RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMI NAGAR, THANDALAM – 602 105

AI23331 FUNDAMENTALS OF MACHINE LEARNING LAB

Laboratory Record Notebook

Name: LAKSHIYA SRI K M

Year / Branch / Section: 2nd YEAR / AIML/B

University Register No.:2116231501082

College Roll No.: 231501082

Semester: 3rd SEMESTER

Academic Year: 2024-2025

INDEX PAGE

SL.NO	DATE	NAME OF THE EXPERIMENT		
01	23.08.2024	A PYTHON PROGRAM TO IMPLEMENT UNIVARIATE REGRESSION, BIVARIATE REGRESSION AND MULTIVARIATE REGRESSION.		
02	30.08.2024	A PYTHON PROGRAM TO IMPLEMENT SIMPLE LINEAR REGRESSION USING LEAST SQUARE METHOD		
03	06.09.2024	A PYTHON PROGRAM TO IMPLEMENT LOGISTIC MODEL		
04	13.09.2024	A PYTHON PROGRAM TO IMPLEMENT SINGLE LAYER PERCEPTRON		
05	20.09.2024	A PYTHON PROGRAM TO IMPLEMENT MULTI LAYER PERCEPTRON WITH BACKPROPAGATION		
06	27.09.2024	A PYTHON PROGRAM TO DO FACE RECOGNITION USING SVM CLASSIFIER		
07	04.10.2024	A PYTHON PROGRAM TO IMPLEMENT DECISION TREE		
08	18.10.2024	A PYTHON PROGRAM TO IMPLEMENT DECISION TREE		
09A	25.10.2024	A PYTHON PROGRAM TO IMPLEMENT KNN MODEL .		
09B	25.10.2024	A PYTHON PROGRAM TO IMPLEMENT K-MEANS MODEL		
10	04.11.2024	A PYTHON PROGRAM TO IMPLEMENT DIMENSIONALITY REDUCTION -PCA.		

A python program to implement univariate regression EXPT NO: 1

DATE: 23.08.2024 bivariate regression and multivariate regression.

AIM:

To write a python program to implement univariate regression, bivariate regression and multivariate regression.

PROCEDURE:

Implementing univariate, bivariate, and multivariate regression using the Iris dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean_squared error, r2 score
```

Step 2: Load the Iris Dataset

The Iris dataset can be loaded and display the first few rows of the dataset.

```
# Load the Iris dataset
iris = sns.load dataset('iris')
# Display the first few rows of the dataset
```

```
print(iris.head())
```

Ø 1 2	5.1 4.9 4.7	3.5 3.0 3.2	petal_length 1.4 1.4 1.3	0.2 0.2 0.2	setosa setosa setosa
3 4	4.6 5.0	3.1 3.6	1.5 1.4		setosa setosa

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
# Check for missing values
print(iris.isnull().sum())

# Display the basic statistical details
print(iris.describe())
```

OUTPUT:

```
sepal_length
sepal width
                0
petal length
                0
petal width
                0
species
                0
dtype: int64
       sepal length
                     sepal width
                                   petal length petal width
count
         150.000000
                      150.000000
                                     150.000000
                                                   150.000000
mean
           5.843333
                         3.057333
                                       3.758000
                                                     1.199333
std
           0.828066
                         0.435866
                                       1.765298
                                                     0.762238
min
           4.300000
                                       1.000000
                                                     0.100000
                         2.000000
25%
           5.100000
                         2.800000
                                       1.600000
                                                     0.300000
50%
           5.800000
                         3.000000
                                       4.350000
                                                     1.300000
75%
           6.400000
                         3.300000
                                       5.100000
                                                     1.800000
           7.900000
max
                         4.400000
                                       6.900000
                                                     2.500000
```

Step 4: Univariate Regression

Univariate regression involves predicting one variable based on a single predictor.

4.1: Select the Features

Choose one feature (e.g., sepal length) and one target variable (e.g., sepal width).

```
X_uni = iris[['sepal_length']]
y_uni = iris['sepal_width']
```

4.2: Split the Data

Split the data into training and testing sets.

Fit the linear regression model on the training data.

```
X_uni_train, X_uni_test, y_uni_train, y_uni_test = train_test_split(X_uni,
y_uni,
test_size=0.2, random_state=42)
```

4.3: Train the model

```
uni_model = LinearRegression()
uni_model.fit(X_uni_train, y_uni_train)
```



```
LinearRegression  LinearRegression()
```

4.4: Make Predictions

Use the model to make predictions on the test data.

```
y_uni_pred = uni_model.predict(X_uni_test)
```

4.5: Evaluate the Model

Evaluate the model performance using metrics like Mean Squared Error (MSE) and R-squared.

```
print(f'Univariate MSE: {mean_squared_error(y_uni_test, y_uni_pred)}')
print(f'Univariate R-squared: {r2_score(y_uni_test, y_uni_pred)}')
```

```
Univariate MSE: 0.13961895650579023
Univariate R-squared: 0.024098626473972984
```

4.6: Visualize the Results

Visualize the relationship between the predictor and the target variable.

```
plt.scatter(X_uni_test, y_uni_test, color='blue')
plt.plot(X_uni_test, y_uni_pred, color='red')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Univariate Regression')
plt.show()
```

OUTPUT:

Step 5: Bivariate Regression

Bivariate regression involves predicting one variable based on two predictors.

