### A Groupoidal Natural Model of HoTT in Lean 4

Sina Hazratpour, Joseph Hua

August 23, 2024

#### 0.1 Natural Models

#### 0.1.1 Types

Assume an inaccessible cardinal  $\lambda$ . Write **Set** for the category of all sets. Say that a set A is  $\lambda$ -small if  $|A| < \lambda$ . Write **Set** $_{\lambda}$  for the full subcategory of **Set** spanned by  $\lambda$ -small sets.

Let  $\mathbb C$  be a small category, i.e. a category whose class of objects is a set and whose hom-classes are sets.

We write  $\mathbf{Psh}(\mathbb{C})$  for the category of presheaves over  $\mathbb{C}$ ,

$$\mathbf{Psh}(\mathbb{C}) =_{\mathrm{def}} [\mathbb{C}^{\mathrm{op}}, \mathbf{Set}]$$

The Natural Model associated to a presentable map  $tp \colon Tm \to Ty$  consists of

- contexts as objects  $\Gamma, \Delta, ... \in \mathbb{C}$ ,
- a type in context  $y(\Gamma)$  as a map  $A: y(\Gamma) \to \mathsf{Ty}$ ,
- a term of type A in context  $\Gamma$  as a map  $a: y(\Gamma) \to Tm$  such that



commutes,

• an operation called "context extension" which given a context  $\Gamma$  and a type  $A\colon \mathsf{y}(\Gamma)\to \mathsf{T}\mathsf{y}$  produces a context  $\Gamma\cdot A$  which fits into a pullback diagram below.

$$\begin{array}{cccc} \mathbf{y}(\Gamma.A) & & & \mathsf{Tm} \\ & & & & \downarrow \\ & & & \downarrow \\ \mathbf{y}(\Gamma) & & & & \mathsf{Ty} \end{array}$$

**Remark.** Sometimes, we first construct a presheaf X over  $\Gamma$  and observe that it can be classified by a map into Ty. We write

$$\begin{matrix} X & \longrightarrow \mathsf{Tm} \\ \downarrow & & \downarrow \\ \mathsf{y}(\Gamma) & \xrightarrow{r_X} \mathsf{Ty} \end{matrix}$$

to express this situation, i.e.  $X \cong y(\Gamma \cdot \lceil X \rceil)$ .

#### 0.1.2 A type of small types

We now wish to formulate a condition that allows us to have a type of small types, written U, not just *judgement* expressing that something is a type. With this notation, the judgements that we would like to derive is

$$U : \mathsf{Ty} \qquad \frac{a \colon \mathsf{U}}{\mathsf{El}(a) \colon \mathsf{Ty}}$$

(A sufficient and natural condition for this seems to be that we now have another inaccessible cardinal  $\kappa$ , with  $\kappa < \lambda$ .)

In the Natural Model, a universe U is postulated by a map

$$\pi \colon \mathsf{E} \to \mathsf{U}$$

In the Natural Model:

• There is a pullback diagram of the form

$$\begin{array}{ccc}
\mathsf{U} & \longrightarrow \mathsf{Tm} \\
\downarrow & & \downarrow \\
1 & \longrightarrow \mathsf{Ty}
\end{array}$$

• There is an inclusion of U into Ty

$$\mathsf{EI} \colon \mathsf{U} \rightarrowtail \mathsf{Ty}$$

•  $\pi: \mathsf{E} \to \mathsf{U}$  is obtained as pullback of  $\mathsf{tp}$ ; There is a pullback diagram

$$E \rightarrowtail \mathsf{Tm} \downarrow \downarrow \downarrow \\ \mathsf{U} \rightarrowtail \mathsf{Ty}$$

With the notation above, we get



Both squares above are pullback squares.

## 0.1.3 The Universe in Embedded Type Theory (HoTT0) and the relationship to the Natural Model

### 0.2 The Groupoid Model

In this section we construct a natural model in **Psh(grpd)** the presheaf category indexed by the category **grpd** of (small) groupoids. We will build the classifier for display maps in the style of Hofmann and Streicher [HS98] and Awodey [Awo23]. To interpret the type constructors, we will make use of the weak factorization system on **grpd** - which comes from restricting the "classical Quillen model structure" on **cat** [Joy] to **grpd**.

#### 0.2.1 Classifying display maps

Notation. We will have two universe sizes - one small and one large. We denote the category of small sets as **set** and the large sets as **Set** (in the previous sections this would have been  $\mathbf{Set}_{\lambda}$  and  $\mathbf{Set}$  respectively). We denote the category of small categories as **cat** and the large categories as **Cat**. We denote the category of small groupoids as  $\mathbf{grpd}$ .

We are primarily working in the category of large presheaves indexed by small groupoids, which we will denote by

$$Psh(grpd) = [grpd^{op}, Set]$$

In this section, Tm and Ty and so on will refer to the natural model semantics in this specific model.

**Definition 0.2.1** (Pointed). We will take the category of pointed small categories  $\mathbf{cat}_{\bullet}$  to have objects as pairs  $(\mathbb{C} \in \mathbf{cat}, c \in \mathbb{C})$  and morphisms as pairs

$$(F:\mathbb{C}_1 \to \mathbb{C}_0, \phi: Fc_1 \to c_0) \colon (\mathbb{C}_1, c_1) \to (\mathbb{C}_0, c_0)$$

Then the category of pointed small groupoids  $\mathbf{grpd}_{\bullet}$  will be the full subcategory of objects  $(\Gamma, c)$  with  $\Gamma$  a groupoid.

