Возможное решение

Рис. 1

Как-то теоретик Баг, гуляя по берегу моря, увидел как отдыхающий строит замок из песка (рис. 1). Он решил узнать, какой максимальной высоты колонну можно построить из влажного песка. В одной из работ Леонарда Эйлера он обнаружил, что максимальная высота цилиндрической колонны изготовленной из однородного и изотропно-

го материала, может быть рассчитана по формуле

$$H = 1.25 \cdot E^{\alpha} R^{\beta} \rho^{\gamma} g^{\lambda}, \tag{1}$$

где α , β , γ и λ — некоторые числовые коэффициенты, R — радиус колонны, ρ — плотность материала, из которого она изготовлена, g — ускорение свободного падения, E — модуль Юнга. Баг рассчитал, что если колонну сделать из влажного песка, то при её радиусе $R_1=5\,\mathrm{cm}$, высота колонны окажется 1,0 м. Друг Бага, экспериментатор Глюк, решил собрать более «солидную» колонну. Он сделал радиус её основания $R_2=15\,\mathrm{cm}$. Колонна какой высоты получилась у Глюка?

Условие

Справочные данные: плотность влажного песка $\rho=1.5\times 10^3\,{\rm kr/m^3},$ его модуль Юнга $E=3.0\times 10^6\,{\rm \Pi a},$ ускорение свободного падения $g=9.8\,{\rm m/c^2}.$

Примечание. Модуль Юнга — это коэффициент пропорциональности между давлением (или растяжением), действующим на плоскую поверхность исследуемого образца и его относительным сжатием (удлинением).

Примерные критерии оценивания

Записана система (2)	2
Решена система (2)	1
Записано уравнение (3) или эквивалентное ему	
Найдено значение коэффициента а	
Отношение высот выражено через отношение радиусов	1
Найлена высота Но	

Поскольку высота имеет размерность длины, то все прочие размерности в выражении (1) должны в итоге дать ноль:

$$\dim (E^{\alpha} R^{\beta} \rho^{\gamma} g^{\lambda}) = M^{\alpha} L^{-\alpha} T^{-2\alpha} L^{\beta} M^{\gamma} L^{-3\gamma} L^{\lambda} T^{-2\lambda} =$$

$$= M^{\alpha+\gamma} T^{-2(\alpha+\lambda)} L^{\lambda-\alpha-3\gamma+\beta} = L,$$

а это значит, что

11-1

$$\begin{cases}
\alpha + \gamma = 0, & M \\
\alpha + \lambda = 0, & T \\
\lambda - \alpha - 3\gamma + \beta = 1. & L
\end{cases}$$
(2)

Решая эту систему уравнений получим: $\alpha = -\gamma = -\lambda$ и $\alpha + \beta = 1$. С учётом этих соотношений уравнение (1) перепишем в виде:

$$H = 1.25 \cdot \left(\frac{E}{\rho g}\right)^{\alpha} R^{1-\alpha}.$$
 (3)

Введём параметр

$$r = \frac{E}{\rho q} = \left(\frac{3.0 \times 10^6}{1.5 \times 10^3 \cdot 9.8}\right) \text{M} \approx 204 \text{ M}.$$

Теперь уравнение (1) примет вид: $H = 1.25 \, r^{\alpha} \, R^{1-\alpha}$. По расчетам Бага

$$1 \text{ M} = 1,25 (204 \text{ M})^{\alpha} (0,05 \text{ M})^{1-\alpha} = 1,25 \left(\frac{204 \text{ M}}{0,05 \text{ M}}\right)^{\alpha} (0,05 \text{ M}).$$

Это выражение преобразуем к виду: $16 = (4080)^{\alpha}$. Откуда находим

$$\alpha = \frac{\ln 16}{\ln(4080)} = \frac{2,773}{8,314} = \frac{1}{3}.$$

Применим уравнение (3) для случая расчета Бага и эксперимента Глюка, а затем поделим одно на другое:

$$\frac{H_1}{H_2} = \left(\frac{R_2}{R_1}\right)^{\frac{2}{3}}.$$

Отсюда следует, что $H_2 = \left(\frac{0.15}{0.05}\right)^{\frac{2}{3}} \cdot 1\,\mathrm{m} = 2.08\,\mathrm{m} \approx 2\,\mathrm{m}.$

Условие

Вблизи края гладкой горизонтальной полуплоскости лежат два одинаковых груза, соединенные лёгкой нерастянутой пружиной, длина которой l_0 , а жёсткость — k. К грузу, ближайшему к краю плоскости, с помощью нерастяжимой нити, перекинутой через лёгкий блок, прикреплён ещё один такой же груз массой m (рис. 28). Его удерживают так, что участок нити, идущий от блока к этому грузу, вертикален. Нижний груз отпускают.

