

NOV 29, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.36wgq3y23lk5/v1

Protocol Citation: Bin Fu 2023. Spot detection on structured background protocol. protocols.io https://dx.doi.org/10.17504/p rotocols.io.36wgq3y23lk5/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License. which permits unrestricted use, distribution, and reproduction in any medium, provided the are credited

Protocol status: Working We use this protocol and it's working

Created: Nov 29, 2023

Last Modified: Nov 29,

2023

Spot detection on structured background protocol

Bin

 Fu^1

¹University of Cambridge

Bin Fu

University of Cambridge

ABSTRACT

This protocol details the steps for using the spot detection code

ATTACHMENTS

protocol_code.docx

MATERIALS

File required: 'main_RADSpot' folder

Toolbox required: Statistics and Machine Learning Toolbox, image processing toolbox

original author and source

PROTOCOL integer ID:

91566

Keywords: ASAPCRN

Funders

Acknowledgement:Aligning Science Across Parkinson's

Grant ID: ASAP 000478

- 2 Put negative control images in the folder 'negative_control' and run determineRad.m to determined the steepness and integrated gradient used in the study.
- 3 Put images in 'image' folder and run detection.m for diffraction-limited puncta detection