Package 'astsa'

February 19, 2015

Type Package

Title Applied Statistical Time Series Analysis
Version 1.3
Date 2014-11-01
Author David Stoffer
Maintainer David Stoffer <stoffer@pitt.edu></stoffer@pitt.edu>
Description Data sets and scripts for Time Series Analysis and Its Applications: With R Examples by Shumway and Stoffer, 3rd edition
<pre>URL http://www.stat.pitt.edu/stoffer/tsa3/</pre>
License GPL-2
LazyLoad yes
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-27 10:10:48
R topics documented:
astsa-package
$\operatorname{acf2}$
ar1boot
ar1miss
arf
arma.spec
beamd
blood

_																	
econ5																	11
EM0	 		 			 		 		 							11
EM1	 		 			 		 		 							13
EQ5																	14
eqexp														• •	•	•	15
															•	•	15
EXP6															•	•	
FDR															•	•	16
flu	 		 			 		 		 							16
fmri	 		 			 		 		 							17
fmri1	 		 			 		 		 							18
gas																	18
gnp																•	19
C 1																•	19
gtemp																•	
																	20
HCT	 		 			 		 		 							21
ij	 		 			 		 		 							21
Kfilter0	 		 			 		 		 							22
																	23
																	24
																	2 1
Ksmooth0 .																	
Ksmooth1 .																	27
Ksmooth2.																	29
lag1.plot	 		 			 		 		 							30
lag2.plot	 		 			 		 		 							31
LagReg																	32
lap																	33
lead																	33
																	34
mvspec																	
nyse																	36
oil	 		 	•		 		 		 							36
part	 		 			 		 		 							37
PLT	 		 			 		 		 							37
prodn	 		 			 		 		 							38
ginfl	 		 			 		 		 							38
qintr															•		39
rec													•		•		40
													•		•		
sales																	40
salt																	41
saltemp	 		 			 		 		 							42
sarima	 		 			 		 		 							42
sarima.for .	 		 			 		 		 							44
SigExtract .																	45
so2																	46
																•	46
soi																•	
soiltemp																	47
speech	 	 •	 				•	 		 	•	 •					48
star																	48
stoch.reg	 		 			 		 		 							49

acf2 3

asts	a-package			A_{l}	р	lie	d	Sta	ati	sti	ica	l I	Tir	ne	S	er	ies	s A	ne	aly	vsi	S									
Index																															54
	WBC .	 •			•		•		•		•			•	•	•		•	•	•		•	•			•	•			•	52
	varve																														
	unemp .																														51
	tempr .																														51
	SVfilter																														
	sunspotz																														50

Description

Includes data and scripts to accompany *Time Series Analysis and Its Applications: With R Examples* (3rd ed) by R.H. Shumway and D.S. Stoffer. Springer Texts in Statistics, 2011.

Details

Package: astsa
Type: Package
Version: 1.3
Date: 2014-11-01
License: GPL-2
LazyLoad: yes
LazyData: yes

Author(s)

David Stoffer <stoffer@pitt.edu>

References

See the webpage for the text: http://www.stat.pitt.edu/stoffer/tsa3/ or its mirror http://lib.stat.cmu.edu/general/stoffer/tsa3/

acf2

Plot and print ACF and PACF of a time series

Description

Produces a simultaneous plot (and a printout) of the sample ACF and PACF on the same scale. The zero lag value of the ACF is removed.

4 ar1boot

Usage

```
acf2(series, max.lag = NULL, ...)
```

Arguments

series The data. Does not have to be a time series object.

max.lag Maximum lag. Can be omitted. Defaults to $\sqrt{n} + 10$ unless n < 50.

... Addtional arguements passed to acf

Details

This is bacisally a wrapper for acf() provided in tseries. The error bounds are approximate white noise bounds, $0 \pm 2/\sqrt{n}$; no other option is given.

Value

```
ACF The sample ACF
PACF The sample PACF
```

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

Examples

```
acf2(rnorm(100))
acf2(rnorm(100), 25)
```

ar1boot

Data used in Example 3.35 on page 137.

Description

Data used in Example 3.35 on page 137.

Usage

```
data(ar1boot)
```

Format

The format is: Time-Series [1:100] from 1 to 100: 61.8 60.1 60.1 59.1 58.3 ...

ar1miss 5

ar1miss

Data for Problem 6.14 on page 403.

Description

Data for Problem 6.14 on page 403.

Usage

```
data(ar1miss)
```

Format

The format is: Time-Series [1:100] from 1 to 100: 1.01 0 1.05 1.75 2.25 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

arf

Simulated ARFIMA

Description

1000 simulated observations from an ARFIMA(1, 1, 0) model with $\phi = .75$ and d = .4.

Usage

```
data(arf)
```

Format

The format is: Time-Series [1:1000] from 1 to 1000: -0.0294 0.7487 -0.3386 -1.0332 -0.2627 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

6 arma.spec

arma.spec

Spectral Density of an ARMA Model

Description

Gives the ARMA spectrum (on a log scale), tests for causality, invertibility, and common zeros. See Example 4.6 on page 184.

Usage

```
arma.spec(ar = 0, ma = 0, var.noise = 1, n.freq = 500, ...)
```

Arguments

ar vector of AR parameters

ma vector of MA parameters

var.noise variance of the noise

n.freq number of frequencies

additional arguments

Details

The basic call is arma.spec(ar, ma) where ar and ma are vectors containing the model parameters. Use log="no" if you do not want the plot on a log scale. If the model is not causal or invertible an error message is given. If there are common zeros, a spectrum will be displayed and a warning will be given; e.g., arma.spec(ar= .9, ma= -.9) will yield a warning and the plot will be the spectrum of white noise. See Example 4.6 on page 184.

Value

```
freq frequencies - returned invisibly
spec spectral ordinates - returned invisibly
```

Note

In tsa3, this is called spec.arma.

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

Examples

```
arma.spec(ar = c(1, -.9), ma = .8, log="no")
```

beamd 7

beamd

Infrasonic Signal from a Nuclear Explosion

Description

Infrasonic signal from a nuclear explosion. See Example 7.2 on page 421.

Usage

data(beamd)

Format

A data frame with 2048 observations (rows) on 3 numeric variables (columns): sensor1, sensor2, sensor3.

Details

This is a data frame consisting of three columns (that are not time series objects). The data are an infrasonic signal from a nuclear explosion observed at sensors on a triangular array.

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

birth

U.S. Monthly Live Births

Description

Monthly live births (adjusted) in thousands for the United States, 1948-1979.

Usage

```
data(birth)
```

Format

```
The format is: Time-Series [1:373] from 1948 to 1979: 295 286 300 278 272 268 308 321 313 308 ...
```

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

8 blood

blood

Daily Blood Work

Description

Multiple time series of measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is NA.

