Solution Bank

Chapter review 7

1 **a**
$$y = x^{\frac{3}{2}} + \frac{48}{x}$$
 $(x > 0)$

$$\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - \frac{48}{x^2}$$
Putting $\frac{dy}{dx} = 0$:
$$\frac{3}{2}x^{\frac{1}{2}} = \frac{48}{x^2}$$

$$x^{\frac{5}{2}} = 32$$

$$x = 4$$

Substituting
$$x = 4$$
 into $y = x^{\frac{3}{2}} + \frac{48}{x}$ gives:
 $y = 8 + 12 = 20$
So $x = 4$ and $y = 20$ when $\frac{dy}{dx} = 0$.

b
$$\frac{d^2y}{dx^2} = \frac{3}{4}x^{-\frac{1}{2}} + \frac{96}{x^3}$$

When $x = 4$, $\frac{d^2y}{dx^2} = \frac{3}{8} + \frac{96}{64} = \frac{15}{8} > 0$
∴ minimum

2
$$y = x^3 - 5x^2 + 7x - 14$$

 $\frac{dy}{dx} = 3x^2 - 10x + 7$
Putting $3x^2 - 10x + 7 = 0$
 $(3x - 7)(x - 1) = 0$
So $x = \frac{7}{3}$ or $x = 1$

2

When
$$x = \frac{7}{3}$$
,
 $y = \left(\frac{7}{3}\right)^3 - 5\left(\frac{7}{3}\right)^2 + 7\left(\frac{7}{3}\right) - 14$
 $= -\frac{329}{27}$
 $y = -12\frac{5}{27}$

When
$$x = 1$$
,
 $y = 1^3 - 5(1)^2 + 7(1) - 14$
 $= -11$

So $\left(\frac{7}{3}, -12\frac{5}{27}\right)$ and (1, -11) are stationary points.

3 **a**
$$f'(x) = x^2 - 2 + \frac{1}{x^2} \quad (x > 0)$$

 $f''(x) = 2x - \frac{2}{x^3}$
When $x = 4$, $f''(x) = 8 - \frac{2}{64}$
 $= 7\frac{31}{32}$

b For an increasing function, $f'(x) \ge 0$ $x^2 - 2 + \frac{1}{r^2} \ge 0$ $\left(x - \frac{1}{r}\right)^2 \ge 0$ This is true for all x, except x = 1 (where

f'(1) = 0.

So the function is an increasing function.

4
$$y = x^3 - 6x^2 + 9x$$

 $\frac{dy}{dx} = 3x^2 - 12x + 9$
Putting $3x^2 - 12x + 9 = 0$
 $3(x^2 - 4x + 3) = 0$
 $3(x - 1)(x - 3) = 0$
So $x = 1$ or $x = 3$
So there are stationary points when $x = 1$

and x = 3.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 12$$

4

When
$$x = 1$$
, $\frac{d^2 y}{dx^2} = 6 - 12 = -6 < 0$, so

maximum point

When
$$x = 3$$
, $\frac{d^2y}{dx^2} = 18 - 12 = 6 > 0$, so

minimum point

When
$$x = 1$$
, $y = 1 - 6 + 9 = 4$

So (1, 4) is a maximum point.

Solution Bank

5 **a**
$$f(x) = 3x^4 - 8x^3 - 6x^2 + 24x + 20$$

 $f'(x) = 12x^3 - 24x^2 - 12x + 24$
 $= 12(x^3 - 2x^2 - x + 2)$
 $= 12(x - 1)(x^2 - x - 2)$
 $= 12(x - 1)(x - 2)(x + 1)$
So $x = 1$, $x = 2$ or $x = -1$
 $f(1) = 3 - 8 - 6 + 24 + 20$
 $= 33$
 $f(2) = 3(2)^4 - 8(2)^3 - 6(2)^2 + 24(2) + 20$
 $= 28$

f(-1) = 3 + 8 - 6 - 24 + 20

So
$$(1, 33)$$
, $(2, 28)$ and $(-1, 1)$ are stationary points.

