Error Correction/RAID Engine for DNA-Based Storage

STUDENTS:

Firas Ramadan & Muhammad Dahamshi

Supervisor: Amit Berman

Motivation & background

Four nucleotides:

- (A) Adenine
- c Cytosine
- G Guanine
- Thymine

Extremely dense

Theory: 1 exabyte in 1 in³

DNA strand (oligonucleotide) is a linear sequence of these nucleotides

Two strands can bind to each other if they are complementary:

Partial errors allowed

Extremely durable Half life > 500 years

A DNA-based archival storage system

- -Reliability-density trade-off
- -Increasing Reliability
- -Random Access
- -Error analysis
- -Model of truncated strands

Method & system flow

Data address/key specifies physical location and primer for random access.

Binary <-> Ternary <-> nucleotides

Binary To Ternary: Huffman Encoding with base 3

222222222112 12011010101010 122111121

2: A 1: T 0: C

Ternary <-> nucleotides

222222222112 12011010101010 122111121

ATGCATGCATCTG ATAGACTAGTCGAC TGCTCTCAG

3 types of errors:

- substitutions
- Deletion
- insertion

Increasing Reliability: RAID reconstruction algorithm

A multi-dimensional algorithm is one in which parts of multiple logical RAID stripes may contribute to parity calculation. Row-Diagonal Parity (RDP) conveyed through diagrams. as in corbett

ATGCATGCATCTGATAGACTAGTCGACTGCTCTCAG

Single Disk Recover

data disk 0	data disk 1	data disk 2	data disk 3	Row Parity	Diagonal Parity
['GCGAGGCGAAGCCGTCAGAA']	['GCCATTATTTACGGTGAGCA'] [['GAAGATAGTAACCTCGCTAC']	['CCCAGATATTGAGTATCCTT']	['TCGGTGGTTAACAACGAGGG']	['TACGAACTGCCATACATACC']
['CCTATTTGTGCCAAAACGGT']	['CCTCCATCGTTAATCGCGAC']	['ACATGCTAACCACTCGGACA']	['TTACCGTATAGAACTTTCAT']	['TGATCAATGACCCCTTCCTC']	['CTACTATCATGGGACATATA']
['TTAAAGCATTTGTTCCTGCA']	['CTTATTAATACCAATGCCTC']	['TAGTGTGTGAAAAGAAATCT']	['ACGATGCGAACCACTAACGG']	['CCTTGAGCGTTGTACTGCCA']	['AGTGGTTGCAGCTTTTTAGG']
['GTTCGGGAGTCCTGGATGAA']	['TTTTAAAATTAGGGCCCGGT'] [['GGCCAACAACTCTGGGGGAG']	['TGCGCAGCGCAATGTCACCT']	['AAACTGCCTAGGCAGGATTG']	['GACGCAGAGCTAAGATCGCG']

disk 2 failed


```
data disk 0 data disk 1 data disk 2 data disk 3 Row Parity Diagonal Parity

['GCGAGGCGAAGCCGTCAGAA'] ['GCCATTATTTACGGTGAGCA'] ['GAAGATAGTAACCTCGCTAC'] ['CCCAGATATTGAGTATCCTT'] ['TCGGTGGTTAACAACGAGGG'] ['TACGAACTGCCATACATACC']

['CCTATTTGTGCCAAAACGGT'] ['CCTCCATCGTTAATCGCGAC'] ['ERROR'] ['TTACCGTATAGAACTTTCAT'] ['TGATCAATGACCCCTTCCTC'] ['CTACTATCATGGGACATATA']

['TTAAAGCATTTGTTCCTGCA'] ['CTTATTAATACCAATGCCTC'] ['TAGTGTGTGAAAAGAAATCT'] ['ACGATGCGAACCACTAACGG'] ['CCTTGAGCGTTGTACTGCCA'] ['AGTGGTTGCAGCTTTTTAGG']

['GTTCGGGAGTCCTGGATGAA'] ['TTTTAAAATTAGGGCCCGGT'] ['GGCCAACAACTCTGGGGGGAG'] ['TGCGCAGCGCAATGTCACCT'] ['AAACTGCCTAGGCAGGATTG'] ['GACGCAGAGCTAAGATCGCG']
```

