# Консультация перед экзаменом.

#### Задача 1.

Let Z is a random variable with mean  $\mu = E(Z)$  and variance  $\sigma^2 = V(Z)$ . Let we have a sample of size 2,  $z_1 = 0$  and  $z_2 = 4$  from this distribution. We are interested in the parameter  $\theta = \mu^2$ .

- (a) Let the estimator is  $\hat{\theta} = \overline{z}^2 = \left(\frac{z_1 + z_2}{2}\right)^2 = \frac{1}{4}(z_1 + z_2)^2 = 4$ . Find bias of this estimator.
- (b) Explain how you would find a bootstrap-bias-corrected estimator,  $\hat{\theta}_{Boot}$  and calculate its bias.
- (c) Formulate the condition when the bias of  $\hat{\theta}_{Boot}$  is in absolute value smaller than the bias of  $\hat{\theta}$ . parameters.

#### Задача 2.

### Данные по пропускам занятий в 2018 г.

```
calc1 calculus, 1^{st} year (0-100) stat1 statistics, 1^{st} year (0-100) mid2 оценка по мидтерму 2 (2-го года) (0-100) na1 число пропусков семинаров до mid1 na2 число пропусков семинаров от mid1 до mid2 na12= na1 + na2 lcalc1 = \ln(1+\text{calc1}) lstat1 = \ln(1+\text{stat1}) lmid2 = \ln(1+\text{mid2})
```

Ниже приведены оценки нескольких моделей.

- (a) (5 баллов) По модели 1 найдите прогноз оценки по второму мидтерму студента с calc1=55, na12=7 и 95%-ный доверительный интервал прогноза. Как изменится оценка при уменьшении количества пропусков на 1?
- **(б) (5 баллов)** По модели 2 найдите прогноз оценки по второму мидтерму студента с calc1=55, na12=7. Как изменится оценка при уменьшении количества пропусков на 1?
- **(в) (5 баллов)** По модели 3 найдите вероятность того что студент с calc1=55, na12=7 получит оценку больше 35 (проходной балл). Как изменится эта вероятность при уменьшении количества пропусков на 1?
- (г) (5 баллов) По модели 4 найдите вероятность того что студент с calc1=55, na12=7 получит оценку больше 35 (проходной балл). Как изменится эта вероятность при уменьшении количества пропусков на 1?
- (д) (5 баллов) Интерпретируйте результаты модели 5.

# дескриптивные статистики

.sum calc1 stat1 mid2 na1 na2 na12 lcalc1 lstat1 lmid2

| Variab | le  | Obs    | Mean | Std.  | dev. | Min  | Max  |
|--------|-----|--------|------|-------|------|------|------|
| calc1  | 222 | 54.572 | 207  | 16.0  | 7249 | 21.4 | 97.2 |
| stat1  | 222 | 53.468 | 347  | 18.8  | 7363 | 16   | 91   |
| mid2   | 214 | 39.411 | .21  | 20.52 | 2021 | 0    | 95   |
| na1    | 222 | 2.1621 | .62  | 2.25  | 9382 | 0    | 7    |
| na2    | 222 | 3.3063 | 306  | 2.652 | 2729 | 0    | 7    |
| na12   | 222 | 5.4684 | 168  | 4.50  | 4035 | 0    | 14   |
| lcalc1 | 222 | 3.9710 | 25   | .317  | 4502 | 3.11 | 4.59 |
| lstat1 | 222 | 3.9316 | 68   | .375  | 9945 | 2.83 | 4.52 |
| lmid2  | 214 | 3.4733 | 327  | .860  | 5712 | 0    | 4.56 |

# Модель 1

# . reg mid2 na12 calc1

| Source                     | SS .        | df                               | MS                     |                           | per of obs                      | =       | 214                                            |
|----------------------------|-------------|----------------------------------|------------------------|---------------------------|---------------------------------|---------|------------------------------------------------|
| Model<br>Residual<br>Total | 35698.8047  | 2<br>211<br>213                  | 26995.504<br>169.18864 | 2 Prok<br>8 R-sc<br>- Adj | 211) > F quared R-squared MSE   | = = =   | 159.56<br>0.0000<br>0.6020<br>0.5982<br>13.007 |
| mid2                       | Coefficient | Std. err.                        | t                      | P> t                      | [95% co                         | <br>nf. | interval]                                      |
| na12<br>calc1<br>_cons     | -1.185705   | .2274389<br>.0634011<br>4.297359 | -5.21<br>12.62<br>0.35 | 0.000<br>0.000<br>0.729   | -1.63404<br>.675137<br>-6.98032 | 7       | 7373611<br>.925099<br>9.962187                 |

# (матрица ковариаций оценок)

 $\cdot$  matrix list e(V)

# symmetric e(V)[3,3]

| •     | na12      | calc1    | cons      |
|-------|-----------|----------|-----------|
| na12  | .05172848 |          | _         |
| calc1 | .00678865 | .0040197 |           |
| cons  | 64858158  | 25792686 | 18.467295 |

