Math 241 Midterm 1 Review

Topics

- 1. Level curves
- 2. Limits (including switching into polar and showing limits do not exist)
- 3. Partial derivatives and the chain rule (using the tree-like diagrams)
- 4. Directional derivatives and the gradient vector:
 - (a) If \mathbf{u} is a unit vector, $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$.
 - (b) The maximum possible directional derivative is $|\nabla f|$, found when $\mathbf{u} = \nabla f / |\nabla f|$
 - (c) ∇f is perpendicular to level curves
- 5. Finding tangent planes and normal lines
- 6. Finding absolute maximums and minimums for f(x, y) over a region R
- 7. The second derivative test to identify local maximums and minimums
- 8. Constrained optimization and Lagrange multipliers
- 9. Double integrals over a region R, namely $\iint_R f(x,y) dA$

Sample questions

- **1.** Find the maximum rate of change of $x^2y + \sqrt{y}$ at the point (1,1). In which direction does this occur? Find a direction in which the directional derivative at (1,1) is 0.
- **2.** Evaluate $\int_0^1 \int_{2y}^2 \cos(x^2) \, dx \, dy$.
- **3.** Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$ or show this limit does not exist.
- **4.** Suppose $ze^{xyz}=0$ where z is an unknown function of x and y. Write z_x in terms of x, y, and z.
- **5.** Find the directional derivative of $f(x,y) = 3x^2 + 2xy$ in the direction of $\langle 2,3 \rangle$ at (1,1). What does this calculation mean?
- **6.** Find and classify all local minimums and maximums for $x^3 6xy + 8y^3$.
- **7.** Find the maximum and minimum for the function $(x-1)^2 + (2y-1)^2$ on the triangle with corners (0,0),(2,0), and (0,2).

- **8.** Let S be the set of points which satisfy $z e^{x+xy} = 0$ and let p be the point (1, -1, 1). Find the plane tangent to S at p and find the line normal to S at p.
- **9.** Let z=f(x,y) with $x=\cos(st)$ and y=s-t. Find $\frac{\partial^2 z}{\partial t^2}$ in terms of z_{xx},z_{xy},z_{yy},s and t.
- **10.** Find the point on the sphere $x^2 + y^2 + z^2 = 1$ which maximizes x + 2y + z.