Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Machine Learning Course Team 16

310511067 陳品樺 310511061 林彥廷

310510179 王綰晴 309652008 廖家緯

- Introduction: motivation and history
- Method: network architecture
- Experiment: classification, detection, and segmentation
- Conclusion

Introduction: motivation

From NLP to CV

Use transformers architecture from NLP to CV

Scale problem

Visual tokens can vary a lot in scale

Computation

Reduce computational of high-resolution image

Introduction: swin transformer

(b) ViT

Hierarchical

reduce self-attention complexity to linear time

classification detection ... classification 16× 16× 16×

window

(a) Swin Transformer (ours)

Shifted Windows

connect the patch in different windows

Introduction: history of swin transformer in 2021

Method: network architecture

- Partition H x W image into 4 x 4 patches
- This architecture is composed of 4 stages, one for each scale
- Linear embedding layer compute the features of each token
- Patch merging layer reduce the number of patches for multi-scale learning

Architecture: swin transformer block

W-MSA: Window based Multi-head Self Attention

• SW-MSA: Shifted Window based Multi-head Self Attention

• LN: Layer normalization

• MLP: Multilayer Perceptron (Linear-GELU-Linear-Dropout)

Architecture: patch merging layer

- It concatenates the features of each group of 2 x 2 neighboring patches
- A linear layer is applied to reduce the dimension from 4C to 2C

CNN	Swin
Convolution	W-MSA
Pooling	Patch Merging

Swin transformer block

Swin transformer block: W-MSA layer

	ViT	Swin
Shape of Q, K, V	$\mathbb{R}^{hw imes C}$	$\mathbb{R}^{M^2 \times C}$
Compute Q, K, V	$\Omega(hwC^2)$	$\Omega(hwC^2)$
Compute QK^T	$\Omega((hw)^2C)$	$\Omega(M^2hwC)$
Compute softmax $\left(\frac{QK^T}{\sqrt{dk}}\right)V$	$\Omega((hw)^2C)$	$\Omega(M^2hwC)$

Swin transformer block: SW-MSA layer

Swin transformer block: SW-MSA layer

Cyclic Shift

Swin transformer block: SW-MSA layer

- 1. Do the cyclic shift to the figure after window shift
- 2. Perform self-attention computations
- 3. Mask non-adjacent regions
- 4. Reverse the region of cyclic shift

Swin transformer models of different sizes

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

number of channels

number of swin transformer blocks in each stage

Experiments: image classification on ImageNet

Comparison among RegNetY, EfficientNet, ViT, DeiT, and Swin-T

(a) Regular ImageNet-1K trained models						
method	image	#param.	FI OPs	throughput	•	
method	size	"Param.	LOIS	(image / s)	top-1 acc.	
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0	
RegNetY-8G [48]	224^{2}	39M	8.0 G	591.6	81.7	
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9	
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6	
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9	
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6	
EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0	
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3	
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	77.9	
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5	
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8	
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8	
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1	
Swin-T	224^{2}	29M	4.5G	755.2	81.3	
Swin-S	224^{2}	50M	8.7G	436.9	83.0	
Swin-B	224^{2}	88M	15.4G	278.1	83.5	
Swin-B	384^{2}	88M	47.0G	84.7	84.5	

(b) Im:	(b) ImageNet-22K pre-trained models							
method	image #param.		FL OPs	throughput	ImageNet			
method	size	"Param.	LOIS	(image / s)	top-1 acc.			
R-101x3 [38]	384^{2}	388M	204.6G	-	84.4			
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4			
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	84.0			
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	85.2			
Swin-B	224^{2}	88M	15.4G	278.1	85.2			
Swin-B	384^{2}	88M	47.0G	84.7	86.4			
Swin-L	384^{2}	197M	103.9G	42.1	87.3			

Experiments: object detection on COCO dataset

R-50 vs. Swin-T on detection with different detection frameworks

(a) Various frameworks							
Method	Backbone	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	#param.	FLOPs	FPS
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3
	Swin-T	47.2	66.5	51.3	36M	215G	22.3
PanDaints V2	R-50	46.5	64.6	50.3	42M	274G	13.6
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4

AP: average precision

Experiments: Semantic segmentation on ADE20K

Comparison among different backbones on different segmentation frameworks

ADE20K		val	test	#param.	FI ODe	EDC
Method	Backbone	mIoU	score	πparam.	TLOFS	ITS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Conclusion

 Swin Transformer produces a hierarchical feature representation and has linear computational complexity with respect to input image size

 Swin Transformer achieves the state-of-the-art performance on COCO object detection and ADE20K semantic segmentation

Contribution

- 310511067 陳品樺: introduction, slides designing
- 309652008 廖家緯: network architecture, slides designing
- 310511061 林彥廷: network architecture, slides designing
- 310510179 王綰晴: experiments, slides designing

Thanks for your listening