

### Sistemas Operacionais de Redes

Tecnologia em Redes de Computadores

Aula 03

Prof. Me. Henrique Martins



#### Aula 03

- Montando partições
- Editor de Texto: VI
- Tar e gzip
- Controlando Processos



### Montando partições

Ao colocar um CD ou um pendrive no computador o sistema precisa montar esse dispositivo.

- Essa ação é automática.

#### O comando para montar um dispositivo é mount

# mount /dev/sda /mnt/usb
# mount /dev/hdc /mnt/cdrom

#### Para desmontar utilize o comando umount

# umount /mnt/usb
# umount /mnt/cdrom





### Montando partições

Crie um diretório em /mnt com o nome que desejar. Este diretório será onde iremos montar o pendrive.

# mkdir /mnt/usb

Agora falta só montar:

# mount -t vfat -o umask=0000 /dev/sda1 /mnt/usb

(-o de opções, no caso umask, onde a permisão de todos)

Se seu hd for sata provavelmente o comando será:

# mount -t vfat -o umask=0000 /dev/sdb1 /mnt/usb

Pronto, seu pendrive já está montando:

# cd /mnt/usb

# 1s





#### Montando partições

SUGESTÃO: Provavelmente você só vai poder montar o pendrive se for root, mas seria chato. Se toda vez que for montar o pendrive você tiver que logar como root, principalmente se você não for o root, a solução é:

Pedir ao root (se não for você) para adicionar a seguinte linha no /etc/fstab:

/dev/sda1/mnt/nome vfat noauto, user, umask=000 0 0

#### Explicando:

/dev/sda1: dispositivo onde está o pendrive; /mnt/nome: diretório onde vai ser montado; vfat: tipo do sistema de arquivos; noauto: para não montar automaticamente ao iniciar (\*importante\*); user: para qualquer usuário poder montar; umask=000: permissão para todos escreverem, lerem e gravarem.





MODO TEXTO

Ctrl + h

Ctrl + w

O

 $\circ$ 

Esc

#### SISTEMAS OPERACIONAIS DE REDES **Prof. Me. Henrique Martins**

#### Editor de Texto: VI

adiciona linha acima da linha corrente

#### Subcomandos de inserção de texto: insere texto antes do cursor i insere texto no início da linha onde se encontra o cursor r insere texto depois do cursor a insere texto no fim da linha onde se encontra o cursor А adiciona linha abaixo da linha corrente

apaga último caracter

apaga última palavra minúscula

passa para o modo comando



#### Editor de Texto: VI

#### MODO COMANDO:

nG

Subcomandos para Movimentação pelo Texto:

move para a linha n.

move para a última linha do arquivo.

```
Ctrl+f
               passa para a tela sequinte.
Ctrl+b
               passa para a tela anterior.
               move o cursor para a primeira linha da tela.
Η
               move o cursor para o meio da tela.
               move o cursor para a última linha da tela.
L
               move cursor para caracter a esquerda.
Η
               move cursor para linha abaixo.
               move o cursor para linha acima.
               move cursor para caracter a direita.
               move cursor para início da próxima palavra (Ignora pontuação).
               move cursor para início da próxima palavra (Não ignora pontuação).
W
               move cursor para início da palavra anterior (Ignora pontuação).
b
               move cursor para início da palavra anterior (Não ignora pontuação).
0(zero)
               move cursor para início da linha corrente.
               move cursor para o primeiro caracter não branco da linha.
               move cursor para o fim da linha corrente.
```



#### Editor de Texto: VI

#### Subcomandos para Localização de Texto:

/palavra procura pela palavra ou caracter acima ou abaixo do texto.

?palavra move para a ocorrência anterior da palavra(para repetir a busca usar n).

n repete o ultimo / ou ? comando.

N repete o ultimo / ou ? comando na direção reversa.

Ctrl+g mostra o nome do arquivo, o número da linha corrente e o total de linhas.



