ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р 54167-2010 (ИСО 14438:2002)

Стекло и изделия из него

ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЯ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА

Метод расчета

ISO 14438:2002
Glass in building – Determination of energy balance value – Calculation method
(MOD)

Издание официальное

Москва Стандартинформ 2010

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184 ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации – ГОСТ Р 1.0–2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Институт стекла» на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 41 «Стекло»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 21.12.2010 № 939-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 14438:2002 «Стекло в строительстве Определение значения энергетического баланса Метод расчета» (ISO 14438:2002 «Glass in building Determination of energy balance value Calculation method») путем изменения отдельных фраз (слов, значений показателей, ссылок), которые выделены в тексте курсивом.

Внесение указанных технических отклонений направлено на учет особенностей объекта стандартизации, характерных для Российской Федерации, и целесообразности использования ссылочных национальных стандартов вместо ссылочных международных стандартов.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5 (пункт 3.5).

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3 Обозначения
4 Основная формула
5 Основные характеристики остекления
6 Интенсивность солнечного излучения, H_p
7 Градусо-сутки, D_p
8 Период применения, р
9 Основные значения и представление результатов
10 Альтернативное упрощение основных значений и представление результатов
Приложение А (справочное) Примеры климатических данных
Приложение В (справочное) Примеры расчета значения энергетического баланса
Библиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Стекло и изделия из него ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЯ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА Метод расчета

Glass and glass products. Determination of energy balance value. Calculation method

Дата введения – **01.07.2012**

1 Область применения

Настоящий стандарт устанавливает метод расчета значения энергетического баланса остекления. Настоящий стандарт распространяется на прозрачные материалы, такие как стекло и изделия из стекла, применяемые для остекления окон в зданиях.

Данный метод предназначен для определения баланса потерь тепла и притока полезного тепла солнечного излучения, проникающего в здание через остекление, за определенный период на основании среднего уровня потерь (или притока) тепла, называемого значением энергетического баланса.

Метод позволяет изготовителям сравнивать характеристики изделий, предназначенных для остекления. Значение энергетического баланса не следует использовать для расчетов потребляемой энергии или мощности отопительного оборудования в зданиях.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 54164–2010 (ИСО 9050:2003) Стекло и изделия из него. Методы определения оптических характеристик. Определение световых и солнечных характеристик (ЕН 410:1998 «Стекло в строительстве – Определение световых и солнечных характе-

ристик остекления», NEQ)

ГОСТ Р 54166–2010 (ЕН 673:1998) Стекло и изделия из него. Методы определения тепловых характеристик. Метод расчета сопротивления теплопередаче (ЕН 673:1997 «Стекло в строительстве — Определение коэффициента теплопередачи (величины U) — Метод расчета», МОО)

ГОСТ Р 54165–2010 (ИСО 10293:1997) Стекло и изделия из него. Методы определения тепловых характеристик. Метод определения сопротивления теплопередаче (ЕН 675:1997 «Стекло в строительстве — Определение коэффициента теплопередачи (величины U) — Метод измерения теплового потока», NEQ)

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Обозначения

В настоящем стандарте применены следующие обозначения:

D – градусо-сутки, $K \cdot 24$ ч

η – фактор полезности

H – интенсивность солнечного излучения, кВт·ч/м²

g – коэффициент общего пропускания солнечной энергии (солнечный фактор)

U – коэффициент теплопередачи (величина U), $B_T/(M^2 \cdot K)$

f – фактор, обусловленный эксплуатацией остекления и эффектами затенения

S – функция от H и D, характеризующая выбранный регион, $B_T/(M^2 \cdot K)$

E – значение энергетического баланса, $B_T/(M^2 \cdot K)$

Индекс:

р – период применения

4 Основная формула

Значение энергетического баланса E для заданного периода определяют по формуле

$$E = U - \frac{\eta \cdot g \cdot f \cdot H_p}{D_p}, \tag{1}$$

где U – коэффициент теплопередачи (величина U) остекления;

 η – фактор полезности;

f — фактор, обусловленный эксплуатацией остекления и эффектами затенения;

g — коэффициент общего пропускания солнечной энергии остекления (солнечный фактор);

 H_p – интенсивность солнечного излучения за заданный период;

 D_{p} – градусо-сутки заданного периода.

