

Università degli Studi di Pavia

On the role of boundary conditions in the construction of fundamental solutions for Maxwell's equations on spacetimes with timelike boundary

Relatore:

Prof. Claudio Dappiaggi

Correlatore:

Dott. Nicoló Drago

Tesi per la Laurea Magistrale di:

Rubens Longhi

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- 3 Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

- Set Maxwell's equations in non-Minkowskian spacetimes with boundary
- Prove existence and uniqueness of Green functions for □ with certain classes of boundary conditions
- Construct the space of classical solutions for Maxwell's equations
- Construct the classical and quantum algebra of observables of the system

C. Dappiaggi, N. Drago, and R.L. On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary. In: arXiv:1908.09504 (2019)

- Set Maxwell's equations in non-Minkowskian spacetimes with boundary
- Prove existence and uniqueness of Green functions for \square with certain classes of boundary conditions
- Construct the space of classical solutions for Maxwell's equations
- Construct the classical and quantum algebra of observables of the system

C. Dappiaggi, N. Drago, and R.L. On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary. In: arXiv:1908.09504 (2019)

- Set Maxwell's equations in non-Minkowskian spacetimes with boundary
- Prove existence and uniqueness of Green functions for □ with certain classes of boundary conditions
- Construct the space of classical solutions for Maxwell's equations
- Construct the classical and quantum algebra of observables of the system

C. Dappiaggi, N. Drago, and R.L. On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary. In: arXiv:1908.09504 (2019)

- Set Maxwell's equations in non-Minkowskian spacetimes with boundary
- Prove existence and uniqueness of Green functions for □ with certain classes of boundary conditions
- Construct the space of classical solutions for Maxwell's equations
- Construct the classical and quantum algebra of observables of the system

C. Dappiaggi, N. Drago, and R.L. On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary. In: arXiv:1908.09504 (2019)

Applications to the study of several physical models in regions where the flux of physical quantities through the boundary is zero.

- Classical and quantum fields in curved spacetimes with boundary
- Electromagnetic Casimir effect
- Quantum Hall effect

Applications to the study of several physical models in regions where the flux of physical quantities through the boundary is zero.

- Classical and quantum fields in curved spacetimes with boundary
- Electromagnetic Casimir effect
- Quantum Hall effect

Applications to the study of several physical models in regions where the flux of physical quantities through the boundary is zero.

- Classical and quantum fields in curved spacetimes with boundary
- Electromagnetic Casimir effect
- Quantum Hall effect

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- 3 Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

Globally Hyperbolic Spacetimes with timelike boundary

We consider globally hyperbolic spacetimes M, dim $M = m \ge 2$ with timelike boundary.

Definition.

A spacetime with boundary (M, g) is globally hyperbolic if it is time-oriented, causal, and any causal diamond is compact¹.

M has a timelike boundary if ∂M is itself a time-oriented spacetime with the induced metric $\iota^* g$, $\iota : \partial M \to M$ being the immersion map.

Theorem

M can be split as

$$M=\mathbb{R} imes \Sigma$$
,

where Σ is a Riemannian manifold with boundary $\partial \Sigma$.

¹ for all $p, q \in M$ $J^+(p) \cap J^-(q)$ is compact, $J^{\pm}(p)$ being the future and past of the event p

Globally Hyperbolic Spacetimes with timelike boundary

We consider globally hyperbolic spacetimes M, dim $M = m \ge 2$ with timelike boundary.

Definition.

A spacetime with boundary (M, g) is globally hyperbolic if it is time-oriented, causal, and any causal diamond is compact¹.

M has a timelike boundary if ∂M is itself a time-oriented spacetime with the induced metric $\iota^* g$, $\iota : \partial M \to M$ being the immersion map.

Theorem.

M can be split as

$$M=\mathbb{R}\times\Sigma$$
.

where Σ is a Riemannian manifold with boundary $\partial \Sigma$.

¹ for all $p, q \in M$ $J^+(p) \cap J^-(q)$ is compact, $J^{\pm}(p)$ being the future and past of the event p

Static spacetimes

We restrict ourselves to static spacetimes:

Definition.

A globally hyperbolic spacetime with boundary (M, g) is static if ∂_t is global timelike irrotational vector field, i.e. $\mathcal{L}_{\partial_t}(g) = 0$.

Examples

- Half Minkowski spacetime $(\mathbb{R}^m_+ = \mathbb{R}^{m-1} \times [0, +\infty), \eta)$
- Any globally hyperbolic sub-region with timelike boundary of Minkowski spacetime
- Non rotating black hole: exterior Schwarzschild spacetime (empty boundary)

Static spacetimes

We restrict ourselves to static spacetimes:

Definition.

