A Prime Decomposition of Probabilistic Automata

Gunnar Carlsson Department of Mathematics Stanford University

 $\begin{array}{c} {\rm Jun~Yu} \\ {\rm Institute~for~Computational~\&~Mathematical~Engineering} \\ {\rm Stanford~University} \end{array}$

Contents

1	Inti	roduction	2
2	Automata and Semigroups		2
	2.1	Deterministic Automata	2
		Probabilistic Automata	3
3	Local Structure of Probabilistic Automata		4
	3.1	Green-Rees Theory	4
		Local Structure of Transition Semigroups	
4	Global Structure of Probabilistic Automata		10
	4.1	Krohn-Rhodes Theory	10
	4.2	Global Structure of Transition Semigroups	12
5	Representation Theory of Probabilistic Automata		13
	5.1		13
	5.2	Holonomy Decomposition	16
	5.3	Representation Theory of Reduced Holonomy Monoid	19
R	oforo	nees	91

This paper is based on the second author's doctoral thesis written under the direction of the first author.

1 Introduction

Krohn-Rhodes theorem asserts that every deterministic automaton can be decomposed into cascades of irreducible automata. Algebraically, this implies that a finite semigroup acting on a finite set factors into a finite wreath product of finite simple groups and a semigroup of order 3 consisting of the identity map and constant maps on a set of order 2. The semigroups in this factorization are prime under the semidirect product.

In Section 2, we formulate a definition of probabilistic automata in which a statement analogous to the prime decomposition follows directly from Krohn-Rhodes theorem.

Section 3 deals with Green-Rees theory. We determine Green's relations on the monoid of stochastic matrices in order to characterize the local structure of probabilistic automata.

Krohn-Rhodes theory is introduced in Section 4. The prime decomposition is presented as a framework to study the global structure of probabilistic automata.

Section 5 discusses Munn-Ponizovskiĭ theory. We prove that irreducible representations of a probabilistic automaton are determined by those of finite groups in its holonomy decomposition, which is a variant of the prime decomposition.

2 Automata and Semigroups

2.1 Deterministic Automata

Given a set X, F_X denotes the monoid of all maps $X \to X$. If X is of order n, we can index X by

$$\mathbf{n} = \{i \mid 0 \le i < n\}$$

with a bijection $X \to \mathbf{n}$, and write $F_n \cong F_X$.

Definition 2.1. A deterministic automaton is a triple (X, Σ, δ) consisting of finite sets X and Σ along with a map $\delta: X \times \Sigma \to X$. We call X a state set, Σ an alphabet, and δ a transition function.

Let Σ^* be the free monoid on Σ . We can define a right action of Σ^* on X by $xa = \delta(x, a)$, where $x \in X$ and $a \in A$. This action may not be faithful, and hence we consider the canonical homomorphism $\sigma : \Sigma^* \to F_X$. If Σ^+ is the free semigroup on A, then

$$S = \Sigma^+ \sigma$$

acts faithfully on X. Since F_X is finite, so is S.

Definition 2.2. A transformation semigroup is a pair (X, S) in which a finite semigroup S acts faithfully on X from the right.

In case S is a monoid such that $1_S = 1_X$, we refer to (X, S) as a transformation monoid. If, in addition, S is a group, (X, S) is called a transformation group.

If S is not a monoid, we can adjoin an identity element 1 in a natural way to form a monoid S^1 . It is understood that $S^1 = S$ when S is a monoid. Similarly, in its absence, adjuction of a zero element 0 defines a new semigroup S^0 . We write **FSgp** for the category of finite semigroups.

2.2 Probabilistic Automata

Let X by a finite set. Then $\mathbb{P}X$ is the set of all probability distributions on X. An element $\mu \in \mathbb{P}X$ is written as a formal sum

$$\mu = \sum_{x \in X} \mu(x)x.$$

We can regard $\mathbb{P}X$ as a subset of the free \mathbb{R} -module on X, although $\mathbb{P}X$ itself does not have an additive structure.

Definition 2.3. A probabilistic automaton is a quadruple $(X, \Sigma, \delta, \mathbb{P})$ consisting of finite sets X and Σ along with a map $\delta: X \times \Sigma \to X$ and its extension $\mathbb{P}\delta: \mathbb{P}X \times \mathbb{P}\Sigma \to \mathbb{P}X$ defined by

$$\mathbb{P}\delta(\pi,\mu) = \sum_{(x,a)\in X\times\Sigma} \pi(x)\mu(a)\delta(x,a)$$

for $\pi \in \mathbb{P}X$ and $\mu \in \mathbb{P}\Sigma$.

For a subset Ω of $\mathbb{P}\Sigma$, the quintuple $(X, \Sigma, \delta, \mathbb{P}, \Omega)$ is an *instance* of $(X, \Sigma, \delta, \mathbb{P})$, in which case $\mathbb{P}\delta$ is restricted to $\mathbb{P}X \times \Omega'$, where Ω' denotes the closure of the set generated by Ω . When Ω is finite, $(X, \Sigma, \delta, \mathbb{P}, \Omega)$ resembles the classical definition of a probabilistic automaton [16].

Again, set $S = \Sigma^+ \sigma$, where $\sigma : \Sigma^* \to F_X$ is the canonical homomorphism. Given $\mu \in \mathbb{P}A$, we abuse notation by writing μ for its corresponding distribution in $\mathbb{P}S$, so that for any $s \in S$,

$$\mu(s) = \sum_{a\sigma = s} \mu(a).$$

Then $\mathbb{P}S$ is closed under convolution, which is given by

$$(\mu * \nu)(s) = \sum_{s=tu} \mu(t)\nu(u)$$

for $\mu, \nu \in \mathbb{P}S$, and hence $\mathbb{P}S$ forms a semigroup under convolution. Since S is finite, as a topological semigroup, $\mathbb{P}S$ is compact Hausdorff.

Definition 2.4. A transition semigroup is a triple (X, S, \mathbb{P}) in which S is a finite semigroup acting faithfully on a finite set X from the right, inducing a right action of $\mathbb{P}S$ on $\mathbb{P}X$ defined by

$$\pi\mu = \sum_{xs=y} \pi(x)\mu(s)y$$

for $\pi \in \mathbb{P}X$ and $\mu \in \mathbb{P}S$.

For $Q \subset \mathbb{P}S$, the quadruple (X, S, \mathbb{P}, Q) is an *instance* of (X, S, \mathbb{P}) , in which case the action of $\mathbb{P}S$ on $\mathbb{P}X$ is restricted to Q', where Q' denotes the closure of the set generated by Q.

It is easy to see that $\pi\mu\in\mathbb{P}X$. Although we require that S acts faithfully on X, the same is not true of the action of $\mathbb{P}S$ on $\mathbb{P}X$. We refer to (X,S,\mathbb{P}) as a transition monoid if (X,S) is a transformation monoid. A transition group is defined accordingly.

3 Local Structure of Probabilistic Automata

3.1 Green-Rees Theory

We introduce the work of Green and Rees as presented by Clifford & Preston [2] and Rhodes & Steinberg [18].

A subset $I \neq \emptyset$ of a semigroup S is a left ideal if $SI \subset I$. A right ideal is defined dually. We say I is an ideal if it is both a left and right ideal. Moreover, S is left simple, right simple, or simple if it does not contain a proper left ideal, right ideal, or ideal. For any $s \in S$, we refer to $L(s) = S^1s$, $R(s) = sS^1$, and $J(s) = S^1sS^1$, respectively, as the principal left ideal, principal right ideal, and principal ideal generated by s.

Definition 3.1. Let S be a semigroup. Then the quasiorders on S given by

- (1) $s \leq_{\mathfrak{l}} t$ if and only if $L(s) \subset L(t)$,
- (2) $s \leq_{\mathfrak{r}} t$ if and only if $R(s) \subset R(t)$,
- (3) $s \leq_{\mathbf{i}} t$ if and only if $J(s) \subset J(t)$,
- (4) $s \leq_{\mathfrak{h}} t$ if and only if $s \leq_{\mathfrak{l}} t$ and $s \leq_{\mathfrak{r}} t$

induce equivalence relations $\sim_{\mathfrak{l}}$, $\sim_{\mathfrak{r}}$, $\sim_{\mathfrak{h}}$, and $\sim_{\mathfrak{j}}$, respectively, on S. Furthermore, the relation

$$\mathfrak{d} = \mathfrak{l} \circ \mathfrak{r} = \mathfrak{r} \circ \mathfrak{l}$$

in $S \times S$ defines an equivalence relation $\sim_{\mathfrak{d}}$ on S. These five equivalence relations on S are known as Green's relations.

