Домашня робота з курсу "Теорія Ймовірності"

Студента 3 курсу групи МП-31 Захарова Дмитра

6 листопада 2023 р.

Завдання 1.

Умова. Дано таблицю розподілу двовимірного випадкового вектору $(\xi, \eta)^{\top}$.

_	$\eta = 0$	$\eta = 1$	$\eta = 2$
$\xi = 0$	0.0	0.1	0.2
$\xi = 1$	0.1	0.2	0.1
$\xi = 2$	0.2	0.1	0.0

Знайти коефіцієнт кореляції випадкових величин $\operatorname{cov}[\xi,\eta]$. Чи є незалежними випадкові величини ξ та η ?

Розв'язок. За означенням,

$$\operatorname{cov}[\xi, \eta] \triangleq \mathbb{E}[\xi \eta] - \mathbb{E}[\xi] \mathbb{E}[\eta]$$

Отже, знаходимо математичні сподівання. Знайдемо $\mathbb{E}[\xi]$:

$$\mathbb{E}[\xi] \triangleq \sum_{k=0}^{2} p(\xi = k)k = 0.4 \cdot 1 + 0.3 \cdot 2 = 1.0$$

$$\mathbb{E}[\eta] \triangleq \sum_{k=0}^{2} p(\eta = k)k = 0.4 \cdot 1 + 0.3 \cdot 2 = 1.0$$

Залишилось знайти $\mathbb{E}[\xi\eta]$:

$$\mathbb{E}[\xi \eta] = \sum_{i,j=0}^{2} p(\xi = i)p(\eta = j)ij = 0.2 + 2 \cdot 0.1 + 0.1 \cdot 2 = 0.6$$

Отже:

$$cov[\xi, \eta] = 0.6 - 1.0 \cdot 1.0 = -0.4$$

Оскільки $\operatorname{cov}[\xi,\eta]\neq 0$, то ξ та η ε залежними.

Відповідь. $cov[\xi, \eta] = -0.4$.

Завдання 2.

Умова. Кидають 2 гральні кубики. Нехай X — число очок, які випали на першому кубику, Y — ϵ більшим з двох очок, що випали. Знайдіть таблицю сумісного розподілення випадкових величин X та Y, а також їх середнє, дисперсії та коефіцієнт кореляції.

Розв'язок. Нехай $\xi_1, \xi_2 \sim \mathcal{U}[1,6]$ є випадкові величини, що випали на першому та другому кубіках, відповідно. Тоді $X = \xi_1, Y = \max\{\xi_1, \xi_2\}$, відповідно до умови. Розглянемо значення (X,Y) відповідно до значень ξ_1, ξ_2 у вигляді таблиці

_	$\xi_2 = 1$	$\xi_2 = 2$	$\xi_2 = 3$	$\xi_2 = 4$	$\xi_2 = 5$	$\xi_2 = 6$
$\xi_1 = 1$	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
$\xi_1 = 2$	(2,2)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
$\xi_1 = 3$	(3,3)	(3,3)	(3,3)	(3,4)	(3, 5)	(3,6)
$\xi_1 = 4$	(4,4)		(4,4)	(4,4)	(4, 5)	(4,6)
$\xi_1 = 5$	(5,5)	(5,5)	(5,5)	(5,5)	(5,5)	(5,6)
$\xi_1 = 6$	(6,6)	(6,6)	(6,6)	(6,6)	(6,6)	(6,6)

По цій таблиці побудуємо розподіл p_{XY} :

_	Y = 1	Y = 2	Y = 3	Y = 4	Y = 5	Y = 6
X = 1	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
X=2	0	$\frac{1}{18}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
X = 3	0	0	$\frac{1}{12}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
X = 4	0	0	0	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$
X = 5	0	0	0	0	$\frac{5}{36}$	$\frac{1}{36}$
X = 6	0	0	0	0	0	$\frac{1}{6}$

Формально, можемо записати:

$$p(X = x, Y = y) = \begin{cases} 0, & X > Y \\ \frac{X}{36}, & X = Y, \ (X, Y) \in \{1, \dots, 6\} \times \{1, \dots, 6\} \\ \frac{1}{36}, & X < Y \end{cases}$$

Знайдемо математичні сподівання:

$$\mathbb{E}[X] = \sum_{k=1}^{6} p(X=k)k = \frac{\sum_{k=1}^{6} k}{6} = \frac{7}{2}$$

$$\mathbb{E}[Y] = \sum_{k=1}^{6} p(Y=k)k = \sum_{k=1}^{6} \frac{k(2k-1)}{36} = \frac{161}{36}$$

Щоб знайти дисперсії, треба знайте математичне сподівання квадратів:

$$\mathbb{E}[X^2] = \sum_{k=1}^{6} p(X=k)k^2 = \frac{91}{6}$$

$$\mathbb{E}[Y^2] = \sum_{k=1}^{6} p(Y=k)k^2 = \frac{791}{36}$$

Таким чином, дисперсії:

$$\sigma_X^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{35}{12}, \ \sigma_Y^2 = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \frac{2555}{1296}$$

Для коефіцієнта кореляції треба знайти коваріацію, а для коваріації — математичне сподівання $\mathbb{E}[XY]$, отже:

$$\mathbb{E}[XY] = \sum_{x,y=1}^{6} p(X = x, Y = y)xy = \frac{154}{9}$$

Таким чином:

$$cov[X, Y] \triangleq \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \frac{154}{9} - \frac{7}{2} \times \frac{161}{36} = \frac{35}{24}$$

Отже коефіцієнт кореляції:

$$r[X,Y] \triangleq \frac{\text{cov}[X,Y]}{\sigma_X \sigma_Y} = \frac{\frac{35}{24}}{\sqrt{\frac{35}{12} \times \frac{2555}{1296}}} = \frac{3\sqrt{3}}{\sqrt{73}} \approx 0.608$$

Завдання 3.