#### Editor de Texto: VI

### Subcomandos para Alteração de Texto:

| deleta um caracter que esta sobre o cursor.                                               |
|-------------------------------------------------------------------------------------------|
| deleta a palavra, do inicio da posicao do cursor ate o fim.                               |
| deleta a linha inteira onde o cursor estiver.                                             |
| deleta a linha a partir da posicao do cursor em diante.                                   |
| substitui o caracter sob o cursor pelo especificado x (é opcional indicar o caracter).    |
| substitui o texto corrente pelo texto indicado (opcional indicar o texto adicionado).     |
| substitui a palavra corrente. Pode-se inserir o novo conteudo da palavra automaticamente. |
| substitui a linha corrente. Pode-se inserir o novo conteúdo da linha automaticamente.     |
| substitui restante da linha corrente. Pode-se inserir o texto logo após o comando.        |
| desfaz a última modificação.                                                              |
| desfaz todas as modificações feitas na linha (se o cursor não mudou de linha).            |
| une a linha corrente a próxima.                                                           |
| substitui a primeira ocorrêndcia de "velho" por "novo".                                   |
|                                                                                           |



#### Editor de Texto: VI

#### Subcomandos para Salvar o Texto:

```
salvar as mudanças feitas no arquivo e sai do editor.
salvar as mudanças feitas no arquivo e sai do editor.
salvar as mudanças feitas no arquivo e sai do editor.
salva o arquivo corrente com o nome especificado. Continua edição normalmente.
salva (de modo forçado) o arquivo corrente no arquivo especificado.
sai do editor. Se mudanças não foram salvas é apresentada mensagem de advertência.
sai do editor sem salvar as mudanças realizadas.
```



#### **Alguns Comando Linux**

date: mostra data e hora;

ps: relata os processos em execução;

kill: encerra um ou mais processos em andamento;

history: mostra os comandos que o usuário já digitou;

lpr: imprime um arquivo (exemplo: lpr arquivo);

lpq: mostra o status da fila de impressão;

lprm: remove trabalhos da fila de impressão;



### **Alguns Comando Linux**

**history**: O comando history exibe os últimos comando digitados no bash.

history: Exibir listagem dos últimos comandos

history -c: Remover os últimos comandos

vi .bash\_history : Verificar onde são armazenado os comandos

**history** -c : Limpar

**history** -r : Recuperar



### Tar e gzip

- O **Tar** e o **gzip** são duas ferramentas utilizadas em sistemas operacionais baseados no Unix, como o GNU/Linux, para o "empacotamento" e para a compressão de arquivos, respectivamente.
- Embora seja perfeitamente possível usar qualquer desses programas de forma individual, a utilização de ambos ao mesmo tempo é muito comum e útil.



#### Tar

• Tar, sigla de *Tape Archive*. O Tar é muito simples de entender: ele "empacota" vários arquivos em um só, isto é, faz com que um único arquivo contenha vários outros. Assim, é possível, por exemplo, armazenar em único arquivo as cópias de documentos existentes na pasta de um usuário.

#### tar [parâmetros] [nome\_do\_arquivo\_tar] [arquivos\_de\_origem]

```
    -c - cria um novo arquivo tar;
    -t - exibe o conteúdo de um arquivo tar;
    -p - mantém as permissões originais do(s) arquivo(s);
    -r - adiciona arquivos a um arquivo tar existente;
    -f - permite especificar o arquivo tar a ser utilizado;
    -v - exibe detalhes da operação;
    -w - pede confirmação antes de cada ação no comando;
    -x - extrai arquivos de um arquivo tar existente;
    -z - comprime o arquivo tar resultante com o gzip;
    -C - especifica o diretório dos arquivos a serem armazenados (note que, neste caso, a letra é maiúscula).
```



#### Tar

• O comando abaixo cria o arquivo **fatec.tar**, que contém os arquivos **laboratorio.txt** e **sala.txt**. Aqui, você deve ter reparado que é possível combinar parâmetros. Neste exemplo, isso ocorreu com -c e -f.

tar -cf fatec.tar laboratorio.txt sala.txt

• No exemplo abaixo, o diretório **aula5** tem todo o seu conteúdo compactado no arquivo **aula5.tar**, só que os detalhes são exibidos graças à opção **-v**:

tar -cvf aula5.tar aula5
tar -cvf /home/fatec/aula5.tar /home/fatec/aula5



#### Tar

• O exemplo a seguir lista o conteúdo do arquivo **redes.tar**:

tar -tf redes.tar

• Por sua vez, o comando abaixo faz com que todos os arquivos de **redes.tar** sejam extraídos (neste ponto, você certamente já sabe as funções dos parâmetros **x**, **v** e **f** no comando):

tar -xvf redes.tar

• Já no comando a seguir, apenas o arquivo sala.txt é extraído:



