Pfaffova DE ter uporaba Fourierjeve in Laplaceove transformacije

Jimmy Zakeršnik

Fakulteta za naravoslovje in matematiko

5. april 2024

Napovednik

- Motivacijski problemi
- Pfaffova DE
- Fourierjeva transformacija
- Laplaceova transformacija
- Literatura

Motivacijski problemi

Za motivacijo si zastavimo naslednje probleme:

- ② Za c>0 najdi rešitev PDE $\frac{\partial^2 u}{\partial t^2}(x,t)=c^2\frac{\partial^2 u}{\partial x^2}(x,t)$ na $\mathbb{R}\times(0,\infty)$ pri pogojih $\forall x\in\mathbb{R}: u(x,0)=f(x)\ \&\ \frac{\partial u}{\partial t}(x,0)=g(x).$ Pri tem predpostavi, da sta funkciji $f,g\in\mathcal{C}^1(\mathbb{R}).$
- Oenimo, da imamo navpično postavljeni žleb po katerem spustimo kroglico. Kakšne oblike mora biti žleb, da bo čas potovanja kroglice po njem do izbrane točke neodvisen od začetne točke, s katere smo kroglico spustili? Pri tem zanemarimo zračni upor in trenje.

Pfaffova DE - uvod

Definicija

Naj bodo $F_i:\mathbb{R}^n\to\mathbb{R}$ zvezne funkcije neodvisnih spremenljivk x_1,x_2,\ldots,x_n . *Pfaffova diferencialna enačba* je enačba oblike

$$\sum_{i=1}^{n} F_i(x_1, x_2, \dots, x_n) dx_i = 0$$

Pfaffova DE - uvod

Definicija

Naj bodo $\forall i \in \{1,2,\ldots,n\}$ $F_i: \mathbb{R}^n \to \mathbb{R}$ zvezne funkcije, ki določajo Pfaffovo diferencialno enačbo $\sum_{i=1}^n F_i(x_1,x_2,\ldots,x_n)dx_i=0$. Če obstaja taka funkcija $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da za njen totalni diferencial du velja $du = \langle \nabla u, [dx_1,dx_2,\ldots,dx_n] \rangle = \sum_{i=1}^n F_i dx_i$, potem pravimo, da je enačba eksaktna.

Pfaffova DE - uvod

Definicija

Naj bodo $\forall i \in \{1,2,\ldots,n\}$ $F_i: \mathbb{R}^n \to \mathbb{R}$ zvezne funkcije, ki določajo Pfaffovo diferencialno enačbo $\sum_{i=1}^n F_i(x_1,x_2,\ldots,x_n)dx_i=0$. Če obstaja taka funkcija $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da za njen totalni diferencial du velja $du = \langle \nabla u, [dx_1,dx_2,\ldots,dx_n] \rangle = \sum_{i=1}^n F_i dx_i$, potem pravimo, da je enačba *eksaktna*.

Definicija

Pravimo, da je Pfaffova diferencialna enačba $\sum_{i=1}^n F_i dx_i = 0$ integrabilna, če obstajata taki funkciji $\mu(x_1, x_2, \dots, x_n) \in \mathcal{C}^1$ in $u(x_1, x_2, \dots, x_n) \in \mathcal{C}^1$, da je $< \nabla u, [dx_1, dx_2, \dots, dx_n]^\top >= \sum_{i=1}^n (\mu F_i) dx_i$

Kvazi-homogene funkcije

Definicija

Pravimo, da je funkcija $f: \mathbb{R}^n \to \mathbb{R}$ kvazi-homogena stopnje (oz. reda) $m \in \mathbb{Z}$, če obstajajo taka neničelna števila $a_1, a_2, \ldots, a_n \in \mathbb{Z}$, da velja:

$$f(x_1t^{a_1}, x_2t^{a_2}, \dots, x_nt^{a_n}) = t^m f(x_1, x_2, \dots, x_n)$$

za vsak $t \in \mathbb{R}$. V tem primeru pravimo, da je število a_i dimenzija spremenljivke x_i .

