

Irrigador de Plantas Automático

Gustavo Giglio Maicon Da Matta

Introdução

Este sistema tem como objetivo auxiliar no monitoramento e facilitar o cuidado das plantas de forma automatizada. Somente irrigando o solo quando necessário. Desta forma ajudando a tirar a preocupação de quem não tem conhecimento ou tempo adequado para dar os devidos cuidados a suas plantas.

Componentes

Sensor de umidade do solo higrômetro

Este Sensor de Umidade do Solo Higrômetro foi feito para detectar as variações de umidade no solo, sendo que quando o solo está seco a saída do sensor fica em estado alto (HIGH), e quando úmido em estado baixo (LOW). Sua tensão de operação é de 3,3 a 5V.

O limite entre seco e úmido pode ser ajustado através do potenciômetro presente no sensor

Sensor de umidade do solo higrômetro

Modulo Relé 5V de 1 Canal, que funciona como um interruptor, essencial para controlar diretamente o acionamento do irrigador da planta quando o sensor de umidade detecta a ma condição do solo, atuando como um pino de controle do atuador, que é a bomba de água.

Mini bomba da água submersa

Esta mini bomba é perfeita para quem precisa mantê-la debaixo da água. Ela possui uma abertura onde a água entra e então é bombeada para a saída.

Vazão máxima: 120L/hora Sua tensão de operação é de 3v a 6V.

Mini protoboard

2x mini protoboard 170 pontos, para fazer a ligação dos componentes dos circuitos eletrônicos com a definição de entradas de cada ferramenta para 0 seu devido e adequado funcionamento.

Sensor de nível de água

Este sensor é bom para ocasiões que exigem abastecimento automático de água e troca de água. Possui 4 leds indicadores de nível de água.

Sua tensão de operação é de 5v.

Modelagem

Sensor de nível de água

Bomba da água

VCC	\rightarrow	3V3
GND	\rightarrow	GND
IN	\rightarrow	D15

Bomba da água

VCC	\rightarrow	3V3
GND	\rightarrow	GND
Α0	\rightarrow	D4

Projeto Completo

Código

Declaração dos pinos

```
const int pino_sensor = 2; //pino conencatdo ao sensor de umidade int leitura_sensor = 0; 
const int pino_bomba = 15; //pino conectado ao rele da bomba int n1 = 33; //pino conencatdo ao sensor de nivel agua mais baixo int n2 = 32; //pino conencatdo ao sensor de nivel agua baixo int n3 = 35; //pino conencatdo ao sensor de nivel agua meio int n4 = 34; //pino conencatdo ao sensor de nivel agua alto
```


Setup

```
void setup(){
10
11
       Serial.begin(9600); //Inicializa a serial com taxa de 9600 bauds
12
       pinMode(pino sensor, INPUT); //Define o sensor de umidade como entrada do sistema
13
       pinMode(pino bomba, OUTPUT); //Define a bomba como saída do sistema
14
       pinMode(n1, INPUT); //Define o sensor de nivel agua como entrada do sistema
15
       pinMode(n2, INPUT); //Define o sensor de nivel agua como entrada do sistema
       pinMode(n3, INPUT); //Define o sensor de nivel agua como entrada do sistema
16
17
       pinMode(n4, INPUT); //Define o sensor de nivel agua como entrada do sistema
18
```


Loop – parte(1/2)

```
20
     void loop(){
21
       leitura sensor = analogRead(pino sensor); //Sensor de umidade faz leitura do solo
22
23
       Serial.print("Status: ");
       if(leitura sensor >= 1500){ //Verifica se o solo está seco ou umido
24
25
         Serial.print("Solo Seco ");
26
         digitalWrite (pino bomba, LOW); //Se estiver seco, desliga o relé e aciona a bomba
       } else {
27
28
         Serial.print("Solo umido");
         digitalWrite (pino bomba, HIGH); //Se estiver umido, mantêm o relé da bomba desligada
29
30
31
       Serial.print(" | Leitura: ");
       Serial.print(leitura_sensor);
32
33
       //Realiza as leituras dos sensores e as armazena em duas variaveis
34
       int leitura sensor 1 = digitalRead(n1);
35
36
       int leitura sensor 2 = digitalRead(n2);
37
       int leitura sensor 3 = digitalRead(n3);
       int leitura sensor 4 = digitalRead(n4);
38
39
```


