

第三次作业 丁伯尧

□ 考虑文法 $S \rightarrow aSbS|bSaS|\epsilon$

- a)为句子abab构造两个不同的最左推导,以此说明文法是二义的
- b) 为abab构造对应的最右推导
- c) 为abab构造对应的分析树
- d)这个文法产生的语言是什么

□ 解答:对应课本3.1节的内容

- **最左/右推导**:每一步都是代换句型中最左/右边的非终结符的推导
- **文法二义性**: 对于一个句子,存在不止一颗分析树(或最左/右推导)与之对应
- **分析树**:分支节点为非终结符,该节点的子节点由本次推导所用产生式的右部符号依次标记

□ 考虑文法 $S \rightarrow aSbS|bSaS|\epsilon$

a)为句子abab构造两个不同的最左推导,以此说明文法是二义的

$$S \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSbS \Rightarrow ababS \Rightarrow abab$$

$$S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow abaSbS \Rightarrow ababS \Rightarrow abab$$

b) 为abab构造对应的最右推导

$$S \Rightarrow aSbS \Rightarrow aSb \Rightarrow abSaSb \Rightarrow abSab \Rightarrow abab$$

$$S \Rightarrow aSbS \Rightarrow aSbaSbS \Rightarrow aSbaSb \Rightarrow aSbab \Rightarrow abab$$

□ 考虑文法 $S \rightarrow aSbS|bSaS|\epsilon$

c) 为abab构造对应的分析树

- d) 这个文法产生的语言是什么
 - ❖ 该文法产生的语言是a、b的数量相等的串的集合

□ 习题3.1的文法

$$S \rightarrow (L)|a$$

a) 消除该文法的左递归

- $L \rightarrow L, S | S$
- b) 为(a)中的文法构造预测分析器

- □ 解答: 课本3.2-3.3节
 - **左递归文法**: 对于文法, 如果它有终结符A, 对某个串 α , 存在推导 $A \Rightarrow * A\alpha$
 - 左递归产生式 $A \rightarrow A\alpha | \beta$ 可以使用下列非左递归产生式来代替
 - $A \rightarrow \beta A', A' \rightarrow \alpha |A'| \epsilon$
 - **预测分析**:指根据当前的输入符号为非终结符确定采用哪一个选择

□ 习题3.1的文法

a) 消除该文法的左递归

$$S \rightarrow (L)|a$$

 $L \rightarrow SL'$
 $L' \rightarrow SL'|\epsilon$

$$S \rightarrow (L)|a$$

 $L \rightarrow L, S|S$

□ 习题3.1的文法

$$S \to (L)|a$$

$$L \to SL'$$

$$L' \to SL'|\epsilon$$

b) 为(a)中的文法构造预测分析器

□ 计算FIRST和FOLLOW集合

- ■FIRST(α): 串 α 的可能首终结符集合;若 $\alpha \Rightarrow * \epsilon$,则含 ϵ
- ■FOLLOW(A): 在所有句型中可以直接出现在A后边的符号集合。对于 $A \rightarrow \alpha B \beta$
 - ❖ 若A为开始符号,则\$ ∈ FOLLOW(A)
 - \Rightarrow FIRST(β) \subseteq FOLLOW(B)
 - ❖ 若 $\beta \Rightarrow \epsilon$, 则 $FOLLOW(A) \subseteq FOLLOW(B)$

FIRST(S) = { (, a } FOLLOW(S) = { ",",), \$ }
FIRST(L) = { (, a } FOLLOW(L) = {) }
FIRST(L') = { ",",
$$\epsilon$$
 } FOLLOW(L') = {) }

□ 习题3.1的文法

b) 为(a)中的文法构造预测分析器

$$S \rightarrow (L)|a$$

 $L \rightarrow SL'$
 $L' \rightarrow SL'|\epsilon$

FIRST(S) =
$$\{ (, a) \}$$

FIRST(L) = $\{ (, a) \}$
FIRST(L') = $\{ (, a) \}$

□ 根据上述集合构造预测分析表

- 对于每个产生式 $A \rightarrow \alpha$, 执行:
 - ❖ 对于 $FIRST(\alpha)$ 的每个非终结符a, 把 $A \rightarrow \alpha$ 加入到M[A, a]

$FOLLOW(S) = \{ ","," \}$),	\$]
FOLLOW(L) = {) }		
FOLLOW(L') = {) }		

◇ 如果 ϵ 在 $FIRST(\alpha)$ 中,对于FOLLOW(A)的每个终结符b(包括\$),把 $A \rightarrow \alpha$ 加入到M[A,b]

	a	,	()	\$
S	$S \rightarrow a$		$S \to (L)$		
L	$L \to SL'$		$L \to SL'$		
L'		L'		$L' \to \epsilon$	
		\rightarrow , SL'			

