Exo4

1/ Montrer que $P \mapsto P(z)$ est app linéalite $S_1 P = a \times^4 + b \times^3 + c \times^2 + d \times + e$ P(z) = 16a + 8b + 4c + 2d + ealors la matrice de $P \mapsto P(z)$ est

(16 8 4 2 1) pour rapport à la base $X^4, X^3, X^2, X^1, X^0 de R_4 I X I$

dim $F_1 \le \dim \mathbb{R}_4[X] = 5$, P(X) = 1, $P(X) \notin F_1 \Rightarrow \dim \le 4$ $(X-2), (X-2)^2, (X-2)^3, (X-2)^4 \in F_1$ est une base

If suffit the major content of the suppose $\exists a, b, c, c \mid ta$ In suppose $\exists a, b, c, c \mid ta$ $f(x) = a(x-2) + b(x-2)^2 + c(x-2)^3 + d(x-2)^4 = 0$ $f(x) = a + 2b(x-2) + 3c(x-2)^2 + 4d(x-2)^3 = 0$ $\Rightarrow f'(2) = a = 0$

De même f''(z) = 2b = 0, $f'''(z) = 6c = 0 \Rightarrow d = 0$ On a que $a = b = c = d = 0 \Rightarrow famille libre$

complement \forall P \in \mathbb{R}_4[X]

P''(z) = 2 C

$$P(x) = P(z) + \underline{P'(z)} (x-2) + \underline{P'(z)} (x-2)^{2} + \underline{P'(z)} (x-2)^{3} + \underline{P(z)} (x-2)^{4} + \underline{P(z)} (x-2)^{4}$$

C'est le development limité de P en 2

Facile à verifier

Sevent on, bc, d, e + 1R
$$P(X) = a + b (X-2)^{1} + c (X-2)^{2} + d (X-2)^{3} + e (X-2)^{4}$$
On calcule les dévivées
$$P(2) = a \qquad P^{(3)}(2) = 32 d$$

$$P'(2) = b \qquad P^{(4)}(d) = 432 e$$

21 Montrer que
$$P + P(z)$$
 est app linéalite
 $S_1 P = aX^4 + bX^3 + cX^2 + dX + e$
 $P(z) = 32a + 12b + 4c + d$
alots la matrice de $P + P(z)$ est
 $(32 12 4 10)$ par rapport à la base
 X^4, X^3, X^2, X^1, X^0 de $P_4 = P(x)$

$$\dim F_z \leq \dim F_1 = 4$$
, $P(x) = x-2$, $P(x) \notin F_z \Rightarrow \dim \leq 3$
 $(x-2)^2, (x-2)^3, (x-2)^4 \in F_1$ est une base

Il suffit de mg c'est une famille libre $(X-2), (X-2)^2, (X-2)^3, (X-2)^4 \in F_1$ est libre \mathbb{R}^4 sons ensemble d'une famille libre est libre

3/ Montrer que $2 \in F_3$ et faire la somme $3(-2 \in F_3)$

$$S_1 f(X) = 2 \Rightarrow f'(X) = 0 \Rightarrow f'(2) = 0 \Rightarrow f \in F_3$$

 $S_1 g(X) = X-2 \Rightarrow g(2) = 2-2 \Rightarrow g \in F_3$
mais $(f+g)(X) = X \notin F_3$

4) Montrer que si f,g E -> TR linéaire alors f+g est linéaire assis Prendre f, q clams 1/,2/ ci dessus

1/
$$\binom{2}{3}\binom{1}{1}$$
 est me base de \mathbb{R}^2

1/ $Snff_1$ t de ma c'est me famille libre

1/ $\binom{2}{3}\binom{1}{1}$ est me base de \mathbb{R}^2

1/ $\binom{2}{3}\binom{1}{1}\binom{1}{1}$ est me base de \mathbb{R}^2

1/ $\binom{2}{3}\binom{1}{1}\binom{1}{1}$ est me base de \mathbb{R}^2

1/ $\binom{2}{3}\binom{1}{1}\binom{1}{1}$ est me base de \mathbb{R}^2

1/ $\binom{2}{3}\binom{1}{1}\binom$

résondre le sys pour tron ver les coordonnées

(2)
$$3 \times y = 1$$

$$(2) 3 \times y = 1$$

$$(3) \times y = 1$$

$$(4) \times y = 1$$

$$(5) \times y = 1$$

$$(5) \times y = 1$$

$$(6) \times y = 1$$

$$(7) \times y = 1$$

$$(8) \times y = 1$$

$$(8) \times y = 1$$

$$(9) \times y = 1$$

$$(9) \times y = 1$$

$$(1) \times y = 1$$

- 2/ trop de vecteur pour être formille libre
- 3/ 3 vecteurs clams 1R3 Il Shfit de mg c est me famille libre sys lin associé

$$3x + y = 1$$

$$3x + y = 2$$

$$y + z = 1$$

$$y + z = 1$$

$$(z H_6 \rightarrow C_2 H_4 + H_2)$$

Faisons une table

	CL	b	C
	C2 H6	Cz H4	Hz
С	Z	2	0
H	C	4	2

systēme Iinēaire

$$2a = 2b$$

$$6a = 4b + 2c$$

$$6a = 4a + 2C \Rightarrow 2a = 2c \Rightarrow q = C$$
Substitution $q = b$

$$a NO_2 + b H_2O = c HNO_3 + d NO$$

_	NO_2	H20	H NO3	No	
N	1	0	1	1	
0	2	1	3	1	
H	Ď	2	1	0	

système linéaire a = c +d

$$2b = c$$

=>
$$a = 3b$$
 $d = b$
 $c = 2b$

$$3NO_2 + H_2O = 2HNO_3 + NO$$

Exo 6 cont

Fe₇ S_{δ} + O_z \rightarrow Fe₃ O_4 + S O_2 3 Fe₇ S_{δ} + 38 O_z = 7 Fe₃ O_4 + 245 O_2 Trouver le système lineante et verifier