Introduction to Differentiable Probabilistic Models

Bill Watson

S&P Global

July 14, 2019

Primer: Standard Machine Learning

▶ Usually, we are given a set $\mathcal{D} = \{X, y\}$

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nm} \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

where X is our data matrix, and y are our labels.

Primer: Standard Machine Learning

▶ Usually, we are given a set $\mathcal{D} = \{X, y\}$

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nm} \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

where X is our data matrix, and y are our labels.

▶ Attempt to fit a model f parameterized by θ with respect to an objective function $\mathcal L$

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \ \mathcal{L}\big(f(X; \theta), \ y\big)$$

Reframed as a Probabilistic Model

- Consider our model is a probability distribution Q
 - ► No longer have labels y
 - But have probabilities and sampling

Reframed as a Probabilistic Model

- Consider our model is a probability distribution Q
 - ▶ No longer have labels y
 - But have probabilities and sampling
- Consider that our data is sampled from the real world P:

$$egin{aligned} egin{aligned} egin{aligned} X &\sim P \ \ heta^* = rgmin_{ heta} & \mathcal{L}ig(f(X; heta)ig) \end{aligned}$$

Reframed as a Probabilistic Model

- Consider our model is a probability distribution Q
 - No longer have labels y
 - But have probabilities and sampling
- Consider that our data is sampled from the real world P:

$$egin{aligned} m{X} \sim m{P} \ m{ heta}^* = rgmin_{m{ heta}} \ m{\mathcal{L}}ig(f(m{X}; m{ heta}) ig) \end{aligned}$$

- Examples:
 - Classification: Fitting two multinomial distributions
 - Regression: Fitting a Normal centered around the line of best fit

How do we "fit" Distributions?

- ► Fitting two distributions implies minimizing their difference, i.e. "distance"
- ► This "distance" is known as the divergence between the true distribution *P* and the learned distribution *Q*.

How do we "fit" Distributions?

- Fitting two distributions implies minimizing their difference, i.e.
 "distance"
- ► This "distance" is known as the divergence between the true distribution *P* and the learned distribution *Q*.
- ▶ Divergences must satisfy 2 properties:
 - ▶ $D(P \parallel Q) \ge 0 \quad \forall P, Q \in S$
 - $D(P \parallel Q) = 0 \iff P = Q$

The Kullback-Leibler Divergence

▶ The KL Divergence for distributions *P* and *Q* is defined as:

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

The Kullback-Leibler Divergence

▶ The KL Divergence for distributions *P* and *Q* is defined as:

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

▶ Note: the KL Divergence is NOT symmetric:

$$D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P)$$

Hence, this direction is known as the Forward KL

The Kullback-Leibler Divergence

▶ The KL Divergence for distributions *P* and *Q* is defined as:

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

▶ Note: the KL Divergence is NOT symmetric:

$$D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P)$$

- Hence, this direction is known as the Forward KL
- But we will come back to this later...

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)} \right) dx$$
$$= \mathbb{E}_{x \sim P} \left[\log \left(\frac{p(x)}{q(x)} \right) \right]$$

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

$$= \mathbb{E}_{x \sim P} \left[\log \left(\frac{p(x)}{q(x)}\right)\right]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{p(x_i)}{q(x_i)}\right) \quad x_i \sim P|_{i=1}^{N}$$

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

$$= \mathbb{E}_{x \sim P} \left[\log \left(\frac{p(x)}{q(x)}\right)\right]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{p(x_i)}{q(x_i)}\right) \quad x_i \sim P|_{i=1}^{N}$$

Algorithm 1 $\mathbb{E}_{x \sim P}[f(x)]$

Expectation of f(x) with respect to P

- 1: $x_1, \ldots, x_n \sim P$ independently
- 2: **return** $\frac{1}{N} \sum_{x_i} f(x_i)$

Note: Maximum Likelihood Estimation is equivalent to minimizing the Forward KL

- Note: Maximum Likelihood Estimation is equivalent to minimizing the Forward KL
- ▶ The KL Divergence can be decomposed into familiar terms:

$$\underset{Q}{\operatorname{argmin}} \ D_{KL}(P \parallel Q) = \underset{Q}{\operatorname{argmin}} \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)} \right)$$

- Note: Maximum Likelihood Estimation is equivalent to minimizing the Forward KL
- ▶ The KL Divergence can be decomposed into familiar terms:

$$\begin{aligned} \underset{Q}{\operatorname{argmin}} \ D_{\mathsf{KL}}(P \parallel Q) &= \underset{Q}{\operatorname{argmin}} \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)} \right) \\ &= \underset{Q}{\operatorname{argmin}} - \sum_{x \in \mathcal{X}} p(x) \log q(x) \\ &+ \sum_{x \in \mathcal{X}} p(x) \log p(x) \end{aligned}$$