Примечание – Пример расчета приведен в приложении В.

5 Основные характеристики остекления

5.1 Коэффициент теплопередачи (величина *U*)

Коэффициент теплопередачи остекления рассчитывают по $\Gamma OCT~P~54166$ (EH 673:1998) или измеряют по $\Gamma OCT~P~54165$ (ИСО 10293:1997).

5.2 Фактор полезности, п

Фактор полезности для здания или помещения представляет собой отношение притока полезного тепла, замещающего отопление в течение определенного периода, к общему притоку тепла за этот период.

Фактор полезности зависит в основном от конструкции здания.

Значение фактора полезности не может быть более единицы. Конкретное значение зависит от возможности систем регулировать отопление так, чтобы снижать отопительную нагрузку, пока внутри здания сохраняется требуемая температура.

Фактор полезности зависит от выбранного периода и его продолжительности.

Его значение для типовых конструкций, таких как окна зданий, составляет от 0,4 до 0,8 для зимнего отопительного периода и может быть определено экспериментально или рассчитано по *аттестованным методикам*. Для целей сравнения изделий, предна-

значенных для остекления, значение фактора полезности следует принимать равным 0,6.

5.3 Коэффициент общего пропускания солнечной энергии остекления (солнечный фактор), g

Данный коэффициент характеризует общее пропускание солнечной энергии через остекление и представляет собой сумму прямого пропускания солнечного излучения и части поглощенного излучения, которая за счет конвекции и вторичного излучения попадает во внутреннее пространство здания.

Коэффициент общего пропускания солнечной энергии определяют по ГОСТ Р 54164 (ИСО 9050:2003).

$5.4~\Phi$ актор, обусловленный эксплуатацией остекления и эффектами затенения, f

Данный фактор учитывает загрязнение поверхности остекления и эффекты затенения. Для целей сравнения изделий, предназначенных для остекления при вертикальном или близком к вертикальному ($\pm 15^{\circ}$) расположении поверхностей, значение данного фактора следует принимать равным 0,8.

6 Интенсивность солнечного излучения, H_p

Интенсивность солнечного излучения характеризуется коэффициентом H_p , кВт·ч/м², который представляет собой количество солнечного излучения, падающее на вертикальную поверхность остекления в течение всего рассматриваемого периода.

Данные для некоторых регионов приведены в приложении А.

Примечание – Данные для регионов Европы принимают по [1].

Данные для регионов Российской Федерации определяют по строительным нормам и правилам [2] с учетом поправочного коэффициента для перевода единиц величин.

7 Градусо-сутки, D_p

Показатель «градусо-сутки» характеризует отклонение средней суточной температуры наружного воздуха от базовой температуры и определяется как сумма этих отклонений для всех суток отопительного периода, при условии, что средняя суточная температура ниже базовой.

Градусо-сутки рассчитывают для местных климатических условий. В большинстве стран публикуются официальные статистические данные.

Базовая температура – это расчетная контролируемая температура внутри здания, определяемая для рассматриваемого периода. Для целей сравнения базовую температуру следует принимать равной 18 °C.

В формуле (1) используют градусо-сутки (К·24 ч) всего рассматриваемого периода. Примеры приведены в приложении А.

Градусо-сутки отопительного периода для регионов Российской Федерации определяют по строительным нормам и правилам [3].

8 Период применения, р

Метод, установленный настоящим стандартом, может применяться для определения значения энергетического баланса остекления для любого выбранного периода.

Для целей сравнения периодом считают отопительный период, то есть интервал времени (в месяцах), в течение которого в здании включено отопление. Примеры приведены в приложении A.

