A QCNN for Quantum State Preparation Carnegie Vacation Scholarship

David Amorim

Week 5 (29/07/2024 - 02/08/2024)

1/26

Aims for the Week

The following aims were set at the last meeting (29/07/2024):

Improve Loss Function

Work on an improved version of WILL. Incorporate some phase extraction metrics (e.g. χ , ϵ) into the loss function.

Investigate Phase Extraction

Study the relationship between mismatch and the extracted phase, i.e. study the operator $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$.

Mitigate Barren Plateaus

Work on strategies to mitigate barren plateaus, e.g. implement layer-by-layer training.

Table of Contents

- 1 Improving the Loss Function
- ② Investigating Phase Extraction
- Mitigating Barren Plateaus
- Mext Steps

WILL Revisited

 As discussed at the meeting on 29/07, the definition of WILL (weighted L_p loss) was amended to:

$$\mathsf{WILL}_{\mathsf{p},\mathsf{q}} = \left(\sum_{k} \left| x_k - y_k \right|^p + |\mathbf{x}_k| \left| [k]_m - \Psi([k]_n) \right|^q \right)^{1/p}, \quad (1)$$

where the changes to the previous definition are highlighted

• Testing this for different Ψ (with L=6, m=3 and 600 epochs) yielded the following optimal values for p, q:

$\Psi(f)$	p	q
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.25	0.5
$\sim f^2$	1	1.5
Ψ_{H23}	0.75	2

Table 1: Optimal identified p, q values for WILL

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	3.4e-2	6.0e-2	4.5e-1
σ	1.4e-1	1.1e-1	4.7e-1
ϵ	1.9e-2	9.2e-2	2.6e-1
χ	3.2e-2	5.1e-2	3.7e-1
Ω	4.46	3.19	0.76

Table 2: Comparing loss function metrics for $\Psi(f)\sim f$ ($L=6,\ m=3,\ 600$ epochs)

Figure 1: Comparing extracted phase functions for $\Psi(f) \sim f$ (L=6, m=3, 600 epochs)

5/26

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	1.9e-1	2.3e-1	6.6e-1
σ	1.2e-1	1.0e-1	4.1e-1
ϵ	2.2e-1	4.2e-1	2.8e-2
χ	1.9e-1	2.0e-1	6.1e-1
Ω	1.39	1.05	0.57

Table 3: Comparing loss function metrics for $\Psi(f) \sim f^2$ ($L=6,\ m=3,\ 600$ epochs)

Figure 2: Comparing extracted phase functions for $\Psi(f)\sim f^2$ ($L=6,\ m=3,$ 600 epochs)

6/26

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	6.8e-2	8.4e-2	7.6e-2
σ	1.8e-1	1.2e-1	2.6e-1
ϵ	4.5e-2	1.8e-1	7.3e-3
χ	7.4e-2	1.0e-1	6.2e-2
Ω	2.75	2.07	2.48

Table 4: Comparing loss function metrics for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs)

Figure 3: Comparing extracted phase functions for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs)

7/26

Other Approaches

- Attempts to define a loss function based directly on $\hat{Q}^{\dagger}\hat{R}\hat{Q}$, e.g. minimising χ , were unsuccessful
- This is due to the qiskit machine learning environment being build around sampler primitives which return quasi-probabilities instead of probability amplitudes
- Thus, phases cannot be directly taken into account for gradient calculation
- A possible work-around could be to switch to a QCNN based on an estimator primitive, which calculates the expectation value of an observable w.r.t to the state prepared by the network
- This would require the construction of an appropriate operator (note: qiskit supports non-Hermitian observables)

8 / 26

An Estimator-based PQC

• Let $|\tilde{\phi}\rangle$ be the *n*-qubit state produced by the PQC:

$$|\tilde{\phi}\rangle = \sum_{k} \tilde{A}(k)e^{i\tilde{\Psi}(k)}|k\rangle$$
 (2)

The desired output state is

$$|\phi\rangle = \sum_{k} A(k)e^{i\Psi(k)}|k\rangle$$
 (3)

 An estimator-based optimiser calculates the loss and gradients for each epoch based on the expectation value

$$\mathbb{E}(\tilde{\phi}) \equiv \langle \tilde{\phi} | \hat{O} | \tilde{\phi} \rangle = \sum_{k,k'} \tilde{A}(k') \tilde{A}(k) \exp\left(i \left[\tilde{\Psi}(k) - \tilde{\Psi}(k')\right]\right) \langle k' | \hat{O} | k \rangle,$$
(4)

for some operator \hat{O}

4 11 1 4 12 1 4 13 1 1 1 1 1

9/26

An Estimator-based PQC

• Now construct \hat{O} such that

$$\langle k'|\hat{O}|k\rangle \equiv \frac{1}{A(k')A(k)} \exp\left(-i\left[\Psi(k) - \Psi(k')\right]\right)$$
 (5)

for $A(k), A(k') \neq 0$

Then

$$\mathbb{E}(\phi) = \sum_{k,k'} 1 = 2^{2n} \tag{6}$$

so that we can train the network to generate $|\phi\rangle$ by minimising $|1-\mathbb{E}(\tilde{\phi})/2^{2n}|$

- This is highly speculative and computationally very expensive even for simple PQCs due to the way custom operators are handled in qiskit
- Thus, estimator-based PQCs cannot feasibly replace the sampler-based QCNN

4□ ▶ ∢□ ▶ ∢□ ▶ ∢□ ▶ ∮

Loss Function: Conclusion

- The design of the qiskit machine learning library constrains the customisability of loss functions, in particular relating to phases
- Thus, loss functions based directly on the extracted phase factors are (apparently) impossible
- Within the limits of these constraints the best possible loss function seems to be SAM
- Beyond the unsuccessful attempts of WIM and WILL no further ansätze for loss functions come to mind
- For the time being, the search for an improved loss function will be put on hold

11/26

Table of Contents

- Improving the Loss Function
- 2 Investigating Phase Extraction
- Mitigating Barren Plateaus
- 4 Next Steps

Investigating Phase Extraction

ullet The operator \hat{Q} is defined via

$$\hat{Q}|j\rangle|0\rangle = |j\rangle|\Psi(j)\rangle \tag{7}$$

- This leaves its action on more general input states $|j\rangle\,|k\rangle$ (with $|k\rangle\neq|0\rangle$) undetermined
- Thus, there is a family $\mathcal Q$ of valid implementations of $\hat Q$ with $|\mathcal Q|=(n+m)^2-n$
- We can represent a flawed implementation, \tilde{Q} , of \hat{Q} via $\tilde{Q}=\hat{Q}+\lambda\hat{P}$ so that

$$\tilde{Q}\hat{R}\tilde{Q} = \hat{Q}^{\dagger}\hat{R}\hat{Q} + \lambda \left[\hat{Q}^{\dagger}\hat{R}\hat{P} + \hat{P}^{\dagger}\hat{R}\hat{Q}\right] + \lambda^{2} \left[\hat{P}^{\dagger}\hat{R}\hat{P}\right] \tag{8}$$

 Beyond these very general observations no analytical insight into the problem was gained

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Visualising Phase Extraction: Amplitudes

Figure 4: Amplitudes after applying \hat{Q} with $\Psi(f)\sim f$ and the input register in initial state $\hat{H}\left|0\right\rangle$ ($L=6,\ m=3,\ \text{SAM},\ 600\ \text{epochs}$).

Figure 5: Amplitudes after applying $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ with $\Psi(f)\sim f$ and the input register in initial state $\hat{H}\left|0\right\rangle$ (L=6, m=3, SAM, 600 epochs). Target state added for reference.

Visualising Phase Extraction: Amplitudes

Figure 6: Amplitudes after applying Qwith $\Psi(f) \sim f^2$ and the input register in initial state $\hat{H}|0\rangle$ (L=6, m=3, SAM, 600 epochs).

Figure 7: Amplitudes after applying $\hat{Q}^{\dagger}\hat{R}\hat{Q}$ with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{H}|0\rangle$ (L=6, m=3, SAM, 600 epochs). Target state added for reference.

The Effect of \hat{U}_A

Figure 8: Amplitudes after applying Q with $\Psi(f)\sim f$ and the input register in initial state $\hat{U}_A \left| 0 \right\rangle$ ($L=6,\ m=3,$ SAM, 600 epochs).

