homework vi

Ayush Kumar Shah

2020-10-06

Contents

Introduction	2
Context	2
About the data	2
nyc311	2
Data extract: nyc311	3
Additional data	3
1. Projected Population 2010-2040 - Total By Borough and Age Groups Groups	3
2. 2005 - 2011 Graduation Outcomes - Borough - Ethnicity	
Data extract: Graduation	
Tidying the data	4
Tidying nyc311 data	4
Checking duplicates	
Remove unspecified Borough	
Separating Created. Date to mulitple Columns	
Remove Columns	
Viewing columns of the tidied nyc311 dataset	
Tidying Population data	
Gathering the years	
Filtering by total population in each Borough	
Joining the datasets	8
Converting graduation dataset to suitable form	
Check Borough's values	
Converting to uppercase	
Viewing the year distribution of the tables	
Joining the datasets	
Findings	13
Top 10 Largest Responding City Government Agencies	13
Most frequent Complaint Categories	14
Top complaint types	15
Most frequent Complaint Categories across different Boroughs	15
Complaints across boroughs	16
Resolve time across Boroughs	17
Resolve time by Complaint Types and Boroughs	18
Covariation between Complaints Type and Boroughs	
Complaints trend over Boroughs	
Heating Complaints trend over Boroughs	21

	Distirbution of Heating complaints in maps	22
	Busy hours and days	23
	Busy months	25
	Population trends in Boroughs	26
	Gradutaion percentage across Boroughs	27
	Population and Complaints distribution across Boroughs	27
\mathbf{C}	onclusions	28
A	ppendices	30
	Data Dictionary	30

Introduction

In this report, the nyc311 dataset will be analyzed to generate and communicate findings about different aspects of the data in an effective and presentable manner. The analysis of the nyc311 dataset along with two additional related datasets will help to identify different existing problems and the causes of increasing complaints. The insights from the report will also help the agencies to reduce the frequency of complaints and also address the complaints more effectively in the future.

the two data sets introduced in the previous report are connected to the 311 data set, using dplyr. Before connecting them, several operations are performed on the datasets.

Also, few tables consisting of an extract of the data of each dataset as well as the final joined dataset are shown. Finally, a data dictionary for all the data in each dataset including the final joined dataset is also displayed. The connections between the columns will be shown in the next final report.

Context

The dataset focused in this study is New York's 311 service requests. The NYC Open Data has made all NYC 311 service requests and complaints publicly available. Open Data is free public data published by New York City agencies and other partners. Each City agency has an Open Data Coordinator, who serves as the main point of contact for the Open Data Team and the public, and works to identify, document, structure, and manage the agency's public datasets. NYC Open Data curates nearly 3,000 different datasets across every facet of life in New York City.

The fundamental mission of OpenData is taking what can be complex information, generated from the operation of the largest municipal government in the country, and making it accessible to everyone: Open Data for All. Open Data is every New Yorker's digital library, one that allows them to engage on a more even footing with their government, and build online tools drawing on the information that is shared.

About the data

nyc311

The nyc311 data in this report includes all 311 Service Request Calls from the residents, businesses and visitors in New York City between the 2003 to 2015. This information is automatically updated daily. In addition, the general public can access their website to submit queries in more than 50 languages and can get help in more than 175 languages by calling 311. They provide citizens a quick, convenient way to complain about problems in their neighborhoods, and get a response.

The information hub was launched in February 2003 with an average calls of 2126 per day and was designed to filter non-emergency calls away from the emergency phone line, 911. The fundamental goal of nyc311 is to provide the public with swift and easy access to all New York City government services and information while offering the best customer service.

Data extract: nyc311

Let's view an extract of the nyc311 data with only a few important columns.