Рис. 28

Через какое минимальное время au удлинение Δl пружины станет максимальным?

Найдите это удлинение.

Примерные критерии оценивания

Запись второго закона Ньютона для каждого из грузов (по 0.5 балла) $\dots 1.5$
Равенство сил, действующих на грузы 1 и 2 со стороны пружины0,5
Связи сил и ускорений, обусловленные нерастяжимостью нити
Получено уравнение (20)
Записано и решено уравнение колебаний
Найдено Δl
Найдено <i>т</i>

Возможное решение

Рассмотрим груз (1), к которому прикреплена только пружина (рис. 29). На него действует только сила F_1 со стороны пружины:

 $ma_1 = F_1. (15)$

Так как пружина лёгкая,

Рис. 29

$$\vec{F_1} + \vec{F_2} = 0$$
, или $F_1 = F_2 = F$. (16)

Груз (2) движется под действием силы F_2 со стороны пружины и силы F_3 со стороны нити:

$$ma_2 = F_3 - F_2. (17)$$

На груз (3) действуют силы тяжести mg и реакции нити F_4 :

$$ma_3 = mg - F_4. (18)$$

Поскольку нить нерастяжима, то

$$F_3 = F_4; \quad a_2 = a_3.$$
 (19)

Выразим из уравнений (15) - (19) разность ускорений

$$a_2 - a_1 = \frac{g}{2} - \frac{3F}{2m}.$$

С учётом закона Гука получаем:

$$\ddot{x} = a_2 - a_1 = \frac{g}{2} - \frac{3k}{2m}x,\tag{20}$$

где x — удлинение пружины.

Введём обозначения:

$$\omega^2 = \frac{3k}{2m}; \quad A_0 = \frac{mg}{3k}; \quad y = x - A_0;$$

и перепишем уравнение (20):

$$\ddot{y} + \omega^2 y = 0.$$

Мы получили уравнение колебаний, решение которого имеет вид

$$y = A\cos(\omega t) + B\sin(\omega t),$$

или, возвращаясь к переменной x:

$$x = A\cos(\omega t) + B\sin(\omega t) + A_0.$$

Из условия, что система в начальный момент времени неподвижна $(\dot{x}(0)=0)$ следует, что B=0, а из условия, что пружина не растянута — $A+A_0=0$. Отсюда получаем

$$x = A_0 \left(1 - \cos(\omega t) \right).$$

Максимальное удлинение $\Delta l=2A_0=\frac{2mg}{3k}$ достигается впервые через время $\tau=\frac{\pi}{\omega}=\pi\sqrt{\frac{2m}{3k}}.$

время
$$\tau = \frac{\pi}{\omega} = \pi \sqrt{\frac{2m}{3k}}.$$

Условие

На промышленных предприятиях для охлаждения больших объемов воды используют градирни (рис. 30). Рассмотрим идеализированную градирню, представляющую собой широкий цилиндр диаметром $D=15\,\mathrm{m}$, в котором на некоторой высоте H от основания через специальные форсунки (1) распыляется горячая вода, температура которой $t_1=50\,\mathrm{^oC}$. По мере падения она остывает до температуры $t_2=28\,\mathrm{^oC}$. Посредством вентилятора навстречу падающим каплям снизу со скоростью $u=2,0\,\mathrm{m/c}$ поднимается воз-

Бабинцев В.

дух при температуре $t_0=29^{\circ}$ С. Считайте, что его температура на протяжении всего пути остается неизменной, а влажность меняется от $\varphi=40\%$ на входе, до $\varphi_1=100\%$ на выходе из градирни. Какова производительность q градирни, то есть, сколько тонн воды охлаждается в ней за один час?

Справочные данные для воды: удельная теплоемкость $c=4.2\times10^3\,\mathrm{Дж/(kr\cdot ^\circ C)}$; удельная теплота парообразования $L=2.3\times10^6\,\mathrm{Дж/kr}$, температурная зависимость давления насыщенных паров приведена на графике (рис. 31).

Рис. 31

примерные критерии оценивания
Уравнение теплового баланса 2
Выражение для объёма воздуха, поступающего ежесекундно
Выражение для массы пара, поступающего в градирню в единицу времени. 2
Выражение для массы пара, выходящего из градирни за единицу времени . 2
Найдена масса воды, испаряющейся за единицу времени
Получен ответ

Возможное решение

По условию задачи температура воздуха, проходящего через градирню, не меняется, а вода остывает за счёт испарения. Изменение температуры Δt воды найдём на основе уравнения теплового баланса:

$$L\Delta m_1 = cq\Delta t$$
,

где Δm_1 — масса испарившейся воды в единицу времени, q — масса воды, проходящей через градирню в единицу времени.

