Technical Annex

1 Full Results

The complete table of results of explanation-redundancy evaluation is shown in Table 4 and the complete table of results of runtime assessment for computing AXp's are reported in Table 5. Besides, Table 1 summarizes results on path explanation redundancy for DTs included in representative bibliography on DTs, namely textbooks and surveys [15, 6, 17, 7, 8, 18, 4, 20, 3, 9, 26, 12, 1, 21, 11, 2, 22, 16, 24, 5, 25]. Table 2 shows results for DTs learned with recently proposed algorithm that specifically target the learning of optimal (and so indirectly *interpretable*) DTs, concretely [10, 13, 19] and also [23]. Table 3 shows results for DTs learned on more complex datasets (which are also publicly available).

References

- [1] E. Alpaydin. Introduction to machine learning. MIT press, 2014.
- [2] E. Alpaydin. Machine Learning: The New AI. MIT Press, 2016.
- [3] M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn. Guide to Intelligent Data Analysis How to Intelligently Make Sense of Real Data, volume 42 of Texts in Computer Science. Springer, 2010.
- [4] C. Bessiere, E. Hebrard, and B. O'Sullivan. Minimising decision tree size as combinatorial optimisation. In *CP*, pages 173–187, 2009.
- [5] M. Bramer. *Principles of Data Mining, 4th Edition*. Undergraduate Topics in Computer Science. Springer, 2020.
- [6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.
- [7] L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey. *Knowledge Eng. Review*, 12(1):1–40, 1997.
- [8] S. Džeroski and N. Lavrač, editors. Relational data mining. Springer, 2001.
- [9] P. A. Flach. Machine Learning The Art and Science of Algorithms that Make Sense of Data. CUP, 2012.
- [10] X. Hu, C. Rudin, and M. I. Seltzer. Optimal sparse decision trees. In *NeurIPS*, pages 7265–7273, 2019.

- [11] J. D. Kelleher, B. Mac Namee, and A. D'arcy. Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. 2020.
- [12] S. B. Kotsiantis. Decision trees: a recent overview. Artif. Intell. Rev., 39(4):261–283, 2013.
- [13] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. I. Seltzer. Generalized and scalable optimal sparse decision trees. In *ICML*, pages 6150–6160, 2020.
- [14] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. I. Seltzer. Generalized and scalable optimal sparse decision trees. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 6150-6160. PMLR, 2020.
- [15] B. M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593–623, 1982.
- [16] D. Poole and A. K. Mackworth. Artificial Intelligence Foundations of Computational Agents. CUP, 2017.
- [17] J. R. Quinlan. C4.5: programs for machine learning. Morgan-Kaufmann, 1993.
- [18] L. Rokach and O. Z. Maimon. *Data mining with decision trees: theory and applications*. World scientific, 2008.
- [19] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong. Interpretable machine learning: Fundamental principles and 10 grand challenges. *CoRR*, abs/2103.11251, 2021.
- [20] S. J. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Pearson Education, 2010.
- [21] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning From Theory to Algorithms. Cambridge University Press, 2014.
- [22] G. Valdes, J. M. Luna, E. Eaton, C. B. Simone II, L. H. Ungar, and T. D. Solberg. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. *Nature Scientific reports*, 6:37854, 2016.
- [23] S. Verwer and Y. Zhang. Learning optimal classification trees using a binary linear program formulation. In AAAI, pages 1625–1632, 2019.
- [24] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining. Morgan Kaufmann, 2017.
- [25] Z. Zhou. Machine Learning. Springer, 2021.
- [26] Z.-H. Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

