

Chapitre 1: Nombres Complexes

1 Ensemble \mathbb{C} des Nombres Complexes

Théorème 1

Il existe un ensemble, qu'on note \mathbb{C} , qui contient \mathbb{R} et dont chaque élément z s'écrit d'une manière **unique** sous la forme z=x+iy, où $x,y\in\mathbb{R}$, et i est un élément de \mathbb{C} qui vérifie $i^2=-1$.

Propriétés 1: Règles de Calcul dans C

Pour tous $z_1, z_2, z_3 \in \mathbb{C}$, on a :

- 1. $z_1 + z_2 = z_2 + z_1$ et $z_1 z_2 = z_2 z_1$.
- 2. $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ et $z_1(z_2z_3) = (z_1z_2)z_3$.
- 3. $z_1 + 0 = 0$ et $z_1 \cdot 1 = z_1$.
- 4. $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$.

Définition 1

L'ensemble \mathbb{C} est appelé l'ensemble des **nombres complexes**. Si z de \mathbb{C} s'écrit de la forme z=x+iy, avec $x,y\in\mathbb{R}$, x est appelé la **partie réelle** de z et y est appelé la **partie imaginaire** de z, et on note Re(z)=x et Im(z)=y. L'écriture x+iy s'appelle la **forme algébrique** du nombre complexe z.

Si $z \in \mathbb{C}$ de partie réelle nulle, on dit que z est un **imaginaire pur**. On note l'ensemble des nombres imaginaires pures par $i\mathbb{R}$.

Exercice 1 Calculer les parties réelle et imaginaire de iz en fonction de celles de z.

Soient $z_1, z_2 \in \mathbb{C}$, on a:

•
$$z_1 = z_2 \iff Re(z_1) = Re(z_2) \text{ et } Im(z_1) = Im(z_2)$$

•
$$z = 0 \iff Re(z) = Im(z) = 0$$

•
$$z \in \mathbb{R} \iff Im(z) = 0$$

•
$$z \in i\mathbb{R} \iff Re(z) = 0$$

Exercice 2 Soient $z_1, z_2 \in \mathbb{C}$ et $\lambda \in \mathbb{R}$,

- (1) Calculer les parties réelle et imaginaire de λz_1 .
- (2) Calculer les parties réelle et imaginaire de $z_1 + z_2$
- (3) Même question pour z_1z_2 .

Inteprétation géométrique des nombres complexes :

Si \mathcal{P} est un plan euclidien muni d'un repère orthonormé direct $\mathcal{R} = (O, \vec{i}, \vec{j})$. L'application :

$$\phi: \quad \mathbb{C} \quad \longrightarrow \quad \mathcal{P}$$
$$z = x + iy \quad \longmapsto \quad M(x, y)$$

nous permet d'identifier l'ensemble des nombres complexes $\mathbb C$ au plan $\mathcal P$.

Si z = x + iy, avec $x, y \in \mathbb{R}$, alors $M = \phi(z) = M(x, y)$ est dit l'image de z, et z est appelé l'affixe du point M, et on note M(z) au lieu de M(x, y).

Remarque 1 • L'axe (O, \vec{i}) est appelé l'axe réel.

• l'axe (O, \vec{j}) est appelé l'axe imaginaire.

Proposition 2

Si A et B sont deux points du plan d'affixes respectifs a et b, alors le vecteur \overrightarrow{AB} a pour affixe b-a.

Définition 2: Conjugué d'un nombre complexe

Soit $z = x + iy \in \mathbb{C}$, avec $x, y \in \mathbb{R}$.

On appelle **conjugué** de z, qu'on note \overline{z} , le nombre complexe x - iy.

Interprétation géométrique du conjugué :

Remarque 2 On a alors $Re(z) = Re(\overline{z})$ et $Im(z) = -Im(\overline{z})$.

