Zusammenfassung Differentialgeometrie

Tobias Klas

10. Juli 2020

Inhaltsverzeichnis

1	Ana	lysis mit Kurven	3
	1.1	Parametrisierte Kurven	3
	1.2	Vektorfelder und Integralkurven	7
	1.3	Kurvenintegrale	10
	1.4	Satz von Gauß und die Formeln von Green	12

 $_{ ext{Kapitel}}\, 1$

Analysis mit Kurven

1.1 Parametrisierte Kurven

Definition 1.1 (Parametrisierte Kurven). Seien $a, b \in \mathbb{R}$ mit a < b und X ein topologischer Raum. Eine stetige Funktion $c : [a, b] \to X$ heißt parametrisierte Kurve. Der Punkt $c(a) \in X$ heißt Anfangspunkt und der Punkt $c(b) \in X$ Endpunkt der parametrisierten Kurve c. Ist $X = \mathbb{R}^n$ und ist c eine C^k -Funktion, so nennen wir c ein parametrisierte Kurve der Klasse C^k oder einfach parametrisierte C^k -Kurve. Eine parametrisierte C^k -Kurve c heißt geschlossen, falls

$$c(a) = c(b)$$
 und falls $k \ge 1$ gilt für alle $1 \le r \le k$: $D^r c(a) = D^r c(b)$.

Definition 1.2 (Jordan-Kurve). Eine parametrisierte Kurve c heißt *Jordan-Kurve*, falls c geschlossen ist und c auf [a,b) injektiv ist.

Beispiel 1.3.

• (Doppel-)Helix: Sei $\sigma, \rho \in \mathbb{R}$. Das Bild der parametrisierten C^{∞} -Kurve

$$c_{\rho,\sigma}: \mathbb{R} \to \mathbb{R}^3, \qquad t \mapsto (\rho \cos t, \rho \sin t, \sigma t)$$

ist ein Kreis um $\mathbf{0}$ mit Radius $|\rho|$, falls $\sigma = 0$. Ist $\sigma \rho \neq 0$, so ist das Bild eine Helix. Die Bilder von $c_{-\sigma,\rho}$ und $c_{\sigma,\rho}$ ergeben eine Doppelhelix.

- Doppelhelix:
- Neilsche Parabel:

Definition 1.4 (Äquivalente Kurven). Es seien $c_1: I_1 \to \mathbb{R}^n$ und $c_2: I_2 \to \mathbb{R}^n$ parametrisierte C^k -Kurven. Wir nennen c_1 und c_2 linear äquivalent, falls es eine affin lineare bijektive Abbildung

$$\varphi: I_1 \to I_2, \quad t \mapsto at + b$$

gibt, so dass

$$c_1 = c_2 \circ \varphi$$
.

Die Abbildung φ heißt Parametertransformation. Ist

$$\varphi \in C^k$$
, $c_1 = c_2 \circ \varphi$ und $\dot{\varphi}(t) \neq 0$ für alle $t \in I_1$,

so heißen c_1 und c_2 äquivalent. Gilt sogar für alle $t \in I_1$, dass

$$\dot{\varphi}(t) > 0$$
,

so heißen c_1 und c_2 orientierbar äquivalent und φ zulässige Parametertransformation.

Lemma 1.5. Durch die lineare Äquivalenz, die Äquivalenz und die orientierbare Äquivalenz zweier parametrisierter Kurven sind Äquivalenzrelationen definiert.

Beweis.
$$\Box$$

Definition 1.6 (Länge). Sei (X,d) ein metrischer Raum. Dann ist die **Länge** einer parametrisierten Kurve $c:[a,b]\to X$ definiert durch

$$L(c) = \sup \left\{ \sum_{i=1}^{n} d(c(t_i), c(t_{i-1})) \mid n \in \mathbb{N}, a \le t_0 < t_1 < \dots < t_n \le b \right\}.$$

Eine parametrisierte Kurve mit endlicher Länge heißt rektifizierbar.

Lemma 1.7. Jede parametrisierte C^k -Kurve ist rektifizierbar und ihre Länge ist durch

$$L(c) = \int_a^b \|\dot{c}(t)\|_2 \,\mathrm{d}t$$

gegeben.

