

HOME CREDIT DEFAULT RISK

GROUP 20 DATA ANALYTICS STUDI INDEPENDEN ZENIUS

GROUP 20

CONTENT

01

BUSINESS UNDERSTANDING

02

DATA UNDERSTANDING

03

DATA PREPARATION

04

DATA ANALYSIS

05

DATA VISUALIZATION

BUSINESS UNDERSTANDING

TUJUAN / KONTEKS BISNIS

- Didirikan pada 1997, Home Credit adalah penyedia pinjaman konsumen yang beroperasi di 8 negara.
- Visi "....Secara bertanggung jawab memberikan layanan keuangan tepercaya...."
- Misi "....Terus meningkatkan manajemen risiko dengan memanfaatkan teknologi canggih...."
- Nilai perusahaan yaitu Kecerdasan Digital (Digital Savviness), dan Waspada Terhadap Risiko (Risk In Mind).

PROBLEM STATEMENT

- Home Credit memiliki rasio kredit bermasalah (non-performing loans/NPL) sebesar 8,1%.
- Sesuai dengan visi, misi, dan nilai perusahaan, Home Credit melakukan analisis risiko kredit dengan mempertimbangkan informasi eksternal berupa informasi mengenai riwayat kelancaran kredit debitur.

OBJECTIVE

- Metode yang digunakan yaitu Exploratory Data Analysis (EDA).
- EDA merupakan teknik menganalisis dan memahami data sehingga ditemukan tren tersembunyi, pola, hubungan antarvariabel, outlier atau anomali, menguji hipotesis, dan memeriksa asumsi dari data.

STRATEGI LANJUTAN

- Exploratory Data Analysis (EDA) menghasilkan output berupa insight data.
- Untuk mengelola risiko kredit, Home Credit menerapkan insight data pada machine learning.
- Machine learning melakukan credit scoring dengan berfokus membuat profil pelanggan secara komprehensif dan akurat.

DATA UNDERSTANDING

Data understanding adalah sebuah tahapan di dalam metodologi sains data dan pengembangan Al yang bertujuan untuk mendapatkan pemahaman awal mengenai data

MENAMPILKAN DATA FRAME

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_
0	100002	1	Cash loans	М	N	Y	0	202500.0	406597.5	24700.5	351
1	100003	0	Cash loans	F	N	Ν	0	270000.0	1293502.5	35698.5	1129
2	100004	0	Revolving loans	М	Y	Υ	0	67500.0	135000.0	6750.0	135
3	100006	0	Cash loans	F	N	Y	0	135000.0	312682.5	29686.5	297
4	100007	0	Cash loans	М	N	Y	0	121500.0	513000.0	21865.5	513
j.											
)

DATA UNDERSTANDING

MELIHAT HUTANG KLIEN PADA DATA

Dimana terdapat 8,1% klien yang tidak bisa melunasi hutang dan ada 91,9% klien yang dapat melunasi hutang

Melihat jumlah kontrak berdasarkan jenis pinjaman yang diambil dan persentase pinjaman bisa di lihat pada gambar di atas

HANDLING MISSING VALUE

```
float64, (69.9 persen) COMMONAREA_AVG: 214865
float64, (53.3 persen) ELEVATORS_AVG : 163891
float64, (50.3 persen) ENTRANCES_AVG : 154828
float64, (49.8 persen) FLOORSMAX_AVG: 153020
float64, (67.8 persen) FLOORSMIN_AVG : 208642
float64, (59.4 persen) LANDAREA_AVG : 182590
float64, (68.4 persen) LIVINGAPARTMENTS AVG : 210199
float64, (50.2 persen) LIVINGAREA AVG : 154350
float64, (69.4 persen) NONLIVINGAPARTMENTS_AVG : 213514
float64, (55.2 persen) NONLIVINGAREA AVG : 169682
float64, (50.7 persen) APARTMENTS_MODE : 156061
float64, (58.5 persen) BASEMENTAREA MODE: 179943
float64, (48.8 persen) YEARS_BEGINEXPLUATATION_MODE : 150007
float64, (66.5 persen) YEARS_BUILD_MODE : 204488
float64, (69.9 persen) COMMONAREA_MODE : 214865
float64, (53.3 persen) ELEVATORS_MODE : 163891
float64, (50.3 persen) ENTRANCES_MODE : 154828
float64, (49.8 persen) FLOORSMAX MODE: 153020
float64, (67.8 persen) FLOORSMIN MODE : 208642
float64, (59.4 persen) LANDAREA MODE: 182590
float64, (68.4 persen) LIVINGAPARTMENTS MODE: 210199
float64, (50.2 persen) LIVINGAREA_MODE : 154350
float64, (69.4 persen) NONLIVINGAPARTMENTS MODE: 213514
float64, (55.2 persen) NONLIVINGAREA_MODE : 169682
float64, (50.7 persen) APARTMENTS_MEDI : 156061
float64, (58.5 persen) BASEMENTAREA_MEDI : 179943
float64, (48.8 persen) YEARS_BEGINEXPLUATATION_MEDI : 150007
float64, (66.5 persen) YEARS BUILD MEDI : 204488
float64, (69.9 persen) COMMONAREA_MEDI : 214865
```

- Melakukan drop kolom dengan missing value >= 50%
- Menghapus kolom yang tidak diperlukan
- Melakukan filling missing value data numerik dengan menggunakan nilai median
- Melakukan filling missing value data kategorik dengan menggunakan nilai yang paling sering muncul

ENCODING

Label Encoding

• Penggunaan Label Encoding digunakan untuk mengubah categorical variabel dengan unique <= 2 agar lebih mudah untuk mengetahui kategori kelompok dari suatu variable.

One Hot Encoding

• Penggunaan one-hot disini digunakan untuk mengubah categorical variabel dengan unique >2 agar lebih mudah untuk mengetahui kategori kelompok dari suatu variable.

CORRELATION

```
Feature dengan korelasi kuat:

Index(['TARGET', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'DAYS_REGISTRATION',

'DAYS_ID_PUBLISH', 'FLAG_EMP_PHONE', 'REGION_RATING_CLIENT',

'REGION_RATING_CLIENT_W_CITY', 'REG_CITY_NOT_LIVE_CITY',

'REG_CITY_NOT_WORK_CITY', 'DAYS_LAST_PHONE_CHANGE', 'CODE_GENDER_F',

'CODE_GENDER_M', 'NAME_INCOME_TYPE_Pensioner',

'NAME_INCOME_TYPE_Working', 'NAME_EDUCATION_TYPE_Higher education',

'NAME_EDUCATION_TYPE_Secondary / secondary special',

'ORGANIZATION_TYPE_XNA'],

dtype='object')

Jumlah feature yang berkorelasi kuat: 18
```

Correlation

- Mencari nilai korelasi antar feature
- Mencari nilai korelasi setiap feature terhadap variabel TARGET
- Memilih feature yang memiliki korelasi kuat terhadap variabel TARGET dengan nilai korelasi > 0,04

Heatmap

 Melihat feature yang memiliki korelasi kuat terhadap variabel TARGET dengan menggunakan Heatmap

FEATURE SELECTION

There are 145 columns to remove.

Application Train shape after removing each variables = (307511, 18)

Feature yang dipilih untuk dilakukan modeling adalah data-data yang nilainya absolute atau tidak melihat negatif maupun positifnya dan data yang diambil memiliki korelasi yang cenderung cukup kuat sampai dengan kuat terhadap 'TARGET' berdasarkan tabel korelasi yaitu dengan nilai >0.04

MODELLING

- Memilah data dependen dan independen
- Membagi data training dan testing dengan ukuran data testing sebesar 30%
- Melakukan normalisasi data untuk memudahkan tahapan analisis
- Melakukan analisis data menggunakan lima model diantaranya Logistic Regression, Decision Tree, Naive Bayes, K-Nearest Neighbor, dan Random Forest.

LOGISTIC REGRESSION

Classification	Report:						
	precision	recall	f1-score	support			
0	0.92	1.00	0.96	84841			
1	0.50	0.00	0.00	7413			
accuracy			0.92	92254			
macro avg	0.71	0.50	0.48	92254			
weighted avg	0.89	0.92	0.88	92254			

DECISSION TREE

Recall: 0.11574261432618373 Accuracy: 0.8453617187330631

Classification Report:

	precision	recall	f1-score	support
0	0.92	0.91	0.92	84841
1	0.10	0.12	0.11	7413
accuracy			0.85	92254
macro avg	0.51	0.51	0.51	92254
weighted avg	0.86	0.85	0.85	92254

NAIVE BAYES CLASSIFIER

Recall: 0.19169027384324835 Accuracy: 0.8453833980098424

Classification Report:

	precision	recall	f1-score	support
0	0.93	0.90	0.91	84841
1	0.15	0.19	0.17	7413
accuracy			0.85	92254
macro avg	0.54	0.55	0.54	92254
weighted avg	0.86	0.85	0.85	92254

K-NEAREST NEIGHBOR

Recall: 0.01537838931606637 Accuracy: 0.9136080820343834

Classification Report:

	precision	recall	f1-score	support
0	0.92 0.15	0.99 0.02	0.95 0.03	84841 7413
accuracy macro avg weighted avg	0.53 0.86	0.50 0.91	0.91 0.49 0.88	92254 92254 92254

RANDOM FOREST

Recall: 0.0016187778227438284 Accuracy: 0.9195590435103085

Classification Report:

		precision	recall	f1-score	support
	0	0.92	1.00	0.96	84841
	1	0.38	0.00	0.00	7413
accur	асу			0.92	92254
macro a	avg	0.65	0.50	0.48	92254
weighted a	avg	0.88	0.92	0.88	92254

MODEL RECAP

Model	Accuracy	Recall	ROC AUC
Regression Logistic	0,9197	0,0003	0,5001
Decission Tree	0,8454	0,1157	0,5124
Naive Bayes Classification	0,8454	0,1917	0,5471
K-Nearest Neghbor	0,9136	0,0154	0,5037
Random Forest	0,9196	0,016	0,5007

PREDICTION

Membuat prediksi data target menggunakan model terbaik yaitu Naive Bayes
 Classifier

DATA VISUALIZATION

https://lookerstudio.google.com/u/O/reporting/7b65a556-98b1-4b5c-bf9c-cff4ba3cf863/page/DDUMC

THANK YOU!

