AutoRec: Autoencoders Meet Collaborative Filtering

Collaborative Deep Learning for Recommender Systems

2021 DSAIL Winter Internship

2022.02.08. Daeyoung Kim

INDEX

- Background
- Introduction
- Model
- Experiments
- Conclusions
- Further discussion

Background

Autoencoder

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Input and output have **same** dimensions
Hidden layer has **smaller** dimensions
-> capture dense, meaningful factors (dimensionality reduction)

Train such that features can be used to **reconstruct** original data

Background

Stacked / Denoising Autoencoder

Stacked Autoencoder

- Autoencoder with multiple hidden layers
- learn weights sequentially using Autoencoder
- use for initializing weights

Denoising Autoencoder

- add noise to input data
- minimize error between clear data and corrupted data

Background

Recommender Systems

Introduction

Deep Learning with Collaborative Filtering

Collaborative Filtering

CTR: interaction between content and ratings performance degrades when auxiliary information is sparse

Deep Learning models

strength: learning features automatically

weakness: learning similarity and implicit relationship between items

Integrate deep learning with CF

Introduction

About Model

AutoRec

apply Autoencoder framework to collaborative filtering method

CDL

probabilistic collaborative filtering method based on SDAE

Jointly performs representation learning and collaborative filtering

Introduction

Contributions

AutoRec

representational & computational advantages, performance improvement

CDL

Extract effective feature representations & capture similarity, implicit relationship simultaneously

A new probabilistic model for deep learning

1st hierarchical Bayesian model: bridge the gap between RS and state-of-the-art deep learning models

Significantly advance the state of the art

AutoRec

Goal

design item-based autoencoder to predict missing ratings

Solve
$$\min_{\theta} \sum_{r \in S} ||r - h(r; \theta)||_2^2$$
 where $h(r; \theta) = f(W \cdot g(Vr + \mu) + b)$

Notation

```
m users, n ratings R \in \mathbb{R}^{m \times n}: user-item rating matrix \mathbf{r}^{(u)} = (R_{u1}, \cdots, R_{un}) \in \mathbb{R}^n: user vector \mathbf{r}^{(i)} = (R_{1i}, \cdots, R_{mi}) \in \mathbb{R}^m: item vector \mathbf{W} \in \mathbb{R}^{d \times k}, \mathbf{V} \in \mathbb{R}^{k \times d}: transformations of encoder, decoder \mathbf{\mu} \in \mathbb{R}^k, \mathbf{b} \in \mathbb{R}^d: biases of encoder, decoder f(\cdot), g(\cdot): activation functions k: dimension of single hidden layer
```

AutoRec

For all items, networks share parameters

Training

- 1. Update parameters only for observed inputs
- 2. Regularize parameters to prevent overfitting

Objective:
$$\min_{\theta} \sum_{i=1}^{n} || \mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta) ||_{0}^{2} + \frac{\lambda}{2} \cdot (|| \mathbf{W} ||_{F}^{2} + || \mathbf{V} ||_{F}^{2})$$

I-AutoRec requires 2mk + m + k parameters

predicted rating for user u and item i:
$$\widehat{R_{ui}} = (h(\mathbf{r}^{(i)}; \widehat{\theta}))_u$$

Comparison

AutoRec	RBM-CF
discriminative model (Autoencoder based)	probabilistic model (RBM based)
minimize RMSE directly	estimate parameters by MLE
gradient-based backpropagation	contrastive divergence
Fewer parameters	More parameters
Embed users or items	Embed both users and items
Nonlinear latent representations are possible	Only linear latent representations

AutoRec 11

CDL

Problem Definition

Given observed ratings and content information, predict missing ratings

Notation

I users, J items, vocabulary size of S

L: number of layers

 $\mathbf{R} = [R_{ij}]_{I \times I}$: rating matrix

 X_c : content information (size: J×S), X_0 : noise-corrupted matrix (size: J×S)

 X_l : output of layer l of SDAE (size: $J \times K_1$)

 $\boldsymbol{W}_{l}, \boldsymbol{b}_{l}$: weight matrix, bias vector of layer l

W⁺: collection of all layers of weight matrices, biases

Stacked Denoising Autoencoders

Given corrupted data X_0 , predict clear input X_c

Figure 2: A 2-layer SDAE with L=4.

