Mathematical Modelling

- 1.2 Modelling Procedure DABAR¹
 - Step 1. **D**efine the problem
 - Step 2. make Assumptions
 - Step 3. Build a model
 - Step 4. **A**ssess the model
 - Step 5. Report results

Course topics:

- · Optimization models
- · Dynamics models
- · Probability models

Optimization Models

Optimization Problem²

A pig weighting 90 kg gains 3 kg per day and cost 45 cents a day to keep. The market price for pigs is 65 cents/kg, but is falling at 1 cent per day. When should the pig be sold?

Introduce variables:

- t = time at which the pig is sold (in days)
- w = weight of the pig (in kg)
- $p = \text{price of a pig (in $/\text{kg})}$
- $C = \cos t$ of keeping the pig (in \$)
- R = revenue from selling the pig (in \$)
- *P* = profit from the sale of the pig (in \$)
- 2.1 Which of these variables depend on to Based on the statement, what do we know about their values?
- 2.2 What is our goal?
- 2.3 Solve the problem.
- 2.4 Answer the question: when should the pig be sold and what is the profit?

 $^{^{1}} based \ on \ the \ https://m3 challenge.siam.org/wp-content/uploads/siam-guidebook-final-press.pdf.$

Parameter sensitivity is a measure of how a model's response is affected by its parameters.

We quantify the **sensitivity** for the model output *x* and model parameter *p* by

$$S(x,p) = \frac{\partial x}{\partial p} \cdot \frac{p}{x},$$

which is dimensionless.

Example: If the time to sell or the profit depends strongly on a parameter, then the model is not very useful. If the model said to sell at t = 1 if the daily maintenance cost changed to 46 cents, then the recommendation would be very suspect!

2.5 Let (t^*, P^*) be the optimal values found before.

What is the sensitivity of P over the parameter c = the daily maintenance cost of keeping a pig?

- 2.6 Is $S(P^*,c)$ positive/negative? What does that mean? Does that make sense?
- 2.7 What is the sensitivity of P over the parameter p_0 = the initial price of a pig (in \$/kg)?
- 2.8 Is $S(P^*, p_0)$ positive/negative? What does that mean? Does that make sense?

How do the results depend on the assumptions?

We assumed:

- · a linear increase in weight of the pig
- a linear decrease in the price of the pig

What happens if these were nonlinear? The prediction of prices is notoriously uncertain.

Prices are often modelled as stochastic processes (like Brownian motion). This would necessitate a different modelling approach.

In particular, we might then want to maximize the expected (average) profit. But if the variance is very large, then the farmer might prefer a lower expected profit if that means lowering the risk (variance). The farmer might consider maximizing the expected profit with a constraint on the variance of the profit.

Constrained Optimization. How do we solve optimization problems with constraints?

Lagrange Multipliers

3

We want to minimize (or maximize) a function f(x) with several constraints:

$$g_1(x) = c_1$$

$$g_{k}(x) = c_{k}$$

If $x^* \in \mathbb{R}^N$ is a local optimal of f(x) which satisfies the above constraints, and $\nabla g_1(x^*), \dots, \nabla g_k(x^*)$ are linearly independent, then

2

$$\nabla f(x^*) = \lambda_1 \nabla g_1(x^*) + \dots + \lambda_k \nabla g_k(x^*), \tag{LM}$$

for some scalars $\lambda_1, \ldots, \lambda_k$.

1. This is a necessary, but not sufficient condition.

- 2. To solve the optimization problem, find candidates x that satisfy it, and then pick the best one.
 - Points for which $\nabla g_1(x), \dots, \nabla g_k(x)$ are linearly dependent should also be
- 3. (LM) $\Leftrightarrow \nabla f(x^*) \in \operatorname{span} \{ \nabla g_1(x), \dots, \nabla g_k(x) \}.$
- 4. The "optimal" values for $\lambda_1, \ldots, \lambda_k$ give important insights on the problem, as we will see - don't ignore them!

Example

Consider the problem:

• Maximize x + y such that $x^2 + y^2 = 1$.

- 3.1 Use Lagrange Multipliers to find the maximum (and the minimum).
- 3.2 If the constraint was $x^2 + y^2 = c$, then what is:
 - (a) the maximizer point (x^*, y^*) ?
 - (b) the Lagrange multiplier λ^* ?
 - (c) the maximum $f(x^*, y^*)$?
- 3.3 Compare λ^* with $\frac{\partial f(x^*, y^*)}{\partial c}$.
- 3.4 Based on this relation, give an interpretation for the Lagrange Multiplier.

