Unit 6: Generalized Additive Models

Henry Scharf

STAT 410

Polynomial regression

Basis functions

Putting the "Generalized" in GAMs

Multiple predictors

Unit goals

- 1. Be able to express generalized additive models (GAMs) both with mathematical notation and in R.
- 2. Be able to fit GAMs with multiple predictors to data in R and interpret summary output.
- 3. Be able to check for evidence that statistical assumptions of GAMs are violated.
- 4. Be able to generate predictions for new combinations of predictor/explanatory variables in R with uncertainty.

Polynomial regression

Wage data

"... Wage data set, which contains income and demographic information for males who reside in the central Atlantic region of the United States." -p. 291 ISI R

library(ISLR2)

```
head(Wage) ## Wage demographic info from males living in the
##
         vear age
                          maritl
                                race
                                              education
                                                                   region
## 231655 2006 18 1. Never Married 1. White 1. < HS Grad 2. Middle Atlantic
## 86582 2004 24 1. Never Married 1. White 4. College Grad 2. Middle Atlantic
## 161300 2003 45
                      2. Married 1. White 3. Some College 2. Middle Atlantic
## 155159 2003 43 2. Married 3. Asian 4. College Grad 2. Middle Atlantic
## 11443 2005 50
                 4. Divorced 1. White
                                         2. HS Grad 2. Middle Atlantic
## 376662 2008 54
                      2. Married 1. White 4. College Grad 2. Middle Atlantic
##
              iobclass health health ins logwage
                                                           wage
## 231655 1. Industrial 1. <=Good
                                    2. No 4.318063 75.04315
## 86582 2. Information 2. >=Very Good 2. No 4.255273 70.47602
## 161300 1. Industrial
                      1. <=Good 1. Yes 4.875061 130.98218
## 155159 2. Information 2. >=Very Good 1. Yes 5.041393 154.68529
                        1. <=Good 1. Yes 4.318063 75.04315
## 11443 2. Information
## 376662 2. Information 2. >=Very Good 1. Yes 4.845098 127.11574
```

Wage data

(1) How would you describe the shape of the relationship between age and wage?

```
plot(wage ~ age, data = Wage)
```


The following two models are equivalent in that they result in the same fit.

Option 1

Option 2

summary(fit1)

```
##
                                        ##
## Call:
                                        ## Call:
## lm(formula = wage ~ age + I(age^2), data ## lm(formula = wage ~ I(age - 50) + I((age - 50)
##
                                        ##
## Residuals:
                                        ## Residuals:
##
      Min
              1Q Median 3Q Max ##
                                              Min 10 Median
                                                                     30
                                                                           Max
## -99.126 -24.309 -5.017 15.494 205.621 ## -99.126 -24.309 -5.017 15.494 205.621
##
                                        ##
## Coefficients:
                                        ## Coefficients:
          Estimate Std. Error t value ##
                                                      Estimate Std. Error t value
##
## (Intercept) -10.425224 8.189780 -1.273 ## (Intercept) 121.763606 0.957896 127.116
```

summary(fit2)

---## Signif. codes: 0 '***' 0.001 '**' 0.01 ' ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0. ##

Multiple R-squared: 0.08209, Adjusted ## Multiple R-squared: 0.08209, Adjusted R-sq

age 5.294030 0.388689 13.620 ## I(age - 50) -0.006477 0.086974 -0.074 ## I(age^2) -0.053005 0.004432 -11.960 ## I((age - 50)^2) -0.053005 0.004432 -11.960

Residual standard error: 39.99 on 2997 de ## Residual standard error: 39.99 on 2997 degrees

We can easily derive the relationship between the β and α coefficients.

Option 1

Option 2

```
y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \varepsilon_{i}
y_{i} = \alpha_{0} + \alpha_{1}(x_{i} - 50) + \alpha_{2}(x_{i} - 50)^{2} + \varepsilon_{i}
= \underbrace{\alpha_{0} - 50\alpha_{1} + 50^{2}\alpha_{2}}_{\beta_{0}} + \underbrace{(\alpha_{1} - 100\alpha_{2})}_{\beta_{1}}x_{i} + \underbrace{\alpha_{2}}_{\beta_{2}}x_{i}^{2} + \varepsilon_{i}
```

```
coef(fit1)
## (Intercept) age I(age^2)
## -10.42522426 5.29403003 -0.05300507
coef2 <- coef(fit2)
c(coef2[1] - 50 * coef2[2] + 50^2 * coef2[3],
    coef2[2] - 100 * coef2[3],
    coef2[3])
## (Intercept) I(age - 50) I((age - 50)^2)
## -10.42522426 5.29403003 -0.05300507</pre>
```

One reason you might prefer a certain version is computational stability.

Option 1

Option 2

```
y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i \qquad y_i = \alpha_0 + \alpha_1 (x_i - 50) + \alpha_2 (x_i - 50)^2 + \varepsilon_i= \underbrace{\alpha_0 - 50\alpha_1 + 50^2 \alpha_2}_{\beta_0} + \underbrace{(\alpha_1 - 100\alpha_2)}_{\beta_1} x_i + \underbrace{\alpha_2}_{\beta_2} x_i^2 + \varepsilon_i
```

```
cor(Wage$age, Wage$age^2)
## [1] 0.9866629
car::vif(fit1)
## age I(age^2)
## 37.74097 37.74097
cor(Wage$age - 50, (Wage$age - 50)^2)
## [1] -0.6861565
car::vif(fit2)
## I(age - 50) I((age - 50)^2)
## 1.889683 1.889683
```

Third way to fit a quadratic function (in R)

It is possible to find the particular specification that completely eliminates correlation between the predictors.

Option 3

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \varepsilon_i$$

(2) What could you change in the lm(...) function to allow for more "wiggliness" in the fit?

