Linear Transformations $T: \mathbb{C}^n \to \mathbb{C}^n$

Algebra of Linear Transformations

Definition 1. Let $F = \mathbb{R}$ or \mathbb{C} . We define the algebra of linear transformations on F^n to be the set $\mathcal{A}(F^n) = \{F^n \to^T F^n : T \text{ is a linear transformation.}\}$

Theorem 2. For the algebra $\mathcal{A}(F^n)$, the following operations are well-defined.

- (A) $\boxplus : \mathcal{A}(F^n) \times \mathcal{A}(F^n) \to \mathcal{A}(F^n)$ given by $(T \boxplus S)(\mathbf{v}) = T(\mathbf{v}) + S(\mathbf{v})$.
- (M) $\circ : \mathcal{A}(F^n) \times \mathcal{A}(F^n) \to \mathcal{A}(F^n)$ given by $(T \circ S)(\mathbf{v}) = T(S(\mathbf{v}))$.
- (S) $\cdot: F \times \mathcal{A}(F^n) \to \mathcal{A}(F^n)$ given by $(cT)(\mathbf{v}) = cT(\mathbf{v})$.

Proof. We prove (A) and leave the other two as an exercise. (WD1) We must show that if $S, T \in \mathcal{A}(F^n)$, then $S \boxplus T \in \mathcal{A}(F^n)$. That is, we must show that $(S \boxplus T) : F^n \to F^n$ is a linear transformation. If $\mathbf{v}, \mathbf{w} \in F^n$, then

$$(S \boxplus T)(\mathbf{v} + \mathbf{w})$$
= $S(\mathbf{v} + \mathbf{w}) + T(\mathbf{v} + \mathbf{w})$ (Defn of \boxplus in $\mathcal{A}(F^n)$)
= $(S(\mathbf{v}) + S(\mathbf{w})) + (T(\mathbf{v}) + T(\mathbf{w}))$ (Since S, T are linear maps)
= $(S(\mathbf{v}) + T(\mathbf{v})) + (S(\mathbf{w}) + T(\mathbf{w}))$ (Usual properties of $+$ in F^n)
= $(S \boxplus T)(\mathbf{v}) + (S \boxplus T)(\mathbf{w})$

(WD2) We must show that if $S_1 = S_2$ and $T_1 = T_2$, then $S_1 \boxplus T_1 = S_2 \boxplus T_2$. To prove that these two maps are equal, we must show that they agree at every point in F^n . So choose any $\mathbf{v} \in F^n$. We have

```
S_{1} = S_{2} \text{ and } T_{1} = T_{2}
\Rightarrow S_{1}(\mathbf{v}) = S_{2}(\mathbf{v}) \text{ and } T_{1}(\mathbf{v}) = T_{2}(\mathbf{v})
\Rightarrow S_{1}(\mathbf{v}) + T_{1}(\mathbf{v}) = S_{2}(\mathbf{v}) + T_{2}(\mathbf{v}) \text{ (Since } + \text{ is well-defined on } F^{n})
\Rightarrow (S_{1} \boxplus T_{1})(\mathbf{v}) = (S_{2} \boxplus T_{2})(\mathbf{v}) \text{ (Defn of } \boxplus \text{ in } \mathcal{A}(F^{n}))
\Rightarrow S_{1} \boxplus T_{1} = S_{2} \boxplus T_{2}
```

Theorem 3. For the algebra $\mathcal{A}(F^n)$, the following properties hold.

- (A1) \boxplus is associative.
- (A2) \boxplus is commutative.
- (A3) \boxplus has an identity $0: F^n \to F^n$ given by $0(\mathbf{v}) = \mathbf{0}$.
- (A4) \boxplus has an inverses $(-T): F^n \to F^n$ given by $(-T)(\mathbf{v}) = -T(\mathbf{v})$.
- (M1) is associative.
- (M2) \circ has the identity $1_{F^n}: F^n \to F^n$ given by $1_{F^n}(\mathbf{v}) = \mathbf{v}$.
- (D) $R \circ (S \boxplus T) = (R \circ S) \boxplus (R \circ T)$ for all $R, S, T \in \mathcal{A}(F^n)$.
- (S1) $1_F T = T$ for all $T \in \mathcal{A}(F^n)$.
- (S2) $(a+b)T = (aT) \boxplus (bT)$ for all $a, b \in F$ and $T \in \mathcal{A}(F^n)$.
- (S3) $a(S \boxplus T) = (aS) \boxplus (aT)$ for all $a \in F$ and $S, T \in \mathcal{A}(F^n)$.
- (S4) a(bT) = (ab)T for all $a, b \in F$ and $T \in \mathcal{A}(F^n)$.