Beweis. Sei $Z: a = t_0 < ... < t_m = b$ eine Zerlegung von [a, b], so nennen wir

$$\delta(Z) := \sup_{1 \le i \le m} |t_i - t_{i-1}|$$

die Feinheit von Z. Es gibt dann eine Folge (Z_l) von Zerlegungen, so dass

$$\lim_{l \to \infty} L(c_{Z_l}) = L(c)$$

und $\lim_{t\to\infty} \delta(Z_t) = 0$. Wir parametrisieren $c_{\mathbf{x}_{i-1}^l\mathbf{x}_i^l}$ durch

$$[t_{i-1}^l, t_i^l] \to \mathbb{R}^n, \qquad t \mapsto \mathbf{x}_{i-1}^l + \frac{t - t_{i-1}^l}{t_i^l - t_{i-1}^l} (\mathbf{x}_i^l - \mathbf{x}_{i-1}^l)$$

mit $\mathbf{x}_i^l = c(t_i^l)$. Die Länge von $c_{\mathbf{x}_{i-1}^l, \mathbf{x}_i^l}$ bleibt unverändert, außerdem gilt

$$L(c_{Z_t}) = \sum_{i=1}^{m_l} \int_{t_{i-1}^l}^{t_i^l} \left\| \dot{c}_{\mathbf{x}_{i-1}^l, \mathbf{x}_i^l}(t) \right\| dt$$

mit

$$\dot{c}_{\mathbf{x}_{i-1}^l, \mathbf{x}_i^l}(t) = \frac{c(t_i^l) - c(t_{i-1}^l)}{t_i^l - t_{i-1}^l}.$$

Damit ist

$$\dot{c}_{\mathbf{x}_{i-1}^{l},\mathbf{x}_{i}^{l}}(t) - \dot{c}(t) = \frac{1}{t_{i}^{l} - t_{i-1}^{l}} \int_{t_{i-1}^{l}}^{t_{i}^{l}} (\dot{c}(\xi) - \dot{c}(t)) \,\mathrm{d}\xi$$

Setzen wir

$$f_l(t) := \dot{c}_{\mathbf{x}_{i-1}^l, \mathbf{x}_i^l}(t),$$

so ist wegen der gleichmäßigen Stetigkeit von $\dot{c}(t)$ in [a,b]

$$||||f_l(t)|| - ||\dot{c}(t)||| \le ||f_l(t) - \dot{c}(t)|| \le \varepsilon,$$

wenn $\delta(Z_l) \leq \delta(\varepsilon)$. Also ist $f_l(t)$ gleichmäßig konvergent und mit dem Konvergenzsatz von Lebesgue ist

$$L(c) = \lim_{l \to \infty} L(c_{Z_l}) = \lim_{l \to \infty} \int_a^b ||f_l(t)|| \, dt = \int_a^b ||\dot{c}(t)|| \, dt.$$

Definition 1.8 (Gleichförmig parametrisierte Kurve). Sei $c: I \to \mathbb{R}^n$ eine parametrisierte C^k -Kurve und $t_0 \in I$, so die Kurve c gleichförmig parametrisiert für $t \geq t_0$, falls ein C > 0 existiert, so dass

$$\int_{t_0}^t ||\dot{c}(\theta)||_2 \, \mathrm{d}\theta = C(t - t_0).$$

D.h. die Länge von c eingeschränkt auf $[t_0, t]$ ist proportional zu $t - t_0$.

Lemma 1.9. Wenn $c: I \to \mathbb{R}^n$ eine parametrisierte C^k -Kurve, die für $t \ge t_0$ gleichförmig parametrisiert ist, dann gibt es ein C > 0, so dass

$$\|\dot{c}(\theta)\|_2 = C$$

für alle $\theta \in [t_0, t]$.

Beispiel 1.10 (Gleichförmige Bewegung eines Massepunktes).

Definition 1.11 (Bogenlänge). Sei $c:[a,b]\to\mathbb{R}^n$ eine parametrisierte C^k -Kurve. Die Funktion

 $s_c(t) := \int_a^t \|\dot{c}(\theta)\| d\theta, \qquad t \in [a, b]$

heißt die Bogenlänge von c. Wir sagen eine parametrisierte C^k -Kurve $c:[a,b]\to\mathbb{R}^n$ ist proportional zur Bogenlänge parametrisiert, falls es ein C>0 gibt, so dass

$$\int_{a}^{t} \|\dot{c}(\theta)\| \, \mathrm{d}\theta = C(t-a)$$

gilt. Eine parametrisierte C^k -Kurve $c:[a,b]\to\mathbb{R}^n$ ist mit Bogenlänge parametrisiert, falls C=1 ist.

