The state fact of the fact of the state of t

WHAT IS CLAIMED IS:

1. A method of solid phase synthesis, the method comprising: providing an azlactone-functionalized support;

5

reacting the azlactone-functionalized support with a linker molecule to form a linker-functionalized support having a linker attached to the azlactonefunctionalized support; and

reacting the linker-functionalized support with an organic molecule to form a covalent bond between the linker and the organic molecule; and

10

conducting one or more reactions on the covalently bound organic molecule to produce a derivatized organic molecule.

15

2. The method of claim 1 wherein the covalent bond formed between the linker and the organic molecule can be cleaved under mild conditions.

3. The method of claim 2 wherein mild conditions comprise mild acidic or mild basic conditions.

20

- 4. The method of claim 1 further comprising cleaving the derivatized molecule from the linker-functionalized support.
- 5. The method of claim 1 wherein the organic molecule is a building block for a combinatorial library.

25

6. The method of claim 1 wherein the derivatized organic molecule is a polypeptide or polynucleotide.

following formula:

7. The method of claim 1 wherein the linker-functionalized support has the

30

$$SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(C(R^1)(R^2))_p-C(R^3)(R^4)(OR^7)]_m$$
 wherein:

SS represents a support material;

C(O)-NH- $C(R^5)(R^6)$ - $(CH_2)_n$ -C(O) is derived from an azlactone group, wherein R^5 and R^6 are each independently an organic group and n is 0 to 1;

NH- $(C(R^1)(R^2))_p$ - $C(R^3)(R^4)(OR^7)$ represents the linker, wherein R^1 , R^2 , R^3 , and R^4 are each independently hydrogen or an organic group with the proviso that at least one of R^3 and R^4 is an aromatic group, R^7 is hydrogen, a protecting group, or an organic group capable of being derivatized, and p is at least 1; and

m is 1 to the resin capacity of the support material;

and further wherein reacting the linker-functionalized support with an organic molecule occurs at the -OR⁷ group.

10

5

- 8. The method of claim 7 wherein p is 1 to 20.
- 9. The method of claim 7 wherein \mathbb{R}^7 is hydrogen.
- 10. The method of claim 7 wherein R^7 is a protecting group and conducting one or more reactions on the linker attached to the azlactone-functionalized support comprises removing the protecting group.
- 11. The method of claim 1 wherein the azlactone-functionalized support is in the form of a plurality of particles or a membrane.
- 12. The method of claim 1 wherein the linker-functionalized support has the following formula:

 $SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(R^8)-NH-C(O)-R^9]_m \\$

25

30

20

SS represents a support material;

wherein:

 $C(O)\text{-NH-C}(R^5)(R^6)\text{-}(CH_2)_n\text{-}C(O) \ is \ derived \ from \ an \ azlactone \ group,$ wherein R^5 and R^6 are each independently an organic group and n is 0 to 1;

NH- (R^8) -NH is derived from a diamine, wherein R^8 is an organic connecting group;

C(O)-R⁹ represents the linker, wherein R⁹ is an organic group; and m is 1 to the resin capacity of the support material;

and further wherein reacting the linker-functionalized support with an organic molecule occurs at the $-R^9$ group.

13. A method of solid phase synthesis, the method comprising:

providing an amine-modified-azlactone-functionalized support;

reacting the amine-modified-azlactone-functionalized support with a linker molecule to form a linker-functionalized support having a linker attached to the amine-modified-azlactone-functionalized support; and conducting one or more reactions on the linker-functionalized support.

10

5

14. The method of claim 13 wherein conducting one or more reactions on the linker-functionalized support comprises:

reacting the linker-functionalized support with an organic molecule to form a covalent bond between the linker and the organic molecule; and

conducting one or more reactions on the covalently bound organic molecule to produce a derivatized organic molecule.

15. The method of claim 14 wherein the covalent bond formed between the linker and the organic molecule can be cleaved under mild conditions.

- 16. The method of claim 15 wherein mild conditions comprise mild acidic or mild basic conditions.
- 17. The method of claim 14 further comprising cleaving the derivatized molecule from the linker-functionalized support.
 - 18. A method of solid phase synthesis, the method comprising: providing a linker-functionalized support having the formula: $SS-[NH-(C(R^1)(R^2))_p-C(R^3)(R^4)(OR^7)]_m$

30

25

SS represents a support material;

wherein:

5

10

NH- $(C(R^1)(R^2))_p$ - $C(R^3)(R^4)(OR^7)$ represents a linker, wherein R^1 , R^2
R ³ , and R ⁴ are each independently hydrogen or an organic group with the proviso that at
least one of R3 and R4 is an aromatic group, R7 is hydrogen, a protecting group, or an
organic group capable of being derivatized, and p is at least 1; and

m is 1 to the resin capacity of the support material; and conducting one or more reactions on the linker-functionalized support.