Usage

```
data(blood)
```

Format

The format is: mts [1:91, 1:3]

Details

This is the data set used in Example 6.1 and subsequently in Example 6.9 with 0 (zero) as the missing data code.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

```
HCT, PLT, WBC
```

Examples

```
## Not run: plot(blood, type="o", pch=19)
```

bnrf1ebv 9

bnrf1ebv

Nucleotide sequence - BNRF1 Epstein-Barr

Description

Nucleotide sequence of the BNRF1 gene of the Epstein-Barr virus (EBV): 1=A, 2=C, 3=G, 4=T. The data are used in Section 7.9.

Usage

```
data(bnrf1ebv)
```

Format

The format is: Time-Series [1:3954] from 1 to 3954: 1 4 3 3 1 1 3 1 3 1 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

bnrf1hvs

Nucleotide sequence - BNRF1 of Herpesvirus saimiri

Description

Nucleotide sequence of the BNRF1 gene of the herpesvirus saimiri (HVS): 1=A, 2=C, 3=G, 4=T. The data are used in Section 7.9.

Usage

```
data(bnrf1hvs)
```

Format

The format is: Time-Series [1:3741] from 1 to 3741: 1 4 3 2 4 4 3 4 4 4 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

10 cmort

climhyd

Lake Shasta infow data

Description

Lake Shasta infow data; see Example 7.1. This is a data frame.

Usage

```
data(climhyd)
```

Format

A data frame with 454 observations (rows) on the following 6 numeric variables (columns): Temp, DewPt, CldCvr, WndSpd, Precip, Inflow.

Details

The data are 454 months of measured values for the climatic variables: air temperature, dew point, cloud cover, wind speed, precipitation, and inflow, at Lake Shasta, California. The man-made lake is famous for the placard stating, "We don't swim in your toilet, so don't pee in our lake."

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

cmort

Cardiovascular Mortality from the LA Pollution study

Description

Average weekly cardiovascular mortality in Los Angeles County; 508 six-day smoothed averages obtained by filtering daily values over the 10 year period 1970-1979.

Usage

```
data(cmort)
```

Format

The format is: Time-Series [1:508] from 1970 to 1980: 97.8 104.6 94.4 98 95.8 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

econ5 11

See Also

lap

econ5

Five Quarterly Economic Series

Description

Data frame containing quarterly U.S. unemployment, GNP, consumption, and government and private investment, from 1948-III to 1988-II.

Usage

data(econ5)

Format

A data frame with 161 observations (rows) on the following 5 numeric variables (columns): unemp, gnp, consum, govinv, prinv.

Source

Young, P.C. and Pedregal, D.J. (1999). Macro-economic relativity: government spending, private investment and unemployment in the USA 1948-1998. *Structural Change and Economic Dynamics*, 10, 359-380.

References

http://www.stat.pitt.edu/stoffer/tsa3/

EM0

EM Algorithm for Time Invariant State Space Models

Description

Estimation of the parameters in the model (6.1)–(6.2) via the EM algorithm. See Example 6.8 on page 342

Usage

```
EM0(num, y, A, mu0, Sigma0, Phi, cQ, cR, max.iter = 50, tol = 0.01)
```

12 *EM0*

Arguments

num number of observations

y observation vector or time series
A time-invariant observation matrix

mu0 initial state mean vector

Sigma0 initial state covariance matrix

Phi state transition matrix

cQ Cholesky-like decomposition of state error covariance matrix Q – see details

below

cR Cholesky-like decomposition of state error covariance matrix R – see details

below

max.iter maximum number of iterations

tol relative tolerance for determining convergence

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively.

Value

Phi	Estimate of Phi
Q	Estimate of Q
R	Estimate of R

mu0 Estimate of initial state mean

Sigma0 Estimate of initial state covariance matrix

1ike -log likelihood at each iteration
niter number of iterations to convergence
cvg relative tolerance at convergence

Author(s)

D.S. Stoffer

References

http://www.stat.pitt.edu/stoffer/tsa3/

EM1

EM1	EM Algorithm for General State Space Models
	· · · · · · · · · · · · · · · · · · ·

Description

Estimation of the parameters in the model (6.1) - (6.2) via the EM algorithm. For a demonstration, see Example 6.12 on page 357. Inputs are not allowed; see the note.

Usage

```
EM1(num, y, A, mu0, Sigma0, Phi, cQ, cR, max.iter = 100, tol = 0.001)
```

Arguments

num	number of observations
У	observation vector or time series; use 0 for missing values
A	observation matrices, an array with dim=c(q,p,n); use 0 for missing values
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
cQ	Cholesky-like decomposition of state error covariance matrix ${\bf Q}$ – see details below
cR	R is diagonal here, so $cR = sqrt(R) - also$, see details below
max.iter	maximum number of iterations
tol	relative tolerance for determining convergence

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%%(cQ) or t(cR)%%(cR), respectively.

Value

Phi	Estimate of Phi
Q	Estimate of Q
R	Estimate of R
mu0	Estimate of initial state mean
Sigma0	Estimate of initial state covariance matrix
like	-log likelihood at each iteration
niter	number of iterations to convergence
cvg	relative tolerance at convergence

14 EQ5

Note

Inputs are not allowed (and hence not estimated). The script uses Ksmooth1 and everything related to inputs are set equal to zero when it is called. This is a change from the previous version.

It would be relatively easy to include estimates of 'Ups' and 'Gam' because conditional on the states, these are just regression coefficients. If you decide to alter EM1 to include estimates of the 'Ups' or 'Gam', feel free to notify me with a workable example and I'll include it in the next update.

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

EQ5

Seismic Trace of Earthquake number 5

Description

Seismic trace of an earthquake [two phases or arrivals along the surface, the primary wave (t = 1, ..., 1024) and the shear wave (t = 1025, ..., 2048)] recorded at a seismic station.

Usage

data(EQ5)

Format

The format is: Time-Series [1:2048] from 1 to 2048: 0.01749 0.01139 0.01512 0.01477 0.00651 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

eqexp

eqexp 15

eqexp

Earthquake and Explosion Seismic Series

Description

This is a data frame of the earthquake and explosion seismic series used throughout the text.

Usage

data(eqexp)

Format

A data frame with 2048 observations (rows) on 17 variables (columns). Each column is a numeric vector

Details

The matrix has 17 columns, the first eight are earthquakes, the second eight are explosions, and the last column is the Novaya Zemlya event of unknown origin.

The column names are: EQ1, EQ2,...,EQ8; EX1, EX2,...,EX8; NZ. The first 1024 observations correspond to the P wave, the second 1024 observations correspond to the S wave.

