#### 3.1 Energy Rates

Elec. - Demand Rate

Elec. - Demand Rate

Elec. - Demand Rate

Elec. - Demand Rate

Elec. - Use Rate

Elec. - Use Rate

| \$<br>21.7   | \$/kW - Winter (Dec - Feb) |  |  |  |  |  |
|--------------|----------------------------|--|--|--|--|--|
| \$<br>15.3   | \$/kW - Spring (March-May  |  |  |  |  |  |
| \$<br>28.09  | \$/kW - Summer (June-Aug.) |  |  |  |  |  |
| \$<br>15.3   | \$/kW - Fall (SeptNov.)    |  |  |  |  |  |
| \$<br>0.0565 | \$/kWh On Peak             |  |  |  |  |  |
| \$<br>0.0565 | \$/kWh Off Peak            |  |  |  |  |  |

# 3.2 Compressed Air Use Data ${m \mathcal{C}}$

|         |                | Schedule     | Flow               |                    | Power   | Pressure - PSIG | KPI     |  |  |  |
|---------|----------------|--------------|--------------------|--------------------|---------|-----------------|---------|--|--|--|
|         | Op. Period     |              | ACFM Made          | ACFM Made Hours/yr |         | P1              | kW/ACFM |  |  |  |
|         | 1              | Weekdays uid | 722                | 6240               | 143.6   | 91.6            | 0.199   |  |  |  |
| <u></u> | 2              | Weekends     | 734                | 2496               | 140.6   | 92.1            | 0.192   |  |  |  |
| Summary | Peak Demands   |              | Make Air Peak ACFM |                    | Peak kW |                 |         |  |  |  |
|         | 15 Minute Peak |              | 980                |                    | 172.8   | 94.5            | 0.176   |  |  |  |
| Data    | 10             | Minute Peak  | 988                |                    |         | 94.7            |         |  |  |  |
|         | 5              | Minute Peak  | 994                |                    |         | 95.1            |         |  |  |  |
|         | 3              | Minute Peak  | 1018               |                    |         | 95.4            |         |  |  |  |
|         | 2              | Minute Peak  | 1023               |                    |         | 95.5            |         |  |  |  |
|         | 15             | Minute Low   | 0                  |                    |         | 0               |         |  |  |  |

**ACFM Monitoring Period** 



## 3.3 Compressor Capacity 2

| $\Box$  | 100% Redundancy                 | 134  | ACFM |
|---------|---------------------------------|------|------|
| acit    | 100% Redundancy - 15m max       | -112 | ACFM |
| apacity | 100% Redundancy - 2m max        | -155 | ACFM |
| 1 1     | Supply Capacity - 0% Redundancy | 1371 | ACFM |

# 3. 4 System KPIs & Diagram

|       | Winter (Dec - Feb) Demand | 21.7   | \$/kW      |
|-------|---------------------------|--------|------------|
|       | Spring (March-May) Demand | 15.3   | \$/kW      |
|       | Summer (June-Aug.) Demand | 28.09  | \$/kW      |
|       | Fall (SeptNov.) Demand    | 15.3   | \$/kW      |
|       | Blended \$/kWh            | 0.0565 | \$/kWh     |
| KPI's | Weekdays uid              | 722    | ACFM       |
| 쥬     | Weekends                  | 734    | ACFM       |
|       | Utility peak CFM (15 min) | 980    | ACFM       |
|       | Header Pressure           | 91.6   | psig       |
|       | Air Quality Rating        | 3.2.1  | ISO 8573-1 |
|       | Average CFM 🕏             | 726    | ACFM       |
|       | Energy Peak               | 172.8  | kW         |

# **4 Supply - Compressed Air Supply Equipment**

## 4.3 Condensate Removal (Drains, Oil Water Separators)

Summary

Removing condensate from your compressed air system is important. There are a total of 2 drains in the supply system and they are inventoried in Table 4.3 below. Overall, you have some opportunity to improve your condensate removal system.