19. The method of claim 18 wherein conducting one or more reactions on the linker-functionalized support comprises:

reacting the linker-functionalized support with an organic molecule to form a covalent bond between the linker and the organic molecule; and

conducting one or more reactions on the covalently bound organic molecule to produce a derivatized organic molecule.

- 20. The method of claim 19 wherein the covalent bond between the linker and the organic molecule can be cleaved under mild conditions.
- 21. The method of claim 19 further comprising cleaving the derivatized molecule from the linker-functionalized support.
 - 22. The method of claim 18 wherein R^7 is hydrogen.
- 23. The method of claim 18 wherein R⁷ is a protecting group and conducting one or more reactions on the linker attached to the azlactone-functionalized support comprises removing the protecting group.
- 24. The method of claim 18 wherein the linker is bound to the support material through a carbonyl group.
- 30 25. A method of solid phase synthesis, the method comprising:

 providing an azlactone-functionalized support having a linker attached thereto, which has the formula:

stand, plate, plan, stand, parent, plant, pl

5

10

15

 $SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(C(R^1)(R^2))_p-C(R^3)(R^4)(OR^7)]_m$ wherein:

SS represents a support material;

C(O)-NH- $C(R^5)(R^6)$ - $(CH_2)_n$ -C(O) is derived from an azlactone group, wherein R^5 and R^6 are each independently an organic group and n is 0 to 1;

NH- $(C(R^1)(R^2))_p$ - $C(R^3)(R^4)(OR^7)$ represents the linker, wherein R^1 , R^2 , R^3 , and R^4 are each independently hydrogen or an organic group with the proviso that at least one of R^3 and R^4 is an aromatic group, R^7 is hydrogen, a protecting group, or an organic group capable of being derivatized, and p is at least 1; and

m is 1 to the resin capacity of the support material; and conducting one or more reactions on the linker-functionalized support.

26. A method of solid phase synthesis, the method comprising:

providing an azlactone-functionalized support having a linker attached thereto, which has the formula:

SS-[C(O)-NH-C(\mathbb{R}^5)(\mathbb{R}^6)-(CH₂)_n-C(O)-NH-(\mathbb{R}^8)-NH-C(O)- \mathbb{R}^9]_m wherein:

SS represents a support material;

 $C(O)\text{-NH-C}(R^5)(R^6)\text{-}(CH_2)_n\text{-}C(O) \ is \ derived \ from \ an \ azlactone \ group,$ wherein R^5 and R^6 are each independently an organic group and n is 0 to 1;

NH-(R⁸)-NH is derived from a diamine, wherein R⁸ is an organic connecting group;

C(O)-R⁹ represents the linker, wherein R⁹ is an organic group; and m is 1 to the resin capacity of the support material; and conducting one or more reactions on the linker-functionalized support.

A method of solid phase synthesis, the method comprising:

providing an azlactone-functionalized support having a linker attached thereto, which has the formula:

SS-[C(O)-NH-C(R⁵)(R⁶)-(CH₂)_n-C(O)-NH-(C(R¹)(R²))_p-C(R³)(R⁴)(OR⁷)]_m wherein:

SS represents a support material;

30

25

10

15

25

30

 $C(O)\text{-NH-C}(R^5)(R^6)\text{-}(CH_2)_n\text{-}C(O) \ is \ derived \ from \ an \ azlactone \ group,$ wherein R^5 and R^6 are each independently an organic group and n is 0 to 1;

NH- $(C(R^1)(R^2))_p$ - $C(R^3)(R^4)(OR^7)$ represents the linker, wherein R^1 , R^2 , R^3 , and R^4 are each independently hydrogen or an organic group with the proviso that at least one of R^3 and R^4 is an aromatic group, R^7 is hydrogen, a protecting group, or an organic group capable of being derivatized, and p is at least 1; and

m is 1 to the resin capacity of the support material;

reacting the linker with an organic molecule to form a covalent bond between the linker and the organic molecule;

conducting one or more reactions on the covalently bound organic molecule to produce a derivatized organic molecule; and

cleaving the derivatized molecule from the azlactone-functionalized support having a linker attached thereto.

