Logistic Regression

Plan

- 1. Primers & Problem Statement
- 2. Logistic Regressions
- 3. Interpretation
- 4. Performance Evaluation
- 5. Multicollinearity issues in Linear Models (Lin/Log)

<u>Lecture notebook (https://github.com/lewagon/data-lecture-starters/blob/main/starters/04-Decision-Science_04-Logistic-Regression.ipynb)</u>

1. Primers

$$\log_2(8) = 3$$

$$\log_2(\frac{1}{2}) = -1$$

$$\ln(5) = \log_e(5) = 1.6$$

$$e^0=2^0=1$$

A probability of 0.9 (a.k.a 90%) can be represented as:

$$P(\text{Event}) = 0.9$$

This means that out of 100 occurrences, the event is expected to happen 90 times.

The problem: How can we predict a binary outcome?

- Win / Loss ?
- Success / Failure
- dim_is_one_star or not?

Instead of fitting the best straight line $linreg(x) = \beta_0 + \beta_1 X$

...

We will try to fit the best **sigmoid function**

 \hat{y}

Then, we set a **classification threshold** (usually at 50% by default) observations predicted with \hat{y} are classified as 1's observations predicted with \hat{y} are classified as 0's

2. Logistic Regressions

The Barcelona Women's Football Team is going on tour

- Every game is a win-lose scenario (they play penalties to avoid draws!)
- We are given the opportunity to bet on the team **before** the tour happens

Probability, Odds and Log-Odds 🦾

Imagine we go to some gambling website...

They show us what they think the probability of Barca winning will be:

Opponent	Probability of Barca winning; P(x)
Arsenal	0.5
Cape Town	0.5
Chelsea	0.4
Bayern Munich	0.1
PSG	0.8
Los Angeles	0.9

They also show us the odds!

Opponent	Probability of Barca winning: P(x)	Odds of winning: P(x) 1 - P(x)
Arsenal	0.5	$\frac{0.5}{0.5} = 1 \text{ ("1:1 odds")}$
Cape Town	0.5	$\frac{0.5}{0.5} = 1$
Chelsea	0.4	$\frac{0.4}{0.6} = \frac{2}{3} = 0.666$
Bayern Munich	0.1	$\frac{0.1}{0.9} = \frac{1}{9} = 0.111$
PSG	0.8	$\frac{0.8}{0.2} = \frac{4}{1} = 4$
Los Angeles	0.9	$\frac{0.9}{0.1} = \frac{9}{1} = 9$

And the log of the odds 🤔

Opponent	Probability of Barca winning: P(x)	Odds of winning: P(x) 1 - P(x)	Log odds of winning: $\log(\frac{P(x)}{1 - P(x)})$
Arsenal	0.5	$\frac{0.5}{0.5} = 1 \text{ ("1:1 odds")}$	log(1) = 0
Cape Town	0.5	$\frac{0.5}{0.5} = 1$	log(1) = 0
Chelsea	0.4	$\frac{0.4}{0.6} = \frac{2}{3} = 0.666$	log(0.666) = -0.4
Bayern Munich	0.1	$\frac{0.1}{0.9} = \frac{1}{9} = 0.111$	$\log(0.111) = -2.19$
PSG	0.8	$\frac{0.8}{0.2} = \frac{4}{1} = 4$	log(4) = 1.4
Los Angeles	0.9	$\frac{0.9}{0.1} = \frac{9}{1} = 9$	log(9) = 2.19

The Logit function maps a probability $p\in[0,1]$ to its log-odds $\in[-\infty,+\infty]$

The games are played and the results are in!

Opponent	Probability of winning:	Odds of winning: P(x) 1 - P(x)	Log odds of winning: $\log(\frac{P(x)}{1 - P(x)})$
Arsenal	1	10	for practical/visualization purposes we treat this as
Cape Town	0	0	we'll treat this as -60
Chelsea	1	1 0	፟
Bayern Munich	0	<u>0</u>	— ፟
PSG	1	1 0	፟
Los Angeles	1	1 0	%

We hear news that another game will be played!

We've lost some money and we want to build a model so we can predict what the outcome will be. But **can we**?

