Lecture 9: Data Visualization (base R)

Harris Coding Camp – Standard Track

Summer 2022

Data Visualization: Motivation

Suppose we want to know the following info:

- ▶ What is the annual housing sales in Texas over time?
- ► Can we learn about the relevant housing prices of one city to another in Texas?

We probably want info about the *average* of housing price, how much the price *varies* over time, and info about the *extremes*

Data Visualization: Motivation

Is simply looking at all these data helpful?

_	city	year	month	sales	volume	median	listings	inventory	date
171	Abilene	2014	3	165	21615979	112400	929	5.1	2014.16
172	Abilene	2014	4	178	25070931	124500	965	5.4	2014.25
173	Abilene	2014	5	191	26615130	129300	1001	5.7	2014.33
174	Abilene	2014	6	230	34398506	135200	1023	5.8	2014.41
175	Abilene	2014	7	231	35861350	145800	1033	5.8	2014.50
176	Abilene	2014	8	203	29671329	129200	1024	5.8	2014.58
177	Abilene	2014	9	201	30904319	135900	1012	5.8	2014.66
178	Abilene	2014	10	190	25431388	122400	987	5.6	2014.75
179	Abilene	2014	11	158	24120554	132200	941	5.3	2014.83
180	Abilene	2014	12	165	23959468	130000	823	4.6	2014.91
181	Abilene	2015	1	158	23486998	134100	801	4.4	2015.00
182	Abilene	2015	2	151	19834263	126500	767	4.1	2015.08
183	Abilene	2015	3	198	31869437	136800	821	4.4	2015.16
184	Abilene	2015	4	201	28301159	129600	891	4.7	2015.25
185	Abilene	2015	5	199	31385757	144700	919	4.8	2015.33
186	Abilene	2015	6	260	41396230	141500	965	5.0	2015.41
187	Abilene	2015	7	268	45845730	148700	986	5.0	2015.50
188	Amarillo	2000	1	102	8860000	80000	972	5.3	2000.00
189	Amarillo	2000	2	147	13875000	78300	937	5.1	2000.08
190	Amarillo	2000	3	201	17930000	74800	995	5.5	2000.16
191	Amarillo	2000	4	176	16955000	87700	985	5.5	2000.25
192	Amarillo	2000	5	198	19420000	81100	1020	5.6	2000.33
193	Amarillo	2000	6	206	20035000	84100	1055	5.9	2000.41
194	Amarillo	2000	7	190	20430000	94300	1193	6.8	2000.50
195	Amarillo	2000	8	242	25995000	95300	1208	6.6	2000.58
196	Amarillo	2000	9	158	16000000	91000	1248	6.9	2000.66
197	Amarillo	2000	10	165	16810000	89000	1191	6.7	2000.75
198	Amarillo	2000	11	133	13955000	87300	1174	6.7	2000.83
199	Amarillo	2000	12	158	15800000	88300	1092	6.3	2000.91
200	Amarillo	2001	1	134	14445000	89000	1087	6.2	2001.00
201	Amarillo	2001	2	157	15345000	87100	1037	5.9	2001.08
202	Amarillo	2001	3	187	19260000	86300	1030	5.9	2001.16
203	Amarillo	2001	4	199	21740000	93200	1055	6.0	2001.25
204	Amarillo	2001	5	225	22225000	88300	1064	5.9	2001.33
205	A a will a	2001	_	242	35135000	01300	1003		2001 41

Data Visualization: Motivation

What if we make a plot of annual housing sales over time. . .

Data Visualization: Introduction

- ▶ Be able to plot in base R
- Know what types of figures you want
- Use plots to gain information
 - graphs, including axes, must be labeled properly to allow readers to understand the visualization with ease
 - variable scales should be portrayed accurately
 - graphs should be as intuitive as possible

Data Visualization: Introduction

Two main frameworks which create graphics in R: The base R framework, and the tidyverse/ggplot framework

- ▶ base R: consists of about 30 packages that are always loaded automatically when we open R
- It is the oldest way to generate visualizations in R
- base R can and is still used to create visualizations, though most visualizations are now generated using the tidyverse/ggplot framework (more details in Lecture 10)

Getting started

First, let's load the data set and call it pdat¹. The data set contains:

- ▶ Date: the year when a text was written
- ► Genre: the genre of the text
- ► Text: the name of the text
- ▶ Prepositions: the relative frequency of prepositions in the text
- Region: the region in which the text was written
- GenreRedux collapses the existing genres into five main categories (Conversational, Religious, Legal, Fiction, and NonFiction)
- DateRedux collapses the dates when the texts were composed into five periods (1150-1499, 1500-1599, 1600-1699, 1700-1799, and 1800-1913)

¹For more details, see https://ladal.edu.au/introviz.html

Getting started

Let's look at the data (first 15 rows):

Date	Genre	Text	Prepositions	Region	GenreRedux	DateRedux
1,736	Science	albin	166.01	North	NonFiction	1700-1799
1,711	Education	anon	139.86	North	NonFiction	1700-1799
1,808	PrivateLetter	austen	130.78	North	Conversational	1800-1913
1,878	Education	bain	151.29	North	NonFiction	1800-1913
1,743	Education	barclay	145.72	North	NonFiction	1700-1799
1,908	Education	benson	120.77	North	NonFiction	1800-1913
1,906	Diary	benson	119.17	North	Conversational	1800-1913
1,897	Philosophy	boethja	132.96	North	NonFiction	1800-1913
1,785	Philosophy	boethri	130.49	North	NonFiction	1700-1799
1,776	Diary	boswell	135.94	North	Conversational	1700-1799
1,905	Travel	bradley	154.20	North	NonFiction	1800-1913
1,711	Education	brightland	149.14	North	NonFiction	1700-1799
1,762	Sermon	burton	159.71	North	Religious	1700-1799
1,726	Sermon	butler	157.49	North	Religious	1700-1799
1,835	PrivateLetter	carlyle	124.16	North	Conversational	1800-1913

Simplest plot code structure

Understanding plot(): Scatter plot

Let's get started! plot() tells R to prepare to make a plot.

The simplest graph is a *scatter* or *dot plot*. Scatter plots are used when the graph is set up to display the relationship between two variables.

```
plot(Prepositions ~ Date, # plot Prepositions by Date
    type = "p", # plot type "p" (points)
    data = pdat, # data from pdat
    ylab = "Prepositions (Frequency)", # add y-axis label
    xlab = "Date (year of composition)", # add x-axis label
    main = "Prepositions per Year" # add title
)
```

Understanding plot(): Scatter plot

Understanding plot(): Scatter plot + Vertical lines

Often, we may include more info by adding some vertical lines to a plot:

Syntax: abline(v = [number], <other options>)

```
plot(Prepositions ~ Date, # plot Prepositions by Date
   type = "p", # plot type "p" (points)
    data = pdat, # data from pdat
    ylab = "Prepositions (frequency)", # add y-axis label
    xlab = "Date (year of composition)", # add x-axis label
    main = "Prepositions per Year" # add title
abline(
                   # add a line
 v = c(1500, 1700), # draw two v (vertical) lines
 col=c("blue", "red"), # define line colors
 lty=c(1,2),
           # define line types
 lwd=c(1,3) # define line widths
```

Understanding plot(): Scatter plot + Vertical lines

Understanding plot(): Scatter plot + Horizontal lines

...or by adding some horizontal lines to a plot:

Syntax: abline(h = [number], <other options>)

```
plot(Prepositions ~ Date, # plot Prepositions by Date
   type = "p", # plot type "p" (points)
    data = pdat, # data from pdat
    ylab = "Prepositions (frequency)", # add y-axis label
    xlab = "Date (year of composition)", # add x-axis label
    main = "Prepositions per Year" # add title
abline(
                   # add a line
 h = c(100, 160), # draw two h (horizontal) lines
 col=c("blue", "red"), # define line colors
 lty=c(1,2),
           # define line types
 lwd=c(1,3) # define line widths
```

Understanding plot(): Scatter plot + Horizontal lines

Understanding plot(): Scatter plot + tendency line

We may consider add a linear (regression) line to the scatter plot to see the tendency, and change the color of the points:

Syntax: abline(lm(df_name\$y ~ df_name\$x), <other options>)

```
plot(Prepositions ~ Date, # plot Prepositions by Date
    type = "p", # plot type p (points)
    data = pdat, # data from pdat
    ylab = "Prepositions (Frequency)", # add y-axis label
    xlab = "Date (year of composition)", # add x-axis label
    main = "Prepositions per Year", # add title
    pch = 20, # use point symbol 20 (filled circles)
    col = DateRedux # define colors by DateRedux
abline(
                                  # add a line
 lm(pdat$Prepositions ~ pdat$Date), # draw line of linear model (lm)
 col="red"
                                  # define line color as red
```