Single Disk Recover

disk 2 recovering using row parity

Double Disk Recover

```
data disk 0 data disk 1 data disk 2 data disk 3 Row Parity Diagonal Parity

['TCATGCACGTACATCTCGAT'] ['ATACTGATAGCTGTGCATGT'] ['TCTGCGCATGCGTCAGTGAG'] ['CGATCTAGCTCGATCTAGCT'] ['CCTTCGCAAACGCGGTGCTC', 'CCTTCGCAAACGCGGTGCTC']

['CATAGCATGTACATCATGCA'] ['CTCGAGAGCAGCATCACACG'] ['ATCATGCGTGACGCTACGAC'] ['CGATCTAGCTCGATCTAGCT'] ['CGTCAGCCCGTTGGGTTGCA', 'CGTCAGCCCGTTGGGTTGCA']

['CACTACTACAGTCGCGTATG'] ['CAGCGTCGTGTACAGCACGC'] ['TGATCTAGCTCGATCTAGCT'] ['CGATGCATAGAGCGCATGCA'] ['GATGCAGTTTATCTTAACCA', 'GATGCAGTTTATCTTAACCA']

['CAGTGTCAGACAGACTGCGT'] ['TGCTGTGTATGCGCGTATCA'] ['CGATCTAGCTCGATCTAGCT'] ['CATGCAGATCGTACGTGTAC'] ['GAACATCCACAAATAAATGC', 'GAACATCCACAAATAAATGC']
```


disks 1 and 2 failed

```
data disk 0 data disk 1 data disk 2 data disk 3 Row Parity Diagonal Parity

['TCATGCACGTACATCTCGAT'] ['ATACTGATAGCTGTGCATGT'] ['GAACAAAATGAAGTGCCTTT'] ['CGATCTAGCTCGATCTAGCT'] ['CCTTCGCAAACGCGGTGCTC', 'CCTTCGCAAACGCGGTGCTC']

['CATAGCATGTACATCATGCA'] ['AGGCCACGCATTCCTTTCGT'] ['AACGGGCTGAGACCTAACGA'] ['CGATCTAGCTCGATCTAGCT'] ['CGTCAGCCCGTTGGGTTGCA', 'CGTCAGCCCGTTGGGTTGCA']

['CACTACTACAGTCGCGTATG'] ['CTGTTTCTGACCGAGCCGAA'] ['CCTTCTGATGTAGAGTCAGG'] ['CGATGCATAGAGCGCATGCA'] ['GATGCAGTTTATCTTAACCA', 'GATGCAGTTTATCTTAACCA']

['CAGTGTCAGACAGACTGCGT'] ['ERROR'] ['ERROR'] ['CATGCAGATCGTACGTGTAC'] ['GAACATCCACAAATAAATGC', 'GAACATCCACAAATAAATGC']
```

Double Disk Recover

disk 2 block recovering using diagonal parity

Parity Disks

Information Disks Disk0 Disk1 Disk2 Disk3

Double Disk Recover

disk 1 recovering using row parity

Software Implementation – Python

We implemented the algorithm for transforming binary data into DNA in Python, which you can learn more about here: github/DNA-Storage-System

