

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 October 2001 (11.10.2001)

PCT

(10) International Publication Number
WO 01/75177 A2

(51) International Patent Classification⁷: **C12Q 1/68**

Lane, Columbia, MD 21045 (US). HOUGH, Colleen, D.
[US/US]; 169 E. Wasatch Point Lane, #30103, Draper, UT
84020 (US).

(21) International Application Number: PCT/US01/10947

(22) International Filing Date: 3 April 2001 (03.04.2001)

(74) Agents: MILLER, Mary, L. et al.; Needle & Rosenberg,
P.C., 127 Peachtree Street, N.E., Suite 1200, Atlanta, GA
30303-1811 (US).

(25) Filing Language: English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:
60/194,336 3 April 2000 (03.04.2000) US

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (*for all designated States except US*): THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; c/o National Institutes of Health, Office of Technology Transfer, 6011 Executive Boulevard, Suite 325, Rockville, MD 20852-3804 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): MORIN, Patrice, J. [CA/US]; 8131 Greenspring Valley Road, Owings Mills, MD 21117 (US). SHERMAN-BAUST, Cheryl, A. [US/US]; 8811 Baker Avenue, Baltimore, MD 21234 (US). PIZER, Ellen, S. [US/US]; 5962 Camelback

WO 01/75177 A2

(54) Title: TUMOR MARKERS IN OVARIAN CANCER

(57) Abstract: The present invention features methods of diagnosing and prognosticating ovarian tumors by detecting increased expression of an ovarian tumor marker gene in a subject or in a sample from a subject. Also featured are kits for the aforementioned diagnostic and prognostic methods. In addition, the invention features methods of treating and preventing ovarian tumors, and methods of inhibiting the growth or metastasis of ovarian tumors, by modulating the production or activity of an ovarian tumor marker polypeptide. Further featured are methods of inhibiting the growth or metastasis of an ovarian tumor by contacting an ovarian tumor cell with an antibody that specifically binds an ovarian tumor marker polypeptide.

TUMOR MARKERS IN OVARIAN CANCER

This invention was made with intramural support from the National Institutes of Health. The government has certain rights in the invention.

5

FIELD OF THE INVENTION

This invention relates generally to the identification of ovarian tumor markers and diagnostic, prognostic, and therapeutic methods for their use, as well as kits for use in the aforementioned methods.

10

BACKGROUND OF THE INVENTION

Ovarian cancer is one of the most common forms of neoplasia in women. Early diagnosis and treatment of any cancer ordinarily improves the likelihood of survival. However, ovarian cancer is difficult to detect in its early stages, and remains the leading cause of death among women with cancer of the female reproductive tract.

The low survival rate of ovarian cancer patients is in part due to the lack of good diagnostic markers for the detection of early stage neoplasms, and in part due to a deficit in the general understanding of ovarian cancer biology, which would facilitate the development of effective anti-tumor therapies. The present invention overcomes these shortcomings by providing much-needed improvements for the diagnosis, treatment, and prevention ovarian tumors, based on the identification of a series of ovarian tumor marker genes that are highly expressed in ovarian epithelial tumor cells and are minimally expressed in normal ovarian epithelial cells. Over 75% of all ovarian tumors, and about 95% of all malignant ovarian tumors, arise from the ovarian surface epithelium (OSE). Because the tumor marker genes are broadly expressed in various types of ovarian epithelial tumors, the present invention should greatly improve the diagnosis and treatment of most ovarian cancers.

SUMMARY OF THE INVENTION

In a first aspect, the invention features a method of detecting an ovarian tumor in a subject. The method includes the step of measuring the expression level of an

ovarian tumor marker gene in the subject, wherein an increase in the expression level of the ovarian tumor marker gene in the subject, relative to the expression level of the ovarian tumor marker gene in a reference subject not having an ovarian tumor, detects an ovarian tumor in the subject.

- 5 In a second aspect, the invention features a method of identifying a subject at increased risk for developing ovarian cancer. The method includes the step of measuring the expression level of an ovarian tumor marker gene in the subject, wherein an increase in the expression level of the ovarian tumor marker gene in the subject, relative to the expression level of the ovarian tumor marker gene in a reference subject
10 not at increased risk for developing ovarian cancer, identifies an individual at increased risk for developing ovarian cancer.

In a preferred embodiment of the second aspect of the invention, the expression level of the ovarian tumor marker gene in the subject is compared to the expression level of the tumor marker gene in a reference subject that is identified as having an
15 increased risk for developing ovarian cancer.

- 15 In a third aspect, the invention features a method of determining the effectiveness of an ovarian cancer treatment in a subject. The method includes the step of measuring the expression level of an ovarian tumor marker gene in the subject after treatment of the subject, wherein a modulation in the expression level of the ovarian
20 tumor marker gene in the subject, relative to the expression level of the ovarian tumor marker gene in the subject prior to treatment, indicates an effective ovarian cancer treatment in the subject.

20 In a preferred embodiment of the first three aspects of the invention, the expression level of the ovarian tumor marker gene is determined in the subject by
25 measuring the expression level of the tumor marker gene in a sample from the subject. The sample may be, for example, a tissue biopsy, ovarian epithelial cell scrapings, peritoneal fluid, blood, urine, or serum. In another preferred embodiment of the first three aspects of the invention, the expression level of the tumor marker gene is measured *in vivo* in the subject.

- 30 In yet another preferred embodiment of the first three aspects of the invention, the expression level of more than one ovarian tumor marker gene is measured. For

example, the expression level of two, three, four, five, or more tumor marker genes may be measured.

In various other embodiments of the first three aspects of the invention, the expression level of the tumor marker gene may be determined by measuring the level of ovarian tumor marker mRNA. For example, the level of ovarian tumor marker mRNA may be measured using RT-PCR, Northern hybridization, dot-blotting, or *in situ* hybridization. In addition, or alternatively, the expression level of the ovarian tumor marker gene may be determined by measuring the level of ovarian tumor marker polypeptide encoded by the ovarian tumor marker gene. For example, the level of ovarian tumor marker polypeptide may be measured by ELISA, immunoblotting, or immunohistochemistry. The level of ovarian tumor marker polypeptide may also be measured *in vivo* in the subject using an antibody that specifically binds an ovarian tumor marker polypeptide, coupled to a paramagnetic label or other label used for *in vivo* imaging, and visualizing the distribution of the labeled antibody within the subject using an appropriate *in vivo* imaging method, such as magnetic resonance imaging.

In still another embodiment of the first three aspects of the invention, the expression level of the tumor marker gene may be compared to the expression level of the tumor marker gene in a reference subject diagnosed with ovarian cancer.

In a fourth aspect, the invention features a method of identifying a tumor as an ovarian tumor. The method includes the step of measuring the expression level of an ovarian tumor marker gene in a tumor cell from the tumor, wherein an increase in the expression level of the ovarian tumor marker gene in the tumor cell, relative to the expression level of the ovarian tumor marker gene in a noncancerous ovarian cell, identifies the tumor as an ovarian tumor.

In a fifth aspect, the invention features a method of treating or preventing an ovarian tumor in a subject. The method includes the step of modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in an ovarian epithelial cell in the subject.

In a sixth aspect, the invention features a method of inhibiting the growth or metastasis of an ovarian tumor cell in a subject. The method includes the step of

modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in the ovarian tumor cell in the subject.

In a seventh aspect, the invention features a method of inhibiting the growth or metastasis of an ovarian tumor in a subject. The method includes the step of contacting 5 an ovarian tumor cell with an antibody that specifically binds an ovarian tumor marker polypeptide encoded by an ovarian tumor marker gene, wherein the binding of the antibody to the ovarian tumor marker polypeptide inhibits the growth or metastasis of the ovarian tumor in the subject.

In various preferred embodiments of the seventh aspect of the invention, the 10 ovarian tumor marker polypeptide may be on the surface of the ovarian tumor cell, and the antibody may be coupled to a radioisotope or to a toxic compound.

In an eighth aspect, the invention features a kit including an antibody for measuring the expression level of an ovarian tumor marker gene in a subject.

In a ninth aspect, the invention features a kit including a nucleic acid for 15 measuring the expression level of an ovarian tumor marker gene in a subject.

In a tenth aspect, the invention features a method of diagnosing ovarian cancer in a subject. The method includes the step of measuring the amount of an ovarian tumor marker polypeptide in the subject, wherein an amount of ovarian tumor marker polypeptide that is greater than the amount of ovarian tumor marker polypeptide 20 measured in a subject not having ovarian cancer diagnoses an ovarian cancer in the subject.

In various embodiments of the tenth aspect of the invention, the ovarian tumor marker polypeptide can be present at the surface of a cell (e.g., a cell-surface-localized polypeptide such as a cell adhesion molecule), or the ovarian tumor marker polypeptide 25 may be in soluble form (e.g., secreted from a cell, released from a lysed cell, or otherwise detectable in a fluid-based assay).

In a preferred embodiment of all of the above aspects of the invention, the ovarian tumor may be an epithelial ovarian tumor. The epithelial ovarian tumor may be, for example, a serous cystadenoma, a borderline serous tumor, a serous 30 cystadenocarcinoma, a mucinous cystadenoma, a borderline mucinous tumor, a mucinous cystadenocarcinoma, an endometrioid carcinoma, an undifferentiated

carcinoma, a cystadenofibroma, an adenofibroma, or a Brenner tumor. The epithelial ovarian tumor may also be a clear cell adenocarcinoma.

- In preferred embodiments of all of the above aspects of the invention, the ovarian tumor marker gene can be, but is not limited to, alpha prothymosin; beta polypeptide 2-like G protein subunit 1; tumor rejection antigen-1 (gp96)1; HSP90; Hepatoma-Derived Growth Factor (HGDF); DKFZp5860031; CD63 antigen (melanoma 1 antigen); protein kinase C substrate 80K-H; Polymerase II cofactor 4 (PC4); mitochondrial Tu translation elongation factor; hNRP H1; Solute carrier family 2; KIAA0591 protein; X-ray repair protein; DKFZP564M2423 protein; growth factor-regulated tyrosine kinase substrate; and eIF-2-associated p67. The ovarian tumor marker gene may also be HSP60 or Lutheran blood group (B-CAM). In other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene may also be HLA-DR alpha chain; cysteine-rich protein 1; claudin 4; claudin 3; ceruloplasmin (ferroxidase); glutathione peroxidase 3; secretory leukocyte protease inhibitor; HOST-1 (FLJ14303 fis); interiferon-induced transmembrane protein 1; apolipoprotein J/clusterin; serine protease inhibitor, Kunitz type 2; apolipoprotein E; complement component 1, r subcomponent; G1P3/IFI-6-16; Lutheran blood group (BCAM); collagen type III, alpha-1; Mal (T cell differentiation protein); collagen type I, alpha-2; HLA-DPB1; bone marrow stroma antigen 2 (BST-2); or HLA-Cw.
- The ovarian tumor marker gene may also be HOST-3 (Claudin-16) (e.g., Genbank Accession No. XM_003150; SEQ ID NOs: 141 and 142); HOST-4 (e.g., a gene that comprises SEQ ID NO: 144); or HOST-5 (sodium dependent transporter isoform NaPi-IIb) (e.g., Genbank Accession No. AF146796; SEQ ID NOs: 146 and 147).
- In other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 84-102.
- In still other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 103-129.

In yet other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 141, 143, or 145.

Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

DETAILED DESCRIPTION OF THE INVENTION

The low survival rate of ovarian cancer patients is in part due to the lack of good diagnostic markers allowing early detection of the disease. Further compounding this difficulty in early diagnosis is the lack of effective treatments for ovarian cancer, development of which has been impeded by a deficit in the general understanding of ovarian cancer biology. The present invention overcomes these deficits in the art by providing ovarian tumor markers that are expressed at elevated levels in ovarian epithelial tumor cells, relative to their expression in normal ovarian epithelial cells.

To identify marker genes that are up-regulated in ovarian tumor cells, SAGE (Serial Analysis of Gene Expression; Velculescu et al., *Science* 270:484-487, 1995) was employed to obtain global gene expression profiles of three ovarian tumors, five ovarian tumor cell lines of various histological types, a pool of ten ovarian tumor cell lines of various histological types, and normal human ovarian surface epithelium (HOSE). The expression patterns were generated by acquiring thousands of short sequence tags that contain sufficient information to uniquely identify transcripts due to the unique position of each tag within the transcript. Comparing the SAGE-generated expression profiles between ovarian cancer and HOSE revealed an abundance of genes that are expressed at elevated levels in ovarian tumor cells, relative to their expression in normal HOSE.

Selected SAGE results were further validated through immunohistochemical analysis of archival ovarian serous carcinoma samples. Ovarian tumor marker genes implicated in immune response pathways, regulation of cell proliferation, and protein folding were identified, many of which are membrane-localized or secreted. The 5 ovarian tumor marker genes identified from these SAGE profiles are useful both as diagnostic and prognostic markers to detect and monitor a broad variety of ovarian cancers, and as therapeutic targets for the treatment of such ovarian cancers.

Definitions

10 In this specification and in the claims that follow, reference is made to a number of terms that shall be defined to have the following meanings.

As used in the specification and in the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise.

For example, "a cell" can mean a single cell or more than one cell.

15 By "ovarian cell" is meant a cell that is of ovarian origin or that is a descendent of a cell of ovarian origin (e.g., a metastatic tumor cell in the liver that is derived from a tumor originating in the ovary), irrespective of whether the cell is physically within the ovary at the time at which it is subjected to a diagnostic test or an anti-tumor treatment. For example, the ovarian cell may be a normal ovarian cell or an ovarian tumor cell, 20 either within the ovary or at another location within the body. The ovarian cell may also be outside the body (for example, in a tissue biopsy). A preferred ovarian cell is an ovarian cell of epithelial origin.

By "ovarian tumor marker gene" is meant a gene of the invention, for which expression is increased (as described below) in ovarian tumor cells relative to normal 25 ovarian cells. Preferably, an ovarian tumor marker gene has been observed to display increased expression in at least two ovarian tumor SAGE libraries (relative to a HOSE library), more preferably in at least three SAGE libraries, and most preferably in at least four SAGE libraries (relative to a HOSE library). Examples of ovarian tumor marker genes are provided in Tables 2 and 4 hereinbelow.

30 By "ovarian tumor marker polypeptide" is meant a polypeptide that is encoded by an ovarian tumor marker gene and is produced at an increased level in an ovarian

tumor cell due to the increased expression of the ovarian tumor marker gene that encodes the polypeptide.

By "sample" is meant any body fluid (e.g., but not limited to, blood, serum, urine, cerebrospinal fluid, semen, sputum, saliva, tears, joint fluids, body cavity fluids 5 (e.g., peritoneal fluid), or washings), tissue, or organ obtained from a subject; a cell (either within a subject, taken directly from a subject, or a cell maintained in culture or from a cultured cell line); a lysate (or lysate fraction) or extract derived from a cell; or a molecule derived from a cell or cellular material.

By "modulate" is meant to alter, by increase or decrease.

10 By "increase in gene expression level," "expressed at an increased level," "increased expression," and similar phrases is meant a rise in the relative amount of mRNA or protein, e.g., on account of an increase in transcription, translation, mRNA stability, or protein stability, such that the overall amount of a product of the gene, i.e., an mRNA or polypeptide, is augmented. Preferably the increase is by at least about 3- 15 fold, more preferably, by at least about: 4-fold, 5-fold, 7-fold, 10-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 70-fold, or more. For example, as described herein, the expression level of the ovarian tumor marker genes of the invention is generally increased by at least 3-fold in ovarian tumor cells, relative to normal ovarian surface epithelial cells.

20 By "decrease in gene expression level" is meant a reduction in the relative amount of mRNA or protein transcription, translation, mRNA stability, or protein stability, such that the overall amount of a product of the gene, i.e., an mRNA or polypeptide, is reduced. Preferably the decrease is by at least about 20%-25%, more preferably by at least about 26%-50%, still more preferably by at least about 51%-75%, 25 even more preferably by at least about 76%-95%, and most preferably, by about 96%-100%.

By "about" is meant $\pm 10\%$ of a recited value.

By "modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene" is meant to increase or decrease gene expression level, as described 30 above, or to stimulate or inhibit the ability of an ovarian tumor marker polypeptide to perform its intrinsic biological function (examples of such functions include, but are

not limited to, enzymatic activity, e.g., kinase activity or GTPase activity; cell-signaling activity, e.g., activation of a growth factor receptor; or cell adhesion activity. The modulation may be an increase in the amount of the polypeptide produced or an increase in the activity of the polypeptide, of at least about: 2-fold, 4-fold, 6-fold, or 10-fold, or the modulation may be a decrease in the amount of the polypeptide produced or a decrease in the activity of the polypeptide, of at least about: 20%-25%, 26%-50%, 51%-75%, 76%-95%, or 96%-100%. These increases and/or decreases are compared with the amount of production and/or activity in a normal cell, sample, or subject.

By "effective amount" of a compound as provided herein is meant a nontoxic but sufficient amount of the compound to provide the desired effect, e.g., modulation of ovarian tumor marker gene expression or modulation of ovarian tumor marker polypeptide activity. As will be pointed out below, the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity and type of disease that is being treated, the particular compound used, its mode of administration, and the like. Thus, it is not possible to specify an exact "effective amount." However, an appropriate "effective amount" may be determined by one of ordinary skill in the art using only routine experimentation.

By "pharmaceutically acceptable" is meant a material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with a molecule or compound of the invention (e.g., an antibody or nucleic acid molecule) without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.

By "having an increased risk" is meant a subject that is identified as having a higher than normal chance of developing an ovarian tumor, compared to the general population. Such subjects include, for example, women that have a hereditary disposition to develop ovarian cancer, for example, those identified as harboring one or more genetic mutations (e.g., a mutation in the BRCA-1 gene) that are known indicators of a greater than normal chance of developing ovarian cancer, or who have a familial history of ovarian cancer. In addition, a subject who has had, or who currently has, an ovarian tumor is a subject who has an increased risk for developing an ovarian

tumor, as such a subject may continue to develop new tumors. Subjects who currently have, or who have had, an ovarian tumor also have an increased risk for ovarian tumor metastases.

By "treat" is meant to administer a compound or molecule of the invention to a
5 subject in order to: eliminate an ovarian tumor or reduce the size of an ovarian tumor or
the number of ovarian tumors in a subject; arrest or slow the growth of an ovarian
tumor in a subject; inhibit or slow the development of a new ovarian tumor or an
ovarian tumor metastasis in a subject; or decrease the frequency or severity of
symptoms and/or recurrences in a subject who currently has or who previously has had
10 an ovarian tumor.

By "prevent" is meant to minimize the chance that a subject will develop an
ovarian tumor or to delay the development of an ovarian tumor. For example, a woman
at increased risk for an ovarian tumor, as described above, would be a candidate for
therapy to prevent an ovarian tumor.

15 By "specifically binds" is meant that an antibody recognizes and physically
interacts with its cognate antigen and does not significantly recognize and interact with
other antigens.

By "probe," "primer," or "oligonucleotide" is meant a single-stranded DNA or
RNA molecule of defined sequence that can base-pair to a second DNA or RNA
20 molecule that contains a complementary sequence (the "target"). The stability of the
resulting hybrid depends upon the extent of the base-pairing that occurs. The extent of
base-pairing is affected by parameters such as the degree of complementarity between
the probe and target molecules, and the degree of stringency of the hybridization
conditions. The degree of hybridization stringency is affected by parameters such as
25 temperature, salt concentration, and the concentration of organic molecules such as
formamide, and is determined by methods known to one skilled in the art. Probes or
primers specific for ovarian tumor marker nucleic acids (e.g., genes and/or mRNAs)
preferably have at least 50%-55% sequence complementarity, more preferably at least
60%-75% sequence complementarity, even more preferably at least 80%-90%
30 sequence complementarity, yet more preferably at least 91%-99% sequence
complementarity, and most preferably 100% sequence complementarity to the ovarian

tumor marker nucleic acid to be detected. Probes, primers, and oligonucleotides may be detectably-labeled, either radioactively, or non-radioactively, by methods well-known to those skilled in the art. Probes, primers, and oligonucleotides are used for methods involving nucleic acid hybridization, such as: nucleic acid sequencing, reverse transcription and/or nucleic acid amplification by the polymerase chain reaction, single stranded conformational polymorphism (SSCP) analysis, restriction fragment polymorphism (RFLP) analysis, Southern hybridization, Northern hybridization, *in situ* hybridization, electrophoretic mobility shift assay (EMSA).

By "specifically hybridizes" is meant that a probe, primer, or oligonucleotide 10 recognizes and physically interacts (i.e., base-pairs) with a substantially complementary nucleic acid (e.g., an ovarian tumor marker mRNA of the invention) under high stringency conditions, and does not substantially base pair with other nucleic acids.

By "high stringency conditions" is meant conditions that allow hybridization comparable with the hybridization that occurs using a DNA probe of at least 500 15 nucleotides in length, in a buffer containing 0.5 M NaHPO₄, pH 7.2, 7% SDS, 1 mM EDTA, and 1 % BSA (fraction V), at a temperature of 65° C, or a buffer containing 48% formamide, 4.8X SSC, 0.2 M Tris-Cl, pH 7.6, 1X Denhardt's solution, 10% dextran sulfate, and 0.1% SDS, at a temperature of 42° C (these are typical conditions for high stringency Northern or Southern hybridizations). High stringency 20 hybridization is relied upon for the success of numerous techniques routinely performed by molecular biologists, such as high stringency PCR, DNA sequencing, single strand conformational polymorphism analysis, and *in situ* hybridization. In contrast to Northern and Southern hybridizations, these techniques are usually performed with relatively short probes (e.g., usually 16 nucleotides or longer for PCR or sequencing, 25 and 40 nucleotides or longer for *in situ* hybridization). The high stringency conditions used in these techniques are well known to those skilled in the art of molecular biology, and may be found, for example, in F. Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley & Sons, New York, NY, 1997, herein incorporated by reference.

Examples of ovarian tumor marker genes

Examples of ovarian tumor marker genes of the invention include alpha prothymosin (e.g., Genbank Accession No. M14483; SEQ ID NOs: 1 and 2); beta polypeptide 2-like G protein subunit 1 (e.g., Genbank Accession No. M24194; SEQ ID NOs: 3 and 4); tumor rejection antigen-1 (gp96)1 (e.g., Genbank Accession No. NM_003299; SEQ ID NOs: 7 and 8); HSP90 (e.g., Genbank Accession No. AA071048; SEQ ID NOs: 9 and 10); Hepatoma-Derived Growth Factor (HGDF) (e.g., Genbank Accession No. D16431; SEQ ID NOs: 13 and 14); DKFZp5860031 (e.g., Genbank Accession No. AL117237; SEQ ID NOs: 15 and 16); CD63 antigen (melanoma 1 antigen) (e.g., Genbank Accession No. AA041408; SEQ ID NOs: 17 and 18); protein kinase C substrate 80K-H (e.g., Genbank Accession No. J03075; SEQ ID NOs: 19 and 20); Polymerase II cofactor 4 (PC4) (e.g., Genbank Accession No. X79805; SEQ ID NOs: 21 and 22); mitochondrial Tu translation elongation factor (e.g., Genbank Accession No. L38995; SEQ ID NOs: 23 and 24); hNRP H1 (e.g., Genbank Accession No. L22009; SEQ ID NOs: 25 and 26); Solute carrier family 2 (e.g., Genbank Accession No. AF070544; SEQ ID NOs: 27 and 28); KIAA0591 protein (e.g., Genbank Accession No. AB011163; SEQ ID NOs: 29 and 30); X-ray repair protein (e.g., Genbank Accession No. AF035587; SEQ ID Nos: 31 and 32); DKFZP564M2423 protein (e.g., Genbank Accession No. BC003049; SEQ ID NOs: 35 and 139); growth factor-regulated tyrosine kinase substrate (e.g., Genbank Accession No. D84064; SEQ ID NOs: 36 and 37); and/or eIF-2-associated p67 (e.g., Genbank Accession No. U29607; SEQ ID NOs: 38 and 39). The ovarian tumor marker gene may also be HSP60 (e.g., Genbank Accession No. M22382; SEQ ID NOs: 11 and 12) and Lutheran blood group protein (B-CAM) (e.g., Genbank Accession No. NM_005581; SEQ ID NOs: 5 and 6).

Other examples of ovarian tumor marker genes of the invention include HLA-DR alpha chain (e.g., Genbank Accession No. K01171; SEQ ID NOs: 40 and 41); cysteine-rich protein 1 (e.g., Genbank Accession No. NM_001311; SEQ ID NOs: 42 and 43); claudin 4 (e.g., Genbank Accession No. NM_001305; SEQ ID NOs: 44 and 45); HOST-2 (e.g., SEQ ID NO: 46); claudin 3 (e.g., Genbank Accession No. NM_001306; SEQ ID NOs: 47 and 48); ceruloplasmin (ferroxidase) (e.g., Genbank

- Accession No. M13699; SEQ ID NOs: 49 and 50); glutathione peroxidase 3 (e.g., Genbank Accession No. D00632; SEQ ID NOs: 51 and 52); secretory leukocyte protease inhibitor (e.g., Genbank Accession No. AF114471; SEQ ID NOs: 53 and 54); HOST-1 (FLJ14303 fis) (e.g., Genbank Accession No. AK024365; SEQ ID NOs: 55 and 56); interferon-induced transmembrane protein 1 (e.g., Genbank Accession No. J04164; SEQ ID NOs: 57 and 58); apolipoprotein J/clusterin (e.g., Genbank Accession No. J02908; SEQ ID NOs: 59 and 60); serine protease inhibitor, Kunitz type 2 (e.g., Genbank Accession No. AF027205; SEQ ID NOs: 61 and 62); apolipoprotein E (e.g., Genbank Accession No. BC003557; SEQ ID NOs: 63 and 64); complement component 1, r subcomponent (e.g., Genbank Accession No. M14058; SEQ ID NOs: 65 and 66); G1P3/IFI-6-16 (e.g., Genbank Accession No. X02492; SEQ ID NOs: 67 and 68); Lutheran blood group (BCAM) (e.g., Genbank Accession No. X83425; SEQ ID NOs: 69 and 70); collagen type III, alpha-1 (e.g., Genbank Accession No. X14420; SEQ ID NOs: 71 and 72); Mal (T cell differentiation protein) (e.g., Genbank Accession No. M15800; SEQ ID NOs: 73 and 74); collagen type I, alpha-2 (e.g., Genbank Accession No. J03464; SEQ ID NOs: 75 and 76); HLA-DPB1 (e.g., Genbank Accession No. J03041; SEQ ID NOs: 77 and 78); bone marrow stroma antigen 2 (BST-2) (e.g., Genbank Accession No. D28137; SEQ ID NOs: 79 and 80); and HLA-Cw (e.g., Genbank Accession No. X17093; SEQ ID NOs: 81 and 82).
- Still other examples of ovarian tumor marker genes of the invention include HOST-3 (Claudin-16) (e.g., Genbank Accession No. XM_003150; SEQ ID NOs: 141 and 142); HOST-4 (e.g., a gene that comprises SEQ ID NO: 144); or HOST-5 (sodium dependent transporter isoform NaPi-IIb) (e.g., Genbank Accession No. AF146796; SEQ ID NOs: 146 and 147).
- Ovarian tumor marker genes of the invention may also be described by SAGE tags, as disclosed herein. For example, an ovarian tumor marker genes of the invention can include a nucleotide sequence set forth in one of SEQ ID NOs: 84-102; 103-129; or 141, 143, or 145.

Diagnostic uses of ovarian tumor marker genes and polypeptides

The ovarian tumor marker genes of the invention are overexpressed in a broad variety of ovarian epithelial tumor cells, relative to normal ovarian epithelial cells. This differential expression can be exploited in diagnostic tests for ovarian cancer, in

5 prognostic tests for assessing the relative severity of ovarian cancer, in tests for monitoring a subject in remission from ovarian cancer, and in tests for monitoring disease status in a subject being treated for ovarian cancer. Increased expression of an ovarian tumor marker gene, i.e., detection of elevated levels of ovarian tumor marker mRNA and/or protein in a subject or in a sample from a subject (i.e., levels at least

10 three-fold higher than in a normal subject or in an equivalent sample, e.g., blood, cells, or tissue from a normal subject) is diagnostic of ovarian cancer.

One of ordinary skill in the art will understand that in some instances, higher expression of a given ovarian tumor marker gene will indicate a worse prognosis for a subject having ovarian cancer. For example, relatively higher levels of ovarian tumor

15 marker gene expression may indicate a relatively large primary tumor, a higher tumor burden (e.g., more metastases), or a relatively more malignant tumor phenotype.

The diagnostic and prognostic methods of the invention involve using known methods, e.g., antibody-based methods to detect ovarian tumor marker polypeptides and nucleic acid hybridization- and/or amplification-based methods to detect ovarian tumor

20 marker mRNA. One of ordinary skill in the art will understand how to choose the most appropriate method for measuring ovarian tumor marker expression, based upon the combination of the particular ovarian tumor marker to be measured, the information desired, and the particular type of diagnostic test to be used. For example, immunological tests such as enzyme-linked immunosorbent assays (ELISA),

25 radioimmunoassays (RIA), and Western blots may be used to measure the level of an ovarian tumor marker polypeptide in a body fluid sample (such as blood, serum, sputum, urine, or peritoneal fluid). Biopsies, tissue samples, and cell samples (such as ovaries, lymph nodes, ovarian surface epithelial cell scrapings, lung biopsies, liver

30 biopsies, and any fluid sample containing cells (such as peritoneal fluid, sputum, and pleural effusions) may be tested by disaggregating and/or solubilizing the tissue or cell sample and subjecting it to an immunoassay for polypeptide detection, such as ELISA,

- RIA, or Western blotting. Such cell or tissue samples may also be analyzed by nucleic acid-based methods, e.g., reverse transcription-polymerase chain reaction (RT-PCR) amplification, Northern hybridization, or slot- or dot-blotting. To visualize the three-dimensional distribution of tumor cells within a tissue sample, diagnostic tests that
- 5 preserve the tissue structure of a sample, e.g., immunohistological staining, *in situ* RNA hybridization, or *in situ* RT-PCR may be employed to detect ovarian tumor marker polypeptide or mRNA, respectively. For *in vivo* localization of tumor masses, imaging tests such as magnetic resonance imaging (MRI) may be employed by introducing into the subject an antibody that specifically binds an ovarian tumor marker
- 10 polypeptide (particularly a cell surface-localized polypeptide), wherein the antibody is conjugated or otherwise coupled to a paramagnetic tracer (or other appropriate detectable moiety, depending upon the imaging method used); alternatively, localization of an unlabeled tumor marker-specific antibody may be detected using a secondary antibody coupled to a detectable moiety.
- 15 The skilled artisan will understand that selection of a particular ovarian tumor marker polypeptide as the target for detection in any diagnostic test and selection of the particular test to be employed will depend upon the type of sample to be tested. For example, measurement of ovarian tumor marker polypeptides that are secreted from a cell (e.g., HDGF) may be preferred for serological tests. Moreover, ovarian tumor
- 20 marker polypeptides that are not normally actively secreted from cells (e.g., intracellular or membrane-associated polypeptides), but that are found in blood and other fluid samples (e.g., peritoneal fluid or washings) at detectable levels in subjects having tumors (e.g., due to tumor cell lysis) are considered to be soluble ovarian tumor marker polypeptides that may be used in serological and other diagnostic assays of body
- 25 fluids.

A fluid sample (such as blood, peritoneal fluid, sputum, or pleural effusions) from a subject with ovarian cancer, particularly metastatic cancer, may contain one or more ovarian tumor cells or ovarian tumor cell fragments. The presence of such cells or fragments allows detection of a tumor mRNA using an RT-PCR assay, e.g., but not

30 limited to, real-time quantitative RT-PCR using the Taqman method (Heid and Stevens, *Genome Res.* 6:986-94, 1996).

In addition, since rapid tumor cell destruction often results in autoantibody generation, the ovarian tumor markers of the invention may be used in serological assays (e.g., an ELISA test of a subject's serum) to detect autoantibodies against ovarian tumor markers in a subject. Ovarian tumor marker polypeptide-specific 5 autoantibody levels that are at least about 3-fold higher (and preferably at least 5-fold or 7-fold higher, most preferably at least 10-fold or 20-fold higher) than in a control sample are indicative of ovarian cancer.

Cell-surface localized, intracellular, and secreted ovarian tumor marker polypeptides may all be employed for analysis of biopsies, e.g., tissue or cell samples 10 (including cells obtained from liquid samples such as peritoneal cavity fluid) to identify a tissue or cell biopsy as containing ovarian tumor cells. A biopsy may be analyzed as an intact tissue or as a whole-cell sample, or the tissue or cell sample may be disaggregated and/or solubilized as necessary for the particular type of diagnostic test to be used. For example, biopsies or samples may be subjected to whole-tissue or whole- 15 cell analysis of ovarian tumor marker polypeptide or mRNA levels *in situ*, e.g., using immunohistochemistry, *in situ* mRNA hybridization, or *in situ* RT-PCR. The skilled artisan will know how to process tissues or cells for analysis of polypeptide or mRNA levels using immunological methods such as ELISA, immunoblotting, or equivalent methods, or analysis of mRNA levels by nucleic acid-based analytical methods such as 20 RT-PCR, Northern hybridization, or slot- or dot-blotting.

All of the above methods are well-known in the art. For example, generation of antibodies against a given protein, ELISA, immunoblotting, selection of nucleic acid primers for PCR, RT-PCR, Northern hybridization, *in situ* hybridization, *in situ* RT-PCR, and slot- or dot-blotting are all well-described in *Current Protocols in Molecular 25 Biology* (Ausubel et al., eds.), John Wiley and Sons, Inc., 1996.

Kits for measuring expression levels of ovarian tumor marker genes

The present invention provides kits for detecting an increased expression level of an ovarian tumor marker gene in a subject. A kit for detecting ovarian tumor marker 30 polypeptide will contain an antibody that specifically binds a chosen ovarian tumor marker polypeptide. A kit for detecting ovarian tumor marker mRNA will contain one

or more nucleic acids (e.g., one or more oligonucleotide primers or probes, DNA probes, RNA probes, or templates for generating RNA probes) that specifically hybridize with a chosen ovarian tumor marker mRNA.

Particularly, the antibody-based kit can be used to detect the presence of, and/or
5 measure the level of, an ovarian tumor marker polypeptide that is specifically bound by
the antibody or an immunoreactive fragment thereof. The kit can include an antibody
reactive with the antigen and a reagent for detecting a reaction of the antibody with the
antigen. Such a kit can be an ELISA kit and can contain a control (e.g., a specified
amount of a particular ovarian tumor marker polypeptide), primary and secondary
10 antibodies when appropriate, and any other necessary reagents such as detectable
moieties, enzyme substrates and color reagents as described above. The diagnostic kit
can, alternatively, be an immunoblot kit generally comprising the components and
reagents described herein.

A nucleic acid-based kit can be used to detect and/or measure the expression
15 level of an ovarian tumor marker gene by detecting and/or measuring the amount of
ovarian tumor marker mRNA in a sample, such as a tissue or cell biopsy (e.g., an ovary,
ovarian cell scrapings, a bone marrow biopsy, a lung biopsy or lung aspiration, etc.).
For example, an RT-PCR kit for detection of elevated expression of an ovarian tumor
marker gene will contain oligonucleotide primers sufficient to perform reverse
20 transcription of ovarian tumor marker mRNA to cDNA and PCR amplification of
ovarian tumor marker cDNA, and will preferably also contain control PCR template
molecules and primers to perform appropriate negative and positive controls, and
internal controls for quantitation. One of ordinary skill in the art will understand how
to select the appropriate primers to perform the reverse transcription and PCR reactions,
25 and the appropriate control reactions to be performed. Such guidance is found, for
example, in F. Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley &
Sons, New York, NY, 1997. Numerous variations of RT-PCR are known in the art.
One example of a quantitative RT-PCR assay is the real-time quantitative RT-PCR
assay described by Heid and Stevens (*Genome Res.* 6:986-94, 1996), in which the
30 primers are labeled by a fluorescent tag, and the amount of amplification product may
be measured in a Taqman apparatus (Perkin-Elmer, Norwalk, CT).

Targeted delivery of immunotoxins to ovarian tumor cells

The tumor marker genes of the invention can be employed as therapeutic targets for the treatment or prevention of ovarian cancer. For example, an antibody molecule that specifically binds a cell surface-localized ovarian tumor marker polypeptide can be 5 conjugated to a radioisotope or other toxic compound. Antibody conjugates are administered to the subject such that the binding of the antibody to its cognate ovarian tumor marker polypeptide results in the targeted delivery of the therapeutic compound to ovarian tumor cells, thereby treating an ovarian cancer.

The therapeutic moiety can be a toxin, radioisotope, drug, chemical, or a protein 10 (see, e.g., Bera et al. "Pharmacokinetics and antitumor activity of a bivalent disulfide-stabilized Fv immunotoxin with improved antigen binding to erbB2" *Cancer Res.* 59:4018-4022 (1999)). For example, the antibody can be linked or conjugated to a bacterial toxin (e.g., diphtheria toxin, pseudomonas exotoxin A, cholera toxin) or plant toxin (e.g., ricin toxin) for targeted delivery of the toxin to a cell expressing the ovarian 15 tumor marker. This immunotoxin can be delivered to a cell and upon binding the cell surface-localized ovarian tumor marker polypeptide, the toxin conjugated to the ovarian tumor marker-specific antibody will be delivered to the cell.

In addition, for any ovarian tumor polypeptide for which there is a specific ligand (e.g., a ligand that binds a cell surface-localized protein), the ligand can be used 20 in place of an antibody to target a toxic compound to an ovarian tumor cell, as described above.

Antibodies that specifically bind ovarian tumor marker polypeptides

The term "antibodies" is used herein in a broad sense and includes both 25 polyclonal and monoclonal antibodies. In addition to intact immunoglobulin molecules, also included in the term "antibodies" are fragments or polymers of those immunoglobulin molecules and humanized versions of immunoglobulin molecules, so long as they exhibit any of the desired properties (e.g., specific binding of an ovarian tumor marker polypeptide, delivery of a toxin to an ovarian tumor cell expressing an 30 ovarian tumor marker gene at an increased level, and/or inhibiting the activity of an ovarian tumor marker polypeptide) described herein.

Whenever possible, the antibodies of the invention may be purchased from commercial sources. The antibodies of the invention may also be generated using well-known methods. The skilled artisan will understand that either full length ovarian tumor marker polypeptides or fragments thereof may be used to generate the antibodies 5 of the invention. A polypeptide to be used for generating an antibody of the invention may be partially or fully purified from a natural source, or may be produced using recombinant DNA techniques. For example, a cDNA encoding an ovarian tumor marker polypeptide, or a fragment thereof, can be expressed in prokaryotic cells (e.g., bacteria) or eukaryotic cells (e.g., yeast, insect, or mammalian cells), after which the 10 recombinant protein can be purified and used to generate a monoclonal or polyclonal antibody preparation that specifically bind the ovarian tumor marker polypeptide used to generate the antibody.

In addition, one of skill in the art will know how to choose an antigenic peptide for the generation of monoclonal or polyclonal antibodies that specifically bind ovarian 15 tumor antigen polypeptides. Antigenic peptides for use in generating the antibodies of the invention are chosen from non-helical regions of the protein that are hydrophilic.

The PredictProtein Server (http://www.embl-heidelberg.de/predictprotein/subunit_def.html) or an analogous program may be used to select antigenic peptides to generate the antibodies of the invention. In one example, a 20 peptide of about fifteen amino acids may be chosen and a peptide-antibody package may be obtained from a commercial source such as Anaspec (San Jose, CA). One of skill in the art will know that the generation of two or more different sets of monoclonal or polyclonal antibodies maximizes the likelihood of obtaining an antibody with the specificity and affinity required for its intended use (e.g., ELISA, 25 immunohistochemistry, *in vivo* imaging, immunotoxin therapy). The antibodies are tested for their desired activity by known methods, in accordance with the purpose for which the antibodies are to be used (e.g., ELISA, immunohistochemistry, immunotherapy, etc.; for further guidance on the generation and testing of antibodies, see, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor 30 Laboratory Press, Cold Spring Harbor, NY, 1988). For example, the antibodies may be tested in ELISA assays, Western blots, immunohistochemical staining of formalin-fixed

ovarian cancers or frozen tissue sections. After their initial *in vitro* characterization, antibodies intended for therapeutic or *in vivo* diagnostic use are tested according to known clinical testing methods.

- The term "monoclonal antibody" as used herein refers to an antibody obtained
- 5 from a substantially homogeneous population of antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies
- 10 derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired antagonistic activity (See, U.S. Pat. No. 4,816,567 and *Morrison et al.*, Proc.
- 15 Natl. Acad. Sci. USA, 81:6851-6855 (1984)).

Monoclonal antibodies of the invention may be prepared using hybridoma methods, such as those described by *Kohler and Milstein*, Nature, 256:495 (1975). In a hybridoma method, a mouse or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of

20 producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized *in vitro*.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can

30 be performed using papain. Examples of papain digestion are described in WO 94/29348 published Dec. 22, 1994 and U.S. Pat. No. 4,342,566. Papain digestion of

antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields a fragment that has two antigen combining sites and is still capable of cross-linking antigen.

- 5 The antibody fragments, whether attached to other sequences or not, can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the nonmodified antibody or antibody fragment. These modifications can provide for some additional property, such as to
- 10 remove/add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc. In any case, the antibody fragment must possess a bioactive property, such as binding activity, regulation of binding at the binding domain, etc. Functional or active regions of the antibody may be identified by mutagenesis of a specific region of the protein, followed by expression and testing of
- 15 the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody fragment. (Zoller, M.J. *Curr. Opin. Biotechnol.* 3:348-354, 1992).

- The antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are
- 20 chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab' or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a
- 25 non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the
- 30 humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to

those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (*Jones et al.*, *Nature*, 321:522-525
5 (*1986*), *Reichmann et al.*, *Nature*, 332:323-327 (*1988*), and *Presta*, *Curr. Op. Struct. Biol.*, 2:593-596 (*1992*)).

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often 10 referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (*Jones et al.*, *Nature*, 321:522-525 (*1986*), *Riechmann et al.*, *Nature*, 332:323-327 (*1988*), *Verhoeyen et al.*, *Science*, 239:1534-1536 (*1988*)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
15 Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent
20 antibodies.

Transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production can be employed. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region (J(H)) gene in 25 chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge (see, e.g., *Jakobovits et al.*, *Proc. Natl. Acad. Sci. USA*, 90:2551-255 (1993); *Jakobovits et al.*, *Nature*, 362:255-258 (1993); *Brugermann et al.*, *Year in
30 Immuno.*, 7:33 (*1993*)). Human antibodies can also be produced in phage display libraries (*Hoogenboom et al.*, *J. Mol. Biol.*, 227:381 (*1991*); *Marks et al.*, *J. Mol. Biol.*,

222:581 (1991)). The techniques of Cote et al. and *Boerner et al.* are also available for the preparation of human monoclonal antibodies (*Cole et al.*, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and *Boerner et al.*, *J. Immunol.*, 147(1):86-95 (1991)].

5

Administration of therapeutic and diagnostic antibodies

Antibodies of the invention are preferably administered to a subject in a pharmaceutically acceptable carrier. Suitable carriers and their formulations are described in *Remington's Pharmaceutical Sciences*, 16th ed., 1980, Mack Publishing

10 Co., edited by Oslo et al. Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically-acceptable carrier include saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5. Further carriers include sustained release
15 preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of antibody being administered.

20 The antibodies can be administered to the subject, patient, or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form. The antibodies may also be administered by intratumoral or peritumoral routes, to exert local as well as systemic therapeutic effects. Local or intravenous injection is preferred.

25 Effective dosages and schedules for administering the antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of antibodies that must be administered will vary depending on, for example, the subject that will receive the antibody, the route of administration, the particular type of antibody used and other
30 drugs being administered. Guidance in selecting appropriate doses for antibodies is found in the literature on therapeutic uses of antibodies, e.g., *Handbook of Monoclonal*

Antibodies, Ferrone et al., eds., Noges Publications, Park Ridge, N.J., (1985) ch. 22 and pp. 303-357; Smith et al., Antibodies in Human Diagnosis and Therapy, Haber et al., eds., Raven Press, New York (1977) pp. 365-389. A typical daily dosage of the antibody used alone might range from about 1 µg/kg to up to 100 mg/kg of body weight

5 or more per day, depending on the factors mentioned above.

Following administration of an antibody for treating ovarian cancer, the efficacy of the therapeutic antibody can be assessed in various ways well known to the skilled practitioner. For instance, the size, number, and/or distribution of ovarian tumors in a subject receiving treatment may be monitored using standard tumor imaging

10 techniques. A therapeutically-administered antibody that arrests tumor growth, results in tumor shrinkage, and/or prevents the development of new tumors, compared to the disease course that would occur in the absence of antibody administration, is an efficacious antibody for treatment of ovarian cancer.

15 15 Antisense and gene therapy approaches for inhibiting ovarian tumor marker gene function

Because the ovarian tumor marker genes of the invention are highly expressed in ovarian tumor cells and are expressed at extremely low levels in normal ovarian cells, inhibition of ovarian tumor marker expression or polypeptide activity may be

20 integrated into any therapeutic strategy for treating or preventing ovarian cancer.

The principle of antisense therapy is based on the hypothesis that sequence-specific suppression of gene expression (via transcription or translation) may be achieved by intracellular hybridization between genomic DNA or mRNA and a complementary antisense species. The formation of such a hybrid nucleic acid duplex

25 interferes with transcription of the target tumor antigen-encoding genomic DNA, or processing/transport/translation and/or stability of the target tumor antigen mRNA.

Antisense nucleic acids can be delivered by a variety of approaches. For example, antisense oligonucleotides or antisense RNA can be directly administered (e.g., by intravenous injection) to a subject in a form that allows uptake into tumor

30 cells. Alternatively, viral or plasmid vectors that encode antisense RNA (or RNA fragments) can be introduced into cells *in vivo*. Antisense effects can also be induced

by sense sequences; however, the extent of phenotypic changes are highly variable. Phenotypic changes induced by effective antisense therapy are assessed according to changes in, e.g., target mRNA levels, target protein levels, and/or target protein activity levels.

- 5 In a specific example, inhibition of ovarian tumor marker function by antisense gene therapy may be accomplished by direct administration of antisense ovarian tumor marker RNA to a subject. The antisense tumor marker RNA may be produced and isolated by any standard technique, but is most readily produced by *in vitro* transcription using an antisense tumor marker cDNA under the control of a high
10 efficiency promoter (e.g., the T7 promoter). Administration of antisense tumor marker RNA to cells can be carried out by any of the methods for direct nucleic acid administration described below.

- An alternative strategy for inhibiting ovarian tumor marker polypeptide function using gene therapy involves intracellular expression of an anti-ovarian tumor marker
15 antibody or a portion of an anti-ovarian tumor marker antibody. For example, the gene (or gene fragment) encoding a monoclonal antibody that specifically binds to an ovarian tumor marker polypeptide and inhibits its biological activity is placed under the transcriptional control of a specific (e.g., tissue- or tumor-specific) gene regulatory sequence, within a nucleic acid expression vector. The vector is then administered to
20 the subject such that it is taken up by ovarian tumor cells or other cells, which then secrete the anti-ovarian tumor marker antibody and thereby block biological activity of the ovarian tumor marker polypeptide. Preferably, the ovarian tumor marker polypeptide is present at the extracellular surface of ovarian tumor cells.

25 **Nucleic Acid Delivery**

- In the methods described above which include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection), the nucleic acids of the present invention can be in the form of naked DNA or the nucleic acids can be in a vector for delivering the nucleic acids to the cells for inhibition of
30 ovarian tumor marker protein expression. The vector can be a commercially available preparation, such as an adenovirus vector (Quantum Biotechnologies, Inc. (Laval,

- Quebec, Canada). Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms. As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, MD), SUPERFECT (Qiagen, Inc. Hilden, Germany) and
- 5 TRANSFECTAM (Promega Biotec, Inc., Madison, WI), as well as other liposomes developed according to procedures standard in the art. In addition, the nucleic acid or vector of this invention can be delivered *in vivo* by electroporation, the technology for which is available from Genetronics, Inc. (San Diego, CA) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, AZ).
- 10 As one example, vector delivery can be via a viral system, such as a retroviral vector system which can package a recombinant retroviral genome (see e.g., Pastan et al., *Proc. Natl. Acad. Sci. U.S.A.* 85:4486, 1988; Miller et al., *Mol. Cell. Biol.* 6:2895, 1986). The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells antisense nucleic acid that inhibits expression of an ovarian tumor marker
- 15 gene. The exact method of introducing the altered nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors (Mitani et al., *Hum. Gene Ther.* 5:941-948, 1994), adeno-associated viral (AAV) vectors (Goodman et al., *Blood* 84:1492-1500, 1994), lentiviral vectors (Naidini et al., *Science* 272:263-267,
- 20 1996), pseudotyped retroviral vectors (Agrawal et al., *Exper. Hematol.* 24:738-747, 1996). Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms (see, for example, Schwartzenberger et al., *Blood* 87:472-478, 1996). This invention can be used in conjunction with any of these or other commonly used gene transfer methods.
- 25 As one example, if the antisense nucleic acid of this invention is delivered to the cells of a subject in an adenovirus vector, the dosage for administration of adenovirus to humans can range from about 10^7 to 10^9 plaque forming units (pfu) per injection but can be as high as 10^{12} pfu per injection (Crystal, *Hum. Gene Ther.* 8:985-1001, 1997; Alvarez and Curiel, *Hum. Gene Ther.* 8:597-613, 1997). Ideally, a subject will receive
- 30 a single injection. If additional injections are necessary, they can be repeated at six

month intervals for an indefinite period and/or until the efficacy of the treatment has been established.

Parenteral administration of the nucleic acid or vector of the present invention, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. A more recently revised approach for parenteral administration involves use of a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein. For additional discussion of suitable formulations and various routes of administration of therapeutic compounds, see, e.g., *Remington: The Science and Practice of Pharmacy* (19th ed.) ed. A.R. Gennaro, Mack Publishing Company, Easton, PA 1995.

Example I: Identification of ovarian tumor marker genes using SAGE

Serial Analysis of Gene Expression is a method that enables the global analysis of gene expression from a tissue of interest (Velculescu et al., *Science* 270:484-487, 1995; Zhang et al., *Science* 276:1268-72, 1997). The advantages of SAGE over cDNA arrays, another method for the global analysis of gene expression, include: 1) the possibility of identifying novel genes, 2) determination of absolute levels of gene expression, which is difficult in hybridization-based techniques, and, 3) examination of gene expression as a whole instead of as a subset of genes.

Construction and screening of SAGE libraries

The SAGE technique has been described in detail (Velculescu et al., *Science* 270:484-487, 1995). The SAGE libraries disclosed herein were made as described by Velculescu, *supra*. First, total RNA was purified from the cells. Poly A+ RNA was then isolated and reverse transcription was performed using a biotinylated poly dT primer for first strand synthesis. The cDNA mixture was cut with *Nla*III and the biotinylated 3' fragments were collected using streptavidin beads. The beads were divided into two aliquots (A and B) and linkers containing PCR primer sites and a site for class II restriction enzyme *Bsm*FI were ligated to the DNA fragments attached to the

beads from samples A and B. The mixture was treated with the restriction enzyme *Bsm*FI, which recognizes the site in the linker but cuts 14 bp downstream. The resulting fragments contained the linker and 10 bp of "cDNA sequence" that is referred to as "tag". The tags from samples A and B were ligated together to form ditags, which 5 were then amplified by PCR. Any repeated ditag (tags containing the same two individual tags) are an indication of PCR bias and were eliminated by the SAGE software (Velculescu et al., *Science* 270:484-487, 1995; Zhang et al., *Science* 276:1268-72, 1997). The tags were concatemerized and cloned into a sequencing vector. Sequencing revealed the identity and frequency of the different tags. As 10 described above, the 10 bp tag is sufficient to identify cDNA and the frequency of a particular tag represents the frequency of a particular message in the population. The SAGE software developed in the laboratories of Bert Vogelstein and Kenneth Kinzler at Johns Hopkins extracts the tags from the raw sequencing data, matches the tags to the corresponding genes (present in Genbank) and makes frequency comparisons 15 between the tags from an individual library or other libraries.

Verification of ovarian tumor marker genes identified by SAGE

The most promising candidates are selected and verified by any expression analysis method, e.g., Northern analysis or reverse transcription-polymerase chain 20 reaction (RT-PCR). For Northern analysis, radioactive probes are generated from expressed sequence tags (ESTs) corresponding to the candidate genes and are used to hybridize to membranes containing total RNA from various ovarian cancers and controls. The candidates may also be verified by real-time PCR using the Taqman method (Heid and Stevens, *Genome Res.* 6:986-94, 1996). Amplification primers and 25 fluorescent probes are synthesized according to instructions from the manufacturer (Perkin-Elmer; Norwalk, CT). Quantitative PCR is performed using a PE 5700 apparatus or an analogous instrument.

Sources of RNA for SAGE library construction

30 Eleven SAGE libraries were constructed, as shown in Table 1. The human ovarian surface epithelial cell (HOSE) library was constructed using RNA from HOSE

cells that were obtained by gently scraping the ovarian surface from a hysterectomy patient followed by short-term *in vitro* culture (three passages) of the cells. Three of the ovarian tumor libraries (designated OVT6, OVT7, and OVT8) were constructed using RNA from one of three primary high grade serous adenocarcinomas. Libraries
5 from individual ovarian tumor cell lines were generated using RNA from OV1063 (derived from an ovarian papillary adenocarcinoma; obtained from the American Type Culture Collection (ATCC; Manassas, VA; CRL-2183)); ES-2 (derived from a clear cell adenocarcinoma; from the ATCC; CRL-1978); A2780 (derived from an ovarian cancer; obtained from Dr. Vilhelm Bohr, Baltimore, MD); OVCA432 (derived from an
10 ovarian serous cystadenocarcinoma; Bast et al., *J. Clin. Invest.* 68:1331-1337, 1981); ML10 (derived from an ovarian cystadenoma; Luo et al. *Gyn. Oncol.*, 67:277-284, 1997); or IOSE29 (simian virus 40-immortalized OSE cells; Auersperg et al., *Proc. Natl. Acad. Sci. USA* 96:6249-6254, 1999).

The pooled library was generated using RNA from a pool of 10 cell lines:
15 A2780; BG-1 (poorly differentiated ovarian cancer; obtained from Dr. Carl Barrett, Durham, NC); ES-2; OVCA432; MDAH 2774 (endometrioid adenocarcinoma; obtained from the ATCC); and five cell lines obtained from Dr. Michael Birrer (Rockville, MD): AD10 (an adriamycin-resistant derivative of A2780); A222 (ovarian carcinoma); UCI101 (papillary ovarian adenocarcinoma); UCI107 (papillary ovarian
20 adenocarcinoma); and A224 (ovarian carcinoma).

