

"SAPIENZA" UNIVERSITY OF ROME FACULTY OF INFORMATION ENGINEERING, INFORMATICS AND STATISTICS DEPARTMENT OF COMPUTER SCIENCE

Discrete Math

Lecture notes integrated with the book "TODO", Author TODO, \dots

Author Alessio Bandiera

Contents

Information and Contacts		
		ber Theory
	1.1	ГОДО
		L.1.1 TODO
	1.2	Solved exercises
		L.2.1 TODO
		1.2.2 Induction
		2.3 Series

Information and Contacts

Personal notes and summaries collected as part of the *Discrete Math* course offered by the degree in Computer Science of the University of Rome "La Sapienza".

Further information and notes can be found at the following link:

https://github.com/aflaag-notes. Anyone can feel free to report inaccuracies, improvements or requests through the Issue system provided by GitHub itself or by contacting the author privately:

• Email: alessio.bandiera02@gmail.com

• LinkedIn: Alessio Bandiera

The notes are constantly being updated, so please check if the changes have already been made in the most recent version.

Suggested prerequisites:

TODO: idk

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

Number Theory

1.1 TODO

1.1.1 TODO

Definition 1.1.1.1: Peano's axioms

The **Peano's axioms** are 5 axioms which define the set \mathbb{N} of the **natural numbers**, and they are the following:

- $i) \ 0 \in \mathbb{N}$
- ii) $\exists \operatorname{succ} : \mathbb{N} \to \mathbb{N}$, or equivalently, $\forall x \in \mathbb{N} \quad \operatorname{succ}(x) \in \mathbb{N}$
- $iii) \ \forall x, y \in \mathbb{N} \ x \neq y \implies \operatorname{succ}(x) \neq \operatorname{succ}(y)$
- $iv) \not\exists x \in \mathbb{N} \mid \operatorname{succ}(x) = 0$
- $v) \ \forall S \subseteq \mathbb{N} \quad (0 \in S \land (\forall x \in S \quad \text{succ}(x) \in S)) \implies S = \mathbb{N}$

<u>Note</u>: inside this notes, it will be assumed that $0 \in \mathbb{N}$.

Principle 1.1.1.1: Induction principle

Let P be a property which is true for n=0, thus P(0) is true; also, for every $n \in \mathbb{N}$ we have that $P(n) \implies P(n+1)$; then P(n) is true for every $n \in \mathbb{N}$.

Using symbols, using the formal logic notation, we have that

$$\frac{P(0) \quad P(n) \implies P(n+1)}{\forall n \quad P(n)}$$

Observation 1.1.1.1: The fifth Peano's axiom

Note that the fifth Peano's axiom is equivalent to the induction principle, since, it states that for every subset S of $\mathbb N$ containing 0 and closed under succ must be equal to $\mathbb N$ itself.

Definition 1.1.1.2: Integers

TODO

Definition 1.1.1.3: Divisor

TODO

Example 1.1.1.1 (Divisors). TODO

Definition 1.1.1.4: \mathbb{P}

TODO

Proposition 1.1.1.1: \mathbb{P} is infinite

There are infinitely many primes. Using symbols

$$|\mathbb{P}| = +\infty$$

Proof. By way of contradiction, assume that \mathbb{P} is finite, thus

$$\exists n \in \mathbb{N} \mid \mathbb{P} = \{p_1, \dots, p_n\}$$

and let $x = p_1 \cdot \ldots \cdot p_n$. Since $x \neq p_1, \ldots, p_n$, then $x \notin \mathbb{P}$, so x is not a prime number; but x can't be divided by any of the p_1, \ldots, p_n either, because the remainder will always be 1. This means that x is neither prime nor non-prime, which is a contradiction ξ .

Definition 1.1.1.5: gcd

The gcd (Greatest Common Divisor) of two given numbers a, b is the greatest of the divisors which a and b have in common. Using symbols, we say that

$$d = \gcd(a, b) \iff \forall f \in \mathbb{N} : f \mid a \land f \mid b \quad f \mid d$$

If the gcd of two numbers is 1, they are said to be **coprime**.

Example 1.1.1.2 (gcd). Given 15 and 63, we have that gcd(15, 63) = 3.