References

http://www.stat.pitt.edu/stoffer/tsa3/

EXP6

Seismic Trace of Explosion number 6

Description

Seismic trace of an explosion [two phases or arrivals along the surface, the primary wave (t = 1, ..., 1024) and the shear wave (t = 1025, ..., 2048)] recorded at a seismic station.

Usage

data(EXP6)

Format

The format is: Time-Series [1:2048] from 1 to 2048: -0.001837 -0.000554 -0.002284 -0.000303 -0.000721 ...

16 flu

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

eqexp

FDR

Basic False Discovery Rate

Description

Computes the basic false discovery rate given a vector of p-values; see Example 7.4 on page 427 for a demonstration.

Usage

```
FDR(pvals, qlevel = 0.05)
```

Arguments

pvals a vector of pvals on which to conduct the multiple testing

qlevel the proportion of false positives desired

Value

fdr.id NULL if no significant tests, or the index of the maximal p-value satisfying the

FDR condition.

References

http://www.stat.berkeley.edu/~paciorek/code/fdr/fdr.R

flu

Monthly pneumonia and influenza deaths in the U.S., 1968 to 1978.

Description

Monthly pneumonia and influenza deaths per 10,000 people in the United States for 11 years, 1968 to 1978.

Usage

```
data(flu)
```

fmri 17

Format

The format is: Time-Series [1:132] from 1968 to 1979: 0.811 0.446 0.342 0.277 0.248 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

fmri

fMRI - complete data set

Description

Data (as a vector list) from an fMRI experiment in pain, listed by location and stimulus. The data are BOLD signals when a stimulus was applied for 32 seconds and then stopped for 32 seconds. The signal period is 64 seconds and the sampling rate was one observation every 2 seconds for 256 seconds (n=128). The number of subjects under each condition varies.

Usage

data(fmri)

Details

The LOCATIONS of the brain where the signal was measured were [1] Cortex 1: Primary Somatosensory, Contralateral, [2] Cortex 2: Primary Somatosensory, Ipsilateral, [3] Cortex 3: Secondary Somatosensory, Contralateral, [4] Cortex 4: Secondary Somatosensory, Ipsilateral, [5] Caudate, [6] Thalamus 1: Contralateral, [7] Thalamus 2: Ipsilateral, [8] Cerebellum 1: Contralateral and [9] Cerebellum 2: Ipsilateral.

The TREATMENTS or stimuli (and number of subjects in each condition) are [1] Awake-Brush (5 subjects), [2] Awake-Heat (4 subjects), [3] Awake-Shock (5 subjects), [4] Low-Brush (3 subjects), [5] Low-Heat (5 subjects), and [6] Low-Shock (4 subjects). Issue the command summary(fmri) for further details. In particular, awake (Awake) or mildly anesthetized (Low) subjects were subjected levels of periodic brushing (Brush), application of heat (Heat), and mild shock (Shock) effects.

As an example, fmri\$L1T6 (Location 1, Treatment 6) will show the data for the four subjects receiving the Low-Shock treatment at the Cortex 1 location; note that fmri[[6]] will display the same data.

References

http://www.stat.pitt.edu/stoffer/tsa3/

18 gas

fmri1

fMRI Data Used in Chapter 1

Description

A data frame that consists of average fMRI BOLD signals at eight locations.

Usage

```
data(fmri1)
```

Format

The format is: mts [1:128, 1:9]

Details

Multiple time series consisting of fMRI BOLD signals at eight locations (in columns 2-9, column 1 is time period), when a stimulus was applied for 32 seconds and then stopped for 32 seconds. The signal period is 64 seconds and the sampling rate was one observation every 2 seconds for 256 seconds (n=128). The columns are labeled: "time" "cort1" "cort2" "cort3" "cort4" "thal1" "thal2" "cere1" "cere2".

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

gas

Gas Prices

Description

New York Harbor conventional regular gasoline weekly spot price FOB (in cents per gallon) from 2000 to mid-2010.

Usage

```
data(gas)
```

Format

The format is: Time-Series [1:545] from 2000 to 2010: 70.6 71 68.5 65.1 67.9 ...

Details

Pairs with series oil

gnp 19

Source

```
http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_w.htm
```

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

oil

gnp

Quarterly U.S. GNP

Description

Quarterly U.S. GNP from 1947(1) to 2002(3).

Usage

data(gnp)

Format

The format is: Time-Series [1:223] from 1947 to 2002: 1489 1497 1500 1524 1547 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

gtemp

Global mean land-ocean temperature deviations

Description

Global mean land-ocean temperature deviations (from 1951-1980 average), measured in degrees centigrade, for the years 1880-2009.

Usage

```
data(gtemp)
```

Format

The format is: Time-Series [1:130] from 1880 to 2009: -0.28 -0.21 -0.26 -0.27 -0.32 -0.32 -0.29 -0.36 -0.27 -0.17 ...

20 gtemp2

Source

```
http://data.giss.nasa.gov/gistemp/graphs/
```

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

gtemp2

gtemp2

Global Mean Surface Air Temperature Deviations

Description

Similar to gtemp but the data are based only on surface air temperature data obtained from meteorological stations. The data are temperature deviations (from 1951-1980 average), measured in degrees centigrade, for the years 1880-2009.

Usage

```
data(gtemp2)
```

Format

The format is: Time-Series [1:130] from 1880 to 2009: -0.24 -0.19 -0.14 -0.19 -0.45 -0.32 -0.42 -0.54 -0.24 -0.05 ...

Source

```
http://data.giss.nasa.gov/gistemp/graphs/
```

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

gtemp

HCT 21

HCT

Hematocrit Levels

Description

HCT: Measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is 0 (zero).

Usage

```
data(HCT)
```

Format

The format is: Time-Series [1:91] from 1 to 91: 30 30 28.5 34.5 34 32 30.5 31 33 34 ...

Details

See Examples 6.1 and 6.9 for more details.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

```
blood, PLT, WBC
```

jj

Johnson and Johnson Quarterly Earnings Per Share

Description

Johnson and Johnson quarterly earnings per share, 84 quarters (21 years) measured from the first quarter of 1960 to the last quarter of 1980.

Usage

```
data(jj)
```

22 Kfilter0

Format

The format is: Time-Series [1:84] from 1960 to 1981: 0.71 0.63 0.85 0.44 0.61 0.69 0.92 0.55 0.72 0.77 ...

Details

This data set is also included with the R distribution as JohnsonJohnson

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

Kfilter0

Kalman Filter - Time Invariant Model

Description

Returns the filtered values in Property 6.1 on page 326 for the state-space model, (6.1) - (6.2). In addition, returns the evaluation of the likelihood at the given parameter values and the innovation sequence. For demonstrations, see Example 6.5 on page 331, and Example 6.10 on page 350.