5.1: Select the Features

Choose two features (e.g., sepal_length, petal_length) and one target variable (e.g., sepal_width).

```
X_bi = iris[['sepal_length', 'petal_length']]
y_bi = iris['sepal_width']
```

5.2: Split the Data

Split the data into training and testing sets.

```
X_bi_train, X_bi_test, y_bi_train, y_bi_test = train_test_split(X_bi, y_bi,
test_size=0.2, random_state=42)
```

5.3: Train the Model

Fit the linear regression model on the training data.

```
bi_model = LinearRegression()
bi_model.fit(X_bi_train, y_bi_train)
```

OUTPUT:

5.4: Make Predictions

Use the model to make predictions on the test data.

```
y_bi_pred = bi_model.predict(X_bi_test)
```

5.5: Evaluate the Model

Evaluate the model performance using metrics like MSE and R-squared.

```
print(f'Bivariate MSE: {mean_squared_error(y_bi_test, y_bi_pred)}')
print(f'Bivariate R-squared: {r2_score(y_bi_test, y_bi_pred)}')
```

OUTPUT:

```
Bivariate MSE: 0.08308605032913309
Bivariate R-squared: 0.4192494152204116
```

5.6: Visualize the Results

Since visualizing in 3D is challenging, we can plot the relationships between the target and each predictor separately.

```
# Sepal Length vs Sepal Width
plt.subplot(1, 2, 1)
plt.scatter(X_bi_test['sepal_length'], y_bi_test, color='blue')
plt.plot(X_bi_test['sepal_length'], y_bi_pred, color='red')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
# Petal Length vs Sepal Width
plt.subplot(1, 2, 2)
plt.scatter(X_bi_test['petal_length'], y_bi_test, color='blue')
plt.plot(X_bi_test['petal_length'], y_bi_pred, color='red')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.suptitle('Bivariate Regression')
```

OUTPUT:

Step 6: Multivariate Regression

Multivariate regression involves predicting one variable based on multiple predictors.

6.1: Select the Features

Choose multiple features (e.g., sepal_length, petal_length, petal_width) and one target variable (e.g., sepal_width).

```
X_multi = iris[['sepal_length', 'petal_length', 'petal_width']]
y_multi = iris['sepal_width']
```

6.2: Split the Data

Split the data into training and testing sets.

```
X_multi_train, X_multi_test, y_multi_train, y_multi_test =
train_test_split(X_multi,

y_multi, test_size=0.2, random_state=42)
```

6.3: Train the Model

Fit the linear regression model on the training data.

```
multi_model = LinearRegression()
multi_model.fit(X_multi_train, y_multi_train)
```

OUTPUT:


```
▼ LinearRegression ① ②
LinearRegression()
```

6.4: Make Predictions

Use the model to make predictions on the test data.

```
y_multi_pred = multi_model.predict(X_multi_test)
```

6.5: Evaluate the Model

Evaluate the model performance using metrics like MSE and R-squared.

```
print(f'Multivariate MSE: {mean_squared_error(y_multi_test, y_multi_pred)}')
print(f'Multivariate R-squared: {r2_score(y_multi_test, y_multi_pred)}')
```

OUTPUT:

```
Multivariate MSE: 0.0868353771078583
Multivariate R-squared: 0.39304256448374897
```

Step 7: Visualize the multivariate regression

```
plt.figure(figsize=(15,4))
plt.subplot(1, 2, 1)
plt.scatter(X_multi_test['sepal_length'], y multi test, color='blue')
plt.plot(X multi test['sepal length'], y multi pred, color='red')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.title('Multivariate Regression-1')
plt.show()
plt.figure(figsize=(15,4))
plt.subplot(1, 2, 1)
plt.scatter(X multi test['petal length'], y multi test, color='blue')
plt.plot(X multi test['petal length'], y multi pred, color='red')
plt.xlabel('petal length')
plt.ylabel('sepal width')
plt.title('Multivariate Regression-2')
plt.show()
```

```
plt.figure(figsize=(15,4))

plt.subplot(1, 2, 2)

plt.scatter(X_multi_test['petal_length'], y_multi_test, color='blue')

plt.plot(X_multi_test['petal_length'], y_multi_pred, color='red')

plt.xlabel('petal_length')

plt.ylabel('sepal_width')

plt.title('Multivariate Regression-3')

plt.show()
```


Step 8: Interpret the Results

After implementing and evaluating the models, interpret the coefficients to understand the influence of each predictor on the target variable.

```
print('Univariate Coefficients:', uni_model.coef_)
print('Bivariate Coefficients:', bi_model.coef_)
print('Multivariate Coefficients:', multi_model.coef_)
```

OUTPUT:

```
Univariate Coefficients: [-0.05829418]

Bivariate Coefficients: [ 0.56420418 -0.33942806]

Multivariate Coefficients: [ 0.62934965 -0.63196673  0.6440201 ]
```

RESULT:

This step-by-step process will help us to implement univariate, bivariate, and multivariate regression models using the Iris dataset and analyze their performance.