#### Exercício

- Na pasta /home/USUARIO criar um diretório chamado aula3
- Dentro do diretório aula3 criar 3 arquivos ".txt"
  - Laboratorio.txt
  - Rede.txt
  - Sala3.txt
- Em seguida empacotar os 3 arquivos em um arquivo chamado arquivos.tar (só que deve ser empacotado pelo método por arquivos)
- E em seguida empacotar o diretório aula3 para um arquivo chamado aula3.tar (só que deve ser empacotado pelo método por diretório)



### gzip

- A ferramenta Tar, por si somente, serve apenas para juntar vários arquivos em um só. No entanto, o programa não é capaz de diminuir o tamanho do arquivo resultante, isto é, de compactá-lo. É neste ponto que entra em cena o **gzip** (GNU zip) ou outro compactador de sua preferência.
- Se utilizado isoladamente, o gzip faz uso da seguinte sintaxe:

#### gzip [parâmetros] [nome\_do\_arquivo]

```
    -c - extrai um arquivo para a saída padrão;
    -d - descompacta um arquivo comprimido;
    -l - lista o conteúdo de um arquivo compactado;
    -v - exibe detalhes sobre o procedimento;
    -r - compacta pastas;
```

-t testa a integridade de um arquivo compactado.

• Ainda no que se refere às opções de parâmetros, é possível utilizar uma numeração de 1 a 9 para indicar o nível de compactação. Quanto maior o número, maior será a compactação do arquivo.



### gzip

gzip fatec.odt

• O comando acima compacta o arquivo **fatec.odt**. Note que os arquivos compactados com gzip recebem a extensão .gz.

gzip -d fatec.odt.gz

• O comando acima descompacta o arquivo fatec.odt.gz.

gzip -1 fatec.ods

• O procedimento acima faz com que o arquivo **fatec.ods** seja compactado considerando o nível mais baixo de compreensão.



### Usando Tar e gzip

- Os comandos Tar e gzip podem ser utilizados juntos. Muitas vezes, é necessário juntar arquivos e, ao mesmo, fazer com que o arquivo resultante, além de conter todos os outros, também seja compactado. É aí que entra em cena a capacidade de juntar arquivos do Tar com a capacidade de compactação do gzip.
- Para utilizar ambos ao mesmo tempo, o procedimento é muito simples: basta aplicar o comando **tar** com o parâmetro **-z**. O arquivo resultante desse procedimento receberá a extensão .tar.gz.
- Neste ponto, vemos um comando bastante usado na instalação de programas e bibliotecas:

tar -zcvf nome\_do\_arquivo.tar.gz



### Usando Tar e gzip tar -zcvf nome\_do\_arquivo.tar.gz

- a letra z deve ser usada porque o arquivo foi compactado com gzip;
- a letra c grava o resultado na saída padrão e mantém o arquivo original inalterado.;
- a letra v exibe os detalhes do procedimento;
- a letra f especifica qual arquivo será usado nesta atividade.
- Suponha, agora, que você queira deixar em um único pacote os arquivos fatec.png, laboratorio.txt e sala.odt. O arquivo resultante terá o nome redes.tar.gz. Eis o comando que utilizaremos para este exemplo:

tar -zcvf redes.tar.gz fatec.png laboratorio.txt sala.odt



### Usando Tar e gzip

- Note que o comando é muito parecido com o procedimento de descompactação do exemplo anterior, com a diferença de que o parâmetro **c** foi utilizado no lugar de **x**, pois o objetivo aqui é criar um arquivo novo, e não fazer a extração de um já existente.
- Para extrair o conteúdo desse arquivo, basta executar o comando abaixo:

#### tar -zcvf redes.tar.gz

• Se você quiser extrair apenas um dos arquivos contidos no arquivo compactado, basta indicá-lo no final do comando. Por exemplo, suponha que você queira extrair o arquivo fatec.png de redes.tar.gz. Eis o que você deve digitar:

tar -zcvf redes.tar.gz fatec.png



#### Exercícios

• No diretório /home criar uma pasta chamada "Quintafeira", em seguida crie 3 ou mais arquivos no formato ".txt" dentro da pasta Quintafeira, pelo VI ou NANO ou qualquer outro editor de texto.

