

BANGALORE SAHODAYA SCHOOLS COMPLEX ASSOCIATION PRE-BOARD EXAMINATION -2 (2024 – 2025) GRADE X

Date: 06.01.2025 Max Marks: 80

Subject: Mathematics – Standard (Code – 041)

Time: 3 hours

Marking Scheme

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
S.NO		Mar ks
1.	(b) $5^3 \times 3^3 \times 3^3$	1
2.	(c) all real values except 10	1
3	(c) 16:9	1
4.	(d) -3, 3	1
5.	(a) BD . CD = AD^2	1
6.	(d) 0.7	1
7.	(a) 0	1
8.	(c) 2:3	1
9.	(c) 30–40	1
10.	(c) $(p^2-1)/(p^2+1)$	1
11.	(b) 14:11	1
12.	(d) 55°	1
13.	(b) 1	1
14.	(c) $\sqrt{(b^2-a^2)/b}$	1
15.	(b) isosceles and similar.	1
16.	(c) 6 cm	1
17.	(a) 60°	1
18.	(d) 23/50	1
19.	(a)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	1

20.	(b)Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).	1
	SECTION B	

	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume that $7 + \sqrt{3}$ is rational.	
	$7 + \sqrt{3} = \frac{a}{b}$, where a and b are co-primes $b \neq 0$.	1
	$\sqrt{3} = \frac{a}{b} - 7$ $a = 7$ $a = 7$	
	$=\frac{a}{b}-\frac{7}{1}=\frac{a-7b}{b}$	1
	a-7b is a rational number.	
	But this contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption was wrong.	
	OR	
	Find the largest number which divides 70 and 125, leaving remainders 5 and 8 respectively $70 - 5 = 65$	1
	125 - 8 = 117	1
	HCF(65, 117) = 13	
22.	$Sin (A + B) = sin 90^{\circ}$ $A + B = 90^{\circ}$ (1)	0.5
	$A + B = 90 \dots (1)$	0.5
	$\cos (A - B) = \cos 30^{\circ}$	
	$A - B = 30^{\circ}$ (2) From (1) and (2)	0.5
	$A = 60^{\circ}$ and $B = 30^{\circ}$	1
	AAOR ACOR (AA similarita)	
23.	$\triangle AOB \sim \triangle COD$ (AA – similarity) $\frac{AO}{AO} = \frac{BO}{AO}$ (CPST)	0.5
	CO DO	
	$\frac{x+5}{x+3} = \frac{x-1}{x-2}$	1
	x+3 $x-2(x+5)(x-2) = (x+3)(x-1)$	
	3x - 10 = 2x - 3	0.5
	x = 7	

24. Midpoint of AC =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

= $((-2 + 4)/2, (1 + b)/2)$
= $(2/2, (1 + b)/2)$
= $(1, (1 + b)/2)$
Midpoint of BD = = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
= $((a + 1)/2, (0 + 2)/2)$
= $((a + 1)/2, 2/2)$
= $((a + 1)/2, 1)$
Since, diagonals of a parallelogram bisect each ether,
 $\therefore (1, (1 + b)/2) = ((a + 1)/2, 1)$
On comparing, we get
 $\therefore (a + 1)/2 = 1$ $(1 + b)/2 = 1$

		l
	$ a+1=2 \Rightarrow 1+b=2$	
	$a = 1 \mid \Rightarrow b = 1$	
	OR	
	Given $AP/AB = 2/5$	
	AP/PB = 2/3	
	m = 2, n = 3	
		1
	Let $P(x, y)$	
	$\sqrt{mx^2 + nx^1}$	
	$x = \frac{(mx2 + nx1)}{(m+n)}$	
	$y = \frac{(my2 + ny1)}{(m+n)}$	0.5
	$y - \frac{1}{(m+n)}$	
		0.5
	$x = \frac{(2 \times 4 + 3 \times 4)}{(3+2)} = \frac{20}{5} = 4$ $y = \frac{(2 \times 5 + 3 \times -5)}{(3+2)} = \frac{-5}{5} = -1$	
	$\frac{x-}{(3+2)} - \frac{-5}{5} - 4$	
	$v = \frac{(2 \times 5 + 3 \times -5)}{(2 \times 5 + 3 \times -5)} = \frac{-5}{-5} = -1$	1
	y - (3+2) - 5 - 1	_
	The co-ordinates of $P(4, -1)$	
25.		
	i) P(hearts) = $13/49$	1
	ii) P(black king) = 1/49	1
	SECTION C	
	Section C consists of 6 questions of 3 marks each.	
	Section & companie of a discinsion of a marine enem	