Table 1: New York City: 311 Service Requests

Created.Date	Agency	Complaint.Type	Descriptor	Incident.Zip	Status	Borough
01/26/2010	HPD	HEATING	HEAT	11210	Closed	Unspecified
12:00:00 AM						
12/02/2010	HPD	HEATING	HEAT	11213	Closed	Unspecified
12:00:00 AM						
03/13/2014	NYPD	Derelict Vehicle	With	10314	Closed	STATEN
07:57:26 AM			License			ISLAND
			Plate			
11/13/2012	$_{ m HPD}$	HEATING	HEAT	11229	Closed	BROOKLYN
12:00:00 AM						
07/19/2013	$_{ m HPD}$	PLUMBING	BASIN/SINK	10460	Closed	BRONX
12:00:00 AM						
01/29/2011	DOT	Street Light	Street	11213	Closed	BROOKLYN
05:49:00 PM		Condition	Light Out			

Additional data

The two additional datasets introduced in this report are:

- 1. Projected Population 2010-2040 Total By Borough and Age Groups: Source
- 2. 2005 2011 Graduation Outcomes Borough Ethnicity: Source

1. Projected Population 2010-2040 - Total By Borough and Age Groups Groups

This dataset consists of projected total New York City population for five intervals from 2010 through 2040 by Borough, broken down by 18 age cohorts. However, the age groups may not add up to the total due to rounding.

This dataset is introduced so that the population information in each Borough is available during analysis of the nyc311 data, by joining it appropriately with the original nyc311 data. This is achievable since the table contains the Borough column.

Data extract: Population

Table 2: Projected Population 2010-2040 by Borough and Age

Borough	Age	2010	2015	2020	2025	2030	2035	2040
Staten Island	5-9	30015	29595	29394	29890	30397	30253	29816
Staten Island	10-14	30797	30703	30307	30001	30541	31074	30932
Queens	10-14	124320	123672	129351	130384	132038	133473	133813
Manhattan	10-14	58229	55455	60331	62902	66322	66700	63630
Brooklyn	10-14	159404	155314	166761	174242	175992	173419	171265
Bronx	10-14	99159	92423	95703	100081	104065	105297	105010

2. 2005 - 2011 Graduation Outcomes - Borough - Ethnicity

This dataset consists of graduation results for all students by year; cohorts of 2001 through 2007 (Classes of 2005 through 2011). Graduation Outcomes are as calculated by the New York State Education Department. The New York State calculation method was first adopted for the Cohort of 2001 (Class of 2005).

Graduates are defined as those students earning either a Local or Regents diploma and exclude those earning either a special education (IEP) diploma or GED.

This dataset is introduced so that the educational status of the people in different Borough is available for further analysis in correlation with the nyc311 data. This is achievable since the table contains the Borough column.

Data extract: Graduation

Table 3: 2005-2015 Graduation Outcomes - Borough

Borough	Cohort Year	Cohort Category	Demographic	Total Cohort Num	Total Grads Num	Total Grads Pct of cohort
Bronx	2001	4 Year June	Asian	638	479	75.10%
Bronx	2001	5 Year	Asian	638	528	82.80%
Bronx	2001	6 Year	Asian	638	534	83.70%
Bronx	2002	4 Year June	Asian	681	497	73.00%
Bronx	2002	5 Year	Asian	681	564	82.80%
Bronx	2002	6 Year	Asian	681	574	84.30%

Both of these datasets were obtained from the NYC OpenData. Also, they both contain the column Borough and Years which makes them connectable to the nyc311 data.

Tidying the data

Tidying nyc311 data

Checking duplicates

We check duplicates by first removing the Unique. Key variable since all the values are unique in the column.

Since all_equal() takes a very long time to compare the two data frames, we simply compare the number of rows in the main and non duplicated data frames using nrow().

- Number of rows in original nyc311 dataframe = 10000
- Number of rows in non duplicated nyc311 dataframe = 10000
- Duplicate observations present FALSE

We can see that there are duplicate observations. So, we use the non duplicated data frame in the further steps which has 10000 unique observations obtained after removing 0 duplicate observations.

Remove unspecified Borough.

Table 4: Borough distribution

Borough	count
BROOKLYN	2768

Borough	count
QUEENS	2136
MANHATTAN	1859
BRONX	1549
Unspecified	1168
STATEN ISLAND	520

We can see that there is a significant number of observations with Unspecified Borough. Hence, those observations have been removed using filter().

Separating Created.Date to mulitple Columns

- We separate Created.Date into columns Created.Year, Created.Month, Created.Day, and Created.Time.
- We again calculate Hours from the Time variable as well as Created. Weekday using POSIX1t class.
- We also calculate the Resolve.Time.Days variable by computing the difference of Closed.Date and Created.Datevariables.

These separations are done so that we can easily analyze different trends in the data variables later based on year, month, day or hour of day. Also, the response time can by analyzed later in relation to other variables.

The table below shows the new time and date variables.

Table 5: Separation of Date and Time and Calculation of Response Time (continued below)

Created.Date	Closed.Date	Created.Year	Created.Month	Created.Day
03/13/2014	03/13/2014	2014	3	13
07:57:26 AM	08:08:59 AM			
11/13/2012	11/18/2012	2012	11	13
12:00:00 AM	12:00:00 AM			
07/19/2013	08/07/2013	2013	7	19
12:00:00 AM	12:00:00 AM			
01/29/2011	01/31/2011	2011	1	29
05:49:00 PM	10:56:00 AM			
03/02/2012	03/08/2012	2012	3	2
12:00:00 AM	12:00:00 AM			
08/01/2011	08/01/2011	2011	8	1
10:49:23 PM	11:32:29 PM			

_				
	Created.Time	Created.Hour	Resolve.Time.Hours	Created.Weekday
	07:57:26 AM	7	0.18	Thursday
	12:00:00 AM	0	120	Tuesday
	12:00:00 AM	0	432	Friday
	05:49:00 PM	17	41.12	Saturday
	12:00:00 AM	0	144	Friday
	10:49:23 PM	22	0.72	Monday

Remove Columns

Redundant columns

Let's view some columns which have redundant information.

Table 7: Redundant columns (continued below)

Street.Name	Incident.Address	Latitude	Longitude	Location
WILLOW	498 WILLOW ROAD	40.62	-74.15	(40.61621148786262,
ROAD WEST	WEST			-74.15315033162267)
AVENUE W	1900 AVENUE W	40.59	-73.95	(40.594748423277736,
				-73.95157327758106)
MARMION	1967 MARMION	40.84	-73.89	(40.843515202688536,
AVENUE	AVENUE			-73.8866720963765)
ST JOHNS	959 ST JOHNS	40.67	-73.95	(40.671432764007186,
PLACE	PLACE			-73.94639142012068)
3 AVENUE	3463 3 AVENUE	40.83	-73.91	(40.82983679102256,
				-73.90640699264534)
ST MARKS	303 ST MARKS	40.68	-73.97	(40.67783529469647,
AVENUE	AVENUE			-73.96512638302426)

Facility.Type	Location.Type	Borough	Park.Borough	Community.Board
Precinct	Street/Sidewalk	STATEN	STATEN	01 STATEN
		ISLAND	ISLAND	ISLAND
N/A	RESIDENTIAL	BROOKLYN	BROOKLYN	15 BROOKLYN
	BUILDING			
N/A	RESIDENTIAL	BRONX	BRONX	Unspecified BRONX
	BUILDING			
N/A	NA	BROOKLYN	BROOKLYN	08 BROOKLYN
N/A	RESIDENTIAL	BRONX	BRONX	03 BRONX
	BUILDING			
Precinct	Street/Sidewalk	BROOKLYN	BROOKLYN	08 BROOKLYN

Columns with very few data

Let's view the counts of the non empty values in each column. We only display the columns which have counts less than 65% of the total observations.

