Predicting NYPD Response Times after Dispatch

Max Grove | mg6392@nyu.edu

Big Data | Dr. Juan Rodriguez

Tandon School of Engineering

New York University

Outline

- Introduction
- Data
- Pipeline of application
- Loading Data
- Sampling Data
- Cleaning Data
- Exploring Data
- Modeling
- Conclusion

Introduction

Goal

Predict how long it takes a dispatched NYPD officer to arrive at the scene

DataSet

- NYC's Open Data Initiative
- Documented information on NYPD 911 calls and responses
- Data is operated by members of the public and NYPD members

Two datasets:

- Historic
 - 2.3 GB size
 - 20 columns
 - 40.7M Rows
- YTD
 - ~900 MB size
 - 18 columns
 - 3.6M rows

Operated by members of the public *and* NYPD professionals

Data Definition

Identifiers	
objectid	Number
cad_evnt_id	<u>Number</u>

Miscellaneous		
nypd_pct_cd	Number	
radio_code	<u>Text</u>	
typ_desc	<u>Text</u>	
cip_jobs	Text	

create_dateFloating Timestampincident_dateFloating Timestampincident_timeTextadd_tsFloating Timestampdisp_tsFloating Timestamparrivd_tsFloating Timestampclosng_tsFloating Timestamp	Timestamps		
incident_time	create_date	Floating Timestamp	
add_ts	incident_date	Floating Timestamp	
disp_ts	incident_time	<u>Text</u>	
arrivd_ts	add_ts	Floating Timestamp	
	disp_ts	Floating Timestamp	
closng_ts Floating Timestamp	arrivd_ts	Floating Timestamp	
	closng_ts	Floating Timestamp	

Location		
boro_nm	<u>Text</u>	
patrl_boro_nm	<u>Text</u>	
geo_cd_x	Number	
geo_cd_y	Number	
latitude	Number	
longitude	Number	
location	<u>Point</u>	

Pipelining Data and Technology

Hosting data and indexing

Pipeline

Loading Data to MongoDB

```
api_endpoint_ytd = "https://data.cityofnewyork.us/resource/n2zq-pubd.json"
api_endpoint_historic = "https://data.cityofnewyork.us/resource/d6zx-ckhd.json"
```


- Create an App Token with NYC Open Data
- Fetch the data from the APIs 20,000 data points per call
- Insert into a Mongo DB collection

Key Mongo DB Features Used

Add in INCIDENT_YEAR and INCIDENT_DATE fields to sample by year-month

Add indexes on INCIDENT_YEAR and INCIDENT DATE

Sampling Data from MongoDB

Pull all available month-year combinations from MongoDB

Pull 1,000 rows from each month-year down into the local JupyterHub environment

Key Benefits

- Save on space
- Ensure we get data from all time periods
- Utilize indexed rows
- Don't have to rely on API and data is backed up

Cleaning and Preparing Data

Initial Schema

22 columns and 22,000 rows

_ld Typ_desc Cad_evnt_id Cip_jobs

Add ts Create_date

Disp_ts Incident date

Incident time Closng ts

Nypd_pct_cd Latitude

Boro nm Longitude

Location Patrl_boro_nm

Geo cd x Incident_year

Incident month Geo cd y

Radio code Arrivd ts

Cleaning

- Dropping unnecessary columns
- Dropping missing values
- Cleaning dates

New Features

- Tokenize words and create feature flags
- New time features
- Linking data to NYC Neighborhood data
- Key data: Time to arrive from dispatch time

Cleaned Schema

22 columns and 5,291 rows

NYPD PCT CD

BORO NM

RADIO CODE

CIP JOBS

INCIDENT YEAR

INCIDENT_MONTH

TYP DESC HAS {SELECTED WORDS}

HOUR

WEEKDAY

TIME TO ARRIVE FROM DISPATCH

NEIGHBORHOOD

* New Features

Red: 100th Percentile

Orange: 80th Percentile

Yellow: 60th Percentile

Yellow-Green: 40th Percentile

Green: Bottom 20th Percentile

Evaluating Model Conclusion

Red: 100th Percentile

Orange: 80th Percentile

Yellow: 60th Percentile

Yellow-Green: 40th Percentile

Green: Bottom 20th Percentile

Machine Learning Models

Filter out actual arrival times greater than 40 minutes and less than 3 minutes

Create a test and training data set

Training data set: 80%
Test Data Set: 20%

Machine Learning Models

Machine Learning Models

Rerun model with tuning

- Parameter Grid
- Cross Validator with 5 folds

Hyperparameter Takeaways

- Hyperparameter tuning can lead to overfitting on the training data
- Chosen parameter grid might not be optimal
- Can sometimes make the model too restrictive or too flexible

RMSE: 9.31

Conclusion

Takeaways

- Can be incredibly difficult to clean and parse data from public sources
- Models often need lots of work to get them in shape
- Can be incredibly difficult to predict things that have many more inputs than what can be represented in data

Next Steps

- Further tune the model by removing ancillary features
- Run the model Borough by borough, or even neighborhood by neighborhood
- Run the model through Dask or other ML Models
- Bring in more historic data
- Bring in weather data to see if weather on a given day affects the arrival time