Data combination at low frequencies

Pedro Salas

Thanks to

- Glenn White (Open U., UK)
- Kim Emig (Leiden U., NL)
- J. B. R. Oonk (SURF SARA, NL)
- Irene Polderman (Radbound U., NL)
- Maria Arias (U. Amsterdam, NL)
- Aleksandar Shulevski (U. Amsterdam, NL)
- Mark Kuiack (U. Amsterdam, NL)

1 Introduction

2 Data combination at low-frequencies

3 Summary

4 Beam formed observations

The problem is the same:

$$\hat{F}(0,0) = \int \int F(l,m)dldm$$

Low-frequency arrays

- Wide field of view: degrees to all-sky.
- No moving parts.

LOFAR LBA dipole

Low-frequency arrays

Telescope	Wavelength	B_{\min}	B_{\max}
	m	m	km
MWA	1–4	7	5
LWA1	3.5 - 11	5	0.5
LWA-OVRO	3.5 - 11	5	1.5
LOFAR	1.25 - 30	80	1900
NenuFAR	4-30	25	3
AARTFAAC	3-10	2	3.5

LWA1 zenith snapshot UV coverage

Science cases that benefit from total power

- Spectral indices of supernova remnants.
- Galactic synchrotron emissivity (but see e.g., Su+2018).
- EoR experiments.
- Radio recombination lines.

Science cases that benefit from total power LOFAR HBA image of the Galactic plane.

Existing total power maps

- Haslam+1981,1982, 408 MHz.
- Dowell+2017, 35-80 MHz.
- Guzman+2011, 45 MHz.
- Alvarez+1997, Maeda+1999, 45 MHz.
- Dwarakanath & Udaya Shankar 1990, 34.5 MHz.
- Roger+1999, 22 MHz.

See de Oliveira-Costa+2008 & Zheng+2016 for a more complete list.

Data combination at low-frequencies

Measure the total power using a filled array and a noise diode.

Data combination at low-frequencies

Measure the total power using a dipole equiped with a noise diode.

Data combination at low-frequencies

Comparisson with the GSM (de Oliveira-Costa+2008)

LWA1 vs LWA-OVRO

LWA1 vs LWA-OVRO

GSM comparison

Existing total power maps

- ► Significant fraction of flux on scales $\leq 0.5\lambda$.
- ► Total power needs filled array or single dipole observations.
- \blacktriangleright Different global sky models have differences of $\approx 30\%$ at low frequencies.

Image combination

- Image inteferometer data taking into account W and A terms.
- Interpolate the total power data in frequency to match the interferometric.
- **3** Combine using your favorite algorithm (e.g., feather).

Image combination

Image combination

Joint deconvolution

- Great tools being developed in CASA.
- How do we handle the A-term in CASA?

Summary

- Existing low-frequency total power maps can be used to measure the zero spacing.
- Image combination seems like a viable option.
- We need to explore joint deconvolution.

Form a phased array instead of an interferometer.

Image courtesy: J. B. R. Oonk