Table 9: Columns with very less non empty values

	Non.NA.Count
	11011.1111.004110
Ferry.Direction	0
School.or.Citywide.Complaint	2
${f Garage. Lot. Name}$	4
Landmark	8
Vehicle. Type	9
Taxi.Company.Borough	11
Ferry.Terminal.Name	13
Road.Ramp	25
Bridge.Highway.Segment	25
Bridge.Highway.Name	26

	Non.NA.Count
Bridge.Highway.Direction	31
Taxi.Pick.Up.Location	76
Intersection.Street.1	1642
Intersection.Street.2	1642
School.Not.Found	2386
Due.Date	2436

Removing the columns

We remove the redundant columns seen previously, the columns with very few non empty data and also the columns which are not relevant or useful like Created.Date, Due.Date since important date and time information have already been extracted. Also, address fields like Cross.Street.1, Address.Type, and other irrelevant columns are removed. "

Viewing columns of the tidied nyc311 dataset

Created.Month, Created.Day, Created.Year, Created.Time, Agency, Agency.Name, Complaint.Type, Descriptor, Location.Type, City, Status, Borough, School.Number, Latitude, Longitude, Created.Hour, Resolve.Time.Hours and Created.Weekday

Hence, we tidied the nyc311 data by removing duplicate values, gathering and spreading required columns like Created.Date using tidyr package. We also removed the redundant columns and columns with very little or irrelevant information.

Tidying Population data

Gathering the years

Table 10: Projected Population 2010-2040 by Borough and Age

Borough	Age	2010	2015	2020	2025	2030	2035	2040
Staten	5-9	30015	29595	29394	29890	30397	30253	29816
Island								
Staten	10-14	30797	30703	30307	30001	30541	31074	30932
Island								
Queens	10-14	124320	123672	129351	130384	132038	133473	133813
Manhattan	10 - 14	58229	55455	60331	62902	66322	66700	63630
Brooklyn	10-14	159404	155314	166761	174242	175992	173419	171265
Bronx	10-14	99159	92423	95703	100081	104065	105297	105010

We can see that the years need to be gathered together in the nyc_popn data.

Table 11: Tidied Population data

Borough	Age	Year	Population
Staten Island	5-9	2040	29816
Staten Island	10-14	2040	30932
Queens	10-14	2040	133813
Manhattan	10-14	2040	63630
Brooklyn	10-14	2040	171265
Bronx	10-14	2040	105010

Filtering by total population in each Borough

Since the nyc311 has no information of Age group, so only the observations with total population of each Borough is filtered.

Table 12: Total population data (Age groups removed)

$\operatorname{Borough}$	Year	Population
NYC Total	2010	8242624
Bronx	2010	1385108
Brooklyn	2010	2552911
Manhattan	2010	1585873
Queens	2010	2250002
Staten Island	2010	468730

Joining the datasets

Converting graduation dataset to suitable form

Table 13: 2005-2011 Graduation Outcomes - Borough

Borough	Cohort.Ye	ear Cohort.Categor	r D emograph	i&otal.Cohort.N	Juffiotal.Grads.Nu	uffotal.Grads.Pct.of.cohort
Bronx	2001	4 Year June	Asian	638	479	75.10%
Bronx	2001	5 Year	Asian	638	528	82.80%
Bronx	2001	6 Year	Asian	638	534	83.70%
Bronx	2002	4 Year June	Asian	681	497	73.00%
Bronx	2002	5 Year	Asian	681	564	82.80%
Bronx	2002	6 Year	Asian	681	574	84.30%

The Cohort.Category is parsed as number and added with the Cohort.Year to calculate the Graduation.Year. Then, only the relevant columns are selected. Finally, duplicates are removed by grouping the data according to the columns, Graduation.Year and Borough.

Graduation. Year	Borough	Total.Cohort.Num	Total.Grads.Num	Total.Grads.Pct.of.cohort
2005	Bronx	6150	2261	75.10%
2005	Brooklyn	9382	4232	63.80%
2005	Manhattan	5739	2924	81.90%
2005	Queens	5335	2836	67.20%
2005	Staten Island	2304	1700	80.50%
2006	Bronx	6623	2922	82.80%

Check Borough's values

Since the tables will be connected by Borough, it is checked if there are any unspecified values in the column or mismatch in all the tables.

