Package 'causalLearning'

August 6, 2018

Title Methods for heterogeneous treatment effect estimation

Version 1.0.0

Description The main functions are cv.causalBoosting and bagged.causalMARS, which build upon the simpler causalBoosting and causalMARS functions. All of these functions have their own predict methods.

Depends R (>= 3.3.0)

Imports ranger, parallel

License GPL-2

LazyData true

Index

RoxygenNote 6.0.1

 ${\bf URL}\ {\tt https://github.com/walterwzhang/causalLearning}$

R topics documented:

bagged.causalMARS	2
causalBoosting	3
causalMARS	4
cv.causalBoosting	7
pollinated.ranger	8
predict.bagged.causalMARS	9
predict.causalBoosting	9
predict.causalMARS	10
predict.causalTree	11
predict.cv.causalBoosting	11
predict.pollinated.ranger	12
predict.PTOforest	13
PTOforest	13
stratify	14
1	16

2 bagged.causalMARS

bagged.causalMARS	Fit a bag of causal MARS models
246624.644242	Tit di dag di camban manan manan

Description

Fit a bag of causal MARS models

Usage

```
bagged.causalMARS(x, tx, y, nbag = 20, maxterms = 11, nquant = 5,
  degree = ncol(x), eps = 1, backstep = FALSE, propensity = FALSE,
  stratum = rep(1, nrow(x)), minnum = 5, verbose = FALSE,
  nthreads = NULL)
```

Arguments

x	matrix of covariates
tx	vector of treatment indicators (0 or 1)
У	vector of response values
nbag	number of models to bag
maxterms	maximum number of terms to include in the regression basis (e.g. maxterms = 11 means intercept + 5 pairs added)
nquant	number of quantiles used in splitting
degree	max number of different predictors that can interact in model
eps	shrinkage factor for new term added
backstep	logical: should out-of-bag samples be used to prune each model? otherwise full regression basis is used for each model
propensity	logical: should propensity score stratification be used?
stratum	optional vector giving propensity score stratum for each observation (only used if propensity = TRUE)
minnum	minimum number of observations in each arm of each propensity score stratum needed to estimate regression coefficients for basis (only used if propensity = TRUE)
verbose	logical: should progress be printed to console?
ncores	integer: Number of threads to use (defaults to 1)

Value

an object of class bagged. causal MARS, which is itself a list of causal MARS objects

Examples

```
# Randomized experiment example
n = 100 # number of training-set patients to simulate
p = 10 # number of features for each training-set patient
# Simulate data
x = matrix(rnorm(n * p), nrow = n, ncol = p) # simulate covariate matrix
```

causalBoosting 3

```
tx_effect = x[, 1] + (x[, 2] > 0) # simple heterogeneous treatment effect
tx = rbinom(n, size = 1, p = 0.5) # random treatment assignment
y = rowMeans(x) + tx * tx_effect + rnorm(n, sd = 0.001) # simulate response

# Estimate bagged causal MARS model
fit_bcm = bagged.causalMARS(x, tx, y, nbag = 10)
pred_bcm = predict(fit_bcm, newx = x)

# Visualize results
plot(tx_effect, pred_bcm, main = 'Bagged causal MARS',
    xlab = 'True treatment effect', ylab = 'Estimated treatment effect')
abline(0, 1, lty = 2)
```

causalBoosting

Fit a causal boosting model

Description

Fit a causal boosting model

Usage

```
causalBoosting(x, tx, y, num.trees = 500, maxleaves = 4, eps = 0.01,
   splitSpread = 0.1, x.est = NULL, tx.est = NULL, y.est = NULL,
   propensity = FALSE, stratum = NULL, stratum.est = NULL,
   isConstVar = TRUE)
```