Zgled

Funkcija

$$f(x,y) = 4x^3y^3 - 3x^2y^6 + 2xy^9 - y^{12}$$

je kvazi-homogena reda 12 z dimenzijama 3 ter 1.

Kvazi-homogene funkcije

Trditev

Naj bo $f:\mathbb{R}^n \to \mathbb{R}$ kvazi-homogena funkcija reda m, z dimenzijami a_1,a_2,\ldots,a_n . Za $x_1 \neq 0$ in vse $i \in \{2,3,\ldots,n\}$ označimo: $b_i = \frac{a_i}{a_1}$ in $y_i = \frac{x_i}{x_1^{b_i}}$. Tedaj je

$$f(x_1, x_2, \dots, x_n) = x_1^{\frac{m}{a_1}} f(1, y_2, \dots, y_n)$$

Kvazi-homogene funkcije

Trditev

Naj bo $f:\mathbb{R}^n o \mathbb{R}$ kvazi-homogena funkcija reda m, z dimenzijami a_1,a_2,\ldots,a_n . Za $x_1 \neq 0$ in vse $i \in \{2,3,\ldots,n\}$ označimo: $b_i = \frac{a_i}{a_1}$ in $y_i = \frac{x_i}{x_1^{b_i}}$. Tedaj je

$$f(x_1, x_2, \dots, x_n) = x_1^{\frac{m}{a_1}} f(1, y_2, \dots, y_n)$$

Trditev

Naj bo $f: \mathbb{R}^n \to \mathbb{R}$ kvazi-homogena \mathcal{C}^1 funkcija reda m z dimenzijami a_1, a_2, \ldots, a_n . Tedaj velja enakost:

$$mf(x_1, x_2, \dots, x_n) = \sum_{i=2}^n a_i x_i \frac{\partial f}{\partial x_i}(x_1, x_2, \dots, x_n)$$

Kvazi-homogene Pfaffove DE

Definicija

Pravimo, da je Pfaffova diferencialna enačba $\sum_{i=1}^{n} F_i dx_i = 0$:

- homogena reda m, če so za vsak $i \in \{1, 2, \dots, n\}$ fukncije F_i homogene funkcije reda m.
- kvazi-homogena reda m, z dimenzijami a_1, a_2, \ldots, a_n , če so za vsak $i \in \{1, 2, \ldots, n\}$ fukncije F_i kvazi-homogene funkcije reda $m-a_i$ (z dimenzijami a_i).

Metode reševanja

Za eksplicitne enačbe:

- Metoda ostrega pogleda
- Reševanje sistema PDE prvega reda
- Integracija potencialnega polja
- Enačbe z ločljivimi spremenljivkami

Za integrabilne enačbe:

- Enačbe z ločljivo spremenljivko
- Homogene enačbe
- Natanijeva metoda
- Mayerjeva metoda
- Bertrandova metoda
- Kvazi-homogene enačbe

Metoda ostrega pogleda

Opis

Najprej si poglejmo najpreprostejšo metodo - metodo ostrega pogleda. Kot ime metode naimguje, tukaj rešitev »uganemo«, kar lahko storimo v nekaterih redkih primerih.

Metoda ostrega pogleda

Opis

Najprej si poglejmo najpreprostejšo metodo - metodo ostrega pogleda. Kot ime metode naimguje, tukaj rešitev »uganemo«, kar lahko storimo v nekaterih redkih primerih.

Zgled

Za Pfaffovo enačbo xdx+ydy+zdz=0 lahko na podlagi simetrije in preprostosti funkcij, ki v njej nastopajo, uganemo, da je $u(x,y,z)=\frac{1}{2}(x^2+y^2+z^2)$ iskana funkcija, ki nam da družino rešitev u(x,y,z)=c.