Table 15: Borough distribution on nyc311 data

Borough	counts
BRONX	1236
BROOKLYN	2338
MANHATTAN	1602
QUEENS	1895
STATEN ISLAND	430

Table 16: Borough distribution on graduation data

Borough	counts
Bronx	7
Brooklyn	7
Manhattan	7
Queens	7
Staten Island	7

Table 17: Borough distribution on population data

Borough	counts
Bronx	7
Brooklyn	7
Manhattan	7
NYC Total	7
Queens	7
Staten Island	7

Since there are no Unspecified or null values, we are good to go. However, the values of Borough in the 2 tables table must be converted to uppercase.

Converting to uppercase

Viewing the year distribution of the tables

Since these tables contain different year values, we need to sample it based on a particular year. So, the year distributions of all three datasets are checked.

The results show that 2010 would be a good year to perform the analysis since it is common in all the tables.

Joining the datasets

Now that all the datasets are processed, they are ready to be connected by the columns Year and Borough using inner_join. Note that the column name for Year differs in the three tables.

Also, 2010 is selected as the year for the analysis, hence all the tables are filtered accordingly.

The extract of final joined dataset is shown below

Table 18: Final combined dataset (continued below)

Created.Month	Created.Day	Created.Year	Created.Time	Agency
2	4	2010	01:00:00 PM	DEP
8	14	2010	09:03:00 AM	DSNY
6	29	2010	07:31:30 PM	DOB
3	27	2010	01:39:00 PM	DOT
7	21	2010	12:41:01 AM	DOT
6	6	2010	09:35:00 PM	DSNY

Table 19: Table continues below

Agency.Name	Complaint.Type	Descriptor	Location.Type	City
Department of	Water System	Leak (Use	NA	NEW
Environmental		Comments)		YORK
Protection		(WA2)		
BCC - Brooklyn	Derelict Vehicles	14 Derelict	Street	BROOKLYN
North		Vehicles		
Department of	General	Building	NA	WOODSIDE
Buildings	Construction/Plumbing	Permit - None		
Department of	Traffic Signal Condition	Controller	NA	EAST
Transportation				ELMHURST
Department of	Street Condition	Pothole	NA	JAMAICA
Transportation				
Queens West 06	Derelict Vehicles	14 Derelict	Street	REGO
		Vehicles		PARK

Table 20: Table continues below

Status	Borough	School.Number	Latitude	Longitude	Created.Hour
Closed	MANHATTAN	Unspecified	40.72	-73.99	13
Pending	BROOKLYN	Unspecified	40.66	-73.92	9
Closed	QUEENS	Unspecified	40.73	-73.9	19
Closed	QUEENS	Unspecified	40.76	-73.9	13
Closed	QUEENS	Unspecified	40.72	-73.79	0
Pending	QUEENS	Unspecified	40.73	-73.85	21

Table 21: Table continues below

Resolve.Time.Hours	Created.Weekday	Population	Total.Cohort.Num
502.2	Thursday	1585873	7766
2.95	Saturday	2552911	11130
1612	Tuesday	2250002	6867
0.6	Saturday	2250002	6867
12.98	Wednesday	2250002	6867
0	Sunday	2250002	6867

${\bf Total. Grads. Num}$	${\bf Total. Grads. Pct. of. cohort}$
5050	89.80%
7322	83.30%
4289	83.40%
4289	83.40%
4289	83.40%
4289	83.40%

Findings

Top 10 Largest Responding City Government Agencies

We find out the top 10 city government agencies in terms of the largest Service Requests (SR) with the count and proportion count (in percentage).

Table 23: Top 10 Largest Responding City Government Agencies

Agency	Complaints count	Proportion in %
HPD	2073	27.64
DOT	1513	20.17
NYPD	1115	14.86
DEP	810	10.8
DSNY	678	9.039
DOB	475	6.332
DPR	348	4.639
DOHMH	162	2.16
TLC	116	1.546
DCA	107	1.426

Then we visualize it using a bar chart.

