GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Basic Physics (Group-2) (Code: 3300005)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics & Communication Engineering	First Semester
Biomedical Engineering, Computer Engineering, Electrical Engineering, Information Technology, Instrumentation & Control Engineering, Power Electronics Engineering, Printing Technology	Second Semester

1. RATIONALE

As Physics is the mother of all engineering disciplines, students must have some basic knowledge on physics to understand their core engineering subjects more comfortably. Accordingly, in reviewing the syllabus, emphasis has been given on the principles, laws, working formulae and basic ideas of physics to help them study the core subjects. Complicated derivations have been avoided because applications of the laws and principles of physics are more important for engineering students.

As Physics is considered as basic science, its principles, laws, hypothesis, concepts, ideas are playing important role in reinforcing the knowledge of technology. Deep thought is given while selecting topics in physics. They are different for various branches of engineering. This will provide sound background for self-development in future to cope up with new innovations. Topics are relevant to particular program and students will be motivated to learn and can enjoy the course of Physics as if it is one of the subjects of their own stream.

Engineering, being the science of measurement and design, has been offspring of Physics that plays the primary role in all professional disciplines of engineering. The different streams of Physics like Optics, Acoustics, Dynamics, Semiconductor Physics, Surface Physics, Nuclear physics, Energy Studies, Materials Science, etc provide Fundamental Facts, Principles, Laws, and Proper Sequence of Events to streamline Engineering knowledge.

<u>Note:-</u> Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles.

Laboratory experiments have been set up keeping consistency with the theory so that the students can understand the applications of the laws and principles of physics.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies...........

- Select proper measuring instrument on the basis of range, least count & precision required for measurement.
- Analyze properties of material & their use for the selection of material mostly applicable for engineering users..
- Identify good & bad conductors of heat and proper temperature scale for temperature measurement
- Identify, analyze, discriminate and interpret logical sequence of field problems with the study of physics.
- Analyze variation of sound intensity with respect to distance.
- Follow the principles used in the physical properties, its measurement and selections.

3. TEACHING AND EXAMINATION SCHEME

	Examination Scheme				Total	eme	ching Sch	Teac
Tota Marl	al Marks	Practica	Theory Marks		Credits (L+T+P)	(In Hours)		
	PA	ESE	PA	ESE	С	P	Т	L
150	30	20	30	70	5	2	0	3

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics		
Unit – I	*Explain Physical Quantities	1.1 Need of measurement and unit in engineering and science,		
	and their units.	definition of unit, requirements of standard unit, systems of		
	*Measure given dimensions by	units-CGS,MKS and SI,		
	using appropriate instruments	fundamental and derived quantities and their units		
	accurately.	1.2 Least count and range of instrument, least count of vernier		
	*Calculate error in the	caliper, micrometer screw gauge		
	measurement	1.3 Definition of accuracy, precision and error,		
	*Solve numerical based on	estimation of errors - absolute error, relative error		
	above outcomes	and percentage error, rules and identification of		
		significant figures.		
		(Numerical on above topics)		
Unit- II	*State Coulomb's law, Ohm's	2.1 Concept of charge, Coulomb's inverse square law, Electric		
	law and Kirchhoff's law	field, intensity, potential and potential difference.		
	*Explain Electric field,	2.2 Electric current, Ohm's law, laws of series and parallel		
	potential and potential	combination of resistance		
	difference	2.3 D.C. circuits, Kirchhoff's law, heating effect & chemical		

Unit	Major Learning Outcomes	Topics and Sub-topics
	*Define intensity, electric	effect of current
	current, resistance	
	*Apply laws of series and	(Numericals on above topics)
	parallel combination to electrical circuits	
	*Explain heating & chemical	
	effect of current	
	*Solve numerical based on	
	above outcomes	
Unit- III	*Define magnetic intensity and	2.1 Magnetic field and its units magnetic intensity, magnetic
	flux and state their units	3.1 Magnetic field and its units, magnetic intensity, magnetic lines of force, magnetic flux and their units
	*Distinguish between dia, para	inies of force, magnetic flux and their units
	and ferro magnetic materials	3.2 Dia, Para, Ferro magnetic materials
	*Explain electromagnetic	
	induction and its uses	3.3 Electromagnetic Induction, Lenz's law and its Applications,
	*State lenz's law	Alternating current and its waveform
TT24 TT7	*State applications of AC	
Unit– IV	*Define types of materials based on energy bands	4.1 Conductors, Insulators and Semiconductors, Energy bands,
	*Distinguish between intrinsic	intrinsic and extrinsic semiconductors, Temperature
	and extrinsic semiconductors	dependence of conductivity, Superconductivity
	*Explain p-n junction diode and	4.2 p-n junction diode and its characteristics, Rectifier circuits -
	its characteristics	Full wave, half wave and bridge rectifiers (no design)
	*State applications of diodes	Tan wave, han wave and strage recenters (no design)
	*state advantages of bridge	4.3 semiconductor transistor pnp and npn and their
	rectifier over others	characteristics, transistor operation in CE mode, relation of
	* Explain types of transistors	current gain
	*Explain characteristics of	4.4 Introduction to nanotechnology
	transistors	4.4 introduction to nanotecimology
	*Explain transistor operation in CE mode	
	*State relation of current gain	
	* Define nanotechnology and	
	explain applications	
Unit- V	*Explain wave and wave	Definition of wave motion, amplitude, period, frequency, and
	motion with example.	wavelength, relation between velocity, frequency and
	*Distinguish between	wavelength, longitudinal and transverse wave, principle of
	longitudinal and transverse	superposition of waves, definition of stationary wave, node
	waves	and antinode, definition of resonance with examples, Formula
	*Explain propagation of sound	for velocity of sound in air
	in air.	Properties Of Light, Electromagnetic spectrum, Reflection,
	* State properties of light.	refraction, snell's law, diffraction, polarization, interference of
	*Define reflection, refraction	light, constructive and destructive interference (Only
	polarization and diffraction *Explain physical significance	definitions), physical significance of refractive index, dispersion of light
	of refractive index	LASER, Properties of laser, spontaneous and stimulated
	* Explain dispersion of light	emission, population inversion, optical pumping, construction
	*State Properties of laser	and working of He-Ne laser, applications of lasers.
	*Explain spontaneous and	Fibre Optics, Introduction, Total internal reflection, critical
	stimulated emission, population	angle, acceptance angle, Structure of optical fibre, Numerical
	inversion and optical pumping	Aperture, Fiber optic materials, Types of optical fibres,
	*Explain construction and	Applications in communication systems.
	working of He-Ne laser	
	*State applications of lasers.	
	* Explain principle & working	
	of optical fibres	

Unit	Major Learning Outcomes	Topics and Sub-topics
	* State applications of optical fibres in communication	
	systems	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total
1.	SI Units & Measurements	05	03	02	05	10
2.	Static & Current Electricity	10	05	05	08	18
3.	Electromagnetism & AC Current	08	04	05	03	12
4.	Semiconductors & Nano- technology	10	06	06	05	17
5.	Sound, Laser & Optical Fiber	09	04	06	03	13
	Total	42	22	24	24	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

6. SUGGESTED LIST OF EXPERIMENTS

The experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency -

S. No.	Unit No.	Experiment		
1	1	To Measure linear dimensions by vernier caliper and calculate volume		
2	1	To Measure linear dimensions by Micrometer screw		
3	2	To calculate resistance using Ohm's law		
4	2	To verify law of Resistance in series and parallel		
5	2	To find unknown resistance through whetstone bridge		
6	3	Γο determine A.C. frequency with the help of sonometer		
7	1,2	o determine errors in electrical measurements		
8	5	o determine the divergence of He-Ne laser beam.		
9	3	To Measure A.C. Power using resistive load		
10	3	Measurement of Energy		
11	4	To study p-n junction in forward bias		
12	4	To calculate SA/V ratio of simple objects to understand nanotechnology		

• Hours distribution for Physics Experiments:

Minimum 8 experiments should be performed from the above list

Sr.	Description	Hours
No.		
1	An introduction to Physics laboratory	02
	and its experiments (for the set of first	
	four experiments)	
2	Set of first four experiments	08
3	An introduction to experiments (for the	02
	set of next four experiments)	
4	Set of next four experiments	08
5	Mini project	06
6	Viva and Submission	02
	Total	28

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

Laboratory based mini projects:

- 1. To calculate acoustics of given class room
- 2. To measure diameter and calculate resistance of given set of conductors

Teacher guided self learning activities:

- 1. To prepare a chart of applications of nanotechnology in engineering field
- 2. To prepare models to explain different concepts

Course/topic based seminars:

1. Seminar by student on any relevant topic

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication
1	Sears And	University Physics	Pearson Publication
	Zemansky		
2	Paul G Hewitt	Conceptual Physics	Pearson Publication
3	Halliday & Resnick	Physics	Wiley India
4	G Vijayakumari	Engineering Physics, 4e	Vikas-Gtu Students' Series
5	Arvind Kumar &	How And Why In Basic	Universities Press
	Shrish Barve	Mechanics	
6	Ncert	Physics Part 1 And 2	Ncert

S.No.	Author	Title of Books	Publication
7	Giancoli	Physics For Scientists And Engineers	
8	H C Verma	Concepts Of Physics	
9	Gomber & Gogia	Fundamentals Of Physics	Pradeep Publications, Jalandhar

B. List of Major Equipment/ Instrument

- 1. Digital Vernier Calipers And Micrometer Screw Guage
- 2. Whetstone's Bridge
- 3. He Ne Laser Instrument
- 4. Digital Energy Meter
- 5. Resistance Box
- 6. Battery Eliminator
- 7. Digital Millimeters

C. List of Software/Learning Websites

- 1. www.physicsclassroom.com
- 2. www.physics.org
- 3. www.fearofphysics.com
- 4. www.sciencejoywagon.com/physicszone
- 5. www.science.howstuffworks.com

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. Dr. S. B. Chhag, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Rajkot
- 2. Ku. B. K. Faldu, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Ahmedabad
- 3. Shri D. V. Mehta, Lecturer in Physics, Science Deptt, RCTI, Ahmedabad
- 4. Shri S. B. Singhania, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Ahmedabad
- 5. Dr. U. N. Trivedi, Lecturer in Physics, Science Deptt, RCTI, Ahmedabad

Coordinator and Faculty Member From NITTTR Bhopal

1. Dr. P. K. Purohit, NITTTR, Bhopal