WINCOM®

UART 接口扩展芯片

可灵活配置通讯参数的 I2C 扩展 4 通道 UART 芯片 EU204

(Extend UART from I2C to 4 UART)

数据手册 DATA SHEET

硬件版本: V2.00 固件版本: V2.00 手册版本: V2.00 河北稳控科技股份有限公司

2023年05月

概述

EU204是具有1个从机I2C接口和4个UART 接口的数据转发芯片,可通过 I2C 接口协议扩 展为 4 个标准的 UART 接口, UART 通讯速率最高 460800bps, 各接口通讯参数可由软件独立设置, 包括通讯速率、数据位、校验位、停止位等,可 适应绝大部分串口设备的通讯要求, 紧凑的 SSOP20 封装、2.0~5.5V 供电电压、工业级温度 范围等特性方便集成嵌入。

每个接口均有独立缓存,可配置缓存大小, 共享 2560 字节。

内置 RC 振荡器或者外接高精度温补晶振, 在整个工业级温度范围保持准确时钟。

两个地址设置管脚,可在 I2C 总线上挂载 最多4个芯片(扩展16个UART)。

功能特点

- **供电:** 2.0⁵.5V
- **功耗:** 正常 6.5mA, 休眠 5uA*
- 通讯
 - ➤ **I2C:** 100kbps
 - > UART1/2: 1200~460800bps
 - > UART3/4: 1200~38400bps
 - ▶ 缓存: 共用 2560 字节
- **封装:** SSOP20
- **工作温度:** -40[~]85℃, 内置 RC 振荡器温 漂范围±0.8%,允许软件校准。
- **其它特性:** 64bits 唯一识别码

***测试环境为25℃,所有端口空载

引脚定义

所有引脚(电源除外)均为准双向弱上拉。

引脚 4、5 连接 24MHz 外部晶振或时钟信号(非必须), 无源晶振时须连接两个 20pF 匹配电容到 GND。当不连接外部时钟时,这两个引脚悬空。

CAP 引脚连接 4.7uF 电容到 GND。

BUSY 为低时表示芯片正忙,建议此时不要使用 I2C 接口进行通讯

手册中的数值,带有 0x 前缀或者 H 后缀的表示 16 进制, B 后缀表示 2 进制,无前缀和后缀的数字 表示 10 进制。

手册中"发送"和"写"均是指 I2C 主机 (MCU) 向 I2C 从机 (EU204) 发送数据。

文档版本: V2.00 2 / 5 通讯地址:河北省燕郊开发区创业大厦 A 座 12 层 Email: INFO@GEO-INS.COM 电话: 0316-3093523

通讯协议

EU204 使用 I2C 通讯协议,通过读写寄存器参数以及 UART 发送、接收缓存寄存器完成 UART 扩展通讯。在 I2C 总线中, EU204 总是从机。关于 I2C 通讯协议的起始信号、应答(非应答)、写数据、读数据、停止信号等请参照标准协议说明, 本手册不做 I2C 协议中此方面的时序说明。

芯片地址

EU204 地址由 7 位地址和 1 位读写位构成,7 位地址中高 5 位固定为 10100B,低 2 位由 ADDR2 和 ADDR1 设置,ADDR2 对应 bit2, ADDR1 对应 bit1。

