Mixing Limits of the Strange B⁰ Meson

Jamie E. Hegarty

Advised by Phil Gutierrez

Capstone 2005

Mixing Limits: Outline

- **★** Background & Motivation
 - ***** Standard Model Quarks
 - *B Production & Detection
 - ★B_s Decay & Mixing
 - *The B_s Mixing Process
- ★ Simulating Mixing Events
 - * Raw Decays and Detector Resolution
 - * Neutrino Smearing
 - * Tagging
 - * Mistagging

- ★ Analysis & Calculations
 - * Fitting to Simulated Data
 - ***** Dilution Comparison
 - ***** Sensitivity Calculation
- **★** Results & Conclusions
 - ***** Sensitivity Results
 - ★ To-Do & Preliminary
 Conclusions
- ★ Ref's & Ack's.

Background & Motivation

Standard Model Quarks

★ Quarks come in 6 flavors, and 3 "flavor doublets", as do their antiquarks:

Chg:	Antiquarks		
-2/3	ubar	cbar	tbar
+1/3	dbar	sbar	bbar

- **★ Hadrons** are composites of 2 or 3 quarks
- ★ Mesons are hadrons which contain quarkantiquark (q,qbar) pairs.
- **★** The **B**⁰ meson contains (bbar,d).
- ★ The strange B^0 (B_s) contains (bbar,s).

B_s Production & Detection

- ★ Our B_s currently produced at the Tevatron (Fermilab), detected at DØ.
- ★ DØ only detects stable longlived, charged particles
 (e, μ, p, etc.)
- ★ B_s not detected directly must be reconstructed from tracks of other particles
- ★ TeV is a hadron collider (not designed for B physics), so reconstruction is messy

B_s Decay & Mixing

- ★ Lifetime of B_s must be Reconstructed
- ⇒ inherent error in lifetime measurement

(vertex not always well-defined)

- Tittp://www.iriai.gov
- ★ B_s and B_sbar are *Uncharged*
- ★ Exist in superposition of 2 mass/CP eigenstates (differ by \(\Delta m_s \))
- \star Δm_s *small* (~10 $\mu eV \dots m_R$ ~100 MeV)
- ★ B_s may transition to B_sbar or v.v. [mixing]
- ★ "mixing" may occur before decay

B_s Mass Eigenstates

$$B_S^0 = \frac{1}{\sqrt{2}} |B_{S,1}^0\rangle + \frac{1}{\sqrt{2}} |B_{S,2}^0\rangle$$

$$\overline{B}_{S}^{0} = \frac{1}{\sqrt{2}} \left| B_{S,1}^{0} \right\rangle - \frac{1}{\sqrt{2}} \left| B_{S,2}^{0} \right\rangle$$

The B_s Mixing Process

- ★ B_s transforms into B_sbar via exchange of virtual W's between quarks
- ★ Weak, flavor-changing interaction
- ★ Dominated by top quark

- ★ Statistical Frequency of Mixing determined by difference in mass.
- ⇒ Measurement of mixing frequency allows measurement of **D**m

$$\frac{U-M}{U+M} = \cos(\Delta m \cdot t_p)$$

Ultimate Goal: Set a Limit on Measurement of ∆m

"Toy" Monte Carlo Production

★ Lifetime t_p Randomly Selected from Raw Exp. Decay Dist. $e^{-t/t}$

 \boldsymbol{t} is the mean B_{s} lifetime:

$$t = 1.5 * 10^{-12} s$$

- ★ t_p is "smeared" to Account for Time-Resolution of the Detector
- \Rightarrow Random "smearing" Value Selected from Gaussian (centered at 0, width s_t)... added to t_p

 \star Lifetime t_p smeared again to account for (unmeasured) neutrinos in primary decay

$$B_s \otimes D_{s} + m + n_m$$

- *Higher momentum (longer t_p) B_s decay to higher momentum n_m
- \Rightarrow This smearing is *lifetime-dependent* ($s = t_p s_n$)
- ***** Random Value Selected from Gaussian (cent. at 0, width $t_p s_n$) ... added to t_p

★ Tagging: Separating B_s from B_s bar

$$U(t_p)$$
 = "Unmixed" (B_s or B_s bar remained intact)
 $M(t_p)$ = "Mixed" (B_s became B_s bar, or v.v.)

★ *U*, *M* related by:

$$\frac{U - M}{U + M} = \cos(\Delta m \cdot t_p)$$

★ Random Number Selected from a flat dist. -1 = n = 1 $n < cos(Dm t_p) \rightarrow Unmixed$ $n > cos(Dm t_p) \rightarrow Mixed$

- ★ Mistagging: Tagging B_s as B_s bar or v.v.
- \star With mistag rate a:

$$N_{u}(t_{p}) = (1-\boldsymbol{a})U(t_{p}) + \boldsymbol{a}M(t_{p})$$

$$N_{m}(t_{p}) = (1-\boldsymbol{a})M(t_{p}) + \boldsymbol{a}U(t_{p})$$

$$\frac{N_{u} - N_{m}}{N_{u} + N_{m}} = (1-2\boldsymbol{a})\cos(\Delta m \cdot t_{p})$$

⇒ Mistagging affects only the *amplitude* of the cosine.

