Vector Resolution

- Sketch the original given vector with its tail placed in a compass to mark the origin.
- Sketch the horizontal (x-component) and vertical (y-component) vectors that would add to give the original vector. Label these vectors.
- Calculate the actual x and y components for the original vector using mathematics.

a)
$$V_R = 450 \text{ m/s} [N 35^{\circ} W]$$

b)
$$F_R = 28.94 \text{ N} [295^\circ]$$

c)
$$a_R = 23.9 \text{ m/s}^2 [5 29^{\circ} \text{E}]$$

d)
$$\Delta d_R = 4.8 \times 10^5 \text{ km} [248 \, ^{\circ}]$$

e)
$$V_R = 62.8 \text{ m/s}[W]$$

f)
$$F_R = 3 \times 10^6 \text{ N} [S]$$

- Answers: a) -258 m/s [E], 369 m/s [N] d) -1.8×10^{5} km [E], -4.4×10^{5} km [N] b) 12.23 N [E], -26.23 N [N] e) -62.8 m/s [E], 0 m/s [N] c) 11.6 m/s² [E], -20.9 m/s² [N] f) 0 N [E], -3×10^{6} N [n]