

QUALITY MANAGEMENT 444

PART 2: QUALITY MANAGEMENT

Prof Imke de Kock

imkedk@sun.ac.za

QM 444 Weeks 5 & 6

5 Module Content and Schedule

Module Material:

[1] Jooste, JL, 2024. Quality Management 444 Lecture Notes: Reliability Engineering. Stellenbosch University

[2] Defeo, JA. 2017. Juran's Quality Handbook: The Complete Guide to Performance Excellence, Seventh Edition. McGraw Hill										
Date (Mon - Fri)	Week	Lecture Date	Lecture number	Time from	Time to	Content	Reference	Lecture / Assignment / Test / Tutorial	ECSA Knowledge Area Covered	
21 – 25 July	1	24 July	1	11:00	13:00	Introduction to Quality Management, Reliability Engineering and -Methods	[1]	Lecture	Engineering Science	
			2	14:00	17:00	Reliability Methods		Tutorial 1: Group Presentation & Quiz 1 (Week 1)		
28 July – 1 August	2	31 July	3	11:00	13:00	Reliability Modelling and Component Importance		Lecture	Engineering Science	
			4	14:00	17:00	Reliability Methods, Modelling and Component Importance		Tutorial 2: Group Presentation & Quiz 2 (Week 2)		
4 – 8 August	3	7 August	5	11:00	13:00	Data Analysis Modelling Approach and Non- Repairable Systems		Lecture	Engineering Science	
			6	14:00	17:00	Analysing Non-Repairable Systems		Tutorial 3: Model Development		
11 - 15 August	4	14 August	7	11:00	13:00	Repairable Systems Analysis, Availability and Maintainability		Lecture	- Engineering Science	
			8	14:00	17:00	Analysing Repairable Systems		Tutorial 4: Model Development & Quiz 3 (Week 4)		
18 – 22 August	5	21 August	9	11:00	13:00	Introduction to Quality Management Chapter 1 & 25	[2]	Lecture	Complementary Studies	
			10	14:00	17:00	Introduction to Quality Management Chapter 1 & 25		Tutorial 5 (Week 5)		
25 - 29 August	6	28 August	11	11:00	13:00	Chapter 5, 15 & 16		Lecture	Engineering Science	
			12	14:00	17:00	Chapter 5, 15 & 16		Tutorial 6 (Week 6)		
30 August – 5 September		TEST WEEK								
6 - 14 September		RECESS								

QM 444 Weeks 5 - 12

General arrangements:

- Textbook
- Lectures & tuts

QUALITY MANAGEMENT 444

WEEK 5 LECTURE 9

Introduction & Chapter 1 – Universal principles of Quality Management

Prof Imke de Kock

imkedk@sun.ac.za

Customer Expectations

People expect reliability, safety, and sustainability. Poor quality = instant social media backlash.

Reputation & Trust

One failure can damage a brand globally (e.g., McDonald's ice cream machines).

Cost of Poor Quality

Fixing defects later is expensive. Quality reduces waste and rework.

Global Supply Chains

One weak link can disrupt entire industries. Quality ensures smooth collaboration.

Innovation & Technology

Al, software, and digital systems need reliability too (e.g., Tesla recalls).

Sustainability & Responsibility

Quality now includes social and environmental responsibility.

You Expect Quality Every Day

When food, apps, or phones fail, you get frustrated. Quality = things that work as promised.

Bad Quality Spreads Fast

One bad review or TikTok can damage a company's reputation instantly.

Mistakes Cost Money

Recalls, repairs, or failures cost companies billions. Fixing later is expensive.

The World is Connected

Global supply chains mean one weak link affects everyone.

The Future Depends on It

Safety, sustainability, and innovation all require strong quality systems.

Your Role as Engineers

You'll design systems. Quality tools ensure they deliver value in the real world.

	What happened?	Quality Issue?	So what?
Tesla Autopilot Recall (2023)	2M cars recalled due to Autopilot not preventing misuse (drivers sleeping, distracted). Fixed with a software update.	System design & safety — didn't account for real human behavior.	Quality today is about more than parts; it's about safe, reliable systems that work in the real world.
McDonald's Ice Cream Machines	Machines often "broken," became a global meme, even tracked by McBroken.com.	Process reliability — machines too complex to clean/maintain, hurting consistency.	Quality isn't always dramatic. Even small, recurring issues can damage brand trust.

52%

Fortune 500

What is a Fortune 500 company?

The Fortune 500 is an annual list of 500 of the largest US

Fortune 500 list comp From sources across the web fiscal maga CEO: Doug McMillon (01 Fe... prest CVS CVS Health Health. CEO: Karen S. Lynch (01 Fe... quali Chevron Chevron CEO: Mike Wirth (01 Feb 20... Microsoft CEO: Satya Nadella (04 Feb... Marathon Petroleum CEO: Michael J. Hennigan (... Ford Motor CEO: Jim Farley (01 Oct 202...

amazon	Amazon CEO: Andy Jassy (05 Jul 20	~
BERKSHIRE HATHAWAY ISC	Berkshire Hathaway CEO: Warren Buffett (1970–)	~
cencora	AmerisourceBergen CEO: Steven H. Collis (01 J	~
MSKESSON	McKesson CEO: Brian S. Tyler (01 Apr	~
PHILLIPS 66	Phillips 66 CEO: Mark Lashier (01 Jul 2	~
THE STATE	Home Depot CEO: Edward Decker (01 M	~

86%

12%

1958 – 61 years 2013 – 18 years

Importance of quality

 $S = \Delta$ in same direction

 $O = \Delta$ in opposite direction

R = Reinforcing loop

What is quality management?

What is quality management?

Quality management is the act of overseeing all activities and tasks needed to maintain a **desired level of excellence**.

