Operating Systems WS 2018/2019

Administrative Information & General Introduction

Lectures: Prof. Neeraj Suri, Dr. Stefan Winter

Exercises: Oliver Schwahn, Habib Saissi

DEEDS (Dependable Systems & SW Group)

www.deeds.informatik.tu-darmstadt.de

Contact Information

Course homepage:

https://www.informatik.tu-darmstadt.de/deeds/teaching/wise2018/betriebssysteme

Contact Options:

- For any questions: <u>HRZ moodle</u> forum
- Tutor office hours (see slide on exercise administration)

Lectures

Wednesday, 15.20-16.50, S1|01 A1 (Audimax)

Date	Topic	Language		
17.10.2018	Intro	German		
24.10.2018	Processes & IPC	German		
31.10.2018	Threads	German		
07.11.2018	Deadlocks	English		
14.11.2018	Scheduling	English		
21.11.2018	Races & Semaphores	German		
28.11.2018	Memory Management 1	German		
05.12.2018	Memory Management 2	German		
12.12.2018	I/O	German		
Christmas Break				
16.01.2019	File Systems 1	German		
23.01.2019	File Systems 2	German		
30.01.2019	Virtualization	German		
06.02.2019	OS Security	German		
13.02.2019	Wrap Up	German		
	17.10.2018 24.10.2018 31.10.2018 07.11.2018 14.11.2018 21.11.2018 05.12.2018 12.12.2018 16.01.2019 23.01.2019 30.01.2019	17.10.2018 Intro 24.10.2018 Processes & IPC 31.10.2018 Threads 07.11.2018 Deadlocks 14.11.2018 Scheduling 21.11.2018 Races & Semaphores 28.11.2018 Memory Management 1 05.12.2018 Memory Management 2 12.12.2018 I/O Christmas Break 16.01.2019 File Systems 1 23.01.2019 Virtualization 06.02.2019 OS Security		

Exercises

Group	Weekday	CW*	Time	Room
1-A	Tuesday	Even	15:20 - 16:50	S1 01 A2 (karo 5)
1-B	Tuesday	Uneven	15:20 - 16:50	S1 01 A2 (karo 5)
2-A	Thursday	Even	11:40 - 13:10	S2 02 C110 (Piloty)
2-B	Thursday	Uneven	11:40 - 13:10	S2 02 C110 (Piloty)
3-A	Friday	Even	11:40 - 13:10	S1 01 A02 (karo 5)
3-B	Friday	Uneven	11:40 - 13:10	S1 01 A02 (karo 5)

^{*)} CW = calendar week, see here.

- Group assignment via <u>HRZ moodle</u> (random for fairness)
- Please register before Oct 23rd (next Tue)
- Exercise sheets available Wednesday before the A week
- Solution (!) discussion in the exercise sessions
- Optional homework for self-assessment, feedback from tutors (submission via moodle)
- Office hour every Wednesday, 10:00-11:30, in S2|02 E203

Exams

- Midterm test exam
 - Test exam with <u>no "direct" influence on the course grade</u>
 - Wed, Dec 19th, 15:30 16:30, in S1|01 A1
 - Be there 15 minutes early!
 - Coverage: All we covered till then in lectures OR exercises
 - No registration on TUCaN!
- Final exam
 - Wed, Apr 10th, 10:00 12:00, rooms TBA
 - Be there 15 minutes early!
 - Coverage: All we covered till then in lectures OR exercises including what has been covered in the midterm exam
 - Registration on TUCaN required!
- Exam coverage: Lecture slides AND material covered elsewise in class

Course Contents

Lecture

- Fundamental OS concepts (Processes, Threads, Scheduling, Memory Management, ...)
- After that more advanced (& interesting) stuff (Security Concepts, Virtualization)

Exercises

Active problem solving (the more active the more you gain!)

Relevant Literature + Lecture Foils

- Operating Systems: Three Easy Pieces;
 R. & A. Arpaci-Dusseau, Available online: http://pages.cs.wisc.edu/~remzi/OSTEP/
- Modern Operating Systems; A. Tanenbaum, Prentice Hall
- Operating System Concepts; Silberschatz et al., John Wiley and Sons
- Both books available (in limited numbers) from the library
 - http://www.ulb.tu-darmstadt.de/
 - Bldg. S1|20, computer science section: 4th floor
- Slides will be made available via moodle
 - We will try to upload the slides before the lecture
 - Log in with your TU-ID and register for the course
 - Let us instantly know if you have trouble accessing the material!

