Invest or Fall Behind:

Maintaining Quality in Hotelling Markets

Luke Zhao

October 2025

Maintaining Quality under Shocks

- "Dain's Place" vs. "Dimsum Asian Bistro":
 - Consumers have different tastes over food options.

Maintaining Quality under Shocks

- "Dain's Place" vs. "Dimsum Asian Bistro":
 - Consumers have different tastes over food options.

- Quality shocks hit unpredictably:
 - Fryer or oven breakdowns, chef leaves.
 - Restoring and maintaining quality is usually costly.

Maintaining Quality under Shocks

- "Dain's Place" vs. "Dimsum Asian Bistro":
 - Consumers have different tastes over food options.

- Quality shocks hit unpredictably:
 - Fryer or oven breakdowns, chef leaves.
 - Restoring and maintaining quality is usually costly.
- Common in other industries as well:
 - A TV show loses its leading star.
 - An app suffers from a recently spotted bug.

Research Questions

Horizontal Differentiation Heterogeneous Consumers Vertical Differentiation
Product Quality Differences

• How do firms dynamically invest to maintain product quality, facing heterogeneous consumers?

Research Questions

Horizontal Differentiation Heterogeneous Consumers Vertical Differentiation
Product Quality Differences

- How do firms dynamically invest to maintain product quality, facing heterogeneous consumers?
 - Does consumer heterogeneity intensify or dampen firms' competition in quality?
 - How does this interaction depend on the cost of quality investment?
 - Do firms invest in quality efficiently, over-invest, or under-invest?

First Look at the Model

- Two firms engage in dynamic quality competition (vertical, endogenous) ...
- ...in Hotelling markets (horizontal, exogenous).

First Look at the Model

- Two firms engage in dynamic quality competition (vertical, endogenous) ...
- ...in Hotelling markets (horizontal, exogenous).
- High-quality products face negative shocks from nature.
- Firms incur a cost to maintain high quality "product upgrade".

First Look at the Model

- Two firms engage in dynamic quality competition (vertical, endogenous) ...
- ...in Hotelling markets (horizontal, exogenous).
- High-quality products face negative shocks from nature.
- Firms incur a cost to maintain high quality "product upgrade".

• In each period, each firm decides whether to upgrade, faces nature's potential shocks, and chooses a price.

Preview of the Results

Upgrading Frequencies

- The upgrading frequency is non-monotonic in upgrading costs.
 - Maskin and Tirole (1987, 1988a, b); Pakes and McGuire (1994); Ericson and Pakes (1995); Rosenkranz (1995); Doraszelski and Markovich (2007); Doraszelski and Satterthwaite (2010); Besanko et al. (2010); Board and Meyer-ter Vehn (2013); Abbring et al. (2018).
 - Aghion et al. (2005); Gowrisankaran and Rysman (2012); Eizenberg (2014).
 - Often relying on additional modeling features, such as learning by doing or exit scrap value.

• Two upgrading modes, upgrading deterrence and open competition, emerge from modeling horizontal differentiation by Hotelling markets.

Preview of the Results

Welfare Implications

- Lower or higher upgrading cost: Firms under-upgrade. Intermediate upgrading costs: Firms over-upgrade.
 - Mankiw and Whinston (1986); Jones and Williams (2000); Ahuja and Novelli (2017).
 - Bloom et al. (2013); Goettler and Gordon (2011).
- A single model features both under- and over-investment, tied to the investment cost. Under-investment happens at two disjoint cost ranges.

Preview of the Results

Interactions of Differentiation

- Lower upgrading cost: as horizontal differentiation ↑, less vertical differentiation. Higher upgrading cost: as horizontal differentiation ↑, more vertical differentiation.
 - Shaked and Sutton (1982); Motta (1993); Degryse (1996); Irmen and Thisse (1998); Vanhaecht and Pauwels (2005); Gabszewicz and Wauthy (2012).
 - Two-period, with backward induction arguments.
- Horizontal differentiation changes investment dynamics:
 - Strengthen the quality competition if the competition is already strong.

• Weakens the quality competition if the competition is already weak.

Outline of the Talk

The Model

Vertical differentiation only

- Benchmark: social planner
- Duopoly competition
- Welfare implications

Interaction of differentiation

Extensions

- Benchmark: social planner
- Duopoly competition
- Welfare implications

Firms

- Two long-lived firms, located at two ends of a Hotelling market [0,1].
 - Firms' locations are fixed at 0 and 1.

Firms

- Two long-lived firms, located at two ends of a Hotelling market [0, 1].
 - Firms' locations are fixed at 0 and 1.
- Discrete time, infinite horizon, period length Δ .
 - Δ models how fast firms can take actions.
 - Consider firms can react fast: $\Delta \to 0$.
 - Allowing for cleaner exposition and easier interpretations of the results.

Firms

- Two long-lived firms, located at two ends of a Hotelling market [0, 1].
 - Firms' locations are fixed at 0 and 1.
- Discrete time, infinite horizon, period length Δ .
 - Δ models how fast firms can take actions.
 - Consider firms can react fast: $\Delta \to 0$.
 - Allowing for cleaner exposition and easier interpretations of the results.
- Each firm produces a product with high or low quality at zero cost:

$$q_i \in \{L,H\}, \quad v_H = 1, \quad v_L \in (0,1).$$

Consumers

• At each period, there are mass Δ consumers uniformly distributed on [0,1].