Proof. We prove (S3) and leave the remaining parts as an exercise. Choose any $\mathbf{v} \in F^n$ and check that

$$(a(S \boxplus T)) (\mathbf{v})$$
= $a(S \boxplus T)(\mathbf{v})$ (Theorem 2(S))
= $a(S(\mathbf{v}) + T(\mathbf{v}))$ (Theorem 2(A))
= $aS(\mathbf{v}) + aT(\mathbf{v})$ (Usual scalar mult in F^n)
= $(aS)(\mathbf{v}) + (aT)(\mathbf{v})$ (Theorem 2(S))
= $((aS) \boxplus (aT))(\mathbf{v})$ (Theorem 2(A)).

Remarks 4. From now on, we will write S+T instead of $S \boxplus T$ and ST instead of $S \circ T$. Therefore, $T^k = T \circ T \circ ... \circ T$ composed k times. If $p(x) \in F[x]$ and $p(x) = a_0 + a_1x + ... + a_nx^n$, then

$$p(T)(v) = (a_0 1_{F^n} + a_1 T + \dots + a_n T^n)(\mathbf{v}) = a_0 \mathbf{v} + a_1 T(\mathbf{v}) + \dots + a_n T^n(\mathbf{v}).$$

Complex Eigenvalues

Lemma 5. Let $S, T \in \mathcal{A}(F^n)$. If $\ker ST \neq \{0\}$, then $\ker S \neq \{0\}$ or $\ker T \neq \{0\}$. More generally, if $T_1, T_2, ..., T_m \in \mathcal{A}(F^n)$ and $\ker T_1T_2 \cdots T_m \neq \{0\}$, then there exists a $j \leq m$ such that $\ker T_j \neq \{0\}$.

Proof. We prove the first part using the contrapositive. The second part follows by induction. If $\ker S = \{0\}$ and $\ker T = \{0\}$, then both S, T are 1-1. It follows that the composition ST is 1-1. This is equivalent to $\ker ST = \{0\}$.

Theorem 6. Every $T \in \mathcal{A}(\mathbb{C}^n)$ has a complex eigenvalue $\lambda \in \mathbb{C}$.

Proof. Choose any non-zero $\mathbf{v} \in \mathbb{C}^n$. Since $\dim(\mathbb{C}^n) = n$, the set

$$S = {\mathbf{v}, T(\mathbf{v}), T^2(\mathbf{v})...T^n(\mathbf{v})}$$

of n+1 many vectors is linearly dependent in \mathbb{C}^n . We can find $a_0, a_1, a_2, ..., a_n \in \mathbb{C}$ not all zero such that

$$a_0 \mathbf{v} + a_1 T(\mathbf{v}) + a_2 T^2(\mathbf{v}) + \dots + a_n T^n(\mathbf{v}) = \mathbf{0}.$$

After removing any leading zeros, we can write

$$a_0\mathbf{v} + a_1T(\mathbf{v}) + a_2T^2(\mathbf{v}) + \dots + a_mT^m(\mathbf{v}) = \mathbf{0}$$
 where $m \le n$ and $a_m \ne 0$.

