第七章 假设检验

成都信息工程大学应用数学学院

假设检验

- § 7-2 正态总体均值的假设检验
- § 7-3 正态总体方差的假设检验

- @ 假设检验的定义
- 假设检验的基本思想
- 两种错误与显著性检验
- 假设检验的步骤
- 参数检验的三种形式

在实际应用中,常需对总体参数或分布函数的 表达式做出某种假设(称为统计假设),再利用从总 体中获得的样本信息来对所做假设的真伪进行检验, 这种利用样本检验假设真伪的过程叫做统计检验(假 设检验).

参数检验 $({\ddot{z}} X \sim F(x, \theta), \theta$ 是未知参数,检验假设: $\theta = \theta_0$)

假设检验

非参数检验 (岩 $X \sim F(x), F(x)$ 未知,检验假设: $F(x) = F(x_0)$

例1:某车间用一台包装机包装葡萄糖,包得的袋装糖重量是一个R.V.,设它服从正态分布,当机器正常时,其均值为0.5公斤,标准差为0.015公斤,某日开工后为检验包装机是否正常,随机地抽取它包装的糖9袋,称得净重为(公斤):0.497,0.506,0.518,0.524,0.498,0.511,0.520,0.515,0.512,问机器是否正常?(设标准差为0.015公斤)

解: 设袋装糖重为总体X, $E(X) = \mu$, $\sigma = \sqrt{D(X)}$,则 $X \sim N(\mu, 0.015^2)$

检验假设: $H_0: \mu = \mu_0 = 0.5$, $H_1: \mu \neq \mu_0$

- 假设检验的定义
- 假设检验的基本思想
- 两种错误与显著性检验
- 假设检验的步骤
- 参数检验的三种形式

1、依据

小概率原理(实际推断原理): 小概率事件在一次试验中被认为是不可能发生的,如果发生了,就认为是不合理的。

2、基本思想与方法

为检验某个假设 H_0 是否成立,先假设 H_0 成立,若由 H_0 成立可导出一个小概率事件(发生的概率小于某 α)发生,则拒绝 H_0 ,反之接受 H_0 。

- 假设检验的定义
- 假设检验的基本思想
- 两种错误与显著性检验
- 假设检验的步骤
- 参数检验的三种形式

文字际			
	H_0 为真	H_0 不真	
否定 H_0	第一类错误 (弃真)α	正确	$\alpha = P\{拒绝H_0 H_0为真\}$
接受 H_0	正确	第二类错误 (取伪) ß	$\beta = P\{ 接 \mathcal{G} H_0 H_0 $ 不真}

进行检验时,应使 α , β 都较小,但进一步讨论知,一般地,当样本容量n固定时, α 小, β 就大,反之, α 大, β 就小,若要使 α , β 均减小,应增加样本容量。故样本容量固定时,采取的原则: 控制犯第一类错误的概率,使之小于给定的 α 。

1、显著性检验

只对犯第一类错误的概率加以控制,使之小于某给定的α,而不考虑犯第二类错误的概率的假设检验,称为显著性检验.

2、显著性水平

在此, α 称为显著性水平,实为小概率事件的小概率值,常取 α =0.01,0.05,0.1等

3.假设检验的基本思想

为检验某个假设 H_0 是否成立,先假设 H_0 成立,若由 H_0 成立可导出第一类错误 {拒绝 $H_0|H_0$ 为真}这一个小概率事件在某个区域内发生了,则拒绝 H_0 ,反之接受 H_0 。

例1: 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots , X_n 为来自总体X的样本, σ^2 已知。

- (1) 检验假设: $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$
- (2) 检验假设: $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$
- (3) 检验假设: $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$

例1:(1) 检验假设: $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$

分析: H_0 为真⇔ | $\overline{x} - \mu_0$ | 较小⇔ $\frac{|\overline{x} - \mu_0|}{\sigma / \sqrt{n}}$ 较小

故取适当的k>0,当 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}}\geq k$ 时,拒绝 H_0 当 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}}< k$ 时,接受 H_0

$$\therefore P\{拒绝H_0|H_0为真\} = P_{\mu=\mu_0}\{\left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right| \geq k\} = \alpha$$

$$rac{ar{x}-\mu_0}{\sigma/\sqrt{n}} \stackrel{H_0}{\sim} N(0,1)$$

∴ 若z的观测值满足
$$|z| = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge k = z_{\alpha/2}$$
,则拒绝 H_0

 $M_1: (2)$ 检验假设: $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$

分析: H_0 为真 $\Leftrightarrow \bar{x} > k$

故取适当的k,当 $\bar{x} > k$ 时,接受 H_0 ; 当 $\bar{x} \leq k$ 时,拒绝 H_0

$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le \frac{k - \mu_0}{\sigma / \sqrt{n}} \Leftrightarrow \overline{x} \le k$$

