

Primer examen parcial (30/04/2011)

Regularización

- 1. Un bloque se desplaza sobre una mesa horizontal disminuyendo uniformemente su velocidad. El móvil pasa por una marca fija en la mesa a la velocidad de 3 m/s, y se detiene a 2 m de esa marca.
- 1.1. Escriba las ecuaciones de posición x(t) y velocidad v(t) para el móvil, indicando los valores de posición x_0 y velocidad v_0 al tiempo $t_0 = 0$.
- 1.2. Grafique la ecuaciones x(t) y v(t), indicando claramente los puntos donde $x = x_0$, x = 2 m, $v = v_0$, y v = 0.
- 1.3. Calcule la aceleración del movimiento. Indique valor y signo.
- 1.4. Calcule el tiempo transcurrido desde que el móvil pasa por la marca hasta que se detiene.
- **2**. En el sistema de la figura, el bloque de masa *M* está unido a otro cuerpo de masa *m* mediante una cuerda inextensible y ligera. La polea tiene masa despreciable y está libre de fricción en el rodamiento. El coeficiente de rozamiento cinético es 0,5.
- 2.1. Realice el diagrama de partícula libre para cada bloque por separado, con las fuerzas que intervienen en cada caso.
- 2.2. Aplique la segunda ley de Newton a cada bloque.
- 2.3. A partir de las ecuaciones anteriores, indique qué relación m/M se debe cumplir para que los bloques se muevan con velocidad constante.
- 2.4. Explique como obtendría experimentalmente la velocidad (constante) del móvil: qué mediría y que cálculos realizaría.

- 3. Un vehículo entra en una curva de radio 51 m, donde el coeficiente de fricción estático con el asfalto es 0,8.
- 3.1. Realice un esquema mostrando el radio de la curva, y los vectores velocidad y aceleración centrípeta.
- 3.2. Calcule la velocidad máxima a la que deberá transitar la curva para no derrapar. Informe el valor en km/h.

Promoción

- 4. Considere el problema 1, donde la aceleración se debe a la fricción entre la mesa y el bloque, el cual tiene 1 kg.
- 4.1. Calcule el coeficiente de rozamiento cinético.
- 4.2. Calcule la fuerza de contacto (módulo, dirección y sentido) que ejerce la mesa sobre el bloque en movimiento.
- **5**. Considere el problema 2, con m = M. Demuestre que, en esta situación:
- 5.1. El módulo de la aceleración de los bloques es a/4.
- 5.2. El tiempo que demora el bloque *m* en recorrer la distancia *h* (ver figura) es el doble del tiempo que demoraría *m* en recorrer la misma distancia si, estando en reposo, la cuerda se corta súbitamente.
- 6. Considere el problema 3. Explique conceptualmente por que el resultado no depende de la masa del vehículo.
- 7. Un jugador de fútbol se dispone a patear un tiro libre a 18 m del arco, el cual tiene 2,44 m de altura. El jugador dará a la pelota un ángulo inicial de 20° para superar la barrera.
- 7.1. Despreciando la fricción del aire, calcule la velocidad máxima que puede dar a la pelota para que esta entre en el arco (es decir, que no pase por encima del travesaño).
- 7.2. El arquero atrapa la pelota y pretende re-enviarla lo más lejos posible. Demuestre que el ángulo con el que debe patear es 45°.
- **8**. Un cuerpo de masa *M* es sostenido contra un muro mediante una fuerza *F* que ejerce una persona.
- 8.1. Realice el diagrama de partícula libre para el bloque con las fuerzas que actúan sobre el.
- 8.2. Realice un esquema mostrando los pares de reacción (tercera ley de Newton) de cada una de las fuerzas, indicando claramente su punto de aplicación.

9. Una de las reglas de Kepler del movimiento planetario indica que la relación T^2/R^3 es una constante, donde T es el tiempo que demora el planeta en completar una órbita en torno al sol, y R es el radio de su órbita. Encuentre esta relación a partir de la ley de gravitación universal y la aceleración centrípeta del planeta.