ESERCIZIO 6

Con riferimento alla sezione sottile in figura, si riportano quattro varianti. Per ogni caso, si valuti lo stato tensionale risultante, riportando valori, andamento e verso delle tensioni agenti. Si commentino le formule utilizzate e i risultati ottenuti. Si consideri la dimensione a pari a 10 mm, spessore $\delta = 0.5$ mm, Ty = 100 N.

Varianti:

- 1) Sezione sottile chiusa, Ty applicato su asse di simmetria;
- 2) Sezione sottile chiusa, Ty applicato ad un'estremità della sezione;
- 3) Sezione sottile aperta con fessura trascurabile, Ty applicato su asse di simmetria;
- 4) Sezione sottile aperta con fessura trascurabile, Ty applicato ad un'estremità della sezione;

VARIANTE 1

Se la forza di taglio Ty è applicata vull'anne di simmetria, poiche il ceutra di taglio giece vullo atens onne, allera Ty è applicato un ceutra di Taglio, quindi nasceranno delle teusioni tangenziali l'e quenate escusivamente da Ty.

E possibile determinate un volore di T_2 undis (\overline{C}_2) or una corde b d variore alle positione melle rezione utilizzando le formule di Jouransky: $\overline{C}_2 = \frac{Ty \cdot S_X^*}{I \cdot b} \quad \text{con } I_X = \text{unoverto d'invisio emide dube}$ Resone

ctuswingus ib alustriz si constitus ib inco aut ich ctaigitudii alantuso.

St = momento stetico di una persione di rezione iduntificate dalla carda bin questo caso coincidente con con la opersone 8).

Colcolo I_{x} (somme di nutrangoli sottili): $I_{x} = 2 \cdot \left(\frac{(k_{0})^{3} S}{42}\right) + 2\left(2 \cdot S \cdot 2^{2}\right) = \frac{4}{3} 2^{3} S + 22^{3} S = \frac{10}{3} 2^{3} S = 1666, 7 \text{ mm}^{4}$

Posso diterminate l'andoments delle \overline{c}_{ϵ} conoscendo l'andoments di S_{κ}^* melle rezione, poichi, essend S_{ϵ} costante, \overline{c}_{ϵ} of S_{κ}^* Inoltre, so che mell' osse $y_{\epsilon,j}$ per simmetria, le seusioni $C_{\epsilon}=0$. Analizzo quindi meta rezione per il colcol di $S_{\kappa}^*(\xi)$ e definiso l'oscisse curvilinee ξ_{1} e ξ_{2} , come riportato.

 $S_{x}^{*}(\xi_{1}) = \xi_{4} \delta(-\alpha)$ and award linears

 $S_{\times}^*(\hat{r}_1 = \frac{\alpha}{2}) = -\frac{\alpha^2 S}{9}$ verso $\Theta = 7$ recordo la convenzione \overline{C}_2 uscenti dell'area considerate

 $S_{\times}^{*}(\xi_{2}) = -\frac{\alpha^{2}S}{2} + \xi_{2}S(-\alpha + \frac{\xi_{1}}{2})$ audamento parabolica merrino nu baricanto.

 $S_{x, (q_2 = \alpha)}^* = -\frac{\alpha^2 S}{2} + \alpha S\left(-\frac{\alpha}{2}\right) = -\alpha^2 S$ vere $\Rightarrow \overline{\zeta}_2$ verenti

Per simmetria, posso apeachiance si nimpetto ai l'anni di nimmetria.

=> le \overline{C}_{2} quiudi resulteroume : $\overline{C}_{2}(\xi_{1}=\frac{0}{2})=\frac{Ty}{\frac{40}{3}86}=\frac{3}{20}\frac{Ty}{40}=\frac{3}{20}\frac{400}{400}=3HB$

la marriue $C_{\frac{1}{2}}$: $\overline{C}_{\frac{1}{2}}(\frac{6}{7}z=0) = \frac{T_{\frac{1}{2}} \cdot a^{\frac{2}{5}}}{\frac{10}{3}a^{\frac{3}{5}}\cdot 8} = \frac{3}{10}\frac{T_{\frac{1}{2}}}{a^{\frac{1}{2}}} = 6HP_{3}$

andamenti , valori e

VERSI di Cz

VARIANTE 2

In questo caso Ty NON è oppliato uel centro di taglio, quindi nascero un momento tercente $M_2 = Ty \cdot \frac{1}{2}$ con verso anti-nario.

le tensioni tanzenziali te dote de taglio n'unangono le stesse della vanionte 1, mentre le Ce derivanti de Me si ricaname en le formule di Bredt per sezioni sottili chiuse:

 $T_2 = \frac{M_2}{2.00}$ con $\Omega = 10^2$ area conservée delle line medie delle rezione.

 $T_2 = \frac{T_3 \cdot \frac{\Delta}{2}}{4a^2S} = \frac{1}{8aS} \cdot \frac{T_3}{8\cdot 10\cdot 0.5} = 2.5 \text{ HPs}$, costanti lung trutale linea media, e poiche $S = \cos t$ ante, sono costanti $\cos t = \cos t$ anche su trutale la sezione.

vecs:lo otema di Mz (tz ul A G

In A Te (Ty) e Te (Me) nous concordi e ponollele quivdi ni pospous sourusne.

Twax rule rezione: 6HB + 2,5 HB = 8,5 HB

VARIANTE 3: nou combie unde réspetto des varioure 1.

