1 Propositional Practice

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

(a) There is a real number which is not rational.

(∃x∈R)(x∉Q) or (∃x∈R)7(x∈Q)

-> True

- for example √2 is real but not rational number

(b) All integers are natural numbers or are negative, but not both.

(\(\precedet \times \mathbb{Z} \)) \((\times \in |\times \times \in 0) \) \(\times \in |\times \in \times \in 0) \)

True

-integers are either \(\frac{20}{20} \times \in 0 \), therefore they are either no fural xor no sative number

(c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3. $(\forall_x \in \mathbb{W})(6|_X) \Rightarrow (2|_X \vee 3|_X)$

True

-if natural number is divisible by 6, then it is in the form
6k where KEIN

-since 6k=2.3k, 2 divides 6k and 3 divides 6k

(d) $(\forall x \in \mathbb{R}) (x \in \mathbb{C})$ All real numbers are complex.

- set of real number is a subset of complex numbers

(e) $(\forall x \in \mathbb{Z}) (((2|x) \vee (3|x)) \Rightarrow (6|x))$ If integer is divisible by 2 or is divisible by 3, then it is divisible by 6. $\neg \text{False}$

-4 is divisible by 2 (so the first part of implication is true) and (f) $(\forall x \in \mathbb{N})$ $((x > 7) \Rightarrow ((\exists a, b \in \mathbb{N}) (a + b = x)))$ If natural number $x \in \mathbb{R}$ is $x \in \mathbb{R}$ then $x \in \mathbb{R}$ then there exist natural

numbers a and b such their sum is educal to x. natural numbers

True as a sum of two other natural numbers

-since x > 7, then x-1 is also Nand 161N, let a=1 and b=x-1

-> a+b=1+x-1=x

DeMorgan's Law

Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Law.

7	10	0	1	-0	(market	0
- 1	111	1111	1	11	117	12
- 1	113	V 1)	J	117	//	13

T T F F T F F F F F F F F F F F F F F F	ΪB
TFFTTFF	
FIFE	***************************************
	of selected Street, or
FFTTFTT	

A	B	ANB		78	7(A/B)	TAVI
T	T	T	F	F	F	F
$\overline{\tau}$	F	F	F	T	17	T
F	T	F	T	F		T
F	\F	F	7	T	T	T
- Andrews	1	7/0	0)-	70	70	And the Control of State of St

XOR.

The truth table of XOR is as follows.

Α	В	A XOR B
F	F	F
F	T	T
T	F	T
T	T	F

1. Express XOR using only (\land, \lor, \neg) and parentheses.

2. Does (A XOR B) imply $(A \lor B)$? Explain briefly.

-> when A=True and B=True, then Axor B= False and AxB=True

(A xORB)=T=> ((A=T) ~ (B=F)) ~ ((A=F) ~ (B=T))=> A ~ B=T

3. Does $(A \lor B)$ imply (A XOR B)? Explain briefly.

Yes -swhen AVB is true then Axore B is true, that is when (A=T) (B=T), then (AVB)=T but (A xor B)=F

4 Implication

Which of the following implications are always true, regardless of P? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

(a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$.

rue

- for all can be switched it they are adjacent since txty means for all x and y in our universe
- (b) $\exists x \exists y P(x,y) \Longrightarrow \exists y \exists x P(x,y)$.

- there exist can be switched if they are adjacent since 7x75 means there exist x and y in our hniverse

(c) $\forall x \exists y P(x,y) \Longrightarrow \exists y \forall x P(x,y)$.

False

- Hand I can't be switched if they are adjacent because HxIy means for all x there existy and Iy Hx means there exist y for every x -counterexample
-All student have, favorite class \$> there is a class that all students consider their favorite

(d) $\exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$.

- False - Hand I can't be switched if they are adjutent treason above. - conferexample - There is a protessor that likes all of his students True 3xty... there exist x for every y ty 3x... for every y there exists x