

Mining Big Data in Real Time

Albert Bifet

Turing/SLAIS 2012 Conference

BIG DATA

Measure and React

Source: IDC's Digital Universe Study (EMC), June 2011

Memory unit	Size	Binary size
kilobyte (kB/KB)	10 ³	2 ¹⁰
megabyte (MB)	10 ⁶	2 ²⁰
gigabyte (GB)	10 ⁹	2 ³⁰
terabyte (TB)	10 ¹²	2 ⁴⁰
petabyte (PB)	10 ¹⁵	2 ⁵⁰
exabyte (EB)	10 ¹⁸	2 ⁶⁰
zettabyte (ZB)	10 ²¹	2 ⁷⁰
yottabyte (YB)	10 ²⁴	2 ⁸⁰

Source: IDC's Digital Universe Study (EMC), June 2011

Source: IDC's Digital Universe Study (EMC), June 2011

Source: IDC's Digital Universe Study (EMC), June 2011

Streaming Data

Big Data & Real Time

Big Data

McKinsey Global Institute (MGI) Report on Big Data, 2011.

Big data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze.

Big Data

McKinsey Global Institute (MGI) Report on Big Data, 2011.

Big data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze.

BIG Data

- Volume
- Variety
- Velocity

3 Vs

Methodology

Sampling and distributed systems

Methodology

Paolo Boldi

Facebook Four degrees of separation

Big Data does not need big machines, it needs big **intelligence**

Real time analytics

We want to analyze what is happening **now**.

Real time analytics

We want to analyze what is happening **now**.

Time and Memory

Number 8 Wire Mentality

Time and memory are the resource dimensions of the process.

Time and Memory

Time and memory are the resource dimensions of the process.

Algorithms

Classification, Regression, Clustering, Frequent Pattern Mining.

Applications

- sensor data: industry, cities
- telecomm data
- social networks: twitter, facebook, yahoo
- marketing: sales business

Data may come from: humans, sensors, or machines.

New applications: social networks

Twitter: A Massive Data Stream

- Micro-blogging service
- Built to discover what is happening at any moment in time, anywhere in the world.
- 3 billion requests a day via its API.

MOA-TweetReader: a real-time system to

- read tweets in real time
- detect changes
- find the terms whose frequency changed

Sentiment Analysis on Twitter

Sentiment analysis

Classifying messages into two categories depending on whether they convey positive or negative feelings

Emoticons are visual cues associated with emotional states, which can be used to define class labels for sentiment classification

Positive Emoticons	Negative Emoticons
:)	:(
:-)	:-(
:)	: (
:D	
=)	

Table: List of positive and negative emoticons.

New problem: structured classification

New methods for structured classification

sequences, trees, graphs

New problem: structured classification

New methods for structured classification

- sequences, trees, graphs
- frequent pattern mining techniques

New problem: structured classification

New methods for structured classification

- sequences, trees, graphs
- frequent pattern mining techniques
- multi-label data mining
 - ► Example: Lord of the Rings → Action, Adventure, Fantasy

New Techniques: Distributed Systems

Hadoop, S4 and Storm

Hadoop

Hadoop

Hadoop

Hadoop architecture

Apache Mahout

Mahout: open source framework

Pig

Pig: Similar to SQL

Pig

```
A = LOAD 'data' USING PigStorage() AS (f1:int, f2:int, f3:int);
B = GROUP A BY f1;
C = FOREACH B GENERATE COUNT ($0);
DUMP C;
```

Pig: Similar to SQL

Apache S4

S4 distributed stream computing platform

Apache S4

Apache S4

Storm

Storm from Twitter

Storm

Stream, Spout, Bolt, Topology

Storm

Tools ElephantDB, Voldemort All Hadoop Precomputed batch view Storm Precomputed realtime view Cassandra, Riak, HBase

"Lambda Architecture"

Runaway complexity in Big Data Nathan Marz, 2012

Data Streams

Big Data & Real Time

Data Streams

Thanks!