

EECS151: Introduction to Digital Design and ICs

Lecture 11 - CMOS

Bora Nikolić

RISC-I: Reduced Instruction Set Computing

On February 12, 2015, IEEE installed a plaque at UC Berkeley to commemorate the contribution of RISC-I. The plaque reads:

UC Berkeley students designed and built the first VLSI reduced instruction-set computer in 1981. The simplified instructions of RISC-I reduced the hardware for instruction decode and control, which enabled a flat 32-bit address space, a large set of registers, and pipelined execution. A good match to C programs and the Unix operating system, RISC-I influenced instruction sets widely used today, including those for game consoles, smartphones and tablets.

https://risc.berkeley.edu/risc-i/reunion/

Nikolić, Fall 2021

1

Review

• Pipelining increases throughput

EECS151 L11 CMOS

- Structural, control and data hazards exist
- FPGAs are widely used for hardware prototyping and accelerating key applications.
- Core FPGA building blocks:
 - Configurable Logic Blocks (CLBs)
 - Slices
 - Look-Up Tables
 - Flip-Flops
 - Carry chain
 - Configurable Interconnect

EECS151 L11 CMOS

Nikolić, Fall 2021

2 Berkeley @030

Semiconductor Manufacturing • Repetitive steps (40-70 masks): Passivation Photoresist coating • Patterning (stepper) Develop • Etch • Process step • Etching • Deposition • Implant • Remove resist • Repeat Zoom into a chip: https://youtu.be/Fxv3JoS1uY8 http://laplace.ucv.cl/Charlas/Semiconductors/Chip/semiconductors.html 14 Berkeley @000 EECS151 L11 CMOS

Lithography Scaling 10 10000 Nominal feature size scaling 1000 365nm nm 248nm μm 193nm 250nm 180nm 130nm 0.1 100 90nm 65nm

1990

32nm

2000

LEUV 13nm

2010

10

18 Berkeley @090

2020

Nikolić, Fall 2021

18

0.01

EECS151 L11 CMOS

1970

1980

EUV - Expected in volume this year

Lithography and Processing Takeaways

- 193nm lithography impacts many of the design rules in modern processes:
 - Preferred and forbidden directions
 - Forbidden pitches
 - Multiple patterning
- EUV relaxes many of the restrictions in sub 5nm processes

EECS151 L11 CMOS

Nikolić, Fall 202

23 Berkeley @ S RY NO S

23

Administrivia

- Semiconductor Workforce Fellowships in the area of SoC design
 - 8 undergraduate scholarships (4k each), applications due October 15
- Homework 4 is due today
 - No new homework this week
 - Homework 5 will be posted later this week, due next week
- No lab this week
 - Lab 6 (last) after the midterm
- Midterm 1 on October 7, 7-8:30pm
 - You will be assigned a classroom
 - One double-sided page of notes allowed
 - Material includes FPGAs

EECS151 L11 CMOS

Nikolić, Fall 2021

24 Berkeley @ 90

