

O que acontece quando ingerimos Coca-cola?

Quando você toma apenas "um pouquinho" de refrigerante

para neutralizar

25 g dia adulto

precisa tomar 32 copos de água para eliminar seus efeitos.

O que acontece quando ingerimos Coca-cola?

Ácido fosfórico disfarçar o sabor de todo esse açúcar

explosão de insulina em seu organismo

O que acontece quando ingerimos Coca-cola?

Pupilas dilatam

são bloqueados os receptores de adenosina de seu cérebro

Sintomas de dopamina baixa

- Falta de motivação
- Dificuldade de concentração
- Aumento da ansiedade
- Cansaço constante
- Alterações de humor
- Perda de memória
- Depressão
- Distúrbios do sono
- Tremores
- Movimentos involuntários
- Diminuição da capacidade cognitiva

psicanális

O que acontece quando ingerimos

Coca-cola?

Tudo eliminado pela urina.

O que acontece quando ingerimos Coca-cola?

Cafeína é diurética, você já terá eliminado toda a água da coca pela urina e, é claro, alguns nutrientes foram junto

Você já começa a sentir falta do açúcar

Você fica meio lento e irritado, justamente pela falta do açúcar.

Benefícios da Coca-cola?

De fato, diariamente lemos ou ouvimos frases do tipo:

- O teor alcoólico do vinho é 12%;
 - O teor normal de glicose, em nosso sangue, situa-se entre 75 e 110 mg/dL (valores acima indicam tendência à diabete);
 - O O ar contém 0,94% de argônio em volume;
 - O O teor normal de cálcio no sangue é entre 8,5 e 10,5 mg/dL;

Soluções = misturas homogêneas

Água e gelo Não é mistura! É um sistema Bifásico.

Misturas: É considerada mistura quando dois ou mais componentes entram em contato uns com os outros e eles mantém as suas propriedades químicas na mistura.

Misturas Heterogêneas

Misturas Homogêneas

Eletrólitos Fortes – Substâncias que em água se dissociam, quase que completamente, conduzindo corrente elétrica; Ácidos Fortes,

Bases Fortes e Sais Solúveis;

Eletrólitos Fracos – Substâncias que em água se dissociam pouco, conduzindo pouca corrente elétrica; Ácidos Fracos, Bases Fracas e Sais pouco Solúveis;

Não Eletrólitos – Substâncias que não se dissociam em água, não conduzem corrente elétrica;

Solução: É uma mistura homogênea composta de dois ou mais componentes que consiste de:

Solvente: É o componente da solução que se apresenta em maior quantidade. Frequentemente, mas não necessariamente, ele é a água, o que caracteriza uma solução aquosa.

Soluto: Este é o componente que se apresenta em menor quantidade. É a substância que se dissolve no solvente.

Soluções sólidas

Latão

Cu + Zn

PUREZA DO OURO

ouro amarelo14k ouro amarelo18k **58,3% ouro 75% ouro**

Soluções líquidas Álcool 70 %

 $30\% H_2O + 70\% C_2H_6O$

Soro fisiológico

 $H_2O + 0.9\% NaC\ell$

Soluções gasosas

Gás de cozinha

50% butano 50% propano

Ar atmosférico

78% N₂ + 21% O₂ + 1% outros

Em função do ponto de saturação, classificamos as soluções em:

 não-saturadas (ou insaturadas): contêm menos soluto do que o estabelecido pelo coeficiente

• supersaturadas: ultrapassaram o coeficiente de solubilidade.

Exemplo

Seis soluções aquosas de nitrato de sódio ($NaNO_3$), numeradas de I a VI, foram preparadas, em diferentes temperaturas, dissolvendo-se diferentes massas de $NaNO_3$ em 100 g de água. Em alguns casos, o $NaNO_3$ não se dissolveu completamente. O gráfico abaixo representa a curva de solubilidade de

NaNO₃, em função da temperatura, e seis pontos, que correspondem aos sistemas

preparados.

A partir da análise desse gráfico, identifique os dois sistemas em que há precipitado.

