

planetmath.org

Math for the people, by the people.

hyperreal

Canonical name Hyperreal

Date of creation 2013-03-22 12:35:45 Last modified on 2013-03-22 12:35:45

Owner djao (24) Last modified by djao (24)

Numerical id 4

Author djao (24) Entry type Definition Classification msc 26E35

Synonym nonstandard real Synonym non-standard real Related topic Infinitesimal2

Defines nonprincipal ultrafilter

Defines infinitesimal
Defines hypernatural
Defines hyperinteger
Defines hyperrational
Defines hyperfinite

An ultrafilter \mathcal{F} on a set I is called *nonprincipal* if no finite subsets of I are in \mathcal{F} .

Fix once and for all a nonprincipal ultrafilter \mathcal{F} on the set \mathbb{N} of natural numbers. Let \sim be the equivalence relation on the set $\mathbb{R}^{\mathbb{N}}$ of sequences of real numbers given by

$$\{a_n\} \sim \{b_n\} \iff \{n \in \mathbb{N} \mid a_n = b_n\} \in \mathcal{F}$$

Let ${}^*\mathbb{R}$ be the set of equivalence classes of $\mathbb{R}^{\mathbb{N}}$ under the equivalence relation \sim . The set ${}^*\mathbb{R}$ is called the set of *hyperreals*. It is a field under coordinatewise addition and multiplication:

$${a_n} + {b_n} = {a_n + b_n}$$

 ${a_n} \cdot {b_n} = {a_n \cdot b_n}$

The field ${}^*\mathbb{R}$ is an ordered field under the ordering relation

$$\{a_n\} \le \{b_n\} \iff \{n \in \mathbb{N} \mid a_n \le b_n\} \in \mathcal{F}$$

The real numbers embed into ${}^*\mathbb{R}$ by the map sending the real number $x \in \mathbb{R}$ to the equivalence class of the constant sequence given by $x_n := x$ for all n. In what follows, we adopt the convention of treating \mathbb{R} as a subset of ${}^*\mathbb{R}$ under this embedding.

A hyperreal $x \in {}^*\mathbb{R}$ is:

- limited if a < x < b for some real numbers $a, b \in \mathbb{R}$
- positive unlimited if x > a for all real numbers $a \in \mathbb{R}$
- negative unlimited if x < a for all real numbers $a \in \mathbb{R}$
- unlimited if it is either positive unlimited or negative unlimited
- positive infinitesimal if 0 < x < a for all positive real numbers $a \in \mathbb{R}^+$
- negative infinitesimal if a < x < 0 for all negative real numbers $a \in \mathbb{R}^-$
- *infinitesimal* if it is either positive infinitesimal or negative infinitesimal

For any subset A of \mathbb{R} , the set *A is defined to be the subset of $^*\mathbb{R}$ consisting of equivalence classes of sequences $\{a_n\}$ such that

$$\{n \in \mathbb{N} \mid a_n \in A\} \in \mathcal{F}.$$

The sets \mathbb{N} , \mathbb{Z} , and \mathbb{Q} are called hypernaturals, hyperintegers, and hyperrationals, respectively. An element of \mathbb{N} is also sometimes called hyperfinite.