

Quantile Regression: Multi-Task Approaches

Delanoue Pierre, Meunier Dimitri

ENSAE Paris , 3rd year engineering cycle

Motivations

- Breaking out of the dictatorship of the average: heterogeneity, robustness
- "Non-Crossing" Problem
- Multidimensional Targets

Classical Quantile Regression

Kernelised Quantile Regression

Simultaneous Kernelised Quantile Regression

Optimal Transport Approach

Classical Quantile Regression

Kernelised Quantile Regression

Simultaneous Kernelised Quantile Regression

Optimal Transport Approach

Classical Quantile Regression

For $\alpha \in (0, 1)$, the α -th quantile of a random variable **y** on \mathbb{R} is defined by:

$$q_{\mathbf{y}}(\alpha) = \inf\{x \in \mathbb{R}, F_{\mathbf{y}}(x) \ge \alpha\}$$

where $F_{\mathbf{v}}$ is the distribution function of \mathbf{y} .

- (i) $\alpha \longmapsto q_{\mathbf{v}}(\alpha)$ is non-decreasing
- ullet (ii) If $U\sim \mathcal{U}([0,1])$, then $q_{f y}(U)={f y}$ with probability one.

Pinball Loss

Linear Model Estimation

$$\forall \alpha \in (0,1), \ \exists \beta_{\alpha} \in \mathbb{R}^q \quad \text{s.t.} \quad q_{\alpha}(Y|X) = \beta_{\alpha}^T X$$
 (1)

$$\beta_{\alpha} \in \arg\min_{\beta \in \mathbb{R}^q} \mathbb{E}[\rho_{\alpha}(Y - X'\beta)] \tag{2}$$

Given a dataset $\mathcal{D} = \{(y_1, x_1), ..., (y_n, x_n)\}$, the quantile regression estimator is naturally built as:

$$\widehat{\beta}_{\alpha} \in \arg\min_{\beta \in \mathbb{R}^{q}} \frac{1}{n} \sum_{i=1}^{n} \rho_{\alpha} (\mathbf{y}_{i} - \mathbf{x}_{i}'\beta) \tag{3}$$

Classical Quantile Regression

Kernelised Quantile Regression

Simultaneous Kernelised Quantile Regressior

Optimal Transport Approach

Kernelised Quantile Regression

Given a positive definite kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, and the associated (unique) *Reproducing Kernel Hilbert Space* $\mathcal{H} \subset (\mathbb{R})^{\mathcal{X}}$. We can *kernelized* the linear model as follows,

$$(f_{\alpha}, b_{\alpha}) \in \underset{f \in \mathcal{H}, b \in \mathbb{R}}{\min} \frac{1}{n} \sum_{i=1}^{n} \rho_{\alpha}(y_{i} - f(x_{i}) - b) + \frac{\lambda}{2} ||f||_{\mathcal{H}}^{2} \qquad \lambda > 0$$

$$(4)$$

Applying the representer theorem, we get a Quandratic Program (QP).

The primal and the dual can be solved with interior point methods.

Classical Quantile Regression

Kernelised Quantile Regression

Simultaneous Kernelised Quantile Regression

Optimal Transport Approach

Simultaneous Kernelised Quantile Regression

Goal: Learn *p* quantile functions with $0 < \alpha_1 < ... < \alpha_p < 1$

First approach. Learn p kernels and impose hard constraints to avoid crossing.

minimize
$$(w_{\alpha_{1}}, \cdots, w_{\alpha_{p}}) \in \mathbb{R}^{n \times p}, b \in \mathbb{R}^{p}$$

$$\sum_{k=1}^{p} \sum_{i=1}^{n} \rho_{\alpha_{k}} \left(y_{i} - \sum_{j=1}^{n} w_{\alpha_{k}, j} K(x_{j}, x_{i}) - b_{k} \right) + \frac{\lambda}{2} \sum_{k=1}^{p} w_{\alpha_{k}}^{T} K^{n} w_{\alpha_{k}}$$
subject to
$$w_{\alpha_{k}, i} \leq w_{\alpha_{k+1}, i}, \quad \forall i \in \llbracket 1, n \rrbracket, \quad \forall k \in \llbracket 1, p - 1 \rrbracket$$

$$b_{k} \leq b_{k+1}, \quad \forall k \in \llbracket 1, p - 1 \rrbracket$$

$$(5)$$

If the kernel satisfies $K(x, x') \ge 0$, $\forall (x, x') \in \mathcal{X}^2$, the hard constraints ensure non-crossing.

