- 1. What is the difference in terms of the performance between the regression hypotheses based on the objective $\arg_{\theta} \min \sum_{t=1}^{N} \left[r^{(t)} h(\boldsymbol{x}^{(t)}; \theta) \right]^2$ and $\arg_{\theta} \min \sum_{t=1}^{N} \left| r^{(t)} h(\boldsymbol{x}^{(t)}; \theta) \right|$ respectively?
 - 高斯在1829年就證明了Least Square效果優於其他Objective Function,在「Data 不存在outlier」的情況,在預測i.i.d(相同趨勢的獨立)未知數據點時,有最小的誤差期望值。
 - 在Regression中,(2)式懲罰在某個維度上產生過大的誤差,而(1)式只要能「在某個維度增加誤差 e_1 ,而讓其他維度的誤差總和下降> e_1 的量」,就會使整體誤差下降。
 - 現在考慮如右圖的情況,在一個平面上分布許多點, 利用(1)式和(2)式分別擬合後得到兩條趨勢線,紅線為 (1)式的結果,綠線為(2)式的。
 - 那麼你可以看見由紅線轉為綠線後,綠色點的誤差減少了,而紅色點和黃色點誤差增加了。
 - 已知黃色點是outlier,那麼(2)式可以降低outlier的影響,在已知outlier濃度的情況下,甚至有助於找出outlier。
 - 因此,在理想的情況下, (1)式較好。反之若對資料有一定了解,例如存在少量 outlier,或其他特殊應用(需要根據當時情況判斷)下, (2)式則可能有較好的表現。

2. In logistic regression, show that $l(\boldsymbol{\beta}) = \sum_{t=1}^{N} \left\{ y^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)} - \log \left(1 + e^{\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}} \right) \right\}.$

$$A = y^{(t)} \log \pi(x^{(t)}; \beta) + (l-y^{(t)}) \log (l-\pi(x^{(t)}; \beta))$$

$$A = y^{(t)} \log \frac{1}{1 + e^{-\beta^T \tilde{\chi}^{(t)}}} = -y^{(t)} \log (l+e^{-\beta^T \tilde{\chi}^{(t)}}) \rightarrow C$$

$$B = (l-y^{(t)}) \log \frac{1}{e^{\beta^T \tilde{\chi}^{(t)}} + 1} = (l-y^{(t)}) \log \frac{e^{-\beta^T \tilde{\chi}^{(t)}}}{1 + e^{-\beta^T \tilde{\chi}^{(t)}}}$$

$$= -\log(e^{(\beta^T \tilde{\chi}^{(t)})} - y^{(t)} \log e^{-\beta^T \tilde{\chi}^{(t)}} - \log(l+e^{\beta^T \tilde{\chi}^{(t)}})$$

$$\Rightarrow A + B = y^{(t)} \beta^T \tilde{\chi}^{(t)} \log e^{-log(l+e^{\beta^T \tilde{\chi}^{(t)}})}$$

$$\Rightarrow 1 (\beta) = \sum_{t=1}^{N} \{y^{(t)} \beta^T \tilde{\chi}^{(t)} - \log(e^{\beta^T \tilde{\chi}^{(t)}} + 1)\}$$

- 3. Read Appendix C on the definitions of convex set and functions.
 - (a) Show that the intersection of convex sets, $\bigcap_{i\in\mathbb{N}} C_i$ where $C_i\subseteq\mathbb{R}^n$, is convex.
 - (b) Show that the log-likelihood function for logistic regression, $l(\beta)$, is concave.
 - 凸集合的充要條件是: 一個集合, 任兩個集合內的點連線上的所有點都在該集合內。
 - 欲證明任意多個凸集合的交集是凸集合,只要證明兩個凸集合的交集是凸集合即可。
 - 兩個凸集合的交集可能是空集合,而空集合是凸集合。
 - 若兩個凸集合的交集不是空集合:
 - 1. Given two points x_1, x_2 , and two sets S_1, S_2
 - 2. Given that $x_1 \in S_1$, $x_2 \in S_1$, $x_1 \in S_2$, $x_2 \in S_2$, $x_3 = \theta x_1 + (1-\theta)x_2$, where $\theta \in [0,1]$
 - 3. Then we have $x_3 \in S_1$, $x_3 \in S_2$
 - 4. That is, $x_3 \in S_1 \cap S_2$
 - 5. Thus, the set $S_1 \cap S_2$ is concave, for x_3 is any linear interpolation of two points x_1 and x_2 in $S_1 \cap S_2$, and $x_3 \in S_1 \cap S_2$