Usage

```
Kfilter0(num, y, A, mu0, Sigma0, Phi, cQ, cR)
```

Arguments

num	number of observations
у	data matrix, vector or time series
A	time-invariant observation matrix
mu0	initial state mean vector
Sigma0	initial state covariance matrix
Phi	state transition matrix
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively.

Kfilter1 23

Value

xp	one-step-ahead state prediction
Pp	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
innov	innovation series

innov innovation series

sig innovation covariances

Kn last value of the gain, needed for smoothing

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See also http://www.stat.pitt.edu/stoffer/tsa3/chap6.htm for an explanation of the difference between levels 0, 1, and 2.

Kfilter1

Kalman Filter - Model may be time varying or have inputs

Description

Returns both the filtered values in Property 6.1 on page 326 for the state-space model, (6.3) - (6.4). For demonstrations, see Example 6.7 on page 338 and Example 6.9 on page 348.

Usage

```
Kfilter1(num, y, A, mu0, Sigma0, Phi, Ups, Gam, cQ, cR, input)
```

Arguments

Ups

num	number of observations
у	data matrix, vector or time series
Α	time-varying observation matrix, an array with $dim=c(q,p,n)$
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix

state input matrix; use Ups = 0 if not needed

24 Kfilter2

Gam	observation input matrix; use Gam = 0 if not needed
cQ	Cholesky-type decomposition of state error covariance matrix \mathbf{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below
input	matrix or vector of inputs having the same row dimension as y; use input = 0 if not needed

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively.

Value

хр	one-step-ahead prediction of the state
Pp	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
innov	innovation series
sig	innovation covariances
Kn	last value of the gain, needed for smoothing

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See also http://www.stat.pitt.edu/stoffer/tsa3/chap6.htm for an explanation of the difference between levels 0, 1, and 2.

Kfilter2	Kalman Filter - Model may be time varying or have inputs or corre-
	lated errors

Description

Returns the filtered values in Property 6.5 on page 354 for the state-space model, (6.97) - (6.99). In addition, the script returns the evaluation of the likelihood at the given parameter values and the innovation sequence. For demonstrations, see Example 6.11 on page 356 and Example 6.13 on page 361.

Kfilter2 25

Usage

Arguments

num number of observations

y data matrix, vector or time series

A time-varying observation matrix, an array with dim = c(q,p,n)

mu0 initial state mean

Sigma0 initial state covariance matrix

Phi state transition matrix

Ups state input matrix; use Ups = 0 if not needed

Gam observation input matrix; use Gam = 0 if not needed

Theta state error pre-matrix

cQ Cholesky decomposition of state error covariance matrix Q – see details below cR Cholesky-type decomposition of observation error covariance matrix R – see

details below

S covariance-type matrix of state and observation errors

input matrix or vector of inputs having the same row dimension as y; use input = 0

if not needed

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively.

Value

xp one-step-ahead prediction of the state

Pp mean square prediction error

xf filter value of the state
Pf mean square filter error

like the negative of the log likelihood

innov innovation series

sig innovation covariances

K last value of the gain, needed for smoothing

Author(s)

D.S. Stoffer

26 Ksmooth0

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See also http://www.stat.pitt.edu/stoffer/tsa3/chap6.htm for an explanation of the difference between levels 0, 1, and 2.

Ksmooth0

Kalman Filter and Smoother - Time invariant model without inputs

Description

Returns both the filtered values in Property 6.1 on page 326 and the smoothed values in Property 6.2 on page 330 for the state-space model, (6.1) - (6.2). For demonstrations, see Example 6.5 on page 331, and Example 6.10 on page 350.

Usage

```
Ksmooth0(num, y, A, mu0, Sigma0, Phi, cQ, cR)
```

Arguments

num	number of observations
У	data matrix, vector or time series
A	time-invariant observation matrix
mu0	initial state mean vector
Sigma0	initial state covariance matrix
Phi	state transition matrix
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix \boldsymbol{R} – see details below

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%%(cQ) or t(cR)%%(cR), respectively, which allows more flexibility.

Value

xs	state smoothers
Ps	smoother mean square error
x0n	initial mean smoother
P0n	initial smoother covariance

Ksmooth1 27

J0	initial value of the J matrix
J	the J matrices
хр	one-step-ahead prediction of the state
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
Kn	last value of the gain

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See also http://www.stat.pitt.edu/stoffer/tsa3/chap6.htm for an explanation of the difference between levels 0, 1, and 2.

Ksmooth1	Kalman Filter and Smoother - General model

Description

Returns both the filtered values in Property 6.1 on page 326 and the smoothed values in Property 6.2 on page 330 for the state-space model, (6.3) - (6.4). For demonstrations, see Example 6.7 on page 338 and Example 6.9 on page 348.

Usage

```
Ksmooth1(num, y, A, mu0, Sigma0, Phi, Ups, Gam, cQ, cR, input)
```

Arguments

num	number of observations
У	data matrix, vector or time series
A	time-varying observation matrix, an array with $dim=c(q,p,n)$
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
Ups	state input matrix; use Ups = 0 if not needed
Gam	observation input matrix; use Gam = 0 if not needed

28 Ksmooth1

cQ	Cholesky-type decomposition of state error covariance matrix \mathbf{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix R – see details below
input	matrix or vector of inputs having the same row dimension as y; use input = 0 if not needed

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%%(cQ) or t(cR)%%(cR), respectively, which allows more flexibility.

Value

XS	state smoothers
Ps	smoother mean square error
x0n	initial mean smoother
P0n	initial smoother covariance
Ј0	initial value of the J matrix
J	the J matrices
xp	one-step-ahead prediction of the state
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
Kn	last value of the gain

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See also http://www.stat.pitt.edu/stoffer/tsa3/chap6.htm for an explanation of the difference between levels 0, 1, and 2.

Ksmooth2

Ksmooth2	Kalman Filter and Smoother - General model, may have correlated errors

Description

Returns the filtered and smoothed values in Property 6.5 on page 354 for the state-space model, (6.97) - (6.99). This is the smoother companion to Kfilter2.

Usage

Arguments

num	number of observations
у	data matrix, vector or time series
Α	time-varying observation matrix, an array with dim=c(q,p,n)
mu0	initial state mean
Sigma0	initial state covariance matrix
Phi	state transition matrix
Ups	state input matrix; use Ups = 0 if not needed
Gam	observation input matrix; use Gam = 0 if not needed
Theta	state error pre-matrix
cQ	Cholesky-type decomposition of state error covariance matrix \boldsymbol{Q} – see details below
cR	Cholesky-type decomposition of observation error covariance matrix R – see details below
S	covariance matrix of state and observation errors
input	matrix or vector of inputs having the same row dimension as y ; use input = \emptyset if not needed

Details

Practically, the script only requires that Q or R may be reconstructed as t(cQ)%*%(cQ) or t(cR)%*%(cR), respectively, which allows more flexibility.

lag1.plot

Value

XS	state smoothers
Ps	smoother mean square error
J	the J matrices
хр	one-step-ahead prediction of the state
Рр	mean square prediction error
xf	filter value of the state
Pf	mean square filter error
like	the negative of the log likelihood
Kn	last value of the gain

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See also http://www.stat.pitt.edu/stoffer/tsa3/chap6.htm for an explanation of the difference between levels 0, 1, and 2.

lag1.plot Lag Plot - one time series

Description

Produces a grid of scatterplots of a series versus lagged values of the series.

