		ity of Technology rical Engineering	
1DA1213 - Mechanical Engineering			
Completed by:		Project:	
Borys Kovba		Creation and simulation of a head of an USB-A plug in SolidWorks	
Academic Year: 2019/2020	Date: May 2020	Checked by: dr inż. Łukasz Kolimas	Mark:

1. Abstract

During the completion of the project, the 3D-model of a head of an USB-A plug (marked as USB CABLE E467715 AWM STYLE 2725 VW-1) I had at home was designed and simulated statically in SolidWorks.

2. Specifications

Technical specifications were taken from the USB 3.1 Legacy Cable and Connector Specification (September 22, 2017)¹, while the most recent specifications are likely to be found in the IEC 62680-1-6:2019 document (September 19, 2019).

The choice of the materials for the simulation (Figure 4 below) was based on the information from the abovementioned sources:

Component	Materials		
Cable	Conductor: copper with tin or silver plating		
	SDP shield: AL foil of AL/Mylar foil		
	Coaxial shield: copper strand		
	Braid: Tin plated copper or aluminum		
	Jacket: PVC or halogen-free substitute material		
Cable Overmold	Thermoset or thermoplastic		
Connector Shell	Copper alloy or stainless steel, depending on durability requirement		
Housing	Thermoplastics capable of withstanding lead-free soldering temperatu		

The "Cable Pull-Out (EIA 364-38, Condition A): No physical damage to the cable assembly shall occur when it is subjected to a 40 N axial load for a minimum of 1

¹ https://www.usb.org/document-library/usb-31-legacy-cable-and-connector-revision-10

minute while clamping one end of the cable plug" condition was simulated (see "Static Simulation" below).

3. Results

Model Design

Figure 1 - general view of the model

Figure 2 - top view of the model

Figure 3 - dimensions of the model

Figure 4 - list of materials used in simulation(definition below)

- 1 AISI Type 316 Stainless Steel
- 2a(inner part of the connector), b PBT General Purpose
- 3 (cable isolation) PVC Rigid
- 4 (material of the cable, not shown) Copper

Static Simulation

Applied Force – 40N

1. Stress (von Mises)

Figure 5 - side view

Figure 6 - top view

Figure 7 - bottom view

2. Displacement

Figure 8 - side view

Figure 9 - top view

Figure 10 - bottom view

3. Strain

Figure 11 - side view

Figure 12 - top view

Figure 13 - bottom view

4. Conclusion

According to the simulation, the greatest displacement of the model was 10^{-2} mm, which allows to conclude that there is no destruction of the cable structure as expected. Therefore, the created model is a plausible substitution of a real cable, which in turn means that the goal of the project was completed successfully.

5. References

- 1. https://www.usb.org/document-library/usb-31-legacy-cable-and-connector-revision-10
- 2. https://en.wikipedia.org/wiki/USB