

Computational Statistics | 01/03/2022

Luca Caivano Paulina Moskwa Manfred Nesti

Roadmap

Model

From ResNets to Neural Ordinary Differential Equations (NeuralODEs)

MNIST Dataset

NeuralODEs for Image Classification: MNIST dataset

2D Dataset

NeuralODEs for Binary Classification of problematic dataset: half-moons, concentric annuli, concentric spirals

Conclusions

Advantages of NeuralODEs

Neural Networks in a Nutshell

From ResNet to NeuralODE

$$\mathbf{z}_{t+1} = \mathbf{z}_t + f\left(\mathbf{z}_t, \theta_t\right)$$
 ResNet

From ResNet to NeuralODE

$$\begin{aligned} \mathbf{z}_{t+1} &= \mathbf{z}_t + f\left(\mathbf{z}_t, \theta_t\right) & \text{ResNet} \\ \downarrow & \\ \mathbf{z}\left(t + \Delta t\right) &= \mathbf{z}\left(t\right) + \Delta t f\left(\mathbf{z}\left(t\right)\right) & \text{Explicit Euler} \end{aligned}$$

From ResNet to NeuralODE

$$\begin{aligned} \mathbf{z}_{t+1} &= \mathbf{z}_t + f\left(\mathbf{z}_t, \theta_t\right) & \text{ResNet} \\ \downarrow & \\ \mathbf{z}\left(t + \Delta t\right) &= \mathbf{z}\left(t\right) + \Delta t f\left(\mathbf{z}\left(t\right)\right) & \text{Explicit Euler} \\ \downarrow & \\ \frac{d\mathbf{z}(t)}{t} &= f(\mathbf{z}(t), t, \theta) & \text{NeuralODE} \end{aligned}$$

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t, \theta) \qquad \text{NeuralODE} \qquad \begin{cases} \dot{\mathbf{z}}(t) = f_{\theta(t)}(t, \mathbf{x}, \mathbf{z}(t)) & t \in [0, T_f] \\ \mathbf{z}(0) = h_x(\mathbf{x}) \\ \hat{\mathbf{y}}(t) = h_y(\mathbf{z}(t)) \end{cases}$$

ResNet vs NeuralODE

 $z_1 = f(z_0, 0) + z_0$

 $f(\cdot,1)$

 $f(\cdot,0)$

 z_0

f(x,t)

ResNet vs NeuralODE

Adjoint method

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$

$$rac{dL}{d heta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^\mathsf{T} rac{\partial f(\mathbf{z}(t),t, heta)}{\partial heta} dt$$

2D Classification

Half Moons Problem

2D Classification

Concentric Annuli Problem

Augmented Classification

Concentric Spirals Problem

Augmented version

MNIST Dataset Classification

MNIST Dataset Classification 00000000 1 / / 1 1 / 1 1 2 2 2 2 2 2 2 2 2 33333333 444444 5 5 5 5 5 5

MNIST Dataset Classification

Accuracy on MNIST Dataset

	ODENet - Simple	ODENet - Expert	Best (CNN)
Accuracy on training set	87.41%	-	-
Accuracy on test set	86.57%	99%	99%
Number of parameters	25.888	220.000	1.514.187

Conclusions

References

Ricky T. Q. Chen, et al. | "Neural Ordinary Differential Equations" | 32nd Conference on NeurIPS, 2019

S. Massaroli, M. Poli, et al. | "Dissecting NeuralODEs" | 34th Conference on NeurIPS, 2021

Software: TorchDyn: Implicit Models and Neural Numerical Methods in PyTorch | S.Massaroli, M. Poli, et. al | https://torchdyn.readthedocs.io/en/stable/tutorials/quickstart.html

Repository: Dissecting NeuralODEs |
S. Massaroli, M. Poli, et. al |
https://github.com/DiffEqML/diffeqml-research/tree/master/dissecting-neural-odes

Repository: torchdyn/tutorials/ |
S. Massaroli, M. Poli, et. al | https://github.com/DiffEqML/torchdyn/tree/master/tutorials

Additional material

Accuracy on MNIST Dataset

PCA on MNIST's Trajectories

Time independent PCA

PCA on MNIST's Trajectories

Time dependent PCA

