

PyTrilinos: A Python Interface to Trilinos

Bill Spotz Sandia National Laboratories

Reproducible Research in Computational Geophysics August 31, 2006

Computational Sciences at Sandia

- Climate modeling
- Combustion
- Compressible flows
- Computational biology
- Electrical modeling
- Heat transfer
- Load balancing

- Materials modeling
- MEMS modeling
- Mesh generation
- Optimization and uncertainty quantification
- Seismic imaging
- Shock and multiphysics
- Structural dynamics

The Trilinos Project

- Provide a central repository for Sandia's solver technology
- Increase code-reuse
- Organized on concept of "packages"
- Minimize package interdependence
- Maximize package interoperability
- Provide a framework for SQE and SQA
 - Compliance with requirements
 - Nightly test harness
- High degree of developer autonomy
- Open source: GNU Lesser License
- Web site: http://software.sandia.gov/trilinos
- Next release: Version 7.0, September, 2006
- Trilinos Users Group Meeting, November 7-9, 2006

- Ross has talked about the need for (and work on) a common abstract interface
 - Interfaces between Trilinos packages
 - Interfaces between Trilinos and external packages
- We would like to extend this concept to the python wrappers
 - Interoperability with external python projects, such as SLIMpy
 - Many design decisions still to be made
 - Some early prototyping work has been done

PyTrilinos

- Linear Algebra Services
 - Epetra (with extensive NumPy compatibility and integration)
 - EpetraExt (coloring algorithms and some I/O)
- Linear Solvers
 - Amesos (LAPACK, KLU, UMFPACK, ScaLAPACK, SuperLU, SuperLUDist, DSCPACK, MUMPS)
 - AztecOO
- Preconditioners
 - IFPACK
 - ML
- Nonlinear Solvers
 - NOX (python wrappers not yet caught up to recent redesigns)
- Meta-Solvers
 - LOCA (python wrappers not yet caught up to recent redesigns)
 - Anasazi (early development stage)
- Tools and Utilities
 - Teuchos (ParameterList class only)
 - TriUtils
 - Galeri
 - Thyra (early development stage)
 - New Package

PyTrilinos Documentation

- Trilinos documentation is handled by doxygen: special comments within code
 - Web pages updated twice daily
- Python wrappers are generated using swig ...
 doxygen does not work with swig interface files
 - %feature("autodoc", "1");
 >>> help(Epetra.Vector.Dot)
 Dot(*args) unbound PyTrilinos.Epetra.Vector method
 Dot(self, Epetra_Vector A) -> double
- Currently working to provide much more extensive documentation highlighting differences between C++ and python interfaces
 - Release 7.0 in September

PyTrilinos.Epetra

- Communicators
 - Comm
 - SerialComm
 - MpiComm
 - PyComm
- Maps
 - BlockMap
 - Map
 - LocalMap
- Vectors
 - MultiVector
 - Vector
 - IntVector

- SerialDense objects
 - SerialDenseOperator
 - SerialDenseMatrix
 - SerialDenseVector
 - SerialDenseSolver
 - IntSerialDenseMatrix
 - IntSerialDenseVector
- Graphs
 - CrsGraph
- Operators
 - Operator
 - RowMatrix
 - CrsMatrix

A Quick Detour...

- Python lists are not suitable for scientific computing
 - Flexible but inefficient
 - Heterogeneous data, noncontiguous memory
- NumPy module provides needed functionality
 - Contiguous, homogeneous n-dimensional arrays
 - High-level interface
 - Part of SciPy
- SciPy is a large, open source package for a wide variety of python interfaces to scientific software:
 - NetLib's "greatest hits"

PyTrilinos.Epetra and NumPy

- Array-like classes inherit from numpy. UserArray
 - -MultiVector
 - -Vector
 - IntVector
 - -SerialDenseMatrix
 - -SerialDenseVector
 - IntSerialDenseMatrix
 - IntSerialDenseVector
- Methods throughout Epetra have arguments that accept or produce pointers to C arrays
 - Python input arguments accept python sequences
 - Python output arguments produce ndarrays

PyTrilinos.Teuchos

- Teuchos::ParameterList
 - Used by several Trilinos packages to set problem parameters
 - Maps string names to arbitrary-type values
 - Python implementation allows dictionary substitutions
 - Hybrid PyDictParameterList objects are returned
 - The following conversions are supported:

Python	Dir	C / C++
bool	\$	bool
int	\$	int
float	\$	double
string	⇔	std::string
string	#	char *
dict	\Rightarrow	ParameterList
wrapped ParameterList	\$	ParameterList
wrapped PyDictParameterList	*	ParameterList

PyTrilinos Demonstration

• Governing equation:
$$-\frac{d^2u}{dx^2} + c\frac{du}{dx} = 0, \ x \in [0,1]$$

• Boundary conditions: u(0) = 0, u(1) = 1

• Exact solution:
$$u(x) = \frac{e^{cx} - 1}{e^c - 1}$$

• CDS:
$$-\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + c\frac{u_{i+1} - u_{i-1}}{2h} = 0$$

• Oscillations:
$$ch = \frac{c}{n-1} > 2$$

Conclusions

- Python lets developers focus on the problem
 - Memory management, garbage collection
 - Powerful, flexible containers
 - Clean, readable syntax
- PyTrilinos provides access to powerful solver technologies
 - Rapid prototyping
 - Application development
- For computational geophysics, Thyra should provide key too interoperability
 - Python wrappers for Thyra
 - Thyra adapters for geophysics codes

