

(2)

AD-A225 559

GL-TR-90-0100

**Formation and Propagation of Love Waves in a
Surface Layer with a P-Wave Source**

A. L. Florence
S. A. Miller

DTIC FILE COPY

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

April 1990

Scientific Report No. 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

**BEST
AVAILABLE COPY**

90 08 22 057

SPONSORED BY
Defense Advanced Research Projects Agency
Nuclear Monitoring Research Office
ARPA ORDER NO 5307

MONITORED BY
Geophysics Laboratory
F19628-88-K-0051

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ
Contract Manager
Solid Earth Geophysics Branch
Earth Sciences Division

JAMES F. LEWKOWICZ
Branch Chief
Solid Earth Geophysics Branch
Earth Sciences Division

FOR THE COMMANDER

DONALD H. ECKHARDT, Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify GL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0182
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing the burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 0704-0182, Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	April 1990	Scientific No. 2	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Formation and Propagation of Love Waves in a Surface Layer With a P-Wave Source		PE 62714E PR 8A10 TA DA WU AO	
6. AUTHOR(S) A. L. Florence S. A. Miller		Contract F19628-88-K-0051	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) SRI International 333 Ravenswood Avenue Menlo Park, CA 94025		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Geophysics Laboratory Hanscom AFB Massachusetts 01731-5000		10. SPONSORING/MONITORING AGENCY REPORT NUMBER GL-TR-90-0100	
Contract Manager: James Lewkowicz/LWH			
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.		12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) <p>The objective of this research is to investigate experimentally, and support with theoretical calculations, the formation and propagation of Love waves from a P-wave source due to scattering at material heterogeneities. The P-wave source is a spherical piezoelectric crystal cast in a surface layer of rock simulant overlaying a higher impedance granite substrate. Excitation of the piezoelectric crystal with a known voltage applies a spherical compressional pulse of known amplitude to the surrounding medium. Lateral heterogeneities cast in the surface layer convert incident P-wave energy into shear waves. The horizontally polarized shear waves (SH waves) trapped in the surface layer wave guide are the Love waves we will measure at the surface. <i>Keywords:</i> This report summarizes an investigation of the source by deriving an approximate analytic solution of a spherical crystal in an elastic medium. The analytic solution shows good agreement with experimental results of pressure histories measured in water at three locations from the source, and is then extended to an elastic medium. The elastic medium calculation is used to predict expected signal levels in a sensor evaluation experiment and determine the boundary. (OVER)</p>			
14. SUBJECT TERMS Love waves P-wave scattering Piezoelectric crystals source		15. NUMBER OF PAGES 42	
		16. PRICE CODE 124	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT SAR

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

CLASSIFIED BY:

DECLASSIFY ON:

CONT. of Block 13:

pressure history applied to the medium. The boundary pressure history will be used as input to finite element code calculations of the surface wave experiment to assist in the instrumentation design and analysis of the experimental results.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

CONTENTS

FIGURES	iv
OBJECTIVE AND APPROACH	1
PROGRESS	3
Solution of a Spherical Piezoelectric Source in an Elastic Medium	3
Piezoelectric Spherical Shell	3
Spherical Cavity in an Elastic Medium	7
Fluid Medium	11
Numerical Values (Solid Medium)	12
Numerical Values (Water)	14
Application of Solution in a Water Medium	14
Application of Solution to an Elastic Medium	17
Evaluation Experiment in Pourstone	17

FIGURES

Figure	Page
1 Schematic of scale-model laboratory experiment	2
2 Configuration for measuring stress pulse amplitudes in water at different radii from the source and sphericity of piezoelectric source	15
3 Input voltage history to the piezoelectric source in the water pressure experiment	16
4 Comparison of measured and calculated pressure histories in water at a range of 0.91-cm from the center of the source	18
5 Comparison of measured and calculated pressure histories in water at a range of 1.51-cm from the center of the source	19
6 Comparison of measured and calculated pressure histories in water at a range of 3.38-cm from the center of the source	20
7 Calculated velocity histories at 3 ranges in pourstone from a spherical piezoelectric crystal excited by 316 volts	21
8 Calculated displacement histories at three ranges in pourstone from a spherical piezoelectric crystal excited by 316 volts	22
9 Calculated radial stress histories at three ranges in pourstone from a spherical piezoelectric crystal excited by 316 volts	23
10 Calculated circumferential stress histories at three ranges in pourstone from a spherical piezoelectric crystal excited by 316 volts	24
11 Configuration for source/sensor evaluation experiment	25

OBJECTIVE AND APPROACH

Detection of underground nuclear explosions includes the spectral analysis of seismograms, an important portion of which is the contribution of Love waves. Field evidence suggests that it may be possible to discriminate between nuclear events and earthquakes by examining the Love wave records. The spectra for these events are different because an earthquake generates shear waves directly, whereas an underground explosion generates P-waves, from which Love waves are produced by scattering from material heterogeneities.

The objective of this research is to investigate experimentally, and support by theoretical calculations, the formation and propagation of Love waves from a P-wave source due to scattering at material heterogeneities. The approach is shown schematically in Figure 1. In these experiments, a spherical piezoelectric crystal (P-wave generator) is cast in a surface layer of rock simulant overlying a higher impedance granite substrate. Excitation of the piezoelectric crystal with a known voltage applies a pressure pulse of known amplitude to the cavity boundary, propagating compressional waves into the surrounding medium. Lateral heterogeneities of simple geometries (cylindrical and planar scattering surfaces) are cast into the surface layer, converting incident P-wave energy into shear waves. The horizontally polarized shear waves (SH-waves) trapped in the surface layer wave-guide are the Love Waves we will measure at the free-surface. The sensors at the surface will be distributed so both the undisturbed signal and the signals modified by scattering can be monitored at the surface.

Figure (a) Model with planar scattering surface.

Figure (b) Model with single cylinder or array of cylinders as scattering objects.

Figure 1. Schematic of scale-model laboratory experiment.

PROGRESS

An analytic solution of a spherical piezoelectric crystal was derived to predict expected signal levels for a sensor evaluation experiment, and to provide a boundary pressure history as input for finite element code calculation.

SOLUTION OF A SPHERICAL PIEZOELECTRIC SOURCE IN AN ELASTIC MEDIUM

The source is a spherical shell of lead zirconate titanate ceramic, designated PZT-4, of outside radius $a = 0.6350$ cm, inside radius $b = 0.4826$ cm, and thickness $h = 0.1524$ cm. The electrical polarization is radial and the electrical and mechanical properties are spherically symmetric and transversely isotropic. In the usual spherical coordinate system (r, θ, ϕ) , the properties are isotropic with respect to the circumferential coordinates (θ, ϕ) .

The source is cast in a rock simulant, designated Pourstone, which is homogeneous and isotropic. Our analysis treats the source subjected to a voltage pulse and an interface reaction from the surrounding medium. This reaction is determined by an analysis of the spherical wave propagation in the surrounding medium caused by the reaction while ensuring equal radial displacements at the interface. Approximations are introduced to simplify the analysis without changing the basic dynamic response.