Usage

```
lag1.plot(series, max.lag = 1, corr = TRUE, smooth = TRUE)
```

Arguments

series	the data
max.lag	maximum lag
corr	if TRUE, shows the autocorrelation value in a legend
smooth	if TRUE, adds a lowess fit to each scatterplot

Note

In tsa3 this is called lag.plot1.

lag2.plot

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

Examples

```
data(soi)
lag1.plot(soi, 9)
```

lag2.plot

Lag Plot - two time series

Description

Produces a grid of scatterplots of one series versus another. The first named series is the one that gets lagged.

Usage

```
lag2.plot(series1, series2, max.lag = 0, corr = TRUE, smooth = TRUE)
```

Arguments

series1 first series (the one that gets lagged)

series2 second series

max.lag maximum number of lags

corr if TRUE, shows the cross-correlation value in a legend

smooth if TRUE, adds a lowess fit to each scatterplot

Note

In tsa3 this is called lag.plot2.

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

Examples

```
data(soi, rec)
lag2.plot(soi, rec, 8)
```

32 LagReg

LagReg Lagged Regression	
--------------------------	--

Description

Performs lagged regression as discussed in Chapter 4, Section 4.10. See Example 4.24 on page 244 for a demonstration.

Usage

```
LagReg(input, output, L = c(3, 3), M = 40, threshold = 0,
    inverse = FALSE)
```

Arguments

input input series output output output

L degree of smoothing; see spans in the help file for spec.pgram.

M must be even; number of terms used in the lagged regression

threshold the cut-off used to set small (in absolute value) regression coeffcients equal to

zero

inverse if TRUE, will fit a forward-lagged regression

Details

For a bivariate series, input is the input series and output is the output series. The degree of smoothing for the spectral estimate is given by L; see spans in the help file for spec.pgram. The number of terms used in the lagged regression approximation is given by M, which must be even. The threshold value is the cut-off used to set small (in absolute value) regression coeffcients equal to zero (it is easiest to run LagReg twice, once with the default threshold of zero, and then again after inspecting the resulting coeffcients and the corresponding values of the CCF). Setting inverse=TRUE will fit a forward-lagged regression; the default is to run a backward-lagged regression. The script is based on code that was contributed by Professor Doug Wiens, Department of Mathematical and Statistical Sciences, University of Alberta.

Value

The estimated impulse response function; see Example 4.24.

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

lead 33

lap

LA Pollution-Mortality Study

Description

LA Pollution-Mortality Study (1970-1979, weekly data).

Usage

data(lap)

Format

The format is: mts [1:508, 1:11]

Details

columns are time series	with names
(1) Total Mortality	tmort
(2) Respiratory Mortality	rmort
(3) Cardiovascular Mortality	cmort
(4) Temperature	tempr
(5) Relative Humidity	rh
(6) Carbon Monoxide	со
(7) Sulfur Dioxide	so2
(8) Nitrogen Dioxide	no2
(9) Hydrocarbons	hycarb
(10) Ozone	03
(11) Particulates	part

References

http://www.stat.pitt.edu/stoffer/tsa3/

lead

Leading Indicator

Description

Leading indicator, 150 months; taken from Box and Jenkins (1970).

34 mvspec

Usage

```
data(lead)
```

Format

The format is: Time-Series [1:150] from 1 to 150: 10.01 10.07 10.32 9.75 10.33 ...

Details

This is also the R time series BJsales.lead: The sales time series BJsales and leading indicator BJsales.lead each contain 150 observations. The objects are of class "ts".

See Also

sales

mvspec

Univariate and Multivariate Spectral Estimation

Description

This is spec.pgram with a few changes in the defaults and written so you can easily extract the estimate of the multivariate spectral matrix as fxx. The bandwidth calculation has been changed to the more practical definition given in the text. Can be used to replace spec.pgram for univariate series.

Usage

Arguments

Χ	univariate or multivariate time series (i.e., the p columns of x are time series)
spans	specify smoothing; same as spec.pgram
kernel	specify kernel; same as spec.pgram
taper	specify taper; same as spec.pgram with different default
pad	specify padding; same as spec.pgram
fast	specify use of FFT; same as spec.pgram
demean	if TRUE, series is demeaned first; same as spec.pgram
detrend	if TRUE, series is detrended first; same as spec.pgram
plot	plot the estimate; same as spec.pgram
na.action	same as spec.pgram
	additional arguments; same as spec.pgram

mvspec 35

Details

This is spec.pgram with a few changes in the defaults and written so you can easily extract the estimate of the multivariate spectral matrix as fxx. The bandwidth calculation has been changed to the more practical definition given in the text, $(L_h/n.used)*frequency(x)$. Although meant to be used to easily obtain multivariate spectral estimates, this script can be used in Chapter 4 for the spectral analysis of a univariate time series. Note that the script does not taper by default (taper=0); this forces the user to do "conscious tapering". See Example 7.12 on page 461 for a demonstration.

Value

An object of class "spec", which is a list containing at least the following components:

fxx	spectral matrix estimates; an array of dimensions $dim = c(p,p,nfreq)$
freq	vector of frequencies at which the spectral density is estimated.
spec	vector (for univariate series) or matrix (for multivariate series) of estimates of the spectral density at frequencies corresponding to freq.
coh	NULL for univariate series. For multivariate time series, a matrix containing the squared coherency between different series. Column $i + (j - 1) * (j - 2)/2$ of coh contains the squared coherency between columns i and j of x , where $i < j$.
phase	NULL for univariate series. For multivariate time series a matrix containing the cross-spectrum phase between different series. The format is the same as coh.
Lh	Number of frequencies (approximate) used in the band, as defined in (4.57) on page 204.
n.used	Sample length used for the FFT
series	The name of the time series.
snames	For multivariate input, the names of the component series.
method	The method used to calculate the spectrum.

The results are returned invisibly if plot is true.

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

Examples

```
# univariate example
plot(co2)  # co2 is an R data set
mvspec(co2, spans=c(5,5), taper=.5)

# multivariate example
ts.plot(mdeaths, fdeaths, col=1:2)  # an R data set, male/female monthly deaths ...
dog = mvspec(cbind(mdeaths,fdeaths), spans=c(3,3), taper=.1)
dog$fxx  # look a spectral matrix estimates
dog$bandwidth # bandwidth with time unit = year
dog$bandwidth/frequency(mdeaths)  # ... with time unit = month
plot(dog, plot.type="coherency")  # plot of squared coherency
```

36 oil

nyse

Returns of the New York Stock Exchange

Description

Returns of the New York Stock Exchange (NYSE) from February 2, 1984 to December 31, 1991.

Usage

data(nyse)

Format

The format is: Time-Series [1:2000] from 1 to 2000: 0.00335 -0.01418 -0.01673 0.00229 -0.01692 ...

Source

S+GARCH module - Version 1.1 Release 2: 1998

oil

Crude oil, WTI spot price FOB

Description

Crude oil, WTI spot price FOB (in dollars per barrel), weekly data from 2000 to mid-2010.

Usage

data(oil)

Format

The format is: Time-Series [1:545] from 2000 to 2010: 26.2 26.1 26.3 24.9 26.3 ...

Details

pairs with the series gas

Source

```
http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_w.htm
```

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

part 37

See Also

gas

part

Particulate levels from the LA pollution study

Description

Particulate series corresponding to cmort from the LA pollution study.

Usage

```
data(part)
```

Format

The format is: Time-Series [1:508] from 1970 to 1980: 72.7 49.6 55.7 55.2 66 ...

See Also

lap

PLT

Platelet Levels

Description

PLT: Measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is 0 (zero).

Usage

```
data(PLT)
```

Format

The format is: Time-Series [1:91] from 1 to 91: 4.47 4.33 4.09 4.6 4.41 ...

Details

See Examples 6.1 and 6.9 for more details.

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

38 qinfl

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

blood, HCT, WBC

prodn

Monthly Federal Reserve Board Production Index

Description

Monthly Federal Reserve Board Production Index (1948-1978, n = 372 months).

Usage

```
data(prodn)
```

Format

The format is: Time-Series [1:372] from 1948 to 1979: 40.6 41.1 40.5 40.1 40.4 41.2 39.3 41.6 42.3 43.2 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

qinfl

Quarterly Inflation

Description

Quarterly inflation rate in the Consumer Price Index from 1953-Ito 1980-II, n = 110 observations.

Usage

```
data(qinfl)
```

Format

The format is: Time-Series [1:110] from 1953 to 1980: 1.673 3.173 0.492 -0.327 -0.333 ...

Details

pairs with qintr (interest rate)

qintr 39

Source

Newbold, P. and T. Bos (1985). Stochastic Parameter Regression Models. Beverly Hills: Sage.

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

qintr

qintr

Quarterly Interest Rate

Description

Quarterly interest rate recorded for Treasury bills from 1953-Ito 1980-II, n = 110 observations.

Usage

```
data(qintr)
```

Format

The format is: Time-Series [1:110] from 1953 to 1980: 1.98 2.15 1.96 1.47 1.06 ...

Details

```
pairs with qinfl (inflation)
```

Source

Newbold, P. and T. Bos (1985). Stochastic Parameter Regression Models. Beverly Hills: Sage.

References

```
See http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

qinfl

40 sales

rec

Recruitment (number of new fish)

Description

Recruitment (number of new fish) for a period of 453 months ranging over the years 1950-1987.

Usage

```
data(rec)
```

Format

The format is: Time-Series [1:453] from 1950 to 1988: 68.6 68.6 68.6 68.6 68.6 ...

Details

can pair with soi (Southern Oscillation Index)

Source

Data furnished by Dr. Roy Mendelssohn of the Pacific Fisheries Environmental Laboratory, NOAA (personal communication).

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

soi

sales

Sales

Description

Sales, 150 months; taken from Box and Jenkins (1970).

Usage

```
data(sales)
```

Format

The format is: Time-Series [1:150] from 1 to 150: 200 200 199 199 199 ...

salt 41

Details

This is also the R data set BJsales: The sales time series BJsales and leading indicator BJsales.lead each contain 150 observations. The objects are of class "ts".

See Also

lead

salt

Salt Profiles

Description

Salt profiles taken over a spatial grid set out on an agricultural field, 64 rows at 17-ft spacing.

Usage

```
data(salt)
```

Format

The format is: Time-Series [1:64] from 1 to 64: 6 6 6 3 3 3 4 4 4 1.5 ...

Details

pairs with saltemp, temperature profiles on the same grid

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

saltemp

42 sarima

saltemp

Temperature Profiles

Description

Temperature profiles over a spatial grid set out on an agricultural field, 64 rows at 17-ft spacing.

Usage

```
data(saltemp)
```

Format

```
The format is: Time-Series [1:64] from 1 to 64: 5.98 6.54 6.78 6.34 6.96 6.51 6.72 7.44 7.74 6.85 ...
```

Details

pairs with salt, salt profiles on the same grid

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

salt

sarima

Fit ARIMA Models

Description

Fits ARIMA models (including improved diagnostics) in a short command. It can also be used to perform regression with autocorrelated errors. This is a front end to R's arima() with a different back door.

Usage

sarima 43

Arguments

xdata	univariate time series
р	AR order
d	difference order
q	MA order
Р	SAR order; use only for seasonal models
D	seasonal difference; use only for seasonal models
Q	SMA order; use only for seasonal models
S	seasonal period; use only for seasonal models
xreg	Optionally, a vector or matrix of external regressors, which must have the same number of rows as xdata.
details	turns on or off the output from the nonlinear optimization routine, which is optim. The default is TRUE, use details=FALSE to turn off the output.
tol	controls the relative tolerance (reltol in optim) used to assess convergence. The default is sqrt(.Machine\$double.eps), the R default.
no.constant	controls whether or not sarima includes a constant in the model. In particular, if there is no differencing (d = 0 and D = 0) you get the mean estimate. If there is differencing of order one (either d = 1 or D = 1, but not both), a constant term is included in the model. These two conditions may be overridden (i.e., no constant will be included in the model) by setting this to TRUE; e.g., $sarima(x,1,1,0,no.constant=TRUE)$. Otherwise, no constant or mean term is included in the model. If regressors are included (via xreg), this is ignored.

Details

If your time series is in x and you want to fit an ARIMA(p,d,q) model to the data, the basic call is sarima(x,p,d,q). The results are the parameter estimates, standard errors, AIC, AICc, BIC (as defined in Chapter 2) and diagnostics. To fit a seasonal ARIMA model, the basic call is sarima(x,p,d,q,P,D,Q,S). For example, sarima(x,2,1,0) will fit an ARIMA(2,1,0) model to the series in x, and sarima(x,2,1,0,0,1,1,12) will fit a seasonal ARIMA(2,1,0) * $(0,1,1)_{12}$ model to the series in x.

Value

fit	the arima object
AIC	value of the AIC
AICc	value of the AICc
BIC	value of the BIC

References

http://www.stat.pitt.edu/stoffer/tsa3/

44 sarima.for

See Also

```
sarima.for
```

Examples

```
sarima(log(AirPassengers),0,1,1,0,1,1,12)
(dog <- sarima(log(AirPassengers),0,1,1,0,1,1,12))
summary(dog$fit) # fit has all the returned arima() values
plot(resid(dog$fit)) # plot the innovations (residuals)</pre>
```

sarima.for

ARIMA Forecasting

Description

ARIMA forecasting - this is a front end to R's predict. Arima.

Usage

```
sarima.for(xdata, n.ahead, p, d, q, P = 0, D = 0, Q = 0, S = -1, tol = sqrt(.Machine$double.eps), no.constant = FALSE)
```

Arguments

xdata	univariate time series
n.ahead	forecast horizon (number of periods)
p	AR order
d	difference order
q	MA order
Р	SAR order; use only for seasonal models
D	seasonal difference; use only for seasonal models
Q	SMA order; use only for seasonal models
S	seasonal period; use only for seasonal models
tol	controls the relative tolerance (reltol) used to assess convergence. The default is sqrt(.Machine\$double.eps), the R default.
no.constant	controls whether or not a constant is included in the model. If no.constant=TRUE, no constant is included in the model. See <pre>sarima</pre> for more details.

Details

For example, sarima. for (x,5,1,0,1) will forecast five time points ahead for an ARMA(1,1) fit to x. The output prints the forecasts and the standard errors of the forecasts, and supplies a graphic of the forecast with +/-2 prediction error bounds.

SigExtract 45

Value

pred the forecasts

se the prediction (standard) errors

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

sarima

Examples

```
sarima.for(log(AirPassengers), 12, 0, 1, 1, 0, 1, 1, 12)
```

SigExtract

Signal Extraction And Optimal Filtering

Description

Performs signal extraction and optimal filtering as discussed in Chapter 4, Section 4.11. See Example 4.25 on page 249 for a demonstration.

Usage

```
SigExtract(series, L = c(3, 3), M = 50, max.freq = 0.05)
```

Arguments

series univariate time series to be filtered

L degree of smoothing (may be a vector); see spans in spec.pgram for more

details

M number of terms used in the lagged regression approximation

max.freq truncation frequency, which must be larger than 1/M.

Details

The basic function of the script, and the default setting, is to remove frequencies above 1/20 (and, in particular, the seasonal frequency of 1 cycle every 12 time points). The sampling frequency of the time series is set to unity prior to the analysis.

Value

Returns plots of (1) the original and filtered series, (2) the estiamted spectra of each series, (3) the filter coefficients and the desired and attained frequency response function. The filtered series is returned invisibly.

46 soi

Note

The script is based on code that was contributed by Professor Doug Wiens, Department of Mathematical and Statistical Sciences, University of Alberta.

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

so2

SO2 levels from the LA pollution study

Description

Sulfur dioxide levels from the LA pollution study

Usage

data(so2)

Format

The format is: Time-Series [1:508] from 1970 to 1980: 3.37 2.59 3.29 3.04 3.39 2.57 2.35 3.38 1.5 2.56 ...

See Also

lap

soi

Southern Oscillation Index

Description

Southern Oscillation Index (SOI) for a period of 453 months ranging over the years 1950-1987.

Usage

data(soi)

Format

The format is: Time-Series [1:453] from 1950 to 1988: $0.377\ 0.246\ 0.311\ 0.104\ -0.016\ 0.235\ 0.137\ 0.191\ -0.016\ 0.29\ ...$

soiltemp 47

Details

```
pairs with rec (Recruitment)
```

Source

Data furnished by Dr. Roy Mendelssohn of the Pacific Fisheries Environmental Laboratory, NOAA (personal communication).

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

rec

soiltemp

Spatial Grid of Surface Soil Temperatures

Description

A 64 by 36 matrix of surface soil temperatures.

Usage

```
data(soiltemp)
```

Format

The format is: num [1:64, 1:36] 6.7 8.9 5 6.6 6.1 7 6.5 8.2 6.7 6.6 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

48 star

speech

Speech Recording

Description

A small .1 second (1000 points) sample of recorded speech for the phrase "aaa...hhh".

Usage

```
data(speech)
```

Format

The format is: Time-Series [1:1020] from 1 to 1020: 1814 1556 1442 1416 1352 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

star

Variable Star

Description

The magnitude of a star taken at midnight for 600 consecutive days. The data are taken from the classic text, The Calculus of Observations, a Treatise on Numerical Mathematics, by E.T. Whittaker and G. Robinson, (1923, Blackie and Son, Ltd.).

Usage

```
data(star)
```

Format

The format is: Time-Series [1:600] from 1 to 600: 25 28 31 32 33 33 32 ...

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

stoch.reg 49

stoch.reg	Frequency Domain Stochastic Regression

Description

Performs frequency domain stochastic regression discussed in Chapter 7, Section 7.3.

Usage

```
stoch.reg(data, cols.full, cols.red, alpha, L, M, plot.which)
```

Arguments

data	data matrix
cols.full	specify columns of data matrix that are in the full model
cols.red	specify columns of data matrix that are in the reduced model (use NULL if there are no inputs in the reduced model)
alpha	test size
L	smoothing - see spans in spec.pgram
М	number of points in the discretization of the integral
plot.which	coh or F. stat, to plot either the squared-coherencies or the F-statistics, respectively

Value

power.full	spectrum under the full model
power.red	spectrum under the reduced model
Betahat	regression parameter estimates
eF	pointwise (by frequency) F-tests
coh	coherency

Note

The script is based on code that was contributed by Professor Doug Wiens, Department of Mathematical and Statistical Sciences, University of Alberta. See Example 7.1 on page 417 for a demonstration.

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

50 SVfilter

CI	ın	sp	۸t	7
ા	ai i	วม	υι	_

Biannual Sunspot Numbers

Description

Biannual smoothed (12-month moving average) number of sunspots from June 1749 to December 1978; n = 459. The "z" on the end is to distinguish this series from the one included with R (called sunspots).

Usage

```
data(sunspotz)
```

Format

```
The format is: Time Series: Start = c(1749, 1) End = c(1978, 1) Frequency = 2
```

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

SVfilter

Switching Filter (for Stochastic Volatility Models)

Description

Performs a special case switching filter when the observational noise is a certain mixture of normals. Used to fit a stochastic volatility model. See Example 6.18 page 380 and Example 6.19 page 383.

Usage

