ABSTRACT

The modern healthcare infrastructure for organ donation and transplantation faces a wide spectrum of challenges, encompassing both technical and non-technical dimensions. These challenges manifest across various operational stages such as donor registration, matching of donors and recipients, validation of medical eligibility, surgical organ retrieval, transportation logistics, and the final transplantation procedure. Each step is tightly governed by legal regulations, ethical guidelines, medical standards, and data privacy laws. Consequently, the need for a robust, secure, and transparent end-to-end system is paramount to ensure fairness, traceability, and trust throughout the entire process.

Traditional organ transplantation systems are predominantly centralized, relying on governmental bodies or third-party institutions to maintain donor-recipient databases and manage allocation decisions. However, these centralized systems are prone to data manipulation, lack of transparency, systemic bias, operational inefficiencies, and even fraud. Furthermore, patients and their families often feel excluded from the process due to the lack of visibility and real-time access to information, which can erode public confidence and deter participation in organ donation programs.

To address these critical shortcomings, we introduce a blockchain-based decentralized solution built on a private Ethereum network. Blockchain, by design, offers immutability, distributed consensus, and transparent ledger capabilities—features that are ideally suited for managing sensitive and high-stakes processes like organ donation and transplantation.

Our system leverages smart contracts—autonomous scripts deployed on the Ethereum blockchain—to automate key operations such as:

- Donor registration and verification, with cryptographic security.
- Real-time donor-recipient matching, based on medical criteria, urgency, and geographical proximity.
- Consent management, ensuring that the donor's and family's intentions are honoured.
- Organ transport tracking, with tamper-proof audit logs.
- Automated alerts and validations, to reduce manual errors and delays.

We also designed and implemented six specialized algorithms that govern different functional modules of the system. These include matching algorithms optimized for multi-factor compatibility, validation routines for clinical eligibility, transaction verification, route optimization for organ delivery, and more. Each algorithm was rigorously developed, tested, and validated through simulation scenarios and stress tests to ensure their effectiveness in real-world conditions.

To evaluate the robustness and practicality of the proposed system, we performed a thorough analysis covering security, privacy, and confidentiality. The system adheres to major compliance standards such as GDPR and HIPAA, protecting sensitive health data while allowing traceability and accountability. Additionally, our solution was benchmarked against existing centralized platforms, showing significant improvements in transparency, processing time, and resistance to manipulation or single points of failure.

In the spirit of open-source collaboration and academic contribution, we have made our complete smart contract codebase and implementation details available on GitHub. This allows researchers, developers, and public health organizations to review, adopt, and enhance the system for broader use, potentially scaling it across regions or integrating it with national health services.

Ultimately, this project demonstrates how blockchain technology can revolutionize the organ donation landscape, offering a future-ready solution that is fair, efficient, and worthy of the trust that such life-critical processes demand.

TABLE OF CONTENTS

	ABSTRACT	ì	
	TABLE OF CONTENTS	ii	
	LIST OF FIGURES	iv	
1.	INTRODUCTION	1	
2.	LITERATURE SURVEY	2	
3.	SYSTEM ANALYSIS	6	
	3.1 EXISTING SYSTEM	6	
	3.2 DISADVANTAGES OF EXISTING SYSTEM	6	
	3.3 PROPOSED SYSTEM	6	
	3.4 ADVANTAGES OF PROPOSED SYSTEM	7	
	3.5 LIMITATIONS OF PROPOSED SYSTEM	7	
4.	SYSTEM STUDY	9	
	4.1 FEASIBILITY STUDY	9	
	4.1.1 TECHNICAL FEASIBILITY	9	
	4.1.2 OPERATIONAL FEASIBILITY	10	
	4.1.3 ECONOMIC FEASIBILITY	11	
5.	SYSTEM REQUIREMENTS	13	
	5.1 HARDWARE REQUIREMENTS	13	
	5.2 SOFTWARE REQUIREMENTS	13	
	5.3 SOFTWARE ENVIRONMENT	14	
6.	SYSTEM ARCHITECTURE & DESIGN	24	
	6.1 SYSTEM ARCHITECTURE	24	
	6.2 SYSTEM DESIGN	30	
	6.3 MODULES	36	
7.	IMPLEMENTATION	38	
8.	SCREENSHOTS	51	
9.	SYSTEM TESTING	66	
10	10. CONCLUSION		
11	11. REFERENCES		
12	RIRLIOGRAPHY 75		

LIST OF FIGURES

Parti	culars	Page No.
Fig.6.1	Organ donation and transplantation flow chart.	24
Fig.6.2	A High-Level System Architecture of the Proposed	
	Blockchain-Based Solution for Organ Donation	
	and Transplantation.	25
Fig.6.3	Sequence diagram showing interactions among	
	the participants and organ donation smart contract.	27
Fig.6.4	Sequence diagram showing interactions among the	
	participants and organ transplantation smart contract.	29
Fig.6.5	UseCaseDiagram(User)	31
Fig.6.6	UseCaseDiagram(Admin)	31
Fig.6.7	UseCaseDiagram(Hospital)	31
Fig.6.8	3 Class Diagram	32
Fig.6.9	SequenceDiagram(User)	33
Fig.6.1	0 SequenceDiagram(Hospitals)	33
Fig.6.1	1 Sequence Diagram(Admin)	33
Fig6.1	2 Activity Diagram(User)	34
Fig.6.1	3 Activity Diagram(Hospital)	34
Fig.6.1	4 Activity Diagram(Admin)	34
Fig.6.1	5 DeploymentDiagram1	35
Fig.6.1	6 DeploymentDiagram2	35
Fig.8.1	Landing page 1	51
Fig.8.2	Landing page 2	51
Fig.8.3	Footer	52
Fig.8.4	User Registration Form	52
Fig.8.5	User Registration Successful	53
Fig.8.6	User Login	53
Fig.8.7	User Login Successful	54
Fig.8.8	3 User Dashboard	54
Fig.8.9	User Organ Donation Application	55
Fig.8.1	0 User Doner Status	55

Fig.8.11 User Profile	56
Fig.8.12 User Feedback	56
Fig.8.13 Hospital Login	57
Fig.8.14 Hospital Login Successful	57
Fig.8.15 Hospital Dashboard	58
Fig.8.16 Hospital Registered Donors	58
Fig.8.17 Hospital Registered View	59
Fig.8.18 Hospital Available Donors	59
Fig.8.19 Admin Login	60
Fig.8.20 Admin Login Successful	60
Fig.8.21 Admin Dashboard	61
Fig.8.22 Pending Users Dashboard	61
Fig.8.23 All Users Dashboard	62
Fig.8.24 Organ Donor's Dashboard	62
Fig.8.25 Verify Application	63
Fig.8.26 Data is Valid	63
Fig.8.27 Verified Through Blockchain	64
Fig.8.28 Issued Death Certificate	64
Fig.8.29 Sentiment Analysis	65
Fig.8.30 Sentiment Analysis Graph	65
Fig 9.1 Software Testing	66