# **Encoding of Character Sets**

For copyright and license information, http://class.icc.skku.ac.kr/~min/program/license.html

## **Humans and Computers**



# Only the Binary Numbers Can Be Used in Computers

- What are the data in CPU registers?
  - Binary numbers
- What are the data in Memory?
  - Binary numbers
- What are the data in Files?
  - Binary numbers
- What are the data in I/O devices?
  - Binary numbers

# Data Are Not Always (Binary) Integers

- Numbers, Characters, Colors, Geometry (rectangle, triangle, ...), ...
- We need encoding, meaning
- We need conversion between data set and (binary) integers.
- Characters are no different, need conversion between character set and (binary) integers.
  - CHARACTER ENCODING

#### **Character Sets**

- US Alphabets only
  - ASCII
- Western European Character Set
  - ISO 8859-1
- Korean Hangul Character Set
  - CP949, etc, etc...
- All Characters Used on Earth
  - UNICODE (includes Korean Hangul)

## **ASCII Code – US Alphabets**

| Dec | Hex | Char             | Dec | Hex        | Char  | Dec | Hex | Char | Dec | Hex | Char |
|-----|-----|------------------|-----|------------|-------|-----|-----|------|-----|-----|------|
| 0   | 00  | Null             | 32  | 20         | Space | 64  | 40  | 0    | 96  | 60  | `    |
| 1   | 01  | Start of heading | 33  | 21         | į.    | 65  | 41  | A    | 97  | 61  | a    |
| 2   | 02  | Start of text    | 34  | 22         | **    | 66  | 42  | В    | 98  | 62  | b    |
| 3   | 03  | End of text      | 35  | 23         | #     | 67  | 43  | С    | 99  | 63  | c    |
| 4   | 04  | End of transmit  | 36  | 24         | Ş     | 68  | 44  | D    | 100 | 64  | d    |
| 5   | 05  | Enquiry          | 37  | 25         | *     | 69  | 45  | E    | 101 | 65  | e    |
| 6   | 06  | Acknowledge      | 38  | 26         | ٤     | 70  | 46  | F    | 102 | 66  | f    |
| 7   | 07  | Audible bell     | 39  | 27         | 1     | 71  | 47  | G    | 103 | 67  | g    |
| 8   | 08  | Backspace        | 40  | 28         | (     | 72  | 48  | Н    | 104 | 68  | h    |
| 9   | 09  | Horizontal tab   | 41  | 29         | )     | 73  | 49  | I    | 105 | 69  | i    |
| 10  | OA  | Line feed        | 42  | 2A         | *     | 74  | 4A  | J    | 106 | 6A  | Ċ    |
| 11  | ОВ  | Vertical tab     | 43  | 2B         | +     | 75  | 4B  | K    | 107 | 6B  | k    |
| 12  | OC. | Form feed        | 44  | 2 C        | ,     | 76  | 4C  | L    | 108 | 6C  | 1    |
| 13  | OD  | Carriage return  | 45  | 2 D        | _     | 77  | 4D  | M    | 109 | 6D  | m    |
| 14  | OE  | Shift out        | 46  | 2 E        | -     | 78  | 4E  | N    | 110 | 6E  | n    |
| 15  | OF  | Shift in         | 47  | 2 <b>F</b> | /     | 79  | 4F  | 0    | 111 | 6F  | 0    |
| 16  | 10  | Data link escape | 48  | 30         | 0     | 80  | 50  | P    | 112 | 70  | р    |
| 17  | 11  | Device control 1 | 49  | 31         | 1     | 81  | 51  | Q    | 113 | 71  | q    |
| 18  | 12  | Device control 2 | 50  | 32         | 2     | 82  | 52  | R    | 114 | 72  | r    |
| 19  | 13  | Device control 3 | 51  | 33         | 3     | 83  | 53  | ຮ    | 115 | 73  | 8    |
| 20  | 14  | Device control 4 | 52  | 34         | 4     | 84  | 54  | Т    | 116 | 74  | t    |
| 21  | 15  | Neg. acknowledge | 53  | 35         | 5     | 85  | 55  | U    | 117 | 75  | u    |
| 22  | 16  | Synchronous idle | 54  | 36         | 6     | 86  | 56  | V    | 118 | 76  | v    |
| 23  | 17  | End trans, block | 55  | 37         | 7     | 87  | 57  | W    | 119 | 77  | w    |
| 24  | 18  | Cancel           | 56  | 38         | 8     | 88  | 58  | x    | 120 | 78  | ×    |
| 25  | 19  | End of medium    | 57  | 39         | 9     | 89  | 59  | Y    | 121 | 79  | У    |
| 26  | 1A  | Substitution     | 58  | ЗА         | :     | 90  | 5A  | Z    | 122 | 7A  | z    |
| 27  | 1B  | Escape           | 59  | 3 B        | ;     | 91  | 5B  | [    | 123 | 7B  | {    |
| 28  | 1C  | File separator   | 60  | 3 C        | <     | 92  | 5C  | ١    | 124 | 7C  | ı    |
| 29  | 1D  | Group separator  | 61  | ЗD         | =     | 93  | 5D  | ]    | 125 | 7D  | }    |
| 30  | 1E  | Record separator | 62  | 3 <b>E</b> | >     | 94  | 5E  | ^    | 126 | 7E  | ~    |
| 31  | 1F  | Unit separator   | 63  | 3 <b>F</b> | ?     | 95  | 5F  |      | 127 | 7F  |      |

