Documentation

Le package $Preambule.sty^1$ ou $HTMLPreambule.sty^2$ doit être chargé pour pouvoir utiliser les autres qui sont donnés ci-dessous.

Les fichiers .sty doivent être placés dans le même répertoire que le fichier .tex qui est utilisé.

Pour charger un package (par exemple NomDuPackage.sty), il faut utiliser la commande \usepackage{nomdupackage} avant \begin{document}.

En utilisant Preambule.sty ou HTMLPreambule.sty, les packages suivant seront chargés :

- \rightarrow \usepackage[utf8]{inputenc}
- \rightarrow \usepackage[T1]{fontenc}
- \rightarrow \usepackage{amsmath, amsfonts, amssymb}
- $\rightarrow \text{\table } \{ \text{stmaryrd} \}$
- → \usepackage{adjustbox} (pour HTMLPreambule.sty)
- → \usepackage{xcolor} (pour Preambule.sty)

Il est nécessaire que cm-super soit installé (disponible sur CTAN) pour pouvoir utiliser Preambule.sty. Pour ne pas avoir à installer cm-super, il est possible de commenter les lignes \usepackage{sffont} et \renewcommand{\sfdefault}{cmssp} du fichier Preambule.sty en mettant % au début de chacune de ces lignes (numéro 10 et 11).

Lors de l'utilisation de BEAMER (avec une police sans-sérif), il est possible d'utiliser les commandes avec les polices sans-serif, sauf pour les lettres grecques $(\Omega, \phi, \varphi, \ldots)$, la redéfinition du ℓ en mathématiques, les alphabets \mathcal et \mathbb ainsi que les symboles.

Il est possibles de changer les polices de caractères/symboles en important des packages après \usepackage{preambule}. Il peut être nécessaire de placer l'importation avant d'imorter les autres modules décrit ci-dessous.

Il n'est pas possible d'utiliser en simultané le package Dsfont.sty disponible sur CTAN et Dsft.sty décrit ci-dessous. De plus, la commande \1 ne sera pas modifiée si un package définissant \mathbb{1} est importé. Il est alors possible de redéfinir la commande en utilisant \newcommand\1[1]{\mathbb{1}_{#1}} (si Dsft.sty n'est pas importé) ou \renewcommand\1[1]{\mathbb{1}_{#1}}.

Il est possible de redéfinir le ℓ à sa version d'origine (l) avec : \mathcode`l="8000

\mathcode 1- 0000

\begingroup

\makeatletter

^{1.} Pour utiliser avec BEAMER

^{2.} Pour les documents autres que BEAMER

```
\lccode`\~=`\l
\DeclareMathSymbol{\lsb@l}{\mathalpha}{letters}{`l}
\lowercase{\gdef~{\lsb@l}}%
\endgroup
\makeatother
```

Pour utiliser des commandes avec des parenthèses automatiques (comme pour sup), il est possible de faire ³ :

\let\oldsup\sup

 $\mbox{renewcommand{} \sup{[1]{} \oldsup\l#1\r}}$

\l et \r sont définis dans Preambule.sty et HTMLPreambule.sty.

L'ensembles des titres des sections (et sous-sections si le fichier n'est pas déjà dans une section) sont des liens qui pointent vers les fichiers en ligne pour un téléchargement direct.

^{3.} Cette commande est déjà définie dans Usuelles.sty

Table des matières

1	Flashcards.py et Htmlcards.py	1
2	Preambule.sty et HTMLPreambule.sty	3
3	AL.sty	4
4	Analyse.sty	5
5	Arithmetique.sty	6
6	BigOperators.sty	7
7	Complexes.sty	8
8	Dsft.sty	9
9	Equivalents.sty	10
10	Matrices.sty	11
11	Polynomes.sty	14
12	Probas.sty	15
13	Sffont.sty	16
14	Structures.sty	17
15	Tables.sty	18
16	Trigo.sty	19
17	Usuelles.stv	20

1 Flashcards.py et Htmlcards.py

Les fichiers Flashcards.py et Htmlcards.py permettent d'exporter facilement des flashcards en .pdf et .svg (pour affichage dans le navigateur).

