269.20

THOMAS BREYDO

Problem. Suppose V is a complex vector space and V_1, \ldots, V_m are nonzero subspaces of V such that $V = V_1 \oplus \cdots \oplus V_m$. Suppose $T \in \mathcal{L}(V)$ and each V_j is invariant under T. For each j, let p_j denote the characteristic polynomial of $T|_{V_j}$ Prove that the characteristic polynomial of T equals $p_1 \cdots p_m$.

Claim. Every eigenvalue of $T|_{V_i}$ is also an eigenvalue of T.

Proof. Suppose λ is an eigenvalue of $T|_{V_j}$, with corresponding generalized eigenvector $v \in V_j$. Then,

$$\left(T|_{V_j} - \lambda I\right)^{\dim V_j} v = 0.$$

Since $\dim V_j < \dim V$ and T is invariant on V_j ,

$$(T - \lambda I)^{\dim V} v = 0.$$

Thus, λ must be one of the eigenvalues of T.

Suppose the eigenvalues of T are $\lambda_1, \ldots, \lambda_k$.

Claim. The sum of the multiplicities of some eigenvalue λ over all $T|_{V_1},\ldots,T|_{V_m}$ is equal to the multiplicity of eigenvalue λ of T. In other words,

$$\dim G(\lambda,T)=\dim G(\lambda,\left.T\right|_{V_1})+\cdots+\dim G(\lambda,\left.T\right|_{V_m}).$$

Proof. By 8.21,

$$V_j = G(\lambda_1, T|_{V_j}) \oplus \cdots \oplus G(\lambda_k, T|_{V_j}),$$

since the eigenvalues of V_j are contained within $\lambda_1, \ldots, \lambda_k$ We use this to go from line two to line three below:

$$G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_k, T) = V$$

$$= \bigoplus_{j=1}^{m} V_j$$

$$= \bigoplus_{j=1}^{m} \left(G(\lambda_1, T|_{V_j}) \oplus \cdots \oplus G(\lambda_k, T|_{V_j}) \right)$$

$$= \left(\bigoplus_{j=1}^{m} G(\lambda_1, T|_{V_j}) \right) \oplus \cdots \oplus \left(\bigoplus_{j=1}^{m} G(\lambda_k, T|_{V_j}) \right).$$

We gather that for each λ ,

$$G(\lambda, T) = \bigoplus_{j=1}^{m} G(\lambda, T|_{V_j})$$
$$= G(\lambda, T|_{V_1}) \oplus \cdots \oplus G(\lambda, T|_{V_m}),$$

and thus

$$\dim G(\lambda, T) = \dim \left(G(\lambda, T|_{V_1}) \oplus \cdots \oplus G(\lambda, T|_{V_m}) \right)$$

$$= \dim G(\lambda, T|_{V_1}) + \cdots + \dim G(\lambda, T|_{V_m}).$$

Suppose the characteristic polynomial of T is q.

Claim.
$$p_1 \cdots p_m = q$$
.

Proof.

$$p_{1} \cdots p_{m} = \prod_{j=1}^{m} p_{j}$$

$$= \prod_{j=1}^{m} \left((z - \lambda_{1})^{\dim G(\lambda_{1}, T|_{V_{j}})} \right) \cdots \left((z - \lambda_{k})^{\dim G(\lambda_{k}, T|_{V_{j}})} \right)$$

$$= \left(\prod_{j=1}^{m} (z - \lambda_{1})^{\dim G(\lambda_{1}, T|_{V_{j}})} \right) \cdots \left(\prod_{j=1}^{m} (z - \lambda_{k})^{\dim G(\lambda_{k}, T|_{V_{j}})} \right)$$

$$= \left((z - \lambda_{1})^{\sum_{j=1}^{m} \dim G(\lambda_{1}, T|_{V_{j}})} \right) \cdots \left((z - \lambda_{1})^{\sum_{j=1}^{m} \dim G(\lambda_{k}, T|_{V_{j}})} \right)$$

$$= \left((z - \lambda_{1})^{\dim G(\lambda_{1}, T)} \right) \cdots \left((z - \lambda_{k})^{\dim G(\lambda_{k}, T)} \right)$$

$$= q$$

269.20 3

Note. You can view the source code for this solution here.