DT Ref	D	#N	#P	%R	%C	%m	%M	%avg
[1, Ch. 09, Fig. 9.1]	2	5	3	33	25	50	50	50
[2, Ch. 03, Fig. 3.2]	2	5	3	33	25	50	50	50
[5, Ch. 01, Fig. 1.3]	4	9	5	60	25	25	50	36
[7, Figure 1]	3	12	7	14	8	33	33	33
[3, Ch. 08, Fig. 8.2]	3	7	4	25	12	50	50	50
[6, Ch. 01, Fig. 1.1]	3	7	4	50	25	33	33	33
[8, Ch. 01, Fig. 1.2a]	2	5	3	33	25	33	33	33
[8, Ch. 01, Fig. 1.2b]	2	5	3	33	25	33	33	33
[11, Ch. 04, Fig. 4.14]	3	7	4	25	12	50	50	50
[11, Sec. 4.7, Ex. 4]	2	5	3	33	25	50	50	50
[17, Ch. 01, Fig. 1.3]	3	12	7	28	17	33	50	41
[18, Ch. 01, Fig. 1.5]	3	9	5	20	12	33	33	33
[18, Ch. 01, Fig. 1.4]	3	7	4	50	25	33	33	33
[24, Ch. 01, Fig. 1.2]	3	7	4	25	12	50	50	50
[22, Figure 4]	6	39	20	65	63	20	40	33
[9, Ch. 02, Fig. 2.1(right)]	2	5	3	33	25	50	50	50
[12, Figure 1]	3	10	6	33	11	33	33	33
[15, Figure 1]	3	9	5	80	75	33	50	41
[16, Ch. 07, Fig. 7.4]	3	7	4	50	25	33	33	33
[20, Ch. 18, Fig. 18.6]	4	12	8	25	6	25	33	29
[21, Ch. 18, Page 212]	2	5	3	33	25	50	50	50
[26, Ch. 01, Fig. 1.3]	2	5	3	33	25	33	33	33
[4, Figure 1b]	4	13	7	71	50	33	50	36
[25, Ch. 04, Fig. 4.3]	4	14	9	11	2	25	25	25

Table 1: Results on path explanation redundancy for example DTs found in the literature. The table shows tree statistics namely, tree depth \mathbf{D} , number of nodes $\#\mathbf{N}$, test accuracy $\%\mathbf{A}$ and number of paths $\#\mathbf{P}$. The percentage of explanation-redundant paths is given as $\%\mathbf{R}$ while the percentage of data instances (measured for the *entire* feature space) covered by redundant paths is $\%\mathbf{C}$. Focusing solely on the explanation-redundant paths, a single AXp is extracted and the average (min. or max., resp.) percentage of redundant literals per path is denoted by $\%\mathbf{avg}$ ($\%\mathbf{m}$ and $\%\mathbf{M}$, resp.).

Dataset	Tool	D	#N	% A	#P	$\%\mathrm{R}$	%C	%m	$\%\mathbf{M}$	%avg
monk1	BinOCT OSDT	3 5	13 13	91 100	7 7	28 57	11 41	66 33	66 33	66 33
tic-tac-toe	BinOCT OSDT	4 5	15 15	77 83	8	75 75	75 37	33 25	33 60	33 43
compas	OSDT	4	9	67	5	60	37	33	33	33
monk2	CART GOSDT	6 6	31 17	69 73	16 9	62 55	22 48	20 16	66 40	33 31

Table 2: Additional results on path explanation redundancy in (optimal) DTs, trained with different training tools: BinOCT [23], CART [6], OSDT [10] and GOSDT [14], that have been presented in [10, 19]. The results for CART are solely included for completeness. Columns **D**, #**N**, %**A**, #**P**, %**R**, %**C**, %**m**, %**M** and %**avg** hold the same meaning in Table 1.

Dataset	Instance		DT		XP							
Dataset	Instance	D	#N	%A	$\overline{\mathbf{CP}}$	m	\mathbf{M}	avg	#PI			
	adult_015				16	8	8	8	2			
adult	adult_ 089	17	509	73	14	5	6	5.5	2			
	$adult_{-}190$				16	5	5	5	1			
	allhyper_0				14	4	5	4.6	6			
allhyper	$allhyper_1$	14	49	96	9	4	5	4.5	8			
	allhyper_4				14	4	5	4.6	6			
	ann-thyroid_3				40	5	6	5.6	3			
ann-thyroid	ann-thyroid_ 4	48	222	93	36	5	6	5.6	3			
	ann-thyroid_7				20	5	6	5.5	2			
	coil2000_045				10	2	4	3.8	39			
coil2000	coil2000_218	12	177	91	10	2	4	3.8	39			
	$coil2000_244$				10	2	4	3.8	30			
	fars_002				29	11	11	11	2			
fars	$fars_125$	60	9969	76	42	10	14	12.3	9			
	$fars_354$				48	9	9	9	1			
	kddcup_01				23	11	12	11.5	16			
kddcup	$kddcup_02$	29	269	99	23	11	12	11.5	16			
	kddcup_21				27	12	13	12.5	8			

Table 3: Samples of 6 real-world datasets highlighting computed AXp's in decision trees learned with ITI, that require deep DTs. For each dataset, the table displays 3 explained instances. Columns **D**, #N and %A denote, respectively, depth, number of nodes and accuracy of learned DT with ITI tool. Next, column **CP** reports the consistent path's length in the DT with the input instance. Then, columns **m**, **M** and **avg** report, respectively, the minimum size, maximum size and average length of the AXp's computed given the input instance. Finally, the number of AXp's is shown in column #PI.

