HOMEWORK 1: TOPOLOGICAL SPACES AND CONTINUOUS MAPS DUE: SEPTEMBER 18, 2017

- 1) Write down all 9 possible inequivalent Topologies on the set with 3 points: $\{A, B, C\}$. (hint: there are 29 in total, avoid rearranging A, B, and C)
- 2) Let \mathcal{T}_{α} be a collection of topologies. Is it true that $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is a topology? What about $\bigcup_{\alpha} \mathcal{T}_{\alpha}$?
- 3) A topology \mathcal{T} is called **finer** than a topology \mathcal{S} if $\mathcal{S} \subseteq \mathcal{T}$. That is to say every set which is open in \mathcal{S} is open in \mathcal{T} . In this case \mathcal{S} is said to be **coarser** than \mathcal{T} . Two topologies are called **comparable** if one is coarser than the other.

Consider the following topologies on \mathbb{R} :

- $\circ \mathfrak{T}_1$ = the standard Euclidean/metric topology.
- $\circ \mathfrak{T}_2$ = the finite complement topology.
- $\circ \mathfrak{T}_3$ = the topology with basis (a, b], where $a, b \in \mathbb{R}$.
- $\circ \ \mathfrak{I}_4 =$ the topology with basis $(-\infty, b)$, where $b \in \mathbb{R}$.
- $\circ \ \mathfrak{T}_5 =$ the topology with basis (a,b) and $(a,b) \setminus K$, where $K = \bigcup_{n \in \mathbb{Z}} \frac{1}{n}$.

Compare each of these topologies with one another.

- 4) Let $X_{\alpha} \subset X$ be a collection of **closed** subsets that cover $X: X = \bigcup_{\alpha} X_{\alpha}$. Let $f: X \to Y$ be a function (not necessarily continuous) such that $f|_{X_{\alpha}}$ is continuous.
 - \circ Suppose X_{α} is a finite collection (e.g. X_1, \ldots, X_n). Show that f is continuous.
 - Find an example where this is not the case for a countable collection.
 - Suppose X_{α} is a **locally finite** collection: every $x \in X$ has a neighborhood intersecting at most **finitely many** X_{α} . In this case, show f is continuous.
- 5) If $A \subset X$ (with the subspace topology), a retraction is a continuous map $r: X \to A$ with $r|_A = Id_A$. Show that r is a quotient map.
- 6) Let $\pi: \mathbb{R}^2 \to \mathbb{R}$ be the projection onto the first coordinate. Let

$$A = \{(x, y) \mid x \ge 0 \text{ or } y = 0\}$$

with the subspace topology. Show that the induce map $\pi|_A$ is a quotient map that is neither closed nor open (a map is closed (resp. open) if the image of a closed (resp. open) set is closed (resp. open)).