ADDR2	ADDR1	写地址	读地址
0	0	0xA0	0xA1
0	1	0xA2	0xA3
1	0	0xA4	0xA5
1	1	0xA6	0xA7

寄存器写时序

(1) 写目标寄存器地址

由主机向芯片发送起始信号,发送芯片写地址,读取从 机应答,发送要操作的寄存器地址 1 字节,发送停止信号。

开始信号->发送芯片写地址 1 字节->发送寄存器地址 1 字节->停止信号

(2) 修改目标寄存器值

上述步骤 1 基础上,在发送停止信号前发送寄存器值,寄存器为 16 位整数,故此每 2 个字节对应 1 个寄存器值(下同),高字节在前。

开始信号->发送芯片写地址1字节->发送寄存器地址1字节->写寄存器值n字节->停止信号

寄存器地址及功能定义,详见附表

寄存器读时序

(1) 直接读取目标寄存器

由主机向芯片发送起始信号,发送芯片读地址,读取从 机应答,继续读取(前2字节为目标寄存器值,继续读取即 为下一寄存器值),发送停止信号。

(2) 读取指定地址寄存器

先完成"写目标寄存器"(可不发停止信号), 重复上述步骤1"直接读取目标寄存器"。

前述"写目标寄存器地址"操作->开始信号->写芯片 读地址 1 字节->读取寄存器值 n 字节->停止信号

寄存器读写实例

写寄存器1的值为96

开始→发送 0xA0 0x01→发送 0x00 0x60→停止 写寄存器 2 的值为 0x2081

开始→发送 0xA0 0x02→发送 0x20 0x81→停止 写连续的多个寄存器:设置寄存器 1和2的值为96和0x2081 开始→发送 0xA0 0x01 0x00 0x60 0x20 0x81→停止

读取连续的寄存器值: 从寄存器 1 开始,连续读取 31 个寄存器 (62 字节)

开始→发送 0xA0 0x01[→停止]→开始→发送 0xA1→读取 62 个字节[→非应答]→停止以上"[]"表示非必须。

UART 接收中断管脚 INT

当任意 UART 接收到数据时, INT 管脚变为低电平, 此时应通过 I2C 接口读取 UART 接收缓存寄存器读取接收到的数据, 当所有 UART 接口的接收缓存均被读取后, INT 恢复为高电平 (弱上拉)。

向指定 UART 发送数据

向 UARTx 缓存寄存器写入要发送的数据长度 2 字节,继续发送要发送的数据,发送停止信号后,对应的 UART 接口输出数据。

读取指定 UART 收到的数据

读取 UARTx 对应的接收缓存寄存器,寄存器值为已收到的字节数,继续读取即为实际收到的数据。

读取接收缓存寄存器操作后,寄存器值自动归零

自动休眠

当芯片所有端口没有任何收发事件超过预定时长后,芯片将进入休眠状态。任意端口事件均会将芯片从休眠状态唤醒。当休眠寄存器的值为0(默认)时,芯片永远不会休眠。

寄存器说明

寄存器为16位整数,读或者写时均以2字节为基本单位,高字节在前。寄存器汇总表见附表。

UART 速率、通讯参数寄存器

Ux_BAUD 为通讯速率寄存器 (x 可替换为 1、2、3、4,下同),一共有 4 个,分别为 U1_BAUD、U2_BAUD、U3_BAUD、U4_BAUD, 单位: 百 bps,例如:寄存器值为 96 时表示通讯速率为 9600bps。

Ux_AUXFUN 为通讯参数, 定义见下表:

<u></u>				
Ux_AUXFUN				
位	功能	取值	备注	
BIT15:12	接收缓存大小	0~15	值*64=缓存字节数	
BIT11:8	校验位	0: 无校验 1: 奇校验 2: 偶校验		
BIT7:4	数据位	1~8		
BIT3:0	停止位	1~5		

文档版本: V2.00

3 / 5

电话: 0316-3093523

通讯地址:河北省燕郊开发区创业大厦 A 座 12 层 Email: INFO@GEO-INS.COM

I2C 接收缓存容量寄存器

IIC_AUXFUN				
位	功能	取值	备注	
BIT15:12	接收缓存大小	0~15	值*64=缓存字节数	
BIT11:0	未定义功能			

UARTx 缓存大小:是指 UARTx 在接收外部传输来的数据时,一次最多可以接收多少字节。 **I2C 缓存大小**:是指通过 I2C 接口操作芯片时,从开始信号到结束信号之间发给芯片的所有字节。

UART 使能寄存器

UART_EN				
位	功能	取值	备注	
BIT15:4	未定义功能			
BIT3	UART4 使能	0: 禁用		
BIT2	UART3 使能	1: 使能		
BIT1	UART2 使能			
BIT0	UART1 使能			

空闲时长寄存器

FREE_SEC				
位	功能	取值	备注	
BIT15:0	空闲时长设置	0~65535	单位: 秒,空闲此时长后自动休眠	

芯片识别码与版本寄存器

СНІРТУРЕ				
位	功能	取值	备注	
BIT15:12	芯片类型码	固定为1		
BIT11:8	扩展端口类型	固定为1		
BIT7:4	控制接口类型	固定为2		
BIT3:0	目标端口数量	固定为4		

