

QUALIFYING EXAM

ADVISOR: Prof. Dr. Paulo Sérgio Cugnasca

CO-ADVISOR: Dr. Alexandre Moreira Nascimento

Gabriel Kenji Godoy Shimanuki

Automatic Generation of Critical Scenarios for Evaluating Intelligent Control of Autonomous Vehicles in a Simulated Environment

Agenda

BREAKING

TESLA RECALLS NEARLY ALL 2 MILLION OF ITS VEHICLES ON US ROADS

The Guardian

Tesla Autopilot feature was involved in 13 fatal crashes, US regulator says

JS auto-safety regulators said on Friday that their investigation into Tesla's Autopilot ad identified at least 13 fatal crashes in which the feature had been.

The New York Times

'Lost Time for No Reason': How Driverless Taxis Are **Stressing Cities**

In San Francisco and Austin, Texas, where passengers can hail self-driving vehicles, the cars have added to the workloads of city employees.

A driverless car hits a person crossing against the light in China

BEIJING (AP) — A driverless ride-hailing car in China hit a pedestrian, and people on cial media are taking the carmaker's side,...

Financial Times

Self-driving car venture Cruise chief resigns after uproar over accident

Kyle Vogt steps down as company works to 'strengthen public trust' following regulator's

accident

A Waymo robotaxi Operating in autonomous

Study finds self-driving cars are safer than human-driven VETILITES

A study Published on Tuesday in Nature Communications shows that autonomous in accidents than numan driven.

A study Published on Tuesday in to be involved in accidents than numan driven. A study published on Tuesday in Nature Communications shows that autonomous in Nature Communications shows that autonomous accidents than human-driven.

Origin - Darpa Challenge

Autonomous Vehicles

Main Objective

Development of a methodology to identify and automatically generate critical cases (corner cases) with the aim of contributing to future research in the development of more robust vehicle control systems, based on high-risk driving scenarios.

Specific Objectives

- 1. Systematically review the State of the Art
- 2. Organize the literature
- 3. Implement and test the simulation infrastructure
- 4. Develop heuristics for selecting parameters related to critical situations
- 5. Conduct experiments
- 6. Analyze simulation results
- 7. Build corner case datasets

STATE OF THE ART

Previous Literature Reviews

	Title	Positive Aspects	Gaps
Mahmud (2017)	Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs	Comprehensive review of safety metrics for autonomous vehicles.	Does not mention corner case generation or testing of critical scenarios.
Westhofen (2023)	Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art		
Rajabli et al. (2020)	Software Verification and Validation of Safe Autonomous Cars: A Systematic Literature Review	Overview of Verification & Validation and safety standards for autonomous vehicles.	Does not directly address corner case generation; focuses on machine learning overfitting and the need for retraining.
Zhong (2021)	A Survey on Scenario-Based Testing for Automated Driving Systems in High-Fidelity Simulation	Provides methods for scenario search and performance estimation in simulators.	Not peer-reviewed; lacks reproducibility.
Zhang (2022)	Finding Critical Scenarios for Automated Driving Systems: A Systematic Mapping Study	Systematic mapping of methods for identifying critical scenarios.	Limited analysis (2017-2020); lacks detailed focus on methods for generating and applying data for safety.
Chib et al. (2023)	Recent advancements in end-to-end autonomous driving using deep learning: A survey	Covers end-to-end autonomous driving systems and safety enhancement techniques.	Lacks focus on corner case generation or systematic identification.
Ding (2023)	A Survey on Safety-Critical Driving Scenario Generation - A Methodological Approach	Presents a taxonomy for driving in critical scenarios and corner case generation algorithms.	Not a systematic literature review (SLR); affects comprehensiveness and reproducibility.

Revisão de Literatura – Protocolo

- (1) Nascimento, Alexandre Moreira, et al. "A systematic literature review about the impact of artificial intelligence on autonomous vehicle safety." *IEEE Transactions on Intelligent Transportation Systems* 21.12 (2019): 4928-4946.
- (2) Neto, Antonio V. Silva, et al. "Safety assurance of artificial intelligence-based systems: A systematic literature review on the state of the art and guidelines for future work." IEEE Access 10 (2022): 130733-130770.

