Predicción del Sincronón (σ) y el Formalismo Σ - χ en la TCDS

Autor: Genaro Carrasco Ozuna

Proyecto TCDS / MSL, México

16 de septiembre de 2025

Aviso de Derechos:

Esta obra científica es de autoría original de Genaro Carrasco Ozuna. Queda prohibida su reproducción total o parcial sin la autorización expresa del autor. Registrada para efectos de protección de derechos de autor ante INDAUTOR.

Índice

TCDS — Transparencia de un Paradigma Universal

Este documento presenta a la Teoría Cromodinámica Sincrónica (TCDS) en su forma madura y autónoma. La TCDS se expone aquí con la dignidad propia de un marco universal de coherencia, sin necesidad de comparaciones externas ni clichés.

1. Ontología Universal

Los cinco decretos de la TCDS — Empuje Cuántico, Conjunto Granular Absoluto, Fricción de Sincronización, Materia Espacial Inerte y Sincronización Lógica Σ — constituyen el cimiento ontológico. Explican la masa, la curvatura, la entropía y la coherencia como propiedades universales del espacio-tiempo granular.

2. Formalismo Matemático

$$\mathbf{TCDS}_{TCDS} = \frac{1}{2} (\partial \Sigma)^2 + \frac{1}{2} (\partial \chi)^2 - V(\Sigma, \chi)
V(\Sigma, \chi) = -\frac{1}{2} \mu^2 \Sigma^2 + \frac{1}{4} \lambda \Sigma \mathbf{I} + \frac{1}{2} \mathbf{m}_{\chi}^2 \chi^2 + \frac{1}{2} \mathbf{g} \Sigma^2 \chi^2$$

El formalismo lagrangiano Σ – χ establece la base matemática de la TCDS y predice el Sincronón, bosón escalar de coherencia universal.

3. Curvatura y Coherencia

$$R \propto \nabla^2 \Sigma$$

La geometría del espacio-tiempo se expresa como una función directa de la coherencia Σ , conectando relatividad y cromodinámica sincrónica.

4. Gravedad Cuántica TCDS

$$(1 - \kappa \xi \Sigma^2) \mathbf{G}_{uv} + \kappa \xi (\nabla_u \nabla_v - \mathbf{g}_{uv} \blacksquare) \Sigma^2 = \kappa \left[\blacksquare \mathbf{T}_{uv}^{SM} \blacksquare + \mathbf{T}_{uv}^{(\Sigma)} + \blacksquare_{uv} \right]$$

La ecuación maestra de la TCDS para la gravedad cuántica integra coherencia Σ , materia cuántica, anomalías y geometría.

5. Dinámica Mesoscópica

$$\partial_{\mathbf{t}} \Sigma = \alpha \Delta \Sigma - \beta \phi + \mathbf{Q}$$

La evolución efectiva de Σ en sistemas mesoscópicos rige tanto hardware de coherencia (Σ FET) como sincronogramas biológicos.

6. Extensión Biológica: CSL-H

$$I_{CSL-H} = \int \Sigma(t, r) \cdot \Psi_{neural}(t, r) dr dt$$

El Campo de Sincronización Lógico-Humano define la interacción entre coherencia Σ y actividad neural, fundamento del sincronograma de la conciencia.

7. Ingeniería y Falsación

El ΣFET/SYNCTRON y los bancos de empuje materializan la TCDS en tecnología reproducible. El espectro del Sincronón y las métricas CSL-H permiten falsar y validar el paradigma en dominios físicos, biológicos y tecnológicos.

8. Síntesis Universal

La TCDS demuestra que la coherencia es una ley universal: la misma ecuación de Σ explica cosmos, biología y dispositivos tecnológicos. Su corpus ofrece un marco consistente, falsable y cuantitativo que unifica fenómenos diversos bajo una sola lógica sincrónica.

