Contents

Cardinality and Countability	1
Section 1.1: Countable Sets	1
Theorem: Countability of Unions	1
Theorem: Countability of Subsets	1
Theorem: Union of Finite Sets	1
Theorem: Disjoint Union of Countable Sets	2
Theorem: Cartesian Product of Natural Numbers	2
Theorem: Countability of the Rationals	3
Theorem: Countability of the Integers	3
Theorem: Finite Subset Cardinality	3
Theorem: Infinitude of the Natural Numbers	3
Section 1.2: Uncountable Sets	3
Theorem : Uncountability of \mathbb{R}	3
Theorem: Power Set Surjection	4
Section 1.3: Cantor–Schröder–Bernstein Theorem	5
Theorem: Cantor–Schröder–Bernstein	5
Axiomatic Set Theory	7
Axioms of Set Theory	7
Axiom: Existence	7
Axiom: Empty Set	8
Axiom: Pairing	8
Axiom: Extensionality	8
Axiom: Union	8
Axiom: Power Set	8
Axiom: Comprehension schema	9
Axiom: Union	9
Axiom: Infinity	9
	10
1	10
	10
	11
	15
Cardinal Numbers	18
	20
	20
	20
	21

Cardinality and Countability

Section 1.1: Countable Sets

Definition (Denumerable Set). A set S is denumerable if there exists a function $f: S \to \mathbb{N}$ with f a bijection. We also say S is countably infinite.

Definition (Countable Set). We say S is countable if S is either finite or denumerable.

Theorem (Countability of Unions): If A and B are countable sets, then $A \cup B$ is countable.

Theorem (Countability of Subsets): If $A \subseteq B$, then if B is countable, then A is countable.

Theorem (Union of Finite Sets): If A and B are finite, then $A \cup B$ is finite.

Proof. If A is finite and B has one element, then we show that $A \cup B$ is finite (with two cases).

Afterward, for |B| > 1, we use induction on |B|.

Definition (Finite Set). A set A is finite if there exists a bijection $f: S \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N} = \{0, 1, ...\}$.

We write |A| = n.

Theorem (Disjoint Union of Countable Sets): If A is denumerable, B is finite, and $A \cap B = \emptyset$, then $A \cup B$ is denumerable.

Proof. There exists a bijection $f: A \to \mathbb{N}$ (since A is denumerable), and a bijection $g: B \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ (since B is finite).

We create a new bijection $h : A \cup B \rightarrow \mathbb{N}$ by:

$$h(x) = \begin{cases} g(x) - 1 & x \in B \\ f(x) + n & x \in A \end{cases}.$$

Since $A \cap B = \emptyset$, we know that h is well-defined.

Now, we must show that h is a bijection.

Suppose h(x) = h(y).

Case 1: If $x, y \in B$, then h(x) = g(x) - 1, and h(y) = g(y) - 1, meaning g(x) - 1 = g(y) - 1, meaning g(x) = g(y). Since g(x) = g(y) is a bijection, g(x) = g(y).

Case 2: If $x, y \in A$, a similar argument yields that x = y

Case 3: Without loss of generality, let $x \in A$ and $y \in B$. If $x \in A$, then h(x) = f(x) + n and h(y) = g(y) - 1. Thus, f(x) + n = g(y) - 1. However, since $f(x) + n \ge n$ and $0 \le g(y) - 1 \le n - 1$. Thus, we get that $0 \le n \le n - 1$, which is a contradiction.

Thus, we have shown that h is injective.

Theorem (Cartesian Product of Natural Numbers): $\mathbb{N} \times \mathbb{N}$ is denumerable.

Proof. We consider $\mathbb{N} \times \mathbb{N}$ as

$$\mathbb{N} \times \mathbb{N} = \mathbb{N} \times \{0\} \cup \mathbb{N} \times \{1\} \cup \cdots,$$

$$\mathbb{N} \times \{0\} : (0,0) \quad (1,0) \quad (2,0) \quad (3,0) \quad \cdots$$

$$\mathbb{N} \times \{1\} : (0,1) \quad (1,1) \quad (2,1) \quad (3,1) \quad \cdots$$

$$\mathbb{N} \times \{2\} : (0,2) \quad (1,2) \quad (2,2) \quad (3,2) \quad \cdots$$

$$\mathbb{N} \times \{3\} : (0,3) \quad (1,3) \quad (2,3) \quad (3,3) \quad \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Then, we can find an (informal) bijection as follows:

$$\mathbb{N} \times \{0\} : (0,0)^{-0} (1,0)^{-2} (2,0)^{-5} (3,0)^{-9} \cdots$$
 $\mathbb{N} \times \{1\} : (0,1)^{-1} (1,1)^{-4} (2,1)^{-8} (3,1) \cdots$
 $\mathbb{N} \times \{2\} : (0,2)^{-3} (1,2)^{-7} (2,2) (3,2) \cdots$
 $\mathbb{N} \times \{3\} : (0,3)^{-6} (1,3) (2,3) (3,3) \cdots$
 $\vdots : : : : :$

We can also find a bijection $P : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, with

$$P(x,y) = \frac{(x+y)(x+y+1)}{2} + x$$

A fun challenge is to prove that P is a bijection.

Theorem (Countability of the Rationals): **Q** is denumerable.

Theorem (Countability of the Integers): The set \mathbb{Z} is denumerable.

Proof. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined by

$$f(x) = \begin{cases} 2x & x \geqslant 0 \\ -2x - 1 & x < 0 \end{cases}$$

Definition (Cardinality). We say two sets, A and B, have the same cardinality if there exists a bijection $f: A \to B$.

Theorem (Finite Subset Cardinality): If $m, n \in \mathbb{N}$ and $m \neq n$, then $\{1, 2, ..., m\}$ and $\{1, 2, ..., n\}$ do not have the same cardinality.

Theorem (Infinitude of the Natural Numbers): \mathbb{N} is not finite.

Example. If $A \subseteq B$ and |A| = |B|, then both A and B are infinite.

In order to prove this, we need to show that every injection from a finite set to itself is a bijection.

Section 1.2: Uncountable Sets

Definition (Uncountable Set). A set is uncountable if it is not countable.

Theorem (Uncountability of \mathbb{R}): \mathbb{R} is uncountable.

Proof. For all $x \in \mathbb{R}$, and for all $j \in \mathbb{N}$, we define $[x]_j$ to denote the j + 1-th digit after the decimal point in the decimal expansion of x.

For example, $[\pi]_0 = 1$, $[\pi]_1 = 4$, etc.

Let $f : \mathbb{N} \to \mathbb{R}$. We will show that f is not surjective.

Let $y \in [0,1) \subseteq \mathbb{R}$ defined by $\forall j \in \mathbb{N}$,

$$[y]_j = \begin{cases} 0 & [f(j)]_j = 1\\ 1 & [f(j)]_j \neq 1 \end{cases}$$

We claim that $y \notin f(\mathbb{N})$. We will show that $\forall j \in \mathbb{N}$, $f(j) \neq y$.

