Chemical Thermodynamics

Mid 2 Review

Haotian Fu

University of Michigan-Shanghai Jiao Tong University Joint Institute

November 16, 2021

Outline

- 1 Concept Review
 - Thermodynamic Laws
 - Practical Formula
- 2 Classic Models
 - Free expansion
 - Calimeter
 - Heating curve
 - Trouton's rule
 - State function
 - Examples

Outline

- 1 Concept Review
 - Thermodynamic Laws
 - Practical Formula
- 2 Classic Models
 - Free expansion
 - Calimeter
 - Heating curve
 - Trouton's rule
 - State function
 - Examples

Thermodynamic Laws

1st Law

$$\mathsf{U} = \mathsf{Q} + \mathsf{W}$$

Thermodynamic Laws

1st Law

$$U = Q + W$$

2nd Law

100 % (×)

Thermodynamic Laws

1st Law

$$U = Q + W$$

2nd Law

100 % (×)

3rd Law

 $S \to c$ as $T \to 0~K$

S = kln W

Do not forget the zeroth law of thermodynamics

0th Law

If two thermodynamic systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.

State functions

Enthalpy

$$H=U\,+\,pV$$

State functions

Enthalpy

$$H = U + pV$$

Entropy

$$dS = \frac{\delta Q}{T}$$

State functions

Enthalpy

$$H = U + pV$$

Entropy

$$dS = \frac{\delta Q}{T}$$

Gibb's free energy

$$G = H - TS$$

Properties

Heat capacity

$$C = \lim_{\Delta T \rightarrow 0} \tfrac{\Delta Q}{\Delta T}$$

	Atoms	Linear molecules	Nonlinear molecules
$C_{V,\mathrm{m}}$	$\frac{3}{2}R$	$\frac{5}{2}R$	3 <i>R</i>
$C_{P,\mathrm{m}}$	$\frac{5}{2}R$	$\frac{7}{2}R$	4R

Figure: $C_{V,m}$ and $C_{p,m}$ of three types of molecules.

Practical Formula

$$Q_V = \Delta U$$

$$Q_p = \Delta H$$

$$C_V = \frac{\Delta U}{\Delta T}$$

$$C_p = \frac{\Delta H}{\Delta T}$$

$$\Delta S_{\text{surrounding}} = -\frac{\Delta H}{T}$$

$$S = k \ln W$$

Practical Formula

phase change

$$\Delta S = \frac{Q_R}{T} \tag{7}$$

physical change with constant pressure

$$\Delta S = nC_{V,m} \ln \left(\frac{T_2}{T_1}\right) + nR \ln \left(\frac{V_2}{V_1}\right) \tag{8}$$

physical change with constant volume

$$\Delta S = nC_{p,m} \ln \left(\frac{T_2}{T_1}\right) + nR \ln \left(\frac{p_1}{p_2}\right) \tag{9}$$

Practical Formula

Clausius-Clapeyron relation

$$\ln\left(\frac{p_2}{p_1}\right) = -\frac{\Delta H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \tag{10}$$

constant temperature

$$\Delta G = \int V dp$$
 since $dG = -sdT + V dp$ (11)

Outline

- 1 Concept Review
 - Thermodynamic Laws
 - Practical Formula
- 2 Classic Models
 - Free expansion
 - Calimeter
 - Heating curve
 - Trouton's rule
 - State function
 - Examples

Free expansion

Differential form

$$\delta \ \mathsf{w} = \mathsf{-pdV}$$

Free expansion

Differential form

$$\delta \ \mathsf{w} = \mathsf{-pdV}$$

Notice

Differential form

$$\delta w = -pdV$$

Notice

lacksquare $\Delta U = 0$ and $\Delta H = 0$ for isothermal processes.

Differential form

$$\delta w = -pdV$$

- lacksquare $\Delta U = 0$ and $\Delta H = 0$ for isothermal processes.
- $\mathbf{w} = \mathbf{0}$ for free expansion.

Differential form

$$\delta w = -pdV$$

- lacksquare $\Delta U = 0$ and $\Delta H = 0$ for isothermal processes.
- $\mathbf{w} = \mathbf{0}$ for free expansion.
- \blacksquare p is external pressure, *i.e.*, p = p_{ex}.

Calimeter

Notice

■ Combustion reaction.

- Combustion reaction.
- $\blacksquare Q = Q_V \Rightarrow \Delta U$

- Combustion reaction.
- $\blacksquare Q = Q_V \Rightarrow \Delta U$
- Specific heat of water: $4.18 \text{ J/(g} \cdot ^{\circ}\text{C)}$

Heating curve & Phase diagram

Heating curve

Heating curve & Phase diagram

Notice

■ Phase changes of materials.

