Big Data Computing

Master's Degree in Computer Science 2022-2023

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

"Training" a Computer

Eventually, the function f is **learned** by the learning algorithm from a (large) set of **labeled data**

$$\mathcal{X} \subseteq \mathbb{R}^n$$

input feature space

 $\mathcal{X}\subseteq\mathbb{R}^n$ \mathcal{Y}

input feature space output space

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

 (\mathbf{x}_i, y_i)

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y}\subseteq\mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

 (\mathbf{x}_i, y_i)

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

n-dimensional feature vector of the i-th instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$

$$\mathcal{Y} \subseteq \mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

$$(\mathbf{x}_i, y_i)$$

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$$

$$y_i \in \mathcal{Y}$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

n-dimensional feature vector of the *i*-th instance

label of the *i*-th instance

$$\mathcal{X} \subseteq \mathbb{R}^n$$

 \mathcal{Y}

$$\mathcal{Y} \subseteq \mathbb{R}$$

$$\mathcal{Y} = \{1, \dots, k\}$$

 (\mathbf{x}_i, y_i)

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n}) \in \mathcal{X}$$

$$y_i \in \mathcal{Y}$$

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}\$$

input feature space

output space

real-value label (regression)

discrete-value label (k-ary classification)

i-th labeled instance

n-dimensional feature vector of the i-th instance

label of the i-th instance

dataset of m i.i.d. labeled instances

Each instance comes with the class label (classification) or the value (regression) we want to predict

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

$$f = X \rightarrow Y$$

Model Training: Intuition

<u>Idea</u>

There is an unknown target function f which puts in a relationship elements of X with elements of Y

$$f = X \rightarrow Y$$

Problem

We cannot write down an algorithm which just implements f

• Learning f means "finding" another function h^* which best approximates f using the data we observed

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:
 - loss function: measures the error of using h^* instead of the true f

- Learning f means "finding" another function h^* which best approximates f using the data we observed
- h^* is chosen among a family of functions H called **hypothesis space** by specifying two components:
 - loss function: measures the error of using h^* instead of the true f
 - learning algorithm: explores the hypothesis space to pick the function which minimizes the loss on the observed data

• The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

• the harder will be for the learning algorithm to pick h^*

- The set of functions the learning algorithm will search through to pick the hypothesis h^* which best approximates the true target f
- The larger the hypothesis space:
 - the larger will be the set of functions that can be represented

• the harder will be for the learning algorithm to pick h^*

Trade-off

Put some constraints on H, e.g., limit the search space only to linear functions

The Loss Function

• Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f

The Loss Function

- Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f
- It can be computed only on the data we observed, therefore depends on the hypothesis and the dataset

$$L: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$$

The Loss Function

- Measures the error we would make if a hypothesis h is used instead of the true (yet unknown) mapping f
- It can be computed only on the data we observed, therefore depends on the hypothesis and the dataset

$$L: \mathcal{H} \times \mathcal{D} \mapsto \mathbb{R}$$

• This in-sample error (a.k.a. empirical loss) is an estimate of the out-of-sample error (a.k.a. expected loss or risk)

• Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)
- In other words, among all the hypotheses specified by H the learning algorithm will pick the one that minimizes L

- Defines the strategy we use to search the hypothesis space H for picking our **best** hypothesis h^*
- Here, "best" means the hypothesis that minimizes the loss function on the observed data (Empirical Risk Minimization)
- In other words, among all the hypotheses specified by H the learning algorithm will pick the one that minimizes L

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} L(h, \mathcal{D})$$

$$f = X \rightarrow Y$$

$$f = X \rightarrow Y$$

$$f = X \rightarrow Y$$

Hypothesis Space H

candidate formulas

$$f = X \rightarrow Y$$

candidate formulas

$$f = X \rightarrow Y$$

• We define the supervised learning problem as an optimization one

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem
- Those choices are usually "mathematically convenient": e.g., convex
 objective functions are guaranteed to have a unique global minimum

- We define the supervised learning problem as an optimization one
- By plugging in different loss functions combined with various hypothesis spaces we must solve a specific optimization problem
- Those choices are usually "mathematically convenient": e.g., convex
 objective functions are guaranteed to have a unique global minimum
- Even though closed-form solutions to the optimization problem rarely exist, there are numerical methods which work: e.g., gradient descent

• Minimizing the loss function on the observed data ${\it D}$ just limits the insample error

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to unseen instances (i.e., minimize the out-of-sample error)

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to unseen instances (i.e., minimize the out-of-sample error)
- If we pick a hypothesis which just memorizes all the training instances, we will obtain a 0 in-sample error but this is not learning!

