DFA vs NFA: How to Identify?

❖ DFA practice problems:

Problem-01:

Problem-02:

Draw a DFA that accepts a language L over input alphabets $\Sigma = \{0, 1\}$ such that L is the set of all strings starting with '00'.

Problem-03:

Problem-04:

Draw a DFA for the language accepting strings starting with '101' over input alphabets $\Sigma = \{0, 1\}$ L = $\{101, 1010, 1011, 10111011, 101000, 10101101, 101011....\}$

Problem-05:

Construct a DFA that accepts a language L over input alphabets $\Sigma = \{a, b\}$ such that L is the set of all strings starting with 'aa' or 'bb'.

Problem-06:

Draw a DFA for the language accepting strings ending with '01' over input alphabets $\Sigma = \{0, 1\}$

Problem-07:

Draw a DFA for the language accepting strings ending with 'abb' over input alphabets $\Sigma = \{a, b\}$

Problem-08:

Draw a DFA for the language accepting strings ending with 'abba' over input alphabets $\Sigma = \{a, b\}$

Problem-09:

Draw a DFA for the language accepting strings ending with '0011' over input alphabets $\Sigma = \{0, 1\}$

Example 10:

Design FA with $\Sigma = \{0, 1\}$ accepts even number of 0's and even number of 1's.