Top 10 Largest Responding City Government Agencies

HPD

DOT

NYPD

DONY

DONY

DOHMH

TLC

DCA

Soo Complaints count

It is clear that HPD and DOT are biggest agencies in terms of receiving the 311 calls.

Most frequent Complaint Categories

Let's view the Top 10 most frequent categories of the complaints registered along with the count and count %.

Table 24: Top 10 most frequent complaint categories

Complaint.Type	count proportion in %	
HEATING	577	7.692
Street Condition	550	7.332
Street Light Condition	392	5.226
GENERAL CONSTRUCTION	338	4.506
Blocked Driveway	331	4.413
PLUMBING	314	4.186
Water System	306	4.079
Traffic Signal Condition	285	3.799
PAINT - PLASTER	264	3.52
Illegal Parking	260	3.466

We can see that HEATING and Street Condition are very common complaints.

Top complaint types

Common complaint types

Most frequent Complaint Categories across different Boroughs

Now, let's view the counts of the top 10 frequent complain categories across different Boroughs using a facet plot.

Complaints across boroughs

Let's find out the distribution of the calls across the Boroughs.

Hence, Brooklyn and Queens are more busy than other Boroughs.

Resolve time across Boroughs

Let's analyze which Boroughs resolve the complaints quickly. We first filter the resolve time less than 10 days.

Hence, we can see that Queens has the quickest resolve time compared to others.

Resolve time by Complaint Types and Boroughs

Let's see the variation of resolve time on the basis of Complaint Category across Boroughs. First, we filter resolve time less than 10 days only.

Hence, we can see that Street condition complaint takes longer to resolve by Brooklyn and Staten Island. On the other hand, complaints like Water system, Traffic Signal Condition and BLocked Driveway are quickly resolved by all Boroughs.

Covariation between Complaints Type and Boroughs

We can see that Brooklyn has relatively higher number of complaints, especially heating complaints. Staten island have very few complaints.

Complaints trend over Boroughs

Now, let's see the frequency of complaints over the years across different Boroughs.

2012 saw a spike in complaints in Brooklyn whereas complaints in Queens was at peak in 2013. Highly effective corrective measures seem to have been employed in almost all Boroughs since the numbers dropped to less than a quarter in 2015.

Heating Complaints trend over Boroughs

Now, let's see the evolution of heating complaints over the years across different Boroughs.

We can see that Bronx has peak heating complaints in 2013 and 2014 while Staten Island has almost flat curve u=indicating no significant rise in heating complaints.

Distirbution of Heating complaints in maps

This is done on a sample (10000 observations) of nyc311 data.

HEATING complaints distribution Tarrytown Dari 287 Ramsey Stamford (9W) White Plains Greenwich (17) Oakland (208) Port Chester Ridgewood Harrison (22) Paramus 202 Yonkers Paterson **New Rochelle** 4 Hackensack Clifton 95 THE BRONX Montclair 2/8 (3) 40.8 ngston MANHATTAN Latitude Hicksville Mineola Newark 95 QUEENS Garden City Levittown BYP 9 78 **New York** Hempstead 106 (135) Union BROOKLYN (27) 27) Elizabeth Valley Stream Freeport 27) Linden Jone 27) 40.6 -9 Long Beach STATEN ISLAND Woodbridge Township

We can see the heating complaints mostly in Bronx and Brooklyn in the map.

-74.0

Longitude

-73.8

Sandy Hoo

Busy hours and days

Perth Amboy

Let's see which days of the week and which time are more busy.

Hazlet 36

-74.2

Map data ©2020 Google

-73.6

Busy months

We can see that January and February are busier than other months. It may be due to the new year.

Population trends in Boroughs

We can see that Brooklyn has the highest population over the years and is rapidly inreasing. However, Staten island's population increase is almost flat.

Gradutaion percentage across Boroughs

We can see an increasing trend in percentage of graduate students every year in each Borough.

