Tomáš Horváth

INTRODUCTION TO DATA SCIENCE

Lecture 3

Frequent Pattern Mining

Data Science and Engineering Department Faculty of Informatics ELTE University

Before we start

Clustering

- assigns objects with similar attributes to certain groups
- object-attribute data
 - rows (objects) = vectors of attributes
 - columns (attributes) = characteristics with well-defined domains
 - cells = concrete values of attributes for objects

Pattern mining

- Can we find such combinations of attributes that are common to many objects?
- Are there any significant (or confident) associations between these combinations?
- transactional data
 - rows (transactions) = sets of items
 - columns (items) = certain (not only physical) concepts

• cells = connection of items and transactions

Introduction 1/3

Transactional data

TID	Arabic	Indian	Mediterranean	Oriental	Fast Food
Andrew	√		✓		
Bernhard		\checkmark		\checkmark	
Carolina		\checkmark	\checkmark		
Dennis	✓		\checkmark	\checkmark	
Eve				\checkmark	\checkmark
Fred	✓	\checkmark			
Gwyneth		\checkmark	\checkmark	\checkmark	
Hayden			\checkmark	\checkmark	\checkmark
Irene		\checkmark	\checkmark	\checkmark	
James		\checkmark	\checkmark	\checkmark	

- Is this a good format for such data?
 - If not, why?
 - If yes, when?

Introduction 2/30

Transactional data

TID	Items
Andrew	Indian, Mediterranean
Bernhard	Indian, Oriental, Fast Food
Carolina	Indian, Mediterranean, Oriental
Dennis	Arabic, Mediterranean
Eve	Oriental
Fred	Indian, Mediterranean, Oriental
Gwyneth	Arabic, Mediterranean
Hayden	Indian, Oriental, Fast Food
Irene	Indian, Mediterranean, Oriental
James	Arabic, Mediterranean

Let's define things...

- items $I = \{i_1, i_2, \dots, i_m\}$
- transactional data $D = \{T \mid T \in \mathcal{P}(I), T \neq \emptyset\}$
- itemset $S \in \mathcal{P}(I)$
- support $sup_D: \mathcal{P}(I) \to \mathbb{R}$

$$sup_D(S) = \frac{\sum\limits_{T \in D} \delta(S \subseteq T)}{|D|}$$

- $\delta(x) = 1$ if x is true, otherwise $\delta(x) = 0$
- itemset S is **frequent** if $sup_D(S) \ge \sigma$
 - minimum support threshold σ

Naïve algorithm

Can you propose it?

• What would be its complexity?

• if generating 1 itemset and count its support takes 1 ms

I	possible itemsets	Expected Runtime
5	31	31 milliseconds
10	1 023	>1 seconds
20	$1\ 048\ 576$	>17 minutes
30	$1\ 073\ 741\ 823$	>12 days
40	$> 10^{12}$	>34 years
50	$> 10^{15}$	>35 millennia

Itemset lattice

Introduction 6/3

Closed and Maximal Frequent Itemsets

a frequent itemset is called

- maximal if none of its superset is frequent
- **closed** if none of its superset has the same support

Monotonicity

$$\forall S, Z \in \mathcal{P}(I) : S \subseteq Z \Rightarrow sup_D(S) \ge sup_D(Z)$$

- each subset of a frequent itemset is frequent, too
- none of the supersets of a non-frequent itemset is frequent

Introduction 8/30

Apriori

return C

4:

```
1: procedure APRIORI(D, I, \sigma)
        k \leftarrow 1
2:
        F_k \leftarrow \{\{i\} \in I \mid sup_D(\{i\}) \geq \sigma\}
3:
                                                                 while F_k \neq \emptyset do
4:
             C_{k+1} \leftarrow \text{GenerateCandidates}(F_k, k+1)
5:
             F_{k+1} \leftarrow \{X \in C_{k+1} \mid sup_D(X) > \sigma\}
6:
            k \leftarrow k + 1
7:
        return \bigcup F_k
8:
1: procedure GENERATECANDIDATES(F, k)
        C \leftarrow \{X \cup Y \mid X, Y \in F, |X \cup Y| = k\}
2:
       C \leftarrow \{X \in C \mid (\forall Y \subset X) \mid Y \mid = k - 1 \Rightarrow Y \in F\}
3:
```

