Método de Newton

Polinômio de Taylor

Seja $f \in C^2[a, b]$ e $p_o \in [a, b]$ uma aproximação da raiz p tal que $f'(p_0) \neq 0$ e $|p - p_0|$ é pequeno.

Polinômio de taylor de f expandido em p_0 e avaliado em x = p:

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + O((p - p_0)^2)$$

Mas f(p)=0. Então:

$$0 \approx f(p_0) + (p - p_0)f'(p_0)$$

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)} \equiv p_1$$

Método de Newton

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)} \equiv p_1$$

Gere a sequência $\{p_n\}_{n=0}^{\infty}$ dada por

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
, para $n \ge 1$.

Algoritmo

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

```
Step 1 Set i = 1.
```

Step 2 While $i \leq N_0$ do Steps 3–6.

```
Step 3 Set p = p_0 - f(p_0)/f'(p_0). (Compute p_i.)
```

Step 4 If
$$|p - p_0| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Outros critérios de parada

$$|p_N - p_{N-1}| < \varepsilon,$$
 $\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \quad p_N \neq 0,$
 $|f(p_N)| < \varepsilon.$

Relação com iteração de ponto fixo

Iteração do ponto fixo: $p_n = g(p_{n-1})$

Método de Newton é do tipo iteração do ponto fixo:

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ para } n \ge 1.$$

Exemplo: $x^3 + 4x^2 - 10 = 0$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

n	(a)	(b)	(c)	(<i>d</i>)	(e)
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
5			1.360094193	1.365225594	
6			1.367846968	1.365230576	
7			1.363887004	1.365229942	
8			1.365916734	1.365230022	
9			1.364878217	1.365230012	
10			1.365410062	1.365230014	
15			1.365223680	1.365230013	
20			1.365230236		
25			1.365230006		
30			1.365230013		

Exemplo

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando a) ponto fixo e b) o método de Newton.

a) A solução do problema da raiz acima é a solução do problema de ponto fixo $x = \cos x$. Teremos um único ponto fixo em $[0, \pi/2]$.

Considerando $p_0 = \pi/4$:

p_n
0.7853981635
0.7071067810
0.7602445972
0.7246674808
0.7487198858
0.7325608446
0.7434642113
0.7361282565

Exemplo

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando a) ponto fixo e b) o método de Newton.

Pelo método de Newton:

$$f'(x) = -\sin x - 1.$$

Considerando $p_0 = \pi/4$, vamos gerar a sequência

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f(p'_{n-1})} = p_{n-1} - \frac{\cos p_{n-1} - p_{n-1}}{-\sin p_{n-1} - 1}.$$

Newton's Method

n	p_n
0	0.7853981635
1	0.7395361337
2	0.7390851781
3	0.7390851332
4	0.7390851332

Ponto fixo

n	p_n
0	0.7853981635
1	0.7071067810
2	0.7602445972
3	0.7246674808
4	0.7487198858
5	0.7325608446
6	0.7434642113
7	0.7361282565

Convergência

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + O((p - p_0)^2)$$
$$0 \approx f(p_0) + (p - p_0)f'(p_0)$$

 $O((p-p_0)^2$ é muito pequeno se p_0 está próximo de p.

O método de Newton pode não funcionar bem caso contrário.

Teorema

Seja $f \in C^2[a, b]$. Se $p \in (a, b)$ é tal que f(p) = 0 e $f'(p) \neq 0$, então existe $\delta > 0$ tal que o método de Newton gera uma sequência $\{p_n\}_{n=1}^{\infty}$ que converge para p para qualquer aproximação inicial $p_0 \in [p - \delta, p + \delta]$.

Prova: vamos precisar do Teorema do ponto-fixo:

Seja $g \in C[a,b]$ tal que $g(x) \in [a,b]$ para todo $x \in [a,b]$. Suponha que g' exista em (a,b) e que exista a constante 0 < k < 1 tal que

$$|g'(x)| \le k$$
, para todo $x \in (a, b)$.

Então para qualquer número p_0 em [a, b], a sequência

$$p_n=g(p_{n-1}), \quad n\geq 1,$$

converge para o ponto fixo único $p \in [a, b]$.

Teorema

Seja $f \in C^2[a, b]$. Se $p \in (a, b)$ é tal que f(p) = 0 e $f'(p) \neq 0$, então existe $\delta > 0$ tal que o método de Newton gera uma sequência $\{p_n\}_{n=1}^{\infty}$ que converge para p para qualquer aproximação inicial $p_0 \in [p - \delta, p + \delta]$.

Prova: Considere $p_n = g(p_{n-1})$ para $n \ge 1$ $g(\alpha) = x - \frac{f(x)}{f'(x)}$ Seja $k \in (0, 1)$.

Vamos encontrar um intervalo $[p - \delta, p + \delta]$ tal que $g(x) \in [p - \delta, p + \delta]$ para $x \in [p - \delta, p + \delta]$ e $|g'(x)| \le k$.

Se f' é contínua e $f'(p) \neq 0$, existe δ_1 tal que $f'(x) \neq 0$ para $x \in [p - \delta_1, p + \delta_1]$.

Além disso
$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$
,

para
$$x \in [p - \delta_1, p + \delta_1], e g \in C^1[p - \delta_1, p + \delta_1]$$

Como
$$f(p) = 0$$
, temos que $g'(p) = \frac{f(p)f''(p)}{[f'(p)]^2} = 0$.

Seja $f \in C^2[a, b]$. Se $p \in (a, b)$ é tal que f(p) = 0 e $f'(p) \neq 0$, então existe $\delta > 0$ tal que o método de Newton gera uma sequência $\{p_n\}_{n=1}^{\infty}$ que converge para p para qualquer aproximação inicial $p_0 \in [p - \delta, p + \delta]$.

Como
$$f(p) = 0$$
, temos que $g'(p) = \frac{f(p)f''(p)}{[f'(p)]^2} = 0$.

Sendo g' contínua e 0 < k < 1, existe δ tal que $0 < \delta < \delta_1$ e $|g'(x)| \le k$, para todo $x \in [p - \delta, p + \delta]$.

Falta mostrar que g mapeia $[p - \delta, p + \delta]$ em $[p - \delta, p + \delta]$.

Pelo Teorema do Valor Médio, existe $\xi \in (x, p)$ tal que

$$|g(x) - g(p)| = |g'(\xi)||x - p|.$$

Então

$$|g(x) - p| = |g(x) - g(p)| = |g'(\xi)||x - p| \le k|x - p| < |x - p|.$$

Como $x \in [p-\delta, p+\delta], |x-p| < \delta$. Daí $|g(x)-p| < \delta$.

Consequentemente g mapeia $[p - \delta, p + \delta]$ em $[p - \delta, p + \delta]$.

Teorema

Seja $f \in C^2[a, b]$. Se $p \in (a, b)$ é tal que f(p) = 0 e $f'(p) \neq 0$, então existe $\delta > 0$ tal que o método de Newton gera uma sequência $\{p_n\}_{n=1}^{\infty}$ que converge para p para qualquer aproximação inicial $p_0 \in [p - \delta, p + \delta]$.

$$|g'(x)| \le k$$
, para todo $x \in [p - \delta, p + \delta]$.

Consequentemente g mapeia $[p - \delta, p + \delta]$ em $[p - \delta, p + \delta]$.

Pelo Teorema do ponto-fixo, a sequência

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
, para $n \ge 1$

converge para p para qualquer $p_0 \in [p - \delta, p + \delta]$.

Mas não sabemos determinar δ .

Na prática, dada uma aproximação p_0 , o método converge rápido, ou fica rapidamente claro que diverge.