Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 3. Tydzień rozpoczynający się 21. marca

Zadania

- 1. Zmienna losowa X ma gęstość f(x) = 2x dla $x \in [0, 1]$. Wyznaczyć dystrybuantę F(x) tej zmiennej oraz gęstość zmiennej $Y = X^2$.
- 2. Czy prawdą jest, że 13. dzień miesiąca powiązany jest z piątkiem? (1 stycznia 1601 31 grudnia 2000)

ZAŁOŻENIA: rok numer n jest jest przestępny jeżeli $n \equiv_4 0$, pod warunkiem, że $n \not\equiv_{100} 0$; dodatkowo – jeżeli $n \equiv_{400} 0$ (czyli rok 2000), to wcześniejszy warunek jest nieważny. Ile razy w 400-letnim cyklu 13-tym dniem miesiaca był poniedziałek, wtorek, . . . , niedziela?

Mówimy, że zmienne X,Y są niezależne, wtedy gdy – w wypadku dyskretnym – spełniony jest warunek $P(X=x_i,Y=y_k)=P(X=x_i)\cdot P(Y=y_k)$.

- 3. Zmienna X ma rozkład $B(n_1, p)$ a zmienna Y rozkład $B(n_2, p)$. Zmienne są niezależne. Wykazać, że zmienna Z = X + Y ma rozkład $B(n_1 + n_2, p)$.
- 4. Niezależne zmienne losowe X,Y mają rozkład Poissona z parametrami λ_1 i λ_2 . Wykazać, że zmienna Z=X+Y ma rozkład Poissona z parametrem $\lambda_1+\lambda_2$.
- 5. Zmienna losowa X ma gęstość $f(x) = 1.5 \cdot \sqrt{x}$ dla $x \in [0, 1]$. Wyznaczyć dystrybuantę F(x) tej zmiennej oraz gęstość zmiennej $Y = X^2$.

Gęstość 2-wymiarowej zmiennej losowej (X,Y) to f(x,y)=3xy na obszarze ograniczonym prostymi $y=0,\ y=x,\ y=2-x.$

- 6. Wyznaczyć gęstości brzegowe $f_1(x), f_2(y)$.
- 7. Obliczyć wartość oczekiwaną zmiennej brzegowej Y. Czy zmienne X,Y są niezależne? (odpowiedź uzasadnić)
- 8. Zmienna losowa (X, Y) ma gęstość postaci $f(x) = 30x^2y$ na obszarze ograniczonym prostymi y = 0, x = 0, y = 2 2x. Wyznaczyć gęstość brzegową $f_1(x)$ oraz wartość oczekiwaną EX.
- 9. Czytelnie i starannie bez korzystania z notatek napisać wielkie i małe greckie litery: alfę α , betę β , (d)zetę ζ , etę η , lambdę λ , chi χ , ksi ξ , fi ϕ , rho ρ .
- 10. (a) Niech $X \sim U[-2,2]$. Znaleźć rozkład zmiennej Y = |X|.
 - (b) Dla $X \sim U[-1,1]$ wyznaczyć rozkłady zmiennych $Y = X^3, Z = X^2$.
- 11. Niech Xbędzie zmienną o rozkładzie geometrycznym ($X \sim \mathrm{Geom}(p)).$ Udowodnić, że $\mathrm{V}(X) = \frac{1-p}{p^2}.$

Witold Karczewski