

R을 이용한 게임 데이터 분석

NCSOFT 데이터플랫폼실 GFIS팀

이은조

NCSOFT

- 주요 제품
 - 리니지, 리니지2, 아이온, Blade & Soul, Guild War2

- MMORPG(Massively Multiplayer Online Role Playing Game)
 - 여러 유저간 다양한 사회 활동
 - 지속적인 업데이트 및 고객 관리 필요
 - 여러 가지 유료 상품 및 이벤트를 통한 2차 수익 창출

정보 처리 스택

GFIS

- Game Fraud Investigation Service
- Fraud Detection
 - 카드 도용
- Game Fraud Detection
 - 어뷰징
 - 계정 도용
 - 작업장

팀 업무 현황

- 데이터 분석과 서비스 개발 병행
- 데이터 분석 프로세스
 - Raw Data -> 정제/가공 -> 분석/모델링
 - 정제/가공: Pig
 - 분석/모델링: R
 - 전체 프로세스 제어: Python
- 서비스 개발: MapReduce, Legacy Java, Python

R 사용 현황

- 탐지 로직 개발을 위한 사전 분석 목적
- Subversion Repository 연동
- R Studio 사용

데이터 분석 사례

- 작업장 배후 계정 탐지
 - 네트워크 분석
- 이상 탐지
 - 자기 상관 분석
 - 회귀 분석

• 작업장: 자동 사냥 캐릭터 + 배후 캐릭터

작업장: 자동 사냥 캐릭터 + 배후 캐릭터 기존 탐지 시스템 검출 불가 아이템 판매 설반 아이템 -> 게임머니 **BOT** 유저 중간 현금 거래 취합 일반 아이템 게임머니 합 최종 **BOT** 유저 취합 게임머니 중간 취합 취합 일반 **BOT** 유저

- 유저 데이터 분석 및 작업장 의심 캐릭터 추출
- 캐릭터 간 사회 활동 추출 -> 관계 네트워크 구축
- 관계 네트워크 시각화
 - -> 비슷한 특성의 캐릭터끼리 모이는 경향 확인

네트워크 시각화(파티)

네트워크 시각화(거래)

탐지 모델 구축

- Contagion Model
 - 캐릭터 간 관계 및 불량성 정량화, 감염 로직 적용

$$B(x) = B_0(x) + \sum_{f \in Friend(x)} \left(B_0(f) rac{F(f,x)}{\sum F(f,f')}
ight)$$

- Graph Clustering
 - 긴밀한 네트워크 형성 집단 분류
 - 작업장 여부 판별 기준 적용

$$B(x) = B_0(x) + \sum_{f \in Friend(x)} \left(B_0(f) \frac{F(f, x)}{\sum F(f, f')} \right)$$

$$\begin{array}{c} 70 & 20 \\ 80 & 50 \\ 80 & 60 \\ \end{array}$$

$$\begin{array}{c} 90 \\ 90 \\ 10 \\ 0 \\ 50 \\ \end{array}$$

$$\begin{array}{c} 60 \\ 50 \\ \end{array}$$

Graph Clustering

Graph Clustering

Graph Clustering

이상 탐지

- 게임 버그 활용 플레이 -> 평소와 다른 패턴 발생
 - 아이템 복사 버그
 - 보스 몹 무한 사냥
- 분석 방법
 - 자기 상관 분석
 - 회귀 분석

자기 상관 분석

- 로그 횟수 / 정량치 시계열 변동 패턴 학습
- 학습된 변동 패턴에서 크게 벗어나는 시점 탐지

자기 상관 분석

• 자기 상관성 여부 판단

자기 상관 분석

- STL 분석
- Remainder 의 jitter 탐지

- 같은 시점에 발생하는 경향 강한 로그 쌍 추출
- 로그 쌍에 대한 회귀 모형 생성
- 모형의 예측 값과 실제 값이 크게 어긋나는 시점 탐지

- 로그 쌍 추출
 - 로그 분포의 왜도와 첨도 자질로 이용
 - Clustering -> Cointegration Test

- 회귀 모형 생성
- 예측치와 실측치의 <mark>잔차(residual)</mark> 추출

• 잔차에 대한 jitter 탐지

• 잔차에 대한 jitter 탐지

결론

- 게임 데이터는 활용성 및 가능성이 매우 높은 데이터
- 활용성 및 효율성 극대화 -> 실질 가치 창출 목표
 - 대규모 데이터 처리 인프라 및 플랫폼 구축
 - 심화 분석을 위해 R 도입
- R 의 장점
 - 높은 유연성
 - 다양한 패키지
 - 다른 개발 툴과의 연동 및 협업 유리

결론

- 빅 데이터와 R
 - 빅 데이터 분석은 8할이 데이터 정제
 - 정제 후 데이터는 stand alone, in-memory 처리
 - 대규모 데이터 정제 -> Hadoop
 - 정제 데이터 분석 -> R

Q&A