Solve optimization problem

$$\min_{\{\mathbf{W}_l\},\{\mathbf{b}_l\}} \|\mathbf{X}_c - \mathbf{X}_L\|_F^2 + \lambda \sum_l \|\mathbf{W}_l\|_F^2$$

where λ : regularization parameter, $||\cdot||_F$: Frobenius norm

Generalized Bayesian SDAE

Assume X_0 and X_c are observed

Procedures

1. For each layer *l* of SDAE,

$$W_{l,*n} \sim N(\mathbf{0}, \lambda_{\omega}^{-1} I_{K_l})$$

$$\boldsymbol{b}_l \sim N(\boldsymbol{0}, \lambda_{\omega}^{-1} \boldsymbol{I}_{K_l})$$

$$X_{l,j*} \sim N(\sigma(X_{l-1,j*}W_l + b_l), \lambda_s^{-1}I_{K_l})$$

2. For each item j, $X_{c,j*} \sim N(X_{L,j*}, \lambda_n^{-1} I_J)$

If $\lambda_s \to \infty$, model degenerates to SDAE

Figure 2: A 2-layer SDAE with L=4.

: first L/2 layers act as encoder

: last L/2 layers act as decoder

Maximize posterior probability <->
Minimize reconstruction error with weight decay

Collaborative Deep Learning

Procedures

1. For each layer l of SDAE,

$$\boldsymbol{W}_{l,*n} \sim N(\boldsymbol{0}, \lambda_{\omega}^{-1} \boldsymbol{I}_{K_l})$$

$$\boldsymbol{b}_l \sim N(\boldsymbol{0}, \lambda_{\omega}^{-1} \boldsymbol{I}_{K_l})$$

$$X_{l,j*} \sim N(\sigma(X_{l-1,j*}W_l + \boldsymbol{b}_l), \lambda_s^{-1}I_{K_l})$$

- 2. For each item j, $X_{c,j*} \sim N(X_{L,j*}, \lambda_n^{-1}I_J)$
- 3. Generate latent vector for item j:

$$\epsilon_j \sim N(\mathbf{0}, \lambda_v^{-1} \mathbf{I}_K) (\epsilon_j)$$
: offset vector)

$$\boldsymbol{v}_j = \boldsymbol{\epsilon}_j + \boldsymbol{X}_{\frac{L}{2},j*}^T$$

4. Generate latent vector for user i:

$$\boldsymbol{u}_i \sim N(\boldsymbol{0}, \lambda_u^{-1} \boldsymbol{I}_K)$$

5. Generate rating for user-item pair (i,j):

$$\boldsymbol{R}_{ij} \sim N(\boldsymbol{u}_i^T \boldsymbol{v}_j, \boldsymbol{C}_{ij}^{-1})$$

-> Using Bayesian SDAE as a component

Notation

$$C_{ij} = \begin{cases} a, & R_{ij} = 1 \\ b, & R_{ij} = 0 \end{cases}$$

 λ_w , λ_n , λ_u , λ_s , λ_v : hyperparameters which control **variances**

 $X_{L/2}$: bridge between ratings and content information

For computational efficiency, take $\lambda_s \rightarrow \infty$

MAP estimates

Maximize joint log-likelihood of $U, V, \{X_l\}, X_c, W^+, R$

$$\begin{split} \mathcal{L} &= -\frac{\lambda_{u}}{2} \sum_{i} \|\mathbf{u}_{i}\|_{2}^{2} - \frac{\lambda_{w}}{2} \sum_{l} (\|\mathbf{W}_{l}\|_{F}^{2} + \|\mathbf{b}_{l}\|_{2}^{2}) \\ &- \frac{\lambda_{v}}{2} \sum_{j} \|\mathbf{v}_{j} - \mathbf{X}_{\frac{L}{2},j*}^{T}\|_{2}^{2} - \frac{\lambda_{n}}{2} \sum_{j} \|\mathbf{X}_{L,j*} - \mathbf{X}_{c,j*}\|_{2}^{2} \\ &- \frac{\lambda_{s}}{2} \sum_{l} \sum_{j} \|\sigma(\mathbf{X}_{l-1,j*}\mathbf{W}_{l} + \mathbf{b}_{l}) - \mathbf{X}_{l,j*}\|_{2}^{2} \\ &- \sum_{i,j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_{i}^{T} \mathbf{v}_{j})^{2}. \end{split}$$

