| Sit manipulation 1      | this scasion  |
|-------------------------|---------------|
| -Bases                  | mostly recorp |
| -operators & properties |               |
| _ Left & Right Shift    |               |
| _ check bit             |               |
| -count bit              |               |
| -toggle bit             |               |
| -set/unset ith bit      |               |
| _set x Continous bits   |               |
|                         |               |
|                         |               |
|                         |               |
|                         |               |
|                         |               |
|                         |               |
|                         |               |
|                         |               |
|                         |               |

|         | Bit Manipulation 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Decimal Number system $\{0,1,2,3,4,5,6,7,8,9\}$ Bage 10<br>$342 \ge 3 \times 10^2 + 4 \times 10^1 + 2 \times 10^1$<br>$(2563) = 2 \times 10^3 + 5 \times 10^2 + 6 \times 10^1 + 3 \times 10^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Binary Number System $\{0,1\}$ Base 2  1 0 = $1 \times 2 + 1 \times 2 + 0 \times 2^{0} = 6$ 3 2   1 = $1 \times 2^{3} + 1 \times 2^{0} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| base 8  | $(128)_8 = 1 \times 6 + 2 \times 6 + 7 \times 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| base 16 | $(128)_{8} \ge (128)_{8} \ge (128$ |
| base 64 | Full stack Caakies token Front deus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

bose 28 binary one sight digit in base 28 bit

|          | Bitwise operations                            |        |                               |          |             |              |                                     |
|----------|-----------------------------------------------|--------|-------------------------------|----------|-------------|--------------|-------------------------------------|
|          | - SCAND OR NOT XOR Left shift right thift?    |        |                               |          |             |              |                                     |
|          | ->{AND, OR, NOT, XOR, Left shift, rightshift} |        |                               |          |             |              |                                     |
|          | or                                            |        |                               |          |             |              |                                     |
|          |                                               |        |                               | ~        |             |              |                                     |
|          |                                               | ~      |                               | 1 0 1 0  | 1.0         |              | A^B                                 |
|          | A                                             | B      | A&B                           | AIB      | ! A         | A^B          | adding                              |
|          | 0                                             | 0      | 0                             | 0        |             | 0            | without corry                       |
|          | 0                                             |        | 0                             |          |             | 1            | without carry toggling              |
|          | 1                                             | 0      | 0                             | l        | 0           | 1            | togglug                             |
|          |                                               |        | 1                             |          | 0           | 0            |                                     |
|          | Bitu                                          | ise of | peration                      | c on dec | imal 1      | nunbers      | 8                                   |
|          |                                               |        |                               |          |             | 5.           | 43210                               |
|          | 5,                                            | 10     | 1                             |          | - H         | 8 20 0       | 4 3 2 1 0<br>1 0 1 0 0<br>0 1 1 0 1 |
|          |                                               |        | <u>o</u> &                    |          | <u> </u>    | 345          |                                     |
| 5 & 6 =4 | -                                             | 10     | 0 =4                          |          | AI          | B 5          | 11 101 → 61<br>+3 ≥ 10              |
|          |                                               |        |                               |          |             |              |                                     |
|          |                                               | 7      |                               | '        |             | <b>1</b> ( C | 43110                               |
| A        | 92                                            | 0 1 (  | 5 4 3 2<br>0 1 1 1<br>0 1 1 0 | 00       | ! 9         | 2010         | 11100                               |
| CS       | 3 154                                         |        |                               |          |             | 765          | 00011 -> 163                        |
|          |                                               |        | 0110                          | 00       | A3 5        |              | 11100                               |
|          | AUL                                           | 3 = 24 | <u> </u>                      |          | A^          | A 100        | 100                                 |
|          |                                               |        |                               | ·        | <i>(</i> 71 | <u> </u>     |                                     |
|          |                                               |        |                               |          |             |              |                                     |

Properties 3

1) 
$$A \& 1 = ?$$

A=10 1010 9 1001

& 1 0001

A&1 = ?