# Модель 2

# . reg lmid2 na12 lcalc1

| Source   | l SS        | df        | MS         | Numb  | er of obs | =    | 214       |
|----------|-------------|-----------|------------|-------|-----------|------|-----------|
|          | +           |           |            | F(2,  | 211)      | =    | 77.99     |
| Model    | 67.0495207  | 2         | 33.5247604 | Prob  | > F       | =    | 0.0000    |
| Residual | 90.6946277  | 211       | .429832359 | R-sq  | quared    | =    | 0.4251    |
|          | +           |           |            | - Adj | R-squared | =    | 0.4196    |
| Total    | 157.744148  | 213       | .740582857 | Root  | MSE       | =    | .65562    |
|          |             |           |            |       |           |      |           |
|          |             |           |            |       |           |      |           |
| lmid2    | Coefficient | Std. err. | t          | P> t  | [95% c    | onf. | interval] |
|          | +           |           |            |       |           |      |           |
| na12     | 0534786     | .0114449  | -4.67      | 0.000 | 07603     | 97   | 0309176   |
| lcalc1   | 1.306943    | .1623836  | 8.05       | 0.000 | .98684    | 05   | 1.627045  |
| cons     | -1.45109    | .6789243  | -2.14      | 0.034 | -2.7894   | 33   | 1127461   |
|          |             |           |            |       |           |      |           |

# Модель 3

. gen pass= (mid2>35) if year==2018

### . probit pass na12 lcalc1

| Probit regression             | Number of obs | = 222    |                                          |             |           |
|-------------------------------|---------------|----------|------------------------------------------|-------------|-----------|
|                               |               |          |                                          | LR chi2(2)  | = 82.98   |
|                               |               |          |                                          | Prob > chi2 | = 0.0000  |
| Log likelihood = $-111.65921$ | Pseudo R2     | = 0.2709 |                                          |             |           |
|                               |               |          |                                          |             |           |
|                               |               |          |                                          |             |           |
| pass   Coefficient            | Sta. err.     | Z        | P> z                                     | [95% conf.  | interval  |
| na12  0633342                 | .0238393      | -2.66    | 0.008                                    | 1100585     | 01661     |
| lcalc1   2.335395             | .3856257      | 6.06     | 0.000                                    | 1.579582    | 3.091207  |
| cons   -8.809419              | 1.587522      | -5.55    | 0.000                                    |             | -5.697932 |
| _ 0:009119                    | 1.00/022      | 0.00     | J. J | 11.32031    | 0.03/302  |

#### Модель 4

- . gen grade= pass
- . replace grade=grade+1 if (mid2>50)

### . tab grade

| Cum.                     | Percent                 | Freq.               | grade       |
|--------------------------|-------------------------|---------------------|-------------|
| 45.95<br>66.22<br>100.00 | 45.95<br>20.27<br>33.78 | 102<br>  45<br>  75 | 0<br>1<br>2 |
|                          | 100.00                  | 222                 | Total       |

### . oprobit grade na12 lcalc1

**Модель 5** . sqreg lmid2 na12 lcalc1, q(.1 .2 .3 .4 .5 .6 .7 .8 .9) reps(200)

|          | lmid2                   | <br>  Coefficient                    | Bootstrap std. err.              | t                      | P> t                    | [95% conf.                       | interval]                        |
|----------|-------------------------|--------------------------------------|----------------------------------|------------------------|-------------------------|----------------------------------|----------------------------------|
| q10      |                         | !<br>                                |                                  |                        |                         |                                  |                                  |
| 1        | na12<br>lcalc1          | 0838806<br>  2.426944                | .0426027                         | -1.97<br>3.69          | 0.050                   | 167862<br>1.131586               | .0001007                         |
|          | _cons                   | -6.487357                            | 2.814974                         | -2.30                  | 0.022                   | -12.03643                        | 938281                           |
| q20      |                         | +<br>                                |                                  |                        |                         |                                  |                                  |
| 1        | na12<br>lcalc1<br>_cons | 0559812<br>  1.641716<br>  -3.009746 | .0177183<br>.3300163<br>1.396078 | -3.16<br>4.97<br>-2.16 | 0.002<br>0.000<br>0.032 | 0909087<br>.9911649<br>-5.761793 | 0210537<br>2.292268<br>2576981   |
| q30      |                         | ·<br>                                |                                  |                        |                         |                                  |                                  |
| -        | na12<br>lcalc1<br>_cons | 0354652<br>  1.49511<br>  -2.365492  | .012701<br>.1634331<br>.6855298  | -2.79<br>9.15<br>-3.45 | 0.006<br>0.000<br>0.001 | 0605024<br>1.172939<br>-3.716857 | 0104281<br>1.817281<br>-1.014128 |
| q40      |                         |                                      |                                  |                        |                         |                                  |                                  |
| -        | na12<br>lcalc1<br>_cons | 0307546<br>  1.357278<br>  -1.756461 | .0084764<br>.1743089<br>.7341471 | -3.63<br>7.79<br>-2.39 | 0.000<br>0.000<br>0.018 | 0474639<br>1.013668<br>-3.203664 | 0140452<br>1.700888<br>3092587   |
| q50      |                         | +<br>                                |                                  |                        |                         |                                  |                                  |
| <u>.</u> | na12<br>lcalc1<br>_cons | 0339861<br>  1.207537<br>  -1.047199 | .0096406<br>.1586549<br>.6704901 | -3.53<br>7.61<br>-1.56 | 0.001<br>0.000<br>0.120 | 0529902<br>.8947857<br>-2.368916 | 0149819<br>1.520289<br>.2745188  |
| q60      | <b>-</b>                | <br>                                 | <b>.</b>                         | <b>_</b>               |                         |                                  | <b></b>                          |
|          | na12                    | 0273181                              | .0093108                         | -2.93                  | 0.004                   | 0456722                          | 008964                           |

