

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Schneegans, *et al.*

Docket No.: 2001 P 17353 US

Serial No.: 10/826,954

Art Unit: 2829

Filed: April 15, 2004

Examiner: Nguyen, Jimmy

For: Probe Needle for Testing Semiconductor Chips and Method for Producing
Said Probe Needle

Mail Stop: Amendment
Commissioner for Patents
P. O. Box 1450
Alexandria, VA 22313-1450

TRANSMITTAL OF CERTIFIED COPY OF PRIORITY DOCUMENT

Dear Sir:

Attached please find a certified copy of the foreign application from which priority is claimed for this case:

Country: Germany
Application Number: 101 50 291.5
Filing Date: October 15, 2001

March 18, 2005

Respectfully submitted,

A handwritten signature in black ink, appearing to read "Ira S. Matsil".

Ira S. Matsil
Attorney for Applicant
Reg. No. 35,272

Slater & Matsil, L.L.P.
17950 Preston Road, Suite 1000
Dallas, Texas 75252
(972) 732-1001 - Tel
(972) 732-9218 - Fax

BUNDESREPUBLIK DEUTSCHLAND

CERTIFIED COPY OF
PRIORITY DOCUMENT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 101 50 291.5
Anmeldetag: 15. Oktober 2001
Anmelder/Inhaber: Infineon Technologies AG, 81669 München/DE
Bezeichnung: Sondennadel zum Testen von Halbleiterchips und
Verfahren zu ihrer Herstellung
IPC: B 81 B, G 01 R, H 01 R

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. November 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Höß".

10 Sondennadel zum Testen von Halbleiterchips und Verfahren zu ihrer Herstellung

Zusammenfassung

- 15 Der Erfindung, die eine Sondennadel zum Testen von
Halbleiterchips, die mit einem Ende in einer Halterung
befestigt und an ihrem freien Ende eine Kontaktspitze
aufweist, und ein Verfahren zur Herstellung einer
Sondennadel zum Testen von Halbleiterchips mit mehreren
20 Bearbeitungsschritten zur Formung der Sondennadel betrifft,
liegt die Aufgabe zugrunde, die Standzeit von Sondennadeln
zu erhöhen. Dies wird dadurch gelöst, dass die Sondennadel
zumindest auf der Oberfläche der Kontaktspitze mit einer
Schicht aus einem chemisch inerten elektrisch leitfähigem
25 und relativ zu dem Material von Kontaktflächen der
Halbleiterchips harten Material versehen wird. (Fig.)

5

10 Sondennadel zum Testen von Halbleiterchips und Verfahren zu ihrer Herstellung

Die Erfindung betrifft eine Sondennadel zum Testen von Halbleiterchips, die mit einem Ende in einer Halterung befestigt und an ihrem freien Ende eine Kontaktspitze aufweist, und ein Verfahren zur Herstellung einer Sondennadel zum Testen von Halbleiterchips mit mehreren Bearbeitungsschritten zur Formung der Sondennadel.

20 Halbleiterchips werden vereinzelt oder im Scheibenverband getestet. Dabei werden Kontaktflächen, z.B. die Bondpads, auf dem Chip elektrisch kontaktiert und über eine Sondennadel mit einer Testschaltung verbunden. Über diese Testschaltung wird die Schaltung auf dem Chip mit elektrischen Testsignalen beaufschlagt und die Reaktion auf diese Testsignale gemessen und ausgewertet. Wird dabei ein von einer Sollfunktion abweichendes Verhalten festgestellt, wird der gemessene Chip als fehlerhaft verworfen oder es werden Fehlerparameter für eine spätere Fehlerkorrektur festgestellt.

30

Zur Kontaktierung der Sondennadel mit den Kontaktflächen wird eine Relativbewegung zwischen der jeweiligen Sondennadel und

der entsprechenden Kontaktfläche aufeinander zu durchgeführt.
Im allgemeinen wird diese Bewegung als Touchdown bezeichnet.
Zur Verbesserung der Kontaktierung der Sondennadeln mit den
Kontaktflächen ist die Sondennadel mit einer Spalte versehen

5

In der Praxis hat es sich gezeigt, dass die Spitzen nach einer Anzahl von Touchdowns oxidieren und Deformationen aufweisen.
Dies hat einen höheren Übergangswiderstand zu den Kontaktflächen zur Folge. Jedoch sind gerade in der
10 Halbleitermesstechnik eine hohe mechanische Stabilität der Kontaktspitzen und niedrige Übergangswiderstände von entscheidender Bedeutung.

