TARGET- CASE STUDY

Insights & Recommendations are highlighted in yellow

1) Checking the structure & characteristics of the dataset:

1. select column_name, data_type from `target-scaler427818.Target_study.INFORMATION_SCHEMA.COLUMNS` where table_name='customers';

JOB IN	IFORMATION	RESULTS	CHART	JSON	Е
Row	column_name ▼	11	data_type ▼		/
1	customer_id	**	STRING		,,,
2	customer_unique_	id	STRING		
3	customer_zip_cod	le_prefix	INT64		
4	customer_city		STRING		
5	customer_state		STRING		

2. select min(order_purchase_timestamp) as start_date,max(order_purchase_timestamp)
as end_date from `Target_study.orders`;

Row	start_date ▼	h	end_date ▼	11
1	2016-09-04 21:1	5:19 UTC	2018-10-17 17:30:18 UTC	

3. select count(distinct c.customer_city) as city_count,count(distinct
c.customer_state) as state_count from `Target_study.orders` o inner join
`Target_study.customers`c on o.customer_id=c.customer_id;

2) In-depth Exploration

1) with cte as (select order_id,extract(year from order_purchase_timestamp) as order_year from `Target_study.orders`)

select order_year,count(order_id) as total_orders from cte group by order_year
order by order_year;

Row	order_year ▼	total_orders ▼
1	2016	329
2	2017	45101
3	2018	54011

The number of orders placed has been increasing over the past few years. Despite having data for only the last three months of 2016 and the first ten months of 2018, the trend between 2017 and 2018 clearly indicates a growing number of orders.

```
2) with cte as (select order_id,extract(month from order_purchase_timestamp) as order_month from `Target_study.orders`),

cte_1 as

(select order_month,count(order_id) as total_orders from cte group by order_month order by order_month),

cte_2 as
(select *, case
when order_month in(12,1,2) then 'summer'
when order_month in(3,4,5) then 'autumn'
when order_month in(6,7,8) then 'winter'
else 'spring' end as brazil_monthly_season from cte_1)
select brazil_monthly_season, sum(cte_2.total_orders) as season_wise_orders from cte_2 group by brazil_monthly_season order by season_wise_orders;
```

brazil_monthly_season ▼	season_wise_orders
spring	16808
summer	22251
autumn	29809
winter	30573

As far as the seasonal trend in Brazil is concerned, the number of orders placed during spring is the lowest, while the highest number of orders is placed during winter.

```
3) with cte as (select order_id, extract(hour from order_purchase_timestamp) as hours from `Target_study.orders`),

cte_1 as
(select *, case
when hours between 0 and 6 then 'dawn'
when hours between 7 and 12 then 'mornings'
when hours between 13 and 18 then 'afternoon'
when hours between 19 and 23 then 'night' end as time_of_day from cte)
select time_of_day,count(order_id) total_orders from cte_1 group by time_of_day
order by total_orders;
```

time_of_day ▼	total_orders ▼
dawn	5242
mornings	27733
night	28331
afternoon	38135

From the above output, it is evident that the maximum number of orders were placed in the afternoon.

3) Evolution of E-commerce orders in the Brazil region:

```
1) with cte as (select o.order_id,format_timestamp('%Y-
%m',order_purchase_timestamp) as month_wise,c.customer_state from
`Target_study.orders`o inner join

`Target_study.customers`c on o.customer_id=c.customer_id)
select customer_state,month_wise,count(order_id) as total_orders from cte group by
customer_state,month_wise order by customer_state,month_wise;
```

customer_state ▼	month_wise ▼	total_orders •	1
AC	2017-01		2
AC	2017-02		3
AC	2017-03		2
AC	2017-04		5
AC	2017-05		8
AC	2017-06		4
AC	2017-07		5
AC	2017-08		4
AC	2017-09		5
AC	2017-10		6

```
2) with cte as (select customer_state, count(distinct customer_unique_id) as total_unique_customers from `Target_study.customers` group by customer_state order by total_unique_customers desc)
```

select

```
*,round((cte.total_unique_customers/sum(cte.total_unique_customers)over())*100,2) as percentage_distribution from cte order by cte.total_unique_customers desc;
```

RJ 12384 12 MG 11259 12 RS 5277 5	11
MG 11259 11 RS 5277	.92
RS 5277	.88
	.71
	.49
PR 4882	.08
SC 3534	.68
BA 3277	.41
DF 2075	.16
ES 1964	.04
GO 1952	.03

From the above table, it is evident that most of the customers who placed orders are from the state named 'SP'.

