電子電路實驗 3,4: CMOS Operational Amplifier

實驗預報

B02901178 江誠敏

September 22, 2015

1 Objectives

- 1. To make sure all the MOS of the circuit are able to enter saturation region so that the circuit can be applied to be an operational amplifier.
- 2. To comprehend the method of eliminating the Crossover Distortion of a class-B output stage.

2 Procedures

2.1 DC Analysis

2.1.1 DC Analysis of CD4007

- 1. The condition of entering saturation region of NMOS: $V_{GD} \leq V_T (1.8 \text{ V})$.
- 2. The condition of entering saturation region of PMOS: $V_{GD} \ge V_T(-1.8 \text{ V})$.
- 3. Supply voltage $-V_{SS}=-8\,\mathrm{V}$ and $V_{DD}=+8\,\mathrm{V}$ to the circuit.
- 4. Provide voltage source $V_{CC}=+15V$, and $-V_{CC}=-15V$ to the circuit.
- 5. Use digital multi-meter to confirm whether all of the MOS components are able to enter saturation region as adjusting VR $1\,\mathrm{k}\Omega$.

2.1.2 Detail procedure of DC Analysis of the Two-stage OP-Amp circuit

- 1. adjust VR $R_2 = 10 \,\mathrm{k}\Omega$ and check whether (Q_5, Q_7, Q_8) are all able to enter saturation region, that is, $V_{GD5,7,8} \geq V_T$ (-1.8V). If one of them is not so, change the chip of CD4007 #A and recheck again.
- 2. Use multi-meter to measure V_{GD5} , V_{GD7} , V_{GD8} .

- 3. adjust VR $R_2=10\,\mathrm{k}\Omega$ and check whether (Q_1,Q_2) are all able to enter saturation region, that is, $V_{GD1,2}\geq V_T$ (-1.8V). If one of them is not so, change the chip of CD4007 #B and recheck again.
- 4. Use multi-meter to measure V_{GD1} , V_{GD2} .
- 5. In Fig.5, Use heck whether (Q_3, Q_4) are all able to enter saturation region, that is, $V_{GD3,4} \geq V_T$ (-1.8V). If one of them is not so, change the chip of CD4007 #C and recheck again.
- 6. Use multi-meter to measure V_{GD3} , V_{GD4} .

2.1.3 DC Analysis of the Two-stage OP-Amp circuit

- 1. In Fig. 6, adjust VR (R_3) 1 k Ω and use multi-meter to measure V_A and V_E , and check whether V_E is adjustable. If it not so, trouble shoot the circuit. Check whether there is any wrong layout in your breadboard and whether the VR (R_3) is functional by multimeter.
- 2. Record V_A, V_E .

2.1.4 Circuit implementation

1. In Fig. 2, adjust VR (R_3) 1 k Ω and use multi-meter to measure V_A, V_D, V_E, V_F

2.2 Small-signal Analysis

2.2.1 Voltage Gain

- 1. Adjust VR (R_3) in Fig. 3 to have $V_F \approx 0$.
- 2. In Fig 4, apply the input small signal V_i to the breadboard by using function generator to generate $v_i = v_{ac} \sin(2\pi f t), 2v_{ac} = 20mV_{p-p}, f = 1\,\mathrm{kHz}.$
- 3. Make sure that the v_i is measured from the breadboard by using the probe from CH1 in oscilloscope.
- 4. Oscilloscope ⊳YT mode.
- 5. Adjust VR (R_3) 1 k Ω in Fig. 2-2 to have maximum small-signal voltage gain V_F/V_i
- 6. Keep the previous adjustment of R_3 constantly.
- 7. Record the voltage gain A_M .
- 8. Record the V_F, R_3 .
- 9. Confirm whether the voltage gain is the same as the slope of teh curve at transition region measured in the step 6 at Exp 3.
- 10. Increase/Decrease V_i until the waveform of V_F just distort.
- 11. Record the peak-to-peak value of V_i .

2.2.2 Frequency Response

- 1. Set $v_i=v_{ac}\sin(2\pi ft), 2v_{ac}=20\,\mathrm{mV}_{p-p}, f=1\,\mathrm{kHz}.$
- 2. Function generator \triangleright Adjust Frequency and observe the voltage gain A_v in oscilloscope until $A_v=\sqrt{2}A_M$.
- 3. Record the frequency f_{3db} .
- 4. Change the frequency of input voltage source, and record the input and output voltage shown in oscilloscope.

2.2.3 Internal frequency compensation

- 1. Use $R_2=100\,\mathrm{k}\Omega, C_2=10\,\mathrm{pF}$ in to implement the compensation circuit in Fig. 5.
- 2. Record the voltage gain $A_{M,2}$, dynamic range V_i , and frequency $f_{3dM,2}$.

2.2.4 Feedback network compensation

- 1. Use $R_2=100\,\mathrm{k}\Omega, C_2=10\,\mathrm{pF}$ in to implement the compensation circuit in Fig. 3.
- 2. In Fig. 6, apply the input small signal V_i to the breadboard by using function generator to generate $v_i = v_{ac}\sin(2\pi f_t), 2v_{ac} = 100\,\mathrm{mV}_{p_p}, f = 1\,\mathrm{kHz}.$
- 3. Record the voltage gain $A_{M,2}$, dynamic range V_i , and frequency $f_{3dM,2}$.