**Definition 0.2.2** (The display map classifier). We would like to define a natural transformation in  $\mathbf{Psh}(\mathbf{grpd})$ 

$$\mathsf{tp} \colon \mathsf{Tm} \to \mathsf{Ty}$$

with representable fibers.

Consider the functor that forgets the point

$$U \colon \mathbf{grpd}_{\bullet} \to \mathbf{grpd}$$
 in **Cat**.

If we apply the Yoneda embedding  $y \colon \mathbf{Cat} \to \mathbf{Psh}(\mathbf{Cat})$  to U we obtain

$$U \circ : [-, \mathbf{grpd}_{\bullet}] \to [-, \mathbf{grpd}]$$
 in  $\mathbf{Psh}(\mathbf{Cat})$ .

Since any small groupoid is also a large category  $\mathbf{grpd} \hookrightarrow \mathbf{Cat}$ , we can restrict  $\mathbf{Cat}$  indexed presheaves to be  $\mathbf{grpd}$  indexed presheaves. We define  $\mathsf{tp} \colon \mathsf{Tm} \to \mathsf{Ty}$  as the image of  $U \circ \mathsf{under}$  this restriction.

$$\begin{array}{ccc} \mathbf{Cat} & \stackrel{\mathsf{y}}{\longrightarrow} \mathbf{Psh}(\mathbf{Cat}) & \stackrel{\mathsf{res}}{\longrightarrow} \mathbf{Psh}(\mathbf{grpd}) \\ \\ \mathbf{grpd} & \longmapsto [-,\mathbf{grpd}] & \longmapsto \mathsf{Ty} \end{array}$$

Note that Tm and Ty are not representable in Psh(grpd).

 $Remark\ 0.2.3.$  By Yoneda we can identify maps with representable domain into the type classifier

$$A: \mathsf{y}\Gamma \to \mathsf{T}\mathsf{y} \qquad \text{in} \quad \mathbf{Psh}(\mathbf{grpd})$$

with functors

$$A:\Gamma \to \mathbf{grpd}$$
 in **Cat**

**Definition 0.2.4** (Grothendieck construction). From  $\mathbb C$  a small category and  $F: \mathbb C \to \mathbf{cat}$  a functor, we construct a small category  $\int F$ . For any c in  $\mathbb C$  we refer to Fc as the fiber over c. The objects of  $\int F$  consist of pairs  $(c \in \mathbb C, x \in Fc)$ , and morphisms between (c,x) and (d,y) are pairs  $(f:c\to d,\phi:Ffx\to y)$ . This makes the following pullback in  $\mathbf{Cat}$ 

$$(c,x)\,\longmapsto\,(Fc,x)$$

$$\begin{array}{ccccc} (c,x) & & \int F & \longrightarrow \mathbf{cat}_{\bullet} & & (C,c) \\ & \downarrow & & \downarrow & & \downarrow \\ c & & \mathbb{C} & \longrightarrow_{F} & \mathbf{cat} & & C \\ \end{array}$$

**Definition 0.2.5** (Grothendieck construction for groupoids). Let  $\Gamma$  be a groupoid and  $A \colon \Gamma \to \mathbf{grpd}$  a functor, we can compose F with the inclusion  $i \colon \mathbf{grpd} \hookrightarrow \mathbf{Cat}$  and form the Grothendieck construction which we denote as

$$\Gamma \cdot A := \int i \circ A \qquad \operatorname{disp}_A \colon \Gamma \cdot A \to \Gamma$$

This is also a small groupoid since the underlying morphisms are pairs of morphisms from groupoids  $\Gamma$  and Ax for  $x \in \Gamma$ . Furthermore the pullback factors through (pointed) groupoids.

$$egin{array}{cccc} \Gamma \cdot A & \longrightarrow \mathbf{grpd}_{ullet} & \longrightarrow \mathbf{cat}_{ullet} \ \operatorname{disp}_A & & & \downarrow & & \downarrow \ \Gamma & \longrightarrow_A & \mathbf{grpd} & \longrightarrow \mathbf{cat} \end{array}$$

Corollary 0.2.6 (The display map classifier is presentable). For any small groupoid  $\Gamma$  and  $A: y\Gamma \to Ty$ , the pullback of tp along A can be given by the representable map  $ydisp_A$ .

$$\begin{array}{ccc} \mathsf{y}\Gamma \cdot A & \longrightarrow & \mathsf{Tm} \\ \mathsf{ydisp}_A & & & \mathsf{tp} \\ & \mathsf{y}\Gamma & \longrightarrow_A & \mathsf{Ty} \end{array}$$

*Proof.* Consider the pullback in Cat

$$\begin{array}{ccc} \Gamma \cdot A & \longrightarrow \mathbf{grpd}_{\bullet} \\ \downarrow & & \downarrow \\ \Gamma & \longrightarrow \mathbf{grpd} \end{array}$$

We send this square along res o y in the following

$$\begin{array}{ccc} \mathbf{Cat} & \xrightarrow{y} & \mathbf{Psh}(\mathbf{Cat}) \\ & & & \downarrow_{\mathsf{res}} \\ \mathbf{grpd} & \xrightarrow{y} & \mathbf{Psh}(\mathbf{grpd}) \end{array}$$

The Yoneda embedding  $y : \mathbf{Cat} \to \mathbf{Psh}(\mathbf{Cat})$  preserves pullbacks, as does res since it is a right adjoint (with left Kan extension  $\iota_1 \dashv \mathsf{res}$ ,).

