МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА

Факультет Вычислительной Математики и Кибернетики Кафедра Оптимального Уравнения

ОТЧЕТ по Практикуму на языке Python

Метод продолжения по параметру для решения краевой задачи

Студент: Хаметов Марк

Владимирович 313

Преподаватель: Аввакумов

Сергей Николаевич

Оглавление

Постановка задачи	3
Теоретическая часть	4
Алгоритм решения	5
Полученный результат	6
Использованная литература	8

Постановка задачи

Написать программу на языке Python, использующую метод продолжения по параметру для решения краевой задачи для нелинейной системы диференциальных уравнений. Провести построение краевых задач возникающих в теории оптимального управления. Основная идея метода продолжения по параметру: сведение к задаче Коши.

Описанная в программе краевая задача движения двух тел имеет вид:

$$egin{cases} \dot{x_1} = x_3 & x_1(0) = a_1 & x_1(T) = b_1 \ \dot{x_2} = x_4 & x_2(0) = a_2 & x_2(T) = b_2 \ \dot{x_3} = -x_1(x_1^2 + x_2^2)^{-3/2} \ \dot{x_4} = -x_2(x_1^2 + x_2^2)^{-3/2} \end{cases}$$

Параметры выбранные в программе:

$$T=7$$
, $a_1=2, a_2=0$, $b_1=1.0738644361, b_2=-1.0995343576$, $t_*=0$ $p_0=[2,0,-0.5,0.5]$ Результаты выполнения находятся в разделе полученный результат.

Теоретическая часть

Для системы дифференциальных уравнений $\dot{x}=f(x,t)$, где x — вектор размерности n, a f —гладкая функция. Для краевой задачи R(x(a),x(b))=0 . На временном промежутке $a\leqslant t\leqslant b$. Выберем точку t* на временном промежутке и рассмотрим следующую систему Коши:

$$\dot{x} = f(x,t) \quad x(t^*) = p$$

Где р – вектор размерности п (равной размерности вектора х).

Тогда, если выполняется условие $\Phi(p) \equiv R(x(a,p),x(b,p)) = 0$, р является исходным значением вектора х в момент времени t^* . Возьмем производную по р от обеих частей уравнения в условии:

$$\Phi'(p) = R'_x \frac{\partial x(a,p)}{\partial p} + R'_y \frac{\partial x(b,p)}{\partial p}.$$

Получаем матрицу размерности n*n. Для нахождения правой части уравнения необходимо проинтегрировать матрицы R'_x и R'_y от момента времени t* до а и b соответственно, это называется внутренней задачей. Внутренняя задача используется для решения внешней задачи:

$$\frac{dp}{d\mu} = -[\Phi'(p)]^{-1}\Phi(p_0), \quad p(0) = p_0, \quad 0 \leqslant \mu \leqslant 1,$$

Проинтегрировав следующую n-мерную систему мы получаем новое значение вектора p, которое оказывается ближе к исконному значению вектора x в точке t*. Если мы решим задачу Коши для достаточно близкого к исконному значению p, тогда результирующая траектория будет похожа на исконную.

Алгоритм решения

Алгоритм реализованный на языке Python:

- 1. Составить 2 матрицы размерности n*n состоящие по столбцам из элементов векторов краевых условий в моменты времени a, b соответственно, а по строкам из частных производных по элементам вектора x. Эти матрицы остаются неизменными.
- 2. Далее необходимо решить внутреннюю задачу дважды (в случае если t* = а или t* = b единожды). Для этого необходимо проинтегрировать систему из точки t* к одной из границ временного промежутка, принимая текущее значение р за значение вектора х в момент времени t*. Получаемый вектор необходим для нахождения производной матрицы F.
- 3. Найти матрицу обратную матрице F. Получаемая матрица используется для решения внешней задачи.
- 4. Интегрируем систему для решения внешней задачи Коши. На каждой итерации внешней задачи необходимо возвращаться ко второму пункту алгоритма и решать внутреннюю задачу.
- 5. Решаем задачу Коши для достаточно точного значения р. Можем воспользоваться Методом Эйлера.

Полученный результат

На первом графике показана траектория зависимости х1 от х2 при решении задачи Коши, а на втором для х3 и х4 соответственно. Темным синим цветом отображается траектория полученная без использования метода продолжения по параметру, а оранжевым траектория полученная после применения метода продолжения по параметру.

