

Universidade do Minho Departamento de Informática

Computação Gráfica

Grupo nº 5

Pedro Veloso (A89557)

Carlos Preto (A89587)

Simão Monteiro (A85489)

Mafalda Costa (A83919)

Índice

Introdução	3
Generator	4
Plano	4
Cálculo dos Pontos	4
Box	6
Cálculo dos Pontos	6
Esfera	13
Cálculo dos Pontos	14
Cone	16
Cálculo dos Pontos	16
Engine	20
Leitura de ficheiros	20
Registar os pontos em memória	21
Interação	22
Conclusão	24
Bibliografia	25

Introdução

Nesta primeira fase do trabalho prático de Computação gráfica é pedido aos alunos que desenvolvam duas aplicações. A primeira, o *generator* (gerador), tem de ser capaz de gerar ficheiros com informação acerca dos modelos que se querem produzir sendo que nesta fase apenas serão gerados os vértices para esse mesmo modelo. A segunda aplicação, o *engine* (motor) tem, por sua vez, de interpretar o ficheiro recebido e mostrar ao utilizador o modelo.

O generator terá para já a capacidade de produzir ficheiros para as seguintes figuras geométricas: um quadrado no plano XZ, centrado na origem e desenhado a partir de 2 triângulos; uma caixa (pode ser um cubo ou não); uma esfera e finalmente um cone. Após a execução do generator deverá ficar criado um ficheiro guardado em memória com a informação do modelo para que depois o engine possa criar o mesmo a partir da sua leitura.

Generator

Na primeira parte do trabalho, pretende-se criar uma aplicação que calcula todos os pontos de uma determinada figura. As figuras implementadas pela aplicação são: plano, box, esfera e cone.

Nos tópicos seguintes encontra-se explicado o algoritmo implementado para cada uma das figuras.

Plano

De maneira a ser construído o plano, necessita-se dos valores de comprimento (x) e de largura (z), optando-se também por oferecer a opção ao utilizador de inserir o número de divisões (*partition*).

Cálculo dos Pontos

Por cada plano que for necessário desenhar, são considerados 4 pontos, onde o valor da coordenada Y em cada um deles será 0.

Uma vez que o plano está centrado na origem, ter-se-á que o comprimento e largura serão dividido por 2, de maneira que os pontos, nos extremos, variarem entre [-x/2, x/2] e [-z/2, z/2]. Conforme o número de divisões por aresta, de ponto para ponto irá haver um deslocamento nos eixos X e Z, dado por:

movimentoX = x / partition

movimentoZ = z / partition

Considerando inicialmente um plano com 1 divisões por aresta, considerou-se que o Ponto 1 teria de coordenadas (-x/2, 0, -z/2). A partir desse ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação nos eixos x e z de movimentoX e movimentoZ, o Ponto 3 resulta de uma translação no eixo x de movimentoX e o Ponto 4 resulta de uma translação no eixo z de movimentoZ.

Figura 1: Exemplo Plano com 1 divisão

De maneira a obter o algoritmo do plano, optou-se por primeiro construir todos os planos em largura e ir avançado no comprimento. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myZ = -z/2 + (movimentoZ * i)

