

SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient

Aaron Mishkin^{1,2}, Frederik Kunstner^{1,3}, Didrik Nielsen¹, Mark Schmidt², Mohammad Emtiyaz Khan¹

¹Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ²University of British Columbia, Vancouver, Canada, ³École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Introduction

Motivation:

- ► Uncertainty estimation is essential to make reliable decisions based on the predictions of deep models, but is computationally challenging.
- ▶ It is difficult to form even a Gaussian approximation to the posterior for large models.
- Mean-field methods reduce the computational complexity, but yield poor estimates of the uncertainty.

Contributions:

- We propose a new stochastic, low-rank, approximate natural-gradient (SLANG) method for Gaussian variational inference.
- Our method estimates a "low-rank plus diagonal" covariance matrix based solely on back-propagated gradients.
- ► SLANG is faster and more accurate than mean-field methods, and performs comparably to state-of-the-art methods.

Natural Gradient Variational Inference

Given a deep model $p(\mathcal{D}|\theta)$ with weights θ , Gaussian Variational Inference computes a Gaussian approximation $q(\theta) := \mathcal{N}(\theta; \mu, \Sigma)$ to the posterior by maximizing the ELBO:

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_q \left[\log p(\mathcal{D}|\boldsymbol{\theta}) + \log \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{0}, \mathbf{I}/\lambda) - \log q(\boldsymbol{\theta}) \right],$$

Gradient-based methods optimize the ELBO using the stochastic gradient updates (t is the iteration, γ_t is the learning rate)

$$\mu_{t+1} = \mu_t - \gamma_t \hat{\nabla}_{\mu} \mathcal{L}_t,$$
 $\Sigma_{t+1} = \Sigma_t - \gamma_t \hat{\nabla}_{\Sigma} \mathcal{L}_t.$

Problem: Gradient descent implicity uses Euclidean geometry.

Natural Gradient methods do steepest descent in the space of realizable variational distributions $q(\theta)$ by optimizing on the Riemannian manifold. This gives the update

$$\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t - \beta_t \boldsymbol{\Sigma}_{t+1} \hat{\nabla}_{\boldsymbol{\mu}} \mathcal{L}_t \qquad \boldsymbol{\Sigma}_{t+1}^{-1} = (1 - \beta_t) \boldsymbol{\Sigma}_t^{-1} + \beta_t \hat{\nabla}_{\boldsymbol{\Sigma}} \mathcal{L}_t.$$

Problem: This update requires computing the Hessian.

Variational Online Gauss-Newton approximates the Hessian with the empirical Fisher Information matrix $\hat{\mathbf{G}}(\theta_t)$. This gives

$$oldsymbol{\mu}_{t+1} = oldsymbol{\mu}_t - eta_t oldsymbol{\Sigma}_{t+1} \left[\hat{oldsymbol{g}}(oldsymbol{ heta}_t) + \lambda oldsymbol{\mu}_t
ight]
onumber \ oldsymbol{\Sigma}_{t+1}^{-1} = (\mathbf{1} - eta_t) oldsymbol{\Sigma}_t^{-1} + eta_t \left[\hat{oldsymbol{G}}(oldsymbol{ heta}_t) + \lambda oldsymbol{I}
ight],$$

where $\hat{g}(\theta_t)$ is the gradient and

$$\hat{\mathbf{G}}(oldsymbol{ heta}_t) = rac{1}{M} \sum_{i=1}^M g_i(oldsymbol{ heta}_t) g_i(oldsymbol{ heta}_t)^ op$$

is the empirical Fisher Information matrix for $p(\mathcal{D} \mid \theta_t)$ computed with a minibatch of size M.

Problem: Computing and storing Σ_t is $O(D^2)$ for dense covariances.

SLANG

We approximate the covariance with a "low-rank plus diagonal" matrix

$$\mathbf{\Sigma}_t^{-1} pprox \hat{\mathbf{\Sigma}}_t^{-1} := \mathbf{U}_t \mathbf{U}_t^{\top} + \mathbf{D}_t,$$

where \mathbf{U}_t is a $D \times L$ matrix and \mathbf{D}_t is diagonal. The cost of storing and inverting this matrix is linear in D which is reasonable when $L \ll D$. The approximate natural gradient update for $\hat{\mathbf{\Sigma}}_t^{-1}$ is

$$\hat{\boldsymbol{\Sigma}}_{t+1}^{-1} := \boldsymbol{\mathsf{U}}_{t+1} \boldsymbol{\mathsf{U}}_{t+1}^{\top} + \boldsymbol{\mathsf{D}}_{t+1} \approx (1-\beta_t) \hat{\boldsymbol{\Sigma}}_{t}^{-1} + \beta_t \left[\hat{\boldsymbol{\mathsf{G}}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mathsf{I}} \right]$$

