Capstone Project

Coursera

Executive Summary

- Project Goal: Analyze SpaceX launch data to gain insights and predict outcomes of future launches.
- Data Collection: Collected data from SpaceX API and public datasets.
- Methodology: Performed data wrangling, EDA, and built predictive models using machine learning techniques.
- Key Findings: Identified factors influencing launch success rates.
- Developed interactive dashboards for data visualization.
- Outcome: Successfully predicted launch outcomes with high accuracy.

Introduction

Project Overview:

 This project aims to analyze SpaceX launch data to understand the factors affecting launch success and predict future launches.

Significance:

 The analysis helps SpaceX and stakeholders make informed decisions and improve launch success rates.

Tools and Libraries:

Python Libraries:

- pandas, numpy, matplotlib, seaborn for data wrangling and visualization.
- sklearn for machine learning models.
- plotly, dash, folium for interactive visualizations.

GitHub:

Repository for sharing and collaboration.

Data Wrangling Methodoloty

- Data Sources: SpaceX API
- Public datasets
- Data Wrangling Steps: Loaded datasets using pandas.
- Cleaned and transformed data for analysis.
- Merged and integrated multiple data sources.

EDA with Visualization

- **Exploratory Data Analysis:** Visualized data distributions and relationships using matplotlib and seaborn.
- **Key Insights:**Identified significant features influencing launch success.

KSC LC 39A

Launch Success Yearly Trend

EDA with SQL

	Landing_Outcome	count	
0	Controlled (ocean)	5	
1	Failure	3	
2	Failure (drone ship)	5	
3	Failure (parachute)	2	
4	No attempt	21	
5	No attempt	1	
6	Precluded (drone ship) 1		
7	Success	38	
8	Success (drone ship)	14	
9	Success (ground pad)	9	
10	Uncontrolled (ocean) 2		

	Landing_Outcome	Outcome_Count
0	Failure (drone ship)	5
1	Success (ground pad)	3

Interactive map with Folium

Plotly Dash dashboard

The best performing method is: Logistic Regression with an accuracy of 0.83333333333333333

Conclustion

- **Summary of Findings:**Successfully analyzed SpaceX launch data.
- Developed models with high accuracy for predicting launch success.
- Implications: The insights gained can help improve future launch outcomes and operational efficiency.