

HDLC, PPP, and ATM

High Level Data Link Control (HDLC)

Unbalanced Point-to-point link

Unbalanced Multipoint link

Balanced Point-to-point link between Combined Stations

• پروتکل HDLC:

- شرکت IBM، این پروتکل را ایجاد کرده است.
- در شبکههای X.25 متداول استفاده می شود.
 - مبتنی بر **بیت** است.
 - انواع ایستگاهها (Station Types):
 - ایستگاه اولیه (Primary Station):
- فریمهای ارسالی، دستور (Command) نامیده میشوند.
 - ایستگاه ثانویه (Secondary Station):
 - تحت كنترل ايستگاه اوليه است.
 - فریمهای ارسالی، پاسخ (Response) نامیده میشوند.
 - ایستگاه ترکیبشده (Combined Station):
- اجازه دستور (Command) و پاسخ (Response) را می دهد.

(2) HDLC

Unbalanced Point-to-point link

Unbalanced Multipoint link

Balanced Point-to-point link between Combined Stations

• پیکربندی لینک (تمام دوطرفه و نیم دوطرفه)

- Unbalanced: یک ایستگاه اولیه و چندین ایستگاه ثانویه
 - Balanced: دو ایستگاه ترکیب شده (اولیه و ثانویه)

• مودهای عملیاتی:

- :Normal Response Mode (NRM)
 - پیکربندی Unbalanced
- اولیه، ارسال به سمت ثانویه را آغاز می کند. ثانویه، فقط داده را در پاسخ به اولیه ارسال می کند.
 - استفاده در خطوط multipoint
 - :Asynchronous Balanced Mode (ABM)
 - پیکربندی Balanced
- هر کدام از ایستگاهها می تواند بدون اجازه از طرف مقابل، شروع کننده ارتباط باشد.

ساختار فریم HDLC

• ساختار فریم:

• یک ساختار فریم واحد برای همه دادهها و تبادل اطلاعات کنترلی

• فيلدهاي Flag.

- ابتدا و انتهای فریم با 01111110 مشخص میشود.
- از ایده Bit Stuffing برای جلوگیری از ایجاد ابهام استفاده می شود.

Flag	Address	Control	Information	FCS	Flag				
$-8 \longrightarrow -8 \text{ or } 16 \longrightarrow -8 \text{ or } 16 \text{ or } 32 \longrightarrow -8 \longrightarrow$									
bits	extendable								

ساختار فریم HDLC (2)

• فیلد آدرس:

- ایستگاههای ثانویه (Secondary Stations) را که به آنها ارسال و یا از آنها دریافت خواهد کرد، مشخص می کند.
 - معمولاً دارای طول ۸ بیت است.
 - ممکن است به مضاربی از ۷ بیت گسترش یابد.
 - بیت LSB هر ۸ تایی، مشخص می کند که ۸ تای آخر است (1) و یا نیست (0).
 - آدرس تمام یک 11111111 برای پخش همگانی در نظر گرفته شدهاست.

Extended Address Field

ساختار فریم HDLC (3)

• فيلد كنترل:

	1	2	3	4	5	6	7	8
I: Information	0		N(S)		P/F		N(R)	
S: Supervisory	1	0	S		P/F		N(R)	
U: Unnumbered	1	1	M		P/F		M	

N(S): Send Sequence Number

N(R): Receive Sequence Number

S: Supervisory Function Bits

M: Unnumbered Function Bits

P/F: Poll/ Final Bit

8 bit control field format

ساختار فریم 4) HDLC ساختار

• فیلد کنترل:

I: Information	0			N(S)				P/F	N(R)
S: Supervisory	1	0	S	0	0	0	0	P/F	N(R)

16 bit control field format

ساختار فریم 5) HDLC ساختار

- Supervisory frames
 - Receive Ready Frame (SS=00)
 - Used when there are no information frames available to piggyback the ACK
 - Reject Frame (SS=01)
 - Receiver tells the sender to go back and start sending from the frame number N(R)
 - Receive Not Ready (SS=10)
 - All frames up to frame number N(R)
 have been received properly. But
 the receiver can not accept any
 frames at this time. (e.g. due to a
 full buffer)
 - Selective Reject (SS=11)
 - Receiver asks the sender to resend frame number N(R)

- Unnumbered frames
- Used to start up the link or tear it down
- Some examples:
 - SABM: Set ABM Mode
 - SNRM: Set NRM Mode
 - SABME: Set ABM Extended Mode
 - DISC: Disconnect
 - UA: Unnumbered Acknowledgment
 - FRMR: Frame Reject

کنترل جریان با SS=00 و SS=10 اجرای روش Go-Back-N با SS=01 اجرای روش Selective Repeat با SS=11

ساختار فریم HDLC (6)

پیشفرض فریمهای Unnumbered همواره Λ بیتی است. پس از صحبتهای اولیه، دو حالت Supervisory و Extended می توانند در مود

• بيت P/F و يا P/F Poll/Final bit!

