Problem 1. Let X be a nonempty set. Suppose that there exists a function $d: X \times X \to \mathbb{R}_+$ which satisfies the separation and symmetry properties of being a metric, and in addition, has the property that $d(x,y) \geq d(x,z) + d(z,y)$ for every $x,y,z \in X$. Show that X must then be a singleton.

Proof: For $x, y \in X$, by assumption we have $0 = d(x, x) \ge d(x, y) + d(y, x) = 2d(x, y)$, which implies that $d(x, y) = 0 \iff x = y$. Thus it must be a singleton.

Problem 2. Let X be a nonempty set and $d: X \times X \to \mathbb{R}_+$ a function which satisfies the separation and symmetry properties of being a metric, and in addition, has the property that $d(x,y) \leq \max\{d(x,z),d(z,y)\}$ for every $x,y,z \in X$. Such a function is said to be an ultrametric on X, and when d is an ultrametric on X, we refer to (X,d) as an ultrametric space. Clearly, every ultrametric space is a metric space. Give an example to show that the converse of this is false.

Proof: Consider the \mathbb{R}^2 space with Euclidean metric, then $\sqrt{2} = d((0,0),(1,1)) \le d((0,0),(1,0)) + d((1,1),(1,0)) = 2$. However, $\sqrt{2} = d((0,0),(1,1)) > \max\{d((0,0),(1,0)), d((1,1),(1,0))\} = 1$.

Problem 3. Let X be a nonempty set. For any distinct x and y in X^{∞} , let k(x,y) be the first term at which the sequence x and y differ. Consider the function $d: X^{\infty} \times X^{\infty} \to \mathbb{R}_+$ defined by $d(x,y) := \frac{1}{k(x,y)}$ for every distinct $x,y \in X^{\infty}$, and by d(x,x) := 0 for every $x \in X^{\infty}$. Show that d is an ultrametric on X^{∞} .

Proof: The separation and symmetry properties automatically hold by the definition of k(x,y). For $x,y,z\in X^{\infty}$, suppose k(x,y)=k. First case is that $k'=k(x,z)\leq k$, which means that $k(y,z)=k'\leq k$, then $d(x,y)=\frac{1}{k(x,y)}\leq \frac{1}{k'}=d(x,z)=d(y,z)=\max\{d(x,z),d(y,z)\}$. The second case is that k(x,z)>k, then we claim that $k(y,z)\leq k$, because otherwise, at least for $i=k,\ x_i=z_i=y_i$, which contradict the fact that k=k(x,y) is the smallest term where x,y differs. Thus $d(x,y)=\frac{1}{k(x,y)}\leq \frac{1}{k(y,z)}=\max\{d(x,z),d(y,z)\}$. In conclusion, d is an ultrametric on X^{∞} .

Problem 4. Let X be an ultrametric space, and take any $x \in X$ and $\epsilon > 0$. Show that if $y \in B(x,\epsilon)$, then $B(y,\epsilon) = B(x,\epsilon)$. (So, an open ball in an ultrametric space may have several centers) Also show that if $B(x,\epsilon_1)$ and $B(y,\epsilon_2)$ overlaps for some $\epsilon_1,\epsilon_2 > 0$, then either $B(x,\epsilon_1)$ is contained in $B(y,\epsilon_2)$ or vice versa.

Proof: Suppose $z \in B(y, \epsilon)$, then $d(z, x) \leq \max\{d(z, y), d(x, y)\} < \epsilon$, the last inequality is given by the fact that $y \in B(x, \epsilon)$. Thus $B(y, \epsilon) \subset B(x, \epsilon)$. $B(x, \epsilon) \subset B(y, \epsilon)$ is given by exact same argument, hence $B(x, \epsilon) = B(y, \epsilon)$.

Now, without loss of generality, we assume that $\epsilon_1 > \epsilon_2$. For $z \in B(x, \epsilon_1) \cap B(y, \epsilon_2)$, we have $d(x, z) < \epsilon_1$ and $d(y, z) < \epsilon_2$, then $d(x, y) \le \max\{d(x, z), d(y, z)\} < \epsilon_1$, which means that $y \in B(x, \epsilon_1)$. By our previous result, $B(y, \epsilon_1) = B(x, \epsilon_1)$, then $B(y, \epsilon_2) \subset B(y, \epsilon_1) = B(x, \epsilon_1)$.

Problem 5. Let X be an ultrametric space, and take any $x \in X$ and $\epsilon > 0$. Show that $B(x, \epsilon)$ is clopen, and conclude that $\partial B(x, \epsilon) = \emptyset$.

