# Оглавление

| 0 | Вступ.    | ление                           |
|---|-----------|---------------------------------|
|   | 0.1       | Про ограниченные множества      |
|   | 0.2       | В Рудине такого не было!        |
| 1 | О полноте |                                 |
|   | 1.1       | Теорема Банаха-Штейнгауза       |
|   | 1.2       | Полезные частные случаи         |
|   | 1.3       | Теорема об открытом отображении |
|   | 1.4       | Теорема о замкнутом графике     |
|   | 1.5       | Билинейные отображения          |
| 2 | Выпун     | клость                          |

# 0 Вступление

Во всем конспекте F обозначает поле скаляров, все векторные пространства будем смотреть только над ним. В качестве F мы берем только  $\mathbb{R}$ , либо  $\mathbb{C}$  с естественными топологиями на них.

**Определение.** Топологическое пространство X являющееся векторным пространством называется топологическим векторным пространством (ТВП), если

- 1. Топология удовлетворяет  $T_1$  (синглетоны замкнуты)
- 2. Сложение и умножение на скаляр непрерывны

#### Замечание.

- 1. Сдвиг на любой вектор  $u\mapsto u+v$  и растяжение на любой скаляр  $\alpha\neq 0: u\mapsto \alpha u$  являются гомеоморфизмами.
- 2. Топология для такого X всегда инвариантна относительно сдвигов.
- 3. Следовательно, полностью определяется локальной базой.

Это основное определение, помимо него напомним еще определений:

**Определение.** Пусть X – векторное пространство и  $A \subseteq X$ 

- 1. Если  $0 \in A$  и  $\forall \alpha, \beta \in F$  выполняется  $\alpha A + \beta A \subseteq A$ , то A называется **подпространством** X; обозначается  $A \leqslant X$ .
- 2. Если  $\forall t \in (0,1)$  выполняется  $tA + (1-t)A \subseteq A$ , то A называется **выпуклым**.
- 3. Если  $\forall \alpha \in F: |\alpha| \leqslant 1$  выполняется  $\alpha A \subseteq A$ , то A называется **уравновешенным**.

**Замечание.** Подпространства являются выпуклыми уравновешенными множествами.

**Определение (Типы пространств).** Пусть X – ТВП, говорим, что X

- (A) **локально выпукло**, если существует локальная база из выпуклых окрестностей.
- (В) локально ограничено, если существует ограниченная окрестность нуля.
- (С) локально компактно, если существует предкомпактная окрестность нуля.
- (D) **метризуемо**, если его топология метризуема.
- (F) является **F-пространством**, если топология индуцируется **полной инвариантной** метрикой.

- (G) является **пространством Фреше**, если оно локально-выпуклое F-пространство
- (E) **нормируемо**, если существует норма, индуцирующая топологию X
- (F) обладает свойством **Гейне-Бореля**, если

(ограниченное  $\land$  замкнутое  $\Rightarrow$  компактное)

Небольшой обзор результатов касающихся затронутых выше понятий

#### Теорема 0.1 (Воспоминания о будущем).

- 1. Локально ограничено ⇒ обладает счетной локальной базой.
- 2. Метризуемо ⇔ обладает счетной локальной базой.
- 3. Нормируемо ⇔ (локально выпукло ∧ локально ограничено)
- 4. Конечномерно ⇔ локально компактно
- 5. Обладает свйоством Гейне-Бореля ⇒ конечномерно

#### 0.1 Про ограниченные множества

Существует два различных определения ограниченных множеств, в которых легко запутаться, если речь идет о метризуемых ТВП:

$$(X,d)$$
 – метрическое пространство

X – **TB** $\Pi$ 

 $E \subset X$  называется ограниченным, если  $\exists M > 0$ :

 $E \subset X$  называется ограниченным, если

$$\forall x, y \in E \ d(x, y) < M$$

 $\forall U$  – окр.0  $\exists t_0 > 0: \ \forall t > t_0$   $E \subset tU$ 

**Лемма 0.2.** Если X нормируемое пространство и d(x, y) = ||x - y||, то эти понятия совпадают. В ином случае они могут отличаться во всех нетривиальных случаях.