Reševanje sistema PDE prvega reda

Opis

Funkcijo *u*, ki določa rešitev, dobimo kot rešitev sistema:

$$u_x(x, y, z) = P(x, y, z)$$

$$u_y(x,y,z) = Q(x,y,z)$$

$$u_z(x, y, z) = R(x, y, z)$$

Reševanje sistema PDE prvega reda

Opis

Funkcijo *u*, ki določa rešitev, dobimo kot rešitev sistema:

$$u_x(x, y, z) = P(x, y, z)$$

$$u_y(x, y, z) = Q(x, y, z)$$

$$u_z(x, y, z) = R(x, y, z)$$

Zgled

Rešitev enačbe $yze^{xyz}dx+xze^{xyz}dy+xye^{xyz}dz=0$ s to metodo je podana s funkcijo $u(x,y,z)=e^{xyz}+C.$

Integracija potencialnega polja

Opis

Iz vektorske analize vemo, da, če trojica (P,Q,R) tvori \mathcal{C}^1 vektorsko polje F, nam eksaktnost enačbe Pdx+Qdy+Rdz=0 pove, da obstaja tako \mathcal{C}^2 skalarno polje u, da je $\nabla u=F=(P,Q,R)$. Tako lahko uporabimo standardno metodo integriranja potencialnega vektorskega polja, da dobimo potencial u, ki določa rešitev dane Pfaffove diferencialne enačbe.

Integracija potencialnega polja

Opis

Iz vektorske analize vemo, da, če trojica (P,Q,R) tvori \mathcal{C}^1 vektorsko polje F, nam eksaktnost enačbe Pdx+Qdy+Rdz=0 pove, da obstaja tako \mathcal{C}^2 skalarno polje u, da je $\nabla u=F=(P,Q,R)$. Tako lahko uporabimo standardno metodo integriranja potencialnega vektorskega polja, da dobimo potencial u, ki določa rešitev dane Pfaffove diferencialne enačbe.

Zgled

Rešitev enačbe $yze^{xyz}dx+xze^{xyz}dy+xye^{xyz}dz=0$ s to metodo je podana s funkcijo $u(x,y,z)=e^{xyz}+C.$

Enačbe z ločljivimi spremenljivkami

Opis

Metodo ločevanja spremenljivk uporabimo, kadar lahko dano Pfaffovo diferencialno enačbo P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 zapišemo v obliki $\acute{P}(x)dx+\acute{Q}(y)dy+\acute{R}(z)dz=0$. V tem primeru funkcijo u dobimo kot naslednjo vsoto integralov:

$$u(x, y, z) = \int \acute{P}(x)dx + \int \acute{Q}(y)dy + \int \acute{R}(z)dz$$

Enačbe z ločljivimi spremenljivkami

Opis

Metodo ločevanja spremenljivk uporabimo, kadar lahko dano Pfaffovo diferencialno enačbo P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 zapišemo v obliki $\acute{P}(x)dx+\acute{Q}(y)dy+\acute{R}(z)dz=0$. V tem primeru funkcijo u dobimo kot naslednjo vsoto integralov:

$$u(x, y, z) = \int \acute{P}(x)dx + \int \acute{Q}(y)dy + \int \acute{R}(z)dz$$

Zgled

Pfaffova DE xdx+ydy+zdz=0 je enačba z (že) ločenimi spremenljivkami. Ko uporabimo to metodo dobimo funkcijo

$$u(x,y,z) = \frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} + C = \frac{1}{2}(x^2 + y^2 + z^2) + C$$
, ki določa rešitev.

Integrabilne enačbe z ločljivo spremenljivko

Opis

Denimo, da je spremenljivka z ločljiva spremenljivka v enačbi P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0. Tedaj lahko to enačbo preoblikujemo v obliko $\acute{P}(x,y)dx+\acute{Q}(x,y)dy+\acute{R}(z)dz=0$. Integrabilnost enačbe nam tukaj da pogoj $\frac{\partial \acute{P}}{\partial y}=\frac{\partial \acute{Q}}{\partial x}$, to pa nam pove, da je $\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ totalni diferencial neke funkcije. Označimo to funkcijo z v. Torej, $dv=\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ in naša enačba sedaj dobi obliko $dv+\acute{R}(z)dz=0$. Funkcija u(x,y,z), ki jo iščemo, je potem dobljena kot vsota funkcije v in integrala $\int \acute{R}(z)dz$: $u(x,y,z)=v(x,y)+\int \acute{R}(z)dz$.