9 Основные значения и представление результатов

Значение энергетического баланса остекления E, используемое для целей сравнения, следует определять при одинаковых базовых условиях.

При расчете следует использовать данные, установленные настоящим стандартом, и указывать все базовые условия.

Базовыми условиями являются:

- регион применения;
- ориентация остекления по сторонам света;
- источник данных о градусо-сутках;
- источник данных об интенсивности солнечного излучения.

Следует указать, если значения фактора полезности и фактора, обусловленного эксплуатацией остекления и эффектами затенения, отличаются от 0,6 и 0,8 соответственно и применяются не для целей сравнения изделий.

Любая публикация значения энергетического баланса должна сопровождаться указанием, что проведенный расчет основан на максимально возможной интенсивности солнечного излучения. Любое внешнее заграждение, затеняющее окно, приводит к увеличению значения энергетического баланса. Поэтому в дополнение к базовым условиям следует указать: «Данный расчет распространяется только на незатененное остекление».

Значение энергетического баланса, $Bt/(M^2 \cdot K)$, округляют до одного десятичного знака. Если второй знак после запятой равен пяти, значение округляют в большую сторону.

Пример 1 – 1,53 округляют до 1,5.

Пример 2 – 1,55 округляют до 1,6.

Пример 3 – 1,549 округляют до 1,5.

10 Альтернативное упрощение основных значений и представление результатов

3начение энергетического баланса E может быть определено по упрощенной формуле

$$E = U - g \cdot S \,, \tag{2}$$

где

$$S = \frac{\eta \cdot f \cdot H_p}{D_p} \,. \tag{3}$$

Если регион или страна находятся в пределах одной климатической зоны, им могут быть присвоены соответствующие значения S. Для каждого региона или страны применяют усредненные значения S по сторонам света, характеризующие климат, период применения, фактор полезности, интенсивность солнечного излучения, как показано в приложении B.

Приложение А (справочное) Примеры климатических данных

Таблица A.1 – Отопительный период, градусо-сутки для базовой температуры 18 °C и интенсивность солнечного излучения, падающего на вертикальную поверхность, для некоторых городов

Регион	Отопительный	Градусо-сутки отопительного	Интенсивность солнечного излучения, H_p , кВт ч/м ²		
тсгион	период	периода, D_p , К \cdot 24ч	север	запад/восток	ЮГ
Бельгия					
(Экло)	сентябрь – май	2900	202	350	505
Дания					
(Копенгаген)	сентябрь – май	2936	100	225	420
Франция					
Зона Н1(Трапес)	сентябрь – май	2625	230	410	590
Зона Н2 (Карпентрас)	октябрь – май	2167	235	520	720
Зона НЗ (Ницца)	ноябрь – апрель	1542	150	360	630
Германия					
(Гамбург)	сентябрь – май	3267	195	348	505
(Берлин)	сентябрь – май	3335	203	358	518
(Мюнхен)	сентябрь – май	3568	242	446	649
Голландия	-				
(Де-Билт)	сентябрь – май	2935	205	358	522
Италия	1				
(Милан)	октябрь – март	2159	107	196	346
(Рим)	ноябрь – март	1401	110	239	442
(Мессина)	ноябрь – март	844	85	191	373
Великобритания (Юг)	1				
(Лондон)					
(Долина Темзы)	сентябрь – май	2700	200	347	510
(Центр. графства Англии)					
Великобритания		•	40-	2-1	40-
(Север)	сентябрь – май	3000	197	354	497
Великобритания					
(Шотландия)	сентябрь – май	3200	176	303	452
Япония	coninops mun	3200	1,0	303	152
(Саппоро)	сентябрь – июнь	3757	175	443	709
(Ниигата)	октябрь – апрель	2313	124	223	364
(Токио)	ноябрь – апрель	1599	102	228	440
(Кагосима)	ноябрь – апрель	1200	93	281	533

Приложение В (справочное) Примеры расчета значения энергетического баланса

В.1 Пример расчета по климатическим данным D_p и H_p

Таблица В.1 – Примеры климатических данных, выбранных из таблицы А.1

Отопительный период	Градусо-сутки отопительного	Интенсивность солнечного излучения, H_p , кВт \cdot ч/м ²				
	периода, D_p , К \cdot 24ч	север	запад/восток	ЮГ		
сентябрь – май	2900	202	350	505		
Примечание – Числовые значения, указанные в таблице, предназначены для иллюстрации						
расчета и правил их применения и не являются данными по какой-либо стране или региону.						

