COMP 251

Algorithms & Data Structures (Winter 2021)

Graphs – Single Source Shortest Paths

School of Computer Science
McGill University

Slides of (Comp321,2021), Langer (2014), Kleinberg & Tardos, 2005 & Cormen et al., 2009, Jaehyun Park' slides CS 97SI, Topcoder tutorials, T-414-AFLV Course, Programming Challenges books, slides from D. Plaisted (UNC) and Comp251-Fall McGill.

Shortest Path - Problem

What is the shortest road to go from one city to another?

Example: Which road should I take to go from Montréal to Boston (MA)?

Variants:

- What is the fastest road?
- What is the cheapest road?

Shortest Path – As a graph problem

Input:

- Directed graph G = (V,E)
- Weight function w: E→R

Weight of path
$$p = \langle v_0, v_1, \dots, v_k \rangle$$

$$= \sum_{k=1}^{n} w(v_{k-1}, v_{k})$$

= sum of edges weights on path p

Shortest-path weight *u* to *v*:

$$\delta(u,v) = \left\{ \begin{array}{ll} \min \left\{ w(p) : u \overset{p}{\longmapsto} v \right\} & \text{if there exists a path u } \sim v. \\ \infty & \text{Otherwise.} \end{array} \right.$$

Shortest path u to v is any path p such that $w(p) = \delta(u,v)$ Generalization of breadth-first search to weighted graphs

Shortest Path – As a graph problem - example

Shortest path from s?

Shortest Path – As a graph problem - example

Shortest paths are organized as a tree. Vertices store the length of the shortest path from s.

Shortest Path – As a graph problem - example

Shortest paths are not necessarily unique!

Shortest Path – As a graph problem - variants

- Single-source (SSSP): Find shortest paths from a given source vertex s ∈ V to every vertex v ∈ V.
- Single-destination: Find shortest paths to a given destination vertex.
 - By reversing the direction of each edge in the graph, you reduce it to SSSP.
- Single-pair: Find shortest path from u to v.
 - SSSP solves this variant. All known algorithms for this problem have the same worst-case asymptotic running time as the best single-source algorithm.
- All-pairs: Find shortest path from u to v for all u, v ∈ V.
 - By running a SSSP algorithm once from each vertex, but we can solve it faster.

Shortest Path – Negative weight edges

Negative weight edges can create issues.

Why? If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.

When? If they are reachable from the source (Corollary: It is OK to have a negative-weight cycles if it is not reachable from the source).

What? Some algorithms work only if there are no negative-weight edges in the graph. We must specify when they are allowed and not.

Shortest Path – Cycles

Shortest paths cannot contain cycles:

- Negative-weight: Already ruled out.
- Positive-weight: we can get a shorter path by omitting the cycle.
- Zero-weight: no reason to use them ⇒ assume that our solutions will not use them.

Consequence:

Since any acyclic path in a graph G = (V,E) contains at most |V| distinct vertices, it also contains at most |V| - 1 edges. Thus, we can restrict our attention to shortest paths of at most |V| - 1 edges.

Shortest Path – Optimal substructure

Lemma

Any subpath of a shortest path is a shortest path.

Proof: (cut and paste)

Suppose this path *p* is a shortest path from *u* to *v*.

Then $\delta(u, v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yy})$.

Shortest Path – Optimal substructure

Lemma

Any subpath of a shortest path is a shortest path.

Proof: (cont'd)

Now suppose there exists a shorter path $x \stackrel{p'_{xy}}{\leadsto} y$.

Then $w(p'_{xy}) < w(p_{xy})$.

$$w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yy}) < w(p_{ux}) + w(p_{xy}) + w(p_{yy}) = w(p).$$

Contradiction of the hypothesis that p is the shortest path!

Vertices count the number of edges used to reach them.

Can we generalize BFS to use edge weights?

SSSP – Output

For each vertex $v \in V$:

- $d[v] = \delta(s,v)$.
 - Initially, d[v] = ∞.
 - Reduces as algorithms progress, but always maintain d[v] ≥ δ(s,v).
 - Call d[v] a shortest-path estimate.
- $\pi[v]$ = predecessor of v on a shortest path from s.
 - If no predecessor, $\pi[v] = NIL$.
 - π induces a tree **shortest-path tree** (see proof in textbook).

SSSP - Structure

1. Initialization

```
INIT-SINGLE-SOURCE(V,s)

for each v \in V do

d[v] \leftarrow \infty

\pi[v] \leftarrow NIL
d[s] \leftarrow 0
```

SSSP - Structure

2. Scan vertices and relax edges.

- An edge u -> v is tense if d(u)+w(u,v)< d(v).

SSSP - Structure

Scan vertices and relax edges.

RELAX(u,v,w)

if
$$d[v]>d[u]+w(u,v)$$
 then

 $d[v] \leftarrow d[u]+w(u,v)$
 $\pi[v]\leftarrow u$

McGill

Shortest Path and Relaxation – Properties

- Triangle inequality
 - For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.
- Upper-bound property
 - We always have $d[v] \ge \delta(s, v)$ for all vertices $v \in V$, and once d[v] achieves the value $\delta(s, v)$, it never changes.
- No-path property
 - If there is no path from s to v, then we always have $d[v] = \delta(s, v) = \infty$.
- Convergence property.
 - If s \sim u -> v is a shortest path in G for some $u, v \in V$, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u,v), then $d[v] = \delta(s, v)$ at all time afterwards.
- Path-relaxation property
 - If $p = \langle v_0, v_i, ..., v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$ then $v_k[d] = \delta(s, v_k)$
- Predecessor-subgraph property
 - Once $v[d] = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

SSSP - DAG

DAG ⇒ no negative-weight cycles.

