

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following applications are with this Office.

19 DEC 2003

出願年月日 Date of Application:

2002年10月30日

PCT WIPO

出 Application Number:

特願2002-315987

[ST. 10/C]:

[JP2002-315987]

出 願 人 Applicant(s):

萩原工業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH

RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年12月 4 日

【書類名】

特許願

【整理番号】

P4046

【提出日】

平成14年10月30日

【あて先】

特許庁長官 殿

【国際特許分類】

C04B 16/06

【発明者】

【住所又は居所】

岡山県倉敷市水島中通1丁目4番地 萩原工業株式会社

内

【氏名】

矢吹 増男

【発明者】

【住所又は居所】

岡山県倉敷市水島中通1丁目4番地 萩原工業株式会社

内

【氏名】

中島 和政

【特許出願人】

【識別番号】

000234122

【氏名又は名称】

萩原工業株式会社

【代表者】

萩原 邦章

【手数料の表示】

【予納台帳番号】

028233

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 セメント強化用ポリプロピレン繊維

【特許請求の範囲】

【請求項1】 ポリプロピレン系樹脂から紡糸し、表面に凹凸を付形した単糸繊度200dt以上のモノフィラメントに対して表面酸化処理を施し、その表面の濡れ指数を38dyn/cm以上にしてなることを特徴とするセメント強化用ポリプロピレン繊維。

【請求項2】 表面酸化処理がコロナ放電処理であり、その処理後のモノフィラメント表面の濡れ指数が $40\sim70$ d y n/c mの範囲である請求項1に記載のセメント強化用ポリプロピレン繊維。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、コンクリートやモルタルの補強効果に優れたセメント補強用ポリプロピレン繊維に関するものである。

[00002]

【従来技術】

従来よりモルタルやコンクリートを用いたセメント成形品、または建築物の外壁、トンネルの内壁、傾斜法面などが構築されているが、これらは成形体としては比較的脆性が大で、引張強度、曲げ耐力、曲げタフネス、耐衝撃性などの物性が充分でないと壁面のひび割れによる水漏れや外壁の剥離落下事故などが生じる危険性がある。そして、コンクリートの補強を目的として、鋼繊維やポリビニルアルコール繊維(例えば、特許文献1)を混入することは広く行われている。また、吹付けコンクリートにおいて曲げ強度やタフネスを要求される場合には、補強金網を設置する。

[0003]

しかし、鋼繊維を混入したコンクリートは、鋼繊維の比重が7.8と重いために 材料の運搬や混入作業が困難であり、また、吹付けコンクリートにおいては吹付 け時のはね返りにより落下した鋼繊維の踏み抜きによる怪我のおそれが大きく、

[0004]

このような問題を解決するために、近年、鋼繊維やポリビニルアルコール繊維 に代替して、成形性が良好で軽量、低廉などの理由でポリオレフィン系繊維を使 用する試みがある(例えば、特許文献 2)。

ポリオレフィン系繊維としては、一般的に繊度が100dt以下、繊維長さが5mm以下の単糸や集束糸、あるいはスプリット糸の短繊維が用いられることが多い。この繊維形状から性状として、低繊度でかつ短い繊維は、ファイバーボールという繊維塊が生成したり、嵩高となりセメント中への均一分散がし難いという欠点があり、そのため分散性を良くするために繊度を太くすると、セメントとの接着性が劣り曲げ応力がかかると繊維が引き抜けてしまうなど充分な補強効果が得られない傾向にある。

[0005]

【発明が解決しようとする課題】

かかるポリオレフィン樹脂繊維のセメントとの親水性を改良するために、繊維断面に特定の平均偏平率の凹凸を付形した単糸繊度200dt以上の太いモノフィラメントを繊維長さ5mm以上に長く切断してなるポリプロピレン繊維に、ポリオキシアルキレンアルキルフェニルエーテルリン酸エステルとポリオキシアルキレン脂肪酸エステルからなる界面活性剤等をそれぞれ塗布する方法が提案されている(例えば、特許文献3)。

しかしながら、上記提案の界面活性剤はポリオレフィン系樹脂繊維との接着性が十分でないため、セメントマトリックスと界面活性剤が接着したとしても、ポリオレフィン系樹脂繊維とマトリックス間で十分接着力が得られず、セメント成形物の曲げタフネスは十分ではないという問題があった。