Table 4.3 - Condensate Drain Inventory

| Drain # | Location           | Installed | Working | Type                     | Bypass | Off<br>(min) | On<br>(sec) | Cost/yr | kW/yr | Recommendations                                         |
|---------|--------------------|-----------|---------|--------------------------|--------|--------------|-------------|---------|-------|---------------------------------------------------------|
| 1       | Compressor<br>Room | AC1       | Yes     | OEM - Zero<br>Loss Drain | No     | 0            | 0           | \$0     | 0     | Consider External No<br>loss Drain with Bypass<br>Valve |
| 2       | Compressor<br>Room | AC2       | Yes     | OEM - Zero<br>Loss Drain | No     | 0            | 0           | \$0     | 0     | Consider External No<br>loss Drain with Bypass<br>Valve |

## **6 Demand - Usage Information**

Summary

Type here...

ses

Type here...

#### 6.1 Leak Detection - Ultra Sonic

Summary

Type here...

rds

Volume of Leaks Found: 6 ACFM

Number of Leaks Found: 3

Leak Repair Cost Savings: \$9,943 \$/yr 100% repaired

## 7 Baseline & Proposed Operations 2

7.1 Baseline Annual Operation Detail

| - | · · · · · · · · | T baseline Affidat Operation betain |          |       |                          |    |     |   |     |              |                                               |                                                     |       |
|---|-----------------|-------------------------------------|----------|-------|--------------------------|----|-----|---|-----|--------------|-----------------------------------------------|-----------------------------------------------------|-------|
|   | "Make" Air Flow |                                     | Pressure | Hours | urs kW Demand kWl        |    | kWh |   |     | Off<br>(min) | On<br>(sec)                                   | Cost/yr                                             | kW/yr |
|   | Recommendations |                                     |          |       |                          |    |     |   |     |              |                                               |                                                     |       |
|   | 1               | Compressor<br>Room                  | AC1      | Yes   | OEM - Zero<br>Loss Drain | No | 0   | 0 | \$0 | 0            |                                               | Consider External I<br>loss Drain with Byp<br>Valve |       |
|   | 2               | Compressor<br>Room                  | AC2      | Yes   | OEM - Zero<br>Loss Drain | No | 0   | 0 | \$0 | 0            | Consider Extern<br>loss Drain with B<br>Valve |                                                     |       |

### 7.2 Compressor Run Schedule with all compressors working and online

|          |              |    |       |      | 15 Minute Peak |       |      | 2 Minute Peak |       |      |  |
|----------|--------------|----|-------|------|----------------|-------|------|---------------|-------|------|--|
| Weekdays | Control Type | kW | %Flow | ACFM | kW             | %Flow | ACFM | kW            | %Flow | ACFM |  |
| Model    | OLOL         |    | 99%   | 432  | 82             | 100%  | 434  | 82.4          | 100%  | 434  |  |
| modelvfd | VFD          |    | 47%   | 236  | 79.8           | 99%   | 498  | 86.5          | 109%  | 546  |  |
| modelac3 | OLOL         |    | 13%   | 55   | 92.6           | 100%  | 434  | 92.8          | 100%  | 434  |  |
| Total    |              |    |       | 722  | 254.3          |       | 1366 | 261.6         |       | 1414 |  |

#### Weekdays uid



#### 7.3 Compressor Run Schedule with all compressors working and online

|          |              |     |       |      | 15 Min | ute Peak |      | 2 Minute Peak |       |      |
|----------|--------------|-----|-------|------|--------|----------|------|---------------|-------|------|
| Weekends | Control Type | kW  | %Flow | ACFM | kW     | %Flow    | ACFM | kW            | %Flow | ACFM |
| Model    | OLOL         |     | 93%   | 403  | 80.7   | 100%     | 434  | 81            | 100%  | 434  |
| modelvfd | VFD          | 53  | 61%   | 306  | 90     | 113%     | 571  | 92.8          | 118%  | 591  |
| modelac3 | OLOL         | 7.8 | 6%    | 25   | 80.1   | 75%      | 324  | 90            | 100%  | 434  |
| Total    |              |     |       | 734  | 250.8  |          | 1329 | 263.8         |       | 1459 |

