FCC REPORT

Applicant: Shenzhen Ogemray Technology Co., Ltd.

Address of Applicant: 3/F, No. 9 Bldg, Minxing Industrial Park, Minkang Rd,

Minzhi St, Longhua, Baoan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Wireless USB Adapter

Model No.: GWF-1C04

FCC ID: YWTWF53721C

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2011

Date of sample receipt: 20 Nov., 2012

Date of Test: 23 Nov., 2012 to 08 Jan., 2013

Date of report issued: 08 Jan., 2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	08 Jan., 2013	Original

Prepared By: Date: 08 Jan., 2013

Check By: Date: 08 Jan., 2013

Project Engineer

Project No.: CCIS121100269RF

3 Contents

			Page
1	CO	/ER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
5			
Ī			
	•		
	·-		
	5.4		
	5.5		
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2		
	6.3		
	6.4		
2 VERSION			
	0.0.		
	• • • • • • • • • • • • • • • • • • • •		
7			
8	EUT	CONSTRUCTIONAL DETAILS	91

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Ogemray Technology Co., Ltd.
Address of Applicant:	3/F, No. 9 Bldg, Minxing Industrial Park, Minkang Rd,
	Minzhi St, Longhua, Baoan District, Shenzhen, China
Manufacturer/ Factory:	Shenzhen Ogemray Technology Co., Ltd.
Address of Manufacturer/	3/F, No. 9 Bldg, Minxing Industrial Park, Minkang Rd,
Factory:	Minzhi St, Longhua, Baoan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Wireless USB Adapter
Model No.:	GWF-1C04
Operation Fraguency	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Operation Frequency:	2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11n(H20)
Channel numbers.	7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	CCK/BPSK/QPSK
Modulation technology: (IEEE 802.11g/802.11n)	64QAM/16QAM/BPSK/QPSK
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 300Mbps
Antenna Type:	PCB Antenna
Antenna gain:	Ant 1:2 dBi; Ant 2:2 dBi
Power supply:	DC 5V from USB port

Operation Frequency each of channel								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 96

Test environment and mode

Operating Environment:	Operating Environment:				
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in transmitting with modulation.				

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). All test items for 802.11b/g/n were performed in MIMO mode.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 817957

China Certification & Inspection Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012

Industry Canada (IC)

The 3m Semi-anechoic chamber of China Certification & Inspection Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

5.4 Test Location

All tests were performed at:

China Certification & Inspection Services Co., Ltd.

Address: 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-23118282 Fax: 0755-23116366

5.5 Other Information Requested by the Customer

None.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 96

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2012	June 08 2013		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	CCIS0002	N/A	N/A		
3	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	June 04 2012	June 03 2013		
4	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 30 2012	May 29 2013		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2012	Mar. 31 2013		
7	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2012	Mar. 31 2013		
8	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2012	Mar. 31 2013		
9	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2012	Mar. 31 2013		
10	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2012	Mar. 31 2013		
11	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2012	Mar. 31 2013		
12	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2012	June 08 2013		
13	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2012	Mar. 31 2013		
14	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2012	Mar. 29 2013		
15	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
16	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
17	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 29 2012	May. 28 2013		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2012	Aug. 11 2013		
19	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2012	May 24 2013		

Cond	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal. Due date (dd-mm-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2012	June 08 2013			
2	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2012	Mar. 31 2013			
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2012	Mar. 31 2013			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2012	Mar. 31 2013			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100269RF

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 96

6.2 Conducted Emissions

Test Method: ANSI C63.4: 2003 Test Frequency Range: 150kHz to 30MHz							
Test Frequency Range: 150kHz to 30MHz	FCC Part15 C Section 15.207						
1 7 0	ANSI C63.4: 2003						
Olasa / Os asit	150kHz to 30MHz						
Class / Severity: Class B	Class B						
Receiver setup: RBW=9kHz, VBW=30kHz	RBW=9kHz, VBW=30kHz						
Limit: Limit (dBuV) Frequency range (MHz) Outsi posk							
Quasi-peak Aver							
0.15-0.5 66 to 56* 56 to							
0.5-5 56 46							
* Decreases with the logarithm of the frequency.	U						
Test procedure 1. The E.U.T and simulators are connected to the main power a line impedance stabilization network (L.I.S.N.). The province 500hm/50uH coupling impedance for the measuring equipment of the peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling imperent test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the results are connected to the main power through a LISN that provides a 500hm/50uH coupling imperent test setup and photographs).	ide a ment. wer edance m of the						
positions of equipment and all of the interface cables must changed according to ANSI C63.4: 2003 on conducted measurement.							
positions of equipment and all of the interface cables must changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm LISN							
positions of equipment and all of the interface cables must changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network	be						
positions of equipment and all of the interface cables must changed according to ANSI C63.4: 2003 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm Filter AC Equipment E.U.T Test table/Insulation plane Remark E U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	be						

Measurement Data

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Line:

Trace: 13

: CCIS Conducted Test Site : FCC PART 15C QP LISN LINE : 269RF : wifi mode c: FENG Site Condition

