BFS is a single-source shortest-path algorithm that works on unweighted graphs, that is, graphs in which each edge has unit weight.

## **Shortest Path Algorithms**

?? Minimize weights ??

Time, cost, penalties, loss, etc.

## Introduction

- Given a weighted, directed graph G = (V, E), with weight function  $w : E \to \mathbb{R}$ .
- w(p), the weight of path p from  $v_0$  to  $v_k$  is given by

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Then shortest-path weight  $\delta(u,v)$  is defined as

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise}. \end{cases}$$

• Shortest path from vertex u to vertex v is then defined as any path p with weight  $w(p) = \delta(u,v)$ .

### Contd...

- Single-source shortest-paths problem, i.e. given a graph find a shortest path from a given source vertex to each other vertex.
  - Dijkstra's algorithm.

### Variants:

- Single-destination shortest-paths problem
- Single-pair shortest-path problem
- All-pairs shortest-paths problem, i.e. find a shortest path from u to v for every pair of vertices u and v.
  - Floyd-Warshall algorithm.

# Dijkstra's Algorithm

 Solves single-source shortest-paths problem on a weighted, directed graph in which all edge weights are nonnegative.

# Example

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$













## Implementation

```
DIJKSTRA(G, w, s)
```

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

### INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex  $v \in G.V$
- $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$



$$t \mid \rightarrow \mid x \mid 1 \mid \rightarrow \mid y \mid 2$$

$$x \rightarrow z 4$$

$$y \rightarrow \boxed{t \mid 3} \rightarrow \boxed{x \mid 9} \rightarrow \boxed{z \mid 2}$$



- 1 **if** v.d > u.d + w(u, v)
- 2 v.d = u.d + w(u, v)
- $v.\pi = u$

| Vertex | π   | d |
|--------|-----|---|
| S      | NIL | 0 |
| t      | NIL | 8 |
| Х      | NIL | 8 |
| У      | NIL | 8 |
| Z      | NIL | 8 |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} x \end{bmatrix} \rightarrow \begin{bmatrix} z & 4 \end{bmatrix}$                                                 |
| $y \rightarrow \boxed{t  3} \rightarrow \boxed{x  9} \rightarrow \boxed{z  2}$                                                    |
| $\begin{bmatrix} z \end{bmatrix} \rightarrow \begin{bmatrix} s & 7 \end{bmatrix} \rightarrow \begin{bmatrix} x & 6 \end{bmatrix}$ |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)



$$S = \{s\}$$

| Vertex | π   | d |
|--------|-----|---|
| S      | NIL | 0 |
| t      | NIL | 8 |
| х      | NIL | 8 |
| У      | NIL | 8 |
| Z      | NIL | 8 |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$\begin{array}{c|c} s & \rightarrow & t & 10 \\ \hline \end{array} \rightarrow \begin{array}{c|c} y & 5 \\ \hline \end{array}$$

$$x \rightarrow z 4$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | S   | 10 |
| х      | NIL | 8  |
| У      | NIL | 8  |
| Z      | NIL | 8  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)



$$x \rightarrow z \mid 4$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | S   | 10 |
| х      | NIL | 8  |
| У      | S   | 5  |
| Z      | NIL | ∞  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$\begin{array}{c|c} s & \rightarrow & t & 10 \\ \hline \end{array} \rightarrow \begin{array}{c|c} y & 5 \\ \hline \end{array}$$

$$x \rightarrow z 4$$

$$y \rightarrow \begin{bmatrix} t & 3 \\ \hline \end{pmatrix} \rightarrow \begin{bmatrix} x & 9 \\ \hline \end{bmatrix} \rightarrow \begin{bmatrix} z & 2 \\ \hline \end{bmatrix}$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | S   | 10 |
| x      | NIL | 8  |
| У      | S   | 5  |
| Z      | NIL | 8  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$x \rightarrow z \mid 4$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y\}$$

| Vertex | π   | d |
|--------|-----|---|
| S      | NIL | 0 |
| t      | У   | 8 |
| х      | NIL | 8 |
| У      | S   | 5 |
| Z      | NIL | 8 |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$s \rightarrow \boxed{t \mid 10} \rightarrow \boxed{y \mid 5}$$

$$x \rightarrow z 4$$

RELAX(u, v, w)