TABLE 1

Library	Seq	Tags (raw)	Tags	Genes	At least 2
HOSE	2,290	49,394	47,881	16,034	4,532
OVT6	2,104	43,891	41,620	18,476	4,799
OVT7	2,089	57,725	53,898	19,523	5,669
OVT8	2,076	36,813	32,494	16,363	3,815
OV1063	2,146	41,131	37,862	15,231	4,746
ES-2	1,775	36,430	35,352	14,739	3,952
A2780**	475	9,269	8,246	5,179	1,021
OVCA432	384	3,011	2,824	1,940	310
Pool	2,201	10,952	10,554	5,956	1,627
ML10	1,935	61,083	55,700	18,727	6,637
HOSE29	*	*	*	*	*
TOTAL	17,475	349,699	326,431	75,056	25,071

* To be sequenced

**Incomplete

Results of SAGE

Eleven ovarian SAGE libraries were constructed, ten of which have been

- sequenced to date. The overall data are summarized in Table 1 above. For each SAGE library, Table 1 shows the number of SAGE library clones sequenced, the number of raw tags sequenced, the number of tags obtained after correction for PCR bias, the total number of genes that are represented by the corrected pool of tags, and the number of genes that were represented at least twice in the corrected pool of tags. For most libraries, 35,000-61,000 tags were obtained, yielding anywhere from 14,000-20,000 genes. In total, 75,056 genes were identified.
- 10 In order to identify genes that are up-regulated in ovarian tumors and that may serve as diagnostic markers and therapeutic targets, we compared gene expression between the normal ovarian cells (HOSE) and the cancer cells (OVT6, OVT7, OVT8, OV1063, ES2, A2780, Pool). OVCA432 was not included in this analysis because of the poor number of tags obtained from this library. We looked for genes for which expression
- 15 was absent or low (frequency smaller or equal to 2 tags per 100,000) in HOSE and at least 7- to 10-fold up-regulated in the majority of the tumor libraries, and detected a number of genes matching these criteria. Table 2 shows the libraries that were screened, the SAGE tags that were identified in the library screens, along with their corresponding genes and Genbank accession numbers, and the relative expression of
- 20 each gene in each library. Any one of these ovarian tumor marker genes may be used in the diagnostic and/or therapeutic methods of the invention.

TABLE 2

SEQ. ID NO. (Tag)	Tag	OV138	OV17	OV16	A2780	OV4063	ES24	HOSE Pool	Gene Product	Genbank ID
83	TCAGACGGCAG	52	149	91	97	49	214	82	Prothymosin, alpha	M14483
84	TTATGGGATC	57	80	57	140	83	126	274	G protein, beta polypeptide 2-like 1	M24194
85	CCGGCCCCCG	136	166	52	22	7	0	146	Lutheran blood group (B-CAM)	NM_005581.
86	GAGGAAGAAG	14	38	57	76	53	80	100	Tumor rejection antigen-1 (gp96) 1	NM_003299
87	GAAGCTTTCG	27	43	43	22	27	66	73	HSP90	AA071048
88	TACCAAGTGTA	30	16	14	140	22	30	100	HSP60	M22382
89	TCTTCTCCCT	8	42	32	22	27	25	46	Hepatoma-Derived Growth Factor (HDGF)	D16431
90	TTGGCTTTTC	14	12	71	32	10	22	18	DKFZp580031	AL117237
91	GGAAGGGAGG	30	14	16	11	12	44	55	CD63 antigen (melanoma 1 antigen)	AA041408
92	AAGCCAGCCC	19	17	36	22	17	27	18	Protein kinase C substrate 80K-H	J03075
93	TTTCAGATTG	16	26	25	32	22	19	18	Polymerase II cofactor 4 (PC4)	X79805
94	GCATAGGCTG	11	24	25	22	12	27	9	Tu translation elong. factor (mitochondrial)	L38995
95	TTTGTAAATT	30	16	16	43	17	19	18	hNRN P H1	L22009
96	GAGACTCCTG	11	23	23	22	12	3	64	Solute carrier family 2	AF070544
97	CCTGTAATTG	19	10	27	32	15	8	27	KIAA0591 protein	AB011163
98	GTGGTGCCTG	16	10	21	11	15	19	27	X-ray repair protein	AF035587
99	TTGGACCTGG	11	19	9	11	27	16	18	ATP synthase (delta subunit)	AA524164
100	CITAAGGATT	11	12	18	11	15	27	9	DKFZP564M2423 protein	BC003049
101	GTCTGTGAGA	8	17	9	22	12	22	18	Growth factor-regul. tyk kinase substrate	D84064
102	GAAACTGAAAC	16	10	14	32	12	3	9	eIF-2-associated p67	U29607

Example II: Identification of additional ovarian tumor marker genes using SAGE

Serial Analysis of Gene Expression (SAGE) was used to generate global gene expression profiles from various ovarian cell lines and tissues, including primary cancers, ovarian surface epithelial (OSE) cells and cystadenoma cells. The profiles 5 were used to compare overall patterns of gene expression and identify differentially expressed genes. We have sequenced a total of 385,000 tags, yielding over 56,000 genes expressed in ten different libraries derived from ovarian tissues.

In general, ovarian cancer cell lines showed relatively high levels of similarity to libraries from other cancer cell lines, regardless of the tissue of origin (ovarian or 10 colon), indicating that these lines had lost many of their tissue specific expression patterns. In contrast, immortalized OSE (IOSE) and ovarian cystadenoma cells showed much higher similarity to primary ovarian carcinomas as compared to primary colon carcinomas. Primary tissue specimens therefore appeared to be a better model for gene expression analyses. Using the expression profiles described above and stringent 15 selection criteria, we have identified a number of genes highly differentially expressed between non-transformed ovarian epithelia and ovarian carcinomas. Some of the genes identified are already known to be overexpressed in ovarian cancer but several represent novel candidates. Many of the genes up-regulated in ovarian cancer represent surface or secreted proteins such as Claudin-3 and -4, HE4, Mucin-1, Ep-CAM and 20 Mesothelin. The genes encoding apolipoprotein E (ApoE) and apolipoprotein J (ApoJ), two proteins involved in lipid homeostasis are among the genes highly up-regulated in ovarian cancer. Selected SAGE results were further validated through immunohistochemical analysis of ApoJ, Claudin-3, Claudin-4 and Ep-CAM in archival material. These experiments provided additional evidence of the relevance of our 25 findings *in vivo*.

A) METHODS**Cell Culture and Tissue Samples**

Ovarian cancer cell lines OV1063, ES2, and MDAH 2774 were obtained from 30 the American Type Culture Collection (Manassas, VA). Cell lines A222, AD10, UCI101 and UCI107 were obtained from Dr. Michael Birrer (Rockville, MD). Cell line A2780 was obtained from Dr. Vilhelm Bohr (Baltimore, MD). The SV40-

immortalized cell lines IOSE29 (Auersperg, N., et al. *Proc. Natl Acad. Sci. USA*, 96:6249-6254, 1999) and ML10 (Luo, M. P., et al. *Gynecol. Oncol.* 67:277-284, 1997) were kindly provided by Dr. Nelly Auersperg (British Columbia, Canada) and Dr. Louis Dubeau (Los Angeles, CA), respectively. Except for IOSE29, ML-10 and HOSE-4, all 5 cell lines were cultured in McCoy's 5A growth medium (Life Technologies, Inc, Gaithersburg, MD) supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 U/ml of Penicillin and 100 ug/ml Streptomycin). IOSE29 was cultivated in Medium 199 (Life Technologies, Inc, Gaithersburg, MD) supplemented with 5% newborn calf serum (NCS). ML10 was cultivated in MEM (Life Technologies, Inc, 10 Gaithersburg, MD) supplemented with 10% FBS and antibiotics as above.

Three high-grade serous ovarian cancer specimens, OVT6, OVT7, and OVT8, composed of at least 80% tumor cells as determined by histopathology, were chosen for SAGE. The ovarian tumor samples were frozen immediately after surgical resection and were obtained from the Johns Hopkins gynecological tumor bank in accordance 15 with institutional guidelines on the use of human tissue. Normal human ovarian surface epithelial (HOSE-4) cells were cultured from the right ovary of a patient undergoing hysterectomy and bilateral salpingo-oophorectomy for benign disease. The OSE cells were obtained by gently scraping the surface of the ovary with a cytobrush and grown for 2 passages in RPMI 1640 medium supplemented with 10% FBS and 10 ug/ml 20 insulin-like growth factor (IGF).

Serial Analysis of Gene Expression (SAGE)

Total RNA was obtained from guanidinium isothiocyanate cell lysates by centrifugation on CsCl. Polyadenylated mRNA was purified from total RNA using the 25 Messagemaker kit (Life Technologies, Gaithersburg, MD) and the cDNA generated using the cDNA Synthesis System (Life Technologies, Gaithersburg, MD). For the "Pool" library, 100 ug of total RNA from each of 10 ovarian cancer cell lines (A222, A2780, AD10, BG-1, ES-2, MDAH 2774, OVCA432, OV1063, UCI101 and UCI107) were combined and mRNA purified. SAGE was performed essentially as described 30 (Velculescu, V. E., et al. *Science* 270:484-487, 1995) for all the libraries except HOSE. To create the HOSE library, MicroSAGE, a modified SAGE technique developed for limited sample sizes (Datson, N. A., et al. *Nucleic Acids Res.* 27:1300-1307, 1999),

- was used. Approximately 1X10⁶ OSE cells in short-term culture were lysed and the mRNA purified directly using Oligo (dT)₂₅ Dynabeads (Dynal, Norway). As part of the Cancer Genome Anatomy Project (CGAP) SAGE consortium, the SAGE libraries were arrayed at the Lawrence Livermore National Laboratories and sequenced at the
- 5 Washington University Human Genome Center or NISC (NIH, Bethesda, MD). The data has been posted on the CGAP website (<http://www.ncbi.nlm.nih.gov/SAGE/>) as part of the SAGEmap database (Lal, A., et al. *Cancer Res.* 59:5403-5407, 1999.).

Sequence data from each library were analyzed by the SAGE software (Velculescu, V. E., et al. *Science* 270:484-487, 1995.) to quantify tags and identify their corresponding transcripts. The data for the colon libraries NC1, NC2, Tu98, Tu102, HCT116 and SW837 were obtained from the SAGEmap database and analyzed in the same way. Because the different libraries contained various numbers of total tags, normalization (to 100,000 tags) was performed to allow meaningful comparisons. The 10,000 most highly expressed genes in each of the 16 SAGE libraries of interest were 15 formatted in a Microsoft Excel spreadsheet and Pearson correlation coefficients were calculated for each pair-wise comparison using normalized tag values for each library. The value for the Pearson correlation coefficient (r) represents the degree of similarity (the strength of the relationship) between two libraries and is calculated using the following equation:

20

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2][n\Sigma y^2 - (\Sigma y)^2]}}$$

25

where, x_i =number of tags per 100,000 for tag i in the first library and y_i =number of tags per 100,000 for tag i in the second library. For our purposes n equals 10,000 since 10,000 tags are compared. A dendrogram representing the hierarchical relationships between samples was then generated using hierarchical cluster analysis as described (Eisen, M. B., et al. *Proc. Natl Acad. Sci. USA* 95:14863-14868, 1998). In addition, the identification of differentially expressed genes was also done using this subset of the SAGE data.

Immunohistochemistry

30 Deparaffinized 5-um sections of formalin-fixed ovarian cancer specimens were submitted to heat-induced antigen retrieval and processed using the LSAB2 system

(DAKO, Carpinteria, CA) with 3,3'-diaminobenzidine as the chromatogen and a hematoxylin counterstain. Monoclonal antibody against ApoJ/Clusterin (Clone CLI-9) was obtained from Alexis Corporation (San Diego, CA) and used at a 1:500 Dilution. Monoclonal antibody against Ep-CAM (Clone 323/A3) from NeoMarkers (Fremont, 5 CA) was used at a 1:500 dilution. Polyclonal antibodies against Claudin-3 and -4 were a generous gift from Drs. M. Furuse and S. Tsukita (Kyoto, Japan) and were used at a dilution of 1:1000.

B) RESULTS

10 Ovarian SAGE library construction and analysis

Gene expression alterations that arise during malignant transformation can be identified a number of ways. We chose the unbiased, comprehensive method SAGE to create global gene expression profiles from ten different ovarian sources. The expression patterns are generated by sequencing thousands of short sequence tags that 15 contain sufficient information to uniquely identify the corresponding transcripts (Velculescu, V. E., et al. *Science* 270:484-487, 1995). Ten different SAGE libraries were constructed and sequenced for this study (Table 3). Our libraries included two derived from OSE cells (IOSE29 and HOSE-4), one derived from immortalized cystadenoma cells (ML-10), three primary tumors (OVT-6, -7, -8) and four libraries 20 derived from ovarian cancer cell lines (OV-1063, ES-2, A2780 and a pool of cell lines). Almost 20,000 sequencing reactions were performed yielding a total of 384,497 tags, of which, 82,533 were unique. Accounting for a SAGE tag error rate of 6.8% (due to sequencing errors; see Zhang, L., et al., *Science* 276:1268-1272, 1997), we estimate that we have identified a total of 56,387 genes expressed in ovarian tissues. Except for the 25 A2780 cell line and the pooled lines (POOL) samples, a minimum of 12,000 genes were obtained from every library. Typically, for each library, 10% of the genes were expressed at levels of at least 0.01% and, collectively, these genes accounted for more than 50% of all the tags sequenced. Among the tags that appeared more than once, up to 95% matched to known sequences in the current Genbank nr database. For example, 30 of the 6637 tags that appeared more than once in ML10, only 311 had no matches in the current database, excluding the EST databases.

Table 3 Summary of SAGE library analyses

Library *	Sequence	Tags *	Unique tags *	Genes *	≥ 2 tags *
HOSE	2,290	47,881	16,034	12,778	4,532
IOSE	1,912	47,549	18,004	14,771	5,681
ML10	1,935	55,700	18,727	14,939	6,637
OVT6	2,104	41,620	18,476	15,646	4,799
OVT7	2,089	53,898	19,523	15,858	5,669
OVT8	2,076	32,494	16,363	14,153	3,815
OV1063	2,146	37,862	15,231	12,656	4,746
A2780	1,332	21,587	10,717	9,249	2,761
ES2	1,775	35,352	14,739	12,335	3,952
POOL	2,201	10,554	5,956	5,238	1,627
TOTAL	19,860	384,497	82,533	56,387	28,219

*The libraries are: HOSE, human ovarian surface epithelium from short term culture; IOSE, SV40-immortalized ovarian surface epithelium; ML10, SV40-immortalized benign cystadenoma; OVT6, OVT7, and OVT8, primary ovarian serous adenocarcinomas; OV1063, A2780, and ES2, ovarian cancer cell lines; POOL, a pool of ten ovarian cancer cell lines.

*Tag numbers after elimination of linker-based tags and duplicate ditags.

*The number of unique tags identified in each library.

*The number of genes identified after correction for sequencing errors.

*The number of genes represented at least twice.

Comparisons of global gene expression between ovarian tissue samples

Although progression to malignancy requires a number of gene expression changes, the transcript levels from the vast majority of genes remain unaltered (Zhang, L., et al., *Science* 276:1268-1272, 1997; and Alon, U., et al., *Proc. Natl Acad. Sci. USA* 96:6745-6750, 1999). Similarities between the global expression profiles of two given samples can be readily visualized using scatterplots and quantitated through the calculation of Pearson correlation coefficients. Scatterplots of global gene expression analysis in IOSE (ovarian) vs. ML10 (ovarian), OVT6 (ovarian), or Tu98 (colon) cells were generated using the Spotfire Pro 4.0 software (Cambridge, MA) and the Pearson correlation coefficients for each pair-wise comparison of the 16 ovarian and colon SAGE libraries were calculated.

As expected, the immortalized IOSE29 and ovarian cystadenoma strain ML10 are much more similar to ovarian tumors than to colon tumors (average correlation coefficients of 0.70 vs. 0.51, respectively). In addition, IOSE29 and ML10 are very similar to each other, with a correlation coefficient of 0.82. The primary culture of OSE cells (HOSE-4) exhibited higher similarities to the ovarian tumors than to the colon tumors, although the similarity levels were much lower than those observed for IOSE29. Interestingly, HOSE-4 and IOSE29 appear to be much more distantly related than expected considering the fact that they were both derived from "normal" OSE cells. The differences in gene expression between these cells may be due to a number of factors. The age of the patient, the pathological state of the ovaries, the presence of non-epithelial cells in the culture and the fact that IOSE29 is SV40-immortalized may all contribute to the gene expression differences observed. However, it is unlikely that the main differences are due to SV40-immortalization since IOSE29 is much more similar to normal colon (a non SV40-immortalized epithelium) than HOSE-4. It is, of course, possible that the lower degree of similarity between HOSE-4 and the ovarian tumors compared to IOSE29 and ML-10 reflects the fact that HOSE-4 represents a better approximation of the normal *in vivo* OSE cell.

Three dendograms were created from hierarchical cluster analysis of all colon and ovarian SAGE libraries, ovarian samples only, and non-malignant ovarian and colon epithelia as well as ovarian and colon primary tumors, using Cluster software (Eisen, M. B., et al. *Proc. Natl Acad. Sci. USA* 95:14863-14868, 1998). When all the

samples were included in the hierarchical clustering analysis, the primary colon tumors clustered with the normal colon epithelium, but colon cell lines clustered with the ovarian specimens. Clearly, the tissue clustering that was readily apparent when comparing primary tissues or immortalized lines was lost when including carcinoma
5 cell lines. For example, A2780, a widely used ovarian cancer cell line was just as similar to colon cancer cell lines as it was to ovarian cancer cell lines. This observation supports the idea that in the process of establishment, cell lines may lose many of the gene expression characteristics of their tissue of origin, although tissue specific expression is clearly not completely lost in cancer cell lines (Ross, D. T., et al. *Nat. Genet.* 24:227-235, 2000).

It is widely believed that epithelial ovarian cancer and benign ovarian cysts, while not necessarily part of a progression sequence toward malignancy, are both derived from the ovarian surface epithelium (Scully, R. E. *J. Cell Biochem.* 23, Suppl.:208-218, 1995). OSE cells themselves are mesodermal in origin and are
15 believed to undergo metaplasia before progressing to neoplasia (Scully, R. E. *J. Cell Biochem.* 23 Suppl.:208-218, 1995; and Maines-Bandiera, S. L. and Auersperg, N. *Int. J. Gynecol. Pathol.* 16:250-255, 1997). On the other hand, it has also been argued that ovarian cancers are not derived from OSE but rather from the secondary Mullerian system, structures lined by Mullerian epithelium but located outside the uterus, cervix
20 and fallopian tubes (Schink, J. C. *Semin. Oncol.* 26 Suppl. 1: 2-7, 1999). This hypothesis would explain some of the shortcomings of the OSE model, such as the requirement for metaplasia and the lack of well-defined precursors in the ovary. While not wishing to be bound by theory, our results are consistent with the widely accepted dogma of the OSE origin of ovarian cancer. Indeed, IOSE29 showed high degrees of
25 similarity to the ovarian tumors and both IOSE29 and HOSE were much more closely related to ovarian than colon primary cancers.

E-cadherin expression has been proposed to be a major determinant in the formation of metaplastic OSE (Auersperg, N., et al. *Proc. Natl Acad. Sci. USA*, 96:6249-6254, 1999; and Maines-Bandiera, S. L. and Auersperg, N. *Int. J. Gynecol. Pathol.* 16:250-255, 1997). Consistent with this hypothesis, E-cadherin was absent in IOSE29, HOSE and ML10 but was expressed in all three ovarian tumors (Table 4). Other cadherins are also shown for comparison. Interestingly, VE-cadherin is absent in

most libraries except in two of the pre-neoplastic ovarian samples, again suggesting metaplasia. As expected, LI-Cadherin was expressed exclusively in the colon-derived libraries. Interestingly, vimentin, a mesenchymal marker, was present in essentially all the ovarian libraries but very low in the colon specimens. Although the specificity of 5 vimentin as a mesenchymal marker has been questioned, this suggests that OSE may retain some of their mesenchymal characteristics, even after turning on the expression of E-cadherin.

The cytokeratins (CKs) and carcinoembryonic antigen (CEA) have been used to differentiate between colon cancer and ovarian cancer (Lagendijk, J. H., et al. *Hum. 10 Pathol.* 29:491-497, 1998; and Berezowski, K., et al. *Mod. Pathol.* 9:426-429, 1996). Typically, colon cancer expresses CK20 and CEA while ovarian cancer expresses CK7. The expression patterns in our libraries were consistent with previously reported observations: CK20 and CEA were found in normal colon and colon tumors but absent from all of our ovarian samples (Table 4). Conversely, CK7 was expressed in all three 15 primary ovarian tumors and, while not absent, was much lower in the colon samples. Examination of the differential expression patterns of a variety of established ovarian cancer markers thus provided validation of the SAGE database and cluster analysis.

Differential gene expression

20 The ultimate goal of comparing SAGE libraries is to identify differentially expressed genes. Criteria for differential expression can be determined for each comparison and transcripts within the determined range selected for study. We found a large number of genes that were up-regulated in only one or two of the three tumors on which SAGE was performed. For example, a total of 444 genes were up-regulated 25 more than 10-fold in at least one of the three ovarian primary cancers compared to IOSE29. However, only 45 genes were overexpressed more than 10-fold in all three ovarian tumors analyzed compared to IOSE29.

Our analysis of three different primary ovarian cancers allowed us to reduce the 30 number of candidates by looking for consistency between samples. In order to identify genes that are very likely to be frequently up-regulated during ovarian tumorigenesis we set the following conservative criteria for our analysis. First, the fold induction was calculated by adding the number of normalized tags from the three primary tumors and

dividing this number by the total normalized tags in the three non-malignant specimens. Cell lines were not included here for reasons described above. In addition, although HOSE-4 appeared more distantly related to the other non-transformed specimens, we believe that the inclusion of HOSE-4, while possibly eliminating real candidates makes 5 our analysis more conservative and more likely to identify truly overexpressed genes in ovarian cancer. Second, all three primary tumors were required to consistently show elevated levels (>12 tags/100,000) of the gene in question. This eliminated genes that may be very highly overexpressed in one tumor but not in others. Finally, the candidate genes were required to be expressed in at least one ovarian cell line at a level 10 greater than 3 tags/100,000. This last criterion was used to reduce the possibility of identifying genes because of their high level of expression in inflammatory cells or in the stroma of the primary tumors. Using these criteria, the genes that exhibited more than 10-fold overexpression were identified and are shown in Table 4.

Two members of the Claudin family of tight junction proteins, Claudin-3 and -4 15 were found among the top six differentially expressed genes and likely represent transmembrane receptors. In addition, Apolipoprotein J (ApoJ) and Apolipoprotein E (ApoE) were both overexpressed in ovarian cancer.

Of the 27 overexpressed genes shown in Table 4, ten were relatively specific for the ovary (HLA-DR, two different ESTs, GA733-1, ceruloplasmin, glutathione 20 peroxidase-3, the secretory leukocyte protease inhibitor, ApoJ, ApoE and mesothelin) while the others were also expressed in colon tissues. In any event, it is significant that MUC1, HE4, Ep-CAM and mesothelin, four genes already known to be up-regulated in epithelial ovarian cancer, were identified in this study. This fact validates our approach as well as our set of criteria used to determine the genes differentially expressed.

25 Similarly, stringent criteria were used to identify genes down-regulated in ovarian tumors compared to IOSE29, HOSE-4 and ML10. Again, the fold difference was calculated by adding tag frequency for all three "normal" specimens and dividing by the total number of tags in the three ovarian tumors. A candidate was required to be expressed at a level of 12 tags/100,000 or greater in all three normal samples. The 30 genes found elevated more than ten-fold in normal tissue compared to tumors are shown in Table 4.

Table 4. A subset of genes differentially expressed in ovarian tumors compared to non-malignant ovarian samples

SEQ ID NO. (TAG)	TAG	GENE	EXPRESSION					FUNCTION
			Fold	OSE ML10	Ovarian Tumors	Colon Epithelium	Colon Tumors	
up-regulated*								
103	GCGGATCTCTT	HLA-DR α chain	289	-	++	-	-	Major histocompatibility complex, class IV antigen presentation
104	TTCGGGCCATA	Cysteine-rich protein 1	123	-	++	-	-	LIM/double zinc finger
105	ATCTGGCGG	Claudin 4	109	-	++	-	-	Tight junction barrier function
106	GCCCTACCCGA	BSTs (HOST-2)	101	-	++	-	-	Unknown
107	CTCGCGCTGG	Surface marker 1/ GA733-1/ TROP2	93	-	++	-	-	Tumor Ag/ Ca ²⁺ signal transducer
108	TCTCTTGCCA	Claudin 3	83	-	++	-	-	Tight junction barrier function
109	CCCTCTTGC	Ceruloplasmin (ferroxidase)	79	-	++	-	-	Secreted metalloprotein/ antioxidant
110	AGGGAGGGGC	HB4	72	-	++	-	-	Secreted protease inhibitor
111	TGGCGGAAAT	Glutathione peroxidase 3 (plasma)	69	-	++	-	-	Secreted selenoprotein/ peroxidase
112	CCCTATCTGC	Secretory leukocyte protease inhibitor	60	-	++	-	-	Secreted serine protease inhibitor
113	ACCATTTGATAN	BSTs (HOST-1)	56	-	++	-	-	Unknown
114	CGCTTGCAATC	Interferon-induced transmembrane protein 1	49	-	++	-	-	Receptor for interferon signaling
115	GGCTGCAATC	Ep-CAM/ EGFP/ TROP1/ GA733-2	48	-	++	-	-	Tumor Ag/ Ca ²⁺ -independent CAM/proliferation
116	CGAACCCCCCG	Mucin 1	43	-	++	-	-	Tumor Ag/ Type-I membrane glycoprotein
117	TCTGTGCTG	Apolipoprotein J/ clusterin	39	-	++	-	-	Secreted apoprotein/ cytoprotection
118	CGCGGACGAT	Serine protease inhibitor, Kunitz type, 2	34	-	++	-	-	Transmembrane/ protease inhibitor
119	CCCCTCCCCG	Apolipoprotein B	34	-	++	-	-	Lipoprotein particle binding, internalization and catabolism
120	GATCAGGGCA	Complement component 1, r subcomponent	24	-	++	-	-	Serine protease of complement system/ autoimmune diseases
121	GTGGAGGAGA	GIP3/ IFN-6-16	24	-	++	-	-	Interferon primary response/ α IFN-inducible
122	TTCCTCTT	Lutheran blood group protein/ BCAM	17	-	++	-	-	Possible cell surface receptor/ immunoglobulin superfamily
123	CCCCCTGCG	Collagen Type III, alpha-1	16	-	++	-	-	Unknown
124	TCTGCCCCCT	Mac T cell differentiation protein)	16	-	++	-	-	Trans-Golgi membrane protein (epithelial cells/ T-cell differentiation
125	TGCGACCA	ESTs (Collagen Type I, alpha-2)	13	+	++	-	-	Unknown
126	HLA-DPB1	HLA-DPB1	13	-	++	-	-	Major histocompatibility complex, class II antigen presentation
127	Mesothelin		12	-	++	-	-	GPI-anchored/ mesothelioma and ovarian cancer antigen/ cell adhesion
128	Bone marrow stroma antigen 2/ BST-2		12	-	++	-	-	Type II transmembrane protein/ pre-B-cell growth
129	HLA-Cw		10	-	++	-	-	Major histocompatibility complex, class IV antigen presentation
down-regulated*								
130	GCTTATTTTG	Unknown	99	+	-	-	-	Unknown
131	TGTCATCICA	Lysyl oxidase-like 2	73	+	-	-	-	Secreted/ collagen and elastin crosslinker
132	AAAATAACAA	Chloride intracellular channel 4 like	29	+	-	-	-	Ion transport
133	TAAAAAATTTT	Plasmaminogen activator inhibitor, type 1	26	+	-	-	-	Serine protease inhibitor family/ PPA inhibitor
134	GGACTTGTGA	EST	14	+	-	-	-	Unknown
135	CGCTGANTGC	Glycine tRNA synthetase	13	+	-	-	-	Protein synthesis
136	CGACGAGAG	Epithelial membrane protein-3	13	+	-	-	-	Proliferation, differentiation, and apoptosis
137	GCCCCCAARTA	Galactoside binding lectin/ BCM interaction and proliferation	10	++	-	-	-	β -galactoside binding lectin/ BCM interaction and proliferation
138	GCRACTTGA	Vimentin 6	10	+	-	-	-	Cell-adhesion and cytoskeleton

* Candidates up-regulated at least 30-fold in tumors

* Candidates down-regulated at least 10-fold in tumors

* Expression is defined as: -, 0-9 tags/100,000; +, 10-49 tags/100,000; ++, > 49 tags/100,000

In order to validate the candidates identified by SAGE, we performed immunohistochemical analysis of thirteen cases of serous cancer of the ovary using antibodies against four of the genes identified as up-regulated in ovarian cancer (Table 5). This was particularly important since the SAGE analysis was initially performed from primary ovarian cancers, which contain a mixture of cell types. Ep-CAM exhibited diffuse, strong staining of tumor cell membranes in all thirteen tumors, without blood cell or stromal staining. Importantly, only one of six samples of the ovarian surface epithelium present in the cases showed weak focal staining, and the rest were negative. The strong immunoreactivity of all thirteen ovarian tumors confirms the validity of our approach to identify genes highly and consistently up-regulated in ovarian cancer. Similarly, ApoJ was found to be expressed in ovarian cancer cells and absent from the surface epithelium. While some expression was detected in non-tumor stroma and inflammatory cells, most of the immuno-reactivity was in tumor cells, and a majority (nine out of thirteen) of the cases showed staining. This observation represents the first report of ApoJ expression in ovarian cancer and provides a novel target for diagnosis or therapy. Claudin-3 and -4 also exhibited staining limited to the tumor component of the specimens. Most tumor cells showed strong membrane staining with weak cytoplasmic reactivity. Some tumors specimens showed decreased membrane staining with strong cytoplasmic reactivity. The normal surface epithelial component (or mesothelial cells) examined did not stain or only stained weakly with the Claudin-4 antibody, while the determination of Claudin-3 levels in normal epithelium was complicated by a low background reactivity with this antibody.

Incorporation by Reference

Throughout this application, various publications, patents, and/or patent applications are referenced in order to more fully describe the state of the art to which this invention pertains. The disclosures of these publications, patents, and/or patent applications are herein incorporated by reference in their entireties to the same extent as if each independent publication, patent, and/or patent application was specifically and individually indicated to be incorporated by reference.

Other Embodiments

It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those
5 skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

What is claimed is:

1. A method of detecting an ovarian tumor in a subject, said method comprising measuring the expression level of an ovarian tumor marker gene in said subject, wherein an increase in said expression level of said ovarian tumor marker gene in said subject, relative to the expression level of said ovarian tumor marker gene in a reference subject not having an ovarian tumor, detects an ovarian tumor in said subject.
2. A method of identifying a subject at increased risk for developing ovarian cancer, said method comprising measuring the expression level of an ovarian tumor marker gene in said subject, wherein an increase in said expression level of said ovarian tumor marker gene in said subject, relative to the expression level of said ovarian tumor marker gene in a reference subject not at increased risk for developing ovarian cancer, identifies an individual at increased risk for developing ovarian cancer.
3. A method of determining the effectiveness of an ovarian cancer treatment in a subject, said method comprising measuring the expression level of an ovarian tumor marker gene in said subject after treatment of said subject, wherein a modulation in said expression level of said ovarian tumor marker gene in said subject, relative to the expression level of said ovarian tumor marker gene in said subject prior to said treatment, indicates an effective ovarian cancer treatment in said subject.
4. The method of claim 1, 2, or 3, wherein said expression level of said ovarian tumor marker gene is determined in said subject by measuring the expression level of said tumor marker gene in a sample from said subject.

5. The method of claim 4, wherein said sample from said subject is selected from the group consisting of a tissue biopsy, ovarian epithelial cell scrapings, peritoneal fluid, blood, urine, and serum.

6. The method of claim 1, 2, or 3, wherein said expression level of said tumor marker gene is measured *in vivo* in said subject.

7. The method of claim 1, 2, or 3, wherein said expression level of said tumor marker gene is determined by measuring the level of ovarian tumor marker mRNA.

8. The method of claim 7, wherein said level of ovarian tumor marker mRNA is measured using RT-PCR, Northern hybridization, dot-blotting, or *in situ* hybridization.

9. The method of claim 1, 2, or 3, wherein said expression level of said ovarian tumor marker gene is determined by measuring the level of ovarian tumor marker polypeptide encoded by said ovarian tumor marker gene.

10. The method of claim 9, wherein said level of ovarian tumor marker polypeptide is measured by ELISA, immunoblotting, or immunohistochemistry.

11. The method of claim 1, 2, or 3, wherein said expression level of said tumor marker gene is compared to the expression level of said tumor marker gene in a reference subject diagnosed with ovarian cancer.

12. The method of claim 2, wherein said expression level of said ovarian tumor marker gene in said subject is compared to the expression level of said tumor marker gene in a reference subject that is identified as having an increased risk for developing ovarian cancer.

13. A method of identifying a tumor as an ovarian tumor, said method comprising measuring the expression level of an ovarian tumor marker gene in a tumor cell from said tumor, wherein an increase in said expression level of said ovarian tumor marker gene in said tumor cell, relative to the expression level of said ovarian tumor marker gene in a noncancerous ovarian cell, identifies the tumor as an ovarian tumor.

14. A method of treating or preventing an ovarian tumor in a subject, said method comprising modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in an ovarian epithelial cell in said subject.

15. A method of inhibiting the growth or metastasis of an ovarian tumor cell in a subject, said method comprising modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in said ovarian tumor cell in said subject.

16. A method of inhibiting the growth or metastasis of an ovarian tumor in a subject, said method comprising contacting an ovarian tumor cell with an antibody that specifically binds an ovarian tumor marker polypeptide encoded by an ovarian tumor marker gene, wherein the binding of said antibody to said ovarian tumor marker polypeptide inhibits the growth or metastasis of said ovarian tumor in said subject.

17. The method of claim 16, wherein said ovarian tumor marker polypeptide is on the surface of said ovarian tumor cell.

18. The method of claim 16, wherein said antibody is coupled to a radioisotope or a toxic compound.

19. A method of diagnosing ovarian cancer in a subject, said method comprising measuring the amount of an ovarian tumor marker polypeptide in said subject, wherein an

amount of ovarian tumor marker polypeptide that is greater than the amount of ovarian tumor marker polypeptide measured in a subject not having ovarian cancer diagnoses an ovarian cancer in the subject.

20. The method of claim 19, wherein said ovarian tumor marker polypeptide is present at the surface of a cell.

21. The method of claim 19, wherein said ovarian tumor marker polypeptide is in soluble form.

22. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor marker gene is selected from the group consisting of alpha prothymosin; beta polypeptide 2-like G protein subunit 1; Lutheran blood group (B-CAM); tumor rejection antigen-1 (gp96)1; HSP90; HSP60; Hepatoma-Derived Growth Factor (HGDF); DKFZp5860031; CD63 antigen (melanoma 1 antigen); protein kinase C substrate 80K-H; Polymerase II cofactor 4 (PC4); mitochondrial Tu translation elongation factor; hNRP H1; Solute carrier family 2; KIAA0591 protein; X-ray repair protein; DKFZP564M2423 protein; growth factor-regulated tyrosine kinase substrate; and eIF-2-associated p67.

23. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor marker gene is selected from the group consisting of HLA-DR alpha chain; cysteine-rich protein 1; claudin 4; claudin 3; ceruloplasmin (ferroxidase); glutathione peroxidase 3; secretory leukocyte protease inhibitor; HOST-1 (FLJ14303 fis); interferon-induced transmembrane protein 1; apolipoprotein J/clusterin; serine protease inhibitor, Kunitz type 2; apolipoprotein E; complement component 1, r subcomponent; G1P3/IFI-6-16; Lutheran blood group (BCAM); collagen type III, alpha-1; Mal (T cell differentiation protein); collagen type I, alpha-2; HLA-DPB1; bone marrow stroma antigen 2 (BST-2); or HLA-Cw.

24. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor marker gene is selected from the group consisting of HOST-3 (Claudin-16); HOST-4; or HOST-5 (sodium dependent transporter isoform NaPi-IIb).

25. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 84-102.

26. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 103-129.

27. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 141, 143, or 145.

28. The method of claim 1, 2, 3, 13, 14, 15, 16, or 19, wherein said ovarian tumor is an epithelial ovarian tumor.

29. The method of claim 28, wherein said epithelial ovarian tumor is selected from the group consisting of a serous cystadenoma, a borderline serous tumor, a serous cystadenocarcinoma, a mucinous cystadenoma, a borderline mucinous tumor, a mucinous cystadenocarcinoma, an endometrioid carcinoma, an undifferentiated carcinoma, a clear cell adenocarcinoma, a cystadenofibroma, an adenofibroma, and a Brenner tumor.

30. A kit comprising an antibody for measuring the expression level of an ovarian tumor marker gene in a subject.

31. A kit comprising a nucleic acid for measuring the expression level of an ovarian tumor marker gene in a subject.

32. The kit of claim 30 or 31, wherein said ovarian tumor marker gene is selected from the group consisting of alpha prothymosin; beta polypeptide 2-like G protein subunit 1; Lutheran blood group (B-CAM); tumor rejection antigen-1 (gp96)1; HSP90; HSP60; Hepatoma-Derived Growth Factor (HGDF); DKFZp5860031; CD63 antigen (melanoma 1 antigen); protein kinase C substrate 80K-H; Polymerase II cofactor 4 (PC4); mitochondrial Tu translation elongation factor; hNRP H1; Solute carrier family 2; KIAA0591 protein; X-ray repair protein; DKFZP564M2423 protein; growth factor-regulated tyrosine kinase substrate; and eIF-2-associated p67.

33. The kit of claim 30 or 31, wherein said ovarian tumor marker gene is selected from the group consisting of HLA-DR alpha chain; cysteine-rich protein 1; claudin 4; claudin 3; ceruloplasmin (ferroxidase); glutathione peroxidase 3; secretory leukocyte protease inhibitor; HOST-1 (FLJ14303 fis); interferon-induced transmembrane protein 1; apolipoprotein J/clusterin; serine protease inhibitor, Kunitz type 2; apolipoprotein E; complement component 1, r subcomponent; G1P3/IFI-6-16; Lutheran blood group (BCAM); collagen type III, alpha-1; Mal (T cell differentiation protein); collagen type I, alpha-2; HLA-DPB1; bone marrow stroma antigen 2 (BST-2); or HLA-Cw.

34. The kit of claim 30 or 31, wherein said ovarian tumor marker gene is selected from the group consisting of HOST-3 (Claudin-16); HOST-4; or HOST-5 (sodium dependent transporter isoform NaPi-IIb).

35. The kit of claim 30 or 31, wherein said ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 84-102.

36. The kit of claim 30 or 31, wherein said ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 103-129.

50

37. The kit of claim 30 or 31, wherein said ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 141, 143, or 145.

SEQUENCE LISTING

<110> The Government of the United States of America, as represented by the Secretary, Department of Health and Human Services

Morin, Patrice J.
 Sherman-Baust, Cheryl A.
 Pizer, Ellen S.
 Hough, Colleen D.

<120> TUMOR MARKERS IN OVARIAN CANCER

<130> 14014.0369P1

<150> 60/194,336
 <151> 2000-04-03

<160> 147

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 490
 <212> DNA
 <213> Homo sapiens

<400> 1
 tccttgcccg ccgcagtcgc ctccgcccgcg cgccctcctcc gcccggcgactccggcag 60
 ctttatcgcc agagtccctg aactctcgct ttcttttaa tccccctgcacat cggatcacccg 120
 gcgtgccccca ccatgtcaga cgcagccgtaa gacaccagct cggaaatcac caccaaggac 180
 ttaaaggaga agaaggaagt tgtgaaagag gcagaaaaatg gaagagacgc ccctgctaacc 240
 gggaaatgcta atgagaaaaa cggggagcag gaggctgaca atgaggtaga cgaagaagag 300
 gaagaaggta gggaggaaga ggaggagaa gaagaaggta atggtgagga agaggatgga 360
 gatgaagatg aggaagctga gtcagctacggcagccggcagctgaaga tgatgaggat 420
 gacgatgtcg ataccaagaa gcagaagacc gacgaggatg actagacagc aaaaaggaa 480
 aagttaaact 490

<210> 2
 <211> 110
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Ser Asp Ala Ala Val Asp Thr Ser Ser Glu Ile Thr Thr Lys Asp
 1 5 10 15
 Leu Lys Glu Lys Lys Glu Val Val Glu Glu Ala Glu Asn Gly Arg Asp
 20 25 30
 Ala Pro Ala Asn Gly Asn Ala Asn Glu Glu Asn Gly Glu Gln Glu Ala
 35 40 45
 Asp Asn Glu Val Asp Glu Glu Glu Glu Gly Gly Glu Glu Glu Glu
 50 55 60
 Glu Glu Glu Glu Gly Asp Gly Glu Glu Asp Gly Asp Glu Asp Glu
 65 70 75 80
 Glu Ala Glu Ser Ala Thr Gly Lys Arg Ala Ala Glu Asp Asp Glu Asp
 85 90 95
 Asp Asp Val Asp Thr Lys Lys Gln Lys Thr Asp Glu Asp Asp
 100 105 110

<210> 3
<211> 1093
<212> DNA
<213> Homo sapiens

<400> 3

ctgcaaggcg	gcggcaggag	agggttgtgg	gctagttct	ctaagccatc	cagtgccatc		60
ctcgctcg	cagcgacacc	gctctcgccg	ccgcccattgac	tgagcagatg	acccttcgtg		120
gcaccctcaa	ggccacaac	ggctgggtaa	cccagatcgc	tactaccccg	cagttccccgg		180
acatgatcct	ctccgcctct	cgagataaga	ccatcatcat	gtggaaaactg	accaggatg		240
agaccaacta	tggaattcca	cagcgtgctc	tgccgggtca	ctccccactt	gttagtgcgt		300
tggttatctc	ctcagatggc	cagtttgcctc	tctcaggctc	ctgggatgga	accctgcgcc		360
tctggatct	cacaacgggc	accaccacga	ggcgatttgt	ggccatacc	aaggatgtgc		420
tgagtgtggc	cttctccctct	gacaacgggc	agattgtctc	tggatctcga	gataaaacca		480
tcaagctatg	gaataccctg	ggtgtgtgca	aatacactgt	ccaggatgag	agccactcag		540
agtgggtgt	ttgtgtccgc	ttctcgccca	acagcagcaa	ccctatcata	gtctcctgtg		600
gctgggacaa	gctggtaag	gtatggaaacc	tggcttaactg	caagctgaag	accaaccaca		660
ttggccacac	aggctatctg	aacacgggtg	ctgtctctcc	agatggatcc	ctctgtgttt		720
ctggaggccaa	ggatggccag	gccatgttat	gggatctcaa	cgaaggccaa	cacctttaca		780
cgctagatgg	ttggggacatc	atcaacgccc	tgtgcttcag	cccttaaccgc	tactggctgt		840
gtgctgcccc	aggccccagc	atcaagatct	gggatttaga	gggaaagatc	attgttagatg		900
aactgaagca	agaagttatc	agtaccagca	gcaaggcaga	accacccag	tgcacttccc		960
tggcctggc	tgctgatggc	cagactctgt	ttgctggcta	cacggacaac	ctggtgccag		1020
tgtggcaggt	gaccattggc	acacgctaga	agtttatggc	agagctttac	aaataaaaaaa		1080
aaaatggctt	ttc						1093

<210> 4
<211> 317
<212> PRT
<213> Homo sapiens

<400> 4

Met	Thr	Glu	Gln	Met	Thr	Leu	Arg	Gly	Thr	Leu	Lys	Gly	His	Asn	Gly
1				5				10				15			
Trp	Val	Thr	Gln	Ile	Ala	Thr	Thr	Pro	Gln	Phe	Pro	Asp	Met	Ile	Leu
				20				25				30			
Ser	Ala	Ser	Arg	Asp	Lys	Thr	Ile	Ile	Met	Trp	Lys	Leu	Thr	Arg	Asp
				35				40				45			
Glu	Thr	Asn	Tyr	Gly	Ile	Pro	Gln	Arg	Ala	Leu	Arg	Gly	His	Ser	His
				50				55				60			
Phe	Val	Ser	Asp	Val	Val	Ile	Ser	Ser	Asp	Gly	Gln	Phe	Ala	Leu	Ser
				65				70				75			80
Gly	Ser	Trp	Asp	Gly	Thr	Leu	Arg	Leu	Trp	Asp	Leu	Thr	Thr	Gly	Thr
				85				90				95			
Thr	Thr	Arg	Arg	Phe	Val	Gly	His	Thr	Lys	Asp	Val	Leu	Ser	Val	Ala
				100				105				110			
Phe	Ser	Ser	Asp	Asn	Arg	Gln	Ile	Val	Ser	Gly	Ser	Arg	Asp	Lys	Thr
				115				120				125			
Ile	Lys	Leu	Trp	Asn	Thr	Leu	Gly	Val	Cys	Lys	Tyr	Thr	Val	Gln	Asp
				130				135				140			
Glu	Ser	His	Ser	Glu	Trp	Val	Ser	Cys	Val	Arg	Phe	Ser	Pro	Asn	Ser
				145				150				155			160
Ser	Asn	Pro	Ile	Ile	Val	Ser	Cys	Gly	Trp	Asp	Lys	Leu	Val	Lys	Val
				165				170				175			
Trp	Asn	Leu	Ala	Asn	Cys	Lys	Leu	Lys	Thr	Asn	His	Ile	Gly	His	Thr
				180				185				190			
Gly	Tyr	Leu	Asn	Thr	Val	Thr	Val	Ser	Pro	Asp	Gly	Ser	Leu	Cys	Ala
				195				200				205			
Ser	Gly	Gly	Lys	Asp	Gly	Gln	Ala	Met	Leu	Trp	Asp	Leu	Asn	Glu	Gly
				210				215				220			

Lys His Leu Tyr Thr Leu Asp Gly Gly Asp Ile Ile Asn Ala Leu Cys
 225 230 235 240
 Phe Ser Pro Asn Arg Tyr Trp Leu Cys Ala Ala Thr Gly Pro Ser Ile
 245 250 255
 Lys Ile Trp Asp Leu Glu Gly Lys Ile Ile Val Asp Glu Leu Lys Gln
 260 265 270
 Glu Val Ile Ser Thr Ser Ser Lys Ala Glu Pro Pro Gln Cys Thr Ser
 275 280 285
 Leu Ala Trp Ser Ala Asp Gly Gln Thr Leu Phe Ala Gly Tyr Thr Asp
 290 295 300
 Asn Leu Val Arg Val Trp Gln Val Thr Ile Gly Thr Arg
 305 310 315

<210> 5

<211> 2402

<212> DNA

<213> Homo sapiens

<400> 5

agtctccggcc	gccgcgggtga	acatggagcc	cccgacgca	ccggcccagg	cgcgcggggc	60
cccgccggctg	ctgttgcctcg	cagtccctgc	ggcgccgac	ccagatccc	aggcgagggt	120
gcgcgttgc	gtaccccccgc	tggtgagggt	gatgcgagga	aagtctgtca	ttctggactg	180
cacccttacg	ggaacccacg	accattata	gctggaatgg	ttccttaccg	accgctcg	240
agctcgcccc	cgcctagcct	cggtcgagat	gcagggtct	gagctccagg	tcacaatgca	300
cgacacccgg	ggccgcagtc	ccccatacca	gctggactcc	caggggcg	tggtgcggc	360
tgaggcccg	gtggcgcag	agcgagacta	cgtgtcg	gtgagggcag	gggcggcagg	420
cactgctgag	gccactgcgc	ggctcaacgt	gtttcaaag	ccagaggcca	ctgaggctc	480
ccccaaacaaa	gggacactgt	ctgtgatgga	ggactctg	caggagatcg	ccacctgca	540
cagccggaaac	gggaaccccg	ccccaaagat	cacgtgtat	cgcaacgggc	agcgcctg	600
ggtggcccgta	gagatgaacc	cagaggccta	catgaccaggc	cgcacgg	gggaggcctc	660
gggcctgctc	tccctccac	ccatcttca	cctcg	cgcaaggatg	accgagacgc	720
cagcttccac	tgcgcggccc	actacagct	gcccggggc	cgccacggc	gcctggacag	780
ccccaccc	cacccatccc	tgcactatcc	cacggagcac	gtgcgttct	gggtggcag	840
cccgtccacc	ccagcaggct	gggtacgcga	gggtacact	gtccagctgc	tctggcggg	900
ggacggcagc	cccagcccg	agtatacgct	tttccgcctt	caggatgagc	aggagga	960
gctgaatgt	aatctcgagg	ggaacttgac	cctggaggga	gtgacccggg	gccagagcgg	1020
gacctatg	tgcagatgg	aggattacga	cgccgcagat	gacgtgc	tctccaa	1080
gctggagct	cgcgtggc	atctggaccc	cctggagct	agcgagg	agggtcttc	1140
cttacctcta	aacagcagt	cagtctgtaa	ctgctccgt	cacggctgc	ccacccctgc	1200
cctacgctt	accaaggact	ccactccct	gggcgttgc	ccatgtgt	cgctcagg	1260
tatcaccc	gattccaat	gcacccatgt	atgtgaggc	tccctgcca	cagtcccg	1320
cctcagccgc	acccagaact	tcacgtgt	ggtccaa	tcccgag	taaagacagc	1380
gaaatagag	cccaaggcag	atggcgtt	gaggaaag	gacaaatgt	cactcatct	1440
ctctggcc	ggccatccag	acccaaact	cagctgg	caattgggg	gcagcccg	1500
agagccaatc	cccgacggc	agggtgggt	gaggatct	ctgaccctg	aagtgacc	1560
cgcctgagc	cgcgttgc	tccctgt	agcctcaac	ccccacgg	acaagcgcc	1620
tgtttccac	tccggcccg	tgagccccc	gacctccag	gctggatgg	ccgtcatgg	1680
cgtggccgtc	agcgtggcc	tcctgttct	cgtgtgt	gtttctact	gcgtgagac	1740
caaaggggc	ccctgtgt	gccagggc	ggagaagg	gctccggc	caggagac	1800
agggtgt	cactcggt	cgagcaacc	agagcagacc	ggccttct	tgggagg	1860
ctccggagga	gccaggggt	cgacgggg	cttggagac	gatgtgt	ccaagaac	1920
ccttagaggt	gtccctggac	ctggagct	aggcatcaga	gaaccagccc	tgctcagcc	1980
atgcccgc	ccgccttccc	tcttccct	tcccttccc	tgcccagccc	tcccttcc	2040
cctctggcc	caaggcagg	acccacagt	gctgcgt	tccggagg	aaggagagg	2100
agggtgggt	ggtggagg	ggccttct	caggatgt	gactctcc	ggccccagaa	2160
tagctctgg	acccaaagcc	aggcccagg	ctggacaa	gctccggagg	tggctggcc	2220
ggagtat	ttacccccc	cctccctgc	tggccccc	acctgacgt	ttgctgaga	2280
gtctgacact	ggatcccc	ccctcacc	gcccgggt	ccactcctgc	cccccccta	2340
cctccggccc	acccatcat	ctgtggac	tggagcttgg	aataaatgt	gtttgtcaca	2400
tc						2402

<210> 6
<211> 628
<212> PRT
<213> Homo sapiens

<400> 6
Met Glu Pro Pro Asp Ala Pro Ala Gln Ala Arg Gly Ala Pro Arg Leu
1 5 10 15
Leu Leu Leu Ala Val Leu Leu Ala Ala His Pro Asp Ala Gln Ala Glu
20 25 30
Val Arg Leu Ser Val Pro Pro Leu Val Glu Val Met Arg Gly Lys Ser
35 40 45
Val Ile Leu Asp Cys Thr Pro Thr Gly Thr His Asp His Tyr Met Leu
50 55 60
Glu Trp Phe Leu Thr Asp Arg Ser Gly Ala Arg Pro Arg Leu Ala Ser
65 70 75 80
Ala Glu Met Gln Gly Ser Glu Leu Gln Val Thr Met His Asp Thr Arg
85 90 95
Gly Arg Ser Pro Pro Tyr Gln Leu Asp Ser Gln Gly Arg Leu Val Leu
100 105 110
Ala Glu Ala Gln Val Gly Asp Glu Arg Asp Tyr Val Cys Val Val Arg
115 120 125
Ala Gly Ala Ala Gly Thr Ala Glu Ala Thr Ala Arg Leu Asn Val Phe
130 135 140
Ala Lys Pro Glu Ala Thr Glu Val Ser Pro Asn Lys Gly Thr Leu Ser
145 150 155 160
Val Met Glu Asp Ser Ala Gln Glu Ile Ala Thr Cys Asn Ser Arg Asn
165 170 175
Gly Asn Pro Ala Pro Lys Ile Thr Trp Tyr Arg Asn Gly Gln Arg Leu
180 185 190
Glu Val Pro Val Glu Met Asn Pro Glu Gly Tyr Met Thr Ser Arg Thr
195 200 205
Val Arg Glu Ala Ser Gly Leu Leu Ser Leu Thr Ser Thr Leu Tyr Leu
210 215 220
Arg Leu Arg Lys Asp Asp Arg Asp Ala Ser Phe His Cys Ala Ala His
225 230 235 240
Tyr Ser Leu Pro Glu Gly Arg His Gly Arg Leu Asp Ser Pro Thr Phe
245 250 255
His Leu Thr Leu His Tyr Pro Thr Glu His Val Gln Phe Trp Val Gly
260 265 270
Ser Pro Ser Thr Pro Ala Gly Trp Val Arg Glu Gly Asp Thr Val Gln
275 280 285
Leu Leu Cys Arg Gly Asp Gly Ser Pro Ser Pro Glu Tyr Thr Leu Phe
290 295 300
Arg Leu Gln Asp Glu Gln Glu Val Leu Asn Val Asn Leu Glu Gly
305 310 315 320
Asn Leu Thr Leu Glu Gly Val Thr Arg Gly Gln Ser Gly Thr Tyr Gly
325 330 335
Cys Arg Val Glu Asp Tyr Asp Ala Ala Asp Asp Val Gln Leu Ser Lys
340 345 350
Thr Leu Glu Leu Arg Val Ala Tyr Leu Asp Pro Leu Glu Leu Ser Glu
355 360 365
Gly Lys Val Leu Ser Leu Pro Leu Asn Ser Ser Ala Val Val Asn Cys
370 375 380
Ser Val His Gly Leu Pro Thr Pro Ala Leu Arg Trp Thr Lys Asp Ser
385 390 395 400
Thr Pro Leu Gly Asp Gly Pro Met Leu Ser Leu Ser Ser Ile Thr Phe
405 410 415
Asp Ser Asn Gly Thr Tyr Val Cys Glu Ala Ser Leu Pro Thr Val Pro
420 425 430

Val Leu Ser Arg Thr Gln Asn Phe Thr Leu Leu Val Gln Gly Ser Pro
 435 440 445
 Glu Leu Lys Thr Ala Glu Ile Glu Pro Lys Ala Asp Gly Ser Trp Arg
 450 455 460
 Glu Gly Asp Glu Val Thr Leu Ile Cys Ser Ala Arg Gly His Pro Asp
 465 470 475 480
 Pro Lys Leu Ser Trp Ser Gln Leu Gly Gly Ser Pro Ala Glu Pro Ile
 485 490 495
 Pro Gly Arg Gln Gly Trp Val Ser Ser Leu Thr Leu Lys Val Thr
 500 505 510
 Ser Ala Leu Ser Arg Asp Gly Ile Ser Cys Glu Ala Ser Asn Pro His
 515 520 525
 Gly Asn Lys Arg His Val Phe His Phe Gly Ala Val Ser Pro Gln Thr
 530 535 540
 Ser Gln Ala Gly Val Ala Val Met Ala Val Ala Val Ser Val Gly Leu
 545 550 555 560
 Leu Leu Leu Val Ala Val Phe Tyr Cys Val Arg Arg Lys Gly Gly
 565 570 575
 Pro Cys Cys Arg Gln Arg Arg Glu Lys Gly Ala Pro Pro Pro Gly Glu
 580 585 590
 Pro Gly Leu Ser His Ser Gly Ser Glu Gln Pro Glu Gln Thr Gly Leu
 595 600 605
 Leu Met Gly Gly Ala Ser Gly Gly Ala Arg Gly Gly Ser Gly Gly Phe
 610 615 620
 Gly Asp Glu Cys
 625

