1. [15 pts.] How many dentists are there in Toronto? Give an order of magnitude, and explain your logic clearly.

- 2. [20 pts.] Consider the graph of velocity versus time shown above.
 - (a) [5 pts.] What was the displacement between $0.0 \,\mathrm{s}$ and $5.0 \,\mathrm{s}$?
 - (b) [5 pts.] What was the average velocity between 0.0 s and 5.0 s?
 - (c) [5 pts.] What was the average acceleration between $0.0 \, \mathrm{s}$ and $5.0 \, \mathrm{s}$?
 - (d) [5 pts.] What was the instantaneous acceleration at 1.5 s?

3. [20 pts.] The motion of a particle of mass 2.0 kg is described by

$$\vec{r} = (5.0 t) \,\hat{i} + (2.0 t^4) \,\hat{j} - 9.5 \,\hat{k},$$

where t is time and \hat{i} , \hat{j} , and \hat{k} are cartesian unit vectors. (Assume SI units for the numerical constants given here, so that \vec{r} is in metres and t is in seconds.)

- (a) [10 pts.] What is the average velocity between $t = 0.0 \,\mathrm{s}$ and $t = 3.0 \,\mathrm{s}$?
- (b) [10 pts.] What is the **net force** applied to the particle at time $t = 2.0 \,\mathrm{s}$?

2

- 4. [30 pts.] A block of mass $m=2.0\,\mathrm{kg}$ sits on an inclined ramp inside a railway car. The car is accelerating at a to the right, as indicated in the figure above. Between the block and the surface of the ramp, the coefficient of static friction is $\mu_s=0.65$, and the coefficient of kinetic friction is $\mu_k=0.40$. The angle of the ramp is $\theta=30^\circ$. Assume the block starts at rest with respect to the ramp.
 - (a) [10 pts.] If a = 0, does the block start to slide down or stay at its initial height?
 - (b) [20 pts.] For what values of a does the block start to slide up the ramp?

- 5. [15 + 5 pts.] An object with mass m = 0.20 kg, initially at rest, is dropped at t = 0.
 - (a) [5 pts.] In the absence of drag, what is v(t)? Specify which direction you mean for positive velocity.
 - For parts (b), (c), and (d), include a drag force linearly proportional to velocity, with a drag coefficient $b = 0.10 \,\mathrm{kg/s}$.
 - (b) [5 pts.] What is the terminal speed of the object?
 - (c) [5 pts.] At what time does the object reach $1-1/e^2$ or $\approx 86\%$ of terminal velocity?
 - (d) [bonus 5 pts.] How far does the object fall in 4.0 s? Compare to the answer in the absence of drag.

END OF EXAM.

The population of Toronto is approximately 3,0.10° people. Most people go once a year at the dental office on average (some go more offen, some don't go at all). So, on an everyday basis, the Flux of people must be

≈ population ≈ 3,0.10° ≈ 8,2.10° ~ 10° persons/day to meet the 365 days

requirements of offer and demand. A dentist works about 8hrs a day and each appointment takes approximately In, which implies that each dentist can see 8 persons/day ~ 10' persons/day

Thus, the number of dentists must be

dentist ≈ 8,2:10° persons (8 persons) ≈ 1,03:10° dentists.

The number of dentists in doranto is of the order of 10° dentists.

$$I : (2 \times 1)/2 = 1 m$$

$$I : (2 \times 2) \neq 4 m$$

-
$$V_{qug} = \frac{\Delta x}{\Delta t}$$
, and from (a) $\Delta x = 6.5 m$,
thus $V_{qug} = \frac{6.5 m}{5.5} = 1.3 m/s$

(c) Two ways of solving this:
$$- q_{avg} = \frac{\Delta V}{\Delta t} = \frac{1 m/s - D m/s}{5 s} = \frac{0.20 m/s^2}{5}$$

- DR, make a plot of a (6) & take a weighted a verage:
$$q_{avg} = \frac{1s \times 2^{m/s} + 1s \times (-1^{m/s}) + 3s \times (0^{m/s})}{5s}$$

