PROPOSED MARKING GUIDE P425/1

PURE MATHEMATICS 2023

NO	SOLUTION	Mks	Comment
1	$\begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & -1 \\ 3 & 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 14 \\ -5 \\ 17 \end{pmatrix}$		
	$\begin{pmatrix} 2 & -1 & 3 & 14 \\ 1 & 4 & -1 \vdots -5 \\ 3 & 1 & 4 & 17 \end{pmatrix}_{R_2}^{R_1}$		
	$\sqrt{3}$ 1 4 17 R_3		
	$\begin{pmatrix} 2 & -1 & 3 & 14 \\ 1 & 4 & -1 & \vdots & -5 \\ 3 & 1 & 4 & 17 \end{pmatrix} \xrightarrow{R'_1 = R_1 - 2R_2} \begin{pmatrix} 2 & -1 & 3 & 14 \\ 0 & -9 & 5 & \vdots & 24 \\ 0 & 11 & -7 & -32 \end{pmatrix}$		
	$R_3'' = 11R_2' + 9R_3'$		
	+		
	$\begin{pmatrix} 2 & -1 & 3 & 14 \\ 0 & -9 & 5 & 24 \\ 0 & 0 & -8 & -24 \end{pmatrix}$		
	$-8z = -24 \qquad \therefore z = 3$		
	-9y + 5z = 24		
	-9y + 15 = 24		
	$-9y = 9 \qquad \therefore y = -1$		
	2x - y + 3z = 14		
	2x + 1 + 9 = 14		
	$2x = 4$ $\therefore x = 2$		
	$\therefore x = 2, y = -1, z = 3$		
	1, , 1, ,	05	
2	L.H.S = $\frac{1}{2}$ (sin 8A + sin 2A) - $\frac{1}{2}$ (sin 8A - sin 6A)		
	$= \frac{1}{2} \left[\sin 8A + \sin 2A - \sin 8A + \sin 6A \right]$		
	$=\frac{1}{2}(\sin 6A + \sin 2A)$		

	$= \frac{1}{2} \times 2 \sin 4A \cos 2A$		
	$= \sin 4A \cos 2A$		
	=R.H.S		
		05	
3	Intercepts		
	x, y = 0		
	$0 = 3x^2 - 6x$		
	0 = 3x(x-2)		
	x = 0 or x = 2		
	$A = \int_{-1}^{0} y dx + \int_{0}^{2} -y dx$ $A = \int_{-1}^{0} (3x^{2} - 6x) dx + \int_{0}^{2} (6x - 3x^{2}) dx$ $A = \left[x^{3} - 3x^{2}\right]_{-1}^{0} + \left[3x^{2} - x^{3}\right]_{0}^{2}$ $A = \left[0 - (-1 - 3)\right] + \left[(12 - 8) - 0\right]$ $A = 4 + 4$ $A = 8 \text{ sq.units}$	0.5	
4	T (=1	05	
4	Let \boldsymbol{c} be a vector perpendicular to \boldsymbol{a} and \boldsymbol{b}		
	$c = a \wedge b$		
	$c = \begin{vmatrix} \mathbf{i} & -\mathbf{j} & \mathbf{k} \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{vmatrix}$		

	$c = \begin{vmatrix} 1 & -2 \\ 2 & 2 \end{vmatrix} i - \begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix} j + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} k$		
	c = 6i - 6j + 3k		
	\Rightarrow Unit vector $=\frac{6i-6j+3k}{\sqrt{6^2+(-6)^2+3^2}} = \frac{1}{3}(2i-2j+k)$		
	V 0 1 (0) 10 1	05	
5	y = 0 m $(4,m)$ m $(4,0)$ x		
	$m = \frac{ 4(4) - 3(m) }{\sqrt{4^2 + (-3)^2}}$		
	5m = 16 - 3m		
	$8m = 16 \qquad \qquad \therefore m = 2$		
	Radius, $r = 2$ and centre, $C(4,2)$		
	Equation:		
	$(x-4)^2 + (y-2)^2 = 2^2$		
	$x^2 - 8x + 4 + y^2 - 4y + 4 = 4$		
	$\therefore x^2 + y^2 - 8x - 4y + 4 = 0$		
		05	
6	x(2+i) + y(2-i) = 7i - 2		
	2x + xi + 2y - yi = 7i - 2		
	2x + 2y + (x - y)i = 7i - 2		
	Equating the components;		
	Real; $2x + 2y = -2$; $x + y = -1$ (i)		
	Imaginary; $x - y = 7$ (ii)		
	$(i) + (ii); 2x = 6 \qquad \therefore x = 3$		