A&1

1 odd

2) 
$$A \& 0 = 0$$

$$\frac{101}{300} \& 0$$
3)  $A \& A = A$ 

$$\frac{101}{101} \& 0$$
4)  $A | 0 = A$ 

$$\frac{101}{000} | 0R$$

$$\frac{101}{101} OR$$

000

$$a^{1}b^{1}c^{1}a^{1}b^{2}=$$

$$a^{1}b^{1}c^{1}a^{1}b^{2}=$$

$$a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}a^{1}b^{1}b^{1}c^{2}=$$

$$a^{1}a^{1}b^{1}b^{1}c^{2}=$$

| left shift : «              | a << 3 who   8     | Bytes<br>Bytes |
|-----------------------------|--------------------|----------------|
| a=45 765                    | 143210<br>01101=45 | pg164          |
| a<1 0010                    | 1 1 0 1 0 = 40     |                |
| a<<2 0 1 0 1                | 10100 = 1802 x2    |                |
| a<<3 1011                   | 01000 = 104        |                |
| <b>25</b> 6+l0 <sup>4</sup> |                    |                |
| Right shift >>              | 00010100 = 20      |                |
| a>>1                        | 000010100=100/2    |                |
| a>> 2                       | 000001010=52/2     |                |
| a>>3                        | 00000000 = 22/2    |                |
| a» 4                        | 0000001=12/2       |                |
| a>> 5                       | /3                 |                |
| Logn                        |                    |                |
|                             |                    |                |
|                             |                    |                |
|                             |                    |                |

```
_check bit
       unset bit - count of set bit
                                    1Ki
Usage of
                                             76543210
                          8 bit
         shifting
                                    1 << 2 8
                                           000000000
                    7654321
 «
         the "1"
                    00000001
                                    144 000 1000
« I 10
                ng and/or setting specific bits
   10
          N =45 -> 10 11 0 1
   Q
                                      01 0000 (144) (OR)
                     00 0 1 00 (OR)
         (1 << 2)8
N | (I \ll i)
          OR
                     101101
                   54 32 10
                                           543210
(3)
          N=45
                   101101
N^(I<1)
                                           010000 (XOR)
                                   (1554)
                   000100 XOR
          (14(5)
                   10001
                                           1011
             N^ (1 (i) - togyle bit i
3
                    543210
                                      543110
N&(K) N245
                                       101101
                                                  AND
                             AND
                    001000
                                                 (141)
                    001000
                                       000000
                       Icci (it ith bit is set)
```

| P1    | Given a positive integern and bit # i                          |
|-------|----------------------------------------------------------------|
| true  | check if the ith bit is set?                                   |
| talse | bool check Bit (N,i) {  ret N& (1\lambda i)!=0 == (1\lambda i) |
|       |                                                                |
|       | ret Na CINO : 20                                               |
|       | ret N/(1((i) = = N  ret N^(1((i) < N                           |
|       | ret N>i&1 this? carrect                                        |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |
|       |                                                                |

```
positive
        P2 Count the number of set bits in N
       N = 10 11 01 -> ans =4
                                                     lang lang 128 bit
                                     double 4-bit
                                                      long double 128 bit
                                     lang 64 bit
         110 int → 32 bit
           int countBit1(int n)}
            ans=0 32 =

# for (i=0; i < BITS; i++) {

# it (check Bit (n,i)) ans++
 TC:
O(BITS)
               ret ans
           int count Bit 2 (int n)
              ans 20
                                                0000000000
              while(n>0){
                 if (n&1 ==1) ans++,
                                  (N \gg 1)
                 n = n>>1
Quiz
TC: O(log 1)
 SC: 0(1)
              ret ans
```



|                               | _             |
|-------------------------------|---------------|
| P5 Unset x Continious bits in | N from right  |
| 0000 11 (1                    |               |
| N=11101101 X=4                |               |
| 76543210                      | 16 <<4        |
| 1110 0000 <                   | 00010000      |
| <b>5</b>                      | 76543210      |
| int unsat Bito (n, x){        | 00000 1111 15 |
| an 2 h                        |               |
| for(iz0; 1 < x; i++){         |               |
| ans = unset (ans, i)          |               |
| 3 m/2 = m/2 ( ) /             |               |
| of home                       |               |
| z ret ans                     | n&!((I<(x)-1) |
| J                             |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |
|                               |               |