Understanding plot(): Scatter plot + tendency line

Try it yourself

1. Use the code below to load the data set and call it dta9_1.

```
dta9_1 <-
base::readRDS(url("https://slcladal.github.io/data/d03.rda","rb"))</pre>
```

- Take a look at dta9_1 how many variables (columns) and observations (rows) are included?
- 3. Find the mean and standard deviation of Variable1 and Variable2.
- Then, create a scatter plot showing Variable1 on the x-axis and Variable2 on the y-axis. You may change the color of the points.
- 5. Finally, add a linear tendency line. By eyeballing the plot, can you determine the linear relationship between the two variables?

barplot(): Bar plot

Bar plot displays frequency information across categorical variable levels.

barplot() takes a table with frequency counts as its main argument. As before, we can also specify axes labels and a title. We specify text, grids, and boxes separately after barplot().

```
barplot(table(pdat$DateRedux),
                                      # plot Frequency by DateRedux
    ylab = "Frequency",
                                   # add y-axis label
    xlab = "Period of composition", # add x-axis label
    main = "bar plot in base R", # add title
     col = c("grey", "pink", "green", "lightgrey", "steelblue"),
                                      # define color of each bar
    ylim = c(0, 250)
                                      # define y-axis limits
text(seq(0.7, 5.5, 1.2),
                                      # add label positions (x-axis)
    table(pdat$DateRedux)+10,
                                      # add label positions (y-axis)
    table(pdat$DateRedux))
                                      # add labels
box()
                                      # a.d.d. box
```

barplot(): Bar plot

barplot(): Grouped bar plot

To create grouped bar plots, we tabulate the variables that we are interested in (e.g. Region)

```
barplot(table(pdat$DateRedux, pdat$Region), # plot Frequency
                                           # by DateRedux and Region
       beside = T,
                                           # bars beside each other
       vlab = "Frequency",
                                    # add y-axis label
       xlab = "Period of composition", # add x-axis label
       main = "grouped bar plot in base R", # add title
       col = c("grey", "pink", "green", "lightgrey", "steelblue"),
                                           # define color of each bar
       ylim = c(0, 250)
                                           # define y-axis limits
text(c(seq(1.5, 5.5, 1.0), seq(7.5, 11.5, 1.0)), # add label positions
    table(pdat$DateRedux, pdat$Region)+10, # add label positions
    table(pdat$DateRedux, pdat$Region))
                                       # add labels
legend("topleft", names(table(pdat$DateRedux))) # add legend
box()
                                               # add box
```

barplot(): Grouped bar plot

Boxplots show the relationships between categorical and numeric variables.

They are very useful because they not only provide measures of central tendency (e.g. median) but also offer info about the distribution (e.g. 1st and 3rd quartile, min, max) of the data.

boxplot(Prepositions ~ DateRedux, data = pdat)

We can change the color of the borders and/or fill colors in each box:

 First, load the dataset weight_chart.txt and give it a name (e.g. weight_chart). Don't forget to change the working directory if needed! Then, take a look at the dataset.

```
# read the space separated dataframe
weight_chart <- read.delim("weight_chart.txt")
weight_chart</pre>
```

2. Then, try to replicate the plot in the next slide by modifying the following code. Hint: When choosing type, use "b" (which means *both* line and points).

1. First, load the dataset and give it a name (e.g. pdat).

Then, try to replicate the plot in the next slide by modifying the following code.

 Use the dataset pdat and try to replicate the plot in the next slide by modifying the following code. For the color of each box, you can choose whichever you want.

```
boxplot(Prepositions ~ ???, data = ???,
    col = ???
```


Appendix: Histogram

It summarizes numeric variables by showing their distribution across bins.

Appendix: Density Plot

It is a smoothed version of the histogram and is used in the same concept.

```
plot(density(pdat$Prepositions),
     xlab = "Prepositions (per 1,000 words)", main = "")
```


Appendix: Line Plot

It is particularly useful in time series or finance.

```
plot(pdat$Prepositions,
    type = "l",
    ylab = "Prepositions", main = "")
```


Recap

- Visualizing our data can help lead to powerful insights between variable relationships
 - Making quick plots helps us understand data and makes us aware of data issues
- We've learned how to make commonly used plots, including:
 - scatter plots (with auxiliary lines)
 - bar plots
 - box plots
- There are many ways you can visualize your data
 - ► We can even use ggplot() to generate similar plots more conveniently! (more details in Lecture 10)