Algorithm 1.1.1.1: Euclid's algorithm

Input: Two natural numbers a, b.

Output: gcd(a, b).

- 1: **function** GCD(a, b)
- 2: TODO
- 3: end function

Example 1.1.1.3 (Euclid's algorithm). To compute the gcd(341, 527), using the Algorithm 1.1.1.1, we get the following:

$$527 = 341 \cdot 1 + 186$$
$$341 = 186 \cdot 1 + 155$$
$$186 = 155 \cdot 1 + 31$$
$$155 = 31 \cdot 5 + 0$$

hence we have that

$$\gcd(341, 527) = 31$$

Lemma 1.1.1.1: Bézout's identity

Given a pair of numbers $a, b \in \mathbb{Z}$, there exists $x, y \in \mathbb{Z}$ such that the gcd(a, b) is a linear combination of a and b. Using symbols

$$\forall a, b \in \mathbb{Z} \quad \exists x, y \in \mathbb{Z} \mid \gcd(a, b) = ax + by$$

Proof. Omitted. \Box

Example 1.1.1.4 (Bézout's identities). Using the Example 1.1.1.3, in order to compute the Bézout's identity of 341 and 527, we need to do the following:

$$31 = 186 - 155 \cdot 1 = 186 - (341 - 186 \cdot 1) = 2 \cdot 186 - 341 = 2 \cdot (527 - 341) - 341 = 2 \cdot 527 - 3 \cdot 341$$
 thus the Bézout's identity is

$$31 = 2 \cdot 527 - 3 \cdot 341$$

Corollary 1.1.1.1: Prime divisors

Given a natural number $n \in \mathbb{N}$ and a prime number $p \in \mathbb{P}$, it holds true that

$$p \nmid n \iff \gcd(p, n) = 1$$

Proof.

First implication. Instead of proving that $p \nmid n \implies \gcd(p,n) = 1$, we will prove the contrapositive, namely that $\gcd(p,n) > 1 \implies p \mid n$. Hence, since $\gcd(p,n) \mid p$ by definition, because $p \in \mathbb{P}$ then $\gcd(p,n)$ must be either 1 or p itself, and we assumed that $\gcd(p,n) > 1$, $\gcd(p,n)$ must be 1, which means that $p \mid n$.

Second implication. Note that $gcd(p, n) = 1 \implies \exists x, y \in \mathbb{Z} \mid 1 = px + ny$ by the Lemma 1.1.1.1, hence if $p \mid a$ then $p \mid 1$ by the Definition 1.1.1.5, which is impossibile because $p \in \mathbb{P}$ by the Definition 1.1.1.4.

Lemma 1.1.1.2: Prime divisors

Given a pair of numbers $a, b \in \mathbb{N}$, and a prime number $p \in \mathbb{P}$ such that $p \mid ab$, then either $p \mid a$ or $p \mid b$. Using symbols

$$\forall a,b \in \mathbb{N} \quad \exists p \in \mathbb{P} : p \mid ab \implies p \mid a \vee p \mid b$$

Proof. Without loss of generality, assume that $p \nmid a$, thus gcd(p, a) = 1 by the Corollary 1.1.1.1; hence, for the Lemma 1.1.1.1, we have that

$$\exists x, y \in \mathbb{Z} \mid 1 = px + ay \iff b = bpx + bay$$

Note that $p \mid ab \iff \exists k \in \mathbb{Z} \mid pk = ab$ which means that

$$b = bpx + pky = p(bx + ky) \iff p \mid b$$

The same argument can be used to show that $p \nmid b \implies p \mid a$.

Theorem 1.1.1.1: Fundamental theorem of arithmetic

The fundamental theorem of arithmetic, also known as the **UPF** theorem (*Unique Prime Factorization*) states that for every natural number $n \in \mathbb{N}$ there exists a unique prime factorization for n. Using symbols

$$\forall n \in \mathbb{N} \quad \exists ! p_1, \dots, p_k \in \mathbb{P}, e_1, \dots, e_k \in \mathbb{N} \mid n = p_1^{e_1} \cdot \dots \cdot p_k^{e_k}$$

Proof. Omitted.

