Inteligência Artificial

Inteligência Artificial

Samy Soares samy@ufc.br

Representação e Solução de Problemas (Cont.)

Objetivos

- Trabalhar técnicas de modelagem de espaços de soluções para problemas.
- Apresentar alguns problema e exibir exemplos com representação de soluções e domínios.

Roteiro

- Técnicas
 - Quadros (Cont.)
- Problemas
 - Espaços de Busca
 - Exemplos

Técnicas

Frame Name	Slot	Slot Value
Bob	is a	Builder
	owns	Fido
	eats	Cheese
Fido	is a	Dog
	chases	Fang
Fang	is a	Cat
	chases	Mice
Mice	eat	Cheese
Cheese		
Builder		
Dog		
Cat		

Frame Name	Slot	Slot Value	
Mammal	*number of legs	four	
Dog	subclass	Mammal	
Cat	subclass	Mammal	
Fido	is a number of legs	Dog three	
Fang	is a	Cat	

- Note o asterisco em "Número de pernas"
 - Compartimentos podem receber valores padrão
 - Compartimentos desse tipo s\(\tilde{a}\)o descritos por quadros;
 - Valores padrão podem ser sobrescritos por subclasses.

Frame Name	Slot	Slot Value
Mammal	*number of legs	four
Dog	subclass	Mammal
Cat	subclass	Mammal
Fido	is a number of legs	Dog three
Fang	is a	Cat

Compartimentos como quadros

Frame Name	Slot	Slot Value	
Mammal	*number of legs	four	
Dog	subclass	Mammal	
Cat	subclass	Mammal	
Fido	is a number of legs	Dog three	
Fang	is a	Cat	

Frame Name	Slot	Slot Value
Number of legs	minimum value	1
	maximum value	4

Herança Múltipla

Frame Name	Slot	Slot Value
Human	Subclass	Mammal
	Number of legs	two
Builder	Builds	houses
Bob	is a	Human

- Herança Múltipla
 - Bob agora é Contrutor & Humano.
 - Bob tem duas pernas,
 - · Bob contrói casas.

Frame Name	Slot	Slot Value
Human	Subclass	Mammal
	Number of legs	two
Builder	Builds	houses
Bob	is a	Human

Conflitos

Frame Name	Slot	Slot Value
Cheese	is	smelly
Thing wrapped in foil	is	not smelly
Cheddar	is a	Cheese
	is a	Thing wrapped in foil
	is a	Thing wrapped in f

- Compartimentos como Quadros
 - Inversões
 - Valores Múltiplos

- Outros recursos...
 - Procedimentos
 - Leitura/Escrita de compartimentos;
 - Gatilhos (Daemons, Triggers)
 - Procedimentos disparados na leitura, escrita, alteração...

Implementação

Problemas Espaços de Busca

- Conjunto de possíveis escolhas no domínio;
 - Exemplo:
 - Encontrar uma palavra em um dicionário de 100 págs.
 - Cada página é uma possível solução.
 - A palavra está em uma página única (solução única)
 - Numa página qualquer, é possível verificar se a palavra está ali.

- Também chamados de Espaços de Estados
 - Cada opção na busca é um estado do problema.
 - Caminhos representam sequências de ações.

Espaços de Busca

Caminhos representam sequências de ações.

- Árvores Semânticas
 - Redes semânticas onde:
 - Cada nó tem exatamente um predecessor (exceto raiz);
 - Predecessor (pai) → Sucessor (filho)
 - Um nó pode ter vários sucessores;
 - Não existem ciclos.

- Árvores Semânticas
 - Folhas são chamadas "alvo";
 - Caminhos começam da raiz;
 - Quando da raiz até um dos alvos, é chamado Completo.
 - Caso contrário, é um caminho parcial.

- Árvores de Busca
 - Caminhos possíveis de uma rede semântica.
 - Impede ciclos em buscas na rede.
 - É um tipo de rede semântica.

Missionários e Canibais

- Três missionários e três canibais precisam atravessar um rio. Dispõem de uma canoa que comporta no máximo dois passageiros. Em nenhum momento podem haver mais canibais que missionários, pois isso acarretaria que estes fossem devorados.
- Online (similar):
 - http://rachacuca.com.br/jogos/missionarios-e-canibais/

- Precisamos representar:
 - Número de canibais em cada margem do rio;
 - Número de missionários em cada margem do rio;
 - Posição da canoa.

Representação 1:

3,3,1 0,0,0 margem esquerda margem direita

número de canibais, missionários, canoa (s/n)

- Note que os números da direita dependem dos da esquerda.
 - Alternativa: Somente margem direita.

0,0,0 (Estado objetivo) 3,3,1 (Estado objetivo) margem direita

Operadores

- Move one cannibal to the other side
- Move two cannibals to the other side
- 3. Move one missionary to the other side
- 4. Move two missionaries to the other side
- 5. Move one cannibal and one missionary to the other side

- Regras (Constraints):
 - Definem quais operadores podem ser aplicados.
 - Exemplo:
 - P/ aplicar operador 2 (levar dois canibais), precisamos:
 - que o estado seja 2,2,1 ou 1,1,0.
 - Se a representação for boa, pode não ser necessário verificar por movimentos ilegais.

Missionários e Canibais

Os 3 primeiros níveis da árvore de busca.

Árvore de busca completa, após melhorias na representação.

Referências

- Russel, S., Norvig, P.; Inteligência Artificial; Editora Campus, Tradução da 2a edição, 2004.
- Coppin, B.; Inteligência Artificial; Editora LTC, Tradução da 1a edição, 2010.

Dúvidas