PIEZOELECTRIC SPHERICAL SHELL

The standard notations¹ for the physical quantities involved are

S_i	strain	
T_i	stress	N/m ²
E_m	electric field	V/m (N/C)
s_{ij}^E	elastic compliance coefficients	m ² /N
c_{ij}^E	elastic stiffness coefficients	N/m ²
d_{mi}	piezoelectric constants	m/V (C/N)
e_{mj}	piezoelectric constants	m/V (C/N)

The general relationships among the strain, stress, and electric field are

$$S_i = s_{ij}^E T_j + d_{mi} E_m \quad (1)$$

or

$$T_j = c_{ij}^E S_i - e_{mj} E_m \quad (2)$$

with

$$i,j = 1,2,\dots,6 \quad m = 1,2,3$$

Considerable simplification of equations (1) and (2) results when we make use of the general properties, $s_{ij} = s_{ji}$ and $c_{ij} = c_{ji}$, transverse isotropy (rotational symmetry about the x_3 axis), and spherically symmetric electrical excitation with $E_1 = E_2 = 0$. Then, equations (1) and (2) become

$$S_2 = S_1 = (s_{11} + s_{12})T_1 + s_{13}T_3 + d_{31}E_3 \quad (3a)$$

$$S_3 = 2s_{13}T_1 + s_{33}T_3 + d_{33}E_3 \quad (3b)$$

$$T_2 = T_1 = (c_{11} + c_{12})S_1 + c_{13}S_3 - e_{31}E_3 \quad (4a)$$

$$T_3 = 2c_{13}S_1 + c_{33}S_3 - e_{33}E_3 \quad (4b)$$

The local (x_1, x_2, x_3) triad is the spherical coordinate system (θ, ϕ, r). Thus, stress components T_1 and T_3 are T_θ and T_r , strain components S_1 and S_3 are S_θ and S_r , and the electric field component E_3 is E_r .

The equation of motion of a shell element is

$$\frac{\partial T_3}{\partial r} + \frac{2}{r}(T_3 - T_1) = \rho \frac{\partial^2 \xi}{\partial t^2} \quad (5)$$

in which $\xi(r,t)$ is the outward radial displacement and ρ is the density of the PZT-4. The strains are

$$S_1 = \frac{\xi}{r} \quad S_3 = \frac{\partial \xi}{\partial r} \quad (6)$$

Substitution in (5) of the stresses from (4) followed by substitution of the strains from (6) leads to the governing equation

$$c_{33} \frac{\partial^2 \xi}{\partial r^2} + 2c_{33} \frac{1}{r} \frac{\partial \xi}{\partial r} - 2(c_{11} + c_{12} - c_{13}) \frac{\xi}{r^2} - \rho \frac{\partial^2 \xi}{\partial t^2} = e_{33} \frac{\partial E}{\partial r} + 2(e_{33} - e_{31}) \frac{E}{r} \quad (7)$$

where we have replaced the symbol E_3 by E . If the potential at the inner radius $r = b$ is higher than the potential at the outer radius $r = a$ by the voltage V , the field is

$$E(r,t) = \frac{ab}{a-b} \cdot \frac{V(t)}{r^2} \quad (8)$$

Then equation (7) becomes

$$c_{33} \frac{\partial^2 \xi}{\partial r^2} + 2c_{33} \frac{1}{r} \frac{\partial \xi}{\partial r} - 2(c_{11} + c_{12} - c_{13}) \frac{\xi}{r^2} - \rho \frac{\partial^2 \xi}{\partial t^2} = - \frac{2ab}{a-b} e_{31} V(t) \frac{1}{r^3} \quad (9)$$

At the free inner boundary, $r = b$, the radial stress component is $T_3 = 0$ so by equations (4b), (6), and (8) this condition is

$$\frac{\partial \xi}{\partial r} + 2 \frac{\xi}{r} = \frac{e_{33}}{c_{33}} \frac{ab}{a-b} \cdot \frac{V}{r^2} \quad \text{at } r = b \quad (10)$$

The condition at the outer boundary depends on the problem being solved. For a traction free outer boundary, the condition is $T_3 = 0$ at $r = a$, that is,

$$\frac{\partial \xi}{\partial r} + 2 \frac{\xi}{r} = \frac{e_{33}}{c_{33}} \frac{ab}{a-b} \cdot \frac{V}{r^2} \quad \text{at } r = a \quad (11)$$

To obtain an upper bound on the interface pressure at $r = a$, we have $S_1 = S_2 = 0$ at $r = a$, that is,

$$\frac{\xi}{r} = 0 \quad \text{at } r = a \quad (12)$$

This condition corresponds to a spherical source in a rigid material. For our case of an elastic material, the condition at $r = a$ is $T_3 = -p(t)$, the interaction pressure. The solution is a relationship between the radial displacement at $r = a$ and the interaction pressure. By analyzing the problem of a pressure $p(t)$ acting in a spherical cavity of radius $r = a$ in an

elastic medium, we obtain a second relationship between cavity wall radial displacement and the pressure $p(t)$. Equating the displacements gives an equation for the required interface pressure.

The governing equation (9) and the various boundary conditions can be solved explicitly but the results are extremely cumbersome. Therefore, for aiding the interpretation of experimental results, the source analysis is simplified by using thin shell theory. In this theory, the radial component of stress, T_3 , is neglected.

Let the mean radius of the shell be $r = a$ and introduce the interface pressure $p(t)$ to be determined. The shell outward radial displacement is $\xi(t)$ and the thickness is h . The equation of motion is

$$\rho \ddot{\xi} = -\frac{2}{a} T_1 - \frac{p(t)}{h} \quad (13)$$

and if in equation (3a) we set $T_3 = 0$ and $S_1 = \xi/a$ to provide the average circumferential stress T_1 in equation (13), we obtain

$$\ddot{\xi} + \omega^2 \xi = -\frac{p(t)}{\rho h} + \omega^2 a d_{31} E \quad (14)$$

where

$$\omega^2 = 2/\rho a^2 (s_{11} + s_{12}) \quad (15)$$

The initial conditions of interest are

$$\xi(0) = 0 \quad \dot{\xi}(0) = 0 \quad (16)$$

The solution of equation (14) satisfying the initial conditions (16) is

$$\xi(t) = \frac{1}{\omega} \int_0^t \left\{ \omega^2 a d_{31} E(\tau) - \frac{1}{\rho h} p(\tau) \right\} \sin \omega(t - \tau) d\tau \quad (17)$$

If the driving electric field is

$$E(t) = E_0 (1 - e^{-\alpha t}) \quad (18)$$

the shell velocity, according to the displacement (17), is given by

$$\frac{\dot{\xi}(t)}{v} = \frac{\alpha/\omega}{1 + (\alpha/\omega)^2} \left(\frac{\alpha}{\omega} \sin \omega t - \cos \omega t + e^{-\alpha t} \right) - \frac{1}{\rho h} \int_0^t p(\tau) \cos \omega(t - \tau) d\tau \quad (19)$$

where

$$v = \omega a d_{31} E_0 \quad (20)$$

The velocity, v , is the maximum velocity achieved by the shell in a vacuum when subjected to a step voltage, E_0 . Formula (19) gives the relationship between the shell radial velocity and the interaction pressure from the surrounding elastic medium.

