pION 赛拟模题解

2023年9月27日

括号 (bracket)

一个区间合法的条件是:

- (? 当成 1,) 当成 -1, 所有前缀和都 ≥ 0;
-)? 当成 1, (当成 -1, 所有后缀和都 ≥ 0。

 ${
m dp}\ f_i$ 表示以 i 结尾的答案, $f_r=\max(f_l+a(r-l)+b)$,区间 (l,r] 合法。第一条限制相当于对一个 l,合法的 r 在一个前缀里,第二条限制相当于对一个 r,合法的 l 在一个后缀里。可以用线段树单点删除和区间查询最大值实现。

本题其实是 CF1495F 的加强版。

首先,对每个 $i\in [1,n]$ 求出 j>i 且 $v_j>v_i$ 的最小的 j,记作 p_i 。可以使用单调栈求出 p。

可以发现,从点 i 出发,若想要走到点 $j>p_i$,则必定要经过 p_i 。证明很简单:若从 i 走到 $j>p_i$ 且不经过 p_i ,则设跨过 p_i 的一步为 $x\to y$,则显然必须有 $p_x=y$ 。由于 $p_i>x$,故由 p_i 定义知 $v_x< v_{p_i}$,这与 $x< p_i$ 、 $y=p_x>p_i$ 矛盾。

由此也可以得到,若 $j=p_{p...p_i}$ (至少 0 个 p,下面若满足此式,称 j 为 i 的「p 祖先」),则若想要从 i 走到 j 后面的点,则必须经过 j。i 的 p 祖先其实也就是 $v_{i...n+1}$ 的所有前缀最大值。

于是设 d_i 表示 i 走到 p_i 的最短路,考虑求出 d_i 。考虑走到 p_i 的最后一步,只有做单调栈时被 p_i 弹出的点才能走到 p_i 。这些点在原序列的笛卡尔树上,形如从 p_i 的左儿子向右延伸的链的一段后缀,设为 $x_1=i,x_2,x_3,\ldots,x_k$ 。

i 可以一步走到 p_i ,也可以走到 i+1。可以发现, x_2 为 i+1 的 p 祖先,显然它是 $v_{i+1\dots n+1}$ 的前缀最大值之一。于是若第一步走 i+1,则必定经过 x_2 。

经过 x_2 后从 x_2 走到 p_i 的最短路可以直接调用 d_{x_2} 得到。 现在需要求出 i+1 到 x_2 的路径长度,由于 x_2 为 i+1 的 p 祖 先,从 i+1 不断跳 p 直到 x_2 并把答案对经过的 d 取 \max 即 可,为了保证时间复杂度需要使用倍增优化。

于是可以用 $d_{i+1...x_2}$ 求出 d_i 。可以在单调栈的过程中求出所有 d_i (每次一个点 i 被弹出时求 d_i 即可)。值得一提的是,这里需要在线地更新 p、d 并维护倍增数组。可以对每个点 i 与二进制位 k 维护 $S_{i,k}$ 为跳 2^k 次 p 跳到 i 的点构成的集合,更新 d_i 时需要更新 $S_{i,0}$ 中的 2^1 步结果,然后对于 $S_{i,0}$ 中的每个位置 j 更新 $S_{i,1}$ 中的 2^2 步结果,不断递归更新即可。

得到了 d_i ,考虑求任意两点 s、t 间的距离。为了保证复杂度,可以在加入点 t 后立即求所有 (s,t) 的答案,这保证 t 为当前笛卡尔树最右链的链底。

设区间 [s,t] 内 v 的最大值为 v_m ,其为 s 的 p 祖先,于是可以先倍增跳到 m (一个方便的实现是,m 是 s 不断跳 p 而不跳过 y,跳到的最后一个位置)。由于 t 是最后加入的数,容易证明 m 也在当前笛卡尔树的最右链上,设 m 到 t 的路径依次为 $x_1=m,x_2,x_3,\ldots,x_k=t$ 。

若 $t \neq m$,则此时可以发现再跳 p 就会超过 t,于是只能跳到 m+1。容易证明 x_2 为 m+1 的 p 祖先,于是可以倍增跳到 x_2 ;然后又只能跳到 x_2+1 ,然后倍增到 x_3 ……依此类推,最后 跳到 $x_k=t$ 。

