Lecture 18: Preconditioned iterative methods

COMP5930M Scientific Computation

Today

Conjugate gradient examples

Preconditioning

Choosing a preconditioner

Matlab implementations

Preconditioned conjugate gradient examples

Conjugate gradient examples from MatrixMarket

Not converged in 1224 its

Not converged in 468 its

Preconditioning

- ► The convergence of our iterative methods is governed by the distribution of eigenvalues of **A**
 - Measured as the number of iterations required to achieve a certain reduction of the residual
- ▶ Recall the condition number $\kappa(\mathbf{A}) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}$
- We can attempt to transform our linear system Ax = b into one with a better eigenvalue distribution through the use of a preconditioning matrix M
 - We apply the iterative method to a modified linear system
 - ► The goal is to reduce: the number of iterations required, and the overall time taken

The preconditioned system

Given a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ and preconditioning matrix \mathbf{M} we can define a modified system in a number of ways

Left preconditioning

$$\left(\mathbf{M}^{-1}\mathbf{A}\right)\mathbf{x} = \mathbf{M}^{-1}\mathbf{b}$$

Right preconditioning

$$(AM^{-1})(Mx) = b$$

Left and right preconditioning (assuming $\mathbf{M} = \mathbf{M}_1 \mathbf{M}_2$)

$$\left(\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\right)\left(\mathbf{M}_2\mathbf{x}\right) \ = \ \mathbf{M}_1^{-1}\mathbf{b}$$

The preconditioned conjugate gradient (PCG) algorithm

Assume we applied left preconditioning, $\mathbf{M}^{-1}\mathbf{A}\mathbf{x} = \mathbf{M}^{-1}\mathbf{b}$. Then:

```
ightharpoonup \mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0

ightharpoonup Mz_0 = r_0 (preconditioned residual)
\mathbf{b} \mathbf{d}_0 = \mathbf{z}_0 (preconditioned search direction)
i = 0, 1, 2, ...
           \boldsymbol{\rho} = \frac{\mathbf{r}_i^T \mathbf{z}_i}{\mathbf{d}^T \mathbf{\Delta} \mathbf{d}}
            \mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{d}_i

ightharpoonup \mathbf{r}_{i+1} = \mathbf{r}_i - \alpha_i \mathbf{A} \mathbf{d}_i

ightharpoonup Mz_{i+1} = r_{i+1} (preconditioned residual)
             \beta_{i+1} = \frac{\mathbf{r}_{i+1}^T \mathbf{z}_{i+1}}{\mathbf{r}^T \mathbf{z}_i} 
            \mathbf{b} \ \mathbf{d}_{i+1} = \mathbf{z}_{i+1} + \beta_{i+1} \mathbf{d}_{i}
```

Notes on the PCG algorithm

- Largely unchanged (requires algebra to show this)
 - Although we apply the algorithm to the preconditioned system we can manipulate it back into the form $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Only one matrix-multiply required per iteration: Adi
- ▶ One linear system solution per iteration: $Mz_{i+1} = r_{i+1}$
 - Require this to be solved very efficiently
 - ▶ If possible in $\mathcal{O}(n^2)$ total cost per iteration does not increase

Remark on inverse matrices

- ▶ Here **M** approximates the matrix **A** so that $\mathbf{M}^{-1}\mathbf{A} \approx \mathbf{I}$
- ► We could also approximate the inverse matrix A⁻¹, but:
 - ▶ We don't know anything about A^{-1} in general
 - ▶ For many sparse matrices, the inverse A^{-1} will be dense, e.g.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

▶ Idea: Look for sparse preconditioner **M** such that

$$\min_{\boldsymbol{\mathsf{M}}\in\mathcal{G}_{S}}\|\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{M}}-\boldsymbol{\mathsf{I}}\|^{2}$$

where \mathcal{G}_S is the set of matrices with fixed sparsity pattern S. This strategy is called an approximate inverse preconditioner.