The Model 1:

Consumers

- At each period, there are mass Δ consumers uniformly distributed on [0,1].
- Horizontal differentiation: Linear transportation cost k. Assume $k \leq 1/3$.
- Consumers are short-lived, and each consumer purchases at most 1 product.

Pricing: Without Transportation Cost

$$k = 0$$

- Reduce to Bertrand competition under quality pair (q_0, q_1) .
- $\pi_0(H,H) = \pi_0(L,L) = 0$.

Pricing: Without Transportation Cost

$$k = 0$$

- Reduce to Bertrand competition under quality pair (q_0, q_1) .
- $\pi_0(H,H) = \pi_0(L,L) = 0$.
- In the imbalanced state (H, L):
 - Firm 0: Charges $p_0 = 1 v_L$ and occupies the market.
 - Firm 1: Charges $p_1 = 0$ and makes no sales.

$$\pi_0(H,L)=(1-v_L)\Delta,\quad \pi_0(L,H)=0.$$

• There is only one profitable state: being the quality leader.

Pricing: With Transportation Cost

- Hotelling competition under quality pair (q_0, q_1) .
- In the balanced state (H, H):
 - $p_0 = p_1 = k$.

$$\pi_0(H,H)=\pi_1(H,H)=\frac{k}{2}\Delta.$$

• Both firms can charge higher prices from their more loyal customers. Details

Pricing: With Transportation Cost

- Hotelling competition under quality pair (q_0, q_1) .
- In the imbalanced state (H, L): (with relatively small k)
 - Firm 0: Charges $p_0 = 1 v_L k$ and occupies the market.
 - Firm 1: Charges $p_1 = 0$ and makes no sales.

$$\pi_0(H,L)=(1-v_L-k)\Delta,\quad \pi_0(L,H)=0.$$

 The market leader has to charge lower prices to attract the opponent's more loyal customers.

Quality

In each period:

- When $q_i = H$, nature can place a shock leading to quality decay, setting $q_i = L$.
 - Independent shocks between products. Relaxed in an extension.

Quality

In each period:

- When $q_i = H$, nature can place a shock leading to quality decay, setting $q_i = L$.
 - Independent shocks between products. Relaxed in an extension.
- When $q_i = L$, firm i can upgrade q_i to H by paying a (lump-sum) cost c.
 - No further shocks from nature if $q_i = L$.

Period n

Period n

Period n

Period n

• Results are robust under alternative stage timeline: same results hold if firms can react to nature's shocks in the same period.

Firms' Strategies

- Markov strategies with payoff-relevant state (q_0, q_1) .
- Firm *i*'s strategy:
 - Upgrading: when $q_i=L$, making contingent upgrading decisions:

$$\sigma_i : \{(q_i = L, q_j)\} \to [0, 1].$$

Firms' Strategies

- Markov strategies with payoff-relevant state (q_0, q_1) .
- Firm *i*'s strategy:
 - Upgrading: when $q_i=L$, making contingent upgrading decisions:

$$\sigma_i:\{(q_i=L,q_j)\}\to [0,1].$$

• Pricing (static NE pricing employed):

$$p_i:\{(q_i,q_j)\}\to\mathbb{R}_+.$$

Equilibrium Concept

- Symmetric Markov Perfect Equilibrium (S-MPE). Details
 - In case of multiplicity, we consider the joint-profit maximizing S-MPE.

"Continuous Time" Limit

In the limit $\Delta \to 0$ of the discrete time model:

- Common discount factor $\delta = e^{-r\Delta} \rightarrow \text{Discount rate } r > 0$.
- Shock probability $b=1-e^{-\beta\Delta}$ \rightarrow Shock rate $\beta>0$.
- Firms mixed strategies can
 - converge to a rate λ : $\lambda\Delta$ is the approximated mixing probability.
 - converge to a probability that implies immediate state transitions.

Vertical Differentiation Only

Social Planner Benchmark

• Suppose k=0.

Social Planner Benchmark

- Suppose k=0.
- A utilitarian social planner maximizes total surplus.
 - Would like the consumer to choose the high quality product if there is one.
 - Set $p_0=p_1=0$ and let the consumers freely choose which product to purchase.
 - Stage social surplus is $\max\{v_{q_0}, v_{q_1}\}$.

Social Planner Benchmark

- Suppose k=0.
- A utilitarian social planner maximizes total surplus.
 - Would like the consumer to choose the high quality product if there is one.
 - Set $p_0 = p_1 = 0$ and let the consumers freely choose which product to purchase.
 - Stage social surplus is $\max\{v_{q_0}, v_{q_1}\}$.
- No duplication of high quality as $\Delta \to 0$: At (L,L), should the social planner upgrade to (H,L)?

Social Planner's Optimal Policy

Proposition. The social planner's optimal policy is to keep one product at high quality if

$$\frac{1 - v_L}{r + \beta} \equiv \bar{c} \geqslant c.$$

Otherwise, the social planner's optimal policy is to never upgrade any product.

Social Planner's Optimal Policy

Proposition. The social planner's optimal policy is to keep one product at high quality if

$$\frac{1 - v_L}{r + \beta} \equiv \bar{c} \geqslant c.$$

Otherwise, the social planner's optimal policy is to never upgrade any product.

