General Physics (I)

The first midterm

Oct. 21, 2011

試卷請註明、姓名、班級、學號,請遵守考場秩序

- I.計算題(50 points) (所有題目必須有計算過程,否則不予計分)
- 1. (10 points) A particle has a velocity of $\vec{v} = (2.0e^{-2t} \hat{i} + 3.0t \hat{j}) m/s$. The particle starts at $\vec{r} = (1.0\hat{i} 2.0\hat{j})m$ at t = 0.

Give the position and acceleration as a function of time.

- 2. (15 points) A cart (mass m_c) lying on a fixed frictionless incline. At t = 0, the cart starts from rest at point $A(x_c = 0, y_c = 0)$ and moves in the incline. We choose the x axis along to the incline as shown in Fig. 1. At t = 0, a ball (mass m_b) is shot from the cart perpendicularly to the incline with a speed of v relative to the incline.
- (A) Draw the free-body diagram for each object.
- (B) Find the x and y components of the acceleration for each object.
- (C) Determine $x_c(t)$, $y_c(t)$, $x_b(t)$ and $y_b(t)$.
- (D) Show that the ball will land before, in, or after the cart.

- 3. Block 1 and block 2, with masses m_1 and m_2 such that $m_1 << m_2$ (m_1 is much less than m_2), are connected by a massless inextensible string wrapped around a massless ideal pulley. The pulley is rigidly connected to the top of an inclined plane which makes an angle θ with the horizontal, as shown in the Fig. 2 above. If m_1 moves down, and m_2 moves up. The coefficient of kinetic friction between the blocks is μ_k . The surface between the block 2 and the inclined plane is frictionless. Gravity is directed vertically downward with acceleration g.
- (A) Draw free-body diagrams for the two blocks. Note that you should clearly define your choice of coordinate system.
- (B) Solve for the acceleration of each block in terms of m_1 , m_2 , μ_k , θ , and g.
- 4. The double Atwood machine in Fig. 3 has frictionless, massless pulleys and cords. Assume $m_A = 2m$, $m_B = m$, $m_C = m$. Determine the acceleration of masses m_A , m_B , and m_C , and the tensions T_A and T_C in the cords.

II.選擇題(50 points)

1. (5 pts) The dimension of the gravitational constant G is $[G]=[L]^x[M]^y[T]^z$. Which of the following is true?

(A).
$$x+y-z=0$$
 (B) $2x+y=0$ (C) $2x-3y=0$ (D) $y+2z=0$ (E) $3x+y=0$ (F) $2y-z=0$

- 2. (5 pts) The acceleration of a car as function of time is shown in Fig. 4. Assume at t = 0 sec, the car starts from rest. What would be the displacement of the car at t = 1 sec.
- (A) 1 m (B) $\frac{1}{2} \text{ m}$ (C) $\frac{1}{3} \text{ m}$ (D) $\frac{1}{6} \text{ m}$ (E) 0 m (F) $-\frac{1}{6} \text{ m}$ (G) $-\frac{1}{3} \text{m}$ (H) $-\frac{1}{2} \text{ m}$ (J) $-\frac{1}{2} \text{ m}$

- 3. (5 pts) An electron travels in space under the influence of an static electric field and a static magnetic field, and its trajectory can be described as $\vec{r}(t) = (5\cos \pi t, 5\sin(-\pi t), 5t^2)$ Which of the following statement about the acceleration $\vec{a} = (a_x, a_y, a_z)$ of the electron at t = 1.5 sec is true?
- (A) $\boldsymbol{a}_{x} = 5\pi$ (B) $\boldsymbol{a}_{y} = -5\pi$ (C) $\boldsymbol{a}_{z} = 15$ (D) $\boldsymbol{a}_{x} = 0$ (E) $\boldsymbol{a}_{x} = 5\pi^{2}$ (F) $\boldsymbol{a}_{y} = 5\pi^{2}$
- 4. (5 pts) A boat whose speed in still water is 4.8m/s must cross a 300 meter wide river from point A to point B as shown in Fig. 5. The speed of the river current is 3 m/s and its direction is indicated by the arrow. If the pilot set the boat to head in a direction as indicated by the arrow at point A such that the boat travel along a straight line from A to B. What is the angle β ?

$$(\sin 15^{\circ} = 0.26, \sin 37^{\circ} = 0.6, \sin 53^{\circ} = 0.8, \sin 75^{\circ} = 0.97)$$

(A) 15° (B) 30° (C) 37° (D) 53° (E) 75°

- 5. (5 pts) A skier of mass M slides down a ramp shaped as a circle of radius R, as shown in the Fig. 6. At the end point of the ramp just before the skier is in the air, the magnitude of the
- normal force exerted by the ramp on the skier is N. The acceleration constant is g. Then: (B) N = Mg(C) N < Mg(A) N > Mg
- (D) All of (A), (B), and (C) are possible depending on the speed of the skier.