Pour pouvoir créer des fiches de révision, il faut mettre un fichier .txt (décrit plus bas) dans un dossier input et mettre les fichiers .sty nécessaires dans un dossier output.

1.1 Flashcards.py

Pour exporter la fiche fiche.txt, il faut soit lancer le fichier python et entrer le nom du fichier (fiche), soit utiliser la commande python Flashcards.py --file=fiche (ou python3), à laquelle on peut rajouter les paramètres optionnels --n=nombre (avec le nombre d'exemplaires), --dest=dossier (avec le dossier où il faut mettre le .pdf produit) et --open=True/False (pour ouvrir le dossize où le .pdf est produit).

1.2 Htmlcards.py

Pour exporter la fiche fiche.txt, il faut soit lancer le fichier python et entrer le nom du fichier (fiche), soit utiliser la commande python Flashcards.py --file=fiche (ou python3), à laquelle on peut rajouter les paramètres optionnels --dest=dossier (avec le dossier où il faut mettre le .pdf produit) et --open=True/False (pour ouvrir le dossize où le .pdf est produit).

1.3 Les fiches .txt

Pour faire des fiches, il faut créer un fichier .txt de la forme

TITRE

Shuffle questions : True/False

Q/R & R/Q : True/False

PACKAGES & COMMANDES SUPPLÉMENTAIRES

QUESTION; ; RÉPONSE

. . .

QUESTION; ; RÉPONSE

Le titre doit être de la forme Thème -- Chapitre ou Chapitre. On peut aussi spécifier un titre racourci pour le nom du fichier avec Titre_raccourci!!ttleTitre classique où le titre raccourci ne peut pas contenir d'espaces ou de caractères spéciaux, et titre classique étant de la forme des seux premiers.

La ligne 2 indique si on peut ou non mettre un ordre aléatoire pour les questions.

La ligne 3 indique si on peut échanger l'ordre des questions et des réponses pour les fiches. Avec cette option à True, il est possible de forcer une question à être avant la réponse en mettant !!fst devant la/les ligne(s) concernée(s).

Les packages et commandes supplémentaires (voir CTAN) doivent être placées sur une seule ligne.

Il faut s'assurer qu'il n'y ait pas de ligne vide à la fin du fichier.

S'il y a une erreur lors de la compilation LATEX, le programme python affichera le message d'erreur affiché par LATEX.

Exemple de fiches: https://github.com/rfoxinter/revisions/tree/main/input.

1.4 Visionner les flashcards en svg

Pour pouvoir visionner les flashcards exportées en svg, il faut disposer d'un serveur web (comme github avec github pages) sur lequel on met le dossier généré par Htmlcards.py (on suppose que l'url est https://example.fr/dossier).

Il faut alors convertir l'url du dossier en base 64 (cette conversion peut se faire sur le site https://www.base64encode.org/, avec la fonction btoa de JavaScript ou avec la fonction Python base64.b64encode). Dans l'exemple, en exécutant le code Python suivant import base64

```
url = "https://example.fr/dossier"
print(base64.b64encode(url.encode()).decode())
on obtient aHROcHM6Ly9leGFtcGx1LmZyL2Rvc3NpZXI=.
```

Il faut alors aller sur le site https://rfoxinter.github.io/revisions/flashcards/en rajoutant à la fin de l'url ?file=nom_du_dossier où le nom du dossier correspond à celui en base 64.

