Problem 1 _

Write a program which can be used as a (very) simple calculator. The program reads, using a **Scanner**, two numbers (of type **double**) and, as a **String**, the symbol of an arithmetic operation (+, -, * or /). Then it displays the result (sum, difference, product or ratio of the two numbers). In order to compare strings, say s1 and s2, use function **equals** (s1.equals(s2) returns true or false).

Problem 2 _

Write a program reading integers until zero is entered and printing the length of the longest sequence of consecutive numbers of the same value (and this value). For example, for

2 2 2 2 3 3 3 2 6 6 6 0

the result should be

Longest sequence: 4 times 2

for

2 2 2 3 3 3 3 3 2 6 6 6 0

the result should be

Longest sequence: 5 times 3

and for

2 2 3 3 2 3 6 6 6 0

it should be

Longest sequence: 3 times 6

Do not use arrays, strings or any other kind of collections.

Problem 3 _

Write a program which reads four integer numbers and prints the difference between the largest and the smallest of them. Don't use arrays, strings or collections.

Problem 4 _

Write a program which reads an odd natural number n and writes on the console a symmetric 'kite' consisting of asterisks: in the first line n stars, in the second line n-2 stars, ..., in n-th – one star. For example, for n=7 the output should look like this:

***** **** ***

*

Problem 5_

Write a program which reads two natural numbers, w and h, and then prints a rectangle with width w and height h. For example, if the numbers are 7 and 5, the result should look like this:

****** * * * * * *

Problem 6_

Write a program which finds the greatest common divisor (GCD) of two numbers read from the user. Use Euclid's algorithm (*Elements*, Book VII).

In order to find the GCD of number a i b $(a, b \in \mathbb{N})$ repeat the sequence:

- 1. if a = b, then GCD=a and END;
- 2. if a > b, then decrease a by b or, if b > a, then decrease b by a;

Note that the algorithm requires only testing equality and subtracting. For those mathematically inclined: show that the algorithm will always stop, i.e., that after a finite number of iterations the condition in step 1 will be satisfied (and both a and b will then be equal to GCD of the two numbers that we started with).

Problem 7 ____

Write a program printing the multiplication table for numbers from 1 to n. For example, if n is 12, the table should look like this:

1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10	12	14	16	18	20	22	24
3	6	9	12	15	18	21	24	27	30	33	36
4	8	12	16	20	24	28	32	36	40	44	48
5	10	15	20	25	30	35	40	45	50	55	60
6	12	18	24	30	36	42	48	54	60	66	72
7	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	56	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

In order to print a number on four places, padding it from the left with spaces for shorter numbers, you can use ${\tt System.out.printf("%4d",n)}$.