Econometrics Introduction to Mathematical Statistics

Paul P. Momtaz

The Anderson School UCLA

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell)

First Thoughts

Measurement Erro Omitted Variables Rias

Simultane

Generalized Leas

Cholesky Decomposition

Maximum

Introduction

MLE Properties
The Three Classical

Ordinary Least Squares

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell) Theorem
First Thoughts on Endogeneity
Measurement Error
Omitted Variables Bias
Simultaneity

Generalized Least Squares

Cholesky Decomposition Feasible GLS

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical Tests of MLE

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh (-Lovell Theorem

Endogeneity
Measurement Erro

Omitted Variables Bias

Generalized Least

Cholesky Decomposition

Maximum Likelihood

Introduction MLE Propert

MLE Properties
The Three Classic
Tests of MLE

Ordinary Least Squares The Bivariate Model

Gauss-Markov Assumptions

Goodness-Of-Fit

Hypothesis Testing

Frisch-Waugh(-Lovell) Theorem

First Thoughts on Endogeneity

Measurement Error

Omitted Variables Bias

Simultaneity

Generalized Least Squares

Cholesky Decomposition

Feasible GLS

Maximum Likelihood Estimation

Introduction

MLE Properties

The Three Classical Tests of MLE

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Squares The Rivariate Model

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell

First Thoughts on Endogeneity

Omitted Variables Bias

Generalized Least

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Propertie

MLE Properties The Three Classica Tests of MLE

The basic OLS idea

Intuition

Econometrics

Paul P. Momtaz

Ordinary Least

The Rivariate Model

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell)

> First Thoughts on Endogeneity Measurement Error

Omitted Variables Bias

Generalized Least

Cholesky Decomposition Feasible GLS

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical
Tests of MLE

The basic OLS idea

Bivariate Model

Assumptions:
$$\mathbb{E}[u_i] = 0$$
, $Var[u_i] = \sigma^2$, $\mathbb{E}[u_i, u_j] = 0$ for $i \neq j$, x_i nonstochastic

From
$$y_i = \beta_1 + \beta_2 x_i + u_i$$
, want to minimize
$$RSS = \sum_{i=1}^{N} (y_i - \beta_1 - \beta_2 x_i)^2$$

FOCs:
$$\frac{\partial RSS}{\partial \beta_1} = -2 \sum_{i=1}^{N} \tilde{u}_i = 0, \qquad \frac{\partial RSS}{\partial \beta_2} = -2 \sum_{i=1}^{N} x_i \tilde{u}_i = 0$$

From first FOC:
$$\hat{\beta}_1 = \sum_{i=1}^N \frac{y_i}{N} + \hat{\beta}_2 \sum_{i=1}^N \frac{x_i}{N} = \overline{y} - \hat{\beta}_2 \overline{x}$$

Substituting into second FOC:
$$\hat{\beta}_2 = \frac{\sum_{i=1}^{N} (y_i - \overline{y}) \sum_{i=1}^{N} (x_i - \overline{x})}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Rivariate Model

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell) Theorem

ndogeneity Measurement Erro Omitted Variables

Omitted Variables Bias Simultaneity

Generalized Least

Cholesky

Maximum Likelihood

Introduction
MLE Properties
The Three Classical

4□ → 4周 → 4 章 → 4 章 → 9 Q P

The basic OLS idea

Bivariate Model in Matrix Notation

$$y = X\beta + u$$

Assumptions:
$$\mathbb{E}[u] = 0$$
 $\mathbb{E}[uu'] = \sigma^2 I_N$, X nonstochastic

Minimize:
$$RSS = \tilde{u}'\tilde{u} = (y - X\hat{\beta})'(y - X\hat{\beta})$$

FOC:
$$\frac{\partial RSS}{\partial \hat{\beta}} = -2x'y + 2X'X\hat{\beta} \Rightarrow \hat{\beta} = (X'X)^{-1}X'y$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Rivariate Model

iauss-Markov issumptions ioodness-Of-Fit lypothesis Testing irisch-Waugh(-Lovell

Endogeneity

Measurement Erro

Omitted Variables Bias

Conoralized Lo

Squares

Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Properties
The Three Classical

Outille

Ordinary Least Squares

The Bivariate Mode

Gauss-Markov Assumptions

Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell) Theorem
First Thoughts on Endogeneity
Measurement Error
Omitted Variables Bias
Simultaneity