- Note: Maximum Likelihood Estimation is equivalent to minimizing the Forward KL
- ▶ The KL Divergence can be decomposed into familiar terms:

$$\begin{aligned} \underset{Q}{\operatorname{argmin}} \ D_{\mathit{KL}}(P \parallel Q) &= \underset{Q}{\operatorname{argmin}} \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)} \right) \\ &= \underset{Q}{\operatorname{argmin}} - \sum_{x \in \mathcal{X}} p(x) \log q(x) \\ &+ \sum_{x \in \mathcal{X}} p(x) \log p(x) \\ &= \underset{Q}{\operatorname{argmin}} \underbrace{H(P,Q)}_{\mathit{Cross-Entropy}} - \underbrace{H(P)}_{\mathit{Entropy}} \end{aligned}$$

- Note: Maximum Likelihood Estimation is equivalent to minimizing the Forward KL
- ▶ The KL Divergence can be decomposed into familiar terms:

$$\begin{aligned} \underset{Q}{\operatorname{argmin}} \ D_{KL}(P \parallel Q) &= \underset{Q}{\operatorname{argmin}} \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{p(x)}{q(x)} \right) \\ &= \underset{Q}{\operatorname{argmin}} - \sum_{x \in \mathcal{X}} p(x) \log q(x) \\ &+ \sum_{x \in \mathcal{X}} p(x) \log p(x) \\ &= \underset{Q}{\operatorname{argmin}} \underbrace{H(P,Q)}_{Cross-Entropy} - \underbrace{H(P)}_{Entropy} \\ &= \underset{Q}{\operatorname{argmin}} \underbrace{H(P,Q)}_{Cross-Entropy} \end{aligned}$$

If we consider $P(y_i = 1|x_i) = p_i$ and $Q(y_i = 1|x_i) = \sigma(f_{\theta}(x_i))$: $\underset{\theta}{\operatorname{argmin}} D_{KL}(P \parallel Q) = \underset{\alpha}{\operatorname{argmin}} - \left[p_i \log \sigma(f_{\theta}(x_i)) + (1 - p_i) \log(1 - \sigma(f_{\theta}(x_i))) \right]$

► This is the Binary Cross-Entropy Loss

Forward KL: Learning a Normal Distribution (Initial)

Figure: $P \sim \mathcal{N}(-7.3, 3.2), \ Q \sim \mathcal{N}(0, 1)$

Forward KL: Learning a Normal Distribution (Results)

Figure: $P \sim \mathcal{N}(-7.3, 3.2), \ Q \sim \mathcal{N}(-7.28, 3.24)$

Digression: Gaussian Mixture Models

• We can build a K multi-modal distribution, with weights π , as follows:

$$z \sim \mathsf{Categorical}(\pi)$$

 $x \mid z = k \sim \mathsf{Normal}(\mu_k, \sigma_k)$

▶ We can calculate log probabilities by marginalizing out *z*:

$$\log p(x) = \log \sum_{k=1}^{K} \underbrace{p(z=k)}_{\text{Categorical}} \cdot \underbrace{p(x \mid z=k)}_{\text{Normal}}$$

Digression: Mixture Models (Visual)

Figure: 2 Mixture Components, Even Weights

Figure: 3 Mixture Components, Uneven Weights

Forward KL: Learning a Bimodal (Initial)

Figure: $P \sim \{\mathcal{N}(-7.3, 1.4), \ \mathcal{N}(7.3, 1.4)\}$ $Q \sim \mathcal{N}(0, 1)$

Forward KL: Learning a Bimodal (Results)

Figure: $Q \sim \mathcal{N}(0.08, 36.76)$

Forward KL: Zero-Avoiding

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} \overbrace{p(x)}^{Constant} \log \left(\frac{\overbrace{p(x)}^{Constant}}{\overbrace{q(x)}^{Variable}} \right) dx$$

- ightharpoonup p(x) is constant-valued, q(x) is variable
- ▶ If Q does not support P, then we will sample a point that has a low probability with respect to Q

Forward KL: Zero-Avoiding

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} \overbrace{p(x)}^{Constant} \log \left(\frac{\overbrace{p(x)}^{Constant}}{\overbrace{q(x)}^{Variable}} \right) dx$$

- ightharpoonup p(x) is constant-valued, q(x) is variable
- If Q does not support P, then we will sample a point that has a low probability with respect to Q
- ▶ As $q(x) \rightarrow 0$, our loss $D_{KL} \rightarrow \infty$

Forward KL: Zero-Avoiding

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} \overbrace{p(x)}^{\text{Constant}} \log \left(\frac{\overbrace{p(x)}^{\text{Constant}}}{\overbrace{q(x)}^{\text{Variable}}} \right) dx$$

