

lopological Models

Today I will be giving an introduction to topological models in the sense of categories of Heyting valued sets. Some weeks ago prof. Simpson presented a tutorial on sheaf semantics, in much greater generality than what I will present today, and there you can just say "topological models are categories of sheaves over a topological space" and be done. However in this case the objects involved are quite complicated. Conceptually, sheaves are simple, but any particular sheaf is going to be unwieldy. Take for example the sheaf of natural numbers. It is the sheaf of locally constant maps from open subsets to the naturals. But in the world of Heyting valued sets, you can just say the natural numbers object is the set \mathbb{N} .

Topological models

Topological Models

So my primary sources for this is Michael Fourman and Dana Scott's paper from the 70s, Sheaves and Logic, which introduced the concept and the 3rd volume of Francis Borceux's Handbook of Categorical Algebra, which has quite a few useful lemmas. A big difference to those though is that I develop as much of the theory in the internal language, which I believe works quite well.

I hope to end up finishing the construction of the equivalence between Heying valued sets and sheaves and the construction of the real numbers object in a topos.

But to start small, we wish to construct a topos, whose internal logic has as its truth values the open sets of our topological space.

Step 1: The logic of open sets

So first we can construct a propositional logic with infinitary conjunctions and disjuncitons, and that is basically just the structure of the topology as a complete Heyting algebra. Equivalently a frame, so I will call it that from now.

2025-0		
So first we can interpret truth and falsity. T	Truth chaule	l obviously bo

the whole space.

Topologija

(ઇ) તેઇ (ઇ) તેઇ)

મિ(બિ)-બિ) બિ)-બિ) મિ(બી-બિ)

স ধেংকা ল(ট ধেংকা) ল(প্ৰাণ্ড্য ব্যিণ্ডা ব্যিণ্ডা

Theorem: X validates LEM iff X is discrete. Proof If X is discrete than OX is Boolean. If X = LEM then YUEX. UV > U -U= U => L = Int (90 U') = Int(U'). Then if X=Uv In+(U') we must have U'=1,+(u'), so U is closed.

Topological models X is discrete. Prod. If 2 to distrote than 02 is Boolean. If 2 + LETT + how VI = 2 U = 2 -U- U=1 = 1+(0. U)= later). Then if X=U=h+(u) we much have u"=h+(u"),

Thrown: X welshales LEM : 44

The idea is to define a set of generators for \mathcal{F} .

Let I be a shent Define F := ZF(U) and Vall = Pr. a. Let F'SF. Then Figenerates F when: (a) F is the least subsheat containing F (b) VI & F(u) = f. & F, u & U, f. hu = f. hu. $f = f_1 h_1 \dots u f_n h_n$

Define F- ZeFW) and harron
bot F'SF. The Fymento F who
(i) F'S the horizontal portion of F
(ii) NASC(N) 3 to F' U \$U, she which
f- She - of holy

Let F be a short

Topological models

Definition An Liset is a set A with $\mathbb{C} = \mathbb{J} : A \times A \longrightarrow \mathcal{L} \quad s.+$ 1 $[a=b] \in [b=a]$

Definition. An Z-morphism is a map [-=f(-)] B × A -> I st 1. [b=f(a)] = ||b| 1 ||a| 2. $[b'=b] \wedge [b=f(a)] \wedge [a=a] \leq [b'=f(a)]$ 3. $[b = f(a)]_{\Lambda} [b' = f(a)] \le [b = b']$ 4 | | a | \le V [b = f(a)]

Topological models

Definition An Zimarphan is a may

E-HB BA-Z sh

([6-44] -14,1a1

2.6-6, A-454,1a1

3.6-44,1a-66-44]

4.1a1 (V_6-44]

Internal language

Topological models

Step 3:
Internal language

2025-06-05

E-3:4eA → L at 1 + a - b → b = a 2 + a - b - b - c → a - c

Definition An I set is a set A with

Definition. An Z-morphism is a map [-=f(-)] BxA-J st $1 + b = f(a) \Rightarrow ||b|| , ||a||$ 2. $f' = b \wedge b = f(a) \wedge a = a' \Rightarrow b' = f(a')$ $3 + b = f(a) \wedge b' = f(a) \Rightarrow b = b'$ 4 - Va: A 3 b: B b=f(a)

