

CS 559: Machine Learning Fundamentals and Applications

Lecture 4

Lecturer: Xinchao Wang

xinchao.wang@stevens.edu

Teaching Assistant: Yiding Yang

yyang99@stevens.edu

Overview

- Parameter Estimation
 - Frequentist or Maximum Likelihood approach (cont.)
 - Bayesian approach (Barber Ch. 8 and DHS Ch. 3)
- Cross-validation
- Overfitting
- Non-parametric Techniques

MLE Classifier Example

Data

- Pima Indians Diabetes Database
 - http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
 - Number of Instances: 768
 - Number of Attributes: 8 plus class
 - Class Distribution: (class value 1 is interpreted as "tested positive for diabetes")
 - Class Value
 Number of instances
 500
 1
 268

Data

Attributes: (all numeric-valued)

- 1. Number of times pregnant
- 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
- 3. Diastolic blood pressure (mm Hg)
- 4. Triceps skin fold thickness (mm)
- 5. 2-Hour serum insulin (mu U/ml)
- 6. Body mass index (weight in kg/(height in m)^2)
- 7. Diabetes pedigree function
- 8. Age (years)
- 9. Class variable (0 or 1)

Simple MLE Classifier

```
data = dlmread('pima-indians-diabetes.data');
data = reshape(data, [], 9);
% use randperm to re-order data.
% ignore if not using Matlab
rp = randperm(length(data));
data=data(rp,:);
train data = data(1:length(data)/2,:);
test data = data(length(data)/2+1:end,:);
```

```
% pick a feature
active feat = 3;
% training
mean1 =
 mean(train data(train data(:,9) == 0, active feat))
mean2 =
 mean(train data(train data(:,9)==1,active feat))
var1 = var(train data(train data(:,9)==0,active feat))
var2 = var(train data(train data(:,9)==1,active feat))
prior1tmp = length(train data(train data(:,9)==0));
prior2tmp = length(train data(train data(:,9)==1));
prior1 = prior1tmp/(prior1tmp+prior2tmp)
prior2 = prior2tmp/(prior1tmp+prior2tmp)
```

```
% testing
                                                                           f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \; e^{-rac{(x-\mu)^2}{2\sigma^2}}
correct=0;
wrong=0;
for i=1:length(test data)
    lklhood1 = exp(-(test data(i,active feat)-mean1)^2/(2*var1))
  /sqrt(var1);
    lklhood2 = exp(-(test data(i,active feat)-mean2)^2/(2*var2));
  /sqrt(var2);
    post1 = lklhood1*prior1;
    post2 = lklhood2*prior2;
    if(post1 > post2 \&\& test data(i,9) == 0)
         correct = correct+1;
    elseif(post1 < post2 && test data(i,9) == 1)</pre>
         correct = correct+1;
    else
         wrong = wrong+1;
    end
```

end

8

Training/Test Split

- Randomly split dataset into two parts:
 - Training data
 - Test data
- Use training data to optimize parameters
- Evaluate error using test data

Training/Test Split

- How many points in each set?
- Very hard question
 - Too few points in training set, learned classifier is bad
 - Too few points in test set, classifier evaluation is insufficient
- Cross-validation
- Leave-one-out cross-validation
- Bootstrapping

Cross Validation

- In practice
- Available data => training and validation
- Train on the training data
- Test on the validation data
- k-fold cross validation:
 - Data randomly separated into k groups
 - Each time k-1 groups used for training and one as testing

Cross Validation and Test Accuracy

- If we select parameters so that CV is highest:
 - Does CV represent future test accuracy?
 - Slightly different
- So split available data with class labels, into:
 - training
 - validation
 - testing

Cross Validation and Test Accuracy

Using CV on training + validation

Train Validate

 Classify test data with the best parameters from CV

Validate Train

Test

Overfitting

- Prediction error: probability of test pattern not in class with max posterior (true)
- Training error: probability of test pattern not in class with max posterior (estimated)
- Classifier optimized w.r.t. training error
 - Training error: optimistically biased estimate of prediction error

Overfitting

Overfitting: a learning algorithm overfits the *training data* if it outputs a solution **w** when another solution **w**' exists such that:

$$error_{train}(w) < error_{train}(w')$$
 AND
 $error_{true}(w') < error_{true}(w)$