SPHERICAL CAVITY IN AN ELASTIC MEDIUM²

When the stress-strain relationships

$$\sigma_r = (\lambda + 2\mu) \frac{\partial \xi}{\partial r} + 2\lambda \frac{\xi}{r} \quad (21)$$

$$\sigma_\theta = \lambda \frac{\partial \xi}{\partial r} + 2(\lambda + \mu) \frac{\xi}{r} \quad (22)$$

are substituted in the equation of motion

$$\frac{\partial \sigma_r}{\partial r} + \frac{2}{r} (\sigma_r - \sigma_\theta) = \rho_m \frac{\partial^2 \xi}{\partial t^2} \quad (23)$$

we obtain the displacement equation

$$\frac{\partial^2 \xi}{\partial r^2} + \frac{2}{r} \frac{\partial \xi}{\partial r} - \frac{2\xi}{r} = \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2} \quad (24)$$

In (21) and (22), the σ_r and σ_θ are the radial and circumferential stress components, and λ and μ are the Lame constants for the isotropic elastic medium. In (23), ρ_m is the medium density. In (24), $c^2 = (\lambda + 2\mu)/\rho_m$ where c is the elastic wave velocity.

Introduction of the displacement potential Φ defined by

$$\xi = \frac{\partial \Phi}{\partial r} \quad (25)$$

reduces (24) to

$$\frac{\partial^2(r\phi)}{\partial r^2} = \frac{1}{c^2} \frac{\partial^2(r\phi)}{\partial t^2} \quad (26)$$

The solution of (26) describing outgoing waves is

$$\phi(r,t) = \frac{1}{r} f(s) \quad s = t - (r - a)/c \quad (27)$$

In terms of the function $f(s)$, the displacement, velocity, and stresses are

$$\xi = -\frac{f'}{cr} - \frac{f}{r^2} \quad (28)$$

$$\frac{\partial \xi}{\partial t} = -\frac{f''}{cr} - \frac{f'}{r^2} \quad (29)$$

$$\sigma_r = \rho c^2 \left\{ \frac{f''}{c^2 r} + \frac{2(1-2\vartheta)}{1-\vartheta} \left(\frac{f'}{cr^2} + \frac{f}{r^3} \right) \right\} \quad (30)$$

$$\sigma_\theta = \frac{\rho c^2}{1-\vartheta} \left\{ \frac{\vartheta f''}{c^2 r} - (1-2\vartheta) \left(\frac{f'}{cr^2} + \frac{f}{r^3} \right) \right\} \quad (31)$$

in which ϑ is Poisson's ratio.

For a given cavity wall velocity, $\xi(t)$, we have, from (29), the equation

$$f''(s) + \frac{c}{a} f'(s) = ca\xi'(s) \quad (32)$$

and $f(0) = f'(0) = 0$ at the wave front $s = 0$. The solution is

$$f(s) = -cae^{-cs/a} \int_0^s e^{c\tau/a} \xi(\tau) d\tau \quad (33)$$

with

$$f'(s) = -\frac{c}{a} f(s) - ca\xi(s) \quad (34)$$

$$f''(s) = \frac{c^2}{a^2} f(s) - ca\xi'(s) + c^2\xi(s) \quad (35)$$

The cavity pressure required to maintain the cavity wall velocity is found by substituting (33), (34), and (35) in the radial stress formula (30) and setting $r = a$ ($s = t$) and $\sigma_r(a,t) = -p(t)$. These steps give

$$p(t) = \rho c \xi(t) - \frac{\rho c^2}{a} \left\{ \frac{f(t)}{a^2} + \xi - \frac{2(1-2\vartheta)}{1-\vartheta} \xi \right\} \quad (36)$$

with $f(t)$ given by (33) with $s = t$.

Formally, the velocity of the interface between the source and the medium is obtained by solving the equation that results from substituting the interface pressure (36) in the shell velocity equation (19). This equation is inconvenient so we introduce an approximation for the interface pressure (36). By integrating $f(t)$ from (33) by parts, we obtain

$$\frac{f(t)}{a^2} = -\xi + e^{(c/a)t} \int_0^t e^{(c/a)\tau} \dot{\xi}(\tau) d\tau \quad (37)$$

For an electric field excitation (18) on the sphere in a vacuum, the second term on the right hand side of (37) is much smaller than the first term if $\alpha \ll \omega$, which it is in our case. Assuming a similar relative magnitude when the source is embedded in a solid allows us to approximate $f(t)$ by

$$\frac{f(t)}{a^2} = -\xi$$

so that (36) simplifies to

$$p(t) = \rho c \dot{\xi}(t) + \frac{\rho c^2}{a} \frac{2(1 - 2\vartheta)}{1 - \vartheta} \cdot \xi(t) \quad (38)$$

Substitution of (38) in the shell equation (14) gives

$$\ddot{\xi} + 2\gamma \dot{\xi} + \Omega^2 \xi = \omega v (1 - e^{-\alpha t}) \quad (39)$$

where

$$\gamma = \rho_m c / 2\rho h \quad (40)$$

$$\Omega^2 = \omega^2 + (\rho_m c^2 / \rho h a) [2(1 - 2\vartheta) / 1 - \vartheta] \quad (41)$$

and ρ_m is the density of the medium. The wave speed in the medium is defined by $c^2 = (\lambda + 2\mu) / \rho_m$. In terms of the stiffness coefficients, the angular frequency of the piezoelectric shell in a vacuum is given by

$$\omega^2 = 2(c_{11} + c_{12} - 2c_{13}^2/c_{33}) / \rho a^2 \quad (42)$$

In (39), the velocity, v , is given by (20).