Dataset					IA	I			ITI									
Dataset	D	#N	%A	#P	%R	%C	%m	%M	%avg	D	#N	%A	#P	%R	%C	%m	%M	%avg
IndiansDiabetes	6	33	67	17	35	2	20	25	21	21	67	60	34	38	22	20	33	26
adult allhyper	6 6	83	78 95	42 24	$\frac{33}{25}$	$\frac{25}{2.5}$	20 20	40 33	$\frac{25}{23}$	17 14	509 49	73 96	$\frac{255}{25}$	$\frac{75}{64}$	91 25	10 12	66 50	22 35
ann-thyroid	6	47 61	95 97	31	$\frac{25}{25}$	30	20	50	25 36	48	223	93	112	65	46	11	50 75	33 22
anneal	6	29	99	15	26	16	16	33	21	9	31	100	16	25	4	12	20	16
appendicitis	2	7	68	4	0	0	_	_	_	3	7	81	4	50	3	50	66	58
australian	6	45	61	23	17	8	20	33	23	7	33	82	17	35	51	16	33	26
auto	6	33	53	17	23	1	16	33	23	10	47	75	24	33	53	14	40	26
backache	4	17	72	9	33	39	25	33	30	3	9	91	5	80	87	50	66	54
balance bank	6	93 113	81 88	47 57	61 5	$\frac{41}{12}$	$\frac{25}{16}$	50 20	27 18	12 19	$105 \\ 1467$	81 86	53 734	50 69	62 64	$\frac{25}{7}$	50 63	26 27
banknote	3	9	67	5	20	0	66	66	66	35	71	54	36	83	2	33	50	43
biodegradation	5	19	65	10	30	1	25	50	33	8	71	76	36	50	8	14	40	21
biomed	3	9	66	5	20	1	50	50	50	8	33	64	17	29	9	25	50	33
breast-cancer	6	61	74	31	41	13	16	33	20	7	25	70	13	23	33	25	33	30
bupa	6	47	62	24	29	5	20	33	25	24	49	59	25	64	25	16	50	25
cancer	6	37	87	19	36	9	20	25	21	5	21	84	11	54	10	25	50	37
car	6 6	43 81	96 31	22 41	$\frac{86}{24}$	89 15	20	80 33	45 20	11 7	57 65	98	29 33	65 33	41	16	50 40	30 30
cleveland coil2000	6	99	92	50	24 18	15 9	16 16	33	20 18	12	177	31 91	33 89	33 79	71 98	16 9	40 77	42
colic	6	55	81	28	46	6	16	33	20	4	17	80	9	33	27	25	25	25
compas	6	77	34	39	17	8	16	20	17	15	183	37	92	66	43	12	60	27
contraceptive	6	99	49	50	8	2	20	60	37	17	385	48	193	27	32	12	66	21
dermatology	6	33	90	17	23	3	16	33	21	7	17	95	9	22	0	14	20	17
divorce	5	15	90	8	50	19	20	33	24	2	5	96	3	33	16	50	50	50
ecoli	6	45	75	23	4	5	20	20	20	53	109	59	55	25	19	20	66	36
fars	6	75	79	38	10	86	33 20	66 40	$\frac{52}{29}$	60	9969	76	4985	35	90	6 12	50 40	12 22
german heart-c	6	25 43	61 65	13 22	$\frac{38}{36}$	10 18	20	33	$\frac{29}{22}$	10 4	99 15	72 75	50 8	46 87	13 81	12 25	40 50	$\frac{22}{34}$
heart-h	6	37	59	19	31	4	20	40	24	8	25	77	13	61	60	20	50	32
heart-statlog	6	33	55	17	29	5	20	33	30	4	13	81	7	71	31	25	50	35
