initial pop. is 100 every 5 years. $(1.20)^5 = 2.48$ 7 = 0 nethod 1 $P(t) = ab^{t}$ P(0) = 100 P(5) = 200 $\rho(t) = 100 b$ $V(t)=100(2)^{\frac{1}{5}}$ 2= 65 1.149 ≈ 2^{1/5} = b |P(t) = 100(2'5)

doubles one 2 years
$$f(t) = 0.2$$

$$f(t) = 0.2$$

$$f(t) = 0.2$$

$$f(t) = \frac{1}{2}$$

$$f(t) = \frac{1}{2}(2)$$

$$f(t) = \frac{1}{2}(2)$$

Graphing the exponential f(x) = ab $1. domain is R = {the whole}$ $2. range is restricted.
ex. <math>f(x) = (\frac{1}{2})^x$ Ex Hyperbola's $f(x) = \frac{1}{x}$ $f(x) = \frac{SI \wedge x}{x}$