Inverse Functions

A function f may have the same value for different numbers in its domain. For example, if $f(x) = x^2$, then f(2) = 4 and f(-2) = 4, but $2 \ne -2$. For the inverse of a function to be defined, it is essential that different numbers in the domain always give different values of f. Such functions are called one-to-one functions.

Definition of One-to-One Function

A function f with domain D and range R is a **one-to-one function** if either of the following equivalent conditions is satisfied:

- (1) Whenever $a \neq b$ in D, then $f(a) \neq f(b)$ in R.
- (2) Whenever f(a) = f(b) in R, then a = b in D.

The arrow diagram in Figure 1 illustrates a one-to-one function. Note that each function value in the range R corresponds to exactly one element in the domain D. The function illustrated in Figure 2 of Section 2.4 is not one-to-one, since f(w) = f(z), but $w \neq z$.

Figure 1

EXAMPLE 1 Determining whether a function is one-to-one

- (a) If f(x) = 3x + 2, prove that f is one-to-one.
- **(b)** If $g(x) = x^2 3$, prove that g is not one-to-one.

SOLUTION

(a) We shall use condition 2 of the preceding definition. Thus, suppose that f(a) = f(b) for some numbers a and b in the domain of f. This gives us

$$3a + 2 = 3b + 2$$
 definition of $f(x)$
 $3a = 3b$ subtract 2
 $a = b$ divide by 3

Since we have concluded that a must equal b, f is one-to-one.

(b) Showing that a function is one-to-one requires a general proof, as in part (a). To show that g is not one-to-one we need only find two distinct real numbers in the domain that produce the same function value. For example, $-1 \neq 1$, but g(-1) = g(1). In fact, since g is an even function, g(-a) = g(a) for every real number a.

If we know the graph of a function f, it is easy to determine whether f is one-to-one. For example, the function whose graph is sketched in Figure 2 is not one-to-one, since $a \neq b$, but f(a) = f(b). Note that the horizontal line y = f(a) (or y = f(b)) intersects the graph in more than one point. In general, we may use the following graphical test to determine whether a function is one-to-one.

Horizontal Line Test

A function f is one-to-one if and only if every horizontal line intersects the graph of f in at most one point.

EXAMPLE 2 Using the horizontal line test.

Use the horizontal line test to determine if the function is one-to-one.

(a)
$$f(x) = 3x + 2$$

(b)
$$g(x) = x^2 - 3$$

SOLUTION

(a) The graph of f(x) = 3x + 2 is a line with y-intercept 2 and slope 3, as shown in Figure 3. We see that any horizontal line intersects the graph of f in at most one point. Thus, f is one-to-one.

Figure 3

Figure 4

(b) The graph of $g(x) = x^2 - 3$ is a parabola opening upward with vertex (0, -3), as shown in Figure 4. In this case, any horizontal line with equation y = k, where k > -3, will intersect the graph of g in two points. Thus, g is not one-to-one.

Theorem: Increasing or Decreasing Functions Are One-to-One

- A function that is increasing throughout its domain is one-to-one.
- (2) A function that is decreasing throughout its domain is one-to-one.

Let f be a one-to-one function with domain D and range R. Thus, for each number y in R, there is exactly one number x in D such that y = f(x), as illustrated by the arrow in Figure 5(a). We may, therefore, define a function g from R to D by means of the following rule:

$$x = g(y)$$

As in Figure 5(b), g reverses the correspondence given by f. We call g the inverse function of f, as in the next definition.

Figure 5

(a) y = f(x)

$$D \qquad y = f(x)$$

$$R$$

(b)
$$x = g(y)$$

Definition of Inverse Function

Let f be a one-to-one function with domain D and range R. A function g with domain R and range D is the **inverse function** of f, provided the following condition is true for every x in D and every y in R:

$$y = f(x)$$
 if and only if $x = g(y)$

Theorem on Inverse Functions

Let f be a one-to-one function with domain D and range R. If g is a function with domain R and range D, then g is the inverse function of f if and only if both of the following conditions are true:

(1)
$$g(f(x)) = x$$
 for every x in D

(2)
$$f(g(y)) = y$$
 for every y in R

Conditions 1 and 2 of the preceding theorem are illustrated in Figure 6(a) and (b), respectively, where the blue arrow indicates that f is a function from D to R and the red arrow indicates that g is a function from R to D.

Note that in Figure 6(a) we first apply f to the number x in D, obtaining the function value f(x) in R, and then apply g to f(x), obtaining the number g(f(x)) in D. Condition 1 of the theorem states that g(f(x)) = x for every x; that is, g reverses the correspondence given by f.

