

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

Unterstützt durch: Christian Himpe

Überblick

Motivation und Ziel

DCM-Bilineares Modell

DCM-Nichtlineares Modell

EEG Modell

Literatur

```
from programs import RK4 as RK4
         from programs import Euler as RK1
         from programs import hemodynamicModel as HM
         from programs import bilinearModel as BM
        # Parameter Beispiel 1
        T = 100.
       t0 = 0.
       dt = 0.1
                                     # Endzeit
       t = np.arange(t0,T+dt,dt)
                                     # Anfangszeit
                                    # Zeitschrittlaenge
      A = np.array([[-1.,0.,0.],
                                    # Zeitarray
                    [0.3,-1,0.2],
                    [0.6,0.,-1.]]) # Kopplung
     B1 = np.zeros((3,3))
    B2 = np.array([[0 , 0, 0 ], [0 , 0, 0.8]]
                                   # Induzierte Kopplung
                    [0.1, 0, 0 ]])
         np.array([B1, B2])
                                 # Zusammenfassen der ind. Kopplung in ein Ar
                      01.
                                # äußerer Einfluss auf Hirnaktivität
                   (B), len(t)))
                               # Stimulus u1
  u[1,451:550] = 2.
  u[1,251:350] = 5.
 u[1, 691:910] = 2.
                               # Stimulus u2
                               # Stimulus u2
 # Anfangsbedingunden
                              # Stimulus u2
 x_0 = np.ones(15)
 x = 0[0:6] = 0.

    Zusammenfassen der Parameter für das "hemodynamicModel"
```


Einleitung in DCM - <u>Dynamic Causal Modelling</u>

Interaktion zwischen verschiedenen Hirnregionen

Konnektivität im Gehirn

Über die mathematische Modellierung von Interaktionen zwischen mehreren Regionen des Gehirns.

Ziel

Das Aufstellen eines einfachen und realistischen neuronalen Modells aller betrachteten, interagierenden Gehirnregionen.

Bilineares Modell

Mathematische Beschreibung

- ► A: feste Verknüpfung der Hirnregionen
- ► B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

$$\dot{z}(t) = f(z(t), u(t))$$

$$\approx f(0,0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}uz$$

$$\dot{z}(t) = A \cdot z + \sum_{j} u_{j} B^{j} \cdot z + C \cdot u$$

$$A = \begin{pmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_{32}^{(1)} & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix}$$

Nichtlineares Modell

Mathematische Beschreibung

- ▶ A: feste Verknüpfung der Hirnregionen
- B: Einfluss des Inputs auf Konnektivität
 C: Einfluss des Inputs auf neuronale
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen
- ▶ D: Einfluss der Regionen auf Konnenktivität

$$\dot{z}(t) = f(z(t), u(t))
\approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu + \frac{\partial^2 f}{\partial z^2}\frac{z^2}{2}$$

$$\dot{z}(t) = A \cdot z + \sum_{j} u_{j} B^{j} \cdot z + C \cdot u + \sum_{i} z_{i} D^{i} \cdot z$$

$$A = \begin{pmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad D^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & d_{32}^{(1)} & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix}$$

EEG

${\sf EEG} = {\sf Elektroenzephalografie}$

Konzeptioneller Vergleich von fMRI- zu EEG-Modell

fMRI-Modell	EEG-Modell
Verknüpfung einzelner Neuronen	Verknüpfung von Gehirnbereichen
	und Subregionen untereinander
Taylorentwicklung	Eingangs- und
	Ausgangsoperatoren
Gehirnaktivität = abstrakte Größe	direktes Modell für
biologisches Modell nötig	Potentiale und Potentialflüsse

Das EEG-Modell

Mathematische Realisierung - Neuroneneingang

Physikalische Größen sind Membranpotentiale und Impulsrate

Präsynaptische Impulsrate \rightarrow Postsynaptisches Membranpotential

$$u_{ein}(t)$$

$$u_{ein}(t) \rightarrow v(t) = h(t) * u_{ein}(t)$$

Mathematische Realisierung - Neuronenausgang

Synaptisches Membranpotential
$$ightarrow$$
 Impulsrate $v(t)
ightarrow u_{aus}(t) = S(v(t))$

Experimente - Vergleich fMRI- mit EEG-Modell

Experimente - Vergleich fMRI- mit EEG-Modell

Experimente - Vergleich fMRI- mit EEG-Modell

Literatur

- ► Dynamic causal modelling
 - K.J. Friston, L. Harrison and W. Penny / NeuroImage **4** (2003) web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf
- ► Synaptischer Spalt
 - In: Gedankenschatz: Bewusstsein- und Persönlichkeitsentfaltung http://gedankenschatz.de/quantenphysik-im-kopf/ (Abgerufen: 6. Juli 2016, 12:28 UTC)
- ► Sternneuronen
 - http://gdpsychtech.blogspot.de/2014/06/medium-spiny-neurons-msn.html (Abgerufen: 6. Juli 2016, 12:28 UTC)
- ► Pyramidenzellen
- http://www.ruf.rice.edu/~lngbrain/Sidhya/ (Abgerufen: 6. Juli 2016, 12:28 UTC)
- Aktionspotential und Neurotransmission
 In: Institut for complex Systems, Forschungszentrum Jülich
 http: