Lecture 13 - Feb 24, 2023

- Dynamic programming
 - · Policy Iteration
 - · Value Iteration
- T APPROximate Dynamic Programming
 - · Asynchronous DP
 - * In-Place DP
 - * Priorotized Sweeping
 - * Real-Time DP
 - · Generalized Policy Iteration
 - Monte-Carlo Methods
 - · First- Visit MC
 - · Online MC

HW3 is Posted - Due March 17

Project 2 - Due March 3

TA's office hour:

Wendsdays, 2.pm=3pm (in-person)

Model-Rases

Fridays, 2pm-3pm (virtual)

Approximate Dynamic Programming

S= { 10,000,000 }

Matrix-Farm

M(a)

ABA

B

B

B

VK (S)= max 5 P(5/S,a) [R(S,a,5)+& VK-1(S)]

In-place Dynamic Pragramming (Space-Eficiel DP)

Void New - a sing. V

V(s) = max 5 P(s'|s,a)[R+&V(s')]

B[] V(s')

V(s)= max [P(s7s,a) [R+8Vo(s')]

V(s)= max [P(s7s,a) [R+V0(s')]

T(s) - grygnax [p(s)s,a) [R+0 V(s)]

Approximate DP & Watter Powell Prioritized Sweeping Do I need to BackUP for all SES. Vkm (5)= man 5 P(5 15, a) [r+ 8 Vh(5)] (VK+1(S) - VK(S)

A priority $\Delta = [1]$ V = [1] V = [1]

L D(s)= D(s)+7 max P(skl sia) D(sk) = that lead to sk

$$S_{K} = \begin{bmatrix} 1 & 1 & 1 & 1 & --- & 1 \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$S_{K} = \begin{bmatrix} t_{G}, t_{G} & --- & t_{G} \end{bmatrix}$$

$$\Delta(11) = \Delta(11) + \gamma \max_{a \in A} P(\overline{14} | 11, a) \Delta(14) = 100$$

$$\Delta(13) = \Delta(13) + \gamma \max_{a \in A} P(14 | 13, a) \Delta(14) = 100$$

$$A = \begin{cases} 1 & 12 & 13 & 14 & 15 \\ \hline 100 & 1 & 100 & 99 & 1 \end{cases}$$

△(Pk)= 1 1914 (Pk)= 1 1914 (13)-	new 1 V (13)
- 80	

9 0	10	11	12	
8		14 ³⁹	13	
7		16	15 0	
6 0	5 °			
4	3 0	2°	1°	
Wal	I E	Bump Goal		

$$\Delta = \begin{bmatrix} \frac{3}{1} & \frac{11}{12} & \frac{13}{13} & \frac{14}{15} & \frac{15}{100} \\ \frac{1}{100} & \frac{89}{88} & \frac{18}{18} & \frac{89}{89} \end{bmatrix}$$

Sx A

Sks 11

 V^{New} (11) = Max = -1, -1, -1, 88 = 88

L(11)= | 0-88|=88

9 🗳	10	11	12
8		14 ⁹⁹	13 ⁸⁸
7		16	15 ⁰
6 0	5 °		
4	3	2°	1°
Wal	II E	Bump [Goal

Real-Time DP

Generalized Policy Iteration (GPI)

To PE, VTO PI, TT, PE, TZ

Vory V, V2 -- - VT-, VT VON Y, V2 ---

 $V_{K+1}(S) = \sum_{S'} P(S'1S, \pi_{\sigma}(S)) \left[R + \partial V_{K}(S')\right]$ $\dot{X}(S) = argman \sum_{\alpha \in A} P(S'1S, \alpha) \left[R + \gamma V_{\sigma}^{*}(S)\right]$

GPT >

Vo - V1 - 5 V2 - PI V3 - V4 - > V5 PI Finger grain switch between PE 8 PI

Monte-Corlo Methale PCSIS, a) MOP(S,A,R, S - Q S' P(s(s,a) VKM(S)=nucx 5 PCSKSa) [R+7VCs/)] $V(s) = E \left[\frac{R(s_{01}a, s_{1})}{R(s_{11}a, s_{12}a, s_{2})} \frac{R(s_{11}a, s_{2})}{R(s_{11}a, s_{2}a, s_{2})} \frac{R(s_{11}a, s_{2}a, s_{2}a, s_{2}a)}{R(s_{11}a, s_{2}a, s_{2}a, s_{2}a)} \right]$ = E[R+1+8(R+12+ bR+13+--) So=Scar7]

$$= \left[-\left[R_{++1} + 8 V_{(S')}^{T}\right]\right]$$

$$= \left[-\left[R_{++1} + 8 V_{(S')}^{T}\right]\right]$$

$$= \left[-\left[R_{++1} + 8 V_{(S')}^{T}\right]\right]$$

$$V^{\mathcal{T}}(\xi) = E[G_{\xi}(\xi_{\xi} = \xi, X)]$$

$$\approx 1 \sum_{i=1}^{N} G_{\xi}^{i}$$

$$G_{\xi}(\xi_{\xi} = \xi, X)$$

91	10↓	114	121
8]		14	13/
7		16	15
6	5		
4	3	2	1
Wall Bump		Goal	

$$13 \xrightarrow{\mathcal{R}(B)} 15 \xrightarrow{\mathcal{R}(S)} 6 = -1 + 779 = 98$$

$$13\frac{\pi(13)}{-11}14\frac{\pi(14)}{99}GG^{2}=-11+199=88$$