28. A method of solid phase synthesis, the method comprising: providing a linker-functionalized support having the formula: $SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(R^8)-NHC(O)-R^9]_m$ wherein:

SS represents a support material;

 $C(O)\text{-NH-C}(R^5)(R^6)\text{-}(CH_2)_n\text{-}C(O) \ is \ derived \ from \ an \ azlactone \ group,$ wherein R^5 and R^6 are each independently an organic group and n is 0 to 1;

 $NH-(R^8)-NH$ is derived from a diamine, wherein R^8 is an organic connecting group;

C(O)-R⁹ represents the linker, wherein R⁹ is an organic group; and m is 1 to the resin capacity of the support material;

reacting the linker with an organic molecule so as to form a covalent bond between the linker and the organic molecule;

conducting one or more reactions on the covalently bound organic molecule to produce a derivatized organic molecule; and

cleaving the derivatized molecule from the azlactone-functionalized support having a linker attached thereto.

20

29. The method of claim 28 wherein C(O)-R⁹ is derived 4-hydroxymethylbenzoic acid, 4-hydroxymethylphenoxyacetic acid, 4-hydroxymethyl-3methoxyphenoxybutyric acid. 4-hydroxymethylphenylacetic acid. 4-bromoacetylphenoxyacetic acid, 4-(diphenylhydroxymethyl)benzoic acid, 4-hydroxymethyl-2-methoxy-5-nitrophenoxybutyric acid, phenoxyacetic and phenoxybutyric acid analogs of Rink acid and Rink amide linker molecules and Sieber amide linker molecules, 4-sulfamylbenzoic acid, 4-sulfamylbutyric acid. 4-formylphenoxyacetic acid, 4-(4-formyl-3-methoxyphenoxy)butyric acid, 4-formyl-3.5dimethoxyphenoxyacetic acid, or 3-formylindol-1-ylacetic acid.

10

5

- 30. The method of claim 28 wherein NH-(R⁸)-NH is derived from ethylenediamine, 1,3-propanediamine, 1,3-diamino-2-hydroxypropane, or 1,6-hexanediamine.
 - 31. A functionalized support material having the formula:

$$SS-[NH-(C(R^1)(R^2))_p-C(R^3)(R^4)(OR^7)]_m$$

wherein:

SS represents a support material;

 R^1 , R^2 , R^3 , and R^4 are each independently hydrogen or an organic group with the proviso that at least one of R^3 and R^4 is an aromatic group;

R⁷ is hydrogen or an organic group;

p is at least 1; and

m is 1 to the resin capacity of the support material.

- 25 32. The functionalized support of claim 31 wherein R^7 is hydrogen, a protecting group, or an organic group capable of being derivatized.
 - 33. The functionalized support of claim 31 which is in the form of a plurality of particles.

30

34. The functionalized support of claim 33 wherein each R⁷ is the same on any one particle.

30

- 35. The functionalized support of claim 33 wherein the plurality of particles comprise at least two different R^7 groups.
- 36. The functionalized support of claim 35 which forms a combinatorial library.
 - 37. The functionalized support of claim 31 which is in the form of a membrane.
- The functionalized support of claim 37 wherein each R^7 is the same on the membrane.
 - 39. The functionalized support of claim 37 wherein the membrane comprises at least two different R^7 groups.
 - 40. The functionalized support of claim 39 which forms a combinatorial library.
 - 41. The functionalized support of claim 31 wherein NH- $(C(R^1)(R^2))_p$ - $C(R^3)(R^4)(OR^7)$ is bound to the support material through a carbonyl group.
 - 42. A functionalized support having the following formula:

 $SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(C(R^1)(R^2))_p-C(R^3)(R^4)(OR^7)]_m$ wherein:

SS represents a support material;

 R^1 , R^2 , R^3 , and R^4 are each independently hydrogen or an organic group with the proviso that at least one of R^3 and R^4 is an aromatic group;

R⁷ is hydrogen or an organic group;

 R^5 and R^6 are each independently an organic group;

n is 0 to 1;

p is at least 1; and

m is 1 to the resin capacity of the support material.

111
£1.
TŲ.
rest.
į.
4.
=
===
22
Į.

- 43. The functionalized support of claim 42 wherein p is 1 to 20.
- 44. The functionalized support of claim 42 wherein R^7 is hydrogen, a protecting group, or an organic group capable of being derivatized.

45. The functionalized support of claim 42 which is in the form of a plurality of particles.

10

47.

library.

46. The functionalized support of claim 45 wherein each R⁷ is the same on any one particle.

15

comprise at least two different R⁷ groups.

