Overfitting and Model Selection

Machine Learning Primer Course

Georgios C. Anagnostopolous and Spencer G. Lyon October 2, 2020

Purpose

- Explain what model over-fitting is and when it occurs
- Explain the need for model selection and how it is achieved via validation procedure
- Discuss 3 common types of validation procedures

Table of contents

- 1. Model Overfitting
- 2. Model Selection
- 3. Glossary

Model Overfitting

What is Overfitting?

- Low training MSE ⇒ trained model fits the training data well
 - The fitted residuals are all small ⇒ the fitted response hyper-surface passes very close to targets
 - Training MSE is zero ⇒ hyper-surface passes through all training targets

¹Often called "out-of-sample data" or "hold-out data"

 $^{^2\}mbox{Hold-out}$ MSE is the MSE computed on a hold-out set using the fitted model, i.e. the model using optimal weights

What is Overfitting?

- Low training MSE ⇒ trained model fits the training data well
 - The fitted residuals are all small ⇒ the fitted response hyper-surface passes very close to targets
 - \blacksquare Training MSE is zero \Longrightarrow hyper-surface passes through all training targets
- Generalization performance of the fitted model may be unacceptably bad
 - Predictions for samples not used in training¹ are poor
 - Hold-out MSE² is orders of magnitude larger than training MSE

¹Often called "out-of-sample data" or "hold-out data"

 $^{^2}$ Hold-out MSE is the MSE computed on a hold-out set using the fitted model, i.e. the model using optimal weights

Overfitting Example

Polynomial regression with 9 training samples and 6th degree polynomial

- Observations
 - Perfect fit of training data => small training MSE
 - Poor fit of out-of-sample data => large hold-out MSE

Overfitting in Linear Regression

- Assume N training samples and P weights
- When P ≥ N the model is over-parameterized³
 - The fitted model will exactly fit training data \Longrightarrow MSE = 0
 - When P = N there is a unique \mathbf{w}^*
 - When P > N there are multiple solutions for \mathbf{w}^*
 - Matrix R is not invertible; a solution can be found via pseudo-inverse of X
- As N becomes larger than P, overfitting gradually subsides

 $^{^3}$ Even when N > P, but "close" we will still use this terminology

Overfitting in Linear Regression

- Another way to look at it ...
 - When a model is over-parameterized relative to training set, it is "flexible" enough to yield a perfect or very good fit on training data
- Countering overfitting
 - Use more training data
 - If not possible, use fewer features to reduce P
 - If not feasible, use a regularization approach⁴

⁴To be discussed in an upcoming lecture

The flip side

Model underfitting:

- Both training MSE and hold-out MSE are relatively "large"
- If one used a more flexible model, both MSEs would fall
- In this scenario the model is under-parameterized

Model Selection

Model Selection

- Select between a set of models with varying flexibility⁵
- Goal: Choose a model that has the best generalization properties

 $^{^5}$ Flexibility could be increased in a variety of ways including using a different functional form for the model, adding additional features, transforming existing features, etc.

Model Selection

- Select between a set of models with varying flexibility⁵
- Goal: Choose a model that has the best generalization properties
- Example: polynomial regression
 - Varying number of features, controlled by degree *D* of polynomial
 - The number D indexes a family of regression models and controls flexibility
 - Optimal D cannot be determined based solely on training set (beware of overfitting!)
 - Parameters like *D* are called hyper parameters

⁵Flexibility could be increased in a variety of ways including using a different functional form for the model, adding additional features, transforming existing features, etc.

Model Selection continued ...

Main point

- Model selection cannot be solely based on the training set.
- Training MSE informs us about model fit, but not necessarily about the model's generalization performance (not trustworthy)
- A (more) honest loss estimate needs to be employed
 - We used a hold-out set for this purpose (more trustworthy)

Validation Procedure

 An approach to model selection: out of a pool of candidate models, guess which one may exhibit the best generalization (let's decide to call it the champion model).

Validation Procedures

- There are many, we'll only cover a few
- Hold out method
 - Partition available data into training (typically, larger set) and (typically, smaller set) hold-out set, called the validation set.
 - Fit models on training set
 - Select model with best average loss on hold-out set
 - Considerations
 - Large training set ⇒ better fitting models
 - The larger the validation set, the better quality of the generalization estimate (e.g. MSE_{val})
 - Assumes there are plenty of data for both sets

K-fold Cross Validation

- Partition available data into *K* equally-sized subsets (folds).
- For k = 1 to K
 - Pick a fold to play the role of the validation set
 - Use the remaining K-1 folds for training the models
 - Compute the average loss on the validation set/fold
- Use the sample average of the $\left\{\mathsf{MSE}_{\mathsf{val}}^k\right\}_{k=1}^K$ to guess the best generalizing model (champion)

Visualizing K-fold CV

Validation Data	
Training data	

K-fold CV

- Considerations for K-fold CV
 - For fixed number of available data N
 - large K ⇒ large training sets and small validation sets ⇒ worse quality of generalization performance estimate
 - Used when data are deemed "not enough" to employ hold-out method
 - Often, people use K=10 (although completely arbitrary)
- Leave ont out cross validation (LOOCV)
 - K-fold CV to the extreme: K = N
 - Considerations
 - Used when available data are "too few"
 - Training sets almost identical from fold to fold ⇒ trained models typically differ by very little from fold to fold

LOOCV with Linear Regression

An amazing thing...

