

Introduction to Machine Learning

Ensemble Methods, Bagging, and Boosting

Power through diversity

Multiple classifiers: Voting

Power through diversity

Let's try this out

Multiple training sets: Resampling

Sampling with replacement

Multiple training sets: Bagging

- Start with training data set D with N examples
- Use sampling with replacement to create M datasets $\widetilde{D}_1,...,\widetilde{D}_M$
 - Each has size N
 - Train separate classifier on each training set
 - Combine (vote)

Boosting weak learners

- Weak learners become strong through adaptation
- AdaBoost

Algorithm 32 AdaBoost(W, D, K)

 $d^{(0)} \leftarrow \left\langle \frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N} \right\rangle$ // Initialize uniform importance to each example 2: **for** $k = 1 \dots K$ **do**

$$f^{(k)} \leftarrow \mathcal{W}(\mathcal{D}, d^{(k-1)})$$
 // Train k th classifier on weighted data

$$\hat{y}_n \leftarrow f^{(k)}(x_n), \forall n$$
 // Make predictions on training data
 $\hat{\epsilon}^{(k)} \leftarrow \sum_n d_n^{(k-1)}[y_n \neq \hat{y}_n]$ // Compute weighted training error

5:
$$e^{(k)} \leftarrow \sum_{n} u_n$$
 $[y_n \neq y_n]$ // Compute weighted training error
6: $\alpha^{(k)} \leftarrow \frac{1}{2} \log \left(\frac{1 - \hat{e}^{(k)}}{\hat{e}^{(k)}} \right)$ // Compute "adaptive" parameter

 $d_n^{(k)} \leftarrow \frac{1}{Z} d_n^{(k-1)} \exp[-\alpha^{(k)} y_n \hat{y}_n], \forall n$ // Re-weight examples and normalize end for 9: **return** $f(\hat{x}) = \text{sgn}\left[\sum_k \alpha^{(k)} f^{(k)}(\hat{x})\right]$ // Return (weighted) voted classifier

Let's try this out

Decision Stump? Really?

Random ensembles

- Decision trees are expensive to learn
- If structure was given would be faster

Algorithm 33 RANDOMFORESTTRAIN(\mathcal{D} , depth, K)

for $k = 1 \dots K$ do

$$t^{(k)} \leftarrow \text{complete binary tree of depth } depth \text{ with random feature splits}$$
 $f^{(k)} \leftarrow \text{the function computed by } t^{(k)}, \text{ with leaves filled in by } \mathcal{D}$

4: end for 5: **return** $f(\hat{x}) = \operatorname{sgn}\left[\sum_{k} f^{(k)}(\hat{x})\right]$

// Return voted classifier

Performance

◆ Early proponents of random forests: "Joint Induction of Shape Features and Tree Classifiers", Amit, Geman and Wilder, PAMI 1997

Features: arrangement of tags

Arrangements: 8 angles

tags

Common 4x4 patterns

A subset of all the 62 tags

#Features: 62x62x8 = 30,752

Single tree: **7.0%** error

Random forest of 25 trees: 0.8% error

Let's try this out