CG1111: Engineering Principles and Practice I

CG1111: Engineering Principles and Practice I

Debrief & Tutorial for Week 10

(Filters, Sensors, and Signal Processing Basics)

IR Proximity Sensor

IR Proximity Sensor

IR proximity sensors

Colour Sensing (RGB LED + LDR)

LDR

Read LDR's voltage corresponding to shining Red, Green, & Blue LEDs individually to estimate object's colour

Sensor's response time & calibration are important

Two RGB LEDs

Classification of Signals

- Continuous signals
 - Independent variable is a continuous variable

- Examples
 - ✓ Sine wave from a function generator
 - ✓ Speech signal received from a microphone
- Discrete signals
 - Independent variable takes on discrete values, e.g., integers

- Examples
 - ✓ Weekly stock market index
 - ✓ Speech signal stored on a digital computer

Continuous vs. Discrete Time Signals

Sampling Theorem

How frequently should the signal be sampled to ensure that information contained in the signal is preserved?

 $f_s \ge 2 \times \text{max}$ frequency component in the signal

Nyquist Rate & Nyquist Frequency

- The minimum sampling rate that is required to well represent a continuous time signal with highest frequency component f is given by 2 x f and this is known as the Nyquist rate
- For a given sampling rate f_s , perfect reconstruction is possible for a continuous signal whose highest frequency component is $f_s/2$, also known as the Nyquist frequency
 - For example, audio CDs use a sampling rate of 44.1 kHz. Therefore, the Nyquist frequency is 22.05 kHz

Aliasing

- When the sampling rate is lower than the Nyquist rate, the signal reconstructed from samples (using DAC) is <u>different</u> from the original continuous signal
- This effect is known as aliasing

The red waveform represents the original continuous time signal

The blue dots represent samples obtained from the continuous signal with sampling rate < Nyquist rate

Question 1

 Design a bandpass filter for the 4th Octave of musical notes, with a passband from 261 Hz to 493 Hz

- High pass cut-off frequency = 261 Hz
- Low pass cut-off frequency = 493 Hz

- We need to design the values of R and C for the lowpass and high pass filter
- High Pass cut-off frequency \rightarrow 261 Hz = $\frac{1}{2\pi R_H C_H}$
- $ightharpoonup R_H C_H = 609.79 \ \mu s$ Choosing $C_H = 20 \ nF$, we get $R_H = 30.5 \ k\Omega$
- Low Pass cut-off frequency \rightarrow 493 Hz = $\frac{1}{2\pi R_L C_L}$
- $ightharpoonup R_L C_L = 322.83 \ \mu s$ Choosing $C_L = 1 \ nF$, we get $R_L = 323 \ k\Omega$
- If we choose an active amplifier gain of 2 for the input, we can choose $R_i = 10 \text{ k}\Omega$ and $R_f = 10 \text{ k}\Omega$

Question 2

- Design a temperature sensing circuit using LM35 (temperature sensor IC), Op amps, resistors, and LEDs
- LM35 output = 250 mV at 25 °C
- LM35 output varies as 10 mV/°C
- Temperature below 35 °C, GREEN LED on
- Temperature above 35 °C, RED LED on

- Op Amp 1 closed loop gain of 10
- Op Amps 2 & 3 are comparators with bias voltage of 3.5 V
 - -Op Amp 2 non-inverting comparator
 - -Op Amp 3 inverting comparator
- When output of op-amp 1 is more than 3.5 V (i.e., when temperature > 35 °C), Red LED is turned on
- When output of op-amp 1 is less than 3.5 V (i.e., when temperature < 35 °C), Green LED is turned on

Question 3 & Solution

- System's sampling rate: 100 Hz
- Given signals:

Signal	Signal Frequency	Nyquist rate	Perfect reconstruction possible?
$5\cos(500\pi t)$	250 Hz	500 Hz	No
$10\sin(200\pi t)$	100 Hz	200 Hz	No
$5\sin(100\pi t)$	50 Hz	100 Hz	Yes
$2.5\cos(50\pi t)$	25 Hz	50 Hz	Yes

Question 4

• Find the condition for the sampling period (T_s) to correctly sample the signal X(t), given by

$$X(t) = 5\sin(10\pi t) + 2.5\sin(4\pi t) + 3\sin(0.1\pi t)$$

$$X(t) = \frac{5\sin(10\pi t)}{5\sin(10\pi t)} + 2.5\sin(4\pi t) + 3\sin(0.1\pi t)$$

Highest frequency component: 5 Hz

According to sampling theorem, minimum sampling rate is 10 Hz

$$f_S \ge 10$$

$$T_S = \frac{1}{f_S} \le \frac{1}{10} = 0.1 \ seconds$$

$$T_s \leq 0.1$$
 seconds