Generalized Least Squares

Cholesky Decomposition

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical Tests of MLE

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Mod Gauss-Markov

Assumptions Goodness-Of-Fit Hypothesis Testing

Theorem
First Thoughts or

Measurement Erro Omitted Variables

Simultaneity

Generalized Least Squares

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Properties
The Three Classic

Given a linear mode, $\hat{\beta}_{OLS}$ is a consistent estimator of β if

- (1)No perfect collinearity in X
- (2)No selection bias
- (3) $\mathbb{E}[u]=0$
- (4) $\mathbb{E}[Xu]=0$

(drop redundant observations)

(a representative sample)

(guaranteed if we include an intercept) Measurement Error

(unbiased if $\mathbb{E}[u|X] = 0$)

$$(3) + (4) \Rightarrow Var[\varepsilon] = \sigma^2 I_N.$$

$$(2) \Rightarrow \mathbb{E}[\varepsilon|x] = \mathbb{E}[\varepsilon] = 0 \text{ and } Var[\varepsilon|x] = Var[\varepsilon].$$

Assumption (4) is the focus of much attention, as we will discuss. But even without (4), we can always interpret $\hat{\beta}_{OLS}$ as summaries of correlations in the data, rather than as parameter estimates.

Gauss-Markov Assumptions

Unbiasedness and Variance

Unbiasedness:

$$b=\beta+(x'x)^{-1}x'\varepsilon$$

$$\mathbb{E}[b|x] = \beta + \mathbb{E}[(x'x)^{-1}x'\varepsilon|x]$$
 (1)

$$\stackrel{\text{by 2}}{=} \beta + \mathbb{E}[(x'x)^{-1}x'|x]\mathbb{E}[\varepsilon|x] \tag{2}$$

$$\stackrel{\text{by 1}}{=} \beta \tag{3}$$

Variance:

$$Var[b|x] = \mathbb{E}[(b - \mathbb{E}[b])(b - \mathbb{E}[b])'|x]$$
(4)

$$= \mathbb{E}[(b-\beta)(b-\beta)'|x] \text{ from unbiasedness}$$
 (5)

$$= \mathbb{E}[(b-\beta)(b-\beta)|x| \text{ from unbiasedness}$$

$$= \mathbb{E}[(x'x)^{-1}x'\varepsilon\varepsilon'x(x'x)^{-1}|x|$$
(6)

$$= \mathbb{E}[(x'x)^{-1}x'\varepsilon\varepsilon'x(x'x)^{-1}|x] \tag{6}$$

$$= (x'x)^{-1}x'(\sigma^2 I_N)x(x'x)^{-1} \text{ by 3 and 4}$$
 (7)

$$= \sigma^2 (x'x)^{-1} \tag{8}$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Mod

Assumptions
Goodness-Of-Fit
Hypothesis Testing

neorem rst Thoughts on adogeneity

Aeasurement Erro Omitted Variables Bias

Simultaneity

Squares Squares

Pecomposition Peasible GLS

Maximum ikelihood

Estimation

Introduction
MLE Properties

Gauss-Markov Assumptions

DF Adjustment, Consistency, and Asymptotics

Significance Tests:

Assumption 5:
$$\varepsilon \sim N(0, \sigma^2 I_N) \Rightarrow b \sim N(\beta, \sigma^2 (x'x)^{-1})$$

$$\Rightarrow$$
 unbiased estimator of σ^2 : $S^2 = \frac{1}{N-k} \sum_{i=1}^N \varepsilon_i^2$

Consistency:

$$\begin{array}{c} \mathsf{Plim} = \beta \text{ as } \mathsf{N} \to \infty \text{ (Asymptotics)} \\ \mathsf{Assumption 6:} \ \ \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \mathsf{x}_i \mathsf{x}_i' \text{ converges to finite nonsingular matrix } \Sigma_{\mathsf{xx}}. \\ \mathsf{Assumption 7:} \ \mathbb{E}[\mathsf{x}_i \varepsilon_i] = 0 \end{array}$$

Distribution:

As
$$N \to \infty$$
, $\sqrt{N}(b-\beta) \to N(0, \sigma^2 \Sigma_{xx}^{-1})$
Approximate in finite samples $b \sim N(\beta, S^2(x'x)^{-1})$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate M