hepatitis	5	17	77	9	33	6	20	33	24	3	11	80	6	33	14	33	33	33
house-votes-84	6	49	91	25	68	67	16	50	27	3	9	90	5	80	75	33	50	41
hungarian	6	33	69	17	29	2	25	40	31	4	19	77	10	40	30	33	33	33
ionosphere	4	9	70	5	60	3	33	50	38	5	17	80	9	33	0	33	60	47
iris irish	5 4	23 13	90 97	12 7	41 71	$\frac{25}{54}$	$\frac{25}{33}$	33 50	30 36	10 3	21 7	63 100	11 4	36 0	13 0	50	50	50
kddcup	6	91	99	46	0	0				29	269	99	135	22	0.9	6	20	9
kr-vs-kp	6	49	96	25	80	75	16	60	33	13	67	99	34	79	43	7	70	35
lending	6	45	73	23	73	80	16	50	25	14	507	65	254	69	80	12	75	25
letter	6	127	58	64	1	0	20	20	20	46	4857	68	2429	6	7	6	25	9
lymphography	6	61	76	31	35	25	16	33	21	6	21	86	11	9	0	16	16	16
messidor	3	7	50	4	50	1	50	66	58	22	107	52	54	88	99	10	57	28
promoters	6	17	86	9	33	19	16	33	23 24	3	9	81	5 12	20	14	33	33	33
mushroom mux6	6 6	39 55	100 61	20 28	80 85	44 78	16 20	33 50	$\frac{24}{37}$	5 4	23 15	100 46	8	50 37	31 31	$\frac{20}{25}$	40 33	25 30
new-thyroid	3	11	95	6	33	4	33	33	33	14	29	79	15	26	5	20	50	30
pendigits	6	121	88	61	0	0	_	_	_	38	937	85	469	25	86	6	25	11
postoperative	6	43	50	22	59	44	16	50	25	6	15	56	8	75	25	16	50	36
primary-tumor	6	55	71	28	35	21	16	33	21	6	21	82	11	54	31	16	50	31
promoters	1	3	90	2	0	0	_	_	_	3	9	81	5	20	14	33	33	33
recidivism	6	105	61	53	28	22	16	33	18	15	611	51	306	53	38	9	44	16
schizo	6	17	55	9	55	5	50	66	58	13	51	52	26	30	64	20	25	21
segmentation seismic_bumps	4 6	$\frac{15}{37}$	38 89	8 19	$\frac{0}{42}$	0 19		33		27 8	57 39	23 93	29 20	48 60	2 79	11 20	71 60	39 42
shuttle	6	63	99	32	28	7	20	ээ 33	23	23	159	93 99	80	33	9	14	50	30
soybean	6	63	88	32	9	5	25	25	25	16	71	89	36	22	1	9	12	10
spambase	6	63	75	32	37	12	16	33	19	15	143	91	72	76	98	7	58	25
spect	6	45	82	23	60	51	20	50	35	6	15	86	8	87	98	50	83	65
splice	3	7	50	4	0	0	_	_	_	88	177	55	89	0	0	_	_	_
student-mat	6	109	35	55	9	3	20	25	21	22	177	25	89	6	6	11	20	15
student-por	6	119	30	60	1	0	20	20	20	22	259	26	130	9	5	7	20	10
tram_2000 uci_mammo	1 6	3 53	100 11	$\frac{2}{27}$	0 51	0 43	— 16	40	— 24	1 9	3 23	100 38	2 12	0 66	$\frac{0}{25}$		— 55	39
vehicle	6	53 79	49	40	10	43	16	20	24 19	24	23 141	58	71	45	25 54	25 9	ээ 41	39 23
	2	7	87	40	0	0				57	115	61	58	94	10	14	73	49
wdbc																		

