

Applications of Data Structures

CSC 143 W2020 BRIAN CUI

The Best Data Structure?

bigocheatsheet.com

Humble Beginnings

```
// C (1973 - 2018+)
char[] mybuff = "Hello";
```

0	1	2	3	4	5
'H'	'e'	'1'	'1'	'0'	'\0'

```
Dec Hx Oct Html Chr Dec Hx Oct Html Chr Dec Hx Oct Html Chr
Dec Hx Oct Char
 0 0 000 NUL (null)
                                       32 20 040   Spa
                                                           e 64 40 100 4#64; 0
 1 1 001 SOH (start of heading)
                                       33 21 041 4#33;
                                                            65 41 101 6#65;
                                                                                 97 61 141 6#97;
 2 2 002 STX (start of text)
                                       34 22 042 4#34;
                                                             66 42 102 4#66;
                                                                                 98 62 142 6#98; b
                                       35 23 043 4#35; #
                                                             67 43 103 6#67;
                                                                                 99 63 143 6#99:
 3 3 003 ETX (end of text)
 4 4 004 EOT (end of transmission)
                                       36 24 044 4#36;
                                                                                100 64 144 6#100;
 5 5 005 ENQ (enquiry)
                                       37 25 045 4#37; %
                                                             69 45 105 6#69;
                                                                                101 65 145 6#101;
 6 6 006 ACK (acknowledge)
                                       38 26 046 4#38; 6
                                                             70 46 106 6#70;
                                                                                102 66 146 6#102;
                                                             71 47 107 6#71;
7 7 007 BEL (bell)
                                       39 27 047 4#39;
                                                                               103 67 147 6#103; 9
 8 8 010 BS (backspace)
                                       40 28 050 4#40;
                                                             72 48 110 6#72;
                                                                                104 68 150 4#104;
9 9 011 TAB (horizontal tab)
                                       41 29 051 6#41;
                                                             73 49 111 6#73;
                                                                                105 69 151 6#105;
                                       42 2A 052 6#42; *
                                                             74 4A 112 6#74;
11 B 013 VT (vertical tab)
                                       43 2B 053 4#43; 4
                                                             75 4B 113 6#75;
                                                                                107 6B 153 4#107;
                                                             76 4C 114 6#76;
12 C 014 FF (NP form feed, new page)
                                       44 2C 054 6#44;
                                                                                108 6C 154 6#108;
                                                             77 4D 115 6#77; I
                                                                                109 6D 155 6#109; M
                                       45 2D 055 6#45;
13 D 015 CR
              (carriage return)
14 E 016 SO
              (shift out)
                                       46 2E 056 6#46;
                                                             78 4E 116 6#78; 1
                                       47 2F 057 4#47;
                                                                                111 6F 157 6#111; 0
16 10 020 DLE (data link escape)
                                       48 30 060 4#48; 0
                                                             80 50 120 4#80;
                                                                                 112 70 160 4#112; p
17 11 021 DC1 (device control 1)
                                       49 31 061 4#49; 1
                                                            81 51 121 6#81;
82 52 122 6#82;
                                                                               113 71 161 6#113; q
114 72 162 6#114; r
18 12 022 DC2 (device control 2)
                                       50 32 062 4#50; 2
19 13 023 DC3 (device control 3)
                                       51 33 063 4#51; 3
                                                             83 53 123 6#83;
                                                                                115 73 163 6#115; 8
20 14 024 DC4 (device control 4)
21 15 025 NAK (negative acknowledge)
                                       53 35 065 4#53; 5
                                                             85 55 125 6#85;
                                                                                117 75 165 6#117; u
22 16 026 SYN (synchronous idle)
                                       54 36 066 4#54: 6
                                                             86 56 126 4#86;
                                                                                118 76 166 4#118: 9
23 17 027 ETB (end of trans. block)
                                       55 37 067 4#55;
                                                             87 57 127 6#87;
                                                                                119 77 167 6#119; W
24 18 030 CAN (cancel)
                                       56 38 070 4#56; 8
                                                             88 58 130 4#88;
                                                                                120 78 170 4#120; ×
25 19 031 EM (end of medium)
                                                             89 59 131 6#89;
                                                                                121 79 171 6#121; Y
26 1A 032 SUB (substitute)
                                       58 3A 072 4#58;
                                                             90 5A 132 6#90;
                                                                                122 7A 172 6#122;
27 1B 033 ESC (escape)
                                       59 3B 073 6#59;
                                                             91 58 133 4#91:
                                                                                123 7B 173 6#123;
28 1C 034 FS (file separator)
                                       60 30 074 4#60: <
                                                             92 50 134 4#92:
                                                                                124 70 174 6#124:
                                       61 3D 075 = =
                                                             93 5D 135 6#93;
                                                                                125 7D 175 6#125;
29 ID 035 GS
              (group separator)
              (record separator)
                                      63 3F 077 4#63; ?
                                                            95 5F 137 6#95; _ 127 7F 177 6#127; DEL
31 1F 037 US (unit separator)
                                                                          Source: www.LookupTables.com
```