Soient $z, z_1, z_2 \in \mathbb{C}$. On a les propriétés suivantes :

•
$$Re(z) = \frac{z + \overline{z}}{2}$$
 et $Im(z) = \frac{z - \overline{z}}{2i}$.

- $z \in \mathbb{R} \iff \overline{z} = z$.
- $z \in i\mathbb{R} \iff \overline{z} = -z$.
- $\bullet \ \overline{\overline{z}} = z.$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}.$
- $\bullet \ \overline{z_1 z_2} = \overline{z_1}.\overline{z_2}.$
- Si $z_2 \neq 0$, alors $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}$.

Définition 3: Module d'un nombre complexe

Soit $z \in \mathbb{C}$.

On appelle **module** de z, qu'on note |z|, le réel positif $\sqrt{(Re(z))^2 + (Im(z))^2}$.

Interprétation géométrique du module :

Exemples 1 Calculer le module de z = 1 - i.

Application. Donner la forme algébrique du nombre complexe $z = \frac{1+2i}{1-i}$.

Soient $z, z_1, z_2 \in \mathbb{C}$. On a :

- $\bullet |z| = 0 \iff z = 0.$
- $\bullet |z|^2 = z\overline{z}.$
- $\bullet \ |-z| = |\overline{z}| = |z|.$
- $|Re(z)| \le |z|$ et $|Im(z)| \le |z|$.
- $|z_1z_2| = |z_1|.|z_2|.$
- $|z^n| = |z|^n$, pour tout $n \in \mathbb{N}$.
- Si $z_2 \neq 0$, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$.

Proposition 5: Inégalités triangulaires

Soient $z_1, z_2 \in \mathbb{C}$, on a:

• Inégalité triangulaire :

$$|z_1 + z_2| \le |z_1| + |z_2|$$

avec égalité si, et seulement s'il existe un réel positif λ tel que $z_1=\lambda z_2$ ou $z_2=\lambda z_1.$

• Inégalité triangulaire renversée :

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

Remarque 3 Si A(a) et B(b) sont deux points du plan, alors $|b-a|=||\overrightarrow{AB}||$.

Propriétés 2

Soit A un point du plan d'affixe a et $r \geq 0$. Alors,

- L'ensemble $\{z\in\mathbb{C}, |z-a|=r\}$ est le cercle de centre A et du rayon r.
- L'ensemble $\{z\in\mathbb{C}, |z-a|\leq r\}$ est le disque de centre A et du rayon r.

2 Forme Trigonométrique

2.1 Nombres complexes de module 1

Définition 4

On note par \mathbb{U} l'ensemble des nombres complexes de module 1. Autrement dit, \mathbb{U} est le cercle trigonométrique : le cercle de centre O et de rayon 1.

Remarque 4 $Si z \in \mathbb{C}$, alors

$$z\in\mathbb{U}\iff \overline{z}=\frac{1}{z}\iff \overline{z}\in\mathbb{U}$$

Exercice 3 Montrer que pour tout $\theta \in \mathbb{R}$, $\cos(\theta) + i\sin(\theta) \in \mathbb{U}$.

Exercice 4 Soient $a, b \in \mathbb{U}$ tels que $a \neq -b$. Montrer que $\frac{1+ab}{a+b} \in \mathbb{U}$.

2.2 Exponentielle d'un imaginaire pur

Définition 5

Pour tout $\theta \in \mathbb{R}$, on note $e^{i\theta} := \cos(\theta) + i\sin(\theta)$.

Exemples 2 $e^{i.0} = 1$, $e^{i\pi} = -1$, $e^{i\frac{\pi}{2}} = i$.

Notation On note $e^{-i\theta} := e^{i(-\theta)}$, pour tout $\theta \in \mathbb{R}$.

Remarque 5 Pour tout $\theta \in \mathbb{R}$, $e^{i\theta} \neq 0$.

