無線センサネットワーク用 可変指向性MACプロトコルにおける セクタ内衝突回避方式

電気・電子情報工学専攻 情報通信システム分野 ワイヤレス通信研究室

博士前期課程2年 甲斐祐弥

指導教員:上原秀幸

無線センサネットワーク(WSNs:Wireless Sensor Networks)

センサノード

doctor (C)

■ 通信モジュール

- センサ
- MPU(CPU)
- **■** <u>バッテリ</u>

森林,構造物などの

適応分野:カメラを用いた

多地点モニタリング

長期稼働のために省電力化,高スループット化が必要

目的

各通信状態における消費電流

送信状態(3dBm)	16.5mA
受信状態	15.5mA
スリープ状態	20μΑ

適切なメディアアクセス制御手法(MAC)が必要

目的: 高スループットかつ低消費電力を目指した MACプロトコルの設計

MAC: Medium Access Control

可変指向性アンテナによる同時通信

特定の方向に電波を放射するアンテナ

空間利用効率が向上し、高スループットを実現

各空間(セクタ)にタイムスロットを割り当て (別空間と競合がないように)

同時通信

^{*}Carrier Sense Multiple Access / Collision Avoidance with Request to Send / Clear to Send

各空間(セクタ)にタイムスロットを割り当て (別空間と競合がないように)

同時通信

*Carrier Sense Multiple Access / Collision Avoidance with Request to Send / Clear to Send

各空間(セクタ)にタイムスロットを割り当て (別空間と競合がないように)

同時通信

^{*}Carrier Sense Multiple Access / Collision Avoidance with Request to Send / Clear to Send

各空間(セクタ)にタイムスロットを割り当て (別空間と競合がないように)

同時通信

*Carrier Sense Multiple Access / Collision Avoidance with Request to Send / Clear to Send

各空間(セクタ)にタイムスロットを割り当て (別空間と競合がないように)

同時通信

^{*}Carrier Sense Multiple Access / Collision Avoidance with Request to Send / Clear to Send

SAMACの問題点

隠れ端末により RTSの再送が増加 ⇒消費電力の増加, スループットの低下

同一セクタ内の衝突回避方式

高スループットかつ低消費電力を目指した MACプロトコルの設計

同一セクタ内のノードのRTSを聞き取れず,衝突が発生し消費電力が増加,スループットが低下

自律制御方式(ACSAMAC)

各ノードが通信状況を判断し 通信を抑制

他律制御方式(HCSAMAC)

親ノードが各子ノードの 通信タイミングを制御

シミュレーション諸元

パラメータ	値
ノード数	200
シミュレーション時間	500s
タイムスロット長	200ms
データ長	5.44ms
通信距離	20m
受信時消費電力	46.5mW
送信時消費電力	49.5mW
スリープ時消費電力	0.06mW

使用アンテナ: 理想的な指向性アンテナを 想定

セクタ数:K

番号がノード配置, 色がタイムスロットを表す

自律制御方式の特性評価

他律制御方式の特性評価

自分のスロット以外でスリープ 衝突のないタイミング ⇒消費エネルギーの削減 ⇒スループットの向上

22

自律制御方式と他律制御方式の比較

他律制御方式は自律制御方式に比べて性能が高い

まとめ

省電力化,高スループット化を目指した MACプロトコルの設計

- 自律制御方式,他律制御方式の両方式において 省電力化,高スループット化を実現
- セクタ数が多いほど性能が高い
- ・ 他律制御方式は自律制御方式に比べて**省電力**, 高スループット

ネットワークライフタイム,パケット到達率

セクタ数4,キューサイズ50,バッテリ容量1900mAh,ノード数100

パケット到達率

他律制御方式によりライフタイムの延長, 自律制御方式により高頻度で通信が可能

想定する可変指向性アンテナ

スイッチドビームアンテナやエスパアンテナを想定

エスパアンテナ

セクタ数:K

※指向性ビームは電力制御により全方位性ビームと同じ通信距離を想定

再送回数の評価

両提案方式で再送の削減を確認

ノード数100の場合

他律制御方式は自律制御方式に比べ省電力, 高スループットで動作

セクタ数が異なることによる消費電力の変化

セクタ数増加により 送信時の消費電力を削減可能

総消費電力への影響が少ない 各セクタ数による消費電力の違いは,

更にセクタ数を増加させた場合

基地局付近のボトルネックにより スループットの向上は少ない

省電力特性

省電力特性:基地局に到着したパケットあたりの消費エネルギー

自律制御方式の特性評価:SAMACとの比較

セクタ数4(ビーム幅90°)

消費エネルギー, スループットともに向上

他律制御方式の特性評価:SAMACとの比較

セクタ数4(ビーム幅90°)

33

シミュレーション結果:タイムスロット数

セクタ数	1	2	4	8
平均タイムスロット数	9.4	8.2	6.3	8.1
基地局が次回受信までに かかるタイムスロット数	9.4	4.1	1.6	1.01

- スロット数が少ないほど,次のスロット までの間隔が短く消費電力が増加
- タイムスロット数が少なくても,基地局付近でボトルネックになっているため, スループットの向上効果が少ない

SAMACの位置取得方法

空間を分割するために・・・

近隣ノードの位置取得が必要

各セクタでRSSI※を測定

各セクタでのRSSI値

自 ノード	相手 ノード	RSSI [dBm]
А	А	-75
Α	В	-70
÷	i	÷
D	В	-65
i.	:	÷
D	D	-70

各RSSIから近隣ノードの位置を推定し, ルート,スケジュールを形成

他律制御方式の受信待機時間の影響

受信待機時間:各親ノードが受信のために必ず受信待機する時間

他律制御方式は受信待機時間を短くしてもスループットの性能が変わらない

可変指向性アンテナの特徴:送信電力の削減

センサネットワークでは 通信時の電力消費大

セクタアンテナを用いて **送信電力**を削減

セクタアンテナの特徴

無指向性に比べ遠くに 放射することが可能

電力制御による応用

無指向性に比べ低電力で送信可能

SAMACの問題点(2)

非通信時に受信状態で待機

⇒消費電力が増加

