Best-Arm Identification

Suppose, you want to find a batsman among 10 batsmen, with few balls/trials as soon as possible with success rate 90%

Best-Arm Identification

- ullet Treat each batsmen as an arm a, such that their average performance (hit rate) is given by μ_a
- At every round t,
 - Choose an arm (batsman) a_t and play a ball
 - \bullet Observe their performance in terms of reward $r_{\rm t} \sim D(\mu_{a_{\rm r}})$
 - ullet If you are confident at round au_δ , announce the best batsman \hat{a}_t , else continue
- Objective: Minimise the number of samples (balls) $\mathbb{E}[\tau_{\delta}]$ such that the error is small i.e. $\mathbb{P}(\hat{a}_{\tau_{\delta}} \neq \arg\max\mu_{a}) \leq \delta$