Groupe IPESUP Année 2022-2023

TD 11 : Polynômes et fractions rationnelles

Connaître son cours:

- Soit $P, Q \in \mathbb{K}[X]$, rappeler la définition du produit de P et Q le polynôme noté P.Q. Montrer que $\deg(P.Q) = \deg(P) + \deg(Q)$.
- Montrer qu'un complexe a est une racine de $P \in \mathbb{K}[X]$ si, et seulement si, X a divise P. (2 démonstrations)
- Soit $a_1, ..., a_n$ des complexes deux à deux distincts et $b_1, ..., bn$ des complexes. Montrer qu'il existe un unique polynôme $P \in \mathbb{C}[X]$ de degré au plus n-1 tel que $P(a_k) = b_k$ pour tout $k \in [0, n]$. Y a-t-il toujours unicité si on ne fixe plus le degré de P plus petit ou égale à n-1?
- Soit $P \in \mathbb{K}_n[X]$ et $a \in \mathbb{K}$. Alors, $P(X) = \sum_{k=0}^n \frac{P^{(k)}(a)}{k!} (X-a)^k$. En déduire qu'une racine a de P est de multiplicité r si, et seulement si, $P^{(k)}(a) = 0$ pour tout $k \le r 1$ et $P^{(r)}(a) \ne 0$.
- Rappeler le Théorème de d'Alembert-Gauss et montrer qu'un polynôme $P \in \mathbb{C}[X]$ non constant est surjectif de \mathbb{C} dans \mathbb{C} . Est-ce vrai de \mathbb{R} dans \mathbb{R} ?

Arithmétique des polynômes et racines :

Exercice 1. (*)

À quelle condition sur $a, b, c \in \mathbb{R}$ le polynôme $X^4 + aX^2 + bX + c$ est-il divisible par $X^2 + X + 1$?

Exercice 2. (*)

Trouver tous les polynômes P vérifiant

$$P(2X) = P'(X)P''(X)$$

Exercice 3. (*)

Soit P un polynôme différent de X. Montrer que P(X) - X divise P(P(X)) - X.

Exercice 4. (*)

Pour quelles valeurs de l'entier naturel n le polynôme $(X + 1)^n - X^n - 1$ est-il divisible par $X^2 + X + 1$?

Exercice 5. (**)

Trouver tous les polynômes P qui vérifient la relation

$$P(X^2) = P(X)P(X+1)$$

Exercice 6. (**)

Soient $a_1,..., a_n$ et $b_1,..., b_n, 2n$ nombres complexes. (Inégalité de CAUCHY-SCHWARZ).

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le \sum_{k=1}^{n} |a_k b_k| \le \sqrt{\sum_{k=1}^{n} |a_k|^2} \sqrt{\sum_{k=1}^{n} |b_k|^2}$$

Trouver une démonstration à l'aide d'une fonction polynomiale du second degré.

Exercice 7. (**)

Quels sont les polynômes $P \in \mathbb{C}[X]$ tels que P' divise P?

Groupe IPESUP Année 2022-2023

Exercice 8. (***)

Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique $P \in \mathbb{C}[X]$ tel que

$$\forall z \in \mathbb{C}^*$$
 $P\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$

Montrer alors que toutes les racines de P sont réelles, simples, et appartiennent à l'intervalle [-2, 2].

Exercice 9. (**)

Soit $P \in \mathbb{C}[X]$. On note, pour p < n, u_p la somme des racines de $P^{(p)}$. Démontrer que u_0, \ldots, u_{n-1} forme une progression arithmétique.

Exercice 10. (**)

Soit P un polynôme à coefficients réels tel que $\forall x \in \mathbb{R}, \ P(x) \ge 0$. Montrer qu'il existe deux polynômes R et S à coefficients réels tels que $P = R^2 + S^2$.

Exercice 11. (**)

Soit $P(X) = a_n X^n + \dots + a_0$ un polynôme à coefficients dans \mathbb{Z} , avec $a_n \neq 0$ et $a_0 \neq 0$.

- 1. On suppose que P admet une racine rationnelle p/q avec $p \wedge q = 1$. Démontrer que $p|a_0$ et que $q|a_n$.
- 2. Le polynôme $P(X) = X^5 X^2 + 1$ admet-il des racines dans \mathbb{Q} ?

Exercice 12. (**)

Soit $P \in \mathbb{Z}[X]$ de degré supérieur ou égal à 1. Soit n un entier relatif et m = P(n).

- 1. Montrer que $\forall k \in \mathbb{Z}$, P(n+km) est un entier divisible par m.
- 2. Montrer qu'il n'existe pas de polynômes non constants à coefficients entiers tels que P(n) soit premier pour tout entier n.