A globally hyperbolic spacetime with boundary (M, g) is static if ∂_t is global timelike irrotational vector field, i.e. $\mathcal{L}_{\partial_t}(g) = 0$.

Examples:

- Half Minkowski spacetime $(\mathbb{R}^m_+ = \mathbb{R}^{m-1} \times [0, +\infty), \eta)$
- Any globally hyperbolic sub-region with timelike boundary of Minkowski spacetime
- Non rotating black hole: exterior Schwarzschild spacetime (empty boundary)

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- Green operators
- Wiaxwell's equations
- \bigcirc Boundary conditions for \square
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

Classical fields on spacetimes

Classical fields are solutions to partial differential equations of motion.

Examples:

Schroedinger field
$$(i\partial_t - H)\psi = 0$$
 Klein-Gordon field
$$(\Box + m^2)\varphi = f$$
 Dirac field
$$(i\gamma^\mu\partial_\mu - m)\psi = f$$

They are all of the form $P\psi = f$, where P is a differential operator and $f \in C_{\rm c}^{\infty}(M)$ is an external source. We are interested in providing a solutions that propagates the signal from the source at finite speed.

Green functions or Fundamental solutions

To solve $P\psi = f$ we look for the inverses of P, namely fundamental solutions or Green operators G. If a G exists, it provides a solution of $P\psi = f$:

$$\psi = \operatorname{Id} \psi = GP\psi = G(f).$$

Definition.

A Green operator $G: C_c^{\infty}(M) \to C^{\infty}(M)$ for a differential operator P is such that $G \circ P = \mathrm{Id}$, $P \circ G = \mathrm{Id}$.

We want to have the properties such that the propagation speed is finite.

- advanced Green operators G^+ , supp $G^+(f) \subseteq J^+(\text{supp } f)$
- retarded Green operators G^- , $\operatorname{supp} G^-(f) \subseteq J^-(\operatorname{supp} f)$

With G^{\pm} we can construct causal propagator $G = G^{+} - G^{-}$.

Green functions or Fundamental solutions

To solve $P\psi = f$ we look for the inverses of P, namely fundamental solutions or Green operators G. If a G exists, it provides a solution of $P\psi = f$:

$$\psi = \operatorname{Id} \psi = GP\psi = G(f).$$

Definition.

A Green operator $G: C_c^{\infty}(M) \to C^{\infty}(M)$ for a differential operator P is such that $G \circ P = \mathrm{Id}$, $P \circ G = \mathrm{Id}$.

We want to have the properties such that the propagation speed is finite.

- advanced Green operators G^+ , supp $G^+(f) \subseteq J^+(\text{supp } f)$
- retarded Green operators G^- , supp $G^-(f) \subseteq J^-(\text{supp } f)$

With G^{\pm} we can construct causal propagator $G = G^{+} - G^{-}$.

Green functions or Fundamental solutions

To solve $P\psi = f$ we look for the inverses of P, namely fundamental solutions or Green operators G. If a G exists, it provides a solution of $P\psi = f$:

$$\psi = \operatorname{Id} \psi = GP\psi = G(f).$$

Definition.

A Green operator $G: C_c^{\infty}(M) \to C^{\infty}(M)$ for a differential operator P is such that $G \circ P = \mathrm{Id}$, $P \circ G = \mathrm{Id}$.

We want to have the properties such that the propagation speed is finite.

- advanced Green operators G^+ , supp $G^+(f) \subseteq J^+(\text{supp } f)$
- retarded Green operators G^- , $\operatorname{supp} G^-(f) \subseteq J^-(\operatorname{supp} f)$

With G^{\pm} we can construct causal propagator $G = G^{+} - G^{-}$.

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

Differential forms and Maxwell's equations (1)

We denote the space of smooth differential *k*-forms over *M* as $\Omega^k(M)$, $0 \le k \le m$.

Electromagnetic field is regarded as the Faraday 2-form $F \in \Omega^2(M)$ (anti-symmetric covariant 2-tensor).

In terms of electric and magnetic fields it holds $F = B + dt \wedge E$, with $E \in C^{\infty}(\mathbb{R}, \Omega^{1}(\Sigma))$ and $B \in C^{\infty}(\mathbb{R}, \Omega^{2}(\Sigma))$.

Maxwell's equations for F

Let $J \in \delta\Omega^2(M)$ be a 4-current. Then Maxwell's equations for the Faraday tensor $F \in \Omega^2(M)$ are

$$dF = 0, \qquad \delta F = -J,$$

where $d: \Omega^k(M) \to \Omega^{k+1}(M)$ and $\delta: \Omega^k(M) \to \Omega^{k-1}(M)$ are the differential and codifferential operators.

Differential forms and Maxwell's equations (1)

We denote the space of smooth differential *k*-forms over *M* as $\Omega^k(M)$, $0 \le k \le m$.