Using the algebra operations, we find that

$$(a_0 1_{\mathbb{C}^n} + a_1 T + a_2 T^2 + \dots + a_m T^m)(\mathbf{v}) = \mathbf{0}.$$

Let

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m \in \mathbb{C}[x].$$

By The Fundamental Theorem of Algebra, we can factor p as

$$p(x) = a_m(x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_m).$$

It now follows that

$$p(T)(\mathbf{v}) = (a_m(T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_m))(\mathbf{v}) = \mathbf{0}.$$

Since v is non-zero,

$$\ker(T-\lambda_1)(T-\lambda_2)\cdots(T-\lambda_m)\neq \{\mathbf{0}\}.$$

By Lemma 5,

$$\ker(T - \lambda_1) \neq \{\mathbf{0}\} \text{ for some } j \leq m.$$

Therefore, there exists a non-zero $\mathbf{w} \in \mathbb{C}^n$ such that

$$(T - \lambda_i)(\mathbf{w}) = \mathbf{0} \iff T(\mathbf{w}) = \lambda_i \mathbf{w}.$$

Definition 7. A matrix $A \in M_n$ is called upper triangular if $\operatorname{ent}_{ij}(A) = 0$ whenever i > j. That is, if

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} \end{bmatrix} . \tag{*}$$

A matrix $B \in M_n$ is called triangularizable if there exists an invertible matrix P such that $B = PAP^{-1}$ (similar to a triangular matrix). A linear transformation $T \in \mathcal{A}(\mathbb{C}^n)$ is called triangularizable if there exists a basis B of \mathbb{C}^n such that M(T, B, B) is triangular.

Theorem 8. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be a basis for F^n . The following statements are equivalent for a linear transformation $T \in \mathcal{A}(F^n)$.

- (1) M(T, B, B) is upper triangular.
- (2) $T(\mathbf{v}_k) \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k)$ for each $k \leq n$.
- (3) Span($\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$) is invariant under T for each $k \leq n$.

Proof.

 $(1)\Rightarrow(2)$ If M(T,B,B) has the form (*), then

$$T(\mathbf{v}_1) = a_{11}\mathbf{v}_1 \in \operatorname{Span}(\mathbf{v}_1)$$

$$T(\mathbf{v}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$$

$$\vdots$$

$$T(\mathbf{v}_n) = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{nn}\mathbf{v}_n \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n).$$

(2) \Rightarrow (3) Choose any $\mathbf{v} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k)$ and write $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + ... + c_n\mathbf{v}_n$. We have

$$T(\mathbf{v})$$

$$= T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n)$$

$$= c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots + c_nT(\mathbf{v}_n)$$

$$\in \operatorname{Span}(\mathbf{v}_1) + \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) + \dots + \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \text{ (since (2) holds)}$$

$$= \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \text{ (since } \operatorname{Span}(\mathbf{v}_1) \subseteq \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \subseteq \dots \subseteq \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)).$$

 $(3) \Rightarrow (1)$ We have

$$\mathbf{v}_1 \in \operatorname{Span}(\mathbf{v}_1) \Longrightarrow T(\mathbf{v}_1) \in \operatorname{Span}(\mathbf{v}_1) \text{ (since (2) holds)} \Longrightarrow T(\mathbf{v}_1) = a_{11}\mathbf{v}_1$$

 $\mathbf{v}_2 \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \Longrightarrow T(\mathbf{v}_2) \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \Longrightarrow T(\mathbf{v}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2$
 \vdots

$$\mathbf{v}_n \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n) \Longrightarrow T(\mathbf{v}_n) = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + ... + a_{nn}\mathbf{v}_n.$$

Since

$$M(T, B, B) = [T(\mathbf{v}_1) \ T(\mathbf{v}_2) \ \cdots \ T(\mathbf{v}_n)]$$

we conclude that M(T, B, B) has the form (*) and is upper triangular.

Lemma 9. If $T \in \mathcal{A}(F^n)$ and $\lambda \in F$, then $\text{Im}(T - \lambda 1_{F^n})$ is invariant under T.