- ightharpoonup p(x) is constant-valued, q(x) is variable
- If Q does not support P, then we will sample a point that has a low probability with respect to Q
- ▶ As $q(x) \rightarrow 0$, our loss $D_{KL} \rightarrow \infty$
- \blacktriangleright Hence, the optimal solution is for Q to cover P, i.e. averaging

Forward KL: Loss Landscape

Figure: Loss Landscape for Forward KL Divergence

Directionality: Reverse KL

$$D_{KL}(Q \parallel P) = \int_{-\infty}^{\infty} q(x) \log \left(\frac{q(x)}{p(x)} \right) dx$$
$$= \mathbb{E}_{x \sim Q} \left[\log \left(\frac{q(x)}{p(x)} \right) \right]$$

- ► The Reverse KL will sample from Q, and evaluate the log probabilities from P and Q
- Recall: KL Divergence is not symmetric, and this has drastic implications...

Digression: Differentiable Sampling via the Reparameterization Trick

Figure: Original Form

Digression: Differentiable Sampling via the Reparameterization Trick

Figure: Reparameterized Version

Digression: Common Reparameterization Tricks

	Reparameterized
$\mathcal{N}(\mu,\sigma)$	$\mu + \sigma \cdot \mathcal{N}(0, 1)$
Uniform(a,b)	$a+(b-a)\cdot \mathcal{U}(0,1)$
$Exp(\lambda)$	$Exp(1)/\lambda$
$Cauchy(\mu,\gamma)$	$\mu + \gamma \cdot Cauchy(0, 1)$

Digression: Common Reparameterization Tricks

-	Reparameterized
$\mathcal{N}(\mu,\sigma)$	$\mu + \sigma \cdot \mathcal{N}(0,1)$
$\mathcal{U}(a,b)$	$a + (b - a) \cdot \mathcal{U}(0, 1)$
$Exp(\lambda)$	$Exp(1)/\lambda$
$Cauchy(\mu,\gamma)$	$\mu + \gamma \cdot Cauchy(0,1)$
$Laplace(\mu,b)$	$u \sim Uniform(-1,1) \ \mu - b \cdot sgn(u) \ln igl[1 - u igr]$

Digression: Common Reparameterization Tricks

	Reparameterized		
$\mathcal{N}(\mu,\sigma)$	$\mu + \sigma \cdot \mathcal{N}(0,1)$		
Uniform(a,b)	$a+(b-a)\cdot \mathcal{U}(0,1)$		
$Exp(\lambda)$	$Exp(1)/\lambda$		
$Cauchy(\mu,\gamma)$	$\mu + \gamma \cdot Cauchy(0,1)$		
$Laplace(\mu,b)$	$u \sim Uniform(-1,1) \ \mu - b \cdot sgn(u) \ln igl[1 - u igr]$		
$Categorical(\pi)$	×		

Reverse KL: Learning a Bimodal (Initial)

Figure: $P \sim \{\mathcal{N}(-7.3, 1.4), \ \mathcal{N}(7.3, 1.4)\}$ $Q \sim \mathcal{N}(0, 1)$

Reverse KL: Learning a Bimodal (Results)

Figure: $Q \sim \mathcal{N}(-7.02, 1.41)$

Reverse KL: Learning a Bimodal Attempt 2 (Results)

Figure: $Q \sim \mathcal{N}(7.01, 1.46)$

Reverse KL: Zero-Forcing

$$D_{KL}(Q \parallel P) = \int_{-\infty}^{\infty} q(x) \log \left(\frac{q(x)}{p(x)}\right) dx$$

- Unlike the Forward KL, Reverse KL is Zero-forcing
- Why? Because we no longer suffer a penalty from q(x) = 0
- ► However, if p(x) = 0, then the optimal value for q(x)is 0
- ▶ Result ⇒ Mode Collapse

Figure: Loss Landscape for Reverse KL Divergence

Jensen - Shannon Divergence: A Symmetric Divergence

$$JSD(P \parallel Q) = \frac{1}{2}D_{KL}(P \parallel M) + \frac{1}{2}D_{KL}(Q \parallel M)$$
$$M = \frac{1}{2}(P + Q)$$

- ► The JS Divergence is a symmetrized version of the KL Divergence
- M is the average of distributions P and Q, and can be represented as a Mixture Model

Jensen - Shannon Divergence: Bimodal (Initial)

Figure: $P \sim \{\mathcal{N}(-7.3, 1.4), \ \mathcal{N}(7.3, 1.4)\}$ $Q \sim \mathcal{N}(0, 1)$

Jensen - Shannon Divergence: Bimodal (Result)

Figure: $Q \sim \mathcal{N}(-0.04, 48.20)$

Jensen - Shannon Divergence: Right Shift (Attempt 2)

