Model Pertumbuhan Logistik dengan Metode Kuadrat Terkecil

Kelompok Terakhir

Anggota Kelompok

- Arsandy Jati P. // 662023003
- Vincentius Pramudya A // 662023004
- Ceria Malika Putri Riawan // 662023008

1. Identifikasi Masalah Dunia Nyata

Pertumbuhan penduduk yang tidak terkendali menyebabkan peningkatan jumlah penduduk miskin, yang berdampak pada ekonomi, sosial, dan lingkungan

Contoh:

Di Kabupaten Probolinggo, angka kemiskinan masih tinggi akibat keterbatasan lapangan kerja, akses pendidikan yang rendah, dan ketidakefektifan program bantuan sosial.

Masalahnya:

Memprediksi jumlah penduduk miskin di Kabupaten Probolinggo.

2. Formulasi Masalah ke dalam Matematika

- jumlah penduduk miskin sebagai parameter N(t).
- jumlah penduduk miskin awal sebagai parameter NO.
- laju pertumbuhan intrinsik jumlah penduduk miskin sebagai parameter r.
- kapasitas tampung sebagai parameter K.

3. Membuat Asumsi

- Data yang di gunakan akurat
- Garis Kemiskinan di Kabupaten Probolinggo kurang lebih sebesar Rp 500.000 per kapita per bulan

4. Formulasi Model Matematis

$$\frac{dN(t)}{dt} = \left(1 - \frac{N(t)}{K}\right)N(t)$$

N(t) = jumlah penduduk miskin pada waktu t

r = laju pertumbuhan intrinsik jumlah penduduk miskin

K = kapasitas tampung

asumsikan K = r / a

5. Penyelesaian Model

$$\frac{dN(t)}{dt} = \left(1 - \frac{N(t)}{K}\right)N(t)$$

$$\frac{dN}{dt} = N \left(1 - \frac{N}{K} \right)$$

$$\frac{dN}{N\left(1-\frac{N}{K}\right)} = dt$$

Menggunakan pecahan parsial untuk memisahkan:

$$\frac{1}{N\left(1-\frac{N}{K}\right)} = \frac{A}{N} + \frac{B}{1-\frac{N}{K}}$$

Mengkalikan kedua ruas dengan penyebut $N\left(1-\frac{N}{\kappa}\right)$

$$1 = A \left(1 - \frac{N}{K}\right) + BN$$

Untuk menentukan A dan B, pilih nilai

$$N = 0$$

Untuk mendapatkan A = 1, lalu pilih N = K untuk mendapatkan $B = \frac{1}{K}$. Jadi,

$$\frac{1}{N\left(1-\frac{N}{K}\right)} = \frac{1}{N} + \frac{\frac{1}{K}}{1-\frac{N}{K}}$$

Mengintegralkan kedua ruas:

$$\int \left(\frac{1}{N} + \frac{\frac{1}{K}}{1 - \frac{N}{K}}\right) dN = \int dt$$

$$\ln|N| - \ln\left|1 - \frac{N}{K}\right| = rt + C$$

$$\ln\left|\frac{N}{1-\frac{N}{K}}\right| = rt + C$$

$$\frac{N}{1-\frac{N}{K}} = e^{rt+C}$$

5. Penyelesaian Model

Misalkan $e^{C} = C_1$, maka:

$$\frac{N}{1-\frac{N}{K}} = C_1 e^{rt}$$

$$N = C_1 e^{rt} \left(1 - \frac{N}{K} \right)$$

$$N(1 + C_1 e^{rt}) = KC_1 e^{rt}$$

$$N = \frac{KC_1e^{rt}}{1 + C_1e^{rt}}$$

Gunakan kondisi awal $N(0) = N_0$ untuk menentukan C_1 :

$$N_0 = \frac{KC_1}{1+C_1}$$

$$C_1 = \frac{N_0}{K - N_0}$$

Sehingga solusi akhirnya:

$$N(t) = \frac{N_0 K}{N_0 + (K - N_0)e^{-rt}}$$

Estimasi Parameter

$$N(t) = \frac{N_0 K}{N_0 + (K - N_0)e^{-rt}}$$

$$N(t)(N_0 + (K - N_0)e^{-rt}) = N_0 K$$

$$N(t)(K - N_0)e^{-rt} = N_0 K - N(t)N_0$$

$$\ln(N(t)(K - N_0)e^{-rt}) = \ln((N_0)(K - N(t)))$$

$$\ln N(t) + \ln(K - N_0) + \ln(e^{-rt}) = \ln N_0 + \ln(K - N(t))$$

$$\ln N(t) - \ln(K - N(t)) - rt = \ln N_0 - \ln(K - N_0)$$

$$\ln\left(\frac{N(t)}{K - N(t)}\right) = rt + \ln\left(\frac{N_0}{K - N_0}\right)$$

Selanjutnya, dimisalkan

$$\ln\left(\frac{N(t)}{K - N(t)}\right) = y \quad \text{dan} \quad \ln\left(\frac{N_0}{K - N_0}\right) = b$$

maka diperoleh

$$y = rt + b$$

Nilai r dan b ditentukan dengan metode kuadrat terkecil berikut:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
$$b = \bar{y} - r\bar{x}$$

Hasil Perhitungan Parameter

Diperoleh hasil dalam Tabel 1, dengan K = 280.000.

