Modern Physics Final Study Guide

PHYS-122

Fall 2024

CONTENTS 2

Contents

1	\mathbf{Spe}	ecial Relativity	3
	1.1	Postulates of Special Relativity	3
	1.2	Relativity of Simultaneity	3
	1.3	Lorentz Transformations	3
	1.4	The Relativistic Invariant Interval	5
	1.5	Relativistic Velocity Addition	6
	1.6	Four-Vectors in Special Relativity	6
	1.7	Examples of Four-Vectors	7
	1.8	Relativistic Conservation Laws	7
2	Qua	antum Mechanics	10
	2.1	Quantum Theory of Light	10
		2.1.1 Blackbody Radiation and Planck Hypothesis	10
		2.1.2 Photoelectric Effect	10
		2.1.3 Compton Scattering	11
		2.1.4 Wave-Particle Duality	12
		2.1.5 Heisenberg Uncertainty Principle	12
		2.1.6 Group and Phase Velocities	14
	2.2	Schrödinger Equation	15
		2.2.1 Overview	15
		2.2.2 Different Potentials	15
	2.3	Hydrogen Atom	16
		2.3.1 Quantized Energy Levels	16
		2.3.2 Quantum Numbers	16
		2.3.3 Wave Functions	17
3	Sta	tistical Mechanics	17
	3.1	Key Concepts	17
	3.2	Essential Equations	18
	3.3	Units and Unit Conversions	18
4	Qui	ick Reference	18
	4.1	Mathematical Tools	18
	4.2	Important Constants	20
	4.3	Unit Conversions	20

1 Special Relativity

1.1 Postulates of Special Relativity

Postulates:

- The laws of physics are the same in all inertial frames.
- The speed of light is constant in a vacuum for all observers, regardless of their motion relative to the source.

1.2 Relativity of Simultaneity

Relativity of Simultaneity: Two events that appear simultaneous to one observer may not appear simultaneous to another observer moving relative to the first. This is a direct consequence of the constancy of the speed of light and the Lorentz transformations.

1.3 Lorentz Transformations

Lorentz Transformations: The Lorentz transformations relate spacetime coordinates of an event in two inertial reference frames moving at a constant velocity relative to each other. These transformations preserve the invariant interval (Δs^2) , a cornerstone of special relativity.

Transformations:

- For a frame S' moving with velocity v along the x-axis relative to S:
 - Time: $t' = \gamma \left(t \frac{vx}{c^2} \right)$
 - Space (x-direction): $x' = \gamma (x vt)$
 - Space (y- and z-directions): y' = y, z' = z
- The Lorentz factor is $\gamma = \frac{1}{\sqrt{1 v^2/c^2}}$.

Lorentz Transformation Matrix: The Lorentz transformation can be expressed using matrix multiplication:

$$x' = \Lambda x$$
,

where $x = \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}$ and x' are the spacetime coordinates in S and S', respectively. For a boost

along the x-axis, the Lorentz transformation matrix Λ is:

$$\Lambda = egin{bmatrix} \gamma & -\gamma \beta & 0 & 0 \ -\gamma \beta & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix},$$

where $\beta = v/c$.

Key Properties:

• The inverse transformation is obtained by negating v, flipping the sign of β :

$$\Lambda^{-1} = \begin{bmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

• The Lorentz transformations preserve the invariant interval:

$$\Delta s^2 = x \cdot x = x' \cdot x'.$$

Applications:

• Lorentz transformations explain phenomena like time dilation, length contraction, and the relativity of simultaneity.

• They form the basis for defining and transforming four-vectors, such as four-momentum and four-velocity.

1.4 The Relativistic Invariant Interval

Invariant Interval: The relativistic invariant interval is a spacetime quantity that remains unchanged under Lorentz transformations.

Invariant Interval:

$$\Delta s^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$$

Classifications of the Invariant Interval:

• Time-like: $\Delta s^2 > 0$, related to proper time:

$$\Delta s^2 = c^2 \Delta \tau^2$$

• Space-like: $\Delta s^2 < 0$, related to proper length:

$$-\Delta s^2 = L^2$$

• **Light-like:** $\Delta s^2 = 0$, events are connected by light:

$$c^2 \Delta t^2 = (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2$$

1.5 Relativistic Velocity Addition

Relativistic Velocity Addition: When combining velocities in different inertial frames, the relativistic formula must be used. Typically, these problems involve 3 objects and the following reference frames and velocities are defined:

- S: The stationary reference frame.
- S': The moving reference frame.
- u: The velocity of an object relative to S.
- v: The velocity of S' relative to S.
- u': The velocity of the object relative to S'.

