Team ID	PNT2022TMID19412
Team Members	P Gokul krishnan,
	P Balamurugan,
	M Tamilarasan,
	K Srijayakanth
Team Members	P Balamurugan, M Tamilarasan,

Machine Learning Based Vehicle Performance analyser

Documentation

Table of Contents

1. INTRODUCTION	3
1.1 Project Overview	3
1.2 Purpose	
2. LITERATURE SURVEY	
2.1 Existing Problem	
2.2 References	
3. IDEATION & PROPOSED SOLUTION	4
3.1 Empathy Map Canvas	
3.2) Ideation & Brainstroming	
3.3 Proposed Solution	8
3.4 Proposed Solution fit	9
4. REQUIREMENT ANALYSIS	10
4.1 Functional requirement	
4.2 Non-Functional requirements	10
5. PROJECT DESIGN	11
5.1 Data Flow Diagrams	
5.2 Solution & Technical Architecture	
5.3 User Stories	12
6. PROJECT PLANNING & SCHEDULING	
6.1 Sprint Planning & Estimation	13
6.2) Sprint Delivery Schedule	
6.3 Reports from JIRA	
7. CODING & SOLUTION	16
7.1 Feature 1	
7.2 Feature 2	
8. TESTING	
8.1 Test Cases	17
8.2 User Accepting Testing	
9. RESULTS	
	21
10. ADVANTAGES & DISADVANTAGES	
11. CONCLUSION	
12. FUTURE SCOPE	
13. APPENDEX	
Source Code	23
Github Link	26
Demo video Link:	26

1. INTRODUCTION

1.1 Project Overview

The automotive industry is extremely competitive. With increasing fuel prices and picky consumers. Automobile makers are constantly optimizing their processes to increase fuel efficiency. So we can help the predicting processor done easier by developing the application.

1.2 Purpose

The purpose of this project is to give the customer a portal to predict the performance of the vechicle (miles per gallon). Now a days fuel prices are increasing and atuomobile industries try to optimize the vehicle for running them using less fuel. This application help them to predict the performance of the vehicle.

2. LITERATURE SURVEY

2.1 Existing Problem

It is hard to predict the performance of the vehicle. It takes us a lot of time and hard work to predict the performance. if the vehicle designing engineer able to predict the performance of vehicle with less amount of the time, It make the Engineer design and testing process easier for them.

2.2 References

https://www.researchgate.net/publication/273951090_Simulation_for_prediction_of_ve hicle_efficiency_performance_range_and_lifetime_A_review_of_current_techniques_and their applicability to current and future testing standards

https://www.etssolution-asia.com/blog/vehicle-performance-engineering

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2) Ideation & Brainstroming

GOKUL KRISHNAN P

SELF DRIVING AI USER FRIENDLY

FUEL TANK CAPACITY

ENGINE TYPE(PETROL/ DIESEL)

TAMILARASAN M

FEEDBACK CAN BE GIVEN BY THE CUSTOMER

ENGINE HORSE POWER

CAR MILEAGE PERMORMANCE CAR WEIGHT AND STURCTURE (OR) DIMENSION

BALAMURUGAN P

GEAR AUTOMATIC (OR) MANUAL

SRIJAYAKANTH K

ACCELERATION OF THE CAR NO OF CYCLINDER LOCAL MARKET REQUIREMENT

CAR MATERIAL

INTEGRATED SAFETY POWER TRAIN INNOVATION

DRIVING DYNAMIC VEHICLE ENERGY MANAGEMENT

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

P

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	Vehicle user or manufacture trying to
	solved)	analyse the performance of the vehicle
		But, it is hard to analysis. Because it
		needs a knowledge of the engineering
		and vehicle, it takes time to do it
		manually, which makes users feel fear,
		worried about the vehicle
2.	Idea / Solution description	Dataset of the Vehicle performance need to
		be collected and need to analyse the data.
		Based on the data analysis Machine
		Learning Model should be created and
		need to test the accuracy of the model and
		the error of the model.
3.	Novelty / Uniqueness	Using this Machine Learning project we can
		develop the app in that app we can
		frequently update the dataset and train the
		model, So the user can get the accurate
		data
4.	Social Impact / Customer	The Social impact for this product is good,
	Satisfaction	It make people life easier by perform
		analyse of the vehicle
5.	Business Model (Revenue Model)	Alige Model, MVP (Minimum Viable
		Product) Model
6.	Scalability of the Solution	It can be further developed to provide app
		integration, We can further develop the
		project to bring more accuracy.

3.4 Proposed Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Collecting the details about the vehicle	Collecting Miles per galon, number of cylinder, displacement, horsepower, weight, acceleration, model_year, car name
FR-2	Launch the website	launch the website in the browser and enter the collected values and click submit
FR-3	View the result	Then the user can able to view the performance score
FR-4	Taking decision	By the result user can take decision to give the service to the vehicle or not based on the performance score

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	It is hard for the people does not know about the
		terms used for the car.
		It should be easy to understand the website
NFR-2	Security	User data is completely secure. It will not get
		stored in the server
		Https provides good encryption to the data
NFR-3	Reliability	The website is reliable.
		It has to be more accuracy
NFR-4	Performance	The page load time, and the ML model predicting
		time should be with in 5sec
NFR-5	Availability	The user can able to use the website 24hours
NFR-6	Scalability	Can be scalable up to 2,00,000 ML product request
		predicting at a second
		Can be scaled to used database to track the
		previous previous statistics

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requirement	Story	Task	criteria		
	(Epic)	Numb				
		er				
Customer(w	Visiting	USN-1	As a user, I	I can access	High	Sprint-4
eb user)	Webpage		can able to	the website		
			view the			
			website using			
			the good			
			domain name			
	Design	USN-2	As a user, I	I can submit	High	Sprint-1
			can able to	the data to the		
			Enter the data	server to preict		

		of the vehicle			
Result	USN-3	As a user, I can get the predicted performance of the vehicle using the given data	I get the vehicle performance value	High	Sprint-2
Design	USN-4	As a user, I want the good user experience.	I get easy understanding of website	Low	Sprint-3
Result	USN-5	As a user, I want the website is fast	I get results faster	Low	Sprint-3
Result	USN-6	As a user, I expect the prediction is highly accuracy.	I get most high accrued value	Medium	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-4	Visiting Webpage	USN-1	As a user, I can able to view the website using the good domain name	10	High	Cibi P

Sprint-1	Design	USN-2	As a user, I can 20 I able to Enter the data of the vehicle		High	Cibi P
Sprint-2	Result	USN-3	As a user, I can get the predicted performance of the vehicle using the given data		Cibi P	
Sprint-3	Design	USN-4	As a user, I want the good user experience.	10	Low	Niyas Khan M
Sprint-3	Result	USN-5	As a user, I want the website is fast	10	Low	Narasimm an R
Sprint-4	Result	USN-6	As a user, I expect the prediction is highly accuracy.	10	Medium	Siva Prakash T

6.2) Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA

7. CODING & SOLUTION

7.1 Feature 1

Created a GUI based interface for the easy interation of the user using the HTML, CSS, PythonFlask. Code in Appendex

