

程序代写代做 CS编程辅导

CMT1@ ual Computing

III.1 Object Representation WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com Xianfang Sun

QQ: 749389476

https://tutorcs.com School of Computer Science & Informatics Cardiff University

Overview

- ➤ Constructive 转航代码的件件等程辅导
- ➤ Boundary re **国际高**回ation
- ➤ Mesh repres
 - Rendering newwith OpenGL
- > Volumetric representations voxels

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Example Models and Scenes

Geometric Modelling

- - Scene description of the whole environment
 - *Model* descri an object in the environment
 - Suitable for creating diting, analysing and rendering
- > Object representations: cstutores
 - Constructive solid geometry (CSG) Help
 - Boundary representation (B-rep) Email: tutorcs@163.com
 - Mesh representation

QQ: 749389476

Volumetric representation: voxels

Constructive Solid Geometry

- ➤ Use set of volumetrip 在宇宙性機能多編程辅导
 - Block, Tetrahedron, sphere, cylinder, cone, ...

- > Construct objects oolean operations
 - Union, intersected in the service

Assignment Project Exam Help

CSG Tree

Common for Carre based modelling

Boundary Representation

Explicitly represent boundary of 编hier 导

• Basic elements are (natural) *faces, edges, vertice*(shape)

Mathematically: an algebraic complex Assignment Project Exam Help (topology) with a geometric realisation (geonetric) tutorcs@163.com

Algorithmically: @@rapabasetry&tructure (topology) where nodes have https://tutorcs.com shape (geometry) attributes

B-Rep: An Algebraic Complex


```
► Bound (topology) = {(e_1, {v_1, v_3}), (e_2, {v_1, v_4}), (e_3, {v_1, v_2}), (e_4, {v_3, v_4}), (e_5, {v_2, v_4}), (e_6, {v_2, v_3}), (f<sub>1</sub>, {e_1, e_2, e_4}), (f<sub>2</sub>Emails stutores @31 & 3 com e_6}), (f<sub>4</sub>, {e_4, e_5, e_6}), (l<sub>1</sub> \( \frac{6}{1}, \frac{7}{4}9\frac{3}{3}8\frac{5}{4}\frac{7}{6}\)
```

B-Rep Geometry

- Describe shape of each face, edge and wertex
 - Vertex geometry: position
 - Edge geometry: E.g. straight line ellipse, free-form curve, . . .
 - Face geometry: ြောင်းမေး E.g. plane, sphere շրերվութթութ, torus, free-form, . . .

B-Rep Data Structure

➤ B-Rep graph data structure representing the topology:

BODY	Solid ma
LUMP	Connect e, bounded by a list of SHELLS
SHELL	Connected surface, consisting of a list of FACES
FACE	Natural surface postuled by a LOOP
LOOP	Connected signes of Resignest Exams Holico Consected Connected Con
COEDGE	Directed edge a support of a loop of
EDGE	Natural edge, bounded by VERTICES
VERTEX	Boundary of an edge

B-Rep Issues

- ➤ Consistency of geometry and topology
 No explicit way to ensure boundary relations are
 - No explicit way to ensure boundary relations are preserved by general preserved by general preserved.
- > Ambiguous and in the models

- Topology allows us to determine impossible models
- Orientation and topology distinguish ambiguous models

B-Rep Orientation

- ➤ Orient face: distinguish between inside and outside

 Surface normals always point towards the outside
- > Orient each loop
 - Move around properties to such that the inside lies to the left when from outside the model
 - COEDGEs indicate direction of loop by ordering edge end-points
 - EDGE lies on two faces as indicated Help by two COED **Es**ail: tutorcs@163.com
- > Non-manifold objects; EDGE can lie on more than two faces
 - Causes problems for orientation, etc. (so not allowed in standard B-rep)

Mesh Representation

- Describe model as a polygonal mesh (often triangular)

 Collection of polygons (facets)

 - Similar, but sim具透镜。 B-rep
 - Linear approxing f object
 - Fast and quality nough for real-time rendering

