Problemas Resueltos

Rafael Guillermo Arias Michel

27 de marzo de 2015

Enunciado 1. Probar que el conjunto de las biyecciones $f: \mathbb{N}^* \to \mathbb{N}^*$ no es numerable.

Solución. Sea F el conjunto que contiene a todas las funciones biyectivas $f: \mathbb{N}^* \to \mathbb{N}^*$. Supóngase por absurdo que F es numerable, por tanto puede expresarse $F = \{f_n : n \in \mathbb{N}^*\}$. Se procurará hallar una función biyectiva $g: \mathbb{N}^* \to \mathbb{N}^*$ tal que $g \notin F$.

Sea $A \subset \mathbb{N}^*$ un conjunto auxiliar que, en cada iteración del proceso que se describirá, acumulará valores de la imagen de g. Inicialmente, $A = \emptyset$. Defínase inductivamente g de la siguiente forma:

- 1. g(1) es el mínimo número en \mathbb{N}^* tal que $g(1) \neq f_1(1)$. Agréguese g(1) a A. Ahora, $A = \{g(1)\}$.
- 2. Para cada $n \in \mathbb{N}^*$, $n \geq 2$, defínase g(n) como el mínimo número en \mathbb{N}^* tal que $g(n) \notin A$ y $g(n) \neq f_n(n)$. Después del siguiente proceso, redefínase $A := A \cup \{g(n)\}$.
- 3. Repítase el paso anterior infinitas veces.

Es evidente que g es inyectiva, por la construcción. Además, como hay infinitos valores de n tales que $f_n(n) \neq n$, se puede asegurar que que cualquier valor de $n \in \mathbb{N}^*$ pertenecerá, a partir de alguna iteración, a A. Luego, g es sobreyectiva, y por tanto, biyectiva. Pero como $g(n) \neq f_n(n) \forall n \in \mathbb{N}^*, g \notin A$, lo cual lleva a la contradicción buscada.

Enunciado 2. Sean X e Y conjuntos finitos.

- a) Probar que $\operatorname{card}(X \cup Y) + \operatorname{card}(X \cap Y) = \operatorname{card}(X) + \operatorname{card}(Y)$.
- b) ¿Cuál sera la fórmula correspondiente para tres conjuntos?
- c) Generaliza.

Solución. Definamos $|X| = \operatorname{card}(X)$.

a) Demostremos por inducción. Supongamos inicialmente $X = \{x_1\}$, $Y = \{y_1\}$. Luego, $|X| = |Y| = 1 \Rightarrow |X| + |Y| = 2$.

- Si $x_1 = y_1$, $X \cup Y = \{x_1\}$ y $X \cap Y = \{x_1\}$. Luego, $|X \cup Y| + |X \cap Y| = 1 + 1 = 2$.
- Si $x_1 \neq y_1$, $X \cup Y = \{x_1, y_1\}$ y $X \cap Y = \emptyset$. Luego, $|X \cup Y| + |X \cap Y| = 2 + 0 = 2$.

Se verifica en ambos casos.

Si $X=\{x_1,\ldots,x_n\}$ e $Y=\{y_1,\ldots,y_m\},\ |X|=n,|Y|=m,$ y luego |X|+|Y|=n+m. Por hipótesis de inducción, asumamos $|X\cup Y|+|X\cap Y|=n+m.$ Sea $X'=X\cup\{x_{n+1}\}$, $x_{n+1}\notin X.$ Como $|X'|=n+1,\ |X'|+|Y|=n+m+1.$ Se dan los siguientes dos casos:

- Si $x_{n+1} \in Y$, $X' \cup Y = X \cup Y$ y $X' \cap Y = (X \cap Y) \cup \{x_{n+1}\}$, $x_{n+1} \notin X \cap Y$. Luego, $|X' \cup Y| + |X' \cap Y| = |X \cup Y| + |X \cap Y| + 1 = n + m + 1$.
- Si $x_{n+1} \notin Y$, $X' \cup Y = (X \cup Y) \cup \{x_{n+1}\}$, $x_{n+1} \notin X \cup Y$ y $X' \cap Y = X \cap Y$. Luego, $|X' \cup Y| + |X' \cap Y| = |X \cup Y| + 1 + |X \cap Y| = n + m + 1$.

