ELEMENTS OF GRAND UNIFICATION

φ 519: 8/24/92

Unified field theory

One master set of field extra, describing all
interactions: Maxwell's EDB, + gravity & nuclear.

(1) Simple picture: describe interactions between source points by forces...*

51 (quentum) $\rightarrow S_z$ F(r) = $\left[\alpha f(r) \right] \hat{\tau} \int \alpha \leftrightarrow source strength on S, S_z$, $f(r) \leftrightarrow geometry, quentum mass.$

Eig. gravity: $F(r) = \frac{Gm_1m_2}{r^2} \int_{-r^2}^{50/r} d = Gm_1m_2,$ $f(r) = \frac{1}{r^2} (\dot{m} 3D);$ Coulomb: $F(r) = \frac{kq_1q_2}{r^2} \int_{-r^2}^{50/r} d = kq_1q_2,$ $f(r) = \frac{1}{r^2} (\dot{m} 3D).$

(2) $f(r) = \frac{1}{r^2}$ is a geometric factor (in 3D) or absorption probability for a mass less quantum. If the quantum has mass μ , then QM requires: $f(r) = \frac{1}{r^2} e^{-r/\lambda}$, $\underline{\lambda} = \frac{\pi}{\mu} \int_{-\infty}^{\infty} \frac{1}{\mu} \int_{-\infty$

(3) In these terms, there are only four fundamentally distinct interactions:

FORCE (compling)	α	quartum: mass	range: A	f(r)	Sources
gravity (tensor)	10 ⁻⁴⁰	gravitón: O	∞\	1/22	all masses
Neotromognetic (rector)	10-2	photon: 0	8	1/42	all charges
weak (pseudosculan)	10 ⁻¹³	boson: 80 mp	10 ¹⁵ cm	1/2 e-r/x	nucleons (radioactivity)
strong (vector)	~ 10	pion: 0.2 mp	10 ⁻¹² cm	1 e-r/2	nucleons (binding)

Enormous

differences in

strengths, ranges

and character

in

these F's will

the difficult

to unify.

* Interactions usually described by Lagrange Egtres nother than force egtres.

- (4) Characteristics of an acceptable unified field theory ...
 - A: COVARIANT { Obeys laws of special relativity (Lorentz trunsform, etc.); can be applied at all velocities & C.
 - B. GAUGE { forces \rightarrow fields describable by potential functions; INVARIANT { sources specified by "changes" & "currents.
 - C. QUANTIZED { obeys laws of QM (uncertainty principle, etc.); [can therry explain quantized charges of masses]?
 - D. RENORMA- { all quantities in the theory can be made finite; LIZABLE { [e.g. self-energy (energy-of-assembly) of point sources].
- (5) Until 1970, only usable theory showing all these characteristics was "QED" (quantum electrodynamics) -- a quantized, fully relativistic, gauge invariant and renormalizable theory of EM interactions. At 21970, "QCD" (quantum Chromodynamics) emerged as a similar theoretical framework for strong interactions. Still, no real unification of the four fields was accomplished until the early 70's, when the EM & weak interactions were combined into an "electroweak" theory (Weinberg, Salam, Glashow: Nobel Prize (1979)). The structure of electroweak theory resembles Maxwell's EM. Current status is:

	FIELD	COV'NT	GAUGE INV.	QNTZD	RNORM
	gravity	yes	_	no	9100
	JEM	yes	yes	yes	yes
	weak	yes	yes	yes	yes
	strong	(yes)	(yes)	(yes)	(yes)
	electroweak	yes	yes	yes	yes

Prescription for your 1ST Nobel Prize:

1) change the "no's" to "yesses";

2) inch to What There does

2) write the Whole Theory down;

3) publish, with suitable andacity;

4) accept all colls from Sweden;

5) buy airline tickets early.