Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision theory

Exercise 5

Michael Hartisch, Lundra Resyli

Friedrich-Alexander University Erlangen-Nuremberg, Department of Mathematics June 24, 2024

Exercise 1

Maximize. Which of these functions are risk-seeking, which are risk-averse?

- 1. $\Phi(\mu, \sigma) = \mu \sigma$
- **2**. $\Phi(\mu, \sigma) = \mu + \sigma$
- **3**. $\Phi(\mu, \sigma) = (\sigma + 1)^2$
- **4**. $\Phi(\mu, \sigma) = 1/\sigma$

1.
$$\Phi(\mu, \sigma) = \mu - \sigma$$

2.
$$\Phi(\mu, \sigma) = \mu + \sigma$$

3.
$$\Phi(\mu, \sigma) = (\sigma + 1)^2$$

4.
$$\Phi(\mu, \sigma) = 1/\sigma$$

1.
$$\partial \Phi/\partial \sigma = -1 < 0 \rightarrow \text{averse.}$$

2.
$$\partial \Phi/\partial \sigma = 1 > 0 \rightarrow \text{seeking}$$
.

3.
$$\partial \Phi/\partial \sigma = 2\sigma + 2 > 0 \rightarrow \text{seeking}$$
.

4.
$$\partial \Phi/\partial \sigma = -1/\sigma^2 < 0 \rightarrow \text{averse.}$$

Exercise 2

Maximize.

$$p$$
0.20.20.40.2 a_1 2532 a_2 2222 a_3 3424

Determine the best solution for the decision criterion

$$\Phi(\mu, \sigma) = \mu - \sigma^2$$

Solution 2

p	0.2	0.2	0.4	0.2	Φ
a_1	2 2	5	3	2	1.8
a_2	2	2	2	2	
a_3	3	4	2	4	2.2

- a₁:

$$\sigma_1^2 = 0.2 \cdot (2-3)^2 + 0.2 \cdot (5-3)^2 + 0.4 \cdot (3-3)^2 + 0.2 \cdot (2-3)^2 = 1.2$$

- *a*₂:
 - $\mu_2 = 0.2 \cdot 2 + 0.2 \cdot 2 + 0.4 \cdot 2 + 0.2 \cdot 2 = 2$

$$\circ \sigma_2^2 = 0.2 \cdot (2-2)^2 + 0.2 \cdot (2-2)^2 + 0.4 \cdot (2-2)^2 + 0.2 \cdot (2-2)^2 = 0$$

- *a*₃:
 - $\mu_3 = 0.2 \cdot 3 + 0.2 \cdot 4 + 0.4 \cdot 2 + 0.2 \cdot 4 = 3$

$$\sigma_3^2 = 0.2 \cdot (3-3)^2 + 0.2 \cdot (4-3)^2 + 0.4 \cdot (2-3)^2 + 0.2 \cdot (4-3)^2 = 0.8$$

• best alternative: a₃

Exercise 3

Choose 2 out of 4 items such that $\Phi(\mu, \sigma) = \sigma^2$ is minimized.

p	0.5	0.5
1	8	3
2	5	7
3	9	8
4	10	5

p	0.5	0.5
1	8	3
2	5	7
3	9	8
4	10	5

- 1+2: (13, 10), σ^2 = 2.25
- 1+3: (17, 11), $\sigma^2 = 9$
- 1+4: (18,8), $\sigma^2 = 25$
- 2+3: (14, 15), $\sigma^2 = 0.25$
- 2+4: (15, 12), σ^2 = 2.25
- 3+4: (19, 13), $\sigma^2 = 9$
- best solution: 2+3

Remark

For $p_1 = p_2 = 0.5$ it holds:

$$\sigma^{2} = \frac{1}{2}(e_{1} - \mu)^{2} + \frac{1}{2}(e_{2} - \mu)^{2}$$

$$= \frac{1}{2}(e_{1} - \frac{1}{2}e_{1} - \frac{1}{2}e_{2})^{2} + \frac{1}{2}(e_{2} - \frac{1}{2}e_{1} - \frac{1}{2}e_{2})^{2}$$

$$= \frac{1}{2}(\frac{e_{1} - e_{2}}{2})^{2} + \frac{1}{2}(\frac{e_{2} - e_{1}}{2})^{2}$$

$$= \frac{1}{4}(e_{1} - e_{2})^{2}$$

• To minimize σ^2 in this case, choose the combination for which $|e_1 - e_2|$ is minimal.

Exercise 4

There are two investments with four scenarios each to choose from. All scenarios are equally likely.

Calculate the correlation between the options. Reminder:

$$\rho_{12} = \frac{cov_{12}}{\sigma_1 \sigma_2}$$

•
$$\mu_1 = \frac{1}{4}(12 + 15 + 5 + 20) = 13$$

•
$$\mu_2 = \frac{1}{4}(20 + 5 + 10 + 1) = 9$$

•
$$\sigma_1 = \sqrt{\frac{1}{4}((12-13)^2 + (15-13)^2 + (5-13)^2 + (20-13)^2)} = 5.43$$

•
$$\sigma_2 = \sqrt{\frac{1}{4}((20-9)^2 + (5-9)^2 + (10-9)^2 + (1-9)^2)} = 7.11$$

•
$$cov_{12} = \frac{1}{4}((12-13)(20-9) + (15-13)(5-9) + (5-13)(10-9) + (20-13)(1-9)) = -20.75$$

•
$$\rho_{12} = cov_{12}/(\sigma_1\sigma_2) = -0.54$$

Problem 5

There are two investments with four scenarios to choose from. All scenarios are equally likely.

Draw the portfolio line. Reminder:

$$\sigma^2 = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + 2x_1 x_2 cov_{12}$$

Which portfolio is optimal for max $\Phi(\mu, \sigma)$ with

$$\Phi(\mu, \sigma) = \mu - 0.1\sigma^2$$

- $x_1 = 1 x_2$
- $\sigma_1^2 = \frac{1}{4}((0-15)^2 + (10-15)^2 + (20-15)^2 + (30-15)^2) = 125$
- $\mu(x_1) = 15x_1 + 10(1 x_1) = 5x_1 + 10$
- $\sigma^2(x_1) = x_1^2 \sigma_1^2 + (1 x_1)^2 \sigma_2^2 + 2x_1(1 x_1)cov_{12} = 125x_1^2$
- $\sigma(\mu) = 11.18 \frac{\mu 10}{5} = 2.24 \mu 22.36$

Solution 5

$$\Phi(\mu, \sigma) = \mu - 0.1\sigma^{2}
= 5x_{1} + 10 - 12.5x_{1}^{2}
\Phi'(x_{1}) = -25x_{1} + 5
\Phi'(x_{1}) = 0 \Leftrightarrow x_{1} = 1/5$$

Since Φ is a parabola, $x_1 = 1/5$ is thus the maximizer.