Lemma 1.12. Wenn die parametrisierte C^k -Kurve $c:[a,b]\to \mathbb{R}^n$ mit Bogenlänge parametrisiert ist, dann ist

$$\|\dot{c}(t)\|_2 = 1$$

 $f\ddot{u}r$ alle $t \in [a, b]$.

Theorem 1.13. Sei $c : [a,b] \to \mathbb{R}^n$ eine parametrisierte C^k -Kurve. So ist c genau dann proportional zur Bogenlänge parametrisierbar, falls $\dot{c}(t) \neq \mathbf{0}$ für alle $t \in [a,b]$ gilt.

Beweis. (\Rightarrow) . Sei $c:[a,b]\to\mathbb{R}^n$ eine parametrisierte C^k -Kurve und nach Bogenlänge parametrisierbar. Differentiation nach t ergibt

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{t_0}^t \|\dot{c}(\theta)\|_2 \,\mathrm{d}\theta = C \neq 0.$$

 (\Leftarrow) . Sei $\dot{c} \neq \mathbf{0}$ auf ganz [a, b]. Dann definiert

$$s_c(t) := \int_a^t \|\dot{c}(\theta)\| d\theta, \qquad t \in [a, b]$$

eine zulässige Parameter
transformation. Somit ist für $\tilde{c} = c \circ s_c^{-1}$

$$\left\| \frac{\mathrm{d}}{\mathrm{d}\theta} \tilde{c}(\theta) \right\| = \left\| \dot{c}(s_c^{-1}(\theta)) \right\| \frac{1}{\left\| \dot{c}(s_c^{-1}(\theta)) \right\|} = 1$$

Definition 1.14 (Reguläre Kurve). Es sei $c: I \to \mathbb{R}^n$ eine parametrisierte C^k -Kurve. Wir nennen die Kurve c regulär, falls für alle $t \in I$

$$\dot{c}(t) \neq \mathbf{0} \in \mathbb{R}^n$$

gilt.

6

Beispiel 1.15.

Definition 1.16 (Tangenete). Für eine reguläre parametrisierte C^k -Kurve $c: I \to \mathbb{R}^n$ heißt die durch

$$g: \mathbb{R} \to \mathbb{R}^n$$
$$\lambda \mapsto c(t) + \lambda \dot{c}(t)$$

definierte Gerade im \mathbb{R}^n Tangente an c im Punkt c(t). Der Vektor $\dot{c}(t)$ heißt Tangential-vektor an c im Punkt c(t).

1.2 Vektorfelder und Integralkurven

Definition 1.17 (Gebiet). Sei X ein topologischer Raum. Ein $Gebiet G \subseteq X$ ist eine offene, nichtleere und zusammenhängende Teilmenge von X. Ein Gebiet $G \subseteq \mathbb{R}^n$ heißt sternförmig, falls es ein $x_0 \in G$ gibt, so dass für alle $x \in G$ die Strecke

$$[x_0x] = \{x_0 + t(x - x_0) \mid t \in [0, 1]\}$$

eine Teilmenge von G ist. Das Gebiet G nennen wir konvex, falls für alle $x, y \in G$ und alle $t \in \mathbb{R}$ mit $0 \le t \le 1$ gilt, dass

$$tx + (1 - t)y \in G$$

ist.

Definition 1.18 (Gewöhnliche Differentialgleichung). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und $F \in C^0((a,b) \times G,\mathbb{R}^n)$. Eine Funktion $u \in C^1((\alpha,\beta),G)$ mit $a \leq \alpha < \beta \leq b$ heißt Lösung der durch F definierten gewöhnlichen Differentialgleichung erster Ordnung mit Anfangswert $u_0 \in G$ in $t_0 \in (\alpha,\beta)$, wenn gilt:

$$\dot{u}(t) = F(t, u(t)), \quad t \in (\alpha, \beta),$$

 $u(t_0) = u_0.$

Theorem 1.19 (Satz von Picard-Lindelöf). $Sei -\infty \le a < b \le \infty$, $G \subseteq \mathbb{R}^n$ ein Gebiet und $F \in C^0((a,b) \times G, \mathbb{R}^n)$. Es gilt:

(i) Zu jedem $t_0 \in (a,b)$ und jedem $f_0 \in G$ gibt es ein $\varepsilon > 0$ mit $(t_0 - \varepsilon, t_0 + \varepsilon) \subseteq (a,b)$ und eine Umgebung U von $f_0 \in G$, so dass für $u_1 \in U$ eine Lösung $u \in C^1((t_0 - \varepsilon, t_0 + \varepsilon), G)$ des Problems

$$\dot{u}(t) = F(t, u(t)), \quad t \in (t_0 - \varepsilon, t_0 + \varepsilon),$$

 $u(t_0) = u_1$

existiert.

