

Problem

Problem: advanced glycation end products

Diabetic nephropathy

30% of diabetic patients

Solution: engineered glyoxalase I

- DKD is characterized by \$\\$ Glo1\$:
 - nephropathy in Glo1-deficient mice
 - ↑ MGO in diabetic patients
- Overexpression of Glo1:
 - alleviates nephropathy in experimental models

Engineered Glo1 enzyme more efficient at removing toxic methylglyoxal in diabetic kidneys.

Market opportunity: diabetic nephropathy

Competitors AGES CUrsors Precursors Receptors AGES Precursors Receptors Biologics Praetego

Supplements

Technology: directed evolution platform

EVOLUTION

CONFORMATION

DOCKING

DIRECTED EVOLUTION

MODULE

Input: amino acid sequence Output: modified sequence PROTEIN 3D CONFORMATION
PREDICTION MODULE

Input: modified sequence
Output: PDB file

DOCKING MODULE

Input: PDB + substrate as SMILES
Output: binding energies

Platform demo

https://hack-age.streamlit.app/in_silico_platform

	Platform	
3	Input sequence	
	7WT1	/ii.
	Input chain	
	A	lii
	Input SMILES	
	CC(=O)C(O)SCC(C(=O)NCC(=O)O)NC(=O) CCC(C(=O)O)N	/ii.
	Input sequence	
	7WT1	lı.
	Input chain	
	А	
	Input SMILES	A.
	CC(=O)C(O)SCC(C(=O)NCC(=O)O)NC(=O) CCC(C(=O)O)N	4
	style	2005
	cartoon	

In Silico Directed Evolution

Amino acid sequence for selected protein

MAEPQPPSGGLTDEAALSCCSDADPSTKDFLLQQTMLRVKDPKKSLDFYTRVLGMTLIQKCDFPIMKFSLYFLAYEDKND IPKEKDEKIAWALSRKATLELTHNWGTEDDETQSYHNGNSDPRGFGHIGIAVPDVYSACKRFEELGVKFVKKPDDGKMK GLAFIQDPDGYWIEILNPNKMATLM

Generate mutations

Amino acid sequence for mutated protein

Mutated amino acid sequences for selected protein

MAEPQPPSGGLTDEAALSCWSDADPSTKDFLLQQTMLFVKDPKKSLDFYTRVLGMTMAQKCDFPIMKFSLYFLAYEDK NDIPKEKDEKIAWALSRTATLELTHNWGTEDDETQSYHNGNSDPRGFGHIGIAVPDVYSACKRFEELGVKFVKKPDDVK MKGLAFIQDPDGYWIEILNPNKMATLM

Make docking

Protein-Ligand docking results using DiffDock solution

(Pre-)clinical strategy and timeline

IP strategy

01 Engineered Glo1

Delivery method

03 Glutathione supplementation

Team

Dauken

- Al/ML engineer
- entrepreneur

Founder & CEO, AgzaThera

M dauken.seitkali@gmail.com

LinkedIn

Rakhan, Ph.D.

- biologist
- biochemical aspects of glycation

Fellow, Nazarbayev Univ.

mail.com <u>r.aimbetov@gmail.com</u>

LinkedIn

Mikolaj, M.D.

- physician
- medical aspects of glycation

Medical Univ. of Lodz

mikolaj.rzuczkowski@gmail.com

Roman, M.D., Ph.D.

- chemist/pharmacologist
- chemical aspects of glycation

Assistant prof., Volgograd State Medical Univ.

M litvinov.volgamu@mail.ru

Advisory board

Scientific advisor: Strategy advisor:

<u>Jose</u>, Ph.D. <u>Colin</u>

Assistant researcher, i3S Venture fellow, Healthspan Capital

LabDAO
Niklas, M.D., Founder & CEO
Eleanor, COO

Mentors <u>Helena Slama</u>, M.D. <u>Pritam Kumar Panda</u>

We hack age.