If
$$\lambda_s \to \infty$$
,

$$\mathcal{L} = -\frac{\lambda_{u}}{2} \sum_{i} \|\mathbf{u}_{i}\|_{2}^{2} - \frac{\lambda_{w}}{2} \sum_{l} (\|\mathbf{W}_{l}\|_{F}^{2} + \|\mathbf{b}_{l}\|_{2}^{2})$$

$$-\frac{\lambda_{v}}{2} \sum_{j} \|\mathbf{v}_{j} - f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T}\|_{2}^{2}$$

$$-\frac{\lambda_{n}}{2} \sum_{j} \|f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*}\|_{2}^{2}$$

$$-\sum_{j} \frac{\mathbf{C}_{ij}}{2} (\mathbf{R}_{ij} - \mathbf{u}_{i}^{T} \mathbf{v}_{j})^{2},$$

$$(4)$$

Notation

 $f_e(\cdot, W^+)$: computes encoding of item

 $f_r(\cdot, \mathbf{W}^+)$: f_e + reconstructed content vector of item

Explanation

1: regularization for u, W^+

2: optimize v

3: minimize reconstruction error

4: error of predicted ratings

MAP estimates & Prediction

Update rules

$$\mathbf{u}_{i} \leftarrow (\mathbf{V}\mathbf{C}_{i}\mathbf{V}^{T} + \lambda_{u}\mathbf{I}_{K})^{-1}\mathbf{V}\mathbf{C}_{i}\mathbf{R}_{i}$$

$$\mathbf{v}_{j} \leftarrow (\mathbf{U}\mathbf{C}_{j}\mathbf{U}^{T} + \lambda_{v}\mathbf{I}_{K})^{-1}(\mathbf{U}\mathbf{C}_{j}\mathbf{R}_{j} + \lambda_{v}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T})$$

Learning weights, biases using back-propagation

Gradients of likelihood

$$\nabla \mathbf{w}_{l} \mathcal{L} = -\lambda_{w} \mathbf{W}_{l}$$

$$-\lambda_{v} \sum_{j} \nabla \mathbf{w}_{l} f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} (f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j})$$

$$-\lambda_{n} \sum_{j} \nabla \mathbf{w}_{l} f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) (f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*})$$

$$\nabla_{\mathbf{b}_{v}} \mathcal{L} = -\lambda_{w} \mathbf{b}_{l}$$

$$\nabla_{\mathbf{b}_{l}} \mathcal{L} = -\lambda_{w} \mathbf{b}_{l}$$

$$-\lambda_{v} \sum_{j} \nabla_{\mathbf{b}_{l}} f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} (f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T} - \mathbf{v}_{j})$$

$$-\lambda_{n} \sum_{j} \nabla_{\mathbf{b}_{l}} f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) (f_{r}(\mathbf{X}_{0,j*}, \mathbf{W}^{+}) - \mathbf{X}_{c,j*}).$$

Prediction

D: observed test data

$$E[\mathbf{R}_{ij}|D] \approx E[\mathbf{u}_i|D]^T (E[f_e(\mathbf{X}_{0,j*}, \mathbf{W}^+)^T|D] + E[\epsilon_j|D])$$

Approximation of predicted rating:

$$\mathbf{R}_{ij}^* \approx (\mathbf{u}_j^*)^T (f_e(\mathbf{X}_{0,j*}, \mathbf{W}^{+*})^T + \boldsymbol{\epsilon}_j^*) = (\mathbf{u}_i^*)^T \mathbf{v}_j^*.$$

Graphical Model

Feature learning component (SDAE)

Collaborative filtering component (CTR)

Learn latent representations using **both** components

Degenerated CDL

Representation learning <-> Recommendation

CDL

AutoRec

Experiment Setup

- Baselines: RBM-CF, BiasedMF, LLORMA
- Use Movielens (1M, 10M), Netflix datasets
- default rating of 3 for test users/items without training observations
- 90%-10% train-test sets, hold out 10% of train data for validation
- Repeat 5 times, report average RMSE
- 95% C.I. for RMSE can't exceed 0.003
- Regularization strength(λ) ranges 0.001 to 1000
- Latent dimension(*k*) ranges 10 to 500