Step	\mathbf{SCOPUS}	\mathbf{IEEE}	$\mathbf{ACM} \ \mathbf{DL}$	Eng. Vill.	SPRINGER	\mathbf{WOS}	Total
RAW	200	46	289	81	1023	34	1673
$Abstract\ Reading$	126	46	213	26	15	4	430
Full Paper Reading	55	27	47	11	9	1	150
Final Scope	40	22	38	4	8	1	113
Database Effectiveness	20.0%	47.8%	13.1%	4.9%	0.8%	2.9%	6.8%

Evolution of Corner Case Generation Search in Autonomous Vehicles – Google Scholar

Literature Review – Initial Analyses – part (1 / 3) Geographical Distribution

Literature Review – Initial Analyses – part (2 / 3)

Types of Studies

 	Identification	Generation	Hybrid
Focus of Studies			
 	 Methodologies for identifying critical scenarios Overcoming limitations of traditional testing 	 Modeling of Critical Scenarios in a Controlled Manner Extension of real and simulated data 	 Integration of Techniques to Maximize the Identification and Generation of Critical Scenarios
Highlights			
	Simulation-based testingSearch algorithms to cover large search spaces	 Frameworks that Balance Safety and Efficiency Expanding critical scenarios for robust testing of AVs 	 Simulation tools covering data gaps Iterative processes for evaluating multiple scenarios
Challenges / Oppo	ortunities		
	 Validating systems under conditions difficult to replicate in real life Prioritizing critical scenarios that identify unexpected behaviors 	 Ensuring Realism in Generated Scenarios Scalability for large-scale testing without losing efficiency 	 Complexity in integrating different techniques High computational power required for hybrid processes

Literature Review – Initial Analyses – part (3 / 3) Conclusions

- **Identification-only** techniques are essential to uncover specific weaknesses.
- Data generation offers flexibility and extends the limits of testing.
- Hybrid methods are more promising for comprehensive and robust evaluation.

Key Observations

- Increase the use of hybrid approaches.
- Focus on techniques that combine efficiency and accuracy.
- Promote interdisciplinary collaboration to overcome limitations of real-world data. (Sim2Real gap)

Gaps and Promising Directions

METHODOLOGY

Improvement of Data Generation

Development Flow

Scenarios – NHTSA (2011-2015)

^{*} SWANSON, E. D. et al. Statistics of light-vehicle pre-crash scenarios based on 2011–2015 national crash data. [S.I.], 2019.

Simulation Infrastructure

Simulation

Image available at the link

Search

Scenic

Simulation Generation

Risk Metrics

	METRICS	RANGE	SCORE	
	C	Collision No Collision	10	
Type Description	JN .	Range 1 Range 2	4	
Event Collision Occurance (C) (Nascimento, et al., 2021)	MD	Range 3	2	
Steering Wheel Oscillation (Kim, et al., 2022) Command Flip Count: Pedal Alternation (Accelerator, Brake) (Nascimento, et al., 2021); (Kim, et al., 2022)	7 N	Range 4 Range 5	1	
Minimum Relative Distance Between Vehicles (MD) (Kim, et al., 2022); (Shu, et al. 2021); (Zhu, et al., 2023) Relative Speed (Closing Speed) of Vehicles at the MD Point (Zhu, et al., 2023) Time to Collision (TTC) of Vehicles at the MD Point (Tian, et al., 2022); (Song, et al., 2022); (Shu, et al. 2021)	<i></i>	Range 1 Range 2	4	
Relative Distance Between Vehicles at the Maximum Speed (D_MS) Point (Kim, et al., 2022) Relative Speed (Closing Speed) of Vehicles at the MD Point (Zhu, et al., 2023) Time to Collision of Vehicles at the MS Point (TTC_MS) (Tian, et al., 2022); (Song, et al., 2022); (Shu, et al. 2021)	D_MS	Range 3 Range 4	1	
Time to comston of vehicles at the 1451 oint (116_145)(transfer any configuration of configuration of the 1451 oint (116_145) (transfer any configuration of the 1451 oint (116_		Range 5 Range 1	4	
	TTC_MS	Range 2 Range 3	2	
$F = s(C) + s(DM) + s(D_VM) + s(TTC_VM)$		Range 4 Range 5	1 0	

22

Exemplo – Cálculo de Risco

METRICS	RANGE	SCORE
	Collision	10
С	No Collision	0
	Range 1	4
	Range 2	3
MD	Range 3	2
	Range 4	1
	Range 5	0
	Range 1	4
	Range 2	3
D_MS	Range 3	2
_	Range 4	1
	Range 5	0
	Range 1	4
	Range 2	3
TC_MS	Range 3	2
	Range 4	1
	Range 5	0