- 3. Read Appendix C on the definitions of convex set and functions.
 - (a) Show that the intersection of convex sets, $\bigcap_{i\in\mathbb{N}} C_i$ where $C_i\subseteq\mathbb{R}^n$, is convex.
 - (b) Show that the log-likelihood function for logistic regression, $l(\beta)$, is concave.
 - A. Result of adding 2 concave functions is a concave function.
 - B. A linear function is both a convex function and a convex function.
 - The goal is to proof that $\sum_{t=1}^{N} \left\{ y^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)} \log \left(1 + e^{\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}} \right) \right\}$ is concave.
 - Linear function $y^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}$ is concave, by property A.
 - $\log\left(1+e^{\beta^{\top}\widetilde{x}^{(t)}}\right)$ is convex, for its first derivative and second derivative are both greater than 0. Thus, $-\log\left(1+e^{\beta^{\top}\widetilde{x}^{(t)}}\right)$ is concave.
 - Hence, by property B, $y^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)} \log \left(1 + e^{\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}} \right)$ is concave.
 - As a consequence, $\sum_{t=1}^{N} \left\{ y^{(t)} \boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)} \log \left(1 + e^{\boldsymbol{\beta}^{\top} \widetilde{\boldsymbol{x}}^{(t)}} \right) \right\}$ is concave, by property B.

4. Consider the locally weighted linear regression problem with the following objective:

$$\arg\min_{\boldsymbol{w}\in\mathbb{R}^{d+1}} \frac{1}{2} \sum_{i=1}^{N} l^{(i)}(\boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ \boldsymbol{x}^{(i)} \end{bmatrix} - r^{(i)})^{2}$$

local to a given instance \mathbf{x}' whose label will be predicted, where $l^{(i)} = \exp(-\frac{(\mathbf{x}' - \mathbf{x}^{(i)})^2}{2\tau^2})$ for some constant τ .

(a) Show that the above objective can be written as the form

$$(\boldsymbol{X}\boldsymbol{w}-\boldsymbol{r})^{\top}\boldsymbol{L}(\boldsymbol{X}\boldsymbol{w}-\boldsymbol{r}).$$
 Specify clearly what $\boldsymbol{X},\,\boldsymbol{r},$ and \boldsymbol{L} are.

- X is all the data, each row is a single data point, which contains 1 and $x^{(i)}$.
- **w** is the coefficient array, in which row 1 is w_0 , row 2 is w_1 , and so on.
- r is the label array, dimension of which agrees with Xw.
- Xw r is the error term, which means the error (distance) of Xw and r.
- L is a N × N diagonal matrix, with elements from $\frac{1}{2}l^{(1)}$ to $\frac{1}{2}l^{(n)}$.
 - In fact, we can drop the ½.
- Details as below. You can see that $(Xw r)^T L(Xw r)$ is the objective.

- (b) Give a close form solution to \boldsymbol{w} . (Hint: recall that we have $\boldsymbol{w} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{r}$ in linear regression when $l^{(i)} = 1$ for all i)
 - Objective of linear regression is $\Sigma_{i=1}^{N}$ ($w_0 + w_1 x^{(i)} + ... r^{(i)}$)², and its close form solution is $\mathbf{w} = (X^T X)^{-1} X^T r$.
 - Objective of linear regression is $\frac{1}{2} \sum_{i=1}^{N} l^{(i)} (w_0 + w_1 x^{(i)} + ... r^{(i)})^2$, which is equal to $\frac{1}{2} \sum_{i=1}^{N} (w_0 \sqrt{l^{(i)}} + w_1 \sqrt{l^{(i)}} x^{(i)} + ... \sqrt{l^{(i)}} r^{(i)})^2$.
 - So we can turn \boldsymbol{X} into $\boldsymbol{X}_{\text{weighted}}$, just like the right table.
 - Thus, $\mathbf{X}_{\text{weighted}}^{\mathsf{T}} \mathbf{X}_{\text{weighted}} = \mathbf{X}^{\mathsf{T}} \mathbf{L} \mathbf{X}$.
 - And turn r into r_{weighted} , just like the right table.
 - Thus, $(\mathbf{X}^T \mathbf{L} \mathbf{X})^{-1} \mathbf{X}_{\text{weighted}}^T \mathbf{r}_{\text{weighted}} = \mathbf{X}^T \mathbf{L} \mathbf{r}$.
 - As a conclusion, the closed form solution of w is $(X^TLX)^{-1}X^TLr$.