VERSION				
位	功能	取值	备注	
BIT15:8	主版本号	0~255		
BIT7:4	副版本号	0~15		
BIT3:0	次版本号	0~15		

唯一 ID 寄存器

UDID 是连续 4 个寄存器, 共 8 个字节。

UARTx 发送缓存寄存器

发送缓存寄存器是虚拟寄存器,要从 UARTx 发送数据时,应先向发送缓存寄存器写入要发送的字节数,然后继续连续发送实际要发送的数据。

开始信号->发送芯片写地址 1 字节->发送缓存寄存器地址 1 字节->要发送的字节长度 2 字节->要发送的数据 n 字节->停止信号

例: 从 UART1 发送"1234"。开始信号->写 0xA0 0x28 0x00 0x04 0x31 0x32 0x33 0x34->停止信号

UARTx 接收缓存寄存器

接收缓存寄存器是虚拟寄存器,要获取 UARTx 已收到的数据时,应先向读取接收缓存寄存器的值,并根据读取到的值继续连续读取,后续读取到的即为 UARTx 端口已接收到的数据。

开始信号->写芯片写地址 1 字节->写接收缓存寄存器地址 1 字节->开始信号->发送芯片读地址 1 字节->读取 2 字节接收缓存数据长度 n->读取 n 字节->停止信号

文档版本: V2.00 4 / 5

寄存器汇总表

地址		符号		默认值	备注说明
10 进制	16 进制				
0	0		预留寄存器	1	暂未定义功能
1	1	U1_BAUD	UART1 通讯速率	96	通讯速率 9600bps
2	2	U1_AUXFUN	UART1 通讯参数	0x8081	接收缓存 8*64=512 字节, 无校验, 数据位 8, 停止位 1
3	3	U2_BAUD	UART2 通讯速率	96	通讯速率 9600bps
4	4	U2_AUXFUN	UART2 通讯参数	0x8081	接收缓存 8*64=512 字节, 无校验, 数据位 8, 停止位 1
5	5	U3_BAUD	UART3 通讯速率	96	通讯速率 9600bps
6	6	U3_AUXFUN	UART3 通讯参数	0x8081	接收缓存 8*64=512 字节, 无校验, 数据位 8, 停止位 1
7	7	U4_BAUD	UART4 通讯速率	96	通讯速率 9600bps
8	8	U4_AUXFUN	UART4 通讯参数	0x8081	接收缓存 8*64=512 字节, 无校验, 数据位 8, 停止位 1
9	9				
10	A	IIC_AUXFUN	IIC 通讯参数	0x4000	接收缓存 8*64=512 字节
26	1A	UART_EN	UART 使能设置	0x000F	4个UART接口全部使能
30	1E	FREE_SEC	空闲时长	0	关闭自动休眠功能
32	20	CHIPTYPE	芯片类型码	0x1124	只读
33	21	VERSION	版本信息	0x0101	只读
34~37	22~25	UDID	唯一识别码		只读
			JS 337 . 3 . 4 . mm		
40	28	U1_SNDBUF	UART1 发送寄存器	0	
41	29	U1_RCVBUF	UART1 接收寄存器	0	只读
42	2A	U2_SNDBUF	UART2 发送寄存器	0	
43	2B	U2_RCVBUF	UART2 接收寄存器	0	只读
44	2C	U3_SNDBUF	UART3 发送寄存器	0	
45	2D	U3_RCVBUF	UART3 接收寄存器	0	只读
46	2E	U4_SNDBUF	UART4 发送寄存器	0	II V+
47	2F	U4_RCVBUF	UART4 接收寄存器	0	只读

常见问题及注意事项

所有参数每次上电后会自动复位为默认值。

较低的通讯速率可以降低数据传输的误码率。

根据实际需要合理设置各端口缓存大小,所有端口缓存总和严禁超过 2560 字节(含 I2C 缓存)。

当读取到接收字节数量等于设置的缓存时,表示接收已溢出。

河北稳控科技股份有限公司

2023年05月

文档版本: V2.00 5 / 5 Email: INFO@GEO-INS.COM 电话: 0316-3093523