Diagnostic: un raisonnement logique

Yannick Pencolé

CNRS-LAAS, Université de Toulouse, FRANCE

11 Juin 2012

Formation EDSYS: module diagnostic (20h)

Objectifs de cette formation :

- Introduction la notion de raisonnement diagnostic
- Fournir un spectre large des outils et méthodes pour le diagnostic

Intervenants:

- Marie-Veronique Lelann (Professeur INSA, groupe DISCO, LAAS)
- Louise Travé-Massuyès (Directrice de recherche CNRS, groupe DISCO, LAAS)
- Xavier Pucel (Ingénieur recherche, DCSD, ONERA)
- Yannick Pencolé (Chargé de Recherche CNRS, DISCO, LAAS)

Organisation du module

- Lundi 11 : 9h30-12h30 Diagnostic raisonnement logique I (Yannick Pencolé)
- Lundi 11: 14h00-15h00: Diagnostic raisonnement logique II (Yannick Pencolé)
- Lundi 11 : 15h00-17h00 : Diagnostic et Apprentissage (Marie-Veronique Lelan)
- Mardi 12 : 9h30-12h30 : Diagnostic pour les systèmes continus (Yannick Pencolé)
- Mardi 12: 14h00-17h00: Diagnostic pour les systèmes à événements discrets (Yannick Pencolé)
- Mercredi 13 : 8h30-12h30 : Diagnosticabilité (Xavier Pucel)
- Mercredi 13: 14h00-18h00: Vers l'unification des théories en diagnostic (Louise Travé-Massuyès)

Qu'est-ce que le diagnostic?

Demandons à wikipedia :

 « Le diagnostic est le raisonnement menant à l'identification de la cause (l'origine) d'une défaillance, d'un problème ou d'une maladie, ou tout simplement à la détermination d'une espèce biologique par rapport à une autre (taxinomie), à partir des caractères ou symptômes relevés par des observations, des contrôles ou des tests. »

Demandons à google.fr les premiers liens :

- diagnostic médical (maladies, symptômes, recherche de cause)
- diagnostic immobilier (détermination de la classe d'un appartement, isolé/pas isolé, salubre/insalubre)

Un peu d'étymologie

Le mot diagnostic vient du Grec ancien διά-γνωση

- διά préfixe de séparation
- γνωση connaissance

Étymologiquement, diagnostic \equiv discernement.

Séparer le bien du mal, le faux du vrai, le normal de l'anormal....

Au final, le diagnostic c'est..

- C'est un raisonnement
- Nécessite des observations sur le système
- Nécessite de définir des objectifs
 - Recherche de causes (maladies, problèmes, pannes, fautes)
 - 2 Détermination de propriétés (estimation d'états sûrs, critiques, anormaux

- Le diagnostic n'est utile que si l'on s'en sert
 - pour des réparations/restructurations (recherche de la source des défaillances, des problèmes)
 - pour des décisions (estimation de la véracité d'une propriété sur l'état actuel)

3 types de raisonnement : déduction

Syllogisme d'Aristote:

- « Socrate est un homme »
- « Tout homme est mortel »
- DONC « Socrate est mortel »

C'est le principe bien connu de la déduction, le fameux modus ponens.

Élémentaire mon cher Watson!

Sherlock Holmes entra dans la chambre, vit Socrate allongé sur le lit, mort, puis il dit :

« Socrate est mortel »

De part son passé, son expérience, Sherlock Holmes savait :

« Tout homme est mortel »

Alors le docteur Watson lui demanda :

« quelles sont vos conclusions, Holmes? »

Sherlock répliqua:

« Élementaire mon cher Watson, il est mort parce que c'est un homme. »

Holmes est-il le roi de la déduction?

Et bien non! mon cher Watson!

Holmes est le roi de l'abduction.

- « Tout homme est mortel »
- « Socrate est mortel »
- IL EST POSSIBLE QUE « Socrate est un homme »

La conclusion de Holmes est ... une hypothèse. « Socrate est un rat » est une hypothèse toute aussi valide sachant que « Tout rat est mortel ».

