

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Ingeniería en Sistemas Computacionales

Programa de Asignatura: Teoría de Sistemas Complejos

Código: MCOM 22240

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Teoría de los Sistemas Complejos
Ubicación:	Segundo o Tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dr. Alejandro Rangel Huerta Dr. Mario Bustillo Díaz
Fecha de diseño:	Noviembre 2012
Fecha de la última actualización:	Marzo 2017
Revisores:	Dr. Alejandro Rangel Huerta Dr. Mario Bustillo Díaz
Sinopsis de la revisión y/o actualización:	Revisión de contenido

3. OBJETIVOS:

General:

Aprender las bases de los sistemas complejos, sus fundamentos filosóficos con relación a la inteligencia artificial distribuida y los sistemas multi-agente, así como su implementación tradicional enmarcada en los fenómenos de lo social.

Específicos:

Implementar modelos y programas de simulación para reproducir las características generales y evolución de los sistemas complejos.

4. CONTENIDO

Unidad	Contenido Temático/Actividades de aprendizaje
1. Modelos	Modelos continuos de crecimiento
poblacionales	2. Solución analítica
	3. Solución numérica4. Bifurcaciones
	5. Región crítica
	6. Caos
2. Interacción entre	Modelos presa-depredador
poblaciones	Complejidad y estabilidad dinámica
	Comportamientos periódicos
	4. Ciclos límite
3. Modelos de	Sistemas colectivos biológicos
formación de patrones	2. Sistemas computacionales bioinspirados
	3. Interacciones locales no lineales
	Comportamientos colectivos
	5. Auto-organización
	6. Modelos del forrajeo de hormigas
4. Sistemas	Modelos basados en agentes
multiagente	Sistemas basados en reglas
	Caracterización de sistemas multiagente
	4. Relación con autómatas celulares
	Propiedades colectivas de un sistema multiagente
	6. Aplicaciones

Bibliografía		
Básica	Complementaria	
 John Earls. Introducción a la teoría de sistemas complejos, 1ra edición. Ed. Fondo Editorial PUCP (2013). 		
2. Gary W. Flake. The computational beauty of nature, 2nd edition. Mit Press Cambridge (1998).		
3. J. D. Murray. An introduction to mathematical biology, 3th edition. Springer Verlang (2002).		
 Scott Camazine. Self-organization in biological systems, 1st edition. Princeton University Press (2015). 		

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	40%
Participación en clase	
Tareas	
Exposiciones	
Simulaciones	
 Trabajo de investigación y/o de intervención 	
 Prácticas de laboratorio 	30%
 Visitas guiadas 	
 Reporte de actividades académicas y culturales 	
Mapas conceptuales	
Portafolio	
Proyecto final	30%
• Otros	
Total	100%