В градирню ежесекундно поступает объем воздуха

$$V_1 = Su = \frac{\pi D^2}{4}u.$$

Масса водяного газа (пара), поступающего в единицу времени в градирню вместе с воздухом, равна

$$m_{ ext{BX}} = rac{V_1 \mu p}{RT},$$
 или $m_{ ext{BX}} = rac{\pi D^2 u \mu p}{4RT},$

где p — давление водяного пара на входе.

Масса пара, выходящего из градирни за то же время, равна

$$m_{ ext{вых}} = rac{V_1 \mu p_{ ext{Hac}}}{RT},$$
 или $m_{ ext{вых}} = rac{\pi D^2 u \mu p_{ ext{Hac}}}{4RT}.$

Таким образом, из поступающей в градирню воды ежесекундно испаряется

$$\Delta m_1 = \frac{\pi D^2 u \mu p_{\text{Hac}}}{4RT} (1 - \varphi).$$

Тогда

$$q = \frac{\Delta m_1 L}{c\Delta t} = \frac{\pi D^2 u \mu p_{\text{\tiny HAC}} (1-\varphi) L}{4RTc\Delta t} \approx 150 \; \text{кг/c} = 540 \; \text{т/час}.$$

Условие

Параметры электрической цепи указаны на схеме (рис. 32). Вначале ключ K разомкнут.

- 1. Определите напряжение на конденсаторе емкостью C.
- 2. Определите силу тока, который потечёт через резистор сопротивлением 3R, сразу после замыкания ключа K.
- 3. Какое напряжение установится на конденсаторе емкостью ${\cal C}$

после того, как переходные процессы в цепи завершатся?

Примерные критерии оценивания

До замыкания ключа:
Найдено напряжение на конденсаторе C до замыкания ключа
Сразу после замыкания ключа:
Записаны вторые законы Кирхгофа для двух различных контуров
Записан первый закон Кирхгофа
Определена сила тока, текущего через резистор $3R$ сразу после замыкани
ключа
После прекращения всех переходных процессов:
Записан закон сохранения заряда
Записаны вторые законы Кирхгофа для двух различных контуров
Найдено напряжение на конденсаторе ёмкостью C

Возможное решение

1. Вначале в замкнутом контуре, состоящем из емкостей C и 3C, ток не протекал. На рис. 33 изображена эквивалентная схема этой цепи. Суммарный заряд, сосредоточенный на верхних обкладках конденсаторов C и 3C, равен нулю. Значит,

$$\mathscr{E} = \frac{q}{C} + \frac{q}{3C} = \frac{4q}{3C}.$$

После алгебраических преобразований найдём искомое напряжение:

$$U_C = \frac{q}{C} = \frac{3}{4}\mathscr{E}.$$

2. Сразу после замыкания ключа K, заряд и напряжение на конденсаторе 2C равны нулю. Согласно второму закону Кирхгофа для контура №1 (рис. 34) запишем:

$$\mathscr{E} = -I_1 R + U_C + U_{3C} + I_3 R. \tag{21}$$

Поскольку $\mathscr{E} = U_C + U_{3C}$, уравнение (21) примет вид:

$$I_1R = I_3 \cdot 3R$$
, или $I_1 = 3I_3$.

Согласно второму закону Кирхгофа для контура $N\!\!\!^{\circ}2$ запишем:

$$2\mathscr{E} = I_2 \cdot 2R + U_{3C} + I_3 \cdot 3R$$
, или $\frac{7\mathscr{E}}{4R} = 2I_2 + 3I_3$.

По первому закону Кирхгофа $I_2 = I_1 + I_3 = 4I_3$. Тогда

$$I_3 = \frac{7\mathscr{E}}{44R}.$$

3. После того, как переходные процессы завершатся, ток по контурам течь не будет. На рис. 35 изображена эквивалентная схема этой цепи. Суммарный

заряд, сосредоточенный на верхних обкладках конденсаторов $C,\ 2C$ и 3C, равен нулю:

$$q_1 + q_2 = q_3.$$

Для контура №1:

$$\mathscr{E} = \frac{q_1}{C} + \frac{q_3}{3C}.$$

Для контура №2:

$$2\mathscr{E} = \frac{q_2}{2C} + \frac{q_3}{3C}.$$

Решая полученную систему уравнений, найдем

$$q_1 = \frac{1}{6}C\mathscr{E}, \quad U_1 = \frac{q_1}{C} = \frac{1}{6}\mathscr{E}.$$

2013/2014 уч.г. Региональный этап. Теоретический тур

Условие

Шесть идеальных катушек индуктивности соединили в электрическую цепь так, что катушки образовали ребра тетраэдра (рис. 36). К вершинам A и В подсоединили последовательно соединенные резистор сопротивлением R=100 Ом, батарейку с ЭДС $\mathscr{E}=4,6$ В, миллиамперметр и ключ. Индуктивность катушки L=1 мГн. Взаимной индуктивностью катушек пренебречь.