Polygons

- Polygons are specified by a sequence of vertices
 Polygons are not just line segments, but have an interior
 - Simple polygor 是透過場 not intersect
 - Convex polygor two points inside the polygon, the line segme
 - Flat polygon: polygon lies in a plane
- Orientation / sidedness:
 - Polygons have a front and a back Exam Help
 - If vertices are in anti-chookwese orden on display, we see the front QQ: 749389476 (default OpenGL convention; consistent with B-rep https://tutorcs.com orientation)

Polygon Normal

- For the standard of the stan
 - Suppose *l*<*m*<*r*
 - $v_1 = p_m p_l$, v_2
 - n = $v_1 \times v_2$
 - normal n points outside the front.
- Polygon normal vector and the viewer direction vector can determine whether the viewer is looking at the front or back of the polygon: tutorcs@163.com
 - If the angle between normal vector and viewer direction vector are less than 90°, it's at the front
 - If the angle is great than 90°, it's at the back
 - If the angle is 90° , the viewer is on the polygon plane.

List of Faces

- ➤ Each face lists vertex coordinates 程序代写代做 CS编程辅导
 - Redundant vertices
 - No adjacency or tructural information (topology)
 - Orientation from the contraction from

Vertex and Face Tables

- ➤ Each face lists vertex references CS编程辅导
 - Shared vertices
 - No adjacency or tructural information (topology)
 - Orientation from the large of vertices

QQ: 749389476

Can add half-edges, shells, lumps, bodies for representing https://tutorcs.com

Rendering Meshes with OpenGL

- ➤Two simple OpenGL drawing functions:程序代写代做 CS编程辅导
 - ✓ glDrawArray: first, count);
 - ✓ glDrawElemer

 e, count, type, indices);
 - mode: GL POINT ទី, ចិន្តិ មិនិស្ស GL TRIANGLES, etc.
 - first: the starting index in the enabled arrays.
 - count: the number of elements to be rendered
 - type: type of the danies manures ject Email Medo_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT
 - indices: a pointer to the location where the indices are stored.
- >glDrawArrays() is ₩e'd7fbβ382ist6 f Faces"
 - Example see CG02 java in the labs
- ➤ glDrawElements() is used for "Vertex and Face Tables"
 - Example see CG03.java in the labs

Modelling a Sphere

- ➤ A sphere can be modelled by covering the surface with triangles
 - use lines of lor and latitude to divide the surface into triple around north and south poles) and quadrangles.
 - each quadrangles is divided into two triangles for rendering by OpenGL

Assignmether projective xam Help

Email: tutores 163.com

QQ: 749389476

https://tutores.com

Spherical Coordinates

Points on a unit sphere in spherical coordinates:

Email: tutorcs@163.com

- Maps each (ϕ, θ) projecting and south poles)
- More details see sphere java in the labs...

Volumetric Representation: Voxels

- ➤ Partition space into uniform 3D grid

 Grid cells are called voxels (volume elements)
 - Grid cells are called voxels (volume elements)
 (also see pixe 具题词唱
- > Store *properties* object with each voxel
 - Occupancy
 - Colour
 - Density
 - Temperature
 - •...

FvDFH Figure 12.20

Voxel Examples

程序代写代做 CS编程辅导

Visible Human
(National Library of Medicine)

Voxel Issues

- >Advantages: 程序代写代做 CS编程辅导
 - Simple inside/<u>outside</u> test
 - Simple and ro lean operations
 - Represent into the object
- ➤ Disadvantages:
 - Memory consumering to certain certai (can use octree for hierarchical construction to save memory) Assignment Project Exam Help
 - Non-smooth
 - Time consumi โดยเข้าหน้าเดินใจใช้ สำนาการและ

QQ: 749389476

Summary

- Explain the following model representations:

 constructive solid geometry

 - volumet
 wesentation
 - How is the model represented?
 - Which data structures are used?
 - What are advantages disadvantages of these representationail: tutorcs@163.com
- > What is a simple / sonyex4/flat polygon?
- > What do we understand by the orientation of a polygon/loop/edge? tutorcs.com