We can see that if $[f(j)]_j = 1$, then $[y]_j = 0$. Similarly, if $[f(j)]_j \neq 1$, then $[y]_j = 1$. Either way, $[f(j)]_j \neq [y]_j$ for all $j \in \mathbb{N}$.

Remark: The above proof is an example of a diagonalization proof. It can be imagined as

$$\begin{array}{lll} f(0) & *.o_1 \overset{d}{a_2} a_3 \dots \\ f(1) & *.b_1 b_2 \overset{d}{b_3} \dots \\ f(2) & *.c_1 c_2 c_3 \overset{d}{\dots} \\ \vdots & \vdots & \vdots \end{array}$$

Note: A substantial problem that we might need to deal with is that a real number does not necessarily have a unique decimal representation. For instance, $3.999 \cdots = 4.000 \ldots$

In order to resolve this issue, we can default to the option with trailing 0 over trailing 9.

Definition (Power Set). The power set of a set S is

$$P(S) = \{A \mid A \subseteq S\}.$$

Theorem (Power Set Surjection): Let $f: S \to P(S)$. Then, f is not surjective.

Proof. Let $T = \{x \in S \mid x \notin f(x)\}$. Then, $T \notin f(S)$.

Let $y \in S$. We want to show that $f(y) \neq T$. Suppose toward contradiction that f(y) = T. Then, if $y \in T$, then $y \in f(y)$, which implies that $y \notin T$.

If $y \notin T$, then $y \notin f(y)$, which implies that $y \in T$.

Thus, it cannot be the case that f(y) = T.

Definition (Cardinality Comparison). Let A and B be sets. Then, we write $card(A) \le card(B)$ if there exists an injective map $f : A \hookrightarrow B$.

We write card(A) < card(B) if there exists an injection $f : A \hookrightarrow B$ but no bijection.

Example (Cardinality of the Power Set). For every set,

$$card(S) < card(P(S))$$
.

(1) We know that $card(S) \le card(P(S))$, defining $f : S \hookrightarrow P(S)$, $f(a) = \{a\}$, since if f(x) = f(y), then $\{x\} = \{y\}$, meaning $x \in \{y\}$, so x = y.

In the case of $f : \emptyset \to \{\emptyset\}$, we define $\emptyset = f \subseteq \emptyset \times \{\emptyset\}$.

(2) Since there exists no bijection $f: S \to P(S)$, it is the case that $card(S) \neq card(P(S))$.

Example (Decimal Expansion). We know that for some decimal expansion

$$3.14159... = 3 + \frac{1}{10} + \frac{4}{100} + \cdots$$
$$= \sum_{i=0}^{\infty} \frac{n_i}{10^i},$$

with $0 \le n_i \le 9$ for $i \ge 1$.

However, we can also write any real number as

$$\sum_{i=0}^{\infty} \frac{n_i}{3^i}$$

with $0 \le n_i \le 2$ for all $i \ge 1$.

Example (Finite Strings). Let S be the set of all finite strings of 0 and 1. S is countable.

Proof 1: We define $f: S \to \mathbb{N}$ by, for a string $x \in S$, x starts with n_1 zeroes, then has n_2 ones, then n_3 zeroes, etc. We define $f(x) := 2^{n_1} \times 3^{n_2} \times 5^{n_3} \times 7^{n_4} \times 11^{n_5} \cdots$, or

$$f(x) = \prod_{i=1}^{\infty} p_{i}^{n_{i}},$$

where p_i denotes the ith prime number. We can see that f is an injection.

Since S is infinite (proof omitted), we can see that f(S) is also infinite.^I Since f(S) is an infinite subset of \mathbb{N} , f(S) is denumerable, meaning there exists a bijection $q: f(S) \to \mathbb{N}$. Therefore, we have $q \circ f: S \to \mathbb{N}$ is a bijection, meaning S is denumerable.

Proof 2: List the elements of S by length and lexicographic order: short strings come before long strings, and 0s come before 1s.

Rank	String
0	0
1	1
2	00
3	01
4	10
5	11
÷	÷

This pattern yields a systematic way to map S to the natural numbers.

Proof 3: We can see that

$$S = \bigcup_{i=1}^{\infty} S_i,$$

where S_i is the set of all strings of length i, each of which contains 2^i elements.

Since each S_i is finite, and $S_i \cap S_j = \emptyset$ (by definition). Thus, S is a countable union of pairwise disjoint countable sets, so S is countable.

Example (All Possible Writings). Let W be the set of all possible writings in English. We let W_n denote the writing with n characters. Then,

$$W = \bigcup_{n=1}^{\infty} W_n,$$

which is a countable union of disjoint finite sets, which is countable.

Similarly, we can list all the writings by length and lexicographic order.

This result implies that "almost all" real numbers, in a sense, are unable to be described.

Section 1.3: Cantor-Schröder-Bernstein Theorem

Example. If we have $|A| \le |B|$ and $|B| \le |A|$, it does not necessarily imply |A| = |B|.

This is because the \leq in the cardinality comparison implies there exist injections $f: A \hookrightarrow B$ and $g: B \hookrightarrow A$, not that the cardinalities are necessarily "less than or equal to" each other.

However, at the same time, this fact is true — this is what is known as the Cantor–Schröder–Bernstein Theorem.

Theorem (Cantor–Schröder–Bernstein): Let $f: C \hookrightarrow D$ and $g: D \hookrightarrow C$ be injective maps. Then, |C| = |D|.

If f(S) is finite, then there exists a bijection $g: f(S) \to \{1, ..., n\}$. Composing g and f, we find S is finite as $g \circ f|_S$ is a bijection.

An Informal Proof Sketch. Consider C to be a set of cats and D to be a set of dogs. Every cat chases a dog, and every dog chases a cat, with different cats chasing different dogs and vice versa.

There are four potential arrangements:

- (1) A set of cats and dogs are chasing each other in a circle.
- (2) A chain of dogs chasing cats that starts with a dog.
- (3) A chain of cats chasing dogs that starts with a cat.
- (4) An endless chain of cats chasing dogs with no discernible start or end point.

These four cases create a bijection from C to D:

- (1) Pair each cat with the dog that it is chasing.
- (2) Pair each cat with the dog that it is chasing.
- (3) Pair each cat with the dog that is chasing it.
- (4) Pair each cat with the dog that it is chasing.

A More Formal Proof Sketch. For $C = \{c_i\}_{i \in I}$ and $D = \{d_i\}_i$, we have four types of sequences.

- (i) Circular sequence: for some $m \in \mathbb{N}$, there exist c_1, \ldots, c_m and d_1, \ldots, d_m such that $f(c_i) = d_i$ and $g(d_i) = c_{i+1}$, where $c_{m+1} = c_1$.
- (ii) Cat sequence: there is c_1, c_2, \ldots and d_1, d_2, \ldots such that $f(c_i) = d_i$ and $g(d_i) = c_{i+1}$.
- (iii) Dog sequence: there is c_1, c_2, \ldots and d_1, d_2, \ldots such that $f(c_i) = d_{i+1}$ and $g(d_i) = c_i$.
- (iv) Bi-infinite sequence: $\{c_i\}_{i\in\mathbb{Z}}$ and $\{d_i\}_{i\in\mathbb{Z}}$ such that $f(c_i)=d_i$ and $g(d_i)=c_{i+1}$.

Claim 1: For every $c \in C$, c is in exactly one sequence that is either a circular sequence, a cat sequence, a dog sequence, or a bi-infinite sequence.

We define our bijection $h: C \rightarrow D$ by

$$h(c) = \begin{cases} g^{-1}(c) & c \text{ in a dog sequence} \\ f(c) & else \end{cases}.$$

Claim 2: h is well-defined.

Claim 3: h is a bijection.

Theorem: For every set A, B, either $|A| \le |B|$ or $|B| \le |A|$.

In order to prove this, we need the axiom of choice.

Example (Cardinality of the Reals). Recall that $|\mathbb{N}| < |P(\mathbb{N})|$ and $|\mathbb{N}| < |\mathbb{R}|$. According to the previous theorem, it is the case that either $|P(\mathbb{N})| \le |\mathbb{R}|$ or $|\mathbb{R}| \le |P(\mathbb{N})|$.

In particular, $|P(\mathbb{N})| = |\mathbb{R}|$.

An Informal Proof. Let S be the set of all functions $f : \mathbb{N} \to \{0,1\}$. We will show that $|S| = |P(\mathbb{N})|$ and $|S| = |\mathbb{R}|$. This will show that $|P(\mathbb{N})| = |\mathbb{R}|$ (by composing bijections).

To show that $|S| = |P(\mathbb{N})|$, define a subset of \mathbb{N} by the support^{II} of some element of S. This is a bijection between $P(\mathbb{N})$ and S.

To show $|S| = |\mathbb{R}|$, we place a decimal point in front of the string, and consider it as a real number in base 2, which yields a bijection between S and [0,1].

Next, we show that |[0,1]| = |(0,1)|.

Finally, we show that $|(0,1)| = \mathbb{R}$. Take $f:(0,1) \to \mathbb{R}$ to be $\cot(\pi x)$ — or $\tan(\pi x - \pi/2)$. These are bijections from (0,1) to \mathbb{R} .

Definition (Continuum Hypothesis). We are aware that

$$|\mathbb{N}| < |\mathbb{R}| = |P(\mathbb{N})|.$$

The continuum hypothesis states that there exists no set S such that

$$|\mathbb{N}| < |S| < |\mathbb{R}|$$
.

The continuum hypothesis is independent of the ZFC axioms.^{III}

Exercise (Challenge Problem): Let $T = \{(\alpha_0, \alpha_1, \alpha_2, \dots) \mid \alpha_i \in \mathbb{N}; \text{ finitely many nonzero } \alpha_i \}$. Is T countable? We also write

$$\mathsf{T} = \bigoplus_{i=0}^{\infty} \mathbb{N}.$$

Axiomatic Set Theory

Question: Is there a set A such that $A \in A$?

Answer: Yes.

There is the set $\{\cdots\}$, which contains infinitely many sets in itself. Additionally, there is the set $A = \{x \mid x \text{ is a set}\}$.

Example (Russell's Paradox). Consider the set

$$R = \{x \mid x \notin x\}.$$

The question is if $R \in R$. However, this cannot be true, because if $R \in R$, then $R \notin R$ and vice versa.

Axioms of Set Theory

We cannot just say

$$S = \{x \mid x \text{ is blah}\},\$$

as evidenced by Russell's paradox. We need to carefully construct rules to create a rigorous description of formal set theory.

Axiom (Existence): The existence axiom states that there exists a set:

$$\exists \alpha (\alpha = \alpha).$$

^{II}The elements that f does not map to 0 for some $f \in S$.

^{III}Zermelo-Fraenkel Axioms with the Axiom of Choice.

Axiom (Empty Set): The empty set axiom states that there exists a set with no elements:

$$\exists a \ \forall x \ (x \notin a)$$
.

Axiom (Pairing): The pairing axiom states that, given any sets a and b, there is a set c such that the only elements of c are a and b:

$$\forall a \ \forall b \ \exists c \ \forall x \ (x \in c \Leftrightarrow x = a \lor x = b)$$

Axiom (Extensionality): The axiom of extensionality states that if two sets have the same elements, they are the same sets:

$$\forall a \ \forall b \ (\forall x \ (x \in a \Leftrightarrow x \in b) \Rightarrow a = b)$$

Question: What is a set?

Answer: The unsatisfying answer is that "set" and "element" have no meaning *per se*. The main reason we define these axioms is to define relationships between objects (rather than objects themselves).

Example. We want to prove that for every set b, there exists a set {b}.

Symbolically, we want to show

$$\forall b \exists c \forall x (x \in c \Leftrightarrow x = b).$$

In particular, we can see that, in the pairing axiom, there is no requirement that a and b be distinct. Therefore, we can use the pairing axiom of a = b and b = b. Therefore, the pairing axiom becomes

$$\forall b \ \forall b \ \exists c \ \forall x \ (x \in c \Leftrightarrow x = b \lor x = b)$$
,

which reduces to

$$\forall b \; \exists c \; \forall x \, (x \in c \Leftrightarrow x = b) \,.$$

In particular, if $b = \{\}$ in the previous example, then the pairing axiom implies the uniqueness of the empty set. We will denote $\{\} = \emptyset$. We can create a tower

entirely consisting of the empty set.

Axiom (Union): The axiom of union states that for any set a, there exists a set consisting of all the elements of a

$$\forall \alpha \exists u \forall x \forall y ((x \in y \land y \in \alpha) \Rightarrow x \in u)$$

Definition. The string $a \subseteq b$ is shorthand for

$$\forall x (x \in a \Rightarrow x \in b).$$

Axiom (Power Set): The power set axiom states that for all a, there is a set b such that all elements of b are subsets of a and all subsets of a are contained in b:

$$\forall a \exists b \forall y (y \in b \Leftrightarrow y \subseteq a).$$

Definition. We let (a, b) be shorthand for the set

$$\{a, \{a, b\}\}.$$

Exercise: If $\{a, \{a, b\}\} = \{c, \{c, d\}\}\$, it is the case that a = c and b = d.

Recall that

$$c = \{x \mid x \text{ is blah}\}\$$

is a problematic definition of a set. However, if a is a set, we can define

$$c = \{x \mid x \in a \land x \text{ is blah}\},\$$

which does not cause any contradictions. The following axiom schema formalizes this fact.

Axiom (Comprehension schema): The comprehension schema says that, given any formula $\varphi(x)$, in which x is a free variable, there exists a set c whose elements are those in α that satisfy φ :

$$\forall \alpha \exists c \ \forall x \ (x \in c \Leftrightarrow x \in \alpha \land \varphi(x)).$$

Remark: There are infinitely many axioms in the comprehension schema, one for each formula φ . This is why it is known as a schema rather than an axiom.

Remark: Since we can specify a formula $\varphi(x): x \neq x$, the comprehension schema obviates the empty set axiom.

Example (Some Logic). An example of a formula is $\forall p \ \exists q(p \Rightarrow q)$.

In the formula $\exists q \ (p \Rightarrow q)$, we say p is a free variable.