Before there were Strings, there were char arrays. Extremely efficient, zero overhead

0	1	2	3	4	5
'H'	'e'	'1'	'1'	'0'	'\0'

1 char = 1 byte = 8 bits \rightarrow 2⁸ = 256 ASCII chars

<u>Dec</u>	Нх	Oct	Char		Dec	Нх	Oct	"Nı	ار Te	erm	inc	atoi	" cho	ar	Dec	: Нх	Oct	Html C	<u>hr</u>
0	0	000	NUL	(null)	32	20	040								96	60	140	& # 96;	N.
1	1	001	SOH	(start of head.	33	21	041	ind	icate	es e	enc		strir	ng	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042								98	62	142	a#98;	b
3	3	003	ETX	(end of text)		23		#		67			C					c	C
4	4	004	EOT	(end of transmission)	30		244	۵#36;		68			D					d	
5	5	005	ENQ	(enquiry)	37	25		4 37;	육	69			<u>@#69;</u>					a#101;	_
6	6	006	ACK	(acknowledge)	38		046		6				a#70;					a#102;	
7	7	007	BEL	(bell)				a#39,					G					a#103;	
8	8	010	BS	(backspace)				&# 4 0;		72			H					4 ;	
9	9	011	TAB	(horizontal tab))	-	73			@#73;					a#105;	
10	A	012	LF	(NL line feed, new line)	42			&#42;</td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td><td>j</td><td></td></tr><tr><td>11</td><td>В</td><td>013</td><td>VT</td><td>(vertical tab)</td><td>43</td><td></td><td></td><td>&#43;</td><td></td><td></td><td></td><td></td><td><u>@</u>#75;</td><td></td><td></td><td></td><td></td><td>k</td><td></td></tr><tr><td>12</td><td>С</td><td>014</td><td>FF</td><td>(NP form feed, new page)</td><td></td><td></td><td></td><td>@#44;</td><td></td><td>76</td><td></td><td></td><td>a#76;</td><td></td><td></td><td></td><td></td><td>l</td><td></td></tr><tr><td>13</td><td>D</td><td>015</td><td>CR</td><td>(carriage return)</td><td></td><td></td><td></td><td>a#45;</td><td></td><td>77</td><td></td><td></td><td>M</td><td></td><td>109</td><td>6D</td><td>155</td><td>a#109;</td><td>m</td></tr><tr><td>14</td><td>E</td><td>016</td><td>SO</td><td>(shift out)</td><td>46</td><td></td><td></td><td>&#46;</td><td></td><td>78</td><td>4E</td><td>116</td><td>N</td><td>N</td><td>110</td><td>6E</td><td>156</td><td>n</td><td>n</td></tr><tr><td>15</td><td>F</td><td>017</td><td>SI</td><td>(shift in)</td><td>47</td><td></td><td></td><td>&#47;</td><td></td><td>79</td><td></td><td></td><td>O</td><td></td><td>111</td><td>6F</td><td>157</td><td>o</td><td>. 0</td></tr><tr><td>16</td><td>10</td><td>020</td><td>DLE</td><td>(data link escape)</td><td>48</td><td></td><td></td><td>a#48;</td><td></td><td></td><td></td><td></td><td>P</td><td></td><td>112</td><td>70</td><td>160</td><td>p</td><td>p</td></tr><tr><td>17</td><td>11</td><td>021</td><td>DC1</td><td>(device control 1)</td><td>49</td><td></td><td></td><td>a#49;</td><td></td><td></td><td></td><td></td><td>@#81;</td><td>_</td><td>113</td><td>71</td><td>161</td><td>a#113;</td><td>q</td></tr><tr><td>18</td><td>12</td><td>022</td><td>DC2</td><td>(device control 2)</td><td></td><td></td><td></td><td>e#50;</td><td></td><td></td><td></td><td></td><td>R</td><td></td><td>114</td><td>72</td><td>162</td><td>a#114;</td><td>r</td></tr><tr><td>19</td><td>13</td><td>023</td><td>DC3</td><td>(device control 3)</td><td></td><td></td><td></td><td>3</td><td></td><td>83</td><td>53</td><td>123</td><td>S</td><td>S</td><td></td><td></td><td></td><td>s</td><td></td></tr><tr><td>20</td><td>14</td><td>024</td><td>DC4</td><td>(device control 4)</td><td></td><td></td><td></td><td>4</td><td></td><td>84</td><td>54</td><td>124</td><td>4;</td><td>T</td><td>116</td><td>74</td><td>164</td><td>t</td><td>t</td></tr><tr><td>21</td><td>15</td><td>025</td><td>NAK</td><td>(negative acknowledge)</td><td>53</td><td>35</td><td>065</td><td>@#53;</td><td>5</td><td>85</td><td>55</td><td>125</td><td><u>@#85;</u></td><td>U</td><td>117</td><td>75</td><td>165</td><td>u</td><td>u</td></tr><tr><td>22</td><td>16</td><td>026</td><td>SYN</td><td>(synchronous idle)</td><td></td><td></td><td></td><td>a#54;</td><td></td><td></td><td></td><td></td><td>V</td><td></td><td></td><td></td><td></td><td>v</td><td></td></tr><tr><td>23</td><td>17</td><td>027</td><td>ETB</td><td>(end of trans. block)</td><td>55</td><td>37</td><td>067</td><td>7</td><td>7</td><td>87</td><td>57</td><td>127</td><td><u>6#87;</u></td><td>W</td><td>119</td><td>77</td><td>167</td><td>%#119;</td><td>W</td></tr></tbody></table>											