Electromagnetic field is regarded as the Faraday 2-form $F \in \Omega^2(M)$ (anti-symmetric covariant 2-tensor).

In terms of electric and magnetic fields it holds $F = B + dt \wedge E$, with $E \in C^{\infty}(\mathbb{R}, \Omega^{1}(\Sigma))$ and $B \in C^{\infty}(\mathbb{R}, \Omega^{2}(\Sigma))$.

Maxwell's equations for *F*

Let $J \in \delta\Omega^2(M)$ be a 4-current. Then Maxwell's equations for the Faraday tensor $F \in \Omega^2(M)$ are

$$dF = 0, \qquad \delta F = -J,$$

where $d: \Omega^k(M) \to \Omega^{k+1}(M)$ and $\delta: \Omega^k(M) \to \Omega^{k-1}(M)$ are the differential and codifferential operators.

Differential forms and Maxwell's equations (2)

$$\mathrm{d}^2\omega=0,\quad \delta^2\omega=0,\ \forall\omega\in\Omega^k(M).$$

In empty space J=0 and F is closed (dF=0) and co-closed ($\delta F=0$).

In local components one recovers the usual covariant expressions

$$(\mathrm{d}F)_{ijk} = \partial_i F_{jk} + \partial_j F_{ki} + \partial_k F_{ij} = 0, \quad 1 \leq i, j, k \leq 4,$$

$$(\delta F)_k = \partial^j F_{jk} = 0, \quad 1 \le k \le 4.$$

In curved backgrounds one has to add to the usual derivatives curvature some symmetric corrections Γ :

$$\partial \longrightarrow \partial + \Gamma =: \nabla$$

Since differential forms are totally anti-symmetric, the corrections are canceled.

Maxwell's equations are invariant in form in any curved spacetime:

$$\mathrm{d}F = 0, \qquad \delta F = -J.$$

Differential forms and Maxwell's equations (2)

$$\mathrm{d}^2\omega=0,\quad \delta^2\omega=0,\ \forall\omega\in\Omega^k(M).$$

In empty space J=0 and F is closed (dF=0) and co-closed ($\delta F=0$).

In local components one recovers the usual covariant expressions

$$(\mathrm{d}F)_{ijk} = \partial_i F_{jk} + \partial_j F_{ki} + \partial_k F_{ij} = 0, \quad 1 \leq i, j, k \leq 4,$$

$$(\delta F)_k = \partial^j F_{jk} = 0, \quad 1 \le k \le 4.$$

In curved backgrounds one has to add to the usual derivatives curvature some symmetric corrections Γ :

$$\partial \longrightarrow \partial + \Gamma =: \nabla$$

Since differential forms are totally anti-symmetric, the corrections are canceled.

Maxwell's equations are invariant in form in any curved spacetime:

$$dF = 0, \qquad \delta F = -J.$$

Maxwell's equations for the potential A(1)

As a gauge theory, electromagnetism is formulated in terms of the potential $A \in \Omega^1(M)$. We look for a local primitive A of F, i.e.

$$F = dA$$
, $F_{ij} = \partial_i A_j - \partial_j A_i$.

The Faraday tensor $F \in \Omega^2(M)$ is closed (dF = 0), but not always exact (F = dA), depending on the topology of M.

Aharonov-Bohm Effect

Consider M as the exterior of a solenoid run by an electric current. There is no field (F=0), but $A \neq 0$ and dA = F = 0 only locally since the space is not simply connected.

Maxwell's equations for the potential A(2)

F = dA implies $dF = d^2A = 0$ and $\delta F = \delta dA = -J$.

Maxwell's equations for $A \in \Omega^1(M)$

$$\delta dA = -J. \tag{1}$$

If
$$A' = A + d\chi$$
, $\chi \in C^{\infty}(M)$: $F_{A'} = dA' = dA + d^2\chi = dA = F_A$

Definition. (Gauge invariance with empty boundary)

If $\partial M = \emptyset$, $A, A' \in \Omega^1(M)$ solutions of (1) are gauge-equivalent if there exists $\chi \in C^{\infty}(M)$ such that

$$A' = A + d\chi$$
.

Then $A \rightarrow A + d\chi$ is called gauge transformation.

Maxwell's equations for the potential A(3)

Is there a gauge transformation $A \to A'$ such that $\Box A' = -J$, where $\Box = \delta d + d\delta$ is the wave operator?

In Lorenz gauge $\delta A' = 0 \Rightarrow d\delta A' = 0 \Rightarrow (\delta d + d\delta)A' = \Box A' = -J$.

The transformation $A \rightarrow A' = A + d\chi$ must be such that

$$\delta A' = \delta A + \delta d\chi = \delta A + \Box \chi = 0$$

If $\partial M = \emptyset$, for any fixed $A \in \Omega^1(M)$ the equation $\Box \chi = -\delta A$ is always solvable.

