Sage Quick Reference: Abstract Algebra

B. Balof, T. W. Judson, D. Perkinson, R. Potluri version 1.0, Sage Version 5.0.1

latest version: http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use Based on work by P. Jipsen, W. Stein, R. Beezer

Basic Help

com(tab) complete command a. \langle tab \rangle all methods for object a <command>? for summary and examples <command>?? for complete source code *foo*? list all commands containing foo _ underscore gives the previous output www.sagemath.org/doc/reference online reference www.sagemath.org/doc/tutorial online tutorial load foo.sage load commands from the file foo.sage attach foo.sage loads changes to foo.sage automatically

Lists

```
L = [2,17,3,17] an ordered list
L[i] the ith element of L
  Note: lists begin with the 0th element
L.append(x) adds x to L
L.remove(x) removes x from L
L[i:j] the i-th through (i-1)-th element of L
range(a) list of integers from 0 to a-1
range(a,b) list of integers from a to b-1
[a..b] list of integers from a to b
range(a,b,c)
  every c-th integer starting at a and less than b
len(L) length of L
M = [i^2 \text{ for i in range}(13)]
  list of squares of integers 0 through 12
N = [i^2 for i in range(13) if is_prime(i)]
  list of squares of prime integers between 0 and 12
M + N the concatenation of lists M and N
sorted(L) a sorted version of L (L is not changed)
L.sort() sorts L (L is changed)
set(L) an unordered list of unique elements
```

Programming Examples

```
Print the squares of the integers 0, \ldots, 14:
for i in range(15):
      print i^2
```

```
Print the squares of those integers in \{0, \ldots, 14\} that are
relatively prime to 15:
for i in range(13):
     if gcd(i,15) == 1:
         print i^2
```

Preliminary Operations

```
a = 3; b = 14
gcd(a,b)
            greatest common divisor a, b
xgcd(a,b)
  triple (d, s, t) where d = sa + tb and d = \gcd(a, b)
next_prime(a) next prime after a
previous_prime(a) prime before a
prime_range(a,b) primes p such that a \le p < b
is_prime(a) is a prime?
b % a the remainder of b upon division by a
a.divides(b) does a divide b?
```

Group Constructions

Permutation multiplication is left-to-right.

```
G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
  perm. group with generators (1,2,3)(4,5) and (3,4)
G = PermutationGroup(["(1,2,3)(4,5)","(3,4)"])
  alternative syntax for defining a permutation group
S = SymmetricGroup(4) the symmetric group, S_4
A = AlternatingGroup(4) alternating group, A_4
D = DihedralGroup(5) dihedral group of order 10
Ab = AbelianGroup([0,2,6]) the group \mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_6
Ab.0, Ab.1, Ab.2 the generators of Ab
a,b,c = Ab.gens()
  shorthand for a = Ab.0; b = Ab.1; c = Ab.2
C = CyclicPermutationGroup(5)
Integers (8) the group \mathbb{Z}_8
GL(3,QQ) general linear group of 3 \times 3 matrices
m = matrix(QQ, [[1,2], [3,4]])
n = matrix(QQ, [[0,1], [1,0]])
MatrixGroup([m,n])
  the (infinite) matrix group with generators m and n
u = S([(1,2),(3,4)]); v = S((2,3,4))  elements of S
S.subgroup([u,v])
  the subgroup of S generated by u and v
S.quotient(A) the quotient group S/A
A.cartesian_product(D) the group A×D
A.intersection(D) the intersection of groups A and D
D.conjugate(v) the group v^{-1}Dv
```

```
S.sylow_subgroup(2) a Sylow 2-subgroup of S
D.center() the center of D
S.centralizer(u) the centralizer of x in S
S.centralizer(D) the centralizer of D in S
S.normalizer(u) the normalizer of x in S
                  the normalizer of D in S
S.normalizer(D)
S.stabilizer(3)
                  subgroup of S fixing 3
```

Group Operations

```
S = SymmetricGroup(4); A = AlternatingGroup(4)
S.order() the number of elements of S
S.gens() generators of S
S.list() the elements of S
S.random element() a random element of S
u*v the product of elements u and v of S
\mathbf{v}^{-1}\mathbf{v}^{-3}\mathbf{v} the element \mathbf{v}^{-1}\mathbf{u}^{3}\mathbf{v} of S
u.order() the order of u
S.subgroups() the subgroups of S
S.normal_subgroups() the normal subgroups of S
A.cayley_table() the multiplication table for A
u in S is u an element of S?
u.word_problem(S.gens())
  write u as a product of the generators of S
A.is_abelian() is A abelian?
A.is_cyclic() is A cyclic?
A.is_simple() is A simple?
A.is_transitive() is A transitive?
A.is_subgroup(S) is A a subgroup of S?
A.is_normal(S) is A a normal subgroup of S?
S.cosets(A) the right cosets of A in S
S.cosets(A,'left') the left cosets of A in S
g = S.cayley_graph() Cayley graph of S
g.show3d(color_by_label=True, edge_size=0.01,
  vertex size=0.03) see below:
```


Ring and Field Constructions \mathbb{Z} integral domain of integers, \mathbb{Z} Integers (7) ring of integers mod 7, \mathbb{Z}_7 field of rational numbers, \mathbb{O} field of real numbers, \mathbb{R} field of complex numbers, C RDF real double field, inexact complex double field, inexact RR 53-bit reals, inexact, not same as RDF RealField(400) 400-bit reals, inexact ComplexField(400) complexes, too **ZZ[I]** the ring of Gaussian integers QuadraticField(7) the quadratic field, $\mathbb{Q}(\sqrt{7})$ CyclotomicField(7) smallest field containing \mathbb{Q} and the zeros of x^7-1 AA, QQbar field of algebraic numbers, Q FiniteField(7) the field \mathbb{Z}_7 $F.<a> = FiniteField(7^3)$ finite field in a of size 7^3 , $GF(7^3)$ SR ring of symbolic expressions M.<a>=QQ[sqrt(3)] the field $\mathbb{Q}[\sqrt{3}]$, with $a=\sqrt{3}$. A.<a,b>=QQ[sqrt(3),sqrt(5)]the field $\mathbb{Q}[\sqrt{3},\sqrt{5}]$ with $a=\sqrt{3}$ and $b=\sqrt{5}$. $z = polygen(QQ, 'z'); K = NumberField(x^2 - 2, 's')$ the number field in s with defining polynomial x^2-2 s = K.O set s equal to the generator of K D = ZZ[sqrt(3)]D.fraction_field() field of fractions for the integral domain D Ring Operations

```
Note: Operations may depend on the ring
A = ZZ[I]; D = ZZ[sqrt(3)] some rings
A.is\_ring() is A a ring?
A.is_field() is A a field?
A.is_commutative() is A commutative?
A.is_integral_domain()
  True is A an integral domain?
A.is_finite() is A is finite?
A.is_subring(D) is A a subring of D?
A.order() the number of elements of A
A.characteristic() the characteristic of A
A.zero() the additive identity of A
A.one() the multiplicative identity of A
A.is exact()
  False if A uses a floating point representation
```

```
a, b = D.gens(); r = a + b
r.parent() the parent ring of r (in this case, D)
r.is_unit() is r a unit?
```

Polynomials

```
R.\langle x \rangle = ZZ[] R is the polynomial ring \mathbb{Z}[x]
R.\langle x \rangle = QQ[]; R = PolynomialRing(QQ, 'x'); R = QQ['x']
  R is the polynomial ring \mathbb{Q}[x]
S.\langle z \rangle = Integers(8) [ ] S is the polynomial ring \mathbb{Z}_8[z]
S.<s, t> = QQ[] S is the polynomial ring \mathbb{Q}[s,t]
p = 4*x^3 + 8*x^2 - 20*x - 24
  a polynomial in R (= \mathbb{Q}[x])
p.is_irreducible() is p irreducible over \mathbb{Q}[x]?
q = p.factor() factor p
q.expand() expand q
p.subs(x=3) evaluates p at x = 3
R.ideal(p) the ideal in R generated by p
R.cyclotomic_polynomial(7)
  the cyclotomic polynomial x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
q = x^2-1
p.divides(q) does p divide q?
p.quo_rem(q)
   the quotient and remainder of p upon division by q
gcd(p, q) the greatest common divisor of p and q
p.xgcd(q) the extended gcd of p and q
I = S.ideal([s*t+2,s^3-t^2])
  the ideal (st + 2, s^3 - t^2) in S (= \mathbb{Q}[s, t])
S.quotient(I) the quotient ring, S/I
```

Field Operations

A.<a,b>=QQ[sqrt(3),sqrt(5)]

```
C.<c> = A.absolute_field()
  "flattens" a relative field extension
A.relative_degree()
  the degree of the relative extension field
A.absolute_degree()
  the degree of the absolute extension
r = a + b; r.minpoly()
  the minimal polynomial of the field element r
C.is_galois() is C a Galois extension of Q?
```