 $\therefore P\{拒绝H_0 \mid H_0 \to \mathbf{A}\} = P_{\mu \geq \mu_0} \{\frac{x - \mu_0}{\sigma / \sqrt{n}} \leq \frac{k - \mu_0}{\sigma / \sqrt{n}}\}$

$$\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

$$\leq \mathbf{P}_{\mu \geq \mu_0} \left\{ \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \leq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha$$

$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) \leq \frac{P_{\mu \geq \mu_0}}{\sigma / \sqrt{n}} \left\{ \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \leq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha$$

$$\therefore \frac{k - \mu_0}{\sigma / \sqrt{n}} = -z_\alpha \Rightarrow k = \mu_0 - \frac{\sigma}{\sqrt{n}} z_\alpha$$

若
$$\overline{x} \le \mu_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha}$$
,则拒绝 H_0 ,即 $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_{\alpha}$,则拒绝 H_0

例1:(3) 检验假设: $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$

分析: H_0 为真 $\Leftrightarrow \bar{x} < k$

故取适当的k,当 $\bar{x} < k$ 时,接受 H_0 ;当 $\bar{x} \geq k$ 时,拒绝 H_0

$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \ge \frac{k - \mu}{\sigma / \sqrt{n}} \Leftrightarrow \overline{x} \ge k$$

$$\therefore P\{拒绝H_0|H_0为真\} = P_{\mu \leq \mu_0}\{\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \geq \frac{k - \mu_0}{\sigma/\sqrt{n}}\}$$

$$\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

$$\leq \mathbf{P}_{\mu \leq \mu_0} \left\{ \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha$$

$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) \leq \frac{P_{\mu \leq \mu_0} \{ \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \} = \alpha}{\therefore \frac{k - \mu_0}{\sigma / \sqrt{n}} = z_\alpha \Rightarrow k = \mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha}$$

4、检验统计量

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

5、拒绝域(否定域)

当检验统计量取到某区域C内的值时,拒绝原假设 H_0 ,则称C为拒绝域,称拒绝域的边界点为临界点。

- 假设检验的定义
- 假设检验的基本思想
- 两种错误与显著性检验
- @ 假设检验的步骤
- 参数检验的三种形式

假设检验的步骤:

- 1. 建立原假设 H_0 和备择假设 H_1
- 2. 选择一合适的统计量U(简单、不含其它未知参数), 并找出假设成立的条件下,该统计量服从的概率分布。
- 3. 给定显著性水平,在原假设为真的条件下求出使 $P\{拒绝H_0 \mid H_0$ 为真 $\} \leq \alpha$

成立的U,从而求出拒绝域C.

4. 由样本观测值算出U,若落入拒绝域C,则拒绝 H_0 ,反之,接受 H_0 .

- 假设检验的定义
- 假设检验的基本思想
- 两种错误与显著性检验
- 假设检验的步骤
- 参数检验的三种形式

参数检验的三种形式

检验目的

 H_0 : 原假设

 H_1 : 备择假设

 θ 是否等于 θ_0

 $\theta = \theta_0$

 $\theta \neq \theta_0$

双边检验

 θ 是否大于 θ_0

 $\theta \leq \theta_0$

 $\theta > \theta_0$ (右边)

单边检验

 θ 是否小于 θ_0

 $\theta \ge \theta_0$

 $\theta < \theta_0$ (左边)

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自总体**X**的样本, σ^2 已知

检验统计量:
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Z检验	检验统计量的	的观察值 $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$
$H_{\scriptscriptstyle 0}$	H_1	H。的拒绝域
$\mu \leq \mu_0$	$\mu > \mu_0$	$\{z \geq z_{\alpha}\}$
$\mu \geq \mu_0$	$\mu < \mu_0$	$\left\{ \! z \leq -z_{lpha} ight\}$
$\mu=\mu_0$	$\mu \neq \mu_0$	$\left\{ \left z \right \geq z_{\alpha/2} \right\}$

引例解: 设袋装糖重为X, $E(X) = \mu$, $\sigma = \sqrt{D(X)}$, 则 $X \sim N(\mu, 0.015^2)$

检验假设: $H_0: \mu = \mu_0 = 0.5, H_1: \mu \neq \mu_0$

在此, 令 α =0.05, 则 $k = z_{\alpha/2} = z_{0.025} = 1.96$

又由题知:n=9, $\sigma=0.015$, $\bar{x}=0.511$,则

$$|z| = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| = 2.2 > 1.96$$
 (拒绝域)

 \therefore 拒绝原假设 H_0 ,即认为包装机工作不正常.