Hamilton-láncok hipergráfokban

Katona Gyula Y.

BME SZIT

2008. március 4.

Tartalom

- Definíciók
- Dirac-típusú tétel
- 8 k-él-Hamilton hipergráfok
- Maximálisan nem-Hamilton hipergráfok
- 5 Hamilton-út telített hipergráfok

Tartalom

- Definíciók
- Dirac-típusú tétel
- 3 k-él-Hamilton hipergráfok
- 4 Maximálisan nem-Hamilton hipergráfok
- 5 Hamilton-út telített hipergráfok

Definíció

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

Gráf

Definíció

Definíció

Definíció

Definíció

Definíció

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

Gráf

4/29

Definíció

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

Gráf $\{1, 2\}$ $\{4, 5\}$ $\{5,7\}$ $\{1, 3\}$ 6 ${3,6}$ $\{4, 6\}$

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

Definíció

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

Definíció

 $\{1, 2\}$

 $\{4, 5\}$

 $\{5,7\}$

 $\{1, 3\}$

 $\{3,6\}$ $\{4,6\}$

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

 $\{1, 2, 3\}$

 $\{1, 4, 6\}$

 $\{5, 6, 7\}$

Gráf

Definíció

 $\{1, 2\}$

 $\{4, 5\}$

 $\{5,7\}$

 $\{1, 3\}$

 $\{3,6\}$ $\{4,6\}$

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

 $\{1, 2, 3\}$

 $\{1, 4, 6\}$

 $\{5, 6, 7\}$

 $\{2, 3, 6\}$

Gráf

Definíció

Egy r-uniform hipergráf egy (V, \mathcal{E}) pár, ahol V a pontok halmaza, és \mathcal{E} a V ponthalmaz r-elemű részhalmazainak egy halmaza, amiket hiperéleknek hívunk.

 $\{1, 2, 3\}$

 $\{1, 4, 6\}$

 $\{5, 6, 7\}$

 $\{2, 3, 6\}$

 $\{1, 5, 6\}$

Gráf

Hamiltonian-lánc

A Hamilton kör egy gráfban a pontok egy ciklikus permutációja, hogy minden szomszédos pár egy élet alkot.

Hamiltonian-lánc

A Hamilton kör egy gráfban a pontok egy ciklikus permutációja, hogy minden szomszédos pár egy élet alkot.

Hamiltonian-lánc

A Hamilton kör egy gráfban a pontok egy ciklikus permutációja, hogy minden szomszédos pár egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen \mathcal{H} egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen $\mathcal H$ egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

 $r = 2 \implies$ Hamilton-lánc = Hamilton-kör

2008, március 4.

Definíció

Legyen \mathcal{H} egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Definíció

Legyen H egy r-uniform hipergráf. A Hamilton-lánc a pontok egy ciklikus permutációja, hogy minden szomszédos r-es egy élet alkot.

Fokszám

Definíció

Egy r-uniform hipergráfban a különböző $\{v_1, v_2, \dots, v_m\}$, pontokból álló rögzített m-es fokszáma azoknak az éleknek a száma, amelyek tartalamazzák a $\{v_1, v_2, \dots, v_m\}$ pontok mindegyikét.

Fokszám

Definíció

Egy r-uniform hipergráfban a különböző $\{v_1, v_2, \dots, v_m\}$, pontokból álló rögzített m-es fokszáma azoknak az éleknek a száma, amelyek tartalamazzák a $\{v_1, v_2, \dots, v_m\}$ pontok mindegyikét. Jelölése: $d_r(v_1, v_2, \dots, v_m)$. $\delta_r^{(m)}(\mathcal{H})$ jelöli a minimimális $d_r(v_1, v_2, \dots, v_m)$ értéket az összes m-es között H-ban.