#### 0.2.2 Groupoid fibrations

**Definition 0.2.7** (Fibration). Let  $p:\mathbb{C}_1\to\mathbb{C}_0$  be a functor. We say p is a split Grothendieck fibration if we have a dependent function lift a f satisfying the following: for any object a in  $\mathbb{C}_1$  and morphism f:p  $a\to y$  in the base  $\mathbb{C}_0$  we have lift a  $f:a\to b$  in  $\mathbb{C}_1$  such that p(lift af)=f and moreover lift a  $g\circ f=\text{lift }b$   $g\circ \text{lift }af$ 

$$\begin{array}{ccc}
a & \xrightarrow{\text{lift } a f} & b \\
\downarrow & & \uparrow & \downarrow \\
x & \xrightarrow{f} & y
\end{array}$$

In particular, we are intereseted in split Grothendieck fibrations of groupoids, which are the same as *isofibrations* (replace all the morphisms with isomorphisms in the definition).

Unless specified otherwise, by a *fibration* we will mean a split Grothendieck fibration of groupoids. Let us denote the category of fibrations over a groupoid  $\Gamma$  as  $\mathsf{Fib}_{\Gamma}$ , which is a full subcategory of the slice  $\mathsf{grpd}/\Gamma$ . We will decorate an arrow with  $\twoheadrightarrow$  to indicate it is a fibration.

Note that  $\operatorname{\sf disp}_A\colon \Gamma\cdot A\to \Gamma$  is a fibration, since for any  $(x\in\Gamma, a\in A\,x)$  and  $f\colon x\to y$  in  $\Gamma$  we have a morphism  $(f,\operatorname{\sf id}_{A\,f\,a})\colon (x,a)\to (y,A\,f\,a)$  lifting f. Furthermore

**Proposition 0.2.8.** There is an adjoint equivalence

$$[\Gamma,\mathbf{grpd}] \xrightarrow[\text{fiber}]{\text{disp}} \operatorname{Fib}_{\Gamma}$$

where for each fibration  $\delta: \Delta \to \Gamma$  and each object  $x \in \Gamma$ 

$$fiber_{\delta} x = full subcategory \{ a \in \Delta \mid \delta a = x \}$$

It follows that all fibrations are pullbacks of the classifier  $U: \mathbf{grpd}_{\bullet} \to \mathbf{grpd}$ , when viewed as morphisms in  $\mathbf{Cat}$ .

Pullback of fibrations along groupoid functors is not strictly coherent, in the sense that for  $\tau:\Xi\to\Delta$  and  $\sigma:\Delta\to\Gamma$  and a fibration  $p\in\mathsf{Fib}_\Gamma$  we only have an isomorphism

$$\tau^*\sigma^*p \cong (\sigma \circ \tau)^*p$$

rather than equality.

In order to interpret reindexing/substitution strictly, it is convenient to work with classifiers  $[\Gamma, \mathbf{grpd}]$  instead of fibrations.

**Proposition 0.2.9** (Strictly coherent pullback). Let  $\sigma: \Delta \to \Gamma$  be a functor between groupoids. Since display maps are pullbacks of the classifier  $U: \mathbf{grpd}_{\bullet} \to \mathbf{grpd}$  we have the pasting diagram

This gives us a functor  $\circ \sigma : [\Gamma, \mathbf{grpd}] \to [\Delta, \mathbf{grpd}]$  which is our strict version of pullback.

Corollary 0.2.10 (Fibrations are stable under pullback).

$$\begin{split} [\Gamma, \mathbf{grpd}] &\longleftarrow^{\mathsf{fiber}} & \mathsf{Fib}_{\Gamma} \\ & \circ \sigma \!\!\!\! \downarrow \\ [\Delta, \mathbf{grpd}] &\longleftarrow^{\mathsf{disp}} & \mathsf{Fib}_{\Delta} \end{split}$$

We can deduce a corresponding fact about fibrations: since fibrations are closed under isomorphism, and since any pullback in **grpd** of a fibration p is isomorphic to the display map  $\operatorname{disp}_{\operatorname{fiberpo}\sigma}$ , any pullback of a fibration is a fibration.

A strict interpretation of type theory would require  $\Sigma$  and  $\Pi$ -formers to be stable under pullback (Beck-Chevalley). Thus we again define these as operations on classifiers  $[\Gamma, \mathbf{grpd}]$ .