1 if 
$$v.d > u.d + w(u, v)$$

$$v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | У   | 8  |
| х      | У   | 14 |
| У      | S   | 5  |
| Z      | NIL | 8  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$s \rightarrow t \mid 10 \rightarrow y \mid 5$$

$$x \rightarrow z 4$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | У   | 8  |
| х      | У   | 14 |
| У      | S   | 5  |
| Z      | У   | 7  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$x \rightarrow z 4$$

$$\begin{bmatrix} z \end{bmatrix} \rightarrow \begin{bmatrix} s \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix} \rightarrow \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y, z\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | У   | 8  |
| x      | У   | 14 |
| У      | S   | 5  |
| Z      | У   | 7  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$x \rightarrow z 4$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y, z\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | У   | 8  |
| х      | Z   | 13 |
| У      | S   | 5  |
| Z      | У   | 7  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$s \rightarrow \boxed{t \mid 10} \rightarrow \boxed{y \mid 5}$$

$$t \rightarrow x \mid 1 \rightarrow y \mid 2$$

$$x \rightarrow z 4$$

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$



$$S = \{s, y, z, t\}$$

| Vertex | π   | d  |
|--------|-----|----|
| S      | NIL | 0  |
| t      | У   | 8  |
| х      | Z   | 13 |
| У      | S   | 5  |
| Z      | У   | 7  |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$s \rightarrow \boxed{t \mid 10} \rightarrow \boxed{y \mid 5}$$

$$x \rightarrow z 4$$

#### Relax(u, v, w)

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$

Q

(x,13)

$$S = \{s, y, z, t\}$$

| Vertex | π   | d |
|--------|-----|---|
| S      | NIL | 0 |
| t      | У   | 8 |
| х      | t   | 9 |
| У      | S   | 5 |
| Z      | У   | 7 |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

$$x \rightarrow z 4$$

#### Relax(u, v, w)

1 **if** 
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$

Q

(x,9)

$$S = \{s, y, z, t, x\}$$

| Vertex | π   | d |
|--------|-----|---|
| S      | NIL | 0 |
| t      | У   | 8 |
| х      | t   | 9 |
| У      | S   | 5 |
| Z      | У   | 7 |

| $ \boxed{s} \rightarrow \boxed{t} \boxed{10} \rightarrow \boxed{y} \boxed{5} $                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                            |
| $\begin{bmatrix} x \end{bmatrix} \rightarrow \begin{bmatrix} z & 4 \end{bmatrix}$                                                 |
| $ \boxed{y} \rightarrow \boxed{t} \boxed{3} \rightarrow \boxed{x} \boxed{9} \rightarrow \boxed{z} \boxed{2} $                     |
| $\begin{bmatrix} z \end{bmatrix} \rightarrow \begin{bmatrix} s & 7 \end{bmatrix} \rightarrow \begin{bmatrix} x & 6 \end{bmatrix}$ |

### DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while  $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $6 S = S \cup \{u\}$
- 7 **for** each vertex  $v \in G.Adj[u]$
- 8 RELAX(u, v, w)



# Floyd-Warshall Algorithm

• It a dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph, which may have negative-weight edges, but it is assumed that there are no negative-weight cycles.



## Contd...

all intermediate vertices in  $\{1, 2, \dots, k-1\}$  all intermediate vertices in  $\{1, 2, \dots, k-1\}$ 



p: all intermediate vertices in  $\{1, 2, \dots, k\}$ 

$$d_{ij}^{(k)} = min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$$

### Contd...

 $d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \;, \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \;. \end{cases}$ 

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)} , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . \end{cases}$$

## Example



$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \geq 1. \end{cases} \quad \pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

| <b>D</b> (0) | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|--------------|-------|-------|-------|-------|-------|
| $V_1$        | 0     | 3     | 8     | 8     | -4    |
| $V_2$        | 8     | 0     | 8     | 1     | 7     |
| $V_3$        | 8     | 4     | 0     | 8     | 8     |
| $V_4$        | 2     | 8     | -5    | 0     | 8     |
| $V_5$        | 8     | 8     | 8     | 6     | 0     |

| $\pi^{(0)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|-------------|-------|-------|-------|-------|-----------------------|
| $V_1$       | NIL   | 1     | 1     | NIL   | 1                     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2                     |
| $V_3$       | NIL   | 3     | NIL   | NIL   | NIL                   |
| $V_4$       | 4     | NIL   | 4     | NIL   | NIL                   |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL                   |

$$\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

| <b>D</b> (0) | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|--------------|-------|-------|-------|-------|-------|
| $V_1$        | 0     | 3     | 8     | 8     | -4    |
| $V_2$        | 8     | 0     | 8     | 1     | 7     |
| $V_3$        | 8     | 4     | 0     | 8     | 8     |
| $V_4$        | 2     | 8     | -5    | 0     | ∞     |
| $V_5$        | 8     | 8     | 8     | 6     | 0     |