Introduction 9/30

Enumeration Tree

Good to know

Apriori

- basically, all frequent itemset mining methods can be considered as variations of Apriori
 - various strategies to generate and explore the space of candidate itemsets defined by the enumeration tree
- What is the bottleneck?
 - counting the support

How to speed up counting the support?

- if the database fits into the memory
 - without passing all the transactions and computing if the candidate itemset is a subset of the transaction...
- if the database does not fit into the memory

Eclat

similar to Apriori

- vertical data format to count the support of an itemset
 - intersection of TID-sets assigned to items

Item	TID-set	Cardinality
Arabic	{Dennis, Gwyneth, James}	3
Indian	{Andrew, Bernhard, Carolina, Fred, Hayden, Irene}	6
Mediterranean	{Andrew, Carolina, Dennis, Fred, Gwyneth, Irene, James}	7
Oriental	{Bernhard, Carolina, Eve, Fred, Hayden, Irene}	6
Fast Food	{Bernhard, Hayden}	2

FP-Tree

compact representation of the transactional data in a tree structure

• fast support count and itemset generation

- only two passes of data required
 - 1 all frequent items and their support are found
 - 2 items in each transaction are processed in a decreasing order according to their support

Building the FP-Tree

FP-Growth

Observation

- the set of all frequent itemsets can be divided into non-overlapping subsets of itemsets
 - containing item A
 - containing item O but not containing item A
 - having item I but not having items A and O and
 - an itemset having only the item M
 - Why are they considered in decreasing order?

A recursive procedure using

- prefix-path subtrees
- consitional FP-Trees

Introduction 15/30

FP-Growth

```
1: procedure FP-GROWTH(FPT, \sigma, IS) \triangleright Current Itemset Suffix
       if FPT is a single path or empty then
 2:
           for all combination C of nodes do
 3:
              report all patterns C \cup P
 4:
       else
 5:
           for all i \in FPT do
6:
              generate pattern P_i = \{i\} \cup P
 7:
              report P_i as frequent
8:
 9:
              use pointer chasing to extract conditional prefix paths
   for item i
              construct conditional FP-Tree FPT_i from conditional
10:
   prefix paths after removing infrequent items
              if FPT_i is not empty then
11:
                  FP-Growth(FPT_i, \sigma, P_i)
12:
```


FP-Growth

Associations

Implications

- "if-then" relations
- if $S_1 \subset T \in D$ implies $S_2 \subset T$ then S_1 and S_2 are **associated** in T

Association Rule

$$A \Rightarrow C$$

- $A \in \mathcal{P}(I)$ is the **antecedent**
- $C \in \mathcal{P}(I)$ is the **consequent**
- $A \cap C = \emptyset$

The quality of a rule

Given D, how do we measure the quality of $A \Rightarrow C$?

• Support

$$sup_D(A \Rightarrow C) = sup_D(A \cup C)$$

- Is it a good measure?
 - $sup_D({A} \Rightarrow {M}) = sup_D({M} \Rightarrow {A})$
- a kind of a quantitative measure
- Confidence

$$conf_D(A \Rightarrow C) = \frac{sup_D(A \cup C)}{sup_D(A)}$$

- measures the reliability of the rule
 - $1 = conf_D(\{A\} \Rightarrow \{M\}) \neq conf_D(\{M\} \Rightarrow \{A\}) = 0.43$

• a kind of a qualitative measure

Mining Association Rules

Given D, I, σ and θ , where

- σ is the minimum support threshold
- θ is the minimum confidence threshold

the goal is to find all association rules $A \Rightarrow C$ such that

- $sup_D(A \Rightarrow C) \ge \sigma$
- $conf_D(A \Rightarrow C) \ge \theta$

How much association rules can we generate from I?

