MA1102R

AY20/21 sem 2 by jovyntls

00. FUNCTIONS & SETS

$$A = \{x \mid properties \ of x\}$$

- $A \subseteq B$: A is a subset of B
- $A \nsubseteq B$: A is not a subset of B
- $A = B \leftrightarrow A \subseteq B \land B \subseteq A$

operations on sets

- union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- difference: $A \setminus B = \{x \mid x \in A \land x \notin B\}$

notations of sets

notations of intervals

- · closed interval (inclusive): $[a, b] = \{x \mid a < x < b\}$
- open interval (exclusive):
- $\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ $(a,b) = \{x \mid a < x < b\}$
- $\mathbb{N} = \mathbb{Z}^+$ ∅: empty set
 - $(a, \infty) = \{x \mid a < x\}$

functions

- existence: $\forall a \in A, f(a) \in B$
- uniqueness: $\forall a \in A$ has only one image in B.
- for $f:A\to B$
 - domain: A
- codomain: B
- range: $\{f(x) \mid x \in A\}$
- · for this mod:
 - $A, B \subseteq \mathbb{R}$
 - if A is not stated, the domain of f is the largest possible set for which f is defined
 - if B is not stated, $B = \mathbb{R}$

graphs of functions

The graph of
$$f$$
 is the set $G(f) := \{(x, f(x)) \mid x \in A\}$

- if $A, B \subseteq R$ then $G(f) \subseteq A \times B \subseteq \mathbb{R} \times \mathbb{R}$
- each element is a point on the Cartesian plane \mathbb{R}^2

algebra of functions

function	domain
(f+g)(x) := f(x) + g(x)	$A \cap B$
(f-g)(x) := f(x) - g(x)	$A \cap B$
(fg)(x) := f(x)g(x)	$A \cap B$
(f/g)(x) := f(x)/g(x)	$\{x \in A \cap B \mid g(x) \neq 0\}$

types of functions

- rational function: $R(x) = \frac{P(x)}{Q(x)}$, where P, Q are polynomials and $Q(x) \neq 0$
 - every polynomial is a rational function (Q(x) = 1)
- · algebraic function: constructed from polynomials using algebraic operations

- a function f is **increasing** on a set I if
- $x_q < x_2 \Rightarrow f(x_1) < f(x_2)$ for any $x_1, x_2 \in I$.
- ullet a function f is **decreasing** on a set I if $x_a < x_2 \Rightarrow f(x_1) > f(x_2)$ for any $x_1, x_2 \in I$.
- even/odd:
 - even function: $\forall x, f(-x) = f(x)$
 - * symmetric about the y-axis
 - odd function: $\forall x, f(-x) = -f(x)$
 - * symmetric about the origin O
 - any function defined on \mathbb{R} can be decomposed *uniquely* into the sum of an even function and an odd function
- power function: x^n
 - \int an odd function, if n is odd an even function. If n is even

01. LIMITS

definition

if f(x) is arbitrarily close to L by taking x to be sufficiently close (but not equal to) a, then we write

$$\lim_{x \to a} f(x) = L$$
 or $x \to a \Rightarrow f(x) \to L$

- the limit $\lim_{x \to a} f(x)$
 - depends only on the values of f(x) for x near a
 - is independent to the value of f(x) at a.

limit laws

- Let $c \in \mathbb{R}$. $\lim_{x \to a} c = c$
- $\lim x = a$

Suppose $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Let c be a

- $\lim (cf(x)) = cL = c \lim f(x)$
- $\lim_{x \to a} (f(x)) = 6L \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$

- $\begin{aligned} & \underset{x \to a}{\overset{x \to a}{\longrightarrow}} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \\ & \cdot \lim_{x \to a} (f(x)g(x)) \lim_{x \to a} f(x) \lim_{x \to a} g(x) \\ & \cdot \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ provided that } \lim_{x \to a} g(x) \neq 0 \end{aligned}$
- $\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

if $\lim_{x\to a}\frac{f(x)}{a(x)}$ exists and $\lim_{x\to a}g(x)=0,$ then $\lim_{x\to a}f(x)=0$

inequalities on limits

Suppose
$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M$.

lemma

$$\text{if } f(x) \leq g(x) \text{ for all } x \text{ near } a \text{ (except possibly at } a), \\ \text{then } L \leq M.$$

lemma

If
$$f(x) \ge 0$$
 for all x , then $L \ge 0$.

direct substitution property

Let f be a polynomial or rational function. If a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$

If
$$f(x) = g(x)$$
 for all x near a except possibly at a , then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

applications

- if a is not in the domain (e.g. 0 denominator), don't apply
- convert to an equivalent function and then sub in

one-sided limits

· limit laws also hold for one-sided limits

If as x is close to a from the right, f(x) is close to L, the right-hand limit of f as x approaches a equals L.

fight-hand limit of
$$f$$
 as x approaches a equals L . $(x \to a^+ \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^+} f(x) = L$

If as x is close to a from the left, f(x) is close to L, the left-hand limit of f as x approaches a equals L. $(x \to a^- \Rightarrow f(x) \to L) \Rightarrow \lim_{x \to a^-} f(x) = L$

$$\lim_{x \to a} f(x) = L \leftrightarrow \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

$$f(x) \to L \Leftarrow x \to a \Leftrightarrow \begin{cases} x \to a^+ \Rightarrow f(x) \to L \\ x \to a^- \Rightarrow f(x) \to L \end{cases}$$

infinite limits

Suppose f is defined on both sides of a (except possibly at a). If f(x) is arbitrarily large by taking x sufficiently close to a,

$$\lim_{x \to a} f(x) = \infty$$

If f(x) is arbitrarily negatively large \cdots ,

$$\lim_{x \to a} f(x) = -\infty$$

Suppose f is defined on $[M, \infty)$ for some real number M. If f(x) is arbitrarily close to L by taking x sufficiently large, $\lim f(x) = L$

squeeze theorem

- Suppose f(x) is bounded by g(x) and h(x) where
- $g(x) \le f(x) \le h(x)$ for all x near a (except at a),
- and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$. Then $\lim f(x) = L$

definition of limits

Let f be a function defined on an open interval containing a, except possibly at a.

