DISPERSION SHIFT OPTICAL FIBER AND WAVELENGTH MULTIPLEXING OPTICAL TRANSMISSION SYSTEM USING THE SAME

Publication number: JP9318833
Publication date: 1997-12-12

Inventor:

AKASAKA YOICHI (JP)

Applicant:

FURUKAWA ELECTRIC CO LTD (JP)

Classification:

- international:

G02B6/02; G02B6/036; G02B6/10; H04B10/12; H04B10/13; H04B10/135; H04B10/14; G02B6/02; G02B6/10; H04B10/12; H04B10/13; H04B10/135; H04B10/14; (IPC1-7): G02B6/16; G02B6/10; G02B6/22; H04B10/12; H04B10/13; H04B10/135; H04B10/14

- European:

Application number: JP19970085846 19970319

Priority number(s): JP19970085846 19970319; JP19960099373 19960328

Report a data error here

Abstract of JP9318833

PROBLEM TO BE SOLVED: To realize zero dispersion wavelength multiplexing optical communication in the 1550nm wavelength band. SOLUTION: With respect to this dispersion shift optical fiber, a specific refractive index difference &Delta 1 of the core of the optical fiber, a specific refractive index difference &Delta 2 of a first clad covering the core, and a specific refractive index difference &Delta 3 of a second clad covering the outer periphery satisfy relation &Delta 1>&Delta 3>&Delta 2, and an average dispersion slope in the use wavelength band from 1530nm to 1560nm to is set to a negative value, and the zero dispersion wavelength is set to a value off the gain band of an erbium doped optical fiber optical amplifier. This dispersion shift optical fiber is connected to a positive dispersion slope optical fiber as the other party of connection which has a positive dispersion slope value in 1530 to 1560nm wavelength and has an approximately equal zero dispersion wavelength, thus constituting a wavelength multiplexing optical communication system. Thus, the dispersion slope of the positive dispersion slope optical fiber is cancelled and compensated to approximately completely eliminate the dispersion in the 1530 to 1560nm wavelength region.

