194. La limite, quand x tend vers 0, de la fonction $f(x) = \frac{e^x - e^{\sin x}}{x - \sin x}$ est:

1.0 2.1 3.
$$-\infty$$
 4. $+\infty$ 5. $\frac{1}{2}$ (M-2009)

195. Soit la fonction définie par : $\frac{x+1}{e^x} - x$ et (C) sa courbe

1. la droite (D) d'équation y = -x est asymptote à (C) en $+\infty$.

2. (C) est au dessous de son asymptote oblique si
$$x < -1$$
.
3. (C) est au dessous de son asymptote oblique si $x > -1$

4. le point A(-1, 1) est commun à (C) et à son asymptote oblique
5. (C) admet un point d'arrêt de coordonnées (3, 0) (M-2009)

6. Deux réels a et b tels que pour tout
$$x$$
.

$$(2x+1)e^{x+1} + x - 3 = a(x+1)e^{x+1} + be^{x+1} + x - 3, \text{ valent :}$$

1.
$$a = 2$$
 et $b = -1$ 3. $a = -1$ et $b = -2$ 5. $a = \frac{1}{2}$ et $b = 1$

2. $a = 1$ et $b = 2$ 4. $a = 0$ et $b = \frac{1}{2}$ (M-2009)

2. a = 1 et b = 2 4. a = 0 et $b = \frac{1}{2}$ (M-2009) 197. L'ensemble des solutions de l'inéquation logarithmique :

$$\ln (2x^2 - 3x) \le 2\ln (6 - x) \text{ est } :$$
1. \(\} \)
3. \[\[6 \, +\infty \]
5. \] \[-12.0 \] \(\cup \left[\frac{3}{2} \, 3 \left[\frac{3}{2} \,

2.
$$]-\infty$$
, $-12] \cup [3$, $6[$ 4. $]-\infty$, $0] \cup \left[\frac{3}{2}, 6\right[$ (B-2010)

198. La solution de l'équation exponentielle : $3^x = 2^{2x-1}$ est : 1: $\frac{\ln 3}{\ln 2 - \ln 9}$. 3. $\frac{\ln 4}{\ln 3 - \ln 8}$ 5. $\frac{\ln 2}{\ln 3 - \ln 8}$

199. Soit la fonction f définie sur R par : $f(x) = x + \frac{3e^x + 1}{e^x + 1}$. L'équation de son asymptote oblique est :

1.
$$y = x + 4$$

2. $y = x + 5$
3. $y = x + 3$
4. $y = x + 2$
5. $y = x - 2$
(B-2010)