Introdução aos Processos Estocásticos

Eduardo F. Costa e Marinho G. Andrade com a colaboração de Juliana Cobre

18 de abril de 2004

Sumário

1	Pro	cessos de Bernoulli	2
	1.1	O Processo de Bernoulli, X	2
	1.2	Número de Sucessos em um Processo de Bernoulli, N	4
		1.2.1 Valor Esperado e Variância de <i>N</i>	5
		1.2.2 Distribuição de <i>N</i>	6
	1.3	Tempo de Sucesso, T	9
		1.3.1 Valor Esperado e Variância de <i>T</i>	10
		1.3.2 Distribuição de <i>T</i>	11
	1.4	Exercícios	12
2	Proc	cesso de Poisson	15
	2.1	Hipóteses do Processo de Poisson	15
		2.1.1 Distribuição de N_t	18
		2.1.2 Valor Esperado de N_t e o Significado de λ	19
		2.1.3 Tempo de Chegada	23
	2.2	Tempo de Recorrência (Forward)	26
	2.3	Superposição de Processos de Poisson	27
	2.4	Decomposição de um Processo de Poisson	28
	2.5	Exercícios	29

Capítulo 1

Processos de Bernoulli

Neste capítulo estudaremos um processo estocástico simples, denominado *processo de Bernoulli*. Este é um processo a parâmetro discreto no qual o conjunto de parâmetros é o conjunto dos números inteiros, $T \equiv \mathbb{N}$; além disto, para cada $\bar{t} \in \mathbb{N}$ fixo, ele assume apenas os valores discretos 0 e 1. Estudam-se também dois processos associados - o *número de sucessos* e o *tempo de sucesso* de um processo de Bernoulli.

Apesar de sua simplicidade, o processo de Bernoulli serve para ilustrar conceitos, bem como algumas das principais questões que surgem, associados a processos estocásticos. Ainda, o número de sucessos consiste em um caso particular de cadeia de Markov, a qual será estudada em detalhes subsequentemente.

1.1 O Processo de Bernoulli, X

O processo de Bernoulli tem uma relação estreita com a idéia de ensaios de Bernoulli e de variável aleatória binomial, conforme vimos em SCE-119. Recordando, consideram-se um experimento \mathcal{E} e um evento associado A, com probabilidade de sucesso p; para n repetições independentes deste experimento, o número de sucessos obtido é uma variável aleatória binomial com parâmetros n e p.

Nesta seção, para cada repetição de \mathcal{E} associaremos uma variável aleatória X_n , que mapeia "sucesso" da n-ésima repetição em 1 e "fracasso" em 0. Note que o conjunto destas variáveis, $X = \{X_n, n = 1, 2, \ldots\}$, satisfaz a definição de processo estocástico; este será o chamado processo de Bernoulli. Este processo é formalizado a seguir, para facilitar futuras referências.

Definição 1. Considere uma sequência de repetições de um experimento \mathcal{E} e os eventos $\{A_n; n=1,2,\ldots\}$, cada um dos quais estando associado à n-ésima repetição.

Considere, ainda,

$$X_n = I_{\{A_n\}}$$

sendo I a função indicadora. O processo estocástico $X = \{X_n; n = 1, 2, ...\}$ é chamado de processo de Bernoulli com probabilidade de sucesso p se:

(a) A_1, A_2, \dots são eventos independentes;

(b)
$$P(A_n) = p$$
, $P(\bar{A_n}) = 1 - p$, $\forall n = 1, 2, ...$

Note que X_1, X_2, \ldots são identicamente distribuidos e P é a única medida de probalidade em Ω que satisfaz as propriedades (a) e (b). É comum referir-se ao evento $A_n = \{X_n = 1\}$ como sendo um 'sucesso' e $\bar{A_n} = \{X_n = 0\}$ como 'fracasso'. A Figura 1.1 ilustra uma realização do processo X.

Figura 1.1: Realização do processo de Bernoulli $\{X_n, n = 1, 2, ...\}$, com parâmetro p = 0, 3.

Exemplo 1. Devido a interferências que incidem em uma certa linha de transmissão de dados, há uma probabilidade constante p=0,05 de que haja erro na transmissão de um bit. Defina X_n como 1 ou 0 se o n-ésimo bit recebido for errado ou correto, respectivamente. Assumindo que a interferência incide independentemente na transmissão de cada bit, as variáveis aleatórias X_1, X_2, \ldots são independentes. Então $\{X_n; n=1,2,\ldots\}$ é um processo de Bernoulli com probabilidade de sucesso $P(X_n=1)=p=0.05$.

Exemplo 2. Considere o cálculo da probabilidade de que os primeiros 2 bits sejam recebidos corretamente e que os dois bits subsequentes sejam recebidos com erro. Temos:

$$P(X_1 = X_2 = 0, X_3 = X_4 = 1) = P(X_1 = 0)P(X_2 = 0)P(X_3 = 1)P(X_4 = 1)$$
$$= (1 - p)(1 - p)pp = (1 - p)^2p^2 \approx 0,00226$$

1.2 Número de Sucessos em um Processo de Bernoulli, N

Considere as primeiras n tentativas de um processo de Bernoulli e considere o número de sucessos obtido, denotado por N_n . Note que $N = \{N_n, n \in \mathbb{N}\}$ é um processo estocástico, o qual é estudado nesta seção.

Definição 2. Seja X um processo de Bernoulli com probabilidade de sucesso p. Os números de sucesso $\{N_n, n \in \mathbb{N}\}$ são definidos por

$$N_n(w) = \begin{cases} 0 & \text{se } n = 0, \\ X_1(w) + X_2(w) + \dots + X_n(w) & \text{se } n = 1, 2, \dots \end{cases}$$

Uma realização do processo N é mostrada na Figura 1.2.

Figura 1.2: Realização do processo $\{N_n, n=0,1,\ldots,4\}$ com parâmetro p=0,3, correspondente a realização de X da Figura 1.1.

Observação 1. Note que

$$N_{n+m}-N_n=X_{n+1}+X_{n+2}+\ldots+X_{n+m}$$

é o número de sucessos associado às tentativas $n+1, n+2, \ldots, n+m$. O processo estocástico $\{N_n, n \in \mathbb{N}\}$ é um processo estocástico a parâmetro discreto e a v.a. N_n , com n fixo, é discreta assumindo os valores $0, 1, 2, \ldots n$.

Exemplo 3. Considere a realização do processo de Bernoulli da Figura 1.2. Note que o conhecimento do processo N_n permite recuperar o processo de Bernoulli original fazendo $X_n = N_n - N_{n-1}, n = 1, 2, \dots$ Então, temos:

$$N_0 = 0; \quad X_0 = 0$$

$$X_1 = N_1 - N_0 = 0$$

$$X_2 = N_2 - N_1 = 0$$

 $X_3 = N_3 - N_2 = 0$
 $X_4 = N_4 - N_3 = 1$,

em conformidade com a realização de X dada na Figura 1.1.

Valor Esperado e Variância de N

Se $\{X_n; n=1,2,\ldots\}$ é um processo de Bernoulli com probabilidade de sucesso p. Então para qualquer *n*, temos:

(i)
$$E(X_n) = E(X_n^2) = E(X_n^3) = \dots = p$$

(i)
$$E(X_n) = E(X_n^2) = E(X_n^3) = \dots = p$$

(ii) $Var(X_n) = E(X_n^2) - E^2(X_n) = p - p^2 = p(1-p) = p \cdot q$
(iii) $E(\alpha^{X_n}) = \alpha^0 P(X_n = 0) + \alpha P(X_n = 1) = q + \alpha p$

(iii)
$$E(\alpha^{X_n}) = \alpha^0 P(X_n = 0) + \alpha P(X_n = 1) = a + \alpha p$$

onde $\alpha \geq 0$.

As propriedades (i), (ii) e (iii) são provadas usando

$$E[g(X_n)] = g(1) \cdot p + g(0) \cdot (1-p),$$

onde $g(\cdot)$ é uma função limitada. Para (iii) temos $g(X_n) = \alpha^{X_n}$

Usando a propriedade de linearidade do valor esperado e os resultados apresentados acima para X_n , temos:

(i)
$$E(N_n) = E(X_1 + X_2 + ... + X_n) = np$$
;

(ii)
$$Var(N_n) = Var(X_1 + X_2 + ... + X_n) = npq;$$

(iii)
$$E(N_n^2) = Var(N_n) + E^2(N_n) = npq + n^2p^2$$
.

Podemos obter o valor $E(N_n^2)$ de forma direta como segue:

$$N_n^2 = \sum_{i=1}^n X_i^2 + \sum_{i=1}^n \sum_{j \neq i}^n X_i X_j$$

$$E(N_n^2) = \sum_{i=1}^n E(X_i^2) + \sum_{i=1}^n \sum_{j\neq i}^n E(X_i X_j)$$

sendo $E(X_i^2) = p$ e $E(X_i X_i) = p^2$ temos que:

$$E(N_n^2) = np + n(n-1)p^2 = np + n^2p^2 - np^2$$

= $np(1-p) + n^2p^2 = npq + n^2p^2$

Estes cálculos indicam um caminho para se calcular os momentos de ordem mais elevada para N_n . Note que calculamos $E(N_n)$, $Var(N_n)$ sem conhecermos a função distribuição de N_n . No entanto se quisermos calcular $E(g(N_n))$ onde $g(\cdot)$ é uma função limitada é necessário conhecermos a função distribuição de N_n . O uso da probabilidade condicional nas provas que se seguem é uma das principais técnicas usadas em estudos de processos estocásticos.

1.2.2 Distribuição de N

Um ponto fundamental para a análise de um processo consiste em estabelecer as distribuições e distribuições condicionadas. No caso em questão (processo $\{N_n, n \in \mathbb{N}\}$), iniciamos observando que a variável aleatória N_n é binomial com parâmetro p, o que permite escrever o seguinte resultado, de imediato; a prova é omitida.

Lema 1. *Para qualquer* $n \in \mathbb{N}$,

$$P(N_n = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Recordando da Observação 1 que $N_{n+m} - N_n = X_{n+1} + \ldots + X_{n+m}$ é a soma de n variáveis aleatórias independentes, é simples compreender que $N_{n+m} - N_n$ também tem distribuição binomial, como formalizado adiante.

Corolário 1. *Para qualquer* $n, m \in \mathbb{N}$,

$$P(N_{m+n} - N_m = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Teorema 1. Para qualquer $n, m \in \mathbb{N}$

$$P(N_{m+n}-N_m=k|N_0,\ldots,N_m)=P(N_{m+n}-N_m=k)=\binom{n}{k}p^k(1-p)^{n-k}$$

Demonstração. As variáveis aleatórias N_0, N_1, \dots, N_m são determinadas por X_1, X_2, \dots, X_m e *vice-versa*, da seguinte forma:

$$X_1 = N_1, \quad X_2 = N_2 - N_1, \quad \dots, \quad X_m = N_m - N_{m+1},$$

de maneira que

$$P(N_{m+n}-N_m=k|N_0,\ldots,N_m)=P(N_{n+1}-N_m=k|X_1,X_2,\ldots,X_m).$$

Como $\{X_{m+1}, \dots, X_{m+n}\}$ é independente de $\{X_1, \dots, X_m\}$ temos que $N_{m+n} - N_m = X_{m+1}, \dots, X_{m+n}$ é independente de $\{X_1, X_2, \dots, X_m\}$, logo podemos escrever

$$P(N_{m+n}-N_m=k|X_1,\ldots,X_m)=P(N_{m+n}-N_m=k)$$

e o Corolário 1 completa a prova.

Observação 2. O Teorema 1 afirma que as distribuições do processo N relativas às tentativas $m+1,\ldots,m+n$ são independentes da história passada até m (i.e., a história passada é irrelevante). Este é um caso particular de quando a história passada até m-1 é irrelevante mas a história em m é relevante; os processos que satisfazem esta propriedade são denominados Markovianos. Em consonância, lembre que o processo N é um caso particular de cadeia de Markov, como já comentamos.

Corolário 2. Seja $n_0 = 0 < n_1 < n_2 < \cdots < n$ inteiros. Então as variáveis aleatórias $N_{n_1} - N_{n_0}, N_{n_2} - N_{n_1}, \dots, N_{n_j} - N_{n_{j-1}}$, são independentes.

Demonstração. Seja j=3, sem perda de generalidade. Usando o Teorema 1, avaliamos:

$$\begin{split} P(N_{n_3} - N_{n_2}, N_{n_2} - N_{n_1}, N_{n_1}) \\ &= P(N_{n_3} - N_{n_2} | N_{n_2} - N_{n_1}, N_{n_1}) P(N_{n_2} - N_{n_1}, N_{n_1}) \\ &= P(N_{n_3} - N_{n_2}) P(N_{n_2} - N_{n_1}, N_{n_1}) \\ &= P(N_{n_3} - N_{n_2}) P(N_{n_2} - N_{n_1} | N_{n_1}) P(N_{n_1}) \\ &= P(N_{n_3} - N_{n_2}) P(N_{n_2} - N_{n_1}) P(N_{n_1}) \end{split}$$

Observação 3 (Incrementos Independentes). Variáveis aleatórias da forma N_{m+n} – N_m associada ao processo N podem ser encaradas como o 'incremento' do processo no intervalo entre t=m e t=m+n, no sentido que representam a quantidade da qual o processo 'aumentou' neste intervalo, ou seja,

$$N_{n+m} = N_m + (N_{m+n} - N_m).$$

O Corolário 2 nos diz que os 'incrementos' no processo N são independentes ao longo de certos intervalos (note que os intervalos são disjuntos, isto é, a interseção entre eles é nula). Quando um processo apresenta esta característica, dizemos que tem 'incrementos independentes'.

Note que a independência de $N_{m+n} - N_m$ com relação a N_0, \ldots, N_m foi provada sem lançar mão da distribuição de X_n . Portanto o Corolário 2 é verdadeiro para qualquer processo $\{Z_n, n \in \mathbb{N}\}$, definido por:

$$Z_n = \begin{cases} 0 & \text{se } n = 0\\ Y_1 + Y_2 + \dots + Y_n & \text{se } n \ge 1 \end{cases}$$

sendo $Y_1 + Y_2 + \cdots + Y_n$ variáveis aleatórias independentes. Se os Y_i 's também são identicamente distribuídos, então a distribuição do incremento $Z_{m+n} - Z_m$ não

depende de m e, neste caso, diz-se que o processo $\{Z_n; n \in \mathbb{N}\}$ possui 'incrementos independentes e estacionários'.

Exemplo 4. Considere novamente o processo de Bernoulli do Exemplo 1. Calcule a probabilidade conjunta $P(N_5 = 4, N_7 = 5, N_{13} = 8)$, bem como $E(N_5N_8)$. Solução: o evento $(N_5 = 4, N_7 = 5, N_{13} = 8)$ é equivalente ao evento $(N_5 = 4, N_7 - N_5 = 1, N_{13} - N_7 = 3)$ e empregando o Teorema 1 e o Corolário 2, escrevemos:

$$\begin{split} P(N_5 = 4, N_7 = 5, N_{13} = 8) &= P(N_5 = 4, N_7 - N_5 = 1, N_{13} - N_7 = 3) \\ &= P(N_5 = 4)P(N_7 - N_5 = 1)P(N_{13} - N_7 = 3) \\ &= \binom{5}{4}p^4(1-p)^7\binom{2}{1}p^1(1-p)^1\binom{6}{3}p^3(1-p)^3. \end{split}$$

Portanto,

$$P(N_5 = 4, N_7 = 5, N_{13} = 8) = 200p^8(1-p)^{11} = .$$

Para calcular $E(N_5N_8)$, escrevemos

$$N_8 = N_5 + N_8 - N_5$$

e, portanto,

$$E(N_5N_8) = E[N_5(N_5 + N_8 - N_5)] = E[N_5^2 + N_5(N_8 - N_5)]$$

= $E(N_5^2) + E(N_5)E(N_8 - N_5) = 5p^2 + 5pq + 5p3p$
= $23p^2 + 5pq + 15p^2 = 40p^2 + 5pq$

Finalizamos esta seção com um resultado útil para cálculo de valores esperados.

Teorema 2. Considere um processo de Bernoulli e os números de sucessos N_m, N_{m+1}, \dots Então,

$$E(g(N_m,...,N_{m+n})|N_0,...,N_m) = E(g(N_m,...,N_{m+n})|N_m)$$

Observação 4. Note que o Teorema 2 diz que a história passada (N_0, \ldots, N_{m-1}) é irrelevante para o cálculo de valores esperados associados às tentativas futuras. Repare na conexão disto com os comentários da Observação 2.

Exercício 1. *Calcule:* (*i*) $E(N_5|N_3)$; (*ii*) $E(N_5N_{11}|N_2,N_3)$.

Exercício 2 (Para entregar). Seja p = 0, 1. Calcule $E(N_2N_4)$. Simule 5 realizações para o processo N e calcule a média para N_2N_4 ; compare com o valor teórico.

1.3 Tempo de Sucesso, T

Um outro importante processo associado a um processo de Bernoulli $\{X_n, n = 1, 2, ...\}$ é o denominado "tempo de sucesso", denotado por $\{T_k, n \in \mathbb{N}\}$, que consiste basicamente nos intantes de ocorrência do k-ésimo sucesso. O conceito é mais facilmente entendido através da ilustração na Figura 1.3, que associa o processo T aos processos X e N.

Figura 1.3: Figura ainda não disponível...

Definição 3. Sejam $\{X_n; n \ge 1\}$ um processo de Bernoulli com probabilidade p de sucessos e $\{N_n, n \in \mathbb{N}\}$ os números de sucesso associados. Os tempos de sucesso $\{T_k, k \in \mathbb{N}\}$ são definidos por

$$T_k(w) = \begin{cases} 0 & k = 0\\ \min_n \{n : N_n(w) \ge k\} & k = 1, 2, \dots \end{cases}$$
 (1.1)

Observação 5. Similarmente ao que ocorria com os números de sucesso, as variáveis aleatórias T_k são determinadas por X_n bem como por N_n e vice-versa. De fato, as seguintes afirmações podem ser facilmente deduzidas:

$$i) T_k = n \iff N_{n-1} = k-1 \ e \ N_n = k.$$

ii) $T_k \le n \iff N_n \ge k$ (o k-ésimo sucesso ocorre até n se, e somente se, o número de sucessos nas primeiras n tentativas é pelo menos k).

iii)
$$T_k = kI_{\{X_i=1\}}, k = 1, 2, \dots$$

$$(iv)$$

$$\begin{cases} X_n = 1, & \exists k : n = T_k \\ X_n = 0, & c.c.. \end{cases}$$

Note que $T_k - T_{k-j}$ é o intervalo entre o (k-j)-ésimo sucesso e o k-ésimo sucesso. Como veremos a seguir, variáveis aleatórias desta forma são independentes sempre que os intervalos aos quais elas se referem não se intercalam.

Lema 2. $T_1, T_2 - T_1, T_3 - T_2, \dots$ são v.a. independentes e identicamente distribuidas (i.i.d.) com distribuição

$$P(T_k - T_{k-1} = j) = p(1-p)^{j-1}.$$
(1.2)

Demonstração. Parte a) Empregando a relação da Observação 5 (iv), avaliamos

$$P(T_1 = j_1, T_2 - T_1 = j_2) = P(T_1 = j_1 | T_2 - T_1 = j_2) P(T_2 - T_1 = j_2)$$

$$= P(X_0 = 0, X_1 = 0, \dots, X_{j_1 - 1} = 0, X_{j_1} = 1 |$$

$$X_{j_1 + 1} = 0, \dots, X_{j_1 + j_2 - 1} = 0, X_{j_1 + j_2} = 1) P(T_2 - T_1 = j_2)$$

$$= P(X_0 = 0, X_1 = 0, \dots, X_{j_1 - 1} = 0, X_{j_1} = 1) P(T_2 - T_1 = j_2)$$

$$= P(T_1 = j_1) P(T_2 - T_1 = j_2)$$

sendo que na pénúltima passagem usamos o fato de que X_n e X_m são independentes para $n \neq m$. A prova pode ser concluida usando o mesmo argumento, indutivamente. Por exemplo,

$$P(T_1 = j_1, T_2 - T_1 = j_2, T_3 - T_2 = j_3)$$

$$= P(T_1 = j_1, T_2 - T_1 = j_2 | T_3 - T_2 = j_3) P(T_3 - T_2 = j_3)$$

$$= P(T_1 = j_1, T_2 - T_1 = j_2) P(T_3 - T_2 = j_3)$$

$$= P(T_1 = j_1) P(T_2 - T_1 = j_2) P(T_3 - T_2 = j_3)$$

Parte b) Dada a independência demonstrada na parte (a), temos que

$$P(T_k - T_{k-1} = j) = P(T_k - T_{k-1} = j | T_{k-1})$$

$$= P(X_{T_{k-1}+1} = 0, \dots, X_{T_{k-1}+j-1} = 0, X_{T_{k-1}+j} = 1 | T_{k-1})$$

$$= (1-p)^{j-1} p$$

1.3.1 Valor Esperado e Variância de T

É possível calcular $E(T_{k+1} - T_k)$ e $Var(T_{k+1} - T_k)$ diretamente, empregando o fato de $T_{k+1} - T_k$ ter a distribuição geométrica dada no Lemma 2. Por exemplo,

$$E(T_{k+1} - T_k) = \sum_{j=1}^{\infty} jpq^{j-1} = \frac{1}{p}.$$

Similarmente,

$$Var(T_{k+1}-T_k) = \frac{(1-p)}{p^2}.$$

Como $T_k = T_1 + (T_2 - T_1) + \cdots + (T_k - T_{k-1})$, segue que T_k é a soma de k variáveis aleatórias i.i.d., e podemos escrever:

$$E(T_k) = E(T_1) + \cdots + E(T_k - T_{k-1}) = \frac{k}{p},$$

assim como

$$\operatorname{Var}(T_k) = \frac{k(1-p)}{p^2}.$$

1.3.2 Distribuição de *T*

Teorema 3. Para qualquer $k \in \{1, 2, ...\}$, tem-se:

i)

$$P(T_k = n) = \binom{n-1}{k-1} p^k q^{n-k}, \qquad n = k, k+1, \dots;$$

ii)

$$P(T_k \le n) = \sum_{j=k}^n \binom{n}{j} p^j q^{n-j}, \qquad n = k, k+1, \dots$$

Demonstração. Inicialmente, note que $T_k(w) \ge k$ para qualquer $w \in \Omega$, pois o k-ésimo sucesso não pode ocorrer em menos do que k tentativas. Desta forma, para n < k teremos $P(T_k = n) = 0$, bem como $P(T_k \ge n) \ge P(T_k \ge k) = P(\Omega) = 1$. Na sequência, consideraremos $n \ge k$.

i) Conforme foi comentado na Observação 5,

$$T_k = n \iff N_{n-1} = k - 1 \text{ e } N_n = k$$

e, portanto,

$$P(T_k = n) = P(N_{n-1} = k - 1, N_n = k)$$

= $P(N_{n-1} = k - 1, N_n - N_{n-1} = 1)$

Em seguida, empregando o Corolário 2 e o Teorema 1, avaliamos:

$$\begin{split} P(T_k = n) &= P(N_{n-1} = k - 1, N_n - N_{n-1} = 1) \\ &= P(N_{n-1} = k - 1)P(N_n - N_{n-1} = 1) \\ &= \binom{n-1}{k-1} p^{k-1} \cdot (1-p)^{n-1-k+1} \cdot p = \binom{n-1}{k-1} p^k (1-p)^{n-k}. \end{split}$$

ii) Conforme a Observação 5 (ii),

$$T_k \leq n \iff N_n \geq k$$
,

Assim, para $n \ge k$, de acordo com o Lema 1, temos:

$$P(T_k \le n) = P(N_n \ge k) = \sum_{i=k}^{n} P(N_n = j) = \sum_{i=k}^{n} {n \choose j} p^j q^{n-j}$$

Exemplo 5. Calcule i) $P(T_3 = 5)$; ii) $P(T_3 = 5|T_1)$; iii) $P(T_3 = 5) = \sum_{j=0}^{\infty} P(T_3 = 5|T_1 = j)P(T_1 = j)$ e compare com (i).

Solução: i)
$$P(T_3 = 5) = {4 \choose 2} p^3 (1-p)^2$$
;

ii)
$$P(T_3 = 5|T_1) = P(T_3 - T_1 = 5 - T_1|T_1 = j_1)$$

= $P(T_2 = 5 - j_1) = {4 - T_1 \choose 1} p^2 (1 - p)^{3 - T_1};$

iii)
$$P(T_3 = 5) = \sum_{j=0}^{\infty} P(T_3 = 5 | T_1 = j) P(T_1 = j)$$

 $= \sum_{j=1}^{3} {4-j \choose 1} p^2 (1-p)^{3-j} {j-1 \choose 0} p^1 (1-p)^{j-1}$
 $= \sum_{j=1}^{3} {4-j \choose 1} p^3 (1-p)^2 = {4 \choose 2} p^3 (1-p)^2$

Exemplo 6. Para um evento A qualquer, sabe-se que

$$E(I_A) = P(A)$$
.

Este fato pode ser usado, em conjunto com a lei dos grandes números, para inferir probabilidades. Por exemplo, com p=0,3, simulando 100.000 realizações para T_3 , obtendo os valores de $I_{\{T_3=5\}}$, e calculando a média obtemos:

média de I
$${T_3=5} = 0,0793$$
.

Confirmando o resultado,

$$E(I_{\{T_3=5\}}) = P(T_3=5) = {4 \choose 2} p^3 (1-p)^2 = 0,0794.$$

Exemplo 7. Calcule P()

1.4 Exercícios

Exercício 3. Considere uma possível realização $\omega = (S, F, F, S...)$ de uma seqüência de lançamentos independentes com dois possíveis resultados S e F. Determine o valor da variável aleatória.

Exercício 4. Seja
$$\{X_n; n = 1, 2, ...\}$$
 um processo de Bernoulli. Se $p = P(X_n = 1) = 0.05$ a) Qual a probabilidade de $X_1 = 1$, $X_2 = 1$ e $X_3 = 1$? b) $P(N_3 = 1)$?

Exercício 5. Seja $\{X_n; n = 1, 2, ...\}$ um processo de Bernoulli. Calcule:

$$a)P(N_1 = 0, N_2 = 0, N_3 = 1, N_4 = 1)$$

 $b)P(N_1 = 0, N_3 = 2, N_3 = 1, N_4 = 2)$
 $c)P(N_8 = 6, N_{15} = 12)$

Exercício 6. No problema mostrado no exemplo 4, qual a probabilidade de um mancal estar dentro da especificação ? Qual a probabilidade de um rebite sair da especificação ? Qual é o valor esperado de peças fora da especificação depois de 400 fabricadas ?

Exercício 7. *Para p* = 0.8, *calcule:*

```
a)E(N_3)

b)E(N_7)

c)E(N_3 + 4N_7)

d)Var(N_3)

e)Var(N_7 - N_3)

f)E(6N_4 + N_7|N_2)
```

Exercício 8. Considere o processo de Bernoulli com probabilidade p=0.8. As cinco primeiras tiragens resultam em $\{SFFSS\}$. Determinar o valor esperado de $N_3 + 2N_7$ dado o histórico.

Exercício 9. Mostrar que $E(N_{n+m}|N_n) = N_n + mp$.

Exercício 10. Sejam N_n o número de veículos que passam por um certo ponto no intervalo (0,n], e T_k marca o tempo (em segundo) do k-ésimo veículo ter passado por tal ponto. Suponha a taxa de passagem de 4 veículos/minuto. Calcule:

a)
$$p = P(X_n = 1)$$

b) $P(T_4 - T_3 = 12)$
c) $E(T_4 - T_3)$, $E(T_{13} - T_3)$
d) $Var(T_2 + 5T_3)$

Exercício 11. Prove que $P(T_8 = 17 | T_0, ..., T_7) = pq^{16-T_7}$, $\{T_7 \le 16\}$.

Exercício 12. Mostre que

$$E(T_{m+n}|T_n)=T_n+\frac{m}{p}.$$

Exercício 13. Calcule:

a)
$$P(T_1 = k, T_2 = m, T_3 = n)$$
, $k < m < n$.
b) $P(T_3 = n | T_1 = k, T_2 = m)$
c) $E(T_3 | T_1 = k, T_2 = m)$
d) $E[g(T_3) | T_1, T_2]$ para $g(b) = \alpha^b$, $\alpha \in [0, 1]$.

Exercício 14. Se uma variávela aleatória T tem distribuição geométrica, então

$$P(T > n + m|T > n) = q^m = P(T > m)$$

para todo n e m. Mostre que a recíproca é também verdadeira: se uma variávela aleatória T é tal que

$$P(T > n + m | T > n) = P(T > m)$$

para todo $m,n \in \mathbb{N}$ então T tem distribuição geométrica.

Exercício 15. A probabilidade de um motorista parar para um caroneiro é p = 0.04; é claro que motoristas diferentes fazem sua decisão de parar ou não independente de cada um. Dado que nosso caroneiro contou que 30 carros passaram sem lhe dar carona, qual a probabilidade de ser pego pelo 37^{Q} motorista ou antes?

Exercício 16. Seja a chegada de carros descrita no exercício anterior. Imagine que dois carros passam a cada minuto (determinísticamente). Seja S o tempo em segundos em que ele finalmente consegue a carona.

- a) Ache a distribuição de S; calcule E(S), Var(S).
- b) Dado que depois de 5 minutos, durante os quais 10 carros passaram, o caroneiro ainda continua no seu lugar, calcule o valor esperado de T.

Exercício 17. Um duelo entre dois homens é feito em rounds, da seguinte forma: em cada round, ambos atiram simultaneamente e a probabilidade de o $1^{\underline{O}}$ matar o $2^{\underline{O}}$ é p_1 , e do $2^{\underline{O}}$ matar o $1^{\underline{O}}$ é p_2 (não necessariamente $p_1 + p_2 = 1$). Ache a probabilidade de que:

- a) o duelo termine no 13º round.
- b) o $1^{\underline{O}}$ termine vivo.
- c) o duelo termine no $13^{\underline{0}}$ round com o $1^{\underline{0}}$ vivo.

DICA: crie um processo de Bernoulli identifiando

 $sucesso \equiv$ "um ou ambos homens morrem no n-ésimo round".

Capítulo 2

Processo de Poisson

No capítulo anterior estudamos processos estocásticos discretos bastante simples. A partir de agora estudaremos o processo de Poisson, um processo estocástico similar ao processo de número de sucessos de um processo de Poisson. Este processo é simples do ponto de vista conceitual e intuitivo, mas é contínuo no tempo, o que traz uma certa compexidade analítica.

Diferentemente do processo de Bernoulli e dos processo de número de sucessos e de tempo de sucessos associados, cujo apelo era mais didático do que aplicativo, o processo de Poisson encontra diversas aplicações, como em telefonia, no estudo de chegada de clientes em uma loja, ou de saídas de peças de um estoque.

2.1 Hipóteses do Processo de Poisson

Há um certo processo estocástico, denominado de processo de *contagem de chegadas*, que é util para descrever o processo de Poisson. No processo de contagem de chegada $\{N_t, t \geq 0\}$, em cada instante de tempo $t \geq 0$, a variável aleatória N_t registra o total do número de chegadas.

Em termos formais, $N = \{N_t; t \geq 0\}$ é tal que para cada $w \in \Omega$ o mapeamento $t \to N_t(w)$ é não decrescente, aumenta somente por saltos, é contínuo a direita e $N_0(w) = 0$, onde $N_t(w)$ é o número de chegadas no intervalo [0,t] para a realização $w \in \Omega$. Note que N é um processo estocástico a parâmetro (de tempo) contínuo e com espaço de estado discreto $N = \{0,1,2,\ldots\}$. Veja um exemplo de realização do processo na Figura 2.1.

Quando o processo de contagem satisfaz certas hipóteses (simplificadoras), então diz-se que ele é um processo de Poisson. Desta forma, o processo de Poisson consiste em um caso particular do processo de contagem de chegadas, para o qual certas hipóteses valem.

Figura 2.1: *Figura ainda não disponível...* Realização do processo de contagem $\{N_n, n \in \mathbb{N}\}.$

Se por um lado é verdade que é relativamente difícil que as hipóteses de Poisson sejam perfeitamente verificadas na prática, por outro lado em um grande número de aplicações elas representam boas aproximações, e por isto o processo de Poisson é considerado um bom *modelo* para diversos processos de contagem. Estudaremos as hipóteses de Poisson a seguir.

Notação 1. Chama-se $N_{t+s} - N_t$ o número de chegadas no intervalo (t, t+s].

Recorde, da Observação 3, que o número de sucessos do processo de Bernoulli tem "incrementos independentes", pois os incrementos em intervalos disjuntos eram independentes.

A priemira hipótese considerada é uma transposicao direta: o número de chegadas em um certo intervalo é independente do número de chegadas em um outro intervalo. Nós formalizamos a noção de *incrementos independentes*, para referencia posterior, da seguinte forma.

Definição 4 (Incrementos Independentes). Considere um processo estocástico $\{Z_k, k \in \mathcal{T}\}$, sendo \mathcal{T} o conjunto de parâmetros. Se as variáveis aleatórias $Z_{k_1+k_2} - Z_{k_1}$ e $Z_{k_3+k_4} - Z_{k_3}$ forem independentes para quaisquer k_1, k_2, k_3, k_4 tais que os intervalos $(k_1, k_1 + k_2]$ $(k_3, k_3 + k_4]$ forem disjuntos, então dizemos que o processo tem incrementos independentes.

A segunda hipótese consiste no fato que os incrementos dependem do "comprimento" do intervalo, mas não de sua "localização"; ou seja, o número de chegadas $N_{t+s} - N_t$, $t, s \ge 0$, depende de s mas não de t. Dada esta independência do tempo, dizemos que o processo é estacionário. Novamente, há semelhança com o número de sucessos em um processo de Poisson, pois quando tratamos dos incrementos podíamos fazer um "shift no tempo". Formalizamos o conceito como segue.

Definição 5 (Incrementos Estacionários). Considere um processo estocástico $\{Z_k, k \in \mathcal{T}\}$, sendo \mathcal{T} o conjunto de parâmetros. Se a distribuição da variável aleatória $Z_{t+s} - Z_t$ for independente de t, então dizemos que o processo tem incrementos estacionários.

A terceira e última hipótese consiste no fato que não ocorrem chegadas simultâneas. Se considerarmos, por exemplo, a chegada de pessoas a um estádio, teremos que considerar que todas as pessoas chegam sozinhas.

Formalmente, temos:

Definição 6 (Chegadas não Simultâneas). Considere um processo de contagem de chegadas $\{N_t, t \geq 0\}$. Dizemos que o processo tem chegadas não simultâneas se os saltos em $N_t(w)$ forem de amplitude unitária, para quase todo w.

Definição 7. Um processo de chegada $N = \{N_t, t \ge 0\}$ é chamado um processo de Poisson se:

- i) tiver incrementos independentes. Ou seja, para qualquer $s,t \geq 0$, $N_{t+s} N_t$ *é* independente de $\{N_u, u \leq t\}$;
- ii) tiver incrementos estacionários. Ou seja, para qualquer $s,t \ge 0$, a distribuição de $N_{s+t} - N_t$ é independente de t (estacionaridade);
 - iii) apresentar chegadas não simultãneas.

Observação 6. Note que a hipótese (i) da Definição 6 não parece (ao menos em princípio) idêntica à hipótese de incrementos independentes.

Contudo, elas são equivalentes. A seguir mostramos que a hipótese (i) da definição leva à hipótese de independência incremental; a demonstração reversa é deixada ao leitor.

Note que o conhecimento de $N_{t_1}, N_{t_2}, \dots, N_{t_n}$ é equivalente ao conhecimento de $N_{t_1}, N_{t_2} - N_{t_1}, \dots, N_{t_n} - N_{t_{n-1}}$, ou seja,

$$\begin{aligned} N_{t_1} &= N_{t_1} \\ N_{t_2} &= N_{t_1} + (N_{t_2} - N_{t_1}) \\ &\vdots \\ N_{t_n} &= N_{t_{n-1}} + (N_{t_n} - N_{t_{n-1}}) \end{aligned}$$

portanto

$$P(N_{s+t}-N_t|N_{t_1},N_{t_2},\ldots,N_{t_n})=P(N_{s+t}-N_t|N_{t_1},N_{t_2}-N_{t_1},\ldots,N_{t_n}-N_{t_{n-1}})$$

Da hipótese (i) da Definição 6, temos que $N_{s+t} - N_t$ é independente do histórico passado $N_{t_1}, N_{t_2}, \dots, N_{t_n}$, quando $t_1 < t_2 < \dots < t_n \le t$. Então, podemos escrever que

$$P(N_{s+t}-N_t|N_{t_1},N_{t_2},\ldots,N_{t_n})=P(N_{s+t}-N_t)$$

e, substituindo na equação anterior, obtemos

$$P(N_{s+t}-N_t|N_{t_1},N_{t_2}-N_{t_1},\ldots,N_{t_n}-N_{t_{n-1}})=P(N_{s+t}-N_t).$$

Ou seja, $N_{t+s} - N_t$ é independente de $N_{t_1}, N_{t_2} - N_{t_1}, \dots, N_{t_n} - N_{t_{n-1}}$, e daí obtemos

•
$$P(N_{t_2}-N_{t_1}|N_{t_1})=P(N_{t_2}-N_{t_1})\Rightarrow (N_{t_2}-N_{t_1})\ e\ N_{t_1}\ s\~ao\ independentes;$$

• $P(N_{t_3}-N_{t_2}|N_{t_1},N_{t_2}-N_{t_1})=P(N_{t_3}-N_{t_2})\Rightarrow (N_{t_3}-N_{t_2})\ e\ independente\ de\ N_{t_1},N_{t_2}-N_{t_2}$

•
$$P(N_{t_3} - N_{t_2} | N_{t_1}, N_{t_2} - N_{t_1}) = P(N_{t_3} - N_{t_2}) \Rightarrow (N_{t_3} - N_{t_2}) \text{ \'e independente de } N_{t_1}, N_{t_2} - N_{t_1}.$$

Logo $N_{t_1}, N_{t_2} - N_{t_1}$ e $N_{t_3} - N_{t_2}$ são independentes. O resultado segue por indução.

2.1.1 Distribuição de N_t

É possível partir das hipóteses que definem o processo de Poisson e encontrar as distribuições associadas de N. Contudo, é mais simples (e igualmente didático) partirmos propondo a distribuição de um incremento $N_{t+s} - N_t$ e em seguida verificar que de fato esta distribuição corresonde às hipóteses do processo, como segue.

Teorema 4. Se $\{N_t, t \ge 0\}$ é um processo de Poisson, então, para qualquer $t, s \ge 0$ e $k \ge 0$,

$$P(N_{t+s} - N_t = k | N_u, u \le t) = P(N_{t+s} - N_t = k) = \frac{e^{-\lambda t} (\lambda t)^k}{k!}.$$
 (2.1)

Demonstração. Há dois fatos a serem verificados. Primeiro, se (2.1) é, de fato, uma distribuição. Deixamos isto ao encargo do leitor.

Segundo, devemos verificar se os ítens (i) a (iii) da Definição 7 são satisfeitos, assumindo que a distribuição é como em (2.1). Os ítens (i) e (ii) são triviais, pois de (2.1) vem que $P(N_{t+s} - N_t = k | N_u, u \le t)$ é igual a $\frac{e^{-\lambda t}(\lambda t)^k}{k!}$, valor este que só depende do "intervalo"s; não depende de t e nem dos valores passados do processo.

Com respeito ao item (iii), temos:

vide notas de aula

É interessante visualizar as curvas da distribuição do Teorema 4, traçadas na Figura 2.2. Note que a distribuição é bastante assimétrica para $P(N_{s+t} - N_s = k)$ quando k é pequeno, e que vai se tornando mais simétrica na medida em que k aumenta; para valores elevados de k, a distribuição aproxima-se da normal com média λt .

Exemplo 8. Seja $N = \{N_t, t \ge 0\}$ um processo de Poisson com taxa $\lambda = 8$. Queremos calcular

$$P(N_{2.5} = 17, N_{3.7} = 22, N_{4.3} = 36)$$

O conhecimento de $N_{2.5}, N_{3.7}$ e $N_{4.3}$ é equivalente a $N_{2.5}, N_{3.7} - N_{2.5}, N_{4.3} - N_{3.7}$, então

$$P(N_{2.5} = 17, N_{3.7} = 22, N_{4.3} = 36) =$$

$$P(N_{2.5} = 17, N_{3.7} - N_{2.5} = 5, N_{4.3} - N_{3.7} = 14)$$

$$= P(N_{2.5} = 17)P(N_{3.7} - N_{2.5} = 5)P(N_{4.3} - N_{3.7} = 14)$$

$$= P(N_{2.5} = 17)P(N_{1.2} = 5)P(N_{0.6} = 14)$$

Figura 2.2: Distribuição dos incrementos $N_{s+t}-N_s$ de um processo de Poisson com taxa $\lambda=1/100$

Assim

$$P(N_{2.5} = 17, N_{3.7} = 22, N_{4.3} = 36) =$$

$$\frac{e^{-8 \times 2.5} (8 \times 2.5)^{17}}{17!} \cdot \frac{e^{-8 \times 1.2} (8 \times 1.2)^5}{5!} \cdot \frac{e^{-8 \times 0.6} (8 \times 0.6)^{14}}{14!}$$

$$= \frac{e^{-20} (20)^{17}}{17!} \cdot \frac{e^{-9.6} (9.6)^5}{5!} \cdot \frac{e^{-4.8} (4.8)^{14}}{14!}$$

2.1.2 Valor Esperado de N_t e o Significado de λ

Seja N_t , $t \le 0$ um processo de Poisson

$$P(N_t = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, \quad n = 0, 1, 2, ...$$

Vamos calcular $E(N_t)$

$$E(N_t) = \sum_{n=0}^{\infty} nP(N_t = n)$$
$$= \sum_{n=0}^{\infty} n \frac{e^{-\lambda t} (\lambda t)^n}{n!}$$

$$= \sum_{n=1}^{\infty} n \frac{e^{-\lambda t} (\lambda t)^{n-1}}{(n-1)!} (\lambda t)$$
$$= \lambda t e^{-\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!}$$

Fazendo a mudança de variável j=n-1, onde $n=1 \Rightarrow j=0$ e $n \to \infty \Rightarrow j \to \infty$.

$$E(N_t) = (\lambda t)e^{-\lambda t} \underbrace{\sum_{j=0}^{\infty} \frac{(\lambda t)^j}{j!}}_{e^{\lambda t}} = \lambda t$$

Note que o resultado acima sugere que o significado de λ é o do valor esperado de chegadas em um certo intervalo de duração t, dividido por t,

$$\lambda = \frac{E(N_t)}{t}.$$

Ou seja, λ é a 'taxa média' de chegadas. Esta idéia é reforçada pelo resultado que segue, que estabelece que λ tem o significado da razão entre a probabilidade de uma chegada em um pequeno intervalo. A prova vem de imediato da distribuição dos incrementos e é omitida.

Lema 3.

$$\lim_{t\to 0}\frac{P(N_t=1)}{t}=\lambda$$

Exemplo 9. Suponha que em um terminal telefônico chegam 20 chamadas por dia. Qaul a probabilidade de 10 ou mais chamadas ocorrerem entre 10h e 18h de um dia? Qual a probabilidade de mais de uma chamada nas primeira 8 horas do dia?

Solução:

 $\lambda = 20$ chamadas por dia = 20/24 chamadas por hora.

$$P(N_t = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, \quad n = 0, 1, 2, \dots$$

(i)Sabemos que $P(N_{t+s}-N_t=n)=P(N_s)=\frac{e^{-\lambda s}(\lambda s)^n}{n!}$. Assim, fazendo t=10, s=8 e n=10 temos

$$P(N_8 \ge 10) = \sum_{n=10}^{\infty} P(N_8 = n) = \sum_{n=10}^{\infty} \frac{e^{-\frac{20}{24}8} (\frac{20}{24}8)^n}{n!} = \sum_{n=10}^{\infty} \frac{e^{-\frac{20}{3}} (\frac{20}{3})^n}{n!}$$

Devemos usar que

$$P(N_8 \ge 10) = 1 - P(N_8 \le 10) = 1 - \sum_{n=0}^{9} \frac{e^{-\frac{20}{3}} (\frac{20}{3})^n}{n!}$$

(*ii*)
$$P(N_t ≥ 2)$$
, $t = 8h$

$$P(N_8 \ge 2) = 1 - P(N_8 \le 1) = 1 - P(N_8 = 0) - P(N_8 = 1)$$

$$= 1 - \frac{e^{-\frac{20}{24}8} (\frac{20}{24}8)^0}{0!} - \frac{e^{-\frac{20}{24}8} (\frac{20}{24}8)^1}{1!}$$

$$= 1 - e^{-\frac{20}{3}} - \frac{20}{3}e^{-\frac{20}{3}} = 1 - e^{-\frac{20}{3}} \left(1 + \frac{20}{3}\right)$$

Exemplo 10. Qual o valor esperado do número de chamadas do Exemplo 9? Considere os dois intervalos $0 \le t \le 8h$ e $10 \le t \le 18h$?

Solução:

(*i*)
$$E(N_t) = \lambda t$$
, $0 \le t \le 8$

$$E(N_8) = \frac{20}{24} \cdot 8 = \frac{20}{3} chamadas.$$

(ii)
$$E(N_{t+s} - N_t)$$
 para $10 \le t \le 18$

$$P(N_{t+s} - N_t) = P(N_s)$$

$$E(N_{t+s} - N_t) = E(N_{t+s}) - E(N_t) = \lambda(t+s) - \lambda t = \lambda s$$

Assim

$$E(N_{18}-N_{10})=rac{20}{24}\cdot 8=rac{20}{3}chamadas$$
.

Teorema 5. $N = \{N_t, t \le 0\}$ é um processo de Poisson se, e somente se,

- (a) Para quase todo w, cada salto $N_t(w)$ é de magnitude unitária;
- $(b) E\{N_{t+s} N_t | N_u, u \le t\} = \lambda s$

A prova deste teorema será omitida.

Observação 7. A definição do processo de Poisson é puramnete qualitativa, o surpreendente é que estes axiomas qualitativos especificam completamente a distribuição de N_t e as leis probabilísticas do processo como um todo.

O teorema anterior dá uma caracterização qualitativa mais simples do processo de Poisson. Este teorema é de fácil uso quando existe uma forte evidência para sugerir a independência de $N_{t+s} - N_t$ do histórico passado N_u , $u \le t$.

O próximo teorema é de fácil uso onde os axiomas de independência não são evidentes, mas existem dados para se obter a distribuição do número de chegada em vários intervalos de tempo.

Teorema 6. $N = \{N_t, t \ge 0\}$ é um processo de Poisson com taxa λ se, e somente se,

$$P(N_B = k) = \frac{e^{-\lambda b} (\lambda b)^k}{k!}$$

para qualquer intervalo $B \subset [0, \infty)$ que é a união de um número finito de intervalos disjuntos tal que a soma dos comprimentos é b.

Demonstração. (i) Provaremos o teorema só em um sentido. Considere o número de chegadas em dois intervalos de tempo disjuntos

$$X_1 = N_{t_1+s} - N_{t_1}; X_2 = N_{t_2+s_2} - N_{t_2}$$

em um processo de Poisson com taxa λ. Então

$$P(X_1 + X_2 = n) = \sum_{j=0}^{\infty} P(X_1 = j) P(X_1 + X_2 = n | X_1 = j)$$
$$= \sum_{j=0}^{\infty} P(X_1 = j) P(X_2 = n - j)$$

usamos na última passagem o fato de X_2 ser independente de X_1 . Logo

$$P(X_1 + X_2 = n) = \sum_{j=0}^{\infty} \frac{e^{-\lambda s_1} (\lambda s_1)^j}{j!} \frac{e^{-\lambda s_2} (\lambda s_2)^{n-j}}{(n-j)!}$$

$$= e^{-\lambda (s_1 + s_2)} \sum_{j=0}^{\infty} \frac{(\lambda s_1)^j (\lambda s_2)^{n-j}}{j! (n-j)!}$$

$$= \frac{e^{-\lambda (s_1 + s_2)}}{n!} \sum_{j=0}^{\infty} \frac{n!}{j! (n-j)!} (\lambda s_1)^j (\lambda s_2)^{n-j}$$

Mas

$$\sum_{j=0}^{\infty} \frac{n!}{j!(n-j)!} (\lambda s_1)^j (\lambda s_2)^{n-j} = (\lambda s_1 + \lambda s_2)^n$$

portanto

$$P(X_1 + X_2 = n) = \frac{e^{-\lambda(s_1 + s_2)}(\lambda s_1 + \lambda s_2)^n}{n!}$$

(ii) A recíproca não será provada.

Proposição 1. Sejam A_1, A_2, \ldots, A_n intervalos disjuntos com união B, sejam a_1, a_2, \ldots, a_n os respectivos comprimentos de A_1, A_2, \ldots, A_n e $b = a_1 + a_2 + \cdots + a_n$. Então, para $k_1 + k_2 + \cdots + k_n = k \in \mathbb{N}$, temos

$$P(N_{A_1} = k_1, N_{A_2} = k_2, \dots, N_{A_n} = k_n | N_B = k)$$

$$= \frac{k!}{k_1! k_2! \dots k_n!} \left(\frac{a_1}{b}\right)^{k_1} \dots \left(\frac{a_n}{b}\right)^{k_n}.$$
(2.2)

Demonstração. Se $N_{A_1} = k_1, N_{A_2} = k_2, \dots, N_{A_n} = k_n$ e $N_B = k$ temos

$$P(N_{A_1} = k_1, \dots, N_{A_n} = k_n | N_B = k) = \frac{P(N_{A_1} = k_1, \dots, N_{A_n} = k_n)}{P(N_B = k)}$$

Se A_1, A_2, \dots, A_n são disjuntos, então N_{A_1}, \dots, N_{A_n} são independentes, logo

$$P(N_{A_1} = k_1, \dots, N_{A_n} = k_n) = P(N_{A_1} = k_1) \dots P(N_{A_n} = k_n)$$
Sendo $P(N_{A_i} = k_i) = \frac{e^{-\lambda a_i} (\lambda a_i)^{k_i}}{k_i!}, \quad P(N_B = k) = \frac{e^{-\lambda b} (\lambda b)^k}{k} \quad \text{temos}$

$$P(N_{A_1} = k_1, \dots, N_{A_n} = k_n | N_B = k) = \frac{k!}{k_1! k_2! \dots k_n!} \left(\frac{a_1}{b}\right)^{k_1} \dots \left(\frac{a_n}{b}\right)^{k_n}$$

2.1.3 Tempo de Chegada

Seja $N = \{N_t, t \ge 0\}$ um processo de Poisson com taxa λ , para quase todo w. A função $t \to N_t(w)$ é não decrescente, contínua à direita e aumenta somente por saltos unitários. Esta função é completamente determinada pelos instantes de salto $T_1(w), T_2(w), \ldots, T_n(w), \ldots$ Denotamos T_1, T_2, \ldots, T_n os sucessivos instantes (ou tempo) de chegada.

Seja $X_n = T_n - T_{n-1}$, ($T_0 = 0$, por conveniência), X_n é o intervalo de tempo entre as chegadas n-1 e n. Para determinar a distribuição de X_n , vamos usar o fato de que $\{X_n > t\}$ significa o mesmo que ter ocorrido zero chegadas no intervalo [0,t], ou seja

$$P(X_n > t) = P(\text{``zero chegadas entre} [0, t]\text{''}) = e^{\lambda t}$$

Devemos observar ainda algumas propriedades da variável aleatória X_n :

$$P(X_n > t | X_{n-1} = s) = P(\text{"zero chegadas entre} (s, t+s]\text{"} | X_{n-1} = s)$$

= $P(\text{"zero chegadas entre} (s, t+s]\text{"})$

$$P(X_n > t | X_{n-1} = s) = P(X_n > t) \implies \text{independência.}$$

Por outro lado $P(X_n > t) = e^{\lambda t}$, logo

$$P(X_n > t | X_{n-1} = s) = e^{\lambda t} \implies \text{estacionariedade.}$$

Conclusão:

Os tempos entre chegadas X_n são variáveis aleatórias independentes e identicamente distribuídas com distribuição exponencial $\lambda - e^{\lambda t}$.

Lembrando que se uma variável aleatória tem distribuição exponencial, então

$$P(X > t + s | X > t) = P(X > s)$$

para quaisquer $t, s \ge 0$.

Alternativamente se X tem essa propriedade, então X tem distribuição exponencial, pois

$$P(X > t + s | X > t) = \frac{P(X > t + s)}{P(X > t)} = P(X > s)$$

e daí

$$P(X > t + s) = P(X > t)P(X > s),$$

o que implica que *X* tem distribuição exponencial.

Teorema 7. Sejam T_1, T_2, \ldots tempos sucessivos de chegadas de um processo de chegada $N = \{N_t, t \geq 0\}$. Então N é um processo de Poisson com taxa λ se, e somente se, os tempos de chegadas $T_1, T_2 - T_1, T_3 - T_1, \ldots$ são i.i.d, com distribuição exponencial de parâmetro λ .

Demonstração. Notemos que uma parte do teorema já foi provada, e deixamos a recíproca como exercício.

Valor esperado e variância de $T_n - T_{n-1}$

Sendo $T_n - T_{n-1}$ uma variável aleatória com distribuição exponencial de parâmetro λ , temos

$$E(T_n - T_{n-1}) = \frac{1}{\lambda}$$
 e $Var(T_n - T_{n-1}) = \frac{1}{\lambda^2}$ sendo $T_n = T_1 + (T_2 - T_1) + (T_3 - T_2) + \dots + (T_n - T_{n-1})$ temos

$$E(T_n) = \frac{n}{\lambda}$$
 e $Var(T_n) = \frac{n}{\lambda^2}$

Exemplo 11. Um item tem um tempo de vida aleatório cuja distribuição é exponencial com parâmetro λ . Quando este falha, é imediatamente substituído por um item idêntico e assim sucessivamente. Isto significa que os tempos de vidas X_1, X_2, \ldots dos sucessivos itens em uso sao i.i.d. com distribução exponencial dada por

 $P(X_n \le t) = 1 - e^{-\lambda t}; \quad t > 0.$

Se T_1, T_2, \ldots são os tempos das falhas sucessivas, temos que $T_1 = X_1, T_2 = X_1 + X_2, \ldots$ Então as condições do teorema 44 estão satisfeitas pela seqüência T_1, T_2, \ldots Assim se N_t é o número de falhas em [0,t], concluímos que o processo de falhas $N = \{N_t, t \geq 0\}$ é um processo de Poisson com taxa λ .

Exemplo 12. Supondo que no exemplo ?? $\lambda = 2.10^{-4}$ temos que o tempo de vida esperado de um item é

$$E(X_n) = \frac{1}{\lambda} = 5000(horas)$$

A variância é

$$Var(X_n) = \frac{1}{\lambda^2} = 25.10^6 (horas)^2$$

Supondo que numa máquina funcionem três desses itens, onde o segundo entra em funcionamento imediatamente após o primeiro falhar e o terceiro logo após o segundo falhar, então o tempo de vida esperado da máquina é

$$E(T_3) = E(X_1 + X_2 + X_3) = \frac{3}{\lambda} = 15000(horas)$$

$$Var(T_3) = Var(X_1 + X_2 + X_3) = \frac{3}{\lambda^2} = 75 \cdot 10^6 (horas)^2.$$

Exemplo 13. Supondo que os itens do exemplo anterior são recolocados por outro idêntico tão logo eles falhem, e supondo que o custo de reposição é β \$ e que a taxa de desconto é $\alpha > 0$, então \$1 gasto no instante t tem um valor presente de $e^{-\alpha t}$ (α é a taxa de juros). Logo, para uma realização α α o tempo da n-ésima falha é α α valor presente do custo de reposição é α α esse custo para todo α temos que o valor presente do custo de todas reposições futuras é

$$C(w) = \sum_{n=1}^{\infty} \beta e^{(-\alpha T_n(w))}, \quad w \in \Omega$$

Estamos interessados no valor espreado do custo C(w), ou seja

$$E(C(w)) = \sum_{n=1}^{\infty} \beta E(e^{(-\alpha T_n(w))})$$

Para n fixo, podemos escrever $T_n = T_1 + (T_2 - T_1) + ... + (T_n - T_{n-1})$, onde $T_1, T_2 - T_1, ..., T_n - T_{n-1}$ são variáveis aleatórias i.i.d., logo

$$E(e^{-\alpha T_n}) = E(e^{-\alpha T_1}e^{-\alpha(T_2 - T_1)} \dots e^{-\alpha(T_n - T_{n-1})})$$

$$= E(e^{-\alpha T_1})E(e^{-\alpha(T_2 - T_1)}) \dots E(e^{-\alpha(T_n - T_{n-1})})$$

$$= [E(e^{-\alpha T_1})]^n$$

Desde que a distribuição de T_1 é exponencial com parâmetro λ , temos

$$E(e^{-\alpha T_1}) = \int_0^\infty e^{-\lambda t} \lambda e^{-\lambda t} dt = \frac{\lambda}{\alpha + \lambda}$$

temos

$$E(C) = \sum_{n=1}^{\infty} \beta \left(\frac{\lambda}{\alpha + \lambda} \right)^n = \beta \frac{\lambda}{\alpha + \lambda} \left(1 - \frac{\lambda}{\alpha + \lambda} \right)^{-1} = \beta \frac{\lambda}{\alpha}$$

2.2 Tempo de Recorrência (Forward)

Observa-se uma loja no instante t e suponha que o último cliente tenha chegado no instante t-h. Vamos mostrar que a fução distrituição do intervalo de tempo que devemos esperar para a chegada do próximo cliente não depende de h e coincide com a distribuição de $X_n = T_n - T_{n-1}$. O processo não se lembra de que se passaram h unidades de tempo entre as chegadas do último cliente e o instante presente.

Teorema 8. Se se observa um processo de Poisson no instante de tempo t onde a última chegada N_t ocorreu no instante $T_{N_T} = t - h$ e a próxima chegada $N_T + 1$ ocorrerá em T_{N_T+1} . Denotando o tempo de espera até a chegada $N_T + 1$ por

$$W_t = T_{N_t+1} - t$$
,

tem-se que

$$P(W_t \le z | N_s, s \le t) = 1 - e^{\lambda z}$$

para qualquer $z \ge 0$, independentemente de t e de h.

Demonstração.

$$[W_t \le z] = [T_{N_T+1} - t \le z] = [T_{N_T+1} - t \ge z]^c = [N_{t+z} - N_t = 0]^c$$

Portanto

$$P(W_t \le z | N_s, s \le t) = P([N_{t+z} - N_t = 0]^c | N_s, s \le t)$$

$$= 1 - P(N_{t+z} - N_t = 0 | N_s, s \le t)$$

$$= 1 - P(N_{t+z} - N_t = 0)$$

$$= 1 - e^{\lambda z}$$

2.3 Superposição de Processos de Poisson

Seja $L = \{L_t, t \ge 0\}$ e $M = \{M_t, t \ge 0\}$ dois processos de Poisson independentes com taxas λ e μ , respectivamente. Para cada $w \in \Omega$ e $t \ge 0$, seja $N_t(w)$ dado por

$$N_t(w) = L_t(w) + M_t(w)$$

O processo $N = \{N_t, t \ge 0\}$ é chamado de superposição dos processos L e M.

Teorema 9. $N = \{N_t, t \ge 0\}$ é um processo de Poisson com taxa $v = \lambda + \mu$.

Demonstração. Pelo Teorema 6, basta mostrar que para qualquer intervalo de tempo B, que é a união de um número finito de intervalos disjuntos de comprimento total b, o número de chegadas durante B tem distribuição de Poisson com parâmetro vb.

$$P(N_B = n) = \sum_{k=0}^{n} P(L_B = k, M_B = n - k)$$

$$= \sum_{k=0}^{n} \frac{e^{-\lambda b} (\lambda b)^k}{k!} \frac{e^{-\mu b} (\mu b)^{n-k}}{(n-k)!}$$

$$= \frac{e^{-(\lambda+\mu)b} (\lambda+\mu)^n}{n!} b^n \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{\lambda^k \mu^{n-k}}{(\lambda+\mu)^n}$$

$$= \frac{e^{-(\lambda+\mu)b} (\lambda+\mu)^n}{n!} b^n \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}$$

logo

$$P(N_B = n) = \frac{e^{-(\lambda + \mu)b}[(\lambda + \mu)b]^n}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} p^k \cdot q^{n-k}$$

onde $p=rac{\lambda}{\lambda+\mu}$ e $q=rac{\mu}{\lambda+\mu}$, ou seja p+q=1. Sendo

$$\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} p^k \cdot q^{n-k} = (p+q)^n = 1$$

temos

$$P(N_B = n) = \frac{e^{-(\lambda + \mu)b}[(\lambda + \mu)b]^n}{n!}$$

Chamando $\lambda + \mu = v$ temos

$$P(N_B = n) = \frac{e^{-vb}(vb)^n}{n!}$$

2.4 Decomposição de um Processo de Poisson

Sejam $N = \{N_t, t \ge 0\}$ um processo de Poisson com taxa λ e $\{K_n, n = 1, 2, ...\}$ um processo de Bernoulli independente de N com probabilidade p de sucesso. Seja S_n o número de sucessos nas primeiras n-tentativas. Suponha que a n-ésima tentativa é realizada no instante da n-ésima chegada T_n .

Para uma realização $w \in \Omega$, o número de tentativas realizadas em [0,t] é $N_t(w)$, e o número de sucessos obtidos em [0,t] é denotado por

$$M_t(w) = S_{N_t}(w)$$

e o número de falhas é

$$L_t(w) = N_t(w) - M_t(w).$$

Teorema 10. Os processos $M = \{M_t, t \ge 0\}$ são processos de Poisson com taxas λp e λq (q = 1 - p), respectivamete. Além disso, L e M são independentes.

Demonstração. Mostraremos que

$$P(M_{t+s}-M_t=m,L_{t+s}-L_t=k|M_u,L_u,u\leq t)=\frac{e^{-\lambda ps}(\lambda ps)^m}{m!}\frac{e^{-\lambda qs}(\lambda qs)^k}{k!}$$

com k, m = 0, 1, 2, ... e qualquer $s, t \ge 0$. Notando a igualdade entre os eventos seguintes

$$A = \{M_{t+s} - M_t = m, L_{t+s} - L_t = k\} = \{N_{t+s} - N_t = m + k, M_{t+s} - M_t = m\},$$

escrevemos

$$A = \{N_{t+s} - N_t = m + k, S_{N_{t+s}} - S_{N_t} = m\}$$

Além disso o conhecimento do histórico $\{M_u, L_u, u \leq t\}$ é equivalente ao conhecimento de

$$K^* = \{N_u, u \le t, X_1, X_2, \dots, X_{N_t}\}$$

Como N é um processo de Poisson, e como os processos N e S são independentes, a variável aleatória $N_{t+s}-N_t$ é independente de K^* . Além disso o número de sucessos nas tentativas $N_{t+1}, N_{t+2}, \ldots, N_{t+s}$ é independente da história passada $X_1, X_2, \ldots, X_{N_t}$, e como S e N são independentes, $S_{N_{t+1}}-S_{N_t}$ é independente de K^* . Então temos

$$P(A) = \sum_{n=0}^{\infty} P(N_t = n, N_{t+s} - N_t = m + k, S_{N_{t+s}} - S_{N_t} = m)$$

$$= \sum_{n=0}^{\infty} P(N_t = n, N_{t+s} = m + k + n, S_{m+k+n} - S_n = m)$$

$$= \sum_{n=0}^{\infty} P(N_t = n, N_{t+s} = m+k+n) P(S_{m+k+n} - S_n = m)$$

$$= \sum_{n=0}^{\infty} P(N_t = n, N_{t+s} - N_t = m+k) P(S_{m+k+n} - S_n = m)$$

$$= P(N_{t+s} - N_t = m+k) P(S_{m+k} = m)$$

$$= \frac{e^{-\lambda s} (\lambda s)^{m+k}}{(m+k)!} \frac{(m+k)!}{m!k!} p^m q^k$$

$$= \frac{e^{-\lambda (p+q)s} (\lambda sp)^m (\lambda sq)^k}{m!k!}$$

$$= \frac{e^{-\lambda ps} (\lambda ps)^m}{m!} \frac{e^{-\lambda qs} (\lambda qs)^k}{k!}$$

2.5 Exercícios

Exercício 18. Seja N um processo de Poisson com taxa $\lambda = 2$, calcule a) $E(N_t)$ e $Var(N_t)$ b) $E(N_{t+s}|N_t)$

Exercício 19. Uma loja promete dar um prêmio a todo 13^{Q} cliente que chegar. Se a chegada do cliente é um processo de Poisson com taxa λ

a) calcule a função densidade de probabilidade do tempo entre clientes premiados;

b) ache $P(M_t = k)$ para o número de prêmios dados no intervalo [o,t].

Exercício 20. Usuários chegam a uma loja segundo um processo de Poisson com taxa $\lambda = 20/\text{hora}$. Ache o número esperado de vendas durante as 8 horas de espedimente do dia se a probabilidade do cliente comprar é 0,30.

Exercício 21. Uma loja tem 3 portas. A chegada em cada porta forma um processo de Poisson com taxas $\lambda_1 = 110, \lambda_2 = 90, \lambda_3 = 160$ usuários/hora. 30% dos usuários são masculino. A probabilidade de que um masculino compre alguma coisa é 0,80, e a probabilidade de que um feminino compre alguma coisa é 0,10. Uma compra média é avaliada em \$4,50.

a)Qual o valor esperado do total de vendas feito às 10 horas do dia.

b)Qual é a probabilidade de que o terceiro usuário feminino para comprar qualquer coisa chegue durante os primeiros 15 minutos? Qual é o tempo esperado de sua chegada?

Exercício 22. Seja $N = \{N_t, t \leq 0\}$ um processo de Poisson com taxa λ e suponha que em um dado t $N_t = 1$. Qual a distribuição do tempo T_1 em que a chegada ocorreu?