Proof. Let $V = \text{Im}(T - \lambda 1_{F^n})$ and choose any $\mathbf{v} \in V$. Then

$$T(\mathbf{v})$$
= $T(\mathbf{v}) - \lambda \mathbf{v} + \lambda \mathbf{v}$
= $(T - \lambda \mathbf{1}_{F^n})(\mathbf{v}) + \lambda \mathbf{v}$
 $\in \operatorname{Im}(T - \lambda \mathbf{1}_{F^n}) + V$
= V

Definition 10. Let $V \leq F^n$ and define $\mathcal{A}(V) = \{V \to^T V : T \text{ is a linear transformation}\}.$

Lemma 11. If $V \leq F^n$ is invariant under $T \in \mathcal{A}(F^n)$, then the restriction map $T_V : V \to V$ given by $T_V(\mathbf{v}) = T(\mathbf{v})$ belongs to $\mathcal{A}(V)$.

Proof. Since V is invariant under T, we have that $T(V) \subseteq V$. It follows that $T_V: V \to V$ is a well-defined function (in particular, WD1 is satisfied). Since $T_V(\mathbf{v}) = T(\mathbf{v})$ for all $\mathbf{v} \in V$, it is certainly true that T_V is a linear transformation. That is, $T_V \in \mathcal{A}(V)$.

Theorem 12. Every $T \in \mathcal{A}(\mathbb{C}^n)$ is triangularizable.

Proof. The proof goes by induction on $n = \dim(\mathbb{C}^n)$ and we dispense with the trivial case when n = 1. Suppose that n > 1 the theorem holds for all linear transformations $S \in \mathcal{A}(W)$ with $\dim(W) < n$. By Theorem 6, T has an eigenvalue $\lambda \in \mathbb{C}$. It follows that $\ker(T - \lambda 1_{\mathbb{C}^n})$ is non trivial and so $T - \lambda 1_{\mathbb{C}^n}$ is not 1-1. But then, $T - \lambda 1_{\mathbb{C}^n}$ is not onto (square) and so the subspace $\operatorname{Im}(T - \lambda 1_{\mathbb{C}^n})$ is properly contained in \mathbb{C}^n . Setting $V = \operatorname{Im}(T - \lambda 1_{\mathbb{C}^n})$ we have that $\dim(V) < n$, say $\dim(V) = m$. By Lemma 11, V is invriant under T. By Lemma 12, the restriction $T_V : V \to V$ belongs to $\mathcal{A}(V)$. The induction assumption says that we can find a basis $B_V = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ such that $M(T_V, B, B)$ is triangular. It follows that for each $j \leq m$, we have $T(\mathbf{v}_j) = T_V(\mathbf{v}_j) \in \operatorname{Span}(\mathbf{v}_1, ..., \mathbf{v}_j)$. Now extend B_V to a basis $B = \{\mathbf{v}_1, ..., \mathbf{v}_m, \mathbf{x}_{m+1}, ..., \mathbf{x}_n\}$ of all of \mathbb{C}^n . We now have

$$T(\mathbf{x}_{j})$$

$$= T(\mathbf{x}_{j}) - \lambda \mathbf{x}_{j} + \lambda \mathbf{x}_{j}$$

$$= (T - \lambda \mathbf{1}_{F^{n}})(\mathbf{x}_{j}) + \lambda \mathbf{x}_{j}$$

$$\in \operatorname{Im}(T - \lambda \mathbf{1}_{F^{n}}) + \operatorname{Span}(\mathbf{x}_{j})$$

$$= V + \operatorname{Span}(\mathbf{x}_{j})$$

$$= \operatorname{Span}(\mathbf{v}_{1}, ..., \mathbf{v}_{m}) + \operatorname{Span}(\mathbf{x}_{j})$$

$$\subseteq \operatorname{Span}(\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{m}, \mathbf{x}_{1}, ..., \mathbf{x}_{j})$$

and so T is triangularizable in the basis B.

Theorem 13. The upper triangular matrix in (*) above is invertible if and only if $a_{jj} \neq 0$ for each $j \in \{1, 2, ..., n\}$.

Proof. Let A be the triangular matrix in (*) and let $E_n = \{\mathbf{e}_1, ..., \mathbf{e}_n\}$ be the standard basis. We let $T: F^n \to F^n$ be the usual linear transformation such that $M(T, E_n, E_n) = A$.

