Lecture 08.1 - Information Infrastructures - Emergence and Evolution Information Infrastructures - Emergence and Evolution

Ole Hanseth - E-Health in Norway

Trends in Digital Infrastructure

- · Rapid increase in solutions:
 - Aker BP: 700Nordea: 2000Equinor: 3000Helse Sør-Øst: 5000+
- Installed Base Evolution:
 - IS development resembles geology: digital "sand" becomes "rock" or "concrete" over time.
 - · Layers upon layers of technologies and solutions.

From Systems to Ecosystems to Infrastructures

- Infrastructure:
 - A shared resource for a community/organization.
 - Not a tool, but a platform: e.g., electricity, telecom, railroads, Internet.
 - Built upon an installed base: evolves incrementally and is path-dependent.
- Ecosystems:
 - · Exist between hierarchy and markets.
 - · Mix of governance structures, forms and functions.

🕌 Digital Transformation of Industries

- Airline Industry: Booking systems (1950 s)
- Banking: SWIFT (1960 s), Vipps, shopping/payment platforms
- · Media, Advertising, Shipping: All undergoing digital transition
- Shift: From organization-level change to industry-level transformation

III Example: Programmatic Advertising

• Explosive growth of AdTech companies since early 2000 s.

Socio-Technical Regime

A regime is a rule-set embedded in technology, practices, institutions, and infrastructures.

- Involves:
 - Engineering practices
 - Product standards and processes
 - · Institutional and social structures
- Used in transition studies (e.g., sailing → steam, carbon → renewables)

Key Levels:

- 1. Niche
- 2. Regime
- 3. Landscape

Core Concepts

- Architecture
- Governance structures
- Process models: Agile, waterfall
- · Conway's Law / Mirroring Hypothesis:
 - · System design mirrors organizational structure

Regime Strategy

- Strategies can be deliberate or emergent
- Especially relevant in complex infrastructures with many actors

Example: Norwegian Health Sector

· Who sets strategy? How does it evolve? Who's in control?

% What is an Information Infrastructure?

"A shared, evolving, open, standardized, and heterogeneous installed base." – Hanseth "Fractionally coherent object" – Grisot & Law

- · Characterized by multiplicities:
 - · Connected, layered, overlapping, criss-crossing infrastructures
 - · Each regime adds to complexity

E-Health in Norway: Geology of Infrastructures

Timeline of Dominant Regimes:

Period	Regime Characteristics
1970–1990	Developer/user constellations, in-house innovation
1990–2002	Standardization committees, formal standards
2002–2008	Regional IT management, application standards
2008–2012	IT architects, service-oriented architecture (SOA), RBCWS
2012–2019	Top-down control, consolidation, "One citizen – one record"
2019-Now	Ecosystem approach, post-Akson failures

Evolution = Interaction of Regimes + Landscape

Contributing Factors:

- Technological innovation: Mainframes → Cloud, IoT, Blockchain
- Medical innovation: Genetic tech, mRNA, etc.
- Organizational change
- Destabilization leads to new regime emergence and eventual (re) stabilization

Key Regime Transitions

• Stand-alone apps

- Developer/user-driven innovation
- · Loosely coupled systems

1990–2002:

- Destabilization: Redundancy, inconsistency, rise of comm tech
- Emergence: Telenor, Fürst Lab, ISO standards
- Stabilization: Health Ministry + KITH-led standardization

2002–2008:

- · Destabilization: Hospital system nationalized
- Emergence: Regional IT management
- Stabilization: Governance (Y-model), framework contracts

2008–2012:

- Destabilization: National ICT coordination
- Emergence: IT architects propose SOA & RBCWS
- Stabilization: Projects launched in multiple regions

1 2012–2019:

- Destabilization: KA project failure
- Emergence: Centralized control via Parliament
- · Stabilization: Digital Renewal program; Epic introduced

2019–Present:

- · Destabilization: Epic fails, Akson scandal, outsourcing backlash
- Emergence: Move toward ecosystem model
- Stabilization: Ongoing, ecosystem logic replacing "big projects"

Regime Dynamics

- Destabilization introduces new actors.
- · New actors bring new perspectives, reshaping the regime.
- Events act as triggers:
 - 1990: Telenor + ComTech → standardization
 - 2002: Govt takeover → regionalization
 - 2008: SOA/RBCWS proposal
 - 2012: Merge failure → centralization
 - 2019: Akson, outsourcing → ecosystems

☆ Installed Base Challenges

- Each regime embeds future problems:
 - 1990: Fragmentation
 - 1990–2002: Bureaucratic slowness
 - 2012–2019: Unmanageable complexity
- Not deterministic: Human agency and pragmatism still matter

Key Concepts Summary

Concept	Definition
Infrastructure	Shared, evolving technical base
Regime	Stable configuration of tech, practices, and actors
Destabilization	Disruption due to new tech, actors, events
Installed Base	Accumulated historical systems shaping present/future

Ecosystem	Decentralized, multi-actor collaboration model	
Concept	Definition	

Final Thoughts

- Information infrastructures evolve organically—not just by design.
- Transitions happen through interaction between technologies, actors, and external events.
- A socio-technical lens is essential to understanding digital transformations.
- Today's e-health infrastructures are shaped by a long history of regimes, and now lean toward ecosystem-based models.