Green's relations coincide in a commutative semigroup, while each relation is trivial for a group. In $S \times S$,

$$\mathfrak{h}=\mathfrak{l}\cap\mathfrak{r}\subset\mathfrak{l}\cup\mathfrak{r}\subset\mathfrak{d}\subset\mathfrak{j}.$$

Moreover, $\sim_{\mathfrak{l}}$ is a right congruence and $\sim_{\mathfrak{r}}$ is a left congruence. We write the \mathfrak{l} -class of $s \in S$ as

$$L_s = \{ t \in S \mid s \sim_{\mathfrak{l}} t \},\$$

and define R_s , J_s , H_s , and D_s analogously.

Proposition 3.2. If e is an idempotent in a semigroup S, then (1) $Se \cap J_e = L_e$, (2) $eS \cap J_e = R_e$, and (3) $eSe \cap J_e = H_e$.

For any $u \in S$, the *left translation* by u is the map $\lambda_u : S \to S$ defined by $s\lambda_u = us$. Its dual, denoted ρ_u , is the *right translation* by u. Green [6] used translations to construct bijections $L_s \to L_t$ and $R_s \to R_t$ when $s \sim_{\mathfrak{d}} t$.

Lemma 3.3 (Green). Suppose $s, t \in S$, where S is a semigroup.

- (1) If us = t and vt = s for $u, v \in S^1$, so that $s \sim_{\mathfrak{l}} t$, then the maps $\lambda_u|_{R_s}$ and $\lambda_v|_{R_t}$ are inverses of one another.
- (2) If su = t and tv = s for $u, v \in S^1$, so that $s \sim_{\mathfrak{r}} t$, then the maps $\rho_u|_{L_s}$ and $\rho_v|_{L_t}$ are inverses of one another.

Koch & Wallace [8] formulated a sufficient condition for \mathfrak{d} - and j-relations to agree with one another. A semigroup S is said to be stable if

- (1) $s \sim_{\mathfrak{l}} ts$ if and only if $s \sim_{\mathfrak{j}} ts$,
- (2) $s \sim_{\mathfrak{r}} st$ if and only if $s \sim_{\mathfrak{f}} st$

for any $s, t \in S$. This ensures that $D_s = J_s$ for every $s \in S$. In particular, finite semigroups, commutative semigroups, and compact semigroups are stable. For stable semigroups, Lemma 3.3 implies that \mathfrak{l} -classes contained in the same \mathfrak{j} -class have identical cardinality. The same is true of \mathfrak{r} - and \mathfrak{h} -classes.

We say $s \in S$ is regular, in the sense of von Neumann, if there exists $t \in S$ such that sts = s. If, in addition, tst = t, t is an inverse of s. A regular element always has an inverse, and so s is regular if and only if s has an inverse. We call S a regular semigroup if each of its elements are regular. If every element has a unique inverse, then S is an inverse semigroup.

Definition 3.4. Given sets Λ and Γ , a $\Lambda \times \Gamma$ Rees matrix over a group G is a map $(u_{\lambda\rho}): \Lambda \times \Gamma \to G$. A Rees semigroup of matrix type is a set

$$\mathfrak{M}(G, \Gamma, \Lambda, (u_{\lambda \rho})) = \{ (\rho, g, \lambda) \mid g \in G, \rho \in \Gamma, \lambda \in \Lambda \}$$

endowed with a product defined by the rule

$$(\rho, g, \lambda)(\gamma, h, \alpha) = (\rho, gu_{\lambda\gamma}h, \alpha).$$

We call G the structure group of $\mathfrak{M}(G, \Gamma, \Lambda, (u_{\lambda \rho}))$.

It is easy to see that $\mathfrak{M}(G,\Gamma,\Lambda,(u_{\lambda\rho}))$ is indeed a semigroup. By convention, we write

$$\mathfrak{M}^0(G,\Gamma,\Lambda,(u_{\lambda\rho}))=\mathfrak{M}(G^0,\Gamma,\Lambda,(u_{\lambda\rho})).$$

Moreover, $(u_{\lambda\rho})$ is called *regular* if every row and column has a nonzero entry, which is the same as saying $\mathfrak{M}^0(G,\Gamma,\Lambda,(u_{\lambda\rho}))$ is regular as a semigroup.

Suppose $0 \in S$ and $S^2 \neq 0$. Then S said to be 0-simple if it does not contain a nonzero proper ideal. It is easy to see that if $0 \notin S$, then S is simple if and only if S^0 is 0-simple. Under the stability assumption, Rees [17] classified 0-simple semigroups in terms of Rees matrices.

Theorem 3.5 (Rees). A stable semigroup S is 0-simple if and only if

$$S \cong \mathfrak{M}^0(G, \Gamma, \Lambda, (u_{\lambda \rho}))$$

such that G is a group and $(u_{\lambda\rho})$ is regular.

Assume S is stable. If $s \in S$ is regular, then every element of J_s is regular. Moreover, there exists an idempotent $e \in J_s$ such that H_e is a maximal subgroup of S with e as identity, and $H_e \cong H_f$ for any idempotent $f \in J_s$.

For every $s \in S$, set $I(s) = J(s) - J_s$. Then I(s) is an ideal of J(s) unless it is empty. The *principal factor* of S at s is the semigroup

$$J_s^0 = \begin{cases} J(s)/I(s) & \text{if } J_s \text{ is not the minimal ideal,} \\ J_s \cup 0 & \text{otherwise.} \end{cases}$$

Alternatively, we can think of J_s^0 as the set $J_s \cup 0$ endowed with a product given by the rule

$$tu = \begin{cases} tu & \text{if } tu \in J_s, \\ 0 & \text{otherwise.} \end{cases}$$

If S is stable, J_s is regular if and only if J_s^0 is 0-simple, in which case, by Theorem 3.5, there is an isomorphism $J_s^0 \to \mathfrak{M}^0(G, \Gamma, \Lambda, (u_{\lambda\rho}))$. If J_s is nonregular, then J_s^0 is a null semigroup in which tu = 0 for all $t, u \in J_s$.

3.2 Local Structure of Transition Semigroups

Any matrix over \mathbb{R} is said to be stochastic if all entries are nonnegative and each row sums to unity. We write $S(n,\mathbb{R})$ for the monoid of $n \times n$ stochastic matrices over \mathbb{R} . A stochastic matrix is bistochastic if each column sums to unity. The submonoid of bistochastic matrices in $S(n,\mathbb{R})$ is denoted $B(n,\mathbb{R})$. We can also define a stochastic matrix over any proper unitary subring of \mathbb{R} . In particular, $S(n,\mathbb{Z})$ is the monoid of maps $\mathbf{n} \to \mathbf{n}$ and $B(n,\mathbb{Z})$ is the group of permutations on \mathbf{n} .

We associate with each $s \in S$ a matrix $(s_{xy}): X \times X \to [0,1]$ with $(x,y) \mapsto \delta_{xs}^y$, where δ_x^y is the Kronecker delta on $X \times X$. Clearly, (s_{xy}) is row monomial, and hence

$$(\mu_{xy}) = \sum_{s \in S} \mu(s) \cdot (s_{xy})$$

is stochastic for any $\mu \in \mathbb{P}S$. It is readily verified that

$$((\mu * \nu)_{xy}) = (\mu_{xy})(\nu_{xy}).$$

For any finite semigroup S, $\mathbb{P}S$ is isomorphic to a subsemigroup of $\mathbb{P}F_n \cong S(n,\mathbb{R})$, and so we first study Green's relations on $S(n,\mathbb{R})$. Schwarz [22] showed that every maximal subgroup is isomorphic to a symmtric group S_k for some $1 \leq k \leq n$. Wall [23] characterized \mathfrak{l} - and \mathfrak{r} -relations for regular elements of $S(n,\mathbb{R})$. Green's relations on $B(n,\mathbb{R})$ were resolved by Montague & Plemmons [12].

