Lab 1 – MATH 240 – Computational Statistics

Jackson Colby Colgate University Applied Mathematics jcolby@colgate.edu

Abstract

This document provides a basic template for the 2-page labs we will complete each week. Here, you should provide a succinct summary about what you did and why it might be helpful.

Keywords: What topics does the lab cover with respect to class?

1 Instructions

For this lab, you will

- 1. Install R and RStudio
- 2. Install tinytex (if necessary): install.packages("tinytex")
- 3. Create a Github account here, and email me your username.
- 4. Install Github Desktop
- 5. Accept the Lab 1 Document here
- 6. Recreate this document (except put your name/info at the top)to get used to writing in LATEX and to see the types of things we can do when creating a document to convey statistical information. Make sure to commit and push your work using GitHub desktop as you finish each section.

Remark: You will find the class Sweave cheat sheet to be *incredibly*(\emph{incredibly})helpful.

2 Word Processing Tasks

2.1 Centering Text

We can center text in Sweave.

2.2 Bolds, Italics, and Underlining

We can **bold**, *italicize*, <u>underline</u>, and *emphasize* text in Sweave.

Note, I did a column break here so that the list wasn't broken a cross columns.

2.3 Lists, and Numbered Lists

We can write an unordered list in Sweave.

- first item
- second item
- third item

We can write an numbered list in Sweave.

- 1. first item
- 2. second item
- 3. third item

We can write a lettered list in Sweave.

- a. first item
- b. second item
- c. third item

2.4 Submissions

This part of the midterm is due Sunday November 14 by 5p. I will not accept late submissions. Note that you may use this template to help build your introduction and methods sections, and you can use the work you did as a group during the datathon. Still, I expect this submission to be your own summary and extension of that work without collaboration.

2.5 Typing Mathematical Equations

We can write a one line equation that is centered like this

$$\hat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \epsilon_i.$$

This can be written in the text, as $\widehat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \epsilon_i$ using as well.

When we need to show multiple steps, we can create a multi-line equation that is centered like this:

$$8(x-5) + x = 9(x-5) + 5$$

$$8x - 40 + x = 9x - 45 + 5$$
 (Distributing)
$$9x - 40 = 9x - 40$$
 (Combining like terms)
$$9x = 9x$$
 (Adding 40 to both sides)
$$x = x$$
 (Dividing both sides by 9)

The equality holds for any x.

Note, I did a page break here so that the next section started on a clean page.

2.6 Running R code

Code chunks can be entered into Sweave; e.g., here are some comments.

```
# R code goes here
# Output is automatically printed in the pdf
```

Below, you can see that we can do algebra with R.

```
8*(9-5)+9 # 8(x-5) + x for x=9
## [1] 41
```

Below, we show we can produced the code without evaluating it.

```
8*(9-5)+9 # 8(x-5) + x for x=9
```

Alternatively, we can produced the output without the code.

```
## [1] 41
```

We can also call object values from R directly.

```
result <- 8*(9-5)+ 9 #8(x-5)+x for x=9
result.with.error <- result + rnorm(1,mean=0,sd =0.1)
result.with.error

## [1] 41.07148
```

The result is 41.0714762. Note that I did not type the result, but I used the $\S xr{1} command$.

2.7 Plotting

We can also plot with R.

```
#Plot a histogram of random normally distributed data
hist(rexp(100))
```

Histogram of rexp(100)

Figure 1: A histogram of random exponentially distributed data, n = 100.

2.8 Tables

Below, we load and take a peek at some data about the death rates per 1000 in Virginia in 1940 (Molyneaux et al. (1947)).

```
data("VADeaths")
head(VADeaths) # Take a peek of the data
         Rural Male Rural Female Urban Male Urban Female
## 50-54
                                          15.4
                11.7
                               8.7
                                                         8.4
## 55-59
                18.1
                              11.7
                                          24.3
                                                        13.6
## 60-64
                26.9
                              20.3
                                          37.0
                                                        19.3
## 65-69
                41.0
                              30.9
                                          54.6
                                                        35.1
## 70-74
                66.0
                              54.3
                                                        50.0
```

If we want to print this nicely, we can do so using the xtable package (Dahl et al., 2019), which we can reference using the label (Table 1).

```
library(xtable)
sleep.table<-xtable(VADeaths,
    label="VADeaths.tab",
    caption="Death Rates per 1000 in Virginia (1940).")</pre>
```

Rural Male	Rural Female	Urban Male	Urban Female
11.70	8.70	15.40	8.40
18.10	11.70	24.30	13.60
26.90	20.30	37.00	19.30
41.00	30.90	54.60	35.10
66.00	54.30	71.10	50.00

Table 1: Death Rates per 1000 in Virginia (1940).

References

Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., and Swinton, J. (2019). xtable: Export Tables to LaTeX or HTML. R package version 1.8-4.

Horst, A. M., Hill, A. P., and Gorman, K. B. (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R package version 0.1.0.

Molyneaux, L., Gilliam, S. K., and Florant, L. (1947). Differences in virginia death rates by color, sex, age and rural or urban residence. American Sociological Review, 12(5):525-535.

3 Appendix

Below is a table from a paper I'm currently working on. Without the analysis object in R, I have to create this table myself.

Term	SS Type (III)	df	F	p-value	e
(Intercept)	4.95	1.00	5.37	0.0209	
White-Poor (Z)	3.17	1.00	3.44	0.0642	0.02
Zero-Sum (Z)	17.96	1.00	19.48	j0.0001	0.03
Education (Z)	0.39	1.00	0.42	0.5161	0.00
Income (Z)	0.16	1.00	0.17	0.6817	0.00
Democrat	9.60	1.00	10.42	0.0013	0.02
Black-Poor (Z)	1.92	1.00	2.08	0.1496	0.00
White-Poor $(Z) \times Zero-Sum(Z)$	7.96	1.00	8.63	0.0034	0.01
Residuals	506.92	550.00			

Table 2: ANOVA table for Case Study I.

The palmerpenguins package for R (Horst et al., 2020) provides data on adult for aging penguins near Palmer Station, Antarctica. Figure 2 is too big to fit nicely in our column-based-template above, so I've placed it here in the abstract by saving it and presenting it scaled to 0.75.

```
library(palmerpenguins)
pdf("figure/penguins.pdf",width= 8, height=5)
plot(penguins)
dev.off()

## pdf
## 2
```


Figure 2: Data on adult for aging penguins near Palmer Station, Antarctica.