$$f''(x) = 36x^2 - 48x - 12$$

 $f''(1) = 36 - 48 - 12 = -24 < 0$, so maximum
 $f''(2) = 36(2)^2 - 48(2) - 12 = 36 > 0$, so

$$f''(2) = 36(2)^2 - 48(2) - 12 = 36 > 0$$
, so minimum

$$f''(-1)$$
, $y = 36 + 48 - 12 = 72 > 0$, so minimum

So (1, 33) is a maximum point and (2, 28) and (-1, 1) are minimum points.

b

6 **a**
$$f(x) = 200 - \frac{250}{x} - x^2$$

 $f'(x) = \frac{250}{x^2} - 2x$

6 b At the maximum point, B, f'(x) = 0

$$\frac{250}{x^2} - 2x = 0$$

$$\frac{250}{x^2} = 2x$$

$$250 = 2x^3$$

$$x^3 = 125$$

$$x = 5$$
When $x = 5$, $y = f(5) = 200 - \frac{250}{5} - 5^2$

$$= 125$$

The coordinates of B are (5, 125).

7 **a** P has coordinates m,
$$\left(x, 5 - \frac{1}{2}x^2\right)$$
.

$$OP^{2} = (x - 0)^{2} + \left(5 - \frac{1}{2}x^{2} - 0\right)^{2}$$
$$= x^{2} + 25 - 5x^{2} + \frac{1}{4}x^{4}$$
$$= \frac{1}{4}x^{4} - 4x^{2} + 25$$

b Given
$$f(x) = \frac{1}{4}x^4 - 4x^2 + 25$$

$$f'(x) = x^3 - 8x$$

When $f'(x) = 0$,
 $x^3 - 8x = 0$
 $x(x^2 - 8) = 0$
 $x = 0$ or $x^2 = 8$
 $x = 0$ or $x = \pm 2\sqrt{2}$

c
$$f''(x) = 3x^2 - 8$$

When
$$x = 0$$
, $f''(x) = -8 < 0$, so maximum
When $x^2 = 8$, $f''(x) = 3 \times 8 - 8 = 16 > 0$, so minimum

Substituting $x^2 = 8$ into f(x):

$$OP^2 = \frac{1}{4} \times 8^2 - 4 \times 8 + 25 = 9$$

So OP = 3 when $x = \pm 2\sqrt{2}$

8 a
$$y = 3 + 5x + x^2 - x^3$$

Let
$$y = 0$$
, then
 $3 + 5x + x^2 - x^3 = 0$

$$(3-x)(1+2x+x^2) = 0$$
$$(3-x)(1+x)^2 = 0$$

$$x = 3$$
 or $x = -1$ when $y = 0$

The curve touches the x-axis at x = -1 (A) and cuts the axis at x = 3 (C).

C has coordinates (3, 0)

Solution Bank

8 b
$$\frac{dy}{dx} = 5 + 2x - 3x^2$$

Putting
$$\frac{dy}{dx} = 0$$
$$5 + 2x - 3x^2 = 0$$
$$(5 - 3x)(1 + x) = 0$$

So
$$x = \frac{5}{3}$$
 or $x = -1$

When
$$x = \frac{5}{3}$$
,

$$y = 3 + 5\left(\frac{5}{3}\right) + \left(\frac{5}{3}\right)^2 - \left(\frac{5}{3}\right)^3 = 9\frac{13}{27}$$

So *B* is
$$(\frac{5}{3}, 9\frac{13}{27})$$
.

When
$$x = -1$$
, $y = 0$

So
$$A$$
 is $(-1, 0)$.