Not really! All we know is that Barca has played 6 games: they won 4 and lost 2.

```
We have no explanatory variables ( X ) to determine our outcome ( y )
```

So the naive method we have to work with is that Barca win 4/6 times so $P({\rm Barcelona\ winning}) = 0.666$

A friend comes to us with some insider knowledge 👀

	4		×
Opponent	Probability of winning: P(x)	Log odds of winning: $\log(\frac{P(x)}{1 - P(x)})$	Hours Barcelona spent preparing for match
Arsenal	1	%	16
Cape Town	0	— %	14
Chelsea	1	፟	12
Bayern Munich	0	-%	5
PSG	1	⇔	20
Los Angeles	1	≫	22

Let's visualize things again

Create a first try at "best fit" line

$$\log(\frac{P(x)}{1-P(x)}) = B_0 + B_1 \times \text{hours preparing}$$

Dummy values

Example new data point

$$\log(\frac{P(x)}{1 - P(x)}) = 5 + 2 \times 15 \text{ hours preparing}$$

$$= 35$$

But I thought we were interested in probabilities! What happened to that nice S-shaped curve? (9)

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$
 Exponentiate
$$\frac{p}{1-p} = e^{\beta_0 + \beta_1 X}$$
 Flip the fractions
$$\frac{1-p}{p} = \frac{1}{e^{\beta_0 + \beta_1 X}} = e^{-(\beta_0 + \beta_1 X)}$$

Multiply by p
$$1-p=pe^{-(\beta_0+\beta_1X)}$$
 Add the p across
$$1=p+pe^{-(\beta_0+\beta_1X)}$$
 Factorize the p's
$$1=p(1+e^{-(\beta_0+\beta_1X)})$$

Let's take a look

Model's Likelihood: 0.0364093130148228

But how should we decide on the best coefficients?

Our results vector is represented as:

$$y = [1, 0, 1, 0, 1, 1]$$

We want our model's predictions to be close to this:

True value 1 0 1 0 1 1

Predicted probability 0.99 0.02 0.97 0.04 0.91 0.89

How do we tweak our betas to optimize for this?

- Minimize some distance in the log odds space? X
- Minimize MSE in the probability space? X
- Minimize MAE in the probability space?

•• Consider rather the following **product**:

True value	1	0	1	0	1		1
Predicted probability	0.99	0.02	0.97	0.04	0.91		0.89
The product	0.99	× 1 - 0.02	× 0.97	× 1 - 0.04	× 0.91	×	0.89
	0.99	× 0.98	× 0.97	× 0.96	× 0.91	×	0.89

- It is always between 0 and 1
- The closer to 1, the better 🎉

This is precisely the combined probability of observing all the independent y_i

outcomes, if they were drawn from Bernoulli distributions of parameters

$$p=\hat{y_i}$$

(<u>*</u> A visual explanation (https://github.com/lewagon/data-images/blob/master/decision-science/likelihood-logisitc.png?raw=true))

This is called the Likelihood

$$L(\beta) = 0.99 \times (1 - 0.02)$$

Likelihood of observing

y

, given the predicted probabilities

 \hat{y}

"We want to choose β so as to make the data as probable as possible"

Likelihood with correct predictions

True value	1	0	1	0	1	1	
Predicted probability	0.99	0.02	0.97	0.04	0.91	0.89	
Prediction after threshold	1	0	1	0	1	1	
Likelihood	0.99 ×	1 - 0.02	× 0.97 ×	1 - 0.04	× 0.91	× 0.89	
	0.99 ×	0.98	× 0.97 ×	0.96	× 0.91	× 0.89	= 0.73

Likelihood with wrong predictions

True value	1	0	1	0	1	1	
Predicted probability	0.99	0.02	0.37	0.74	0.91	0.89	
Prediction after threshold	1	0	0	1	1	1	
Likelihood	0.99 ×	1 - 0.02	× 0.37 ×	c 1 - 0.74	× 0.91	× 0.89	
	0.99 ×	0.98	× 0.37 ×	0.26	× 0.91	× 0.89	= 0.08

Advanced: Under the hood, our models actually try to maximize log-likelihood

- · Still gives the same optimum point as maximizing likelihood
- But is guaranteed to be convex
- · More numerically stable

Log-likelihood over a range of α and β values

Nou'll see more visualizations like this in ML weeks!