Initially there was no OS (just a single program)

- Initially there was no OS (just a single program)
- First Problem: Writing a second program for the same hardware
 - Re-implement input processing
 - Re-implement intermediate storage
 - Re-implement output processing

- Initially there was no OS (just a single program)
- First Problem: Writing a second program for the same hardware
 - Re-implement input processing
 - Re-implement intermediate storage
 - Re-implement output processing
- S
 - Re-implement input processing

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Third problem: Increasing pace of change

Based on a plot by

OSs Today

Now:

- distributed, networked, virtual machines, multi-user, multi-core, ...
- running everywhere (on mobile phones, tablets, mainframes, data centers, etc.)

commercial-off-the-shelf (COTS) products

OSs Today

• <u>Now:</u>

- distributed, networked, virtual machines, multi-user, multi-core, ...
- running everywhere (on mobile phones, tablets, mainframes, data centers, etc.)
- commercial-off-the-shelf (COTS) products
- First problem (rewriting code for 2nd prog on same HW)
 - Solved

OSs Today

• <u>Now</u>:

- distributed, networked, virtual machines, multi-user, multi-core, ...
- running everywhere (on mobile phones, tablets, mainframes, data centers, etc.)
- commercial-off-the-shelf (COTS) products
- First problem (rewriting code for 2nd prog on same HW)
 - Solved
- Second & third problem (rewriting code for new HW)
 - Shifted to updating the OS or its hardware abstraction layer (HAL)

OS: program (or set of programs) providing

• execution environment for user applications (machine abstraction)

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode

Operating System Kernel Linux, FreeBSD, ...

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode

JRE

Operating System Kernel Linux, FreeBSD, ...

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode

JRE

Support Libraries glib, libstdc++, ...

Operating System Kernel Linux, FreeBSD, ...

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode
JRE
Support Libraries glib, libstdc++,
System Libraries libc, pthreads,
Operating System Kernel Linux, FreeBSD,
Hardware

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode
JRE
Support Libraries glib, libstdc++,
System Libraries libc, pthreads,
Operating System Kernel Linux, FreeBSD,
Hardware

a few KLOC?

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode
JRE
Support Libraries glib, libstdc++,
System Libraries libc, pthreads,
Operating System Kernel Linux, FreeBSD,
Hardware

a few KLOC?

~ 4.5 MLOC (openjdk8)

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode	2
---------------	---

JRE

Support Libraries glib, libstdc++, ...

System Libraries libc, pthreads, ...

Operating System Kernel Linux, FreeBSD, ...

Hardware

a few KLOC?

~ 4.5 MLOC (openjdk8)

several MLOC

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

JRE

Support Libraries glib, libstdc++, ...

System Libraries libc, pthreads, ...

Operating System Kernel Linux, FreeBSD, ...

Hardware

a few KLOC?

~ 4.5 MLOC (openjdk8)

several MLOC

1-2 MLOC

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

JRE

Support Libraries glib, libstdc++, ...

System Libraries libc, pthreads, ...

Operating System Kernel Linux, FreeBSD, ...

Hardware

a few KLOC?

~ 4.5 MLOC (openjdk8)

several MLOC

1-2 MLOC

15-25 MLOC

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

Java Bytecode	a few KLOC?	
JRE	~ 4.5 MLOC (o	penjdk8)
Support Libraries glib, libstdc++,	several MLOC	"Operating System"
System Libraries libc, pthreads,	1-2 MLOC	in this course
Operating System Kernel Linux, FreeBSD,	15-25 MLOC	
Hardware		

OS: program (or set of programs) providing

- execution environment for user applications (machine abstraction)
- interface between HW resources and user with resource arbitration/management

The Amount of Code You Blindly Trust

Windows Version	~ SLOC
Windows NT 4.0	11-12M
Windows 2000	29+M
Windows XP	40M
Windows Server 2003	50M

The Amount of Code You Blindly Trust

Windows Version	~ SLOC			
Windows NT 4.0	11-12M			
Windows 2000	29+M		Debian Unstable	~ SLOC
Windows XP	40M	>	2001	1.1 <i>M</i>
Windows Server 2003	50M		2005	4.0M
			2009	26.3M
			2013	72.0M
			2017	86.4M

