

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

Paper 4 (Exten	nded)	Oct	ober/November 2017 1 hour 15 minutes
COMBINED SO	CIENCE		0653/43
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

No Additional Materials are required.

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

International Examinations

1 (a) Use the following words or phrases to complete the flow chart about the structures the blood passes through on **one side of the heart** during the cardiac cycle.

Each word or phrase may be used once, more than once or not at all.

aorta	left atrium	left ventricle	pulmonary artery
	right atrium	right ventricle	valve
		vena cava	
		↓	
		\	
		valve	
		↓	
		•	
		valve	
		•	
Explain	why the human circu	lation system is describ	ed as a <i>double circulation</i>

(b)	(i)	Explain why the human circulation system is described as a double circulation.
		[1]
((ii)	Explain why the blood leaving the left side of the heart has a higher pressure than blood leaving the right side of the heart.
		Higher pressure is needed in the blood on the left side of the heart because
		Lower pressure is needed in the blood on the right side of the heart because
		[2]

[3]

(c)	Dur	uring exercise the heart rate and breathing ra	ate both increase.	
	(i)	Explain why the heart rate increases during	ng exercise.	
				[2]
	(ii)	Explain why the breathing rate increases	during exercise.	
				[1]
(d)	Smo	moking tobacco can have harmful effects on	the gas exchange sy	stem and the body.
		hoose two of the following components of to each component.	bacco smoke and de	escribe one harmful effect
		carbon monoxide r	icotine	tar
	com	omponent		
	effe	fect		
	com	omponent		
	effe	fect		
				[2]

2 (a) The arrangements of particles in four substances are shown in Fig. 2.1.

Fig. 2.1

			Fig. 2.1
	Use	letters A, B, C	and D to identify
	a pure substance,		
	a mi	xture,	
	an a	ılloy,	
	a co	mpound.	[2]
(b)	A st	udent adds piec	es of calcium to dilute hydrochloric acid. A vigorous reaction is observed.
	(i)	Complete the b	palanced equation to show this reaction.
		Include state sy	ymbols in the equation.
	C	a(s) + 2 HC <i>l</i> ()
	(ii)	The student re concentration.	peats the reaction using a solution of hydrochloric acid that has a lower
		State the effect	of this change on the rate of the reaction.
		Explain this effe	ect using ideas about colliding particles in your answer.
		effect on rate .	
		explanation	
			[2]
	(iii)	State a simple of acid.	chemical test that shows the presence of chloride ions in dilute hydrochloric
		test	
		result	[2]

(c)	A salt contains iron(III) ions, Fe^{3+} , and sulfide ions, S^{2-} .	
	Determine the formula of this salt.	
	formula	[1]

3 Fig. 3.1 shows a toy car powered by batteries.

Fig. 3.1

Fig. 3.2 shows part of the circuit diagram for a circuit in the toy car, including the two headlamps which can be switched on when needed.

Fig. 3.2

(a) The car is driven by an electric motor which must be able to operate whenever the switch shown in Fig. 3.2 is on.

The speed of the electric motor is controlled by a variable resistor.

The two headlamps are only switched on when needed, so a separate switch controls both headlamps.

On Fig. 3.2, using the correct symbols, complete the circuit diagram by adding

- a variable resistor that controls the electric motor.
- the switch that controls both headlamps.
- any wires needed to complete the circuit connections.

[2]

(b)	The resistance of the variable resistor is decreased in order to speed up the motor.	
	Suggest why decreasing the resistance will speed up the motor.	
		[1]
(c)	Complete the sentences below by writing the correct phrase in each space.	
	Each phrase may be used once, more than once or not at all.	
	by an ammeter by an insulator in parallel in series	
	less than more than the same as	
	The electric motor and the headlamps are connected	
	When the car is travelling by day, the headlamps are switched off. The current through	he
	motor is then the current through the battery.	
	When the car is travelling at night, the headlamps are switched on. The combined resistar	се
	of the motor and headlamps is the resistance of the motor before	re
	the headlamps are switched on.	[3]
(d)	The toy car travels at 5.0 km/h for 10 min before the battery runs out.	
	Calculate the distance travelled by the car during this 10 minute period.	
	Show your working.	
	distance = km	[2]

4 Fig. 4.1 shows a diagram of the alimentary canal. The main areas where digestion takes place are labelled.

Fig. 4.1

- (a) On Fig. 4.1 use a label line and the letter **A** to show where absorption of digested food occurs. [1]
- **(b)** A student is investigating human digestive enzymes.

