ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

12.6.2019

I група задачи (испитот трае 150 минути)

- **1.** (13 поени) Цилиндричен кондензатор со должина L и радиуси на електродите a и b исполнет со течен диелектрик со релативна пермитивност $\varepsilon_{\rm r}$ е приклучен на напонски извор U.
- а) Да се определи количеството електрицитет со кое е оптоварен кондензаторот. Да се напишат изразите за векторите на електрично поместување и на јачина на електрично поле. Да се определи оптоварувањето и енергијата на електричното поле во кондензаторот изразено од напонот U.
- б) При постојано вклучен напонски извор се остава да истече течниот диелектрик. Во состојба кога диелектрикот е целосно отстранет да се определи новото количество електрицитет co кое е оптоварен кондензаторот. Да се напишат изразите за векторите на електрично поместување и на јачина на електрично поле. Да се определи оптоварувањето И енергијата електричното поле BO кондензаторот изразено од напонот U.

- в) Да се споредат резултатите добиени под а) и б) и да се коментираат разликите.
- 2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни контурни струи. Да се постави и реши системот равенки и да се определат контурните струи. Да се определат струите во сите гранки. Потоа да се определат моќностите на струјниот извор I_{S2} и напонскиот извор E_2 .

$R_1 = 20\Omega$	$R_2=30\Omega$
$R_3=10\Omega$	$R_4 = 15\Omega$
$R_5{=}25\Omega$	$R_6=15\Omega$
$E_1=40V$	$E_2=80V$
$I_{S1} = 0.5A$	$I_{S2} = 0.25A$

- 3. (14 поени) Кога прекинувачот Π е отоворен напонот помеѓу точките A и B изнесува 15V. Кога прекинувачот Π е во положба 1 јачината на струјата низ него е I=1A со означената насока.
- а) Да се определи вредноста на отпорникот R_3 .
- б) Да се определи ЕМС на непознатиот напонски извор Е.
- в) Да се определи струјата низ отпорниста R_6 кога прекинувачот е во положба 2.

4. (13 поени) Даден е систем кој се состои од две паралелни метални шини поставени во рамнината на цртежот. Метален диск со радиус a=1m ротира со константна аголна брзина $\omega=100$ rad/s околу оската О во рамнината на шините. Оската на дискот преку контакт е поврзана со едната шина, додека периферијата на дискот преку контакт е поврзана со другата шина. По шините се лизга кус прав проводник со должина L кој стои под агол $\alpha=30^0$ во однос на шините. Линиската брзина на кусиот проводник е константна и изнесува v=10 m/s. Во просторот постои хомогено магнетно поле со вектор на магнетна индукција B=0.1Т дискот поставен нормално на рамнината во која лежат шините и во насока како што е означено. Да се определи јачината и насоката на струјата која протекува низ отпорникот $R=100\Omega$.

ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

12.6.2019

II група задачи (испитот трае 150 минути)

- 1. (13 поени) Цилиндричен воздушен кондензатор со должина L и радиуси на електродите a и b приклучен е на напонски извор U.
- а) Да се определи количеството електрицитет со кое е оптоварен кондензаторот. Да се напишат изразите за векторите на електрично поместување и на јачина на електрично поле. Да се определи оптоварувањето и енергијата на електричното поле во кондензаторот изразено од напонот U.
- б) При постојано вклучен напонски извор кондензаторот се исполнува целосно се со течен диелектрик со релативна диелектрична константа $\varepsilon_{\rm r}$. Во состојба кога диелектрикот е целосно отстранет да се определи новото количество електрицитет со кое е оптоварен кондензаторот. Да се напишат изразите за векторите на електрично поместување и на јачина на електрично поле. Да се определи оптоварувањето и енергијата на електричното поле во кондензаторот изразено од напонот U.

- в) Да се споредат резултатите добиени под а) и б) и да се коментираат разликите.
- 2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни контурни струи. Да се постави и реши системот равенки и да се определат контурните струи. Да се определат струите во сите гранки. Потоа да се определат моќностите на струјниот извор I_{S2} и напонскиот извор E_2 .

$R_1=20\Omega$	$R_2=30\Omega$
$R_3=10\Omega$	$R_4=15\Omega$
$R_5=25\Omega$	$R_6=15\Omega$
$E_1=40V$	$E_2=80V$
$I_{S1} = 0.5A$	$I_{S2} = 0.25A$

- 3. (*14 поени*) Кога прекинувачот Π е затворен јачината на струјата низ него е I=0.8 Λ со означената насока. Кога прекинувачот Π е во положба 1 напонот помеѓу точките Λ и B изнесува 12V.
- а) Да се определи вредноста на отпорникот R_3 .
- б) Да се определи ЕМС на непознатиот напонски извор Е.
- в) Да се определи струјата низ отпорниста R_6 кога прекинувачот е во положба 2.

$R_1=10\Omega$	+	人		A		╗.
$R_2\!\!=\!\!20\Omega$	$\bigcirc_{\rm E}$	R_1	$(\uparrow)^{I_S}$	\perp	I	ДΠ
$R_4=60\Omega$		뉘	Д	R_4	2	Ìì
$R_5=40\Omega$	\bigcap_{R_3}	\bigcap_{R_2}	R_5	H	R_6	
$R_6=15\Omega$			H	B	ŮЦ	
$I_{S}=0.4A$						

4. (13 поени) Даден е систем кој се состои од две паралелни метални шини поставени во рамнината на цртежот. Метален диск со радиус a=1m ротира со константна аголна брзина $\omega=100$ rad/s околу оската О во рамнината на шините. Оската на дискот преку контакт е поврзана со едната шина, додека периферијата на дискот преку контакт е поврзана со другата шина. По шините се лизга кус прав проводник со должина L кој стои под агол $\alpha=30^0$ во однос на шините. Линиската брзина на кусиот проводник е константна и изнесува v=10m/s. Во просторот постои хомогено магнетно поле со вектор на магнетна индукција B=0.1Т дискот поставен нормално на рамнината во која лежат шините и во насока како што е означено. Да се определи јачината и насоката на струјата која протекува низ отпорникот $R=100\Omega$.