The solution of equation (39) satisfying the initial conditions (16) is

$$\begin{aligned} \frac{\Omega^2}{\omega v} \xi(t) &= 1 - \frac{1}{\overline{\Omega}^2 + (\gamma - \alpha)^2} \\ &\left\{ \Omega^2 e^{-\alpha t} - a e^{-\gamma t} \left[(2\gamma - \alpha) \cos \overline{\Omega} t - \frac{\Omega^2 - \gamma(2\gamma - \alpha)}{\overline{\Omega}} \sin \overline{\Omega} t \right] \right\} \end{aligned} \quad (43)$$

where

$$\overline{\Omega}^2 = \Omega^2 - \gamma^2 \quad (44)$$

For excitations with rise times that are long compared to the natural quarter period, we have $\alpha^2 \ll \overline{\Omega}^2$ and the radial displacement (43) becomes

$$\frac{\Omega^2}{\omega v} \cdot \xi(t) = 1 - e^{-\alpha t} - \frac{\alpha}{\Omega} e^{-\gamma t} \sin \bar{\Omega}t \quad (45)$$

The shell radial velocity obtained by differentiating (45) is,

$$\frac{\Omega^2}{\alpha \omega v} \dot{\xi}(t) = e^{-\alpha t} - e^{-\gamma t} \left(\cos \bar{\Omega}t - \frac{\gamma}{\Omega} \sin \bar{\Omega}t \right) \quad (46)$$

Substitution of $\xi(t)$ from (45) into (33) and performing the integration gives

$$-\frac{\Omega^2}{a^2 \omega v} f(s) = 1 - \frac{1}{(c/a) - \alpha} \left(\frac{c}{a} e^{-as} - \alpha e^{-(c/a)s} \right) - \frac{\alpha(c/a)}{\Omega^2} \cdot \\ \left\{ e^{-(c/a)s} - e^{-\gamma s} \left(\cos \bar{\Omega}s - \frac{(c/a) - \gamma}{\Omega} \sin \bar{\Omega}s \right) \right\} \quad (47)$$

Formulas (34) and (35) determine $f'(s)$ and $f''(s)$ because $\xi(s)$, $\xi'(s)$, and $f(s)$ are given by (45), (46), and (47). Consequently, we can determine ξ , $\dot{\xi}$, σ_r , and σ_θ by (28)-(31).

FLUID MEDIUM

If we set $\vartheta = 1/2$ in the frequency formula (41),

$$\bar{\Omega}^2 = \omega^2 \quad (48)$$

and, by (44)

$$\bar{\Omega}^2 = \omega^2 - \gamma^2 \quad (49)$$

where the fluid wave velocity is $c = (K/\rho_m)$, K being the fluid bulk modulus. In our case, $\gamma \ll \omega$ so (45), (46), and (47) become

$$\xi(s) = \frac{v}{\omega} \left(1 - e^{-as} - \frac{\alpha}{\omega} e^{-\gamma s} \sin \omega s \right) \quad (50)$$

$$\xi'(s) = \frac{v\alpha}{\omega} \left\{ e^{-as} - e^{-\gamma s} \left(\cos \omega s - \frac{\gamma}{\omega} \sin \omega s \right) \right\} \quad (51)$$

$$\begin{aligned}
 -\frac{\omega}{a^2 v} f(s) = & 1 - \frac{1}{(c/a) - \alpha} \left\{ \frac{c}{a} e^{-\alpha s} - \alpha e^{-(c/a)s} \right\} \\
 & - \frac{\alpha(c/a)}{\omega^2} \left\{ e^{-(c/a)s} - e^{-\gamma s} \left(\cos \omega s - \frac{(c/a) - \gamma}{\omega} \sin \omega s \right) \right\}
 \end{aligned} \tag{52}$$

Stress formulas (30) and (31) are replaced by the pressure formula

$$p = -\rho_m f'(s)/r \tag{53}$$

where $f'(s)$ is determined by (35), (50), (51), and (52).

NUMERICAL VALUES (SOLID MEDIUM)

The properties we require of the PZT-4 ceramic are

Elastic compliance coefficients (m^2/N)

S_{11}^E	12.30×10^{-12}
S_{12}^E	-4.05×10^{-12}
S_{13}^E	-5.31×10^{-12}
S_{33}^E	15.50×10^{-12}

Elastic stiffness coefficients (N/m^2)

c_{11}^E	13.90×10^{10}
c_{12}^E	7.78×10^{10}
c_{13}^E	7.43×10^{10}
c_{33}^E	11.50×10^{10}

Piezoelectric constants ($m/V, c/N$)

d_{31}	-123×10^{-12}
d_{33}	289×10^{-12}

Piezoelectric constants ($Nm/V, c/m^2$)

e_{31}	-5.20
e_{33}	15.10

Density ρ $7.5 \times 10^3 \text{ kg/m}^3$

The properties of the 'Pourstone' medium are

Young's modulus	E	16.4 GPa
Shear modulus	μ	6.3 GPa

Bulk modulus	K	13.8 GPa
Poisson's ratio	ν	0.3
Lame constant	λ	9.6 GPa
Density	ρ_m	$1.79 \times 10^3 \text{ kg/m}^3$
P-wave velocity	c_p	$3.52 \text{ mm}/\mu\text{s (km/s)}$
S-wave velocity	c_s	$1.88 \text{ mm}/\mu\text{s (km/s)}$

The dimensions of the spherical source are

Outer radius	a	6.350 mm
Inner radius	b	4.826 mm
Thickness	h	1.524 mm

The driving voltage, $V(t)$, is taken in the form

$$V(t) = V_0(1 - e^{-\alpha t}) \quad (54)$$

applied to the outside of the spherical shell. If the value at the midradius, $(a + b)/2$, is chosen to represent the field strength, then according to (8) and (54),

$$E(t) = -644 V_0(1 - e^{-\alpha t}) \quad \text{volts/m}$$

By letting the voltage reach 90% of V_0 in 20 μs , the value of α is determined as $\alpha = 0.115 \mu\text{s}^{-1}$. Also, if $V_0 = 300$ volts, we have $E_0 = -0.1932 \times 10^6$ volts/m. Hence,

$$E(t) = -0.1932 \times 10^6(1 - e^{-0.115 t})$$

where t has μs units.

The natural angular frequency of the spherical source (in a vacuum), according to (15), is $\omega = 0.895 \times 10^6 \text{ rad/s}$ and the natural frequency is $f = \omega/2\pi = 142 \text{ kHz}$.

If the voltage is applied slowly to the free shell, the maximum radial displacement is

$$\xi_s = ad_{31}E_0 = 0.15 \times 10^{-3} \text{ mm} = 0.15 \mu\text{m}$$

If the same voltage (300 volts) is applied instantaneous, the maximum displacement is $2\xi_s$, and the maximum velocity is

$$\max \dot{\xi} = v = \omega ad_{31}E_0 = \omega \xi_s = 13.4 \text{ cm/s}$$

If the voltage is applied slowly to the shell confined by a rigid medium, the interface pressure is $p = - (2h/a)T_1$ where the circumferential stress is $T_1 = - d_{31}E_0/(s_{11} + s_{12})$. The magnitude of this pressure is $p = 14.05$ bars (206 psi).

In Equation (39) governing the shell motion in an elastic medium, the numerical values of γ and Ω , and consequently $\bar{\Omega}$ are

$$\gamma = 0.276 \times 10^6 \text{ rad/s} \quad \Omega = 1.073 \times 10^6 \text{ rad/s} \quad \bar{\Omega} = 1.037 \times 10^6 \text{ rad/s}$$

For comparison, we note that $\alpha = 0.115 \times 10^6 \text{ s}^{-1}$. Because $\alpha^2 \ll \bar{\Omega}^2$ formulas (45), (46), and (47) for the shell radial displacement and velocity and the potential function $f(s)$ are applicable. The value of c/a occurring in $f(s)$ is $c/a = 0.554 \times 10^6 \text{ s}^{-1}$.