Proof: Suppose that $y \in B(x, \epsilon)$, then by Problem 4, $B(y, \epsilon) = B(x, \epsilon) \subset B(x, \epsilon)$, thus being open. Choose an arbitrary $z \in X \setminus B(x, \epsilon)$, suppose there doesn't exist a $\epsilon' > 0$ such that $B(z, \epsilon') \subset X \setminus B(x, \epsilon)$, then it's equivalent to say that for every $\epsilon' > 0$, $B(z, \epsilon')$ intersect with $B(x, \epsilon)$, then from Problem 4 we've already known that either $B(x, \epsilon)$ contains $B(z, \epsilon')$ or vice versa. Surely $B(z, \epsilon')$ can't be contained in $B(x, \epsilon)$ since $z \notin B(x, \epsilon)$ for a start. Now suppose that $B(x, \epsilon)$ is contained in $B(z, \epsilon')$ for all $\epsilon' > 0$, then for $\epsilon' < \epsilon$, $d(x, z) \ge \epsilon$ given that $z \notin B(x, \epsilon)$, on the other side, $d(x, z) < \epsilon'$, which is absurd. Thus, $X \setminus B(x, \epsilon)$ is open, suggesting that $B(x, \epsilon)$ is closed. To conclude, $B(x, \epsilon)$ is clopen, and by the definition of boundary, $\partial B(x, \epsilon) = \overline{B}(x, \epsilon) \setminus B(x, \epsilon) = \emptyset$.

- **Problem 6.** We say that an ordered pair (X, μ) is an oriented semimetric space if X is a nonempty set and $\mu: X \times X \to [0, \infty)$ is a function that satisfies the triangular inequality and $\mu(x,x) = 0$ for all $x \in X$. We say that a subset S of X is open (relative to μ) if for every $x \in S$ there is an $\epsilon > 0$ such that $y \in S$ for every $y \in X$ with $\mu(x,y) < \epsilon$. We say that S is closed (relative to μ) if $X \setminus S$ is open.
- a). Show that (\mathbb{R}, μ) is an oriented semimetric space where $\mu : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ is defined by $\mu(x, y) := \max\{y x, 0\}$.
- b). In the following part of this problem, (X, μ) is an arbitrarily oriented semimetric space. Define $d: X \times X \to [0, \infty)$ by $d(x, y) := \mu(x, y) + \mu(y, x)$. Is d a semimetric on X?
 - c). For any $\epsilon > 0$ and $x \in X$, show that $B(x, \epsilon) := \{y \in X : \mu(x, y) < \epsilon\}$ is open.
- d). Prove or disprove: For any $\epsilon > 0$ and $x \in X$, $B[x, \epsilon] := \{y \in X : \mu(x, y) \le \epsilon\}$ is closed.
- **Proof:** a). Consider $x, y, z \in \mathbb{R}$, if $x \ge y$, then $\mu(x, y) = 0 \le \mu(x, z) + \mu(z, y)$, else if x < y, then $\mu(x, y) + \mu(z, y) = \max\{z x, 0\} + \max\{y z, 0\} \ge z x + y z = y x > 0$, concluding the proof of triangular inequality. $\mu(x, x) = 0$ for all $x \in X$ is obvious.
- b). First, it's obvious that d(x,x)=0 for all $x\in X$. Symmetry is given by $d(x,y)=\mu(x,y)+\mu(y,x)=\mu(y,x)+\mu(x,y)=d(y,x)$. Finally, to prove the triangular inequality. For any $x,y,z\in X$, $d(x,y)=\mu(x,y)+\mu(y,x)\leq \mu(x,z)+\mu(z,y)+\mu(y,z)+\mu(z,x)=d(x,z)+d(y,z)$.
- c). For any $z \in B(x, \epsilon)$, choose $\delta = \epsilon \mu(x, z)$, then we claim that $B(z, \delta) \subset B(x, \epsilon)$. Indeed, choose any $a \in B(z, \delta)$, $\mu(x, a) \leq \mu(x, z) + \mu(z, a) < \mu(x, z) + \delta = \epsilon$.
- d). Consider the following function on \mathbb{R} : $\mu(x,y)=0$ if $x \leq y$, $\mu(x,y)=1$ if x > y, then $\mu(x,x)=0$ for all $x \in \mathbb{R}$, and $\mu(x,y) \leq \mu(x,z)+\mu(z,y)$ for every $x,y,z \in \mathbb{R}$, then it's an oriented semimetric space. Now, consider $B[0,1/2]=\{y \in \mathbb{R}: \mu(0,y) \leq 1/2\}=[0,+\infty)$, $\mathbb{R} \setminus [0,\infty)=(-\infty,0)$, and consider $B(-1,\delta)=\{z:\mu(-1,z)<\delta\}$, then for arbitrary $\delta>0$, $z \geq -1$ contains in the ball, which obviously isn't contained in $(-\infty,0)$.