	From (i); $3 + y = -1$ $\therefore y = -4$		
	$\Rightarrow x + iy = 3 - 4i$		
	$ 3 - 4i = \sqrt{3^2 + (-4)^2} = 5$ units		
		05	
7	Let $y = x \sin x$		
	$y + \delta y = (x + \delta x)\sin(x + \delta x)$		
	$y + \delta y = (x + \delta x)(\sin x \cos \delta x + \cos x \sin \delta x)$		
	For small angles in radians; $\cos \delta x \approx 1$, $\sin \delta x \approx \delta x$		
	$y + \delta y = (x + \delta x)(\sin x + \delta x \cos x)$		
	$y + \delta y = x \sin x + x \delta x \cos x + \delta x \sin x + (\delta x)^2 \cos x$		
	$\delta y = x\delta x \cos x + \delta x \sin x + (\delta x)^2 \cos x$		
	$\frac{\delta y}{\delta x} = x \cos x + \sin x + \delta x \cos x$		
	As $\delta x \to 0$; $\frac{\delta y}{\delta x} \to \frac{dy}{dx}$		
	$\therefore \frac{dy}{dx} = x \cos x + \sin x$		
		05	
8	At (4,3)		
	3 = 5t - 7		
	$5t = 10 \qquad \qquad \therefore t = 2$		
	$x = t^2, y = 5t - 7$		
	$\frac{dx}{dt} = 2t; \frac{dy}{dt} = 5$		
	$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$		
	$\frac{dy}{dx} = 5 \times \frac{1}{2t}$		
	But $t=2$; $\frac{dy}{dx}=\frac{5}{4}$		
	Eqn:		
	$\frac{y-3}{x-4} = \frac{5}{4}$		
	4y - 12 = 5x - 20		

	$\therefore 5x - 4y - 8 = 0$		
		05	
9	(a) At the point of intersection;		
	$ \begin{pmatrix} 6 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} $		
	$6+3\lambda=7+2\mu$		
	$3\lambda - 2\mu = 1$ (i)		
	$-1 - 2\lambda = 3 + \mu$		
	$2\lambda + \mu = -4$ (ii)		
	$2 - \lambda = -3 - 3\mu$		
	$-\lambda + 3\mu = -5$ (iii)		
	Solving (i) and (ii) simultaneously		
	$\mu = -2$, $\lambda = -1$		
	x = 6 - 3 = 3, y = -1 + 2 = 1, z = 2 + 1 = 3		
	(3, 1, 3) is the point of intersection		
	(b) Let $\mathbf{d}_{1} = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ and $\mathbf{d}_{2} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$ $\mathbf{d}_{1} \cdot \mathbf{d}_{1} = \mathbf{d}_{1} \mathbf{d}_{2} \cos \theta$ $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \sqrt{3^{2} + (-2)^{2} + (-1)^{2}} \sqrt{2^{2} + 1^{2} + (-3)^{2}} \cos \theta$ $6 - 2 + 3 = \sqrt{14} \sqrt{14} \cos \theta$ $7 = 14 \cos \theta$ $\cos \theta = \frac{1}{2}$ $\theta = \cos^{-1} \left(\frac{1}{2}\right) = 60^{0}$		
	(c) $\mathbf{n} = \mathbf{d}_1 \Lambda \mathbf{d}_2$		

