UT Austin CSE 386D

Homework 7

Jonathan Zhang EID: jdz357

Exercise (8.1). If A is positive definite, show that its eigenvalues are positive. If A is symmetric and has positive eigenvalues, then A is positive definite.

Proof. Suppose that A is positive definite. Let (λ, v) be an eigenpair for A. Then by the positive definiteness,

$$0 < (v, Av) = (v, \lambda v) = \lambda (v, v) = \lambda ||v||^2.$$

Since this quantity is strictly positive, we must have $\lambda > 0$.

On the other side, assume now that A has all positive eigenvalues. Then, a admits a diagonalization $A=U\Lambda U^*$ for some $U^*=U^{-1}$ unitary matrix. Pick $x\neq 0$, and set $y=U^*x\neq 0$. Then

$$(x, Ax) = (x, U\Lambda U^*x) = (y, \Lambda y).$$

Expand $y = \sum y_i e_i$, then

$$(y, \Lambda y) = \sum_{i} \overline{y_i} y_i \lambda_i > 0$$

since $\lambda_i > 0$ and $\overline{y_i}y_i = |y_i|^2 \ge 0$ since $y \ne 0$ by assumption. This shows that $(x, Ax) = (y, \Lambda y) > 0$ and a is positive definite.

CSE 386D UT Austin

Exercise (8.3).

UT Austin CSE 386D

Exercise (8.5).

CSE 386D UT Austin

Exercise (8.8). $\Omega \subset \mathbb{R}^d$ bounded, connected, Lipschitz domain. Let $V \subset \Omega$ have positive measure. Let $H = \{u \in H^1(\Omega) : u|_V = 0\}$.

- 1. Why is H a Hilbert space?
- 2. Prove that there exists C > 0 such that

$$||u|| \le C||\nabla u||$$

for every $u \in H$.

- 1. H is the null space of the restriction to V operator. Since restriction is continuous, then H is closed. As a closed subspace of Hilbert space $H^1(\Omega)$, then H is itself a Hilbert space.
- 2. Go by contradiction. Assume to the contrary that there exists a sequence $u_n \in H$ such that

$$||u_n|| = 1$$
 and $||\nabla u_n|| \to 0$.

Now, from every bounded sequence in a Hilbert space, we can extract a weakly convergent subsequence $u_{n_k} \rightharpoonup u \in H$. Weak convergence of u_{n_k} implies weak convergence of $\nabla u_{n_k} \rightharpoonup \nabla u$ in L^2 . Since the norm is continuous we pass to the limit and we have that $\nabla u = 0$, i.e. u is a constant. But if u vanishes on V, then the only possibility is that $u \equiv 0$.

On the other side, we know from the Rellich-Kondrachov Theorem that we have $u_{n_k} \to u$ in L^2 . Convergence in L^2 also implies convergence in the norm, but since $||u_n|| = 1$ that means ||u|| = 1, a contradiction.