Modelagem Integrada de Reservatórios e Produção

Exercícios #03 Tiago Amorim (RA 100.675)

EXERCÍCIO MÓDULO NODAL - DISCIPLINA IRPM - 2º SEMESTRE 2023

1) Influência do Choke na vazão de produção

Considere os resultados apresentados no gráfico da Figura 1.

Um poço passou a ter instabilidade na produção. Isso obrigou o engenheiro do campo a adotar uma solução rápida para o problema. A opção mais fácil a ser adotada foi alterar a abertura do choke de tal forma a ter uma pressão PWH limite no valor de 15 Kgf/cm2.

Figura 1 – Simulação da Produção – alteração da abertura do choke

Pede-se:

- 1) Inferir a pressão estática do reservatório considerando que o poço está produzindo uma vazão de 1000 m3/d;
- 2) Obter a vazão limite de surgência para essa condição de produção;
- 3) Obter a pressão estática limite de surgência para essa condição de produção.

2) Influência do diâmetro da coluna de produção

I. Considere os resultados apresentados no gráfico da Figura 2. Após 6 meses de produção o poço começou a apresentar instabilidade com redução significativa na vazão de produção. O engenheiro de campo recomenda então uma ação mais drástica: trocar a coluna de produção do poço. Foi retirada a coluna de produção de 4 ½ pol e instalada uma coluna de 5 ½ pol.

Figura 2– Simulação da Produção – coluna de produção de 5 ½ pol.

- 1) Considerando a pressão estática inferida no exercício anterior, obtenha a nova vazão de produção;
- 2) Obter a vazão limite de surgência para essa condição de produção;
- 3) Obter a pressão estática limite de surgência para essa condição de produção.

3) Necessidade de elevação artificial

Considere os resultados apresentados no gráfico da Figura 3.

Foram realizados testes de produção no poço Y e verificaram que a Pressão Estática era da ordem de 250 Kgf/cm2. Como todas as opções mais fáceis já haviam sido tomadas, o engenheiro de campo entendeu que precisaria colocar um sistema de elevação artificial no poço. Optou pelo Gas Lift Contínuo (GLC) devido a característica das propriedades de fluido com óleo leve (30 API), não produção de água e Razão Gás Óleo (RGO) da ordem de 50 m3/m3. O engenheiro realizou simulações para definir qual seria a vazão de Lift Gas necessária para a produção do poço em 1000 m3/d.

Figura 3 – Simulação de produção – poço com GLC

- 1) Qual será a RGLi a ser utilizada para obter a produção de 1000 m3/d no poço Y?
- 2) Como não há influxo de água atuante no reservatório, existe a previsão é de queda acentuada no valor da pressão estática. O valor deverá ser da ordem de 200 Kgf/cm2 após 1 ano. Nesse caso qual valor de RGLi deveria ser adotado?
- 3) Obter a pressão estática limite de surgência do poço para essa condição de produção.

- 1) Inferir a pressão estática do reservatório considerando que o poço está produzindo uma vazão de 1000 m3/d:
- 2) Obter a vazão limite de surgência para essa condição de produção;
- 3) Obter a pressão estática limite de surgência para essa condição de produção.

1.1) Pe 2 300 kgf/cm²

Figura 1 – Simulação da Produção – alteração da abertura do choke

Figura 1 - Simulação da Produção - alteração da abertura do choke

- Considerando a pressão estática inferida no exercício anterior, obtenha a nova vazão de produção;
- Obter a vazão limite de surgência para essa condição de produção;
- 3) Obter a pressão estática limite de surgência para essa condição de produção.

2.1) Qp 2 1700 m3ld.

Figura 2– Simulação da Produção – coluna de produção de 5 ½ pol.

2.2) Op ~ 500 m3/d 2.3) Pe ~ 245 kgf/cm²

Figura 2– Simulação da Produção – coluna de produção de 5 ½ pol.

- 1) Qual será a RGLi a ser utilizada para obter a produção de 1000 m3/d no poço Y?
- 2) Como não há influxo de água atuante no reservatório, existe a previsão é de queda acentuada no valor da pressão estática. O valor deverá ser da ordem de 200 Kgf/cm2 após 1 ano. Nesse caso qual valor de RGLi deveria ser adotado?
- 3) Obter a pressão estática limite de surgência do poco para essa condição de produção.