□ 构造下面文法的LL(1)分析表

$$S \rightarrow aBS|bAS|\epsilon$$

$$A \rightarrow bAA|a$$

$$B \rightarrow aBB|b$$

$$FIRST(S) = \{a, b, \epsilon\}$$

 $FIRST(A) = \{a, b\}$
 $FIRST(B) = \{a, b\}$

$$FOLLOW(S) = \{\$\}$$

 $FOLLOW(A) = \{a, b, \$\}$
 $FOLLOW(B) = \{a, b, \$\}$

	a	b	\$
S	$S \rightarrow aBS$	$S \rightarrow bAS$	$S \to \epsilon$
А	$A \rightarrow a$	$A \rightarrow bAA$	
В	$B \rightarrow aBB$	$B \rightarrow b$	

□ 给出接受下列文法的活前缀的一个DFA

$$S \rightarrow (L)|a$$

$$L \rightarrow L$$
, $S \mid S$

□解答

- ■课本P76: 对于每个文法G,项目集规范族的goto函数定义了一个DFA,它识别G的活前缀
- ■定义增广文法G':增加新开始符号S' 以及 $S' \rightarrow S$
- ■找出项目集规范族
 - ❖ 计算闭包closure(I)
 - ✓ 若 $A \rightarrow \alpha \cdot B\beta$ 在closure(I)中,则 $B \rightarrow \cdot \gamma$ 加入closure(I)中
 - ❖ 计算转移函数goto(I, X): 满足[$A \to \alpha \cdot X\beta$]属于I的所有项目[$A \to \alpha X \cdot \beta$]的集合的闭包
 - ❖ 迭代计算直到项目集不再发生变化
- ■根据闭包和转移函数画出DFA

□ 给出接受下列文法的活前缀的一个DFA

$$L \rightarrow L$$
, $S \mid S$

- □考虑下面的文法
 - ■(a) 为此文法构造SLR分析表
 - ■(b) 为此文法构造LALR分析表

□解答

- ■构造增广文法的项目集规范族
 - ❖ SLR: LR(0)项目集规范族
 - ❖ LALR: 合并同心项目集后的LR(1)项目集规范族
- ■根据课本上的分析表构造规则来构造分析表
 - * SLR分析表: P79
 - ❖ LALR分析表: P86

$$E \rightarrow E + T \mid T$$

□考虑下面的文法

- ■(a) 为此文法构造SLR分析表
- ■(b) 为此文法构造LALR分析表

$$FIRST(E) = FIRST(T) = FIRST(F) = \{a, b\}$$

$$FOLLOW(E) = \{+, \$\}$$

$$FOLLOW(T) = \{a, b, + \$\}$$

$$FOLLOW(F) = \{a, b, +, *, \$\}$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T F \mid F$$

1.
$$E -> E + T$$

7.
$$F -> b$$

第三次作业

□ 状态 i 从 I_i 构造,按如下方法确定action 函数:

- 移进: 如果 $[A \rightarrow \alpha \ u\beta]$ 在 I_i 中,并且 $goto(I_i, a) = I_j$,那 么置action[i, a]为sj
- 归约: 如果 $[A \rightarrow \alpha]$ 在 I_i 中,那么对FOLLOW(A)中所有的 a, \mathbb{E} action[i, a]为rj,j是产生式 $A \rightarrow \alpha$ 的编号
- 接受: 如果[$S' \rightarrow S$ ·]在 I_i 中, 那么置action[i, S]为acc

状态			动作		转移			
	а	b	+	*	\$	Е	Т	F
0	s4	s5				1	2	3
1			s6		acc			
2	s 4	s 5	r2		r2			7
3	r4	r4	r4	s8	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6	s4	s5					9	3
7	r3	r3	r3	s8	r3			
8	r5	r5	r5	r5	r5			
9	s4	s5	r1		r1			7

□ 状态 i 从 I_i 构造,按如下方法确定action 函数:

- 移进: 如果 $[A \rightarrow \alpha \ u\beta]$ 在 I_i 中,并且 $goto(I_i, a) = I_j$,那 么置action[i, a]为sj
- 接受: 如果[$S' \rightarrow S$ ·]在 I_i 中, 那么置action[i, S]为acc

状态			动作		转移			
	а	b	+	*	\$	Е	Т	F
0	s4	s5				1	2	3
1			s6		acc			
2	s4	s5	r2		r2			7
3	r4	r4	r4	s8	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6	s4	s5					9	3
7	r3	r3	r3	s8	r3			
8	r5	r5	r5	r5	r5			
9	s4	s5	r1		r1			7

□ 状态 i 从 I_i 构造,按如下方法确定action 函数:

- 移进: 如果 $[A \rightarrow \alpha \ u\beta]$ 在 I_i 中,并且 $goto(I_i, a) = I_j$,那 么置action[i, a]为sj
- 归约: 如果 $[A \rightarrow \alpha]$ 在 I_i 中,那么对FOLLOW(A)中所有的 a, \mathbb{E} action[i, a]为rj,j是产生式 $A \rightarrow \alpha$ 的编号
- 接受: 如果[$S' \rightarrow S$ ·]在 I_i 中, 那么置action[i, S]为acc

$$FOLLOW(E) = \{+, \$\}$$

$$\begin{array}{cccc}
E & \rightarrow & T \cdot & I_2 \\
T & \rightarrow & T \cdot F & & \\
F & \rightarrow & \cdot F & * & \\
F & \rightarrow & \cdot a & & \\
F & \rightarrow & \cdot b & & &
\end{array}$$

状态	动作						转移	
	а	b	+	*	\$	Е	Т	F
0	s4	s5				1	2	3
1			s6		acc			
2	s4	s5	r2		r2			7
3	r4	r4	r4	s8	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6	s4	s5					9	3
7	r3	r3	r3	s8	r3			
8	r5	r5	r5	r5	r5			
9	s4	s5	r1		r1			7

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E$$
, \$

7.
$$F -> b$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E, \$$$

 $E \rightarrow \cdot E + T, \$$
 $E \rightarrow \cdot T, \$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E, \$$$
 $E \rightarrow \cdot E + T, \$$
 $E \rightarrow \cdot T, \$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E, \$$$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E, \$$$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$
 $T \rightarrow \cdot TF, +/\$$
 $T \rightarrow \cdot F, +/\$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E, \$$$

 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$
 $T \rightarrow \cdot TF, a/b/+/\$$
 $T \rightarrow \cdot F, a/b/+/\$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \rightarrow \cdot E, \$$$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$
 $T \rightarrow \cdot TF, a/b/+/\$$
 $T \rightarrow \cdot F, a/b/+/\$$
 $F \rightarrow \cdot F *, a/b/+/\$$
 $F \rightarrow \cdot a, a/b/+/\$$
 $F \rightarrow \cdot b, a/b/+/\$$

□闭包计算

```
repeat for(I 的每个项目[A \rightarrow \alpha \cdot B\beta, a]) for(G'中的每个产生式B \rightarrow \gamma) for(FIRST(\beta a)的每个终结符b) if ([B \rightarrow \cdot \gamma, b]不在I中 把[B \rightarrow \cdot \gamma, b]加到I until 在一次重复中没有项目加入到I
```

$$E' \to \cdot E, \$$$
 $E \to \cdot E + T, +/\$$
 $E \to \cdot T, +/\$$
 $T \to \cdot TF, a/b/+/\$$
 $T \to \cdot F, a/b/+/\$$
 $F \to \cdot F *, a/b/*/+/\$$
 $F \to \cdot a, a/b/*/+/\$$
 $F \to \cdot b, a/b/*/+/\$$

状态			动作		转移			
	а	b	+	*	\$	Е	Т	F
0	s4	s5				1	2	3
1			s6		acc			
2	s4	s5	r2		r2			7
3	r4	r4	r4	s8	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6	s4	s5					9	3
7	r3	r3	r3	s8	r3			
8	r5	r5	r5	r5	r5			
9	s4	s5	r1		r1			7

证明下面文法是LL(1)文法但是不是SLR(1)文法

$$S \rightarrow AaAb|BbBa$$

$$A \rightarrow \epsilon$$

$$B \to \epsilon$$

□ 证明是LL(1)文法:对于任意 $A \rightarrow \alpha | \beta$ 满足以下条件

- $\blacksquare FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
- 若 $\beta \Rightarrow * \epsilon$, 那么 $FIRST(\alpha) \cap FOLLOW(A) = \emptyset$

$$FIRST(AaAb) = \{a\}$$

 $FIRST(BbBa) = \{b\}$

 $FIRST(AaAb) \cap FIRST(BbBa) = \emptyset$

$$FOLLOW(A) = \{a, b\}$$

$$FOLLOW(B) = \{a, b\}$$

$$FIRST(\epsilon) \cap FOLLOW(A) = \emptyset$$

 $FIRST(\epsilon) \cap FOLLOW(B) = \emptyset$

□ 证明不是SLR(1)文法: 存在移进规约冲突

■对于该文法,对于任何句子都是在面临第一个符号时进行空规约,而由于 FOLLOW(A) = FOLLOW(B),因此不能确定是把 ϵ 规约成A还是B

b) 证明所有LL(1)文法都是LR(1)文法

- ■对于一个LL(1)文法, 假设其不是LR(1)文法
- ■若存在归约-归约冲突,即对于一个状态I,同时存在[$A \to \alpha \cdot , \alpha$]和[$B \to \beta \cdot , \alpha$],这意味着存在同一输入前缀和同一下一符号a的两种不同右推导归约选择,因此该文法是二义的,而LL(1)文法不是二义的,产生矛盾

评分标准

- **3.17**
 - ■状态计算错误-1
 - ■状态正确但是DFA中缺少边-0.5
- **3.19**
 - ■(a)和(b)每有一题错-1