Sétimo Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

16 de setembro de 2022

Sumário

1	Introdução							
2	Ref	Reflexão interna total						
	2.1	Tabela de dados						
	2.2	Media dos erros						
	2.3	Angulo critico						
	2.4	Erro absoluto e relativo						
3	Polarização da luz							
	3.1	3.1 Verificacao do angulo de Brewster						
	3.2 Sentido da polarização							
	3.3	Obtendo o coeficiente de refracao						
	3.4	3.4 Polarizadores em serie						

1 Introdução

Neste relatório, vamos discutir a refração da luz, e sua polarização após incidencia sobre superfícies.

Também discutiremos alguns circuitos retificadores com diodos.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 Reflexão interna total

2.1 Tabela de dados

θ	θ_1	θ_2	$-\theta_2$	θ_{2-m}	n
10 ±	± 0.5	7.0 ± 0.5	6.5 ± 0.5	7 ± 1	1.48 ± 0.05
20 ±	± 0.5	13.0 ± 0.5	13 ± 0.5	13 ± 1	1.52 ± 0.05
30 ±	± 0.5	19.5 ± 0.5	19.5 ± 0.5	20 ± 1	1.50 ± 0.05
40 ±	± 0.5	25.5 ± 0.5	25.5 ± 0.5	25 ± 1	1.49 ± 0.05
50 ±	± 0.5	30.5 ± 0.5	30.5 ± 0.5	30 ± 1	1.51 ± 0.05
60 ±	± 0.5	35.5 ± 0.5	35 ± 0.5	35 ± 1	1.50 ± 0.05
70 ∃	± 0.5	39.0 ± 0.5	38.5 ± 0.5	39 ± 1	1.50 ± 0.05
80 ±	± 0.5	41.0 ± 0.5	40.5 ± 0.5	41 ± 1	1.51 ± 0.05

2.2 Media dos erros

Obtivemos o n medio e seu respectivo erro da seguinte maneira:

$$n_m = \frac{(1.48 + 1.52 + 1.49 + 1.51 + 1.5 + 1.5 + 1.51)}{8}$$

$$n_m = 1.5$$

$$\Delta_n = \sum \sqrt{\frac{1.5 - n_i}{8}} = 0.01$$

Que nos da $n = 1.50 \pm 0.01$

2.3 Angulo critico

Obtivemos o ângulo crítico $+43\pm1$ e -43 ± 1 que nos dá a média 43 ± 2

Para conseguirmos o ângulo de refração lembramos da *Lei de Snell*, e a utilizando obtemos: $\sin 43 = \frac{1}{n_2}$

Que nos da $n_2 = 1.47 \pm 0.08$

2.4 Erro absoluto e relativo

Temos que o erro absoluto foi de 0.03 e o relativo de 2%

3 Polarização da luz

3.1 Verificação do angulo de Brewster

Obtivemos $\theta_1=56$ e $\theta_2=34$, e por lei de refração $\theta_1=\theta_b$. Logo:

$$\theta_b + \theta_2 = 90 \tag{1}$$

3.2 Sentido da polarização

A luz refletida no ângulo de Brewster é polarizada perpendicularmente ao plano de incidência.

3.3 Obtendo o coeficiente de refracao

Partirei da equação (1), e aplicarei a *Lei* de *Snell*, utilizando 1 como índice de refração do ar.

$$\sin \theta_b = n \sin \theta_2$$

$$\sin \theta_b = n \sin \left(\frac{\pi}{2} - \theta_b\right)$$

$$\tan \theta_b = n$$

$$\arctan n = 56$$

$$n = 1.48$$

Observamos que o valor encontrado está coerente com os encontrados anteriormente.

3.4 Polarizadores em serie

A luz que passa pelo nosso polarizador fica polarizada em uma direção específica. Se aplicarmos um polarizador ortogonal a este em série, este segundo bloqueará toda luz do primeiro e não observaremos nada após o segundo.

Porém se utilizarmos um terceiro polarizador entre estes dois com ângulo de pi/4, ou seja um ângulo médio entre eles. Permitiremos alguma luz do primeiro passar pelo segundo, e alguma luz do segundo passar pelo terceiro.

O efeito interessante é que se tivermos infinitos polarizadores em série, variando ângulo infinitesimalmente entre si, toda luz passará por todos eles. Porque a variação infinitesimal não bloqueia luz alguma em nenhum deles.