Job NO. Test Mode Test engi

	engleer: r Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	₫B	dBu∀	dBu₹	<u>d</u> B	
1	0.150	48.29	10.25	0.79	59.33	66.00	-6.67	QP
1 2 3 4 5 6 7 8 9	0.155	32.29	10.25	0.79	43.33	55.74	-12.41	Average
3	0.200	28.43	10.21	0.76	39.40	53.62	-14.22	Average
4	0.205	42.52	10.21	0.76	53.49	63.40	-9.91	QP
5	0.555	19.28	10.24	0.76	30.28	46.00	-15.72	Average
6	0.570	29.72	10.24	0.76	40.72	56.00	-15.28	QP
7	2.273	18.58	10.28	0.95	29.81	46.00	-16.19	Average
8	2.297	29.98	10.28	0.95	41.21	56.00	-14.79	QP
9	2.581	19.70	10.28	0.94	30.92	46.00	-15.08	Average
10	2.765	31.52	10.28	0.93	42.73	56.00	-13.27	QP
11	2.946	18.77	10.29	0.92	29.98	46.00	-16.02	Average
12	3.381	30.49	10.29	0.90	41.68	56.00	-14.32	QP

Project No.: CCIS121100269RF

Neutral:

Trace: 15

Site : CCIS Conducted Test Site Condition : FCC PART 15C QP LISN NEUTRAL

Job NO. : 269RF Test Mode : wifi mode Test engieer: FENG

est	engieer: F	ENG						
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	———āB	dBu₹	dBu₹	<u>ab</u>	
1	0.175	45.60	10.25	0.77	56.62	64.72	-8.10	QP
2	0.175	31.95	10.25	0.77	42.97	54.72	-11.75	Average
1 2 3	0.226	36.24	10.23	0.76	47.23	62.61	-15.38	QP
4	0.226	24.32	10.23	0.76	35.31	52.61	-17.30	Average
5	0.356	29.41	10.25	0.73	40.39	58.83	-18.44	QP
6	0.356	16.64	10.25	0.73	27.62	48.83	-21.21	Average
4 5 6 7 8 9	0.449	14.30	10.27	0.74	25.31	46.89	-21.58	Average
8	0.476	27.78	10.28	0.75	38.81	56.41	-17.60	QP
9	0.570	14.68	10.23	0.76	25.67	46.00	-20.33	Average
10	2.487	30.19	10.27	0.95	41.41	56.00	-14.59	QP
11	2.650	17.63	10.27	0.94	28.84	46.00	-17.16	Average
12	3.642	32.62	10.28	0.90	43.80	56.00	-12.20	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Peak Output Power

Measurement Data

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Lawaat	ANT 1	18.80	22.06		_
	Lowest	ANT 2	19.28	22.06	30	Pass
802.11b	Middle	ANT 1	19.23	22.06	20	Door
802.110	Middle	ANT 2	18.86	22.06	30	Pass
	l limb a a t	ANT 1	19.45	22.02	20	Door
	Highest	ANT 2	18.53	22.02	30	Pass
	Lawaat	ANT 1	15.60	40.40	20	Door
	Lowest	ANT 2	15.16	18.40	30	Pass
000 44 ~	Middle	ANT 1	15.41	18.30	30	Daga
802.11g		ANT 2	15.16			Pass
	Highest	ANT 1	15.17	18.22	30	Pass
		ANT 2	15.25			FdSS
	Lowest	ANT 1	14.14	17.32	30	Pass
		ANT 2	14.48			FdSS
802.11n	NA' J.H.	ANT 1	14.54	47.54	30	Door
(H20)	Middle	ANT 2	14.46	17.51	30	Pass
	l limb a a t	ANT 1	14.24	17.32	20	Door
	Highest	ANT 2	14.38	17.32	30	Pass
	Lowest	ANT 1	14.02	17.07	20	Door
	Lowest	ANT 2	14.10	17.07	30	Pass
802.11n	Middle	ANT 1	14.01	4=00	20	Door
(H40)	Middle	ANT 2	14.37	17.20	30	Pass
	Lliab set	ANT 1	14.04	17.00	20	Doca
	Highest	ANT 2	14.05	17.06	30	Pass

Test plot as follows:

Page 16 of 96

Page 17 of 96

Page 18 of 96

Project No.: CCIS121100269RF

Page 19 of 96

CCIS

Report No: CCIS12110026901

Page 20 of 96

Page 21 of 96

Page 22 of 96

Page 23 of 96

6.4 Occupy Bandwidth

Measurement Data

Ant 1

T		6dB Occupy				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.06	16.29	17.52	36.00		
Middle	12.03	16.32	17.28	35.88	>500	Pass
Highest	12.06	16.32	17.34	35.00		1 433

		26dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	17.64	18.72	19.14	38.88		
Middle	17.73	18.90	19.17	38.76	N/A	N/A
Highest	17.64	18.63	19.26	38.52		13/7

Ant 2

T (011		6dB Occupy	1			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.06	16.38	17.52	36.12		
Middle	12.09	16.26	17.34	35.00	>500	Pass
Highest	12.09	16.32	17.10	35.00		

T . O		26dB Emission	1			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	17.64	18.66	19.11	38.82		
Middle	17.88	18.69	19.20	38.64	N/A	N/A
Highest	17.64	18.72	19.11	38.88		

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 25 of 96

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Highest channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 34 of 96

Lowest channel

Middle channel

Highest channel

Highest channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Measurement Data