(ii) Erfüllt F in jedem Punkt (t_0, u_0) die Bedingung, dass zu jedem (t_0, u_0) eine Umgebung $(t_0 - \varepsilon, t_0 + \varepsilon) \times U \subset (a, b) \times G$ derart existiert, dass für $t_0 - \varepsilon < t < t_0 + \varepsilon$ und $x_1, x_2 \in U$

$$||F(t,x_1) - F(t,x_2)|| \le M ||x_1 - x_2||$$

gilt mit einer nur von ε und U abhängigen Konstanten M, so sind die nach (i) existierenden Lösungen für jeden Anfangswert eindeutig bestimmt.

(iii) Gilt sogar $F \in C^k$ mit $k \ge 1$, so gilt für die Lösung u des Anfangswertproblems $u \in C^{k+1}$.

Definition 1.20 (Dynamisches System). Da durch diese Differentialgleichungen oft die zeitliche Entwicklung bzw. die Dynamik vieler natürlicher Phänomene beschrieben werden nennen wir sie auch dynamische Systeme. Hängt F nicht explizit von der Zeit ab, d.h.

$$F(t,x) = \tilde{F}(x),$$

so ist

$$\dot{u}(t) = \tilde{F}(u(t)),$$

so nennen wir das System autonom. Alle Systeme für die das nicht gilt heißen nicht autonom.

Definition 1.21 (C^k -Vektorfeld). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet. Eine Funktion $F \in C^k(G, \mathbb{R}^n)$, $k \in \mathbb{Z}_+$, heißt ein k-fach differenzierbares Vektorfeld (oder kürzer C^k -Vektorfeld) in G.

Definition 1.22 (Integralkurve). Sei F ein C^k -Vektorfeld in G, $k \geq 1$, und $x_0 \in G$. Jede C^1 -Lösung $c: [a,b] \to G$ der durch F definierten Differentialgleichung mit $-\infty \leq a < 0 < b \leq \infty$ und $c(0) = x_0$ heißt eine Integralkurve von F durch x_0 .

Beispiel 1.23. Wir betrachen folgende Differentialgleichung:

$$\dot{u}(t) = \frac{2u(t)}{t}.$$

Also ist f(t, u(t)) = frac 2u(t)t für x = u(t), somit ergibt sich $f(t, x) = \frac{2x}{t}$. Diese Differentialgleichung ist also nicht autonom. Wir sehen, dass, wenn der Graph einer Lösung durch den Punkt (t,x) läuft, dieser dort die Steigung $\frac{2x}{t}$ hat. Somit lässt sich jedem Punkt (t,x) in einem Gebiet $G\subseteq\mathbb{R}^2$ ein Vektor mit Steigung $\frac{2x}{t}$ zuordnen. Somit haben wir durch

$$F: G \to \mathbb{R}^2, \qquad (t, x) \mapsto (1, \frac{2x}{t})$$

ein Vektorfeld definiert. Damit sind alle möglichen Lösungen u der Differentialgleichung durch F definiert. Die allgemeine Lösung der Differential ist $u(t) = kt^2$. Für einen konkreten Anfangswert u(1) = 5 ist somit $u(t) = 5t^2$ die Lösung der Differentialgleichung. Damit ist

$$c:[1,\infty)\to\mathbb{R}^2, \qquad t\mapsto (t,5t^2)$$

die gesuchte Integralkurve zu F durch (1,5), denn

$$\dot{c}(t) = (1, 10t) = (1, \frac{2 \cdot 5t^2}{t}) = (1, \frac{2u(t)}{t}) = (1, f(t, u(t))) = F(t, u(t))$$

Definition 1.24 (Stationärer Punkt). Sei F ein C^k -Vektorfeld in G. Die Punkte $x \in G$ mit F(x) = 0 heißen stationären Punkte von F.