Further reading on using log loss and why we use it here! (https://medium.com/towards-data-science/why-not-mse-as-a-loss-function-for-logistic-regression-589816b5e03c)

By maximizing Likelihood, a Logistic Regression is really just trying to predict probabilities

 $\ref{prop:sphere:eq:cons}$ On average, for **100** observations x_1,\dots,x_{100} that are predicted to have \hat{y}_i close to **0.95**, e.g. in [0.94-0.96]

- pprox pprox 95 of them will turn up to be true $y_i=1$
- Your model will classify them correctly \approx 95% of the time
- We say that Logistic Classifiers are calibrated classifiers! (very important)

3. Interpreting Logistic Regression

3.1 Reading coefficients

Let's take an example!

dataset contains survival outcomes (0/1) for ~900 passengers of the Titanic:

```
In [ ]: | titanic = sns.load_dataset("titanic")
        titanic.head(3)
```

Out[]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False

Without any feature

To start, let's run the following logistic regression:

$$Survived_i = \beta_0$$

```
In [ ]: model1 = smf.logit(formula='survived ~ 1', data=titanic).fit();
        model1.params
        Optimization terminated successfully.
                 Current function value: 0.665912
                 Iterations 4
Out[]: Intercept -0.473288
```

The log-odd of surviving titanic is -0.47

dtype: float64

? What does the intercept correspond to ?

```
\log_{0} \operatorname{odd} = \log\left(\frac{p}{1-p}\right)
= \beta_{0}
= -0.47
\Leftrightarrow \operatorname{odds} = \frac{p}{1-p}
= \exp(-0.47)
= 0.62
\Leftrightarrow \operatorname{Probability} p = \frac{0.62}{1+0.62}
= 38\%
```

Chance of surviving = 38%

Let's double check this:

Out[]:

	count	percentage
0	549	0.62
1	342	0.38

With 1 continuous feature

Let's add another term to the model:

$$Survived = \beta_0 + \beta_{fare}Fare$$

Fare

= Fare that passenger paid (in dollars, continuous variable)

```
In [ ]: | model3 = smf.logit(formula='survived ~ fare', data=titanic).fit()
        model3.params
        Optimization terminated successfully.
                  Current function value: 0.627143
                  Iterations 6
Out[ ]: Intercept
                     -0.941330
        fare
                     0.015197
        dtype: float64
```

How to interpret the fare coefficient?

Increasing fare by 1 dollar increases the log odds of surviving by 0.015

Taking the exponential:

```
\exp(0.015) = 1.01
```

For each additional dollar spent on fare, the odds of surviving increase by 1%

```
In [ ]: | model3 = smf.logit(formula='survived ~ fare', data=titanic).fit()
        model3.params
        Optimization terminated successfully.
                 Current function value: 0.627143
                 Iterations 6
Out[]: Intercept
                    -0.941330
        fare
                     0.015197
        dtype: float64
```

How to interpret the intercept?

The log-odds of surviving for a passenger who paid nothing is -0.94

With 1 categorical feature

Let's add one term to the model:

$$Survived = \beta_0 + \beta_{class}pclass$$

pclass

- Corresponds to the passenger class as a categorical variable (1,2 or 3)

```
model2 = smf.logit(formula='survived ~ C(pclass)', data=titanic).fit()
In [ ]:
        model2.params
        Optimization terminated successfully.
                 Current function value: 0.607805
                 Iterations 5
Out[ ]: Intercept
                          0.530628
        C(pclass)[T.2]
                         -0.639431
                         -1.670399
        C(pclass)[T.3]
        dtype: float64
```

0.53 is the log-odds of surviving for a passenger who was in the first class

-0.63 is the decrease in the log-odds of survival for a 2nd class passenger, relatively to a 1st class passenger.

$$egin{aligned} \log(odds_2) - \log(odds_1) &= -0.63 \ &\Leftrightarrow \ \log(rac{odd_2}{odd_1}) &= -0.63 \ &\Leftrightarrow \ rac{odds_1}{odds_2} &= \exp(0.63) &= 1.87 \end{aligned}$$

The odds of surviving in 2nd class is divided by 1.87 compared to the 1st class!

