Universidade de Brasília Faculdade do Gama

Professor: Ronne Toledo

Disciplina: Métodos Numéricos em Engenharia

Turma: B

PROVA: C

Aluno:_

2ª Prova de Métodos Numéricos em Engenharia

Duração: 180 Minutos Data: / /

Esta prova contém 2 página(s) e 4 questões, formando um um total de 20 pontos.

Todos os cálculos necessários para responder estas questões devem ser apresentados, sendo necessário transcrever o memorial de cálculo completo de cada questão nas folhas de respostas. As questões serão corrigidas e só terão a pontuação integral se forem feitas de forma total e correta, favor prezar pela organização. Represente os números em formato decimal e com seis algarismos significativos e aplique arredondamento. Considere a utilização de material de ajuda como livros, anotações, softwares gráficos e de cálculo, como OCTAVE e EXCEL, entretanto, a correção será baseada somente no que for transcrito para a folha de resposta, portanto, documente suas respostas apropriadamente.

1. (5 pontos) Um experimentalista obteve os resultados indicados na tabela abaixo. Segundo a teoria, estes dados deveriam se comportar deacordo com o modelo

$$y = \frac{mx}{b+x}$$

Obtenha as constantes m e b utilizando o método dos mínimos quadrados.

Dados	x	y
1	0,76	$0,\!32$
2	1,44	$0,\!38$
3	3,36	1,92
4	4,84	2,26
5	5,70	3,44
6	7,00	4,00
7	9,86	3,92

2. (5 pontos) Calcule a integral definida $\int_{-1}^{1} x^{6} dx$ utilizando a quadratura de Gauss de sexta ordem. Faça uso das propriedade de simetria da função para facilitar o cálculo, considerando que o valor da função será o mesmo nos pares simétricos. Obtenha a integral de forma analítica e cálcule o erro relativo do método de Gauss em comparação ao resultado exato.

3. (5 pontos) Em um experimento de vibração, um bloco de massa m é preso a uma mola com dureza k e a um amortecedor com coeficiente de amortecimento c. Para que o experimento tenha início, o bloco é retirado da posição de equilíbrio e solto. A posição do bloco em função do tempo é gravada em uma frequencia de 5 Hz (5 vezes por segundo). com os dados obtidos abaixo, calcule a velocidade no tempo t=4,80s utilizando diferença finita central com quatro pontos.

Dados	Tempo (s)	Posição(m)
1	4,00	-5,87
2	4,20	-4,23
3	4,40	-2,55
4	4,60	-0,89
5	4,80	0,67
6	5,00	2,09
7	5,20	3,31
8	5,40	4,31
9	5,60	5,06
10	5,80	$5,\!55$
11	6,00	5,78

4. (5 pontos) Considere a EDO de primeira ordem a seguir:

$$\frac{dy}{dx} = y + t^3$$

Obtenha a solução numérica desta equação utilizando 3 iterações do método de Euler Modifico entre o intervalo 0,5 e 2. Considere o Problema de Valor Inicial de y(0,5) = -1.