Algorithmen und Wahrscheinlichkeit

Angelika Steger

Institut für Theoretische Informatik

Kapitel 3.2

Geometrische Algorithmen

Problemstellung

Gegeben: Punkte $x_1,...,x_n$ in R^d

Gesucht: zB: - kleinster umschliessender Kreis

- konvexe Hülle

- Voronoi-Diagramm

Problemstellung

Gegeben: Punkte $x_1,...,x_n$ in R^d

Gesucht: zB: - kleinster umschliessender Kreis

- konvexe Hülle

- Voronoi-Diagramm

VL: d=2

Gegeben: Punkte $x_1,...,x_n$ in R^2

Ziel: Radius des Kreises: ... so klein wie möglich!!

Konvexe Hülle

Gegeben: Punkte $x_1,...,x_n$ in \mathbb{R}^2

Gegeben: Punkte $x_1,...,x_n$ in \mathbb{R}^2

Voronoi-Diagramm

Gegeben: Punkte $x_1,...,x_n$ in R^2

Idee: Region um x =

Punkte näher zu x als zu allen anderen Punkten

Graph-Zeichnen

Gegeben: Graph G=(V,E)

Gesucht: "schöne" Darstellung

Graph-Zeichnen

Gegeben: Graph G=(V,E)

Gesucht: "schöne" Darstellung

planerer Graph ⇔ es gibt eine kreuzungsfreie Darstellung

Kapitel 3.2.1

Gegeben: Punkte $x_1,...,x_n$ in R^2

Ziel: Radius des Kreises: ... so klein wie möglich!!

Eindeutigkeit

Lemma: Für jede Punktemenge P gibt es genau einen kleinsten umschliessenden Kreis

Beweis:

 $P \subseteq C_1 \cap C_2$

Eindeutigkeit

Lemma: Für jede Punktemenge P gibt es genau einen kleinsten umschliessenden Kreis

Beweis:

 $P \subseteq C_1 \cap C_2$

(1) Der Rand von C(P) enthält mindestens zwei Punkte von P

(1) Der Rand von C(P) enthält mindestens zwei Punkte von P

Eigenschaften

(2) Wenn der Rand von C(P) nur genau zwei Punkte von Penthält, sagen wir pund q, so gilt $C(P) = C(\{p,q\})$.

p

• q

Alle Kreise durch p und q haben ihren Mittelpunkt auf der Mittelsenkrechten durch p und q.

Solange es keinen zusätzlichen Punkt auf dem Rand des blauen Kreises gibt, können wir ihn in Richtung roten Kreis schieben - und dabei verkleinern.

⇒ es gibt nur einen Kreis, dessen Rand p,q und r enthält