Nuevamente, ambos casos verifican y queda demostrada la inducción (no se pierde generalidad al agregar un elemento a X en lugar de a Y).

Observación: Teniendo una biyección $f_n: I_n \to X$, es fácil construir una biyección $f_{n+1}: I_{n+1} \to X \cup \{x_{n+1}\}$ si $x_{n+1} \notin X$. Es por eso que añadiendo un elemento a un conjunto aumenta en 1 la cardinalidad.

b) Utilizando lo demostrado anteriormente, deducimos:

$$|(X \cup Y) \cup Z| + |(X \cup Y) \cap Z| = |X \cup Y| + |Z|$$

= |X| + |Y| - |X \cap Y| + |Z| (1)

$$|(X \cup Y) \cap Z| = |(X \cap Z) \cup (Y \cap Z)|$$

$$= |X \cap Z| + |Y \cap Z| - |(X \cap Z) \cap (Y \cap Z)|$$

$$= |X \cap Z| + |Y \cap Z| - |X \cap Y \cap Z|$$
(2)

De (1) y (2):

$$\begin{split} |X| + |Y| + |Z| &= |(X \cup Y) \cup Z| + |(X \cup Y) \cap Z| + |X \cap Y| \\ &= |X \cup Y \cup Z| + |X \cap Z| + |Y \cap Z| - |X \cap Y \cap Z| + |X \cap Y| \\ &= |X \cup Y \cup Z| + |X \cap Z| + |X \cap Y| + |Y \cap Z| - |X \cap Y \cap Z| \end{split}$$

Que también puede expresarse como:

$$|X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Z| - |X \cap Y| - |Y \cap Z| + |X \cap Y \cap Z|$$

c) La forma general es:

$$|X_1 \cup \ldots \cup X_n| = \sum_{i=1}^n |X_i| - \sum_{1 \le i < j \le n} |X_i \cap X_j| + \cdots + (-1)^{n-1} |X_1 \cap \ldots \cap X_n|$$
$$= \sum_{i=1}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n} |X_{n_1} \cap \ldots \cap X_{n_i}| \right]$$

Demostremos por inducción, asumiendo que se cumple la relación para n conjuntos. Entonces:

$$\begin{vmatrix} \prod_{i=1}^{n+1} X_i \\ \bigcup_{i=1}^{n+1} X_i \end{vmatrix} = |(X_1 \cup \ldots \cup X_n) \cup X_{n+1}|$$

$$= |X_1 \cup \ldots \cup X_n| + |X_{n+1}| - |(X_1 \cup \ldots \cup X_n) \cap X_{n+1}|$$

$$= |X_1 \cup \ldots \cup X_n| + |X_{n+1}| - |(X_1 \cap X_{n+1}) \cup \ldots \cup (X_n \cap X_{n+1})|$$

$$= \sum_{i=1}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n} \left| \bigcap_{j=1}^i (X_{n_j} \cap X_{n+1}) \right| \right]$$

$$- \sum_{i=1}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n} \left| \bigcap_{j=1}^i (X_{n_j} \cap X_{n+1}) \right| \right]$$

$$= \sum_{i=1}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n} \left| \bigcap_{j=1}^i (X_{n_j} \cap X_{n+1}) \right| \right]$$

$$= \sum_{i=1}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n} \left| \bigcap_{j=1}^i (X_{n_j} \cap X_{n+1}) \right| \right]$$

$$= \sum_{i=1}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n} \left| \bigcap_{j=1}^i (X_{n_j} \cap X_{n+1}) \right| \right]$$

$$= \sum_{i=1}^{n+1} \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_{i-1} \le n} \left| X_{n_1} \cap \ldots \cap X_{n_{i-1}} \cap X_{n+1} \right| \right]$$

$$= \sum_{i=1}^{n+1} |X_i| + \sum_{i=2}^n \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n+1} \left| X_{n_1} \cap \ldots \cap X_{n_i} \right| \right] + (-1)^n \left| \bigcap_{i=1}^{n+1} X_i \right|$$

$$= \sum_{i=1}^{n+1} \left[(-1)^{i-1} \sum_{1 \le n_1 < \ldots < n_i \le n+1} \left| X_{n_1} \cap \ldots \cap X_{n_i} \right| \right]$$

