Math 131B: Homework 3

Owen Jones

5/5/2023

Problem 1. Exercise 2.2.4

Let $\epsilon > 0$ and choose $\delta = \epsilon$. If $d((x_1, y_1), (x_2, y_2)) < \delta$, then $\Rightarrow d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} < \delta$ $\Rightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 < \delta^2$

Because the square of a number is non-negative, $|x_1 - x_2| < \delta = \epsilon$ and $|y_1 - y_2| < \delta = \epsilon$. $\Rightarrow d(\pi_1(x_1, y_1), \pi_1(x_2, y_2)) < \epsilon$ and $d(\pi_2(x_1, y_1), \pi_2(x_2, y_2)) < \epsilon$

Hence, π_1 and π_2 are continuous.

Since $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ is continuous, $\pi_2: \mathbb{R}^2 \to \mathbb{R}$ is continuous, and $f: \mathbb{R} \to X$ is continuous, their compositions $f \circ \pi_1: \mathbb{R}^2 \to X$ and $f \circ \pi_2: \mathbb{R}^2 \to X$ are also continuous. Because $g_1(x,y) := f(\pi_1(x,y)) = f(x)$ and $g_2(x,y) := f(\pi_2(x,y)) = f(y)$, $g_1(x,y)$ and $g_2(x,y)$ are continuous. OED

Problem 2. Exercise 2.2.10

Let $g_y : \mathbb{R} \to \mathbb{R}^2$ $g_y(x) = (x, y)$ for some $y \in \mathbb{R}$ and let $g_x : \mathbb{R} \to \mathbb{R}^2$ $g_x(y) = (x, y)$ for some $x \in \mathbb{R}$. We want to show $f_y(x) = f \circ g_y(x)$ and $f_x(y) = f \circ g_x(y)$ are continuous.

Let $\epsilon > 0$ and choose $\delta = \epsilon$. If $d(x_1, x_2) < \delta$, then $\Rightarrow |x_1 - x_2| < \delta$ $\Rightarrow \sqrt{(x_1 - x_2)^2 + (y - y)^2} < \delta = \epsilon$ $\Rightarrow d(g_y(x_1), g_y(x_2)) < \epsilon$ Hence g_y is continuous.

If $d(y_1, y_2) < \delta$, then $\Rightarrow |y_1 - y_2| < \delta$ $\Rightarrow \sqrt{(x - x)^2 + (y_1 - y_2)^2} < \delta = \epsilon$ $\Rightarrow d(g_x(y_1), g_x(y_2)) < \epsilon$ Hence g_x is continuous.

Hence g_y is continuous. Hence g_x is continuous. Due to continuity preserved by composition, $f_x(y)$ and $f_y(x)$ are continuous. Since x and y are chosen arbitrarily, $y \mapsto f(x,y) \ \forall x \in \mathbb{R}$ and $x \mapsto f(x,y) \ \forall y \in \mathbb{R}$ are continuous separately.

Problem 3. Exercise 2.2.11

Let $g_y(x)$ and $g_x(y)$ be the functions defined in the previous problem.

We want to show $f(g_y(x))$ and $f(g_x(y))$ are continuous, but f(x,y) is not continuous.

Let y and x_0 be arbitrary.

Let $\epsilon > 0$ and choose $\delta = \min\{\left|\frac{x_0}{2}\right|, \frac{\epsilon x_0^2}{2y}\}$ Let $\epsilon > 0$ and choose $\delta = \min\{\left|\frac{y_0}{2}\right|, \frac{\epsilon x_0^2}{2y}\}$ Let $\epsilon > 0$ and choose $\delta = \min\{\left|\frac{y_0}{2}\right|, \frac{\epsilon y_0^2}{2x}\}$ If $d(x, x_0) < \delta$ then $d(f(g_y(x)), f(g_y(x_0))) = \left|\frac{xy}{x^2 + y^2} - \frac{x_0y}{x_0^2 + y^2}\right|$ $d(f(g_x(y)), f(g_x(y_0))) = \left|\frac{xy}{x^2 + y^2} - \frac{xy_0}{x^2 + y^2}\right|$ $d(f(g_x(y)), f(g_x(y_0))) = \left|\frac{xy}{x^2 + y^2} - \frac{xy_0}{x^2 + y^2}\right|$ $= \left|\frac{(x - x_0)yxx_0}{(x^2 + y^2)(x_0^2 + y^2)}\right| \leq \left|\frac{(x - x_0)y}{(xx_0)}\right|$ $\leq \left|\frac{(x - x_0)2y}{x_0^2}\right| < \left|\frac{\delta 2y}{x_0^2}\right| \leq \left|\frac{\epsilon 2y(x_0^2)}{2y(x_0^2)}\right| = \epsilon$ Hence, $f(g_x(x))$ is continuous at x_0 .

