Exercici 32. Sigui $k \geq 2$ un nombre natural. Demostreu que si $2^k + 1$ és un nombre primer, llavors existeix $n \geq 1$ tal que $k = 2^n$. Els nombres $F_n := 2^{2^n} + 1$, per a $n \geq 0$, s'anomenem nombres de Fermat.

Solució 32.

Suposem $2^k + 1$ primer i $k \neq 2^n \Rightarrow k = r$, s|mcd(r,s) = 1, $1 \leq r$, s < k. Veiem doncs, que $2^r + 1|2^{rs} + 1 \Rightarrow 2^r + 1|2^k + 1$. Així doncs, $2^k + 1$ no és primer, contrari a la hipòtesi.