• The social planner upgrades at (L,L) if the present value of the gain is greater than the upgrading cost. Details

Theorem. There is a unique S-MPE for each c>0 at the limit $\Delta\to 0$.

Theorem. There is a unique S-MPE for each c>0 at the limit $\Delta\to 0$.

• When facing homogeneous consumers, firms' upgrading frequency decreases in upgrading cost c.

Theorem. There is a unique S-MPE for each c>0 at the limit $\Delta\to 0$.

• Consider the MPE when $0 < c < \tilde{c}$.

Upgrading at (L, L), mixing at (L, H)/(H, L):

Firm 0:
$$(L, H) \longrightarrow (H, H)$$

0 profit 0 profit

Upgrading at (L, L), mixing at (L, H)/(H, L):

Upgrading at (L, L), mixing at (L, H)/(H, L):

• By mixing at (H, L), firm 1 controls firm 0's upgrading incentive by regulating the expected duration of firm 0 at its profitable state (H, L).

Upgrading at (L, L), mixing at (L, H)/(H, L):

- By mixing at (H, L), firm 1 controls firm 0's upgrading incentive by regulating the expected duration of firm 0 at its profitable state (H, L).
- Firm 0 needs to be indifferent and plays the same mixing strategy.

Upgrading at (L, L), mixing at (L, H)/(H, L):

- By mixing at (H, L), firm 1 controls firm 0's upgrading incentive by regulating the expected duration of firm 0 at its profitable state (H, L).
- Firm 0 needs to be indifferent and plays the same mixing strategy.
- As $c \uparrow$, firm 1's mixing \downarrow to extend the duration at (H, L).

Proposition. If $c \le \tilde{c}$, the following is the limit of a symmetric MPE:

- Firm 0 upgrades at (L, L) for sure.
- Firm 0 upgrade at (L, H) at a rate f(c).

Moreover, f decreases in c.

Proposition. If $c \le \tilde{c}$, the following is the limit of a symmetric MPE:

- Firm 0 upgrades at (L, L) for sure.
- Firm 0 upgrade at (L, H) at a rate f(c).

Moreover, f decreases in c.

- The upgrading incentive is provided by the potential future profits only.
- Firms upgrade to keep the opportunity of being the quality leader in the future.

• Consider the MPE when $\tilde{c} < c < \bar{c}$.

MPE at Intermediate Upgrading Costs

- As c increases, firms need even larger upgrading incentives.
- Mixing at (L,L): Mixing realization can be (H,L), so that firm 0's upgrade can have immediate profit.

MPE at Intermediate Upgrading Costs

- As c increases, firms need even larger upgrading incentives.
- Mixing at (L,L): Mixing realization can be (H,L), so that firm 0's upgrade can have immediate profit.
- As $\Delta \to 0$, the state (L, L) immediately transitions to (H, H), (H, L), or (L, H).

Let $\hat{g}(\Delta)$ be the upgrading probability at (L, L).

• Does $\hat{g}(\cdot)$ converge to a rate?

$$\lim_{\Delta \to 0} \hat{g}(\Delta) = 0 \quad \text{ and } \quad \lim_{\Delta \to 0} \frac{\hat{g}(\Delta)}{\Delta} = \hat{g} > 0.$$

Let $\hat{g}(\Delta)$ be the upgrading probability at (L, L).

• Does $\hat{g}(\cdot)$ converge to a rate?

$$\lim_{\Delta \to 0} \hat{g}(\Delta) = 0 \quad \text{ and } \quad \lim_{\Delta \to 0} \frac{\hat{g}(\Delta)}{\Delta} = \hat{g} > 0.$$

- Suppose firm 1 upgrades with a rate in the limit:
 - At the moment when the state hits (L, L), firm 1 upgrade with 0 probability.
 - Firm 0 should then upgrade for sure, and get to (H, L) for sure.

 $\hat{g}(\cdot)$ must converge to a probability:

$$\lim_{\Delta \to 0} \hat{g}(\Delta) = g \in (0,1).$$

The possibility of landing at (H, H) counters the first-mover advantage.

 $\hat{g}(\cdot)$ must converge to a probability:

$$\lim_{\Delta \to 0} \hat{g}(\Delta) = g \in (0,1).$$

The possibility of landing at (H, H) counters the first-mover advantage.

• $\mathbb{P}(\mathsf{At} \ \mathsf{least} \ \mathsf{one} \ \mathsf{firm} \ \mathsf{upgrades} \ \mathsf{in} \ \mathsf{a} \ \mathsf{period}) = 1 - (1-g)^2 > 0 \ \mathsf{even} \ \mathsf{if} \ \Delta \to 0.$

 $\hat{g}(\cdot)$ must converge to a probability:

$$\lim_{\Delta \to 0} \hat{g}(\Delta) = g \in (0, 1).$$

The possibility of landing at (H, H) counters the first-mover advantage.

- $\mathbb{P}(\mathsf{At} \ \mathsf{least} \ \mathsf{one} \ \mathsf{firm} \ \mathsf{upgrades} \ \mathsf{in} \ \mathsf{a} \ \mathsf{period}) = 1 (1-g)^2 > 0 \ \mathsf{even} \ \mathsf{if} \ \Delta \to 0.$
- As $\Delta \to 0$, the state (L,L) immediately transitions to (H,H), (H,L), or (L,H) with probabilities

$$\frac{g^2}{g^2+2g(1-g)}, \quad \frac{g(1-g)}{g^2+2g(1-g)}, \quad \frac{g(1-g)}{g^2+2g(1-g)}.$$

• Larger g: More likely to land at (H, H).

