Playing Games

Michalis Panayides

 $\frac{2}{3}$ rds of the average game.

$\frac{2}{3}$ rds of the average game.

Rules

- 1. Every player must write a whole number between 0 and 100 on a sheet of paper.
- 2. The winner of the game will be the player whose number is closest to $\frac{2}{3}$ rds of the average of all the numbers written by all the players.

Example: There are 3 players who guessed the following numbers: 3, 67 and 84. The average would be $\frac{3+67+84}{3} = 51.33$. The closest guess to $\frac{2}{3}$ of the average (34.22) is the player whose guess was 3.

 $\frac{2}{3}$ rds of the average game.

Golden Balls

Prisoner's Dilemma

P2 P1	D	С
D	1, 1	5,0
С	0,5	3, 3

Prisoner's Dilemma

P2 P1	D	С
D	1, 1	5,0
С	0,5	3, 3

- 1. If both players cooperate, they both get 3 points.
- 2. If both players defect, they both get 1 point.
- 3. If one player defects and the other cooperates, the one that defects gets 5 points and the one that cooperates gets 0 points.

Axelrod's Tournament - 195 strategies

