Практика 1.

Шахматов Андрей, Б02-304

6 февраля 2024 г.

Содержание

1.1	1
1.2	2
1.3	2
1.4	3
2.1	3
2.2	4
2.3	4
2.4	5
3.1	5
$0\ 3.2$	6
$1\ 3.3$	6
	1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2

1 1.1

$$M = \mathbb{Q} \times \{ \frac{1}{n} \mid n \in \mathbb{N} \}$$

Внутренность M - пустое множество, так как для любой $m=\left(\frac{p}{q},\frac{1}{n}\right)$ и любой её окрестности U есть точка $q=\left(i\in\mathbb{I},\frac{1}{n}\right)$. Граничными точками являются все прямые вида $y=\frac{1}{n}\mid n\in\mathbb{N}$ и y=0. Внешними точками является множество $ext M=\mathbb{R}^2\setminus\partial M\setminus int M=\mathbb{R}^2\setminus\{(x,y)\in\mathbb{R}^2\mid y=0\land y=\frac{1}{n}\ n\in\mathbb{N}\}$. Изолированных точек нет, так как $\forall m\in M$ и для любой её окрестности есть точка множества лежащая в этой окрестности. Предельные точки совпадают с границей.

$2 \quad 1.2$

$$f(x,y) = \frac{1}{\sqrt{xy}}$$

Множество определения $D_f=(x,y)\in\mathbb{R}^2\mid (x>0\land y>0)\lor (x<0\land y<0)$

Рис. 1: Область определения функции

(a) D_f - открыто, так как совпадает со своей внутреннстью. $D_f \cup 0$ - не открыто, так как 0 - граничная точка.

(б) D_f - не замкнуто $D_f \cup 0$ - не замкнуто, так как все точки на прямых x = 0 и y = 0 являются граничными и не лежат в множестве.

(в) Ни одно множество не компакт так как не замкнуто.

(г) D_f - не связно, так как не линейно связно и открыто и находится в \mathbb{R}^2 . $D_f \cup 0$ - связно, так как линейно связно.

(д) D_f - не линейно связное, так как любая кривая должна проходить через $(0,0) \not\in M$. $D_f \cup 0$ - линейно связно.

(e) D_f - не область так как не связно. $D_f \cup 0$ - не область так как не открыто.

3 1.3

$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$

Перейдём к замене $x = \rho \cos \phi$, $y = \rho \sin \phi$.

$$|f(x,y)| = \rho \left| \frac{\sin^3 \phi + \cos^3 \phi}{\sin^2 \phi + \cos^2 \phi} \right| = \rho |\sin^3 \phi + \cos^3 \phi| \le 2\rho$$

Тогда при $x \to 0$ и $y \to 0$ выполняется $\rho \to 0 \Rightarrow |f(x,y)| \to 0 \Rightarrow f(x,y) \to 0.$

4 1.4

(a)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^3}{x^2 + y^2} = \lim_{x \to 0} x = 0$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^3}{x^2 + y^2} = \lim_{y \to 0} 0 = 0$$

Введя замену $x = \rho \cos \phi$, $y = \rho \sin \phi$ получим

$$|f(x,y)|=
ho|\cos^3\phi|\leq
ho\Rightarrow|f(x,y)| o 0,$$
 при $ho o 0$

(6)
$$f(x,y) = \frac{x-y}{x+y}$$

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x-y}{x+y} = \lim_{x \to 0} 1 = 1$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x-y}{x+y} = \lim_{y \to 0} -1 = -1$$

Введя $x = \alpha t$, $y = \beta t$:

$$\lim_{t \to 0} \frac{x - y}{x + y} = \lim_{t \to 0} \frac{\alpha - \beta}{\alpha + \beta} = \frac{\alpha - \beta}{\alpha + \beta}$$

Тогда при разных α и β будут получаться разные пределы по направлениям, соответственно основного предела не будет существовать.

(B)

$$f(x,y) = x \sin \frac{1}{y}$$

$$\lim_{y \to 0} \lim_{x \to 0} x \sin \frac{1}{y} = \lim_{y \to 0} 0 = 0$$

Так как не существует предела $\lim_{y\to 0} x \sin\frac{1}{y}$, то не существует обратного повторного предела. Так как $\sin\frac{1}{y}$ - ограничен, то $x\sin\frac{1}{y}\to 0$, при $x\to 0,y\to 0$.

5 2.1

 \mathbb{R}^n - связно, так как оно линейно связно. Тогда пусть нашлось $M \neq \emptyset, M \neq \mathbb{R}^n$. Тогда так как M - замкнуто, то его дополнение $P = \mathbb{R}^n \setminus M$ открыто. Тогда мы получили разбиение на относительно открытые $\mathbb{R}^n = M \coprod P$ - ппротиворечие со связностью.