Fokszám

Definíció

Egy r-uniform hipergráfban a különböző $\{v_1, v_2, \ldots, v_m\}$, pontokból álló rögzített m-es fokszáma azoknak az éleknek a száma, amelyek tartalamazzák a $\{v_1, v_2, \ldots, v_m\}$ pontok mindegyikét. Jelölése: $d_r(v_1, v_2, \ldots, v_m)$. $\delta_r^{(m)}(\mathcal{H})$ jelöli a minimimális $d_r(v_1, v_2, \ldots, v_m)$ értéket az összes m-es között \mathcal{H} -ban. Egy m-es szomszédsága:

$$N_{\mathcal{H}}(v_1, v_2, \dots, v_m) := \{E - \{v_1, v_2, \dots, v_m\} \mid v_i \in E, E \in \mathcal{E}(\mathcal{H})\}.$$

Fokszám

Definíció

Egy r-uniform hipergráfban a különböző $\{v_1, v_2, \ldots, v_m\}$, pontokból álló rögzített m-es fokszáma azoknak az éleknek a száma, amelyek tartalamazzák a $\{v_1, v_2, \ldots, v_m\}$ pontok mindegyikét. Jelölése: $d_r(v_1, v_2, \ldots, v_m)$. $\delta_r^{(m)}(\mathcal{H})$ jelöli a minimimális $d_r(v_1, v_2, \ldots, v_m)$ értéket az összes m-es között \mathcal{H} -ban. Egy m-es szomszédsága:

$$N_{\mathcal{H}}(v_1, v_2, \dots, v_m) := \{E - \{v_1, v_2, \dots, v_m\} \mid v_i \in E, E \in \mathcal{E}(\mathcal{H})\}.$$

Fokszám

Definíció

Egy r-uniform hipergráfban a különböző $\{v_1, v_2, \ldots, v_m\}$, pontokból álló rögzített m-es fokszáma azoknak az éleknek a száma, amelyek tartalamazzák a $\{v_1, v_2, \ldots, v_m\}$ pontok mindegyikét. Jelölése: $d_r(v_1, v_2, \ldots, v_m)$. $\delta_r^{(m)}(\mathcal{H})$ jelöli a minimimális $d_r(v_1, v_2, \ldots, v_m)$ értéket az összes m-es között \mathcal{H} -ban. Egy m-es szomszédsága:

$$N_{\mathcal{H}}(v_1, v_2, \dots, v_m) := \{E - \{v_1, v_2, \dots, v_m\} \mid v_i \in E, E \in \mathcal{E}(\mathcal{H})\}.$$

Fokszám

Definíció

Egy r-uniform hipergráfban a különböző $\{v_1, v_2, \ldots, v_m\}$, pontokból álló rögzített m-es fokszáma azoknak az éleknek a száma, amelyek tartalamazzák a $\{v_1, v_2, \ldots, v_m\}$ pontok mindegyikét. Jelölése: $d_r(v_1, v_2, \ldots, v_m)$. $\delta_r^{(m)}(\mathcal{H})$ jelöli a minimimális $d_r(v_1, v_2, \ldots, v_m)$ értéket az összes m-es között \mathcal{H} -ban. Egy m-es szomszédsága:

$$N_{\mathcal{H}}(v_1, v_2, \dots, v_m) := \{E - \{v_1, v_2, \dots, v_m\} \mid v_i \in E, E \in \mathcal{E}(\mathcal{H})\}.$$

Tartalom

- Definíciók
- Dirac-típusú tétel
- 3 k-él-Hamilton hipergráfok
- 4 Maximálisan nem-Hamilton hipergráfok
- 5 Hamilton-út telített hipergráfok

Tétel (Dirac)

Ha egy gráfban $\delta_1^{(2)} \ge n/2$ akkor a gráf tartalmaz Hamilton-kört.

Tétel (Katona, Kierstead; 2000)

Ha $\mathcal{H} = (V, \mathcal{E})$ egy r-uniform hipergráf n ponton és

 $\delta_{r-1}(\mathcal{H}) > (1-\frac{1}{2r})n+4-r-\frac{5}{2r}$, akkor \mathcal{H} tartalmaz Hamilton-láncot.

Tétel (Katona, Kierstead; 2000)

Ha $\mathcal{H}=(V,\mathcal{E})$ egy r-uniform hipergráf n ponton és $\delta_{r-1}(\mathcal{H})>(1-\frac{1}{2r})n+4-r-\frac{5}{2r}$, akkor \mathcal{H} tartalmaz Hamilton-láncot.

A bizonyítás vázlata.