| $\pi^{(0)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|-------------|-------|-------|-------|-------|-------|
| $V_1$       | NIL   | 1     | 1     | NIL   | 1     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2     |
| $V_3$       | NIL   | 3     | NIL   | NIL   | NIL   |
| $V_4$       | 4     | NIL   | 4     | NIL   | NIL   |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL   |

| D <sup>(1)</sup> | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|------------------|-------|-------|-------|-------|-------|
| $V_1$            | 0     | 3     | 8     | 8     | -4    |
| $V_2$            | 8     | 0     | 8     | 1     | 7     |
| $V_3$            | 8     | 4     | 0     | 8     | 8     |
| $V_4$            | 2     | 5     | -5    | 0     | -2    |
| $V_5$            | 8     | 8     | 8     | 6     | 0     |

| $\pi^{(1)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|-------------|-------|-------|-------|-------|-------|
| $V_1$       | NIL   | 1     | 1     | NIL   | 1     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2     |
| $V_3$       | NIL   | 3     | NIL   | NIL   | NIL   |
| $V_4$       | 4     | 1     | 4     | NIL   | 1     |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL   |

$$\text{Conto} \ \ldots \ d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

| D <sup>(1)</sup> | $V_1$ | $V_2$ | $V_3$    | $V_4$ | $V_5$ |
|------------------|-------|-------|----------|-------|-------|
| $V_1$            | 0     | 3     | 8        | 8     | -4    |
| $V_2$            | 8     | 0     | $\infty$ | 1     | 7     |
| $V_3$            | 8     | 4     | 0        | 8     | ∞     |
| $V_4$            | 2     | 5     | -5       | 0     | -2    |
| $V_5$            | 8     | ∞     | ∞        | 6     | 0     |

| $\pi^{(1)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|-------------|-------|-------|-------|-------|-----------------------|
| $V_1$       | NIL   | 1     | 1     | NIL   | 1                     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2                     |
| $V_3$       | NIL   | 3     | NIL   | NIL   | NIL                   |
| $V_4$       | 4     | 1     | 4     | NIL   | 1                     |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL                   |

| D <sup>(2)</sup> | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|------------------|-------|-------|-------|-------|-----------------------|
| $V_1$            | 0     | 3     | 8     | 4     | -4                    |
| $V_2$            | 8     | 0     | 8     | 1     | 7                     |
| $V_3$            | 8     | 4     | 0     | 5     | 11                    |
| $V_4$            | 2     | 5     | -5    | 0     | -2                    |
| $V_5$            | 8     | 8     | 8     | 6     | 0                     |

| $\pi^{(2)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|-------------|-------|-------|-------|-------|-----------------------|
| $V_1$       | NIL   | 1     | 1     | 2     | 1                     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2                     |
| $V_3$       | NIL   | 3     | NIL   | 2     | 2                     |
| $V_4$       | 4     | 1     | 4     | NIL   | 1                     |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL                   |

$$\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

| D <sup>(2)</sup> | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|------------------|-------|-------|-------|-------|-------|
| $V_1$            | 0     | 3     | 8     | 4     | -4    |
| $V_2$            | 8     | 0     | 8     | 1     | 7     |
| $V_3$            | 8     | 4     | 0     | 5     | 11    |
| $V_4$            | 2     | 5     | -5    | 0     | -2    |
| $V_5$            | 8     | 8     | 8     | 6     | 0     |

| $\pi^{(2)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | V <sub>5</sub> |
|-------------|-------|-------|-------|-------|----------------|
| $V_1$       | NIL   | 1     | 1     | 2     | 1              |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2              |
| $V_3$       | NIL   | 3     | NIL   | 2     | 2              |
| $V_4$       | 4     | 1     | 4     | NIL   | 1              |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL            |

| <b>D</b> (3) | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|--------------|-------|-------|-------|-------|-------|
| $V_1$        | 0     | 3     | 8     | 4     | -4    |
| $V_2$        | 8     | 0     | 8     | 1     | 7     |
| $V_3$        | 8     | 4     | 0     | 5     | 11    |
| $V_4$        | 2     | -1    | -5    | 0     | -2    |
| $V_5$        | 8     | 8     | 8     | 6     | 0     |

| $\pi^{(3)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|-------------|-------|-------|-------|-------|-----------------------|
| $V_1$       | NIL   | 1     | 1     | 2     | 1                     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2                     |
| $V_3$       | NIL   | 3     | NIL   | 2     | 2                     |
| $V_4$       | 4     | 3     | 4     | NIL   | 1                     |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL                   |

$$\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

| <b>D</b> (3) | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|--------------|-------|-------|-------|-------|-------|
| $V_1$        | 0     | 3     | 8     | 4     | -4    |
| $V_2$        | 8     | 0     | 8     | 1     | 7     |
| $V_3$        | 8     | 4     | 0     | 5     | 11    |
| $V_4$        | 2     | -1    | -5    | 0     | -2    |
| $V_5$        | 8     | 8     | 8     | 6     | 0     |