Mode	Test CH	Ant. Port	PSD	Total PSD	Limit	Result	
			(dBm)	(dBm)	(dBm)		
	Lowest	Ant 1	3.32	6.36	8	Pass	
	Lowest	Ant 2	3.77	0.30	0	Pass	
802.11b	Middle	Ant 1	4.75	7.05	0	Door	
002.110	ivildale	Ant 2	3.20	7.05	8	Pass	
	l limb a a t	Ant 1	4.67	7.00	0	Daga	
	Highest	Ant 2	3.32	7.06	8	Pass	
	Laurant	Ant 1	-0.61	0.00	0	Dava	
	Lowest	Ant 2	-0.63	2.39	8	Pass	
000 44 =	N A: al all a	Ant 1	1.64	0.55	0	Dava	
802.11g	Middle	Ant 2	-0.95	3.55	8	Pass	
	l limb and	Ant 1	1.27	0.40	0	Dava	
	Highest	Ant 2	-0.55	3.46	8	Pass	
	Lowest	Ant 1	-0.46	2.75	8	Pass	
	Lowest	Ant 2	-0.07	2.75	0	Pass	
802.11n	M: ddla	Ant 1	0.97	2.40	0	Daga	
(H20)	Middle	Ant 2	-0.87	3.16	8	Pass	
	l limb and	Ant 1	0.46	0.00	0	Dava	
	Highest	Ant 2	-0.40	3.06	8	Pass	
	Laurant	Ant 1	-1.85	4 44	0	Dava	
	Lowest	Ant 2	-1.36	1.41	8	Pass	
802.11n	N.C. J.H.	Ant 1	-1.96	4.40		D	
(H40)	Middle	Ant 2	-1.28	1.40	8	Pass	
	I Calcord	Ant 1	-1.17	4.55		Dece	
	Highest	Ant 2	-1.78	1.55	8	Pass	

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

,

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205							
Test Method:	ANSI C63.4: 2003									
Test Frequency Range:	2.3GHz to 2.5G	Hz								
Test site:	Measurement D	istance: 3m								
Receiver setup:										
·	Frequency	Detector	RBW	VBW	Remark					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
Limit		Peak	1MHz	10Hz	Average Value					
Limit:	Freque	ncv	Limit (dBuV	/m @3m)	Remark					
	Above 1	_	54.0		Average Value					
			74.0		Peak Value					
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna the ground Both horizon make the make the maters and to find the rospecified B 6. If the emission the limit specified by alues of the did not have	at a 3 meter can be the position of the position of the position of the position of the position at a height is variated and vertical and vertical and vertical and vertical and vertical and vertical and the position of the	amber. The of the highests away from the don the the don the the done in a maximum all polarizations to the ed from one in a was turned awas turned awas turned awas set to Parameter of the edition of t	table was rost radiation. If the interferop of a variation of the analysis of	rence-receiving able-height antenna our meters above he field strength. Intenna are set to happen to its worst from 1 meter to 4 hees to 360 degrees. Function and s 10dB lower than and the peak the emissions that					
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier									
Test Instruments:	Refer to section 5.7 for details									
Test mode:	Refer to section	5.3 for details								
Test results:	Passed									

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11b

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	58.31	27.58	3.81	34.8	3	54.87	74.00	-19.13	Horizontal	
2400.00	48.32	27.58	3.83	34.8	3	44.90	74.00	-29.10	Horizontal	
2390.00	52.36	27.58	3.81	34.83		48.92	74.00	-25.08	Vertical	
2400.00	49.35	27.58	3.83	34.8	3	45.93	74.00	-28.07	Vertical	

Test	channel:		Lowest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line	I I Imit	Polarizatio n	
2390.00	49.52	27.58	3.81	34.8	3	46.08	54.00	-7.92	Horizontal	
2400.00	36.58	27.58	3.83	34.8	3	33.16	54.00	-20.84	Horizontal	
2390.00	46.32	27.58	3.81	34.8	3	42.88	54.00	-11.12	Vertical	
2400.00	38.32	27.58	3.83	34.8	3	34.90	54.00	-19.10	Vertical	

Test	channel:		Highest			Level:		Pe	eak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	i imir	Polarization
2483.50	60.32	27.52	3.89	34.86	6	56.87	74.00	-17.13	Horizontal
2500.00	48.35	27.55	3.90	34.87	7	44.93	74.00	-29.07	Horizontal
2483.50	58.35	27.52	3.89	34.86	6	54.90	74.00	-19.10	Vertical
2500.00	49.68	27.55	3.90	34.87	7	46.26	74.00	-27.74	Vertical

Test	channel:		Highest			Level:		Ave	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line	I I imit	Polarization		
2483.50	49.35	27.52	3.89	34.8	6	45.90	54.00	-8.10	Horizontal		
2500.00	39.14	27.55	3.90	34.8	7	35.72	54.00	-18.28	Horizontal		
2483.50	49.19	27.52	3.89	34.86		45.74	54.00	-8.26	Vertical		
2500.00	35.26	27.55	3.90	34.8	7	31.84	54.00	-22.16	Vertical		

CCIS

Report No: CCIS12110026901

802.11g

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line	I I Imit	Polarization	
2390.00	58.32	27.58	3.81	34.8	3	54.88	74.00	-19.12	Horizontal	
2400.00	46.32	27.58	3.83	34.8	3	42.90	74.00	-31.10	Horizontal	
2390.00	61.32	27.58	3.81	34.8	3	57.88	74.00	-16.12	Vertical	
2400.00	49.30	27.58	3.83	34.8	3	45.88	74.00	-28.12	Vertical	