Fish Classifier from DHS Ch. 1

Minimum Training Error

Final Decision Boundary

Typical Behavior

Slide credit: A. Smola 19

Typical Behavior

Slide credit: A. Smola 20

Maximum a posteriori (MAP) Estimation

MLE

```
\theta_{MLE} = \arg \max_{\theta} P(D|\theta)
= \arg \max_{\theta} \log P(D|\theta)
= \arg \max_{\theta} \log \Pi_{i} P(x_{i}|\theta)
= \arg \max_{\theta} \Sigma_{i} \log P(x_{i}|\theta)
```

MAP

Recall Bayesian

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \propto P(D|\theta)P(\theta)$$

MAP

$$\theta_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} \log P(D|\theta) P(\theta)$$

$$= \arg \max_{\theta} \log \Pi_{i} P(x_{i}|\theta) P(\theta)$$

$$= \arg \max_{\theta} \Sigma_{i} \log P(x_{i}|\theta) P(\theta)$$

MLE and MAP

$$\theta_{MLE} = \arg \max_{\theta} P(D|\theta)$$

$$= \arg \max_{\theta} \log P(D|\theta)$$

$$= \arg \max_{\theta} \log \Pi_{i} P(x_{i}|\theta)$$

$$= \arg \max_{\theta} \Sigma_{i} \log P(x_{i}|\theta)$$

$$\theta_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} \log P(D|\theta) P(\theta)$$

$$= \arg \max_{\theta} \log \Pi_{i} P(x_{i}|\theta) P(\theta)$$

$$= \arg \max_{\theta} \Sigma_{i} \log P(x_{i}|\theta) P(\theta)$$

MLE can be thought as an uniform-prior version of MAP!

Non-parametric Classification

The Histogram

- The simplest form of non-parametric density estimation is the histogram
 - Divide sample space in number of bins
 - Approximate the density at the center of each bin by the fraction of points that fall into the bin
 - Two parameters: bin width and starting position of first bin (or other equivalent pairs)
- Drawbacks:
 - Depends on position of bin centers
 - Often compute two histograms, offset by ½ bin width
 - Discontinuities as an artifact of bin boundaries
 - Curse of dimensionality

Non-parametric Methods

• Non-parametric procedures can be used with arbitrary distributions and without the assumption that the forms of the underlying densities are known

Density Estimation

Probability that a vector x will fall in region R is:

$$P = \int_{\Re} p(x')dx' \tag{1}$$

 P is a smoothed (or averaged) version of the density function p(x) if we have a sample of size n; therefore, the probability that k points fall in R is:

$$P_k = \binom{n}{k} P^k (1 - P)^{n - k} \tag{2}$$

and the expected value for **k** is:

$$E(k) = nP \tag{3}$$

Answer the question: What is k, given n and P?

ML Estimate

ML estimation of
$$P = \theta$$

 $Max(P_k | \theta)$ is reached for $\hat{\theta} = \frac{k}{n} \cong P$

Therefore, the ratio $\mathbf{k/n}$ is a good estimate for the probability \mathbf{P} and hence for the density function $\mathbf{p(x)}$ (for large \mathbf{n})

Answer the question: What is P given k and n?

The k-Nearest-Neighbor Rule

- Goal: Classify x by assigning it the label most frequently represented among the k nearest samples
- Use a voting scheme

FIGURE 4.15. The k-nearest-neighbor query starts at the test point \mathbf{x} and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In this k=5 case, the test point \mathbf{x} would be labeled the category of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Matlab Example

```
data = dlmread('pima-indians-diabetes.data');
data = reshape(data,[],9);
% use randperm to re-order data. ignore if not using Matlab
rp = randperm(length(data));
data=data(rp,:);
%split = length(data)/2;
split = 300;
train_data = data(1:split,:);
test_data = data(split+1:end,:);
```

```
% pick features
active_feat = [1:3];
% training
% NOT NEEDED
% testing
correct=0;
wrong=0;
```

```
for i=1:length(test_data)
  sample=test_data(i,active_feat);
  dist = train_data(:,active_feat)-repmat(sample,length(train_data),1);
  dist = dist*dist';
  % we are only interested in the diagonal elements
  % DON'T USE QUADRATIC DISTANCE COMPUTATION IN PRACTICE
  fin_dist = diag(dist);
  [min_d index] = min(fin_dist);
  if(test_data(i,9) == train_data(index,9))
    correct = correct+1;
  else
    wrong = wrong+1;
  end
end
```