Data supplied from the **esp@cenet** database - Worldwide

Cited Reference

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平9-318833

(43)公開日 平成9年(1997)12月12日

G 0 2 B 6/16 6/10 C 6/22 6/22 H 0 4 B 10/14 10/135 密波耐求 未請求 請求項の数 5 PD (全 7 頁) 最終頁に祝く (21) 出資格号 特顧平9-85846 (71) 出資人 000005290 占河租気工業株式会社 東京都千代田区丸の内 2 丁目 6 册 1 号 で (32) 優先日 平 8 (1996) 3 月 28日 (74) 代配人 非理士 五十嵐 福	(51) lnt.CL°		政別配号 广内整理番号		17				技術表示赞賞			
6/22 H 0 4 B 10/14 10/135	G02B	6/16			G 0 2	В	6/16					
H 0 4 B 9/90 Q 10/135 審査請求 未請求 請求項の数5 PD (全 7 頁) 最終頁に祝く (21)出資格号 特顧平9-85846 (71)出資人 000005290 占行電気工業株式会社 東京都千代田区丸の内 2 丁目 6 務 1 号 (72)発明者 赤坂 神一 東京都千代田区丸の内 2 丁目 6 務 1 号 古 (32)優先日 平 8 (1996) 3 月 28日 東京都千代田区丸の内 2 丁目 6 務 1 号 古 利電気工業株式会社内		6/10					6/10			C		
10/135 審査請求 未請求 精求項の数5 PD (全 7 頁) 最終頁に祝く (21)出職番号 特職平9-85846 (71)出職人 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (72)発明者 赤坂 神一 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 大阪都千代田区丸の内2丁目6番1号 古河電気工業株式会社内		6/22					6/22					
審安請求 未請求 請求項の数5 FD (全 7 頁) 最終頁に祝く (21)出顧券号 特顧平9-85846 (71)出顧人 000005290 当何電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (72)発明者 赤坂 洋一 東京都千代田区丸の内2丁目6番1号 古 (32)優先日 平8 (1996) 3 月28日 東京都千代田区丸の内2丁目6番1号 古 市電気工業株式会社内	H04B	10/14			H 0 4	В	9/00			Q		
(21) 出顧番号 特顧平9-85846 (71) 出顧人 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (72) 発明者 赤坂 津一 (31) 優先権主張番号 特顧平8-99373 東京都千代田区丸の内2丁目6番1号 古 (32) 優先日 平8 (1996) 3 月28日 東京都千代田区丸の内2丁目6番1号 古 利電気工業株式会社内		10/135										
古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (72)発明者 赤坂 神一 (31)優先権主張番号 特職平8-99373 東京都千代田区丸の内2丁目6番1号 古 (32)優先日 平8 (1996) 3 月28日 河電気工業株式会社内				象被新求	未謝求	UKR	質の数 5	P D	全	7 H) 最終質に	祝く
(22) 山瀬日 平成 9 年 (1997) 3 月 19日 東京都千代田区丸の内 2 丁目 6 務 1 号 (31) 優先権主張番号 特職平8 - 99373 東京都千代田区丸の内 2 丁目 6 孫 1 号 古 (32) 優先日 平 8 (1996) 3 月 28日 河電気工業株式会社内	(21) 出願番号	}	特顧平9-85846		(71) 8	人類出	00000	5290				
(72)発明者 赤坂 神一 (31)優先権主張番号 特職平8-99373 東京都千代田区丸の内2丁目6 添1 号 古 (32)優先日 平8 (1998) 3 月28日 河電気工業株式会社内							占何義	级工类	珠式多	社		
(31) 優先権主張番号 特職平8-99373 東京都千代田区丸の内2丁目6番1号 古 (32) 優先日 平8 (1996) 3 月28日 河電気工業株式会社内	(22) 山瀬日		平成9年(1997)3)	19日			郑尔彻	四外干	区心区)内2	丁目6帶1号	
(32) 優先日 平 8 (1996) 3 月28日 河電気工業株式会社内					(72) 5	初智						
· · · · · · · · · · · · · · · · · · ·		E强番号	• • • • • • • • • • • • • • • • • • • •		1						丁目6番1号	古
(33)優先相主張国 日本(JP) (74)代照人 非理士 五十嵐 褙				3								
	(33) 優先相当	E型国	日本(JP)		(74) 1	你好人	护理 山	五十		Ħ		
				•								
											•	
					1							

(54) 【発明の名称】 分散シフト光ファイバおよびその光ファイバを用いた波長多葉光伝送システム

(57)【要約】

【課題】 この発明は波長1550nm帯での零分散波長多重 光速信を可能とする分散シフト光ファイバおよびその光 ファイバを用いた波長多重光通信システムである。

【解決手段】 本発明の分散シフト光ファイバは光ファイバのコアの比尾折率差 4、コアを預う第1クラッドの比尾折率差 4、その外風側を預う第2クラッドの比尼折率差 4、その外風側を預う第2クラッドの比尼折率差 6、30関係を41×43×42とし、かつ、波長1530mから1560mの使用波長帯の平均分散スローブを負の値にするとともに、零分散波長をエルビウム添加光ファイバ光増幅器の利将帯域から外れた値に設定する。本発明の波長多重光通信システムは前記分散シフト光ファイバを波長1530m~1560mでの分散スローブが正ではほ同じ零分散波長をもつ接続相手側の正分散スローブ光ファイバに接続することによって形成する。これにより、正分散スローブ光ファイバの分散スローブを減殺補償して波長1530m~1560mでの分散をほぼ零分散とする。

【特許請求の範囲】

【諸球項1】 正の分散スローブをもち零分散波長域が1500nmから1600nmである正分散スローブ光ファイバに接続されて使用される分散シフト光ファイバにおいて、波長1530nmから1560nmまでの平均分散スローブが負であり、かつ、前配正分散スローブ光ファイバの零分散波長と時一数する波長の波長分散を時ロps/nm/kmとしたことを特徴とする分散シフト光ファイバ。

