

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Інститут прикладного системного аналізу

Лабораторна робота №3

з курсу «Чисельні методи» з теми «Методи розв'язання нелінійних систем» Варіант №4

Виконав: студент 2 курсу групи КА-02

Козак Назар Ігорович

Перевірила: старший викладач

Хоменко Ольга Володимирівна

<u>Мета роботи:</u> навчитися застосовувати чисельні методи розв'язання нелінійних систем.

Хід роботи:

Завдання 1

- 1. Розв'язати систему 1 методом простих ітерацій. Для цього:
 - визначити початкове наближення, побудувавши графіки кривих системи:
 - перевірити достатні умови збіжності з детальним поясненням (задати область, в якій перевірити виконання умов збіжності, можна робити фото написаного і вставляти в звіт);
 - реалізувати метод простих ітерацій. Розв'язати систему з точністю $\varepsilon = 10^{-5}$;
 - програмний код надіслати в класрум в окремому файлі та вставити текст програми у звіт.
- 2. Результати роботи програми оформити у звіті у вигляді таблиці. Якщо ітерацій більше 15, в таблицю записати лише перші 15.

№ ітерації		Δ
0		
1		
•••		

- 3. Виконати перевірку, обчисливши $F(x_*)$
- **4.** Задати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати як змінюється при цьому ітераційний процес, написати про це у висновку.
- **5.** Знайти розв'язок системи за допомогою fsolve бібліотеки scipy.optimize

Завдання 2

- **1.** Розв'язати систему 2 методом Ньютона (або спрощеним методом Ньютона). Для цього
 - визначити початкове наближення, побудувавши графіки кривих системи;

- реалізувати метод Ньютона (або спрощений метод Ньютона). За потреби можна використовувати функції linalg.solve та ін. Розв'язати систему з точністю $\varepsilon = 10^{-5}$;
- програмний код надіслати в класрум в окремому файлі та вставити текст програми у звіт.
- 2. Результати роботи програми оформити у звіті у вигляді таблиці. Якщо ітерацій більше 15, в таблицю записати лише перші 15.

№ ітерації		Δ
0		
1		
• • •		

- 3. Виконати перевірку, обчисливши F(x_*)
- **4.** Задати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати як змінюється при цьому ітераційний процес, написати про це у висновку.
- 5. Знайти розв'язок системи за допомогою fsolve бібліотеки scipy.optimize

Завдання. Номер № варіанту співпадає з номером завдання. 1) розв'язуємо методом простих ітерацій, 2) — методом Ньютона або спрощеним методом Ньютона.