A manufacturer of lawn furniture makes two types of chairs, one with a wood frame and the other with an aluminum frame. The wood frame chair costs \$18 per unit to manufacture and aluminum frame chair costs \$10 per unit to manufacture. The company operates in a market where the number of units that can be sold depends on price. It is estimated that in order to sell x units per day of the wood chair and y units per day of the aluminum chair, the selling price cannot exceed $10 + 31x^{-0.5} + 1.3y^{-0.2}$ dollars per unit for the wood chair and $5 + 15y^{-0.4} + 0.8x^{-0.08}$ dollars per unit for the aluminum chair.

Let us first investigate the selling price model for **one type of** chair.

- 4.1 As more chairs of both types are sold in the market: $x \to \infty$, what do you expect will happen to their selling price?
- 4.2 As chairs become scarce: $x \to 0^+$, what happens to the price?
- 4.3 What family of functions satisfies both these conditions?

Historical prices and fitting surface p = f(x, y).

A manufacturer of lawn furniture makes two types of chairs, one with a wood frame and the other with an aluminum frame. The wood frame chair costs \$18 per unit to manufacture and aluminum frame chair costs \$10 per unit to manufacture. The company operates in a market where the number of units that can be sold depends on price. It is estimated that in order to sell x units per day of the wood chair and y units per day of the aluminum chair, the selling price cannot exceed $10 + 31x^{-0.5} + 1.3y^{-0.2}$ dollars per unit for the wood chair and $5 + 15y^{-0.4} + 0.8x^{-0.08}$ dollars per unit for the aluminum chair.

5.1 We want to maximize the manufacturer's profit. What is the function to maximize?

5.2 This is a two-dimensional function, so we need to solve the system

$$\frac{\partial f}{\partial x} = 0$$

$$\frac{\partial f}{\partial y} = 0$$

Write down this system.

5.3 How can we find the solution?

Newton's Method

This is a method to approximate the solution of the equation

$$f(x) = 0$$
.

This is an iterative method, so we start with an initial approximation x_0 .

For each successive approximation, take the linear approximation of f at x_i and take x_{i+1} to be the point where the linear approximation is 0.

5.4 From the description above, what is the formula for x_1 when using Newton's method?

5.5 Leveraging python.

(a) Go to https://utoronto.syzygy.ca/jupyter

(b) Download the file https://github.com/bigfatbernie/IBLMathModeling/blob/ main/python/chairs_newton.ipynb and import it into the Jupyter Notebook

(c) In the file, introduce the partial derivative functions and an initial guess.

(d) Run the script

Minimum for 4.689577973016851 wooden chairs and 5.852031046491972 aluminum chairs Profit = 52.072691798595706

- 5.6 Leveraging python's minimization tools.
 - (a) Go to https://utoronto.syzygy.ca/jupyter
 - (b) Download the file https://github.com/bigfatbernie/IBLMathModeling/blob/main/python/chairs_fmin.ipynb and import it into Jupyter Notebook
 - (c) In the file, introduce the profit function and an initial guess.
 - (d) Run the script

L

A manufacturer of lawn furniture makes two types of chairs, one with a wood frame and the other with an aluminum frame. The wood frame chair costs \$18 per unit to manufacture and aluminum frame chair costs \$10 per unit to manufacture. The company operates in a market where the number of units that can be sold depends on price. It is estimated that in order to sell x units per day of the wood chair and y units per day of the aluminum chair, the selling price cannot exceed $10 + 31x^{-0.5} + 1.3y^{-0.2}$ dollars per unit for the wood chair and $5 + 15y^{-0.4} + 0.8x^{-0.08}$ dollars per unit for the aluminum chair.

Sensitivity. To compute p^* , you can use chairs_sensitivity.ipynb.

6.1 How sensitive is the profit to the parameter c = 10 (the production cost of the aluminum chair)

$$S(p^*,c) \approx \frac{p^*(c+h) - p^*(c)}{h} \cdot \frac{c}{p^*(c)}$$
?

