(12)(19)(CA) Demande-Application

OPIC
OFFICE DE LA PROPRIÉTÉ
INTELLECTUELLE DU CANADA

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21) (A1) **2,328,720**

(86) 1999/04/19

(87) 1999/10/28

(72) LUBISCH, WILFRIED, DE

(72) MOLLER, ACHIM, DE

(72) TREIBER, HANS-JORG, DE

(72) KNOPP, MONIKA, DE

(71) BASF AKTIENGESELLSCHAFT, DE

(51) Int.Cl. 6 C07D 295/12, C07D 213/70, C07D 317/58, A61K 31/50, C07C 237/32, C07D 213/30, C07D 215/24, C07C 311/21, C07C 311/08, C07D 215/06, C07D 207/06, C07D 403/04, C07D 217/04

(30) 1998/04/20 (198 17 460.8) DE

(54) NOUVEAUX AMIDES HETEROCYCLIQUEMENT SUBSTITUES A ACTION DE PROTEASES DE CYSTEINE

(54) NOVEL HETEROCYCLICALLY SUBSTITUTED AMIDES WITH CYSTEINE PROTEASE-INHIBITING EFFECT

(57) L'invention concerne des amides de la formule générale (I), qui sont des inhibiteurs d'enzymes, notamment de protéases de cystéine.

(57) The invention relates to amides of the general formula (I), which are inhibitors of enzymes, especially cysteine proteases.

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C07D 295/12, A61K 31/50, C07D 403/04, 317/58, 207/06, 215/06, 215/24, 217/04, 213/70, 213/30, C07C 237/32, 311/08, 311/21

(11) Internationale Veröffentlichungsnummer: WO 99/54320 A1

28. Oktober 1999 (28.10.99)

(21) Internationales Aktenzeichen:

PCT/EP99/02620

(22) Internationales Anmeldedatum:

19. April 1999 (19.04.99)

(30) Prioritätsdaten:

198 17 460.8

DE 20. April 1998 (20.04.98)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LUBISCH, Wilfried [DE/DE]; Häusererstrasse 15, D-69115 Heidelberg (DE). MÖLLER, Achim [DE/DE]; Im Zaunrücken 10, D-67269 Grünstadt (DE). TREIBER, Hans-Jörg [DE/DE]; Sperberweg 1, D-68782 Bruhl (DE). KNOPP, Monika [DE/DE]; Karl-Dillinger-Strasse 19, D-67071 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ,

GE, HR, HU, ID, IL, IN, IP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, ZA,

eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,

Veröffentlicht

(43) Internationales

Veröffentlichungsdatum:

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

48969 020602

(54) Title: NOVEL HETEROCYCLICALLY SUBSTITUTED AMIDES WITH CYSTEINE PROTEASE-INHIBITING EFFECT

(54) Bezeichnung: NEUE HETEROCYCLISCH SUBSTITUIERTE AMIDE MIT CYSTEIN-PROTEASE HEMMENDER WIRKUNG

(57) Abstract

The invention relates to amides of the general formula (I), which are inhibitors of enzymes, especially cysteine proteases.

(57) Zusammenfassung

Die Erfindung betrifft Amide der allgemeinen Formel (I), die Inhibitoren von Enzymen, insbesondere Cystein-Proteasen darstellen.

1

NOVEL HETEROCYCLICALLY SUBSTITUTED AMIDES WITH CYSTEINE PROTEASE-INHIBITING EFFECT

The present invention relates to novel amides which are inhibitors of enzymes, especially cysteine proteases such as calpain (= calcium dependant cysteine proteases) and its isoenzymes and cathepsins, for example B and L.

Calpains are intracellular proteolytic enzymes from the group of cysteine proteases and are found in many cells. Calpains are activated by an increase in the calcium concentration, a distinction being made between calpain I or μ -calpain, which is activated by μ -molar concentrations of calcium ions, and calpain II or μ -calpain, which is activated by μ -molar concentrations of calcium ions (P. Johnson, Int. J. Biochem. 1990, 22(8), 811-22). Further calpain isoenzymes have now been postulated too (K. Suzuki et al., Biol. Chem. Hoppe-Seyler, 1995, 376(9), 523-9).

20

10

It is suspected that calpains play an important part in various physiological processes. These include cleavages of regulatory proteins such as protein kinase C, cytoskeletal proteins such as MAP 2 and spectrin, muscle proteins, protein degradation in rheumatoid arthritis, proteins in the activation of platelets, neuropeptide metabolism, proteins in mitosis and others which are listed in M.J. Barrett et al., Life Sci. 1991, 48, 1659-69 and K.K. Wang et al., Trends in Pharmacol. Sci., 1994, 15, 412-9.

30

Elevated calpain levels have been measured in various pathophysiological processes, for example: ischemia of the heart (e.g. myocardial infarct), of the kidney or of the central nervous system (e.g. stroke), inflammations, muscular dystrophies, cataracts of the eyes, injuries to the central nervous system (e.g. trauma), Alzheimer's disease etc. (see K.K. Wang,

above). It is suspected that there is a connection between these disorders and elevated and persistent intracellular calcium levels. This results in overactivation of calcium-dependent processes, which are then no longer subject to physiological control. Accordingly, overactivation of calpains may also induce pathophysiological processes.

It has therefore been postulated that inhibitors of 10 calpain enzymes may be useful for treating these disorders. Various investigations have confirmed this. Thus, Seung-Chyul Hong et al., Stroke 1994, 25(3), 663-9 and R.T. Bartus et al., Neurological Res. 1995, 17, 249-58 have shown a neuroprotective effect of calpain inhibitors in acute neurodegenerative disorders 15 or ischemias like those occurring after a stroke. Likewise, calpain inhibitors improved the recovery of memory deficits and neuromotor disturbances occurring after experimental brain trauma (K.E. Saatman 20 et al. Proc. Natl. Acad. Sci. USA, 1996, 93, 3428-3433). C.L. Edelstein et al., Proc. Natl. Acad. Sci. USA, 1995, 92, 7662-6, found a protective effect of calpain inhibitors on kidneys damaged by hypoxia. Yoshida, Ken Ischi et al., Jap. Circ. J. 1995, 59(1), 25 40-8, were able to show beneficial effects of calpain inhibitors after cardiac damage produced by ischemia or reperfusion. Since the release of the β -AP4 protein is inhibited by calpain inhibitors, a potential therapeutic use for Alzheimer's disease proposed (J. Higaki et al., Neuron, 1995, 14, 651-59). The release of interleukin- 1α is likewise inhibited by calpain inhibitors (N. Watanabe et al., Cytokine 1994, 6(6), 597-601). It has further been found that calpain inhibitors have cytotoxic effects on tumor cells 35 (E. Shiba et al. 20th Meeting Int. Ass. Breast Cancer Res., Sendai Jp, 1994, 25-28 Sept., Int. J. Oncol. 5 (Suppl.), 1994, 381).

- 3 -

Further possible uses of calpain inhibitors are detailed in K.K. Wang, Trends in Pharmacol. Sci., 1994, 15, 412-8.

- 5 Calpain inhibitors have already been described in the literature. However, these are predominantly either irreversible or peptide inhibitors. Irreversible inhibitors are usually alkylating substances and have the disadvantage that they react nonselectively or are 10 unstable in the body. Thus, these inhibitors often show unwanted side effects such as toxicity, and are accordingly of limited The · use or unusable. irreversible inhibitors can be said to include, for the epoxides E 64 (E.B. McGowan et al., example, 15 Biochem. Biophys. Res. Commun. 1989, 158, 432-5), α halo ketones (H. Angliker et al., J. Med. Chem. 1992, 35, 216-20) or disulfides (R. Matsueda et al., Chem. Lett. 1990, 191-194).
- Many known reversible inhibitors of cysteine proteases such as calpain are peptide aldehydes, in particular dipeptide and tripepide [sic] aldehydes such as, for example, Z-Val-Phe-H (MDL 28170) (S. Mehdi, Tends [sic] in Biol. Sci. 1991, 16, 150-3). Under physiological conditions, peptide aldehydes have the disadvantage that, owing to the high reactivity, they are often unstable, may be rapidly metabolized and are prone to nonspecific reactions which may cause toxic effects (J.A. Fehrentz and B. Castro, Synthesis 1983, 676-78.
- JP 08183771 (CA 1996, 605307) and EP 520336 have described aldehydes derived from 4-piperidinoylamides [sic] and 1-carbonylpiperidino-4-ylamides [sic] as calpain inhibitors. However, the aldehydes which are claimed herein and are derived from amides of the general structure I with heteroaromatic substituents have not previously been described.

Peptide ketone derivatives are likewise inhibitors of cysteine proteases, in particular calpains. Thus, for

35

_ 4 _

example, ketone derivatives where the keto group is activated by an electron-attracting group such as CF3 are known to be inhibitors of serine proteases. In the case of cysteine proteases, derivatives with ketones activated by CF3 or similar groups have little or no activity (M.R. Angelastro et al., J. Med. Chem. 1990, 33, 11-13). Surprisingly, to date only derivatives in which, on the one hand, leaving groups in the α position cause irreversible inhibition and, on 10 the other hand, the keto group is activated by a carboxylic acid derivative have been found to be effective inhibitors of calpain (see M.R. Angelastro et al., see above; WO 92/11850; WO 92,12140; WO 94/00095 and WO 95/00535). However, only peptide derivatives of 15 these keto amides and keto esters have been described as effective (Zhaozhao Li et al., J. Med. Chem. 1993, 36, 3472-80; S.L. Harbenson et al., J. Med. Chem. 1994, 37, 2918-29 and see above M.R. Angelastro et al.).

20 Ketobenzamides have already been described in the literature. Thus, the keto ester PhCO-Abu-COOCH2CH3 has been described in WO 91/09801, WO 94/00095 92/11850. The analogous phenyl derivative Ph-CONH-CH(CH2Ph)-CO-COCOOCH3 was, however, found to be 25 only a weak calpain inhibitor in M.R. Angelastro et al., J. Med. Chem. 1990, 33, 11-13. This derivative is also described in J.P. Burkhardt, Tetrahedron Lett., 3433-36. The significance of the substituted benzamides has, however, never been investigated to 30 date.

In a number of therapies, such as [lacuna] stroke, the active ingredients are administered intravenously, for example as infusion solution. To do this it is necessary to have available substances, in this case calpain inhibitors, which have adequate solubility in water so that an infusion solution can be prepared. Many of the described calpain inhibitors have, however, the disadvantage that they have only low or no

10

15

20

25

30

solubility in water and thus are unsuitable for intravenous administration. Active ingredients of this type can be administered only with ancillary substances intended to confer solubility in water (cf. R.T. Bartus 5 et al. J. Cereb. Blood Flow Metab. 1994, 14, 537-544). These ancillary substances, for example polyethylene glycol, often have side effects, however, or are even incompatible. A non-peptide calpain inhibitor which is soluble in water without ancillary substances would thus be a great advantage. No such inhibitor has been described to date, and it would thus be novel.

Substituted non-peptide aldehydes, keto carboxylic esters and keto amide derivatives were described in the These compounds are novel and present invention. surprisingly show the possibility of obtaining potent non-peptide inhibitors of cysteine proteases, such as, for example, calpain, by incorporating rigid structural fragments. In addition, all the present compounds of the general formula I have at least one aliphatic amine radical and are thus able to bind [sic] salts with acids. A large number of these substances are soluble in water in a 0.5% strength solution at pH 0.4-5 and thus the show the required profile for intravenous administration as is necessary, for example, for stroke therapy.

The present invention relates to amides of the general formula I

and their tautomeric and isomeric forms, enantiomeric and diastereomeric forms, and possible physiologically tolerated salts, in which the variables

- 6 -

have the following meanings:

R¹ can be hydrogen, C₁-C₆-alkyl, branched and unbranched, phenyl, naphthyl, quinolyl, pyridyl, pyrimidyl, pyrazyl, pyridazyl, quinazolyl, quinoxalyl, thienyl, benzothienyl, benzofuranyl, furanyl and indolyl, it being possible for the rings also to be substituted by up to 3 R⁶ radicals, and

10

- \mathbb{R}^2 are hydrogen, C₁-C₆-alkyl, branched or unbranched, $0-C_1-C_6-alkyl$, branched or unbranched, C₂-C₆-alkenyl, C_2-C_6 -alkynyl, C_1-C_6 -alkyl-phenyl, C_2-C_6 -alkenyl-phenyl, C_2-C_6 -alkynyl-phenyl, OH, Cl, 15 F, Br, I, CF_3 , NO_2 , NH_2 , CN, COOH, $COO-C_1-C_4-alkyl$, $NHCO-C_1-C_4-alkyl$, CONHR⁹, NHCO-phenyl, $NHSO_2-C_1-C_4-alkyl$, $NHSO_2-phenyl$, $SO_2-C_1-C_4-alkyl$ and SO₂-phenyl, and
- 20 R^3 can be NR^7R^8 or a ring such as

$$-N - R^{\alpha} : -N - R^{\alpha} : -N$$

- is -C₁-C₆-alkyl, branched or unbranched, which may
 also carry a phenyl, pyridyl or naphthyl ring
 which is in turn substituted by a maximum of two
 R⁶ radicals, and
- R^5 is hydrogen, COOR¹¹ and CO-Z in which Z is $NR^{12}R^{13}$ and

$$-N$$
 $N-R'$; $-N$ R' ; $-N$ and

5

20

- 7 -

- is hydrogen, C₁-C₄-alkyl, branched or unbranched, -O-C₁-C₄-alkyl, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, -NHCO-C₁-C₄-alkyl, -NHCO-phenyl, -NHSO₂-C₁-C₄-alkyl, -NHSO₂-phenyl, -SO₂-C₁-C₄-alkyl and -SO₂-phenyl, and
- R⁷ is hydrogen, C₁-C₆-alkyl, linear or branched, and which may be substituted by a phenyl ring which itself may also be substituted by one or two R¹⁰ radicals, and
- R⁸ is hydrogen, C₁-C₆-alkyl, linear or branched, which may be substituted by a phenyl ring which may itself also be substituted by one or two R¹⁰ radicals, and
 - R⁹ is hydrogen, C₁-C₆-alkyl, branched or unbranched, which may also carry a substituent R¹⁶, or phenyl, pyridyl, pyrimidyl, pyridazyl, pyrazinyl, pyrazyl, naphthyl, quinolyl, imidazolyl, which may also carry one or two substituents R¹⁴, and
- R¹⁰ can be hydrogen, C₁-C₄-alkyl, branched or unbranched, -O-C₁-C₄-alkyl, OH, Cl, F, Br, I, CF₃,

 NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl,
 -NHCO-C₁-C₄-alkyl, -NHCO-phenyl, -NHSO₂-C₁-C₄-alkyl,
 -NHSO₂-phenyl, -SO₂-C₁-C₄-alkyl and -SO₂-phenyl
- R¹¹ is hydrogen, C₁-C₆-alkyl, linear or branched, and which may be substituted by a phenyl ring which may itself also be substituted by one or two R¹⁰ radicals, and
- R^{12} is hydrogen, C_1 - C_6 -alkyl, branched and unbranched, and

- 8 -

$$-N \longrightarrow N-R^{\gamma} : -N \longrightarrow R^{\gamma} : -N \longrightarrow R^{\gamma}$$

$$-N \longrightarrow 0 : \longrightarrow N-R^{\gamma} -(CH_{a})_{a}-N \longrightarrow R^{\gamma}$$
[sic]

- R¹³ is hydrogen, C₁-C₆-alkyl, branched or unbranched, which may also be substituted by a phenyl ring which may also carry an R¹⁰ radical, and by [lacuna] and
- is hydrogen, C₁-C₆-alkyl, branched or unbranched, O-C₁-C₆-alkyl, branched or unbranched, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, or two R¹⁴ radicals may represent a bridge OC(R¹⁵)₂O, and
- 15 R^{15} is hydrogen, C_1 - C_6 -alkyl, branched and unbranched, and
- R¹⁶ can be a phenyl, pyridyl, pyrimidyl, pyridazyl, pyrazinyl, pyrazyl, pyrrolyl, naphthyl, quinolyl, imidazolyl ring, which may also carry one or two substituents R⁶, and
- A is $-(CH_2)_m$, $-(CH_2)_m$ -O- $(CH_2)_o$ -, $-(CH_2)_o$ -S- $(CH_2)_m$ -, $-(CH_2)_o$ -SO- $(CH_2)_m$ -, $-(CH_2)_o$ -SO₂- $(CH_2)_m$ -, -CH=CH-, $-(CH_2)_o$ -CO- $(CH_2)_m$ -, $-(CH_2)_m$ -NHCO- $(CH_2)_o$ -, $-(CH_2)_m$ -CONH- $(CH_2)_o$ -, $-(CH_2)_m$ -NHSO₂- $(CH_2)_o$ -, -NH-CO- $(CH_2)_o$ -, $-(CH_2)_m$ -SO₂NH- $(CH_2)_o$ -, -CH=CH-CONH- and

- 9 -

R¹-A together are also [lacuna] and

5

B is phenyl, pyridine, pyrimidine, pyrazine, imidazole and thiazole and

x is 1, 2 or 3, and

10

n is a number 0, 1 or 2, and

m, o is, independently of one another, a number 0, 1,
2, 3 or 4.

15

20

25

The compounds of the formula I can be employed as racemates, as enantiomerically pure compounds or as diastereomers. If enantiomerically pure compounds are required, these can be obtained, for example, by carrying out a classical racemate resolution with the compounds of the formula I or their intermediates using a suitable optically active base or acid. On the other hand, the enantiomeric compounds can likewise be prepared by using commercially purchasable compounds, for example optically active amino acids such as phenylalanine, tryptophan and tyrosine.

The invention also relates to compounds which are mesomers or tautomers of compounds of the formula I, 30 for example those in which the aldehyde or keto group in formula I is in the form of an enol tautomer.

The invention further relates to the physiologically tolerated salts of the compounds I which can be obtained by reacting compounds I with a suitable acid

- 10 -

or base. Suitable acids and bases are listed, for example, in Fortschritte der Arzneimittelforschung, 1966, Birkhäuser Verlag, Vol. 10, pp. 224-285. These include, for example, hydrochloric acid, citric acid, tartaric acid, lactic acid, phosphoric acid, methanesulfonic acid, acetic acid, formic acid, maleic acid, fumaric acid etc., and sodium hydroxide, lithium hydroxide, potassium hydroxide and tris.

The amides I according to the invention can be prepared in various ways which has [sic] been outlined in the synthesis scheme.

Synthesis scheme

Heterocyclic carboxylic acids II are linked to suitable amino alcohols III to give the corresponding amides IV. Conventional peptide coupling methods are used for this. as detailed either in C.R. [sic] Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, page 972 et seq., or in Houben-Weyl, Methoden der organischen Chemie, 4th edition, E5, Chapter V. It is 20 preferred to use "activated" acid derivatives of II, with the acid group COOH being converted into a group COL. L is a leaving group such as, for example, Cl, imidazole and N-hydroxybenzotriazole. This activated 25 acid is then reacted with amines to give the amides IV. The reaction takes place in anhydrous inert solvents as such methylene chloride, tetrahydrofuran dimethylformamide at temperatures from -20 to +25°C.

30 These alcohol derivatives IV can be oxidized to the aldehyde derivatives I according to the invention. Various conventional oxidation reactions can be used for this (see C.R. [sic] Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, page 604 et seq.) 35 as, for example, Swern and Swern-analogous oxidations (T.T. Tidwell, Synthesis, 1990, 857-70), sodium hypochloride [sic]/TEMPO (S.L. Harbenson et al., see above) or Dess-Martin (J. Org. Chem. 1983, 48, 4155). Preferably used for this are inert aprotic

- 11 -

solvents such as dimethylformamide, tetrahydrofuran or methylene chloride with oxidizing agents such as DMSO/py x SO_3 or DMSO/oxalyl chloride at temperatures from -50 to +25°C, depending on the method (see above literature).

Alternatively, the carboxylic acid II can be reacted with amino hydroxamic acid derivatives VI to give benzamides VII. The reaction in this case is carried out in the same way as for preparing IV. The hydroxamic derivatives VI can be obtained from the protected amino acids V by reaction with a hydroxylamine. An amide preparation process already described is also used in this case. Elimination of the protective group X, for example Boc, takes place in a normal way, for example with trifluoroacetic acid. The amide hydroxamic acids VII obtained in this way can be converted by reduction into the aldehydes I according to the invention. The reducing agent used for this is, for example, lithium aluminum hydride at temperatures from -60 to 0°C in inert solvents such as tetrahydrofuran or ether.

Carboxylic acids or acid derivatives such as esters IX (P = COOR', COSR') can also be prepared in analogy to the last process and can likewise be converted by reduction into the aldehydes I according to the invention. These processes are listed in R.C. Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, pages 619-26.

30

25

10

The amides I according to the invention, which have heterocyclic substituents and have a keto amide or keto ester group, can be prepared in various ways which have been outlined in synthesis schemes 2 and 3.

35

The carboxylic esters IIa are converted, where appropriate, with acids or bases such as lithium hydroxide, sodium hydroxide or potassium hydroxide in aqueous medium or in mixtures of water and organic

solvents such as alcohols or tetrahydrofuran at room temperature or elevated temperatures, such as 25-100°C, into the acids II.

5 These acids II are linked to an α-amino acid derivative using customary conditions which are listed, for example, in Houben-Weyl, Methoden der organischen Chemie, 4th edition, E5, Chapter V, and C.R. [sic] Larock, Comprehensive Organic Transformations, VCH 10 Publisher, 1989, Ch. 9.

For example, the carboxylic acids II are converted into the "activated" acid derivatives IIb = Y-COL, where L is a leaving group such as Cl, imidazole and N-hydroxybenzotriazole, and then converted into the derivative XI by adding an amino acid derivative $H_2N-CH(R^3)-COOR$. This reaction takes place in anhydrous inert solvents such as methylene chloride, tetrahydrofuran and dimethylformamide at temperatures from -20 to +25°C.

Scheme 1

 $C = R^3 - (CH_2)_x$

15

20

10

15

- 13 -

The derivatives XI, which are usually esters, are converted into the keto carboxylic acids XII by hydrolysis analogous to that described above. The keto esters I' are prepared in a Dakin-West-analogous 5 reaction using a method of ZhaoZhao Li et al., J. Med. 1993, 36, 3472-80. This entails a [sic] carboxylic acids such as XII being reacted with oxalic monoester chloride at elevated temperature (50-100°C) in solvents such as, for example, tetrahydrofuran, and the product obtained in this way then being reacted with bases such as sodium ethanolate in ethanol at temperatures of 25-80°C to give the keto ester I' according to the invention. The keto esters I' can be hydrolyzed as described above for example to keto carboxylic acids according to the invention.

The reaction to give keto benzamides I' likewise takes place in analogy to the method of ZhaoZhao Li et al. (see above). The keto group in I' is protected by 20 adding 1,2-ethanedithiol with Lewis acid catalysis, such as, for example, boron trifluoride etherate, in inert solvents such as methylene chloride at room temperature, resulting in a dithiane. These derivatives are reacted with amines R³-H in polar solvents such as alcohols at temperatures of 0-80°C, resulting in the 25 keto amides I $(R^4 = Z \text{ or } NR^7R^8)$.

- 14 -

Scheme 2

An alternative method is depicted in scheme 2. The keto carboxylic acids II are reacted with amino hydroxy carboxylic acid derivatives XIII (for preparation of XIII, see S.L. Harbenson et al., J. Med. Chem. 1994, 37, 2918-29 or J.P. Burkhardt et al. Tetrahedron Lett. 1988, 29, 3433-3436) using customary peptide coupling 10 methods (see above, Houben-Weyl), resulting in amides XIV. These alcohol derivatives XIV can be oxidized to the keto carboxylic acid derivatives I according to the invention. It is possible to use for this various customary oxidation reactions (see C.R. [sic] Larock, 15 Comprehensive Organic Transformations, VCH Publisher, [lacuna] page 604 et seq.) such as, for example, Swern and Swern-analogous oxidations, preferably dimethyl sulfoxide/pyridine-sulfur trioxide complex in solvents 20 such as methylene chloride or tetrahydrofuran, where appropriate with the addition of dimethyl sulfoxide, at room temperature or temperatures from -50 to 25°C (T.T. Tidwell, Synthesis 1990, 857-70) or sodium

- 15 -

hypochloride [sic]/TEMPO (S.L. Harbenson et al., see above).

In the case of α-hydroxy esters XIV (X = 0-alkyl),

these can be hydrolyzed to carboxylic acids XV using methods analogous to those above, but preferably using lithium hydroxide in water/tetrahydrofuran mixtures at room temperature. Other esters or amides XVI are prepared by reaction with alcohols or amines under coupling conditions described above. The alcohol derivative XVI can be oxidized to give keto carboxylic acid derivatives I according to the invention.

The preparation of the carboxylic esters II had already 15 been described for some instances, or it takes place by usual chemical methods.

Compounds in which X is a bond are prepared by conventional aromatic coupling, for example Suzuki 20 coupling with boric acid derivatives and halides with palladium catalysis or copper-catalyzed coupling of The aromatic halides. alkyl-bridged radicals $(X = -(CH_2)_m -)$ can be prepared by reducing the analogous ketones or by alkylating the organolithium, e.g. ortho-25 phenyloxazolidines, or other organometallic compounds (cf. I.M. Dordor et al., J. Chem. Soc. Perkins Trans. I, 1984, 1247-52).

Ether-bridged derivatives are prepared by alkylating the corresponding alcohols or phenols with halides.

The sulfoxides and sulfones can be obtained by oxidizing the corresponding thioethers.

35 Alkene- and alkyne-bridged compounds are prepared, for example, by the Heck reaction from aromatic halides and corresponding alkenes and alkynes (cf. I. Sakamoto et al., Chem. Pharm. Bull., 1986, 34, 2754-59).

- 16 -

The chalcones are produced by condensing acetophenones with aldehydes and can, where appropriate, be converted into the analogous alkyl derivatives by hydrogenation.

5 Amides and sulfonamides are prepared from the amines and acid derivatives in analogy to the methods described above.

The dialkylaminoalkyl substituents are obtained by reductive amination of the aldehyde derivatives with the appropriate amines in the presence of boron hydrides such as the BH₃/pyridine complex or or [sic] NaBH₃CN (A.F. Abdel-Magid, C.A. Maryanoff, K.G. Carson, Tetrahedron Lett. 10990 [sic], 31, 5595; A.E. Moormann, Synth. Commun. 1993, 23, 789).

The amides I with heterocyclic substituents of the present invention are inhibitors of cysteine proteases, especially cysteine proteases such as calpains I and II and cathepsins B and L.

The inhibitory effect of the amides I with heterocyclic substituents has been determined using enzyme assays known from the literature, determining as criterion of effect a concentration of the inhibitor at which 50% of the enzyme activity is inhibited (= IC_{50}). The amides I were measured in this way for their inhibitory effect on calpain I, calpain II and cathepsin B.