	-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 1
i	трошки ближче:
<i>x y</i> 33	$-\frac{1}{2}\sin(y-0.5)-\frac{1}{2}=0$ — позначено червоним $-1.5+\cos x=0$ — позначено точку $x^{(0)}=(-0.4;0.6)$
П	Покладемо $\varphi_1(x,y) = \frac{1}{2}\sin(y-0.5) + \frac{1}{2}; \;\; \varphi_2(x,y) = 1.5 - \cos x$ Достатня умова збіжності для метода простих ітерацій має вигляд: $\max_{x \in G} \;\; \max_i \sum_{j=1}^n \left \frac{\partial \varphi_i(x)}{\partial x_j} \right \leq q < 1$
aſ	$\max_{x \in G} \max_{i} \sum_{j=1}^{n} \left \frac{\partial \varphi_i(x)}{\partial x_j} \right = q + 1$ $\max_{x \in G} \max_{j} \sum_{i=1}^{n} \left \frac{\partial \varphi_i(x)}{\partial x_j} \right \le q < 1$
31	удемо перевіряти першу умову. Виберемо такий окіл точки: $x^{(0)}:G=\{(x,y)\colon x+0.4 \leq 0.1;\ y-0.6 \leq 0.1\}$ найдемо частинні похідні $\frac{\varphi_1}{\partial x}=\frac{\partial}{\partial x}\left(\frac{1}{2}\sin(y-0.5)+\frac{1}{2}\right)=0$
∂ς — ĉ	$\frac{\partial \varphi}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{2} \sin(y - 0.5) + \frac{1}{2} \right) = \frac{1}{2} \cos(y - 0.5)$ $\frac{\partial \varphi}{\partial x} = \frac{\partial}{\partial x} (1.5 - \cos x) = \sin x$
∂ς ĉ	$\frac{\partial \varphi_2}{\partial y} = \frac{\partial}{\partial y} (1.5 - \cos x) = 0$ Оцінимо їх модулі в області G :
Ц	$\left \frac{\partial \varphi_1}{\partial y} \right = \frac{1}{- \cos(y - 0.5) }$ Ця функція залежить лише від y . Побудуємо її графік на проміжку [0.5, 0.7], щоб побачити в якій точці функція набуває найбільшої начення
	<pre>import matplotlib.pyplot as plt def f_1(y): return (np.absolute(np.cos(y-0.5)))/2 fig = plt.subplots() y = np.linspace(0.5,0.7,100) plt.plot(y, f_1(y))</pre>
	0.500 0.498 0.496
	0.492 - 0.490 - 0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
	Отже, робимо висновок, що $\max_{(x,y)\in G} \left \frac{\partial \varphi_1}{\partial y}(x,y)\right = 0.5$, тому $\left \frac{\partial \varphi_1}{\partial y}\right \leq 0.5$ кналогічно зробимо для $\left \frac{\partial \varphi_2}{\partial x}\right = \sin x $. Ця функція залежить лише від x , який в області G лежить у проміжку [-0.5 , -0.3]
12]:	<pre>import numpy as np import matplotlib.pyplot as plt def f_2(x): return np.absolute(np.sin(x)) fig = plt.subplots() x = np.linspace(-0.3,-0.5,100)</pre>
	plt.plot(x, f_2(x)) plt.show() 0.475 0.450 0.425
	0.400 - 0.375 - 0.350 - 0.325 - 0.300 -
O L3]:	-0.500 -0.475 -0.450 -0.425 -0.400 -0.375 -0.350 -0.325 -0.300 Отже, максимального значення $\left \frac{\partial \varphi_2}{\partial x}\right $ приймає коли $x=-0.5$. Обчислимо це значення:
	0.479425538604203
-	$\frac{\partial \varphi_1}{\partial x}(x,y) \left + \left \frac{\partial \varphi_1}{\partial y}(x,y) \right = 0.5 < 1$ $\frac{\partial \varphi_2}{\partial x}(x,y) \left + \left \frac{\partial \varphi_2}{\partial y}(x,y) \right = \sin(-0.5) < 0.5 < 1$
0	Отже, умова збіжності - виконується $ ho$ еалізувати метод простих ітерацій. Розв'язати систему з точністю $arepsilon=10^{-5}$
	<pre>def delta(x_k, x_k_plus_1): return max(abs(x_k_plus_1[0]-x_k[0]), abs(x_k_plus_1[1]-x_k[1])) def simple_iter(phi, x_0): x_1 = phi(x_0) data = np.vstack((np.array([[x_0[0], x_0[1]]]), np.array([[x_1[0], x_1[1]]]))) deltas = np.vstack((np.array([[0]]), np.array([[delta(x_0, x_1)]]))))</pre>
	<pre>while delta(x_0, x_1) > 0.00001: x_0 = x_1 x_1 = phi(x_0) data = np.vstack((data, np.array([[x_1[0], x_1[1]]]))) deltas = np.vstack((deltas, np.array([[delta(x_0, x_1)]])))) iter info = np.hstack((data, deltas))</pre>
15]:	<pre>iter_info = np.hstack((data, deltas)) return x_1, iter_info def phi(x): return ((1/2)*np.sin(x[1]-0.5) +(1/2), 1.5 - np.cos(x[0])) x_0 = (-0.4, 0.6)</pre>
15]: 16]:	Result, iter_info = simple_iter(phi, x_0) Result (0.5819217672655836, 0.6645926439465167) # подивимось скільки ітерацій було зроблено