The oscillatory part of the solution has a frequency of $\bar{f} = \bar{\Omega}/2\pi = 165$ kHz with a period of $\bar{T} = 1/\bar{f} = 6 \mu\text{s}$.

NUMERICAL VALUES (WATER)

Using a density of $\rho_m = 1$ gram/cm³ and a bulk modulus of $K = 2.245$ GPa (22.45 kbar), we obtain

Wave velocity	$c = (K/\rho_m)^{1/2} = 1.50 \text{ mm}/\mu\text{s}$
Damping parameter	$\gamma = 0.066 \times 10^6 \text{ rad/s}$
Spring parameter	$\Omega = \omega = 0.895 \times 10^6 \text{ rad/s}$
Angular frequency	$\bar{\Omega} = 0.893 \times 10^6 \text{ rad/s} \approx \Omega$
Velocity parameter	$c/a = 0.236 \times 10^6 \text{ s}^{-1}$
Excitation parameter	$\alpha = 0.115 \times 10^6 \text{ s}^{-1}$

APPLICATION OF SOLUTION IN A WATER MEDIUM

We applied the solution just derived for the case of a spherical piezoelectric source in a water medium, and compared the calculated and measured pressure histories at three radii from the source. The experimental configuration is shown in Figure 2. In the experiments, the crystal was excited with a known voltage history, and free-field water pressure histories were measured at radii of 0.91, 1.51, and 3.38-cm measured from the center of the source. The input voltage history to the crystal is shown in Figure 3. The voltage reaches 90 % of the peak value of 316 volts at 10 μs , so in the formulation

RA-M-2336-2A

Figure 2. Configuration for measuring stress pulse amplitudes in water at different radii from the source and sphericity of piezoelectric source.

Figure 3. Input voltage history to the piezoelectric source in the water pressure experiment.

described previously, the value of α is $0.230 \times 10^6 \mu\text{s}^{-1}$, and the field strength as a function of time is described by:

$$E(t) = -0.2075 \times 10^6 (1 - e^{-0.23 t})$$

where the field strength, $E(t)$, has units Volts/m and t has units μs .

The calculated and measured pressure histories are shown superposed for the three gage locations in Figure 4, 5, and 6. At the first gage location, the measured and calculated histories show very good agreement in oscillation frequency and peak amplitude. At the further out locations, the measurements show larger damping than predicted by the calculation, but satisfactory agreement is observed in peak pressure and the oscillation frequency.

APPLICATION OF SOLUTION TO AN ELASTIC MEDIUM

The agreement between calculation and experiment in a water medium is sufficient to extend the solution to an elastic medium and estimate the expected amplitudes of velocity and displacement at different ranges in the medium. In addition, the calculated pressure history at the source/medium interface can be used as an input boundary condition for finite element calculations of the experiment shown in Figure 1. The results of the finite element calculations will be useful for estimating expected signal levels on the surface and assist in instrumentation selection for that experiment. The elastic medium is a rock simulant called pourstone, with the elastic properties listed on page (16). Using the same voltage history shown in Figure 3 as the input, the calculated velocity histories at radii of 0.635 cm (source/medium interface), 1.5- and 2.5-cm are shown superposed in Figure 7. The corresponding displacements for the three locations are shown in Figure 8, and the radial and circumferential stress histories are shown in Figures 9 and 10, respectively.

EVALUATION EXPERIMENT IN POURSTONE

We performed experiments to compare the calculated and measured velocity and displacement histories in a sphere of pourstone. The experimental configuration is shown in Figure 11. In this experiment, copper loops were cast in the midplane of a 12-cm diameter sphere of pourstone to measure radial particle velocity histories at different radii from the source. The specimen is placed in an external magnetic field, and we measure the induced voltage as the conductor cuts flux lines during passage of the stress wave. The particle velocity is proportional to the induced voltage, the magnetic field strength, and the

RA-7206-4

Figure 4. Comparison of measured and calculated pressure histories in water at a range of 0.91-cm from the center of the source.

RA-7206-5

Figure 5. Comparison of measured and calculated pressure histories in water at a range of 1.51-cm from the center of the source.

RA-7206-6

Figure 6. Comparison of measured and calculated pressure histories in water at a range of 3.38-cm from the center of the source.

RA-7206-7

Figure 7. Calculated velocity histories at 3 ranges in pourstone from a spherical piezoelectric crystal excited by 316 volts.

Figure 8. Calculated displacement histories at three ranges in porous stone from a spherical piezoelectric crystal excited by 316 volts.

RA-7206-9

Figure 9. Calculated radial stress histories at three ranges in pourstone from a spherical piezoelectric crystal excited by 316 volts.

Figure 10. Calculated circumferential stress histories at three ranges in porous stone from a spherical piezoelectric crystal excited by 316 volts.

RA-M-7206-2

* Particle Velocity Measurements Only

Figure 11. Configuration for source/sensor evaluation experiment.

length of the conductor. To increase the expected signal, we increased the gage length by constructing gages consisting of 10 windings of copper wire. Accelerometers and PVDF foils were mounted on the surface of the sphere to measure free-surface acceleration and strain, respectively.

We are currently analyzing the data obtained from the particle velocity gages. The accelerometers and PVDF foils did not produce satisfactory signals because the range of the measurement was too large. Consequently, we plan to fabricate a smaller specimen to evaluate these gages at locations closer to the source.

Contractors (United States)

Prof. Thomas Ahrens
Seismological Lab, 252-21
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Dr. Zoltan A. Der
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Prof. Charles B. Archambeau
CIRES
University of Colorado
Boulder, CO 80309

Prof. John Ferguson
Center for Lithospheric Studies
The University of Texas at Dallas
P.O. Box 830688
Richardson, TX 75083-0688

Prof. Muawia Barazangi
Institute for the Study of the Continent
Cornell University
Ithaca, NY 14853

Prof. Stanley Flatte
Applied Sciences Building
University of California
Santa Cruz, CA 95064

Dr. Douglas R. Baumgardt
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Dr. Alexander Florence
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

Prof. Jonathan Berger
IGPP, A-025
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093

Prof. Henry L. Gray
Vice Provost and Dean
Department of Statistical Sciences
Southern Methodist University
Dallas, TX 75275

Dr. Lawrence J. Burdick
Woodward-Clyde Consultants
566 El Dorado Street
Pasadena, CA 91109-3245

Dr. Indra Gupta
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Dr. Karl Coyner
New England Research, Inc.
76 Olcott Drive
White River Junction, VT 05001

Prof. David G. Harkrider
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. Vernon F. Cormier
Department of Geology & Geophysics
U-45, Room 207
The University of Connecticut
Storrs, CT 06268

Prof. Donald V. Helmberger
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Professor Anton W. Dainty
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Prof. Eugene Herrin
Institute for the Study of Earth and Man
Geophysical Laboratory
Southern Methodist University
Dallas, TX 75275

Prof. Steven Day
Department of Geological Sciences
San Diego State University
San Diego, CA 92182