Х

Basis functions

Regression with spline bases

- ▶ The next stage is to choose b_i to:
 - have nice computational properties
 - ▶ "span" a useful space of functions.
- There are MANY bases out there. Each have Pros and Cons, and often it doesn't matter too much which one you pick.

$$y_i = \beta_0 + \sum_{i=1}^k \beta_i b_i(x_i) + \varepsilon_i$$

Checking assumptions

- 1. Normality of residuals
- 2. Independence of residuals
- 3. Homoskedasticity: constant variance for residuals
- 4. *Correct functional* relationship between response and predictors

gam.check(fit4)

(3) How do things look?

Resids vs. linear pred.

Checking assumptions

- 1. Normality of residuals
- 2. Independence of residuals
- 3. Homoskedasticity: constant variance for residuals
- 4. *Correct functional* relationship between response and predictors

(4) Any better? What else could we try?

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values

Prediction

There are predict() methods for gam type objects, just like lm.

```
ages <- 18:80
pred <-
 predict(fit4,
         newdata = data.frame(age = ages),
         se.fit = T)
plot(wage ~ age, data = Wage)
lines(ages, pred$fit, lwd = 2, col = colors[4])
lines(ages, pred$fit + qnorm(0.005) *
        pred$se.fit, lwd = 2,
      col = colors[4], ltv = 2)
lines(ages, pred$fit + qnorm(0.995) *
        pred$se.fit, lwd = 2,
      col = colors[4], lty = 2)
```


(5) What confidence level is depicted here?

Putting the "Generalized" in GAMs

Binary response variable: Return of the otters!

```
otters <- read.csv("../../data/River Otters - High Mountain Lakes [ds813].csv")
otters$Detected <- otters$Otters_Found > 0
otters$Region <- as.factor(otters$Region)</pre>
otters$Waterbody <- as.factor(otters$Waterbody)</pre>
head(otters. 3)
##
                     Y OBJECTID
                                  Region Site_Name Waterbody Elevation_m Timeframe
  1 -13501910 4947965
                              1 Cascades
                                             Butte
                                                        Lake
                                                                     1844
                                                                             August
  2 -13501910 4947965
                              2 Cascades
                                             Butte
                                                        I.ake
                                                                     1844
                                                                             August
  3 -13518222 4939619
                              3 Cascades
                                            Dersch
                                                       Marsh
                                                                     2012
                                                                             August
     Year Otters Found Rank
                                                               UTME
                                                                       UTMN
##
                                  Source
                                              Lat
                                                       Long
                          2 LVNP Records 40.56210 -121.2897 644789 4491553
  1 2006
   2 2006
                          2 LVNP Records 40.56210 -121.2897 644789 4491553
  3 2006
                          2 LVNP Records 40.50511 -121.4362 632496 4484997
##
                 DATUM Detected
   1 UTM NAD83 Zone 10
                           TRUE
  2 UTM NAD83 Zone 10
                           TRUE
  3 UTM NAD83 Zone 10
                           TRUE
```

Binary response variable: Return of the otters!

Recall from Rlab 5 that we first looked at the isolated effect of year on detection.

```
fit_year_glm <- glm(Detected ~ Year, data = otters, family = binomial)
fit_year_gam <- gam(Detected ~ s(Year, k = 7), data = otters, family = binomial)
years <- 1900:2022
pred_year_glm <- predict(fit_year_glm, newdata = data.frame(Year = years), se.fit = T)
pred_year_gam <- predict(fit_year_gam, newdata = data.frame(Year = years), se.fit = T)</pre>
```

(6) What transformation needs to be done to the predictions to make this plot? Which predictions seem more "correct" to you?

Multiple predictors

Adding linear effects

- ▶ We will often be interested in including other predictor variables.
- ► These can have traditional linear effects. . .
- ...or they can also have more flexible functional relationships.

(7) Of the other predictors, which one might we consider for a non-linear relation using splines?

Adding non-linear effects

```
fit_alt <- gam(Detected ~ s(Elevation_m, k = 7) + Waterbody + s(Year, k = 7) + Region,
                                                        data = otters, family = binomial())
summary(fit_alt)
##
## Family: binomial
## Link function: logit
##
## Formula:
## Detected ~ s(Elevation m, k = 7) + Waterbody + <math>s(Year, k = 7) + Waterbody + S(Year, k = 7) + Waterbody + Waterbody + Waterbody + Waterbody + Waterbody + Wa
##
                         Region
##
## Parametric coefficients:
                                                                                          Estimate Std. Error z value Pr(>|z|)
##
           (Intercept) 5.236e+01 1.628e+07 0.000 1.000
          WaterbodyMarsh 2.018e-01 6.905e+07 0.000 1.000
          WaterbodyReservoir 7.919e-01 1.923e+00 0.412 0.681
                                                                       5.277e+01 3.355e+07 0.000 1.000
          WaterbodyStream
## RegionKlamath -5.022e+01 1.628e+07 0.000 1.000
## RegionSierra -5.019e+01 1.628e+07
                                                                                                                                                                          0.000
                                                                                                                                                                                                                1.000
##
```

```
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(Elevation_m) 1.000 1.000 2.130 0.1444
## s(Year) 3.356 4.149 9.855 0.0469 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.337 Deviance explained = 44.6%
## UBRE = -0.35778 Scale est. = 1 n = 81
```

probability

(8) We can interpret the p-value to mean there is weak evidence for a non-linear effect of elevation on the probability of detection. What do you see in the figure that confirms this result?

Predicted probability of detection (95% CI)

Elevation

Multiple predictors

probability

Predicted probability of detection (95% CI)

(9) Which color curves represent the GAM? How can you tell?