Et le dernier type de raisonnement : induction, apprentissage

- « Socrate est un homme »
- « Socrate est mortel »
- EN GENERALISANT : « Tout homme est mortel »

Diagnostic: raisonnement abductif

Étant donné,

- un système (et la connaissance que l'on en a au travers de modèle)
- 2 un ensemble d'observations (des mesures, des alarmes, des indices)

Le diagnostic consiste à

- établir une ou plusieurs hypothèses (candidats) sur les propriétés du système
 - propriétés type : fonctionnement normal/anormal, fonctionnement critique/non critique....
- telle que chaque hypothèse explique les observations
 - « Socrate est un homme » est une hypothèse
 - elle explique l'observation « Socrate est mortel » en s'appuyant sur le modèle « Tout homme est mortel ».

Exemple

Mélanges, 3 reservoirs, 3 vannes, 2 entonnoirs.

COMPS= $\{V_1, V_2, V_3\}$ (position : ouvert, fermé).

Première expérience :

OBS= O_1 , $\bar{O_2}$ (O_1 coule, O_2 ne coule pas).

DIAGNOSTIC : V_1 ouverte, V_2 fermée, V_3 fermée. Seule configuration possible \Rightarrow diagnostic non ambigu.

Deuxième expérience :

OBS= O_1 , O_2 (O_1 coule, O_2 coule).

DIAGNOSTIC1 : V_1 ouverte, V_2 fermée, V_3 ouverte.

DIAGNOSTIC2 : V_1 fermée, V_2 ouverte, V_3 fermée. DIAGNOSTIC3 : V_1 ouverte, V_2 ouverte, V_3 fermée.

DIAGNOSTIC4 : V_1 fermée, V_2 ouverte, V_3 ouverte.

DIAGNOSTIC5 : V_1 ouverte, V_2 ouverte, V_3 ouverte.

Situation mal (non complètement) identifiée, diagnostic ambigu.

Et Dr House alors?

• Dr House : le Sherlock Holmes de la médecine, diagnosticien

Modèle d'un épisode

- Un patient est malade → premiers symptômes
- Réunion de Dr House et de ses ouailles
 - Listing des maladies POSSIBLES (candidats) sur le tableau.
- $\begin{tabular}{ll} \textbf{§} Suite de tests/traitements/enquêtes (diagnostic actif)} \rightarrow \\ nouvelles observations \\ \end{tabular}$
- Or House raye les hypothèses invalidées au cours de l'épisode.
- Fin à l'américaine : il en reste toujours qu'une!

Très beaux exemples de diagnostic (maladies multiples, masquage de symptômes)

Historique des travaux en automatisation du diagnostic

- années 70 : approches heuristiques (système expert)
 - Base de connaissance = ensemble de règles abductives
 - Si fievre > 38 et mal de cou alors grippe. etc.
 - Diagnostic : détérminer les règles à instancier en fonction des observations
- années 80 : diagnostic à base de modèles (systèmes statiques)
- années 90 : diagnostic à base de modèles (systèmes dynamiques continus/discrets)
- années 00 : diagnostic à base de modèles (systèmes hybrides)

Deux communautés scientifiques différentes mais qui convergent l'une vers l'autre :

- communauté Intelligence Artificielle (aspect raisonnement)
- communauté Automatique (aspect détection, estimation)

Concept de système et de modèle

- Qu'est-ce qu'un système?
 - C'est une réalité
 - Assemblage de composants

An aggregation or assemblage of things so combined by nature or man as to form an integral or complex whole » [Encyclopedia Americana]

- Et un modèle?
 - Une représentation d'un système
 - Modèle adapté à la tâche à effectuer :
 - o compréhension, simulation, planification, commande, diagnostic, suivi
- Distinction entre système et modèle : essentielle (en général mais plus particulièrement en diagnostic)

Concepts de défaut/panne/faute/erreur/défaillance

- Un système réalise une fonction
 - Si la fonction n'est pas réalisée, le système est défaillant
 - Perte de fonction
- La défaillance est due à des erreurs dans le comportement du système
- Les erreurs sont dues à des fautes/pannes/défauts qui surviennent sur le système.

