

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

TFT LCD Preliminary Specification

MODEL NO.: V216C1 - L02

LCD TV Head Division			
AVP	郭振隆		

QRA Dept.	TVHD/PDD					
	DDII DDI DDI					
Approval	Approval	Approval	Approval			
陳永一	李汪洋	藍文錦	林文聰			

LCD TV Marketing and Product Management Dept.					
Product Manager	陳績檍 謝芳宜				

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	7
4. BLOCK DIAGRAM 4.1 TFT LCD MOULE 4.2 BACKLIGHT UNIT	10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 INVERTER UNIT 5.4 COLOR DATA INPUT ASSIGNMENT	11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 14
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 16
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS	 20
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING Method	 21
10. MECHANICAL CHARACTERISTICS	 23

Preliminary

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0 Ver 1.0	Mar. 06,06 Mar. 06,06	All All	All All	Preliminary Specification was first issued. RoHS Compliance

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V216C1-L02 is a 21.66" TFT Liquid Crystal Display module with 6-I CCFL Backlight unit and 2Path-RSDS interface. This module supports 1440 x 900 WXGA+ format and displays 262144 colors(6-bit).

1.2 FEATURES

- High brightness (400 nits)
- High contrast ratio (1000:1)
- Fast response time (Gray to Gray average 6.5ms)
- High color saturation (NTSC 75%)
- WXGA+ (1440 x 900 pixels) resolution
- DE (Data Enable) only mode
- 2Path-RSDS interface

1.3 APPLICATION

- TFT LCD TVs, Multi-Function Monitors

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	466.56x291.6	mm	(1)
Bezel Opening Area	470.6x295.6	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1440 x R.G.B. x 900	pixel	-
Pixel Pitch(Sub Pixel)	0.324	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.2M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Hardness : 3H Anti-Glare coating (Haze 25%)	-	-

1.5 MECHANICAL SPECIFICATIONS

	tem	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	491.0	491.6	492.2	mm	(1)
Module Size	Vertical(V)	323.7	324.2	324.7	mm	(1)
	Depth(D)	20.63	21.43	22.23	mm	-
W	eight	-	3600	-	gm.	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Preliminary

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	V	alue	Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note	
	VAA	-0.3	+14.0	V		
Power Supply Voltage	V33V	-0.3	+5.0	V		
	VGH	-0.3	+30.0	V	-	
	VGL	-12.0	+0.3	V		

2.2.2 BACKLIGHT UNIT

Item	Symbol		Unit	Note	
item	Syllibol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	-	3000	V_{RMS}	-
Lamp Current	IL	ı	7.5	mA_{RMS}	
Lamp Frequency	FL	20	80	KHz	_

Preliminary

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \, ^{\circ}C$

Parameter		Symbol	Value			Unit	Note	
	Parameter		Min.	Тур.	Max.	Offic	NOLE	
Davier County Voltage		VAA	13.2	13.4	13.6	V		
		V33V	3.2	3.3	3.4	V		
Power Su	Power Supply Voltage		23.0	23.5	24.0	V		
		VGL	-5.9	-5.6	-5.3	V		
		IAA	-	-	300	mA		
Dower Su	Power Supply Current		-	-	100	mΑ		
rower Su			-	-	10	mA		
		IGL	-10	-	-	mA		
RSDS	Differential Input High Threshold Voltage	VDIFFRSDS	100	200	-	mV	-	
Interface	II lifterential Innuit Low			-200	-100	mV	-	
			0.1	1.2	2.1	V	-	
	Terminating Resistor	R_T	81.18	82	82.82	ohm	-	
CMOS	Input High Threshold Voltage	V_{IH}	2.7	-	3.3	V	-	
interface	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	-	

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note		
Farameter	Syllibol	Min.	nin. Typ. Max.		Offic	Note	
Lamp Input Voltage	V_L	ı	766		V_{RMS}	I∟ = 7.0 mA	
Lamp Current	ال	6.5	7	7.5	mA_{RMS}	-	
Larray Trum On Valtage	17		-	1500	V_{RMS}	Ta = 25 °C	
Lamp Turn On Voltage	Vs		-	1700	V_{RMS}	Ta = 0 °C	
Operating Frequency	F_L	40	50	60	KHz	-	
Lamp Life Time	L_BL	40000	50000	-	Hrs	-	

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The lifetime of a lamp is defined as the time in which it continues to operate under the condition Ta = 25 \pm 2 °C and I_L = (6.5) ~ (7.5) mArms until one of the following events occurs:
 - (a) When the brightness becomes equal or less than 50% of its original value.
 - (b) When the effective discharge length becomes equal or less than 80% of its original value. (Effective discharge length is defined as an area that has equal or more than 70% brightness

Preliminary

compared to the brightness at the center point.)