P	iter_info.shape[0] 2 Результати роботи програми оформити у вигляді таблиці. Результати роботи програми записані в масив data. Перетворимо цей масив в об'єкт типу pandas.DataFrame, щоб його можна буливести у вигляді таблиці. Для цього створимо окрему функцію.
61]:	<pre>import pandas as pd def to_df(array): #виведемо перші 15 ітерацій. array = array[:15]</pre>
	num = array.shape[0] df = pd.DataFrame(array, columns = ['x','y','delta'], index = np.arange(1,num+1)) # це поле нічому не відповідає df['delta'][0] = None return df
52]:	to_df(iter_info) x y delta 1 -0.400000 0.600000 0.000000 2 0.549917 0.578939 0.949917
	3 0.539429 0.647432 0.068493 4 0.573449 0.641998 0.034021 5 0.570760 0.659965 0.017968 6 0.579642 0.658510 0.008882 7 0.578923 0.663341 0.004832
	8 0.581308 0.662948 0.002385 9 0.581114 0.664255 0.001307 10 0.581759 0.664148 0.000645 11 0.581706 0.664502 0.000354 12 0.581881 0.664474 0.000175
F	13 0.581866 0.664570 0.000096 14 0.581914 0.664562 0.000047 15 0.581910 0.664588 0.000026 Виконати перевірку, обчисливши $F(x^*)$
19]: 19]:	<pre>def F(x): return ((1/2)*np.sin(x[1]-0.5) +(1/2) - x[0], 1.5 - np.cos(x[0]) - x[1]) F(Result) (3.4796770898015694e-06, -5.754404523994339e-07)</pre>
Я Ві	Вадати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати як змінюється при цьому ітераційний процес, написати про це у висновку. Бізьмемо п'ять випадкових наближень і створимо табличку, щоб можна було побачити чи змінюється при цьому ітераційний процес. # пр.random.rand повертає матрицю заповнену випадковими числами в проміжку від 0 до 1. # Тому щоб отримати від'ємні числа, а також числа по модулю більші одиниці зробимо певні пертворення:
	<pre>initial_approximations = (np.random.rand(5,2)-0.5)*100 new_data = np.zeros((5,5)) for i in range(5): new_data[i][0] = initial_approximations[i][0] new_data[i][1] = initial_approximations[i][1]</pre>
	<pre>result, info = simple_iter(phi, initial_approximations[i]) new_data[i][2] = info.shape[0] new_data[i][3] = result[0] new_data[i][4] = result[1] pd.DataFrame(new_data, columns = ['x_0','y_0','iter', 'x', 'y'], index = np.arange(1,6))</pre>
20]:	x_0 y_0 iter x y 1 -39.186847 0.338142 21.0 0.581929 0.664594 2 -0.930339 21.385439 20.0 0.581930 0.664597 3 -18.161740 -33.466778 19.0 0.581927 0.664591 4 -26.731528 -28.055202 21.0 0.581930 0.664595
Д	5 6.231818 -16.775199 21.0 0.581926 0.664597 Уут iter це кількість ітерацій, х_0, у_0 відповідно перша та друга координата початкового наближення, а х,у відповідно перша та друга координата розв'язку. Як бачимо точність майже не міняється, а кількість операцій хоч і збільшується, але не на багато. Внайти розв'язок системи за допомогою fsolve бібліотеки scipy.optimize
21]:	x_0 = (-0.4, 0.6) print("розв'язок отриманий за допомогою fsolve:", tuple(fsolve(F, x_0))) print("розв'язок отриманий за допомогою МПІ :", Result) розв'язок отриманий за допомогою fsolve: (0.5819261517549239, 0.6645944783630967)
3	розв'язок отриманий за допомогою МПІ : (0.5819217672655836, 0.6645926439465167) МПІ - метод простих ітерацій
	Визначити початкове наближення, побудувавши графіки кривих системи $\begin{cases} \sin(x+y) - 1.2x = 0.2 \\ x^2 + y^2 = 1 \end{cases} \Rightarrow \begin{cases} \sin(x+y) - 1.2x - 0.2 = 0 \\ x^2 + y^2 - 1 = 0 \end{cases}$
	1:5
	-2.5 -2 -1.50.5 0 0.5 1.5 2 2.5
	-0.5
x	удемо шукати корінь, що знаходиться в третьому квадранті. Для нього за початкове наближення візьмемо точку ${}^{(0)} = (-1, -0.25)$ Реалізувати метод Ньютона(або спрощений метод Ньютона)
	Покладемо $f_1(x,y) = \sin(x+y) - 1.2x - 0.2; \ f_2(x,y) = x^2 + y^2 - 1.$ Знайдемо матрицю Якобі вектор функції $\vec{F} = (f_1,f_2)^T$ $W(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} (\sin(x+y) - 1.2x - 0.2) & \frac{\partial}{\partial y} (\sin(x+y) - 1.2x - 0.2) \\ \frac{\partial}{\partial y} (x^2 + y^2 - 1) & \frac{\partial}{\partial y} (x^2 + y^2 - 1) \end{pmatrix} = \begin{pmatrix} \cos(x+y) - 1.2 & \cos(x+y) \\ 2x & 2y \end{pmatrix}$
