# Machine Learning

## Krystian Mikolajczyk & Deniz Gunduz

Department of Electrical and Electronic Engineering
Imperial College London



## Machine Learning - Part 2.3 Summary

Department of Electrical and Electronic Engineering Imperial College London

• Bias-variance trade-off

## Bias-Variance Trade-Off

VC analysis: test error ≤ training error + complexity penalty

Another approach: bias-variance analysis:

$$test error = bias + variance$$

- Bias: how well can  $\mathcal{H}$  approximate f? (as before)
- Variance: how well can we select a good  $h \in \mathcal{H}$ ?

#### Setup:

- e.g.  $\mathbf{x}$  patient record,  $\mathcal{D}$  a hospital, y cost prediction.
- $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$  where  $y_i = f(\mathbf{x}_i) \in \mathbb{R}$ .
- Test error within  $\mathcal{D}$  (squared):  $R(g^{(\mathcal{D})}) = \mathbb{E}\left[\left. (g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^2 \right| \mathcal{D} \right] = \mathbb{E}_{\mathbf{x}}\left[\left. (g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^2 \right]$

## Bias-Variance Analysis

Test error within  $\mathcal{D}$ :

$$R(g^{(\mathcal{D})}) = \mathbb{E}_x \left[ (g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^2 \right]$$

Expected test error (over many  $\mathcal{D}_1, \ldots, \mathcal{D}_K$ ) and  $(\mathbf{x}_1, \ldots, \mathbf{x}_n)^{(\mathcal{D})}$ :

$$\begin{split} \mathbb{E}\left[R(g^{(\mathcal{D})})\right] &= \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathbf{x}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right]\right] \\ &= \mathbb{E}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right] \\ &= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right]\right] \end{split}$$

## The Average Hypothesis

Concentrate on 
$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$
 for a given  $\mathbf{x} \in \mathcal{X}$  (patient x!).

Average hypothesis over many datasets  $\mathcal{D}_1, \ldots, \mathcal{D}_K$ 

The best possible :  $\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\mathbf{x})\right] \approx \frac{1}{K} \sum_{1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$ 

Expected error for patient  ${\bf x}$  with costs predicted by many  $g^{(\mathcal{D})}({\bf x})$ 

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2} + (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2} + 2(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}))(\bar{g}(\mathbf{x}) - f(\mathbf{x}))\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2}\right] + (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2} + 2 \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)(\bar{g}(\mathbf{x}) - f(\mathbf{x}))\right]}_{2(\bar{g}(\mathbf{x}) - \bar{g}(\mathbf{x}))(const)}$$

#### Bias and Variance

$$\mathbb{E}_{\mathcal{D}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}))^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{(\bar{g}(\mathbf{x}) - f(\mathbf{x}))^2}_{\text{bias}(\mathbf{x})} \ .$$

Therefore,

$$\mathbb{E}\left[R(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathbf{x}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right]\right]$$
$$= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right]\right]$$
$$= \mathbb{E}_{\mathbf{x}}\left[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})\right]$$
$$= \mathsf{bias} + \mathsf{var}$$

 $\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[ (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^2 \right]$ 

- how far  $\bar{g}(x)$  from f(x)
- ullet large if  ${\cal H}$  is small
- ullet small if  ${\cal H}$  is large

$$\mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[ \mathbb{E}_{\mathcal{D}} \left[ (g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})^2 \right] \right]$$

- how far  $g^{(\mathcal{D})}(\mathbf{x})$  from  $\bar{g}(\mathbf{x})$
- ullet small if  ${\cal H}$  is small
- ullet large if  ${\cal H}$  is large

## Complexity-Performance Trade-off

## Match the model complexity to the data not to the target complexity!

#### Learning curves:



## VC vs Bias-Variance





VC analysis

bias-variance

- ullet best approximation in between  $\mathbb{E}\left[R(g)
  ight]$  and  $\mathbb{E}\left[\widehat{R}_n(g)
  ight]$
- in VC the error is on the training sample
- bias based on the best approximation  $\bar{g}(x)$  (over all  $^{(\mathcal{D})}$ )
- bias constant, only depends on  $\mathcal{H}$  not on n

## **Terminology**

- Training set:  $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Test set:  $\mathcal{D}' = \{(x'_1, y'_1), \dots, (x'_m, y'_m)\}.$
- Loss function:  $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ .

|                                                                               | statistics                                 | learning theory                                    | machine learning       |
|-------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------|
| $\frac{1}{n}\sum_{i=1}^{n}\ell(h(x_i),y_i)$                                   | in-sample error <i>E<sub>in</sub></i>      | empirical risk $\widehat{R}_n, L_n, \mathcal{L}_n$ | training error         |
| $\mathbb{E}\left[\ell(h(x),y)\right]$                                         | out-of-sample error <i>E<sub>out</sub></i> | risk, generalization error $R, L, \mathcal{L}$     | (true) test error      |
| $\mathbb{E}\left[\left.\ell(g^{(\mathcal{D})}(x),y)\right \mathcal{D}\right]$ |                                            |                                                    |                        |
| $\mathbb{E}\left[\ell(g^{(\mathcal{D})}(x),y)\right]$                         | expected out-of-sample error               | expected risk                                      | expected test error    |
| $\frac{1}{n}\sum_{i=1}^{m}\ell(h(x_i'),y_i')$                                 | test error $E_{test}$                      | empirical test error $\widehat{R}'_m$              | (empirical) test error |

#### Relations:

- $R(h) = \mathbb{E}\left[\widehat{R}_n(h)\right] + \text{high prob. by Hoeffding}$
- $R(g^{(\mathcal{D})})$  and  $\hat{R}_n(g^{(\mathcal{D})})$ : typically  $\mathbb{E}\left[\left.\hat{R}_n(g^{(\mathcal{D})})\right|\mathcal{D}\right] \neq R(g^{(\mathcal{D})})$  but h.p. by VC inequality
- $\bullet \ \ R(h) = \mathbb{E}\left[\widehat{R}'_m(h)\right] \text{ and } \ R(g^{(\mathcal{D})}) = \mathbb{E}\left[\left.\widehat{R}'_m(g^{(\mathcal{D})})\right|\mathcal{D}\right]; \text{ h.p. by Hoeffding (in both cases!)}$

## Part 2 Summary

- Feasibility of learning
- Hoeffding's inequality
- Target distribution and error cost
- Multiple hypothesis
- Growth function
- VC inequality
- Bias-variance trade-off