Sie messen im Labor einen Widerstand mehrfach in voneinander unabhängigen Messungen Aufgabe 4. (6+1+1+4 = 12 P)

Sie messen im Labo	or einen Wide	erstand mo		TA	5
Sie messen im Labo und erhalten folgen	de Messreine	12	3	180,0	181,0
Messung Nr.	1	183,0	185,0	reichung und M	essunsicileit.
R [Ω]	Cio Mittelw	ert, statistisch	on 95% sowie	das vollstandig	essunsicherheit e Messergebnis ide Aussage: "Der

- bestimmen Sie Mittelwert, statistische Standardabweichung und Messunsicherheit bezogen auf ein Vertrauensniveau von 95% sowie das vollstandige Messergebnis. a) Bestimmen Sie Mittelwert, statistische Standa b) Vervollständigen Sie anhand Ihres Rechenergebnisses die folgende Aussage. "Der $\frac{(1-\alpha)^{\alpha}}{65.27} = \frac{(1-\alpha)^{\alpha}}{93.00} = \frac{(1-\alpha)^{\alpha}}{93.00}$
- wahre Wert des Widerstands liegt
- c) Der Prof kommt, misst seibst einmal nach und erhält R=185 Ω . Er kann Ihr Ergebnis mit Recht angreifen, wenn dieser Wert außerhalb des Bereichs liegt, in

d) Dann sehen Sie im Datenblatt des Ohmmeters die Toleranzangabe "0,5% v.M. + 50"

Mille Burket Lieber Uhr Monegonschnie? (Milleumin Die Abinen Worde stemmen unt einem Manegonschnie) Wie lautet jetzt Ihr Messergebnis? (Hinweis: Die obigen Werte stammen von einem

Ohmmeter mit 4-stelligem Display)

Gegeben sei ein Temperatursensorelement mit temperaturabhängigem Widerstand en sei ein Temperatursensoreiement mit temperaturaonangigem vivuerstand $R(\vartheta)=R_0\cdot (1+\gamma(\vartheta-\vartheta_0)^3)\;,\; \vartheta_0=50\,^\circ C\;,\; R_0=1\,\mathrm{k}\Omega\;,\; \gamma=2,5\cdot 10^{-5}\,^\circ C^{-3}$

- a) Bestimmen Sie R(100 °C).
- Gemessen wurde ein Widerstand $R=2500~\Omega$ mit einer Unsicherheit von $\pm 25~\Omega$. Bestimmen b) Bestimmen Sie die lokale Empfindlichkeit bei $\theta=100\,^{\circ}\mathrm{C}$. c) Bestimmen Sie die Umkehrfunktion θ(R).
- Bei Speisung mit dem Konstantstrom $I_s = 2$ mA failt über dem Sensorelement aus Aufgabe 5 d)

die Messspannung $U_{M}=R(\vartheta)\cdot I_{S}$ ab

- a) Geben Sie $U_M(\vartheta)$ an (so welt wie sinnvoll vereinfachen) und verifizieren Sie, dass die tineare Kennlinie $U_t(\theta)=0.245\frac{v}{c}\cdot\theta-16.25\,V$ bei $80\,^\circ\text{C}$ und $100\,^\circ\text{C}$ mit $U_M(\theta)$ übereinstimmt. (Teilergebnisse aus Aufgabe 3 dürfen verwendet werden.) Damit kommt man zu einem Anzeigeverstärker mit der Funktion $\theta_A(U_M) = \frac{U_M + 16.25 \, V}{0.245 \, V_C}$ Durch Einsetzen von $U_N(\theta)$ ergibt sich θ_A in Abhangigkeit von θ . Stellen Sie die Funktion A $\theta = \theta - \theta$. (A) auf und hestimmen Sie die Tomneratur im Intervall. Ein Sie $\theta = 0.00$
 - Durch Einsetzen von $U_N(\vartheta)$ ergibt sich ϑ_A in Abhangigkeit von ϑ . Stellen Sie die Funktion $\Delta \vartheta = \vartheta \vartheta_A(\vartheta) \text{ auf und bestimmen Sie die Temperatur im Intervall Bit <math>\vartheta$ in Abhangigkeit von ϑ . Stellen Sie die Funktion $\Delta \vartheta = \vartheta \vartheta_A(\vartheta) \text{ auf und bestimmen Sie die Temperatur im Intervallmitte ist as nichtligen Abhangigkeit von <math>\vartheta$. Stellen Sie die Funktion $\Delta \vartheta = \vartheta \vartheta_A(\vartheta) \text{ auf und bestimmen Sie die Temperatur im Intervallmitte ist as nichtligen auf der Abhangigkeit von <math>\vartheta$. Stellen Sie die Funktion $\Delta \vartheta = \vartheta \vartheta_A(\vartheta) \text{ auf und bestimmen Sie die Temperatur im Intervall Bit auch der Abhangigkeit von <math>\vartheta$. Stellen Sie die Funktion $\Delta \vartheta = \vartheta \vartheta_A(\vartheta) \text{ auf und bestimmen Sie die Temperatur im Intervall Bit auch der Abhangigkeit von <math>\vartheta$. Stellen Sie die Funktion der Abhangigkeit von ϑ . $\Delta v = v_A(v)$ aur und bestimmen Sie die Temperatur im Intervall 80 °C < der Δv maximal wird. Analytisch berechnen! (Die Intervallmitte ist es nicht!)