Úvod do paralelních systémů a moderních procesorů

INP 2019

Proč paralelní přístup?

- Paralelní přístup je nutný pro řešení složitých úloh, které vyžadují vysoký výpočetní výkon.
 - paralelní počítání (na vhodně propojených počítačích běží paralelní algoritmus)
- Stávající technologická omezení nutí pro zajištění co nejvyšší výkonnosti používat paralelní přístup na všech úrovních (instrukcí, dat, vláken atd.)
 - Jednoprocesorové systémy potřebují k navýšení výkonnosti neúměrně vysoký příkon.
 - Vícejádrové procesory poskytují pro daný povolený příkon vyšší výkonnost.

Obsah

- Paralelní přístup z pohledu praxe
- Moderní procesory přehled vývoje architektur
 - Skalární
 - · Superskalární
 - Vícevláknové
 - Vektorové
- Technologické důvody pro zavedení paralelismu na vyšších úrovních

Proč nestačí jedno jádro?

- → Vícejádrové procesory
- Distribuované systémy
 - Základní koncepty architektury
 - Propojovací sítě a jejich topologie
 - · Vliv architektury na výkonnost paralelního systému

Podrobně je problematika paralelních systémů a moderních počítačových architektur probírána v navazujícím magisterském studiu.

2

Klasifikace procesorů

- Architekturu procesoru charakterizují parametry:
 - m počet instrukcí, které se v jednom okamžiku vydávají ke zpracování
 - r počet současně prováděných (rozpracovaných) instrukcí
- Subskalární procesory (von neumannovské) r = 1, m = 1
 - doba provádění programu je součtem dob trvání jednotlivých instrukcí.
 - nová instrukce může být vydána až po dokončení předchozí.
- Skalární procesory r>1, m=1

- využívají řetězené zpracování instrukcí, kdy je v každém taktu vydávána maximálně jedna instrukce, ale současně jich může být rozpracováno několik.
- Superskalární (vícecestné) procesory r>1, m>1
 - vydávají k zpracování více než jednu instrukci v jednom taktu
 - · obvykle kombinováno s řetězeným zpracováním

Techniky paralelismu

· Funkční paralelismus

- na úrovni instrukcí (ILP Instruction level Parallelism)
 - · Pipelining, vícecestné zpracování
- na úrovni vláken (TLP Thread Level Parallelism)
 - · Vícevláknové procesory
- na úrovni procesorů (jader)
 - Vícejádrové procesory

Datový paralelismus

- provádění stejných operací nad různými daty → vektorové zpracování (SIMD – Single Instruction, Multiple Data)
- V současných procesorech implementován jako specializované sady instrukcí: SSE, AVX, dříve např. MMX (Intel), 3DNow (AMD) apod.

Generický superskalární procesor

Moderní procesory mají hluboké řetězené jednotky (vč. fetch/retire):

- 486 (3), P5 (5), Pentium III (15), Pentium 4 (31), Pentium M (14)
- · Haswell (16), Skylake (16), Broadwell (16)

SIMD v současných procesorech

Figure 1 Scalar and vectorized loop versions with Intel® SSE, AVX and AVX-512.

Namísto jednoho součtu získáme až 8 součtů v jednom kroku.

Superskalární procesory

• m-cestný (řetězený) procesor

- Dovoluje vydávat v jednom taktu až m instrukcí.
- Podporuje řetězené zpracování instrukcí, kdy se využívá několik paralelně pracujících linek (paralelní načítání, paralelní dekódování instrukcí atd.)
- Mezi stupni řetězené linky jsou vícemístné buffery namísto registrů.
- Data-flow zpracování rozpracované instrukce, které čekají na operandy, je možné odložit do bufferu a probudit je, až budou operandy připraveny.

Provádění instrukcí má tři části

- Načtení/dekódování/rozesílání (pořadí instrukcí dodrženo)
- Provedení instrukcí v paralelně pracujících linkách
- Dokončení vykonávání (podle pořadí instrukcí)

Charakteristika

- Dynamické plánování instrukcí
- Provádění instrukcí mimo pořadí
- Spekulativní provádění skoků (Branch Target Buffer)
- Pokročilé řešení konfliktů ILP přejmenování registrů (HW podpora), přeskládání instrukcí, pokročilý přístup do cache atd.