Let $(s_{ij}) \in S(n, \mathbb{R})$. In block matrix form, 0 and 1, respectively, stand for the zero and identity matrices of suitable size. There exists $(p_{ij}) \in B(n, \mathbb{Z})$ such that

$$(p_{ij})(s_{ij}) = \begin{pmatrix} s_0^t \\ s_1^t \end{pmatrix},$$

where rows of s_0^t are linearly independent vectors that generate the same convex cone as rows of (s_{ij}) . A row echelon form of (s_{ij}) is any matrix of the form

$$\begin{pmatrix} 1 & 0 \\ u & 0 \end{pmatrix} (p_{ij})(s_{ij}),$$

where u is stochastic. We call s_0^t a reduced row echelon form of (s_{ij}) , which is unique up to row permutation. A pair of elements of $S(n,\mathbb{R})$ is row equivalent if they have identical reduced row echelon form up to row permutation.

If (s_{ij}) has a pair of nonzero columns in the same direction, then they appear as the first two columns of $(s_{ij})(p_{ij})$ for some $(p_{ij}) \in B(n, \mathbb{Z})$. Their sum, whose direction remains unchanged, is the first column of

$$(s_{ij})(p_{ij})\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix},$$

where the leftmost entries of $e \in B(2, \mathbb{Z})$ are unity. We can repeat this process of adding up columns in the same direction until the matrix is in *column echelon* form

$$\begin{pmatrix} s_0 & s_1 \end{pmatrix}$$
,

where nonzero columns are pairwise in different directions and columns of s_0 , which are linearly independent, generate the same convex cone as columns of (s_{ij}) . The reduced column echelon form of (s_{ij}) , which is unique up to column permutation, is obtained by removing any zero columns from a_1 . When a pair of elements of $S(n, \mathbb{R})$ have identical reduced column echelon form up to column permutation, we say that they are column equivalent.

The echelon form of (s_{ij}) is the row echelon form of the column echelon form of (s_{ij}) . This is the same as the column echelon form of the row echelon form of (s_{ij}) as matrix multiplication is associative. If the reduced echelon form is defined accordingly, then it is unique up to row and column permutations. A pair of elements of $S(n,\mathbb{R})$ is called equivalent if they have identical reduced echelon form up to row and column permutations.

Proposition 3.6. If $(s_{ij}), (t_{ij}) \in S(n, \mathbb{R})$, then

- (1) $(s_{ij}) \sim_{\mathfrak{l}} (t_{ij})$ if and only if (s_{ij}) and (t_{ij}) are row equivalent,
- (2) $(s_{ij}) \sim_{\mathfrak{r}} (t_{ij})$ if and only if (s_{ij}) and (t_{ij}) are column equivalent,
- (3) $(s_{ij}) \sim_{\mathfrak{j}} (t_{ij})$ if and only if (s_{ij}) and (t_{ij}) are equivalent,
- (4) $(s_{ij}) \sim_{\mathfrak{h}} (t_{ij})$ if and only if (s_{ij}) and (t_{ij}) are row and column equivalent.

Proof. (1) Suppose $(s_{ij}) \sim_{\mathfrak{l}} (t_{ij})$. Then the rows of (s_{ij}) and (t_{ij}) generate the same convex cone, and so they must be row equivalent.

Conversely, if (s_{ij}) and (t_{ij}) are row equivalent, then there exists $(p_{ij}), (q_{ij}) \in B(n, \mathbb{Z})$ such that

$$(p_{ij})(s_{ij}) = \begin{pmatrix} s_0^t \\ s_1^t \end{pmatrix}$$
 and $(q_{ij})(t_{ij}) = \begin{pmatrix} t_0^t \\ t_1^t \end{pmatrix}$

are in row echelon form with $rs_0^t = t_0^t$ for some permutation r. Moreover, every row of t_1^t is contained in the convex hull generated by the rows of s_0^t , so that we can find u that is stochastic and satisfies $us_0^t = t_1^t$. Similarly, $vs_0^t = s_1^t$, where v is stochastic. Therefore

$$(q_{ij})^t \begin{pmatrix} r & 0 \\ u & 0 \end{pmatrix} (p_{ij})(s_{ij}) = (t_{ij}) \text{ and } (p_{ij})^t \begin{pmatrix} r^t & 0 \\ v & 0 \end{pmatrix} (q_{ij})(t_{ij}) = (s_{ij}),$$

and so we are done.

(2) If the first two columns of $(s_{ij})(p_{ij})$ are in the same direction, then for any $u \in S(2,\mathbb{R})$ of rank one, we can always find $v \in S(2,\mathbb{R})$ of rank one such that

$$(s_{ij})(p_{ij})\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix} = (s_{ij})(p_{ij}).$$

This shows that (s_{ij}) and its column echelon form are \mathfrak{r} -related.

Let $(s_{ij}) \sim_{\tau} (t_{ij})$. We can assume (s_{ij}) and (t_{ij}) are in column echelon form. Then there exist $(u_{ij}), (v_{ij}) \in S(n, \mathbb{R})$ such that

$$\begin{pmatrix} s_0 & s_1 \end{pmatrix} = \begin{pmatrix} t_0 & t_1 \end{pmatrix} \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix} \text{ and } \begin{pmatrix} t_0 & t_1 \end{pmatrix} = \begin{pmatrix} s_0 & s_1 \end{pmatrix} \begin{pmatrix} v_{00} & v_{01} \\ v_{10} & v_{11} \end{pmatrix}.$$

We can now write

$$s_0 = t_0 u_{00} + t_1 u_{10}$$
.

Columns of s_0 generate the same convex cone as those of t_0 , and hence $s_0 = t_0 dp$, where d is diagonal and p a permutation. Furthermore, columns of t_1 are properly contained in the convex cone generated by those of t_0 , so that $t_1 = t_0 w$ for some w that has at least two positive entries in every column. This implies that $u_{10} = 0$, whence $t_0(dp - u_{00}) = 0$. As columns of t_0 are linearly independent, it follows that $u_{00} = dp$. By a similar reasoning for

$$t_0 = s_0 v_{00} + s_1 v_{10},$$

we can deduce that $v_{00} = p^t d^{-1}$ and $v_{10} = 0$. This shows d = 1, or else (u_{ij}) or (v_{ij}) fails to be stochastic. It is immediate that $u_{01} = v_{01} = 0$, and so $s_1 = t_1 u_{11}$ and $t_1 = s_1 v_{11}$. If nonzero columns of s_1 and t_1 are linearly independent, we are done. Otherwise, we can repeat this argument for s_1 and t_1 . This process ends in finite steps, and thus the result follows.

(3) By stability, $(s_{ij}) \sim_j (t_{ij})$ if and only if there exists $(u_{ij}) \in S(n, \mathbb{R})$ such that $(s_{ij}) \sim_{\mathfrak{l}} (u_{ij})$ and $(u_{ij}) \sim_{\mathfrak{r}} (t_{ij})$, which is the same as saying the reduced column echelon form of the reduced row echelon form of (s_{ij}) is identical to the reduced column echelon form of the reduced row echelon form of (t_{ij}) up to row and column permutations.

(4) This is a direct consequence of (1) and (2).
$$\Box$$

Every compact semigroup contains an idempotent, so that J_{μ} is regular for some $\mu \in \mathbb{P}S$. Doob [3] identified all idempotent elements in $S(n, \mathbb{R})$.

Theorem 3.7 (Doob). If $(e_{ij}) \in S(n, \mathbb{R})$ is of rank k with $1 \le k \le n$, then (e_{ij}) is idempotent if and only if there exists $(p_{ij}) \in B(n, \mathbb{Z})$ such that

$$(p_{ij})(e_{ij})(p_{ij})^t = \begin{pmatrix} e & 0 \\ se & 0 \end{pmatrix},$$

where s is stochastic and e is of the form

$$e = \begin{pmatrix} e_1 & & \\ & \ddots & \\ & & e_k \end{pmatrix}$$

such that e_i is rank one and stochastic for $1 \le i \le k$.

We can count the number of distinct regular j-classes in $S(n, \mathbb{R})$ once it is known which idempotent elements belong to the same j-class.

Corollary 3.8. If (e_{ij}) and (f_{ij}) are idempotent in $S(n, \mathbb{R})$, then $(e_{ij}) \sim_j (f_{ij})$ if and only if $rank(e_{ij}) = rank(f_{ij})$.

Proof. Suppose (e_{ij}) is of rank k. It follows from Theorem 3.7 that there exists $(p_{ij}) \in B(n, \mathbb{Z})$ such that the reduced echelon form of $(p_{ij})(e_{ij})(p_{ij})^t$ is an identity in $S(k, \mathbb{Z})$. This completes the proof.

