Разработка и встраивание планировщика в ОС Linux

Студент: Степанов Даниил

Санкт-Петербургский политехнический университет Петра Великого

31 марта 2017 г.

Планирование

Дисциплина планирования должна быть:

- справедливой
- обеспечивать максимальную пропускную способность системы
- приемлемые времена ответа для максимального количества пользователей, работающих в интерактивном режиме
- предсказуемость
- минимальные накладные расходы
- ...

Факторы, учитываемые при планировании

Для реализации перечисленных целей механизмы планирования должны учитывать следующие факторы:

- лимитируется ли процесс вводом-выводом или ЦП
- является ли процесс пакетным или диалоговым
- обязательно ли малое время ответа
- приоритет каждого процесса
- частоту переключений с низкоприоритетных процессов, ожидающих освобождения уже занятых ресурсов
- длительность периода времени, в течение которого ожидает каждый процесс
- суммарное время работы каждого процесса и оценочное время, необходимое каждому процессу для завершения

Переключение

Планирование без переключения предусматривает, что после предоставления ресурсов ЦП какому-либо процессу, отобрать ЦП у этого процесса нельзя.

Если же ресурсы ЦП можно отобрать, то говорят о планировании с переключением.

Приоритеты

- Система может присваивать процессам приоритеты автоматически или они могут назначаться извне
- Приоритеты могут быть заслуженными или купленными. Они могут быть статическими или динамическими
- Они могут назначаться по какому-то рациональному принципу или присваиваться в ситуациях, когда системе просто необходимо каким-либо образом различать процессы

Планировщик O(1)

Completely Fair Scheduler

Earliest deadline first


```
user@debian:~$ uname —r
3.16.0 - 4 - 586
user@debian:~$ dmesg | grep scheduler
     0.642934] io scheduler noop registered
    0.642937] io scheduler deadline registered
     0.642959] io scheduler cfq registered (default)
user@debian:~$ cat /sys/block/sda/queue/scheduler
noop deadline [cfg]
root@debian:echo deadline >/sys/block/sda/queue/scheduler
user@debian:~$ cat /sys/block/sda/queue/scheduler
noop [deadline] cfg
```

Встраивание своего планировщика

- /usr/src/linux-*/kernel/sched.c
- sudo apt-get install linux-source-2.6.24 kernel-package libncurses5-dev fakeroot
- tar xvf linux-source-2.6.24.tar
- cp /boot/config-'uname -r' /usr/src/linux/.config
- fakeroot make-kpkg –initrd –append-to-version=-custom kernel_image kernel headers
- dpkg -i linux-image-2.6.24.3-custom _ 2.6.24.3-custom-10.00.Custom _ i386.deb

В текущей версии ядра команды не изменились

Основные функции

Имя функции	Описание функции
schedule	Главная функция планировщика. Планирует выполнение задачи с наивысшим приоритетом.
load_balance	Проверяет, не требуется ли перераспределение нагрузки и, в случае необходимости, предпринимает попытку переноса задач.
effective_prio	Возвращает эффективный приоритет задачи (рассчитанный на основе статического приоритета задачи и всех "наград" и "штрафов").
recalc_task_prio	Вычисляет "награду" или "штраф" для указанной задачи на основе времени простоя.
source_load	Вычисляет консервативную оценку загрузки ЦП-источника (с которого может быть перенесена задача).
target_load	Вычисляет либеральную оценку загрузки целевого ЦП (на который может быть потенциально перенесена задача).
migration_thread	Высокоприоритетный системный поток, осуществляющий миграцию задач между ЦП.

Задания на курсовую работу:

- Разработать планировщик O(1) и встроить его в ядро
- На собственных тестах сравнить производительность встроенных и разработанного планировщиков