• Em seguida utilize os comandos **Tar** e **gzip**, para compactar a pasta Quintafeira



### Inicialização e desligamento

- O Linux é um sistema operacional complexo, e ligar e desligar sistemas Linux é mais complicado do que simplesmente pressionar o botão de energia. Ambas as operações têm de ser realizadas corretamente caso se queira que o sistema permaneça saudável.
- Embora o processo de inicialização (bootstrapping) sempre tenha sido um pouco misterioso, tudo era mais simples nos dias em que os fabricantes controlavam cada aspecto do hardware e software do sistema. Agora que o Linux executa em hardware de PC, o procedimento de inicialização precisa seguir regras para PC e lidar com diferentes configurações.



- Bootstrapping é o termo usado em inglês para "inicializar um computador". Durante a inicialização, o kernel é carregado na memória e começa a ser executado. Uma série de tarefas de inicialização é executada e o sistema é então tornado disponível aos usuários.
- O momento da inicialização é um período de vulnerabilidade especial. Erros em arquivos de configuração, equipamentos faltantes ou não confiáveis, e sistemas de arquivos danificados podem impedir que um computador comece a funcionar.



- Quando um computador é ligado, ele executa o código de boot que se encontra armazenado em ROM. Esse código, por sua vez, tenta descobrir como carregar e iniciar o kernel. O kernel investiga o hardware do sistema e depois gera o processo **init** do sistema, que sempre é PID 1.
- PID é o número de identificação de processos
- O kernel atribui um número de identificação exclusivo a cada processo. A maioria das chamadas de sistemas e comandos que manipulam processos exige que especifiquemos um PID para identificar o objeto da operação. Os PIDs são atribuídos na ordem em que os processos são criados.



- Os sistemas Linux podem ser inicializados tanto em modo automático ou em modo manual.
- No modo automático o sistema executa o procedimento de inicialização completo por sua conta, sem qualquer ajuda externa.
- No modo manual, o sistema segue o procedimento automático até um determinado ponto, mas então passa o controle a um operador antes de a maioria dos scripts de inicialização ter sido executada.
- Na operação do dia-a-dia, a inicialização automática é quase exclusivamente utilizada.



- Um processo de inicialização do Linux típico consiste em seis etapas distintas.
  - Carregamento e inicialização do kernel
  - Detecção e configuração de dispositivos
  - Criação de threads do kernel para processos de sistemas espontâneos
  - Intervenção do operador (somente para inicialização manual)
  - Execução dos scripts de inicialização do sistema
  - Operação multiusuário
- Os administradores têm pouco controle sobre a maioria dessas etapas. Efetuamos a maior parte da configuração de inicialização editando os scripts de inicialização do sistema.



### Reinicializando e Desligando

- Em sistemas operacionais voltados ao mercado de consumo, reinicializar o sistema operacional é um primeiro tratamento apropriado para quase todos os problemas. Em um sistema Linux, é melhor pensar duas vezes antes de reiniciar o sistema.
- Os problemas no Linux tendem a ser mais sutis e mais complexos; portanto, reinicializar cegamente é eficiente apenas em uma pequena porcentagem de casos. Os sistemas Linux também levam um longo tempo para inicializar e vários usuários poderão ser incomodados.



### Reinicializando e Desligando

- Diferentemente da inicialização, que pode ser feita essencialmente de uma única maneira, o desligamento ou reinicialização pode ser feito de várias maneiras:
  - Desligando a energia
  - Utilizando o comando shutdown
  - Utilizando os comando halt e reboot
  - Utilizando telnit para alterar os níveis de execução de init
  - Utilizando o comando poweroff para informar o sistema para desligar a energia.



#### Controlando processos

- Um processo é uma abstração utilizada pelo Linux para representar um programa em execução. É o objeto por meio do qual o uso de memória, tempo de processador e recursos de E/S de um programa podem ser gerenciados e monitorados.
- Um processo é constituído de um espaço de endereço e um conjunto de estruturas de dados dentro do kernel. O espaço de endereço é um conjunto de páginas da memória que o kernel marcou para ser empregado pelo processo.



#### Controlando processos

- As estruturas de dados internas do kernel registram vários tipos de informações sobre cada processo. Algumas das mais importantes são:
  - O mapa de espaço de endereço do processo
  - O status atual do processo (espera, parado, em execução, etc)
  - A prioridade de execução do processo
  - Informações sobre o recurso que o processo utilizou
  - Informações sobre s arquivos e as portas de rede que o processo abriu
  - A mascara de sinalização do processo (um registro de quais sinais são bloqueados)
  - O proprietário do processo



#### PID: número de identificação de processo

- O kernel atribui um número de identificação exclusivo a cada processo. A maioria das chamadas de sistemas e comandos que manipulam processos exige que especifiquemos um PID para identificar o objeto da operação.
- Os PIDs são atribuídos na ordem em que os processos são criados.