Arguments

x	matrix of covariates
tx	vector of treatment indicators (0 or 1)
У	vector of response values
num.trees	number of shallow causal trees to build
maxleaves	maximum number of leaves per causal tree
eps	learning rate
splitSpread	how far apart should the candidate splits be for the causal trees? (e.g. $splitSpread = 0.1$) means we consider 10 quantile cutpoints as candidates for making split
x.est	optional matrix of estimation-set covariates used for honest re-estimation (ignored if tx.est = NULL or y.est = NULL)
tx.est	optional vector of estimation-set treatment indicators (ignored if x.est = NULL or y.est = NULL)
y.est	optional vector of estimation-set response values (ignored if x.est = NULL or y.est = NULL)
propensity	logical: should propensity score stratification be used?
stratum	optional vector giving propensity score stratum for each observation (only used if propensity = TRUE)
stratum.est	optional vector giving propensity score stratum for each estimation-set observa- tion (ignored if x.est = NULL or tx.est = NULL or y.est = NULL)
isConstVar	logical: for the causal tree splitting criterion (T-statistc), should it be assumed that the noise variance is the same in treatment and control arms?
	tx y num.trees maxleaves eps splitSpread x.est tx.est y.est propensity stratum stratum.est

4 causalMARS

Details

This function exists primarily to be called by cv.causalBoosting because the num.trees parameter generally needs to be tuned via cross-validation.

Value

an object of class causalBoosting with attributes:

- CBM: a list storing the intercept, the causal trees and eps
- tauhat: matrix of treatment effects for each patient for each step
- G1: estimated-treatment conditional mean for each patient
- G0: estimated-control conditional mean for each patient
- err.y: training error at each step, in predicting response
- num.trees: number of trees specified by function call

Examples

```
# Randomized experiment example
n = 100 # number of training-set patients to simulate
p = 10 # number of features for each training-set patient

# Simulate data
x = matrix(rnorm(n * p), nrow = n, ncol = p) # simulate covariate matrix
tx_effect = x[, 1] + (x[, 2] > 0) # simple heterogeneous treatment effect
tx = rbinom(n, size = 1, p = 0.5) # random treatment assignment
y = rowMeans(x) + tx * tx_effect + rnorm(n, sd = 0.001) # simulate response

# Estimate causal boosting model
fit_cb = causalBoosting(x, tx, y, num.trees = 500)

# Visualize results
plot(tx_effect, pred_cb, main = 'Causal boosting',
    xlab = 'True treatment effect', ylab = 'Estimated treatment effect')
abline(0, 1, lty = 2)
```

causalMARS

Fit a causal MARS model

Description

Fit a causal MARS model

Usage

```
causalMARS(x, tx, y, maxterms = 11, nquant = 5, degree = ncol(x),
  eps = 1, backstep = FALSE, x.val = NULL, tx.val = NULL,
  y.val = NULL, propensity = FALSE, stratum = rep(1, nrow(x)),
  stratum.val = NULL, minnum = 5)
```

causalMARS 5

Arguments

X	matrix of covariates
tx	vector of treatment indicators (0 or 1)
У	vector of response values
maxterms	maximum number of terms to include in the regression basis (e.g. maxterms = 11 means intercept + 5 pairs added)
nquant	number of quantiles used in splitting
degree	max number of different predictors that can interact in model
eps	shrinkage factor for new term added
backstep	logical: after building out regression basis, should backward stepwise selection be used to create a sequence of models, with the criterion evaluated on a validation set to choose among the sequence?
x.val	optional matrix of validation-set covariates (only used if backstep = TRUE)
tx.val	optional vector of validation-set treatment indicators (only used if backstep = TRUE)
y.val	optional vector of validation-set response values (only used if backstep = TRUE)
propensity	logical: should propensity score stratification be used?
stratum	optional vector giving propensity score stratum for each observation (only used if propensity = TRUE)
stratum.val	optional vector giving propensity score stratum for each validation-set observa- tion (only used if propensity = backstep = TRUE)
minnum	minimum number of observations in each arm of each propensity score stratum needed to estimate regression coefficients for basis (only used if propensity = TRUE)

Details

parallel arms mars with backward stepwise BOTH randomized case and propensity stratum. data structures: model terms (nodes) are numbered 1, 2, ... with 1 representing the intercept. forward stepwise: modmatrix contains basis functions as model is built up – two columns are added at each step. Does not include a column of ones for tidiness, we always add two terms, even when term added in linear (so that reflected version is just zero). backward stepwise: khat is the sequence of terms deleted at each step, based on deltahat = relative change in rss. rsstesthat is rss over test (validation) set achieved by each reduced model in sequence- used later for selecting a member of the sequence. active2 contains indices of columns with nonzero norm

Value

an object of class causalMARS with attributes:

- parent: indices of nodes that are parents at each stage
- childvar: index of predictor chosen at each forward step
- childquant: quantile of cutoff chosen at each forward step
- quant: quantiles of the columns of x
- · active: indices of columns with nonzero norm
- allvars: list of variables appearing in each term
- khat: the sequence of terms deleted at each step
- deltahat: relative change in rss

6 causalMARS

- · rsstesthat: validation-set rss achieved by each model in sequence
- setesthat: standard error for rsstesthat
- tim1: time elapsed during forward stepwise phase
- tim2: total time elapsed
- x
- tx
- y
- · maxterms
- eps
- · backstep
- · propensity
- x.val
- · tx.val
- y.val
- stratum
- · stratum.val
- minnum

Examples

```
# Randomized experiment example

n = 100 # number of training-set patients to simulate
p = 10 # number of features for each training-set patient

# Simulate data
x = matrix(rnorm(n * p), nrow = n, ncol = p) # simulate covariate matrix
tx_effect = x[, 1] + (x[, 2] > 0) # simple heterogeneous treatment effect
tx = rbinom(n, size = 1, p = 0.5) # random treatment assignment
y = rowMeans(x) + tx * tx_effect + rnorm(n, sd = 0.001) # simulate response

# Estimate causal MARS model
fit_cm = causalMARS(x, tx, y)
pred_cm = predict(fit_cm, newx = x)

# Visualize results
plot(tx_effect, pred_cm, main = 'Causal MARS',
    xlab = 'True treatment effect', ylab = 'Estimated treatment effect')
abline(0, 1, lty = 2)
```

cv.causalBoosting 7

cv.causalBoosting	Fit a causal boosting model with cross validation
-------------------	---

Description

Fit a causal boosting model with cross validation

Usage

```
cv.causalBoosting(x, tx, y, num.trees = 500, maxleaves = 4, eps = 0.01,
   splitSpread = 0.1, type.measure = c("effect", "response"), nfolds = 5,
   foldid = NULL, propensity = FALSE, stratum = NULL, isConstVar = TRUE)
```

Arguments

X	matrix of covariates
tx	vector of treatment indicators (0 or 1)
у	vector of response values
num.trees	number of shallow causal trees to build
maxleaves	maximum number of leaves per causal tree
eps	learning rate
splitSpread	how far apart should the candidate splits be for the causal trees? (e.g. splitSpread = 0.1) means we consider 10 quantile cutpoints as candidates for making split
type.measure	loss to use for cross validation: 'response' returns mean-square error for predicting response in each arm. 'effect' returns MSE for treatment effect using honest over-fit estimation.
nfolds	number of cross validation folds
foldid	vector of fold membership
propensity	logical: should propensity score stratification be used?
stratum	optional vector giving propensity score stratum for each observation (only used if propensity = TRUE)
isConstVar	logical: for the causal tree splitting criterion (T-statistc), should it be assumed that the noise variance is the same in treatment and control arms?

Value

an object of class cv.causalBoosting which is an object of class causalBoosting with these additional attributes:

- num.trees.min: number of trees with lowest CV error
- cvm: vector of mean CV error for each number of trees
- cvsd: vector of standard errors for mean CV errors

8 pollinated.ranger

Examples

```
# Randomized experiment example
n = 100 # number of training-set patients to simulate
p = 10 # number of features for each training-set patient
# Simulate data
x = matrix(rnorm(n * p), nrow = n, ncol = p) # simulate covariate matrix
tx_effect = x[, 1] + (x[, 2] > 0) # simple heterogeneous treatment effect
tx = rbinom(n, size = 1, p = 0.5) # random treatment assignment
y = rowMeans(x) + tx * tx_effect + rnorm(n, sd = 0.001) # simulate response
# Estimate causal boosting model with cross-validation
fit_cv = cv.causalBoosting(x, tx, y)
fit_cv$num.trees.min.effect # number of trees chosen by cross-validation
pred_cv = predict(fit_cv, newx = x)
# Visualize results
plot(tx_effect, pred_cv, main = 'Causal boosting w/ CV',
xlab = 'True treatment effect', ylab = 'Estimated treatment effect')
abline(0, 1, lty = 2)
```

pollinated.ranger

Pollinate a fitted ranger random forest model

Description

Pollinate a fitted ranger random forest model

Usage

```
pollinated.ranger(object, x, y)
```

Arguments

```
object a fitted ranger object

x matrix of covariates

y vector of response values
```