1.2 Solved exercises

1.2.1 TODO

Problem 1.2.1.1: $n^2 + n$ is even

Show that for every $n \in \mathbb{N}$, $n^2 + n$ is an even number.

Proof. Note that $n^2 + n = n \cdot (n+1)$, hence:

 \bullet if *n* is even, then

$$\exists k \in \mathbb{N} \mid n = 2k \implies n(n+1) = 2k(2k+1) = 4k^2 + 2k = 2(k^2 + k)$$

which is an even number;

 \bullet if *n* is odd, then

$$\exists k \in \mathbb{N} \mid n = 2k+1 \implies n(n+1) = (2k+1)(2k+2) = 4k^2 + 6k + 2 = 2(2k^2 + 3k + 1)$$

which is an even number.

Problem 1.2.1.2: 4n-1 is not prime

Show that there are infinitely many numbers of the form 4n-1 that are not prime.

Proof. Note that

$$\forall x^2 \in \mathbb{N} - \{0\}$$
 $4x^2 - 1 = (2x + 1)(2x - 1)$

which is a proper factorization of $4x^2 - 1$, hence every perfect square yields a number of the form 4n - 1 which is not a prime number. Note that the number of perfect squares is infinite since the set of perfect square has the same cardinality of \mathbb{N} since it's possibile to construct a bijective function as follows:

$$f: \mathbb{N} \to \mathbb{N}: x \mapsto x^2$$

Also, note that this proof does not show every non-prime number of the form 4n-1, since that is outside the scope of the problem.

1.2.2 Induction

Problem 1.2.2.1: Cardinality of the power set

Show that for every given set S such that n := |S| it holds true that $|\mathcal{P}(S)| = 2^n$.

Proof. The statement will be shown by induction over n, the number of elements contained into S.

Base case.
$$n = 0 \implies S = \emptyset \implies \mathcal{P}(S) = \mathcal{P}(\emptyset) = \{\emptyset\} \implies |\mathcal{P}(S)| = 1 = 2^0 = 2^n$$
.

Inductive hypothesis. Assume that the statement is true for some fixed integer n.

Inductive step. It must be shown that, for a given set of elements S such that |S| = n + 1, it holds true that $|\mathcal{P}(S)| = 2^{n+1}$. Consider a subset $S' \subseteq S$ such that |S'| = |S| - 1 = n + 1 - n = n, hence for the inductive hypothesis we have that $|\mathcal{P}(S')| = 2^n$. Thus, to get the cardinality of $\mathcal{P}(S)$ the (n + 1)-th element inside S - S' must be paired with every of the sets contained inside $\mathcal{P}(S')$, hence

$$\mathcal{P}(S) = 2 \cdot \mathcal{P}(S') = 2 \cdot 2^n = 2^{n+1}$$

Problem 1.2.2.2: The 4n - 3 set

Consider the following set:

$$S := \{4n - 3 \mid n \in \mathbb{N}\}$$

- 1. Show that S closed under multiplication.
- 2. A number p is said to be S-prime if and only if p is the product of exactly two factors of S; for example, even though $3^2 = 9 \notin \mathbb{P}$ we have that $9 = 1 \cdot 9$, and since $1 = 4 \cdot 1 3 \in S$ and $9 = 4 \cdot 3 3 \in S$, then 9 is S-prime. Is the set of S-prime numbers infinite?
- 3. TODO

Proof.

1. To show that S is closed under multiplication, it suffices to show that

$$\forall a, b \in \mathbb{N} \quad (4a-3)(4b-3) = 16ab-12a-12b+9 = 4(4ab-3a-3b+3)-3 \in S$$

2. TODO

1.2.3 Series

Definition 1.2.3.1: Series

TODO scrivi che possono convergere divergere etc

Definition 1.2.3.2: The harmonic series

The harmonic series is defined as follows:

$$\sum_{k=1}^{+\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3}$$

Proposition 1.2.3.1: Divergence of the harmonic series

The harmonic series diverges.

Proof. Suppose that the harmonic series converges, thus

$$\exists S \mid \sum_{k=1}^{+\infty} \frac{1}{k} = S$$

then we have that

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \dots =$$

$$= \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6}\right) + \dots >$$

$$> \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{6} + \frac{1}{6}\right) + \dots =$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \dots = S$$

implying that $S > S \nleq$.

