

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES II

TEMA: MiltiProtocol Label Swiching

Grupo Docente:

• Regente: Eng°. Felizardo Munguambe

• Assistente: Eng°. Délcio Chadreca

Tópicos da Aula

- Introdução
- > Encaminhamento baseado no destino
- Roteamento explicito
- Redes privadas virtuais e tuneis
- Conclusão

Introdução

Enquanto a IETF estava desenvolvendo serviços integrados e serviços diferenciados, vários fabricantes de roteadores estavam a trabalhar em métodos de encaminhamento melhores.

Esse trabalho se concentrou na inclusão de um rotulo (label) no inicio de cada pacote e na execução do roteamento baseado no rotulo, e não no endereço de destino.

Fazer um rotulo um índice para uma tabela interna torna a localização da linha de saída correcta apenas uma questão de pesquisa numa tabela.

Utilizando-se esta técnica, o roteamento pode ser feito com muita rapidez, e quaisquer recursos necessários podem ser reservados ao longo do caminho.

A identificação de circuitos desta maneira chega perto a circuitos virtuais

Introdução

As redes ATM, X.25, Frame Reley e todas outras redes com uma sub-rede de circuito virtual também incluem um rotulo (isto e identificador do circuito virtual) em cada pacote. Realizam a pesquisa de rotulo numa tabela e efectuam o roteamento com base na entrada numa tabela.

A despeito de facto de muitos na comunidade da Internet terem uma grande antipatia a redes orientadas a conexões, a ideia parece ser recorrente e desta vez, para permitir o roteamento, mais rápido e oferecer a qualidade de serviço.

O MPLS (MiltiProtocol Label Swiching) e uma ideia que foi proposta inicialmente como um meio para melhorar o desempenho da Internet

Introdução

Existem diferenças essenciais entre o modo como a Internet trata a construção de rotas e o modo como a construção de rotas e feita nas redes orientadas a conexões: Portanto a técnica não e a comutação de circuitos tradicional.

O MPLS tenta combinar algumas das propriedades de circuitos virtuais com a flexibilidade e robustez dos datagramas:

- Por um lado o MPLS e associado a arquitectura baseada a datagramas do Internet Protocol (IP). Ela conta com endereços IP e protocolos de roteamento IP para realizar o trabalho.
- Por um lado os roteadores habilitados para MPLS encaminham pacotes examinando rótulos relativamente curtos, de tamanhos fixos, e esses rótulos possuem escopo local, como em uma rede de circuito virtual.

Cenário Atual

As novas aplicações que necessitam de recurso da rede são cada vez mais comuns

- Transmissão de TV na Internet
- Videoconferências
- Jogos on-line

A popularização da Internet cresce a cada dia

É necessário que as tecnologias que ligam diferentes redes possam diferenciar fluxo de dados:

- Mais prioritários
- Menos prioritários

Protocolo TCP/IP

Com a evolução da Internet, houve uma padronização do protocolo IP

Na época em que foi idealizado, foi desenvolvido para aplicações tolerantes ao atraso

Segue o modelo do melhor esforço

Complexidade nas tomadas de decisão do encaminhamento

No início, a simplicidade e flexibilidade eram suficientes

Não é capaz de fornecer garantia de QoS

Motivação do MPLS

Menor complexidade na decisão do encaminhamento dos pacotes

Suporta engenharia de tráfego

Virtual Private Network (VPN)

Possibilidade de implementação de QoS

Orientado a conexões em redes IP

Baixo custo de Implantação

Histórico

Na época em que o ATM (Asynchronous Transfer Mode) foi lançado, havia grandes expectativas

- Alcançava altas velocidades
- Mas não era compatível com o protocolo IP
- Acabou em desuso

Para deixar o ATM compatível com o IP foi criada a tecnologia LBS (Label Based Switching)

- Conseguia utilizar o melhor das redes baseadas em pacotes (como as redes IP) e das redes orientadas a conexão (como as redes ATM)

Label Based Switching (LBS)

Foram surgindo muitas implementações proprietárias de LBS:

- IP Switching (Nokia)
- Cell Switching Router (Toshiba)
- TAG Switching (Cisco)
- Aggregate Route-Based IP Switching ou Aris (IBM)
- IP Navigator (Ascend)

Todas essas tecnologias utilizam a troca de rótulos como método de encaminhar os pacotes

Houve dificuldade de operação entre os diferentes LBS

Para garantir a independência de protocolos, o IETF padronizou o protocolo MPLS

O que é MPLS?

MPLS (MultiProtocol Label Switching) é um framework definido pelo IETF (Internet Engineering Task Force)

- Proporciona encaminhamento e comutação eficientes de fluxos de tráfegos através da rede.