Interprétation géométrique du nombre complexe $e^{i\theta}$:

- Pour $z \in \mathbb{C}$, $z \in \mathbb{U} \iff \exists \theta \in \mathbb{R}, z = e^{i\theta}$.
- Pour tous $\theta, \theta' \in \mathbb{R}$, $e^{i\theta} = e^{i\theta'} \iff \theta = \theta'[2\pi]$

Propriétés 3

Soient $\alpha, \beta \in \mathbb{R}$ et $n \in \mathbb{Z}$. Alors :

- $\overline{e^{i\alpha}} = \frac{1}{e^{i\alpha}} = e^{-i\alpha}$.
- $\bullet \ e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}.$
- Formules d'Euler: $\cos(\alpha) = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$ et $\sin(\alpha) = \frac{e^{i\alpha} e^{-i\alpha}}{2i}$.
- Formule de Moivre : $(e^{i\alpha})^n = e^{in\alpha}$. Autrement dit, $(\cos(\alpha) + i\sin(\alpha))^n = \cos(n\alpha) + i\sin(n\alpha)$.

Méthode: L'angle moitié

Si $\alpha, \beta \in \mathbb{R}$, alors

$$e^{i\alpha} + e^{i\beta} = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} + e^{-i\frac{\alpha-\beta}{2}} \right) = 2\cos(\frac{\alpha+\beta}{2})e^{i\frac{\alpha-\beta}{2}}$$

 et

$$e^{i\alpha} - e^{i\beta} = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} - e^{-i\frac{\alpha-\beta}{2}} \right) = 2i\sin(\frac{\alpha+\beta}{2})e^{i\frac{\alpha+\beta}{2}}$$

Application: Pour $\beta \in]0, \pi[$, trouver le module de $z = 1 + e^{i\beta}$.

2.3 Argument d'un nombre complexe non nul

Théorème 2

Tout nombre complexe non nul z peut être exprimé sous la forme suivante, appelée forme trigonométrique :

$$z = |z|e^{i\theta} = |z|(\cos(\theta) + i\sin(\theta)), \text{ avec } \theta \in \mathbb{R}$$

Définition 6

Avec les notation du Théorème 2, θ est appelé **un argument** de z et on note

$$arg(z) \equiv \theta[2\pi]$$

7

Exemples 3 Déterminer un argument de 1 + i et $1 + i\sqrt{3}$.

Méthode : Si $z = re^{i\theta} \in \mathbb{C}^*$, avec $r, \theta \in \mathbb{R}$. Alors deux cas se présentent :

- Si r > 0, alors |z| = r et $\arg(z) \equiv \theta[2\pi]$.
- Si r < 0, alors |z| = -r et $\arg(z) \equiv \pi + \theta[2\pi]$.

Remarque 6 Si $z \in \mathbb{C}^*$ et I =]a, b] un intervalle de \mathbb{R} de longeur $b - a = 2\pi$. Alors il existe un unique $\theta \in I$ tel que $z = |z|e^{i\theta}$. En particulier si $I =]-\pi, \pi]$.

Interprétation géométrique de la multiplication par $e^{i\theta}$:

Propriétés 4

Soient $z, z_1, z_2 \in \mathbb{C}^*$ et $n \in \mathbb{Z}$:

- $\arg(\overline{z}) \equiv -\arg(z)[2\pi]$
- $\arg(z_1 z_2) \equiv \arg(z_1) + \arg(z_2)[2\pi]$
- $\arg\left(\frac{1}{z}\right) \equiv -\arg(z)[2\pi]$
- $\operatorname{arg}\left(\frac{z_1}{z_2}\right) \equiv \operatorname{arg}(z_1) \operatorname{arg}(z_2)[2\pi]$
- $\arg(z^n) \equiv n \arg(z)[2\pi]$

Exercice 5 Calculer un argument de $\frac{1+i}{1+i\sqrt{3}}$.

