CMOS Transistor Theory Outline

- □ Introduction
- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- □ Gate and Diffusion Capacitance

Introduction

- ☐ So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- ☐ Transistor gate, source, drain all have capacitance
 - $I = C (\Delta V/\Delta t) = \Delta Q/\Delta t \longrightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed

MOS Capacitor

- ☐ Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion

NMOS Terminal Voltages

- \Box Mode of operation depends on V_g , V_d , V_s
 - $V_{gs} = V_g V_s$
 - $V_{gd} = V_g V_d$
 - $V_{ds} = V_d V_s = V_{gs} V_{gd}$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage for nMOS
 - Hence $V_{ds} \ge 0$
- nMOS body is grounded. First assume source is 0 too.
- ☐ Three regions of operation
 - Cutoff
 - Linear
 - Saturation

nMOS Cutoff Region

- □ Vgs<Vt
- No channel
- \Box $I_{ds} = 0$

nMOS Linear (Resistive) Region

- ☐ Vgs>Vth, channel forms, but no current if Vds=0
- Until Vds>0
 - Current flows from d to s
 - e- from s to d
- □ I_{ds} increases with V_{ds}
- Similar to linear resistor

nMOS Saturation

- ☐ As Vds increased, Vgd is getting smaller, the channel of drain side is getting narrower
- When V_{gd} <= V_t, channel pinches off, the channel is no longer inverted near the drain. Conduction is brought about by the drift of electrons under the influence of the positive drain voltage.
- \Box I_{ds} is independent of V_{ds} , only controlled by V_{gs} for long channel
- We say current saturates
- Similar to current source

nMOS I-V Characteristics

- ☐ In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

N Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- ☐ Charge on each plate of the capacitor is Q_{channel} = CV
- \Box $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$

N Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- ☐ Charge on each plate of the capacitor is Q_{channel} = CV
- \Box $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$

Permittivity ϵ_{ox} =3.9 $\epsilon_{o,}$ ϵ_{o} is the permittivity of free space, equals 8.85*10⁻¹⁴F/cm

 $C_{ox} = \varepsilon_{ox} / t_{ox}$, the capacitance per unit area of the gate oxide.

t_{ox} is the thickness of the gate oxide

N Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- \Box Charge on each plate of the plate is $Q_{channel} = CV$
- \Box $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$
- \Box V = V_{gc} V_t = (V_{gs} V_{ds}/2) V_t = V_{gs} V_t V_{ds}/2
 - Average gate to channel potential

Carrier velocity

- ☐ Charge is carried by e- for nMOS and hole for pMOS
- □ Carrier velocity v proportional to lateral E-field between source and drain
- \Box $v = \mu E$ μ called mobility
- \Box E = V_{ds}/L
- ☐ Time for carrier to cross channel:

$$t = \frac{L}{v} = \frac{L}{\mu E} = \frac{L}{\mu V_{ds}/L} = \frac{L^2}{\mu V_{ds}}$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time (t) each carrier takes to cross

$$\begin{split} I_{ds} &= \frac{Q_{\text{channel}}}{t} &\longrightarrow = Cox(WL) \frac{Vgs - Vt - Vds/2}{L^2/\mu Vds} \\ &= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \\ &= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \end{split} \qquad \beta = \mu C_{\text{ox}} \frac{W}{L} \end{split}$$

nMOS Saturation I-V

- When $V_{gd} = V_t$, channel pinches off near drain that V_{ds} is called drain saturation voltage, V_{dsat}
 - Calculate V_{dsat}

$$V_{dsat} = V_d - V_s = V_d - V_g + V_g - V_s = (V_g - V_s) - (V_g - V_d)$$
$$= V_{gs} - V_{gd} = V_{gs} - V_t$$

■ Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

nMOS I-V Summary

☐ Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \end{cases}$$

$$\frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$\beta = \mu C_{\text{ox}} \frac{W}{I}$$

$$V_{dsat} = V_{gs} - V_{t}$$

Example

- Example: nMOS transistor in a 180 nm process
 - $t_{ox} = 40 \text{ Å}$
 - $\mu_n = 180 \text{ cm}^2/\text{V*s}$
 - $V_{tn0} = 0.4 \text{ V}$
- □ Plot I_{ds} vs. V_{ds}
 - $V_{gs} = 0, 0.3, 0.6, 0.9, 1.2, 1.5 1.8V$
 - Use W/L = $(4 \lambda) / (2 \lambda)$

FIG 2.7 I-V characteristics of ideal nMOS transistor

$$\beta = \mu C_{ox} \frac{W}{L} = (180 \frac{cm^2}{V.s}) \left(\frac{3.9 \times 8.85 \bullet 10^{-14} \frac{F}{cm}}{40 \bullet 10^{-8} cm} \right) \left(\frac{W}{L} \right) = 155 \frac{W}{L} \frac{\mu A}{V^2}$$

pMOS I-V

- ☐ All dopings and voltages are inverted for pMOS
- lue Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 90 cm²/V*s in 180 μm process
 - $V_{tp} = -0.4 \text{ V}$
- ☐ Thus pMOS must be wider to provide same current
 - In this class, assume μ_n / μ_p = 2

pMOS I-V Summary (1)

☐ Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} > V_{thp} \text{ cutoff} \\ \beta \left(V_{gs} - V_{thp} - \frac{V_{ds}}{2}\right) V_{ds} & V_{gs} < V_{thp} \text{ and } V_{ds} > V_{dsat} & \text{linear} \\ -\frac{\beta}{2} \left(V_{gs} - V_{thp}\right)^2 & V_{gs} < V_{thp} \text{ and } V_{ds} < V_{dsat} & \text{saturation} \end{cases}$$

$$V_{dsat} = V_{gs} - V_{thp}$$

pMOS I-V Summary (2)

☐ Shockley 1st order transistor models

$$I_{sd} = \begin{cases} 0 & V_{sg} < |V_{tp}| \text{ cutoff} \\ \beta_p \left(V_{sg} - |V_{tp}| - \frac{V_{sd}}{2}\right) V_{sd} & V_{sd} < V_{ssat} & \text{linear} \\ \frac{\beta_p}{2} \left(V_{sg} - |V_{tp}|\right)^2 & V_{sd} > V_{ssat} & \text{saturation} \end{cases}$$

$$V_{ssat} = V_{sg} - |V_{tp}|$$

pMOS I-V Characteristic

MOS devices

FIG 2.8 I-V characteristics of ideal pMOS transistor

MOS I-V Characteristic

FIG 2.7 I-V characteristics of ideal nMOS transistor

 $I_{ds}(\mu A)$

.SI Design

21

Channel Length Modulation

- ☐ Ideally I_{ds} is independent of V_{ds} under saturation—long channel
- □ L_{eff}=L-L_d, where L_{eff} is the effective channel length, L is the drawn channel length, L_d is the depletion region formed by the reverse-biased p-n junction between the drain and body. L_d is proportional to V_{db}
- \Box In the saturation $I_{ds}=rac{\beta}{2}ig(V_{gs}-V_{th}ig)^2ig(1+\lambda V_{ds}ig)$

λ is called channel modulation factor, which is inversely dependent on channel length.

Body Effect

☐ The threshold voltage is modeled as

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

where V_{t0} is the threshold voltage when $V_{sb} = 0$, ϕ_s is the surface potential at threshold, γ is the body effect coefficient

$$\phi_s = 2v_T \ln \frac{N_A}{n_i}; \qquad \gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{\frac{2q\varepsilon_{si}N_A}{C_{ox}}}$$

where v_T is the thermal voltage, N_A is the doping level, N_i is the silicon intrinsic level

Example

□ 180nm process with v_{tn0} =0.4v, N_A =8.10¹⁷ cm⁻³. The body is tied to ground and V_{sb} =1.1V.

At room temperature, $v_T = kT/q = 26$ mV and $n_i = 1.45 \cdot 10^{10}$ cm⁻³

$$\phi_s = 2(.026V) \ln \frac{8 \cdot 10^{17} cm^{-3}}{1.45 \cdot 10^{10} cm^{-3}} = 0.93V$$

$$\gamma = \frac{40 \cdot 10^{-8} \, cm^{-3}}{3.9 \cdot 10^{-14} \, \frac{F}{cm}} \sqrt{2 \left(1.6 \cdot 10^{-19} \, C \right) \left(11.7 \cdot 8.85 \cdot 10^{-14} \, \frac{F}{cm}\right) \left(8 \cdot 10^{17} \, cm^{-3}\right)}$$

$$=0.60V^{\frac{1}{2}}$$

$$Vt = 0.4V + \gamma \left(\sqrt{\phi_s + 1.1V} - \sqrt{\phi_s} \right) = 0.68V$$

Capacitance

- □ Any two conductors separated by an insulator have capacitance
- ☐ Gate to channel capacitor (C_q) is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

Gate Capacitance

- □ Approximate channel as connected to source
- \Box $C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W=C_0$
- C_{permicron} is typically about 2 fF/μm

$$C_0 = WLC_{ox} = C_{permicron}(W)$$

Table 2.1 Approximation of intrinsic MOS gate capacitance

Parameter	Cutoff	Linear	Saturation
C_{gb}	C_0	0	0
C_{gs}	0	$C_0/2$	$2/3 C_0$
C_{gd}	0	$C_0/2$	0
$C_g = C_{gs} + C_{gd} + C_{gb}$	C_0	C_0	2/3 C ₀

MOS devices

Diffusion Capacitance

- \Box C_{sb} , C_{db}
- Undesirable, also called parasitic capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g for contacted diffusion cap
 - ½ C_g for uncontacted
 - Varies with process

MOS devices

CMOS VLSI De