0	1	2	3	4	5
'H'	'e'	'1'	'1'	'0'	'\0'

1 char = 1 byte = 8 bits

$$\rightarrow$$
 2⁸ = 256 ASCII chars

_		
		high address
	argc	
	argv	
	return address	eip = ebp +4
	stack frame pointer	saved ebp
	mybuff[511]	
	• • •	
	mybuff[0]	
	local variable(s)	esp
	printf()	

Raw Pointers are Dangerous!

- Memory outside of String buffer is unprotected
 - Read/Write access
- Off-by-one errors overwrite important memory

RAM + Cache Memory Layout

Arrays are fast.

Arrays sacrifice complexity for speed. Indexing is always O(1).

A significant contributor for array speed is caching.

0	1	2	3	4	5
'H'	'e'	'1'	'1'	'0'	'\0'

Speed vs. Storage

Physics (surface area) means smaller is faster

Layers of caches balance speed and size

Contiguous data (arrays) are easy to cache

Caching: The Big Idea

As memory is read, copy large nearby contiguous blocks at once into cache.

Arrays are by nature contiguous and therefore very cache friendly!

Caching: The Big Idea

As memory is read, copy large nearby contiguous blocks at once into cache.

Arrays are by nature contiguous and therefore very cache friendly!

Caching + Linked List: Not So Fast

Linked List nodes can be stored physically far apart and are harder to cache

Linked List Considered Harmful?

Linked Lists are not only cache-unfriendly, but they incur overhead:

- Object overhead: header for every node contains references to class + methods
- Allocation overhead: every insertion
 requires scanning the Heap for free space

271 Retweets **310** Likes

1 271

Q 20

Source: StackOverflow LinkedList vs. ArrayList Reading

Linked Lists in the OS

Linked Lists are excellent for connecting a sequence of objects that are by nature separately stored.

Figure 17.3: A Heap With One Free Chunk

Process list: every process has a unique PID

Figure 17.4: A Heap: After One Allocation

pstree in Unix

OS Multitasking: Processes as Trees

- Each OS process can spawn child processes.
 - In turn, they may spawn child processes of their own.
 - Processes have their own main thread and memory.
- Parents may kill their children (!)
- Parents may abandon their children (!)

```
gnome-keyring-d-+-{gdbus}
                   -{gmain}
                    {timer}
upstart-+-at-spi-bus-laun-+-dbus-daemon
                                -{dconf worker}
                                 {adbus}
                                 [gmain]
          -at-spi2-registr-+-{gdbus}
                                 {qmain}
           -bamfdaemon-+-{dconf worker}
                         -{gdbus}
                           {qmain}
          -compiz-+-{dconf worker}
                    -{gdbus}
                     -{qmain}
                     -4*[{pool}]
           -dbus-daemor
                                 Process 12274
                                 Process 12276
                       Process 12277
                                           Process 12278
                       Process 12279
                                           Process 12280
   Process 12283
                       Process 12282
                                           Process 12284
                                                               Process 12281
```