Interprétation géomtrique d'un argument d'un nombre complexe non nul : Soit $z = x + iy \in \mathbb{C}^*$, avec $x, y \in \mathbb{R}$;

Un argument de z est alors égale, $\mod 2\pi$, à une mesure de l'angle orienté $(\vec{i}, \overrightarrow{OM})$.

Proposition 7: Caractérisation des réels avec la notion d'argument

Soit $z \in \mathbb{C}$. Alors,

$$z \in \mathbb{R} \iff \arg(z) \equiv 0[\pi]$$

$$z \in \mathbb{R}^+ \iff \arg(z) \equiv 0[2\pi]$$

$$z \in \mathbb{R}^- \iff \arg(z) \equiv \pi[2\pi]$$

$$z \in i\mathbb{R} \iff \arg(z) \equiv \frac{\pi}{2}[\pi]$$

Proposition 8

Soient a et b des réels tels que $(a,b) \neq (0,0)$. Alors il existe A et φ des réels tels que pour $t \in \mathbb{R}$:

$$a\cos(t) + b\sin(t) = A\cos(t - \varphi)$$

3 Racines de l'unité et Équations algébriques

3.1 Racines *n*-ièmes d'un nombre complexe

Définition 7

Soient $a, z \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On dit que z est une **racine** n-ième de a si $z^n = a$. En particulier, les racines n-ième de 1 sont appelées **racines** n-ième de l'unité. On note par \mathbb{U}_n l'ensemble de ces éléments.

Exemples 4 i et -i sont des racines carrés de -1.

Exercice 6 Déterminer les racines 4-ème de i.

Théorème 3

Soit $n \in \mathbb{N}^*$.

ullet Il existe exactement n racines n-ème de l'unité. Ces éléments sont de la forme:

$$e^{i\frac{2k\pi}{n}}$$
, avec $k \in [0, n-1]$

• De façon générale, si $a = re^{i\theta}$ est la forme trigonométrique d'un nombre complexe a non nul, avec $r \geq 0$ et $\theta \in \mathbb{R}$, alors a admet exactement n racines n-ème de l'unité. Ces racines sont les nombres complexes de la forme :

$$\sqrt[n]{r} e^{i\left(\frac{2k\pi}{n} + \frac{\theta}{n}\right)}$$
, avec $k \in [0, n-1]$

Exemples 5 On note $j = e^{i\frac{2\pi}{3}}$.

 $D\'eterminer \ les \ racines \ cubiques \ de \ l'unit\'e \ en \ fonction \ de \ j.$

Exercice 7 Déterminer les racines cubiques de z = 1 + i.

3.2 Racines carrées

On présente trois méthodes pour déterminer les racines carées d'un nombre complexe non nul a:

1. **Méthode trigonométrique :** Si on peut écrire simplement a sous son forme trignométrique $a = re^{i\theta}$, avec r > 0 et $\theta \in \mathbb{R}$, alors les racines carrés de a sont

$$\pm\sqrt{r}e^{i\frac{\theta}{2}}$$

2. Méthode algébrique : Si a = x + iy, avec $x, y \in \mathbb{R}$, alors on cherche des $c, d \in \mathbb{R}$ tels que

$$\begin{cases} c^{2} + d^{2} &= \sqrt{x^{2} + y^{2}} &= |a| \\ c^{2} - d^{2} &= x &= Re(a) \\ 2cd &= y &= Im(a) \end{cases}$$

Les racines carrées de a sont alors $\pm (c + id)$.

3. Identités remarquables : Dans cette méthode on essaye tout simplement de remarquer une identité remarquable, i.e. des $c, d \in \mathbb{R}$ dont $(c+id)^2 = a$.

Exercice 8 Déterminer les racines carrés de a = -3 + 4i.

3.3 Application : Équations du Second Degré

Théorème 4

Soient a, b et $c \in \mathbb{C}$ tels que $a \neq 0$.

