Optimization for the information and data sciences

Mahdi Soltanolkotabi

Duality

Ming Hsieh Department of Electrical Engineering

Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^{\star}

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\mathbf{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Mahdi Soltanolkotabi

3

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

q is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property:
$$p^* \ge -(1/4)\nu^T A A^T \nu - b^T \nu$$
 for all ν

Standard form LP

$$\label{eq:continuous} \begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b, \quad x \succeq 0 \end{array}$$

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

 \bullet L is affine in x, hence

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \left\{ \begin{array}{ll} -b^T \nu & A^T \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{array} \right.$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property:
$$p^* \ge -b^T \nu$$
 if $A^T \nu + c \ge 0$

Equality constrained norm minimization

$$\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \end{array}$$

dual function

$$g(\nu) = \inf_{x} (\|x\| - \nu^T A x + b^T \nu) = \begin{cases} b^T \nu & \|A^T \nu\|_* \le 1\\ -\infty & \text{otherwise} \end{cases}$$

where $||v||_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

proof: follows from $\inf_x (\|x\| - y^T x) = 0$ if $\|y\|_* \le 1$, $-\infty$ otherwise • if $\|y\|_* \le 1$, then $\|x\| - y^T x \ge 0$ for all x, with equality if x = 0

- - if $||y||_* > 1$, choose x = tu where ||u|| < 1, $u^T u = ||y||_* > 1$:

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

lower bound property: $p^* > b^T \nu$ if $||A^T \nu||_* < 1$

Two-way partitioning

minimize
$$x^T W x$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- ullet a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$\begin{split} g(\nu) &= \inf_x (x^T W x + \sum_i \nu_i (x_i^2 - 1)) = & \quad \inf_x x^T (W + \operatorname{diag}(\nu)) x - \mathbf{1}^T \nu \\ &= & \begin{cases} -\mathbf{1}^T \nu & W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

lower bound property:
$$p^{\star} \geq -\mathbf{1}^T \nu$$
 if $W + \operatorname{diag}(\nu) \succeq 0$ example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $p^{\star} \geq n\lambda_{\min}(W)$

Lagrange dual and conjugate function

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & Ax \preceq b, \quad Cx = d \end{array}$$

dual function

$$\begin{split} g(\lambda,\nu) &= & \inf_{x \in \mathbf{dom} f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right) \\ &= & -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu \end{split}$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- ullet simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- finds best lower bound on p^* , obtained from Lagrange dual function
- ullet a convex optimization problem; optimal value denoted d^{\star}
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \mathbf{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \mathbf{dom}g$ explicit example: standard form LP and its dual (page 6)

$$\begin{array}{lll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T \nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \boldsymbol{\nu} \\ \text{subject to} & W + \mathbf{diag}(\boldsymbol{\nu}) \succeq 0 \end{array}$$

gives a lower bound for the two-way partitioning problem on page 8

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

if it is strictly feasible, i.e.,

$$\exists x \in \mathbf{int} \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

- also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- can be sharpened: e.g., can replace $int\mathcal{D}$ with $relint\mathcal{D}$ (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \quad \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when primal and dual are infeasible

Mahdi Soltanolkotabi

Quadratic program

primal problem (assume
$$P \in \mathcal{S}^n_{++}$$
)
$$\mbox{minimize} \quad x^T P x$$
 subject to $Ax \preceq b$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (Ax - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

$$\begin{array}{ll} \text{maximize} & -(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ always

A nonconvex problem with strong duality

$$\begin{array}{ll} \text{minimize} & x^TAx + 2b^Tx \\ \text{subject to} & x^Tx \leq 1 \end{array}$$

 $A \not\succeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_x (x^T (A + \lambda I)x + 2b^T x - \lambda)$$