Tes	st channel:		Lowest		Level:		Ave	rage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line	I I imit	Polarization
2390.00	49.26	27.58	3.81	34.83	45.82	54.00	-8.18	Horizontal
2400.00	38.15	27.58	3.83	34.83	34.73	54.00	-19.27	Horizontal
2390.00	53.26	27.58	3.81	34.83	49.82	54.00	-4.18	Vertical
2400.00	41.32	27.58	3.83	34.83	37.90	54.00	-16.10	Vertical

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	59.16	27.52	3.89	34.86	6	55.71	74.00	-18.29	Horizontal	
2500.00	50.32	27.55	3.90	34.87	7	46.90	74.00	-27.10	Horizontal	
2483.50	59.16	27.52	3.89	34.86	6	55.71	74.00	-18.29	Vertical	
2500.00	51.32	27.55	3.90	34.87	7	47.90	74.00	-26.10	Vertical	

Test	channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization	
2483.50	49.04	27.52	3.89	34.8	6	45.59	54.00	-8.41	Horizontal	
2500.00	37.19	27.55	3.90	34.8	37	33.77	54.00	-20.23	Horizontal	
2483.50	47.39	27.52	3.89	34.8	6	43.94	54.00	-10.06	Vertical	
2500.00	40.32	27.55	3.90	34.8	37	36.90	54.00	-17.10	Vertical	

CCIS

Report No: CCIS12110026901

802.11n (H20)

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	62.03	27.58	3.81	34.83	3	58.59	74.00	-15.41	Horizontal	
2400.00	50.35	27.58	3.83	34.83	3	46.93	74.00	-27.07	Horizontal	
2390.00	63.15	27.58	3.81	34.83	3	59.71	74.00	-14.29	Vertical	
2400.00	59.26	27.58	3.83	34.83	3	55.84	74.00	-18.16	Vertical	

Test channel: Lowest				Level: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2390.00	53.26	27.58	3.81	34.83	49.82	54.00	-4.18	Horizontal
2400.00	49.32	27.58	3.83	34.83	45.90	54.00	-8.10	Horizontal
2390.00	45.35	27.58	3.81	34.83	41.91	54.00	-12.09	Vertical
2400.00	43.26	27.58	3.83	34.83	39.84	54.00	-14.16	Vertical

Test		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2483.50	53.26	27.52	3.89	34.8	6	49.81	74.00	-24.19	Horizontal
2500.00	49.27	27.55	3.90	34.8	7	45.85	74.00	-28.15	Horizontal
2483.50	67.32	27.52	3.89	34.8	6	63.87	74.00	-10.13	Vertical
2500.00	56.35	27.55	3.90	34.8	7	52.93	74.00	-21.07	Vertical

Test		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization
2483.50	48.35	27.52	3.89	34.8	6	44.90	54.00	-9.10	Horizontal
2500.00	40.39	27.55	3.90	34.8	7	36.97	54.00	-17.03	Horizontal
2483.50	49.32	27.52	3.89	34.8	6	45.87	54.00	-8.13	Vertical
2500.00	43.26	27.55	3.90	34.8	7	39.84	54.00	-14.16	Vertical

802.11n (H40)

Te		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Loss Factor		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2390.00	64.35	27.58	3.81	34.8	3	60.91	74.00	-13.09	Horizontal
2400.00	53.26	27.58	3.83	34.8	3	49.84	74.00	-24.16	Horizontal
2390.00	61.32	27.58	3.81	34.8	3	57.88	74.00	-16.12	Vertical
2400.00	59.35	27.58	3.83	34.8	3	55.93	74.00	-18.07	Vertical

Test channel: Lowest				Level: Averag				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line	i i imit	Polarization
2390.00	53.21	27.58	3.81	34.83	49.77	54.00	-4.23	Horizontal
2400.00	49.37	27.58	3.83	34.83	45.95	54.00	-8.05	Horizontal
2390.00	50.36	27.58	3.81	34.83	46.92	54.00	-7.08	Vertical
2400.00	46.35	27.58	3.83	34.83	42.93	54.00	-11.07	Vertical

Test channel:			Highest			Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2483.50	60.10	27.52	3.89	34.8	6	56.65	74.00	-17.35	Horizontal
2500.00	53.26	27.55	3.90	34.8	7	49.84	74.00	-24.16	Horizontal
2483.50	62.32	27.52	3.89	34.8	6	58.87	74.00	-15.13	Vertical
2500.00	51.36	27.55	3.90	34.8	7	47.94	74.00	-26.06	Vertical

Test channel:			Highest	Highest Level:			Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line	Limit	Polarization
2483.50	50.32	27.52	3.89	34.8	6	46.87	54.00	-7.13	Horizontal
2500.00	49.75	27.55	3.90	34.8	7	46.33	54.00	-7.67	Horizontal
2483.50	50.26	27.52	3.89	34.8	6	46.81	54.00	-7.19	Vertical
2500.00	49.35	27.55	3.90	34.8	7	45.93	54.00	-8.07	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 61 of 96

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Ant 1

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 64 of 96

30MHz~25GHz

30MHz~25GHz

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(H40)

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Ant 2

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.4:200)3						
Test Frequency Range:	30MHz to 25GH	łz						
Test site:	Measurement D	istance: 3m						
Receiver setup:								
·	Frequency Detector RBW VBW Remark							
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	710070 10112	Peak	1MHz	10Hz	Average Value			
Limit:								
	Freque		Limit (dBuV/		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	1GHZ	54.0		Quasi-peak Value			
	Above 1	GHz			•			
Total Dance of the	1 The FLIT w	as placed on t						
Test Procedure:	Above 1GHz 54.0 Above 1GHz 74.0 Peak Value 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported							

