Affine Fractals モデリングとシミュレーション特論

2019年度

只木進一

Fractals

- ▶同じような構造の繰り返し
 - ▶木、雲、海岸線、etc.
- **►** Fractal図形
 - Benoit B. Mandelbrot, The Fractal Geometry of Nature (W.H Freeman and Company, 1977)
- fraction
 - a small part or amount of something
 - a division of a number

- https://mathigon.org/world/Fractal
 <u>s</u>
- https://cosmosmagazine.com/mat hematics/fractals-in-nature

Sierpingki Gasket

- この操作を繰り返す
- 同じ構造が入れ子になって出現

Fractal Dimension

- ■通常の二次元図形
 - ■スケール1/2の図形4個で構成
 - $-4 = 2^D \rightarrow D = 2次元$
- Sierpinski gasket
 - ■スケール1/2の図形3個で構成

$$3 = 2^{D}$$

$$ln 3 = D ln 2$$

$$D = \frac{\ln 3}{\ln 2} \approx 1.5850$$

非整数次元

Affine transformation

■回転、拡大縮小、剪断と並行移動

$$\vec{x} \mapsto A\vec{x} + \vec{b}$$

- ■ある領域内の点の集合に対して、 Affine変換を繰り返す
 - ■固定点がfractal

Affine Transformation

- ■6個のパラメタ $\{r,s,\phi,\psi,e,f\}$
 - ► Lは元イメージのサイズ

$$\vec{x} \mapsto \begin{pmatrix} r\cos\phi & -s\sin\psi \\ r\sin\phi & s\cos\psi \end{pmatrix} \vec{x} + \begin{pmatrix} eL \\ fL \end{pmatrix}$$

Sierpingki Gasket

$$\left\{ \left(r, s, \phi, \psi, e, f \right) \right\} = \left\{ \left(\frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0 \right), \left(\frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, 0 \right), \left(\frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{4}, \frac{\sqrt{3}}{4} \right) \right\}$$

sample program

https://github.com/modeling-andsimulation-mc-saga/AffineFractals

Affine Transformation in Java

- AffineTransformクラス
 - ■ $\{r,s,\phi,\psi,e,f\}$ を与えて初期化
- ▶操作の準備
 - ■AffineTransformOpクラス
- ■イメージを変換
 - AffineTransformOp.filter()

BaseModelクラス

- ▶全てのフラクタルクラスの親クラス
- ■initImage():矩形領域の初期化
- ■oneUpdate():一回の変換
- ■showMap():変換の表示
- setAffine(): Affine変換の定義
 - ▶抽象メソッド

guiパッケージ

- MainFormクラス
 - ■JFrameの継承クラス
 - ■JComboBoxに描画できるフラクタルを 撤去
- DrawPanelクラス
 - ■JPanelの継承クラス
 - ■図を実際に描画

Examples

- CantorMaze
- KochCurve
- Dragon3
- TwinChristmasTree

- Tree
- BarnsleyFern