Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER: NJM2748

MANUFACTURER: NEW JAPAN RADIO

Bee Technologies Inc.

Spice Model


```
* PART NUMBER:NJM2748
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (C) Bee Technologies Inc. 2008
.Subckt NJM2748 BALANCE -INPUT_A +INPUT_A V- BALANCE
OUTPUT V+ NC
X U1 +INPUT_A -INPUT_A V+ V- OUTPUT NJM2748_SUB
.ends NJM2748
.subckt NJM2748 SUB 1 2 3 4 5
 c1 11 12 2.8868E-12
 c2
     6 7 10.000E-12
 css 10 99 1.0000E-30
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
     4 3 dx
 dp
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
     7 99 poly(5) vb vc ve vlp vln 0 35.967E6 -1E3 1E3 36E6 -36E6
     6 0 11 12 111.21E-6
 gcm 0 6 10 99 2.7935E-9
 iss 3 10 dc 129.10E-6
 hlim 90 0 vlim 1K
   11 2 10 jx1
 j1
 j2 12 1 10 jx2
     6 9 100.00E3
 rd1 4 11 8.9918E3
 rd2 4 12 8.9918E3
     8 5 50
 ro1
 ro2 7 99 25
     3 4 1.8000E3
 rp
 rss 10 99 1.5492E6
     9 0 dc 0
 vb
     3 53 dc 2.2979
 VC
 ve 54 4 dc 2.2979
 vlim 7 8 dc 0
 vlp 91 0 dc 20
 vln 0 92 dc 20
.model dx D(ls=800.00E-18)
.model dy D(ls=800.00E-18 Rs=1m Cjo=10p)
.model jx1 PJF(ls=23.875E-12 Beta=95.803E-6 Vto=-.99965)
.model jx2 PJF(ls=11.375E-12 Beta=95.803E-6 Vto=-1.000350)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	13.500	13.491	-0.067
-Vout(V)	-13.500	-13.491	-0.067

Input Offset Voltage

Simulation result

Evaluation circuit

Vos(mV)	Measurement	Simulation	%Error
V05(IIIV)	0.700	0.692	-1.143

Slew Rate

Simulation result

Evaluation circuit

Slew	Measurement	Simulation	%Error
Rate(v/us)	13.000	12.460	-4.154

Input current lb, lbos

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb(pA)	50.000	49.831	-0.338
Ibos(pA)	25.000	24.986	-0.056

Open Loop Voltage Gain vs. Frequency, Av-dc, f-0dB

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	2.000	2.035	1.750
Av-dc(dB)	100.000	101.960	1.960

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

Common Mode Reject Ratio=20*LOG(101.96/(24.998/10)) = 94.001dB

CMRR	Measurement	Simulation	%Error
(dB)	92.000	94.001	2.175