# Quantencomputer Programmierung

mail@AndreBetz.de

### Klassischer vs. Quanten Computer

#### **Klassische Computer:**

- Besteht aus einzelnen Speicherzellen Bits
- Jedes Bit kann entweder Zustand 1 oder 0 haben
- Zu jedem Zeitpunkt ist der Computer einen aus 2<sup>n</sup> Zuständen, von 00...0 bis 11..1

#### **Quantencomputer:**

- Besteht aus einzelnen Speicherzellen Qbits
- Jedes Qbit kann den Zustand 1 oder 0 oder einen Mischung aus beiden haben
- Eine Mischung nennt man Supersposition

### Eigenschaften von QBits:

#### **Superposition:**

• Ein Objekt hat mehr als einen Zustand zur gleichen Zeit

#### Verschränkung:

- Quantenobjekte paarweise erzeugt worden, sind verschränkt zB Kristalle spaltet Photon einer Energie in zwei Photonen niedriger Energie auf
- Getrennte Objekte haben eine Auswirkung aufeinander, ohne Verbindung

Es gibt keine Analogie dazu in der klassischen Welt.

# Superposition 1



Orthogonale Pfeilrichtungen kennzeichnen den Zustand



Pfeilrichtungen dazwischen kennzeichnen eine Superposition, in der alle möglichen Zustände gleichzeitig existieren. Erst durch eine Messung zerfällt der Elektronen Spin in exakt 0 oder exakt 1.

# Superposition 2

Keine Superposition



Superposition



Es gibt nach der Messung eine gewisse Wahrscheinlichkeit, dass der Zustand 7 oder 6 sein wird. mit 4 Bits kann einer von 2<sup>4</sup> Zuständen dargstellt werden, Qbits können alle 2<sup>4</sup> Zustände haben.

# Grenzen klassischer Computer – Beispiel

#### Reiseagentur:

- Gruppe aus 3 Personen zu transportieren (A,B,C)
- Gruppe soll auf zwei Taxis (0,1) aufgeteilt werden
- A und B sind befreundet, A und C, B und C nicht
- Bedingung: Maximiere Transport von befreundeten
- Klassische CPU braucht 2<sup>3</sup> Schritte, skaliert mit Anzahl der Personen 2<sup>Personenzahl</sup>
- Quantencomputer mit 3 Qbits benötigt 1 Schritt und benötigt auch bei einer höheren Personenzahl nur einen Rechenschritt

| Α | В | С | Score |
|---|---|---|-------|
| 0 | 0 | 0 | -1    |
| 0 | 0 | 1 | 1     |
| 0 | 1 | 0 | -1    |
| 0 | 1 | 1 | -1    |
| 1 | 0 | 0 | -1    |
| 1 | 0 | 1 | -1    |
| 1 | 1 | 0 | 1     |
| 1 | 1 | 1 | -1    |

### Problemklassen

#### P-Probleme (Polynomialzeit):

Rechenzeit wächst proportional zur festen Potenz der Problemgrösse zB Ist eine Zahl eine Primzahl

#### NP-Probleme (nichtdeterministisch Polynomial):

Rechenzeit wächst exponentiell zB Travelling Salesman wächst exponentiell mit Anzahl der Städte. Überprüfung ist wieder in Polynomialzeit. Quantencomputer können einige schnell lösen. Evtl P == NP?!

#### **PSPACE**:

Polynomial wachsender Speicher und exponentiell wachesende Rechenzeit. Schach und GO gehören dazu. Noch kein Akgorithmus für QC bekannt.

### Quantum Bit-QBit



Wenn ein Qbit gemessen wird, wird mit einer bestimmten Wahrscheinlichkeit |0> oder |1> gemessen.

Wahrscheinlicht für 
$$|a\rangle = |a|^2$$
  
Bedingung 1 =  $|0\rangle |^2 + |1\rangle |^2$ 

$$|0> = |0.5|^2 = 0.25 = 25\%$$
  
 $|1> = |0.866|^2 = 0.75 = 75\%$ 

Darstellung als Verktor: 
$$\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$   $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 

### Quantengatter

- Klassische Computer brauchen nur ein universelles Gatter (zB NAND)
- Quantencomputer brauchen drei Gatter um universell zu sein, davon sind zwei unitär (H, Phasenschieber) und das dritte verschränkt ein zweites QBit (CNOT).
- Alle Gatter haben gemein, dass sie die Wahrscheinlichkeit verändern.
- Quantengatter müssen reversibel sein

### Hadamard-Gatter





- Wirkt nur auf ein QBit
- Erzeugt eine Superposition eines Zustandes | 1> (0,1) zu (0.707, -0.707) oder | 0> zu (0.707, 0.707)
- Zustand ist versteckt, da nach einer Messung zu 50% | 0> oder | 1> gemessen wird
- Nochmalige Anwendung des Gatters erzeugt wieder ursprünglichen Zustand
- Wird meist am Anfang eines Quantenalgorithmus gesetzt

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} = (0.707 - 0.707)$$

### X-Gatter



$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$



- Wirkt nur auf ein QBit
- Pauli-X-Gatter genannt
- Tauscht Komponenten von |0> and |1>
- Wird benutzt, um ein QBit in den Zustand |1> zu setzen

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

### Darstellung verschränkter QBits

$$|0\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
  $|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  Und  $|AB\rangle = |A\rangle + |B\rangle$ , wobei + Kronecker Produkt

Beispiel zwei verschränkter QBits

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \qquad |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

### **CNOT-Gatter**



- Controlled NOT
- Arbeitet mit zwei QBits | AB>
- Mögliche Varianten | 00>, | 01>, | 10>, | 11>
- QBit A kontrolliert QBit B, wenn QBit A | 1> ist, wird QBit B vertauscht.
- Beispiel: |10> |11>

$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = (0 \quad 0 \quad 0 \quad 1)$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

### Quantum Bit-QBit

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Zustand eines Qbits:  $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ 

 $\alpha$ ,  $\beta$  sind komplexe Zahlen und sind die Wahrscheinlichkeitsamplitude mit  $\alpha$  =  $\alpha_{_{real}}$  +  $i\alpha_{_{imag}}$  und  $\beta$  =  $\beta_{_{real}}$  +  $i\beta_{_{imag}}$ 

Wahrscheinlichkeitsbedingung:  $1^2 = |\alpha|^2 + |\beta|^2$ 

Die Wahrscheinlichkeit den Zustand  $|0\rangle$  zu messen liegt bei  $|\alpha|^2$  und  $|1\rangle$  bei  $|\beta|^2$ 



$$x = r \cos(\Theta)$$
  
 $iy = r \sin(\Theta)$ 

$$r = |z| = \sqrt{x^2 + y^2}$$

$$z = x + iy = r (\cos(\Theta) + i\sin(\Theta)) = re^{i\Theta}$$

# Blochkugel



- |Ψ> Bezeichnet den Zustand des Qbits
- Radius ist 1