Доказательство очевидное, приведем пример, почему эти понятия различаются в иных случаях. Если d – любая метрика на X, то  $d' = \frac{d}{1+d}$  – тоже метрика, причем эквивалентная изначальной. Однако относительно нее всё пространство (и все подмножества) будут ограничены.

#### 0.2 В Рудине такого не было!

Категория ТВП - **TVect**.

- 1. Ob(**TVect**) топологические векторные пространства
- 2.  $X \to Y$  это непрерывные линейные отображения.

Дисклеймер: не все стрелки в этом конспекте это морфизмы в категории.

Заметим, что **TVect** – конкретная категория, поэтому определен обычный забывающий функтор  $F_S: \mathbf{TVect} \to \mathbf{Set}$ . Также определим  $F_V: \mathbf{TVect} \to \mathbf{Vect}$  – забывающий топологию функтор.

Если  $X, Y \in \text{Ob}(\mathbf{TVect})$ , то Hom(X, Y) обозначает множество стрелок в  $\mathbf{Vect}$  между  $F_V(X)$  и  $F_V(Y)$ . Множетво стрелок в  $\mathbf{TVect}$  мы обозначаем как  $\mathbf{c}\text{Hom}(X, Y)$ .

Во всем конспекте буквы X, Y, Z обозначают элементы  $Ob(\mathbf{TVect})$ .

#### 1 О полноте

**Определение.** Говорят, что  $A \subset X$  имеет I категорию, если  $A = \cup_n E_n$ , где каждое из  $E_n$  нигде не плотно. A имеет вторую II категорию в ином случае.

**Теорема 1.1 (Бэра о полноте).** В полных метрических пространствах и локально компактных хаусдорфовых пространствах

$$\bigcap_{n\in\mathbb{N}}$$
 (открытое, всюду плотное) — всюду плотно

## 1.1 Теорема Банаха-Штейнгауза

Сначала, введем определение

**Определение.** Пусть  $\Gamma \subseteq \operatorname{Hom}(X,Y)$ . Оно называется равностепенно непрерывным, если

для любой 
$$W$$
 – окр. 0 в Y существует  $V$  – окр. 0 в X:  $\Gamma(V) \subseteq W$ 

Как мы увидим ниже, равностепенно-непрерывные семейства переводят ограниченные множества в ограниченные. Теорема Банаха-Штейнгауза же скажет, что если точек, орбиты которых под действием  $\Gamma$  ограниченны *много*, то  $\Gamma$  равностепенно непрерывно.

**Теорема 1.2.** Пусть  $\Gamma \subseteq \operatorname{Hom}(X,Y)$  – равностепенно непрерывно, а  $E \subseteq X$  ограниченно. Тогда  $\Gamma(E)$  суть ограниченное множество в Y.

Доказательство. Рассмотрим W – окрестность 0 в Y, выберем V – окрестность 0 в X из определения. E – ограниченно ⇒ имеем  $E \subseteq tV$  для больших t. Для них же:

$$\Gamma(E) \subseteq \Gamma(tV) = t\Gamma(V) \subseteq tW$$

3

**Теорема 1.3 (Банаха-Штейнгауза).** Пусть  $\Gamma \subseteq \mathbf{c}\mathrm{Hom}(X,Y)$ . Предположим, что множество  $B = \{x \in X : \Gamma(x) - \text{ограниченно}\}$  имеет вторую категорию в X.

Тогда B = X и  $\Gamma$  равностепенно непрерывно.

*Доказательство*. Пусть W – уравновешенная окрестность 0 в Y, будем искать такую V в X, что  $\Gamma(V) \subseteq W$ . Для этого найдем такую U – уравновешенная окрестность 0 в Y, что  $\overline{U} + \overline{U} \subseteq W$ , положим

$$E = \cap_{\Lambda \in \Gamma} \Lambda^{-1}(\overline{U}).$$

$$x \in B \Rightarrow \Gamma(x) \in nU$$
 для больших  $n \Rightarrow \frac{1}{n}x \in E$  для таких же  $n$ 

Тогда заметим, что  $B \subseteq \bigcup_n nE$ . Значит, какой-то из nE – множество второй категории. Заметив, что  $x \mapsto nx$  это гомеоморфизм X получаем:

$$E$$
 — множество второй категории 
$$E$$
 — замкнуто так как все  $\Lambda \in \Gamma$  непрерывны  $\Longrightarrow$  В  $E$  есть внутренняя точка  $x_0$ 

Значит, в множестве  $x_0 - E$  содержится окрестность нуля V, причем:

$$\Lambda(V) \subset \Lambda x_0 - \Lambda(E) \subseteq \overline{U} - \overline{U} \subseteq W$$

Тогда  $\Gamma$  переводит ограниченные множества в ограниченные, а тогда  $\Gamma(x)$  – ограниченное для всякого  $x \Rightarrow B = X$ .