Enunciado 3. La desigualdad entre la media aritmética y la geométrica vale para n números reales positivos x_1, \ldots, x_n . Sean $G = \sqrt[p]{x_1x_2\ldots x_n}$ y $A = \frac{x_1+x_2+\ldots+x_n}{n}$. Se tiene $G \leq A$. Esto es evidente cuando $x_1 = x_2 = \ldots x_n$. Para probar el caso general, considere la operación que consiste en sustituir el menor de los números dados, digamos x_i , y el mayor de ellos, digamos x_j , respectivamente por $x_i' = \frac{x_i \cdot x_j}{G}$ y $x_j' = G$. Esto no altera la media geométrica y no aumenta la media aritmética, pues, como fácilmente se ve, $x_i' + x_j' \leq x_i + x_j$. Pruebe que, repetida esta operación un máximo de n veces, obtenemos n números todos iguales a G y, por tanto, su media aritmética es G. Como en cada operación no aumentó la media aritmética, concluya que $G \leq A$, o sea $\sqrt[n]{x_1x_2\ldots x_n} \leq \frac{x_1+x_2+\ldots+x_n}{n}$.

Solución. Si $x_1=\ldots=x_n,\,G=\sqrt[n]{x^n}=x$ y A=nx/n=x. Luego, G=A. Sea $X=\{x_1,\ldots,x_n\}\subset\mathbb{R}^+$ Elegimos $x_i=\min X$ y $x_j=\max X$. Sustituyéndolos por $x_i'=\frac{x_i\cdot x_j}{G}$ y $x_j'=G$, observamos que $x_i'x_j'=x_ix_j/G\cdot G=x_ix_j$. Además, $x_i\leq G=x_j'\leq x_j$ (si $G< x_i$, ambas medias serían menores que G, y si $G>x_j$, ambas serían mayores que G). Como $x_i\leq x_i\cdot\frac{x_j}{G}$ y $\frac{x_i}{G}\cdot x_j\leq x_j$, entonces $x_i\leq x_i'\leq x_j$.

Dados $a \le a', b' \le b$ tales que ab = a'b', se sabe que $\sqrt{a} \le \sqrt{a'}, \sqrt{b'} \le \sqrt{b}$. Luego:

$$|\sqrt{b} - \sqrt{a}| \ge |\sqrt{b'} - \sqrt{a'}| \Rightarrow (\sqrt{b} - \sqrt{a})^2 \ge (\sqrt{b'} - \sqrt{a'})^2 \Rightarrow b + a \ge b' + a'$$

Reemplazando $a=x_i, b=x_j, a'=x'_i, b'=x'_j$, se concluye que $x'_i+x'_j \leq x_i+x_j$. Esto significa que, al efectuar la sustitución, G'=G y $A' \leq A$, donde G' y A' son los nuevos valores de la media geométrica y la aritmética, después de efectuar la sustitución.

Para la siguiente iteración, diremos que $x'_j = G$ no se puede elegir (ni como x_i ni como x_j). Será posible hallar un nuevo par x_i, x_j , pues $\sqrt[n]{x_1 \dots x_n} = G$. Entonces, en cada iteración, nos aseguramos de que un elemento es reemplazado por G.