Theorem.

If $\partial M = \emptyset$, for any solution $A \in \Omega^1(M)$ there exists $A' \in \Omega^1(M)$ gauge equivalent to A such that A' satisfies the Lorenz gauge $\delta A' = 0$ ($\partial^k A_k = 0$) and hence the system becomes

$$\Box A' = -J, \quad \delta A' = 0.$$

Green operators for \square with empty boundary

Theorem.

If M is globally hyperbolic with $\partial M = \emptyset$, there exist unique advanced and retarded Green operators G^{\pm} for \square .

Solutions to Maxwell's equations are completely determined in terms of Green operators for \square .

$$A = \operatorname{Id} A = (G^{\pm} \circ \Box) A = -G^{\pm}(J).$$

Lorenz gauge is preserved since $\delta \circ G^{\pm} = G^{\pm} \circ \delta$:

$$\delta A = -\delta G(J) = -G(\delta J) = 0,$$

with $\delta J = 0$ being the conservation of current $(\partial_j J^j = 0)$.

In spacetimes with non-empty boundary $\delta \circ G^{\pm} = G^{\pm} \circ \delta$ can no longer hold depending on the boundary conditions.

Green operators for \square with empty boundary

Theorem.

If M is globally hyperbolic with $\partial M = \emptyset$, there exist unique advanced and retarded Green operators G^{\pm} for \square .

Solutions to Maxwell's equations are completely determined in terms of Green operators for \square .

$$A=\operatorname{Id} A=(G^{\pm}\circ\Box)A=-G^{\pm}(J).$$

Lorenz gauge is preserved since $\delta \circ G^{\pm} = G^{\pm} \circ \delta$:

$$\delta A = -\delta G(J) = -G(\delta J) = 0,$$

with $\delta J = 0$ being the conservation of current $(\partial_j J^j = 0)$.

In spacetimes with non-empty boundary $\delta\circ G^\pm=G^\pm\circ\delta$ can no longer hold depending on the boundary conditions.

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- Green operators
- 4 Maxwell's equations
- \bigcirc Boundary conditions for \square
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

Generalization to spacetimes with boundary

In spacetimes with non-empty boundary it is not always possible to solve $\Box \chi = -\delta A$. We look for boundary conditions for \Box such that G^{\pm} exist.

Physically sound boundary conditions are those such that the flux of physical quantities vanish:

We require the symplectic flux through the boundary to vanish (symmetric operator):

$$\sigma(\alpha, \beta) = (\Box \alpha, \beta) - (\alpha, \Box \beta) = 0,$$

 $\forall \alpha,\beta \in \Omega^1(M), \operatorname{supp} \alpha \cap \operatorname{supp} \beta \text{ compact. } (\alpha,\beta) = \int_M \overline{\alpha} \wedge \star \beta = \int_M \overline{\alpha_j} \beta^j \, \mathrm{d} \mu_g,$

$$\sigma(\alpha,\beta) = (\mathsf{t}\delta\alpha,\mathsf{n}\beta)_{\partial} - (\mathsf{n}\alpha,\mathsf{t}\delta\beta)_{\partial} - (\mathsf{n}\mathsf{d}\alpha,\mathsf{t}\beta)_{\partial} + (\mathsf{t}\alpha,\mathsf{n}\mathsf{d}\beta)_{\partial},$$

Where for $\omega \in \Omega^1(M)$, $t\omega$ is the projection on ∂M and $n\omega$ is the projection on the normal to ∂M .

Generalization to spacetimes with boundary

In spacetimes with non-empty boundary it is not always possible to solve $\Box \chi = -\delta A$. We look for boundary conditions for \Box such that G^{\pm} exist.

Physically sound boundary conditions are those such that the flux of physical quantities vanish:

We require the symplectic flux through the boundary to vanish (symmetric operator):

$$\sigma(\alpha,\beta) = (\Box \alpha,\beta) - (\alpha,\Box \beta) = 0,$$

 $\forall \alpha,\beta \in \Omega^1(M), \operatorname{supp} \alpha \cap \operatorname{supp} \beta \text{ compact. } (\alpha,\beta) = \int_M \overline{\alpha} \wedge \star \beta = \int_M \overline{\alpha_j} \beta^j \, \mathrm{d} \mu_g,$

$$\sigma(\alpha,\beta) = (\mathsf{t}\delta\alpha,\mathsf{n}\beta)_{\partial} - (\mathsf{n}\alpha,\mathsf{t}\delta\beta)_{\partial} - (\mathsf{n}\mathsf{d}\alpha,\mathsf{t}\beta)_{\partial} + (\mathsf{t}\alpha,\mathsf{n}\mathsf{d}\beta)_{\partial},$$

Where for $\omega \in \Omega^1(M)$, $t\omega$ is the projection on ∂M and $n\omega$ is the projection on the normal to ∂M .