C - 22]:	творимо клас sympy_matrix. Це буде матриця елементами якої будуть функції створені за допомогою бібліотеки sympy. class sympy_matrix:
	<pre>definit(self, dimentions, list_of_func): self.matrix = np.reshape(list_of_func, dimentions) self.dimentions = dimentions def calculate(self, vector, inversed = False): array = np.zeros(self.dimentions) for i in range(self.dimentions[0]): for j in range(self.dimentions[1]):</pre>
	<pre>array[i][j] = float(self.matrix[i][j].subs([(x, vector[0]), (y, vector[1])])) if inversed: return np.linalg.inv(array) return array</pre>
66]:	<pre>def newton_method(jakobi_matrix, F, x_0): x_0 = np.array([[x_0[0]], [x_0[1]]]) vector = (x_0[0][0], x_0[1][0]) x_1 = x_0 - np.matmul(jakobi_matrix.calculate(vector, inversed = True), F.calculate(vector)) vector_1 = (x_1[0][0], x_1[1][0]) data = np.vstack((np.array([[vector[0], vector[1]]]), np.array([[vector 1[0], vector 1[1]]])))</pre>
	<pre>deltas = np.vstack((np.array([[0]]), np.array([[delta(vector, vector_1)]]))) while delta((x_0[0][0], x_0[1][0]), (x_1[0][0], x_1[1][0])) > 0.00001: x_0 = x_1 vector = (x_0[0][0], x_0[1][0]) x_1 = x_0 - np.matmul(jakobi_matrix.calculate(vector, inversed = True), F.calculate(vector)) vector_1 = (x_1[0][0], x_1[1][0])</pre>
90]:	<pre>data = np.vstack((data, np.array([[vector_1[0], vector_1[1]]]))) deltas = np.vstack((deltas, np.array([[delta(vector, vector_1)]]))) iter_info = np.hstack((data, deltas)) return x_1, iter_info from sympy import *</pre>
	<pre>x, y = symbols('x y') f_1 = sin(x+y) - 1.2*x - 0.2 f_2 = x*x + y*y - 1 partial_f_1_x = cos(x+y) -1.2 partial_f_1_y = cos(x+y) partial_f_2_x = 2*x</pre>
	<pre>partial_i_2_x = 2*x partial_f_2_y = 2*y jacobi_matrix = sympy_matrix((2,2), [partial_f_1_x,partial_f_1_y,partial_f_2_x,partial_f_2_y]) F = sympy_matrix((2,1), [f_1, f_2]) x_0 = (-1, -0.25) RResult, new_data = newton_method(jacobi_matrix, F, x_0)</pre>
	Результати роботи програми оформити у звіті у вигляді таблиці. Результати роботи програми записані в масив new_data. Перетворимо цей масив в об'єкт типу pandas.DataFrame, щоб його можн
б	to_df(new_data)
6 <u>1</u>	to_df (new_data) x
6 <u>1</u> 2]: 2]:	x y delta 1 -1.000000 -0.250000 0.000000 2 -0.957860 -0.293559 0.043559
6 2]: 2]: 5]: 5]:	x y delta 1 -1.000000 -0.250000 0.000000 2 -0.957860 -0.293559 0.043559 3 -0.956832 -0.290659 0.002900 4 -0.956825 -0.290665 0.000006 Виконати перевірку, обчисливши $F(x_*)$
6 <u>.</u> 72]: 72]: 8 8 55]: 8 8	x y delta 1 -1.000000 -0.250000 0.000000 0.000000 2 -0.957860 -0.293559 0.043559 3 -0.956832 -0.290659 0.002900 4 -0.956825 -0.290665 0.000006 Виконати перевірку, обчисливши $F(x_*)$ F.calculate((Rresult[0][0], Rresult[1][0])) аrray([[9.70445946e-13], [6.75174361e-11]]) Вадати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати ік змінюється при цьому ітераційний процес, написати про це у висновку од аналогічний коду, який знаходиться у відповідному пункті попереднього завдання. іпіtіal_арргохіmations = (пр. random.rand(5, 2) -1) *100 пеw_data = пр. zeros((5, 5)) for і in range(5): пеw_data[i][0] = initial_approximations[i][0]
69 72]: 72]: 755]: 755]:	x y delta 1 -1.000000 -0.250000 0.000000 2 -0.957860 -0.293559 0.043559 3 -0.956822 -0.290659 0.002900 4 -0.956825 -0.290665 0.000006 BUKOHATU Перевірку, обчисливши $F(x_*)$ F. calculate ((RResult[0][0], RResult[1][0])) агтау ([[9.70445946e-13], [6.75174361e-11]]) Вадати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати як змінюється при цьому ітераційний процес, написати про це у висновку да налогічний коду, який знаходиться у відповідному пункті попереднього завдання. іпітіаl_арргохітатіоль = (пр. галоот. гало (5, 2) -1) *100 пем_data = пр. zeros ((5, 5)) for i in range (5):