## 1.2 Полезные частные случаи

**Теорема 1.4.** Пусть X - F-пространство и  $\Gamma \subseteq \mathbf{c}\mathrm{Hom}(X,Y)$  и  $\forall x \in X \ \Gamma(x)$  ограниченно в Y. Тогда  $\Gamma$  равностепенно непрерывно.

*Доказательство*. По теореме Бэра, F-пространства являются множествами второй категории в себе.

**Теорема 1.5.** Пусть X – банахово, Y – нормируемо, причем  $\sup_{\Lambda \in \Gamma} ||\Lambda x|| < \infty$ . Тогда существует такой M > 0, что

$$||\Lambda x|| \leq M||x|| \quad \forall x \in X \ \forall \Lambda \in \Gamma$$

Доказательство. Применим предыдущую теорему к метрикам, порожденным нормами. В них ограниченность эквивалентна метрической. ■

**Теорема 1.6.** Пусть  $\Lambda_n \in \mathbf{c} \text{Hom}(X, Y)$ . Определим

$$C = \{x \in X : \Lambda_n x - \text{последовательность Коши}\}; L = \{x \in X : \Lambda_n x \to \Lambda x\}.$$

Тогда

1. Если C второй категории в X, то C = X

- 2. Если L второй категории в X и Y F-пространство, то L = X и  $\Lambda$  непрерывно. Доказательство.
  - 1. Все последовательности Коши ограниченны  $\Rightarrow$  по Б-Ш  $\{\Lambda_n\}$  равностепенно непрерывна. Заметим, что  $C \leqslant X$ . Также, C всюду плотное. (Пусть не так  $\Rightarrow$  тогда  $X = \overline{C} \oplus Y$ , то есть  $\overline{C}$  собственное подпространство.  $\Rightarrow$  в нем нет внутренних точек  $\Rightarrow$  оно I категории).

Возьмем  $x \in X$ , будем показывать, что  $\Lambda_n x$  – последовательность Коши в Y, зафиксируем W – окрестность 0 в Y. По равностепенной непрерывности найдем симметричную V – окрестность 0 в X – такую, что ВСЕ  $\Lambda_n(V) \subseteq W$ . Так как C всюду плотно, найдем  $y \in C \cap (x+V)$ . Тогда НСНМ

$$(\Lambda_n - \Lambda_m)x = \Lambda_n(x - y) + (\Lambda_n - \Lambda_m)y + \Lambda_m(y - x) \in W + W + W$$

2. Y-F-пространство  $\Rightarrow L=C$  из предыдущего пункта  $\Rightarrow L=X$ . Возьмем такие же, как и в прошлом пункте W,V. Для них  $\Lambda_n(V)\subseteq W$  при ВСЕХ n. Тогда  $\Lambda(V)\subseteq \overline{W}$ , что эквивалентно непрерывности  $\Lambda$ .

**Теорема 1.7.**  $K \subseteq X$  – выпуклый компакт,  $\Gamma \subseteq \mathbf{c}\mathrm{Hom}(X,Y)$ , причем  $\Gamma(x)$  – ограниченно при всех  $x \in K$ . Тогда  $\Gamma(K)$  – ограниченное.

## 1.3 Теорема об открытом отображении

Пусть  $f: S \to T$  – отображение (S, T – топологические, f не обязательно непрерывна) и  $p \in S$ . Говорят, что f открыта в p, если для любой V – окрестности p образ f(V) содержит окрестность f(p).