VARIANTE 4

Anche in questo case ua see $M_2 = Ty \cdot \frac{a}{2}$ (verse autientatio) use queste volte, trattandosi di rezione retile APERTA, le T_2 derivanti de M_2 randome pari a: $T_2 = \frac{M_2}{I_1} \cdot S$ con I_1 rigidezza tensionale elle rezione :

$$I_{t} = 2\left(\frac{4}{3}26^{3} + \frac{1}{3}65^{3}\right) = 265^{3} = 2,5 \text{ mm}^{4}$$

Poiche δ é costante lung tutta la sezione, $\tau_2^{\text{max}} = \frac{Ty^{\frac{3}{4}/2}}{20 s^{\frac{3}{2}}} \delta = \frac{1}{4} \frac{Ty}{\delta^2} = \frac{100}{4(0.5)^2} = 100 \text{ HPa}$

audamento oul pardo della spessore finane (audinamie):

massimo sui bodi, pullo sulla livea mudia.

Noto the:
$$\frac{r_2(M_2, variante 4)}{r_2(M_2, variante 2)} = \frac{400}{215} = 40$$

le Tz vella rezione aperta rono 40 volte maggiori delle Tz vella rezione chiusa a ponità di Mz.

ESERCIZIO 7

Con riferimento alla sezione sottile in figura sottoposta a carico di sforzo normale N, momento retto M_x e momento torcente M_z , si valuti lo stato tensionale risultante, riportando valori, andamento e verso delle tensioni agenti. Si commentino le formule utilizzate e i risultati ottenuti. Si consideri la dimensione a pari a 300 mm, spessore b = 5 mm, N = 100 kN, $M_x = 25$ kNm, $M_z = 1000$ Nm. Si verifichi la sezione nei punti maggiormente sollecitati con il criterio di Tresca, nota una tensione ammissibile $\sigma_{amm} = 200$ MPa.

Nel visteme di referimento contrale resportato, calcalo il momento d'imeria assiste I_x e l'area A:

$$I_{x} = 2\frac{a^{3}b}{12} + 2ab(\frac{a}{2})^{2} = \frac{a^{3}b}{6} + \frac{1}{2}a^{3}b = \frac{2}{3}a^{3}b = 90 \text{ A0}^{6}\text{mm}^{4}$$

$$A = 4(ab) = 6000 \text{ mm}^{2}$$

A requite dei carichi reiportati, possiamo offennan che $N+M_x \Rightarrow$ pressoftessione \Rightarrow tensione un male O_z $M_z \Rightarrow \text{tensione} \Rightarrow C_z \text{ (tensione tangentiale)}$

$$\mathcal{O}_{z} = \frac{N}{A} + \frac{M_{x}}{I_{x}} y$$
 poiche No (compression) $\mathcal{O}_{z} = -\frac{N}{A} + \frac{M_{x}}{I_{x}} y$

Ricano 6, ed m appr, ouse montre (producti point in ang
$$q^{5} = 0$$
): $-\frac{H}{H} + \frac{x^{2}}{H^{2}} h^{2} = 0$

$$= \frac{30 \cdot 10_{0} \cdot 10^{2} \cdot 10^{2}}{4 \cdot 10^{2} \cdot 10^{2}} = 60 \text{ mm}$$

$$= \frac{30 \cdot 10_{0} \cdot 10^{2} \cdot 10^{2} \cdot 10^{2}}{4 \cdot 10^{2} \cdot 10^{2} \cdot 10^{2}} = 60 \text{ mm}$$

$$d_{2} \text{ mult bounceut no}:
 d_{2} = -\frac{N}{A} = -\frac{100 \cdot 10^{3}}{6 \cdot 40^{3}} = -16,67 \text{ HPa}$$

$$d_{2}(B) = -\frac{N}{A} + \frac{N_{x}}{I_{x}} \left(-\frac{Q}{2}\right) = -16,67 + \frac{25 \cdot 10^{6}}{30 \cdot 10^{6}} \left(-150\right) = -16,67 - 1666$$

$$= -58,34 \text{ HPa}$$

$$d_{2}(P) = -\frac{N}{A} + \frac{N_{x}}{I_{x}} \left(\frac{Q}{2}\right) = \left(-16,67 + 144,66\right) + \frac{1}{16} + \frac{1}{1$$

observation in module.

La presenza di un momento tencente Mz comporta la presenza di $C_z = \frac{M_z}{T_t}$ formula per la tensione C_z in rezioni rottili aperte, con I_t = fortal di rigiolezza tensionale

$$I_{t} = 4\left(\frac{4}{3}ab^{3}\right) = \frac{4}{3}ab^{3} = \frac{4}{3}\cos \cdot 5^{3} = 50 \cdot 10^{3} \text{ m/m}^{4}$$

$$T_{t} = \frac{M_{2}}{I_{t}} \cdot b \quad \text{con b contourte no state be region.} \quad T_{t} = \frac{4 \cdot 10^{6}}{50 \cdot 40^{3}} \cdot 5 = 100 \text{ HPz}$$

andamento limare (anologia idrodinamica):

wassins out bodi, hulls over lives mudie

So tothi i punti aneuti l'ordinata del ponto B_1 nia C_2 nia C_2 non marrime: calcale le tensione equivalente con il metodo di Tresca: $C_{cq} = \sqrt{C_2^2 + 4C_2^2} = \sqrt{(58_134)^2 + 4(100)^2} = 208_134 \text{ HP} > 200 \text{ HP}_2$ C_{quue}

Nei punti maggiormente sollecitati la tensione equivalente é maggiore della tensione de serion non reinstra con il cuiteri di Tresca.