Dans l'exemple, on obtient l'url suivante :

https://rfoxinter.github.io/revisions/flashcards/ ?file=aHROcHM6Ly9leGFtcGx1LmZyL2Rvc3NpZXI=

2 Preambule.sty et HTMLPreambule.sty

Commande	Résultat
\1 4	(
\r ⁵)
\11b ⁶	
\rrb ⁷	
$\oldfrac{a}{b}^{8}$	$\frac{a}{b}$
\frac{a}{b} 9	$\frac{a}{b}$
1 ¹⁰	ℓ
\oldvec{x} 11	\vec{x}
\vec{AB}	\overrightarrow{AB}
\overrightarrow{AB} 12	\overrightarrow{AB}

^{4.} Correspond à la commande usuelle **\left(**

^{5.} Correspond à la commande usuelle \right)

^{6.} Correspond à la commande usuelle \left\llbracket

^{7.} Correspond à la commande usuelle \right\rrbracket

^{8.} Correspond à la commande usuelle \frac

^{9.} Correspond à la commande usuelle \dfrac

^{10.} Correspond à la commande usuelle **\ell**

^{11.} Correspond à la commande usuelle \vec

^{12.} Le résultat est le même qu'avec $\$

3 AL.sty

Le package Matrices.sty sera importé automatiquement avec AL.sty.

Commande	Résultat
\oldvect	Vect
\vect{E}	$\operatorname{Vect}(E)$
\al{E}{}	$\mathcal{L}(E)$
\al{E}{F}	$\mathcal{L}(E,F)$
\oplus ¹³	\oplus
$\verb \matgl{n}{\mathbb{K}} ^{14}$	$\mathrm{GL}_n(\mathbb{K})$
\g1{E}	$\mathrm{GL}(E)$
$\backslash {\tt olddim}^{15}$	dim
\dim{E}	$\dim(E)$
\oldrg	rg
\rg{u}	$\operatorname{rg}(u)$
\oldtr	tr
\tr{u}	$\operatorname{tr}(u)$
\oldmat	Mat
$\verb \almat{u}{\mathcal{B}}{} 16$	$\mathrm{Mat}_{\mathcal{B}}(u)$
$\label{local} $$ \alpha_u^{\infty}(B)}{\mathcal{C}} $$$	$\mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u)$
\lc	
\rc]

Pour récupérer celui de LATEX, il est possible d'utiliser la commande \let\oldoplus\oplus avant \usepackage{al} puis de faire \let\oplus\oldoplus après importation

Comparaison IATEX - stmaryrd avec le plus normal $\oplus \oplus +$

^{13.} Le \oplus utilisé est celui de stmaryrd

^{14.} Le \matgl de AL.sty correspond à la commande \gl de Matrices.sty qui a été renommé

^{15.} Correspond à la commande usuelle \dim

^{16.} Ne pas confondre cette commande avec $\mbox{\mbox{\tt mat}}$ de $\mbox{\tt Matrices.sty}$

4 Analyse.sty

Le package BigOperators.sty sera importé automatiquement avec Analyse.sty.

Commande	Résultat
$\backslash { m oldd} ^{17}$	d
\der{f(x)}	$\frac{\frac{\mathrm{d}}{\mathrm{d}x}(f(x))}{\frac{\mathrm{d}^n}{\mathrm{d}x^n}(f(x))}$
\der[n]{f(x)}	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(f(x))$
\der[][t]{f(t)}	$\frac{\mathrm{d}}{\mathrm{d}t}(f(t))$
\der[n][t]{f(t)}	$\frac{\frac{\mathrm{d}}{\mathrm{d}t}(f(t))}{\frac{\mathrm{d}^n}{\mathrm{d}t^n}(f(t))}$ $\frac{\partial}{\partial x}(f(x))$
\pder{f(x)} 18	$\frac{\partial}{\partial x}(f(x))$
$ackslash$ oldint 19	\int
\int{f}	$\int (f)$
$\int [t] \{f(t)\}$	$\int (f(t)) \mathrm{d}t$
\int[t][{[a,b]}]{f(t)} ²⁰	$\int_{[a,b]} (f(t)) \mathrm{d}t$
\int[t][a][b]{f(t)}	$\int_{a}^{b} (f(t)) \mathrm{d}t$
\int[][a][b]{f'}	$\int_a^b (f')$
\eval[{[a,b]}]{f(t)}	$[f(t)]_{[a,b]}$
\eval[a][b]{f(t)}	$[f(t)]_a^b$
\serie{a_n}	$\sum a_n$