Output

7.2 Feature 2

implementation of the Model integrated with HTML and CSS in Appendex

8. TESTING

8.1 Test Cases

Input dataset:

```
array([[-0.76894131, -0.6338073 , -0.6601792 , -0.55841396, 0.37006707,
        -0.38798451, -0.75260027],
       [ 1.64342359, 2.07850256, 3.38793037, 1.59935958, -2.34958594,
        -0.64240058, -0.75260027],
       [-0.76894131, \ -0.50697267, \ -0.55222961, \ -0.74265735, \ -1.53369004,
        1.64734406, -0.75260027],
       [ 0.43724114, 0.37111326, -0.25536825, 0.40177755, 0.17580614,
        -0.13356844, -0.75260027],
       [\ 1.64342359,\ 1.15163409,\ 0.68919065,\ 1.08206084,\ -0.05730697,
         0.88409585, -0.75260027],
       [-0.76894131, -0.86796355, -1.06499016, -1.03791919, 0.25351051,
        1.39292799, -0.75260027],
       \hbox{$[-0.76894131, -0.87772006, -0.714154 , -0.73675211, -0.40697665,}
        -0.38798451, 0.47613487],
       \hbox{$[-0.76894131, -0.99479818, -1.01101537, -1.28593914, 0.68088456,}\\
         1.13851192, 0.47613487],
       [-0.76894131, -0.87772006, -1.01101537, -1.10878203, 0.33121488,
         0.37526371, 1.70487001],
       [ \ 0.43724114, \ 0.1272005 \ , \ -0.52524222, \ -0.39779152, \ 0.17580614,
        -1.4056488 , -0.75260027],
       [-0.76894131, -1.08260677, -1.41582632, -1.50561395, 0.37006707,
       -0.38798451, 1.70487001],
[ 1.64342359, 1.59067705, 2.03856051, 1.71982642, -1.33942911,
         0.12084763, -0.75260027],
       [ \ 0.43724114, \ 0.61502602, \ -0.714154 \ , \ 0.76790224, \ 2.11841544,
         0.12084763, -0.75260027],
       [-0.76894131, -0.41916407, -0.22838085, -0.30566982, -0.64008976,
        1.64734406, 1.70487001],
       [-0.76894131, -0.64356381, 0.2304049, -0.81470124, -1.18402036,
        -1.4056488 , 0.47613487],
       [\ 1.64342359,\ 1.27846872,\ 1.2289386\ ,\ 0.6049177\ ,\ -1.76680315,
        -1.4056488 , -0.75260027],
       [-0.76894131, -0.87772006, -0.714154 , -0.86902942, 0.09810177,
        1.13851192, 0.47613487],
       [ 1.64342359, 1.59067705, 0.55425367, 1.15292368, 0.71973674,
         0.88409585, -0.75260027],
       [-0.76894131, -0.87772006, -0.44428003, -0.93753017, -0.40697665,
        -1.15123272, 1.70487001],
       [-0.76894131, -0.87772006, -0.714154 , -0.86666732, -0.56238539,
        0.37526371, 0.47613487],
       [\ 1.64342359,\ 1.27846872,\ 0.82412764,\ 1.07025036,\ -0.13501135,
         0.88409585, -0.75260027],
       [-0.76894131, -0.72161589, -0.25536825, -0.76273515, -0.01845479,
        -0.89681665, 1.70487001],
       [-0.76894131, -1.13138933, -1.06499016, -1.35916408, 1.34137172,
        -1.15123272, 1.70487001],
       [-0.76894131, -0.83869402, -0.57921701, -0.85249475, -0.09615916,
         0.12084763, 0.47613487],
       [-0.76894131, \ -0.77039845, \ -0.93005317, \ -0.80170972, \ \ 0.52547581,
        1.64734406, 1.70487001],
       [-1.37203254,\ -1.14114584,\ -0.20139345,\ -0.70132069,\ -0.79549851,
        -0.89681665, 1.70487001],
```

```
[-0.76894131, \ -0.99479818, \ -0.93005317, \ -1.15602393, \ \ 0.48662363,
  0.37526371, 1.70487001],
\hbox{[-0.76894131, -0.30208595, -0.33633044, -0.40015361, -0.40697665,}\\
  1.64734406, -0.75260027],
[-0.76894131, -0.45819012, -0.33633044, -0.06946035, 0.33121488,
 1.64734406, -0.75260027],
[-0.76894131, -0.7313724, -0.44428003, -0.33519601, 1.18596297,
 1.64734406, -0.75260027],
[\ 1.64342359,\ 1.91264189,\ 1.76868654,\ 0.75491072,\ -2.15532501,
 -1.4056488 , -0.75260027],
[-0.16585009, -0.03866017, -0.74114139, 0.71593615, 1.76874576,
  0.88409585, 0.47613487],
[ 1.64342359, 1.60043356, 1.28291339, 1.5249536 , -1.06746381,
  0.12084763, -0.75260027],
[-0.76894131, -0.45819012, -0.49825482, -0.1580389, 0.0203974]
 1.64734406, -0.75260027],
[ 1.64342359, 1.27846872, 1.2289386 , 1.85919001, -0.40697665,
 -0.13356844, -0.75260027],
[-0.76894131, -0.78015496, -0.49825482, -0.54306034, -0.01845479,
  0.12084763, 0.47613487],
[-0.76894131, -0.64356381, 0.14944271, -0.31157506, -0.60123758,
 -0.64240058, 0.47613487],