(\Rightarrow) We will prove that if $a_{jj}=0$ for some $j\in\{1,2,...,n\}$, then A is not invertible. If $a_{11}=0$, then

$$T(\mathbf{e}_1) = a_{11}\mathbf{e}_1 = 0.$$

which means that $\ker T \neq \{0\}$. It follows that T is not 1-1 and hence, not invertible. Suppose now that $a_{jj} = 0$ for some $j \in \{2, 3, ..., n\}$. It follows that

$$T(\mathbf{e}_j) = a_{1j}\mathbf{e}_1 + a_{2j}\mathbf{e}_2 + ... + a_{j-1,j}\mathbf{e}_{j-1} + 0\mathbf{e}_j \in \text{Span}(\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_{j-1}).$$

Let T_j be the restriction of the map T to the domain $\operatorname{Span}(\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_{j-1})$. It follows from the previous equation and Theorem 8 that $T(\operatorname{Span}(\mathbf{e}_1, ... \mathbf{e}_{j-1}, \mathbf{e}_j)) \subseteq \operatorname{Span}(\mathbf{e}_1, ... \mathbf{e}_{j-1})$. Hence,

$$T_i: \operatorname{Span}(\mathbf{e}_1, ..., \mathbf{e}_{i-1}, \mathbf{e}_i) \to \operatorname{Span}(\mathbf{e}_1, ..., \mathbf{e}_{i-1}).$$

Since $\{e_1, ... e_{i-1}, e_i\}$ is a linearly independent set, we have that

$$\dim(\operatorname{Span}(\mathbf{e}_1, ..., \mathbf{e}_{j-1}, \mathbf{e}_j)) = j > j - 1 = \dim(\operatorname{Span}(\mathbf{e}_1, ..., \mathbf{e}_{j-1})).$$

It is therefore impossible that T_j is 1-1. Since T_j is a restriction of T, it is impossible that T is 1-1 and hence T is not invertible.

(\Leftarrow) If A is not invertible, then it is certainly true that $A_T = A$ is not invertible. It follows that T is not 1-1 (since T is square) and there exists a nonzero $\mathbf{v} \in F^n$ such that $T(\mathbf{v}) = \mathbf{0}$. Let us write $\mathbf{v} = c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + ... + c_m\mathbf{e}_m$ where $m \leq n$ and m is the largest index of a nonzero scalar coefficient. That is, $c_m \neq 0$ and $c_k = 0$ for all $k \in \{m+1, m+2, ..., n\}$. Then

$$0 = T(\mathbf{v})$$

$$= T(c_1\mathbf{e}_1 + ... + +c_{m-1}\mathbf{e}_{m-1} + c_m\mathbf{e}_m)$$

$$= T(c_1\mathbf{e}_1 + ... + +c_{m-1}\mathbf{e}_{m-1}) + c_mT(\mathbf{e}_m).$$

Since $c_m \neq 0$, we can write

$$T(\mathbf{e}_m) = -\frac{1}{c_m}T(c_1\mathbf{e}_1 + \dots + c_{m-1}\mathbf{e}_{m-1}).$$

But T is triangular making $Span(\mathbf{e}_1,...\mathbf{e}_{m-1})$ invriant under T and we obtain

$$T(\mathbf{e}_m) \in \operatorname{Span}(\mathbf{e}_1, ... \mathbf{e}_{m-1}).$$

On the other hand, the equation

$$T(\mathbf{e}_m) = a_{1m}\mathbf{e}_1 + \dots + a_{m-1,m}\mathbf{e}_{m-1} + a_{mm}\mathbf{e}_m$$

forces $a_{mm} = 0$ as needed.

Theorem 14. If $A \in \mathcal{M}_n$ is an upper triangular matrix, then the elemenets on the main diagonal are precisely the eigenvalues of the linear transformation $T \in \mathcal{A}(F^n)$ such that $A_T = A$.

Proof. We have that

$$\lambda$$
 is an eigenvalue of T
 $\Leftrightarrow \ker(\theta - \lambda 1_V) \neq \{0\}$
 $\Leftrightarrow T - \lambda 1_V$ is not invertible
 $\Leftrightarrow A_{T-\lambda 1_V}$ is not invertible
 $\Leftrightarrow a_{j,j} - \lambda = 0$ for some $j \in \{1, 2, ..., n\}$
 $\Leftrightarrow \lambda = a_{j,j}$ for some $j \in \{1, 2, ..., n\}$.