Exercice 13. (*)

Soient a_1, \ldots, a_n des réels deux à deux distincts.

Pour tout i = 1, ..., n, on pose

$$L_i(X) = \prod_{\substack{1 \le j \le n \\ j \ne i}} \frac{X - a_j}{a_i - a_j}$$

- 1. Calculer $L_i(a_j)$ pour j = 1, ..., n.
- Soient b₁,...,b_n des réels fixés. Montrer que P(X) = ∑_{i=0}ⁿ b_iL_i(X) est l'unique polynôme de degré inférieur ou égal à n-1 qui vérifie : P(a_j) = b_j pour tout j = 1,...,n.
- 3. Trouver le polynôme P de degré inférieur ou égal à 3 tel que

$$P(0) = 1$$
, $P(1) = 0$, $P(-1) = -2$ et $P(2) = 4$.

Exercice 14. (**)

On pose $\omega_k = e^{2ik\pi/n}$ et $Q = 1 + 2X + ... + nX^{n-1}$. Calculer $\prod_{k=0}^{n-1} Q(\omega_k)$.

Exercice 15. (***)

Soient $x_0 = 0 < x_1 < \cdots < x_n$ et des réels donnés $y_i, 0 \le i \le n$. On considère le polynôme d'interpolation satisfaisant :

$$P(x_0) = y_0, P(-x_i) = P(x_i) = y_i$$
, pour tout $1 \le i \le n$.

- 1. Montrer que le polynôme P est pair.
- En déduire en un minimum de calculs le polynôme d'interpolation vérifiant
 P(-1) = 2, P(0) = 4, P(1) = 2.

Exercice 16. (***) "Polynômes de Tchébychev"

1. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme T_n de $\mathbb{R}[X]$ tel que :

$$\forall x \in \mathbb{R}, \ T_n(\cos x) = \cos(nx).$$

- 2. Montrer, pour tout $n \in \mathbb{N}$, que $T_n + T_{n+2} = 2XT_{n+1}$. Déterminer le terme de plus haut degré de T_n .
- 3. Déterminer les racines de T_n et montrer qu'elles sont réelles et simples.
- 4. Déterminer les $x \in [-1, 1]$ en lesquels $|T_n(x)| = 1$.

Fractions rationnelles, décomposition en éléments simples sur \mathbb{R} ou \mathbb{C} :

Exercice 17. (*)

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(X+1)(X+2)}$.
- 2. En déduire la limite de la suite (S_n) suivante : $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}.$

Exercice 18. (**)

Soit $P \in \mathbb{R}[X]$ un polynôme de degré $n \ge 1$ possédant n racines distinctes x_1, \ldots, x_n non-nulles.

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{XP(X)}$
- 2. En déduire que $\sum_{k=1}^{n} \frac{1}{x_k P'(x_k)} = \frac{-1}{P(0)}$.

Exercice 19. (*)

Décomposer en éléments simples les fractions rationnelles suivantes:

1.
$$\frac{1}{X^3 - X}$$

1.
$$\frac{1}{X^3 - X}$$
 2. $\frac{X^3}{(X-1)(X-2)(X-3)}$

Exercice 20. (**)

Décomposer sur \mathbb{R} les fractions rationnelles suivantes:

1.
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$

1.
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
 2. $\frac{X^2 + 3X + 1}{(X - 1)^2(X - 2)}$

3.
$$\frac{1}{X^4-1}$$

4.
$$\frac{X^4 + 1}{(X+1)^2(X^2+1)}$$

Exercice 21. (**)

Décomposer en éléments simples les fractions rationnelles suivantes :

1.
$$\frac{2X^2+1}{(X^2-1)^2}$$
 2. $\frac{X^3+1}{(X-1)^3}$

2.
$$\frac{X^3+1}{(X-1)^3}$$

Exercice 22. (***) "Théorème de Lucas"

Soit $P \in \mathbb{C}_n[X]$ admettant n racines simples $\alpha_1, \ldots, \alpha_n$. Soient A_1, \ldots, A_n les points du plan complexe d'affixe respectives $\alpha_1, \ldots, \alpha_n$.

- 1. Décomposer la fraction rationnelle P'/P en éléments simples.
- 2. Soit β une racine de P', et soit B son image dans le plan complexe. Déduire de la question précédente que

$$\sum_{j=1}^{n} \frac{1}{\beta - \alpha_j} = 0.$$

3. En déduire que B est un barycentre de la famille de points (A_1, \ldots, A_n) , avec des coefficients positifs. Interpréter géométriquement cette propriété.

Exercice 23. (***)

Décomposer en éléments simples la fraction rationnelle suivante:

$$\frac{1}{T_n}$$

où T_n est le n-ième polynôme de Tchebychev.