[ 0.43724114, 0.42965232, 0.14944271, 0.13604189, -0.21271572,
 -0.13356844, -0.75260027],
[\ 0.43724114,\ 0.37111326,\ 0.01450573,\ 0.60846084,\ -0.01845479,
 -1.15123272, -0.75260027],
[-0.76894131, -0.72161589, -0.25536825, -0.6517167, -0.21271572,
 -1.4056488 , 1.70487001],
[\ 1.64342359,\ 1.91264189,\ 2.03856051,\ 2.39892865,\ -1.57254222,
 -1.15123272, -0.75260027],
[ 0.43724114, 0.43940883, -0.39030523, 0.33800099, 0.64203237,
 0.62967978, -0.75260027],
[-0.76894131, -0.86796355, -0.98402797, -1.03791919, 1.14711079,
 0.37526371, 1.70487001],
\hbox{$[-0.76894131,} -0.6338073 , -0.49825482, -0.82414962, 0.37006707, \\
 -0.89681665, -0.75260027],
[ 1.64342359, 2.07850256, 1.76868654, 2.15208975, -1.37828129,
 -1.15123272, -0.75260027],
[-0.76894131, -0.93625912, -1.01101537, -1.26822343, -0.67894195,
  1.13851192, 1.70487001],
[ 1.64342359, 1.60043356, 1.44483777, 1.69974861, -0.98975944,
 -0.64240058, -0.75260027],
[-0.76894131, -0.3508685 , -0.39030523, -0.29031621, 0.37006707,
 1.13851192, -0.75260027],
\hbox{[-0.76894131, -0.86796355, -0.39030523, -0.77808877, -0.01845479,}\\
 -0.64240058, 0.47613487],
[ 1.64342359, 2.36144136, 2.52433366, 2.39538551, -1.57254222,
 -0.64240058, -0.75260027],
[-0.76894131, -0.3508685 , -0.33633044, 0.1313177 , 1.92415451,
 1.64734406, -0.75260027],
[-0.76894131, -1.05333724, -0.93005317, -1.00366882, 1.53563265,
 -1.15123272, 0.47613487],
[ \ 0.43724114, \ 0.61502602, \ -0.17440605, \ 0.71003092, \ 1.34137172,
  0.37526371, -0.75260027],
\hbox{$[-0.76894131, -0.45819012, -0.44428003, -0.03993416, 0.68088456,}\\
  0.88409585, -0.75260027],
[ 0.43724114, 0.42965232, 1.63374955, 0.61554713, -0.83435069,
 0.62967978, -0.75260027],
[ 1.64342359, 2.61511063, 3.25299338, 1.77297355, -2.15532501,
 -1.4056488 , -0.75260027],
[-0.76894131, \ -1.12163282, \ -0.95704057, \ -1.54813166, \ \ 0.95284986,
 -1.15123272, 1.70487001],
[ 0.43724114, 0.1272005 , -0.52524222, 0.04864439, 0.09810177,
  0.62967978, -0.75260027],
[-0.76894131, -0.87772006, -0.44428003, -0.76155411, 1.34137172,
 -0.64240058, 1.70487001],
```

```
[-0.76894131, -0.87772006, -0.33633044, -0.75092468, 0.564328]
 -0.89681665, 1.70487001],
[ \ 0.43724114, \ 0.37111326, \ -0.12043126, \ 0.59783142, \ 0.64203237,
  0.62967978, -0.75260027],
[ 0.43724114, 0.43940883, -0.12043126, -0.15921995, -0.21271572,
 -0.64240058, -0.75260027],
[-0.76894131, -0.3508685, -0.39030523, -0.22299651, 0.95284986,
 1.64734406, -0.75260027],
[\ 1.64342359,\ 1.12236455,\ 0.95906463,\ 0.62027132,\ -1.96106408,
-1.4056488 , -0.75260027],
[ 0.43724114,  0.61502602, -0.12043126,  0.48681296,  0.564328 ,
 -0.38798451, -0.75260027],
[-0.76894131, -0.51672918, -0.39030523, -0.25134164, -0.01845479,
  1.13851192, 1.70487001],
[-0.76894131, -0.65332032, -0.47126742, 0.06517905, 1.53563265,
 -0.89681665, 0.47613487],
[-0.76894131, -0.78015496, -0.79511619, -0.84895161, -0.40697665,
  1.64734406, 1.70487001],
\hbox{[-0.76894131, -0.86796355, -0.25536825, -1.03673814, 1.34137172,}\\
 -1.15123272, -0.75260027],
[ 0.43724114, 0.6930781 , 0.14944271, 0.04510125, -0.79549851,
 -1.15123272, -0.75260027],
[-0.76894131, -0.93625912, -0.93005317, -1.14421345, 1.92415451,
 -1.15123272, -0.75260027],
[ 0.43724114, -0.23379038, 0.77015285, 0.57421047, 0.09810177, 
  0.62967978, 0.47613487],
[ 1.64342359, 0.71259112, 0.14944271, 1.34189126, 1.34137172,
  0.37526371, -0.75260027],
[\ 1.64342359,\ 1.27846872,\ 1.2289386\ ,\ 1.81076706,\ -0.79549851,
 -0.38798451, -0.75260027],
[-0.76894131, -0.69234636, -0.79511619, -0.90446084, -0.01845479,
 -0.64240058, 0.47613487],
[ 0.43724114, 0.1272005, -0.39030523, -0.05764987, 0.564328 ]
 -0.38798451, -0.75260027],
[-0.76894131, -0.30208595, \ 0.01450573, -0.14622843, -0.44582883,
  1.13851192, -0.75260027],
[-0.76894131, -0.6338073, -0.49825482, -0.62455261, 0.17580614,
 -0.89681665, -0.75260027],
\hbox{[-0.76894131, -0.70210287, -0.25536825, -0.27141945, -0.21271572,}\\
 -0.13356844, 0.47613487],
[ 1.64342359, 1.12236455, 0.95906463, 1.4375561 , -0.60123758,
 -0.38798451, -0.75260027]])
```