In Figure 6(b) we use the opposite order for the functions. We first apply g to the number y in R, obtaining the function value g(y) in D, and then apply f to g(y), obtaining the number f(g(y)) in R. Condition 2 of the theorem states that f(g(y)) = y for every y; that is, f reverses the correspondence given by g.

If a function f has an inverse function g, we often denote g by f^{-1} . The -1 used in this notation should not be mistaken for an exponent; that is,

$$f^{-1}(y)$$
 does not mean $1/[f(y)]$.

The reciprocal 1/[f(y)] may be denoted by $[f(y)]^{-1}$. It is important to remember the following facts about the domain and range of f and f^{-1} .

Domain and Range of f and f^{-1}

domain of
$$f^{-1}$$
 = range of f
range of f^{-1} = domain of f

When we discuss functions, we often let x denote an arbitrary number in the domain. Thus, for the inverse function f^{-1} , we may wish to consider $f^{-1}(x)$, where x is in the domain R of f^{-1} . In this event, the two conditions in the theorem on inverse functions are written as follows:

- (1) $\int_{-1}^{-1} (f(x)) = x$ for every x in the domain of f
- (2) $f(f^{-1}(x)) = x$ for every x in the domain of f^{-1}

Guidelines for Finding f^{-1} in Simple Cases

- 1 Verify that f is a one-to-one function throughout its domain.
- 2 Solve the equation y = f(x) for x in terms of y, obtaining an equation of the form x = f⁻¹(y).
- 3 Verify the following two conditions:
 - (a) $f^{-1}(f(x)) = x$ for every x in the domain of f
 - **(b)** $f(f^{-1}(x)) = x$ for every x in the domain of f^{-1}

EXAMPLE 3 Finding the inverse of a function

Let f(x) = 3x - 5. Find the inverse function of f.

SOLUTION

Guideline 1 The graph of the linear function f is a line of slope 3, and hence f is increasing throughout \mathbb{R} . Thus, f is one-to-one and the inverse function f^{-1} exists. Moreover, since the domain and range of f are \mathbb{R} , the same is true for f^{-1} .

Guideline 2 Solve the equation y = f(x) for x:

$$y = 3x - 5$$
 let $y = f(x)$
 $x = \frac{y + 5}{3}$ solve for x in terms of y

We now formally let $x = f^{-1}(y)$; that is,

$$f^{-1}(y) = \frac{y+5}{3}$$
.

Since the symbol used for the variable is immaterial, we may also write

$$f^{-1}(x)=\frac{x+5}{3},$$

where x is in the domain of f^{-1} .

Guideline 3 Since the domain and range of both f and f^{-1} are \mathbb{R} , we must verify conditions (a) and (b) for every real number x. We proceed as follows:

(a)
$$f^{-1}(f(x)) = f^{-1}(3x - 5) \qquad \text{definition of } f$$

$$= \frac{(3x - 5) + 5}{3} \qquad \text{definition of } f^{-1}$$

$$= x \qquad \text{simplify}$$
(b)
$$f(f^{-1}(x)) = f\left(\frac{x + 5}{3}\right) \qquad \text{definition of } f^{-1}$$

$$= 3\left(\frac{x + 5}{3}\right) - 5 \qquad \text{definition of } f$$

$$= x \qquad \text{simplify}$$

These verifications prove that the inverse function of f is given by

$$f^{-1}(x) = \frac{x+5}{3}.$$

EXAMPLE 4 Finding the inverse of a function

Let $f(x) = x^2 - 3$ for $x \ge 0$. Find the inverse function of f.

SOLUTION

Guideline 1 The graph of f is sketched in Figure 7. The domain of f is $[0, \infty)$, and the range is $[-3, \infty)$. Since f is increasing, it is one-to-one and hence has an inverse function f^{-1} with domain $[-3, \infty)$ and range $[0, \infty)$.

Figure 7

Guideline 2 We consider the equation

$$y = x^2 - 3$$

and solve for x, obtaining

$$x = \pm \sqrt{y + 3}$$
.

Since x is nonnegative, we reject $x = -\sqrt{y+3}$ and let

$$f^{-1}(y) = \sqrt{y+3}$$
 or, equivalently, $f^{-1}(x) = \sqrt{x+3}$.

(Note that if the function f had domain $x \le 0$, we would choose the function $f^{-1}(x) = -\sqrt{x+3}$.)

Guideline 3 We verify conditions (a) and (b) for x in the domains of f and f^{-1} , respectively.

(a)
$$f^{-1}(f(x)) = f^{-1}(x^2 - 3)$$

= $\sqrt{(x^2 - 3) + 3} = \sqrt{x^2} = x \text{ for } x \ge 0$

(b)
$$f(f^{-1}(x)) = f(\sqrt{x+3})$$

= $(\sqrt{x+3})^2 - 3 = (x+3) - 3 = x$ for $x \ge -3$

Thus, the inverse function is given by

$$f^{-1}(x) = \sqrt{x+3}$$
 for $x \ge -3$.

