Gauss' Lemma

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Monday, Feb 10, 2025

Outline

In this file:

- **1** §1.3.1: Gauss' Lemma on products of primitive elements in R[x];
- 2 §1.3.2: Gauss' Lemma relating irreducible elements in F[x] and R[x],
- §1.3.3: Characterization of irreducible elements in R[x] via $R[x] \subset F[x]$

What is Gauss' Lemma about:

Gauss' Lemma is about irreducible elements in R[x], where R is a UFD.

We will also give the following applications of Gauss' Lemma:

- **1** Theorem: If R is a UFD, so is R[x] and thus also $R[x_1, x_2, ..., x_n]$;
- **2** Testing irreducibility for $f(x) \in \mathbb{Q}[x]$ by testing in $\mathbb{Z}[x]$.

高斯引理的部分作用:证明UFD上的n元多项式环是UFD 检验Frac(R)[x]中的元素是否可约,只要检验对应的R[x]中的元素

Recall some facts about irreducible elements.:

• If R is any integral domain, a non-zero non-unit $r \in R$ is said to be irreducible if whenever

$$r = ab$$

for some $a, b \in R$, then either a is a unit or b is a unit.

- An element in R is said to be reducible if it is not irreducible, i.e., r = ab for $a, b \in R$ both non-units.
- If R is a UFD, irreducible elements are the same as prime elements.

An irreducible element of R[x] is also called an irreducible polynomial over R.

A simple fact on units in R[x]:

• If R is an integral domain, units in R[x] are precisely the units of R regarded as constant polynomials.

(HW)

Examples:

- There are exactly two units in $\mathbb{Z}[x]$: the constant polynomials ± 1 ;
- ullet For a field F, units are exactly the non-zero constant polynomials.

Consequently,

- $2x + 4 = 2(x + 2) \in \mathbb{Z}[x]$ is reducible;
- $2x + 4 = 2(x + 2) \in \mathbb{Q}[x]$ is irreducible.

§1.3.1: Gauss' Lemma on products of primitive elements in R[x]

Definition. Let R be a UFD. For a non-zero $f \in R[x]$, define $\operatorname{cont}(f) = \operatorname{a} \gcd$ of all the non-zero coefficients of f, and call it a content of f. Say f is primitive if it has 1 as a content.

Lemma. For every non-zero $f(x) \in R[x]$,

- ① $f(x) = \gamma g(x)$, where $\gamma = \text{cont}(f)$, and $g(x) \in R[x]$ is primitive.
- 2 any other such product is of the form

$$f(x) = (\gamma u^{-1}) u g(x)$$

where $u \in R$ is a unit. Note that ug(x) is primitive.

Proof. Exercise.

Eq.
$$f(x) = |+2x+3x^2+4x^3+5x^4+6x^5$$
 $f(x) = 7x^2+5$
 $f(x) = 42x^7+35x^6+(28+30)x^5+\cdots$
 $f(x) = a_0 + a_1x+\cdots+a_nx^n$ $a_n \neq 0$
 $f(x) = b_0 + b_1x+\cdots+b_mx^m$ $b_m \neq 0$
 $f(x) = C_0 + C_1x+\cdots+C_{m+n}x^{m+n}$
 $f(x) = C_0 + C_1x+\cdots+C_0$
 $f(x) = C_$

Theorem

(Gauss' Lemma on products of primitive elements in R[x]): Let R be a UFD. If $f, g \in R[x]$ are primitive, so is fg.

Proof. Suppose not. Then $\exists p \in R$ irreducible such that p|(fg).

- Since p is irreducible and R is a UFD, p is prime $R \rightarrow R/R$, $r \rightarrow r_{r}R$
 - Let $R_1 = R/pR$. Then R_1 is an integral domain.
 - Consider the ring homomorphism

$$\pi:\ R[x]\longrightarrow R_1[x],\ \sum_n r_n x^n\longmapsto \sum_n \pi(r_n)x^n.$$

- p|(fg) implies that $\pi(fg)=0$, i.e., $\pi(f)\pi(g)=0$.
- Since $R_1[x]$ is an integral domain, $\pi(f) = 0$ or $\pi(g) = 0$.
- In other words, p|f or p|g. Contradiction.

Q.E.D.

§1.3.2: Gauss' Lemma relating irreducible elements in F[x] and R[x]

Let R be a UFD and F = Frac(R) the fraction field of R.

