Line integrals

On veut intégrer f(x,y)=z (en bleu) selon le cercle, que l'on paramétrise comme $\vec{r}(t)=g(t)\vec{i}+h(t)\vec{j}$.

On peut d'abord réécrire notre fonction comme f(t)=f(g(t),h(t)). Pour quoi ? Parce que les seuls points qui nous intéressent sont ceux selon g(h),h(t)!

Notre fonction aurait pu être comme ça, mais on veut juste être sur les points du cercle.

Ici on veut l'aire donc

$$\begin{split} A_k &= f(x_k, y_k) \Delta s_k \\ A_k &= f(x_k, y_k) \sqrt{\left(\Delta x_k\right)^2 + \left(\Delta y_k\right)^2} \\ \Rightarrow dA &= f(g(t), h(t)) \sqrt{g'(t)^2 + h'(t)^2} dt \end{split}$$

Theorem (Gauss/Green)

Let
$$\Sigma \in \mathbb{R}^2$$
 be as in the main anilimy theorem

Let $\vec{F} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a diff'able vector field. Then

$$\iint_{\Sigma} \operatorname{div} \vec{F}(x_1, x_2) \, dx_1 dx_2 = \iint_{\delta \Sigma} \vec{F} \cdot \vec{n} \, dl \qquad Gauss theorem$$

$$\iint_{\Sigma} \operatorname{curl} \vec{F}(x_1, x_2) \, dx_1 dx_2 = \iint_{\delta \Sigma} \vec{F} \cdot \vec{\tau} \, dl \qquad Green theorem$$

Outlook

Similar in higher dimensions:

hypervolume us. hypersurface

so much more difficult

Trouver un potentiel

• compute $\int_0^x F(t)dt$ • compute $\int_x^y F(t)dt$ • sum them

Calculer une intégrale avec le Green's theorem

• bien choisir un sens pour la bordure (par ex)

•
$$\int_{\delta\Omega} F \cdot d\vec{s} = \int \int_{\omega} \operatorname{div}(F) d\omega$$

Calculer une aire d'un graph

par exemple,
$$\Phi(t) = \sqrt{s^2 + t^2}$$
 on définit $\vec{r} = (s, t, \Phi(t))$

Calculer l'aire du graphe de Φ sur Ω :

$$\begin{split} \int_{\Omega} 1 \left\| \frac{d\vec{r}}{ds} \times \frac{d\vec{r}}{dt} \right\| ds dt \\ \frac{d\vec{r}}{ds} \times \frac{d\vec{r}}{dt} &= \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & \frac{d\Phi}{ds} \\ 0 & 1 & \frac{d\Phi}{dt} \end{pmatrix} = \left(-\frac{d\Phi}{ds}, -\frac{d\Phi}{dt}, 1 \right) \\ \Rightarrow \text{ (when taking the norm)} \int_{\omega} \sqrt{1 + \left(\frac{d\Phi}{ds} \right)^2 + \left(\frac{d\Phi}{dt} \right)^2} ds dt \end{split}$$

Divergence Theorem

Il fonctionne en 2D et en 3D.

$$\begin{split} \int \int_{\partial\Omega} \vec{F} \cdot \vec{n} \ d\vec{S} &= \int \int \int_{\Omega} \mathrm{div}(F) dx_1 dx_2 dx_3 \\ \int \int_{\partial\Omega} \overline{F(\Phi(\vec{x}))} \cdot \vec{n} \cdot \left\| \overrightarrow{\partial_s \Phi} \times \overline{\partial_t \Phi} \right\| \, d\vec{S} &= \int \int \int_{\Omega} \mathrm{div}(F) dx_1 dx_2 dx_3 \end{split}$$

Avec \vec{n} le vecteur normal par rapport à la surface en chaque point. On définit une paramétrisation du volume $\varphi(x,y)$, et $\Phi(x,y)=(x,y,\varphi(x,y))$.

Note : on ajoute $\| \overline{\partial_s \Phi} \times \overline{\partial_t \Phi} \|$ comme on ajoute la dérivée, parce que comme s et t sont perpendiculaires, le cross-product $\vec{a} \times \vec{b} = \|a\| \cdot \|b\| \cdot \sin(\widehat{ab})$ avec $\widehat{ab} = \frac{\pi}{2}$ donc juste $\|\partial_s \Phi\| \cdot \|\partial_t \Phi\|$.

Pour trouver le vecteur normal :

$$\vec{n} = \frac{\partial_x \Phi(\vec{x}) \times \partial_y \Phi(\vec{x})}{\left\| \partial_x \Phi(\vec{x}) \times \partial_y \Phi(\vec{x}) \right\|}$$

$$\vec{n} = \frac{\partial_{\varphi} \Phi(\vec{x}) \times \partial_{y} \Phi(\vec{x})}{\left\| \partial_{x} \Phi(\vec{x}) \times \partial_{y} \Phi(\vec{x}) \right\|}$$

Green's Theorem

Il fonctionne en 2D uniquement. On regarde sur la bordure comment ça tourne.

$$\int_{\partial\Omega} \vec{F} \cdot \vec{J} dl = \int \int_{\Omega} {\rm curl} \ \vec{F}(x_1,x_2) dx_1 dx_2$$

avec $\vec{\tau}$ la dérivée de la

Stoke's Theorem

Il fonctionne en 3D.

Solem $\mathfrak{s}\iota \in \mathbb{R}$ et $\Gamma = (\Gamma_1, \ldots, \Gamma_n)$. $\mathfrak{s}\iota \mapsto \mathbb{R}$. Si n = 2, alors le **rotationnel** de F est donné par :

$$\operatorname{rot} F(x) = \frac{\partial F_2}{\partial x_1}(x) - \frac{\partial F_1}{\partial x_2}(x) \in \mathbb{R}$$

Si n=3, alors il est donné par :

$$\operatorname{rot} F(x) = \operatorname{"(rot} F_{23}, \operatorname{rot} F_{31}, \operatorname{rot} F_{12})"$$

$$= \left(\frac{\partial F_3}{\partial x_2}(x) - \frac{\partial F_2}{\partial x_3}(x), \frac{\partial F_1}{\partial x_3}(x) - \frac{\partial F_3}{\partial x_1}(x), \frac{\partial F_2}{\partial x_1}(x) - \frac{\partial F_1}{\partial x_2}(x)\right)$$

Déterminant Jacobienne

En coordonnées sphériques :

$$\det = r^2 \sin(\theta)$$

En coordonées polaires

 $\det = r$