Topological models

E-fd B-A-X sh 4,5-40-16,161 2-5-50 6-500 A-1-3-5-5(0) 3,6-500 A 5-5(0) 3-6-5 4,6-40,3-8 6-5(0)

Definition An Zmorphia is a my

Facts:
$$-L = -1 \text{ is id}_{A}.$$

$$-c = g \circ f(a) \text{ is } \exists b \cdot B \cdot c = g(b) \land b = f(a).$$

$$-R(f(a)) \text{ is } \exists b \cdot B \cdot b = f(a) \land R(b).$$

$$\hookrightarrow f(a) = g(a) \text{ is } \exists b \cdot B \cdot b = f(a) \land b = g(a)$$

-c-g-f(n) is 36.8 (-g0) r6-f(n) R(f(n) is 36.5 (-f(n) x80) (n f(n)-g(n) is 36.5 (-f(n) e-g(n)

Facts: -[-3-] is id.

Topological models

Ex. 1 = { * }, | * | = + Ex. Ali= A, [a=a] = [a=a] NU. $Cx. \Omega = \mathcal{L}, [P = 5] = P \Leftrightarrow g$ E_x . A = A; $[a = a] = V \{ + | a = a \}$. EX BA = A 9 B, [+ = 5] = [Va: A. f(a) = g(a)]. Ex. A/ = A, [a=a] = a~a' Lemma (funext), f= g iff +f= BA g

Topological models

5. 4-5.1, 11-17

6. 4/-1, 1-1-2|

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2, [1-2]

6. 4/-2,

Theorem Monomorphisms are precisely injections $+\int(x)=\int(y) \Rightarrow x > y$ Prof. Let f. Basc (=) f : n. g, h: A → B, f · g = f · h, a. A. Then let x := g(a), y = h(a) Then $f(x) = f(g(x)) = f(h(x)) = f(y) \rightarrow x = y$, (\Rightarrow) (c+ x,y:B, f(x) = f(y). De 1. \hat{x}, \hat{y} . $1 \leftrightarrow B$, $x = \hat{x}(*)$, $y = \hat{y}(*)$ Then fox=foy ~ x=y~x=y.

Topological models

1-f(x)-f(y) -> x-y Proof. Lot f: Booc. (4) 1 mg. gh A + B, fogofol, a.A. Then let x=g(x), y=h(x). Then f(x) = f(g(x)) = f(h(x)) = f(y) rexay.

(4) Let x, y : B, f(x) = f(y).

Theorem. Monomorphisms are precisely injections

Dal. 29 40-3, x=2(0), y=9(0).
Then f=8=f=9 ~ 2=9 ~ x=y.

Eximorphisms are precisely surjections 1 hearcy 1 Vb B Ja A b=f(a) Prof. Let I A e>B ((=) f sur. g, h: B → C, g of = hof, b: B Then lot a: A such that b-f(a) Then y(b) = y(f(a)) = h(f(a)) = h(b) (=) (c+ 5B Let izi, Be-coher(f) Then i, of = 120 f ~ i, = i2 ~ Ja: A. b=f(a). D. Route of the season of the sea

Epimorphisms are precisely enjections + Wo-B 3a: A b=f(a)

Topological models

 \top X

2025-06

Logika odprtih množic

Topological models

۵

Zdej, prvo vprašanje je, kako zgledajo odprte množice kot resničnostne vrednosti. Očitno če je neki res povsod je res, tako da resnica bo cel prostor. Obratno, neresnica bo prazna množica, torej da nikjer ni res. Naprej, recimo, da imamo dve funkciji, ena je pozitivna na U, druga je pozitivna na V, pol sta obe pozitivni na preseku $U \cap V$. Tako da konjunkcija bo presek. Podobno je disjunkcija unija.

Negacija je prva neočitna, ker ne mormo vzet samo komplementa, ampak lahko pa vzamemo notranjost komplementa, oziroma zunanjost množice.