Tétel (Katona, Kierstead; 2000)

Ha $\mathcal{H}=(V,\mathcal{E})$ egy r-uniform hipergráf n ponton és $\delta_{r-1}(\mathcal{H})>(1-\frac{1}{2r})n+4-r-\frac{5}{2r}$, akkor \mathcal{H} tartalmaz Hamilton-láncot.

A bizonyítás vázlata.

Tétel (Ruciński, Rödl, Szemerédi; 2006)

Ha $\mathcal{H} = (V, \mathcal{E})$ egy r-uniform hipergráf, ahol n elég nagy és $\delta_{r-1}(\mathcal{H}) \geq \frac{1}{2}n$, akkor \mathcal{H} tartalmaz a Hamilton-láncot.

Tétel (Katona, Kierstead; 2000)

Ha $\mathcal{H}=(V,\mathcal{E})$ egy r-uniform hipergráf n ponton és $\delta_{r-1}(\mathcal{H})>(1-\frac{1}{2r})n+4-r-\frac{5}{2r}$, akkor \mathcal{H} tartalmaz Hamilton-láncot.

A bizonyítás vázlata.

Tétel (Ruciński, Rödl, Szemerédi; 2006)

Ha $\mathcal{H}=(V,\mathcal{E})$ egy r-uniform hipergráf, ahol n elég nagy és $\delta_{r-1}(\mathcal{H})\geq \frac{1}{2}n$, akkor \mathcal{H} tartalmaz a Hamilton-láncot.

Igaz-e ez "normális méretű" hipergráfokra?

Tétel (Katona, Kierstead; 2000)

Ha $\mathcal{H}=(V,\mathcal{E})$ egy r-uniform hipergráf n ponton és $\delta_{r-1}(\mathcal{H})>(1-\frac{1}{2r})n+4-r-\frac{5}{2r}$, akkor \mathcal{H} tartalmaz Hamilton-láncot.

A bizonyítás vázlata.

Tétel (Ruciński, Rödl, Szemerédi; 2006)

Ha $\mathcal{H}=(V,\mathcal{E})$ egy r-uniform hipergráf, ahol n elég nagy és $\delta_{r-1}(\mathcal{H})\geq \frac{1}{2}n$, akkor \mathcal{H} tartalmaz a Hamilton-láncot.

Igaz-e ez "normális méretű" hipergráfokra? Ore típusú tétel?

Tartalom

- Definíciók
- Dirac-típusú tétel
- k-él-Hamilton hipergráfok
- 4 Maximálisan nem-Hamilton hipergráfok
- 5 Hamilton-út telített hipergráfok

Definíció

Egy hipergráf k-él-Hamilton ha akármelyik k élének elhagyásával marad a hipergáfban Hamilton-lánc.

Definíció

Egy hipergráf k-él-Hamilton ha akármelyik k élének elhagyásával marad a hipergáfban Hamilton-lánc.

Kérdés

Mennyi az élek minimális száma egy n pontú, k-él-Hamilton, r-uniform hipergráfban?

Definíció

Egy hipergráf k-él-Hamilton ha akármelyik k élének elhagyásával marad a hipergáfban Hamilton-lánc.

Kérdés

Mennyi az élek minimális száma egy n pontú, k-él-Hamilton, r-uniform hipergráfban?

r=2 esetén ⇒

Tétel (Paoli, Wong, Wong; 1984)

Egy $n \ge k + 3$ pontú, k-él-Hamilton gráfban az élek minimális száma $\lceil n(k+2)/2 \rceil$.

Triviális alsó becslés

Megfigyelés

Ha \mathcal{H} egy k-él-Hamilton, r-uniform hipergráf, akkor $\delta_1^{(r)} \geq k + r$.

Triviális alsó becslés

Megfigyelés

Ha \mathcal{H} egy k-él-Hamilton, r-uniform hipergráf, akkor $\delta_1^{(r)} \geq k + r$.

Bizonyítás.

Egy r-uniform Hamilton-lánc minden pontja pontosan r élben van benne. Így kell legalább r él azután is, hogy kitöröltünk k élet.

Triviális alsó becslés

Megfigyelés

Ha \mathcal{H} egy k-él-Hamilton, r-uniform hipergráf, akkor $\delta_1^{(r)} \geq k + r$.

Bizonyítás.