Value

an object of class pollinated.ranger which is a ranger object that has been pollinated with the data in (x, y)

```
predict.bagged.causalMARS
```

Make predictions from a bag of fitted causal MARS models

Description

Make predictions from a bag of fitted causal MARS models

Usage

```
## S3 method for class 'bagged.causalMARS'
predict(object, newx, type = c("average", "all"),
...)
```

Arguments

object	a fitted bagged.causalMARS object
newx	matrix of new covariates for which estimated treatment effects are desired
type	type of prediction required: 'average' returns a vector of the averages of the bootstrap estimates. 'all' returns a matrix of all of the bootstrap estimates.
	ignored

Value

a vector of estimated personalized treatment effects corresponding to the rows of newx

```
predict.causalBoosting
```

Make predictions from a fitted causal boosting model

Description

Make predictions from a fitted causal boosting model

Usage

```
## S3 method for class 'causalBoosting'
predict(object, newx, newtx = NULL,
   type = c("treatment.effect", "conditional.mean", "response"),
   num.trees = 1:object$num.trees, honest = FALSE, naVal = 0, ...)
```

10 predict.causalMARS

Arguments

object a fitted causalBoosting object matrix of new covariates for which estimated treatment effects are desired newx option vector of new treatment assignments (only used if type = 'response') newtx type of prediction required: 'treatment.effect' returns estimated treatment effect. type 'conditional.mean' returns two predictions, one for each arm. 'response' returns prediction for arm corresponding to newtx. num.trees number(s) of shallow causal trees to use for prediction honest logical: should honest re-estimates of leaf means be used for prediction? This requires that x.est, tx.est, y.est were specified when the causal boosting naVal value with which to replace NA predictions

... ignored

Value

a vector or matrix of predictions corresponding to the rows of newx

Description

Make predictions from a fitted causal MARS model

Usage

```
## S3 method for class 'causalMARS'
predict(object, newx, active, ...)
```

Arguments

object a fitted causalMARS object

newx matrix of new covariates for which estimated treatment effects are desired

active indices of columns with nonzero norm (defaults to model selected via backward stepwise phase, or the full model if backstep = FALSE)

... ignored

Value

a vector of estimated personalized treatment effects corresponding to the rows of newx

predict.causalTree 11

predict.causalTree

Make predictions from a fitted causal tree model

Description

Make predictions from a fitted causal tree model

Usage

```
## S3 method for class 'causalTree'
predict(object, newx, newtx = NULL,
   type = c("treatment.effect", "conditional.mean", "response"),
   honest = FALSE, naVal = 0, ...)
```

Arguments

object	a fitted causalTree object
newx	matrix of new covariates for which estimated treatment effects are desired
newtx	option vector of new treatment assignments (only used if type = 'response')
type	type of prediction required: 'treatment.effect' returns estimated treatment effect. 'conditional.mean' returns two predictions, one for each arm. 'response' returns prediction for arm corresponding to newtx.
honest	logical: should honest re-estimates of leaf means be used for prediction? This requires that x.est, tx.est, y.est were specified when the causal boosting model was fit
naVal	value with which to replace NA predictions
	ignored

Value

a vector or matrix of predictions corresponding to the rows of newx

```
predict.cv.causalBoosting
```

Make predictions from a fitted cross-validated causal boosting model

Description

Make predictions from a fitted cross-validated causal boosting model

Usage

```
## S3 method for class 'cv.causalBoosting'
predict(object, newx, newtx = NULL,
   type = c("treatment.effect", "conditional.mean", "response"),
   num.trees = object$num.trees.min.effect, naVal = 0, ...)
```

Arguments

type

object a fitted cv.causalBoosting object

newx matrix of new covariates for which estimated treatment effects are desired

newtx option vector of new treatment assignments (only used if type = 'individual')

type of prediction required: 'treatment.effect' returns estimated treatment effect.

