where v_0 , v_1 , ..., v_n are any vectors in \mathbf{R}^n such that $v_0 = 0$ and $v_n = \mathbf{u}$. We choose these vectors so they satisfy the recurrence relation $\boldsymbol{v}_k = \boldsymbol{v}_{k-1} + \boldsymbol{u}_k \boldsymbol{e}_k$. That is, we take

$$v_0 = 0$$
, $v_1 = u_1 e_1$, $v_2 = u_1 e_1 + u_2 e_2$, ..., $v_n = u_1 e_1 + ... + u_n e_n$.

Then the kth term of the sum in (8.13) becomes

$$f(\boldsymbol{a} + \lambda \boldsymbol{v}_{k-1} + \lambda \boldsymbol{u}_k \boldsymbol{e}_k) - f(\boldsymbol{a} + \lambda \boldsymbol{v}_{k-1}) = f(\boldsymbol{b}_k + \lambda \boldsymbol{u}_k \boldsymbol{e}_k) - f(\boldsymbol{b}_k),$$

where $\boldsymbol{b}_k = a + \lambda \boldsymbol{v}_{k-1}$. The two points \boldsymbol{b}_k and $\boldsymbol{b}_k + \lambda \boldsymbol{u}_k \boldsymbol{e}_k$ differ only in their kth component. Therefore we can apply the mean-value theorem of differential calculus to write

(8.14)
$$f(\boldsymbol{b}_k + \lambda u_k \boldsymbol{e}_k) - f(\boldsymbol{b}_k) = \lambda u_k D_k f(\boldsymbol{c}_k),$$

where c_k lies on the line segment joining b_k to $b_k + \lambda u_k e_k$. Note that $b_k \to a$ and hence $c_k \to a$ as $\lambda \to 0$.

Using (8.14) in (8.13) we obtain

$$f(\boldsymbol{a}+\boldsymbol{v})-f(\boldsymbol{a})=\lambda\sum_{k=1}^nD_kf(\boldsymbol{c}_k)u_k.$$

But $\nabla f(\boldsymbol{a}) \cdot \boldsymbol{v} = \lambda \ \mathrm{V'(u)}$. $\boldsymbol{u} = \lambda \sum_{k=1}^n D_k f(\boldsymbol{a}) u_k$, so

$$f(a + v) - f(a) - \nabla f(a) \cdot v = \lambda \sum_{k=1}^{n} \{D_k f(c_k) - D_k f(a)\} u_k = ||v|| E(a, v),$$

where

$$E(\boldsymbol{a}, \boldsymbol{v}) = \sum_{k=1}^{n} \{D_k f(\boldsymbol{c}_k) - D_k f(\boldsymbol{a})\} u_k.$$

Since $c_k \to a$ as $||v|| \to 0$, and since each partial derivative $D_k f$ is continuous at a, we see that $E(a, v) \to 0$ as $||v|| \to 0$. This completes the proof.

8.14 Exercises

- 1. Find the gradient vector at each point at which it exists for the scalar fields defined by the following equations:
 - (a) $f(x, y) = x^2 + y^2 \sin(xy)$.

(b) $f(x, y) = e^x \cos y$.

(d) $f(x, y, z) = x^2 - y^2 + 2z^2$. (e) $f(x, y, z) = \log (x^2 + 2y^2 - 3z^2)$.

(c) $f(x, y, z) = x^2y^3z^4$.

- (f) $f(x, y, z) = x^{y^z}$.
- 2. Evaluate the directional derivatives of the following scalar fields for the points and directions
 - (a) $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at (1, 1, 0) in the direction of i j + 2k.
 - (b) f(x, y, z) = (x/y)" at (1, 1, 1) in the direction of 2i + j k.
- 3. Find the points (x, y) and the directions for which the directional derivative of f(x, y) = $3x^2 + y^2$ has its largest value, if (x, y) is restricted to be on the circle $x^2 + y^2 = 1$.
- 4. A differentiable scalar fieldfhas, at the point (1, 2), directional derivatives +2 in the direction toward (2,2) and -2 in the direction toward (1, 1). Determine the gradient vector at (1, 2)and compute the directional derivative in the direction toward (4, 6).
- 5. Find values of the constants a, b, and c such that the directional derivative of f(x, y, z) = $axy^2 + byz + cz^2x^3$ at the point (1, 2, -1) has a maximum value of 64 in a direction parallel to the z-axis.

- 6. Given a scalar field differentiable at a point \boldsymbol{a} in \mathbf{R}^2 . Suppose that $f'(\boldsymbol{a}; \boldsymbol{y}) = 1$ and $f'(\boldsymbol{a}; \boldsymbol{z}) = 2$, where y = 2i + 3j and z = i + j. Make a sketch showing the set of all points (x, y) for which $f'(\mathbf{a}; xi + yj) = 6$. Also, calculate the gradient V'(a).
- 7. Let f and g denote scalar fields that are differentiable on an open set S. Derive the following properties of the gradient:
 - (a) grad f = 0 iff is constant on S.
 - (b) grad (f + g) = grad f + grad g.
 - (c) grad (cf) = c gradfif c is a constant.
 - (d) grad $(fg) = f \operatorname{grad} g + g \operatorname{grad} f$.

(e) grad
$$f = \frac{g \operatorname{grad} f - f \operatorname{grad} g}{g^2}$$
 at points at which $g \neq 0$.

- 8. In \mathbf{R}^3 let $\mathbf{r}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and let $\mathbf{r}(x, y, z) = ||\mathbf{r}(x, y, z)||$.
 - (a) Show that $\nabla r(x, y, z)$ is a unit vector in the direction of r(x, y, z).
 - (b) Show that $\nabla(r^n) = nr^{n-2}r$ if n is a positive integer. [Hint: Use Exercise 7(d).]
 - (c) Is the formula of part (b) valid when n is a negative integer or zero?
 - (d) Find a scalar field f such that $\nabla f = r$.
- 9. Assume f is differentiable at each point of an n-ball B(a). If f'(x; y) = 0 for n independent vectors y_1, \ldots, y_n and for every x in B(a), prove that f is constant on B(a).
- 10. Assume f is differentiable at each point of an n-ball B(a).
 - (a) If $\nabla f(x) = 0$ for every \mathbf{x} in B(u), prove that f(x) = 0 is constant on B(a).
 - (b) If $f(x) \le f(a)$ for all x in B(u), prove that $\nabla f(a) = 0$.
- 11. Consider the following six statements about a scalar field $\mathbf{f}: S \to \mathbf{R}$, where $S \subseteq \mathbf{R}^n$ and \mathbf{a} is an interior point of S.
 - (a) f is continuous at a.

 - (b) f is differentiable at a. (c) f '(a; y) exists for every y in \mathbb{R}^n .
 - (d) All the first-order partial derivatives off exist in a neighborhood of **a** and are continuous at a.
 - (e) $\nabla f(a) = 0$.
 - (f) f(x) = ||x a|| for all x in \mathbb{R}^n .

In a table like the one shown here, mark T in the appropriate square if the statement in row (x) always implies the statement in column (y). For example, if (a) always implies (b), mark T in the second square of the first row. The main diagonal has already been filled in for you.

	a	b	c	d	e	f
a	T					
- в	-	- T	-	-	-	-
-	-	-	-	-	-	-
C			T			
d				T		
e					T	
f						Т

8.15 A chain rule for derivatives of scalar fields

In one-dimensional derivative theory, the chain rule enables us to compute the derivative of a composite function g(t) = f(r(t)) by the formula

$$g'(t) = f'[r(t)] \cdot r'(t).$$