Panne permanente

Definition

Une panne est permanente s'il n'existe aucun moyen de la réparer ou aucune raison qu'elle disparaisse pendant la période de diagnostic.

Exemple

Diagnostic en-ligne d'une automobile : une panne moteur est permanente. Cette panne ne peut pas disparaître sans une intervention extérieure (garage)

Panne intermittente

Definition

Une panne est intermittente si elle peut apparaître/disparaître pendant la période de diagnostic à plusieurs reprises.

Exemple

Diagnostic en-ligne d'une automobile : un mauvais contact filaire entre calculateurs peut apparaître et disparaître (vibration, humidité) au cours d'un même trajet.

Concept du diagnostic à base de modèle

Diagnostic à base de modèle =

- 1) Confronter les observations au modèle (cohérence)
- 2) "Remonter" à la cause (abduction, modèle de panne)

Concept du diagnostic à base de modèle (2)

- La majeure partie des méthodes de diagnostic s'appuient sur un modèle comportemental (dynamique, statique):
 - équations différentielles,
 - système à événements discrets,
 - équations algébriques,
 - équations logiques.
- On trouve parfois un modèle structurel décrivant des liens entre les composants (par exemple, alimentation électrique commune).
- On en tire alors des règles de fonctionnement normal et en présence de faute.

Objectif de diagnostic de pannes

Fonction des connaissances, le diagnostic a plusieurs sous-objectifs :

- Détection : détecter la présence d'une panne (sans identifier ce qu'elle est)
- Localisation : identifier le composant où la panne s'est produite
- 3 Identification : identifier la nature, le type de la panne
- Propagation : déterminer toutes les conséquences de la panne (relation cause-effet)

Logic? But what is it?

Principle

Logics are formal languages for representing information such that conclusions can be drawn. To define a logic, we need:

- syntax : how a sentence of the logic looks like?
- semantic : what is the meaning of the sentence?
 - Given a world, is the sentence true or false?

Example

The language of arithmetic Syntax:

$$x+2 \ge y$$
 is a sentence;

$$x2+y>y$$
 is not a sentence

Semantic:

$$x+2 \ge y$$
 is true in a world where $x=7, y=1$

$$x+2 \ge y$$
 is false in a world where $x=0, y=6$

Entailment

Entailment means that one sentence (α) follows from other sentences (KB) and is denoted:

$$KB \models \alpha$$

We say that the Knowledge Base KB entails α if and only if α is true in all worlds where KB is true. Entailment is a relationship between sentences (i.e. syntax) that is based on semantics.

Example

Knowledge Base = { "The car is blue" "The bicycle is green or yellow" } KB entails sentences α like :

- "The car is blue"
- true
- "The car is blue or the bicycle is yellow"

The sentence "The car is blue and the bicycle is yellow" is not entailed by KB.

World in Logic = Model

Definition

We say m is a model of a sentence α if α is true in the world m. We denote by $M(\alpha)$ the set of models

Property

KB entails α if and only if $M(KB) \subseteq M(\alpha)$.

Example

Inference

Definition

Inference : A sentence β can be inferred from another sentence α by some inference algorithm i. This is denoted :

$$\alpha \vdash_i \beta$$

Definition

Soundness: An inference algorithm is sound if it produces entailed sentences

Definition

Completeness: An inference algorithm is complete if it can derive all the sentences which it entails.

Well-known logics

- Propositional logic
- First-order logic
- Default logic
- Oircumscription
- Temporal logic
- Modal logic
- **0**.

Every logic has its Pros and Cons (expressivity, soundness and completeness of inference algorithm)

Logical equivalence

Definition

Two sentences α , β are logically equivalent IF AND ONLY IF they are true in the same models. α entails β and vice-versa.

