Team 16

Statistical Software Project

Fact-checking on Scientific claims

Amrutha Karuturi, ak2508 Taniya Kulkarni, tk740

Problem Statement

- Spread of misinformation
- Complications of scientific jargon
- Lack of verification tools
- Public health risk

Literature Review

- Paper: Explainable Automated Fact-Checking for Public Health Claims (Kotonya, Neema et. al):
 - Novel Dataset for fact-checking
 - Framework for Veracity Predictions
 - Evaluation Through Coherence Properties

Dataset

- PUBHEALTH fact-checking dataset by Neema Kotonya
- Consists of nearly 12000 rows
- Has 10 columns, out of which we make use of claim, main_text and label

	claim_id	claim	date_published	explanation	fact_checkers	main_text	sources	label	subjects
(0 15661	"The money the Clinton Foundation took from fr	April 26, 2015	"Gingrich said the Clinton Foundation ""took m	Katie Sanders	"Hillary Clinton is in the political crosshair	https://www.wsj.com/articles/clinton- foundatio	false	Foreign Policy, PunditFact, Newt Gingrich,
1	1 9893	Annual Mammograms May Have More False-Positives	October 18, 2011	This article reports on the results of a study		While the financial costs of screening mammogr		mixture	Screening,WebMD,women's health

Exploratory Data Analysis

Word cloud for 'Claim'

Word cloud for 'Claim' pre-pandemic

Word cloud for 'Claim' post-pandemic

Word cloud for 'subject'

Methodology

• Text tokenizers used:

- Bag of Words
- o TF-IDF
- Word2Vec
- DistilBERT tokenizer

Models used:

- Logistic Regression
- Simple Neural Network
- DistilBert For Sequence Classification
- SciBERT with top-k sentence retrieval

Performance metrics for all labels

Model	Accuracy	Macro precision	Macro recall	F1 score
BOWs Logistic	0.1517	0.4663	0.3199	0.1916
TF-IDF Logistic	0.6407	0.5702	0.5063	0.6489
Word2vec Logistic	0.5531	0.4749	0.5068	0.5803
BOWs NN	0.442	0.4534	0.4705	0.5051
TF-IDF NN	0.2879	0.4629	0.4055	0.3526
Word2vec NN	0.485	0.4395	0.4215	0.5028
DistilBERT embeddings - DistilBERT sequence classifier	0.6586	0.5238	0.5314	0.6621

For 2 labels (true & false)

For all labels

Distil-Bert

SciBERT Implementation

- 1. **Sentence retrieval:** Implement sentence retrieval to select the top k relevant sentences, preserving the main context by filtering out irrelevant lines.
- 2. **Sentence-Bert(SBERT):** Employ SBERT, based on BERT, to encode contextualized representations of evidence sentences and rank them by cosine similarity to the claim.
- 3. **Top k-selection:** Select the top k-ranked sentences for veracity prediction.
- 4. **For classification:** Consider models like SciBERT (which are more specialized in health data).

SciBERT with top-k sentence retrieval

For 2 labels

For all labels

Result

- SciBERT with top-k sentence retrieval performs with an accuracy of 67% for all labels and 82% for 2 labels
- DistilBERT performs with an accuracy of 65% for all labels and
 80% for 2 labels
- Model tuned for binary classification task performs much better than multi-class classification task model

THANK YOU!