In der gegenwärtigen Praxis werden zur Erhöhung der
15 Messsicherheit verschiedene Reinigungsmethoden für die Kontaktspitzen, wie Zwischenkontaktieren auf Klebefolien oder Reinigungswafern, eingesetzt. Herkömmliche Reinigungsverfahren führen allerdings zu einer Vergrößerung der Krümmung der Kontaktspitze. Auch ist zum Aufbrechen der Oxids an der
20 Nadelspitze eine Erhöhung des sogenannten Overdrive oder ein Doppel-Touchdown möglich. Allerdings bringt dies eine Beschädigung der Kontaktpads mit sich, was Nachteile bei anschließenden Verfahrensschritten, wie dem Drahtbonden oder bei weiteren Kontaktierungen zu Messzwecken zeigt.

25

Die Kontaktspitzen werden durch das Kontaktieren mit den Kontaktflächen der Halbleiterchips beschädigt. Dies geschieht zum einen durch ein Kratzen der Kontaktspitzen auf der Kontaktfläche, was teilweise bewusst herbeigeführt wird, um dem
30 Kontaktwiderstand zu verringern. Zum anderen wird auch aus der Oberfläche der Kontaktspitze Material infolge von Mikroverschweißungen beim Beaufschlagen mit Prüfspannung

herausgerissen. Diese Beschädigungen der Kontaktspitze führen zu unsicheren Messergebnissen, zu einem hohen Wartungsaufwand und zu einer geringen Standzeit der Sondennadeln. Insbesondere bei der Verwendung von Probecards trägt die geringe Standzeit 5 der Sondennadeln zu einem Frühaustritt der kostenintensiven Probecards bei.

Der Einsatz von Sondennadeln zum Testen von Halbleiterstrukturen ist ein seit langem bekannter Stand der Technik und wird 10 beispielsweise in der US 5,023,561 oder der EP 0 660 387 B1 beschrieben, wobei sich diese Druckschriften auch auf die Gestaltung von Sondennadeln und insbesondere der Formen der Spitzen beziehen, ohne jedoch das dargestellte Problem zu lösen.

15

Der Erfindung liegt die Aufgabe zugrunde, die Standzeit von Sondennadeln zu erhöhen.

Anordnungsseitig wird die Aufgabe erfindungsgemäß dadurch 20 gelöst, dass die Sondennadel zumindest auf der Oberfläche der Kontaktspitze mit einer Schicht aus einem chemisch inerten elektrisch leitfähigem und relativ zu dem Material von Kontaktflächen der Halbleiterchips harten Material versehen ist. Durch diese Schicht kann ein Mikroverschweißen mit der 25 Kontaktfläche vermieden werden. Auch wird durch die Härte ein mechanischer Verschleiß der Kontaktspitze verringert. Insgesamt wird damit die Standzeit einer Sondennadel mit einer solchen Beschichtung erhöht. Dadurch, dass das Schichtmaterial chemisch 30 inert ist, werden negative Auswirkungen auf den übrigen Herstellungsprozess der Halbleiterchips vermieden.

In einer Ausgestaltung der Erfindung ist vorgesehen, dass die

gesamte Oberfläche der Sondennadel oder ihr überwiegender Teil mit der Schicht versehen ist. Das Aufbringen der Schicht auf anderen Oberflächenbereichen der Sondennadel außerhalb der Kontaktspitze hat einerseits infolge der elektrischen Leitfähigkeit keinen nachteiligen Einfluss auf die Funktionalität. Andererseits bietet dies Vorteile im Herstellungsprozess, da dabei die Kontaktspitze nicht einer besonderen Behandlung unterzogen und die übrigen Teile der Sondennadel abgedeckt werden müssen, sondern die Sondennadel insgesamt beschichtet werden kann.