Relativistic Velocity Addition Formula:

$$u' = \frac{u+v}{1 + \frac{uv}{c^2}}$$

Here, u' is the velocity of the object as measured in S', given the velocity u of the object relative to S and the velocity v of S' relative to S.

1.6 Four-Vectors in Special Relativity

Four-Vectors: Physical quantities in relativity are represented as four-vectors that transform under Lorentz transformations.

General Form of a Four-Vector:

$$a^{\mu} = (a^0, \vec{a}) = (a^0, a^1, a^2, a^3), \quad a^0 = c\Delta t$$

Dot Product of Four-Vectors: The invariant dot product between two four-vectors a^{μ} and b^{μ} is:

$$a \cdot b = a^0 b^0 - \vec{a} \cdot \vec{b}$$

This quantity is Lorentz invariant (unchanged under Lorentz transformations).

1.7 Examples of Four-Vectors

Common Four-Vectors:

• Four-Position:

$$x^{\mu}=(ct,x,y,z)$$

• Four-Velocity:

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = \gamma(c, \vec{v}), \quad \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

• Four-Momentum:

$$p^\mu = m u^\mu = \gamma m(c, \vec{v})$$

For massless particles, like photons:

$$p \cdot p = 0, \quad E = |\vec{p}|c$$

1.8 Relativistic Conservation Laws

Relativistic Conservation Laws: The principles of conservation of energy and momentum extend to special relativity, incorporating the total energy (rest energy + kinetic energy) and relativistic momentum.

Relativistic Total Energy:

 \bullet The total energy E includes both the rest energy and the relativistic kinetic energy:

$$E = \gamma m_0 c^2.$$

- The rest energy is given by $E_0 = m_0 c^2$, where m_0 is the rest mass.
- In any physical process, the total energy is conserved.

Relativistic Momentum:

• The relativistic momentum is defined as:

$$\vec{p} = \gamma m_0 \vec{v},$$

where
$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$
.

• Both the magnitude and direction of total momentum in an isolated system are conserved.

Four-Momentum Conservation:

• Energy and momentum form components of the four-momentum vector:

$$p^{\mu} = \left(\frac{E}{c}, \vec{p}\right).$$

• In all inertial frames, the conservation of four-momentum holds:

$$\sum p^{\mu}_{\rm initial} = \sum p^{\mu}_{\rm final}.$$

Relativistic Collisions:

- Total energy and total momentum are conserved in collisions, including elastic and inelastic cases.
- Unlike classical mechanics, the concept of conserved "mass" is not generally applicable. For example:
 - In pair annihilation, rest mass converts to energy.
 - In particle creation, energy converts into rest mass.

Energy-Momentum Relation:

$$E^2 = (pc)^2 + (m_0c^2)^2$$

This relation connects the total energy E, the momentum p, and the rest mass m_0 of a particle.

Invariant Four-Momentum Magnitude:

$$p^\mu \cdot p^\mu = m_0^2 c^2$$

This invariant magnitude holds in all inertial frames, ensuring the consistency of relativistic conservation laws.

2 Quantum Mechanics

2.1 Quantum Theory of Light

2.1.1 Blackbody Radiation and Planck Hypothesis

Blackbody Radiation: Classical physics predicted the "ultraviolet catastrophe," where energy radiated at high frequencies diverged. Planck resolved this by quantizing energy:

$$E = nhf, \quad n = 1, 2, 3, \dots$$

Planck's Law:

$$I(\nu,T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{h\nu/k_BT}-1}, \label{eq:interpolation}$$

where $I(\nu, T)$ is the intensity of radiation at frequency ν .

2.1.2 Photoelectric Effect

Photoelectric Effect: Electrons are emitted from a material when light shines on it, with the energy of the electrons depending on the frequency of light.

$$hf = \phi + KE_{max}, \quad hf_c = \phi, \quad KE_{max} = eV_s$$

Threshold Frequency: No electrons are emitted if $f < f_c$.