9

x	$y = \mathbf{f}(x)$	y = f'(x)
0 < x < 0.5	Positive gradient	Above <i>x</i> -axis
x = 0.5	Maximum	Cuts x-axis
0.5 < x < 1.2	Negative gradient	Below x-axis
x = 1.2	Minimum	Cuts x-axis
1.2 < x < 2.1	Positive gradient	Above <i>x</i> -axis
x = 2.1	Maximum	Cuts x-axis
x > 2.1	Negative gradient	Below x-axis with asymptote at $y = 0$

10
$$V = \pi (40r - r^2 - r^3)$$

$$\frac{\mathrm{d}V}{\mathrm{d}r} = 40\pi - 2\pi r - 3\pi r^2$$

Putting
$$\frac{dV}{dr} = 0$$

$$\pi(40 - 2r - 3r^2) = 0$$

$$\pi(40 - 2r - 3r^2) = 0$$
$$(4 + r)(10 - 3r) = 0$$

$$r = \frac{10}{3}$$
 or $r = -4$

As r is positive,
$$r = \frac{10}{3}$$

Substituting into the given expression for V:

$$V = \pi \left(40 \times \frac{10}{3} - \frac{100}{9} - \frac{1000}{27} \right) = \frac{2300}{27} \pi$$

11
$$A = 2\pi x^2 + \frac{2000}{x} = 2\pi x^2 + 2000x^{-1}$$

$$\frac{dA}{dx} = 4\pi x - 2000x^{-2} = 4\pi x - \frac{2000}{x^2}$$

Putting
$$\frac{dA}{dx} = 0$$

$$4\pi x = \frac{2000}{x^2}$$

$$x^3 = \frac{x^3}{4\pi} = \frac{500}{\pi}$$

12 a The total length of wire is

$$\left(2y+x+\frac{\pi x}{2}\right)$$
m

As total length is 2 m,

$$2y + x\left(1 + \frac{\pi}{2}\right) = 2$$
$$y = 1 - \frac{1}{2}x\left(1 + \frac{\pi}{2}\right)$$

b Area,
$$R = xy + \frac{1}{2}\pi \left(\frac{x}{2}\right)^2$$

Substituting
$$y = 1 - \frac{1}{2}x\left(1 + \frac{\pi}{2}\right)$$
 gives:

$$R = x \left(1 - \frac{1}{2}x - \frac{\pi}{4}x \right) + \frac{\pi}{8}x^2$$
$$= \frac{x}{8} \left(8 - 4x - 2\pi x + \pi x \right)$$

$$=\frac{x}{8}\left(8-4x-\pi x\right)$$

Solution Bank

12 c For maximum
$$R$$
, $\frac{dR}{dx} = 0$

$$R = x - \frac{1}{2}x^2 - \frac{\pi}{8}x^2$$

$$\frac{\mathrm{d}R}{\mathrm{d}x} = 1 - x - \frac{\pi}{4}x$$

Putting
$$\frac{dR}{dx} = 0$$

$$x = \frac{1}{1 + \frac{\pi}{4}}$$
$$= \frac{4}{4 + \pi}$$

Substituting
$$x = \frac{4}{4 + \pi}$$
 into R :

$$R = \frac{1}{2(4+\pi)} \left(8 - \frac{16}{4+\pi} - \frac{4\pi}{4+\pi} \right)$$

$$R = \frac{1}{2(4+\pi)} \times \frac{32 + 8\pi - 16 - 4\pi}{4 + \pi}$$

$$= \frac{1}{2(4+\pi)} \times \frac{16+4\pi}{4+\pi}$$

$$=\frac{4\left(4+\pi\right)}{2\left(4+\pi\right)^2}$$

$$=\frac{2}{4+\pi}$$

13 a Let the height of the tin be
$$h$$
 cm.

The area of the curved surface of the $tin = 2\pi xh$ cm²

The area of the base of the $\sin = \pi x^2 \text{ cm}^2$ The area of the curved surface of the $\text{lid} = 2\pi x \text{ cm}^2$