4) Impact on Economy:

```
1) with cte as
(select o.order_id,format_timestamp('%Y-%m',o.order_purchase_timestamp) as
Year_month_wise,extract(month from o.order_purchase_timestamp) as
month_wise,p.payment_value from `Target_study.orders`o inner join
Target_study.payments p on o.order_id=p.order_id where format_timestamp('%Y-
%m',o.order_purchase_timestamp) between '2017-01' and '2017-08'),
cte_2 as
(select cte.Year_month_wise, sum(payment_value) as total_value from cte group by
cte.Year_month_wise),
cte_3 as
(select o.order_id,format_timestamp('%Y-%m',o.order_purchase_timestamp) as
Year2_month2_wise,extract(month from o.order_purchase_timestamp) as
month2_wise,p.payment_value from `Target_study.orders`o inner join
Target_study.payments p on o.order_id=p.order_id where format_timestamp('%Y-
%m',o.order_purchase_timestamp) between '2018-01' and '2018-08'),
(select cte_3.Year2_month2_wise, sum(payment_value) as total_value_2018 from cte_3
group by cte_3.Year2_month2_wise),
cte_5 as
(select * , row_number() over(order by cte_2.Year_month_wise) as refer_1 from
cte_2),
(select * , row_number() over(order by cte_4.Year2_month2_wise) as refer_2 from
cte_4)
select
c5.Year_month_wise,c5.total_value,c6.Year2_month2_wise,c6.total_value_2018,round(((
c6.total_value_2018/c5.total_value)-1)*100,2) as
percentage_increase from cte_5 c5 inner join cte_6 c6 on c5.refer_1=c6.refer_2;
```

Year_month_wise ▼	total_value ▼	Year2_month2_wise ▼	total_value_2018	percentage_increase
2017-01	138488.0399999	2018-01	1115004.180000	705.13
2017-02	291908.0099999	2018-02	992463.3400000	239.99
2017-03	449863.6000000	2018-03	1159652.119999	157.78
2017-04	417788.0300000	2018-04	1160785.479999	177.84
2017-05	592918.8200000	2018-05	1153982.149999	94.63
2017-06	511276.3800000	2018-06	1023880.499999	100.26
2017-07	592382.9200000	2018-07	1066540.750000	80.04
2017-08	674396.3200000	2018-08	1022425.320000	51.61

The table above shows the month-wise comparison between January to August of 2017 and 2018. For example, the value for January 2018 is 705% higher than the value for January 2017, and the value for August 2018 is 51.6% higher than the value for August 2017.

```
2) with cte as (select oi.order_id,oi.price,oi.freight_value,o.customer_id,c.customer_state from `Target_study.order_items`oi inner join `Target_study.orders` o on oi.order_id=o.order_id inner join `Target_study.customers`c on o.customer_id=c.customer_id)
```

 $\begin{tabular}{ll} select customer_state, sum(price) as total_sum, avg(price) overall_average from ctegroup by customer_state; \\ \end{tabular}$

customer_state ▼	total_sum ▼	overall_average ▼
SP	5202955.050002	109.6536291597
RJ	1824092.669999	125.1178180945
PR	683083.7600000	119.0041393728
SC	520553.3400000	124.6535775862
DF	302603.9399999	125.7705486284
MG	1585308.029999	120.7485741488
PA	178947.8099999	165.6924166666
BA	511349.9900000	134.6012082126
GO	294591.9499999	126.2717316759
RS	750304.0200000	120.3374530874

```
3) with cte as (select
oi.order_id,oi.price,oi.freight_value,o.customer_id,c.customer_state from
`Target_study.order_items`oi inner join `Target_study.orders` o on
oi.order_id=o.order_id inner join `Target_study.customers`c on
o.customer_id=c.customer_id)
select customer_state,sum(freight_value) as total_freight,avg(freight_value)
average_freight from cte group by customer_state;
```

customer_state ▼	total_freight ▼	average_freight ▼
SP	718723.0699999	15.14727539041
RJ	305589.3100000	20.96092393168
PR	117851.6800000	20.53165156794
SC	89660.26000000	21.47036877394
DF	50625.499999999	21.04135494596
MG	270853.4600000	20.63016680630
PA	38699.30000000	35.83268518518
BA	100156.6799999	26.36395893656
GO	53114.97999999	22.76681525932
RS	135522.7400000	21.73580433039

5) Analysis based on sales, freight and delivery time.

