eat	Total No. of Pages: 3
т.	

$\textbf{S.Y. B.Tech.} \ (\textbf{Computer Science and Engineering}) \ (\textbf{Part-II})$

(Semester - III) (CBCS) Examination, January - 2023

	(DC)			TA STRU		URE	
Sub. Code: 73278							
-			dnesday, 25 - (o 1.00 p.m.	01 - 2023		Total Marks: 70	
Instructions:		 All questions are compulsory. Assume suitable data wherever necessary Figures to the right indicate full marks. 			•		
Q1) Sol	ve Mo	CQs.	(1 marks eac	eh)		[14×1=14]	
a)	Wh	ich o	f the followin	g is a linear d	ata s	tructure?	
	i)	Arr	ay		ii)	AVL Trees	
	iii)	Bin	ary Trees	0	iv)	Graphs	
b)	Con	ısideı	the following	g stack imple	ment	ted using stack.	
	# de	define SIZE 11					
struct STACK							
	{						
	int	arr[S	IZE];				
	int	top=	-1;				
	}						
What would be the maximum value of the top that does not cause the overflow of the stack?							
	i)	8			ii)	9	
	iii)	11			iv)	10	
c)	c) The time complexity of quicksort is						
	i)	O(r	n)		ii)	O (logn)	
	iii)	0 (n2)		iv)	O (n logn)	
d)			sorting is go	od to use whe	en alp	phabetizing a large list of names.	
	i)	Me	rge		ii)	Heap	
	iii)	Rac	lix		iv)	Bubble	

e)		Identify the data structure which allows deletions at both ends of the list but insertion at only one end.							
	i)	Input restricted dequeue	ii)	Output restricted queue					
	iii)	Priority queues	iv)	All of the above					
f)	Which of the following statement is false?								
	i)	Arrays are dense lists and static data structure.							
	ii)	Data elements in linked list need not be stored in adjacent space in memory.							
	iii)	Pointers store the next data element of a list.							
	iv)	Linked lists are collection of the nodes that contain information part and next pointer.							
g)		What data structure would you mostly likely see in a non-recursive implementation of a recursive algorithm?							
	i)	Stack	ii)	Linked list					
	iii)	Queue	iv)	Trees					
h)	An a	An adjacency matrix representation of a graph cannot contain information							
	of	0-							
	i)	nodes	ii)	edges					
	iii)	direction of edges	iv)	parallel edges					
i)	Whi	Which of the following data structures is indexed structure?							
	i)	Array							
	ii)	Structure							
	iii)	Stack							
j)	A B-tree of minimum degree t can maximum pointers in a node.								
	i)	t-1	/	2t-1					
	iii)	2t	iv)	t					
k)	An adjacency matrix representation of a graph cannot contain information of								
	i)	nodes	ii)	edges					
	iii)	direction of edges	iv)	parallel edges					
1)	The postfix form of the expression $(A+B)*(C*D-E)*F/G$ is?								
	i)	AB+CD*E-FG/**	ii)	AB+CD*E-F**G/					
	iii)	AB+CD* E-*F*G/	iv)	AB+CDE*-*F*G/					

							SB - 151
	m)			ure is used in br	eadth	first search of a gr	aph to hold
		nod	es?				
		i)	Stack		ii)	Queue	
		iii)	Tree		iv)	Array	
	n)	Whi	ich of the follo	wing is not an in-	place	e sorting algorithm?	
		i)	Selection sor	t	ii)	Heap sort	
		iii)	Quick sort		iv)	Merge sort	
Q2)	Solv	e any	y 2 of the follow	wing (7 Marks E	ach)		[14]
	a)	Give	e the Definition	on of Data struct	ure?	Explain with suitable	le examples
		follo	owing terms				
		i)	Array				
		ii)	Functions				
		iii)	Control Struc	ctures			
	b)	Exp	lain working o	f the Bubble Sort	Algo	orithm. Comment on	Complexity
	,	_	orting Algorith		C		1 0
	c)				ers ı	using Radix Sort	Technique.
	,		3,1,8,7,2,4			C	•
Q3)		-		wing. (7 Marks E			[14]
	a)	Define Stack. Explain stack operations with example					
	b)	Explain Binary search with example					
	c)	Exp	lain circular qu	eue with example	e		
Q4)	Solv	e any	y 2 of the follow	wing. (7 Marks E	Each)		[14]
	a)		_	r finding minimu	ım an	d maximum values	from Binary
	1 \		rch Tree.		1 .	• 6	1 .
	b)		-	•	nate s	size of an array to sto	ore complete
			ary tree of dept			1 1 1 1	
	c)	Wha Tree		xplain with suitat	ole ex	ample, insertion of	a node in B-
Q5)	Solv	e any	y 2 of the follow	wing (7 Marks E	ach)		[14]
- 1	a)	Des	cribe data stru	ctures used for st	oring	o a oranh	_ _

- Explain graph traversal techniques with Example-BFS b)
- What is AVL tree? Explain insert node operation of AVL tree.