Definition 15. Let $T \in \mathcal{A}(\mathbb{C}^n)$ and let B be a basis for \mathbb{C}^n such that M = M(T, B, B) is triangular with diagonal entries $\operatorname{ent}_{ii}(M) = a_{ii}$. We define the characteristic polynomial $\chi_T(x) \in \mathbb{C}[x]$ to be the polynomial

$$\chi_T(x) = (x - a_{11})(x - a_{22}) \cdots (x - a_{nn})$$

Theorem 16. (Cayley-Hamilton Theorem) If $T \in \mathcal{A}(\mathbb{C}^n)$, then $\chi_T(T) = 0$. Equivalently, $\chi_T(A_T) = [0]$.

Proof. By Theorem 12, T is a triangular linear transformation with respect to some basis $B = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$. Using the matrix A = M(T, B, B) in equation (*) of Definition 7 and rearranging some terms, we have

$$(T - a_{11})(\mathbf{v}_1) = \mathbf{0}$$

$$(T - a_{22})(\mathbf{v}_2) = T(\mathbf{v}_2) - a_{22}\mathbf{v}_2 = a_{12}\mathbf{v}_1$$

$$(T - a_{33})(\mathbf{v}_3) = T(\mathbf{v}_3) - a_{33}\mathbf{v}_3 = a_{13}\mathbf{v}_1 + a_{23}\mathbf{v}_2$$

$$\vdots$$

$$(T - a_{nn})(\mathbf{v}_n) = T(\mathbf{v}_n) - a_{nn}\mathbf{v}_n = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{n-1,n}\mathbf{v}_{n-1}.$$

We will show that $\chi_T(T) = (T - a_{11})(T - a_{22}) \cdots (T - a_{nn})$ annihilates every basis element \mathbf{v}_j , $1 \leq j \leq n$. We will use the fact that the linear transformations $(T - a_{ii})$ and c commute for all $i, j \in \{1, 2, ..., n\}$. That is,

$$[(T - a_{jj})(T - a_{ii})](\mathbf{v}) = [(T - a_{ii})(T - a_{jj})](\mathbf{v})$$

for all $\mathbf{v} \in \mathbb{C}^n$ (verify!). We have

$$(T - a_{11})(\mathbf{v}_1) = \mathbf{0}$$

and so by commutativity,

$$\chi_T(T)(\mathbf{v}_1) = [(T - a_{11})(T - a_{22}) \cdots (T - a_{nn})] (\mathbf{v}_1)$$

$$= [(T - a_{22}) \cdots (T - a_{nn})(T - a_{11})] (\mathbf{v}_1)$$

$$= [(T - a_{22}) \cdots (T - a_{nn})] (\mathbf{0})$$

$$= \mathbf{0}.$$

At the next step,

$$[(T - a_{11})(T - a_{22})](\mathbf{v}_2)$$
= $(T - a_{11})(a_{12}\mathbf{v}_1)$
= $a_{12}(T - a_{11})(\mathbf{v}_1)$
= $a_{12}\mathbf{0}$
= $\mathbf{0}$

and similarly,

$$\chi_T(T)(\mathbf{v}_2) = \mathbf{0}.$$

One more for good measure.

$$[(T - a_{11})(T - a_{22})(T - a_{33})](\mathbf{v}_3)$$

$$= [(T - a_{11})(T - a_{22})](a_{13}\mathbf{v}_1 + a_{23}\mathbf{v}_2)$$

$$= a_{13}[(T - a_{11})(T - a_{22})](\mathbf{v}_1) + a_{23}[(T - a_{11})(T - a_{22})](\mathbf{v}_2)$$

$$= a_{13}[(T - a_{22})(T - a_{11})](\mathbf{v}_1) + a_{23}[(T - a_{11})(T - a_{22})](\mathbf{v}_2)$$

$$= \mathbf{0}.$$

Continuing on in this fashion, we find that

$$[\chi_T(T)](\mathbf{v}_j) = [(T - a_{11})(T - a_{22}) \cdots (T - a_{nn})](\mathbf{v}_j) = \mathbf{0}$$

for all basis elements \mathbf{v}_j . It follows that $\chi_T(T)$ kills every vector in \mathbb{C}^n so that $\chi_T(T) = 0$.