Hence, $f(g_x(y))$ is continuous at y_0 .

Next, we will show f(x, y) is not continuous at the origin.

Let $\epsilon = \frac{1}{2}$ and set y = x. If $(x,y) = (\frac{\sqrt{2}\delta}{4}, \frac{\sqrt{2}\delta}{4})$ then $d((x,y),(0,0)) = \frac{\delta}{2} < \delta$. It follows $\frac{(\frac{\sqrt{2}\delta}{4})^2}{(\frac{\sqrt{2}\delta}{4})^2 + (\frac{\sqrt{2}\delta}{4})^2} = \frac{1}{2}$. Hence for all $\delta > 0$ there exists $d(f(x,y),f(0,0)) \ge \frac{1}{2}$. Therefore, f(x,y) is not continuous. QED

Problem 4. Exercise 2.2.12

Let (x,y) be arbitrary. Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon y}{x^2}$. If $|t| < \delta$ then $|f(xt,yt)| = |\frac{(xt)^2}{yt}| = |\frac{x^2t}{y}|$

 $\frac{\epsilon y x^2}{y x^2} = \epsilon. \text{ Hence, } \lim_{t \to 0} f(xt, yt) = 0.$ f is continuous if $\lim_{(x,y) \to (0,0)} f(x,y) = f(0,0)$ for all paths. To show f(x,y) is discontinuous at (0,0),

we will show $\lim_{t\to 0} f(t,t^2) \neq 0$. Let $\epsilon = \frac{1}{2}$ and let $\delta > 0$. If $\sqrt{t^2 + t^4} \leq \delta$ then $|t| \leq \sqrt{\frac{-1 + \sqrt{1 + 4\delta^2}}{2}}$. It follows $|f(\sqrt{\frac{-1 + \sqrt{1 + 4\delta^2}}{2}}, \frac{-1 + \sqrt{1 + 4\delta^2}}{2}) - f(0,0)| = |\frac{\frac{-1 + \sqrt{1 + 4\delta^2}}{2}}{\frac{-1 + \sqrt{1 + 4\delta^2}}{2}} - 0| = 1 > \epsilon$.

follows
$$|f(\sqrt{\frac{-1+\sqrt{1+4\delta^2}}{2}}, \frac{-1+\sqrt{1+4\delta^2}}{2}) - f(0,0)| = |\frac{\frac{-1+\sqrt{1+4\delta^2}}{2}}{\frac{-1+\sqrt{1+4\delta^2}}{2}} - 0| = 1 > \epsilon$$

Moreover, for every $\delta > 0$ there exists a (x', y') within δ of some (x, y) s.t $d((f(x'), f(y')), (f(x), f(y))) \ge$

QED

Problem 5. Exercise 2.3.3

Let $f: X \to Y$ be uniformly continuous. For every $\epsilon > 0$ there exists $\delta > 0$ s.t $d(f(x_1), f(x_2)) < \epsilon$ whenever $d(x_1, x_2) < \delta$. Let $x_0 \in X$. Then for every $\epsilon > 0$ $d(f(x), f(x_0)) < \epsilon$ whenever $d(x, x_0) < \delta$ by uniform continuity. Hence, f is continuous.

Let $g(x,y) = x^2 + y^2 + x - y$.

Let $g(x,y) = x^2 + y^2 + x - y$. Let $\epsilon > 0$ and choose $\delta = \min\{1, \frac{\epsilon}{2(2+|x_0|+|y_0|)}\}$. If $d((x,y),(x_0,y_0)) < \delta$ then $|x-x_0| < \delta$ and $|y-y_0| < \delta$. It follows $|x+x_0+1||x-x_0| < |x+x_0+1|\delta \le 2(|x_0|+1)\delta$ and $|y+y_0-1||y-y_0| < |y+y_0-1|\delta \le 2(|y_0|+1)\delta$ by the triangle innequality. Thus, $d(g(x,y),g(x_0,y_0)) = |x^2-x_0^2+y^2-y_0^2+x-x_0-y+y_0| \le |x+x_0+1||x-x_0|+|y+y_0-1||y-y_0| \le 2\delta(2+|x_0|+|y_0|) \le \frac{2(2+|x_0|+|y_0|)\epsilon}{2(2+|x_0|+|y_0|)\epsilon} < \epsilon$. Hence, g is continuous. However $|(x+\frac{\sqrt{2\delta}}{2})^2-(x)^2+(y+\frac{\sqrt{2\delta}}{2})^2-(y)^2+(x+\frac{\sqrt{2\delta}}{2})-x+y-(y+\frac{\sqrt{2\delta}}{2})| = |\frac{\sqrt{2\delta}}{2}(2x+\frac{\sqrt{2\delta}}{2})+\frac{\sqrt{2\delta}}{2}(2y+\frac{\sqrt{2\delta}}{2})| = |\sqrt{2\delta}(x+y)+\delta| \ge \epsilon$ whenever |x+y| is sufficiently large. Moreover, for every $\delta > 0$ there exists a (x',y') within δ of some (x,y) s.t $d((f(x'),f(y')),(f(x),f(y))) \ge \epsilon$. Hence, g is not uniformly continuous

uniformly continuous.

