

Universidade Federal do Sul e Sudeste do Pará

Sistemas Distribuídos

Prof.: Warley Junior

wmvj@unifesspa.edu.br

PLANO DE DISCIPLINA

- ☐ Carga horária:
 - 48 horas teórica / 20 horas prática

- Objetivo Geral:
 - Prover o conhecimento dos conceitos básicos de sistemas distribuídos, bem como de técnicas e critérios de projeto e implementação.

PLANO DE DISCIPLINA

- □ Objetivos específicos:
 - Compreender o que são e para quê existem
 - □ Saber quando e como usar
 - ☐ Entender o arcabouço de componentes
 - ☐ Aprender técnicas para sua construção
 - Práticas: paradigmas, arquiteturas, tecnologias
 - Teóricas: modelos, algoritmos

- □ 50% aulas síncronas (ao vivo)
- □ 50% aulas assíncronas

Ferramentas

- Google Meet para aulas síncronas
- SIGAA para aulas assíncronas, materiais e atividades práticas
- Discord para chat, dúvidas e atividades em grupo

Aulas assíncronas

- Vídeo-aulas;
- Materiais para leitura;
- Atividades (quizzes, questionários, práticas, ...);
- Outros materiais (tutoriais, vídeos externos, ...).

Divulgação do material da semana geralmente na quarta-feira

Aulas síncronas: segundas 08:20 às 10:10

- Discussão com alunos sobre o assunto da semana;
- Aspectos práticos de sistemas distribuídos;
- Atividade Síncrona;
- Conversa com profissionais.

Avaliação

faceel.unifesspa.edu.br

PLANO DE DISCIPLINA

Slide 9 faceel.unifesspa.edu.br

Agenda

- □ <u>AULA 1:</u>
- □ Caracterização de Sistemas Distribuídos
 - Definição
 - Objetivos
 - Tipos de SDs
 - Desafios

Leitura Prévia

- COULOURIS, George. Sistemas distribuídos: conceitos e projetos. 5ª ed. Porto Alegre: Bookman, 2013.
 - Capítulo 1.
- TANENBAUM, Andrew S. Sistemas distribuídos: princípios e paradigmas. 2ª ed. São Paulo: Pearson Prentice Hall, 2007.
 - Capítulo 1.

Hora da interação!

https://www.menti.com/kfhmjuh72i

Conjunto de computadores independentes que se apresenta a seus usuários como um sistema único e coerente. (Andrew Tanenbaum)

Sistema em que componentes de hardware e software localizados em diferentes computadores interconectados se comunicam e coordenam suas ações trocando mensagens (George Coulouris)

Sistema onde você não consegue trabalhar por causa de uma **falha** em um **computador que você nunca viu**" (Leslie Lamport)

COMPUTADORES

INTERCONECTADOS

COMUNICAÇÃO (MENSAGENS)

COORDENAÇÃO DE AÇÕES (COLABORAÇÃO)

TRANSPARÊNCIA (SISTEMA ÚNICO)

COERÊNCIA / CONSISTÊNCIA

FALHAS!

Outra definição popular*:

"É a arte de resolver o mesmo problema que você pode resolver em um único computador usando múltiplos computadores"

Por que então desenvolver um sistema distribuído?!

* Distributed Systems for fun and profit. Mikito Takada.

http://book.mixu.net/distsys

Por que todo sistema que usa a Internet é distribuído. Ou seja, quase tudo desenvolvido atualmente!

- Sistemas distribuídos costumam ser organizados por meio de:
 - Camada de Nível Alto;
 - Camada de Software;
 - Camada Subjacente.

MIDDLEWARE

- Camada de software que fornece abstração de programação e pode mascarar heterogeneidade de:
 - □ Redes de computadores;
 - Máquinas;
 - □ Sistemas Operacionais;
 - □ Linguagens de programação.

MIDDLEWARE

faceel.unifesspa.edu.br

MIDDLEWARE

- MIDDLEWARES
 - Java RMI da SUN;
 - CORBA da OMG;
 - Sun RPC;
 - Web Services;
 - DCOM (Distributed Component Object Model) da Microsoft, etc.

Por que sistemas distribuídos?

- Compartilhamento
 - Documentos, dados, software, hardware
- Escalabilidade / desempenho
 - Mais carga → Mais recursos → Bom desempenho
- Custo x benefício
 - Computador: dinheiro em dobro ≠ desempenho em dobro
- □ Disponibilidade / integridade
 - Em caso de falhas, manter sistema no ar e não perder dados

Compartilhamento de recursos

- Documentos, dados, hardware, software, serviços, ...
- □ Por que?
 - Compartilhar é mais barato
 - Facilita colaboração e troca de informações

Transparência

- Aparenta ser um sistema único
- Distribuição de objetos é invisível
 - Esconde forma de acesso, localidade, relocação, migração, replicação, concorrência e falhas
- Pode ser relaxada em alguns casos
 - Desempenho, entendimento

Aberto

- Facilmente integrado a outros sistemas
- Padrões comuns, com interfaces bem definidas
- Interoperável, portável e extensível

Escalabilidade

- Desempenho não deve ser afetado por fatores em dimensões como:
 - **Tamanho**: aumento de usuários e recursos
 - Geográfica: usuários e recursos em localizações diferentes
 - Administrativa: abrange diferentes organizações administrativas

- □ COMPUTAÇÃO EM CLUSTER
 - Característica Homogênea

Figura 1.4 Exemplo de um sistema de computação de cluster.