<210> 7

<211> 2780

<212> DNA

<213> Homo sapiens

<400> 7

gtgggcggac	cgcgccgctg	gagggtgttag	gatccgaacc	caggggtggg	gggtggaggc	60
ggctcctgcg	atcgaagggg	acttgagact	caccggccgc	acgccccatgag	ggccctgtgg	120
gtgctggccc	tctgctgcgt	cctgctgacc	ttcgggtcg	tcagagctga	cgatgaagtt	180
gatgtggatg	gtacagttaga	agaggatctg	ggtaaaaagta	gagaaggatc	aaggacggat	240
gatgaagtag	tacagagaga	ggaagaagct	attcagttgg	atggattaaa	tgcatacaca	300
ataagagaac	tttagagagaa	gtcggaaaag	tttgccttcc	aagccgaagt	taacagaatg	360
atgaaactta	tcatcaattc	attgtataaa	aataaaagaga	ttttccttag	agaactgatt	420
tcaaattgtt	ctgatgtttt	agataagata	aggctaataat	caactgactga	tgaaaatgt	480
ctttctggaa	atgaggaact	aacagtcaaa	attaagtgtg	ataaggagaa	gaacctgtcg	540
catgtcacag	acaccggtgt	aggaatgacc	agagaagagt	tggtaaaaaa	ctttggtacc	600
atagccaaat	ctgggacaag	cgagttttta	aacaaaatga	ctgaaggcaca	ggaagatggc	660
cagtcaactt	ctgaattgtat	tggccagttt	ggtgtcggtt	tctattccgc	cttccttgta	720
gcagataagg	ttattgtcac	ttccaaacac	aacaacgata	cccagcacat	ctggggatct	780
gactccaatg	aattttctgt	aattgctgac	ccaagaggaa	acactcttagg	acggggaaacg	840
acaatttaccc	ttgttctaaa	agaagaagca	tctgatttacc	ttgaatttgg	tacaattaaa	900
aatctcgatca	aaaaatattc	acagttcata	aaatttctta	tttatgtatg	gagcagcaag	960
actgaaaactg	ttgaggagcc	catggaggaa	gaagaagcag	ccaaagaaga	gaaagaagaa	1020
tctgatgtat	aagctgcagt	agaggaagaa	gaagaagaaa	agaaaacaaa	gactaaaaaa	1080
gttggaaaaaa	ctgtctggga	ctgggaaactt	atgaatgata	tcaaaccat	atggcagaga	1140
ccatccaaatg	aagttagaaga	agatgaatac	aaagctttct	acaaaatcatt	ttcaaaggaa	1200
agtgtatgacc	ccatggctta	tattcaactt	actgctgaag	gggaagttac	cttcaaata	1260
attttatttg	tacccacatc	tgctccacgt	ggtctgtttg	acgaatatgg	atctaaaaag	1320
agcgattaca	ttaagctcta	tgtgcggcg	gtattcatca	cagacgactt	ccatgtatg	1380
atgcctaaat	acctcaat	tgtcaagggt	gtggtgact	cagatgtatc	ccccttgaat	1440
gtttcccgcg	agactcttca	gcaacataaa	ctgcttaagg	tgatttagaa	gaagcttgg	1500
cgtaaaaacgc	tggacatgtat	caagaagatt	gctgtatgata	aatacaatga	tacttttgg	1560
aaagaatttgc	gtaccaacat	caagcttgg	gtgatttgg	accactcgaa	tcgaacacgt	1620

cttgctaaac ttcttaggtt ccagtcttot catcatccaa ctgacattac tagcctagac	1680
cagtatgtgg aaagaatgaa ggaaaaacaa gacaaaatct acttcatggc tgggtccagc	1740
agaaaaaggagg ctgaatcttc tccatttgtt gagcgacttc tgaaaaaggg ctatgaagtt	1800
atttaccca cagaacctgt ggatgaatac tgtattcagg cccttcccga atttgcgttggg	1860
aagaggttcc agaatgttgc caaggaagga gtgaaggttcg atgaaagtga gaaaactaag	1920
gagagtcgttgc aagcagtgttga gaaagaattt gaggcctctgc tgaattggat gaaagataaa	1980
gcccttaagg acaagatttga aaaggctgttgc gtgtctcagc gcctgcaca atctccgttgc	2040
gcttttgtgg ccagccagta cggatgttgc ggcaacatgg agagaatcat gaaagcacaa	2100
gcgttaccaaa cggggcaagga catctctaca aattactatg cgagtccagaa gaaaacattt	2160
gaaattaatc ccagacacccc gctgatcaga gacatgcttc gacgaaattaa ggaagatgaa	2220
gatgataaaa cagtttttggaa tcttgctgttgc gttttgtttt aacacagcaac gcttcggtca	2280
gggttatcttt taccagacac taaagcatat ggagatagaa tagaaagaat gcttcgcctc	2340
agtttgaaca ttgacccttgc tgcaaagggttga gaaagaagac ccgaagaaga acctgaagag	2400
acagcagaag acacaacaga agacacagag caagacgaag atgaaagaaat ggatgtgggaa	2460
acagatgaag aagaagaaaac agcaaaggaa tctacagctg aaaaagatga attgtaaatt	2520
atactctcac catttggatc ctgtgtggag agggatgttgc aaatttacat catttctttt	2580
.tgggagagac ttgttttggaa tgccccctaa tcccctctc ccctgcactt gaaaatgtgg	2640
gattatgggt cacagaaaaa agtgggttttt ttagttgaat ttttttaac attcctcatg	2700
aatgtaaatt tgtactattt aactgactat tcttgatgttga aaatcttgc atgtgtataaa	2760
aaataaaaaaa gatcccaat	2780

<210> 8

<211> 838

<212> PRT

<213> Homo sapiens

<400> 8

Val Gly Gly Pro Arg Gly Trp Arg Cys Glu Asp Pro Asn Pro Gly Val	
1 5 10 15	
Gly Gly Gly Gly Ser Cys Asp Arg Arg Gly Leu Glu Thr His Arg	
20 25 30	
Pro His Ala Met Arg Ala Leu Trp Val Leu Gly Leu Cys Cys Val Leu	
35 40 45	
Leu Thr Phe Gly Ser Val Arg Ala Asp Asp Glu Val Asp Val Asp Gly	
50 55 60	
Thr Val Glu Glu Asp Leu Gly Lys Ser Arg Glu Gly Ser Arg Thr Asp	
65 70 75 80	
Asp Glu Val Val Gln Arg Glu Glu Ala Ile Gln Leu Asp Gly Leu	
85 90 95	
Asn Ala Ser Gln Ile Arg Glu Leu Arg Glu Lys Ser Glu Lys Phe Ala	
100 105 110	
Phe Gln Ala Glu Val Asn Arg Met Met Lys Leu Ile Ile Asn Ser Leu	
115 120 125	
Tyr Lys Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ala Ser	
130 135 140	
Asp Ala Leu Asp Lys Ile Arg Leu Ile Ser Leu Thr Asp Glu Asn Ala	
145 150 155 160	
Leu Ser Gly Asn Glu Glu Leu Thr Val Lys Ile Lys Cys Asp Lys Glu	
165 170 175	
Lys Asn Leu Leu His Val Thr Asp Thr Gly Val Gly Met Thr Arg Glu	
180 185 190	
Glu Leu Val Lys Asn Leu Gly Thr Ile Ala Lys Ser Gly Thr Ser Glu	
195 200 205	
Phe Leu Asn Lys Met Thr Glu Ala Gln Glu Asp Gly Gln Ser Thr Ser	
210 215 220	
Glu Leu Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Phe Leu Val	
225 230 235 240	
Ala Asp Lys Val Ile Val Thr Ser Lys His Asn Asn Asp Thr Gln His	
245 250 255	

Ile Trp Glu Ser Asp Ser Asn Glu Phe Ser Val Ile Ala Asp Pro Arg
 260 265 270
 Gly Asn Thr Leu Gly Arg Gly Thr Thr Ile Thr Leu Val Leu Lys Glu
 275 280 285
 Glu Ala Ser Asp Tyr Leu Glu Leu Asp Thr Ile Lys Asn Leu Val Lys
 290 295 300
 Lys Tyr Ser Gln Phe Ile Asn Phe Pro Ile Tyr Val Trp Ser Ser Lys
 305 310 315 320
 Thr Glu Thr Val Glu Glu Pro Met Glu Glu Glu Ala Ala Lys Glu
 325 330 335
 Glu Lys Glu Glu Ser Asp Asp Glu Ala Ala Val Glu Glu Glu Glu
 340 345 350
 Glu Lys Lys Pro Lys Thr Lys Lys Val Glu Lys Thr Val Trp Asp Trp
 355 360 365
 Glu Leu Met Asn Asp Ile Lys Pro Ile Trp Gln Arg Pro Ser Lys Glu
 370 375 380
 Val Glu Glu Asp Glu Tyr Lys Ala Phe Tyr Lys Ser Phe Ser Lys Glu
 385 390 395 400
 Ser Asp Asp Pro Met Ala Tyr Ile His Phe Thr Ala Glu Gly Glu Val
 405 410 415
 Thr Phe Lys Ser Ile Leu Phe Val Pro Thr Ser Ala Pro Arg Gly Leu
 420 425 430
 Phe Asp Glu Tyr Gly Ser Lys Lys Ser Asp Tyr Ile Lys Leu Tyr Val
 435 440 445
 Arg Arg Val Phe Ile Thr Asp Asp Phe His Asp Met Met Pro Lys Tyr
 450 455 460
 Leu Asn Phe Val Lys Gly Val Val Asp Ser Asp Asp Leu Pro Leu Asn
 465 470 475 480
 Val Ser Arg Glu Thr Leu Gln Gln His Lys Leu Leu Lys Val Ile Arg
 485 490 495
 Lys Lys Leu Val Arg Lys Thr Leu Asp Met Ile Lys Lys Ile Ala Asp
 500 505 510
 Asp Lys Tyr Asn Asp Thr Phe Trp Lys Glu Phe Gly Thr Asn Ile Lys
 515 520 525
 Leu Gly Val Ile Glu Asp His Ser Asn Arg Thr Arg Leu Ala Lys Leu
 530 535 540
 Leu Arg Phe Gln Ser Ser His His Pro Thr Asp Ile Thr Ser Leu Asp
 545 550 555 560
 Gln Tyr Val Glu Arg Met Lys Glu Lys Gln Asp Lys Ile Tyr Phe Met
 565 570 575
 Ala Gly Ser Ser Arg Lys Glu Ala Glu Ser Ser Pro Phe Val Glu Arg
 580 585 590
 Leu Leu Lys Lys Gly Tyr Glu Val Ile Tyr Leu Thr Glu Pro Val Asp
 595 600 605
 Glu Tyr Cys Ile Gln Ala Leu Pro Glu Phe Asp Gly Lys Arg Phe Gln
 610 615 620
 Asn Val Ala Lys Glu Gly Val Lys Phe Asp Glu Ser Glu Lys Thr Lys
 625 630 635 640
 Glu Ser Arg Glu Ala Val Glu Lys Glu Phe Glu Pro Leu Leu Asn Trp
 645 650 655
 Met Lys Asp Lys Ala Leu Lys Asp Lys Ile Glu Lys Ala Val Val Ser
 660 665 670
 Gln Arg Leu Thr Glu Ser Pro Cys Ala Leu Val Ala Ser Gln Tyr Gly
 675 680 685
 Trp Ser Gly Asn Met Glu Arg Ile Met Lys Ala Gln Ala Tyr Gln Thr
 690 695 700
 Gly Lys Asp Ile Ser Thr Asn Tyr Tyr Ala Ser Gln Lys Lys Thr Phe
 705 710 715 720
 Glu Ile Asn Pro Arg His Pro Leu Ile Arg Asp Met Leu Arg Arg Ile
 725 730 735

<210> 9
<211> 2912
<212> DNA
<213> *Homo sapiens*

tttggtaata	ttaaaaagtc	tgtatggcat	gacaactact	ttaaggggaa	gataagattt	2400
ctgtctacta	agtgtatgcgt	tgataccctt	ggcactaaag	cagagctagt	aatgcttttt	2460
gagtttcatg	ttgggttcttt	cacagatggg	gtaacgtgca	ctgtaagacg	tatgttaacat	2520
gatgttaact	ttgtgtggtc	taaagtgttt	agctgtcaag	ccggatgcct	aagttagacca	2580
aatcttgtt	ttgaagtgtt	ctgagctgtt	tcttgatgtt	tagaaaagta	ttcggttacat	2640
cttggtagat	ctacttttt	acttttcat	tccctgttagt	tgacaattct	gcatgtacta	2700
gtcctctaga	aataggtaa	actgaagcaa	cttgatggaa	ggatctctcc	acagggcttg	2760
ttttccaaag	aaaagtattt	tttgaggag	caaagtaaa	agcctaccta	agcatatcgt	2820
aaagctgttc	aaataactcga	gcccgagtctt	gtggatggaa	atgtagtgtct	cgagtcacat	2880
tctgcttaaa	gttgtaca	atacagatga	gt			2912

<210> 10
<211> 732
<212> PRT
<213> Homo sapiens

<400> 10						
Met Pro Glu Glu Thr Gln Thr Gln Asp Gln Pro Met	Glu Glu Glu					
1	5	10	15			
Val Glu Thr Phe Ala Phe Gln Ala Glu Ile Ala Gln	Leu Met Ser Leu					
20	25	30				
Ile Ile Asn Thr Phe Tyr Ser Asn Lys Glu Ile Phe	Leu Arg Glu Leu					
35	40	45				
Ile Ser Asn Ser Ser Asp Ala Leu Asp Lys Ile Arg	Tyr Glu Thr Leu					
50	55	60				
Thr Asp Pro Ser Lys Leu Asp Ser Gly Lys Glu Leu	His Ile Asn Leu					
65	70	75	80			
Ile Pro Asn Lys Gln Asp Arg Thr Leu Thr Ile Val	Asp Thr Gly Ile					
85	90	95				
Gly Met Thr Lys Ala Asp Leu Ile Asn Asn Leu Gly	Thr Ile Ala Lys					
100	105	110				
Ser Gly Thr Lys Ala Phe Met Glu Ala Leu Gln Ala	Gly Ala Asp Ile					
115	120	125				
Ser Met Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser	Ala Tyr Leu Val					
130	135	140				
Ala Glu Lys Val Thr Val Ile Thr Lys His Asn Asp	Asp Glu Gln Tyr					
145	150	155	160			
Ala Trp Glu Ser Ser Ala Gly Gly Ser Phe Thr Val	Arg Thr Asp Thr					
165	170	175				
Gly Glu Pro Met Gly Arg Gly Thr Lys Val Ile Leu	His Leu Lys Glu					
180	185	190				
Asp Gln Thr Glu Tyr Leu Glu Glu Arg Arg Ile Lys	Glu Ile Val Lys					
195	200	205				
Lys His Ser Gln Phe Ile Gly Tyr Pro Ile Thr Leu	Phe Val Glu Lys					
210	215	220				
Glu Arg Asp Lys Glu Val Ser Asp Asp Glu Ala Glu	Glu Lys Glu Asp					
225	230	235	240			
Lys Glu Glu Lys Glu Glu Lys Glu Ser Glu Asp Lys	Pro					
245	250	255				
Glu Ile Glu Asp Val Gly Ser Asp Glu Glu Glu Lys	Lys Asp Gly					
260	265	270				
Asp Lys Lys Lys Lys Ile Lys Glu Lys Tyr Ile Asp	Gln Glu					
275	280	285				
Glu Leu Asn Lys Thr Lys Pro Ile Trp Thr Arg Asn	Pro Asp Asp Ile					
290	295	300				
Thr Asn Glu Glu Tyr Gly Glu Phe Tyr Lys Ser Leu	Thr Asn Asp Trp					
305	310	315	320			
Glu Asp His Leu Ala Val Lys His Phe Ser Val Glu	Gly Gln Leu Glu					
325	330	335				

Phe Arg Ala Leu Leu Phe Val Pro Arg Arg Ala Pro Phe Asp Leu Phe
 340 345 350
 Glu Asn Arg Lys Lys Lys Asn Asn Ile Lys Leu Tyr Val Arg Arg Val
 355 360 365
 Phe Ile Met Asp Asn Cys Glu Glu Leu Ile Pro Glu Tyr Leu Asn Phe
 370 375 380
 Ile Arg Gly Val Val Asp Ser Glu Asp Leu Pro Leu Asn Ile Ser Arg
 385 390 395 400
 Glu Met Leu Gln Gln Ser Lys Ile Leu Lys Val Ile Arg Lys Asn Leu
 405 410 415
 Val Lys Lys Cys Leu Glu Leu Phe Thr Glu Leu Ala Glu Asp Lys Glu
 420 425 430
 Asn Tyr Lys Lys Phe Tyr Glu Gln Phe Ser Lys Asn Ile Lys Leu Gly
 435 440 445
 Ile His Glu Asp Ser Gln Asn Arg Lys Lys Leu Ser Glu Leu Leu Arg
 450 455 460
 Tyr Tyr Thr Ser Ala Ser Gly Asp Glu Met Val Ser Leu Lys Asp Tyr
 465 470 475 480
 Cys Thr Arg Met Lys Glu Asn Gln Lys His Ile Tyr Tyr Ile Thr Gly
 485 490 495
 Glu Thr Lys Asp Gln Val Ala Asn Ser Ala Phe Val Glu Arg Leu Arg
 500 505 510
 Lys His Gly Leu Glu Val Ile Tyr Met Ile Glu Pro Ile Asp Glu Tyr
 515 520 525
 Cys Val Gln Gln Leu Lys Glu Phe Glu Gly Lys Thr Leu Val Ser Val
 530 535 540
 Thr Lys Glu Gly Leu Glu Leu Pro Glu Asp Glu Glu Lys Lys Lys
 545 550 555 560
 Gln Glu Glu Lys Lys Thr Lys Phe Glu Asn Leu Cys Lys Ile Met Lys
 565 570 575
 Asp Ile Leu Glu Lys Lys Val Glu Lys Val Val Val Ser Asn Arg Leu
 580 585 590
 Val Thr Ser Pro Cys Cys Ile Val Thr Ser Thr Tyr Gly Trp Thr Ala
 595 600 605
 Asn Met Glu Arg Ile Met Lys Ala Gln Ala Leu Arg Asp Asn Ser Thr
 610 615 620
 Met Gly Tyr Met Ala Ala Lys Lys His Leu Glu Ile Asn Pro Asp His
 625 630 635 640
 Ser Ile Ile Glu Thr Leu Arg Gln Lys Ala Glu Ala Asp Lys Asn Asp
 645 650 655
 Lys Ser Val Lys Asp Leu Val Ile Leu Leu Tyr Glu Thr Ala Leu Leu
 660 665 670
 Ser Ser Gly Phe Ser Leu Glu Asp Pro Gln Thr His Ala Asn Arg Ile
 675 680 685
 Tyr Arg Met Ile Lys Leu Gly Leu Gly Ile Asp Glu Asp Asp Pro Thr
 690 695 700
 Ala Asp Asp Thr Ser Ala Ala Val Thr Glu Glu Met Pro Pro Leu Glu
 705 710 715 720
 Gly Asp Asp Asp Thr Ser Arg Met Glu Glu Val Asp
 725 730

<210> 11
 <211> 2227
 <212> DNA
 <213> Homo sapiens

<400> 11
 gacgacacctgt ctcggccgagc gcacgcgttgc cgcccccccc cagaaatgct tcgggttaccc 60
 acagtctttc gccagatgag accgggtgtcc aggtaactgg ctctctatct cactcggtct 120
 tatgccaagg atgtaaaatt tggtgcatat gccccagcct taatgcttca aggtgttagac 180

cttttagccg atgctgtggc cgttacaatg gggccaaagg gaagaacagt gattatttag	240
cagagttggg gaagtccaa agtaacaaaa gatggtgtga ctgttgc当地 gtcaattgac	300
ttaaaagata aatacagaa cattggagct aaacttgc当地 aagatgtgc caataacaca	360
aatgaagaag ctggggatgg cactaccact gctactgtac tggcacgctc tatagccag	420
gaaggcttc当地 agaagattag caaagggtgc当地 aatccagtgg aaatcaggag aggtgtatg	480
ttagctgtt当地 atgctgtaat tgctgactt当地 aaaaagcagt ctaaacctgt gaccacccct	540
gaagaaatgg cacaggttgc tacatttctc gcaaaccggg acaaagaaat tggcaatatc	600
atctctgtg caatgaaaaa agtttgaaga aagggtgtca tcacagtaaa ggatggaaaa	660
acactgaatg atgaatttga aattattgaa ggcattgtgg ttgatcgagg ctatatttct	720
ccatacttta ttaatacatc aaaaggtcg aatgtgaat tccaggatgc ctatgttctg	780
ttgagtggaa agaaaatttc tagtatccag tccattgtac ctgcttctg aattgccaat	840
gctcaccgta agccttggt cataatcgct gaagatgtt当地 atggagaagc tctaagtaca	900
ctcgttctg ataggctaaa gtttgttctc caggttgtgg cagtcaaggc tccagggtt当地	960
ggtgacaata gaaagaacca gcttaaagat atggctt当地 ctactgggtt当地 tgcaagtgtt当地	1020
ggagaagagg gattgaccct gaatcttga gacggtt当地 ctc当地 agtggactt当地 aggaaaagtt当地	1080
ggagaggctca ttgtgaccaa agacgatgc atgctctt当地 aaggaaaagg tgacaaggct	1140
caaattgaaa aacgtattca agaaatcatt gagcaggtag atgtcacaac tagtgaatat	1200
gaaaaggaaa aactgaatga acggcttgc当地 aaacttccag atggagtggc tttgtgtt当地	1260
gttgggtggg caagtgtatg tgaagtgtatg gaaaagaaaag acagagttac agatgccctt当地	1320
aatgctacaa gagctgtgt tgaagaaggc attgttttgg gagggggtt当地 tggccctt当地	1380
cgatgc当地 cagcctt当地 ctc当地 attgtactt当地 ccagcttaatg aagatcaaaa aattggtata	1440
gaaatttata aaaaacacttca gcaatgacca ttgctaaaggg tttgtgtt当地	1500
gaaggatctt tgataatttga gaaaattatg caaagtccct cagaagttt当地 ttatgtatgt	1560
atggctggag atttttggaa tatgggtggaa aaaggaatca ttgacccaaac aaagggtt当地	1620
agaactgctt tattggatgc tgctgggtgtt当地 gcctctt当地 taactacagc agaagttt当地	1680
gtcacagaaa ttccctaaaga agagaaggac cctggatgg gtcaatggg tggaaatggg	1740
ggtggatgg gagggtggcat gttctactt当地 cttagactgt gtttacctt tattaatggaa	1800
ctgtgacagg aagcccaagg cagttt当地 cccaataac tttagggaaag tcagttggag	1860
aaaatgaaa aaaaaggctgg ctgaaaatca ctataaccat cagttactt当地 tttagttt当地	1920
aaaaatataat aatggttt当地 tgctgtt当地 gtccatgtt当地 acagataatt tttttgtt当地	1980
ttttgaaa aaaaacattt当地 tacattt当地 atactgggtt当地 caagagccat gtaccagggtt当地	2040
actgctttca acttaaatca ctgagggtt当地 tttactacta ttctgtt当地 atcaggattt当地	2100
tagtgc当地 caccaccaga tgagaaggta agcagctt当地 ctgtggagag tgagaataat	2160
tgtgtacaaa gtagagaaggat atccaatttat gtgacaacccctt ttgtgtt当地 aaaattt当地	2220
taaagtt	2227

<210> 12

<211> 573

<212> PRT

<213> Homo sapiens

<400> 12

Met Leu Arg Leu Pro Thr Val Phe Arg Gln Met Arg Pro Val Ser Arg			
1	5	10	15
Val Leu Ala Pro His Leu Thr Arg Ala Tyr Ala Lys Asp Val Lys Phe			
20	25	30	
Gly Ala Asp Ala Arg Ala Leu Met Leu Gln Gly Val Asp Leu Leu Ala			
35	40	45	
Asp Ala Val Ala Val Thr Met Gly Pro Lys Gly Arg Thr Val Ile Ile			
50	55	60	
Glu Gln Ser Trp Gly Ser Pro Lys Val Thr Lys Asp Gly Val Thr Val			
65	70	75	80
Ala Lys Ser Ile Asp Leu Lys Asp Lys Tyr Lys Asn Ile Gly Ala Lys			
85	90	95	
Leu Val Gln Asp Val Ala Asn Asn Thr Asn Glu Glu Ala Gly Asp Gly			
100	105	110	
Thr Thr Ala Thr Val Leu Ala Arg Ser Ile Ala Lys Glu Gly Phe			
115	120	125	
Glu Lys Ile Ser Lys Gly Ala Asn Pro Val Glu Ile Arg Arg Gly Val			
130	135	140	

Met Leu Ala Val Asp Ala Val Ile Ala Glu Leu Lys Lys Gln Ser Lys
 145 150 155 160
 Pro Val Thr Thr Pro Glu Glu Ile Ala Gln Val Ala Thr Ile Ser Ala
 165 170 175
 Asn Gly Asp Lys Glu Ile Gly Asn Ile Ile Ser Asp Ala Met Lys Lys
 180 185 190
 Val Gly Arg Lys Gly Val Ile Thr Val Lys Asp Gly Lys Thr Leu Asn
 195 200 205
 Asp Glu Leu Glu Ile Ile Glu Gly Met Lys Phe Asp Arg Gly Tyr Ile
 210 215 220
 Ser Pro Tyr Phe Ile Asn Thr Ser Lys Gly Gln Lys Cys Glu Phe Gln
 225 230 235 240
 Asp Ala Tyr Val Leu Leu Ser Glu Lys Lys Ile Ser Ser Ile Gln Ser
 245 250 255
 Ile Val Pro Ala Leu Glu Ile Ala Asn Ala His Arg Lys Pro Leu Val
 260 265 270
 Ile Ile Ala Glu Asp Val Asp Gly Glu Ala Leu Ser Thr Leu Val Leu
 275 280 285
 Asn Arg Leu Lys Val Gly Leu Gln Val Val Ala Val Lys Ala Pro Gly
 290 295 300
 Phe Gly Asp Asn Arg Lys Asn Gln Leu Lys Asp Met Ala Ile Ala Thr
 305 310 315 320
 Gly Gly Ala Val Phe Gly Glu Glu Gly Leu Thr Leu Asn Leu Glu Asp
 325 330 335
 Val Gln Pro His Asp Leu Gly Lys Val Gly Glu Val Ile Val Thr Lys
 340 345 350
 Asp Asp Ala Met Leu Leu Lys Gly Lys Gly Asp Lys Ala Gln Ile Glu
 355 360 365
 Lys Arg Ile Gln Glu Ile Ile Glu Gln Leu Asp Val Thr Thr Ser Glu
 370 375 380
 Tyr Glu Lys Glu Lys Leu Asn Glu Arg Leu Ala Lys Leu Ser Asp Gly
 385 390 395 400
 Val Ala Val Leu Lys Val Gly Gly Thr Ser Asp Val Glu Val Asn Glu
 405 410 415
 Lys Lys Asp Arg Val Thr Asp Ala Leu Asn Ala Thr Arg Ala Ala Val
 420 425 430
 Glu Glu Gly Ile Val Leu Gly Gly Cys Ala Leu Leu Arg Cys Ile
 435 440 445
 Pro Ala Leu Asp Ser Leu Thr Pro Ala Asn Glu Asp Gln Lys Ile Gly
 450 455 460
 Ile Glu Ile Ile Lys Arg Thr Leu Lys Ile Pro Ala Met Thr Ile Ala
 465 470 475 480
 Lys Asn Ala Gly Val Glu Gly Ser Leu Ile Val Glu Lys Ile Met Gln
 485 490 495
 Ser Ser Ser Glu Val Gly Tyr Asp Ala Met Ala Gly Asp Phe Val Asn
 500 505 510
 Met Val Glu Lys Gly Ile Ile Asp Pro Thr Lys Val Val Arg Thr Ala
 515 520 525
 Leu Leu Asp Ala Ala Gly Val Ala Ser Leu Leu Thr Thr Ala Glu Val
 530 535 540
 Val Val Thr Glu Ile Pro Lys Glu Glu Lys Asp Pro Gly Met Gly Ala
 545 550 555 560
 Met Gly Gly Met Gly Gly Met Gly Gly Met Phe
 565 570

<210> 13
 <211> 2376
 <212> DNA
 <213> Homo sapiens

<400> 13

gaggaggagt	ggggacccggg	cgggggtgg	aggaagaggc	ctcgcgaga	ggaggggagca	60
attgaattc	aaacacaaaac	aactcgacga	gcgcgacccc	accgcgcgg	agccttgc	120
cgatccgc	ccgccccgtc	cgtcgccgc	gccccggag	acgcgtggc	cgcgccggag	180
ctcgcccg	ggccacccat	cgaggcgggg	gccgcgcgag	ggccggagcg	gagcggcc	240
gccaccgc	cacgcgaaa	cttgggctcg	cgcttcccg	ccccgcgcgg	agccccgggc	300
gccccggagcc	ccgcatgtc	gcgatccaac	cggcagaagg	agtacaatg	cggggacctg	360
gtgttcgcca	agatgaaggg	ctaccccacac	tggccggccc	ggattgacga	gatgcctgag	420
gctccgtga	aatcaacagc	caacaaatac	caagtcttt	tttccggac	ccacgagacg	480
gcattcctgg	gccccaaaga	cctcttccct	tacgaggaat	ccaaggagaa	gtttggcaag	540
cccaacaaga	ggaaagggtt	cagcgagggg	ctgtgggaga	tcgagaacaa	ccctactgtc	600
aaggcttccg	gctatccgtc	ctcccagaaa	aagagctgtg	tggagagagc	tgaaccagag	660
cccgaagctg	cagagggtga	cggtgataag	aaggggatg	cagagggcag	cagcgacag	720
gaagggaagc	ttgtcattga	tgagccagcc	aaggagaaga	acgagaaagg	agcgttgaag	780
aggagagcag	gggacttgc	ggaggactct	cctaaacgtc	ccaaggagggc	agaaaacct	840
gaaggagagg	agaaggaggc	agccacccctt	gaggttggaga	ggcccttcc	tatggaggtg	900
gaaaagaata	gcacccctc	ttagccggc	tctggccggg	ggcctccca	agaggaagaa	960
gaagaggagg	atgaagagga	agaggatc	aaggaaatg	ctgaggcccc	aggcatcaga	1020
gatcatgaga	gcctgtagcc	accatgttt	caagaggagc	ccccaccctg	ttcctgtgc	1080
tgtctgggt	ctactggga	aactggccat	ggcctgaaa	ctgggaaccc	tttccceacc	1140
ccaaacctgt	ctccttct	actacttt	cccactccaa	gcccagccca	tggagattga	1200
cctggatgg	gcaggccacc	ttggctctac	ctctaggtcc	ccatactcct	atgatctgag	1260
tcagagccat	gtcttctccc	ttgaatgagt	tgaggccact	gtgttccttc	cgcttggagc	1320
tatttccag	gcttcgtctg	gggcctggga	caactgtcc	cacccctctg	cacccttctc	1380
ccactctct	aggcattctg	gacctctggg	ttggatcag	ggtaggaat	ggaaggatgg	1440
agcatcaaca	gcagggtggg	tttgtggggc	ctggaggggg	caatcctcaa	atgcggggtg	1500
ggggcagcac	aggaggcgg	cctccctctg	agctctgtc	ccctgtaca	cctattatcc	1560
cagctccca	gattcaggg	aagtgggaca	gctttaggg	gagggctcc	tttccataaa	1620
tccttgcata	ttgacaacac	ccatcccttcc	tttgcgcac	ccaaagagg	ttgggagttg	1680
tagtaatca	tcaagagaat	ttggggcttc	caagttgtt	ggccaagg	cctgagacct	1740
gaagggttga	cttacccat	ttgggtggga	gttttagca	tctgtcccc	tttagatctc	1800
tgaagccaca	aataggatgc	ttgggaaagac	tcctagatgt	cctttttct	ctccacacag	1860
tgctcaaggc	cagtttatag	tcatatatat	cacccagaca	taaaggaaaa	gacacat	1920
tttagaaatg	tttttataaa	aagaaaatta	aaaaaaaa	ttttaaagac	ccctaaccct	1980
ttgtgtgtc	tccattctgc	tccttccca	tcgttgc	cattctgag	gtgcactgg	2040
aggctccct	tctatttggg	gctttagac	tttcttttg	tagtggggc	ttttagatgtc	2100
cttccagtgt	catttctcat	ccacataccc	tgacctggcc	ccctcagtgt	tgtcaccaga	2160
tctgatttg	aaacctactg	gaggacagag	agaaataagt	gcctctccc	acccttcc	2220
tactggtctc	tctatgcctc	tctacagtct	cgtctttt	accctggccc	ctctccctt	2280
ggctctgtatg	aaaaattgt	gactgttagct	ttggaaagttt	agctctgaga	accgttagatg	2340
atttcagttc	tagaaaata	aaacccgttg	attact			2376

<210> 14

<211> 240

<212> PRT

<213> Homo sapiens

<400> 14

Met	Ser	Arg	Ser	Asn	Arg	Gln	Lys	Glu	Tyr	Lys	Cys	Gly	Asp	Leu	Val
1				5			10				15				
Phe	Ala	Lys	Met	Lys	Gly	Tyr	Pro	His	Trp	Pro	Ala	Arg	Ile	Asp	Glu
			20				25				30				
Met	Pro	Glu	Ala	Ala	Val	Lys	Ser	Thr	Ala	Asn	Lys	Tyr	Gln	Val	Phe
	35				40			45							
Phe	Phe	Gly	Thr	His	Glu	Thr	Ala	Phe	Leu	Gly	Pro	Lys	Asp	Leu	Phe
	50				55			60							
Pro	Tyr	Glu	Glu	Ser	Glu	Lys	Phe	Gly	Lys	Pro	Asn	Lys	Arg	Lys	
	65				70			75				80			
Gly	Phe	Ser	Glu	Gly	Leu	Trp	Glu	Ile	Glu	Asn	Asn	Pro	Thr	Val	Lys
	85				90			95							

Ala Ser Gly Tyr Gln Ser Ser Gln Lys Lys Ser Cys Val Glu Glu Pro
 100 105 110
 Glu Pro Glu Pro Glu Ala Ala Glu Gly Asp Gly Asp Lys Lys Gly Asn
 115 120 125
 Ala Glu Gly Ser Ser Asp Glu Glu Gly Lys Leu Val Ile Asp Glu Pro
 130 135 140
 Ala Lys Glu Lys Asn Glu Lys Gly Ala Leu Lys Arg Arg Ala Gly Asp
 145 150 155 160
 Leu Leu Glu Asp Ser Pro Lys Arg Pro Lys Glu Ala Glu Asn Pro Glu
 165 170 175
 Gly Glu Glu Lys Glu Ala Ala Thr Leu Glu Val Glu Arg Pro Leu Pro
 180 185 190
 Met Glu Val Glu Lys Asn Ser Thr Pro Ser Glu Pro Gly Ser Gly Arg
 195 200 205
 Gly Pro Pro Gln Glu Glu Glu Glu Asp Glu Glu Glu Ala
 210 215 220
 Thr Lys Glu Asp Ala Glu Ala Pro Gly Ile Arg Asp His Glu Ser Leu
 225 230 235 240

<210> 15

<211> 3689

<212> DNA

<213> Homo sapiens

<400> 15

aagatctcat	aaaatctatg	ctgaggaatg	agcgacagtt	caaggaggag	aagcttgcag	60
agcagctcaa	gcaagctgag	gagctcaggc	aatataaagt	cctggttcac	gctcaggaac	120
gagagctgac	ccagtttaagg	gagaagttgc	gggaaggggag	agatgcctcc	cgctcattga	180
atagcatct	ccaggccctc	ctcaactccgg	atgagccgga	caagtcccag	gggcaggacc	240
tccaagaaca	gctggctgag	gggtgttagac	tggcacacga	ccttgtccaa	aagctcagcc	300
cagaaaaatga	caacgatgac	gatgaagatg	ttcaagttga	ggtggctgag	aaagtgcaga	360
aatcgctgc	ccccagggag	atgcagaagg	ctgaagaaaa	ggaagtcct	gaggactcac	420
tggaggaatg	tgccatca	tggtcaata	gccatggccc	ttatgactcc	aaccagccac	480
ataggaaaac	caaaatcaca	tttgaggaag	acaaagtgcg	ctcaactctc	attggctcat	540
cctctcatgt	tgaatggag	gatgctgtac	acattattcc	agaaaaatgaa	agtgatgatg	600
aggaagagga	agaaaaagga	ccagtgtctc	ccaggaatct	gcaggagtct	gaagaggagg	660
aagtcccca	ggagtcttgg	gatgaagggt	attcgactct	ctcaattcct	cctgaaatgt	720
tggcctcgta	caagtcttac	agcagcacat	ttcactcatt	agaggaacag	caagtctgca	780
tggctgttga	cataggcaga	catcggtggg	atcaagtgaa	aaaggaggac	cacgaggccaa	840
caggccccag	gctcagcaga	gagctgtgg	atgagaaaagg	gcctgaagtc	ttgcaggact	900
cactggatag	atgttattca	actccttcag	gttgcattga	actgactgac	tcatgccagc	960
cctacagaag	tgccttttac	gtattggagc	aacagctgt	tggcttggct	gttaacatgg	1020
atgaaattga	aaagtaccaa	gaagtggaa	aagaccaaga	cccatcatgc	cccaggctca	1080
gcagggagct	gctggatgag	aaagagcctg	aagtcttgc	ggactcaactg	ggttagatgtt	1140
attcgactcc	tccaggttat	cttgaactgc	ctgactttag	ccagccctac	agcagtgtcg	1200
tttactcatt	ggaggaacag	taccttggct	tggcttgc	cgtggacaga	attaaaaagg	1260
accaagaaga	ggaagaagac	caaggcccac	catgcccag	gctcagcagg	gagctgtgg	1320
aggttagtaga	gcctgaagtc	ttgcaggact	cactggatag	atgttattca	actccttcca	1380
gttgcattga	acagcctgac	tcctgccagc	cctatggaag	ttccttttat	gcattggagg	1440
aaaagcatgt	tggcttttct	cttgacgtgg	gagaaattga	aaagaagggg	aaggggaaaga	1500
aaagaagggg	aagaagatca	aagaaggaaa	gaagaagggg	aagaaaagaa	ggggaaagaag	1560
atcaaaaacc	accatgcccc	aggtctcagca	gggagctgt	ggatgagaaa	gggcctgaag	1620
tcttcagaga	ctcaactggat	agatgttatt	caactccttc	aggtgttctt	gaactgactg	1680
actcatgcac	gccctacaga	agtgcctttt	acatattgg	gcaacagcgt	gttggcttgg	1740
ctgttgacat	ggatgaaaatt	gaaaagtacc	aagaagtgg	agaagacaa	gacccatcat	1800
gccccaggt	cagcggggag	ctgttgatg	agaaaagagcc	tgaagtcttgc	caggagtccac	1860
tggatagatg	ctattcaact	ccttcaggtt	gttgcattact	gactgactca	tgccagccct	1920
acagaagtc	cttttacata	ttggagcaac	agcgtttgg	cttggctgtt	gacatggatg	1980
aaattgaaaa	gtaccaagaa	gtggagaag	accaagaccc	atcatgcccc	aggctcagca	2040
gggagctgt	ggatgagaaa	gagcctgaag	tcttcagga	ctcaactgggt	agatgttatt	2100

cgactcccttc	aggttatctt	gaactgcctg	acttaggc	gccctacagc	agtgcgttt	2160
actcattgg	ggaacagatc	cttggcttgg	ctcttgacgt	ggacagaatt	aaaaaggacc	2220
aagaagagga	agaagaccaa	ggcccacca	gccccaggct	cagcagggag	ctgctggagg	2280
tagtagagcc	tgaagtctt	caggactc	tggatagatg	ttattcaact	ccttcagtt	2340
gtcttgaaca	gcctgactcc	tgccagccct	atggaaagt	tttttatgca	ttggaggaaa	2400
aacatgttgg	cttttcttt	gacgtggag	aaattgaaaa	gaaggggaag	gggaagaaaa	2460
gaaggggaaag	aagatcaaag	aaggaaagaa	gaaggggaag	aaaagaaggg	gaagaagatc	2520
aaaacccacc	atgc	ctcaacagca	tgctgatg	agtggaaagag	cctgaagtct	2580
tgcaggactc	actggtatata	tgttattc	ctccgtcaat	gtactttgaa	ctac	2640
cattccagca	ctacagaagt	gtgtttact	catttggaga	agagcatatc	agcttgc	2700
tttacgtgg	caatagg	tttactt	cgggacaag	tcccacctg	gtgttccaga	2760
tgggagtcat	atcccacaa	taagcagcc	tactaagcc	gagagggtgc	atccctcg	2820
gcaggaccta	taggcacgt	aagattt	tgaaagtaca	ttccat	gaagcccaga	2880
cataggatgg	gtcagtggc	atggctctat	tcctattc	aaaccatg	agtggcaacc	2940
tgtgtc	ctgaagacaa	tggacccac	ttagggt	tcacgtt	taactgt	3000
gcacatgccc	ggagtgtatc	gtcagacatt	ttaattt	ccacgtatct	ctgggt	3060
acaaaatcc	tcagggatgt	catttt	gcatgtct	gagttctat	acctgt	3120
ggtcattgtc	atctt	ttagctcatc	caaagg	ttt	caatgaac	3180
aacctcatc	tttgtgtt	cagtgtt	ttgtt	tttgc	taaacacagg	3240
agggatcc	ggctgaggat	tgtat	ttc	tgatccat	gt	3300
ccgttagct	ccttggta	gagaaggcc	agtc	c	gtc	3360
tttaggaagac	cacagctaga	tggacaa	catttgg	tttgc	gtc	3420
aattccatc	tgttagagaac	aggagt	ggcttgc	tttgc	gtc	3480
ggactctgc	ggtgcagaat	atgacat	ccatgtt	tttgc	gtc	3540
gtttcatagg	aggtatc	cagaca	atgt	ccat	gtc	3600
acctgtctcc	ttcacatagt	ccat	atc	atc	atc	3660
atttcgg	aaaaaaagt	acaat	caca	aaaaaa	aaaaaa	3689
aaaaagata						

<210> 16
<211> 921
<212> PRT
<213> *Homo sapiens*

```

<400> 16
Met Leu Arg Asn Glu Arg Gln Phe Lys Glu Glu Lys Leu Ala Glu Gln
      1           5           10          15
Leu Lys Gln Ala Glu Glu Leu Arg Gln Tyr Lys Val Val Leu Val His Ala
      20          25          30
Gln Glu Arg Glu Leu Thr Gln Leu Arg Glu Lys Leu Arg Glu Gly Arg
      35          40          45
Asp Ala Ser Arg Ser Leu Asn Glu His Leu Gln Ala Leu Leu Thr Pro
      50          55          60
Asp Glu Pro Asp Lys Ser Gln Gly Gln Asp Leu Gln Glu Gln Leu Ala
      65          70          75          80
Glu Gly Cys Arg Leu Ala Gln His Leu Val Gln Lys Leu Ser Pro Glu
      85          90          95
Asn Asp Asn Asp Asp Asp Glu Asp Val Gln Val Glu Val Ala Glu Lys
      100         105         110
Val Gln Lys Ser Ser Ala Pro Arg Glu Met Gln Lys Ala Glu Glu Lys
      115         120         125
Glu Val Pro Glu Asp Ser Leu Glu Glu Cys Ala Ile Thr Cys Ser Asn
      130         135         140
Ser His Gly Pro Tyr Asp Ser Asn Gln Pro His Arg Lys Thr Lys Ile
      145         150         155          160
Thr Phe Glu Glu Asp Lys Val Asp Ser Thr Leu Ile Gly Ser Ser Ser
      165         170         175
His Val Glu Trp Glu Asp Ala Val His Ile Ile Pro Glu Asn Glu Ser
      180         185         190
Asp Asp Glu Glu Glu Glu Lys Gly Pro Val Ser Pro Arg Asn Leu
      195         200         205

```

Gln Glu Ser Glu Glu Glu Val Pro Gln Glu Ser Trp Asp Glu Gly
 210 215 220
 Tyr Ser Thr Leu Ser Ile Pro Pro Glu Met Leu Ala Ser Tyr Lys Ser
 225 230 235 240
 Tyr Ser Ser Thr Phe His Ser Leu Glu Glu Gln Gln Val Cys Met Ala
 245 250 255
 Val Asp Ile Gly Arg His Arg Trp Asp Gln Val Lys Lys Glu Asp His
 260 265 270
 Glu Ala Thr Gly Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Gly
 275 280 285
 Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser
 290 295 300
 Gly Cys Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser Ala Phe
 305 310 315 320
 Tyr Val Leu Glu Gln Arg Val Gly Leu Ala Val Asn Met Asp Glu
 325 330 335
 Ile Glu Lys Tyr Gln Glu Val Glu Asp Gln Asp Pro Ser Cys Pro
 340 345 350
 Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Glu Pro Glu Val Leu Gln
 355 360 365
 Asp Ser Leu Gly Arg Cys Tyr Ser Thr Pro Ser Gly Tyr Leu Glu Leu
 370 375 380
 Pro Asp Leu Gly Gln Pro Tyr Ser Ser Ala Val Tyr Ser Leu Glu Glu
 385 390 395 400
 Gln Tyr Leu Gly Leu Ala Leu Asp Val Asp Arg Ile Lys Lys Asp Gln
 405 410 415
 Glu Glu Glu Asp Gln Gly Pro Pro Cys Pro Arg Leu Ser Arg Glu
 420 425 430
 Leu Leu Glu Val Val Glu Pro Glu Val Leu Gln Asp Ser Leu Asp Arg
 435 440 445
 Cys Tyr Ser Thr Pro Ser Ser Cys Leu Glu Gln Pro Asp Ser Cys Gln
 450 455 460
 Pro Tyr Gly Ser Ser Phe Tyr Ala Leu Glu Glu Lys His Val Gly Phe
 465 470 475 480
 Ser Leu Asp Val Gly Glu Ile Glu Lys Lys Gly Lys Lys Lys Arg
 485 490 495
 Arg Gly Arg Arg Ser Lys Lys Glu Arg Arg Arg Gly Arg Lys Glu Gly
 500 505 510
 Glu Glu Asp Gln Asn Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu Leu
 515 520 525
 Asp Glu Lys Gly Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr
 530 535 540
 Ser Thr Pro Ser Gly Cys Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr
 545 550 555 560
 Arg Ser Ala Phe Tyr Ile Leu Glu Gln Gln Arg Val Gly Leu Ala Val
 565 570 575
 Asp Met Asp Glu Ile Glu Lys Tyr Gln Glu Val Glu Glu Asp Gln Asp
 580 585 590
 Pro Ser Cys Pro Arg Leu Ser Gly Glu Leu Leu Asp Glu Lys Glu Pro
 595 600 605
 Glu Val Leu Gln Glu Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly
 610 615 620
 Cys Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser Ala Phe Tyr
 625 630 635 640
 Ile Leu Glu Gln Gln Arg Val Gly Leu Ala Val Asp Met Asp Glu Ile
 645 650 655
 Glu Lys Tyr Gln Glu Val Glu Glu Asp Gln Asp Pro Ser Cys Pro Arg
 660 665 670
 Leu Ser Arg Glu Leu Leu Asp Glu Lys Glu Pro Glu Val Leu Gln Asp
 675 680 685

Ser Leu Gly Arg Cys Tyr Ser Thr Pro Ser Gly Tyr Leu Glu Leu Pro
 690 695 700
 Asp Leu Gly Gln Pro Tyr Ser Ser Ala Val Tyr Ser Leu Glu Glu Gln
 705 710 715 720
 Tyr Leu Gly Leu Ala Leu Asp Val Asp Arg Ile Lys Lys Asp Gln Glu
 725 730 735
 Glu Glu Glu Asp Gln Gly Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu
 740 745 750
 Leu Glu Val Val Glu Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys
 755 760 765
 Tyr Ser Thr Pro Ser Ser Cys Leu Glu Gln Pro Asp Ser Cys Gln Pro
 770 775 780
 Tyr Gly Ser Ser Phe Tyr Ala Leu Glu Glu Lys His Val Gly Phe Ser
 785 790 795 800
 Leu Asp Val Gly Glu Ile Glu Lys Lys Gly Lys Gly Lys Arg Arg
 805 810 815
 Gly Arg Arg Ser Lys Lys Glu Arg Arg Gly Arg Lys Glu Gly Glu
 820 825 830
 Glu Asp Gln Asn Pro Pro Cys Pro Arg Leu Asn Ser Met Leu Met Glu
 835 840 845
 Val Glu Glu Pro Glu Val Leu Gln Asp Ser Leu Asp Ile Cys Tyr Ser
 850 855 860
 Thr Pro Ser Met Tyr Phe Glu Leu Pro Asp Ser Phe Gln His Tyr Arg
 865 870 875 880
 Ser Val Phe Tyr Ser Phe Glu Glu Glu His Ile Ser Phe Ala Leu Tyr
 885 890 895
 Val Asp Asn Arg Phe Phe Thr Leu Thr Val Thr Ser Leu His Leu Val
 900 905 910
 Phe Gln Met Gly Val Ile Phe Pro Gln
 915 920

<210> 17

<211> 664

<212> DNA

<213> Homo sapiens

<400> 17

```

aacccaatga tcctgcagca gcccttgcag cgaggcccccc agggaggggc ccagcgccctc      60
ccgcgggccc ccttgggggt gacttggggc ctggacgcca gctcccctct ccgaggagct      120
gtgcccattga gcaccaagcg gcgcctggag gaggagcagg agcctctgctg caagcagttt      180
ctgtctgagg agaacatggc cacccacttc tctcaactca gcctgcacaa tgaccacccc      240
tactgcagcc ccccatgac ttctccccc gcccctgcccc caactcaggag cccttgctct      300
gagctgcttc tctggcgcta ttctggcagc ctcatccctg agggccctccg tctgctgagg      360
ctgggggaca ccccaagtcc ccccttacccct gcaaccccaag ctggggacat aatggagctc      420
tgagtgctgg tggacagtgc ccctccacc ttcttcttc cccacaacag aagagaccag      480
cgactccccc aaaggagcaa gtttctccc tctcctgcag agtaggcattc tgggcaccaa      540
gaccttccct caacagagga cactgagccc aacggagttc tgggatggga ggggtgggag      600
catggaaagg gaggcatccc acccccaaga agaactgaat aaagattgct gagcaaagga      660
aggc
  
```

<210> 18

<211> 138

<212> PRT

<213> Homo sapiens

<400> 18

```

Met Ile Leu Gln Gln Pro Leu Gln Arg Gly Pro Gln Gly Gly Ala Gln
1 5 10 15
Arg Leu Pro Arg Ala Ala Leu Gly Val Thr Trp Gly Leu Asp Ala Ser
20 25 30
  
```

Ser Pro Leu Arg Gly Ala Val Pro Met Ser Thr Lys Arg Arg Leu Glu
 35 40 45
 Glu Glu Gln Glu Pro Leu Arg Lys Gln Phe Leu Ser Glu Glu Asn Met
 50 55 60
 Ala Thr His Phe Ser Gln Leu Ser Leu His Asn Asp His Pro Tyr Cys
 65 70 75 80
 Ser Pro Pro Met Thr Phe Ser Pro Ala Leu Pro Pro Leu Arg Ser Pro
 85 90 95
 Cys Ser Glu Leu Leu Trp Arg Tyr Pro Gly Ser Leu Ile Pro Glu
 100 105 110
 Ala Leu Arg Leu Leu Arg Leu Gly Asp Thr Pro Ser Pro Pro Tyr Pro
 115 120 125
 Ala Thr Pro Ala Gly Asp Ile Met Glu Leu
 130 135

<210> 19
 <211> 2056
 <212> DNA
 <213> Homo sapiens

<400> 19
 ggaaccgcgg ctgctggaca agaggggtgc ggtggatact gacctttgtc cccgcctcg 60
 cgtgaagaca cagcgcatct ccccgctgtc ggcttcctcc acagaacccg tttcgggcct 120
 cagagcgtct ggtgagatgc ttgtccgcgt gctgctgcgt ctacccatgt gctgggcgt 180
 ggaggtcaag aggccccggg gcgtctccct caccaatcat cacttctacg atgagtccaa 240
 gccttcacc tgcctggacg gttcggccac catcccattt gatcaggta acgatgacta 300
 ttgcgactgc aaagatggct ctgacgagcc aggcacggct gcctgtccta atggcagtt 360
 ccactgcacc aacactggct ataagccct gtatatcccc tccaacccggg tcaacgcatt 420
 tgtttgac tgctgcgtt gaacagacgc gtacaacacgc ggegtcatct gtgagaacac 480
 ctgcaaagag aaggccgtt agggagaga gtcctgcag cagatggccg aggtcacccg 540
 cgaagggttc cgtctgaaga agatccttat tgaggactgg aagaaggcac gggaggagaa 600
 gcagaaaaag ctcattgac tacaggctgg gaagaagtct ctgaaagacc aggtggagat 660
 gctgcggaca gtgaaggagg aagctgagaa gccagagaga gaggccaaag agcagcacca 720
 gaagctgtgg gaagagcagc tggctgcgtc caaggccaa caggagcagg agctggccg 780
 tgatgccttc aaggagctgg atgatgacat ggacggacg gtctcggtga ctgagctgca 840
 gactcacccg gagctggaca cagatggggta tggggcggtt tcagaagcgg aagtcagggc 900
 cctcctca gggcacacac agacagacgc caccttttac tgcggccgc tctggccgc 960
 catcaggac aagtaccggt ccgaggcact gcccacccgac ctccagcac cttctgcccc 1020
 tgacttgacg gagcccaagg aggagcagcc gccagtcccc tcgtcgccca cagaggagga 1080
 ggaggaggag gaggaggagg aagaagaggc tgaagaagag gaggaggagg aggattccga 1140
 ggaggcccca cgcgcactgt caccggccgc gcccggccgc cctgctggg aagacaaaat 1200
 gcccgcctac gacgacgaca cgcggccctt catcgatgtc gcccaggagg cccgcaacaa 1260
 gttcgaggag gcccggccgt cgctgaagga catggaggag tccatcgaga acctggagca 1320
 agagattttt ttgtactttt gcccccaacgg ggagttgtt tacctgtaca gccagtgtca 1380
 cgagctcacc accaacgaat acgtctaccg cctctggccc ttcaagcttg tctcgagaa 1440
 acccaaactc gggggctctc ccaccagctt tggcacctgg ggctcatggta ttggcccgaa 1500
 ccacgacaag ttcaagtgtca tgaagtatga gcaaggccacg ggctgctggc agggcccaa 1560
 ccgctccacc accgtgcgc tccctgtgcgg gaaagagacc atggtgacca gcaccacaga 1620
 gcccagtgc tgcgagttacc tcatggacgt gatgacccca gcccgcctgcc cggagccacc 1680
 gcctgaagca cccaccgaag acgaccatga cgagctctag ctggatgggc gcagagaacc 1740
 tcaagaagcc atgaagccag cccctgcagt gcccgtccacc cgcggccctgt ggctgcctg 1800
 tggctctgtt gcccctctt gtggccggcag gacctttgtt gggcttcgtt ccctgcctgt 1860
 gggcccaaggc ggggtggc cacattccca gcccccaaca ggctccaaag atggtaaag 1920
 gagcttgccc tccctggcc cccccaccttg gtactcgcc ccaccacccc cagccctgtc 1980
 cctgccaccc ctccatgtgg ggactagtga atgacttgac ctgtgaccc aatacaataa 2040
 atgtatccc ccaccc 2056