Integrabilne enačbe z ločljivo spremenljivko

Opis

Denimo, da je spremenljivka z ločljiva spremenljivka v enačbi P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0. Tedaj lahko to enačbo preoblikujemo v obliko $\acute{P}(x,y)dx+\acute{Q}(x,y)dy+\acute{R}(z)dz=0$. Integrabilnost enačbe nam tukaj da pogoj $\frac{\partial \acute{P}}{\partial y}=\frac{\partial \acute{Q}}{\partial x}$, to pa nam pove, da je $\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ totalni diferencial neke funkcije. Označimo to funkcijo z v. Torej, $dv=\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ in naša enačba sedaj dobi obliko $dv+\acute{R}(z)dz=0$. Funkcija u(x,y,z), ki jo iščemo, je potem dobljena kot vsota funkcije v in integrala $\int \acute{R}(z)dz$: $u(x,y,z)=v(x,y)+\int \acute{R}(z)dz$.

Zgled

Pfaffova DE $\frac{(x+y)}{z}dx+\frac{xy+1}{yz}dy+(z^2+1)dz=0$ ni eksaktna, je pa integrabilna. Ko ločimo spremenljivko z, s to metodo dobimo rešitev, ki je določena s funkcijo $u(x,y,z)=\frac{x^2}{2}+xy+\ln|y|+\frac{z^4}{4}+\frac{z^2}{2}+C$.

Homogene enačbe

Opis

Denimo, da je Pfaffova diferencialna enačba

P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 homogena reda m. Sedaj vpeljemo novi spremenljivki u in v, da velja y=xv ter z=xw. Tedaj dobi naša enačba obliko $x^m(P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw)=0$ oziroma P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw=0. Dobljena enačba je enačba z ločljivo spremenljivko (specifično, x je ločljiva), ki jo rešimo po prejšnji metodi.

Homogene enačbe

Opis

Denimo, da je Pfaffova diferencialna enačba

P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 homogena reda m. Sedaj vpeljemo novi spremenljivki u in v, da velja y=xv ter z=xw. Tedaj dobi naša enačba obliko $x^m(P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw)=0$ oziroma P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw=0. Dobljena enačba je enačba z ločljivo spremenljivko (specifično, x je ločljiva), ki jo rešimo po prejšnji metodi.

Zgled

Ta metoda nam za Pfaffovo DE $x^2yzdx+xy^2zdy+xyz^2dz=0$ da rešitev, ki jo določa funkcija $u(x,y,z)=\ln \lvert x\rvert+\frac{(y^2+z^2)}{2x^2}.$

Natanijeva metoda

Opis

- ① Eno spremenljivko (npr. z) fiksiramo v konstanto, rešimo pripadajočo Pfaffovo DE $\Phi_1(x,y,z)=c_1$
- 2 rešitev originalne enačbe je oblike $\Phi_1(x,y,z) = \psi(z)$
- $oldsymbol{0}$ Fiksiramo eno od preostalih spremenljivk (npr. x)- rešimo pripadajočo Pfaffovo DE K(y,z)=c
- 4 Iz Φ_1 in K izrazimo nefiksirano spremenljivko dobimo $\psi(z)$

Natanijeva metoda

Opis

- **1** Eno spremenljivko (npr. z) fiksiramo v konstanto, rešimo pripadajočo Pfaffovo DE $\Phi_1(x,y,z)=c_1$
- 2 rešitev originalne enačbe je oblike $\Phi_1(x,y,z) = \psi(z)$
- § Fiksiramo eno od preostalih spremenljivk (npr. x)- rešimo pripadajočo Pfaffovo DE K(y,z)=c
- lacktriangledown Iz Φ_1 in K izrazimo nefiksirano spremenljivko dobimo $\psi(z)$