- Minimizing the loss function on the observed data D just limits the insample error
- Our ultimate hypothesis is to pick h^* which is able to generalize to **unseen** instances (i.e., minimize the out-of-sample error)
- If we pick a hypothesis which just memorizes all the training instances, we will obtain a 0 in-sample error but this is not learning!
- At the same time we do not want h^* to perform poorly on D

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

low in-sample error high out-of-sample error

Overfitting (High Variance)

Regression

Classification

The hypothesis h^* is not learning the true f but it mimics its noise

low in-sample error high out-of-sample error

- Regularization
- Get more data

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

high in-sample error high out-of-sample error

Underfitting (High Bias)

Regression

Classification

The hypothesis h^* is too "simple" for approximating the true f

high in-sample error high out-of-sample error

- Increase model complexity
- Add more features

04/04/2023 50

Bias-Variance Tradeoff

Regression

Classification

The hypothesis h^* is just right: the simplest one explaining the data

Occam's razor

Bias-Variance Tradeoff

Regression

Classification

The hypothesis h^* is just right: the simplest one explaining the data

Occam's razor

low in-sample error low out-of-sample error

Estimating Generalization Performance

 Measuring the generalization (i.e., out-of-sample) performance online may be too risky

Estimating Generalization Performance

- Measuring the generalization (i.e., out-of-sample) performance online may be too risky
- Example: Don't want to deploy your new spam classifier in production knowing only its training (i.e., in-sample) performance

Estimating Generalization Performance

- Measuring the generalization (i.e., out-of-sample) performance online may be too risky
- Example: Don't want to deploy your new spam classifier in production knowing only its training (i.e., in-sample) performance
- Solution: Estimate the generalization performance using training set
 - As long as it holds true the assumption that training and test instances are both drawn from the same probability distribution (i.i.d. assumption)

How Much Data Do We Need?

In general, the more data we have the better we learn

04/04/2023 source: https://xkcd.com/1838/

• A generalization of the training/test splitting seen before

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)
- Divide your dataset D into K distinct folds

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)
- Divide your dataset D into K distinct folds
- Perform K rounds where h* is:
 - leaned from K-1 training folds
 - evaluated on I remaining test fold

- A generalization of the training/test splitting seen before
- Pick a value for K (e.g., K=5 or 10)
- Divide your dataset D into K distinct folds
- Perform K rounds where h* is:
 - leaned from K-1 training folds
 - evaluated on I remaining test fold
- The estimate of generalization error is the average across the K test folds of all the K rounds

Round k = 1

Round k = 2

Round k = 10

Model Selection/Evaluation

Several different learning models to achieve the same task

Model Selection/Evaluation

Several different learning models to achieve the same task

Each learning model has its own set of hyperparameters (e.g., the number k of neighbors in kNN)

04/04/2023 70

Model Selection/Evaluation

Several different learning models to achieve the same task

Each learning model has its own set of hyperparameters (e.g., the number k of neighbors in kNN)

How do we select the best model?

Model Selection/Evaluation: Validation Set

Separate hyperparameter selection from model evaluation

D_{valid} is used to validate hyperparameters

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

I) Train a separate model for each value of k on the training set (e.g., 70%)

04/04/2023 74

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

- I) Train a separate model for each value of k on the training set (e.g., 70%)
- 2) Measure the error of each model on the validation set (e.g., 10%)

04/04/2023 75

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

- I) Train a separate model for each value of k on the training set (e.g., 70%)
- 2) Measure the error of each model on the validation set (e.g., 10%)
- 3) Select the model whose value of k gives the best performance on the validation set (e.g., k = 5)

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

- I) Train a separate model for each value of k on the training set (e.g., 70%)
- 2) Measure the error of each model on the validation set (e.g., 10%)
- 3) Select the model whose value of k gives the best performance on the validation set (e.g., k = 5)
- 4) Re-train only this model on the training + validation set

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

- I) Train a separate model for each value of k on the training set (e.g., 70%)
- 2) Measure the error of each model on the validation set (e.g., 10%)
- 3) Select the model whose value of k gives the best performance on the validation set (e.g., k = 5)
- 4) Re-train only this model on the training + validation set
- 5) Measure the performance on the test set (e.g., 20%)

04/04/2023 78

Select which value of $k = \{2, 5, 10\}$ of a kNN gives the best performance

- I) Train a separate model for each value of k on the training set (e.g., 70%)
- 2) Measure the error of each model on the validation set (e.g., 10%)
- 3) Select the model whose value of k gives the best performance on the validation set (e.g., k = 5)
- 4) Re-train only this model on the training + validation set
- 5) Measure the performance on the test set (e.g., 20%)

Note:

The strategy above can also be extended to K-fold Cross Validation

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff
- Model selection vs. Model evaluation

- Supervised Learning as an optimization problem
 - Hypothesis space (assumption)
 - Loss Function (objective)
 - Learning Algorithm (optimizer)
- Regression vs. Classification
- Bias-Variance Tradeoff
- Model selection vs. Model evaluation

Suggested reading: https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf