

Liquid Time-Constant Networks

Jyotirmaya Shivottam 23226001

CS660/CS460 - Machine Learning, Spring 2024

Subhankar Mishra Lab

National Institute of Science Education and Research An OCC of Homi Bhabha National Institute Bhubaneswar, Odisha, India

Formulation

▶ Let the hidden state flow of a network be declared by a system of linear ODEs of the form:

$$d\mathbf{x}(t)/dt = -\mathbf{x}(t)/\tau + \mathbf{S}(t),$$

and let $\mathbf{S}(t) \in \mathbb{R}^M$ represent the following nonlinearity: $\mathbf{S}(t) = f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)(A - \mathbf{x}(t))$, with parameters θ and A.

▶ Then, the Liquid-Time Constant (LTC) Network models the following continous-time dynamical system:

$$egin{aligned} \left| rac{d \mathbf{x}(t)}{dt} = - \Big[rac{1}{ au} + f(\mathbf{x}(t), \mathbf{I}(t), t, heta) \Big] \mathbf{x}(t) + f(\mathbf{x}(t), \mathbf{I}(t), t, heta) A \end{aligned} \end{aligned}$$

 \blacktriangleright Here, τ defines the system's **time-constant**. LTCs represent ODEs that **vary their time-constants in an** input-dependent manner → "liquid"

Motivation

- ▶ Instead of modeling implicit nonlinearities, LTCs model linear first-order dynamical systems modulated via nonlinear interlinked gates.
- ▶ Inspired by the computational models of neural dynamics in small species.
- ► The LTC update is also similar to that of bilinear-approximated Dynamic Causal Models (DCMs), that are useful in learning on complex fMRI time-series signals.
- ▶ The expressivity of the LTC formulation can be studied via trajectory length analysis.
- ► The goal is to capture complex non-linear interactions in potentially irregular time-series data.

New Semi-implicit Fused ODE Solver

Algorithm LTC update by fused ODE Solver

Parameters: $\theta = \{\tau^{(N\times 1)} = \text{time-constant}, \ \gamma^{(M\times N)} = \text{weights}, \ \gamma^{(N\times N)}_r = \text{recurrent weights}, \ \gamma^{(N\times N)}_r = \gamma^{(N\times$ $\mu^{(N\times 1)}=$ biases $, A^{(N\times 1)}=$ bias vector, L= Number of unfolding steps, $\Delta t=$ step size, N=Number of neurons,

Inputs: M-dimensional Input I(t) of length T, x(0)

Output: Next LTC neural state $\mathbf{x}_{t+\Delta t}$

Function: FusedStep($\mathbf{x}(t)$, $\mathbf{I}(t)$, Δt , θ)

 $\mathbf{x}(t+\Delta t)^{(N\times T)} = \frac{\mathbf{x}(t)+\Delta t f(\mathbf{x}(t),\mathbf{I}(t),t,\theta)\odot A}{\Delta t f(\mathbf{x}(t),\mathbf{I}(t),t,\theta)\odot A}$ $1 + \Delta t \left(1/ au + f(\mathbf{x}(t), \mathbf{l}(t), t, heta)
ight)$

 \triangleright f(.), and all divisions are applied element-wise.

end Function

 $\mathbf{x}_{t+\Delta t} = \mathbf{x}(t)$

for $i = 1 \dots L$ do $\mathbf{x}_{t+\Delta t} = \mathsf{FusedStep}(\mathbf{x}(t), \mathbf{I}(t), \Delta t, \theta)$

end for

return $\mathbf{x}_{t+\Delta t}$

Recursively Folding Solver Output and Training via BPTT

Algorithm Training LTC by BPTT - Vanilla SGD

Inputs: Dataset of traces [I(t), y(t)] of length T, RNNcell = f(I, x)

Parameter: Loss func $L(\theta)$, initial param θ_0 , learning rate α , Output $w = W_{out}$, and bias $= b_{out}$

for $i = 1 \dots$ number of training steps **do**

 $(I_b, y_b) = \mathsf{Sample} \; \mathsf{training} \; \mathsf{batch}, \;\;\;\; x := x_{t_0} \sim p(x_{t_0})$

for $j = 1 \dots T$ do

 $x = f(I(t), x), \quad \hat{y}(t) = W_{out}.x + b_{out}, \quad L_{total} = \sum_{j=1}^{T} L(y_j(t), \hat{y}_j(t)), \quad \nabla L(\theta) = \frac{\partial L_{tot}}{\partial \theta}$ $\theta = \theta - \alpha \nabla L(\theta)$

end for

end for return θ

Complexity comparison for a single layer NN

	Vanilla BPTT	Adjoint				
Time	$O(L \times T \times 2)$	$O((L_f + L_b) \times T)$				
Memory	$O(L \times T)$	O(1)				
Depth	O(L)	$O(L_b)$				
FWD acc	High	High				
BWD acc	High	Low				

Note: L = number of discretization steps, $L_f = L$ during forward-pass. $L_b = L$ during backward-pass. T = length of sequence, Depth = computational graph depth.

Summary of Main Contributions

- ► A new paradigm in continuous-time neural networks, effective in learning on irregularly-sampled data.
- ▶ LTC presents a novel approach for forward and backward passes, that balances accuracy and computation time.
- ► Trajectory length analysis shows that LTCs are significantly more expressive as compared to Neural Ordinary Differential Equations (NODE) and established sequence models.
- ▶ LTC time-constant and neural states are provably stable for unbounded inputs.
- LTCs are universal approximators.
- Architectures created using LTCs can greatly reduce model size, while aiding explainability.
- ► LTCs can vary their behavior even post-training.

Expressivity Measure – Trajectory Length

Figure: LTC's trajectory latent space becomes more complex with depth

Figure: Trajectory latent w.r.t. different activations

Figure: Trajectory latent w.r.t. different solvers vis-à-vis baselines

Expressivity Measure – Trajectory Length Lower Bounds

Practical Application — Lane Following - Network size comparison

Figure: Saliency Maps - Where each network learns to attend while driving

Table: Network size comparison

Model	CNN parameters	RNN neurons	RNN synapses	RNN trainable parame
CNN	5,068,900	-	-	-
CT-RNN	79,420	64	6,112	6,273
LSTM	79,420	64	24,640	24,897
NCP	79,420	19	253	1,065

Limitations

- ▶ Vanishing gradient phenomenon limiting applicability to learning long-term dependencies.
- ▶ Performance is tied to ODE solver used.
- ► Highly expressive but at an added time and memory cost.

References & Further Reading

- ► Liquid Time Constant Networks, Hasani et al, 2020, 10.48550/arXiv.2006.04439
- ► Liquid Time Constant Networks Simons Institute Presentation: https://youtu.be/watch?v=9AxYrmUlA0I
- ▶ Neural circuit policies enabling auditable autonomy, Lechner et al, 2020, 10.1038/s42256-020-00237-3
- ► Closed-form continuous-time neural networks, Hasani et al. 2022, 10.1038/s42256-022-00556-7
- ▶ Neural ordinary differential equations, Chen et al, 2018, 10.48550/arXiv.1806.07366
- ▶ On the Expressive Power of Deep Neural Networks, Raghu et al, 2016, 10.48550/arXiv.1606.05336

eters