Note (5) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Note (1) Connector Part No.: (L:LG GF058-50S-LSS-AF-P2000) (R:LG GF058-20S-LSS-AF-P2000)or compatible

4.2 BACKLIGHT UNIT

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02 **Preliminary**

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CN1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	GND	Ground	1100
2	BB2P		
3	BB2N	Right side RSDS data of Blue pixel 4,5 bits	
4	BB1P	D' 1 . ' 1 DGDG 1	
5	BB1N	Right side RSDS data of Blue pixel 3,2 bits	
6	BBOP	D' 1. ' 1 DODG 1. CD1 ' 1101'.	
7	BB0N	Right side RSDS data of Blue pixel 1,0 bits	
8	BG2P	D. 1 1 Dana 1	
9	BG2N	Right side RSDS data of Green pixel 4,5 bits	
10	BG1P	D' 1. '1 DGDG 1	
11	BGIN	Right side RSDS data of Green pixel 3,2 bits	
12	BGOP		
13	BGON	Right side RSDS data of Green pixel 1,0 bits	
14	GND	Ground	
15	BCKP		
16	BCKN	Right side RSDS data clock	
17	GND	Ground	
18	BR2P		
19	BR2N	Right side RSDS data of Red pixel 4,5 bits	
20	BR1P		
21	BR1N	Right side RSDS data of Red pixel 3,2 bits	
22	BR1N BR0P		
23	BRON	Right side RSDS data of Red pixel 1,0 bits	
	GND	Ground	
24 25			
	BSTH	Right side start pulse Ground	
26 27	GND		
	VAA	13.5V power supply	
28	VAA	13.5V power supply	
29	VAA	13.5V power supply	
30	V33V	3.3V power supply	
31	V33V	3.3V power supply	
32	VGL	-5.5V power supply	
33	VGL	-5.5V power supply	
34	GND	Ground	
35	TP1	Latch input	
36	POL	Polarity inverting	
37	GND	Ground	
38	FB2P	Left side RSDS data of Blue pixel 4,5 bits	
39	FB2N		
40	FB1P	Left side RSDS data of Blue pixel 3,2 bits	
41	FB1N		
42	FB0P	Left side RSDS data of Blue pixel 1,0 bits	
43	FB0N		
44	FG2P	Left side RSDS data of Green pixel 4,5 bits	
45	FG2N		
46	FG1P	Left side RSDS data of Green pixel 3,2 bits	
47	FG1N		

Preliminary

48		FG0P	Left side RSDS data of Green pixel 1,0 bits	
49	I	FG0N	Desir side Robbs data of Green pixel 1,0 ons	
50		GND	Ground	

Note (1) Connector CN1 Part No.:LG-GF058-50S-LSS-AF-P2000 or equivalent.

CN2 Connector Pin Assignment

		•	
Pin No.	Symbol	Description	Note
1	GND	Ground	
2	GND	Ground	
3	FCKP	Right side RSDS data clock	
4	FCKN	Tagin side Nobb data clock	
5	GND	Ground	
6	FR2P	Left side RSDS data of Red pixel 4,5 bits	
7	FR2N	Delt side Robb data of Red pixer 1,5 ofto	
8	FR1P	Left side RSDS data of Red pixel 3,2 bits	
9	FR1N	Ecit side Robb data of Red pixer 3,2 ons	
10	FR0P	Left side RSDS data of Red pixel 1,0 bits	
11	FR0N	Delt side Robb data of Red pixer 1,0 ons	
12	GND	Ground	
13	FSTH	Left side start pulse	
14	STV	Gate driver side start pulse	
15	CKV	Gate driver shift clock	
16	OE	Gate driver output enable control	
17	GND	Ground	_
18	VGH	23.5V power supply	_
19	VGH	23.5V power supply	
20	GND	Ground	

Note (1) Connector CN2 Part No.:LG-GF058-20S-LSS-AF-P2000 or equivalent.