6 <u>.</u> 72]: 72]: 8 8 55]: 8 8	x y deta 1 -1.000000 0.000000 2 -0.957860 -0.293559 0.043559 3 0.956825 -0.000006 Виконати перевірку, обчисливши $F(x_*)$ F. calculate («Result(0)[0), Result(1)[0])) атгау([9.70445946e-13], [6.75174361e-11]) Вадати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати ік змінюється при цьому ітераційний процес, написати про це у висновку да налогічний коду, який знаходиться у відповідному пункті попереднього завдання. іпітізі _арргохітатіопа = (пр. галдот, гал
69 22]: 22]: 35]: 47]: 77]:	x y delta 1 -1.00000 -0.25000 0.000000 2 -0.957860 -0.293559 0.043559 3 -0.956822 -0.290659 0.002900 4 -0.956825 -0.290665 0.000006 Виконати перевірку, обчисливши $F(x_*)$ F.calculate((RResult[0][0], RResult[1][0])) аггау([[9.70445946e-13], [6.7517436le-11])) Вадати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати нк змінюється при цьому ітераційний процес, написати про це у висновку под аналогічний коду, який знаходиться у відповідному пункті попереднього завдання. initial_approximations = (np.random.rand(5,2)-1)*100 new_data = np.zeros((5,5)) for i in range(5): new_data[i][0] = initial_approximations[i][0] new_data[i][1] = initial_approximations[i][1] result, info = newton_method(jacobi_matrix, F, initial_approximations[i]) new_data[i][3] = result[0][0] new_data[i][4] = result[0][0] new_data[i][4] = result[0][0] new_data[i][4] = result[0][0] new_data[i][4] = result[0][0] num = new_data.shape(0) pd.DataFrame(new_data, columns = ['x_0', 'y_0', 'iter', 'x', 'y'], index = np.arange(1, num+1)) x.0 y.0 iter x y 1 -68341096 -75.885760 460 0.656018 0.754745
69 72]: 72]: 72]: 73]: 73]: 73]: 74 75 76 77]:	x y delta 1 1.000000 0.2000000 0.0000000 2 0.957660 0.229559 0.045559 3 0.956862 0.2290559 0.002900 4 0.956822 0.209055 0.002000 6 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029050 0.002900 8 0.056822 0.029055 0.002000 8 0.056822 0.029055 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.0020000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.002000 8 0.056822 0.029056 0.0020000 8 0.056822 0.029056 0.0020000 8 0.056822 0.029056 0.002000000000000000000000000000000000
6 2]:	** у deta** 1 -1000000 -02200000 00000000 2 -0357860 -0205959 0045559 3 -0356812 -0205059 0049559 3 -0356812 -0205059 000005 Виконати перевірку, обчисливши $F(x_*^*)$ 5 -04101414 (Обесей (Обе
6 2]:	x y delta 1 -1-1000000 -12-250000 0.0000000 2 - 0957860 - 0.299559 - 0.043559 3 - 0-958612 - 0.205659 - 0.000000 4 - 0.955825 - 0.205659 - 0.000000 Виконати перевірку, обчисливши F(x_*) Р. смілцізью (1580жлів (01/61), квежлів (11/61)) васаму (-13,704409460=13), (-7.71435.0=-11)) Вадати декілька інших початкових наближень (які не близькі до розв'язку) та з'ясувати кімінюється при цьому ітераційний процес, написати про це у висновку од аналогічний коду, який знаходиться у відповідному пункті попереднього завдання. Initial_approximations = (ng. candum.rand (5,21-1)*100 new data = np.zecoa((5,5)) for i in range(5); new data (1) = initial_approximations[1]0; new_data (1) 1 = initial_approximations[1]0; new_data (1) 2 = info.nbop(01) new_data (1) 3 = eval.(1)(1) mem = new_data (1) 3 = eval.(1)(1) x.0 y.0 iter x y 1 - 68.3706 - 75.88570 - 46.0 0.65078 0.754745 5 - 140.26467 - 20191615 220 - 0.956625 - 0.290665 3 - /3.20251 - 1-2.066651 21.0 - 0.956625 - 0.290665 5 - /4.202647 - 2.0191615 220 - 0.956625 - 0.290665 5 - 4.69.29106 3 3.618426 220 0.65078 0.754745 5 - 140.26467 - 2.0191615 220 - 0.956625 - 0.290665 6 - 64-имо, при пеших значениях почаниях почаниях почаниях раучий корінь рівнення, але це не протирічни минулому факту. Внайти розв'язок системи за допомогою Ізоіче бібліотеки scipy.optimize def 7 шисіх: return (пр. вісіх (10) + хіт) - 1.2*к (1) - 0.2, хі() **2 + хі **2 - 1) x_0 = (-1, -0.25) print (19028 зако отраженой за допомогою Увоїче (-0.3562552537112), -0.2306655112483415) ponn 'заког отраженой за допомогою біб (-0.956253537112), -0.2306655112483415)