

Figure 1: Likelihoods for multiple *n* with an uniform prior.

Theorem (Bayes' Theorem). The probability that a system is well-described a model with parameter set X, given a dataset D and initial knowledge I, is:

$$Pr(\mathbf{X}|\mathbf{D}, I) = \frac{Pr(\mathbf{D}|X, I) \cdot Pr(\mathbf{X}|I)}{Pr(\mathbf{D}|I)}.$$

 $Pr(\mathbf{X}|I)$ is called the *prior*, $Pr(\mathbf{X}|\mathbf{D},I)$ the *posterior*, and $Pr(\mathbf{D}|\mathbf{X},I)$ the *likelihood*.

1 Coin tossing

We consider a sequence of tosses of a biased coin. The coin can be modeled with a single parameter $H \in [0,1]$, the probability of heads on a single toss. Thus our parameter set is $X = \{H\}$.

The dataset **D** can be reduced to a tuple (n,h) where h is the number of heads in n tosses. There is no other prior information: $I = \emptyset$. The probability of obtaining some data given the parameter H is:

$$\Pr(\mathbf{D}|\mathbf{X},I) = \Pr\left((n,h)|H\right) = \binom{n}{h}H^h(1-H)^{n-h},$$

since there are $\binom{n}{h}$ ways of getting h heads (each with probability H) and n-h tails (each with probability 1-H). In this simulation, we choose H=0.38 and three prior distributions: an uniform one, a Gaussian with $\sigma=0.1$ centered around $\mu=0.5$, representing a belief that the coin is fair, and a Gaussian with $\sigma=0.05$ centered around $\mu=0.5$, representing a stronger belief that the coin is fair. Results for each prior are shown in Figures 1-3.

Figure 2: Likelihoods for multiple n with an wide Gaussian prior.

Figure 3: Likelihoods for multiple n with a narrow Gaussian prior.

2 Lighthouse problem

We have a lighthouse at a distance β from the shore and at a location α along the shore. The lighthouse emits flashes at random angles θ_k which arrive at the shore at locations x_k . Let:

$$f_{\theta}(\theta) \equiv \Pr(\theta_k = \theta)$$
 be the pdf of θ_k ,
 $F_{\theta}(\theta) \equiv \Pr(\theta_k \le \theta)$ be the cdf of θ_k ,
 $f_x(x) \equiv \Pr(x_k = x)$ be the pdf of x_k ,
 $F_x(x) \equiv \Pr(x_k \le x)$ be the cdf of x_k .

Since the lighthouse emits flashes at random angles, we assume θ_k is uniformly distributed:

$$f_{\theta}(\theta) = \frac{1}{2\pi}, \qquad F_{\theta}(\theta) = \int_{0}^{\theta} f_{\theta}(\tilde{\theta}) d\tilde{\theta} = \frac{\theta}{2\pi}.$$

To derive f_x , we first derive F_x :

$$F_x(x) = \Pr(x_k \le x) = \Pr(\theta_k \le \hat{\theta}(x)) = F_{\theta}(\hat{\theta}(x)),$$

where $\hat{\theta}(x)$ is the angle that creates a flash at x. To find it, we use the geometry of the problem:

$$\hat{\theta}(x) = \arctan\left(\frac{x-\alpha}{\beta}\right).$$

Thus:

$$F_x(x) = \frac{1}{2\pi} \arctan\left(\frac{x-\alpha}{\beta}\right).$$

$$f_x(x) = \frac{d}{dx} F_x(x) = \frac{\beta/2\pi}{(x-\alpha)^2 + \beta^2}.$$

This makes intuitive sense: the distribution is a Lorentzian centered around α , the location of the he lighthouse along the shore. The further the lighthouse is, the wider the distribution is.

For our study we choose $\alpha=1.0$ and $\beta=1.5$. We again use three prior distributions: an uniform one, a wide Gaussian centered at $\mu=1.5$ with $\sigma=0.3$, and a narrow Gaussian with $\mu=1.5$ with $\sigma=0.1$.

Results for the one-dimensional case, where β is known but α is not, are shown in Figures 4-6.

In the two-dimensional case, we use identical priors for each parameter. Results are shown in Figures 7-9.

Figure 4: Likelihoods for multiple n with an uniform prior.

Figure 5: Likelihoods for multiple n with a wide Gaussian prior.

Figure 6: Likelihoods for multiple n with a narrow Gaussian prior.

Figure 7: Likelihoods for multiple n with an uniform prior.

Figure 8: Likelihoods for multiple n with a wide Gaussian prior.

Figure 9: Likelihoods for multiple n with a narrow Gaussian prior.