Lista VII

Tarefa de leitura:

1. GY seções 10.1 a 10.4.

Problemas para o dia 1º de novembro

1. Partindo da expressão para o potencial vetor

$$\vec{A}(\vec{x},t) = \sum_{\vec{k}} \sum_{\alpha} \sqrt{\frac{\hbar c}{2kV}} \left[e^{ikx} a_{\vec{k}\alpha} \vec{e}_{\alpha} + \text{hermitiano conjugado} \right]$$

onde $kx = \vec{k} \cdot \vec{x} - \omega_k t$. Obtenha em termos dos operadores de criação e destruição

- (a) \vec{E} ;
- (b) \vec{B} ;
- (c) o momento linear

$$\vec{P} = \frac{1}{2c} \int d^3x \left[\vec{E} \wedge \vec{B} - \vec{B} \wedge \vec{E} \right] .$$

2. Mostre que

$$\left[\vec{x} \wedge (\vec{E} \wedge \vec{B})\right]_{i} = \vec{E}_{\ell}(\vec{x} \wedge \nabla)_{i}\vec{A}_{\ell} - \nabla_{\ell}(\vec{E}_{\ell}\epsilon_{ijk}\vec{x}_{j}\vec{A}_{k}) + \epsilon_{i\ell k}\vec{E}_{\ell}\vec{A}_{k}$$

O último termo desta expressão independe da origem do sistema de coordenadas e representa o spin do fóton. Escreva o operador associado a este termo como função dos operadores de criação e destruição.

3. Utilizando a base de helicidade para as polarizações, obtenha que

$$\vec{J} \cdot \frac{\vec{k}}{k} = |\vec{k}\lambda\rangle = \hbar\lambda |\vec{k}\lambda\rangle \ .$$

4. Mostre que o operador operador linear é o gerador de translações, i.e.,

$$T(\vec{s}) = e^{-i\vec{s}\cdot\vec{P}/\hbar}$$

é tal que

$$T^{\dagger}(\vec{s})\vec{E}(\vec{r},t)T(\vec{s}) = \vec{E}(\vec{r} - \vec{s},t)$$

Segundo Semestre – 2018

- 5. Calcule os seguintes comutadores:
 - (a) $[B_j(\vec{r}_1, t_1), B_\ell(\vec{r}_2, t_2)]$
 - (b) $[E_j(\vec{r}_1, t_1), B_\ell(\vec{r}_2, t_2)]$