pointcloudlibrary

PCL Laboratory 2 Exercises

Matteo Munaro matteo.munaro@dei.unipd.it Intelligent Autonomous Systems Lab (IAS-Lab)

demo_compute_normals

- Normals are computed at every point of the input point cloud
- One normal every 100 is visualized with PCL viewer
- Try this demo with these two input point clouds:
 - "../dataset/minimouse1_segmented.pcd" (without ground plane)
 - "../dataset/minimouse1.pcd" (with ground plane)

Exercise 1:

 Compute normals with two different values (0.03 e 0.002) of the «search radius» parameter and compare the results with the visualizer in 2 viewports side-by-side.

Tips & Tricks

- For a better positioning of the point cloud in the visualizer try to move the mouse while clicking the central button or Ctrl.
- Press +/- for changing the points size.
- Press «G» for visualizing a metric grid.

demo_compute_FPFH

- Normals and FPFH features are computed at every point of the input point cloud
- One normal every 100 is visualized with PCL viewer
- With «Shift+LeftClick» on a point of the point cloud you can see the FPFH descriptor of that point.

demo_compute_keypoints_and_FPFH

Exercise 2:

- Create a file «demo_compute_keypoints_and_FPFH» that computes SIFT3D keypoints and then compute FPFH features only at the keypoints location.
- Verify if the keypoints descriptors are different to each other by visualizing them.

demo_compute_keypoints_and_FPFH

Exercise 2:

- Create a file «demo_compute_keypoints_and_FPFH» that computes SIFT3D keypoints and then compute FPFH features only at the keypoints location.
- Verify if the keypoints descriptors are different to each other by visualizing them.
- Example of parameters to use for SIFT3D keypoints:
 - min_scale = 0,01
 - nr_octaves = 3
 - nr_scales_per_octave = 2
 - min_contrast = 0

Kinect viewer

./openni_simple_viewer