Properties of a good preconditioner

The choice of preconditioner is determined by several factors:

- ▶ Properties of the original system, eg. symmetry, pos.def.
- ▶ **M** should be cheap to build
- $\sum Mz = r$ should be cheap to solve

A heuristic argument

M should approximate A

- If M = A our preconditioned system will be the identity matrix I and only 1 iteration is required
 - ▶ Not practical: inverting M now has the
 - same expense as inverting A
- There are roughly two general approaches
 - ► Approximate factorisation of A
 - Approximate inverse of A

Finding problem-specific preconditioners an art in itself

Finding an optimal preconditioner as a trade-off

Symmetric linear systems

- CG requires a SPD matrix A
- Preconditioning must maintain the SPD property
- ▶ Left or right preconditioning are not guaranteed to maintain symmetry
 - Use left and right with $M1 = M2^{T}$

Preconditioning SPD systems

► We can factorise a SPD matrix **A** in the form

$$A = LL^T$$

► This is known as Cholesky decomposition a specialised form of LU decomposition

▶ For preconditioning we use a cheaper approximate process

Incomplete Cholesky decomposition

$$\mathbf{M} = \bar{\mathbf{L}}\bar{\mathbf{L}}^T$$

Incomplete factorisation

- Recall: The full factorisation process introduces fill-in
 - Sparse matrices can have non-sparse factorisations
 - Reordering algorithms help here too
- ▶ Incomplete factorisation ignores some of the fill-in

- Two approaches are adopted in practice
 - Structural based on sparsity pattern of A
 - Numerical based on size of matrix entries

(i) Structural incomplete factorisation

- We know the sparsity pattern of A
- We pre-define the sparsity pattern of L
 and ignore terms that do not fit this pattern
- ► The simplest scheme assumes that L
 the same sparsity pattern as A
 - Our factorisation produces no fill-in
 - ▶ It approximates the true factorisation **L**
- We can define approximations with larger amounts of fill-in to achieve greater accuracy
 - at greater expense

(ii) Numerical incomplete factorisation

- We modify the algorithm such that only "large" entries of L
 are stored
 - Cannot be pre-defined, must be computed
- ► Controlled by a drop-tolerance d_{tol} that specifies the minimum acceptable size
 - lacktriangle Often also a parameter I_{max} that restricts storage
- Accuracy of $\bar{\mathbf{L}}$ is determined by d_{tol} and l_{max}
- If d_{tol} too large, the approximate factor $\bar{\mathbf{L}}$ will be singular and solving $\bar{\mathbf{L}}\mathbf{z} = \mathbf{r}$ will fail

12

Using Matlab

- ► The Matlab function <u>ichol()</u> computes the <u>incomplete Cholesky factorisation</u>
 - L = ichol(A,struct('type','nofill'))
 computes the structural factorisation
 with no fill-in
 - L = ichol(A,struct('type','ict','droptol',0.01))
 computes the numerical factorisation
 with drop-tolerance d_{tol}
- The following symmetric examples demonstrate the benefits for the CG algorithm
 - ▶ The modified CG algorithm is covered next lecture

PCG examples - MatrixMarket

General observations

- For a given amount of storage the numerical approach is almost always more effective than structural
 - The structural approach may store very small values and ignore much larger ones
 - The numerical approach will include fill-in but only if it is of significant size
 - ► The numerical approach requires hand-tuning
- The numerical approach is a more complex and costly algorithm but the reduction in iterations usually outweighs this cost

Non-symmetric linear systems

- ► GMRES is designed for non-symmetric, non-PD systems

 The most general of the Krylov-subspace iterative methods
- ▶ There is no restriction on the preconditioner
- ► Can consider genuine left or right preconditioning
 - Incomplete LU algorithms for general non-symmetric linear systems

References

```
Templates for the Solution of Linear Systems
Richard Barrett et al.
http://www.netlib.org/linalg/
html_templates/Templates.html
```

Iterative methods for sparse linear systems
Yousef Saad
http://www-users.cs.umn.edu/~saad/books.html