

Himpunan (Set)

LOCALLY ROOTED, GLOBALLY RESPECTED

Himpunan

- **Himpunan** \rightarrow kumpulan obyek-obyek yang berbeda.
- Obyek di dalam himpunan : elemen atau anggota
- Dua himpunan dikatakan sama/ekuivalen jika memiliki elemenelemen yang sama. Contoh:
 - $\{0,2,4,6\} = \{4,2,6,0\}$
- Himpunan dapat dinyatakan dengan :
 - Menuliskan anggota di antara dua (2) kurung kurawal. Contoh {a, i, u, e, o}
 - Menuliskan sifat yang ada pada seluruh anggota himpunan. Contoh : {x|x adalah huruf vocal dalam alfabet}
 - Menggunakan diagram Venn

Himpunan

Contoh representasi Himpunan dengan Diagram Venn

*) https://www.amsi.org.au/teacher_modules/H1/H1g2.png

Sifat Dasar Himpunan

- Himpunan bersifat unordered.
 - Tidak ada perbedaan yang didasarkan pada urutan elemen di dalam himpunan
 - Contoh: Semisal terdapat 3 elemen a,b, dan c, maka:
 {a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}.
- Seluruh elemen dalam himpunan adalah berbeda. Sebuah elemen yang berjumlah lebih dari satu tidak ada bedanya dengan satu elemen saja.
 - Misalkan, jika terdapat 3 elemen, a,b, dan c, dan a = b, maka :
 {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}.

Himpunan

- Kardinalitas (cardinality) dari suatu himpunan terhingga (finite set) \$
 => banyaknya elemen berbeda dalam \$\mathbf{S}\$, dan dinotasikan dengan | \$\mathbf{S}\$ |
 - !!! Jangan rancu dengan absolute value karena S di sini himpunan.
- Suatu himpunan dikatakan *infinite* jika mengandung elemen yang tidak terhingga.
- Suatu himpunan yang mengandung semua objek yang dibicarakan disebut himpunan universal, dinotasikan dengan U.
- Suatu himpunan yang tidak memiliki elemen disebut himpunan kosong (empty set), dinotasikan dengan \emptyset .

Contoh Himpunan

- 1. $A = \{1, 2, 3\}, |A| = ?$
- 2. $B = \{3, 3, 3, 3, 3\}, |B| = ?$
- 3. If $C = \emptyset$, |C| = ?
- 4. If $D = \{ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \}$, |D| = ?
- 5. If $E = \{0, 1, 2, 3, ...\}$, |E| = ?

Himpunan Bilangan

UNIVERSITAS GADJAH MADA

- Natural numbers N
- Integer numbers \mathbb{Z}
- ullet Real numbers ${\mathbb R}$
- Rational numbers Q

Istilah terkait Himpunan

- Himpunan S adalah himpunan bagian (subset) dari T jika dan hanya jika setiap elemen S juga merupakan elemen dari T (Notasi: $S \subseteq T$)
- Himpunan kuasa (power set) dari himpunan S adalah himpunan dari semua himpunan bagian dari S, dinotasikan dengan P(S).
- Jika A= {x, y} maka P(A)=
- Perkalian Kartesian (Cartesian product) dari dua himpunan A dan B dinotasikan dengan A × B

Cartesian Product

- Diketahui himpunan A dan B => Kedua himpunan tersebut bisa kita kalikan A × B → Cartesian Product
- Perlu paham konsep pasangan berurutan (ordered pair)

Definisi Pasangan Berurutan: Ordered pair adalah sebuah *list* (x, y) dari 2 buah entitas x and y, yang dituliskan di dalam tanda kurung dan dipisahkan oleh tanda koma. Contoh: (1,3) adalah sebuah ordered pair dari 1 dan 3, demikian pula (3,1). Kedua ordered pair ini tidak sama karena meski keduanya mengandung entitas yang sama di dalamnya, urutannya berbeda. Kita tuliskan $(1,3) \neq (3,1)$.

- Pemakaian: Untuk menggambarkan titik koordinat pada bidang datar pada sistem koordinat Kartesian.
- Ordered Pair of Letters: (m, n), Ordered Pairs of Sets: ({2,3}, {4,7}), Ordered Pair of Ordered Pairs ((2,4),(3,1),(7,2)).

Cartesian Product

Definisi Perkalian Kartesian: Cartesian product dari himpunan A dan B adalah juga sebuah himpunan yang dituliskan sebagai $A \times B$ dan didefinisikan sebagai $A \times B = \{(a,b) \mid a \in A, b \in B\}$.

