

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH - Semester - VI(CE/IT)

SUBJECT: (CT 614) THEORY OF AUTOMATA & FORMAL LANGUAGE

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- 2. The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
- 4. Draw neat sketches wherever necessary.

Q.1	Do as Directed	[10]
a.	Define Pumping Lemma for regular language	2
b.	Disprove Statement with Counter example	2
	If L1 is regular, L2 is non-regular then L1UL2 is non-regular	
c.	Identify which of the following languages over {0,1} are regular	2
	i) Set of odd length strings with middle symbol '0'	
	ii) Set of all strings x containing some non-null substring of the form 'ww'	
d.	Show that the language $L = \{a^i b^j c^k j > i + k\}$ cannot be written in the form $L = L1L2L3$,	2
	where L1, L2, and L3 are subsets of $\{a\}$ *, $\{b\}$ *,and $\{c\}$ *, respectively.	
e	Convert given Finite Automata into Chomsky Normal Form	2

Q.2 Answer the Following (Any Three)

[12]

- **a.** Using pair wise distinguishable strings, show that language of Palindrome can't be accepted by Finite Automata
- **b.** Generate a Context-Free Grammar for L= $\{a^i b^j c^k | i < j+k\}$
- c. Define Ambiguous grammar. Describe "Dangling Else" problem.
- **d.** Minimize the Finite Automata

Q.3	Answer the Following	[14]
a.	State & prove Kleene's theorem Part-I for any two operations of regular language	8
b.	Convert the NFA-^ to NFA shown in Figure	4

c. Let M=<Q, \sum , q0, A, δ > be any NFA- $^{\land}$. Let M1=<Q, \sum , q0, A1, δ 1> be the equivalent NFA. Is it correct to define δ 1(q,a)= δ *(q,a) for some q belongs to Q and a belongs to \sum *?

Q.3 Answer the Following a. For any NFA M = (Q, ∑, qo, A, δ) accepting a language L subset of ∑*, there is a FA M1= (Q1, ∑, q1, A1, δ1) that also accepts L b. Convert Non-Deterministic Finite Automata (NDFA) to DFA shown in Figure. 4

c. What is the relation if any, between Union of ^-closures and ^-closures of Union? Justify your answer with a suitable example.