Table 4: Path explanation redundancy in decision trees obtained with IAI and ITI. The table shows tree statistics for IAI and ITI, namely, tree depth \mathbf{D} , number of nodes $\#\mathbf{N}$, test accuracy $\%\mathbf{A}$ and number of paths $\#\mathbf{P}$. The percentage of explanation-redundant paths (XRP's) is given as $\%\mathbf{R}$ while the percentage of data instances (measured for the *entire* feature space) covered by XRP's is $\%\mathbf{C}$. F5cusing solely on the XRP's, a single path-restricted AXp is extracted and the average (min. or max., resp.) percentage of explanation redundant features per path is denoted by $\%\mathbf{avg}$ ($\%\mathbf{m}$ and $\%\mathbf{M}$, resp.).

	IAI							ITI									
Dataset		Trav	ersal			Но	orn			Trav	versal		Horn				
	m	M	avg	Tot	m	M	avg	Tot	m	M	avg	Tot	m	M	avg	Tot	
IndiansDiabetes	0.001	0.003	0.001	0.73	0.001	0.002	0.001	0.63	0.001	0.003	0.002	1.19	0.001	0.002	0.001	1.02	
adult allhyper	0.001 0.001	0.059 0.006	0.002 0.002	$\frac{3.52}{1.88}$	0.001 0.001	0.005 0.005	0.002 0.001	$\frac{2.93}{1.23}$	0.005 0.001	0.065 0.004	0.008 0.002	$0.93 \\ 2.39$	0.008 0.001	0.071 0.002	0.013 0.001	1.53 1.20	
ann-thyroid	0.001	0.005	0.002	3.67	0.001	0.005	0.001	2.85	0.001	0.004	0.002	12.14	0.001	0.002	0.001	9.64	
anneal	0.001	0.005	0.001	1.22	0.001	0.003	0.001	0.75	0.001	0.006	0.001	0.96	0.001	0.004	0.001	0.70	
appendicitis	0.000	0.000	0.000	0.029	0.000	0.000	0.000	0.032	0.000	0.001	0.000	0.028	0.000	0.001	0.000	0.033	
australian auto	0.001 0.001	0.003 0.005	0.001 0.001	0.93 0.22	0.001 0.001	0.002 0.005	0.001 0.001	0.71 0.18	0.001 0.001	0.004 0.005	0.001 0.002	0.94 0.33	0.001 0.001	0.002 0.005	0.001 0.001	0.61 0.24	
backache	0.001	0.001	0.001	0.13	0.000	0.001	0.001	0.094	0.000	0.001	0.000	0.077	0.000	0.001	0.000	0.065	
balance	0.001	0.004	0.001	0.82	0.002	0.005	0.002	1.15	0.001	0.057	0.001	0.86	0.002	0.006	0.002	1.23	
bank banknote	0.002 0.000	0.062 0.001	0.003 0.000	34.45 0.12	0.002 0.000	0.008 0.001	0.002 0.000	25.53 0.14	0.013 0.001	0.090 0.002	0.027 0.001	19.64 0.47	0.025 0.001	0.092 0.003	0.033 0.001	24.21 0.54	
biodegradation	0.000	0.001	0.000	0.12	0.000	0.001	0.000	0.14	0.001	0.002	0.001	0.47	0.001	0.003	0.001	0.48	
biomed	0.000	0.001	0.000	0.064	0.000	0.001	0.000	0.073	0.001	0.002	0.001	0.17	0.001	0.001	0.001	0.16	
breast-cancer	0.001	0.003	0.002	0.42	0.001	0.004	0.001	0.35	0.000	0.001	0.001	0.19	0.001	0.001	0.001	0.17	
bupa cancer	0.001 0.001	0.003 0.003	0.001 0.001	0.33 0.53	0.001 0.001	0.002 0.003	0.001 0.001	0.34 0.39	0.001 0.001	0.002 0.004	0.001 0.001	0.33 0.32	0.001 0.001	0.005 0.002	0.001 0.001	$0.35 \\ 0.26$	
car	0.001	0.004	0.001	0.52	0.001	0.002	0.001	0.48	0.001	0.002	0.001	0.47	0.001	0.002	0.001	0.59	
cleveland	0.001	0.005	0.001	0.25	0.001	0.004	0.002	0.31	0.001	0.002	0.001	0.23	0.001	0.002	0.001	0.25	