Logical equivalent sentences

```
\begin{array}{lll} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) \text{ associativity of } \vee \\ \neg(\neg \alpha) & \equiv & \alpha \text{ double-negation elimination} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) \text{ contraposition} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \alpha \vee \beta) \text{ implication elimination} \\ (\alpha \Rightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \text{ biconditional elimination} \\ \neg(\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) \text{ De Morgan} \\ \neg(\alpha \vee \beta) & \equiv & (\neg \alpha \wedge \neg \beta) \text{ De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) & \equiv & ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \text{ distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) & \equiv & ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \text{ distributivity of } \vee \text{ over } \wedge \end{array}
```

Validity and satisfiability

Definition

A sentence is valid if it is true in ALL models : $a \lor \neg a$, $a \Rightarrow a$, $(a \land (a \Rightarrow b)) \Rightarrow b$

KB entails α (*KB* $\vDash \alpha$) iff the sentence *KB* $\Rightarrow \alpha$ is valid. Validity is then connected to inference.

Definition

- A sentence is satisfiable if it is true in SOME models. A valid sentence is satisfiable, but a satisfiable sentence may be not valid.
- A sentence is unsatisfiable if it is true in NO models :

$$a \wedge \neg a$$
, $(a \wedge b) \Leftrightarrow (\neg a \wedge c)$

Satisfiability and inference

KB entails α (*KB* $\models \alpha$) iff the sentence *KB* $\land \neg \alpha$ is unsatisfiable.

Inference rules : examples

Example

Modus Ponens :

 $\frac{a,a\Rightarrow b}{b}$

And-elimination:

 $\frac{a \wedge b}{a}$

Factoring:

<u>a∨a</u> a

Logical equivalences:

 $\frac{\neg a \lor \neg b}{\neg (a \land b)}$ $a \Leftrightarrow b$

 $\overline{a \Rightarrow b \land b \Rightarrow a}$

Resolution algorithm

Definition

Proof by contradiction : given KB, to prove α , we prove that $KB \land \neg \alpha$ is not satisfiable.

Example

Symbols:

- Und: "The students have understood this lecture"
- Gt: "I am a good teacher"
- Party: "The students went to a party last night"

Knowledge base:

$$KB = (\neg Und \Leftrightarrow (\neg Gt \lor Party)) \land Und$$

Query to prove: I am a good teacher

$$\alpha = Gt$$

First-order logic

Whereas propositional logic assumes world contains *facts*, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, colors, cricket games, centuries ... and me, and cars!!
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ... and blue!!
- Functions: father of, third inning of, one more than, end of ... and friend of, sister of!!

Syntax of First-Order Logic

Basic elements

- Oconstants: KingJohn, 2, ANU, Yannick ...
- 2 Predicate: Sister, > · · ·
- Functions: Sqrt, FriendOf ···
- Variables : x, y, a, $b \cdots$
- **5** Connectives: $\vee, \wedge, \neg, \Rightarrow, \Leftrightarrow$
- Equality : =
- Quantifiers: ∀∃

Syntax of First-Order Logic

Term

A term represents an object in FOL. Its syntax is :

- a constant, or
- a variable, or
- a function of terms function(term₁, · · · , term_n)

Atomic sentence

An atomic sentence represents an elementary relation between terms. Its syntax is :

- a predicate predicate(term₁, · · · , term_n)
- an equality of terms term₁ = term₂

Example

Brother(KingJohn, RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) carOf(friendOf(oneSisterOf(Yannick))) = colorOf(Ocean)

Syntax of First-Order Logic

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg \textit{S}, \quad \textit{S}_{1} \land \textit{S}_{2}, \quad \textit{S}_{1} \lor \textit{S}_{2}, \quad \textit{S}_{1} \Rightarrow \textit{S}_{2}, \quad \textit{S}_{1} \Leftrightarrow \textit{S}_{2}$$

Example

 $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

$$>(1,2)\vee \leq (1,2)$$

$$>(1,2) \land \neg > (1,2)$$

 $Sister(Marie, Yannick) \Rightarrow CarColor(FriendOf(Marie), blue)$

Truth in first-order logic

Semantics

Sentences are true with respect to a model and an interpretation.

