# Evaluating Recommender Systems

Topic 8

# Agenda

- General research considerations
- Evaluations on historical datasets
- Analysis of results
- □ Alternative research designs

#### Introduction

- Initially most recommenders have been evaluated and ranked on their prediction power – their ability to accurately predict the user's choices.
- In addition to prediction accuracy, recommender systems can be evaluated to understand how well the recommender achieves its overall goals.
- Recommender systems require that users interact with computer systems as well as with other users. Therefore, a user study can be conducted to understand
  - Do users find interactions with a recommender system useful?
  - Are they satisfied with the quality of the recommendations they receive?
  - What drives people to contribute knowledge such as ratings and comments?
  - What is it exactly that users like about receiving recommendation?

- Subject
  - Online customers, students, historical user sessions, simulated users
- Research Method
  - Experimental, quasi-experimental
- Settings
  - Lab, Field
  - User study, Off-line

- Types of Errors
  - Type I error vs. Type II error
  - Precision, Recall, F-measure
  - Accuracy, Error rate



#### Hypothesis

- Before running the experiment, we must form a hypothesis, a proposed explanation for a phenomenon. A study is conducted to test the hypothesis.
- Null hypothesis vs. Alternative hypothesis
- Reject/Fail to reject a hypothesis

|                                                     | H <sub>0</sub> is valid: Innocent            | H <sub>0</sub> is invalid: Guilty                                       |  |
|-----------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|--|
| Reject H <sub>0</sub> I think he is guilty!         | Type I error<br>False positive<br>Convicted! | Correct outcome Negative Convicted! Type II error False negative Freed! |  |
| Don't reject H <sub>0</sub> I think he is innocent! | Correct outcome<br>Positive<br>Freed!        |                                                                         |  |

#### Reliability and Validity

- Reliability: Absence of inconsistencies and errors in the data and measurement
- Validity
  - Measurement validity: Measuring what the items supposed to measure
  - Internal validity: Effects observed are due to the controlled test conditions (treatments)
  - External validity: Generalizability of the findings







# Subjects

- People are typically the subjects online customers, web users,
   system users, students, or general population
- User profiles containing preference information such as ratings, purchase transactions, or click-through data can be split into training and testing partitions for the evaluation of the recommendation algorithm
- Synthetic datasets should be used only to test recommendation methods for obvious flaws or to measure technical performance criteria such as average computation times
- Natural datasets include historical interaction records of real users
  - Explicit user ratings
  - Implicit user feedback such as purchases or add-to-basket actions

Sparsity 
$$sparsity = 1 - \frac{|R|}{|I| \cdot |U|}$$

# Popular Data Sets

Table 7.2. Popular data sets.

| Name           | Domain      | Users   | Items   | Ratings   | Sparsity |
|----------------|-------------|---------|---------|-----------|----------|
| BX             | Books       | 278,858 | 271,379 | 1,149,780 | 0.9999   |
| EachMovie      | Movies      | 72,916  | 1,628   | 2,811,983 | 0.9763   |
| Entree         | Restaurants | 50,672  | 4,160   | N/A       | N/A      |
| Jester         | Jokes       | 73,421  | 101     | 4.1M      | 0.4471   |
| MovieLens 100K | Movies      | 967     | 4,700   | 100K      | 0.978    |
| MovieLens 1M   | Movies      | 6,040   | 3,900   | 1M        | 0.9575   |
| MovieLens 10M  | Movies      | 71,567  | 10,681  | 10M       | 0.9869   |
| Netflix        | Movies      | 480K    | 18K     | 100M      | 0.9999   |
| Ta-Feng        | Retail      | 32,266  | N/A     | 800K      | N/A      |

### Research Methods

- Variables
  - Dependent vs. independent
  - Control variables
- Measures
  - Pretest and posttest
  - Dependent variables are measured before and after the treatment
- Settings
  - Random assign is important
  - Quasi-experimental design lacks random assignment
  - Control group should be included
  - Sample size
  - Quantitative research vs. Qualitative research
  - Cross sectional vs. Longitudinal
  - Lab studies vs. field studies

# Example of Experimental Design



Figure 7.2. Example of experiment design.

