

We claim:

- 1 1. A circuit arrangement for rapidly switching a load, in particular an inductive load, comprising:
 - 3 - a switching transistor implemented as an N-channel MOS power transistor and connected as a high-side switch for connecting a load with a supply voltage,
 - 5 - controllable switching means for applying a potential exceeding the voltage 6 of the supply voltage source to the gate electrode of the switching transistor, wherein 7 said switching means incorporate at least a first switching-means transistor whose 8 collector current can flow at least in part to the gate electrode of the switching 9 transistor during the ON state, and wherein the first switching-means transistor is 10 connected as a current source.
- 1 2. The circuit arrangement according to Claim 1, wherein the first switching- 2 means transistor connected as a current source is part of a current mirror circuit.
- 1 3. The circuit arrangement according to Claim 2, wherein the current mirror 2 circuit additionally incorporates a first current mirror resistor and a second current 3 mirror resistor each connected to a low voltage source on the one hand and the first 4 current mirror resistor being connected to the base electrode and the current mirror 5 resistor being connected to the emitter electrode of the first switching-means transistor 6 on the other.
- 1 4. The circuit arrangement according to Claim 2, wherein the first switching- 2 means transistor is a pnp transistor.
- 1 5. The circuit arrangement according to Claim 1, wherein the collector current of 2 the first switching-means transistor flows to the gate electrode of the switching 3 transistor via a diode connected in the flow direction.

- 1 6. The circuit arrangement according to Claim 2, wherein the ratio of the
2 resistance values of the first current mirror resistor and the second current mirror
3 resistor corresponds to approximately 100:1.

- 1 7. The circuit arrangement according to Claim 2, wherein an input current of the
2 current mirror circuit is controllable by means of a second switching-means transistor
3 connected as a current source and clocked by a control signals.

- 1 8. The circuit arrangement according to Claim 7, wherein the input current of the
2 current mirror flows to the latter via an RC element comprising an RC element resistor
3 and a parallel-connected RC element capacitor.

- 1 9. The circuit arrangement according to Claim 8, wherein the time constant of the
2 RC element is so designed that the RC element-capacitor is not charged significantly
3 during the turn-on time of the switching transistor, but virtually completely charged
4 during its ON time.

- 1 10. The circuit arrangement according to Claim 2, wherein the current mirror
2 circuit further includes a diode connected in series with the first current mirror resistor
3 in and in the flow direction of the current mirror input current.

- 1 11. The circuit arrangement according to Claim 1, wherein a bootstrap capacitor is
2 provided which is connected to the low voltage source on the one hand and to the
3 source electrode of the switching transistor on the other.

- 1 12. The circuit arrangement according to Claim 3, wherein there is provided a
2 bootstrap diode oriented in the forward direction for coupling the voltage of the low
3 voltage source into the current mirror circuit.

- 1 13. The circuit arrangement according to Claim 3, wherein the low voltage source
2 has an auxiliary voltage source sitting on top of the potential of the supply voltage.

- 1 14. The circuit arrangement according to Claim 1, wherein a third switching-
2 means transistor is provided whose emitter electrode is connected to the gate electrode
3 of the switching transistor and whose collector electrode is connected via a leakage
4 resistor to the source electrode of the switching transistor.

- 1 15. The circuit arrangement according to Claim 14, wherein the base electrode of
2 the third switching-means transistor is connected via a leakage resistor to the source
3 electrode of the switching transistor.

- 1 16. The circuit arrangement according to Claim 14, wherein the third switching-
2 means transistor is a pnp transistor.

- 1 17. The circuit arrangement according to Claim 5, wherein a third switching-
2 means transistor is provided whose emitter electrode is connected to the gate electrode
3 of the switching transistor and whose collector electrode is connected via a leakage
4 resistor to the source electrode of the switching transistor, and wherein the diode via
5 which the collector current of the first switching-means transistor flows to the gate
6 electrode of the switching transistor is disposed between the collector of the first
7 switching-means transistor and the emitter of the second switching-means transistor.

1 18. A method for rapidly switching a load, in particular an inductive load,
2 comprising the steps of:

3 - connecting a load via a switching transistor implemented as an N-channel
4 MOS power transistor with a supply voltage,

5 - applying a potential exceeding the voltage of the supply voltage source to the
6 gate electrode of the switching transistor through switching means, wherein said
7 switching means incorporate at least a first switching-means transistor whose collector
8 current can flow at least in part to the gate electrode of the switching transistor during
9 the ON state, and wherein the first switching-means transistor is connected as a
10 current source.

1 19. The method according to Claim 18, wherein the collector current of the first
2 switching-means transistor flows to the gate electrode of the switching transistor via a
3 diode connected in the flow direction.

1 20. The method according to Claim 18, further comprising the step of providing a
2 third switching-means transistor whose emitter electrode is connected to the gate
3 electrode of the switching transistor and whose collector electrode is connected via a
4 leakage resistor to the source electrode of the switching transistor.