Heating curve

Heating curve & Phase diagram

- Phase changes of materials.
- Turning points.

Heating curve & Phase diagram

- Phase changes of materials.
- Turning points.
- Intervals, platforms, and slopes.

Trouton's rule

Liquid	Boiling Point (K)	ΔS° (J·K ⁻¹ ·mol ⁻¹)
Helium	4.22	20
Argon	87.3	74
Benzene	353.2	87.2
Ethanol	331.5	124
Mercury	629.7	94.2
Water	373.2	109

A pattern, now called **Trouton's rule**, emerges when comparing $\Delta S_{\text{vap}}^{\circ}$; many values are close to 85 J·K⁻¹·mol⁻¹.

16 / 25

Semi-quantitative, not precise.

State function

■ Pay attention to initial and final state.

State function

- Pay attention to initial and final state.
- Pay attention to dependent variables.

State function

- Pay attention to initial and final state.
- Pay attention to dependent variables.
- Design desired cycles.

Thermodynamic processes

Thermodynamic processes

■ Constant conditions: isothermal, isochoric, isobaric, (adiabatic)

Thermodynamic processes

- Constant conditions: isothermal, isochoric, isobaric, (adiabatic)
- Energy dissipation: reversible, irreversible

Thermodynamic processes

- Constant conditions: isothermal, isochoric, isobaric, (adiabatic)
- Energy dissipation: reversible, irreversible

Properties of state functions

Thermodynamic processes

- Constant conditions: isothermal, isochoric, isobaric, (adiabatic)
- Energy dissipation: reversible, irreversible

Properties of state functions

Only related to initial and final state, nothing to do with paths.

Thermodynamic processes

- Constant conditions: isothermal, isochoric, isobaric, (adiabatic)
- Energy dissipation: reversible, irreversible

Properties of state functions

- Only related to initial and final state, nothing to do with paths.
- From already known to unknowns, set proper path and intermediate state.

Example 4B.1 Suppose that 1.00 mol of ideal gas molecules at 292 K at 3.00 atm expands from 8.00 L to 20.00 L and has a final pressure of 1.20 atm. Find the amount of work by two different paths.

(Hint: ideal aas isothermal expansion 4U=0)

- (a) Path A is an isothermal, reversible expansion.
- (b) Path B has two parts. In step 1, the gas is cooled at constant volume until its pressure has fallen to 1.20 atm. In step 2, it is heated and allowed to expand against a constant pressure of 1.20 atm until its volume is 20.00 L and T = 292 K. Determine for each path the work done, the heat transferred, and the change in internal energy $(w, q, and \Delta U)$.

Example 4F.4 In an experiment, 1.00 mol $O_2(g)$ was compressed suddenly (and irreversibly) from 5.00 L to 1.00 L by driving in a piston (like a big bicycle pump), and in the process, its temper-ature increased from 20.0°C to 25.2°C. What is the change in entropy of the gas? (O_2 $C_{V,m}$ is 20.79 J·K·¹·mol-¹)

Freezing liquid water into a solid, is not a favorable process.

$$H_2O(I) \rightarrow H_2O(s)$$

65.2 J·K⁻¹·mol⁻¹ 43.2 J·K⁻¹·mol⁻¹

$$\Delta S_{\text{system}} = \Sigma n S_{\text{m}}^{\circ} \text{ (products)} - \Sigma n S_{\text{m}}^{\circ} \text{ (reactants)}$$

$$\Delta S$$
 (system) = -22.0 J·K⁻¹·mol⁻¹ (unfavorable)

This is answered fully when we interpret ΔS (total) to include: ΔS (surroundings) = $\frac{q_{\rm rev}}{T}$

Example 4I.1 Calculate the change in entropy of the *surroundings* when water freezes at -10.°C; use ΔH_{fus} (H₂O) = 6.0 kJ·mol⁻¹ at -10.°C.

Bohn-Haber Cycle

Design desired cycle

The standard molar enthalpy of combustion of ethanol (C_2H_5OH) and acetic acid (CH_3COOH) is -136.50 and -67.50 kJ/mol.

The enthalpy of dissolution is 11.71 and 1.46 kJ/mol correspondingly. Calculate the enthalpy of oxidation of thtanol in water solution.

Liquid-Solution

Raoult's law and Dalton's law

Liquid A and B form an ideal solution. The solution containing 1 mol A and 2 mol B at 343.2 K has a vapor pressure of 50.663 kPa.

If 3 mol A is added, the vapor pressure of the solution increases to 70.928 kPa. Calculate (1) p_A^* and p_B^* at 343.2 K; (2) the gaseous composition of the first mixed solution.

Examples

Good Luck!

