

深度学习-第八章-深度卷积神经网络

黄海广 副教授

2021年04月

本章目录

- 01 经典网络
- 02 深度残差网络
- 03 谷歌Inception 网络
- 04 卷积神经网络使用技巧

1.经典网络

01 经典网络

- 02 深度残差网络
- 03 谷歌Inception 网络
- 04 卷积神经网络使用技巧

经典网络-LeNet-5

经典网络

经典网络

VGG16

经典网络

2.深度残差网络

- 01 经典网络
- 02 深度残差网络
- 03 谷歌Inception 网络
- 04 卷积神经网络使用技巧

2.深度残差网络

ConvNet Configuration

34-layer plain

34-layer residual

2.深度残差网络

ResNets使用了许多same卷积

- 01 经典网络
- 02 深度残差网络
- 03 谷歌Inception 网络
- 04 卷积神经网络使用技巧

1×1 卷积 (Network in Network)

1×1卷积层就是这样实现了一些重要功能的(doing something pretty non-trivial),它给神经网络添加了一个非线性函数,从而减少或保持输入层中的通道数量不变,当然如果你愿意,也可以增加通道数量。

Inception模块

有了这样的Inception模块,你就可以输入某个量,

因为它累加了所有数字,这里的最终输出为

32+32+128+64=256。Inception模块的输入为

28×28×192, 输出为28×28×256。

- 01 经典网络
- 02 深度残差网络
- 03 谷歌Inception 网络
- 04 卷积神经网络使用技巧

使用开源的方案

迁移学习

数据增强

参考文献

- 1.IAN GOODFELLOW等,《深度学习》,人民邮电出版社,2017
- 2. Andrew Ng, http://www.deeplearning.ai