- unbounded below if $A + \lambda I \notin \succeq 0$ or if $A + \lambda I \succeq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger}b$ otherwise: $g(\lambda)=-b^T(A+\lambda I)^{\dagger}b-\lambda$

dual problem and equivalent SDP:

$$\begin{array}{lll} \text{maximize} & -b^T (A + \lambda I)^\dagger b - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 & \\ & b \in \mathcal{R}(A + \lambda I) & \text{subject to} & \left[\begin{array}{cc} A + \lambda I & b \\ b^T & t \end{array} \right] \succeq 0 \\ \end{array}$$

strong duality although primal problem is not convex (not easy to show)

Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \leq 0$ interpretation of dual function:

$$g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u), \qquad \text{where} \quad \mathcal{G} = \{ (f_1(x), f_0(x)) \mid x \in \mathcal{D} \}$$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to $\mathcal G$
- hyperplane intersects t-axis at $t = g(\lambda)$

epigraph variation: same interpretation if \mathcal{G} is replaced with

$$\mathcal{A} = \{(u, t) \mid f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$$

strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- \bullet for convex problem, ${\mathcal A}$ is convex, hence has supp. hyperplane at $(0,p^\star)$
- Slater's condition: if there exist $(\tilde{u},\tilde{t})\in\mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplanes at $(0,p^\star)$ must be non-vertical

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$ (known as complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Mahdi Soltanolkotabi

18

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- primal constraints: $f_i(x) \leq 0$, i = 1, ..., m, $h_i(x) = 0$, i = 1, ..., p
- ② dual constraints: $\lambda \succeq 0$
- **o** complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- \bullet gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 18: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$

if Slater's condition is satisfied:

- x is optimal if and only if there exist λ , ν that satisfy KKT conditions
 - recall that Slater implies strong duality, and dual optimum is attained
 - ullet generalizes optimality condition $abla f_0(x)=0$ for unconstrained problem

example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0$, $\mathbf{1}^T x = 1$

x is optimal iff $x \succeq 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbb{R}^n$, $\nu \in \mathbb{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- determine ν from $\mathbf{1}^Tx = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

- n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^*$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda, \nu)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ subject to $\lambda \succeq 0$ $h_i(x)=0, \quad i=1,\ldots,p$

perturbed problem and its dual

$$\begin{array}{lll} \text{min.} & f_0(x) & \text{max.} & g(\lambda,\nu) - u^T \lambda - v^T \nu \\ \text{s.t.} & f_i(x) \leq u_i, & i = 1,\dots,m \\ & h_i(x) = v_i, & i = 1,\dots,p \end{array}$$

- x is primal variable; u, v are parameters
- $p^*(u,v)$ is optimal value as a function of u, v
- we are interested in information about $p^*(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

Mahdi Soltanolkotabi

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ^* , ν^* are dual optimal for unperturbed problem apply weak duality to perturbed problem:

$$p^{\star}(u, v) \ge \qquad \qquad g(\lambda^{\star}, \nu^{\star}) - u^{T} \lambda^{\star} - v^{T} \nu^{\star}$$
$$= \qquad \qquad p^{\star}(0, 0) - u^{T} \lambda^{\star} - v^{T} \nu^{\star}$$

sensitivity interpretation

- if λ_i^{\star} large: p^{\star} increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^{\star} small: p^{\star} does not decrease much if we loosen constraint i $(u_i > 0)$
- if ν_i^{\star} large and positive: p^{\star} increases greatly if we take $v_i < 0$; if ν_i^{\star} large and negative: p^{\star} increases greatly if we take $v_i > 0$
- if ν_i^{\star} small and positive: p^{\star} does not decrease much if we take $v_i > 0$; if ν_i^{\star} small and negative: p^{\star} does not decrease much if we take $v_i < 0$

local sensitivity: if (in addition) $p^*(u, v)$ is differentiable at (0, 0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for λ_i^{\star}): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \ge -\lambda_i^{\star}$$

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^{\star}(te_i,0) - p^{\star}(0,0)}{t} \le -\lambda_i^{\star}$$

hence, equality

 $p^{\star}(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize
$$f_0(Ax+b)$$

- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

$$\begin{array}{ll} \text{minimize} & f_0(y) & \text{maximize} & b^T \nu - f_0^*(\nu) \\ \text{subject to} & Ax + b - y = 0 & \text{subject to} & A^T \nu = 0 \end{array}$$

dual function follows from

$$\begin{split} g(\nu) = & & \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu) \\ = & & \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

norm approximation problem: minimize ||Ax - b||

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$\begin{split} g(\nu) &= & \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu) \\ &= & \left\{ \begin{array}{ll} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{array} \right. \\ &= & \left\{ \begin{array}{ll} b^T \nu & A^T \nu = 0, & \|\nu\|_* \leq 1 \\ -\infty & \text{otherwise} \end{array} \right. \end{split}$$

(see page 5)

dual of norm approximation problem

$$\label{eq:bounds} \begin{array}{ll} \text{maximize} & b^T \nu \\ \text{subject to} & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \end{array}$$

Implicit constraints

LP with box constraints: primal and dual problem

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2 \\ \text{subject to} & Ax = b & \text{subject to} & c + A^T\nu + \lambda_1 - \lambda_2 = 0 \\ & -\mathbf{1} \preceq x \preceq \mathbf{1} & \lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \end{array}$$

reformulation with box constraints made implicit

$$\begin{array}{ll} \text{minimize} & f_0(x) = \left\{ \begin{array}{ll} c^T x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\ \infty & \text{otherwise} \end{array} \right. \\ \text{subject to} & Ax = b \end{array}$$

dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$

=
$$-b^T \nu - ||A^T \nu + c||_1$$

dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_1$

Feasibility problems

feasibility problem A (variables $x \in \mathbb{R}^n$)

$$f_i(x) < 0, \quad i = 1, \dots, m, \qquad h_i(x) = 0, \quad i = 1, \dots, p$$

feasibility problem B (variables $\lambda \in \mathbb{R}^m$, $\nu \in \mathbb{R}^p$)

$$\lambda \succeq 0, \qquad \lambda \neq 0, \qquad g(\lambda, \nu) \geq 0$$

where
$$g(\lambda, \nu) = \inf_{x} \left(\sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} \nu_{i} h_{i}(x) \right)$$

- \bullet feasibility problem B is convex (g is concave), even if problem A is not
- A and B are always **weak alternatives**: at most one is feasible proof: assume \tilde{x} satisfies A, λ , ν satisfy B

$$0 \le g(\lambda, \nu) \le \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) < 0$$

Mahdi Soltanolkotabi

Theorem of alternatives

A and B are **strong alternatives** if exactly one of the two is feasible

• can prove infeasibility of A by producing solution of B and vice-versa

Problems with generalized inequalities

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

 \preceq_{K_i} is generalized inequality on \mathbb{R}^{k_i}

- **definitions** are parallel to scalar case: Lagrange multiplier for $f_i(x) \preceq_{K_i} 0$ is vector $\lambda_i \in \mathbb{R}^{k_i}$
 - Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $q: \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

Mahdi Soltanolkotabi

lower bound property: if $\lambda_i \succeq_{K_i^*} 0$, then $g(\lambda_1, \dots, \lambda_m, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_i^*} 0$, then

$$f_0(\tilde{x}) \ge f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x})$$

$$\ge \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \dots, \lambda_m, \nu)$ dual problem

$$\begin{array}{ll} \text{maximize} & g(\lambda_1,\ldots,\lambda_m,\nu) \\ \text{subject to} & \lambda_i \succeq_{K_i^*} 0, \quad i=1,\ldots,m \end{array}$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP
$$(F_i, G \in \mathcal{S}^k)$$

minimize
$$c^T x$$

subject to $x_1 F_1 + \dots + x_n F_n \leq G$

- Lagrange multiplier is matrix $Z \in \mathcal{S}^k$
- Lagrangian $L(x,Z) = c^T x + \operatorname{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathsf{tr}(GZ) & \mathsf{tr}(F_i Z) + c_i = 0, \quad i = 1, \dots, n \\ -\infty & \mathsf{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)