

Flavour Composition Studies: Quality of Fit Discussion Spurious Signal Discussion

Laurie McClymont, di-b-jet Analysis Team

> <u>Di-b-jet Meeting</u> 17 February 2016

Getting the Flavour Fractions

- We want to understand how varying the flavour composition will affect the fitting function.
 - => Are the fitting functions robust to changes flavour composition?
 - => Vary the amount that different flavour combinations contribute and fit.
- A) Response to Fabrizio's comment @ Ed Board Meeting 10/02/2016
 => Currently NLL is used as a measure of QoF in calculations of p-value = Not Valid
 - => Our proposal, still fit by minimising NLL (Our fit procedure is the same)
 - => Use Chi2 as quality of fit, still calculate p-values using toys.
- B) Response to Klaus' comment @ Ed Board Meeting 10/02/2016
 - => Fitting to scaled distribution is not enough to show no spurious signal.
 - => We have injected poisson noise, and then searched for spurious signal.
 - => No discrepant number of low bumpHunter p-values.

Details

Pythia8EvtGen MC Di-Jet Sample - di-b-jet Ntuple production

Standard Dijet Resonance Cuts

Using fixed cut 85% for both jets = mbb_fix_8585

Cone matching truth flavour - jetHadronConeExclTruthLabelID

Work Flow

- <u>DijetHelpersPackage</u>:
- => Create scaled and data-like distributions.
- => Vary flavour fractions.
- => Create p-values of fit.
- Dijet Statistical Packages:
- => Using search phase from this package
- => Bumphunter to search for discrepant regions
- => Spurious signal check

A) Chi2 used for QoF

4 **Getting the Flavour Fractions**

- Flavour fractions are extracted from MC using truth information
- The dijet mass spectrums for these flavour fractions are then scaled to 20fb⁻¹
- The dijet mass spectrums are fitted to using the 3-parameter fit function.

5 **Stacking the Flavour Fractions**

- Creates new scaled like distributions.
 - => Adding templates from fits to 20 fb⁻¹ scaled to 3 fb⁻¹
 - => Adding the fractions in different ways to produce various spectra

- Able to reproduce MC up to large masses.
- We conclude that the procedure of fitting to flavour fractions then stacking is appropriate.

Making Data-Like - Negative Log Likelihood

- By applying poisson fluctuations we can create 'data-like' distribution
- These are fitted using the 3, 4 and 5 parameter fit function

To calculate p-value of a fit:

- 1. Take the fit function and apply poisson fluctuations. (Pseudo-experiment)
- 2. Re-fit to the pseudo-data using the same fit function.
- 3. Compare quality of fit to pseudo-experiment to that of the original fit.
 - For a measure quality of fit we use negative log likelihood (Not Valid)
- 4. Repeat 1000 times and count fraction of pseudo-experiments that have a worse quality of fit than the original fit.

7 Making Data-Like - Now using Chi²

- By applying poisson fluctuations we can create 'data-like' distribution
- These are fitted using the 3, 4 and 5 parameter fit function

To calculate p-value of a fit:

- 1. Take the fit function and apply poisson fluctuations. (Pseudo-experiment)
- 2. Re-fit to the pseudo-data using the same fit function.
- 3. Compare quality of fit to pseudo-experiment to that of the original fit.
 - For a measure quality of fit we now use Chi²
- 4. Repeat 1000 times and count fraction of pseudo-experiments that have a worse quality of fit than the original fit.

8 Data-Like p-Values

- By applying poisson fluctuations we can create 'data-like' distribution
- Fitted to using the 3 parameter by minimising NLL, this fixes parameters.
- We then use 200 toys and Chi² as QoF test. (200 allows us to repeat this more...)

9 p-Value Studies

- Different sets of poisson fluctuations means a different 'data-like' spectrum
- Each 'data-like' dist. can be fitted to, giving a different p-value for each fit variation.
- 400 different data-like distributions have been studied

Mean p-values

	3-Para. Fit	4-Para. Fit	5-Para. Fit
Nominal	0.492 +/-	0.508 +/-	0.488 +/-
	0.014	0.015	0.015
b-jet	0.478 +/-	0.495 +/-	0.514 +/-
Doubled	0.014	0.014	0.015

10 p-Value Studies - Comparison with NLL

- Different sets of poisson fluctuations means a different 'data-like' spectrum
- Each 'data-like' dist. can be fitted to, giving a different p-value for each fit variation.
- 400 different data-like distributions have been studied

	3-Para. Fit
Nominal	0.492 +/- 0.014
b-jet Doubled	0.478 +/- 0.014

	3-Para. Fit
Nominal	0.305 +/- 0.012
b-jet Doubled	0.311 +/- 0.012

11 Conclusions

Change to Chi2 for QoF

- NLL is not a good measure of QoF, so no longer used to calculate p-values.
- Minimising NLL can be used to choose and fix fitting parameters.
- We now use Chi² as a measure of QoF.
- p-Values can be calculated by throwing toys and comparing Chi² values.

Changes to Statistics

- We increased the number of 'data-like' distributions studied (100 => 400)
- This allows us to compare distributions of p-values better.
- To allow this, reduce the number of toys from 1000 => 200

Results

- We see that the Chi² produces flat distributions of p-values (slide 8)
- There is large discrepancy of mean p-values between Nominal and b-Jet Content doubled
- Conclusions of study should not be changed
 - Fit is robust to flavour fraction changes
 - No need for additional

Documented in SVN

B) Spurious Signal Check

13 Previous Test for Spurious Signal - Intro

New for v1.5

- Test for spurious signal
 - => Use scaled spectra before Poisson noise
 - => Fit to this spectra using 3 par. function
 - => BumpHunter will identify discrepant region
 - => BH then can calculate p-value
- Mass Range of Fit
 - => 1.1 5 TeV
 - => Larger than mass range in data.

14 Previous Test for Spurious Signal - Results

- No significant spurious signal found.
- Consistent p-Value in both flav. composition cases
- Wide discrepant region=> Unlike benchmark models

Use 'data-like' distributions

- Poisson fluctuate scaled distribution to create 'data-like' distribution
- Then run BumpHunter on the 'data-like' distribution
- Calculate a p-value of most discrepant region.

Look for trends in p-values

- Repeat process above 200 times
- Study distribution of p-values in Nominal case and double b-jet case
- Look for any trends in BumpHunter p-value
 - Are deviations between fit and truth causing a bias at low p-values?

16 **Update Test for Spurious Signal - Single Seed**

- Poisson fluctuate to create 'data-like' distribution
- This slide shows just one seed
 - But no large p-value here
- Repeat 200 times

Frequency

17 p-Value Studies

- Different sets of poisson fluctuations means a different 'data-like' spectrum
- Each 'data-like' dist. checked from bumps which gives a bumpHunter p-value.
- 200 different data-like distributions have been studied

Nominal	0.542 +/- 0.018	
b-jet	0.547 +/-	
Doubled	0.018	

- No clear bias in p-value
- Mean p-values and distributions consistent between both flavour composition cases.

Use 'data-like' distributions

- Poisson fluctuate scaled distribution to create 'data-like' distribution
- Then run BumpHunter on the 'data-like' distribution
- Calculate a p-value of most discrepant region.

Look for trends in p-values

- Repeat process above 200 times
- Study distribution of p-values in Nominal case and double b-jet case
- Look for any trends in BumpHunter p-value
 - Are deviations between fit and truth causing a bias at low p-values?

Results

- No clear bias in p-value distributions
- No large number of 'false alarms'
- Mean p-values and distributions consistent between both flavour composition cases.

Documented in SVN

Backup:

20 Previous p-Value studies

- Different sets of poisson fluctuations means a different 'data-like' spectrum
- Each 'data-like' dist. can be fitted to, giving a different p-value for each fit variation.
- 100 different data-like distributions have been studied

Mean p-values

	3-Para. Fit	4-Para. Fit	5-Para. Fit
Nominal	0.336 +/-	0.311 +/-	0.296 +/-
	0.021	0.022	0.021
b-jet	0.347 +/-	0.307 +/-	0.297 +/-
Doubled	0.023	0.022	0.022

21 p-Values in the Old Case: 4 Para Init.

- Different sets of poisson fluctuations means a different 'data-like' spectrum
- Each 'data-like' dist. can be fitted to, giving a different p-value for each fit variation.
- 100 different data-like distributions have been studied

Mean p-values

	3-Para. Fit	4-Para. Fit	5-Para. Fit
Nominal	0.325 +/-	0.280 +/-	0.283 +/-
	0.024	0.023	0.022
b-jet	0.308 +/-	0.267 +/-	0.276 +/-
Doubled	0.024	0.022	0.022