30 Cathepsin B assay

The inhibition of cathepsin B was determined by a method analogous to that of S. Hasnain et al., J. Biol. Chem., 1993, 268, 235-40.

35

20

25

 $2~\mu l$ of an inhibitor solution prepared from inhibitor and DMSO (final concentrations: 100 μM to 0.01 $\mu M)$ are added to 88 μl of cathepsin B (cathepsin B from human liver (Calbiochem), diluted to 5 units in 500 μM

- 17 -

buffer). This mixture is preincubated at room temperature (25°C) for 60 minutes and then the reaction is started by adding 10 μ l of 10 mM Z-Arg-Arg-pNA (in buffer with 10% DMSO). The reaction is followed in a microtiter plate reader at 405 nM [sic] for 30 minutes. The IC₅₀s are then determined from the maximum gradients.

Calpain I and II assay

10

15

20

25

30

35

The testing of the inhibitory properties of calpain inhibitors takes place in buffer with 50 mM tris-HCl, pH 7.5; 0.1 M NaCl; 1 mM dithiotreithol [sic]; 0.11 mM calpain the fluorogenic substrate CaCl₂, using Bachem/ Suc-Leu-Tyr-AMC (25 mM dissolved in DMSO, μ-calpain is isolated Switzerland). Human erythrocytes, and enzyme with a purity > 95%, assessed by SDS-PAGE, Western blot analysis and N-terminal sequencing, is obtained after several chromatographic steps (DEAE-Sepharose, phenyl-Sepharose, Superdex 200 and blue Sepharose). The fluorescence of the cleavage product 7-amino-4-methylcoumarin (AMC) is followed in a Spex Fluorolog fluorimeter at λ ex = 380 nm and λ em = 460 nm. The cleavage of the substrate is linear in a measurement range of 60 min., and the autocatalytic activity of calpain is low, if the tests are carried out at temperatures of 12°C. The inhibitors and the calpain substrate are added to the test mixture as DMSO solutions, and the final concentration of DMSO ought not to exceed 2%.

In a test mixture, 10 μ l of substrate (250 μ M final) and then 10 μ l of μ -calpain (2 μ g/ml final, i.e. 18 nM) are added to a 1 ml cuvette containing buffer. The calpain-mediated cleavage of the substrate is measured for 15 - 20 min. Then 10 μ l of inhibitor (50-100 μ M solution in DMSO) are added and the inhibition of cleavage is measured for a further 40 min.

- 18 -

 K_i values are determined using the classical equation for reversible inhibition: (Methods in Enzymology,)

5 Ki = I(v0/vi)-1; where I = inhibitor concentration, v0 = initial rate before addition of the inhibitor; vi = reaction rate at equilibrium.

The rate is calculated from v = AMC liberation/time, 10 i.e. height/time.

Calpain is an intracellular cysteine protease. Calpain inhibitors must pass through the cell membrane in order to prevent intracellular proteins from being broken down by calpain. Some known calpain inhibitors, such 15 for example, E 64 and leupeptin, cross cell membranes only poorly and accordingly show only a poor effect on cells, although they are good calpain inhibitors. The aim is to find compounds better able to are used 20 membranes. Human platelets cross demonstrate the ability of calpain inhibitors to cross membranes.

Calpain-mediated breakdown of tyrosine kinase pp60src in platelets

Tyrosine kinase pp60src is cleaved by calpain after activation of platelets. This has been investigated in detail by Oda et al. in J. Biol. Chem., 1993, Vol. 268, 30 12603-12608. This revealed that the cleavage of pp60src can be prevented by calpeptin, a calpain inhibitor. The cellular efficacy of our substances was tested based on this publication. Fresh, citrated, human blood was centrifuged at 200 g for 15 min. The platelet-rich plasma was pooled and diluted 1:1 with platelet buffer (platelet buffer: 68 mM NaCl, 2.7 mM KCl, $MgCl_2 \times 6 H_2O$, 0.24 mM $NaH_2PO_4 \times H_2O$, 12 mM 1 mM EDTA, pH 7.4). After glucose, 5.6 mM centrifugation step and washing step with platelet

- 19 -

buffer, the platelets were adjusted to 10^7 cells/ml. The human platelets were isolated at RT.

In the assay mixture, isolated platelets (2×10^{6}) were preincubated with various concentrations of inhibitors (dissolved in DMSO) at 37°C for 5 min. The platelets were then activated with 1 µM ionophore A23187 and 5 mM CaCl₂. After incubation for 5 min., the platelets were briefly centrifuged at 13,000 rpm, and the pellet was 10 taken up SDS sample buffer (SDS sample buffer: 20 mM Tris-HCl, 5 mM EDTA, 5 mM EGTA, 1 mM DTT, 0.5 mM PMSF, 5 μ g/ml leupeptin, 10 μ g/ml pepstatin, 10% glycerol and 1% SDS). The proteins were fractionated in a 12% gel, and pp60src and its 52 kDa and 47 kDa cleavage products were identified by Western blotting. The polyclonal rabbit antibody used, anti-cys-src (pp60^{c-src}), purchased from Biomol Feinchemikalien (Hamburg). This primary antibody was detected using a HRP-coupled goat antibody (Boehringer Mannheim, FRG). 20 The Western blotting was carried out by known methods.

The cleavage of pp60src was quantified by densitometry, using as controls unactivated (control 1: no cleavage) and ionophore- and calcium-treated platelets (control 2: corresponds to 100% cleavage). The ED50 corresponds to the concentration of inhibitor at which the intensity of the color reaction is reduced by 50%.

Glutamate-induced cell death in cortical neurones

30

The test was carried out as in Choi D.W., Maulucci-Gedde M.A. and Kriegstein A.R., "Glutamate neurotoxicity in cortical cell culture". J. Neurosci. 1989, 7, 357-368.

35

The cortex halves were dissected out of 15-day old mouse embryos and the single cells were obtained enzymatically (trypsin). These cells (glia and cortical neurones) are seeded out in 24-well plates. After three

- 20 -

days (laminin-coated plates) or seven days (ornithine-coated plates), the mitosis treatment is carried out with FDU (5-fluoro-2-deoxyuridines [sic]). 15 days after preparation of the cells, cell death is induced by adding glutamate (15 minutes). After removal of glutamate, the calpain inhibitors are added. 24 hours later, the cell damage is estimated by determining lactate dehydrogenase (LDH) in the cell culture supernatant.

10

It is postulated that calpain is also involved in apoptotic cell death (M.K.T. Squier et al., J. Cell. Physiol. 1994, 159, 229-237; T. Patel et al. Faseb Journal 1996, 590, 587-597). For this reason, in another model, cell death was induced in a human cell line with calcium in the presence of a calcium ionophore. Calpain inhibitors must get inside the cell and inhibit calpain there in order to prevent the induced cell death.

20

25

30

15

Calcium-mediated cell death in NT2 cells

Cell death can be induced in the human cell line NT2 by calcium in the presence of the ionophore A 23187. 10⁵ cells/well were plated out in microtiter plates 20 hours before the test. After this period, the cells incubated with various concentrations inhibitors in the presence of 2.5 µM ionophore and 5 mM calcium. 0.05 ml of XTT (Cell Proliferation Kit II, Boehringer Mannheim) was added to the reaction mixture after 5 hours. The optical density was determined approximately 17 hours later, in accordance with the manufacturer's information, in an SLT Easy Reader EAR 400. The optical density at which half the cells have died is calculated from the two controls with cells without inhibitors incubated in the absence and presence of ionophore.

- 21 -

10

30

35

Elevated glutamate activities occur in a number of neurological disorders of psychological disturbances and lead to states of overexcitation or toxic effects in the central nervous system (CNS). The effects of glutamate are mediated by various receptors. Two of these receptors are classified, in accordance with the specific agonists, as NMDA receptor and AMPA receptor. Antagonists to these glutamate-mediated effects can thus be employed for treating these disorders, particular for therapeutic use for neurodegenerative disorders such as Huntington's chorea and Parkinson's disease, neurotoxic impairments after hypoxia, anoxia, ischemia and after lesions like those occurring after stroke and trauma, or else as antiepileptics (cf. Arzneim. Forschung 1990, 40, 511-514; TIPS, 1990, 11, 334-338; Drugs of the Future 1989, 14, 1059-1071). De [sic]

Protection from cerebral overexcitation by excitatory 20 amino acids (NMDA and AMPA antagonism in mice)

Intracerebral administration of excitatory amino acids (EAA) induces such drastic overexcitation that it leads to convulsions and death of the animals (mice) within a short time. These signs can be inhibited by systemic, intraperitoneal, administration of acting substances (EAA antagonists). Since excessive activation of EAA receptors in the central nervous system plays a significant part in the pathogenesis of various neurological disorders, it is possible to infer from the detected EAA antagonism in vivo that the substances may have therapeutic uses for such CNS disorders. As a measure of the efficacy of the substances, an ED_{50} was determined, at which 50% of the animals are free of signs, owing to the previous i.p. administration of the measured substance, by a fixed dose of either NMDA or AMPA.

10

15

20

30

amides I with heterocyclic substituents inhibitors of cysteine derivatives [sic] calpain I and II and cathepsin B and L, and can thus be used to control diseases associated with an elevated activity of calpain enzymes or cathepsin enzymes. The present amides I can accordingly be used to treat neurodegenerative disorders occurring after ischemia, subarachnoid hemorrhages and stroke, and trauma, neurodegenerative disorders such as multi-infarct dementia, Alzheimer's disease, Huntington's disease and epilepsies and, in addition, to treat damage to the heart after cardiac ischemia, damage to the kidneys after renal ischemia, skeletal muscle damage, muscular dystrophies, damage caused by proliferation of smooth muscle cells, coronary vasospasms, cerebral vasospasms, cataracts of the eyes, restenosis of the blood vessels after angioplasty. In addition, the amides I may be useful in the chemotherapy of tumors and metastasis thereof and for treating disorders in which an elevated interleukin-1 level occurs, such as inflammation and rheumatic disorders.

The pharmaceutical preparations according to the invention comprise a therapeutically effective amount of the compounds I in addition to conventional pharmaceutical ancillary substances.

The active ingredients can be present in the usual concentrations for local external use, for example in dusting powders, ointments or sprays. As a rule, the active ingredients are present in an amount of from 0.001 to 1% by weight, preferably 0.001 to 0.1% by weight.

35 For internal use, the preparations are administered in single doses. From 0.1 to 100 mg are given per kg of body weight in a single dose. The preparation may be administered in one or more doses each day, depending on the nature and severity of the disorders.

The pharmaceutical preparations according to invention comprise, apart from the active ingredient, the customary excipients and diluents appropriate for the required mode of administration. For local external use it is possible to use pharmaceutical ancillary substances such as ethanol, isopropanol, ethoxylated castor oil, ethoxylated hydrogenated castor polyacrylic acid, polyethylene glycol, polyethylene 10 glyco [sic] stearate, ethoxylated fatty alcohols, liquid paraffin, petrolatum and wool fat. Suitable examples for internal use are lactose, propylene glycol, ethanol, starch, talc and polyvinylpyrrolidone.

- It is also possible for antioxidants such as tocopherol and butylated hydroxyanisole, and butylated hydroxytoluene, flavor-improving additives, stabilizers, emulsifiers and lubricants to be present.
- The substances which are present in the preparation in addition to the active ingredient, and the substances used in producing the pharmaceutical preparations, are toxicologically acceptable and compatible with the active ingredient in each case. The pharmaceutical preparations are produced in a conventional way, for example by mixing the active ingredient with other [sic] customary excipients and diluents.

The pharmaceutical preparations can be administered in 30 various ways, for example orally, parenterally, such as intraintravenously by infusion, subcutaneously, peritoneally and topically. possible Thus, presentations are tablets, emulsions, solutions for infusion and injection, pastes, ointments, gels, 35 creams, lotions, dusting powders and sprays.

- 24 -

Examples

Example 1

- 5 2-((4-Phenylpiperazin-1-yl)methyl)benzoic acid N-(3phenylpropan-1-al-2-yl)amide
 - a) Methyl 2-(4-phenyl-1-piperazinylmethyl)benzoate
- 10 10.0 g of methyl 2-chloromethylbenzoate, 15 g of potassium carbonate, 8.8 g of N-phenylpiperazine and a spatula-tip of 18-crown-6 in 200 ml of DMF were heated at 100°C for 5 h and then stirred at room temperature for 60 h. The excess potassium carbonate was filtered off, the filtrate was concentrated, and the residue was partitioned between water and ethyl acetate. Drying of the organic phase over magnesium sulfate and removal of the solvent resulted in 16.8 g (100%) of the product.
 - b) 2-(4-phenyl-1-piperazinylmethyl)benzoic acid
- 16.8 g of intermediate la were introduced into 25 150 ml of THF, and 1.7 g of LiOH in 150 ml of water were added at room temperature. The cloudy solution was clarified by adding 10 ml of MeOH. The reaction stirred mixture was at room temperature for 12 h and hydrolyzed with an 30 equimolar amount of 1 M HCl. The reaction mixture was evaporated to dryness, and the residue was taken up in methanol/toluene. Removal of solvent resulted in 15.2 g (86%) of the product, which still contained salt.

