QM Tutorial Q.14

Raghav Gupta

September 28, 2012

Consider Compton Scattering. Show that if the angle of scattering θ increases beyond a certain value θ_0 , the scattered photon will never have energy larger than $2m_oc^2$, irrespective of the energy of the incident photon. Find the value of θ_0 .

Consider the equation relating the wavelengths of incident and scattered photon-

Using the relation $E_{photon} = \frac{hc}{\lambda}$, we replace the photon wavelengths by their energies and divide by hc to get

$$\frac{1}{E_f} - \frac{1}{E_i} = \frac{(1-cos\theta)}{m_0c^2}$$
 Rearranging, we get

$$E_f = \frac{E_i \times m_0 c^2}{E_i \times (1 - \cos\theta) + m_0 c^2}$$

Dividing the numerator and denominator by E_i , we get

$$E_f = \frac{m_0 c^2}{(1 - \cos \theta) + \frac{m_0 c^2}{E_i}}$$

Clearly, the maximum value for a fixed θ this expression can have is $\frac{m_0c^2}{1-\cos\theta}$, that is when $E_i \to \infty$ (since $E_i > 0$). Thus, no matter what the initial energy of the photon may be, there is a value of $\theta = \theta_0$ for which $E_f < 2m_0c^2$. To calculate θ_0 , we put

$$E_f = \frac{m_0 c^2}{1 - \cos \theta} < 2m_0 c^2 \Rightarrow \theta > 60^{\circ}$$

Thus,
$$\theta_0 = 60^{\circ}$$