Определения по матану, семестр 4

14 февраля 2018 г.

Содержание

1	Интеграл ступенчатой функции	2
2	Интеграл неотрицательной измеримой функции	2
3	Суммируемая функция	2
4	Интеграл суммируемой функции	2

1 Интеграл ступенчатой функции

< $\mathbb{X},$ $\mathbb{A},$ $\mu>$ - пространство с мерой $f=\sum\limits_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве ${\mathbb X}$ назовём

$$\int_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

Будем считать, что $[0 \cdot \infty = 0]$

2 Интеграл неотрицательной измеримой функции

 $<{
m X},{
m A},\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${
m X}$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sup(\int\limits_{\mathbb{X}} g)$$

, где $0\leqslant g\leqslant f, g$ —ступенчатая

3 Суммируемая функция

< $\mathbb{X}, \mathbb{A}, \mu >$ - пространство с мерой f—измерима, $\int\limits_{\mathbb{X}} f^+$ или $\int\limits_{\mathbb{X}} f^-$ конечен (хотя бы один из них). Тогда интегралом f на \mathbb{X} назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

4 Интеграл суммируемой функции

 $< X, A, \mu >$ - пространство с мерой

f— измерима, $E \in \mathbb{A}$

Тогда интегралом f на множестве E назовём

$$\int\limits_{\mathbb{E}} f d\mu := \int\limits_{\mathbb{X}} f \cdot \chi(E) d\mu$$

$$f$$
 суммируемая на E , если $\int\limits_{\mathbb{X}} f^+\chi(E)$ и $\int\limits_{\mathbb{X}} f^-\chi(E)$ конечны