Extended Exercise

- (a) Show that $\int_{a}^{\infty} e^{-kt} dt$ is convergent for all $a \in \mathbb{R}$ and all k > 0.
- (b) The gamma function is the function $\Gamma:(0,\infty)\to\mathbb{R}$ defined by

 $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt = \int_0^\infty \frac{t^{x-1}}{e^t} dt$

This is an extention of the factorial function to the domain $(0,\infty)$: one can check that $\Gamma(n+1) = n!$ for $n \in \mathbb{N} := \{0,1,2,\ldots\}$ (see Chip 8, additional and advanced exercises Q51). Prove that $\int_{0}^{\infty} t^{x-1}e^{-t} dt$ converges for each x>0 (so the gamma function is well-defined).

Sol: (a) $\int_a^b e^{-kt} = -\frac{1}{k}e^{-kt}\Big|_a^b = \frac{1}{k}(e^{-ka} - e^{-kb}) = :I.$ As $b \to \infty$, $I \to \frac{1}{k}e^{-ka}$ (since k > 0).

(b)
$$F_{ix} \times 70$$
. Then $\Gamma(x) = \int_0^1 t^{x-1}e^{-t}dt + \int_1^\infty t^{x-1}e^{-t}dt$.

It suffices to show that both I, and Iz are finite.

 $\begin{array}{lll} \cdot \underline{\mathbb{I}}_{1}: \ \ \mathcal{I}_{1} \times \geqslant 1 \ , \ \ \mathbb{I}_{1} \ \ \text{is finite (as a definite integral)}. \\ \\ \mathcal{I}_{1} = \mathbb{I}_{1} \times \geqslant 1 \ , \ \ \mathbb{I}_{1} \ \ \text{is finite (as a definite integral)}. \\ \\ \mathcal{I}_{2} = \mathbb{I}_{2} \times \geqslant 1 \ , \ \ \mathbb{I}_{2} \ \ \text{is finite (as a definite integral)}. \\ \\ \mathcal{I}_{3} = \mathbb{I}_{2} \times \geqslant 1 \ , \ \ \mathbb{I}_{3} \ \ \text{is finite (as a definite integral)}. \\ \\ \mathcal{I}_{4} = \mathbb{I}_{2} \times \geqslant 1 \ , \ \ \mathbb{I}_{3} \ \ \text{is finite (as a definite integral)}. \\ \\ \mathcal{I}_{5} = \mathbb{I}_{2} \times \geqslant 1 \ , \ \ \mathbb{I}_{3} \ \ \text{integral} \ \ \mathbb{I}_{3} \times \mathbb{I}_{3} = \mathbb{I}_{3} = \mathbb{I}_{3} \times \mathbb{I}_{3} = \mathbb{I}_{3} \times \mathbb{I}_{3} = \mathbb{I}_{3} \times \mathbb{I}_{3} = \mathbb{I}_{3} = \mathbb{I}_{3} \times \mathbb{I}_{3} = \mathbb{I}_{3} = \mathbb{I}_{3} = \mathbb{I}_{3} \times \mathbb{I}_{3} = \mathbb{I}_{3}$

I, converges.

· Iz: Limit-Compare with $\int_{1}^{\infty} e^{-\frac{1}{2}t} dt$, which is convergent by (a).

Since

 $\lim_{t\to\infty}\frac{e^{-t}t^{x-1}}{e^{-kt}}=\lim_{t\to\infty}\frac{t^{x-1}}{e^{kzt}}=0,$

Clearly 0 of $0 < x \le 1$; if x > 1, use the fact that positive power functions grow slower than exponential functions.

Iz is convergent by limit comparison test.