EXPT NO: 2 A python program to implement Simple linear

DATE: 30.08.2024 Regression using Least Square Method

AIM:

To write a python program to implement Simple linear regression using Least Square Method.

PROCEDURE:

Implementing Simple linear regression using Least Square method using the headbrain dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

Step 2: Load the Iris Dataset

The HeadBrain dataset can be loaded.

```
data = pd.read_csv('/content/headbrain.csv')
```

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
x,y=np.array(list(data['Head Size(cm^3)'])),np.array(list(data['Brain
Weight(grams)']))
print(x[:5],y[:5])
```

```
[4512 3738 4261 3777 4177] [1530 1297 1335 1282 1590]
```

Step 4: Compute the Least Squares Solution

Apply the least squares formula to find the regression coefficients.

```
def get_line(x,y):
    x_m,y_m = np.mean(x), np.mean(y)
    print(x_m,y_m)
    x_d,y_d=x-x_m,y-y_m
    m = np.sum(x_d*y_d)/np.sum(x_d**2)
    c = y_m - (m*x_m)
    print(m, c)
    return lambda x : m*x+c
lin=get_line(x,y)
```

OUTPUT:

```
3633.9915611814345 1282.873417721519 0.2634293394893993 325.5734210494428
```

Step 5 : Make Predictions

Use the model to make predictions based on the independent variable.

```
def get_error(line_fuc, x, y):

y_m = np.mean(y)

y_pred = np.array([line_fuc(_) for _ in x])

ss_t = np.sum((y-y_m)**2)
```

```
ss_r = np.sum((y-y_pred)**2)
return 1-(ss_r/ss_t)
get_error(lin, x, y)
```

```
from sklearn.linear_model import LinearRegression

x = x.reshape((len(x),1))

reg=LinearRegression()

reg=reg.fit(x, y)

print(reg.score(x, y))
```

→ 1.0

_ 1.0

Step 6: Visualize the Results

Plot the original data points and the fitted regression line.

```
x=np.linspace(np.min(x)-100,np.max(x)+100,1000)

y=np.array([lin(x)for x in x])

plt.plot(x, y, color='red', label='Regression line')

plt.scatter(x, y, color='green', label='Scatter plot')

plt.xlabel('Head Size(cm^3)')

plt.ylabel('Brain Weight(grams)')

plt.legend()

plt.show()
```


RESULT:

This step-by-step process will help us to implement least square regression models using the HeadBrain dataset and analyze their performance.

EXPT NO: 3 A python program to implement Logistic Model

DATE: 06.09.2024

AIM:

To write a python program to implement a Logistic Model.

PROCEDURE:

Implementing Logistic method using the iris dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
# Step 1: Import Necessary Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report
```

Step 2: Load the Iris Dataset

The iris dataset can be loaded.

```
# Step 2: Load the Dataset

# For this example, we'll use a built-in dataset from sklearn. You can replace it with your dataset.

from sklearn.datasets import load_iris
```

```
# Load the iris dataset

data = load_iris()

X = data.data

y = (data.target == 0).astype(int)  # For binary classification (classifying Iris-setosa)
```

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
# Step 3: Prepare the Data

# Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 4: Train a Model

```
# Step 4: Create and Train the Model
model = LogisticRegression()
model.fit(X_train, y_train)
```

OUTPUT:

Step 5: Make Predictions

Use the model to make predictions based on the independent variable.

```
# Step 5: Make Predictions
y_pred = model.predict(X_test)
```

Step 6: Evaluate the Model

Evaluate the model performance.

```
# Step 6: Evaluate the Model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
# Print evaluation metrics
print(f"Accuracy: {accuracy}")
print("Confusion Matrix:")
print(conf_matrix)
print("Classification Report:")
```

OUTPUT:

```
→ Accuracy: 1.0
   Confusion Matrix:
    [[20 0]
    [ 0 10]]
   Classification Report:
               precision recall f1-score support
             0
                    1.00
                             1.00
                                      1.00
                                                 20
                    1.00
                             1.00
                                      1.00
                                                 10
                                      1.00
                                                 30
       accuracy
                   1.00
                             1.00
                                      1.00
                                                 30
      macro avg
   weighted avg
                    1.00
                             1.00
                                      1.00
                                                  30
```

Step 7: Visualize the Results

Plot the original data points and the fitted regression line.

```
# Step 7: Visualize Results (Optional)
x_values = np.linspace(-10, 10, 100)
```

```
sigmoid_values = 1 / (1 + np.exp(-x_values))

# Plot the sigmoid function

plt.figure(figsize=(10, 5))

plt.plot(x_values, sigmoid_values, label='Sigmoid Function', color='blue')

plt.title('Sigmoid Function')

plt.xlabel('x')

plt.ylabel('\sigmoid')

plt.grid()

plt.axhline(0.5, color='red', linestyle='--') # Line at y=0.5

plt.axvline(0, color='gray', linestyle='--') # Line at x=0

plt.legend()

plt.show()
```


RESULT: This step-by-step process will help us to implement Logistic models using the Iris dataset and analyze their performance. 22 231501082

EXPT NO: 4 A python program to implement Single Layer

DATE: 13.09.2024 Perceptron

AIM:

To write a python program to implement Single layer perceptron.

PROCEDURE:

Implementing Single layer perceptron method using the Keras dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import pandas as pd
from tensorflow import keras
import matplotlib.pyplot as plt
```

Step 2: Load the Keras Dataset

The Keras dataset can be loaded.

```
(X_train,y_train),(X_test,y_test)=keras.datasets.mnist.load_data()
```

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
print(f"Training set:{X_train.shape}")
print(f"Testing set:{X_test.shape}")
print(X_train[1].shape)
```


Step 4: Train a Model

```
#Normalizing the dataset
x_train=X_train/255
x_test=X_test/255

#Flatting the dataset in order to compute for model building
x_train_flatten=x_train.reshape(len(x_train),28*28)
x_test_flatten=x_test.reshape(len(x_test),28*28)
x_train_flatten.shape
```

Step 5: Make Predictions

Use the model to make predictions based on the independent variable.

OUTPUT:

```
→ Epoch 1/5
    1875/1875 -
                             ----- 3s 1ms/step - accuracy: 0.8180 - loss: 0.7118
    Epoch 2/5
                              ---- 3s 1ms/step - accuracy: 0.9148 - loss: 0.3101
    1875/1875 -
    Epoch 3/5
                                 - 4s 956us/step - accuracy: 0.9238 - loss: 0.2769
    1875/1875 -
    Epoch 4/5
    1875/1875 -
                           ----- 2s 940us/step - accuracy: 0.9250 - loss: 0.2744
    Epoch 5/5
                        ------ 3s 990us/step - accuracy: 0.9239 - loss: 0.2706
    1875/1875 —
    <keras.src.callbacks.history.History at 0x7b83d00c6a70>
```

Step 6: Evaluate the Model

Evaluate the model performance.

```
model.evaluate(x_test_flatten,y_test)
```

OUTPUT:

```
313/313 — 0s 1ms/step - accuracy: 0.9138 - loss: 0.3021 [0.26686596870422363, 0.9257000088691711]
```

RESULT:

This step-by-step process will help us to implement Single Layer Perceptron models using the Keras dataset and analyze their performance.

EXPT NO: 5 A python program to implement Multi Layer

DATE: 20.09.2024 Perceptron With Backpropagation

AIM:

To write a python program to implement Multilayer perceptron with backpropagation .

PROCEDURE:

Implementing Multilayer perceptron with backpropagation using the Keras dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
# importing modules
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Activation
import matplotlib.pyplot as plt
```

Step 2: Load the Keras Dataset

The Keras dataset can be loaded.

```
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
```

```
Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz</a>
11490434/11490434 ———— Os Ous/step
```

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
# Cast the records into float values
x train = x train.astype('float32')
x test = x test.astype('float32')
# normalize image pixel values by dividing
# by 255
gray scale = 255
x train /= gray scale
x test /= gray scale
print("Feature matrix:", x train.shape)
print("Target matrix:", x test.shape)
print("Feature matrix:", y train.shape)
print("Target matrix:", y test.shape)
```

OUTPUT:

```
Feature matrix: (60000, 28, 28)
Target matrix: (10000, 28, 28)
Feature matrix: (60000,)
Target matrix: (10000,)
```

Step 4: Train a Model

```
model = Sequential([
  # reshape 28 row * 28 column data to 28*28 rows
  Flatten(input shape=(28, 28)),
  # dense layer 1
  Dense(256, activation='sigmoid'),
  # dense layer 2
  Dense(128, activation='sigmoid'),
  # output layer
  Dense(10, activation='sigmoid'),
])
```

OUTPUT:

```
/usr/local/lib/python3.10/dist-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: super().__init__(**kwargs)
```

Step 5: Make Predictions

Use the model to make predictions based on the independent variable.

```
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
    batch_size=2000,
    validation_split=0.2)
```

```
→ Epoch 1/10
                              - 5s 115ms/step - accuracy: 0.3546 - loss: 2.1596 - val_accuracy: 0.68
    24/24 -
    Epoch 2/10
    24/24 -
                              - 4s 53ms/step - accuracy: 0.7116 - loss: 1.3743 - val_accuracy: 0.820
    Epoch 3/10
    24/24 -
                              – 1s 53ms/step - accuracy: 0.8221 - loss: 0.8221 - val accuracy: 0.872
    Epoch 4/10
    24/24 -
                              - 3s 65ms/step - accuracy: 0.8720 - loss: 0.5676 - val_accuracy: 0.892
    Epoch 5/10
    24/24 -
                              - 2s 99ms/step - accuracy: 0.8907 - loss: 0.4444 - val_accuracy: 0.902
    Epoch 6/10
    24/24 -
                              - 3s 102ms/step - accuracy: 0.8993 - loss: 0.3852 - val_accuracy: 0.91
    Epoch 7/10
    24/24 -
                              - 3s 104ms/step - accuracy: 0.9088 - loss: 0.3416 - val accuracy: 0.91
    Epoch 8/10
    24/24 -
                              - 2s 92ms/step - accuracy: 0.9119 - loss: 0.3188 - val_accuracy: 0.922
    Epoch 9/10
    24/24 -
                              - 2s 92ms/step - accuracy: 0.9191 - loss: 0.2911 - val_accuracy: 0.926
    Epoch 10/10
                              - 3s 99ms/step - accuracy: 0.9245 - loss: 0.2704 - val_accuracy: 0.929
    <keras.src.callbacks.history.History at 0x7d9ca1406a40>
```

Step 6: Evaluate the Model

Evaluate the model performance.

```
results = model.evaluate(x_test, y_test, verbose = 0)

print('test loss, test acc:', results)

fig, ax = plt.subplots(10, 10)

k = 0

for i in range(10):
    for j in range(10):
        ax[i][j].imshow(x_train[k].reshape(28, 28),
```

```
aspect='auto')
k += 1
plt.show()
```

test loss, test acc: [0.2589016258716583, 0.9277999997138977]

RESULT:

This step-by-step process will help us to implement MultiLayer Perceptron with Backpropagation models using the Keras dataset and analyze their performance.

EXPT NO: 6 A python program to do face recognition using

DATE: 27.09.2024 SVM Classifier

AIM:

To write a python program to implement face recognition using the SVM Classifier

PROCEDURE:

Implementing face recognition using the SVM Classifier using the cat and dog dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import pandas as pd
import imageio
import os
from skimage.transform import resize
from skimage.io import imread
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
```

Step 2: Load theDog and cat Dataset

The dog and cat dataset can be loaded.

```
Categories=['cats','dogs']
flat_data_arr=[] #input array
target arr=[] #output array
datadir='/content/images'
#path which contains all the categories of images
for i in Categories:
 print(f'loading... category : {i}')
 path=os.path.join(datadir,i)
 for img in os.listdir(path):
    img array=imread(os.path.join(path,img))
    img resized=resize(img array, (150,150,3))
    flat data arr.append(img resized.flatten())
    target_arr.append(Categories.index(i))
 print(f'loaded category:{i} successfully')
flat data=np.array(flat data arr)
target=np.array(target arr)
#dataframe
df=pd.DataFrame(flat data)
df['Target']=target
df.shape
```

```
(80, 67501)
```

Step 3: Separate input features and targets.

```
#input data
x=df.iloc[:,:-1]
#output data
y=df.iloc[:,-1]
```

Step 4: Separate the input features and target

```
# Splitting the data into training and testing sets
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,
random_state=77, stratify=y)
```

Step 5: Build and train the model

OUTPUT:

Step 6: Model evaluation

```
# Testing the model using the testing data
y_pred = model.predict(x_test)

# Calculating the accuracy of the model
accuracy = accuracy_score(y_pred, y_test)

# Print the accuracy of the model
print(f"The model is {accuracy*100}% accurate")

print(classification_report(y_test, y_pred, target_names=['cat', 'dog']))
```

OUTPUT:

The model is 62.5% accurate

₹	precision	recall	f1-score	support	
cat	0.58	0.88	0.70	8	
dog	0.75	0.38	0.50	8	
accuracy			0.62	16	
macro avg	0.67	0.62	0.60	16	
weighted avg	0.67	0.62	0.60	16	

Step 7: Prediction

```
path='/content/cat.83.jpg'
img=imread(path)
plt.imshow(img)
plt.show()
img_resize=resize(img,(150,150,3))
l=[img_resize.flatten()]
probability=model.predict_proba(1)
for ind,val in enumerate(Categories):
    print(f'{val} = {probability[0][ind]*100}%')
print("The predicted image is : "+Categories[model.predict(1)[0]])
```


cats = 52.70216647851706%
dogs = 47.29783352148294%
The predicted image is : cat

RESULT:

Thus the process helps us to implement the face recognition using SVM Classifier using python program.

EXPT NO: 7 A python program to implement Decision tree

DATE: 04.10.2024

AIM:

To write a python program to implement a Decision tree.

PROCEDURE:

Implementing the decision tree using the Iris dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
```

Step 2: Load the Iris Dataset

The Iris dataset can be loaded and display the first few rows of the dataset .

```
# Load the Iris dataset
iris = datasets.load_iris()
```

```
X = iris.data # Features
y = iris.target # Target variable
```

Step 3: Split the data set into training and testing sets

```
# Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 4: Create a decision tree classifier

```
# Create a Decision Tree classifier
clf = DecisionTreeClassifier(random_state=42)
```

Step 5: Train the model:

```
# Train the model

clf.fit(X_train, y_train)
```

OUTPUT:

Step 6: Make the predictions and evaluate the model

```
# Make predictions

y_pred = clf.predict(X_test)

# Evaluate the model

accuracy = metrics.accuracy_score(y_test, y_pred)

confusion = metrics.confusion_matrix(y_test, y_pred)

classification_report = metrics.classification_report(y_test, y_pred)
```

```
print(f"Accuracy: {accuracy:.2f}")

print("Confusion Matrix:")

print(confusion)

print("Classification Report:")

print(classification_report)
```

```
→ Accuracy: 1.00
    Confusion Matrix:
    [[10 0 0]
     [0 9 0]
     [ 0 0 11]]
    Classification Report:
                 precision
                            recall f1-score support
              0
                      1.00
                                1.00
                                          1.00
                                                     10
              1
                      1.00
                                1.00
                                          1.00
                                                      9
              2
                      1.00
                                1.00
                                          1.00
                                                     11
                                          1.00
                                                     30
        accuracy
       macro avg
                      1.00
                                1.00
                                          1.00
                                                     30
    weighted avg
                                          1.00
                      1.00
                                1.00
                                                     30
```

Step 7: Visualize the decision tree

```
# Visualize the Decision Tree

plt.figure(figsize=(12,8))

plot_tree(clf, filled=True, feature_names=iris.feature_names,
    class_names=iris.target_names)

plt.title("Decision Tree Visualization")

plt.show()
```


RESULT:

This process helps us to implement the decision tree using a python program.

A PYTHON PROGRAM TO IMPLEMENT

DATE: 18.10.2024 ADA BOOSTING

AIM:

EX.NO: 8

To write a python program to implement ADA Boosting.

PROCEDURE:

Implementing ADA Boosting using the dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from mlxtend.plotting import plot_decision_regions
import seaborn as sns
from sklearn.metrics import accuracy_score
```

Step 2: Load and prepare data

```
df = pd.DataFrame()

df['X1'] = [1, 2, 3, 4, 5, 6, 6, 7, 9, 9]

df['X2'] = [5, 3, 6, 8, 1, 9, 5, 8, 9, 2]

df['label'] = [1, 1, 0, 1, 0, 1, 0, 1, 0, 0]

sns.scatterplot(x=df['X1'], y=df['X2'], hue=df['label'])

df['weights'] = 1 / df.shape[0]
```

```
x = df.iloc[:, 0:2].values
y = df.iloc[:, 2].values
```


Step 3 : Train the 1st model

```
# Step 2: Train 1st Model

dt1 = DecisionTreeClassifier(max_depth=1)

dt1.fit(x, y)

plot_decision_regions(x, y, clf=dt1, legend=2)

df['y_pred'] = dt1.predict(x)
```


Step 4 : Calculate model weight

```
# Step 4: Update Weights

def update_row_weights(row, alpha=0.423):
    if row['label'] == row['y_pred']:
        return row['weights'] * np.exp(-alpha)

else:
        return row['weights'] * np.exp(alpha)

df['updated_weights'] = df.apply(update_row_weights, axis=1)

df['normalized_weights'] = df['updated_weights'] /
df['updated_weights'].sum()

df['cumsum_upper'] = np.cumsum(df['normalized_weights'])

df['cumsum_lower'] = df['cumsum_upper'] - df['normalized_weights']
```

Step 5 : Create new dataset

Step 6: Train 2nd model

```
# Step 6: Train 2nd Model

dt2 = DecisionTreeClassifier(max_depth=1)

x = second_df.iloc[:, 0:2].values

y = second_df.iloc[:, 2].values

dt2.fit(x, y)
```

OUTPUT:

Step 7: Plot decision tree and calculate model weights for 2nd model

```
# Plot the decision tree for the second model
plot_decision_regions(x, y, clf=dt2, legend=2)
second_df['y_pred'] = dt2.predict(x)

# Step 7: Calculate Model Weight for 2nd Model
alpha2 = calculate_model_weight(0.1)
print(f"Alpha2: {alpha2}")
```

Step 8: update weights for 2nd model

```
# Step 8: Update Weights for 2nd Model

def update_row_weights(row, alpha=1.09):
    if row['label'] == row['y_pred']:
        return row['weights'] * np.exp(-alpha)
    else:
        return row['weights'] * np.exp(alpha)

second_df['updated_weights'] = second_df.apply(update_row_weights, axis=1)

second_df['nomalized_weights'] = second_df['updated_weights'] /
    second_df['updated_weights'].sum()

second_df['cumsum_upper'] = np.cumsum(second_df['nomalized_weights'])

second_df['cumsum_lower'] = second_df['cumsum_upper'] -
    second_df['nomalized_weights']
```

Step 9: Calculate alpha for 3rd model

```
# Step 9: Calculate Alpha for 3rd Model
alpha3 = calculate_model_weight(0.7)
print(f"Alpha3: {alpha3}")

# Step 10: Accuracy Calculation
y_true = second_df['label'].values
y_pred = second_df['y_pred'].values

# Calculate accuracy for the AdaBoost model
accuracy = accuracy_score(y_true, y_pred)
print(f"Accuracy of the AdaBoost model: {accuracy:.4f}")
```

OUTPUT:

ALPHA 3: -0.4236489301936017

Accuracy of the Ada Boosting model: 0.80000

RESULT:

Thus the python program to implement Adaboosting has been executed successfully and the results have been verified.

EXPT NO: 9AA python program to implement

DATE: 25.10.2024 KNN MODEL.

AIM:

To write a python program to implement KNN Model.

PROCEDURE:

Implementing KNN Model using the mall_customer dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.cluster import KMeans
```

Step 2: Load the Dataset

The mall_customer dataset can be loaded and display the first few rows of the dataset.

```
# Load the dataset
dataset = pd.read_csv('/content/Mall_Customers.csv')
```

```
# Display the first few rows of the dataset
print(dataset.head())

# Display the dimensions of the dataset
print(f"Dataset shape: {dataset.shape}")

# Display descriptive statistics of the dataset
print(dataset.describe())
```

Step 3: Separate the features (x) and target variable (y)

```
# Separate the features (X) and the target variable (y)
X = dataset.iloc[:, [3, 4]].values # We use 'Annual Income' and 'Spending Score'

# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Step 4: Visualizing the cluster of customer

```
# Apply KMeans clustering using the Elbow Method to find the optimal number
of clusters

wcss = [] # Within-cluster sum of squares

for i in range(1, 11):

    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10,
    random_state=0)
```

```
kmeans.fit(X scaled)
    wcss.append(kmeans.inertia )
# Plot the Elbow Method graph
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
# From the plot, we can observe that the optimal number of clusters is 5
(elbow point)
kmeans = KMeans(n clusters=5, init='k-means++', max iter=300, n init=10,
random state=0)
y kmeans = kmeans.fit predict(X scaled)
# Visualizing the clusters of customers
plt.scatter(X_scaled[y_kmeans == 0, 0], X_scaled[y_kmeans == 0, 1], s=100,
c='red', label='Cluster 1')
plt.scatter(X_scaled[y_kmeans == 1, 0], X_scaled[y_kmeans == 1, 1], s=100,
c='blue', label='Cluster 2')
plt.scatter(X_scaled[y_kmeans == 2, 0], X_scaled[y_kmeans == 2, 1], s=100,
c='green', label='Cluster 3')
plt.scatter(X_scaled[y_kmeans == 3, 0], X_scaled[y_kmeans == 3, 1], s=100,
c='cyan', label='Cluster 4')
plt.scatter(X_scaled[y_kmeans == 4, 0], X_scaled[y_kmeans == 4, 1], s=100,
c='magenta', label='Cluster 5')
```

```
# Plot the centroids

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
s=300, c='yellow', label='Centroids')

plt.title('Clusters of customers')

plt.xlabel('Annual Income (k$)')

plt.ylabel('Spending Score (1-100)')

plt.legend()

plt.show()
```


RESULT:

Thus the python program to implement KNN model has been successfully implemented and the results have been verified.

EXPT NO: 9B A python program to implement

DATE: 25.10.2024 K-Means Model

AIM:

To write a python program to implement the K-means Model.

PROCEDURE:

Implementing K - means Model using the mall_customer dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
import numpy as np
import pandas as pd
from math import sqrt
```

Step 2 : load the Dataset

```
data = pd.read_csv('/content/Mall_Customers.csv')
data.head(5)
```

OUTPUT:

-	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
(0 1	Male	19	15	39
	1 2	Male	21	15	81
:	2 3	Female	20	16	6
;	3 4	Female	23	16	77
	4 5	Female	31	17	40

Step 3: Preprocess the data

```
req_data = data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
req_data.head(5)
```

OUTPUT:

		Age	Annual Income (k\$)	Spending Score (1-100)
	0	19	15	39
	1	21	15	81
	2	20	16	6
	3	23	16	77
	4	31	17	40

Step 4: Assign the data points to clusters

```
shuffle_index = np.random.permutation(req_data.shape[0]) # Shuffle the
dataset rows
req_data = req_data.iloc[shuffle_index]
req_data.head(5)
```

OUTPUT:

→		Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	14	Male	37	20	13
	102	Male	67	62	59
	89	Female	50	58	46
	181	Female	32	97	86
	183	Female	29	98	88

Step 5 : Update the clusters centers