8

Př. Intel Pentium (1993)

Multivláknové procesory

- Vlákno (thread) je posloupnost instrukcí vyžadující určitý adresový prostor a čas CPU. Vlákna jsou (oproti procesům) lehká, přepnutí kontextu je rychlejší, kopíruje se méně dat.
- Vlákna tvořená v rámci procesu sdílí jeho adresový prostor a další
 prostředky kód, hromadu aj. K vláknu patří jen ukazatele IP a SP
 (instruction pointer, stack pointer), PSW (program status word) včetně
 myid a priority, sada registrů a zásobník.
- Nejčastěji je to programátor, kdo explicitně vlákna vytvoří při paralelizaci programu.
- Multivláknový provoz (MT MultiThreading)
 - Časový vlákna se střídají na jednom CPU (TMT)
 - Prostorový vlákna běží paralelně v multiprocesorovém systému se sdílenou pamětí (P procesorů / P vláken)
 - Časoprostorový (na P procesorech běží R vláken a R>P)

Superskalární procesory - omezení

- Superskalární přístup dosáhl svých mezí
 - Výkonnost = IPC x f
 - IPC (Instructions Per Clock) a f [MHz] jdou proti sobě!
 - Vysoký IPC (až 6) => složitý HW => nízká f
 - Vysoká f => jednodušší HW => nízké IPC
 - Pro m > 4 až 8 již většinou nemá smysl (zrychlení je <3x)
 - Zvyšování f je nevýhodné z hlediska příkonu plánované projekty superskalárních procesorů s vysokými kmitočty (9,2 GHz a 10,2 GHz firmy Intel) byly opuštěny pro vysoký příkon
- Pro srovnání: výkonnost skalární koncepce
 - Výkonnost = f / CPI
 - CPI Clocks Per Instruction
- Další vývoj: vícevláknové a vícejádrové procesory

Multivláknové procesory

- Z pohledu HW
 - Prostředky sdílené vlákny:
 - Procesor, cache, prediktory skoků
 - Prostředky replikované pro každé vlákno
 - Sada registrů, PC, SP, PSW, řadič přerušení
 - Je třeba dodat nový HW např. pro výběr vlákna
- Techniky TMT
 - Hrubý MT
 - Jedno vlákno běží řadu taktů, k přepnutí kontextu dochází pouze při výskytu události s dlouhou latencí, která by vedla k zastavení linky.
 - Jemný MT
 - každém taktu se přepíná na jiné vlákno (prokládání vláken).
 - SMT, souběžný (současný) MT (Simultaneous Multithreading).
 - V každém taktu přepíná kontext několika vláken současně, protože v jednom taktu se zpracovávají instrukce z několika vláken.

4-cestný superskalární CPU (cesta = sloupec) vlákna jsou odlišena barevně bílá = nic se neděje

Multivláknové procesory

- Podpora více vláken v HW je asi nejzajímavější technika pro překlenutí vysoké latence přístupu do paměti.
 - · Musí však existovat dostatek vláken.
 - Doba přepnutí vlákna (přepnutí kontextu) musí být krátká.
 - Na obrázku je porovnání typického výpočtu pro různé architektury:

Moorův zákon

Moore's Law - The number of transistors on integrated circuit chips (1971-2016) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law.

Př. Počet vláken pro TMT

 Jestliže chceme tolerovat latenci přístupů do paměti (např. L = 70 taktů) multivláknovými CPU, kolik vláken (N) bude třeba pro získání maximální účinnosti, když jedno vlákno běží průměrně R=10 taktů a přepnutí kontextu trvá S = 3 takty?

$$(N-1)R + NS \ge L$$

 $(N-1)10 + 3N \ge 70$
 $13N \ge 80$
 $N \ge 6,15$
 $N \ge 7$

Trendy v oblasti vývoje výpočetních systémů

International Technology Roadmap for Semiconductors, www.itrs.net

- ITRS předpovídá vývoj různých parametrů v oblasti polovodičů a jejich aplikací
- Zde je ukázka (mylné) předpovědi pracovní frekvence procesorů z r. 2008 a 2011.