Loop – parte(2/2)

```
Serial.print(" | Quantidade Agua: ");
41
       //Verifica se o primeiro sensor esta na ausencia de liquido
42
       if(leitura_sensor_4 == HIGH) {
43
44
         Serial.print("100% Cheio"); //Printa a mensagem mostrando que o balde está 100% Cheio
         Serial.println("");
45
46
47
       //Verifica se o segundo sensor esta na ausencia de liquido
48
       else if(leitura_sensor_3 == HIGH) {
49
50
         Serial.print("75% Cheio"); //Printa a mensagem mostrando que o balde está 75% Cheio
51
         Serial.println("");
52
53
54
       //Verifica se o terceiro sensor esta na ausencia de liquido
       else if(leitura sensor 2 == HIGH) {
55
         Serial.print("50% Cheio"); //Printa a mensagem mostrando que o balde está 50% Cheio
56
57
         Serial.println("");
58
59
60
       //Verifica se o quarto sensor esta na ausencia de liquido
       else if(leitura_sensor_1 == HIGH) {
61
         Serial.print("25% Cheio"); //Printa a mensagem mostrando que o balde está 25% Cheio
62
         Serial.println("");
63
64
65
66
       //Avisa que acabou o liquido e precisa encher
       else if(leitura sensor 1 == LOW) {
67
68
         Serial.print("Encher balde"); //Printa a mensagem mostrando que o balde está com a água quase acabando
69
         Serial.println("");
70
71
72
       delay(1000); //Aguarda 10 segundos para outra leitura
73
```


Desenvolvido para ser utilizado em projetos IoT, com ele conseguimos comunicar através do celular com nossa placa ESP-32 e controlá-la via Wi-fi ou Bluetooth.

Para as programações funcionarem corretamente é necessário instalar a biblioteca do Blynk na IDE do Arduino

Digite blynk e selecione a biblioteca criado por Volodymyr Shymanskyy.

- Acesse o site da blynk: https://blynk.io/
- Faça o seu login.

Crie um novo device.

Region: ny3 Privacy Policy

• Adicione um nome para sua template.

Create New Template

NAME	
Sistema de irrigador	
HARDWARE	CONNECTION TYPE
ESP32 V	WiFi
DESCRIPTION	
Sistema que notifica o usuário que ele está sem água continuar o processo d irregar	e precisa reabastecer o tanque com água para
	128 / 128

Cancel

Done

Sistema de irrigador

Info Metadata	Datastreams Event	ts Automations	Web Dashboard	Mobile Dashboard
TEMPLATE NAME			TEMPLATE IMAGE (OPTIONAL)	
Sistema de irrigador				
HARDWARE	CONNECTION TYPE			G 3
ESP32	∨	~		Add image
DESCRIPTION				om computer or drag-n-drop jpg, minimum width 500px
	uário que ele está sem água e			
reabastecer o tanque cor	n água para continuar o proce	_	FIRMWARE CONFIGURATION	
			#define BLYNK_TEMPLATE_	
TEMPLATE ID	MANUFACTURER	128 / 128	#define BLYNK_DEVICE_NA	AME "Sistema de irrigador"
TMPL6kTaSqLV	My organization	JZJOLI	Template ID and Device your main firmware	Name should be included at the top
OFFLINE IGNORE PERIOD			-	
00 hrs 00 mins 00 secs		0		
HOTSPOT PREFIX				

Hotspot Prefix

- Vá para Datastreams e crie uma nova Datastreams.
- Selecione a opção virtual pin.

Sistema de irrigador

|--|

Datastreams

Datastreams is a way to structure data that regularly flows in and out from device. Use it for sensor data, any telemetry, or actuators.

• Configure pino virtual.

• Após criar e configurar os pinos, clique em Web Dasboard.

- Precione e arraste o gauge para a dashboard.
- Clique em cima do gauge para configura-lo.

• Selecione o sensor de umidade(v1) e salve.

• Clique na lupa e crie um novo device

• Selecione a opção from template

• Selecione o seu sistema e clique em criar.

 Vá para janela device info e copie o token gerado no FIRMWARE CONFIGURATION e insira no código.