The main symbols in logic are \land , \lor , \neg , \Rightarrow , \Leftrightarrow , () (the symbols that make up propositional logic), as well as \forall , \exists (which form the basis of first-order logic).

In propositional logic, the only two symbols that are needed are \land and \neg (or \lor and \neg). $^{\text{IV}}$

When we get to set theory, the last symbol we need is \in .

We can build larger formulae by substituting formulae into other formulae.

Example (Using the Comprehension Schema). Let $\phi(x) : \exists y (y \in X)$. This is an axiom:

$$\forall a \exists b \ \forall x \ (x \in b \Leftrightarrow x \in a \land \exists y \ (y \in x))$$

In particular, this axiom is equivalent to saying

$$\forall a \exists b \text{ s.t. } b = \{x \in a \mid x \neq \emptyset\}.$$

Axiom (Union): The union axiom states that for a collection of sets T, there is a union of the sets, $a = \bigcup T$.

$$\forall t \,\exists a \,\forall x \,(x \in a \Leftrightarrow \exists y \,(y \in t \land x \in y)).$$

Alternatively, we can say

$$\forall t \ a = \{x \mid x \in \text{ some element of } t\}$$

is a set.

Axiom (Infinity): There exists an infinite set.

$$\exists a (\emptyset \in a \land \forall x (x \in a \Rightarrow x \cup \{x\} \in a))$$

Remark: To see that this set, α has an element, \emptyset . Thus,

$$\alpha = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \dots\}$$

We define $0 = \emptyset$, $1 = {\emptyset, {\emptyset}}$, etc. Thus, the axiom of infinity defines the natural numbers.

^{IV}In computers, the only gate that is necessary is the NAND gate.

Axiom (Regularity): There is no infinite chain of the form

$$\cdots \in d \in c \in b \in a$$
.

$$\forall s \exists x (s = \emptyset \lor s \neq \emptyset \Rightarrow (x \in s \land x \cap s = \emptyset))$$

Remark: The existence of this axiom is meant to obviate the case where we imagined a set α with $\alpha \in \alpha$.

Definition (Function-like Formula). Let $\psi(x, y)$ be a formula with x, y free variables such that $\forall x, y, z, \psi(x, y) \land \psi(x, z) \Rightarrow y = z$.

Axiom (Replacement Schema):

$$\forall a \exists b \ \forall x (x \in b \Leftrightarrow \exists y (y \in a \land \psi(x,y)))$$

Remark: It is possible to prove the comprehension schema from the replacement schema.

The axioms that we have discussed so far are known as the Zermelo-Fraenkel axioms.

Question: If A and B are nonempty, is it the case that $A \times B \neq \emptyset$

Answer: Yes.

There exists $a \in A$ and $b \in B$ such that $(a, b) \in A \times B$. This can be proven using the ZF axioms.

Question: If $A_1, A_2, ..., \neq \emptyset$, then is $A_1 \times A_2 \times ... \neq \emptyset$?

Answer: This requires the axiom of choice.

Axiom (Choice): If T is a collection of sets, $\exists b$ such that $\forall a \in T$, $a \cap b \neq \emptyset$.

$$\forall t \,\exists b \,(\forall a \,(a \in t \Rightarrow \exists x \,(x \in a \land x \in b))).$$

Remark: We define $x \in (a \cap b)$ as shorthand for $x \in a \land x \in b$.

Remark: The axiom of choice is controversial.

Remark: The axiom of choice entails certain counterintuitive results, such as the Banach–Tarski paradox^v and the existence of non-measurable sets.

The Banach–Tarski paradox states that for any two bounded subsets of \mathbb{R}^3 with nonempty interior, one of the sets can be partitioned into finitely many subsets, with certain isometries applied to said partition, and reconstituted into the second set.

Recall:

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

Definition. For any sets A and B, each subset of $A \times B$ is a relation from A to B.

Definition. A relation $R \subseteq A \times B$ is a function if

$$\forall x \forall y \forall z ((x, y) \in R \land (x, z) \in R \Rightarrow y = z).$$

Definition. A function $F \subseteq A \times B$ is injective if

$$\forall x \forall x' \forall y ((x, y) \in F \land (x', y) \in F \Rightarrow x = x')$$

Notation: For some statement φ ,

$$\forall x\in A\left(\phi \right)$$

is shorthand for

$$\forall x (x \in A \Rightarrow \varphi)$$

Notation: If $F \subseteq A \times B$ and $\forall x \in A_r(x, y) \in F$, then we write $F : A \rightarrow B$.

Also, $\forall (x, y) \in F$, we write F(x) = y.

VHey, one of the topics for my Honors thesis is on this.

Definition. A function F is onto B if

$$\forall y \in B \exists x (x, y) \in F.$$

Remark: Do not say "onto" without mentioning B. It is okay to say $F : A \to B$ is onto (or surjective).

Example. We wish to show that if $f: A \xrightarrow{\text{onto}} B$, then there exists a function $g: B \to A$ such that g is an injection.

Since f is onto B, for every $b \in B$, there exists $a \in A$ such that f(a) = b. We define g(b) to be a particular choice function on the set of all a such that f(a) = b.

Remark: The above statement (that every surjective function has a right-inverse, which is necessarily injective) is an equivalent statement to the axiom of choice.

Example (Natural Numbers). Since the empty set exists, we can define $\emptyset = \{\} = 0$. We set $1 = \{0\}$, $2 = \{0, 1\}$, etc. We have $n = \{0, ..., n - 1\}$.

If we take $n \cup \{n\}$, we have

$$\{0,\ldots,n-1\} \cup \{n\} = \{0,\ldots,n\}$$

= n + 1.

In other words, we define addition by taking $n \cup \{n\}$.

Question: Is $n \in n + 1$? Is $n \subseteq n + 1$?

Answer: Yes. and yes.

Definition. We say m < n if $m \in n$, or $m \subseteq n$.

Example. We will use the ZF axioms to show that there exists a set whose elements are all the natural numbers.

Defining using the axiom of infinity, we get

$$\exists s \ (\emptyset \in s \land \forall x \ (x \in s \Rightarrow x \cup \{x\} \in s) \land \forall y \ (y \in s \Rightarrow y = \emptyset \lor \exists x \ (x \cup \{x\} = y)))$$

Ordinal Numbers and Well-Orderings

Recall: Recall that we define $\emptyset = 0$, $1 = 0 \cup \{0\}$, and $n + 1 = n \cup \{n\}$.

Notice that $n \in n + 1$, meaning $0 \in 1 \in 2 \in \cdots$, and $n \subseteq n + 1$, meaning $0 \subseteq 1 \subseteq 2 \subseteq \cdots$.

Notation: For any set x, $x^+ = x \cup \{x\}$. We call x^+ the successor of x.

Recall: The infinity axiom states that

$$\exists A \, (\varnothing \in A \land \forall x \, (x \in A \Rightarrow x \cup \{x\} \in A)) \, .$$

One of our previous homework problems showed that there exists a set that contains all natural numbers and only natural numbers.

$$\exists \omega \forall x (x \in \omega \Leftrightarrow x \in A \land (x = \emptyset \lor \exists y (y \in \omega \land x = y^+)))$$

Definition (Natural Numbers). For ω defined by

$$\exists \omega \forall x (x \in \omega \Leftrightarrow x \in A \land (x = \emptyset \lor \exists y (y \in \omega \land x = y^+)))$$
,

we say ω is the set of all natural numbers.