Zgled

Za Pfaffovo DE $\frac{(x+y)}{z}dx+\frac{xy+1}{yz}dy+(z^2+1)dz=0$ nam ta metoda da $\Phi_1(x,y,z)=\frac{1}{z}(\frac{x^2}{2}+xy+\ln|y|)$ in $K(y,z)=\ln|y|+\frac{z^2(z^2+2)}{4}=c$. Izrazimo $y(z)=e^{\frac{4c-z^2(z^2+2)}{4}}$ in nato dobimo $\psi(z)=\frac{4c-z^2(z^2+2)}{4z}$. Na koncu dobimo rešitev $\frac{x^2}{2}+xy+\ln|y|+\frac{z^4+2z^2}{4}=c_2$.

Mayerjeva metoda

Opis

- ① Z nastavkom (npr. z=x+ky) iz naše prvotne enačbe eliminiramo spremenljivko z. Dobimo Pfaffovo DE v 2 spremenljivkah z rešitvijo $\Phi(x,y,k)=\acute{c}.$
- 2 $k=rac{z-x}{y}$ vstavimo v $\Phi(x,y,k)=\Phi(c,0,k)=d$ in eliminiramo k .
- **3** Naša rešitev je $\Phi(x, y, \frac{z-x}{y}) = d$.

Mayerjeva metoda

Opis

- ① Z nastavkom (npr. z=x+ky) iz naše prvotne enačbe eliminiramo spremenljivko z. Dobimo Pfaffovo DE v 2 spremenljivkah z rešitvijo $\Phi(x,y,k)=\acute{c}.$
- 2 $k=rac{z-x}{y}$ vstavimo v $\Phi(x,y,k)=\Phi(c,0,k)=d$ in eliminiramo k .
- $\textbf{ 3} \ \, \text{Naša rešitev je } \Phi(x,y,\tfrac{z-x}{y}) = d.$

Zgled

Ta metoda nam za Pfaffovo DE xdx+ydy+zdz=0 da rešitev $\frac{1}{2}(x^2+y^2+z^2)=c^2.$

Bertrandova metoda

Opis

- Rešimo linearno PDE $(Q_z-R_y)u_x+(R_x-P_z)u_y+(P_y-Q_x)u_z=0$ za u, dobimo prva integrala v in w.
- 2 Poiščemo funkciji, $\lambda(v,w)$ in $\mu(v,w)$, za kateri velja: $P=\lambda v_x + \mu w_x, Q=\lambda v_y + \mu w_y$ in $R=\lambda v_z + \mu w_z$.
- To vstavimo v originalno enačbo in jo reduciramo na (rešljivo) Pfaffovo DE v dveh spremenjivkah.

Bertrandova metoda

Opis

- ① Rešimo linearno PDE $(Q_z-R_y)u_x+(R_x-P_z)u_y+(P_y-Q_x)u_z=0$ za u, dobimo prva integrala v in w.
- 2 Poiščemo funkciji, $\lambda(v,w)$ in $\mu(v,w)$, za kateri velja: $P=\lambda v_x + \mu w_x, Q=\lambda v_y + \mu w_y$ in $R=\lambda v_z + \mu w_z$.
- To vstavimo v originalno enačbo in jo reduciramo na (rešljivo) Pfaffovo DE v dveh spremenjivkah.

Zgled

Bertrandova metoda nam za Pfaffovo DE $\frac{(x+y)}{z}dx+\frac{xy+1}{yz}dy+(z^2+1)dz=0$ da $\mu(x,y,z)=\frac{1}{z}$ in $\lambda(x,y,z)=\frac{(z^2+1)}{c_3'(z)}$ za poljubno \mathcal{C}^1 funkcijo $c_3(z)$. Označimo $f(v)=c_3^{-1}(v)$, dobimo Pfaffovo DE $\frac{dv}{f(v)}+\frac{f^2(v)+1}{c_3'(f(v))}dw=0$, rešitev pa je podana s funkcijo $g(v,w)=w+\int \frac{c_3'(f(v))}{f(v)(f^2(v)+1)}dv$. Za $c_3(z)=\frac{z^7}{7}+\frac{2z^5}{5}+\frac{z^3}{3}$ dobimo ravno rešitev, ki smo jo dobili s prejšnjima metodama.