'conditional.mean' returns two predictions, one for each arm. 'response' returns

prediction for arm corresponding to newtx.

num. trees number of shallow causal trees to use for prediction

naVal value with which to replace NA predictions

... ignored

Value

a vector or matrix of predictions corresponding to the rows of newx

```
predict.pollinated.ranger
```

Make predictions from a pollinated ranger random forest model

Description

Make predictions from a pollinated ranger random forest model

Usage

```
## S3 method for class 'pollinated.ranger'
predict(object, newx, predict.all = FALSE,
    na.treatment = c("omit", "replace", "NA"), ...)
```

Arguments

object a fitted pollinated.ranger object

newx matrix of new covariates for which predictions are desired

predict.all logical: should predictions from all trees be returned? Otherwise the average

across trees is returned

na.treatment how to treat NA predictions from individual trees: 'omit' only uses trees for

which the prediction is not NA. 'replace' replaces NA predictions with the over-

all mean response. 'NA' returns NA if any tree prediction is NA.

... additional arguments passed on to predict.ranger

Value

a vector of predicted treatment effects corresponding to the rows of newx

predict.PTOforest 13

predict.PTOforest

Make predictions from a fitted PTO forest model

Description

Make predictions from a fitted PTO forest model

Usage

```
## S3 method for class 'PTOforest'
predict(object, newx, ...)
```

Arguments

object a fitted PTOforest object

newx matrix of new covariates for which estimated treatment effects are desired

... ignored

Value

a vector of predictions corresponding to the rows of newx

PTOforest

Fit a pollinated transformed outcome (PTO) forest model

Description

Fit a pollinated transformed outcome (PTO) forest model

Usage

```
PTOforest(x, tx, y, pscore = rep(0.5, nrow(x)), num.trees = 500,
   mtry = ncol(x), min.node.size = max(25, nrow(x)/40), postprocess = TRUE,
   verbose = FALSE)
```

Arguments

x matrix of covariates

tx vector of treatment indicators (0 or 1)

y vector of response values
pscore vector of propensity scores

num.trees number of trees for transformed outcome forest
mtry number of variables to possibly split at in each node
min.node.size minimum node size for transformed outcome forest

postprocess logical: should optional post-processing random forest be fit at end?

verbose logical: should progress be printed to console?

14 stratify

Value

an object of class PTOforest with attributes:

- x: matrix of covariates supplied by function call
- pscore: vector of propensity score supplied by function call
- postprocess: logical supplied by function call
- TOfit: fitted random forest on transformed outcomes
- PTOfit1: TOfit pollinated with treatment-arm outcomes
- PTOfit0: TOfit pollinated with control-arm outcomes
- postfit: post-processing random forest summarizing results

Examples

```
# Randomized experiment example
n = 100 # number of training-set patients to simulate
p = 10 # number of features for each training-set patient

# Simulate data
x = matrix(rnorm(n * p), nrow = n, ncol = p) # simulate covariate matrix
tx_effect = x[, 1] + (x[, 2] > 0) # simple heterogeneous treatment effect
tx = rbinom(n, size = 1, p = 0.5) # random treatment assignment
y = rowMeans(x) + tx * tx_effect + rnorm(n, sd = 0.001) # simulate response

# Estimate PTO forest model
fit_pto = PTOforest(x, tx, y)
pred_pto = predict(fit_pto, newx = x)

# Visualize results
plot(tx_effect, pred_pto, main = 'PTO forest',
    xlab = 'True treatment effect', ylab = 'Estimated treatment effect')
abline(0, 1, lty = 2)
```

stratify

Get propensity strata from propensity scores

Description

Get propensity strata from propensity scores

Usage

```
stratify(pscore, tx, min.per.arm = 30)
```

Arguments

pscore vector of propensity scores tx vector of treatment indicators

min.per.arm minimum number of observations for each arm within each stratum

stratify 15

Value

a vector of integers with length equal to the length of pscore, reporting the propensity stratum corresponding to each propensity score

Index

```
bagged.causalMARS, 2

causalBoosting, 3

causalMARS, 4

cv.causalBoosting, 7

pollinated.ranger, 8

predict.bagged.causalMARS, 9

predict.causalBoosting, 9

predict.causalMARS, 10

predict.causalTree, 11

predict.cv.causalBoosting, 11

predict.pollinated.ranger, 12

predict.PTOforest, 13

PTOforest, 13

stratify, 14
```