# Weak forms and problem setup — Nonlinear power-law (strain-hardening) bar under gravity and line load

# 1 Governing Equations

## 1.1 Geometry and Boundary



A prismatic bar of length

$$L := 420 \text{ in}, \qquad \Omega := (0, L) \subset \mathbb{R},$$

is fixed/clamped at x = 0 end and stress–free at x = L, and [x] = in. Here,  $\sigma(x)$  denotes the axial (Cauchy) stress in the bar, with units of  $\text{lb/in}^2$ .

## 1.2 Material Properties and Parameters

#### Constants

$$A=10 \ {\rm in^2},$$
 cross-sectional area,   
  $g=386.4 \ {\rm in/s^2},$  gravitational acceleration.

Where, A, n and g are constants.

#### **Simulation Parameters**

 $E(\mu)$  is the perturbed strength coefficient, defined by

$$E(\mu) = 77\,000 + \mu$$
,  $[E] = lb/in^2$ ,  $\mu \in (-1000, 1000)$ .

 $\rho(\rho_{\mathrm{param}})$  is the perturbed mass density, defined by

$$\rho(\rho_{\text{param}}) = 0.28907 + \rho_{\text{param}}, \quad [\rho] = \text{lb/in}^3, \quad \rho_{\text{param}} \in (0, 0.5).$$

Where,  $\mu$  and  $\rho_{param}$  are the simulation parameters.

#### 1.3 Governing Laws

Let  $u:[0,L]\to\mathbb{R}$  be the axial displacement ( $[u]=\mathrm{in}$ ). Define the strain

$$\varepsilon = u', \quad [\varepsilon] = 1 \text{ (dimensionless)}.$$

The material follows the power-law

$$\sigma(\varepsilon) = E |\varepsilon|^{n-1} \varepsilon, \quad [\sigma] = lb/in^2,$$

where n = 0.26 is hardening exponent, and the internal axial force is

$$N(\varepsilon) = A \sigma(\varepsilon), \quad [N] = lb.$$

And let the distributive force be:

$$f(x) = 1000 + \rho A (L - x)$$
,  $[f] = lb$ ,  $x \in \Omega$ .

#### 1.4 Governing PDE

Let the space of admissible strong solutions be given by:

$$\mathcal{V}_{\text{strong}} := C^1([0, L]) \cap C^2((0, L)).$$

Find  $u \in \mathcal{V}_{\text{strong}}$  satisfying

$$-\frac{d}{dx}\left(EA|u'|^{n-1}u'\right) = f(x), \qquad 0 < x < L, \tag{1}$$

$$u(0) = 0, (2)$$

$$u'(L) = 0. (3)$$

Where, due to the Neumann boundary condition 3 which is u'(L) = 0, we require  $u \in C^1([0, L])$ , which includes the boundary (x = 0 and x = L) and due to 1 we require  $u \in C^2((0, L))$ .

### 2 Weak Form

#### 2.1 Variational Statement

Let V be the test function space:

$$V := \{ v \in H^1(\Omega) \mid v(0) = 0 \}.$$

Find  $u \in V$  such that

$$R(u)[v] = 0 \quad \forall v \in V,$$

with nonlinear residual functional

$$R(u)[v] := \int_0^L EA |u'|^{n-1} u' v' dx - \int_0^L f(x) v dx = 0 \quad \forall v \in V.$$
 (4)

#### 2.2 Jacobian (Fréchet Derivative)

For a perturbation  $\delta u \in V$ , for all  $v \in V$ :

$$J(u)[\delta u, v] = \int_0^L EA \, n \, |u'|^{n-1} \, \delta u' \, v' \, \mathrm{d}x. \tag{5}$$

# References

[1] Kythe, P. K., Wei, D., & Okrouhlik, M. (2004). An introduction to linear and nonlinear finite element analysis: a computational approach. Appl. Mech. Rev., 57(5), B25-B25. (1st ed., pp. 252–256)