Boundary conditions for \square

Symplectic Flux

$$\sigma(\alpha,\beta) = (\mathsf{t}\delta\alpha,\mathsf{n}\beta)_{\partial} - (\mathsf{n}\alpha,\mathsf{t}\delta\beta)_{\partial} - (\mathsf{n}\mathsf{d}\alpha,\mathsf{t}\beta)_{\partial} + (\mathsf{t}\alpha,\mathsf{n}\mathsf{d}\beta)_{\partial}.$$

The symplectic flux vanishes if α, β are in the following spaces.

We studied, among the others:

• space of k-forms with *Dirichlet* boundary condition

$$\Omega_{\mathrm{D}}^{k}(M) \doteq \{\omega \in \Omega^{k}(M) \mid \mathrm{t}\omega = 0 \;,\; \mathrm{n}\omega = 0\}\,,$$

• space of k-forms with \square -tangential boundary condition

$$\Omega^k_{\parallel}(M) \doteq \{\omega \in \Omega^k(M) \mid \mathsf{t}\omega = 0 \;,\; \mathsf{t}\delta\omega = 0\} \,,$$

• space of k-forms with \square -normal boundary condition

$$\Omega^k_{\perp}(M) \doteq \{ \omega \in \Omega^k(M) \mid n\omega = 0 , nd\omega = 0 \}.$$

Boundary conditions for \square

Symplectic Flux

$$\sigma(\alpha,\beta) = (\mathsf{t}\delta\alpha,\mathsf{n}\beta)_{\partial} - (\mathsf{n}\alpha,\mathsf{t}\delta\beta)_{\partial} - (\mathsf{n}\mathsf{d}\alpha,\mathsf{t}\beta)_{\partial} + (\mathsf{t}\alpha,\mathsf{n}\mathsf{d}\beta)_{\partial}.$$

The symplectic flux vanishes if α , β are in the following spaces.

We studied, among the others:

• space of k-forms with Dirichlet boundary condition

$$\Omega^k_{\mathrm{D}}(\mathbf{M}) \doteq \left\{ \omega \in \Omega^k(\mathbf{M}) \mid \mathsf{t}\omega = 0 \;,\; \mathsf{n}\omega = 0 \right\},$$

• space of k-forms with \square -tangential boundary condition

$$\Omega_{\parallel}^{k}(M) \doteq \{\omega \in \Omega^{k}(M) \mid t\omega = 0, \ t\delta\omega = 0\},$$

• space of k-forms with \square -normal boundary condition

$$\Omega^k_{\perp}(M) \doteq \{ \omega \in \Omega^k(M) \mid n\omega = 0, nd\omega = 0 \}.$$

Boundary conditions for \square

Symplectic Flux

$$\sigma(\alpha,\beta) = (\mathsf{t}\delta\alpha,\mathsf{n}\beta)_{\partial} - (\mathsf{n}\alpha,\mathsf{t}\delta\beta)_{\partial} - (\mathsf{n}\mathsf{d}\alpha,\mathsf{t}\beta)_{\partial} + (\mathsf{t}\alpha,\mathsf{n}\mathsf{d}\beta)_{\partial}.$$

The symplectic flux vanishes if α, β are in the following spaces.

We studied, among the others:

• space of k-forms with Dirichlet boundary condition

$$\Omega^k_{\rm D}({\it M}) \doteq \left\{\omega \in \Omega^k({\it M}) \mid {\rm t}\omega = 0 \;,\; {\rm n}\omega = 0\right\},$$

• space of k-forms with \square -tangential boundary condition

$$\Omega_{\parallel}^{k}(M) \doteq \{ \omega \in \Omega^{k}(M) \mid t\omega = 0 , \ t\delta\omega = 0 \},$$

• space of k-forms with \square -normal boundary condition

$$\Omega^{k}_{\perp}(M) \doteq \{\omega \in \Omega^{k}(M) \mid n\omega = 0, \text{ nd}\omega = 0\}.$$

Splitting of \square in static spacetimes

In static globally hyperbolic spacetimes it holds $M = \mathbb{R} \times \Sigma$ and \square splits as

$$\square = \partial_t^2 - \Delta,$$

where Δ is the spatial Laplacian on Σ .

Since our boundary conditions are themselves static, the flux can be expressed with respect to the spatial derivatives only:

$$\sigma(\alpha, \beta) = (\Delta(\alpha|_{\Sigma}), \beta|_{\Sigma})_{\Sigma} - (\alpha|_{\Sigma}, \Delta(\beta|_{\Sigma}))_{\Sigma},$$

where $(,)_{\Sigma}$ is the Hilbert scalar product in $L^2\Omega^k(\Sigma)$.

