Assignment-based Subjective Questions

Question 1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: <Your answer for Question 1 goes below this line> (Do not edit)

The categorical variables shows a significant impact on cnt variable. Like on a clear and cloudy day the sales are similar and on snowy day it is less. Similarly sales during summer and winter are similar and during spring it is less.

Question 2. Why is it important to use **drop_first=True** during dummy variable creation? (Do not edit)

Total Marks: 2 marks (Do not edit)

Answer: <Your answer for Question 2 goes below this line> (Do not edit)

Using drop_first=True when creating dummy variables (one-hot encoding) is important to avoid the dummy variable trap, which refers to a situation where multicollinearity arises in regression models.

- 1. Prevents Multicollinearity
- 2. Ensures Model Interpretability
- 3. Reduces the Number of Features

Question 3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (Do not edit)

Total Marks: 1 mark (Do not edit)

Answer: <Your answer for Question 3 goes below this line> (Do not edit)

Temp, atemp, casual and registered as high correlation

Question 4. How did you validate the assumptions of Linear Regression after building the model on the training set? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: <Your answer for Question 4 goes below this line> (Do not edit)

I have dropped the columns like instant, casual and registered. When these are added, model gave the R2 as 1 which is not recommended. These variables are overfitting the model. Hence removed them.

While checking p and VIF values there are multiple variables which has high P and VIF like "workingday", "temp", "hum", "clear", "day", "mnth", "atemp". Hence removed them.

Question 5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (Do not edit)

Total Marks: 2 marks (Do not edit)

Answer: <Your answer for Question 5 goes below this line> (Do not edit)

Temp, Year and Winter are the most contributing features

General Subjective Questions

Question 6. Explain the linear regression algorithm in detail. (Do not edit)

Total Marks: 4 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 6 goes here>

Linear regression is one of the most fundamental and widely used statistical and machine learning algorithms. It models the relationship between a dependent variable (target) and one or more independent variables (features) by fitting a straight line to the data.

Types of Linear Regression

Simple Linear Regression: Involves one independent variable.

Multiple Linear Regression: Involves multiple independent variables.

Assumptions of Linear Regression

To use linear regression effectively, the following assumptions should be met:

- 1. Linearity: The relationship between independent and dependent variables is linear.
- 2. Independence: Observations should be independent of each other.
- 3. Normality of Residuals: Residuals (errors) should be normally distributed.
- 4. No Multicollinearity: Independent variables should not be highly correlated with each other.

Question 7. Explain the Anscombe's quartet in detail. (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 7 goes here>

Anscombe's Quartet is a set of four datasets that have nearly identical statistical properties but differ significantly when graphed. It was created by the statistician **Francis Anscombe** in 1973 to illustrate the importance of **graphical analysis** in statistics.

Question 8. What is Pearson's R? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 8 goes here>

Pearson's r, also known as the Pearson correlation coefficient (PCC), is a statistical measure that quantifies the linear relationship between two variables. It is denoted by r and ranges from -1 to +1.

Question 9. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 9 goes here>

Scaling is a data preprocessing technique used to adjust the range of numerical variables so that they are on a similar scale. This is especially important in machine learning algorithms that are sensitive to differences in magnitude, such as gradient-based models (e.g., linear regression, logistic regression, SVMs, neural networks).

Scaling is done for several reasons:

- 1. **Prevents dominance of large values** Some features may have much larger values than others, making models biased toward those features.
- 2. **Improves model convergence** Gradient descent and optimization algorithms converge faster when features are on the same scale.
- 3. **Enhances performance of distance-based models** Algorithms like KNN, K-means, and SVMs rely on distances (e.g., Euclidean distance), which can be distorted by different feature magnitudes.
- 4. **Prepares data for regularization** Regularized models (like Ridge or Lasso regression) work better when features have comparable scales.
- 5. **Improves interpretability** Some models, like PCA, rely on variance; scaling ensures meaningful principal components.

Normalized Scaling:

- Transforms data into a fixed range (0 to 1 or -1 to 1).
- Sensitive to outliers because it depends on min and max values.
- Best suited for cases where data distribution is not normal and has bounded values.
- Used in deep learning models (e.g., neural networks) where values need to be scaled between 0 and 1.

Standarized Scaling:

- Centers the data around mean 0 with a standard deviation of 1.
- Not affected by outliers as much as normalization (but still sensitive).
- Works well when data follows a normal distribution.
- Used in models like SVM, PCA, logistic regression, and linear regression.

Question 10. You might have observed that sometimes the value of VIF is infinite. Why does this happen? (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 10 goes here>

The Variance Inflation Factor (VIF) is a metric used to detect multicollinearity in regression models. It quantifies how much the variance of a regression coefficient is inflated due to correlation with other independent variables.

Question 11. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. (Do not edit)

Total Marks: 3 marks (Do not edit)

Answer: Please write your answer below this line. (Do not edit)

<Your answer for Question 11 goes here>

A Q-Q (Quantile-Quantile) Plot is a graphical tool used to compare the distribution of a dataset to a theoretical distribution (usually the normal distribution). It helps in assessing whether a given dataset follows a specified distribution by plotting the quantiles of the sample data against the quantiles of the theoretical distribution.