With multiple features

Holding *fare* and *age* constant, being a male in Titanic reduces your log-odds of survival by 2.34 compared to a female passenger

4. Evaluate performance

Out[]: Logit Regression Results

Dep. Variabl	e:	surviv	ed No. (Observa	tions:	714
Mode	el:	Lo	git	Df Resi	duals:	710
Metho	d:	М	LE	Df N	/lodel:	3
Dat	e: Tue, 1	6 Nov 20	21 Ps	seudo R	-squ.:	0.2576
Tim	e:	04:41:	04 Lo	g-Likeli	hood:	-358.04
converge	d:	Tr	ue	LL	Null:	-482.26
Covariance Typ	e:	nonrob	ust	LLR p-	value:	1.419e-53
	coef	std err	z	P> z	[0.025	0.975]
Intercept	0.9348	0.239	3.910	0.000	0.466	1.403
C(sex)[T.male]	-2.3476	0.190	-12.359	0.000	-2.720	-1.975
fare	0.0128	0.003	4.738	0.000	0.007	0.018
age	-0.0106	0.006	-1.627	0.104	-0.023	0.002

Fully annotated model summary <u>cheatsheet (https://wagon-public-datasets.s3.amazonaws.com/datascience-images/lectures/decision-science/LogReg/log_reg_cheatsheet.png</u>)

4.1 Inference

- p-values : work similarly to p-values in Linear Regression
- **z-score** is used instead of t-score because in a Bernoulli process, the variance is known and doesn't need to be estimated:

$$\sigma^2 = p(1-p)$$

Less stringent conditions compared to Linear OLS regression

- Random sampling
- \bigvee Independent sampling (sample with replacement, or n < 10% global pop.)
- X NOT NEEDED: Residuals normally distributed and of equal variance

4.2 Goodness-of-fit (R^2

or equivalent?)

```
In [ ]: model4.summary()
Out[ ]:
Logit Regression Results
```

Dep. Variabl	e:	surviv	ed No. (Observa	itions:	714	
Mode	el:	Lo	git	Df Resi	duals:	710	
Metho	d:	М	LE	Df N	/lodel:	3	
Dat	e: Tue, 1	16 Nov 2021 Pseudo R-squ.:		-squ.:	0.2576		
Tim	e:	04:41:	10 Lo	g-Likeli	hood:	-358.04	
converge	d:	Tr	ue	LL-Null:		-482.26	
Covariance Typ	e:	nonrobu	ust	LLR p-	value:	1.419e-53	
	coef	std err	z	P> z	[0.025	0.975]	
Intercept	0.9348	0.239	3.910	0.000	0.466	1.403	
C(sex)[T.male]	-2.3476	0.190	-12.359	0.000	-2.720	-1.975	
fare	0.0128	0.003	4.738	0.000	0.007	0.018	
age	-0.0106	0.006	-1.627	0.104	-0.023	0.002	

log-likelihood (LL)

- log(likelihood) = log(
- $\in [-\infty,0]$
- the closer to 0 the better!
- plays a similar role to "Sum of Squared Residuals" in Linear Regression

 $ext{R-squared (linear regression)} = 1 - rac{SS_{ ext{resid}}}{SS_{ ext{mean}}}$

Pseudo R-squared for Logistic regression

$$1 - rac{LL(predict)}{LL(ext{mean})}$$

9	1	O	1	O	1		1	
y pred	0.99	0.02	0.97	0.04	0.91		0.89	
Y mean	0.66	0.66	0.66	0.66	0.66		0.66	
LL(mean)	log (0.99	× 1 - 0.02	× 0.97	× 1 - 0.04	× 0.91	×	0.89)
LL(mean)	log (0.66	× 1 - 0.66	× 0.66	× 1 - 0.66	× 0.66	×	0.66)

Pseudo R-squared

- **√** in [0–1]
- useful to compare models predicting the same problem from same data X
- 💢 is not as descriptive as the R-squared, once the classification threshold is applied
 - e.g. predicted probabilities of 0.49 vs. 0.51 are extremely close...
 - ... but yield opposite classification predictions!

We will discover the most important **Performance Metrics for classification** during the Machine Learning module

```
(accuracy, precision, recall, f1 score, ...)
```

5. Multicollinearity issues in Linear/Logistic Regression

```
Imagine that a feature X_k is a linear combination of other features (e.g. X_8=X_1+X_3 ) 
 How can you "Vary X_k while holding all other features constant" ? ! You can't.
```

4.1 Strict multicollinearity

Which feature matrix is best suited for regression?

