Example 1 2: As shown in Figure 1, the quadrilateral ABCD is a rectangle, $CE \perp BD$, AE is the bisector of $\angle BAD$, to prove: CE = BD.

Proof: Suppose
$$\frac{A-C}{A-E} = T$$
, $\frac{B-C}{A-E} = t_1$, $\frac{A+C-B-B}{C-E} = t_2$, $\frac{B-C}{A-B} = t_3$,

$$T = \frac{t_1 \left(1 - t_3^2\right)}{t_2 t_3}.$$

$$\frac{A-C}{\frac{A-E}{E-A}} = \frac{B-C}{\frac{A-E}{A-E}} \frac{A-C}{\frac{A-B}{B-A}} \frac{E-C}{D-B} \frac{B-A}{B-C}.$$