Completeness Thresholds for Memory Safety: Unbounded Guarantees via Bounded Proofs

Tobias Reinhard¹, Justus Fasse², Bart Jacobs²

- ¹ TU Darmstadt
- ² KU Leuven

Programming Technology Group University of Oslo May, 2024

What This Work Is About

- Connection between bounded & unbounded proofs
- Ideas to increase trust in bounded model checking

What This Work Is About

- Connection between bounded & unbounded proofs
- Ideas to increase trust in bounded model checking
- When is a bounded "proof" a proof?

Focus: Traversing Programs

- Target property: Memory safety
- Programs that:
 - Traverse a data structure
 - Preserve its memory layout
- But approach & many results are very general

Model Checking: Easy Off-by-1 Error

- Imperative language with pointer arithmetic
- Memory assumption array(a, s): $a[0] \dots a[s-1]$ allocated

```
for i in [0 : s-1] do
!a[i+1]
```

Model Checking: Easy Off-by-1 Error

- Imperative language with pointer arithmetic
- Memory assumption array(a, s): $a[0] \dots a[s-1]$ allocated

```
for i in [0 : s-1] do !a[i+1]
```

Which bounds should we choose for s?

- s = 0: No error
- s = 1: Error

Model Checking: "Harder" Off-by-N Error

```
Memory assumption: for i in [0:s-2] do array(a, s) !a[i+2]
```

Which bounds should we choose for s?

Model Checking: "Harder" Off-by-N Error

```
Memory assumption: for i in [0:s-2] do array(a, s) !a[i+2]
```

Which bounds should we choose for s?

- s = 0: No error
- s = 1: No error
- s = 2: Error

Model Checking: No Off-by-N Error

```
Memory assumption: for i in [0:s-1] do array(a, s) !a[i]
```

Which s can convince us?

Model Checking: No Off-by-N Error

```
Memory assumption: for i in [0:s-1] do array(a, s) |a[i]|
```

Which s can convince us?

- s = 0: No error
- s = 1: No error
- s = 2: No error \Rightarrow Which size bound is large enough?
- s = 3: No error

- Finite state transition system T
- Prove property GpG \approx globally $\approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k Gp$

- Finite state transition system T
- Prove property GpG \approx globally $\approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k Gp$

$$T \models_0 \mathsf{G} p$$

- Finite state transition system T
- Prove property GpG \approx globally $\approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k Gp$

$$T \models_1 \mathsf{G} p$$

- Finite state transition system T
- Prove property Gp G \approx globally \approx p holds in every state
- Approach: Prove $\mathbf{G}p$ for all paths up to length k $T \models_k \mathbf{G}p$

 $T \models_2 \mathbf{G}p$

When should we stop?

• k is completeness thresholds (CT) iff

$$T \models_k \phi \Rightarrow T \models \phi$$

• For specific ϕ : Can over-approximate CT via of key props of T

• k is completeness thresholds (CT) iff

$$T \models_k \phi \Rightarrow T \models \phi$$

- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = \mathrm{G}p$ we know $\mathrm{CT}(T,\mathrm{G}p) = \mathrm{diameter}(T)$ (longest distance between any states)

diameter(T) = 5

 $oldsymbol{k}$ is completeness thresholds (CT) iff

$$T \models_k \phi \Rightarrow T \models \phi$$

- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = \mathrm{G}p$ we know $\mathrm{CT}(T,\mathrm{G}p) = \mathrm{diameter}(T)$ (longest distance between any states)

diameter(T) = 5

• k is completeness thresholds (CT) iff $T \models_k \phi \implies T \models \phi$

- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = \mathrm{G}p$ we know $\mathrm{CT}(T,\mathrm{G}p) = \mathrm{diameter}(T)$ (longest distance between any states)

diameter(T) = 5

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be ∞

$$diameter(T) = \infty$$

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be ∞

Our Approach

Analyse program's *verification conditions* instead of transition system

Only source for memory errors

Memory assumption: for i in [L : s-R] do array(a, s) !a[i+Z]

No need to check

Memory assumption: for i in [L : s-R] do array(a, s) !a[i+Z]

Memory assumption: for i in [L : s-R] do array(a, s) !a[i+Z]

 $a[L+Z] \dots a[s-R+Z]$ allocated? $\iff 0 \le L+Z \land A -R+Z < ?$ $\iff 0 \le L + Z \land -R + Z < 0$?

No $s^+ \Rightarrow$ Can check any $s^+ \ge L + R$

Memory assumption: for i in [L : s-R] do array(a, s) !a[i+Z]

Completeness Thresholds

- Program variable x with domain X
- Specification $\forall x \in X.Spec(c)$

Completeness Thresholds

- ullet Program variable x with domain X
- Specification $\forall x \in X.Spec(c)$
- Subdomain $Q \subseteq X$ is a CT for x in $\forall x \in X$. Spec(c) iff $\forall x \in Q$. $Spec(c) \Rightarrow \forall x \in X$. Spec(c)
- For us: CT are subdomains, not depths

Verification Conditions

• Logical formula vc is VC for any spec Spec(c) iff

$$\models vc \Rightarrow \models Spec(c)$$

- Can verify VC instead of program
- In general: VCs are over-approximations, i.e., possible that $\not\vdash vc$ but $\models Spec(c)$

How to Prove CTs

• Generate VC: $Spec(c) \implies \forall x \in X. \ vc(x)$

How to Prove CTs

• Generate VC: $Spec(c) \implies \forall x \in X. \ vc(x)$

• Identify subdomain $Y \subseteq X$ where choice $x \in Y$ does not influence validity of vc(x)

$$\left(\models vc(x) \iff \models vc' \text{ with } x \notin \text{free}(vc') \right)$$

 \implies Found CT: $(X \setminus Y) \cup \{y\}$ (for any choice of $y \in Y$)

Proving CT in Action

Proving CT in Action

Proving CT in Action

```
\forall c_0 := \forall s. \ \operatorname{array}(a, s) \to \forall i \in \{L, ..., s - R\} \ . \ a[i + Z] \ \text{alloc}
```

Range L, ..., s-R empty?

 $vc_0 \equiv \forall s^- \dots \rightarrow \forall i \in \emptyset \dots$

■ True

$$\forall c_0 := \forall s. \ \mathrm{array}(a,s) \to \forall i \in \{L,...,s-R\} \ . \ a[i+Z] \ \mathrm{alloc}$$

Yes Simplify VC!
$$s^- < L + R$$

$$\text{VC } vc_0 := \forall \textbf{\textit{s}} . \ \text{array}(a,\textbf{\textit{s}}) \rightarrow \forall i \in \{\textbf{\textit{L}},...,\textbf{\textit{s}}-\textbf{\textit{R}}\} . \ a[i+\textbf{\textit{Z}}] \ \text{alloc}$$

No need to check

$$\text{VC } vc_0 := \forall s. \ \text{array}(a, s) \rightarrow \forall i \in \{L, ..., s-R\} \ . \ a[i+Z] \ \text{alloc}$$

No need to check

$$vc_0 \equiv \forall i. (L \leq i < s^+ - R) \rightarrow (0 \leq i + Z < s^+)$$

$$\forall c_0 := \forall s. \ \operatorname{array}(a, s) \to \forall i \in \{L, ..., s - R\} \ . \ a[i + Z] \ \text{alloc}$$

Yes Simplify VC! $s^- < L + R$

No need to check

Simplify VC! $\begin{aligned} & \text{No} \\ s^+ \geq L + R \end{aligned}$ $vc_0 &\equiv \forall i \cdot (L \leq i < -R) \rightarrow (0 \leq i + Z < -R)$ $&\equiv \forall i \cdot (L \leq i \rightarrow 0 \leq i + Z)$ $&\wedge (i \leq -R) \rightarrow i + Z < 0)$

⇒ Validity does not depend on size

$$\text{VC } vc_0 := \forall \textbf{\textit{s}}. \ \text{array}(a,\textbf{\textit{s}}) \rightarrow \forall i \in \{\textbf{\textit{L}},...,\textbf{\textit{s}}-\textbf{\textit{R}}\} \ . \ a[i+\textbf{\textit{Z}}] \ \text{alloc}$$

No need to check

Can check for any
$$s^+ > L + R$$

$$\forall c_0 := \forall s. \ \operatorname{array}(a, s) \to \forall i \in \{L, ..., s - R\} \ . \ a[i + Z] \ \text{alloc}$$

Mem spec + program

Precondition

Complex code not mentioning a, s

bubble_sort(a)

Select element

Complex code not mentioning a, s

Postcondition

```
{ array(a, s) * F }
  if s > B then
    not_sorted := true;
    while not_sorted do
      not_sorted := false;
      for i in [L:s-R] do
        if a[i+1] < a[i] then
           not_sorted := true;
          tmp := a[i];
          a[i] := a[i+1];
          a[i+1] := tmp;
    r := a|Y|
{ array(a, s) * F }
```

Precondition

Complex code not mentioning a, s

bubble_sort(a)

Select element

Complex code not mentioning a, s

Postcondition

```
{ array(a, s) * }
  if s > B then
    not
                -true;
    while
                -rided do
      not
                   Talse;
      for i in [L:s-R] do
        if a[i+1] < a[i] then
                       True;
{ array(a, s) *}
```

```
Precondition

Complex cor gentioning a, s
```

bubble_sort(a)

Select element

Complex cor gentioning a, s

Postcondition

```
{ array(a, s) }

if s > B then

for i in [L : s-R] do

if a[i+1] < a[i] then

a[i];

a[i] := a[i+1];

a[i+1];

a[Y]

{ array(a, s) }
```



```
{ array(a, s) }

if s > B then

for i in [L : s-R] do

a[i+Z]
a[Y]

{ array(a, s) }
```