Para j = 0 até partition fazer j++ {
    myX = -x/2 + (movimentoX * j)
    p1_x = myX;
    p1_z = myZ;
    p2_x = myX + movimentoX;
    p2_z = myZ + movimentoZ;
    p3_x = myX + movimentoX;
    p3_z = myZ;
    p4_x = myX;
    p4_z = myZ + movimentoZ;
}
```

A razão pela qual se divide as coordenadas x e z por *partition* deve-se à possibilidade do utilizador pretender mais divisões por aresta. Por exemplo, se pretender 3 divisões, significa que o plano global passará a ser constituído por 9 planos mais pequenos, onde a variação nos eixos será menor.

Figura 2: Exemplo Plano com 3 divisões

Box

Para se construir uma box, é necessário, tal como no plano, saber o valor do comprimento (x) e da largura (z), sendo agora também necessário saber o valor da altura (y). Tal como no plano, na box também se pode inserir quantas divisões se pretende(partition). Caso não se insira nenhuma partition, cada face da box é dividida em dois triângulos.

Cálculo dos Pontos

A box é composta por um conjunto de planos, logo apenas se teve necessidade de adaptar o raciocínio de construção do plano. Como a box tem altura, acrescentou-se qual seria o deslocamento no eixo Y, nas diferentes faces:

Como a box terá de estar centrada na origem, ter-se-á que as diferentes 6 faces terão coordenadas que nunca irão variar:

- Face Frente: valor de Z nunca varia, sendo este Z/2;
- Face Trás: valor de Z nunca varia, sendo este -Z/2;
- Face Direita: valor de X nunca varia, sendo este X/2;
- Face Esquerda: valor de X nunca varia, sendo este -X/2;
- Face Cima: valor de Y nunca varia, sendo este Y/2;
- Face Baixo: valor de Y nunca varia, sendo este -Y/2.

Face da Frente

A face da frente estará assente sobre o eixo Z, tendo este o valor fixo de z/2, ou seja, apenas o valor das coordenadas nos eixos X e Y irá variar.

Considerando inicialmente um plano com 1 divisão por aresta, considerou-se que o Ponto 1 teria de coordenadas (-x/2, -y/2, z/2). A partir deste ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação no eixo x de movimentoX, o Ponto 3 resulta de uma translação no eixo y de movimentoY, e o Ponto 4 resulta de uma translação no eixo x e y de movimentoX e movimentoY.

Figura 3: Exemplo Face da Frente com 1 divisão

De maneira a obter o algoritmo da face da frente, optou-se por primeiro construir todos os planos em comprimento e depois ir avançado na altura. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myY = -y/2 + (movimentoY * i);

Para j = 0 até partition fazer j++ {
    myX = -x/2 + (movimentoX * i);
    p1_x = myX;
    p1_y = myY;
    p2_x = myX + movimentoX;
    p2_y = myY;
    p3_x = myX;
    p3_y = myY + movimentoY;
    p4_x = myX + movimentoX;
    p4_y = myY + movimentoY;
}
```

Face de Trás

A face de trás estará assente sobre o eixo Z, tendo este o valor fixo de -z/2, ou seja, apenas o valor das coordenadas nos eixos X e Y irá variar.

Considerando inicialmente um plano com 1 divisão por aresta, considerou-se que o Ponto 1 teria de coordenadas (-x/2, -y/2, -z/2). A partir deste ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação no eixo Y de movimentoY, o Ponto 3 resulta de uma translação no eixo X de movimentoX, e o Ponto 4 resulta de uma translação no eixo X e Y de movimentoX e movimentoY, respetivamente.

Figura 4: Exemplo Face de Trás com 1 divisão

De maneira a obter o algoritmo da face de trás, optou-se por primeiro construir todos os planos em comprimento e depois ir avançado na altura. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myY = -y/2 + (movimentoY * i);

Para j = 0 até partition fazer j++ {
    myX = -x/2 + (movimentoX * j);
    p1_x = myX;
    p1_y = myY;
    p2_x = myX;
    p2_y = myY + movimentoY;
    p3_x = myX + movimentoX;
    p3_y = myY;
    p4_x = myX + movimentoX;
    p4_y = myY + movimentoY;
}
```

Face da Direita

A face da direita estará assente sobre o eixo X, tendo este o valor fixo de x/2, ou seja, apenas o valor das coordenadas nos eixos Z e Y irá variar.

Considerando inicialmente um plano com 1 divisão por aresta, considerou-se que o Ponto 1 teria de coordenadas (x/2, -y/2, -z/2). A partir deste ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação no eixo Y e Z de movimentoY e movimentoZ. O Ponto 3 resulta de uma translação no eixo Z de movimentoZ e o Ponto 4 resulta de uma translação no eixo Y de movimentoY.

Figura 5: Exemplo Face da Direita com 1 divisão

De maneira a obter o algoritmo da face da direita, optou-se por primeiro construir todos os planos em largura e depois ir avançado na altura. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myY = -y/2 + (movimentoY * i);

Para j = 0 até partition fazer j++ {
    myZ = -z/2 + (movimentoZ * j);
    p1_y = myY;
    p1_z = myZ;
    p2_y = myY + movimentoY;
    p2_z = myZ + movimentoZ;
    p3_y = myY;
    p3_z = myZ + movimentoZ;
    p4_y = myY + movimentoY;
    p4_z = myZ;
}
```

Face da Esquerda

A face da esquerda estará assente sobre o eixo X, tendo este o valor fixo de -x/2, ou seja, apenas o valor das coordenadas nos eixos Z e Y irá variar.