**Теорема 1.8.** Пусть X – F-пространство,  $\Lambda \in \mathbf{c}\mathrm{Hom}(X,Y)$ , причем  $\Lambda(X)$  второй категории. Тогда

(i) 
$$\Lambda(X) = Y \leftarrow$$
 (ii)  $\Lambda$  – открыто (iii)  $Y$  –  $F$ -пространство

Доказательство. Стрелка «  $\Leftarrow$ » объясняется тем, что  $\Lambda(X)$  − подпространство в Y.

Теперь пусть V – окрестность 0 в X, мы хотим проверить, что  $\Lambda(V)$  содержит окрестность 0 в Y. Заведем метрику гарантированную тем, что X это F-пространство d.

Определим

$$V_n = \left\{ x \mid d(x,0) < \frac{r}{2^n} \right\}$$

где r такой маленький, что  $V_0 \subset V$ . Мы будем показывать, что

$$W \subseteq \overline{\Lambda(V_1)} \subseteq \overline{\Lambda(V)}$$

для некоторой окрестности нуля W в Y.

(А): Знаем, что

$$\overline{\Lambda(V_1)} \supseteq \overline{\Lambda(V_2) - \Lambda(V_2)} \supseteq \overline{\Lambda(V_2)} - \overline{\Lambda(V_2)}$$

так как  $V_2-V_2\subseteq V_1$ . Поэтому мы будем показывать, что Int  $\overline{\Lambda(V_2)}$  непусто. Действительно

$$\Lambda(X) = \bigcup_k k \Lambda(V_2) \implies \exists k: k \Lambda(V_2)$$
 – II-категории  $\implies \Lambda(V_2)$  – II-категории  $\implies \operatorname{Int} \overline{\Lambda(V_2)} \neq \varnothing$ 

(В): Зафиксируем  $y_1 \in \overline{\Lambda(V_1)}$ . Индуктивно построим последовательность  $y_n \in \overline{\Lambda(V_n)}$  следующим образом. По тем же причинам, что и в пункте (A), внутри  $\overline{\Lambda(V_n)}$  содержится окрестность нуля  $\forall n$ . Следовательно,

$$\left(y_n - \overline{\Lambda(V_{n+1})}\right) \cap \Lambda(V_n) \neq \emptyset,$$

а значит мы можем найти такую  $x_n \in V_n$ , что  $\Lambda x_n \in y_n - \overline{\Lambda(V_{n+1})}$ . Вот и определим  $y_{n+1} = y_n - \Lambda x_n$ .

$$d(x_n,0) < 2^{-n}r \implies \sum_{k=1}^n x_k$$
 – посл-ть Коши  $\implies \sum_{n=1}^\infty x_n = x \in V_0 \subseteq V$ 

Также,

$$\Lambda\left(\sum_{n=1}^{m} x_n\right) = \sum_{n=1}^{m} \Lambda x_n = \sum_{n=1}^{m} (y_n - y_{n+1}) = y_1 - y_{m+1} \to y_1$$

Тут мы воспользовались непрерывностью  $\Lambda$  говоря, что  $y_{m+1} \to 0$  при  $m \to \infty$ . Получили то, что  $y_1 = \Lambda x \in \Lambda(V_0) \subseteq \Lambda(V)$ 

Теперь докажем (iii). Пусть  $N = \ker \Lambda$ . Мы знаем, что X/N - это F-пространство. Остаётся найти ТВП-изоморфизм  $X/N \to Y$ . Изоморфизм f векторных пространств строится из первой теоремы о гомоморфизме ( $\odot$ ).



Проверим, что он - гомеоморфизм.

- 1. Если V открыто в Y, то  $f^{-1}(V)=\pi(\Lambda^{-1}(V))$  открыто, поскольку  $\Lambda$  непрерывно,  $\pi$  открыто.
- 2. Если E открыто в X/N, то  $f(E) = \Lambda(\pi^{-1}(E))$  открыто, поскольку  $\pi$  непрерывно и  $\Lambda$  открыто.

# Следствия из нее

- 1. (a) Если X,Y F-пространства и  $\Lambda \in \mathbf{c}\mathrm{Hom}(X,Y)$   $\Rightarrow$   $\Lambda$  открыто
  - (b) Если к тому же  $\Lambda$  биекция, то  $\Rightarrow$   $\Lambda^{-1}$  непрерывно.
- 2. Если X, Y Банаховы и  $\Lambda \in \mathbf{c}\mathrm{Hom}(X,Y)$  биекция, то  $\exists c, C > 0$ : для всех  $x \in X$

$$c||x|| \leq ||\Lambda x|| \leq C||x||$$

3. Если  $\tau_1 \subseteq \tau_2$  – две векторые топологии на векторном пр-ве X и оба  $(X, \tau_1), (X, \tau_2)$  – F-пространства, то  $\tau_1 = \tau_2$ .

#### 1.4 Теорема о замкнутом графике

Под графиком отображения  $f: X \to Y$  имеется ввиду множество  $\{(x, f(x))\}_{x \in X} \subseteq X \times Y$ . Для непрерывных отображений в хаусдорфовы пространства график всегда замкнут, мы будем пытаться выяснить про какие-то факты, похожие на это. Для начала обоснуем факт про замкнутность графика непрерывной функции:

**Замечание.** Пусть  $f: X \to Y$  непрерывна и Y – Хаусдорфово. Тогда график f замкнут.

Доказательство. Рассмотрим  $(x_0, y_0)$  из дополнения графика в  $X \times Y$ , тогда отделим по хаусдофовости в Y точки  $y_0, f(x_0)$  окрестностями U, V соответственно. По непрерывности найдем W – окрестность  $x_0$  в X такую, что  $f(W) \subseteq V$ . А значит,  $W \times U$  – искомая окрестность  $(x_0, y_0)$ , содержащаяся в дополнении графика.

**Теорема 1.9 (О замкнутом графике).** Пусть X, Y – F-пространства,  $\Lambda \in \operatorname{Hom}(X, Y)$  и его график замкнут. Тогда  $\Lambda$  непрерывен.

Доказательство. Рассмотрим  $X \times Y$  как F-пространство. График  $\Lambda$  – обозначим его G – замкнутое подпространство в  $X \times Y$  (поскольку лямбда линейна). А значит, G само по себе F-пространство Определим

$$\pi_1: G \to X \ (x, \Lambda x) \mapsto x$$

$$\pi_2: X \times Y \to Y \ (x, y) \mapsto y$$

Тогда  $\pi_1$  непрерывная линейная биекция  $G \to X$ , причем G и X - F-пространства. Тогда по теореме об открытом отображении  $\pi_1^{-1}$  непрерывно. А значит,

$$\Lambda = \pi_2 \circ \pi_1^{-1}$$
 непрерывна

**Замечание.** Пусть для всяких  $x_n \to x$ ,  $\Lambda x_n \to y$  выполняется  $y = \Lambda x$ . Тогда график  $\Lambda$  замкнут.

#### 1.5 Билинейные отображения

Пусть X, Y, Z – ТВП и  $B: X \times Y \rightarrow Z$ .

Можем определить  $B_x: Y \to Z$ ,  $B^y: X \to Z$  для фиксированных x, y – функции на срезах  $X \times Y$ . Если они непрерывны, то B называется **раздельно непрерывным**; если  $B_x$ ,  $B^y$  линейны, то B называется **билинейным**. В некоторых случаях из раздельной непрерывности следует обычная непрерывность:

**Теорема 1.10.** Если X - F-пространство и B – раздельно непрерывное билинейное. Тогда B секвенциально непрерывно. В частности, если Y метризуемо, то B непрерывно.

Доказательство. Выберем  $x_n \to x_0$  в X и  $y_n \to y_0$  в Y Возьмем U, W окрестности 0 в Z такие, что  $U+U\subseteq W$ , положим  $b_n(x)=B(x,y_n)$ .

- 1. Так как эти последовательности сходятся, множества  $\{b_n(x)\}$  ограничены в Z.
- 2. Тогда  $b_n(x)$  непрерывные линейные отображения из F-пространства X в Z.
- 3. Значит, по  $\ref{eq:condition}$  [следствию из теоремы Банаха-Штейнгауза], семейство  $\{b_n\}$  равномерно непрерывно.

А значит найдется V – окрестность 0 в X такая, что  $\forall n\ b_n(V)\subset U.$  Тогда начиная с некоторого места:

$$B(x_n, y_n) - B(x_0, y_0) = b_n(x_n - x_0) + B(x_0, y_n - y_0) \in U + U \subseteq W$$

Если Y метризуемо, то  $X \times Y$  метризуемо, а значит секвенциальная непрерывность эквивалентна обычной

# 2 Выпуклость

Обозначим  $X^* := \mathbf{c} \operatorname{Hom}(X, )$ , на этом множестве очевидно есть структура векторного пространства. Для следующей теоремы не нужна никакая топология.

**Теорема 2.1.** [Хана-Банаха] Пусть  $X - \mathbb{R}$ -векторное пространство,  $M \leqslant X$ . И даны:

1.  $p:X \to \mathbb{R}$  – функция, удовлетворяющая условиям

$$p(x+y) \leqslant p(x) + p(y), \qquad p(tx) = tp(x) \qquad \forall x, y \in X, \forall t > 0$$

2.  $f \in \text{Hom}(M, \mathbb{R})$  – функционал такой, что  $f \leqslant p$  на M.

Тогда существует  $\Lambda \in \operatorname{Hom}(X,\mathbb{R})$  такой, что

$$\Lambda|_M = f$$
,  $-p(-x) \leqslant \Lambda x \leqslant p(x)$ ,  $\forall x \in X$ 

Доказательство. Пусть  $M \neq X$ , возьмем  $x_1 \in X \setminus M$ , положим  $M_1 = M + \operatorname{span}(x_1)$ . Научимся продолжать f до  $f_1$  на  $M_1$ .

$$f(x) + f(y) = f(x + y) \le p(x + y) \le p(x - x_1) + p(x_1 - y)$$

 $\Rightarrow$ 

$$f(x) - p(x - x_1) \leqslant p(y + x_1) - f(y) \quad \forall x, y \in M$$

Тогда положим

$$\alpha := \sup_{x \in M} f(x) - p(x - x_1),$$

Определим  $f(x+tx_1)=f(x)+t\alpha$  – функционал на  $M_1$ , причем  $f_1\leqslant p$  в силу неравенств  $f(x)-\alpha\leqslant p(x-x_1)$  и  $f(y)+\alpha\leqslant p(y+x_1)$ ..

Теперь будем аксиомой выбора продолжать всё это дело до X. А именно, мы воспользуемся теоремой Хаусдорфа. Определим

$$\mathcal{P} = \{ (M', f') : M \leqslant M' \leqslant X, f' - функционал на M': f'|_{M} = f, f' \leqslant p \}$$

На  $\mathcal{P}$  задан частичный порядок:

$$(M', f') \preceq (M'', f'') \Leftrightarrow (M' \leqslant M'') \land f''|_{M'} = f'$$

По теореме Хаусдорфа в  $\mathcal P$  существует максимальное линейно-упорядоченное множество  $\Omega$ . Положим

$$\Phi = \left\{ M' \; : \; \exists f' - ext{функционал на} \, M' \, ext{такой, что}(M',f') \in \Omega 
ight\}$$

Тогда Ф линейно упорядочено относительно ⊆, а значит

$$\tilde{M} = \bigcup \{M' : M' \in \Phi\}$$
 – подпространство в  $X$ 

Понятным образом продолжим f до  $\Lambda$  – функционала на  $\tilde{M}$ , подчиненного p. Также видно, что  $\tilde{M}$  не может быть собственным подпространством X. Из линейности следует нужное неравенство.

**Теорема 2.2 (Хана-Банаха х2).** Пусть  $M \leqslant X$ , p – полунорма на X, f – функционал на M такой, что

$$|f| \leqslant p$$
 Ha  $M$ 

Тогда f можно продолжить до  $\Lambda$  – функционала на X такого, что

$$|\Lambda| \leqslant p$$
 Ha  $X$ 

Доказательство. Если X – это  $\mathbb{R}$ -пространство, то эта теорема следует из предыдущей. Если же это  $\mathbb{C}$ -пространство, положим  $u=\mathrm{Re}\ f$ .

По (2.1) u продолжается до  $U \in \operatorname{Hom}_{\mathbb{R}}(X,\mathbb{R})$  подчиненного p всюду.

 $\Downarrow$ 

Если  $\Lambda \in \operatorname{Hom}_{\mathbb{C}}(X,\mathbb{C})$  – такой, что  $\operatorname{Re} \Lambda = U$ , то  $\Lambda|_{M} = f$