Egy r-uniform Hamilton-lánc minden pontja pontosan r élben van benne. Így kell legalább r él azután is, hogy kitöröltünk k élet.

Ez éles r = 2 esetén, de nem éles, ha r > 2.

Új eredmény r = 3, k = 1 esetén

Tétel (Frankl, Katona; 2008)

Van olyan n pontú 1-él-Hamilton 3-uniform ${\mathcal H}$ hipergráf amire

$$|\mathcal{E}(\mathcal{H})| = \frac{11}{6}n + o(n) \approx 1.83n.$$

Új eredmény r = 3, k = 1 esetén

Tétel (Frankl, Katona; 2008)

Van olyan n pontú 1-él-Hamilton 3-uniform ${\mathcal H}$ hipergráf amire

$$|\mathcal{E}(\mathcal{H})| = \frac{11}{6}n + o(n) \approx 1.83n.$$

Triviális becslés: 2 éldiszjunkt Hamilton-lánc \implies 2*n* él

Lower bound

Megfigyelés (Triviális becslés)

Minden $n \ge 5$ pontú, 1-él-Hamilton, 3-uniform $\mathcal H$ hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \geq \frac{4}{3}n \approx 1.33n$$

Bizonyítás.

Minden pontnak benne kell lennie legalább 4 élben .

Lower bound

Megfigyelés (Triviális becslés)

Minden $n \ge 5$ pontú, 1-él-Hamilton, 3-uniform $\mathcal H$ hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \geq \frac{4}{3}n \approx 1.33n$$

Bizonyítás.

Minden pontnak benne kell lennie legalább 4 élben .

Tétel (Frankl, Katona; 2008)

Minden $n \geq 5$ pontú, 1-él-Hamilton, 3-uniform $\mathcal H$ hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \ge \frac{14}{9}n \approx 1.55n.$$

Ha egy v pont benne van a Hamilton-láncban, akkor N(v) tartalmaz egy P_4 -et.

Ha egy v pont benne van a Hamilton-láncban, akkor N(v) tartalmaz egy P_4 -et.

Ha egy v pont benne van a Hamilton-láncban, akkor N(v) tartalmaz egy P_4 -et.

Ha egy v pont benne van a Hamilton-láncban, akkor N(v) tartalmaz egy P_4 -et.

Ha a hipergráf 1-él-Hamilton akkor $N(\nu)$ rendelkezik következő tulajdonsággal minden ν -re:

Ha egy v pont benne van a Hamilton-láncban, akkor N(v) tartalmaz egy P_4 -et.

Ha a hipergráf 1-él-Hamilton akkor N(v) rendelkezik következő tulajdonsággal minden v-re:

Definíció

Egy gráf k-stabil, ha bármely k élét elhagyva még tartalmaz P_4 -et.

Kérdés

Legalább hány éle van egy k-stabil gráfnak? (függetlenül a pontok számától)

2008, március 4.

Kérdés

Legalább hány éle van egy k-stabil gráfnak? (függetlenül a pontok számától)

k = 1 esetén 4 és az extremális gráf a C_4 .

Kérdés

Legalább hány éle van egy k-stabil gráfnak? (függetlenül a pontok számától)

k = 1 esetén 4 és az extremális gráf a C_4 . De ez csak a triviális becslést adja.

Kérdés

Legalább hány éle van egy k-stabil gráfnak? (függetlenül a pontok számától)

k = 1 esetén 4 és az extremális gráf a C_4 .

De ez csak a triviális becslést adja.

Megmutathatjuk, hogy nem lehet minden pont szomszédsága épp egy C_4 .

Kérdés

Legalább hány éle van egy k-stabil gráfnak? (függetlenül a pontok számától)

k = 1 esetén 4 és az extremális gráf a C_4 .

De ez csak a triviális becslést adja.

Megmutathatjuk, hogy nem lehet minden pont szomszédsága épp egy C_4 .