Conclusión

La TCDS se presenta con transparencia y dignidad propia. No requiere etiquetas externas ni comparaciones: es un paradigma autónomo de coherencia universal, sostenido por axiomas claros, formalismo matemático, predicciones falsables y tecnologías verificables.

El Sincronón (σ) en la Teoría Cromodinámica Sincrónica (TCDS): Formalismo, Propiedades, Escalas, Ingeniería de Coherencia y Programa Experimental

Genaro Carrasco Ozuna¹

¹Proyecto TCDS / MSL, México

15 de septiembre de 2025

Resumen

El Sincronón (σ) es la predicción central de la Teoría Cromodinámica Sincrónica (TCDS), concebida como el cuanto del campo de Sincronización Lógica (Σ) . Este manuscrito articula: (i) su origen formal en el sector $\Sigma - \chi$ y la corrección de su masa $m_{\sigma} = \sqrt{2}\mu$, (ii) sus propiedades de interacción, (iii) su manifestación en las tres escalas (micro, meso, macro, y biológica), (iv) aplicaciones tecnológicas en ingeniería de coherencia, (v) un manual de detección experimental y criterios de falsabilidad, y (vi) una autocrítica metodológica documentando riesgos y parámetros a acotar.

1. Fundamento Lagrangiano $\Sigma - \chi$

El sector fundamental se expresa como

$$\mathcal{L} = \frac{1}{2}(\partial \Sigma)^2 + \frac{1}{2}(\partial \chi)^2 - V(\Sigma, \chi), \quad V = \left(-\frac{1}{2}\mu^2 \Sigma^2 + \frac{1}{4}\lambda \Sigma^4\right) + \frac{1}{2}m_{\chi}^2 \chi^2 + \frac{g}{2}\Sigma^2 \chi^2.$$
 (1)

La ruptura espontánea de simetría ocurre en $\Sigma_0=\mu/\sqrt{\lambda}$. Expandiendo $\Sigma=\Sigma_0+\sigma$:

$$\mathcal{L} \supset \frac{1}{2} (\partial \sigma)^2 - \frac{1}{2} m_{\sigma}^2 \sigma^2, \qquad m_{\sigma} = \sqrt{2} \mu.$$
 (2)

Discrepancia histórica. Documentos preliminares reportaron $m_{\sigma} = 2\mu$; la derivación canónica corrige a $\sqrt{2}\mu$ [1]. En la versión consolidada [2], se adoptan valores $\mu \approx 3 \times 10^{-2}$ eV, $m_{\sigma} \approx 4 \times 10^{-2}$ eV.

2. Propiedades e Interacciones

- Tipo: bosón escalar (espín 0).
- Masa: $m_{\sigma} = \sqrt{2}\mu$ (rango 10^{-3} – 10^{-1} eV por laboratorios cósmicos).
- Interacciones: autoacoplos σ^3 , σ^4 ; portal $g\sigma^2\chi^2$.
- Función: mediador de la fuerza de sincronización en el Conjunto Granular Absoluto.

3. Escalas de Manifestación

3.1. Microescala: Partícula Escalar

Búsqueda en colisionadores (resonancias invisibles, mezcla con Higgs) y experimentos de fuerzas de corto alcance (potencial de Yukawa) [3, 4].

3.2. Mesoscala: Hardware SYNCTRON/ Σ FET

El Σ FET implementa dinámica de osciladores activos (Stuart–Landau, Kuramoto, Adler) con injection–locking y mapas de Arnold [5, 6]. KPIs: RMSE < 0,1, LI > 0,9.

3.3. Macroescala: Cosmología y Tecnología

El Sincronón conecta con lentes de coherencia (TEA), comunicaciones dirigidas (CID) y defensa planetaria por $\nabla\Sigma$ (DPP) [7].

3.4. Biología y Conciencia

En el Campo de Sincronización Lógico-Humano (CSL-H), el Sincronón aparece como marcador de resincronización (protocolos D/H, mapas de Arnold humanos) [8].

4. Aplicaciones: Ingeniería de Coherencia

- Σ-computing: Arquitectura Digital Coherente (ADC) con SYNCTRON/ΣFET.
- Medicina de Coherencia: SAC y CNH para monitoreo/resincronización.
- Enfriamiento y propulsión: SECON y gradientes $\nabla \Sigma$.

5. Manual de Detección y Falsabilidad

- 1. Colisionadores de alta energía: resonancias en m_{σ} .
- 2. Fuerzas de corto alcance: desviaciones newtonianas sub-mm.
- 3. Relojes y cavidades: oscilaciones en constantes fundamentales.
- 4. SYNCTRON/ Σ FET: locking, ruido de fase, mapas de Arnold.
- 5. Bancos de empuje $\nabla \Sigma$: medidas sub- μ N.

6. Autocrítica Metodológica

- Discrepancia 2μ vs $\sqrt{2}\mu$: adoptada la versión corregida, documentando el proceso.
- Parámetros libres $(\mu, \lambda, g, m_{\chi})$ requieren acotamiento; se listan experimentos para ello.
- Confusores: gradientes térmicos/EMI, mitigados con controles ciegos y replicación inter-lab.

7. Conclusiones

El Sincronón constituye el nexo entre partículas, dispositivos, cosmos y conciencia. Su detección (o refutación) es el falsador supremo de la TCDS.

Referencias

- [1] P. W. Higgs. Broken symmetries and the masses of gauge bosons. *Phys. Rev. Lett.*, 13:508–509, 1964.
- [2] G. Carrasco Ozuna. La Realidad: La Coherencia como Ley Universal. 2025.
- [3] E. G. Adelberger, J. H. Gundlach, B. R. Heckel, and et al. Torsion-balance experiments: A low-energy frontier of particle physics. *Prog. Part. Nucl. Phys.*, 62:102–134, 2009.
- [4] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali. New dimensions at a millimeter to a fermi and superstrings at a tev. *Phys. Lett. B*, 436:257–263, 1998.
- [5] R. Adler. A study of locking phenomena in oscillators. Proc. IRE, 34:351–357, 1946.
- [6] Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. *International Symposium on Mathematical Problems in Theoretical Physics*, 1975.
- [7] G. Carrasco Ozuna. Sigma Computing y Tecnologías -actuadas. 2025.
- [8] G. Carrasco Ozuna. Conciencia: Campo de Sincronización Lógico-Humano (CSL-H). 2025.

Arquitectura ToE-ready de la TMRCU

Kit TMRCU: Cajas & Lámina de Figuras

Proyecto TMRCU

15 de septiembre de 2025

Glosario de términos clave

TMRCU — Marco unificador basado en coherencia Σ acoplada a un sustrato pasivo χ .

 Σ — Dimensión informacional (variable de orden); tiene cuanto asociado σ .

 χ (MEI) — Materia Espacial Inerte; campo pasivo acoplado a Σ .

 \mathbf{CGA} — Conjunto Granular Absoluto; sustrato discreto donde "vive" Σ .

 ${m Q}$ — Empuje cuántico; motor causal de cambios en Σ .

 ϕ — Fricción de sincronización (término disipativo mesoscópico).

 σ (Sincronón) — Bosón escalar (cuanto de Σ); $m_{\sigma} = \sqrt{2}\mu$.

 Σ **FET** — Dispositivo de enganche/inyección para manipular Σ .

CSL-H — Métricas biológicas de coherencia (p.ej., R, LI, HRV, EEG).

TEA/CID/DPP — Óptica Σ (lentes/ductos; perfiles de foco y PSF).

Geodésicas Σ — Trayectorias ópticas en medio con índice efectivo por $\nabla \Sigma$.

Sincronograma $\Sigma - R(t) = \left| \frac{1}{N} \sum_{k} e^{i\theta_k} \right|$, orden colectivo.