Т	X
\perp	Ø
$U \wedge V$	$U\cap V$
$U \vee V$	$U \cup V$

Topological models

Solution

Logika odp

—Logika odprtih množic

U∧V U∩V U∨V U∪V

Zdej, prvo vprašanje je, kako zgledajo odprte množice kot resničnostne vrednosti. Očitno če je neki res povsod je res, tako da resnica bo cel prostor. Obratno, neresnica bo prazna množica, torej da nikjer ni res. Naprej, recimo, da imamo dve funkciji, ena je pozitivna na U, druga je pozitivna na V, pol sta obe pozitivni na preseku $U \cap V$. Tako da konjunkcija bo presek. Podobno je disjunkcija unija.

Negacija je prva neočitna, ker ne mormo vzet samo komplementa, ampak lahko pa vzamemo notranjost komplementa, oziroma zunanjost množice.

Т	X
\perp	Ø
$U \wedge V$	$U \cap V$
$U \vee V$	$U \cup V$
$\neg U$	$\operatorname{Int}(U^c)$

Zdej, prvo vprašanje je, kako zgledajo odprte množice kot resničnostne vrednosti. Očitno če je neki res povsod je res, tako da resnica bo cel prostor. Obratno, neresnica bo prazna množica, torej da nikjer ni res. Naprej, recimo, da imamo dve funkciji, ena je pozitivna na U, druga je pozitivna na V, pol sta obe pozitivni na preseku $U \cap V$. Tako da konjunkcija bo presek. Podobno je disjunkcija unija.

Negacija je prva neočitna, ker ne mormo vzet samo komplementa, ampak lahko pa vzamemo notranjost komplementa, oziroma zunanjost množice.

Т	X
\perp	Ø
$U \wedge V$	$U \cap V$
$U\vee V$	$U \cup V$
$\neg U$	$\operatorname{Int}(U^c)$
$U \Rightarrow V$	$\operatorname{Int}(V \cup U^c) = \bigcup \left\{ W \subseteq X \mid W \cap U \subseteq V \right\}$
$U \Leftrightarrow V$	$\operatorname{Int}((V \cap U) \cup (V \cup U)^c)$

Zdej, prvo vprašanje je, kako zgledajo odprte množice kot resničnostne vrednosti. Očitno če je neki res povsod je res, tako da resnica bo cel prostor. Obratno, neresnica bo prazna množica, torej da nikjer ni res. Naprej, recimo, da imamo dve funkciji, ena je pozitivna na U, druga

je pozitivna na V, pol sta obe pozitivni na preseku $U \cap V$. Tako da

2025

konjunkcija bo presek. Podobno je disjunkcija unija. Negacija je prva neočitna, ker ne mormo vzet samo komplementa, ampak lahko pa vzamemo notranjost komplementa, oziroma zunanjost množice.

Т	X
\perp	Ø
$U \wedge V$	$U \cap V$
$U \vee V$	$U \cup V$
$\neg U$	$\operatorname{Int}(U^c)$
$U \Rightarrow V$	$\operatorname{Int}(V \cup U^c) = \bigcup \left\{W \subseteq X \mid W \cap U \subseteq V\right\}$
$U \Leftrightarrow V$	$\operatorname{Int}((V \cap U) \cup (V \cup U)^c)$

Izključeno tretjo možnost in DeMorganov zakon se da povedati zgolj z neko formulo o resničnostnih vrednostih, zato smo lahko naredili to karakterizacijo, ampak temu ni nujno vedno res. Obstajajo nekonstruktivni principi, ki govorijo recimo o neskončnih zaporedjih, ali pa realnih številih. Prav tako poznamo topološke lastnosti, ki govorijo o več kot le odprtih množicah, na primer T_6 lastnost, ki pravi, da je vsaka zaprta množica natanko ničelna množica neke realne funkcije, in še druge.

2025-0

└─Objekti
Objekte v topoloških modelih se da konstruirat na veliko načinov,

Topological models

lahko so snopi, étale prostori, ali pa Heytingovo vrednotene množice. Jaz v delu uporabljam slednjo od teh, je pa bolj praktično rečt snopi. So pa te konstrukcije v vsakem primeru precej komplicirane, tako da se mi zdi da nima smisla, da katerokoli točno razpišem, tako da mi boste morali malo verjeti na besedo. Sicer je pa naša zgodba itak, da se stvari spreminjajo vzdolž topološkega prostora, tako da bi tudi želeli da se elementi spreminjajo vzdolž prostora. Tako da kar rečemo, da na vsaki točki prostora definiramo vrednost elementa, to je pa ubistvu kar funkcija iz prostora nekam (še ne vemo točno kam). Edino kar moramo paziti je, da je ta funkcija dovolj lepa (beri zvezna). In to dejansko večinoma dela, je pa

kar dosti dela to dejansko preveriti, tko da ja, mi morte verjet :)

2025-06-

Topological models

└_Obiekti

nnožica, T topološki prostor

A množica, T topološki prostor

Če malo fiksiramo oznake, naj bo ...

Najprej vložimo prostor T, ker je še najbolj očitno kako se to naredi. Lahko bi vzeli kar zvezne funkcije iz X v T. To bi delalo, ampak spomnimo se, da so naše resničnostne vrednosti odprte podmnožice X. In obstoj elementa ima resničnostno vrednost, tako da je smiselno, da dovoljujemo tako imenovane delne elemente, torej elemente, ki niso definirani na celem X. To pa pomeni, da je množica...

Realna števila so potem kar realne funkcije, in recimo če je $X=\mathbb{R}$ je identiteta neko realno število (reče se mu generični element).

Za splošne množice pa vzamemo kar isto stvar. Ampak zdaj je vprašanje, kakšne funkcije vzamemo. Izkaže se da kar zvezne, kjer A opremimo z diskretno topologijo.

A množica, T topološki prostor

$$T_X := \{ f : U \to T \mid U \in \mathcal{O}(X) \}$$

Topological models

└─Objekti

2025

Če malo fiksiramo oznake, naj bo ...

Najprej vložimo prostor T, ker je še najbolj očitno kako se to naredi. Lahko bi vzeli kar zvezne funkcije iz X v T. To bi delalo, ampak spomnimo se, da so naše resničnostne vrednosti odprte podmnožice X. In obstoj elementa ima resničnostno vrednost, tako da je smiselno, da dovoljujemo tako imenovane delne elemente, torej elemente, ki niso

A množica. T topološki prostor

Realna števila so potem kar realne funkcije, in recimo če je $X=\mathbb{R}$ je identiteta neko realno število (reče se mu generični element).

definirani na celem X. To pa pomeni, da je množica...

Za splošne množice pa vzamemo kar isto stvar. Ampak zdaj je vprašanje, kakšne funkcije vzamemo. Izkaže se da kar zvezne, kjer ${\cal A}$ opremimo z diskretno topologijo.

A množica, T topološki prostor

$$T_X \coloneqq \{f: U \to T \mid U \in \mathcal{O}(X)\}$$

$$\mathbb{R}_X \coloneqq \{f: U \to \mathbb{R} \mid U \in \mathcal{O}(X)\} = \bigcup_{U \in \mathcal{O}(X)} \mathcal{C}(U)$$

Nad realnimi števili je torej $id : \mathbb{R} \to \mathbb{R}$ realno število.

Topological models

2025

└─Objekti

 $T_X \coloneqq \{f: U \to T \mid U \in \mathcal{O}(X)\}$ $\mathbb{R}_X \coloneqq \{f: U \to \mathbb{R} \mid U \in \mathcal{O}(X)\} = \bigcup_{U \in \mathcal{O}(X)}$

A množica. T topološki prostor

 $\mathbb{R}_X := \{f: U \to \mathbb{R} \mid U \in \mathcal{O}(X)\} = \bigcup_{U \in \mathcal{O}(X)} \mathcal{C}(U)$ Nad realnimi števili je torej id : $\mathbb{R} \to \mathbb{R}$ realno število.

Če malo fiksiramo oznake, naj bo ...

Najprej vložimo prostor T, ker je še najbolj očitno kako se to naredi. Lahko bi vzeli kar zvezne funkcije iz X v T. To bi delalo, ampak spomnimo se, da so naše resničnostne vrednosti odprte podmnožice X. In obstoj elementa ima resničnostno vrednost, tako da je smiselno, da dovoljujemo tako imenovane delne elemente, torej elemente, ki niso definirani na celem X. To pa pomeni, da je množica...

Realna števila so potem kar realne funkcije, in recimo če je $X=\mathbb{R}$ je identiteta neko realno število (reče se mu generični element).

Za splošne množice pa vzamemo kar isto stvar. Ampak zdaj je vprašanje, kakšne funkcije vzamemo. Izkaže se da kar zvezne, kjer $\cal A$ opremimo z diskretno topologijo.

A množica, T topološki prostor

$$T_X \coloneqq \{f: U \to T \mid U \in \mathcal{O}(X)\}$$

$$\mathbb{R}_X \coloneqq \{f: U \to \mathbb{R} \mid U \in \mathcal{O}(X)\} = \bigcup_{U \in \mathcal{O}(X)} \mathcal{C}(U)$$

Nad realnimi števili je torej $id : \mathbb{R} \to \mathbb{R}$ realno število.

$$\underline{A} \coloneqq \{f: U \to A \mid U \in \mathcal{O}(X)\}$$

$$\mathbb{N} := \{ f : U \to \mathbb{N} \mid U \in \mathcal{O}(X) \}$$

Topological models

2025

└─Objekti

$$\begin{split} A & \operatorname{modica}, T & \operatorname{topolodia} \operatorname{prentor} \\ & T_k = \{f, U - T \mid U \in \mathcal{O}(X)\} \\ & \mathbb{E}_k = \{f, U - T \mid U \in \mathcal{O}(X)\} = \bigcup_{t \in \mathcal{O}(X)} \mathcal{C}(U) \\ & \mathbb{E}_k = \{f, U - \mathbb{E} \mid U \in \mathcal{O}(X)\} = \bigcup_{t \in \mathcal{O}(X)} \mathcal{C}(U) \\ & \mathbb{E}_k = \{f, U - \mathbb{E} \mid U \in \mathcal{O}(X)\} \\ & \mathbb{E}_k = \{f, U - \mathbb{E} \mid U \in \mathcal{O}(X)\} \\ & \mathbb{E}_k = \{f, U - \mathbb{E} \mid U \in \mathcal{O}(X)\} \end{split}$$

Če malo fiksiramo oznake, naj bo ...

Najprej vložimo prostor T, ker je še najbolj očitno kako se to naredi. Lahko bi vzeli kar zvezne funkcije iz X v T. To bi delalo, ampak spomnimo se, da so naše resničnostne vrednosti odprte podmnožice X. In obstoj elementa ima resničnostno vrednost, tako da je smiselno, da dovoljujemo tako imenovane delne elemente, torej elemente, ki niso definirani na celem X. To pa pomeni, da je množica...

Realna števila so potem kar realne funkcije, in recimo če je $X=\mathbb{R}$ je identiteta neko realno število (reče se mu generični element).

Za splošne množice pa vzamemo kar isto stvar. Ampak zdaj je vprašanje, kakšne funkcije vzamemo. Izkaže se da kar zvezne, kjer A opremimo z diskretno topologijo.

$$\forall y:Y.\; P(y) \coloneqq \qquad \bigwedge_{y \in Y} P(y)$$

$$= \bigwedge_{y \in Y} P(y)$$

$$\exists y: Y. \; P(y) \coloneqq \bigvee_{y \in Y} P(y)$$

└─Kvantifikatorji

Topological models

 $\forall y : Y. P(y) := \bigwedge_{y \in Y} P(y)$ $\exists y: Y. P(y) := \bigvee_{y \in Y} P(y)$

2025-06-05

└─Kvantifikatorii

 $U \le \forall y : Y. P(y) := U \le \bigwedge_{y \in Y} P(y)$ $\Leftrightarrow \nabla V \leq U. \ \exists y \in Y. \ \operatorname{dom} y = V \wedge \operatorname{dom} y \leq P(y)$

 $U \le \forall y : Y. \ P(y) := U \le \bigwedge P(y)$ $\Leftrightarrow \forall y \in Y. \operatorname{dom} y \leq U \Rightarrow \operatorname{dom} y \leq P(y)$ $U \le \exists y : Y. \ P(y) := U \le \bigvee P(y)$ $\Leftrightarrow \nabla V \leq U$. $\exists y \in Y$. dom $y = V \land \text{dom } y \leq P(y)$

Trditev

 $U \to \mathbb{R}$ odprte.

