EE719: Mixed-Signal VLSI Design Course Project

Manideep Vudayagiri, 190070074

February 10, 2022

Design of unit cell Analog circuitry for the 8-bit segmented DAC

PART 1

(Made changes in values from the previous submission)

Last digit of roll no. =
$$4 \Rightarrow R_L = 25 + 4 = 29 \Omega$$
, $C_L = 1 + \frac{4}{10} = 1.4 \ pF$

Calculating V_{FS} , I_{LSB}

From the 8-bit DAC circuit diagram,

$$V_{out} = V_{OP} - V_{ON}$$

$$(V_{out})_{max} = 0 - 255I_{LSB}R_L = -255I_{LSB}R_L, \qquad \text{(Digital input } = 0\text{)}$$

$$(V_{out})_{min} = 255I_{LSB}R_L - 0 = +255I_{LSB}R_L, \qquad \text{(Digital input } = 255\text{)}$$

$$\Rightarrow Output \ voltage \ swing = V_{FS} = (V_{out})_{max} - (V_{out})_{min} = 510I_{LSB}R_L$$

$$Given, V_{FS} > 0.8 \ V_{pp} \Rightarrow I_{LSB} > \frac{0.8}{510*29}$$

$$\Rightarrow I_{LSB} > 54.1 \ \mu A$$

Now, we can find an upper limit on I_{LSB} as follows

Switch circuit in the DAC unit cell

From the above circuit, in saturation,

$$\begin{aligned} V_{ON} \mid V_{OP} &= V_{DD} - ((V_{dsat})_{M_{B1}} + (V_{dsat})_{M_{B2}} + (V_{dsat})_{M_{1}} \mid (V_{dsat})_{M_{2}}) \\ \text{Minimum possible voltage at } V_{ON} \text{ or } V_{OP} \text{ is } \frac{0.8V}{2} = 0.4V \qquad (V_{DD} = 1.2 \ V) \\ &\Rightarrow 1.2 \ V - \Sigma V_{dsat} > 0.4 \ V \\ &\Rightarrow \Sigma V_{dsat} < 0.8 \ V \end{aligned}$$

The overdrive voltage (or V_{dsat}) for the cascode transistors M_{B1} and M_{B2} has to be between 200-300 mV and the same for the switching transistors has to be 50-100 mV

(ref. Razavi's paper)

We can choose $(V_{dsat})_{M_{B1}} = (V_{dsat})_{M_{B2}} = 200 \text{ mV}$ and $(V_{dsat})_{M_1} = (V_{dsat})_{M_2} = 90 \text{ mV}$ to satisfy the above conditions.

$$\Rightarrow \Sigma V_{dsat} = 200 \ mV + 200 \ mV + 90 \ mV = 490 \ mV$$

That makes
$$(V_{ON})_{max} = (V_{OP})_{max} = 1.2 - 0.490 = 0.710 V$$

$$\Rightarrow 255 I_{LSB} R_L < 0.710$$

$$\Rightarrow I_{LSB} < \mu A$$
------(2)

From (1) and (2)

$$\Rightarrow$$
 54.1 $\mu A < I_{LSB} < \mu A$

I choose

$$I_{LSB} = 57 \,\mu A$$

$$\Rightarrow V_{FS} = 510 I_{LSB} R_L$$

$$V_{FS} = 0.843 \,V$$

Calculating W/L

$$(I_D)_{sat} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} V_{dsat}^2$$
 $(\mu_p C_{ox} = 140 \frac{\mu A}{V^2})$

For M_{B1} , M_{B2}

$$\frac{1}{2}\mu_p C_{ox} \frac{W}{L} (0.2)^2 = 57 * 10^{-6} \Rightarrow \frac{W_1}{L_1} = 20.36$$
-----(3)

For M_1 , M_2

$$\frac{1}{2}\mu_p C_{ox} \frac{W}{L} (0.09)^2 = 57 * 10^{-6} \Rightarrow \frac{W_2}{L_2} = 100.53$$
-----(4)

Expression for INL_{max}

From Pelgrom's paper,

$$\frac{\sigma_{I_D}^2}{I_D^2} = \frac{4\sigma_{V_{TH}}^2}{(V_{GS} - V_{TH})^2} + \frac{\sigma_{\beta}^2}{\beta^2}, \qquad \frac{\sigma_{\beta}^2}{\beta^2} \approx \frac{A_{\beta}^2}{WL} + S_{\beta}^2 D^2$$

Neglecting S_{β} ,

$$\Rightarrow \frac{\sigma_{I_D}^2}{I_D^2} = \frac{4\sigma_{V_{TH}}^2}{(V_{GS} - V_{TH})^2} + \frac{A_\beta^2}{WL} = \frac{4\sigma_{V_{TH}}^2}{(V_{GS} - V_{TH})^2} + \frac{A_\beta^2}{WL}$$

From Razavi's paper,

$$INL_{max} = \frac{\sigma_{Iu}}{2I_u} \sqrt{2^N} LSB \quad (N = 8)$$

$$\Rightarrow INL_{max} = 8 \sqrt{\frac{4A_{V_{TH}}^2}{WL(V_{GS} - V_{TH})^2} + \frac{A_{\beta}^2}{WL}} LSB$$

$$(A_{\beta} = 4\% \mu m, \quad A_{V_{TH}} = 4.6 \text{ mV} - \mu m)$$

Required: $INL_{max} < 1 LSB$

$$\Rightarrow 8\sqrt{\frac{4A_{V_{TH}}^2}{W_1L_1(V_{GS} - V_{TH})^2} + \frac{A_{\beta}^2}{W_1L_1}} < 1$$

$$\Rightarrow W_1 L_1 > 2.378 \, x \, 10^{-13} \, m^2$$

From eqn (3)

$$\Rightarrow 21.43L_1^2 > 2.378 \ x \ 10^{-13} \ m^2$$

$$\Rightarrow L_1 > 105.34 \ nm$$

We can take $L_1 = 200 \text{ nm}, W_1 = 4072 \text{ nm}$

For the switching transistors, to ensure fast witching we take minimum channel length.

$$L_2 = 50 nm$$

$$\Rightarrow W_2 = 5026.5 nm$$

Parameter	M_{B1}	M_{B2}	$M_!$	M_2	V_{FS}	I_{LSB}
Width (in nm)	4070	4070	5025	5025	0.843 V	60 μΑ
Length (in nm)	200	200	50	50		

Part 1 (b)

$$I_{REF} = R(V_{B1} - V_{B2})$$

$$V_{B1} = V_{DD} - V_{SG1}$$
 $V_{SG1} = V_{dsat1} + V_{TH}$
 $V_{B1} = V_{DD} - V_{dsat1} - V_{TH}$
 $V_{B2} = V_{DD} - V_{dsat1} - V_{SG2}$
 $V_{SG2} = V_{dsat2} + V_{TH}$
 $V_{B2} = V_{DD} - V_{dsat1} - V_{dsat2} - V_{TH}$

---- (2)

Using (1) and (2),

$$V_{B1} - V_{B2} = V_{dsat2} = 0.2 V$$

$$\Rightarrow R = \frac{0.2}{10 x 10^{-6}} = 20 k\Omega$$

$$I_{REF} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} V_{dsat}^2 \Rightarrow \frac{W}{L} = 3.57$$

For better matching, we can take the lengths of M_{B3} and M_{B4} to be same as M_{B1} and M_{B2}

Parameter	MB3	MB4	R
Width (in nm)	715	715	20kΩ
Length (in nm)	200	200	

PART 2

2(a)

DC operating points obtained from DC analysis in Cadence

 $b_n = 0$

Annotated points from the figure

$$V_{B1} = 732.382 \, mV$$

$$V_{B2} = 532.384 \, mV$$

$$I_{LSB} = 56.135 \, uV$$

$$V_{ON} = 417.628 \, mV$$

$$V_{OP} = 416.000 \, mV$$

$b_n = 1$

Annotated points from the figure

$$V_{B1} = 732.382 \, mV$$

 $V_{B2} = 532.384 \, mV$
 $I_{LSB} = 56.135 \, uV$
 $V_{ON} = 416.000 \, mV$

 $V_{OP} = 417.628 \ mV$

Note:

 V_{FS} calculated according to this measured I_{LSB} is 830 mV whereas $V_{FS} = 843 \ mV$ according to the hand calculation done in part 1.

I considered 830 mV as V_{FS} when deciding my biasing voltage of $\frac{V_{FS}}{2}$.

2(b)

Inverter and Pass transistor transistor sizes adjusted to have delays within 5 ps of each other.

Inverter

Pass transistor

Inverter: $W_p=305~nm$, $L_p=45~nm$; $W_n=190~nm$, $L_n=45~nm$

Pass transistor: $\mathit{W}_p = 135~nm$, $\mathit{L}_p = 100~nm$; $\mathit{W}_n = 145~nm$, $\mathit{L}_n = 120~nm$

Delay times

Inverter: 56.44 ps

Pass transistor: 51.66 ps

Difference in delays = 4.78 ps < 5 ps

Required specifications met

2(c)

Number of stages of the buffer can be calculated as

$$n = \frac{\ln\left(\frac{C_L}{C_i}\right)}{\ln(\beta)}$$

In our case,

$$\beta = 2.72$$

$$C_L = C_{gg} \ of \ M_1 = 3.505 \ fF$$

$$C_i = C_{gg}$$
 of PMOS + NMOS of the inverter = (146.81 + 75.65) $aF = 222.46$ aF $\Rightarrow n = 2.76$

Therefore, we take 3 stages in our buffer and hope it works.

(all values in nm)	W_p	L_p	W_n	L_n
Stage 1	305	45	190	45
Stage 2	830	45	515	45
Stage 3	2255	45	1405	45

Transient analysis performed for 2 cycles of a 1 GHz input

In the above plot,

Rise time = Time interval between 10% and 90% of the maximum output on the rising edge Fall time = Time interval between 90% and 10% of the maximum output on the falling edge Accordingly,

Rise time = 13.95 ps, Fall time = 13.79 ps meet our desired specifications.

2(d)
Unit cell schematic

Test bench schematic

Note: $R_L=29~\Omega$, $\mathcal{C}_L=1.4~pF$ taken according to the instructions given at the beginning.

Aspect ratio of the NMOS sampling switch in the unit cell: $\frac{W}{L} = \frac{500 \ nm}{45 \ nm} = 11.11$

Transient analysis performed for 4 cycles of the 1 GHz clock

Clk

 B_n

b_n

$\overline{b_n}$

V_{OP},V_{ON}

Region of operation

Current source transistors

MB1 MB2

(always in saturation)

Switching transistors

M1

M2

(Switching between OFF state and Saturation)

Working of the row-column decoder

Column decoder: Takes 3 MSB's of the digital input (Let 'n' be the value of the 3 bits in decimal) and produces a thermometer output consisting 1's as the (n+1) LSB's

Row decoder: Takes the next 3 bits of the digital input and produces a thermometer output consisting 1's as the (n) least significant bits

Decoding Logic: Thermometer cells are activated according to the logic $(C_n, R_n) + C_{n+1}$

According to this, in the DAC block diagram, all the thermometer cells in the first 'n' columns and the first 'n' cells in the $(n+1)^{th}$ column contribute to the output current I_{QP} .

Digital code (B < 7:0 >): 01010100

$$B < 7:5 > = 010$$

 \Rightarrow Column decoder output = 00000111

$$B < 4:2 > = 101$$

 \Rightarrow Row decoder output = 00011111

$$B < 7:5 > = 011$$

 \Rightarrow Column decoder output = 00001111

$$B < 4:2 > = 101$$

 \Rightarrow Row decoder output = 00011111

