MODAL D'INFORMATIQUE

INF473G – Graphe Global Géant

DÉVELOPPEMENT ET UTILISATION D'OUTILS NUMÉRIQUES POUR L'ÉTUDE COMPARATIVE DES LANGUES

Tristan FRANÇOIS et Christian KOTAIT

Motivation du projet

Figure 1 : Principaux domaines de la linguistique

Figure 2 : Infographique des familles de langues

Problématiques et objectifs

Une métrique difficile à définir entre les langues

- Une métrique existante
- Définition et validation de notre propre métrique

Extraction, fusion, requêtes et visualisation

- Abondance de bases de données propres à chaque domaine de la linguistique
- Extraction et fusion des données
- Confrontation des domaines de la linguistique et de l'économie

Déroulé

1. Recherche, définition et validation de la métrique

2. Confrontation des domaines de la linguistique sur Neo4J

3. Etude de la proximité linguistique et des échanges économiques

Déroulé

1. Recherche, définition et validation de la métrique

2. Confrontation des domaines de la linguistique sur Neo4J

3. Etude de la proximité linguistique et des échanges économiques

Lang2vec : une métrique existante

Figure 3 : Dendrogramme des langues d'Europe avec lang2vec

Figure 4 : Clusters attendus pour les langues d'Europe

WALS, PHOIBLE, Glottolog

PHOIBLE

de phonèmes et de données linguistiques sur plus de 2500 langues

Glottolog

languoides et grammaticales familles de lexicales langues dans le monde

WALS

Répositoire en ligne Catalogue des Base de données de langues, dialects, propriétés structurelles,

Définition de notre métrique

- Métrique basée sur l'ensemble P propriétés structurelles de WALS
- Chaque langue L'est vectorisée vers $V_L = (v_i)$

$$\forall i \in P, v_i = \begin{cases} 0 & \text{if i } \notin P \\ n \in \mathbb{N} & \text{if i } \in P \end{cases}$$

$$\forall (L_1, L_2) \in L | L_1 = (v_i)_{i \in P}, L_2 = (w_i)_{i \in P}, d(L_1, L_2) = \frac{\sum_{i \in P} \delta_{v_i, w_i}}{\sum_{i \in P} 1_{|v_i w_i| > 0}(i)}$$

Validation de la métrique

- Codé sur R
- 34 langues
 d'Europe
- k = 7 clusters
- Average clustering

Figure 5 : Dendrogramme des langues d'Europe avec notre métrique

Validation de la métrique

Figure 4 : Clusters attendus pour les langues d'Europe

Figure 6 : Clusters des langues d'Europe sur

Gephi

Validé!

Validation de la métrique

Figure 6 : Clusters des langues d'Europe sur Gephi

Carte des langues les plus parlées

Les clusters des langues avec le plus d'attributs WALS

- Nombres de locuteurs récupérés sur Wikipedia
- Codé sur R
- 611 languages
- k = 60 clusters
- Average clustering

Figure 8 : Dendrogramme des langues du monde avec notre métrique

Gephi

Gephi: les clusters des langues avec le plus d'attributs WALS

Déroulé

1. Recherche, définition et validation de la métrique

2. Confrontation des domaines de la linguistique sur Neo4J

3. Etude de la proximité linguistique et des échanges économiques

Création du graphe Neo4J

Fusion de WALS et PHOIBLE

- Bibliothèque lingtypology sur R
- Extraction des données et fusion sur clef primaire code ISO 639-1 puis Glottocode

:Langue

:Feature

:FEAT

:Phoneme

:PHON

Création du graphe Neo4J

```
10 | LOAD CSV WITH HEADERS FROM "file:///edges_lang_features.csv"

AS row

11 | MATCH (L:Language), (F:Feature)

12 | WHERE L.glottocode = row.Source AND F.id = row.Target

13 | CREATE (L)-[edgewals:FEAT]->(F)

14 | SET edgewals=row, edgewals.Value = toInteger(row.Value);

15 |

16 | LOAD CSV WITH HEADERS FROM "file:///edges_lang_phonemes.csv"

AS row

17 | MATCH (L:Language), (P:Phoneme)

18 | WHERE L.glottocode = row.Glottocode AND P.name = row.Phoneme

19 | CREATE (L)-[edgephoible:PHON]->(P)

20 | SET edgephoible=row;
```


Relation entre les langues et les phonèmes

Figure 10 : Relation entre les langues et le nombre de phonèmes


```
01 | MATCH (L)-[r:PHON]->()
02 | WITH r.Dataset AS ds, r.Dialect AS dial, L, COUNT(r) AS c
03 | RETURN L.glottocode, L.name AS name, ds, AVG(c)
```

Les voyelles et les consonnes dans les langues

Figure 11 : Relation entre les nombres de voyelles et consonnes

Les voyelles et les consonnes dans les langues

- Les points de couleur plus foncée représentent les langues avec les mêmes nombres de consonnes et de voyelles
- Python: pour chaque augmentation d'environ 13 ou 14 consonnes, il y a augmentation d'une voyelle.

Les langues bien documentées et segmentées

Déroulé

1. Recherche, définition et validation de la métrique

2. Confrontation des domaines de la linguistique sur Neo4J

3. Etude de la proximité linguistique et des échanges économiques

Extraction des données

Données des 50 premiers partenaires commerciaux de la France.

- •Le Produit Intérieur Brut (PIB) de chaque pays.
- La liste des langues officielles nationales de chaque pays.
- •Les imports et exports vers la France.
- La liste des distances géographique.
- La liste des distances linguistiques.

Corrélogramme

- Corrélation négative entre le Total et la distance linguistique.
- Coefficient de corrélation similaire à celui de la distance géographique

Figure 13 : Corrélogramme entre GDP, distance linguistique et géographique

Cartographie : échanges économiques et proximité linguistique

Figure 14 : Cartographie : échanges économiques et proximité linguistique

Conclusion et ouverture

- Etendre l'analyse faite à la France sur plusieurs pays.
- Fusionner d'autres bases de données : Ethnologue, WOLD...
- D'autres requêtes sur le graphe Neo4J :
 - > Nombre de phonèmes en fonction du nombre de locuteurs.
 - > Etude de la correlation entre proximité gégraphique et partage de phonèmes.
- Etude de la proximité des phonèmes selon leurs attributs.