It is immediate from Corollary 3.8 that there are n regular j-classes in $S(n, \mathbb{R})$. In general, we cannot say that if $(e_{ij}) \sim_{\mathfrak{j}} (f_{ij})$ in $S(n, \mathbb{R})$, then $(e_{ij}) \sim_{\mathfrak{j}} (f_{ij})$ in a proper subsemigroup of $S(n, \mathbb{R})$. Consider, for example, the subsemigroup

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

of $S(3,\mathbb{R})$. It is true, however, that if t and u are regular in a subsemigroup T of S, then $t \sim_{\mathfrak{l}} u$ in T if and only if $t \sim_{\mathfrak{l}} u$ in S. Analogous statements hold for \mathfrak{r} - and \mathfrak{h} -relations.

Theorem 3.9. Suppose (X, S, \mathbb{P}) is a transition semigroup such that $\varphi : \mathbb{P}S \to T$ is an isomorphism, where n = |X| and T is a subsemigroup of $S(n, \mathbb{R})$. For any idempotent $e \in \mathbb{P}S$, define $\Lambda = \{\lambda \in T \mid \lambda \sim_{\mathfrak{r}} e\varphi\}$ and $\Gamma = \{\rho \in T \mid \rho \sim_{\mathfrak{l}} e\varphi\}$. If $G = H_{e\varphi}$, then

$$J_e^0 \cong \mathfrak{M}^0(G, \Gamma, \Lambda, (u_{\lambda \rho})),$$

where $(u_{\lambda a}): \Lambda \times \Gamma \to G^0$ is given by

$$u_{\lambda\rho} = \begin{cases} \lambda\rho & \text{if } \lambda\rho \in G, \\ 0 & \text{otherwise.} \end{cases}$$

Here, $(\rho, g, \lambda) = 0$ in $\mathfrak{M}^0(G, \Gamma, \Lambda, (u_{\lambda \rho}))$ whenever g = 0.

Proof. This follows directly from Theorem 3.5 and Proposition 3.6.

Theorem 3.9 carries over to an instance (X, S, \mathbb{P}, Q) of (X, S, \mathbb{P}) since Q' is compact, and hence stable.

4 Global Structure of Probabilistic Automata

4.1 Krohn-Rhodes Theory

A pair of transformation semigroups (X, S) and (Y, T) are said to be *isomorphic*, written $(X, S) \cong (Y, T)$, if there exists a bijective map $\varphi : Y \to X$ such that

- (1) $\varphi s \varphi^{-1} \in T$ for all $s \in S$,
- (2) $\varphi^{-1}t\varphi \in S$ for all $t \in T$.

It is easy to see that this implies S is isomorphic to T.

Definition 4.1. Let (X,S) and (Y,T) be transformation semigroups. If there exists a surjective partial map $\varphi: Y \to X$ such that for every $s \in S$, $\varphi s = t\varphi$ for some $t \in T$, so that the diagram

$$\begin{array}{ccc}
Y & \xrightarrow{t} & Y \\
\varphi & & & \downarrow \varphi \\
X & \xrightarrow{\varsigma} & X
\end{array}$$

commutes, then (X,S) is said to divide (Y,T) by φ . We write

$$(X,S) \prec (Y,T)$$

to mean (X,S) is a divisor of (Y,T), and refer to φ as a covering.

If T is not a monoid, a homomorphism $\varphi:T\to S$ has a natural extension $\varphi^1:T^1\to S^1$ given by

$$t\varphi^1 = \begin{cases} 1 & \text{if } t = 1, \\ t\varphi & \text{otherwise.} \end{cases}$$

In case T is a monoid, set $\varphi^1 = \varphi$. We often identify S with the transformation semigroup (S^1, S) , and say that T covers S when there is a covering φ^1 , so that T covers S as transformation semigroups.

If $x \in X$, \bar{x} stands for the constant map $X \to X$ onto x. The semigroup of all such maps is denoted \bar{X} . The *closure* of (X, S) is the transformation semigroup

$$\overline{(X,S)} = (X,S \cup \bar{X}).$$

As the empty set is vacuously a semigroup, X can be identified with the transformation semigroup (X,\emptyset) , in which case $\bar{X}=(X,\bar{X})$. In addition, we associate to (X,S) the transformation monoid

$$(X,S)^1 = (X,S \cup 1_X),$$

which means $S^1 = (S^1, S^1)$.

Definition 4.2. Let (X, S) and (Y, T) be transformation semigroups. Suppose that the action of $t \in T$ on $f \in S^Y$ is given by $y^t f = ytf$ for any $y \in Y$. Then the wreath product of (X, S) by (Y, T) is the transformation semigroup

$$(X, S) \wr (Y, T) = (X \times Y, S^Y \rtimes T),$$

where (x,y)(f,t) = (x(yf),yt) for any $(x,y) \in X \times Y$ and $(f,t) \in S^Y \rtimes T$.

Let **TSgp** denote the category in which objects are transformation semi-groups and morphisms are coverings of objects. Evidently, $(X,S)\cong (Y,T)$ if and only if $(X,S)\prec (Y,T)$ and $(Y,T)\prec (X,S)$, whence \prec is a partial order on **TSgp**. In Definition 4.2, it is routine to check that $S^Y\rtimes T$ is a semigroup acting faithfully on $X\times Y$. It follows that isomorphism classes of **TSgp** form a monoid under the binary operation \wr with unity $\mathbf{1}^1$. A decomposition of (X,S) is an inequality in **TSgp** of the form

$$(X,S) \prec (X_1,S_1) \wr \cdots \wr (X_n,S_n)$$

such that either X_i is strictly smaller than X or S_i is strictly smaller than S for all $1 \le i \le n$.

Proposition 4.3. Let (X,S) be a transformation semigroup.

(1) If G is a maximal subgroup of S, then

$$(X,S) \prec (X,S\backslash G)^1 \wr G.$$

(2) If $S = I \cup T$, where I is a left ideal in S and T a subsemigroup of S, then $(X, S) \prec (X, I)^1 \wr \overline{(T \cup 1_X, T)}$.

Every finite group admits a composition series, which determines a unique collection of simple group divisors. Jordan-Hölder decomposition accounts for all simple group divisors.

Theorem 4.4 (Jordan-Hölder). If G is a finite group, then

$$G \prec G_1 \wr \cdots \wr G_n$$
.

where G_i is a simple group divisor of G for $1 \leq i \leq n$.

By Proposition 4.3, we can view Theorem 4.4 as a decomposition for transformation groups. Krohn-Rhodes decomposition generalizes Jordan-Hölder decomposition to transformation semigroups. Krohn and Rhodes [10] first showed that a finite semigroup is either cyclic, left simple, or the union of a proper left ideal and a proper subsemigroup, and then argued inductively by showing that any transformation semigroup admits a decomposition in **TSgp**.

Theorem 4.5 (Krohn-Rhodes). If (X, S) is a transformation semigroup, then

$$(X,S) \prec (X_1,S_1) \wr \cdots \wr (X_n,S_n),$$

where either $(X_i, S_i) = \overline{\mathbf{2}}^1$ or (X_i, S_i) is a simple group divisor of S for $1 \leq i \leq n$.

In **FSgp**, we say S is *prime* if $S \prec T \rtimes U$ implies that either $S \prec T$ or $S \prec U$. The prime semigroups are precisely the divisors of $\overline{\bf 2}^1$ and the finite simple groups. The decomposition of Theorem 4.5 is called the *prime decomposition*.

4.2 Global Structure of Transition Semigroups

Let X and Y be finite sets. If $\varphi: Y \to X$ is a partial map, we define its extension to be a partial map $\mathbb{P}\varphi: \mathbb{P}Y \to \mathbb{P}X$ given by

$$\pi(\mathbb{P}\varphi) = \begin{cases} \sum_{x \in X} \sum_{y\varphi = x} \pi(y)x & \text{if } y\varphi \neq \emptyset \text{ whenever } \pi(y) > 0, \\ \emptyset & \text{otherwise} \end{cases}$$

for any $\pi \in \mathbb{P}Y$.