35

- 25 -

- c) 2-((4-Phenylpiperazin-1-yl)methyl)benzoic acid N-(3-phenylpropan-1-ol-2-yl)amide
- 3.0 g of intermediate 1b and 3 ml of triethylamine 5 were introduced into 50 ml of DMF. 5 g of sodium sulfate were added and the mixture was stirred for 30 min. 1.5 g of phenylalaninol, 1.4 g of HOBT and 2.1 g of EDC were successively added at 0°C, and the mixture was stirred at room temperature 10 overnight. The reaction mixture was poured into distilled water, made alkaline with saturated with NaCl and extracted three times with 100 ml of methylene chloride. The organic phases were washed twice with water and dried over 15 magnesium sulfate. Removal of the solvent resulted in 2.5 g (59%) of the product.
 - d) 2-((4-Phenylpiperazin-1-yl)methyl)benzoic acid N(3-phenylpropan-1-al-2-yl)amide

20

25

2.3 g of intermediate 1c were introduced into in the presence of 2.4 g of of DMSO triethylamine, and 2.5 g of SO₃/pyridine complex were added. The mixture was stirred at room temperature overnight. The mixture was poured into 250 ml of distilled water, made alkaline with NaHCO3, saturated with NaCl and extracted with 100 ml of methylene chloride, and the organic phase was dried over magnesium sulfate. removal of the solvent, the residue was dissolved and the hydrochloride was precipitated with HCl in dioxane. The precipitate was filtered off with suction and washed several times with ether, resulting in 1.9 g (71%) of the product.

35

30

¹H-NMR (d₆-DMSO): $\delta = 2.9$ (2H), 3.0-3.3 (8H), 4.1-4.5 (2H), 4.7 (1H), 6.8-7.7 (14H), 9.3 (1H), 9.8 (1H) ppm.

- 26 -

Example 2

2-((4-Benzylpiperazin-1-yl)methyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide

5

- a) Methyl 2-((4-benzyl-1-piperazinyl)methyl)benzoate [sic]
- 10.0 g of methyl 2-chlorobenzoate and 9.6 g of N-benzylpiperazine were reacted in 200 ml of DMF in the presence of 15 g of potassium carbonate at 100°C in analogy to Example 1a, resulting in 17.6 g (100%) of the product.
- 15 b) 2-((4-Benzyl-1-piperazinyl)methyl)benzoic [sic] acid
- 17.5 g of intermediate 2a in 150 ml of THF were hydrolyzed with 1.6 g of LiOH in 150 ml of water in analogy to Example 1b, resulting in 9.1 g (54%) of the product.
 - c) 2-((4-Benzylpiperazin-1-yl)methyl)benzoic acid N-(3-phenylpropan-1-ol-2-yl)amide

25

30

- 3.0 g of intermediate 2b were reacted in 60 ml of DMF with 3 ml of triethylamine, 1.5 g of phenylalaninol, 1.3 g of HOBT and 2.0 g of EDC in analogy to Example 1c, resulting in 2.0 g (46%) of the product.
- d) 2-((4-Benzylpiperazin-1-yl)methyl)benzoic acid N(3-phenylpropan-1-al-2-yl)amide
- 1.5 g of intermediate 2c were oxidized in 40 ml of DMSO with 1.9 g of SO₃/pyridine complex in 20 ml of DMSO in the presence of 2.3 ml of triethylamine in analogy to Example 1d, resulting in 0.4 g (21%) of the product in the form of the fumarate.

- 27 -

¹H-NMR (d₆-DMSO): $\delta = 2.1-2.3$ (8H), 2.9-3.0 (1H), 3.3-3.6 (6H), 4.5 (1H), 6.6 (2H), 7.1-7.7 (14H), 9.7 (1H), 10.3 (1H) ppm.

5

Example 3

2-((4-Benzylpiperazin-1-yl)methyl)benzoic acid N-(1-carbamoyl-1-oxo-3-phenylpropan-2-yl)amide

10

- a) 2-((4-Benzylpiperazin-1-yl)methyl)benzoic acid N-(1-carbamoyl-1-ol-3-phenylpropan-2-yl)amide
- 1.5 g of intermediate 2b were reacted in 40 ml of
 DMF with 0.7 ml of triethylamine, 1.0 g of
 3-amino-2-hydroxy-4-phenylbutyramide hydrochloride, 0.6 g of HOBT and 0.9 g of EDC in
 analogy to Example 1c, resulting in 0.8 g (38%) of
 the product.

20

- b) 2-((4-Benzylpiperazin-1-yl)methyl)benzoic acid N-(1-carbamoyl-1-oxo-3-phenylpropan-2-yl)amide
- 0.7 g of intermediate 3a were oxidized in 20 ml of DMSO with 0.7 g of SO₃/pyridine complex in the presence of 0.8 g of triethylamine in analogy to Example 1d, resulting in 0.1 g (18%) of the product in the form of the free base.
- ¹H-NMR (d₆-DMSO): $\delta = 2.3$ (4H), 2.8-3.5 (8H), 5.3 (1H), 6.7-7.5 (16H), 7.8 (1H), 8.1 (1H), 10.3 (1H) ppm.

Example 4

35

2-(4-((3-Methylphenyl)piperazin-1-yl)methyl)benzoic acid N-(1-carbamoyl-1-oxo-3-phenylpropan-2-yl)amide

20

25

- 28 -

- a) Methyl 2-(4-((3-methylphenyl)-1-piperazinyl)methyl)benzoate [sic]
- 4.0 g of methyl 2-chloromethylbenzoate and 4.4 g
 of 3-methylphenylpiperazine were heated in 200 ml
 of DMF in the presence of 4.5 g of potassium
 carbonate at 140°C for 3 h. The reaction mixture
 was poured into water and extracted three times
 with ethyl acetate. The combined organic phases
 were washed three times with saturated brine,
 dried over magnesium sulfate and concentrated,
 resulting in 6.5 g (92%) of the product.
- b) 2-(4-((3-Methylphenyl)-1-piperazinyl)methyl)15 benzoic [sic] acid
 - 5.9 g of intermediate 4a were dissolved in 75 ml of THF and hydrolyzed with 0.9 g of LiOH in 75 ml of water in analogy to Example 1b, resulting in 2.9 g (51%) of the product.
 - c) 2-(4-((3-Methylphenyl)piperazin-1-yl)methyl)benzoic acid N-(1-carbamoyl-1-ol-3-phenylpropan-2yl)amide
- 1.8 g of intermediate 4b were introduced into 50 ml of DMF in the presence of 2.7 ml of triethylamine, and 0.8 g of HOBT, 1.3 g of 3-amino-2-hydroxy-4-phenylbutyramide hydrochloride and 1.2 g of EDC were successively added, in analogy to Example 1c, resulting in 1.4 g (50%) of the product.
- d) 2-(4-((3-Methylphenyl)piperazin-1-yl)methyl)
 benzoic acid N-(1-carbamoyl-1-oxo-3-phenylpropan2-yl)amide
 - 1.2 g of intermediate 4c were dissolved in 30 ml of DMSO and oxidized with 1.6 g of $SO_3/pyridine$

- 29 -

complex in the presence of 1.5 ml of triethylamine in analogy to Example 1d, resulting in 1.0 g (83%) of the product.

5 MS: $m/e = 484 (M^{+})$

Examples 5 and 6 were synthesized in analogy to Example 1.

10 Example 5

3-((4-Phenylpiperazin-1-yl)methyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide fumarate

- 15 1 H-NMR (d₆-DMSO): δ = 2.5 (4H), 2.9 (1H), 3.2 (4H), 3.3 (1H), 3.7 (2H), 4.5 (1H), 6.6 (2H), 6.75 (1H), 6.9 (2H), 7.2 (2H), 7.2-7.3 (5H), 7.45 (1H), 7.55 (1H), 7.75 (1H), 7.8 (2H), 8.9 (1H), 9.7 (1H) ppm.
- 20 Example 6

3-((4-(2-tert-Butyl-4-trifluoromethylpyrimidin-6-yl)-homopiperazin-1-yl)methyl)benzoic acid N-(3-phenyl-propan-1-al-2-yl)amide

25

MS: $m/e = 568 (M^++1)$

Example 7

- 4-(N-(3,4-Dioxomethylene)benzyl-N-methylaminomethyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide
 - a) 4-(N-(3,4-Dioxomethylene)benzyl-N-methylaminomethyl)benzoic acid

35

11.5 g of N-(3,4-dioxomethylene) benzyl-N-methylamine and 15.5 g of triethylamine were introduced into [lacuna], and 15.0 g of 4-bromomethylbenzoic acid in 100 ml of THF were

- 30 -

added. The reaction mixture was briefly heated to reflux and then stirred at room temperature for 15 h. After filtering off the salts, the mother liquor was concentrated, and the residue was dissolved in ethyl acetate and washed with water. The aqueous phase was made alkaline and extracted several times with ethyl acetate, resulting in 6.6 g (32%) of the product as a white solid.

- 10 b) 4-(N-(3,4-Dioxomethylene)benzyl-N-methylamino-methyl)benzoic acid N-(3-phenylpropan-1-ol-2-yl)-amide
- 4.4 g of intermediate 5a [sic] were introduced into 50 ml of DMF in the presence of 2.9 g of triethylamine, and 1.8 g of HOBT, 2.0 g of phenylalaninol and 2.8 g of EDC were successively added, in analogy to Example 1c, resulting in 2.3 g (40%) of the product.

20

5

- c) 4-(N-(3,4-Dioxomethylene)benzyl-N-methylaminomethyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide
- 2.0 g of intermediate 5b [sic] were dissolved in 60 ml of DMSO and oxidized with 2.1 g of SO₃/pyridine complex in the presence of 1.8 ml of triethylamine in analogy to Example 1d, resulting in 1.3 g (68%) of the product.

30

¹H-NMR (CF₃COOD): $\delta = 2.9$ (3H), 3.2 (2H), 4.3-4.9 (5H), 6.1 (2H), 6.6 (1H), 6.9 (3H), 7.2-7.4 (5H), 7.8 (2H), 8.25 (2H) ppm.

35 MS: $m/e = 430 (M^{+})$

Examples 8-28 were prepared in analogy to Example 7.

- 31 -

Example 8

4-(N-Benzyl-N-methylaminomethyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide

5

¹H-NMR (CF₃COOD): δ = 2.9 (3H), 3.2 (2H), 4.3-5.0 (5H), 6.7 (1H), 7.25-7.5 (8H), 7.55 (2H), 7.8 (2H), 8.2 (2H) ppm.

10 MS: $m/e = 386 (M^{+})$

Example 9

4-(N-(4-Methoxy)benzyl-N-methylaminomethyl)benzoic acid 15 N-(3-phenylpropan-1-al-2-yl)amide

¹H-NMR (CF₃COOD): $\delta = 2.9$ (3H), 3.3 (2H), 4.0 (3H), 4.3-4.9 (5H), 6.7 (1H), 7.1-7.4 (7H), 7.5 (2H), 7.8 (2H), 8.2 (2H) ppm.

20

 $MS: m/e = 416 (M^{+})$

Example 10

25 4-(N-Benzyl-N-methylaminomethyl)benzoic acid N-(3-butan-1-al-2-yl)amide

¹H-NMR (CF₃COOD): $\delta = 1.1$ (3H), 1.6 (2H), 2.0 (2H), 2.9 (3H), 4.3-4.5 (3H), 4.7 (1H), 4.8 (1H), 6.6 (1H), 30 7.3-7.6 (5H), 7.8 (2H), 8.3 (2H) ppm.

 $MS: m/e = 338 (M^{+})$

Example 11

35

4-(N-(3,4-Dioxomethylene)benzyl-N-methylaminomethyl)-benzoic acid N-(3-butan-1-al-2-yl)amide

- 32 -

¹H-NMR (CF₃COOD): $\delta = 1.1$ (3H), 1.6 (2H), 1.9 (2H), 2.9 (3H), 4.25-4.6 (4H), 4.75 (1H), 6.1 (2H), 6.6 (1H), 6.9 (3H), 7.8 (2H), 8.3 (2H) ppm.

5 MS: $m/e = 382 (M^{+})$

Example 12

4-(N-(4-Methoxy)benzyl-N-methylaminomethyl)benzoic acid 10 N-(3-butan-1-al-2-yl)amide

 $MS: m/e = 368 (M^{+})$

Example 13

15

4-(N-(3,4-Dioxomethylene)benzyl-N-methylaminomethyl)-benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

¹H-NMR (CF₃COOD): $\delta = 1.0-2.0$ (13H), 2.9 (3H), 4.3-4.9 20 (4H), 6.1 (2H), 6.6 (1H), 6.9 (3H), 7.8 (2H), 8.3 (2H) ppm.

MS: $m/e = 436 (M^{+})$

25 Example 14

4-(N-(4-Benzyl-N-methylaminomethyl)benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

30 1 H-NMR (d₆-DMSO): δ = 1.0-1.8 (13H), 2.1 (3H), 3.4 (2H), 3.5 (2H), 4.3 (1H), 7.1-7.4 (5H), 7.5 (2H), 7.8 (2H), 8.8 (1H), 9.5 (1H) ppm.

Example 15

35

4-(N-(4-Methoxy)benzyl-N-methylaminomethyl)benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

- 33 -

¹H-NMR (CDCl₃): $\delta = 1.0-1.8$ (13H), 2.1 (3H), 3.4 (2H), 3.5 (2H), 3.7 (3H), 4.3 (1H), 6.8 (2H), 7.25 (2H), 7.5 (2H), 7.9 (2H), 8.8 (1H), 9.5 (1H) ppm.