**Definition 0.2.11** ( $\Sigma$ -former operation). Then given  $A:\Gamma\to\operatorname{\mathbf{grpd}}$  and  $B:\Gamma\cdot A\to\operatorname{\mathbf{grpd}}$  we define  $\Sigma_AB:\Gamma\to\operatorname{\mathbf{grpd}}$  such that  $\Sigma_AB$  acts on objects by forming fiberwise Grothendieck constructions

$$\Sigma_A B(x) := A(x) \cdot B \circ x_A$$

where  $x_A:A(x)\to\Gamma\cdot A$  takes  $f:a_0\to a_1$  to  $(\mathsf{id}_x,f):(x,a_0)\to(x,a_1)$ 

 $\Sigma_A B$  acts on morphism  $f: x \to y$  in  $\Gamma$  and  $(a \in A(x), b \in B(x,a))$  by

$$\Sigma_A B f(a,b) := (A f a, B(f, \mathsf{id}_{A f a}) b)$$

and for morphism  $(\alpha: a_0 \to a_1 \in A(x), \beta: B(\mathsf{id}_x, \alpha) \, b_0 \to b_1 \in B(x, a_1))$  in  $\Sigma_A B x$ 

$$\Sigma_A B f(\alpha, \beta) := (A f \alpha, B(f, id_{A f a_1}) \beta)$$

Let us also define the natural transformation  $fst: \Sigma_A B \to A$  by

$$\mathsf{fst}_x:(a,b)\mapsto a$$

**Proposition 0.2.12** (Fibrations are closed under composition). The corresponding fact about fibrations is that the composition of two fibrations is a fibration.

$$\Xi$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \Delta$$
 $\Delta \longrightarrow \Gamma$ 

We can compare the two fibrations

$$\mathsf{disp}_B \circ \mathsf{disp}_A \qquad \text{and} \qquad \mathsf{disp}_{\Sigma_A(B)}$$

An object in the composition would look like ((x,a),b) for  $x \in \Gamma$ ,  $a \in A(x)$  and  $b \in B(x,a)$ , whereas an object in  $\Gamma \cdot \Sigma_A(B)$  would instead be (x,(a,b)).

**Proposition 0.2.13** (Strict Beck-Chevalley for  $\Sigma$ ). Let  $\sigma : \Delta \to \Gamma$ ,  $A : \Gamma \to \operatorname{\mathbf{grpd}}$  and  $B : \Gamma \cdot A \to \operatorname{\mathbf{grpd}}$ . Then

$$(\Sigma_A B) \circ \sigma = \Sigma_{A \circ \sigma} (B \circ \sigma_A)$$

where  $\sigma_A$  is uniquely determined by the pullback in

*Proof.* By checking pointwise at  $x \in \Delta$ , this boils down to showing

$$A(\sigma x) \xrightarrow[]{(\sigma x)_A} \Delta \cdot A\sigma \xrightarrow[]{\sigma_A} \Gamma.A \xrightarrow[]{B} \mathbf{grpd}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

 $(\sigma x)_A = \sigma_A \circ x_{A \circ \sigma} : A(\sigma x) \to \Gamma \cdot A$ 

which holds because of the universal property of pullback.

**Definition 0.2.14** ( $\Pi$ -former operation). Given  $A:\Gamma\to\operatorname{\mathbf{grpd}}$  and  $B:\Gamma\cdot A\to\operatorname{\mathbf{grpd}}$  we will define  $\Pi_AB:\Gamma\to\operatorname{\mathbf{grpd}}$  such that for any  $C:\Gamma\to\operatorname{\mathbf{grpd}}$  we have an isomorphism

$$[\Gamma \cdot A, \mathbf{grpd}](\mathsf{disp}_A \circ C, B) \cong [\Gamma, \mathbf{grpd}](C, \Pi_A B)$$

natural in both B and C.

*Proof.*  $\Pi_A B$  acts on objects by taking fiberwise sections

$$\Pi_A B(x) := \{ s \in [A(x), \Sigma_A B(x)] \mid \mathsf{fst}_x \circ s = \mathsf{id}_{A(x)} \}$$

Where we have taken the full subcategory of the functor category  $[A(x), \Sigma_A B(x)]$ . This is a groupoid since any natural transformation of functors into groupoids are natural isomorphisms.

 $\Pi_A B$  acts on morphisms via conjugation



Note that conjugation is functorial and invertible.

Corollary 0.2.15 (Fibrations are closed under pushforward). Stated in terms of fibrations, we have

$$\begin{array}{ccc}
\Xi & \Gamma_! \sigma_* \tau \\
\downarrow^{\tau} & \downarrow^{\sigma_* \tau} \\
\Delta & \xrightarrow{\sigma} & \Gamma
\end{array}$$

with the universal property of pushforward

$$\mathsf{Fib}_{\Delta}(\sigma^*\rho,\tau) \cong \mathsf{Fib}_{\Gamma}(\rho,\sigma_*\tau)$$

natural in both  $\tau$  and  $\rho$ .

**Proposition 0.2.16** (Strict Beck-Chevalley for  $\Pi$ ). Let  $\sigma : \Delta \to \Gamma$ ,  $A : \Gamma \to \operatorname{\mathbf{grpd}}$  and  $B : \Gamma \cdot A \to \operatorname{\mathbf{grpd}}$ . Then

$$(\Pi_A B) \circ \sigma = \Pi_{A \circ \sigma} (B \circ \sigma_A)$$

where  $\sigma_A$  is uniquely determined by the pullback in

*Proof.* By checking pointwise, this boils down to Beck-Chevalley for  $\Sigma$ .

**Proposition 0.2.17** (All objects are fibrant). Let  $\bullet$  denote the terminal groupoid, namely that with a single object and morphism. Then the unique map  $\Gamma \to \bullet$  is a fibration.