Problem 7. Let X and Y be two metric spaces and $f: X \to Y$ a function. If there is a real number $K \ge 0$ such that $d_Y(f(x), f(y)) \le K d_X(x, y)$ for every $x, y \in X$, we say that f is K - Lipschitz. If f is K - Lipschitz, it is simply referred to as a Lipschitz map. In this case, $\inf\{K \ge 0 : f \text{ is } K\text{-Lipschitz}\}$, which is denoted by $\operatorname{Lip}(f)$, is called the Lipschitz number of f.

- a). Show that the identity function on any metric space X onto itself is 1 Lipschitz.
- b). A differentiable real function f on a nonempty open interval is Lipschitz continuous, provided that $\sup_{x \in O} |f'(x)| < \infty$. (Recall Mean Value Theorem.)
 - c). Is the function $t \mapsto \sqrt{t}$ Lipschitz?
- d). Let X be a normed linear space. Take any positive integer n and real numbers $\lambda_1, \ldots, \lambda_n$, and define the map $f: X^n \to X$ by $f(x) := \lambda_1 x_1 + \cdots + \lambda_n x_n$. Where X^n is metrized by the product metric ρ , show that f is Lipschitz. (f is $\max\{|\lambda_1|, \ldots, |\lambda_n|\}$ Lipschitz).
- e). Let S be a nonempty subset of a metric space X. Prove that dist $(\cdot, S) := \inf_{z \in S} d(\cdot, z)$ is 1 Lipschitz.
- f). let κ be a bounded, Riemann integrable function on $[0,1] \times [0,1]$, and consider map Φ : $\mathbf{C}[0,1] \to \mathbf{B}[0,1]$ defined by $\Phi(f)(x) := \int_0^1 \kappa(x,y) f(y) dy$. Prove that Φ is $\|\kappa\|_{\infty}$ Lipschitz.

 g). Let T be a nonempty set, and X a nonempty subset of B(T) which is closed under
- g). Let T be a nonempty set, and X a nonempty subset of B(T) which is closed under addition by positive constant functions. Assume that Φ is an increasing self-map on X. If there exists a K>0 such that $\Phi(f+\alpha) \leq \Phi(f) + K\alpha$ for every $f \in X$ and $\alpha \geq 0$, Φ must be K-Lipschitz.

Proof: a). Let I be the identity function on X, then $d(I(x), I(y)) = d(x, y) \le 1 \cdot d(x, y)$, hence is a 1 - Lipschitz function.

- b). Let x,y be two points in the nonempty open interval O, then by Mean Value Theorem, there exists $z \in (x,y)$, such that $d(f(x),f(y)) = f'(z) \cdot d(x,y) \le \sup_{x \in O} |f'(x)| \cdot d(x,y) = K \cdot d(x,y)$ with $K \le \infty$, then f is Lipschitz continuous.
- c). It is not Lipschitz. For arbitrary K>0, consider two points x=0, y=t such that $\frac{1}{\sqrt{t}}>K$, then $\frac{|\sqrt{t}-0|}{|t-0|}=\frac{1}{\sqrt{t}}>K$.

$$d_X(f(x), f(y)) = d_X(\lambda_1 x_1 + \dots + \lambda_n x_n, \lambda_1 y_1 + \dots + \lambda_n x_n)$$

$$= \| \sum_{i=1}^n \lambda_i (x_i - y_i) \|$$

$$\leq \sum_{i=1}^n |\lambda_i| \cdot \|x_i - y_i\|$$

$$\leq \max\{|\lambda_1|, \dots, |\lambda_n|\} \sum_{i=1}^n \|x_i - y_i\|$$

$$= \max\{|\lambda_1|, \dots, |\lambda_n|\} \cdot \rho(x, y)$$

thus is Lipschitz.

e). $\operatorname{dist}(x,S) = \inf_{z \in S} d(x,z) \le d(x,z')$ for any $z \in S$, then $\operatorname{dist}(x,S) \le d(x,y) + d(y,z')$, then $\operatorname{dist}(x,S) - \operatorname{dist}(y,S) \le d(x,y)$. Also, we may have $\operatorname{dist}(y,S) - \operatorname{dist}(x,S) \le d(x,y)$,

thus we have $|\operatorname{dist}(x, S) - \operatorname{dist}(y, S)| \le d(x, y)$.

