Lian. Yilin. W8t352

Part 1: Short questions.

1. Three properties of the operation of set union. For any sets A and B.

A U Ø = A

A U(BUC) = (AUB)UC (associativity)

AUB = BUA (commutativity)

AUA = A (idempotence)

A GB A UB = B

- 2. Define what is called the domain

 of a binary relation $R \subseteq A \times B$. $\frac{dmn(R)}{dmn(R)} = \{x \in X \mid \exists b \in B : (a,b) \in R\},$
- 3. Define $R \subseteq A \times A$ transitive. R transitive $\frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{1}{4}$ if $\forall a, b, c \in R$: $(aRb \land bRc) = aRc$.
- 4. Define what is equivalence relation.

 Let X be a set. A binary relation R on X is called an equivalence relation.

 If it is, S reflexive, symmetric,
- 5. $f: X \rightarrow Y$ injective. It means: $\forall x_1, x_2 \in X: f(x_1) = f(x_2) \Rightarrow x_1 = X_2$

	Lian Vilin. W8+352.
6.	3 i
,	real part: \$. 0.
	imaginary part: 3.
7.	Theorem: A permutation with repetition is a
	sequence of in different kinds of elements
	containing k, number of elements of the first kind,
	K2 number of elements of the second kind,
	, km number of elements of the mth kind.
0	n!
	K1!k2!km!
	where $n = k_1 + k_2 + \dots + k_m$.
8.	A binary relation on a set X is called
	a partial order it:
	O relexive Otransitive 3 anti-symmetric
	· · · · · · · · · · · · · · · · · · ·
9.	$Z = a+bi$, $ Z = Ja^2+b^2$: taking the value in range $[-1,1]$ or $[0,n]$. the argument of a nonzero
0	range [-1,1] or [0,1]. the argument of a nonzero
	ZGC is the angle f= arg(2) ((0,2x) such that Z= r(conft isinf) where
	n - /2
10.	Binomial theorem:
	Binomial theorem: For any X, y EIR and n EN we have.
	$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$
	K=0 C N /

Cian Vilin. SUSTISZ

11. Variations with repetition:

nk, a sequence of length k chosen from n

different elements (order matters, an element

can occur more than once).

Part 2:

 $P_1: X \in (AU(BUC)) \Leftrightarrow (X \in A)V(X \in (BUC)) \Leftrightarrow$ $\Leftrightarrow (X \in A)V((X \in B)V(X \in C)) \Leftrightarrow$ $\Leftrightarrow ((X \in A)V(X \in B))V(X \in C) \Leftrightarrow$ $\Leftrightarrow (X \in (AUB))V(X \in C) \Leftrightarrow$ $\Leftrightarrow X \in ((AUB)UC),$

Cian Yilin. W8+352.

P2 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$ $(\Xi, X) \in (R \circ S)^{-1} \Leftrightarrow (X, Z) \in R \circ S \Leftrightarrow$ $\Leftrightarrow \exists Y : (X, Y) \in S \land (Y, Z) \in R \Leftrightarrow$ $\Leftrightarrow \exists Y : (Y, X) \in S^{-1} \land (Z, Y) \in R^{-1} \Leftrightarrow$ $= (Z, X) \in S^{-1} \circ R^{-1}$

P3. De Moivre's formula. Let 2, $w \in C$ be nonzero complex numbers. $Z = |Z|(\cos f + i \sin f), w = |w|(\cos f + i \sin \psi),$ and let $n \in IN^+$.

 $ZW = |Z|(\cos f + i\sin f) \cdot |w|(\cos \psi + i\sin \psi) =$ = $|Z||w|(\cos f(\cos \psi - \sin f(\sin \psi + i(\cos f(\sin \psi + \sin f(\cos \psi))))$ = $|Z||w|(\cos f + \psi) + i\sin (f + \psi)),$