SEMiX 151GD066HDs

SEMiX[®]13s

Trench IGBT Modules

SEMiX 151GD066HDs

Preliminary Data

Features

- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient

Typical Applications

- Matrix Converter
- Resonant Inverter
- Current Source Inverter

Remarks

- Case temperatur limited to T_C=125°C max.
- Product reliability results are valid for T_i=150°C
- SC data: t_p ≤ 6 µs; V_{GE} ≤ 15 V; T_j = 150°C; V_{CC} = 360, use of soft RG necessary
- take care of over-voltage caused by stray inductance

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specific								
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
I _C	$T_c = 25 (80) ^{\circ}\text{C}, T_i = 150 ^{\circ}\text{C}$	180 (130)	Α					
I _C	$T_c = 25 (80) ^{\circ}\text{C}, T_i = 175 ^{\circ}\text{C}$	200 (150)	Α					
I _{CRM}	t _p = 1 ms	300	Α					
V_{GES}		± 20	V					
T_j , (T_{stg})		- 40 + 175 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	$T_c = 25 (80) ^{\circ}\text{C}, T_i = 150 ^{\circ}\text{C}$	150 (100)	Α					
I _F	$T_c = 25 (80) ^{\circ}C, T_i = 175 ^{\circ}C$	170 (120)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	300	Α					
I _{FSM}	t_p = 10 ms; sin.; T_j = 25 °C	980	Α					

01	r.e T	- 25°C	unloss of	honviso s	nacified			
		case = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4.8 \text{ mA}$		5,8		V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 () ^{\circ}C$			0,25	mA			
$V_{CE(TO)}$	$T_j = 25 (150) ^{\circ}C$		0,9 (0,85)	1 (0,9)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (150) °C		3,7 (5,7)	6 (8)	mΩ			
$V_{CE(sat)}$	$I_{Cnom} = 150 \text{ A}, V_{GE} = 15 \text{ V},$		1,45 (1,7)	1,9 (2,1)	V			
	T _j = 25 (150) °C, chip level							
C _{ies}	under following conditions		9,2		nF			
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		0,6		nF			
C _{res}			0,28		nF			
L _{CE}			20		nΗ			
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C		0,7 (1)		mΩ			
t _{d(on)} /t _r	V _{CC} = 300 V, I _{Cnom} = 150 A		140 / 40		ns			
$t_{d(off)}/t_{f}$	V _{GE} = -8/+15V		385 / 40		ns			
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = 4,5 \Omega, T_j = 150 °C$		3,8 (6,1)		mJ			
Inverse diode								
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (150) °C, chip level		1,4 (1,5)	1,6	V			
$V_{(TO)}$	T _j = 25 (150) °C		1 (0,85)	1,1	V			
r _T	$T_{j} = 25 (150) ^{\circ}C$		2,7 (4,3)	3,3	mΩ			
I _{RRM}	I_{Fnom} = 150 A; T_j = 25 (150) °C		(155)		Α			
Q_{rr}	di/dt = 3000 A/µs		(24)		μC			
E _{rr}	V _{GE} = -8 V		(5,8)		mJ			
	haracteristics							
$R_{th(j-c)}$	per IGBT			0,3	K/W			
$R_{th(j-c)D}$	per Inverse Diode			0,5	K/W			
$R_{th(j-c)FD}$	per FWD				K/W			
$R_{th(c-s)}$	per module		0,04		K/W			
Temperat	ure sensor							
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ			
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K			
Mechanical data								
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			290		g			
		•						

SEMIX 151GD066HDs

SEMiX 151GD066HDs

SEMiX 151GD066HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.