Tétel (Horváth, Katona)

Jelölje S(k) egy k-stabil gráf éleinek minimális számát. Ha $k \geq 2$ akkor

$$S(k) = \left\lceil k + \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil.$$

M Ü E G Y E T E M 1782

Általános alsó becslés

Következmény (Frankl, Horváth, Katona)

Minden n pontú, k-él-Hamilton, 3-uniform hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \geq \frac{\left\lceil k + \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil}{3} n > \left\lceil \frac{(k+2)n}{3} \right\rceil.$$

Általános alsó becslés

Következmény (Frankl, Horváth, Katona)

Minden n pontú, k-él-Hamilton, 3-uniform hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \geq \frac{\left\lceil k + \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil}{3} n > \left\lceil \frac{(k+2)n}{3} \right\rceil.$$

Tétel

Van olyan n pontú, 2-él-Hamilton, 3-uniform ${\mathcal H}$ hipergráf, melyre

$$|\mathcal{E}(\mathcal{H})| = \frac{13}{4}n + o(n).$$

Tétel

Van olyan n pontú, 2-él-Hamilton, 3-uniform ${\mathcal H}$ hipergráf, melyre

$$|\mathcal{E}(\mathcal{H})| = \frac{13}{4}n + o(n).$$

Tétel

Van olyan n pontú, 1-él-Hamilton, r-uniform ${\mathcal H}$ hipergráf

$$|\mathcal{E}(\mathcal{H})| = \frac{4r-1}{2r}n + o(n).$$

Tétel

Van olyan n pontú, 1-él-Hamilton, r-uniform ${\mathcal H}$ hipergráf

$$|\mathcal{E}(\mathcal{H})| = \frac{4r-1}{2r}n + o(n).$$

Tétel

Minden $n \ge 6$ pontú, 1-él-Hamilton, 4-uniform $\mathcal H$ hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \geq \frac{3}{2}n.$$

2008, március 4.

Tétel

Van olyan n pontú, 1-él-Hamilton, r-uniform ${\mathcal H}$ hipergráf

$$|\mathcal{E}(\mathcal{H})| = \frac{4r-1}{2r}n + o(n).$$

Tétel

Minden $n \geq 6$ pontú, 1-él-Hamilton, 4-uniform $\mathcal H$ hipergráfra teljesül, hogy

$$|\mathcal{E}(\mathcal{H})| \geq \frac{3}{2}n.$$

Kérdés

Legalább hány éle van egy k-stabil, r-uniform hipergráfnak?

Tartalom

- Definíciók
- Dirac-típusú tétel
- 3 k-él-Hamilton hipergráfok
- Maximálisan nem-Hamilton hipergráfok
- 5 Hamilton-út telített hipergráfok

Kérdés

Legfeljebb hány éle van egy n pontú, r-uniform hipergráfnak, amiben nincs Hamilton-lánc?

Kérdés

Legfeljebb hány éle van egy n pontú, r-uniform hipergráfnak, amiben nincs Hamilton-lánc?

Gráfokra: $\binom{n-1}{2} + 1$

Új eredmény

Tétel (Frankl, Katona; 2008)

Ha egy n pontú, r-uniform $\mathcal H$ hipergráfban nincs Hamilton-lánc, akkor

$$|\mathcal{E}(\mathcal{H})| \leq \left(1 - \frac{4r}{(4r-1)n}\right) \binom{n}{r} = \frac{1}{r!} \left(n^r - \left[\binom{r}{2} + \frac{12}{11}\right] n^{r-1} + o(n^{r-1})\right)$$

Új eredmény

Tétel (Frankl, Katona; 2008)

Ha egy n pontú, r-uniform ${\mathcal H}$ hipergráfban nincs Hamilton-lánc, akkor

$$|\mathcal{E}(\mathcal{H})| \leq \left(1 - \frac{4r}{(4r-1)n}\right) \binom{n}{r} = \frac{1}{r!} \left(n^r - \left[\binom{r}{2} + \frac{12}{11}\right] n^{r-1} + o(n^{r-1})\right)$$

Tétel (Tuza; 2007)

Minden n > r esetén van olyan r-uniform hipergráf n ponton, hogy az élek száma legalább

$$\binom{n-1}{r} + \binom{n-1}{r-2} + o(n) = \frac{1}{r!} \left(n^r - 2 \binom{r}{2} n^{r-1} + o(n^{r-1}) \right).$$

Tartalom

- Definíciók
- Dirac-típusú tétel
- 3 k-él-Hamilton hipergráfok
- 4 Maximálisan nem-Hamilton hipergráfok
- 5 Hamilton-út telített hipergráfok

Egy H hipergráf Hamilton-út telített, ha H-ban nincs nyílt Hamilton-lánc (Hamilton-út), de akárhogy veszünk hozzá új élet már lesz benne.