MPE at Intermediate Upgrading Costs

Proposition. If $\tilde{c} < c \leqslant \bar{c}$, the following is the limit of a symmetric MPE:

- Firm 0 upgrades at (L,L) with probability g(c).
- Firm 0 does not upgrade at (L, H).

Moreover, g decreases in c.

- More incentives to keep indifference at (L,L) as c increases. More likely to land at (H,L) for smaller g.
- $g(\bar{c}) = 0$: no upgrade at the boundary.

MPE: Vertical Differentiation Only

Theorem. There is a unique S-MPE for each c>0 at the limit $\Delta\to 0$.

Open Competition MPE

- "Upgrade at (L, L), Mixing at (L, H)" and "Mixing at (L, L), No upgrade at (L, H)":
 - Mixing for correct upgrading incentives at $({\cal L},{\cal L})$.
 - Continuity: continuous, decreasing mixing rate / probability and coincide at $\tilde{c}.$
 - Outcome distributions of (H, H), (H, L), and (L, H).
- When there is only vertical differentiation, firms engage in open competition until the cost is too high.

Outcome Distribution

Ergodic outcome distribution of states in MPE:

- τ_{HH} : the proportion of time spent at the balanced state (H, H).
- τ_I : the proportion of time spent at the imbalanced states (H, L)/(L, H).
- These measure the extent of vertical differentiation. More

Over-Upgrading

Corollary. Firms over-upgrade if $c \leqslant \bar{c}$ and never under-upgrade.

Asymmetric MPE Example

Vertical Differentiation Only: Summary

- There is only one competition mode: open competition.
- Firms' upgrading frequency decreases in c.
- Firms over-upgrade compared with the social planner.

Vertical and Horizontal Differentiation

Social Planner Benchmark

• Now consider k > 0.

Social Planner Benchmark

- Now consider k > 0.
- There are merits to keep both products at high quality.
 - From (H,L) to (H,H), no consumer is worse off, and consumers near location 1 strictly benefit.
- ullet Conjecture: The social planner should upgrade both products if c is sufficiently low.

Social Planner's Optimal Policy

Proposition. There exists $c^A < c^N$ such that social planner's optimal policy is

• Some policies are never optimal: not consistent when comparing marginal cost and marginal benefit of upgrading. Details

- · Changes in mixing
- Interactions of two dimensions of differentiation

- New competition mode
 - New MPE

- · Changes in mixing
- Interactions of two dimensions of differentiation

- · New competition mode
- New MPE

- · Changes in mixing
- Interactions of two dimensions of differentiation

Theorem. Suppose $0 < k \leqslant 2/9$ and $0 < v_L \leqslant 1-3k$. There exists $\hat{c} \in (c_3,\bar{c})$ such that for a given upgrading cost c,

$$\frac{\partial \tau_{HH}}{\partial k} \geqslant 0 \text{ if } c \in (c_3,\hat{c}], \quad \text{ and } \quad \frac{\partial \tau_{HH}}{\partial k} < 0 \text{ if } c \in (\hat{c},\bar{c}).$$

- Transportation cost.
- Higher horizontal differentiation.

$$\partial \tau_{HH}/\partial k > 0$$
:

k 1

 τ_{HH} \uparrow

- Transportation cost.
- Higher horizontal differentiation.

- Time spent at (H, H) in equilibria.
- Less vertical differentiation.

- Transportation cost.
- Higher horizontal differentiation.

- Time spent at (H, H) in equilibria.
- Less vertical differentiation.

As horizontal differentiation increases, there is less vertical differentiation in the open competition equilibria.

- Transportation cost.
- Higher horizontal differentiation.

- Time spent at (H, H) in equilibria.
- More vertical differentiation.

As horizontal differentiation increases, there is more vertical differentiation in the open competition equilibria.

Theorem. Suppose $0 < k \leqslant 2/9$ and $0 < v_L \leqslant 1-3k$. There exists $\hat{c} \in (c_3,\bar{c})$ such that for a given upgrading cost c,

$$\frac{\partial \tau_{HH}}{\partial k} \geqslant 0 \text{ if } c \in (c_3,\hat{c}], \quad \text{ and } \quad \frac{\partial \tau_{HH}}{\partial k} < 0 \text{ if } c \in (\hat{c},\bar{c}).$$

- For $c \in (c_3, \hat{c})$, two dimensions of differentiation are substitutes.
- For $c \in (\hat{c}, \bar{c})$, two dimensions of differentiation are complements.

When k > 0, both (H, L) and (H, H) provide upgrading incentives:

- (H,L) still provide stronger incentives: $\pi_0(H,L) > \pi_0(H,H)$.
 - Being the quality leader still grants more profits.

When k > 0, both (H, L) and (H, H) provide upgrading incentives:

- (H,L) still provide stronger incentives: $\pi_0(H,L) > \pi_0(H,H)$.
 - Being the quality leader still grants more profits.
- $\pi_0(H,H)$ increases in k.
 - Firms can charge higher price due to higher market powers.

