1. Determine a natureza das séries cujos termos gerais são:

(a)
$$\frac{n}{n^2+n-1}$$
 (b) $\frac{1}{\sqrt{n(n+10)}}$ (c) $\sqrt{n+1}-\sqrt{n}$ (d) $\frac{1}{\sqrt{n^2-1}}$ (e) $\frac{(n!)^2}{(2n)!}$

(f)
$$\frac{2^n}{1+3^n}$$
 (g) $\frac{1}{n^2\sin\frac{1}{n}}$ (h) $\left(1-\frac{1}{n}\right)^{n^2}$ (i) $\frac{(1000)^n}{n!}$ (j) $\frac{n}{\sin n}$

$$(k) \quad n^2 e^{-\sqrt{n}} \qquad (l) \quad n^2 \sin\left(\frac{\pi}{2^n}\right) \qquad (m) \quad \left(1 + (-1)^n\right)^n \qquad (n) \quad \frac{e^n n!}{n^n} \qquad (o) \quad \frac{1}{(\log n)^p} \quad p \in \mathbb{R}$$

$$(p) \quad \frac{1}{(\log n)^{\log n}} \qquad (q) \quad \frac{1+3n}{2\sqrt{n}(n^2-1)} \qquad (r) \quad \frac{1\cdot 3\cdot 5\cdots (2n+1)}{3\cdot 6\cdot 9\cdots (3n+3)} \qquad (s) \quad \frac{n^{1000}}{(1,001)^n}$$

(t)
$$\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}}$$
 (u)
$$\frac{\sqrt{n} \log n}{n^2 + 1}$$
 (v)
$$\left(\frac{n+3}{2n+1}\right)^{n \log n}$$

2. Determine com erro inferior a 0,01 a soma das séries:

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2} \qquad \sum_{n=1}^{\infty} \frac{1}{n^{n/2}} \qquad \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

3. Associemos à série $\sum_{n=1}^{+\infty} a_n$, as séries $\sum_{n=1}^{+\infty} a_n^+$ e $\sum_{n=1}^{+\infty} a_n^-$, onde:

$$a_n^+ = \begin{cases} a_n, & \text{se } a_n > 0, \\ 0, & \text{se } a_n \le 0 \end{cases}$$
 e $a_n^- = \begin{cases} -a_n, & \text{se } a_n < 0, \\ 0, & \text{se } a_n \ge 0 \end{cases}$

Mostre que

(a)
$$a_n = a_n^+ - a_n^-$$
 e $|a_n| = a_n^+ + a_n^-$

(b)
$$a_n^+ = \frac{|a_n| + a_n}{2}$$
 e $a_n^- = \frac{|a_n| - a_n}{2}$

- (c) Se duas das séries $\sum_{n=1}^{+\infty} a_n$, $\sum_{n=1}^{+\infty} |a_n|$, $\sum_{n=1}^{+\infty} a_n^+$ e $\sum_{n=1}^{+\infty} a_n^-$ são convergentes, as outras duas tambem são.
- (d) Se $\sum_{n=1}^{+\infty} a_n$ é simplesmente convergente, as séries $\sum_{n=1}^{+\infty} a_n^+$ e $\sum_{n=1}^{+\infty} a_n^-$ são divergentes.
- (e) Toda a série simplesmente convergente tem uma infinidade de termos positivos e de termos negativos.
- 4. Mostre que:
 - (a) A sucessão $x_n = \frac{1}{\sqrt{n} + (-1)^n}$ é uma sucessão de termos positivos que tende para zero.
 - (b) A série $\sum_{n=2}^{+\infty} (-1)^n x_n$ é divergente.
 - (c) Porque é que não se aplica à série anterior o critério de Leibniz?