```
train size = int(req data.shape[0]*0.7) # Set 70% of the data for training
train df = req data.iloc[:train size,:]
test df = req data.iloc[train size:,:]
train = train df.values # Convert train data to numpy array
test = test_df.values # Convert test data to numpy array
y_true = test[:,-1] # The target values for the test set
print('Train_Shape: ', train_df.shape)
print('Test Shape: ', test df.shape)
from math import sqrt
def euclidean_distance(x_test, x_train):
   distance = 0
   for i in range(len(x_test)): # Loop through all features
        distance += (x_test[i]-x_train[i])**2
    return sqrt(distance)
def get neighbors(x test, x train, num neighbors):
    distances = []
    data = []
   for i in x_train:
        distances.append(euclidean distance(x test, i))
       data.append(i)
    distances = np.array(distances)
```

```
data = np.array(data)
   sort indexes = distances.argsort() # Sort distances in ascending order
   data = data[sort_indexes] # Sort the data based on sorted distances
   return data[:num_neighbors] # Return the closest 'num_neighbors'
neighbors
def prediction(x test, x train, num neighbors):
   classes = []
   neighbors = get neighbors(x test, x train, num neighbors)
   for i in neighbors:
       classes.append(i[-1]) # The target value is the last column
   predicted = max(classes, key=classes.count) # Return the most frequent
class (the majority vote)
   return predicted
def predict classifier(x test):
   classes = []
   neighbors = get_neighbors(x_test, req_data.values, 5) # Predict using
the top 5 neighbors
   for i in neighbors:
       classes.append(i[-1])
   predicted = max(classes, key=classes.count) # Return the majority vote
   print(predicted)
   return predicted
def accuracy(y true, y pred):
   num correct = 0
```

```
for i in range(len(y_true)):
       if y_true[i] == y_pred[i]: # Compare true values to predicted values
           num correct += 1
   accuracy = num_correct / len(y_true) # Calculate accuracy as the ratio
of correct predictions
   return accuracy
def accuracy(y true, y pred):
   num correct = 0
   for i in range(len(y_true)):
        if y_true[i] == y_pred[i]:
           num correct += 1
   return num correct / len(y true)
y_pred = []
for i in test:
   y_pred.append(prediction(i, train, 5)) # Make predictions for each test
instance
# Calculate and print the accuracy
acc = accuracy(y_true, y_pred)
print(f"Accuracy: {acc * 1000:.2f}%")
OUTPUT:
```

₹ Accuracy: 66.67%

RESULT:

Thus the python program implementing the k-means model is successful.

EXPT NO: 10 A python program to implement Dimensionality

DATE: 04.11.2024 Reduction -PCA.

AIM:

To write a python program to implement Dimensionality Reduction - PCA.

PROCEDURE:

ImplementingDimensionality reduction -pca using the Iris dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

```
# Importing necessary libraries

from sklearn import datasets

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

import seaborn as sns

import matplotlib.pyplot as plt
```

Step 2: Load the Iris Dataset

The Iris dataset can be loaded and display the first few rows of the dataset

```
# Load the Iris dataset
iris = datasets.load_iris()

df = pd.DataFrame(iris['data'], columns=iris['feature_names'])
```

```
# Display the first few rows of the dataset

df.head()
```

→		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

Step 3: Standardize the data

```
# Standardize the features using StandardScaler
scalar = StandardScaler()
scaled_data = pd.DataFrame(scalar.fit_transform(df)) # Scaling the data
# Display the scaled data (optional)
scaled_data.head()
```

OUTPUT:

Step 4: Apply PCA

```
# Apply PCA to reduce the data to 3 components

pca = PCA(n_components=3)

pca.fit(scaled_data)  # Fit PCA on scaled data

data_pca = pca.transform(scaled_data)  # Transform the data to principal components

# Convert PCA data to a DataFrame for easier inspection

data_pca = pd.DataFrame(data_pca, columns=['PC1', 'PC2', 'PC3'])

data_pca.head()
```

OUTPUT:

₹		PC1	PC2	PC3
	0	-2.264703	0.480027	0.127706
	1	-2.080961	-0.674134	0.234609
	2	-2.364229	-0.341908	-0.044201
	3	-2.299384	-0.597395	-0.091290
	4	-2.389842	0.646835	-0.015738

Step 5: Explained Variance Ratio

```
# Calculate the explained variance ratio for each principal component
explained_variance = pca.explained_variance_ratio_
print(f"Explained Variance Ratio: {explained_variance}")
# This output shows how much variance each principal component explains.
```

→▼

Explained Variance Ratio: [0.72962445 0.22850762 0.03668922]

Step 6: Visualize the reduced data.

```
# Plotting the explained variance ratio as a scree plot
plt.figure(figsize=(8, 5))
plt.bar(range(1, len(explained_variance) + 1), explained_variance, alpha=0.7,
color='blue')
plt.ylabel('Explained Variance Ratio')
plt.xlabel('Principal Components')
plt.title('Scree Plot')
plt.show()
```

OUTPUT:

RESULT:

Thus the Dimensionality Reduction has been implemented using PCA in python program Successfully.