Predicted Output:

8.2 User Accepting Testing

Input:

Output:

9. RESULTS

9.1 Performance Metrics

Model Evaluation

10. ADVANTAGES & DISADVANTAGES

Advantages:

- It made easy to predict the performance of the Vehicle
- It can we accessible every one who want to predict the performance of the vehicle using the internet

Disadvantages:

- Need to Increase the Accuracy of the Project
- Cost for deploying in IBM CLOUD for permenently
- In Program API Key is Publicaly available, it may give rise to the security risk

11. CONCLUSION

The automotive industry is extremely competitive. With increasing fuel prices and picky consumers. Automobile makers are constantly optimizing their processes to increase fuel efficiency. The performance analysis of the car is based on the various parameters. These are the factors on which the health of the car is analyzed ,improved to gain the competitive advantage. This application will solve the problems in evaluation of the vehicle

12. FUTURE SCOPE

- Developing the CSS and Animation of the Website
- Developing the High Accuracy Model
- Developing the Code to make API key highly secure

13. APPENDEX

Source Code

Code:

index.html

```
<IDOCTYPE html>
<html>
<html

<html>
<html

<h
```

main.css

```
body {
    background-color: #E97777;
    padding: 0;
    margin: 0;
    box-sizing: border-box;
    width: 100%;
    background-color: #274472;
    margin: 0;
    height: 60px;
    margin: 0;
    position: absolute;
    top: 10px;
    left: 50px;
    color: #82CD47;
    width: max-content;
    background-color: #82CD47;
    padding: 50px;
    border-radius:20px;
.field-name {
    padding: 10px 0;
    margin: 0;
    font-size: 20px;
    font-weight:bolder;
    padding: 10px 0;
```

```
display: flex;
    align-items: center;
    justify-content: center;
    height: 92vh;
.field input[type=number]{
    width: 200px;
    background-color:#274472;
    font-size:20px;
    padding:5px 10px;
    color:white;
    border-radius:20px;
   border:none;
.submit-btn{
    font-size:20px;
    padding: 10px 30px;
    background-color: #E97777;
    border-radius:20px;
    border:none;
    display:block;
   margin: 20px auto;
.result{
    text-align:center;
    font-size:30px;
    font-weight:bolder;
    padding: 20px;
    color:white;
.answer{
    color:#274472;
```

App.py

Github Link

https://github.com/IBM-EPBL/IBM-Project-31806-1660205332