

SW개발/HW제작 설계서

프로젝트 명 : 스마트 쓰레기통

2020. 08. XX

[20_HF240]환경을 생각하는 친환경 쓰레기 – 고광엽, 손하영, 송찬영, 허정주 Mentor 전 일

한이음 프로그램 설계서

| 요구사항 정의서

구분	기능	설명
S/W	쓰레기통 위치	안드로이드 애플리케이션을 통해 지도에 표시 되어 있는 쓰레기통 위치를 확인할 수 있다.
	쓰레기 투기 확인	안드로이드 애플리케이션을 통해 라즈베리 카메라를 통하여 실시간으로 확인이 가능하다.
	쓰레기 인식	딥 러닝을 통해 쓰레기를 종류별로 학습 시켜 쓰레기를 보여줄 때 마다 쓰레기를 구분한다.

구분	기능	설명
H/W	라즈베리파이 웹 서버 연동	원활한 물체 인식을 위한 웹 서버 연동을 합니다.
	쓰레기 채움 감지	물체 감지 센서를 활용하여 쓰레기가 가득 찼을 경우를 감지합니다.
	쓰레기 채움 알림	부서 센서를 활용하여 쓰레기가 가득 찼을 경우 부저가 울립니다.
	쓰레기 자동 열림	모터 센서를 활용하여 쓰레기를 감지했을 때 해당 쓰레기통이 자동으로 열리게 합니다.

| 기능 처리도(기능 흐름도)

| 기능 처리도(기능 흐름도)

| 기능 처리도(기능 흐름도)

| 알고리즘 명세서

※ 본문의 예시 내용을 지우고 과제 내용으로 변경하여 사용하세요

| 알고리즘 상세 설명서

○ 사물 인식 - YOLO 알고리즘

YOLO(You Only Look Once)는 대표적인 단일 단계 방식의 객체 탐지 알고리즘이다. 이미지를격자 그리드로 나누어 한 번에 클래스를 판단하고 이를 통합하여 최종으로 객체를 구분한다. 이 알고리즘을 사용하여 이미지 속의 객체들을 분류할 수 있게되었다. 이 알고리즘은 쓰레기를 분류하여 결과값을 넘겨주기위해 사용되었다.

※ 본문의 예시 내용을 지우고 과제 내용으로 변경하여 사용하세요

서비스 구성도 - 서비스 시나리오

쓰레기통 사용

- 1. 사용자가 쓰레기통 앞에 설치된 카메라에 쓰레기를 보여줌
- 2. 실시간으로 켜져 있는 카메라에 비춰진 쓰레기를 인식
- 3. 인식된 쓰레기에 해당하는 쓰레기통 오픈

지도 사용

- 1. 사용자가 앱을 실행
- 2. 지도 앱을 사용하여 내 위치 확인을 이용해 현재 위치 확인
- 3. 쓰레기통 위치가 마킹 되어져 있음으로 현재위치와 쓰레기통 거리를 확인 후 길찾기

스트리밍 사용

- 1. 사용자가 앱을 실행
- 2. 실시간 스트리밍 앱을 통해 쓰레기통에 설치된 카메라를 이용해 쓰레 기통 앞을 확인 후 불법투기나 훼손행위 신고 가능

| 하드웨어/센서 구성도

센서 종류	연결 핀	설명
서브 모터	VCC	라즈베리 파이의 Ground에 연결
	GND	라즈베리 파이의 5V 연결
	IN	라즈베리 파이의 21번 핀에 연결
적외선 송수 신	VCC	라즈베리 파이의 Ground에 연결
센서	GND	라즈베리 파이의 5V 연결
	IN	라즈베리 파이의 23번 핀에 연결
적외선 감지 센서	VCC	라즈베리 파이의 Ground에 연결
2.4	GND	라즈베리 파이의 5V에 연결
	IN	라즈베리 파이의 27번 핀에 연결
Camera	라즈베리 파이의 CSI Camera Connector에 연결	

메뉴 구성도

| 하드웨어 설계도

| 프로그램 - 목록

기능 분류	기능 구분	기능 설명
	카메라	카메라로 쓰레기를 서버로 전송
쓰레기통	서버	쓰레기를 인식하여 분석한 결과를 디바이스로 전달
	디바이스(Raspberry Pi)	서버에서 전달받은 값을 토대로 코드 실행
	카메라	카메라의 영상 녹화
스트리밍	서버	카메라 자체 서버를 이용해 디바이스로 영상 송출
	디바이스(Phone)	스트리밍 기능을 디바이스에서 이용
	디바이스(Phone)	현재 위치, 등록된 쓰레기통의 위치 표시
지도	Google Map API	현재 위치를 파악하여 지도에 표시
		현재 위치와 쓰레기통과의 거리 표시, 길 찾기 사용

| 참조- H/W 기능 실사사진

I : 각 쓰레기통에 달려있는 모터로써 쓰레기 분류에 맞는 모터가 작동하여 쓰레기통 입구 오픈

II : 각 쓰레기통에 달려있는 채움 감지 <u>세서로써</u> 쓰레기의 높이를 감지하여 App으로 알림

Thank you