Egy H hipergráf Hamilton-út telített, ha H-ban nincs nyílt Hamilton-lánc (Hamilton-út), de akárhogy veszünk hozzá új élet már lesz benne.

Hamilton-lánc telített hipergráfok hasonlóan definiálhatók.

Egy H hipergráf Hamilton-út telített, ha H-ban nincs nyílt Hamilton-lánc (Hamilton-út), de akárhogy veszünk hozzá új élet már lesz benne.

Hamilton-lánc telített hipergráfok hasonlóan definiálhatók.

Kérdés

Legalább hány éle van egy n pontú, Hamilton-út (lánc) telített hipergráfnak?

Egy H hipergráf Hamilton-út telített, ha H-ban nincs nyílt Hamilton-lánc (Hamilton-út), de akárhogy veszünk hozzá új élet már lesz benne.

Hamilton-lánc telített hipergráfok hasonlóan definiálhatók.

Kérdés

Legalább hány éle van egy n pontú, Hamilton-út (lánc) telített hipergráfnak?

Gráfokra Bollobás kérdezte ezt.

Egy H hipergráf Hamilton-út telített, ha H-ban nincs nyílt Hamilton-lánc (Hamilton-út), de akárhogy veszünk hozzá új élet már lesz benne.

Hamilton-lánc telített hipergráfok hasonlóan definiálhatók.

Kérdés

Legalább hány éle van egy n pontú, Hamilton-út (lánc) telített hipergráfnak?

Gráfokra Bollobás kérdezte ezt.

Körre megoldották: Bondy (1972); Clark, Entringer, Shapiro (1992); Ling, Jiang, Yang, Zhang (1992). $\Longrightarrow \lceil \frac{3n}{2} \rceil$

Egy H hipergráf Hamilton-út telített, ha H-ban nincs nyílt Hamilton-lánc (Hamilton-út), de akárhogy veszünk hozzá új élet már lesz benne.

Hamilton-lánc telített hipergráfok hasonlóan definiálhatók.

Kérdés

Legalább hány éle van egy n pontú, Hamilton-út (lánc) telített hipergráfnak?

Gráfokra Bollobás kérdezte ezt.

Körre megoldották: Bondy (1972); Clark, Entringer, Shapiro (1992);

Ling, Jiang, Yang, Zhang (1992). $\Longrightarrow \left\lceil \frac{3n}{2} \right\rceil$

Útra: Dudek, Katona, Wojda (2005). $\Longrightarrow \left\lceil \frac{3n-5}{2} \right\rceil$ és $\left\lceil \frac{3n-1}{2} \right\rceil$ között

Eredmények hipergráfokra

Tétel (Dudek, Katona)

Ha a ${\mathcal H}$ hipergáf r-uniform és Hamilton-lánc telített, akkor

$$|\mathcal{E}(\mathcal{H})| \geq \frac{\binom{n}{r}}{r(n-r)+1} = O(n^{r-1}).$$

Eredmények hipergráfokra

Tétel (Dudek, Katona)

Ha a H hipergáf r-uniform és Hamilton-lánc telített, akkor

$$|\mathcal{E}(\mathcal{H})| \geq \frac{\binom{n}{r}}{r(n-r)+1} = O(n^{r-1}).$$

Tétel (Dudek, Katona)

Minden n > 7 esetén van olyan 3-uniform hipergráf, aminek $\frac{2}{27}n^3 + o(n^3)$ éle van.

Eredmények hipergráfokra

Tétel (Dudek, Katona)

Ha a ${\cal H}$ hipergáf r-uniform és Hamilton-lánc telített, akkor

$$|\mathcal{E}(\mathcal{H})| \geq \frac{\binom{n}{r}}{r(n-r)+1} = O(n^{r-1}).$$

Tétel (Dudek, Katona)

Minden $n \ge 7$ esetén van olyan 3-uniform hipergráf, aminek $\frac{2}{27}n^3 + o(n^3)$ éle van.

Azt sejtjük, hogy az élszám nagyságrendje n^{r-1} .

2008. március 4.

VÉGE

