

Decision Trees

- New type of non-linear model
- Copes naturally with continuous and categorical data
- Fast to both train and test (highly parallelizable)
- Generates a set of **interpretable** rules

20 questions

http://20q.net/

Decision Stump

Distinguish rugby players from ballet dancers.

$x_1,$	$x_2,$	y (label)
98.79,	157.59,	1
93.64,	138.79,	1
42.89,	171.89,	0
• • •		
87.91,	142.65,	1
97.92,	162.12,	1
47.63,	182.26,	0
92.72,	154.50,	1

A simple decision tree

if
$$x > t$$
 then $\hat{y} = 1$ else $\hat{y} = 0$

A simple decision tree

Decision Trees = nested rules


```
if x>25 then
    if x>50 then y=0 else y=1; endif
else
    if x>16 then y=0 else y=1; endif
endif
```


if
$$x > t$$
 then $\hat{y} = 1$ else $\hat{y} = 0$

Q. Where is a good threshold?

if
$$x > t$$
 then $\hat{y} = 1$ else $\hat{y} = 0$

The stump "splits" the dataset.

Here we have 4 classification errors.

if x > t then $\hat{y} = 1$ else $\hat{y} = 0$

no′ yes 57.3 10.5 💢 59.9 14.1 🗶 17.0 21.0 23.2 27.1 🗶 30.1 💢 42.0 🗶 47.0 🗶

Here we have 3 classification errors.

Here's one I made earlier.....

'pop' is the number of training points that arrived at that node.

'err' is the fraction of those examples incorrectly classified.

Challenge 2: how complex should I make the tree?

Increasing the maximum depth (10)

Decreasing the minimum number of examples required to make a split (5)

- ► The number of possible paths tells you the number of rules.
- More rules = more complicated.
- We could have N rules where N is the size of the dataset. This would mean no generalisation outside of the training data, or the tree is overfitted

Overfitting = fine tuning

Overfitting....

Decision Tree Learning Algorithm (sometimes called "ID3")

```
1: function BUILDTREE( subsample, depth )
2:
      //BASE CASE:
3:
      if (depth == 0) OR (all examples have same label) then
          return most common label in the subsample
5:
      end if
6:
7:
       //RECURSIVE CASE:
8:
      for each feature do
9:
          Try splitting the data (i.e. build a decision stump)
10:
          Calculate the cost for this stump
11:
      end for
12:
      Pick feature with minimum cost
13:
14:
      Find left/right subsamples
15:
      Add left branch \leftarrow BUILDTREE( leftSubSample, depth -1 )
16:
      Add right branch \leftarrow BUILDTREE( rightSubSample, depth - 1 )
17:
18:
      return tree
19:
20:
21: end function
```

Decision Trees

- New type of non-linear model
- Copes naturally with continuous and categorical data
- Fast to both train and test (highly parallelizable)
- Generates a set of **interpretable** rules