Model

Model contains objects (domain elements) and relations among them.

Interpretation

Interpretation specifies referents for

- ullet constant symbols o objects
- predicate symbols → relations
- function symbols → functional relations

An atomic sentence $predicate(term_1,...,term_n)$ is true iff the objects referred to by $term_1,...,term_n$ are in the relation referred to by predicate.

Fun with sentences

Example

Brothers are siblings

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

"Sibling" is symmetric

$$\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$$

"One's mother is one's female parent"

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$$

"A first cousin is a child of a parent's sibling"

$$\forall x, y \; \textit{FirstCousin}(x, y) \Leftrightarrow \exists p, ps \; \textit{Parent}(p, x) \land \textit{Sibling}(ps, p) \land \textit{Parent}(ps, y)$$

Equality

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object.

Example

- 1 = 2 is satisfiable (if the symbols 1 and 2 refer to the same object in the interpretation)
- 2 = 2 is valid

Example

Definition of Sibling thanks to Parent:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow (\neg (x = y) \land \exists m, f \neg (m = f) \land ($$

 $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)$

Summary

Summary

- Knowledge representation language :
 - declarative, compositional, expressive, context-independent, unambiguous
- Model: set of objects, functions and their relation
- Knowledge-base in first-order logic
 - careful process
 - analyzing the domain (objects, functions, relations),
 - choosing a vocabulary (interpretation)
 - oncoding the axioms (what is known in KB) to support the desired inferences

Diagnostic à base de modèle : un raisonnement logique

Rappel sur le principe de base du diagnostic à base de modèle

Model-based diagnosis

Représentation des connaissances

Definition

Le modèle d'un système est une paire (DS, COMPS) :

- COMPS ensemble fini de constante, une constante = un composant
- SD ensemble de phrases logiques du 1er ordre
 - ► Modèle comportemental (comment un composant marche ?)
 - Modèle structurel (comment un composant interagit ?)

Definition

Le modèle d'un système observé is un modèle (*DS*, *COMPS*) auquel on ajoute *OBS* :

- OBS ensemble de faits logiques.
- · Chaque fait logique est une observation

Exemple

Exemple

Polybox

Représentation de la connaissance : symboles

Example

 $COMPS = \{a1, a2, m1, m3, m3\}$

DS prédicats :

- Add additionneur
- · Mult multiplieur
- In1 entrée 1
- In2 entrée 2
- Out sortie
- Ab anormal
- Sum somme
- Prod produit

Représentation de la connaissance : modèle comportemental

Exemple

Toutes les variables sont universellement quantifiées

Comportement de l'additionneur :

- $Add(x) \land \neg Ab(x) \land In1(x,u) \land In2(x,v) \land Sum(u,v,w) \Rightarrow Out(x,w)$
- $Add(x) \land \neg Ab(x) \land In1(x,u) \land Out(x,w) \land Sum(u,v,w) \Rightarrow In2(x,v)$
- $Add(x) \land \neg Ab(x) \land Out(x, w) \land In1(x, u) \land Sum(u, v, w) \Rightarrow In1(x, u)$

Comportement du multiplieur :

- $Mult(x) \land \neg Ab(x) \land In1(x,u) \land In2(x,v) \land Prod(u,v,w) \Rightarrow Out(x,w)$
- $Mult(x) \land \neg Ab(x) \land In1(x,u) \land Out(x,w) \land Prod(u,v,w) \Rightarrow In2(x,v)$
- $Mult(x) \land \neg Ab(x) \land Out(x, w) \land In1(x, u) \land Prod(u, v, w) \Rightarrow In1(x, u)$

Représentation de la connaissance : modèle structurel

Exemple

Topologie, Modèle Structurel:

 $COMPS = \{a1, a2, m1, m3, m3\}$

Add(a1); Add(a2); Mult(m1); Mult(m2); Mult(m3)

Connexion : utilisation de l'égalité

- $Out(m1, u) \wedge In1(a1, v) \Rightarrow u = v$
- $Out(m2, u) \land In2(a1, v) \Rightarrow u = v$
- $Out(m2, u) \land In1(a1, v) \Rightarrow u = v$
- $Out(m3, u) \land In1(a2, v) \Rightarrow u = v$
- $ln2(m1, u) \land ln1(m3, v) \Rightarrow u = v$

Représentation de la connaissance : observations

Exemple

Dans cet exemple, seules les entrées et les sorties du circuit sont observables.

- In1(m1,3): "L'entrée 1 du multiplieur 1 est 3"
- In2(m1,2)
- In1(m2,2)
- In2(m2,3)
- In1(m3,2)
- In2(m3,3)
- Out(a1,10)
- Out(a2,12)

Représentation du diagnostic

Définition

Un état du système DS, COMPS est une phrase logique Φ_{Δ} telle que $\Delta \subseteq COMP$ et :

$$\bigwedge_{c \in \Delta} Ab(c) \wedge \bigwedge_{c \not\in \Delta} \neg Ab(c)$$

Tout composant de Δ est déclaré anormal, fautif, en panne.

Exemple

- ② $\Delta = \emptyset$; $\Phi_{\Delta} = \neg Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$ état dans lequel tout est normal
- ③ $\Delta = \{a1, a2, m1, m2, m3\}$; $\Phi_{\Delta} = Ab(a1) \land Ab(a2) \land Ab(m1) \land Ab(m2) \land Ab(m3)$ état dans lequel tout est fautif

Propriétés logiques d'un diagnostic

Définition

Un diagnostic du système SD, COMP est un état Φ_{Δ} tel que :

 SD, OBS, Φ_{Δ} est satisfiable

L'état Φ_{Δ} est possible selon *DS*, *OBS* (cohérence avec le modèle et les observations).

Définition

Un diagnostic existe ssi:

DS. OBS est satisfiable

Sinon, le modèle n'est pas correct or il est incomplet

Détection de fautes

Définition

Comportement normal du système :

 DS, Φ_{\emptyset}

avec $\Phi_{\emptyset} = \bigwedge_{c \in COMP} \neg Ab(c)$.

Définition

Comment détecter que quelque chose ne va pas?

On vérifie la satisfiabilité de :

 $SD \wedge \Phi_\emptyset \wedge OBS$

Exemple

Exemple

Identification/localisation de fautes

Détection = recherche d'incohérence

Identification: quels sont les composants fautifs?

- Identification : on doit retrouver la cohérence!!!
- Principe : trouver au moins un état Φ_{Δ} tel que :

$$SD \wedge \Phi_{\emptyset} \wedge OBS$$

soit satisfiable

 Nombre d'états possibles 2^{|COMPS|}, recherche par énumération impossible.

À la recherche de conflits

 Trouver un moyen plus efficace de déterminer les Δ tel que l'on récupère la cohérence de

$$DS \wedge \Phi_{\Delta} \wedge OBS$$

Rechercher des conflits entre composants

Un constat:

$$DS \wedge \Phi_{\emptyset} \wedge OBS$$
 non satisfiable

équivalent à

$$DS \wedge \bigwedge_{c \in COMPS} \neg Ab(c) \wedge OBS$$
 non satisfiable

équivalent à

$$DS \land OBS \models \bigvee_{c \in COMPS} Ab(c)$$

À la recherche de conflits (2)

Définition

Un conflit C de (DS,COMPS,OBS) est une disjonction de clauses Ab tel que :

$$DS \land OBS \models C$$

Autrement dit.

