Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

▶ Richiami di algebra lineare

▶ Calcolo dell'esponenziale di matrice tramite diagonalizzazione

▶ Forma di Jordan

Vettori e basi in \mathbb{R}^n

- **1.** L'insieme (di vettori) \mathbb{R}^n con campo (di scalari) \mathbb{R} dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno spazio vettoriale.
- **2.** I vettori $v_1,\ldots,v_k\in\mathbb{R}^n$ sono detti linearmente indipendenti (dipendenti) se

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0, \ \alpha_i \in \mathbb{R} \implies (\not\Rightarrow) \ \alpha_1 = \cdots = \alpha_k = 0.$$

- **3.** I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ formano una base di \mathbb{R}^n se:
 - (i) generano \mathbb{R}^n : $\forall v \in \mathbb{R}^n$, $\exists \alpha_i \in \mathbb{R}$ t.c. $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$
 - (ii) sono linearmente indipendenti

Trasformazioni lineari

1. Una trasformazione $f: \mathbb{R}^m \to \mathbb{R}^n$ si dice lineare se

(i)
$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in \mathbb{R}^m$$

(ii) $f(\alpha v) = \alpha f(v), \quad \forall v \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$

2. Una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ è univocamente individuata dalla sua restrizione ai vettori di una qualsiasi base \mathcal{B} di \mathbb{R}^m .

Trasformazioni lineari e rappresentazione matriciale

1. Fissata una base \mathcal{B}_1 di \mathbb{R}^m e una base \mathcal{B}_2 di \mathbb{R}^n è possibile rappresentare una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ con una matrice $F \in \mathbb{R}^{n \times m}$ che descrive come le coordinate (rispetto a \mathcal{B}_1) di vettori di \mathbb{R}^m vengono mappate da f in coordinate di vettori (rispetto a \mathcal{B}_2) di \mathbb{R}^n .

2. Fissata una base \mathcal{B} di \mathbb{R}^n , sia $F \in \mathbb{R}^{n \times n}$ la matrice che rappresenta la trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$. Sia $T \in \mathbb{R}^{n \times n}$ la matrice di cambio di base da \mathcal{B} di \mathbb{R}^n ad una "nuova" base \mathcal{B}' di \mathbb{R}^n . La matrice che rappresenta f nella nuova base è

$$F' = T^{-1}FT$$
.

Matrici: fatti base

1. Sia $F \in \mathbb{R}^{n \times m}$

$$\ker F \triangleq \{v \in \mathbb{R}^m : Fv = 0\},$$

$$\operatorname{im} F \triangleq \{w \in \mathbb{R}^n : w = Fv, \exists v \in \mathbb{R}^m\},$$

$$\operatorname{rank} F \triangleq \# \text{ righe (o colonne) lin. indipendenti di } F$$

- **2.** Sia $F \in \mathbb{R}^{n \times n}$, un vettore $v \in \mathbb{C}^n$ tale che $Fv = \lambda v$, $\lambda \in \mathbb{C}$, è detto autovettore di F corrispondente all'autovalore λ .
- **3.** Gli autovalori $\{\lambda_i\}_{i=1}^k$ di $F \in \mathbb{R}^{n \times n}$ sono le radici del polinomio caratteristico

$$\Delta_F(\lambda) = \det(\lambda I - F) = (\lambda - \lambda_1)^{\nu_1} (\lambda - \lambda_2)^{\nu_2} \cdots (\lambda - \lambda_k)^{\nu_k},$$

dove ν_i è la molteplicità algebrica dell'autovalore λ_i .

Matrici: fatti base

4. Ogni autovettore v relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(\lambda_i I - F)v = 0.$$

5. La molteplicità geometrica g_i dell'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente independenti associati a λ_i e coincide con

$$g_i = \dim \ker(\lambda_i I - F) = n - \operatorname{rank}(\lambda_i I - F).$$

6. Se $\nu_i = g_i$ per ogni autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ allora F è diagonalizzabile, i.e., esiste una matrice di cambio di base $T \in \mathbb{R}^{n \times n}$ tale che

$$F_D \triangleq T^{-1}FT$$
 è diagonale.

Esempio: diagonalizzazione

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, F diagonalizzabile? Se sì, calcolare T .

$$\lambda_1 = i$$
, $\nu_1 = 1$, $g_1 = 1$, $\lambda_2 = -i$, $\nu_2 = 1$, $g_2 = 1 \implies F$ diagonalizzabile \checkmark

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

Calcolo di e^{Ft} tramite diagonalizzazione

$$F\in\mathbb{R}^{n imes n}$$
 diagonalizzabile $(
u_i=g_i ext{ per ogni autovalore } \lambda_i)$ $igg|$ Esiste $T\in\mathbb{R}^{n imes n}$ tale che $F_D=T^{-1}FT$ diagonale

Come ci aiuta questo nel calcolo di e^{Ft} ?