6.2 How sensitive is the profit to the parameter b = 0.4 (the exponent of y in the selling price of the aluminum chair)

$$S(p^*,b) \approx \frac{p^*(b+h) - p^*(b)}{h} \cdot \frac{b}{p^*(b)}$$
?

7

Define the problem.

The production side of the electrical power grid^a consists of hundreds or thousands of power plants that vary in fuel sources (coal, nuclear, hydroelectric, solar, wind, stored energy in the batteries of electric vehicles, etc.) and characteristics (age, efficiency, automated, etc.).

How can the power consumption load be allocated to these plants to minimize cost?

Make Assumptions.

• Each power plant is summarized by a cost curve which tells how much a given load costs. Generally, the cost per unit time per unit load of operating a power plant is a concave function of load as in the figure below: small and large loads are expensive.

^aThis example is based on Huijuan Li in 'Lagrange Multipliers and their Applications'.

· For simplicity, we will approximate these quadratics by a linear function with one parameter: the cost per unit time per unit load is c(x) = ax + 1, so the cost rate function has the form $f(x) = (ax + 1)x = ax^2 + x$.

- N = number of power plants
- $x_i = \text{load assigned to power plant } i \text{ (in MW)}$
- X = total load (in MW)(In Toronto the average total load is 2500 MW.).
- $C = \cos t$ rate of power generation (in \$/h)
- $f_i(x_i) = \cos t$ rate function for power plant i (in \$/h)

Build a model.

- 7.1 Find an equation relating X and x_i .
- 7.2 Find a formula for C.
- 7.3 Formulate the problem we want to solve.

Assess the model.

We are going to assume the following:

- Three power plants identified with the parameters:
 - $-a_1 = 0.0625$
 - $-a_2 = 0.0125$
 - $-a_3 = 0.0250$
- The total load is 925 MW
- 7.4 Solve the problem.

Report the results.

- 7.5 What is the interpretation of λ^* the "optimal" Lagrange multiplier?
- 7.6 What is the sensitivity of the cost with respect to the parameters a_i and X? What does that mean about the model?

8 Robustness.

8.1 The parameter X varies significantly (regularly by over 50% in a day), so understanding it is very important.

It is crucial to understand how the optimal cost and loads change with *X*.

- 8.2 Is the quadratic model for f_i good? You can try different functions.
- 8.3 Should there be other constraints on x_i ? We only imposed $x_i > 0$, but we probably should impose upper bounds too.
- 8.4 What about transportation costs? There can be losses of up to 20% on high-tension transmission lines.
- 8.5 We have a static model, where the power plants operate always at the same load. We might want to consider a dynamic optimization model.

9

Linear Programming³

A family farm has 625 acres of land for planting. Possible crops that they could plant are corn, wheat, and oats. There are 1000 acre-ft (a volume) of water available for irrigation and 300 hours of labour per week available. The requirements and expected yields are shown below.

	corn	wheat	oats
irrigation (acre-ft / acre)	3.0	1.0	1.5
labour (person-h / week / acre)	0.8	0.2	0.3
yield (\$/acre)	400	200	250

We want to maximize the total yield.

Introduce the following variables:

- $x_i =$ acres planted of i = 1 corn, i = 2 wheat, i = 3 oats
- w = the total irrigation used in acre-ft
- ℓ = the total labour used in person-h / week
- a = the total area planted in acre
- y =the total yield in \$
- 9.1 Find expressions for w, ℓ, a, y
- 9.2 What are the constraints on the variables defined?
- 9.3 Formulate the optimization problem we want to solve in standard linear programming form:

 $\max \ \vec{c}^T \vec{x}$ Objective: Constraints:

9.4 Use farm-linearprog.ipynb to find the solution.

We ran the same model with the Oats Yield ranging from \$240/acre to \$260/acre and obtained the following graphs.

^{9.5} Interpret the results and the shadow costs.

We modify the original optimal farming problem to include the notion of plots. The 625 acre farm is broken down into 5 plots of 120 acres each and one 25 acre plot. For convenience, the farmers want to plot only one crop on each plot. As before, 1000 acre-ft of water and 300 hours of labour are available. The requirements and expected yields are shown below.

	corn	wheat	oats
irrigation (acre-ft / acre)	3.0	1.0	1.5
labour (person-h / week / acre)	0.8	0.2	0.3
yield (\$/acre)	400	200	250

We want to maximize the total yield.