QED

Problem 6. Exercise 2.3.4

Let $\epsilon > 0$. By the uniform continuity of g, there exists a $\delta_1 > 0$ s.t $d(g(x), g(x')) < \epsilon$ whenever $d(x,x') < \delta_1$. By the uniform continuity of f, choose $\delta > 0$ to be small enough s.t $d(f(x),f(x')) < \delta_1$ whenever $d(x, x') < \delta$. Because $d(f(x), f(x')) < \delta_1$, we obtain $d(g(f(x)), g(f(x'))) < \epsilon$. Hence, $g \circ f$ is uniformly continuous.

QED

Problem 7. Exercise 2.3.5

Not a homework problem but used in the solution for 2.3.6

Let $\epsilon>0$. By the uniform continuity of f and g, choose δ to be small enough so $d(f(x),f(x'))<\frac{\epsilon}{\sqrt{2}}$ and $d(g(x),g(x'))<\frac{\epsilon}{\sqrt{2}}$. It follows $d((f(x),g(x)),(f(x'),g(x')))=\sqrt{(g(x)-g(x'))^2+(f(x)-f(x'))^2}<\infty$ $\sqrt{2\frac{\epsilon^2}{2}} = \epsilon$ whenever $d(x, x') < \delta$.

Problem 8. Exercise 2.3.6

Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{2}$. If $d((x,y),(x',y')) < \delta$, this implies $|x-x'| < \delta$ and $|y-y'| < \delta$. It follows $|(x+y)-(x'+y')| = |(x-x')+(y-y')| \leq |x-x'|+|y-y'| < 2\delta = 2\frac{\epsilon}{2} = \epsilon$. Hence, addition is uniformly continuous.

Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{2}$. If $d((x,y),(x',y')) < \delta$, this implies $|x-x'| < \delta$ and $|y-y'| < \delta$. It follows $|(x-y)-(x'-y')| = |(x-x')-(y-y')| \le |x-x'|+|y'-y| < 2\delta = 2\frac{\epsilon}{2} = \epsilon$. Hence, subtraction is uniformly continuous.

 $|(\frac{\sqrt{2\delta}}{2}+x)|(\frac{\sqrt{2\delta}}{2}+y)-(xy)|=|\frac{\sqrt{2\delta}}{2}(x+y)+\frac{\delta}{2}|\geq \epsilon$ whenever |x+y| is sufficiently large. Hence, multiplication is not uniformly continuous.

By exercise 2.3.5, we know that the direct sum preserves uniform continuity. Because the addition and

subtraction functions are uniformly continuous from $\mathbb{R}^2 \to \mathbb{R}$, f+g and f-g are uniformly continuous if f and g are uniformly continuous from $X \to \mathbb{R}$.

Let f(x) = x + 2, $g(x) = \frac{x}{2}$. $|(x + \frac{\sqrt{2\delta}}{2} + 2)(\frac{x + \frac{\sqrt{2\delta}}{2}}{2}) - (x + 2)(\frac{x}{2})| = |\frac{\sqrt{2\delta}}{2}(x + 2 + \frac{x}{2}) + \frac{\delta}{4}| \ge \epsilon$ whenever $|x + 2 + \frac{x}{2}|$ is sufficiently large.

max(f,g), min(f,g), and cf are uniformly continuous if f and g are uniformly continuous, but f/g is not nexessarily uniformly continuous. For max and min you can choose a δ small enough so that it works for both f and g. For cf you choose a δ small enough so that the difference in fs is less than $\frac{\epsilon}{c}$. If f(x) = x and $g(x) = \frac{1}{1+x^2} f/g$ is not uniform continuous while f and g both are. QED

Problem 9. Additional Problem

- a) f is uniformly continuous because for every $\epsilon > 0$, if $\delta = \epsilon$, $|f(x) f(y)| < \epsilon$ whenever $|x y| < \delta$.
- b) f is not uniformly continuous because if $\epsilon < 1$ there exist $x \neq y$ for every $\delta > 0$ which implies there exists $d_{disc}(f(x), f(y)) = 1 > \epsilon$.
- c) f is uniformly continuous because for every $\epsilon > 0$, if $\delta = 1$, $|f(x) f(y)| = 0 < \epsilon$ whenever $d_{disc}(x,y) < \delta$.
- d) f is uniformly continuous because for every $\epsilon > 0$, if $\delta = 1$, $d_{disc}(f(x), f(y)) = 0 < \epsilon$ whenever $d_{disc}(x, y) < \delta$.