The Amount of Code You Blindly Trust

Windows Version	~ SLOC	
Windows NT 4.0	11-12 <i>M</i>	
Windows 2000	29+M	
Windows XP	40M	
Windows Server 2003	50M	

	Debian Unstable	~ SLOC
•	2001	1.1M
	2005	4.0M
	2009	26.3M
	2013	72 . 0M
	2017	86.4M

Linux Kernel	~ SLOC
2005	4.7M
2009	8.2M
2013	12 <i>M</i>
2017	16.8M

- Definition 1.1: Kernel plus system libraries
 - Problem: What's a "system library"?
 - Solution: Standards (POSIX, LSB, WinAPI, ...)
- Definition 1.2: Kernel (i.e., everything that runs in kernel mode)
 - Problem 1: Needs definition what kernel mode is
 - Problem 2: Does not apply for hardware architectures that do not follow this definition
 - Solution: Restriction to certain hardware architectures

OS Definition 1.1 Example: POSIX

- Portable Operating System Interface
- Maintained by Austin Group
- Specifies the OS interface, e.g., functions to open files, etc.
- IEEE Std 1003.x & ISO/IEC 9945
- First publication 1988
- Current edition (2016) available online: http://pubs.opengroup.org/onlinepubs/9699919799/
- API standard: Write once, compile everywhere
- POSIX compliance certification available through IEEE & The Open Group

OS Definition 1.1 Example: LSB

- The Linux Standard Base specifies Linux's interface
- Maintained by the Linux Foundation
- Large overlap with POSIX
- First release 2001
- Version 3.1 (2006) has been registered as ISO standard ISO/IEC 23360
- Latest release (and all prior) available online: <u>http://refspecs.linuxfoundation.org/lsb.shtml</u>
 with plenty additional resources: <u>https://www.linuxbase.org/download/</u>
- ABI standard: Compile once, run everywhere
- LSB compliance certification through the Linux Foundation

OS Definition 1.2 Example: x86 Rings

- Intel x86 defines multiple protection "rings"
- Some "privileged" instructions can only be executed in in certain rings
- For example, to modify which memory is visible to which program, a ring 0 instruction is needed
- To prevent any program from disrupting the OS, only the OS can execute in ring 0 (a.k.a. "kernel mode" vs. "user mode" in ring 3)
- Problem: Where to draw the boundary what to execute in ring 0 and what not?

Adapted from an illustration by Hertzsprung at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid= 8950144

OS Definition 1.2: Monolithic vs Microkernel

Monolithic OS Architecture

Microkernel Architecture

Ring 3

User Application

Ring 0

Task Management	Memory Management
Network Stack	File System
Graphics Driver	Keyboard Driver

User Application

Network File
Stack System

Graphics Keyboard
Driver Driver

HAL & IPC

Ring 0

Ring

- OS is a resource allocator
 - Manages all resources (HW, applications, etc)
 - Decides between conflicting requests for efficient and fair resource use
 - Each program gets its share of the resource(s)

- OS is a resource allocator
 - Manages all resources (HW, applications, etc)
 - Decides between conflicting requests for efficient and fair resource use
 - Each program gets its share of the resource(s)
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the resources (e.g., HW or data structures) – ordering, sequencing, ...

- OS is a resource allocator
 - Manages all resources (HW, applications, etc)
 - Decides between conflicting requests for efficient and fair resource use
 - Each program gets its share of the resource(s)
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the resources (e.g., HW or data structures) – ordering, sequencing, ...

- OS is a resource allocator
 - Manages all resources (HW, applications, etc)
 - Decides between conflicting requests for efficient and fair resource use
 - Each program gets its share of the resource(s)
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the resources (e.g., HW or data structures) – ordering, sequencing, ...

- OS is a resource allocator
 - Manages all resources (HW, applications, etc)
 - Decides between conflicting requests for efficient and fair resource use
 - Each program gets its share of the resource(s)
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the resources (e.g., HW or data structures) – ordering, sequencing, ...

Course Outline

Basic Topics

- Hardware Abstraction
 - Processes, Threads, and IPC
 - Memory Management
 - ► I/O
- Resource Management and Control
 - Concurrency
 - Resource Allocation/Scheduling
 - Deadlocks, Race Conditions & Mutual Exclusion
- Persistence: File Systems

Advanced Topics

- Virtualization
- OS Security