(1-2a) is called "Dilution"

Analysis & Calculations

Determining Sensitivity of a Dilution Measurement to Changes in Other Parameters

Fitting to the Simulated Data

- \star A long, complicated function f(t) was used
 - * **5** parameters (!): tag, σ_{t-fit} , Δm_{fit} , τ_{fit} , α_{fit}
- **★** Unbinned Likelihood Amplitude Fitting:
 - * [unbinned] MC lifetime data compared event-by-event (rather than being histogrammed first)
 - * [likelihood] Each value of t_p in the MC compared to distribution $f(t_p)$ to determine likelihood that t_p was selected from f(t)
 - * [amplitude] All parameters except α_{fit} held fixed during the fit
 - \Rightarrow only fit for Dilution (D=1-2a)

Analysis: Dilution Comparison

- ★ Each fit done ~20 times, varying \(\Delta m_{fit} \) each time.
- ★ Resulting Values of D_{fit} = $(1-2a_{fit})$ divided by D_{MC} (dilution in the MC), then plotted against Δm_{fit}
- ★ D_{fit}/D_{MC} peaks to 1 when $\Delta m_{fit} = \Delta m_{MC}$
- ★ Errors in D_{fit} greater for larger ∆m_{fit}

Sensitivity Calculation

- ★ Goal: Find Δm_{fit} for which error in D_{fit} is $\geq 1 \dots regardless$ of true Dm
- ★ Δm_{MC} set very high (>1eV, or 1000 ps⁻¹) so no peak occurs
- \star Error in D_{fit}/D_{MC} plot vs. Δ m_{fit}
- ★ Δm_{fit} where error = 1: Sensitivity of D to these MC/fit conditions
- ★ Correct D (and ∆m) would only be measurable below the Sensitivity value.

Results & Conclusions

Sensitivity Results

★ Sensitivity Calculated for:

- * \pm 20% variation in σ_{t} (detector time resolution)
- * ± 20% variation in D (dilution)

Sens of D to $\pm 20\%$ var. in σ_{t} (ps ⁻¹)						
Fit/MC	0.08	0.10	0.12			
0.08	22.07	23.56	-			
0.10	17.66	17.74	17.88			
0.12	-	15.74	15.00			

Sens of D to $\pm 20\%$ var. in D (ps ⁻¹)						
Fit/MC	0.128	0.160	0.192			
0.128	16.35	16.35	-			
0.160	17.75	17.74	17.75			
0.192	-	18.90	18.91			

- * No neutrino smearing used here $(\sigma_n = 0)$
- *Fit values for D are "initial" values

Sensitivity Results

★ Sensitivity Calculated for:

- * \pm 20% variation in σ_n (time-dependent resolution)
- * σ_n couldn't be explicity included in fitting

<u>s_n ignored:</u>

included in MC but not in fit

<u>Avg:</u>

MC values binned, binweighted average σ used in fit

Eff s at t:

actual smearing value calc'd at each t during fit

Sens of D to $\pm 20\%$ var. in σ_{n} (ps ⁻¹)							
Fit/MC	0.130	0.163	0.196				
s_{n} ignored	17.799	17.783	17.808				
Avg $(s_{n,}s_{t})$	6.473	5.840	5.162				
Eff s at t	-	13.386	-				

Conclusions

- ★ Up Next (possibly):
 - * Add background noise
 - * Repeat all this with Full DØ-MC
 - * Check sensitivity values with another method
- ★ Potential Problems:
 - * Fit function becomes extremely difficult (impossible?) with S_n included!
 - * Signal-to-Noise ratio unknown.
 - * We might be entirely forgetting something.
- **★** Conclusions:
 - * This method works great ... up to a point
 - * Sensitivity values lowest (worst) when smearing is averaged, highest (best) for underestimating σ_t or overestimating D

References & Acknowledgements

★ References

- * Anikeev et. Al, "B Physics at the Tevatron: Run II and Beyond", FERMILAB-Pub-01/197, December 2001
- * Perkins, Donald H., *Introduction to High Energy Physics*, 4th ed., Cambridge UP, 2000
- * "CP Violation in B Meson Decay: FAQ", http://www.physics.uc.edu/~kayk/cpviol/CP_A0.html, 09/30/04
- * Griffiths, David, *Introduction to Elementary Particles*

★ Acknowledgements

- * Phil Gutierrez (advisor)
- * Peter Williams (theory guru)

★ Images:

- * B-event: http://quarknet.fnal.gov/run2/b_lifetime2.shtml
- * DØ cutaway: http://www-d0.fnal.gov/public/detector/picures.html