The limit of f(x) as x approaches a, equals L if. for every $\epsilon > 0$ there is $\delta > 0$ such that $0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon$

informally,

- $0 < |x a| < \delta \Rightarrow x$ is close to but not equal to a.
- $0 < |f(x) L| < \epsilon \Rightarrow f(x)$ is arbitrarily close to L.

definition of one-sided limits

LH Limit:
$$\lim f(x) = L$$

if for every $\epsilon>0$ there exists $\delta>0$ such that $0 < a - x < \delta \Rightarrow |f(x) - L| < \epsilon$

RH Limit:
$$\lim_{x \to a} f(x) = I$$

RH Limit: $\lim_{x\to a^+} f(x) = L$ if for every $\epsilon>0$ there exists $\delta>0$ such that $0 < x - a < \delta \Rightarrow |f(x) - L| < \epsilon$

definition of infinite limit

$$\lim_{x \to a} f(x) = \infty$$

if for every M>0 there exists $\delta>0$ such that

$$0 < |x - a| < \delta \Rightarrow f(x) > M$$

negative infinite limit: $0 < |x - a| < \delta \Rightarrow f(x) < M$

02. CONTINUOUS FUNCTIONS

definition of continuity

a function f is **continuous at** $a \Leftrightarrow$ f is continuous from the left and from the right at a.

 $\lim_{x \to a} f(x) = f(a)$

a function f is continuous at an interval if it is continuous at every number in the interval.

$$f \text{ is continuous on } \mathbf{open interval} \ (a,b) \\ \Leftrightarrow f \text{ is continuous at every } x \in (a,b) \\ f \text{ is continuous on } \mathbf{closed interval} \ [\mathbf{a},\mathbf{b}] \\ \Leftrightarrow \begin{cases} f \text{ is continuous at every } x \in (a,b) \\ f \text{ is continuous from the right at } a \\ f \text{ is continuous from the left at } b \end{cases}$$

continuity test

f is continuous at $a \Leftrightarrow$

- 1. f is defined at a (a is in the domain of f)
- 2. $\lim f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

precise definition of continuity

a function
$$f$$
 is continuous at a number a if $\forall \epsilon > 0, \exists \delta > 0$ such that $|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon$

examples of discontinuity

- · removable discontinuity
- · infinite discontinuity
- jump discontinuity

properties of continuous functions

let f and g be functions continuous at a. let c be a constant.

- 1. cf is continuous at a
- 2. f + g is continuous at a
- 3. f-g is continuous at a
- 4. fg is continuous at a
- 5. $\frac{f}{g}$ is continuous at a, provided $g(a) \neq 0$

other properties

- · a polynomial is continuous everywhere;
- · a rational function is continuous on its domain
- let c be a real number. f(x) = c is continuous on \mathbb{R} .
- f(x) = x is continuous on \mathbb{R} .

trigonometric functions

- $f(x) = \sin x$ and $g(x) = \cos x$ are continuous everywhere
- $\tan x$, $\sec x$ are continuous whenever $\cos x \neq 0$
- $\cot x$, $\csc x$ are continuous whenever $\sin x \neq 0$
 - domain: $\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$

composite of continuous functions

if
$$f$$
 is continuous at b and $\lim_{x\to a}g(x)=b,$ then
$$\lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))$$

if g is continuous at a and f is continuous at g(a), then $f\circ g$ is continuous at a. $\lim_{r\to a}(f\circ g)(x)=(f\circ g)(a)$

substitution theorem

Suppose y=f(x) such that $\lim_{x\to a}f(x)=b.$ If

- 1. g is continuous at b, OR
- 2. $\forall x \text{ near } a, \text{ except at } a, f(x) \neq b \text{ and } \lim_{y \to b} g(y) \text{ exists}$

Then
$$\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y)$$

intermediate value theorem

Let f be a function continuous on [a,b] with $f(a) \neq f(b)$. Let N be a number between f(a) and f(b). Then there exists $c \in (a,b)$ such that f(c) = N.

03. DERIVATIVES

tangent line

the **tangent line** to y=f(x) at (a,f(a)) is the line passing through (a,f(a)) with slope f'(a): y=f'(a)(x-a)+f(a)

definition of derivatives

- f is differentiable at a if f'(a) exists
- f'(a) is the slope of y = f(x) at x = a

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- $f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = D_x f(x) = \cdots$
- $\frac{dy}{dx} := \lim_{x \to 0} \frac{\Delta y}{\Delta x}$ (derivative of y with respect to x)
- $f'(a) = \frac{dy}{dx}|_{x=a}$

differentiable functions

- f is differentiable at a if $f'(a) := \lim_{x \to 0} \frac{f(a+h) f(a)}{h}$
- f is differentiable on (a,b) if f is differentiable at every $c\in (a,b)$

differentiability & continuity

- \bullet if f is differentiable at a, then f is continuous at a.
 - differentiability \Rightarrow continuity
- continuity ⇒ differentiability

triangle inequality

$$|a=b| \leq |a| + |b|$$
 for all $a,b \in \mathbb{R}$