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
282.00	43.03	12.70	2.89	29.49	29.13	46.00	-16.87	Vertical
360.45	51.95	14.43	3.10	29.73	39.75	46.00	-6.25	Vertical
497.68	42.02	16.52	3.60	30.52	31.62	46.00	-14.38	Vertical
599.32	43.15	18.45	3.94	30.55	34.99	46.00	-11.01	Vertical
699.31	42.34	18.80	4.17	30.60	34.71	46.00	-11.29	Vertical
801.79	42.36	20.06	4.34	30.40	36.36	46.00	-9.64	Vertical
119.86	44.08	10.48	2.17	29.70	27.03	43.50	-16.47	Horizontal
239.99	52.79	12.09	2.82	29.64	38.06	46.00	-7.94	Horizontal
360.45	53.13	14.43	3.10	29.73	40.93	46.00	-5.07	Horizontal
480.53	49.50	16.07	3.46	30.52	38.51	46.00	-7.49	Horizontal
601.43	45.79	18.46	3.94	30.55	37.64	46.00	-8.36	Horizontal
721.73	48.81	19.10	4.26	30.55	41.62	46.00	-4.38	Horizontal

China Certification & Inspection Services Co., Ltd.

1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Project No.: CCIS121100269RF

Above 1GHz

Report No: CCIS12110026901

Test mode:	802.11b		Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.65	31.79	5.34	24.07	52.71	74.00	-21.29	Vertical
7236.00	28.54	36.19	6.88	26.44	45.17	74.00	-28.83	Vertical
9648.00	28.33	38.07	8.96	25.36	50.00	74.00	-24.00	Vertical
12060.00	25.44	39.05	10.35	25.15	49.69	74.00	-24.31	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	40.36	31.79	5.34	24.07	53.42	74.00	-20.58	Horizontal
7236.00	29.65	36.19	6.88	26.44	46.28	74.00	-27.72	Horizontal
9648.00	30.22	38.07	8.96	25.36	51.89	74.00	-22.11	Horizontal
12060.00	28.96	39.05	10.35	25.15	53.21	74.00	-20.79	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11b		Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	23.65	31.79	5.34	24.07	36.71	54.00	-17.29	Vertical
7236.00	18.56	36.19	6.88	26.44	35.19	54.00	-18.81	Vertical
9648.00	17.25	38.07	8.96	25.36	38.92	54.00	-15.08	Vertical
12060.00	15.36	39.05	10.35	25.15	39.61	54.00	-14.39	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	25.64	31.79	5.34	24.07	38.70	54.00	-15.30	Horizontal
7236.00	19.54	36.19	6.88	26.44	36.17	54.00	-17.83	Horizontal
9648.00	18.22	38.07	8.96	25.36	39.89	54.00	-14.11	Horizontal
12060.00	16.09	39.05	10.35	25.15	40.34	54.00	-13.66	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 77 of 96

Test mode:	802.11b		Test channel:	Middle		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	42.55	31.85	5.40	24.01	55.79	74.00	-18.21	Vertical
7311.00	29.66	36.37	6.90	26.58	46.35	74.00	-27.65	Vertical
9748.00	30.25	38.13	8.98	25.34	52.02	74.00	-21.98	Vertical
12185.00	26.08	38.92	10.38	25.04	50.34	74.00	-23.66	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	44.56	31.85	5.40	24.01	57.80	74.00	-16.20	Horizontal
7311.00	31.29	36.37	6.90	26.58	47.98	74.00	-26.02	Horizontal
9748.00	32.30	38.13	8.98	25.34	54.07	74.00	-19.93	Horizontal
12185.00	28.97	38.92	10.38	25.04	53.23	74.00	-20.77	Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Test mode:	802.11b		Test	Middle		Remark:	Average	
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	24.22	31.85	5.40	24.01	37.46	54.00	-16.54	Vertical
7311.00	17.65	36.37	6.90	26.58	34.34	54.00	-19.66	Vertical
9748.00	13.66	38.13	8.98	25.34	35.43	54.00	-18.57	Vertical
12185.00	14.25	38.92	10.38	25.04	38.51	54.00	-15.49	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	26.35	31.85	5.40	24.01	39.59	54.00	-14.41	Horizontal
7311.00	19.64	36.37	6.90	26.58	36.33	54.00	-17.67	Horizontal
9748.00	15.24	38.13	8.98	25.34	37.01	54.00	-16.99	Horizontal
12185.00	15.38	38.92	10.38	25.04	39.64	54.00	-14.36	Horizontal
14622.00	*		_			54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100269RF

Project No.: CCIS121100269RF

Test mode:	802.11	0	Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	41.22	31.89	5.46	23.96	54.61	74.00	-19.39	Vertical
7386.00	35.69	36.49	6.93	26.79	52.32	74.00	-21.68	Vertical
9848.00	31.08	38.24	9.05	25.30	53.07	74.00	-20.93	Vertical
12310.00	31.24	38.83	10.41	24.90	55.58	74.00	-18.42	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.68	31.89	5.46	23.96	57.07	74.00	-16.93	Horizontal
7386.00	37.89	36.49	6.93	26.79	54.52	74.00	-19.48	Horizontal
9848.00	33.64	38.24	9.05	25.30	55.63	74.00	-18.37	Horizontal
12310.00	33.97	38.83	10.41	24.90	58.31	74.00	-15.69	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11b		Test channel:	Highest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	25.85	31.89	5.46	23.96	39.24	54.00	-14.76	Vertical
7386.00	20.46	36.49	6.93	26.79	37.09	54.00	-16.91	Vertical
9848.00	21.65	38.24	9.05	25.30	43.64	54.00	-10.36	Vertical
12310.00	18.97	38.83	10.41	24.90	43.31	54.00	-10.69	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	27.95	31.89	5.46	23.96	41.34	54.00	-12.66	Horizontal
7386.00	22.69	36.49	6.93	26.79	39.32	54.00	-14.68	Horizontal
9848.00	20.31	38.24	9.05	25.30	42.30	54.00	-11.70	Horizontal
12310.00	19.54	38.83	10.41	24.90	43.88	54.00	-10.12	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 79 of 96