When k > 0, both (H, L) and (H, H) provide upgrading incentives:

- (H,L) still provide stronger incentives: $\pi_0(H,L) > \pi_0(H,H)$.
 - Being the quality leader still grants more profits.
- $\pi_0(H,H)$ increases in k.
 - Firms can charge higher price due to higher market powers.
- $\pi_0(H,L)$ decreases in k.
 - Quality leader chooses lower the price to attract far away consumers and to keep the market dominance.

When k > 0, both (H, L) and (H, H) provide upgrading incentives:

- (H,L) still provide stronger incentives: $\pi_0(H,L) > \pi_0(H,H)$.
 - Being the quality leader still grants more profits.
- $\pi_0(H,H)$ increases in k.
 - Firms can charge higher price due to higher market powers.
- $\pi_0(H, L)$ decreases in k.
 - Quality leader chooses lower the price to attract far away consumers and to keep the market dominance.

τ_{HH} decreases in c.

• Quality competition becomes less fierce as c increases.

• Fix $c \in (c_3,\hat{c})$. $\pi_0(H,H)$ and $\pi_0(H,L)$ provide just sufficient upgrading incentives.

• Fix $c \in (c_3,\hat{c})$. $\pi_0(H,H)$ and $\pi_0(H,L)$ provide just sufficient upgrading incentives.

- Fix $c \in (c_3, \hat{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.
- Without changing au_{HH} and au_{I} , overall incentive is larger since $au_{HH} > au_{I}$.

- Fix $c \in (c_3, \hat{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.
- Without changing au_{HH} and au_{I} , overall incentive is larger since $au_{HH} > au_{I}$.
- Relocate more time to τ_{HH} since $\pi_0(H,L) > \pi(H,H)$.

- Fix $c \in (c_3, \hat{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.
- Without changing au_{HH} and au_I , overall incentive is larger since $au_{HH} > au_I$.
- Relocate more time to τ_{HH} since $\pi_0(H, L) > \pi(H, H)$.

At lower cost levels:

- Firms engage in fierce competition in quality.
- More market power grants more profits and further fuels competition.
- Even more upgrading, leading to less quality differentiation.

Dominant State Enhancing: Firms spend even more time in balanced (H,H) state as horizontal differentiation increases.

• Fix $c \in (\hat{c}, \bar{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.

• Fix $c \in (\hat{c}, \bar{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.

- Fix $c \in (\hat{c}, \bar{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.
- Without changing τ_{HH} and τ_{I} , overall incentive is smaller since $\tau_{HH} < \tau_{I}$.

- Fix $c \in (\hat{c}, \bar{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.
- Without changing τ_{HH} and τ_{I} , overall incentive is smaller since $\tau_{HH} < \tau_{I}$.
- Relocate more time to τ_I since $\pi_0(H, L) > \pi(H, H)$.

- Fix $c \in (\hat{c}, \bar{c})$. $\pi_0(H, H)$ and $\pi_0(H, L)$ provide just sufficient upgrading incentives.
- Without changing au_{HH} and au_{I} , overall incentive is smaller since $au_{HH} < au_{I}$.
- Relocate more time to τ_I since $\pi_0(H, L) > \pi(H, H)$.

At higher cost levels:

- Upgrading incentives come from the possibility of being the quality leader.
- Higher market power reduces the gain being a quality leader.
- Lower incentive to compete for the leader position. More likely that one firm upgrades instead of both.

Dominant State Enhancing: Firms spend even more time in imbalanced (H,L)/(L,H) states as horizontal differentiation increases.

Duopoly Competition

- New competition mode
- New MPE

Dominant state enhancing:

- · Substitutes at lower cost.
- Complements at higher cost.

Duopoly Competition

- New competition mode
- New MPE

Dominant state enhancing:

- Substitutes at lower cost.
- Complements at higher cost.

Always Upgrade

Proposition. The strategy profile always upgrading when possible is the limit of a symmetric MPE if

$$c \leqslant \frac{\pi_0(H, H) - \pi_0(L, H)}{r + \beta} \equiv c_3.$$

Always Upgrade

Proposition. The strategy profile always upgrading when possible is the limit of a symmetric MPE if

$$c \leqslant \frac{\pi_0(H, H) - \pi_0(L, H)}{r + \beta} \equiv c_3.$$

- The upgrading cost is smaller than the present value of gain from the upgrade.
 - And this gain is positive since k > 0.

Always Upgrade

Proposition. The strategy profile always upgrading when possible is the limit of a symmetric MPE if

$$c\leqslant \frac{\pi_0(H,H)-\pi_0(L,H)}{r+\beta}\equiv c_3.$$

- The upgrading cost is smaller than the present value of gain from the upgrade.
 - And this gain is positive since k > 0.
- How about the condition at (L, L)?

- If firm 1 always upgrade at (L, L):
 - If firm 0 also upgrades:

$$(L,L) \xrightarrow{\quad \mathsf{Upgrading} \quad} (H,H)$$

- If firm 1 always upgrade at (L, L):
 - If firm 0 also upgrades:

$$(L,L) \xrightarrow{\text{Upgrading}} (H,H)$$

• If firm 0 does not upgrade: $(\pi_0(H,H) - \pi_0(L,H))/(r+\beta) \ge c$

$$(L,L) \longrightarrow (L,H) \xrightarrow{\mathsf{Upgrading}} (H,H)$$

- If firm 1 always upgrade at (L, L):
 - If firm 0 also upgrades:

$$(L,L) \xrightarrow{\mathsf{Upgrading}} (H,H)$$

• If firm 0 does not upgrade: $(\pi_0(H,H) - \pi_0(L,H))/(r+\beta) \ge c$

$$(L,L) \xrightarrow{\qquad} (L,H) \xrightarrow{\qquad \text{Upgrading} \qquad} (H,H)$$

$$0 \text{ Duration as } \Delta \to 0$$

- If firm 1 always upgrade at (L, L):
 - If firm 0 also upgrades:

$$(L,L) \xrightarrow{\mathsf{Upgrading}} (H,H)$$

• If firm 0 does not upgrade: $(\pi_0(H,H) - \pi_0(L,H))/(r+\beta) \ge c$

$$(L,L) \xrightarrow{\qquad} (L,H) \xrightarrow{\qquad \text{Upgrading} \qquad} (H,H)$$

$$0 \text{ Duration as } \Delta \to 0$$

• Self-fulfilling: Firms might just upgrade as well at (L, L), as they believe their opponent will upgrade. This suggests possible multiplicity.

• Can firms agree on not upgrading at (L, L)?

Proposition. If $c_1 < c \le c_2$, the following is the limit of a symmetric MPE:

- Firm 0 does not upgrade at (L, L).
- Firm 0 upgrades at (L, H) for sure.

• Can firms agree on not upgrading at (L, L)?

Proposition. If $c_1 < c \le c_2$, the following is the limit of a symmetric MPE:

- Firm 0 does not upgrade at (L, L).
- Firm 0 upgrades at (L, H) for sure.

• Competition trigger: A deviation to upgrade triggers a forever quality war.

If Firm 1 Deviates

If Firm 1 Deviates

If Firm 1 Deviates

Upgrade Deterrence: Lower Cost

If Firm 1 Deviates

• Horizontal differentiation is necessary: If k = 0, 1, 2 and 3 coincide with each other, and no positive range of c supports upgrading deterrence.

Upgrade Deterrence: Higher Cost

Proposition. If $c_2 < c \leqslant c_3$, the following is the limit of a symmetric MPE:

- Firm 0 does not upgrade at (L, L).
- Firm 0 upgrades at (L, H) with a rate h(c).

Moreover, h(c) decreases in c.

Upgrade Deterrence: Higher Cost

Proposition. If $c_2 < c \leqslant c_3$, the following is the limit of a symmetric MPE:

- Firm 0 does not upgrade at (L, L).
- Firm 0 upgrades at (L, H) with a rate h(c).

Moreover, h(c) decreases in c.

Switch to a (in expectation) finite-length quality war.

Upgrade Deterrence: Higher Cost

- At higher cost levels:
 - Higher self cost: forever quality war is too costly to implement.
 - Higher opponent cost: forever quality war offers more deterrence than necessary.
 - ⇒ Switch to quality war with (expected) finite length.
- As c increases, shorter length is required and desired. At c_3 , deterrence is too costly to maintain.
- Upgrade deterrence offers higher joint profits compared with always upgrading when possible.

MPE

Theorem. The joint-profit maximizing S-MPE in the limit is

Non-monotonicity of upgrading frequency in upgrading cost.

Higher Horizontal Differentiation

Theorem. The joint-profit maximizing S-MPE in the limit is

- $c_1, c_3 \uparrow$: Higher profits at (H, H).
- $\bar{c} \Downarrow$: Lower profits at (H, L).

Over- and Under-Upgrading

• While the social planner keeps (H, L):

- Under-upgrade at lower cost level: Upgrade deterrence.
- Under-upgrade at higher cost level: Failure to internalize consumer surplus.

Correlated Shocks

	Shock to Firm 1	No Shock to Firm 1
Shock to Firm 0	b^2	b(1 - b)
No Shock to Firm 0	b(1-b)	$(1 - b)^2$

Correlated Shocks

• Shocks between firms can be correlated. Let ρ be the correlation coefficient.

	Shock to Firm 1	No Shock to Firm 1
Shock to Firm 0	$b^2 + \rho b (1-b)$	$b(1-b) - \rho b(1-b)$
No Shock to Firm 0	$b(1-b) - \rho b(1-b)$	$(1-b)^2 + \rho b(1-b)$

Correlated Shocks

• Shocks between firms can be correlated. Let ρ be the correlation coefficient.

	Shock to Firm 1	No Shock to Firm 1
Shock to Firm 0	$b^2 + \rho b(1-b)$	$b(1-b) - \rho b(1-b)$
No Shock to Firm 0	$b(1-b) - \rho b(1-b)$	$(1-b)^2 + \rho b(1-b)$

- For this talk: $\rho \in (0,1]$. Arguments for negative correlations are symmetric.
- ρ remains constant as $\Delta \to 0$.

The Effect of Correlation

• (H,H) cannot transition into (L,L) directly as $\Delta \to 0$.

The Effect of Correlation

• (H,H) can transition into (L,L) directly.

Upgrading Deterrence

• Deterrence is less effective since the punishment phase can be terminated sooner when (H,H) falls to (L,L) directly.

Upgrading Deterrence

- Deterrence is less effective since the punishment phase can be terminated sooner when (H,H) falls to (L,L) directly.
- Finite-length punishment MPE disappears when $\rho=1$.