Theorem 1.25 (Fundamentalsatz über die Integralkurve). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und F ein C^k -Vektorfeld in G, $k \geq 1$. Dann gibt es zu jedem $x \in G$ eine ausgezeichnete Integralkurve $c_x : (a_x, b_x) \to G$ durch x mit folgenden Eigenschaften:

- (i) -∞ ≤ a_k < 0 < b_k ≤ ∞,
 (ii) c_x ∈ C^{k+1}((a_x, b_x), G),
 (iii) Ist c: (a,b) → G eine Integralkurve durch x, so ist a_x ≤ a < b ≤ b_x und c = c_x |_(a,b),
 (iv) zu jedem x ∈ G und t ∈ (a_x, b_x) gibt es eine Umgebung U von x in G und ein ε > 0, so dass die Abbildung

$$U \times (t - \varepsilon, t + \varepsilon) \longrightarrow G$$

 $(y, s) \mapsto c_y(s)$

 $von der Klasse C^k$

Beweis. Sei C_x die Menge aller Integralkurven von F durch x. Für zwei Kurven c_1, c_2 ist durch $c_1 \prec c_2 :\Leftrightarrow (a_1,b_1) \subset (a_2,b_2)$ eine Halbordnung auf C_x definiert. Nach dem Satz von Picard-Lindelöf ist $c_1 = c_2$ auf (a_1, b_1) . Es bleibt nur zu zeigen, dass C_x bezüglich der

Halbordnung ein maximales Element hat. Sei $D \subset C_x$ und $c \in D$ mit Definitionsintervall (a_c, b_c) . Somit ist

$$(a_x, b_x) := \bigcup_{c \in D} (a_c, b_c).$$

Setzen wir

$$c_x(t) := c(t), \qquad t \in (a_c, b_c).$$

Aus dem Satz von Picard-Lindelöf folgt, dass c_x wohldefiniert und eine Integralkurve durch x ist, womit nach dem Lemma von Zorn C_x ein maximales Element besitzt. \square

Definition 1.26 (Vollständiges C^k -Vektorfeld). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und F ein C^k -Vektorfeld in $G, k \geq 1$. F heißt vollständig, wenn $(a_x, b_x) = \mathbb{R}$ für jedes $x \in G$.

Definition 1.27 (Fluss). Sei F ein C^1 -Vektorfeld auf einem Gebiet $G \subseteq \mathbb{R}^n$. Nach dem Satz von Picard-Lindelöf gibt es für jedes $x_0 \in G$ eine eindeutige maximale Lösung $c_{x_0}: (a_{x_0}, b_{x_0}) \to \mathbb{R}$ der Differentialgleichung

$$\dot{x}(t) = F(x), \quad x(0) = x_0.$$

Die Abbildung $\Phi(t,x) := c(t)$ heißt Fluss des Vektorfeldes F.

Lemma 1.28 (Eigenschaften des Flusses).

Definition 1.29 (Modul über dem Ring $C^k(G)$).

Definition 1.30 (Lineares stetiges Vektorfeld). Ein C^0 -Vektorfeld F im \mathbb{R}^n heißt linear, falls es eine lineare Funktion in $x \in \mathbb{R}^n$ ist, d.h.

$$F(\lambda x + \mu y) = \lambda F(x) + \mu F(y).$$

Theorem 1.31 (Normalformensatz).

Definition 1.32 (Gradientenfeld). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und F ein C^k -Vektorfeld in G. F ist ein G-Vektorfeld, falls es eine C^{k+1} -Funktion $\varphi: G \to \mathbb{R}$ gibt mit

$$F(x) = \nabla \varphi(x)$$
.

Lemma 1.33 (Integrabilitätsbedingungen). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und F ein C^k -Vektorfeld in $G, k \geq 1$. F ist ein Gradientenfeld, falls die Integritätsbedingungen

$$\partial_i F_i(x) = \partial_i F_j(x), \qquad x \in G, 1 \le i, j \le n$$

gelten.

Beweis. \Box

1.3 Kurvenintegrale

Wir erinnern zunächst daran, dass eine endliche Kurve im \mathbb{R}^n Hausdorff-Dimension 1 hat. D.h. die Länge einer endlichen Kurve entspricht dem Hausdorff-Maß von \mathcal{H}^1 der Dimension 1.