Supplement

Bayesian Parameter Estimation

- Gaussian Case
- General Estimation

Bayesian Estimation

- In MLE θ was assumed fixed
- In BE θ is a random variable
- Suppose we have some idea of the range where the parameters $\boldsymbol{\theta}$ should be
 - Shouldn't we utilize this prior knowledge in hope that it will lead to better parameter estimation?

Bayesian Estimation

- Let θ be a random variable with prior distribution P(θ)
 - This is the key difference between ML and Bayesian parameter estimation
 - This allows us to use a prior to express the uncertainty present before seeing the data
 - Frequentist approach does not account for uncertainty in θ

Motivation

- As in MLE, suppose $p(x|\theta)$ is completely specified if θ is given
- But now θ is a random variable with prior p(θ)
 - Unlike MLE case, $p(x|\theta)$ is a conditional density
- After we observe the data D, using Bayes rule we can compute the posterior $p(\theta \mid D)$

Motivation

- Recall that for the MAP classifier we find the class ω_i that maximizes the posterior $p(\omega \mid D)$
- By analogy, a reasonable estimate of θ is the one that maximizes the posterior $p(\theta \mid D)$
- But θ is not our final goal, our final goal is the unknown p(x)
- Therefore a better thing to do is to maximize p(x|D), this is as close as we can come to the unknown p(x)!

Parameter Distribution

- Assumptions:
 - p(x) is unknown, but has known parametric form
 - Parameter vector θ is unknown
 - $p(x \mid \theta)$ is completely known
 - Prior density $p(\theta)$ is known
- Observation of samples provides posterior density $p(\theta | D)$
 - Hopefully peaked around true value of θ
- Treat each class separately and drop subscripts

- Converted problem of learning probability density function to learning parameter vector
- Goal: compute p(x|D) as best possible estimate of p(x)

$$p(x \mid D) = \int p(x, \theta \mid D) d\theta$$

$$p(\mathbf{x} \mid \mathbf{D}) = \int p(\mathbf{x} \mid \theta, D) p(\theta \mid D) d\theta = \int p(\mathbf{x} \mid \theta) p(\theta \mid D) d\theta$$

p(x) is completely known given θ , independent of samples in D

$$p(\mathbf{x} \mid \mathbf{D}) = \int p(\mathbf{x} \mid \theta, D) p(\theta \mid D) d\theta = \int p(\mathbf{x} \mid \theta) p(\theta \mid D) d\theta$$

• Links class-conditional density p(x|D) to posterior density $p(\theta|D)$

Bayesian Parameter Estimation: Gaussian Case

Goal: Estimate θ using the a-posteriori density $P(\theta \mid D)$

• The univariate case: $p(\mu \mid D)$ μ is the only unknown parameter

$$p(x | \mu) \sim N(\mu, \sigma^2)$$

 $p(\mu) \sim N(\mu_0, \sigma_0^2)$

$$p(\mu | \mathsf{D}) = \frac{p(\mathsf{D} | \mu)p(\mu)}{\int p(\mathsf{D} | \mu)p(\mu)d\mu}$$
$$= \alpha \prod_{k=1}^{k=n} p(x_k | \mu)p(\mu)$$

- α depends on D, not μ
- \bullet Shows how training samples affect our idea about the true value of μ

$$p(\mu | \mathbf{D}) = \frac{p(\mathbf{D} | \mu)p(\mu)}{\int p(\mathbf{D} | \mu)p(\mu)d\mu}$$

$$= \alpha \prod_{k=1}^{k=n} p(x_k | \mu)p(\mu)$$
(1)

Reproducing density (remains Gaussian)

$$p(\mu|\mathsf{D}) \sim N(\mu_n, \sigma_n^2)$$
 (2)