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV1	High Voltage	Blue or Dark Blue
2	LV	Ground	White

Note (1) Connector Part No.: BHSR-02VS-1 (JST) or equivalent

Note (2) Matching Connector Part No.: SM02-BHSS-1-TB (JST) or equivalent

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

								1	D	ata :				1					
Color				Re							een					Blι			
	In	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	_
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:		:		:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	÷		\Box		:	:	:	:	:
Of	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	Ö	0	0	0	0	0	0	1	Ö	ő	0	0	0	0
	Green(2)	0	0	0	0	0	Ö	ŏ	0	0	0	1	0	0	0	0	0	ő	0
Gray		l č							•										
Scale			:					7.		:	:			:	:	:		:	
Of	Green(61)	0	0	Ö	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
Green	Green(62)	0	0	0	0	ŏ	0	i	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	Ö	0	0	0	0	1	1	1	1	1	1	ő	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	Ö	0	0	0	0	Ö	0	0	0	0	0	0	0	0	Ö	ő	1
	Blue(2)	0	0	0	0	0	Ö	ő	0	0	0	0	0	0	0	0	0	1	0
Gray	DidC(Z)	·	J.					.											١. ١
Scale			:	:		:		:	:			:		:	:	:	:	:	
Of	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
Blue	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1		1
	Diae(03)	U	U	U	U	U	U	U	U	U	U	U	U			ı	ı		ш

0: Low Level Voltage, 1: High Level Voltage Note (1)

Preliminary

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
RSDS Receiver Clock	Frequency	1/Tc	-	45	(56)	MHz	
RSDS Receiver Data	Setup Time	Tlvsu	1	-	-	ps	
RSDS Receiver Data	Hold Time	Tlvhd	-	-	-	ps	
	Frame Rate	Fr	-	60	75	Hz	
Vertical Active Display Term	Total	Tv	(907)	926	(1050)	Th	Tv=Tvd+Tvb
vertical Active Display Term	Display	Tvd	900	900	900	Th	-
	Blank	Tvb	(7)	26	(105)	Th	-
	Total	Th	(750)	800	(960)	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	720	720	720	Tc	-
	Blank	Thb	(30)	80	(240)	Tc	-

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of V33V, VAA, VGL and VGH.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of V33V=off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T5 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	Ha	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	Iμ	7.0±0.5	mA
Oscillating Frequency (Inverter)	F_W	52 ± 3	KHz
Frame rate	F _r	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contras	t Ratio	CR		(800)	(1000)		-	Note(2)
Response time Center Luminance of White		Gray to gray(Average)			(6.5)	(12)		Note(3)
Center Lumina	ance of White	L _C			(400)		cd/m ²	Note(4)
White Va	ariation	δW		"		(1.3)	-	Note(7)
Cross	Talk	CT				(4)	%	Note(5)
	Red	Rx	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$		(0.654)		-	
Color Chromaticity	Red	Ry	Viewing Normal Angle		(0.333)		1	Note(6)
	Green Blue	Gx			(0.285)		-	
		Gy			(0.605)			
		Bx			(0.142)		1	Note(0)
Cilioniation		Ву			(0.070)		-	
	White	Wx			(0.313)		-	
	vviile	Wy			(0.329)		-	
	Color	Gamut			(75)		%	NTSC
	Horizontal	θ^{x} +		(80)	(88)			
Viewing	i ionzoniai	θ_{x} -	CD>20	(80)	(88)		Dog	NI-4-(4)
Angle	\	θ _Y +	CR≥20	(80)	(88)	_	Deg.	Note(1)
	Vertical	θ _Y -		(80)	(88)			

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02 Preliminary

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

. The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0 ,63,127,191,255 to each other.

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02 Preliminary

Note (4) Definition of Luminance of White L_C:

Measure the luminance of gray level 255 at center point.

L_C = L (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02 **Preliminary**

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Preliminary

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / carton
- (2) carton dimensions :596(L) X 330 (W) X 435 (H)
- (3) Weight: approximately 22Kg (5 modules per carton)

9.2 PACKING Method

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

Issued Date: Mar. 06, 2006 Model No.: V216C1-L02

Preliminary

Corner Protector:L1250*50*50mm L1130*50*50mm Pallet:L1000*W1200*H140mm Pallet Stack:L1000*W1200*H1445mm Gross:412kg

Figure. 9-2 Packing method

Preliminary

10. MECHANICAL CHARACTERISTICS

Preliminary

Preliminary