本発明は、上記のような従来技術の問題点を解消するためになされたもので、

[0006]

【特許文献1】

特公平1-40786号公報(1頁)

【特許文献2】

特開平9-86984号公報(2頁)

【特許文献3】

特開平11-116297号公報(2頁)

[0007]

【課題を解決するための手段】

本発明は、上記課題を技術的に解決するために、特定のポリオレフィン繊維に対して特定の表面処理を施すことにより、上記目的が達成できることを見出し、本発明を完成するに至った。

すなわち、本発明の要旨は、ポリプロピレン系樹脂から紡糸し、表面に凹凸を付形した単糸繊度200dt以上のモノフィラメントに対して表面酸化処理を施し、その表面の濡れ指数を38dyn/cm以上にしてなることを特徴とするセメント強化用ポリプロピレン繊維、に存する。

[0008]

【発明の実施の形態】

本発明において繊維原料に用いられるポリプロピレン系樹脂とは、プロピレン単独重合体、エチレンープロピレンブロック共重合体あるいはランダム共重合体などのボリプロピレン共重合体またはそれらの混合物を使用することができる。これらの中では高強度、耐熱性を要求されるセメント強化用としてプロピレン単独重合体が望ましく、特にアイソタクチックペンタッド率0.95以上のものを選択することが望ましい。このポリプロピレン系樹脂のメルトフローレート(以下、MFRと略す)は、連続的な安定生産性の点で0.1~30g/10分の範囲、より好ましくは1~10g/10分の範囲から選択するのがよい。

ポリプロピレン系樹脂には、その紡糸の過程において必要に応じ他のポリオレフィンが添加されてもよい。ここでの他のポリオレフィンとしては、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレン、エチレン一酢酸ビニル共重合体、エチレンーアクリル酸アルキル共重合体などのポリエチレン系樹脂、ポリブテンー1等である。

[0010]

本発明で紡糸されるポリプロピレン繊維は、その主体となる繊維形状は比較的に太いモノフィラメントを切断した短繊維であって、その製造方法としては特に限定されるものではなく円形や楕円形、異型、その他連糸形状のダイスからフィラメントを押し出す製造技術を採用することができる。

[0011]

また、このモノフィラメントの構成として基本的な単層フィラメントの他に、ポリプロピレン高融点成分を芯層とし、ポリプロピレン低融点成分を鞘層とする複合モノフィラメントを使用することもできる。この製造方法は、各層のポリプロピレンを押出機で溶融混練し、2層の吐出孔が略同心円上に設けられたダイスの中心吐出孔から高融点成分からなる芯層を供給し、その外面に低融点成分からなる鞘層を押出して被覆して複合モノフィラメントを得るものである。この場合に実質的な強力が芯層の物性に依存するため、高融点成分としてプロピレン単独重合体、アイソタクチックポリプロピレンなどを使用することが好ましく、一方低融点成分としては、プロピレンーエチレンブロック共重合体及びランダム共重合体、シンジオタクチックポリプロピレンなどが好ましい。こうして得られる複合モノフィラメントを使用することで、コンクリート成形時の加熱養生におけるポリプロピレン繊維の熱劣化を抑制することができる。

[0012]

次に、モノフィラメントは熱延伸及び熱弛緩処理を施し、この熱処理によってフィラメントの剛性を高めて、伸びの小さいセメント強化用として好適なポリプロピレンモノフィラメントが得られる。この熱延伸はポリプロピレンの融点以下、軟化点以上の温度下に行われ、通常は延伸温度が90~150℃、延伸倍率は

[0013]

形成されるポリプロピレンモノフィラメントの単糸繊度は200~10,000dtの範囲であり、好ましくは2,000~6,500dtの範囲である。単糸繊度が200dt未満では繊維が細すぎてコンクリート混和物中の分散が不均一でファイバーボールになり易く、施工性や補強性の点で問題となり、一方、単糸繊度が10,000dtを超えると繊維のコンクリート混和物との接触面積が減少し曲げ応力に対して引き抜け易くなり補強効果が劣り好ましくない。

[0014]