Kvazi-homogene enačbe

Zadosten pogoj

Denimo, da so P,Q in R naslednje oblike:

$$\begin{array}{l} P(x,y,z) = \sum_{i=1}^{n_1} a_i x^{\alpha_i} y^{\beta_i} z^{\gamma_i}, Q(x,y,z) = \sum_{i=j}^{n_2} b_j x^{\lambda_j} y^{\mu_j} z^{\nu_j} \text{ in } \\ R(x,y,z) = \sum_{k=1}^{n_3} c_k x^{\varepsilon_k} y^{\eta_k} z^{\zeta_k}, \text{ kjer so } a_i,b_j \text{ in } c_k \text{ koeficienti in } \\ \alpha_i,\beta_i,\gamma_i,\lambda_j,\mu_j,\nu_j,\varepsilon_k,\eta_k,\zeta_k \in \mathbb{Q}, \ \forall i \in \{1,\dots,n_1\}, \forall j \in \{1,\dots,n_2\}, \forall k \in \{1,\dots,n_3\}. \end{array}$$

Pfaffova DE je kvazi-homogena reda m, če je sistem $n_1 + n_2 + n_3$ enačb

$$p(\alpha_{i}+1) + q\beta_{i} + r\gamma_{i} - m = 0 ; i \in \{1, ..., n_{1}\}$$

$$p\lambda_{j} + q(\mu_{j}+1) + r\nu_{j} - m = 0 ; j \in \{1, ..., n_{2}\}$$

$$p\varepsilon_{k} + q\eta_{k} + r(\zeta_{k}+1) - m = 0 ; k \in \{1, ..., n_{3}\}$$

usklajen.

Kvazi-homogene enačbe

Opis

Po trditvi zapišemo

$$\begin{split} P(x,y,z) &= x^{\frac{m-p}{p}} P(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}), Q(x,y,z) = x^{\frac{m-q}{p}} Q(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}) \\ &\text{in } R(x,y,z) = x^{\frac{m-r}{p}} R(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}). \end{split}$$

- $\text{ Uvedemo } u = yx^{-\frac{q}{p}} \text{ in } v = zx^{-\frac{r}{p}} \text{ ter } \\ A(u,v) = \frac{pQ(1,u,v)}{pP(1,u,v) + quQ(1,u,v) + rvR(1,u,v)} \text{ in } \\ B(u,v) = \frac{pR(1,u,v)}{pP(1,u,v) + quQ(1,u,v) + rvR(1,u,v)}.$
- **3** Enačba se reducira v Pfaffovo DE z ločljivo spremenljivko: $\frac{dx}{x} + A(u,v)du + B(u,v)dv = 0$

Kvazi-homogene enačbe

Opis

Po trditvi zapišemo

$$P(x,y,z) = x^{\frac{m-p}{p}} P(1, yx^{-\frac{q}{p}}, zx^{-\frac{r}{p}}), Q(x,y,z) = x^{\frac{m-q}{p}} Q(1, yx^{-\frac{q}{p}}, zx^{-\frac{r}{p}})$$
 in $R(x,y,z) = x^{\frac{m-r}{p}} R(1, yx^{-\frac{q}{p}}, zx^{-\frac{r}{p}})$.

- § Enačba se reducira v Pfaffovo DE z ločljivo spremenljivko: $\frac{dx}{dx} + A(u,v)du + B(u,v)dv = 0$

Zgled

Pfaffova DE $(5x^3+2y^4+2y^2z+2z^3)dx+(4xy^3+2xyz)dy+(xy^2+2xz)dz=0$ je kvazi-homogena reda 4. Opisana metoda nam da rešitev $x^5+x^2y^4+x^2y^2z+x^2z^2=E$.

