《手把手教你学STM32》

主讲人 : 正点原子团队

硬件平台:正点原子STM32开发板

版权所有:广州市星翼电子科技有限公司

淘宝店铺: http://eboard.taobao.com

技术论坛: www.openedv.com 开源电子网

公众平台:"正点原子"

官方网站:www.alientek.com

联系电话: 13922348612

《手把手教你学STM32》

✓ 输入捕获实验

- 参考资料:
- 探索者STM32F4开发板

《STM32F4开发指南-库函数版本》-第15章 输入捕获实验

□ STM32F4xx官方资料:

《STM32F4中文参考手册》-第15章 通用定时器

目录

- 1 通用定时器输入捕获概述
- 2 常用寄存器和库函数配置
- 3 输入捕获实验讲解

◆ STM32 PWM工作过程

◆ STM32 输入捕获工作过程(通道1为例)

一句话总结工作过程:通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。

◆步骤1:设置输入捕获滤波器(通道1为例)

输入捕获 1 滤波器 IC1F[3:0],这个用来设置输入采样频率和数字滤波器长度。其中, f_{CK_INT} 是定时器的输入频率(TIMxCLK),一般为 72Mhz,而 f_{DTS} 则是根据 TIMx_CR1 的 CKD[1:0] 的设置来确定的,如果 CKD[1:0]设置为 00,那么 $f_{DTS}=f_{CK_INT}$ 。N 值就是滤波长度,举个简单的例子:假设 IC1F[3:0]=0011,并设置 IC1 映射到通道 1 上,且为上升沿触发,那么在捕获到上升沿的时候,再以 f_{CK_INT} 的频率,连续采样到 8 次通道 1 的电平,如果都是高电平,则说明却是一个有效的触发,就会触发输入捕获中断(如果开启了的话)。这样可以滤除那些高电平脉宽低于 8 个采样周期的脉冲信号,从而达到滤波的效果。这里,我们不做滤波处理,所以设置 IC1F[3:0]=0000,只要采集到上升沿,就触发捕获。

◆步骤2:设置输入捕获极性(通道1为例)

位1 CC1P: 输入/捕获1输出极性 (Capture/Compare 1 output polarity)

CC1通道配置为输出:

- 0: OC1高电平有效
- 1: OC1低电平有效

CC1通道配置为输入:

该位选择是IC1还是IC1的反相信号作为触发或捕获信号。

- 0: 不反相: 捕获发生在IC1的上升沿: 当用作外部触发器时, IC1不反相。
- 1: 反相: 捕获发生在IC1的下降沿: 当用作外部触发器时, IC1反相。

◆步骤三:设置输入捕获映射通道(通道1为例)

位1:0 CC1S[1:0]: 捕获/比较1选择 (Capture/Compare 1 selection) 这2位定义通道的方向(输入/输出),及输入脚的选择: 00: CC1通道被配置为输出; 01: CC1通道被配置为输入,IC1映射在TI1上; 10: CC1通道被配置为输入,IC1映射在TI2上; 11: CC1通道被配置为输入,IC1映射在TRC上。此模式仅工作在内部触发器输入被选中时(由TIMx_SMCR寄存器的TS位选择)。 注: CC1S仅在通道关闭时(TIMx_CCER寄存器的CC1E='0')才是可写的。

◆步骤四:设置输入捕获分频器(通道1为例)

位3:2 IC1PSC[1:0]: 输入/捕获1预分频器 (Input capture 1 prescaler) 这2位定义了CC1输入(IC1)的预分频系数。
—且CC1E='0'(TIMx_CCER寄存器中),则预分频器复位。
00: 无预分频器,捕获输入口上检测到的每一个边沿都触发一次捕获;
01: 每2个事件触发一次捕获;
10: 每4个事件触发一次捕获;
11: 每8个事件触发一次捕获。

 位0
 CC1E: 输入/捕获1输出使能 (Capture/Compare 1 output enable)

 CC1通道配置为输出:
 0: 关闭一 OC1禁止输出。

 1: 开启一 OC1信号输出到对应的输出引脚。

 CC1通道配置为输入:
 该位决定了计数器的值是否能捕获入TIMx_CCR1寄存器。

 0: 捕获禁止:
 0: 捕获使能。

淘宝店铺: http://eboard.taobao.com

技术论坛:www.openedv.com

◆步骤五: 捕获到有效信号可以开启中断

DMA/中断使能寄存器(TIMx_DIER)																
15	14		13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留	TDE	3	保留	CC4DE	CC3DE	CC2DE	CC1DE	UDE	保留	TIE	保留	CC4IE	CC3IE	CC2IE	CC1 IE	UIE
rw				rw	rw	rw	rw	rw		rw		rw	rw	rw	rw	rw
		位3		0: \$\frac{3}{2}\$ 1: 5 CC3 0: \$\frac{3}{2}\$ 1: 5 CC2 0: \$\frac{3}{2}\$	禁止捕药 允许捕药 禁止捕药 允许捕药 说:允捕药	长/比较4 长/比较4 午捕获/ 长/比较3	中断; 中断。 七较3中 中断; 中断。 七较2中 七较2中	断 (Cap	ture/Cor	mpare 3	3 interru	pt enab	le)			
		位1		0: 3	CC1IE: 允许捕获/比较1中断 (Capture/Compare 1 interrupt enable) 0: 禁止捕获/比较1中断; 1: 允许捕获/比较1中断。											
位0 UIE : 允许更新中断 (Update interrupt enable) 0: 禁止更新中断; 1: 允许更新中断。																