【請求項 2】 正分散スロープ光ファイバの零分散波長は波長1530nmから1560nmまでの波長帯から外れた波長値に設定されており、分散シフト光ファイバの零分散波長は対記正分散スロープ光ファイバの零分散波長にほぼー致させてあることを特徴とする請求項1記載の分散シフト光ファイバ。

【請求項 3】 波長1530nmから1560nmまでの平均分散スロープを-0.07ps/nm2 /kmよりも小さくしたことを特徴とする請求項 1又は請求項2記載の分散シフト光ファイバ。

【請求項4】 コアの比屈折率差を61、該コアの外周側を覆う第1クラッドの比屈折率差を62、該第1クラッドの外周側を覆う第2クラッドの比屈折率差を63としたときに、61×63×62と成していることを特徴とする請求項1又は請求項2又は請求項3記載の分散シフト光ファイバ。

【請求項5】 エルビウム添加光ファイバを用いた光物 幅器で増幅した光信号を正分散スロープ光ファイバと分散シフト光ファイバを接枝して成る光線勝を通して波長 夕重光通信を行う波長夕重光通信システムにおいて、 村記光増幅器は波長が時1530nmから1560nmの間に利得帶域をもち、前記正分散スロープ光ファイバは零分散波長域を1500nmから1600nmとする正の分散スロープをもち、前記分散シフトファイバは波長1530nmから1550nmまでの平均分散スロープが負であり、かつ、零分散波長を耐記正分散スロープ光ファイバの零分散波長と略一致させてあり、 前記正分散スロープ光ファイバと分散シフト光ファイバの零分散波長に改立されている波長夕重光伝送システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば励起光源によって励起されるエルビウム添加光ファイバを用いた光 増幅器を有する波長多重光伝送システムと、そのシステムに用いられる分散シフト光ファイバに関するものである。

[0002]

【従来の技術】近年、エルビウムを添加した光ファイバを用いた光増幅器(EDFA:ErblumDoped Fiber Amplifier)の実現により、波長1.55μm(1550nm)帯の光信号を電気信号に変換せずに直接増幅することが可能となり、それにより、光通信の分野において、大容量、長

距離通信が実現化されつつある。また、その一方で、光通信における通信容量の拡大のために、異なる波長を持つ光信号を1本の光ファイバで伝送する波長多重(WDM: Wave length Division Multiplex)方式による通信が行われている。この波長多重方式を用いた光通信システムに前記エルビウム添加光ファイバを用いた光増信器を適用することにより、さらなる通信器量の拡大および波長多重方式による長距離伝送の実現化が期待される。【0003】

【発明が解決しようとする課題】ところで、前記EDFAを用いた波長今里伝送システムに用いられる光ファイバとして、波長1530 nm 特に奉分散波長を持つ分散シフト光ファイバが提案されている。しかし、分散シフト光ファイバが、前記EDFAの利得帯域である波長路1530 nm から1580 nm までの間に番分散波長をもっていると、この光ファイバに複数の波長の光を入射したときに、非線形現象の1つである4光波退合(FWM)が生じる。この4光波退合により信号光パワーが容われ、他の波長のシグナルに変換されてノイズとなり、伝送特性上問題が生じる。なお、前記従来の分散シフト光ファイバは、いずれも、波長が大きくなるにつれて分散値が大きくなる、いわゆる正の分散スローブを有しており、その値は一般に0.07ps/nm2/kmである。

