#### Dos Problemas Sólidos

#### Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia



31 de octubre de 2024

#### Agenda



- 🚺 Moneda que rueda sin deslizar
  - Ligaduras
  - El Lagrangeano
  - Sección
- Moneda en un plano inclinado
  - Planteamiento del problema
  - Coordenadas y ligaduras
- Sección
  - Energías Cinética, Potencial y el Lagrangeano



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



• En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



• En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



- En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.
- La ligadura de rodar sin deslizar implica que la velocidad del punto *p*, en contacto con la superficie, es instantáneamente cero.



Un disco homogéneo (una moneda) de radio a y masa M rueda sin deslizar por una superficie plana. Escriba las ecuaciones de movimiento y encuentre una solución en el caso en que la inclinación del disco sea constante.



- En principio tendremos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$ : tres de traslación y tres ángulos de Euler.
- La ligadura de rodar sin deslizar implica que la velocidad del punto p, en contacto con la superficie, es instantáneamente cero.
- Esto es:  $\vec{r}(op) = \vec{R} + \vec{r}(cp) \Rightarrow \dot{\vec{r}}(op)_p = 0 = \dot{\vec{R}} + \vec{\Omega} \times \vec{r}(cp)$

# Moneda que rueda sin deslizar: Lagrangeano



ullet Por su parte, respecto al sistema centro de masa,  $\tilde{S}$  tenemos

$$\vec{r}(cp) = -a\hat{\mathbf{x}}^2$$
, y  $\vec{\Omega} \times \vec{r}(cp) = \begin{vmatrix} \hat{\mathbf{x}}^1 & \hat{\mathbf{x}}^2 & \hat{\mathbf{x}}^3 \\ \tilde{\Omega}^1 & \tilde{\Omega}^2 & \Omega^3 \\ 0 & -a & 0 \end{vmatrix} = a(\Omega^3 \hat{\mathbf{x}}_1 - \Omega^1 \hat{\mathbf{x}}_3)$ 

# Moneda que rueda sin deslizar: Lagrangeano



ullet Por su parte, respecto al sistema centro de masa,  $ilde{S}$  tenemos

$$ec{r}(cp) = -a\hat{\mathbf{x}}^2$$
, y  $\vec{\Omega} \times \vec{r}(cp) = \begin{vmatrix} \hat{\mathbf{x}}^1 & \hat{\mathbf{x}}^2 & \hat{\mathbf{x}}^3 \\ \tilde{\Omega}^1 & \tilde{\Omega}^2 & \Omega^3 \\ 0 & -a & 0 \end{vmatrix} = a(\Omega^3 \hat{\mathbf{x}}_1 - \Omega^1 \hat{\mathbf{x}}_3)$ 

- Respecto al sistema centro de masa  $\Omega_1 = \dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi$   $\Omega_2 = \dot{\phi} \sin \theta \cos \psi \dot{\theta} \sin \psi$  y  $\Omega_3 = \dot{\psi} + \dot{\phi} \cos \theta$
- Proyectamos la ecuación  $0 = \dot{\vec{R}} + \vec{\Omega} \times \vec{r}(cp)$  al sistema S,  $(\mathbf{i}, \mathbf{j}, \mathbf{k})$  tendremos  $\dot{x} + a(\Omega_3 \mathbf{i} \cdot \hat{\mathbf{x}}_1 \Omega_1 \mathbf{i} \cdot \hat{\mathbf{x}}_3) = 0$   $\dot{y} + a(\Omega_3 \mathbf{j} \cdot \hat{\mathbf{x}}_1 \Omega_1 \mathbf{j} \cdot \hat{\mathbf{x}}_3) = 0$   $\dot{z} + a(\Omega_3 \mathbf{k} \cdot \hat{\mathbf{x}}_1 \Omega_1 \mathbf{k} \cdot \hat{\mathbf{x}}_3) = 0$



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right)^2\right].$$



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right]^2.$$

- $T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{8}Ma^2\left[\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right]$
- Donde  $I_1 = I_2 = Ma^2/4$  y  $I_3 = Ma^2/2$ .