☐ COMPUTAÇÃO EM GRADE

Característica Heterogeneidade

Figura 1.5 Arquitetura em camadas para sistemas de computação em grade.

}spa.edu.b

- Computação Móvel e Ubíqua
 - Computação Móvel é a execução de tarefas de computação, enquanto o usuário está se deslocando de um lugar a outro ou visitando lugares diferentes de seu ambiente usual.
 - Computação Ubíqua é a utilização de vários dispositivos computacionais pequenos e baratos, que estão presentes nos ambientes físicos dos usuários.

□ COMPUTAÇÃO MÓVEL E UBÍQUA

Figura 1.9 Monitoração de uma pessoa em um sistema eletrônico pervasivo de tratamento de saúde utilizando (a) um hub local ou (b) uma conexão contínua sem fio.

- REDE DE
 SENSORES SEM
 FIO
 - Smartphone sensing
 - Crowdsourcing
 - Internet das Coisas
 - Sistemas Ciberfísicos

☐ Computação Móvel na Nuvem

COMPUTAÇÃO EM NUVEM

"Traditional" Computing

- ✓ Everything is "**real"** (e.g., you touch your computer)
- ✓ You buy everything.
- ✓ You manage everything, e.g., buy a new disk storage, pay for software licenses, update software versions, you care about security issues etc.
- ✓ Everything is **only yours.**
- ✓ You must be at home to use everything.

Cloud computing

- Everything is **virtual** (you do not touch your computer, it is a virtual machine).
- ✓ Monthly subscription (pay-as-you-go).
- ✓ Cloud provider **manages** everything.
- ✓ Almost everything is shared.
- ✓ You may be anywhere (computer+browser).
- ✓ Everything is a service.

□ COMPUTAÇÃO EM NUVEM

COMPUTAÇÃO EM NUVEM

COMPUTAÇÃO EM NÉVOA

■ INTERNET

■ INTERNET

- A Internet é um conjunto de redes de computadores, de muitos tipos diferentes, interligadas.
- A Internet é um sistema distribuído muito grande. Ela permite que os usuários, onde quer que estejam, façam uso de serviços como a World Wide Web, e-mail e transferência de arquivos

■ INTRANET

Exemplos de Aplicações Distribuídas

Desafios - exemplo

- □ Imagine que você criou um sistema de rede social chamado *Tuits*, para compartilhamento de mensagens curtas na *Internet*
- □ Você implantou o sistema em um servidor e divulgou para os amigos da universidade usarem

- Desafio: permitir a comunicação entre cliente e servidor
 - Troca de mensagem, Chamada remota de procedimentos (RPC)

- Desafio: permitir o acesso de múltiplos usuários
 - Multithreading, programação assíncrona

- Desafio: se o servidor falhar, o sistema fica indisponível
 - Se o disco falhar permanentemente, todos os dados serão perdidos

□ Solução: replicação (réplicas secundárias ou backup)

Desafio: atrasos na comunicação entre os servidores

 A réplica primária falhou ou a conexão está lenta?

Solução: detector de falhas

 Heartbeat periódico. Pode haver engano se houver atraso atípico

 Desafio: seu sistema popularizou e ficou sobrecarregado

 Solução: replicação ativa e balanceamento de carga

- Desafio: falha na comunicação entre grupos de servidores
 - Split brain! Pode gerar inconsistência nos dados

Solução: Quorum

- Só aplica ações se maioria de servidores confirmarem
- Apenas quem acessa Rack 2 teria serviço disponível
- Precisa de 2f + 1 servidores para tolerar f falhas

Desafio: parte dos clientes podem ler dados desatualizados

Solução: eleição de líder

- Controla e coordena replicação nos servidores
- Só retorna valor a cliente se o **líder 22** garantir que está consistente na maioria dos servidores

- Desafio: os relógios dos servidores marcam horas diferentes
 - Como ordenar os eventos que chegam nos diferentes servidores?

- Solução 1: sincronização de relógios
 - Ajusta relógios periodicamente (atrasos dificultam)
- Solução 2: relógios lógicos
 - Contador incremental de eventos indica ordem

- Desafio: tolerar falhas e obter consenso dos servidores
 - Concordar em quais dados devem ser armazenados, na sua ordem e quando torná-los visíveis aos clientes

- Solução: aplicar algoritmos de consenso distribuído
 - Junta tudo que falamos e mais um pouco
 - Nós vamos abordar esses tópicos durante a disciplina...