He has three test-tubes, **1**, **2** and **3**, containing protein solution at different pH values. He then adds the same enzyme to all three test-tubes and keeps them at 35 °C.

The protein solution is cloudy at the start of the experiment. If the protein in the solution is broken down the solution becomes clear and colourless.

The results are shown in Fig. 4.2.

Fig. 4.2

(i)	Use the information in Fig. 4.1 to identify the likely source of the digestive enzyme the produces the result in tube 1 in Fig. 4.2.	nat
	Explain your answer.	
	source of enzyme	
	explanation	
		 [3]
(ii)	Explain why a temperature of 60 °C is not suitable for this experiment.	
(iii)	Explain why the change that takes place in tube 1 is an example of chemical digestion	٦.
		[2]

5 Fractional distillation of petroleum produces fractions containing different compounds.

Fig. 5.1

a)	The formulae of three compounds contained in three fractions are shown in Fig. 5.1.	
	Describe the trend in the boiling points of these three compounds, from $\mathrm{C_3H_8}$ to $\mathrm{C_{16}H_{34}}$.	
	Explain this trend in terms of the sizes of the molecules and the forces between the molecules	ıles.
	trend	
	explanation	
		[3]

(b) Process **Y**, shown in Fig. 5.1, changes the molecules in one fraction.

The molecular structure of a hydrocarbon produced in process Y is shown in Fig. 5.2.

Fig. 5.2

	(i)	Name process Y.	
			.[1]
	(ii)	Name the hydrocarbon shown in Fig. 5.2.	
			.[1]
	(iii)	Name this type of hydrocarbon.	
			.[1]
	(iv)	State the colour change that is seen when this hydrocarbon is added to bromine water	er.
		from to	[1]
(c)	The	e combustion of a fossil fuel is an exothermic reaction.	
	Exp	plain why this is an exothermic reaction.	
	Use	e ideas about temperature change and energy transformation in your answer.	
			.[2]

6 Fig. 6.1a shows an insulated bag used to carry frozen food from the shop to home.

Fig. 6.1b shows the structure of the walls of the bag.

Fig. 6.1a

Fig. 6.1b (not to scale)

(a) The insulating foam is designed to reduce thermal energy transfer through the bag. It has many small pockets of trapped gas which reduce conduction of thermal energy.

	(i)	Describe how thermal energy is transferred through solids by conduction.	
			[1]
	(ii)	Suggest why the trapped gas is less able to transfer thermal energy by conduction.	
(b)	The	aluminium foil also helps to reduce thermal energy transfer.	
	Nan	ne the method of thermal energy transfer reduced by the use of aluminium foil.	
			[1]

(c)	The	food is transferred from the insulated bag into a refrigerator.
		refrigerator has an electric motor with a power input of $80W$ when connected to a 240 V ns supply.
	(i)	Calculate the current through the electric motor.
		State the formula you use and show your working.
		formula
		working
		current = A [2]
	(ii)	Calculate the energy used by the refrigerator when the motor runs for one hour.
		State the formula you use and show your working.
		formula
		working
		energy = J [2]

7 Fig. 7.1 shows some processes occurring in a forest.

Fig. 7.1

(a)	Name the process labelled X.						
	[1]						
(b)	The leaves of the trees contain nutrients in the form of minerals. When the leaves die they fal onto the soil. Organisms in the soil can make the minerals available to the trees again.						
	Name the type of organisms that make the minerals available. Explain your answer.						
	type of organism						
	explanation						
	I.O.						
	[2]						
(c)	The trees in the forest shown in Fig. 7.1 are cut down.						
	Predict and explain the effect of clearing the trees on the amount of rain falling on the forest.						

(d)	A storm occurs higher up the hill and water comes flowing down the hill.
	Suggest how the soil in the cleared area will be affected by water from heavy rainfall flowing down the hill.
	Explain your answer.
	[2]
(e)	The concentration of gases in the atmosphere changes immediately after the trees are cleared.
	Describe and explain how the concentrations of the following gases change.
	carbon dioxide
	oxygen

8 (a) (i) The atomic number of oxygen is 8.

