臺北市 106 學年度高級中等學校

學生電腦軟體設計競賽 開放組決賽試題

題目一: 設定安全的使用者密碼

設計說明:資訊安全議題日益重要,許多網站在創建帳號時會檢查使用者的密碼強度。如果發現使用者的密碼不符規則,網站會請使用者輸入更安全的密碼。

- 1. 請設計一個網頁介面,提供使用者輸入帳號名稱與密碼(帳號無命名規則)。
- 2. 使用者輸入密碼(長度至少 8 個字元)後,系統會檢查密碼是否符合以下規則:
 - 甲、至少要有一個大寫英文字母。
 - 乙、至少要有一個小寫英文字母。
 - 丙、至少要有一個阿拉伯數字,且不為開頭字元。
 - 丁、至少要有一個特殊符號,且不為結尾字元。
- 3. 當按下確認送出的按鈕時,程式需檢查密碼的設置規則,若滿足甲~丁中三種以上的規則,就視為設置成功,跳出「註冊完成」的提示。否則需跳出密碼設置規則的提示。
- 4. 使用者輸入完新密碼之後,資料庫必須儲存符合所有條件的密碼。

ASCII table 提供如下:(資料來源:維基百科)

二進位	十進位	十六進位	圖形	二進位	十進位	十六進位	圖形	二進位	十進位	十六進位	圖形
0010 0000	32	20	(space)	0100 0000	64	40	@	0110 0000	96	60	`
0010 0001	33	21	!	0100 0001	65	41	Α	0110 0001	97	61	а
0010 0010	34	22		0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	\$	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	Е	01100101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	01100110	102	66	f
0010 0111	39	27	1	0100 0111	71	47	G	01100111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	i
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	2B	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0010 1100	44	2C	,	0100 1100	76	4C	L	0110 1100	108	6C	1
0010 1101	45	2D	-	0100 1101	77	4D	М	0110 1101	109	6D	m
0010 1110	46	2E		0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	/	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	S
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0011 0110	54	36	6	0101 0110	86	56	٧	0111 0110	118	76	٧
0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	w
0011 1000	56	38	8	0101 1000	88	58	Χ	0111 1000	120	78	х
0011 1001	57	39	9	0101 1001	89	59	Υ	0111 1001	121	79	У
0011 1010	58	3A	:	0101 1010	90	5A	Z	0111 1010	122	7A	z
0011 1011	59	3B	;	0101 1011	91	5B	[0111 1011	123	7B	{
0011 1100	60	3C	<	0101 1100	92	5C	\	0111 1100	124	7C	1
0011 1101	61	3D	=	0101 1101	93	5D]	0111 1101	125	7D	}
0011 1110	62	3E	>	0101 1110	94	5E	٨	0111 1110	126	7E	~
0011 1111	63	3F	?	0101 1111	95	5F	_				
								1			

評分標準:

- 1. 具備帳號密碼的輸入介面(10%)
- 2. 密碼內容有屏蔽(10%)
- 3. 判斷密碼規則的程式邏輯(50%)
- 4. 註册成功的提示框(10%)
- 5. 註册失敗的提示框(20%)

題目二:看顏色學英文遊戲

設計說明:玩家依據畫面中央出現的顏色方塊,選擇按下對應顏色的英文字按鈕, 之後自動進入下一題,連續五題之後,網頁顯示答對題數的結果。

- 1. 遊戲一開始的畫面上方有一個標題顯示遊戲名稱以及一個開始按鈕(如圖一)。
- 2. 按下開始按鈕進入遊戲畫面,畫面上方顯示題號,畫面中央顯示一個由後台傳來的隨機顏色,畫面下方有玩家依據顏色按下對應顏色的英文字按鈕。(如圖二所示)
- 3. 按下合適的按鈕之後,畫面自動進入下一題,一共有五題。
- 4. 五題答完之後,進入結束畫面,畫面上方顯示遊戲結束,畫面中央以較大的紅色 文字顯示玩家答對題數的結果。(如圖三所示)
- 5. 後台產生的顏色只有五種,分別為紅、橙、黃、綠、藍,而對應顏色的英文字按鈕只有五個分別為 Red、Orange、Yellow、Green、Blue

評分標準:

- 1. 用戶端與伺服端的連線功能 40%
- 2. 開始與結束畫面 10%
- 3. 遊戲畫面 20%
- 4. 伺服端邏輯判斷 30%

遊戲結束

答對 5 題

圖一、開始畫面

圖二、遊戲畫面

圖三、結束畫面

題目三:寶可夢資料庫系統

為了讓玩家可以建立自己所收集的寶可夢角色,因此我們建立一個寶可夢資料庫系統,玩家可以在抓到寶可夢後,將自己的寶可夢相關資料儲存在資料庫中。我們在這個系統設計了簡易的操作介面(如新增寶可夢、清單寶可夢、搜尋寶可夢、刪除寶可夢)藉以管理寶可夢資料的內容。請分別寫出此系統用戶端與伺服端的程式。