Open Competition

• Less upgrading incentives due to skipping (H,L) and (L,H). Upgrading frequencies must be lower to compensate for the loss of incentives.

Open Competition

- Less upgrading incentives due to skipping (H,L) and (L,H). Upgrading frequencies must be lower to compensate for the loss of incentives.
- First open competition MPE disappears when $\rho = 1$.

Conclusion

- With horizontal differentiation:
 - Two competition modes: upgrading deterrence and open competition.
 - Non-monotonic upgrading frequency and efficiency.
 - Under-upgrade first, then over-upgrade, then under-upgrade.

Conclusion 65

Conclusion

- With horizontal differentiation:
 - Two competition modes: upgrading deterrence and open competition.
 - Non-monotonic upgrading frequency and efficiency.
 - Under-upgrade first, then over-upgrade, then under-upgrade.
- Horizontal differentiation has dominant state enhancing effect:
 - At lower cost levels, horizontal differentiation substitutes vertical differentiation.
 - At higher cost levels, horizontal differentiation complements vertical differentiation.

Conclusion 65

• Hotelling competitions under quality pair (q_0,q_1) . Consider (H,H) first.

Appendix_

- Hotelling competitions under quality pair (q_0, q_1) . Consider (H, H) first.
- Balancing higher margin and losing demand when raising price.

Appendix 2

- Hotelling competitions under quality pair (q_0, q_1) . Consider (H, H) first.
- Balancing higher margin and losing demand when raising price.
- $k \Uparrow$: Less competition

Appendix 2

- Hotelling competitions under quality pair (q_0, q_1) . Consider (H, H) first.
- Balancing higher margin and losing demand when raising price.
- $k \uparrow$: Less competition, less demand loss from raising price.
- $\pi_0(H,H)=k/2$. Increasing in k. Back

• At (H,L), for v_L not too large, Firm 0 occupies the market.

- At (H, L), for v_L not too large, Firm 0 occupies the market.
- $k \uparrow$: Harder to reach consumers far away, lowering the price.
- $\pi_0(H,L)=(1-v_L-k)\Delta$. Decreasing in k. Back

Symmetry

- Harsanyi Symmetry-Invariance Criterion.
- Robustness considerations:
 - Fixed costs: Asymmetric equilibria, such as Chicken, cannot survive if there is a (small) fixed cost every period.
 - Evolutionary stability: In each round, a new player is drawn from a large population to take the role.
- Efficiency: Firms are still not efficient in most of the asymmetric equilibria. Examples come later. Back

Appendix 4

MPE

- Industry dynamics: Focusing on quality evolution.
- Traditions in theory and empirical literature: Maskin and Tirole's Trilogy (1987, 1988a, 1988b), Ericson and Pakes (1995), Doraszelski and Satterthwaite (2010), Brown and MacKay (2023), Betancourt et al. (2024); Bajari, Benkard and Levin (2007); Aguirregabiria, Collard-Wexler and Ryan (2021).
 - Tractability concerns.
- Later: Can implement (seemingly) collusion outcome with MPE already.

Appendix

No Upgrade at (L, L)

$$W_N(L,L) = v_L \Delta + e^{-r\Delta} W_N(L,L)$$

No Upgrade at (L, L)

No Upgrade at (L, L)

• Stays at (L, L) forever and receives the perpetuity of the flow payoff $q_L = v_L$.

Upgrade at (L, L)

$$\begin{split} W_U(L,L) = & -c \\ & + e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta} W_U(H,L) \right] \\ & + \left(1 - e^{-\beta\Delta} \right) \left[v_L \Delta + e^{-r\Delta} W_U(L,L) \right] \end{split}$$

Upgrade at (L, L)

$$\begin{split} W_U(L,L) = \boxed{-c} & \text{ upgrading cost} \\ & + e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta} W_U(H,L) \right] \\ & + \left(1 - e^{-\beta\Delta} \right) \left[v_L \Delta + e^{-r\Delta} W_U(L,L) \right] \end{split}$$

Upgrade at (L, L)

$$\begin{split} W_U(L,L) &= \begin{array}{c|c} -c & \text{upgrading cost} \\ & \text{no shock} \end{array} + e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta} W_U(H,L) \right] \\ &+ \left(1 - e^{-\beta\Delta} \right) \left[v_L \Delta + e^{-r\Delta} W_U(L,L) \right] \end{split}$$

Upgrade at (L, L)

$$\begin{split} W_U(L,L) &= \begin{array}{c|c} -c & \text{upgrading cost} \\ & \text{no shock} & +e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta}W_U(H,L)\right] \\ & \text{shock} & +\left(1-e^{-\beta\Delta}\right) \left[v_L\Delta + e^{-r\Delta}W_U(L,L)\right] \end{split}$$

Upgrade at (L, L)

$$\begin{split} W_U(L,L) &= \begin{array}{c|c} -c & \text{upgrading cost} \\ & \text{no shock} & +e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta}W_U(H,L)\right] \\ & \text{shock} & +\left(1-e^{-\beta\Delta}\right) \left[v_L\Delta + e^{-r\Delta}W_U(L,L)\right] \\ \\ W_U(H,L) &= & e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta}W_U(H,L)\right] \\ & +\left(1-e^{-\beta\Delta}\right) \left[v_L\Delta + e^{-r\Delta}W_U(L,L)\right] \end{split}$$