- 1. Вычислите силу тока I_{60} , протекающего через миллиамперметр спустя 1 минуту после замыкания ключа.
- 2. Вычислите силу тока, протекающего через каждую из катушек в тот момент, когда сила тока, протекающего через миллиамперметр, равна $I_{\rm A}==23~{\rm mA}.$

Примерные критерии оценивания

примерные притерии оденивании
Указано, что индуктивность системы порядка L 1
Указано, что характерное время равно $L/R = 10^-5 \ll 60 \text{ с} \dots 0,5$
Получен ответ $I_{60} = 46 \text{ мA} \dots 0,5$
Записан второй закон Кирхгофа для одного из контуров, состоящего только
из катушек
Показано, что для контура, содержащего только катушки, верно соотношение,
аналогичное (22)2
Первый способ
Получены уравнения для трех разных контуров, состоящих только из катушек
(по 0,5 балла за каждое)
Записан первый закон Кирхгофа для двух узлов (по 0,5 балла за каждый). 1
Записано выражение для суммарного тока через миллиамперметр0,5
Получен ответ для сил токов через катушки
Второй способ
Указано, что мост сбалансирован, ток через катушку $5L$ не течёт
Найдено отношение индуктивностей в параллельных ветвях
Получен ответ для сил токов через катушки

Возможное решение

1. Система катушек в тетраэдре имеет индуктивность порядка L. Характерное время установления токов в системе равно $L/R=10^{-5}$ с. Таким образом, за минуту в цепи переходные процессы прекратятся и искомая сила тока $I_{60} = \mathcal{E}/R = 46$ мА. 2. Перерисуем схему в виде, более удобном для анализа (рис. 37).

Для любой катушки индуктивности ЭДС самоиндукции

$$\mathscr{E}_i = -L \frac{dI}{dt}.$$

Рассмотрим контура, которые не содержат батареек. Для примера рассмотрим контур из катушек $2L,\,5L,\,3L.$ Запишем второй закон Кирхгофа:

Рис. 37

$$-2L\frac{dI_2}{dt} + 5L\frac{dI_5}{dt} + 3L\frac{dI_3}{dt} = 0,$$

$$-2L\Delta I_2 + 5L\Delta I_5 + 3L\Delta I_3 = 0.$$

Первый способ. Учитывая, что все токи вначале равны нулю, получаем:

$$-2I_2 + 5I_5 + 3I_3 = 0. (22)$$

Записывая аналогичные равенства для других контуров получаем ещё два уравнения:

$$-I_1 + 4I_4 + 2I_2 = 0, (23)$$

$$-4I_4 - 5I_5 + 6I_6 = 0 (24)$$

Для узлов, к которым присоединена катушка 5L, применим первый закон Кирхгофа:

$$I_2 + I_5 = I_4, (25)$$

$$I_3 = I_5 + I_6. (26)$$

Решая систему уравнений (22), (23), (24), (25), (26) с учётом того, что суммарный ток через миллиамперметр равен $I_A = I_1 + I_2 + I_3 = 23$ мА, получим:

$$I_5 = 0 \text{ MA}, \quad I_2 = I_4 = 3 \text{ MA}, \quad I_3 = I_6 = 2 \text{ MA}, \quad I_1 = 18 \text{ MA}.$$
 (27)

Второй способ. По аналогии с уравнением (22) можно провести формальную замену катушек индуктивности резисторами, причём аналогами сопротивлений будут являться индуктивности катушек L. Заметим, что катушки

индуктивности $2L,\,4L,\,3L,\,6L,\,5L$ образуют сбалансированный мост, так как верно соотношение:

$$\frac{2L}{4L} = \frac{3L}{6L}.$$

Мост сбалансирован, поэтому ток через катушку 5L не течёт.

Индуктивности параллельных ветвей сверху вниз относятся как 1:6:9, следовательно, силы тока будут относиться как 9:1,5:1 соответственно. Ток через миллиамперметр равен 23 мА. Поэтому, получаем ответ (27).