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right]^2.$$

- $T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{8}Ma^2\left[\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right]$
- Donde  $I_1 = I_2 = Ma^2/4$  y  $I_3 = Ma^2/2$ .
- ullet Por su parte, la energía potencial  $V=mga\operatorname{sen} heta$



$$T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left[I_1(c)(\Omega_1)^2 + I_2(c)(\Omega_2)^2 + I_3(c)\Omega_3\right]^2.$$

- $T = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{8}Ma^2\left[\dot{\phi}^2 \sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right]$
- Donde  $I_1 = I_2 = Ma^2/4$  y  $I_3 = Ma^2/2$ .
- ullet Por su parte, la energía potencial  $V=mga\operatorname{sen} heta$
- El Lagrangeano  $\mathcal{L} = T V$ ,  $\mathcal{L} = \frac{1}{2}M\left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2\right) + \frac{1}{8}Ma^2\left[\dot{\phi}^2\sin^2\theta + \dot{\theta}^2 + 2\left(\dot{\phi}\cos\theta^2 + \dot{\psi}\right)^2\right] mga\sin\theta$

### Planteamiento del problema



Un disco delgado, uniforme, de masa M y radio a está enganchado a una varilla AC sin masa de longitud b. El sistema está en un plano inclinado perfectamente rugoso que forma un ángulo  $\alpha$  con la horizontal. El punto A de la varilla se mantiene fijo en un punto O del plano inclinado mientras que el disco puede rodar libremente sin deslizar. Tomamos como sistema S uno con origen en O, eje z perpendicular al plano inclinado y el eje y hacia arriba del plano y para el sistema  $\tilde{S}$  origen también en O y eje  $\tilde{3}$  en la direción AC. Encontrar las ecuaciones de movimiento para

- $\alpha \neq 0$







• En principio tenemos seis grados de libertad  $(x,y,z,\phi,\psi,\theta)$  y cinco ligaduras



- En principio tenemos seis grados de libertad  $(x,y,z,\phi,\psi,\theta)$  y cinco ligaduras
- $\theta = \text{constante implica } \theta + \beta = \frac{\pi}{2}, \quad \tan \beta = \frac{a}{b}, \quad \theta = \frac{\pi}{2} \arctan \frac{a}{b}$



- En principio tenemos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$  y cinco ligaduras
- $\bullet \ \theta = \text{constante implica} \ \theta + \beta = \frac{\pi}{2}, \quad \tan\beta = \frac{a}{b}, \quad \theta = \frac{\pi}{2} \arctan\frac{a}{b}$
- $|\mathbf{R}| = b$ . Más aún,  $\mathbf{R} = b\hat{\mathbf{x}}_3 = b \left[ \operatorname{sen} \phi \operatorname{sen} \theta \hat{\mathbf{x}} \cos \phi \operatorname{sen} \theta \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}} \right]$ ,



- En principio tenemos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$  y cinco ligaduras
- $\theta = \text{constante implica } \theta + \beta = \frac{\pi}{2}, \quad \tan \beta = \frac{a}{b}, \quad \theta = \frac{\pi}{2} \arctan \frac{a}{b}$
- $|\mathbf{R}| = b$ . Más aún,  $\mathbf{R} = b\hat{\mathbf{x}}_3 = b \left[ \operatorname{sen} \phi \operatorname{sen} \theta \hat{\mathbf{x}} \cos \phi \operatorname{sen} \theta \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}} \right]$ ,
- Entonces  $x = b \operatorname{sen} \phi \operatorname{sen} \theta$ ;  $y = -b \cos \phi \operatorname{sen} \theta$  y  $z = b \cos \theta$  que cumplen con la ecuación  $x^2 + y^2 + z^2 = b^2$



- En principio tenemos seis grados de libertad  $(x,y,z,\phi,\psi,\theta)$  y cinco ligaduras
- $\theta = \text{constante implica } \theta + \beta = \frac{\pi}{2}, \quad \tan \beta = \frac{a}{b}, \quad \theta = \frac{\pi}{2} \arctan \frac{a}{b}$
- $|\mathbf{R}| = b$ . Más aún,  $\mathbf{R} = b\hat{\mathbf{x}}_3 = b \left[ \operatorname{sen} \phi \operatorname{sen} \theta \hat{\mathbf{x}} \cos \phi \operatorname{sen} \theta \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}} \right]$ ,
- Entonces  $x = b \operatorname{sen} \phi \operatorname{sen} \theta$ ;  $y = -b \cos \phi \operatorname{sen} \theta$  y  $z = b \cos \theta$  que cumplen con la ecuación  $x^2 + y^2 + z^2 = b^2$
- Derivándolas con  $\theta = \text{const.}$ , se obtiene:  $\dot{x} = b\dot{\phi}\cos\phi\sin\theta$ ,  $\dot{y} = b\dot{\phi}\sin\phi\sin\theta$ ,  $\dot{z} = 0$



