Set 1

Problem 1. Alfredo rolls a fair, six-sided die. What is the probability that he rolls an odd number?

Answer.

Solution. There are six equally likely outcomes: Alfredo can roll a 1, 2, 3, 4, 5, or 6. The odd numbers Alfredo could roll are 1, 3, and 5. So, the probability that he rolls an odd number is $\frac{3}{6} = \left| \frac{1}{2} \right|$.

Problem 2. The expression $(2x-3) \times (5x+2)$ can be written as $ax^2 + bx + c$. Find a+b+c.

Answer. |-7|.

Solution. We multiply the given expression using the distributive property (or FOIL):

$$(2x-3)(5x+2) = 5x(2x-3) + 2(2x-3)$$
$$= 10x^2 - 15x + 4x - 6$$
$$= 10x^2 - 11x - 6.$$

So, a=10, b=-11, and c=-6, and $a+b+c=\boxed{-7}$. **Problem 3.** Simplify the fraction $-\frac{\frac{12}{33}}{\frac{24}{35}}$.

Answer.

Solution. Invert the denominator, prime factor, then cancel:

$$\begin{aligned} \frac{\frac{12}{33}}{\frac{24}{35}} &= \frac{12}{33} \times \frac{35}{24} \\ &= \frac{2^2 \cdot 3}{3 \cdot 11} \frac{5 \cdot 7}{2^3 \cdot 3} \\ &= \frac{5 \cdot 7}{2 \cdot 3 \cdot 11} \\ &= \boxed{\frac{35}{66}}. \end{aligned}$$

Problem 4. How many factors does $2^4 \cdot 3^2 \cdot 4^3$ have?

Answer. 33

Solution. We have to be careful on this problem because we are *not* given the prime factorization of the number. So we rewrite the factorization as

$$2^4 \cdot 3^2 \cdot 4^3 = 2^4 \cdot 3^2 \cdot 2^6 = 2^{10} \cdot 3^2$$
.

And now we can proceed normally by finding the number of factors as $(10+1)(2+1)=11\cdot 3=\overline{)33}$

Set 2

Problem 5. Triangle ABC has AB = 25 and BC = 7. If $\angle C = 90^{\circ}$, find the length of AC.

Answer. 24

Solution. Using the Pythagorean Theorem on right triangle ABC, $(AC)^2 + (BC)^2 = (AB)^2$. Solving for AC, $AC = \sqrt{(AB)^2 - (BC)^2} = \sqrt{625 - 49} = \sqrt{576} = \boxed{24}$.

Problem 6. Let $f(x) = 7x - \sqrt{x} + 3$. Compute f(4).

Answer. 29

Solution. Substituting x = 4, $f(4) = 7 \cdot 4 - \sqrt{4} + 3 = 28 - 2 + 3 = 29$.

Problem 7. How many squares have all 4 vertices in the array of 16 points below?

Answer. 20

Solution. We break down cases based on the slopes of the sides:

- 1. Sides are horizontal/vertical. There are 9 squares of side length 1, 4 of side length 2, and 1 of side length 3, for 9+4+1=14 total.
- 2. Sides have slope ± 1 . There are 4 such squares.
- 3. Sides have slope $\pm 2, \pm \frac{1}{2}$. There 2 such squares.

Note that no other cases fit in the array of points. Adding these up, there are $14+4+2=\boxed{20}$ rectangles. **Problem 8.** Express $0.\overline{47}=0.47474747...$ as a simplified fraction.

Answer. $\boxed{\frac{47}{99}}$.

Solution. 0.47474747... = 47(0.01 + 0.00001 + 0.000001 + ...). Using the expression for an infinite sum, this equals $\frac{0.47}{1 - 0.01} = \boxed{\frac{47}{99}}$.

Round: **Practice Guts**

Set 3

Problem 9. Compute 25×316484 .

Answer. 7912100. Solution. We use

$$25 = \frac{100}{4}$$

so that

$$25 \times 316484 = \frac{100}{4} \times 316484$$
$$= 100 \times \frac{316484}{4}$$
$$= 100 \times 79121$$
$$= \boxed{7912100}.$$

Problem 10. What is the largest prime factor of $25^2 - 14^2$?

Answer. 13

Solution. We use the property

$$a^{2} - b^{2} = (a + b)(a - b).$$

So,

$$25^2 - 14^2 = (25 + 14)(25 - 14) = 39 \cdot 11 = 3 \cdot 11 \cdot 13,$$

and we see our largest prime factor is $\boxed{13}$.

Problem 11. Three consecutive odd integers add up to 27. If I subtract 1 from each of these numbers and multiply them all by 6, what is their new sum?

Answer. 144.

Solution. We can find the three odd integers and perform the operations described by the problem, but there is a faster way.

Instead, why can call the three consecutive odd integers a, b, c, so

$$a + b + c = 27.$$

We then subtract one from each

$$(a-1) + (b-1) + (c-1)$$

, and then multiply them all by 6,

$$6(a-1) + 6(b-1) + 6(c-1)$$

, we can simplify them

$$6(a-1) + 6(b-1) + 6(c-1) = 6a - 6 + 6b - 6 + 6c - 6$$
$$= 6(a+b+c) - 18$$

and since we know a + b + c = 27 from the problem statement, we can substitute that in:

$$6(27) - 18 = \boxed{144}$$

27th TJIMO ALEXANDRIA, VIRGINIA

Round: Practice Guts

Problem 12. Rectangle A has side lengths 5 and 4, and Rectangle B has side lengths 7 and 2. What percentage of Rectangle A's area is Rectangle B's area?

Answer. 70%.

Solution. In order to calculate how much of Rectangle A's area Rectangle B makes up, we do

Percent B of A =
$$\frac{\text{Area of Rectangle B}}{\text{Area of Rectangle A}} \times 100$$

= $\frac{7 \cdot 2}{5 \cdot 4} \times 100$
= $\frac{14}{20} \times 100$
= 14×5
= $\boxed{70\%}$.