2.1.3 Compton Scattering

Compton Scattering: The scattering of X-rays by electrons demonstrates particle-like behavior of light. The wavelength shift is given by:

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta).$$

Energy Relation:

$$\frac{1}{E'} - \frac{1}{E} = \frac{1 - \cos \theta}{m_e c^2}.$$

2.1.4 Wave-Particle Duality

Wave-Particle Duality: Light and matter exhibit dual behavior, displaying characteristics of both waves and particles depending on the experimental conditions.

Key Features:

- Travels as a wave, interacting with itself, and demonstrates phenomena such as interference and diffraction.
- Interacts as a particle, transferring discrete packets of energy, known as photons or quanta.
- Confirmed by experiments:
 - Double-Slit Experiment: Demonstrates interference patterns for light and electrons, showing wave-like behavior.
 - Photoelectric Effect: Demonstrates the particle nature of light, as photons eject electrons from a material.
 - Blackbody Radiation: Explained by Planck's quantization hypothesis, resolving the ultraviolet catastrophe.
 - Compton Scattering: Demonstrates photon momentum through scattering with electrons.

De Broglie Wavelength: $\lambda = \frac{h}{p} = \frac{h}{mv}$

Wave Number: $k = \frac{2\pi}{\lambda}$

2.1.5 Heisenberg Uncertainty Principle

Heisenberg Uncertainty Principle: A fundamental principle of quantum mechanics stating that certain pairs of physical observables cannot be simultaneously measured with arbitrary precision.

Key Relations:

• Position-Momentum Uncertainty:

$$\Delta x \Delta p \ge \frac{\hbar}{2},$$

where Δx and Δp are the standard deviations of position and momentum, respectively.

• Energy-Time Uncertainty:

$$\Delta E \Delta t \ge \frac{\hbar}{2},$$

where ΔE and Δt are the uncertainties in energy and time, respectively.

Variance-Squared Average Relationship: The uncertainty in a measurable quantity A is defined as:

$$\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2},$$

where $\langle A \rangle$ is the expectation value, and $\langle A^2 \rangle$ is the expectation value of A^2 .

Implications:

- Establishes the probabilistic nature of quantum mechanics, replacing deterministic classical physics.
- Demonstrates the impossibility of assigning definite trajectories to particles as in classical mechanics.

2.1.6 Group and Phase Velocities

Group and Phase Velocities: Velocities associated with wave propagation.

• Group velocity:

$$v_g = \frac{d\omega}{dk},$$

representing the velocity of the wave packet and the velocity of the particle

• Phase velocity:

$$v_p = \frac{\omega}{k},$$

representing the velocity of individual wave crests.

2.2 Schrödinger Equation

2.2.1 Overview

Schrödinger Equation: Governs the quantum mechanical behavior of particles. It describes how the wave function of a particle evolves under the influence of potential energy. General Forms:

• 1D Time-Independent Schrödinger Equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x).$$

• 3D Schrödinger Equation (spherical coordinates):

$$-\frac{\hbar^2}{2m}\nabla^2\psi(r,\theta,\phi) + V(r)\psi(r,\theta,\phi) = E\psi(r,\theta,\phi).$$

The solution is separable:

$$\psi(r, \theta, \phi) = R(r)Y(\theta, \phi),$$

where $Y(\theta, \phi)$ are spherical harmonics.

2.2.2 Different Potentials

Free Particle:

• For V(x) = 0, solutions are plane waves:

$$\psi(x) = Ae^{i(kx - \omega t)},$$

where $k = \frac{p}{\hbar}$ and $\omega = \frac{E}{\hbar}$.

Particle in a Box:

• For V(x) = 0 inside the box and $V(x) = \infty$ outside:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \quad E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}.$$

Step Potential:

- E < U: Tunneling occurs. The wave function decays exponentially in the classically forbidden region.
- E > U: The wave function is continuous, with partial reflection and transmission.

2.3 Hydrogen Atom

2.3.1 Quantized Energy Levels

Hydrogen Atom: The Schrödinger equation in spherical coordinates yields quantized energy levels and quantum numbers.

Energy Levels:

$$E_n = -\frac{13.6 \,\text{eV}}{n^2}.$$

2.3.2 Quantum Numbers

Quantum Numbers:

- Principal quantum number (n): Determines energy level (n = 1, 2, 3, ...).
- Orbital angular momentum quantum number (l): Determines the shape of the orbital (l = 0, 1, ..., n 1).
- Magnetic quantum number (m_l) : Determines the orientation $(m_l = -l, -l + 1, ..., l)$.
- Spin quantum number (m_s) : Intrinsic angular momentum $(m_s = \pm \frac{1}{2})$.