26.	Prime factorization	1
	HCF (180, 240, 540) = 20	1.5
	the volume of the largest beaker that can be used to empty each of them at an exact number of times = 20 ml.	0.5
27.	If α and β are zeroes of the quadratic polynomial $f(x) = 2x^2 - 4x + 6$, find the value of $\alpha + \beta = -\frac{b}{a} = \frac{4}{2} = 2$	0.5
	$\alpha + \beta = -\frac{b}{a} = \frac{4}{2} = 2$ $\alpha \beta = \frac{c}{a} = \frac{6}{2} = 3$	0.5
	$\alpha^{-1} + \beta^{-1} + \alpha \beta = \frac{\alpha + \beta}{\alpha \beta} + \alpha \beta = \frac{2}{3} + 3 = \frac{11}{3}$	2
	•	

28.

area of a circle = $^{1} \times ^{22} \times 32^{2} = 22528/7 \ m^{2}$

2 7

1

In right triangle Δ OMB

$$sin O = \frac{side opposite to angle O}{Hypotenuse}$$

$$\sin 60^\circ = \frac{BM}{OB}$$

$$\frac{\sqrt{3}}{2} = \frac{BM}{32}$$

$$\frac{\sqrt{3}}{2}$$
 × 32 = BM

$$16\sqrt{3} = BM$$

BM =
$$16\sqrt{3}$$

$$BM = \frac{1}{2}BC$$

$$2BM = BC$$

$$BC = 2BM$$

Putting value of BM

$$BC = 2 \times 16\sqrt{3}$$

$$BC = 32\sqrt{3}$$

In right triangle Δ OMB

$$\cos O = \frac{side \ adjacent \ to \ angle \ O}{Hypotenuse}$$

$$\cos 60^{\circ} = \frac{OM}{OB}$$

$$\frac{1}{2} = \frac{OM}{32}$$

$$\frac{32}{2} = OM$$

$$OM = 16$$

Now,

Area of
$$\triangle$$
 BOC = $\frac{1}{2}$ × Base × Height

$$=\frac{1}{2}\times BC\times OM$$

$$=\frac{1}{2} \times 32\sqrt{3} \times 16$$

$$= 16\sqrt{3} \times 16$$

$$= 256\sqrt{3}$$

1

Area of design = Area of circle – area of triangle ABC	1
$=\frac{22528}{7}-768\sqrt{3} \text{ cm}^2$	
sides of triangle are $a = 15$ cm, $b = 16$ cm and $c = 17$ cm semi-perimeter of triangle $S = (a + b + c)/2$ $= (15 + 16 + 17)/2 = 48/2 = 24$	0.5
$\therefore \text{ Area of triangular field} = \sqrt{s(s-a)(s-b)(s-c)} \qquad \text{[by Heron's formula]}$	
$= \sqrt{24 \times 9 \times 8 \times 7}$	0.5
$= 2 \times 3 \times 4 \sqrt{21}$	
$=24\sqrt{21} = 24(4.58) = 109.92 m^2$	0.5
angle sum of triangle is 180° hence area of three sectors = $\frac{1}{2}$ area of one circle. = $\frac{1}{2}(\pi r^2)$ = $\frac{1}{2} \times \frac{22}{7} \times 7^2 = 77 m^2$	1
Area of the field which cannot be grazed by the three animals = $109.92 - 77 = 32.9$	$2 m^2$ 0.5
Solve the following quadratic equation: $\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0$ $ax^2 + bx + c = 0$	
$a = \sqrt{3}, b = 10, c = 7\sqrt{3}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1
$= \frac{-10 \pm \sqrt{10^2 - 4.\sqrt{3.7}\sqrt{3}}}{2\sqrt{3}}$ $= \frac{-10 \pm \sqrt{100 - 84}}{2\sqrt{3}}$ $= \frac{-10 \pm \sqrt{16}}{2\sqrt{5}}$	
$=\frac{-10\pm\sqrt{16}}{2\sqrt{3}}$	
$=\frac{-10 \pm 4}{2\sqrt{3}}$	1
$x = \frac{-10+4}{2\sqrt{3}} = -\sqrt{3}$ $x = \frac{-10-4}{2\sqrt{3}} = \frac{-7}{\sqrt{3}}$	0.5
$x = \frac{-10^{-4}}{2\sqrt{3}} = \frac{-7}{\sqrt{3}}$	0.5
OR The length of a theatre screen is 7 ft more than twice its width. Find the dimensions of screen if its area is 184 square feet. Let width of the screen = x ft	