```
SVfilter(num, y, phi0, phi1, sQ, alpha, sR0, mu1, sR1)
```

Arguments

num	number of observations
у	time series of returns
phi0	state constant
phi1	state transition parameter
sQ	state standard deviation
alpha	observation constant
sR0	observation error standard deviation for mixture component zero
mu1	observation error mean for mixture component one
sR1	observation error standard deviation for mixture component one

tempr 51

Value

xp one-step-ahead prediction of the volatilityPp mean square prediction error of the volatility

1ike the negative of the log likelihood at the given parameter values

Author(s)

D.S. Stoffer

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

tempr

Temperatures from the LA pollution study

Description

Temperature series corresponding to cmort from the LA pollution study.

Usage

```
data(tempr)
```

Format

The format is: Time-Series [1:508] from 1970 to 1980: 72.4 67.2 62.9 72.5 74.2 ...

See Also

lap

unemp

U.S. Unemployment

Description

Monthly U.S. Unemployment series (1948-1978, n = 372)

Usage

data(unemp)

Format

The format is: Time-Series [1:372] from 1948 to 1979: 235 281 265 241 201 ...

52 WBC

References

http://www.stat.pitt.edu/stoffer/tsa3/

varve

Annual Varve Series

Description

Sedimentary deposits from one location in Massachusetts for 634 years, beginning nearly 12,000 years ago.

Usage

data(varve)

Format

The format is: Time-Series [1:634] from 1 to 634: 26.3 27.4 42.3 58.3 20.6 ...

References

http://www.stat.pitt.edu/stoffer/tsa3/

WBC

White Blood Cell Levels

Description

WBC: Measurements made for 91 days on the three variables, log(white blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]. Missing data code is 0 (zero).

Usage

data(WBC)

Format

The format is: Time-Series [1:91] from 1 to 91: 2.33 1.89 2.08 1.82 1.82 ...

Details

See Examples 6.1 amd 6.9 for more details.

WBC 53

Source

Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In *Time Series Analysis of Irregularly Observed Data*, pp. 158-188. E. Parzen, ed. Lecture Notes in Statistics, 25, New York: Springer-Verlag.

References

```
http://www.stat.pitt.edu/stoffer/tsa3/
```

See Also

blood, HCT, PLT

Index

*Topic datasets	soiltemp, 47
ar1boot, 4	speech, 48
ar1miss,5	star, 48
arf, 5	sunspotz, 50
beamd, 7	tempr, 51
birth, 7	unemp, 51
blood, 8	varve, 52
bnrf1ebv, 9	WBC, 52
bnrf1hvs, 9	*Topic package
climhyd, 10	astsa-package, 3
cmort, 10	*Topic ts
econ5, 11	acf2, 3
EQ5, 14	arma.spec, 6
eqexp, 15	astsa-package, 3
EXP6, 15	EM0, 11
flu, 16	EM1, 13
fmri, 17	Kfilter0,22
fmri1, 18	Kfilter1, 23
gas, 18	Kfilter2, 24
gnp, 19	Ksmooth0, 26
gtemp, 19	Ksmooth1, 27
gtemp2, 20	Ksmooth2, 29
HCT, 21	lag1.plot, 30
jj, 21	lag2.plot, 31
lap, 33	LagReg, 32
lead, 33	mvspec, 34
nyse, 36	sarima, 42
oil, 36	sarima.for,44
part, 37	SigExtract, 45
PLT, 37	stoch.reg, 49
prodn, 38	SVfilter, 50
qinfl, 38	
qintr, 39	acf2, 3
rec, 40	ar1boot,4
sales, 40	ar1miss,5
salt, 41	arf, 5
saltemp, 42	arma.spec, 6
so2, 46	astsa (astsa-package), 3
soi, 46	astsa-package, 3

INDEX 55

beamd, 7	prodn, 38
birth, 7	
blood, 8, 21, 38, 53	qinfl, 38, <i>39</i>
bnrf1ebv, 9	qintr, <i>39</i> , <i>39</i>
bnrf1hvs, 9	
	rec, 40, <i>47</i>
climhyd, 10	2 24 40
cmort, 10	sales, <i>34</i> , 40
	salt, 41, <i>42</i>
econ5, 11	saltemp, <i>41</i> , 42
EM0, 11	sarima, 42, <i>44</i> , <i>45</i>
EM1, 13	sarima.for, <i>44</i> , 44
EQ5, 14	SigExtract, 45
eqexp, 14, 15, 16	so2, 46
EXP6, 15	soi, <i>40</i> , 46
	soiltemp, 47
FDR, 16	speech, 48
flu, 16	star, 48
fmri, 17	stoch.reg, 49
fmri1, 18	sunspotz, 50
1111 11, 10	
gas, 18, <i>37</i>	SVfilter, 50
gnp, 19	tempr, 51
gtemp, 19, 20	cellipi , 31
gtemp2, 20, 20	unemp, 51
g tellip2, 20, 20	driemp, 51
HCT, 8, 21, 38, 53	varve, 52
HСТ, 8, 21, 38, 53 jj, 21	varve, 52 WBC, 8, 21, 38, 52
jj, 21	
jj,21 Kfilter0,22	
jj,21 Kfilter0,22 Kfilter1,23	
jj,21 Kfilter0,22	
jj,21 Kfilter0,22 Kfilter1,23	
jj,21 Kfilter0,22 Kfilter1,23 Kfilter2,24	
<pre>jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26</pre>	
<pre>jj,21 Kfilter0,22 Kfilter1,23 Kfilter2,24 Ksmooth0,26 Ksmooth1,27 Ksmooth2,29</pre>	
<pre>jj,21 Kfilter0,22 Kfilter1,23 Kfilter2,24 Ksmooth0,26 Ksmooth1,27 Ksmooth2,29 lag1.plot,30</pre>	
<pre>jj,21 Kfilter0,22 Kfilter1,23 Kfilter2,24 Ksmooth0,26 Ksmooth1,27 Ksmooth2,29 lag1.plot,30 lag2.plot,31</pre>	
<pre>jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32</pre>	
<pre>jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32 lap, 11, 33, 37, 46, 51</pre>	
<pre>jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32</pre>	
<pre>jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32 lap, 11, 33, 37, 46, 51</pre>	
jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32 lap, 11, 33, 37, 46, 51 lead, 33, 41	
jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32 lap, 11, 33, 37, 46, 51 lead, 33, 41 mvspec, 34	
jj, 21 Kfilter0, 22 Kfilter1, 23 Kfilter2, 24 Ksmooth0, 26 Ksmooth1, 27 Ksmooth2, 29 lag1.plot, 30 lag2.plot, 31 LagReg, 32 lap, 11, 33, 37, 46, 51 lead, 33, 41 mvspec, 34 nyse, 36	