6. (5 pts) The fig. 7 represents a point mass *m* attached a cord of fixed length *l*. If the mass moves in a horizontal circle of radius r with uniform velocity v, the tension in the cord is

(A)
$$mg \cos \theta$$
 (B) $\frac{mv}{\sin \theta}$ (C) $mg \frac{r}{l}$ (D) $m\sqrt{v^2 + g^2}$ (E) $m\sqrt{\frac{v^4}{r^2} + g^2}$

7. (5 pts) A rock is thrown vertically upward with initial speed v_0 . Assume a drag force proportional to $-\vec{v}$, where \vec{v} is the velocity of the rock. Which of the following is correct?

- (A) The acceleration of the rock is always equal to **g** (B) The acceleration of the rock is equal to **g** only at the top of the flight.
- (C) The acceleration of the rock is always less than **g**
- (D) The speed of the rock upon return to its starting point is v_0
- (E) The rock can attain a terminal speed greater than v_0 before it returns to its starting point. 8. (5 pts) You place two bricks (Fig. 8) on a level board and then slowly increase θ .
 - One of the brick (m_2) has twice the mass and twice the surface contact area as the other brick (m_1) . The coefficients of static friction and kinetic friction are the same for each of the two bricks. Which of the following statement(s) is (are) true?
 - 1. The brick (m_1) slides before the brick (m_2) .
 - 2. The brick (m_1) slides after the double brick.
 - 3. Both bricks $(m_1 \text{ and } m_2)$ begin to slide at the same time.

 - 4. The brick (m_1) has a greater acceleration than the brick. 5. The brick (m_1) has a smaller acceleration than the brick.
- 6. Both bricks $(m_1 \text{ and } m_2)$ have the same acceleration. (A) 1,4 (B) 1,5 (C) 1,6 (D) 2,4 (E) 2,5

(F) 2,6

(G) 3,4 (H) 3,5 (I) 3,6 (J) None of above

SOLUTION

1	2	3	4	5	6	7	8
F	С	D	В	A	Е	В	I

9	10	11	12	13	14	15	16	17	18
A	A	В	D	Е	С	Е	В	В	A

1. (10 points) A particle has a velocity of $\vec{v} = (2.0e^{-2t}\hat{i} + 3.0t\hat{j})m/s$

The particle starts at $\vec{r} = (1.0\hat{i} - 2.0\hat{j})m$ at t = 0.

Give the position and acceleration as a function of time.

$$\int_{1}^{x} dx = \int_{0}^{t} 2.0e^{-2t} dt$$

$$x - 1 = -\int_0^t e^{-2t} d(-2t) = -\int_0^{-2t} e^u du = -e^u \Big|_0^{-2t} = 1 - e^{-2t}$$

$$x = 2 - e^{-2t}$$
 (m) 3 points

$$\int_{-2}^{y} dy = \int_{0}^{t} 3t dt = \frac{3t^{2}}{2} \bigg|_{0}^{t} = \frac{3t^{2}}{2} \implies y = \frac{3t^{2}}{2} - 2 \qquad (m) \quad \text{3 points}$$

$$a_x = \frac{dv_x}{dx} = \frac{d}{dx}(2.0e^{-2t}) = -4.0e^{-2t}$$
 (m/s²) 2 points

$$a_y = \frac{dv_y}{dx} = \frac{d}{dx}(3.0t) = 3$$
 (m/s^2) 2 points

- 2. (15 pts) A cart (mass m_c) lying on a fixed frictionless incline. At t = 0, the cart starts from rest at $(x_c = 0, y_c = 0)$ and moves in the incline. We choose the x axis along to the incline as shown in Fig. 1. At the same time, a ball (mass m_h) is thrown from the cart perpendicularly to the incline with a speed of **v** relative to the incline.
- a. Draw the free-body diagram for each object (the cart and the ball) after the ball is thrown.
- b. Find the **x** and **y** components of the acceleration for each object.
- c. Determine $x_c(t)$, $y_c(t)$, $x_b(t)$ and $y_b(t)$.

d. Show that the ball will land in the cart.
 1 point
$$\sum_{N} F_y = N - m_c g \cos \theta = m_c a_{cy} = 0$$

$$N = m_c g \cos \theta; \quad a_{cy} = 0$$

$$\sum F_x = m_c g \sin \theta = m_c a_{cx} \qquad \Rightarrow \quad a_{cx} = g \sin \theta$$

$$\sum F_x = m_c g \sin \theta = m_c a_{cx}$$

$$\sum F_y = -m_b g \cos \theta = m_b a_{by} \implies a_{by} = -g \cos \theta$$

$$\sum F_x = m_b g \sin \theta = m_b a_{bx} \implies a_{bx} = g \sin \theta$$

$$a_{by} = -g\cos\theta \quad 1 \text{ point}$$

$$a_{bx} = g \sin \theta \qquad 1 \text{ point}$$

Fig. 1

$$a_{cy} = 0$$
 \Rightarrow $y_c = 0$

1 point

$$a_{cx} = g \sin \theta$$
 \Rightarrow $x_c = \frac{1}{2} g \sin \theta t^2$

1 point

$$a_{by} = -g\cos\theta$$

$$a_{by} = -g\cos\theta$$
 \Rightarrow $y_b = vt - \frac{1}{2}g\cos\theta t^2$

1 point

$$a_{bx} = g\sin\theta$$

$$a_{bx} = g \sin \theta$$
 \Rightarrow $x_b = \frac{1}{2} g \sin \theta t^2$

1 point

Find the time (t₁) when the ball hit the incline

$$y_b = 0 \quad \Longrightarrow \quad t_1 = \frac{2v}{g\cos\theta}$$

$$x_c = \frac{1}{2}g\sin\theta \left(\frac{2v}{g\cos\theta}\right)^2 = \frac{2v^2\sin\theta}{\cos^2\theta}$$