Introduce the variables:

- x_1, x_2, x_3 are the number of large plots of corn, wheat, and oats respectively;
- x_4, x_5, x_6 are the number of small plots of corn, wheat, and oats respectively.
- 10.1 Set up and solve the problem.
- 10.2 Interpret the results.

11

Quadratic Programming⁴

Suppose a manufacturing company receives an order for B units to be delivered at time T, e.g. Sobeys has placed an order for B=100 pallets of Chapman's vanilla ice-cream for a promotion starting in T=10 days.

Chapman's Ice Cream must decide when to produce their tasty product. They don't want to produce it early since they will have to pay to keep it frozen until the order is due. They also do not want to produce it the day before it is due since running the production line fast might have a large cost.

Let x(t) be the inventory at time t and suppose that x(0) = 0 and to fill the order we need x(T) = B (boundary conditions).

- 11.1 Let us divide the time interval [0, T] into N "chunks". What is the length Δt of each?
- 11.2 Let Δx_n be the number of units produced during the n^{th} time interval. Find a formula relating Δx_n with x(t). Find an equation relating Δx_n with B.
- 11.3 We need to consider the cost of storing the produced units in inventory: assume that each unit has a cost of c_2 per time interval Δt . What is the total inventory cost?
- 11.4 We want to model the fact that running machines faster is more costly. What is a model for the cost of producing Δx_n units during a time interval of length Δt that quantifies this?
- 11.5 What is the total production cost?
- 11.6 What is the total cost?
- 11.7 What are the constraints for the variables?
- 11.8 Similarly to the linear programming problem, you can use the python tool quadprog to approximate the solution.

In the previous problem, instead of modelling it using **discrete time**, we can model it using **continuous time**.

Then, we have the following:

- $\frac{dx}{dt}(t)$ = units produced per unit time (at time t)
- Inventory $cost = \int_0^T c_2 \frac{dx}{dt}(t)(T-t) dt = \int_0^T c_2 x(t) dt$ (why?)

 © Bernardo Galvão-Sousa, 2024

We can formulate the problem as

Objective:
$$\min \int_0^T c_1(x'(t))^2 + c_2x(t) dt$$
Constraints: $x(0) = 0 \text{ and } x(T) = B$
 $x'(t) \ge 0$

The goal here is to find a function x(t). This is a problem in **Calculus of Variations**.

13

Euler-Lagrange Equation

We want to find a function $x : [t_0, t_1] \to \mathbb{R}$ that minimizes the functional:

$$\min \int_{t_0}^{t_1} F(t, x(t), x'(t)) dt$$

and $x(t_0) = x_0$ and $x(t_1) = x_1$.

When we want to find a minimizer of a function, we set the derivative to zero.

13.1 The definition of derivative for a real function is

$$f'(t) = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

We only have one direction for ε , so this limit suffices. For a function of multiple variables, we introduced the notion of partial derivative:

$$\frac{\partial f}{\partial x_i}(\vec{x}) = \lim_{\varepsilon \to 0} \frac{f(\vec{x} + \varepsilon \vec{e}_i) - f(\vec{x})}{\varepsilon}$$

Our case is similar, but instead of having vectors as inputs, our inputs are functions x(t), so our definition must be adapted to:

• Let
$$y(t) = x(t) + \varepsilon v(t)$$

What are conditions on v(t) that guarantee that y(t) is an admissible function for the problem formulated in the blue box above?

13.2 Let
$$g(\varepsilon) = \int_{t_0}^{t_1} F(t, y(t), y'(t)) dt$$
. Expand the formula for $g(\varepsilon)$.

13.3 Expand g'(0).

13.4 Set
$$g'(0) = 0$$
 and solve.

Hint: If $\int_a^b f(t)g(t) dt = 0$ for every function g(t) satisfying g(a) = g(b) = 0, then f(t) = 0 for all $t \in (a,b)$.

