15.1		
	minimize	$\frac{1}{2}x_1 - x_2$
maximize $2x_1+x_2$ subject to $0 \le x_1 \le 2$	subject to	$x_{1} + x_{3} = 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$x_1 + x_2 + x_4 = 3$
· · · · · · · · · · · · · · · · · · ·		$x_1 + 2x_2 + x_5 = 5$. $x_1, x_2 \ge 0$
	•	
15.2 minimize x_2 subject to $x_{k+1} = \alpha x_k$	rbuk. s.t	$x_1 - ax_0 - bu_0 = 0$
X₀.= .'		$x_2 - 4x_1 - 6u_1 = 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· u, ·> -1 · · ·
		· W · ≤ · 1 · · · · · · · · · · · · · · · ·
15.8 min $P_1 + \cdots + P_n$		
s.t. 91,1 P1+ + 91m	$\chi \geq P$, $i=1$,,m
)	
$\sum_{i=1}^{n} P_{i}^{i}$	· · G = [·9;/j	
Gp ≥ P1 ;		
17.6 Primal	Dral	
(a) min c ^T x.	Max YTb	
(a) min $c^{T}x$ s.t. $Ax \le b$ If we define $\lambda = -y$	s.t. 7 M	<u> </u>
If we define $\lambda = -y$	· · · · · · · · · · · · · · · · · · ·	
dual becomes minimize λ^{T}	$= -C^{T} \cdot \cdot \cdot \cdot$	
· · · · · · · · · · · · · · · · · · ·	0	

(b) 3y≥0 s.t. y		[]	minimize.	
for the dual	feasible.			$A = -C$ $A \ge 0$ $A \ge 0$
Hence, primal ho x = 0 satisfies		_	d is feasil	de
17.8 minimize \(\frac{2}{12}\) subject to \(\ar{x}\)	x = 1, 0 <	(a ₁ < a ₂ <	< a _n .	
(a) Dual: maximize subject to $\sum x_i = 1/a_n$	$\lambda = \lambda = \lambda$		< min { 1/a	$\left(\frac{1}{a_n}\right)^{n} = \frac{1}{a_n}$
17-13 minimize subject to				
Complementary slac' $(y^TA - c^T)x =$ Set $\mu = y^TA - c^T$	kness says	that if	optimal	
17.15 minimize x_1 subject to x_1 $2x_1$	$+x_2$ $+x_2$ $+x_2$ $+x_2$ $+x_3$ $+x_2$ $+x_3$	maxim subject	ree 3(ya to ya + 2	$\begin{array}{c} + \\ + \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \end{array} \qquad \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,.y ₂ . ≥ .0

. Minimize	on that : we have OTx Ax >b X>0	· dualize.		3simize	. Y T b .			
17.5 P maximize subject to	$x_{1} + 2x_{2}$ $-2x_{1} + x_{2} + x_{3}$ $-x_{1} + 2x_{2} + x_{4}$ $x_{1} + x_{5}$ $x \ge 0$	· · · · · · · · · · · · · · · · · · ·	ninimize. subject to	Dual 29, + -29, - 9, +2	7y2+3y	3 · 1 ≥ 2 ≥ 0 ≥ 0		
(p) X =	[3.5.3]			t is				
Optimal: va	CBB-1=	[0 1 	· 2]	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	