	Year of Production	2009	2010	2011	2012	2013	2014	2015	2016	2017	20.
Předpověď 2008	Chip Frequency (MHz)	5.454	5.875	6.329	6.817	7.344	7.911	8.522	9.180	9.889	10.
	On-chip local clock WAS	3.454	3.073	0.323	0.017	7.344	7.311	0.522	3.100	3.003	10.
Předpověď 2011	Chip Frequency (MHz)	3.462	3,600	3.744	3.894	4.050	4.211	4.380	4.555	4.737	4.9
	On-chip local clock – 2011 IS*	5. 102	5.000	5.7	5.05 1	1.000		1.500	1.555	3/	7.5

Předpověď 2008 Předpověď 2011

Year of Production	2019	2020	2021	2022	2023	2024	2025	2026
Chip Frequency (MHz) On-chip local clock WAS	11.475	12.361	13.315	14.343	15.451	16.640	-	-
Chip Frequency (MHz) On-chip local clock – 2011 IS*	5.124	5.329	5.542	5.764	5.994	6.234	6.483	6.743

Zdroj: ITRS 2011 Executive Summary, www.itrs.net

14

Vývoj technologie

 Dennard scaling: Po desetiletí bylo možné zvyšovat hustotu integrace (zmenšovat tranzistory) a zvyšovat frekvenci. Snížením napájecího napětí byl zajištěn akceptovatelný příkon.

Od roku cca 2005:

frekvenci nelze zvyšovat, nelze snížit napájecí napětí a příkon

- vícejádrové procesory běžící na nižším kmitočtu
- inteligentní řízení příkonu
- Fenomén: Dark silicon
 - na čipu je mnoho tranzistorů, ale jen část může být současně využita, jinak čip shoří
- Vyšší výkonnost lze dosáhnout zvýšením stupně paralelismu v počítačové architektuře

Moorův zákon:

Dle ITRS, cca 10

let bude ještě platit.

Příkon na úrovni mikroarchitektury

Celkové ztráty v technologii CMOS způsobují:

- přepínací ztráty
- ztráty zkratovým proudem
- ztráty svodovým proudem

Vyzařovaný výkon

Dúležitý parametr procesoru:

Thermal Design Power (TDP) nejvyšší možný tepelný výkon, který musí chlazení počítače umět odvést. U elektroniky bez mechanicky se pohybujících částí se ztrátové teplo prakticky rovná spotřebované energii.

Celkový ztrátový výkon

- C je kapacita na výstupu tranzistoru
- V_{DD} je napájecí napětí
- f je hodinový kmitočet čipu
- -a je faktor aktivity (0 < a < 1)
- V_{swing} je napěťový rozkmit na výstupní kapacitě
- I_{leakage} je klidový proud
- I_{SC} je zkratový proud

Nejdůležitější metodou redukce příkonu je tedy

- Snižování napájecího napětí
- Snižování frekvence

J. Jaroš, AVS 2019

19

17

Over-clocking

Předpokládejme, že:
Power ~ V_{dd}³ ~ (1+0,2)³

1.73x

Performance
Power

1.00x

Over-clocked
Max Frequency
(+20% freq & V)

Relative single-core frequency and Vcc

Nejvýkonnějsí počítače: Top 500

(Image: thenextplatform.com)

Více než 90% systémů je založeno na architektuře Intel.

Intel Architecture Roadmap

Superskalární mikroarchitektury Intel

- P5 (1993)
 - první superskalární IA-32 mikroarchitektura
 - In Order, dvojitá integer pipeline (U a V), 5 stupňů
 - Dokončují až 2 instrukce/takt. Kompilátor plánoval dvojice staticky.
- P6 (1995)
 - Out Of Order (OOO), zavedeno super-řetězení (14 stupňů)
 - Procesory: Pentium Pro, Pentium II, III; MMX a SSE
 - Modernizovaná P6: Pentium M, Core Solo, Core Duo
- NetBurst (2000)
 - Trace cache, 31 stupňů, SSE2, SSE3, hyper-threading HT, EM64T
 - Procesory: Pentium 4, Pentium D, Xeon
- Core (2006)

27

- · Nižší příkon, 14 stupňů pipeline, 65 nm, multi-core, SSE3, Intel 64
- Procesory: Pentium dual core, Celeron, Xeon, Core 2
- Nehalem (2008): řady: i3, i5, i7
 - 45 nm, HT, L3C, Quick Path, integrované MemCtrl, bufer μops
 - 32 nm Nehalem = Westmere: IGP (Integrated GPU)

26

J. Jaroš. AVS 2019 28

Superskalární mikroarchitektury Intel (pokr.)

- Sandy Bridge 2010
 - 32 nm, AVX 256 bitů, μop-cache, HT.
 - 22 nm Sandy Bridge = Ivy Bridge: 3D-tranzistor.
- Haswell 2013
 - 22 nm, 4 ALU, 3 AGU, 2 jednotky predikce skoků, AVX2, FIVR (Fully Integrated Voltage Regulator)
 - 35 40 MB LLC. Server procesory až 20 jader, možnost rozdělit jádra do 2 uzlů NUMA (COD, cluster on die)
 - 4 verze integrované GPU (až 40 EU), TDP 35-140 W.
 - 14 nm Sandy Bridge = Broadwell
- Skylake 2015:
 - 14 nm, 4 typy Y, U, H a S (TDP 4 95W) integrovaná L4 eDRAM cache (64/128 MB), podpora DDR3/4,
 - Kabylake 14 nm, optimalizované Skylake, podpora kódování a dekódování 4K videa odlehčí CPU.
- SunnyCove (2019)

J. Jaroš, AVS 2019 29

Multithread, multicore - shrnutí

- Podpora vícevláknového zpracování (multitasking, multithreading) může mít různou podobu
 - Přepínání úloh pouze z úrovně OS dnes se již samostatně téměř nepoužívá
 - Přepínání s podporou HW CPU nejedná se o paralelní zpracování, úlohy běží v časovém multiplexu (hrubý/jemný MT)
 - Vícecestné procesory souběžný MT, výhradně s HW podporou CPU, paralelní vykonávání instrukcí různých úloh (pokud je to možné – sdílení určitých komponent CPU)
 - Vícejádrové procesory každé jádro může autonomně spouštět různé úlohy (vlákna nebo i procesy).

Běžně se používá v kombinaci s dříve uvedenými přístupy.

- · Komunikace mezi vlákny se provádí přes sdílenou paměť.
- Programování nejčastěji pomocí OpenMP (C/C++)

Vybrané mikroarchitektury Intel

http://www.anandtech.com/show/6355/intels-haswell-architecture/8

30

Koncepty paralelního zpracování

- Procesory nekomunikují (nejedná se úplně o paralelizaci)
 - Mohu spustit současně více různých úloh, každou na jednom procesoru
 - Mohu spustit stejnou úlohu na n procesorech, ale s jinými parametry (např. program pro předpověď počasí s různým nastavením počátečních podmínek zrychlení n-krát oproti sekvenčnímu počítači)
- procesory komunikují (spolupracují) za účelem vyřešení složité úlohy v rozumném čase, jedná se o skutečně paralelní systém
 - Paralelní programování SW řešení určité úlohy na paralelním systému
 - · Procesory společně řeší jednu úlohu, musí být vhodně propojeny
 - Někdy je možné dosáhnout větší zrychlení než v předchozím případě!
 - Příklad: paralelní řazení Enumeration sort (pro k prvků)
 - Pokud je k dispozici k² procesorů, je časová složitost O(log k)
 - Příklad: paralelní řazení Bucket sort (pro k prvků)
 - Pokud je k dispozici log (k) procesorů, je časová složitost O(k)