Calcolo di e^{Ft} tramite diagonalizzazione

$$F \in \mathbb{R}^{n \times n}$$
 diagonalizzabile $(\nu_i = g_i \text{ per ogni autovalore } \lambda_i)$

$$F = TF_DT^{-1} \implies e^{Ft} = e^{TF_DT^{-1}t}$$

$$(TF_DT^{-1}t)^n = T(F_Dt)^nT^{-1} \implies e^{Ft} = Te^{F_Dt}T^{-1}$$

Calcolo di e^{Ft} tramite diagonalizzazione: esempio

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, calcolare e^{Ft} tramite diagonalizzazione di F .

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
, $F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

$$e^{Ft} = Te^{F_D t} T^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

Come calcolare e^{Ft} ?

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ diagonale

Non sempre possibile!!! Che fare quando non esiste una tale T?

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ "quasi" diagonale!

Esempi

1.
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
, $\nu_1 = 2$, $g_1 = 2 \implies \nu_1 = g_1$ diagonalizzabile \checkmark

2.
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \lambda_1 = 2$$
, $\nu_1 = 1$, $g_1 = 1$, $\lambda_2 = 0$, $\nu_2 = 1$, $g_2 = 1$ $\implies \nu_i = g_i$ diagonalizzabile \checkmark

Forma di Jordan: idea generale

$$F \in \mathbb{R}^{n imes n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$u_i = \text{molteplicità algebrica } \lambda_i$$
 $g_i = \text{molteplicità geometrica } \lambda_i$

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste
$$i$$
 tale che $\nu_i > g_i \implies F$ non diagonalizzabile \times

possiamo trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (forma di Jordan)

...e i blocchi "quasi" diagonali hanno una forma ben nota !! $\begin{bmatrix} f & 1 & \cdots & 0 \\ 0 & f & \ddots & \vdots \\ \vdots & \ddots & f & 1 \end{bmatrix}$

Forma di Jordan: teorema

Teorema: Siano $\{\lambda_i\}_{i=1}^k$ gli autovalori di $F \in \mathbb{R}^{n \times n}$. Esiste una $T \in \mathbb{R}^{n \times n}$ tale che

$$F_{J} \triangleq T^{-1}FT = \begin{bmatrix} J_{\lambda_{1}} & 0 & \cdots & 0 \\ \hline 0 & J_{\lambda_{2}} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}} \end{bmatrix}, J_{\lambda_{i}} = \begin{bmatrix} J_{\lambda_{i},1} & 0 & \cdots & 0 \\ \hline 0 & J_{\lambda_{i},2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{i},g_{i}} \end{bmatrix}, J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}}.$$

Inoltre F_J è unica a meno di permutazioni dei blocchi $\{J_{\lambda_i}\}$ e miniblocchi $\{J_{\lambda_{i,i}}\}$.

 $F_J =$ forma canonica di Jordan di F

Forma di Jordan: osservazioni

- 1. Esiste una procedura algoritmica per il calcolo della trasformazione \mathcal{T} (cf. $\S 1.5\text{-}1.6$ del testo di riferimento)
- **2.** dim. blocco J_{λ_i} associato a $\lambda_i =$ molteplicità algebrica ν_i
- **3.** # miniblocchi $\{J_{\lambda_i,j}\}$ associati a λ_i = molteplicità geometrica g_i
- **4.** In generale, per determinare F_J non è sufficiente conoscere gli autovalori $\{\lambda_i\}$ e i valori di $\{\nu_i\}$, $\{g_i\}$, ma bisogna anche conoscere i valori di $\{r_{ij}\}$!
- **5.** Se $g_i = 1 \ \forall i$ o se n = 1, 2, 3 si può ricavare F_J calcolando solo $\{\lambda_i\}$, $\{\nu_i\}$, $\{g_i\}$!

Forma di Jordan: esempi

1.
$$F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 2, \ g_1 = 1 \\ \lambda_2 = 1, \ \nu_1 = 1, \ g_1 = 1 \implies F_J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

2.
$$F = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, $\alpha = 0, 1 \implies \lambda_1 = 1$, $\nu_1 = 4$, $g_1 = 2$ $\implies F_J = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $\alpha = 0$ $\Rightarrow F_J = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $\alpha = 1$