	Length = $2x + 7$	0.5
	Area = $1.b = 184$ square ft	
	(2x + 7) x = 184	1
	$2x^2 + 7x - 184 = 0$	1
	(2x+23)(x-8) = 0	1
	X = -23/2 (width cannot be -ve) X = 8	
	X = 8 $Width = 8ft$	
	Length = $2(8) + 7 = 16 + 7 = 23$ ft	0.5
	Length $= 2(8) + 7 = 10 + 7 = 2311$	0.5
30.	If $7sin^2\theta + 3cos^2\theta = 4$, then find the value of θ .	
	$\sin^2\theta + \cos^2\theta = 1$	
		0.5
	$7\sin^2\theta + 3(1 - \sin^2\theta) = 4$	
	$7\sin^2\theta - 3\sin^2\theta + 3 - 4 = 0$	0.5
	$4\sin^2\theta - 1 = 0$	
	$(2\sin\theta + 1)(2\sin\theta - 1) = 0$	1
	$\sin \theta = -1/2 \text{ or } \frac{1}{2}$	1
	$\sin \theta = \frac{1}{2}$	
	$\sin \theta = \sin 30^{\circ}$	1
	$\theta = 30^{\circ}$	
31.	In a given triangle if $AC = BC$ and $AE = BE$ then prove that $AF = BD$	
	From triangle ABC	
	Since $AC = BC$	
	$\angle BAC = \angle ABC$ (angles opp to equal sides are equal)(1)	
	Similarly, from triangle ABE	1
	AE = BE	
	$\angle BAE = \angle ABE$ (angles opp to equal sides are equal)(2)	
	Subtract eqn(2) from (1)	1
	∠EAF = ∠EBD	1
	$\angle AEF = \angle BED$	
	$\triangle AEF \sim \Delta BED (AA- similarity)$	0.5
	AE/BE = AF/BD (CPST)	0.5
	But (AE = BE) $1 = AF/BD$	
	AF = BD	0.5
	OR	
	Prove that if a line is drawn parallel to one side of a triangle to intersect the other two	
	sides in two distinct points, then the other two sides are divided in the same ratio.	

Given, To prove, construction, Diagram 1 Theorem Proof 2 To prove: $\frac{AD}{DB} = \frac{AE}{EC}$ to E and C to D. Proof: In \triangle ADE and \triangle BDE In \triangle ADE and \triangle CDE $ar(\Delta ADE) = \frac{1}{2} \times AE \times DN$ $ar(\Delta CDE) = \frac{1}{2} \times EC \times DN$ $ar(\Delta BDE) = ar(\Delta CDE)$(iii) Triangles on the same base and between the same parallel sides are equal in area From eq. (i), (ii) and (iii) $\frac{AD}{DB} = \frac{AE}{EC}$ **SECTION D** Section D consists of 4 questions of 5 marks each. 32. Given below is the frequency distribution of the heights of 50 students of a class: $160 - \overline{165}$ 140-145 145-150 150 - 155155-160 Height in cm No. of 8 12 15 10 5 students 8 20 35 45 50 Cf 0.5 Table i) $Median = l + (\frac{\frac{n}{2} - fc}{c}) h$ 0.5 since n/2 = 25median class is 150-155 1 = 150 h = 5 fc = 20 f = 150.5 Median = $l + (\frac{n}{2} - fc) h$ $=150+(\frac{25-20}{15})\ 5$