Definition 1.34 (Kurvenintegral). Sei $f: \mathbb{R}^n \to \mathbb{R}$ ein C^0 -Skalarfeld und $c: [a, b] \to \mathbb{R}^n$ eine parametrisierte C^1 -Kurve (oder auch stückweise C^1). Dann ist das Kurvenintegral erster Art entlang der Kurve c definiert als

$$\int_{c} f \, \mathrm{d}s := \int_{a}^{b} f(c(t)) \, \|\dot{c}(t)\|_{2} \, \mathrm{d}t.$$

Hierbei ist s die Länge eines Kurvenelements. Sei $F: \mathbb{R}^n \to \mathbb{R}^n$ ein C^0 -Vektorfeld und $c: [a,b] \to \mathbb{R}^n$ eine parametrisierte C^1 -Kurve. Dann ist das Kurvenintegral zweiter Art entlang der Kurve c definiert als

$$\int_{c} F \, \mathrm{d}s := \int_{a}^{b} \langle F(c(t)), \dot{c}(t) \rangle \, \mathrm{d}t.$$

Lemma 1.35. Sei $G \subseteq \mathbb{R}^n$ ein Gebiet, F ein C^0 -Vektorfeld in G und $c_1 : [a,b] \to G$ eine reguläre Kurve. Ist $\varphi : [\alpha,\beta] \to [a,b]$ eine Parametertransformation von c_1 , dh. $c_2 = c_1 \circ \varphi$, so gilt

$$\int_{c_2} F \, \mathrm{d}s = \pm \int_{c_1} F \, \mathrm{d}s.$$

Beispiel 1.36.

Definition 1.37 (Energie einer regulären Kurve). Sei $c:[a,b]\to\mathbb{R}^n$ eine reguläre Kurve, so nennen wir

$$E(c) := \int_a^b \|\dot{c}(t)\|^2 dt$$

die Energie der Kurve.

Lemma 1.38. Das Kurvenintegral ist linear, d.h. für zwei C⁰-Vektorfelder V, W ist

$$\int_{c} (\alpha V + W) \, ds = \alpha \int_{c} V \, ds + \int_{c} W \, ds.$$

Es ist bis auf das Vorzeichen invariant bzgl. der Durchlaufrichtung der Kurve, d.h. ob die Kurve positiv oder negativ durchlaufen wird. Insbesondere ist für eine C^0 -Vektorfeld F die aus den regulären Kurven c_1 und c_2 zusammen gesetzte Kurve $c = c_1 \star c_2$ das Kurvenintegral durch

$$\int_{c_1 \star c_2} F \, \mathrm{d}s = \int_{c_1} F \, \mathrm{d}s + \int_{c_2} F \, \mathrm{d}s$$

gegeben.

Beweis. Die erste zwei Aussagen folgen direkt aus den Eigenschaften des abstrakten Integrals. Sei $c_1:[a,b]\to\mathbb{R}^n$ und $c_2:[c,d]\to\mathbb{R}^n$ zwei parametrisierte reguläre Kurven. Dann ist

$$\int_{c_1 \star c_2} F \, ds = \int_a^{b+(d-c)} \left\langle F(c_1 \star c_2(t)), (c_1 \star c_2)(t) \right\rangle dt
= \int_a^b \left\langle F(c_1(t)), \dot{c}_1(t) \right\rangle dt + \int_a^{b+(d-c)} \left\langle F(t-b+c), \dot{c}_2(t-b+c) \right\rangle dt
= \int_{c_1} F \, ds + \int_{c_2} F \, ds$$

Definition 1.39 (Wegunabhängig integrierbar). Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und F ein C^0 -Vektorfeld auf G. Dann heißt F wegunabhängig integrierbar, falls für jede parametrisierte geschlossene stückweise C^1 -Kurve c in G gilt, dass

$$\int_{c} F \, \mathrm{d}s = 0.$$

Theorem 1.40. Sei $G \subseteq \mathbb{R}^n$ ein Gebiet und F ein C^0 -Vektorfeld auf G. F ist genau dann in G wegunabhängig integrierbar, wenn F ein Gradientenfeld ist, d.h. wenn es $\varphi \in C^1(G)$ gibt mit

$$F = \nabla \varphi$$
.

Insbesondere ist ein C^1 -Vektorfeld F auf einen sternförmigen Gebiet genau dann ein Gradientenfeld, wenn die Integrabilitätsbedingungen

$$\partial_i F_i = \partial_i F_i$$
 für $i, j \in \{1, ..., n\}$

erfüllt sind.

Beweis. content... \Box

1.4 Satz von Gauß und die Formeln von Green

Definition 1.41 (Gebiete erster und zweiter Art).

Definition 1.42 (Randintegral im \mathbb{R}^2).

Theorem 1.43 (Satz von Gauß-Green).

Definition 1.44 (Innere und äußere Normale).

 $\textbf{Definition 1.45} \ (\textbf{Integral "uber einer Kurve}).$

Theorem 1.46 (Satz von Gauß).

Theorem 1.47 (Formeln von Green).