Técnicas de representación y razonamiento

	na 3: Representación del conocimiento e rencia
	3.5: Representaciones estructuradas
	Marcos
	Dependencias conceptuales
	Guiones

IAIC - Curso 2008-09

Técnicas de representación

Representaciones básicas Lógica de predicados. Representación en Prolo Redes semánticas	og
□ Sistemas de producción Representaciones estructuradas	
Estructuras de ranura y relleno (slot & filler)Débiles: Marcos (frames)	
FuertesDependencias Conceptuales (DCs)Guiones (scripts)	
Estudio comparativo de las técnicas de repres	entación
Lenguajes de representación del conocimiento)

Técnicas básicas versus estructuradas

Representaciones estructuradas: evolución natural de las básicas
Las estructuras de ranura y relleno (slot & filler) permiten definir conceptos mediante pares atributo-valor (propiedades)
La ranura podría estar vacía para introducir el relleno posteriormente (o no). Pueden imponerse restricciones sobre los posibles rellenos
Estructuras de ranura y relleno débiles versus fuertes
☐ Depende de la cantidad de conocimiento específico del dominio
□ Débil: poco conocimiento, muy generalista → aplicable a muchos dominios aunque se deben programar ciertas operaciones
Las decisiones sobre qué tipos de objetos y qué relaciones utilizar para representar el conocimiento se dejan al diseñador
☐ Fuerte: mucho conocimiento específico → aplicable sólo a ciertos dominios
Las estructuras fuertes añaden conocimiento específico sobre los tipos de objetos y relaciones permitidos

IAIC – Curso 2008-09

Marcos (frames) [Minsky, 1975]

 Lógica de predicados Conocimiento factual (terminológico y Orientado a relaciones Redes semánticas Conocimiento factual Orientado a conceptos Sistemas de producción 	Asignar más estructura a los nodos y a las conexiones
Conocimiento procedimental	
■ Marcos	
☐ Conocimiento factual + cierto tipo de	conocimiento procedimental
Orientado a conceptos	
Una entidad o concepto se describe a atributo/valor (con posibles restriccion	, ,
☐ Son estructuras de ranura/relleno dél	oiles

Marcos

- Idóneos para la organización de una gran cantidad de hechos
 - ☐ Sirven para representar particiones sobre el conjunto de hechos
 - ☐ Lo normal es agrupar hechos que hacen referencia al mismo objeto
 - Permiten asociar conocimiento procedural relevante a un hecho o a un grupo de hechos
- Un marco es una colección de atributos y valores
 - □ Pretende describir o representar un determinado concepto o un conjunto de conceptos
- Sistemas de marcos
 - □ El empleo de marcos aislados no es usual: suelen construirse sistemas de marcos conectados entre sí
 - □ Se razona sobre clases de objetos usando representación del conocimiento prototípico (cierto en la mayoría de los casos)
 - Posibilidad de cambiarlo en las instancias (excepciones)

Tema 3.5 - 5

Marcos instancia

- Entidad individual
 - Marco de un individuo con 3 pares atributo/valor (estructuras de ranura/relleno)
 - El relleno de una ranura puede ser un enlace a otro marco
 - Persona es otro marco con sus propias características
 - 18 y 170 son valores

Juan

ejemplar: Persona

edad: 18

estatura: 170

- Representación en forma de red semántica
 - No hay diferencia entre individuos y clases
 - la representación de Juan (individuo) y
 - la representación de Persona (clase de individuos)

Marcos clase

ivial cos ciase	
□ Completitud descriptiva	
Hechos esenciales que describen a un objeto prototípico de una clase	Barco nombre:
 Nos tenemos que asegurar de que siempre aparecen estos hechos en la descripción de un objeto de esa clase 	número de identificación: tipo de barco: nacionalidad:
 Queremos que esa descripción se aplique a un conjunto de objetos 	tonelaje: lugar:
■ Marco clase	
Generaliza la información acerca de vario propiedades que comparten los elemento	
Pero no podemos rellenar siempre la info hechos esenciales, puesto que diferirá pa	
☐ Los marcos tienen ranuras que pueden r	ellenarse o no
□ Las ranuras rellenas representan hech	nos
IAIC – Curso 2008-09	Tema 3.5 - 7
Sistemas de marcos	
☐ Representación de conocimiento (bas	se de conocimiento)
Conjunto de marcos relacionados me ranuras	ediante los rellenos de las
☐ Marcos clase y marcos instancia (eje	emplares de las clases)
Se hace hincapié en la distinción ent	re individuos y conjuntos

Propiedades y relaciones entre marcos (representadas mediante las estructuras de ranura/relleno) Motor de inferencia

☐ Establecimiento de una jerarquía de conceptos con

ejemplar/subclase

través de la estructura jerárquica

Clasificación de conceptos. Equiparación

Tema 3.5 - 8

☐ Herencia de propiedades, relaciones y procedimientos de cálculo a

Marcos

☐ Tipos de marcos	
☐ Marcos clase	
☐ Representan conceptos, clases, estereotipos, situaciones genéricas	
Ejemplo: Herramientas, Persona, Coche	
☐ Marcos instancia	
Representan conceptos individuales, objetos, entidades, individuos	
☐ Ejemplo: Martillo-1, María, M-6595-K	
Las propiedades son los atributos de los conceptos y se	
representan en los marcos como ranuras (slots)	
Los valores para estas propiedades son los rellenos (fillers)	
☐ Sistema basado en marcos	
Conjunto de marcos clase e instancia unidos por relaciones	
Las relaciones expresan dependencias entre conceptos	
No hay convenios de estructura fijos	
Tem	na 3.5 -

Marcos

☐ Tipos de Relaciones
☐ Relaciones estándar
□ Subclase y su inversa Superclase
Ejemplar o Instancia y su inversa Contiene
Palabras reservadas (dependientes del sistema)
Se suelen manejar inversas de forma automática
☐ Relaciones no estándar
☐ Fraternal (hermanos)
Disjunto/No Disjunto
"a medida" o "ad hoc" (relaciones dependientes del dominio)
■ Las inversas hay que añadirlas

Ejemplo de jerarquía de marcos

Relaciones entre marcos instancia

- Las relaciones se definen entre marcos clase
 - ☐ Los marcos instancia son ejemplares de dichos marcos clase

☐ Si el sistema hace comprobación de consistencia podría no aceptarse la conexión mediante la relación *casado_con*

Clases e instancias

MC-ANIMAL

ejemplar: CLASE

(*) seDesplaza: SÍ

MC-VERTEBRADO

eiemplar: CLASE subclase: ANIMAL (*) tieneEsqueleto: SÍ

MC-AVE

ejemplar: CLASE

subclase: VERTEBRADO

(*) vuela: SÍ

MI-PIOLIN

ejemplar: AVE seDesplaza : SÍ tieneEsqueleto: SÍ

vuela: SÍ

atributos heredados automáticamente

Aunque parece que la herencia sólo funciona a un nivel no es así porque la relación subclase es transitiva

 $x \in Ave \rightarrow x \in Vertebrado$

 \rightarrow x \in Animal

- Cualquier individuo hereda de todas sus superclases (superconceptos)
- (*): propiedades heredables por los individuos pertenecientes a la clase CLASE: palabra reservada que indica que se representa a un conjunto

Tema 3.5 - 13 IAIC - Curso 2008-09

Propiedades

	☐ Pro	piedades	de c	lase
--	-------	----------	------	------

- Son atributos de la clase (o concepto)
- □ Se definen y rellenan en el marco clase
- No son heredables por las instancias
 - Ejemplo: cardinalidad

■ Propiedades de instancia

Son atributos específicos de cada instancia

☐ Se definen en el marco clase

Formalismo especialmente adecuado para dominios con mucho conocimiento por defecto

- ☐ Si se rellenan en el marco clase, todas las instancias heredan su valor (herencia de valores)
 - Según las circunstancias, podría ser redefinido en cualquiera de ellas
- ☐ Si se rellenan en el marco instancia, lo único que se hereda del marco clase es la existencia de la ranura (herencia de ranuras)
- Precedidas del símbolo (*)

Tema 3.5 - 14 IAIC - Curso 2008-09

Ejemplo

Meta-clases

IAIC - Curso 2008-09

- Conjuntos de conjuntos
- ☐ Las instancias de una meta-clase son a su vez clases
- ☐ La manera de caracterizar a las meta-clases es
 - Son ejemplares de CLASE (como las clases regulares = conjuntos de individuos)
 - □ Son subclases de CLASE (esto hace que sus instancias sean también clases)

Tema 3.5 - 16

Representación de atributos como marcos

 Representación del significado o propiedades de los atributos Lo podemos hacer representando los propios atributos como marcos
Cada atributo (ranura) puede ser descrito por una serie de ranuras que se suelen denominar facetas:
Dominio
□ Rango
Valor obligatorio (por definición)
☐ Valor por omisión
☐ Reglas de herencia
Reglas o procedimientos para calcular valores de relleno
■ Inversas
Univaluado/multivaluado
□ Así representamos meta-conocimiento (restricciones sobre el conocimiento a representar en los marcos)

IAIC – Curso 2008-09 Tema 3.5 - 18

Jerarquías de atributos

- Un atributo (ranura o slot) es una relación entre los elementos del dominio (las clases para las que tiene sentido) y los elementos de su rango (posibles valores)
 - Un slot es el conjunto de pares ordenados que cumplen esa relación
 - \square Atributos como conjuntos de pares: $\{(x, y), (z, u), ...\}$
- Un slot S1 puede ser un subconjunto (subclase) de un slot S2
 Por ejemplo, color de ojos ⊂ color
- ☐ La relación de inclusión nos permite crear jerarquías
- □ Al conjunto de todos los slots lo denominamos SLOT (es una meta-clase)
- Los sistemas que permiten la representación de slots mediante marcos suelen tener restricciones sobre las ranuras definibles (facetas)
- ☐ Las jerarquías de *slots* suelen ser bastante planas

IAIC – Curso 2008-09

Jerarquías de atributos (slots)

(*) se_puede_derivar_de:

(*) inverso:

(*) univaluado:

IAIC – Curso 2008-09

color_ojos: AZUL

color_ojos: NEGRO

son ejemplares del

slot Color_ojos

Valores calculados

Mecanismo general: se representa en el marco del slot

PRIMERO A

ejemplar: CURSO ESO tutor: JAIME

aula: B17

JUAN

ejemplar: ALUMNOS ESO curso: PRIMERO A tiene_tutor:

tiene_tutor: edad: 12 tiene_tutor ejemplar: SLOT

dominio: ALUMNOS ESO rango: PROFESOR

para_calcular: λx. (x.curso).tutor univaluado: VERDADERO

Para calcular el tutor de un alumno usamos λ -cálculo: x representa el marco en el que se usa el *slot*

tiene_tutor, es decir, ejemplares de ALUMNOS ESO

Por ejemplo:

 $x \longrightarrow x.curso$ JUAN PRIMERO A

(x.curso).tutor

■ Las restricciones particulares de un slot para un ejemplar particular se representan en el marco del ejemplar

JUAN

ejemplar: ALUMNOS ESO

curso: PRIMERO A

tiene_tutor:

edad: 12, λx. (x.edad > miguel.edad)

IAIC - Curso 2008-09

Tema 3.5 - 21

Representación de atributos sin marcos

☐ Hay sistemas que no permiten representar los slots como marcos. En ese caso, suelen permitir incorporar algunas restricciones en la definición de los atributos en las clases

PERSONA

Color_de_ojos: TIENE_QUE_SER {AZUL, GRIS,...

☐ TIENE QUE SER:

palabra reservada que permite expresar el rango de valores permitidos

- Otras palabras reservadas
 - POR OMISIÓN
 - POR_DEFINICIÓN
 - UNIVALUADO

IAIC – Curso 2008-09 Tema 3.5 - 22

Conocimiento sobre atributos

- □ La representación de meta-conocimiento sobre los slots permite a los sistemas
 - Realizar control de consistencias en el dominio y el rango de los atributos
 - Mantener la consistencia entre un atributo y su inverso cuando se cambia uno de ellos
 - ☐ Propagar los valores por definición y por omisión a través de la jerarquía de herencia (ejemplar y subclase)
 - □ Calcular el valor de un atributo cuando se necesita (para_calcular, se_puede_derivar_de)
 - Controlar los atributos univaluados

