MAE5776 - 1º Sem/2022 - Lista #02

1. Comparação de vetores de Médias de 2 populações N₃. Teste T² de Hotelling.

Gerar uma amostra aleatória de n_g observações de duas populações Normais tridimensionais, $N_3(\mu_g; \Sigma_g)$, envolvendo as variáveis Y1, Y2 e Y3. Preencha a tabela a seguir com os parâmetros adotados na simulação dos dados.

População	Amostra	Vetor de Médias	Matriz de Covariâncias	Matriz de Correlações
Pop 1	n_1	μ1	Σ_1	ρ1
Pop 2	n ₂	μ2	Σ_2	ρ ₂

- 1.1. Contextualize, com uma situação prática hipotética, os dados gerados. Caracterize a estrutura dos dados (amostras balanceadas, observações independentes, tipo de variável, dimensão dos dados, etc). Defina o objetivo do estudo.
- 1.2. Realize uma análise descritiva dos dados (calcule estatísticas descritivas, construa gráficos apropriados). Comente os resultados de acordo com o objetivo do estudo.
- 1.3. De acordo com as premissas adotadas na simulação dos dados, qual é a distribuição amostral da estatística $\bar{Y}_1 \bar{Y}_2$? Justifique. Com base nos dados simulados, construa um gráfico de quantis da Normal para validar os resultados.
- 1.4. Há evidência amostral de diferença significante entre os vetores de Médias das duas populações? Justifique.
- 1.5. Para cada variável, compare as médias das duas populações. Utilize correções de Bonferroni e FDR na conclusão dessas comparações. Qual variável mais contribui para a possível diferença entre as populações?

2. Comparação de vetores de Médias de Normais tridimensionais, N₃, em Delineamentos Completamente Aleatorizados com Estrutura Fatorial Cruzado 2x2 - MANOVA

Gerar dados da N3 de acordo com um Delineamento Completamente Aleatorizado (DCA) Fatorial Cruzado 2x2. Considerando os Fatores F1 e F2, cada um em dois níveis, 0 e 1, preencha a tabela a seguir com os parâmetros adotados na simulação dos dados.

	Fator 2		
Fator 2	0	1	
0	$n_{00}, N_3(\mu_{00}; \Sigma_{00})$	$n_{01}, N_3(\mu_{01}; \Sigma_{01})$	
1	$n_{10}, N_3(\mu_{10}; \Sigma_{10})$	$n_{11}, N_3(\mu_{11}; \Sigma_{11})$	

- 2.1. Contextualize, com uma situação prática hipotética, os dados gerados. Caracterize a estrutura dos dados e defina o objetivo do estudo.
- 2.2. Realize uma análise descritiva dos dados (calcule estatísticas descritivas, construa gráficos apropriados). Comente os resultados de acordo com o objetivo do estudo.

- 1.3. Construa a Tabela de MANOVA para a análise destes dados. Considere as fontes de variação devido aos efeitos principais dos fatores F1 e F2 e sua interação F1*F2, os correspondentes números de graus de liberdade e as Somas de Quadrados e Produtos Cruzados (SS_{F1}, SS_{F2}, e SS_{F1*F2}, bem como SS_W). Há evidência amostral de efeito significante dos fatores sob estudo?
- 1.4. De acordo com os resultados da MANOVA, realize comparações múltiplas para estudar os efeitos significantes dos fatores. Utilize correções de Bonferroni e FDR. Interprete os resultados.
- 1.5. Da tabela MANOVA obtida em 1.3 construa a correspondente tabela MANOVA de um estudo que considera o efeito total dos 4 grupos definidos pela estrutura fatorial 2x2. Neste caso, seja SS_F a Soma de Quadrados e Produtos Cruzados do referido fator em 4 níveis. Há efeito significante deste fator F que combina os níveis de F1 e F2?
- 1.6. Obtenha a decomposição espectral (autovalores e autovetores) das seguintes matrizes: $SS_W^{-1}SS_{F1}$, $SS_W^{-1}SS_{F2}$, $SS_W^{-1}SS_{F1*F2}$, $SS_W^{-1}SS_F$. Qual é o padrão de contribuição das variáveis para cada um dos efeitos considerados?