 $F = s(C) + s(DM) + s(D_VM) + s(TTC_VM)$

Examples

Score 12

• Collision (10) + Score Combination MD, D_MS, TTC_MS - (2)

• MD (4) + D_MS (4) + TTC_MS (4) - Total: 12

14

• Collision (10) + Score Combination MD, D_MS, TTC_MS - (4)

EXPERIMENTAL DESIGN

Simulation Infrastructure

Data Generation Improvement

Search/Selection Techniques

Parameter Refinement - Genetic Algorithm

Biological Evolution

Biology Exam 5 Quizlet Flashcards | Quizlet

Heuristic Evaluation Metrics

Experimental Protocol – Heuristic Comparison

RESULTS

Results – Risk Level (RL) – parte (1 / 2)

Results – Risk Level (RL) – parte (2 / 2)

	RISK LEVEL										
SCENARIO	GA	RANDOM	DIFFERENCE	GAIN (%)							
A	$13,32 \pm 6,68***$	$9,70 \pm 7,69$	3,62	37,30							
В	$7,48 \pm 6,86***$	$6,07 \pm 6,56$	1,41	$23,\!27$							
\mathbf{C}	$8,78 \pm 6,82***$	$7,58 \pm 6,56$	1,20	15,83							
D	$9,84 \pm 6,03***$	$7,53 \pm 6,32$	2,31	30,64							
${f E}$	$7,69 \pm 6,71***$	$5,96 \pm 6,18$	1,74	$29,\!15$							
F	$10,08 \pm 6,5.$	$9,68 \pm 6,92$	0,40	4,09							

Results – Number of Collisions (NC) – parte (1 / 2)

Results – Number of Collisions (NC) – parte (2 / 2)

	\mathbf{A}		В		\mathbf{C}		D		${f E}$		${f F}$	
Summation of Generations	RANDOM	GA	RANDOM	GA	RANDOM	GA	RANDOM	GA	RANDOM	GA	RANDOM	GA
1 - 10	223	197	97	123	107	114	123	89	100	81	169	150
11- 20	224	256	125	205	119	157	90	139	102	101	200	230
21 - 30	204	220	133	249	101	273	109	158	82	195	174	312

Results – Minimum Distance (MD)

Results – Number of Invalids (NI) – parte (1 / 2)

Results – Number of Invalids (NI) – parte (2 / 2)

A		В		C		D		\mathbf{E}		F		
Summation of Generations	RANDOM	$\mathbf{G}\mathbf{A}$	RANDOM	GA								
1 - 10	252	363	303	403	276	391	288	370	264	470	341	417
11- 20	252	85	270	_212	253	298	311	157	248	418	347	318
21 - 30	267	20	312	50	249	36	325	77	286	159	371	187

CONCLUSIONS

Conclusions – part (1 / 3) Developed Infrastructure

- ✓ Integration of Simulator (CARLA) and Library (Scenic) for Critical Scenario Generation.
- ✓ Architecture Based on Textual Descriptions, Enabling Vehicle Control Analysis and New Studies.

Conclusions – part (2 / 3) Main Results

- ☐ Genetic Algorithm outperformed random generation in risk:
 - ✓ Average increase of 23% in risk levels.
 - ✓ Reduction in invalid simulations (784 fewer).
 - ✓ Average minimum distance reduced from 1,806m to 1,332m.
- ☐ Compact logs (10GB/100k simulations) enable new studies with cost savings and efficiency.

Conclusions – part (3 / 3)

Challenges and Opportunities (Possibilities for the Master's and the Future)

- **❖** Need for optimizations in the infrastructure for open-source contributions.
- **Optimization of the Objective Function (meta-learning).**
- Comparison with other search methods.

Research Schedule

Acknowledgments

This work was carried out with the support of Itaú Unibanco S.A., through the Itaú Scholarships Program (PBI), linked to the Data Science Center at the Polytechnic School of the University of São Paulo.

QUALIFYING EXAM

ADVISOR: Prof. Dr. Paulo Sérgio Cugnasca

CO-ADVISOR: Dr. Alexandre Moreira Nascimento

Gabriel Kenji Godoy Shimanuki

Automatic Generation of Critical Scenarios for Evaluating Intelligent Control of Autonomous Vehicles in a Simulated Environment