Лабораторная работа №6.10.4

Магнитный момент лёгких ядер

Автор работы: Хоружий Кирилл

От: 27 февраля 2022 г.

Цель работы

- 1. Исследовать ядерный магнитный резонанс.
- 2. Пронаблюдать сигнал ЯМР от различных ядер.
- 3. Определить g-фактор для ядер.

Измерения

Найдём резонансную частоту f_0 для образцов.

Рис. 1: Осциллограммы для воды и резины

С помощью детектора Холла определим магнитное поле в щели прибора (таблица 1).

Таблица 1: Измерение д-фактора

Nº	материал	f_0 , МГц	B_0 , мТл	μ ^{эксп}	σ_{μ}	$g^{_{ m PKCII}}$	σ_g	g^{raf}
1	резина (Н)	9.805	230			5.57	0.05	
2	тефлон (F)	9.800	245			5.23	0.04	5.26
3	вода (Н)	9.800	230			5.57	0.05	5.59

Также найдём g-фактор и магнитный момент по формулам

$$g = \frac{2\pi\hbar f_0}{\mu_{\scriptscriptstyle \rm H} B_0}, \qquad \quad \mu = g \mu_{\scriptscriptstyle \rm H} I, \label{eq:g_sum}$$

где $I=\frac{1}{2}$ для H и F, $\mu_{\mbox{\tiny H}}=5.05\cdot 10^{-27}$ Дж/Тл. Занесем полученные результаты в таблицу.

Выводы

Получен сигнал ЯМР для водорода и фтора. Найдено значение g-фактора ядер водорода и фтора, а также их магнитный момент. Значения g-фактора совпало с табличными значениями в пределах погрешности, данный метод (ЯМР) позволяет определять магнитный момент ядер с хорошей точностью.