Hyperspectral Image Analysis with a Functional Data Model

Doug Lindholm

Laboratory for Atmospheric and Space Physics University of Colorado Boulder

UCAR Software Engineering Assembly April 2, 2018

Outline

- The NASA HyLaTiS Project
- (Re)Introduction of the Functional Data Model
- Thinking about Data Functionally
- Modeling Data with the Functional Data Model
- Manipulating Data with Functional Algebra

HyLaTiS

- NASA funded project to support interactive analysis of hyperspectral imagery data
 - geo-referenced "grid" of spectra
- Big data problem (too big to fit into memory of a single machine)
- Distributed cloud-based solution (Spark)
- Functional Programming techniques
- Functional Data Model (LaTiS)

Functional Data Model

- Conceptual model that captures the functional relationship between independent and dependent variables
- Reference implementation in LaTiS Open
 Source Scala library being developed at LASP
 - Version 2: https://github.com/latis-data/latis
 - Starting version 3
- But first...

Relational Data Model

- Relation = table
- Tuple = row
- Scalar = column

Only says that the values in a row **are** related but not **how**

```
(time, flux)
```

time	flux
0	1
1	2
2	3
3	2
4	1

Functional Data Model

Constrains relations to functions

```
flux(time)
    or
time -> flux
```

time	flux
0	1
1	2
2	3
3	2
4	1

- Logically represents a sequence
 of samples: (0,1), (1,2), (2,3), ...
- Ordered and unique domain values
- Given an interpolation strategy, a data function becomes a computational function that you can evaluate: flux(1.5) => 2.5

Arbitrary Complexity

Functional Data Model structures (scalar, tuple, function) can be nested

```
time -> (temperature, wind:(u, v))
```

Arbitrary Complexity

Functional Data Model structures (scalar, tuple, function) can be nested

```
time -> (temperature, wind:(u, v))
```

Time series of spectra

```
time -> wavelength -> flux
```

Arbitrary Complexity

Functional Data Model structures (scalar, tuple, function) can be nested

```
time -> (temperature, wind:(u, v))
```

Time series of spectra

```
time -> wavelength -> flux
```

Hyperspectral data cube (gridded spectra)

```
(lon, lat) -> wavelength -> flux
```

An array is just a function of index

An array is just a function of index

Separate arrays become one structure

```
time(i); flux(i) => time -> flux
```

An array is just a function of index

```
i -> a
```

Separate arrays become one structure

```
time(i); flux(i) => time -> flux
```

Akin to NetCDF coordinate variables

```
time(time); flux(time) => time -> flux
```

An array is just a function of index

```
i -> a
```

Separate arrays become one structure

```
time(i); flux(i) => time -> flux
```

Akin to NetCDF coordinate variables

```
time(time); flux(time) => time -> flux
```

Multiple variables with shared dimensions becomes one structure using tuples

```
a(x); b(x); c(x) => x -> (a, b, c)
```

An array is just a function of index

Separate arrays become one structure

```
time(i); flux(i) => time -> flux
```

Akin to NetCDF coordinate variables

```
time(time); flux(time) => time -> flux
```

Multiple variables with shared dimensions becomes one structure using tuples

```
a(x); b(x); c(x) => x -> (a, b, c)
```

Multi-dimensional array

$$(x,y) -> (a,b,c)$$

Functional Algebra Manipulating Data

- selection
- projection
- join
- groupBy
- pivot
- transpose
- curry
- partial application
- bijective functions
- function composition

The Functional Data Model inherits the mathematics of relational algebra

$$t \rightarrow (a,b)$$

t	а	b
10	1	on
20	2	off
30	3	on
40	2	on
50	1	off

The Functional Data Model inherits the mathematics of relational algebra

$$t \rightarrow (a,b)$$

Projection: reduce number of variables

t	a	b
10	1	on
20	2	off
30	3	on
40	2	on
50	1	off

The Functional Data Model inherits the mathematics of relational algebra

$$t -> (a,b)$$

Projection: reduce number of variables

- project t , a => t -> a
- project b => i -> b
 need index placeholder for domain

i	t	а	b
0	10	1	on
1	20	2	off
2	30	3	on
3	40	2	on
4	50	1	off

The Functional Data Model inherits the mathematics of relational algebra

$$t -> (a,b)$$

Projection: reduce number of variables

$$-$$
 project b => i -> b

Selection: reduce number of samples

$$-$$
 select $t = 20$

t	а	b
10	1	on
20	2	off
30	3	on
40	2	on
50	1	off

The Functional Data Model inherits the mathematics of relational algebra

$$t -> (a,b)$$

Projection: reduce number of variables

Selection: reduce number of samples

$$-$$
 select t = 20

$$-$$
 select $a > 1$

t	а	b
10	1	on
20	2	off
30	3	on
40	2	on
50	1	off

Joins

Relational Algebra joins are based on column name.