3.1) RGLi = 50 m3/m3

Figura 3 – Simulação de produção – poço com GLC

3.2) RGLI ~ 200 m3/m3

en 2 190 raf/cm²

Figura 3 - Simulação de produção - poço com GLC

MÓDULO ELEVAÇÃO ARTIFICIAL - IRPM

EXERCÍCIO PROPOSTO

MÓDULO ELEVAÇÃO ARTIFICIAL - IRPM

EXERCÍCIO MÓDULO ELEVAÇÃO ARTIFICIAL

A. ENUNCIADO:

1) Alunos da disciplina IRPM da Unicamp, utilizando o software Pipesim, realizaram as simulações de escoamento multifásico nos poços, obtiveram as profundidades de injeção do Lift Gas a partir da pressão de compressão no FPSO. A partir daí foram obtidas as Curvas de desempenho dos poços P1, P2 e P3 produzindo por Gas Lift (Figuras 1 a 3). Os resultados estão apresentados a seguir:

Figura 1 – Qgi x Vazão de Líquido – Poço 1 – Gas Lift

Figura 2 – Qgi x Vazão de Líquido – Poço 2 – Gas Lift

Figura 3 – Qgi x Vazão de Líquido – Poço 3 – Gas Lift

MÓDULO ELEVAÇÃO ARTIFICIAL - IRPM

B. PEDE-SE:

- 1. Obter a curva total de Qgi x QL para o sistema Gas Lift;
- Obter a vazão máxima de óleo para o sistema Gas Lift total e para cada poço considerando que não haverá limitação de vazão de gás para utilização na elevação artificial por esse método;
- 3. Considerando que estatisticamente a taxa de disponibilidade de um compressor para realizar o Gas Lift é da ordem de 60%, verificar qual será a vazão de óleo total e por poço a ser produzida devido a essa restrição.

1. Obter a curva total de Qgi x QL para o sistema Gas Lift;

P1 Qgl [Mm3/d]	QI [m3/d]	P2 Qgl [Mm3/d]	QI [m3/d]	P3 Qgl [Mm3/d]	QI [m3/d]
50	1000	45	700	50	700
100	1,400	105	1,100	100	1,000
150	1,600	200	1,400	150	1190
200	1,680	270	1,500	200	1,250
300	1800	330	1,600	300	1,300
400	1850	420	1,600	400	1,320

Os principais pontos dos gráficos foram digitalizados (ver tabelas). Para fazer a curva do sistema (soma dos poços), foram somados os valores de vazão de gás-lift e de vazão de líquido por poço.

 Obter a vazão máxima de óleo para o sistema Gas Lift total e para cada poço considerando que não haverá limitação de vazão de gás para utilização na elevação artificial por esse método;

B: Qn= 1850 m3/d Qc = 400 mm3/d

Pz: Qu = 1600 m3/d QGL= 330 Mm3/d

P3: QL = 1320 m3/d QGL = 400 Mm3/d

3. Considerando que estatisticamente a taxa de disponibilidade de um compressor para realizar o Gas Lift é da ordem de 60%, verificar qual será a vazão de óleo total e por poço a ser produzida devido a essa restrição.

Sistema: Q1 = 1750+1400+1280 = 4430 m3/d Q61 = 240+198+240=678 Mm3/d

DISCIPLINA IRPM

Exercício Proposto Deposição de Parafinas

EXERCÍCIO AULA 3 - MÓDULO PARAFINAS

1) Considere o modelo de Matzain proposto e os resultados indicados na Figura 01

$$\frac{d\delta}{dt} = \frac{\Pi_1}{1 + \Pi_2} D_w \left(\frac{\partial C_w}{\partial T} \frac{\partial T}{\partial r} \right)$$

$$\frac{dT}{dr} = \frac{\left(T_b - T_w\right)h_w}{k_o}$$

Figura 01 - Espessura de deposição ao longo de uma flowline

DISCIPLINA IRPM

2) Pede-se comentar como variam os 2 parâmetros:

$$\frac{\partial C_{\mathrm{w}}}{\partial T} \ \frac{\partial T}{\partial r}$$

- a) No trecho ascendente da curva;
- b) No trecho de espessura máxima de depósito de parafina;
- c) No trecho descendente da curva.

