Université 20 Août 1955-Skikda Faculté de Technologie Département de Technologie Corrigé de l'Examen de la Mécanique des Fluides 2^{éme} année LMD-ST

Groupes: Génie des Procédés, Hygiène et Sécurité Industrielle, Génie Civil, Travaux Public et Génie Mécanique

Date: 31/03/2021 durée: 1H

	Questions de cours	(8	pts):	Choisissez	la	bonne	réponse
--	--------------------	----	-------	------------	----	-------	---------

ucs	choisissez la sonne reponse.
1)	Un fluide est dit parfait lorsque :
	• sa viscosité n'est pas nulle.
	• sa viscosité est constante. \square (1)
	• sa viscosité est nulle.
2)	Les surfaces isobares sont:
	• des plans verticaux.
	des plans horizontaux.
	• des plans inclinés.
3)	La force hydrostatique sur une plaque plane est toujours :
	• tangentielle à la plaque
	• parallèle à la plaque
	• perpendiculaire à la plaque
4)	On dit que le liquide ne mouille pas le solide lorsque :
	• l'angle de raccordement $(\theta > 90^{\circ})$.
	• l'angle de raccordement ($\theta < 90^{\circ}$).
	• l'angle de raccordement $(\theta = 90^{\circ})$.
5)	Un écoulement permanent :
	• est un écoulement qui ne dépend pas du temps.
	• est un écoulement qui ne varie pas dans l'espace.
C)	• est un écoulement qui dépend du temps.
6)	Dans le système international, l'unité de la viscosité cinématique est : • m. s ⁻²
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	• stokes
7)	La loi de Jurin est donnée par cette expression :
•,	• $h = \frac{2 \sigma \cos \theta}{2 \sigma r}$
	ρ γ τ
	$ h = \frac{2 \rho \cos \theta}{\sigma g r} $ $ h = \frac{2 g \cos \theta}{\rho \sigma r} $
	• $h = \frac{2 g \cos \theta}{1 - \frac{1}{2} g \cos \theta}$
6)	
8)	La viscosité dynamique est donnée par cette expression :
	$\bullet \mu = \frac{\frac{du}{dy}}{\tau} \qquad \qquad \boxed{1}$
	$\bullet \mu = \rho \frac{\tau}{\dot{\tau}} \qquad \qquad \boxed{1}$
	$\bullet \mu = \rho \frac{\tau}{\frac{du}{dy}} \qquad \Box$ $\bullet \mu = \frac{\tau}{\frac{du}{dy}} \qquad \boxtimes$
	$\bullet \mu = \frac{\tau}{du}$
	dy

Exercice 1 (6 pts)

Dans le dispositif de la figure 1, quelle est la valeur indiquée par le manomètre?

Données; $h_1 = 35 \text{ cm}$; $h_2 = 25 \text{ cm}$; $h_3 = 80 \text{ cm}$; $\rho_{\rm Eau} = 10^3 \, {\rm kg/m^3}$; $\delta_{\rm mercure} = 13.6$;

 $\delta_{\text{huile}} = 0.72$; g = 9.81 m/s²

 $P_{atm} \\$

Figure 1

Réponse : Choisissez la bonne réponse.

- 1) Expression de P_{manomètre}:
- $P_{\text{manomètre}} = \rho_{\text{eau}} g \left(-h_1 + \delta_{\text{mercure}} h_2 + \delta_{\text{huile}} h_3 \right)$
- $P_{\text{manomètre}} = \rho_{\text{eau}} g \left(h_1 \delta_{\text{mercure}} h_2 + \delta_{\text{huile}} h_3 \right)$
- $P_{\text{manomètre}} = \rho_{\text{eau}} g \left(-h_1 + \delta_{\text{mercure}} h_2 \delta_{\text{huile}} h_3 \right)$

2) A. N.

- $P_{\text{manomètre}} = -24,270 \text{ } kPa$
- 24,740 kPa $P_{\text{manomètre}} =$
- 35,571 kPa $P_{\text{manomètre}} =$

Exercice 2 (6pts)

De l'eau s'écoule à travers la conduite représentée sur la figure 2. L'eau est considérée comme un fluide parfait.

Calculer la pression au point (**B**).

On donne:

 $\rho_{eau} = 10^3 \text{ kg/m}^3$; $D_A = 5 \text{ cm}$; $D_B = 15 \text{ cm}$; h = 70 cm. $\delta_{\text{mercure}} = 13.6 \; ; \; Q_v = 10 \; l.s^{-1} \; ; \; g = 9.81 \; \text{m/s}^2 \; ; \; H = 1 \text{m}$

H **Réponse** : Choisissez la bonne réponse. 1) Expression de P_B:

$$\left(\frac{1}{24} - \frac{1}{24}\right)$$

•
$$P_B = P_{atm} - \rho_{eau} g H + \rho_{mercure} g h + \frac{8 Q_v^2}{\pi^2} \rho_{eau} \left(\frac{1}{D_A^4} - \frac{1}{D_B^4} \right)$$

Figure 2

Mercure

- $P_B = P_{atm} + \rho_{eau} g H + \rho_{mercure} g h + \frac{8 Q_v^2}{\pi^2} \rho_{eau} \left(\frac{1}{D_A^4} \frac{1}{D_B^4} \right)$
- 2) A. N.:
- $P_B = 1,964 \times 10^5 Pa$

- $P_B = 2,160 \times 10^5 Pa$ • $P_B = 1,708 \times 10^5 Pa$