ポリプロピレンフィラメントの引張強度は5g/dt以上であり、好ましくは、6g/dt以上である。また、引張伸度は20%以下であり、好ましくは、15%以下である。引張強度、引張伸度がこれらの範囲を外れるとセメント強化用ポリプロピレン繊維としての強力が不充分となり好ましくない。

[0015]

ポリプロピレンモノフィラメントは、紡糸、熱延伸の次工程として、表面に凹凸が付形されることが必要である。これによって、繊維とコンクリートとの接触面積を増加させて、コンクリート硬化後の繊維の引き抜けを抑制して補強効果を高めることができるのである。この表面に凹凸を付形する方法としては、モノフィラメントをエンボス加工する方法が挙げられる。エンボス加工は、モノフィラメントを延伸前または延伸後にエンボスロールを通すことにより行なうもので、モノフィラメントの長手方向に連続して凹凸が形成されるものである。

[0016]

ここで、エンボスの長さ及び深さ等の形状は任意のものでよいが、押し潰しによる繊維断面の平均偏平率2/1~7/1の範囲であることが必要とされる。この平均偏平率とは、付形された多様な形状の繊維断面における幅と高さの平均的な比率を示した数値であり、平均偏平率が2/1未満であると繊維表面に対する凹凸付形が少ないため平滑表面繊維と補強効果の差が認められなく、一方、平均偏平率が7/1を超えると付形による強度劣化が著しく、また前記所定繊度の繊

維においてはコンクリート中への分散性が悪化する傾向にあり問題となる。

[0017]

上記ポリプロピレン繊維には、本発明の主旨を逸脱しない範囲において、酸化 防止剤、滑剤、紫外線吸収剤、帯電防止剤、無機充填材、有機充填材、架橋剤、 発泡剤、核剤等の添加剤を配合してもよい。

[0018]

本発明においては、上記ポリプロピレン繊維表面に対して、表面酸化処理を施 してなり、その表面の濡れ指数が38dyn/cm以上、好ましくは40~70 dyn/cmの範囲することを特徴とする。表面の濡れ指数が38dyn/cm 未満では、ポリオレフィン樹脂繊維に対して親水性を十分付与させることができ ず、セメント成形物の曲げ強度や衝撃強度を向上させることができないので、好 ましくない。表面酸化処理としては、コロナ放電処理、プラズマ処理、フレーム プラズマ処理、電子線照射処理、紫外線照射処理より選ばれた少なくとも一種の 処理方法であり、コロナ放電処理、プラズマ処理が好ましい。

[0019]

コロナ放電処理は、通常用いられている処理条件、例えば、電極先端と被処理 基布間の距離 0.2~5 mmの条件で、その処理量としては、ポリプロピレン繊 維 1 m^2 当たり10 w・分以上、好ましくは $10 \sim 200 \text{ W}$ ・分 $/\text{m}^2$ の範囲、 さらに好ましくは $10\sim180\,\mathrm{W}$ ・分 の範囲である。 $10\,\mathrm{W}$ ・分 $/\mathrm{m}^2$ 未満で は、コロナ放電処理の効果が不十分で、上記繊維表面の濡れ指数を上記範囲内に することができず、セメント成形物の曲げ強度や衝撃強度を向上させることがで きない。

[0020]

プラズマ処理工程は、アルゴン、ヘリウム、クリプトン、ネオン、キセノン、 水素、窒素、空気などの単体又は混合気体をプラズマジェットで電子的に励起せ しめた後、帯電粒子を除去し、電気的に中性とした励起不活性ガスを、プラスチ ック基材の表面に吹きつけることにより実施できる。

[0021]

フレームプラズマ処理工程は、天然ガスやプロパンを燃焼させた時に生じる火

[0022]

電子線照射処理工程は、プラスチック基材の表面に、電子線加速器により発生させた電子線を照射することにより行われる。電子線照射装置としては、例えば、線状のフィラメントからカーテン状に均一な電子線を照射できる装置「エレクトロカーテン」(商品名)を使用することができる。

[0023]

紫外線照射処理工程は、たとえば200~400 m μ の波長の紫外線を、プラスチック基材の表面に照射することにより実施される。

[0024]