- a) I e II
- b) I e III
- c) IV eV
- d) V e VI

Exemplo

Seis soluções aquosas de nitrato de sódio ($NaNO_3$), numeradas de I a VI, foram preparadas, em diferentes temperaturas, dissolvendo-se diferentes massas de $NaNO_3$ em 100 g de água. Em alguns casos, o $NaNO_3$ não se dissolveu completamente. O gráfico abaixo representa a curva de solubilidade de

NaNO₃, em função da temperatura, e seis pontos, que correspondem aos sistemas

preparados.

A partir da análise desse gráfico, identifique os dois sistemas em que há precipitado.

a) I e II

🌿 I e III

- c) IV eV
- d) V e VI

Densidade é a relação existente entre a massa e o volume de um material, a uma dada pressão e temperatura.

$$d = \frac{m}{V} \frac{(g)}{(mL)}$$

 $dH_2O = 997 \text{ Kg/m}^3$

 $dH_2O = 0.997 g/mL$

aproximadamente dH₂O= 1,0 g/mL

Água e óleo não se misturam

Densidades

$$d_{areia} = 1800 \text{ Kg/m}^3$$

 $d_{\text{Ósmio}} = 22610 \text{ Kg/m}^3$

$$d_{\text{Ósmio}} = 22,61 \text{ g/mL}$$

Densidade

Exemplo

Calcule a densidade do mercúrio (Hg) 1360 g ocupam o volume de 100 centímetros cúbicos.

$$d = \frac{m}{V}$$
 $d_{Hg} = \frac{1360 \text{ g}}{100 \text{ mL}}$

$$d_{Hg} = 13.6g/mL$$

Concentração comum, concentração (C)

$$C = \frac{m_1}{V} (g)$$
 (L)

Concentração é o quociente entre a massa do soluto e o volume da solução.

20 g de NaCℓ em 1 litro de solução

Exemplo

Calcule a concentração, em g/L, de uma solução de nitrato de potássio, sabendo que ela encerra 60 g do sal em 300 cm 3 de solução. 300 cm 3 = 300 mL = 0,3 L

$$C = \frac{m_1}{V}$$
 $C = \frac{60 \text{ g}}{0.3}$ $C = 200 \text{ g/L}$

Regra de três:

300 cm³
$$\sim$$
 60 g de KNO₃ $C = 200 \text{ g/L}$

Concentração molar ou molaridade (M)

$$M = \frac{n}{V} \hat{n} = \frac{m_1}{mol} M = \frac{m_1}{mol.V}$$

m₁ = massa do soluto (g) mol = massa molar (g/mol) V = volume da solução (L)

Exemplo

Em cada 100 mL (0,10 L) de suco gástrico produzido pelo estômago durante o processo de digestão, existem 0,0010 mol de ácido clorídrico (HCℓ). A molaridade dessa solução é dada por:

$$M = \frac{n}{V}$$
 $M = \frac{0,001 \text{ mol}}{0,10 \text{ L}}$

 $M = 0.01 \,\text{mol/L}$

2ª resolução (regra de três)

0,001 mol HC
$$\ell$$
 — 100 mL de solução X — 1000 mL de solução

M= 0,01 mol/L

1. (UECE) O magnésio subministrado na forma de cloreto de magnésio tem papel importante para o fortalecimento dos músculos e nervos, função imunológica, reforça a estrutura óssea, regula os níveis de pressão arterial e o açúcar do sangue, etc. A título experimental, um estudante de bioquímica preparou uma solução de cloreto de magnésio utilizando 200 g de água e 20 g de cloreto de magnésio que passou a ter densidade de 1,10 g/mL. Para essa solução, a concentração em quantidade de matéria é, aproximadamente,

- a) 1,05 mol/L.
- b) 1,20 mol/L.
- c) 1,30 mol/L.
- d) 1,50 mol/L

1. (UECE) O magnésio subministrado na forma de cloreto de magnésio tem papel importante para o fortalecimento dos músculos e nervos, função imunológica, reforça a estrutura óssea, regula os níveis de pressão arterial e o açúcar do sangue, etc. A título experimental, um estudante de bioquímica preparou uma solução de cloreto de magnésio utilizando 200 g de água e 20 g de cloreto de magnésio que passou a ter densidade de 1,10 g/mL. Para essa solução, a concentração em quantidade de matéria é, aproximadamente, $1 \mod MgCl_2 = 24 + (35,5.2) = 95 \text{ g}$