AutoRec

Results

	ML-1M	ML-10M
U-RBM	0.881	0.823
I-RBM	0.854	0.825
U-AutoRec	0.874	0.867
I-AutoRec	0.831	0.782
	(a)	

$f(\cdot)$	$g(\cdot)$	RMSE
Identity	Identity	0.872
Sigmoid	Identity	0.852
Identity	Sigmoid	0.831
Sigmoid	Sigmoid	0.836
	(b)	

Q1. Which is better, item- or user-based autoencoding with RBMS or AutoRec?

avg(ratings per item) > avg(ratings per user) -> **low variance** of ratings I-AutoRec performs best

Q2. How does AutoRec performance vary with linear and nonlinear activation functions?

$$h(\mathbf{r};\theta) = f(\mathbf{W} \cdot g(\mathbf{V}\mathbf{r} + \boldsymbol{\mu}) + \boldsymbol{b})$$

Nonlinearity in the **hidden** layer $(g(\cdot))$ is critical $f(\cdot)$: identity, $g(\cdot)$: sigmoid shows best performance -> used for all other experiments

Results

Figure 2: RMSE of I-AutoRec on Movielens 1M as the number of hidden units k varies.

	ML-1M	ML-10M	Netflix
BiasedMF	0.845	0.803	0.844
I-RBM	0.854	0.825	-
U-RBM	0.881	0.823	0.845
LLORMA	0.833	0.782	0.834
I-AutoRec	0.831	0.782	0.823

Q3. How does performance of AutoRec vary with the number of hidden unit?

Performance increases with more hidden units Use k = 500 for all other experiments

Q4. How does AutoRec perform against all baselines?

AutoRec performs best in most experiments

Q5. Do deep extensions of AutoRec help?

Using 3 hidden layers, RMSE reduces from 0.831 to 0.827 **potential** for further improvement

Datasets

CiteULike

allows users to create their own collections of articles

citeulike-t is relatively sparse than citeulike-a

Netflix

- movie rating dataset

Choose top S discriminative words by tf-idf values (S: 8000, 20000, 20000)

Datasets	users	items	ratings
citeulike-a	5551	16980	204987
citeulike-t	7947	25975	134860
Netflix	407261	9228	15348808

Experiment setup

Randomly select P items associated with each user P=1: sparse, P=10: dense

Evaluation metrics

$$recall@M = \frac{\text{number of items that the user likes among the top M}}{\text{total number of items that the user likes}}$$

$$\mathbf{mAP} = \frac{\sum_{q=1}^{Q} AveP(q)}{Q} \left(AveP = \frac{\sum_{k=1}^{n} P(k) \times rel(k)}{number\ of\ relevant\ documents} \right)$$

Baselines

CMF

SVDFeature

DeepMusic

CTR

Model Settings

Masking noise level: 0.3

Dropout rate: 0.1 (when L > 2)

$$a = 1, b = 0.01$$

$$K_L = 200$$

$$K = 50$$

Quantitative Comparison

Comparing CDL with CTR, results show **significant** performance boost for all experiments

Figure 4: Performance comparison of CDL, CTR, DeepMusic, CMF, and SVDFeature based on recall@M for datasets citeulike-a, citeulike-t, and Netflix in the sparse setting. A 2-layer CDL is used.

Figure 5: Performance comparison of CDL, CTR, DeepMusic, CMF, and SVDFeature based on recall@M for datasets citeulike-a, citeulike-t, and Netflix in the dense setting. A 2-layer CDL is used.