Project No.: CCIS121100269RF

Test mode:	802.11	9	Test channel:	Lowest		Remark:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.05	31.79	5.34	24.07	52.11	74.00	-21.89	Vertical
7236.00	36.97	36.19	6.88	26.44	53.60	74.00	-20.40	Vertical
9648.00	32.68	38.07	8.96	25.36	54.35	74.00	-19.65	Vertical
12060.00	31.08	39.05	10.35	25.15	55.33	74.00	-18.67	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	40.61	31.79	5.34	24.07	53.67	74.00	-20.33	Horizontal
7236.00	35.09	36.19	6.88	26.44	51.72	74.00	-22.28	Horizontal
9648.00	34.21	38.07	8.96	25.36	55.88	74.00	-18.12	Horizontal
12060.00	32.91	39.05	10.35	25.15	57.16	74.00	-16.84	Horizontal
14472.00	*	·				74.00		Horizontal
16884.00	*	·				74.00		Horizontal

Test mode:	802.11	g	Test	Lowest		Remark:		Average
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	26.34	31.79	5.34	24.07	39.40	54.00	-14.60	Vertical
7236.00	23.07	36.19	6.88	26.44	39.70	54.00	-14.30	Vertical
9648.00	19.64	38.07	8.96	25.36	41.31	54.00	-12.69	Vertical
12060.00	18.94	39.05	10.35	25.15	43.19	54.00	-10.81	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.90	31.79	5.34	24.07	41.96	54.00	-12.04	Horizontal
7236.00	25.64	36.19	6.88	26.44	42.27	54.00	-11.73	Horizontal
9648.00	20.97	38.07	8.96	25.36	42.64	54.00	-11.36	Horizontal
12060.00	19.05	39.05	10.35	25.15	43.30	54.00	-10.70	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 80 of 96

Test mode:	802.110	g	Test channel:	Middle		Remark:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	36.34	31.85	5.40	24.01	49.58	74.00	-24.42	Vertical
7311.00	30.25	36.37	6.90	26.58	46.94	74.00	-27.06	Vertical
9748.00	33.30	38.13	8.98	25.34	55.07	74.00	-18.93	Vertical
12185.00	34.64	38.92	10.38	25.04	58.90	74.00	-15.10	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	38.31	31.85	5.40	24.01	51.55	74.00	-22.45	Horizontal
7311.00	33.15	36.37	6.90	26.58	49.84	74.00	-24.16	Horizontal
9748.00	27.51	38.13	8.98	25.34	49.28	74.00	-24.72	Horizontal
12185.00	27.94	38.92	10.38	25.04	52.20	74.00	-21.80	Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Test mode:	802.11	9	Test channel:	Middle		Remark:		Average
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	22.56	31.85	5.40	24.01	35.80	54.00	-18.20	Vertical
7311.00	20.15	36.37	6.90	26.58	36.84	54.00	-17.16	Vertical
9748.00	16.94	38.13	8.98	25.34	38.71	54.00	-15.29	Vertical
12185.00	13.65	38.92	10.38	25.04	37.91	54.00	-16.09	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	24.56	31.85	5.40	24.01	37.80	54.00	-16.20	Horizontal
7311.00	22.36	36.37	6.90	26.58	39.05	54.00	-14.95	Horizontal
9748.00	17.98	38.13	8.98	25.34	39.75	54.00	-14.25	Horizontal
12185.00	15.64	38.92	10.38	25.04	39.90	54.00	-14.10	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 81 of 96

Project No.: CCIS121100269RF

Test mode:	802.11	g	Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	38.42	31.89	5.46	23.96	51.81	74.00	-22.19	Vertical
7386.00	35.19	36.49	6.93	26.79	51.82	74.00	-22.18	Vertical
9848.00	32.94	38.24	9.05	25.30	54.93	74.00	-19.07	Vertical
12310.00	30.17	38.83	10.41	24.90	54.51	74.00	-19.49	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	41.14	31.89	5.46	23.96	54.53	74.00	-19.47	Horizontal
7386.00	35.37	36.49	6.93	26.79	52.00	74.00	-22.00	Horizontal
9848.00	32.84	38.24	9.05	25.30	54.83	74.00	-19.17	Horizontal
12310.00	29.81	38.83	10.41	24.90	54.15	74.00	-19.85	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11	g	Test	Highest		Remark:	Average)
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	24.54	31.89	5.46	23.96	37.93	54.00	-16.07	Vertical
7386.00	23.87	36.49	6.93	26.79	40.50	54.00	-13.50	Vertical
9848.00	18.64	38.24	9.05	25.30	40.63	54.00	-13.37	Vertical
12310.00	17.64	38.83	10.41	24.90	41.98	54.00	-12.02	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	26.24	31.89	5.46	23.96	39.63	54.00	-14.37	Horizontal
7386.00	24.68	36.49	6.93	26.79	41.31	54.00	-12.69	Horizontal
9848.00	20.15	38.24	9.05	25.30	42.14	54.00	-11.86	Horizontal
12310.00	18.64	38.83	10.41	24.90	42.98	54.00	-11.02	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 82 of 96