- Jika B= {a, b, c, d} dan C={ 5, 7, 9} maka B × C= ? B × C= {(a,5), (a,7), (a,9), (b,5), (b,7), (b,9), (c,5), (c,7), (c,9), (d,5), (d,7), (d,9)}
- Cartesian Product pada <u>umumnya</u> tidak bersifat komutatif dan tidak bersifat asosiatif.

$$A \times B \neq B \times A$$

 $(A \times B) \times C \neq A \times (B \times C)$

- Cartesian Product bersifat komutatif jika A=B atau jika A= \varnothing atau B= \varnothing .
- Cartesian Product bersifat asosiatif jika salah satu dari A, B, C di atas adalah himpunan kosong.

Ilustrasi Cartesian Product

Latihan Soal

Tentukan apakah pernyataan 1-3 berikut adalah benar atau salah?

1.
$$2 \subseteq \{1, 2, 3\}$$
???

2.
$$\{3\} \subseteq \{\{1\}, \{2\}, \{3\}\}$$
???

3.
$$\{3\} \in \{\{1\}, \{2\}, \{3\}\}$$
???

• Selesaikan:

1.
$$A = \{a, b, c\}; P(A) = ?$$

2.
$$A = \{x, y\}, B = \{1, 2, 3\}; A \times B = ???$$

Operasi pada Himpunan

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

• Komplemen (*Complement*)
$$\bar{A} = \{x \mid x \notin A\}$$

$$\bar{A} = \{x \mid x \notin A\}$$

 Dua himpunan dikatakan terpisah (disjoint) jika irisan keduanya adalah himpunan kosong

Gambar Diagram Venn-nya!

Latihan Soal

• Misalkan terdapat sebuah Himpunan semesta U, dengan definisi

- 1. $A \cup B =$
- 2. $A \cap B =$
- 3. A B =
- 4. $B^c =$

Sifat Himpunan

- Misalkan A dan B adalah 2 himpunan
 - a. $A \cap B \subseteq A \operatorname{dan} A \cap B \subseteq B$
 - b. $A \subseteq A \cup B \operatorname{dan} B \subseteq A \cup B$
- Misalkan A adalah himpunan bagian dari universal set U

a.
$$\emptyset^c = U$$

b.
$$U^c = \emptyset$$

c.
$$(A^{c})^{c} = A$$

d.
$$A \cup A^c = U$$

e.
$$A \cap A^c = \emptyset$$

Sifat Himpunan

Ekivalen	Nama
$A \cap B = B \cap A$	Hukum Komutatif
$(A \cap B) \cap C = A \cap (B \cap C)$	Hukum Asosiatif
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Hukum Distributif
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$A \cap U = A$	Irisan dengan Semesta U
$A \cup U = U$	Gabungan dengan Semesta U
$(A^c)^c = A$	Komplemen ganda
$A \cup A = A; A \cap A = A$	Hukum Idempoten
$(A \cup B)^c = A^c \cap B^c;$	Hukum De Morgan
$(A \cap B)^c = A^c \cup B^c$	

Sifat Operasi Himpunan

• Jika A dan B adalah himpunan bagian dari semesta himpunan U

$$a. A \cup U = U$$

$$b. A \cup A = A$$

$$c. A \cup \emptyset = A$$

$$d. A \cup B = B \cup A$$

$$e. (A \cup B) \cup C = A \cup (B \cup C)$$

• Jika A dan B adalah himpunan bagian dari semesta himpunan U

$$a. A \cap U = A$$

$$b. A \cap A = A$$

$$c. A \cap \emptyset = \emptyset$$

$$d. A \cap B = B \cap A$$

$$e. (A \cap B) \cap C = A \cap (B \cap C)$$

Sifat Operasi Himpunan

• Jika A, B, dan C adalah himpunan bagian dari semesta U

a.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

De Morgan's Laws

• Misalkan A dan B adalah himpunan bagian dari semesta U

$$a. (A \cup B)^c = A^c \cap B^c$$

b.
$$(A \cap B)^c = A^c \cup B^c$$

Latihan

1. Misalkan $A = \{b, c, d, f, g\}$ dan $B = \{a, b, c\}$. Tentukan:

a.
$$A \cup B$$
 c. $A - B$

$$c. A - B$$

b.
$$A \cap B$$
 d. $B - A$

$$d. B - A$$

2. Misalkan $A = \{1, 2\}$ dan $B = \{2, 3\}$. Tentukanlah:

a.
$$P(A \cap B)$$
 c. $P(A \cup B)$

c.
$$P(A \cup B)$$

b.
$$P(A)$$
 d. $P(A \times B)$

3. Misalkan A dan B adalah 2 himpunan. Buktikan bahwa

$$(A - B) \cap (A \cap B) = \emptyset$$

LOCALLY ROOTED, GLOBALLY RESPECTED

ugm.ac.id

- 5 < 10
- 6 = 30/5
- 5 | 80
- 6 ∈ **Z**
- X ⊆ Y
- $\pi \approx 3.14$
- 0 ≥- 1
- $\sqrt[2]{2} \notin \mathbb{Z}$
- $\mathbb{Z} \subseteq \mathbb{N}$