L'équation $az^2 + bz + c = 0$ admet deux solutions, éventuellement égaux qui sont

$$z_1 = \frac{-b-\delta}{2a}$$
 et $z_2 = \frac{-b+\delta}{2a}$

où $\delta \in \mathbb{C}$ tel que $\delta^2 = \Delta = b^2 - 4ac$.

Remarque 7 • Avec les notations du théorème précédent, on a

$$z_1 + z_2 = -\frac{b}{a} et z_1 z_2 = \frac{c}{a}$$

et on a alors $az^{2} + bz + c = a(z - z_{1})(z - z_{2})$

• Dans le cas où $a,b,c \in \mathbb{R}$ et $\Delta < 0$, les deux solutions de l'équation sont des nombres complexes conjugués :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

Exercice 9 Résoudre dans C l'équation $z^2 - (1+i)z + 2 + 2i = 0$.

3.4 Factorisation D'un Polynôme

Théorème 5

Soient P un polynôme à coefficients complexes et $a\in\mathbb{C}.$

Si a est une racine de P, i.e. si P(a)=0, alors il existe Q un polynôme sur $\mathbb C$ tel que pour tout $z\in\mathbb C$,

$$P(z) = (z - a)Q(z)$$

Remarque 8 Dans ce cas, deg(Q) = deg(P) - 1.

Exercice 10 Considérons $P(z) = z^3 - z^2 + (5+7i)z + 10 - 2i$.

- 1. Justifier que P se factorise sous la forme P(z) = (z 2i)Q(z), où Q est un polynôme à coefficients complexes.
- 2. Déterminer Q.

4 Exponentielle Complexe

Définition 8

Si $z = x + iy \in \mathbb{C}$, on définit l'**expenentielle de** de z par :

$$e^z := e^x e^{iy} = e^{Re(x)} (\cos(y) + i\sin(y))$$

Remarque 9 On a alors:

- $Re(e^z) = e^{Re(z)}\cos(Im(z))$
- $Im(e^z) = e^{Re(z)}\sin(Im(z))$
- $\bullet |e^z| = e^{Re(z)}$
- $\arg(e^z) \equiv Im(z)[2\pi]$

Propriétés 5

Soient $r, r', \theta, \theta' \in \mathbb{R}$ tels que $r, r' \geq 0$, alors

$$re^{i\theta} = r'e^{i\theta'} \iff r = r' \text{ et } \theta \equiv \theta'[2\pi]$$

Notation 1 On note par $2i\pi\mathbb{Z}$ les nombres complexes de la forme $2ik\pi$, avec $k \in \mathbb{Z}$. L'équivalence dans Propriétés 5 devient alors :

$$re^{i\theta} = r'e^{i\theta'} \iff r = r' \ et \ \theta - \theta' \in 2i\pi\mathbb{Z}$$

Proposition 9

Soient z, z_1 et $z_2 \in \mathbb{C}$ et $n \in \mathbb{Z}$. Alors :

- $e^z \neq 0$.
- $\bullet \ \overline{e^z} = e^{\overline{z}}.$
- $\bullet \ e^{z_1 + z_2} = e^{z_1} z^{z_2}.$
- $\bullet \ e^{z_1 z_2} = \frac{e^{z_1}}{e^{z_2}}.$
- $\bullet \ e^{nz} = (e^z)^n.$

Notation 2 Puisque pour tout $z \in \mathbb{R}$, e^z n'est en fait que son imagine par la fonction exponentielle **réelle**. On note alors pour tout $z \in \mathbb{C}$, $\exp(z) := e^z$.

Soit $a \in \mathbb{C}^*$. Considérons sur \mathbb{C} l'équation $\exp(z) = a$ d'inconnue z. Les solutions de cette équation sont les nombres complexes $\ln(|a|) + iy$, avec $y \in \mathbb{R}$ tel que $y \equiv \arg(a)[2\pi]$.