Remark: Given a relation R, we write $(x, y) \in R$ if x Ry.

Definition (Total/Linear Order). Given a set A, a (strict) total/linear order is a relation R such that $\forall x, y \in A$, then exactly one of the following holds:

$$xRy \lor yRx \lor x = y.$$

Additionally, $\forall x, y, z \in A$, $xRy \land yRz \Rightarrow xRz$, meaning R is transitive.

Remark: This is a strict inequality.

Notation: For a total ordering R, we use the symbol <. This does not imply that a given ordering is a "less than" type of ordering.

Example. The relation x < y is a total ordering on \mathbb{Q} (or \mathbb{R}).

Definition (Well-Ordering). A well-ordering on A is a total ordering R on A such that every nonempty subset of A has a least element.

$$\forall S (S \subseteq A \land S \neq \emptyset \Rightarrow \exists x \in S \forall y \in S (x < y \lor x = y))$$

Question: Is \mathbb{Q} well-ordered by <?

Answer: No.

Consider the set $\left\{q\mid q>\sqrt{2}\right\}$. Since $\sqrt{2}\notin\mathbb{Q}, ^{VI}$, this set has no least element, meaning \mathbb{Q} is not well-ordered.

Definition. Let R_1 be a relation on A_1 , and R_2 a relation on A_2 .

We say (A_1, R_1) is order-isomorphic to (A_2, R_2) if

$$\exists f: A_1 \xrightarrow{bijection} A_2$$

and $\forall x, y \in A_1, xR_1y \Leftrightarrow f(x)R_2f(y)$.

Remark: If R_1 and R_2 are understood, we say A_1 is order-isomorphic to A_2 , and we write $A_1 \cong A_2$.

Example. If $\omega = \{1, 2, ...\}$, $R_1 = R_2 = <$, then if $A = \{0, 2, 4, ...\}$, $\omega \cong A$.

Question: Is \in a total order on $\omega^+ = \omega \cup \{\omega\}$?

Answer: Yes.

Notice that

$$\omega^{+} = \{0, 1, 2, \dots, \omega\}$$
$$= \{0, 1, 2, \dots, \{0, 1, 2, \dots\}\}.$$

This is also a well-ordering.

Example. Consider, now

$$Y = (\omega^{+})^{+}$$

$$= \omega^{+} \cup \{\omega^{+}\}$$

$$= \{0, 1, \dots, \omega, \omega^{+}\}.$$

Question: Is \in a total ordering on Y?

Answer: Yes.

Question: Is \in a well-ordering on Y?

Answer: Yes.

Question: Is $(\omega, \in) \cong (\omega^+ \in)$.

VII am not proving this here.

Answer: If there exists $f: \omega \to \omega^+$, then $f(n) = \omega$ for some n. Since $f(n+1) \in \omega^+$, and $f(n) \in f(n+1)$, it is the case that $\omega \in f(n+1)$.

However, $f(n + 1) \in \omega^+ \setminus \{\omega\}$, meaning $f(n + 1) \in \omega = \omega$.

Thus, we have $\omega \in f(n + 1) \in \omega$, which violates the axiom of regularity.

Question: Suppose A, B, C are well-ordered by R_A, R_B, R_C.

True/False: $A \cong A$.

True/False: If $A \cong B$, then $B \cong A$.

True/False: If $A \cong B$ and $B \cong C$, then $A \cong C$.

Answer: True for all three.

Therefore, we can talk about \cong as an equivalence relation on the \bowtie class of well-ordered sets.

Example. The following are representatives of separate equivalence classes in the class of well-ordered sets with respect to order-isomorphism.

$$\omega = \{0, 1, 2, ...\}$$

$$\omega^{+} = \{0, 1, 2, ..., \omega\}$$

$$\omega + 2 = \{0, 1, 2, ..., \omega, \omega + 1\},$$

Notice that these sets are all denumerable, but they are not order-isomorphic.

Theorem: Every such equivalence class has exactly one element that is well-ordered by \in and is \in -transitive.

This element is called an ordinal.

Definition. A set A is \in -transitive if $a \in b$ and $b \in A$ implies $a \in A$. Alternatively, every element of a is a subset of A.

Example. We can see that ω is \in -transitive, since for any $\alpha \in b$ and $b \in \omega$, then $\alpha \in \omega$ (by definition of ω).

Question: Is $3 \in$ -transitive?

Answer: Yes.

Theorem: For any two ordinals α , β , either $\alpha \in \beta$, $\beta \in \alpha$, or $\beta = \alpha$.

Recall: An ordinal is a set that is \in -transitive and well-ordered by \in .

A set t is \in -transitive if $\alpha \in b$ and $b \in t$ implies $\alpha \in t$. Equivalently, $b \in t \Rightarrow b \subseteq t$.

Example. The set

$$\{a < b < c\} \cong 3 = \{0, 1, 2\},\$$

since 0 < 1 < 2.

The set

$$\{a_0 < a_1 < \cdots\} \cong \omega$$
,

while

$$\{a_0 < a_1 < \dots < b_0\} \cong \omega^+ := \omega + 1 = \omega \cup \{\omega\}.$$

We can also see that

$$\{a_0 < a_1 < a_2 < \dots < b_0 < b_1 < b_3 < \dots\} = \omega + \omega$$

= $\omega 2$

Example. Let $S = \{p^n \mid p \text{ prime}, n \in \omega\}.$

We place the ordering

$$2^0 < 2^1 < \cdots > 3^1 < 3^2 < \cdots < 5^1 < 5^2 < \cdots$$

In other words,

$$p_k^m < p_{k+1}^n$$
$$p_k^m < p_k^{m+1}.$$

We can see that this ordering must be isomorphic to $\omega \omega$, since it must be greater than ωk for all $k \in \omega$.

Example. We define

$$1 + \omega \cong \{b_0 < a_0 < a_1 < a_2 < \cdots \}$$

\approx \omega.

This means $1 + \omega = \omega$, while $\omega + 1 \neq \omega$.

This is because $\omega + 1$ has a greatest element, while ω does not.

Definition (Addition). For any ordinals α and β , $\alpha + \beta$ is the ordinal that is order isomorphic to the following well-ordered set.

$$S = \{0\} \times \alpha \cup \{1\} \times \beta.$$

The ordering for this set is the lexicographical ordering. We declare

 $x \in x'$ or x = x' and $y \in y'$.

Example.

$$2+3 = \{0,1\} + \{0,1,2\}$$

$$S = \{0\} \times \{0,1\} \cup \{1\} \times \{0,1,2\}$$

$$= \{(0,0),(0,1),(1,0),(1,1),(1,2)\}$$

$$= \{(0,0) < (0,1) < (1,0) < (1,1) < (1,2)\}$$

$$\cong \{0,1,2,3,4\}$$

$$= 5$$

Definition (Multiplication). For any ordinals α and β , $\alpha\beta$ is the ordinal that is order-isomorphic to the following well-ordered set

$$S = \alpha \times \beta$$
,

ordered by

if $a \in a'$ or a = a' and $b \in b'$

Remark: For general ordinals, addition and multiplication are *not* commutative.