The case of $R = \mathbb{Z}$:

- \mathbb{Q} is the fraction field of \mathbb{Z} .
- We can clear the denominators for every non-zero $f(x) \in \mathbb{Q}[x]$.

Example: For

$$f(x) = \frac{1}{8}x^5 + 4x^3 - \frac{1}{6}x^2 - 1 \in \mathbb{Q}[x],$$

clearing the denominator gives

$$f(x) = \frac{1}{24} (3x^5 + 96x^3 - 4x^2 - 24) \in \mathbb{Q}[x].$$

$$= \frac{1}{48} (6x^5 + 192x^3 - 8x^2 - 48)$$

Cleaning denominators: Let again R be a UFD and F = Frac(R).

Lemma. For every non-zero $f(x) \in F[x]$,

- **1** $f(x) = \alpha g(x)$, where $\alpha \in F$, and $g(x) \in R[x]$ is primitive.
- 2 any other such product is of the form

$$f(x) = (\alpha u^{-1}) u g(x)$$

where $u \in R$ is a unit. Note that ug(x) is primitive.

Proof. Exercise.

Remarks:

- **1** Write $g = pp(f) \in R[x]$ and call it the primitive part of f.
- 2 pp(f) is well-defined up to multiplication by units of R.

Theorem

(Gauss' Lemma relating irreducible elements in F[x] and R[x]): Let R be a UFD and $F = \operatorname{Frac}(R)$. For a non-constant $f \in F[x]$,

2 Verso $f \in F[x]$ is irreducible iff $pp(f) \in R[x]$ is irreducible.

Proof. Lemma is equivalent to saying that $f \in F[x]$ is reducible iff $pp(f) \in R[x]$ is reducible.

• Assume that $pp(f) \in R[x]$ is reducible. Then

$$pp(f) = k(x)h(x)$$

for some $k(x), h(x) \in R[x]$ with neither a constant unit of R.

- Since pp(f) is primitive, both $k, h \in R[x]$ have positive degrees.
- Thus $f(x) = \lambda k(x)h(x) \in F[x]$ is reducible.

Proof of Gauss' Lemma relating irreducible elements in F[x] and R[x], cont'd:

Assume that $f(x) \in F[x]$ is reducible.

- Then f(x) = a(x)b(x) for $a(x), b(x) \in F[x]$ with positive degrees.
- Write $a(x) = \alpha a_1(x)$ and $b(x) = \beta b_1(x)$, where $\alpha, \beta \in F$ and both $a_1(x), b_1(x) \in R[x]$ are primitive.
- Then $f(x) = \alpha \beta a_1(x) b_1(x)$.
- $a_1(x)$ $b_1(x) \in R[x]$ is primitive by Gauss' Lemma on products of primitive elements in R[x].
- Thus $pp(f) = a_1(x)b_1(x) \in R[x]$, hence reducible.

$$R = \mathbb{C}[x_1, -x_n]$$

$$R[x] = \mathbb{C}[x_1, -x_n] \times \mathbb{C}[x_1, -x_n][x]$$
Q.E.D.

§1.3.3: Characterization of irreducible elements if R[x] via $R[x] \subset F[x]$:

Let R be a UFD and $F = \operatorname{Frac}(R)$ the fraction field of R.

Theorem. Irreducible elements in R[x] are precisely of the two types:

- **1** Type I: constant polynomials defined by irreducible elements of R;
- 2 Type II: primitive polynomials $f(x) \in R[x]$ irreducible in F[x].

Proof. Assume that $f \in R[x]$ is non-zero and non-unit.

- Case 1: $f(x) = r \in R$ is a constant. Then f is irreducible as an element in R[x] if and only if $r \in R$ is irreducible.
- Case 2: f is not a constant. Write $f = \gamma g$, where $\gamma = \operatorname{cont}(f) \in R$ and $g \in R[x]$ primitive. Then

f is irreducible in $R[x] \iff \gamma \in R$ is a unit and f is irreducible in R[x],

By 2nd Versian $\iff f$ is primitive and is irreducible in R[x], f is primitive and is irreducible in F[x].

Q.E.D.

Remarks:

• Define a proper factorization of $g(x) \in R[x]$ to be one of the form

$$g(x) = k(x)h(x),$$

where $k(x), h(x) \in \mathbb{Z}[x]$ both with positive degrees.

- A primitive $g \in R[x]$ is irreducible iff it has no proper factorization.
- · A primitive JERIX) is reducible iff it has a proper factorization