Project No.: CCIS121100269RF

Test mode:	802.11	n(H20)	Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/ m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	37.50	31.79	5.34	24.07	50.56	74.00	-23.44	Vertical
7236.00	34.61	36.19	6.88	26.44	51.24	74.00	-22.76	Vertical
9648.00	33.64	38.07	8.96	25.36	55.31	74.00	-18.69	Vertical
12060.00	31.25	39.05	10.35	25.15	55.50	74.00	-18.50	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.64	31.79	5.34	24.07	52.70	74.00	-21.30	Horizontal
7236.00	35.02	36.19	6.88	26.44	51.65	74.00	-22.35	Horizontal
9648.00	34.29	38.07	8.96	25.36	55.96	74.00	-18.04	Horizontal
12060.00	32.07	39.05	10.35	25.15	56.32	74.00	-17.68	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11	n(H20)	Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	24.98	31.79	5.34	24.07	38.04	54.00	-15.96	Vertical
7236.00	23.64	36.19	6.88	26.44	40.27	54.00	-13.73	Vertical
9648.00	19.52	38.07	8.96	25.36	41.19	54.00	-12.81	Vertical
12060.00	17.54	39.05	10.35	25.15	41.79	54.00	-12.21	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	26.97	31.79	5.34	24.07	40.03	54.00	-13.97	Horizontal
7236.00	25.30	36.19	6.88	26.44	41.93	54.00	-12.07	Horizontal
9648.00	21.36	38.07	8.96	25.36	43.03	54.00	-10.97	Horizontal
12060.00	17.94	39.05	10.35	25.15	42.19	54.00	-11.81	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 83 of 96

Project No.: CCIS121100269RF

Test mode:	802.11	n(H20)	Test channel:	Middle		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	35.65	31.85	5.40	24.01	48.89	74.00	-25.11	Vertical
7311.00	30.28	36.37	6.90	26.58	46.97	74.00	-27.03	Vertical
9748.00	26.98	38.13	8.98	25.34	48.75	74.00	-25.25	Vertical
12185.00	25.46	38.92	10.38	25.04	49.72	74.00	-24.28	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	37.98	31.85	5.40	24.01	51.22	74.00	-22.78	Horizontal
7311.00	35.98	36.37	6.90	26.58	52.67	74.00	-21.33	Horizontal
9748.00	28.97	38.13	8.98	25.34	50.74	74.00	-23.26	Horizontal
12185.00	26.34	38.92	10.38	25.04	50.60	74.00	-23.40	Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal

Test mode:	802.11	n(H20)	Test channel:	Middle		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	22.65	31.85	5.40	24.01	35.89	54.00	-18.11	Vertical
7311.00	22.36	36.37	6.90	26.58	39.05	54.00	-14.95	Vertical
9748.00	18.20	38.13	8.98	25.34	39.97	54.00	-14.03	Vertical
12185.00	13.25	38.92	10.38	25.04	37.51	54.00	-16.49	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	24.68	31.85	5.40	24.01	37.92	54.00	-16.08	Horizontal
7311.00	24.88	36.37	6.90	26.58	41.57	54.00	-12.43	Horizontal
9748.00	20.14	38.13	8.98	25.34	41.91	54.00	-12.09	Horizontal
12185.00	16.97	38.92	10.38	25.04	41.23	54.00	-12.77	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 84 of 96

Test mode:	802.11n(H20)		Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	37.44	31.89	5.46	23.96	50.83	74.00	-23.17	Vertical
7386.00	34.56	36.49	6.93	26.79	51.19	74.00	-22.81	Vertical
9848.00	32.06	38.24	9.05	25.30	54.05	74.00	-19.95	Vertical
12310.00	29.35	38.83	10.41	24.90	53.69	74.00	-20.31	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	37.54	31.89	5.46	23.96	50.93	74.00	-23.07	Horizontal
7386.00	36.97	36.49	6.93	26.79	53.60	74.00	-20.40	Horizontal
9848.00	33.02	38.24	9.05	25.30	55.01	74.00	-18.99	Horizontal
12310.00	30.41	38.83	10.41	24.90	54.75	74.00	-19.25	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11n(H20)		Test channel:	Highest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	24.60	31.89	5.46	23.96	37.99	54.00	-16.01	Vertical
7386.00	22.36	36.49	6.93	26.79	38.99	54.00	-15.01	Vertical
9848.00	18.54	38.24	9.05	25.30	40.53	54.00	-13.47	Vertical
12310.00	17.51	38.83	10.41	24.90	41.85	54.00	-12.15	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	25.64	31.89	5.46	23.96	39.03	54.00	-14.97	Horizontal
7386.00	23.65	36.49	6.93	26.79	40.28	54.00	-13.72	Horizontal
9848.00	18.60	38.24	9.05	25.30	40.59	54.00	-13.41	Horizontal
12310.00	17.05	38.83	10.41	24.90	41.39	54.00	-12.61	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.11	n(H40)	Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	41.23	31.79	5.34	24.07	54.29	74.00	-19.71	Vertical
7266.00	40.36	36.19	6.88	26.44	56.99	74.00	-17.01	Vertical
9688.00	35.88	38.07	8.96	25.36	57.55	74.00	-16.45	Vertical
12110.00	34.21	39.05	10.35	25.15	58.46	74.00	-15.54	Vertical
14532.00	*					74.00		Vertical
16954.00	*					74.00		Vertical
4844.00	42.65	31.79	5.34	24.07	55.71	74.00	-18.29	Horizontal
7266.00	42.01	36.19	6.88	26.44	58.64	74.00	-15.36	Horizontal
9688.00	36.97	38.07	8.96	25.36	58.64	74.00	-15.36	Horizontal
12110.00	35.09	39.05	10.35	25.15	59.34	74.00	-14.66	Horizontal
14532.00	*					74.00		Horizontal
16954.00	*					74.00		Horizontal