Základní varianty paralelních systémů

- Se sdílenou pamětí (shared memory, SM)
 - Obvykle řešeno jako tzv. UMA uniform memory access, kdy latence přístupu do sdílené paměti je stejná u všech procesorů
 (SMP symetrický multiprocesor).
 - Programování pomocí OpenMP
 - · Výhoda: efektivní komunikace
 - Nevýhoda: max. pouze ~ 32 procesorů (v závislosti na použité propojovací síti)

- S distribuovanou pamětí (distributed memory, DM)
 - · Každý procesor má svoji (privátní) paměť
 - Programování (komunikace) pomocí knihovny zasílání zpráv (MPI – Message Passing Interface), případně přes síťové sokety
 - Výhoda: škálovatelnost
 - Nevýhoda: vyšší komunikační režie
- memory memory DSM (SAS)
 DM (LAS)
- Se distribuovanou sdílenou pamětí (distributed shared memory, DSM)
 - Obvykle řešeno jako tzv. CC-NUMA (cache coherent non-uniform memory access)

Křížový přepínač (X-bar)

- Propojení 1:1 mezi vstupy a výstupy.
- Je možné propojit 1 vstup k několika výstupům.
- Více vstupů k jednomu výstupu se připojit nesmí.
- Je nutné použít arbitr.
- Cena: p² přepínačů (řešení založeno na multiplexorech) – drahé řešení
- Použití: propojení procesorů s procesory nebo paměťovými moduly

33

Způsob propojení procesorů a typ linek má zásadní vliv na výkonnost!

Propojení víceprocesorových systémů

 Komunikace mezi procesory a přístup ke sdíleným prostředkům jsou realizovány přes propojovací sítě

např. sběrnice.

úplné propojení,

Xbar apod.

(viz dále)

http://www.fujitsu.com/global/services/computing/server/sparcenterprise/technology/performance/crossbar.html

34

36

Zahltit sběrnici není obtížné

- Uvažme procesory (každý s I-cache a D-cache) propojené navzájem sběrnicí a připojené k paměti
 - Hit rate h_i = 98% v I-cache
 - Hit rate $h_d = 95\%$ v D-cache
 - Procesor má výkonnost 250 MIPS
 - Přístup do D- cache potřebuje 1/3 instrukcí (~ 75 MIPS)
- Počet výpadků v I-cache 2% x 250 MIPS = 5 M výpadků /s
- Počet výpadků v D-cache 5% x 75 MIPS = 3.75 M výpadků /s
- Celkem 8,75 M výpadků/s
- Při každém výpadku se po sběrnici přenáší blok o velikosti 16B.
- Potřebná šířka pásma je pro každý procesor 8,75 M výpadků/s x 16B
 = 140 MB/s
- Kolik procesorů zahltí sběrnici, která má propustnost 1GB/s?
- N = 1000 / 140 => 7 procesorů
- Závěr: Větší počet procesorů nemá smysl propojovat sběrnicí!

Přímé propojovací sítě – příklady topologií

Př. Sečtení k čísel na n procesorech

- Sekvenční řešení: $t_s = k 1$ kroků
- Paralelní řešení (každý procesor má k/n čísel):
 - Hyperkostka: $t_p = k/n + 2 \log_2 n \text{ kroků}$
 - Kruh: $t_p = k/n + 2n/2 = k/n + n \text{ kroků}$

38

40

Pozn.: Operace "pošli mezivýsledek a sečti" je počítána jako 2 kroky.

37

39

Př. Sečtení *k* čísel na *n* procesorech

• zrychlení = t_s / t_n

Je patrný velký vliv komunikační režie na zrychlení pro nízké hodnoty k.

Př. Sečtení *k* čísel na *n* procesorech

U kruhu je patrný velký vliv komunikační režie na zrychlení pro větší počet procesorů.