The area of the top of the lid = πx^2 cm² Total area of sheet metal is 80π cm². So $2\pi x^2 + 2\pi x + 2\pi xh = 80\pi$

$$h = \frac{40 - x - x^2}{x}$$

The volume, V, of the tin is given by $V = \pi x^2 h$

$$= \frac{\pi x^2 (40 - x - x^2)}{x}$$
$$= \pi (40x - x^2 - x^3)$$

13 b
$$\frac{dV}{dx} = \pi(40 - 2x - 3x^2)$$

Putting
$$\frac{dV}{dr} = 0$$

$$40 - 2x - 3x^2 = 0$$

$$(10 - 3x)(4 + x) = 0$$

So
$$x = \frac{10}{3}$$
 or $x = -4$

But x is positive, so $x = \frac{10}{3}$

$$\mathbf{c} \quad \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = \pi(-2 - 6x)$$

When
$$x = \frac{10}{3}$$
, $\frac{d^2V}{dx^2} = \pi(-2 - 20) < 0$

So *V* is a maximum.

$$\mathbf{d} \quad V = \pi \left(40 \times \frac{10}{3} - \left(\frac{10}{3} \right)^2 - \left(\frac{10}{3} \right)^3 \right)$$
$$= \pi \left(\frac{400}{3} - \frac{100}{9} - \frac{1000}{27} \right)$$
$$= \frac{2300}{27} \pi$$

e Lid has surface area $\pi x^2 + 2\pi x$

When
$$x = \frac{10}{3}$$
,

this is
$$\pi \left(\frac{100}{9} + \frac{20}{3} \right) = \frac{160}{9} \pi$$

Percentage of total surface area =

$$\frac{\frac{160}{9}\pi}{80\pi} \times 100 = \frac{200}{9} = 22.2...\%$$

Solution Bank

14 a Let the equal sides of $\triangle ADE$ be a metres.

Using Pythagoras' theorem,

$$a^{2} + a^{2} = x^{2}$$

$$2a^{2} = x^{2}$$

$$a^{2} = \frac{x^{2}}{2}$$

Area of
$$\triangle ADE = \frac{1}{2} \times \text{base} \times \text{height}$$

= $\frac{1}{2} \times a \times a$
= $\frac{x^2}{4} \text{m}^2$

b Area of two triangular ends

$$=2\times\frac{x^2}{4}=\frac{x^2}{2}$$

Let the length AB = CD = y metres

Area of two rectangular sides

$$= 2 \times ay = 2ay = 2\sqrt{\frac{x^2}{2}}y$$

So
$$S = \frac{x^2}{2} + 2\sqrt{\frac{x^2}{2}}y = \frac{x^2}{2} + xy\sqrt{2}$$

But capacity of storage tank = $\frac{1}{4}x^2 \times y$

So
$$\frac{1}{4}x^2y = 4000$$

 $y = \frac{16000}{x^2}$

Substituting for *y* in equation for *S* gives:

$$S = \frac{x^2}{2} + \frac{16\ 000\sqrt{2}}{x}$$

14 c
$$\frac{dS}{dx} = x - \frac{16000\sqrt{2}}{x^2}$$

Putting $\frac{dS}{dx} = 0$

$$x = \frac{16000\sqrt{2}}{x^2}$$

$$x^3 = 16000\sqrt{2}$$

$$x = 20\sqrt{2} = 28.28 \text{ (4 s.f.)}$$
When $x = 20\sqrt{2}$,
 $S = 400 + 800 = 1200$

d
$$\frac{d^2S}{dx^2} = 1 + \frac{32\,000\sqrt{2}}{x^3}$$

When $x = 20\,\sqrt{2}$, $\frac{d^2S}{dx^2} = 3 > 0$, so value is a minimum.

Challenge

- **a** Any constant function of the form y = k, where k is any real number
- **b** For example, f(x) = x for 0 < x < 1, f(x) = -x for 1 < x < 2 or any suitably defined piecewise function.
- **c** For example $f(x) = \tan\left(\pi\left(x \frac{1}{2}\right)\right)$ or the piecewise function f(x) = x for 0 < x < 1, and 0 otherwise, or any other suitably defined piecewise function.
- d For example the piecewise function f(x) = x if x is rational and -x if x is irrational.
 Note that even though this function is not differentiable, f(x) is increasing in value as x increases for the rational values of x and f(x) is decreasing in value as x increases for the irrational values of x