The Hardy-Littlewood Maximal Function

VISHAL RAMAN

November 8, 2020

The Hardy-Littlewood maximal operator is a non-linear operator that takes a locally integrable function and returns another function corresponding to the maximum average value the original function can have on balls cenetered at a given point. It has several applications in Real Analysis and Harmonic Analysis. We present the lectures notes and solutions to exercises from Math 258(Christ).

§1 Weak L^p and Distribution Functions

We work in a measure space (X, μ) that is σ -finite. Let $S(X) = S(X, \mu)$ denote the space of simple functions $f: X \to \mathbb{C}$ and $\mathcal{M}(X)$ denote the space of measure functions.

Definition 1.1. The distribution function λ_f of $f \in \mathcal{M}(X)$ is

$$\lambda_f(\alpha) = \mu\{x \in X : |f(x)| > \alpha\}.$$

This gives us a way to think about norms in the measure space. For example, consider the following lemma:

Lemma 1.2

For $p \in (0, \infty)$ and $f \in \mathcal{M}(X)$,

$$||f||_p^p = \int |f|^p d\mu = p \int_0^\infty \alpha^{p-1} \lambda_f(\alpha) d\alpha.$$

Proof. Denote $E = \{(x, \alpha) : |f(x)| > \alpha\}.$

$$\begin{split} p \int_0^\infty \alpha^{p-1} \lambda_f(\alpha) d\alpha &= p \int_0^\infty \alpha^{p-1} \int_X 1_E(x,\alpha) d\mu(x) d\alpha \\ &= \int_X \int_0^\infty p \alpha^{p-1} 1(\alpha < |f(x)|) d\alpha d\mu(x) \\ &= \int_X |f(x)|^p d\mu(x) = \|f\|_p^p. \end{split}$$

Exercise 1.3. Present an alternate proof for simple functions and use the monotone convergence theorem to pass to general functions.

Proof. Let $f = \sum_{i=1}^n c_i 1_{E_j}$ be a simple function. Then, $||f||_p^p = \sum_{i=1}^n |c_i|^p \mu(E_j)$. Note that

$$p \int_{0}^{\infty} \alpha^{p-1} \lambda_{f}(\alpha) d\alpha = \int_{0}^{\infty} p \alpha^{p-1} \sum_{i=1}^{n} \mu(E_{j}) 1(|c_{j}| > \alpha)$$

$$= \sum_{i=1}^{n} \mu(E_{j}) \int_{0}^{\infty} p \alpha^{p-1} 1(|c_{j}| > \alpha)$$

$$= \sum_{i=1}^{n} \mu(E_{j}) \int_{0}^{|c_{j}|} c_{j} |p \alpha^{p-1}|$$

$$= \sum_{i=1}^{n} \mu(E_{j}) |c_{j}|^{p}$$

$$= ||f||_{p}^{p}.$$

For a general nonnegative function f, we can write $f_n \uparrow f$, where $f_n = \sum_{i=1}^n c_{in} 1_{E_i n}$. By the monotone convergence theorem, it follows that

$$\int |f|^p = \lim_{n \to \infty} \int |f_n|^p = \lim_{n \to \infty} \int_0^\infty p\alpha^{p-1} \lambda_{f_n}(\alpha) d\alpha = \int_0^\infty p\alpha^{p-1} \lambda_f(\alpha) d\alpha,$$

by noting that $\lambda_{f_n} \uparrow \lambda_f$ and using the monotone convergence theorem.

Lemma 1.4 (Chebyshev's Inequality)

If $p \in (0, \infty)$ and $f \in L^p$, then for $\alpha > 0$,

$$\lambda_f(\alpha) \le \alpha^{-p} ||f||_p^p.$$

For p = 1, then gives Markov's Inequality:

$$\lambda_f(\ell) \le \ell^{-1} ||f||_1.$$

Proof.

$$\lambda_f(\alpha) = \int_X 1(|f(x)| > \alpha) d\mu(x) \le \int_X \alpha^{-p} |f(x)|^p d\mu(x) = \alpha^{-p} ||f||_p^p.$$

Chebyshev's inequality loses information, in the sense that

$$p\int_0^\infty \alpha^{p-1}\lambda_f(\alpha)d\alpha \le p\|f\|_p^p\int_0^\infty \alpha^{p-1}\alpha^{-p}d\alpha,$$

and the latter integral diverges. However, it does allow us to extract useful information from the finiteness of the L^p norms.

Definition 1.5. For $p \in [1, \infty)$, define $L^{p,\infty}(X, \mu)$ as the set of functions $f \in \mathcal{M}(X)$ for which there exists $C < \infty$ with $\lambda_f(\alpha) \leq C^p \alpha^{-p}$.

Note that $L^{p,\infty}$ is a quasi-normed vector space. We prove the triangle inequality:

2

Proof.

$$||f + g||_{p,\infty} = \inf\{C : \lambda_{f+g}(\alpha) \le C^p \alpha^{-p}\}$$

$$\le \inf\{C : \lambda_f(\alpha/2) + \lambda_g(\alpha/2) \le C^p \alpha^{-p}\}$$

$$\le \inf\{C : \lambda_f(\alpha/2) \le C^p \alpha^{-p}/2\} + \inf\{C : \lambda_g(\alpha/2) \le C^p \alpha^{-p}/2\}$$

$$\le$$

§1.1 The Hardy-Littlewood Maximal Operator

Definition 1.6 (Hardy-Littlewood Maximal Operator). Let $f \in L^1_{loc}(\mathbb{R}^d)$, and define $Mf: \mathbb{R}^d \to [0, \infty]$ by

$$Mf(x) = \sup_{r>0} |B(x,r)|^{-1} \int_{B(x,r)} |f(y)| dy.$$