Zápočtová úloha z předmětu KIV/ZSWI

DOKUMENT SPECIFIKACE POŽADAVKŮ

7. 3. 2015

Tým: Lentilky

Členové:

Lukáš Hruda hrudalu@students.zcu.cz

Štěpán Baratta Baratta Stepan@gmail.com

Jan Albl alblj@students.zcu.cz

Tomáš Matějka <u>matejka@students.zcu.cz</u>

Vytváření lentikulárních obrázků

DOKUMENT SPECIFIKACE POŽADAVKŮ

pro aplikaci provádějící spojování obrázků

Verze 1.3

Historie dokumentu

Datum	Verze	Popis	Autor
3. 3. 2015	1.0	Počáteční specifikace	Lukáš Hruda
5.3.2015	1.1	Úprava seznamu úkolů	Lukáš Hruda
7.3.2015	1.2.	Doplnění slovníčku pojmů	Jan Albl
24.3.2015	1.3	Doplnění uživatelského rozhraní	Jan Albl

Obsah

1. Úvod 1

- 1.1 Předmět specifikace 1
- 1.2 Typografické konvence, 1
- 1.3 Cílové publikum, návod ke čtení 1
- 1.4 Rozsah projektu 1
- 1.5 Odkazy 1

2. Obecný popis 1

- 2.1 Kontext systému 1
- 2.2 Funkce produktu 2
- 2.3 Třídy uživatelů 2
- 2.4 Provozní prostředí 2
- 2.5 Omezení návrhu a implementace 2
- 2.6 Uživatelská dokumentace 2
- 2.7 Předpoklady a závislosti 2

3. Funkce systému 2

- 3.1 Funkce systému 1 2
- 3.2 Funkce systému 2 (atd.) 3

4. Požadavky na vnější rozhraní 3

- 4.1 Uživatelská rozhraní 3
- 4.2 Hardwarová rozhraní 3
- 4.3 Softwarová rozhraní 3
- 4.4 Komunikační rozhraní 3

5. Další parametrické (mimofunkční) požadavky 4

- 5.1 Výkonnostní požadavky 4
- 5.2 Bezpečnostní požadavky 4
- 5.3 Kvalitativní parametry 4

6. Ostatní požadavky 4□

1.Úvod

1.1 Předmět specifikace

Specifikace se zabývá aplikací, jejímž úkolem je vytváření lentikulárních obrázků¹. Konkrétně se bude aplikace starat o načtení již předzpracovaných vstupních obrázků a jejich proložení do výsledného výstupního obrázku a přidání pasovacích značek².

1.2 Typografické konvence

V dokumentu je pro standartní text použito písmo Times New Roman

1.3 Cílové publikum

Členové týmu: Lukáš Hruda, Štěpán Baratta, Tomáš Matějka, Jan Albl

Zadavatel: Ing. Petr Lobaz

Cvičící předmětu KIV/ZSWI: Ing. Jan Štěbeták

1.4 Rozsah projektu

Aplikace bude umět načíst vstupní obrázky ve všech běžně používaných formátech³ a korektním způsobem (viz dále) je proložit do výsledného lentikulárního obrázku¹, přidat pasovací značky² a výsledek převzorkovat na tiskové rozlišení.

Program bude umět zpracovat obrázky, jejichž velikost v nekomprimované podobě⁴ bude dosahovat desítek MB. Bude schopná vytvořit výstupní obrázek o velikosti stovek MB, krajně jednotek GB. Aplikace umožní nastavení všech parametrů (viz dále) potřebných pro proložení pomocí grafického uživatelského rozhraní.

1.5 Odkazy

Nejsou žádné odkazy.

2.Obecný popis

2.1 Kontext systému

Jde o nově vyvíjený program jehož výstupní obrazová data budou určena pro tisková zařízení s rozlišením 300 až 6000 DPI⁵. Vstup i výstup obrazových dat je předpokládán v RGB⁶.

2.2 Funkce produktu

Program umožní načíst několik obrázků v běžně používaných formátech³ a provést proces jejich proložení podle zadaných parametrů a finální převzorkování pro tiskovou velikost. Umožní uložení výstupního obrázku do libovolného z běžně používaných formátů³ do libovolného adresáře pod libovolným názvem. Formát, umístění a název výstupního souboru budou nastavitelné.