- 1. 用戶端的程式能提供玩家 (1)選擇對伺服器端進行下列操作功能 (新增、清單、搜尋、刪除) (2)若是新增功能,輸入實可夢的相關資訊,包含圖鑑編號、中文名稱、出沒地點、屬性(例如電、格鬥、飛行)上傳到網路遠端伺服器並顯示是否成功,其中圖鑑編號為不可重複編號且登載時間為新增資料的時間 (3)若是清單操作,以登載時間近至遠排序,每頁顯示 10 筆實可夢資訊 (4)若是搜尋操作,輸入實可夢的出沒地點或屬性後顯示符合的實可夢資訊 (5)若是刪除操作,輸入圖鑑編號後刪除符合的實可夢資訊並顯示是否成功。
- 2. 伺服端的程式能提供 (1)接收自用戶端輸入的寶可夢資訊,以及玩家傳送來的操作 指令 (2)依據指令進行對應的功能 (3)回傳處理後結果。

【程式執行範例說明】

選擇●「新増」、「清單」、「搜尋」、「刪除」功能

選擇「新增」後

→顯示輸入寶可夢的圖鑑編號、中文名稱、出沒地點、屬性→玩家可以輸入寶可夢的圖鑑編號、中文名稱、出沒地點、屬性→將新增的資訊儲存於伺服器並自動帶入寶可夢編號與新增時間→顯示是否成功

選擇「清單」後選擇「搜尋」後

以寶可夢建立時間近至遠排序,每頁顯示 10 筆寶可夢資訊 ○顯示輸入寶可夢的出沒地點或屬性○輸入寶可夢的出沒 地點或屬性○顯示符合搜尋條件的所有寶可夢

選擇「刪除」後

⊃顯示輸入寶可夢的圖鑑編號⊃輸入寶可夢的圖鑑編號⊃ 詢問是否刪除⊃顯示是否成功

*註: 寶可夢資訊包含圖鑑編號、中文名稱、出沒地點、屬性與新增時間

*註: 新增時間包含"年月日時分秒"(如 2017/10/22 15:30:45)

評分標準:

功能項目	配分	得分
用戶端可新增寶可夢資訊 (新增)	40%	
用戶端可顯示寶可夢清單 (清單)	15%	
用戶端可搜尋寶可夢資訊 (搜尋)	15%	
用戶端可刪除寶可夢資訊 (刪除)	15%	
用戶端輸入介面是否完整 (介面)	15%	
總分	100%	

題目四:深度學習-運算感知機模型

深度學習是人工智慧中機器學習的分支,根基於類神經網路的框架,2016 年擊敗世界棋王的 Google AlphaGo 是其最佳代言。深度學習主要三個步驟是建構類神經網路,設定學習目標,開始訓練學習,最終學習到最佳的函數以解決問題。1943 年McCulloch 和 Pitts 提出第一個類神經元運算模型。神經心理學家 Hebbian 提出學習現象的發生,乃在神經元間突觸產生某種變化。Rosenblatt 將這兩種創新結合,提出感知機模型,是最簡單且最早發展的類神經網路模型,用來做為分類學習器。

本題目實做一個簡化的一次運算感知機模型,模型如下。

其中, π是介於 2~10 的整數,表示學習的特徵值個數。

 $x_1,...x_n$ 是輸入的特徵值,為整數。

 $w_1, w_2, ..., w_n$,是神經網路傳遞的權重,為介於 0~1 的小數,小數位數 2 位。 $w_1 + w_2 + ... + w_n = 1$ 。

累加器 F 的計算, $v=F(X, W)=x_1\times w_1+x_2\times w_2+...+x_n\times w_n$

限制器
$$G$$
 的計算, $y=G(v)=\begin{cases} +1 & \text{if } v \geq 0 \\ -1 & \text{if } v < 0 \end{cases}$

這個感知機又可稱為分類器,透過機器學習調整神經網路傳導的權重 w_I , w_2 , ..., w_n , 可以針對輸入 x_1 ,... x_n , 予以辨識分類兩個不同種類,+1 和 -1。

例如:

如果運用到辨識兩個手寫字母 a, b, 若 n=3 表示手寫字母 a, b 可以取得 3 個特徵值分別是, x_1, x_2, x_3 。假設輸入 $x_1=-3, x_2=2, x_3=2$

假設感知機神經元權重 $w_1=0.20$, $w_2=0.30$, $w_3=0.5$,則

 $v = -3 \times 0.20 + 2 \times 0.30 + 2 \times 0.50 = 1.00$

由於 $v \ge 0$,G(1.00)輸出 y = +1,代表感知機辨識出 a。反之若輸出 y=-1,代表 感知機辨識出 b。

- (1) 設計網頁程式,輸入n(如圖一,假設n=3)(10%),按下送出,出現輸入 $w_1, w_2, ..., w_n$ 網頁(如圖二,假設 $w_1=0.20$, $w_2=0.30$, $w_3=0.5$) (15%),按下送出,出現輸入 x_1 , x_2 , ... x_n 的網頁(如圖三,假設 $x_1=-3$, $x_2=2$, $x_3=2$) (15%),按下送出,得到輸出 y 顯示於 網頁(如圖三,v=1.00,y=G(1.00)=+1)(50%)。
- (2) 網頁程式要能偵測錯誤輸入。(10%)

圖一

圖二

← → C 🗋 example.org
x1: -3
x2: 2
x3: 2
送出 清除

圖三

圖四