Gradient Descent By Vipul Goyal

Linear Regression

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is "close" to y for our training examples $(x^{(i)}, y^{(i)})$

Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$heta_0$$
 , $heta_1$

X

Cost Function (squared error function):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize
$$J(\theta_0, \theta_1)$$

 θ_0, θ_1

Simplified Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$heta_0$$
 , $heta_1$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize $J(\theta_1)$ θ_1

Plotting the Cost Function

This is a 1-dimensional cost function. θ_1 is the only variable here. What if θ_0 was also non-zero?

2-Dimensional Cost Function

Goal: Find θ_0 and θ_1 for which the cost function is minimized. Gradient Descent Algorithm!

Gradient Descent Idea

Have cost function $J(\theta_0, \theta_1)$

Compute
$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

Idea:

- Start with some arbitrary θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Will discuss: how to change to ensure reduction in $J(\theta_0, \theta_1)$

Gradient Descent Idea

- Start with initial guesses
 - Start at random values (or some default values)
 - Keeping changing θ_0 and θ_1 a little bit to try and reduce $J(\theta_0,\theta_1)$
 - Each time you change the parameters, you select the gradient/direction which reduces $J\left(\theta_{0},\theta_{1}\right)$ the most possible
- Repeat until you converge to a local minimum
- Has an interesting property
 - Where you start can determine which minimum you end up

Gradient Descent Execution 1

Think: A ball falling down from gravity

Gradient Descent Execution 2

Local Minima Problem

- Think: A ball falling down from gravity
- Starting point matters: different starting points can lead to different end points
- Ball can get stuck in a "local minima". Unable to move.

Gradient Descent Intuition

Gradient descent algorithm

repeat until convergence {

$$\theta_j \coloneqq \theta_j - \bigcirc \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Learning rate

Correct: Simultaneous update

$$\begin{aligned} & \mathsf{temp0} \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \mathsf{temp1} \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 \coloneqq \mathsf{temp0} \\ & \theta_1 \coloneqq \mathsf{temp1} \end{aligned}$$

Incorrect:

$$\begin{array}{l} \mathsf{temp0} \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \hline \theta_0 \coloneqq \mathsf{temp0} \\ \mathsf{temp1} \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 \coloneqq \mathsf{temp1} \\ \end{array}$$

j = 0 and j = 1

assignment

The Derivative Term

Gradient descent algorithm

$$repeat\ until\ convergence\ \ \{$$
 $heta_j\coloneqq heta_j- higodometrize{\partial\over\partial heta_j}J(heta_0, heta_1)$ $ext{Learning\ rate}$ $heta_j$

$$\frac{d}{d\theta_1}J(\theta_0,\theta_1)$$
 = Rate of change of $J(\theta_0,\theta_1)$ as θ_1 changes

Could be positive or negative

Derivative of J

$$\theta_1 := \theta_1 - \alpha \frac{\frac{d}{d\theta_1} J(\theta_1)}{\geq 0}$$

 $\theta_1 := \theta_1 - \alpha \cdot (positive number)$

$$\theta_1 := \theta_1 - \alpha \frac{\frac{d}{d\theta_1} J(\theta_1)}{\leq 0}$$

 $\theta_1 := \theta_1 - \alpha \cdot (negative number)$

Learning Rate

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Convergence

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Derivative is 0 at Local Minima

Gradient Descent Details

Understanding Derivatives

$$\frac{d}{d\theta}f(\theta)$$
 = rate of change of $f(\theta)$ with θ

$$\frac{d}{d\theta}f(\theta)$$
 = 2 means if θ increases by 1, $f(\theta)$ increase by 2. Example $f(\theta)$ = 2 θ

$$\frac{d}{d\theta_0}f(\theta_0,\theta_1)$$
 = rate of change of $f(\theta_0,\theta_1)$ with θ_0 (partial derivative)

Key Formulas for Computing Derivatives

$$1) \frac{d}{d\theta} c \cdot \theta = c$$

$$3)\frac{d}{d\theta_0}f(\theta_1) = \frac{d}{d\theta_1}f(\theta_0) = 0$$

First Derivative

$$\begin{split} \frac{d}{d\theta_{0}} J(\theta_{0}, \theta_{1}) \\ &= \frac{d}{d\theta_{0}} \cdot \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2} \\ &= \frac{d}{d\theta_{0}} \cdot \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} \cdot x^{(i)} - y^{(i)})^{2} \\ &= \frac{d}{d\theta_{0}} \cdot \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0}^{2} + (\theta_{1} \cdot x^{(i)} - y^{(i)})^{2} + 2\theta_{0} (\theta_{1} \cdot x^{(i)} - y^{(i)})) \\ &= \frac{1}{2m} \sum_{i=1}^{m} (2\theta_{0} + \theta_{1} + 2(\theta_{1} \cdot x^{(i)} - y^{(i)})) \\ &= \frac{1}{m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{(i)} - y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \end{split}$$

Second Derivative

$$\frac{d}{d\theta_1}J(\theta_0,\,\theta_1)$$

$$= \frac{d}{d\theta_1} \cdot \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

$$= \frac{\mathrm{d}}{\mathrm{d}\theta_1} \cdot \frac{1}{2m} \sum_{i=1}^m ((\theta_1)^2 (\mathbf{x}^{(i)})^2 + (\theta_0 - \mathbf{y}^{(i)})^2 + 2 \cdot \theta_1 \mathbf{x}^{(i)} \cdot (\theta_0 - \mathbf{y}^{(i)}))$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (2\theta_1(\mathbf{x}^{(i)})^2 + 0 + 2\mathbf{x}^{(i)}(\theta_0 - \mathbf{y}^{(i)}))$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta_1 \cdot \mathbf{x}^{(i)} + \theta_0 - \mathbf{y}^{(i)}) \cdot \mathbf{x}^{(i)}$$

$$=\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(\mathbf{x}^{(i)})-\mathbf{y}^{(i)}).\mathbf{x}^{(i)}$$

Linear Regression

Gradient descent algorithm

repeat until convergence {
$$\frac{\frac{d}{d\theta_0} \cdot J(\theta_0, \theta_1)}{d\theta_0} = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$
 update
$$\theta_0 \text{ and } \theta_1$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$
 simultaneously
$$\frac{\frac{d}{d\theta_1} \cdot J(\theta_0, \theta_1)}{d\theta_0}$$

3-D Plot of J

Contour Plot vs Surface Plot

All points on a single "contour/color" have the same J value

-0.4

-0.5 -1000

-500

0

500

1000

1500

2000

Reduce θ_0 , reduce θ_1

Training data

3000

Size (feet²)

0

1000

2000

Current hypothesis

4000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Reduce θ_0 , reduce θ_1

 $h_{ heta}(x)$ $J(heta_0, heta_1)$ (for fixed $heta_0, heta_1$ this is a function of x) (function of the parameters $heta_0, heta_1$)

700

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

Reduce θ_0 , increase θ_1

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 this is a function of x)

 $J(\theta_0,\theta_1\,)$ (function of the parameters $\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 this is a function of x)

 $J(\theta_0,\theta_1\,)$ (function of the parameters $\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 this is a function of x)

 $J(\theta_0,\theta_1\,)$ (function of the parameters $\theta_0,\theta_1)$

Stable

Local Minima Problem

Local Minima Problem

Starting point matters! Try with multiple starting points and take lowest cost.