	$n = \begin{vmatrix} i & -j & k \\ 3 & -2 & -1 \\ 2 & 1 & -3 \end{vmatrix}$ $n = \begin{vmatrix} -2 & -1 \\ 1 & 3 \end{vmatrix} i - \begin{vmatrix} 3 & -1 \\ 2 & 3 \end{vmatrix} j + \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} k$ $n = -5i - 11j + 7k$ Using $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} -5 \\ -11 \\ 7 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ -11 \\ 7 \end{pmatrix}$ $-5x - 11y + 7z = -15 - 11 + 21$ $\therefore 5x + 11y - 7z = 2$		
		12	
10	(a) Let α and $\alpha + 3$ be the roots Sum of roots;		
	$\alpha + \alpha + 3 = -p$		
	$2\alpha + 3 = p \qquad \qquad \therefore \alpha = \frac{-p-3}{2}$		
	Product of roots;		
	$\alpha(\alpha+3)=p+9$		
	$\left(\frac{-p-3}{2}\right)\left(\frac{-p-3}{2}+3\right) = p+9$		
	$-\left(\frac{3+p}{2}\right)\left(\frac{3-p}{2}\right) = p+9$		
	$-\left(\frac{9-p^2}{4}\right) = p + 9$		
	$-9 + p^2 = 4p + 36$		
	$p^2 - 4p - 45 = 0$		
	(p+5)(p-9) = 0		
	p = -5 or p = 9		
	(b) $p(x) = (x-2)^2 Q(x) + ax + b$		
	When $x = 2$, $p(2) = 8 - 12 + 4 - 5 = -5$		
	p(2) = 2a + b = -5		

	2a + b = -5(i)		
	$p'(x) = 2(x-2)Q(x) + (x-2)^2Q'(x) + a$		
	$p'(x) = 3x^2 - 6x + 2$		
	When $x = 2$, $p'(2) = 12 - 12 + 2 = 2$		
	$p'(2) = a = 2 \qquad \therefore a = 2$		
	From (i); $4 + b = -5$ $\therefore b = -9$		
	Hence the remainder is $2x - 9$		
		12	
11	(a) $\cos(\theta + 60^{\circ}) = \sin \theta$		
	$\cos\theta\cos60^{0} - \sin\theta\sin60^{0} = \sin\theta$		
	$\frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta = \sin\theta$		
	$\frac{1}{2}\cos\theta = \sin\theta \left(1 + \frac{\sqrt{3}}{2}\right)$		
	$\cos\theta = \left(2 + \sqrt{3}\right)\sin\theta$		
	$\tan\theta = \frac{1}{2+\sqrt{3}}$		
	$=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}$		
	$=\frac{2-\sqrt{3}}{4-3}$		
	$=2-\sqrt{3}$		
	Hence;		
	$\theta = \tan^{-1}(2 - \sqrt{3})$		
	$\theta = 15^{0}$, 195^{0}		
	(b) L.H.S = $sin^2A + sin^2B - sin^2C$		
	$= \sin^2 A + (\sin B + \sin C)(\sin B - \sin C)$		
	$= \sin^2 A + 2\sin\left(\frac{B+C}{2}\right)\cos\left(\frac{B-C}{2}\right) \cdot 2\cos\left(\frac{B+C}{2}\right)\sin\left(\frac{B-C}{2}\right)$		
	$= \sin^2 A + \sin(B + C)\sin(B - C)$		
	$B + C = 180^{\circ} - A$		
	$D + C - 100^{\circ} - A$		