FIGURE 9

Note that the graphs of f and f^{-1} Intersect on the line y = x.

EXAMPLE 5

Let $f(x) = x^3$. Find the inverse function f^{-1} of f, and sketch the graphs of f and f^{-1} on the same coordinate plane.

SOLUTION The graph of f is sketched in Figure 10. Note that f is an odd function, and hence the graph is symmetric with respect to the origin.

Guideline 1 Since f is increasing throughout its domain, \mathbb{R} , it is one-to-one and hence has an inverse function f^{-1} .

Guideline 2 We consider the equation

$$y = x^3$$

and solve for x by taking the cube root of each side, obtaining

$$x = y^{1/3} = \sqrt[3]{y}$$
.

We now let

$$f^{-1}(y) = \sqrt[3]{y}$$
 or, equivalently, $f^{-1}(x) = \sqrt[3]{x}$.

FIGURE 10

Guideline 3 We verify conditions (a) and (b):

(a)
$$f^{-1}(f(x)) = f^{-1}(x^3) = \sqrt[3]{x^3} = x$$
 for every x in \mathbb{R}

(a)
$$f^{-1}(f(x)) = f^{-1}(x^3) = \sqrt[3]{x^3} = x$$
 for every x in \mathbb{R}
(b) $f(f^{-1}(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x$ for every x in \mathbb{R}

FIGURE 11

5

3

Exercises

f(t)

Exer. 1-2: If possible, find

(a)
$$f^{-1}(5)$$
 (b) $g^{-1}(6)$

1	X	2	4	6
	f(x)	3	5	9
2		0	2	-

2

5

g(x)	6	2	6
		2	
ľ	1	Z	4
a(t)	2	6	6

Exer. 3-4: Determine if the graph is a graph of a one-to-one function.

6

Exer. 5-16: Determine whether the function f is one-to-one.

$$f(x) = 2x + 5$$

6
$$f(x) = \frac{1}{x-2}$$

7
$$f(x) = x^2 - 5$$

8
$$f(x) = x^2 + 3$$

9
$$f(x) = \sqrt{x}$$

10
$$f(x) = \sqrt[3]{x}$$

11
$$f(x) = |x|$$

12
$$f(x) = 3$$

13
$$f(x) = \sqrt{4 - x^2}$$

14
$$f(x) = 2x^3 - 4$$

15
$$f(x) = \frac{1}{x}$$

16
$$f(x) = \frac{1}{x^2}$$

Exer. 19-22: Use the theorem on inverse functions to prove that f and g are inverse functions of each other, and sketch the graphs of f and g on the same coordinate plane.

19
$$f(x) = 3x - 2$$
;

19
$$f(x) = 3x - 2;$$
 $g(x) = \frac{x+2}{3}$

20
$$f(x) = x^2 + 5, x \le 0$$

20
$$f(x) = x^2 + 5, x \le 0;$$
 $g(x) = -\sqrt{x - 5}, x \ge 5$

21
$$f(x) = -x^2 + 3, x \ge 0;$$
 $g(x) = \sqrt{3 - x}, x \le 3$

$$g(x) = \sqrt{3-x}, x \le 3$$

22
$$f(x) = x^3 - 4$$
;

$$g(x) = \sqrt[3]{x+4}$$

Exer. 23-26: Determine the domain and range of f^{-1} for the given function without actually finding f^{-1} . Hint: First find the domain and range of f. 23 $f(x) = -\frac{2}{x-1}$ 24 $f(x) = \frac{5}{x+3}$

23
$$f(x) = -\frac{2}{x-1}$$

24
$$f(x) = \frac{5}{x+3}$$

25
$$f(x) = \frac{4x+5}{3x-8}$$

26
$$f(x) = \frac{2x-7}{9x+1}$$

Exer. 27-48: Find the inverse function of f.

27
$$f(x) = 3x + 5$$

28
$$f(x) = 7 - 2x$$

$$29 \ f(x) = \frac{3}{2x - 5}$$

30
$$f(x) = \frac{1}{x+3}$$

31
$$f(x) = \frac{3x+2}{2x-5}$$
 32 $f(x) = \frac{4x}{x-2}$

32
$$f(x) = \frac{4x}{x - 1}$$

33
$$f(x) = 2 - 3x^2, x \le 0$$

33
$$f(x) = 2 - 3x^2, x \le 0$$
 34 $f(x) = 5x^2 + 2, x \ge 0$