 $X_{weighted}$

rweighted

(c) Suppose that the training examples $(\mathbf{x}^{(i)}, r^{(i)})$ are i.i.d. samples drawn from some joint distribution with the marginal: $\begin{pmatrix} x^{(i)}, r^{(i)} \end{pmatrix} = \mathbf{x}^{\top} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2}$

$$p(r^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{w}) = \frac{1}{\sqrt{2\pi\sigma^{(i)}}} \exp\left(-\frac{(r^{(i)} - \boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ \boldsymbol{x}^{(i)} \end{bmatrix})^2}{2\sigma^{(i)2}}\right)$$

where $\sigma^{(i)}$'s are constants. Show that finding the maximum likelihood of \boldsymbol{w} reduces to solving the locally weighted linear regression problem above. Specify clearly what the $l^{(i)}$ is in terms of the $\sigma^{(i)}$'s.

•
$$\arg_{\boldsymbol{w}} \max \Pi_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^{(i)}}} \exp \left(-\frac{(r^{(i)} - \boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ \boldsymbol{x}^{(i)} \end{bmatrix})^{2}}{2\sigma^{(i)2}}\right)$$

$$\equiv \arg_{\boldsymbol{w}} \min \ \Pi_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^{(i)}}} \exp \left(\frac{(r^{(i)} - \boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ \boldsymbol{x}^{(i)} \end{bmatrix})^{2}}{2\sigma^{(i)2}} \right)$$

$$\equiv \arg_{\boldsymbol{w}} \min \ \Pi_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^{(i)}}} \prod_{i=1}^{N} \exp \left(\frac{(r^{(i)} - \boldsymbol{w}^{\top} \begin{bmatrix} 1 \\ \boldsymbol{x}^{(i)} \end{bmatrix})^{2}}{2\sigma^{(i)2}} \right) \dots (1)$$

• Since $\Pi_{\scriptscriptstyle i=1}^{\scriptscriptstyle N} \, \frac{1}{\sqrt{2\pi\sigma^{(i)}}}$ is a constant value for a certain sample set,

(1) can be done by
$$\arg_{\mathbf{w}} \min \prod_{i=1}^{N} \exp \left(\frac{(r^{(i)} - \mathbf{w}^{\top} \begin{bmatrix} 1 \\ \mathbf{x}^{(i)} \end{bmatrix})^{2}}{2\sigma^{(i)2}} \right)$$

$$\equiv \arg_{\mathbf{w}} \min \; \mathbf{\Sigma}_{_{i=1}}^{^{N}} \left(\frac{(r^{(i)} - \mathbf{w}^{\top} \begin{bmatrix} 1 \\ \mathbf{x}^{(i)} \end{bmatrix})^{2}}{2\sigma^{(i)2}} \right) \; \text{, which is a locally weighted regression problem,}$$

with
$$l^{(i)} = 1 / (\sigma^{(i)})^2$$
.

(d) Implement a linear regressor (see the spec for more details) on the provided 1D dataset. Plot the data and your fitted line. (Hint: don't forget the intercept term)

(e) Implement 4 locally weighted linear regressors (see the spec for more details) on the same dataset with $\tau = 0.1$, 1, 10, and 100 respectively. Plot the data and your 4 fitted curves (for different \boldsymbol{x}' s within the dataset range).

(f) Discuss what happens when τ is too small or large.

• 這裡的 τ (bandwidth) 與資料在X軸上分布的範圍有關,對於不同的 dataset, 需要不同的τ

• τ = 0.1時,效果非常差,因為參 與考慮的只有非常鄰近的資料, 因此發生了過適(over-fitting)

τ=1時,效果顯著改善,雖然可以明顯看出受到雜訊影響,不過整體迴歸合理性已經大幅上升

• τ = 10時, 曲線更加平滑

 τ = 100,或更大時, 即喪失local weight的效果, 退化為普通的線性回歸

•對於這個dataset而言, 0.1是一個過小的 τ, 而100則過大。