Statistical Mechanics 17

2.3.3 Wave Functions

Wave Functions:

$$\psi(r, \theta, \phi) = R_{nl}(r)Y_l^m(\theta, \phi),$$

where $R_{nl}(r)$ is the radial wave function, and $Y_l^m(\theta, \phi)$ are spherical harmonics. **Radial Probability Distribution:** The probability density P(r) is given by:

$$P(r) = r^2 |R_{nl}(r)|^2$$
.

3 Statistical Mechanics

3.1 Key Concepts

- Microstates and macrostates: Connection between microscopic and macroscopic descriptions.
- Boltzmann distribution: $P_i = \frac{e^{-E_i/k_BT}}{Z}$.
- Partition function: Summation of states to understand thermodynamic properties, $Z = \sum_{i} e^{-E_i/k_BT}$.
- Occupation numbers: Average number of particles in a state, $n_i = \frac{1}{e^{(E_i \mu)/k_B T} \pm 1}$ (for fermions and bosons).
- Degeneracy: The number of microstates corresponding to a single energy level.
- Distinguishable vs. indistinguishable particles: Boltzmann distribution for distinguishable particles; Fermi-Dirac and Bose-Einstein distributions for indistinguishable particles.

Quick Reference 18

3.2 Essential Equations

Boltzmann distribution: $P_i = \frac{e^{-E_i/k_BT}}{Z}$

Partition function: $Z = \sum_{i} g_i e^{-E_i/k_B T}$

Fermi-Dirac distribution: $n_i = \frac{1}{e^{(E_i - \mu)/k_B T} + 1}$

Bose-Einstein distribution: $n_i = \frac{1}{e^{(E_i - \mu)/k_B T} - 1}$

Average energy: $\langle E \rangle = \sum_{i} P_{i} E_{i} = -\frac{\partial \ln Z}{\partial \beta}$

Probability of a state: $P(E) = \frac{g_i e^{-E/k_B T}}{Z}$

3.3 Units and Unit Conversions

- Energy: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}.$
- Temperature: Convert between Kelvin and energy using $k_B = 1.38 \times 10^{-23}$ J/K.
- Wavelength and frequency: $E=hf,\,\lambda=\frac{c}{f},\,$ with hc=1240 eV \cdot nm.

4 Quick Reference

4.1 Mathematical Tools

• Trigonometric Identities:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

 $\sin(2x) = 2\sin x \cos x$

Quick Reference 19

- Series:
 - Taylor Series Expansion: $\sum_{n=0}^{\infty} C_n (x-a)^n \text{ where } C_n = \frac{f^{(n)}(a)}{n!}$
 - Binomial Series Expansion: $(1 \pm x)^r = 1 \pm rx \pm ...$
- Integration Tips:
 - For even functions: $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$
 - For odd functions: $\int_{-a}^{a} f(x)dx = 0$
 - Gaussian integrals often appear in wave packets
- Complex Numbers Review
 - Complex conjugate: $z^* = a bi$ for z = a + bi
 - Modulus: $|z| = \sqrt{a^2 + b^2}$
 - Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
 - Argument: $\arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$
- Second Order Differential Equations
 - If ODE has this form: $\frac{d^2f}{dx^2} = k^2f$ where k is a constant The solution is:

 $f(x) = Ae^{kx} + Be^{-kx}$

Quick Reference 20

4.2 Important Constants

- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \cdot K^4$
- Planck's constant: $h=6.626\times 10^{-34}\,\mathrm{J\cdot s}=4.136\times 10^{-15}\;\mathrm{eV\cdot s}$
- Electron mass: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$
- Speed of light: $c = 3.0 \times 10^8 \,\mathrm{m/s}$
- Bohr radius: $a_0 = 0.0529 \times 10^{-9} \,\mathrm{m}$
- Compton wavelength of the electron: $\frac{h}{m_e c} = 0.002426 \ \mathrm{nm}$

4.3 Unit Conversions

- $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
- $hc = 1240 \text{ eV} \cdot \text{nm}$
- $\hbar c = \frac{1240}{2\pi} \text{ eV} \cdot \text{nm}$