Умова. Випадкові величини ξ та η мають математичне сподівання $\mathbb{E}[\xi] = \mu_{\xi}, \mathbb{E}[\eta] = \mu_{\eta},$ дисперсії $\mathrm{Var}[\xi] = \sigma_{\xi}^2, \mathrm{Var}[\eta] = \sigma_{\eta}^2$ та коефіцієнти кореляції r. Знайти математичне сподівання μ_{ζ} та дисперсію σ_{ζ}^2 величини $\zeta = \alpha \xi + \beta \eta + \gamma$ де $\alpha, \beta, \gamma \in \mathbb{R}$.

Розв'язок. Користуючись лінійністю математичного сподівання,

$$\mu_{\zeta} = \alpha \mu_{\xi} + \beta \mu_{\eta} + \gamma$$

З дисперсією ситуація трошки складніша. Використаємо наступне твердження:

Твердження: Про суму випадкових величин

Нехай маємо випадкові величини ξ_1,ξ_2,\ldots,ξ_n та дійсні числа $\alpha_1,\ldots,\alpha_n\in\mathbb{R}.$ Тоді:

$$\operatorname{var}\left[\sum_{i=1}^{n} \alpha_{i} \xi_{i}\right] = \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \operatorname{cov}[\xi_{i}, \xi_{j}]$$

Отже, скориставшись цим твердженням, маємо:

$$var[\alpha\xi + \beta\eta + \gamma] = var[\alpha\xi + \beta\eta] = \alpha^2\sigma_{\xi}^2 + \beta^2\sigma_{\eta}^2 + 2\alpha\beta cov[\xi, \eta]$$

Залишилось визначити $\text{cov}[\xi, \eta]$. Скориставшись означенням коефіцієнта кореляції,

$$r \triangleq \frac{\operatorname{cov}[\xi, \eta]}{\sigma_{\xi}\sigma_{\eta}} \implies \operatorname{cov}[\xi, \eta] = r\sigma_{\xi}\sigma_{\eta}$$

Тому остаточно:

$$\sigma_{\zeta}^2 = \alpha^2 \sigma_{\xi}^2 + \beta^2 \sigma_{\eta}^2 + 2r\alpha\beta\sigma_{\xi}\sigma_{\eta}$$

Відповідь. $\mu_{\zeta} = \alpha \mu_{\xi} + \beta \mu_{\eta} + \gamma, \sigma_{\zeta}^2 = \alpha^2 \sigma_{\xi}^2 + \beta^2 \sigma_{\eta}^2 + 2r\alpha\beta\sigma_{\xi}\sigma_{\eta}.$

Завдання 4.

Умова. Випадкова величина X є сумою трьох випадкових величин: $X = \xi + \eta + \zeta$. $\mathbb{E}[\xi] = 1$, $\mathbb{E}[\eta] = 2$, $\mathbb{E}[\zeta] = 0$, $\mathrm{var}[\xi] = 0.01$, $\mathrm{var}[\eta] = 4$, $\mathrm{var}[\zeta] = 0.36$, $r[\xi, \eta] = 0.2$, $r[\xi, \zeta] = 0.3$, $r[\eta, \zeta] = 0.1$. Знайти $\mathbb{E}[X]$, $\mathrm{var}[X]$.

Розв'язок. З математичним сподіванням ситуація найлегша:

$$\mathbb{E}[X] = \mathbb{E}[\xi] + \mathbb{E}[\eta] + \zeta = 3$$

Щодо дисперсії, використовуємо твердження з минулої задачі:

$$var[X] = var[\xi] + var[\eta] + var[\zeta] + 2cov[\xi, \eta] + 2cov[\xi, \zeta] + 2cov[\eta, \zeta]$$

Знаходимо коваріації:

$$\begin{aligned} &\cos[\xi,\eta] = r[\xi,\eta] \sqrt{\mathrm{var}[\xi] \times \mathrm{var}[\eta]} = 0.2 \times 0.1 \times 2 = 0.04 \\ &\cos[\xi,\zeta] = r[\xi,\zeta] \sqrt{\mathrm{var}[\xi] \times \mathrm{var}[\zeta]} = 0.3 \times 0.1 \times 0.6 = 0.018 \\ &\cos[\eta,\zeta] = r[\eta,\zeta] \sqrt{\mathrm{var}[\eta] \times \mathrm{var}[\zeta]} = 0.1 \times 2 \times 0.6 = 0.12 \end{aligned}$$

Отже,

$$var[X] = 0.01 + 4 + 0.36 + 0.08 + 0.036 + 0.24 = 4.726$$

Відповідь. $\mathbb{E}[X] = 3$, var[X] = 4.726.