Classificazione: alberi di decisione

Materiale parzialmente tratto dalle slide associate al libro: Introduction to Data Mining di Tan, Steinbach, e Kumar

Il problema

Il problema

- Le classi non sono insite negli esempi (o istanze)
- Non si tratta di raggruppamenti naturali inequivocabili
- Sono predefinite e dipendono dal fine per il quale si vuole costruire il predittore

Raggruppamento per colore

Fiori finti e fiori veri

Il problema

Dati:

- **Esempi** (fiori)
- Categorie o classi (fiori finti/fiori veri, fiori rosa/gialli/bianchi/rossi, ...)

Costruire:

- Una rappresentazione astratta (modello) che permetta di associare in modo corretto nuove istanze alla classe (o alle classi) di appartenenza
- Apprendimento supervisionato: gli esempi dal quale astrarre le definizioni delle classi hanno associata la classe a cui appartengono
- 1) Problema di rappresentazione dei dati
- 2) Problema di analisi dei dati e costruzione delle definizioni
- 3) Problema di utilizzo della conoscenza acquisita

Schema generale

Learning (o training) set

Per **learning** (o training) **set** si intende la collezione di dati usati per svolgere il compito di apprendimento. I dati sono divisi in **istanze** (o record o esempi). Ogni esempio è rappresentato da una **tupla** (x, y) dove x è a sua volta una tupla di valori di **attributi descrittivi** e y è la **classe** di appartenenza dell'istanza

nome	temperat ura	Copertur a pelle	viviparo	Creatura acquatica	Creatura volatile	zampe	letargo	CLASSE
uomo	Sangue caldo	peluria	sì	no	no	sì	no	mammifero
pitone	Sangue freddo	squame	no	no	no	no	SÌ	rettile
salmone	Sangue freddo	squame	no	Sì	no	no	no	pesce
balena	Sangue caldo	peluria(?)	SÌ	SÌ	no	no	no	mammifero
rana	Sangue freddo	nessuna	no	semi	no	Sì	sì	anfibio
pinguino	Sangue caldo	piumaggio	no	semi	no	SÌ	no	uccello
piccione	Sangue caldo	piumaggio	no	no	sì	SÌ	no	uccello

Modelli

$$\langle x_1, x_2, \dots, x_n \rangle$$
 Modello

Nota:

Come classe si usano <u>attributi binari</u> o <u>categorie nominali</u>

Sì no 1 0 Vero falso

Etichette: es. Mammifero, pesce, ...

Usi dei Modelli appresi

Modello predittivo

Viene usato per predire la classe di appartenenza di istanze ignote in fase di apprendimento

Es. data la descrizione di una salamandra (sangue freddo, nessuna, no, semi, no, sì, sì) si usano le regole apprese per decidere a quale classe appartiene

Modello descrittivo

Viene usato come strumento esplicativo che permette di evidenziare quali caratteristiche distinguono le diverse categorie

Esprime in maniera sintetica delle descrizioni evitando di ragionare direttamente sugli esempi

Es. i mammiferi hanno il sangue caldo e solitamente non sono esseri acquatici

Test set

Qual è la bontà dei modelli appresi?

Valutazione sperimentale: il modello viene usato per classificare le istanze di un *test set*. La valutazione della bontà è fatta sulla base del comportamento di classificazione corretto/sbagliato su questi dati

Matrice di confusione:

Accuratezza ed error rate

$$Accuratezza = (f11+f22)/(f11+f22+f12+f21)$$

Predizioni corrette

Predizioni totali

Error rate =
$$(f12+f21)/(f11+f22+f12+f21)$$

Predizioni sbagliate

Predizioni totali

Matrice di confusione: esempio

	classe	e predetta	
	lattina	altro ogg.	
lattina	18	2	
altro ogg.	1	19	

Accuratezza: (18 + 19) / 40 = 92.5%

Error rate: 3 / 40 = 7.5%

Matrice dei costi

Matrice dei costi: esempio

		classe predetta		
		Classe 1	Classe 2	
classe reale	Classe 1	-1	50	
	Classe 2	10	0	

Ogni istanza di classe 1 correttamente classificata riduce il costo complessivo; sbagliare a classificare gli oggetti di classe 1 è molto costoso; sbagliare a classificare gli oggetti di classe 2 è meno grave

Esempio: è più grave dire a un malato che è sano o dire a una persona sana che è malata?

Matrice dei costi: esempio d'uso

		classe predetta		
COSTI		Classe 1	Classe 2	
classe reale	Classe 1	-1	ļ	50
	Classe 2	10		0

		classe predetta		
Mat. Conf.		lattina	altro ogg.	
alassa raala	lattina	18	2	
classe reale	altro ogg.	1	19	

Costo =
$$-1 \times 18 + 50 \times 2 + 1 \times 10 + 0 \times 19 = 92$$

Attenti ai numeri ...

Instanze di classe A: 9990

Instanze di classe B: 10

Supponiamo che il nostro classificatore dica sempre che l'*istanza* è *di classe A*

Accuratezza: 9990/10000 = 0.999 !!

Error rate: 10 / 10000 = 0.001

Usi della classificazione (esempio)

Identificazione degli stati meteorologici

Usi della classificazione (esempio)

Classificazione della struttura secondaria delle proteine (alpha-helix, beta sheet, random coil)

Usi della classificazione (esempio)

Uso lecito o fraudolento in transazioni on-line con carta di credito

Induzione di alberi di decisione

Alberi di decisione

Sono strumenti di supporto alle decisioni che usano modelli strutturati ad albero, comunemente utilizzati per esempio per la definizione di strategie mirate al conseguimento di un goal

Esistono da tempi immemorabili

Hanno moltissime applicazioni. Per esempio la struttura di navigazione di molti negozi on-line implementa un albero di decisione (ti interessa un libro, un film o un gioco?)

Fonte: wikipedia

Alberi di decisione

Noi studieremo dei metodi che consentono di indurre da esempi degli alberi di decisione da utilizzare in compiti di classificazione

Fonte: wikipedia

Struttura dei nostri alberi di decisione

Indurre alberi

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Learning set

Modello: Albero di Decisione

Esistono più alberi per gli stessi dati!!

categorico continuo

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Stesso Learning set di prima

Altro Modello!
Altro albero di Decisione

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Refund	Marital Status		Cheat
No	Married	80K	?

NO MarSt Single, Divorced TaxInc < 80K NO YES NO YES

Refund		Taxable Income	Cheat
No	Married	80K	?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?