^{17.} d de dérivation

^{18.} On peut appliquer les mêmes arguments optionnels que pour \der

^{19.} Correspond à la commande usuelle \int

^{20.} L'argument [a,b] doit être mis entre accolades pour être traîté correctement par LATEX

5 Arithmetique.sty

Commande	Résultat
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	÷
\div ²²	
\cgr{a}{b}{n}	$a \equiv b \ [n]$
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	φ
ϕ^{24}	φ

^{21.} Correspond à la commande usuelle \div

^{22.} Correspond à la commande usuelle $\mbox{\em mid}$

^{23.} Correspond à la commande usuelle \phi

^{24.} Correspond à la commande usuelle \varphi

6 BigOperators.sty

Commande	Résultat
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	\sum
$\label{lem:n=0} $$ \sup\{n=0\}_{+\in\mathbb{N}} \{u_n\} $$$	$\sum_{n=0}^{+\infty} (u_n)$
\oldprod ²⁶	П
\prod{n=0}{+\infty}{u_n}	$\prod_{n=0}^{+\infty} (u_n)$
$\label{eq:coldcap}$	\cap
$\label{linear} $$ \left(n=0\right)_{+\in\mathbb{N}} A_n$$	$\bigcap_{n=0}^{+\infty} (A_n)$
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	U
$\label{linear_n_n_n_n_n_n_n} $$ \ \ \ \ \ \ \ \ \ \ \ \ $	$\bigcup_{n=0}^{+\infty} (A_n)$
$ackslash$ olduplus 29	H
$\biguplus{n=0}{+}infty}{A_n}$	$\biguplus_{n=0}^{+\infty} (A_n)$
$\label{limit} $$ \left(n=0 \right)_{+\in\mathbb{Z}_n} $$$	$\bigoplus_{n=0}^{+\infty} (E_n)$

^{25.} Correspond à la commande usuelle \sum

^{26.} Correspond à la commande usuelle \prod

^{27.} Correspond à la commande usuelle \bigcap

^{28.} Correspond à la commande usuelle $\$

^{29.} Correspond à la commande usuelle \biguplus

7 Complexes.sty

Commande	Résultat
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	$ar{z}$
\bar{z} 31	\overline{z}
\e ³²	e
\i ³³	i
\j ³⁴	j
${ackslash}$	3
\Im	Im
\pIm{x}	$\operatorname{Im}(x)$
\oldRe ³⁶	\Re
\Re	Re
\pRe{x}	$\operatorname{Re}(x)$

^{30.} Correspond à la commande usuelle \bar

^{31.} Se comporte comme \overline

^{32.} e de la fonction exponentielle

^{33.} i complexe

L'ancienne commande \i s'obtient avec \ii

^{34.} $j = e^{\frac{2i\pi}{3}}$

L'ancienne commande \j s'obtient avec \j j

^{35.} Correspond à la commande usuelle \Im

^{36.} Correspond à la commande usuelle **\Re**

8 Dsft.sty

Ce package remplace le $\mathbbm{1}$ du package $\mathtt{Dsfonts.sty}$ disponible sur CTAN et introduit quelques symboles.

Commande	Résultat
\mathds{1}	1
\1{E}(x)	$\mathbb{1}_E(x)$
\square	
\star	☆
\triangle	Δ

$8.1 \quad \texttt{dsrom12.pfb} \ et \ \texttt{dsrom12.tfm}$

Pour utiliser ce package, il faut copier les fichiers dsrom12.pfb et dsrom12.tfm dans les dossiers où ils sont actuellement avec dsfonts (et éventuellement créer une copie des anciens fichiers).