É uma técnica de comutação baseada em rótulos

MPLS é neutro quanto a tecnologia de rede, ou seja, pode ser implantado sobre redes ATM, DWDM, Ethernet (Multiprotocolo na camada 2)

Características do MPLS

O Encaminhamento na Internet é feito a cada salto assim como o IP

MPLS permite a construção de caminhos (LSPs) entre roteadores de entrada e saída em um domínio

Insere um rótulo de 20 bits entre os cabeçalhos de camadas 2 e 3 do protocolo IP

Pacotes são encaminhados pelos roteadores (LSRs) sem consultar a tabela de roteamento tradicional

Embora seja multi-protocolo, estão sendo criados padrões para o protocolo IP

Características do MPLS

Componente de Encaminhamento

- Utiliza informações dos rótulos dos pacotes e informações das tabelas de encaminhamento dos roteadores (LSR) para encaminhar pacotes

Componente de Controle

- É responsável por distribuir informações de roteamento entre os roteadores (LSR) que compõe um domínio MPLS
 - Criando tabelas de encaminhamento
 - Fazendo manutenção das tabelas

Componentes da rede MPLS

Label Switching Routers (LSR)

- Encaminham pacotes baseados nas informações contidas nos rótulos
- Mantém as tabelas de encaminhamento atualizadas
- Ao receber um pacote, cada LSR troca o rótulo existente por outro, e encaminha o pacote para o próximo LSR

Label Edge Routers (LER)

- Possui as funções de encaminhamento e controle do LSR
- Quando está na entrada da rede
 - Adicionam rótulos aos pacotes
- Quando estão na saída da rede
 - Retiram os rótulos dos pacotes

Esquema de uma rede MPLS

São um conjunto de parâmetros que irão determinar um caminho para os pacotes

Os pacotes com a mesma FEC seguirão o mesmo caminho com o mesmo tratamento

A FEC é representada por um rótulo e cada caminho é associado a uma FEC

Ao receber um pacote, o LER verifica à qual FEC este pertence, e o encaminha através do caminho correspondente

Associação do pacote à uma FEC só ocorre uma vez quando o pacote entra na rede MPLS.

- Garante flexibilidade e escalabilidade a rede.

É um conjunto de parâmetros que irão determinar um caminho para os pacotes

Os pacotes com a mesma FEC seguirão o mesmo caminho com o mesmo tratamento

A FEC é representada por um rótulo e cada caminho é associado a uma FEC

Ao receber um pacote, o LER verifica à qual FEC este pertence, e o encaminha através do caminho correspondente

Associação do pacote à uma FEC só ocorre uma vez quando o pacote entra na rede MPLS.

- Garante flexibilidade e escalabilidade a rede.

A FEC pode ser determinada por diversos parâmetros:

- Endereço IP de origem ou destino do pacote
- Número da porta de origem ou destino
- QoS

Label Switch Path (LSP)

É o caminho por onde os pacotes irão passar numa rede MPLS.

LSP é a sequência de roteadores(LSR) através do qual cada pacote com rótulo deve passar até chegar ao roteador(LER) de saída

Cada LSP é unidirecional, assim o retorno do tráfego acontece por outro LSP

O LER de entrada da rede decide por qual LSP um pacote deve seguir

- Esta decisão é baseada na FEC

Label Switch Path (LSP)

Label Forwarding Information Base(LFIB)

São as tabelas de encaminhamento dos comutadores de rótulo (LSR)

São responsáveis pelo processo de encaminhamento de pacotes e são mantidas pelos LSR's.

Cada entrada possui os campos:

- Rótulo de entrada (índice da tabela)
- Interface de Entrada
- Interface de Saída
- Rótulo de Saída

Exemplo de uma LFIB

Algoritmos de Encaminhamento

LER (Label Edge Routers):

- 1. Procura o endereço IP do destino no pacote
- 2. Procura uma entrada na tabela de encaminhamento equivalente ao endereço IP do destino
- 3. Adiciona o rótulo correspondente no pacote IP
- 4. Envia o pacote pela interface de saída

LSR (Label Switching Routers):

- 1. Extrai o rótulo do pacote
- 2. Procura uma entrada na LFIB com rótulo de entrada igual ao rótulo do pacote
- 3. Faz a troca do rótulo do pacote pelo rótulo de saída equivalente
- 4. Envia o pacote para interface de saída do roteador

LER / LSR

LER (Label Edge Routers):

- Roteadores que ficam na borda do domínio MPLS.
- Inserem ou retiram pilhas de rótulos dos pacotes/células;

LSR (Label Switching Routers):

- Roteadores que ficam no núcleo do domínio MPLS.
- Realizam operações sobre a pilha dos pacotes/células a partir da análise do rótulo do topo;

Rótulo MPLS

Possui tamanho fixo e significado local

Cabeçalho MPLS é posicionado entre a camada 2 e a camada 3

Funcionamento Básico

Protocolos de Distribuição de Rótulos

Para que os LSR's possam comutar pacotes rotulados, precisa haver um mecanismo de distribuição de rótulos

