Quinn Meyer

Website | LinkedIn | GitHub | Saginaw, MI

EDUCATION

Master of Science in Data Analytics	December 2022
Western Governor's University, Salt Lake City, UT	
Bachelor of Science in Mechanical Engineering	2018
Purdue University, West Lafayette, IN	

SKILLS

Programming Languages: Python, SQL, MATLAB, HTML

Python Packages: Jupyter, Numpy, Pandas, Scikit-Learn, OpenCV, Pillow, Plotly, Tensorflow, Keras **Tools & Methodologies:** Tableau, Git, Jira, ETL, Machine Learning, Deep Learning, Natural Language Processing, Signal Processing, Database Design, Data Visualization, Data Analysis, Microsoft Office

EXPERIENCE

AptivCamera Systems Engineer

Troy, MI September 2018 – April 2022

- Remotely led a global team of engineers to launch and validate intrinsic calibration software for manufacturing and achieved a cycle time below 60 seconds per unit for multiple optical paths at 100k+ cameras per year in less than 6 months as a critical path
- Technical lead for novel intrinsic calibration verification software in Python referencing publicly available white papers with a newly implemented distortion model at a cycle time of under 60 seconds per unit
- Developed metrological testing algorithm to assess camera model accuracy on the order of 2 millimeters at 20 meters range for verification of Aptiv's global intrinsic calibration manufacturing process
- Led a data analytics study on the DAT2.0 camera module using classification techniques to improve standard deviation of MTF measurements in a validation environment by 0.03 MTF at 0.25 cycles/pixel
- Interfaced with automotive lens, sensor, image quality, lens quality, and camera alignment suppliers as well as OEM customers as a technical expert to assess camera quality and to perform root cause analysis
- Implemented a novel white paper method in Python to objectively test for image sensor perceptiveness through use speckle interferometry and signal processing techniques to objectively assess sensor MTF
- Developed Python API with Solidworks to ensure camera field of view and boresight error fits within dimensions of a bracket for mechanical engineers to reference during design
- Developed neural net models using Tensorflow / Keras to detect and segment camera targets in highly distorted raw images and implemented these models into image processing software
- Collaborated to develop a custom camera alignment machine to align cameras using a six-axis robot, intermediate optic, active adhesive curing, and optimization software based on focus scores
- Operated as a full-stack engineer developing image processing tools to measure image quality metrics using focus score, SNR, demosaicing, RAW images, color calibration, dark noise, etc.

Rolls-Royce Capstone Project West Lafayette, IN Spring 2018

- Worked with a small team of engineers to design, source, fabricate, code, and launch a robust automated test fixture for simulating the forces distributed onto a jet turbine in under six months
- Deployed the project 25 percent under budget and ahead of scheduling with the text fixture currently being used in the Rolls-Royce research and development facility in West Lafayette