In einer besonders zweckmäßigen Ausgestaltung der Erfindung ist vorgesehen, dass die Schicht aus Titannitrit besteht. Titannitrit erfüllt einerseits genau die erforderlichen Kriterien. Andererseits handelt es sich hierbei um ein Schichtmaterial, was aus der Halbleiterherstellung gut bekannt ist. Somit können die Beschichtungen mit geringem Aufwand auch beim Halbleiterhersteller selbst vorgenommen werden.

Hierbei kann es zweckmäßig sein, unter der Titannitrit-Schicht zwischen der Oberfläche der Sondennadel und der Titannitrit-Schicht eine Keim- oder Klebeschicht aus Titan anzurufen. Dadurch wird einerseits bei der Herstellung das Aufwachsen der Titannitrit-Schicht auf das Grundmaterial der Sondennadel, die üblicherweise aus Aluminium, Palladium oder Wolfram besteht, erleichtert und andererseits die Haftfestigkeit verbessert.

Verfahrensseitig wird die Aufgabe erfindungsgemäß dadurch gelöst, dass die Sondennadel zumindest im Bereich ihrer Kontaktspitze, vorzugsweise jedoch vollständig mit einem chemisch inerten, elektrisch leitfähigem und relativ zu dem Material von Kontaktflächen der Halbleiterchips hartem Material

5

beschichtet wird. Eine solche Beschichtung stellt im Herstellungsprozess der Sondennadeln keinen erheblichen Aufwand dar. Jedoch kann damit der mechanische und elektrische Verschleiß der Sondennadeln bei ihrem Einsatz erheblich verringert und somit deren Standzeit erhöht werden.

In einer besonders zweckmäßigen Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Sondennadel mit Titannitrit beschichtet wird. Mit diesem Material werden im Rahmen des Herstellungsprozesses auch Halbleiterscheiben beschichtet. Einerseits ist damit die Beschichtung mit einfachen, gegebenenfalls sogar beim Anwender der Sondennadeln vorhandenen Mitteln möglich. Andererseits brauchen keine technologiefremden Materialien eingesetzt zu werden, wodurch nachteilige Wirkungen auf die übrige Technologie vermieden werden.

Zum Erleichtern des Aufwachsens der Titannitrit-Schicht und zur Haftverbesserung auf dem Grundmaterial der Sondennadel ist es zweckmäßig, die Sondennadel vor der Beschichtung mit Titannitrit mit Titan und anschließend mit Titannitrit zu beschichten.

Als günstiges und im Bereich der Halbleiterherstellungs-technologie bekanntes Verfahren stellt sich das Verfahren der Physical Vapor Deposition (PVD) dar, weshalb es zweckmäßig ist, dass die Sondennadel in einem PVD-Verfahren, vorzugsweise mit einem reaktiven Magnetron-Sputterverfahren beschichtet wird.

Hierbei ist es vorteilhaft, dass die Beschichtung aus einem Target aus Titan unter Zusatz der Reaktivgase Argon und Stickstoff erfolgt.

Wenn eine Keim- oder Klebeschicht aus Titan unter der Titannitrit-Schicht erzeugt werden soll, ist es zur günstigen Gestaltung zweckmäßig, dass die Beschichtung von Titan und 5 Titannitrit *in situ* erfolgt, da damit der Beschichtungsprozess in einer Prozesskammer erfolgen kann und nicht unterbrochen werden muss.

Als besonders geeignet hat sich eine Beschichtung erwiesen, bei 10 der das stöchiometrische Verhältnis von Titan (Ti) zu Stickstoff (N) Ti : N = 1 beträgt.

Die Erfindung soll nachfolgend anhand eines Ausführungsbeispiels näher erläutert werden. Die zugehörige 15 Zeichnung stellt den verfahrenstechnischen Ablauf und eine beschichtete Sondennadel schematisch dar.

In vorhergehenden Bearbeitungsschritten wird eine Sondennadel 1 hergestellt, die bei ihrem Einsatz in einer nicht näher 20 dargestellten Halterung, die eine Probecard sein kann, befestigt ist. An ihrem freien Ende 2 ist die Sondennadel mit einer Kontaktspitze 3 versehen.