Simultaneous Kernelised Quantile Regression

Second approach. Learn a vector valued kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{p \times p}$

$$(f_{\alpha}, b_{\alpha}) \in \underset{f \in \mathcal{H}, b \in \mathbb{R}^{p}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{p} \rho_{\alpha_{k}}(y_{i} - f_{k}(x_{i}) - b_{k}) + \frac{\lambda}{2} ||f||_{\mathcal{H}}^{2} \qquad \lambda > 0$$
 (6)

Computation

minimize
$$f \in \mathcal{H}, b \in \mathbb{R}^{p}, \xi^{+} \in (\mathbb{R}^{n})^{p}, \xi^{-} \in (\mathbb{R}^{n})^{p}$$

$$\xi_{k}^{-} \succeq 0, \xi_{k}^{+} \succeq 0 \quad \forall k \in [p]$$

$$\xi_{i,k}^{+} - \xi_{i,k}^{-} = y_{i} - f_{k}(x_{i}) - b_{k} \quad \forall k \in [p] \quad \forall i \in [n]$$

$$(7)$$

13/24 May 4, 2020 Dimitri Meunier, Pierre Delanoue

Classical Quantile Regression

Kernelised Quantile Regression

Simultaneous Kernelised Quantile Regression

Optimal Transport Approach

Optimal Transport Approach

Built a deterministic function $(u, z) \longmapsto Q_{Y|Z}(u, z)$ from $[0, 1]^d \times \mathbb{R}^q$ to \mathbb{R}^d where :

• (I) $(u, z) \mapsto Q_{Y|Z}(u, z)$ being monotone with respect to u, in the sense of being a gradient of a convex function :

$$(Q_{Y|Z}(u,z) - Q_{Y|Z}(u',z))^T(u-u') \ge 0 \quad \forall (u,u') \in [0,1]^d \times [0,1]^d, z \in \mathbb{R}^q$$
 (8)

(II) Having with probability one :

$$Y = Q_{Y|Z}(U,Z), \qquad U|Z \sim \mathcal{U}([0,1]^d) \tag{9}$$

Problem to be solved

$$\max_{U} \{ \mathbb{E}[U^{T}Y] : U \sim \mathcal{U}([0,1]^{d}) \text{ and } \mathbb{E}[X|U] = \mathbb{E}[X] \}$$
 (10)

Dual

$$\inf_{(\psi,b)} \mathbb{E}[\psi(X,Y)] + \mathbb{E}[b(U)]^{\mathsf{T}} \mathbb{E}[X] : \psi(x,y) + b(u)^{\mathsf{T}} x \ge u^{\mathsf{T}} y \qquad \forall (y,x,u) \in \mathbb{R}^d \times \mathbb{R}^q \times \mathbb{R}^d \quad (11)$$

Solution of Dual Gives

$$\forall (u, x) \in \mathbb{R}^d \times \mathbb{R}^q, \quad \beta_0(u)^T x = \nabla_u(b^*(u)^T x)$$
(12)

Discretization

 $D_n = \{(Y_1, Z_1), ..., (Y_n, Z_n)\}$ and m points $(U_i)_{i \in \llbracket 1, m \rrbracket}$ of $[0.1]^d$ spaced evenly.

Discrete form of our transportation problem:

$$\max_{P\succeq 0} \sum_{i,j} P_{i,j} Y_j^T U_i \quad s.t. \quad P^T \mathbf{1}_m = \nu[\psi], \ PX = \mu \nu^T X[b]$$
 (13)

where the square brackets indicate the associated Lagrange multiplier.

To find:

$$\widehat{b^*} = \begin{pmatrix} b^*(U_1) \\ \vdots \\ b^*(U_m) \end{pmatrix} = \begin{pmatrix} b_1^*(U_1) \dots b_q^*(U_1) \\ \vdots \\ b_1^*(U_m) \dots b_q^*(U_m) \end{pmatrix}$$
(14)

Computation

$$\beta_0(u) = \nabla b^*(u) \approx \left(\frac{b_j^*(u^{(i)} + \epsilon, u^{-(i)}) - b_j^*(u^{(i)}, u^{-(i)})}{\epsilon}\right)_{i \in [\![1, d]\!], j \in [\![1, q]\!]}$$
(15)

where $u=\left(u^{\left(1\right)},...,u^{\left(d\right)}\right)$ and $\epsilon>0$

$$\forall i \in [\![1,m]\!], \widehat{\beta}(U_i) := (\frac{b_j^*(U_i^{(n:k)}) - b_j^*(U_i)}{\epsilon})_{k \in [\![1,d]\!], j \in [\![1,q]\!]}$$
(16)

18/24 May 4, 2020 Dimitri Meunier, Pierre Delanoue

Classical Quantile Regression

Kernelised Quantile Regression

Simultaneous Kernelised Quantile Regression

Optimal Transport Approach

Optimal Transport Implementation

Two dimensional Case

Conclusion

- Kernel, Optimal Transport and Vector Quantile Regression research perspectives
- Interpretability, Tests and confidence intervals
- Overcome the dimension curse

Thank You for Listening.