This includes the determination of a quality policy, creating and implementing quality planning and assurance, and quality control and quality improvement.

In general, quality management focuses on long-term goals through the implementation of short-term initiatives.

The only constant is 'change'Push and pull drivers

The only constant is 'change'Push and pull drivers

Demographic characteristics

Technological advancements

Market changes

Social and political changes

EXTERNAL TRIGGERS

Globalization

Customers

Competitors

Scarcity of resources

Faster production possibilities

The only constant is 'change'Push and pull drivers

Size changes

HR problems and prospects

Demographic and social influences

New management concepts

INTERNAL TRIGGERS

Inefficient processes
/ unproductive
activities

Growth in size and scope of activities

Reformulation of the corporate strategy

Organizational development

- The only constant is 'change'
 - Push and pull drivers
 - **⊙** Major forces that affected had / have a profound impact on quality
 - **⊙**Rate and pace of change

1958 – 61 years 2013 – 18 years

- The only constant is 'change'
- Then and now? Changing business conditions

Google

...what will Google do next?

- The only constant is 'change'
- Then and now? Changing business conditions

Changing workforce

Statistically, generation-y accounts for 1.7 billion people, representing **25.5 percent** of the world's population. Millennials, who are already emerging as leaders in technology and other industries, will make up **75 percent** of the global workforce by 2025.

Understanding Y: Global Millennials – UYD Media www.uydmedia.com/who-are-global-millennials/

About this result

Feedback

Their emphasis on work-life balance and continuous learning is prompting employers to offer more flexible work environments and professional development opportunities. Zurich Insurance reports that Gen Z currently makes up 30% of the world's population and is expected to account for 27% of the workforce by 2025. 24 Jul 2024

- The only constant is 'change'
- Then and now? Changing business conditions

"But, we don't need to change..."

https://youtu.be/l1vnsqbnAkk?si=PCCX6eWC5lGefcp0

"But, we don't need to change..."

...need to change...

Gross Sales of Mattel's Barbie Brand Worldwide from 2012 to 2023

(in million U.S. dollars)

Source: Coolest Gadgets COOLEST-GADGETS

...need to change...

WOMEN

Barbie's Surprising Comeback Has Everything To Do With Race

How diversity saved Mattel's iconic doll.

① 02/03/2017 11:02 SAST | Updated 03/03/2017 23:00 SAST

...some weren't that lucky

Why Quality Management?

- The only constant is 'change'
- O Then and now? Changing business conditions
- Expect the unexpected
 - 'Sustainability' from a business perspective

...A NEED TO CHANGE

Urbanization Food Security

Importance of quality

Dimensions of quality

Table 1.1 The Meaning of Quality

Features Which Meet Customer Needs	Freedom from Failures	
Higher quality enables organizations to	Higher quality enables organizations to	
Increase customer satisfaction	Reduce error rates	
Meet societal needs	Reduce rework, waste	
Make products and services salable	Reduce failures, warranty charges	
Exceed competition	Reduce customer dissatisfaction	
Increase market share	Reduce inspection, test, and audits	
Provide salesrevenue	Shorten time to develop new products	
Secure premium prices	Increase yields, capacity	
	Improve delivery performance	
The major effect is on revenue	The major effect is on costs	
Usually higher quality costs more.	Usually higher quality costs less.	
Source: Juran Institute, Inc., 2009.		

Does quality always come at a higher price?

Does quality always come at a higher price?

Does quality always come at a higher price?

Quality, cost & time – pick 2

Dimensions of quality

Table 1.1 The Meaning of Quality

Features Which Meet Customer Needs	Freedom from Failures	
Higher quality enables organizations to	Higher quality enables organizations to	
Increase customer satisfaction	Reduce error rates	
Meet societal needs	Reduce rework, waste	
Make products and services salable	Reduce failures, warranty charges	
Exceed competition	Reduce customer dissatisfaction	
Increase market share	Reduce inspection, test, and audits	
Provide salesrevenue	Shorten time to develop new products	
Secure premium prices	Increase yields, capacity	
	Improve delivery performance	
The major effect is on revenue	The major effect is on costs	
Usually higher quality costs more.	Usually higher quality costs less.	
Source: Juran Institute, Inc., 2009.		

Effect on revenue, income and cost

- > Features effect on Revenue
- > Failures effect on Income
- > Failures effect on Cost

Universal principles for managing for quality: Juran's trilogy

Table 1.2 Managing for Quality

Quality Planning	Quality Control	Quality Improvement
Establish goals	Determine the control subjects	Prove the need with a business case
Identify who are the customers	Measure actual performance	Establish a project infrastructure
Determine the needs of the customers	Compare actual performance to the targets and goals	Identify the improvement projects
Develop features which respond to customers' needs		Establish project teams
Develop processes able to produce the products	Take action on the difference	Provide the teams with resources, training, and motivation to: Diagnose the causes Stimulate remedies
Establish process controls transfer the plans to the operating forces	Continue to measure and maintain performance	Establish controls to hold the gains

Universal principles for managing for quality: Juran's trilogy

Sporadic quality problems

- Sudden, adverse change in the status quo
 - **⊙** Dramatic

⊙Once-off problem

Attacked by the control process

historic level and the improved level is caused by a chronic waste that can be eliminated

Chronic quality problems

- Long-standing adverse situation
 - Requires remedy by changing the status quo
 - **⊙** Difficult to solve, accepted as inevitable
 - Chronic problems are accepted as inevitable
 - Continuous improvement addresses chronic problems, involving the whole organisation
 - Kaizen
 - http://www.thetoyotasystem.com/lean_concepts/kaizen.php

Universal principles for managing for quality: Juran's trilogy