|     | lcalc1<br>_cons | 1.107011 | .1254063<br>.5314225 | 8.83<br>-1.10 | 0.000<br>0.273 | .8598014<br>-1.63174 | 1.354221<br>.4634146 |
|-----|-----------------|----------|----------------------|---------------|----------------|----------------------|----------------------|
| q70 |                 | +<br>    |                      |               |                |                      |                      |
|     | na12            | 0224138  | .0083664             | -2.68         | 0.008          | 0389063              | 0059214              |
|     | lcalc1          | .9942065 | .0839169             | 11.85         | 0.000          | .8287835             | 1.159629             |
|     | _cons           | 0789144  | .3660945             | -0.22         | 0.830          | 8005857              | .6427569             |
| q80 |                 | ,        |                      |               |                |                      |                      |
| _   | na12            | 020736   | .0090724             | -2.29         | 0.023          | 0386202              | 0028517              |
|     | lcalc1          | .920427  | .0986422             | 9.33          | 0.000          | .7259765             | 1.114877             |
|     | _cons           | .323837  | .4444675             | 0.73          | 0.467          | 5523287              | 1.200003             |
| q90 |                 | +<br>    |                      |               |                |                      |                      |
| _   | na12            | 0248994  | .0077376             | -3.22         | 0.001          | 0401522              | 0096466              |
|     | lcalc1          | .7533497 | .1121907             | 6.71          | 0.000          | .5321915             | .9745079             |
|     | _cons           | 1.162592 | .4726978             | 2.46          | 0.015          | .2307763             | 2.094407             |
|     |                 |          |                      |               |                |                      |                      |

. grqreg, ci ols olsci reps(200)



### Задача 3.

Below you can find estimation results from a multinomial logit model. The dependent variable is status = 0, if if enrolled in school; (College)

- = 1, if not in school and not working (Home);
- = 2, if working (Work).

Choice 0 (College) is the base choice in the model. Regressors are number of years of education at the current moment (educ), experience of employment (exper), and its square ( $exper^2$ ), also a race dummy black = 1, if the person is afro American.

Table 1: Multinomial Logit Estimates of School and Labor Market Decisions

| Explanatory Variable | Home<br>(status=1) | Work<br>(status=2) |
|----------------------|--------------------|--------------------|
| educ                 | -0.674<br>(0.070)  | -0.315<br>(0.065)  |
| exper                | -0.106<br>(0.173)  | 0.849<br>(0.157)   |

| exper <sup>2</sup>    | -0.013<br>(0.025) | -0.077<br>(0.023) |
|-----------------------|-------------------|-------------------|
| black                 | 0.813             | 0.311             |
|                       | (0.303)           | (0.282)           |
| cons                  | 10.28             | 5.54              |
|                       | (1.13)            | (1.09)            |
| # of obs              | 1717              |                   |
| % correctly predicted | 79.6              |                   |
| Log-likelihood value  | -907.86           |                   |
| Pseudo- $R^2$         | 0.243             |                   |

- (a) Give interpretation of the coefficients at *educ* in both columns of the table (Home, Work). How *educ* influence on the probability to be in school?
- **(b)** Calculate the marginal effect  $\frac{\partial P(y=0|x)}{\partial educ}$  for a white person with 12 years of schooling and 10

years of experience.

(c) Describe the model for which the property "Independence of irrelevant alternatives" is relevant. What is "Independence of irrelevant alternatives"?

#### Задача 4.

- (a) Describe the method of estimating the Random Effect Probit model for panel data.
- **(b)** Describe the underlying idea of estimating Fixed Effect Logit model for panel data. Is it possible to apply same method for estimating Random Effect Probit model for panel data?
- (c) Explain why pooled OLS estimator is not consistent for the panel data dynamic model.
- (e) Describe how you would predict dependent variable in the ordered choice model.