Upgrade at (L, L)

$$\begin{split} W_U(L,L) &= \begin{array}{c|c} -c & \text{upgrading cost} \\ & \text{no shock} & +e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta}W_U(H,L)\right] \\ & \text{shock} & + \left(1-e^{-\beta\Delta}\right) \left[v_L\Delta + e^{-r\Delta}W_U(L,L)\right] \\ W_U(H,L) &= e^{-\beta\Delta} \left[1\Delta + e^{-r\Delta}W_U(H,L)\right] & \xrightarrow{\Delta \to 0} & W_U(L,L) = \frac{1}{r} - \frac{(\beta+r)c}{r} \\ & + \left(1-e^{-\beta\Delta}\right) \left[v_L\Delta + e^{-r\Delta}W_U(L,L)\right] \end{split}$$

• Stays at (H,L) forever, receives the perpetuity of the flow payoff 1, and pays the costs. (Back)

Firms' Long-Run Average Joint Profits

- We can also use τ_B and τ_I to calculate firms' long-run average joint profits.
- Long-run: free of the influence of the initial state.

Firms' Long-Run Average Joint Profits

- We can also use τ_B and τ_I to calculate firms' long-run average joint profits.
- Long-run: free of the influence of the initial state.
- Long-run average profit is defined as

$$2\tau_{HH}\pi_i(1,1) + \tau_I\left[\pi_i(1,v_L) + \pi_i(v_L,1)\right] - \mathbb{E}(\text{upgrading cost}).$$

where the expectation is calculated according to the upgrading frequency of each state in the MPE.

Firms' Long-Run Average Joint Profits

Proposition. Firms' long-run average joint profit is 0 if c = 0 or $c > \bar{c}$. At $0 < c < \bar{c}$, firm's long-run average joint profit is increasing in c.

Appendix S

Asymmetric MPE Example

No Chicken (One firm upgrades at (L, L) and no one upgrades elsewhere) MPE if $c < \tilde{c}$:

- In Chicken Firm 1 does not upgrade at (H, L).
- Firm 0 has strict incentive to upgrade at (L,H) and (L,L), even if Firm 1 upgrades at (L,L) for sure.

Asymmetric MPE Example

Proposition. If $c_3 < c < \tilde{c}$, there exists an (asymmetric) MPE with the limit of the following form:

- Firm 0 upgrades at (L, L) for sure and upgrade with a rate at (L, H).
- Firm 1 upgrades with a probability at (L,L) and does not upgrade at (H,L).
- The range of c supporting this MPE coincides with the first open competition MPE.
- When k = 0, $c_3 = 0$.

Asymmetric MPE Example

Firm 0 upgrade at (L,L) for sure and upgrade with a rate at (L,H). Firm 1 upgrade with a probability at (L,L) and does not upgrade at (H,L).

- Firm 0's strategy is the same as in the symmetric MPE: Firm 1 is best responding.
- Firm 1 mixing with probability at (L,L) offers Firm 0 a larger upgrading incentive at (L,L).
- States on path: (H, H), (H, L), and (L, H). Inefficiency due to competition.
- Harder to describe, but minor new insights.

Upgrading both products at (L, L) *but no product at* (H, L)*:*

- Upgrading both product at (L, L): Marginal Benefit of the Second High $\geqslant c$.
- No upgrade at (H,L): Marginal Benefit of the Second High $\leqslant c$.

Upgrading one product at (L, L) *and one product at* (H, L):

- Upgrading one product at (L,L): Marginal Benefit of the Second High $\leqslant c$.
- Upgrading one product at (H,L): Marginal Benefit of the Second High $\geqslant c$.

No upgrading at (L, L) but upgrading one product at (H, L):

- Suppose the gain from (L, L) to (H, H) is 2Δ .
- If the firms evenly divide the market:

No upgrading at (L, L) but upgrading one product at (H, L):

- Suppose the gain from (L, L) to (H, H) is 2Δ .
- But consumers re-allocate:

• The gain from the first high-quality product is higher than from the second.

Increasing c has two effects:

Cost Effect

Each upgrade is more expensive

• ↓ joint profits.

Increasing c has two effects:

Cost Effect
Each upgrade is more expensive

• ↓ joint profits.

Competition Effect
Upgrading is less frequent

• ↑ joint profits.

Increasing c has two effects:

Cost Effect
Each upgrade is more expensive

• ↓ joint profits.

Competition Effect Upgrading is less frequent

- ↑ joint profits.
- Dominating when k = 0.
- Influenced by the size of k.

- Decrease in *c* initially:
 - For k>0, the existence of market power enables an always-upgrading region.
 - Only direct cost effect presents hence dominates.

- Can decrease in c for larger c, if shocks are frequent enough:
 - Firms can maintain this MPE for more frequent shocks due to complementarity.

Direct cost effect is stronger when shocks are frequent enough.

Efficiency at Other Cost Ranges

- Sufficiently low costs: both the social planner and the firms always upgrade.
 Efficient.
- First upgrading deterrence: the steady state outcome depends on the initial state.
 - Initial state not (L, L): steady state at (H, H), efficient.
 - Initial state (L, L): steady state at (L, L), under-upgrade.
- Sufficiently high costs: both the social planner and the firms never upgrade.
 Efficient. Back