Figure 9: Amplitudes after applying $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ with $\Psi(f)\sim f$ and the input register in initial state $\hat{U}_A\left|0\right>\left(L=6,m=3,\text{ SAM, 600 epochs}\right)$. Target state added for reference.

The Effect of \hat{U}_A

Figure 10: Amplitudes after applying Q with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{H}\left|0\right\rangle$ ($L=6,\ m=3,\ \text{SAM},\ 600\ \text{epochs}$).

Figure 11: Amplitudes after applying $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{U}_A |0\rangle$ (L=6, m=3, SAM, 600 epochs). Target state added for reference.

Figure 12: Phases after applying \tilde{Q} with $\Psi(f) \sim f$ and the input register in initial state $\hat{U}_A |0\rangle$ ($L=6,\ m=3,\ \text{SAM},\ 600$ epochs).

Figure 13: Phases after applying $\hat{R}\tilde{Q}$ with $\Psi(f)\sim f$ and the input register in initial state $\hat{U}_A\,|0\rangle$ ($L=6,\ m=3,$ SAM, 600 epochs).

Figure 14: Phases after applying $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ with $\Psi(f)\sim f$ and the input register in initial state $\hat{U}_A \mid 0 \rangle$ $(L=6,\ m=3,\ \text{SAM},\ 600\ \text{epochs})$. Target state added for reference

Figure 15: Phases (colour) and amplitudes (vertical axis) after applying $\tilde{Q}^{\dagger} \hat{R} \tilde{Q}$ with $\Psi(f) \sim f$ and the input register in initial state $\hat{U}_A |0\rangle$ (L=6, m=3, SAM, 600 epochs).

19 / 26

4 □ > 4 ₱ >

Figure 16: Phases after applying \hat{Q} with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{U}_A |0\rangle$ ($L=6,\ m=3,$ SAM, 600 epochs).

Figure 17: Phases after applying $\hat{R}\tilde{Q}$ with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{U}_A\,|0\rangle$ ($L=6,\ m=3,$ SAM, 600 epochs).

4 D > 4 A > 4 B > 4 B > B 9 Q C

Figure 18: Phases after applying $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{U}_A \left| 0 \right\rangle$ ($L=6,\ m=3,$ SAM, 600 epochs). Target state added for reference

Figure 19: Phases (colour) and amplitudes (vertical axis) after applying $\tilde{Q}^{\dagger}\hat{R}\tilde{Q}$ with $\Psi(f)\sim f^2$ and the input register in initial state $\hat{U}_A |0\rangle$ (L=6, m=3, SAM, 600 epochs).

4 □ > 4 ₱ >

Phase Extraction: Conclusion

- As expected, the flawed implementation of \hat{Q} results in \hat{R} not producing an eigenstate and hence \hat{Q}^{\dagger} in not clearing the target register
- Applying \hat{U}_A to the input register, thus reducing the amplitudes of some input states, can exacerbate this issue due to a decreased 'signal-to-noise ratio'
- Interestingly, \tilde{Q} induces $\pi\text{-phase shifts}$ on some input states which interfere with the phases extracted by \hat{R}
- Unclear to which extent the extracted phase function is affected by these phase shifts

Table of Contents

- Improving the Loss Function
- Investigating Phase Extraction
- 3 Mitigating Barren Plateaus
- 4 Next Steps

Mitigating Barren Plateaus

- The most important strategy to mitigate barren plateaus seems to be a so-called warm start, also known as smart initialisation
- Common approaches include layerwise training¹, training via identity blocks² and training using a fast-and-slow approach³
- Implementing these strategies requires significant adaptation of the existing code base
- Thus, must first spend some time restructuring (and re-documenting) the code

4 D > 4 D > 4 E > 4 E > E 990

¹https://arxiv.org/pdf/2006.14904

²https://arxiv.org/pdf/1903.05076

³https://arxiv.org/pdf/2203.02464

Table of Contents

- Improving the Loss Function
- Investigating Phase Extraction
- Mitigating Barren Plateaus
- 4 Next Steps

Next Steps

- ullet Try to remove or account for the π phase shifts due to $ilde{Q}$
- Keep re-writing code for easier implementation of barren plateau mitigation techniques
- Implement barren plateau mitigation
- ...?

26 / 26