| $\pi^{(3)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|-------------|-------|-------|-------|-------|-----------------------|
| $V_1$       | NIL   | 1     | 1     | 2     | 1                     |
| $V_2$       | NIL   | NIL   | NIL   | 2     | 2                     |
| $V_3$       | NIL   | 3     | NIL   | 2     | 2                     |
| $V_4$       | 4     | 3     | 4     | NIL   | 1                     |
| $V_5$       | NIL   | NIL   | NIL   | 5     | NIL                   |

| D <sup>(4)</sup> | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|------------------|-------|-------|-------|-------|-------|
| $V_1$            | 0     | 3     | -1    | 4     | -4    |
| $V_2$            | 3     | 0     | -4    | 1     | -1    |
| $V_3$            | 7     | 4     | 0     | 5     | 3     |
| $V_4$            | 2     | -1    | -5    | 0     | -2    |
| $V_5$            | 8     | 5     | 1     | 6     | 0     |

| $\pi^{(4)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|-------------|-------|-------|-------|-------|-------|
| $V_1$       | NIL   | 1     | 4     | 2     | 1     |
| $V_2$       | 4     | NIL   | 4     | 2     | 1     |
| $V_3$       | 4     | 3     | NIL   | 2     | 1     |
| $V_4$       | 4     | 3     | 4     | NIL   | 1     |
| $V_5$       | 4     | 3     | 4     | 5     | NIL   |

 $\text{Conto} \quad d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases} \quad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$ 

| D <sup>(4)</sup> | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|------------------|-------|-------|-------|-------|-------|
| $V_1$            | 0     | 3     | -1    | 4     | -4    |
| $V_2$            | 3     | 0     | -4    | 1     | -1    |
| $V_3$            | 7     | 4     | 0     | 5     | 3     |
| $V_4$            | 2     | -1    | -5    | 0     | -2    |
| $V_5$            | 8     | 5     | 1     | 6     | 0     |

| $\pi^{(4)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | <b>V</b> <sub>5</sub> |
|-------------|-------|-------|-------|-------|-----------------------|
| $V_1$       | NIL   | 1     | 4     | 2     | 1                     |
| $V_2$       | 4     | NIL   | 4     | 2     | 1                     |
| $V_3$       | 4     | 3     | NIL   | 2     | 1                     |
| $V_4$       | 4     | 3     | 4     | NIL   | 1                     |
| $V_5$       | 4     | 3     | 4     | 5     | NIL                   |

| <b>D</b> (5) | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|--------------|-------|-------|-------|-------|-------|
| $V_1$        | 0     | 1     | -3    | 2     | -4    |
| $V_2$        | 3     | 0     | -4    | 1     | -1    |
| $V_3$        | 7     | 4     | 0     | 5     | 3     |
| $V_4$        | 2     | -1    | -5    | 0     | -2    |
| $V_5$        | 8     | 5     | 1     | 6     | 0     |

| $\pi^{(5)}$ | $V_1$ | $V_2$ | $V_3$ | $V_4$ | $V_5$ |
|-------------|-------|-------|-------|-------|-------|
| $V_1$       | NIL   | 3     | 4     | 5     | 1     |
| $V_2$       | 4     | NIL   | 4     | 2     | 1     |
| $V_3$       | 4     | 3     | NIL   | 2     | 1     |
| $V_4$       | 4     | 3     | 4     | NIL   | 1     |
| $V_5$       | 4     | 3     | 4     | 5     | NIL   |

# Implementation

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \ , \\ \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 1 \ . \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} , \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . \end{cases}$$

```
n= W.rows
D^0 = W
\pi^0 is a matrix with nil in every entry
for i=1 to n do
     for j = 1 to n do
         if i \neq j and D_{i,j}^0 < \infty then
             \pi_{i,i}^{0} = i
         end if
     end for
end for
for k=1 to n do
     let D^k be a new n \times n matrix.
     let \pi^k be a new n \times n matrix
     for i=1 to n do
         for j = 1 to n do
              if d_{ij}^{k-1} \leq d_{i,k}^{k-1} + d_{k,j}^{k-1} then
                  d_{i,j}^k = d_{i,j}^{k-1}
                  \pi_{i,j}^k = \pi_{i,j}^{k-1}
              else
                  d_{i,j}^{k} = d_{i,k}^{k-1} + d_{k,j}^{k-1}\pi_{i,j}^{k} = \pi_{k,j}^{k-1}
              end if
         end for
     end for
end for
```