Exercise 6.28 Let $L_1, L_2 \subset \mathbb{P}^3$ be two disjoint lines (i.e. 1-dimensional linear subspaces in the sense of Example 6.12(b)), and let $a \in \mathbb{P}^3 \setminus (L_1 \cup L_2)$. Show that there is a unique line $L \subset \mathbb{P}^3$ through a that intersects both L_1 and L_2 .

Construction. Let $L \subset \mathbb{P}^3$ be a line not containing a. Taking for granted that the results of dimension carry over from affine varieties, we can write $L = V_p(f_1, f_2)$ for some homogenous linear polynomials $f_1, f_2 \in K[x_0, \dots, x_3]$. Moreover, f_1 and f_2 are linearly independent; otherwise their ideals would be equal and L would be the zero locus of a single polynomial, which is not the case. We consider the cone over L, given by

$$C(L) = C(V_{p}(f_1, f_2)) = V_{a}(f_1, f_2) \subset \mathbb{A}^4.$$

As a subset of the vector space K^4 , we see that C(L) is a 2-dimensional linear subspace. Let $A \in M_{2\times 4}(K)$ be the 2×4 matrix with entries in K, such that the entry a_{ij} is the coefficient in f_i of x_{j-1} . Then for all $v \in K^4$, we have $f_1(v) = f_2(v) = 0$ if and only if Av = 0. That is, C(L) is precisely ker A, which is a 2-dimensional linear subspace of K^4 since the linear independence of f_1 and f_2 means that the rank of A is 2.

By construction of the projective space \mathbb{P}^3 , it is natural to interpret C(a) as a 1-dimensional linear subspace of K^4 . And since $a \notin L = V_p(f_1, f_2)$, then $Av \neq 0$ for all nonzero $v \in C(a)$, which means $C(a) \cap C(L) = \{0\}$. This implies that the linear subspace H = C(a) + C(L) of K^4 has

$$\dim_K H = \dim_K C(a) + \dim_K C(L) = 3.$$

In particular, H is a hyperplane in K^4 .

Proof. Let $H_1, H_2 \subset K^4$ be the hyperplanes obtained from applying the above construction to L_1, L_2 , respectively. We interpret $C(L_1)$ and $C(L_2)$ as 2-dimensional linear subspaces of K^4 , then their intersection is also a linear subspace of K^4 . Since L_1 and L_2 are disjoint, then we must have $C(L_1) \cap C(L_2) = \{0\}$; otherwise their intersection would contain a 1-dimensional linear subspace of K^4 , corresponding (under projectivization) to a point in the intersection of L_1 and L_2 .

Therefore,

$$H_1 + H_2 \supset C(L_1) + C(L_2) = K^4$$

which implies $\dim_K(H_1+H_2)=4$. Let $W=H_1\cap H_2$, which is a linear subspace of K^4 with

$$\dim_K W = \dim_K H_1 + \dim_K H_2 - \dim_K (H_1 + H_2) = 2.$$

By the constructions of H_1 and H_2 , we know $C(a) \subset W$, implying that $a \in \mathbb{P}(W)$. Since $\dim_K C(L_1) = 2$ and $\dim_K H_2 = 3$, then $\dim_K (C(L_1) \cap H_2) \geq 1$. And since

$$C(L_1) \cap H_2 \subset C(L_1) \cap H_2 = W,$$

then the intersection of $C(L_1)$ and W is at least dimension 1, and the same can be said of $C(L_2)$ and W. That is, the projectivization $\mathbb{P}(W)$ intersects both L_1 and L_2 .

As a 2-dimensional linear subspace of K^4 , W can be written as $W = \ker A$ for some $A \in M_{2\times 4}(K)$. Then we define the homogeneous linear polynomials $f_1, f_2 \in K[x_0, \ldots, x_3]$, where the coefficient in f_i of x_{j-1} is the entry a_{ij} of A, so

$$W = \ker A = V_{a}(f_{1}, f_{2}).$$

Let
$$L = \mathbb{P}(W)$$
, so

$$L = \mathbb{P}(V_{\mathbf{a}}(f_1, f_2)) = V_{\mathbf{p}}(f_1, f_2).$$

Since f_1, f_2 are homogeneous degree 1, then L is a linear subspace of \mathbb{P}^3 . And since W is a cone in K^4 of dimension 2, then L has dimension 1 in \mathbb{P}^3 . That is, L is a line in \mathbb{P}^3 through a and intersecting both L_1 and L_2 .

To show that L is the unique such line, suppose that $L' \subset \mathbb{P}^3$ is a line through a and intersecting both L_1 and L_2 . We consider the cone C(L') as a subset of K^4 , in fact a 2-dimensional linear subspace. Since $a \in L'$, then we know $C(a) \subset C(L')$. Similarly, since $L_1 \cap L' \neq \emptyset$, then $C(L_1)$ and C(L') have nontrivial intersection. Any nonzero vector in C(a) is linearly independent with any vector in $C(L_1)$. Choosing a vector from C(a) and one from $C(L_1) \cap C(L')$, we obtain two linearly independent vectors in C(L'). Since $\dim_K C(L') = 2$, then these form a basis for C(L'), implying that

$$C(L') \subset C(a) + C(L_1) = H_1.$$

By the same argument, $C(L') \subset H_2$. Therefore, $C(L') \subset H_1 \cap H_2 = W$. Since both C(L') and W are 2-dimensional linear subspaces of K^4 , then they must be equal. Hence, C(L') = W = C(L), so in fact L' = L.