Prof. Robert B. Herrmann
Department of Earth & Atmospheric Sciences
St. Louis University
St. Louis, MO 63156

Prof. Bryan Isacks
Cornell University
Department of Geological Sciences
SNEE Hall
Ithaca, NY 14850

Dr. Rong-Song Jih
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Lane R. Johnson
Seismographic Station
University of California
Berkeley, CA 94720

Prof. Alan Kafka
Department of Geology & Geophysics
Boston College
Chestnut Hill, MA 02167

Dr. Richard LaCoss
MIT-Lincoln Laboratory
M-200B
P. O. Box 73
Lexington, MA 02173-0073 (3 copies)

Prof Fred K. Lamb
University of Illinois at Urbana-Champaign
Department of Physics
1110 West Green Street
Urbana, IL 61801

Prof. Charles A. Langston
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Prof. Thorne Lay
Institute of Tectonics
Earth Science Board
University of California, Santa Cruz
Santa Cruz, CA 95064

Prof. Arthur Lerner-Lam
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Dr. Christopher Lynnes
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Peter Malin
University of California at Santa Barbara
Institute for Crustal Studies
Santa Barbara, CA 93106

Dr. Randolph Martin, III
New England Research, Inc.
76 Olcott Drive
White River Junction, VT 05001

Dr. Gary McCartor
Mission Research Corporation
735 State Street
P.O. Drawer 719
Santa Barbara, CA 93102 (2 copies)

Prof. Thomas V. McEvilly
Seismographic Station
University of California
Berkeley, CA 94720

Dr. Keith L. McLaughlin
S-CUBED
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620

Prof. William Menke
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Stephen Miller
SRI International
333 Ravenswood Avenue
Box AF 116
Menlo Park, CA 94025-3493

Prof. Bernard Minster
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Prof. Brian J. Mitchell
Department of Earth & Atmospheric Sciences
St. Louis University
St. Louis, MO 63156

Mr. Jack Murphy
S-CUBED, A Division of Maxwell Laboratory
11800 Sunrise Valley Drive
Suite 1212
Reston, VA 22091 (2 copies)

Prof. Bryan Isacks
Cornell University
Department of Geological Sciences
SNEE Hall
Ithaca, NY 14850

Dr. Rong-Song Jih
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Lane R. Johnson
Seismographic Station
University of California
Berkeley, CA 94720

Prof. Alan Kafka
Department of Geology & Geophysics
Boston College
Chestnut Hill, MA 02167

Dr. Richard LaCoss
MIT-Lincoln Laboratory
M-200B
P. O. Box 73
Lexington, MA 02173-0073 (3 copies)

Prof Fred K. Lamb
University of Illinois at Urbana-Champaign
Department of Physics
1110 West Green Street
Urbana, IL 61801

Prof. Charles A. Langston
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Prof. Thorne Lay
Institute of Tectonics
Earth Science Board
University of California, Santa Cruz
Santa Cruz, CA 95064

Prof. Arthur Lerner-Lam
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Dr. Christopher Lynnes
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Peter Malin
University of California at Santa Barbara
Institute for Crustal Studies
Santa Barbara, CA 93106

Dr. Randolph Martin, III
New England Research, Inc.
76 Olcott Drive
White River Junction, VT 05001

Dr. Gary McCartor
Mission Research Corporation
735 State Street
P.O. Drawer 719
Santa Barbara, CA 93102 (2 copies)

Prof. Thomas V. McEvilly
Seismographic Station
University of California
Berkeley, CA 94720

Dr. Keith L. McLaughlin
S-CUBED
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620

Prof. William Menke
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Stephen Miller
SRI International
333 Ravenswood Avenue
Box AF 116
Menlo Park, CA 94025-3493

Prof. Bernard Minster
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Prof. Brian J. Mitchell
Department of Earth & Atmospheric Sciences
St. Louis University
St. Louis, MO 63156

Mr. Jack Murphy
S-CUBED, A Division of Maxwell Laboratory
11800 Sunrise Valley Drive
Suite 1212
Reston, VA 22091 (2 copies)

Dr. Bao Nguyen
GL/LWH
Hanscom AFB, MA 01731-5000

Prof. Jeremiah Sullivan
University of Illinois at Urbana-Champaign
Department of Physics
1110 West Green Street
Urbana, IL 61801

Prof. John A. Orcutt
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Prof. Clifford Thurber
University of Wisconsin-Madison
Department of Geology & Geophysics
1215 West Dayton Street
Madison, WI 53706

Prof. Keith Priestley
University of Cambridge
Bullard Labs, Dept. of Earth Sciences
Madingley Rise, Madingley Rd.
Cambridge CB3 OEZ, ENGLAND

Prof. M. Nafi Toksoz
Earth Resources Lab
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Prof. Paul G. Richards
L-210
Lawrence Livermore National Laboratory
Livermore, CA 94550

Prof. John E. Vidale
University of California at Santa Cruz
Seismological Laboratory
Santa Cruz, CA 95064

Dr. Wilmer Rivers
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Terry C. Wallace
Department of Geosciences
Building #77
University of Arizona
Tucson, AZ 85721

Prof. Charles G. Sammis
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Dr. Raymond Willeman
GL/LWH
Hanscom AFB, MA 01731-5000

Prof. Christopher H. Scholz
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Dr. Lorraine Wolf
GL/LWH
Hanscom AFB, MA 01731-5000

Prof. David G. Simpson
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Prof. Francis T. Wu
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

Dr. Jeffrey Stevens
S-CUBED
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620

Prof. Brian Stump
Institute for the Study of Earth & Man
Geophysical Laboratory
Southern Methodist University
Dallas, TX 75275

OTHERS (United States)

Dr. Monem Abdel-Gawad
Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Prof. Keiiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Prof. Shelton S. Alexander
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Dr. Kenneth Anderson
BBNSTC
Mail Stop 14/1B
Cambridge, MA 02238

Dr. Ralph Archuleta
Department of Geological Sciences
University of California at Santa Barbara
Santa Barbara, CA 93102

Dr. Thomas C. Bache, Jr.
Science Applications Int'l Corp.
10210 Campus Point Drive
San Diego, CA 92121 (2 copies)

J. Barker
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

Dr. T.J. Bennett
S-CUBED
A Division of Maxwell Laboratory
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Mr. William J. Best
907 Westwood Drive
Vienna, VA 22180

Dr. N. Biswas
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

Dr. G.A. Bollinger
Department of Geological Sciences
Virginia Polytechnical Institute
21044 Derring Hall
Blacksburg, VA 24061

Dr. Stephen Bratt
Science Applications Int'l Corp.
10210 Campus Point Drive
San Diego, CA 92121

Michael Browne
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Mr. Roy Burger
1221 Serry Road
Schenectady, NY 12309

Dr. Robert Burridge
Schlumberger-Doll Research Center
Old Quarry Road
Ridgefield, CT 06877

Dr. Jerry Carter
Rondout Associates
P.O. Box 224
Stone Ridge, NY 12484

Dr. W. Winston Chan
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314-1581