- Relasi suatu set A adalah subset $R \subseteq A \times A$.
- Secara umum, $(x,y) \in R$ dapat dituliskan dengan xRy

- Suatu pasangan terurut (ordered pair) (a, b) adalah suatu daftar dari objek-objek a dan b dengan a muncul lebih awal daripada b.
- Jika A dan B adalah himpunan, A x B dinotasikan sebagai himpunan dari pasangan terurut (a, b) dimana a ∈ A dan b ∈ B. Jadi A x B disebut perkalian Cartesian dari A dan B.

- Suatu **relasi biner** (*binary relation*) R dari suatu himpunan A ke himpunan B adalah suatu himpunan bagian dari A x B.
- Jika $(a, b) \in R$ ditulis a**R**b dan dikatakan bahwa a **relasi** b.
- Jika a tidak terhubung dengan b ditulis aRb. Jika A = B dapat disebut R adalah suatu relasi biner pada A.
- Dom(R) = $\{a \in A \mid (a, b) \in R \text{ untuk beberapa } b \in B \}$
- disebut domain dari R. Himpunan
- Range(R) = $\{b \in B | (a, b) \in R \text{ untuk beberapa } a \in A \}$
- disebut range dari R.

Contoh

- Misalkan A = {2,3,4} dan B = {3,4,5,6,7}. Didefinikan bahwa relasi R dengan aRb jika dan hanya jika a membagi b. Tentukan R, Dom(R), dan Range(R)?
- Misalkan A = {1,2,3,4}. Didefinisikan relasi R dengan aRb jika dan hanya jika a ≤ b. Tentukan R, Dom(R), dan Range(R) ?

Representasi Relasi dalam Graf dan Matriks

- Suatu cara yang informatif untuk menggambarkan suatu relasi pada himpunan adalah dengan menggambar digraph
- Untuk menggambar suatu digraph pada himpunan A:
 - Gambarkan titik atau verteks yang merepresentasikan elemen dari A.
 - Jika (a, b) ∈ R, gambar anak panah (disebut *directed edge*) dari a ke b.
 - Jika (a, a) ∈ R maka *directed edge* berupa loop.

Representasi Relasi dalam Graf dan Matriks

■ Misalkan R adalah relasi biner dari himpunan berhingga $V = \{v_1, v_2, ... v_m\}$ ke himpunan berhingga $W = \{w_1, w_2, ... w_n\}$. Maka R dapat dinyatakan dalam matriks Boolean A berorde m × n dengan elemen:

$$A(i,j) = \begin{cases} 1 & \text{jika } (v_i, w_j) \in R \\ 0, & \text{jika } (v_i, w_j) \notin R \end{cases}$$

Contoh

- Misalkan $A = \{1, 2, 3, 4\},$
- $R = \{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}$
- Buatlah digraph dari R?
- Nyatakan R dalam bentuk matriks

Jenis Relasi

- Refleksif
- Simetris
- Transitif
- Irrefleksif
- Asimetris
- Antisimetris

Jenis Relasi - Refleksif

$$(\forall X \in A) XRX$$

Jenis Relasi - Simetris

$$(\forall x,y \in A) xRy \rightarrow yRx$$

Jenis Relasi - Transitif

$$(\forall x,y,z\in A) (xRy \land yRz) \rightarrow xRz$$

Jenis Relasi - Irrefleksif

$$(\forall X \in A) XRX$$

Jenis Relasi - Asimetris

$$(\forall x,y \in A) xRy \rightarrow yRx$$

Jenis Relasi - Antisimetris

$$(\forall x \in A) (xRy \land yRx) \rightarrow x=y$$

Contoh Relasi

Relation on Z	<	<=	=	X	#
Refleksif					
Symmetric					
Transitive					

Contoh Relasi

- A = {b,c,d,e}
- R adalah relasi pada A:
 - R = {(b,b), (b,c), (c,b), (c,c), (d,d), (b,d), (d,b), (c,d),(d,c)}
- Apakah R refleksif, simetris, dan transitif?
 - Tidak refeksif:
 - eRe tidak tersedia
 - Simetris:
 - Terpenuhi semua
 - Transitif:
 - (bRc and cRd) \rightarrow bRd
 - (bRe and eRc) \rightarrow bRc

Summary Relasi

A relation is $\bullet x$...there is a loop at x:

A relation is x + y = x + y

Relasi Ekuivalensi

- Relasi ekuivalensi didefinisikan sebagai relasi yang refreksif, simetris dan transitif.
- Untuk melihat apakah suatu relasi merupakan relasi ekuivalensi, maka perlu dibuktikan tiga jenis relasi diatas terpenuhi.