9 Equivalents.sty

Commande	Résultat
\o{x}	o(x)
\o[x\to0]{x}	$\underset{x\to 0}{o}(x)$
\0{x}	O(x)
\0[x\to0]{x}	$O_{x \to 0}(x)$
\Th{x}	$\Theta(x)$
\Th[x\to0]{x}	$\Theta_{x \to 0}(x)$
\0m{x}	$\Omega(x)$
\Om[x\to0]{x}	$\Omega_{x o 0}(x)$
$\eq\{u_n\}\{v_n\}$	$u_n \sim v_n$
$\eq[n\to+\inf ty]\{u_n\}\{v_n\}$	$u_n \underset{n \to +\infty}{\sim} v_n$
\eg{u_n}{v_n+\o{v_n}}	$u_n = v_n + o(v_n)$
$\label{lem:conditional} $$ \left[n \right] \{u_n} \{v_n + o\{v_n\} \} $$$	$u_n = v_n + o(v_n)$

10 Matrices.sty

Commande	Résultat
$\mathrm{mat}_n_{p}_{\mathrm{mathbb}_{K}}$	$\mathcal{M}_{n,p}(\mathbb{K})$
$\mbox{mat}{n}{}{\mbox{mathbb}{K}}$	$\mathcal{M}_n(\mathbb{K})$
\sym{n}{\mathbb{K}}	$\mathcal{S}_n(\mathbb{K})$
\ant{n}{\mathbb{K}}	$\mathcal{A}_n(\mathbb{K})$
$\displaystyle \diag\{n\}\{\mathbb{K}\}\$	$\mathcal{D}_n(\mathbb{K})$
$\ts{n}{\mathbb{K}}$	$\mathcal{T}_n^+(\mathbb{K})$
\ti{n}{\mathbb{K}}	$\mathcal{T}_n^-(\mathbb{K})$
$ackslash$ olddet 37	det
\det{M}	$\det(M)$
\det[\mathcal{B}]{\mathcal{B}'}	$\det_{\mathcal{B}}(\mathcal{B}')$
$eq:loss_self_self_self_self_self_self_self_se$	$\mathrm{GL}_n(\mathbb{K})$
\mdots	
\ddots	·.
\idots	··
\vdots	:
\xdots	∷ :
\tmatrix({1\&0\\0\&1\\}) 39	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

10.1 Les commandes avec \cdot

Les commandes avec des points tel que : ont des définitions qui dépendent de la taille de la police (celle pour LATEXest adaptée pour 12pt, et celle de BEAMER pour 17pt). Pour avoir des points alignés correctement, il est possible de modifier la valeur de \dotsep en utilisant \setlength{\dotsep}{taille_en_pt}.

Par exemple, avec 2pt, on obtient : ::

10.2 La commande \tmatrix

 $\mbox{\tmatrix}$ est composé de deux arguments optionnels (les éléments à ajouter à la matrice $\mbox{Ti}k\mbox{Z}$ et les éléments de mise en page de la matrice) ainsi que de trois arguments (le délimiteur d'ouverture, le contenu de la matrice et le délimiteur de fermeture). Les commandes sont :

Commande	Résultat
	Crée une ligne verticale après la colonne n
<pre>\mtxvline{params}{n}</pre>	(ou left/right pour les extrémités) avec les
	paramètres $TikZ$ params

^{37.} Correspond à la commande usuelle \det

^{38.} Si AL.sty est chargé, cette commande est remplacée et il faut utiliser \matgl{n}{\mathbb{K}} pour obtenir ce résultat

^{39.} Les caractères $\$ sont utilisés au lieu du & utilisé habituellement avec $\mathrm{Ti}k\mathrm{Z}$ pour des raisons de compatibilité avec BEAMER