 The LOOCV estimate for linear regression has a closed form based on the diagonal elements of the hat matrix H.

$$\mathsf{MSE}_{\mathsf{loocv}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\hat{\mathsf{e}}_{n}^{2}}{(1 - h_{n,n})^{2}} = \frac{1}{N} \hat{\mathsf{e}}^{*T} (\mathbf{I}_{N} - \mathbf{H}_{\mathsf{diag}})^{-2} \hat{\mathsf{e}}^{*}$$

$$\mathbf{H} \triangleq \mathbf{X} \mathbf{X}^{\dagger}$$

$$\mathbf{H}_{\mathrm{diag}} \triangleq \mathrm{diagonal}$$
 elements of $\mathbf{H} = \begin{bmatrix} h_{1,1} & 0 & \cdots \\ 0 & h_{2,2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$

- In the literature it is called the Predicted Residual Error Sum of Squares (PRESS) statistics
- In essence it is a weighted form of the training MSE

Comments about Model Selection

- Hold-out method more reliable than K-fold CV or LOOCV
 - It will provide most honest estimate of generalization performance
 - However, hold-out data is not used for training...
 - It is most commonly used when there is ample data
- In general, the best validation procedure depends on
 - 1. The context of the ML task
 - 2. The size of available data set
 - 3. Efficiency/feasibility concerns⁶
 - The choice of hyper-parameters (such as the number of folds K in K-fold CV)
- This is a difficult problem that is being actively researched

 $^{^6\}mathrm{If}$ it takes many days to run one fold of the CV procedure, perhaps you can't afford to have many folds

Practical Advice

So...which to choose?

- Hard to tell and often largely arbitrary⁷
- In practice, a trial and error approach is used
- Main considerations
 - Choose the method that allows for enough training samples to get a good-fitting model. Goal: make training MSE similar to validation MSE
 - Time complexity of validation procedure: LOOCV (i.e. *N*-fold cross-validation) is, in general, more computational expensive than K-fold cross-validation for $K < N^8$

 $^{^7}$ Though, in a research setting researchers are typically required to provide a reasonable defense of their choice

 $^{^{8}\}text{Exception:}$ for linear regression, the opposite holds thanks to the closed-form of the validation MSE

Types of Candidate Pools

- Recall that validation procedures begin with defining a set of candidate models
- We call this the candidate pool
- Common types of candidate pools are:
 - Models of the same structure that consider different sets of features (here validation helps in feature selection)

Types of Candidate Pools

- Recall that validation procedures begin with defining a set of candidate models
- We call this the candidate pool
- Common types of candidate pools are:
 - Models of the same structure that consider different sets of features (here validation helps in feature selection)
 - Family of models indexed by one or more hyper parameters (e.g. structure of neural network – here validation addresses model regularization)

Types of Candidate Pools

- Recall that validation procedures begin with defining a set of candidate models
- We call this the candidate pool
- Common types of candidate pools are:
 - Models of the same structure that consider different sets of features (here validation helps in feature selection)
 - Family of models indexed by one or more hyper parameters (e.g. structure of neural network – here validation addresses model regularization)
 - A potpourri collection of models not belonging to a common family
 - called a bag of models, for lack of a better term

The Test Set

Consider...

- You have selected a pool of models
- Applied a validation procedure to select the model and hyper parameters
- Now you want to get a sense of "true" generalization performance
- How could you do this?

The Test Set

Consider...

- You have selected a pool of models
- Applied a validation procedure to select the model and hyper parameters
- Now you want to get a sense of "true" generalization performance
- How could you do this?
- Answer: Use a third type of set: test set
- Test set not used for training (model fitting) or validation (model selection)

Glossary

Comments on Nomenclature

- Unfortunately, there is no consensus in precisely defining what a validation, hold-out and test set is
- Hence, when these terms come up in a validation procedure description (i.e. in a paper or a software implementation), one has to figure out what is meant by these terms

Our Conventions (1/3)

Hyper parameter

A parameter that indexes a family of models. Its optimal value cannot be meaningfully determined from the training set, i.e. by minimizing the training loss, but is determined through a validation procedure

Our Conventions (1/3)

Hyper parameter

A parameter that indexes a family of models. Its optimal value cannot be meaningfully determined from the training set, i.e. by minimizing the training loss, but is determined through a validation procedure

Example: Consider the context of polynomial regression.

- Consider a pool (family) of polynomials of varying degree D in $\{0,\ldots,D_{\text{max}}\}$
- We cannot determine a best D^* (in terms of generalization) by minimizing the training MSE
- The training MSE is always minimized when $D^* = D_{\text{max}}$
- However, we are very likely to overfit and have poor generalization
- In this example, D is a hyper parameter, whose best value needs to be determined through a validation procedure

Our Conventions (2/3)

Validation procedure

A model selection procedure that identifies the champion model among a pool of candidate models under consideration that most likely will exhibit the best generalization. Often, these models will be indexed by one or more hyper-parameters; hence, the task becomes identifying the best hyper-parameter value(s) to use for training a well-generalizing model.

Hold-out set

A generic term used for any set of samples not used for training model(s)

Validation set

A subset of hold-out data, used to assess the generalization potential of models⁹

⁹All 3 validation procedures we discussed use sets in such capacity

Our Conventions (3/3)

Validation MSE

An MSE estimate computed by a validation procedure.

- For the hold-out method, it is the MSE as computed on the one and only validation set.
- For K-fold cross-validation (and, hence, for LOOCV as well, since it
 is a special case), it is the sample average of all MSEs computed on
 the different folds (which act as validation sets).

Test set

A set of samples that is neither used for training nor for validation purposes. Such a set is used to get an honest estimate of how good a model (e.g. a champion model) generalizes. In the wild, test sets and validation sets are often conflated terms.