Euler-Lagrange Equation

The minimizer $x^*(t)$ of the functional

$$\min \int_{t_0}^{t_1} F(t, x(t), x'(t)) dt$$

with $x(t_0) = x_0$ and $x(t_1) = x_1$ satisfies the **Euler-Lagrange Equation**:

$$\frac{\partial F}{\partial x}(t, x^{\star}, x^{\star'}) = \frac{d}{dt} \frac{\partial F}{\partial x'}(t, x^{\star}, x^{\star'}).$$

14 We will look back to Exercise 12.

- 14.1 Use the Euler-Lagrange Equation to obtain a Differential equation for x(t).
- 14.2 Solve the differential equation with the boundary conditions.
- 14.3 We required $x'(t) \ge 0$. Does this solution satisfy this condition?
- 14.4 To get a solution that satisfies $x' \ge 0$, we need to consider a solution that doesn't produce any units for a while:

$$x(t) = \begin{cases} 0 & \text{if } t < t_1 \\ z(t) & \text{if } t_1 \le t \le T \end{cases}$$

What is t_1 and what is the function z(t)?

14.5 If we add a constraint $x'(t) \le M$, how would that modify the solution?

15

16

Dynamical Models

The following ordinary differential equation models a crowd leaving a stadium through an exit

$$2\theta r \frac{dr}{dt} = -k\alpha \sqrt{r}$$

based on the premise

- (TL) Torricelli's Law: The area of the region occupied by the crowd decreases proportionally to the width of the exit times the square root of its radius.
- 16.1 How is the premise expressed in the differential equation?
- 16.2 Sketch a slope field for this model

https://www.desmos.com/calculator/lxb4g6cuiz

and use it to study how the time it would take to evacuate that section depends on the parameters.

Ladd Peebles Stadium

According to the paper "A study of stadium exit design on evacuation performance" studying the Ladd Peebles stadium:

- The average person occupies 0.15m².
- The stadium fits 1200 people in one section.
- 17.1 According to an experiment in the paper, it took 8 minutes to evacuate the stadium. Use this to estimate k for Ladd Peebles.
- 17.2 In the same paper, "for safety, the maximum flow through an exit is 109 people per meter-width per minute." Does Ladd Peebles satisfy this safety concern?

18 Numerical Methods for:

$$y' = f(t, y)$$

18.1 Euler Method:

$$y_{n+1} = y_n + hk_1$$
$$k_1 = f(t_n, y_n)$$

18.2 Heun Method (Improved Euler):

$$y_{n+1} = y_n + h \frac{k_1 + k_2}{2}$$

$$k_1 = f(t_n, y_n)$$

$$k_2 = f(t_n + h, y_n + hk_1)$$

18.3 Runge-Kutta Method:

$$y_{n+1} = y_n + h \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$k_1 = f(t_n, y_n)$$

$$k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$$

$$k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2)$$

$$k_4 = f(t_n + h, y_n + hk_3)$$

Desmos with all these three methods:

https://www.desmos.com/calculator/haolaltd9s

18.4 Consider the ODE $\frac{dy}{dx} = 2x \sin(x^2)$ and y(0) = 0. With a step h = 0.1, find the largest interval that the approximations stay within 0.1 distance of the exact solution.

Seven Fundamental Dimensions

There are seven fundamental dimensions:

Dimension	Symbol	SI Unit		
length	L	metre	m	
mass	M	kilogram	kg	
time	T	second	S	
electric current	I	ampere	Α	
temperature	Θ	kelvin	K	
amount	N	mole	mol	
light intensity	J	candela	cd	

Note: Sometimes, we use charge Q (SI Unit coulomb C) as a fundamental dimension instead of current.

- 19.1 When can we add/subtract quantities? With different dimensions? With the same dimensions?
- 19.2 When can we equate quantities? With different dimensions? With the same dimensions?
- 19.3 When can we multiply/divide quantities? With different dimensions? With the same dimen-
- 19.4 It is convenient to define some functions as a power series (e.g. $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$). What condition on the dimension of x is required to be able to do this?
- 19.5 What are the dimensions of a derivative $\frac{dy}{dx}$? What are the dimensions of an integral $\int y \, dx$?

Modelling: Relationship between the variables in a model must be dimensionally consistent.

20 Consider the model for a mass undergoing radioactive decay:

$$\frac{dm}{dt} = -km$$

with $m(0) = m_0$.

- 20.1 What are the units of k? What are the units of $t_c = \frac{1}{k}$?
- 20.2 Introduce new variables: $\tau = \frac{t}{t_c}$ and $\overline{m}(\tau) = \frac{m(t)}{m_0}$. What is the ODE satisfied by $\overline{m}(\tau)$? What are its units? What are the parameters for this equation?