1) select

```
order_id,order_status,order_purchase_timestamp,order_delivered_customer_date,order_estimated_delivery_date, date_diff(extract(date from order_delivered_customer_date),extract(date from order_purchase_timestamp), day) as time_to_deliver,date_diff(extract(date from order_delivered_customer_date),extract(date from order_estimated_delivery_date),day) as diff_estimated_delivery from `Target_study.orders` where order_status= 'delivered' and order_delivered_customer_date is not null;
```

order_id ▼	order_status ▼	order_purchase_timestamp ▼	order_delivered_customer_date	order_estimated_delivery_date 🔻	time_to_deliver 🔻	diff_estimated_delivery
635c894d068ac37e6e03dc54e	delivered	2017-04-15 15:37:38 UTC	2017-05-16 14:49:55 UTC	2017-05-18 00:00:00 UTC	31	-2
3b97562c3aee8bdedcb5c2e45	delivered	2017-04-14 22:21:54 UTC	2017-05-17 10:52:15 UTC	2017-05-18 00:00:00 UTC	33	-1
68f47f50f04c4cb6774570cfde	delivered	2017-04-16 14:56:13 UTC	2017-05-16 09:07:47 UTC	2017-05-18 00:00:00 UTC	30	-2
276e9ec344d3bf029ff83a161c	delivered	2017-04-08 21:20:24 UTC	2017-05-22 14:11:31 UTC	2017-05-18 00:00:00 UTC	44	4
54e1a3c2b97fb0809da548a59	delivered	2017-04-11 19:49:45 UTC	2017-05-22 16:18:42 UTC	2017-05-18 00:00:00 UTC	41	4
fd04fa4105ee8045f6a0139ca5	delivered	2017-04-12 12:17:08 UTC	2017-05-19 13:44:52 UTC	2017-05-18 00:00:00 UTC	37	1
302bb8109d097a9fc6e9cefc5	delivered	2017-04-19 22:52:59 UTC	2017-05-23 14:19:48 UTC	2017-05-18 00:00:00 UTC	34	5
66057d37308e787052a32828	delivered	2017-04-15 19:22:06 UTC	2017-05-24 08:11:57 UTC	2017-05-18 00:00:00 UTC	39	6
19135c945c554eebfd7576c73	delivered	2017-07-11 14:09:37 UTC	2017-08-16 20:19:32 UTC	2017-08-14 00:00:00 UTC	36	2
4493e45e7ca1084efcd38ddeb	delivered	2017-07-11 20:56:34 UTC	2017-08-14 21:37:08 UTC	2017-08-14 00:00:00 UTC	34	0

```
oi.order_id=o.order_id inner join `Target_study.customers`c on o.customer_id=c.customer_id),cte_1 as

(select customer_state,avg(freight_value) average_freight from cte group by customer_state), cte_2 as

(select *,dense_rank() over(order by cte_1.average_freight desc) as highest from cte_1 order by cte_1.average_freight desc limit 5), cte_3 as

(select *,dense_rank() over(order by cte_1.average_freight asc) as lowest from cte_1 order by cte_1.average_freight asc limit 5)

select c2.customer_state as higest_5_states,c2.average_freight,c3.customer_state as lowest_5_states,c3.average_freight from cte_2 c2 inner join cte_3 c3 on c2.highest=c3.lowest order by c3.lowest;
```

higest_5_states ▼	average_freight ▼	lowest_5_states ▼	average_freight_1
RR	42.98442307692	SP	15.14727539041
PB	42.72380398671	PR	20.53165156794
RO	41.06971223021	MG	20.63016680630
AC	40.07336956521	RJ	20.96092393168
PI	39.14797047970	DF	21.04135494596

In the above table, 'highest' is misspelled as 'higest'

```
3) with cte as (select order_id,customer_id,date_diff(extract(date from
order_delivered_customer_date),extract(date from order_purchase_timestamp), day) as
time_to_deliver from `Target_study.orders` where order_status= 'delivered' and
order_delivered_customer_date is not null),cte_1 as
(select c2.customer_state,avg(c1.time_to_deliver) as average_delivery_time
from cte c1 inner join `Target_study.customers` c2 on c1.customer_id=c2.customer_id
group by c2.customer_state),
cte_2 as
(select customer_state,cte_1.average_delivery_time,dense_rank() over(order by
cte_1.average_delivery_time desc) as top_5
from cte_1 order by cte_1.average_delivery_time desc limit 5),
cte_3 as
(select customer_state,cte_1.average_delivery_time,dense_rank() over(order by
cte_1.average_delivery_time asc) as bottom_5
from cte_1 order by cte_1.average_delivery_time asc limit 5)
select c2.customer_state as states_with_highest_average_delivery_time
,c2.average_delivery_time,c3.customer_state as
states_with_lowest_average_delivery_time,c3.average_delivery_time from cte_2 c2
inner join cte_3 c3 on c2.top_5=c3.bottom_5 order by c3.bottom_5;
```