### PPID: PID pai

- O Linus não fornece uma chamada de sistema que crie um processo executando um determinado programa. Em vez disso, um processo existente tem de ser clonar para criar um processo novo. O clone pode então trocar o programa que ele está executando por um outro diferente.
- Quando um processo é clonado, o original é chamado de pai e, a cópia, de filho. O atributo PPID de um processo é o PID do pai a partir do qual ele foi clonado.



### PS: Monitorando processos

- **ps** é a principal ferramenta do administrador de sistemas para monitoramento de processos. Você pode utilizá-lo para exibir o PID, a prioridade, e o terminal de controle de processos.
- Ele também dá informações sobre quanta memória foi consumida e seu estado atual (em execução, parado, dormente, etc).
- Para obter uma visão geral dos processos em execução no sistema execute o comando **ps aux**.



| dobion. /o        | +c/ant | -# nc | 211V |      |      |     |                                                                  |       |      |                                               |
|-------------------|--------|-------|------|------|------|-----|------------------------------------------------------------------|-------|------|-----------------------------------------------|
| debian:/e<br>USER |        | %CPU  |      | VSZ  | DCC  | TTY | CTAT                                                             | START | TIME | COMMAND                                       |
|                   |        |       |      |      |      |     |                                                                  |       |      |                                               |
| root              | 1      | 0.9   | 0.0  | 2100 | 684  |     | Ss                                                               | 17:12 |      | init [2]                                      |
| root              | 2      | 0.0   | 0.0  | 0    | 0    | ?   | S<                                                               | 17:12 | 0:00 | 프로 보다 그리고 |
| root              | 3      | 0.0   | 0.0  | 0    | 0    | ?   | S<                                                               | 17:12 | 0:00 | [migration/0]                                 |
| root              | 4      | 0.0   | 0.0  | 0    | 0    | ?   | S<                                                               | 17:12 | 0:00 |                                               |
| root              | 5      | 0.0   | 0.0  | Θ    | 0    | ?   | S<                                                               | 17:12 | 0:00 | [watchdog/0]                                  |
| root              | 6      | 0.0   | 0.0  | Θ    | 0    | ?   | S<                                                               | 17:12 | 0:00 | [events/0]                                    |
| root              | 7      | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [khelper]                                     |
| root              | 39     | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [kblockd/0]                                   |
| root              | 41     | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [kacpid]                                      |
| root              | 42     | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [kacpi_notify]                                |
| root              | 103    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [kseriod]                                     |
| root              | 139    | 0.0   | 0.0  | 0    | Θ    | ?   | S                                                                | 17:12 | 0:00 | [pdflush]                                     |
| root              | 140    | 0.0   | 0.0  | 0    | Θ    | ?   | S                                                                | 17:12 | 0:00 | [pdflush]                                     |
| root              | 141    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [kswapd0]                                     |
| root              | 142    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [aio/0]                                       |
| root              | 588    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [ksuspend_usbd]                               |
| root              | 589    | 0.0   | 0.0  | 0    | 0    | ?   | S<                                                               | 17:12 | 0:00 | [khubd]                                       |
| root              | 596    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [scsi_eh_0]                                   |
| root              | 691    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [ata/0]                                       |
| root              | 692    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [ata_aux]                                     |
| root              | 756    | 0.0   | 0.0  | 0    | Θ    | ?   | S<                                                               | 17:12 | 0:00 | [kjournald]                                   |
| root              | 832    | 0.2   | 0.1  | 3080 | 1676 | ?   | S <s< td=""><td>17:12</td><td>0:00</td><td>udevddaemon</td></s<> | 17:12 | 0:00 | udevddaemon                                   |
| root              | 1210   | 0.0   | 0.0  | 0    | 0    | ?   | S<                                                               | 17:12 | 0:00 | [kpsmoused]                                   |
| root              | 1223   | 0.0   | 0.0  | 0    | 0    | ?   | S<                                                               | 17:12 | 0:00 | [kgameportd]                                  |
| daemon            | 1628   | 0.0   | 0.0  | 1892 | 508  | ?   | Ss                                                               | 17:13 | 0:00 | /sbin/portmap                                 |
| statd             | 1640   | 0.0   | 0.0  | 1956 | 724  | ?   | Ss                                                               | 17:13 | 0:00 | /sbin/rpc.statd                               |
| root              | 1881   | 0.0   | 0.0  | 2180 | 388  | ?   | S <s< td=""><td>17:13</td><td></td><td>dhclient3 -pf /</td></s<> | 17:13 |      | dhclient3 -pf /                               |