<210> 20
 <211> 527
 <212> PRT

<213> Homo sapiens

<400> 20

Met Leu Leu Pro Leu Leu Leu Leu Leu Pro Met Cys Trp Ala Val Glu
 1 5 10 15
 Val Lys Arg Pro Arg Gly Val Ser Leu Thr Asn His His Phe Tyr Asp
 20 25 30
 Glu Ser Lys Pro Phe Thr Cys Leu Asp Gly Ser Ala Thr Ile Pro Phe
 35 40 45
 Asp Gln Val Asn Asp Asp Tyr Cys Asp Cys Lys Asp Gly Ser Asp Glu
 50 55 60
 Pro Gly Thr Ala Ala Cys Pro Asn Gly Ser Phe His Cys Thr Asn Thr
 65 70 75 80
 Gly Tyr Lys Pro Leu Tyr Ile Pro Ser Asn Arg Val Asn Asp Gly Val
 85 90 95
 Cys Asp Cys Cys Asp Gly Thr Asp Glu Tyr Asn Ser Gly Val Ile Cys
 100 105 110
 Glu Asn Thr Cys Lys Glu Lys Gly Arg Lys Glu Arg Glu Ser Leu Gln
 115 120 125
 Gln Met Ala Glu Val Thr Arg Glu Gly Phe Arg Leu Lys Lys Ile Leu
 130 135 140
 Ile Glu Asp Trp Lys Lys Ala Arg Glu Glu Lys Gln Lys Lys Leu Ile
 145 150 155 160
 Glu Leu Gln Ala Gly Lys Lys Ser Leu Glu Asp Gln Val Glu Met Leu
 165 170 175
 Arg Thr Val Lys Glu Glu Ala Glu Lys Pro Glu Arg Glu Ala Lys Glu
 180 185 190
 Gln His Gln Lys Leu Trp Glu Glu Gln Leu Ala Ala Ala Lys Ala Gln
 195 200 205
 Gln Glu Gln Glu Leu Ala Ala Asp Ala Phe Lys Glu Leu Asp Asp Asp
 210 215 220
 Met Asp Gly Thr Val Ser Val Thr Glu Leu Gln Thr His Pro Glu Leu
 225 230 235 240
 Asp Thr Asp Gly Asp Gly Ala Leu Ser Glu Ala Glu Ala Gln Ala Leu
 245 250 255
 Leu Ser Gly Asp Thr Gln Thr Asp Ala Thr Ser Phe Tyr Asp Arg Val
 260 265 270
 Trp Ala Ala Ile Arg Asp Lys Tyr Arg Ser Glu Ala Leu Pro Thr Asp
 275 280 285
 Leu Pro Ala Pro Ser Ala Pro Asp Leu Thr Glu Pro Lys Glu Glu Gln
 290 295 300
 Pro Pro Val Pro Ser Ser Pro Thr Glu Glu Glu Glu Glu Glu Glu
 305 310 315 320
 Glu Glu Glu Ala Glu Glu Glu Glu Glu Glu Asp Ser Glu Glu
 325 330 335
 Ala Pro Pro Pro Leu Ser Pro Pro Gln Pro Ala Ser Pro Ala Glu Glu
 340 345 350
 Asp Lys Met Pro Pro Tyr Asp Glu Gln Thr Gln Ala Phe Ile Asp Ala
 355 360 365
 Ala Gln Glu Ala Arg Asn Lys Phe Glu Glu Ala Glu Arg Ser Leu Lys
 370 375 380
 Asp Met Glu Glu Ser Ile Arg Asn Leu Glu Gln Glu Ile Ser Phe Asp
 385 390 395 400
 Phe Gly Pro Asn Gly Glu Phe Ala Tyr Leu Tyr Ser Gln Cys Tyr Glu
 405 410 415
 Leu Thr Thr Asn Glu Tyr Val Tyr Arg Leu Cys Pro Phe Lys Leu Val
 420 425 430
 Ser Gln Lys Pro Lys Leu Gly Gly Ser Pro Thr Ser Leu Gly Thr Trp
 435 440 445
 Gly Ser Trp Ile Gly Pro Asp His Asp Lys Phe Ser Ala Met Lys Tyr

450	455	460													
Glu	Gln	Gly	Thr	Gly	Cys	Trp	Gln	Gly	Pro	Asn	Arg	Ser	Thr	Thr	Val
465				470				475							480
Arg	Leu	Leu	Cys	Gly	Lys	Glu	Thr	Met	Val	Thr	Ser	Thr	Thr	Glu	Pro
								485		490					495
Ser	Arg	Cys	Glu	Tyr	Leu	Met	Glu	Leu	Met	Thr	Pro	Ala	Ala	Cys	Pro
						500		505				510			
Glu	Pro	Pro	Pro	Glu	Ala	Pro	Thr	Glu	Asp	Asp	His	Asp	Glu	Leu	
						515		520				525			

<210> 21
<211> 384
<212> DNA
<213> Homo sapiens

<400> 21

atgcctaaat	caaaggaact	tgtttcttca	agcttcttcg	gcagtgattc	tgacagttag	60
gttgacaaaa	agttaaagag	gaaaaaagcaa	gttgctccag	aaaaacctgt	aaagaaaaca	120
aagacagggt	agacttcgag	agccctgtca	tcttcttaaac	agagcagcag	cagcagagat	180
gataacatgt	ttcagattgg	gaaaatggagg	tacgttagt	ttcgcgattt	taaaggcaaa	240
gtgctaattg	atattagaga	atattggatg	gatcctgaag	gtgaaatgaa	accaggaaga	300
aaaggatattt	ctttaaatcc	agaacaatgg	agccagctga	aggaacagat	ctctgatata	360
gatgacgcag	taagaaagct	gtgaa				384

<210> 22
<211> 127
<212> PRT
<213> Homo sapiens

<400> 22

Met	Pro	Lys	Ser	Lys	Glu	Leu	Val	Ser	Ser	Ser	Ser	Gly	Ser	Asp	
1					5			10				15			
Ser	Asp	Ser	Glu	Val	Asp	Lys	Lys	Leu	Lys	Arg	Lys	Lys	Gln	Val	Ala
								20		25			30		
Pro	Glu	Lys	Pro	Val	Lys	Lys	Gln	Lys	Thr	Gly	Glu	Thr	Ser	Arg	Ala
								35		40			45		
Leu	Ser	Ser	Ser	Lys	Gln	Ser	Ser	Ser	Ser	Arg	Asp	Asp	Asn	Met	Phe
								50		55			60		
Gln	Ile	Gly	Lys	Met	Arg	Tyr	Val	Ser	Val	Arg	Asp	Phe	Gly	Lys	
								65		70			75		80
Val	Leu	Ile	Asp	Ile	Arg	Glu	Tyr	Trp	Met	Asp	Pro	Glu	Gly	Glu	Met
								85		90			95		
Lys	Pro	Gly	Arg	Lys	Gly	Ile	Ser	Leu	Asn	Pro	Glu	Gln	Trp	Ser	Gln
								100		105			110		
Leu	Lys	Glu	Gln	Ile	Ser	Asp	Ile	Asp	Asp	Ala	Val	Arg	Lys	Leu	
								115		120			125		

<210> 23
<211> 1554
<212> DNA
<213> Homo sapiens

<400> 23

gaccacaatg	gcggccgcca	ccctgctg	cgcgacccc	cacttcagcg	gtctcgccgc	60
cggccggacc	ttcctgctgc	agggtctgtt	gcggctgctg	aaagccccgg	cattgcctct	120
cttgtccgc	ggcctggccg	tggaggccaa	gaagacttac	gtgcgcgaca	agccacatgt	180
gaatgtgggt	accatcgcc	atgtggacca	cgggaagacc	acgctgactg	cagccatcac	240
gaagattcta	gctgagggag	gtggggctaa	gttcaagaag	tacgaggaga	ttgacaatgc	300
cccgaggag	cgagctcggg	gtatcaccat	caatgcggct	catgtggagt	atagcactgc	360
cggccgcccac	tacgcccaca	cagactgccc	gggtcatgca	gattatgtta	agaatatatgat	420

cacaggcaact	gcacccctcg	acggctgcat	cctgggtgta	gcagccaatg	acggccccat	480
gccccagacc	cgagagcaact	tattactggc	cagacagatt	ggggtgagc	atgtgggtgt	540
gtatgtgaac	aaggctgacg	ctgtccagga	ctctgagatg	gtggaaactgg	tggaactgga	600
gatccgggag	ctgctcaccc	agtttggcta	taaaggggag	gagaccccag	tcatcgtagg	660
ctctgctctc	tgtgccttg	agggtcggga	ccctgagttt	ggcctgaagt	ctgtgcagaa	720
gctactggat	gctgtggaca	cttacatccc	agtgcggcc	cgggacctgg	agaagccctt	780
cctgtgcct	gtggaggcgg	tgtactccgt	ccctggccgt	ggcacccgtgg	tgacaggtagc	840
actagagcgt	ggcattttaa	agaagggaga	cgagtgtgag	ctccctaggac	atagcaagaa	900
catccgcact	gtgggtgacag	gcattgagat	gttccacaag	agcctggaga	ggcccgaggc	960
cggagataac	ctcgcccccc	ttgtccgagg	cttgaagcgg	gaggacttc	ggcggggcct	1020
ggtcatggtc	aagccaggtt	ccatcaagcc	ccaccagaag	gtggaggccc	aggtttacat	1080
cctcagcaag	gaggaagggtg	gccgcaccaa	gcccttgtg	tcccacttca	tgcctgtcat	1140
gttctccctg	acttgaaca	tggcctgtcg	gattatcctg	cccccagaga	aggagcttgc	1200
catgccccgg	gaggacctga	agttcaacctt	aatcttgcgg	cagccaatga	tcttagagaa	1260
aggccagcgt	ttcacccctgc	gagatggcaa	ccggactatt	ggcacccgtc	tagtcaccaa	1320
cacgctggcc	atgactggagg	agagaagaaa	tatcaaattgg	ggttgagtgt	gcagatctct	1380
gctcagcttc	ccttgcgttt	aaggcctgcc	ctagccaggg	ctccctcctg	cttccagttac	1440
cctctcatgg	cataggctgc	aacccagcag	agggcagcta	gatggacatt	tcccctgttc	1500
ggaagggtt	gcctgcctgg	ctggggaggt	cagtaaactt	tgaatagtaa	gcca	1554

<210> 24

<211> 452

<212> PRT

<213> Homo sapiens

<400> 24

Met Ala Ala Ala Thr	Leu Leu Arg Ala Thr	Pro His Phe Ser Gly	Leu			
1	5	10	15			
Ala Ala Gly Arg Thr	Phe Leu Leu Gln Gly	Leu Leu Arg	Leu Leu Lys			
20	25	30				
Ala Pro Ala Leu Pro	Leu Leu Cys Arg	Gly Leu Ala Val	Glu Ala Lys			
35	40	45				
Lys Thr Tyr Val Arg Asp	Lys Pro His Val	Asn Val Gly	Thr Ile Gly			
50	55	60				
His Val Asp His Gly	Lys Thr Thr Leu	Thr Ala Ala Ile	Thr Lys Ile			
65	70	75	80			
Leu Ala Glu Gly Gly	Ala Lys Phe Lys	Lys Tyr Glu Glu Ile	Asp			
85	90	95				
Asn Ala Pro Glu Glu Arg	Ala Arg Gly Ile	Thr Ile Asn Ala Ala His				
100	105	110				
Val Glu Tyr Ser Thr	Ala Ala Arg His	Tyr Ala His Thr Asp	Cys Pro			
115	120	125				
Gly His Ala Asp Tyr	Val Lys Asn Met	Ile Thr Gly	Thr Ala Pro Leu			
130	135	140				
Asp Gly Cys Ile Leu	Val Val Ala Ala Asn	Asp Gly Pro Met	Pro Gln			
145	150	155	160			
Thr Arg Glu His	Leu Leu Leu Ala Arg	Gln Ile Gly Val	Glu His Val			
165	170	175				
Val Val Tyr Val Asn	Lys Ala Asp Ala Val	Gln Asp Ser	Glu Met Val			
180	185	190				
Glu Leu Val Glu Leu	Glu Ile Arg Glu Leu	Leu Thr Glu Phe	Gly Tyr			
195	200	205				
Lys Gly Glu Glu Thr	Pro Val Ile Val	Gly Ser Ala	Leu Cys Ala	Leu		
210	215	220				
Glu Gly Arg Asp Pro	Glu Leu Gly Leu	Lys Ser Val Gln	Lys Leu	Leu		
225	230	235	240			
Asp Ala Val Asp Thr	Tyr Ile Pro Val	Pro Ala Arg Asp	Leu Glu	Lys		
245	250	255				
Pro Phe Leu Leu Pro	Val Glu Ala Val	Tyr Ser Val	Pro Gly Arg	Gly		
260	265	270				

Thr Val Val Thr Gly Thr Leu Glu Arg Gly Ile Leu Lys Lys Gly Asp
 275 280 285
 Glu Cys Glu Leu Leu Gly His Ser Lys Asn Ile Arg Thr Val Val Thr
 290 295 300
 Gly Ile Glu Met Phe His Lys Ser Leu Glu Arg Ala Glu Ala Gly Asp
 305 310 315 320
 Asn Leu Gly Ala Leu Val Arg Gly Leu Lys Arg Glu Asp Leu Arg Arg
 325 330 335
 Gly Leu Val Met Val Lys Pro Gly Ser Ile Lys Pro His Gln Lys Val
 340 345 350
 Glu Ala Gln Val Tyr Ile Leu Ser Lys Glu Glu Gly Gly Arg His Lys
 355 360 365
 Pro Phe Val Ser His Phe Met Pro Val Met Phe Ser Leu Thr Trp Asn
 370 375 380
 Met Ala Cys Arg Ile Ile Leu Pro Pro Glu Lys Glu Leu Ala Met Pro
 385 390 395 400
 Gly Glu Asp Leu Lys Phe Asn Leu Ile Leu Arg Gln Pro Met Ile Leu
 405 410 415
 Glu Lys Gly Gln Arg Phe Thr Leu Arg Asp Gly Asn Arg Thr Ile Gly
 420 425 430
 Thr Gly Leu Val Thr Asn Thr Leu Ala Met Thr Glu Glu Glu Lys Asn
 435 440 445
 Ile Lys Trp Gly
 450

<210> 25

<211> 2201

<212> DNA

<213> Homo sapiens

<400> 25

tttttttttt	cgtcttagcc	acgcagaagt	cgcgtgtcta	gtttgttcg	acggccggacc	60
gcgtaaagaga	cgatgtatgtt	ggcacggaa	ggtgagagg	gattcgttgt	gaagggtccgg	120
ggcttgcctt	ggcttgcctc	ggccgatgaa	gtcagaggt	tttttctga	ctgcaaaaatt	180
caaaaatgggg	ctcaaggat	tcgtttcata	tacaccagag	aaggcagacc	aagtggcgag	240
gctttgtt	aacttgaatc	agaagatgaa	gtcaaattgg	ccctgaaaaaa	agacagagaa	300
actatgggac	acagatatgt	tgaagtattc	aagtcaaca	acgttgaat	ggattgggtg	360
ttgaagcata	ctggccaaa	tagtcctgac	acggccaatg	atggcttgt	acggctttaga	420
ggacttcctt	ttggatgttag	caaggaagaa	attgttcagt	tcttctcagg	gttggaaatc	480
gtgccaaatg	ggataaacatt	gccgggtggac	ttccagggga	ggagtacggg	ggagggcttc	540
gtgcagttt	cttcacacagga	aatagctgaa	aaggctctaa	agaaaacacaa	ggaaagaata	600
gggcacagt	atattgaaat	ctttaagagc	agtagagctg	aagtttagaac	tcattatgat	660
ccaccacgaa	agcttatggc	catgcagcgg	ccaggtcctt	atgacagacc	tggggctgtt	720
agagggtata	acagcattgg	cagaggagct	ggcttggaga	ggatgaggcg	tgggtcttat	780
ggtggaggct	atggaggcta	tgatgattac	aatggctata	atgatggcta	tggattttgg	840
tcagatagat	ttggaaagaga	cctcaattac	tgtttttcag	gaatgtctg	tcacagatac	900
ggggatggtg	gctctactt	ccagagcaca	acaggacact	gttacacat	gcggggattta	960
ccttacagag	ctactgagaa	tgacatttat	aattttttt	caccgctaa	ccctgtgaga	1020
gtacacattt	aaatttggtcc	tgatggcaga	gtactggtg	aagcagatgt	cgagttcgca	1080
actcatgaag	atgctgtggc	agctatgtca	aaagacaaag	caaatatgca	acacagatat	1140
gtagaactct	tcttgaattc	tacagcagga	gcaagcggtg	gtgcttacga	acacagatat	1200
gtagaactct	tcttgaattc	tacagcagga	gcaagcggtg	gtgctttagg	tagccaaatg	1260
atggggaggca	tgggcttgc	aaaccagtcc	agctacgggg	gcccagccag	ccagcagctg	1320
agtgggggtt	acggaggcgg	ctacgggtgc	cagagcagca	tgagtggata	cgaccaagtt	1380
ttacaggaaa	actccagtga	ttttcaatca	aacattgcat	aggtaaaccaa	ggagcagtga	1440
acagcagcta	ctacagtagt	ggaagccgt	catctatggg	cgtgaacgga	atgggagggt	1500
tgtcttagcat	gtcccaagtatg	agtgggtggat	gggaaatgta	attgatcgat	cctgatcact	1560
gactcttggt	caacccaaaa	tttttttttt	ttttcttaa	gaaaacttca	gtttaacagt	1620
ttctgcaata	caagcttgtg	atttatgctt	actctaagt	gaaatcaggaa	ttgttatgaa	1680
gacttaaggc	ccagtatttt	tgaataacaat	actcatctag	gatgtaaacag	tgaagctgag	1740

taaaactataa	ctgttcaaact	taagttccag	cttttctcaa	gttagttata	ggatgtactt	1800
aaggcgttaag	cgtatttagg	taaaagcagt	tgaattatgt	taaatgttgc	cctttgccac	1860
gtttaatttg	acaactgttt	ggatgcgt	tgaaagacat	gcttttattt	tttttgtaaa	1920
acaatatagg	agctgtgtct	actattaaaa	gtgaaacatt	ttggcatgtt	tgttaattct	1980
agtttcattt	aataacctgt	aaggcacgt	agtttaagct	ttttttttt	ttaagttaat	2040
ggggaaaaattt	tgagacgcaa	taccaatact	taggatttt	gtcttggtgt	ttgtatgaaa	2100
ttctgaggcc	ttgatttaaa	tctttcattt	tattgtgatt	tccttttagg	tatattgcgc	2160
taagtgaaac	ttgtcaaata	aatcctcctt	ttaaaaactg	c		2201

<210> 26

<211> 449

<212> PRT

<213> Homo sapiens

<400> 26

Met	Met	Leu	Gly	Thr	Glu	Gly	Gly	Glu	Phe	Val	Val	Lys	Val	Arg
1										10		15		
Gly	Leu	Pro	Trp	Ser	Cys	Ser	Ala	Asp	Glu	Val	Gln	Arg	Phe	Phe
										20		25		30
Asp	Cys	Lys	Ile	Gln	Asn	Gly	Ala	Gln	Gly	Ile	Arg	Phe	Ile	Tyr
										35		40		45
Arg	Glu	Gly	Arg	Pro	Ser	Gly	Glu	Ala	Phe	Val	Glu	Leu	Glu	Ser
										50		55		60
Asp	Glu	Val	Lys	Leu	Ala	Leu	Lys	Asp	Arg	Glu	Thr	Met	Gly	His
										65		70		75
Arg	Tyr	Val	Glu	Val	Phe	Lys	Ser	Asn	Asn	Val	Glu	Met	Asp	Trp
										85		90		95
Leu	Lys	His	Thr	Gly	Pro	Asn	Ser	Pro	Asp	Thr	Ala	Asn	Asp	Gly
										100		105		110
Val	Arg	Leu	Arg	Gly	Leu	Pro	Phe	Gly	Cys	Ser	Lys	Glu	Glu	Ile
										115		120		125
Gln	Phe	Ser	Gly	Leu	Glu	Ile	Val	Pro	Asn	Gly	Ile	Thr	Leu	Pro
										130		135		140
Val	Asp	Phe	Gln	Gly	Arg	Ser	Thr	Gly	Glu	Ala	Phe	Val	Gln	Phe
										145		150		160
Ser	Gln	Glu	Ile	Ala	Glu	Lys	Ala	Leu	Lys	Lys	His	Lys	Glu	Arg
										165		170		175
Gly	His	Arg	Tyr	Ile	Glu	Ile	Phe	Lys	Ser	Ser	Arg	Ala	Glu	Val
										180		185		190
Thr	His	Tyr	Asp	Pro	Pro	Arg	Lys	Leu	Met	Ala	Met	Gln	Arg	Pro
										195		200		205
Pro	Tyr	Asp	Arg	Pro	Gly	Ala	Gly	Arg	Gly	Tyr	Asn	Ser	Ile	Gly
										210		215		220
Gly	Ala	Gly	Phe	Glu	Arg	Met	Arg	Arg	Gly	Ala	Tyr	Gly	Gly	Tyr
										225		230		240
Gly	Gly	Tyr	Asp	Asp	Gly	Tyr	Asn	Asp	Gly	Tyr	Gly	Phe	Gly	
										245		250		255
Ser	Asp	Arg	Phe	Gly	Arg	Asp	Leu	Asn	Tyr	Cys	Phe	Ser	Gly	Met
										260		265		270
Asp	His	Arg	Tyr	Gly	Asp	Gly	Ser	Thr	Phe	Gln	Ser	Thr	Thr	Gly
										275		280		285
His	Cys	Val	His	Met	Arg	Gly	Leu	Pro	Tyr	Arg	Ala	Thr	Glu	Asp
										290		295		300
Ile	Tyr	Asn	Phe	Phe	Ser	Pro	Leu	Asn	Pro	Val	Arg	Val	His	Ile
										305		310		315
Ile	Gly	Pro	Asp	Gly	Arg	Val	Thr	Gly	Glu	Ala	Asp	Val	Glu	Phe
										325		330		335
Thr	His	Glu	Asp	Ala	Val	Ala	Ala	Met	Ser	Lys	Asp	Lys	Ala	Asn
										340		345		350

Gln His Arg Tyr Val Glu Leu Phe Leu Asn Ser Thr Ala Gly Ala Ser
 355 360 365
 Gly Gly Ala Tyr Glu His Arg Tyr Val Glu Leu Phe Leu Asn Ser Thr
 370 375 380
 Ala Gly Ala Ser Gly Gly Ala Tyr Gly Ser Gln Met Met Gly Gly Met
 385 390 395 400
 Gly Leu Ser Asn Gln Ser Ser Tyr Gly Gly Pro Ala Ser Gln Gln Leu
 405 410 415
 Ser Gly Gly Tyr Gly Gly Tyr Gly Gly Gln Ser Ser Met Ser Gly
 420 425 430
 Tyr Asp Gln Val Leu Gln Glu Asn Ser Ser Asp Phe Gln Ser Asn Ile
 435 440 445
 Ala

<210> 27
 <211> 1852
 <212> DNA
 <213> Homo sapiens

<400> 27

acagcccttc	gtggggccct	ggcaccctg	caccagctgg	gcacatcggt	cgccatccctc	60
atcgcccagg	tgttccggcct	ggactccatc	atggcaaca	aggacctgtg	gccccctgctg	120
ctgagcatca	tcttcatccc	ggccctgctg	cagtgcacatcg	tgtgcctt	ctgcccccgag	180
agtccccgtt	tcctgctcat	caaccgcaac	gaggagaacc	gggccaagag	tgtctaaag	240
aagctgcgcg	ggacagctga	cgtgacccat	gacctgcagg	agatgaagga	agagagtcgg	300
cagatgtatgc	gggagaagaa	ggtcacccatc	ctggagctgt	tccgctccccc	cgccatccgc	360
cagcccatcc	tcatcgctgt	ggtgctgcag	ctgtcccgac	agctgtctgg	catcaacgc	420
gtcttctatt	actccacgg	catcttcgaa	aaggcggggg	tgtagcagcc	tgttatgcc	480
accatttgtt	ccggatcgat	caacacggcc	ttcaactgtcg	tgtgcgtt	tgtgtggag	540
cgagcaggcc	ggcgggaccct	gcacctata	ggccctgcgt	gcatggccgg	ttgtgcata	600
ctcatgacca	tcgcgttagc	actgtggag	cagctaccc	ggatgtctta	tctgagcatc	660
gtggccatct	ttggctttgt	ggccttcttt	gaagtggtc	ctggcccat	cccatggttc	720
atcggtgcgt	aactcttcag	ccagggtcca	cgtccagctg	ccattgcgt	tgcagggttc	780
tccaacttgg	cctcaaattt	cattgtgggc	atgtgttcc	agatgtgg	gcaactgtgt	840
ggtccctacg	tcttcatcat	ttcaactgtg	ctcctggttc	tgttcttcat	ttcacctac	900
ttcaaagttc	ctgagactaa	aggccggacc	ttcgatgaga	tcgttccgg	ttccggcag	960
ggggggagcca	gccaaagtga	caagacaccc	gaggagctgt	tcacatccc	gggggctgtat	1020
tcccaagtgt	gagtgcggcc	agatcaccag	cccgccctgc	tcccagcagc	cctaaggatc	1080
tctcaggagc	acaggcagct	ggatgagact	tccaaacctg	acagatgtca	gcccggccgg	1140
gcctggggct	ccttttccca	gccagcaatg	atgtccagaa	gaatattcag	gacttaacgg	1200
ctccaggatt	ttaacaaaag	caagactgtt	gctcaaatct	attcagacaa	gcaacagggtt	1260
ttataatttt	tttattactg	atttgttat	tttataatca	gcctgagtt	cctgtgccc	1320
catccccaggc	ttcacccctga	atgggttccat	gcctgagggt	ggagactaa	ccctgtcgag	1380
acacttgcct	tcttcaccca	gtaatctgt	aggcgtggac	ctatgtctta	aggacacact	1440
aatcgaacta	tgaactacaa	agcttctatc	ccaggagggt	gctatggcca	cccggttctgc	1500
tggcctggat	ctccccactc	taggggttag	gctccattag	gatttgc	ttcccatctc	1560
ttcctaccca	accactcaaa	ttaatcttc	tttacctgtag	accagttggg	agcactggag	1620
tgcagggagg	agaggggaag	ggccagtctg	ggctgcgggg	ttctagtctc	ctttgcactg	1680
agggccacac	tattaccatg	agaagagggc	ctgtggggc	ctgcaaactc	actgctcaag	1740
aagacatgga	gactcctgcc	ctgttgtgt	tagatgcaag	atatttat	atattttgg	1800
ttgtcaatat	taaatacaga	cactaagtta	tagaaaaaaaaaa	aaaaaaa	aa	1852

<210> 28
 <211> 343
 <212> PRT
 <213> Homo sapiens

<400> 28

Thr Ala Leu Arg Gly Ala Leu Gly Thr Leu His Gln Leu Gly Ile Val
 1 5 10 15
 Val Gly Ile Leu Ile Ala Gln Val Phe Gly Leu Asp Ser Ile Met Gly
 20 25 30
 Asn Lys Asp Leu Trp Pro Leu Leu Leu Ser Ile Ile Phe Ile Pro Ala
 35 40 45
 Leu Leu Gln Cys Ile Val Leu Pro Phe Cys Pro Glu Ser Pro Arg Phe
 50 55 60
 Leu Leu Ile Asn Arg Asn Glu Glu Asn Arg Ala Lys Ser Val Leu Lys
 65 70 75 80
 Lys Leu Arg Gly Thr Ala Asp Val Thr His Asp Leu Gln Glu Met Lys
 85 90 95
 Glu Glu Ser Arg Gln Met Met Arg Glu Lys Lys Val Thr Ile Leu Glu
 100 105 110
 Leu Phe Arg Ser Pro Ala Tyr Arg Gln Pro Ile Leu Ile Ala Val Val
 115 120 125
 Leu Gln Leu Ser Gln Gln Leu Ser Gly Ile Asn Ala Val Phe Tyr Tyr
 130 135 140
 Ser Thr Ser Ile Phe Glu Lys Ala Gly Val Gln Gln Pro Val Tyr Ala
 145 150 155 160
 Thr Ile Gly Ser Gly Ile Val Asn Thr Ala Phe Thr Val Val Ser Leu
 165 170 175
 Phe Val Val Glu Arg Ala Gly Arg Arg Thr Leu His Leu Ile Gly Leu
 180 185 190
 Ala Gly Met Ala Gly Cys Ala Ile Leu Met Thr Ile Ala Leu Ala Leu
 195 200 205
 Leu Glu Gln Leu Pro Trp Met Ser Tyr Leu Ser Ile Val Ala Ile Phe
 210 215 220
 Gly Phe Val Ala Phe Phe Glu Val Gly Pro Gly Pro Ile Pro Trp Phe
 225 230 235 240
 Ile Val Ala Glu Leu Phe Ser Gln Gly Pro Arg Pro Ala Ala Ile Ala
 245 250 255
 Val Ala Gly Phe Ser Asn Trp Thr Ser Asn Phe Ile Val Gly Met Cys
 260 265 270
 Phe Gln Tyr Val Glu Gln Leu Cys Gly Pro Tyr Val Phe Ile Ile Phe
 275 280 285
 Thr Val Leu Leu Val Leu Phe Phe Ile Phe Thr Tyr Phe Lys Val Pro
 290 295 300
 Glu Thr Lys Gly Arg Thr Phe Asp Glu Ile Ala Ser Gly Phe Arg Gln
 305 310 315 320
 Gly Gly Ala Ser Gln Ser Asp Lys Thr Pro Glu Glu Leu Phe His Pro
 325 330 335
 Leu Gly Ala Asp Ser Gln Val
 340

<210> 29

<211> 5368

<212> DNA

<213> Homo sapiens

<400> 29

ggaatcagag aagatcattt	ctgagttgaa tgaaaacttgg	gaagagaagc ttcgtaaaaac	60
agaggccatc agaatggaga	gagaggcttt gttggcttag	atgggagttt ccattcgggaa	120
agatggagga accctagggg	ttttcttacc taaaaagacc	ccacatctt ttaacctcaa	180
tgaagaccca ctaatgtctg	agtgcctact ttattacatc	aaagatggaa ttacaagggt	240
tggccaaagca gatgtgagc	ggcgccagga catatgtctg	agcggggctc acattaaaga	300
agagcattgt atcttccgga	gtgagagaag caacagcggg	gaagttatcg tgaccttaga	360
gcccgttgag cgctcagaaa	cctacgtaaa tggcaagagg	gtgtcccagc ctgttcagct	420
gcgctcagga aaccgtatca	tcatggtta aaaccatgtt	ttccgcttta accacccgga	480
acaagcacga gctgagcag	agaagactcc ttctgcttag	accacctctg agcctgtggaa	540

ctggacattt	gcccagaggg	agcttctgga	aaaacaagga	attgatatga	aacaagagat	600
ggagaaaaagg	ctacaggaaa	tggagatctt	atacaaaaag	gagaaggaaag	aagcagatct	660
tcttttggag	cagcagagac	tggactatga	gagtaaatttgc	caggccttgc	agaagcaggt	720
tgaaaccgc	tctctggctg	cagaaacaac	tgaagaggag	gaagaagagg	aagaagtcc	780
ttggacacag	catgaatttgc	agtggggcca	atgggccttc	cggaaatgg	agtctcatca	840
gtttacttca	ttacgggact	tactctgggg	caatgcgtg	tacctaaagg	aggccaatgc	900
catcagtgt	gaactgaaaaa	agaaggtca	gtttcaatgg	gttctgctg	ctgacacact	960
gtactccct	ttgcctcctg	aattacttcc	cactgagatg	gaaaaaaactc	atgaggacag	1020
gccttccct	cgcacagtgg	tagcagtaga	agtccaggat	ttgaagaatg	gagcaacaca	1080
ctattggct	ttggagaaaac	tcaagcagag	gctggatttgc	atgcgagaga	tgatgatag	1140
ggcaggggag	atggcctcca	gtgcccaga	cgaaagcgaa	accactgtg	ctggcagcga	1200
tcccttctat	gatcggttcc	actggttcaa	acttgggggg	agctccccca	ttttccacgg	1260
ctgtgtgaac	gagcgcetttg	ccgacccgcac	accctcccc	acttttcca	cggccgattc	1320
cgacatca	gagctggctg	acgagcagca	agatgagatg	gaggattttgc	atgatgaggc	1380
attcggttat	gacgcggct	ctgacgcagg	gacggaggag	ggatcagatc	tcttcagtg	1440
cgggcatgac	cegttttacg	accgatcccc	ttgggttctt	tttagtgggg	gggcatttgt	1500
ttacctgagc	aatctgtgt	atccctgtcc	cctgatccac	agggtggcca	tcgtcagtga	1560
gaaagggtaa	gtgcggggat	ttctgcgttgc	ggctgtacag	gccatcgac	cggatgaaga	1620
agctcctgtat	tatggcttgc	gaatttcgaca	gtcaggaaca	gctaaaatat	cttttgatata	1680
tgaatactt	aatcagagtc	acttttcgtc	tgttgcata	actcggttgc	gtctgtcctt	1740
ggaggagttg	aggattgtgg	aaggacagg	tcagaggatct	gaggtcatca	cteetccaga	1800
agaaaatca	cgaattaatg	acttggattt	gaagtcaagc	actttgtcttgc	atggtaagat	1860
ggtatggaa	gggtttctg	aagagattgg	caaccacctg	aaactggca	gtgccttcac	1920
tttcccgat	acagttgtgc	aggccagtgg	aatcctcccc	gagttatgcag	atatcttctg	1980
tcagttcaac	tttttgcattc	gccatgatga	agcattctcc	acggagcccc	tcaaaaacaa	2040
tggcagagga	agtcccttgg	ccttttata	tgtcagaat	attgcagtgg	agatcaactg	2100
atcatttgc	gattacatca	aaaccaagcc	tattgtattt	gaagtcttgc	ggcattatca	2160
gcagcaccca	cttcatctgc	aaggacagga	gcttaacagt	ccgcctcagc	cgtgccggc	2220
attcttccct	ccaccatgc	cactgtccaa	gccagtttca	gccaccaagt	taaacacat	2280
gagcaaaacc	agccttggcc	agagcatgag	caagtatgac	ctccctggtt	gttttgagat	2340
cagtgaact	gacccatcag	gagagatata	cccagctgt	gttgcaccaca	cagcaggctt	2400
gccttgcac	gggacattttgc	tgttgcata	gggcattccag	cgaaggatca	cagtgaccat	2460
tatccatgag	aaggggagcg	agctccatttgc	gaaagatgttgc	gttgcacttgc	tggtaggtcg	2520
tattcggat	aaggctgagg	tggatgaagc	tgcagttgtat	gccatcccttgc	ccctaaatat	2580
tatttctgcc	aagtacactg	agtcatttccca	caactcttagc	aggaccttgc	accgcttgc	2640
ggctgttgg	gatagcttc	tgcataactc	ccttcttctg	aaccgagtga	caccctatgg	2700
agaaaagatc	tacatgaccc	tgcggccata	ccttagagctg	gatcatttgc	tccagccgc	2760
tgtcatcacc	aaggatgtgt	gcatggtctt	ctactccgc	gatgccaaga	tctcaccacc	2820
acgctctctg	cgtagcccttgc	ttggcagegg	ctactcaaag	tcaccagatt	cgaatcgagt	2880
cactggcatt	tacgaactca	gcttatgca	aatgtcagac	acaggtatgc	caggtatgca	2940
gagaaggaga	agaaaaatct	tagatacg	agtggcatat	gtgcggggag	aagagaacctt	3000
agcaggctgg	cgccccctgt	gagacagcc	catccttgc	caccagtgg	agctggagaa	3060
gctggagctc	ctacatgagg	tggaaaaaaac	ccgcccacttgc	ttgtctgtc	gtgagagact	3120
tggtagactc	atccccaaat	ccctgagcgt	ctcggttatcc	cccagccctca	gcagtgggac	3180
cctcagcacc	tccaccatgt	tccctctca	gatctcaacc	actaccccttgc	aaagcgccat	3240
cacacccatgc	gagaggatgt	gtatgttgc	aggagacatc	gaaaggccctgg	tggaccgaga	3300
gaaagagctg	gctaccaaat	gcttgcactt	tctcaccac	acttcaaca	gagaatttcag	3360
ccaggtgcac	ggcagcgtca	gtgactgtaa	gttgcgtat	atotctccaa	ttggacggga	3420
tccctctgag	tccagtttca	gcagtgcac	cctcactccc	tcctccaccc	gtccctcttgc	3480
ggtagactt	aggagcaact	ctctggatca	gaagacccca	gaagccaatt	ccggccctc	3540
tagtccctgc	ccagaatttgc	aacagtttca	gattgtccca	gctgtggaaa	caccatattt	3600
ggcccgagca	ggaaaaaaac	aatttctca	tcttgcata	gatatttgc	aaatttagacc	3660
aagctcagt	gtctctaaga	aaggatacc	tcatttca	gagccttgc	acagtaactg	3720
ggctaaacat	tttgcgttgc	tccgtggcc	ttatgttcttgc	atctataaca	gtgacaaga	3780
ccctgtggag	cgtgaaatca	ttaacatgtc	cacagcacag	gtggagtaca	gtgaggacca	3840
gcaggccat	gtgaagacac	caaaccat	tgctgttgc	acaaaggcacc	gtgggttct	3900
tttgcggcc	ctcaatgaca	aagacatgaa	cgactgttgc	tatgccttca	acccacttct	3960
agctggcaca	atacggtcaa	agctttcccg	cagatcccc	agccagtcg	aataactaagt	4020
gactctgcg	agtgcctca	ctgcctc	agagataaag	aaagcgttac	ctctcatat	4080
tcttgcgtat	tcttgcgttgc	gactcttgc	tgtatcccttgc	tggcttaact	acttctccct	4140

ccttgtccag cactttcta gctctccgt tccccatctc cattgctctg tactctttc	4200
tttttcttg tgctgagaat ctcgttagta gcatgtggcc taacaaaagg aaaaaatgtt	4260
tttaaacaca cacacacaca cacacacaca cacacacata cacagacaaa aacacaaaa	4320
ctctgagggg atctggtaa tctccaaattt attgtgggtg tactttggct tcctttgtt	4380
tgataggccc ccatacatgac cacctctgat gtctgtctg ctgtcaccag gcacctttgt	4440
ttttcaagac aacatactttt ttctctttt tgatctgttg tgatatcaat ttaatttttc	4500
ttgggtggct tagagactaa gggaggagac atctggccctt ttagaaacctt gagaggaaaa	4560
aaagagtctt ttttccctt ctgtctctt ttgcctatggc taatccctgc atttccattc	4620
agggaaaagg tggtagttag catagaactg caacaggat attctgagtc aaagttgggg	4680
ctttttacgg cataattatg gaatttttat ttactggtag agaggagacg agaggcttt	4740
tcagtggccc tgggacagtg gctgctctt actttgtgtg aaggaaaatg ccaaggatgc	4800
ttctggtgga cttcagggga ccccagggtt tggccgtggg ccgtgatggc agcaggcggt	4860
gggatgctt tagctctca cagcaggatt cctgcccact gtttttctc tggggagg	4920
gaagctctt tctaggagtg tctcagttct gctttggca ttagtgtatgg tgggtgtaca	4980
gttggaaatta gtgcctatgtc atacacaaat gttccacaag gcgggaggtt ttcaattttct	5040
ggtgataaac ttgatgtca ttgttatgt taagataatg ccggggcaggc cgggcacagt	5100
ggctcacgcc tptaatccaa gcacttgggg aggccgaggc gggcagatca cgagatcagg	5160
agtcaagac cagcctggcc aatgtgtatga aacccctgtct ctactaaaaaa tacaaaatta	5220
gtcgggtatg gtggcacatg cctgtatcc cagctgctt ggagccttag gcaggagaac	5280
tgcttgacac caggaggcag aggttgcagt gagccaagat cgcgctattt cactccagcc	5340
tgggtgacag agcaagactc tgcctcag	5368

<210> 30
<211> 1338
<212> PRT
<213> Homo sapiens

<400> 30	
Glu Ser Glu Lys Ile Ile Ala Glu Leu Asn Glu Thr Trp Glu Glu Lys	
1 5 10 15	
Leu Arg Lys Thr Glu Ala Ile Arg Met Glu Arg Glu Ala Leu Leu Ala	
20 25 30	
Glu Met Gly Val Ala Ile Arg Glu Asp Gly Gly Thr Leu Gly Val Phe	
35 40 45	
Ser Pro Lys Lys Thr Pro His Leu Val Asn Leu Asn Glu Asp Pro Leu	
50 55 60	
Met Ser Glu Cys Leu Leu Tyr Tyr Ile Lys Asp Gly Ile Thr Arg Val	
65 70 75 80	
Gly Gln Ala Asp Ala Glu Arg Arg Gln Asp Ile Val Leu Ser Gly Ala	
85 90 95	
His Ile Lys Glu Glu His Cys Ile Phe Arg Ser Glu Arg Ser Asn Ser	
100 105 110	
Gly Glu Val Ile Val Thr Leu Glu Pro Cys Glu Arg Ser Glu Thr Tyr	
115 120 125	
Val Asn Gly Lys Arg Val Ser Gln Pro Val Gln Leu Arg Ser Gly Asn	
130 135 140	
Arg Ile Ile Met Gly Lys Asn His Val Phe Arg Phe Asn His Pro Glu	
145 150 155 160	
Gln Ala Arg Ala Glu Arg Glu Lys Thr Pro Ser Ala Glu Thr Pro Ser	
165 170 175	
Glu Pro Val Asp Trp Thr Phe Ala Gln Arg Glu Leu Leu Glu Lys Gln	
180 185 190	
Gly Ile Asp Met Lys Gln Glu Met Glu Lys Arg Leu Gln Glu Met Glu	
195 200 205	
Ile Leu Tyr Lys Lys Glu Lys Glu Glu Ala Asp Leu Leu Leu Glu Gln	
210 215 220	
Gln Arg Leu Asp Tyr Glu Ser Lys Leu Gln Ala Leu Gln Lys Gln Val	
225 230 235 240	

Glu Thr Arg Ser Leu Ala Ala Glu Thr Thr Glu Glu Glu Glu Glu
 245 250 255
 Glu Glu Val Pro Trp Thr Gln His Glu Phe Glu Leu Ala Gln Trp Ala
 260 265 270
 Phe Arg Lys Trp Lys Ser His Gln Phe Thr Ser Leu Arg Asp Leu Leu
 275 280 285
 Trp Gly Asn Ala Val Tyr Leu Lys Glu Ala Asn Ala Ile Ser Val Glu
 290 295 300
 Leu Lys Lys Lys Val Gln Phe Gln Phe Val Leu Leu Thr Asp Thr Leu
 305 310 315 320
 Tyr Ser Pro Leu Pro Pro Glu Leu Leu Pro Thr Glu Met Glu Lys Thr
 325 330 335
 His Glu Asp Arg Pro Phe Pro Arg Thr Val Val Ala Val Glu Val Gln
 340 345 350
 Asp Leu Lys Asn Gly Ala Thr His Tyr Trp Ser Leu Glu Lys Leu Lys
 355 360 365
 Gln Arg Leu Asp Leu Met Arg Glu Met Tyr Asp Arg Ala Gly Glu Met
 370 375 380
 Ala Ser Ser Ala Gln Asp Glu Ser Glu Thr Thr Val Thr Gly Ser Asp
 385 390 395 400
 Pro Phe Tyr Asp Arg Phe His Trp Phe Lys Leu Val Gly Ser Ser Pro
 405 410 415
 Ile Phe His Gly Cys Val Asn Glu Arg Leu Ala Asp Arg Thr Pro Ser
 420 425 430
 Pro Thr Phe Ser Thr Ala Asp Ser Asp Ile Thr Glu Leu Ala Asp Glu
 435 440 445
 Gln Gln Asp Glu Met Glu Asp Phe Asp Asp Glu Ala Phe Val Asp Asp
 450 455 460
 Ala Gly Ser Asp Ala Gly Thr Glu Glu Gly Ser Asp Leu Phe Ser Asp
 465 470 475 480
 Gly His Asp Pro Phe Tyr Asp Arg Ser Pro Trp Phe Ile Leu Val Gly
 485 490 495
 Arg Ala Phe Val Tyr Leu Ser Asn Leu Leu Tyr Pro Val Pro Leu Ile
 500 505 510
 His Arg Val Ala Ile Val Ser Glu Lys Gly Glu Val Arg Gly Phe Leu
 515 520 525
 Arg Val Ala Val Gln Ala Ile Ala Ala Asp Glu Glu Ala Pro Asp Tyr
 530 535 540
 Gly Ser Gly Ile Arg Gln Ser Gly Thr Ala Lys Ile Ser Phe Asp Asn
 545 550 555 560
 Glu Tyr Phe Asn Gln Ser Asp Phe Ser Ser Val Ala Met Thr Arg Ser
 565 570 575
 Gly Leu Ser Leu Glu Glu Leu Arg Ile Val Glu Gly Gln Gly Gln Ser
 580 585 590
 Ser Glu Val Ile Thr Pro Pro Glu Glu Ile Ser Arg Ile Asn Asp Leu
 595 600 605
 Asp Leu Lys Ser Ser Thr Leu Leu Asp Gly Lys Met Val Met Glu Gly
 610 615 620
 Phe Ser Glu Glu Ile Gly Asn His Leu Lys Leu Gly Ser Ala Phe Thr
 625 630 635 640
 Phe Arg Val Thr Val Leu Gln Ala Ser Gly Ile Leu Pro Glu Tyr Ala
 645 650 655
 Asp Ile Phe Cys Gln Phe Asn Phe Leu His Arg His Asp Glu Ala Phe
 660 665 670
 Ser Thr Glu Pro Leu Lys Asn Asn Gly Arg Gly Ser Pro Leu Ala Phe
 675 680 685
 Tyr His Val Gln Asn Ile Ala Val Glu Ile Thr Glu Ser Phe Val Asp
 690 695 700
 Tyr Ile Lys Thr Lys Pro Ile Val Phe Glu Val Phe Gly His Tyr Gln
 705 710 715 720

Gln His Pro Leu His Leu Gln Gly Gln Glu Leu Asn Ser Pro Pro Gln
 725 730 735
 Pro Cys Arg Arg Phe Phe Pro Pro Pro Met Pro Leu Ser Lys Pro Val
 740 745 750
 Pro Ala Thr Lys Leu Asn Thr Met Ser Lys Thr Ser Leu Gly Gln Ser
 755 760 765
 Met Ser Lys Tyr Asp Leu Leu Val Trp Phe Glu Ile Ser Glu Leu Glu
 770 775 780
 Pro Thr Gly Glu Tyr Ile Pro Ala Val Val Asp His Thr Ala Gly Leu
 785 790 795 800
 Pro Cys Gln Gly Thr Phe Leu Leu His Gln Gly Ile Gln Arg Arg Ile
 805 810 815
 Thr Val Thr Ile Ile His Glu Lys Gly Ser Glu Leu His Trp Lys Asp
 820 825 830
 Val Arg Glu Leu Val Val Gly Arg Ile Arg Asn Lys Pro Glu Val Asp
 835 840 845
 Glu Ala Ala Val Asp Ala Ile Leu Ser Leu Asn Ile Ile Ser Ala Lys
 850 855 860
 Tyr Leu Lys Ser Ser His Asn Ser Ser Arg Thr Phe Tyr Arg Phe Glu
 865 870 875 880
 Ala Val Trp Asp Ser Ser Leu His Asn Ser Leu Leu Leu Asn Arg Val
 885 890 895
 Thr Pro Tyr Gly Glu Lys Ile Tyr Met Thr Leu Ser Ala Tyr Leu Glu
 900 905 910
 Leu Asp His Cys Ile Gln Pro Ala Val Ile Thr Lys Asp Val Cys Met
 915 920 925
 Val Phe Tyr Ser Arg Asp Ala Lys Ile Ser Pro Pro Arg Ser Leu Arg
 930 935 940
 Ser Leu Phe Gly Ser Gly Tyr Ser Lys Ser Pro Asp Ser Asn Arg Val
 945 950 955 960
 Thr Gly Ile Tyr Glu Leu Ser Leu Cys Lys Met Ser Asp Thr Gly Ser
 965 970 975
 Pro Gly Met Gln Arg Arg Arg Arg Lys Ile Leu Asp Thr Ser Val Ala
 980 985 990
 Tyr Val Arg Gly Glu Glu Asn Leu Ala Gly Trp Arg Pro Arg Gly Asp
 995 1000 1005
 Ser Leu Ile Leu Glu His Gln Trp Glu Leu Glu Lys Leu Glu Leu Leu
 1010 1015 1020
 His Glu Val Glu Lys Thr Arg His Phe Leu Leu Leu Arg Glu Arg Leu
 1025 1030 1035 1040
 Gly Asp Ser Ile Pro Lys Ser Leu Ser Asp Ser Leu Ser Pro Ser Leu
 1045 1050 1055
 Ser Ser Gly Thr Leu Ser Thr Ser Thr Ser Ile Ser Ser Gln Ile Ser
 1060 1065 1070
 Thr Thr Phe Glu Ser Ala Ile Thr Pro Ser Glu Ser Ser Gly Tyr
 1075 1080 1085
 Asp Ser Gly Asp Ile Glu Ser Leu Val Asp Arg Glu Lys Glu Leu Ala
 1090 1095 1100
 Thr Lys Cys Leu Gln Leu Leu Thr His Thr Phe Asn Arg Glu Phe Ser
 1105 1110 1115 1120
 Gln Val His Gly Ser Val Ser Asp Cys Lys Leu Ser Asp Ile Ser Pro
 1125 1130 1135
 Ile Gly Arg Asp Pro Ser Glu Ser Ser Phe Ser Ser Ala Thr Leu Thr
 1140 1145 1150
 Pro Ser Ser Thr Cys Pro Ser Leu Val Asp Ser Arg Ser Asn Ser Leu
 1155 1160 1165
 Asp Gln Lys Thr Pro Glu Ala Asn Ser Arg Ala Ser Ser Pro Cys Pro
 1170 1175 1180
 Glu Phe Glu Gln Phe Gln Ile Val Pro Ala Val Glu Thr Pro Tyr Leu
 1185 1190 1195 1200

Ala Arg Ala Gly Lys Asn Glu Phe Leu Asn Leu Val Pro Asp Ile Glu
 1205 1210 1215
 Glu Ile Arg Pro Ser Ser Val Val Ser Lys Lys Gly Tyr Leu His Phe
 1220 1225 1230
 Lys Glu Pro Leu Tyr Ser Asn Trp Ala Lys His Phe Val Val Val Arg
 1235 1240 1245
 Arg Pro Tyr Val Phe Ile Tyr Asn Ser Asp Lys Asp Pro Val Glu Arg
 1250 1255 1260
 Gly Ile Ile Asn Leu Ser Thr Ala Gln Val Glu Tyr Ser Glu Asp Gln
 1265 1270 1275 1280
 Gln Ala Met Val Lys Thr Pro Asn Thr Phe Ala Val Cys Thr Lys His
 1285 1290 1295
 Arg Gly Val Leu Leu Gln Ala Leu Asn Asp Lys Asp Met Asn Asp Trp
 1300 1305 1310
 Leu Tyr Ala Phe Asn Pro Leu Leu Ala Gly Thr Ile Arg Ser Lys Leu
 1315 1320 1325
 Ser Arg Arg Cys Pro Ser Gln Ser Lys Tyr
 1330 1335