Diagonal parity reocover

data disk 0	data disk 1	data disk 2	data disk 3	Row Parity	Diagonal Parity
['TTCAGAAATAAACACTGGGC']	['CATTCAGCTGTTCAGGGTCC']	['TTAGACATCCCTCCCGTGGC']	['TTTCGAAACGCCAACCGTGA']	['GTCACCGGACTCCCTGCATC']	['GAAATCAACTGACCAACTCG']
['TTGACATGCGCACATGGTTG']	['TGTTCCCATCTACACCTTAT']	['ERROR']	['CACTTCATCGACGAGTGGTC']	['TGCATCGAAGATAATCGCAG']	['AGCACTGCAGCCCGTTAGTC']
['ACCCGGGTTCCCGGGGTTCA']	['AAGAAAATTGTCTTGGAAGT']	['TGCCGGGCGGCAATTGCGA']	['TTCGTTGGCTCGTCATGTGT']	['AATGTTGTTGCTGATATCTA']	['TGTGATACTGAATTCAACAT']
['ATAAGACGGTGACCAAATCG']	['AGTCGGTAGGAGATATTACT']	['CGCGCTAGTGTCTAGCTTCG']	['GCTCGACCCAGCTGCTTTGG']	['TGCGTCTCGTTGCATCTTTC']	['CTACACCATAGGAGAGTTCT']
data disk 0	data disk 1	data disk 2	data disk 3	Row Parity	Diagonal Parity
['TTCAGAAATAAACACTGGGC']	['CATTCAGCTGTTCAGGGTCC']	['TTAGACATCCCTCCCGTGGC']	['TTTCGAAACGCCAACCGTGA']	['GTCACCGGACTCCCTGCATC']	['GAAATCAACTGACCAACTCG']
['TTGACATGCGCACATGGTTG']	['TGTTCCCATCTACACCTTAT']	['GTCAACACTTGGGATCCTAG']	['CACTTCATCGACGAGTGGTC']	['TGCATCGAAGATAATCGCAG']	['AGCACTGCAGCCCGTTAGTC']
['ACCCGGGTTCCCGGGGTTCA']	['AAGAAAATTGTCTTGGAAGT']	['TGCCGGGCGGCAATTGCGA']	['TTCGTTGGCTCGTCATGTGT']	['AATGTTGTTGCTGATATCTA']	['TGTGATACTGAATTCAACAT']
['ATAAGACGGTGACCAAATCG']	['AGTCGGTAGGAGATATTACT']	['CGCGCTAGTGTCTAGCTTCG']	['GCTCGACCCAGCTGCTTTGG']	['TGCGTCTCGTTGCATCTTTC']	['CTACACCATAGGAGAGTTCT']

SUCCESS

Row parity reocover

```
data disk 0
                                data disk 1
                                                         data disk 2
                                                                                  data disk 3
                                                                                                            Row Parity
                                                                                                                                   Diagonal Parity
                                                                           ['TTTCGAAACGCCAACCGTGA'] ['GTCACCGGACTCCCTGCATC'] ['GAAATCAACTGACCAACTCG'
['TTCAGAAATAAACACTGGGC'] ['CATTCAGCTGTTCAGGGTCC']
                                                  ['TTAGACATCCCTCCCGTGGC']
['TTGACATGCGCACATGGTTG'] ['TGTTCCCATCTACACCTTAT'
                                                          ['ERROR']
                                                                            ['CACTTCATCGACGAGTGGTC'] ['TGCATCGAAGATAATCGCAG'] ['AGCACTGCAGCCCGTTAGTC'
''ACCCGGGTTCCCGGGGTTCA'] ['AAGAAAATTGTCTTGGAAGT'] ['TGCCGGGCGGCAATTGCGA'] ['TTCGTTGGCTCGTCATGTGT'] ['AATGTTGTTGCTGATATCTA'] ['TGTGATACTGAATTCAACAT']
['ATAAGACGGTGACCAAATCG'] ['AGTCGGTAGGAGATATTACT'] ['CGCGCTAGTGTCTAGCTTCG'] ['GCTCGACCCAGCTGCTTTGG'] ['TGCGTCTCGTTGCATCTTTC'] ['CTACACCATAGGAGAGTTCT']
      data disk 0
                                data disk 1
                                                         data disk 2
                                                                                  data disk 3
                                                                                                           Row Parity
                                                                                                                                   Diagonal Parity
['TTCAGAAATAACACTGGGC'] ['CATTCAGCTGTTCAGGGTCC'] ['TTAGACATCCCTCCCGTGGC'] ['TTTCGAAACGCCAACCGTGA'] ['GTCACCGGACTCCCTGCATC'] ['GAAATCAACTGACCAACTCG']
['TTGACATGCGCACATGGTTG'] ['TGTTCCCATCTACACCTTAT'] ['GTCAACACTTGGGATCCTAG'] ['CACTTCATCGACGAGTGGTC'] ['TGCATCGAAGATAATCGCAG'] ['AGCACTGCAGCCCGTTAGTC']
['ACCCGGGTTCCCGGGGTTCA'] ['AAGAAAATTGTCTTGGAAGT'] ['TGCCGGGCGGCAATTGCGA'] ['TTCGTTGGCTCATGTGT'] ['AATGTTGTTGCTGATATCTA'] ['TGTGATACTGAATTCAACAT']
['ATAAGACGGTGACCAAATCG'] ['AGTCGGTAGGAGATATTACT'] ['CGCGCTAGTGTCTAGCTTCG'] ['GCTCGACCCAGCTGCTTTGG'] ['TGCGTCTCGTTGCATCTTTC'] ['CTACACCATAGGAGAGTTCT']
```

