Stock Market Prediction

Anurag Gujarathi 3134

Literature Survey

Regression-

"Global Nonlinear Kernel Prediction for Large Data Set With a Particle Swarm-Optimized Interval Support Vector Regression"

Motivation

- Volatile nature of stock market.
- Correct decision can make an investor a billionaire.
- Wrong decision can make an investor bankrupt.
- Success depends on the future worth of purchased stocks and fundamentals of the firm.
- Notion for profitability
 - Buy low
 - Sell high

Motivation

- A prediction model can assist investors in making informed and intelligent decisions.
- Intelligent decisions can potentially earn high return on investments for investors.
- Thus a stock prediction model has been proposed for forecasting prices on the basis of historical data.

Problem Statement

- Prediction of Stock Market using historical data.
- Abstract-

A stock market is the aggregation of buyers and sellers which represent ownership claims on businesses. Intelligent investments in the stock market can potentially earn high returns to investors. However, due to the non-linear nature of stock market fluctuations, it is difficult to make an intelligent decision. This leads to the need of a model, which can predict the stock market on the basis of historical data. Concepts like Regression, Artificial Neural Networks and Support Vector Machines make it possible to predict values on the basis of historical data. A model for estimating the daily opening and closing prices of the stock market has been proposed.

Regression Analysis

 In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). source:

https://en.wikipedia.org/wiki/Regression_analysis

Features

Dataset – Quandl GOOGL

```
Volume Ex-Dividend \
 0pen
         High
                  Low
                        Close
100.01 104.06
                95.96
                     100.335 44659000.0
                                                  0.0
101.01 109.08
               100.50 108.310
                                                  0.0
                               22834300.0
110.76 113.48
               109.05 109.400 18256100.0
                                                  0.0
111.24 111.60
              103.57 104.870 15247300.0
                                                  0.0
104.76 108.00
              103.88 106.000
                                9188600.0
                                                  0.0
Split Ratio Adj. Open Adj. High Adj. Low
                                           Adj. Close \
       1.0 50.159839 52.191109 48.128568
                                             50.322842
       1.0 50.661387 54.708881 50.405597
                                             54.322689
       1.0 55.551482 56.915693 54.693835
                                             54.869377
       1.0 55.792225 55.972783 51.945350
                                             52.597363
       1.0 52.542193 54.167209 52.100830
                                             53.164113
Adj. Volume
 44659000.0
22834300.0
 18256100.0
 15247300.0
  9188600.0
```

Adjusting Features

```
df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']]
df['HL_PCT'] = (df['Adj. High'] - df['Adj. Low']) / df['Adj. Low'] * 100.0
df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 100.

df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']]

forecast_col = 'Adj. Close'
df.fillna(-99999, inplace=True)

forecast_out = int(math.ceil(0.1*len(df)))

df['label'] = df[forecast_col].shift(-forecast_out)

X = np.array(df.drop(['label'],1))
X = preprocessing.scale(X)
X_lately = X[-forecast_out:]
X = X[:-forecast_out]

df.dropna(inplace=True)
y = np.array(df['label'])
```

Algorithm Logic

```
pickle in = open('stock classifier.pickle', 'rb')
clf = pickle.load(pickle in)
accuracy = clf.score(X test, y test)
forecast set = clf.predict(X lately)
print('Accuracy is ',accuracy)
df['Forecast'] = np.nan
last date = df.iloc[-1].name
last unix = last date.timestamp()
one day = 86400
next unix = last unix + one day
for i in forecast set:
    next date = datetime.datetime.fromtimestamp(next unix)
    next unix += one day
    df.loc[next date] = [np.nan for in range(len(df.columns)-1)] + [i]
df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
```

Result

Support Vector Machine

- In machine learning, support-vector machines (SVMs, also support-vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier.
- Source-<u>https://en.wikipedia.org/wiki/Support-vector_machine</u>

