Stat 591 – Homework 04

Due: Wednesday 10/30

Your group should submit a write-up that includes solutions the problems stated below, along with any relevant pictures/graphs or computer code/output.

- 1. Problem 5.1 in [GDS].
- 2. Problem 5.2 in [GDS].
- 3. (Based on Problem 5.5 in [GDS].) Consider the multinomial setup you've seen in previous homework. That is, let $X = (X_1, X_2, X_3, X_4)$ and suppose that, for a given $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$, X has a four-dimensional multinomial distribution, $\mathsf{Mult}_4(n; \theta)$ with parameters n and θ . Recall, the Dirichlet prior, $\mathsf{Dir}_4(a)$, is a distribution on the four-dimensional probability simplex, parametrized by $a = (a_1, a_2, a_3, a_4)$, where each a_i is a non-negative number. This time, write the Dirichlet distribution in terms of a precision parameter m and a mean parameter $p = (p_1, p_2, p_3, p_4)$. The connection is a = mp, so that $m = \sum_{i=1}^4 a_i$ and $p_i = a_i/m$. Write $\mathsf{Dir}_4(m, p)$ for this "new" Dirichlet distribution.
 - (a) Go to Appendix A.1 in [GDS]. Rewrite the mean vector and dispersion matrix formulas provided there in terms of the new parameters (m, p). Explain why m is called the precision parameter by looking at how the dispersion matrix changes as $m \to 0$ and as $m \to \infty$.
 - (b) An idea towards defining a "non-informative" prior for the multinomial problem is to let the precision parameter $m \to 0$.
 - i. Use your answer to part (a) to explain the intuition behind this choice.
 - ii. There is a problem with this approach, however. Despite the intuition, the limiting prior, as $m \to 0$, is actually very informative—it's a discrete distribution, with masses at the corners of the simplex.¹ To convince yourself of this, consider the marginal distribution of θ_i under the $\mathsf{Dir}_4(m,p)$ prior. First show that, for each $i=1,\ldots,4$,

$$\mathsf{E}_{(m,p)}(\theta_i) \to p_i$$
 and $\mathsf{V}_{(m,p)}(\theta_i) \to p_i(1-p_i)$, as $m \to 0$.

For this, use the fact that a Dirichlet distribution has beta marginals.² Now argue that, since each θ_i is $Ber(p_i)$ in the limit, the limiting prior must be such that one of the four corners³ is selected at random.

(c) Alternatively, one can define a "non-informative posterior" by taking $m \to 0$ after updating prior to posterior. Go back to your work on this multinomial—Dirichlet problem from Homework 2 and write down the posterior distribution for θ , given X, when $m \to 0$.

¹For a precise statement of this result, see Ghosh and Ramamoorthi, *Bayesian Nonparametrics*, Springer 2003, page 93.

²http://en.wikipedia.org/wiki/Dirichlet_distribution#Marginal_beta_distributions ³In this case, the corners are (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).

- (d) Re-do the simulations in the previous homework using this "non-informative" posterior. Plot, side by side, histograms of the posterior distribution for κ , one for this new "non-informative" posterior and one for your previous "informative" posterior. How do these plots compare?
- 4. (Based on Problem 5.10 in [GDS].) Let $(X_1, \ldots, X_n) \mid (\mu, \sigma^2) \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu, \sigma^2)$.
 - (a) Consider the prior $\pi(\mu, \sigma^2) \propto 1/\sigma^2$. This is the reference prior (see Example 5.4 in [GDS]) and also the right invariant prior, but not Jeffreys prior. Find the posterior distribution for (μ, σ^2) .
 - (b) Find the marginal posterior distribution for μ . That is, integrate out σ^2 from the joint posterior distribution for (μ, σ^2) . Do you know this distribution?
 - (c) Find a $100(1-\alpha)\%$ credible upper bound for μ using the marginal posterior. That is, find $\bar{\mu}_{\alpha}$ such that $\Pi(\mu \leq \bar{\mu}_{\alpha} \mid X_1, \dots, X_n) = 1 \alpha$.
 - (d) Think of $\bar{\mu}_{\alpha} = \bar{\mu}_{\alpha}(X_1, \dots, X_n)$ as a function of data. Show that the above credible upper bound is exactly probability matching. That is, show that

$$\mathsf{P}_{(\mu,\sigma^2)}\{\bar{\mu}_{\alpha}(X_1,\ldots,X_n)\geq\mu\}=1-\alpha,\quad\forall\;(\mu,\sigma^2).$$

- 5. (Based on Problem 5.11 in [GDS].) Given θ , let $X \sim \text{Bin}(n, \theta)$.
 - (a) Find Jeffreys prior and the corresponding posterior. (Jeffreys prior is the same whether you work with binomial directly or with iid Bernoulli's.)
 - (b) Given $\alpha \in (0,1)$, let $\bar{\theta}_{\alpha}(X)$ be such that $\Pi(\theta \leq \bar{\theta}_{\alpha}(X) \mid X) = 1 \alpha$. For $\alpha = 0.05$, how do you compute $\bar{\theta}_{\alpha}(X)$ in R?
 - (c) For an upper 95% confidence limit for θ , a Bayesian might use $\bar{\theta}_{0.05}(X)$ as defined above. A frequentist might use the bound $\hat{\theta} + 1.65\{\hat{\theta}(1-\hat{\theta})/n\}^{1/2}$, where $\hat{\theta} = X/n$ is the MLE. Perform simulations to compare the coverage probability of these two 95% upper confidence limits.
 - Consider $n \in \{50, 100\}$ and θ on a grid $\{0.05, \dots, 0.95\}$ of length 20. For each (n, θ) pair, simulate 1000 $Bin(n, \theta)$ and compute the Bayesian and frequentist upper limits and record the coverage proportion for each.
 - Draw two figures, one for each n. In each figure, plot the coverage probabilities for the two methods as functions of θ .

Explain what you see in these plots. In particular, do you think the Bayes or the frequentist method is better? Explain your answer.⁴

⁴There is a really nice paper that discusses this simple but important problem; see Brown, Cai, and DasGupta, "Interval estimation for a binomial proportion," *Statistical Science*, 2001.