Prebaci u gornje podnučje (og.)
$$\frac{2}{(S+1)^2+4}$$

$$\frac{2}{(S+1)^2+2^2}$$
 Sin (w+) $\rightarrow \frac{cu}{S^2+4}$

Lysimus, ali
$$F(sta) = > pryviolege$$

 $e^{-t}f(t) = e^{-t} \cdot sin At \cdot s(t)$

$$e^{-t}f(t) = e^{-t} \cdot \sin \alpha t \cdot s(t)$$

$$\frac{i(t)}{s + cp}$$

3
$$U_0 = \frac{2}{3}$$
 $R = L = C$

$$= 7 \ Z(s) = 18 + (\frac{1}{2} + Cs)^{-1} = S + (1+s)^{-1} = S + \frac{1}{1+s}$$

$$V_{s}(s) = \frac{2}{5} \longrightarrow I(s) = \frac{U(s)}{2(s)} = \frac{2}{5} = \frac{2(341)}{5(s^{2}+3+1)}$$

$$e(t) = L \cdot \frac{di(t)}{dg} + \lambda \cdot \dot{c}(t) + \frac{1}{c} \int_{0}^{t} g(t)dt = u(t)$$

en(+) =
$$R \cdot i(t)$$
 \longrightarrow $R I(s)$
 $e_L(t) = L \cdot i(t)$ \longrightarrow $L \cdot (5 \cdot I(s) - I(0)) = L3I(s) - LI(0)$

$$e_{c}(t) = \frac{1}{c} \int_{0}^{t} g(t) dt = \frac{1}{c} \frac{I(s)}{s} = \left(\frac{1}{c} \cdot \frac{1}{s}\right) I(s)$$

$$I(s) = \frac{E(s)}{Z(s)} = \frac{\frac{1}{s}}{\frac{s+s^{2}+1}{s}} = \frac{1}{s+s^{2}+1}$$

$$\frac{2(341)}{S(2^2+3+1)}$$

$$Z = R + LS + \frac{1}{cS}$$

 $Z = 1 + S + \frac{1}{S}$
 $Z = \frac{1}{S} + \frac{1}{S}$