◆最后:看看定时器通道对应引脚TIM5为例

	Pir	nur	nber				ure					
LQFP64	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	Pin type I/O structure Notes		Alternate functions	Additional functions		
14	23	34	N3	40	PA0-WKUP (PA0)	I/O	FT	(5)	USART2_CTS/ UART4_TX/ ETH_MII_CRS / TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR/ EVENTOUT	ADC123_IN0/WKUP ⁽⁴⁾		
15	24	35	N2	41	PA1	1/0	FT	(4)	USART2_RTS / UART4_RX/ ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIMM2_CH2/ EVENTOUT	ADC123_IN1		
16	25	36	P2	42	PA2	I/O	FT	(4)	USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO/ EVENTOUT	ADC123_IN2		
3	-	-	F4	43	PH2	I/O	FT		ETH_MII_CRS/EVENTOUT			
-	15	10/22	G4	44	PH3	I/O	FT		ETH_MII_COL/EVENTOUT			

✓ 输入捕获关键库函数

◆ 输入捕获通道初始化函数:

void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct);

```
typedef struct {
    uint16_t TIM_Channel; //捕获通道1-4
    uint16_t TIM_ICPolarity; //捕获极性
    uint16_t TIM_ICSelection; //映射关系
    uint16_t TIM_ICPrescaler; //分频系数
    uint16_t TIM_ICFilter; //滤波器
} TIM_ICInitTypeDef;
```

```
TIM5_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM5_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM5_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM5_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM5_ICInitStructure.TIM_ICFilter = 0x00;
TIM_ICInit(TIM5, &TIM5_ICInitStructure);
```


◆ 通道极性设置独立函数:

void TIM_OCxPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);

◆ 获取通道捕获值

uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx);

- 输入捕获的一般配置步骤:
 - ①初始化定时器和通道对应IO的时钟。
 - ② 初始化IO口,模式为复用: GPIO_Init();
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
 - ③设置引脚复用映射:
 - GPIO_PinAFConfig();
 - ④初始化定时器ARR, PSC
 - TIM_TimeBaseInit();
 - ⑤初始化输入捕获通道
 - TIM_ICInit();
 - ⑥如果要开启捕获中断,
 - TIM_ITConfig();
 - **NVIC_Init()**;
 - ⑦使能定时器: TIM_Cmd();
 - ⑧编写中断服务函数: TIMx_IRQHandler();

实验目的: 测量信号的脉冲宽度

TIM5CH1_CAPTURE_STA							
bit7	bit6	bit5~0					
捕获完成标志	捕获到高电平标志	捕获高电平后定时器溢出的次数					

TIM5_Cap_Init 函数执行的时候就设置好了,然后等待上升沿中断到来,当捕获到上升沿中断,此时如果 TIM5CH1_CAPTURE_STA 的第 6 位为 0,则表示还没有捕获到新的上升沿,就先把 TIM5CH1_CAPTURE_STA、TIM5CH1_CAPTURE_VAL 和 TIM5->CNT 等清零,然后再设置 TIM5CH1_CAPTURE_STA 的第 6 位为 1,标记捕获到高电平,最后设置为下降沿捕获,等待 下降沿到来。如果等待下降沿到来期间,定时器发生了溢出,就在 TIM5CH1_CAPTURE_STA 里面对溢出次数进行计数,当最大溢出次数来到的时候,就强制标记捕获完成(虽然此时还没 有捕获到下降沿)。当下降沿到来的时候,先设置 TIM5CH1_CAPTURE_STA 的第 7 位为 1,标记成功捕获一次高电平,然后读取此时的定时器值到 TIM5CH1_CAPTURE_VAL 里面,最后设置为上升沿捕获,回到初始状态。

这样,我们就完成一次高电平捕获了,只要 TIM5CH1_CAPTURE_STA 的第 7 位一直为 1,那么就不会进行第二次捕获,我们在 main 函数处理完捕获数据后,将 TIM5CH1_CAPTURE_STA 置零,就可以开启第二次捕获。

输入捕获实验

GO!!

谢谢您对"正点原子"团队的支持

硬件平台:正点原子STM32开发板

版权所有:广州市星翼电子科技有限公司

淘金店铺: http://eboard.taobao.com

技术论坛: www.openedv.com