This update may increase the rank of U_{t+1} , so we project the matrix onto a L-dimensional subspace using an eigenvalue decomposition:

$$(1 - \beta_t)\hat{\boldsymbol{\Sigma}}_t^{-1} + \beta_t \left[\hat{\boldsymbol{\mathsf{G}}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mathsf{I}}\right] = \underbrace{(1 - \beta_t)\boldsymbol{\mathsf{U}}_t\boldsymbol{\mathsf{U}}_t^\top + \beta_t\hat{\boldsymbol{\mathsf{G}}}(\boldsymbol{\theta}_t)}_{\text{Rank at most }L + M} + \underbrace{(1 - \beta_t)\boldsymbol{\mathsf{D}}_t + \beta_t\lambda\boldsymbol{\mathsf{I}}}_{\text{Diagonal component}},$$

$$\approx \underbrace{\boldsymbol{\mathsf{Q}}_{1:L}\boldsymbol{\mathsf{\Lambda}}_{1:L}\boldsymbol{\mathsf{Q}}_{1:L}^\top}_{\text{Rank }L \text{ eigendecomposition}} + \underbrace{(1 - \beta_t)\boldsymbol{\mathsf{D}}_t + \beta_t\lambda\boldsymbol{\mathsf{I}}}_{\text{Diagonal component}}.$$

The diagonal information lost in this projection is equal to

$$\Delta_D = \operatorname{diag} \left[(1 - \beta) \mathbf{U}_t \mathbf{U}_t^\top + \beta_t \hat{\mathbf{G}}(\boldsymbol{\theta}_t) - \mathbf{U}_{t+1} \mathbf{U}_{t+1}^\top \right].$$

We add this to \mathbf{D}_t as a diagonal correction. The final SLANG update is

SLANG:
$$\mathbf{U}_{t+1} = \mathbf{Q}_{1:L} \mathbf{\Lambda}_{1:L}^{1/2}$$

$$\mathbf{D}_{t+1} = (1-\beta)\mathbf{D}_t + \beta_t \lambda \mathbf{I} + \Delta_D.$$

$$\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t - \alpha_t \left[\mathbf{U}_{t+1} \mathbf{U}_{t+1}^\top + \mathbf{D}_{t+1} \right]^{-1} \left[\hat{\mathbf{g}}(\boldsymbol{\theta}_t) + \lambda \boldsymbol{\mu}_t \right].$$

The Algorithm

Pseudo-code for SLANG is shown in Algorithm 1. α , β are learning rates, D is denoted with a vector \mathbf{d} and \mathbf{u}_i and \mathbf{v}_i are the columns of \mathbf{U} and \mathbf{V} , respectively.

Results

Covariance Structure for Logististic Regression on USPS

SLANG doesn't underestimate variance like mean-field methods.

Logistic Regression Results

		Mean-Field Methods		1 ethods	SLANG	Fu	Full Gaussian		
Dataset	Metrics	EF	Hess.	Exact	L = 1 L = 5 L = 10	EF	Hess.	Exact	
Australian	NLL	0.348	0.347	0.341	0.342 0.339 0.338	0.340	0.339	0.338	
	$KL (\times 10^4)$	2.240	2.030	0.195	0.033 0.008 0.002	0.000	0.000	0.000	
a1a	NLL	0.339	0.339	0.339	0.339 0.339 0.339	0.339	0.339	0.339	
	$KL (\times 10^2)$	2.590	2.208	1.295	0.305 0.173 0.118	0.014	0.000	0.000	
USPS	NLL	0.139	0.139	0.138	0.132	0.131	0.130	0.130	
3vs5	$KL (\times 10^1)$	7.684	7.188	7.083	1.492 0.755 0.448	0.180	0.001	0.000	

SLANG performs similarly to full-Gaussian methods at test time.

Convergence Experiments

SLANG converges faster than mean-field methods for logistic regression and BNNs.

Bayesian Neural Networks Results:

		Test RMSE		Test log-likelihood			
Dataset	BBB	Dropout	SLANG	BBB	Dropout	SLANG	
Boston	3.43 ± 0.20	$\textbf{2.97} \pm \textbf{0.19}$	3.21 ± 0.19	-2.66 ± 0.06	$\textbf{-2.46} \pm \textbf{0.06}$	$\textbf{-2.58} \pm \textbf{0.05}$	
Concrete	$\textbf{6.16} \pm \textbf{0.13}$	$\textbf{5.23} \pm \textbf{0.12}$	5.58 ± 0.19	$\textbf{-3.25} \pm \textbf{0.02}$	-3.04 \pm 0.02	$\textbf{-3.13} \pm \textbf{0.03}$	
Energy	$\textbf{0.97} \pm \textbf{0.09}$	1.66 ± 0.04	$\textbf{0.64} \pm \textbf{0.03}$	$\textbf{-1.45} \pm \textbf{0.10}$	$\textbf{-1.99} \pm \textbf{0.02}$	$\textbf{-1.12} \pm \textbf{0.01}$	
Kin8nm	$\textbf{0.08} \pm \textbf{0.00}$	0.10 ± 0.00	$\textbf{0.08} \pm \textbf{0.00}$	$\textbf{1.07} \pm \textbf{0.00}$	0.95 ± 0.01	1.06 ± 0.00	
Naval	$\textbf{0.00} \pm \textbf{0.00}$	0.01 ± 0.00	$\textbf{0.00} \pm \textbf{0.00}$	4.61 ± 0.01	3.80 ± 0.01	$\textbf{4.76} \pm \textbf{0.00}$	
Power	4.21 ± 0.03	$\textbf{4.02} \pm \textbf{0.04}$	4.16 ± 0.04	-2.86 ± 0.01	$\textbf{-2.80} \pm \textbf{0.01}$	-2.84 ± 0.01	

Performance on BNNs is comparable to Bayesian Dropout and Bayes-by-Backprop.