### DWDM-N.bhavani

### 7. PREPROCESSING OF DATA USING WEKA



### 8. K-MEANS CLUSTERING BY WEKA



### OUTPUT INFORMATION OF SIMPLE K MEANS CLUSTERING -CLUSTERER OUTPUT



K MEANS CLUSTERING IN WEKAA USING IRIS INFORMATION - PLOTTING ..

9. DATA ANALYSIS BY EXPECTION MAXIMISATION ALGORITHM USING WEKA



### DATA ANALYSIS BY EXPECTATION MAXIMISATION ALGORITHM - OUTPUT INNFO OF IRIS



DATA ANALYSIS BY EXPECTATION MAXIMISATION ALGORITHM—PLOT DIAGRAM OF IRIS INFO

#### 10.DATA ANALYSIS BY HIERARCHICAL CLUSTERING, IN WEKA



### **OUTPUT INFORMATION**



VISUALISING THE PLOT GRAPH OF CLUSTER ASSIGNMENTS



#### HIERARCHICAL TREE FOR DATA ANALYSIS.

### 11.KNOWLEDGE MINING FOR ASSOCIATION RULES USING WEKA



# OUTPUT INFORMATION USING WEATHER NOMINAL DATA 15. EVALUATING THE ACCURACY OF THE CLASSIFIERS



OUTPUT INFORMAATION OF IRIS IN ACCURACY FINDING.



### TREE DIAGRAM OF ACCURACY WITH IRIS INFO IN WEKA



ERROR ACCURACY RATE OF IRIS IN WEKA.

# 1. CREATE THE ARFF FILE FOR THE DIABETES DATABASE AND PERFORM THE RULE BASED CLASSIFICATION.



Output info of diabetes by rule based classification.



Tree view of diabetes on rule based classification.

\*. R PROGRAM FOR SORTING VECTOR

```
- B X
R Console
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[Previously saved workspace restored]
> x = c(10, 20, 30, 25, 9, 26)
> print("Original Vectors:")
[1] "Original Vectors:"
                                          R C:\Users\pavani.k\Documents\sorting - R Editor
> print(x)
                                          x = c(10, 20, 30, 25, 9, 26)
[1] 10 20 30 25 9 26
                                          print("Original Vectors:")
> print("Sort in ascending order:")
                                          print(x)
[1] "Sort in ascending order:"
                                          print("Sort in ascending order:")
> print(sort(x))
                                          print(sort(x))
[1] 9 10 20 25 26 30
                                          print("Sort in descending order:")
> print("Sort in descending order:")
                                          print(sort(x, decreasing=TRUE))
[1] "Sort in descending order:"
> print(sort(x, decreasing=TRUE))
[1] 30 26 25 20 10 9
>
```

2.R PROGRAM FOR LINEAR REGRESSION.



### 3.PLOTTING GRAPH





### A) CENTRAL TENDENCY—MEAN:



B) CENTRAL TENDENCY - MEDIAN:

```
nelp.start()' for an HTML browser interface to help.
mpe 'q()' to quit R.
                                                        R Editor (C:\Users\pavani.k\Documents\central tendency - R Editor
                                                        ###mean::
?reviously saved workspace restored]
                                                        # Defining vector
                                                        x < -c(1, 5, 8, 10)
# Defining vector
x < -c(1, 5, 8, 10)
                                                        # Print Harmonic Mean
                                                        print(1 / mean(1 / x))
# Print Harmonic Mean
print(1 / mean(1 / x))
                                                        #####median::
1] 2.807018
                                                        # Defining vector
# Defining vector
                                                        x <- c(3, 7, 5, 13, 20, 23, 39,
x <- c(3, 7, 5, 13, 20, 23, 39,
                                                              23, 40, 23, 14, 12, 56, 23)
       23, 40, 23, 14, 12, 56, 23)
                                                        # Print Median
# Print Median
                                                        median(x)
median(x)
1] 21.5
                                                        ###mode::
                                                        # Defining vector
                                                        x <- c(3, 7, 5, 13, 20, 23, 39,
                                                               23, 40, 23, 14, 12, 56,
                                                               23, 29, 56, 37, 45, 1, 25, 8)
                                                        # Generate frequency table
                                                        y <- table(x)
                                                        # Print frequency table
                                                        print(y)
C) CENTRAL TENDENCY—MODE:
> 4 generate traductor capts
 > y <- table(x)
                                                                         23, 40, 23, 14, 12, 56,
 > # Print frequency table
                                                                  # Print Median
 > print(y)
                                                                  median(x)
```

### 5.NORMALISATION AND ANALYSIS:

apply Min-Max normalization to first four columns in iris datase

tris\_norm <- as.data.frame(lapply(iris[1:4], min\_max\_norm))</pre>

view first six rows of normalized iris dataset

nead(iris norm)

#### 6. REGRESSION:

```
> # Generate vector with pass and fail values of 40 students
> result <- c(0, 0, 0, 1, 0, 0, 0, 0, 1,
+ 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
+ 0, 0, 1, 0, 0, 1, 1, 0, 1, 1,
+ 1, 1, 1, 0, 1, 1, 1, 1, 0, 1)
> # Data Frame
                                            @ C:\Users\pavani.k\Documents\regression - R Editor
> df <- as.data.frame(cbind(IQ, result))</pre>
                                            # Generate random IQ values with mean = 30 and sd =2
                                            IQ <- rnorm(40, 30, 2)
> # Print data frame
> print(df)
                                            # Sorting IQ level in ascending order
        IQ result
                                            IQ <- sort(IQ)
1 26.88303
                0
2 26.99592
                 0
                                            # Generate vector with pass and fail values of 40 students
3 27.27634
                0
                                            result <- c(0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
4 27.39254
                1
                                            1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
5 27.40339
                 0
                                            0, 0, 1, 0, 0, 1, 1, 0, 1, 1,
6 27.49747
                0
                                            1, 1, 1, 0, 1, 1, 1, 1, 0, 1)
7 27.66223
                0
8 27.93250
                0
                                            # Data Frame
9 28.18333
                0
                                            df <- as.data.frame(cbind(IQ, result))</pre>
10 28.19356
                1
11 28.23130
                1
                                            # Print data frame
                                            print(df)
                                            # output to be present as PNG file
                                            png(file="LogisticRegressionGFG.png")
                                            # Plotting IQ on x-axis and result on y-axis
                                            plot(IQ, result, xlab = "IQ Level",
                                            ylab = "Probability of Passing")
                                            # Create a logistic model
```

### 12.FP GROWTH

| atrix | outlook | temperature | humidity | windy  | play |
|-------|---------|-------------|----------|--------|------|
|       |         |             |          |        |      |
|       |         |             |          |        |      |
|       |         |             |          |        |      |
|       |         |             |          |        |      |
|       |         |             |          | :      | ·    |
| ty    |         |             |          |        |      |
|       |         |             |          |        |      |
| ature |         |             |          |        |      |
|       |         |             |          | :<br>: |      |
| k     |         |             |          | •      |      |

### FP GROWTH VISUALISATION

```
- Associator output
             cemberacare
             humidity
or ... -
             play
   === Associator model (full training set) ===
   Apriori
    _____
   Minimum support: 0.15 (2 instances)
   Minimum metric <confidence>: 0.9
   Number of cycles performed: 17
   Generated sets of large itemsets:
   Size of set of large itemsets L(1): 12
   Size of set of large itemsets L(2): 47
   Size of set of large itemsets L(3): 39
   Size of set of large itemsets L(4): 6
   Best rules found:
    1. outlook=overcast 4 ==> play=yes 4 <conf:(1)> lift:(1.56) lev:(0.1) [1] conv:(1.43)
    4. outlook=sunny play=no 3 ==> humidity=high 3 <conf:(1)> lift:(2) lev:(0.11) [1] conv:(1.5)
    8. temperature=cool play=yes 3 ==> humidity=normal 3 <conf:(1)> lift:(2) lev:(0.11) [1] conv:(1.5)
    9. outlook=sunny temperature=hot 2 ==> humidity=high 2 <conf:(1)> lift:(2) lev:(0.07) [1] conv:(1)
   10. temperature=hot play=no 2 ==> outlook=sunny 2 <conf:(1)> lift:(2.8) lev:(0.09) [1] conv:(1.29)
```

### 13.DECISION TREE



TREE VISUALISATION



**OUTPUT INFO.** 

# 16. CREATE THE ARFF FILE FOR THE DIABETES DATABASE AND PERFORM SVM BASED CLASSIFICATION



Output information of data diabetes with logistics.

# 14. PREDICTION OF CATEGORICAL DATA USING SMO ALGORITHM USING WEKA.



The output information of diabetes data using smo..

# 17. PREDICTION OF CATEGORICAL DATA USING BAYESIAN ALGORITHM USING WEKA



OUTPUT INFORMATION WEATHER NUMERIC BASED ON NAVIES BAYES RULE..

## 18. DATA ANALYSIS BY DENSITY BASED CLUSTERING ALGORITHM USING WEKA.





Output information...

19. CREATE A BOXPLOT GRAPH FOR THE RELATION BETWEEN "MPG" (MILES PER GALLOON) AND "CYL" (NUMBER OF CYLINDERS) FOR THE DATASET "MTCARS" AVAILABLE IN R ENVIRONMENT

Code for creating boxplots in r programing.

R Console

```
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[Previously saved workspace restored]
> # Give the chart file a name.
> png(file = "boxplot.png")
> # Plot the chart.
> boxplot(mpg ~ cyl, data = mtcars, xlab = "Number of Cylinders",
    ylab = "Miles Per Gallon", main = "Mileage Data")
> # Save the file.
> dev.off()
null device
```

Output result of created boxplot..

### Mileage Data



Output graph of boxplot..

# 22. USING R PROGRAM MAKE A HISTOGRAM FOR THE "AIRPASSENGERS "DATASET, START AT 100 ON THE X-AXIS, AND FROM VALUES 200 TO 700, MAKE THE BINS 150 WIDE

```
Untitled - R Editor
######code for creating an histogram####
hist(AirPassengers,
    main="Histogram for Air Passengers",
    xlab="Passengers",
    border="blue",
    col="green",
    xlim=c(100,700),
    las=1,
    breaks=5)
```

Code for creating an histogram..



Output of histogram graphical representation..

23. USING R PROGRAM CREATE A 3D PIE CHART FOR THE DATASET "POLITICAL KNOWLEDGE" WITH SUITABLE LABELS AND COLOURS.

```
"Ch

###code for piechart creaton #######
values <- c(906, 264, 289, 339, 938)
countries <- c("India", "Sri Lanka", "Nepal", "Bhutan", "China")
pie(values, labels = countries)</pre>
"Ch

289
ries
"Ch
```

**Code for creating the pie charts** 



Output of created pie chart.

24. OBTAIN MULTIPLE LINES IN LINE CHART USING A SINGLE PLOT FUNCTION IN R.USE ATTRIBUTES "MPG"AND "QSEC" OF THE DATASET "MTCARS"

```
- - X
The Intitled - R Editor
#####multiple lines in a chart##
#Create a fake dataset with 3 columns (ncol=3) composed of randomly generated
#numbers from a uniform distribution with minimum = 1 and maximum = 10
data <- matrix(runif(30,1,10), ncol=3)
data
        [,1]
                [,2]
                         [,3]
#[1,] 5.371653 3.490919 3.953603
#[2,] 9.551883 2.681054 9.506765
#[3,] 3.525686 1.027758 8.059011
#[4,] 9.923080 1.337935 1.112361
#[5,] 7.273972 7.627546 1.174340
#[6,] 8.859109 3.778144 9.384526
#[7,] 9.614542 3.866029 7.301729
#[8,] 9.288085 5.804041 8.347907
#[9,] 1.696849 4.650687 7.220209
#[10,] 5.820941 4.799682 5.243663
#plot the three columns of the dataset as three lines and add a legend in
#the top right corner of the chart
matplot(data, type = "b",pch=1,col = 1:3)
legend("topright", legend = 1:3, col=1:3, pch=1)
```

code for getting multiple lines in chart.



**Output of multiple lines in chart.** 

25. USING R PROGRAM MAKE A HISTOGRAM FOR THE "TOOTHGROWTH" DATASET, START AT 100 ON THE X-AXIS, AND FROM VALUES 200 TO 700, MAKE THE BINS 150 WIDE

```
##code for tooth growth 25 #####
hist (tooth growth, xlim=c (150,600), ylim=c (0,35))
In the above example x limit varies from 150 to 600 and Y - 0 to 35.

// Adding breaks
hist (AirPassengers,
main="Histogram with more Arg",
xlab="Name List",
border="Green",
col="Orange",
xlim=c (100,600),
ylim=c (0,40),
breaks=5)
```

Code for creating a histogram for tooth growth.



Output of histogram, for tooth growth.