Vybrané paralelní výpočetní systémy v ČR

- Výpočetní cluster na FIT VUT v Brně (řízeno systémem SGE)
 - Až 2400 procesů (dle stavu jednotlivých serverů/modulů)
 - V současnosti 102 uzlů, každý vybaven 2x CPU 4-16 jader, 4-256 GB RAM
- Anselm, VŠB-TU Ostrava (spuštěn 2013), součást projektu IT4Innovations (VUT je účastníkem projektu)

Přes 200 uzlů, každý vybaven 2x CPU Intel Sandy Bridge 8-core, 96 GB RAM, některé navíc disponují GPU akcelerátorem Nvidia Tesla Kepler K20

4

Anselm ~ do 06/2015

http://prace.it4i.cz/en/infrastruktura/anselm

40

Vybrané paralelní výpočetní systémy v ČR

Salomon VŠB-TU Ostrava ~ od 08/2015, 40. místo v top500 v době spuštění, současně nejvýkonnějším clusterem s koprocesory Intel Xeon Phi v Evropě

Parametry:

- 2 000 TFLOPS teoretický výpočetní výkon
- 1 008 výpočetních uzlů s 24 192 výpočetními jádry Intel Xeon (Haswell EP) s celkem 129 TB paměti
- 432 akcelerovaných výpočetních uzlů, každý akcelerovaný dvěma Intel® Xeon Phi™, celkově 52 704 jader a 13,8 TB paměti
- Sdílená disková úložiště s kapacitou 500 TB HOME, 1 730 TB

Vybrané paralelní výpočetní systémy v ČR

Barbora VŠB-TU Ostrava (od září 2019)

- Celkový teoretický výkon 849 TFlop/s.
- Souhrnná kapacita paměti výpočetních uzlů 43 TB.
- Rychlost výpočetního úložiště 28 GB/s.
- Rychlost linek výpočetní sítě mezi jednotlivými výpočetními uzly 100 Gb/s.
- Výpočetní uzly
 - 192 standardních výpočetních uzlů; každý uzel je vybaven dvěma 18jádrovými procesory Intel a operační pamětí o velikosti 192 GB,
 - 8 výpočetních uzlů s GPU akcelerátory; každý uzel je vybaven dvěma 12jádrovými procesory Intel, čtyřmi GPU akcelerátory NVIDIA V100 s grafickou pamětí o velikosti 16 GB a operační pamětí o velikosti 192 GB RAM
 - tlustý uzel je vybaven osmi šestnáctijádrovými procesory Intel a operační pamětí o velikosti 6 TB RAM
- HPC architektura Bull Sequana XH2000, Infiniband HDR.
- Datové úložiště pro výpočty SCRATCH o kapacitě 310 TB a propustnosti 28 GB/s a pro výpočty NVMe over Fabric o celkové kapacitě 22,4 TB dynamicky alokované výpočetním uzlům.

Nejvýkonnější superpočítače (11/2019)

Rank	Site	System	Cores	Rmax	Rpeak (TFlop/s)	Power
1	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta 6V100, Dual-rail Mellanox EDR Infiniband IBM	2,414,592		200,794.9	
2	DOE/NNSA/LLNL United States	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
3	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
4	National Super Computer Center in Guangzhou China	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 NUDT	4,981,760	61,444.5	100,678.7	18,482
5	Texas Advanced Computing Center/Univ. of Texas United States	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR Dell EMC	448,448	23,516.4	38,745.9	

http://www.top500.org/

45

ČR, 48. v 2015, 67. v 2016, 87. v 2017, 214. v 2018 ©

375	IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava Czech Republic	Salomon - SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Intel Xeon Phi 7120P HPE	76,896	1,457.7	2,011.6	4,806
-----	---	--	--------	---------	---------	-------

Literatura

- Dvořák, V., Drábek, V.: Architektura procesorů. Studijní opora. FIT VUT v Brně 2006
- Dvořák, V.: Architektura a programování paralelních systémů. Skriptum VUT v Brně 2004
- Hanáček, P.: Paralelní a distribuované algoritmy. Přednášky FIT VUT v Brně, 2008
- Bhandarkar D.: The Dawn of a New Era: Multi-Core Computing. Intel 2006
- Jaroš, J.: Architecture of Intel Processors and Difficulties in Their Programming, FIT VUT, 2019
- Jaroš, J.: Architektura výpočetních systémů, FIT VUT, 2019
- Pozn. Většina obrázků převzata z internetu a uvedených publikací