【0004】この4光波温合による問題をなくすために、使用波長での分散量をゼロから離し、使用波長での分散が±1.5~40s/nm/km程度となる光ファイバを用いることで、4光波温合による問題を解決しようとする試みが成されている。この光ファイバは、特間平7-158046号公報に記載されており、エイ・ティ・アンド・ティ・コーボレーションにより「TRUE WAVE」として簡標登録されている。このTRUE WAVEと呼ばれる光ファイバは、波長1520mm近辺又は波長1580mm近辺に帯分散波長を有しており、正の分散スローブを有している。なお、このTRUE WAVEや前記従来の一般的な分散シフト光ファイバのように、正の分散スローブをもった光ファイバを、以下、正分散スローブ光ファイバという。

【0005】しかしながら、このTRUE WAVEと呼ばれる正分散スロープ光ファイバは、前記の如く、使用跛長での分散を奪分散としていないことから、使用跛長帯域において正分散スロープ光ファイバそのものによる分散が生じてしまうため、このTRUE WAVEと呼ばれる正分散スロープ光ファイバを使用する場合には、以下のようにしていた。例えば、図5の特性線 b1に示す跛長分散神性を備えたTRUE WAVEの正分散スロープ光ファイバを光伝送の線路として使用し、この線路に同図の特性線 b2に示す跛長分散神性を備えたTURE WAVEの正分散スロープ光ファイバを分散補償用の光ファイバモジュールとして接続して光伝送線路の跛長分散特性を同図の特性線 b3に示す波長分散特

性が得られるようにし、使用波長の中心波長(例えば1550nm)での分散がゼロになるようにするか、あるいは b 1 の波長分散特性を備えたTURE WAVEの正分散スロープ光ファイバと b 2 の波長分散特性を備えたTURE WAVEの正分散スロープ光ファイバとを同じ長さでもって交互に接続して光伝送の線路と成し、それにより、全体では同図の特性線 b 4 に示す波長分散特性が得られるようにし、使用波長の中心波長(例えば1550nm)での分散がゼロになるように試みられた。

【0006】しかしながら、このようにすると、中心波長の分散はゼロとなるが、例えば b 4 の特性線では波長1530nmにおいて-1.6 ps/nm/kmの残留分散が生じ(b3の特性線の場合は残留分散がより大きくなる)、中継間隔(伝送距離)が80kmのときには128 ps/nmの分散が残留することになる。そうなると、信号光の波形は歪み、中心波と端の波とでエラービットレートが変わり、波長今重伝送の信頼性が極端に低下してしまうことになる。

【〇〇〇7】本発明は上記課題を解決するためになされたものであり、その目的は、例えばエルピウム添加光ファイバを用いた光増幅器を有する波長多量伝送システムに適用することにより、波長1550m元辺での零分散波長多重光伝送を可能にする分散シフト光ファイバおよびその光ファイバを用いた波長多重光伝送システムを提供することにある。

[8000]

【課題を解決するための手段】上記目的を達成するために、本発明は次のような構成により課題を解決するための手段としている。第1の発明は、正の分散スロープをもち零分散波長域が1500mmから1600mmである正分散スロープ光ファイバに接続されて使用される分散シフト光ファイバにおいて、波長1530mmから1560mmまでの平均分散スローブが負であり、かつ、前記正分散スローブ光ファイバの零分散波長と略一致する波長の波長分散を晦ロps/mm/kmとした構成をもって課題を解決する手段としている。

【0009】また、第2の発明は、前記第1の発明の構成を備えたものにおいて、正分散スロープ光ファイバの零分散波長は波長1530 nmから1560nmまでの波長帯から外れた波長値に設定されており、分散シフト光ファイバの零分散波長は前記正分散スロープ光ファイバの零分散波長にぼぼ一致させてある構成をもって課題を解決する手段としている。

【0010】さらに、第3の発明は、前記第1又は第2の発明の構成を備えたものにおいて、波長1530nmから1560nmまでの平均分散スロープを-0.07ps/nm2/kmよりも小さくした構成をもって課題を解決する手段としている。

【0011】さらに、第4の発明は、前記第1又は第2 又は第3の発明の構成を備えたものにおいて、コアの比 屈折率差を△1、該コアの外周側を覆う第1クラッドの 比屈折率差を△2、該第1クラッドの外周側を覆う第2 クラッドの比屈折率差を△3としたときに、△1>△3 >△2と成している構成をもって課題を解決する手段と している。