$$x_b = \frac{1}{2}g\sin\theta \left(\frac{2v}{g\cos\theta}\right)^2 = \frac{2v^2\sin\theta}{\cos^2\theta}$$

At t_1 , $x_c = x_b$ and $y_c = y_b$, therefore the ball will land in the cart. 5 points

 m_2), are connected by a massless inextensible string wrapped around a massless ideal pulley. The pulley is rigidly connected to the top of an inclined plane which makes an angle q with the horizontal, as shown in the Fig. 2 above. If m_1 moves down, and m_2 moves up. The coefficient of kinetic friction between the blocks is μ_k . The surface between the lower block and the

3. (10 pts) Block 1 and block 2, with masses m_1 and m_2 such that $m_1 << m_2$ (m_1 is much less than

inclined plane is frictionless. Gravity is directed vertically downward with acceleration g. (A) Draw free-body diagrams for the two blocks. Note: You should clearly define your choice of coordinate system.

(B) Solve for the acceleration of each block in terms of m_1 , m_2 , μ_k , q, and g. Solution:

Solution: (B)
$$f$$
 方向相反時: $m_1: T-f_1-m_1g\sin\theta=m_1a$ (1) $m_1: m_1g\sin\theta-T-f_1=m_1a$ (2) $m_1: m_2g\sin\theta-T-f_1=m_2a$ (2) $m_2: m_2g\sin\theta-T-f_1=m_2a$ (2) $m_2: T-f_1-m_2g\sin\theta=m_2a$ (2) $m_2: T-f_1-m_2g\sin\theta=m_2a$ (3) $m_2: T-f_1-m_2g\sin\theta=m_2a$ (4) Equ. (1)+Equ. (2): (eliminate T) $m_2g\sin\theta-T-f_1=m_2a$ (2) $m_2: T-f_1-m_2g\sin\theta=m_2a$ (3) $m_2: T-f_1-m_2g\sin\theta=m_2a$ (4) $m_2=m_1$ $m_2=m_2$ (5) $m_2=m_1$ $m_2=m_2$ $m_2=$

f方向相反:4 pts→ 1pt.

4. (15 pts) The double Atwood machine in Fig. 3 has

frictionless, massless pulleys and cords. Assume $m_A = 2m$,

 $m_B = m$, $m_C = m$. Determine the acceleration of masses m_A ,

 m_B , and m_C and the tensions T_A and T_C in the cords. Solution:

 $m_A: 2mg - T_A = 2ma_A \downarrow$

 $m_B: T_A - mg = ma_B \uparrow$ 5 pts $m_C: T_C - mg = ma_C \uparrow$

Pully P: $T_C - 2T_A = 0$ 2 pts

Assume $a' \downarrow$ is the acceleration of m_A

relative to the pulley P.

 $m_R: T_A - mg = m(a' - a_C) \qquad \uparrow (2)$

Equ. (1)+Equ .(2): (eliminate T_{Δ})

 $\Rightarrow a_A = a_{AG} = a_{AP} + a_{PG} = a' + a_{C}$

 $a_R = a' - a_C$

or $a_A - a_B = 2a_C$ 2 pts

 $m_A: 2mg - T_A = 2m(a' + a_C) \downarrow (1)$

 $\underline{m_C}: 2T_A - mg = ma_C \qquad \uparrow (3) (\sim 9 \text{ pts})$

 $mg = 3ma' + ma_C$

 $\Rightarrow a' = \frac{g - a_C}{2}$ (4)

Insert Equ. (4) into Equ.

 $2mg - T_A = \frac{2mg + 4ma_C}{2}$

2*Equ. (1')+3*Equ. (3): (eliminating T_A)

 $5mg = 11ma_C \implies a_C = \frac{5}{11}g$

Equ. (4) $-a' = \frac{2}{11}g \implies a_A = \frac{7}{11}g ; a_B = -\frac{3}{11}g$

 $\Rightarrow T_A = \frac{8}{11} mg$; $T_C = \frac{16}{11} mg$

Equ. (3) \Rightarrow $2T_A = T_C = m(g + a_C)$

or $a_A = \frac{7}{11}g \downarrow$; $a_B = \frac{3}{11}g \downarrow$; $a_C = \frac{5}{11}g \uparrow$ 4 pts

2 pt

 $\Rightarrow 4mg - 3T_{\Delta} = 4ma_{C}$ (1')

(1):