For instance, $1 + \omega \neq \omega + 1$, since $1 + \omega = \omega$. However, addition and multiplication of ordinals is associative.

Theorem:

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
$$(\alpha\beta)\gamma = \alpha(\beta\gamma).$$

Remark: We define

$$\omega^2 := \omega \omega,$$

 $\omega^3 := \omega \omega \omega.$

However, we may ask how to define

Definition (Exponentiation). For any ordinals α and β , we define

$$\alpha^{\beta} = \begin{cases} 1 & \text{if } \beta = 0 \\ \alpha^{\gamma} \alpha & \text{if } \beta = \gamma^{+} \text{ for some } \gamma \\ \bigcup_{\gamma < \beta} \alpha^{\gamma} & \text{else} \end{cases}$$

Remark: If an ordinal $\alpha \neq 0$ and α has no predecessor, then α is known as a limit ordinal. For instance, ω is a limit ordinal.

Example. From this definition,

$$\omega^{\omega} = \bigcup_{n \in \omega} \omega^n$$
.

Remark: Notice that ω^{ω} is countable, since it is the countable union of countable sets.

Definition.

$$\omega^{\omega^{\omega}} := \omega^{(\omega^{\omega})}$$

$$\omega^{\omega^{\omega^{\cdots}}} := \bigcup_{n \in \omega} \omega^{\omega^{\cdots^{\omega}}}$$

$$= \epsilon_0.$$

Definition. We define

 $\omega_1 := \{ \alpha \mid \alpha \text{ is an ordinal and } \alpha \text{ is countable} \}.$

Remark: It can be proven that ω_1 is indeed an ordinal.

Every subset of ω_1 is well-ordered (or else we would violate the Axiom of Regularity).

Theorem: It is not the case that ω_1 is countable.

Induction and Recursion

Definition (Principle of Mathematical Induction). Let ϕ be a formula such that

$$\varphi(0) \land \forall n \in \omega \, (\varphi(n) \Longrightarrow \varphi \, (n+1))$$

Then, $\forall n \in \omega$, $\phi(n)$.

Equivalently, let S be a set such that

$$0 \in S \land \forall n \in \omega (n \in S \Rightarrow n + 1 \in S).$$

Then, $\omega \subseteq S$.

Definition (Strong Principle of Mathematical Induction). Let S be a set such that

$$0 \in S \land \forall n \in \omega (n \subseteq S \Rightarrow n \in S).$$

Then, $\omega \subseteq S$.

Remark: Strong induction implies weak induction, since the antecedent in strong induction is more restrictive than the antecedent in weak induction.

Proof. Suppose toward contradiction that $\omega \nsubseteq S$. Then, since $\omega \setminus S \subseteq \omega$ must be nonempty, and ω is well-ordered, there exists n_0 such that $n_0 \in \omega \setminus S$. Thus, for every $m < n_0$, $m \in S$.

Thus, $\forall m \in n_0$, $m \in S$, meaning $n_0 \subseteq S$. Thus, $n_0 \in S$, meaning $n_0 \in S \land n_0 \notin S$. \bot

Remark: The above proof shows that everything you can prove by induction, you can prove by contradiction (since induction follows from contradiction).

Example. Suppose \prec is a well-ordering on \mathbb{R} . VII Define $x \in \mathbb{R}$ to be "good" if a certain condition is satisfied. We wish to show that $x \in \mathbb{R}$ — in particular, we cannot use either weak or strong induction.

Proof Idea. Suppose there exists some real number x that fails the condition. Let x_0 the least element that fails the condition. Then, $\forall y < x_0$, y is good. Then, we need to use some inductive step to show that such a condition implies that x_0 is good.

Example. Suppose that for all $m, n \in \mathbb{N}$, Then, $G_{m,n}$ is some graph, group, etc.

We want to show that every $G_{m,n}$ satisfies some condition.

Suppose there is a bad $G_{a,b}$. Take the smallest such $G_{a,b}$ (via the lexicographical order), and we can use strong induction to show that such a $G_{a,b}$ also satisfies the condition.

Example (Transfinite Induction). Suppose we want to show that for all $\alpha \in \omega 2$, $\phi(\alpha)$.

Question: Is the following enough?

$$\phi(0) \land \forall \alpha \in \omega 2 (\phi(\alpha) \Rightarrow \phi(\alpha \cup \{\alpha\})).$$

Answer: No.

The reason why the above cannot work (as a statement of induction) is because ω is a limit ordinal (i.e., ω is not a successor to any particular ordinal).

We can use contradiction.

Proof by Contradiction. Suppose toward contradiction that $\phi(\alpha)$ is not true for all $\alpha \in \omega 2$. Let α_0 be the smallest ordinal in $\omega 2$ such that $\phi(\alpha_0)$ is false.

Then, for every $\alpha \in \alpha_0$, $\phi(\alpha)$. Then, we would have to conclude $\phi(\alpha_0)$, implying a contradiction.

The above is an example of transfinite induction.

Example (Recursion). Recall the Fibonacci numbers:

We define the Fibonacci numbers recursively:

$$F(0) = 0$$

$$F(1) = 1$$

$$F(n+2) = F(n+1) + F(n).$$

VII All nonempty sets contain a well-ordering, which is another statement of the Axiom of Choice

Question: Which of the following are valid recursive definitions?

(a) $f: \mathbb{N} \to \mathbb{N}$, with

$$f(n) = \begin{cases} n^2 & n \text{ odd} \\ f(n/2) & n \text{ even, and } n > 0 \\ 1 & n = 0 \end{cases}$$

- (b) Let $f:[0,\infty)\to[0,\infty)$ defined by f(0)=1, f(x)=2f(x/2)
- (c) Let $f : \mathbb{N} \to \mathbb{N}$, f(0) = 1, f(1) = 1, and f(n) = 2f(n-2) for all $n \ge 2$.
- (d) Let $f : \mathbb{Z} \to \mathbb{Z}$, f(0) = 1, and

$$f(n) = \begin{cases} 2f(n-1) & n > 0 \\ 3f(n+1) & n < 0 \end{cases}.$$

(e) Let $A : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by

$$A(m,n) = \begin{cases} n+1 & m=0 \\ A(m-1,1) & m>0 \\ A(m-1,A(m,n-1)) & m>0 & n>0 \end{cases}$$

We can also write A(m, n) as $A_m(n)$, with $A_0(n) = n + 1$, $A_{m+1}(n) = \underbrace{A_m \circ \cdots \circ A_m}_{n+1 \text{ times}}(1)$

(f) Let

$$C(n) = \begin{cases} n/2 & n \text{ even} \\ 3n+1 & n \text{ odd, } n \neq 1. \\ 1 & n = 1 \end{cases}$$

We define $f : \mathbb{N} \to \mathbb{N}$ by f(0) = f(1) = 0, and

$$f(n) = \begin{cases} f(n/2) & n \text{ even} \\ f(3n+1)+ & n \text{ odd} \end{cases}.$$

Answer:

- (a) Since f is defined for either odd elements or some smaller element, and there is a base case of n = 0, this should be a valid definition.
- (b) This isn't a valid definition, since a recursive definition needs to reach some "stopping point."
- (c) This is a valid definition, since we ultimately reach some stopping point with n = 0 or n = 1.
- (d) This is a valid definition.
- (e) This is a valid definition notice that the function is always defined in terms of some value "less than" the input, and it always has a minimum value. If we know A(a,b) for all (a,b) < (m,n), viii then we can find (m,n). The function A(m,n) is known as the Ackermann function.
- (f) If you prove the Collatz conjecture, then this is a valid definition.

