Practica 5

SVM y medidas de calidad

Clasificación de Patrones

ÍNDICE

- 5.1 Clasificadores SVM
- 5.2 Validación de parámetros
- 5.3 Base de datos SPAM
- 5.4 Medidas de calidad

Clasificación de Patrones

5.1 SVM

Clasificador SVM lineal:

Datos separables linealmente: Un clasificador SVM busca el mejor hiperplano separador que separa los datos de una clase respecto a la otra. Función a minimizar:

$$L = \frac{1}{2} \left\| \mathbf{w} \right\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - 1 \right)$$

Se obtiene un problema convexo en las variables α_i que puede resolverse usando software estándar de optimización:

$$L = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k \mathbf{x}_i^T \mathbf{x}_k \qquad \text{subject to} \qquad \begin{cases} \alpha_i \ge 0 \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \end{cases}$$

La clasificación del vector x se reduce a:

$$\hat{y} = sign\left(g\left(\mathbf{x}\right)\right) = sign\left(\mathbf{w}^{T}\mathbf{x} + w_{0}\right) = sign\left(\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x} + w_{0}\right)$$

Clasificación de Patrones

.

5.1 SVM

Clasificador SVM lineal:

Datos NO separables linealmente: No existe un hiperplano que pueda separar las dos clases.

$$y_i \left(\mathbf{w}^T \mathbf{x}_i + w_o \right) \ge 1 - \xi_i \qquad i = 1, ..., N$$

se introducie una penalización para los valores no-nulos de ξ :

$$L = \frac{1}{2} \left\| \mathbf{w} \right\|^2 \left(P \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) - \left(1 - \xi_i \right) \right) - \sum_{i=1}^{N} \beta_i \xi_i \right)$$

El parámetro de penalización P es un parámetro a validar

Un valor alto de P conduce a soluciones sobre entrenadas (Overfitting)

Clasificación de Patrones

5.1 SVM

Clasificador SVM NO lineal: Uso de funciones de Kernel

$$L = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k K(\mathbf{x}_i, \mathbf{x}_k) \qquad \text{subject to} \qquad \begin{cases} 0 \le \alpha_i \le P \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \end{cases}$$

Ejemplo kernel gaussiano:

$$K(\mathbf{x}_{i}, \mathbf{x}_{k}) = \exp\left(-\frac{1}{\sigma^{2}} \|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2}\right)$$

La clasificación del vector x se reduce a:

$$\hat{y} = sign\left(\sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0\right)$$

El parámetro de penalización σ^2 es un parámetro a validar

Clasificación de Patrones

5

5.2 Validación de Parámetros P y σ^2

División de la BD en 3 subconjuntos:

Train: X_train, Labels_train, 60% 70%, etc,... Validación: X_val, Labels_val, 20% 15% Test: X test, Labels test, 20% 20% 15%

Validación de los parámetros (fuerza bruta):

Para cada par de valores a probar (P, σ^2)

- Se diseña el clasificador SVM con la BD de train
- · Se mide el error de validación.

Posteriormente:

- Se selecciona el clasificador correspondiente al menor error de validación.
- · Se mide el el error de test con el clasificador seleccionado

Clasificación de Patrones

5.3 Base de datos **SPAM**

Cada vector corresponde a un e-mail recibido y es de d=57 características.

Objetivo: Construcción de un filtro de spam personalizado

Parámetros de la base de datos:

- Total de vectores de la base de datos : 4601 (1813 spam y 2788 mail).
- · Clases: 2
- Las características corresponden al número de veces que aparece una determinada palabra o carácter en e-mail
- · Objetivos: Construcción de un filtro de spam personalizado.