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing

First Thoughts on Endogeneity Measurement Erro

Omitted Variables
Bias
Simultaneity

Generalized Least

Decomposition Feasible GLS

Likelihood Estimation

Introduction
MLE Properties
The Three Classica

Econometrics

Paul P. Momtaz

Goodness-Of-Fit

Ordinary Least Squares

Goodness-Of-Fit

Goodness-Of-Fit

$$R^{2} = \frac{\widehat{Var}(\hat{y}_{i})}{\widehat{Var}(y_{i})} = \frac{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - \overline{y}_{i})^{2}}{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \overline{y}_{i})^{2}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y}_{i})^{2}} = \frac{ESS}{TSS}$$

$$\widehat{Var}(y_{i}) = \widehat{Var}(\hat{y}_{i}) + \widehat{Var}(\varepsilon_{i})$$

$$R^{2} = 1 - \frac{\widehat{Var}(\varepsilon_{i})}{\widehat{Var}(y_{i})} = 1 - \frac{\sum_{i=1}^{N} \varepsilon_{i}^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y}_{i})^{2}} = 1 - \frac{RSS}{TSS}$$

Adjusted
$$R^2=1-rac{rac{1}{N-k}\sum_{i=1}^{N}arepsilon_i^2}{rac{1}{N-1}\sum_{i=1}^{N}(y_i-\overline{y_i})^2}$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate N

Goodness-Of-Fit

Hypothesis Testing
Frisch-Waugh(-Lovell

irst Thoughts on ndogeneity Measurement Error

Omitted Variables Bias

Simultaneity

Generalized Least Squares

Decomposition Feasible GLS

Maximum Likelihood

Introduction

MLE Properties
The Three Classic

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit

Hypothesis Testing

Frisch-Waugh(-Lovell) Theorem First Thoughts on Endogeneity Measurement Error Omitted Variables Bias Simultaneity

Generalized Least Square

Cholesky Decomposition

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical Tests of MLE

Ordinary Least Squares

The Bivariate Mode Gauss-Markov Assumptions Goodness-Of-Fit

Hypothesis Testing Frisch-Waugh(-Lov

Theorem First Though

Endogeneity

Measurement Err

Omitted Variables Bias

Community

Generalized Lea Squares

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Properties

Standard Error of
$$b_j = SE(b_j) = \sqrt{Var(b_j)} = S\sqrt{(x'x)_{jj}^{-1}}$$

$$H_0: eta_j = eta_j^0 \qquad t_j = rac{b_j - eta_j^0}{\mathsf{SE}(b_j)} \sim t_{N-k}$$

Two-sided: $\alpha = 5\% \rightarrow 1.96 < t_j$,

One sided: $\alpha = 5\% \rightarrow 1.64 < t_j$

Confidence Intervals: $b_j - T_{N-k,\frac{\alpha}{2}}SE(b_j) < \beta_j < b_j + t_{N-k,\frac{\alpha}{2}}SE(b_j)$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model
Gauss-Markov
Assumptions
Goodness-Of-Fit

Hypothesis Testing

Theorem First Thoughts on

ndogeneity Measurement Erro Omitted Variables

Omitted Variables Bias

Simultan

Generalized Least Squares

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction

MLE Properties
The Three Classical

Hypothesis Testing

F test

$$H_0: \beta_{k-l+1} = \cdots = \beta_k = 0$$

Compare RSS of full and restricted model (S_1 and S_0)

$$f = \frac{(S_0 - S_1/J)}{S_1/(N-k)} \sim F_{N-k}^J$$
 or $f = \frac{(R_1^2 - R_0^2)/J}{(1 - R_1^2)/(N-k)}$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit

Hypothesis Testing Frisch-Waugh(-Lovell

First Thoughts

Measurement Erro

Omitted Variables Bias

Simultane

Generalized Least

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Properties
The Three Classical
Tests of MLE

o a cinite

Ordinary Least Squares

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit
Hypothesis Testing

Frisch-Waugh(-Lovell) Theorem

First Thoughts on Endogeneity Measurement Error Omitted Variables Bias Simultaneity

Generalized Least Square

Cholesky Decomposition

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical Tests of MLI

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Mode Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing

Frisch-Waugh(-Lovell) Theorem

Endogeneity

Measurement Erro

Omitted Variables Bias

Simultaneity

Generalized Lea Squares

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Properties

Frisch-Waugh(-Lovell) Theorem

Partitioned Regressions

$$y = x_1 \beta_1 + x_2 \beta_2 + \varepsilon$$
 or $\begin{bmatrix} x_1 & x_2 \\ x_1 & x_2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} + \begin{bmatrix} \varepsilon \\ \varepsilon \end{bmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$

Premultiply by x'_1 and x'_2 yo get rid of ε .