Exercises

1. Let

$$A = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{array} \right]$$

Justify all responses

- (a) Is A invertible?
- (b) Write down the characteristic polynomial $\chi_A(x)$.
- (c) Write down all eigenvalues of A.
- (d) Write down the basis vectors for each eigenspace.
- (e) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $D = PAP^{-1}$.
- **2.** Let

$$A = \left[\begin{array}{cccccc} 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{array} \right]$$

Justify all responses

- (a) Is A invertible?
- (b) Write down the characteristic polynomial $\chi_A(x)$.
- (c) Write down all eigenvalues of A.
- (d) Write down the basis vectors for each eigenspace.
- (e) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $D = PAP^{-1}$.

- **3.** Let $f(x) \in F[x]$ and let $\lambda \in F$ be an eigenvalue of $T \in \mathcal{A}(F^n)$. Prove the following statements.
- (a) $f(\lambda)$ is an eigenvalue of f(T).
- (b) f(T) = 0 implies $f(\lambda) = 0$.
- (c) f(T) = 0 and $f(\mu) = 0$ does not imply μ is an eigenvalue of T. (Give a counterexample and a careful explanation.)
- **4.** Upper triangularity is really needed in Theorem 13! Give an example of a square matrix $A \in \mathcal{M}_n$ with the following properties.
- (a) $\operatorname{ent}_{ii}(A) \neq 0$ for each $i \leq n$ but A is not invertible.
- (b) $\operatorname{ent}_{ii}(A) = 0$ for each $i \leq n$ but A is invertible.
- **5.** Let $S, T \in \mathcal{A}(F^n)$ with S invertible. Given any polynomial $p(x) \in F[x]$, prove that $p(STS^{-1}) = Sp(T)S^{-1}$.
- **6.** Let $T \in \mathcal{A}(\mathbb{C}^n)$ and $p(x) \in \mathbb{C}[x]$. Prove that $\lambda \in \mathbb{C}$ is an eigenvalue of p(T) if and only if T has an eigenvalue $\mu \in \mathbb{C}$ such that $p(\mu) = \lambda$. Does the result hold if \mathbb{C} is replaced by \mathbb{R} ?
- 7. Let $T \in \mathcal{A}(F^n)$. Prove that, for each $k \in \{1, 2, ..., n\}$, there is a T-invariant subspace $U_k \leq F^n$ such that $\dim(U_k) = k$.

Exercises

- 1. Prove that a polynomial $f(x) \in F[x]$ has a root $\alpha \in F$ if and only if there exists a polynomial $g(x) \in F[x]$ such that $f(x) = (x \alpha)g(x)$. Hint: Use Theorem 5 of the polynomial notes.
- **2.** Prove that if $f(x) \in F[x]$ with $\deg(f) = n \in \mathbb{N}$, then f(x) has at most n roots in F. Hint: Use Exercise 1 and induction.
- **3.** For every polynomial $f(x) \in \mathbb{C}[x]$ with $\deg(f) = n$, there exists a unique set $\{c, z_1, z_2, ..., z_n\} \in \mathbb{C}$ such that $f(x) = c(x z_1)(x z_2) \cdots (x z_n)$. Hint: Use Theorem 6 of the polynomial notes and Exercise 1 for existence.
- **4.** A complex number $z \in \mathbb{C}$ is a root of the polynomial $f(x) \in \mathbb{R}[x]$ if and only if the conjugate \overline{z} is a root of f(x). Hint: Theorem 3 of the polynomial notes.
- **5.** Let $f(x) = x^2 + bx + c$ be a polynomial in $\mathbb{R}[x]$. Prove that there is a polynomial factorization of the form $f(x) = (x r_1)(x r_2)$ for some $r_1, r_2 \in \mathbb{R}$ if and only if $b^2 4c \ge 0$.