#### PS: Monitorando processos

USER PID %CPU %MEM

VSZ RSS TTY

STAT START TIME COMMAND

USER – Nome de usuário do proprietário do processo

**PID** – ID do processo

%CPU – Porcentagem dos recursos de CPU que esse processo está utilizando

%MEM – Porcentagem da memória real que esse processo esta utilizando

**VSZ** – Tamanho virtual do processo

RSS – Tamanho configurado residente (número de páginas na memória)

TTY – ID do terminal controlador

**STAT** – Status do processo atual

**START** – A data/hora em que o processo foi iniciado

**TIME** – O tempo de CPU que o processo consumiu

**COMMAND** – Nome e argumento de comando



#### PS: Monitorando processos

USER PID %CPU %MEM

VSZ RSS TTY

STAT START TIME COMMAND

STAT – Status do processo atual:

R = Executável

D = Em repouso não interrompível

S = Em repouso (<20 sec)

T = Rastreado ou parado

Z = Zumbi

#### Flags adicionais:

W = Processo sofre swap

< = O processo tem prioridade mais alta que a normal

N = O processo tem prioridade mais baixa que a normal

L = Algumas páginas são bloqueadas no núcleo

s = O processo é um lider de sessão



#### Estado de processos

- Os processos podem ser:
- **Executável**: é aquele que está pronto para ser executado toda vez que houver tempo de CPU.
- **Dormente**: estão aguardando a ocorrência de um evento específico.
- **Zumbi**: são processos que terminaram a execução, mas ainda não tiveram seus status coletados.
- Parado: Ser parado é similar a adormecer, mas não há como sair do estado parado a não ser ter algum outro processo que nos acorda.



### **TOP:** Monitorando os processos

- Uma vez que comandos como ps oferecem apenas um instantâneo de seu sistema em um dado momento, normalmente é difícil ter visão geral do que realmente está acontecendo.
- O comando top fornece um resumo regularmente atualizado dos processos ativos e o uso de recursos

#### # top -d 10

- Inicia o top e atualiza-o a cada 10 segundos
- Para encerrar a execução do comando top, pressione <CTRL>+<C>, ou q.



top - 17:39:19 up 26 min, 2 users, load average: 0.00, 0.00, 0.04 Tasks: 117 total, 2 running, 115 sleeping, 0 stopped, 0 zombie

Cpu(s): 7.7%us, 8.1%sy, 0.0%ni, 84.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 1019836k total, 289660k used, 730176k free, 31912k buffers Swap: 409616k total, 0k used, 409616k free, 133628k cached

| PID  | USER     | PR | NI  | VIRT  | RES  | SHR  | S | %CPU | %MEM | TIME+ COMMAND           |
|------|----------|----|-----|-------|------|------|---|------|------|-------------------------|
| 2567 | root     | 20 | 0   | 36404 | 11m  | 6316 | S | 10.0 | 1.1  | 0:18.20 Xorg            |
| 2680 | henrique | 20 | Θ   | 16088 | 5848 | 4732 | S | 3.3  | 0.6  | 0:00.72 gnome-screensav |
| 2683 | henrique | 20 | Θ   | 36472 | 18m  | 11m  | S | 2.7  | 1.9  | 0:01.56 gnome-panel     |
| 2371 | root     | 20 | Θ   | 6768  | 1124 | 732  | S | 0.7  | 0.1  | 0:00.12 kerneloops      |
| 2869 | root     | 20 | 0   | 37564 | 14m  | 9556 | R | 0.7  | 1.4  | 0:02.06 gnome-terminal  |
| 3100 | root     | 20 | Θ   | 2392  | 1140 | 884  | R | 0.7  | 0.1  | 0:00.08 top             |
| 1    | root     | 20 | Θ   | 2100  | 684  | 588  | S | 0.0  | 0.1  | 0:02.32 init            |
| 2    | root     | 15 | -5  | 0     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.02 kthreadd        |
| 3    | root     | RT | -5  | 0     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.00 migration/0     |
| 4    | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.12 ksoftirqd/0     |
| 5    | root     | RT | - 5 | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.00 watchdog/0      |
| 6    | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.16 events/0        |
| 7    | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.02 khelper         |
| 39   | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.18 kblockd/0       |
| 41   | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.00 kacpid          |
|      | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.00 kacpi_notify    |
| 103  | root     | 15 | -5  | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.00 kseriod         |
| 139  | root     | 20 | Θ   | Θ     | Θ    | Θ    | S | 0.0  | 0.0  | 0:00.00 pdflush         |
| 140  | root     | 20 | Θ   | Θ     | 0    | Θ    | S | 0.0  | 0.0  | 0:00.06 pdflush         |
| 141  | root     | 15 | -5  | Θ     | 0    | Θ    | S | 0.0  | 0.0  | 0:00.00 kswapd0         |
| 142  | root     | 15 | -5  | Θ     | 0    | Θ    | S | 0.0  | 0.0  | 0:00.00 aio/0           |
| 588  | root     | 15 | - 5 | Θ     | 0    | Θ    | S | 0.0  | 0.0  | 0:00.00 ksuspend_usbd   |
|      |          |    |     |       |      |      |   |      |      |                         |