**Definition 0.2.18** (Interval). Let the interval groupoid  $\mathbb{I}$  be the small groupoid with two objects and a single non-identity isomorphism. There are two distinct morphisms  $\delta_0, \delta_1 : \bullet \to \mathbb{I}$  and a natural isomorphism  $i : \delta_0 \Rightarrow \delta_1$ . Note that  $\delta_0$  and  $\delta_1$  both form adjoint equivalences with the unique map  $! : \mathbb{I} \to \bullet$ .

Denote by  $\bullet + \bullet$  the small groupoid with two objects and only identity morphisms. Then let  $\partial : \bullet + \bullet \to \mathbb{I}$  be the unique map factoring  $\delta_0$  and  $\delta_1$ .



**Proposition 0.2.19** (Path object fibration). Let  $\Gamma$  be a small groupoid. Recall that **grpd** is Cartesian closed, so we can take the image of the above diagram under the functor  $\Gamma^-$ .



Then the indicated morphisms are fibrations, and  $\Gamma^{\delta_0}$ ,  $\Gamma^{\delta_1}$  form adjoint equivalences with  $\Gamma^!:\Gamma\to\Gamma^{\mathbb{I}}$ .

#### 0.2.3 Polynomial endofunctors

**Definition 0.2.20** (Polynomial endofunctor on a morphism in an locally Cartesian closed category). Let  $\mathbb C$  be a locally Cartesian closed category (we will take presheaves on small groupoids). This means for each morphism  $t:B\to A$  we have an adjoint triple

$$\begin{array}{c|c} \mathbb{C}/B \\ t_! \left( \begin{array}{c} \uparrow \\ + \ t^* \end{array} \right) t_* \\ \mathbb{C}/A \end{array}$$

where  $t^*$  is pullback, and  $t_!$  is composition with t.

Let  $t: B \to A$  be a morphism in  $\mathbb{C}$ . Then define  $\mathsf{Poly}_t: \mathbb{C} \to \mathbb{C}$  be the composition

$$\mathsf{Poly}_t := A_! \circ t_* \circ B^* \qquad \qquad \mathbb{C} \xrightarrow{B^*} \mathbb{C}/B \xrightarrow{t_*} \mathbb{C}/A \xrightarrow{A_!} \mathbb{C}$$

**Proposition 0.2.21.** The data of a map into the polynomial applied to an object in  $\mathbb C$ 

$$X \stackrel{\phi}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathsf{Poly}_t Y$$

corresponds to



Applying the adjunction  $A_! \dashv A^*$ , this corresponds to

$$\alpha: X \to A$$
 and 
$$B_! t^* \alpha \xrightarrow[t^* \alpha]{\tilde{\phi}} B \times Y$$

Applying the adjunction  $t^* \dashv t_*$ , this corresponds to

$$\alpha: X \to A \qquad and \qquad B_! t^* \alpha \xrightarrow{\beta} Y$$

**Proposition 0.2.22** ( $\mathsf{Poly}_\mathsf{tp}\mathsf{Ty}$  classifies dependent types). Specialized to  $\mathsf{tp}:\mathsf{Tm}\to \mathsf{Ty}$  in  $\mathsf{Psh}(\mathsf{grpd})$ , the previous proposition says that a map from a representable  $\Gamma\to \mathsf{Poly}_\mathsf{tp}\mathsf{Ty}$  corresponds to the data of

$$A:\Gamma\to \mathsf{Ty} \qquad and \qquad B:\Gamma\cdot A\to \mathsf{Ty}$$

which by Yoneda corresponds to the data in Cat of

$$A:\Gamma \to \mathbf{grpd}$$
 and  $B:\Gamma \cdot A \to \mathbf{grpd}$ 

Furthermore, if  $\sigma: \Delta \to \Gamma$  were a representable map, then we have a naturality square

#### 0.2.4 Pi and Sigma structure

**Lemma 0.2.23.** Let  $\mathbb{C}$  be a large category, and let  $[-,\mathbb{C}] \in \mathbf{Psh}(\mathbf{grpd})$  be the restriction of the Yoneda embedding  $y : \mathbf{Cat} \to \mathbf{Psh}(\mathbf{Cat})$ . Let F be an operation that takes a groupoid  $\Gamma$ , a functor  $A : \Gamma \to \mathbf{grpd}$  and  $B : \Gamma \cdot A \to \mathbb{C}$  and returns a functor  $F_AB : \Gamma \to \mathbb{C}$ .

Then 
$$\tilde{F}: \mathsf{Poly_{tp}}[-,\mathbb{C}] \to [-,\mathbb{C}]$$

$$\tilde{F}_{\Gamma}(A,B) = F_{\Lambda}B$$

 $\ defines\ a\ natural\ transformation\ if\ and\ only\ if\ F\ satisfies\ the\ strict\ Beck-Chevalley\ condition$ 

$$(F_AB)\circ\sigma=F_{A\circ\sigma}(B\circ\sigma_A)$$

where  $\sigma_A$  is given by

$$\begin{array}{ccccc} \Delta \cdot A \circ \sigma & \xrightarrow{\sigma_A} & \Gamma \cdot A & \longrightarrow \mathbf{grpd}_{\bullet} \\ & \downarrow & & \downarrow & & \downarrow \\ & \Delta & \xrightarrow{\sigma} & \Gamma & \xrightarrow{A} & \mathbf{grpd} \end{array}$$

*Proof.* Using proposition 0.2.22



**Definition 0.2.24** (Interpretation of  $\Pi$  types). We define the natural transformation  $\Pi: \mathsf{Poly}_{\mathsf{tp}}\mathsf{Ty} \to \mathsf{Ty}$  as that which is induced (lemma 0.2.23) by the  $\Pi$ -former operation (definition 0.2.14).