- En principio tenemos seis grados de libertad  $(x, y, z, \phi, \psi, \theta)$  y cinco ligaduras
- $\theta = \text{constante implica } \theta + \beta = \frac{\pi}{2}, \quad \tan \beta = \frac{a}{b}, \quad \theta = \frac{\pi}{2} \arctan \frac{a}{b}$
- $|\mathbf{R}| = b$ . Más aún,  $\mathbf{R} = b\hat{\mathbf{x}}_3 = b \left[ \operatorname{sen} \phi \operatorname{sen} \theta \hat{\mathbf{x}} \cos \phi \operatorname{sen} \theta \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}} \right]$ ,
- Entonces  $x = b \operatorname{sen} \phi \operatorname{sen} \theta$ ;  $y = -b \cos \phi \operatorname{sen} \theta$  y  $z = b \cos \theta$  que cumplen con la ecuación  $x^2 + y^2 + z^2 = b^2$
- Derivándolas con  $\theta = \text{const.}$ , se obtiene:  $\dot{x} = b\dot{\phi}\cos\phi\sin\theta$ ,  $\dot{y} = b\dot{\phi}\sin\phi\sin\theta$ ,  $\dot{z} = 0$
- Rodar sin deslizar implica que la velocidad del punto p es cero :  $\mathbf{r}_{op} = \mathbf{R} + \mathbf{r}_{cp} \Rightarrow \dot{\mathbf{r}}_{op} = 0 = \dot{\mathbf{R}} + \tilde{\mathbf{\Omega}} \times \mathbf{r}_{cp}$ .



- En principio tenemos seis grados de libertad  $(x,y,z,\phi,\psi,\theta)$  y cinco ligaduras
- $\theta = \text{constante implica } \theta + \beta = \frac{\pi}{2}, \quad \tan \beta = \frac{a}{b}, \quad \theta = \frac{\pi}{2} \arctan \frac{a}{b}$
- $|\mathbf{R}| = b$ . Más aún,  $\mathbf{R} = b\hat{\mathbf{x}}_3 = b \left[ \operatorname{sen} \phi \operatorname{sen} \theta \hat{\mathbf{x}} \cos \phi \operatorname{sen} \theta \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}} \right]$ ,
- Entonces  $x = b \operatorname{sen} \phi \operatorname{sen} \theta$ ;  $y = -b \operatorname{cos} \phi \operatorname{sen} \theta$  y  $z = b \operatorname{cos} \theta$  que cumplen con la ecuación  $x^2 + y^2 + z^2 = b^2$
- Derivándolas con  $\theta = \text{const.}$ , se obtiene:  $\dot{x} = b\dot{\phi}\cos\phi\sin\theta$ ,  $\dot{y} = b\dot{\phi}\sin\phi\sin\theta$ ,  $\dot{z} = 0$
- Rodar sin deslizar implica que la velocidad del punto p es cero :  $\mathbf{r}_{op} = \mathbf{R} + \mathbf{r}_{cp} \Rightarrow \dot{\mathbf{r}}_{op} = 0 = \dot{\mathbf{R}} + \tilde{\mathbf{\Omega}} \times \mathbf{r}_{cp}$ .
- Respecto al sistema centro de masa,  $\tilde{S}$  tenemos  $\mathbf{r}_{cp}=-a\mathbf{\hat{x}}_2$ , y

$$\tilde{\mathbf{\Omega}} \times \mathbf{r}_{cp} = \begin{vmatrix} \hat{\mathbf{x}}_1 & \hat{\mathbf{x}}_2 & \hat{\mathbf{x}}_3 \\ \tilde{\Omega}^1 & \tilde{\Omega}^2 & \tilde{\Omega}^3 \\ 0 & -a & 0 \end{vmatrix} = a(\tilde{\Omega}^3 \hat{\mathbf{x}}_1 - \tilde{\Omega}^1 \hat{\mathbf{x}}_3) \text{ con cual respecto al}$$



