DM 13, pour le mardi 28/03/2023

Si vous voulez d'autres problèmes sur les séries, n'hésitez pas à chercher la partie sur les séries du DM11 (le 2ieme problème), vous avez le corrigé de ceci sur l'ENT (avec le corrigé du DM11).

$$\begin{array}{c} \mathbf{PROBL\grave{E}ME} \\ \mathbf{\acute{E}tude} \ \ \mathbf{DE} \ \sum_{n \in \mathbb{N}^*} \frac{\cos(nx)}{(n+1)^{\alpha}} \end{array}$$

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de réels. Pour $n\in\mathbb{N}$, on note $S_n=\sum_{k=0}^n a_k b_k$ et $B_n=\sum_{k=0}^n b_k$.

- 1) Montrer que pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=0}^{n-1} (a_k a_{k+1}) B_k + a_n B_n$.
- 2) On suppose que la suite $(B_n)_{n\in\mathbb{N}}$ est bornée et que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante et converge vers 0.
 - a) Justifier que $\sum_{n\in\mathbb{N}} (a_n a_{n+1})$ converge.
 - b) En déduire que la série $\sum_{n\in\mathbb{N}} (a_n a_{n+1})B_n$ converge absolument.
 - c) Conclure que la série $\sum_{n\in\mathbb{N}} a_n b_n$ converge.
- 3) On rappelle le théorème des séries alternées : « si $(u_n)_{n\in\mathbb{N}}$ est une suite réelle décroissante qui converge vers 0, alors la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$ converge ». Donnez-en une démonstration en utilisant la question précédente. Il ne s'agit donc pas de la démonstration vue en cours.
- 4) Soit $(\alpha, x) \in \mathbb{R}^2$ avec $\alpha > 0$.
 - a) Calculer $\sum_{k=0}^{n} \cos(kx)$ pour $n \in \mathbb{N}$.
 - b) Déterminer la nature de la série $\sum_{n\in\mathbb{N}} \frac{\cos(nx)}{(n+1)^{\alpha}}$. Attention à bien être précis sur les disjonctions de cas.

PROBLÈME Séries de Bertrand.

Le but de l'exercice est de déterminer une condition nécessaire et suffisante sur $\alpha, \beta \in \mathbb{R}$ pour que la série $\sum_{n \geq 2} \frac{1}{n^{\alpha}(\ln^{\beta}(n))}$ converge. Ceci généralise le critère de Riemann.

- 1) Vérifier que si $\alpha < 0$, la série diverge grossièrement.
- 2) On fixe $\alpha \in [0,1[$. Vérifier que $\frac{1}{n} = o_{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$. En déduire dans ce cas la nature de la série.

- 3) En utilisant un raisonnement similaire, montrer que la série converge dans le cas où $\alpha > 1$.
- 4) On se place dans le cas $\alpha = 1$.
 - a) Montrer que si $\beta \leq 0$, alors la série diverge.

Dans toute la suite, on suppose que $\beta > 0$.

- b) Montrer que $f_{\beta}: x \mapsto \frac{1}{x(\ln^{\beta}(x))}$ est décroissante sur $[2, +\infty[$.
- c) Déterminer pour $n \geq 2$, $\int_2^n f_{\beta}(x) dx$. On séparera les cas $\beta = 1$ et $\beta \neq 1$.
- d) Montrer alors que $\sum_{n\geq 2} \frac{1}{n\ln^{\beta}(n)}$ converge si et seulement si $\beta>1$.
- 5) Donner finalement une condition nécessaire et suffisante sur (α, β) pour que $\sum_{n\geq 2} \frac{1}{n^{\alpha}(\ln^{\beta}(n))}$ converge.