In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
import seaborn as sns
```

In [3]:

```
url="https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20
df1=pd.read_csv(url)
print("Data imported successfully")
```

Data imported successfully

In [4]:

df1

Out[4]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

In [5]:

```
print("shape:(rows,cols)")
df1.shape
```

shape:(rows,cols)

Out[5]:

(25, 2)

In [6]:

df1.head(15)

Out[6]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17

In [7]:

df1.describe()

Out[7]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [8]:

```
df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 Hours 25 non-null float64
1 Scores 25 non-null int64
dtypes: float64(1), int64(1)
memory usage: 528.0 bytes
```

In [9]:

```
plt.figure(figsize=(5,6))
sns.scatterplot(x="Hours",y="Scores",data=df1)
plt.title("PERCENTAGE VS HOURS")
```

Out[9]:

Text(0.5, 1.0, 'PERCENTAGE VS HOURS')

In [10]:

```
ax = sns.regplot(x="Hours", y="Scores", data=df1)
```


In [11]:

```
plt.figure(figsize=(20,6))
sns.countplot(x=df1["Scores"])
```

Out[11]:

<AxesSubplot:xlabel='Scores', ylabel='count'>

In [12]:

```
plt.figure(figsize=(10,6))
sns.lineplot(x=df1["Hours"],y=df1["Scores"])
```

Out[12]:

<AxesSubplot:xlabel='Hours', ylabel='Scores'>

In [13]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
sns.boxplot(y=df1["Hours"], color="red")
plt.subplot(1,2,2)
sns.boxplot(y=df1["Scores"])
plt.show()
```