Test mode:	802.11	n(H40)	Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	24.98	31.79	5.34	24.07	38.04	54.00	-15.96	Vertical
7266.00	22.70	36.19	6.88	26.44	39.33	54.00	-14.67	Vertical
9688.00	18.40	38.07	8.96	25.36	40.07	54.00	-13.93	Vertical
12110.00	18.52	39.05	10.35	25.15	42.77	54.00	-11.23	Vertical
14532.00	*					54.00		Vertical
16954.00	*					54.00		Vertical
4844.00	26.69	31.79	5.34	24.07	39.75	54.00	-14.25	Horizontal
7266.00	23.65	36.19	6.88	26.44	40.28	54.00	-13.72	Horizontal
9688.00	20.15	38.07	8.96	25.36	41.82	54.00	-12.18	Horizontal
12110.00	18.06	39.05	10.35	25.15	42.31	54.00	-11.69	Horizontal
14532.00	*					54.00		Horizontal
16954.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100269RF

Test mode:	802.111	n(H40)	Test channel:	Middle	Middle		Remark:	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	41.26	31.85	5.40	24.01	54.50	74.00	-19.50	Vertical
7311.00	39.02	36.37	6.90	26.58	55.71	74.00	-18.29	Vertical
9748.00	33.84	38.13	8.98	25.34	55.61	74.00	-18.39	Vertical
12185.00	32.58	38.92	10.38	25.04	56.84	74.00	-17.16	Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	41.52	31.85	5.40	24.01	54.76	74.00	-19.24	Horizontal
7311.00	38.65	36.37	6.90	26.58	55.34	74.00	-18.66	Horizontal
9748.00	34.02	38.13	8.98	25.34	55.79	74.00	-18.21	Horizontal
12185.00	32.68	38.92	10.38	25.04	56.94	74.00	-17.06	Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00	-	Horizontal

Test mode:	802.11	n(H40)	Test channel:	Middle		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	22.54	31.85	5.40	24.01	35.78	54.00	-18.22	Vertical
7311.00	19.65	36.37	6.90	26.58	36.34	54.00	-17.66	Vertical
9748.00	16.24	38.13	8.98	25.34	38.01	54.00	-15.99	Vertical
12185.00	14.25	38.92	10.38	25.04	38.51	54.00	-15.49	Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	24.69	31.85	5.40	24.01	37.93	54.00	-16.07	Horizontal
7311.00	21.08	36.37	6.90	26.58	37.77	54.00	-16.23	Horizontal
9748.00	17.59	38.13	8.98	25.34	39.36	54.00	-14.64	Horizontal
12185.00	16.33	38.92	10.38	25.04	40.59	54.00	-13.41	Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 87 of 96

Test mode:	802.11n(H40)		Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	35.69	31.89	5.46	23.96	49.08	74.00	-24.92	Vertical
7356.00	31.58	36.49	6.93	26.79	48.21	74.00	-25.79	Vertical
9808.00	29.87	38.24	9.05	25.30	51.86	74.00	-22.14	Vertical
12260.00	27.99	38.83	10.41	24.90	52.33	74.00	-21.67	Vertical
14712.00	*					74.00		Vertical
17164.00	*					74.00		Vertical
4904.00	38.05	31.89	5.46	23.96	51.44	74.00	-22.56	Horizontal
7356.00	33.60	36.49	6.93	26.79	50.23	74.00	-23.77	Horizontal
9808.00	31.28	38.24	9.05	25.30	53.27	74.00	-20.73	Horizontal
12260.00	28.46	38.83	10.41	24.90	52.80	74.00	-21.20	Horizontal
14712.00	*					74.00		Horizontal
17164.00	*					74.00		Horizontal

Test mode:	802.11n(H40)		Test channel:	Highest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	23.22	31.89	5.46	23.96	36.61	54.00	-17.39	Vertical
7356.00	20.45	36.49	6.93	26.79	37.08	54.00	-16.92	Vertical
9808.00	17.98	38.24	9.05	25.30	39.97	54.00	-14.03	Vertical
12260.00	16.93	38.83	10.41	24.90	41.27	54.00	-12.73	Vertical
14712.00	*					54.00		Vertical
17164.00	*					54.00		Vertical
4904.00	25.64	31.89	5.46	23.96	39.03	54.00	-14.97	Horizontal
7356.00	22.01	36.49	6.93	26.79	38.64	54.00	-15.36	Horizontal
9808.00	19.80	38.24	9.05	25.30	41.79	54.00	-12.21	Horizontal
12260.00	18.54	38.83	10.41	24.90	42.88	54.00	-11.12	Horizontal
14712.00	*					54.00		Horizontal
17164.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.