Quantitative Comparison

Table 1: mAP for three datasets

	citeulike-a	citeulike-t	Netflix
CDL	0.0514	0.0453	0.0312
CTR	0.0236	0.0175	0.0223
DeepMusic	0.0159	0.0118	0.0167
CMF	0.0164	0.0104	0.0158
SVDFeature	0.0152	0.0103	0.0187

mAP in sparse settings

Table 2: Recall@300 in the sparse setting (%)

#layers	1	2	3
citeulike-a	27.89	31.06	30.70
citeulike-t	32.58	34.67	35.48
Netflix	29.20	30.50	31.01

Table 3: Recall@300 in the dense setting (%)

#layers	1	2	3
citeulike-a	58.35	59.43	59.31
citeulike-t	52.68	53.81	54.48
Netflix	69.26	70.40	70.42

CDL shows best performance, especially effective for sparse datasets

Deeper model performs better (beware of overfitting issues)

Quantitative Comparison

Figure 6: Performance of CDL based on recall@M for different values of λ_n on *citeulike-t*. The left plot is for L=2 and the right one is for L=6.

Extreme values of λ_n degrade performance

 λ_n is extremely large : model degenerates to SDAE, CTR -> no interaction

 λ_n is extremely small : decoder vanishes -> encoder easily overfits the latent item vectors

Qualitative Comparison

Table 4: Interpretability of the latent structures learned

	user I (CDL)	in user's lib
	 search, image, query, images, queries, tagging, index, tags, searching, tag 	
top 3 topics	social, online, internet, communities, sharing, networking, facebook, friends, ties, participation	
	collaborative, optimization, filtering, recommendation, contextual, planning, items, preferences	
	1. The structure of collaborative tagging Systems	yes
	2. Usage patterns of collaborative tagging systems	yes
	3. Folksonomy as a complex network	no
	4. HT06, tagging paper, taxonomy, Flickr, academic article, to read	yes
10 111	5. Why do tagging systems work	yes
top 10 articles	6. Information retrieval in folksonomies: search and ranking	no
	7. tagging, communities, vocabulary, evolution	yes
	8. The complex dynamics of collaborative tagging	yes
	9. Improved annotation of the blogosphere via autotagging and hierarchical clustering	no
	10. Collaborative tagging as a tripartite network	yes
	user I (CTR)	in user's lib
	1. social, online, internet, communities, sharing, networking, facebook, friends, ties, participation	in user s no
top 3 topics	2. search, image, query, images, queries, tagging, index, tags, searching, tag	
top a topics	2. search, image, query, images, queries, tagging, index, tags, searching, tag 3. feedback, event, transformation, wikipedia, indicators, vitamin, log, indirect, taxonomy	
	1. HT06, tagging paper, taxonomy, Flickr, academic article, to read	yes
	2. Structure and evolution of online social networks	no
	 Group formation in large social networks: membership, growth, and evolution 	no
	4. Measurement and analysis of online social networks	no
top 10 articles	5. A face(book) in the crowd: social searching vs. social browsing	no
	6. The strength of weak ties	no
	7. Flickr tag recommendation based on collective knowledge	no
	8. The computer-mediated communication network	no
	Social capital, self-esteem, and use of online social network sites: A longitudinal analysis	no
	 Increasing participation in online communities: A framework for human-computer interaction 	no
	user II (CDL)	in user's lib
	1. flow, cloud, codes, matter, boundary, lattice, particles, galaxies, fluid, galaxy	
top 3 topics	mobile, membrane, wireless, sensor, mobility, lipid, traffic, infrastructure, monitoring, ad	
	3. hybrid, orientation, stress, fluctuations, load, temperature, centrality, mechanical, two-dimensional, heat	
	1. Modeling the flow of dense suspensions of deformable particles in three dimensions	yes
	2. Simplified particulate model for coarse-grained hemodynamics simulations	yes
	3. Lattice Boltzmann simulations of blood flow: non-newtonian rheology and clotting processes	yes
	4. A genome-wide association study for celiac disease identifies risk variants	yes
	5. Efficient and accurate simulations of deformable particles	yes
top 10 articles	6. A multiscale model of thrombus development	yes
	7. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery	yes
	8. Lattice Boltzmann modeling of thrombosis in giant aneurysms	yes
	9. A lattice Boltzmann simulation of clotting in stented aneursysms	yes
	10. Predicting dynamics and rheology of blood flow	yes
	user II (CTR)	in user's lib
	1. flow, cloud, codes, matter, boundary, lattice, particles, galaxies, fluid, galaxy	III date a ne
top 3 topics	2. transition, equations, dynamical, discrete, equation, dimensions, chaos, transitions, living, trust	
op a copies	3. mobile, membrane, wireless, sensor, mobility, lipid, traffic, infrastructure, monitoring, ad	
	1. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery	1000
	2. The metallicity evolution of star-forming galaxies from redshift 0 to 3	yes
	3. Formation versus destruction: the evolution of the star cluster population in galaxy mergers	no
		100
	4. Clearing the gas from globular clusters	no
top 10 articles	5. Macroscopic effects of the spectral structure in turbulent flows	no
	6. The WiggleZ dark energy survey	no
	7. Lattice-Boltzmann simulation of blood flow in digitized vessel networks	no
	8. Global properties of 'ordinary' early-type galaxies	no
		no yes

