中国科学技术大学

2019—2020学年第二学期考试试卷

	考试科目_概率论_	得分	
	所在院系学号	姓名	
	考试时间: 2020 年 9	月 6 日上午 8:30-11:30	
-,	(30分, 每小题3分) 填空题或单选题, 答	案可以直接写在试卷上.	
	(1) 某人打靶的命中率为 0.5, 当他连续射击三次后检查目标, 发现靶已命中, 则他第一次射击时就已经命中的概率为		
	(2) 甲乙二人抛掷一枚均匀的硬币, 甲拢数比乙多的概率是	他了 101 次, 乙抛了 100 次, 则甲抛出的正面	ī次
	(3) 设随机变量 X, Y 和 Z 独立同分布 则 $\mathbf{P}(X < Y < Z) =$	于几何分布 $Geo(p)$, $0 . 若记 q = 1 - (请将结果写成 q 的表达式).$	- p,
	(4) 设随机变量 X 的概率密度 $p(x) = X$	$Ae^{-x^2+x}, -\infty < x < \infty, 则常数 A =$	<u>_</u> .
	(A) (X,Y) 为二维连续性随机向量	$Y^2 = 1$) = 1, 则下列说法中一定不成立的是(B) $\mathbf{E}X = \mathbf{E}Y = 0$ (D) X 和 Y 相互独立)
	数,则 (X,Y) 服从二维正态分布($\Phi(2x)\Phi(y-1)$, 其中 $\Phi(x)$ 为标准正态分析) ,1;0) (C) $\mathcal{N}(0,1;4,1;0)$ (D) $\mathcal{N}(0,-1;4,1;0)$	
	(7) 设随机变量 X_1 和 X_2 相互独立,方若 Y_1 的密度函数为 $[p_1(y) + p_2(y)]$, (A) $\mathbf{Var}[Y_1] > \mathbf{Var}[Y_2]$ (B) $\mathbf{Var}[Y_1] < \mathbf{Var}[Y_2]$ (D) 以上	$\mathbf{r}[Y_1] = \mathbf{Var}[Y_2]$	(x).
	(8) 设随机变量 X 与 Y 满足 $\mathbf{E}X = \mathbf{E}X$ $r_{X,Y} = 0.25$. 若令 $U = X + 2Y, V = 0.25$	$Y=1$, $\mathbf{Var}X=\mathbf{Var}Y=2$, 且它们的相关系= $X-2Y$, 则 $r_{U,V}=$	〔数
	(9) 设随机变量 X 服从参数为 2 的 Pc 相互独立, 则 Var (XY) =	oisson 分布, Y 服从均匀分布 U[-3,3], 且它	3 们

依概率收敛到_____.

(10) 设 $\{X_n, n \ge 1\}$ 是一列独立的 U(0,1) 随机变量, 则当 $n \to \infty$ 时, $\left(\prod_{i=1}^n X_i\right)^{-1/n}$

二、(10分) 设随机变量 X 服从标准 Cauchy 分布, 即其密度函数为

$$p(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}.$$

- (1) 试求 X 的分布函数 F(x);
- (2) 证明: 随机变量 $Y = \frac{1}{X}$ 与 X 同分布.
- Ξ 、(15分) 设随机变量 X 和 Y 的联合密度函数为

$$p(x,y) = cx(y-x)e^{-y}, \quad 0 \le x \le y < \infty.$$

- (1) 试求常数 c;
- (2) 试求条件密度函数 $p_{X|Y}(x|y)$ 和 $p_{Y|X}(y|x)$;
- (3) 试求条件期望 $\mathbf{E}(X|Y)$ 和 $\mathbf{E}(Y|X)$.
- 四、(12分) 设随机向量(X,Y) 服从二维正态分布 $\mathcal{N}(0,0;1,1;r)$, 即其密度函数为

$$p(x,y) = \frac{1}{2\pi\sqrt{1-r^2}} \exp\Big\{-\frac{1}{2(1-r^2)}(x^2 - 2rxy + y^2)\Big\}, \quad (x,y) \in \mathbb{R}^2,$$

其中相关系数 $r \neq 0$. 现记 $Z = (Y - rX)/\sqrt{1 - r^2}$.

- (1) 试求随机向量 (X,Z) 的密度函数;
- (2) X 与 Z 是否相互独立? Y 与 Z 是否相互独立? 请说明理由.
- (3) 利用上述结论证明:

$$\mathbf{P}(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi} \arcsin r.$$

- 五、 (18分) 设 $\{X_n, n \geq 1\}$ 是一列独立同分布于标准指数分布 $\mathrm{Exp}(1)$ 的随机变量, 记其部分和 $S_n = \sum_{k=1}^n X_k$. 已知在 $S_n = x$ 条件下, 随机变量 Z 服从参数为 x 的 Poisson分布.
 - (1) 试求 S_n 的密度函数 $p_n(x)$;
 - (2) 试求 Z 的分布律和特征函数 $f_Z(t)$;
 - (3) 试求 Z 的期望 $\mathbf{E}Z$ 和方差 $\mathbf{Var}Z$;
 - (4) 利用特征函数证明: 当 $n \to \infty$ 时,

$$\frac{Z - \mathbf{E}Z}{\sqrt{\mathbf{Var}Z}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

- 六、(15分) 在一款电子游戏中,某件宝物由 n 种不同的零件拼成. 假设玩家每打开一个宝箱都等可能地得到其中一种零件. 若玩家想拼成一件完整的宝物, 以 X_n 表示他所需打开的宝箱个数.
 - (1) 试求 X_n 的期望与方差;
 - (2) 证明: 当 $n \to \infty$ 时, $X_n/(n \ln n) \stackrel{p}{\longrightarrow} 1$;
 - (3) 证明: 当 $n \to \infty$ 时,

$$\frac{X_n - n \ln n}{n} \xrightarrow{d} \mathcal{N}\left(\gamma, \frac{\pi^2}{6}\right),$$

其中 $\gamma = 0.57721...$ 为 Euler 常数.

七、(10分) 设 $\{X_n, n \ge 1\}$ 是一列独立同分布的随机变量, 且四阶矩存在. 记

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2.$$

试找出合适的常数 a, b 和常数列 $\{c_n\}$, 使得随机向量 $c_n(Y_n - a, Z_n - b)'$ 依分布收敛, 并确定该极限分布.