Obligatory assignment 2 MSA101/MVE187, autumn 2020

Petter Mostad

September 23, 2020

In the answers to the questions below, you should include your R code so that I can check that you have done computations correctly.

1. Anton is building a windmill to produce electricity for his house. The wind speed at his house of course varies, but can be modelled as Gamma distributed with parmeters $\alpha=1.5$ and $\beta=0.1$, where the Gamma distibution has density

$$\operatorname{Gamma}(v; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} v^{\alpha - 1} \exp(-\beta v)$$

Anton has found that the output from his wind mill at a given wind speed \boldsymbol{v} is given by the function

$$P(v) = \begin{cases} 0 & v < 13\\ \cos(\frac{\pi}{10}v - \frac{3\pi}{10}) + 1 & 13 \le v < 23\\ (1031 + 46v - v^2)/780 & 23 \le v < 30\\ 0 & 30 \le v \end{cases}$$

- (a) At any given time, the turbine may generate some power or no power. Calculate the probability that it delivers some power.
- (b) Compute by simulation the expected value, together with an approximate 95% confidence interval for the simulation accuracy, for the amount of power generated by the wind turbine. Show how your results depend on the sample size you choose.
- (c) Re-compute the expectation in (b) using discretization.
- (d) Re-compute the expectation in (b) using the R function integrate.
- (e) To improve on the accuracy in (b) you would like to use importance sampling. Make a plot that is relevant for choosing a proposal density (instrumental density), and make such a choice.
- (f) Now repeat (b) using importance sampling with your chosen proposal density. Compare the results with those of (b).

2. In a study of the number of death notices in the London Times on each day in the interval 1910-1912 for women aged 80 and over, it was noticed that the number of deaths did not follow a Poisson distribution as was expected. The counts Y_i of days with i death notices is given in the table below:

Daily death notices (i)	0	1	2	3	4	5	6	7	8	9
Day count (Y_i)	162	267	271	185	111	61	27	8	3	1

- (a) Assuming that the deaths each day follow a Poisson distribution, write down the likelihood function for the Poisson density λ in terms of the observations Y_i above. As a step on the way, it may be helpful to consider what would have happened if the data had contained the death count for each specific date in the period 1910-1912.
- (b) Compute the maximum likelihood estimate for λ using the likelihood from (a). Plot the predicted counts using this λ together with the actual counts.
- (c) As a small extension of the model above, we instead assume that, each day, there is a choice between two Poisson distributions, one with intensity λ_1 and the other with intensity λ_2 . The probability for choosing λ_1 is p and the probability for choosing λ_2 is 1-p. We now have a model with the three parameters, λ_1, λ_2, p . In order to work with this model, we add also variables Z_0, Z_1, \ldots, Z_9 , where Z_i is the (unobserved) count of days where λ_1 is used and where i deaths are observed. Thus $0 \leq Z_i \leq Y_i$ for $i = 0, \ldots, 9$. Write down (a function proportional to) the likelihood for $Y_0, \ldots, Y_9, Z_0, \ldots, Z_9$ given the parameters λ_1, λ_2, p .
- (d) We now assume we have a prior for the parameters p, λ_1, λ_2 that is a product of a uniform distribution on [0,1] for p, a prior $\lambda_1 \sim \text{Gamma}(1,1)$ for λ_1 , and a prior $\lambda_2 \sim \text{Gamma}(1,1)$ for λ_2 . Write down the posterior for p given all the other observations and variables.
- (e) Find the posteriors for λ_1 given all the other variables and pararmeters, and similar for λ_2 .
- (f) Prove that the distribution of Z_i given all parameters, all Y_0, \ldots, Y_9 , and all other Z_i variables, is Binomial. Find the parameters of this distribution.
- (g) Implement a Gibbs sampler for the extended model above. Use the implementation to produce an approximate sample for the posterior distribution of the parameters p, λ_1, λ_2 given the data y_0, \ldots, y_9 . Visualize your results. Estimate the expected values of each of the parameters in this posterior.

¹The expressions "write down the posterior" or "find the posterior" mean that you should write down the formula for a function that is proportional to the posterior density, and, in the cases where the posterior is a density in a known parametric family, identify this family and the corresponding values of the parameters.