Zbiornik z mieszaniem

(zadanie 2)

Mieszanie wody gorącej (T_H, F_H) z zimną (T_C, F_C) z dopływem zakłócającym (T_D, F_D).

$$\begin{cases} \frac{dV}{dt} = F_H + F_C + F_D - F(h) \\ V\frac{dT}{dt} = F_H \cdot T_H + F_C \cdot T_C + F_D \cdot T_D - (F_H + F_C + F_D) \cdot T \\ F(h) = \alpha \sqrt{h}, \quad V(h) = C \cdot h^3, \quad T_{out}(t) = T(t - \tau), \quad F_C(t) = F_{Cin}(t - \tau_C) \end{cases}$$

Stałe:

$$C = 6, \alpha = 9;$$

Punkt pracy:

$$T_C = 19 \, ^{\circ}\text{C}, T_H = 81 \, ^{\circ}\text{C}, T_D = 42 \, ^{\circ}\text{C},$$

$$F_C = 31 \text{ cm}^3/\text{s}, F_H = 19 \text{ cm}^3/\text{s}, F_D = 14 \text{ cm}^3/\text{s},$$

$$\tau_C = 21000 \text{ s}, \tau = 6000 \text{ s}, h = 50,57 \text{ cm}, T = 42,44 \text{ °C};$$

Wielkości regulowane: h, T_{out} ;

Wielkości sterujące: F_H , F_{Cin} .

Regulacja wokół punktu pracy, przy zmianach wartości zadanych i zakłóceń.

Algorytm: MPCS