(1) and (2) yield:

$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right) \hat{\mu}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0$$
and
$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$
Empirical (sample) mean

$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)\hat{\mu}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0$$
and
$$\sigma_n^2 = \frac{\sigma_0^2\sigma^2}{n\sigma_0^2 + \sigma^2}$$

- \bullet μ is linear combination of empirical and prior information
- ullet Each additional observation decreases uncertainty about μ

- The univariate case p(x | D)
 - $p(\mu \mid D)$ computed
 - p(x | D) remains to be computed*

$$p(x \mid D) = \int p(x \mid \mu) p(\mu \mid D) d\mu$$
 is Gaussian
It provides: $p(x \mid D) \sim N(\mu_n, \sigma^2 + \sigma_n^2)$

$$p(x | \mathbf{D}) \sim N(\mu_n, \sigma^2 + \sigma_n^2)$$

- We have:
 - Replaced mean with conditional mean
 - Increased variance to account for additional uncertainty in x due to inexact knowledge of mean

Bayesian Parameter Estimation: General Theory

- $p(x \mid D)$ computation can be applied to any situation in which the unknown density can be parameterized. The basic assumptions are:
 - The form of $p(x \mid \theta)$ is assumed known, but the value of θ is not known exactly
 - Our knowledge about θ is assumed to be contained in a known prior density p(θ)
 - The rest of our knowledge θ is contained in a set D of n random variables $x_1, x_2, ..., x_n$ that follows p(x)

Recursive Bayes Learning

Assume that training samples become available one by one

$$p(\mathsf{D}^{\mathsf{n}} | \theta) = p(x_n | \theta) p(\mathsf{D}^{\mathsf{n-1}} | \theta)$$

• Due to independence, result is independent of order:

$$p(\mathsf{D} \mid \theta) = \prod_{k=1}^{k=n} p(x_k \mid \theta)$$

The basic problem is:

"Compute the posterior density $p(\theta \mid D)$ " then "Derive $p(x \mid D)$ "

Using Bayes formula, we have:

$$p(\theta \mid \mathsf{D}) = \frac{p(\mathsf{D} \mid \theta)p(\theta)}{\int p(\mathsf{D} \mid \theta)p(\theta)d\theta}$$

And by the independence assumption:

$$p(\mathsf{D} \mid \theta) = \prod_{k=1}^{k=n} p(x_k \mid \theta)$$

Estimation of p(x|D)

The basic problem is: Compute p(x | D)

$$p(x \mid D) = \int \frac{p(x \mid \theta)}{p(\theta \mid D)} d\theta$$

• Compute the posterior density $p(\theta \mid D)$

$$p(\theta \mid \mathsf{D}) = \frac{p(\mathsf{D} \mid \theta)p(\theta)}{\int p(\mathsf{D} \mid \theta)p(\theta)d\theta}$$

Then derive p(x | D)

ML vs. Bayesian Parameter Estimation: Summary

BE vs. MLE

• BE: p(x|D) can be thought of as the weighted average of the proposed model for all possible values of θ

support
$$\theta$$
 receives from the data
$$p(x \mid D) = \int p(x \mid \theta) p(\theta \mid D) d\theta$$
 proposed model with certain θ

 Contrast this with the MLE solution which always gives us a single model:

$$p(x|\hat{\theta})$$

 When we have many possible solutions, taking their sum averaged by their probabilities seems better than pick just one solution

BE vs. MLE

- In practice, it may be hard to do integration analytically and we may have to resort to numerical methods
- The MLE solution requires differentiation, instead of integration, to get

$$p(x|\hat{\theta})$$

Differentiation is easy and can always be done analytically

When do Maximum-Likelihood and Bayes Methods Differ?

- Equivalent asymptotically (for infinite training data)
 - For reasonable prior distributions
 - When prior $p(\theta)$ is uninformative and $p(\theta | D)$ is peaked
- MLE computationally cheaper, simpler solutions
- BE uses more information (more general model)

Naïve Bayes Classifier (not BE)

- Simple classifier that applies Bayes' rule with strong (naive) independence assumptions
- A.k.a. the "independent feature model"
- Often performs reasonably well despite simplicity