Premultiply lower equation by $(x_1'x_2)(x_2'x_2)^{-1}$ to get

$$(x_1'x_2)(x_2'x_2)^{-1}(x_2'x_1)\hat{\beta}_1 + (x_1'x_2)\hat{\beta}_2 = (x_1'x_2)(x_2'x_2)^{-1}x_2'y$$

Subtract this from upper equation to get rid of $\hat{\beta}_2$ and define $P_2 = x_2(x_2'x_2)^{-1}$.

$$\hat{\beta}_1^{OLS} = [x_1'(I - P_2)x_1]^{-1}x_1'(I - P_2)y$$

So, we purged x_1 off its correlation with x_2 . The regression "controls" for x_2 .

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing

Frisch-Waugh(-Lovell) Theorem

First Thoughts on Endogeneity

Measurement Erro Omitted Variables Bias

Generalized Least

Cholesky Decomposition

Maximum Likelihood

Introduction
MLE Properties
The Three Classic

Tests of MLE

Frisch-Waugh(-Lovell) Theorem

Omitted Variable Bias

What did we do?

- 1. Regress x_1 on x_2 .
- 2. Residual matrix $E_{1\cdot 2} = (I P_2)x_1$.
- 3. $y \sim E_{1.2}$

Another way to see this:

Assume
$$\mathbb{E}[x_2|x_1] = \pi x_1$$

$$y = \beta_1 x_1 + (\beta_2 x_2 + \varepsilon)$$

$$\mathbb{E}[y|x_1] = \beta_1 x_1 + \mathbb{E}[\beta_2 x_2 | x_1] + \mathbb{E}[\varepsilon | x_1] = \beta_1 x_1 + \beta_2 \pi x_1$$

The multivariate regression decomposes the overall effect of changes in x_1 into a direct effect, β_1 , and an indirect effect associated with changes in x_2 , $\beta_2\pi$.

In contrast, a univariate regression would have given the overall effect $\hat{\beta}_1^* = \hat{\beta}_1 + \pi \hat{\beta}_1$.

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit

Frisch-Waugh(-Lovell) Theorem

Endogeneity
Measurement Erro
Omitted Variables

Omitted Variables Bias Simultaneity

Generalized Least

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Introduction
MLE Properties
The Three Classical

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model
Gauss-Markov
Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell)

First Thoughts on Endogeneity

Measurement Erro Omitted Variables Bias

Generalized Least

Cholesky Decomposition Feasible GLS

Maximum Likelihood

Likelihood Estimatioi

Introduction
MLE Properties
The Three Classic

Ordinary Least Squares

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell) Theorem

First Thoughts on Endogeneity

Measurement Error Omitted Variables Bias Simultaneity

Generalized Least Square

Cholesky Decomposition Feasible GLS

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical Tests of MLE

Measurement error in dependent variable not a problem for OLS consistency or validity, but problematic if in independent variable.

$$y_i = \beta x_i^* + \varepsilon_i$$

But we only observe
$$x_i = x_i^* + v_i, \qquad v_i \sim N(0, \sigma_v^2).$$

Errors flatten out OLS line due to scattered point estimates.

$$\begin{aligned} \textit{Plim}(b) &= \textit{plim}\left(\frac{\sum x_i y_i / n}{\sum x_i^2 / n}\right) = \frac{\textit{Cov}(x^* + v, \beta x^* + \varepsilon)}{\textit{Var}(x)} \quad \text{mean } \cdot \\ &= \beta \cdot \frac{\sigma_{x^*}^2}{\sigma_{x^*}^2 + \sigma_v^2} = \beta \cdot \frac{1}{1 + \frac{\sigma_v^2}{\sigma_{x^*}^2}} \quad \text{Signal-to-noise-ratio} \end{aligned}$$

Paul P. Momtaz

Ordinary Least Squares

> The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell)

First Thoughts on Endogeneity

Measurement Error

Omitted Variables

Committeed I cont

Squares

Feasible GLS

mean - zero variables

Introduction

MLE Properties
The Three Classical
Tests of MLE

We observe $x_i = x_i^* + v_i$ where x_i^* is true value

$$y_i = \alpha + \beta x_i^* + \varepsilon_i$$

= $\alpha + \beta (x_i - v_i) + \varepsilon_i$
= $\alpha + \beta x_i + (\varepsilon_i - \beta v_i)$
= $\alpha + \beta x_i + u_i$

Both x_i and u_i depend on v_i , so correlated \Rightarrow OLS estimation downward biased.