5 Example 16

4-((2-Phenylpyrrolid-1-yl)methyl)benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

10 MS: $m/e = 420 (M^{+})$

Example 17

4-((2-Phenylpyrrolid-1-yl)methyl)benzoic acid N-(3-15 butan-1-al-2-yl)amide

 $MS: m/e = 364 (M^{+})$

Example 18

20

4-((2-Phenylpyrrolid-1-yl)methyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide

 $MS: m/e = 412 (M^{+})$

25

30

Example 19

4-((1,2,3,4-Dihydroquinolin-1-yl)methyl)benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

¹H-NMR (CDCl₃): $\delta = 1.0-1.9$ (13H), 2.0 (2H), 2.8 (2H), 3.3 (2H), 4.5 (2H), 4.8 (1H), 6.4 (1H), 6.5 (2H), 7.0 (2H), 7.4 (2H), 7.8 (2H), 9.7 (1H) ppm.

35 MS: $m/e = 404 (M^{+})$

- 34 -

Example 20

4-((1,2,3,4-Dihydroquinolin-1-yl)methyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide

5

 $^{1}\text{H-NMR} \ \, (d_{6}\text{-DMSO}): \ \, \delta = 1.9 \ \, (2\text{H}) \, , \ \, 2.75 \ \, (2\text{H}) \, , \ \, 2.9 \ \, (1\text{H}) \, , \ \, 3.3 \ \, (1\text{H}) \, , \ \, 3.4 \ \, (2\text{H}) \, , \ \, 4.4 \ \, (1\text{H}) \, , \ \, 4.5 \ \, (2\text{H}) \, , \ \, 6.3 \ \, (2\text{H}) \, , \ \, 6.8 \ \, (2\text{H}) \, , \ \, \\ 7.1-7.25 \ \, (5\text{H}) \, , \ \, 7.3 \ \, (2\text{H}) \, , \ \, 7.7 \ \, (2\text{H}) \, , \ \, 8.8 \ \, (1\text{H}) \, , \ \, 9.5 \ \, (1\text{H}) \, \\ ppm.$

10

 $MS: m/e = 398 (M^{+})$

Example 21

4-((1,2,3,4-Dihydroquinolin-1-y1)methyl)benzoic acid N-(3-butan-1-al-2-y1)amide

¹H-NMR (d₆-DMSO): δ = 0.9 (3H), 1.2-2.0 (6H), 2.7 (2H), 3.3 (2H), 4.2 (1H), 4.5 (2H), 6.4 (2H), 6.8 (2H), 7.3 (2H), 7.8 (2H), 8.8 (1H), 9.5 (1H) ppm.

 $MS: m/e = 350 (M^{+})$

Example 22

25

4-((1,2,3,4-Dihydroisoquinolin-2-yl)methyl)benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

¹H-NMR (d₆-DMSO): $\delta = 0.9-1.8$ (13H), 2.7-2.9 (4H), 3.6 30 (2H), 3.75 (2H), 4.4 (1H), 6.9-7.1 (4H), 7.4 (2H), 7.8 (2H), 8.8 (1H), 9.5 (1H) ppm.

 $MS: m/e = 404 (M^{+})$

35 Example 23

4-((1,2,3,4-Dihydroisoquinolin-2-yl)methyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide

- 35 -

¹H-NMR (d₆-DMSO): δ = 2.7 (2H), 2.8 (2H), 2.9 (1H), 3.2 (1H), 3.5 (2H), 3.7 (2H), 4.5 (1H), 6.9-7.1 (4H), 7.2-7.3 (5H), 7.5 (2H), 7.75 (2H), 8.8 (1H), 9.5 (1H) ppm.

5

 $MS: m/e = 398 (M^{+})$

Example 24

4-((1,2,3,4-Dihydroisoquinolin-2-yl)methyl)benzoic acid N-(3-butan-1-al-2-yl)amide hydrochloride

¹H-NMR (d₆-DMSO): δ = 0.9 (3H), 1.2-2.0 (4H), 3.0 (1H), 3.3 (2H), 3.6 (1H), 4.1-4.6 (5H), 7.2 (4H), 7.8 (2H), 8.0 (2H), 9.0 (1H), 9.5 (1H), 11.75 (1H) ppm.

Example 25

4-((6,7-Dimethoxy-1,2,3,4-dihydroisoquinolin-2-yl)methyl)benzoic acid N-(3-cyclohexylpropan-1-al-2-yl)amide

¹H-NMR (d₆-DMSO): $\delta = 0.9-1.9$ (13H), 2.7 (4H), 3.4 (2H), 3.6 (3H), 3.65 (2H), 3.7 (3H), 4.3 (1H), 6.5 (1H), 6.6 (1H), 7.5 (2H), 7.8 (2H), 8.8 (1H), 9.5 (1H) ppm.

 $MS: 'm/e = 464 (M^{+})$

Example 26

30

4-((6,7-Dimethoxy-1,2,3,4-dihydroisoquinolin-2-yl)-methyl)benzoic acid N-(3-phenylpropan-1-al-2-yl)amide

¹H-NMR (d₆-DMSO): $\delta = 2.7$ (4H), 2.9 (1H), 3.25 (1H), 3.6 35 (6H), 3.7 (2H), 4.5 (1H), 6.6 (1H), 6.7 (1H), 7.2-7.3 (5H), 7.4 (2H), 7.8 (2H), 8.9 (1H), 9.6 (1H) ppm.

 $MS: m/e = 458 (M^{+})$

- 36 -

Example 27

4-((6,7-Dimethoxy-1,2,3,4-dihydroisoquinolin-2-yl)-methyl)benzoic acid N-(3-butan-1-al-2-yl)amide

5

 $^{1}\text{H-NMR} \ \, (d_{6}\text{-DMSO}): \ \, \delta = 0.9 \ \, (3\text{H}) \, , \ \, 1.4 \ \, (2\text{H}) \, , \ \, 1.5\text{-}1.8 \ \, (2\text{H}) \, , \\ 2.7 \ \, (4\text{H}) \, , \ \, 3.4 \ \, (2\text{H}) \, , \ \, 3.7 \ \, (3\text{H}) \, , \ \, 3.75 \ \, (3\text{H}) \, , \ \, 3.8 \ \, (2\text{H}) \, , \ \, 4.3 \\ (1\text{H}) \, , \ \, 6.6 \ \, (1\text{H}) \, , \ \, 6.7 \ \, (1\text{H}) \, , \ \, 7.4 \ \, (2\text{H}) \, , \ \, 7.8 \ \, (2\text{H}) \, , \ \, 8.8 \ \, (1\text{H}) \, , \\ 9.5 \ \, (1\text{H}) \ \, \text{ppm} \, .$

10

 $MS: m/e = 410 (M^{+})$

Example 28

2-((1,2,3,4-Dihydroquinolin-1-yl)methyl)benzoic acid N-(3-butan-1-al-2-yl)amide

 $MS: m/e = 441 (M^{+})$

		L				
 R1	K	R2	R3—(CH ₂) x	R³ — (CH ₂) x —	æ	RS
Bu	SO ₂ ин	Œ	* CO * T) N —	\ \	н
 2 - Py	SO ₂ NH	ж	* 00 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -			ж
 N N N N N N N N N N N N N N N N N N N	SO ₂ NH	H	* CO * Z	мези		H
 NO ₂	902МН	I	A CO +	\rangle \rangl	ha	I

RS					
	E	<u> </u>		*	CONH2
*	\ \		/ Ag	\ \ #	£ .
	/		74	74	<i>,</i> ,,
R³ — (CH2) x—		()			\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
R3—(CH2) x	**************************************	**************************************	* 00 * 12 * 12 * 12 * 12 * 12 * 12 * 12	A CO \$ 2	\$ 00 \$ 4
R2	H	æ	æ	x	Ξ
Ą	CH ₂ 0	CH ₂ O	302ин	SO ₂ NH	SO ₂ NH
R1	Ьh	2 - Py	Bu	Naphth	Naphth
N,	ß	9	7	&	6

so ex		CONH2	соин2		CONH ₂
Z.	Ph H	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Š	±	
R ³ — (CH ₂) x—	N N N N N N N N N N N N N N N N N N N	Et 2N - 34	ηh 2 /\		
R ² O R ² O R ³ — (CH ₂) x	\$ 000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A CO \$.	\$ 00 \$ 4	\$ 00 \$	A 25 CO }
R2	Ħ	н	H	#.	н
. «	SО₂NН	SO ₂ NH	SO ₂ NН	.0.	6.
R1	. hq	Bu	Naphth	Ph	Ph
Ę	10	11	12	13	14

g d	R1	æ	R2	$R^{3} \longrightarrow (CH_{2})_{x} \times \begin{bmatrix} R^{2} & 0 \\ B & 1 \end{bmatrix}_{\frac{1}{2}}$	R³—— (CH₂) x—	R4	en ox
15	2 - Py	SO ₂ NH	н	\$ 00 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\ _Z /\		CONII2
16	2 - Py	90 ₂ NH	н	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \ \	T
17	No.	SO ₂ NH	H	\$ 00 \$ 2 E	ngh Z		ĸ
18	૫ત	.0.	Ħ	₹w√2}	N		H
19	Ph	·8·	н	₹w.₹			CONH2

ğ	R1	K	R2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	R³ — (CH2) x—	R4	RS
				R ³ — (CH ₂) x			
25	Ph	.0-	x .	**************************************	> 		CONH ₂
26	2-Py	SO ₂ NH	H	A CO \$	ngh 2		н
27	Ph	-0-	æ	**************************************	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		CONH2
28	Ha	-0-	Ŧ	A SON THE SON	\rangle \(\frac{1}{2} \)		H
29	Naphth	SO ₂ NH	æ	\$00 Th	N N N	Ha <	CONH ₂

<u>بر</u>	a SO ₂ NH	R ²	R3—(CH ₂) x B S	R ³ —(CH ₂) _x —	72 \	m RS
	3O ₂ NH	æ	A CO ST			CONH2
, .	·O·	×	* CO **	EtzN		=
,	3O ₂ NH		₹ 00 ₹	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		CONII2
	3О ₂ ИН	ж	¥ 00 ₹	\		H

Ę	R1	۷.	R2	$R^3 - (CH_2)_x / \frac{R^2}{B} $	R ³ — (CH ₂) _x —	ž	RS
10	чa	SO ₂ ин	н	\$ 00	J. J	\ \ di	H
11	Bu	SO ₂ NH	#	\$ 00 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Et 2N - F		CONH2
12	Naphth	SO ₂ ин	×	\$00 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	nh Z		CONH2
13	Ph	-0-	. .	\$00 ×14		\ \	H
14	Ph	-8-	æ	₹ 00 }			CONH2

- 40 -

28	CONII2	×	н	н	CONH ₂
R4		\ \ \			
R³ — (CH2) x —	\ _Z /\	\	ngh Z	_N_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$ \begin{array}{c c} R^2 & 0 \\ A & & \\ B & & \\ R^3 - (CH_2)_{x} \end{array} $	\$ 00 \$ 7 £	\$ 00 \$ 24	\$ 00 \$ 7 E	₹ 00 1	₹∞ √
R2	н	н	н	н	Н
ď	30 ₂ NH	90 ₂ NH	SO ₂ NH	-0-	·8·
R1	2 - Py	2 - Py	N N	Ph	Pb
Na	15	16	17	18	19

RS	CONH ₂	×	I	CONH ₂	н
ă.	A _H	ųa ∕		\	
R³ — (CH2) x —	2 N	N 32	Et.3N	N-7	
R3 — (CH2) x	A CO F	\$ 00 \$ 4	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ 00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹∞
R ²	Н	н	ж	н	Ħ
V.	SO ₂ NH	80 ₂ ин	90 ₂ ин	902ин	SO ₂ NH
R.1	Bu	Naphth	Ph	Bu	2 - PY
Z O	20	21	22	23	24

Ą	R1	¥	R2	R3—(CH ₂) x B &	R³ — (CH2) x —	R4	RS
25	Ph	-0-	×	24/2 8 24/2 4	> 		CONH ₂
26	2-Py	HN ² OS	H	* CO * Z	yh Z		æ
27	Ph	-0-	н	**************************************	> 		CONH2
28	Ph	.0-	н		\right\{\right\}		æ
29	Naphth	зо,ин	ж	4 co }	N N N N N N N N N N N N N N N N N N N	ha <	CONH2

S.	H	CONH ₂	Ħ	CONII2	Н
P.8		\ \			
R³ — (CH ₂) » —	Z-N	Jan	Et2N >		<
R3 — (CH2) x	₹ 00 } 1	4 CO \$	\$ 00 \$ \$	\$ 00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹ 00 ₹
R ²	Œ	н	H	н	æ
٧	SO ₂ ин	SO ₂ NH	-0-	SO ₂ NH	SO ₂ NH
R.	Bu	2-Py	Ph	3 (T)	3 (T) 2 (2)
Ŏ.	30	31	32	33	34

R5	CONH ₂	CONH	CONH	_	
R.	\ <u>\</u>			<u>=</u>	×
R³—— (CH2) x—	Et2N	Et2N 🗪		Mezn	Et2N 🗪
R3 — (CH ₂) x	2 00 mg	2 00 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 CO \$	£ CO ₹	₹00 }
R2	Н	H	Н	МеО	МеО
ď	-0-	-0-	SO ₂ NH	CONFI	СОМН
R1	Ph	Ph	N N	Ph	Naphth
ģ Z	35	36	37	38	39

RS					NH2
ž	<u>=</u>	Ph H	=	E	CONH2
R³—— (CH2) x—	Me ₂ N	J. N.	Et2N >	Мези	Et ₂ N
R3—(CH2) x	24 27 24	* 000 * * * * * * * * * * * * * * * * *	00 8 24	24 CO	\$ 00 \$ 7
R2	Bt	æ	E L	B t	H
V	CONH	30 ₂ ин	СОМН	NHO	SO ₂ NH
R1	Ph	Bu	Naphth	Ph	₹ () z
A o	40	41	42	43	44