DNA system Controller & data path

DNA system state machine

Hardware implementation: system verilog

```
30 s
           RDP Library
             disk 2
                                 disk 4
   disk 1
                                          row Parity
                                                    diag Parity
1110010010000000 | 0110001100000001 | 111000010000001 | 01110110110100001 |
                                        0001000001000001 |
                                                  0001110111000000
1110011100000001 | 1110000111000001 | 0011101100000001 | 0010011110000001 | 0001101001000000 | 1100111010000001
RDP Library, single disk 1 failed -----
                                          row Parity
                                                    diag Parity
00000000000000 | 0111101110000001 | 1101001110000001 | 010011010000001 | 011010010000000 | 110110010000000
00000000000000 | 1110000111000001 | 0011101100000001 | 0010011110000001 | 000110101000000 | 1100111010000001
----- recovery disk number 1
new D1 1 = 1000110010000001
new D1 2 = 1110010010000000
new D1 3 = 1110011100000001
new D1 4 = 0001000110000001
           RDP Library, disk 1 recovery
             disk 2
   disk 1
                       disk 3
                                          row Parity
                                                    diag Parity
1110011100000001 | 1110000111000001 | 0011101100000001 | 0010011110000001 |
                                        0001101001000000 | 1100111010000001
```

Hardware implementation: system verilog

```
RDP Library
              disk 2
                         disk 3
   disk 1
                                    disk 4
                                                         diag Parity
1110010010000000 | 0110001100000001 | 111000010000001 | 0111011011000001 | 0001000001000001
                                                       0001110111000000
1110011100000001 | 1110000111000001 | 0011101100000001 | 0010011110000001 | 0001101001000000 | 1100111010000001
RDP Library, double disk recover ------
                         disk 3
              disk 2
                                    disk 4
                                                         diag Parity
   disk 1
                                              row Parity
000000000000000000
           01111011100000001 |
                      0000000000000000 | 0100110110000001
                                            0110100100000000 I
                                                       1101100100000000
          | 0110001100000001 | 000000000000000 | 0111011011000001 | 0001000001000001
                                                       0001110111000000
00000000000000000
----- recovery disks [ 1 , 3 ]
            RDP Library, disks 1 , 3 recovery --
              disk 2
                         disk 3
                                                         diag Parity
   disk 1
                                              row Parity
1110010010000000 | 0110001100000001 | 111000010000001 | 0111011011000001 | 0001000001000001
                                                       0001110111000000
1110011100000001 | 1110000111000001 | 0011101100000001 | 0010011110000001 | 0001101001000000
                                                       11001110100000001
```

Synthesis and Layout

Conclusion

- Better error correction
- Better random access
- Software > Hardware

Future work

- Faster sequencing
- Higher level of resolution

DNA system data path, after implementation

The system in a nutshell

Archival storage system structured as a key-value store

Archival storage system structured as a key-value store

put(key, value)

Archival storage system structured as a key-value store

get(key)

Archival storage system structured as a key-value store

put(key, value)

get(key)

Archival storage system structured as a key-value store

get(key)

Archival storage system structured as a key-value store

get(key)

Archival storage system structured as a key-value store

get(key)

Overall, DNA-based storage has potential as a practical solution to the digital archiving problem and may become a cost-effective solution for rarely accessed archives.

We hope you enjoyed learning something about biology, computer science, electrical Engineering and the creative combination of all for a data storage system.

Thanks for reading! (3)