Topological models

└─Realna števila

Nad X drži ALPO natanko tedaj, ko so ničelne množice funkcij

 $\mathsf{ALPO} \coloneqq \forall x : \mathbb{R}. \ x > 0 \lor x \leq 0 = \forall x : \mathbb{R}. \ x > 0 \lor x = 0 \lor x < 0$

 $\mathsf{AKS} \coloneqq \forall U : \mathcal{O}(X). \ \exists x : \mathbb{R}. \ U \Leftrightarrow x > 0$

–Realna števila

Nad X drži ALPO natanko tedaj, ko so ničelne mnažice funkc Če ie X (lokalno) Ti, nad niem drži AKS.

Trditev

Nad X drži ALPO natanko tedaj, ko so ničelne množice funkcij $U \to \mathbb{R}$ odprte.

Trditev

Če je X (lokalno) T_6 , nad njem drži AKS.

$$\begin{split} \mathsf{ALPO} &:= \forall x : \mathbb{R}. \ x > 0 \lor x \le 0 = \forall x : \mathbb{R}. \ x > 0 \lor x = 0 \lor x < 0 \\ \mathsf{AKS} &:= \forall U : \mathcal{O}(X). \ \exists x : \mathbb{R}. \ U \Leftrightarrow x > 0 \end{split}$$

2025

-Realna števila

Topological models

Če je X (lokalno) Ti., nad njem drži AKS.

Trditev

Nad X drži ALPO natanko tedaj, ko so ničelne množice funkcij $U \to \mathbb{R}$ odprte.

Trditev

Če je X (lokalno) T_6 , nad njem drži AKS.

Trditev

Če je prostor lokalno povezan in nad njem velja $\mathbb{R}_d = \mathbb{R}_c$, velja tudi ALPO.

 $\mathsf{ALPO} \coloneqq \forall x : \mathbb{R}. \ x > 0 \lor x < 0 = \forall x : \mathbb{R}. \ x > 0 \lor x = 0 \lor x < 0$ $\mathsf{AKS} := \forall U : \mathcal{O}(X). \ \exists x : \mathbb{R}. \ U \Leftrightarrow x > 0$

2025-06-05

Topological models

└─Ne

Verjetno $\{0\} \cup \{2^{-n} \mid n \in \mathbb{N}\}$ dela.

Tam sem se prepričala, a ne dokazala, da ALPO in CC^\vee ne držita, pa vseeno $\mathbb{R}_d=\mathbb{R}_c$.

Izbira?

Izrek

Nad T_1 prostori velja števna izbira natanko tedaj, ko je topologija zaprta za števne preseke.

Topological models

Tu števnost ni važna.

Izbira?

Topological models

topologija zaprta za števne preselve.

Izrek

Mod T₁ prostori velija števna izbira natanko tedaj, ko velja

Nad T_1 prostori velja: AC(N, 2).

Izrek

Nad T_1 prostori velja števna izbira natanko tedaj, ko je topologija zaprta za števne preseke.

Izrek

Nad T_1 prostori velja števna izbira natanko tedaj, ko velja $AC(\mathbb{N},2)$.

Tu števnost ni važna.

└─Izbira?

Izbira?

2025-06-05

Topological models

topologija zaprta za števne pre Izrek Nad T_1 prostori velja števna izt AC(N, 2).

Trditev (Hendtlass, Lubarsky 2016) Če je prostor ultraparakompakten,

je prostor ultraparakompakten, nad njem ira.

Tu števnost ni važna.

└─lzbira?

Izrek

Nad T_1 prostori velja števna izbira natanko tedaj, ko je topologija zaprta za števne preseke.

Izrek

Nad T_1 prostori velja števna izbira natanko tedaj, ko velja $AC(\mathbb{N},2)$.

Trditev (Hendtlass, Lubarsky 2016)

Če je prostor ultraparakompakten, nad njem velja odvisna izbira.