Then we define the natural transformation  $\lambda: \mathsf{Poly}_\mathsf{tp}\mathsf{Ty} \to \mathsf{Ty}$  as the natural transformation induced by the following operation: given  $A: \Gamma \to \mathsf{grpd}$  and  $\beta: \Gamma \cdot A \to \mathsf{grpd}_\bullet$ ,  $\lambda_A \beta: \Gamma \to \mathsf{grpd}_\bullet$  will be the functor such that on objects  $x \in \Gamma$ 

$$\lambda_A \beta(x) := (\Pi_A B(x), a \mapsto (a, b(x, a)))$$

where  $B := U \circ \beta : \Gamma \cdot A \to \mathbf{grpd}$  and b(x, a) is the point in  $\beta(x, a)$ . On morphisms  $f : x \to y$  in  $\Gamma$  we have

$$\lambda_{A}\beta\left(f\right):=\left(\Pi_{A}B\left(f\right),\eta\right)$$

where  $\eta:\Pi_AB\,f\,s_x\to s_y$  is a natural isomorphism between functors  $A_y\to \Sigma_ABy$  given on objects  $a\in A_y$  by

$$\eta_a := (\mathsf{id}_a, \mathsf{id}_{b(y,a)})$$

These combine to give us a pullback square

*Proof.* We should check that the  $\lambda$  operation satisfied Beck-Chevalley. This follows from the  $\Pi$  satisfying Beck-Chevalley and extensionality results for functors.

The square commutes and is a pullback if and only it pointwise commutes and pointwise gives pullbacks, i.e. for each groupoid  $\Gamma$ 

$$\begin{array}{c} \operatorname{\mathsf{Poly}_{\mathsf{tp}}\mathsf{Tm}}\,\Gamma \xrightarrow{\lambda_{\Gamma}} [\Gamma,\operatorname{\mathbf{grpd}_{\bullet}}] \\ \operatorname{\mathsf{Poly}_{\mathsf{tp}}\mathsf{tp}_{\Gamma}} \downarrow & \downarrow_{U^{\circ}-} \\ \operatorname{\mathsf{Poly}_{\mathsf{tp}}}\mathsf{Ty}\,\Gamma \xrightarrow{\Pi_{\Gamma}} [\Gamma,\operatorname{\mathbf{grpd}}] \end{array}$$

by proposition 0.2.22 this holds if and only if

$$\begin{array}{cccc} \Sigma_{A \in [\Gamma, \mathbf{grpd}]}[\Gamma.A, \mathbf{grpd}_{\bullet}] & \xrightarrow{\lambda} & [\Gamma, \mathbf{grpd}_{\bullet}] \\ & & \downarrow U \circ - \\ & \Sigma_{A \in [\Gamma, \mathbf{grpd}]}[\Gamma.A, \mathbf{grpd}] & \xrightarrow{\Pi} & [\Gamma, \mathbf{grpd}] \end{array}$$

which follows from the definitions of  $\Pi$  and  $\lambda$ .

**Lemma 0.2.25.** Use R to denote the fiber product

$$\begin{array}{c} R \xrightarrow{\rho_{\mathsf{Poly}}} \mathsf{Poly}_{\mathsf{tp}} \mathsf{Ty} \\ \downarrow^{\mathsf{tp}^*\mathsf{tp}_*\mathsf{Tm}^*\mathsf{Ty} = \rho_{\mathsf{Tm}}} & \downarrow^{\mathsf{tp}_*\mathsf{Tm}^*\mathsf{Ty}} \\ \mathsf{Tm} \xrightarrow{\mathsf{tp}} \mathsf{Ty} \end{array}$$

By the universal property of pullbacks, The data of a map from a respresentable  $\varepsilon:\Gamma\to R$  corresponds to the data of  $\alpha:\Gamma\to {\sf Tm}$  and  $(U\circ\alpha,B):\Gamma\to {\sf Poly}_{\sf tn}{\sf Ty}.$ 

Then by proposition 0.2.22 this corresponds to the data of  $\alpha:\Gamma\to \mathsf{Tm}$  and  $B:\Gamma\cdot U\circ \alpha\to \mathsf{Ty}.$ 



Precomposition by a substitution  $\sigma: \Delta \to \Gamma$  then act on such a pair by

$$(\alpha, B) \mapsto (\alpha \circ \sigma, B \circ \sigma_{U \circ \alpha})$$

**Definition 0.2.26** (Evaluation). Define the operation of evaluation  $\operatorname{ev}_{\alpha} B$  to take  $\alpha:\Gamma\to\operatorname{\mathbf{grpd}}_{\bullet}$  and  $B:\Gamma\cdot U\circ\alpha\to\operatorname{\mathbf{grpd}}$  and return  $\operatorname{\mathbf{ev}}_{\alpha} B:\Gamma\to\operatorname{\mathbf{grpd}}$ , described below.