- 1. Misalkan $A = \{1, 2, 3, 4\}$ dan $R = \{(1,2), (2,2), (3,4), (4,1)\}$.
 - a. Buatlah digraph dan representasi relasinya dalam bentuk matriks
 - b. Tunjukkan apakah himpunan A disebut relasi ekivalen?
- 2. Misalkan $A = \{1, 2, 3, 4, 5\}$ dan $R = \{(a,b) \in A \times A \mid a < b\}$.
 - a. Buatlah digraph dan representasi relasinya dalam bentuk matriks
 - b. Tunjukkan apakah himpunan A disebut relasi ekivalen?

Kelas Ekuivalensi

- Misalkan R adalah relasi ekuivalensi dari A. Diberikan sebarang elemen a ∈A, kelas ekuivalensi a adalah subset {x∈A:xRa} dari A, yang mengandung seluruh elemen dari A yang berelasi dengan a.
- Set ini disimbolkan dengan [a]

- Misalkan terdapat set A = {-1, 1, 2, 3, 4}, dan ada empat relasi ekuivalensi R1, R2, R3 dan R4 pada set A, dengan arti :
 - R1 : is equal to
 - R2 : has same parity as
 - R3 : has same sign as
 - R4: has same parity and sign as

• Hasil R1 = {}

$$\{-1\}, \{1\}, \{2\},$$

$${3}, {4}$$

• Hasil R2 =

$$\{-1,1,3\}, \{2,4\}$$

• Hasil R3

$$\{-1\}, \{1,2,3,4\}$$

• Hasil R4 =

$$\{-1\}, \{1,3\}, \{2,4\}$$

Relasi Partial Order

- Berbagi macam relasi merupakan relasi ekuivalensi :
 - x = y
 - $u \leftrightarrow v$
 - "has same parity as"
- Bagaimana dengan relasi berikut ?
 - x ≤ y
 - x ⊆ y
- Relasi ini merupakan relasi partial order.

Relasi Partial Order

- Suatu relasi R pada set A disebut suatu partial order jika dan hanya jika R adalah
 - Refleksif,
 - Antisimetris, dan
 - Transitif.
- Relasi partial order sering juga disebut sebagai Poset (Partial Order Set)

Hasse Diagram

- Representasi grafis untuk menunjukkan partial order
- Properti :
 - Hapus semua self-loop
 - Hapus semua edge yang ada bila edge tersebut menunjukkan sifat transitif
 - Arahkan semua egde dengan mengarah dari bawah ke atas
 - Hapus arah (anak panah) pada representasinya.

- Terdapat POSET dengan A = {1, 2, 3, 4} dengan relasi <=.
- Bagaimana representasi digraph nya?
- Gambarkan Hasse Diagramnya!

• Representasi Digraph

• Representasi Hasse Diagram

Hasse Diagram

- $A = \{1,2,3,4,6,8,12\}$
- R merupakan relasi ke set A, dengan relasi "habis membagi"
- Tentukan :
 - Anggota dari R
 - Apakah relasi tersebut merupakan relasi ekuivalensi?
 - Gambarkan Hasse Diagramnya!

Hasse Diagram

Gambar graf berarah dari relasi "habis membagi"

Totally Order Relation

- Terdapat A yang merupakan suatu **Poset**, maka:
 - Ada kemungkinan elemen a dan b ∈ A berelasi (dapat dibandingkan/comparable).
 - Jika setiap pasangan elemen dari A comparable maka relasi R disebut relasi total order (totally ordered relation)

EXAMPLE 6 The poset (\mathbf{Z}, \leq) is totally ordered, because $a \leq b$ or $b \leq a$ whenever a and b are integers.

EXAMPLE 7 The poset $(\mathbf{Z}^+, |)$ is not totally ordered because it contains elements that are incomparable, such as 5 and 7.

Today's Keywords

UNIVERSITAS GADJAH MADA

- Enam (6) jenis relasi
- Ekuivalensi Relasi
- Kelas Ekuivalensi
- Partially Ordered Set
- Totally Order Relation
- Hasse Diagram