【0012】さらに、第5の発明は、エルビウム添加光ファイバを用いた光増幅器で増幅した光信号を正分散スロープ光ファイバと分散シフト光ファイバを接続して成る光線路を通して波長夕重光通信を行う波長夕重光通信を行う波長少重光通信を打ちびれて、前記光増幅器は波長が略1530mmから1560mmの間に利得帯域をもち、前記正分散スロープ光ファイバは乗分散波長域を1500mmから1600mmとする正の分散スロープをもち、前記分散シフトファイバは波長1530mmから1560mmまでの平均分散スローブが負であり、かつ、帶分散波長を前記正分散スローブ光ファイバの零分散波長と前記正分散スローブ光ファイバの零分散波長と前記正分散スローブ光ファイバと分散シフト光ファイバの零分散波長は前記光増幅器の利得常域から外れた波長に設定されている構成をもって課題を解決する手段としている。

【0013】本発明の分散シフト光ファイバは、エルビウム添加光ファイバを用いた光増幅器(EDFA)の利待帯域である波長1530 nmから1560nmでの平均分散スローブが負であり、かつ、接続される正分散スローブ光ファイバの零分散波長(接続相手側の正分散スローブ光ファイバの零分散波長域は1500 nmから1600nmである)と略一致する波長の波長分散を略 DPS/nm/kmとしているために、正の分散スローブをもった正分散スローブ光ファイバに本発明の分散シフト光ファイバを接続することにより、少なくとも波長1530nmから1560nmまでの波長領域においては、正の分散スローブと負の分散スローブとが遊散し合い、分散量の避殺補償が効果的に行われる。

【0014】そのため、本発明の分散シフト光ファイバを正の分散スロープを有する分散シフト光ファイバ(正分散スロープ光ファイバ)に接続し、EDFAを用いた波長多重光伝送システムとすることにより、分散スロープをほぼ零に近い値として光信号の分散量をほぼ零に近い値とすることが可能となり、この結果、耐記波長多重光伝送において、受信側での各波長の信号分離が明確に行われるようになり、信頼性の高い高密度高速の大容量波長多銀伝送が可能となる。

【 O O 1 5】特に、正分散スロープ光ファイバの分散スロープは、一般的に約0.07ps/nm2/kmであることが知られており、本発明の分散シフト光ファイバの波長1530 nmから 1560nmまでの平均分散スローブを-0.07ps/nm2/kmよりも小さくし、魚の平均分散スローブの絶対値を大きくすることにより、短い光ファイバ長で正分散光ファイバの分散スローブの退稅補償が可能となる。

[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づいて説明する。図1には、本発明に係る分散シフ ト光ファイバの一実施形態例の波長分散特性が示されており、図 2にはその分散シフト光ファイバの展析率分布特性が、図3には分散シフト光ファイバの横断面図がそれぞれ示されている。図 2、3に示されるように、本実施形態例の分散シフト光ファイバは、コア3と、コア3の外周側を覆う第1クラッド4と、第1クラッド4の外風側を覆う第2クラッド5とを有しており、コア3の比尼折率差を41、第1クラッド4の比尼折率差を42、第2クラッド5の比尼折率差を43としたときに、41>43>42と成し、W型屈折率分布を量している。

【0017】コア3の内径 rは、例えば4 u m であり、コア3はGe O2 がドープされたGe O2 - Si O2 により形成されている。第1クラッド4は、例えばフッカドがドープされたF-Si O2 により形成され、第2クラッド5は例えばSi O2 により形成されている。