Umožní zadání všech parametrů potřebných k proložení obrázků – šírka a výška výstupního obrázku v cm a palcích, DPI⁵ pro výpočet velikosti v pixelech⁷, počet lentikulí na palec (LPI) použité fólie, interpolační algoritmus⁸ použitý při změně velikosti pro obě fáze prokládání (1. převedení všech obrázků na velikost podle počtu lentikulí, 2. převedení výsledného obrázku na tiskovou velikost).

Umožní přidání pasovacích značek² volitelné šířky a barvy. V rámci uživatelského rozhraní umožní snadnou orientaci v načtených obrázcích a umožní určit pořadí, ve kterém budou vstupní obrázky zpracovány.

2.3 Třídy uživatelů

Software budou používat především studenti FDU (technicky nepříliš zdatní uživatelé). Dále to mohou být operátoři produkčního tisku, tj. lidé, kteří od umělců dostanou vstupní obrázky a proces prokládání udělají za ně, třeba proto, že umělci neznají konkrétní tiskové podmínky.

2.4 Provozní prostředí

Aplikace poběží na strojích s operačním systémem Windows, předpokládá se použití stolního počítače nebo notebooku, tj. ne mobilního prostředí. Program bude používán i zahraničními studenty.

2.5 Omezení návrhu a implementace

Program musí fungovat na operačním systému Windows. Doporučeným programovacím jazykem je C# s použitím .NET frameworku.

2.6 Uživatelská dokumentace

Podoba uživatelské dokumentace bude upřesněna později.

2.7 Předpoklady a závislosti

Aplikace bude závislá na vybrané grafické knihovně. Závislost nebude zabudovaná hluboko v kódu, takže bude možné knihovnu v případě potřeby vyměnit za jinou. Aktuálně používaná knihovna je Magick++ (wrapper pro ImageMagick), se kterou budeme komunikovat pomocí DLL napsaného v C++.

3. Funkce systému

3.1 Načtení vstupních obrázků

3.1.1 Popis a priorita

Program musí umožnit načtení předem nespecifikovaného množství vstupních obrazových souborů. Je nutné umět načíst obrázky ve všech standardních formátech³, zjistit jejich typ a zkontrolovat konzistenci a převést je na bitmapovou reprezentaci, se kterou bude program dále pracovat.

Priorita: vysoká

3.1.2 Události a odpovědi

Uživatel vybere obrázky k načtení pomocí grafického uživatelského rozhraní. Bude možné nastavit pořadí zpracování vstupních obrázů.

3.1.3 Funkční požadavky

Požadavek 3.1.3.1:

Obrázky se zadanými názvy musí existovat, v opačném případě bude pomocí výjimky zprostředkována chybová hláška a proces načítání bude ukončen.

3.2 Proložení vstupních obrázků:

3.2.1 Popis a priorita

Program bude umět proložit vstupní obrázky do výsledné bitmapy a tu uložit jako obrázek v kterémkoliv standardním formátu³ .

Priorita: vysoká

3.2.2 Události a odpovědi

Nastavení pro proces proložení a spuštění proložení bude realizováno pomocí grafického uživatelského rozhraní.

3.2.3 Funkční požadavky

Požadavek *3.2.3.1*:

Obrázky musejí být korektně načteny.

Požadavek 3.2.3.2:

Musí být k dispozici dostatek paměti pro výstupní obrázek, ten musí být při procesu vytvořen.

V případě selhání jednoho z těchto požadavků bude pomocí výjimky zprostředkována chybová hláška a proces prokládání bude ukončen.

3.3 Přidání pasovacích značek:

3.3.1 Popis a priorita

Program umožní přidání pasovacích značek² do výsledného obrázku.

Priorita: vysoká

3.3.2 Události a odpovědi

Bude umožněno nastavení pasovacích značek² pomocí grafického uživatelského rozhraní.

3.3.3 Funkční požadavky

Požadavek 3.3.3.1:

Výstupní obrázek musí být vytvořen. Automaticky selže při selhání požadavku reakce na selhání je s ním spojena.