DAG-SHORTEST-PATHS (V, E, w, s)

topologically sort the vertices

INIT-SINGLE-SOURCE (V, s)

for each vertex u in topological order do
 for each vertex v∈Adj[u] do
 RELAX(u,v,w)

SSSP – DAG

```
DAG-SHORTEST-PATHS(V, E, w, s)

topologically sort the vertices O(V+E)

INIT-SINGLE-SOURCE(V, s) O(V)

for each vertex u in topological order do

for each vertex v \in Adj[u] do

RELAX(u, v, w)
```

Time: (V + E).

Correctness:

Because we process vertices in topologically sorted order, edges of **any** path must be relaxed in order of appearance in the path. ⇒ Edges on any shortest path are relaxed in order.

⇒ By path-relaxation property, correct.

SSSP - Dijkstra's algorithm

- No negative-weight edges.
- Weighted version of BFS:
 - Instead of a FIFO queue, uses a priority queue.
 - Keys are shortest-path weights (d[v]).
- Have two sets of vertices:
 - S = vertices whose final shortest-path weights are determined,
 - Q = priority queue = V S.
- Greedy choice: At each step we choose the light edge.

SSSP – Dijkstra's algorithm

```
DIJKSTRA(V, E, w, s)

INIT-SINGLE-SOURCE(V, s)

S \leftarrow \emptyset
Q \leftarrow V

while Q \neq \emptyset do

u \leftarrow \text{EXTRACT-MIN}(Q)
S \leftarrow S \cup \{u\}
for each vertex v \in Adj[u] do

RELAX(u, v, w)
```


Q s t y x z

Q y t x z

Q t x z

Q X Z

QZ

Q

Loop invariant:

At the start of each iteration of the while loop, $d[v] = \delta(s,v)$ for all $v \in S$.

Initialization:

Initially, $S = \emptyset$, so trivially true.

Termination:

At end, $Q=\emptyset \Rightarrow S=V \Rightarrow d[v]=\delta(s,v)$ for all $v \in V$.

Maintenance:

Show that $d[u] = \delta(s,u)$ when u is added to S in each Iteration.

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Suppose there exists u such that $d[u] \neq \delta(s,u)$.

Let *u* be the first vertex for which $d[u] \neq \delta(s, u)$ when *u* is added to *S*.

- $u \neq s$, since $d[s] = \delta(s,s) = 0$.
- Therefore, $s \in S$, so $S \neq \emptyset$.
- There must be some path $s \sim u$. Otherwise $d[u] = \delta(s,u) = \infty$ by nopath property.
- So, there is a path $s \sim u$. Thus, there is a shortest p path $s \sim u$.

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Just before u is added to S, the path p connects a vertex in S (i.e., s) to a vertex in V - S (i.e., u).

Let y be the first vertex along p that is in V - S and let $x \in S$ be the predecessor of y.

Decompose p into $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} u$.

Claim 1: $d[y] = \delta(s, y)$ when u is added to S.

Proof:

 $x \in S$ and u is the first vertex such that $d[u] \neq \delta(s, u)$ when u is added to $S \Rightarrow d[x] = \delta(s, x)$ when x is added to S.

But when x is added we relax the edge (x, y), so by the *convergence* property, $d[y] = \delta(s, y)$.

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Now, we can get a contradiction to $d[u] \neq \delta(s, u)$:

y is on shortest path p ($s \sim u$), and all edge weights are nonnegative.

$$\Rightarrow \delta(s, y) \leq \delta(s, u)$$

Then by Claim 1, we have $d[y] = \delta(s,y)$

$$\leq \delta(s,u)$$

 $\leq d[u]$ (upper-bound property)

In addition, y and u were in Q when we chose u, thus $d[u] \le d[y]$.

We have
$$d[y] \le d[u] \& d[u] \le d[y] \Rightarrow d[u] = d[y]$$
.

Therefore,
$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u] = d[y]$$

Contradicts assumption that $d[u] \neq \delta(s,u)$.

Dijkstra's algorithm - Analysis

```
DIJKSTRA(V, E, w, s)

INIT-SINGLE-SOURCE(V, s)

S \leftarrow \emptyset
Q \leftarrow V INSERT

while Q \neq \emptyset do O(V)

u \leftarrow \text{EXTRACT-MIN}(Q) EXTRACT_MIN

S \leftarrow S \cup \{u\}
for each vertex v \in Adj[u] do O(E)

RELAX(u, v, w) DECREASE-KEY
```

Dijkstra's algorithm - Analysis

It depends on implementation of priority queue.

If binary heap, each operation takes $O(\lg V)$ time $\Rightarrow O(E \lg V)$.

Note: We can achieve $O(V \lg V + E)$ with Fibonacci heaps.

Outline

- Graphs.
 - Introduction.
 - Topological Sort. / Strong Connected Components
 - Network Flow 1.
 - Introduction
 - Ford-Fulkerson
 - Network Flow 2.
 - Min-cuts
 - Shortest Path.
 - Minimum Spanning Trees.
 - Bipartite Graphs.

