

MATERIA: Teoría de Control

NIVEL: Cuarto

DEPARTAMENTO INGENIERIA EN SISTEMAS DE INFORMACION

TEORIA DE CONTROL

GUIA DE TRABAJOS PRACTICOS

TRABAJO PRACTICO Nº 5

AÑO 2013

MATERIA: Teoría de Control

NIVEL: Cuarto

TRABAJO PRACTICO Nº 5

Error en estado estable

- 1. Dados los siguientes sistemas, cuya función de transferencia en lazo abierto del sistema en lazo cerrado se cerrado se indica, determinar el tipo de función:
 - a) $T^*(s) = 2/s+1$
 - b) $T^*(s) = 4 / (s+1).(s+2)$
 - c) $T^*(s) = 5s / s(s^2 s + 5)$
 - d) $T^*(s) = 6(s+3)/(s+2)(s+6)$
 - e) $T^*(s) = 10 / s^2 (s^2 + 2s + 1)$
- 2. Para cada una de las funciones del problema N° 1 determinar el error en estado estable al aplicar una entrada escalón unitario
- 3. Determinar el error en estado estable, para los sistemas del problema N°1, al aplicar una entrada rampa unitaria.
- 4. Determinar el error en estado estable, para los sistemas del problema N°1, al aplicar una entrada parabólica unitaria.
- 5. En base a los problemas 1,2,3 y 4 representar los errores en función del tipo de sistema.
- 6. Determinar el error final en estado estable para un sistema lineal que tiene una función de transferencia $T^*(s) = 2(s+1) / s^2(s+4)$ sujeto a la entrada compuesta siguiente:

$$Si = 1 / s + 2 / s^2 + 3 / s^3$$

7. Para el sistema de control representado en la figura , determinar el error en estado estable cuando el mismo está sujeto a una entrada de perturbación de tipo escalón de magnitud "5".

UTN - FRBA Departamento de Sistemas

MATERIA: Teoría de Control

NIVEL: Cuarto

8. Defina las expresiones que permiten calcular el error en estado estable para el siguiente sistema sujeto a la perturbación P y a la entrada Si:

9. Determinar el tipo de sistema:

Siendo:

a. T1 = 1 /(
$$s^2$$
 + 2s +1) y T2 = 1 / s^2
b. T1 = 1 /(s^2 + 2s +1) y T2 = 1

10. Dado el siguiente sistema en el cual la función T*(s) es 5 / s + 1, hallar el error en estado estable cuando se utiliza como señal de entrada una escalón de amplitud igual a 3volts. Para la resolución utilizar Matlab.