Definition 4.6. Let (X, S, \mathbb{P}) and (Y, T, \mathbb{P}) be transition semigroups. If there exists a surjective partial map $\varphi : Y \to X$ with extension $\mathbb{P}\varphi : \mathbb{P}Y \to \mathbb{P}X$ such that for every $\mu \in \mathbb{P}S$, $(\mathbb{P}\varphi)\mu = \nu(\mathbb{P}\varphi)$ for some $\nu \in \mathbb{P}T$, so that the diagram

$$\begin{array}{c|c}
\mathbb{P}Y & \xrightarrow{\nu} \mathbb{P}Y \\
\mathbb{P}\varphi & & & \mathbb{P}\varphi \\
\mathbb{P}X & \xrightarrow{\mu} \mathbb{P}X
\end{array}$$

commutes, then (X, S, \mathbb{P}) is said to divide (Y, T, \mathbb{P}) by $\mathbb{P}\varphi$. We write

$$(X, S, \mathbb{P}) \prec (Y, T, \mathbb{P})$$

to mean (X, S, \mathbb{P}) is a divisor of (Y, T, \mathbb{P}) , and refer to φ as a covering.

Notation for transformation semigroups naturally carry over to transition semigroups. Therefore

$$\overline{(X,S,\mathbb{P})} = (X,S \cup \bar{X},\mathbb{P}) \text{ and } (X,S,\mathbb{P})^1 = (X,S \cup 1_X,\mathbb{P}).$$

We also identify (X, \mathbb{P}) with $(X, \emptyset, \mathbb{P})$ and (S, \mathbb{P}) with (S^1, S, \mathbb{P}) .

Lemma 4.7. If (X, S, \mathbb{P}) and (Y, T, \mathbb{P}) are transition semigroups, then (X, S, \mathbb{P}) divides (Y, T, \mathbb{P}) if and only if (X, S) divides (Y, T).

Proof. Suppose (X, S, \mathbb{P}) divides (Y, T, \mathbb{P}) by $\mathbb{P}\varphi$. Fix $s \in S$. Then $(\mathbb{P}\varphi)s = \nu(\mathbb{P}\varphi)$ for some $\nu \in \mathbb{P}Y$. This means

$$y\varphi s = \sum_{t \in T} \nu(t) yt\varphi$$

for any $y \in Y$ such that $y\varphi \neq \emptyset$. We conclude $\varphi s = t\varphi$ for some $t \in T$ with $\nu(t) > 0$.

Conversely, assume (X,S) divides (Y,T) by φ . Given $\mu \in \mathbb{P}S$, choose $t \in T$ such that $\varphi s = t \varphi$ for every $s \in S$ with $\mu(s) > 0$. Let $U \subset T$ be the collection of all such selections. Define $\nu \in \mathbb{P}T$ by

$$\nu(t) = \begin{cases} \sum_{\varphi s = t\varphi} \mu(s) & \text{if } t \in U, \\ 0 & \text{otherwise.} \end{cases}$$

Then we can write

$$\pi(\mathbb{P}\varphi)\mu = \sum_{x \in X} \sum_{y \varphi s = x} \pi(y) \mu(s) \\ x = \sum_{x \in X} \sum_{y t \varphi = x} \pi(y) \nu(t) \\ x = \pi \nu(\mathbb{P}\varphi),$$

where
$$\pi \in \mathbb{P}Y$$
.

To extend Definition 4.2 to transition semigroups, we take the wreath product of (X, S) by (Y, T), and consider the right action of $\mathbb{P}(S^Y \rtimes T)$ on $\mathbb{P}(X \times Y)$.

Definition 4.8. Let (X, S, \mathbb{P}) and (Y, T, \mathbb{P}) be transition semigroups. The wreath product of (X, S, \mathbb{P}) by (Y, T, \mathbb{P}) is the transition semigroup

$$(X, S, \mathbb{P}) \wr (Y, T, \mathbb{P}) = (Z, U, \mathbb{P}),$$

where $(Z, U) = (X, S) \wr (Y, T)$.

It is clear that (Z, U, \mathbb{P}) is well-defined since $(X, S) \wr (Y, T)$ is a transformation semigroup in its own right.

Theorem 4.9. If (X, S, \mathbb{P}) is a transition semigroup, then

$$(X, S, \mathbb{P}) \prec (X_1, S_1, \mathbb{P}) \wr \cdots \wr (X_n, S_n, \mathbb{P}),$$

where either $(X_i, S_i) = \overline{\mathbf{2}}^1$ or (X_i, S_i) is a simple group divisor of S for $1 \leq i \leq n$.

Proof. This is an immediate consequence of Theorem 4.5 and Lemma 4.7. \square

We define a transition semigroup (X, S, \mathbb{P}) to be prime if (X, S) is prime as a transformation semigroup. Theorem 4.9 provides a way to classify any set of stochastic matrices. If T is any semigroup of $S(n, \mathbb{R})$, then S = supp(T) is a set of row monomial binary matrices isomorphic to a subsemigroup of F_n . Set $\mathbf{n} = X$. Then each matrix in T is an instance in (X, S, \mathbb{P}) .

5 Representation Theory of Probabilistic Automata

5.1 Munn-Ponizovskii Theory

Let A be an associative algebra with unity. We denote by $\mathbf{Mod}\text{-}A$ the category of right A-modules. Put $J = \mathrm{Rad}(A)$. For any primitive idempotent e of A, eJ is the unique maximal submodule of eA in $\mathbf{Mod}\text{-}A$. Assume further that A is noetherian or artinian. This ensures that there exists a collection of pairwise orthogonal central idempotents $e_1, \dots, e_n \in A$ such that $1_A = e_1 + \dots + e_n$, or equivalently,

$$A_A = e_1 A \oplus \cdots \oplus e_n A.$$

Moreover, $M \in \mathbf{Mod}\text{-}A$ is simple if and only if $M \cong e_i A/e_i J$ for some $1 \leq i \leq n$, and hence there is a one-to-one correspondence between isomorphism classes of irreducible modules and that of principal indecomposable modules.

For any idempotent e of A, set B = eAe. Then B is a subalgebra of A. We define restriction as the covariant functor $\operatorname{Res}_B^A : \operatorname{\mathbf{Mod-}}A \to \operatorname{\mathbf{Mod-}}B$ given by

$$\operatorname{Res}_{R}^{A}(M) = Me$$

and induction as its left adjoint functor $\operatorname{Ind}_B^A : \operatorname{\mathbf{Mod-}}B \to \operatorname{\mathbf{Mod-}}A$ given by

$$\operatorname{Ind}_B^A(M) = M \otimes_B eA.$$

Then Res_B^A is exact and Ind_B^A is left exact.

Theorem 5.1 (Green). Let $e \neq 0$ be an idempotent of an associative algebra A.

- (1) If $M \in \mathbf{Mod}\text{-}A$ is simple, then $\operatorname{Res}_{eAe}^A(M) \in \mathbf{Mod}\text{-}eAe$ is either trivial or simple.
- (2) If $N \in \mathbf{Mod}\text{-}eAe$ is simple, then the quotient of $\operatorname{Ind}_{eAe}^A(N)$ by its unique maximal submodule

$$\left\{ m \in \operatorname{Ind}_{eAe}^{A}(N) \mid mAe = 0 \right\}$$

is the unique simple $M \in \mathbf{Mod}\text{-}A$ such that $\mathrm{Res}_{eAe}^A(M) = N$. Consequently, there is a one-to-one correspondence between simple A-modules that are not annihilated by e and simple B-modules.

Around the same time, Munn [14] & Ponizovskiĭ [15] independently furthered the work of Clifford [1] by characterizing irreducible representations of a finite semigroup by those of its principal factors. Lallement & Petrich [11], and later Rhodes & Zalcstein [19], provided a precise construction based on Theorem 3.5. We closely follow the arguments of Ganyushkin, Mazorchuk & Steinberg [5] in which the same results are recovered by virtue of Theorem 5.1.

Let S be a finite semigroup. For a field K, KS is artinian, so that the notions of semisimplicity and semiprimitivity coincide. It is evident that KS need not be semisimple. Consider, for instance, $K\bar{X}$ for any finite set X. For $M \in \mathbf{Mod}\text{-}KS$, we denote by $\mathrm{Ann}_S(M)$ the ideal of S consisting of elements that annihilate M.

Definition 5.2. Let $M \in \mathbf{Mod}\text{-}KS$, where K is a field and S a finite semigroup. If e is an idempotent of S satisfying

$$\operatorname{Ann}_{S}(M) = \{ s \in S \mid J_{e} \subset J(s) \},\$$

then J_e is said to be the apex of M.