<210> 31
 <211> 3094
 <212> DNA
 <213> Homo sapiens

<400> 31

tttgactggc	cgttagtgtct	gcccagtgg	tgaatggcgt	tggggcgaaa	aaagttgagt	60
ctctccctgc	ccgaggcttc	ggggcgatgt	gttagtgcctt	ccatagggt	gagttctggaa	120
ccgagctct	tgccccactt	gaaggttagaa	gttccctgaa	agaaatagaa	ccaaatctgt	180
ttgctgatga	agattcacct	gtgcattgtt	atattcttga	atttcatggc	ccagaaggaa	240
caggaaaaaa	agaaatgctt	tatcaccaa	cagcacatg	tatacttccc	aaatcagaag	300
gtggcctg	agtagaaatgc	tttatttattt	atacagatgtt	ccactttgtat	atgctccggc	360
tagttacaat	tcttgagcac	agactatccc	aaagctctga	agaaaataatc	aaataactgcc	420
tggaaagatt	ttttttgggt	tactgcagta	gtagcaccca	cttacttctt	acactttact	480
cactagaaag	tatgtttgt	agtcacccat	ctctctgcct	tttgcattttt	gatagccctgt	540
cagcttttta	ctggatagac	cgcgtcaatg	gaggagaaag	tgtgaactta	caggagtcata	600
ctctcgaggaa	atgttctcag	tgcttagaga	agctttttttt	tgactatcgc	ctgggttcttt	660
ttgcaacgac	acaaactata	atgcagaaag	cctcgagctc	atcagaagaa	ccttctcatg	720
cctctcgacg	actgtgttat	gtggacatag	actacagacc	ttatctctgt	aaggcatggc	780
agcaacttgt	gaagcacagg	atgtttttct	ccaaacaaga	tgattctcaa	agcagcaacc	840
aattttcatt	agtttacgt	tgtttttttttt	gtaacagttt	aaaaaaacat	tttttttatta	900
ttggagaaag	tgggggttgg	ttttttttttt	gttacatcata	aaatagtctt	ttgcagggtt	960
ctacgcaagc	ctttaaaaaattt	ttttaagac	agagtcttgc	tctgtctccc	aggctggagt	1020
gcagtggcac	aatcatggct	cactgcagcc	tttgcacttct	ggctctcaagg	gatcctctta	1080
tgtgtgcctt	cttagatgca	gggattacac	ggctggccaa	ctgtctgttgg	ccaaaaaggttt	1140
tctttttttt	ttttttttttt	tttttttttttt	tctttttttttt	tctcccaggc	tgctggagttt	1200
cagtggcaca	atctcgcccc	gctgcagctt	ctgccttttgc	ggttcaatgt	attttttttttt	1260
ctcagccccc	caggtagctt	ggattacagg	cacccaccac	cacccctggc	taattttttttt	1320
attttttata	gagacgggg	tttaccatgt	tggccaggct	ggtctcgaac	tcctgaccc	1380
aagtgtatcca	cccacccccc	cctcccaaag	tgcttagatt	acaggccccgt	gcccagccct	1440
aaagttttaa	actcttagggg	atataacagt	atttcttac	agaatggatt	tgttaaacta	1500
gcacagtaaa	agtaaaagact	attctgttttgc	taggttttttgc	aatcaaaatgt	attttagcaa	1560
ttaaaacttg	tattaatttta	ccaccaatat	ttttttttttt	aggaaactttt	aaaagattat	1620
ctcagaaagt	aaatctgaga	ggtaagaagt	aataatgtt	aaatggtaag	tacttgagta	1680
aatctaaaga	aatatttgata	gtaaggcaat	cctaagcaaa	aagaacaaaag	ctggaggccat	1740
cacgctaccc	agcttccaaac	tatactacaa	ggctacatgt	acccaaaacag	catagtactg	1800
gcacaaaaaa	acacgttagac	tgatggaaaca	gaatagagaa	tttagaaatgt	agaccacaca	1860
cctataattt	ttttgtatctt	cgatgaacct	gacaaaaaca	agcaatgggc	aatggatctt	1920
ctattcaata	aatctgtctt	ggataactgg	ccagccatat	ggaaaaagatt	gaaaatggac	1980
gccttcctt	tgccatatac	aaaaatttaac	tcaagatgga	ttaaagactt	aatgtaaaac	2040
ccaaaaacagt	aaaaatccctg	gaagacaacc	caggcagttac	cattcaggac	ataggcacag	2100

gcaaagattt	catgacgaag	acgcacaaaaa	caattgcaac	agaagcaaaa	attcacaaat	2160
gggatctaatt	taaactaaag	agctgcacag	caaaggaaac	tatcaagaga	gtaaacagac	2220
agcttacaga	atggagaaa	attgttgcaa	actatgcattc	tgagaaaaggt	ctgaaatcca	2280
gcatctatac	gtaaataaaa	caaatttaga	agaaaaaacc	accccataa	aaagtggca	2340
aaggacatag	acagacactt	tcaatggaaa	gacatctgtg	gccaacaatc	ctatggaaaa	2400
aagcccagca	tcactgtatc	ttagagaaaat	gcaaatcgaa	acaacaacga	gataccatct	2460
cacaccagt	caaatggcta	ttataaaaaat	gtcagaaaaat	aacagatgt	gttgaggttg	2520
tggagaaaaa	gatatgttta	tacactgttg	gtggaaatgt	aaataaaatt	agttcagcca	2580
tttgtggaaaa	cagtgtgggg	ataaagacag	agataccatt	caacccagca	atctcattac	2640
tggtatata	ccccaaaggaa	tagaaatcat	tgttataaaag	acacatgcac	gcgttatgttc	2700
gttgcagcac	tgccccatcag	tgacagactg	gattaaaaaa	atgtgttaca	tacacaccag	2760
ggaatactat	acagccataa	aaaggaacaa	gactgactgg	gcgtgggtggc	tcatgcctgt	2820
gatcctagca	cttgcgagg	ccgaggtggg	tggattgccc	gcgctcagga	ggtcaagacc	2880
agcctggca	acacggtgaa	accccatctc	tattaaaata	caaaaaaatta	gctgggcattg	2940
gtgggtgcgtg	cctgtgtgc	cagctactca	ggaggccgag	gcaggagaat	tgctggaaacc	3000
caggaggtgg	aggttgcagt	gagctgagat	cgcgccattg	cactccgccc	tgggcgactc	3060
catctctaaa	aaaaaaaaaa	aaaaaaaaaa	aaaa			3094

<210> 32

<211> 280

<212> PRT

<213> Homo sapiens

<400> 32

Met	Cys	Ser	Ala	Phe	His	Arg	Ala	Glu	Ser	Gly	Thr	Glu	Leu	Leu	Ala
1				5				10				15			
Arg	Leu	Glu	Gly	Arg	Ser	Ser	Leu	Lys	Glu	Ile	Glu	Pro	Asn	Leu	Phe
								20		25			30		
Ala	Asp	Glu	Asp	Ser	Pro	Val	His	Gly	Asp	Ile	Leu	Glu	Phe	His	Gly
							35		40			45			
Pro	Glu	Gly	Thr	Gly	Lys	Thr	Glu	Met	Leu	Tyr	His	Leu	Thr	Ala	Arg
							50		55			60			
Cys	Ile	Leu	Pro	Lys	Ser	Glu	Gly	Gly	Leu	Glu	Val	Gl	Val	Leu	Phe
65							65		70			75			80
Ile	Asp	Thr	Asp	Tyr	His	Phe	Asp	Met	Leu	Arg	Leu	Val	Thr	Ile	Leu
							85		90			95			
Glu	His	Arg	Leu	Ser	Gln	Ser	Ser	Glu	Glu	Ile	Ile	Lys	Tyr	Cys	Leu
							100		105			110			
Gly	Arg	Phe	Phe	Leu	Val	Tyr	Cys	Ser	Ser	Ser	Thr	His	Leu	Leu	Leu
							115		120			125			
Thr	Leu	Tyr	Ser	Leu	Glu	Ser	Met	Phe	Cys	Ser	His	Pro	Ser	Leu	Cys
							130		135			140			
Leu	Leu	Ile	Leu	Asp	Ser	Leu	Ser	Ala	Phe	Tyr	Trp	Ile	Asp	Arg	Val
145								145		150			155		160
Asn	Gly	Gly	Glu	Ser	Val	Asn	Leu	Gln	Glu	Ser	Thr	Leu	Arg	Lys	Cys
								165		170			175		
Ser	Gln	Cys	Leu	Glu	Lys	Leu	Val	Asn	Asp	Tyr	Arg	Leu	Val	Leu	Phe
							180		185			190			
Ala	Thr	Thr	Gln	Thr	Ile	Met	Gln	Lys	Ala	Ser	Ser	Ser	Ser	Glu	Glu
							195		200			205			
Pro	Ser	His	Ala	Ser	Arg	Arg	Leu	Cys	Asp	Val	Asp	Ile	Asp	Tyr	Arg
							210		215			220			
Pro	Tyr	Leu	Cys	Lys	Ala	Trp	Gln	Gln	Leu	Val	Lys	His	Arg	Met	Phe
225								225		230			235		240
Phe	Ser	Lys	Gln	Asp	Asp	Ser	Gln	Ser	Ser	Asn	Gln	Phe	Ser	Leu	Val
								245		250			255		
Ser	Arg	Cys	Leu	Lys	Ser	Asn	Ser	Leu	Lys	Lys	His	Phe	Phe	Ile	Ile
								260		265			270		
Gly	Glu	Ser	Gly	Val	Glu	Phe	Cys								
							275		280						

<210> 33
<211> 691
<212> DNA
<213> Homo sapiens

<400> 33

gtccttcctcg	ccctccaggc	cgcccgcgcc	gcccggagt	ccgctgtccg	ccagctaccc	60
gcttcctgcc	ccccgcgcgt	gccatgctgc	ccgcgcgcgt	gctccgcgc	ccgggacttg	120
gcccgcctgt	ccgcacgc	cgtgcctatg	ccgaggcccgc	ccggccccgc	gctgccgcct	180
ctggcccaa	ccagatgtcc	tgcacccatcg	cctctccac	gcagggttgc	ttcaacgggt	240
ccaacgtccg	gcagggtggac	gtgcccacgc	tgaccggagc	cttcggcatc	ctggcggccc	300
acgtgcac	gctgcagggtc	ctgcggccgg	ggctggcgt	ggtgcatgca	gaggacggca	360
ccacccatcaa	atacttgt	agcagcggtt	ccatcgca	gaacgcccac	tcttcgggtgc	420
agttgttggc	cgaagaggcc	gtgacgctgg	acatgttga	cctggggca	gccaaggcaa	480
acttggagaa	ggcccccaggcg	gagctgtgg	ggacagctga	cgaggccacg	cgggcagaga	540
tccagatccg	aatcgaggcc	aacgaggccc	tggtaaggc	cctggagtag	gcgagccacg	600
cgccaaagggtt	gacccatcg	tcggagccac	ctctggatga	actgccccca	gccccccccc	660
cattaaagac	ccggaaaggct	aaaaaaa	a			691

<210> 34
<211> 168
<212> PRT
<213> Homo sapiens

<400> 34

Met	Leu	Pro	Ala	Ala	Leu	Leu	Arg	Arg	Pro	Gly	Leu	Gly	Arg	Leu	Val
1					5				10				15		
Arg	His	Ala	Arg	Ala	Tyr	Ala	Glu	Ala	Ala	Ala	Ala	Pro	Ala	Ala	Ala
					20				25				30		
Ser	Gly	Pro	Asn	Gln	Met	Ser	Phe	Thr	Phe	Ala	Ser	Pro	Thr	Gln	Val
					35				40				45		
Phe	Phe	Asn	Gly	Ala	Asn	Val	Arg	Gln	Val	Asp	Val	Pro	Thr	Leu	Thr
					50				55				60		
Gly	Ala	Phe	Gly	Ile	Leu	Ala	Ala	His	Val	Pro	Thr	Leu	Gln	Val	Leu
					65				70				75		80
Arg	Pro	Gly	Leu	Val	Val	Val	His	Ala	Glu	Asp	Gly	Thr	Thr	Ser	Lys
					85				90				95		
Tyr	Phe	Val	Ser	Ser	Gly	Ser	Ile	Ala	Val	Asn	Ala	Asp	Ser	Ser	Val
					100				105				110		
Gln	Leu	Leu	Ala	Glu	Glu	Ala	Val	Thr	Leu	Asp	Met	Leu	Asp	Leu	Gly
					115				120				125		
Ala	Ala	Lys	Ala	Asn	Leu	Glu	Lys	Ala	Gln	Ala	Glu	Leu	Val	Gly	Thr
					130				135				140		
Ala	Asp	Glu	Ala	Thr	Arg	Ala	Glu	Ile	Gln	Ile	Arg	Ile	Glu	Ala	Asn
					145				150				155		160
Glu	Ala	Leu	Val	Lys	Ala	Leu	Glu								
					165										

<210> 35
<211> 1378
<212> DNA
<213> Homo sapiens

<400> 35

gcgcggcccg	ctgcaatccg	tggaggaacg	cgccgcgcgc	ccaccatcat	gcctgggcac	60
ttacagggaa	gcttcggctg	cgtggtcacc	aaccgattcg	accagttatt	tgacgacgaa	120
tcggacccct	tcgaggtgt	gaaggcagca	gagaacaaga	aaaaagaagc	cgccgggggc	180
ggcgttgggg	gccctggggc	caagagcgc	gctcaggccg	cgccccagac	caactccaa	240
gcggcaggca	aacagctgc	caaggagtcc	cagaaagacc	gcaagaaccc	gctgcccccc	300
agcgttggcg	tggttgacaa	gaaagaggag	acgcagccgc	ccgtggcgct	taagaaaagaa	360

ggaataagac gagtttggaaag aagacactgat caacaacttc agggtgaagg	420
gatagaagac cagaaaggcg accacactcg	480
gaaaataatt gaggcgaatt ttca	540
tgatggcacc tattcgagg	540
cgtgggtgc ttggaaaggagg tcgagggggc	600
cgtggacgtg gaatggccg aggagatgga	600
tttgcatttc gtggcaaaacg tgaatttgat aggcatagtg gaagtatgat	660
tcacattaca gtggccctgaa gcacgaggac aaacgtggag	720
gtagcggatc tcacaactgg	720
ggaactgtca aagacgaatt aacagagtcc cccaaataca ttca	780
gaaaaca aatatcttat	780
aattacagtg acttggatca atcaa	840
atgtgatcg actgagaaa cacatgaa	840
catccatgg cagacactga aaataaggaa aatgaatgg	900
aagaggtaaa agaggagg	900
ccaaaagaga tgactttggaa tgagtggaa	960
gctattcaaa ataaggaccg ggcaaaagta	960
gaatttaata tccgaaaacc aaatgaaggt gctgatggc	1020
agtggaa	1020
gggattttgtt	1020
cttcataaat caaagagtga agaggctcat	1080
gctgaagatt cggttatgg	1080
ccatcatttc	1080
cggaagccag caaatgatata aacgtctc	1140
ctggagatca atttggaga	1140
ccttggccgc	1140
ccaggacgtg gccggcagggg aggacgagg	1200
ggacgtggc	1200
gtgggtggcg cccaaacccgt	1200
ggcagcggaa ccgacaagtc aagtgc	1260
tcttgcattg tggatgacc	1260
ccagctctgg cttaactgga tgccataaga caaccctgg	1320
tcctttgtga acccctctgt	1320
tcaaaagttt tgcatgcttta aggattccaa acgactaaga	1378
aaaaaaaaaaaa	1378

<210> 36

<211> 2896

<212> DNA

<213> Homo sapiens

<400> 36

gggcgcgcca gctcgtagca ggggagcgcc cgccgcgtcg	60
ggtttgggct ggaggtcgcc	120
atggggcggag gcagcggcac ctgcgacgt	180
ttggagacag attggggatc cattttgcag atctgcgacc	180
tgatccgcca	180
aggggacaca	180
caagcaaaat atgctgtgaa ttccatcaag aagaaagtca	240
acgacaagaa cccacacgtc	240
gccttgtat ccctggagat catggatct	300
gtggtaaaa	300
actgtggcca	300
gacagtcat	300
gatgaggtgg ccaacaagca gaccatggag	360
gagctgaagg	360
acctgctgaa	360
gaggtaaacg tccgtaaacaa	420
gatcctgtac ctgatccagg	420
cctggggcga	420
tgcccttcgg	420
aacgagccca agtacaaggt ggtccaggac	480
acctaccaga	480
tcatgaaggt	480
ggaggggcac	480
gtctttccag aattcaaaga	540
gagcgtatcc	540
atgtttgtc	540
ccgagagagc	540
cccagactgg	540
gtggacgtcg	600
aggaatgcca	600
ccgctgcagg	600
gtgcaggatcg	600
gggtgatgac	600
ccgtaaagcac	660
caactgcggg	660
cgtgtggca	660
gatattctgt	660
ggaaagtgtt	660
cttccaagta	660
ctccaccatc	660
cccaagttt	720
gcatcgagaa	720
ggaggtgcgc	720
gtgtgtgagc	720
cctgtctacga	720
gcagctgaac	720
aggaaagccg	780
agggaaaggc	780
cacttccacc	780
actgagctgc	780
cccccgagta	780
cctgaccagc	780
cccctgtctc	840
agcagtccca	840
gctgcccccc	840
aagagggacg	840
agacggccct	900
gcaggagctc	900
agctggccct	900
ggcgctgtca	900
cagtcaagg	900
cgaggaggaa	900
ggagaggctg	960
agacagaagt	960
ccacgtacac	960
ttcgtaaaaa	960
aaggcggagc	960
ccatgccttc	960
ggccttcctca	960
gcccgcgcgc	1020
ccagcagccct	1020
gtactctca	1020
cctgtbaact	1020
cgtcggegcc	1020
tctggctgag	1080
gacatcgacc	1080
ctgagctcg	1080
acggatctc	1080
aaccggaaact	1080
acttggagaa	1080
gaagcaggag	1080
gaggctcgca	1140
agagccccac	1140
gcccattcg	1140
cccgtgcccc	1140
tgacggagcc	1140
ggctgcacag	1140
cctggggaa	1200
ggcacgcage	1200
ccccaccaac	1200
gtggtgagaa	1200
accccetccc	1200
ggagacagac	1200
tctcagccca	1260
ttcctccctc	1260
tggtggcccc	1260
tttagtggac	1260
cacatgtca	1320
caatggcgag	1320
tctgaggaga	1320
gccacgagca	1320
gttcctgaag	1320
gkgctgcaga	1320
acgcccgtac	1320
cacttcg	1320
aaaccgtactc	1380
ttcgtgtgtc	1380
tcactcttcc	1440
agtccatcaa	1440
ccgcacatgc	1440
ccgcagctgc	1440
tggagctgt	1440
caaccagctg	1440
gacgacgcga	1500
ggctgtacta	1500
tgagggctg	1500
caggacaagc	1500
tggcacatgc	1500
ccgcgtatcc	1560
cgggggcgc	1560
tgagtgccct	1560
gcccggaga	1560
agcttcgc	1560
ggcagccgag	1560
gaggcagagc	1620
gccagcgcca	1620
gatccagctg	1620
gcccagaagc	1620
tggagataat	1620
gcccgcagaag	1620
aagcaggagt	1680
acctggaggt	1680
gcagaggcag	1680
ctggccatcc	1680
agccgcctgca	1680
ggagcaggag	1680
aaggagcggc	1740
agatgcggct	1740
ggagcaggag	1740
aaggcagacgg	1740
tccagatgc	1740
cgccgcagat	1800
ccgccttcc	1800
ccctgcctca	1800
cgcccagctc	1800
caggccatgc	1800
ccgcagccgg	1800
aggtgtgtc	1860
taccagccct	1860
cgggaccagg	1860
cagcttcccc	1860
agcacettca	1860
gcccgtccgg	1860
ctcggtggag	1860
ggtccccca	1920
tgcacggcgt	1920
gtacatgac	1920
cagccggccc	1920
ctggccgttg	1920
cccctacccc	1920
agcatgcca	1980
gcaactgcggc	1980
tgatcccttgc	1980
caggccatgc	1980
cccagcagg	1980
ccacccgtac	2040
tcacccatcc	2040
agcctactcc	2040
cacagcgggc	2040
taccagaacg	2100
tggctcccca	2100
ggccccacag	2100
ccatctctca	2160
gcctccgcag	2160
tccagcacca	2160
tgggtatcat	2160
ggggagccag	2160

tcagtctcca	tgggctacca	gccttacaac	atgcagaatc	tcatgaccac	cctcccaagc	2220
caggatgcgt	ctctgccacc	ccagcagccc	tacatcgccc	ggcagcagcc	catgtaccag	2280
cagatggcac	cctctggcg	tcccccccaag	cagcagcccc	ccgtggccca	gcaaccgcag	2340
gcacaggggc	cgccggcaca	gggcagcgg	gcccagctca	tttcattcga	ctgaccagg	2400
ccatgctcac	gtccggagta	acactacata	cagtccacct	gaaacgcctc	gtctctaact	2460
gccgtcgccc	tgcctccctg	tcctctactg	ccggtagtgt	cccttctctg	cgagtgaggg	2520
ggggccttca	cccccaagccc	acctcccttg	tcctcagcct	actgcagtcc	ctgagttagt	2580
ctctgtttc	tttccccagg	gctgggccc	ggggaggggaa	ggactttctc	ccaggggaag	2640
ccccccagccc	tgtgggtcat	ggtctgtgag	aggtggcagg	aatggggacc	ctcaccffff	2700
aaggcagcctg	tgcctctgg	ccgcactgtg	agctggctgt	ggtgtctggg	tgtggcctgg	2760
ggctccctct	gcagggggcct	ctctcggcag	ccacagccaa	gggtggaggc	ttcaggtctc	2820
cagcttctct	gcttctcagc	tgccatctcc	agtgc(cc)ag	aatggtacag	cgataataaa	2880
atgtatttca	gaaagg					2896

<210> 37

<211> 777

<212> PRT

<213> Homo sapiens

<400> 37

Met	Gly	Arg	Gly	Ser	Gly	Thr	Phe	Glu	Arg	Leu	Leu	Asp	Lys	Ala	Thr
1				5				10				15			
Ser	Gln	Leu	Leu	Leu	Glu	Thr	Asp	Trp	Glu	Ser	Ile	Leu	Gln	Ile	Cys
					20				25				30		
Asp	Leu	Ile	Arg	Gln	Gly	Asp	Thr	Gln	Ala	Lys	Tyr	Ala	Val	Asn	Ser
						35			40			45			
Ile	Lys	Lys	Lys	Val	Asn	Asp	Lys	Asn	Pro	His	Val	Ala	Leu	Tyr	Ala
					50			55			60				
Leu	Glu	Val	Met	Glu	Ser	Val	Val	Lys	Asn	Cys	Gly	Gln	Thr	Val	His
						65		70		75			80		
Asp	Glu	Val	Ala	Asn	Lys	Gln	Thr	Met	Glu	Glu	Leu	Lys	Asp	Leu	Leu
						85			90			95			
Lys	Arg	Gln	Val	Glu	Val	Asn	Val	Arg	Asn	Lys	Ile	Leu	Tyr	Leu	Ile
						100		105			110				
Gln	Ala	Trp	Ala	His	Ala	Phe	Arg	Asn	Glu	Pro	Lys	Tyr	Lys	Val	Val
						115			120			125			
Gln	Asp	Thr	Tyr	Gln	Ile	Met	Lys	Val	Glu	Gly	His	Val	Phe	Pro	Glu
						130		135			140				
Phe	Lys	Glu	Ser	Asp	Ala	Met	Phe	Ala	Ala	Glu	Arg	Ala	Pro	Asp	Trp
						145		150		155			160		
Val	Asp	Ala	Glu	Glu	Cys	His	Arg	Cys	Arg	Val	Gln	Phe	Gly	Val	Met
						165			170			175			
Thr	Arg	Lys	His	His	Cys	Arg	Ala	Cys	Gly	Gln	Ile	Phe	Cys	Gly	Lys
						180		185			190				
Cys	Ser	Ser	Lys	Tyr	Ser	Thr	Ile	Pro	Lys	Phe	Gly	Ile	Glu	Lys	Glu
						195		200			205				
Val	Arg	Val	Cys	Glu	Pro	Cys	Tyr	Glu	Gln	Leu	Asn	Arg	Lys	Ala	Glu
						210		215			220				
Gly	Lys	Ala	Thr	Ser	Thr	Thr	Glu	Leu	Pro	Pro	Glu	Tyr	Leu	Thr	Ser
						225		230		235			240		
Pro	Leu	Ser	Gln	Gln	Ser	Gln	Leu	Pro	Pro	Lys	Arg	Asp	Glu	Thr	Ala
						245			250			255			
Leu	Gln	Glu	Glu	Glu	Leu	Gln	Leu	Ala	Leu	Ala	Leu	Ser	Gln	Ser	
						260			265			270			
Glu	Ala	Glu	Glu	Lys	Glu	Arg	Leu	Arg	Gln	Lys	Ser	Thr	Tyr	Thr	Ser
						275		280			285				
Tyr	Pro	Lys	Ala	Glu	Pro	Met	Pro	Ser	Ala	Ser	Ser	Ala	Pro	Pro	Ala
						290		295			300				
Ser	Ser	Leu	Tyr	Ser	Ser	Pro	Val	Asn	Ser	Ser	Ala	Pro	Leu	Ala	Glu
						305		310			315			320	

Asp Ile Asp Pro Glu Leu Ala Arg Tyr Leu Asn Arg Asn Tyr Trp Glu
 325 330 335
 Lys Lys Gln Glu Glu Ala Arg Lys Ser Pro Thr Pro Ser Ala Pro Val
 340 345 350
 Pro Leu Thr Glu Pro Ala Ala Gln Pro Gly Glu Gly His Ala Ala Pro
 355 360 365
 Thr Asn Val Val Glu Asn Pro Leu Pro Glu Thr Asp Ser Gln Pro Ile
 370 375 380
 Pro Pro Ser Gly Gly Pro Phe Ser Glu Pro Gln Phe His Asn Gly Glu
 385 390 395 400
 Ser Glu Glu Ser His Glu Gln Phe Leu Lys Ala Leu Gln Asn Ala Val
 405 410 415
 Thr Thr Phe Val Asn Arg Met Lys Ser Asn His Met Arg Gly Arg Ser
 420 425 430
 Ile Thr Asn Asp Ser Ala Val Leu Ser Leu Phe Gln Ser Ile Asn Gly
 435 440 445
 Met His Pro Gln Leu Leu Glu Leu Leu Asn Gln Leu Asp Glu Arg Arg
 450 455 460
 Leu Tyr Tyr Glu Gly Leu Gln Asp Lys Leu Ala Gln Ile Arg Asp Ala
 465 470 475 480
 Arg Gly Ala Leu Ser Ala Leu Arg Glu Glu His Arg Glu Lys Leu Arg
 485 490 495
 Arg Ala Ala Glu Glu Ala Glu Arg Gln Arg Gln Ile Gln Leu Ala Gln
 500 505 510
 Lys Leu Glu Ile Met Arg Gln Lys Lys Gln Glu Tyr Leu Glu Val Gln
 515 520 525
 Arg Gln Leu Ala Ile Gln Arg Leu Gln Glu Gln Glu Lys Glu Arg Gln
 530 535 540
 Met Arg Leu Glu Gln Gln Lys Gln Thr Val Gln Met Arg Ala Gln Met
 545 550 555 560
 Pro Ala Phe Pro Leu Pro Tyr Ala Gln Leu Gln Ala Met Pro Ala Ala
 565 570 575
 Gly Gly Val Leu Tyr Gln Pro Ser Gly Pro Ala Ser Phe Pro Ser Thr
 580 585 590
 Phe Ser Pro Ala Gly Ser Val Glu Gly Ser Pro Met His Gly Val Tyr
 595 600 605
 Met Ser Gln Pro Ala Pro Ala Ala Gly Pro Tyr Pro Ser Met Pro Ser
 610 615 620
 Thr Ala Ala Asp Pro Ser Met Val Ser Ala Tyr Met Tyr Pro Ala Gly
 625 630 635 640
 Ala Thr Gly Ala Gln Ala Ala Pro Gln Ala Gln Ala Gly Pro Thr Ala
 645 650 655
 Ser Pro Ala Tyr Ser Ser Tyr Gln Pro Thr Pro Thr Ala Gly Tyr Gln
 660 665 670
 Asn Val Ala Ser Gln Ala Pro Gln Ser Leu Pro Ala Ile Ser Gln Pro
 675 680 685
 Pro Gln Ser Ser Thr Met Gly Tyr Met Gly Ser Gln Ser Val Ser Met
 690 695 700
 Gly Tyr Gln Pro Tyr Asn Met Gln Asn Leu Met Thr Thr Leu Pro Ser
 705 710 715 720
 Gln Asp Ala Ser Leu Pro Pro Gln Gln Pro Tyr Ile Ala Gly Gln Gln
 725 730 735
 Pro Met Tyr Gln Gln Met Ala Pro Ser Gly Gly Pro Pro Gln Gln Gln
 740 745 750
 Pro Pro Val Ala Gln Gln Pro Gln Ala Gln Gly Pro Pro Ala Gln Gly
 755 760 765
 Ser Glu Ala Gln Leu Ile Ser Phe Asp
 770 775

<211> 2569

<212> DNA

<213> Homo sapiens

<400> 38

tccctcgct	ctctcgggca	acatggcggg	cgtggaggag	gtagcggcct	ccgggagcca	60
cctgaatgc	gacctggatc	cagacgacag	ggaagaagga	gctgcctcta	cggctgagga	120
agcagccaag	aaaaaaagac	gaaagaagaa	gaagagcaaa	gggccttctg	cagcagggga	180
acaggaacct	gataaagaat	caggagcctc	agtggatgaa	gtagcaagac	agttggaaag	240
atcagcattg	gaagataaaag	aaagagatga	agatgtgaa	gatggagatg	gcatggaga	300
tggagcaact	ggaaaagaaga	agaaaaaagaa	gaagaagaag	agaggaccaa	aagttcaaac	360
agaccctccc	tcaagttcaa	tatgtgacct	gtatccta	gttgcatttc	ccaaaggaca	420
agaatgcgaa	tacccaccca	cacaagatgg	gccaacagct	gcttggagaa	ctacaagtga	480
agaaaaagaaa	gcattagatc	aggcaagtga	agagatttg	aatgtatttc	gagaagctgc	540
agaagcacat	cgacaagtt	gaaaatacgt	aatgagctgg	atcaaggctg	ggatgacaat	600
gatagaaaatc	tgtgaaaagt	tggaagactg	ttcacgcaag	ttaataaaaag	agaatggatt	660
aaatgcaggc	ctggcatttc	ctactggatg	ttctctcaat	aattgtgctg	cccattatac	720
tcccaatgcc	ggtgacacaa	cagtattaca	gtatgtgac	atctgtaaaa	tagacttgg	780
aacacatata	agtggtagga	ttattgactg	tgcttttact	gtcaacttta	atccccaaata	840
tgatacgtt	ttaaaaagctg	taaaagatgc	tactaacact	ggaataaaatg	tgctggaaat	900
tgatgttctg	ctgtgtatg	ttggtgaggc	catccaagaa	gttatggagt	cctatgaagt	960
tgaaatagat	gggaagacat	atcaagtga	accaatccgt	aatctaaatg	gacattcaat	1020
tgggcaatat	agaatacatg	ctggaaaaac	agtgcggatt	gtgaaaaggag	gggaggcaac	1080
aagaatggag	gaaggagaag	tatatgcaat	tgaaacccctt	ggttagtacag	gaaaagggtgt	1140
tgttcatgt	gatatggat	gttcacatta	catgaaaaat	ttttagtgg	gacatgtgcc	1200
aataaggctt	ccaagaacaaa	aacacttgtt	aatgtcattc	aatgaaaact	ttggAACCT	1260
tgccttctgc	cgcagatggc	tggatcgctt	gggagaaaatg	aaatacttga	tggctctgaa	1320
gaatctgtgt	gacttgggca	ttttagatcc	atatccacca	ttatgtgaca	ttaaaggatc	1380
atatacagcg	caatttgaac	ataccatcc	gttgcgtcca	acatgtaaaag	aagggtgt	1440
cagaggagat	gactttaaa	cttagtccaa	agccaccc	acacccctt	tttctgagct	1500
ttgttgaaaa	acatgatacc	agaattaaat	tgccacatgt	tgtctgttt	aacagtggac	1560
ccatgttaata	cttttatcca	tgtttaaaaaa	agaaggaaat	tggacaaaagg	caaaccgtct	1620
aatgttaatta	accaacgaaa	aagcttccg	gactttaaa	tgtcaactgt	ttttccctt	1680
cctgtctagg	aaaatgtct	aaagctcaaa	ttagtttagg	atgacttata	cggtttgttt	1740
tgaataccta	agagatactt	tttggatatt	tatattgcca	tattcttact	tgaatgtt	1800
gaatgactac	atccagttct	gcacctatac	cctctggtgt	tgccttttaa	ccttcctgga	1860
atccattttc	taaaaaataa	agacacattc	ttctcagcac	cacacaacac	ctattccaaa	1920
atcgaccaca	tatggaaag	taaagctctc	ctcagcaaat	gtaaaagaac	agaaattata	1980
acaaaactgtc	tctcagacca	cagtataacc	aaactagaac	tcaggattaa	gaaactcaact	2040
caaaaccaca	caactacatg	gaaactgaac	aacctgtcc	tgaatgacta	ctggatacat	2100
aacaaaatga	aggcagaaat	aaagatgttc	ttttaaaacca	atgagaacaa	agacacaaaca	2160
taccagaatc	tctggacac	attcaaagca	gtgtgttagag	ggaaaatttat	agcactaaat	2220
gcccacaaga	gaaagcagga	aatatctaaa	attgacaccc	taacatcaca	attaaaagaa	2280
ctagagaagc	aagagacaaac	acattgaaaa	gctaagagaa	ggcaagaaat	aactaagatc	2340
agagcagaaac	tgaaggaaat	agagacacaa	aaaactcttc	aaaaaatcaa	tgaatccagg	2400
agctggttt	ttgaaacgt	caacaaaatt	gatagacact	agcaagacta	ataaagaaga	2460
aaggagagaa	gaatcaaata	gaagcaataa	aaaatgataa	agggatatac	accaccaatc	2520
ccacagaaat	aaaccacca	cagagaatac	tacaaacacc	tctacgcaa		2569

<210> 39

<211> 478

<212> PRT

<213> Homo sapiens

<400> 39

Met	Ala	Gly	Val	Glu	Glu	Val	Ala	Ala	Ser	Gly	Ser	His	Lle	Asn	Gly
1			5			10						15			
Asp	Leu	Asp	Pro	Asp	Asp	Arg	Glu	Glu	Gly	Ala	Ala	Ser	Thr	Ala	Glu
20						25						30			

Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Ser Lys Gly Pro
 35 40 45
 Ser Ala Ala Gly Glu Gln Glu Pro Asp Lys Glu Ser Gly Ala Ser Val
 50 55 60
 Asp Glu Val Ala Arg Gln Leu Glu Arg Ser Ala Leu Glu Asp Lys Glu
 65 70 75 80
 Arg Asp Glu Asp Asp Glu Asp Gly Asp Gly Asp Gly Ala Thr
 85 90 95
 Gly Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln
 100 105 110
 Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val
 115 120 125
 Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg
 130 135 140
 Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln
 145 150 155 160
 Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His
 165 170 175
 Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr
 180 185 190
 Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile
 195 200 205
 Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Phe Pro Thr Gly Cys Ser
 210 215 220
 Leu Asn Asn Cys Ala Ala His Tyr Thr Pro Asn Ala Gly Asp Thr Thr
 225 230 235 240
 Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Asp Phe Gly Thr His Ile
 245 250 255
 Ser Gly Arg Ile Ile Asp Cys Ala Phe Thr Val Thr Phe Asn Pro Lys
 260 265 270
 Tyr Asp Thr Leu Leu Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile
 275 280 285
 Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile
 290 295 300
 Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr
 305 310 315 320
 Gln Val Lys Pro Ile Arg Asn Leu Asn Gly His Ser Ile Gly Gln Tyr
 325 330 335
 Arg Ile His Ala Gly Lys Thr Val Pro Ile Val Lys Gly Glu Ala
 340 345 350
 Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Glu Thr Phe Gly Ser
 355 360 365
 Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met
 370 375 380
 Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys
 385 390 395 400
 His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys
 405 410 415
 Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu
 420 425 430
 Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Tyr Pro Pro Leu Cys
 435 440 445
 Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Glu His Thr Ile Leu Leu
 450 455 460
 Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr
 465 470 475

<210> 40
 <211> 1183
 <212> DNA

<213> Homo sapiens

<220>
 <221> misc_feature
 <222> (0)...(0)
 <223> n = a, t, c or g

<400> 40

cggccaaagaa	gaaaatggcc	ataagtggag	tccctgtgct	aggatttttc	atcatagctg	60
tgctgatgag	cgctcaggaa	tcatggcta	tcaaagaaga	acatgtgatc	atccaggccg	120
agttctatct	gaatcctgac	caatcaggcg	agtttatgtt	tgactttgtat	ggtgatgaga	180
ttttccatgt	ggatatggca	aagaaggaga	cggctggcg	gcttgaagaa	tttggacgat	240
ttgccagctt	tgaggctcaa	ggtgcattgg	ccaacatagc	tgtggacaaa	gccaacttgg	300
aaatcatgac	aaagcgtcc	aactatactc	cgatcaccaa	tgtacctcca	gaggtaactg	360
tgctcacgaa	cagccctgtg	gaactgagag	agcccaacgt	cctcatctgt	ttcatcgaca	420
agttcacccc	accatgtgtc	aatgtcacgt	ggcttcgaaa	tggaaaacct	gtcaccacag	480
gagtgtcaga	gacagtcttc	ctgcccaggg	aagaccacct	tttccgcaag	ttccactatc	540
tccccctct	gccctcaact	gaggacgtt	acgactcgag	ggtggagcac	tggggcttgg	600
atagccctt	tctcaagcac	tgggatttt	atgctccaag	ccctctccca	gagactacag	660
agaacgttgt	gtgtccccctg	ggcctgactg	tgggtctgg	gggcatcatt	attgggacca	720
tcttcatcat	caaggagatg	cgccaaaagca	atgcagcaga	acgcaggggg	cctctgttaag	780
gcacatggag	gtgatgatgt	ttcttagaga	gaagatca	gaagaaaactt	ctgctttaat	840
gactttacaa	agctggcaat	attacaatcc	ttgacctcag	tgaaagcagt	catcttcagc	900
gtttccagc	cctatagcca	ccccaaagtgt	ggtttagcct	cctcgattgc	tccgtactct	960
aacatctagc	tggctccct	gtctattgcc	ttttccgtta	tctattttcc	tctattttct	1020
atcattttat	tatcaccatg	caatgcctct	ggaataaaac	atacaggagt	ctgtctctgc	1080
tatggaatgc	cccatggggc	atctcttgc	tacttattgt	ttaaggtttc	ctcaaactgn	1140
gattcttcgt	aacacaataa	actatttga	tgatcttggg	tgg		1183

<210> 41

<211> 254

<212> PRT

<213> Homo sapiens

<400> 41

Met	Ala	Ile	Ser	Gly	Val	Pro	Val	Leu	Gly	Phe	Phe	Ile	Ile	Ala	Val
1				5				10				15			
Leu	Met	Ser	Ala	Gln	Glu	Ser	Trp	Ala	Ile	Lys	Glu	Glu	His	Val	Ile
							20		25			30			
Ile	Gln	Ala	Glu	Phe	Tyr	Leu	Asn	Pro	Asp	Gln	Ser	Gly	Glu	Phe	Met
							35		40			45			
Phe	Asp	Phe	Asp	Gly	Asp	Glu	Ile	Phe	His	Val	Asp	Met	Ala	Lys	Lys
							50		55			60			
Glu	Thr	Val	Trp	Arg	Leu	Glu	Glu	Phe	Gly	Arg	Phe	Ala	Ser	Phe	Glu
							65		70			75			80
Ala	Gln	Gly	Ala	Leu	Ala	Asn	Ile	Ala	Val	Asp	Lys	Ala	Asn	Leu	Glu
							85		90			95			
Ile	Met	Thr	Lys	Arg	Ser	Asn	Tyr	Thr	Pro	Ile	Thr	Asn	Val	Pro	Pro
							100		105			110			
Glu	Val	Thr	Val	Leu	Thr	Asn	Ser	Pro	Val	Glu	Leu	Arg	Glu	Pro	Asn
							115		120			125			
Val	Leu	Ile	Cys	Phe	Ile	Asp	Lys	Phe	Thr	Pro	Pro	Val	Val	Asn	Val
							130		135			140			
Thr	Trp	Leu	Arg	Asn	Gly	Lys	Pro	Val	Thr	Gly	Val	Ser	Glu	Thr	145
									150			155			160
Val	Phe	Leu	Pro	Arg	Glu	Asp	His	Leu	Phe	Arg	Lys	Phe	His	Tyr	Leu
							165		170			175			
Pro	Phe	Leu	Pro	Ser	Thr	Glu	Asp	Val	Tyr	Asp	Cys	Arg	Val	Glu	His
							180		185			190			

Trp Gly Leu Asp Glu Pro Leu Leu Lys His Trp Glu Phe Asp Ala Pro
 195 200 205
 Ser Pro Leu Pro Glu Thr Thr Glu Asn Val Val Cys Ala Leu Gly Leu
 210 215 220
 Thr Val Gly Leu Val Gly Ile Ile Ile Gly Thr Ile Phe Ile Ile Lys
 225 230 235 240
 Gly Val Arg Lys Ser Asn Ala Ala Glu Arg Arg Gly Pro Leu
 245 250

<210> 42

<211> 266

<212> DNA

<213> Homo sapiens

<400> 42

atgcccagt	gtccccaaagt	caacaaggag	gtgtacttcg	ccgagagggt	gacctctctg	60
ggcaaggact	ggcatcgccc	ctgcctgaag	tgcgagaaat	gtgggaagac	gctgacctct	120
ggggggccacg	ctgagcacga	aggcaaaacc	tactgcaacc	accctgtcta	cgcagccatg	180
tttggcccta	aaggcttgg	gcggggcgg	gccgagagcc	acactttcaa	gtaaaccagg	240
tggtgagac	ccatcccttgg	ctgctt				266

<210> 43

<211> 77

<212> PRT

<213> Homo sapiens

<400> 43

Met Pro Lys Cys Pro Lys Cys Asn Lys Glu Val Tyr Phe Ala Glu Arg						
1	5	10	15			
Val Thr Ser Leu Gly Lys Asp Trp His Arg Pro Cys Leu Lys Cys Glu						
20	25	30				
Lys Cys Gly Lys Thr Leu Thr Ser Gly Gly His Ala Glu His Glu Gly						
35	40	45				
Lys Pro Tyr Cys Asn His Pro Cys Tyr Ala Ala Met Phe Gly Pro Lys						
50	55	60				
Gly Phe Gly Arg Gly Gly Ala Glu Ser His Thr Phe Lys						
65	70	75				

<210> 44

<211> 1665

<212> DNA

<213> Homo sapiens

<400> 44

gaagggaaactg	gttctgtctca	cacttgcgtt	cttgcgcata	aggactggct	ttatctcctg	60
actcacggtg	caaagggtgca	ctctgcgaac	gttaagtccg	tccccagcgc	ttggaaatcct	120
acggccccca	cagccggatc	ccctcagcct	tccaggtcct	caactcccg	ggacgctgaa	180
caatggccctc	catggggcta	caggtaatgg	gcatcgccgt	ggccgtcctg	ggctggctgg	240
ccgtcatgtct	gtgctgcgcg	ctgcccattgt	ggcgcgtgac	ggccttcata	ggcagcaaca	300
ttgtcacctc	gcagaccatc	tgggagggcc	tatggatgaa	ctgcgtggtg	cagagcaccg	360
gccagatgca	gtgcaaggtg	tacgactcgc	tgctggcact	gccgcaggac	ctgcaggcgg	420
cccgccccc	cgtcatcatc	agcatcatcg	tggctgtct	ggcgtgctg	ctgtccgtgg	480
tggggggcaa	gtgtaccaac	tgcctggagg	atgaaagcgc	caaggccaag	accatgatcg	540
tggcgggctg	gtgttctctg	ttggccggcc	ttatggtgat	atgcggggtg	tcctggacgg	600
cccacaaatc	catccaagac	ttctacaatc	cgctggtggc	ctccggccag	aagcgggaga	660
tgggtgcctc	gtctacgtc	gctggggcc	cctccggcct	gtctgcctt	ggcggggggc	720
tgctttgtcg	caactgtcca	ccccgcacag	acaagccta	ctccgccaag	tattctgtg	780
cccgctctgc	tgctgccagc	aactacgtgt	aagggtccac	ggcttactc	tgttccctc	840
tgctttgttc	ttccctggac	tgagctcagc	gcaggctgtg	accccaggag	ggccctgcca	900
cgggccactg	gctgctgggg	actggggact	ggcagagac	tgagccaggc	aggaaggcag	960

cagccttcag cctctctggc ccactcgac aacttccaa gcccgcctcc tgcttagcaag	1020
aacagagtcc accctcctct gatatggg gagggacgga agtgacaggg tgggtgtgt	1080
gagtggggag ctggctctg ctggccagga tagctaacc ctgactttgg gatctgcctg	1140
catcgccgtt ggccactgtc cccatattaca tttccccac tctgtctgcc tgcatctct	1200
ctgttccggg taggccttga tatcacctct gggactgtgc cttgctcacc gaaaccgcg	1260
cccaggagta tggctgaggc cttgcccacc cacctgcctg ggaagtgcag agtggatgga	1320
cgggtttaga ggggaggggc gaaggtgctg taaaacagggtt tgggcagtgg tgggggaggg	1380
ggccagagag gcggctcagg ttgcccagct ctgtggcctc aggactctct gcctcaccgg	1440
cttcagccca gggcccctgg agactgtatcc cctctgagtc ctctgcccct tccaaggaca	1500
ctaatgagcc tgggagggtg gcagggagga ggggacagct tcacccttgg aagtccctgg	1560
gtttttccctc ttcccttctt gtggtttctg tttttaatt taagaagagc tattcatcac	1620
tgtaattatt attattttct acaataaaatg ggacctgtgc acagg	1665

<210> 45

<211> 209

<212> PRT

<213> Homo sapiens

<400> 45

Met Ala Ser Met Gly Leu Gln Val Met Gly Ile Ala Leu Ala Val Leu	
1 5 10 15	
Gly Trp Leu Ala Val Met Leu Cys Cys Ala Leu Pro Met Trp Arg Val	
20 25 30	
Thr Ala Phe Ile Gly Ser Asn Ile Val Thr Ser Gln Thr Ile Trp Glu	
35 40 45	
Gly Leu Trp Met Asn Cys Val Val Gln Ser Thr Gly Gln Met Gln Cys	
50 55 60	
Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln Asp Leu Gln Ala Ala	
65 70 75 80	
Arg Ala Leu Val Ile Ile Ser Ile Ile Val Ala Ala Leu Gly Val Leu	
85 90 95	
Leu Ser Val Val Gly Gly Lys Cys Thr Asn Cys Leu Glu Asp Glu Ser	
100 105 110	
Ala Lys Ala Lys Thr Met Ile Val Ala Gly Val Val Phe Leu Leu Ala	
115 120 125	
Gly Leu Met Val Ile Val Pro Val Ser Trp Thr Ala His Asn Ile Ile	
130 135 140	
Gln Asp Phe Tyr Asn Pro Leu Val Ala Ser Gly Gln Lys Arg Glu Met	
145 150 155 160	
Gly Ala Ser Leu Tyr Val Gly Trp Ala Ala Ser Gly Leu Leu Leu	
165 170 175	
Gly Gly Gly Leu Leu Cys Cys Asn Cys Pro Pro Arg Thr Asp Lys Pro	
180 185 190	
Tyr Ser Ala Lys Tyr Ser Ala Ala Arg Ser Ala Ala Ser Asn Tyr	
195 200 205	
Val	

<210> 46

<211> 1009

<212> DNA

<213> Homo sapiens

<400> 46

ggcagtagct tgctgatgct cccagctgaa taaaggccctt ccttctacaa tttgggtgtct	60
gaggggtttt gtctcggtct cgtcctgcta cattttttgg tttccctgacc agggaaacgag	120
gttaactgtat gacagccgag gcagccccctt aggccgctta ggccctccctt gtggagcatc	180
cctgaggcgg actccggcca gccccgatgtc tgctgatccaa agagcactcc cgggttaggaa	240
attgccccgg tggatgtctt caccagagca gctgttagca gtccctgtg gaggattaac	300
acagtggctg aacaccggga aggaactggc acttggagtc cgacatctg aaacttggta	360

agactagttt	ttggaaacttg	ccccactcca	tctagggtgg	agtgtggcct	gatcacccac	420
gacatgcctg	cattggcaact	tctgttctgg	tttgggttg	acttagatgg	tgtgatactt	480
tggtttttgtt	tttgggttg	cctggcttgg	attctagata	ctctgatttg	gttttgattt	540
tggtttttgtt	taaactgcaa	gagtgtgtat	gcccctttta	cctgtttttt	gttttggtggc	600
atgtgtgtgg	tgtgggtgtg	gtgtttgtc	tcgaagaagg	atgggtcagg	tacaaataag	660
cccacccac	taggaactat	gttaaaaaaaa	aattcaagaa	agaatattaag	ggagattaca	720
gtgttactgt	gacaccagga	aaacttagaa	cttgggtgtg	aatagactgg	ccagcattag	780
aggtgggttg	gccatcgaaa	ggaaggctgg	acaggccct	tgtttcaaaag	gtatgacaca	840
aggttaacacc	aattctaagt	taatttgaag	tttgcttaaa	gttaacagt	taacatgtat	900
tatggtaact	tctaattttt	ttggccttaga	cagtctagtc	caaaggcata	aagaaagttt	960
gctttaaaaaa	aaaaaaaaaaag	aatggtttat	cttcaaaaaaa	aaaaaaaaaa		1009

<210> 47

<211> 1250

<212> DNA

<213> Homo sapiens

<400> 47

aattcgccac	gagggcagg	gcaggcgac	gcggcgagag	cgtatggagc	cgagccgtta	60
gcgcgcgcgg	tcggtgagtc	agtccgtccg	tccgtccgtc	cgtcgccgc	ccgcagctcc	120
cgccaggccc	agcgcccccg	gccccctcgtc	tccccgcacc	cggagccacc	cggtggagcg	180
ggccttgcgg	cggcagccat	gtccatgggc	ctggagatca	cgggcaccgc	gctggccgtg	240
ctgggcttggc	tgggcaccaat	cgtgtgtgc	gcgttgccca	tgtggcgcgt	gtcgcccttc	300
atcggcagca	acatcatcac	gtgcagaac	atctgggagg	gcctgtggat	gaactgcgtg	360
gtcagagca	cggccagat	gcagtgcag	gtgtacact	cgctgtgtgc	actgccacag	420
gaccccttccgg	cgccccggcgc	cctcatcggt	gtggccatcc	tgcggccgc	cttcgggctg	480
ctagtggcgc	tggtgggcgc	ccagtgcacc	aactgcgtgc	aggacgacac	ggccaaggcc	540
aaagatcacca	tcgtggcagg	cgtgtgttc	cttctcgccg	ccctgttcac	cctcgtgcgg	600
gtgtccttgg	cggccaaacac	cattatccgg	gacttctaca	accccggtgg	gcccggaggcg	660
cagaagcgcg	agatgggcgc	ggccctgtac	gtgggctggg	cggccggcgc	gctgcagctg	720
ctggggggccg	cgtgtctgc	ctgctctgt	cccccaacgc	agaagaagta	cacggccacc	780
aaggctgtt	actccgcgccc	gcgcgtccacc	ggcccgggag	ccagcctggg	cacaggotac	840
gaccgcagg	actacgtcta	agggacagac	gcagggagac	ccaccacca	ccaccaccac	900
caacaccacc	accaccaccg	cgagctggag	cgcgcaccag	gccatccagc	gtgcagccct	960
gcctcgagg	ccagcccacc	cccagaagcc	aggaagcccc	cgcgtggac	tggggcagct	1020
tccccagcag	ccacggcttt	gcgggcccggg	cagtcgactt	cggggccctag	ggaccaacct	1080
gcatggactg	tgaaacctca	cccttctgg	gcacggggcc	tgggtgaccg	ccaataacttg	1140
accacccctg	cgagccccat	cgggccgctg	ccccatgtc	gctggggca	gggaccggca	1200
gcccttggaa	gggcacttga	tatTTTCAA	taaaaggccctc	tgcTTTTCAG		1250

<210> 48

<211> 220

<212> PRT

<213> Homo sapiens

<400> 48

Met	Ser	Met	Gly	Leu	Glu	Ile	Thr	Gly	Thr	Ala	Leu	Ala	Val	Leu	Gly	
1							10						15			
Trp	Leu	Gly	Thr	Ile	Val	Cys	Cys	Ala	Leu	Pro	Met	Trp	Arg	Val	Ser	
													20	25	30	
Ala	Phe	Ile	Gly	Ser	Asn	Ile	Ile	Thr	Ser	Gln	Asn	Ile	Trp	Glu	Gly	
													35	40	45	
Leu	Trp	Met	Asn	Cys	Val	Val	Gln	Ser	Thr	Gly	Gln	Met	Gln	Cys	Lys	
													50	55	60	
Val	Tyr	Asp	Ser	Leu	Leu	Ala	Leu	Pro	Gln	Asp	Leu	Gln	Ala	Ala	Arg	
													65	70	75	80
Ala	Leu	Ile	Val	Val	Ala	Ile	Leu	Leu	Ala	Ala	Phe	Gly	Leu	Leu	Val	
													85	90	95	
Ala	Leu	Val	Gly	Ala	Gln	Cys	Thr	Asn	Cys	Val	Gln	Asp	Asp	Thr	Ala	
													100	105	110	

Lys Ala Lys Ile Thr Ile Val Ala Gly Val Leu Phe Leu Leu Ala Ala
 115 120 125
 Leu Leu Thr Leu Val Pro Val Ser Trp Ser Ala Asn Thr Ile Ile Arg
 130 135 140
 Asp Phe Tyr Asn Pro Val Val Pro Glu Ala Gln Lys Arg Glu Met Gly
 145 150 155 160
 Ala Gly Leu Tyr Val Gly Trp Ala Ala Ala Leu Gln Leu Leu Gly
 165 170 175
 Gly Ala Leu Leu Cys Cys Ser Cys Pro Pro Arg Glu Lys Lys Tyr Thr
 180 185 190
 Ala Thr Lys Val Val Tyr Ser Ala Pro Arg Ser Thr Gly Pro Gly Ala
 195 200 205
 Ser Leu Gly Thr Gly Tyr Asp Arg Lys Asp Tyr Val
 210 215 220

<210> 49
<211> 3321
<212> DNA
<213> Homo sapiens

<400> 49
atgaagattt tgatacttgg tattttctg ttttatgtt gtaccccagc ctgggcgaaa 60
gaaaaggcatt attacattgg aattattgaa acgacttggg attatgcctc tgaccatggg 120
gaaaagaac ttatttctgt tgacacggaa cattccaata tctatcttc aaatggccca 180
gatagaattt ggagactata taagaaggcc ctttatcttc agtacacaga taaaaacctt 240
aggacaacta tagaaaaacc ggtctggctt gggtttttag gcccttattt caaagctgaa 300
actggagata aagtttatgtt acacttaaaa aaccttgctt ctaggcccta cacccttcatt 360
tcacatggaa taacttacta taaggaacat gaggggccca tctaccctga taacaccaca 420
gattttcaaa gagcagatga caaagtatatt ccaggagagc agtatacata catgttgctt 480
gccactgaag aaaaaagtcc tggggaaaggaa gatggcaattt gtgtgacttag gatttaccat 540
tccccacattt atgctccaaa agatatttgc tcagactca tggacattt aataatctgt 600
aaaaaaagattt ctctagataa agaaaaaaaggaa aaacatattt accggaaattt tttgtgtat 660
ttttctgtgg tggataaaaa tttcagctgg tacctagaag acaacattaa aacctactgc 720
tcagaaccatc agaaagttaa caaagacaac gaagacttcc aggagagtaga cagaatgtat 780
tctgtgaatg gatacacttt tggaaagtctc ccaggactctt ccatgtgtgc tgaagacaga 840
gtaaaaatggt accttttgg tatgggtaat gaagttgtt tgcacgcagc tttcttcac 900
gggcaagcac tgactaacaatc gaactaccgtt attgacacaa tcaaccttcc tccctgtacc 960
ctgttgcattt cttatatggt ggcccagaac cctggagaat ggatgtctcag ctgtcagaat 1020
ctaaaccatc tgaaagccgg tttgcaagcc ttttccagg tccaggatgt taacaagtct 1080
tcatcaaagg ataatatccg tgggaagcat gtttagacactt actacattgc cgctgaggaa 1140
atcatctgaa actatgtcc ctctggatc gacatcttca ctaaaagaaaa cttAACAGCA 1200
cctggaaatgtt actcagcggtt gttttttggaa caaggatccca caagaatttgg aggctcttat 1260
aaaaaaatgtt ttatctgttca gatcacatggt gcctcccttca caaatcgaaa ggagagaggc 1320
cctggaaatgtt actcattggt catcctgggtt cctgtcattt gggcagatgtt gggagacacc 1380
atcagatgtt cttccatataa caaaggagca tatccccctca gtattggatcc gattgggtt 1440
agattcaata agaacaacgaa gggcacatc tattccccaa attacaaccc ccagagcaga 1500
agtgtgcctc cttcagccctc ccatgtggca cccacagaaa cattcaccta tgaatggact 1560
gtccccaaatgtt aagtaggacc cactaatgtca gatcctgtgtt gtctagctaa gatgtattat 1620
tctgtgtgg atccccactaa agatataattt actgggctta ttggggccat gaaaatatgc 1680
aagaaaaggaa gtttacatgc aaatgggaga cagaaagatgt tagacaagga attctattt 1740
tttcctacatgtt tatttgcattt gatggagatgtt ttactccctgg aagataatattt tagaatgttt 1800
acaactgcac ctgatcaggatgtt ggataaggaa gatggaaactt ttcaggaatc taataaaatgtt 1860
caactccatgtt atggattcat gtatggaaat cagccgggtc tcactatgtt caaaggagat 1920
tcgggtcgatgtt ggtacttattt cagccgggtt aatggggccgtt atgtacatgtt aatatacttt 1980
tcaggaaaca catatctgtt gagaggagaaatgtt cggagagaca cagcaaaacctt cttcccttca 2040
acaactgtt caactccatgtt gtggccctgtac acagaggggaaatgtt tgaatgtt tgaatgttt 2100
acaactgtt attagatgtt cttccatgtt cttccatgtt cttccatgtt tgaatgtt tgaatgttt 2160
cagtcgttggg attccacatgtt ctacccatgtt gagaggatgtt actatatgtt cttccatgtt 2220
gtggaaatgtt attatcccccaaaatgtt cttccatgtt gagaggatgtt agtgcgttccatgtt 2280
cagaatgtt caaatgtt cttccatgtt cttccatgtt cttccatgtt tttacaagatgtt 2340

aaagttgtt atcggcagta tactgatagc acattccgtg ttccagtgg aaaaaaaaaa	2400
gaagaagaac atctggaat tctaggcca caacttcatg cagatgttg agacaaaagtc	2460
aaaattatct taaaaaacat ggccacaagg ccctactcaa tacatgccca tgggttacaa	2520
acagagagg tctacagttac tccaaacatta ccaggtggaa ctctcactta cgtatggaaa	2580
atcccagaaa gatctggagc tggAACAGAG gattctgtt gtattccatg ggcttattat	2640
tcaactgtgg atcaagttaa ggacctctac agtggattaa ttggccccct gatttttgtt	2700
cgaagaccc ttacttggaaat attcaatccc agaaggaaagc tggalattgc ccttctgttt	2760
ctagttttt atgagaatgaa atcttggatc ttagatgaca acatcaaaaac atactctgat	2820
caccccgaga aagtaaaca a agatgtatgg gaattcatag aaagcaataa aatgcatgt	2880
attaatggaa gaatgtttgg aaacctacaa ggcctcacaa tgacacgtggg agatgaagtc	2940
aactggatc tggatggaaat gggcaatgaa atagacttac acactgtaca ttttcaeggc	3000
catagcttcc aatacaagca caggggagtt tatagttctg atgtcttga cattttccct	3060
ggaacatacc aaaccctaga aatgtttcca agaacacctg gaatttgggtt actccactgc	3120
catgtgaccg accacattca tgcgtggatg gaaaccactt acaccgttct aaaaaatgaa	3180
gacaccaat ctggctgaat gaaataaaatt ggtgataatgg gaaaaaaaga gaaaaaccaa	3240
tgattcataa caatgtatgt gaaagtgtaa aatagaatgt tactttggaa tgactataaa	3300
cattaaaaga gactggagca t	3321