where we write  $A := U \circ \alpha$  and treat a map  $\Gamma \to \mathbf{grpd}$  as the same as a map  $\Gamma \to \mathsf{Ty}$ . More concisely, evaluation is a natural transformation  $\mathsf{ev} : R \to \mathsf{Ty}$ , given by

$$\operatorname{ev} \, = \pi_{\mathsf{Tv}} \circ \operatorname{counit}$$

**Lemma 0.2.27.** The functor  $ev_{\alpha} B : \Gamma \to \mathbf{grpd}$  can be computed as

$$\operatorname{ev}_{\alpha} B = B \circ a$$

where



*Proof.* Since counit =  $(ev, \rho_{Tm}) : R \to Ty$ , it suffices to find out how the counit computes. The adjunction  $tp^* \dashv tp_*$  suggests that we use the way

$$\widetilde{\mathsf{counit}} = \mathsf{id}_{\mathsf{Poly}_{\mathsf{L}}\mathsf{Ty}}$$

computes. Namely for any  $A:\Gamma\to\operatorname{\mathbf{grpd}}$  and  $B:\Gamma\cdot A\to\operatorname{\mathbf{grpd}}$ 

$$\widetilde{\mathsf{counit}} \circ (A,B) = (A,B) : \Gamma \to \mathsf{Poly}_\mathsf{tp} \mathsf{Ty} \tag{0.2.1}$$

Working on both sides of eq. (0.2.1) we get

$$\begin{split} &(\operatorname{ev}_{\operatorname{var}_A} B \circ U^* \operatorname{disp}_A, \operatorname{var}_A) \\ &= (\operatorname{ev}, \rho_{\operatorname{Ty}}) \circ (\operatorname{var}_A, B \circ U^* (\operatorname{disp}_A)) \\ &= (\operatorname{ev}, \rho_{\operatorname{Ty}}) \circ \operatorname{tp}^* (A, B) \\ &= \operatorname{counit} \circ \operatorname{tp}^* (A, B) \\ &= \widetilde{\operatorname{counit}} \circ (A, B) \\ &= \overline{(A, B)} \\ &= (B, \operatorname{var}_A) \end{split}$$

Hence we know that evaluation of B (weakened to the context  $\Gamma \cdot A \cdot A$ ) on a variable of type A is just B.

$$\operatorname{ev}_{\operatorname{var}_A} B \circ U^* \operatorname{disp}_A = B$$

Then the naturality square for the natural transformation  ${\sf ev}:R\to {\sf Ty}$  on  $a:\Gamma\to \Gamma\cdot A$  tells us that

$$\begin{split} \operatorname{ev}_{\alpha} B \\ &= \operatorname{ev}_{\Gamma} \left( \alpha, B \right) \\ &= \operatorname{ev}_{\Gamma} \left( \operatorname{var}_A \circ a, B \circ \operatorname{U}^*(\operatorname{id}_{\Gamma}) \right) \\ &= \operatorname{ev}_{\Gamma} \left( \operatorname{var}_A \circ a, B \circ \operatorname{U}^*(\operatorname{disp}_A \circ a) \right) \\ &= \operatorname{ev}_{\Gamma} \left( \operatorname{var}_A \circ a, B \circ \operatorname{U}^* \operatorname{disp}_A \circ U^* a \right) \\ &= \operatorname{ev}_{\Gamma} \left( \left( \operatorname{var}_A, B \circ \operatorname{U}^* \operatorname{disp}_A \right) \circ a \right) \\ &= \left( \operatorname{ev}_{\Gamma \cdot A} \left( \operatorname{var}_A, B \circ \operatorname{U}^* \operatorname{disp}_A \right) \circ a \right) \\ &= \left( \operatorname{ev}_{\operatorname{var}_A} B \circ \operatorname{U}^* \operatorname{disp}_A \right) \circ a \\ &= \left( \operatorname{ev}_{\operatorname{var}_A} B \circ \operatorname{U}^* \operatorname{disp}_A \right) \circ a \\ &= B \circ a \end{split} \end{split}$$
 by naturality

**Definition 0.2.28** (Classifier for dependent pairs). Recall the following definition

of composition of polynomial endofunctors, specialized to our situation



By the universal property of pullbacks, a data of a map with representable domain  $\varepsilon:\Gamma\to Q$  corresponds to the data of a triple of maps  $\alpha,\beta:\Gamma\to \mathsf{Tm}$  and  $(A,B):\Gamma\to \mathsf{Poly}_\mathsf{to}\mathsf{Ty}$  such that  $\mathsf{tp}\circ\beta=\pi_\mathsf{Ty}\circ\mathsf{counit}\circ(\alpha,B)$  and  $A=\mathsf{tp}\circ\alpha.$ 



This in turn corresponds to three functors  $\alpha, \beta : \Gamma \to \mathbf{grpd}_{\bullet}$  and  $B : \Gamma \cdot U \circ \alpha \to \mathbf{grpd}$ , such that  $U \circ \beta = \mathbf{ev}_{\alpha} B$ . So we will write

$$\varepsilon = (\beta, \alpha, B)$$

Type theoretically  $\alpha = (A, a : A)$  and  $\operatorname{ev}_{\alpha} B = Ba$  and  $\beta = (Ba, b : Ba)$ . Then composing  $\varepsilon$  with  $\operatorname{tp} \triangleleft \operatorname{tp}$  returns  $\gamma$ , which consists of (A, B). It is in this sense that Q classifies pairs of dependent terms, and  $\operatorname{tp} \triangleleft \operatorname{tp}$  extracts the underlying types.