Measurement error in y_i increase variance in error term but does not cause endogeneity.

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model
Gauss-Markov
Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell

First Thoughts on Endogeneity

Measurement Error

Omitted Variables Bias

Generalized Least

quares Cholesky Decomposition

Maximum Likelihood

Introduction

MLE Properties
The Three Classical
Tests of MLE

$$y = x_1 \beta_1^* + v$$
 and $y = x_1 \beta_1 + x_2 \beta_2 + \varepsilon$

$$\beta_2 = (x_1'x_1)^{-1}x_1'(y - x_2\beta_2)$$

$$= (x_1'x_1)^{-1}x_1'y - (x_1'x_1)^{-1}x_1'x_2\beta_2$$

$$= \beta_1^* - (x_1'x_1)^{-1}x_1'x_2\beta_2$$

$$\Rightarrow \beta_1^* = \beta_1 + G\beta_2 \Rightarrow$$
 Asymptotic bias (unless $G = 0$ or $\beta_2 = 0$)

- No OVB if $corr(x_1, x_2) = 0$.
- ▶ OVB does not cause $corr(x_1, v) \neq 0$ as $\mathbb{E}[v|x_1] = 0$ in short regression.
- ▶ But if OVB x_1 corr to composite error term $u = x_2\beta_2 + \varepsilon$.
- If you do not control for x_2 , you assume that x_2 varies with changes in x_1 .

Econometrics

Paul P. Momtaz

Omitted Variables Bias

Simultaneity

Given two structural equations $y_i = \beta_1 x_i + \gamma_1 w_i + u_i$ and $w_i = \beta_2 x_i + \gamma_2 y_i + v_i.$

$$w_i = \frac{\beta_2 + \gamma_2 \beta_1}{1 - \gamma_1 \gamma_2} x_i + \frac{1}{1 - \gamma_1 \gamma_2} v_i + \frac{\gamma_2}{1 - \gamma_1 \gamma_2} u_i$$

Assuming

$$Corr(x_i, u_i) = Corr(v_i, u_i) = 0 \Rightarrow \mathbb{E}[w_i u_i] = \frac{\gamma_2}{1 - \gamma_1 \gamma_2} \mathbb{E}[u_i u_i] \neq 0 \Rightarrow \mathbb{E}[u|w] \neq 0$$

Econometrics

Paul P. Momtaz

Simultaneity

Generalized Least Squares (GLS)

$$y_t = x_t' \beta + \varepsilon_t$$
 where $\varepsilon_t = u_t + u_{t-1} \Rightarrow \text{ error structure not homoskedastic.}$

$$\mathbb{E}[\varepsilon\varepsilon'] = \Sigma = \sigma^2 D = \sigma^2 \begin{bmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & \dots & \vdots \\ 0 & 1 & 1 & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & 2 \end{bmatrix}$$

Econometrics

Paul P. Momtaz

Generalized Least Squares

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell Theorem

First Thoughts on Endogeneity Measurement Erro

Omitted Variables

Generalized Least

Cholesky Decomposition

Feasible GLS

Maximum _ikelihood

Introduction
MLE Properties
The Three Classic

Ordinary Least Squares

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell) Theorem
First Thoughts on Endogeneity
Measurement Error
Omitted Variables Bias

Generalized Least Squares

Cholesky Decomposition

Feasible GLS

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical Tests of MLE

Generalized Least Squares (GLS)

Cholesky Decomposition

To demonstrate properties of GLS transform to CLRM and show that $\mathsf{BLUE}.$

1. Transform

Cholesky Factorization:
$$D = (L')^{-1}L^{-1} \Rightarrow L'DL = I_t$$
, given D symm, pos - def
So: $L'v = L'x\beta + L'\varepsilon \Rightarrow v^* + x^*\beta + \varepsilon^* \Rightarrow \mathsf{CLRM}$

2. Show Properties

By Gauss - Markov,
$$\hat{\beta}_{OLS}^* = (x^{*'}x^*)^{-1}x^{*'}y^*$$
 is BLUE, so

$$\hat{\beta}_{GLS} = (x'LL'x)^{-1}x'LL'y$$

$$= (x'D^{-1}x)^{-1}x'D^{-1}y$$

$$= (x'(\sigma^2D)^{-1}x)^{-1}x'(\sigma^2D)^{-1}y$$

$$= (x'\Sigma^{-1}x)^{-1}x'\Sigma^{-1}y$$
Note That
$$= (x'\Sigma^{-1}x)^{-1}x'\Sigma^{-1}(x\beta + \varepsilon)$$

$$= \beta + (x'\Sigma^{-1}x)x'\Sigma^{-1}\varepsilon$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model
Gauss-Markov
Assumptions
Goodness-Of-Fit
Hypothesis Testing
Friesh-Waugh(Lovell)

rst Thoughts o idogeneity

Measurement Error Omitted Variables Bias

Generalized Least Squares

Cholesky Decomposition Feasible GLS

Likelihood
Estimation
Introduction
MLE Properties
The Three Classical

Generalized Least Squares (GLS)

