Příloha:Výstupní zpráva

Jméno: Iaroslav Zhdanovich

Login: xzhdan00

Architektura navrženého obvodu (na úrovni RTL)

Schéma obvodu

Popis funkce

Obvod má 1bitový DIN vstup, 8bitový výstup DOUT[7:0], 1bitový výstup DOUT_VLD a pracuje na 16x frekvence hodinového signalu. Při realizaci úloh byly použity čítače (CNT1 je 4bitový čítač s přenosovým výstupem a CNT2 je 7bitový čítač s přenosovým výstupem) a posuvný registr (SHIFT_REG je 8bitový posuvný registr implementovaný pomocí 8 KO typu D). Obvod je řízen automatem FSM. Na vstupu jsou sériově přijímány bity, které jsou zapisovány do posuvného registru, poté je po ukončení procesu zápisu dán potvrzovací signál.

Návrh automatu (Finite State Machine)

Schéma automatu

Stavy: S_IDLE, S_STOP, S_DATA, S_START
Vstupy: STARTBIT, READY, STOPBIT, BACK
Moorovy výstupy: IDLE, START_DELAY, DATA_EN, STOP_DELAY
Mealyho výstupy: <2adné>

Popis funkce

Automat se spustí ve stavu S_IDLE, v tomto okamžiku je aktivní pouze výstup IDLE. Když na DIN dorazí logická '0', automat se přepne do stavu S_START.

Ve stavu S_START je aktivní pouze výstup START_DELAY. Automat tedy čeká 16 taktů hodinového signálu a poté přejde do stavu S_DATA.

Ve stavu S_DATA je aktivní pouze výstup DATA_EN. Obvod tedy čeká 128 hodinových taktů a zapíše 8 bitů do posuvného registru. Po ukončení zápisu se automat přepne do stavu S_STOP.

Ve stavu S_STOP je aktivní pouze výstup STOP_DELAY. Automat tedy če ká 16 taktů hodinového signálu a poté přejde do stavu S_IDLE.

Snímek obrazovky ze simulací