Scalability CT Combinators

Scalability CT Combinators

Scalability

Follow AST

Scalability

Follow AST

Scalability

Follow AST


```
{ array(a, s) }

if s > B then

for i in [L : s-R] do

a[i+Z]

a[Y]

{ array(a, s) }
```

```
{ array(a, s) }

if s > B then

for i in [L : s-R] do

a[i+Z]

a[Y]

{ array(a, s) }
```



```
if s > B
{ array(a, s) }
 if s > B then
                                                    \{s \ge L + R; \ s \le Y\}
    for i in [L:s-R] do
     a[i+Z]
    a[Y]
 array(a, s) }
                                               for i in [L:s-R]
                                                      a[i+Z]
```

```
\begin{cases} s > B & \land s \ge L + R; \\ s > B & \land s \le Y \end{cases}
{ array(a, s) }
  if s > B then
                                                                          \left\{ s \ge L + R; \ s \le Y \right\}
     for i in [L:s-R] do
        a[i+Z]
     a[Y]
 array(a, s) }
                                                                   for i in [L:s-R]
                                                                             a[i+Z]
```

Generalisation

Memory Safety

Arbitrary Correctness Property ϕ

Theory

- What are CTs?
- Describe behaviour
- Extraction approach

Practice

- Obtain CT
- Scale

Generalisation

Memory Safety Arbitrary Correctness Property ϕ Theory What are CTs? Describe behaviour Extraction approach ϕ -specific relationship: program \leftrightarrow VC **Practice** Obtain CT Scale

Generalisation

Memory Safety Arbitrary Correctness Property ϕ Theory What are CTs? Describe behaviour Extraction approach Requires "local" ϕ **Practice** Obtain CT Scale

Generalising CT Theory

• Correctness ~ arbitrary quantified predicate $\nabla x \in X$. ϕ with $\nabla \in \{ \forall, \exists \}$

Generalising CT Theory

- Correctness ~ arbitrary quantified predicate $\nabla x \in X$. ϕ with $\nabla \in \{ \forall, \exists \}$
- Approach unchanged: Extract CT from vc

Generalising CT Theory

- Correctness ~ arbitrary quantified predicate $\nabla x \in X$. ϕ with $\nabla \in \{ \forall, \exists \}$
- Approach unchanged: Extract CT from vc

Challenge: Soundness (also for memory safety)

$$\models \forall x \in \mathbb{N}. false$$

$$\Rightarrow \forall x \in \mathbb{N} . \ x = 5$$

$$\models \forall x \in \mathbb{N}. false$$

Generalising bounded proof sound

$$\models \forall x \in \{5\}$$
. false

$$\models \forall x \in \mathbb{N} . x = 5$$

$$\models \forall x \in \mathbb{N}. false$$

Generalising bounded proof sound

$$\models \forall x \in \{5\}$$
. false

$$\forall x \in \mathbb{N} . x = 5$$

$$\models \forall x \in \{5\} . x = 5$$

Must limit over-approximation

Limited Over-Approximation

- VC vc is precise for x in ϕ iff vc captures influence of x on correctness ϕ
- vc may over-approximate for other variables

Precise VCs

• VC vc is precise for x in ϕ iff

$$\forall v. \left(\models \phi[x \mapsto v] \Rightarrow \models vc[x \mapsto v] \right)$$

Intuition: vc does not over-approximate wrt. x

Precise VCs

• VC vc is precise for x in ϕ iff

$$\forall v. \left(\models \phi[x \mapsto v] \Rightarrow \models vc[x \mapsto v] \right)$$

Intuition: vc does not over-approximate wrt. x

• Q is CT $vc \land vc$ is precise $\Rightarrow Q$ is CT ϕ

Soundness

Known Sound Setting

- ϕ : Memory safety
- ullet Traverse (linear) data structure D, e.g., array, list
- ullet CT for size of D
- ullet D: stable memory layout

Outlook: Plans & Challenges

Plans

- Demo scalability: Complex programs & data, e.g., trees
- Evaluate CT's impact on runtime:
 - ⇒ Case study: FreeRTOS' TCP stack

Outlook: Plans & Challenges

Plans

- Demo scalability: Complex programs & data, e.g., trees
- Evaluate CT's impact on runtime:
 - ⇒ Case study: FreeRTOS' TCP stack

Challenge: Automation

- Program reduction: Property-specific slicing
- Pattern recognition

Outlook: Increase Trust in BMC

Turn bounded into unbounded proof

Outlook: Increase Trust in BMC

- Turn bounded into unbounded proof
- Shift resources to critical bounds

Outlook: Increase Trust in BMC

- Turn bounded into unbounded proof
- Shift resources to critical bounds

Conclusion

- First generalisation of CTs to infinite state systems
- Connection between bounded & unbounded proofs in program verification
- Foundational research but potential for integration into BMC