So:

$$Var[\hat{\beta}_{GLS}] = \mathbb{E}[(\hat{\beta}_{GLS} - \beta)(\hat{\beta}_{GLS} - \beta)'] = (x'\Sigma^{-1}x)^{-1}$$

Intuition: GLS weights observations by the inverse square root of the variance of the error term since $L'=D^{\frac{-1}{2}}\propto \Sigma^{-\frac{1}{2}}$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell

First Thought Endogeneity

Measurement Erro Omitted Variables Bias

Generalized Least

Cholesky Decomposition

Decomposition Feasible GLS

Maximum Likelihood Estimation

Introduction
MLE Properties
The Three Classical
Tests of MLE

Generalized Least Squares

Feasible GLS

Econometrics

Paul P. Momtaz

Feasible GLS

Feasible Generalized Least Squares (Feasible GLS)

Often Σ is unknown but $\hat{\Sigma}$ exists.

Sufficient conditions for consistency and asymptotic normality of FGLS:

1.
$$plim \frac{1}{N} x' \hat{\Sigma}^{-1} x \rightarrow Q_{\Sigma} > 0$$
.

2.
$$plim \frac{1}{N} x' \hat{\Sigma}^{-1} \varepsilon \to 0$$

why?

$$\hat{\beta}_{FGLS} = (x'\hat{\Sigma}^{-1}x)^{-1}x'\hat{\Sigma}^{-1}y = \beta + (x'\hat{\Sigma}^{-1}x)^{-1}x'\hat{\Sigma}^{-1}\varepsilon$$

$$Plim(\hat{\beta}_{FGLS} - \beta) = Plim(x'\hat{\Sigma}^{-1}x)^{-1}plim(x'\hat{\Sigma}^{-1}\varepsilon) \to (Q_{\Sigma})^{-1} \cdot 0 = 0$$

If heteroskedasticity of unknown form, i.e. $\mathbb{E}[\varepsilon_t^2] = \sigma_t^2$ and $\Sigma = diag(\sigma_t^2)$,

We can estimate $\hat{\sigma}_t^2 = \hat{\varepsilon}_t^2$ from a first - stage regression. But $\hat{\Sigma} \nrightarrow \Sigma$.

Note that $\frac{1}{N}x'\hat{\Sigma}^{-1}x = \frac{1}{N}\sum_t \frac{1}{\hat{\sigma}_t^2}x_tx_t'$ where $\hat{\Sigma}$ is $k \times k$ fixed since $N \to \infty$. So: $plim \frac{1}{N}x'\hat{\Sigma}^{-1}x \to Q_{\Sigma} > 0$ and $plim \frac{1}{N}x'\hat{\Sigma}^{-1}\hat{\varepsilon} \to 0$.

Econometrics

Paul P. Momtaz

Ordinary Least Squares

auss-Markov ssumptions oodness-Of-Fit ypothesis Testing risch-Waugh(-Lovell) heorem

dogeneity

leasurement Error

mitted Variables

Simultaneity

Generalized Least

Squares Cholesky

Feasible GLS

Likelihood
Estimation
Introduction
MLE Properties
The Three Classical

Ordinary Least Square

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell) Theorem
First Thoughts on Endogeneity
Measurement Error
Omitted Variables Bias

Generalized Least Square

Cholesky Decomposition

Maximum Likelihood Estimation

Introduction

MLE Properties
The Three Classical Tests of MI

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell Theorem

Endogeneity
Measurement Erro

Omitted Variables Bias Simultaneity

Generalized Least

Cholesky Decomposition

Maximum Likelihood

Introduction

MLE Properties
The Three Classica
Tests of MLE

MLF Introduction

Intuition: Find θ that maximizes the likelihood of observations.

$$\max_{\theta} L(\theta; y) = \max_{\theta} \prod_{i=1}^{N} f(y_i; \theta) \text{ or } \max_{\theta} \log L(\theta; y) = \max_{\theta} \sum_{i=1}^{N} \log f(y_i; \theta)$$

Efficient score: $S(\theta) = \frac{\partial \log L}{\partial \theta}$. MLE is solution to $S(\hat{\theta}) = 0$.

