60016 OPERATIONS RESEARCH

Finite Termination and Degeneracies

Last Lecture

- Simplex tableau
- Pivoting
 - Pivoting equations
 - ► Pivot selection rules ensuring:
 - Non-inferiority
 - Feasibility

This Lecture

- ► Finite termination in the Simplex method
- Degenerate BS's
- ▶ Finite termination theorem
- Cycling

Degenerate BS's

Feasible set of Example 1:

Degenerate BS's (cont)

Consider now a variant of Example 1:

Degenerate BS's (cont)

The highlighted BS corresponds to the index sets $I = \{1, 2, 3\}, I = \{1, 2, 4\}$ and $I = \{1, 2, 5\}.$

Degenerate BFS's: Definition

Definition: A BS is called degenerate if one or more basic

variables (BVs) are zero.

 \Rightarrow A degenerate BS has more than n-m zero-valued variables.

 \Rightarrow If we look at the tableau, there exists at least a BV such that $i \in I$ and $y_{i0} = 0$.

Definition: A BS is called non-degenerate if all of its basic variables are different from zero.

Finite Termination

Theorem: If all BFS's are non-degenerate, then the simplex algorithm must terminate after a finite number of steps with

- either an optimal solution
- or a proof that the problem is unbounded.

Finite Termination (Proof)

- ▶ At each step we have $y_{i0} > 0 \ \forall i \in I$ (non-degeneracy).
- Unless optimality or unboundedness is detected in STEP 1 or 2, we find $\beta_0' = \beta_0 \frac{\beta_q}{\gamma_{nq}} y_{p0} < \beta_0$.
- ► Thus, the sequence of objective values obtained by the algorithm is strictly decreasing.

$$\beta_0 > \beta_0' > \beta_0'' > \cdots$$

No basic solution will ever be repeated!

- ▶ There are $\leq \binom{n}{m}$ basic solutions, since $\binom{n}{m}$ is the number of ways of picking m columns out of n to form an index set I.
- ► Thus, the process cannot continue indefinitely and must terminate at STEP 1 or 2 after a finite number of iterations (even though possibly a very large one!).

Degeneracy

Lemma: Assume that, $\forall i=1,\ldots,n, \exists$ BS \hat{x} with $\hat{x}_i\neq 0$. Then, a BS x is degenerate if and only if it is associated with more than one index set.

Proof: BS x degenerate \Leftarrow BS x has more than one index set

- ▶ Suppose a BS x corresponds to index sets I_1 and I_2 , $I_1 \neq I_2$.
- ▶ Then $x_i = 0$ for all NBVs x_i with either $i \notin I_1$ or $i \notin I_2$ or both.
- In particular, since $l_1 \neq l_2$, there will be a NBV x_i in l_1 , that is a BV in l_2 . Since the two index sets describe the same BS x, x_i must be zero also in l_2 where it is basic.
- \Rightarrow x is a degenerate BS.
- ▶ (The same holds for any x_i that is NBV in I_2 and BV in I_1 .)

Degeneracy (cont)

Proof: BS x degenerate \Rightarrow BS x has more than one index set

- Suppose x is a degenerate BS associated with some index set I; consider the corresponding simplex tableau.
- ▶ Due to degeneracy, $\exists p \in I$ with $y_{p0} = 0$.
- ▶ $\exists q \notin I$ such that $y_{pq} \neq 0$. Otherwise, it would be always $x_p = 0$ in all the feasible set which we assume impossible in the theorem statement.
- Pivoting on (p, q) gives a new basic solution which is identical to the current one since

$$y'_{q0} = \frac{y_{p0}}{y_{pq}} = 0 = y_{p0} \text{ and } y'_{i0} = y_{i0} - \frac{y_{iq}}{y_{pq}} y_{p0} = y_{i0} \ \forall i \in I \setminus \{p\}.$$

 \Rightarrow x corresponds to the index sets I and $(I \setminus \{p\}) \cup \{q\}$.

 4 □ ▶ 4 ₱ ▶ 4 ₦ ▶ 4 ₦ ▶ 4 ₦ ▶ 1

Degeneracy and Simplex Algorithm

How does degeneracy affect the simplex algorithm?

- ▶ The index sets I and $(I \setminus \{p\}) \cup \{q\}$ produce the same BFS but different basic representations.
- ▶ If we pivot on (p, q) when $y_{p0} = 0$, then the new BFS is identical to the old one.
- In particular, we find

$$\beta_0' = \beta_0 - \frac{\beta_q}{y_{pq}} y_{p0} = \beta_0,$$

and the finite termination theorem breaks down (no strict improvement of objective value).

A pivot step (p, q) is called degenerate if $y_{p0} = 0$ and non-degenerate otherwise.