5 Nombres complexes et Géométrie plane

Pour tout le reste, on considère \mathcal{P} un plan affine euclidien muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

Proposition 11

Si A(a) et B(b) deux points de \mathcal{P} , avec $a, b \in \mathbb{C}$, alors :

•
$$\overrightarrow{AB}(b-a)$$

•
$$AB = ||\overrightarrow{AB}|| = |b - a| \text{ et } (\overrightarrow{i}, \overrightarrow{AB}) \equiv \arg(b - a)[2\pi].$$

Corollaire 1

Soient A(a), B(b), C(c) et D(d) des points de \mathcal{P} tels que $A \neq B$ et $C \neq D$, alors :

$$\bullet \ \frac{CD}{AB} = \left| \frac{d-c}{b-a} \right|$$

•
$$(\overrightarrow{AB}, \overrightarrow{CD}) \equiv \arg\left(\frac{d-c}{b-a}\right) [2\pi].$$

Corollaire 2: Caractérisation de l'alignement et de l'orthogonalité

Soient A(a), B(b) et C(c) trois points distincts deux à deux de \mathcal{P} Alors,

•
$$A, B$$
 et C sont alignés $\iff \frac{b-c}{c-a} \in \mathbb{R}$

•
$$(AB) \perp (AC) \iff \frac{b-a}{c-a} \in i\mathbb{R}$$

Proposition 12: Caractérisation de la cocyclicité

Soient A(a), B(b), C(c) et D(d) quatre points du plan distincts deux à deux. On suppose de plus que A, B, C sont non alignés. Alors

$$A,B,C$$
 et D sont cocycliques $\iff \frac{d-a}{c-a}\frac{c-b}{d-b} \in \mathbb{R}$

5.1 Transoformations usuelles

Proposition 13

Soient M(z) et M(z') deux points de \mathcal{P} . Alors,

- M et M' sont symétriques par rapport à O si et seulement si z' = -z.
- M et M' sont symétriques par rapport à l'axe (O, \vec{i}) si et seulement si $z' = \overline{z}$.
- M et M' sont symétriques par rapport à (O, \vec{j}) si et seulemnt si $z' = -\overline{z}$.

Proposition 14

Soient $M(z), \Omega(\omega), \vec{u}(a)$ et $\lambda, \theta \in \mathbb{R}$. Alors,

- 1. M'(z') est l'image de M(z) par la **translation** de vecteur $\vec{u}(a)$ si et seulement si z' = z + a.
- 2. M'(z') est l'image de M(z) par l'**homothétie** de centre $\Omega(\omega)$ et de rapport λ si et seulemnt si $z' \omega = \lambda(z \omega)$.
- 3. M'(z') est l'image de M(z) par la rotation de centre $\omega(\omega)$ et d'angle θ si et seulement si $z' \omega = e^{i\theta}(z \omega)$.

5.2 Similitudes Directes

Définition 9

Une **similitude directe** est une transformation de plan admettant comme représentation dans le plan complexe l'application :

$$\begin{array}{ccc}
\mathbb{C} & \longrightarrow & \mathbb{C} \\
z & \longmapsto & az+b
\end{array}$$

avec $(a, b) \in \mathbb{C}^* \times \mathbb{C}$.

Théorème 6

Soient $a, b \in \mathbb{C}$, avec $a \neq 0$ et $f : \mathbb{C} \longrightarrow \mathbb{C}$ une similitude du plan telle que f(z) = az + b, pour tout $z \in \mathbb{C}$. Alors,

- Si a = 1, f est la translation de vecteur d'affixe b.
- Si $a \neq 1$, f admet un point fixe unique Ω d'affixe $\omega = \frac{b}{1-a}$. On appelle Ω le centre de la similitude. De plus, si

$$\begin{cases} \arg(a) \equiv \theta[2\pi] \\ r \text{ est la rotation de centre } \Omega \text{ et d'angle } \theta \\ h \text{ est l'homothétie de centre } \Omega \text{ et de rapport } |a| \end{cases}$$

alors $f = r \circ h = h \circ r$.