- Poll if frame is sent by the primary.
- Final if frame is sent by the secondary

ساختار فریم 7) HDLC ساختار

- :Frame Check Sequence Field
 - برای تشخیص و تصحیح خطا
 - معمولا از CRC ها استفاده می شود.

Point to Point Protocol (PPP)

- روشی برای آمادهسازی packet های لایه شبکه بر روی لینکهای نقطه به نقطه فراهم میکند.
 - از پروتکلهای پرکاربرد و مشابه HDLC است.
 - مبتنی بر بایت است (Byte Oriented).
- پروتکل PPP، پروتکل نقطه به نقطه مبتنی بر Stop and Wait است. برخلاف HDLC که از Go back N الگوریتمهای Go back N پشتیبانی می کرد.
 - ساختار فریم مشابه پروتکل HDLC است. فریمبندی و تشخیص خطا
- (Link Control Protocol (LCP: پروتکل کنترل لینک برای برقراری خط، تست خط، آزاد کردن خط زمانی که نیاز نیست، استفاده می شود.
- (Network Control Protocol (NCP: در مواردی که نیاز به صحبت با لایه شبکه وجود دارد، پروتکل کنترل شبکه استفاده می شود. دقت داریم که NCP مجزا از پروتکل مورد استفاده در لایه شبکه است.

Point to Point Protocol (PPP)

• ساختار فریم PPP:

- در این روش نیز Flag برابر 01111110 است. استفاده از روش Flag
 - فیلد آدرس ثابت و به صورت پیشفرض برابر 11111111 است.
- فیلد کنترل نیز ثابت و به صورت Unnumbered Frame است که مقدار پیشفرض آن برابر 00000011 است.
 - برای تشخیص خطا ۲و یا ۴ بایت Checksum دارد.
 - فیلد پروتکل به منظور برقراری ارتباط مناسب برای لایه ۳ های مختلف وجود دارد.
 - بیت 0 نشان دهنده IPX ،IP و XNS
 - بیت 1 نشان دهنده NCP ،LCP و ... است.

Bytes	1	1	1	1 or 2	Variable	2 or 4	1
	Flag 01111110	Address 11111111	Control 00000011	Protocol	Payload	Checksum	Flag 01111110
	,						

Point to Point Protocol (PPP)

configuration

dropped

مودم به ارتباط خاتمه می دهد.

Asynchronous Transfer Mode (ATM)

- لایه فیزیکی مختص ATM وجود ندارد و دادههای ATM توسط سرویسهای مختلف لایه فیزیکی اعم از SONET/SDH و یا لینک بیسیم قابل ارسال هستند.
 - نحوه ارسال:
 - سایز هر سلول (Cell) ثابت است و دارای ۵۳ بایت است که شامل ۵ بایت سرآیند نیز میباشد.
 - ۱ بایت از ۵ بایت سرآیند، به عنوان Header Checksum در نظر گرفته شدهاست.
- هیچ کد تشخیص خطا برای Payload در نظر گرفته نشدهاست. (در لینکهای فیبر نوری احتمال خطا کمتر از ۱۰ به توان منفی ۱۲ است.)
 - ساختار سلول در اسلاید بعدی قابل مشاهدهاست.

ATM

• مرزهای هر Cell را چگونه بیابیم؟ هیچ نشان و علامتی برای ابتدا و انتهای cell وجود ندارد.

۴ بایت سرآیند

یک بایت CRC برای ۴ بایت سرآیند

بایتهای متوالی (هر یک میله، یک بایت)

ATM

ATM

- مرزهای هر Cell را چگونه بیابیم؟
- حُقه: بعد از هر بیت، به صورت مداوم دنبال HEC هستیم.
- استفاده از شیفت رجیستر ۴۰ تایی برای شیفت بیت به بیت ورودی تا یافتن فریمهای سرآیند
 - ۵ بایت که ۴۰ بیت است را در نظر میگیریم. ۸ بیت آخر باید CRC برای ۳۲ بیت قبلی باشد.
- پس از یافتن اولین تطابق سرآیند، به اندازه ۵۳ بایت (طول cell) پرش رو به جلو و چک کردن مجدد تطابق سرآیند
 - تكرار تطابق سرآيند به تعداد d بار و در صورت تطابق اعلام يافتن مرزهای هر cell