= 150 +	25 15					
= 150 + 100 = 150 + 100 = 15	5 ⁵					
	3					
= 150 +		51 67 am				
Median h ii) Mea	ın height)1.07 CIII				
CI	in neight	F	X	D = x - a	fd	
)-145	8	142.5	-10	-80	
	5-150	12	147.5	-5	-60	
)-155	15	152.5	0	0	
155	5-160	10	157.5	5	50	
160)-165	5	162.5	10	50	
∇f	· d	2	$\Sigma fd = -40$			
Mean = a + $\frac{\sum f}{\sum f}$	<u>u</u>					
= 152.5 +	⊦ <u>−40</u> 50					
	0.0					
= 152.5 -						
= 152.5 - Mean heig		.7 cm				
		.7 cm	OB			
		.7 cm	OR			
		.7 cm	OR			
Mean heig	ght = 151.	.7 cm F	OR x		fx	
Mean heig	ght = 151.		x 10		160	
CI 0-20 20-40	ght = 151.	F 16 x	X 10 30		160 30x	
CI 0-20 20-40 40-60	ght = 151.	F 16 x 25	X 10 30 50		160 30x 1250	
CI 0-20 20-40 40-60 60-80	ght = 151.	F 16 x 25 16	X 10 30 50 70		160 30x 1250 1120	
CI 0-20 20-40 40-60 60-80 80-100	ght = 151.	F 16 x 25 16	x 10 30 50 70 90		160 30x 1250 1120 90y	
CI 0-20 20-40 40-60 60-80 80-100 100-120	ght = 151.	F 16 x 25 16	X 10 30 50 70		160 30x 1250 1120	
CI 0-20 20-40 40-60 60-80 80-100	ght = 151.	F 16 x 25 16 y	x 10 30 50 70 90 110		160 30x 1250 1120 90y	
CI 0-20 20-40 40-60 60-80 80-100 100-120	ght = 151.	F 16 x 25 16 y	x 10 30 50 70 90		160 30x 1250 1120 90y	
CI 0-20 20-40 40-60 60-80 80-100 100-120	ght = 151.	F 16 x 25 16 y 10 $\sum fx = x$	x 10 30 50 70 90 110	0x + 90y	160 30x 1250 1120 90y	
CI 0-20 20-40 40-60 60-80 80-100 100-120	ght = 151.	F 16 x 25 16 y 10 $\sum fx = x$		0x + 90y $y = 90$	160 30x 1250 1120 90y 1100	
CI 0-20 20-40 40-60 60-80 80-100 100-120 Table	ght = 151.	F		0x + 90y	160 30x 1250 1120 90y 1100	
Mean height $\frac{\text{CI}}{0-20}$ $\frac{0-20}{20-40}$ $\frac{40-60}{60-80}$ $80-100$ $100-120$ Table	ght = 151.	F 16 x 25 16 y 10 $\sum f x = \sum f = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		0x + 90y $y = 90$	160 30x 1250 1120 90y 1100	
CI 0-20 20-40 40-60 60-80 80-100 100-120 Table	$\frac{3630+30}{90}$	F 16 x 25 16 y 10 $\sum f x = \sum f = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		0x + 90y $y = 90$	160 30x 1250 1120 90y 1100	
Mean height $\frac{\text{CI}}{0-20}$ $\frac{0-20}{20-40}$ $\frac{40-60}{60-80}$ $80-100$ $100-120$ Table	$ \frac{3630+30}{90} $ $ 3630+30 $ $ 3630+3 $ $ x + 35 $	$\frac{F}{16}$ x 25 16 y 10 $\sum f x = \sum f = 1000000000000000000000000000000000000$	$ \begin{array}{c cccc} & x \\ & 10 \\ & 30 \\ & 50 \\ & 70 \\ & 90 \\ & 110 \\ & = 3630 + 36 \\ & = 67 + x + x + x + 66 \\ & 40 \\ \end{array} $	0x + 90y $y = 90$ $y = 23$	160 30x 1250 1120 90y 1100	

$xy = (x + \frac{1}{2})(y - 1)$	
And we finally get,	
-2x + y - 1 = 0(ii)	
From the second condition:	
If the speed reduces by 1 km/hr, then the time of journey increases by 3 hours.	
xy = (x - 1)(y + 3)	
$\Rightarrow xy = xy - 1y + 3x - 3$	
$\Rightarrow xy = xy + 3x - 1y - 3$	
$\Rightarrow 3x - y - 3 = 0$ (iii)	
From (ii) and (iii), the value of x can be calculated by	
$(ii) + (iii) \Rightarrow$	
x - 4 = 0	
x = 4	
Now, y can be obtained by using $x = 4$ in (ii)	
-2(4) + y - 1 = 0	
$\Rightarrow y = 1 + 8 = 9$	
Hence, putting the value of x and y in equation (i), we find the distance	
Distance covered = xy	
$=4\times9$	
= 36 km	
Hence distance is 36 km and the speed of walking is 4 km/hr. OR	
Solve the following system of linear equations graphically: 4x-5y+16=0 and $2x+y-6=0Shade the region bounded by these lines and the x-axis. Also find the area$	of the
shaded region. x -4 -2.7 -1.5 y 0 1 2	oi uic