<210> 50

<211> 1065

<212> PRT

<213> Homo sapiens

<400> 50

Met Lys Ile Leu Ile Leu Gly Ile Phe Leu Phe Leu Cys Ser Thr Pro	
1 5 10 15	
Ala Trp Ala Lys Glu Lys His Tyr Tyr Ile Gly Ile Ile Glu Thr Thr	
20 25 30	
Trp Asp Tyr Ala Ser Asp His Gly Glu Lys Lys Leu Ile Ser Val Asp	
35 40 45	
Thr Glu His Ser Asn Ile Tyr Leu Gln Asn Gly Pro Asp Arg Ile Gly	
50 55 60	
Arg Leu Tyr Lys Lys Ala Leu Tyr Leu Gln Tyr Thr Asp Glu Thr Phe	
65 70 75 80	
Arg Thr Thr Ile Glu Lys Pro Val Trp Leu Gly Phe Leu Gly Pro Ile	
85 90 95	
Ile Lys Ala Glu Thr Gly Asp Lys Val Tyr Val His Leu Lys Asn Leu	
100 105 110	
Ala Ser Arg Pro Tyr Thr Phe His Ser His Gly Ile Thr Tyr Tyr Lys	
115 120 125	
Glu His Glu Gly Ala Ile Tyr Pro Asp Asn Thr Thr Asp Phe Gln Arg	
130 135 140	
Ala Asp Asp Lys Val Tyr Pro Gly Glu Gln Tyr Thr Tyr Met Leu Leu	
145 150 155 160	
Ala Thr Glu Glu Gln Ser Pro Gly Glu Gly Asp Gly Asn Cys Val Thr	
165 170 175	
Arg Ile Tyr His Ser His Ile Asp Ala Pro Lys Asp Ile Ala Ser Gly	
180 185 190	
Leu Ile Gly Pro Leu Ile Ile Cys Lys Lys Asp Ser Leu Asp Lys Glu	
195 200 205	
Lys Glu Lys His Ile Asp Arg Glu Phe Val Val Met Phe Ser Val Val	
210 215 220	
Asp Glu Asn Phe Ser Trp Tyr Leu Glu Asp Asn Ile Lys Thr Tyr Cys	
225 230 235 240	
Ser Glu Pro Glu Lys Val Asp Lys Asp Asn Glu Asp Phe Gln Glu Ser	
245 250 255	
Asn Arg Met Tyr Ser Val Asn Gly Tyr Thr Phe Gly Ser Leu Pro Gly	
260 265 270	
Leu Ser Met Cys Ala Glu Asp Arg Val Lys Trp Tyr Leu Phe Gly Met	
275 280 285	

Gly Asn Glu Val Asp Val His Ala Ala Phe Phe His Gly Gln Ala Leu
 290 295 300
 Thr Asn Lys Asn Tyr Arg Ile Asp Thr Ile Asn Leu Phe Pro Ala Thr
 305 310 315 320
 Leu Phe Asp Ala Tyr Met Val Ala Gln Asn Pro Gly Glu Trp Met Leu
 325 330 335
 Ser Cys Gln Asn Leu Asn His Leu Lys Ala Gly Leu Gln Ala Phe Phe
 340 345 350
 Gln Val Gln Glu Cys Asn Lys Ser Ser Ser Lys Asp Asn Ile Arg Gly
 355 360 365
 Lys His Val Arg His Tyr Tyr Ile Ala Ala Glu Glu Ile Ile Trp Asn
 370 375 380
 Tyr Ala Pro Ser Gly Ile Asp Ile Phe Thr Lys Glu Asn Leu Thr Ala
 385 390 395 400
 Pro Gly Ser Asp Ser Ala Val Phe Phe Glu Gln Gly Thr Thr Arg Ile
 405 410 415
 Gly Gly Ser Tyr Lys Lys Leu Val Tyr Arg Glu Tyr Thr Asp Ala Ser
 420 425 430
 Phe Thr Asn Arg Lys Glu Arg Gly Pro Glu Glu Glu His Leu Gly Ile
 435 440 445
 Leu Gly Pro Val Ile Trp Ala Glu Val Gly Asp Thr Ile Arg Val Thr
 450 455 460
 Phe His Asn Lys Gly Ala Tyr Pro Leu Ser Ile Glu Pro Ile Gly Val
 465 470 475 480
 Arg Phe Asn Lys Asn Asn Glu Gly Thr Tyr Tyr Ser Pro Asn Tyr Asn
 485 490 495
 Pro Gln Ser Arg Ser Val Pro Pro Ser Ala Ser His Val Ala Pro Thr
 500 505 510
 Glu Thr Phe Thr Tyr Glu Trp Thr Val Pro Lys Glu Val Gly Pro Thr
 515 520 525
 Asn Ala Asp Pro Val Cys Leu Ala Lys Met Tyr Tyr Ser Ala Val Asp
 530 535 540
 Pro Thr Lys Asp Ile Phe Thr Gly Leu Ile Gly Pro Met Lys Ile Cys
 545 550 555 560
 Lys Lys Gly Ser Leu His Ala Asn Gly Arg Gln Lys Asp Val Asp Lys
 565 570 575
 Glu Phe Tyr Leu Phe Pro Thr Val Phe Asp Glu Asn Glu Ser Leu Leu
 580 585 590
 Leu Glu Asp Asn Ile Arg Met Phe Thr Thr Ala Pro Asp Gln Val Asp
 595 600 605
 Lys Glu Asp Glu Asp Phe Gln Glu Ser Asn Lys Met His Ser Met Asn
 610 615 620
 Gly Phe Met Tyr Gly Asn Gln Pro Gly Leu Thr Met Cys Lys Gly Asp
 625 630 635 640
 Ser Val Val Trp Tyr Leu Phe Ser Ala Gly Asn Glu Ala Asp Val His
 645 650 655
 Gly Ile Tyr Phe Ser Gly Asn Thr Tyr Leu Trp Arg Gly Glu Arg Arg
 660 665 670
 Asp Thr Ala Asn Leu Phe Pro Gln Thr Ser Leu Thr Leu His Met Trp
 675 680 685
 Pro Asp Thr Glu Gly Thr Phe Asn Val Glu Cys Leu Thr Thr Asp His
 690 695 700
 Tyr Thr Gly Gly Met Lys Gln Lys Tyr Thr Val Asn Gln Cys Arg Arg
 705 710 715 720
 Gln Ser Glu Asp Ser Thr Phe Tyr Leu Gly Glu Arg Thr Tyr Tyr Ile
 725 730 735
 Ala Ala Val Glu Val Glu Trp Asp Tyr Ser Pro Gln Arg Glu Trp Glu
 740 745 750
 Lys Glu Leu His His Leu Gln Glu Gln Asn Val Ser Asn Ala Phe Leu
 755 760 765

Asp Lys Gly Glu Phe Tyr Ile Gly Ser Lys Tyr Lys Lys Val Val Tyr
 770 775 780
 Arg Gln Tyr Thr Asp Ser Thr Phe Arg Val Pro Val Glu Arg Lys Ala
 785 790 795 800
 Glu Glu Glu His Leu Gly Ile Leu Gly Pro Gln Leu His Ala Asp Val
 805 810 815
 Gly Asp Lys Val Lys Ile Ile Phe Lys Asn Met Ala Thr Arg Pro Tyr
 820 825 830
 Ser Ile His Ala His Gly Val Gln Thr Glu Ser Ser Thr Val Thr Pro
 835 840 845
 Thr Leu Pro Gly Glu Thr Leu Thr Tyr Val Trp Lys Ile Pro Glu Arg
 850 855 860
 Ser Gly Ala Gly Thr Glu Asp Ser Ala Cys Ile Pro Trp Ala Tyr Tyr
 865 870 875 880
 Ser Thr Val Asp Gln Val Lys Asp Leu Tyr Ser Gly Leu Ile Gly Pro
 885 890 895
 Leu Ile Val Cys Arg Arg Pro Tyr Leu Lys Val Phe Asn Pro Arg Arg
 900 905 910
 Lys Leu Glu Phe Ala Leu Leu Phe Leu Val Phe Asp Glu Asn Glu Ser
 915 920 925
 Trp Tyr Leu Asp Asp Asn Ile Lys Thr Tyr Ser Asp His Pro Glu Lys
 930 935 940
 Val Asn Lys Asp Asp Glu Glu Phe Ile Glu Ser Asn Lys Met His Ala
 945 950 955 960
 Ile Asn Gly Arg Met Phe Gly Asn Leu Gln Gly Leu Thr Met His Val
 965 970 975
 Gly Asp Glu Val Asn Trp Tyr Leu Met Gly Met Gly Asn Glu Ile Asp
 980 985 990
 Leu His Thr Val His Phe His Gly His Ser Phe Gln Tyr Lys His Arg
 995 1000 1005
 Gly Val Tyr Ser Ser Asp Val Phe Asp Ile Phe Pro Gly Thr Tyr Gln
 1010 1015 1020
 Thr Leu Glu Met Phe Pro Arg Thr Pro Gly Ile Trp Leu Leu His Cys
 1025 1030 1035 1040
 His Val Thr Asp His Ile His Ala Gly Met Glu Thr Thr Tyr Thr Val
 1045 1050 1055
 Leu Gln Asn Glu Asp Thr Lys Ser Gly
 1060 1065

<210> 51
 <211> 1603
 <212> DNA
 <213> Homo sapiens

<400> 51

ggccaggat caggcagcgg ctcaggcgac cctgagtgtg	cccccacccc	gccccatggccc	60
ggctgtgcgca ggcgtctgc ctgttttccc tgctcttggc	cggcttcgtc	tcgcagagcc	120
ggggacaaga gaagtcgaag atggactgccc	atggtggcat	aagtggcacc	180
acggagccct caccattgtat ggggaggagt	acatccctt	caagcagtat	240
acgtcctctt tgtcaacgtg gccagctact	gaggcctgac	gggccagtagc	300
atgcactaca ggaagagctt gcaccattcg	gtctggcat	tctgggctt	360
aatttggaaa acaggaacca ggagagaact	cagagatcct	tcctaccctc	420
gaccaggtgg aggctttgtc	cctaatttcc	agcttttga	480
agaaaagagca gaaattctac	actttcctaa	agaactcctg	540
tgggtacatc tgaccgcctc ttctggaaac	ccatgaaggt	tcacgacatc	600
ttgagaaggat cctgggggg ccagatggta	tacccatcat	gctgtggcac	660
cggtcagcaa cgtcaagatg gacatcctgt	cctacatgag	gcccgcaggca	720
tcaagagggaa gtaactgaag	gccgtctcat	ccatgttaggg	780
gttcaggaag aaatccgtgt	ccccaaccac	actatctacc	840
tcactcaagg ccccagcctg	gcacaaatgg	atgcatacag	900
	ttctgtgtac	tgccaggcat	

gtgggtgtgg	gtgcatgtgg	gtgtttacac	acatgcctac	aggatgcgt	gattgtgtgt	960
gtgtcatgg	gtgtacagcc	acgtgtccta	cctatgtgtc	tttctggaa	tgtgtaccat	1020
ctgtgtgcata	gcagctgtgt	agtgtgtggac	agtacaacc	ctttctctcc	agttctccac	1080
tccaatgata	atagttcaact	tacacctaaa	ccccaaaggaa	aaaccagctc	taggtccaat	1140
tgttctgcata	taactgatac	ctcaaccttg	gggcccagcat	ctcccaactgc	ctccaaatat	1200
tagtaactat	gactgacgtc	cccagaagtt	tctgggtcta	ccacactccc	caaaaaaaaa	1260
ctcctacttc	ctgaagggcc	ctcccaaggc	tacatcccc	ccccacagtt	ctccctgaga	1320
gagatcaacc	tcccttagatc	aaccaaggca	gatgtgacaa	gcaaggggcca	cggaccctcat	1380
aggcagggtt	ggcgcttca	tgagggaggg	gccccaaagcc	cttggggcg	gaccccccct	1440
gagcgtgtct	gagggggccag	cccttagtgc	attcaggcta	aggccccctgg	gcagggatgc	1500
caccctgttc	cttcggagga	cgtggccctca	cccctcaactg	gtccactggc	ttgagactca	1560
ccccgtctgc	ccagtaaaag	cctttctgca	gcaaaaaacc	ccc		1603

<210> 52

<211> 226

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> 0-00

<223> Xaa = any amino acid

<400> 52

Met Ala Arg Leu Leu Gln Ala Ser Cys	Leu Leu Ser	Leu Leu Leu Ala	
1	5	10	15
Gly Phe Val Ser Gln Ser Arg Gly	Gln Glu Lys	Ser Lys Met Asp Cys	
20	25	30	
His Gly Gly Ile Ser Gly Thr Ile	Tyr Glu Tyr Gly	Ala Leu Thr Ile	
35	40	45	
Asp Gly Glu Glu Tyr Ile Pro Phe	Lys Gln Tyr Ala	Gly Lys Tyr Val	
50	55	60	
Leu Phe Val Asn Val Ala Ser	Tyr Xaa Gly	Leu Thr Gly Gln Tyr Ile	
65	70	75	80
Glu Leu Asn Ala Leu Gln Glu	Glu Leu Ala Pro	Phe Gly Leu Val Ile	
85	90	95	
Leu Gly Phe Pro Cys Asn Gln Phe	Gly Lys Gln Glu	Pro Gly Glu Asn	
100	105	110	
Ser Glu Ile Leu Pro Thr Leu Lys	Tyr Val Arg Pro	Gly Gly Phe	
115	120	125	
Val Pro Asn Phe Gln Leu Phe	Glu Lys Gly Asp	Val Asn Gly Glu Lys	
130	135	140	
Glu Gln Lys Phe Tyr Thr Phe	Leu Lys Asn Ser	Cys Pro Pro Thr Ser	
145	150	155	160
Glu Leu Leu Gly Thr Ser Asp Arg	Leu Phe Trp Glu	Pro Met Lys Val	
165	170	175	
His Asp Ile Arg Trp Asn Phe	Glu Lys Phe	Leu Val Gly Pro Asp Gly	
180	185	190	
Ile Pro Ile Met Arg Trp His	His Arg Thr Thr	Val Ser Asn Val Lys	
195	200	205	
Met Asp Ile Leu Ser Tyr Met	Arg Arg Gln Ala	Ala Leu Gly Val Lys	
210	215	220	
Arg Lys			
225			

<210> 53

<211> 399

<212> DNA

<213> Homo sapiens

<400> 53

atgaagtcca	gccccctc	ccccttc	cgtgtctt	ccctggaa	tctggcac	60
tggctgtt	aaggctctt	aaagtcctt	aaagctgg	tctgtc	taagaatct	120
gcccagtgc	ttagatacaa	aaaacctg	tgccagatg	actggc	tccaggaa	180
aagagatgtt	gtcctgacac	ttgtggc	aatgcctt	atcctgtt	caccccaa	240
ccaacaagg	ggaagctgg	gaagtgc	gtgacttat	gcataatgtt	gatgctt	300
cccccaatt	tctgtgagat	gatggcc	tgcaagcg	acttgaag	ttgcatgg	360
atgtgtgg	aatcctgc	ttccc	tgtaa	aaagctt		399

<210> 54

<211> 132

<212> PRT

<213> Homo sapiens

<400> 54

Met Lys Ser Ser Gly Leu Phe Pro Phe Leu Val Leu Leu Ala Leu Gly			
1	5	10	15
Thr Leu Ala Pro Trp Ala Val Glu Gly Ser Gly Lys Ser Phe Lys Ala			
20	25	30	
Gly Val Cys Pro Pro Lys Lys Ser Ala Gln Cys Leu Arg Tyr Lys Lys			
35	40	45	
Pro Glu Cys Gln Ser Asp Trp Gln Cys Pro Gly Lys Lys Arg Cys Cys			
50	55	60	
Pro Asp Thr Cys Gly Ile Lys Cys Leu Asp Pro Val Asp Thr Pro Asn			
65	70	75	80
Pro Thr Arg Arg Lys Pro Gly Lys Cys Pro Val Thr Tyr Gly Gln Cys			
85	90	95	
Leu Met Leu Asn Pro Pro Asn Phe Cys Glu Met Asp Gly Gln Cys Lys			
100	105	110	
Arg Asp Leu Lys Cys Cys Met Gly Met Cys Gly Lys Ser Cys Val Ser			
115	120	125	
Pro Val Lys Ala			
130			

<210> 55

<211> 3557

<212> DNA

<213> Homo sapiens

<400> 55

gagagggtcc	ttcagggtct	gcttatgcc	ttgttcaaga	acaccagtgt	cagctctctt	60
tactctgg	gcagactgac	cttgctcagg	cctgagaagg	atggggcagc	caccagagt	120
gatgctgtt	gcaccatcg	tcctgacccc	aaaagccctg	gactggacag	agagcggctg	180
tacttggaa	tgagccagct	gacccacggc	atcactgg	tggggcccta	caccctggac	240
aggcacatc	tctatgtcaa	tgttttacc	catcagatc	ctatgacgac	caccagaact	300
cctgataact	ccacaatgc	cctggcaacc	tcgagaactc	cagcctccct	gtctggac	360
acgaccgc	gcccttc	ggtgttattc	acaattaact	tcaccatcac	taacctgg	420
tatgaggaga	acatgatca	ccctggctt	agaaagtta	acaccacgg	gagactt	480
cagggtctc	tcaggcctgt	gttcaagaac	accagtgtt	gccctctgt	ctctggct	540
agactgac	tgctcaggcc	caagaaggat	ggggcagcc	ccaaagtgg	tgccatct	600
acctaccgc	ctgatccaa	aaggccctgg	ctggacagag	agcagctata	ctgggagct	660
agccagctaa	cccacagcat	cactgagct	ggcccttaca	ccctggacag	ggacagtct	720
tatgtcaat	gtttcacaca	gccccatct	gtgcccacca	ctagcat	tgggacccc	780
acagtggacc	tgggacatc	tggactcca	gtttctaaac	ctggccctc	ggctgccc	840
cctctcc	tgctatttac	tctcaactt	accatcacca	acctgggt	tgaggaga	900
atgcagcacc	ctggctcc	gaaagtcaac	accacggaga	gggtcttca	gggcctgt	960
aggccctgt	tcaagagcac	cagtgttgc	cctctgtact	ctggctgc	actgactt	1020
ctcaggcctg	aaaaggatgg	gacagccact	ggagtggat	ccatctgcac	ccaccac	1080
gaccccaaaa	gcccttagct	ggacagagag	cagctgtatt	ggagctg	ccagctgacc	1140
cacaatatca	ctgagctgg	ccactatgc	ctggacaa	acagcctt	tgtcaatgg	1200

ttcactcatc	ggagctctgt	gtccaccacc	agcactcctg	ggaccccccac	agtgtatctg	1260
ggagcatcta	agactccagc	ctcgatattt	ggcccttcag	ctgccagcca	tccctgtata	1320
ctattcaccc	tcaacttcac	catcaactaac	ctgcggatag	aggagaacat	gtggcctggc	1380
tccaggaagt	tcaacactac	agagagggtc	ttcaggggcc	tcttaaggcc	tttgttcaag	1440
aacaccagt	ttggccctct	gtactctggc	tccaggctga	ccttgcctag	gccagagaaa	1500
gatggggaaag	ccaccggagt	ggatgccatc	tgccacccacc	gccctgaccc	cacaggccct	1560
gggctggaca	gagagcagct	gtatggag	ctgagccagc	tgacccacag	catcaactgag	1620
ctggggccct	acacacttgg	cagggacagt	ctctatgtca	atggttcac	ccatcgaggc	1680
tctgtaccca	ccaccagcac	cgggggtggtc	agcgaggagc	cattcacact	gaacttaccc	1740
atcaacaacc	tgcgtacat	ggcggacatg	ggccaaccccg	gctccctcaa	gttcaacatc	1800
acagacaacg	tcatgaagca	cctgctcagt	cctttgttcc	agaggagcag	cctgggtgca	1860
cggtacacag	gctcgggggt	catcgacta	aggtctgtga	agaacgggtc	tgagacacgg	1920
gtggacccct	tctgoaccta	cctgcagccc	ctcagccgccc	caggtctgccc	tatcaagcag	1980
gtgttccatg	agctgagcca	gcagacccat	ggcatcaccc	ggctggggccc	ctactctctg	2040
gacaaagaca	gccttacact	taacgggttac	aatgaacctg	gtcttagatga	gcctcctaca	2100
actcccaacg	cagccaccac	attcctgcct	cctctgtcag	aagccacaaac	agccatgggg	2160
taccacctg	agaccctcac	actcaatttc	accatctcca	atctccagta	ttcaccagat	2220
atgggcaagg	gctcagctac	attcaactcc	accggggggg	tccttcagca	cctgtcaga	2280
cccttgttcc	agaagagcag	catggggcccc	ttctacttgg	gttgccaaact	gatctccctc	2340
aggcctgaga	aggatggggc	agccactgtt	gtggacacca	cctgcaccta	ccaccctgac	2400
cctgtggggc	ccgggcttgg	catacagca	cttacttggg	agctgagtca	gctgacccat	2460
ggtgcaccc	aactgggctt	ctatgtctg	gacagggata	gcctcttcat	caatggctat	2520
gcaccccaga	atttatcaat	ccggggcgag	taccagataa	atttccacat	tgtcaactgg	2580
aacctcaga	atccagaccc	cacatcctca	gagtacatca	ccctgcttag	ggacatccag	2640
gacaagggtca	ccacactcta	caaaggcagt	caactacatg	acacattccg	cttctgectg	2700
gtcaccaact	tgacgatgga	ctccgttgg	gtcactgtca	aggcattgtt	ctcctcoaat	2760
ttggacccca	gcctgggttga	gcaagtctt	ctagataaga	ccctgaatgc	ctcattccat	2820
tggctgggt	ccacccatcca	gttgggtggac	atccatgtga	cagaaatgg	gtcatcaagg	2880
tatcaaccaa	caaggcagtc	cagcacccag	cacttctacc	cgaatttcac	catcaccaac	2940
cttaccatt	cccaggacaa	agcccagcca	ggcaccacca	attaccagag	gaacaaaagg	3000
aatattgagg	atgcgttcaa	ccaaactttc	cgaaacacga	gcatcaagag	ttatttttct	3060
gactgtcaag	tttcaacatt	cagggtctgtc	cccaacaggc	accacaccgg	ggtggactcc	3120
ctgtgtact	tctcggcaact	ggctcgagaa	gtagacagag	ttgccatcta	tgaggaattt	3180
ctgcggatga	cccgaaatgg	tacccagctg	cagaacttca	ccctggacag	gagcagtgtc	3240
cttgtggatg	ggtattctcc	caacagaaat	gagcccttaa	ctgggaattc	tgaccttccc	3300
ttctgggtctg	tcatcttcat	cggttggca	ggactcctgg	gactcatcac	atgcctgtatc	3360
tgcggtgtcc	ttgtgaccac	ccgcggcgg	aagaagaaag	gagaatacaa	cgtccagcaa	3420
cagtggccag	gctactacca	gtcacaccta	gacctggagg	atctgcaatg	actggaaactt	3480
gccccgtgcct	gggggtgcctt	tcccccagcc	agggtccaaa	gaagcttggc	tggggcagaa	3540
ataaaaccata	ttggtcg					3557

<210> 56
<211> 1148
<212> PRT
<213> Homo sapiens

Met	Pro	Leu	Phe	Lys	Asn	Thr	Ser	Val	Ser	Ser	Leu	Tyr	Ser	Gly	Cys
1				5				10				15			
Arg	Leu	Thr	Leu	Leu	Arg	Pro	Glu	Lys	Asp	Gly	Ala	Ala	Thr	Arg	Val
					20			25				30			
Asp	Ala	Val	Cys	Thr	His	Arg	Pro	Asp	Pro	Lys	Ser	Pro	Gly	Leu	Asp
					35			40				45			
Arg	Glu	Arg	Leu	Tyr	Trp	Lys	Leu	Ser	Gln	Leu	Thr	His	Gly	Ile	Thr
					50			55				60			
Glu	Leu	Gly	Pro	Tyr	Thr	Leu	Asp	Arg	His	Ser	Leu	Tyr	Val	Asn	Gly
					65			70				75			80
Phe	Thr	His	Gln	Ser	Ser	Met	Thr	Thr	Arg	Thr	Pro	Asp	Thr	Ser	
					85			90				95			

Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser Leu Ser Gly Pro
 100 105 110
 Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile
 115 120 125
 Thr Asn Leu Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys
 130 135 140
 Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe
 145 150 155 160
 Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu
 165 170 175
 Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys
 180 185 190
 Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu
 195 200 205
 Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro
 210 215 220
 Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg
 225 230 235 240
 Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu
 245 250 255
 Gly Thr Ser Gly Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser
 260 265 270
 Pro Leu Leu Val Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Arg
 275 280 285
 Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr
 290 295 300
 Glu Arg Val Leu Gln Gly Leu Leu Arg Ser Leu Phe Lys Ser Thr Ser
 305 310 315 320
 Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu
 325 330 335
 Lys Asp Gly Thr Ala Thr Gly Val Asp Ala Ile Cys Thr His His Pro
 340 345 350
 Asp Pro Lys Ser Pro Arg Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu
 355 360 365
 Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly His Tyr Ala Leu Asp
 370 375 380
 Asn Asp Ser Leu Phe Val Asn Gly Phe Thr His Arg Ser Ser Val Ser
 385 390 395 400
 Thr Thr Ser Thr Pro Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser Lys
 405 410 415
 Thr Pro Ala Ser Ile Phe Gly Pro Ser Ala Ala Ser His Leu Leu Ile
 420 425 430
 Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn
 435 440 445
 Met Trp Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln
 450 455 460
 Gly Leu Leu Arg Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr
 465 470 475 480
 Ser Gly Ser Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Glu Ala
 485 490 495
 Thr Gly Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Thr Gly Pro
 500 505 510
 Gly Leu Asp Arg Glu Gln Leu Tyr Leu Glu Leu Ser Gln Leu Thr His
 515 520 525
 Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr
 530 535 540
 Val Asn Gly Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Thr Gly
 545 550 555 560
 Val Val Ser Glu Glu Pro Phe Thr Leu Asn Phe Thr Ile Asn Asn Leu
 565 570 575

Arg Tyr Met Ala Asp Met Gly Gln Pro Gly Ser Leu Lys Phe Asn Ile
 580 585 590
 Thr Asp Asn Val Met Lys His Leu Leu Ser Pro Leu Phe Gln Arg Ser
 595 600 605
 Ser Leu Gly Ala Arg Tyr Thr Gly Cys Arg Val Ile Ala Leu Arg Ser
 610 615 620
 Val Lys Asn Gly Ala Glu Thr Arg Val Asp Leu Leu Cys Thr Tyr Leu
 625 630 635 640
 Gln Pro Leu Ser Gly Pro Gly Leu Pro Ile Lys Gln Val Phe His Glu
 645 650 655
 Leu Ser Gln Gln Thr His Gly Ile Thr Arg Leu Gly Pro Tyr Ser Leu
 660 665 670
 Asp Lys Asp Ser Leu Tyr Leu Asn Gly Tyr Asn Glu Pro Gly Leu Asp
 675 680 685
 Glu Pro Pro Thr Thr Pro Lys Pro Ala Thr Thr Phe Leu Pro Pro Leu
 690 695 700
 Ser Glu Ala Thr Thr Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu
 705 710 715 720
 Asn Phe Thr Ile Ser Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly
 725 730 735
 Ser Ala Thr Phe Asn Ser Thr Glu Gly Val Leu Gln His Leu Leu Arg
 740 745 750
 Pro Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln
 755 760 765
 Leu Ile Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp
 770 775 780
 Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile
 785 790 795 800
 Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln
 805 810 815
 Leu Gly Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly Tyr
 820 825 830
 Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln Ile Asn Phe His
 835 840 845
 Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu Tyr
 850 855 860
 Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr Thr Leu Tyr Lys
 865 870 875 880
 Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu Val Thr Asn Leu
 885 890 895
 Thr Met Asp Ser Val Leu Val Thr Val Lys Ala Leu Phe Ser Ser Asn
 900 905 910
 Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp Lys Thr Leu Asn
 915 920 925
 Ala Ser Phe His Trp Leu Gly Ser Thr Tyr Gln Leu Val Asp Ile His
 930 935 940
 Val Thr Glu Met Glu Ser Ser Val Tyr Gln Pro Thr Ser Ser Ser Ser
 945 950 955 960
 Thr Gln His Phe Tyr Pro Asn Phe Thr Ile Thr Asn Leu Pro Tyr Ser
 965 970 975
 Gln Asp Lys Ala Gln Pro Gly Thr Thr Asn Tyr Gln Arg Asn Lys Arg
 980 985 990
 Asn Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg Asn Ser Ser Ile Lys
 995 1000 1005
 Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg Ser Val Pro Asn
 1010 1015 1020
 Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro Leu Ala
 1025 1030 1035 1040
 Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu Arg Met Thr
 1045 1050 1055

Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp Arg Ser Ser Val
 1060 1065 1070
 Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu Pro Leu Thr Gly Asn
 1075 1080 1085
 Ser Asp Leu Pro Phe Trp Ala Val Ile Phe Ile Gly Leu Ala Gly Leu
 1090 1095 1100
 Leu Gly Leu Ile Thr Cys Leu Ile Cys Gly Val Leu Val Thr Thr Arg
 1105 1110 1115 1120
 Arg Arg Lys Lys Glu Gly Glu Tyr Asn Val Gln Gln Gln Cys Pro Gly
 1125 1130 1135
 Tyr Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln
 1140 1145

<210> 57

<211> 853

<212> DNA

<213> Homo sapiens

<400> 57

ctagtccctga	cttcacttct	gatgaggaag	cctcttcctt	tagccttcag	cctttccccc	60
caccctgc	ca taagtaattt	gatcctcaag	aagttaaacc	acaccttatt	ggcccttggc	120
taattcacca	at ttacaaac	agcaggaaat	agaaaacttaa	gagaaataca	cacttctgag	180
aaactgaaac	gacaggggaa	aggaggtctc	actgagcacc	gtccccagcat	ccggacacca	240
cagcggccct	tcgctccacg	cagaaaaacc	cacttctcaa	accttcaactc	aacacttct	300
tccccaaagc	cagaagatgc	acaaggagga	acatgaggtg	gctgtgtctgg	gggcacccccc	360
cagcaccatc	cttccaaagg	ccaccgtat	caacatccac	agcgagacct	ccgtgcccga	420
ccatgtcg	tc tggtccctgt	tcaacaccct	cttcttgaac	tgggtgtgtc	tgggcttcat	480
agcattcg	cc tactccgt	tg agtctagg	gagaaatgt	gttggcgacg	tgaccggggc	540
ccagggctat	gcctccac	cccaagtgc	gaacatctgg	gccctgattc	tgggcatcct	600
catgaccatt	ggattcatcc	tgtca	ttcggtct	gtgacagtct	accatattat	660
gttacagata	atacaggaaa	aacggggtta	cttagagcc	cccatagcct	gcaacctttg	720
cactccactg	tgcaatgctg	gccc	ctgggtctgt	tgcccctg	cccttggtcc	780
tgccccctaga	tacagcagtt	tatacccaca	cac	ctgtctta	cagtgtcatt	840
cacgtgctt	g	ta	ca	ataaaagt	caataaaagt	853

<210> 58

<211> 125

<212> PRT

<213> Homo sapiens

<400> 58

Met His Lys Glu Glu His Glu Val	Ala Val Leu Gly	Ala Pro Pro Ser	
1	5	10	15
Thr Ile Leu Pro Arg Ser Thr Val	Ile Asn Ile His Ser	Glu Thr Ser	
20	25	30	
Val Pro Asp His Val Val Trp Ser	Leu Phe Asn Thr	Leu Phe Leu Asn	
35	40	45	
Trp Cys Cys Leu Gly Phe Ile	Ala Phe Ala Tyr Ser	Val Lys Ser Arg	
50	55	60	
Asp Arg Lys Met Val Gly Asp Val	Thr Gly Ala Gln	Ala Tyr Ala Ser	
65	70	75	80
Thr Ala Lys Cys Leu Asn Ile	Trp Ala Leu Ile	Leu Gly Ile Leu Met	
85	90	95	
Thr Ile Gly Phe Ile Leu Ser	Leu Val Phe Gly Ser	Val Thr Val Tyr	
100	105	110	
His Ile Met Leu Gln Ile Ile	Gln Glu Lys Arg	Gly Tyr	
115	120	125	

<210> 59

<211> 1512

<212> DNA

<213> Homo sapiens

<400> 59

ttccggtccc	ccaggacatg	tccaaatcagg	gaagtaagta	cgtcaataag	gaaattcaaa	60
atgcgtcaa	cggggtgaaa	cagataaaga	ctctcataga	aaaaacaaaac	gaagagcgca	120
agacactgct	cagcaaccct	gaagaagcca	agaagaagaa	agaggatgcc	ctaaatgaga	180
ccagggaaatc	agagacaacaa	ctgaaggagc	tcccaggagt	gtgcaatgag	accatgatgg	240
ccctctggga	agagtgtaa	ccctgcctga	aacagacctg	catgaagttc	tacgcacccg	300
tctgcagaag	tggctcaggc	ctggttggcc	gccagcttga	ggagttctg	aaccagagct	360
cgcccttcta	tttctggat	aatggtgacc	gcatcgactc	cctgctggag	aacgaccggc	420
agcagacgca	catgctggat	gtcatgcagg	accacttcag	ccgcgcgtcc	agcatcatag	480
acgagcttt	ccaggacagg	ttcttcaccc	gggagccccca	ggatacacctac	cactacccgc	540
ccttcagcct	gccccacccgg	aggcctcact	tcttcttcc	caagtccgc	atcgccgc	600
gcttgcgtcc	cttctctccg	tacgagcccc	tgaacttcca	cgccatgttc	cagcccttcc	660
tttagatgtat	acacgaggct	cacggggca	tggacatcca	cttccacaggc	ccggccttcc	720
agcacccggc	aacagaattc	atacggaaag	gcgacgatga	ccggactgtg	tgccgggaga	780
tccgcccacca	ctccacgggc	tgcctgcgg	tgaaggacca	gtgtgacaag	tgccgggaga	840
tcttgtctgt	ggactgttcc	accaacaacc	cctcccaggc	taagctgcgg	ccggagctcg	900
acgaatccct	ccaggtcgct	gagagggtga	ccaggaataa	caacgagctg	ctaaagtcc	960
accagtggaa	gatgctcaac	acctccctct	tgctggagca	gctgaacgag	cagtttaact	1020
gggtgtcccg	gctggcaaac	ctcacgcgaa	gccaagacca	gtactatctg	cggttcacca	1080
cggggcttc	ccacacttct	gactcgac	ttccttccgg	tgtcaactgag	gtggtcgtga	1140
agcttcttga	ctctgatccc	atcactgtga	cggtccctgt	agaagtctcc	aggaagaacc	1200
ctaaatttat	ggagaccgtg	gcggagaaag	cgctgcagga	ataccgaaa	aagcacccggg	1260
aggagtgaga	tgtggatgtt	gctttgcac	ctacggggc	atctgagtcc	agctcccccc	1320
aagatgagct	gcagcccccc	agagagagct	ctgcacgtca	ccaagtaacc	aggccccagc	1380
ctccaggccc	ccaaactccgc	ccagcctctc	cccgctctgg	atcctgcact	ctaacactcg	1440
actctgctgc	tcatggaaag	aacagaattt	ctcctgcatg	caactaattc	aataaaactg	1500
tcttgtgagc	tg					1512

<210> 60

<211> 416

<212> PRT

<213> Homo sapiens

<400> 60

Met	Ser	Asn	Gln	Gly	Ser	Lys	Tyr	Val	Asn	Lys	Glu	Ile	Gln	Asn	Ala
1					5				10				15		
Val	Asn	Gly	Val	Lys	Gln	Ile	Lys	Thr	Leu	Ile	Glu	Lys	Thr	Asn	Glu
								20		25			30		
Glu	Arg	Lys	Thr	Leu	Leu	Ser	Asn	Leu	Glu	Glu	Ala	Lys	Lys	Lys	Lys
								35		40		45			
Glu	Asp	Ala	Leu	Asn	Glu	Thr	Arg	Glu	Ser	Glu	Thr	Lys	Leu	Lys	Glu
							50		55		60				
Leu	Pro	Gly	Val	Cys	Asn	Glu	Thr	Met	Met	Ala	Leu	Trp	Glu	Glu	Cys
								65		70		75		80	
Lys	Pro	Cys	Leu	Lys	Gln	Thr	Cys	Met	Lys	Phe	Tyr	Ala	Arg	Val	Cys
							85		90		95				
Arg	Ser	Gly	Ser	Gly	Leu	Val	Gly	Arg	Gln	Leu	Glu	Glu	Phe	Leu	Asn
							100		105			110			
Gln	Ser	Ser	Pro	Phe	Tyr	Phe	Trp	Met	Asn	Gly	Asp	Arg	Ile	Asp	Ser
							115		120		125				
Leu	Leu	Glu	Asn	Asp	Arg	Gln	Gln	Thr	His	Met	Leu	Asp	Val	Met	Gln
							130		135		140				
Asp	His	Phe	Ser	Arg	Ala	Ser	Ser	Ile	Ile	Asp	Glu	Leu	Phe	Gln	Asp
							145		150		155		160		
Arg	Phe	Phe	Thr	Arg	Glu	Pro	Gln	Asp	Thr	Tyr	His	Tyr	Leu	Pro	Phe
							165		170		175				

Ser Leu Pro His Arg Arg Pro His Phe Phe Phe Pro Lys Ser Arg Ile
 180 185 190
 Val Arg Ser Leu Met Pro Phe Ser Pro Tyr Glu Pro Leu Asn Phe His
 195 200 205
 Ala Met Phe Gln Pro Phe Leu Glu Met Ile His Glu Ala Gln Gln Ala
 210 215 220
 Met Asp Ile His Phe His Ser Pro Ala Phe Gln His Pro Pro Thr Glu
 225 230 235 240
 Phe Ile Arg Glu Gly Asp Asp Asp Arg Thr Val Cys Arg Glu Ile Arg
 245 250 255
 His Asn Ser Thr Gly Cys Leu Arg Met Lys Asp Gln Cys Asp Lys Cys
 260 265 270
 Arg Glu Ile Leu Ser Val Asp Cys Ser Thr Asn Asn Pro Ser Gln Ala
 275 280 285
 Lys Leu Arg Arg Glu Leu Asp Glu Ser Leu Gln Val Ala Glu Arg Leu
 290 295 300
 Thr Arg Lys Tyr Asn Glu Leu Leu Lys Ser Tyr Gln Trp Lys Met Leu
 305 310 315 320
 Asn Thr Ser Ser Leu Leu Glu Gln Leu Asn Glu Gln Phe Asn Trp Val
 325 330 335
 Ser Arg Leu Ala Asn Leu Thr Gln Gly Glu Asp Gln Tyr Tyr Leu Arg
 340 345 350
 Val Thr Thr Val Ala Ser His Thr Ser Asp Ser Asp Val Pro Ser Gly
 355 360 365
 Val Thr Glu Val Val Val Lys Leu Phe Asp Ser Asp Pro Ile Thr Val
 370 375 380
 Thr Val Pro Val Glu Val Ser Arg Lys Asn Pro Lys Phe Met Glu Thr
 385 390 395 400
 Val Ala Glu Lys Ala Leu Gln Glu Tyr Arg Lys Lys His Arg Glu Glu
 405 410 415

<210> 61

<211> 1564

<212> DNA

<213> Homo sapiens

<400> 61

cggacgcgtg	ggcggacgcg	tggcgaggg	cgcgagttag	gaggcagaccc	aggcatcgcg	60
cggcagaag	gccggagcgt	ccgcaccta	acgcgaggcg	ctccattgcg	cgtgcgcgtt	120
gaggggcttc	ccgcaccta	tcgcgagacc	ccaacggctg	gtggcgctgc	ctgcgcgggc	180
gtccccacac	tgccgtccg	gaaaaggcgac	ttccggggc	tttggcacct	ggcggacgt	240
cccgaggcg	ccgcaccta	acgcgaggcg	ctccatgcg	cgtgcgcgtt	gaggggcttc	300
ccgcaccta	tcgcgagacc	ccaacggctg	gtggcgctgc	ctgcgcgtct	cggctgagct	360
ggccatggc	cacctgtcg	ggctgaggcg	gagccggcg	tttctcgccc	tgctggatc	420
gctgtcctc	tctgggtcc	tgccggccg	ccgagaacgc	agcatccacg	acttctgcct	480
ggtgtcga	gtggggcga	gatgccggc	ctccatgcct	aagtgggtgt	acaatgtcac	540
tgacggatcc	tgccagctgt	ttgtgtatgg	gggctgtgac	ggaaaacagca	ataattacct	600
gaccaaggag	gagtgcctca	agaaatgtgc	cactgtcaca	gagaatgcca	cgggtgaccc	660
ggccaccaggc	aggaatgcag	cggttccctc	tgtcccaagt	gctcccagaa	ggcaggattc	720
tgaagaccac	tccagcgata	tgttcaacta	tgaagaatac	tgacccgcca	acgcagtcac	780
tggcccttgc	cgtgcaccc	tcccacgcgt	gtactttgac	gtggagagga	actcctgcaa	840
taacttcatc	tatggaggct	gccggggca	taagaacagc	taccgctctg	aggaggcctg	900
catgtccgc	tgcttccgccc	agcaggagaa	tcctccctg	cccttggct	caaagggtgt	960
ggttctggcg	gggctgttcg	tgtatgggtt	gatcctcttc	ctgggagcc	ccatggctca	1020
cctgtatccgg	gtggcacgg	ggaaccaggaa	gcgtgcctg	cgccacgtct	ggagctccgg	1080
acatgacaag	gagcagctgg	tgaagaacac	atatgtctgt	tgaccggcc	gtcgccaaaga	1140
ggactgggaa	agggaggggaa	gactatgtc	gagctttttt	taaatagcgg	gattgactcg	1200
gatttgatgt	atcattaggg	ctgagggtgt	tttctctggg	agtagggacg	gctgcttcct	1260
ggtctggcag	ggatgggttt	gcttggaaa	tcctcttagga	ggctcctct	cgcacggcc	1320
gcagtctggc	agcagcccc	agttgtttcc	tcgctgatcg	atttcttcc	tccaggtaga	1380

gttttcttg cttatgttga attccattgc ctctttctc atcacagaag ttagtggaa	1440
atcgtttctt ttgtttgtct gatttatggg ttttttaagt ataaacaaaaa gttttttatt	1500
aacatctgaa agaaggaaag taaaatgtac aagtttataa aaaaggggcc ttcccctta	1560
gaat	1564

<210> 62

<211> 252

<212> PRT

<213> Homo sapiens

<400> 62

Met Ala His Leu Cys Gly Leu Arg Arg Ser Arg Ala Phe Leu Ala Leu	
1 5 10 15	
Leu Gly Ser Leu Leu Leu Ser Gly Val Leu Ala Ala Asp Arg Glu Arg	
20 25 30	
Ser Ile His Asp Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg	
35 40 45	
Ala Ser Met Pro Lys Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln	
50 55 60	
Leu Phe Val Tyr Gly Gly Asp Gly Asn Ser Asn Asn Tyr Leu Thr	
65 70 75 80	
Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr	
85 90 95	
Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser	
100 105 110	
Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn	
115 120 125	
Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala	
130 135 140	
Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn	
145 150 155 160	
Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu	
165 170 175	
Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Leu	
180 185 190	
Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly Leu Phe Val Met Val	
195 200 205	
Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala	
210 215 220	
Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val Trp Ser Ser Gly His	
225 230 235 240	
Asp Lys Glu Gln Leu Val Lys Asn Thr Tyr Val Leu	
245 250	

<210> 63

<211> 1147

<212> DNA

<213> Homo sapiens

<400> 63

ggacgtcctt cccccaggagc cgactggcca atcacaggca ggaagatgaa ggttctgtgg	60
gctgcgttgc tggtocacatt cctggcagga tgccaggcca aggtggagca a诶cggtggag	120
acagagccgg agcccgagct gcgcaggcag accgagttgc agagcggcca gcgctggaa	180
ctggcactgg gtcgcgttttgg gatttacactg cgctgggtgc agacactgtc tgagcaggtg	240
caggaggagc tgctcagctc ccaggcgtacc caggaactga gggcgctgat ggacgagacc	300
atgaaggagt tgaaggccta caaatcgaa ctggaggaac aactgacccc ggtggcggag	360
gagacgcggg cacggctgtc caaggagctg caggcggcgc aggccccgct gggcgccgac	420
atggaggacg tggcgcccg cctgggtcag taccggccgg aggtgcaggc catgcteggc	480
cagagcaccg aggagctgctg ggtgcgcctc gcctccacc tgccgtcaagct gcgtaagcgg	540
ctcctccgcg atgcccgtga cctgcagaa cgcctggcag tgtaccaggc cggggccgc	600

gagggcgccg	agcgccgcct	cagcgccatc	cgcgagcgcc	tggggccccct	ggtggAACAG	660
ggccgcgtgc	gggcgcac	tgtgggctcc	ctggccggcc	agccgctaca	ggagcgggcc	720
caggcctgg	gcgagcggct	gcccgcgcgg	atggaggaga	tgggcagccg	gaccgcgcac	780
cgcctggacg	aggtaagga	gcaggtggcg	gaggtgcgcg	ccaagctgga	ggageaggcc	840
cagcagatac	gcctgcaggc	cgagggcttc	caggcccccc	tcaagagctg	gttcgagccc	900
ctggtggaaag	acatgcagcg	ccagtggcc	gggctggttg	agaaggtgca	ggctgccgtg	960
ggcaccagcg	ccgcgcctgt	gcccagcgcac	aatcaactgaa	cgcccgaaagcc	tgcagccatg	1020
cgacccccacg	ccaccccggt	cctcctgcct	ccgcgcagcc	tgcagcggga	gaccctgtcc	1080
ccgccccagc	cgtccctcctg	gggtggaccc	tagttataa	aagattcacc	aagtttcacg	1140
caaaaaaa						1147

<210> 64

<211> 317

<212> PRT

<213> Homo sapiens

<400> 64

Met Lys Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys			
1	5	10	15
Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu			
20	25	30	
Arg Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu Ala Leu			
35	40	45	
Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr Leu Ser Glu Gln			
50	55	60	
Val Gln Glu Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala			
65	70	75	80
Leu Met Asp Glu Thr Met Lys Glu Leu Lys Ala Tyr Lys Ser Glu Leu			
85	90	95	
Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg Leu Ser			
100	105	110	
Lys Glu Leu Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp			
115	120	125	
Val Cys Gly Arg Leu Val Gln Tyr Arg Gly Glu Val Gln Ala Met Leu			
130	135	140	
Gly Gln Ser Thr Glu Glu Leu Arg Val Arg Leu Ala Ser His Leu Arg			
145	150	155	160
Lys Leu Arg Lys Arg Leu Leu Arg Asp Ala Asp Asp Leu Gln Lys Arg			
165	170	175	
Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu			
180	185	190	
Ser Ala Ile Arg Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg Val			
195	200	205	
Arg Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg			
210	215	220	
Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly			
225	230	235	240
Ser Arg Thr Arg Asp Arg Leu Asp Glu Val Lys Glu Gln Val Ala Glu			
245	250	255	
Val Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu Gln Ala			
260	265	270	
Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu			
275	280	285	
Asp Met Gln Arg Gln Trp Ala Gly Leu Val Glu Lys Val Gln Ala Ala			
290	295	300	
Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His			
305	310	315	

<210> 65

<211> 2493

<212> DNA

<213> Homo sapiens

<400> 65

ggatcgatt	gagtaagagc	atacgatcg	ggagagccca	ggattcaaca	cgggccttga	60
gaaatgtgc	tcttgaccc	cctgggtccg	gccctgttct	gcagggcagg	aggctccatt	120
cccatccctc	agaagtatt	ttggggaggt	acttccctc	tgttccccaa	gccttacccc	180
aacaacttg	aaacaaccac	tgtgatcaca	gtccccacgg	gatacagggt	gaagctcg	240
ttccagcagt	ttgacctgga	gccttctgaa	ggctgcttct	atgattatgt	caagatctt	300
gctgataaga	aaagcctggg	gagggtctgt	gggcaactgg	gttctccact	gggcaacccc	360
ccgggaaaaga	aggaatttat	gtcccaaggg	aacaagatgc	tgctgacctt	ccacacagac	420
ttctccaacg	aggagaatgg	gaccatcatg	ttctacaagg	gcttcctggc	ctactaccaa	480
gctgtggacc	ttgatgaatg	tgcttcccg	agcaaatacg	gggaggagga	tccccagccc	540
cagtgccagc	acctgtgtca	caactacgtt	ggaggctact	tctgttctgt	ccgtccaggc	600
tat gagcttc	aggaagacag	gcattcctgc	caggctgagt	gcagcagcga	gctgtacacg	660
gaggcatcag	gctacatctc	cagcctggag	taccctcggt	ccttacccccc	tgacctgcgc	720
tgcaactaca	gcatccgggt	ggagcggggc	ctcacccctgc	acctaagg	cctggaggct	780
tttgatattt	atgaccacca	gcaagtacac	tgccttctatg	accagctt	gatctatgcc	840
aacgggaaaga	acattggcga	gttctgtgg	aagcaaaggc	cccccgaccc	cgacaccagc	900
agcaatgctg	ttgatctgt	gttcttca	gatgagtcgg	gggacagccg	gggctggaaag	960
ctgcgctaca	ccaccggat	catcaagtgc	ccccagccca	agaccctaga	cgagttoacc	1020
atcatccaga	acctgcagcc	tca	ttcctgtact	acttcattgc	tacctgc	1080
caaggctacc	agctcataga	ggggaaaccag	gtgctgcatt	ccttcacagc	tgtctgc	1140
gatgatggca	cgtggcatcg	tgccatgccc	agatgcaaga	tcaaggactg	tgggcagccc	1200
cggaaacctgc	ctaattgtga	cttccgttac	accaccacaa	tgggagtgaa	cacctacaag	1260
gcccgtatcc	agtactactg	ccatgagcca	tattacaaga	tgca	agctggcagc	1320
agggagtctg	agcaagggtt	gtacacctgc	acagcacagg	gcatttggaa	aatgaacag	1380
aaggggagaga	agattccctcg	gtgcttgcca	gtgtgtgg	agcccggtgaa	ccccgtggaa	1440
cagaggcagc	gcataatcg	agggcaaaaa	gccaagatgg	gcaacttccc	ctggcaggtg	1500
ttcaccaaca	tccacgggcg	cgggggcggg	gccctgtgg	gcaacggctg	gatcctcaca	1560
gctgcccaca	ccctgtatcc	caaggaacac	gaagcgc	gcaacgcctc	tttggatgtg	1620
ttccctggcc	acacaaatgt	ggaagagctc	atgaagctg	gaaatcaccc	catccgcagg	1680
gtcagcgtcc	acccggacta	ccgtcaggat	gagtcc	tat	tttggatgtg	1740
ctgctggagc	tggaaaatag	tgtcacccctg	ggtcccaacc	tcctccccc	ctgcctcc	1800
gacaacgata	ccttctacga	cctgggctt	atggctatg	tcagtggtt	cggggtcatg	1860
gaggagaaga	ttgctcatga	cctcagg	ttt	tc	tc	1920
tgtgagaact	ggctccgggg	aaagaatagg	atggatgtgt	tctctcaaaa	catgttctgt	1980
gctggacacc	catctctaaa	gcaggacgc	tgccaggggg	atagtgggg	cgttttgca	2040
gtaagggacc	cgaacactga	tgcgtgggt	gccacggca	tcgtgtcctg	gggcacatcg	2100
tgcagcaggg	gctatggctt	ctacacccaa	gtgctcaact	acgtggactg	gatcaagaaa	2160
gagatggagg	aggaggactg	agcccagaat	tcacttagtt	cgaatccaga	gagcagtg	2220
gaaaaaaaaa	aaacaaaaaa	caactgacca	gttggatgata	accactaaga	gtctctatta	2280
aaattactga	tgcagaaaga	ccgtgtgt	aattcttctt	cctgttagtcc	cattgtatgt	2340
ctttacctga	aaaaacccaa	aggccccctt	ctttcttctg	aggattgcag	aggatatagt	2400
tatcaatctc	tagtgtc	tttccttctc	cactttgata	ccattgggtc	attgaatata	2460
acttttcca	aataaagt	ttt	tatgagaaat	gcc		2493

<210> 66

<211> 705

<212> PRT

<213> Homo sapiens

<400> 66

Met	Trp	Leu	Leu	Tyr	Leu	Leu	Val	Pro	Ala	Leu	Phe	Cys	Arg	Ala	Gly
1				5			10					15			
Gly	Ser	Ile	Pro	Ile	Pro	Gln	Lys	Leu	Phe	Gly	Glu	Val	Thr	Ser	Pro
				20			25				30				
Leu	Phe	Pro	Lys	Pro	Tyr	Pro	Asn	Asn	Phe	Glu	Thr	Thr	Thr	Val	Ile
				35			40				45				