- un conflit C est tel que : $DS \land OBS \land \neg C$ n'est pas satisfiable
- un conflit C est une hypothèse sur l'état normal/anormal d'un groupe de composants impossible

À la recherche de conflits (3)

- Clause de Ab(c): soit Ab(c), soit $\neg Ab(c)$
- Forme d'un conflit $C: Ab(c_1) \vee \neg Ab(c_2) \vee Ab(c_3)$
- Si C est un conflit alors :

$$DS \land OBS \models C$$

$$DS \wedge OBS \models Ab(c_1) \vee \neg Ab(c_2) \vee Ab(c_3)$$

- Sachant $\neg C \equiv \neg Ab(c_1) \land Ab(c_2) \land \neg Ab(c_3)$
- C exprime :
 - selon DS et OBS, il n'est pas possible que, DANS LA MEME HYPOTHESE, c₁ et c₃ soient normaux et que c₂ soit fautif

Conflit: exemple

Exemple

C1: $DS \land OBS \models Ab(a_1) \lor Ab(m_1) \lor Ab(m_2)$ C2: $DS \land OBS \models \neg Ab(m_2) \lor Ab(m_3) \lor Ab(a_2)$

Type de conflits

Conflit C minimal: toute sous-partie de C n'est pas un conflit

$$C_1: Ab(c_1) \vee \neg Ab(c_2) \vee Ab(c_3)$$
 minimal

$$C_2$$
: $Ab(c_1) \vee \neg Ab(c_2)$ pas un conflit

- Un conflit non minimal impose une contrainte plus restrictive
- Conflit C positif: toute clause de C est positive

$$C_3$$
: $Ab(c_1) \lor Ab(c_2) \lor Ab(c_3)$ positif

Conflit positif ⇒ au moins l'un des composants est fautif

Des conflits aux diagnostics

Théorème

Soit Π l'ensemble des conflits minimaux de (DS, COMPS, OBS), Δ est un diagnostic ssi $\Pi \wedge \Phi_{\Delta}$ est satisfiable.

- Π ensemble maximal de contraintes imposées par DS, OBS
- DS ∧ OBS ⊨ Π
- donc on doit avoir : DS ∧ OBS ∧ Φ_Δ |= Π ∧ Φ_Δ
- Si Π ∧ Φ_Δ n'est pas satisfiable alors DS ∧ OBS ∧ Φ_Δ non-plus
- CQFD

Des conflits minimaux aux diagnostics minimaux

Définition

Un diagnostic Δ est minimal ssi $\forall \Delta' \subset \Delta$, Δ' n'est pas un diagnostic.

Théorème

Si Δ est minimal alors $DS \wedge OBS \wedge \bigwedge_{c \in COMPS \setminus \Delta} \neg Ab(c) \models \bigwedge_{c \in \Delta} Ab(c)$.

Théorème

Soit Π^+ l'ensemble des conflits minimaux positifs de (DS, COMPS, OBS), tout Δ minimal tel que $\Pi^+ \wedge \Phi_\Delta$ est satisfiable est un diagnostic minimal.

On peut donc se restreindre à n'énumérer que les conflits minimaux positifs.

Diagnostics minimaux : exemple

Exemple

 $C1: DS \wedge OBS \models Ab(a_1) \vee Ab(m_1) \vee Ab(m_2)$ conflit positif minimal

$$\Pi^+ = (Ab(a_1) \vee Ab(m_1) \vee Ab(m_2))$$

Diagnostics minimaux possibles : $\{a_1\}$, $\{m_1\}$, $\{m_2\}$

Des diagnostics minimaux à tous les diagnostics

Exemple

- - only a1 and m1 are faulty
- 2 $Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$
 - only a1 is faulty
- - a1, a2, and m1 are faulty
- - everything can be faulty!!!
- **⑤** ..