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	We know that the tangents drawn to a circle from an external point are equal in length.	
	\therefore AP = AS, BP = BQ, CR = CQ and DR = DS.	
	AP + BP + CR + DR = AS + BQ + CQ + DS	1
	(AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)	
	$\therefore AB + CD = AD + BC$	0.5
	or $2AB = 2AD$ (since $AB = DC$ and $AD = BC$ of parallelogram $ABCD$)	
	$\therefore AB = BC = DC = AD$	
	hence ABCD is a rhombus.	
		0.5
	SECTION E	
	Case study-based questions are compulsory.	
36.		
	Diagram: Let total height of the building = internal diameter of the dome = 2 r m	
	∴ Radius of building (or dome) = $r = r$ m Height of cylinder = $2r - r = r$ m ∴ Volume of the hemispherical dome cylinder = $\frac{2\pi r^3}{3}$	1
	∴ Total volume of the building = Volume of the cylinder + Volume of hemispherical dome $= \pi r^2 h c y + \frac{2}{3} \pi r^3$ $= \pi r^2 r + \frac{2}{3} \pi r^3 = \pi r^3 \left(1 + \frac{2}{3}\right) = \frac{5}{3} \pi r^3 = 41\frac{19}{21} m^3$ $\frac{5}{3} \pi r^3 = \frac{880}{21}$	1

$\frac{5.22}{r^3}$	_880
3.7	21

$$\frac{110}{21}r^3 = \frac{880}{21}$$

$$r^3 = 8$$

1

ii)
$$\Rightarrow r = 2m$$

OR

2

- ii) : Height of the building = $2 \text{ r} = 2 \times 2 = 4 \text{ m}$

Find the building =
$$21 - 2 \times 2 - 4$$
 in Find the inner curved surface area of the dome.
CSA of dome = $2\pi r^2 = 2\pi$. $4 = 8\pi = \frac{8 \times 22}{7} = \frac{176}{7} = 25.14$ sq.m

1

37.

Based on the above information, answer the following questions:

i)
$$\Delta ABC \sim \Delta ADE(AA)$$

$$\frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE}$$
 (CPST)

1

ii)

$$BD = 2(25) = 50 \text{ m}$$

1

$$AD = 50 + 25 = 75 \text{ m}$$

$$\frac{AB}{AD} = \frac{BC}{DE}$$

$$\frac{25}{75} = \frac{BC}{DE} = \frac{1}{3}$$

1

OR

$$Tan 60^{\circ} = \frac{BC}{AB}$$

1

$$\sqrt{3} = \frac{BC}{25}$$

1

	BC = $25\sqrt{3}$ m = height of the bus.	1
	iii) What is the measure of ∠KLO? Give reason.	
	$\angle KLO = 90^{\circ}$ (angle at the point of contact is 90°)	
38 416	d = 403, 390 $a = 416$ $d = 403 - 416 = -13$	
	i) How many bottles did they collect in day 11?	
	$a_n = a + (n-1)d$	
	$a_{11} = 416 + 10(-13)$	1
	$a_{11} = 286$ bottles	
	ii) Find the total number of bottles collected in first 11 days.	
	$Sn = \frac{n}{2}(2a + (n-1)d)$	0.
	$Sn = \frac{n}{2}(2a + (n-1) d)$ $S_{11} = \frac{11}{2}(2(416) + 10(-13))$	-
	$S_{11} = 3861$ bottles	0.
	OR	
Fine	the nth term of the given A.P.	
	$a_n = a + (n-1)d$	0.
	an = 416 + (n-1) - 13	1
	=416+13-13n	
	=429-13n	0.
	iii) On which day was the number of bottles collected zero?	
	$a_n = a + (n-1)d = 0$	
	416 + (n-1) - 13 = 0	0.
	429 - 13n = 0	
	$n = \frac{429}{13} = 33rd day$	0.