21 Consider the model for spruce budworm outbreak in Eastern Canada.⁵

$$\frac{dN}{dt} = RN\left(1 - \frac{N}{K}\right) - \frac{BN^2}{A^2 + N^2}.$$

The first term accounts for resource-limited population growth within a tree and the second term accounts for the predation of the budworms by birds.

- 21.1 What are the units of N,A,B,K?
- 21.2 Consider the new variables⁶:
 - x = N/A the non-dimensional budworm population
 - $\tau = \frac{Bt}{A}$ the non-dimensional time
 - $r = \frac{RA}{R}$ the non-dimensional growth rate
 - $k = \frac{K}{A}$ the non-dimensional carrying capacity

What is the ODE satisfied by $x(\tau)$?

⁵See "Nonlinear Dynamics and Chaos" by Strogatz.

⁶This is not the only way to do this.

Dimensional Matrix

The dimensional matrix \mathcal{D} is a matrix where its (i,j) entry gives the power of the i^{th} dimension of the j^{th} variable.

Buckingham Pi Theorem

Any physical relation involving *N* dimensional variables can be written in terms of a complete set of N-r independent dimensionless variables, where r is the rank of the dimensional matrix \mathcal{D} .

The notational convention for the Buckingham Pi Theorem is that the "pi's", Π_1, \ldots, Π_{N-r} represent dimensionless variables and a relation between them is given by $F(\Pi_1, \dots, \Pi_{N-r}) =$ 0.

Consider a pendulum. We make assumptions:

- The pivot is frictionless
- · The rod is massless
- · Air resistance is neglected
- · The ceiling is infinitely rigid

22.1 What are the units of the following variables of interest?

- (a) Period of the swing [P] =
- (b) Pendulum mass [m] =
- (c) Pendulum rod length [l] =
- (d) Gravitational acceleration [g] =
- (e) Amplitude of the swing $[\Theta]$ =

22.2 Let us create the dimensional matrix:

- · One column for each variable of interest
- · One row for each dimension
- Each term contains the power of the corresponding dimension for the corresponding variable

$$\mathcal{D} = \left[\begin{array}{cccc} [P] & [m] & [l] & [g] & [\Theta] \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow \\ & & & \leftarrow L \\ & & & \leftarrow T \end{array} \right] \begin{array}{c} \leftarrow M \\ \leftarrow L \\ \leftarrow T \end{array}$$

- 22.3 What is the rank of this matrix?
- 22.4 What is the dimension of the null space?
- 22.5 Find a basis for the null space.

For each vector of the null space basis,

$$\begin{bmatrix} 2 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Buckingham Pi Theorem states that these correspond to non-dimensional variables Π_1 and Π_2 :

$$\Pi_1 = \frac{P^2 g}{l} \quad \text{and} \quad \Pi_2 = \Theta$$

and that there is a relation between them:

$$F(\Pi_1, \Pi_2) = 0$$
 or $\Pi_1 = f(\Pi_2)$ \iff $\frac{P^2g}{l} = f(\Theta)$

which implies that

$$P = \sqrt{\frac{l}{g}} \cdot \overline{f}(\Theta),$$

or in other words, the fact that the period of the pendulum is proportional to the square root of its length is a consequence of a pure dimensional analysis of the variables in the problem.

23 Consider the flow past a sphere.

You don't need to know much about fluid dynamics to be able to deduce some properties of the flow.

The sphere is in a fluid (water) and we measure the force necessary to keep the sphere from moving downstream.

We want to understand how the drag force depends on the stream velocity.

- 23.1 What are the units of the variables of interest⁷?
 - (a) drag force [F] =
 - (b) upstream velocity [v] =
 - (c) fluid density $[\rho]$ =
 - (d) sphere diameter [D] =
 - (e) fluid viscosity (its resistance to deformation by shear stress) $[\mu]$ =
- 23.2 Create a dimension matrix \mathcal{D} .
- 23.3 What is its rank? What is the dimension of its null space? Find a basis for its null space.
- 23.4 What are the non-dimensional variables Π 's from Buckingham Pi Theorem?
- 23.5 What relations do you obtain?
- 24 24.1 Use Buckingham Pi Theorem on Exercise 20 about radioactive decay.
 - 24.2 Use Buckingham Pi Theorem on Exercise 21 about the budworm population.

SYSTEMS OF ODEs

⁷This choice is part of the modelling process.