- $3^{|\mathcal{I}|} 2^{|\mathcal{I}|+1} + 1$
 - number of different splits into A and C
 - minus rules with empty antecedents or consequents
 - twice the number of itemsets
 - minus a rule with empty antecedent and consequent (empty rule)
 - = $3^{|\mathcal{I}|} 2(2^{|\mathcal{I}|} 1) 1$

Naïve algorithm and some speed up...

- **1** Mine frequent itemsets meeting the σ threshold
 - Why are we utilizing frequent itemsets?
- 2 Generate association rules meeting the θ threshold
 - $2^{|I|} 2$ association rules for each itemset |I|

Confidence-based pruning

$$conf_D(X \Rightarrow Y - X) < \theta \Rightarrow conf_D(X' \Rightarrow Y - X') < \theta$$

- where $X' \subset X$
- $sup_D(X') \ge sup_D(X) \Rightarrow \frac{sup_D(Y)}{sup_D(X)} \ge \frac{sup_D(Y)}{sup_D(X')}$

 $Y = \{I,M,O\}, X = \{I,O\}, \theta = 0.75$

$$conf_D(X \Rightarrow Y - X) = conf_D(\{I,O\} \Rightarrow \{M\}) = 3/5 = 0.6$$

 $X' = \{I\} : conf_D(X' \Rightarrow Y - X') = conf_D(\{I\} \Rightarrow \{M,O\}) = 3/6 = 0.5$
 $X' = \{O\} : conf_D(X' \Rightarrow Y - X') = conf_D(\{O\} \Rightarrow \{M,I\}) = 3/6 = 0.5$

Generating Association Rules

```
1: INPUT Z, \theta
                                                          \triangleright Z – frequent itemset
 2: for all item i in Z do
        Construct a rule Z - \{i\} \Rightarrow \{i\}
 3:
        if confidence(Z - \{i\} \Rightarrow \{i\}) > min\_conf then
 4:
            output Z - \{i\} \Rightarrow \{i\}
 5:
            add \{i\} to the set C_1
 6:
 7: Set k = 2
 8: repeat
        for all V(|V|=k) generated by joining A, B \in C_{k-1} do
 9:
            Construct a rule Z - V \Rightarrow V
10:
            if confidence(Z - V \Rightarrow V) \ge min\_conf then
11:
                output Z - V \Rightarrow V
12:
                add V to the set C_{k}
13:
14:
    k = k + 1
15: until k < |Z| - 1
```

Association rules lattice

Cross-support pattern

- containing low-support items together with high-support items
 - can be interesting
 - but also spurious
 - the items it contains are weakly correlated in the transactions

Support ratio

$$sup_ratio_D(P) = \frac{min\{sup_D(i_1), sup_D(i_2), \dots, sup_D(i_k)\}}{max\{sup_D(i_1), sup_D(i_2), \dots, sup_D(i_k)\}}$$

• $i_1, i_2, \dots, i_k \in P$

Contingency table

frequency counts		Y Present Absent		Total
X	Present	12	4	16
Λ	Absent	68	16	84
	Total	80	20	100

- $sup_D(X \Rightarrow Y) = 0.12$
- $conf_D(X \Rightarrow Y) = 0.12/0.16 = 0.75$

How about mutual influence between X and Y?