Degeneracy and Simplex Algorithm

The simplex algorithm can now be decomposed into:

```
      sequence of degenerate
      non- sequence of degenerate

      pivots
      pivot

      non- degenerate
      degenerate degenerate

      pivots
      pivots
```

Note: Some or all of these sequences of degenerate pivots may be empty.

Geometrically, the current BFS remains unchanged throughout a sequence of degenerate pivots, and a non-degenerate pivot moves it to a different BFS.

Degeneracy and Simplex Algorithm

- ▶ We know that the number of index sets is $\leq \binom{n}{m}$.
- ⇒ Sequences of degenerate pivots are finite if no index set is repeated.
- However, on same rare instances pivoting can result in a cycling behaviour.
- In general, choosing degenerate pivots is a necessary condition, but not a sufficient one, for cycling.
- ► After a sequence of pivots, we return to the same index set and so the algorithm will cycle and never terminate!

Cycling Example

min
$$z = -\frac{3}{4}x_4 + 20x_5 - \frac{1}{2}x_6 + 6x_7$$

subject to:

$$x_1$$
 $+\frac{1}{4}x_4$ $-8x_5$ $-x_6$ $+9x_7$ = 0
 x_2 $+\frac{1}{2}x_4$ $-12x_5$ $-\frac{1}{2}x_6$ $+3x_7$ = 0
 x_3 $+x_6$ = 1

Use standard pivoting conventions!

BV	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	0	0	0	$\frac{3}{4}$	-20	$\frac{1}{2}$	-6	0
x_1	1	0	0	$\frac{1}{4}$	-8	-1	9	0
<i>x</i> ₂	0	1	0	$\frac{1}{2}$	-20 -8 -12	$-\frac{1}{2}$	3	0
<i>X</i> ₃	0	0	1	Ō	0	1	0	1

BV	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	0	0	0	<u>3</u>	-20	$\frac{1}{2}$	-6	0
x_1	1	0	0	- 1	-8	-1	9	0
<i>X</i> ₂	0	1	0	$\frac{\overline{4}}{2}$	-12	$-\frac{1}{2}$	3	0
<i>X</i> 3	0	0	1	Ō	0	1	0	1
Z	-3	0	0	0	4	$\frac{7}{2}$	-33	0
<i>X</i> ₄	4	0	0	1	-32	_ - 4	36	0
<i>X</i> ₂	-2	1	0	0	4	$\frac{3}{2}$	-15	0
X3	0	0	1	0	0	ī	0	1

BV	<i>x</i> ₁	x_2	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	-3	0	0	0	4	$\frac{7}{2}$	-33	0
<i>X</i> 4	4	0	0	1	-32	-4	36	0
<i>X</i> 2	-2	1	0	0	4	3	-15	0
<i>X</i> 3	0	0	1	0	0	ī	0	1

BV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	-3	0	0	0	4	$\frac{7}{2}$	-33	0
<i>X</i> ₄	4	0	0	1	-32	$\overline{-4}$	36	0
<i>X</i> ₂	-2	1	0	0	4	$\frac{3}{2}$	-15	0
<i>X</i> 3	0	0	1	0	0	$\bar{1}$	0	1
Z	-1	-1	0	0	0	2	-18	0
<i>X</i> ₄	-12	8	0	1	0	8	-84	0
<i>X</i> 5	$-\frac{1}{2}$	$\frac{1}{4}$	0	0	1	<u>3</u>	$-\frac{15}{4}$	0
<i>X</i> 3	0	0	1	0	0	1	0	1

							<i>X</i> ₇	
Z	-1	-1	0	0	0	2	-18	0
<i>X</i> 4	-12	8	0	1	0	8	-84	0
<i>X</i> 5	$-\frac{1}{2}$	$\frac{1}{4}$	0	0	1	<u>3</u>	-18 -84 $-\frac{15}{4}$	0
<i>X</i> 3	0	0	1	0	0	1	0	1

BV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	-1	-1	0	0	0	2	-18	0
<i>X</i> 4	-12	8	0	1	0	8	-84	0
<i>X</i> 5	$-\frac{1}{2}$	$\frac{1}{4}$	0	0	1	<u>3</u>	$-\frac{15}{4}$	0
<i>X</i> 3	0	0	1	0	0	ĺ	0	1
Z	2	-3	0	$-\frac{1}{4}$	0	0	3	0
<i>x</i> ₆	$-\frac{3}{2}$	1	0	1 8 3	0	1	$-\frac{21}{3}$	0
<i>X</i> 5	$\frac{1}{16}$	$-\frac{1}{8}$	0	$\frac{3}{64}$	1	0	$\frac{3}{16}$	0
<i>X</i> 3	$\frac{\overline{16}}{\frac{3}{2}}$	-1	1	$-\frac{1}{8}$	0	0	$\frac{\overline{16}}{\underline{21}}$	1