Suppose $M \in \mathbf{Mod}\text{-}KS$ is simple. Then there exists a unique apex J_e of M. Set $I = \mathrm{Ann}_S(M)$. We identify M with the unique simple $N \in \mathbf{Mod}\text{-}KS/KI$ such that $Ne \neq 0$. By Proposition 3.2,

$$e(KS/KI)e \cong K(eSe)/K(eIe) \cong KH_e$$
.

Let E(S) be a collection of idempotent class representatives of regular j-classes of S. We also write $\operatorname{Res}_{H_e}^S(M)$ and $\operatorname{Ind}_{H_e}^S(M)$, respectively, to mean the restriction and induction functors.

Theorem 5.3 (Munn-Ponizovskii). Let K be a field. Suppose $e \in E(S)$, where S is a finite semigroup.

- (1) If $M \in \mathbf{Mod}\text{-}KS$ is simple with apex J_e , then $\mathrm{Res}_{H_e}^S(M) \in \mathbf{Mod}\text{-}KH_e$ is simple.
- (2) If $N \in \mathbf{Mod}\text{-}KH_e$ is simple, then the quotient of $\mathrm{Ind}_{H_e}^S(N)$ by its unique maximal submodule

$$\left\{ m \in \operatorname{Ind}_{H_e}^S(N) \mid mKSe = 0 \right\}$$

is the unique simple $M \in \mathbf{Mod}\text{-}KS$ with apex J_e such that $\mathrm{Res}_{H_e}^S(M) = N$.

Consequently, there is a one-to-one correspondence between irreducible representations of S and those of H_e for $e \in E(S)$.

Again, by Proposition 3.2, we know $e(KS/KI) \cong R_e$, from which it follows that

$$\operatorname{Ind}_{H_{-}}^{S}(N) \cong N \otimes_{KH_{e}} KR_{e}$$

for any $N \in \mathbf{Mod}\text{-}KH_e$, where $e \in E(S)$.

Schützenberger [20, 21] studied the action of S on L_s and R_s for any $s \in S$. First define $\Lambda(H_s)$ to be the quotient of the right action of the monoid

$$\{u \in S^1 \mid uH_s \subset H_s\}$$

on H_s by its kernel. Then $\Lambda(H_s)$ is isomorphic to the group of all maps of the form $\lambda_u|_{H_s}: H_s \to H_s$, and acts freely on R_s from the left. We call $\Lambda(H_s)$ the left Schützenberger group of H_s . Its orbit space $\Lambda(H_s) \setminus R_s$ consists of \mathfrak{h} -classes in R_s . Moreover, $\Lambda(H_s) \cong \Lambda(H_t)$ if $s \sim_{\mathfrak{l}} t$. A dual statement holds for the right Schützenberger group $\Gamma(H_s)$. In particular, $\Lambda(H_s) \cong \Gamma(H_s)^{\mathrm{op}}$.

Suppose $\Lambda(H_s)\backslash R_s$ consists of n number of \mathfrak{h} -classes. Choose a class representative for each \mathfrak{h} -class, so that we can write

$$\Lambda(H_s)\backslash R_s = \{H_{s_1}, \cdots, H_{s_n}\}.$$

Let $1 \leq i \leq n$. Given $t \in S$, if $s_i t \in R_s$, then $s_i t \in H_{s_j}$ for some $1 \leq j \leq n$, and so there exists $h \in \Lambda(H_s)$ such that $s_i t = h s_j$. The right Schützenberger representation is a map $\rho: S \to \mathrm{M}_n(\Lambda(H_s))$ defined by

$$\rho(t)_{ij} = \begin{cases} h & \text{if } s_i t = h s_j, \\ 0 & \text{otherwise.} \end{cases}$$

The dual construction leads to the left Schützenberger representation $\lambda: S \to M_n(\Gamma(H_s))$.

5.2 Holonomy Decomposition

The original proof of Theorem 4.5 by Krohn & Rhodes [10] is purely algebraic. Based on the work of Zeiger [24, 25], Eilenberg [4] devised a decomposition that retains the combinatorial structure of a transformation semigroup.

Let (X, S) be a transformation semigroup. We can extend the action of S on X to S^1 by requiring that x1 = x for any $x \in X$. Set

$$XS = \{Xs \mid s \in S^1 \cup \bar{X}\} \cup \{\emptyset\}.$$

Write $a \leq b$ if $a \subset bs$ for some $s \in S^1$. Then the quasiorder \leq induces an equivalence relation \sim given by $a \sim b$ if and only if $a \leq b$ and $b \leq a$. We write a < b to mean $a \leq b$ and not $b \leq a$. A height function is a map $\eta : XS \to \mathbb{Z}$ satisfying

- $(1) \ \eta(\emptyset) = -1,$
- (2) $\eta(x) = 0 \text{ if } x \in X$,
- (3) $a \sim b$ implies $\eta(a) = \eta(b)$,
- (4) a < b implies $\eta(a) < \eta(b)$,
- (5) $\eta(a) = i$ for some $a \in XS$ if $0 < i < \eta(X)$.

The height of (X, S), denoted $\eta(X, S)$, is defined as $\eta(X)$. We can always define a height function on XS by assigning $\eta(a) = i$, where $a_0 < \cdots < a_i$ is a maximal chain in XS such that $a_0 \in X$ and $a_i = a$.

Assume |a| > 1 for $a \in XS$. Consider the set X_a of all maximal proper subsets of a contained in XS. We call an element of X_a a *brick* of a. If as = a, then $X_as = X_a$, so that s permutes X_a . Let G_a denote the coimage of

$${s \in S \mid as = s} \to \operatorname{Sym}(X_a).$$

Clearly, $G_a \prec S$. If $G_a \neq \emptyset$, (X_a, G_a) is a transformation group. Furthermore, $a \sim b$ implies $(X_a, G_a) \cong (X_b, G_b)$. In case $G_a = \emptyset$, put $G_a = 1$.

Suppose η admits j elements, say a_1, \dots, a_j , of height k in XS/\sim . Then we call $X_k = X_{a_1} \times \cdots \times X_{a_j}$ the kth paving and $G_k = G_{a_1} \times \cdots \times G_{a_j}$ the kth holonomy group. The kth holonomy is the transformation semigroup

$$\operatorname{Hol}_k(X,S) = \overline{(X_k,G_k)}.$$

This is well-defined since G_k is independent of the choice of a_1, \dots, a_j in XS/\sim .

Theorem 5.4 (Eilenberg). If (X,S) is a transformation semigroup with a height function $\eta: XS \to \mathbb{Z}$ such that $\eta(X,S) = n$, then

$$(X,S) \prec \operatorname{Hol}_1(X,S) \wr \cdots \wr \operatorname{Hol}_n(X,S),$$

where $\operatorname{Hol}_i(X, S)$ is the ith holonomy for $1 \leq i \leq n$.

The decomposition in Theorem 5.4 is known as the holonomy decomposition of (X, S) induced by η . For brevity, we write

$$\operatorname{Hol}_*(X,S) = \operatorname{Hol}_1(X,S) \wr \cdots \wr \operatorname{Hol}_n(X,S).$$

Since $\bar{\mathbf{n}}^1$ embeds in n direct copies of $\bar{\mathbf{2}}^1$, applying Theorem 4.4 to Theorem 5.4 indeed leads to a prime decomposition of (X, S). If $\mathrm{Hol}_*(X, S) = (Y, T)$, then T is called the *holonomy monoid* of (X, S).

Definition 5.5. Let (X, S) and (Y, T) be transformation semigroups. If there exists a surjective relation $\varphi : Y \to X$ such that for every $s \in S$,

$$\varphi s \subset t\varphi$$

for some $t \in T$, then (Y,T) is said to cover (X,S) by φ . We write

$$(X,S) \prec_{\mathrm{rel}} (Y,T)$$

to mean (Y,T) is a cover of (X,S), and refer to φ as a relational covering.

If $Y\varphi \subset XS$, then the rank of φ is the smallest integer $k \geq 0$ such that $\eta(y\varphi) \leq k$ for all $y \in Y$. Note that (X, S) divides (Y, T) when φ is of rank 0.

Sketch of proof of Theorem 5.4. It suffices to show that if $\varphi: Y \to X$ is of rank k, then there exists a map $\psi: X_k \times Y \to X$ of rank k-1 such that

$$(X,S) \prec_{\mathrm{rel}} \mathrm{Hol}_k(X,S) \wr (Y,T)$$

by ψ , for $\mathbf{1}^1$ covers (X, S) by the unique relation $\mathbf{1} \to X$ of rank n.

