Lecture 24

Administration

Chapter 4: Global State and snapshot recording algorithms

Chandy and Lamport Snapshot

Marker-Sending Rule for a Process p:

Marker-Receiving Rule for a Process q:

- When a process receives a mark, it knows that a snapshot is in process.
- An individual node knows that it is done when it records its own state and all the states in my incoming channels.

Example -- initial

Node	Recorded state				
	c1	c2	c3	c4	
р		{}		{}	
q	{}				
r			{}		

Example - step 5

Node	Recorded state				
	state	c1	c2	c3	c4
р	490		{20}		{25}
q	480	{empty}			
r	485			{empty}	

What if more than one initiate?

Table 4.1 A comparison of snapshot algorithms.

Algorithms	Features
Chandy-Lamport [7]	Baseline algorithm. Requires FIFO channels. $O(e)$ messages to record snapshot and $O(d)$ time.
Spezialetti–Kearns [29]	Improvements over [7]: supports concurrent initiators, efficient assembly and distribution of a snapshot. Assumes bidirectional channels. $O(e)$ messages to record, $O(rn^2)$ messages to assemble and distribute snapshot.
Venkatesan [32]	Based on [7]. Selective sending of markers. Provides message-optimal incremental snapshots. $\Omega(n+u)$ messages to record snapshot.
Helary [12]	Based on [7]. Uses wave synchronization. Evaluates function over recorded global state. Adaptable to non-FIFO systems but requires inhibition.
Lai-Yang [18]	Works for non-FIFO channels. Markers piggybacked on computation messages. Message history required to compute channel states.
Li et al. [20]	Similar to [18]. Small message history needed as channel states are computed incrementally.
Mattern [23]	Similar to [18]. No message history required. Termination detection (e.g., a message counter per channel) required to compute channel states.
Acharya-Badrinath [1]	Requires causal delivery support. Centralized computation of channel states. Channel message contents need not be known. Requires 2n messages, 2 time units.
Alagar-Venkatesan [2]	Requires causal delivery support. Distributed computation of channel states. Requires $3n$ messages, 3 time units, small messages.

n=# processes, u=# edges on which messages were sent after previous snapshot, e=# channels, d= diameter of the network, r=# concurrent initiators.