IAIC – Curso 2008-09

Herencia múltiple

- ☐ Jerarquías: grafos dirigidos acíclicos, en lugar de árboles
- □ Distintos antepasados pueden tener distintos valores de los atributos

Distancia inferencial [Touretzky, 1986]

- Define un orden parcial:
 - □ Concepto1 está más cerca de Concepto2 que de Concepto3 si y sólo si Concepto1 tiene un camino de inferencia a través de Concepto2 hasta Concepto3 (es decir, Concepto2 está entre Concepto1 y Concepto3)

distancia(Concepto1, Concepto2) < distancia(Concepto1, Concepto3) ⇔ ∃ camino(Concepto1, Concepto2, Concepto3)

■ La distancia inferencial no siempre es aplicable → permitirá detectar contradicciones ______

Herencia de propiedades: algoritmo

- □ Para obtener el valor desconocido V de un atributo A en una instancia I
 - \square CANDIDATOS := \varnothing
 - Búsqueda 1º en profundidad en la jerarquía a partir de / de todos los superconceptos SC (en orden ascendente)
 - ☐ Si en SC se encuentra un valor para A se añade a CANDIDATOS y se finaliza con esa rama
 - ☐ Si en SC no se encuentra ningún valor, ascendemos otro nivel. Si no hay más niveles, terminamos con esa rama
 - Para cada elemento C de CANDIDATOS:
 - □ Si existe algún otro elemento de *CANDIDATOS* que ha sido obtenido de un concepto que esté a menor distancia inferencial de *I* que el concepto del que se ha obtenido *C*, entonces sacar *C* del conjunto de *CANDIDATOS*
 - ☐ Si el cardinal de CANDIDATOS es:
 - 0: no se ha obtenido ningún valor
 - ☐ 1: se devuelve el único elemento de CANDIDATOS como V
 - □ >1 y todos sus elementos son iguales: devolver el valor como V
 - → 1 y elementos distintos: informar de que hay una contradicción

Representación de marcos en Prolog: convenios

☐ Ranuras definidas explícitamente en los marcos clase
slot(NombreMarco, NombreRanura).
□ Rellenos de las ranuras
valor(NombreMarco, NombreRanura, Valor).
☐ Gestión de la herencia
Predicados que la implementen teniendo en cuenta los distintos tipos de herencia
Herencia habitual: es_un, instancia o ejemplar, subclase
ejemplar(NombreMarcoInstancia, NombreMarcoClase).
subclase(NombreMarcoClase, NombreMarcoClase).
☐ Herencia de ranuras
☐ Herencia de valores

Tema 3.5 - 27 IAIC - Curso 2008-09

Ve	entajas de los marcos
	Facilitan el razonamiento basado en expectativas
	Un slot es un lugar donde se espera un cierto tipo de valor dentro del contexto de un marco
	Proporcionando un lugar para el conocimiento, se crea la posibilidad del conocimiento incompleto o inexistente, permitiendo el razonamiento basado en intentar confirmar expectativas
	Se ha aplicado en sistemas de comprensión del lenguaje natural
	Posibilidad de asociar procedimientos de cálculo a los atributos
	 Mecanismo hacia atrás que permite rellenar atributos "cuando se necesita" (el procedimiento "enganchado" al slot se dispara al preguntar por su valor)
	Mecanismo hacia delante para rellenar atributos "cuando se añade" (cuando se rellena un slot, todos los slots de otros marcos que dependan de él se rellenan automáticamente)
	Representación estructurada del conocimiento, incluso en el caso del conocimiento procedimental
	La fase de equiparación o matching para determinar qué procedimiento o regla aplicar se realiza aquí mediante un proceso de clasificación

Tema 3.5 - 28 IAIC - Curso 2008-09

Software de Marcos: Protege-Frames

http://protege.stanford.edu/download/registered.html (versión 3 "basic" incluye "frames")

Tema 3.5 - 29

IAIC - Curso 2008-09

demo: http://protege.stanford.edu/overview/protege-frames.html

Ejemplo de Marco en Control de Tráfico

Tema 3.5 - 30 IAIC - Curso 2008-09