Dr. Theodore Cherry
Science Horizons, Inc.
710 Encinitas Blvd., Suite 200
Encinitas, CA 92024 (2 copies)

Prof. Jon F. Claerbout
Department of Geophysics
Stanford University
Stanford, CA 94305

Prof. Robert W. Clayton
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. F. A. Dahlen
Geological and Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636

Dr. Jeffrey W. Given
Sierra Geophysics
11255 Kirkland Way
Kirkland, WA 98033

Prof. Adam Dziewonski
Hoffman Laboratory
Harvard University
20 Oxford St
Cambridge, MA 02138

Prof. Stephen Grand
University of Texas at Austin
Department of Geological Sciences
Austin, TX 78713-7909

Prof. John Ebel
Department of Geology & Geophysics
Boston College
Chestnut Hill, MA 02167

Prof. Roy Greenfield
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Eric Fielding
SNEE Hall
INSTOC
Cornell University
Ithaca, NY 14853

Dan N. Hagedorn
Battelle
Pacific Northwest Laboratories
Battelle Boulevard
Richland, WA 99352

Prof. Donald Forsyth
Department of Geological Sciences
Brown University
Providence, RI 02912

Kevin Hutchenson
Department of Earth Sciences
St. Louis University
3507 Laclede
St. Louis, MO 63103

Dr. Cliff Frolich
Institute of Geophysics
8701 North Mopac
Austin, TX 78759

Prof. Thomas H. Jordan
Department of Earth, Atmospheric
and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139

Prof. Art Frankel
Mail Stop 922
Geological Survey
790 National Center
Reston, VA 22092

Robert C. Kemerait
ENSCO, Inc.
445 Pineda Court
Melbourne, FL 32940

Dr. Anthony Gangi
Texas A&M University
Department of Geophysics
College Station, TX 77843

William Kikendall
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Dr. Freeman Gilbert
Inst. of Geophysics & Planetary Physics
University of California, San Diego
P.O. Box 109
La Jolla, CA 92037

Prof. Leon Knopoff
University of California
Institute of Geophysics & Planetary Physics
Los Angeles, CA 90024

Mr. Edward Giller
Pacific Sierra Research Corp.
1401 Wilson Boulevard
Arlington, VA 22209

Prof. L. Timothy Long
School of Geophysical Sciences
Georgia Institute of Technology
Atlanta, GA 30332

Prof. Art McGarr
Mail Stop 977
Geological Survey
345 Middlefield Rd.
Menlo Park, CA 94025

Dr. George Mellman
Sierra Geophysics
11255 Kirkland Way
Kirkland, WA 98033

Prof. John Nabelek
College of Oceanography
Oregon State University
Corvallis, OR 97331

Prof. Geza Nagy
University of California, San Diego
Department of Ames, M.S. B-010
La Jolla, CA 92093

Prof. Amos Nur
Department of Geophysics
Stanford University
Stanford, CA 94305

Prof. Jack Oliver
Department of Geology
Cornell University
Ithaca, NY 14850

Prof. Robert Phinney
Geological & Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636

Dr. Paul Pomeroy
Rondout Associates
P.O. Box 224
Stone Ridge, NY 12484

Dr. Jay Pulli
RADIX System, Inc.
2 Taft Court, Suite 203
Rockville, MD 20850

Dr. Norton Rimer
S-CUBED
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620

Prof. Larry J. Ruff
Department of Geological Sciences
1006 C.C. Little Building
University of Michigan
Ann Arbor, MI 48109-1063

Dr. Richard Sailor
TASC Inc.
55 Walkers Brook Drive
Reading, MA 01867

Thomas J. Sereno, Jr.
Science Application Int'l Corp.
10210 Campus Point Drive
San Diego, CA 92121

John Sherwin
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Prof. Robert Smith
Department of Geophysics
University of Utah
1400 East 2nd South
Salt Lake City, UT 84112

Prof. S. W. Smith
Geophysics Program
University of Washington
Seattle, WA 98195

Dr. Stewart Smith
IRIS Inc.
1616 North Fort Myer Drive
Suite 1440
Arlington, VA 22209

Dr. George Sutton
Rondout Associates
P.O. Box 224
Stone Ridge, NY 12484

Prof. L. Sykes
Lamont-Doherty Geological Observatory
of Columbia University
Palisades, NY 10964

Prof. Pradeep Talwani
Department of Geological Sciences
University of South Carolina
Columbia, SC 29208

Prof. Ta-liang Teng
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Dr. R.B. Tittmann
Rockwell International Science Center
1049 Camino Dos Rios
P.O. Box 1085
Thousand Oaks, CA 91360

Dr. Gregory van der Vink
IRIS, Inc.
1616 North Fort Myer Drive
Suite 1440
Arlington, VA 22209

Professor Daniel Walker
University of Hawaii
Institute of Geophysics
Honolulu, HI 96822

William R. Walter
Seismological Laboratory
University of Nevada
Reno, NV 89557

Dr. Gregory Wojcik
Weidlinger Associates
4410 El Camino Real
Suite 110
Los Altos, CA 94022

Prof. John H. Woodhouse
Hoffman Laboratory
Harvard University
20 Oxford St.
Cambridge, MA 02138

Dr. Gregory B. Young
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

GOVERNMENT

Dr. Ralph Alewine III
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Paul Johnson
ESS-4, Mail Stop J979
Los Alamos National Laboratory
Los Alamos, NM 87545

Mr. James C. Battis
GL/LWH
Hanscom AFB, MA 01731-5000

Janet Johnston
GL/LWH
Hanscom AFB, MA 01731-5000

Dr. Robert Blandford
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Dr. Katharine Kadinsky-Cade
GL/LWH
Hanscom AFB, MA 01731-5000

Eric Chael
Division 9241
Sandia Laboratory
Albuquerque, NM 87185

Ms. Ann Kerr
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Dr. John J. Cipar
GL/LWH
Hanscom AFB, MA 01731-5000

Dr. Max Koontz
US Dept of Energy/DP 5
Forrestal Building
1000 Independence Avenue
Washington, DC 20585

Mr. Jeff Duncan
Office of Congressman Markey
2133 Rayburn House Bldg.
Washington, DC 20515

Dr. W.H.K. Lee
Office of Earthquakes, Volcanoes,
& Engineering
345 Middlefield Road
Menlo Park, CA 94025

Dr. Jack Evernden
USGS - Earthquake Studies
345 Middlefield Road
Menlo Park, CA 94025

Dr. William Leith
U.S. Geological Survey
Mail Stop 928
Reston, VA 22092

Art Frankel
USGS
922 National Center
Reston, VA 22092

Dr. Richard Lewis
Director, Earthquake Engineering & Geophysics
U.S. Army Corps of Engineers
Box 631
Vicksburg, MS 39180

Dr. T. Hanks
USGS
Nat'l Earthquake Research Center
345 Middlefield Road
Menlo Park, CA 94025

James F. Lewkowicz
GL/LWH
Hanscom AFB, MA 01731-5000

Dr. James Hannon
Lawrence Livermore Nat'l Laboratory
P.O. Box 808
Livermore, CA 94550