٠

R.S.	æ	CONH2	æ	±	æ
R¢		4a	>		
R³ — (CH ₂) x —	мези	r de la companya de l	nghi Z	Ž Ž	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
R3 — (CH ₂) x B R R	FR2 CO FR2	4 co }	₹∞ * **	THE WAY	4 CO \$
R2	МеО	H	н	Н	н
A	NH	SO ₂ NН	SO 2NH	m=o=0	-0-
R1	Ph	Bu	Naphth	н	Ph
No.	45	46	47	48	4.9

No.	R1	A	R2	$R^{3} \longrightarrow (CH_{2})_{x} \longrightarrow \begin{bmatrix} R^{2} & O \\ B & A \end{bmatrix}_{\xi}$	R³—— (CH2) x—	R4	RS
	Ph	-0-	H	24/2	Мези		CONH ₂
	Naphth	СОМН	МеО	200 X			CONH2
	Bu	SO ₂ NH	ж	\$00 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	~ \	\ \	CONH
	Ph	SO ₂ nh	Ŧ	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	242 N	4a <	CONH2
	2-Ру	SO ₂ NH	н	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ <u></u>	ĸ

- 48 -

RS	CONH ₂	æ	CONH2	æ	н
R4			\ \		
R³— (CH ₂) x—		EL2N %	Me ₂ N	__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Bt ₂ N ~
R ² O R ² O R ³ — (CH ₂) x B S	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A CO 42	A CO }	A CO }	A 22 CO \{ \}
R2	жео	æ	н	×	н
Ą	CONH	SO ₂ NH	HN ^z OS	SO ₂ NH	SO ₂ NH
R1	Ha	Bu	N N	\$ (T)	₹ () z ()
No.	55	26	57	58	59

•

RS	CONH ₂	н	н	CONH ₂	CONH2
R4	\ <u></u>		\	\	\Diamond
R³—— (CH₂) x—	\ \z	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\rangle \rangl	Мези	Ме ₂ и //
R3—(CH2) x	A CO YELL	* CO **	A CO \$-	\$ 00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ 00 \$ 22
R2	Bt	н	В	н	н
A	СОМН	\ _\	· \ ₀ <	\	\ ₀ \
R1	Ph	h	h	ча	Ph
No.	09	61	62	63	64

N O	R1	«	8	R3—(CH ₂) x B S	R³—— (CH2) x—	R4	RS
65	Ph	СОМН	МеО	NA CO	Ž	\	CONH2
99	Ph	SO ₂ NH	æ	**************************************	N N N N N N N N N N N N N N N N N N N	43	CONH
67	Ph	SO ₂ NH	Œ	**************************************	Bt2N K		CONH ₂
. 89	Ph	80 ₂ ин	æ	*00 / Y	Bt ₂ N — Z	\ \	Н
69	Bu	30 ₂ NH	н	\$ 00 \$ T	N-32		CONH2

R ⁵	Н	CONH ₂	н	CONH	CONII 2
R.		\	hq <	ų d	
R³— (CH2) x—	N	Et2	N N	N N	EL2N — 7
R3—(CH2) x	A CO }	A CO }	\$\$ CO ₹	A 24 CO }	A CO }
R2	н	н	Bt	Н	Ħ
4	ЗО ₂ ИН	SO ₂ NH	CONH	SO ₂ NII	SO ₂ NH
R1	3 NZO NZO	N ² O	Ph	Bu	Ph
Š	70	7.1	72	73	74

RS	æ	æ	CONH2	CONH ₂	CONH ₂
R.	\ \ \	\ \ \	45	\	₹.
R³— (CH ₂) x—	32-N			Et₂N—	
R3—(CH2) x B S	\$00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ 00 \$ Y	\$ 00 £	₹ 00 }	\$ 00 \$ Y
R2	н	н	н	. #	н
¥	502ин	sо ₂ ин	SO ₂ NīI	SO ₂ NH	90 ₂ ин
R1	Naphtha	NO ₂	NO ₂	NO ₂	NO ₂
Α φ	75	76	77	78	79

RS	£	CONH2	н	CONH2	CONH ₂
R4			\	45.	
R ³ — (CH ₂) x —	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N N N N N N N N N N N N N N N N N N N	N N		Me ₂ N—/
$\begin{array}{c c} R^2 & O \\ A & \parallel \\ B^3 - (CH_2)_X \end{array}$	24 CO 72 No. 4	\$ 00 \$ 2 4	\$00 \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$00 \ X	₹00 \ \ \ \ \ \ \ \ \ \ \ \ \ \
R ²	MeO	#	æ	æ	æ
Ą	CONH	80 ₂ ин	SO ₂ NH	F SO ₂ NH	F SO ₂ NH
\mathbb{R}^1	Naphth	Naphth	Naphth	O ₂ N	NEO NEO
Ko.	80	81	82	83	84

- 54 -

$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
Ph	ģ	R1	. ♥	R2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	R³ — (CH2) x —	₽¥	R5
Ph	85	Ph	\ _\	н		\ _z	\	CONII2
Ph \sim H \sim Me ₂ N \sim Ph \sim	86	Ph	,	н		\ \ \ \		æ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87	Ph	· \ ₀ /	н	2 V V V V V V V V V V V V V V V V V V V	Me ₂ N	\ \ \	I
Ph $3O_2NH$ H $\frac{A}{2\sqrt{2}}$ $\sim \frac{2}{2}$ $\sim Ph$	88	Ph	_	н	¥00 72	\ _\mathbb{z}		CONH2
	89	Ph		H	The state of the s			CONH2

	R4 R5	±	H 4g	Ph CONH ₂	сомн3	# *
	R ³ — (CH ₂) x—	~~ \			Me ₂ N	Bt2N >
	$R^{3} - (CH_{2})_{x}$ $R^{3} - (CH_{2})_{x} - (CH$	A CONTRACTOR AS	A CO T	A 25 CO 25 C	\$00 / K	\$00 Pk
L	R2	æ	_ =	н	н.	Ħ
	«	HN2OS	HN ^z OS	30 ₂ NH	SO ₂ NH	SO ₂ NH
	R1	Naphth	2-Py	2-Py	NO ₂	NEO NEO
	ğ	06	91	92	93	46

- 56 -

				92.0			
e Š	R1	æ	R2	R3 — (CH2) X	R ³ —— (CH ₂) _K —	Ţ.	sn ex
95	NCO NCO	HN ² OS 3O ² NH	×	* CO * Z	\rangle z	^{ta} \langle	CONH2
96	NEO NEO	302NH	н	₹ 00 ₹		£ 4	#
97	æ	O=O=W	Н	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	N N N N N N N N N N N N N N N N N N N	\ \	CONH
98	æ	n=0=0	н		N N N N N N N N N N N N N N N N N N N		CONH2
66	Bu	3О2ИН	н	- \$ 00 \$ Z	Bt. in T		CONH ₂

R _S	æ	CONH2	æ	Œ	CONH
R.	\		\		V Ph
R³ (CH ₂) x	Z N	Z /			₹_N_
R3—(CH2) x	4 co \$ 2	4 CO \$	\$ 00 X	\$ 00 X	\$00 TE
R ²	H .	н	н	н	H
٧	SO ₂ NH	SO ₂ NH	M=0=0	m=o=0	SO ₂ NH
R1	Ph	2 - Py	Н	Н	Bu
No.	100	101	102	103	104

- 58 **-**

ő Š	R1	4	B.2	A	1		
T				$R^3 - (CH_2) \times B \longrightarrow \S$	R ⁵ — (CH ₂) x —	ž.	&
105	48 .	SO2NH	н	₹∞\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹ N	\Diamond	н
106	2-Py	SO ₂ NH	æ	- F 00 - F	__\	\ \ \	CONH2
107	Ħ	m=0=0	Ħ	**************************************	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	45	CONH2
108	Ħ	M=O=O	н	**************************************		>	CONH2
109	H	n=o=0	=	-\$00 / Jy	N N N		#

		1 %7			
s s	æ	CONH	CONH ₂	ш	CONH2
R		- K	\ #E		
R³—— (CH2) x—		N N N	ry N	N N	
R3—(CH2) x	**************************************	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A CO }	A 2 CO }
R2	ж	Н	Н	н	н
¥	O=O=W	SO ₂ NH	SO ₂ NH	SO ₂ NH	sо ₂ ин
R1	н	Ph	Ph	2 - PY	NO ₂
ź	110	111	112	113	114

ж	SO ₂ NH H
æ	SO ₂ NH
m m	
	SO ₂ NH

ğ	R.	æ	R2	m_m	S R ³ — (CH ₂) x —	RA	85
120	ж	SONH2	æ	400 X			æ
121	Ча	·\	н	AND WE WANTED	Me ₂ N		Æ
122	Ph	%	Œ	**************************************	Me ₂ N		X
123	Ph	SO ₂ NH	н	₩ 24 200 }	zh 	F Ph	, m ,
124	Naphth	SO ₂ NH	н	₹00 }	m Z	\	CONH2

RS	H	CONH ₂	CONH2	CONII2	E
R4					\ <u></u>
R³ (CH2) x	/	1	\ \ \	\	nfr
R3—(Me ₂ N	Me ₂ N			Bt2N —
R3—(CH2) x	To The second se	W THE SECOND SEC	* CO \$ 244	A CO SAN	A CO F
R2	×	I	н	Ħ	Ħ
æ	SO ₂ NH	SO ₂ NH	\s_\	\s_\	SO ₂ NH
R1	N ² O	N ² O	Ph	u _d	Bu
N O	125	126	127	128	129

R5					
	CONH ₂	CONH2	CONH2	CONH ₂	CONH2
R4				0	\
L			Q-		
R³ — (CH ₂) _x –	No. of the second secon			Et,1N	
R ² O R ² O R ³ — (CH ₂) x	**************************************	**************************************	**************************************		W CO TANK
R2	н	æ	æ	ж	×
Ą	SO ₂ NH	HN ² OS	0=0=พ	CH ₂ 0	CH ₂ 0
\mathbb{R}^1	ha	N		Ph	2-Py
No.	130	131	132	133	134

- 64 -

RS S	CONH2	æ	H	# /	CONH ₂
7 8	⁴⁸	4g		\	$\langle \rangle$
0 R³ — (CH₂) x —	Me ₂ N \checkmark	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Me ₂ N \checkmark	Et2N~	Me ₂ N
R ² O R ² O R ³ —(CH ₂) x	* CO * NA	* CO * STATE OF THE STATE OF TH	4 CO \$	4 CO }	₹ 00 × v
R2	#	н	н	н	H
ď	CH ₂ O	CH ₂ O	CH ₂ O	CH ₂ O	СН2О
R1	3-Py	4 - Py	2 - To1	3-Tol	————
K o.	135	136	137	138	139

ć	R.1	ď	R2	R3—(CH2) x	R³ (CH₂) x	R4	RS
140		CH ₂ O	н	\$00 XX	\rangle \rangl	Ya.	. н
141	ъ.	CONH ₂	н	4 co }	Me ₂ N		CONH ₂
142	Naphth	CONH ₂	н	\$ 00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Me ₂ N	\	CONH2
143	Naphth	CONH ₂	н	\$ 000 \$ V	Bt2N	\	CONH2
144	ш	0=0=₪	н	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	OW N		CONH ₂

ģ	R1	K	R2	$R^{3} \longrightarrow (CH_{2})_{x}$	R³—— (СН2) х—	2	R ⁵
145	2-Py	СН2О	н	**************************************	Me ₂ N ~	4g	·
146	3-Py	CH20	н	\$ 000 \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	EtzN	\	CONH ₂
147		CH ₂ O	Н	\$00 Jak	\ 	48	ж
148	н	n=o=0	H	~ *** ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	N N N	ųa 🤇	щ
149	Ph	CONH	н	4 co }			н

S. S.	# *	= 2	CONH ₂	=	CONH ₂
- A				((
R³—- {CH2} x—	\ 	\(\langle \)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\ \z_{\z}	
R3—(CH ₂) x B S	\$ 00 \\ \frac{1}{2}	\$ 00 \$ 7 \$ 7 \$ \$ 10 \$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$ 10 \$\$\$ \$	27/2	* 00 V	* 00 * 10 * 10 * 10 * 10 * 10 * 10 * 10
R2	×	æ	н	н	H
4	CONH	NH	CH ₂ O	СН ₂ О	CH ₂ O
R1	Naphth	Ph	4-Py	2-To1	3-To1
No.	150	151	152	153	154

, c	R1	ď	R2	R3—(CH2) x	R³— (CH₂) x—	R4	RS
155	мео-	СН3О	н	* 00 Y	Et ₂ N <	\ <u></u>	н
156	Ph	CH ₂ O	Ħ	2 00 V		4 6	CONH2
157	В	O=o=w	H	~ ************************************	Z Z		CONH ₂
158	Naphth	СОИН	Н	A CO }	Me ₂ N	\	н
159	Ph	СОИН	н	A CO }	Ме ₂ N	Q_{\downarrow}	CONH2

	I	T		T	
. RS	±	æ	Ξ	CONH ₂	ж
82	\{	\ \ \		ų. (
R³ — (CH2) x —		EtzN		Мези	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
R3—(CH ₂) x	o my	A CO TAN	**************************************	* 00 * WA	4 CO \$
R2	H	æ	н	Ħ	н
¥	0=0=₪	CH ₂ O	CH ₂ 0	СН20	CH ₂ 0
R1	н	Ph	2-Py	2-Tol	3-Ру
No.	160	161	162	163	164

