FEM Homework

Inverstigate Convergence1

FEM Homework 2020-05-28

Contents

Problem	3
Process	3
Tools	3
Results	4

FEM Homework 2020-05-28

Problem

Take $I_h u$ to be interpolant of u so that $I_h u \in P_1$. Invetigate convergence of $I_h u$ to u.

- 1. $||u I_h u||_{L^2} \le ch^2 ||u||_{H^2}$
- 2. $||u I_h u||_{H^1} \le ch ||u||_{H^2}$

Process

2D에 대한 구현이 어려워서 1D로 일단 구현해보았습니다. 구현과정은 다음과 같습니다.

- 1. 주어진 stepsize h에 대해 구간 (0,1)에서 주어진 함수 u를 Piecewise linear하게 interpolation합니다. 따라서 각 구간별로 다항식을 얻습니다.
- 2. u와 $I_h u$ 의 차이를 측정합니다.
 - $\|u-I_hu\|_{L^2}$ 를 측정하기 위해서 Order 15의 Gaussian-Legendre quadrature를 사용했습니다.
 - $\|u I_h u\|_{H^1}$ 을 측정하기 위해서 Gradient는 Dual number structure에 대한 Automatic differentiation을 이용하여 계산하였고 적분은 위와 같이 Order 15의 Gaussian-Legendre quadrature를 사용했습니다.
- 3. u의 norm을 측정합니다.
 - u의 H^2 norm을 측정하기 위하여 Hessian은 Hyper dual number structure에 대한 Automatic differentiation을 이용하여 계산하였고 Order 15의 Gaussian-Legendre quadrature를 사용 했습니다.
- 4. $h=2^{-1}$ 부터 $h=2^{-10}$ 까지 총 10개의 stepsize에 대해서 1 ~ 3 과정을 반복하여 데이터를 얻습니다. $u=\sin\pi x$ 를 사용하였습니다. 얻은 데이터를 Log scale의 그래프로 그립니다. (스케일의 차이가 꽤 나서 u의 H^2 norm에는 0.01을 곱하였습니다.)

Tools

- 모든 계산 코드는 Rust로 작성하였으며 제가 만든 Library인 Peroxide를 이용하였습니다. 모든 함수의 소스 코드는 github.com/Axect/Peroxide에 있습니다.
- 계산을 수행한 뒤 데이터는 netcdf 파일로 저장합니다. 이후 Python으로 해당 데이터를 로드한 뒤, matplotlib을 이용하여 그래프를 그렸습니다.

FEM Homework 2020-05-28

Results

Figure 1: t=2, m=0

Figure 2: t=2, m=1