COMS W3261 Computer Science Theory Lecture 17 Undecidable Problems

Alexander Roth

2014 - 11 - 5

Outline

- Encodings
- Undecidable problems about Turing machines
- Undecidable problems about context-free languages

1 Encodings

- In this course, we have defined a problem as a question of deciding whether a given string is a member of some particular language.
- In formulating questions as membership problems for languages, we may need to encode objects, such as Turing machines and the inputs they process, as strings over some fixed alphabet, such as $\{0,1\}$. Often the details of the encoding are not important as long as a Turing machine can decode the encoding so we will sometimes use the notation < M > to represent an encoding of a Turing machine M_i without describing in detail how this encoding has been done.
- For example, using this notation, we can represent the universal language L_u as $\{ < (M, w) > | < M > \text{is an encoding of a Turing machine } M, < w > \text{is an encoding of an input string } w \text{ and } M \text{ accepts } w \}.$
- If it is clear from the context, we will regard strings as the Turing machines and input strings they represent. Thus, we will often write $L_u = \{(M, w) | M \text{ is a Turing machine and } M \text{ accepts } w\}.$

2 Undecidable Problems about Turing Machines

- Definte L_e to be $\{M \mid L(M) = \emptyset\}$. In words, L_e is the language consisting of all encoded Turing machines whose language is empty.
 - We can now show that L_e is not recursively enumerable. See HMU Section 9.3.2 for a proof.
- Define L_{ne} to be $\{M \mid L(M) \neq \emptyset\}$. L_{ne} is the complement of L_e .
 - We can show the L_{ne} is recursively enumerable but not recursive. Again, see HMU Section 9.3.2 for a proof.
 - We have just state that L_{ne} is not recursive. If L_e were recursively enumerable, both it and L_{ne} would be recursive because L_e and L_{ne} are complements of each other. This is the reason why L_e cannot be recursively enumerable.

• The Halting Problem

- In Alan Turing's original formulation of Turing machines acceptance was just by halting not necessarily by halting in a final state.
- We can define H(M) for a Turing machine M to be the set of input strings w such that M halts on w in either a final or a nonfinal state.
- The famous halting problem is the set of pairs $\{(M, w) \mid w \text{ is in } H(M)\}$.
- We can show the halting problem is recursively enumerable but not recursive.

3 Undecidable Problems about Context-free Languages

- We have already shown that it is undecidable whether a context-free grammar is ambiguous. The proof technique we used was to reduce Post's Correspondence Problem to the ambiguity problem for CFG's.
- We can also use this proof technique to show a number of important problems about context-free languages are undecidable.
- Let G and H be CFG's, and let R be a regular expression. The following problems are undecidable:
 - 1. Is $L(G) \cap L(H) = \emptyset$?
 - 2. Is L(G) = L(H)?
 - 3. Is L(G) = L(R)?
 - 4. Is $L(G) = \Sigma^*$ for some alphabet Σ ?
 - 5. Is $L(G) \subseteq L(H) = \emptyset$?

6. Is
$$L(R) \subseteq L(G) = \emptyset$$

 \bullet Proofs of these results are in HMU Section 9.5.3.