Security in the Internet: IPSec, SSL/TLS, PGP, VPN, and Firewalls

Common structure of three security protocols

IPSecurity (IPSec)

IPSecurity (IPSec) is a collection of protocols designed by the Internet Engineering Task Force (IETF) to provide security for a packet at the network level.

Topics discussed in this section:

- Two Modes
- Two Security Protocols
- Security Association
- Internet Key Exchange (IKE)
- Virtual Private Network

TCP/IP protocol suite and IPSec

IPSec in the transport mode does not protect the IP header; it only protects the information coming from the transport layer.

Transport mode and tunnel modes of IPSec protocol

a. Transport mode

b. Tunnel mode

Transport mode in action

Tunnel mode in action

IPSec in tunnel mode protects the original IP header.

Authentication Header (AH) Protocol

Encapsulating Security Payload (ESP) Protocol

ESP provides source authentication, data integrity, and privacy.

IPSec services

Services	AH	ESP
Access control	Yes	Yes
Message authentication (message integrity)	Yes	Yes
Entity authentication (data source authentication)	Yes	Yes
Confidentiality	No	Yes
Replay attack protection	Yes	Yes

Simple inbound and outbound security associations

IKE components

Internet Key Exchange (IKE)

IKE creates SAs for IPSec.

Addresses for private networks

Prefix	Range	Total
10/8	10.0.0.0 to 10.255.255.255	2^{24}
172.16/12	172.16.0.0 to 172.31.255.255	2^{20}
192.168/16	192.168.0.0 to 192.168.255.255	2^{16}

Private network

Hybrid network

Virtual private network

Addressing in a VPN

SSL/TLS

Two protocols are dominant today for providing security at the transport layer: the Secure Sockets Layer (SSL) Protocol and the Transport Layer Security (TLS) Protocol. The latter is actually an IETF version of the former.

Topics discussed in this section:

- SSL Services
- Security Parameters
- Sessions and Connections
- Four Protocols
- Transport Layer Security

Location of SSL and TLS in the Internet model

SSL cipher suite list

Cipher Suite	Key Exchange Algorithm	Encryption Algorithm	Hash Algorithm
SSL_NULL_WITH_NULL_NULL	NULL	NULL	NULL
SSL_RSA_WITH_NULL_MD5	RSA	NULL	MD5
SSL_RSA_WITH_NULL_SHA	RSA	NULL	SHA
SSL_RSA_WITH_RC4_128_MD5	RSA	RC4_128	MD5
SSL_RSA_WITH_RC4_128_SHA	RSA	RC4_128	SHA
SSL_RSA_WITH_IDEA_CBC_SHA	RSA	IDEA_CBC	SHA
SSL_RSA_WITH_DES_CBC_SHA	RSA	DES_CBC	SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA	RSA	3DES_EDE_CBC	SHA
SSL_DH_anon_WITH_RC4_128_MD5	DH_anon	RC4_128	MD5
SSL_DH_anon_WITH_DES_CBC_SHA	DH_anon	DES_CBC	SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA	DH_anon	3DES_EDE_CBC	SHA

SSL cipher suite list (continued)

Cipher Suite	Key Exchange Algorithm	Encryption Algorithm	Hash Algorithm
SSL_DHE_RSA_WITH_DES_CBC_SHA	DHE_RSA	DES_CBC	SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA	DHE_RSA	3DES_EDE_CBC	SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA	DHE_DSS	DES_CBC	SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA	DHE_DSS	3DES_EDE_CBC	SHA
SSL_DH_RSA_WITH_DES_CBC_SHA	DH_RSA	DES_CBC	SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA	DH_RSA	3DES_EDE_CBC	SHA
SSL_DH_DSS_WITH_DES_CBC_SHA	DH_DSS	DES_CBC	SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA	DH_DSS	3DES_EDE_CBC	SHA
SSL_FORTEZZA_DMS_WITH_NULL_SHA	FORTEZZA_DMS	NULL	SHA
SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA	FORTEZZA_DMS	FORTEZZA_CBC	SHA
SSL_FORTEZZA_DMS_WITH_RC4_128_SHA	FORTEZZA_DMS	RC4_128	SHA

Creation of cryptographic secrets in SSL

Four SSL protocols

Handshake Protocol

Processing done by the Record Protocol

PGP

One of the protocols to provide security at the application layer is Pretty Good Privacy (PGP). PGP is designed to create authenticated and confidential e-mails.

Topics discussed in this section:

- Security Parameters
- Services
- A ScenarioPGP Algorithms
- Key Rings
- PGP Certificates

Position of PGP in the TCP/IP protocol suite

In PGP, the sender of the message needs to include the identifiers of the algorithms used in the message as well as the values of the keys.

A scenario in which an e-mail message is authenticated and encrypted

PA1: Public-key algorithm 1 (for encrypting session key)

PA2: Public-key algorithm (for encrypting the digest)

SA: Symmetric-key algorithm identification (for encrypting message and digest)

HA: Hash algorithm identification (for creating digest)

PGP Algorithms

Algorithm	ID	Description
Public key	1	RSA (encryption or signing)
	2	RSA (for encryption only)
	3	RSA (for signing only)
	17	DSS (for signing)
Hash algorithm	1	MD5
	2	SHA-1
	3	RIPE-MD
Encryption	0	No encryption
	1	IDEA
	2	Triple DES
	9	AES

Rings

Alice's rings

Bob's rings

Ted's rings

John's rings

FIREWALLS

All previous security measures cannot prevent Eve from sending a harmful message to a system. To control access to a system, we need firewalls. A firewall is a device installed between the internal network of an organization and the rest of the Internet. It is designed to forward some packets and filter (not forward) others.

Topics discussed in this section:

- Packet-Filter Firewall
- Proxy Firewall

Firewall

A packet-filter firewall filters at the network or transport layer.

Packet-filter firewall

Proxy firewall

A proxy firewall filters at the application layer.