Pre-procesado de la base de datos (Agiliza convergencia algoritmo de programación con restricciones, previene overfitting):

- Cuantificación binaria de las características 1:54
- Supresión de las características 55, 56 y 57

Clasificación de Patrones

7

5.3 BD SPAM: Content of a feature

vector

Number	Feature	Number	Feature
1	word freg make: continuous.	30	word freg labs: continuous.
2	word freq address: continuous.	31	word freg telnet: continuous.
3	word freg all: continuous.	32	word freq 857: continuous.
4	word freg 3d: continuous.	33	word freq data: continuous.
5	word freg our: continuous.	34	word freq 415: continuous.
6	word freq over: continuous.	35	word freq 85: continuous.
7	word freq remove: continuous.	36	word freq technology: continuous.
8	word freq internet: continuous.	37	word freq 1999: continuous.
9	word freq order: continuous.	38	word freq parts: continuous.
10	word freq mail: continuous.	39	word freq pm: continuous.
11	word freq receive: continuous.	40	word freq direct: continuous.
12	word freq will: continuous.	41	word freq cs: continuous.
13	word freq people: continuous.	42	word freq meeting: continuous.
14	word freq report: continuous.	43	word freq original: continuous.
15	word freq addresses: continuous.	44	word freq project: continuous.
16	word freq free: continuous.	45	word freq re: continuous.
17	word freq business: continuous.	46	word freq edu: continuous.
18	word freq email: continuous.	47	word freq table: continuous.
19	word freq you: continuous.	48	word freq conference: continuous
20	word freq credit: continuous.	49	char freq ;: continuous.
21	word freq your: continuous.	50	char freq (: continuous.
22	word freq font: continuous.	51	char freq [: continuous.
23	word freq 000: continuous.	52	char freq !: continuous.
24	word freq money: continuous.	53	char freq \$: continuous.
25	word freq hp: continuous.	54	char freq #: continuous.
26	word_freq_hpl: continuous.	55	capital_run_length_average: continu
27	word_freq_george: continuous.	56	capital_run_length_longest: continue
28	word_freq_650: continuous.	57	capital_run_length_total: continuou
29	word_freq_lab: continuous.		

Clasificación de Patrones

5.4 Medidas de calidad: Precision and recall

$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + FN}$$

$$\begin{split} \operatorname{Precision} &= \frac{\Pr \left\{ x > \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\}}{\Pr \left\{ x > \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\} + \Pr \left\{ x > \gamma \mid w_1 \right\} \Pr \left\{ w_1 \right\}} = \\ &= \frac{\Pr \left\{ x > \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\}}{\Pr \left\{ x > \gamma \right\}} = \Pr \left\{ w_2 \mid x > \gamma \right\}, \end{split}$$

$$\begin{split} \operatorname{Recall} &= \frac{\Pr \left\{ x > \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\}}{\Pr \left\{ x > \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\} + \Pr \left\{ x < \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\}} = \\ &= \frac{\Pr \left\{ x > \gamma \mid w_2 \right\} \Pr \left\{ w_2 \right\}}{\Pr \left\{ w_2 \right\}} = \Pr \left\{ x > \gamma \mid w_2 \right\} \end{split}$$

Clasificación de Patrones

5.4 Medidas de calidad:

Precision, Recall=Sensitivity, Specificity,

$$P = \frac{\text{Clasificado SPAM correctamente}}{\text{Clasificado SPAM}} = \frac{TP}{TP + FP}$$

$$S = \frac{\text{Clasificado SPAM correctamente}}{\text{\# total de SPAM}} = \frac{TP}{TP + FN}$$

$$Es = \frac{\text{Clasificado MAIL correctamente}}{\text{\# total de MAIL}} = \frac{TN}{TN + FP}$$

F score: A measure that combines precision and recall is the harmonic mean of precision and recall, the traditional F-measure or balanced F-score:

$$F_score = 2 \frac{Precision \times Recall}{Precision + Recall}$$

Prior measures:

 $Pr\{clase=SPAM\} = \frac{\#elementos\ SPAM\ de\ la\ BD\ de\ test}{}$ #elementos de la BD de test $Pr\{clase=MAIL\} = \frac{\#elementos\ MAIL\ de\ la\ BD\ de\ test}{}$ #elementos de la BD de test

Clasificación de Patrones