UNIVERSITI TUNKU ABDUL RAHMAN

ACADEMIC YEAR 2015/2016

SEPTEMBER EXAMINATION

UDPS1203 DIFFERENTIAL EQUATIONS

WEDNESDAY, 30 SEPTEMBER 2015 TIME: 2.00 PM – 4.00 PM (2 HOURS)

BACHELOR OF SCIENCE (HONS) STATISTICAL COMPUTING AND OPERATIONS RESEARCH

Instructions to Candidates:

SECTION A: Answer **ALL** questions.

SECTION B: Answer any **ONE** (1) out of **TWO** (2) questions.

For Section B, if more than one question is answered, then only the first question (or the first question appear in the answer booklet) will be marked.

Marking Scheme

UDPS1203 DIFFERENTIAL EQUATIONS

Solution:

Q1.

(a) (i)
$$T = M + Ae^{-kt}$$
 (ii)
$$70.77^{\circ}$$

(b)
$$y(t) = -e^{-t} + 3$$

(c)
$$\begin{cases} v_1' \cos t + v_2' \sin t = 0 & (1) \\ -v_1' \sin t + v_2' \cos t = f(t) & (2) \end{cases}$$

$$(1) \sin t + (2) \cos t$$

$$v_2' = f(t) \cos t, v_1' = -v_2' \frac{\sin t}{\cos t} = -f(t) \sin t$$

$$v_1(t) = -\int_0^t f(s) \sin s ds, v_2(t) = \int_0^t f(s) \cos s ds$$

$$y_p(t) = y_2(t)v_2(t) + y_1(t)v_1(t)$$

$$= \sin t \int_0^t f(s) \cos s ds - \cos t \int_0^t f(s) \sin s ds$$

$$= \int_0^t f(s) \sin t \cos s ds - \int_0^t f(s) \cos t \sin s ds$$

$$= \int_0^t f(s) (\sin t \cos s - \cos t \sin t) ds$$

$$= \int_0^t f(s) \sin(t - s) ds$$

UDPS1203 DIFFERENTIAL EQUATIONS

Q2.

(a) (i)
$$y^{2} \frac{dy}{dx} + 2y^{3} = x$$
$$v' = 3y^{2} y'$$
$$\frac{1}{3} \frac{dv}{dx} + 2v = x$$
$$\frac{dv}{dx} + 6v = 3x$$

(ii)
$$y = \sqrt[3]{\frac{x}{2} - \frac{1}{12} + ce^{-6x}}$$

(b)
$$\cos 3t + \frac{1}{3} \int_{0}^{t} \sin [3(t - v)g(v)] dv$$

$$y_p = x\cos x + x^2\sin x$$

Q3.

(a) Therefore, the general solution is
$$\mathbf{x} = c_1 \left(\frac{\cos 3t}{5} \cos 3t + \frac{3}{5} \sin 3t \right) + c_2 \left(\frac{\sin 3t}{5} \sin 3t - \frac{3}{5} \cos 3t \right)$$

(b) Thus, x = 0 is a regular singular point.

Thus, x = 5 is an irregular singular point.

(c) Therefore the general solution is a power series of

$$= a_0 \left(1 + \frac{1}{6}x^3 + \dots \right) + a_1 \left(x + \frac{1}{12}x^4 + \dots \right) + \left(\frac{3}{2}x^2 + \frac{1}{2}x^3 + \frac{1}{4}x^4 + \frac{9}{40}x^5 + \dots \right)$$

UDPS1203 DIFFERENTIAL EQUATIONS

Q4.

- (a) Therefore, the general solution is $\therefore y = [c_1 + c_2 \ln|x+3|](x+3)^5$
- (b) (i) $\therefore \rho_{\min} = 3$.
 - (ii) $\therefore \rho_{\min} = \sqrt{13}$.

(c)
$$= c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} e^{-5t} + \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} t e^{2t} - \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix} e^{2t} + \begin{pmatrix} \frac{1}{25} \\ \frac{9}{50} \end{pmatrix} \sin 5t + \begin{pmatrix} -\frac{1}{25} \\ \frac{1}{50} \end{pmatrix} \cos 5t$$

Q5.

(a)
$$2e^{-t} + te^{-t} + \left[\frac{1}{2} - e^{-3}(t - 4e^3)e^{-t} + \frac{e^6 - 2e^3}{2}e^{-2t}\right]u(t - 3)$$

(b)
$$= a_0 \left((x-1) + \frac{1}{2} (x-1)^2 + \frac{1}{6} (x-1)^3 + \frac{1}{72} (x-1)^4 + \dots \right)$$