Statistical Inference

Statistics is the method by which data are analyzed in whose generation chance is involved in some way.

Two main topics of statistics:

- 1. Estimation
- 2. Hypothesis testing

Statistical model:

- observed data $x = (x_1, \dots, x_n)$
- x is a realization of the random variable $X=(X_1,\ldots,X_n)$
- X is the sample space, i.e., the set of possible observed data
- $\psi(\in \mathbb{R}^p)$ is a parameter which determines the distribution of X
- $\Psi(\subset \mathbb{R}^p)$ is the *parameter space*, i.e., the set of possible parameters ψ

Statistical Inference: Estimation

An estimator $\bar{\psi}$ of the parameter ψ is some function of the random variable

$$(X_1, \ldots, X_n)$$
, i.e.,

$$\widehat{\psi}:\mathcal{X} \rightarrow \mathbf{\Psi}$$

For observed data x, $\widehat{\psi}(x)$ is called the *estimate* of Ψ .

Example (Coin tossing):

head (or tail). Then, $X \in \{0,1\}^n =: \mathcal{X}$. Let p denote the probability that trial Suppose a coin is flipped n times. Let $X_i=1$ (or 0), if trial i results in a

i results in a head. Under the assumption that the trials are independent, p

determines the distribution of \mathcal{X} , i.e., p is the parameter and $\Psi = [0, 1]$.

Therefore, any function $\hat{p}:\{0,1\}^n \to [0,1]$ is an estimator of p.

How to find a "good" estimator?

For given $x \in \mathcal{X}$, the likelihood function $L: \Psi \to \mathbb{R}$ is defined by

 $L(\psi \mid x) = P_{\psi}(X = x)$ in case that the distribution of X is discrete or by

 $L(\psi \mid x) = f_{\psi}(x)$ in case that the distribution of X is continuous with

probability density $f_{\psi}.$

If X_1, \ldots, X_n are independent and identically distributed (i.i.d.), it follows that

$$(\psi \mid x) = \begin{cases} \prod_{i=1}^{n} P_{\psi}(X_i = x_i) & \text{if } X_i \text{ are discrete r.v.'s} \\ \prod_{i=1}^{n} f_{\psi}(x_i) & \text{if } X_i \text{ are continuous r.v.'s} \end{cases}$$

Example (Coin tossing): Since $P_p(X_i = 1) = p$, it follows that

$$L(p \mid x) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^r (1-p)^{n-r}$$

Maximum likelihood estimator (MLE)

The maximum likelihood estimator is defined as

$$x \to \hat{\psi}(x) := \arg\max_{\psi \in \Psi} L(\psi \mid x),$$

i.e., the estimate of ψ on the basis of observation x is the value of ψ which maximizes the likelihood.

Remark: It is often more convenient to maximize $\ln L(\psi \mid x)$ instead of $L(\psi \mid x)$. Since In is a strict monotone function, the result is identical.

Example (Coin tossing):

$$\frac{d \ln L(p \mid x)}{dp} = \frac{r}{p} - \frac{n - r}{1 - p} = 0 \iff r \cdot (1 - p) - (n - r) \cdot p = 0$$

$$\Leftrightarrow p = \frac{r}{n}$$

 \Rightarrow The MLE of p is the observed relative frequency of heads.

MLE: Multinomial distribution

 $(X_1, ..., X_n \text{ i.i.d. with } P(X_i = z_j) = p_j \text{ for } 1 \le j \le k \text{ and } \sum_{j=1}^k p_j = 1.$

Then, $\mathcal{X} = \{z_1, \dots, z_k\}^n$, $\psi = (p_1, \dots, p_{k-1})$ and

 $\Psi = \{ (p_1, \dots, p_{k-1}) : 0 \le p_j \le 1, \sum_{j=1}^{k-1} p_j \le 1 \}.$

The likelihood function $L:\Psi
ightarrow \mathbb{R}$ is given by

$$L(p_1, \dots, p_{k-1} \mid x) = \left(\prod_{j=1}^{k-1} p_j^{r_j}\right) \cdot (1 - \sum_{j=1}^{k-1} p_j)^{r_k}$$

with $r_j := \sum_{i=1}^n \mathbb{1}_{(X_i=z_j)}$. Therefore,

$$\frac{d \ln L(p_1, \dots, p_{k-1} \mid x)}{dp_s} = \frac{r_s}{p_s} - \frac{r_k}{1 - \sum_{j=1}^{k-1} p_j} = 0 \text{ for } 1 \le s \le k - 1$$

$$\Leftrightarrow p_s = \frac{r_s}{n} \text{ for } 1 \le s \le k - 1$$

MLE: Normal distribution

 X_1,\ldots,X_n i.i.d. $N(\mu,\sigma^2)$ -distributed, i.e., $f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$ is

the density of the distribution of X_i . Then, $\mathcal{X} = \mathbb{R}^n$, $\psi = (\mu, \sigma^2)$, and

 $\Psi=\mathbb{R} imes\mathbb{R}^+$. The likelihood function $L:\Psi\to\mathbb{R}$ is given by

$$L(\mu, \sigma^2 \mid x) = \prod_{i=1}^n f(x_i).$$

$$\ln L(\mu, \sigma^2 \mid x) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2},$$

$$\frac{d\ln L(\mu, \sigma^2 \mid x)}{d\mu} = \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2},$$

$$\frac{d \ln L(\mu, \sigma^2 \mid x)}{d\sigma^2} = -\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^4}$$

$$\Rightarrow (\hat{\mu}, \hat{\sigma}^2) := (\frac{1}{n} \sum_{i=1}^{n} x_i, \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2) \text{ is MLE.}$$

Bias and mean square error (MSE)

The *bias* of an estimator $\hat{\psi}$ is defined as $E_{\psi}\hat{\psi} - \psi$.

An estimator $\widehat{\psi}$ is called *unbiased* in case that $E_{\psi}\widehat{\psi}-\psi=0$ for all $\psi\in\Psi.$

Example (Normal distribution):

MLE of σ^2 is biased, whereas the estimator $\tilde{\sigma}^2:=\frac{1}{n-1}\sum_{i=1}^n(x_i-\hat{\mu})^2$ is It can be shown that $E_{(\mu,\sigma^2)} \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^2 = \frac{n-1}{n} \sigma^2$. Therefore, the

unbiased.

The mean square error (MSE) of an estimator is defined as

$$MSE(\widehat{\psi}) := E_{\psi}(\widehat{\psi} - \psi)^2$$
. Since

$$E_{\psi}(\hat{\psi}-\psi)^{2} = E_{\psi}(\hat{\psi}-E_{\psi}\hat{\psi}+E_{\psi}\hat{\psi}-\psi)^{2} = \operatorname{Var}_{\psi}(\hat{\psi}) + \left(E_{\psi}\hat{\psi}-\psi\right)^{2},$$

the mean square error of an estimator is the sum of its variance and its squared bias.

Computing maximum likelihood estimates

Example:

n unrelated individuals have been genotyped for two diallelic loci $\{A,a\}$ and

 $\{B,b\}$. Let n_{ij} denote the observed number of individuals possessing i

alleles A and j alleles B ($0 \le i, j \le 2$):

	qq	bB	BB
n n	u^{00}	n_{01}	n_{02}
3	(ab/ab)	(ab/aB)	(aB/aB)
\ \ \ \	n_{10}	n_{11}	n_{12}
5	(ab/Ab)	(ab/AB or aB/Ab)	(aB/AB)
V	n_{20}	n_{21}	n_{22}
5	(Ab/Ab)	(Ab/AB)	(AB/AB)

Goal: Estimation of haplotype frequencies $p_{00} := P(ab), p_{01} := P(aB),$

 $p_{10} := P(Ab)$, and $p_{11} := P(AB)$ by the maximum likelihood method.

Example (continued):

$$\ln L(p_{00}, p_{01}, p_{10}, p_{11} \mid (n_{00}, \dots, n_{11}, \dots, n_{22}))$$

$$= (2n_{00} + n_{01} + n_{10}) \ln p_{00} + (n_{01} + 2n_{02} + n_{12}) \ln p_{01}$$

$$+ (n_{10} + 2n_{20} + n_{21}) \ln p_{10} + (n_{12} + n_{21} + 2n_{22}) \ln p_{11}$$

$$+ n_{11} \ln(p_{00} \cdot p_{11} + p_{01} \cdot p_{10}) + C$$

given n_{11} and p_{ij} , could easily be calculated: $E\tilde{n}_{11}=\frac{p_{00}\cdot p_{11}}{p_{00}\cdot p_{11}+p_{01}\cdot p_{10}}\cdot n_{11}.$ genotype ab/AB. In case that the "complete data" $(n_{00},\ldots,\tilde{n}_{11},n_{11}-\tilde{n}_{11},$ hand, if haplotype frequencies p_{ij} were known, the expected value of \tilde{n}_{11} , (c.f. multinomial distribution): $\hat{p}_{00} = \frac{2n_{00} + n_{01} + n_{10} + \tilde{n}_{11}}{2n}$ etc. On the other $\dots, n_{22})$ were available, determination of MLEs would be straightforward Let \tilde{n}_{11} denote the (unobserved) number of individuals with two-locus