2) Pede-se comentar como variam os 2 parâmetros:

$$\frac{\partial C_w}{\partial T} = \frac{\partial T}{\partial r}$$

- a) No trecho ascendente da curva;
- b) No trecho de espessura máxima de depósito de parafina;
- c) No trecho descendente da curva.

- a) dT/dR começa baixo, pois o fluido está em temperatura próxima à da rocha circundante. Ao chegar ao fundo do mar dT/dR está potencialmente muito alto (a depender do isolamento térmico da linha), pois a água domar estará em temperatura muito baixa. A deposição só começará quando fluido atingir a TIAC. Neste ponto ainda temos dT/dR muito alto. dCw/dT começa baixo e vai subindo à medida que a parede da tubulação esfria.
- b) Na região de máxima espessura de deposição dCw/dT provavelmente está muito alto, associado à mínima temperatura da parede da tubulação. dT/dR ainda deve estar alto, imaginando que o fluido provavelmente está com temperatura acima da temperatura do ambiente externo.
- c) Nesta região a temperatura externa deve estar subindo (riser?), reduzindo dT/dR. Com a temperatura da parede subindo, o termo dCw/dT também estará caindo.

DISCIPLINA IRPM

Exercício Proposto Formação de hidratos

EXERCÍCIO PROPOSTO – FORMAÇÃO DE HIDRATOS

EXERCÍCIO AULA 3 - MÓDULO HIDRATOS

1) Considere os resultados obtidos através de simulação na Figura 01.

DISCIPLINA IRPM

EXERCÍCIO PROPOSTO – FORMAÇÃO DE HIDRATOS

2) Pede-se

- a) Qual o comprimento aproximado da tubulação sujeita a formação de hidratos;
- b) Quais trechos da flowline estariam fora do envelope de hidratos?
- c) Considerando a injeção de metanol em uma concentração de 20% em volume qual é a faixa de temperatura e pressão onde poderá ocorrer a formação de hidratos?
- d) Considere que a vazão de produção do poço irá se alterar com o tempo, reduzindo a pressão e temperatura de escoamento. Comente se haverá ou não formação de hidratos caso ocorra a injeção de metanol em uma concentração de 25% em volume.

- a) Qual o comprimento aproximado da tubulação sujeita a formação de hidratos;
- b) Quais trechos da flowline estariam fora do envelope de hidratos?
- c) Considerando a injeção de metanol em uma concentração de 20% em volume qual é a faixa de temperatura e pressão onde poderá ocorrer a formação de hidratos?
- d) Considere que a vazão de produção do poço irá se alterar com o tempo, reduzindo a pressão e temperatura de escoamento. Comente se haverá ou não formação de hidratos caso ocorra a injeção de metanol em uma concentração de 25% em volume.
- a) O trecho sujeito a formação de hidrato, marcado em amarelo, vai de aproximadamente 9 mi até 45 mi, totalizando 36 mi (*57,6km).
- b) Apenas os trechos marcados em verde no gráfico.
- c) O novo envelope de formação de hidratos foi marcado em vermelho. Há formação de hidratos aproximadamente quando T < 50oF e P > 800 psia.

- a) Qual o comprimento aproximado da tubulação sujeita a formação de hidratos;
- b) Quais trechos da flowline estariam fora do envelope de hidratos?
- c) Considerando a injeção de metanol em uma concentração de 20% em volume qual é a faixa de temperatura e pressão onde poderá ocorrer a formação de hidratos?
- d) Considere que a vazão de produção do poço irá se alterar com o tempo, reduzindo a pressão e temperatura de escoamento. Comente se haverá ou não formação de hidratos caso ocorra a injeção de metanol em uma concentração de 25% em volume.

d) Na condição atual não há formação de hidratos com injeção de 25% em volume de metanol (aproximadamente a curva azul). A redução na pressão atuará no sentido de reduzir ainda mais o risco de formação de hidrato. Já a redução na temperatura irá atuar no sentindo de aumentar o risco de formação de hidrato. Desta forma, a formação de hidratos estará ligada ao quanto a temperatura irá reduzir em comparação com a redução na pressão.

Como a região em que as condições de produção possivelmente cruzariam o envelope de formação de hidratos tem temperaturas muito baixas (45oF≈ 7,2oC), se o gráfico abaixo é de uma linha de produção no fundo do mar, é pouco provável que a temperatura do fluido atinga valores tão baixos em condições usuais de produção.