- f). Let $f, g \in \mathbf{C}[0, 1]$. $d(\Phi(f), \Phi(g)) = \sup_{x \in [0, 1]} \left| \int_0^1 \kappa(x, y) f(y) dy \int_0^1 \kappa(x, y) g(y) dy \right| = \left| \int_0^1 \kappa(x, y) \left(f(y) g(y) \right) dy \right| \le \|\kappa\|_{\infty} \int_0^1 |f(y) g(y)| dy \le \|\kappa\|_{\infty} \sup_{y \in [0, 1]} |f(y) g(y)| = \|\kappa\|_{\infty} d(f, g).$
- g). For $f, g \in X$ and arbitrary $x \in T$, without loss of generality, assume that f(x) > g(x), write $f(x) = g(x) + \alpha$ for $\alpha > 0$. By assumption, $\Phi(f)(x) = \Phi(g + \alpha)(x) \le \Phi(g)(x) + K\alpha$, then $|\Phi(f)(x) \Phi(g)(x)| \le K|f(x) g(x)|$. Taking supreme of x on both sides, we conclude that Φ is k- Lipschitz.

Problem 8. Take any metric space X, and let Lip(X) be the set of all bounded and Lipschitz continuous real-valued maps on X.

- a). Show that $Lip(\lambda f + g) \leq |\lambda| Lip(f) + Lip(g)$ for every $f, g \in Lip(X)$. Conclude that Lip(X) is a linear subspace of B(X). (Note that $Lip(\mathbb{N}) = l_{\infty} = B(\mathbb{N})$.)
- b). Show that the real map $\|\cdot\|_L$ defined on Lip(X) by $\|f\|_L := \|f\|_{\infty} + Lip(f)$, is a norm on Lip(X).
- c). For any $f, g \in Lip(X)$, show that $Lip(fg) \leq ||f||_{\infty} Lip(g) + ||g||_{\infty} Lip(f)$, and deduce that $||fg||_{L} \leq ||f||_{L} ||g||_{L}$.

Proof: a). For $f, g \in \text{Lip}(X)$, have $d((\lambda f + g)(x), (\lambda f + g)(y)) = |\lambda f(x) + g(x) - \lambda f(y) - g(y)| \le |\lambda| \cdot |f(x) - f(y)| + |g(x) - g(y)| \text{ for } x, y \in X, \text{ thus } d((\lambda f + g)(x), (\lambda f + g)(y)) \le (|\lambda| \text{Lip}(f) + \text{Lip}(g)) \cdot d(y - x), \text{ then } \text{Lip}(\lambda f + g) \le |\lambda| \text{Lip}(f) + \text{Lip}(g).$

- b). Firstly, $||f||_L = 0 \iff ||f||_{\infty} = 0$ and $\operatorname{Lip}(f) = 0$, which means that $|f(y) f(x)| \le 0 \cdot d(y, x)$ for all $x, y \in X$, then $f \equiv 0$. Secondly, $||\lambda f||_L = |\lambda| \cdot ||f||_{\infty} + \operatorname{Lip}(\lambda f)$. Since $|\lambda f(x) \lambda f(y)| = |\lambda| \cdot |f(x) f(y)| \le |\lambda| \cdot K \cdot d(x, y)$, then $\operatorname{Lip}(\lambda f) = |\lambda| \operatorname{Lip}(f)$, thus $||\lambda f||_L = \lambda (||f||_{\infty} + \operatorname{Lip}(g))$. Finally, for $f, g \in \operatorname{Lip}(X)$, $||f + g||_L = ||f + g||_{\infty} + \operatorname{Lip}(f + g) \le ||f||_{\infty} + ||g||_{\infty} + \operatorname{Lip}(f) + \operatorname{Lip}(g) = ||f||_L + ||g||_L$.
 - c). Consider

$$|f(x)g(x) - f(y)g(y)| = |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)|$$

$$\leq |f(x)| \cdot |g(x) - g(y)| + |g(y)| \cdot |f(x) - f(y)|$$

$$\leq (\text{Lip}(g)|f(x)| + \text{Lip}(f)|g(y)|) \cdot d(x, y)$$

$$\leq (||f||_{\infty} \text{Lip}(f) + ||g||_{\infty} \text{Lip}(g)) \cdot d(x, y)$$

hence $\operatorname{Lip}(fg) \leq ||f||_{\infty} \operatorname{Lip}(g) + ||g||_{\infty} \operatorname{Lip}(f)$. Also,

$$||fg||_{L} = ||fg||_{\infty} + \operatorname{Lip}(fg)$$

$$\leq ||f||_{\infty} ||g||_{\infty} + \operatorname{Lip}(fg) + \operatorname{Lip}(f)\operatorname{Lip}(g)$$

$$= ||f||_{\infty} ||g||_{\infty} + ||f||_{\infty} \operatorname{Lip}(g) + \operatorname{Lip}(f)||g||_{\infty} + \operatorname{Lip}(f)\operatorname{Lip}(g)$$

$$= (||f||_{\infty} + \operatorname{Lip}(f))(||g||_{\infty} + \operatorname{Lip}(g))$$

$$= ||f||_{L} ||g||_{L}$$