0.0562	0.502		
Hanning	31	8π/(M+1)	0.0063	0.055	44	6.22π/M
Hamming	41	8π/(M+1)	0.0022	0.019	53	6.64π/M
Blackman	57	12π/(M+1)	0.0002	0.0017	74	11.12π/M

PART 03

改变窗的类型

窗长200

结论: 4种窗的效果基本与hamming窗相同

主瓣宽度: 570

峰值旁瓣比: -13dB

主瓣宽度: 540

峰值旁瓣比: -13dB

主瓣宽度: 450

峰值旁瓣比: -12dB

主瓣宽度: 510

峰值旁瓣比: -9dB

PRO

第三组数据

实际情况模型图

除去强反射目标回波

PRO

第三组数据

实际情况模型图

压缩结果

小组分工

成员	安然	司徒彦钧	刘志远
工作	编写代码,修改 PPT	修改代码,制作、 讲解PPT	修改代码,制作、 讲解PPT
比例	33%	33%	33%

2022

演讲结束谢谢观看

