Videotutoriales de prácticas

I. Direccionamiento IP

Estructura de Internet (redes de acceso final)

Direcciones MAC vs Direcciones IP

- Una dirección MAC: 48 bits → 2⁴⁸ ≈ 256 billones:
 - 1 MAC (única) para cada interfaz de red en todo el mundo.
 - No se usan para "enrutar", sólo para "diferenciar" en una subred (localmente).
- Una dirección IPv4: 32 bits → 2³² ≈ 4000 millones:
 - Usadas para "enrutar" paquetes (los routers saben "por dónde se llega a una determinada IP").
 - (Inicialmente) pensadas para una IP (única) para cada interfaz de red en todo el mundo.

Direcciones IPv4 (ejemplo red doméstica)

Direcciones IPv4 (ejemplo subred UMU)

Estructura de Internet (direcciones subred)

Direcciones MAC vs Direcciones IP (cont.)

- Una dirección MAC: 48 bits → 2⁴⁸ ≈ 256 billones:
 - 1 MAC (única) para cada interfaz de red en todo el mundo.
 - No se usan para "enrutar", sólo para "diferenciar" en una subred (localmente).
- Una dirección IPv4: 32 bits → 2³² ≈ 4000 millones:
 - Usadas para "enrutar" paquetes (los routers saben "por dónde se llega a una determinada IP").
 - Inicialmente pensadas para una IP (única) para cada interfaz de red en todo el mundo...
 - ...pero insuficientes en la actualidad:

Rangos especiales reutilizados: p.e. 192.168.0.0/16 en hogares (direcciones "privadas" → repetidas)

Sin embargo, UMU posee rango propio: 155.54.0.0/16 (direcciones "públicas" → únicas)

Otra dirección especial: $127.0.0.1 \rightarrow \text{se refiere siempre al}$ propio host (*localhost*)

Videotutoriales de prácticas

II. Servicio DNS (Domain Name System)

DNS: Traducción nombres dominio ↔ IP

Red doméstica:

1 subred tras 1 router

Red Institucional:

Varias subredes interconectadas mediante muchos routers

Videotutoriales de prácticas

III. Enrutamiento IP

Estructura de Internet (núcleo de la red)

Videotutoriales de prácticas

IV. Puertos

Puertos

Motivación:

- En un mismo host puede haber distintas aplicaciones de red ejecutándose
- Un mismo servidor puede atender a varios clientes simultáneamente
- Las direcciones IP de los equipos finales no son suficiente para la comunicación entre procesos
- En el **nivel de transporte**, cada proceso de un equipo queda identificado mediante un número de puerto
- Consecuentemente, cada conexión de transporte está identificada por los siguientes 4 valores:
 - Dirección IP de origen
 - Dirección IP de destino
 - Puerto de origen
 - Puerto de destino

Videotutoriales de prácticas

V. Protocolo HTTP

URLs y mensajes HTTP

URL:

```
http://www.someschool.edu/someDept/pic.gif
          nombre del host
protocolo
                                 trayectoria
```

HTTP request:

HTTP response:

Datos solicitados

World Wide Web: protocolo HTTP

