MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

$$\bullet \Omega \xrightarrow{X} \mathbb{R},$$

$$ullet \Omega \stackrel{X}{\longrightarrow} \mathbb{R}, \quad \mathcal{F} \stackrel{X}{\longrightarrow} \mathcal{B}(\mathbb{R}),$$

•
$$\Omega \xrightarrow{X} \mathbb{R}$$
, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$

•
$$\Omega \xrightarrow{X} \mathbb{R}$$
, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$

• Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .
- $X^{-1}(B)$ is called as the preimage or the inverse image of B.

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .
- $X^{-1}(B)$ is called as the preimage or the inverse image of B.

Definition of a random variables

A random variable X is a map $X:(\Omega,\mathcal{F},P)\to (\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$ such that for each $B\in\mathcal{B}(\mathbb{R})$, the inverse image $X^{-1}(B)\coloneqq\{w\in\Omega:X(w)\in B\}$ satisfies

$$X^{-1}(B) \in \mathcal{F}$$
 and $P_X(B) = \Pr(w \in \Omega : X(w) \in B)$

The cumulative distribution function (CDF) $F_X(x)$ can be expressed using induced measure P_X .

- The cumulative distribution function (CDF) $F_X(x)$ can be expressed using induced measure P_X .
- Since the domain of P_X is $\mathcal{B}(\mathbb{R})$, we have seen that $\mathcal{B}(\mathbb{R})$ is made up of sets of the form $(-\infty, a]$ for $a \in \mathbb{R}$.

- The cumulative distribution function (CDF) $F_X(x)$ can be expressed using induced measure P_X .
- Since the domain of P_X is $\mathcal{B}(\mathbb{R})$, we have seen that $\mathcal{B}(\mathbb{R})$ is made up of sets of the form $(-\infty, a]$ for $a \in \mathbb{R}$.
- $P_X((-\infty,x]) = \mathbb{P}\{w \in \Omega : X(w) \le x\} := F_X(x).$

- The cumulative distribution function (CDF) $F_X(x)$ can be expressed using induced measure P_X .
- Since the domain of P_X is $\mathcal{B}(\mathbb{R})$, we have seen that $\mathcal{B}(\mathbb{R})$ is made up of sets of the form $(-\infty, a]$ for $a \in \mathbb{R}$.
- $P_X((-\infty,x]) = \mathbb{P}\{w \in \Omega : X(w) \le x\} := F_X(x).$
- This is a general definition of CDF (applicable for both continuous or discrete).

- The cumulative distribution function (CDF) $F_X(x)$ can be expressed using induced measure P_X .
- Since the domain of P_X is $\mathcal{B}(\mathbb{R})$, we have seen that $\mathcal{B}(\mathbb{R})$ is made up of sets of the form $(-\infty, a]$ for $a \in \mathbb{R}$.
- $P_X((-\infty,x]) = \mathbb{P}\{w \in \Omega : X(w) \le x\} := F_X(x).$
- This is a general definition of CDF (applicable for both continuous or discrete).
- ▶ If $F_X(\cdot)$ is continuous (resp. piecewise continuous), then X is continuous (resp. discrete) random variable.

 $ightharpoonup F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.

 $ightharpoonup F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.

 $ightharpoonup F_X: \mathbb{R}
ightarrow [0,1]$ is non-decreasing and right continuous.

- $ightharpoonup F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R}
 ightarrow [0,1]$ is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R}
 ightarrow [0,1]$ is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
 - 3. $F_X(x-) \neq F_X(x+)$.

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
 - 3. $F_X(x-) \neq F_X(x+)$.
 - 4. $F_X(x)$ could be set to either of the two. Which one?

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R}
 ightarrow [0,1]$ is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
 - 3. $F_X(x-) \neq F_X(x+)$.
 - 4. $F_X(x)$ could be set to either of the two. Which one?
- Right continuity mandates that at point of discontinuity, we have $F_X(x) = F_X(x+)$.

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R}
 ightarrow [0,1]$ is non-decreasing and right continuous.
- At point of discontinuity x we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
 - 3. $F_X(x-) \neq F_X(x+)$.
 - 4. $F_X(x)$ could be set to either of the two. Which one?
- Right continuity mandates that at point of discontinuity, we have $F_X(x) = F_X(x+)$.
- ▶ By default, $F_X(x) = F_X(x+) = F_X(x-)$ if $F_X(x)$ is continuous at x.

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R}
 ightarrow [0,1]$ is non-decreasing and right continuous.
- At point of discontinuity x we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
 - 3. $F_X(x-) \neq F_X(x+)$.
 - 4. $F_X(x)$ could be set to either of the two. Which one?
- Right continuity mandates that at point of discontinuity, we have $F_X(x) = F_X(x+)$.
- ▶ By default, $F_X(x) = F_X(x+) = F_X(x-)$ if $F_X(x)$ is continuous at x.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

 $F_X:\mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

Proof

ightharpoonup Consider a < b where a and b are arbitrary.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

Proof

Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.

 $F_X:\mathbb{R} o [0,1]$ is non-decreasing and right continuous.

Proof

- Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.
- ▶ Define $A := \{\omega \in \Omega : X(\omega) \leq a\}, B := \{\omega \in \Omega : X(\omega) \leq b\}.$

 $F_X:\mathbb{R} o [0,1]$ is non-decreasing and right continuous.

Proof

- Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.
- ▶ Define $A := \{\omega \in \Omega : X(\omega) \leq a\}, B := \{\omega \in \Omega : X(\omega) \leq b\}.$
- ▶ Easy to see that $A \subseteq B$ and hence $\mathbb{P}(A) \leq \mathbb{P}(B)$.

 $F_X:\mathbb{R} o [0,1]$ is non-decreasing and right continuous.

Proof

- Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.
- ▶ Define $A := \{\omega \in \Omega : X(\omega) \leq a\}, B := \{\omega \in \Omega : X(\omega) \leq b\}.$
- ▶ Easy to see that $A \subseteq B$ and hence $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $ightharpoonup F_X(a) = P_X((-\infty, a]) = \mathbb{P}(A)$

 $F_X:\mathbb{R} o [0,1]$ is non-decreasing and right continuous.

Proof

- Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.
- ▶ Define $A := \{\omega \in \Omega : X(\omega) \le a\}, B := \{\omega \in \Omega : X(\omega) \le b\}.$
- ▶ Easy to see that $A \subseteq B$ and hence $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $ightharpoonup F_X(a) = P_X((-\infty,a]) = \mathbb{P}(A) \leq \mathbb{P}(B) = F_X(b).$

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

Proof

- Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.
- ▶ Define $A := \{\omega \in \Omega : X(\omega) \le a\}, B := \{\omega \in \Omega : X(\omega) \le b\}.$
- ▶ Easy to see that $A \subseteq B$ and hence $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $ightharpoonup F_X(a) = P_X((-\infty, a]) = \mathbb{P}(A) \leq \mathbb{P}(B) = F_X(b).$
- This proves the non-decreasing part.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

Proof for right-continuity

▶ We want to prove that $F_X(x) = F_X(x+)$.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- **Consider** a sequence of numbers $\{x_n\}$ decreasing to x.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ► Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ▶ Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.
- From continuity of probability,

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ► Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.
- From continuity of probability, $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.

 $F_X:\mathbb{R} o [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ► Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.
- From continuity of probability, $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.
- This implies $\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$.

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ► Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.
- From continuity of probability, $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.
- This implies $\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$.
- You cannot prove the other way by considering $x_n \uparrow x$

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x.In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ► Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.
- From continuity of probability, $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.
- This implies $\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$.
- You cannot prove the other way by considering $x_n \uparrow x$ because $\bigcup_n (-\infty, x_n] = (-\infty, x)$ and $P_X(-\infty, x) \neq F_X(x)$.

If Ω' is countable, then the random variable is called a discrete random variable.

- If Ω' is countable, then the random variable is called a discrete random variable.
- ▶ In this case it is convenient to use \mathcal{F}' as power-set.

- If Ω' is countable, then the random variable is called a discrete random variable.
- In this case it is convenient to use \mathcal{F}' as power-set.
- ► All the probability measure is concentrated at discrete points.

- If Ω' is countable, then the random variable is called a discrete random variable.
- In this case it is convenient to use \mathcal{F}' as power-set.
- ► All the probability measure is concentrated at discrete points.
- If $\Omega' \subseteq \mathbb{R}$ or uncountable, then the random variable is a continuous random variable.

- If Ω' is countable, then the random variable is called a discrete random variable.
- ▶ In this case it is convenient to use \mathcal{F}' as power-set.
- ► All the probability measure is concentrated at discrete points.
- If $\Omega' \subseteq \mathbb{R}$ or uncountable, then the random variable is a continuous random variable.
- ▶ In this case, $\mathcal{F}' = \mathcal{B}(\mathbb{R})$.

- If Ω' is countable, then the random variable is called a discrete random variable.
- ▶ In this case it is convenient to use \mathcal{F}' as power-set.
- ► All the probability measure is concentrated at discrete points.
- ▶ If $\Omega' \subseteq \mathbb{R}$ or uncountable, then the random variable is a continuous random variable.
- ▶ In this case, $\mathcal{F}' = \mathcal{B}(\mathbb{R})$.
- Intuitively, in a continuous random variable, the unit probability measure is spread continuously (like spreading a fluid) over the range of the random variable.

 \triangleright Pick a number uniformly from [a, b].

- \triangleright Pick a number uniformly from [a, b].
- ► Time interval between successive customers entering DMart.

- \triangleright Pick a number uniformly from [a, b].
- ► Time interval between successive customers entering DMart.
- Travel time from office to home.

- \triangleright Pick a number uniformly from [a, b].
- ► Time interval between successive customers entering DMart.
- Travel time from office to home.
- Level of water in a dam or pending workload on a server.

A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.

A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.

$$ightharpoonup P_X(B) = \int_{u \in B} f_X(u) du.$$

A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.

$$P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$$

- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- $P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(a \le X \le b) = \int_a^b f_X(u) du.$

- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- $P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(a \le X \le b) = \int_a^b f_X(u) du$. (Area under the curve)

- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- $P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(a \le X \le b) = \int_a^b f_X(u) du$. (Area under the curve)
- $P_X(a \le X \le b) = P_X(a < X < b) = P_X(a \le X < b) = P_X(a < X \le b)$

- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- $P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(a \le X \le b) = \int_a^b f_X(u) du$. (Area under the curve)
- $P_X(a \le X \le b) = P_X(a < X < b) = P_X(a \le X < b) = P_X(a < X \le b)$
- $ightharpoonup P_X(X=a)=0.$ (no mass at any point)

- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- $P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(a \le X \le b) = \int_a^b f_X(u) du$. (Area under the curve)
- $P_X(a \le X \le b) = P_X(a < X < b) = P_X(a \le X < b) = P_X(a < X \le b)$
- $ightharpoonup P_X(X=a)=0.$ (no mass at any point)

$$\frac{dF_X(x)}{dx} = f_X(x) \text{ or } P_X(x < X \le x + h) \simeq f_X(x)h.$$

Mean, Variance, Moments

Mean, Variance, Moments

$$ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$$

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- $ightharpoonup E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$

$$ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$$

- $ightharpoonup E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- \triangleright $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- \triangleright $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.
- ► For Y = aX + b, E[Y] = aE[X] + b.

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- \triangleright $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.
- ► For Y = aX + b, E[Y] = aE[X] + b.
- For Y = aX + b, $F_Y(y) = F_X(\frac{y-b}{a})$

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- \triangleright $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.
- ► For Y = aX + b, E[Y] = aE[X] + b.
- For Y = aX + b, $F_Y(y) = F_X(\frac{y-b}{a})$ when $a \ge 0$.

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- \triangleright $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.
- ► For Y = aX + b, E[Y] = aE[X] + b.
- For Y = aX + b, $F_Y(y) = F_X(\frac{y-b}{a})$ when $a \ge 0$.
- ▶ For Y = aX + b and a < 0, $F_Y(y) = 1 F_X(\frac{y b}{a})$.

Standard Examples

This is a real valued r.v.

This is a real valued r.v.

lts pdf $f_X(x) = \frac{1}{b-a}$ for all $x \in [a, b]$.

This is a real valued r.v.

lts pdf $f_X(x) = \frac{1}{b-a}$ for all $x \in [a, b]$.

► Its CDF is given by

- This is a real valued r.v.
- lts pdf $f_X(x) = \frac{1}{b-a}$ for all $x \in [a, b]$.

Its CDF is given by
$$F_X(x) = \begin{cases} 0 \text{ for } x < a. \\ \frac{x-a}{b-a} \text{ for } x \in [a,b] \\ 1 \text{ otherwise.} \end{cases}$$

- This is a real valued r.v.
- lts pdf $f_X(x) = \frac{1}{b-a}$ for all $x \in [a, b]$.
- Its CDF is given by $F_X(x) = \begin{cases} 0 \text{ for } x < a. \\ \frac{x-a}{b-a} \text{ for } x \in [a,b] \\ 1 \text{ otherwise.} \end{cases}$
- ► HW: Verify $E[X] = \frac{a+b}{2}$ and $Var(X) = \frac{(b-a)^2}{12}$

U[a, b]

ightharpoonup This is a non-negative r.v. with parameter λ .

ightharpoonup This is a non-negative r.v. with parameter λ .

lts pdf $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.

ightharpoonup This is a non-negative r.v. with parameter λ .

- lts pdf $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.
- ► Its CDF is given by

ightharpoonup This is a non-negative r.v. with parameter λ .

lts pdf $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.

▶ Its CDF is given by $F_X(x) = 1 - e^{-\lambda x}$ for $x \ge 0$.

- ightharpoonup This is a non-negative r.v. with parameter λ .
- lts pdf $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.
- ▶ Its CDF is given by $F_X(x) = 1 e^{-\lambda x}$ for $x \ge 0$.
- $ightharpoonup E[X] = \frac{1}{\lambda} \text{ and } Var(X) = \frac{1}{\lambda^2}$

- ightharpoonup This is a non-negative r.v. with parameter λ .
- lts pdf $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.
- ▶ Its CDF is given by $F_X(x) = 1 e^{-\lambda x}$ for $x \ge 0$.
- $ightharpoonup E[X] = \frac{1}{\lambda} \text{ and } Var(X) = \frac{1}{\lambda^2}$
- $ightharpoonup E[X^n] = \frac{n!}{\lambda^n}$

$Exp(\lambda)$

Building blocks for Continuous time Markov Chains.

- Building blocks for Continuous time Markov Chains.
- Demonstrate memory-less property (to be seen formally soon).

- Building blocks for Continuous time Markov Chains.
- Demonstrate memory-less property (to be seen formally soon).
- P(X > a + h|X > a) =

- Building blocks for Continuous time Markov Chains.
- Demonstrate memory-less property (to be seen formally soon).

$$P(X > a + h|X > a) = \frac{e^{-\lambda(a+h)}}{e^{-\lambda(a)}} = e^{-\lambda(h)} = P(X > h).$$

- Building blocks for Continuous time Markov Chains.
- Demonstrate memory-less property (to be seen formally soon).

$$P(X > a + h|X > a) = \frac{e^{-\lambda(a+h)}}{e^{-\lambda(a)}} = e^{-\lambda(h)} = P(X > h).$$

Used extensively in Queueing theory to model inter-arrival time and service time of jobs.