Vanishing symplectic flux is equivalent to Δ being symmetric as a densely defined operator on $L^2\Omega^k(\Sigma)$. For a unitary time evolution we look for a self-adjoint extension of Δ .

To select self-adjoint extensions we use the method of boundary triples.

Splitting of \square in static spacetimes

In static globally hyperbolic spacetimes it holds $M = \mathbb{R} \times \Sigma$ and \square splits as

$$\Box = \partial_t^2 - \Delta,$$

where Δ is the spatial Laplacian on Σ .

Since our boundary conditions are themselves static, the flux can be expressed with respect to the spatial derivatives only:

$$\sigma(\alpha, \beta) = (\Delta(\alpha|_{\Sigma}), \beta|_{\Sigma})_{\Sigma} - (\alpha|_{\Sigma}, \Delta(\beta|_{\Sigma}))_{\Sigma},$$

where $(,)_{\Sigma}$ is the Hilbert scalar product in $L^2\Omega^k(\Sigma)$.

Vanishing symplectic flux is equivalent to Δ being symmetric as a densely defined operator on $L^2\Omega^k(\Sigma)$. For a unitary time evolution we look for a self-adjoint extension of Δ .

To select self-adjoint extensions we use the method of boundary triples.

Splitting of \square in static spacetimes

In static globally hyperbolic spacetimes it holds $M = \mathbb{R} \times \Sigma$ and \square splits as

$$\Box = \partial_t^2 - \Delta,$$

where Δ is the spatial Laplacian on Σ .

Since our boundary conditions are themselves static, the flux can be expressed with respect to the spatial derivatives only:

$$\sigma(\alpha, \beta) = (\Delta(\alpha|_{\Sigma}), \beta|_{\Sigma})_{\Sigma} - (\alpha|_{\Sigma}, \Delta(\beta|_{\Sigma}))_{\Sigma},$$

where $(,)_{\Sigma}$ is the Hilbert scalar product in $L^2\Omega^k(\Sigma)$.

Vanishing symplectic flux is equivalent to Δ being symmetric as a densely defined operator on $L^2\Omega^k(\Sigma)$. For a unitary time evolution we look for a self-adjoint extension of Δ .

To select self-adjoint extensions we use the method of boundary triples.

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- **6** Boundary triples for \square
- Maxwell's equations with boundary
- 8 Conclusions

Boundary triples (1)

Definition.

A boundary triple for a symmetric differential operator S on a Riemannian manifold with boundary Σ is a triple $(L^2\Omega^k(\partial\Sigma), \gamma_0, \gamma_1)$ such that

$$\sigma(\alpha,\beta) = (\gamma_1 \alpha, \gamma_0 \beta)_{\partial} - (\gamma_0 \alpha, \gamma_1 \beta)_{\partial}$$

for any $\alpha, \beta \in \text{dom}(S^*)$.

Self-adjoint extensions of *S* are in one-to-one correspondence with all physically sound boundary conditions.

The space $\ker(\mathcal{A}\gamma_1 - \mathcal{B}\gamma_0)$ parametrizes the boundary conditions that vanish the symplectic flux, where \mathcal{A}, \mathcal{B} is a self-adjoint pair of operators on $L^2\Omega^k(\partial\Sigma)$.

In our case, $S = \Delta$ and the following identity

$$(\gamma_1 \alpha, \gamma_0 \beta)_{\partial} - (\gamma_0 \alpha, \gamma_1 \beta)_{\partial} = (t \delta \alpha, n \beta)_{\partial} - (n \alpha, t \delta \beta)_{\partial} - (n d \alpha, t \beta)_{\partial} + (t \alpha, n d \beta)_{\partial}$$

entails that the boundary maps are $\gamma_0(\alpha) = \begin{bmatrix} n\alpha \\ t\alpha \end{bmatrix}$ and $\gamma_1(\alpha) = \begin{bmatrix} t\delta\alpha \\ nd\alpha \end{bmatrix}$

Boundary triples (1)

Definition.

A boundary triple for a symmetric differential operator S on a Riemannian manifold with boundary Σ is a triple $(L^2\Omega^k(\partial\Sigma), \gamma_0, \gamma_1)$ such that

$$\sigma(\alpha, \beta) = (\gamma_1 \alpha, \gamma_0 \beta)_{\partial} - (\gamma_0 \alpha, \gamma_1 \beta)_{\partial}$$

for any $\alpha, \beta \in \text{dom}(S^*)$.

Self-adjoint extensions of *S* are in one-to-one correspondence with all physically sound boundary conditions.

