Aufgabe 5 (4 Punkte). Es sei $X \in \mathcal{H}^2_{loc}$ beliebig. Dann liegt jeder lokal beschränkte, previsible Prozess in $L^2_{loc}(X)$.

Zunächst einmal gilt für $X \in \mathscr{H}^2_{\mathrm{loc}}$, dass $\langle X, X \rangle \in \mathscr{V}$. Es gilt sogar, dass $\langle X, X \rangle \in \mathscr{A}^+_{\mathrm{loc}}$, wobei das noch gezeigt werden sollte. Somit reicht es zu zeigen, dass für $X \in \mathscr{A}^+_{\mathrm{loc}}$ und H lokal beschränkt und previsibel gilt, dass $H \cdot X \in \mathscr{A}^+_{\mathrm{loc}}$. Seien H und X entsprechend gewählt, dann existiert eine Folge von Stoppzeiten T_n mit $T_n \uparrow \infty$, sodass $X^{T_n} \in \mathscr{V}$ und $E[(X^{T_n})_{\infty}] < \infty$. Nach Theorem 93 gilt auch $H \cdot X^{T_n} \in \mathscr{V}$. Hier müsste noch gefolgert werden, dass es auch eine Folge $S_n \uparrow \infty$ von Stoppzeiten gibt, sodass $(H \cdot X)^{S_n} \in \mathscr{V}$. Da $H \mapsto H \cdot X$ linear ist, ist außerdem $E[(H \cdot X)^{S_n}] < \infty$. Somit ist $H \cdot X \in \mathscr{A}^+_{\mathrm{loc}}$.