• Al proyectar la ecuación de ligadura  $0 = \dot{\mathbf{R}} + a(\tilde{\Omega}^3 \, \hat{\mathbf{x}}_1 - \tilde{\Omega}^1 \, \hat{\mathbf{x}}_3)$  respecto a la base del Sistema laboratorio tendremos  $\dot{x} + a(\tilde{\Omega}^3 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1) - \tilde{\Omega}^1 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{y} + a(\tilde{\Omega}^3 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1) - \tilde{\Omega}^1 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{z} + a(\tilde{\Omega}^3 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1) - \tilde{\Omega}^1 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3)) = 0.$ 



- Al proyectar la ecuación de ligadura  $0 = \dot{\mathbf{R}} + a(\tilde{\Omega}^3 \, \hat{\mathbf{x}}_1 \tilde{\Omega}^1 \, \hat{\mathbf{x}}_3)$  respecto a la base del Sistema laboratorio tendremos  $\dot{x} + a(\tilde{\Omega}^3 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{y} + a(\tilde{\Omega}^3 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{z} + a(\tilde{\Omega}^3 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3)) = 0.$
- que se convierte en  $\dot{x} + a(\dot{\psi}\cos\phi + \dot{\phi}\cos\phi\cos\theta \dot{\theta}\sin\phi\sin\theta) = 0$   $\dot{y} + a(\dot{\psi}\sin\phi + \dot{\phi}\sin\phi\cos\theta + \dot{\theta}\cos\phi\sin\theta) = 0$  $\dot{z} - a\dot{\theta}\cos\theta = 0$



- Al proyectar la ecuación de ligadura  $0 = \dot{\mathbf{R}} + a(\tilde{\Omega}^3 \, \hat{\mathbf{x}}_1 \tilde{\Omega}^1 \, \hat{\mathbf{x}}_3)$  respecto a la base del Sistema laboratorio tendremos  $\dot{x} + a(\tilde{\Omega}^3 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{y} + a(\tilde{\Omega}^3 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{z} + a(\tilde{\Omega}^3 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3)) = 0.$
- que se convierte en  $\dot{x} + a(\dot{\psi}\cos\phi + \dot{\phi}\cos\phi\cos\theta \dot{\theta}\sin\phi\sin\theta) = 0$   $\dot{y} + a(\dot{\psi}\sin\phi + \dot{\phi}\sin\phi\cos\theta + \dot{\theta}\cos\phi\sin\theta) = 0$  $\dot{z} - a\dot{\theta}\cos\theta = 0$
- y usando las otras ecuaciones de ligadura  $\dot{x} = b\dot{\phi}\cos{\phi}\sin{\theta}, \quad \dot{y} = b\dot{\phi}\sin{\phi}\sin{\theta}, \quad \dot{z} = 0$ , obtenemos  $\dot{\psi} + \dot{\phi}\left[\frac{b}{a}\sin{\theta} + \cos{\theta}\right] = 0 \Rightarrow \psi = -\frac{\sqrt{a^2+b^2}}{a}\phi$



- Al proyectar la ecuación de ligadura  $0 = \dot{\mathbf{R}} + a(\tilde{\Omega}^3 \, \hat{\mathbf{x}}_1 \tilde{\Omega}^1 \, \hat{\mathbf{x}}_3)$  respecto a la base del Sistema laboratorio tendremos  $\dot{x} + a(\tilde{\Omega}^3 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{y} + a(\tilde{\Omega}^3 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}_3)) = 0;$   $\dot{z} + a(\tilde{\Omega}^3 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_1) \tilde{\Omega}^1 (\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}_3)) = 0.$
- que se convierte en  $\dot{x} + a(\dot{\psi}\cos\phi + \dot{\phi}\cos\phi\cos\theta \dot{\theta}\sin\phi\sin\theta) = 0$   $\dot{y} + a(\dot{\psi}\sin\phi + \dot{\phi}\sin\phi\cos\theta + \dot{\theta}\cos\phi\sin\theta) = 0$  $\dot{z} - a\dot{\theta}\cos\theta = 0$
- y usando las otras ecuaciones de ligadura  $\dot{x} = b\dot{\phi}\cos{\phi}\sin{\theta}, \quad \dot{y} = b\dot{\phi}\sin{\phi}\sin{\theta}, \quad \dot{z} = 0$ , obtenemos  $\dot{\psi} + \dot{\phi}\left[\frac{b}{a}\sin{\theta} + \cos{\theta}\right] = 0 \Rightarrow \psi = -\frac{\sqrt{a^2+b^2}}{a}\phi$
- Donde hemos sustituido el valor de  $\theta$  que implica sen  $\theta = b/\sqrt{a^2 + b^2}$  y  $\cos \theta = a/\sqrt{a^2 + b^2}$ .