上記で得られたポリプロピレン繊維は、所定長さにカットされる。カットされる繊維長は $3\sim30\,\mathrm{mm}$ の範囲であり、好ましくは $5\sim15\,\mathrm{mm}$ の範囲である。繊維長が $3\,\mathrm{mm}$ 未満では、セメントからの抜けが生じ、 $30\,\mathrm{mm}$ を越えると分散性が不良となるので、好ましくない。

[0025]

こうしたポリプロピレンモノフィラメントは、所定長さにカットされセメント強化用の短繊維となる。短繊維の長さは5~60mm、好ましくは20~35mmである。繊維長が5mm未満では、セメントからの抜けが生じ、60mmを越えると分散性が不良となり好ましくない。

[0026]

本発明のセメント強化用ポリプロピレン繊維は、強化繊維材としてセメント、 細骨材、粗骨材、水及び適量のコンクリート混和剤に配合して用いられる。ここで、セメントとしてはポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、白色ポルトランドセメント、アルミナセメント等の水硬性セメントまたは石膏、石灰等の気硬性セメント等のセメント類が挙げられ、細骨材としては川砂、海砂、山砂、珪砂、ガラス砂、鉄砂、灰砂、その他人工砂などが挙げられ、粗骨材としてはレキ、砂利、砕石、スラグ、各種人工軽量骨材などが代表的に挙げられる。

[0027]

本発明のセメント強化用ポリプロピレン繊維を吹付けコンクリートの施工に用いる場合、この配合量は、セメント、細骨材、粗骨材、水等よりなるコンクリート混合物 $1 \, \mathrm{m}^3$ に対してポリプロピレン繊維を $4 \sim 19 \, \mathrm{kg}$ 、好ましくは $6 \sim 14 \, \mathrm{kg}$ を配合して分散させることが肝要である。これは、ポリプロピレン繊維の配合量が $19 \, \mathrm{kg}$ を超えてもコンクリート中に繊維が均一に分布しないために曲げタフネスは増大しないし、一方、配合量が $4 \, \mathrm{kg}$ 未満では吹付け時のはね返りが大きく、また硬化後補強効果が小さい。

[0028]

また、この場合の混合する方法として、セメント、細骨材、粗骨材、水等よりなるコンクリート混合物を投入してベースコンクリートとし、このベースコンクリートを混練後に、ポリプロピレン繊維を投入し混練を行なうことが好ましく、混練時間は1回当たりの混合量によるが、一般的にベースコンクリートの混練は45~90秒、ポリプロピレン繊維を投入後の混練についても45~90秒の範囲が適当とされる。

[0029]

加えて、吹付けコンクリートの施工においては、本発明のポリプロピレン繊維を前記配合量で使用する場合、スランプの範囲を $8\sim21$ cmに調整するのが好ましい。これは、スランプが8 cm未満では吹付け作業が困難となり、21 cmを超えるとはね返りが大きくなるので好ましくない。このようなスランプの範囲で吹付けコンクリートを施工するための吹付けノズルは、ノズルを吹付け面に直角に配置すること、及びノズルと吹付け面の距離を $0.5\sim1.5$ mとすることが有効となる。

[0030]

以下、実施例によって本発明のポリプロピレン繊維の有効性を説明する。 実施例 1

(1) 繊維の製造

ポリプロピレン(MFR=4.0g/10分、Tm=163℃)を押出機に投入して円形ノズルから紡糸して冷却した後に熱風オーブン式延伸法により、熱延伸

温度115℃、熱弛緩温度120℃、延伸倍率7~8倍で延伸を行い、数種の繊 度のモノフィラメントを形成し、次いで、傾斜格子柄のエンボスロールと硬質ゴ ムロールを用いてエンボスニップ圧を変えて平均偏平率も異なる表面に凹凸を付 形したポリプロピレンモノフィラメントを得た。

このポリプロピレンモノフィラメント表面に表面酸化処理としてコロナ放電処 理をポリプロピレンモノフィラメント表面1m²当たり30w・分で処理を行な い、得られたモノフィラメント表面の濡れ指数は、45 d y n/c mであった。 上記ポリプロピレンモノフィラメントを繊維長が30mmになるように切断して ポリプロピレン繊維とした。

[0031]

(2) 評価試験

得られたポリプロピレン繊維につき、下記方法にてコンクリートの補強効果を 試験した。その結果を表1に示す。

[0032]