Dataset

	Α	В	С	D	E	F	G	
1		date	open	low	high	close	volume	
2	544	2010-01-04	30.620001	30.59	31.1	30.950001	38409100	
3	1012	2010-01-05	30.85	30.639999	31.1	30.959999	49749600	
4	1480	2010-01-06	30.879999	30.52	31.08	30.77	58182400	
5	1948	2010-01-07	30.629999	30.190001	30.700001	30.450001	50559700	
6	2416	2010-01-08	30.280001	30.24	30.879999	30.66	51197400	
7	2884	2010-01-11	30.709999	30.120001	30.76	30.27	68754700	
8	3352	2010-01-12	30.15	29.91	30.4	30.07	65912100	
9	3820	2010-01-13	30.26	30.01	30.52	30.35	51863500	
10	4288	2010-01-14	30.309999	30.26	31.1	30.959999	63228100	
11	4756	2010-01-15	31.08	30.709999	31.24	30.860001	79913200	
12	5224	2010-01-19	30.75	30.68	31.24	31.1	46575700	
13	5692	2010-01-20	30.809999	30.309999	30.940001	30.59	54849500	
14	6160	2010-01-21	30.610001	30	30.719999	30.01	73086700	
15	6628	2010-01-22	30	28.84	30.200001	28.959999	102004600	
16	7096	2010-01-25	29.24	29.1	29.66	29.32	63373000	
17	7564	2010-01-26	29.200001	29.09	29.85	29.5	66639900	
18	8032	2010-01-27	29.35	29.02	29.82	29.67	63949500	
19	8500	2010-01-28	29.84	28.889999	29.870001	29.16	117513700	
20	8968	2010-01-29	29.9	27.66	29.92	28.18	193888500	
21	9436	2010-02-01	28.389999	27.92	28.48	28.41	85931100	
22	9904	2010-02-02	28.370001	28.139999	28.5	28.459999	54413700	
23	10372	2010-02-03	28.26	28.120001	28.790001	28.629999	61397900	
24	10840	2010-02-04	28.379999	27.809999	28.5	27.84	77850000	
25	11308	2010-02-05	28	27.57	28.280001	28.02	80960100	
26	11776	2010-02-08	28.01	27.57	28.08	27.719999	52820600	
27	12244	2010-02-09	27.969999	27.75	28.34	28.01	59195800	
28	12712	2010-02-10	28.030001	27.84	28.24	27.99	48591300	
29	13180	2010-02-11	27.93	27.700001	28.4	28.120001	65993700	
30	13648	2010-02-12	27.809999	27.58	28.059999	27.93	81117200	
31	14116	2010-02-16	28.129999	28.02	28.370001	28.35	51935600	
32	14584	2010-02-17	28.530001	28.360001	28.65	28.59	45882900	
33	15052	2010-02-18	28 50	29 51	20 020001	28 060000	/28262UU	
	Find				r V Fill	u All O FO	illiacced Displa	
Sheet	1 of 1						Default	

Algorithm Logic

```
In [7]: def train and test(price, window length, accurarys, reports):
            x,y = get x and y(msft prices,window length=window length)
            v = v.flatten()
            scaler = preprocessing.StandardScaler()
            scaler.fit transform(x)
            x train,x Test,y train,y test = train test split(x,y,test size=0.25,random state=233)
            for kernel arg in ['rbf','poly','linear']:
                clf = svm.SVC(kernel=kernel arg,max iter=5000)
                clf.fit(x train,y train)
                y predict = clf.predict(x test)
                accurary = clf.score(x test,y test)
                report = classification report(y test,y predict,target names = ['drop','up'])
                if window length in accurarys:
                    accurarys[window length].append(accurary)
                    reports[window length].append(report)
                else:
                    accurarys[window length] = [accurary]
                    reports[window length] = [report]
                print('The Accurary of %s : %f'%(kernel arg,clf.score(x test,y test)))
                print(report)
```

Result

The Accurary	of rbf : 0.47				
	precision	recall	f1-score	support	
drop	0.47	1.00	0.64	207	
up	0.00	0.00	0.00	232	
micro avg	0.47				
macro avg	0.24			439	
weighted avg	0.22	0.47	0.30	439	
The Accurary	of poly : 0.				
	precision	recall	f1-score	support	
drop	0.00	0.00	0.00	207	
up	0.53	1.00	0.69	232	
·					
micro avg	0.53	0.53	0.53	439	
macro avg	0.26	0.50	0.35	439	
weighted avg	0.28	0.53	0.37	439	
The Accurary					
	precision	recall	f1-score	support	
drop	0.60	0.28	0.38	207	
up	0.56	0.83	0.67	232	
micro avg	0.57	0.57	0.57	439	
macro avg	0.58	0.56	0.53	439	
weighted avg	0.58	0.57	0.54	439	

Particle Swarm Optimization

- In computational science, Particle Swarm
 Optimization (PSO) is a method that optimizes
 the problem by iteratively trying to improve a
 candidate solution with regard to a given
 measure of quality.
- It solves a problem by having a population of candidate solutions, here called particles, and moving these particles around in the search space over the particle's position and velocity.
- Source: https://en.wikipedia.org/wiki/Particle_swarm_optimization

Conclusion

- Using polynomial regression and support vector regression, accuracy of prediction model varies between 50% and 70% for the dataset used.
- The accuracy is dependent on training data.
- Although stock prices can be predicted to a certain extent using only historic data, other factors also influence stock prices.

Conclusion

Following factors also affect stock prices -

- Economics
 - Interest rates
 - Inflation
- Politics
 - Government policy
 - Elections
- Natural and Man-made disasters
 - Japan in 2011 tsunami
 - World War II
- Market Psychology
 - Hype created by economists

Conclusion

Therefore, a prediction model must take into account all factors which may affect the stock market.