Functional Algebra joins are based on domain sets.

- Requires same domain type
- Interpolate if domain sets differ
- Otherwise nulls or fill values

Append time segments:

```
Jan:t -> a + Feb:t -> a + ... => t -> a
```

Group By

Factor out a new domain

```
i -> (t, f)
groupBy(t)
t -> i -> f
```

Since t might not be unique, we may have multiple f values. Relational algebra requires aggregation (e.g. sum, mean)

If t is unique, we can reduce: t -> f

Pivot

Given a 2D Cartesian dataset

Make a column for each unique value of w

t	w	f
0	1	10
0	2	20
1	1	30
1	2	40

t	f1	f2
0	10	20
1	30	40

Transpose

$$(x,y) -> f$$

 $(y,x) -> f$

Implications for ordering (if only logical)

Currying

```
(t, w) -> f

t -> w -> f
```

- Requires Cartesian grid (same wavelengths for every time)
- Changes notion of "sample"

Partial Application

Given an uncurried spectral time series:

$$(t, w) -> f$$

we can *evaluate* it for a given time (t) and wavelength (w) to get a single flux (f) value.

Given a curried spectral time series:

we can *evaluate* it for a given time (t) and end up with a spectrum: $w \rightarrow f$

Bijective (one-to-one) Functions

Coordinate system transformations

$$(x, y) < -> (lon, lat)$$

Can go both ways.

Could be as simple as

For example, index into a data structure given a time value.

Function Composition

```
f: a -> b
g: b -> c
g.f: a -> c
```

Given that we can make a data function behave as a computational function given an interpolation strategy, we can compose algorithms with data!

HyLaTiS: Hyperspectral Imagery in the Cloud with Spark

HySICS: LASP built hyperspectral imager

Balloon Flight

flight direction (y) slit orientation (x)

Slit Image spectra at each pixel

 $(x, w) \rightarrow f$

Data Cube

sequence of slit images

$$y -> (x, w) -> f$$

Algebraically Transform to Geo-Gridded Spectra

```
Original data cube: y \rightarrow (x, w) \rightarrow f
uncurry (3D array): (y, x, w) \rightarrow f
curry (gridded spectra): (y, x) \rightarrow w \rightarrow f
                          (x, y) -> w -> f
transpose:
coordinate system transform (algorithm):
   (lon, lat) <-> (x, y)
function composition (algorithm + data!):
   (lon, lat) \rightarrow w \rightarrow f
```

Apache Spark

- Spark effectively provides a large virtual dataset that is distributed among nodes in a cluster, typically in memory.
- The trick is to partition your data to take advantage of parallelism while minimizing data shuffling.
- Resilient Distributed Dataset: RDD
- Effectively a collection of things of a given type "T": RDD[T]

Spark and the Function Data Model

- Since a data function can be thought of as a sequence of Samples, we can define our Spark dataset as RDD [Sample]
- The functional algebra can generally be defined as computational functions of Samples: f: Sample -> Sample
- Spark can apply these operations to our distributed dataset (RDD) in parallel

Collecting an RGB image dataset

Start with geo-referenced data cube:

```
(lon, lat) -> w -> f
uncurry: (lon, lat, w) -> f
    - sample = single voxel
    - partioned far and wide
select lon, lat coverage
select three wavelength values for red, green, blue
pivot on wavelength
    (lon, lat) -> (red, green, blue)
```

Partition Considerations 2D Data Compression

Start with geo-referenced data cube:

```
(lon, lat, w) -> f
groupBy w
```

```
w -> (lon, lat) -> f
```

- Causes data shuffling
- Partitioned by outer dimension: w
- each w slice is collocated so compression algorithm can work on each 2D grid

Summary

- Functional Data Model provides a useful abstraction for modeling and manipulating datasets
- Captures key elements of the Relational Data Model and Multi-dimensional array data model
- Can be applied to any dataset, logically or in practice.