Let a_1, \dots, a_j represent elements of height k in XS/\sim . If $\eta(y\varphi)=k$, then $y\varphi\sim a_i$ for a unique $1\leq i\leq j$, so that we can find $u_y,v_y\in S$ such that

$$a_i u_y = y \varphi$$
 and $y \varphi v_y = a_i$.

Assume such a selection has been made for all $y \in Y$ such that $\eta(y\varphi) = k$. We write a projection map as $\pi_i : (X_k, G_k) \to (X_{a_i}, G_{a_i})$. Define $\psi : X_k \times Y \to X$ by

$$(b, y)\psi = \begin{cases} y\varphi & \text{if } \eta(y\varphi) < k, \\ b\pi_i u_y & \text{if } y\varphi \sim a_i. \end{cases}$$

It is easy to see that ψ is of rank k-1 with $\text{Im}(\psi) \subset XS$.

Fix $s \in S$. It remains to prove that there exists $(f,t) \in (G_k \cup \bar{X}_k)^Y \rtimes T$ such that the diagram

commutes. Choose any $t \in T$ satisfying $\varphi s \subset t \varphi$. We can find a map $f: Y \to G_k \cup \bar{X}_k$ such that if $y \varphi \sim a_i$, then

$$f\pi_i = \begin{cases} u_y s v_{yt} & \text{if } y\varphi s = yt\varphi, \\ \bar{b}_i & \text{if } y\varphi s v_{yt} \subset b_i \text{ with } b_i \in X_{a_i}. \end{cases}$$

It is routine to check that $\psi s \subset (f, t)\psi$.

Given $t \in T$, t_i denotes the *i*th component of t. In particular, if $1 \le i < n$, then t_i is a map $X_{i+1} \times \cdots \times X_n \to G_i \cup \bar{X}_i$. Suppose that if either

- (1) there exists $(x_{k+1}, \dots, x_n) \in X_{k+1} \times \dots \times X_n$ such that $(x_{k+1}, \dots, x_n)t_k \in G_k$ for some 1 < k < n,
- (2) $t_n \in G_n$ with k = n,

then $(x_{i+1}, \dots, x_n)t_i \in G_i$ for all $1 \leq i < k$. Then t is said to satisfy the Zeiger property.

Lemma 5.6. Suppose (X, S) is a transformation semigroup with a height function $\eta: XS \to \mathbb{Z}$ such that $\eta(X, S) = n$, which admits a decomposition

$$\operatorname{Hol}_*(X, S) = (Y, T).$$

Then the set U of elements of T satisfying the Zeiger property forms a submonoid of T such that (Y,U) covers (X,S).

Proof. It is easy to see that U is indeed a monoid. Assume $(x_{k+1}, \dots, x_n)t_k \in G_k$ for 1 < k < n. By construction,

$$(x_k, \dots, x_n)\varphi s = (x_k, \dots, x_n)(t_k, \dots, t_n)\varphi,$$

where $\varphi: X_k \times \cdots \times X_n \to X$ is a relation of rank k-1 such that

$$(X,S) \prec_{\mathrm{rel}} \mathrm{Hol}_k(X,S) \wr \cdots \wr \mathrm{Hol}_n(X,S)$$

by φ . If a_1, \dots, a_j are elements of height k in XS/\sim , then $(x_{k+1}, \dots, x_n)\varphi \sim a_i$ for some $1 \leq i \leq j$. Define $t_{k-1}: X_k \times \dots \times X_n \to G_{k-1}$ by

$$(x_k, \dots, x_n)t_{k-1}\pi_k = u_{(x_{k+1}, \dots, x_n)}sv_{(x_{k+1}, \dots, x_n)}.$$

Put $t_{k-1}\pi_i = 1_{G_{a_i}}$ for $i \neq k$. The case when k = n is similar.

A height function η uniquely determines U, which is referred to as the *reduced* holonomy monoid of (X, S). We also write

$$\widetilde{\operatorname{Hol}}_*(X,S) = (Y,U),$$

and call (Y, U) the reduced holonomy decomposition of (X, S) induced by η .

5.3 Representation Theory of Reduced Holonomy Monoid

Suppose a height function $\eta: XS \to \mathbb{Z}$ on a transformation semigroup (X, S) such that $\eta(X, S) = n$ induces the reduced holonomy decomposition

$$\widetilde{\operatorname{Hol}}_*(X, S) = (Y, U).$$

We wish to study the representation theory of the transition monoid (Y, U, \mathbb{P}) . Since $\mathbb{P}U$ does not have an additive structure, we apply Theorem 5.3 to $\mathbb{C}U$, and consider the inclusion $\mathbb{P}U \hookrightarrow \mathbb{C}U$.

The depth function on U is a map $\delta: U \to \mathbb{Z}$ such that for $u \in U$, $\delta(u) = k$ if there exists $0 \le k \le m$ satisfying

- (1) $\operatorname{Im}(u_i) \cap G_i \neq \emptyset$ for $1 \leq i \leq k$,
- (2) $\operatorname{Im}(u_i)$ is a singleton in \bar{X}_i for $k < i \le n$,

and $\delta(u) = -1$ otherwise. The depth of (X, S) is the largest integer $-1 \le m \le n$ such that $\delta(u) = m$ for some $u \in U$. We refer to the pair (m, n) as the dimension of (X, S), and write $\dim(X, S) = (m, n)$.

Proposition 5.7. Let (X, S) be a transformation semigroup with height function $\eta: XS \to \mathbb{Z}$, which induces a reduced holonomy decomposition

$$\widetilde{\operatorname{Hol}}_*(X,S) = (Y,U)$$

such that $\dim(X,S)=(m,n)$. Then $u\in U$ is regular if and only if $\delta(u)=k$ for some $0\leq k\leq m$. Therefore $e\in U$ such that $\delta(e)=k$ is idempotent in U if and only if

- (1) $(x_{i+1}, \dots, x_n)e_i = 1_{G_i}$ for $1 \le i \le k$,
- (2) $e_i = \bar{x}_i$ for $k < i \le n$

for some $(x_{k+1}, \dots, x_n) \in X_{k+1} \times \dots \times X_n$.

Proof. If $u \in U$ is regular, there exists $v \in U$ such that uvu = u. Fix $1 < k \le n$. Suppose $\operatorname{Im}(u_{k-1}) \subset \bar{X}_{k-1}$ and $\operatorname{Im}(u_k)$ is a singleton in \bar{X}_k for $k \le i \le n$. Then

$$u_{k-1}^{(u_k,\dots,u_n)}v_{k-1}^{(u_k,\dots,u_n)(v_k,\dots,v_n)}u_{k-1}=u_{k-1},$$

and so $\text{Im}(u_{k-1})$ is also a singleton in \bar{X}_{k-1} .

Conversely, assume $u \in U$ with $\delta(u) = k$ for some $1 \leq k \leq m$. This means $(x_{k+1}, \dots, x_n)u_k \in G_k$ for some $(x_{k+1}, \dots, x_n) \in X_{k+1} \times \dots \times X_n$. We want to find $v \in U$ such that uvu = u. Set $v_i = \bar{x}_i$ for $k < i \leq n$. It follows from Lemma 5.6 that $(x_{i+1}, \dots, x_n)u_i \in G_i$ when $1 \leq i < k$. Therefore there exists $v_i : X_{i+1} \times \dots \times X_n \to G_i$ such that

$$v_i^{(v_{i+1},\cdots,v_n)}u_i=1_{G_i}$$

for $1 \le i \le k$.

Given $1 \leq k \leq m$, denote by H_k the group acting on $X_1 \times \cdots \times X_k$ for the transformation group

$$(X_1,G_1) \wr \cdots \wr (X_k,G_k).$$

For fixed $y \in Y$, define

$$E(U,y) = \{e \in U \mid e^2 = e \text{ and } e_i = \bar{y}_i \text{ whenever } e_i \neq 1_{G_i} \text{ for } 1 \leq i \leq n\}.$$

Then E(U, y) contains exactly one idempotent of depth k for each $1 \le k \le m$. We also write

$$Y_i = X_{i+1} \times \cdots \times X_n$$

for $0 \le i \le n$, so that $Y_0 = Y$ and $Y_n = \emptyset$. Then $H_k \times \bar{Y}_k$ is a subsemigroup of U containing $e \in E(U, y)$ such that $\delta(e) = k$.