	Crée une ligne horizontale après la ligne n
\mtxhline{params}{n}	(ou top/bottom pour les extrémités) avec
	les paramètres TikZ params
	Crée une ligne verticale après la colonne n
	(ou left/right pour les extrémités), la
<pre>\mtxvpartial{params}{n}{a}{b}</pre>	ligne ayant pour extrémités la fin de la
	ligne a et b (ou top/bottom) avec les
	$\operatorname{param\'etres}\operatorname{Ti}\! k\operatorname{Z}\operatorname{\mathtt{params}}$
	Crée une ligne horizontale après la ligne n
	(ou top/bottom pour les extrémités), la
\mtxhpartial{params}{n}{a}{b}	ligne ayant pour extrémités la fin de la
	ligne a et b (ou left/right) avec les
	$\operatorname{param\'etres}\operatorname{Ti}\! k\operatorname{Z}\operatorname{\mathtt{params}}$
	Crée une boîte autour de la case de
\	coordonnées x et y (l'indexation
\mtxbox{params}{x}{y}	commence à 1) avec les paramètres $TikZ$
	params

10.3 Exemples avec \tmatrix

 $\det(M) = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \text{ est produit par $\det{M}=\operatorname{lmatrix}{a\&b\c\&d\}}.$

$$I_{n,p,r} = \begin{pmatrix} I_r & 0_{r,p-r} \\ \hline 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix} \text{ est produit par}$$

 $I_{n,p,r}=\operatorname{tmatrix}$

[\mtxvline{line width = 0.05em{1}\mtxhline{line width = 0.05em}{1}] [minimum height = 5ex, row sep = 1ex, minimum width = 5ex, column sep = 1ex,] $(\{I_r\&0_{r,p-r}\\\\0_{n-r,r}\&0_{n-r,p-r}\))$

\$\tmatrix

[\mtxbox{red, dashed}{1}{1}\mtxbox{teal, dotted, ultra thick $\{2\}\{2\}\mbox{}\{4\}\{4\}$ [minimum height = 5ex, minimum width = 5ex, row sep = 10pt, inner sep = 5pt, column sep = 10pt,] {{[}} % Le crochet est entouré de deux paires d'accolades {A_1\&0\&0\&0\\0\&A_2\&\ddots\&0\\0\&\ddots\&\ddots\&0\\ 0\&0\&A_n\\}{\}}\$

11 Polynomes.sty

Commande	Résultat
\po1{K}{X}	$\mathbb{K}[X]$
\fr{K}{X}	$\mathbb{K}(X)$
$ackslash$ olddeg 40	deg
\deg{P}	$\deg(P)$
\oldval	val
\val{P}	$\operatorname{val}(P)$
\oldcar	car
\car{\mathbb{K}}	$\operatorname{car}(\mathbb{K})$

^{40.} Correspond à la commande usuelle \deg

12 Probas.sty

Commande	Résultat
\p{A}	$\mathbb{P}(A)$
\p[B]{A}	$\mathbb{P}_B(A)$
\oldOmega 41	Ω
\Omega ⁴²	Ω
$\$ \sq 43	
\bor ⁴⁴	\mathcal{B}
\esp{X}	$\mathbb{E}(X)$
\var{X}	$\mathbb{V}(X)$
\ect{X}	$\sigma(X)$
\oldcov	COV
\cov{X}{Y}	cov(X,Y)
$ackslash$ indep 45	Ш
\unif{n}	$\mathcal{U}(n)$
\bin{p}	$\mathcal{B}(p)$
\bin[n]{p}	$\mathcal{B}(n,p)$
\geom{p}	$\mathcal{G}(p)$
\pasc{r}{p}	$\mathcal{P}(r,p)$
$\n r}{p}$	$\mathcal{J}(r,p)$
$\hypg{N}{n}{q}$	$\mathcal{H}(N,n,q)$
\poiss{\lambda}	$\mathcal{P}(\lambda)$

^{41.} Correspond à la commande usuelle \Omega

^{42.} Correspond à la commande usuelle $\var0mega$

^{43.} Doit être utilisé entre \left et \right, ou dans la commande \p : $\mathbb{P}\left(A \mid \bigcap_{k=1}^{n} (B_i)\right)$

^{44.} Correspond à la commande usuelle \mathcal{B}

^{45.} Ce symbole est obtenu avec la commande $\perp\!\!\perp$

13 Sffont.sty

Ce package définit une nouvelle police cmssp qui correspond à cmss en 10pt. Pour l'utiliser, il faut utiliser $fontfamily{cmssp}\fontsize{Xpt}{baselineskip}\selectfont.$ Exemples avec cmssp:

Exemple avec une police de taille 25pt en gras.

