1 Formule de Mobius et dénombrements des polynômes irréductibles

Définition 1. Soit $n \in \mathbb{N}$, on définit la fonction de Möbius $\mu : \mathbb{N} \to \mathbb{Z}$ par

$$\mu(n) = \begin{cases} 0 & \text{si } n \text{ n'est pas produit de carr\'es,} \\ (-1)^k & \text{si } n \text{ est produit de } k \text{ nombres premiers distincts.} \end{cases}$$
 (1)

Proposition 1. Soit $n \geq 2$, alors

$$\sum_{d|n} \mu(d) = 0. \tag{2}$$

Proof. On décompose n en produit de facteurs premiers

$$n = \prod_{i=1}^{k} p_i^{\alpha_i}.$$
 (3)

On peut ensuite décomposer la somme, en tenant compte que $\mu(d) = 0$ si deux diviseurs premiers divisent d,

$$\sum_{d|n} = \mu(1) + \sum_{i=1}^{k} \mu(p_i) + \sum_{i \neq j} \mu(p_i p_j) + \dots + \mu(p_1 \dots p_n)$$
 (4)

$$=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\tag{5}$$

$$=0. (6)$$

Théorème 1 (Formule d'inversion de Möbius). Soit f une fonction arithmétique, on pose $g(n) = \sum_{d|n} f(d)$. Alors, on a

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d) = \sum_{d|n} \mu(d) g\left(\frac{n}{d}\right). \tag{7}$$

Proof. On a

$$\sum_{d|n} \mu(d)g\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \sum_{e|\frac{n}{d}} f(e)$$
 (8)

$$= \sum_{de|n} f(e)\mu(d) \tag{9}$$

$$= \sum_{e|n} f(e) \sum_{d|\frac{n}{e}} \mu(d) \tag{10}$$

$$= f(n). (11)$$

car $\sum_{d\mid \frac{n}{e}} \mu(d)$ vaut 0 si $e \neq n$ et 1 sinon.

Application aux dénombrements de polynômes irréductibles sur \mathbb{F}_q

Définition 2. Soit \mathbb{K} un corps, un polynôme f de $\mathbb{K}[x]$ est dit irréductible si il n'est pas le produit de deux polynômes non inversibles de $\mathbb{K}[x]$, i.e.

$$f = gh \implies g \in \mathbb{K}[x]^{\times} \text{ ou } h \in \mathbb{K}[x]^{\times}.$$
 (12)

Proposition 2. Soit q une puissance d'un nombre premier. On note I(n,q) l'ensemble des polynômes irréductibles unitaires de degré n sur \mathbb{F}_q . Alors, on a

$$x^{q^n} - x = \prod_{d|n} \left(\prod_{f \in I(d,q)} f \right)$$
 (13)

Proof. Soit d|n, on considère $g \in I(d,q)$. On considère ensuite K le corps de rupture de g sur \mathbb{F}_q . K est une extension de degré d qui sera isomorphe à \mathbb{F}_{q^d} , en considérant K comme \mathbb{F}_q —ev de dimension d (en prenant α comme élément primitif). On sait que $\alpha^{q^d} = \alpha$ donc α est une racine de $x^{q^n} - x$. On en déduit donc que f divise $x^{q^n} - x$.

Réciproquement, supposons que f est un facteur irréductible de $x^{q^n} - x$. On note d le degré de f. Par ailleurs, f est scindé dans \mathbb{F}_{q^n} donc les racines de f sont dans \mathbb{F}_{q^n} . En particulier, si on considère le corps de rupture K de f sur F_q , on sait que K est une extension de \mathbb{F}_q de degré d.

$$\mathbb{F}_q \subset K \cong \mathbb{F}_{q^d} \subset \mathbb{F}_{q^n}. \tag{14}$$

On peut aussi construire \mathbb{F}_{q^n} comme un corps de rupture pour un polynôme irréductible de degré k, d'où

$$[\mathbb{F}_{q^n} : \mathbb{F}_q] = [\mathbb{F}_{q^n} : \mathbb{F}_{q^d}][\mathbb{F}_{q^d} : \mathbb{F}_q]. \tag{15}$$

D'où d|n.

Théorème 2.

$$|I(n,q)| = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d.$$
 (16)

Proof. Utilisons la Proposition 2 et comparons les degrés de chaque côté :

$$q^n = \sum_{d|n} |I(d,q)|d. \tag{17}$$

Appliquons ensuite la formule d'inversion avec $n \mapsto |I(n,q)|$. On en déduit que

$$n|I(n,q)| = \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d.$$
 (18)

Il suffit ensuite de diviser par n des deux côtés pour obtenir le résultat attendu

$$|I(n,q)| = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d. \tag{19}$$

Remarque 1. On récupère aussi un équivalent de |I(n,q)|.

$$|I(n,q)| \sim \frac{q^n}{n}. (20)$$

Pour cela, il suffit de remarquer les inégalités suivantes

$$\left|\frac{1}{n}\sum_{d|n,d\leq n}\mu\left(\frac{n}{d}\right)q^{d}\right| \leq \frac{1}{n}\sum_{d|n,d\leq n}\left|\mu\left(\frac{n}{d}\right)q^{d}\right| \tag{21}$$

$$\leq \frac{1}{n} \sum_{d|n,d < n} q^d \tag{22}$$

$$\leq \frac{1}{n} \sum_{d=1} q^{\lfloor \frac{n}{2}q^d \rfloor} \tag{23}$$

$$=\frac{1}{n}\frac{q^{\lfloor \frac{n}{2}q^d\rfloor+1}-1}{q-1}\tag{24}$$

qui est un $o(q^n)$. Ainsi, $|I(n,q)| = \frac{q^n}{n} + o(q^n)$, d'où $|I(n,q)| \sim \frac{q^n}{n}$.