BV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	2	-3	0	$-\frac{1}{4}$	0	0	3	0
<i>x</i> ₆	$-\frac{3}{2}$	1	0	<u>1</u>	0	1	$-\frac{21}{2}$	0
<i>X</i> 5	$\frac{1}{16}$	$-\frac{1}{8}$	0	$\frac{3}{64}$	1	0	$\frac{3}{16}$	0
<i>X</i> ₃	$\frac{3}{2}$	-1	1	$-\frac{1}{8}$	0	0	$\frac{21}{2}$	1

BV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	2	-3	0	$-\frac{1}{4}$	0	0	3	0
<i>x</i> ₆	$-\frac{3}{2}$	1	0	$\frac{1}{8}$	0	1	$-\frac{21}{2}$	0
<i>X</i> 5	$\frac{1}{16}$	$-\frac{1}{8}$	0	18 3 64	1	0	$\frac{3}{16}$	0
<i>X</i> 3	$\frac{\overline{16}}{\frac{3}{2}}$	-1	1	$-\frac{1}{8}$	0	0	$\frac{21}{2}$	1
Z	1	-1	0	$\frac{1}{2}$	-16	0	0	0
<i>x</i> ₆	2	-6	0	$-\frac{\frac{1}{2}}{\frac{5}{2}}$	56	1	0	0
<i>X</i> 7	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{4}$	$\frac{16}{3}$	0	1	0
<i>X</i> ₃	-2	6	1	<u>5</u> .	-56	0	0	1

BV					<i>X</i> ₅			
Z	1	-1	0	$\frac{1}{2}$	-16 56	0	0	0
<i>x</i> ₆	2	-6	0	$-\frac{5}{2}$	56	1	0	0
<i>X</i> ₆ <i>X</i> ₇	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{4}$	56 16 3	0	1	0
<i>X</i> ₃	-2	6	1	<u>5</u>	-56	0	0	1

BV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	1	-1	0	$\frac{1}{2}$	-16	0	0	0
<i>x</i> ₆	2	-6	0	$-\frac{5}{2}$	56	1	0	0
<i>X</i> 7	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{4}$	$\frac{16}{3}$	0	1	0
<i>x</i> ₃	-2	6	1	5/2	-56	0	0	1
Z	0	2	0	$\frac{7}{4}$	-44	$-\frac{1}{2}$	0	0
x_1	1	-3	0	$-\frac{5}{4}$	28	$\frac{1}{2}^{-}$	0	0
<i>X</i> 7	0	$\frac{1}{3}$	0	$\frac{1}{6}$	-4	$-\frac{1}{6}$	1	0
<i>x</i> ₃	0	Ŏ	1	Ŏ	0	1	0	1

BV	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	0	2	0	$\frac{7}{4}$	-44 28	$-\frac{1}{2}$	0	0
``I						$\frac{1}{2}^2$	0	0
<i>X</i> 7	0	$\frac{1}{3}$	0	$\frac{1}{6}^{4}$	-4	$-\frac{1}{6}$	1	0
<i>X</i> ₃	0	Ö	1	Ö	0	1	0	1

BV	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
Z	0	2	0	$\frac{7}{4}$	-44	$-\frac{1}{2}$	0	0
x_1	1	-3	0	$-\frac{5}{4}$	28	$\frac{1}{2}^{-}$	0	0
<i>X</i> 7	0	$\frac{1}{3}$	0	$\frac{1}{6}$	-4	$-\frac{1}{6}$	1	0
<i>X</i> 3	0	Ö	1	Ŏ	0	1	0	1
Z	0	0	0	34	-20	$\frac{1}{2}$	-6	0
x_1	1	0	0	$\frac{1}{4}$	-8	-1	9	0
<i>X</i> ₂	0	1	0	$\frac{1}{2}$	-12	$-\frac{1}{2}$	3	0
X3	0	0	1	Ō	0	1	0	1

This is the initial basic representation for $I = \{1, 2, 3\}!$

Bland's Rule

We can avoid cycling by amending the pivoting conventions.

Bland's Rule:

(i) Choose the lowest-numbered (leftmost) nonbasic column *q* with a positive cost.

$$q = \min \{ j \neq 0 \mid \beta_j > 0 \}$$

(ii) Denote as p the row with minimal \overline{x}_{iq} , in case of ties pick the row with the smallest index (same as standard conventions).

Theorem: With Bland's rule the simplex algorithm cannot cycle and hence is finite.

Degeneracy in Practice

- Cycling was thought to occur in contrived examples. For a long time it has therefore been ignored in commercial solvers.
- ► More recent experience with larger and larger problems indicates that cycling occurs, but it is still a rare event.
- Rigorous remedies such as Bland's rule are not satisfactory as they increase the number of iterations also in problems where cycling does not occur.
- In practice it is acceptable to replace a $y_{i0}=0$ by $y_{i0}=\epsilon>0$ (e.g., $\epsilon<10^{-3}$) and then continue.