VE216 Lecture 6

Laplace Transform

Concept Map

Laplace Transform Definition

$$X(s)=\int x(t)e^{-st}dt$$

Two versions

- Unilateral: $X(s) = \int_0^\infty x(t)e^{-st}dt$ Bilateral: $X(s) = \int_{-\infty}^\infty x(t)e^{-st}dt$

(We focus on bilateral version.)

Region of Convergence (ROC)

This is based on the $X(s)=\int_{-\infty}^{\infty}x(t)e^{-st}dt$, we can see from the examples.

Example

Exercise 1

$$x_1(t) = \left\{egin{array}{ll} e^{-t} & t \geq 0 \ 0 & t < 0 \end{array}
ight.$$
 Laplace transform.

$$X_1(s) = L[x_1(t)] = \int_0^\infty e^{-t} e^{-st} dt = -rac{1}{1+s} \int_0^\infty -(1+s) e^{-(1+s)t} dt = -rac{1}{1+s} e^{-(1+s)t} \Big|_0^\infty = -rac{1}{1+s}$$

Since $e^{-(1+s)t}$ is convergent when 1+s<0, or Re(s)>-1, so ROC shows

Exercise 2

$$x_2(t) = egin{cases} -e^{-t} & t \leq 0 \ 0 & t > 0 \end{cases}$$
 Laplace transform.

$$X_2(s) = \int_{-\infty}^0 -e^{-t}e^{-st}dt = rac{1}{1+s}\int_{-\infty}^0 -(1+s)e^{-(1+s)t}dt = rac{1}{1+s}$$

Since $e^{-(1+s)t}$ is convergent for $x\in (-\infty,0)$, so -(1+s)>0 or Re(s)<-1 with ROC shows

Exercise 3

 $x_3(t) = e^{-|t|}$ Laplace transform.

$$X_3(s) = \int_{-\infty}^{\infty} e^{-|t|-st} dt = \int_{0}^{\infty} e^{-(1+s)t} dt + \int_{-\infty}^{0} e^{(1-s)t} dt = \frac{e^{(1-s)t}}{1-s} \Big|_{-\infty}^{0} - \frac{e^{-(1+s)t}}{1+s} \Big|_{0}^{\infty} = \frac{1}{1-s} + \frac{1}{1+s}$$

So 1-s>0 and 1+s>0, 1>s>-1, with ROC shows

Exercise 4

 $\frac{2s}{s^2-4}$ Laplace inverse transform, how many possible solution and ROCs?

$$\frac{2s}{s^2-4}=\frac{1}{s+2}+\frac{1}{s-2}$$
, with ± 2 as poles.

• $\frac{1}{s+2}$ has 2 forms with 2 ROCs.

$$\circ \ \ rac{1}{s+2} = \int_{-\infty}^{\infty} e^{-st} e^{-2t} u(t) dt = \int_{0}^{\infty} e^{-(2+s)t} dt = -rac{1}{s+2} e^{-(2+s)t} \Big|_{0}^{\infty}$$
 , so $2+s>0$ with $Re(s)>-2$.

$$\circ \ \ \tfrac{1}{s+2} = \int_{-\infty}^{\infty} -e^{-st} e^{-2t} u(-t) dt = \int_{-\infty}^{0} -e^{-(s+2)t} = \tfrac{1}{s+2} e^{-(s+2)t} \Big|_{-\infty}^{0} , \ \text{SO } 2+s < 0 \ \text{with } Re(s) < -2.$$

• $\frac{1}{s-2}$ has 2 forms with 2 ROCs

$$\circ \ \ rac{1}{s-2} = \int_{-\infty}^{\infty} e^{-st} e^{2t} u(t) dt = \int_{0}^{\infty} e^{(2-s)t} dt = rac{1}{2-s} e^{(2-s)t} \Big|_{0}^{\infty}$$
 , so $2-s < 0$ with $Re(s) > 2$.

$$\circ \ \ \tfrac{1}{s-2} = \int_{-\infty}^{\infty} -e^{-st} e^{2t} u(-t) dt = \int_{-\infty}^{0} -e^{(2-s)t} dt = \tfrac{1}{s-2} e^{(2-s)t} \Big|_{-\infty}^{0}, \ \text{SO } 2-s>0 \ \ \text{with } Re(s) < 2.$$

So there are totally 3 solutions:

$$ullet x(t)=e^{-2t}u(t)+e^{2t}u(t)$$
 with $Re(s)>2$

$$ullet x(t) = -e^{-2t}u(-t) - e^{2t}u(-t)$$
 with $Re(s) < -2$

$$ullet x(t)=e^{-2t}u(-t)-e^{2t}u(-t)$$
 with $2>Re(s)>-2$

Laplace Transform of a Derivative

$$X_d(s) = \int_{-\infty}^{\infty} x'(t) e^{-st} dt = x(t) e^{-st} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} x(t) (-s) e^{-st} dt$$

Since
$$X(s)$$
 is convergent, so $x(t)e^{-st}\Big|_{-\infty}^{\infty}=0$, thus $X_d(s)=sX(s)$.

Laplace Transform Properties

Initial Value Theorem

If $x(t) = 0 \ \forall t < 0$, x(t) contains no impulses at t = 0, then

$$x(0^+) = \lim_{s o\infty} sX(s) = \lim_{s o\infty} \int_0^\infty x(t)se^{-st}dt = \lim_{s o\infty} \int_0^\infty x(t)\delta(t)dt = x(0^+)$$

(As $s
ightarrow \infty e^{-st}$ shrink to 0 very fast.)

Final Value Theorem

If $x(t) = 0 \ \forall t < 0$, x(t) contains no impulses at t = 0, then

$$x(\infty) = \lim_{s o 0} sX(s) = \lim_{s o 0} \int_0^\infty x(t)se^{-st}dt$$

Since se^{-st} is flattened when $s \to 0$, se^{-st} covers area of 1 whatever s.

So
$$x(\infty)=rac{1}{\infty}\int_0^\infty x(t)dt=x(\infty)$$
.