Expectation-maximization (EM) algorithm:

0. Start with arbitrary values $p_{00}^{(0)},\ldots,p_{11}^{(0)}$

For $r = 1, 2, \ldots$, repeat the following two steps

1. Expectation step: Calculate

$$E\tilde{n}_{11}^{(r)} = \frac{p_{00}^{(r-1)} \cdot p_{11}^{(r-1)}}{p_{00}^{(r-1)} \cdot p_{11}^{(r-1)} + p_{01}^{(r-1)} \cdot p_{10}^{(r-1)}} \cdot n_{11}$$

2. Maximization step: Calculate

$$p_{00}^{(r)} = \frac{2n_{00} + n_{01} + n_{10} + \tilde{n}_{11}^{(r)}}{2n}, \quad p_{01}^{(r)} = \frac{n_{01} + 2n_{02} + n_{12} + n_{11} - \tilde{n}_{11}^{(r)}}{2n},$$

$$p_{10}^{(r)} = \frac{n_{10} + 2n_{20} + n_{21} + n_{11} - \tilde{n}_{11}^{(r)}}{2n}, \quad p_{11}^{(r)} = \frac{n_{12} + n_{21} + 2n_{22} + \tilde{n}_{11}^{(r)}}{2n}$$

until convergence occurs (e.g. $\max_{i,j} \mid p_{ij}^{(r)} - p_{ij}^{(r-1)} \mid \leq \varepsilon$).

Pro:

EM algorithm: Pros and Cons

- Easy to implement
- $L(\hat{p}^{(r)} \mid x)$ is monotone increasing in r

Con:

- No guarantee that global (and not local) maximum is obtained
- Convergence can be rather slow

1. Definition of hypotheses

Statistical Inference: Hypothesis testing

- 2. Choosing the numerical value for the Type I error
- 3. Selection of a test statistic
- 4. Determination of the critical value
- 5. Conduction of the experiment, statistical analysis, decision

Test problem:

$$H_0: \psi \in \Psi_0(\subset \Psi)$$
 vs. $H_1: \psi \in \Psi_1:= \Psi \setminus \Psi_0$

(null hypothesis H_0 vs. alternative hypothesis H_1)

Examples (Coin tossing):

•
$$H_0: p = \frac{1}{2}$$
 vs. $H_1: p \neq \frac{1}{2}$

•
$$H_0: p \le \frac{1}{2}$$
 vs. $H_1: p > \frac{1}{2}$

If the hypothesis consists of a single value, it is called a simple hypothesis.

Hypotheses consisting of more than a single value are called composite hypotheses.

Statistical Inference: Type I and Type II error

Two types of errors:

- Type I error: rejection of H₀ when it is true
- Type II error: acceptance of H₀ when it is false

A procedure frequently adopted is to fix the numerical value lpha of the Type error at some low level (e.g. 1% or 5%).

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

Let r denote the number of "heads" in n=20 trials. Possible decision rule:

$$r \begin{cases} \le 6 \text{ or } \ge 14 : \text{ reject } H_0 \\ \in [7, 13] : \text{ accept } H_0 \end{cases}$$

Type I error: $\sum_{r=0}^{6} {20 \choose r} \left(\frac{1}{2}\right)^{20} + \sum_{r=14}^{20} {20 \choose r} \left(\frac{1}{2}\right)^{20}$

Type II error: $\sum_{r=7}^{13} {20 \choose r} \cdot p^r \cdot (1-p)^{20-r}$

 $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$ Example (Coin tossing):

(dotted line) for the decision rule "Reject H_0 if $r \le 6$ or $r \ge 14$, otherwise Probability of rejection of H_0 (solid line) and probability of Type II error accept H_0 ". A test statistic $T: \mathcal{X} \to \mathbb{R}$ is the quantity calculated from the experimental data whose numerical value leads to acceptance or rejection of the null

Example (Coin tossing):

hypothesis.

• T(x): number of heads

T(x): maximum number of consecutive heads or tails

→ Mathematical statistics How to find a "good" test statistic? Consider the test problem of two simple hypotheses, i.e.,

$$H_0: \psi = \psi_0$$
 vs. $H_1: \psi = \psi_1$.

Let $T(x) := L(\psi_1 \mid x)/L(\psi_0 \mid x)$ denote the likelihood ratio. Let

 $c:=\inf\{t:P_{\psi_0}(T>t)\leq \alpha\}$ and let γ satisfy

$$P_{\psi_0}(T > c) + \gamma \cdot P_{\psi_0}(T = c) = \alpha.$$

Now, consider the test which

- rejects H_0 in case of T(x) > c,
- accepts H_0 in case of T(x) < c,
- rejects H_0 with probability γ in case of T(x) = c.