Ce n'est pas un diagnostic :

- \bullet $\neg Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land Ab(m3)$
 - if m3 is faulty there must another faulty component (m2 at least)

Algorithme de recherche de Reiter : DIAGNOSE

Algorithme

Recherche en largeur d'abord à partir de l'ensemble de composants $\Delta=\emptyset$ sur le treillis des hypothèses. $C(\Delta)\equiv\bigvee_{c\in COMPS\setminus\Delta}Ab(c)$

- Soit Δ $C(\Delta)$ l'ensemble courant
- 2 Test de satisfiabilité (solveur SAT)
 - Est-ce que $C(\Delta)$ est un conflit positif ? $DS \land OBS \land \neg C(\Delta)$ non satisfiable
- ③ Si **oui**, éliminer de la recherche tout Δ' tel que $\Delta' \cap (COMPS \setminus \Delta) = \emptyset$ et poursuivre la recherche
 - Δ' ne peut pas être un diagnostic puisque $C(\Delta)$ est un conflit positif, au moins un composant de $C(\Delta)$ est suspect
- Si non, Δ est un diagnostic minimal

DIAGNOSE algorithm: example

Example

Sets in brackets are R-conflicts.

Three minimal diagnoses : $\{X1\}$; $\{X2,O1\}$; $\{X2,A2\}$

Une autre façon de voir le problème

Propriété

L'intersection entre un diagnostic Δ et tout ensemble de composants en conflit n'est jamais vide.

Theorem

 $\Delta \subseteq COMPS$ est un diagnostic minimal ssi Δ un a ensemble couvrant minimal pour l'ensemble des conflits positifs minimaux (SD, COMP, OBS)

General diagnosis engine (GDE) from de Kleer.

Ensemble couvrant minimal

Définition

Soit $\mathscr{S} = \{S_1, \dots, S_n\}$ un ensemble d'ensembles, H couvre \mathscr{S} ssi

$$H \subseteq \mathscr{S}$$

and

$$\forall S_i \in \mathscr{S}, H \cap S_i \neq \emptyset$$

Exemple

$$\mathscr{S} = \{\{a,b\}, \{c,b\}, \{e,f\}\}\$$
 Quelques ensembles couvrants de \mathscr{S} :

- $H = \{a, b, c, e\}$
- $H = \{a, c, f\}$ (H is minimal)
- Ensemble non couvrant :
 - $H = \{a, b\}$

Algorithme GDE

Algorithme

- Calcul de tous les conflits minimaux positifs
 - Utilisation d'un ATMS (Assumption Truth Maintenance System)
 - Mise à jour des croyances par retractation des croyances et ajout de nouvelles croyances
- Calcul des ensembles couvrants minimaux : ensemble de diagnostics minimaux.

Modèle de faute

Définition

Comportement fautif : connaissance sur le comportement du système en cas de faute.

Example

- "Quand c'est fautif un additionneur renvoie toujours 0"
- Ab(a2) ⇒ Out(a2,0)
- "Les additionneurs en panne se comportent comme des soustracteurs"
- $Add(x) \wedge Ab(x) \wedge In1(x,u) \wedge In2(x,v) \wedge Substract(u,v,w) \Rightarrow Out(x,w)$

Identification de faute : exemple 2

Example

 $DS, \{Ab(a2) \Rightarrow Out(a2,0)\}, OBS$

Explication et diagnostic abductif

Définition

Un diagnostic Φ_{Δ} de (DS,COMP,OBS) est une explication pour une observation donnée $o \in OBS$ ssi

$$SD, \Phi_{\Delta} \vDash o$$

Définition

Un diagnostic abductif Δ est un diagnostic qui explique toutes les observations. $\forall o \in OBS$

$$SD, \Phi_{\Delta} \vDash o$$

Théorème

Tout diagnostic Δ a une partie explicative ($OBS = OBS_{SAT} \wedge OBS_{FXP}$).

$$SD \wedge \Phi_{\Delta} \wedge OBS_{SAT} \vDash OBS_{EXP}$$
.

Explanation: example

Example

Example 1:

All the diagnoses that cover the following sentence (which is not a partial diagnosis) are explanations of Out(a2,12)

$$\neg Ab(m2) \land \neg Ab(m3) \land \neg Ab(a2)$$

for instance:

$$Ab(a1) \land \neg Ab(a2) \land \neg Ab(m1) \land \neg Ab(m2) \land \neg Ab(m3)$$