Die Sondennadel 1 wird in eine Vakuumprozesskammer 4 eingebbracht, in der ein nicht näher dargestelltes Magnetron mit einem Target 5 aus Titan angeordnet ist. Die Sondennadel 1 wird dabei so in die Vakuumprozesskammer 4 eingebbracht, dass ihre Kontaktspitze 3 in Richtung zu dem Target 5 weist, also dem Target 5 gegenüber liegt.

Nach Evakuierung der Vakuumprozesskammer 4 wird durch das entstehende Prozessplasma Targetmaterial, d.h. Titan als Keim-

7

und Klebeschicht auf die Sondennadel 1 aufgebracht.
Anschließend wird ein Reaktivgasgemisch aus Argon und
Stickstoff eingeleitet, wodurch im Prozessplasma Titannitrit
entsteht, welches sich auf der Sondennadel als Schicht 6
abscheidet.

Diese Schicht 6 ist gegenüber dem Material der nicht näher
dargestellten Kontaktflächen auf dem Halbleiterchip sehr hart.
Es ist auch elektrisch leitfähig und chemisch inert. Dadurch
wird der Verschleiß der Sondennadel 1 erheblich verringert und
damit deren Standzeit erhöht.

8

5

10 Sondennadel zum Testen von Halbleiterchips und Verfahren zu ihrer Herstellung

Bezugzeichenliste

- 15 1 Sondennadel
 2 freies Ende
 3 Kontaktspitze
 4 Vakuumprozesskammer
 5 Target
 20 6 Schicht

25

30

10. Sondennadel zum Testen von Halbleiterchips und Verfahren zu
ihrer Herstellung

Patentansprüche

- 15 1. Sondennadel zum Testen von Halbleiterchips, die mit
einem Ende in einer Halterung befestigt und an ihrem
freien Ende eine Kontaktspitze aufweist, dadurch
gekennzeichnet, dass die Sondennadel zumindest auf der
Oberfläche der Kontaktspitze mit einer Schicht aus
einem chemisch inerten elektrisch leitfähigem und
relativ zu dem Material von Kontaktflächen der
Halbleiterchips harten Material versehen ist.
- 20 2. Sondennadel nach Anspruch 1, dadurch gekennzeichnet,
dass die gesamte Oberfläche der Sondennadel oder ihr
Überwiegender Teil mit der Schicht versehen ist.
- 25 3. Sondennadel nach Anspruch 1 oder 2, dadurch
gekennzeichnet, dass die Schicht aus Titannitrit
besteht.
- 30 4. Sondennadel nach Anspruch 3, dadurch gekennzeichnet,

10

dass unter der Titannitrit-Schicht zwischen der Oberfläche der Sondennadel und der Titannitrit-Schicht eine Klebeschicht aus Titan angeordnet ist.

- 5 5. Verfahren zur Herstellung einer Sondennadel zum Testen von Halbleiterchips mit mehreren Bearbeitungsschritten zur Formung der Sondennadel, dadurch gekennzeichnet, dass die Sondennadel zumindest im Bereich ihrer Kontaktspitze, vorzugsweise jedoch vollständig mit einem chemisch inerten, elektrisch leitfähigem und relativ zu dem Material von Kontaktflächen der Halbleiterchips hartem Material beschichtet wird.
- 10 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Sondennadel mit Titannitrit beschichtet wird.
- 15 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Sondennadel vor der Beschichtung mit Titannitrit mit Titan und anschließend mit Titannitrit beschichtet wird.
- 20 8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Sondennadel in eine PVD-Verfahren, vorzugsweise mit einem reaktiven Magnetron-Sputterverfahren beschichtet wird.
- 25 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Beschichtung aus einem Target aus Titan unter Zusatz der Reaktivgase Argon und Stickstoff erfolgt.
- 30 10. Verfahren nach Anspruch 7 und einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Beschichtung

11

von Titan und Titannitrit in situ erfolgt.

11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass das stöchiometrische Verhältnis
5 Ti : N = 1 beträgt.