Considerando inicialmente um plano com 1 divisão por aresta, considerou-se que o Ponto 1 teria de coordenadas (-x/2, -y/2, -z/2). A partir deste ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação no eixo Z de movimentoZ, o Ponto 3 resulta de uma translação no eixo Y e Z de movimentoY e movimentoZ e o Ponto 4 resulta de uma translação no eixo Y de movimentoY.

Figura 6: Exemplo Face da Esquerda com 1 divisão

De maneira a obter o algoritmo da face da esquerda, optou-se por primeiro construir todos os planos em largura e depois ir avançado na altura. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myY = -y/2 + (movimentoY * i);

Para j = 0 até partition fazer j++ {
    myZ = -z/2 + (movimentoZ * j);
    p1_y = myY;
    p1_z = myZ;
    p2_y = myY;
    p2_z = myZ + movimentoZ;
    p3_y = myY + movimentoY;
    p3_z = myZ + movimentoZ;
    p4_y = myY + movimentoY;
```

```
p4_z = myZ;
}
```

Face de Cima

A face de cima estará assente sobre o eixo Y, tendo este o valor fixo de y/2, ou seja, apenas o valor das coordenadas nos eixos X e Z irá variar.

Considerando inicialmente um plano com 1 divisão por aresta, considerou-se que o Ponto 1 teria de coordenadas (-x/2, y/2, -z/2). A partir deste ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação no eixo Z de movimentoZ, o Ponto 3 resulta de uma translação no eixo X e Z de movimentoX e movimentoZ, e o Ponto 4 resulta de uma translação no eixo X de movimentoX.

Figura 7: Exemplo Face de Cima com 1 divisão

De maneira a obter o algoritmo da face de cima, optou-se por primeiro construir todos os planos em comprimento e depois ir avançado na largura. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myZ = -z/2 + (movimentoZ * i);

Para j = 0 até partition fazer j++ {
    myX = -x/2 + (movimentoX * j);
    p1_x = myX;
    p1_z = myZ;
    p2_x = myX;
```

```
p2_z = myZ + movimentoZ;
p3_x = myX + movimentoX;
p3_z = myZ + movimentoZ;
p4_x = myX + movimentoX;
p4_z = myZ;
}
```

Face de Baixo

A face de baixo estará assente sobre o eixo Y, tendo este o valor fixo de -y/2, ou seja, apenas o valor das coordenadas nos eixos X e Z irá variar.

Considerando inicialmente um plano com 1 divisão por aresta, considerou-se que o Ponto 1 teria de coordenadas (-x/2, -y/2, -z/2). A partir deste ponto, é possível chegar às coordenadas dos restantes pontos. O Ponto 2 resulta de uma translação no eixo X e Z de movimentoX e movimentoZ, o Ponto 3 resulta de uma translação no eixo Z de movimentoZ, e o Ponto 4 resulta de uma translação no eixo X de movimentoX.

Figura 8: Exemplo Face de Baixo com 1 divisão

De maneira a obter o algoritmo da face de baixo, optou-se por primeiro construir todos os planos em comprimento e depois ir avançado na altura. Também se teve em consideração a minimização de erros de vírgula flutuante, optando por isso em usar inteiros no corpo dos ciclos "for" e apenas no conteúdo destes é que se inicializavam os "floats".

```
Para i = 0 até partition fazer i++ {
    myZ = -z/2 + (movimentoZ * i);

Para j = 0 até partition fazer j++ {
    myX = -x/2 + (movimentoX * j);
    p1_x = myX;
    p1_z = myZ;
    p2_x = myX + movimentoX;
    p2_z = myZ + movimentoZ;
    p3_x = myX;
    p3_z = myZ + movimentoZ;
    p4_x = myX + movimentoX;
    p4_z = myZ;
}
```


Figura 9: Exemplo Box com 3 divisões

Esfera

De maneira construir a esfera, necessita-se do raio, número de *slices* e número de *stacks*. Antes de passar para a construção do algoritmo, é necessário perceber o que são as *slices* e o que são as *stacks*. As *slices* correspondem ao número de camadas na vertical, enquanto as *stacks* correspondem ao número de camadas na horizontal que a esfera irá ter.

