Table Probabilities and Independence

Dr Tom Ilvento

Department of Food and Resource Economics

Basic Rules of Probability

- Probability of a Union $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Conditional Probability $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- Probability of an Intersection

$$P(A \cap B) = P(B)P(A \mid B)$$

3

Overview

- This lecture will focus on working with categorical data and building tables
- It will walk you through cross-tabulation of categorical data
- And show you how to percentage a table
- I will show some things in context of basic rules of probability – just to show you how to get around in a table
- I will also show how to build a model of independence

2

Cross-Tabulation of Treatment Type versus Still Smoking After 8 Weeks

		Subject Still Smoking		
		YES	NO	
Subject	Nicotine Patch	64	56	
Treatment	Placebo	96	24	

- These are the Row Margins they show the total for each row
- They are "fixed" by the design as the rows represent the Treatment

Cross-Tabulation of Treatment Type versus Still Smoking After 8 Weeks

		Subject Still Smoking		
		YES	NO	Row Margins
Subject	Nicotine Patch	64	56	120
Treatment	Placebo	96	24	120

- These are the Column Margins they show the total for each Column
- They are the result of the experiment as the columns represent the outcome

Let Event A = Received a Nicotine Patch.

		Subject Still Smoking		
		YES	МО	Row Margins
Subject	Nicotine Patch	64	56	120
Treatment	Placebo	96	24	120
	Column Margins	160	80	240

- What is the Probability of Event A? Denoted as P(A)
- P(A) = 120/240 = .5

.

Let Event B = No Longer Smoking

		Subject Still Smoking		
		YES	NO	Row Margins
Subject	Nicotine Patch	64	56	120
Treatment	Placebo	96	24	120
	Column Margins	160	80	240

- What is the Probability of Event B? Denoted as P(B)
- P(B) = 80/240 = .333

7

5

What is the Union of Events A and B?

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- What is the union of Events A (Received Nicotine Patch) and B (No Longer Smoking)
- (A ∪ B) =
- <u>120</u> Everyone who received the patch
- + __80 Everyone who no longer smokes
- - <u>56</u> Everyone who is both
- (A ∪ B) = 120 + 80 56 = 144
- $P(A \cup B) = 144/240 = .60$

Intersection of Receiving the Patch Versus No Longer Smoking

- What is the Intersection Receiving the Patch Versus No Longer Smoking?
- $(A \cap B) = ?$
- This everyone who Received the Patch AND also is No Longer Smoking
- From the table we can see the cell that corresponds to this statement

• ((A ∩	B)	=	56

• $P(A \cap B) = 56/240 = .233$

		Subject Sti	II Smoking	
		YES	NO	Row Margins
Subject	Nicotine Patch	64	56	120
Treatme nt	Placebo	96	24	120
	Column Margins	160	80	240

9

Probability Formulas Check

- Probability of a Union $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- P(A) = .5
- P(B) = .333
- P(A) + P(B) = .833
- P(A∩B) = .233
- $P(A \cup B) = .833 .233 = .600$

10

Conditional Probability

 A Conditional Probability statement would be "The probability of No Longer Smoking given you received the Nicotine Patch" and is defined as

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

- There are 120 in total who received the Nicotine Patch in the study – see the number in the row margin
- This is the given, as in given you received the Nicotine Patch
- And 56 of those that received the patch were not smoking after 8 weeks
- So, P(B|A) = 56/120 = .467
- In a cross-tab this is called the row percentage
- It is a conditional probability, conditioned on the row attribute

12

П

Probability of Not Smoking Given you received the Nicotine Patch

		Subject Still Smoking		
		YES	NO	Row Margins
Subject	Nicotine Patch	64	56	120
Treatment				

- The new table is just the condition row the given
- P(B|A) = 56/120 = .467

13

The Compliment of A - Not Receiving the Nicotine Patch

- The Complement of A would be "Not Received the Patch" or "Received the Placebo"
- Denoted as A^c
- aka "Placebo"
- What is the $P(A^c)$ and $P(A^c \cap B)$?
 - $P(A^c) = 120/240 = .50$
 - $P(A^c \cap B) = 24/240 = .10$

		Subject Sti	II Smoking	
		YES	NO	Row Margins
Subject	Nicotine Patch	64	56	120
Treatme nt	Placebo	96	24	120
	Column Margins	160	80	240

14

16

The Conditional Probability of Not Smoking for A^c

- The probability of No Longer Smoking given you received the Placebo
- P(B|A^c)
 - $P(B|A^c) = .10/.50 = .20$
- The easier way is to solve it from the table:
 - $P(B|A^c) = 24/120 = .20$

$P(B \mid A^c) =$	$\underline{P(A^c \cap B)}$
I(D A) =	$P(A^c)$

		Subject Sti	II Smoking	
		YES	NO	Row Margins
Subject				
Treatme nt	Placebo	96	24	120