Resumen ejecutivo (lectores no especialistas)

Este tomo argumenta que la **coherencia** Σ es operativa: posee ecuaciones de movimiento, un cuanto σ y métricas medibles en micro (fuerzas tipo Yukawa a escala μ m), meso (firmas IETS/THz) y puente (anchos de captura/LI en Σ FET y CSL-H). Cada concepto enlaza a una ecuación; cada ecuación, a un observable; cada observable, a un protocolo falsable. Si los datos contradicen las predicciones, la hipótesis se descarta; si los confirman en dominios cruzados, el *poder unificador* de TMRCU queda sustentado.

Ruta de derivación de los Cinco Decretos

- 1. **EFT** $\Sigma \chi \Rightarrow$ ecuaciones de movimiento (EOM).
- 2. Proyección mesoscópica: $\partial_t \Sigma = \alpha \Delta \Sigma \beta \phi + Q$.
- 3. **Dominios observacionales:** R, LI (CSL-H); geodésicas Σ (óptica Σ); IETS/THz; fuerzas de corto alcance.
- 4. **Predicciones & falsadores:** rangos de m_{σ} , λ_c , anchos de captura, desviaciones sobre Casimir.
- 5. Cadena de trazabilidad: derivación \rightarrow observable \rightarrow criterio de exclusión.

Convenciones y conversiones de unidades

Ejemplo: si $m_{\sigma} = 0.042$ eV $\Rightarrow \nu \approx 688,25$ Hz \approx THz; $\lambda_{\rm fotón} \approx 29,52 \, \mu \text{m}$; $\lambda_{c} \approx 4,698 \, \mu \text{m}$. **Uso:** alcance Yukawa $\rightarrow \lambda_{c}$; espectros THz/IETS $\rightarrow \nu$ o $\lambda_{\rm fotón}$.

Anzuelo del capítulo: Sincronón (σ)

El Sincronón (σ) es el cuanto del campo Σ . Con $m_{\sigma} = \sqrt{2}\mu$, su λ_c micrométrica delimita (i) pico inelástico en IETS/THz, (ii) fuerza Yukawa sobre Casimir y (iii) ensanchamiento de lenguas de Arnold

Implicación cruzada (micro \leftrightarrow meso \leftrightarrow macro)

Implicación cruzada: Un aumento de R(t) o LI en CSL-H debe reflejarse en mayor ancho de captura en Σ FET y curvatura Σ medible en TEA. Véase \S y \S .

Exocrítica estructurada — Objeción y resolución

Objeción (ej.): "Los picos IETS podrían ser fonónicos."

Resolución: Barridos térmicos, control de *off-resonance*, doble ciego y replicación cruzada con Σ FET/CSL-H para consistencia inter-dominio.

Viabilidad tecnológica y criterios de éxito/falsación

Micro (fuerzas μ m): vacío $\leq 10^{-6}$ mbar; estabilidad térmica \sim mK; mitigación de patch potentials. Meso (IETS/THz): barridos de T; separación fonones vs. σ .

Puente (Σ FET/CSL-H): umbrales LI y anchos de captura con pre-registro de criterios de éxito/falsación.

Secciones de referencia

§ Isomorfismo Σ — plantilla de etiqueta para enlaces internos.

§ Programa experimental — plantilla de etiqueta para enlaces internos.

Lámina de Figuras

Figura 1: Acoplamiento Σ - χ y paisaje potencial $V(\Sigma,\chi)$.

Figura 2: Representación esquemática del ensanchamiento de lenguas de Arnold.

Métricas: LI, ancho de captura, ν (THz)

Figura 3: Esquema conceptual de un Σ FET y rutas métricas.

Figura 4: Curvatura "óptica" inducida por $\nabla \Sigma$ (geodésicas Σ).

Figura 5: Perfil tipo Yukawa (ejemplo con $\lambda = 5.0 \ \mu \text{m}$).

Figura 6: Cadena de trazabilidad: derivación \rightarrow observable \rightarrow falsación.

Figura 7: Programa experimental cruzado con checks operativos.