	$\sin(B+C) = \sin(180^0 - A) = \sin A$		
	$= \sin^2 A + \sin A \sin(B - C)$		
	$= \sin A \left[\sin A + \sin(B - C) \right]$		
	$= \sin A \left[\sin(B+C) + \sin(B-C) \right]$		
	$= \sin A \cdot 2 \sin B \cos C$		
	$= 2 \sin A \sin B \cos C$		
		12	
12	(a) Let $y = \tan x \Leftrightarrow \frac{dy}{dx} = \sec^2 x$		
	Set $x = 45^{\circ}$, $y = \tan 45^{\circ} = 1$		
	$y + \Delta y = \tan(x + \Delta x)$		
	$1 + \Delta y = \tan(45^{\circ} + \Delta x) => \Delta x = 1 = \frac{\pi}{180}$ rads		
	$\Delta y \approx \frac{dy}{dx} \cdot \Delta x$		
	$\Delta y \approx (sec^2 x) \Delta x$		
	$\Delta y \approx sec^2 45^0 \times \frac{\pi}{180}$		
	$\Delta y \approx \frac{\pi}{90}$		
	$\therefore \tan 46^0 = 1 + \Delta y$		
	$\approx 1 + \frac{\pi}{90}$		
	≈ 1.034906585		
	$\approx 1.0349 (4 \mathrm{dps})$		
	(b) $\int_4^5 \frac{x^3}{x^2 - 9} dx$		
	$\frac{x}{(x^2-9)} \frac{x}{x^3}$		
	$\overline{9x}$		
	$\frac{x^3}{x^2 - 9} = x + \frac{9x}{x^2 - 9}$		

	$\Rightarrow \int_4^5 \frac{x^3}{x^2 - 9} dx = \int_4^5 x dx + 9 \int_4^5 \frac{x}{x^2 - 9} dx$		
	$=\frac{x^2}{2}\Big]_4^5 + \Big[\frac{9}{2}\ln(x^2 - 9)\Big]_4^5$		
	$= \frac{1}{2}(25 - 16) + \frac{9}{2}[\ln 16 - \ln 7]$		
	= 8.220053579		
	$\approx 8.2201 \text{ (4dps)}$		
		12	
13	(a) Series = $(3 + 4) + (9 + 8) + (27 + 12) + \dots$		
	$= (3 + 9 + 27 + \cdots) + (4 + 8 + 12 + \cdots)$		
	$= \frac{a(r^{n}-1)}{r-1} + \frac{1}{2}n[2a + (n-1)d]$		
	$=\frac{2(3^{20}-1)}{3-1}+\frac{1}{2}(20)[8+4\times19]$		
	= 3,486,785,240		
	(b) $(1-4x)^{1/2} = 1 + \frac{1}{2}(-4x) + \frac{\frac{1}{2}(-\frac{1}{2})(-4x)^2}{2!} + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-4x)^3}{3!} + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{4})(-4x)^4}{4!} + \cdots$		
	$(1-4x)^{1/2} = 1 - 2x - 2x^2 - 4x^3 - 5x^4 + \cdots$		
	Range;		
	4x < 1		
	$\sqrt{15} = (16 - 1)^{1/2}$		
	$=4\left(1-\frac{1}{16}\right)^{1/2}$		
	$\Rightarrow 4x = \frac{1}{16} \qquad \therefore x = \frac{1}{64}$		
	$\Rightarrow \sqrt{15} \approx 4 \left[1 - 2 \left(\frac{1}{64} \right) - 2 \left(\frac{1}{64} \right)^2 - 4 \left(\frac{1}{64} \right)^3 - 5 \left(\frac{1}{64} \right)^4 \right]$		
	≈ 3.872984648		
	$\approx 3.8730 \text{ (4dps)}$		
		12	
14	(a) Volume, $v = \frac{1}{3} \times \text{base are } \times \text{height}$		

$$Height = (6 + x)$$

$$CP = \sqrt{36 - x^2}$$
, $CE = 2\sqrt{36 - x^2}$

From the diagram;

$$\overline{BC}^2 + \overline{BE}^2 = \overline{EC}^2$$

$$a^2 + a^2 = (2\sqrt{36 - x^2})^2$$

$$2a^2 = 4(36 - x^2)$$

$$a^2 = 2(36 - x^2)$$

$$a = \sqrt{2} (36 - x^2)^{1/2}$$

$$v = \frac{1}{3} \times \sqrt{2} (36 - x^2)^{1/2} \times \sqrt{2} (36 - x^2)^{1/2} \times (6 + x)$$