Example:

$$y_i = \alpha + \beta x_i + \varepsilon_i, \qquad \varepsilon_i \sim IN(0, \sigma^2), \qquad y_i \sim IN(\alpha + \beta x_i, \sigma^2)$$

$$f(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (y_i - \alpha - \beta x_i)^2\right]$$
$$\log L(\alpha, \beta, \sigma^2; data) = \sum_{i=1}^{N} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y_i - \alpha - \beta x_i)^2\right]$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell)

rst Thoughts on ndogeneity Measurement Erro

Omitted Variables Bias Simultaneity

Generalized Least Squares

Decomposition Feasible GLS

> Maximum Likelihood Estimation

Introduction

MLE Properties
The Three Classica

MLE Introduction

FOC's:

$$[\alpha] \sum_{i=1}^{N} (y_i - \hat{\alpha} - \hat{\beta} x_i) = 0$$
$$[\beta] \sum_{i=1}^{N} x_i (y_i - \hat{\alpha} - \hat{\beta} x_i) = 0$$
$$[\sigma^2] \underbrace{\mathcal{N}\hat{\sigma}^2}_{\text{not} (N-2)!} = \sum_{i=1}^{N} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Plug in $\hat{\sigma}^2$ in $\log L(\alpha, \beta, \sigma^2; data)$ to see maximized $\log L$ is

$$\log L(\hat{\theta}) = \text{constant} - \frac{N}{2} \log \hat{\sigma}^2 = \text{constant} - \frac{N}{2} \log \left(\frac{RSS}{N} \right)$$

Individual Score:
$$S_i(\theta) = \frac{\partial \log L_i(\theta)}{\partial \theta}$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell) Theorem

Endogeneity

Measurement Erro

Omitted Variables Bias

Simultaneity

Squares Cholesky

Decomposition Feasible GLS

Maximum Likelihood

Introduction

MLE Properties
The Three Classical

Maximum Likelihood Estimation

MLE Properties

Econometrics

Paul P. Momtaz

MLE Properties The Three Classical

MLE Properties

Average information matrix : $\overline{J}_N(\theta) = -\mathbb{E}\left[\frac{1}{N}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right]$ Limiting information matrix: $J(\theta) \equiv \lim_{N \to \infty} \overline{J}_N(\theta)$

$MLE, \hat{\theta}, is$

- Consistent
- Asymptotically normal since $\sqrt{N}(\hat{\theta} \theta) \rightarrow N(0, [J(\theta)]^{-1})$.
- Asymptotically efficient (Cramer Rao lower bound).
- Invariant (continuous function theorem: MLE of $g(\theta)$ for any $g(\hat{\theta})$.
- \triangleright $Var[S_i(\theta)] = \mathbb{E}[S_i(\theta)S_i(\theta)'] = J_i(\theta).$

Can be estimated outer product of gradients (G)

Econometrics

Paul P. Momtaz

MLE Properties

$$\hat{V}_{G} = \left[\frac{1}{N}\sum_{i=1}^{N}S_{i}(\hat{\theta})S_{i}(\hat{\theta})'\right]^{-1}$$

or Hessian

$$\hat{V}_H = \left[-rac{1}{N} \sum_{i=1}^N rac{\partial^2 \log L_i(heta)}{\partial heta \partial heta'} \Big|_{\hat{ heta}}
ight]^{-1}$$

Ordinary Least Square

The Bivariate Model
Gauss-Markov Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell) Theorem
First Thoughts on Endogeneity
Measurement Error
Omitted Variables Bias

Generalized Least Square

Cholesky Decomposition

Maximum Likelihood Estimation

Introduction
MLE Properties

The Three Classical Tests of MLF

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell) Theorem

Endogeneity
Measurement Erro

Omitted Variables Bias Simultaneity

Generalized Least

Cholesky Decomposition

Maximum Likelihood

Introduction

MLE Propertie

The Three Classical Tests of MLE

Idea: Set of restrictions to be tested $H_0: h(\theta) = 0$ $\hat{\theta}$ and $\tilde{\theta}$ are unrestricted and restricted MLE, respectively.