- $sup_D(Y) = 0.8$, regardless if X is present
- ullet thus, the occurrence of X negatively influences the occurrence of Y

Lift

• high confidence and good support does not necessarily imply cause and effect between X and Y

$$lift_D(X \Rightarrow Y) = \frac{conf_D(X \Rightarrow Y)}{sup_D(Y)}$$

- $lift_D(X \Rightarrow Y) > 1$
 - positive correlation between the X and Y
 - ullet i.e. the occurrence of X has a positive effect on the occurrence of Y
- $lift_D(X \Rightarrow Y) < 1$
 - negative correlation between the X and Y
 - ullet i.e. the occurrence of X has a negative effect on the occurrence of Y
- $lift_D(X \Rightarrow Y)$ is near 1
 - ullet no correlation between the X and Y
 - i.e. the occurrence of X has almost no effect on the occurrence of Y

Simpson's paradox

• certain correlations between pairs of itemsets (antecedents and consequents of rules) appearing in different groups of data may disappear or be reversed when these groups are combined

Group A		Y		Total
		Yes	No	Iotai
X	Yes	20	5	25
	No	105	150	255
	Total	125	155	280

Group B		7	7	Total
		Yes	No	Iotai
X	Yes	100	150	250
Λ	No	25	245	270
	Total	125	395	520

Combined Groups		Y		Total
A and B		Yes	No	Total
X	Yes	120	155	275
	No	130	395	525
Total		250	550	800

- A: $conf_D(X \Rightarrow Y) = 0.8$, $lift_D(X \Rightarrow Y) = 1.79$
- B: $conf_D(Y \Rightarrow X) = 0.8$, $lift_D(Y \Rightarrow X) = 1.66$
- A and B: $conf_D(X \Rightarrow Y) = 0.44$, $conf_D(Y \Rightarrow X) = 0.48$

Sequential Patterns

Transaction ID	Consecutive events (itemsets) recorded in time
1	$\langle \{a,b\}, \{a,b,c\}, \{a,c,d,e\}, \{b,f\} \rangle$
2	$ \langle \{a\}, \{a, b, f\}, \{a, c, e\} \rangle $
3	$\langle \{a\}, \{c\}, \{b, e, f\}, \{a, d, e\}, \{e, f\} \rangle$
4	$\langle \{e,d\}, \{c,f\}, \{a,c,f\}, \{a,b,d,e,f\} \rangle$
5	$ \langle \{b,c\}, \{a,e,f\} \rangle $

- $s_1 = \langle X_1, X_2, ..., X_n \rangle$ and $s_2 = \langle Y_1, Y_2, ..., Y_m \rangle$ • n < m
- s_1 is a subsequence of s_2 if there exists $1 \le i_1 < i_2 < \cdots < i_n \le m$ such that $X_1 \subseteq Y_{i_1}, X_2 \subseteq Y_{i_2}, \ldots, X_n \subseteq Y_{i_n}$

support is counted as in case of itemsets

- $sup_D(\langle \{a\}, \{f\} \rangle) = 4/5 = 0.8$
- similarly, **closed** and **maximal** frequent sequences

Graph patterns

transaction-based (for $\sigma = 0.4$)

graph-based (for $\sigma = 2$)

• support count has to consider overlapping patterns

That's all Folks!

References

- Charu C. Aggarwal and Jiawei Han (2014). Frequent Pattern Mining. Springer Publishing Company, Incorporated.
- Pang-Ning Tan, Michael Steinbach, and Vipin Kumar (2005). Introduction to Data Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- Frequent Itemset Mining Implementations Repository. http://fimi.ua.ac.be/
- EasyMiner pattern mining in the browser. http://www.easyminer.eu/ https://github.com/KIZI/EasyMiner

Homework

- Choose a dataset and three implementation from the Frequent Itemset Mining Implementations Repository
 - Apriori, Eclat and FP-Growth
- 2) find frequent, closed and maximal itemsets from the chosen data
 - for various minimum support thresholds σ (e.g. 0.2, 0.4, 0.6 and 0.8)
- 3 find association rules in the data
 - for various combinations of minimum support thresholds σ and minimum confidence thresholds θ

Questions?

tomas.horvath@inf.elte.hu