Copyright (c) 2016-2017 by Hyoung Bok Min and Sungkyunkwan University, All rights reserved.

# 유니코드, 한글 문자 Set (Unicode Hangul Syllables)

- http://en.wikipedia.org/wiki/Hangul\_Syllables
- Code point, U+AC00 ~ U+D7AF

|        | 0           | 1         | 2         | 3         | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | C | D | Ε | F |
|--------|-------------|-----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---|---|---|
| U+AC0x | 가           | 각         | 갂         | 갃         | 간 | 갅 | 갆 | 갇 | 갈 | 갉 | 갊 | 갋 | 갌 | 갍 | 갎 | 갏 |
| U+AC1x | 감           | 갑         | 값         | 갓         | 갔 | 강 | 갖 | 갗 | 갘 | 같 | 갚 | 갛 | 개 | 객 | 갞 | 갟 |
| U+AC2x | 갠           | 갡         | 갢         | 갣         | 갤 | 갥 | 갦 | 갧 | 갨 | 갩 | 갪 | 갫 | 갬 | 갭 | 갮 | 갯 |
| U+AC3x |             |           |           |           |   |   |   |   |   |   |   |   |   |   |   |   |
| U+AC4x | 걀           | 걁         | 걂         | 걃         | 걄 | 걅 | 걆 | 걇 | 걈 | 걉 | 걊 | 걋 | 걌 | 걍 | 걎 | 걏 |
| •••••• | • • • • • • | • • • • • | • • • • • | • • • • • | • |   |   |   |   |   |   |   |   |   |   |   |
| U+D7Ax | 힠           | 힡         | 힢         | 힣         |   |   |   |   |   |   |   |   |   |   |   |   |

# Code Point is NOT Encoding

 Code Point is a Representation of a character. (example: a, α, U+0061)

```
>>> 'a'
'a'
>>> '\u0061'
'a'
>>> '\uac00'
'7'
```

'a' can be written only if English input method is supported.

'가' can be written only if Korean input method is supported.

### unicode vs. utf-8

문자 object US ASCII 영역 US ASCII 영역 21-bit unicode 서유럽어 영역 서유럽어 영역 내부 표현 키릴어 영역 키릴어 영역 binary number 1~4 bytes 다른 여러 나라 다른 여러 나라 외부 (file 등) 표현 일본어 영역 일본어 영역 str encode 중국어 영역 중국어 영역 한국어 영역 한국어 영역 특수 문자 영역 특수 문자 영역 decode 옛 글자 영역 옛 글자 영역 except Windows 미래 유보

Copyright (c) 2016-2017 by Hyoung Bok Min and Sungkyunkwan University, All rights reserved.

## unicode vs. cp949 (Windows-949)



### Encode & Decode

```
>> '7\'.encode('utf-8')
b'\xea\xb0\x80'
>> b' \forall xea \forall xb0 \forall x80'.decode('utf-8')
'가'
>> '7\'.encode('cp949')
b'\xb0\xa1'
>> b' \forall xb0 \forall xa1'.decode('cp949')
'가'
```

### Text File

```
int number = 25
fprintf(fp, "%d", number);
```

#### convert binary numbers to characters

## Character Encoding of a FILE

- 'cp949' for Windows-Korean (10~20%)
- 'UTF-8' for all the others including macOS, iOS, GNU/Linux, Android, etc. (80+%)
- We use 'UTF-8' on every platform for all program and data files at all the platforms including Windows.
  - cp949 is legacy, and utf-8 is present and future of character encoding.
  - for cross-platform compatibility



Creator of Steve Jobs, Linus Torvalds, & Bill Gates with Brian Kernighan and Ken Thompson