Después de n-2 iteraciones, tenemos n-2 términos iguales a G. Sin pérdida de generalidad, digamos que la sucesión es de la forma x_1, x_2 y $x_i = G \ \forall i \in \mathbb{N}^*; 2 < i \leq n$. Por las deducciones anteriores, sabemos que $\{x_i, x_j\} = \{x_1, x_2\}$. $G = \sqrt[n]{x_1 x_2 G^{n-2}} \Rightarrow G^n = x_1 x_2 G^{n-2} \Rightarrow x_1 x_2 = G^2$. Efectuando el reemplazo, $x_1' = x_1 x_2 / G = G^2 / G = G$ y $x_2' = G$ y la nueva sucesión es $x_i = G \ \forall i \in \mathbb{N}^*; 1 \leq i \leq n$, donde G = A.

Como A nunca aumentó en cada iteración, concluimos que $G \leq A$.

Enunciado 4. Un conjunto G denúmeros reales es un grupo aditivo cuando $0 \in G$ y $x, y \in G \Rightarrow x - y \in G$. Entonces, $x \in G \Rightarrow -x \in G$ y $x, y \in G \Rightarrow x + y \in G$. Sea entonces $G \subset \mathbb{R}$ un grupo aditivo de números reales. Indiquemos con G^+ al conjunto de números reales positivos pertenecientes a G. Exceptuando el caso trivial $G = \{0\}$, G^+ es no vacío. Supongamos entonces $G \neq \{0\}$. Pruebe que:

- I) Si ínf $G^+=0$, entonces G es denso en \mathbb{R} .
- II) Si inf $G^+ = a > 0$, entonces $a \in G^+$ y $G = \{\pm a, \pm 2a, \ldots\}$.

III) Concluya que, si $\alpha \in \mathbb{R}$ es irracional, los números reales de la forma $m+n\alpha$, con $m, n \in \mathbb{Z}$, constituyen un subconjunto denso en \mathbb{R} .

Solución.

I) inf $G^+ = 0$. Entonces, $x > 0 \Rightarrow \exists y \in G^+; 0 < y < x$ (sino, $0 < x \le \text{inf } G^+$). Sean r > 0 y $a_1 \in G^+; a_1 < r$. $b_1 := r - a_1 > 0$. Luego, $\exists c_1 \in G^+; c < b_1/2$ y $\exists n \in \mathbb{N}^*; a_1 + (n-1)c_1 < a + b_1/2 \le a_1 + nc_1 := a_2$. Sabiendo que $a_1, c_1 \in G^+$, fácilmente se deduce que $a_2 \in G^+$. Además, $a_2 = a_1 + nc_1 = a_1 + (n-1)c_1 + c_1 < a + b_1/2 + c_1 < a + b_1/2 + b_1/2 = a + b_1 = r$, y $b_2 = r - a_2 \le b_1/2$.

Iterando sucesivamente, obtenemos una sucesión (a_n) , $donde|r - a_n| \le b_1/2^{n-1}$. Luego, $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^*; n > n_0 \Rightarrow |a_n - r| = |r - a_n| \le b_1/2^{n-1} < \varepsilon \Rightarrow \text{l\'{m}} a_n = r \Rightarrow r \in \overline{G}$.

Análogamente, $-r \in \overline{G}$, pues $G^- = \{-a : a \in G^+\}$ y sup $G^- = 0$. Como $0 \in G \subset \overline{G}$, se concluye que $\mathbb{R} \subset \overline{G}$.

II) Si $a \in G$, es fácil deducir inductivamente que $na \in G \ \forall n \in \mathbb{Z}$. Como $G \neq \{0\}, \exists x \in G, x \neq 0$.

Demostremos primero que $a \in G$. Si ínf $G^+ = a \notin G$, entonces $\forall x \in R^+, \exists y \in G^+; a < y < x$ (sino, $a < x \le$ ínf G^+). Luego, $\exists x, y \in G^+$ tales que a < x < a + a/2 y a < y < x, por tanto, $a > a/2 > x - y \in G^+$, lo cual contradice el enunciado, y $a \in G$.

Queda considerar si existen elementos no múltiplos de a. Sin pérdida de generalidad, consideremos x>0. Si x no es múltiplo de a, entonces $\exists n\in \mathbb{Z}; na< x<(n+1)a\Rightarrow 0< x-na< a,$ pero $x-na\in G$ y nuevamente se llega a la contradicción.