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell

Endogeneity
Measurement Erro

Omitted Variables Bias

Generalized Least Squares

Squares Cholesky Decomposition

Maximum
Likelihood
Estimation
Introduction

MLE Properties
The Three Classical
Tests of MLE

Wald Test

- ▶ Approximate $Var[h(\hat{\theta})] = G(\theta)' Var[\hat{\theta}] G(\theta)$ where $G(\theta) = \frac{\partial h(\theta)'}{\partial \theta}$.
- ► Test Statistic $\xi_W = Nh(\hat{\theta})'[G(\theta)'[J(\theta)]^{-1}G(\theta)]^{-1}h(\hat{\theta}), \xi_W \sim_a \chi^2(d).$
- ▶ Estimate $[J(\theta)]^{-1}$ by \hat{V}_H or \hat{V}_G evaluated at $\hat{\theta}$, evaluate $G(\theta)$ at $\hat{\theta}$.
- ► Shortcoming: Wald test not invariant to how restrictions (linear/non-linear) are formulated.
- Overall question: How close is $h(\hat{\theta})$ to zero since $h(\tilde{\theta}) = 0$?

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell) Theorem

Endogeneity

Measurement Erro

Omitted Variables Bias Simultaneity

. Generalized Lea

Squares

Cholesky Decomposition

Maximum Likelihood

Estimation Introduction

Likelihood Ratio Test

- ► How close are $L(\hat{\theta})$ and $L(\tilde{\theta})$?

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov
Assumptions
Goodness-Of-Fit
Hypothesis Testing
Frisch-Waugh(-Lovell

irst Thoughts of Indogeneity

Omitted Variables Bias

Simultaneity

Generalized Least Squares

> Cholesky Decomposition Feasible GLS

Maximum Likelihood

troduction

Lagrange Multiplier or Score Test

- ▶ How close is $S(\tilde{\theta})$ to zero given $S(\hat{\theta}) = 0$?

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell

First Thoughts of Endogeneity

Measurement Erro Omitted Variables Bias

Simultanei

Generalized Least

Cholesky Decomposition

Maximum

Estimation

ntroduction

Lagrange Multiplier or Score Test

Alternative Computation

Alternative for ξ_{IM}

- ▶ Supplementary regression $\tilde{u} \sim x$
- $ightharpoonup RSS = N\hat{\sigma}^2$.
- $ightharpoonup TSS = N\tilde{\sigma}^2$

$$\Rightarrow R_u^2 = 1 - rac{\hat{\sigma}^2}{\tilde{\sigma}^2}, \qquad \xi_{LM} = NR_u^2$$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing Frisch-Waugh(-Lovell)

First Thou Endogene

> Measurement Erro Omitted Variables Bias

Simultar

Generalized Least Squares

Cholesky Decomposition

Maximum Likelihood

Estimation Introduction

ntroduction MLE Properties

The Three Classical Tests of MLE

Application

$$y = x\beta + u$$
 $N(0, \sigma^2 I)$

Unrestricted Estimation: $\log L(\hat{\beta}, \hat{\sigma}^2) = \text{constant} - \frac{N}{2} \log \hat{\sigma}^2$

Restricted Estimation: $\log L(\tilde{\beta}, \tilde{\sigma}^2) = \text{constant} - \frac{N}{2} \log \tilde{\sigma}^2$

$$\xi_{LR} = N \log \left(\frac{\tilde{\sigma}^2}{\hat{\sigma}^2} \right), \qquad \xi_N = N \left(\frac{\tilde{\sigma}^2 - \hat{\sigma}^2}{\hat{\sigma}^2} \right), \qquad \xi_{LM} = N \left(\frac{\tilde{\sigma}^2 - \hat{\sigma}^2}{\tilde{\sigma}^2} \right)$$

Note that test statistics are functions of each other

$$\xi_{\mathit{LR}} = \mathit{N} \log \left(1 + \frac{\xi_{\mathit{w}}}{\mathit{N}} \right), \qquad \xi_{\mathit{LM}} = \frac{\xi_{\mathit{w}}}{1 + \frac{\xi_{\mathit{w}}}{\mathit{N}}}$$

Linear Case: $\xi_w \geq \xi_{LR} \geq \xi_{LM}$

Econometrics

Paul P. Momtaz

Ordinary Least Squares

The Bivariate Model Gauss-Markov Assumptions Goodness-Of-Fit Hypothesis Testing

First Thoughts on Endogeneity

Omitted Variables Bias Simultaneity

Generalized Least

Squares Cholesky Decomposition

Maximum

Estimation
Introduction
MLE Properties