

ÁLGEBRA

GRADO EN INGENIERÍA INFORMÁTICA

CURSO 2014/15. Convocatoria Ordinaria 2.

Apellidos y Nombre :			DNI :	
Grupo de teoría : Grupo de prácticas:				
Evaluación continua	□ Sí □ No	□ Polinomios. Nota: □ El Grupo Simétrico. Nota: □ Teoría de Grafos. Nota:	Prácticas	□ Apto. Nota □ No apto

- 1. (10 puntos) Dado el polinomio: $p(x) = -9x^2 + 36x^3 + 36x^4 + 45x^5$
 - a) Factorizar y calcular sus raíces en $\mathbb{Z}[x]$, $\mathbb{Z}_2[x]$ y $\mathbb{R}[x]$.
- b) Definir polinomio irreducible y decir quiénes son los irreducibles de la factorización de p(x) en $\mathbb{Z}[x]$ y en $\mathbb{R}[x]$.
- 2. (10 puntos) Definir permutación y grupo simétrico.

Dada la permutación $\sigma = (1\ 2\ 3)\ (3\ 4)\ (4\ 5\ 6)\ (8\ 9\ 10)$ de S_{10} , se pide:

- a) Comprobar si $\sigma \in A_{10}$.
- b) Calcular $\tau = \sigma^{600}$ y τ^{-1} .
- - a) Representar gráficamente.
 - b) Comprobar si es de Euler, de Hamilton, regular y plano.
- 4. (10 puntos) Para $V = M_{3\times 1}(\mathbb{R})$ y $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ consideramos el conjunto $U = \{X \in V \mid AX = 0\}$. Se pide:
 - a) Demostrar que U es un subespacio vectorial.
 - b) Calcular dimensión, una base B_U , ecuaciones paramétricas y ecuaciones implícitas U.
 - c) Sea W el subespacio vectorial generado por $\{AX \mid X \in B_U\}$, calcular la dimensión, base, ecuaciones paramétricas e implícitas de W.
- 5. (10 puntos) Para $V = P_1(\mathbb{R})$ y $\langle p(x), q(x) \rangle = \int_0^1 p(x) \, q(x) \, dx$ su producto escalar, se pide:
 - a) Enunciar las propiedades de producto escalar y demostrar dos de ellas.
 - b) Calcular la matriz de Gram para la base canónica $B_C = \{1, x\}$.
 - c) Calcular la matriz de Gram respecto de la base $B = \{x, 1\}$.
 - d) Calcular, explícitamente, la relación que existe entre las dos matrices de Gram que has calculado.
- 6. (10 puntos) Sea V un espacio vectorial complejo con base $B = \{v_1, v_2, v_3, v_4\}$, y sea f un endomorfismo en V cuya expresión matricial respecto de B es

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

- a) Para $v = v_1 + v_3 + v_4$, calcular f(v). $\forall v \in \text{Ker}(f)$? $\forall v \in \text{Im}(f)$?
- b) Definir y calcular los valores propios. Calcular una base de cada subespacio propio.
- c) Calcular, si es posible, una base de autovectores y razonar si es diagonalizable por semejanza.