The space $\ker(\mathcal{A}\gamma_1 - \mathcal{B}\gamma_0)$ parametrizes the boundary conditions that vanish the symplectic flux, where \mathcal{A}, \mathcal{B} is a self-adjoint pair of operators on $L^2\Omega^k(\partial\Sigma)$.

In our case, $S = \Delta$ and the following identity

$$(\gamma_1 \alpha, \gamma_0 \beta)_{\partial} - (\gamma_0 \alpha, \gamma_1 \beta)_{\partial} = (\mathsf{t} \delta \alpha, \mathsf{n} \beta)_{\partial} - (\mathsf{n} \alpha, \mathsf{t} \delta \beta)_{\partial} - (\mathsf{n} \mathsf{d} \alpha, \mathsf{t} \beta)_{\partial} + (\mathsf{t} \alpha, \mathsf{n} \mathsf{d} \beta)_{\partial}$$

entails that the boundary maps are $\gamma_0(\alpha) = \begin{bmatrix} n\alpha \\ t\alpha \end{bmatrix}$ and $\gamma_1(\alpha) = \begin{bmatrix} t\delta\alpha \\ nd\alpha \end{bmatrix}$.

Boundary triples (2)

Boundary maps.

$$\gamma_1(\alpha) = \begin{bmatrix} t\delta\alpha\\ nd\alpha \end{bmatrix}, \qquad \gamma_0(\alpha) = \begin{bmatrix} n\alpha\\ t\alpha \end{bmatrix}$$

With the following choices, if $\alpha, \beta \in \ker(A\gamma_1 - B\gamma_0)$

- A = 0 and $B = Id \Rightarrow$ Dirichlet $t\alpha = 0$, $n\alpha = 0$,
- $\mathcal{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathcal{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \Box$ -tangential $t\alpha = 0$, $t\delta\alpha = 0$,
- $\mathcal{A} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathcal{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \square$ -normal $n\alpha = 0$, $nd\alpha = 0$.

Boundary triples (2)

Boundary maps.

$$\gamma_1(\alpha) = \begin{bmatrix} t\delta\alpha\\ nd\alpha \end{bmatrix}, \qquad \gamma_0(\alpha) = \begin{bmatrix} n\alpha\\ t\alpha \end{bmatrix}$$

With the following choices, if $\alpha, \beta \in \ker(A\gamma_1 - B\gamma_0)$

- A = 0 and $B = Id \Rightarrow$ Dirichlet $t\alpha = 0$, $n\alpha = 0$,
- $\mathcal{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathcal{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \Box$ -tangential $t\alpha = 0$, $t\delta\alpha = 0$,
- $\mathcal{A} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathcal{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \square$ -normal $n\alpha = 0$, $nd\alpha = 0$.

Boundary triples (2)

Boundary maps.

$$\gamma_1(\alpha) = \begin{bmatrix} t\delta\alpha\\ nd\alpha \end{bmatrix}, \qquad \gamma_0(\alpha) = \begin{bmatrix} n\alpha\\ t\alpha \end{bmatrix}$$

With the following choices, if $\alpha, \beta \in \ker(A\gamma_1 - B\gamma_0)$

- A = 0 and $B = Id \Rightarrow$ Dirichlet $t\alpha = 0$, $n\alpha = 0$,
- $\mathcal{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathcal{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \Box$ -tangential $t\alpha = 0$, $t\delta\alpha = 0$,
- $\bullet \ \ \mathcal{A} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \mathcal{B} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \Box \text{-normal } \mathbf{n}\alpha = 0, \, \mathbf{nd}\alpha = 0.$

The corresponding self-adjoint extensions of Δ are denoted by $\Delta_D, \Delta_{\parallel}, \Delta_{\perp}$.

The boundary conditions are chosen such that for D, \parallel, \perp , the Green operators commute with the differential operators.

Green operators for \square

Recalling $\Box = \partial_t^2 - \Delta$, we exploit spectral calculus to obtain Green operators from the following bidistributions:

We set $\mathcal{G}^+_{\sharp} = \vartheta(t - t')\mathcal{G}_{\sharp}$ and $\mathcal{G}^-_{\sharp} = -\vartheta(t' - t)\mathcal{G}_{\sharp}$, where:

$$\mathcal{G}_{\sharp}(\alpha,\beta) = \int_{\mathbb{R}^2} \left(\alpha|_{\Sigma}, \Delta_{\sharp}^{-1/2} \sin \left(\Delta_{\sharp}^{1/2} (t-t') \right) \beta|_{\Sigma} \right)_{\Sigma} \mathrm{d}t \mathrm{d}t' \,,$$

for $\sharp \in \{D, \parallel, \perp\}$.