48. The functionalized support of claim 47 which forms a combinatorial

49. The functionalized support of claim 42 which is in the form of a membrane.

The functionalized support of claim 45 wherein the plurality of particles

20

50. The functionalized support of claim 49 wherein each \mathbb{R}^7 is the same on the membrane.

25

- 51. The functionalized support of claim 49 wherein the membrane comprises at least two different R^7 groups.
- 52. The functionalized support of claim 51 which forms a combinatorial library.

30

53. A functionalized support having the following formula: $SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(R^8)-NH-C(O)-R^9]_m$ wherein:

SS represents a support material;

R⁵, R⁶, and R⁹ are each independently an organic group;
R⁸ is an organic connecting group;
n is 0 to 1; and
m is 1 to the resin capacity of the support material.

5

The functionalized support of claim 53 wherein C(O)-R⁹ is derived from 54. 4-hydroxymethylbenzoic acid, 4-hydroxymethylphenoxyacetic acid, 4-hydroxymethyl-3methoxyphenoxybutyric acid, 4-hydroxymethylphenylacetic acid, 4-bromoacetylphenoxyacetic acid. 4-(diphenylhydroxymethyl)benzoic acid, 4-hydroxymethyl-2-methoxy-5-nitrophenoxybutyric acid, phenoxyacetic acid and phenoxybutyric acid analogs of Rink acid and Rink amide linker molecules and Sieber amide linker molecules, 4-sulfamylbenzoic acid, 4-sulfamylbutyric acid. 4-formylphenoxyacetic acid, 4-(4-formyl-3-methoxyphenoxy)butyric acid, 4-formyl-3,5dimethoxyphenoxyacetic acid, or 3-formylindol-1-ylacetic acid.

15

10

55. The functionalized support of claim 53 wherein NH-(R⁸)-NH is derived from ethylenediamine, 1,3-propanediamine, 1,3-diamino-2-hydroxypropane, or 1,6-hexanediamine.

20

56. The functionalized support of claim 53 which is in the form of a plurality of particles.

25

- 57. The functionalized support of claim 56 wherein each R⁹ is the same on any one particle.
- 58. The functionalized support of claim 56 wherein the plurality of particles comprise at least two different R^9 groups.
- 59. The functionalized support of claim 56 which forms a combinatorial library.
 - 60. The functionalized support of claim 53 which is in the form of a membrane.

15

20

30

- 61. The functionalized support of claim 60 wherein each R⁹ is the same on the membrane.
- 62. The functionalized support of claim 60 wherein the membrane comprises at least two different R⁹ groups.
 - 63. The functionalized support of claim 62 which forms a combinatorial library.
 - 64. A functionalized support material having the formula:

$$SS-[NH\text{-}(C(R^1)(R^2))_p\text{-}C(R^3)(R^4)(OR^7)]_m$$

wherein:

SS represents a support material;

 R^1 , R^2 , R^3 , and R^4 are each independently hydrogen, a (C1-C14)alkyl group, a (C3-C14)cycloalkyl group, or a (C5-C12)aryl group, with the proviso that at least one of R^3 and R^4 is a (C5-C12)aryl group;

R⁷ is hydrogen or an organic group;

p is 1 to 20; and

m is 1 to the resin capacity of the support material.

65. A functionalized support having the following formula:

$$SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(C(R^1)(R^2))_p-C(R^3)(R^4)(OR^7)]_m \\$$
 wherein:

SS represents a support material;

R¹, R², R³, and R⁴ are each independently hydrogen, a (C1-C14)alkyl group, a (C3-C14)cycloalkyl group, or a (C5-C12)aryl group, with the proviso that at least one of R³ and R⁴ is a (C5-C12)aryl group;

R⁷ is hydrogen or an organic group;

 R^5 and R^6 are each independently a (C1-C14)alkyl group, a (C3-C14)cycloalkyl group, or a (C5-C12)aryl group;

n is 0 to 1; p is 1 to 20; and

m is 1 to the resin capacity of the support material.

66. A functionalized support having the following formula:

 $SS-[C(O)-NH-C(R^5)(R^6)-(CH_2)_n-C(O)-NH-(R^8)-NH-C(O)-R^9]_m\\$

wherein:

SS represents a support material;

R⁵ and R⁶ are each independently a (C1-C14)alkyl group, a

10 (C3-C14)cycloalkyl group, or a (C5-C12)aryl group;

R⁹ is an organic group;

R⁸ is a (C1-C1000)alkylene group;

n is 0 to 1; and

m is 1 to the resin capacity of the support material.