3 The diagram shows an air track that can be used to investigate motion without friction.

Air comes out through a series of small holes in the air track, which lifts the gliders slightly above the track.

There are two gliders on the track.

Each glider has a magnet.

The poles of the magnets nearest each other are alike.

(a)	Expla	ain th	e dire	ction	of th	ne i	force	acting	on	magnet	Α	from	magr	net	В
-----	-------	--------	--------	-------	-------	------	-------	--------	----	--------	---	------	------	-----	---

(2)

(b) The gliders collide and the magnets cause them to rebound.

Before the collision, the momentum of glider A is 0.045 kg m/s to the right and glider B is at rest.

(i) State the total momentum of glider A and glider B after the collision.

(1)

total momentum =kg m/s

(ii) After the collision, the momentum of glider A is 0.021 kg m/s to the left. Calculate the momentum of glider B after the collision.	(2)	
momentum of glider B =		. kg m/s
(iii) The time taken for glider B to change its momentum is 0.19 seconds. Calculate the average force on glider B that causes this change in momentum.	(2)	
average force =		N
(iv) Give the direction of the force on glider B from glider A.	(1)	
 (Total for Question 3 = 8 ma	rks)	