The rank of a matrix is the dimension of the vector space generated by its columns

1 Feature Matrix needs to be "full rank" to run any Linear/Logistic model!

$$C_3=C_1+C_2$$

: the third column/feature is a linear combination of the first two columns so would need to remove it to perform a correct Linear/Logistic Model

Example

Out[]:

	mpg	cylinders	horsepower	weight	acceleration	model_year
mpg	1.000000	-0.777618	-0.778427	-0.832244	0.423329	0.580541
cylinders	-0.777618	1.000000	0.842983	0.897527	-0.504683	-0.345647
horsepower	-0.778427	0.842983	1.000000	0.864538	-0.689196	-0.416361
weight	-0.832244	0.897527	0.864538	1.000000	-0.416839	-0.309120
acceleration	0.423329	-0.504683	-0.689196	-0.416839	1.000000	0.290316
model_year	0.580541	-0.345647	-0.416361	-0.309120	0.290316	1.000000

```
In [ ]: mpg['lin_comb'] = 10 * mpg['cylinders'] - 0.3 * mpg['horsepower']
    mpg.head(3)
```

Out[]:

	mpg	cylinders	horsepower	weight	acceleration	model_year	lin_comb
0	18.0	8	130.0	3504	12.0	70	41.0
1	15.0	8	165.0	3693	11.5	70	30.5
2	18.0	8	150.0	3436	11.0	70	35.0

```
In [ ]: # Matrix is not full-rank!
        print(mpg.shape)
        np.linalg.matrix rank(mpg)
        (392, 7)
Out[]: 6
In [ ]: | smf.ols(formula='weight ~ cylinders + horsepower + lin_comb', data=mp
        g).fit().params
Out[ ]: Intercept
                      528.876711
                        3.375029
        cylinders
        horsepower
                       16.840512
        lin comb
                       28.698140
        dtype: float64
In [ ]: # Now, change just a bit one single observation by 1% just on one feat
        mpg.loc[0,'horsepower'] = mpg.loc[0,'horsepower']*1.01
        smf.ols(formula='weight ~ cylinders + horsepower + lin comb', data=mp
        g).fit().params
Out[ ]: Intercept
                        524.838981
        cylinders
                      11398.211049
        horsepower
                       -325.000813
        lin comb
                      -1110.583430
        dtype: float64
In [ ]: # Statsmodels gives us a clear WARNING [2]
        # Summary table also reads 'Covariance Type: nonrobust'
        smf.ols(formula='weight ~ cylinders + horsepower + lin_comb', data=mp
        g).fit().summary()
```

Out[]: OLS Regression Results

Dep. Vari	able:		weight		R-squa	r ed: 0	.846
М	odel:		OLS	Adj.	R-squa	red: 0	.845
Met	thod:	Lea	ast Squares		F-statis	stic: 7	12.9
Ī	Date:	Tue, 1	6 Nov 2021	Prob (F-statis	tic): 1.99e	-157
7	Γime:		04:41:18	Log-	Likeliho	od: -28	32.3
No. Observat	ions:		392		A	AIC: 5	673.
Df Resid	uals:		388		E	BIC: 5	689.
Df M	odel:		3				
Covariance ⁻	Туре:		nonrobust				
		coef	std err	t	P> t	[0.025	0.975]
Intercept	524	4.8390	56.865	9.230	0.000	413.038	636.640
cylinders	1.1	4e+04	8616.113	1.323	0.187	-5541.902	2.83e+04
horsepower	-32	5.0008	258.480	-1.257	0.209	-833.198	183.196
lin_comb	-1110	0.5834	861.454	-1.289	0.198	-2804.285	583.118
Omnibu	us: 1	2.222	Durbin-V	Vatson:	1.1	99	
Prob(Omnibu	s):	0.002	Jarque-Be	ra (JB):	24.236		

Skew: 0.069 **Prob(JB):** 5.46e-06

Kurtosis: 4.210 **Cond. No.** 5.84e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.84e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- 1 partial coefficients of collinear features become extremely sensitive to changes in the data
- . Can trust neither your partial coefficients nor their associated p-values
- No impact on R2
- No impact on partial coefficients for non-collinear features

5.2 Strong (but not strict) multicollinearity is still a problem!

```
In [ ]: | mpg['lin comb'] = mpg['lin comb'] + 0.05 * np.random.rand(mpg.shape[
        0])
        np.linalg.matrix rank(mpg)
Out[]: 7
In []: smf.ols(formula='weight ~ cylinders + horsepower + lin comb', data=mp
        g).fit().params
Out[]: Intercept
                       544.560499
        cylinders
                      8645.424045
        horsepower
                      -242.419334
        lin comb
                      -835.251174
        dtype: float64
In [ ]: # Again, change just a bit one single observation in the dataset and c
        heck the OLS results
        mpg.loc[0,'horsepower'] = mpg.loc[0,'horsepower']*0.8
        smf.ols(formula='weight ~ cylinders + horsepower + lin comb', data=mp
        g).fit().params
Out[ ]: Intercept
                      524.231116
        cylinders
                        5.429155
        horsepower
                       16.782814
        lin comb
                       28.688715
        dtype: float64
```