Complete Fig. 8.1 to show the electronic structure of an oxygen atom.

Fig. 8.1

[1]

(ii) Complete the dot-and-cross diagram of a molecule of water.

Show all the outer shell electrons.

H O H

[2]

(b) Element **Z** has two electrons in its outer shell.

Z is not the symbol for this element.

(i) Predict the group number of element **Z** in the Periodic Table.

.....[1]

(ii) An atom of element **Z** forms an ion.

State the charge of this ion.

Explain how this ion forms.

charge

explanation

[2]

(c) Potassium, copper and iron are extracted by different methods.

Complete Table 8.1 to show the order of reactivity of these three metals.

State the method of extraction of each metal from its ore.

Table 8.1

order of reactivity	metal	method of extraction
most reactive		
least reactive		

[3]

9 Fig. 9.1 shows four forces, **P**, **Q**, **R** and **S**, acting on a submarine travelling underwater. The submarine is moving to the right at constant speed.

Fig. 9.1

The submarine has a mass of 3000000 kg.

(a) (i)	Name force Q.
	[1]
(ii)	The submarine is travelling at constant speed at a constant depth.
	State how the magnitude of force Q compares to the magnitude of force S .
	[1]
(iii)	Calculate the value of force R.
	$g = 10 \mathrm{N/kg}$
	State the formula you use and show your working.
	formula
	working

force **R** = N [2]

(b)	The	captain orders	the crew to brir	ng the submari	ne to the sea s	urface from a c	lepth of 50 m.
	The	crew change fo	rce P so that th	nere is a net up	oward force of	100 000 N.	
	Cal	culate the work of	done by this up	ward force to b	oring the subma	arine to the sur	face.
	Stat	te the formula yo	ou use and sho	w your working] .		
	forn	nula					
	wor	king					
				WO	rk done =		J [2]
(c)	(i)	On the surface base.	of the sea the	e captain is ab	le to use a rac	lio to send a n	nessage to his
		The radio send	s a signal at a	frequency of 1	20 MHz.		
		Calculate the w	avelength of th	ne radio waves	used.		
		Speed of electr	omagnetic wav	$es = 3 \times 10^8 \text{m}$	n/s.		
		State the formu	ıla you use and	d show your wo	orking.		
		formula					
		working					
				wave	elength =		m [2]
	(ii)	Fig. 9.2 shows their correct pla	•	electromagnet	ic spectrum. O	n Fig. 9.2 add	radio waves in
gomi	ma						
gamı				visible light		microwaves	
				Fi 0.0			
				Fig. 9.2			[1]

(iii)	Radio waves do not travel through sea water. But when submerged, submarines can receive sound signals from sound sources placed on the sea floor.
	Sound is transmitted through water in the same way that it is transmitted through air.
	Suggest how sound waves are transmitted through water. You should say how water molecules are involved, and you may wish to draw a diagram as part of your answer.
	[0]

21

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=	² He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	\equiv			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine -			
	5			8	0	oxygen 16	16	S	sulfur 32	35	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъо	moloulum —	116	^	livermorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	:E	bismuth 209			
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Рр	lead 207	114	L1	flerovium -
	=	-		2	Ш	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
		-								30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
										29	D O	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
dn										28	Z	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
Group										27	ဝိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
				J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	g C	dubnium
				10	ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	弘	rutherfordium -
							,			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium
	_			3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ъ.	francium
2 20.				•			1					06	· E O	1401	O/N/	17					

71	Intetium 175	103	۲	lawrenciun	I
	ytterbium 173			_	I
69 Tm	thulium 169	101	Md	mendelevium	ļ
89 П	erbium 167	100	Fn	fermium	I
29 H	holmium 165	66	Es	einsteinium	I
99	dysprosium 163	86	చ	californium	I
65 Tb	terbium 159	97	Ř	berkelium	I
²⁶ D	gadolinium 157	96	Cm	curium	ı
63 T	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	I
Pm	promethium —	93	dN	neptunium	I
₀ Z	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ъа	protactinium	231
88 C	cerium 140	06	Т	thorium	232
22	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).