• Como siempre la energía cinética se construye como  $T = T_{tras} + T_{rot} = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}(I_{11}\tilde{\Omega}_1^2 + I_{22}\tilde{\Omega}_2^2 + I_{33}\tilde{\Omega}_3^2)$ 



- Como siempre la energía cinética se construye como  $T = T_{tras} + T_{rot} = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}(I_{11}\tilde{\Omega}_1^2 + I_{22}\tilde{\Omega}_2^2 + I_{33}\tilde{\Omega}_3^2)$
- Los momentos de inercia son:  $I_{11} = I_{22} = \frac{1}{4} Ma^2$  y  $I_{33} = \frac{1}{2} Ma^2$ .



- Como siempre la energía cinética se construye como  $T = T_{tras} + T_{rot} = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}(I_{11}\tilde{\Omega}_1^2 + I_{22}\tilde{\Omega}_2^2 + I_{33}\tilde{\Omega}_3^2)$
- Los momentos de inercia son:  $I_{11} = I_{22} = \frac{1}{4} Ma^2$  y  $I_{33} = \frac{1}{2} Ma^2$ .
- Las componentes de la velocidad angular son  $\tilde{\Omega}_1 = \dot{\phi} \operatorname{sen} \, \theta \operatorname{sen} \, \psi + \dot{\theta} \cos \psi; \quad \tilde{\Omega}_2 = \dot{\phi} \operatorname{sen} \, \theta \cos \psi \dot{\theta} \operatorname{sen} \, \psi; \\ \tilde{\Omega}_3 = \dot{\psi} + \dot{\phi} \cos \theta.$



- Como siempre la energía cinética se construye como  $T = T_{tras} + T_{rot} = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}(I_{11}\tilde{\Omega}_1^2 + I_{22}\tilde{\Omega}_2^2 + I_{33}\tilde{\Omega}_3^2)$
- Los momentos de inercia son:  $I_{11} = I_{22} = \frac{1}{4} Ma^2$  y  $I_{33} = \frac{1}{2} Ma^2$ .
- Las componentes de la velocidad angular son  $\tilde{\Omega}_1 = \dot{\phi} \operatorname{sen} \ \theta \operatorname{sen} \ \psi + \dot{\theta} \cos \psi; \quad \tilde{\Omega}_2 = \dot{\phi} \operatorname{sen} \ \theta \cos \psi \dot{\theta} \operatorname{sen} \ \psi; \\ \tilde{\Omega}_3 = \dot{\psi} + \dot{\phi} \cos \theta.$
- Finalmente la energía cinética queda como  $T = \frac{M}{8} \frac{a^2 b^2 + 6b^4}{a^2 + b^2} \dot{\phi}^2$ .



- Como siempre la energía cinética se construye como  $T = T_{tras} + T_{rot} = \frac{1}{2}M(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}(I_{11}\tilde{\Omega}_1^2 + I_{22}\tilde{\Omega}_2^2 + I_{33}\tilde{\Omega}_3^2)$
- Los momentos de inercia son:  $I_{11} = I_{22} = \frac{1}{4} Ma^2$  y  $I_{33} = \frac{1}{2} Ma^2$ .
- Las componentes de la velocidad angular son  $\tilde{\Omega}_1 = \dot{\phi} \operatorname{sen} \, \theta \operatorname{sen} \, \psi + \dot{\theta} \operatorname{cos} \psi; \quad \tilde{\Omega}_2 = \dot{\phi} \operatorname{sen} \, \theta \operatorname{cos} \psi \dot{\theta} \operatorname{sen} \, \psi; \\ \tilde{\Omega}_3 = \dot{\psi} + \dot{\phi} \operatorname{cos} \theta.$
- Finalmente la energía cinética queda como  $T = \frac{M}{8} \frac{a^2 b^2 + 6b^4}{a^2 + b^2} \dot{\phi}^2$ .
- La energía potencial será  $Mg \frac{ba}{\sqrt{a^2+b^2}}$