Precision Comparison (P=1, sparse)

	CDL	CTR
User I	70%	10%
User II	100%	30%

CDL captures the key points of articles, user preferences more accurately (User I)

CDL can model the co-occurrence and relations of words better (User II)

CDL

Qualitative Comparison

Table 5: Example user with recommended movies Movies in the training set: Moonstruck, True Romance, Johnny English, American Beauty, The User III Princess Bride, Top Gun, Double Platinum, Rising Sun, Dead Poets Society, Waiting for Guffman # training samples Swordfish Pulp Fiction Best in Snow A Fish Called Wanda A Clockwork Orange Chocolat Terminator 2 Being John Malkovich Good Will Hunting Monty Python and the Holy Grail A Clockwork Orange Raising Arizona Sling Blade Being John Malkovich Top 10 recommended Sling Blade movies by CTR Bridget Jones's Diary Swordfish Raising Arizona Raising Arizona A Fish Called Wanda The Graduate A Streetcar Named Desire Saving Grace Swordfish The Untouchables The Graduate Tootsie The Full Monty Monster's Ball Saving Private Rvan # training samples Pulp Fiction Good Will Hunting The Big Lebowski Best in Show Pulp Fiction The Usual Suspect The Big Lebowski A Few Good Men Kill Bill Top 10 recommended Raising Arizona Momento Monty Python and the Holy Grail movies by CDL The Big Chill The Big Lebowski Pulp Fiction Tootsie One Flew Over the Cuckoo's Nest | The Matrix Chocolat Sense and Sensibility As Good as It Gets Sling Blade Goodfellas The Usual Suspect Swinger The Matrix CaddyShack

Precision Comparison (P=10, dense)

	CDL	CTR
2 samples	30%	20%
4 samples	50%	20%
10 samples	90%	50%

CDL provides more accurate recommendation

Complexity Analysis

Notations

 u_i : latent user vector

 v_i : latent item vector

K: dimension of learned representation

I, J: number of users, items

S: size of vocabulary

 K_1 : dimension of output in the 1st layer

complexity of updating u_i : $O(K^2J + K^3)$ complexity of updating v_j : $O(K^2I + K^3 + SK_1)$ complexity of updating all weights, biases: $O(ISK_1)$

complexity of complete epoch:

$$O(K^2I^2 + K^2J^2 + K^3 + JSK_1)$$

Update rules

$$\mathbf{u}_{i} \leftarrow (\mathbf{V}\mathbf{C}_{i}\mathbf{V}^{T} + \lambda_{u}\mathbf{I}_{K})^{-1}\mathbf{V}\mathbf{C}_{i}\mathbf{R}_{i}$$

$$\mathbf{v}_{j} \leftarrow (\mathbf{U}\mathbf{C}_{j}\mathbf{U}^{T} + \lambda_{v}\mathbf{I}_{K})^{-1}(\mathbf{U}\mathbf{C}_{j}\mathbf{R}_{j} + \lambda_{v}f_{e}(\mathbf{X}_{0,j*}, \mathbf{W}^{+})^{T})$$

Conclusions

AutoRec

- apply Autoencoder for collaborative filtering
- efficient, effective model
- Nonlinear latent representations are available

CDL

- 1st hierarchical Bayesian model
- Bridge the gap between RS and state-of-the-art deep learning models
- Scalable model
- State-of-the-art performance by jointly performing representation learning and collaborative filtering

AutoRec & CDL 31

THANK YOU