Population and Complaints distribution across Boroughs

Let's find out the distribution of the calls and population across the Boroughs.

We can see that although Queens has a lower population than Brooklyn, it receives more 311 calls.

Conclusions

Hence, several transformations and explorations were done on the nyc311 data and the two additional datasets. The two datasets were also joined with the nyc311 data by converting all the datasets into appropriate form (tidying, grouping and removal of redundant columns), performing a inner join by columns Year and Borough and finally filtering it by the Year==2010 constraint.

We applied exploratory data analysis using various data transformation and visualization techniques. We were able to answer several questions about the data. Several analysis were done which gave the following findings.

- 1. It is clear that HPD and DOT are biggest agencies in terms of receiving the 311 calls.
- 2. We can see that HEATING and Street Condition are very common complaints.
- 3. Brooklyn and Queens are more busy than other Boroughs.
- 4. Queens has the quickest resolve time compared to others.
- 5. Street condition complaint takes longer to resolve by Brooklyn and Staten Island. On the other hand, complaints like Water system, Traffic Signal Condition and BLocked Driveway are quickly resolved by all Boroughs.
- 6. We can see that Brooklyn has relatively higher number of complaints, especially heating complaints. Staten island have very few complaints.
- 7. 2012 saw a spike in complaints in Brooklyn whereas complaints in Queens was at peak in
- 8. Highly effective corrective measures seem to have been employed in almost all Boroughs since the numbers dropped to less than a quarter in 2015
- 9. We can see that Bronx has peak heating complaints in 2013 and 2014 while Staten Island has almost flat curve indicating no significant rise in heating complaints.
- 10. We can see the heating complaints mostly in Bronx and Brooklyn in the map.

- 11. We can see that January and February are busier than other months. It may be due to the new year.
- 12. We can see that Brooklyn has the highest population over the years and is rapidly inreasing.
- 13. We can see an increasing trend in percentage of graduate students every year in each Borough.
- 14. We can see that although Queens has a lower population than Brooklyn, it receives more 311 calls. However, Staten island's population increase is almost flat.

Appendices

Data Dictionary

Table 25: Data dictionary for original nyc311 dataset

Indicator	Description	DataType
'Unique Key'	Unique identifier of a Service Request (SR) in the open data set	Text
'Created Date'	Date SR was created	Floating Timestamp
'Closed Date'	Date SR was closed by responding agency	Floating Timestamp
'Agency'	Acronym of responding City Government Agency	Text
'Agency Name'	Full Agency name of responding City Government Agency	Text
'Complaint Type'	This is the first level of a hierarchy identifying the topic of the incident or condition. Complaint Type may have a corresponding Descriptor (below) or may stand alone.	Text
'Descriptor'	This is associated to the Complaint Type, and provides further detail on the incident or condition. Descriptor values are dependent on the Complaint Type, and are not always required in SR.	Text
'Location Type'	Describes the type of location used in the address information	Text
'Incident Zip'	Incident location zip code, provided by geo validation.	Text
'Incident Address'	House number of incident address provided by submitter.	Text
'Street Name'	Street name of incident address provided by the submitter	Text
'Cross Street 1'	First Cross street based on the geo validated incident location	Text
'Cross Street 2'	Second Cross Street based on the geo validated incident location	Text
'Intersection Street 1'	First intersecting street based on geo validated incident location	Text
'Intersection Street 2'	Second intersecting street based on geo validated incident location	Text
'Address Type'	Type of incident location information available.	Text
'City'	City of the incident location provided by geovalidation.	Text
'Landmark'	If the incident location is identified as a Landmark the name of the landmark will display here	Text
'Facility Type'	If available, this field describes the type of city facility associated to the SR	Text
'Status'	Status of SR submitted	Text
'Due Date'	Date when responding agency is expected to update the SR. This is based on the Complaint Type and internal Service Level Agreements (SLAs).	Floating Timestamp
'Resolution Description'	Describes the last action taken on the SR by the responding agency. May describe next or future steps.	Text
'Resolution Action Updated Date'	Date when responding agency last updated the SR.	Floating Timestamp
'Community Board'	Provided by geovalidation.	Text
'Borough'	Provided by the submitter and confirmed by geovalidation.	Text
'X Coordinate (State Plane)'	Geo validated, X coordinate of the incident location.	Number
'Y Coordinate (State Plane)'	Geo validated, Y coordinate of the incident location.	Number
'Park Facility Name'	If the incident location is a Parks Dept facility, the Name of the facility will appear here	Text
'Park Borough'	The borough of incident if it is a Parks Dept facility	Text
'Vehicle Type'	If the incident is a taxi, this field describes the type of TLC vehicle.	Text
'Taxi Company Borough'	If the incident is identified as a taxi, this field will display the borough of the taxi company.	Text
'Taxi Pick Up Location'	If the incident is identified as a taxi, this field displays the taxi pick up location	Text
'Bridge Highway Name'	If the incident is identified as a Bridge/Highway, the name will be displayed here.	Text
'Bridge Highway Direction'	If the incident is identified as a Bridge/Highway, the direction where the issue took place would be displayed here.	Text
'Road Ramp'	If the incident location was Bridge/Highway this column differentiates if the issue was on the Road or the Ramp.	Text
'Latitude'	Geo based Lat of the incident location	Number
'Longitude'	Geo based Long of the incident location	Number
'Location'	Combination of the geo based lat & long of the incident location	Location

