Exponential discounting examples

Notes on Behavioural Economics

Jason Collins

$$\delta = 0.95$$

$$u(x_n) = x_n$$

$$\delta = 0.95$$

$$u(x_n) = x_n$$

Choice 1: \$100 today or \$110 next week

$$U_0(0,\$100) = u(\$100)$$

= 100

$$U_0(0,\$100) = u(\$100)$$

= 100

$$U_0(1,\$110) = \delta u(\$110)$$

= 0.95 × 110
= 104.50

$$U_0(0,\$100) = 100 < 104.50 = U_0(1,\$110)$$

$$\delta = 0.95$$

$$u(x_n) = x_n$$

Choice 2: \$100 next week or \$110 in two weeks

$$U_0(1,\$100) = \delta u(\$100)$$

= 0.95 × 100
= 95

$$U_0(1,\$100) = \delta u(\$100)$$

= 0.95 × 100
= 95

$$U_0(2,\$110) = \delta^2 u(\$110)$$

= $0.95^2 \times 110$
= 99.275

$$U_0(1,\$100) = 95 < 99.275 = U_0(2,\$110)$$

$$\delta = 0.95$$

$$u(x_n) = x_n$$

$$\delta = 0.95$$

$$u(x_n) = x_n$$

What sum would she need to be offered in one year (52 weeks) to prefer that later payment to the \$100 today?

$$U_0(0,\$100) = u(\$100)$$

= 100

$$U_0(0,\$100) = u(\$100)$$

= 100

$$U_0(52, \$ y) = \delta^{52} u(\$ y)$$
$$= 0.95^{52} \times y$$

$$U_0(52, \$y) > 100$$

$$U_0(52, \$y) > 100$$

$$0.95^{52} \times y > 100$$

$$U_0(52, \$y) > 100$$

$$0.95^{52} \times y > 100$$

$$y > \frac{100}{0.95^{52}}$$

$$U_0(52, \$y) > 100$$

$$0.95^{52} \times y > 100$$

$$y > \frac{100}{0.95^{52}}$$

$$\delta = 0.75$$

$$u(x_n) = x_n$$

$$\delta = 0.75$$

$$u(x_n) = x_n$$

\$10 in five days (t = 5) or \$20 in 10 days (t = 10)?

$$U_0(5,\$10) = \delta^5 u(\$10)$$

= $0.75^5 \times 10$
= 2.37

$$U_0(5,\$10) = \delta^5 u(\$10)$$

= $0.75^5 \times 10$
= 2.37

$$U_0(10,\$20) = \delta^{10}u(\$20)$$

= $0.75^{10} \times 20$
= 1.13

$$U_0(5,\$10) = 2.37 > 1.13 = U_0(10,\$20)$$

$$\delta = 0.95$$

$$u(x_n) = x_n$$

\$10 in five days (t = 5) or \$20 in 10 days (t = 10)?

$$U_0(5,\$10) = \delta^5 u(\$10)$$

= $0.95^5 \times 10$
= 7.74

$$U_0(5,\$10) = \delta^5 u(\$10)$$

= $0.95^5 \times 10$
= 7.74

$$U_0(10, \$20) = \delta^{10}u(\$20)$$

= $0.95^{10} \times 20$
= 11.97

$$U_0(5,\$10) = 7.74 < 11.97 = U_0(10,\$20)$$