Matrike

Izrek

Naj bo R komutativen polkolobar in M prost R-polmodul ranga r. Naj bo T neka prosta baza M. Potem so za šibko bazo S naslednje trditve ekvivalentne:

- $oldsymbol{0}$ S je prosta baza M
- **2** |S| = r
- $oldsymbol{0}$ prehodna matrika med T in S je enolično določena in obrnljiva

Matrike

Definicija

Naj bo R polkolobar in $M=R^n$ polmodul nad R. Naj bo $A\in M_n(R)$ matrika, ki pripada endomorfizmu $h:M\to M$. Pravimo, da je $\lambda\in R$ lastna vrednost matrike A, če obstaja tak $v\in M\setminus\{\theta\}$, da velja $A*v=\lambda\cdot v$. Takemu vektorju v, če obstaja, pravimo lastni vektor matrike A za λ .

Matrike

Definicija

Naj bo R polkolobar in $M=R^n$ polmodul nad R. Naj bo $A\in M_n(R)$ matrika, ki pripada endomorfizmu $h:M\to M$. Pravimo, da je $\lambda\in R$ lastna vrednost matrike A, če obstaja tak $v\in M\setminus\{\theta\}$, da velja $A*v=\lambda\cdot v$. Takemu vektorju v, če obstaja, pravimo lastni vektor matrike A za λ .

Izrek

Naj bo R komutativen dioid in $A\in M_n(R)$. Potem je λ lastna vrednost matrike A natanko tedaj, ko so stolpci matrike $\bar{A}(\lambda)=\begin{bmatrix}A&\lambda\cdot I_n\\I_n&I_n\end{bmatrix}$ linearno odvisni.

Pideterminanta in karakteristični pipolinom

Definicija

Naj bo R nek polkolobar in $X \in M_n(R)$. Urejeni dvojici podani s predpisom

$$\begin{split} pdt(X) &= \big(\bigoplus_{\substack{\pi \in P^+(n) \\ \sigma \in P(n)}} \sigma(\bar{\pi}(X)), \bigoplus_{\substack{\pi \in P^-(n) \\ \sigma \in P(n)}} \sigma(\bar{\pi}(X))\big) \\ &= ([\![det^+(X)]\!], [\![det^-(X)]\!]) = (pdt^+(X), pdt^-(X)) \end{split}$$

pravimo pideterminanta matrike X.

Pideterminanta in karakteristični pipolinom

Definicija

Naj bo R nek polkolobar in $X \in M_n(R)$. Karakteristični pipolinom matrike X v spremenljivki λ je urejena dvojica polinomov, podana s predpisom

$$pp_X(\lambda) = (\llbracket p_X^+(\lambda) \rrbracket, \llbracket p_X^-(\lambda) \rrbracket)$$
$$= (pp_X^+(\lambda), pp_X^-(\lambda))$$

Pri tem polinoma $p_X^+(\lambda)$ in $p_X^-(\lambda)$ dobimo tako, da se pretvarjamo, da delamo nad poljem in zapišemo pripadajoči karakteristični polinom $p_X(\lambda) = p_X^+(\lambda) \ominus p_X^-(\lambda)$.

Posplošeni Cayley-Hamiltonov izrek

Izrek

Naj bo R poljuben polkolobar in $X\in M_n(R)$ neka kvadratna matrika nad R. Potem je $pp_X^+(X)=pp_X^-(X)$.

Literatura

- C. K. Fong, Equations involving differentials: Pfaffian equations, [ogled 10. 3. 2024], dostopno na https://people.math.carleton.ca/~ckfong/S12.pdf.
- 2 B. Magajna, *Uvod v diferencialne enačbe, kompleksno in Fourierjevo analizo*, DMFA založništvo, Ljubljana, 2018.
- K. R. Unni, Pfaffian differential expressions and equations, diplomsko delo, v: All graduate theses and dissertations, [ogled 10. 3. 2024], dostopno na
 - https://core.ac.uk/download/pdf/127676355.pdf.
- 4 E. Zakrajšek, Analiza IV, DMFA založništvo, Ljubljana, 1999.