Пример расчета значения энергетического баланса условного однокамерного стеклопакета (наполнение воздухом, без низкоэмиссионного покрытия).

$$U = 2.9 \text{ BT/(M}^2 \cdot \text{K}).$$

$$g = 0.75$$
.

Ориентация – юг.

Стандартизованные значения η и f:

$$\eta = 0.6;$$

$$f = 0.8$$
.

Значение энергетического баланса E определяют по формуле (1):

$$E = U - \frac{\eta \cdot g \cdot f \cdot H_p}{D_p} = 2.9 - \frac{0.6 \cdot 0.75 \cdot 0.8 \cdot 505 \cdot 1000}{2900 \cdot 24} = 0.288 \text{ BT/(M}^2 \cdot \text{K)}.$$

В соответствии с разделом 9 полученный результат округляют до 0,3 $Bt/(M^2 \cdot K)$.

В.2 Примеры расчета по усредненным значениям S для выбранного региона или страны

Таблица В.2 – Примеры усредненных значений *S* для выбранного региона или страны

	Усредненные значения S для расчета значения энергетического баланса, $BT/(M^2 \cdot K)$			
Ориентация	север	запад или восток	ЮГ	
	1,9	2,5	3,2	
Приманация — Инстарца энзнания укразинна в тоблина правназнания пля инпострании				

Примечание – Числовые значения, указанные в таблице, предназначены для иллюстрации расчета и правил их применения и не являются данными по какой-либо стране или региону.

Пример 1

Пример расчета значения энергетического баланса условного однокамерного стеклопакета (наполнение воздухом, без низкоэмиссионного покрытия).

$$U = 2.9 \text{ BT/(M}^2 \cdot \text{K}).$$

$$g = 0.75$$
.

Значение энергетического баланса E определяют *по формуле* (2):

$$E = 2.9 - 0.75S$$
.

Для каждой стороны света получают следующие результаты:

Ориентация	Север	Запад или Восток	Юг
E	1,5	1,0	0,5

Пример 2

Пример расчета значения энергетического баланса условного однокамерного стеклопакета с низкоэмиссионным покрытием, заполненного аргоном, на основе значений S, приведенных в таблице B.2.

$$U = 1.4 \text{ BT/(M}^2 \cdot \text{K}).$$

$$g = 0.65$$
.

Значение энергетического баланса E определяют *по формуле* (2):

$$E = 1,4 - 0,65S$$
.

Для каждой стороны света получают следующие результаты:

Ориентация	Север	Запад или Восток	Юг	
E	0,2	$-0,2^{1)}$	$-0.7^{1)}$	
1) Если приток тепла превышает потери, значение энергетического баланса стано-				
вится отрицательным.				

Библиография

- [1] Европейский атлас солнечного излучения. Том 2: Общее и рассеянное излучение на вертикальные и наклонные поверхности, под редакцией В.Палза, Комиссия Европейского Сообщества (1984), EUR 9345 (European Solar Radiation Atlas. Volume 2: Global and Diffuse Radiation on Vertical and Inclined Surfaces, Edited by W.Palz, Commission of European Communities (1984), EUR 9345)
- [2] СНиП 23-01-99 Строительная климатология
- [3] СНиП 23-02-2003 Тепловая защита зданий

УДК 666.151:006.354

OKC 81.040.20

И19

Ключевые слова: стекло и изделия из него, значение энергетического баланса, метод расчета