Tabel 1. Hasil Perhitungan Parameter dengan Metode Kuadrat Terkecil

Tahun	Populasi Penduduk Miskin	$y_i = \ln\left(\frac{N(t)}{K - N(t)}\right)$	$x_i = t$
2010	276.700	4,429011418	0
2011	259.200	2,522646978	1
2012	248.500	2,0654553	2
2013	238.700	1,754345033	3
2014	231.900	1,573024067	4
2015	236.960	1,705761435	5
2016	240.470	1,805535464	6

Hasil Perhitungan Parameter

Tabel 2. Hasil Perhitungan Parameter dengan Metode Kuadrat Terkecil (Lanjutan)

Tahun	Populasi Penduduk Miskin	$y_i = \ln\left(\frac{N(t)}{K - N(t)}\right)$	$x_i = t$
2017	236.720	1,699187374	7
2018	217.060	1,237991921	8
2019	207.220	1,046339839	9
2020	218350	1,26462605	10
2021	223320	1,371184306	11
2022	203230	0,973524404	12
2023	205020	1,005886124	13
Jı	umlah	24,45451971	

Diperoleh

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = -0,14867$$

$$b = \bar{y} - r\bar{x} = 2,373971$$

$$N_0 = \frac{e^b K}{1 + e^b} = 256.149,836$$

6. Codingan

```
import numpy as np
                               # Perhitungan numeri
import matplotlib.pyplot as plt # membuat grafik
def logistik(N0, K, r, t): # Fungsi untuk menghitung pertumbuhan logistik
   return (N0 * K) / (N0 + (K - N0) * np.exp(-r * t))
# Parameter berdasarkan penelitian
N0 = 256149.836 # Populasi awal
                 # Kapasitas maksimum
K = 280000
                  # Laju pertumbuhan negatif ( populasi menurun)
r = -0.14867
tahun = np.arange(0, 20, 1) # Simulasi untuk 20 tahun ke depan dan selisih 1 tahun
populasi = logistik(N0, K, r, tahun) # menghitung populasi tiap tahun
# menghitung Populasi penduduk miskin setelah tahun ke-14
tahun 14 = 14 # tahun ke-14
populasi_14 = logistik(N0, K, r, tahun_14) # populasi tahun ke -14
# Menampilkan hasil jumlah Populasi penduduk miskin setelah tahun ke-14
print(f"Jumlah Populasi penduduk miskin setelah tahun ke-{tahun 14} adalah {populasi 14:.2f} orang.") # di ambil 2 digit belakang koma sajaa
```

6. Codingan

```
# Plot hasil simulasi
plt.figure(figsize=(8, 5))
plt.plot(tahun, populasi, marker='o', linestyle='-', color='blue', label='Prediksi Populasi') # marker o itu menampilkan titk data
plt.axhline(y=K, color='red', linestyle='--', label='Kapasitas Maksimum') # mnambahkan garis horisontal di K
plt.axvline(x=tahun_14, color='green', linestyle='--', label=f"Tahun ke-{tahun_14}") #menambahkan garis vertikal di tahun ke 14
plt.scatter(tahun_14, populasi_14, color='red', zorder=5) # menambahkan itik untuk bulan ke-5 dan zorder untuk urutan tumpukan elemen
plt.xlabel('Tahun')
plt.ylabel('Jumlah Penduduk Miskin')
plt.title('Simulasi Model Pertumbuhan Logistik')
plt.legend()
plt.grid()
plt.show()
```

Grafik Codingan

7. Validasi Model

Tabel 2. Hasil Perhitungan Populasi dan Galat Taksiran

Populasi Sebenarnya	Tahun ke- (t)	Populasi Taksiran N(t)	Galat Taksiran
276.700	0	256.149,836	0,074268753
259.200	1	252.699,6198	0,025078627
248.500	2	248.811,0606	0,001251753
238.700	3	244.446,5569	0,02407439
231.900	4	239.570,5376	0,033076919
236.960	5	234.151,2184	0,0118534
240.470	6	228.162,6543	0,051180379

Tabel 2. Hasil Perhitungan Populasi dan Galat Taksiran (Lanjutan)

Populasi Sebenarnya	Tahun ke- (t)	Populasi Taksiran $N(t)$	Galat Taksiran
236.720	7	221.587,0235	0,063927748
217.060	8	214.417,0269	0,012176233
207.220	9	206.658,2341	0,002710964
218.350	10	198.331,1558	0,091682364
223.320	11	189.472,7902	0,151563719
203.230	12	180.137,3818	0,113627999
205.020	13	170.396,1672	0,168880269
	Rata-ra	ta	0,058954

8. Penggunaan Model

$$N(t) = \frac{N_0 K}{N_0 + (K - N_0)e^{-rt}}$$

$$N(t) = \frac{256.149,836 \times 280.000}{256.149,836 + (280.000 - 256.149,836)e^{0,14867t}}$$

$$N(t) = \frac{71.721.954.080}{256.149,836 + (23.850,164)e^{0,14867t}}$$

8. Penggunaan Model

Tabel 3. Hasil Prediksi Jumlah Penduduk Miskin

Tahun	Prediksi Jumlah Penduduk Miskin
2024	160.335,958
2025	150.056,5309
2026	139.666,9406
2027	129.281,0177
2028	119.012,4321

9. Kelebihan Kekurangan

Kelebihan

- Topik yang Relevan
- Data yang Akurat
- Model yang Valid

Kekurangan

Keterbatasan Model

Terimakasih