## Dynamical Systems Theory: Cool Things Done in Interesting Ways

Daniel S. Schloesser

April 10, 2017

The state variables for a Lorenz attractor are the X, Y, and Z which create the state space, as well as time (t). The parameters of this type of system are  $\sigma$ ,  $\rho$ , and  $\beta$ .

$$dx = \sigma * (y - x)$$
$$dy = x * (\rho - z) - y$$
$$dz = x * y - \beta * z$$



Figure 1: Depiction of the state space for this Lorenz Attractor system.

What can be seen in figure 1 is that there are two clear attractors around which the system cycles. The attractor appearing on the right in figure 1 has a tighter orbit to its center than that of the attractor appearing on the left.

When manipulating the parameter values of this Lorenz attractor, as the sigma  $(\sigma)$  value increased the system appeared to increase the steepness of the orbits on the y-axis. Additionally, rho  $(\rho)$  appeared to focus the system's orbit towards the system's origin as rho increased. Finally, as the ratio for the beta  $(\beta)$  value became smaller, the system's orbit appeared to increase in distance from the center of the attractor basins.