UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE DEPARTMENT OF NATURAL SCIENCE

END OF SEMESTER FINAL ASSESMENT

SEMESTER 2, 2022/2023

COURSE:

BACHELOR OF SCIENCE WITH EDUCATION

YEAR:

TWO

EXAM:

TRANSTION METAL CHEMISTRY

SEMESTER:

II

DATE:

MAY 19, 2023

TIME:

9:30AM - 12:30PM

DURATION:

3 HOURS

INSTRUCTIONS

- This paper consists of SEVEN questions.
- Attempt any Five (5) Questions
- Begin each question on a fresh sheet of paper.
- All questions carry equal marks.

Question one

(a)	Explain the difference between				
	(i) Transition elements and d-block elements	(2 marks)			
	(ii) Electronic configuration and valence shell configuration	(2 marks)			
(b)	Write the electronic configuration of the following elements and ions				
	(i) Mn^{2+} (25) (ii) $Q + (20)$	0)(4 marks			
(c) E	Explain why transition metals:				
(i) Exhibit a paramagnetic behavior	(2 marks)			
(ii) form complex ions	(3 marks)			
(iii) have almost same ionic radius across the period	(3 marks)			
(d) I	Describe four other characteristics of transition metals	(4 marks)			
Que	estion two				
(a)D	Define the terms and give one example for each				
(i	i) Chelate	(2 marks)			
(i	ii) Chelating ligand	(2marks)			
(b) I	Explain how the following affect the stability of the chalate				
(i	i) Size of the chelate ring	(2marks)			
(ii) Steric hindrance	(2marks)			
(iii) Resonance	(2 marks)			
(c) (ii) Explain the applications of chelated complexes in analytical chemistry(8 marks)					
	(ii) State the two naturally occurring chelates and process	(2 marks)			

Que	estion th	aree				
(a)	Explain why lanthanides and actinides are called f-block elements					
(b)	Write	the actual valence shell electronic configuration of the followin	g lanthanide			
-101	icins					
	(i)	Lanthanium (La ₅₇)	(1mark)			
	(ii)	Gadolinium (Gd ₆₄)	(1 mark)			
	(iii)	Europium (Eu ₆₃)	(1 mark)			
(c) State 6 differences between lanthanides and actinides						
(d)	Expla	ain the following;				
	(i)	Lathanides and actinides experience lanthanide and actinide contraction(3marks)				
	(ii)	$Lu(OH)_3$ is more basic than $La(OH)_3$ Lu = 71,	(3 marks)			
(e)	State	three uses of Lanthanides and their compounds	(3 marks)			
Que	estion fo	ur				
(a)E	xplain th	ne term				
	(i) Ligand					
	(ii) π-a	cid ligands	(2 mark)			
	(ii) Des	cribe how carbon monoxide is used to stabilize Nickel in its zer	o oxidation			
		o form Ni(CO) ₄	(8 marks			
(b) \	Write the	formula of the following compounds	(8 marks			
	(i) Hex	afluroferrate(iii) ion				

(ii) Hexaaminenickel(ii) ion

(iii) Aquapentaammine cobalt (iii) nitrate

(iv) Sodium hexacyanoferrete (iii)

Question five

(a) Wi	ith at le	east one example, explain the following terms	
	(i) (ii) (iii) (iv)	Ligand Chelating ligand Primary valency Secondary valency e names of the following complexes	(2 marks) (2 marks) (2 marks) (2 marks)
	(i)	[Co (NH ₃) ₄ Cl ₂]Cl	(2 marks)
	(ii)	$K_4[Fe(CN)_6]$	(2 marks)
	(iii)	Ni(CO) ₄	(2 marks)
(c) E	(6 marks)		
Ques	tion 6		
(a)	Defi	ne the following as applied to complexes	
	(i) D	ouble salt	(1 marks)
	(ii) (Central ion	(1 marks)
	(iii)	coordination number	(1 marks)
(b)	Writ	te the formulas of the following coordination compounds:	
(i) T	etraam	mineaquabromocobalt(III) bromide	(2 marks)
(ii) F	otassiu	ım tetrahydroxyzincate(II)	(2 marks)
(iii) (iv)		aammineplatinum(IV) chloride aamminecopper(II) chloride	(2 marks) (2 marks)

- (c) State the conditions that favor the formation of complex compounds (3 marks)
- (d) Explain the different types of structural isomerism in coordination compounds (6 marks)

Question seven

(a) State the assumptions of:

(i) Valence bond theory

(3 marks)

(ii) Crystal field theory

(3 marks)

(b) The valence shell electronic configuration of iron atom is 3d⁶4s²4p⁶. Using valence bond explain the geometry and magnetic nature of;

(i) [Fe(CN)6]1-

(4 marks)

(ii) [Fe(CN)₆]⁴. {consider (CN) as a stronger field ligand}

(4 marks)

(c) State the limitations of crystal field theory

(3 marks)

(d) State three factors that affect stability of the complex compounds

(3 marks)

END