Используя метод Эйлера для внутренней и для внешней задач мы получаем значение вектора p = [2, 0, -0.34940007455597309, 0.39284807461180875] при $p_0 = [2, 0, -0.5, 0.5],$ $t^* = 0$. Таблица значений задающих траекторию — список значений четырехмерного вектора. Следующая таблица содержит значения для подсчета пониженной точности.

2.0000	0.0000	-0.3494	0.3928
1.9651	0.0393	-0.3744	0.3928
1.9276	0.0786	-0.4003	0.3923
1.8876	0.1178	-0.4271	0.3912
1.8449	0.1569	-0.4550	0.3895
1.7994	0.1959	-0.4841	0.3870
1.7510	0.2346	-0.5144	0.3837
1.6995	0.2730	-0.5462	0.3795
1.6449	0.3109	-0.5795	0.3741
1.5870	0.3483	-0.6146	0.3675
1.5255	0.3851	-0.6516	0.3594
1.4603	0.4210	-0.6908	0.3495
1.3913	0.4559	-0.7324	0.3375
1.3180	0.4897	-0.7767	0.3230
1.2404	0.5220	-0.8241	0.3053
1.1579	0.5525	-0.8750	0.2839
1.0704	0.5809	-0.9298	0.2578
0.9775	0.6067	-0.9891	0.2256
0.8786	0.6292	-1.0533	0.1858
0.7732	0.6478	-1.1229	0.1359
0.6609	0.6614	-1.1982	0.0728
0.5411	0.6687	-1.2791	-0.0081
0.4132	0.6679	-1.3641	-0.1132
0.2768	0.6566	-1.4494	-0.2511
0.1319	0.6315	-1.5259	-0.4326
-0.0207	0.5882	-1.5750	-0.6678
-0.1782	0.5214	-1.5649	-0.9563
-0.3347	0.4258	-1.4583	-1.2679
-0.4806	0.2990	-1.2476	-1.5359
-0.6053	0.1454	-0.9826	-1.7008

-0.7036	-0.0247	-0.7317	-1.7611
-0.7767	-0.2008	-0.5301	-1.7540
-0.8298	-0.3762	-0.3796	-1.7152
-0.8677	-0.5477	-0.2699	-1.6654
-0.8947	-0.7142	-0.1896	-1.6147
-0.9137	-0.8757	-0.1300	-1.5671
-0.9267	-1.0324	-0.0849	-1.5239
-0.9352	-1.1848	-0.0502	-1.4852
-0.9402	-1.3333	-0.0230	-1.4508
-0.9425	-1.4784	-0.0014	-1.4201
-0.9426	-1.6204	0.0161	-1.3927
-0.9410	-1.7597	0.0304	-1.3681
-0.9380	-1.8965	0.0423	-1.3459
-0.9337	-2.0311	0.0522	-1.3259
-0.9285	-2.1637	0.0605	-1.3077
-0.9225	-2.2945	0.0677	-1.2911
-0.9157	-2.4236	0.0738	-1.2760
-0.9083	-2.5512	0.0790	-1.2620
-0.9004	-2.6774	0.0836	-1.2492
-0.8921	-2.8023	0.0876	-1.2373
-0.8833	-2.9260	0.0911	-1.2263
-0.8742	-3.0486	0.0942	-1.2160
-0.8648	-3.1702	0.0969	-1.2065
-0.8551	-3.2909	0.0994	-1.1975
-0.8451	-3.4106	0.1015	-1.1892
-0.8350	-3.5296	0.1035	-1.1813
-0.8246	-3.6477	0.1052	-1.1739
-0.8141	-3.7651	0.1068	-1.1669
-0.8034	-3.8818	0.1082	-1.1603
-0.7926	-3.9978	0.1095	-1.1541

-0.7816	-4.1132	0.1107	-1.1482
-0.7706	-4.2281	0.1118	-1.1426
-0.7594	-4.3423	0.1127	-1.1373
-0.7481	-4.4560	0.1136	-1.1322
-0.7368	-4.5693	0.1144	-1.1274
-0.7253	-4.6820	0.1152	-1.1228
-0.7138	-4.7943	0.1159	-1.1184
-0.7022	-4.9061	0.1165	-1.1142
-0.6906	-5.0175	0.1171	-1.1101
-0.6789	-5.1285	0.1176	-1.1063
-0.6671	-5.2392	0.1181	-1.1026
-0.6553	-5.3494	0.1185	-1.0990

Использованная литература

1. "Оптимальное управление. Линейная теория и приложения" Ю.Н.Киселёв, С.Н.Аввакумов, М.В.Орлов