Figure: $P \sim \{\mathcal{N}(-7.3, 1.4), \ \mathcal{N}(7.3, 1.4)\}$ $Q \sim \mathcal{N}(1, 1)$

Jensen - Shannon Divergence: Right Shift (Result)

Figure: $Q \sim \mathcal{N}(6.99, 1.43)$

Jensen - Shannon Divergence: Left Shift (Attempt 3)

Figure: $P \sim \{\mathcal{N}(-7.3, 1.4), \ \mathcal{N}(7.3, 1.4)\}$ $Q \sim \mathcal{N}(-1, 1)$

Jensen - Shannon Divergence: Left Shift (Result)

Figure: $Q \sim \mathcal{N}(-6.98, 1.38)$

Jensen - Shannon Divergence Loss

$$JSD(P \parallel Q) = \frac{1}{2}D_{KL}(P \parallel M) + \frac{1}{2}D_{KL}(Q \parallel M)$$
$$M = \frac{1}{2}(P + Q)$$

Figure: Loss Landscape for JS Divergence

A Family of Divergences: f-Divergence

- ► KL Divergence is a special case of the *f*-divergence
- ► The *f*-divergence is a family of divergences that can be written as:

$$D_f(P \parallel Q) = \int \underbrace{q(x)}^{\text{Weight}} f \underbrace{\left(\frac{p(x)}{q(x)}\right)}_{\text{Odds Ratio}} dx$$

A Family of Divergences: f-Divergence

$$D_f(P \parallel Q) = \int \underbrace{q(x)}^{\text{Weight}} f \underbrace{\left(\frac{p(x)}{q(x)}\right)}_{\text{Odds Ratio}} dx$$

Divergence	f(t)
Forward KL	t log t
Reverse KL	$-\log t$
Hellinger Distance	$\left(\sqrt{t}-1\right)^2$, $2\left(1-\sqrt{t}\right)$
Total Variation	$ \frac{1}{2} t-1 $
Pearson χ^2	$(t-1)^2$, t^2-1 , t^2-t
Neyman χ^2 (Reverse Pearson)	$ (t-1)^{2}, t^{2}-1, t^{2}-t $ $ \frac{1}{t}-1, \frac{1}{t}-t $

Earth Mover's Distance (Wasserstein Distance)

$$\mathsf{EMD}\left(P,Q\right) = \inf_{\gamma \in \prod} \sum_{\mathsf{x},\mathsf{y}} \overbrace{\|p-q\|}^{\ell_2 \mathsf{Norm}} \underbrace{\gamma\left(p,q\right)}_{\mathsf{Joint Margina}}$$

- ho γ (p,q) states how we distribute the amount of "earth" from one place p over the domain of q, or vice versa
- ► EMD is the minimal total amount of work it takes to transform one distribution into the other

Earth Mover's Distance (Wasserstein Distance)

$$\mathsf{EMD}\left(P,Q\right) = \inf_{\gamma \in \prod} \, \sum_{\mathsf{x},\mathsf{y}} \lVert p - q \rVert \gamma \left(p,q\right)$$

Summary of Methods

	Р		Q	
	$\log p(x)$	$x \sim P$	$\log q(x)$	$x \sim Q$
Cross-Entropy		✓	✓	
Forward KL	✓	✓	✓	
Reverse KL	✓		✓	✓
JS Divergence	✓	✓	✓	✓
<i>f</i> -Divergence	✓	✓	✓	✓
Wasserstein ¹		\checkmark		\checkmark

Practical Uses of Divergences

- Forward Kullback-Leibler
 - Maximum Likelihood Estimation
 - ▶ ℓ₂: Mean Squared Error (Normally Distributed)
 - \blacktriangleright ℓ_1 : Mean Absolute Error (Laplace Distributed)
 - Binary Cross Entropy (Bernoulli Distributed)
 - Cross Entropy (Multinomially Distributed)
 - ► Log-Likelihood Models
 - ► PixelCNN
 - Glow
 - Variational Autoencoders

Practical Uses of Divergences

- Reverse Kullback-Leibler
 - Evidence Lower Bound (ELBO)
- Jensen-Shannon Divergence
 - Generative Adversarial Network (Original)
- Earth Mover's Distance
 - Wasserstein GAN (WGAN)
- ▶ Pearson χ^2 Divergence
 - Least Squares GAN (LSGAN)

Potpourri: Advanced Techniques

- 1. Transforms
 - Normalizing Flow Models
- 2. Expectation–Maximization
- 3. Variational Inference
 - ELBO
- 4. Adversarial Training (GANs, GANs, GANs)
- 5. Markov Chain Monte Carlo
 - Metropolis-Hastings
 - Gibbs Sampling
 - ► Hamiltonian Monte Carlo
 - NUTS