**Definition 0.2.29** (Interpretation of  $\Sigma$ ). We define the natural transformation

$$\Sigma:\mathsf{Poly}_{\mathsf{tp}}\mathsf{Ty}\to\mathsf{Ty}$$

as that which is induced (lemma 0.2.23) by the  $\Sigma$ -former operation (definition 0.2.14).

To define  $\operatorname{\mathsf{pair}}: Q \to \operatorname{\mathsf{Tm}},$  let  $\Gamma$  be a groupoid and  $(\beta, \alpha, B): \Gamma \to Q$  (such that  $U \circ \beta = \operatorname{\mathsf{ev}}_\alpha \beta$ ). We define a functor  $\operatorname{\mathsf{pair}}_\Gamma(\beta, \alpha, B): \Gamma \to \operatorname{\mathsf{grpd}}_\bullet$  such that on objects  $x \in \Gamma$ , the functor returns  $(\Sigma_A B \, x, (a_x, b_{a_x}))$ , where (using lemma 0.2.27  $U \circ \beta x = \operatorname{\mathsf{ev}}_\alpha B x = B(x, a_x)$ )

$$\alpha x = (A x, a_x)$$
 and  $\beta x = (B(x, a_x), b_a)$ 

and on morphisms  $f:x\to y$ , the functor returns  $(\Sigma_A B\,f,(\phi_f,\psi_f))$ , where (using lemma 0.2.27  $U\circ\beta f=\operatorname{ev}_\alpha Bf=B(f,\phi_f))$ 

$$\alpha\,f = (A\,f,\phi_f\!\colon A\,f\,a_x \to a_y) \quad \text{ and } \quad \beta\,f = (B(f,\phi_f),\psi_f\!\colon B(f,\phi_f)\,b_{a_x} \to b_{a_y})$$

 $\Sigma$  and pair combine to give us a pullback square

$$\begin{array}{c} Q \xrightarrow{\quad \text{pair} \quad} \mathsf{Tm} \\ \underset{\mathsf{tp} \lhd \mathsf{tp} \downarrow}{\bigvee} & \qquad \qquad \underset{\Sigma}{\bigvee} \mathsf{tp} \\ \mathsf{Poly}_{\mathsf{tp}} \mathsf{Ty} \xrightarrow{\quad \Sigma \quad} \mathsf{Ty} \end{array}$$

*Proof.* To show naturality of pair, suppose  $\sigma: \Delta \to \Gamma$  is a functor between groupoids.



So we check that for any  $x \in \Gamma$ ,

$$\begin{split} & \operatorname{pair}_{\Delta}(\beta \circ \sigma, \alpha \circ \sigma, B \circ \sigma_{A}) \, x \\ &= (\Sigma_{A \circ \sigma} B \circ \sigma_{A} \, x, (a_{x}, b_{a_{x}})) \\ &= ((\Sigma_{A} B) \circ \sigma \, x, (a_{x}, b_{a_{x}})) \\ &= \operatorname{pair}_{\Gamma}(\beta, \alpha, B) \circ \sigma \, x \end{split}$$

where

$$\alpha \circ \sigma x = (A \circ \sigma x, a_x)$$
 and  $\beta \circ \sigma x = (ev_\alpha B \circ \sigma x, b_a)$ 

and so on.

It follows from the definition of pair that the square commutes. To show that it is pullback, it suffices to show that for each  $\Gamma$ ,

$$\begin{split} \mathbf{Psh}(\mathbf{grpd})(\Gamma, Q) & \xrightarrow{-\mathsf{pair}_{\Gamma}} & [\Gamma, \mathbf{grpd}_{\bullet}] \\ \text{$_{\mathsf{tp}} \in \mathsf{pro}$} & & \downarrow_{U \circ -} \\ \mathbf{Psh}(\mathbf{grpd})(\Gamma, \mathsf{Poly}_{\mathsf{tp}} \mathsf{Ty}) & \xrightarrow{-\Sigma_{\Gamma}} & [\Gamma, \mathbf{grpd}] \end{split}$$

is a pullback. Since we are in **Set**, it suffices to just show the universal property applied to a point: so for any  $A:\Gamma\to\mathbf{grpd}$ , any  $B:\Gamma\cdot A\to\mathbf{grpd}$ , and any  $p:\Gamma\to\mathbf{grpd}_{\bullet}$ , such that

$$U \circ p = \Sigma_{\Gamma}(A, B)$$

there exists a unique  $(\beta, \alpha, B) : \Gamma \to Q$  such that

$$\mathsf{pair}_{\Gamma}(\beta, \alpha, B) = p \quad \text{and} \quad \mathsf{tp} \triangleleft \mathsf{tp} \circ (B, \alpha, B) = (A, B)$$

Indeed if we write

$$px = (\Sigma_A Bx, (a_r \in Ax, b_r \in B(x, a_r)))$$

this uniquely determines  $\alpha$  and  $\beta$  as

$$\alpha x = (Ax, a_x)$$
 and  $\beta x = (ev_\alpha Bx, b_x)$ 

# **Bibliography**

- [Awo23] Steve Awodey. On hofmann-streicher universes, 2023.
- [HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.
- [Joy] André Joyal. Model structures on cat. https://ncatlab.org/ joyalscatlab/published/Model+structures+on+Cat.