Electrical & Computer Engineering Department National University of Singapore

EE2011 Engineering Electromagnetics Tutorial 3: Field Operators

(for week beginning 13 February 2012)

The tutorial discussion will focus on Questions 3 and 4 (which are marked by asterisks *).

1. BASICS

- (a) Determine the spherical coordinates of the location P specified by (4, 120°, 3) in the cylindrical coordinate system.
- (b) Determine the angle between the vectors \vec{E} and \vec{B} at the point P where

 $\vec{E} = \frac{25}{R^2} \hat{u}_R$ expressed in spherical coordinates

 $\vec{B} = 2\hat{u}_x - 2\hat{u}_y + \hat{u}_z$ expressed in Cartesian coordinates

 $\overrightarrow{OP} = -3\hat{u}_x + 4\hat{u}_y - 5\hat{u}_z$ expressed in Cartesian coordinates.

- (c) For the vector function $\vec{E} = y\hat{u}_x + x\hat{u}_y$, evaluate the scalar line integral $\int_P^Q \vec{E} \cdot d\vec{s}$ from P(2, 1, -1) to Q(8, 2, -1) along the parabolic contour $x = 2y^2$ on the z = -1 plane.
- 2. Determine the following for the scalar function $V = \sin(\frac{\pi}{2}x)\sin(\frac{\pi}{3}y)e^{-z}$:
- (a) grad V at the point P(1, 2, 3)
- (b) rate of increase of V at P in the direction of \overrightarrow{PO} (*i.e.* towards the origin).
- 3. * For the vector function $\vec{E} = y^2 z \, \hat{u}_x + y^3 \hat{u}_y + x z \, \hat{u}_z$, verify that the Divergence Theorem holds for the cube enclosed by the plane surfaces S_1 (where x = 1), S_2 (where x = -1), S_3 (where y = 1), S_4 (where y = -1), S_5 (where z = 2) and S_6 (where z = 0).

4. * For the vector function $\vec{B} = 3x^2y^3\hat{u}_x - x^3y^2\hat{u}_y$, verify that Stoke's Theorem holds for the triangular contour PQR where the Cartesian coordinates of the three vertices are given by P (2, 2, 0), Q (2, 1, 0) and R (1, 1, 0).

Answers:

- 1(a) (5, 53.1°, 120°)
- 1(b) 153.6°
- 1(c) 14
- $2(a) 0.026 \,\hat{u}_x 0.043 \,\hat{u}_y$
- 2(b) 0.0485