Mr. Alfred Lieberman
ACDA/VI-OA/State Department Bldg
Room 5726
320 - 21st Street, NW
Washington, DC 20451

Stephen Mangino
GL/LWH
Hanscom AFB, MA 01731-5000

Dr. Frank F. Pilotte
HQ AFTAC/TT
Patrick AFB, FL 32925-6001

Dr. Robert Masse
Box 25046, Mail Stop 967
Denver Federal Center
Denver, CO 80225

Katie Poley
CIA-OSWR/NED
Washington, DC 20505

Art McGarr
U.S. Geological Survey, MS-977
345 Middlefield Road
Menlo Park, CA 94025

Mr. Jack Rachlin
U.S. Geological Survey
Geology, Rm 3 C136
Mail Stop 928 National Center
Reston, VA 22092

Richard Morrow
ACDA/VI, Room 5741
320 21st Street N.W.
Washington, DC 20451

Dr. Robert Reinke
WL/NTESG
Kirtland AFB, NM 87117-6008

Dr. Keith K. Nakanishi
Lawrence Livermore National Laboratory
P.O. Box 808, L-205
Livermore, CA 94550

Dr. Byron Ristvet
HQ DNA, Nevada Operations Office
Attn: NVCG
P.O. Box 98539
Las Vegas, NV 89193

Dr. Carl Newton
Los Alamos National Laboratory
P.O. Box 1663
Mail Stop C335, Group ESS-3
Los Alamos, NM 87545

Dr. George Rothe
HQ AFTAC/TGR
Patrick AFB, FL 32925-6001

Dr. Kenneth H. Olsen
Los Alamos Scientific Laboratory
P.O. Box 1663
Mail Stop C335, Group ESS-3
Los Alamos, NM 87545

Dr. Alan S. Ryall, Jr.
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Howard J. Patton
Lawrence Livermore National Laboratory
P.O. Box 808, L-205
Livermore, CA 94550

Dr. Michael Shore
Defense Nuclear Agency/SPSS
6801 Telegraph Road
Alexandria, VA 22310

Mr. Chris Paine
Office of Senator Kennedy
SR 315
United States Senate
Washington, DC 20510

Donald L. Springer
Lawrence Livermore National Laboratory
P.O. Box 808, L-205
Livermore, CA 94550

Colonel Jerry J. Perrizo
AFOSR/NP, Building 410
Bolling AFB
Washington, DC 20332-6448

Mr. Charles L. Taylor
GL/LWG
Hanscom AFB, MA 01731-5000

Dr. Thomas Weaver
Los Alamos National Laboratory
P.O. Box 1663, Mail Stop C335
Los Alamos, NM 87545

DARPA/PM
1400 Wilson Boulevard
Arlington, VA 22209

J.J. Zucca
Lawrence Livermore National Laboratory
Box 808
Livermore, CA 94550

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 (5 copies)

GL/SULL
Research Library
Hanscom AFB, MA 01731-5000 (2 copies)

Defense Intelligence Agency
Directorate for Scientific &
Technical Intelligence
Washington, DC 20301

Secretary of the Air Force
(SAFRD)
Washington, DC 20330

AFTAC/CA
(STINFO)
Patrick AFB, FL 32925-6001

Office of the Secretary Defense
DDR & E
Washington, DC 20330

TACTEC
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201 (Final Report Only)

HQ DNA
Attn: Technical Library
Washington, DC 20305

DARPA/RMO/RETRIEVAL
1400 Wilson Boulevard
Arlington, VA 22209

DARPA/RMO/Security Office
1400 Wilson Boulevard
Arlington, VA 22209

Geophysics Laboratory
Attn: XO
Hanscom AFB, MA 01731-5000

Geophysics Laboratory
Attn: LW
Hanscom AFB, MA 01731-5000

Dr. Thomas Weaver
Los Alamos National Laboratory
P.O. Box 1663, Mail Stop C335
Los Alamos, NM 87545

DARPA/PM
1400 Wilson Boulevard
Arlington, VA 22209

J.J. Zucca
Lawrence Livermore National Laboratory
Box 808
Livermore, CA 94550

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 (5 copies)

GL/SULL
Research Library
Hanscom AFB, MA 01731-5000 (2 copies)

Defense Intelligence Agency
Directorate for Scientific &
Technical Intelligence
Washington, DC 20301

Secretary of the Air Force
(SAFRD)

Washington, DC 20330

AFTAC/CA
(STINFO)
Patrick AFB, FL 32925-6001

Office of the Secretary Defense
DDR & E
Washington, DC 20330

TACTEC
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201 (Final Report Only)

HQ DNA
Attn: Technical Library
Washington, DC 20305

DARPA/RMO/RETRIEVAL
1400 Wilson Boulevard
Arlington, VA 22209

DARPA/RMO/Security Office
1400 Wilson Boulevard
Arlington, VA 22209

Geophysics Laboratory
Attn: XO
Hanscom AFB, MA 01731-5000

Geophysics Laboratory
Attn: LW
Hanscom AFB, MA 01731-5000

CONTRACTORS (Foreign)

Dr. Ramon Cabre, S.J.
Observatorio San Calixto
Casilla 5939
La Paz, Bolivia

Prof. Hans-Peter Harjes
Institute for Geophysik
Ruhr University/Bochum
P.O. Box 102148
4630 Bochum 1, FRG

Prof. Eystein Husebye
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Prof. Brian L.N. Kennett
Research School of Earth Sciences
Institute of Advanced Studies
G.P.O. Box 4
Canberra 2601, AUSTRALIA

Dr. Bernard Massinon
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

Dr. Pierre Mecheler
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE

Dr. Svein Mykkeltveit
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

FOREIGN (Others)

Dr. Peter Basham
Earth Physics Branch
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Eduard Berg
Institute of Geophysics
University of Hawaii
Honolulu, HI 96822

Dr. Michel Bouchon
I.R.I.G.M.-B.P. 68
38402 St. Martin D'Heres
Cedex, FRANCE

Dr. Hilmar Bungum
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Michel Campillo
Observatoire de Grenoble
I.R.I.G.M.-B.P. 53
38041 Grenoble, FRANCE

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Ontario, CANADA M5S 1A7

Dr. Alan Douglas
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Dr. Roger Hansen
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Manfred Henger
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hanover 51, FRG

Ms. Eva Johannsson
Senior Research Officer
National Defense Research Inst.
P.O. Box 27322
S-102 54 Stockholm, SWEDEN

Dr. Fekadu Kebede
Seismological Section
Box 12019
S-750 Uppsala, SWEDEN

Dr. Tormod Kvaerna
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Peter Marshal
Procurement Executive
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Prof. Ari Ben-Menahem
Department of Applied Mathematics
Weizman Institute of Science
Rehovot, ISRAEL 951729

Dr. Robert North
Geophysics Division
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Frode Ringdal
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Jorg Schlittenhardt
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF
GERMANY