Programme de colle n°6

Calcul algébrique

- 1) Sommes classiques : $\sum_{k=m}^{n} 1$, $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$, $\sum_{k=0}^{n} k^3$, $\sum_{k=0}^{n} q^k$, sommes télescopiques, sommes doubles.
- 2) Factorisation de $a^n b^n$ et $a^n + b^n$ (pour n impair).
- 3) Factorisation d'un polynôme P par $(X \alpha)$ quand $P(\alpha) = 0$.
- 4) Coefficients binomiaux, formule de Pascal, formule du binôme de Newton.
- 5) Résolution de systèmes linéaires par la méthode du pivot de Gauss.

Nombres complexes

- 1) Forme algébrique et interprétation géométrique.
- 2) Conjugué, module, argument, forme polaire et exponentielle complexe.
- 3) Inégalité triangulaire et cas d'égalité.
- 4) Formules de Moivre et d'Euler.
- 5) Applications:
 - (a) linéarisation de $\cos^p t \sin^q t$,
 - (b) calcul de $\cos(nt)$ en fonction des puissances de $\cos t$,
 - (c) factorisation de $1 \pm e^{i\theta}$ par $e^{i\theta/2}$,
 - (d) calcul de $\sum_{k=0}^{n} \cos(kt)$.
- 6) Résolution dans \mathbb{C} de $e^z = a$.
- 7) Condition en terme d'affixes pour que trois points soient alignés ou forment un triangle rectangle.
- 8) Écriture complexe d'une translation, rotation, homothétie.

Questions de cours

- 1) Calculer la somme : $S = \sum_{j=1}^{n} \sum_{i=j}^{n} \frac{1}{i}$.
- 2) En considérant la fonction $f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k$, calculer $\sum_{k=0}^{n} k \binom{n}{k}$.
- 3) Montrer que $|z+z'|^2 = |z|^2 + 2\text{Re }(z\bar{z}') + |z'|^2$ pour tous $z, z' \in \mathbb{C}$. En déduire l'inégalité triangulaire.
- 4) Montrer que $|z+z'|^2=|z|^2+2\mathrm{Re}\;(z\bar{z}')+|z'|^2$ pour tous $z,z'\in\mathbb{C}.$ En déduire l'identité du parallélogramme : $|z+z'|^2+|z-z'|^2=2|z|^2+2|z'|^2.$
- 5) Soient $z_1 = 4(1+i)$ et $z_2 = (-\sqrt{3}+i)$. Donner la forme polaire et algébrique de : z_1 , z_2 et $\frac{z_1}{z_2}$. En déduire la valeur exacte de $\cos(7\pi/12)$ et $\sin(7\pi/12)$.
- 6) Linéariser $\cos^4 t$.
- 7) Écrire $\cos(5t)$ en fonction de $\cos t$ en utilisant la formule de Moivre.
- 8) Résoudre dans \mathbb{C} , (E): $e^z = 1 + i$