### **Evaluation on Historical Cases**

#### Methodology

- A group of user profiles
  - For training vs. testing/validation purposes
  - Random split, model building, and evaluation
  - N-fold cross-validation
    - Original sample is partitioned into N subsamples. Then, N-1 subsamples are used for training; one subsample for evaluation
  - Leave-one-out cross-validation
    - Using a single observation in each subsample as the validation data, where N is the total number of user profiles
  - All but N assigns a fixed number N to the testing set of each evaluated user vs. Given N sets the size of the training partition to N elements
  - Prediction task computes a missing rating vs. classification task selects a ranked list of n items (i.e., the recommendation set)

## Evaluation on Historical Cases

#### Metrics

Mean absolute error (MAE)

$$MAE = \frac{\sum_{u \in U} \sum_{i \in testset_u} |rec(u, i) - r_{u,i}|}{\sum_{u \in U} |testset_u|}$$

$$NMAE = \frac{MAE}{r_{max} - r_{min}}$$

Accuracy of classifications

$$P_u = \frac{|hits_u|}{|recset_u|}$$

$$P_{u} = \frac{|hits_{u}|}{|recset_{u}|} \qquad \qquad R_{u} = \frac{|hits_{u}|}{|testset_{u}|} \qquad \qquad F1 = \frac{2 \cdot P \cdot R}{P + R}$$

$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

Accuracy of ranks

$$rankscore_{u} = \sum_{i \in hits_{u}} \frac{1}{2^{\frac{rank(i)-1}{\alpha}}}$$

$$rankscore_{u}^{max} = \sum_{i \in testset_{u}} \frac{1}{2^{\frac{idx(i)-1}{\alpha}}}$$

$$rankscore'_{u} = \frac{rankscore_{u}}{rankscore_{u}^{max}}$$

$$rankscore_{u} = \sum_{i \in hits_{u}} \frac{1}{2^{\frac{rank(i)-1}{\alpha}}}$$

$$rankscore_{u}^{max} = \sum_{i \in testset_{u}} \frac{1}{2^{\frac{idx(i)-1}{\alpha}}}$$

$$liftindex_{u} = \begin{cases} \frac{1 \cdot S_{1,u} + 0.9 \cdot S_{2,u} + \dots + 0.1 \cdot S_{10,u}}{\sum_{i=1}^{10} S_{i,u}} & : \text{ if } hits_{u} > 0 \\ 0 & : \text{ else} \end{cases}$$

## **Evaluation on Historical Cases**

- Additional Metrics
  - User coverage (Ucov)

$$Ucov = \frac{\sum_{u \in U} \rho_u}{|U|}$$

$$\rho_u = \begin{cases} 1 & : \text{ if } |recset_u| > 0 \\ 0 & : \text{ else} \end{cases}$$

Catalog coverage (Ccov)

$$Ccov = \frac{|\bigcup_{u \in U} recset_u|}{|I|}$$

Intra-list similarity (ILS)

$$ILS_{u} = \frac{\sum_{i \in recset_{u}} \sum_{j \in recset_{u}, i \neq j} sim(i, j)}{2}$$

# Analysis of Results

- □ T-test
  - Used to test whether the observed differences between two sample means are due to chance or represents a true difference between populations
- One-way Analysis of Variance (ANOVA)
  - Used to compare the means of two or more groups
- Factorial ANOVA
  - Used to compare the means from four or more groups in a factorial design in order to decide whether the differences between means may be due to chance or one of the factors or a combination of the factors

# Alternative Types of Research Designs

- Preexperimental design
  - No control group, no random assignment
  - Used to collect preliminary or pilot data
- Experimental design
  - Rule out threats to internal validity through the use of control groups and random assignment
- Quasiexperimental design
  - Includes one or more control groups, but do not employ random assignment
- Nonexperimental design