Look at the SAS output for this data

Look at the first cell -**Nicotine Patch who are Still Smoking**

Frequency Percent Row Pct Col Pct	YES
Nicotine	64 26.67 53.33 40.00

Percent	The cell value over the total	64/240*100 = 26.67
Row Pct	The cell value over the row margin on the right	64/120*100 = 53.33
Col Pct	The cell value over the column margin on the bottom	64/160*100 = 40.00

Look at the second cell -**Nicotine Patch who are No Longer Smoking**

Frequency Percent Row Pct Col Pct	No
Nicotine	56 23.33 46.67 70.00

Percent	The cell value over the total	56/240*100 = 23.33
Row Pct	The cell value over the row margin on the right	56/120*100 = 46.67
Col Pct The cell value over the column margin on the bottom		56/80*100 = 70.00

18

Now answer me this....

- The P(A|B) for our table = ?
- This is the Probability of receiving a Nicotine Patch given you are No Longer **Smoking**
- We can solve this using the probability formula
 - $P(A|B) = P(A \cap B)/P(B)$ = .233/.333 = .70
- Or we can simply calculate a column percentage
 - P(A|B)

= 56/80	= .70			
Does	this	make	any	sense??

19

How to percentage a table

- If you can specify a conditional probability
- Or if you can specify that one variable causes or influences a second variable
 - The first variable is called an independent variable (this is the given)
 - The second is the dependent variable
- Percentage in the direction of the independent variable
 - If the independent variable is at the top, use column percentages
 - If the independent variable is on the side, use row percentages

What is the best way to percentage the smoking data?

- It seems to me that:
 - · Given the analysis fits a designed experiment
 - And subjects were randomly assigned to a treatment (Nicotine Patch) and control group (Placebo)
 - And there is a time lag between when the patch is first administered and when the recording of "still smoking" occurred (8 weeks)
 - And the interest of the experiment is whether the patch helped keep people from smoking
- The direction of the conditional probability is expected to be, given that you received a patch, what is the probability that you are no longer smoking?

Independence

- Events A and B are independent events if the occurrence of B does not alter the probability that A has occurred.
 - P(A|B) = P(A)
 - P(B|A) = P(B)
- Events that are not independent are dependent

22

Independence

- Furthermore, if Events A and B are independent, then the probability of their intersection simplifies to:
 - $P(A \cap B) = P(A)P(B)$
- Why???
 - $P(A \cap B) = P(A)P(B|A)$
 - And if A and B are independent then, P(B|A) = P(B)
- So, with independence, $P(A \cap B) = P(A)P(B)$

What would our data look like if it were independent?

- One strategy in statistics is to propose a hypothesized distribution and then compare what we observe to our model of independence
- We could propose a model of independence.
- If our variables were independent of each other, then the data would be based on the marginal distributions
- Our model of independence is based on row and column marginals

Observed versus Expected Data

- this is the data we observe based on the results of the experiment
- and this is the data we "expect" based on a model of independence
- Notice in the model of independence the row and column marginals are the same, but the cell frequencies changed.
- Next, how to generate expected frequencies

		Subject Sti		
		YES	NO	Row Margins
Subject Treatment	Nicotine Patch	64	56	120
	Placebo	96	24	120
	Column Margins	160	80	240

25

27

Solving for Expected Frequencies

- Remember, I wanted a model of independence, which means
 - $P(B|A) = P(A \cap B)/P(A) = P(B)$
 - $P(A|B) = P(A \cap B)/P(B) = P(A)$
- A simple way to make this happen is make the expected frequencies a function of the row and column marginals

26

Solving for Expected Frequencies

- For the second cell, I want the expected frequency e₁₂ to equal the following:
 - $e_{12}/80 = 120/240$
 - $e_{12} = (80*120)/240 = 40$
- If this cell is 40, then
 - P(B|A) = P(B)
 - The probability of Not Smoking given the Nicotine Patch = the probability of Not Smoking
 - 40/120 =
 - \bullet = 80/240 = .333

Solving for Expected Frequencies

- Patch, Yes
 - \bullet = (160*120)/240 = 19,200/240 = 80
- Patch. No
 - \bullet = (80*120)/240 = 9,600/240 = 40
- Placebo, Yes
 - \bullet = (160*120)/240 = 19,200/240 = 80
- Placebo, No
 - \bullet = (80*120)/240 = 9,600/240 = 40

160

Column

28

Model of Independence

- Generating expected frequencies under a model of independence can be very useful
- We can compare our model to the data to see how well the data fits the expected frequencies – how we do this will come later!
- Depending upon our model, we may or may not want to see a good fit.
 - With a Model of Independence, we often don't want a good fit!
 - Because a bad fit means there is a relationship between the two variables – using a patch influences whether a subject stops smoking.

29

Summary

- Let me simplify know how to percentage a table!!!!
 - Decide on total, row or column percentages
 - Can be based on assuming one variable to be dependent and another independent
- The concept of independence is very important in statistics!
 - We can fit a model of independence based on row and column margins
 - We can see how our model compares with the actual data