1. Graph the equation below.

$$f(x) = -(x+4)^2 - 20$$

Α.

С.

D.

В.

E. None of the above.

2. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$14x^2 + 15x - 6 = 0$$

A.
$$x_1 \in [-1, -0.1]$$
 and $x_2 \in [0.68, 1.66]$

B.
$$x_1 \in [-21, -17.8]$$
 and $x_2 \in [3.87, 5.42]$

C.
$$x_1 \in [-3.1, -0.7]$$
 and $x_2 \in [0.2, 0.53]$

D.
$$x_1 \in [-24.9, -22.7]$$
 and $x_2 \in [22.4, 24.39]$

E. There are no Real solutions.

3. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$36x^2 - 60x + 25$$

A.
$$a \in [0.76, 1.62], b \in [-31, -28], c \in [0.3, 1.7], and $d \in [-32, -28]$$$

B.
$$a \in [1.55, 2.31], b \in [-14, -3], c \in [17.2, 20.8], and $d \in [-10, -2]$$$

C.
$$a \in [4.65, 6.7], b \in [-14, -3], c \in [5.4, 8.8], and $d \in [-10, -2]$$$

D.
$$a \in [16.99, 19.36], b \in [-14, -3], c \in [1.1, 4.2], and $d \in [-10, -2]$$$

- E. None of the above.
- 4. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$15x^2 + 7x - 36 = 0$$

A.
$$x_1 \in [-7.9, -2.9]$$
 and $x_2 \in [0.34, 0.74]$

B.
$$x_1 \in [-2.9, -1.3]$$
 and $x_2 \in [0.97, 1.74]$

C.
$$x_1 \in [-10.2, -8.1]$$
 and $x_2 \in [-0.01, 0.28]$

D.
$$x_1 \in [-1, -0.7]$$
 and $x_2 \in [2.3, 3.12]$

E.
$$x_1 \in [-30.5, -24.2]$$
 and $x_2 \in [19.66, 20.07]$

5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-14x^2 + 7x + 6 = 0$$

A.
$$x_1 \in [-0.88, -0.16]$$
 and $x_2 \in [0.78, 1]$

B.
$$x_1 \in [-19.54, -19.21]$$
 and $x_2 \in [19.4, 20.44]$

C.
$$x_1 \in [-0.96, -0.86]$$
 and $x_2 \in [0.33, 0.55]$

D.
$$x_1 \in [-13.63, -13.3]$$
 and $x_2 \in [6, 7.07]$

E. There are no Real solutions.

6. Graph the equation below.

$$f(x) = -(x-4)^2 + 20$$

 α

A.

С.

D.

- E. None of the above.
- 7. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$10x^2 - 57x + 54 = 0$$

- A. $x_1 \in [-0.02, 0.46]$ and $x_2 \in [13.49, 13.9]$
- B. $x_1 \in [11.96, 12.04]$ and $x_2 \in [44.69, 45.36]$
- C. $x_1 \in [1.31, 1.77]$ and $x_2 \in [3.54, 4]$
- D. $x_1 \in [1.07, 1.26]$ and $x_2 \in [4.47, 5.13]$
- E. $x_1 \in [0.85, 1]$ and $x_2 \in [5.67, 7.13]$
- 8. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

A.
$$a \in [-1.8, 0.1], b \in [3, 8], \text{ and } c \in [-1, 4]$$

B.
$$a \in [-1.8, 0.1], b \in [-5, -3], \text{ and } c \in [-13, -7]$$

C.
$$a \in [-0.7, 1.6], b \in [3, 8], \text{ and } c \in [-3, 1]$$

D.
$$a \in [-1.8, 0.1], b \in [3, 8], \text{ and } c \in [-13, -7]$$

E.
$$a \in [-0.7, 1.6], b \in [-5, -3], \text{ and } c \in [-3, 1]$$

9. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 + 15x - 25$$

A.
$$a \in [7.5, 11.6], b \in [-5, 2], c \in [6, 11], and $d \in [-1, 15]$$$

B.
$$a \in [2.6, 4.5], b \in [-5, 2], c \in [13, 20], and $d \in [-1, 15]$$$

C.
$$a \in [14.7, 19.6], b \in [-5, 2], c \in [3, 5], and $d \in [-1, 15]$$$

D.
$$a \in [-0.9, 1.2], b \in [-33, -27], c \in [0, 2], and $d \in [44, 52]$$$

E. None of the above.

10. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [-1, 0], b \in [-4, -2], \text{ and } c \in [-14, -11]$
- B. $a \in [1, 3], b \in [4, 5], \text{ and } c \in [10, 16]$
- C. $a \in [1, 3], b \in [-4, -2], \text{ and } c \in [-8, -5]$
- D. $a \in [1, 3], b \in [4, 5], and <math>c \in [-8, -5]$
- E. $a \in [-1, 0], b \in [4, 5], \text{ and } c \in [-14, -11]$

2790-1423 Summer C 2021