Definition 1.2.3.3: TODO

TODO

Definition 1.2.3.4: Reciprocal of primes

The sum of the reciprocal of the prime numbers diverges. Using symbols

$$\sum_{p \in \mathbb{P}} \frac{1}{p} = +\infty$$

Proof. Consider the following inequality:

$$\forall n \in \mathbb{N} \quad \prod_{p \in \mathbb{P}|p \le n} \frac{p}{p-1} > \sum_{k=1}^{n} \frac{1}{k}$$

We can prove it with as follows:

• for any given $p \in \mathbb{P}$, the fraction $\frac{p}{p-1}$ can be rewritten as follows, by using the MISSINGCREF:

$$\forall p \in \mathbb{P} \mid p \le n \quad \frac{p}{p-1} = \frac{1}{\frac{p-1}{p}} = \frac{1}{1-\frac{1}{p}} = \sum_{k=0}^{+\infty} \frac{1}{p^k} = 1 + \frac{1}{p} + \frac{1}{p^2} + \dots$$

which is the infinite sum of the reciprocal of the powers of some prime number p

• this means that

$$\exists p_1, \dots, p_j \in \mathbb{P} \mid \prod_{p \in \mathbb{P} \mid p \le n} \frac{p}{p-1} = p_1 \cdot \dots \cdot p_j \implies \prod_{p \in \mathbb{P} \mid p \le n} \frac{p}{p-1} = \sum_{k=0}^{+\infty} \frac{1}{p_1^k} \cdot \dots \cdot \sum_{k=0}^{+\infty} \frac{1}{p_j^k}$$

• thus, thanks to the Theorem 1.1.1.1 this product expands to the sum of the reciprocal of every natural number that contains p_1, \ldots, p_j in his prime factorization, namely

$$\exists e_1, \dots, e_j \in \mathbb{N} \mid \sum_{k=0}^{+\infty} \frac{1}{p_1^k} \cdot \dots \cdot \sum_{k=0}^{+\infty} \frac{1}{p_j^k} = \sum_{k=0}^{+\infty} \frac{1}{p_1^{e_1} \cdot \dots \cdot p_j^{e_j}}$$

• finally, since $p_1, \ldots, p_j <= n$ this summation must contain at least every term contained inside $\sum_{k=1}^{n} \frac{1}{k}$, which proves the inequality.

Now consider the following:

$$\sum_{k=1}^{+\infty} \frac{1}{k} < \prod_{p \in \mathbb{P}|p \le n} \frac{p}{p-1} \iff$$

$$\iff \log \left(\sum_{k=1}^{+\infty} \frac{1}{k}\right) < \left(\prod_{p \in \mathbb{P}|p \le n} \frac{p}{p-1}\right) =$$

$$= \sum_{p \in \mathbb{P}|p \le n} \log \left(\frac{p}{p-1}\right) = \sum_{p \in \mathbb{P}|p \le n} (\log p - \log(p-1)) = \sum_{p \in \mathbb{P}|p \le n} \int_{p-1}^{p} \frac{1}{x} dx$$

and consider the area under the curve $\frac{1}{x}$ within the [p-1,p] interval, for some prime number p:

TODO METTI GRAFICO

since

$$\forall x_1, x_2 \in \mathbb{R} \quad x_1 < x_2 \iff \frac{1}{x_1} > \frac{1}{x_2}$$

the function $\frac{1}{x}$ is monotonically decreasing, and in particular

$$\forall p \in \mathbb{P} \mid p \le n \quad p-1 \frac{1}{p}$$

whic implies that the area under the curve $\frac{1}{x}$ within the $\frac{p}{p}-1,p$ must be smaller than the area of the rectangle that has a base of of p-(p-1)=p-p+1=1 and an height of $\frac{1}{p-1}$, namely an area of $1\cdot\frac{1}{p-1}=\frac{1}{1-p}$. This implies that

$$\sum_{p \in \mathbb{P}|p \le n} \int_{p-1}^{p} \frac{1}{x} \mathrm{d}x < \sum_{p \in \mathbb{P}|p \le n} \frac{1}{p-1} < \sum_{p \in \mathbb{P}|p \le n} TODO$$