Proposition 5.8. Let (X, S) be a transformation semigroup with height function $\eta: XS \to \mathbb{Z}$, which induces a reduced holonomy decomposition

$$\widetilde{\operatorname{Hol}}_*(X,S) = (Y,U)$$

such that $\dim(X,S) = (m,n)$. Fix $y \in Y$. If $u,v \in U$ are regular with $\delta(u) = k$, then

- (1) $u \sim_{\mathfrak{l}} v$ if and only if $\delta(u) = \delta(v)$ and $u_i = v_i$ for every $k < i \leq n$,
- (2) $u \sim_{i} v$ if and only if $\delta(u) = \delta(v)$.

For $1 \le k \le m$, if $e \in E(U, y)$ such that $\delta(e) = k$, then

- (3) $R_e \cong H_k \times \bar{Y}_k$,
- (4) $H_e \cong H_k$.

Proof. (1) If $u \sim_{\mathfrak{l}} v$, then it is necessary that $\delta(u) = \delta(v)$, and hence $u_i = v_i$ for $k < i \leq n$. Assume the converse. By Lemma 5.6 and Proposition 5.7, there is $(x_{k+1}, \cdots, x_n) \in X_{k+1} \times \cdots \times X_n$ such that $(x_{i+1}, \cdots, x_n) u_i \in G_i$ for $1 \leq i \leq k$. Therefore we can find $w \in U$ such that

$$w_i^{(w_{i+1},\cdots,w_n)}u_i=v_i$$

for $1 \le i \le k$ once we set $w_i = \bar{x}_i$ for $k < i \le n$. This shows that wu = v. By symmetry, we conclude that $u \sim_{\mathsf{I}} v$.

(2) Again, $u \sim_{\mathfrak{f}} v$ implies that $\delta(u) = \delta(v)$. Conversely, if $\delta(u) = \delta(v)$, then $u \sim_{\mathfrak{r}} ue$ if $e \in U$ such that $\delta(e) = k$ is an idempotent defined by

$$e_i = \begin{cases} 1_{G_i} & \text{for } 1 \leq i \leq k, \\ v_i & \text{otherwise.} \end{cases}$$

It follows from (1) that $ue \sim_{\mathfrak{l}} v$.

(3) Assume $u \sim_{\mathfrak{r}} e$. By (2), $\delta(u) = k$, which means u_i is a singleton in \bar{X}_i for $k < i \le n$. Since ev = u for some $v \in U$,

$$e_i^{(e_{i+1},\cdots,e_n)}v_i=u_i$$

for $1 \le i \le k$, which shows that u_i does not depend on $X_{k+1} \times \cdots \times X_n$. Similarly, uw = e for some $w \in U$, and hence

$$u_i^{(u_{i+1},\cdots,u_n)}w_i=e_i.$$

Whenever $1 \leq i \leq k$, $\text{Im}(u_i) \subset G_i$ since $e_i = 1_{G_i}$. Therefore we can conclude that $R_e \subset H_i \times \bar{Y}_i$. The opposite inclusion is obvious.

(4) This is an immediate consequence of (1) and (3).

Proposition 5.8 implies that there are exactly m regular j-classes in U whose maximal subgroup is determined by the first k holonomy groups. We can now apply this to Theorem 5.3 to determine all irreducible representations of U.

Theorem 5.9. Let (X, S) be a transformation semigroup with height function $\eta: XS \to \mathbb{Z}$, which induces a reduced holonomy decomposition

$$\widetilde{\operatorname{Hol}}_*(X,S) = (Y,U)$$

such that $\dim(X,S) = (m,n)$. Fix $y \in Y$. If K is a field, then $M_i \in \mathbf{Mod}\text{-}KU$ satisfying

$$M_i \cong M \otimes_{KH_i} K(H_i \times \bar{Y}_i),$$

where $M \in \mathbf{Mod}\text{-}KH_i$ is simple and $H_e \cong H_i$ for $e \in E(U,y)$ with $\delta(e) = i$ for $1 \le i \le m$, is principal indecomposable. Furthermore, M_i contains a unique maximal submodule

$$N_i = \{ m \in M_i \mid mKUe = 0 \},\,$$

so that $M_i/N_i \in \mathbf{Mod}\text{-}KU$ is simple.

Proof. It is easy to see that elements $m \otimes (1_{H_i}, \bar{z})$, where m is a basis of M and $z \in Y_i$, form a basis of M_i . For any $(h, \bar{z}) \in H_i \times \bar{Y}_i$, we can write

$$m \otimes (h, \bar{z}) = m(h, \bar{y}_i) \otimes (1, \bar{z}).$$

This implies that M_i is indecomposable. Since M_i is free, it is projective, and hence principal indecomposable. The result follows from Theorem 5.3.

It follows from Theorem 5.3 that modules of the form M_i/N_i induced by a simple right KH_i -module M, where $H_e \cong H_i$ for some $e \in E(U, y)$, account for all simple right KU-modules.

References

- [1] A. H. Clifford, Matrix representations of completely simple semigroups, Amer. J. Math. **64**, (1942), 327-342.
- [2] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. I, Mathematical Surveys, no. 7, American Mathematical Society, Providence, RI, 1961.
- [3] J. L. Doob, Topics in the theory of Markoff chains, Trans. Amer. Math. Soc. **52** (1942), 37-64.
- [4] S. Eilenberg, Automata, languages, and machines. vol. B, Pure and Applied Mathematics, vol. 59, Academic Press, New York, 1976.
- [5] O. Ganyushkin, V. Mazorchuk, B. Steinberg, On the irreducible representations of a finite semigroup, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3585-3592.

- [6] J. A. Green, On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163-172.
- [7] _____, Polynomial representations of GL_n , Lecture Notes in Mathematics, 830, Springer-Verlag, Berlin, 1980.
- [8] R. J. Koch, A. D. Wallace, Stability in semigroups, Duke Math. J. 24 (1957), 193-195.
- [9] K. Henckell, S. Lazarus, J. Rhodes, Prime decomposition theorem for arbitrary semigroups: general holonomy decomposition and synthesis theorem, J. Pure Appl. Algebra 55 (1988), no. 1-2, 127-172.
- [10] K. Krohn, J. Rhodes, Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines, Trans. Amer. Math. Soc. 116 (1965) 450-464.
- [11] G. Lallement, M. Petrich, *Irreducible matrix representations of finite semigroups*, Trans. Amer. Math. Soc. **139** (1969), 393-412.
- [12] J. S. Montague, R. J. Plemmons, *Doubly stochastic matrix equations*, Israel J. Math. **15** (1973), 216-229.
- [13] W. D. Munn, On semigroup algebras, Proc. Cambridge Philos. Soc. 51, (1955). 1-15.
- [14] _____, Matrix representations of semigroups, Proc. Cambridge Philos. Soc. **53** (1957), 5-12.
- [15] I. S. Ponizovskii, On matrix representations of associative systems, Mat. Sb. (N.S.) **38**(80) (1956), 241-260 (Russian).
- [16] M. O. Rabin, Probabilistic Automata, Information and Control 6 (1963), 230-245.
- [17] D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.
- [18] J. Rhodes, B. Steinberg, The q-theory of finite semigroups, Springer Monographs in Mathematics, Springer, New York, 2009.
- [19] J. Rhodes, Y. Zalcstein, Elementary representation and character theory of finite semigroups and its application, In J. Rhodes, ed., Monoids and semigroups with applications (Berkeley, CA, 1989), 334-367, World Sci. Publ., River Edge, NJ, 1991.
- [20] M. P. Schützenberger, Sur la représentation monomiale des demigroupes, C. R. Acad. Sci. Paris 246 (1958), 865-867 (French).
- [21] _____, \bar{D} représentation des demi-groupes, C. R. Acad. Sci. Paris **244** (1957), 1994-1996 (French).

- [22] Š. Schwarz, On the structure of the semigroup of stochastic matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 297-311.
- [23] J. R. Wall, Green's relations for stochastic matrices, Czechoslovak Math. J. ${\bf 25}(100)$ (1975), 247-260.
- [24] H. P. Zeiger, Cascade synthesis of finite state machines, Information and Control 10 (1967), 419-433.
- [25] _____, Yet another proof of the cascade decomposition theorem for finite automata, Math. Systems Theory 1 (1967), 225-228.