4. Požadavky na vnější rozhraní

4.1 Uživatelské rozhraní

Uživatelské rozhraní dovolí uživateli zvolit k proložení standardní formáty obrázků (jpg, png, tif, bmp). Zvolit si DPI⁵ tiskárny a LPI použité fólie (popřípadě DPCM a LPCM). Umožní zadávání délkových jednotek v cm, mm a palcích. Poskytne možnost změny pořadí obrázků po jejich zvolení. Také dovolí uživateli vybrat interpolační algoritmy pro obě fáze prokládání (viz 2.2), zvolit mezi vertikálním a horizontálním prokládáním a umožní přidání a nastavení pasovacích značek³. Dále umožní výběr formátu výstupního obrázku. Program bude připraven pro možnost volby jazyka s možností přidání nových jazyků.

4.2 Hardwarová rozhraní

Žádná nejsou.

4.3 Softwarová rozhraní

Software bude používat knihovnu pro práci s obrázky (viz 2.7), se kterou bude komunikovat pomocí DLL knihovny napsané v C++. Tato knihovna musí být na cílovém stroji k dispozici (pro 32-bitovou verzi aplikace 32-bitová knihovna, pro 64-bitovou verzi 64-bitová knihovna). Dále je potřeba nainstalovaný .NET framework verze 4.5 a Microsoft Visual C++ Redistributable 2013 (opět podle verze aplikace 32-bit nebo 64-bit).

4.4 Komunikační rozhraní

Žádná nejsou.

5. Další parametrické (mimofunkční) požadavky

5.1 Výkonnostní požadavky

Na počítači, který má k dispozici 1 – 4 GB operační paměti a má procesor s taktovací frekvencí kolem 2,5 Ghz, by doba prokládání výstupního obrázku formátu A4 měla být maximálně v řádech desítek vteřin.

5.2 Bezpečnostní požadavky

Žádné nejsou

5.3 Kvalitativní parametry

- 1. Aplikace musí být snadno použitelná i lidmi, kteří nejsou technicky zdatní. Naučit se ovládat základní funkce by jim mělo zabrat maximálně několik minut, krajně desítek minut.
- 2. Zdrojový kód aplikace musí být přehledný a pečlivě zdokumentovaný, aby případné pozdější modifikace či rozšíření nepůsobily problémy

6.Ostatní požadavky

Dodatek A: Slovníček

- ¹ Lentikulární obrázek Obrázek, který společně s optickou deskou tvoří iluzní představu o měnicím se nebo přesouvajícím se obrázku v závislosti na úhlu pohledu.
- ²Pasovací značka Pomocné čáry, které pomáhají při usazení optické desky na lentikulární obrázek.
- ³Běžně používané formáty Za běžné používané formáty obrázků předpokládáme obrázky s koncovkou png, tif, jpg, gif a bmp
- ⁴**Nekomprimovaná podoba souboru** Soubor obsahuje veškeré potřebné informace k jeho zpracování.
- ⁵**DPI Dots per inch** je údaj určující, kolik obrazových bodů (pixelů) se vejde do délky jednoho palce (2,54cm).
- ⁶**RGB** Aditivní způsob míchání barev používaný v barevných monitorech a projektorech založený na třech barvách, červené, zelené a modré.
- ⁷**Pixel -** Představuje jeden svítící bod na monitoru, resp. jeden bod obrázku zadaný svou barvou, např. ve formátu RGB.
- *Interpolační algoritmus metoda sloužící k nalezení přibližné barevné hodnoty neznámého pixelu z okolních známých pixelů, například při zvětšování nebo zmenšování obrázku.

Dodatek B: Analytické modely

Dodatek C: Seznam úkolů

V nejbližší době více specifikovat funkce systému a celkový návrh aplikace.

- 1. Vytvořit vrstvu aplikace, která na základě nastavených parametrů (seznam vstupních obrázků, parametry proložení, ...) vytvoří proložený výstup.
- 2. Vytvořit vrstvu GUI, která umožní parametry nastavovat a volat funkční vrstvu.
- 3. Vytvořit mechanismus pro ukládání a načítání parametrů ("projektů").

a potvrzuji, že popisuje naši nejlepší současnou předst všechny případné budoucí změny budu provádět podl týmem Lentilky dohodl.	tavu o požadavcích na software. Souhlasím s tím, ž
V Plzni dne 6.3.2015	Ing. Petr Lobaz
	Podpis zadavatele
Prohlášení týmu: Tým Lentilky se zavazuje vytvořit a předat sw produdohodnutém rozsahu, kvalitě a termínu, nejdéle však o	1
V Plzni dne 6.3.2015	Lukáš Hruda
	Podpis šéfa týmu

Prohlášení zadavatele: