Correction de l'examen du 15 janvier 2007

Exercice

- 1) On a $187 = 11 \times 17$, donc 187 n'est pas premier.
- 2) Le nombre de générateurs d'un groupe cyclique d'ordre n est $\varphi(n)$, où $\varphi(n)$ est l'indicateur d'Euler de n. Par ailleurs, on a $1024=2^{10}$ et $\varphi(2^{10})=2^9=512$.
- 3) Si n est un entier naturel non nul et a un entier tels que $0 \le a \le n-1$, l'ordre de \overline{a} dans le groupe additif $(\mathbb{Z}/n\mathbb{Z}, +)$ est $\frac{n}{p\gcd(n,a)}$. L'ordre de $\overline{15}$ dans le groupe $(\mathbb{Z}/100\mathbb{Z}, +)$ est donc 20.
- 4) On a 129 = 3×43 . Puisque 129 n'est pas une puissance d'un nombre premier, il n'existe pas de corps de cardinal 129.
- 5) Dans le corps $(\mathbb{Z}/5\mathbb{Z}, +, \times)$ l'équation $x^2 = -1$ a comme solutions $x = \overline{2}$ et $x = \overline{3}$. L'ensemble cherché est donc formé des entiers congrus à 2 ou 3 modulo 5.

Exercice 2

 On utilise l'algorithme d'Euclide. Conformément à cet algorithme, on obtient le tableau suivant :

0	1	15925	
-	0	1925	∞
-8	1	525	3
25	-3	350	1
-33	Ą	175	2
		0	

On en déduit que l'on a d=175 et l'égalité $175=4\times15925-33\times1925$. Le couple (u,v)=(4,-33) répond ainsi à la question. Signalons que l'on a

$$15925 = 5^2 \times 7^2 \times 13$$
 et $1925 = 5^2 \times 7 \times 11$,

ce qui conduit à $d = 5^2 \times 7 = 175$.

2) On détermine une relation de Bézout entre 19 et 23. Par exemple, en utilisant de nouveau l'algorithme d'Euclide, on obtient le tableau suivant :

0		23	
1	0	19	1
-1	1	4	4
5	-4	3	1
-6	5	1	3
		0	

On en déduit l'égalité $5 \times 23 - 6 \times 19 = 1$, puis que

$$n_0 = 5 \times 23 - 2 \times (6 \times 19) = -113$$

vérifie les congruences $n_0\equiv 1$ mod. 19 et $n_0\equiv 2$ mod. 23. Il en résulte que l'ensemble des entiers relatifs n vérifiant les deux congruences de l'énoncé est

$$\left\{-113+437k\mid k\in\mathbb{Z}\right\}.$$

L'entier naturel cherché est donc -113 + 437 = 324

Exercice 3

- 1) Il s'agit de démontrer que P est irréductible dans $\mathbb{F}_2[X]$. On remarque d'abord que P n'a pas de racines dans \mathbb{F}_2 . Par alleurs, il existe un unique polynôme de $\mathbb{F}_2[X]$ irréductible de degré 2, qui est $1+X+X^2$. Si P était réductible sur \mathbb{F}_2 , il serait donc divisible par ce polynôme, ce qui n'est pas, vu l'égalité $P=(X^2+X+1)(X^2+X)+1$.
- 2) La caractéristique de K, qui est celle de \mathbb{F}_2 , est 2. Son cardinal est $2^4 = 16$.
- C'est une question de cours. If suffit de refaire la démonstration du théorème 5.9 du polycopié.
- 4) On a l'égalité $\alpha^4 = \alpha + 1$. On en déduit que l'on a

1)
$$\alpha^5 = \alpha^2 + \alpha$$
, $\alpha^6 = \alpha^3 + \alpha^2$ et $\alpha^7 + 1 = \alpha^3 + \alpha$

Les coordonnées de $\alpha^7 + 1$ dans \mathcal{B} sont donc (0, 1, 0, 1).

5) Une méthode consiste par exemple à trouver une relation de Bézout entre P et X^3+X . En utilisant l'algorithme d'Euclide, on obtient le tableau suivant :

0	-	$X^4 + X + 1 X^3 + X$	
	0	$X^3 + X$	Х
X	1	$X^2 + X + 1$	X+1
$X^2 + X + 1 X^3 + X^2$	X+1	X+1	X
$X^3 + X^2$	$X^2 + X + 1$	1	X+1
		0	

On en déduit l'égalité

$$(X^2 + X + 1)P + (X^3 + X)(X^3 + X^2) = 1.$$

Compte tenu de l'égalité $P(\alpha)=0$, on a donc $(\alpha^3+\alpha)(\alpha^3+\alpha^2)=1$, et l'inverse de α^7+1 est $\alpha^3+\alpha^2$. Ses coordonnées dans $\mathcal B$ sont donc (0,0,1,1).

6) L'ordre du groupe K^* est 15. D'après le théorème de Lagrange, les ordres possibles de ses éléments sont 1, 3, 5 et 15.

- 7) L'égalité $P(\alpha)=0$ entraîne directement que α et α^3 sont distincts de 1. D'après (1), l'égalité $\alpha^5=1$ conduit à $\alpha^2+\alpha=1$, d'où $\alpha^4=\alpha^2$, puis $\alpha^2=1$, $\alpha=1$ et une contradiction. L'ordre de α est donc 15 i.e. α est un générateur de K^* . Par ailleurs, il y a $\varphi(15)=8$ générateurs dans K^* .
- 8) D'après (1), on a $\alpha + \alpha^2 = \alpha^5$, qui d'après la question précédente, est d'ordre 3.

Exercice 4

1) Par exemple, le déterminant de la matrice extraite de G au moyen de ses lignes et de ses trois premières colonnes

$$= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix},$$

vaut I. Ainsi, le rang de G est ≥ 3 . Il vaut donc 3, qui est le maximum possible.

- 2) La longueur de C est 5, sa dimension est 3 et son cardinal est $2^3 = 8$.
- 3) La matrice A étant inversible, C est systématique.
- 4) La matrice B s'obtient par une suite finie d'opérations élémentaires sur les lignes de G. Notons ℓ_i la i-ème ligne de G et par abus celle de tout autre matrice déduite de G par des opérations élémentaires. En remplaçant ℓ_3 par $\ell_3 + \ell_1$, on obtient la matrice

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

En remplaçant ℓ_3 par $\ell_3 + \ell_2$, on obtient

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

En remplaçant ℓ_2 par $\ell_2 + \ell_3$, puis ℓ_1 par $\ell_1 + \ell_3$, on obtient successivement les matrices

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{pmatrix}$$
 et
$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{pmatrix}$$

Par suite, on a

$$B = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \ 0 & 1 \end{array}
ight).$$

5) Une matrice de contrôle de C est donc (cf. prop. 7.11 du polycopié)

$$H = \begin{pmatrix} -^t B \mid I_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

- 6) La distance minimum d de C est le nombre minimum de colonnes de H qui, en tant que vecteurs de \mathbb{F}_2^2 , sont linéairement dépendantes (prop. 7.13 du polycopié). Puisque les colonnes de H sont non nulles, et que la première et la troisième colonne sont égales, on a donc d = 2. La capacité de correction de C, qui est la partie entière de (d-1)/2, est nulle.
- 7) En notant n et k respectivement la longueur et la dimension de C, on a les égalités n-k+1=5-3+1=3, qui est distinct de d. Ainsi, C n'est pas MDS.
- 8) Posons x = (0, 0, 1, 0, 1). On a H(x) = 0, donc x appartient à C.