Trees as Websites

HTML (Hyper-Text Markup Language) describes the structure of webpages

- Leaf nodes (text, images) provide content
- Parent nodes provide context to children (styling, positioning, <u>links</u>)

Observe: nodes may have any number of children, to any depth

- Nodes can be parents of their own type
- Path to leaf gives context to leaf
- Allows for reusability and extensibility, e.g. a
 bold link described by parent chain <a>


```
img#hplogo | 272 × 201
              Business
                        How Search w
  Advertising
Inspector
                  Q Search HTML
                                                                          :hov .cls +
                                                       ▼ Filter Styles
 <!DOCTYPE html>
                                                    ^ element ⊕ {
                                                                                      inline
 <html itemscope="" itemtype="http://schema.org/WebPage</pre>
                                                         padding-top: 109px;
 lang="en"> event | scroll
 ▶ <head> ••• </head>
                                                      Inherited from body#gsr
 ▼ <body id="gsr" class="hp vasq big" jsmodel=" ">
                                                      body, html 📥 {
                                                                                    inline:1
   ▶ <style> ••• </style>
                                                          font-size: small;
   ▶ <style id="gstyle" data-jiis="cc"> ••• </style>
   ▶ <style> ··· </style>
                                                      body 🖒 {
                                                                                    inline:1
  ▼ <div id="viewport" class="ctr-p">
                                                          color: (a) #222;
      <div id="doc-info"></div>
    ▶ <div id="cst"> ··· </div>
                                                      body, td, a, p, .h 👍 {
                                                                                    inline:1
    ▶ <style> ••• </style>
                                                          font-family: arial,sans-serif;
    ▶ <div id="gb" class="gb Tf"> ··· </div>
    ▶ <div id="searchform" class="jhp big"> ··· </div>
    ▼ <div id="main" class="content">
      ▼<span id="body" class="ctr-p">
        ▼ <center>
         ▼ <div id="lga">
           ▶ <style> ··· </style>
             <img id="hplogo" alt="Google" src="/image</pre>
             /googlelogo/2x/googlelogo color 272x92dp.
             srcset="/images/branding/googlelogo
             /1x/googlelogo color 272x92dp.png...ages/br
             /googlelogo/2x/googlelogo color 272x92dp
             style="padding-top:109px" onload= ypeof
             google==='object'&&google.aft&&google.aft
             data-atf="1" data-iml="1574563308714" wid
             height="92"> event
           </div>
```

Trees as Languages

English is a Tree

- Nodes are entities (subject, object, verb)
- Leaves are words

English is recursive

- Verb phrase can haveverb phrase, ...
- Sentences can contain sentences?

gnashing

of

NN

teeth

JJ NN

rage

to

hellish

place

The feelings of kindness and gentleness which I had entertained but a few moments before gave place to hellish rage and gnashing of teeth.

Trees as Languages

Programming

Languages are Trees

- Statements composed of Expressions
- Expressions composed of Operators + and Operands a, b
- Operands may beStatements (recursive)

soui	Grammar	Languages	Automaton	Production rules (constraints)*	Examples ^[3]	tern
	Type-0	Recursively enumerable	Turing machine	$lpha Aeta ightarrow \gamma$	$L = \{w w ext{ describes a} \ $ terminating Turing machine $\}$	
	Type-1	Context- sensitive	Linear- bounded non- deterministic Turing machine	$lpha Aeta ightarrow lpha \gamma eta$	$L=\{a^nb^nc^n n>0\}$	ımmar
syn	Type-2	Context-free	Non- deterministic pushdown automaton	A o lpha	$L=\{a^nb^n n>0\}$	
	Type-3	Regular	Finite state automaton	$egin{aligned} A & ightarrow { m a} { m a} { m d} \ A & ightarrow { m a} B \end{aligned}$	$L=\{a^n n\geq 0\}$	

^{*} Meaning of symbols:

- \bullet a = terminal
- A, B = non-terminal

• α , β , γ = string of terminals and/or non-terminals

- α , β = maybe empty
- γ = never empty

genera.