Thr Val Pro Thr Gly Tyr Arg Val Lys Leu Val Phe Gln Gln Phe Asp
 50 55 60
 Leu Glu Pro Ser Glu Gly Cys Phe Tyr Asp Tyr Val Lys Ile Ser Ala
 65 70 75 80
 Asp Lys Lys Ser Leu Gly Arg Phe Cys Gly Gln Leu Gly Ser Pro Leu
 85 90 95
 Gly Asn Pro Pro Gly Lys Lys Glu Phe Met Ser Gln Gly Asn Lys Met
 100 105 110
 Leu Leu Thr Phe His Thr Asp Phe Ser Asn Glu Glu Asn Gly Thr Ile
 115 120 125
 Met Phe Tyr Lys Gly Phe Leu Ala Tyr Tyr Gln Ala Val Asp Leu Asp
 130 135 140
 Glu Cys Ala Ser Arg Ser Lys Ser Gly Glu Glu Asp Pro Gln Pro Gln
 145 150 155 160
 Cys Gln His Leu Cys His Asn Tyr Val Gly Gly Tyr Phe Cys Ser Cys
 165 170 175
 Arg Pro Gly Tyr Glu Leu Gln Glu Asp Arg His Ser Cys Gln Ala Glu
 180 185 190
 Cys Ser Ser Glu Leu Tyr Thr Glu Ala Ser Gly Tyr Ile Ser Ser Leu
 195 200 205
 Glu Tyr Pro Arg Ser Tyr Pro Pro Asp Leu Arg Cys Asn Tyr Ser Ile
 210 215 220
 Arg Val Glu Arg Gly Leu Thr Leu His Leu Lys Phe Leu Glu Pro Phe
 225 230 235 240
 Asp Ile Asp Asp His Gln Gln Val His Cys Pro Tyr Asp Gln Leu Gln
 245 250 255
 Ile Tyr Ala Asn Gly Lys Asn Ile Gly Glu Phe Cys Gly Lys Gln Arg
 260 265 270
 Pro Pro Asp Leu Asp Thr Ser Ser Asn Ala Val Asp Leu Leu Phe Phe
 275 280 285
 Thr Asp Glu Ser Gly Asp Ser Arg Gly Trp Lys Leu Arg Tyr Thr Thr
 290 295 300
 Glu Ile Ile Lys Cys Pro Gln Pro Lys Thr Leu Asp Glu Phe Thr Ile
 305 310 315 320
 Ile Gln Asn Leu Gln Pro Gln Tyr Gln Phe Arg Asp Tyr Phe Ile Ala
 325 330 335
 Thr Cys Lys Gln Gly Tyr Gln Leu Ile Glu Gly Asn Gln Val Leu His
 340 345 350
 Ser Phe Thr Ala Val Cys Gln Asp Asp Gly Thr Trp His Arg Ala Met
 355 360 365
 Pro Arg Cys Lys Ile Lys Asp Cys Gly Gln Pro Arg Asn Leu Pro Asn
 370 375 380
 Gly Asp Phe Arg Tyr Thr Thr Met Gly Val Asn Thr Tyr Lys Ala
 385 390 395 400
 Arg Ile Gln Tyr Tyr Cys His Glu Pro Tyr Tyr Lys Met Gln Thr Arg
 405 410 415
 Ala Gly Ser Arg Glu Ser Glu Gln Gly Val Tyr Thr Cys Thr Ala Gln
 420 425 430
 Gly Ile Trp Lys Asn Glu Gln Lys Gly Glu Lys Ile Pro Arg Cys Leu
 435 440 445
 Pro Val Cys Gly Lys Pro Val Asn Pro Val Glu Gln Arg Gln Arg Ile
 450 455 460
 Ile Gly Gly Gln Lys Ala Lys Met Gly Asn Phe Pro Trp Gln Val Phe
 465 470 475 480
 Thr Asn Ile His Gly Arg Gly Gly Ala Leu Leu Gly Asp Arg Trp
 485 490 495
 Ile Leu Thr Ala Ala His Thr Leu Tyr Pro Lys Glu His Glu Ala Gln
 500 505 510
 Ser Asn Ala Ser Leu Asp Val Phe Leu Gly His Thr Asn Val Glu Glu
 515 520 525

Leu Met Lys Leu Gly Asn His Pro Ile Arg Arg Val Ser Val His Pro
 530 535 540
 Asp Tyr Arg Gln Asp Glu Ser Tyr Asn Phe Glu Gly Asp Ile Ala Leu
 545 550 555 560
 Leu Glu Leu Glu Asn Ser Val Thr Leu Gly Pro Asn Leu Leu Pro Ile
 565 570 575
 Cys Leu Pro Asp Asn Asp Thr Phe Tyr Asp Leu Gly Leu Met Gly Tyr
 580 585 590
 Val Ser Gly Phe Gly Val Met Glu Glu Lys Ile Ala His Asp Leu Arg
 595 600 605
 Phe Val Arg Leu Pro Val Ala Asn Pro Gln Ala Cys Glu Asn Trp Leu
 610 615 620
 Arg Gly Lys Asn Arg Met Asp Val Phe Ser Gln Asn Met Phe Cys Ala
 625 630 635 640
 Gly His Pro Ser Leu Lys Gln Asp Ala Cys Gln Gly Asp Ser Gly Gly
 645 650 655
 Val Phe Ala Val Arg Asp Pro Asn Thr Asp Arg Trp Val Ala Thr Gly
 660 665 670
 Ile Val Ser Trp Gly Ile Gly Cys Ser Arg Gly Tyr Gly Phe Tyr Thr
 675 680 685
 Lys Val Leu Asn Tyr Val Asp Trp Ile Lys Lys Glu Met Glu Glu Glu
 690 695 700
Asp
 705

<210> 67
 <211> 777
 <212> DNA
 <213> Homo sapiens

<400> 67
 gctccgggct gaagattgct tctttctct cctccaaggct ctatgtacgg agccccgcgc
 cgcgccacca tgcggcagaa ggccgttatcc gttttcttgc gctacctgct gctttact
 tgcagtgggg tggaggcagg taagaaaaag tgctcgaga gctcggacag cggctccgg
 ttcttggagg ccctgaccctt catggccgtc ggaggaggac tcgcagtgc cgggctgccc
 gcgctgggct tcacccggcgc cggcatcgcg gccaactcgg tggtgcctc gctgtatgagc
 tggctctgcga tcctgaatgg gggcgccgtg cccgccccgg ggctagtggc cacgctgcag
 agcctcgaaa ctgggtggcag cagcgtcgatc atagtaata ttgggtccct gatgcggatc
 gcccacccaca agtatctcga tagtgaggag gatgaggagt agccagcagc tcccagaacc
 tcttccttctc tcttggccta actcttccag ttaggatcta gaactttgc tttttttttt
 tttttttttt ttgagatgg gtctctacta tattgtccag gctagagtgc agtggctatt
 cacagatgcg aacatagtagc actgcggcct ccaactccta gcctcaagtgc atccctctgt
 ctcaacccccc caagtaggat tacaaggatc cgccgacgatc gcccagaatc cagaacttt
 tctatcactc tcccccaacaa cctagatgtg aaaacagaat aaacttcacc cagaaaaa 777

<210> 68
 <211> 130
 <212> PRT
 <213> Homo sapiens

<400> 68
 Met Arg Gln Lys Ala Val Ser Val Phe Leu Cys Tyr Leu Leu Phe
 1 5 10 15
 Thr Cys Ser Gly Val Glu Ala Gly Lys Lys Lys Cys Ser Glu Ser Ser
 20 25 30
 Asp Ser Gly Ser Gly Phe Trp Lys Ala Leu Thr Phe Met Ala Val Gly
 35 40 45
 Gly Gly Leu Ala Val Ala Gly Leu Pro Ala Leu Gly Phe Thr Gly Ala
 50 55 60

Gly Ile Ala Ala Asn Ser Val Ala Ala Ser Leu Met Ser Trp Ser Ala
 65 70 75 80
 Ile Leu Asn Gly Gly Val Pro Ala Gly Gly Leu Val Ala Thr Leu
 85 90 95
 Gln Ser Leu Gly Ala Gly Gly Ser Ser Val Val Ile Gly Asn Ile Gly
 100 105 110
 Ala Leu Met Arg Tyr Ala Thr His Lys Tyr Leu Asp Ser Glu Glu Asp
 115 120 125
 Glu Glu
 130

<210> 69

<211> 2402

<212> DNA

<213> Homo sapiens

<400> 69

agtctccgcc	ggccgcgtga	acatggagcc	ccgggacgca	ccggcccagg	cgcgcggggc	60
cccgccgctg	ctgttgcgtg	cagtccgtct	ggccggcgac	ccagatgccc	aggcggaggt	120
gcgcttgcgt	gtaccccccgc	tggtgaggt	gatgcgagga	aagtctgtca	ttctggactg	180
cacccttacg	gaaaccccacg	accattata	gctggaatgg	tcccttaccg	accgctcg	240
agctcgcccc	cgcctagct	cggtcgagat	gcagggtct	gagctccagg	tcacaatgca	300
cgacacccgg	ggccgcagtc	ccccatacc	gctggactcc	caggggcg	tggtgctggc	360
tgaggccca	gtgggcgac	agcgagacta	cgtgtcg	gtgagggcag	ggccggcagg	420
cactgctgag	gccactgc	gctcaacgt	gtttgaaag	ccagaggcca	ctgaggtctc	480
ccccaaacaaa	gggacactgt	ctgtgatg	ggactctg	caggagatcg	ccacactgcaa	540
cagccggAAC	gggaacccgg	ccccaaagat	cacgtgtat	cgcaacggc	agcgcttgg	600
ggtgcggta	gagatgaa	cagaggc	catgacc	cgcacgg	gggaggc	660
gggcctgc	tcccttacca	gcaccctc	cctgcgg	cgcaaggat	accgagac	720
cagttccac	tgccgcgg	actacagcc	gcccgggg	cgccacgg	gcctggac	780
ccccaccc	caccc	tgcactat	cacgg	gtcagtt	gggtggcag	840
cccg	ccaggg	gggtacgc	gggtgac	gtccag	tctgggg	900
ggacggc	cccagcc	agtatacg	tttccg	caggatg	aggaga	960
gctgaatgt	aatctcg	ggaacttgc	cctggagg	gtgacccgg	gccagagc	1020
gacctatgg	tgcag	aggattac	cgccg	gacgtgc	tctcaag	1080
gctggagct	cgcg	atctgg	cctgg	agcgagg	agg	1140
cttac	ttca	aacagc	agt	cgat	tc	1200
cctac	gttca	accaagg	act	ccat	ctgt	1260
tatcac	ttcaat	gac	ctac	gtt	ccct	1320
cctc	ccgc	accc	cg	cc	cc	1380
ggaaatag	cccaagg	atggc	agg	gg	gg	1440
ctct	ccgc	ggccat	cc	ccat	gg	1500
agag	ccca	accc	cc	ccat	gg	1560
cccc	ccgg	acgg	gg	gg	gg	1620
tgtt	ccac	tcc	ctt	cc	cc	1680
cgtgg	ccgt	atgg	gg	gg	gg	1740
caa	gggg	ccct	gtt	cc	cc	1800
agg	gggg	gtt	gg	gg	gg	1860
cact	gggg	ccct	gg	gg	gg	1920
ctcc	gggg	ggcc	gg	gg	gg	1980
cct	gggg	ccct	gg	gg	gg	2040
cct	gggg	caag	gg	gg	gg	2100
agg	gggg	ccct	gg	gg	gg	2160
tag	gggg	ccct	gg	gg	gg	2220
ggag	gggg	ccct	gg	gg	gg	2280
gtct	ggat	ccct	gg	gg	gg	2340
cctcc	ggat	ccct	gg	gg	gg	2400
tc						2402

<210> 70

<211> 628
 <212> PRT
 <213> Homo sapiens

<400> 70

Met	Glu	Pro	Pro	Asp	Ala	Pro	Ala	Gln	Ala	Arg	Gly	Ala	Pro	Arg	Leu
1	5							10					15		
Leu	Leu	Leu	Ala	Val	Leu	Leu	Ala	Ala	His	Pro	Asp	Ala	Gln	Ala	Glu
								20		25			30		
Val	Arg	Leu	Ser	Val	Pro	Pro	Leu	Val	Glu	Val	Met	Arg	Gly	Lys	Ser
	35							40			45				
Val	Ile	Leu	Asp	Cys	Thr	Pro	Thr	Gly	Thr	His	Asp	His	Tyr	Met	Leu
	50							55		60					
Glu	Trp	Phe	Leu	Thr	Asp	Arg	Ser	Gly	Ala	Arg	Pro	Arg	Leu	Ala	Ser
	65							70		75			80		
Ala	Glu	Met	Gln	Gly	Ser	Glu	Leu	Gln	Val	Thr	Met	His	Asp	Thr	Arg
								85		90			95		
Gly	Arg	Ser	Pro	Pro	Tyr	Gln	Leu	Asp	Ser	Gln	Gly	Arg	Leu	Val	Leu
								100		105			110		
Ala	Glu	Ala	Gln	Val	Gly	Asp	Glu	Arg	Asp	Tyr	Val	Cys	Val	Val	Arg
	115							115		120			125		
Ala	Gly	Ala	Ala	Gly	Thr	Ala	Glu	Ala	Thr	Ala	Arg	Leu	Asn	Val	Phe
	130							130		135			140		
Ala	Lys	Pro	Glu	Ala	Thr	Glu	Val	Ser	Pro	Asn	Lys	Gly	Thr	Leu	Ser
	145							145		150			155		160
Val	Met	Glu	Asp	Ser	Ala	Gln	Glu	Ile	Ala	Thr	Cys	Asn	Ser	Arg	Asn
								165		170			175		
Gly	Asn	Pro	Ala	Pro	Lys	Ile	Thr	Trp	Tyr	Arg	Asn	Gly	Gln	Arg	Leu
								180		185			190		
Glu	Val	Pro	Val	Glu	Met	Asn	Pro	Glu	Gly	Tyr	Met	Thr	Ser	Arg	Thr
								195		200			205		
Val	Arg	Glu	Ala	Ser	Gly	Leu	Leu	Ser	Leu	Thr	Ser	Thr	Leu	Tyr	Leu
	210							210		215			220		
Arg	Leu	Arg	Lys	Asp	Asp	Arg	Asp	Ala	Ser	Phe	His	Cys	Ala	Ala	His
	225							225		230			235		240
Tyr	Ser	Leu	Pro	Glu	Gly	Arg	His	Gly	Arg	Leu	Asp	Ser	Pro	Thr	Phe
								245		250			255		
His	Leu	Thr	Leu	His	Tyr	Pro	Thr	Glu	His	Val	Gln	Phe	Trp	Val	Gly
								260		265			270		
Ser	Pro	Ser	Thr	Pro	Ala	Gly	Trp	Val	Arg	Glu	Gly	Asp	Thr	Val	Gln
								275		280			285		
Leu	Leu	Cys	Arg	Gly	Asp	Gly	Ser	Pro	Ser	Pro	Glu	Tyr	Thr	Leu	Phe
								290		295			300		
Arg	Leu	Gln	Asp	Glu	Gln	Glu	Glu	Val	Leu	Asn	Val	Asn	Leu	Glu	Gly
								305		310			315		320
Asn	Leu	Thr	Leu	Glu	Gly	Val	Thr	Arg	Gly	Gln	Ser	Gly	Thr	Tyr	Gly
								325		330			335		
Cys	Arg	Val	Glu	Asp	Tyr	Asp	Ala	Ala	Asp	Asp	Val	Gln	Leu	Ser	Lys
								340		345			350		
Thr	Leu	Glu	Leu	Arg	Val	Ala	Tyr	Leu	Asp	Pro	Leu	Glu	Leu	Ser	Glu
								355		360			365		
Gly	Lys	Val	Leu	Ser	Leu	Pro	Leu	Asn	Ser	Ser	Ala	Val	Val	Asn	Cys
								370		375			380		
Ser	Val	His	Gly	Leu	Pro	Thr	Pro	Ala	Leu	Arg	Trp	Thr	Lys	Asp	Ser
	385							385		390			395		400
Thr	Pro	Leu	Gly	Asp	Gly	Pro	Met	Leu	Ser	Leu	Ser	Ser	Ile	Thr	Phe
								405		410			415		
Asp	Ser	Asn	Gly	Thr	Tyr	Val	Cys	Glu	Ala	Ser	Leu	Pro	Thr	Val	Pro
								420		425			430		

Val Leu Ser Arg Thr Gln Asn Phe Thr Leu Leu Val Gln Gly Ser Pro
 435 440 445
 Glu Leu Lys Thr Ala Glu Ile Glu Pro Lys Ala Asp Gly Ser Trp Arg
 450 455 460
 Glu Gly Asp Glu Val Thr Leu Ile Cys Ser Ala Arg Gly His Pro Asp
 465 470 475 480
 Pro Lys Leu Ser Trp Ser Gln Leu Gly Gly Ser Pro Ala Glu Pro Ile
 485 490 495
 Pro Gly Arg Gln Gly Trp Val Ser Ser Leu Thr Leu Lys Val Thr
 500 505 510
 Ser Ala Leu Ser Arg Asp Gly Ile Ser Cys Glu Ala Ser Asn Pro His
 515 520 525
 Gly Asn Lys Arg His Val Phe His Phe Gly Ala Val Ser Pro Gln Thr
 530 535 540
 Ser Gln Ala Gly Val Ala Val Met Ala Val Ala Val Ser Val Gly Leu
 545 550 555 560
 Leu Leu Leu Val Ala Val Phe Tyr Cys Val Arg Arg Lys Gly Gly
 565 570 575
 Pro Cys Cys Arg Gln Arg Arg Glu Lys Gly Ala Pro Pro Pro Gly Glu
 580 585 590
 Pro Gly Leu Ser His Ser Gly Ser Glu Gln Pro Glu Gln Thr Gly Leu
 595 600 605
 Leu Met Gly Gly Ala Ser Gly Gly Ala Arg Gly Gly Ser Gly Gly Phe
 610 615 620
 Gly Asp Glu Cys
 625

<210> 71
 <211> 5460
 <212> DNA
 <213> Homo sapiens

<400> 71

cggggcccggt gctgaagggc agggacaac ttgatggtgc tactttgaac tgcttttctt	60
ttctcctttt tgcacaaaga gtctcatgtc tgatatttag acatgatgag ctttgtcaa	120
aaggggagct ggctacttct cgctctgctt catcccacta ttatttggc acaacaggaa	180
gctgttgaag gaggatgttc ccatcttggt cagtcctatg cggatagaga tgtctggaa	240
ccagaaccat gccaaatatg tgtctgtac tcaggatccg ttctctgcga tgacataata	300
tgtgacgatc aagaattaga ctgccccaaac ccagaaattc catttggaga atgttgtca	360
gtttgcccac agcctccaac tgctcctact cggccctcta atggtaagg acctaaggc	420
cccaaggag atccaggccc tcctggatt cctggagaa atggtgaccc tggatttcca	480
ggacaaccag ggtcccttgg ttctcctggc cccccctggaa tctgtgaatc atgcccctact	540
ggtcctcaga actattctcc ccagtatgat tcatatgatg tcaagtctgg agtagcagta	600
ggaggactcg caggcttcc tggaccatg gggcccccag gcccctccgg tcccccttgg	660
acatctggc atcctggttc ccctggatct ccaggatacc aaggaccccc tggtaacct	720
gggcaagctg gtccttcagg ccctccagga cctcctggtg ctataggctc atctggctct	780
gctggaaaag atggagaatc aggttagaccc ggacgacctg gagagcggg attgccttgg	840
cctccaggtt tcaaagggtcc agctggata cctggattcc ctggtatgaa aggacacaga	900
ggcttcgtatg gacgaaatgg agaaaagggt gaaacaggtg ctccctggatt aaagggtgaa	960
aatggtcttc caggcgaaaa tggagctctt ggaccatgg gtccaagagg ggctccttgg	1020
gagcgaggac ggccaggact tcctggggct gcagggtctc gggtaatga cggtgctcga	1080
ggcagtgtatg gtcaaccagg ccctcctgtt cctcctggaa ctgcccggatt ccctggatcc	1140
cctgggtctt agggtaagt tggacctgca gggtctctg gttcaatgg tggcccttgg	1200
caaagaggag aacctggacc tcagggacac gctgggtctc aaggtccctcc tggcccttct	1260
gggattaatg gtgttccctgg tggtaaaggc gaaatggtc cccgtggcat tccctggagct	1320
cctggactga tgggagcccg gggctctcca ggaccagccg gtgctaattgg tgctccttgg	1380
ctgcgagggt gtgcagggtga gcctggtaag aatggtccca aaggagagcc cggaccacgt	1440
ggtaaacgcg gtgaggctgg tattccagggt gttccaggag ctaaaggcga agatggcaag	1500
gatggatcac ctggagaacc tggtgcaat gggcttccag gagctgcagg agaaagggtt	1560
gccccctgggt tccgaggacc tgctggacca aatggcatcc caggagaaaa gggctctgct	1620

ggagagcgtg	gtgctccagg	ccctgcaggg	cccagaggag	ctgctggaga	acctggcaga	1680
gatggcggtcc	ctggaggtcc	aggaatgagg	ggcatccccg	gaagtccagg	aggaccagga	1740
agtatggga	aaccaggggcc	tcccggaaat	caaggagaaa	gtggtcgacc	aggtcctcct	1800
ggccatctg	gtcccccgagg	ttagcctgtt	gtcatgggt	tccccgggtcc	taaaggaaat	1860
gatgggtctc	ctggtaagaa	tggagaacga	ggtggccctg	gaggacctgg	ccctcagggt	1920
cctcctggaa	agaatgtga	aactggacct	caaggaaaa	cagggcctac	tggccctgg	1980
ggtgacaag	gagacacagg	accccctgtt	ccacaaggat	tacaaggctt	gcctggtaca	2040
ggtggcctc	caggagaaaa	tggaaaacct	ggggaaaccag	gtccaaagggg	tgatgccgg	2100
gcacctggag	ctccaggagg	caaggggtat	gctggtgcctt	ctggtaacg	tggacctcct	2160
ggattggcag	gggccccagg	acttagaggt	ggagctggtc	ccctcgggtcc	cgaaggagga	2220
aagggtgctg	ctggtcctcc	ttggccaccc	ggtgctgtg	gtactcctgg	tctgcaagga	2280
atgcctggag	aaagaggagg	tcttggaaat	cctggtccaa	agggtgacaa	gggtgaacca	2340
ggcggccca	gtgctgtatgg	tgtcccagg	aaagatggcc	caaggggtcc	tactggtcct	2400
attggtcctc	ctggcccagg	tggccaggct	ggagataagg	gtgaagggtgg	tggcccccgg	2460
cttccaggtt	tagctggacc	tcgtggtagc	cctggtgaga	gaggtgaaac	tggcccttcca	2520
ggacctgtcg	gtttccctgg	tgctccctgg	cagaatgtt	aacctgggtgg	taaaggagaa	2580
agaggggc	cgggtgagaa	aggtgaaggg	ggccctctgt	gagttgcagg	acccccttgg	2640
ggttctggac	ctgctgttcc	tcttggtccc	caaggtgtca	aagggtgaaac	tggcagttct	2700
ggtggacctg	gtgctgttgg	cttccctgtt	gctcgtggtc	ttcctgggtcc	tcttggtagt	2760
aatggtaacc	caggacccccc	aggtcccagc	ggttctccag	gcaaggatgg	gccccccagg	2820
cctgcgggta	acactggtgc	ttctggcagc	cctggagtgt	ctggaccaaa	aggtgatgt	2880
ggccaaccag	gagagaaggg	atgcctgtt	gcccaggggcc	caccaggagc	tccaggccca	2940
cttgggattt	ctgggatcac	tggagcacgg	ggtttgcag	gaccaccagg	catgccagg	3000
cctaggggaa	gcccctggccc	tcaggggttc	aagggtgaaa	gtgggaaacc	aggagctaac	3060
ggtctcagtg	gagaacgtgg	tccccctgg	ccccagggtc	ttcctgggtct	ggctggtaca	3120
gctggtaac	ctggaaagaga	tggaaaacctt	ggatcagatg	gtcttccagg	ccgagatgga	3180
tctcctggt	gcaagggtga	tcgtggtga	aatggotctc	ctgggtcccc	tggcgctcct	3240
ggtcatccag	gcccacccctgg	tcctgtcggt	ccagctggaa	agagtggtga	cagaggagaa	3300
agtggccctg	ctggccctgc	ttgtgtccccc	ggtcctgtc	tttcccgagg	tgctcctgtt	3360
cctcaaggcc	cacgtggtga	caaagggtga	acagggttac	gtggagctgc	tggcatcaaa	3420
ggacatcgg	gatccctgg	taatccagg	gccccagggtt	ctccaggcccc	tgctggtcag	3480
cagggtgca	tcggcagttcc	aggacatcga	ggccccagag	gacctgttgg	acccaggatgg	3540
cctcctggca	aatggtaac	cagtggacat	ccaggttcca	ttggaccacc	agggcctcga	3600
ggtaacagag	gtgaaagagg	atctgagggtc	tccccaggcc	acccaggggca	accaggccct	3660
cctggaccc	ctgggtcccc	ttgtccttgc	tgtgggtgt	ttggagccgc	tgcattgt	3720
gggattggag	gtgaaaaaggc	tggcggtttt	gccccgtatt	atggagatga	accaatggat	3780
ttcaaaatca	acaccatgt	gattatgact	tcactcaatgt	ctgttaatgg	acaaatagaa	3840
agcctcat	gtcctgtatgg	ttctcgtaaa	aaccccgcta	gaaactgcag	agacctgaaa	3900
ttctgcccac	ctgaactcaa	gagtggagaa	tactgggtt	accctaacc	aggatgcaaa	3960
ttggatgtca	tcaaggatatt	ctgtatgtat	gaaactgggg	aaacatgtcat	aagtgcacat	4020
cctttgaatg	ttccacggaa	acactgggtt	acagatttca	gtgctgagaa	gaaacacgtt	4080
tgggttggag	agtccatgg	ttgtgggtttt	cagtttagt	acggcaatcc	tgaacttctt	4140
gaagatgtcc	ttgtatgtca	gtggcatttcc	cttcgacttc	tctccaggcc	agcttccctag	4200
aacatcacat	atcaatgc	aatagcatt	gtcatacatgg	atcaggccag	tggaaatgt	4260
aagaaggccc	tgaagctat	ggggtcaat	aaagggtat	tcaagggttac	agggaaatagc	4320
aaattcacat	acacatgtt	ggaggatgtt	tgcacgaaac	acatggggaa	atggagcaaa	4380
acagtcttt	aatatcgaa	acgcaagggt	gtgagactac	ctattgttac	tattgcaccc	4440
tatgacattt	gtggccttgc	tcaagaatattt	ggtgtggacg	ttggccctgt	ttgttttttta	4500
taaaccacaa	tctatctgaa	atcccaacaa	aaaaaatttta	actccatatg	tgttccctt	4560
gttctaattt	tgtcaaccag	tgcagatgt	cgacaaaattt	ccagtttattt	atttccaaaa	4620
tgtttggaaa	cagtataattt	tgacaaagaa	aatgtatact	tctttttttt	tgctgttcca	4680
ccaaatacaa	ttcaaatgtt	ttttgtttta	tttttttacc	aatttcaatt	tcaaaatgtc	4740
tcaatggtgc	tataataat	aaacttcaac	acttttatg	ataacaacac	tgttttat	4800
tctttgaatc	ctagccccatc	tgcagagca	tgactgtgt	caccaggtaaa	agataaccc	4860
tctttctgaa	atagtcaat	acgaaaatttgc	aaaagccctc	cctattttaa	ctacctcaac	4920
tggtcagaaa	cacagattgt	attctatgt	tcccagaaga	tggaaaaat	tttatacggt	4980
gataaaactt	ataaaatttca	ttgatataat	tcctggaaaga	ttggttttaaa	aagaaaatgt	5040
taatgtcaaga	atttaaagaa	atatttttaa	agccacaattt	attttaat	tggatatcaa	5100
ctgctgttca	agggtcttctt	tttttttctt	gtcattgtgt	gtcaagatta	ctaataatttgc	5160
ggaaggctt	aaagacgcat	ttatgtactt	tcacttttttta	actcttagatc		5220

agaattgttg acttgcattc agaacataaa tgcacaaaat ctgtacatgt ctcccatcg	5280
aaagattcat tggcatgcc aaggattct cctcctcat cctgtaaagg tcaacaataa	5340
aaaccaaatt atgggctgc tttgtcaca ctagcataga gaatgtgtt aaatttaact	5400
ttgtaagctt gtatgtggtt gttgatctt ttttcctta cagacaccca taataaaata	5460

<210> 72
<211> 1466
<212> PRT
<213> Homo sapiens

<400> 72
Met Met Ser Phe Val Gln Lys Gly Ser Trp Leu Leu Leu Ala Leu Leu
1 5 10 15
His Pro Thr Ile Ile Leu Ala Gln Gln Glu Ala Val Glu Gly Gly Cys
20 25 30
Ser His Leu Gly Gln Ser Tyr Ala Asp Arg Asp Val Trp Lys Pro Glu
35 40 45
Pro Cys Gln Ile Cys Val Cys Asp Ser Gly Ser Val Leu Cys Asp Asp
50 55 60
Ile Ile Cys Asp Asp Gln Glu Leu Asp Cys Pro Asn Pro Glu Ile Pro
65 70 75 80
Phe Gly Glu Cys Cys Ala Val Cys Pro Gln Pro Pro Thr Ala Pro Thr
85 90 95
Arg Pro Pro Asn Gly Gln Gly Pro Gln Gly Pro Lys Gly Asp Pro Gly
100 105 110
Pro Pro Gly Ile Pro Gly Arg Asn Gly Asp Pro Gly Ile Pro Gly Gln
115 120 125
Pro Gly Ser Pro Gly Ser Pro Gly Pro Pro Gly Ile Cys Glu Ser Cys
130 135 140
Pro Thr Gly Pro Gln Asn Tyr Ser Pro Gln Tyr Asp Ser Tyr Asp Val
145 150 155 160
Lys Ser Gly Val Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala
165 170 175
Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly
180 185 190
Ser Pro Gly Ser Pro Gly Tyr Gln Gly Pro Pro Gly Glu Pro Gly Gln
195 200 205
Ala Gly Pro Ser Gly Pro Pro Gly Pro Pro Gly Ala Ile Gly Pro Ser
210 215 220
Gly Pro Ala Gly Lys Asp Gly Glu Ser Gly Arg Pro Gly Arg Pro Gly
225 230 235 240
Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile
245 250 255
Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly Phe Asp Gly Arg Asn
260 265 270
Gly Glu Lys Gly Glu Thr Gly Ala Pro Gly Leu Lys Gly Glu Asn Gly
275 280 285
Leu Pro Gly Glu Asn Gly Ala Pro Gly Pro Met Gly Pro Arg Gly Ala
290 295 300
Pro Gly Glu Arg Gly Arg Pro Gly Leu Pro Gly Ala Ala Gly Ala Arg
305 310 315 320
Gly Asn Asp Gly Ala Arg Gly Ser Asp Gly Gln Pro Gly Pro Pro Gly
325 330 335
Pro Pro Gly Thr Ala Gly Phe Pro Gly Ser Pro Gly Ala Lys Gly Glu
340 345 350
Val Gly Pro Ala Gly Ser Pro Gly Ser Asn Gly Ala Pro Gly Gln Arg
355 360 365

Gly Glu Pro Gly Pro Gln Gly His Ala Gly Ala Gln Gly Pro Pro Gly
 370 375 380
 Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro
 385 390 395 400
 Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro
 405 410 415
 Gly Pro Ala Gly Ala Asn Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly
 420 425 430
 Glu Pro Gly Lys Asn Gly Ala Lys Gly Glu Pro Gly Pro Arg Gly Glu
 435 440 445
 Arg Gly Glu Ala Gly Ile Pro Gly Val Pro Gly Ala Lys Gly Glu Asp
 450 455 460
 Gly Lys Asp Gly Ser Pro Gly Glu Pro Gly Ala Asn Gly Leu Pro Gly
 465 470 475 480
 Ala Ala Gly Glu Arg Gly Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro
 485 490 495
 Asn Gly Ile Pro Gly Glu Lys Gly Pro Ala Gly Glu Arg Gly Ala Pro
 500 505 510
 Gly Pro Ala Gly Pro Arg Gly Ala Ala Gly Glu Pro Gly Arg Asp Gly
 515 520 525
 Val Pro Gly Gly Pro Gly Met Arg Gly Met Pro Gly Ser Pro Gly Gly
 530 535 540
 Pro Gly Ser Asp Gly Lys Pro Gly Pro Pro Gly Ser Gln Gly Glu Ser
 545 550 555 560
 Gly Arg Pro Gly Pro Pro Gly Pro Ser Gly Pro Arg Gly Gln Pro Gly
 565 570 575
 Val Met Gly Phe Pro Gly Pro Lys Gly Asn Asp Gly Ala Pro Gly Lys
 580 585 590
 Asn Gly Glu Arg Gly Gly Pro Gly Gly Pro Gly Pro Gln Gly Pro Pro
 595 600 605
 Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro Gly Pro Thr Gly
 610 615 620
 Pro Gly Gly Asp Lys Gly Asp Thr Gly Pro Pro Gly Pro Gln Gly Leu
 625 630 635 640
 Gln Gly Leu Pro Gly Thr Gly Gly Pro Pro Gly Glu Asn Gly Lys Pro
 645 650 655
 Gly Glu Pro Gly Pro Lys Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly
 660 665 670
 Gly Lys Gly Asp Ala Gly Ala Pro Gly Glu Arg Gly Pro Pro Gly Leu
 675 680 685
 Ala Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu
 690 695 700
 Gly Gly Lys Gly Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly
 705 710 715 720
 Thr Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Gly Leu Gly Ser
 725 730 735
 Pro Gly Pro Lys Gly Asp Lys Gly Glu Pro Gly Gly Pro Gly Ala Asp
 740 745 750
 Gly Val Pro Gly Lys Asp Gly Pro Arg Gly Pro Thr Gly Pro Ile Gly
 755 760 765
 Pro Pro Gly Pro Ala Gly Gln Pro Gly Asp Lys Gly Glu Gly Gly Ala
 770 775 780
 Pro Gly Leu Pro Gly Ile Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg
 785 790 795 800
 Gly Glu Thr Gly Pro Pro Gly Pro Ala Gly Phe Pro Gly Ala Pro Gly
 805 810 815
 Gln Asn Gly Glu Pro Gly Gly Lys Gly Glu Arg Gly Ala Pro Gly Glu
 820 825 830
 Lys Gly Glu Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly Gly Ser
 835 840 845

Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly Val Lys Gly Glu Arg Gly
 850 855 860
 Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro Gly Ala Arg Gly Leu
 865 870 875 880
 Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser
 885 890 895
 Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly
 900 905 910
 Ala Pro Gly Ser Pro Gly Val Ser Gly Pro Lys Gly Asp Ala Gly Gln
 915 920 925
 Pro Gly Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro
 930 935 940
 Gly Pro Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly
 945 950 955 960
 Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
 965 970 975
 Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly Leu Ser Gly Glu Arg
 980 985 990
 Gly Pro Pro Gly Pro Gln Gly Leu Pro Gly Leu Ala Gly Thr Ala Gly
 995 1000 1005
 Glu Pro Gly Arg Asp Gly Asn Pro Gly Ser Asp Gly Leu Pro Gly Arg
 1010 1015 1020
 Asp Gly Ser Pro Gly Gly Lys Gly Asp Arg Gly Glu Asn Gly Ser Pro
 1025 1030 1035 1040
 Gly Ala Pro Gly Ala Pro Gly His Pro Gly Pro Pro Gly Pro Val Gly
 1045 1050 1055
 Pro Ala Gly Lys Ser Gly Asp Arg Gly Glu Ser Gly Pro Ala Gly Pro
 1060 1065 1070
 Ala Gly Ala Pro Gly Pro Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln
 1075 1080 1085
 Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala Ala Gly
 1090 1095 1100
 Ile Lys Gly His Arg Gly Phe Pro Gly Asn Pro Gly Ala Pro Gly Ser
 1105 1110 1115 1120
 Pro Gly Pro Ala Gly Gln Gln Gly Ala Ile Gly Ser Pro Gly Pro Ala
 1125 1130 1135
 Gly Pro Arg Gly Pro Val Gly Pro Ser Gly Pro Pro Gly Lys Asp Gly
 1140 1145 1150
 Thr Ser Gly His Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg Gly Asn
 1155 1160 1165
 Arg Gly Glu Arg Gly Ser Glu Gly Ser Pro Gly His Pro Gly Gln Pro
 1170 1175 1180
 Gly Pro Pro Gly Pro Pro Gly Ala Pro Gly Pro Cys Cys Gly Gly Val
 1185 1190 1195 1200
 Gly Ala Ala Ala Ile Ala Gly Ile Gly Glu Lys Ala Gly Gly Phe
 1205 1210 1215
 Ala Pro Tyr Tyr Gly Asp Glu Pro Met Asp Phe Lys Ile Asn Thr Asp
 1220 1225 1230
 Glu Ile Met Thr Ser Leu Lys Ser Val Asn Gly Gln Ile Glu Ser Leu
 1235 1240 1245
 Ile Ser Pro Asp Gly Ser Arg Lys Asn Pro Ala Arg Asn Cys Arg Asp
 1250 1255 1260
 Leu Lys Phe Cys His Pro Glu Leu Lys Ser Gly Glu Tyr Trp Val Asp
 1265 1270 1275 1280
 Pro Asn Gln Gly Cys Lys Leu Asp Ala Ile Lys Val Phe Cys Asn Met
 1285 1290 1295
 Glu Thr Gly Glu Thr Cys Ile Ser Ala Asn Pro Leu Asn Val Pro Arg
 1300 1305 1310
 Lys His Trp Trp Thr Asp Ser Ser Ala Glu Lys Lys His Val Trp Phe
 1315 1320 1325

Gly Glu Ser Met Asp Gly Gly Phe Ser Tyr Gly Asn Pro Glu
 1330 1335 1340
 Leu Pro Glu Asp Val Leu Asp Val Gln Leu Ala Phe Leu Arg Leu Leu
 1345 1350 1355 1360
 Ser Ser Arg Ala Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile
 1365 1370 1375
 Ala Tyr Met Asp Gln Ala Ser Gly Asn Val Lys Lys Ala Leu Lys Leu
 1380 1385 1390
 Met Gly Ser Asn Glu Gly Glu Phe Lys Ala Glu Gly Asn Ser Lys Phe
 1395 1400 1405
 Thr Tyr Thr Val Leu Glu Asp Gly Cys Thr Lys His Thr Gly Glu Trp
 1410 1415 1420
 Ser Lys Thr Val Phe Glu Tyr Arg Thr Arg Lys Ala Val Arg Leu Pro
 1425 1430 1435 1440
 Ile Val Asp Ile Ala Pro Tyr Asp Ile Gly Gly Pro Asp Gln Glu Phe
 1445 1450 1455
 Gly Val Asp Val Gly Pro Val Cys Phe Leu
 1460 1465

<210> 73

<211> 1051

<212> DNA

<213> Homo sapiens

<400> 73

cgcggagtct gagcggcgct cgtcccgatcc caaggccgac gccagcacgc cgtcatggcc	60
cccgccaggcg cgacgggggg cagcacccctg cccagtggtct tctcggtctt caccacottg	120
cccgacttgc tcttcatctt tgtagttatc ttccggggcc tgggtgtggat cctgggtggcc	180
tcttccttgg tgccttggcc cctgggtccag ggctgggtga ttttcgtgtc tttgtttctgc	240
ttcgtggcca ccaccacccat gatcatctt tacataattt gggccacgg tggagagact	300
tcttgggtca ctttggacgc agccattaccat tgcacccgtg cccttttta cctcagcc	360
tcagtcccttgg aggcccttggc accatcacg atgcaagacg gtttcaccta caggcaactac	420
catgaaaaca ttgcttccgt ggtttctcc tacataggcc ctctgtctca cttgggtccat	480
gcgggtttct cttaatcag atggaaatct tcataaagcc gcagtagaaac ttgagctgaa	540
aacccagatg gtgttaactt ggcgcacccat tttccggcat aacttttag aaaaacaaaa	600
tgccttgtat ggtggaaaaaa agaaaaacaac cacccccca ctgccccaaaa aaaaagccc	660
tgccttgttgc ttcgtgggtg ctgtgtttac tctccctgtgt gccttcgcgt ccgggttggg	720
agcttgcgtgt gtctaacctc caactgcgtgt gctgtctgtt agggcacct cctgtttgt	780
aaaggggacc ttcttggtcg ggggtggaa gttggcaccg tgacctgaga agggaaagaaa	840
gatcccttcg tgacccttgg agcagctctc gagaactacc tttttgtatt gtccacaagg	900
tctcccgagc gccccatctt gtgccatgtt ttaagtcttc atggatgttc tgcatgtcat	960
ggggactaaa actcacccaa cagatcttc cagaggtcca tgggtggaaa cgataaccct	1020
gtgaaatact ttataaaatg tcttaatgtt c	1051

<210> 74

<211> 153

<212> PRT

<213> Homo sapiens

<400> 74

Met Ala Pro Ala Ala Ala Thr Gly Ser Thr Leu Pro Ser Gly Phe	
1 5 10 15	
Ser Val Phe Thr Thr Leu Pro Asp Leu Leu Phe Ile Phe Glu Phe Ile	
20 25 30	
Phe Gly Gly Leu Val Trp Ile Leu Val Ala Ser Ser Leu Val Pro Trp	
35 40 45	
Pro Leu Val Gln Gly Trp Val Met Phe Val Ser Val Phe Cys Phe Val	
50 55 60	
Ala Thr Thr Thr Leu Ile Leu Tyr Ile Ile Gly Ala His Gly Gly	
65 70 75 80	

Glu Thr Ser Trp Val Thr Leu Asp Ala Ala Tyr His Cys Thr Ala Ala
 85 90 95
 Leu Phe Tyr Leu Ser Ala Ser Val Leu Glu Ala Leu Ala Thr Ile Thr
 100 105 110
 Met Gln Asp Gly Phe Thr Tyr Arg His Tyr His Glu Asn Ile Ala Ala
 115 120 125
 Val Val Phe Ser Tyr Ile Ala Thr Leu Leu Tyr Val Val His Ala Val
 130 135 140
 Phe Ser Leu Ile Arg Trp Lys Ser Ser
 145 150

<210> 75
 <211> 5416
 <212> DNA
 <213> Homo sapiens

<400> 75

gtgtccata	gtgtttccaa	acttggaaaag	ggcgaaaaag	ggcgaaaaag	tgccggaggc	60
ggaggatatgc	agacaacgag	tcaagatttc	cccttggaaag	cctcaaaaagt	gtccacgtcc	120
tcaaaaaagaaa	tggaaaccat	ttaagaagcc	agccccgtgg	ccacgtccct	tcccccatcc	180
gggcctcct	ctgcggccccc	gcaggctcct	cccagctgtg	gctgcccggg	cccccagccc	240
cagccctccc	attgggtggag	gcccttttgg	aggcaccta	gggcccaggga	aacttttgc	300
gtataaaatag	ggcagatccg	ggattttgtta	tttagcacc	acggcagcag	gagggtttcg	360
ctaagtggaa	gttactggcc	acgactgcat	gcccgcgccc	gccatgttat	acctccggcg	420
gtgaccagg	gctctgcac	acaaggagtc	gcatgtctaa	gtgcttagaca	tgctcagtt	480
tgtggatacg	cggactttgt	tgctgttgc	agtaacccta	tgccttagcaa	catgcacaatc	540
tttacaagag	aaaactgtaa	gaaaggcccc	agccggagat	agaggaccac	gtggagaaag	600
gggtccacca	ggcccccac	gcagagatgg	tgaagatgtt	ccacaggccc	ctccctggtcc	660
acctggctct	cctggccccc	ctggctcgg	tggaaacttt	gctgctcgt	atgatggaaa	720
aggagtttga	cttggccctg	gaccaatggg	cttaatggga	cttagaggcc	cacctggtgc	780
agctggagcc	ccagggccctc	aagggttcca	aggacctgt	ggtgagcctg	gtgaacctgg	840
tcaaaacttgt	cctgcaggtg	ctcgttgc	agctggccct	cctggcaagg	ctggtaaga	900
tggtcacccct	ggaaaaacccg	gacgacctgg	tgagagagga	gttggggac	cacagggtgc	960
tcgtggttc	cctggaaactc	ctggacttcc	tggcttcaaa	ggcattaggg	gacacaatgg	1020
tctggatggaa	ttgaagggac	agccgggtgc	tcctgggtgt	aagggtgaac	ctgggtcccc	1080
tggtaaaaat	ggaactccag	gtcaaaccagg	agccccgtgt	cttcctgg	agagaggacg	1140
tgttggtgc	cctggccat	ctgggtcccc	tggaaatgtat	ggaagtgtgg	gtcccgtagg	1200
tcctgctgtt	cctaattgggt	ctgctggccc	tccaggtttc	ccaggtgccc	ctgggtccaa	1260
gggtgaaaatt	ggagctgttg	gtaacgctgg	tcctactgg	cccgccggc	cccggtgtga	1320
agtgggtctt	ccaggcctct	ccggccccgt	tggacccctt	ggtaaatcctg	gagcaaacgg	1380
ccttacttgt	gccaagggtg	ctgtggccct	tcccgccgtt	gtctgggctc	ccggcctccc	1440
tggacccccc	ggtatccctg	gcccctctgg	tgctggccgt	actactgtgt	ccagaggact	1500
tgttggtgag	cctggccat	ctggctccaa	aggagagagc	ggttacaagg	gtgagcccg	1560
ctccgctgt	cccccaaggc	ctcctggtc	cagtggtaa	gaaggaaaaga	gaggccctaa	1620
tggggaaatgt	ggatctcccg	gcccctccagg	acccctgg	ctgagaggta	gtcctggttc	1680
tcgtggtctt	cctggagctg	atggcagagc	tggcgtcatg	gcccctctgg	ttagtcgtgg	1740
tgcaagtggc	cctgtggag	tccgaggacc	taatggagat	gctgggtcgcc	ctggggagcc	1800
tggtctcatg	ggaccaggag	gttttctgg	ttccctgg	aatatcgcc	ccgctggaaa	1860
agaaggctt	gtcgccctcc	ctggcatcg	cgccaggcct	ggcccaattt	gccccgttgg	1920
agcaagagga	gacccatgg	acattggatt	ccctggaccc	aaaggcccc	ctgggtaccc	1980
tggcaaaaac	ggtgataaaag	gtcatgtgg	tcttgcgtt	gctgggggt	ctccagggtcc	2040
tgtatggaaac	aatggtgctc	agggacctcc	tggaccacag	ggtgttcaag	gtggaaaagg	2100
tgaacaggtt	cccgctggc	ctccaggcct	ccagggtctg	cctggccccc	cagggtccgc	2160
tggtgaagg	ggcaaaaccag	gagaaaagggg	tctccatgg	gagtttgg	tccctggtcc	2220
tgctggtcca	agagggaaac	ggggcccccc	aggtgagagt	ggtgctggcc	gtccctactgg	2280
tccttattgg	agccgaggcc	cttctggacc	cccaggccct	gatggaaaaca	agggtgaacc	2340
tggtgggttt	ggtgctgtgg	gcaactgtgg	tccatctgg	cctagtggac	tcccaggaga	2400
gagggtgtct	gtggcatac	ctggaggcaa	gggagaaaag	gttgaaccc	gtctcagagg	2460
tgaaatttgt	aacccctggca	gagatggtgc	tcgtggtgc	catggtgc	taggtcccc	2520
tggtcctgt	ggagccacag	gtgaccgggg	cgaagctgg	gtgctgg	ctgctggcc	2580

tgctggtctt	cggggaaagcc	ctggtaaacg	tggcgaggtc	ggtcctgctg	gcccccaacgg	2640
atttgcgtgtt	ccggctgggt	ctgctggta	accgggtgt	aaaggagaaaa	gaggaggcaa	2700
aggggctaag	ggtaaaacg	gtgttgttgg	tcccacaggc	cccggttggag	ctgctggccc	2760
agctggtcca	aatggtcccc	ccggtcctgc	tggaaagtgt	ggtgatggag	gccccctgg	2820
tatgaacttgt	ttccctgggt	ctgctggacg	gactggtccc	ccaggaccct	ctggtatttc	2880
tggccctctt	ggtccccctg	gtcctgctgg	gaaagaaggg	cttcgttggc	ctcggtggta	2940
ccaaggtcca	gttggccgaa	ctggagaagt	aggtgcatgtt	ggtccccctg	gttcgtgtgg	3000
tgagaagggt	ccctctggag	aggctggta	tgcgttggact	cctggcactc	caggtcctca	3060
gggtcttctt	ggtgcctctg	gtattctggg	tctccctggc	tcgagaggtg	aacgtggct	3120
acctgggttt	gctggtgctg	tgggtgaacc	tggtcctctt	ggcatttgcgg	gccccctgg	3180
ggccccgtgg	cctccctgggt	ctgtgggttag	tcctggagtc	aacgggtgtc	ctgggtgaagc	3240
tggtcgtgtat	ggcaaccctg	ggaaacgtatgg	tcccccaaggt	cgegtggtc	aacccggaca	3300
caaggagag	cgcgggttacc	ctggcaataat	tggtcccggtt	ggtgcgtcag	gtgcacctgg	3360
tcctcatg	cccgtgggtc	ctgctggcaaa	acatggaaaac	cgtggtaaaa	ctggtccttc	3420
tggtcctgtt	ggtcctgctg	gtgcgttgttgg	cccaagaggt	cctagtggcc	cacaaggcat	3480
tctgtggcgat	aaggggagagc	cccggtgaaaa	ggggccccaga	ggttccctgt	gttcggagg	3540
acacaatgaa	ttgcaagggtc	tgcgttggtat	cgctggtac	catggtgatc	aagggtgtcc	3600
tggctccgtt	ggtcctgctg	gtccttagggg	ccctgtgtt	ctttctggcc	ctgctggaaa	3660
agatggtcgc	actggacatc	ctggtacggt	tggacctgt	ggcatttcgag	gccccctagg	3720
tcaccaaggc	cctgtggcc	ccccctggcc	ccctggccct	cctggacctc	cagggtgtaa	3780
cgggtgggtt	tatgactttt	gttacgtatgg	agacttctac	agggtgtacc	agcctcgctc	3840
agcaccttct	ctcagaccca	aggactatga	agttgtatgt	actctgttgt	ctctcaacaa	3900
ccagatttag	acccttctta	ctcctgaagg	ctctagaaaag	aacccagctc	gcacatgccc	3960
tgacttgaga	ctcagccacc	cagagtggag	cagcggttac	tactggattt	accccaacca	4020
aggatgcact	atggaaagcca	tcaaagtata	ctgtgatttc	cctaccggcg	aaacctgtat	4080
ccggggcccaa	cctgaaaaca	tcccagccaa	gaactgttat	aggagctcca	aggacaagaa	4140
acacgtctgg	ctaggagaaa	ctatcatgtc	tggcaggccag	tttgaatata	atgttgaagg	4200
agtacttcc	aaggaaatgg	ctacccaaact	tgccttcatg	cgcctgttgg	ccaaactatgc	4260
ctctcagaac	atcacactacc	actgtcaagaa	cagcattgtc	tacatggatg	aggagactgg	4320
caacctgaaa	aaggctgtca	ttctacaggg	ctctaatgt	gttgaacttg	ttgctgaggg	4380
caacagcagg	ttcacttaca	ctgttcttg	agatggctgc	tctaaaaga	caaataatgt	4440
gggaaaagaca	atcatgaaat	acaaaacaaa	taagccatca	cgcctggccct	tccttgatat	4500
tgcaccttt	gacatcggtg	gtgcgtacca	tgaattttt	gtggacattt	gccccagtcg	4560
tttcaaataa	atgaactcaa	tctaaattaa	aaaagaaaaga	aatttggaaaa	aactttctct	4620
ttgccatttc	ttcttcttct	tttttaactt	aaagctgtat	cttccattt	cttctgcaca	4680
tctacttgc	taaattgtgg	gcaaaaagaga	aaaagaagga	ttgatcagag	cattgtcaca	4740
tacagttca	ttaacttctt	cccccgctcc	ccccaaaatt	tgaatttttt	tttcaacact	4800
cttacacctg	ttatggaaaa	tgtcaacctt	tgtaaagaaaa	ccaaaataaaa	aattgaaaaaa	4860
taaaaaaccat	aaacatttgc	accacttgc	gcttttgaat	atcttccaca	gagggaaagtt	4920
taaaaaacc	acttccaaag	gtttaaacta	cctcaaaaca	cttcccatg	agtgtgtatcc	4980
acattgttag	gtgcgtaccc	agacagagat	gaactgaggt	ccttggttttt	ttttgttcat	5040
aatacaaagg	tgctaattaa	tagtatttca	gatactgtaa	gaatgttgat	ggtgcgtagaa	5100
gaatttggaa	agaaataactc	ctgttatttt	ttgtatgtt	tgtgttattt	ttttaaaaaat	5160
ttgatgttag	attcatattt	tccatctttat	tcccaattaa	aagtatgcag	atttttgc	5220
caaagttgtc	ctcttcttca	gattcagcat	ttgttctttt	ccagtctcat	tttcatcttc	5280
ttccatgggtt	ccacagaagc	tttgtttctt	gggcaagcag	aaaaattttaa	ttgttacccat	5340
tttgtatatg	tgagatgttt	aaataaaattt	tgaaaaaaaat	gaaataaaagc	atgtttggtt	5400
ttccaaaaga	acatat					5416

