6LoWPan

IPv6 over Low-Power Wireless Personal Area Networks

Agenda

- 1. Visão Geral
 - 1.1. Requisitos e Características
 - 1.2. Benefícios ao utilizar IP
 - 1.3. Desafios
 - 1.4. Objetivos

2. Arquitetura

- 2.1. IEEE 802.15.4
- 2.2. Camada de Adaptação
- 2.3. Autoconfiguração de Endereço

Visão Geral

- Idealizado para atender cenários de Internet das Coisas (IoT)
- Permitir a comunicação transparente entre sensores e a internet comum
- Funciona sobre IEEE 802.15.4 (Compõe L1 e L2)
- Conexão sem fio

Visão Geral

Requisitos e Características

- Pacotes pequenos
- Suporta dois tipos de endereçamento:
 - 16-bit (Único dentro da PAN)
 - 64-bit
- Banda reduzida
 - 250 kbps, 40 kbps e 25kbps
 - 2.4 GHz, 915 MHz e 868 MHz

Requisitos e Características

- Suporte a topologia em estrela (star) e malha (mesh)
- Baixo consumo de energia
 - Dispositivos energizados a bateria
- Baixo poder de processamento e memória
 - Rede majoritariamente composta por sensores
- Redes com grande número de dispositivos
- Localização física dos dispositivos em condições adversas

Requisitos e Características

- Dispositivos pouco confiáveis
 - Conexão via radio incerta
 - Consumo de bateria
 - Variações das condições físicas
- Tempo sem comunicação dos dispositivos
 - Dispositivos passam grande parte do tempo "dormindo" para poupar energia

Benefícios ao utilizar rede IP

- Permite a utilização da infraestrutura já existente
- Arquitetura aberta e bem conhecida
- Permitirá a conexão de sensores com outras redes IP sem a necessidade de intermediadores, gateways ou proxies
- O grande número de dispositivos utilizados requer um grande espaço de endereçamento que pode ser facilmente obtido com IPv6

Desafios - IPv6 sobre LoWPAN

- Adaptar os cabeçalhos grandes do protocolo IPv6 para os frames reduzidos do IEEE 802.15.4
- Reduzir o tamanho dos cabeçalhos com compactação
- Suportar fragmentação de pacotes
 - MTU do IPv6 é de 1280 bytes
 - Cada pacote IEEE 802.15.4 fornecerá para payload apenas 81 bytes

Desafios - Topologia

- Devem ser suportados tanto topologia estrela quando malha
- Topologias em mesh necessitam de roteamento multi-saltos
- Esse protocolo de roteamento deve impor o mínimo overhead possível
 - Não aumentar muito o cabeçalho dos pacotes
 - Não trocar muitas mensagens
- O protocolo deve levar em conta que nós da rede podem estar dormindo

Desafios - Outros

- Trabalhar com tamanho limitado de pacotes
- Adaptação de protocolos custosos para serem tratados em dispositivos com baixo poder de processamento
- Lidar com possível fragmentação
- Difícil configuração e gerência dos dispositivos de campo

Objetivos

- De forma geral o objetivo é reduzir o overhead dos pacotes, consumo de banda, processamento e bateria
- Implementação de uma camada de adaptação
 - IEEE 802.15.4 para IPv6
- Controle de Fragmentação
- Compressão de cabeçalho

Objetivos

- Autoconfiguração de endereçamento
- Protocolo de roteamento que suporte multi-saltos em redes mesh
- Sugerir e especificar protocolos de alto nível que sejam adequados para
 6LoWPAN
 - Protocolos de alto nível que requerem alto poder de processamento podem não ser ideais

Arquitetura

Simplified OSI model

5. Application layer

4. Transport Layer

3. Network Layer

2. Data Link Layer

1. Physical Layer

Wi-Fi® stack example

HTTP

TCP

Internet Protocol (IP)

Wi-Fi

6LoWPAN stack example

HTTP, COAP, MOTT, Websocket, etc.