Š	R1	<	R2	R ² 0		40	u f	
				R3—(CH2) x	Ку (СН2) ж	4	Š.	
	3-Tol	CH ₂ O	н	**************************************	Bt ₂ N	\	CONH ₂	
	Мео—	CH ₂ O	н	** 00 24h	Ме2N	₹	н	
		СН20	н	\$00 ×	\rangle z	<u>ج</u>	н	
	4 - PY	CH ₂ 0	н	4 CO F	Et2N 🔷	ųa 🗸	CONH2	
	4d	SO ₂ NH	Мео	\$ CO ₹	\rangle N	48.	н	

Ng G	\mathbb{R}^1	¥	R2	R3—(CH2) x	R³ — (CH2) x —	R.	R S
170	Naphth	SO ₂ NH	МеО	**************************************	Me ₂ N \checkmark	4a ⟨	æ
171	3-To1	CH ₂ 0	н	27/L	Me ₂ N	\	CONH ₂
172	Ьh	СОМН	н	\$ 00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		.
173	173 Naphth	CONH	Н	4 CO \$	\rangle N		Œ
174	Bu	SO ₂ NH	Bt	F2 CO F	Et2N		CONH2

- 72 -

ą.	R1	¥	R2	R3—(CH ₂) x	R³—— (СН ₂) "——	R4	R ⁵
175	3-Tol	CH ₂ O	æ	24 24 24 24 24 24 24 24 24 24 24 24 24 2	Et2N 🗸		Н
176	3-To1	CH ₂ O	×	Atu 8 Wh	Et ₂ N \checkmark		CONH ₂
177	4 - Py	CH ₂ O	н	* 03 ryr		\ \	Н
178	4 - Py	CH ₂ O	æ	**************************************	·		ж
179	Ph	CH ₂ 0	н	4 500 £	\ \ \	hq <	CONH2

					The second secon		
o.	R1	æ	R ²	$A \downarrow B \downarrow S$ $R^{3} - (CH_{2})_{*}$	R³— (CH₂) x—	R4	RS
180	чa	CH20	н	A 500 \$4	<u>(</u>	\	CONH2
181	ж	0=0≂₪	Н	\$ 00 TH	N N N N N N N N N N N N N N N N N N N	\	CONH ₂
182	Ph	CH ₂ O	н	\$ 00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Me ₂ N ~	h _d	CONH ₂
183	2 - Py	CH ₂ O	H	- \$ 00 Jy	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A _{Ph}	H
184	Мео	сн ₂ о	н	\$ CO \$	Et ₂ N	ųd 🧹	CONH2

R ⁵	CONH ₂	Ŧ	H		
R			\(\begin{align*}	<u>=</u>	H Vd
R³ — (CH2) x —	Me ₂ N	мө2и 🗪	Me ₂ N	Et,2N 🔷	Me ₂ N
R3 — (CH2) x B 3	A CO \$ 7	A CO \$ 7	\$ 00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\$00 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
R2	H	æ	н	н	×
Ą	СОИН	СОИН	NH	СН ₂ О	CH ₂ O
R1	Ph	Naphth	Ph	3-Py	3-T01
No.	185	186	187	188	189

	R1	¥	R ²	R3—(CH ₂) x	R³ —— (CH2) x—	7.	RS
190	4 - Py	СН2О	ж	**************************************		ر بو	CONH₂
191	2-то1	СН3О	н	**************************************	\ \ \ \ \		CONH2
192		CH ₂ O	н	**************************************	. VE2N	48	н
193	H	0=0=ш	н	* * O3 * * * * * * * * * * * * * * * * *	N N		н
194	Ь	СОИН	н	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\rangle \sqrt{\sq}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	\	CONH ₂

R1		4	R2	R3—(CH ₂) x	R³——(CH ₂) x—	R4	R ⁵
Naphth CONH H	. ж			\$ 00 £		\ <u>\</u>	CONH2
Н О=0=ш		Ħ		\$00 m	NH2		CONH2
2-Py CH ₂ O H	н		A	\$00\$	Me ₂ N ~		н
3-Py CH ₂ O H	Ж		Ą	- + 00 ryl	N N	\ \	CONH ₂
3-Tol CH ₂ O H		H B.	Á	200 rayer	Me ₂ N ~		CONH ₂

ć.	R1	<	R ²	R ² 0 R ³ —(CH ₂) x	R³ — (CH2) x —	Rd	RS
200	Ph	CH ₂ O	Œ	**************************************	Et ₂ N		н
201	мео-{	CH ₂ O	H	4 CO \$ W	Мези		CONH2
202	4-Py	СН20	н	\$00 X4	Мези	ąg.	Ħ
203		СН2О	н	v € 00 €	\rangle N	A Ph	CONH ₂
204	2 · Py	CH ₂ O	Ħ	* 00 Wh	Me ₂ N	\	CONH2

ģ.	R1	ď	R2	R ² O A	R³ (CH2) x	P.R.	R5
205	Ph	CH ₂ O	Н	**************************************		Hd	æ
206	2 · Py	CH ₂ O	н	27/42	He ₂ N	48	CONH2
207	2-Tol	СН ₂ О	X.	**************************************	Bt₂N ∕	\{\rightarrow\}	æ
208	Ph	СОИН	H	\$00\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Me ₂ N		Н
209	Naphth	СОМН	н	-{00 / 24	Me ₂ N ~		CONH ₂

No.	R1	٧	R2	$A \sim \frac{R^2}{B} \sqrt{\frac{8}{8}}$	R ³ — (CH ₂) x —	74	RS
210	3-Py	CH20	н	* COO	Me ₂ N \checkmark	\ \	н
211	4-Py	CH ₂ O	н	\$ 00 × 24		\ \ \	н
212	———оәи	CH ₂ O	н	\$00 }	Et 2N		CONH ₂
213	Ph	NH	н	A CO }	Ме ₂ и //		CONH ₂
214	Ph	СОМН	н	A CO }	же ₂ и	\	CONH2

RS	CONH2	ш	CONH2	H	Н
4 4	\triangleright	\	\		\
R³ — (CH2) x —	> 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		N N N	\rangle \times \
R3—(CH ₂) x	200 V	200 V	\$00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	美の一人	₹00 ×
R ²	ж	н	н	н	н
A	СН20	CH ₂ O	O=O=w	O=O=W	CH ₂ 0
R1		3-Tol	H	н	2 - PY
No.	215	216	217	218	219

	•			R ² O			
d d	R1	∢	R2	R3—(CH2) x B E	R ³ — (CH ₂) x —	æ.	R5
220	3-Py	CH ₂ O	Н	AN SYN		\	н
221	2 - TO1	сн ₂ о	ж	\$00 VI	Me ₂ N	⊱ Ph	CONH2
222	4 - To1	CH ₂ O	н	\$00 V	N—	Ph Ph	CONH ₂
223	4 - Py	СН ₂ О	н	A CO \$-	$\langle \rangle$	Ŋ.	CONH ₂
224	мео-	СН ₂ О	н	* CO **	Ме₂N ∕∕		н

章	R1	æ	R2	R3—(CH2)x	R³—— (CH2) x—	R4	s ₈
225	4 - Py	CH ₂ O	H	*** 05 TYL	Bt ₂ N	- K	н
226	Ph	CH ₂ O	н	* 00 ***			CONH2
227	3-To1	CH ₂ O	н	\$00 m	Me ₂ N		н
228		СН2О	н	₹00 ¥	N		Н
229	Н	M=O=O	H	-{ w / Jx	N N N		CONH ₂

N O	R1	K	R2	R3—(CH2)x	R³ — (CH2) x —	ξ.	s S
230	Ph	СОМН	I	A CO }			CONH ₂
231	Naphth	СОИН	н	A CO }			CONH ₂
232	2-To1	CH ₂ O	×	\$00 VI	Et ₂ N ~	\	H
233	2-To1	CH ₂ O	Н	- \$00 V	Et.1N ~	\triangleright	сомн ₂
234	3-Ру	сн ₂ о	н	\$ 00 ×	Me ₂ N ~		Н

RS	CONH ₂	н	н	н	CONH ₂
A.	da <	\ \ #a		h Ph	h Ph
R³— (CH₂) x—		\rangle \text{z}	Et ₂ N⁄	Me ₂ N ~	Me ₂ N ~
R3—(CH2)x B	242 05 24L	\$00 XX	\$00 Th	\$00 Th	\$00 XX
R ²	н	н	н	н	Ħ
٧	СН20	CH ₂ 0	СН2О	СН ₂ О	СН2О
R1	Ph	жео-	Мео —		
Ą	235	236	237	238	239

č.	R1	4	R ²	R3—(CH2) x	R³— (CH ₂) x—	R4	R5
240	æ	O=0=w	H	* 00			CONH
241	Ph	сн,о	H	**************************************	Me ₂ N	A _P	Œ
242	3 - Py	СН ₂ О	н	A CO V	Me ₂ N	- Ag	CONH2
243	4 - Py	CH ₂ O	н	N N N N N N N N N N N N N N N N N N N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4a	H
244	2-Tol	CH ₂ O	н	¥00)	Bt 2N 🗸	Ph	æ

- 86 -

. d	R1	K	R2	R3—(CH2)x	R³—— (CH2) x——	. R	R.S.
250	Ъћ	СОМН	н	₹ 00 }	N N	E.	CONH2
251	Ph	CONH	Н	\$ 00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\	ж
252	Naphth	CONH	æ	\$ 00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	. н
253	Ph	SO ₂ NH	Bt	\$00 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	. мези ╱		щ
254	чa	СН20	Ħ	* 00 *********************************	Et ₂ N		Н

- 88 -

Ą	R1	¥	R2	R3—(CH ₂) x	R3—(CH2)x—	Rt	R5
255	2 - Py	CH ₂ O	æ	ATW STAN			CONH ₂
256	мео-{}	CH ₂ O	H	**************************************	Ме₂N ∕	\	H
257	3-Py	CH ₂ O	æ	\$ 00 ml	\\ _{\rm \}		CONH2
258	2-Tol	CH ₂ O	н	- \$00 V	N N	hg N	CONH ₂
259	3 -To1	CH ₂ O	н	₹00 ¥	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		CONH ₂

No.	R1	Ą	R ²	R3—(CH2) x	R³—— (CH2) x—	2 8	R5
260		СН2О	н	**************************************		\	æ
261	4-Py	CH ₂ O	Œ	* 00 244	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ha <	CONH ₂
262	Ph	CH ₂ O	н	\$ 00 ××	Me ₂ N ~	\ \	×
263	Bu	SO ₂ NH	МеО	FR CO ₹ 7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A. A. P.	Ħ
264	Naphth	SO ₂ NH	Bt	**************************************	Et2N ~	ųd	H

ſ							
ź	R1	K	R ²	$\begin{cases} R^2 & O \\ A \downarrow \\ B \end{pmatrix} \xrightarrow{R^3 - (CH_2)_{\mathbf{x}}} $	R³— (CH ₂) x—	₽X	R\$
265	4 - Py	CH ₂ O	н	\$ 00 John	Et₂N∕∕	\triangleright	CONH ₂
266	3-To1	CH ₂ O	н	₹ 00 ××	\rangle \rangl	Ph Ph	Н
267	Ph	CONH	н	₹00 XX	Et.2N	ųd	CONH2
268	Ph	NH	×	₹00 / K	Et2N~	Ar	CONH2
269	2-Py	СН2О	н	AN OUT WE THE THE THE THE THE THE THE THE THE TH	\ \ _\	\ \ \	CONH ₂
			ı				

				R ² O				
	R1	¥	R ²	R ³ —(CH ₂) _x	R³ (CH2) x	R4	RS.	
3	2 -Tol	CH ₂ O	н	AND W	Et ₂ N \checkmark	Æ	CONH2	
Ph		СН ₂ О	æ	* 00 XX	Me ₂ N \checkmark	\ <u></u>	æ	
÷.	3 · Py	СН ₂ О	н	\$00 XX	N N	Æ	CONH ₂	
<u> </u>	мео	CH ₂ O	н	**************************************	N N	પાત	CONH2	
Ph		SO ₂ NH	Bt	\$ CO \$ 244	Et ₂ N⁄	h bh	æ	

ğ	. R1	Κ.	R2	R3—(CH ₂) x B	R³—— (CH2) x—	Re	R ⁵
275		CH ₂ O	H	**************************************	Et ₂ N		CONH ₂
276	Naphth	SO ₂ NH	Bt	Not we have a second se	не ₂ и //		CONH ₂
277	Ph	SO ₂ NH	мео	2×2 CO ₹	Me ₂ N \	h _d	æ
278	Napheh	SO ₂ NH	МеО	\$\$\$ CO ₹	\rangle \rangl	⟨ Fh	ж
279	Bu	SO ₂ NH	MeO	RA R2	Ме2И	Ph Ph	н

R ⁵	CONH ₂	æ	CONH2	н	н
R4	ha 🖊	hd <	\		\
R³— (CH2) x—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Bt₂N ∕	Me ₂ N \checkmark	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	> x
R3—(CH2),x B 25	AND W	A CO YALL	2 V V V V V V V V V V V V V V V V V V V	₹ 00 × × × × × × × × × × × × × × × × × ×	\$ 00 W W
R2	I	æ	H	Н	н
æ	CH ₂ 0	CH ₂ O	CH ₂ O	CH ₂ O	CH ₂ O
R1	Ph		Ph	Мео—	2-Py
No.	280	281	282	283	284

R ¹ 2-Py CH ₂ O	CH ₂ O	Ą	R ² Н	R3—(CB2) x B S	R ³ — (CH ₂) _x — Et ₂ N		R ⁵ CONH ₂
3-Ру СН ₂ О н		x		A SHOW SHAPE	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\	н
CH ₂ O H		H		The state of the s	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.	CONH2
2-то1 СН ₂ О н		x		₹00 }	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\Diamond	H
Ph H H	NH	н		₹00 }	Et ₂ N ~	Q_{\downarrow}	CONH ₂

R1	1	K	R2	$\begin{array}{c c} R^2 & 0 \\ \hline & A \\ & B \\ \hline & B \\ \end{array}$	R³—— (CH ₂) x——	R4	R5	
	Ph	CONH	Ħ	₹00√\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Et , N		CONH2	
1	4-Py	CH ₂ O	н	-₹00 ×××			н	
	4 - Py	CH ₂ O	H	₹ 00 ¥	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A _P	CONH ₂	
	3-Tol	CH ₂ O	H	4 CO ₹	N N	AH.	CONH ₂	
	2-Tol	CH ₂ O	н	A CO ₹	Et ₂ N ~		CONH ₂	

Ġ.	R1	Y	R ²	R3—(CH2) x	R³ (CH ₂) x	R	, R5
295	н	п=0=0	н				н
296	ж	л=0=0	н			\	н
297	3-Tol	CH ₂ O	н	2000 2001 2000 2001	\rangle \times \tau \rangle \ta		. #
298	2 - Py	CH ₂ O	H	A CO \$	Me ₂ N ~		Н

R1	A CH ₂ O	я ² Н	R3—(CH2), x CO 2	ξ R ³ — (CH ₂) x— Me ₂ N	R. S.	R ⁵ CONH ₂
	CH ₂ O	E .	\$ 00 ruh	\rangle \text{N}	\	XI.