$$v = \frac{2}{3}(36 - x^2)(6 + x)$$

$$v = \frac{2}{3}(6-x)(6+x)(6+x)$$

$$\therefore v = \frac{2}{3}(6+x)^2(6-x)$$

(b)
$$v = \frac{2}{3}[-x^3 - 6x^2 + 36x + 216]$$

$$\frac{dv}{dx} = \frac{2}{3} \left[-3x^2 - 12x + 36 \right]$$

$$=2(-x^2-4x+12)$$

For maximum volume, $\frac{dv}{dx} = 0$

$$-x^2 - 4x + 12 = 0$$

$$x^2 + 4x - 12 = 0$$

$$(x-2)(x+6)=0$$

	x = 2 or x = -6		
	\Rightarrow Volume, $v = \frac{2}{3}(8)^2 \times 4 = 170\frac{2}{3} cm^3 \text{ or } \frac{512}{3} cm^3 \text{ or } \frac{512}{$		
	$170.6667 \ cm^3$		
		12	
15	(a)		
	$ \begin{array}{c c} P(p^2, 2p) \\ \hline Q(0,0) & R(4,0) \\ Q(q^2, 2q) \end{array} $		
	Gradient of PQ = $\frac{2p-2q}{p^2-q^2}$ $= \frac{2(p-q)}{(p-q)(p+q)}$ $= \frac{2}{p+q}$		
	p+q Equation;		
	$\frac{y-2p}{x-p^2} = \frac{2}{p+q}$		
	$(p+q)y - 2p(p+q) = 2x - 2p^2$		
	$(p+q)y - 2p^2 - 2pq = 2x - 2p^2$		
	(p+q)y - 2pq = 2x		
	$\therefore 2x - (p+q)y + 2pq = 0$		
	(b) At R(4,0); 2(8) + 2pq = 0		
	$2pq = -8 \qquad \qquad \therefore pq = -4$		
	(i) For PQ to make an angle of 90° at $O(0,0)$, $pq = -4$		

	a = 1 $a = 2p = 2$		
	Gradient of OP = $\frac{2p}{p^2} = \frac{2}{p}$		
	Gradient of OQ = $\frac{2q}{q^2} = \frac{2}{q}$		
	$M_{OP} \times M_{OQ} = -1$		
	$\frac{2}{p} \times \frac{2}{q} = -1$		
	$\therefore pq = -4$		
	(ii) Mid point of DO:		
	(ii) Mid-point of PQ;		
	$x = \frac{p^2 + q^2}{2}$, $y = \frac{2p + 2q}{2} = p + q$		
	$2x = (p+q)^2 - 2pq$		
	$2x = y^2 - 2(-4)$		
	$\therefore y^2 = 2(x-4)$		
		12	
16	(a) $\frac{dx}{dt} \propto (80 - x)$		
	$\frac{dx}{dt} = -k(80 - x)$		
	$\int \frac{dx}{80-x} = \int -k dt$		
	$-\ln(80 - x) = -kt + c$		
	When $t = 0$, $x = 0$		
	$-\ln 80 = c$		
	$-\ln(80-x) = -kt - \ln 80$		
	$\ln 80 - \ln(80 - x) = -kt$		
	$ \ln\left(\frac{80}{80-x}\right) = -kt $		
	When $t = 1, x = 40$		
	$ \ln\left(\frac{80}{80-40}\right) = -k \qquad \qquad \therefore k = -\ln 2 $		
	$\therefore \ln\left(\frac{80}{80-x}\right) = t \ln 2$		
	(b) (i) When $t = 2, x = ?$		

$ \ln\left(\frac{80}{80-x}\right) = 2\ln 2 $		
$\frac{80}{80-x} = 4$		
320 - 4x = 80		
$4x = 240$ $\therefore x = 60$ elephants		
(ii) when $x = 75, t = ?$		
$ \ln\left(\frac{80}{80-75}\right) = t \ln 2 $		
$ \ln 16 = \ln 2^t $		
$2^t = 2^4 \qquad \qquad \therefore t = 4 \text{ months}$		
Number of elephants killed per day $=\frac{75}{120} = 0.625 \approx 1$		
Meaning that on some days they would not kill an		
elephant.		
	12	