Trees as Filesystems

File Systems track directories and files

- Directories are parent nodes
 - May also be leaf nodes
- Files are leaf nodes

Git is also tree-like

- Commits are nodes
- Actually, a graph

Graphs in Networking

The Internet is composed of several devices and routers

- Endpoint devices
 (phones, laptops, etc)
 are like tree leaves
- Middle "parent" nodes are routers that determine "one-hop" pathing

cloud consumer

Graphs, IRL

Maps model the real world as graphs

- Destinations are nodes
- Streets are edges
- "Cost of Travel" (time) is the cost of each edge

Dijkstra's Algorithm, plus heuristics (A*)

Al: State Graphs

Graphs can be used to model state and transitions for Al

- State is like variables in an Object
 - The observed world are graph nodes
- Transitions are like method invocations that change state
 - The actions of a robot are edges

Graph search algorithms allow robots to find **paths** to **goals**

Remember path(...)?

Aside: Al vs. Machine Learning (ML)

Contrary to what the media believes,

Al and Machine Learning are two different things

- Al: teaching computers to act rationally in a modeled world to achieve goals
- ML: teaching computers to make observations about the world

Machine learning and Al can coexist, but are not synonymous!

ML: Vectors & Matrices

Fundamental to ML are vectors and matrices (calculus, linear algebra)

Big Idea: model complex information as a **vector** or **matrix** of integers

- Point, Point3D, arrays, 2D arrays
- Position of vector and proximity to others indicate how things are related
- Almost like hashing, minus the random

ML: Vectors & Matrices

Big Idea: model complex information as a **vector** or **matrix** of integers

- Point, Point3D, arrays, 2D arrays
- Position of vector and proximity to others indicate how things are related

Then: perform a regression (statistical analysis) on data

ML: Neural Nets+

Big Idea: model complex information as a **vector** or **matrix** of integers

- Point, Point3D, arrays, 2D arrays
- Position of vector and proximity to others indicate how things are related

Then: perform a regression (statistical analysis) on data

Decision **trees** find meaningful ways to divide data based on conditions

Neural nets (graphs) transform the data repeatedly until it becomes useful (training, gradient descent)

hidden layer

Speaking of Big Data...

Companies like Facebook track millions of users each day

- Databases must associate names and information
- Users expect instant response

We've seen two structures with efficient lookup

- HashMap O(1)?
- Binary Search Tree O(logn)?

Monthly Active Users (MAUs)

statista 🗸

In Millions

B+ Trees for Databases

Databases like MySQL use "B+ trees" for fast lookup

- Like binary search trees:
 - o left is lower, right is bigger, O(logn) lookup
- Unlike binary search trees:
 - A node can have any number of children
 - B-trees are perfectly balanced (as all things sho

Why not HashMaps?

- No sequential ordering (why?)
- Wasted space (why?)

HashMap Strikes Back

HashMap is useful for dynamic content at "small scale"

- News articles mapped to links
- Zip codes mapped to cities
- Videos mapped to thumbnails
- Users mapped to messages

Both JavaScript and Python have HashMaps as **first-class citizens** of the language

Everything is a HashMap underneath

```
Valid code in both Python and JavaScript:
map = \{\}
map["seattle"] = "WA"
map["portland"] = "OR"
Valid code in JavaScript:
console.log("Hello, World!");
console["log"]("Hello, World!");
Valid code in Python:
def foo(): print("hello")
setattr(foo, "thing", "world")
print("hello " + getattr(foo, "thing"))
```

BONUS: Linked List as Blockchain?

Blockchain was all the rage of yesteryear

- Linked List + hashes of neighbor blocks
- Hashes "guarantee" immutability of chain

BONUS: Bitcoin — at what cost?

Cambridge
Centre
for Alternative
Finance

Cambridge Bitcoin Electricity Consumption Index

CBECI

COMPARISONS

METHODOLOGY

FAQ

CONTACT

71.96

TWh per year

Chile

73.22

TWh per year

74.59

TWh per year

78.30

TWh per year

82.16

TWh per year

The Best Data Structure?

- Array (+ArrayList)
- Linked List (+Doubly, Stack, Queue)
- Tree (+Binary, BST)
- Heap (+Priority Queue)
- HashMap
- ° Graph

Common Data Structure Operations