<210> 76
<211> 1366
<212> PRT
<213> Homo sapiens

<400> 76
Met Leu Ser Phe Val Asp Thr Arg Thr Leu Leu Leu Ala Val Thr
1 5 10 15

Leu Cys Leu Ala Thr Cys Gln Ser Leu Gln Glu Glu Thr Val Arg Lys
 20 25 30
 Gly Pro Ala Gly Asp Arg Gly Pro Arg Gly Glu Arg Gly Pro Pro Gly
 35 40 45
 Pro Pro Gly Arg Asp Gly Glu Asp Gly Pro Thr Gly Pro Pro Gly Pro
 50 55 60
 Pro Gly Pro Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe Ala Ala Gln
 65 70 75 80
 Tyr Asp Gly Lys Gly Val Gly Leu Gly Pro Gly Pro Met Gly Leu Met
 85 90 95
 Gly Pro Arg Gly Pro Pro Gly Ala Ala Gly Ala Pro Gly Pro Gln Gly
 100 105 110
 Phe Gln Gly Pro Ala Gly Glu Pro Gly Glu Pro Gly Gln Thr Gly Pro
 115 120 125
 Ala Gly Ala Arg Gly Pro Ala Gly Pro Pro Gly Lys Ala Gly Glu Asp
 130 135 140
 Gly His Pro Gly Lys Pro Gly Arg Pro Gly Glu Arg Gly Val Val Gly
 145 150 155 160
 Pro Gln Gly Ala Arg Gly Phe Pro Gly Thr Pro Gly Leu Pro Gly Phe
 165 170 175
 Lys Gly Ile Arg Gly His Asn Gly Leu Asp Gly Leu Lys Gly Gln Pro
 180 185 190
 Gly Ala Pro Gly Val Lys Gly Glu Pro Gly Ala Pro Gly Glu Asn Gly
 195 200 205
 Thr Pro Gly Gln Thr Gly Ala Arg Gly Leu Pro Gly Glu Arg Gly Arg
 210 215 220
 Val Gly Ala Pro Gly Pro Ala Gly Ala Arg Gly Ser Asp Gly Ser Val
 225 230 235 240
 Gly Pro Val Gly Pro Ala Gly Pro Asn Gly Ser Ala Gly Pro Pro Gly
 245 250 255
 Phe Pro Gly Ala Pro Gly Pro Lys Gly Glu Ile Gly Ala Val Gly Asn
 260 265 270
 Ala Gly Pro Thr Gly Pro Ala Gly Pro Arg Gly Glu Val Gly Leu Pro
 275 280 285
 Gly Leu Ser Gly Pro Val Gly Pro Pro Gly Asn Pro Gly Ala Asn Gly
 290 295 300
 Leu Thr Gly Ala Lys Gly Ala Ala Gly Leu Pro Gly Val Ala Gly Ala
 305 310 315 320
 Pro Gly Leu Pro Gly Pro Arg Gly Ile Pro Gly Pro Pro Gly Ala Ala
 325 330 335
 Gly Thr Thr Gly Ala Arg Gly Leu Val Gly Glu Pro Gly Pro Ala Gly
 340 345 350
 Ser Lys Gly Glu Ser Gly Asn Lys Gly Glu Pro Gly Ser Ala Gly Pro
 355 360 365
 Gln Gly Pro Pro Gly Pro Ser Gly Glu Glu Gly Lys Arg Gly Pro Asn
 370 375 380
 Gly Glu Ala Gly Ser Ala Gly Pro Pro Gly Pro Pro Gly Leu Arg Gly
 385 390 395 400
 Ser Pro Gly Ser Arg Gly Leu Pro Gly Ala Asp Gly Arg Ala Gly Val
 405 410 415
 Met Gly Pro Pro Gly Ser Arg Gly Ala Ser Gly Pro Ala Gly Val Arg
 420 425 430
 Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly Glu Pro Gly Leu Met Gly
 435 440 445
 Pro Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys
 450 455 460
 Glu Gly Pro Val Gly Leu Pro Gly Ile Asp Gly Arg Pro Gly Pro Ile
 465 470 475 480
 Gly Pro Val Gly Ala Arg Gly Glu Pro Gly Asn Ile Gly Phe Pro Gly
 485 490 495

Pro Lys Gly Pro Thr Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His
 500 505 510
 Ala Gly Leu Ala Gly Ala Arg Gly Ala Pro Gly Pro Asp Gly Asn Asn
 515 520 525
 Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Gly Lys Gly
 530 535 540
 Glu Gln Gly Pro Ala Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro
 545 550 555 560
 Ser Gly Pro Ala Gly Glu Val Gly Lys Pro Gly Glu Arg Gly Leu His
 565 570 575
 Gly Glu Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly
 580 585 590
 Pro Pro Gly Glu Ser Gly Ala Ala Gly Pro Thr Gly Pro Ile Gly Ser
 595 600 605
 Arg Gly Pro Ser Gly Pro Pro Gly Pro Asp Gly Asn Lys Gly Glu Pro
 610 615 620
 Gly Val Val Gly Ala Val Gly Thr Ala Gly Pro Ser Gly Pro Ser Gly
 625 630 635 640
 Leu Pro Gly Glu Arg Gly Ala Ala Gly Ile Pro Gly Gly Lys Gly Glu
 645 650 655
 Lys Gly Glu Pro Gly Leu Arg Gly Glu Ile Gly Asn Pro Gly Arg Asp
 660 665 670
 Gly Ala Arg Gly Ala His Gly Ala Val Gly Ala Pro Gly Pro Ala Gly
 675 680 685
 Ala Thr Gly Asp Arg Gly Glu Ala Gly Ala Ala Gly Pro Ala Gly Pro
 690 695 700
 Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Val Gly Pro Ala
 705 710 715 720
 Gly Pro Asn Gly Phe Ala Gly Pro Ala Gly Ala Ala Gly Gln Pro Gly
 725 730 735
 Ala Lys Gly Glu Arg Gly Gly Lys Gly Pro Lys Gly Glu Asn Gly Val
 740 745 750
 Val Gly Pro Thr Gly Pro Val Gly Ala Ala Gly Pro Ala Gly Pro Asn
 755 760 765
 Gly Pro Pro Gly Pro Ala Gly Ser Arg Gly Asp Gly Gly Pro Pro Gly
 770 775 780
 Met Thr Gly Phe Pro Gly Ala Ala Gly Arg Thr Gly Pro Pro Gly Pro
 785 790 795 800
 Ser Gly Ile Ser Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu
 805 810 815
 Gly Leu Arg Gly Pro Arg Gly Asp Gln Gly Pro Val Gly Arg Thr Gly
 820 825 830
 Glu Val Gly Ala Val Gly Pro Pro Gly Phe Ala Gly Glu Lys Gly Pro
 835 840 845
 Ser Gly Glu Ala Gly Thr Ala Gly Pro Pro Gly Thr Pro Gly Pro Gln
 850 855 860
 Gly Leu Leu Gly Ala Pro Gly Ile Leu Gly Leu Pro Gly Ser Arg Gly
 865 870 875 880
 Glu Arg Gly Leu Pro Gly Val Ala Gly Ala Val Gly Glu Pro Gly Pro
 885 890 895
 Leu Gly Ile Ala Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly Ala Val
 900 905 910
 Gly Ser Pro Gly Val Asn Gly Ala Pro Gly Glu Ala Gly Arg Asp Gly
 915 920 925
 Asn Pro Gly Asn Asp Gly Pro Pro Gly Arg Asp Gly Gln Pro Gly His
 930 935 940
 Lys Gly Glu Arg Gly Tyr Pro Gly Asn Ile Gly Pro Val Gly Ala Ala
 945 950 955 960
 Gly Ala Pro Gly Pro His Gly Pro Val Gly Pro Ala Gly Lys His Gly
 965 970 975

Asn Arg Gly Glu Thr Gly Pro Ser Gly Pro Val Gly Pro Ala Gly Ala
 980 985 990
 Val Gly Pro Arg Gly Pro Ser Gly Pro Gln Gly Ile Arg Gly Asp Lys
 995 1000 1005
 Gly Glu Pro Gly Glu Lys Gly Pro Arg Gly Leu Pro Gly Phe Lys Gly
 1010 1015 1020
 His Asn Gly Leu Gln Gly Leu Pro Gly Ile Ala Gly His His Gly Asp
 1025 1030 1035 1040
 Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly Pro Arg Gly Pro Ala
 1045 1050 1055
 Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Arg Thr Gly His Pro Gly
 1060 1065 1070
 Thr Val Gly Pro Ala Gly Ile Arg Gly Pro Gln Gly His Gln Gly Pro
 1075 1080 1085
 Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Val Ser
 1090 1095 1100
 Gly Gly Gly Tyr Asp Phe Gly Tyr Asp Gly Asp Phe Tyr Arg Ala Asp
 1105 1110 1115 1120
 Gln Pro Arg Ser Ala Pro Ser Leu Arg Pro Lys Asp Tyr Glu Val Asp
 1125 1130 1135
 Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Thr Leu Leu Thr Pro
 1140 1145 1150
 Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Arg Leu
 1155 1160 1165
 Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp Ile Asp Pro Asn Gln
 1170 1175 1180
 Gly Cys Thr Met Glu Ala Ile Lys Val Tyr Cys Asp Phe Pro Thr Gly
 1185 1190 1195 1200
 Glu Thr Cys Ile Arg Ala Gln Pro Glu Asn Ile Pro Ala Lys Asn Trp
 1205 1210 1215
 Tyr Arg Ser Ser Lys Asp Lys Lys His Val Trp Leu Gly Glu Thr Ile
 1220 1225 1230
 Asn Ala Gly Ser Gln Phe Glu Tyr Asn Val Glu Gly Val Thr Ser Lys
 1235 1240 1245
 Glu Met Ala Thr Gln Leu Ala Phe Met Arg Leu Leu Ala Asn Tyr Ala
 1250 1255 1260
 Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp
 1265 1270 1275 1280
 Glu Glu Thr Gly Asn Leu Lys Lys Ala Val Ile Leu Gln Gly Ser Asn
 1285 1290 1295
 Asp Val Glu Leu Val Ala Glu Gly Asn Ser Arg Phe Thr Tyr Thr Val
 1300 1305 1310
 Leu Val Asp Gly Cys Ser Lys Lys Thr Asn Glu Trp Gly Lys Thr Ile
 1315 1320 1325
 Ile Glu Tyr Lys Thr Asn Lys Pro Ser Arg Leu Pro Phe Leu Asp Ile
 1330 1335 1340
 Ala Pro Leu Asp Ile Gly Ala Asp His Glu Phe Phe Val Asp Ile
 1345 1350 1355 1360
 Gly Pro Val Cys Phe Lys
 1365

<210> 77
 <211> 1082
 <212> DNA
 <213> Homo sapiens

<400> 77

agctccctt agcgagtct tctttcctg actgcagctc ttttcatttt gccatcctt	60
tccagcacca tgatggttct gcagggttct gggccccccc ggacagtggc tctgacggcg	120
ttactgtatgg tgctgctcac atctgtggtc cagggcaggg ccactccaga gaattacctt	180

ttccagggac ggcaggaatg ctacgcgtt aatgggacac agcgcttcct ggagagatac	240
atctacaacc gggaggagtt cgccgcgttc gacagcgcacg tgggggagtt ccgggcegggt	300
acggagctgg ggccgcctgc tgccgagttac tggAACAGCC agaaggacat cctggaggag	360
aACCGGGCAG tgccgacag gatgtgcaga cacaactacg agctgggcgg gcccattgacc	420
ctgcagcgcc gagtcaccc tagggtaat gttccccctt ccaagaagggg gcccattgcag	480
caccacaacc tgcttgtctg ccacgtgacg gatttctacc caggcagcat tcaagtccga	540
tggttctcta atggacagga gaaaacagct ggggtcgtgt ccacccaacctt gatccgtaat	600
ggagactgga cttccagat cctgggtatg ctggaaatga ccccccagca gggagatgtc	660
tacacctgcc aagtggagca caccagcctg gatagtccctg tcaccgtgga gtggaaaggca	720
cagtctgatt ctgcccggag taagacattt acgggagctg ggggttcgt gctggggctc	780
atcatctgtg gagtggcat cttcatgcac aggaggagca agaaaagttca acgaggatct	840
gcataaaacag ggttcttgag ctcactgaaa agactattgt gccttaggaa aacgatttgc	900
tgtgtttctgt tagcatctgg ctccaggaca gaccttcaac ttccaaattt atactgctgc	960
caagaagttg ctctgaagtc agtttctatc attctgtct ttgattcaaa gcaactgttcc	1020
tctcaactggg cttccaaacca ttcccttc ttcttagcac cacaataat caaaacccaa	1080
ca	1082

<210> 78

<211> 258

<212> PRT

<213> Homo sapiens

<400> 78

Met Met Val Leu Gln Val Ser Ala Ala Pro Arg Thr Val Ala Leu Thr	
1 5 10 15	
Ala Leu Leu Met Val Leu Leu Thr Ser Val Val Gln Gly Arg Ala Thr	
20 25 30	
Pro Glu Asn Tyr Leu Phe Gln Gly Arg Gln Glu Cys Tyr Ala Phe Asn	
35 40 45	
Gly Thr Gln Arg Phe Leu Glu Arg Tyr Ile Tyr Asn Arg Glu Glu Phe	
50 55 60	
Ala Arg Phe Asp Ser Asp Val Gly Glu Phe Arg Ala Val Thr Glu Leu	
65 70 75 80	
Gly Arg Pro Ala Ala Glu Tyr Trp Asn Ser Gln Lys Asp Ile Leu Glu	
85 90 95	
Glu Lys Arg Ala Val Pro Asp Arg Met Cys Arg His Asn Tyr Glu Leu	
100 105 110	
Gly Gly Pro Met Thr Leu Gln Arg Arg Val Gln Pro Arg Val Asn Val	
115 120 125	
Ser Pro Ser Lys Lys Gly Pro Leu Gln His His Asn Leu Leu Val Cys	
130 135 140	
His Val Thr Asp Phe Tyr Pro Gly Ser Ile Gln Val Arg Trp Phe Leu	
145 150 155 160	
Asn Gly Gln Glu Glu Thr Ala Gly Val Val Ser Thr Asn Leu Ile Arg	
165 170 175	
Asn Gly Asp Trp Thr Phe Gln Ile Leu Val Met Leu Glu Met Thr Pro	
180 185 190	
Gln Gln Gly Asp Val Tyr Thr Cys Gln Val Glu His Thr Ser Leu Asp	
195 200 205	
Ser Pro Val Thr Val Glu Trp Lys Ala Gln Ser Asp Ser Ala Arg Ser	
210 215 220	
Lys Thr Leu Thr Gly Ala Gly Gly Phe Val Leu Gly Leu Ile Ile Cys	
225 230 235 240	
Gly Val Gly Ile Phe Met His Arg Arg Ser Lys Lys Val Gln Arg Gly	
245 250 255	
Ser Ala	

<210> 79

<211> 996

<212> DNA

<213> Homo sapiens

<400> 79

gttggaaattca	tggcatctac	ttcgttatgac	tattgcagag	tgcgcattgga	agacggggat	60	
aaggcgctgt	ta	agctttctgt	ggggatagga	attctgtgc	tcctgtatcat	cgtgattctg	120
gggggtgc	ccct	tgattatctt	caccatcaag	gccaaacagcg	aggcctgc	ggacggcctt	180
cgccccagt	ga	tggagtgtcg	caatgtcacc	catctcctgc	aacaagagct	gaccgaggcc	240
cagaagg	gt	ttcaggatgt	ggaggcccag	gccgcacact	gcaaccacac	tgtatggcc	300
ctaattgg	c	ccctggatgc	agagaaggcc	caaggacaaa	agaaaagtgg	ggagctttag	360
ggagagat	ca	ctacattaaa	ccataagctt	caggacgcgt	ctgcagaggt	ggagcgactg	420
agaagag	aaa	accaggtctt	aacgctgaga	atcgcggaca	agaagtacta	ccccagctcc	480
caggact	ca	gctccgctgc	ggcgccccag	ctgctgattt	tgtgtctggg	cctcagcgt	540
ctgctgc	agt	gagatcccag	gaagctggca	catcttggaa	ggccgtcct	gtctggctt	600
tcgctt	gaac	atccccttga	tctcatcagt	tctgagcggg	tcatggggca	acacggtag	660
cgggg	gagagc	acggggtagc	cggagaagg	cctctggagc	aggtctggag	ggccatggg	720
gcagt	cctgg	gtgtggggac	acatcggt	tgacccagg	ctgtctccct	ccagagctc	780
cctccgg	aca	atgatcccc	ccttggatct	cccacccctga	gattgggcat	gggggtgcgg	840
gtgggg	gca	tgtgtgcct	gttgttatgg	gtttttttt	cggggggggt	tgctttttc	900
tgggt	c	gagctccaaa	aaataaacac	ttcctttag	ggagagcaaa	aaaaaaaaaa	960
aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	996

<210> 80

<211> 180

<212> PRT

<213> Homo sapiens

<400> 80

Met	Ala	Ser	Thr	Ser	Tyr	Asp	Tyr	Cys	Arg	Val	Pro	Met	Glu	Asp	Gly
1						5			10			15			
Asp	Lys	Arg	Cys	Lys	Leu	Leu	Leu	Gly	Ile	Gly	Ile	Leu	Val	Leu	Leu
									20		25		30		
Ile	Ile	Val	Ile	Leu	Gly	Val	Pro	Leu	Ile	Ile	Phe	Thr	Ile	Lys	Ala
									35		40		45		
Asn	Ser	Glu	Ala	Cys	Arg	Asp	Gly	Leu	Arg	Ala	Val	Met	Glu	Cys	Arg
								50		55		60			
Asn	Val	Thr	His	Leu	Leu	Gln	Gln	Glu	Leu	Thr	Glu	Ala	Gln	Lys	Gly
								65		70		75		80	
Phe	Gln	Asp	Val	Glu	Ala	Gln	Ala	Ala	Thr	Cys	Asn	His	Thr	Val	Met
								85		90		95			
Ala	Leu	Met	Ala	Ser	Leu	Asp	Ala	Glu	Lys	Ala	Gln	Gly	Gln	Lys	Lys
								100		105		110			
Val	Glu	Leu	Glu	Gly	Glu	Ile	Thr	Thr	Leu	Asn	His	Lys	Leu	Gln	
						115		120		125					
Asp	Ala	Ser	Ala	Glu	Val	Glu	Arg	Leu	Arg	Arg	Glu	Asn	Gln	Val	Leu
								130		135		140			
Ser	Val	Arg	Ile	Ala	Asp	Lys	Lys	Tyr	Tyr	Pro	Ser	Ser	Gln	Asp	Ser
								145		150		155		160	
Ser	Ser	Ala	Ala	Ala	Pro	Gln	Leu	Leu	Ile	Val	Leu	Leu	Gly	Leu	Ser
								165		170		175			
Ala	Leu	Leu	Gln					180							

<210> 81

<211> 4316

<212> DNA

<213> Homo sapiens

<400> 81

ctgcagctaa taaaaaaaaaaa aaaagaaaga aagaaactgg tctctgtcct atttcataatg

60

ctcaggta	actttccag	agaagaagag	gaggggggcg	gggaggagca	ggaggaggag	120
gaaagaagga	ggagaaggag	aaggagaaga	agaggaagag	gaagaggaag	aagaagaaga	180
agaagaagag	gaagaggaag	aggaagaaga	agaagaagaa	gaagaagaag	aagaagaaga	240
agaagaagaa	gaagaagaag	aagaagaaga	ggaagaagag	gaagaagaag	aaactgttc	300
tagaccttca	ttctcaggac	aagttcattt	tctggcacca	agtccttgg	gttgaatttt	360
cttccaaaag	agtccgggaa	gtccaggat	ggaatgggag	gcagaaaagtt	caatcaaggg	420
actgggattt	cggaatgaat	aatgaaggg	gatggactgg	gtccatgccg	aaggtttctc	480
cctggtttct	cagccccccg	gccaagactc	agggagacat	ttagacacac	cctgcacagg	540
agggggaggg	ggagggggag	ggcaaagtcc	cagggcccca	ggagtggctc	tcaagggctc	600
aggccccgag	gcccgtctg	gggttggaaag	gctcagattt	gagaattccc	catctccca	660
gagttctct	ttctctccca	accctgtca	ggtccttcat	cctggatact	cataacgegg	720
ccccattttct	cactccatt	gggcgtcgcg	tttcttagaga	agccaatcag	tgtcgccgca	780
gttcccagg	tctaaagtcc	cacgcacccc	gccccactca	tatttttccc	agacgcggag	840
gttggggtca	tggccccccg	aagccttctc	ctgctgtct	cagggccctc	ggccctgacc	900
gatacttggg	cgggtgatgt	cggggtccag	agagaaacgg	cctctgtggg	gaggagttag	960
ggggccccc	gttggggcgg	caggactca	ggagccgcgc	ccggaggagg	gtctggccgg	1020
tctcacccccc	tcctcgggg	cggctccca	tccttgggg	tatttcagca	ccgctgtgtc	1080
gccccccggc	cggggggagc	ccgcgtacat	cgccgtggag	tacgttagacg	acacgcaatt	1140
cctgcgggtc	gacagcgacg	ccgcgattcc	gaggatggag	ccgcgggagc	cgtgggtgga	1200
gcaagagggg	ccgcagttt	gggagtggac	cacagggtac	gccaaaggcca	acgcacagac	1260
tgaccggat	gccctgagga	acctgtccg	ccgctacaac	cagagcgagg	ctgggtgatg	1320
aacccggccg	ggggcgcagg	tcacgaccac	ccccatccg	ccacggaccg	cccggttccc	1380
cccgagtctc	cgatccgaa	atctaccccg	aggcagcgg	ccgcggccaga	ccctccaccc	1440
gggagagttc	caggccctt	taccggat	cattttcagt	ttaggccaaa	atccccggg	1500
gttgggcggg	gagggggcgg	ggctagctgg	gcggggctga	ctgccccggac	cggctagggt	1560
ctcacaccc	ccagggat	aatggctcg	acatggggcc	cgacggacgc	ctctcccg	1620
gttatcacca	gcacgcgtac	gacggcaagg	attacatctc	cctgaacgg	gacctgcgt	1680
cctggaccgc	ggcgacacc	gtggctcaga	tcacccagcg	cattttatgag	gcagaggaat	1740
atgcagagga	gttcaggacc	tacctgggg	gcgagtgcct	ggagtgtctc	cgcagatact	1800
tggagaatgg	gaaggagacg	ctacagcg	caggtaggg	ggccatggg	cgccctccct	1860
atctctgt	gatcttgg	gatggctcg	cacaagggt	ggagggaaatg	ggggccaaatg	1920
ctaggatata	gccctccctc	tagtccctag	taggaagaat	cttccctggct	ttcgagatcc	1980
gttaccagag	agtactgt	agactccgc	ctgctctct	ggacaattaa	ggatgaaaat	2040
ctctctggg	atgggggaa	gacagtccct	ggaataccga	tccgggtcc	cctttgagcc	2100
ctccaacagc	cttggggccc	gtgactttt	tctcaagttt	tgttctctgc	ctcacactca	2160
atgtgtttgg	ggctctgatt	ccagtccttc	ggcctccact	taggtcaggg	ccagaagtcc	2220
ctgctccca	ctcagagact	cgaactttcc	aaggaatagg	agatttttcc	aggtgtctgt	2280
gtccaggctg	gtgtctgggt	tctgtgtctc	cttccccacc	ccaggtgtcc	tgtccattct	2340
cagggtggc	acatgggtgc	tgctgggggt	tcccatgagg	atgcacaaatg	gcctgaattt	2400
tctgacttt	ctcagatct	ccaaaggcac	acgttgc	ccacccatc	tctgaccatg	2460
aggccaccc	gagggtctgg	gccctgggc	tctaccctgc	ggagatcacg	ctgaccctgg	2520
agcgggatgg	ggagggacag	acccaggaca	cagagttgt	ggagaggagg	cctgcagggg	2580
atggaaaccc	ccagaagtgg	ggcgctgtgg	tggtgc	tggagggaa	cagagataca	2640
catggccatgt	gcagcagcg	gggctggccc	ageccctat	cctgagatgg	ggttggagg	2700
gagatgggt	aaagggggaa	cgaggggtca	tgtctttct	cagggaaagtc	aggacccctt	2760
ctggagctt	tcagcgggt	cagggtctag	gcctggagat	cagggccctt	cacccctt	2820
tcctttccca	gagcagtctc	cccgccccac	catccatc	gtggccatcg	ttgctggcct	2880
tgttgtctt	ggagctgtgg	tcactgggg	tgtggctgt	gtgtgtatgt	ggagggaaagaa	2940
gagctcagg	aggaagggt	gaggagtgg	gtctgatgtt	tcttgc	ctgggggttg	3000
caagcccaa	gtagaagtgt	gccctgcctc	attactggg	agcaccatcc	acactcatgg	3060
gtctaccct	cctggggccct	gtgtgccagg	acctaactat	ttttaaagct	cctgtgaaaa	3120
tgaaggacag	attcttact	tcgtatgat	tggtgggtat	gggacctgat	cccagcgtc	3180
acaaaatcaca	ggggaaagg	cctgctgat	acagacatca	ggagggcagt	ttgtccagga	3240
cccacatctg	ctttcttcat	atttcttcat	cctgccttgg	atctacagt	acactttct	3300
ggaaaacttc	ctgggatcaa	agacttaggg	tttgctctag	gaccttatgg	ccctgcctcc	3360
tttctggct	ctcacaggac	attttcttcc	catagataga	aacagaggga	gtactctca	3420
ggctgcagg	aaatgtaaagg	aggctgatcc	ctgagattgt	tggatattt	ttgtcaggag	3480
cctatgaggg	agtcacccca	ccccacagg	cctctagcca	catctgtggg	ctctgaccag	3540
gtcctgtttt	tgttctaccc	caatctact	cagtgc	ggctctgggg	tgtctctcac	3600
agctaataaa	ggtgacactc	caggcaggg	gccctgatgt	gagtgggggt	ttggggggga	3660

acagagggga ctcagctgtc	ctattgggtt tctttactt	ggatgtcttg agcatgaaat	3720
gggcattta gagtggtaacc	tccactgtg actgatacga	atttgttcat gaatatttc	3780
tctatagt gagaacgctt	ccttgggtgg gactgagaag	caagataatca atgttagcaga	3840
attgcactg tgcctcacga	acatacataaa attttaaaaa	taaagaataa aaatatatct	3900
ttttatagat acaggttagat	atgttttat agcatgcacg	taaatgtgtg tgtgtgtgt	3960
tgtgtgtgaa gagaagagt	gaatagagag attaagattc	tttaatggt gaaaagatata	4020
acatatattt ggaattagcc	agcttactc agtttaggtg	atcccaattt tggggcaac	4080
aaccaaagca tcgttagtcag	gagccagtcg aacatatgcc	ttcctctctc catcagactg	4140
aatcagagtg ttgactttgg	ccacatcaat gtcacaaact	tcttcacagc ctgtttgatc	4200
tggtgcttgt	tggcttaac atccacagtg	aacacaagta ggctgttgtt ttctatcttc	4260
ttcacagcct actcagttgt	cagcggaaac ttgatgataa	catggggtc aagctt	4316

<210> 82

<211> 362

<212> PRT

<213> Homo sapiens

<400> 82

Met Ala Pro Arg Ser Leu Leu Leu Leu	Ser Gly Ala Leu Ala Leu	
1 5 10 15		
Thr Asp Thr Trp Ala Gly Ser His Ser	Leu Arg Tyr Phe Ser Thr Ala	
20 25 30		
Val Ser Arg Pro Gly Arg Gly Glu Pro	Arg Tyr Ile Ala Val Glu Tyr	
35 40 45		
Val Asp Asp Thr Gln Phe Leu Arg Phe	Asp Ser Asp Ala Ala Ile Pro	
50 55 60		
Arg Met Glu Pro Arg Glu Pro Trp Val	Glu Gln Glu Gly Pro Gln Tyr	
65 70 75 80		
Trp Glu Trp Thr Thr Gly Tyr Ala Lys	Ala Asn Ala Gln Thr Asp Arg	
85 90 95		
Val Ala Leu Arg Asn Leu Leu Arg Arg	Tyr Asn Gln Ser Glu Ala Gly	
100 105 110		
Ser His Thr Leu Gln Gly Met Asn Gly	Cys Asp Met Gly Pro Asp Gly	
115 120 125		
Arg Leu Leu Arg Gly Tyr His Gln His	Ala Tyr Asp Gly Lys Asp Tyr	
130 135 140		
Ile Ser Leu Asn Glu Asp Leu Arg Ser	Trp Thr Ala Ala Asp Thr Val	
145 150 155 160		
Ala Gln Ile Thr Gln Arg Phe Tyr Glu	Ala Glu Glu Tyr Ala Glu Glu	
165 170 175		
Phe Arg Thr Tyr Leu Glu Gly Glu Cys	Ley Leu Glu Leu Arg Arg Tyr	
180 185 190		
Leu Glu Asn Gly Lys Glu Thr Ley Gln	Arg Ala Asp Pro Pro Lys Ala	
195 200 205		
His Val Ala His His Pro Ile Ser Asp	His Glu Ala Thr Ley Arg Cys	
210 215 220		
Trp Ala Ley Gly Phe Tyr Pro Ala Glu	Ile Thr Ley Thr Trp Gln Arg	
225 230 235 240		
Asp Gly Glu Glu Gln Thr Gln Asp Thr	Glu Ley Val Glu Thr Arg Pro	
245 250 255		
Ala Gly Asp Gly Thr Phe Gln Lys	Trp Ala Ala Val Val Val Pro Ser	
260 265 270		
Gly Glu Glu Gln Arg Tyr Thr Cys His	Val Gln His Glu Gly Ley Pro	
275 280 285		
Gln Pro Ley Ile Ley Arg Trp Glu Gln	Ser Pro Gln Pro Thr Ile Pro	
290 295 300		
Ile Val Gly Ile Val Ala Gly Ley Val	Val Val Ley Gly Ala Val Val Thr	
305 310 315 320		
Gly Ala Val Val Ala Ala Val Met Trp	Arg Lys Lys Ser Ser Asp Arg	
325 330 335		

Asn Arg Gly Ser Tyr Ser Gln Ala Ala Val Thr Asp Ser Ala Gln Gly
340 345 350
Ser Gly Val Ser Leu Thr Ala Asn Lys Val
355 360

<210> 83
<211> 10
<212> DNA
<213> Homo sapiens

<400> 83
tcagacgcag

10

<210> 84
<211> 10
<212> DNA
<213> Homo sapiens

<400> 84
ttatggatc

10

<210> 85
<211> 10
<212> DNA
<213> Homo sapiens

<400> 85
cccgcccccg

10

<210> 86
<211> 10
<212> DNA
<213> Homo sapiens

<400> 86
gaggaagaag

10

<210> 87
<211> 10
<212> DNA
<213> Homo sapiens

<400> 87
gaagcttgc

10

<210> 88
<211> 10
<212> DNA
<213> Homo sapiens

<400> 88
taccagtgtta

10

<210> 89
<211> 10
<212> DNA
<213> Homo sapiens

<400> 89
tcttctccct

10

<210> 90	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 90	
ttggctttc	10
<210> 91	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 91	
ggaagggagg	10
<210> 92	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 92	
aagccagccc	10
<210> 93	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 93	
tttcagattg	10
<210> 94	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 94	
gcataggctg	10
<210> 95	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 95	
tttggttaatt	10
<210> 96	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 96	
gagactcctg	10
<210> 97	
<211> 10	
<212> DNA	
<213> Homo sapiens	

<400> 97	
cctgttaattc	10
<210> 98	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 98	
gtgggtgcgtg	10
<210> 99	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 99	
ttggacacctgg	10
<210> 100	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 100	
cttaaggatt	10
<210> 101	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 101	
gtctgtgaga	10
<210> 102	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 102	
gaaaactgaac	10
<210> 103	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 103	
ggccatctct	10
<210> 104	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 104	
tttgggccta	10
<210> 105	

<211> 10
<212> DNA
<213> Homo sapiens

<400> 105
atcgtggcgg 10

<210> 106
<211> 10
<212> DNA
<213> Homo sapiens

<400> 106
tattatggta 10

<210> 107
<211> 10
<212> DNA
<213> Homo sapiens

<400> 107
gccttaccgca 10

<210> 108
<211> 10
<212> DNA
<213> Homo sapiens

<400> 108
ctcgcgcgtgg 10

<210> 109
<211> 10
<212> DNA
<213> Homo sapiens

<400> 109
ttgccttgcca 10

<210> 110
<211> 10
<212> DNA
<213> Homo sapiens

<400> 110
cctgcgttgtc 10

<210> 111
<211> 10
<212> DNA
<213> Homo sapiens

<400> 111
agggaggggc 10

<210> 112
<211> 10
<212> DNA
<213> Homo sapiens

<400> 112	
tgtgggaaat	10
<210> 113	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 113	
cctgatctgc	10
<210> 114	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 114	
accattggat	10
<210> 115	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 115	
agtttgttag	10
<210> 116	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 116	
cctgggaagt	10
<210> 117	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 117	
caactaattc	10
<210> 118	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 118	
gcctgcagtc	10
<210> 119	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 119	
cgaccccacg	10
<210> 120	

<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 120	
ttctgtgctg	10
<210> 121	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 121	
cggccgacgat	10
<210> 122	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 122	
cccgcccccg	10
<210> 123	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 123	
gatcaggcca	10
<210> 124	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 124	
gttggaaagacg	10
<210> 125	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 125	
gatgaggaga	10
<210> 126	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 126	
ttcccttctt	10
<210> 127	
<211> 10	
<212> DNA	
<213> Homo sapiens	

<400> 127 ccccctgcag	10
<210> 128 <211> 10 <212> DNA <213> Homo sapiens	
<400> 128 tgctgcctgt	10
<210> 129 <211> 10 <212> DNA <213> Homo sapiens	
<400> 129 tgcagcacga	10
<210> 130 <211> 10 <212> DNA <213> Homo sapiens	
<400> 130 ggttattttg	10
<210> 131 <211> 10 <212> DNA <213> Homo sapiens	
<400> 131 tgtcatcaca	10
<210> 132 <211> 10 <212> DNA <213> Homo sapiens	
<400> 132 aaaataaaaca	10
<210> 133 <211> 10 <212> DNA <213> Homo sapiens	
<400> 133 taaaaaatgtt	10
<210> 134 <211> 10 <212> DNA <213> Homo sapiens	
<400> 134 gagttttga	10
<210> 135	

<211> 10
 <212> DNA
 <213> Homo sapiens

<400> 135
 ggctgatgtg 10

<210> 136
 <211> 10
 <212> DNA
 <213> Homo sapiens

<400> 136
 cgacgaggag 10

<210> 137
 <211> 10
 <212> DNA
 <213> Homo sapiens

<400> 137
 gcccccaata 10

<210> 138
 <211> 10
 <212> DNA
 <213> Homo sapiens

<400> 138
 gcaacttggc 10

<210> 139
 <211> 408
 <212> PRT
 <213> Homo sapiens

<400> 139
 Met Pro Gly His Leu Gln Glu Gly Phe Gly Cys Val Val Thr Asn Arg
 1 5 10 15
 Phe Asp Gln Leu Phe Asp Asp Glu Ser Asp Pro Phe Glu Val Leu Lys
 20 25 30
 Ala Ala Glu Asn Lys Lys Lys Glu Ala Gly Gly Gly Val Gly Gly
 35 40 45
 Pro Gly Ala Lys Ser Ala Ala Gln Ala Ala Gln Thr Asn Ser Asn
 50 55 60
 Ala Ala Gly Lys Gln Leu Arg Lys Glu Ser Gln Lys Asp Arg Lys Asn
 65 70 75 80
 Pro Leu Pro Pro Ser Val Gly Val Val Asp Lys Lys Glu Glu Thr Gln
 85 90 95
 Pro Pro Val Ala Leu Lys Lys Glu Gly Ile Arg Arg Val Gly Arg Arg
 100 105 110
 Pro Asp Gln Gln Leu Gln Gly Glu Gly Lys Ile Ile Asp Arg Arg Pro
 115 120 125
 Glu Arg Arg Pro Pro Arg Glu Arg Arg Phe Glu Lys Pro Leu Glu Glu
 130 135 140
 Lys Gly Glu Gly Gly Glu Phe Ser Val Asp Arg Pro Ile Ile Asp Arg
 145 150 155 160
 Pro Ile Arg Gly Arg Gly Leu Gly Arg Gly Arg Gly Gly Arg Gly
 165 170 175

<210> 140
<211> 10
<212> DNA
<213> *Homo sapiens*

<400> 140
atgataaatgg

<210> 141
<211> 1024
<212> DNA
<213> *Homo sapiens*

<400> 141

ccccccccga	aacacactca	gccccttgcac	tgacacctgcct	tctgatttggaa	ggctgggttgc	60
tttcggataat	gacccctcagg	accccccactgt	tggttacagc	ctgtttgtat	tattttact	120
gcaactcaag	acacctgcag	caggggcgtga	aaaaaaagttaa	aagaccagta	ttttcacatt	180
gccagggtacc	agaaaacacag	aagactgtaca	cccgccactt	aagtggggcc	agggctggtg	240
tctggccatg	ttggccatcct	gatgggcgtgc	ttgcacaat	gagggatctt	cttcaatacaca	300
tcgttgtctt	ctttgccttt	ttctctgtgt	ggttttgtat	tgtggccacc	tggactgact	360
gttggatggt	gaatgtctgtat	gactctctgg	aggtgagcac	aaaatgcca	ggcctctgg	420
gggaatgcgt	cacaaaatgt	tttgatggta	ttcgacacctg	tgatgagtag	gattccatac	480
ttggggagca	tcccttgaag	ctgggtgtaa	ctcgagcggt	gatgattact	gcagatattc	540
tagctgggtt	tggatttctc	accctgtcc	ttgggtcttga	ctgcgtgaaa	ttccctccctg	600
atagccgtat	cattaaagtc	cgcatctgt	ttgtgtctgg	agccacgtt	ctaatacgag	660
gtaccccgagg	aatcattggc	tctgtgtgtt	atgtgttga	tgtgtatgtt	gaacgttcta	720
ctttgggttt	gcacaatata	tttcttgta	tccaaatataa	atttgggttg	tcctgttggc	780
tcggaatggc	tgggtctctg	ggttgttttt	tggctggagc	tgttctacc	tgctgcttat	840
atcttttaa	agatgtggga	cctgagaaaa	ctagccattat	cccttggagga	aaggcttattc	900

agccgcgagg tgttccatg gccaagtcat actcagcccc tcgcacagag acggccaaaa 960
 tgtatgctgt agacacaagg gtgtaaaatg cacgttcag ggtgttgc catatgattt 1020
 aatc 1024

<210> 142
 <211> 294
 <212> PRT
 <213> Homo sapiens

<400> 142
 Pro Pro Glu Thr His Ser Ala Leu Ala Leu Thr Cys Leu Leu Ile Gly
 1 5 10 15
 Gly Trp Leu Leu Arg Ile Met Thr Ser Arg Thr Pro Leu Leu Val Thr
 20 25 30
 Ala Cys Leu Tyr Tyr Ser Tyr Cys Asn Ser Arg His Leu Gln Gln Gly
 35 40 45
 Val Arg Lys Ser Lys Arg Pro Val Phe Ser His Cys Gln Val Pro Glu
 50 55 60
 Thr Gln Lys Thr Asp Thr Arg His Leu Ser Gly Ala Arg Ala Gly Val
 65 70 75 80
 Cys Pro Cys Cys His Pro Asp Gly Leu Leu Ala Thr Met Arg Asp Leu
 85 90 95
 Leu Gln Tyr Ile Ala Cys Phe Phe Ala Phe Phe Ser Ala Gly Phe Leu
 100 105 110
 Ile Val Ala Thr Trp Thr Asp Cys Trp Met Val Asn Ala Asp Asp Ser
 115 120 125
 Leu Glu Val Ser Thr Lys Cys Arg Gly Leu Trp Trp Glu Cys Val Thr
 130 135 140
 Asn Ala Phe Asp Gly Ile Arg Thr Cys Asp Glu Tyr Asp Ser Ile Leu
 145 150 155 160
 Ala Glu His Pro Leu Lys Leu Val Val Thr Arg Ala Leu Met Ile Thr
 165 170 175
 Ala Asp Ile Leu Ala Gly Phe Gly Phe Leu Thr Leu Leu Leu Gly Leu
 180 185 190
 Asp Cys Val Lys Phe Leu Pro Asp Glu Pro Tyr Ile Lys Val Arg Ile
 195 200 205
 Cys Phe Val Ala Gly Ala Thr Leu Leu Ile Ala Gly Thr Pro Gly Ile
 210 215 220
 Ile Gly Ser Val Trp Tyr Ala Val Asp Val Tyr Val Glu Arg Ser Thr
 225 230 235 240
 Leu Val Leu His Asn Ile Phe Leu Gly Ile Gln Tyr Lys Phe Gly Trp
 245 250 255
 Ser Cys Trp Leu Gly Met Ala Gly Ser Leu Gly Cys Phe Leu Ala Gly
 260 265 270
 Ala Val Leu Thr Cys Cys Leu Tyr Leu Phe Lys Asp Val Gly Pro Glu
 275 280 285
 Lys Thr Ser Leu Ile Pro
 290

<210> 143
 <211> 10
 <212> DNA
 <213> Homo sapiens

<400> 143
 gtgggcacag

<210> 144
 <211> 1851
 <212> DNA

<213> Homo sapiens

<400> 144

ggatatcgtc	gaccaggcgt	ccggaccggg	acagctcgcg	cccccccgag	agctctagcc	60
gtcaggagac	tgcctgggg	cgtttccctg	ggcccccagcc	tgccccgggt	caccctggca	120
tgaggagatg	ggctgttgc	tcctggtccc	gttgcctctg	ctgccccggct	cctacggact	180
gcccttctac	aacggcttct	actactccaa	cagcgcac	gaccagaacc	taggaacacgg	240
tcatggcaaa	gacctcctta	atggagtcaa	gctgggggt	gagacacccg	aggagaccct	300
gttcacccatc	caaggggcca	gtgtgatcct	gccctgcgt	ccgctacgag	ccggccctgg	360
tctcccccgg	gcgtgtgcgt	gtcaaatgtt	ggaagctgtc	ggagaacggg	ccccagaga	420
aggacgtgt	ggtgccatc	gggctgaggc	accgctcctt	tgggactacc	aaggccgcgt	480
gcactggcgc	aggacaaga	gcatgagctc	tcgctggaga	tccagatctc	gtggaggac	540
tatggggctt	accgctgtga	ggtcattgtac	gggctggagg	atgaaaagcgg	tctggggag	600
ctggagctgc	gggggtgtgg	ctttccttac	cagtccccaa	ccgggcgtac	cagttcaact	660
tccacagggg	ccagcaggtc	tgtgcagagc	aggctgcgggt	gttggcctcc	tttgagcagc	720
tcttccgggc	ctggggaggag	ggcctggact	gggtcaacgc	gggctggcty	caggatgcga	780
cggtgcagta	ccccatcatg	ttgccccggc	agccctgcgg	ttggccgggc	ctggcacctg	840
gcgtgcgaag	ctacggcccc	cgccaccggc	gcctgcaccc	ctatgatgt	ttctcgatcg	900
ctactgcct	caagggcggg	gtgtactacc	tggagcaccc	ttgaaacgt	acgctgacag	960
aggcaaggga	ggctgcccag	gaagatgt	ccacgattgc	caaggtggac	agctcttgc	1020
cgcctggaa	ttccatggcc	tggaccgt	cgacgcgtggc	tggctggcag	atggcagcgt	1080
ccgctaccc	gtggttcacc	cgcatectaa	ctgtggggcc	ccagagcctg	gggtccgaag	1140
ctttggcttc	cccgaccggc	agagccgtt	gtacgggtt	tactgtacc	ccagcactag	1200
gacctggggc	cctccccctgc	cgcattccct	cactggctgt	gtatatttatt	agtgggtcg	1260
tttcccttgt	gggttggagc	cattttaact	gtttttatac	ttctcaattt	aaattttctt	1320
taaacattt	tttactattt	tttgtaaaagc	aaacagaacc	caatgcctcc	ctttgctct	1380
ggatgcccc	ctccaggaaat	catgcgttgc	ccccgggtt	ctggagggtt	ccccggccatc	1440
caggctgtc	tccctccctt	aaggagggtt	gtggccagag	ttggccgttgg	cctgtctaga	1500
atgcccggc	gaggctgggc	atggggca	cagtcteccc	ttccccctcag	cctggggaa	1560
gaagagggcc	tcgggggctc	cggagctggg	ctttgggcct	ctctgtccca	cctctacttc	1620
tctgtgaagc	cgctgacccc	agtctgccc	tcgaggggct	agggctggaa	gccaggctca	1680
ggcttccagg	cgaaaagctga	gggaaggaaag	aaactccctc	cccggtcccc	ttccccctctc	1740
ggttccaaag	aatctgttttgc	ttgtcatttgc	tttctctgt	ttccccctgt	ggggaggggc	1800
cctcagggtgt	gtgtacttttgc	gacaataaaat	ggtgctatga	ctgccttcgg	c	1851

<210> 145

<211> 10

<212> DNA

<213> Homo sapiens

<400> 145

cctgccccgc

10

<210> 146

<211> 4111

<212> DNA

<213> Homo sapiens

<400> 146

ctcacagccc	agcacctgcg	gaggggagcgc	tgaccatggc	tccctggcc	gaattgggag	60
atgcccagcc	caacccccat	aagtacctcg	aaggggccgc	aggtcagcag	cccactgccc	120
ctgataaaaag	caaagagacc	aacaaaaata	acactgaggc	acctgttaacc	aagattgaac	180
ttctgcgc	ctactccacg	gctacactga	tagatgagcc	cactgagggt	gatgacc	240
ggaac	cactttag	gactcggg	tcaagtgg	agagagagac	accaaaggga	300
agattcttg	ttttttccaa	gggatggg	gattgat	tttcttcgg	tttcttact	360
ttttctgtgt	ctccctggat	attcttaga	gccc	gtgggtgg	ggaaaaatgg	420
caggacagtt	cttcagcaac	agctctatta	tgtccaaccc	tttgttgggg	ctgggtatcg	480
gggtgtctgt	gaccgtt	gtcagagct	ccagcac	acgtccatc	gttgcagca	540
tggtgtc	ttcattgtc	actgttccgg	ctgc	cattatcatg	ggggccaaca	600
tttggAAC	aatcaccaac	actattgtt	cgctcatgca	ggtgggagat	cggagtgagt	660

tcagaagagc	ttttgcagga	gccactgtcc	atgacttctt	caactggctg	tccctgttgg	720
tgctcttgc	cgtggagg	gccacccatt	acctcgagat	cataacccag	cttatagtgg	780
agagcttcca	cttcaagaat	ggagaagatg	ccccagatct	tctgaaagt	atcaactaagc	840
ccttcacaaa	gctcattgtc	cagctggata	aaaaagttat	cagccaaatt	gcaatgaacg	900
atgaaaaaagc	aaaaaacaag	agtcttgtca	agatgggt	caaaaacttt	accaacaaga	960
cccagattaa	cgtcactgtt	ccctcgactg	ctaactgcac	ctcccccttc	ctctgttgg	1020
cgatggcat	ccaaaactgg	accatgaaga	atgtgaccta	caaggagaac	atcgccaaat	1080
gccagcatat	ctttgtgaat	ttccacctcc	cggatcttc	tgtgggcacc	atcttgc	1140
tactctccct	gctggcctc	tgtgggtgc	tgatcatgat	tgtcaagatc	ctgggctctg	1200
tgctcaaggg	gcaggtcgcc	actgtcatca	agaagaccat	caacactgat	ttcccccttc	1260
cccttgc	gttactggc	tacctggca	tcctcg	ggcaggcatg	accttcatcg	1320
tacagagcag	ctctgttgc	acgtcgcc	tgacccccc	gattggaatc	ggcgtgataa	1380
ccattgagag	ggcttatca	ctcaegctg	gctccaaacat	cgccaccacc	accaccgcca	1440
tcctggccgc	cttagccagc	cctggcaat	cattgaggag	ttcaactccag	atcgccctgt	1500
gcacat	tttcaacatc	tcggcat	tgctgttgc	cccgc	ttcaactegcc	1560
tgcccatecg	catggccaa	gggctggca	acatctgc	caat	tggttgc	1620
tcttctactt	gatcatctc	ttcttc	tcccgtac	ggtgttggc	ctctegctgg	1680
ccggctggc	ggtgcgttgc	gggtgcggg	ttccgcgt	tttcatc	atccgttac	1740
tgtgcctcc	actcctgc	tctcg	cacgcgtc	gccgaa	ctccagaact	1800
gaaacttct	gcccgtgt	atgcgtc	tgaagcc	gatgc	gtctcca	1860
tcacccgctg	ttccagat	cgctgt	gctgt	cg	cgcg	1920
gctgctgt	tggctcccc	aagtgc	gctgc	gag	gacttggagg	1980
aggcgccagg	ggggcaggat	gtccctgtc	aggctc	tgttgc	aacataacca	2040
ttagcagaga	ggctcagggt	gagg	ctcg	aaagacc	tgcacggc	2100
tgtagggac	gccccagatt	gtcagg	ggggat	cttgc	tgcatgc	2160
cctccctccc	acttc	cc	cctcg	aggag	atttgc	2220
tgaaatttgc	gcagtc	cttac	tcc	ttgg	ttgg	2280
gcacttttat	tccaa	ccct	gtc	act	ggc	2340
gtaccta	agaatttag	aat	gaa	cctg	ctc	2400
tgggttggc	atgttgc	at	tttgc	ca	gaa	2460
agggaaagg	tgtat	gag	gtc	at	actat	2520
gctcagg	ggc	act	cc	gt	atc	2580
cctcc	cc	at	tc	ac	at	2640
accacaagg	gtgg	ctt	cc	at	cc	2700
ctc	c	cc	tc	at	tc	2760
tcgggat	gag	cc	tc	act	tc	2820
etcttgc	tcc	taa	cc	gt	tc	2880
gtacat	aa	gag	ag	ca	aa	2940
attcaaaagc	att	gttgc	aag	tct	act	3000
ccctgttgg	tctt	taaa	acgt	tcc	at	3060
ccac	cc	tt	cc	tc	tc	3120
ttacttgc	tg	ca	at	cc	tc	3180
tgaatctc	tt	cc	acat	cc	cc	3240
ctctccatc	ctg	ca	at	tt	cc	3300
gtgaact	at	ttt	gg	tt	cc	3360
ttcc	tt	cc	ac	tc	cc	3420
ctgcccc	ccc	ac	cc	tc	cc	3480
ctag	agg	gg	cc	cc	cc	3540
tctcc	cc	cc	cc	cc	cc	3600
gat	aa	cc	cc	cc	cc	3660
ttttcataa	gtt	at	ttt	cc	cc	3720
gaaatgaggc	agg	ttt	ttt	cc	cc	3780
ctcc	ttt	ttt	cc	cc	cc	3840
gcagg	gg	ttt	cc	cc	cc	3900
cattgattt	ata	aa	ttt	cc	cc	3960
ctcc	ttt	ttt	cc	cc	cc	4020
agcc	cc	cc	cc	cc	cc	4080
aaataaaatc	atc	aa	cc	cc	cc	4111

<211> 689

<212> PRT

<213> Homo sapiens

<400> 147

Met Ala Pro Trp Pro Glu Leu Gly Asp Ala Gln Pro Asn Pro Asp Lys
 1 5 10 15
 Tyr Leu Glu Gly Ala Ala Gly Gln Gln Pro Thr Ala Pro Asp Lys Ser
 20 25 30
 Lys Glu Thr Asn Lys Asn Asn Thr Glu Ala Pro Val Thr Lys Ile Glu
 35 40 45
 Leu Leu Pro Ser Tyr Ser Thr Ala Thr Leu Ile Asp Glu Pro Thr Glu
 50 55 60
 Val Asp Asp Pro Trp Asn Leu Pro Thr Leu Gln Asp Ser Gly Ile Lys
 65 70 75 80
 Trp Ser Glu Arg Asp Thr Lys Gly Lys Ile Leu Cys Phe Phe Gln Gly
 85 90 95
 Ile Gly Arg Leu Ile Leu Leu Gly Phe Leu Tyr Phe Phe Val Cys
 100 105 110
 Ser Leu Asp Ile Leu Ser Ser Ala Phe Gln Leu Val Gly Gly Lys Met
 115 120 125
 Ala Gly Gln Phe Phe Ser Asn Ser Ser Ile Met Ser Asn Pro Leu Leu
 130 135 140
 Gly Leu Val Ile Gly Val Leu Val Thr Val Leu Val Gln Ser Ser Ser
 145 150 155 160
 Thr Ser Thr Ser Ile Val Val Ser Met Val Ser Ser Leu Leu Thr
 165 170 175
 Val Arg' Ala Ala Ile Pro Ile Ile Met Gly Ala Asn Ile Gly Thr Ser
 180 185 190
 Ile Thr Asn Thr Ile Val Ala Leu Met Gln Val Gly Asp Arg Ser Glu
 195 200 205
 Phe Arg Arg Ala Phe Ala Gly Ala Thr Val His Asp Phe Phe Asn Trp
 210 215 220
 Leu Ser Leu Leu Val Leu Leu Pro Val Glu Val Ala Thr His Tyr Leu
 225 230 235 240
 Glu Ile Ile Thr Gln Leu Ile Val Glu Ser Phe His Phe Lys Asn Gly
 245 250 255
 Glu Asp Ala Pro Asp Leu Leu Lys Val Ile Thr Lys Pro Phe Thr Lys
 260 265 270
 Leu Ile Val Gln Leu Asp Lys Lys Val Ile Ser Gln Ile Ala Met Asn
 275 280 285
 Asp Glu Lys Ala Lys Asn Lys Ser Leu Val Lys Ile Trp Cys Lys Thr
 290 295 300
 Phe Thr Asn Lys Thr Gln Ile Asn Val Thr Val Pro Ser Thr Ala Asn
 305 310 315 320
 Cys Thr Ser Pro Ser Leu Cys Trp Thr Asp Gly Ile Gln Asn Trp Thr
 325 330 335
 Met Lys Asn Val Thr Tyr Lys Glu Asn Ile Ala Lys Cys Gln His Ile
 340 345 350
 Phe Val Asn Phe His Leu Pro Asp Leu Ala Val Gly Thr Ile Leu Leu
 355 360 365
 Ile Leu Ser Leu Leu Val Leu Cys Gly Cys Leu Ile Met Ile Val Lys
 370 375 380
 Ile Leu Gly Ser Val Leu Lys Gly Gln Val Ala Thr Val Ile Lys Lys
 385 390 395 400
 Thr Ile Asn Thr Asp Phe Pro Phe Pro Ala Trp Leu Thr Gly Tyr
 405 410 415
 Leu Ala Ile Leu Val Gly Ala Gly Met Thr Phe Ile Val Gln Ser Ser
 420 425 430

Ser Val Phe Thr Ser Ala Leu Thr Pro Leu Ile Gly Ile Gly Val Ile
435 440 445
Thr Ile Glu Arg Ala Tyr Pro Leu Thr Leu Gly Ser Asn Ile Gly Thr
450 455 460
Thr Thr Thr Ala Ile Leu Ala Ala Leu Ala Ser Pro Gly Asn Ala Leu
465 470 475 480
Arg Ser Ser Leu Gln Ile Ala Leu Cys His Phe Phe Asn Ile Ser
485 490 495
Gly Ile Leu Leu Trp Tyr Pro Ile Pro Phe Thr Arg Leu Pro Ile Arg
500 505 510
Met Ala Lys Gly Leu Gly Asn Ile Ser Ala Lys Tyr Arg Trp Phe Ala
515 520 525
Val Phe Tyr Leu Ile Ile Phe Phe Phe Leu Ile Pro Leu Thr Val Phe
530 535 540
Gly Leu Ser Leu Ala Gly Trp Arg Val Leu Val Gly Val Gly Val Pro
545 550 555 560
Val Val Phe Ile Ile Ile Leu Val Leu Cys Leu Arg Leu Leu Gln Ser
565 570 575
Arg Cys Pro Arg Val Leu Pro Lys Lys Leu Gln Asn Trp Asn Phe Leu
580 585 590
Pro Leu Trp Met Arg Ser Leu Lys Pro Trp Asp Ala Val Val Ser Lys
595 600 605
Phe Thr Gly Cys Phe Gln Met Arg Cys Cys Cys Cys Arg Val Cys
610 615 620
Cys Arg Ala Cys Cys Leu Leu Cys Gly Cys Pro Lys Cys Cys Arg Cys
625 630 635 640
Ser Lys Cys Cys Glu Asp Leu Glu Glu Ala Gln Glu Gly Gln Asp Val
645 650 655
Pro Val Lys Ala Pro Glu Thr Phe Asp Asn Ile Thr Ile Ser Arg Glu
660 665 670
Ala Gln Gly Glu Val Pro Ala Ser Asp Ser Lys Thr Glu Cys Thr Ala
675 680 685
Leu