coil2000 colic	0.003 0.001	0.036 0.005	0.009 0.002	21.56 0.71	0.002 0.001	0.009 0.002	0.002 0.001	5.77 0.43	0.004 0.000	0.044 0.001	0.018 0.001	44.26 0.24	0.003 0.000	0.029 0.001	0.004 0.000	0.18	
compas	0.001	0.003	0.002	0.66	0.001	0.002	0.001	0.43 0.52	0.000	0.065	0.001	1.37	0.000	0.001	0.004	1.28	
contraceptive	0.001	0.005	0.002	0.70	0.002	0.004	0.002	0.78	0.003	0.064	0.006	2.64	0.006	0.012	0.007	2.87	
dermatology	0.001	0.005	0.001	0.50	0.001	0.002	0.001	0.31	0.000	0.001	0.001	0.27	0.000	0.001	0.001	0.19	
divorce ecoli	$0.000 \\ 0.001$	0.002 0.003	0.001 0.001	0.10 0.25	$0.000 \\ 0.001$	0.001 0.002	0.001 0.001	0.076 0.32	0.000 0.001	0.001 0.057	$0.000 \\ 0.001$	0.033 0.46	$0.000 \\ 0.002$	0.002 0.004	$0.000 \\ 0.002$	0.041 0.62	
fars	0.001	0.004	0.002	3.26	0.001	0.004	0.002	2.86	0.066	0.18	0.093	172.34	0.19	0.32	0.20	374.52	
german	0.001	0.004	0.001	0.76	0.001	0.002	0.001	0.65	0.002	0.007	0.003	3.19	0.002	0.003	0.002	2.03	
heart-c heart-h	0.001 0.001	0.003 0.004	0.001 0.001	$0.42 \\ 0.39$	0.001 0.001	0.003	0.001 0.001	$0.30 \\ 0.27$	0.000	0.001 0.001	0.001	0.17 0.21	$0.000 \\ 0.001$	0.001 0.001	0.000	0.14 0.18	
heart-statlog	0.001	0.004	0.001	0.39	0.001	$0.005 \\ 0.002$	0.001	0.27	0.001 0.000	0.001	0.001 0.001	0.21	0.001	0.001	0.001 0.000	0.13	
hepatitis	0.001	0.002	0.001	0.12	0.000	0.002	0.001	0.084	0.000	0.001	0.000	0.064	0.000	0.002	0.000	0.062	
house-votes-84	0.001	0.006	0.002	0.56	0.001	0.002	0.001	0.32	0.000	0.000	0.000	0.10	0.000	0.001	0.000	0.100	
hungarian ionosphere	0.001 0.000	0.003 0.001	0.001 0.000	0.27 0.15	0.001 0.000	$0.005 \\ 0.002$	0.001 0.001	0.24 0.18	0.001 0.001	0.002 0.003	0.001 0.001	$0.23 \\ 0.36$	0.000 0.000	0.002 0.002	0.001 0.001	0.18 0.26	
iris	0.000	0.003	0.001	0.094	0.001	0.001	0.001	0.094	0.000	0.001	0.000	0.050	0.000	0.001	0.001	0.082	
irish	0.000	0.002	0.000	0.20	0.000	0.001	0.000	0.21	0.000	0.001	0.000	0.092	0.000	0.001	0.000	0.14	
kddcup kr-vs-kp	0.002 0.001	0.032 0.008	0.003 0.002	9.54 2.17	0.002 0.001	0.007 0.004	0.002 0.001	5.69 1.22	0.003 0.001	0.045 0.009	0.011 0.004	31.00 3.41	0.005 0.001	0.010 0.003	0.006 0.002	16.17 1.49	
lending	0.001	0.003	0.002	1.99	0.001	0.004	0.001	1.51	0.001	0.065	0.004	0.73	0.001	0.069	0.002	1.12	
letter	0.002	0.062	0.002	13.36	0.002	0.007	0.003	14.30	0.034	0.11	0.052	19.50	0.078	0.16	0.11	40.77	
lymphography	0.001	0.007	0.002	0.32	0.001	0.003	0.001	0.20	0.000	0.002	0.001	0.13	0.001	0.001	0.001	0.090	
messidor promoters	0.000 0.000	0.001 0.001	0.000 0.001	0.096 0.063	0.000 0.000	0.001 0.001	0.000 0.000	0.11 0.053	0.001 0.000	0.006 0.002	0.003 0.000	1.06 0.046	0.002 0.000	0.004 0.001	0.002 0.000	0.74 0.045	
mushroom	0.001	0.004	0.001	3.11	0.001	0.002	0.001	2.20	0.001	0.003	0.001	2.46	0.001	0.002	0.001	1.54	
mux6	0.001	0.002	0.001	0.076	0.001	0.002	0.001	0.069	0.000	0.001	0.001	0.040	0.000	0.002	0.001	0.035	