### top: monitorando processos

- top -opção
- Entre as opções, tem-se as que se seguem:
- -d atualiza o top após um determinado período de tempo (em segundos). Para isso, informe a quantidade de segundos após a letra d. Por exemplo: top -d 30;
- -c exibe a linha de comando ao invés do nome do processo;
- -i faz o top ignorar processos em estado zumbi;
- -s executa o top em modo seguro.



### jobs: monitorando processos

- jobs serve para visualizar os processos que estão parados ou executando em segundo plano (background). Quando um processo está nessa condição, significa sua execução é feita pelo kernel sem que esteja vinculada a um terminal. Em outras palavras, um processo em segundo plano é aquele que é executado enquanto o usuário faz outra coisa no sistema.
- Uma dica para saber se o processo está em background é verificar a existência do caractere & no final da linha. Se o processo estiver parado, geralmente a palavra "stopped" aparece na linha, do contrário, a palavra "running" é exibida.



### jobs: monitorando processos

A sintaxe do jobs é:

#### jobs -opção

- As opções disponíveis são:
- -1 lista os processos através do PID;
- -r lista apenas os processos em execução;
- -s lista apenas os processos parados.
- Se na linha de um processo aparecer o sinal positivo (+), significa que este é o processo mais recente a ser paralisado ou a estar em segundo plano. Se o sinal for negativo (-), o processo foi o penúltimo. Note também que no início da linha um número é mostrado entre colchetes. Muitos confundem esse valor com o PID do processo, mas, na verdade, trata-se do número de ordem usado pelo jobs.



#### fg e bg: monitorando processos

• **fg e bg:** o fg é um comando que permite a um processo em segundo plano (ou parado) passar para o primeiro (foreground), enquanto que o bg passa um processo do primeiro plano para o segundo. Para usar o bg, deve-se paralisar o processo. Isso pode ser feito pressionando-se as teclas Ctrl + Z no teclado. Em seguida, digita-se o comando da seguinte forma:

#### bg +número

- O número mencionado corresponde ao valor de ordem informado no início da linha quando o comando jobs é usado.
- Quanto ao comando fg, a sintaxe é a mesma:

#### fg +número



#### pstree: monitorando processos

• **pstree:** esse comando mostra processos relacionados em formato de árvore. Sua sintaxe é:

#### pstree -opção PID

- Entre as opções, tem-se:
- -u mostra o proprietário do processo;
- -p exibe o PID após o nome do processo;
- -c mostra a relação de processos ativos;
- -G usa determinados caracteres para exibir o resultado em um formato gráfico.



#### Kill

- O comando kill termina um processo em andamento. Um processo poderia ser, mais comumente, um programa. Um processo é identificado pelo PID (Process Identification Number)
- # kill -1 (lista os nomes de sinais)
- # kill 1706 (apaga o processo, que neste exemplo, era somente um usuário que estava logado)
- # ps aux | grep squid (lista o processo que o squid está rodando. Com isso era necessário somente executar um kill nos processos do squid paara finalizálo)
- # kill -9 2991 (força a parada(mata) dos processo especificado)