3)
$$\chi(t) = 5,0 \text{ [m/s]} \quad t \quad [s]$$

$$y(t) = 3,0 \text{ [m/s]} \quad t' \quad [s']$$

$$z(t) = -9,5 \text{ [m]}$$

$$\frac{\Delta t}{\Delta t} \quad \frac{\Delta r}{c(0)} = \begin{pmatrix} 0 \\ -9,5 \end{pmatrix} \quad \frac{7(3)}{c(3)} = \begin{pmatrix} 164 \\ -9,5 \end{pmatrix} \quad \frac{164}{c(4,5)}$$

$$\frac{1}{c(4,5)} = \frac{7(3)}{c(3)} - \frac{7(0)}{c(3)} = \frac{1}{c(3)} \cdot \frac{1}{c(4,5)}$$

$$\frac{1}{c(4,5)} = \frac{1}{c(3)} \cdot \frac{1}{c(4,5)} \cdot$$

D)
$$x(t) = 8.0 t$$
 \Rightarrow $x_{2}(t) = 24 t^{2} \Rightarrow$ $x_{3}(t) = 24 t^{2} \Rightarrow$ $x_{4}(t) = 24 t^{2} \Rightarrow$ $x_{5}(t) = 26 t^{2} \Rightarrow$ $x_{5}(t) = 26 t^{2} \Rightarrow$ $x_{5}(t) = 26 t^{2} \Rightarrow$ $x_{7}(t) = 26 t^{2} \Rightarrow$ $x_{7}($

(4b) Two ways of solving this problem.
(I) work in a non-mertial frame, with
on additionial - ma lictronal force.
Then IF=0 when block erest on ramp.
(II) Work in an inertial frame. Then.
ZF= ma when block @ rest on ranch.
(46) (in non-inertral france)
ma for 1 resolve moto axes parallel 8 perpendicular to the ramp: ma coso n
$ \frac{1}{1} \int_{S} f_{s} + m g \sin \theta $ $ \frac{1}{1} \int_{S} f_{s} + m g \sin \theta $
MGCOSO + MA STAR
And MADALA
Here, get same egs for inertial frame,
and $f_s + mg sin \sigma = \Sigma F_n = mg \cos \Theta$
Solve by (1) $GF=D$, then (2) conditions that $f_s = M_s M$. (1): $N = mg \cos \theta + ma \sin \theta$ [Here, get same eqs for inertial frame, where $mg \cos \theta = \Sigma F_1 = ma \sin \theta$] (2) $\int_S + mg \sin \theta = ma \cos \theta$ [As $\int_S + mg \sin \theta = \Sigma F_0 = ma \cos \theta$] (2) $\int_S + mg \sin \theta = ma \cos \theta$ [As $\int_S + mg \sin \theta = \Delta F_0 = ma \cos \theta$]
can plug in values for g & 0 \$ hs here, or later: 2015
can plug in values for g & 0 \$ hs here, or later: a (coso - hs sino) 32 9 (hs coso + sino) o.541 98 . 1.06 98 . 1.06
-s a = 19 m/sz balance possible, so Then block breaks State fretron & Stides up.

(5) (9) Under gravitational acceleration, V=Vo+at. Here, a=g (downwards) and $V_0 = 0$. $\rightarrow (V = gt),$ with positive v pointing down (ie, aligned with growity.) or V=9.8+1 (b) The free body drag ram is

my

, so a = 0 whe

my

or my , so a=0 when SF=0 or mg=bv $- \sqrt{V_{T} = \frac{mg}{b} = 19.6 \% \text{ or } 20 \% \text{s}}$ $- \sqrt{V_{T} = \frac{mg}{b} = 19.6 \% \text{ or } 20 \% \text{s}}$ $- \sqrt{V_{T} = \frac{mg}{b} = 19.6 \% \text{s}} = \sqrt{V_{T} + 19.6 \%}$

(c) The velocity is $V_T(1-e^{-t/T})$, from a resolt derived in class, where T=m/b=7.05.

So, $V=V_T(1-e^2)$ when t=2T, or [t=4.05]Can also find this answer from solving $1-e^{-t/T}=0.86 \rightarrow -t/T=\ln(0.14)$ which is t=1.97T or [t=3.95]. Accept with foll credit.

In the absence of drag.

In the presence of drag

$$\gamma(t=4, \tau-2) = (2,0)(9,0)[4,0-2,0(1-e^{-2})]$$