Example (Using Induction to show Validity of Recursion Formula). Show there exists a unique $F : \mathbb{N} \to \mathbb{N}$ such that F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2).

Let G be the set of all $n \in \mathbb{N}$ such that there exists a unique $g : \{0, ..., n\} \to \mathbb{N}$ defined by g(0) = 0, g(1) = 1, and g(k) = g(k-1) + g(k-2) for all $2 \le k \le n$.

We will show that $G = \mathbb{N}$.

 $^{^{\}text{VIII}}$ Lexicographically, meaning (a,b) < (c,d) if a < b or if a = c and b < d.

Let $n_0 = \min(\mathbb{N} \setminus G)$. It must be the case $n_0 \neq 0$ and $n_0 \neq 1$. Then, there exists a unique function $g': \{0,\ldots,n_0-1\} \to \mathbb{N}$ such that g'(0)=0, g'(1)=1, and g'(k)=g'(k-1)+g'(k-2) for all $2 \leq k \leq n_0-1$. Define $g: \{0,\ldots,n_0\} \to \mathbb{N}$ by $g(n_0)=g'(n_0-1)+g'(n_0-2)$ and g(k)=g'(k) for $2 \leq k \leq n_0-1$.

Thus, we have shown existence. Suppose $\exists f: \{0,\ldots,n_0\} \to \mathbb{N}$ such that f(0)=0, f(1)=1, and f(k)=f(k-1)+f(k-2). However, $f|_{\{0,\ldots,n_0-1\}}=g'$, by uniqueness meaning for all $k< n_0$, f(k)=g'(k). Thus, $f(n_0)=f(n_0-1)+f(n_0-2)=g'(n_0-1)+g'(n_0-2)=g(n_0)$.

Thus, for each $n \in \mathbb{N}$, there exists a unique g_n that satisfies the given conditions. Let $F = \bigcup_{n \in \mathbb{N}} g_n$.

Cardinal Numbers

Define a relation \sim on sets by $A \sim B \Leftrightarrow |A| = |B|$.

Question: Is this an equivalence relation?

Answer: Yes. Since bijections are invertible, the identity map is a bijection, and composing bijections yields another bijection, this is an equivalence relation.

Example.

$${3,5} \sim {\emptyset, \omega} \sim {\{\omega\}, \mathbb{R}\}} \sim 2 = {0,1}.$$

From this, we intuitively select 2 to be the representative of this equivalence class.

Example.

$$\omega \sim \omega 2 \sim \omega 3 \sim \cdots \sim \omega^2 \sim \cdots \sim \omega^{\omega^{\omega}}$$

Similarly, we select ω to be the representative of $|\omega|$.

Definition (Cardinality of a Set). Let A be a set. The cardinality of A is the least ordinal α such that there exists a bijection $f : A \to \alpha$. This ordinal α is denoted |A|.

Remark: Before today, |A| had no definition. We did write |A| = |B|, but that was shorthand for $\exists f : A \xrightarrow{bijection} B$.

Question: What is $|\omega^2|$?

Answer: ω

What is $|\omega|$?

Answer: ω

What is |3|?

Answer: 3

What is $|\mathbb{R} \times \mathbb{R}|$ and its relation to $|\mathbb{R}|$ or $|P(\omega)|$.

Answer: $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}| = |P(\omega)| = \omega_1$ (assuming the continuum hypothesis)

Definition (Cardinal Number). Let α be an ordinal. If $|\alpha| = \alpha$, we say α is a cardinal number.

Every natural number is an ordinal and a cardinal.

Notation: When dealing with cardinals, it is customary to write \aleph_0 to denote ω .

We wrote |A| = |B| to be shorthand for $\exists f : A \xrightarrow{bijection} B$. However, now there is a new meaning, since |A| is actually a set. This means that when we write |A| = |B|, then the ordinals referring to |A| and |B| are equal to each other.

We need to derive the "old meaning."

Theorem: |A| = |B| if and only if there exists a bijection $f : A \rightarrow B$.

Proof. Let $\alpha = |A|$. Then, $\alpha = |B|$. By definition, there exist bijections $f : A \to \alpha$ and $g : B \to \alpha$. Composing $f \circ g^{-1} : A \to B$, we get a bijection.

Suppose there exists a bijection $f: A \to B$. Let $\alpha = |A|$. Thus, there exists a bijection $g: A \to \alpha$. So, taking $g \circ f^{-1}$, we get a bijection from B to α . We have α is a cardinal as $\alpha = |A|$, meaning $\alpha = |B|$. Thus, |A| = |B|.

Question: What does |A| < |B| mean?

Answer: Before today, |A| < |B| meant there exists $f : A \hookrightarrow B$ and no bijection $g : A \rightarrow B$.

However, now, we mean |A| < |B| means $|A| \in |B|$

Theorem: $|A| \in |B| \Leftrightarrow \exists f : A \hookrightarrow B$ and there is no bijection $g : A \rightarrow B$

Proof. Homework problem.

Definition (Cardinal Arithmetic). Let κ , λ be cardinals. Then,

$$\kappa +_{card} \lambda := |(\kappa \times \{0\}) \cup (\lambda \times \{1\})|$$

$$\kappa \cdot_{card} \lambda := |\kappa \times \lambda|$$

Question: Is $\kappa \cdot_{card} \lambda = \kappa \cdot_{ord} \lambda$?

Remark: If we use κ and λ , then we are referring to cardinal operations, while if we use α and β , we are referring to ordinal operations.

Theorem: Let κ , λ , and μ be cardinals.

- (i) $\kappa + \lambda = \lambda + \kappa$ and $\kappa \cdot \lambda = \lambda \cdot \kappa$;
- (ii) if $\kappa \leq \lambda$, then $\kappa + \mu \leq \lambda + \mu$ and $\kappa \cdot \mu \leq \lambda \times \mu$.

Proof. Homework problem.

Theorem: If λ is an infinite cardinal, then $\lambda \cdot \lambda = \lambda$.

Example. In particular $|\mathbb{R}^2| = |\mathbb{R}|$, since

$$\begin{aligned} \left| \mathbb{R}^2 \right| &= \left| \mathbb{R} \times \mathbb{R} \right| \\ &= \left| \mathbb{R} \right| \cdot \left| \mathbb{R} \right| \\ &= \left| \mathbb{R} \right|. \end{aligned}$$

Question: Is $|\omega| + |\mathbb{R}| \ge |\mathbb{R}|$?

Answer: No.