【0018】図1の特性線をに示されるように、本実施形態例の分散シフト光ファイバは、波長1530nmから1560nmまでの分散値が1.5~4ps/nm/kmであり、この波長領域の平均分散スロープが負であり、そのスロープの値は-0.08ps/nm2/kmと成している。なお、本実施形態例の分散シフト光ファイバは、同図の特性線 bに示す波長分散特性を備えたTURE WAVEと呼ばれる正分散スローブ光ファイバに接続され、波長1550nm帯の光を用いた波長争重伝送に用いられるものである。本実施形態例の分散シフト光ファイバの前記平均分散スロープの発対値、すなわち、0.08ps/nm2/kmの値は、図1の特性線bのTRUE WAVEの正の分散スロープ(約0.08ps/nm2/km)の値とほぼ等しい大きさである。

【0019】また、本実施形態例の分散シフト光ファイパは、図1の特性線 bの特性を有する接続相手側の正分散スロープ光ファイバ(TRUE WAVE)の零分散波長である1580nmと略一致する波長で波長分散を時口吟/nm/kmとなるように形成されており、曾い嫡えれば、本実施形態例の分散シフト光ファイバと接続相手側の正分散スロープ光ファイバの零分散波長は、共に1580nmで等しく形成されている。なお、図2に示したように、W型屈折率分布を有する分散シフト光ファイバを形成する際に、第2クラッド5の比屈折率差公3に対する第1クラッド4の比屈折率差公2の差(図2の公日)を例えばー0.45%といった大きな値とすることにより、波長1530nmから1560nmまでの平均分散スローブが負となる分散シフト光ファイバを容易に形成することができる。

【0020】なお、図4に示すように、本実施形態例の分散シフト光ファイバF1 と正分散スロープ光ファイバF2 とが接続された執路によって波長今重光伝送システムが構成され、光信号はエルビウム添加光ファイバを用いた光増帽器EDFAによって増幅され、この増幅された光信号は光ファイバF1 とF2 の執路を通して伝送される。

【0021】本実施形態例は以上のように構成されてお

り、波長1530nmから1560nmまでの平均分散スロープが負であり、かつ、この負の分散スロープの絶対値が接続相手側の正分散スロープ光ファイバ(TRUE WAVE)の正の分散スロープの絶対値と等しく、さらに、本実施形態例の分散シフト光ファイバはその命分散波長が接続相手側の正分散スロープ光ファイバの零分散波長と略一致するように形成されているために、図1の特性線はに示す波長分散特性を有する本実施形態例の分散シフト光ファイバを同図の特性線はに示す正分散スロープ光ファイバを同図の特性線はに示す正分散スロープ光ファイバを同図の特性線はに示す正分散スロープ光ファイバを同図の特性線はに示す正分散スロープ光ファイバを同図の特性線はに示す正分散スロープ光ファイバを同図の特性線はに示す正分散スロープ光ファイバを同図の特性線は1530nmから1560nmの領域を含む波長1530nmから1560nmの

【〇〇22】また、本実施形態例の分散シフト光ファイパの等分散波長は波長1580nmであり、エルピウム添加光ファイバを有する光増幅器(EDFA)の利得帶域である波長1530nmから1560nmまでの波長領域に零分散波長を有してなく、しかも、波長1530nmから1560nmまでの分散は1.5~4ps/nm/km程度であるために、この分散シフト光ファイバに波長1550nm帶(約1530nmから1560nm)の信号光を入射させたときに、4光波退合(FWM)が生じることは殆どない。また、前記の如くTRUE WAVEと呼ばれる光ファイバにおいてもFWMの発生は抑制される。

【0023】そのため、本実施形態例の分散シフト光ファイパと接続相手側の正分散スロープ光ファイパであるTRUE WAVEの光ファイパとを接続し、EDFAを備えた波長1550mm帯での波長多重伝送システムとして構築すれば、FWMが発生せず、かつ、使用波長全域で波長分散がほぼゼロとなる光伝送システムの構築が可能となり、非常に信頼性が高い高速大容量伝送可能な優れた光伝送システムの構築を図ることができる。

