CvP - Werkcollege 3

Exercise 1 Consider the grammar

$$\langle prog \rangle \rightarrow \langle prog \rangle \langle stmt \rangle \mid \langle stmt \rangle$$

$$\langle stmt \rangle \rightarrow \langle var \rangle = \langle expr \rangle$$

$$\mid \mathbf{if} \langle (guard) \rangle \mathbf{then} \langle prog \rangle \mathbf{else} \langle prog \rangle \mathbf{fi}$$

$$\mid \mathbf{while} \langle (guard) \rangle \mathbf{do} \langle prog \rangle \mathbf{od}$$

$$\langle guard \rangle \rightarrow \langle expr \rangle (< \mid = \mid \neq \mid >) \langle expr \rangle$$

$$\langle expr \rangle \rightarrow \langle expr \rangle (+ \mid -) \langle term \rangle \mid \langle term \rangle$$

$$\langle term \rangle \rightarrow \langle nat \rangle \mid \langle var \rangle$$

$$\langle nat \rangle \rightarrow \langle nat \rangle \langle dig \rangle \mid \langle dig \rangle$$

$$\langle dig \rangle \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$$\langle var \rangle \rightarrow x \mid y$$

Let $T(\langle x \rangle)$ denote the set of parse trees with root $\langle x \rangle$.

Define the meaning $M_v: T(\langle var \rangle) \to \{x,y\}$ of variables as $M_v(x) = x$ and $M_v(y) = y$.

Define the meaning $M_d: T(\langle dig \rangle) \to \mathbb{N}$ of digits as $M_n(a) = a$, for all $a \in \{0, \ldots, 9\}$.

Define the meaning $M_n: T(\langle nat \rangle) \to \mathbb{N}$ of natural numbers as $M_n(\langle dig \rangle) = M_d(\langle dig \rangle)$ and $M_n(\langle nat \rangle \langle dig \rangle) = 10 M_n(\langle nat \rangle) + M_d(\langle dig \rangle)$.

Denote the state space as $S = \{s : X \to \mathbb{N} \mid X \subseteq \{x,y\}\} \cup \{\text{error}\}$. Define the meaning $M_t : T(\langle term \rangle) \to (S \to (\mathbb{N} \cup \{\text{error}\}))$ of terms as $M_t(\langle nat \rangle)(s) = M_n(\langle nat \rangle)$ and

$$M_t(\langle var \rangle)(s) = \begin{cases} s(M_v(\langle var \rangle)) & \text{if } s \neq \text{error and } M_v(\langle var \rangle) \in \text{dom}(s) \\ \text{error} & \text{otherwise} \end{cases}$$

Define the meaning $M_e: T(\langle expr \rangle) \to (S \to (\mathbb{N} \cup \{error\}))$ of expressions as $M_e(\langle term \rangle)(s) = M_t(\langle term \rangle)(s)$, and

$$M_e(\langle expr \rangle \oplus \langle term \rangle)(s) = \begin{cases} a \oplus b & \text{if } a, b \neq \text{error} \\ \text{error} & \text{otherwise.} \end{cases}$$

where $a = M_e(\langle expr \rangle)(s)$, $b = M_t(\langle term \rangle)(s)$, and $\oplus \in \{+, -\}$.

Define the meaning $M_g: T(\langle guard \rangle) \to (S \to \{\top, \bot, error\})$ of guards as

$$M_g(\langle expr \rangle_1 \sim \langle expr \rangle_2)(s) = \begin{cases} \top & \text{if } t_1 \sim t_2 \text{ and } t_1, t_2 \neq \text{error} \\ \bot & \text{if not } t_1 \sim t_2 \text{ and } t_1, t_2 \neq \text{error} \\ \text{error} & \text{otherwise.} \end{cases}$$

where $t_i = M_e(\langle expr \rangle_i)(s)$, for $i \in \{1, 2\}$, and $\sim \in \{<, =, \neq, >\}$. Define the meaning $M_s : T(\langle stmt \rangle) \to (S \to S)$ of statements as

$$M_s(\langle var \rangle = \langle expr \rangle)(s) = \begin{cases} s[a \mapsto n] & \text{if } s, n \neq \text{error} \\ \text{error} & \text{otherwise.} \end{cases}$$

with $a = M_v(\langle var \rangle)(s)$ and $n = M_e(\langle expr \rangle)(s)$; and of the while loop as $M_s(\mathbf{while} \langle guard \rangle \mathbf{do} \langle prog \rangle \mathbf{od}) = f$, with f is recursively defined as

$$f(s) = \begin{cases} f(M_p(\langle prog \rangle)(s)) & \text{if } M_g(\langle guard \rangle)(s) = \top \\ s & \text{if } M_g(\langle guard \rangle)(s) = \bot \\ \text{error} & \text{otherwise.} \end{cases}$$

Define the meaning $M_p: T(\langle prog \rangle) \to (S \to S)$ of programs as

$$M_p(\langle prog \rangle \langle stmt \rangle)(s) = M_p(\langle prog \rangle)(M_s(\langle stmt \rangle)(s))$$

and $M_p(\langle stmt \rangle)(s) = M_s(\langle stmt \rangle)(s)$.

Compute the denotational semantics of the program (Euclidean algorithm):

$$\begin{split} x &:= 12; \\ y &:= 8; \\ \mathbf{while} \ (x \neq y) \ \mathbf{do} \\ \mathbf{if} \ (x > y) \ \mathbf{then} \\ x &:= x - y; \\ \mathbf{else} \\ y &:= y - x; \\ \mathbf{fi} \\ \mathbf{od} \end{split}$$

Exercise 2 Compute the weakest precondition for the sequence

$$y := 3(x - 4y); x := y + 3; \{x > 5\}.$$

Exercise 3 Compute the weakest precondition for the following programs and assertions:

- (a) if (x > 0) then y := 3; else y := 6; fi $\{y > 1\}$.
- (b) if (x > 0) then y := 1; else y := 2; fi $\{y = 1\}$.
- (c) if (x > 0) then y := y 1; else y := y + 1; fi $\{y > 0\}$.

Exercise 4 Prove the partial correctness of the following assertions:

- (a) $\{x \le 5\}$ while (x < 5) do x = x + 1; od $\{x = 5\}$. (Hint: use the loop invariant $I \equiv x \le 5$)
- (b) $\{x = 5\}$ y := 0; while (y < 10) do y := y + 1; od $\{x = 5\}$.
- (c) $\{ \mathbf{true} \} \ x := 0; \ \mathbf{while} \ (x \neq 8) \ \mathbf{do} \ x := x + 1; \ \mathbf{od} \ \{ x = 8 \}.$
- (d) y := 5; while (y < 8) do x := x + 1; y := y + 1; od $\{x < 4\}$. (Hint: use the loop invariant $I \equiv x < y 4 \land y \le 8$).

Exercise 5 For each of the following programs and assertions, find the weakest precondition that implies total correctness:

- (a) while (y < 10) do y := y * 2; od $\{x = 5\}$
- (b) y := 5; while (y < 8) do x := x + 1; y := y + 1; od $\{x < 4\}$. (Hint: use the loop invariant $I \equiv x < y 4 \land y \le 8$).