Table 26: Data dictionary for Projected Population 2010-2040 dataset

Column.Name	Description	DataType
Borough	Name of the New York City Borough	Text
Age	One of 18 Age cohorts like '0-4', '15-19',	Text
	'Total', and so on	
Year	Year in which the population is projected	Number
Population	The projected population value	Number

Table 27: Data dictionary for 2005-2011 Graduation Outcomes dataset $\,$

Column.Name	Description	DataType
Borough Graduation.Year Total.Cohort.Num	Name of the New York City Borough The cohort's year of graduation Number of students in the cohort	Text Number Number
Total.Grads.Num	Number of students who graduated in the cohort	Number
Total.Grads.Pct.of.cohort	Percentage of students who graduated in the cohort	Number

34

Table 28: Data dictionary for final nyc combined dataset

Column.Name	Description	DataType
Created.Month	Month SR was created (1-12)	Number
Created.Day	Day of month SR was created (1-31)	Number
Created.Year	Year SR was created	Number
Created.Time	Time SR was created	Floating Timestamp
Created.Hour	Hour SR was created (0-24)	Number
Created.Weekday	Day of week SR was created corresponding to (Sunday - Saturday)	Text
Resolve.Time.Hours	Time taken to resolve the complaint in hours	Number
Population	Total population of the Borough	Number
Total.Cohort.Num	Number of students in the cohort	Number
Total.Grads.Num	Number of students who graduated in the cohort	Number
Total.Grads.Pct.of.cohort	Percentage of students who graduated in the cohort	Number
Agency	Acronym of responding City Government Agency	Text
Agency Name	Full Agency name of responding City Government Agency	Text
Complaint Type	This is the first level of a hierarchy identifying the topic of the incident or condition. Complaint Type may have a	Text
	corresponding Descriptor (below) or may stand alone.	
Descriptor	This is associated to the Complaint Type, and provides further detail on the incident or condition. Descriptor values are	Text
	dependent on the Complaint Type, and are not always required in SR.	
Location.Type	Describes the type of location used in the address information	Text
Incident.Zip	Incident location zip code, provided by geo validation.	Text
City	City of the incident location provided by geovalidation.	Text
Status	Status of SR submitted	Text
Resolution.Description	Describes the last action taken on the SR by the responding agency. May describe next or future steps.	Text
Borough	Provided by the submitter and confirmed by geovalidation.	Text
Latitude	Geo based Lat of the incident location	Number
Longitude	Geo based Long of the incident location	Number