Estimating Indoor Model Flight Time

Roie Black roie.black@gmail.com

December 28, 2021

1 Introduction

Make it possible for all to write documents with \LaTeX

1.1 more introduction

Go more in detail ...

1.1.1 even more introduction

come to the point ...

Paragraphs A paragraph is small but

Subparagraphs subparagraphs are smaller!

Outline First we start with a little example of the article class, which is an important documentclass. But there would be other documentclasses like book 2, report 2 and letter 2 which are described in Section 2. Finally, Section 5 gives the conclusions.

2 Document classes

- article
- book
- report
- letter
- 1. article
- 2. book

- 3. report
- 4. letter

article Article is ...

book The book class ...

report Report gives you ...

letter If you want to write a letter.

3 tabular

No paper without a tabular!

first column	second column	third column	fourth	col-
			umn	
l stand for left	c for center	r for right	and p	for
			predefin	ed
			size	

4 some math

Math in text is called in line math just put \$ character around the math think. Like $a^2 + b^2 = c^2$. It looks better if you use this

$$a^2 + b^2 = c^2$$

x = sympy.Symbol('x')

h = sympy.integrate(1+x**4,x)

??

The integral of $1+x^4$ is also or you can use a sympy variable, $h=x^5/5+x$

5 Conclusions

There is no longer LATEX example which was written by [1].

6 Symbols

ρ	Air density	lbm/ft^2
ν	Air dynamic viscosity	
Ω	Prop speed	rpm
V	Flight speed	m/sec
d	Prop diameter	in
S_w	Wing area	in^2
S_s	Stab area	in^2
C_l	Total lift coeff.	
C_{lw}	Wing C_l	-
C_{ls}	Stab C_l	-
C_d	Total drag coeff	_
C_{dw}	Wing C_d	-
C_{ds}	Stab C_d	-

References

[1] D. McLean. A method for predicting indoor model duration. *NFFS Symposium*, pages 54–60, 1976.