- 98 -

We claim:

1. An amide of the formula I

5

10

15

and its tautomeric and isomeric forms, possible enantiomeric and diastereomeric forms, and possible physiologically tolerated salts, in which the variables have the following meanings:

R¹ can be hydrogen, C₁-C₆-alkyl, branched and unbranched, phenyl, naphthyl, quinolyl, pyridyl, pyrimidyl, pyrazyl, pyridazyl, quinazolyl, quinoxalyl, thienyl, benzothienyl, benzofuranyl, furanyl and indolyl, it being possible for the rings also to be substituted by to 3 R⁶ radicals, and

20 R^2 are hydrogen, C₁-C₆-alkyl, branched or unbranched, $O-C_1-C_6-alkyl$, branched or unbranched, $C_2-C_6-alkenyl$, $C_2-C_6-alkynyl$, $C_1-C_6-alkyl-phenyl$, $C_2-C_6-alkenyl-phenyl$, C2-C6-alkynyl-phenyl, OH, Cl, F, Br, I, CF3, 25 NO_2 , NH₂, CN, COOH, $COO-C_1-C_4-alkyl$, NHCO-C₁-C₄-alkyl, NHCO-phenyl, CONHR⁹, $NHSO_2-C_1-C_4-alkyl$, $NHSO_2-phenyl$, $SO_2-C_1-C_4-alkyl$ alkyl and SO2-phenyl, and

30 R^3 can be NR^7R^8 or a ring such as

5

15

- 99 -

$$-N \longrightarrow N-R^{n} : -N \longrightarrow R^{n} : -$$

- is -C₁-C₆-alkyl, branched or unbranched, which may also carry a phenyl, pyridyl, thienyl, cyclohexyl, indolyl or naphthyl ring which is in turn substituted by a maximum of two R⁶ radicals, and
- R^5 is hydrogen, COOR¹¹ and CO-Z in which Z is $NR^{12}R^{13}$ and

$$-N$$
 $N-R^r$ $N-R^r$ $N-R^r$ $N-R^r$ $N-R^r$ $N-R^r$ and

- R⁶ is hydrogen, C₁-C₄-alkyl, branched or unbranched, -O-C₁-C₄-alkyl, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, -NHCO-C₁-C₄-alkyl, -NHCO-phenyl, -NHSO₂-C₁-C₄-alkyl, -NHSO₂-phenyl, -SO₂-C₁-C₄-alkyl and -SO₂-phenyl, and
- is hydrogen, C₁-C₆-alkyl, linear or branched, and which may be substituted by a phenyl ring which itself may also be substituted by one or two R¹⁰ radicals, and
- 25 is hydrogen, C₁-C₆-alkyl, linear or branched, which may be substituted by a phenyl ring which may itself also be substituted by one or two R¹⁰ radicals, and
- R^9 is hydrogen, C_1 - C_6 -alkyl, branched or unbranched, which may also carry a sub-

stituent R¹⁶, or phenyl, pyridyl, pyrimidyl, pyridazyl, pyrazinyl, pyrazyl, naphthyl, quinolyl, imidazolyl, which may also carry one or two substituents R¹⁴, and

5

10

15

- R^{10} can be hydrogen, C_1-C_4 -alkyl, branched or unbranched, $-0-C_1-C_4$ -alkyl, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, -NHCO-C₁-C₄-alkyl, -NHCO-phenyl, -NHSO₂-C₁-C₄-alkyl, -NHSO₂-phenyl, -SO₂-C₁-C₄-alkyl and -SO₂-phenyl
- R¹¹ is hydrogen, C₁-C₆-alkyl, linear or branched, and which may be substituted by a phenyl ring which may itself also be substituted by one or two R¹⁰ radicals, and
 - R^{12} is hydrogen, $C_1-C_6-alkyl$, branched and unbranched, and

20

$$-N \longrightarrow R^{r} : -N \longrightarrow R^{r} : -N \longrightarrow R^{r}$$

$$-N \longrightarrow R^{r} : -N \longrightarrow R^{r}$$

$$-N$$

25

R¹³ is hydrogen, C₁-C₆-alkyl, branched or unbranched, which may also be substituted by a phenyl ring which may also carry an R¹⁰ radical, and by [lacuna] and

30

R¹⁴ is hydrogen, C₁-C₆-alkyl, branched or unbranched, O-C₁-C₆-alkyl, branched or unbranched, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, or two R¹⁴ radicals may represent a bridge OC(R¹⁵⁾₂O, and

5

20

25

- 101 -

 R^{15} is hydrogen, C_1 - C_6 -alkyl, branched and unbranched, and

R¹⁶ can be a phenyl, pyridyl, pyrimidyl, pyridazyl, pyrazinyl, pyrazyl, pyrrolyl, naphthyl, quinolyl, imidazolyl ring, which may also carry one or two substituents R⁶, and

10 A is $-(CH_2)_m -, -(CH_2)_m -O - (CH_2)_o -,$ $-(CH_2)_o -S - (CH_2)_m -, -(CH_2)_o -SO - (CH_2)_m -,$ $-(CH_2)_o -SO_2 - (CH_2)_m -, -CH = CH -, -C = C -,$ $-CO - CH = CH -, -(CH_2)_o - CO - (CH_2)_m -,$ $-(CH_2)_m - NHCO - (CH_2)_o -, -(CH_2)_m - CONH - (CH_2)_o -,$ $-(CH_2)_m - NHSO_2 - (CH_2)_o -, -NH - CO - CH = CH -,$ $-(CH_2)_m - SO_2NH - (CH_2)_o -, -CH = CH - CONH - and$

R¹-A together are also [lacuna] and

B is phenyl, pyridine, pyrimidine, pyrazine, imidazole and thiazole, and

x is 1, 2 or 3, and

n is a number 0, 1 or 2, and

m, o is, independently of one another, a number 0, 1, 2, 3 or 4.

0050/4896	ς	¢
-----------	---	---

- 102 -

- 2. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where
- 5 B is pyridine or phenyl, and
 - R⁵ is hydrogen, and
- R⁹ hydrogen, C₁-C₆-alkyl, branched or unbranched, 10 which [lacuna] also carry a substituent R¹⁶,
 - R^{16} phenyl which may also carry one or two substituents R^{14} , and
- 15 n 0 and 1, and
 - x 1.
- 3. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where
 - B is pyridine or phenyl, and
 - R^5 is $CONR^{12}R^{13}$, and
- 25
 - R^9 hydrogen, C_1 - C_6 -alkyl, branched or unbranched, which [lacuna] also carry a substituent R^{16} ,
- R^{16} phenyl which may also carry one or two substituents R^{14} , and
 - n 0 and 1, and
 - x 1.
- 35
- 4. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where
 B is pyridine or phenyl, and

- 103 -

R2 is hydrogen

R⁵ is hydrogen, and

5

- R⁹ hydrogen, C₁-C₆-alkyl, branched or unbranched, which [lacuna] also carry a substituent R¹⁶,
- R¹⁶ phenyl which may also carry one or two sub-10 stituents R¹⁴, and
 - n 0 and 1, and

x 1.

15

- 5. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where
 - B is pyridine or phenyl, and

20

- R² is hydrogen
- R^5 is $CONR^{12}R^{13}$, and
- 25 R⁹ hydrogen, C₁-C₆-alkyl, branched or unbranched, which [lacuna] also carry a substituent R¹⁶,
 - R^{16} phenyl which may also carry one or two substituents R^{14} , and

30

n 0 and 1, and

x 1.

35 6. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where $A \qquad \text{is } -(CH_2)_m-, \ -(CH_2)_m-O-(CH_2)_o-,$

$$-(CH_2)_0-S-(CH_2)_m-$$
, $-CH=CH-$, $-C=C-$,

- 104 -

-(CH₂)_m-CONH-(CH₂)_o-,-(CH₂)_m-SO₂NH-(CH₂)_o-, andВ is pyridine or phenyl, and 5 R^2 is hydrogen, and R⁵ is hydrogen, and R⁹ 10 hydrogen, $C_1-C_6-alkyl$, branched unbranched, which may also carry a substituent R¹⁶, and R^{16} phenyl, and 15 0 and 1, and m, n, o 1. 20 7. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where is $-(CH_2)_m-$, $-(CH_2)_m-O-(CH_2)_o-$, Α $-(CH_2)_{o}-S-(CH_2)_{m}-$, -CH=CH-, $-C\equiv C-$, 25 -(CH₂)_m-CONH-(CH₂)_o-,- $(CH_2)_m$ -SO₂NH- $(CH_2)_o$ -, and В is pyridine or phenyl, and 30 R^2 is hydrogen R^5 is CONR¹²R¹³, and

hydrogen, C₁-C₆-alkyl,

stituent R^{16} , and

unbranched, which may also carry a sub-

branched

R¹⁶ phenyl, and

R9

35

- 105 -

m, n, o 0 and 1, and

x 1.

5

- 8. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where
- B is pyridine or phenyl, and

10

- R¹, R² are hydrogen, and
- R⁵ is hydrogen, and
- 15 R^9 hydrogen, C_1 - C_6 -alkyl, branched or unbranched, which may also carry a substituent R^{16} , and
 - R¹⁶ phenyl, and

20

m, n, o 0, and

x 1.

- 25 9. An amide with heterocyclic substituents, of the formula I, as claimed in claim 1, where
 - B is pyridine or phenyl, and
- 30 R^1 , R^2 are hydrogen
 - R^5 is $CONR^{12}R^{13}$, and
- R^9 hydrogen, C_1 - C_6 -alkyl, branched or unbranched, which may also carry a substituent R^{16} , and
 - R¹⁶ phenyl, and

- 106 -

m, n, o 0

x 1.

- 5 10. The use of amides of the formula I as claimed in claims 1-5 for treating diseases.
 - 11. The use of amides of the formula I as claimed in claims 1-5 as inhibitors of cysteine proteases.

10

12. The use as claimed in claim 6 as inhibitors of cysteine proteases such as calpains and cathepsins, in particular calpains I and II and cathepsins B and L.

15

13. The use of amides of the formula I as claimed in claims 1-5 for production as pharmaceuticals for treating diseases in which elevated calpain activities occur.

20

14. The use of amides of the formula I as claimed in claims 1-5 for producing pharmaceuticals for treating neurodegenerative disorders and neuronal damage.

25

- 15. The use as claimed in claim 9 for treating neurodegenerative disorders and neuronal damage induced by ischemia, trauma or massive bleeding.
- 30 16. The use as claimed in claim 10 for treating stroke and craniocerebral trauma.
 - 17. The use as claimed in claim 10 for treating Alzheimer's disease and Huntington's disease.

35

18. The use as claimed in claim 10 for treating epilepsies.

- 107 -

19. The use of compounds of the formula I as claimed in claims 1-5 for producing pharmaceuticals and [sic] treating damage to the heart after cardiac ischemias, damage to the kidneys after renal ischemias, skeletal muscle damage, muscular dystrophies, damage produced by proliferation of smooth muscle cells, coronary vasospasm, cerebral vasospasm, cataracts of the eyes and restenosis of blood vessels after angioplasty.

10

5

- 20. The use of amides of the formula I as claimed in claims 1-5 for producing pharmaceuticals for treating tumors and metastasis thereof.
- 15 21. The use of amides of the formula I as claimed in claims 1-5 for producing pharmaceuticals for treating disorders in which elevated interleukin-1 levels occur.
- 20 22. The use of amides according to claims 1-5 for treating immunological disorders such as inflammations and rheumatic disorders.
- 23. A pharmaceutical preparation for oral, parenteral or intraperitoneal use, comprising at least one amide I as claimed in claims 1-5 per single dose, besides conventional pharmaceutical ancillary substances.

(1)