Cálculo dos Pontos

Dentro da esfera, os ângulos variam entre 0 e 2*PI. Ao dividir esse valor pelo número de camadas na vertical que se pretende, obtém-se o ângulo associado a cada uma das camadas na vertical:

$$Alfa = 2*PI/slices$$

Cada uma dessas camadas verticais irá ter um determinado número de camadas na horizontal. Para saber o ângulo associado a cada uma dessas camadas na horizontal, basta dividir PI por esse número de camadas na horizontal:

Quando se interseta uma camada na vertical com uma camada na horizontal, obtém-se 4 pontos. Cada um desses 4 pontos será definido à custa do valor dos ângulos Alfa e Beta referidos anteriormente, tal como a figura demonstra:

Figura 10: Exemplo face da esfera

Pela análise das Figuras, é possível tirar algumas conclusões:

- ✓ Do ponto 1 para o ponto 2 há uma variação de + Alfa
- ✓ Do ponto 1 para o ponto 3 há uma variação de + Beta
- ✓ Do ponto 1 para o ponto 4 há uma variação de + Alfa e de +Beta

Como se demonstrou, a partir de um ponto inicial 1, é possível chegar às coordenadas dos restantes pontos.

De uma *slice* para a seguinte, o ângulo Alfa vai aumentando Alfa, enquanto de uma *stack* para a seguinte, Beta vai aumentando Beta. Sempre que se avança para a *slice* seguinte, o Beta irá sempre começar em –(M_PI/2) e irá variar até M_PI/2, ou seja, obtém-se uma variação de PI, como se tinha referido no início da explicação.

```
Para i = 0 até slices fazer i += 1 {
       newAlpha = alpha * i;
       Para j = 0 até stacks fazer j += 1 {
              newBeta = (-M_PI/2) + beta * j;
              p1_x = radius * sin(newAlpha) * cos(newBeta);
              p1_y = radius * sin(newBeta);
              p1_z = radius * cos(newAlpha) * cos(newBeta);
              p2_x = radius * sin(newAlpha + alpha) * cos(newBeta);
              p2_y = radius * sin(newBeta);
              p2_z = radius * cos(newAlpha + alpha) * cos(newBeta);
              p3_x = radius * sin(newAlpha) * cos(newBeta + beta);
              p3_y = radius * sin(newBeta + beta);
              p3_z = radius * cos(newAlpha) * cos(newBeta + beta);
              p4_x = radius * sin(newAlpha + alpha) * cos(newBeta + beta);
              p4_y = radius * sin(newBeta + beta);
              p4_z = radius * cos(newAlpha + alpha) * cos(newBeta + beta);
       }
}
```


Figura 11: Exemplo Esfera

Cone

Um cone pode ser visto como a junção de uma circunferência na base e pirâmides à volta dessa mesma base. Para se construir um cone é necessário saber o valor do raio da circunferência da base (*radius*), altura do cone (*height*), *slices* e *stacks*.

Cálculo dos Pontos

Uma vez que o cone terá de estar centrado na origem, conclui-se que todos os pontos que constituem a base deste terão o mesmo valor de Y, que será -altura/2. À semelhança da esfera, tem-se que o ângulo ente cada camada na vertical será:

$$Alfa = 2*PI / slices$$

Também se sabe qual o espaçamento entre camadas na horizontal, sendo este:

Definidos estes valores, passa-se então à construção do cone, dividindo este em 2 fases, como dito anteriormente.

Base

A base é constituída por uma série de triângulos, onde em cada um destes o ângulo vai variando em +Alfa, sendo que com base nesse ângulo, é possível saber as coordenadas de X e Z.

Uma vez que o cone terá de estar centrado na origem, então a altura dos vértices da base do cone estarão na coordenada Y:

Assim, o ponto 1 terá sempre coordenadas (0, newHeight, 0). O ponto 2 terá sempre um ângulo superior ao ponto 3, sendo o aumento do ângulo de 3 para 2 de +Alfa. A sucessiva variação do ângulo dos triângulos leva à criação de uma circunferência:

Figura 12: Exemplo de um dos triângulos da base

```
Para i = 0 até slices fazer i += 1 {
    newAlpha = alpha * i;
    p1_x = 0;
    p1_y = newHeight;
    p1_z = 0
    p2_x = radius * sin(newAlpha + alpha);
    p2_y = newHeight;
    p2_z = radius * cos(newAlpha + alpha);
    p3_x = radius * sin(newAlpha);
    p3_x = radius * sin(newAlpha);
    p3_z = radius * cos(newAlpha);
}
```

Faces Laterais

As faces laterais podem ser divididas em 2 partes, uma correspondente à parte de baixo (fb) e outra à parte de cima (fc), onde cada uma vai variar conforme a iteração i (de 0 até *stacks*) em qual se encontrar:

```
fb = newHeight + (i * horizontalSpace)
fc = newHeight + ((i+1) * horizontalSpace)
```

Também se definiu um raio para a parte de baixo(rb) e um raio para a parte de cima(rc):

```
rb = radius - ((radius/stacks) * i)
rc = radius - ((radius/stacks) * (i+1))
```

A razão pela qual na parte de baixo se multiplica por i, e na parte de cima se multiplicar por i+1, deve-se ao facto de à medida que se avança nas *stacks*, o valor de X ir diminuindo e o valor de Y ir aumentando. Tal observação torna-se fácil através da análise lateral de uma face da pirâmide, onde como se pode ver, vai-se sempre removendo (raio/*stacks*) à medida que se avança nas *stacks* (parte verde) e o valor de Y vai sempre aumentando (horizontalSpace) até chegar ao topo da pirâmide (parte vermelha).

Figura 13: Exemplo Faces Laterais

```
Para i = 0 até stacks fazer i += 1 {
       fb = newHeight + (i * horizontalSpace)
       fc = newHeight + ((i+1) * horizontalSpace)
       rb = radius - ((radius/stacks) * i)
       rc = radius - ((radius/stacks) * (i+1))
       Para j = 0 até slices fazer j += 1 {
               height = alpha * j;
               t1_p1_x = rb * sin(height);
               t1_p1_y = fb;
               t1_p1_z = rb * cos(height);
               t1_p2_x = rc * sin(height + alpha);
               t1_p2_y = fc;
               t1_p2_z = rc * cos(height + alpha);
               t1_p3_x = rc * sin(height);
               t1_p3_y = fc;
               t1_p3_z = rc * cos(height);
               t2_p1_x = rb * sin(height);
               t2_p1_y = fb;
               t2_p1_z = rb * cos(height);
```

```
t2_p2_x = rc * sin(height + alpha);

t2_p2_y = fb;

t2_p2_z = rc * cos(height + alpha);

t2_p3_x = rc * sin(height + alpha);

t2_p3_y = fc;

t2_p3_z = rc * cos(height + alpha);

}
```


Figura 14: Exemplo Cone

Engine

Na segunda parte do trabalho, desenvolveu-se uma aplicação que lê um ficheiro com o formato XML e desenha os objetos encontrados. No ficheiro XML encontra-se registado o caminho para obter os modelos a desenhar. Uma vez que os modelos que a aplicação trata são gerados pelo *generator* desenvolvido na primeira parte do trabalho (formato 3d), realizou-se um algoritmo capaz de ler o ficheiro e registar, em memória, todos os pontos.

É possível, também, interagir com a aplicação, através do rato e do teclado, podendo observar o modelo de diferentes ângulos e formas.

Leitura de ficheiros

A primeira fase da *engine* passa por ler todos os pontos que mais tarde irão ser desenhados no ecrã. Contudo, o ficheiro lido pela *engine* é um ficheiro em formato XML, que apenas contém o caminho para os pontos. Sendo assim, necessário realizar um *parsing* no XML.

Para realizar o *parsing* do ficheiro XML utilizou-se o "TinyXML-2" o que permitiu navegar de uma forma simples pelos componentes do XML, e obter os ficheiros seguintes a ler.

```
void load (const char* pFilename) {
    this->modelos = list<Modelo>();

XMLDocument doc;
XMLElement *root;

Cor c1, c2;
c1.r = c1.g =0.0f;
c1.b = c2.r = c2.g = c2.b = 1.0f;

Cor c[2];
c[0] = c1;
c[1] = c2;

if (!(doc.LoadFile(pFilename))) {
    root = doc.FirstChildElement();
    for (XMLElement *elem = root->FirstChildElement(); elem != NULL; elem = elem->NextSiblingElement()) {
        string ficheiro = elem->Attribute("file");

        map<Cor, list<Triangulo>> lista = load(ficheiro,c);

        if(!lista.empty()){
            Modelo m(lista);
            this->modelos.push_back(m);
        }
    }
    else {
        printf("Ficheiro XML n\u00e3o encontrado\n");
    }
}
```

Figura 15: Algoritmo de parsing do ficheiro XML

Uma vez obtidos os nomes dos ficheiros com formato .3d, gerados previamente, é realizada a leitura dos pontos que constituem o modelo. Essa leitura, engloba ler a primeira linha do ficheiro que contém o número de pontos totais. Posteriormente é realizada a leitura dos pontos (representados pelas suas coordenadas x, y e z) até serem lidos todos os pontos.

Registar os pontos em memória

Após a leitura dos pontos, pretende-se desenhá-los no ecrã. Contudo, é necessário registá-los em memória aquando da leitura.

Para guardar os pontos criaram-se algumas classes, com o objetivo de tornar a organização da informação mais simples.

Uma vez que a informação de mais baixo nível obtida é o ponto criou-se a classe "Ponto" com as componentes x, y e z que representam as coordenadas de um ponto num referencial xyz.

```
class Ponto {
public:
    float x;
    float y;
    float z;
};
```

Figura 16: Classe Ponto

Com o acumular de pontos é interessante, no contexto de computação gráfica, representar um conjunto de três pontos por um triângulo. Assim criou-se a classe "Triângulo" caracterizada pela figura seguinte.

```
class Triangulo {
public:
    Ponto p1;
    Ponto p2;
    Ponto p3;
};
```

Figura 17: Classe Triângulo

Uma vez que um modelo é um conjunto de triângulos, torna-se lógico agrupar os triângulos numa única classe. Essa classe deve ser constituída por uma lista com todos os triângulos existentes no modelo. Contudo, optou-se por agrupar os triângulos em listas distintas, contendo em cada lista apenas os triângulos da mesma cor. Desta forma é possível desenhar no ecrã os triângulos todos de uma determinada cor, de forma sequencial. A classe modelo está representada na figura seguinte.

```
class Modelo{
   public:

   map<Cor, list<Triangulo>> triangulos;

   Modelo(){
        this->triangulos = map<Cor, list<Triangulo>>();
   }

   Modelo(map<Cor, list<Triangulo>> triangulos){
        this->triangulos = triangulos;
   }
};
```

Figura 18: Classe Modelo

Por fim, uma vez que uma cena pode conter mais que um modelo, criou-se a classe "Cena". Nesta classe é possível encontrar uma lista com todos os modelos que deverão ser desenhados no ecrã. Criou-se também nesta classe a função *load* responsável por ler um ficheiro em formato XML e povoar todas as estruturas de dados acima referidas.

Interação

Foram implementados comandos que permitem interagir com as renderizações obtidas. Assim a tabela seguinte representa as funcionalidades associadas a cada tecla.

Tabela 1: Associação de funcionalidade-tecla

Tecla	Funcionalidade
Х	Define que a translação, rotação e escala será realizada considerando o eixo do X;
Υ	Define que a translação, rotação e escala será realizada considerando o eixo do Y;
Z	Define que a translação, rotação e escala será realizada considerando o eixo do Z;
Α	Diminui a coordenada selecionada. Como default utiliza a coordenada X;
D	Aumenta a coordenada selecionada. Como default utiliza a coordenada X;
I	Define a visualização como linhas;
0	Define a visualização como pontos;
Р	Define a visualização como sólido;
UP	Aumenta a escala em função do eixo selecionado. Como <i>default</i> utiliza o eixo do X;
DOWN	Diminui a escala em função do eixo selecionado. Como <i>default</i> utiliza o eixo do X;
RIGHT	Aumenta o ângulo de rotação em torno do eixo selecionado. Como <i>default</i> utiliza o eixo do X;
LEFT	Diminui o ângulo de rotação em torno do eixo selecionado. Como <i>default</i> utiliza o eixo do X;
N	Define que o modo como os pontos são representados é "GL_CW";
M	Define que o modo como os pontos são representados é "GL_CCW".

Uma vez que é possível realizar escalamentos no modelo, foi necessário ponderar acerca de um escalonamento negativo, sobre 1,2 ou 3 eixos.

Realizar um escalonamento negativo leva a que o modelo sofra uma inversão sobre o eixo de escalonamento. Assim os pontos orientados para a frente encontramse na face de trás do modelo. Contudo, como apenas são renderizados os pontos orientados para a frente, passa a ser visível a parte de trás do modelo, mantendo a perspetiva da frente. Para ultrapassar este problema, sempre que o escalonamento altera o sinal, é calculada a nova forma como se calcula a orientação dos pontos.

O algoritmo utilizado é o seguinte:

```
if (*escala < 0 && (*escala + 0.2 > 0)) {
if (*escala > 0 && (*escala - 0.2 < 0)) {
                                                        int num = vetorEscala.numCoordNegativas();
   int num = vetorEscala.numCoordNegativas();
                                                        if (num == 0) {
   if (num == 0) {
                                                           glFrontFace(GL_CCW);
       glFrontFace(GL_CCW);
                                                       else {
   else {
    if (num == 2)
                                                           if (num == 2)
                                                               glFrontFace(GL_CCW);
           glFrontFace(GL_CCW);
                                                           else
       else
                                                              glFrontFace(GL_CW);
          glFrontFace(GL_CW);
```

Figura 19

Além de ser possível de interagir diretamente com o modelo renderizado, através de translações, rotações e escalonamentos, também é possível de interagir com a câmara. Utilizando o rato é, então possível interagir com a câmara, através do modo de explorador. Assim temos:

Tabela 2: Movimentos do rato

Comando	Funcionalidade
Botão esquerdo do rato + movimento	Movimenta a câmara, mantendo o foco no ponto (0,0,0)
Botão direito do rato + movimento positivo no eixo do Y (cima)	Diminui a distância da câmara ao ponto (0,0,0)
Botão direito do rato + movimento negativo no eixo do Y (baixo)	Aumenta a distância da câmara ao ponto (0,0,0)

Conclusão

Terminada a primeira fase deste trabalho podemos afirmar que estamos contentes com os resultados obtidos dado que tanto o *generator* como o *engine* estão a funcionar como esperávamos.

É possível através do *generator* obter todas as figuras geométricas propostas no trabalho. A implementação do *generator* permitiu entender melhor como são representados os modelos 3D.

O desenvolvimento da *engine*, colocou em prática todos os conceitos aprendidos nas aulas, permitindo desenvolver capacidades e conciliar conceitos.

Assim com a *engine* é possível realizar translações, rotações e escalonamentos ao modelo, previamente gerado, bem como realizar uma exploração do modelo através do modo de expetador. Esta exploração só é possível devido ao movimento da câmara em torno de um ponto.

Consideramos também, que progressão faseada do trabalho, que até ao momento vai acompanhando a matéria lecionada nas aulas, é também uma mais-valia, dado que funciona como uma ferramenta de estudo para pôr em prática o que aprendemos nas aulas.

Bibliografia

TinyXML-2: www.github.com/leethomason/tinyxml2/releases/tag/8.0.0