Title of the project 2: "Diabetes Patients"

ABOUT DATA SET:

This dataset is originally from The National Institute of Diabetes and Digestive and Kidney Diseases.

OBJECTIVE: The objective of the dataset is to diagnostically predict whether a patient has diabetes based on certain diagnostic measurements included in the dataset.

STEP 1-IMPORT EXCEL CSV FILE TO POSTGRESQL

```
CREATE TABLE Diabetes Data (
  Pregnancies INT,
  Glucose INT,
  BloodPressure INT,
  SkinThickness INT,
  Insulin INT,
  BMI FLOAT,
  DiabetesPedigree FLOAT,
  Age INT,
  Outcome INT
);
STEP-2
COPY Diabetes Data(
Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigr
ee, Age, Outcome)
FROM 'D:\My Projects\diabetes.csv'
DELIMITER','
CSV HEADER:
```

STEP-3: QUERIES

<u>QUERIES TO FIND THE PATIENT HAS DIABETES ON CERTAIN</u> <u>MEASUREMENTS</u>

1. Count of Diabetic and Non-Diabetic Patients:

SELECT Outcome, COUNT(*) AS Count

FROM Diabetes Data

GROUP BY Outcome;

2. Average Glucose Level for Diabetic Patients:

SELECT ROUND(AVG(Glucose),2) AS Average_Glucose_Diabetic

FROM Diabetes Data

WHERE Outcome = 1;

3.Maximum and Minimum BMI among Non-Diabetic Patients and diabetic patients

SELECT

MAX(CASE WHEN Outcome = 0 AND BMI > 0 THEN BMI ELSE NULL END) AS Max_BMI_Non_Diabetic,

MIN(CASE WHEN Outcome = 0 AND BMI > 0 THEN BMI ELSE NULL END) AS Min_BMI_Non_Diabetic,

MAX(CASE WHEN Outcome = 1 AND BMI > 0 THEN BMI ELSE NULL END) AS Max_BMI_Diabetic,

MIN(CASE WHEN Outcome = 1 AND BMI > 0 THEN BMI ELSE NULL END) AS Min_BMI_Diabetic FROM DiabetesData;

	max_bmi_non_diabetic double precision	min_bmi_non_diabetic double precision	max_bmi_diabetic double precision	min_bmi_diabetic double precision
1	57.3	18.2	67.1	22.9

4. Average Age for Patients with More Than 4 Pregnancies:

SELECT ROUND(AVG(age),2) AS Average_Age_More_Pregnancies FROM DiabetesData

WHERE pregnancies > 4;

5. Determine the distribution of diabetic patients in various BMI categories (underweight, healthy, overweight, and obesity) to assess the correlation between BMI and diabetes in the dataset

6.Diabetic Patients with a Diabetes Pedigree Score Above 0.5:

SELECT COUNT(diabetespedigree) AS diabetespedigreecount FROM DiabetesData

WHERE Outcome = 1 AND DiabetesPedigree > 0.5;

7. Average SkinThickness for Patients with Low Glucose (under 90 mg/dL):

SELECT ROUND(AVG(SkinThickness),2) AS

Average_SkinThickness_Low_Glucose

FROM DiabetesData

WHERE Glucose < 90;

8. Oldest Patient with Diabetes

SELECT MAX(Age) AS Oldest_Age_Diabetic

FROM DiabetesData

WHERE Outcome = 1;

9. Age range Distribution of Patients with Diabetes:

SELECT

'20-30' AS Age_Range,
COUNT(*) AS Count
FROM DiabetesData
WHERE Outcome = 1
AND Age >= 20
AND Age <= 30
UNION ALL
SELECT

'30-60' AS Age_Range,
COUNT(*) AS Count
FROM DiabetesData
WHERE Outcome = 1
AND Age > 30
AND Age <= 60;

10. Patients with the Highest Glucose Level by Age Group:

SELECT Age_Group, MAX(Glucose) AS Max_Glucose
FROM (
SELECT
CASE
WHEN Age < 30 THEN 'Under 30'
WHEN Age >= 30 AND Age < 50 THEN '30-49'
ELSE '50 and Over'
END AS Age_Group,Glucose
FROM DiabetesData

) AS Diabetes Data

GROUP BY Age_Group;

	age_group text	max_glucose integer		
1	50 and Over	197		
2	30-49	197		
3	Under 30	199		

11. Average BMI for Patients with Diabetes by Number of Pregnancies:

SELECT Pregnancies, AVG(BMI) AS Avg_BMI_Diabetic

FROM Diabetes Data

WHERE Outcome = 1

GROUP BY Pregnancies

ORDER BY Pregnancies DESC

LIMIT 5;

	pregnancies integer	avg_bmi_diabetic double precision				
1	17	40.9				
2	15	37.1				
3	14	35.1				
4	13	36.71999999999999				
5	12	34.575				

12. Patients with the Highest Glucose Levels and Blood Pressure above the Average:

SELECT *

FROM DiabetesData

WHERE Glucose = (SELECT MAX(Glucose) FROM DiabetesData) AND

BloodPressure > (SELECT AVG(BloodPressure) FROM DiabetesData);

pregnancies integer	glucose integer	bloodpressure integer	skinthickness integer	insulin integer	bmi double precision	diabetespedigree double precision in	a ge nteger	outcome integer
1	199	76	43	0	42.9	1.394	22	1

13.Diabetic and Non Diabetic patients with average and maximum insulin level

SELECT Outcome, ROUND(AVG(Insulin),2) AS Avg_Insulin_Level,

MAX(Insulin) AS Max_Insulin_Level

FROM DiabetesData

GROUP BY Outcome;

	outcome integer	avg_insulin_level numeric	max_insulin_level integer
1	0	68.79	744
2	1	100.34	846

KEY INSIGHTS

- 1. **Diabetes Prevalence:** The dataset consists of both nondiabetic and diabetic patients, which is **500** and **268** respectively.
- 2. **Glucose Levels:** Diabetic patients have an average glucose level of **141.26**, which is a key diagnostic marker in diabetes management.
- 3. **BMI Variation:** By observing the dataset, it becomes evident that diabetic patients exhibit a **maximum BMI of 67.1** and a **minimum BMI of 22.9**, while **non-diabetic patients range from 18.2 to 57.3 in BMI**. These variations signal the presence of both **obesity and underweight** cases among patients.
- 4. **Age and Pregnancy:** Patients with more than **four pregnancies** may be at risk for gestational diabetes. Their **average age is 41.89** provides insights into the age group at higher risk.
- 5. **BMI Categories:** Categorizing diabetic patients into BMI categories helps uncover potential relationships between BMI and diabetes. Where patients with diabetes has **obesity**, **Overweight**, **healthy**, **and underweight are 219,40,7,2** respectively.
- 6. **Genetic Predisposition:** Diabetic patients with a **Diabetes Pedigree Score above 0.5, which is 126** may indicate a genetic influence on diabetes.
- 7. **Skin Thickness and Glucose**: **Average skin thickness** for patients with low glucose levels (under 90 mg/dL) is **21.01** ,could reveal the impact of glucose levels on skin health.
- 8. Glucose and Blood Pressure: Patients with the highest glucose levels is 199 and average blood pressure is 76 might require special attention for managing multiple risk factors.
- 9. **Insulin level:** Max and average insulin of **non diabetic** patient has **68.79** and **744** and **100.34** and **846** for diabetic patient.