5.3 How to detect multicollinearity

Out[]:

	mpg	cylinders	horsepower	weight	acceleration	model_year	lin_comb
mpg	1.000000	-0.777618	-0.777708	-0.832244	0.423329	0.580541	-0.445217
cylinders	-0.777618	1.000000	0.841000	0.897527	-0.504683	-0.345647	0.762619
horsepower	-0.777708	0.841000	1.000000	0.863997	-0.687454	-0.413903	0.292037
weight	-0.832244	0.897527	0.863997	1.000000	-0.416839	-0.309120	0.554680
acceleration	0.423329	-0.504683	-0.687454	-0.416839	1.000000	0.290316	-0.067723
model_year	0.580541	-0.345647	-0.413903	-0.309120	0.290316	1.000000	-0.113352
lin_comb	-0.445217	0.762619	0.292037	0.554680	-0.067723	-0.113352	1.000000

Correlation matrix detects bivariate collinearity between 2 features only

VIF: Variance Inflation Factor

- · A measure of the amount of multicollinearity per feature
- The higher, the more multicollinear, the less useful the feature with a high VIF...
- Computed by regressing one feature as function of all others features and measuring R-squared

$$VIF(X_k) = rac{1}{1-R_k^2}$$

Warning

When you plan to use multiple features in a linear model, do not forget to scale your data...

Out[]:

	mpg	cylinders	horsepower	weight	acceleration	model_year	lin_comb
0	-0.697747	1.482053	0.016488	0.619748	-1.283618	-1.623241	1.832112
1	-1.082115	1.482053	1.575127	0.842258	-1.464852	-1.623241	0.740041
2	-0.697747	1.482053	1.185207	0.539692	-1.646086	-1.623241	1.208893
3	-0.953992	1.482053	1.185207	0.536160	-1.283618	-1.623241	1.210761
4	-0.825870	1.482053	0.925261	0.554997	-1.827320	-1.623241	1.523028
393	0.455359	-0.862911	-0.478450	-0.220842	0.021267	1.634321	-0.956249
394	2.633448	-0.862911	-1.362268	-0.997859	3.283479	1.634321	0.104867
395	1.095974	-0.862911	-0.530439	-0.803605	-1.428605	1.634321	-0.895028
396	0.583482	-0.862911	-0.660413	-0.415097	1.108671	1.634321	-0.738686
397	0.967851	-0.862911	-0.582429	-0.303253	1.398646	1.634321	-0.832209

392 rows × 7 columns

```
In [ ]: from statsmodels.stats.outliers_influence import variance_inflation_fa
    ctor as vif
# compute VIF factor for feature index 0
    vif(mpg_scaled.values, 0)
```

Out[]: 5.236622675084839

```
In [ ]: df = pd.DataFrame()

    df["features"] = mpg_scaled.columns

    df["vif_index"] = [vif(mpg_scaled.values, i) for i in range(mpg_scale
    d.shape[1])]

    round(df.sort_values(by="vif_index", ascending = False),2)
```

Out[]:

	features	vif_index
1	cylinders	2091.85
2	horsepower	943.73
6	lin_comb	668.13
3	weight	11.25
0	mpg	5.24
4	acceleration	2.61
5	model_year	1.90

Consider VIF value

10 as a potential cause for concern (rule of thumb)

Summary: Regression Cheat Sheet

Diagnosis (Logit)	Diagnosis (OLS)	Description	Check
pseudo R-squared	R-squared	How well does our y_{pred} explain the true y ?	Goodness-of-fit
p-values and z-tests	p-values and t-tests	Are regression coefficients trustworthy?	Statistical significance
Not needed	Residual plots	Can we trust the p-values?	Inference conditions
VIF analysis	VIF analysis	Minimal dependence between features	Multicollinearity

Bibliography 👺

• <u>StatsQuest - Logistic Regression (https://www.youtube.com/playlist?list=PLblh5JKOoLUKxzEP5HA2d-Li7IJkHfXSe</u>) (1-h youtube, very good intuitive summary)

Your turn!

· Applying your skills in Logistic Regression

You have 1.5 days to answer the CEO's request based on all the analysis, notebooks, logics that you
have been coding so far