$6 \quad 2.2$

(a)
$$\partial X = clX \setminus intX \Rightarrow \partial^2 X = cl\partial X \setminus int\partial X = \partial X \setminus int\partial X$$

но тогда $\partial^2 X \subset \partial X$.

- (б) Приведём пример $X = \mathbb{Q}_{[0,1]}$, тогда $\partial X = [0,1]$, а $\partial^2 X = \{0,1\}$. Очевидно, что $\partial X \not\subset \partial X^2$
- (в) Пусть X=(0,1), тогда cl(intX)=clX=[0,1], а int(clX)=int[0,1]=(0,1). Но $[0,1]\not\subset (0,1)$ противоречие.
- (г) Пусть $X = \mathbb{Q}_{[0,1]}$, тогда $cl(intX) = cl\emptyset = \emptyset$, int(clX) = int[0,1] = (0,1). Но $(0,1) \not\subset \emptyset$ противоречие.

$7 \quad 2.3$

Так как повторный предел существует, то в некоторой окрестности существует и $\lim_{y\to 0} f(x,y)$. Тогда данная задача сводится к доказательству задачи $K_32.39$.

39. Пусть функция f определена на множестве E, содержащем окрестность точки $(x_0;y_0)\colon |x-x_0|<\delta_1,\ |y-y_0|<\delta_2,$ кроме, быть может, точек прямых $x=x_0$ и $y=y_0$. Доказать, что если $\lim_{\substack{x\to x_0\\y\to y_0}}f=A$ и при любом $y\in (y_0-\delta_2;y_0+\delta_2),\ y\neq y_0,$ существует $\lim_{x\to x_0}f$, то $\lim_{y\to y_0}\lim_{x\to x_0}f=A$.

Решение к этой задаче:

Рассмотрим две последовательности Гейне $x_n \to x_0$ и $y_k \to y_0$. Требуется доказать, что при условии

$$\lim_{n \to \infty} f(x_n, y_k) = B(y_k)$$

И

$$\lim_{n \to \infty} f(x_n, y_n) = A$$

следует, что

$$\lim_{k \to \infty} B(y_k) = A$$

. В силу существования первых двух пределов для достаточно больших n, k выполняется:

$$|f(x_n, y_n) - A| < \epsilon$$

$$|f(x_n, y_k) - B(y_k)| < \epsilon$$

$$|f(x_n, y_k) - f(x_k, y_k)| < \epsilon$$

Последнее неравенство выполняется в силу фундаментальности последовательности $f(x_n, y_k)_n$. Рассмотрим $|B(y_k) - A| \leq |B(y_k) - f(x_n, y_k)| + |f(x_n, y_k) - f(x_k, y_k)| + |f(x_k, y_k) - A| \leq 3\epsilon$. Что означает

$$\lim_{k \to \infty} B(y_k) = A$$

8 2.4

(a)
$$\frac{y^2 s h(x^3 - y^3)}{x^4 - x^2 y^2 + y^4} = \frac{y^2 (x^2 + y^2)}{x^6 + y^6} s h(x^3 - y^3)$$

Перейдя в полярные координаты и разложив sh в ряд Тейлора до 1 члена в точке (0,0) получим:

$$\rho \frac{\sin^2 \phi (\cos^2 \phi + \sin^2 \phi) (\cos^3 \phi - \sin^3 \phi)}{\cos^6 \phi + \sin^6 \phi} + o(\rho^4)$$

Так как знаменатель дроби не достигает 0, ведь одновременно 0 синус и косинус равны быть не могут, то вся дробь ограничена и её значение меньше $K\rho$, где K - положительная константа, тогда $K\rho$ - мажорирует выражение, а значит предел равен 0. (6)

$$f(x,y) = \frac{\arctan(x^3 + y^3)}{\sqrt{x^6 + y^6}}$$

Разложим арктангенс в ряд Тейлора и подставим в полярных координатах:

$$f(x,y) = \frac{\cos^3(\phi) + \rho \sin^4(\phi)}{\sqrt{\cos^6(\phi) + \sin^6(\phi)}} + o(\rho)$$

Такая сумма разбивается на два слагаемых, одно из них мажорируется ρ , а другое от него не зависит, а значит оно зависит от направления, из чего следует несуществование предела.