Exemple avec une police de taille 17pt en italique.

Exemple avec une police de taille 12pt en gras italique.

Les mêmes exemples avec cmss :

Exemple avec une police de taille 25pt en gras.

Exemple avec une police de taille 17pt en italique. Exemple avec une police de taille 12pt en gras italique.

14 Structures.sty

Commande	Résultat
\oldhom	Hom
\hom{E}	$\operatorname{Hom}(E)$
\oldaut	Aut
\aut{E}	$\operatorname{Aut}(E)$
$ackslash$ oldker 46	ker
\ker{f}	$\ker(f)$
\oldim	im
\im{f}	$\operatorname{im}(f)$
\la ⁴⁷	(
\ra ⁴⁸	\rangle
\oldord	ord
\ord{x}	$\operatorname{ord}(x)$

^{46.} Correspond à la commande usuelle \ker

^{47.} Correspond à la commande usuelle $\left| \right|$

^{48.} Correspond à la commande usuelle \right\rangle

15 Tables.sty

Ce package sert à mettre en forme des tables an latex grâce à $\mathrm{Ti}k\mathrm{Z}$.

Pour insérer une table, il faut appeler $\setrowcol[width][height]{ncols}{nrows}$ avec le nombre de colonnes et de lignes de la table, puis rentrer la table TikZ, les arguments optionnels étant la largeur de la table et sa hauteur.

Une table a une largeur par défaut de 10cm et une hauteur de 6,5cm (est est réinitialisée à chaque appel de \setrowcol).

Il est possible d'utiliser [ampersand replacement=\&] puis \& pour la matrice lorsque & est déjà défini par LATEX.

Il est possible de récupérer la valeur de la largeur et de la hauteur avec \tblw et \tblh.

Par exemple, la table

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_
cot	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

est produite avec le code suivant

```
\LARGE
\setcolrow{6}{5}
\begin{tikzpicture}
   \matrix[table] {
        \&$0$\&\$ \circ \{\pi_{i}_{6}$\&\$ \circ \{\pi_{i}_{4}\}\&\$ \circ \{\pi_{i}_{3}\}\& 
          \alpha {\pi (\pi)}{2}
       $\oldfrac{\sqrt{3}}{2}$&$1$\\
       $\oldfrac{1}{2}$&$0$\\
       $\oldtan$&$0$&$\oldfrac{1}{\sqrt{3}}$&$1$&$\sqrt{3}$$&--\\
       \coldcot%--&\sqrt{3}$&$1$&$\oldfrac{1}{\sqrt}{3}$&$0$\\
   };
   \draw [line width=0.5mm] (-\tblw/3,-\tblh/2) -- (-\tblw/3,\tblh/2);
   \frac{1}{2} [line width=0.5mm] (-\tblw/2,3*\tblh/10) --
       (\tblw/2,3*\tblh/10);
   \draw [line width=0.5mm] (-\tblw/2,-\tblh/2) rectangle
       (\tblw/2, \tblh/2);
\end{tikzpicture}
```

