

EE 367 Lab 7

Spectral-Based Acoustic Measurements and the DFT

Report by:

Ethan Vosburg (evosburg@calpoly.edu)
Isaac Lake (ilake@calpoly.edu)

Table of Contents

1	Implement a DFT	3
2	Simulate a Measured Signal	4
3	Measure the Size of the Air Gap	5

1 Implement a DFT

In part 1 we will be implementing a DFT filter.

1. Include a plot of the magnitude spectrum for the cos _1khz _20msec signal

Figure 1: Impulse Sample without Delay

- 2. What is the width of each side lobe observed in the spectrum? How does it compare to the theoretical value of 1/(pulse duration) = 1/(20mSec)?
 - It is roughly 50 Hz for each sidelobe which lines up exactly with what the theoretical would be.
- 3. Documentation: The Python code that implements the DFT

2 Simulate a Measured Signal

In part 2 of this lab we will implement a sound impulse generator.

1. Include a plot of the magnitude spectrum for the simulated measurement signal

Figure 2: Impulse Sample without Delay

2. Include a plot of the magnitude spectrum for a version of the simulated signal that is delayed by 0.1 Sec

Figure 3: Impulse Sample with Delay

3 Measure the Size of the Air Gap

In part 3 of this lab we will be using our DFT and peak finder to calculate the resonant frequency of the air gap.

Tile	Raw Peak Frequency (Hz)	Weighted Average Peak (Hz)	Measured Air Gap (in)
1a	1085	1009.88	6.69
1b	1088	1009.38	6.69
1c	1076	1008.78	6.69
1d	1078	1005.85	6.71
1e	1076	1007.58	6.70
2a	895	820.55	8.23
2b	931	821.39	8.22
2c	938	821.93	8.21
2d	920	822.49	8.21
2e	925	819.7	8.24

Table 1: Results Table from Frequency Analysis