①使用材料と配合割合

セメント:早強ポルトランドセメント(比重=3.12) 430 kg/m^3

細骨材:木更津産山砂(表乾比重=2.60) 1123kg/m3

粗骨材:青梅産砕石1505(表乾比重=2.65) 491kg/m3

水:水道水 215kg/m³

繊維:容積として1%

[0033]

②コンクリートの混練方法

混練容量100リットルの強制パン型ミキサを使用し、1バッチ60リットルで行 う。コンクリートの練り上がり時の温度は約20℃とした。混練方法は細骨材、 セメント、水、粗骨材を投入して45秒間の混練を行った後、ミキサを回転しな がら補強繊維を添加して60秒間混練を行い排出する。

[0034]

③供試体の作成

土木学会基準「鋼繊維補強コンクリートの強度およびタフネス試験用供試体の作

[0035]

④試験方法

土木学会基準「鋼繊維補強コンクリートの圧縮強度および圧縮タフネス試験方法」 (JSCE G551-1983)、および土木学会基準「鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法」(JSCE G552-1983)に準じた。

[0036]

実施例2及び3

ポリプロピレン繊維の繊度及び偏平率を表1のように変えて行ったこと以外は 実施例1と同様にして行った。その結果を表1に示す。

[0037]

比較例 1~3

ポリプロピレンモノフィラメントの表面に界面活性剤としてポリオキシアルキレンアルキルフェニルエーテルリン酸エステル(HLB=9)50重量部およびポリオキシアルキレン脂肪酸エステル(HLB=12)50重量部を混合して表面処理剤水溶液を用いて、ポリプロピレンモノフィラメントを浸漬し乾燥させることで、総繊維に対して0.28重量%を付着させたこと以外は、実施例 $1\sim3$ と同様にして行った。その結果を表1に示す。

[0038]

比較例4及び5

ポリプロピレン繊維のかわりに市販されている鋼繊維またはポリビニルアルコール繊維(繊維長30mm)を用いたこと以外は、実施例1と同様にして行った。その結果を表1に示す。

	繊維	繊度	偏平率	繊維強度	曲げタフネス	圧縮強度
	(-)	(dt)	(-)	(kg/m3)	(kgf•cm)	(N/mm2)
実施例1	PP	3000	4.2/1	9.2	425	38.1
実施例2	PP	6000	6.4/1	9.2	430	38.3
実施例3	PP	500	2.6/1	9.2	418	37.8
比較例1	PP	3000	4.2/1	9.2	317	37.5
比較例2	PP	6000	6.4/1	9.2	325	37.8
比較例3	PP	500	2.6/1	9.2	310	37.3
比較例4	スチール	Ф 0.6mm	3.0/1	78	330	37.5
比較例5	PVA	4000	1.4/1	13	151	35.7

[0040]

【発明の効果】

本発明のセメント強化用ポリプロピレン繊維は、ポリプロピレン系樹脂から紡糸し、表面に凹凸を付形した特定単糸繊度のモノフィラメントに対して表面酸化処理を施し、その表面の濡れ指数を特定量以上にしたものであって、ポリオレフィン樹脂繊維に対して親水性を付与でき、セメントとの分散性やセメントとの物理的結合が良好で、セメント成形物の曲げタフネスに優れたセメント成形物の製造が可能となるポリプロピレン繊維を得ることができる。

【書類名】 要約書

【要約】

【課題】 ポリオレフィン樹脂繊維に対して親水性を付与でき、セメントとの分散性やセメントとの物理的結合が良好で、セメント成形物の曲げタフネスを向上させるセメント補強用ポリプロピレン繊維を提供することを目的とする。

【解決手段】 ポリプロピレン系樹脂から紡糸し、表面に凹凸を付形した単糸繊度200dt以上のモノフィラメントに対して表面酸化処理を施し、その表面の濡れ指数を38dyn/cm以上することにより、ポリプロピレン樹脂繊維に対して親水性を付与でき、セメントとの分散性やセメントとの物理的結合が良好で、セメント成形物の曲げタフネスに優れたセメント成形物の製造が可能となるポリプロピレン繊維を得ることができる。

【選択図】 なし

特願2002-315987

出願人履歴情報

識別番号

[000234122]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月10日

新規登録

岡山県倉敷市水島中通1丁目4番地

萩原工業株式会社