Corollary: If λ is an infinite cardinal, and $0 \neq \kappa \leq \lambda$, then $\kappa + \lambda = \lambda$, and $\kappa \cdot \lambda = \lambda$.

Proof.

$$\lambda = 1 \cdot \lambda$$
 Needs proof.
 $\leq \kappa \lambda \lambda$
 $\leq \lambda \cdot \lambda$
 $= \lambda$.

Thus, all the inequalities are equalities, meaning $\lambda = \kappa \cdot \lambda$.

$$\lambda = 0 + \lambda$$

$$\leq \kappa + \lambda$$

$$\leq \lambda + \lambda$$

$$= |\lambda +_{\text{ord}} \lambda|$$

$$= |\lambda \cdot_{\text{ord}} 2|$$

$$= \lambda \cdot 2$$

$$= 2 \cdot \lambda$$

$$\leq \lambda \cdot \lambda$$

$$= \lambda.$$

Example. Let $S = \{f \mid f : 3 \to 2\}$, or $S = \{f \mid f : \{0,1,2\} \to \{0,1\}\}$. Then, $S = 2 \times 2 \times 2 = 2^3$.

In general, if A and B are finite sets, we define $|\{f \mid f : A \rightarrow B\}| = |B|^{|A|}$.

Definition. Let A and B be arbitrary sets. Then,

$$|A|^{|B|} = |\{f \mid f : B \to A\}|$$

Example.

$$2^{\aleph_0} = |\{f \mid f : \omega \to \{0, 1\}\}|$$
$$= |P(\omega)|$$
$$= |\mathbb{R}|$$
$$= \omega_1$$

Theorem:

$$\left(\kappa^{\lambda}\right)^{\mu} = \kappa^{\lambda \cdot \mu}$$

Theorem: If κ is an infinite cardinal, then

$$\kappa^{\kappa} = 2^{\kappa}$$
.

Proof.

$$\kappa^{\kappa} = (2^{\kappa})^{\kappa}$$
$$= 2^{\kappa \cdot \kappa}$$
$$= 2^{\kappa}$$
$$\leq \kappa^{\kappa}.$$

Equivalent Versions of the Axiom of Choice

Theorem (Traditional Statement of the Axiom of Choice): If S is a set, and $\forall x \in S, x \notin \emptyset$, then

$$\exists f: S \to \bigcup S$$

such that $\forall x \in S$, $f(x) \in x$.

We say f is a choice function.

Theorem (Well-Ordering Theorem): Every nonempty set admits a well-ordering.

Theorem (Zorn's Lemma): In every partially ordered set S, if every chain has an upper bound in S, then S contains a maximal element.

The common joke is that the axiom of choice is obviously true, the well-ordering theorem is obviously false, and Zorn's lemma is unclear.

Definition (Partially Ordered Set). A relation \leq is known as a partial order if

- $\forall x \in S (x \leq x)$;
- $\forall x, y \in S (x \le y \land y \le x \Rightarrow x = y);$
- $\forall x, y, z \in S (x \le y \land y \le z \Rightarrow x \le z)$.

A partial order may or may not be total. A total ordering includes a fourth condition:

• $\forall x, y \in S (x \leq y \vee y \leq x)$.

A set equipped with a partial ordering is known as a partially ordered set.

Definition (Chain). A chain in S is a subset of S that is totally ordered by \leq .

Definition (Upper Bound). An upper bound of a subset of S is an element $u \in S$ such that $\forall x \in T (x \le u)$.

Definition (Maximal Element). An element $m \in S$ is maximal if $\forall x \in S \ (x \ge m \Rightarrow x = m)$.

Example (Using Zorn's Lemma). We want to know if there exists an uncountable set T such that

- (1) $\forall A \in T, A \subseteq \mathbb{R}$ and A is countable;
- (2) (T, \subseteq) is totally ordered.

The answer is yes.

Proof of Zorn's Lemma. Suppose S does not have a maximal element. Then, every chain C in S has a strict upper bound; i.e., for any upper bound b of C, b \notin C.

The Axiom of Choice implies that there exists $f : H = \{C \mid C \text{ is a chain in } S\} \rightarrow S \text{ such that } f(C) \text{ is a strict upper bound for } c.$

Let Γ be an arbitrary ordinal, $\alpha \in \Gamma$. Define $g : \Gamma \to H$ recursively by

$$g(\alpha) = \begin{cases} \emptyset & \alpha = \emptyset \\ g(\beta) \cup \{f(g(3))\} & \alpha = \beta + 1 \\ \bigcup_{\beta \in \alpha} g(\beta) & \alpha \text{ is a limit ordinal} \end{cases}.$$

We must show that g is injective.

If g is injective, then we have $|\Gamma| \le |H|$. However, since Γ is arbitrary, we can find κ that is a cardinal for |H|, but this implies that $|H| \ge \kappa$.

Theorem: Every vector space has a basis.

Proof. Let V be a vector space. Let $L = \{S \subseteq V \mid S \text{ is linearly independent}\}$. Then, (L, \subseteq) is a partially ordered set.

Every chain C in L has an upper bound:

$$U = \bigcup_{A \in C} A.$$

Then, C is necessarily linearly independent, as otherwise, we would have $a_1v_1+\cdots a_nv_n=0$ with $a_1,\ldots,a_n\neq 0$, implying $v_1,\ldots,v_n\in A$ for some $A\in C$, implying A is linearly dependent.

Thus, by Zorn's lemma, L has a maximal element, S_{max} . Then, $S_{max} \in L$, so S_{max} is linearly independent.

Additionally, S_{max} spans V, because if there were some $w \in V$ with $w \notin \text{span}(S_{max})$, then we could take $S_{max} \cup \{w\}$, which would still be linearly independent, contradicting the maximality of S.

Example. Let $\Gamma = \{f : \mathbb{R} \to \mathbb{R}\}$, and let $\Gamma_C \left\{ f : \mathbb{R} \xrightarrow{continuous} \mathbb{R} \right\}$. We want to prove that $|\Gamma_C| < |\Gamma|$.

Lemma: If f, $g \in \Gamma_C$ are continuous, and for every $x \in \mathbb{Q}$, f(x) = g(x), then f = g.

Proof. Suppose toward contradiction that $\exists x$ with $f(x) \neq g(x)$. Then, $(f - g)(x) \neq 0$. Since f - g is continuous, there is some δ such that on $(x - \delta, x + \delta)$, f - g is never zero. However, since $\exists r \in \mathbb{Q}$ such that $r \in (x - \delta, x + \delta)$, this implies that $(f - g)(r) \neq 0$.

Let $\gamma_Q = \{f|_Q \mid f \in \Gamma_C\}$. Let $\phi : \Gamma_C \to \Gamma_Q$ defined by $\phi(f) = f|_Q$. Then, ϕ is injective. Thus, $|\Gamma_C| \leq \left|\Gamma_Q\right| \leq |\mathbb{R}|^{|\mathbb{Q}|} < |\mathbb{R}|^{|\mathbb{R}|}$ since $|\mathbb{Q}| < |\mathbb{R}|$, so $|\Gamma_C| < |\Gamma|$.