- Pode-se estender os protocolos de roteamento já existentes para carregar mapeamentos entre FEC's e rótulos
 - Possui vantagem de manter a simplicidade do sistema
 - A consistência entre a tabela de roteamento e os mapeamentos de rótulos é mantida
 - No entanto, nem todos os protocolos de roteamento carregam as informações necessárias para mapear os rótulos
 - Não é fácil adaptar protocolos, pois pode haver necessidade de alterar o formato das mensagens
- Pode-se criar novos protocolos para executar esta tarefa
 - Foi criado o protocolo LDP (Label Distribution Protocol)

Label Distribution Protocol (LDP)

A criação de rótulos é determinada por mudanças no roteamento LDP provê mecanismos para que LSR's vizinhos iniciem comunicação Foi projetado para ser facilmente extensível, utilizando mensagens especificadas como TLV's(Type, Lenght, Value)

- Pode-se definir novas funcionalidades para o protocolo, simplesmente definindo novos tipos de mensagens

Label Distribution Protocol (LDP)

Mecanismo de descoberta de LSR's vizinhos

- 1. Periodicamente, um LSR utiliza o protocolo UDP para enviar mensagens "Hello" para uma porta conhecida através de multicast, onde estejam os outros LSR's.
- 2. Quando um LSR descobre outro LSR através do passo 1, é estabelecida uma conexão TCP com ele.
- 3. Após estabelecida a sessão, cada LSR pode informar a criação de novos rótulos

Label Distribution Protocol (LDP)

Empilhamento de Rótulos

O empilhamento de rótulos permite que sejam feitas operações com níveis hierárquicos dentro de um domínio MPLS com diferentes redes

Aplicações - VPN

Virtual Private Network (VPN)

- VPN é uma rede particular construída sobre a infra-estrutura de uma rede pública, como a Internet
- É utilizado tunelamento, onde os pacotes são transmitidos na rede pública em um túnel privado simulando uma conexão ponto-a-ponto
- A utilização do MPLS como mecanismo de encaminhamento de um domínio VPN provê:
 - Agilidade
 - Facilidade
 - Gerenciamento para grandes redes
 - Suporte a Segurança
 - Suporte a QoS

Aplicações - VPN

Tráfego entre as redes fica transparente ao usuário, devido ao túnel virtual existente na rede

Aplicações VPN

Aplicações - QoS

Quality of Service (QoS)

- É um requisito para as aplicações em que é necessário que certos parâmetros estejam dentro de limites bem definidos
 - Atraso mínimo
 - Variação de atraso mínimo
 - Perdas mínimo
 - Largura de Banda máxima
- Aplicações com voz e vídeo com alta utilização de largura de banda estão aumentando cada vez mais
 - As redes devem fornecer serviços seguros, previsíveis que possam garantir a qualidade dessas aplicações
- Utilização do MPLS pode ajudar a alcançar a qualidade de serviço exigida

Aplicações – Engenharia de Tráfego

É o processo de organização do tráfego que flui através da rede para evitar congestionamentos causados por uma utilização desigual da rede

Objetivo principal é fazer com que a operação de troca de dados na rede seja eficiente e confiável enquanto há uma otimização de seu desempenho

A engenharia de tráfego pode utilizar MPLS com o objetivo de descobrir e fixar os caminhos considerados mais adequados aos fluxos de dentro da rede

Vantagens do MPLS

Roteamento Explícito

Independência dos componentes de controle e encaminhamento

Suporte a Múltiplos Protocolos e Múltiplos Links

Suporte a Unicast e Multicast

Velocidade

Escalabilidade

Simplicidade

Roteamento Inter-Domínio

Comparação

	Roteamento Convencional	Comutação por rótulo
Análise Completa do Cabeçalho IP	Ocorre a cada nó	Ocorre apenas uma vez, na borda da rede(LER), quando o rótulo é atribuído.
Suporte a multicast	Necessita de vários algoritmos complexos de encaminhamento	Necessita de apenas um algoritmo de encaminhamento
Decisões de roteamento	Baseadas apenas no endereço	Podem ser baseadas em qualquer número de parâmetros, como QoS e VPN

Conclusão

MPLS é uma tecnologia emergente que se apresenta promissora por permitir integração com várias tecnologias de rede

Possui a grande vantagem da comutação por rótulos

MPLS consegue aplicar engenharia de tráfego e possibilita a garantia de QoS sem alterar a estrutura das redes atuais

Através do MPLS será possível mellhorar:

- Transmissões de voz e vídeo (através do QoS)
- Segurança (através das VPN's)
- Velocidade e Planeamento nas transmissões de dados (através da Engenharia de Tráfego)

Bibliografia consultada

- \triangleright A
- **▶** B
- **▶** C

42

Questões de reflexão

16/09/20

43

Bibliografia consultada

- ► Larry L. Peterson and Bruce S. Davie Computer Network a system approach 5th Edition
- ► Tanenbaum A. S. and Wetherall D. J. Computer networks 5th Edition.
- ► Mário Vestias Redes Cisco para profissionais 6ª Edição
- ► Adaptado do Professor Doutor Lourino Chemane

16/09/20

OBRIGADO!!!