★ 1,05 mol/L.

d) 1,50 mol/L

$$M = \frac{m_1}{\text{mol.V}}$$
 $M = \frac{20}{95.0.2}$ $M = 1.05 \text{ mol/L}$

1. (UECE) O magnésio subministrado na forma de cloreto de magnésio tem papel importante para o fortalecimento dos músculos e nervos, função imunológica, reforça a estrutura óssea, regula os níveis de pressão arterial e o açúcar do sangue, etc. A título experimental, um estudante de bioquímica preparou uma solução de cloreto de magnésio utilizando 200 g de água e 20 g de cloreto de magnésio que passou a ter densidade de 1,10 g/mL. Para essa solução, a concentração em quantidade de matéria é, aproximadamente, $1 \mod MgCl_2 = 24 + (35,5.2) = 95 \text{ g}$

💢 1,05 mol/L.

d) 1,50 mol/L

$$M = \frac{m_1}{\text{mol.V}}$$
 $M = \frac{20}{95.0,2}$ $M = 1,05 \text{ mol/L}$

2. (Enem) O quadro apresenta o teor de cafeína em diferentes bebidas comumente consumidas pela população. Da análise do quadro conclui-se que o menor teor de cafeína por unidade de volume está presente no

- a) café expresso.
- b) café filtrado.
- c) chá preto.
- d) refrigerante de cola.
- e) chocolate quente.

	Bebida	Volume (mL)	Quantidade média de cafeína (mg)
	Café expresso	80,0	120
	Café filtrado	50,0	35
	Chá preto	180,0	45
	Refrigerante de cola	250,0	80
	Chocolate quente	60,0	25

2. (Enem) O quadro apresenta o teor de cafeína em diferentes bebidas comumente consumidas pela população. Da análise do quadro conclui-se que o menor teor de cafeína por unidade de volume está presente no

- a) café expresso.
- b) café filtrado.
- 💢 chá preto.
- d) refrigerante de cola.
- e) chocolate quente.

	Bebida	Volume (mL)	Quantidade média de cafeína (mg)		
	Café expresso	80,0	120 🕻 =	120/80	C = 1.5 g/L
	Café filtrado	50,0	35 🕻 =	35/50	C = 0.7 g/L
	Chá preto	180,0	45 C =	45/180	C = 0.25 g/L
F	Refrigerante de cola	250,0	80 C=	80/250	C = 0.32 g/L
	Chocolate quente	60,0	25 C =	25/60	C = 0.42 g/L

$$C = \frac{m_1}{V}$$

2. (Enem) O quadro apresenta o teor de cafeína em diferentes bebidas comumente consumidas pela população. Da análise do quadro conclui-se que o menor teor de cafeína por unidade de volume está presente no

- a) café expresso.
- b) café filtrado.
- 💢 chá preto.
- d) refrigerante de cola.
- e) chocolate quente.

	Bebida	Volume (mL)	média de cafeína (mg)		
	Café expresso	80,0	120 C =	120/80	C = 1.5 g/L
	Café filtrado	50,0	35 🕻 =	35/50	C = 0.7 g/L
۱.	Chá preto	180,0		Ī	C = 0.25 g/L
	Refrigerante de cola	250,0	80 C =	80/250	C = 0.32 g/L
	Chocolate quente	60,0		l	C = 0.42 g/L
				_	, 3

Quantidade

$$C = \frac{m_1}{V}$$

3. (Enem) Determinada estação trata cerca de 30 000 litros de água por segundo. Para evitar riscos de fluorose, a concentração máxima de fluoretos nessa água não deve exceder a cerca de 1,5 miligrama por litro de água. A quantidade máxima dessa espécie química que pode ser utilizada com segurança, no volume de água tratada em uma hora, nessa estação, é:

- a) 1,5 kg
- b) 4,5 kg
- c) 96 kg
- d) 124 kg
- e) 162 kg

3. (Enem) Determinada estação trata cerca de 30 000 litros de água por segundo. Para evitar riscos de fluorose, a concentração máxima de fluoretos nessa água não deve exceder a cerca de 1,5 miligrama por litro de água. A quantidade máxima dessa espécie química que pode ser utilizada com segurança, no volume de água tratada em uma hora, nessa estação, é:

a) 1,5 kg

b) 4,5 kg

c) 96 kg

d) 124 kg

1 segundo

X

X = 108 000 000 L

X = 162 000 000 mg ou 162 kg

X = 162 kg

X = 162 000 000 mg ou 162 kg

X = 162 kg

X = 162 000 000 L

3. (Enem) Determinada estação trata cerca de 30 000 litros de água por segundo. Para evitar riscos de fluorose, a concentração máxima de fluoretos nessa água não deve exceder a cerca de 1,5 miligrama por litro de água. A quantidade máxima dessa espécie química que pode ser utilizada com segurança, no volume de água tratada em uma hora, nessa estação, é:

4. Evapora-se totalmente o solvente de 250 mL de uma solução aquosa de MgC ℓ_2 de concentração 8,0 g/L. Quantos gramas de soluto são obtidos?

- a) 8,0
- b) 6,0
- c) 4,0
- d) 2,0
- e) 1,0

4. Evapora-se totalmente o solvente de 250 mL de uma solução aquosa de MgC ℓ_2 de concentração 8,0 g/L. Quantos gramas de soluto são obtidos?

- a) 8,0
- b) 6,0
- 2,0
- e) 1,0

Pela fórmula:

$$C = \frac{m_1}{V} \frac{(g)}{(L)}$$
 8,0 = $\frac{m_1}{0.25}$ $m_1 = 2g$

Regra de três: 250 mL = 0,25L

8g de $MgCl_2$ — 1L de solução — C= 2 g/L X — 0,25L de solução

4. Evapora-se totalmente o solvente de 250 mL de uma solução aquosa de MgC ℓ_2 de concentração 8,0 g/L. Quantos gramas de soluto são obtidos?

- a) 8,0
- b) 6,0

- e) 1,0

Pela fórmula:

$$C = \frac{m_1}{V} (g)$$
 8,0 = $\frac{m_1}{0.25}$ $m_1 = 2 g$

Regra de três: 250 mL = 0,25L

8g de $MgCl_2$ — 1L de solução — C= 2 g/L X — 0,25L de solução

$$C=2 g/L$$

5. (ENEM) A concentração de íons fluoreto em uma água de uso doméstico é de 5,0.10⁻⁵ mol/L (massa molar do fluoreto: 19,0 g/mol). Se uma pessoa toma 3,0 L dessa água por dia, qual é, ao fim de um dia, a massa de fluoreto, em miligramas, que essa pessoa ingere?

- a) 0,9
- b) 1,3
- c) 2,8
- d) 5,7
- e) 15

5. (ENEM) A concentração de íons fluoreto em uma água de uso doméstico é de 5,0.10⁻⁵ mol/L (massa molar do fluoreto: 19,0 g/mol). Se uma pessoa toma 3,0 L dessa água por dia, qual é, ao fim de um dia, a massa de fluoreto, em miligramas, que essa pessoa ingere?

$$M = \frac{m_1}{\text{mol.V}}$$

$$5,0.10^{-5} = \frac{m_1}{19.3,0}$$

$$m_1 = 5.0 \cdot 10^{-5} \cdot 57$$

$$m_1 = 285.10^{-5}$$

$$m_1 = 2.85 g$$

5. (ENEM) A concentração de íons fluoreto em uma água de uso doméstico é de 5,0.10⁻⁵ mol/L (massa molar do fluoreto: 19,0 g/mol). Se uma pessoa toma 3,0 L dessa água por dia, qual é, ao fim de um dia, a massa de fluoreto, em miligramas, que essa pessoa ingere?

$$M = \frac{m_1}{\text{mol.V}}$$

$$5,0.10^{-5} = \frac{m_1}{19.3,0}$$

$$m_1 = 5.0 \cdot 10^{-5} \cdot 57$$

$$m_1 = 285.10^{-5}$$

$$m_1 = 2.85 g$$

6. (UERJ) Na análise de uma amostra da água de um reservatório, verificou-se a presença de dois contaminantes, nas seguintes concentrações:

Contaminante	Concentração (mg/L)
benzeno	0,39
metanal	0,40

Em análises químicas, o carbono orgânico total é uma grandeza que expressa aconcentração de carbono de origem orgânica em uma amostra. Assim, com base nos dados da tabela, a concentração de carbono orgânico total na amostra de água examinada, em mg/L, é igual a:

- a) 0,16
- b) 0,36
- c) 0,52
- d) 0,72

6. (UERJ) Na análise de uma amostra da água de um reservatório, verificou-se a presença de dois contaminantes, nas seguintes concentrações:

Contaminante	Concentração (mg/L)
benzeno	0,39
metanal	0,40

Em análises químicas, o carbono orgânico total é uma grandeza que expressa a concentração de carbono de origem orgânica em uma amostra. Assim, com base nos dados da tabela, a concentração de carbono orgânico total na amostra de água examinada, em mg/L, é igual a:

1
$$mol\ C_6H_6$$
 - 78 g - 72 $g\ C$

$$1 \text{mol } CH_2O - 30 \text{ } g - 12 \text{ } g \text{ } C$$

$$X = 0.36 \text{ mg C}$$

$$Y = 0.16 mg C$$

$$X = 0.36 \text{ mg } C$$
 $X + Y = 0.52 \text{ mg } C$

6. (UERJ) Na análise de uma amostra da água de um reservatório, verificou-se a presença de dois contaminantes, nas seguintes concentrações:

Contaminante	Concentração (mg/L)
benzeno	0,39
metanal	0,40

Em análises químicas, o carbono orgânico total é uma grandeza que expressa a concentração de carbono de origem orgânica em uma amostra. Assim, com base nos dados da tabela, a concentração de carbono orgânico total na amostra de água examinada, em mg/L, é igual a:

1
$$mol\ C_6H_6$$
 - 78 g - 72 $g\ C$

$$1 \text{mol } CH_2O - 30 \text{ } g - 12 \text{ } g \text{ } C$$

$$X = 0.36 \text{ mg C}$$
 $X + Y = 0.52 \text{ mg C}$ $Y = 0.16 \text{ mg C}$

$$X + Y = 0.52 mg C$$

- 7. (UFSC) Para o MgCO₃ determine:
- a) A massa molecular.
- b) O número de mol em 420 g.
- c) A concentração molar da solução aquosa preparada com 168 g de carbonato de magnésio num volume total de 0,5 litros.
- Marque no seu cartão de resposta a SOMA DOS RESULTADOS de a, b e c.

- 7. (UFSC) Para o MgCO₃ determine:
- a) A massa molecular.
- b) O número de mol em 420 g.
- c) A concentração molar da solução aquosa preparada com 168 g de carbonato de magnésio num volume total de 0,5 litros.

Marque no seu cartão de resposta a SOMA DOS RESULTADOS de a, b e c.

a)
$$1 \text{mol } MgCO_3 - (24 + 12 + (16.3)) - 84 \text{ u.m.a}$$

b)
$$1 \text{mol } MgCO_3$$
 - 84 g
 $X MgCO_3$ - 420 g

$$X = 5 \text{ mol } MgCO_3$$

c)
$$M = \frac{m_1}{\text{mol.V}}$$
 $M = \frac{168}{84.0,5}$ $M = 4 \text{ mol/L}$

$$SOMA = 84 + 5 + 4 = 93$$

8. (ENEM) Para proteger estruturas de aço da corrosão, a indústria utiliza uma técnica chamada galvanização. Um metal bastante utilizado nesse processo é o zinco, que pode ser obtido a partir de um minério denominado esfalerita (ZnS), de pureza 75%. Considere que a conversão do minério em zinco metálico tem rendimento de 80% nesta sequência de equações químicas:

$$2 \text{ ZnS} + 3\text{O}_2 \rightarrow \text{ZnO} + 2\text{SO}_2$$

ZnO + CO \rightarrow Zn + CO₂

Considere as massas molares: ZnS (97gmol); O_2 (32gmol); $ZnO(81gmol); SO_2$ (64gmol); $CO(28gmol); CO_2$ (44gmol); Zn = (65gmol).

Que valor mais próximo de massa de zinco metálico, em quilogramas, será produzido a partir de 100kg de esfalerita?

- a) 25
- b) 33
- c) 40
- d) 50
- e) 54

Que valor mais próximo de massa de zinco metálico, em quilogramas, será produzido a partir de 100kg de esfalerita?

- a) 25
- b) 33
- **×** 40
- d) 50
- e) 54

