STAT2005 Introduction to Programming Languages for Statistics Sample Midterm Examination Paper

Answer ALL questions.

Question 1 (27 marks)

(a) (7 marks) Write the R codes to create the following object named mylist.

(b) (10 marks) A survey was conducted from a series of software workshops. The information collected from the survey include

- Workshop software introduced at the workshop
- Gender gender of participant
- Q1 The instructor was well prepared.
- Q2 The instructor communicated well.
- Q3 The course materials were helpful.
- Q4 Overall, I found this workshop useful.

The data are stored in a data frame named **survey** as shown below.

> survey

	workshop	gender	q1	q2	q3	q4
1	R	Female	4	3	4	5
2	SPSS	Male	3	4	3	4
3	<na></na>	<na></na>	3	2	NA	3
4	SPSS	Female	5	4	5	3
5	STATA	Female	4	4	3	4
6	SPSS	Female	5	4	3	5

Write the R codes to create this data frame.

- (c) (3 marks) Create a data frame consisting of only the first two columns of survey.
- (d) (3 marks) Create a data frame consisting of only the first and last row of **survey**.
- (e) (4 marks) Replace all "Female" by "F" and "Male" by "M" in survey.

Question 2 (19 marks)

(a) (5 marks) With the use of **sample()** function, write down a command to generate a sample from the distribution $f_X(x) = \Pr(X = x)$ given below.

x	$f_X(x)$
1	0.2
2	0.4
3	0.3
4	0.1

- (b) (8 marks) Generate 2,000 random sample from $f_X(x)$ and save them as \mathbf{r} . Transform \mathbf{r} into a 1,000-by-2 matrix and save them again as \mathbf{r} , such that each row in \mathbf{r} represents a bivariate sample (x_1, x_2) .
- (c) (6 marks) Produce a two-way table showing the frequency count for each combination of (x_1, x_2) using the sample obtained in part (b). A sample output is shown below.

Question 3 (18 marks)

A spiral can be described using the following equations.

$$\begin{cases} x = e^{0.05\theta} \cos \theta, \\ y = e^{0.05\theta} \sin \theta, \end{cases} - 16\pi \le \theta \le 16\pi.$$

Plot this spiral using R. A sample is shown below.

Hint: compute all the (x, y) coordinates along the given range of θ and then use plot().

Question 4 (18 marks)

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 1, the first 10 terms will be:

By considering the terms in the Fibonacci sequence whose values do not exceed 1,000,000,000, find the sum of the even-valued terms.

Question 5 (18 marks)

Use the following command to generate an empty plot.

Use low level graphic functions to generate the following plot.

Note: the dashed lines are of line type 2, the arrows are of double line width and the arrow heads have length 0.1.

End of Questions