Obviously, the Type I error of this test is equal to α . Further, this test possesses the smallest Type II error probability of all tests of size α .

Example: Neyman-Pearson Lemma

Exercise (Coin tossing):

Suppose a coin is flipped n=10 times. Consider the test problem of two

simple hypotheses, i.e.,

$$H_0: p = p_0 = 0.5$$
 vs. $H_1: p = p_1 = 0.7$.

Construct the test of size $\alpha=0.05$ which possesses the smallest Type II error probability.

(Hint: Show that the likelihood ration $L(p_1 \mid x)/L(p_0 \mid x)$ is increasing in

 $r = \sum x_i$, i.e., $L(p_1 \mid x) / L(p_0 \mid x) < L(p_1 \mid \tilde{x}) / L(p_0 \mid \tilde{x})$ if and only if

$$\sum x_i < \sum \tilde{x}_{i.}$$

Statistical Inference: Likelihood ratio test

Consider the general test problem of two hypotheses, i.e.,

$$H_0: \psi \in \Psi_0$$
 vs. $H_1: \psi \in \Psi_1$.

Let $T(x):=-2\ln\left(\sup_{\psi\in\Psi_0}L(\psi\mid x)/\sup_{\psi\in\Psi}L(\psi\mid x)
ight)$ and consider the test which

- rejects H_0 in case of T(x) > c,
- accepts H_0 in case of $T(x) \le c$.

This test is called the *likelihood ratio test* (LRT).

How to determine c ?

S/20

Determination of the critical value requires to calculate the distribution of the test statistic under the null hypothesis. This can be achieved by the following methods:

Statistical Inference: Critical value

- Exact calculation
- Approximate calculation
- Simulation (by computer)

 $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$ Example (Coin tossing):

$$T(x) := \sum_{i=1}^{n} x_i$$

$$n = 200, \tilde{\alpha} = .0400$$

$$n = 2000, \tilde{\alpha} = .0466$$

Let
$$T \sim \operatorname{Bin}(n,p)$$
 and $T_s := \frac{T - \operatorname{ET}}{\sqrt{\operatorname{Var} T}} = \frac{T - n \cdot p}{\sqrt{n \cdot p \cdot (1-p)}}.$

For sufficiently large n, the distribution of T_s can be approximated by

N(0,1).

$$p = 0.5$$
:

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

Reject H_0 in case that $|T_s(x)| \ge u_{1-\alpha/2}$

Reject H_0 in case that $T(x) \leq n \cdot p - u_{1-\alpha/2} \cdot \sqrt{n \cdot p \cdot (1-p)}$

or $T(x) \ge n \cdot p + u_{1-\alpha/2} \cdot \sqrt{n \cdot p \cdot (1-p)}$.

 $\alpha = 0.05$:

true Type I error rate	.0414	.0560	.0517
u	20	200	2000

Critical values: Approximate calculation

$$p = 0.1$$
:

Critical values: Approximate calculation

p = 0.01:

Determination of critical value: Simulation

1. Draw x (under the null hypothesis).

2. Calculate T(x).

3. Perform m replicates of steps 1 and 2, and calculate the empirical null distribution of T(x).

4. Use this empirical distribution to obtain critical values.

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

n = 20, m = 100,000:

$rac{r}{r}$	P(T(x) = r)	$\hat{P}(T(x) = r)$	r	P(T(x) = r)	$\hat{P}(T(x) = r)$
0	00000	00000	16	.00462	.00456
_	.00002	00000	17	.00109	.00135
0	.00018	.00016	18	.00018	.00012
က	.00109	08000	19	.00002	.00002
4	.00462	.00458	20	00000	00000

Instead of calculation of critical values:

The probability (under the null hypothesis) of obtaining the observed value of the test statistic or a more extreme value is called P-value. If the P-value is \leq than the chosen type I error rate α , the null hypothesis is rejected.

Example (Coin tossing): $H_0: p = 1/2 \text{ vs. } H_1: p \neq 1/2$

Assume that the observed number of "heads" out of n=20 trials is r=18. Then, the null probability

 $P(T \ge 18) = \sum_{r=18}^{20} {20 \choose r} \cdot (1/2)^{20} = .0002.$

Since a two-sided alternative H_1 is considered, $P(T \le 2)$ has to be added.

 \Rightarrow P-value corresponding to r = 18 is $P(T \ge 18) + P(T \le 2) = .0004$.