states_with_highest_average_delivery_time	average_delivery_time ▼	states_with_lowest_average_delivery_time	average_delivery_time_1 ▼
RR	29.341463414634148	SP	8.7005729243838132
AP	27.179104477611947	PR	11.938045906967316
AM	26.358620689655169	MG	11.944953320415706
AL	24.501259445843843	DF	12.899038461538467
PA	23.725158562367902	SC	14.902989283699952

```
From 5.2 and 5.3, we can understand that higher freight values correspond to longer delivery times, and vice versa, particularly in the states of RR, SP, PR, MG, and DF.
```

```
4) with cte as (select
order_id,customer_id,order_purchase_timestamp,order_delivered_customer_date,order_e
stimated_delivery_date, date_diff(extract(date from
order_delivered_customer_date), extract(date from order_purchase_timestamp), day) as
time_to_deliver, date_diff(extract(date from
order_delivered_customer_date),extract(date from
order_estimated_delivery_date),day) as
diff_estimated_delivery, date_diff(extract(date from
order_estimated_delivery_date), extract(date from order_purchase_timestamp), day) as
est_to_deliver from `Target_study.orders` where order_status= 'delivered' and
order_delivered_customer_date is not null),
cte_1 as
(select
c1.customer_state,c.time_to_deliver,c.est_to_deliver,c.diff_estimated_delivery from
cte c inner join `Target_study.customers`c1 on c.customer_id=c1.customer_id),
(select customer_state, avg(time_to_deliver) as
avg_time_to_deliver,avg(est_to_deliver) as
avg_est_time,avg(diff_estimated_delivery) as sample_try
from cte_1 group by customer_state),
cte_3 as
(select customer_state,(avg_est_time-avg_time_to_deliver) as
earliest,cte_2.sample_try from cte_2 order by earliest desc)
select *,dense_rank() over(order by earliest desc) as ranking from cte_3 order by
earliest desc limit 5;
```

customer_state ▼	earliest ▼	sample_try ▼	ranking ▼
AC	20.72499999999	-20.7249999999	1
RO	20.10288065843	-20.1028806584	2
AP	19.68656716417	-19.6865671641	3
AM	19.56551724137	-19.5655172413	4
RR	17.29268292682	-17.2926829268	5

In the above table, sample_try refers to a different approach that yields a similar result, but with a negative value.

Recommendations:

- 1) States such as RR, RO, and AC, which are among the top 5 for the fastest order deliveries compared to the estimated delivery date, also rank among the top 5 for the highest average freight value (refer to 5.2). To address this, we could consider reducing the freight value by opting for a delivery partner that charges less, rather than choosing a high-speed delivery partner with higher charges.
- 2) Additionally, states including AP and AM, which are among the top 5 states where orders are delivered significantly faster than the estimated delivery date, are also among the top 5 states with the highest average delivery time. We can address this discrepancy in two ways:

- i) <u>Reduce the Estimated Delivery Time:</u> This would prevent customers from being deterred by the potential delay and improve their likelihood of placing an order.
- ii) <u>Reduce the Freight Value:</u> This could help increase company profit, as outlined in the action plan mentioned in the first recommendation.

6) Analysis based on the payments:

```
1) with cte as (select o.order_id,format_timestamp('%Y-
%m',o.order_purchase_timestamp) as month_wise,p.payment_type from
`Target_study.orders`o inner join `Target_study.payments` p on
o.order_id=p.order_id)
```

select payment_type,cte.month_wise, count(distinct order_id) as no_of_orders from
cte group by payment_type,cte.month_wise order by cte.month_wise,payment_type;

Row	payment_type ▼	month_wise ▼	no_of_orders ▼
1	credit_card	2016-09	3
2	UPI	2016-10	63
3	credit_card	2016-10	253
4	debit_card	2016-10	2
5	voucher	2016-10	11
6	credit_card	2016-12	1
7	UPI	2017-01	197
8	credit_card	2017-01	582
9	debit_card	2017-01	9
10	voucher	2017-01	33

Recommendation:

From the table above, we can see that the number of credit card and UPI payments is comparatively higher. Therefore, we could partner with banks and UPI providers so that when customers earn points or rewards through the use of credit cards or UPI, they can redeem them for a 'TARGET' voucher worth XYZ amount. This strategy could help increase our visibility and potential conversion rate.

2) with cte as (select order_id,count(distinct payment_sequential) as number_of_installments from `Target_study.payments` group by order_id order by number_of_installments)

select cte.number_of_installments as installments,count(distinct order_id) as
number_of_orders from cte where cte.number_of_installments>=1 group by
cte.number_of_installments order by cte.number_of_installments;

Row	installments	· /	number_of_orders
1		1	96479
2		2	2382
3		3	301
4		4	108
5		5	52
6		6	36
7		7	28
8		8	11
9		9	9
10		10	5

Greater the number of installments, lesser the number of orders.(mostly)

(Or)

2) select payment_installments,count(distinct order_id) as number_of_orders from `Target_study.payments` group by payment_installments order by payment_installments;

Row	payment_installment	number_of_orders /
1	0	2
2	1	49060
3	2	12389
4	3	10443
5	4	7088
6	5	5234
7	6	3916
8	7	1623
9	8	4253
10	9	644

I have provided 2 different solutions as you can see above