Métodos Numéricos - Clase 3

Ulises Bussi- Javier Portillo

1° cuatrimestre 2020

Métodos para encontrar raices de funciones de forma numérica (sí, también).

Más efectivos computacionalmente.

"Encuentra" raices sin necesidad de un intervalo cerrado.

Métodos para encontrar raices de funciones de forma numérica (sí, también).

Más efectivos computacionalmente.

"Encuentra" raices sin necesidad de un intervalo cerrado.

Consideraciones:

- Encuentran aproximadamente el valor de la raiz.
- Requieren una condición inicial.
- Pueden tener problemas de convergencia.

Consideraciones:

- Encuentran aproximadamente el valor de la raiz.
- Requieren una condición inicial.
- Pueden tener problemas de convergencia.

Metodos:

- Punto fijo.
- Newton-Raphson.
- Método de la Secante.

Iteración de Punto Fijo

Idea Dada f(x) = 0 convertirlo a la forma g(x) = x y dado un x_0 calcular $x_1 = q(x_0)$

•00000

Ejemplo: Punto Fijo

Supongamos que queremos hallar la raiz de $f(x) = e^{-x} - x$

$$q(x) = e^{-x}$$

$$x_1 = g(2) = e^{-2} = 0.1353$$

$$e_r = \frac{|0.1353 - 2|}{|0.1353|} = 13.78$$

$$x_2 = g(0.1353) = 0.8734$$

$$e_r = \frac{|0.8734 - 0.1353|}{|0.8734|} = 0.8451$$

$$x_3 = g(0.8734) = 0.4175$$

$$e_r = \frac{|0.4175 - 0.8734|}{|0.4175|} = 1.0919$$

$$x_4 = g(0.4175) = 0.6587$$

$$e_r = \frac{|0.4175 - 0.6587|}{|0.6587|} = 0.3661$$

No perdamos de vista que lo que nos interesa es saber que pasó con la f(x) que es a la que le estamos buscando la raíz!

Si miramos f(x) en nuestras propuestas de raices:

Si miramos |f(x)| en nuestras propuestas de raices:

Otro ejemplo: Punto Fijo

•000

Supongamos que queremos hallar la raiz de $f(x) = x^2 - x - 1$

$$g(x) = x^2 - 1$$

0000

Ejemplo: Punto Fijo

$$x_1 = (-2)^2 - 1$$
$$x_1 = 3$$

0000

Ejemplo: Punto Fijo

$$x_2 = g(3) = 8$$

0000

$$x_3 = g(8) = 63$$

Convergencia de Punto Fijo

Es posible demostrar (no lo vamos a hacer) que el error real en cada iteración se comporta como:

$$E_{i+1} = g'(\xi)E_i$$

Para algún $\xi \in [x_{root}, x_i]$

De esto puede concluirse que el problema convergerá a la raíz siempre que:

$$|g'(\xi)| < 1$$

Newton-Raphson

Es uno de los métodos más usados.

$$f'(x_i) = \frac{f(x_i)}{x_i - x_{i+1}}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
(1)

Newton-Raphson

Es uno de los métodos más usados.

$$f'(x_i) = \frac{f(x_i)}{x_i - x_{i+1}}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
(1)

Newton-Raphson: un ejemplo

Supongamos que queremos hallar la raiz de $f(x) = e^{-x} - x$

La derivada:

$$f'(x) = -e^{-x} - 1$$

Newton-Raphson: un ejemplo

$$x_1 = x_0 - \frac{f(2)}{f'(2)}$$
$$x_1 = 0.3576$$

Newton-Raphson: un ejemplo

$$x_1 = 0.3576$$

 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$
 $x_1 = 0.5587$

Newthon-Raphson

000**•** 0000

Otro ejemplo: Newton-Raphson

Supongamos que queremos hallar la raiz de $f(x) = x^2 - x - 1$

La derivada:

$$f'(x) = 2x - 1$$

Otro ejemplo: Newton-Raphson

$$x_1 = x_0 - \frac{f(2)}{f'(2)}$$
$$x_1 = 1.6667$$

Otro ejemplo: Newton-Raphson

$$x_1 = 1,6667$$

 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$
 $x_2 = 1,6190$

Newthon-Raphson

0000

Newton-Raphson: Consideraciones

- Es un método poderoso.
- No siempre converge.
- Requiere poder computar la derivada de la función (costoso).

Ejemplo de no convergencia

Método de la Secante

Deriva de Newton-Raphson, aproximando la derivada:

$$f'(x_i) \approx \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Si utilizamos esto en la ecuación 1 obtendremos:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Método de la secante: un ejemplo

Supongamos que queremos hallar la raiz de $f(x) = x^2 - x - 1$

Método de la secante: un ejemplo

Supongamos que queremos hallar la raiz de $f(x) = x^2 - x - 1$, damos una condición inicial $x_{-1} = 2,1, x_0 = 2$

$$x_1 = 2 - \frac{f(2)(2, 1 - 2)}{f(2, 1) - f(2)}$$
$$x_1 = 1,6774$$

Método de la secante: un ejemplo

Supongamos que queremos hallar la raiz de $f(x) = x^2 - x - 1$, damos una condición inicial $x_{-1} = 2,1, x_0 = 2$

$$x_1 = 1,6667$$

$$x_2 = x_1 - \frac{f(x_1)(x_0 - x_1)}{f(x_0) - f(x_0)}$$

 $x_2 = 1.6265$

Método de la secante: un ejemplo Si hacemos un zoom:

Método de la secante: Consideraciones

- El método no utiliza el cálculo de la derivada.
- Requiere de 2 condiciones iniciales.
- Estas 2 condiciones iniciales pueden estar en el mismo lado de la raiz (a diferencia de bracketing methods).