III) Dado $\alpha \in \mathbb{R} - \mathbb{Q}$, sea $X = \{m + n\alpha : m, n \in \mathbb{Z}\}$. Como $0 = 0 + 0\alpha$, $0 \in X$. Si $m_1 + n_1\alpha$, $m_2 + n_2\alpha \in X$, entonces $(m_1 - m_2) + (n_1 - n_2)\alpha \in X$ porque $m_1 - m_2$, $n_1 - n_2 \in \mathbb{Z}$. Luego, X es un grupo aditivo de reales.

Sea $X^+ = \{x \in X : x > 0\}$, y $a = \inf X^+ >= 0$. Si a > 0, entonces $X = \{\pm a, \pm 2a, \ldots\} = \{na : n \in \mathbb{Z}\}$. Sabemos que $1 \in \mathbb{Z}$ y $\alpha \in \mathbb{R} - \mathbb{Q}$ pertenecen a X. Pero no existe $n \in \mathbb{Z}$ tal que $1 = n\alpha$ o $\alpha = n \cdot 1$. Luego, es imposible que a > 0, y se deduce que $\inf X^+ = 0$.

Así, queda demostrado que X es denso en \mathbb{R} .

Enunciado 5. Sean a, b números reales positivos. Defina inductivamente las secuencias $(x_n), (y_n)$ con $x_1 = \sqrt{ab}, y_1 = (a+b)/2$ y $x_{n+1} = \sqrt{x_n y_n}, y_{n+1} = (x_n + y_n)/2$. Pruebe que x_n e y_n convergen para el mismo límite, llamado la media aritmético-geométrica entre a y b.

Solución. Por la desigualdad entre la media aritmética y la geométrica, sabemos que $x_1 = \sqrt{ab} \le (a+b)/2 = y_1$ y $x_{n+1} = \sqrt{x_n y_n} \le (x_n + y_n)/2 = y_{n+1} \forall n \in \mathbb{N}^*$.

Sin pérdida de generalidad, considérese $a \le b$. Como $\sqrt{a} \le \sqrt{b}$ y $a/2 \le b/2$, deducimos $a \le \sqrt{ab} \le b$ y $a \le (a+b)/2 \le b$.

Luego, $x_n \leq x_{n+1} \leq y_{n+1} \leq y_n \forall n \in \mathbb{N}^*$, y ambas sucesiones están acotadas. Así, sean $x = \lim x_n$ e $y = \lim y_n$. Para $n \to +\infty$, $y = (x+y)/2 \Rightarrow 2y = x+y \Rightarrow x = y$, ambos límites son iguales.

Enunciado 6. Sea (a_n) una secuencia decreciente (no estrictamente) con lím $a_n = 0$. Demostrar que la serie $\sum a_n$ converge si y solamente si $\sum 2^n a_{2^n}$ converge.

Solución. Para demostrar la bicondicional, se considerarán los dos casos presentados a continuación.

Caso 1: $\sum a_n = s$ converge.

Como a_n es decreciente, puede observarse que $2^{n-1}a_{2^n} \leq a_{2^{n-1}+1} + \ldots + a_{2^n} := b_n$. Se construye así la sucesión (b_n) . Es evidente que $\sum b_n = \sum a_n = s$. Como $2^n a_{2^n} \leq 2b_n \forall n \in \mathbb{N}^*$, por el criterio de comparación, $\sum 2^n a_{2^n}$ converge.

Caso 2: $\sum 2^n a_{2^n} = t$ converge.

Obsérvese que $2^n a_{2^n} \ge a_{2^n} + \ldots + a_{2^{n+1}-1} := c_n$. Al construir la sucesión (c_n) , se observa que $\sum c_n = \sum a_n - a_1 \Rightarrow \sum a_n = \sum c_n + a_1$. Como $c_n \le 2^n a_{2^n}$, por el criterio de comparación, $\sum c_n = c$ converge. Luego, $\sum a_n = c + a_1$, y también converge.