

Tema 2. Alta disponibilidad en CPDs

- Juan Carlos Pichel
- Enxeñería de Computadores
- Grao en Enxeñería Informática

Alta disponibilidad y costes

Industria	Operación económica	Rango de coste por interrupción (por hora)	Coste promedio por interrupción (por hora)
	Operaciones en		
Financiera	bolsa	\$5.6M a 7.3M	\$6.45M
Financiera	Autorizaciones	\$2.2M a 3.1M	\$2.6M
	de pago con tarjeta		
Medios	TV Pay-per-view	\$67K a 233K	\$150K
Ventas	Teletienda	\$87K a 140K	\$113K
Ventas	Ventas por catálogo	\$60K a 120K	\$90K
Transporte	Reserva de billetes	\$67K a 112K	\$89.5K
Medios	Venta de entradas	\$56K a 82K	\$69K

Tiempo en	Tiempo en	Tiempo en parada	Tiempo en parada
funcionamiento (%)	parada (%)	al año	al mes
98%	2%	7.3 días	14 horas 36 minutos
99%	1%	3.65 días	7 horas 18 minutos
99.9%	0.1%	8 horas	43 minutos
		45 minutos	45 segundos
			4 minutos 22
99.99% (4 nueves)	0.01%	52.5 minutos	segundos
99.999% (5 nueves)	0.001%	5.25 minutos	26 segundos

Otros hechos relacionados con la disponibilidad

Niveles (tiers)

- A la cantidad de infraestructura requerida para soportar todos los servidores o equipos de red que estén funcionando en el CPD, se le denomina capacidad N.
- N es el nivel más bajo para el que se diseña y construye un CPD.
- N+1: La infraestructura incluye un componente adicional, de modo que puede continuar funcionando normalmente si falla un único componente.
- Cada nivel añade protección (redundancia), también añade complejidad.
- Más componentes, mayor coste pero, paradójicamente, mayor probabilidad de error.

Niveles (tiers)

- El **tier** indica la fiabilidad de un CPD asociado a cuatro niveles de disponibilidad definidos.
- Tier I Básico: 99.671% de disponibilidad
 - Línea de distribución de potencia y refrigeración única. No existen componentes redundantes (N).
 - Puede tener suelo elevado, SAIs o generadores.
 - Tiempo de inactividad de 28.8 horas al año.
 - Requiere una parada completa al menos una vez al año para realizar tareas de mantenimiento.
- Tier II Componentes redundantes: 99.741% de disponibilidad
 - Menos susceptible a interrupciones por actividades planeadas o no planeadas.
 - Línea de distribución de potencia y refrigeración única. Incluye componentes redundantes (N+1).
 - Incluye suelo elevado, SAIs y generador/es.
 - Tiempo de inactividad de 22 horas al año.

Niveles (tiers)

Tier III – Mantenimiento simultáneo: 99.982% de disponibilidad

- Permite interrupciones planificadas por mantenimiento sin afectar al servicio, pero eventos imprevistos pueden provocar paradas no planeadas.
- Múltiples líneas de distribución de potencia y refrigeración, pero solo una activa. Incluye componentes redundantes (N+1).
- Incluye suelo elevado y suficiente capacidad para soportar toda la carga en una de las líneas de distribución mientras se realizan tareas de mantenimiento en la otra.
- Tiempo de inactividad de 1.6 horas al año.

• Tier IV – A prueba de fallos: 99.995% de disponibilidad

- Las interrupciones planificadas no afectan al servicio y el CPD puede resistir al menos una interrupción no planificada sin que tenga impacto en la carga crítica.
- Múltiples líneas de distribución de potencia y refrigeración. Incluye múltiples componentes redundantes (2(N+1)).
- Tiempo de inactividad de 0.4 horas al año.

Conceptos de disponibilidad

- Fiabilidad (Reliability). Probabilidad de que un componente funcione sin fallos durante un cierto periodo de tiempo.
- Robustez (Resiliency). Capacidad de un componente para seguir funcionando, aunque sólo sea de forma parcial después de haber sufrido uno ó más fallos.
 - Ejemplo: ECC
- Disponibilidad (Availability). Capacidad de un sistema para mantenerse en funcionamiento
- Capacidad para dar servicio (Serviceability). Probabilidad de que un cierto servicio sea completado en un determinado tiempo.
 - Ejemplo: probabilidad de un 98% de que el servicio se complete en 3 horas.

Clústers para alta disponibilidad

Otros tipos de clústers

- Clústers de alto rendimiento
 - Clústers para computación paralela.
 - Nodos homogéneos (o heterogéneos!) conectados por una red de alta velocidad
 - Programación paralela, típicamente MPI
- Clústers de balanceo de carga
 - Reparten la carga entre los nodos de forma transparente al usuario
 - Llamados granjas de servidores
 - Servicios Web

Métricas de disponibilidad

- MTBF (Mean Time Between Failures)
 - Tiempo medio entre fallos (normalmente expresado en horas)
 - Entenderlo no es trivial:
 - Una pila puede durar 10 horas, pero tener un MTBF de 50,000 horas
 - De 50,000 pilas trabajando juntas, una fallará cada 10 horas
 - La redundancia no aumenta el MTBF de un componente
 - El sistema en su conjunto mejora su MTBF
 - Pero aumenta la posibilidad de que haya un fallo
- MTTR (Mean Time To Repair)
 - Tiempo medio necesario para completar una reparación
- La disponibilidad se calcula entonces de la siguiente manera:

$$Disponibilidad = \frac{MTBF}{(MTBF + MTTR)}$$

¿Cómo aumentar la disponibilidad?

Protegiendo los datos

Redundancia en los discos y back-up

Clustering de servidores

La aplicación se migra a un servidor nuevo

Para catástrofes

■ Tener un CPD gemelo en otro lugar (**Disaster Recovery**)