【0024】なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態機を採り得る。例えば、上記実施形態例では、波長1530nmから1560nmまでの平均分散スロープを-0.08psps/nm2/kmとしたが、分散シフト光ファイバの波長1530nmから1560nmまでの平均分散スロープは負であればよく、その大きさは特に限定されるものではない。また、上記実施形態例では、分散シフト光ファイバの零分散波長を1580nmとしたが、この零分散波長は接続相手側の正分散スロープ光ファイバの零分散波長(1500nmから1600nmまでの波長域であって、光増電器EDFAの利得帶域から外れたいずれかの波長)と時一致するように適宜設定されるものである。

【OO25】例えば、分散シフト光ファイバの零分散波 長を1585nmとし、この分散シフト光ファイバの波長1530 nmから1560nmまでの平均分散スローブを-0.1 ps/nm2 /kmとすることもできる。本出願人がこの分散シフト光 ファイバを作製し、波長1585nmに零分散波長をもち、波 長1530nmから1560nmまでの分散スローブが0.1 ps/nm2 /kmであるTRUE WAVEと呼ばれる光ファイバと 互いに同じ長さ接続したところ、波長1530nmから1560nm までの分散を同時にほぼ帶分散(±0.03ps/nm/km以内)にすることができた。なお、このTRUE WAVEの光ファイバのみだと、波長1530nmで-5.5 ps/nm/kmの分散をもち、波長1560nmで-2.5 ps/nm/kmの分散をもつ。

【0026】また、分散シフト光ファイバを形成する限に、波長1530nmから1560nmまでの平均分散スロープを例えばー0.01ps/nm2 /kmといった値(絶対値が小さい値)にすることもできるが、この分散シフト光ファイバ(番分散波長が1585nm)を、季分散波長が1585nmで波長1530nmから1560nmまでの平均分散スローブが+0.1 ps/nm2 /kmのTRUE WAVEと呼ばれる光ファイバの分散スロープを避殺補償しようとすると、TRUE WAVEと呼ばれる光ファイバの分散スロープを避殺補償しようとすると、TRUE WAVEと呼ばれる光ファイバの约10倍の長さの分散シフト光ファイバが必要となる。

【0027】そのため、分散シフト光ファイバの平均分散スロープはその絶対値が大きい方が良く、例えば、従来から提案されている一般的な正分散スロープ光ファイバの正の分散スロープが約0.07ps/nm2 /kmであることから、本発明の分散シフト光ファイバの、波長1530nmから1560nmまでの平均分散スロープを-0.07ps/nm2 /kmよりも小さく(負の絶対値を0.07よりも大きく)することが好ましい。

【0028】さらに、上記実施形態例では、分散シフト 光ファイパの屈折率分布構造を図2に示すようなW型屈 折率分布構造となるようにしたが、分散シフト光ファイ パの屈折率分布構造は特に限定されるものではなく、適 宜設定されるものである。ただし、分散シフト光ファイ パの屈折率分布構造を上記実施形態例と同様にW型屈折 率分布構造とすることにより、波長1530nmから1560nmま での平均分散スロープが負となる分散シフト光ファイバ を容易に形成することができる。

【0029】さらに、上記実施形態例では、分散シフト光ファイバを正分散スロープ光ファイバの一例であるTRUE WAVEと呼ばれる光ファイバに接続して波長 今里伝送システムに適用する例について述べたが、本発明の分散シフト光ファイバは下RUE WAVEと呼ばれる光ファイバ以外の、奉分散波長域が1500nmから1600nmである正分散スロープ光ファイバにも接続することができるものであり、正分散スロープ光ファイバがTRUE WAVE以外の光ファイバであっても、その正分散スロープ光ファイバと本発明の分散シフト光ファイバを接続して波長今重光伝送システムを構築することにより、波長1530nmから1560nmまでの分散をその波長領域全体にわたって奉分散に近づけることが可能となり、上記実施形態例とほぼ同様の効果を突することができる。