16 Trigo.sty

Commande	Résultat
$ackslash$ \oldcos 49	cos
\cos{x}	$\cos(x)$
\cos[n]{x}	$\cos^n(x)$
$ackslash$ oldsin 50	sin
\sin{x}	$\sin(x)$
\sin[n]{x}	$\sin^n(x)$
$ackslash$ oldtan 51	tan
\tan{x}	$\tan(x)$
\tan[n]{x}	$\tan^n(x)$
$ackslash oldcot^{52}$	cot
\cot{x}	$\cot(x)$
\cot[n]{x}	$\cot^n(x)$
\acos{x}	$\arccos(x)$
\acos[n]{x}	$\arccos^n(x)$
\asin{x}	$\arcsin(x)$
$\arraycolor{1}{asin[n]{x}}$	$\arcsin^n(x)$
\atan{x}	$\arctan(x)$
\atan[n]{x}	$\arctan^n(x)$
\oldch	ch
\ch{x}	$\operatorname{ch}(x)$
\ch[n]{x}	$\operatorname{ch}^n(x)$
\oldsh	sh
\sh{x}	$\operatorname{sh}(x)$
\sh[n]{x}	$\operatorname{sh}^n(x)$
\oldth	th
\th{x}	$\operatorname{th}(x)$
\th[n]{x}	$th^n(x)$
\oldach	argch
\ach{x}	$\operatorname{argch}(x)$
$\ach[n]{x}$	$\operatorname{argch}^n(x)$
\oldash	argsh
\ash{x}	$\operatorname{argsh}(x)$
$\arrange {ash[n]{x}}$	$\operatorname{argsh}^n(x)$
\oldath	argth
\ath{x}	$\operatorname{argth}(x)$
\ath[n]{x}	$\operatorname{argth}^n(x)$

^{49.} Correspond à la commande usuelle \cos

^{50.} Correspond à la commande usuelle \sides

^{51.} Correspond à la commande usuelle \tan

^{52.} Correspond à la commande usuelle \cot

17 Usuelles.sty

Commande	Résultat
$ackslash$ oldmin 53	min
$\min{\{\lb0,n\}}$	$\min(\llbracket 0, n rbracket)$
$\label{local_norm} $$\min[\mathbb{N}^*]_{\local_n\rrb}$$	$\min_{\mathbb{N}^*}(\llbracket 0,n rbracket)$
$ackslash$ oldmax 54	max
$\mbox{\lb0,n\rrb}$	$\max(\llbracket 0,n \rrbracket)$
$\mbox{$\max[\mathbb{Z}]{\n\n\rrb}$}$	$\max_{\mathbb{Z}_{-}}(\llbracket 0,n rbracket)$
$ackslash$ \oldlim 55	lim
$\lim\{u_n\}$	$\lim(u_n)$
$\lim[x\to+\inf y]{f(x)}$	$\lim_{x \to +\infty} (f(x))$
$\displaystyle \lim\{u_n\}$	$\liminf(u_n)$
$\lim[x\to+\inf\{f(x)\}]$	$ \lim_{x \to +\infty} \inf(f(x)) $
\lims{u_n}	$\limsup(u_n)$
$\limsup[x\to+\inf y]{f(x)}$	$ \limsup_{x \to +\infty} (f(x)) $
$ackslash$ oldexp 56	exp
\exp{x}	$\exp(x)$
\exp[n]{x}	$\exp^n(x)$
$\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$	ln
\ln{x}	$\ln(x)$
\ln[n]{x}	$\ln^n(x)$
$ackslash$ \oldinf 58	inf
\inf{\varnothing}	$\inf(\varnothing)$
$local_loc$	$\inf_{\overline{\mathbb{R}}}(\{u_n\})$
$ackslash$ oldsup 59	sup
\sup{\varnothing}	$\sup(\varnothing)$
\sup[\bar{\mathbb{R}}]{\{u_n\}}	$\sup_{\overline{\mathbb{R}}}(\{u_n\})$

^{53.} Correspond à la commande usuelle \min

^{54.} Correspond à la commande usuelle \max

^{55.} Correspond à la commande usuelle \lim

^{56.} Correspond à la commande usuelle \exp

^{57.} Correspond à la commande usuelle \ln

^{58.} Correspond à la commande usuelle \inf