Subjectul 1 (3 puncte)

Se dă un graf neorientat cu n>3 vârfuri și m muchii și un vârf s.

- a) Adăugați la G un număr minim de muchii astfel încât să devină conex. Construiți în memorie și afișați pe ecran listele de adiacență ale grafului astfel obținut. **Complexitate O(n+m)**
- b) Determinați excentricitatea ecc(s) a vârfului s în noul graf G₁ obținut la a):

$$ecc(s) = max(d(s,v)| v varf in G_1)$$

unde d(s,v) este distanța de la s la v.

Complexitate O(n+m)

Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii
- pe ultima linie este vârful s

graf.in	lesire pe ecran (solutia nu este unica)
6 4	a)
13	12
15	2 6
3 5	b)
2 4	3
6	Explicaţii: $d(6,1)=2$, $d(6,2)=1$, $d(6,3)=3$, $d(6,4)=2$,
	d(6,5)=3, deci ecc(6)=3

Subjectul 2 (3 puncte)

Se citesc informații despre un graf **neorientat** ponderat conex G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de muchii m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere pozitive reprezentând extremitatea inițială, extremitatea finală și costul unei muchii din graf
- a) Să se afișeze costul unui arbore parțial de cost minim în G. Complexitate O(mlog(n)).
- b) Se citesc de la tastatură două muchii **noi** date tot prin extremitatea inițială, extremitatea finală și cost. Știind că **doar una** dintre aceste muchii se va adăuga la graful G, decideți pe care o adăugați astfel încât noul graf să aibă un arbore parțial de cost minim cu cost cât mai mic și afișați muchiile unui arbore parțial de cost minim în acest graf. **Complexitate O(n)**

Exemplu

graf.in	Iesire pe ecran (nu conteaza
	ordinea în care sunt afisate
	muchiile)
5 5	a)
121	13
1 4 2	b)
2 3 4	adaugam 3 5
3 4 8	12
4 5 6	14
	2 3
Intrare de la tastatura	3 5
3 5 5	
135	

Subjectul 3 (3 puncte)

Propuneți un algoritm bazat pe algoritmul Ford-Fulkerson / Edmonds Karp pentru rezolvarea următoarei probleme.

Fișierul graf.in conține următoarele informații despre un graf **bipartit** conex cu $V_1=\{1,...,p\}$ și $V_2=\{p+1,...,n\}$:

- pe prima linie sunt 2 numere naturale n și m reprezentând numărul de vârfuri și numărul de muchii
- pe a doua linie este p
- pe următoarele m linii sunt perechi de numere x y (separate prin spațiu) reprezentând extremitățile unei muchii, $x \in V_1$ și $y \in V_2$.

Scrieți un program care citește datele despre graful G din fișierul graf.in și afișează:

- a) Un cuplaj de cardinal k în G, cu k citit de la tastatură. Dacă nu există un astfel de cuplaj se va afișa mesajul "nu exista" **Complexitate O(km)**
- b) Muchiile unui 2-factor în G, dacă există (2-factor = graf parțial în care toate vârfurile au gradul 2) **Complexitate O(nm)**

graf.in	lesire pe ecran (solutia nu este unica)
8 10	a)
4	pentru k=2
15	15
16	2 6
17	b) un 2-factor:
25	15
2 6	16
3 5	2 5
3 7	2 6
3 8	3 7
4 7	3 8
48	4 7
	48