Is the corresponding statement for lines and points in \mathbb{A}^3 true as well?

No, in \mathbb{A}^3 , we could choose L_1 and L_2 to be a pair of parallel lines and a to be a point not coplanar with those lines. Then no single line in \mathbb{A}^3 could pass through all three items.

Exercise 7.13 Let $X \subset \mathbb{P}^2$ be a cubic curve. Moreover, let $U \subset X \times X$ be the set of all $(a,b) \in X \times X$ such that $a \neq b$ and the unique line through the two points a and b meets X in exactly three distinct points; we will denote the third one by $f(a,b) \in X$. Show that $U \subset X \times X$ is open, and that $f: U \to X$ is a morphism.

Proof. Given a pair $(a, b) \in X \times X$, we parameterize the line passing through a and b by

$$L = \{ [p_0(t), p_1(t), p_2(t)] : t \in K \} \subset \mathbb{P}^3,$$

where $p_j(t) = (1-t)a_j + tb_j$ for j = 0, 1, 2. (This misses a certain point at infinity, depending on the particular representative coordinates of a and b. I think this can be fixed by considering two parameterizations, simultaneously, and adjusting the following argument, accordingly.) Suppose that $X = V_p(g)$, where $g \in K[x_1, x_2, x_3]$ is a homogeneous cubic polynomial. Then the composition

$$h(t) = g(p_0(t), p_1(t), p_2(t)) \in K[t]$$

is an inhomogeneous cubic polynomial, whose coefficients are determined by a and b. We know that h has roots at t=0,1, which parameterize the points a and b, respectively, in L. And h has a third root, distinct from 0 and 1, if and only if L intersects X at some third point distinct from a and b. Let $c_0, \ldots, c_3 \in K$ be the coefficients of h, i.e.,

$$h(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3.$$

The discriminant of h is given by

$$Disc_t(h) = c_1^2 c_2^2 - 4c_1^3 c_3 - 4c_0 c_2^3 - 27c_0^2 c_3^2 + 18c_0 c_1 c_2 c_3,$$

and has the property of being equal to zero if and only if h has a multiple root. Notice that we can consider the discriminant as a function of the coefficients of h; in particular, define the polynomial $d \in K[x_0, x_1, x_2, x_3]$ such that $\operatorname{Disc}_t(h) = d(c_0, c_1, c_2, c_3)$. Moreover, we see that d is in fact a homogenous polynomial of degree 4.

Recall that $p_j(t) = (1-t)a_j + tb_j$, which can be considered as a homogeneous linear polynomial in terms of a_j and b_j . Explicitly, for a fixed t, we define

$$q_i = (1 - t)x_i + ty_i \in K[x_0, x_1, x_2, y_0, y_1, y_2],$$

for j = 0, 1, 2. Then the composition

$$g(q_0, q_1, q_2) \in K[x_0, x_1, x_2, y_0, y_1, y_2]$$

is a homogeneous polynomial of degree 4. Separating the terms by t, we find that the coefficients of h are each homogeneous polynomials of degree 4 in the same ring. Lastly, composing with d, we obtain a homogeneous polynomial of degree 8. Therefore, we conclude that the discriminant of h is a homogeneous polynomial on $X \times X$, denote it by $u \in K[x_0, x_1, x_2, y_0, y_1, y_2]$.

Then for all $(a,b) \in X \times X$ with $a \neq b$, we know that the unique line through a and b intersects X in exactly three distinct points if and only if $u(a,b) \neq 0$. Additionally, our construction ensures that if a = b, then we still have u(a,b) = 0. Thus,

$$U = (X \times X) \setminus V_{p}(u),$$

which is an open subset of $X \times X$.

(Not sure if the following would be the correct route, but it feels close to working.)

To show that $f: U \to X$ is a morphism, we show that its components are locally fractions of homogeneous polynomials of the same degree. For $(a,b) \in U$, we know that the discriminant of the related h is $u(a,b) \neq 0$. That is, h has exactly the roots $0,1,t_c$, where $t_c \in K$ depends on a and b such that

$$f(a,b) = [p_0(t_c), p_1(t_c), p_2(t_c)].$$

We can (maybe) find t_c in terms of the determinant by

$$u(a,b) = c_3^4(0-1^2)(1-t_c)^2(t_c-0)^2 = c_3^4(1-t_c)^2t_c^2.$$

Recall that u is a homogenous polynomial of degree 8 and c_3^4 is a homogeneous polynomial of degree of 4. The last thing necessary would be a way to solve for t_c while keeping homogeneity, then composing with the homogenous linear polynomials p_j to obtain f as being a coordinate-wise regular function on U.