Solutions for Homework 2

Tong Zhou

PROBLEMS: 2.22, 3.2, 3.4, 3.5.

PROBLEM 2.22

PROOF. To check conditional heteroskedasticity, it suffices to see if $Var(X_2'\beta_2 + e \mid X_1)$ is a function of X_1 or not.

First project X_2 on X_1 , we have

(1)
$$X_2 = \mathbb{E}[X_2 \mid X_1] + e_2 = \Gamma X_1 + e_2$$

where $e_2 := X_2 - \mathbb{E}[X_2 \mid X_1]$ is the projection error.

Observe that

$$\mathbb{E}[e_2 \mid X_1, X_2] \stackrel{(1)}{=} e_2$$

Equality (1) holds because e_2 is a function of X_2 and X_1 . Use Eq. (1),

$$\begin{aligned} \mathsf{Var}(X_2'\beta_2 + e \mid X_1) &= \mathsf{Var}(X_1'\Gamma'\beta_2 + e_2'\beta_2 + e \mid X_1) \\ &\stackrel{(2)}{=} \mathsf{Var}(e_2'\beta_2 + e \mid X_1) \\ &\stackrel{(3)}{=} \mathbb{E}[(e_2'\beta_2 + e)^2 \mid X_1] \\ &= \mathbb{E}[\beta_2'e_2e_2'\beta_2 + e^2 + 2e_2'\beta_2e \mid X_1] \\ &\stackrel{(4)}{=} \mathbb{E}[\beta_2'e_2e_2'\beta_2 \mid X_1] + \sigma^2 \end{aligned}$$

Equality (2) holds because $X'_1\Gamma'\beta_2$ is a constant given X_1 ; Equality (3) is true because $\mathbb{E}[e'_2\beta_2 + e \mid X_1] = 0$; Equality (4) is by equality (1)

$$\mathbb{E}[e_2'\beta_2e \mid X_1] = \mathbb{E}[e_2'\beta_2\mathbb{E}[e \mid X_1, X_2] \mid X_1] = 0.$$

Thus, whether conditional heteroskedasticity is an issue depends on the term

$$\beta_2' \mathbb{E}[e_2 e_2' \mid X_1] \beta_2$$

is constant or not. If, for example, suppose X_1, X_2 have the same dimension and

$$e_2\mid X_1\sim \mathcal{N}(0,X_1X_1'),$$

then $\mathbb{E}[e_2e_2'\mid X_1]=X_1X_1'$. As a result,

$$Var(X_2'\beta_2 + e \mid X_1) = \beta_2' X_1 X_1' \beta_2 + \sigma^2.$$

It implies conditional heteroskedasticity does exist.

So without further information, we cannot conclude conditional homoskedasticity.

PROBLEM 3.2

PROOF. The estimates from regressing \boldsymbol{v} on \boldsymbol{X} is

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}.$$

The estimates from regressing \boldsymbol{y} on \boldsymbol{Z} is

$$\widehat{\beta}_z = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

$$= (\mathbf{C}'\mathbf{X}'\mathbf{X}\mathbf{C})^{-1}\mathbf{C}'\mathbf{X}'\mathbf{y}$$

$$= \mathbf{C}^{-1}(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{C}')^{-1}\mathbf{C}'\mathbf{X}'\mathbf{y}$$

$$= \mathbf{C}^{-1}\widehat{\boldsymbol{\beta}}.$$

It is not hard to verify that their residuals are algebraically identical.

PROBLEM 3.4

PROOF. Since

$$X'\hat{e} = \begin{pmatrix} X_1' \\ X_2' \end{pmatrix} \hat{e}$$
$$= \begin{pmatrix} X_1' \hat{e} \\ X_2' \hat{e} \end{pmatrix}$$
$$= 0,$$

then

$$\boldsymbol{X}_{2}^{\prime}\hat{\boldsymbol{e}}=0.$$

PROBLEM 3.5

PROOF. Suppose the regression function is $\hat{e} = X\lambda + \eta$. The OLS coefficient from a regression of \hat{e} on X is

$$\widehat{\lambda}_{\text{OLS}} = (X'X)^{-1} \underbrace{X'\widehat{e}}_{=0} = 0.$$

The intuition is that $\widehat{\boldsymbol{e}}$ is the "leftover" effect on \boldsymbol{y} after \boldsymbol{X} "absorbs" relevant information in \boldsymbol{y} . So, it is not surprising that \boldsymbol{X} has no (linear) effect on $\widehat{\boldsymbol{e}}$.