Московский Физико-Технический Институт (государственный университет)

Работа 4.3.2.

Цель работы:

изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются:

оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Описание работы

Теоретическое введение

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции $n\ (m\ll 1).$

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1. Зная положение дифракционных макси-

Рис. 1: Дифракция световых волн на акустической решетке

мумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость

 θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Схема установки. Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива F=30 см, одно деление винта микроскопа составляет 20 мкм, полоса пропускания фильтра $\lambda=6400\pm200$ Å.

Ход работы

Определение скорости ультразвука по дифракционной картине

- 1. Соберем схему согласно рис.2 и настроим ее так, чтобы в объективе была видна дифракционная картина:
- 2. Измерим положения x_m шести-восьми дифракционных максимумов с помощью поперечного микрометрического винта микроскопа, повторим измерения для 3-4-х частот в диапазоне от одного до 6-ти М Γ ц.

$$f=1,152 \,\mathrm{M}\Gamma$$
ц

m	3	2	1	0	-1	-2	-3
x, MKM	1184	1036	888	744	600	424	268

$$f=3,946 \,\mathrm{M}\Gamma$$
ц

Рис. 3: Изображение дифракционных полос в объективе

m	-2	-1	0	1	2
x, MKM	112	592	1120	1628	2140

$$f=1,812$$
 М Γ ц

m	-2	-1	0	1	2
x, MKM	240	480	696	992	1176

$$f=4,6\ \mathrm{M}\Gamma$$
ц

m	-1	0	1	
x, mkm	148	696	1316	

$$f=6,16$$
 МГц

m	-1	0	1	
x, MKM	364	1184	2012	

3. Построим графики зависимости $x_m/m = \triangle x_m/\triangle m$ для каждой частоты. Получим линейные зависимость вида y=ax+b, в нашем случае $x_m/m=a$:

$$f=1,152~{
m M}\Gamma{
m H}\Rightarrow a=152,1\pm2,1~{
m mkm}$$
 $f=3,946~{
m M}\Gamma{
m H}\Rightarrow a=509,2\pm3,9~{
m mkm}$ $f=1,812~{
m M}\Gamma{
m H}\Rightarrow a=238,4\pm8,4~{
m mkm}$ $f=4,6~{
m M}\Gamma{
m H}\Rightarrow a=584\pm20~{
m mkm}$ $f=6,16~{
m M}\Gamma{
m H}\Rightarrow a=842\pm2,3~{
m mkm}$

Зависимость координаты x_m от порядка m2 500 = 1,152 МГц = 3,946 МГц 2 000 = 1,812 МГц f = 4,6 MГцf = 6,16 МГц 1 500 × 1 000 500 2 -3 3 0 1 m

Рис. 4: Графики зависимости x_m/m

4. Найдем длину Л УЗ-волны по формуле:

$$\Lambda = \frac{m}{l_m} F \lambda = \frac{F\lambda}{a},$$

где a=a(f), а $\lambda=640\pm20$ мкм и F=0,3 м. Построим таблицу и график по получившимся данным:

Λ , MKM	228	329	377	807	1263
σ_{Λ} , MKM	2	11	3	28	17
$1/\nu$, MKC	0,1623	0,2174	0.2534	0,5519	0,8681

Рис. 5: Зависимость длины УЗ-волны от частоты

В итоге получим зависимость вида y = ax + b, где $a = 1452 \pm 53$. Зная, что:

$$v = \Lambda * \nu = \frac{\Lambda}{1/\nu},$$

получаем, что a=v, где v - скорость ультразвуковых волн в жилкости и она равна:

$$v = 1452 \pm 53 \, \mathrm{m/c}$$

Для сравнения, табличное значение составляет v = 1490 м/c.

Определение скорость ультразвука методом темного поля

5. Для перехода к методу темного поля отодвинем микроскоп от щели и разметим в промежутке между ними дополнительную линзу. Поднимем излучатель над кюветой, опустим в воду квадратную сетку и прижмем ее к задней по ходу луча стенке кюветы. Центрируя линзу найдем изображение сетки в микроскопе:

Рис. 6: Изображение сетки

Зафиксируем координаты совпадающих штрихов окулярной шкалы и сетки - 7 штрихов сетки соответствуют 9,1 делениям на окулярной шкале.

6. Для наблюдения акустической решетки установим рабочую нирину щели (20-30 мкм) и закроем нулевой дифракционный максимум проволочкой. Уберем калибровочную сетку и варьируя частоту увидим акустическую решетку в микроскоп:

Рис. 7: Изображение звуковой решетки

Вывод

Изучили явление дифракции света на ультразвуковой волне в воде. Сняли зависимость длины волны ультразвука от его частоты, и по этим параметрам получили значение скорости ультразвука в воде. Полученное значение совпало с табличным. Также пронаблюдали акустическую решетку.