UDP, TCP (Security TLS/DTLS)

IPv6, RPL

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4

IEEE 802.15.4

- Define quatro tipos de frames: beacon, MAC command, acknowledgement e data frames
- Os pacotes IPv6 sempre devem utilizar data frames
- Permite utilização de endereços 64 bits ou de 16 bits depois de um evento de associação com um coordenador da PAN
- Tamanho do frame disponível depois da camada física é de 127 bytes

IEEE 802.15.4

Camada de Adaptação

- Conhecida como encapsulamento LoWPAN
- Possui quarto tipos de cabeçalho: Dispatch, Mesh, Fragmentation
- Todos esses cabeçalhos possuem dois bits iniciais que definem seu tipo
- Todos os pacotes encapsulados LoWPAN devem possuir pelo menos um desses cabeçalhos
- Quando mais de um deles existir eles devem seguir a seguinte ordem:
 - Mesh, Broadcast (Dispatch Específico), Fragmentation, Dispatch

Camada de Adaptação

IEEE 802.15.4 header	IPv6 header compression	IPv6 payload		
IEEE 802.15.4 header	Fragment header	IPv6 header compression	IPv6 payload	
IEEE 802.15.4 header	Mesh addressing	Fragment header	IPv6 header	IPv6 payload
IEEE 602.15.4 neader	header	Fragment neader	compression	ir vo payload

Camada de Adaptação - Cabeçalho de Despacho

- O cabeçalho de despacho é utilizado para identificar o conteúdo do que esta sendo enviado pelo pacote
 - Ex: IPv6, IPv6 Comprimido, Broadcast
- Os dois primeiros bits do cabeçalho de dispacho são: 01
- Os seis bits subsequentes são utilizados para identificar esse conteúdo
- Existe uma tabela que define esses identificadores
- A maioria dos valores são reservados para uso futuro

Camada de Adaptação - Cabeçalho de Despacho

Camada de Adaptação - Cabeçalho de Despacho

Pattern	Header Type	Description
00 xxxxxx	NALP	Not a LoWPAN frame
01 000001	IPv6	Uncompressed IPv6 addresses
01 000010	LOWPAN_HC1	LOWPAN_HC1 compressed IPv6
01 010000	LOWPAN_BC0	LOWPAN_BC0 broadcast
01 111111	ESC	Aditional Dispatch byte fallows
10 xxxxxx	MESH	Mesh Header
11 000xxx	FRAG1	Fragmentation Header (first)
11 100xxx	FRAGN	Fragmentation Header (subsequent)

Camada de Adaptação - Cabeçalho Mesh

- Cabeçalho utilizado para roteamento na PAN
- Os dois primeiros bits do cabeçalho mesh são: 10
- Possui campos de 1 bit para identificar o tipo dos endereços utilizados:
 - 0 para endereços de 16 bits
 - 1 para endereços de 64 bits
- Possui um campo representando o número de saltos faltantes
- Possui dois campos contendo o endereço de origem e destino

Camada de Adaptação - Cabeçalho Mesh

- Utilizado quando o payload LoWPAN não cabe em um único frame
 - Ex: IPv6
- Dois tipos de cabeçalho diferentes:
 - Um para o primeiro fragmento
 - Outro para os demais fragmentos
- A identificação desses cabeçalhos é feita utilizando 5 bits:
 - 11 000 para o primeiro fragmento
 - 11 100 para os demais fragmentos

- Ambos os cabeçalhos possuem um campo com o tamanho original do pacote antes da fragmentação
 - Esse campo é de 11 bits e possibilita a indexação de pacotes de até 2048 bytes
- Ambos os cabeçalhos possuem um campo de tag que deve ser o mesmo para todos os fragmentos do pacote original
 - Esse campo é de 2 bits e deve ser incrementado para novo pacote a ser fragmentado
- Os fragmentos de continuação tem um campo extra de offset de 8 bits
 - Representa incrementos de 8 bytes

First Frament

Subsequent Framents

- O receptor deve utilizar os seguintes campos como identificadores para remontar o pacote fragmentado:
 - Endereço de origem e destino
 - Tamanho original do pacote
 - Tag de fragmentação
- Utilizar o offset para montar um mapa com os fragmentos
 - multiplicando o valor do offset por 8 teremos a posição inicial do fragmento em questão
- Os fragmentos não necessariamente chegam de forma ordenada

Autoconfiguração de Endereço

- Obtenção automática do endereço da interface IPv6
- Originalmente deve-se utilizar o identificador de 64 bits do IEEE 802.15.4
- Caso contrário deve-se utilizar o identificador de 16 bits de outra forma:
 - Gerar um endereço de 48 bits
 - Concatenar PAN_ID + (zeros) + identificador de 16 bits
 - Caso o PAN_ID não seja conhecido substituir por zeros

Autoconfiguração de Endereço