【OO30】ただし、本発明の分散シフト光ファイバを 上記実施形態例のようにTRUEWAVEと呼ばれる光 ファイバに接続して波長多重光伝送システムを構築する ことにより、4光波温合の発生を抑制することもできる ために、本発明の分散シフト光をTRUE WAVEと 呼ばれる光ファイバに接続して波長多重光伝送システム を構築する方が実用の上でより好ましい。

[0031]

【発明の効果】本発明の分散シフト光ファイバは、エルビウム添加光ファイバを用いた光増幅器(EDFA)の利得帶域である波長1530nmから1560nmまでの平均分散スロープを負とし、かつ、接続相手側の正分散スロープ光ファイバの零分散波長と時一致する波長の波長分散を略口ps/nm/kmとしたものであるから、波長1530nmから1560nmまでの波長領域全体にわたって分散をほぜ口に近つけることが可能となる。そのため、本発明の分散シフト光ファイバと接続相手側の正分散スロープ光ファイバとを接続して、EDFAを組み込んだ波長1530nm帯での波長今里光伝送システムに適用すれば、使用波長であるEDFAの利待帶域における分散を使用波長全域にわたってほぼぜ口とし、信頼性が高い高速大容量伝送が可能な光伝送システムを構築することができる。

【0032】特に、本発明の分散シフト光ファイバおよび接続相手側の正分散スローブ光ファイバの零分散波長を、付記光増幅器(EDFA)の利得帯域から外れた波長1520nmか1580nm近辺に設定し、正分散スローブ光ファイバを波長1550nm帯で±1.5~4ps/nm/km程度の分散を有するTRUE WAVEと呼ばれる光ファイバにより形成し、このTRUE WAVEと呼ばれる光ファイバと本発明の分散シフト光ファイバとを接続して討記の如く波長今重光伝送システムとすれば、非線形現象の1つである4光波退合の発生を抑制することが可能となり、光伝送システムの信頼性をより一層高めることができる.

【0033】さらに、本発明の分散シフト光ファイバにおいて、波長1530mから1560mまでの平均分散スローブを-0.07ps/nm2 /kmよりも小さくして負の平均分散スローブの絶対値を大きくしたものにおいては、正分散スローブ光ファイバの正の分散スローブが一般的に0.07ps/nm2 /kmであることから、この正分数スローブ光ファイバに本発明の分散シフト光ファイバを接続することにより、本発明の分散シフト光ファイバの長さを短くして正分散スローブ光ファイバの分散スローブの減殺補償を行うことが可能となり、より効率的に正分散スローブ光ファイバの分散スローブを減殺補償して信頼性の高い波長季重光伝送システムの構築を図ることができる。

【0034】さらに、本発明の分散シフト光ファイバにおいて、コアの比屈折率差を41、該コアの外周側を積う第1クラッドの比屈折率差を42、該第1クラッドの外周側を覆う第2クラッドの比屈折率差を43としたときに、41>43>42と成している41>43>42として分散シフト光ファイバの屈折率分布をW壁屈折率

分布構造とすることにより、波長1530nmから1560nmまでの平均分数スローブが負となる光ファイバを容易に形成することができる。

【図面の簡単な説明】

【図1】本発明に係る分散シフト光ファイバの一定施形 独例の波長分散特性を接続相手側の正分散スロープ光ファイバの波長分散特性と共に示すグラフである。

【図2】上記実施形態例の分散シフト光ファイバの屈折率分布構造を示す説明図である。

【図3】上記実施形態例の分散シフト光ファイバの横断

[図1]

面構成図である。

【図4】本発明の波長多重光通信システムの一例を示す 説明図である。

【図5】従来提案されている正分散スローブ光ファイバの一例であるTRUE WAVEと呼ばれている光ファイバの遊長分散特性を示すグラフである。

【符号の説明】

- 3 37
- 4 第1クラッド
- 5 第2クラッド

[图 2]

[図3]

[図4]

フロントページの続き

(51) Int.CI. 6 H O 4 B 10/13

10/12

監別記号 广内整理番号

FΙ

技術表示箇所