$9 \quad 3.1$

$$f(x,y) = \frac{(1 - \cos(x+y) + \sin(x^2 - y^2) \ln(x^2 + y^2))}{\sqrt[3]{x^4 + x^2y^2 + y^4}}$$

Рассмотрим отдельно знаменатель дроби, переёдём к полярным координатам:

$$\frac{1}{\sqrt[3]{x^4 + x^2y^2 + y^4}} = \rho^{-\frac{4}{3}} \frac{1}{\sqrt[3]{\cos^4\phi + \sin^2\phi \cos^2\phi + \sin^4\phi}} = \rho^{-\frac{4}{3}} \frac{1}{\sqrt[3]{1 - \frac{\sin^2 2\phi}{4}}} < 2\rho^{-\frac{4}{3}}$$

Рассмотрим числитель:

$$Q = (1 - \cos(x + y) + \sin(x^2 - y^2)) \ln(x^2 + y^2) = (2\sin^2(\frac{x + y}{2}) + \sin(x^2 - y^2)) \ln(x^2 + y^2)$$

Тогда модуль числителя |Q| меньше:

$$|Q| \le \left(\frac{(x+y)^2}{2} + |x^2 - y^2|\right) \ln(x^2 + y^2)$$

Переходя к полярным координатам получим:

$$|Q| \le \rho^2 \left(\frac{1 + \sin 2\phi}{2} + |\cos 2\phi| \right) \ln \rho^2$$

Тогда для всей функции справедлива оценка:

$$|f(x,y)| \le 4\rho^{\frac{2}{3}} \ln \rho^2 \to 0 \Rightarrow f(x,y) \to 0$$

$10 \quad 3.2$

Перейдём к полярным координатам с учётом $x \to x_0, y \to y_0$ и $y_0 = x_0$. Тогда

$$f(x,y) = \frac{\arctan(x_0 + \rho\cos\phi) - \arctan(x_0 + \rho\sin\phi)}{\rho\cos\phi - \rho\sin\phi}$$

Раскладывая в ряд Маклорена относительно $\rho \to 0$:

$$f(x,y) = \frac{x_0 + \rho \frac{1}{1 + x_0^2} \cos \phi + o(\rho \cos \phi) - x_0 - \rho \frac{1}{1 + x_0^2} \sin \phi - o(\rho \sin \phi)}{\rho \cos \phi - \rho \sin \phi} = \frac{1}{1 + x_0^2} + o(1)$$

Из чего следует:

$$\lim_{x,y\to x_0,x_0} f(x,y) = \frac{1}{1+x_0^2}$$

11 3.3

(а) Предельная точка x_0 - точка для которой сущствует последовательность $x_n \to x_0$. Тогда выберем точку $a_0 \in A^{(n+1)}$, для неё найдём последовательность $(a_m) \to a_0 \mid a_m \in A^{(n)}$, причём для каждой из точек a_m существует последовательность $(\alpha_k)_m \to a_m \mid \alpha_k \in A^{(n-1)}$. Тогда предложим последовательность $b_m = (\alpha_m)_m$. Докажем, что такая последовательность стремится к x_0 . Для достаточно больших m:

$$|b_m - x_0| \le |b_m - a_m| + |a_m - x_0| \le 2\epsilon$$

Тогда получили, что точка x_0 - предельная точка $A^{(n-1)}$, то есть $x_0 \in A^{(n)} \Rightarrow A^{(n+1)} \subset A^{(n)}$

(б) Рассмотрим множество $\{\frac{1}{n} \mid n \in \mathbb{N}\}$, множество её предельных точек $A^{(1)} = \{0\}$, В таком случае $A^{(2)} = \emptyset$, очевидно что $A^{(2)} \neq A^{(1)}$.

(в) Рассмотрим множество $A_n = \{0\} \cup \{\frac{1}{k_1} + ... + \frac{1}{k_n} \mid (k_1, ..., k_n) \in \mathbb{N}^n\}$. Очевидно, что множество $A_{n-1} \subset A^{(1)}$, так как если $a_0 \in A_{n-1}$, то можно построить последовательность $a_n = a_0 + \frac{1}{k} \in A_n$. Докажем, что других предельных точек нет. От противного, пусть $\exists a \in A^{(1)}, a \not\in A_{n-1}$. Тогда существует последовательность $(a_n) \subset A_n \mid a_n \to a$:

$$\left|\frac{1}{k_{1m}} + \dots + \frac{1}{k_{nm}} - a\right| < \epsilon$$

Выделим все стационарные подсуммы k_{im} , тогда все остальные подсуммы стремяться к 0, а значит $a_n \to \sum_i k_i \in A_{n-1}$ - противоречие. Тогда выходит, что в (a_n) нет стационарных подсумм, но тогда все подсуммы стремяться к 0, а значит $a_n \to 0 \in A_{n-1}$ - противоречие. Тогда $A_{n-1} = A^{(1)}$ и по индукции $A_{n-k} = A^{(k)}$, соответственно $A^{(n)} = A_0 = \{0\}$, а $A^{(n+1)} = A_{-1} = \emptyset$, тогда $A^{(n+1)} \neq A^{(n)}$.