#### Weekends



| AC1 ACFM: 403 | AC2 ACFM: 306 | AC3 ACFM: 25 |
|---------------|---------------|--------------|
| AC1 ACFM: 403 | AC2 ACFM: 306 | AC3 ACFM: 25 |

# **Appendix**

#### **A Energy Rates & Operational Hours**

Elec. - Demand Rate

Elec. - Demand Rate

Elec. - Demand Rate

Elec. - Demand Rate

Elec. - Use Rate

Elec. - Use Rate

| \$<br>21.7   | \$/kW - Winter (Dec - Feb) |
|--------------|----------------------------|
| \$<br>15.3   | \$/kW - Spring (March-May) |
| \$<br>28.09  | \$/kW - Summer (June-Aug.) |
| \$<br>15.3   | \$/kW - Fall (SeptNov.)    |
| \$<br>0.0565 | \$/kWh On Peak             |
| \$<br>0.0565 | \$/kWh Off Peak            |

<sup>\*</sup>These rates are provided by and do not include sales tax, fuel clause adjustment factors, along with other riders and fees. You realized savings typically will be higher than stated in the report.

#### **System Operational Information**

1 Weekdays uid

2 Weekends

Total

| 6240 | hr/yr |
|------|-------|
| 2496 | hr/yr |
| 8736 | hr/yr |

#### **B Equipment Details**

| HRS    | Nameplate<br>HP | Compressor #      | Make / Age | Model<br>Number | ВНР | kW at Full<br>Load | Туре                                                                   | Flow<br>ACFM | PSI<br>Rating | Yr   |
|--------|-----------------|-------------------|------------|-----------------|-----|--------------------|------------------------------------------------------------------------|--------------|---------------|------|
| 83,000 | 100             | AC1               | Make       | Model           | 125 | 93.3               | Oil Flooded,<br>OLOL, Rotary<br>Screw, Air Cooled,<br>Fan Motor HP = 3 | 434          | 125           | 2003 |
| 60,000 | 100             | AC2               | Makevfd    | modelvfd        | 125 | 93.3               | Oil Flooded, VFD,<br>Rotary Screw, Air<br>Cooled, Fan Motor<br>HP = 3  | 503          | 125           | 2016 |
| 80,000 | 100             | AC3               | Make       | modelac3        | 125 | 93.3               | Oil Flooded,<br>OLOL, Rotary<br>Screw, Air Cooled,<br>Fan Motor HP = 3 | 434          | 125           | 2003 |
|        |                 | Total / Max / Min | n/a        | n/a             | 375 | 279.75             |                                                                        | 1,371        | 125           |      |

| Filters # | Make of Filter | Model Numbers | Туре       | Micron Rating | SCFM Rating |
|-----------|----------------|---------------|------------|---------------|-------------|
| AF-01     | AC             | PD+210        | Coalescing | 0.01          | 445         |
| AF-01     | AC             | PD+210        | Coalescing | 0.01          | 445         |
|           |                |               |            |               |             |

| Dryers # | Make        | Model Numbers | Capacity<br>(SCFM) | Technology    | Type<br>(If Desiccant Dryer) | Control     | Full Load kW |
|----------|-------------|---------------|--------------------|---------------|------------------------------|-------------|--------------|
| 1        | Atlas Copco | 0             | 500                | Refridgerated | 0                            | Non-Cycling | 3.09         |
|          |             |               |                    |               |                              |             |              |

| Storage Tank # | Size in Gallons | Storage Type<br>(Wet or Dry) | Location        |  |
|----------------|-----------------|------------------------------|-----------------|--|
| DT1            | 1040            | Dry                          | Compressor Room |  |

## **C** Leak Log

| Work | Location | Note                       | Flow | Fixed |
|------|----------|----------------------------|------|-------|
| 1    | Dryer #6 | On the regulator near the  | 5    | no    |
| 2    | Dryer #5 | asdlkfhba nsdkl lakjd ;sak | 1    | no    |
| 3    |          |                            |      | no    |

Total 6 CFM Percentage of Load to Tagged Leaks 11% Percentage of repaired Volume: 0%