The bidistributions define uniquely G_{t}^{\pm} such that

$$(G_{\sharp}^{\pm}(\alpha),\beta) = \mathcal{G}_{\sharp}^{\pm}(\alpha,\beta).$$

For $\sharp \in \{D, \|, \bot\}$, the Green operators commute with the differential operators: $\delta \circ G_{\sharp}^{\pm} = G_{\sharp}^{\pm} \circ \delta$.

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

Maxwell's equations with boundary

We apply the results to Maxwell's equations for A in empty space: $\delta dA = 0$.

The symplectic flux for the δd operator is

$$(\delta d\alpha, \beta) - (\alpha, \delta d\beta) = (t\alpha, nd\beta)_{\partial} - (nd\alpha, t\beta)_{\partial}.$$

Boundary conditions considered:

- δ d-tangential (t $\alpha = 0$),
- δ d-normal (nd $\alpha = 0$)

Two different notions of gauge-invariance must be introduced.

Gauge invariance with boundary conditions

Definition.

We say two solutions A,A' of $\delta dA=0$ with δd -tangential are gauge-equivalent if there exists $\chi\in\Omega^0_t(M)=\{\omega\in C^\infty(M)\,|\,t\omega=0\}$ such that $A'=A+d\chi$.

$$tA' = t(A + d\chi) = td\chi = dt\chi = 0$$

Definition.

We say two solutions A, A' of $\delta dA = 0$ with δd -normal are gauge equivalent if there exists $\chi \in C^{\infty}(M)$ such that $A' = A + d\chi$.

$$ndA' = nd(A + d\chi) = nd^2\chi = 0.$$

$$\operatorname{Sol}_{t}(\textit{M}) = \frac{\{A \in \Omega^{1}(\textit{M}) | \ \delta dA = 0 \ , tA = 0\}}{d\Omega^{0}_{t}(\textit{M})}, \quad \operatorname{Sol}_{nd}(\textit{M}) = \frac{\{A \in \Omega^{1}(\textit{M}) | \ \delta dA = 0 \ , ndA = 0\}}{d\Omega^{0}(\textit{M})}$$

Gauge invariance with boundary conditions

Theorem.

Let M globally hyperbolic spacetime with timelike boundary. Then for all $[A] \in \operatorname{Sol}_{\mathsf{t}}(M)$ there exists a representative $A' \in [A]$ such that

$$\Box_{\parallel} A' = 0 \,, \qquad \delta A' = 0 \,.$$

Theorem.

Let M be a globally hyperbolic spacetime with timelike boundary. Then for all $[A] \in \operatorname{Sol}_{\operatorname{nd}}(M)$ there exists a representative $A' \in [A]$ such that

$$\Box_{\perp} A' = 0, \qquad \delta A' = 0.$$

The proof of the Theorems is based on the fact that Green operators for \square commute with differential operators: $\delta \circ G_{\parallel}^{\pm} = G_{\parallel}^{\pm} \circ \delta$ and $\delta \circ G_{\perp}^{\pm} = G_{\perp}^{\pm} \circ \delta$.

Table of Contents

- Introduction
- Spacetimes with timelike boundary
- 3 Green operators
- 4 Maxwell's equations
- Soundary conditions for □
- 6 Boundary triples for □
- Maxwell's equations with boundary
- 8 Conclusions

- More general boundary conditions for \square .
- Different methods other than boundary triples to obtain self-adjoint extensions and hence Green operators.
- Do we have to rely on wave operator to solve Maxwell's equations?
- Regarding electromagnetism as a gauge theory with U(1) structure group should reduce the group of gauge transformations $A \to A + d\chi$,

$$A \to A - ig^{-1}dg, g \in C^{\infty}(M, U(1))$$

- More general boundary conditions for \square .
- Different methods other than boundary triples to obtain self-adjoint extensions and hence Green operators.
- Do we have to rely on wave operator to solve Maxwell's equations?
- Regarding electromagnetism as a gauge theory with U(1) structure group should reduce the group of gauge transformations $A \to A + d\chi$,

$$A \to A - ig^{-1} dg, g \in C^{\infty}(M, U(1))$$

- More general boundary conditions for \square .
- Different methods other than boundary triples to obtain self-adjoint extensions and hence Green operators.
- Do we have to rely on wave operator to solve Maxwell's equations?
- Regarding electromagnetism as a gauge theory with U(1) structure group should reduce the group of gauge transformations $A \to A + d\chi$,

$$A \to A - ig^{-1} dg, g \in C^{\infty}(M, U(1))$$

- More general boundary conditions for \square .
- Different methods other than boundary triples to obtain self-adjoint extensions and hence Green operators.
- Do we have to rely on wave operator to solve Maxwell's equations?
- Regarding electromagnetism as a gauge theory with U(1) structure group should reduce the group of gauge transformations $A \to A + d\chi$,

$$A \to A - ig^{-1}dg, g \in C^{\infty}(M, U(1)).$$