但是这样时间复杂度不对。可以对于最右链上的每个点 i, 处理出最右链中前一个点到它的最短路 cd_i , 于是要求的就是一段后缀的 cd 最大值。每次加入一个点时可以倍增求出 cd, 需要在最右链末端加删点,维护后缀最大值,可以使用线段树实现。

总时间复杂度为 $O(n\log n)$ 。可以用可持久化线段树维护 cd 做到在线。

这里是另一个较好实现的做法。

容易发现,在单调栈的过程中,一个点 u 在最右链上的前一个点只会出现一个,即 u 左边且比 v_u 大的最后一个点,设为 cp_u (对应的 cd_u 也只有一个)。所以预处理 cp、cd,则 m 右边的答案可以通过由 t 不断跳 cp 直到 m,把答案与沿途经过的 cd 取 \max 得到。于是也可以使用倍增求解。

总时间复杂度为 $O(n \log n)$, 支持在线。

集了个合 (set)

对于 $j \in \{1, \dots, n\}$,设 $T_j := \{i \in \{1, \dots, m\} : j \in S_i\}$ 。那么合法的条件等价于任意 T_j 非空且对于任意 $j \neq k$ 有 T_j , T_k 互不包含。

那么相当于,我们要在 $2^{\{1,\cdots,m\}}$ 中选择以"集合包含"为偏序关系的最长反链。

我们断言,最长反链就是 $\{1,\cdots,m\}$ 的大小为 $\lceil m/2 \rceil$ 的子集组成的集合,即 $n = {m \choose \lceil m/2 \rceil}$ 。

为证明这一点,根据 Dilworth 定理,考虑找出 $2^{\{1,\cdots,m\}}$ 的一组链覆盖,使得链的数量也为 $\binom{m}{[m/2]}$ 。

考虑构造单射 $f_{m,i}$,其中 $1\leq i\leq \lceil m/2\rceil$,它是从 $\{1,\cdots,m\}$ 的大小为 i 的子集到 $\{1,\cdots,m\}$ 的大小为 i-1 的子集的单射。构造完后,容易找出一组满足要求的链覆盖。

集了个合 (set)

使用归纳构造:

```
对于 i \leq \lceil (m-1)/2 \rceil 的 f_{m,i}(T),若 T 不包含 m,则令 f_{m,i}(T) := f_{m-1,i}(T);若 T 包含 m,则令 f_{m,i}(T) := f_{m-1,i-1}(T \setminus \{m\}) \cup \{m\}。 对于 m 为奇数且 i = \lceil m/2 \rceil,构造 f_{m,i}(T) := f_{m,i-1}(\{1,\cdots,m\} \setminus T)。
```

数树 (tree) Subtask 1

枚举每个重心考虑它的贡献。先枚举它所在连通块的大小 sz, 然后它所有儿子子树的大小不超过 $\frac{sz}{2}$, 每个 sz 对所有儿子 做一遍背包,复杂度 $O(n^4)$ 。

数树 (tree)

容斥,一个点不合法当且仅当它一个儿子子树大小超过 $\frac{sz}{2}$,而这样的儿子至多一个。枚举是哪个儿子,然后做一遍其他儿子的背包,具体是先做出前后缀的背包,然后拼起来。复杂度 $O(n^3)$ 。

数树 (tree)

进一步研究点 u 不合法的条件: 存在点 v 与 u 相邻,断掉 (u,v) 后 u 所在连通块大小比 v 所在连通块大小要小。相当于我们要求出两个东西: $f_{u,i}$ 表示以 u 为根的子树,连通块大小为 i 的方案数, $g_{u,i}$ 表示删掉以 u 为根的子树, fa_u 所在连通块大小为 i 的方案数。

 $f_{u,i}$ 是经典的树上背包,而 g_u 可以从 g_{fa_u} 转移过来,拼上 g_{fa_u} 其他儿子的 f,也可以前缀拼后缀。用 FFT 转移,复杂度 $O(n^2\log n)$ 。

数树 (tree) Subtask 4

注意到 $g_{u,i}$ 的 i 可以跟 siz_u+1 取 \min ,这样对于一个 u 我们可以把它的复杂度做到 $O(siz_u(siz_{fa_u}-siz_u))$,跟树上背包一致,复杂度是 $O(n^2)$ 。