

Figura 1: Temperature vs z plot. logarithmic y scale

1a) In order to identify the layers I put conditions on temperature:

http://www.nasa.gov/mission_pages/iris/multimedia/layerzoo.html

Looking at the values from the file 'atmosphere.dat' ordered by height from top(of the atmosphere) to bottom I consider the corona while temperature ≥ 500000 K (T is decreasing), transition region until T = 8000 K, the chromosphere until T reaches the (only) minimum, afterwards the temperature starts to raise and I consider the layer before it reaches 6500 K the photosphere and the solar interior after

The exact values matching these conditions are:

corona between [39.802200, 2.535930] Mm temperatures: [1.080180e+06, 5.025160e+05] K transition region between [2.516350, 0.991115] Mm temperatures: [4.991350e+05, 8.067640e+03] K chromosphere between [0.971556, 0.305708] Mm temperatures: [7.306160e+03, 2.843670e+03] K photosphere between [0.286093, -0.303487] Mm temperatures: [2.848470e+03, 6.297540e+03] K solar interior between [-0.323184, -2.592960] Mm temperatures: [6.837750e+03, 2.068340e+04] K

1b)
$$\mu = \frac{n_H + 4n_{He}}{n_e + n_H + n_{He}}$$

 $n_H = 10n_{He} \implies \mu = \frac{1.4n_H}{n_e + 1.1n_H}$

- totally ionized H and He $\implies n_e = n_H + 2n_{He} = 1.2n_H \implies \frac{n_H}{n_e} = \frac{5}{6}$ and $\mu = 0.6987$
- neutral H and He $\implies n_e = 0 \implies \mu = 1.2727$

Figura 2: Mean molecular weight(g/mol) vs z plot Maximum close to $1.2727 = \mu$ in the case of neutral H and He and minimum close to $0.6087 = \mu$ calculated in the case of completely ionized H and He

$$\frac{n_H}{n_e} = \frac{\mu}{1.4 - 1.1\mu}$$

In the case of neutral H and He $n_e \to 0 \implies \frac{n_H}{n_e} \to \infty$ When plotting $\frac{n_H}{n_e}$ using μ from the file, as we can see in the graphic of μ there are some values of z for which $\mu > 1.2727 \implies 1.4 - 1.1 \mu < 0 \implies \frac{n_H}{n_e} < 0$ I will limit oy axis values to [0,4]

Figura 3: number of atoms of H / number of electrons

We can see a constant value of $\frac{n_H}{n_e}$ in the corona of $\frac{n_H}{n_e} = 0.843 \approx \frac{5}{6}$ which is the value we calculate in the case of totally ionized H and He and we expect this because of the high values of the temperature in the corona

Figura 4: Pressure scale height

2)
$$\frac{d \ln p}{dz} = -\frac{1}{H_p}$$
, $H_p \text{ const} \implies \ln p(z) - \ln p(z_0) = -\frac{1}{H_p}(z - z_0) \implies p(z) = p(z_0) exp(-\frac{z - z_0}{H_p})$
 $\rho(z) = \frac{1}{gH_p}p(z) = \frac{p(z_0)}{gH_p} exp(-\frac{z - z_0}{H_p}) = \rho(z_0) exp(-\frac{z - z_0}{H_p})$
Analytic test for H_p constant (with values 1 and 1e10) with $\rho(z_{max})$ taking values: $1 = 10$,

Integrating downward or forward in height makes no difference (using ln p)

Figura 5: Analytic test Hp=1

Figura 6: Analytic test Hp=1e10

Figura 7: logarithmic (base e: ln) of pres, rho

Figura 8: pres, rho

Notation: $\mu_0 =$ magnetic permeability $\beta = \frac{p}{p_{mag}}$ where $p_{mag} = \frac{B^2}{2\mu_0}$ $v_A = \frac{B^2}{\mu_0 \rho}$ $c_s = \sqrt{\frac{\gamma p}{\rho}}$

Figura 9: logarithmic (base e: ln) of beta plasma, vA, cs

Figura 10: beta plasma, vA, cs

 $\beta = \frac{2p\mu_0}{B^2} = \frac{2p}{\rho v_A^2} = \frac{2}{\gamma} (\frac{c_s}{v_A})^2 \implies \beta(\frac{v_A}{c_s})^2 \frac{\gamma}{2} = 1 \text{ We call this function func}(\beta, \frac{v_A}{c_s}) \text{ in the graphic below and expect it to be } 1$

Figura 11: ln func(bp, vA/cs) ≈ 0

Figura 12: Lambda phot

Figura 13: Lambda corona

Figura 14: Lambda corona interpolated for atm. temperatures $> 3*10^4$ K in 'atmosphere.dat' plotted vs z

Figura 15: L
r logarithmic y scale $\,$

Figura 16: Internal energy

Figura 17: Internal energy / Lr