new-thyroid	0.000	0.002 0.063	0.000 0.003	0.078 10.03	0.000	0.001	0.000 0.003	0.086	0.000	0.001 0.093	0.001	0.17	0.001 0.016	0.001 0.089	0.001 0.022	0.15	
pendigits postoperative	0.002 0.001	0.003	0.003	0.093	0.002 0.001	0.007 0.002	0.003	8.45 0.077	0.008 0.000	0.003	0.014 0.001	3.11 0.048	0.010	0.009	0.022	4.81 0.040	
primary-tumor	0.001	0.005	0.002	0.47	0.001	0.004	0.001	0.28	0.001	0.001	0.001	0.17	0.001	0.001	0.001	0.13	
promoters	0.000	0.000	0.000	0.017	0.000	0.000	0.000	0.024	0.000	0.001	0.000	0.039	0.000	0.001	0.000	0.037	
recidivism schizo	0.002 0.000	0.061 0.002	0.003 0.001	$\frac{3.65}{0.22}$	0.002 0.000	0.006 0.001	0.002 0.001	$\frac{2.59}{0.17}$	0.005 0.001	0.087 0.003	0.010 0.002	$\frac{11.69}{0.58}$	0.010 0.001	0.084 0.002	0.015 0.001	$18.26 \\ 0.37$	
segmentation	0.000	0.002	0.001	0.098	0.000	0.001	0.000	0.096	0.001	0.002	0.001	0.30	0.001	0.002	0.001	0.25	
seismic_bumps	0.001	0.003	0.001	1.08	0.001	0.002	0.001	0.68	0.001	0.004	0.002	1.83	0.001	0.002	0.001	0.69	
shuttle	0.001	$0.006 \\ 0.058$	0.001	22.65 1.17	0.001	0.005 0.005	0.001	22.35	0.002	0.061	0.002	2.85	0.003	0.060	0.003	3.56	
soybean spambase	0.001 0.001	0.008	0.002 0.003	3.43	0.001 0.001	0.003	0.001 0.001	0.82 1.81	0.001 0.002	0.005 0.069	0.003 0.009	1.65 11.20	0.001 0.003	0.003 0.062	0.002 0.003	$0.95 \\ 4.18$	
spect	0.001	0.006	0.002	0.52	0.001	0.004	0.001	0.24	0.000	0.001	0.001	0.17	0.000	0.001	0.000	0.11	
splice	0.000	0.001	0.000	0.22	0.000	0.002	0.000	0.30	0.001	0.064	0.002	1.48	0.003	0.069	0.004	3.43	
student-mat student-por	0.002 0.002	$0.061 \\ 0.059$	0.003 0.003	1.14 1.94	0.002 0.002	0.007 0.004	0.002 0.002	0.92 1.53	0.002 0.003	0.058 0.062	0.005 0.008	$\frac{1.98}{5.05}$	0.003 0.004	$0.060 \\ 0.072$	0.004 0.006	$1.56 \\ 3.63$	
tram_2000	0.002	0.009	0.003	0.10	0.002	0.004	0.002	0.15	0.003	0.002	0.000	0.10	0.004	0.072	0.000	0.15	
uci_mammo	0.001	0.003	0.002	0.23	0.001	0.002	0.001	0.15	0.001	0.002	0.001	0.12	0.001	0.001	0.001	0.079	
vehicle	0.001	0.008	0.002	1.74	0.001	0.006	0.002	1.52	0.002	0.060	0.003	2.81	0.002	0.061	0.003	2.51	
wdbc yeast	$0.000 \\ 0.001$	0.001 0.002	0.000 0.001	$0.16 \\ 0.33$	$0.000 \\ 0.001$	0.001 0.002	$0.000 \\ 0.001$	$0.18 \\ 0.42$	0.002 0.004	0.062 0.10	0.007 0.007	$\frac{3.85}{3.06}$	0.002 0.008	0.004 0.072	0.002 0.011	$1.41 \\ 5.04$	
, 5005	0.001	0.002	0.001	0.00	0.001	U.UU2	U.UUI	U.12	J.JU I	0.10	0.001	3.00	0.000	U.U.	V.VII	5.51	

Table 5: Assessing runtimes of the tree traversal algorithm and the propositional horn encoding approach for extracting one AXp. The table reports the results for DTs trained with ITI and IAI learning tools. Columns m, M and avg report, respectively, the minimal, maximal and average runtime (in second) to compute an AXp, while column Tot reports the total runtime (in second) of all tested instances in a dataset.