Tema 1: Pengembangan Wilayah *Wetlands* Sub Tema 4: Kajian Konstruksi Bangunan di Wilayah Pesisir

USULAN PENELITIAN

TAHUN ANGGARAN 2020 SKEMA PENELITIAN UNGGULAN UNIVERSITAS RIAU

STUDI PARAMETRIK DAN EKSPERIMENTAL PADA PERKUATAN BALOK JEMBATAN BETON BERTULANG DENGAN MENGGUNAKAN METODE DEEP EMBEDMENT

KETUA : Dr. RIDWAN, S.T., M.T. (0008077304)
ANGGOTA : Ir. ALFIAN KAMALDI, M.T (0025066806)
ALEX KURNIAWANDY, S.T., M.T (0030087302)

SUMBER DANA: DIPA PNBP LPPM UNIVERSITAS RIAU
No. Kontrak:

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS RIAU MARET 2020

HALAMAN PENGESAHAN USULAN PENELITIAN

Judul Penelitian Studi Parametrik dan Eksperimental Pada Perkuatan Balok

Jembatan Beton Bertulang Dengan Menggunakan Metode

Deep Embedment

Ketua Peneliti

a. Nama Lengkap

Dr. Ridwan, S.T., M.T.

b. Jenis Kelamin

c. NIDN

Laki-laki : 0008077304

d. Jabatan Struktural

e. Jabatan Fungsional

: Lektor

f. Fakultas/Jurusan

: Teknik/Teknik Sipil

g. Alamat Kantor

: Fakultas Teknik Universitas Riau

h. Telp/Fax

i. Alamat Rumah

j. HP/Telp/Fax/Email

: Jl. Jati No. 17, Kel. Kampung Baru, Senapelan, Pekanbaru : +6281277112952 / ridwan@eng.unri.ac.id

3. Anggota 1

Nama Lengkap

Ir. Alfian Kamaldi, MT

Jabatan Fungsional

: Lektor

c. NIDN

: 0025066806

4. Anggota 2

Nama Lengkap

Alex Kurniawandy, S.T., M.T.

b. Jabatan Fungsional

: Lektor

c. NIDN

: 0030087302

5. Lamanya kegiatan

: Delapan bulan

Jangka waktu penelitian 6

: Satu tahun

7. Pembiayaan

Dana diusulkan

: Rp. 50.000.000,00

Sumber dana

: DIPA LPPM Universitas Riau tahun 2020

Pekanbaru, 12 Maret 2020

AN DAW & Mengetahui

kan Fakultas Teknik Universitas Riau

Dr. Ari Sandhyavitri, M.Sc NIP 19680127 199512 1 001

Ketua Peneliti

Dr. Ridwan, S.T., M.T.

NIP. 19730708 199903 1 002

Menyetujui, Ketua LPPM Universitas Riau

Prof. Dr. Almasdi Syahza, S.E., M.P. NIP. 19600822 199002 1 002

Ringkasan Rencana Penelitian

Menurut UU No 38 tahun 2004, jembatan, sebagai bagian dari sistem transportasi nasional, memiliki peranan yang sangat penting dalam menunjang pertumbuhan ekonomi, sosial dan budaya. Dari struktur jembatan yang ada, 2% dari populasi jembatan dibangun di atas sungai dengan bentang 100m, 13% adalah jembatan yang dibangun di atas sungai dengan bentang sedang (40-100m) dan sisanya, 85%, adalah jembatan bentang pendek yang dibangun dan menghubungkan sungai atau rawa dengan panjang bentang mulai dari 5m sampai dengan 40m.

Kerusakan yang sering terjadi pada struktur beton bertulang biasanya berupa retak pada penampang struktur. Retak pada struktur beton akan mengakibatkan tulangan baja mengalami korosi karena pengaruh lingkungan seperti garam, bahan kimia dan kelembaban, dan banyak ditemukan di daerah rawa/gambut. Korosi yang terjadi pada baja tulangan akan mengakibatkan kerusakan pada beton, yang pada akhirnya akan menyebabkan berkurangnya kekuatan dan kemampuan layan dari struktur tersebut.

Penelitian ini adalah studi eksperimental dan studi parametrik yang bertujuan untuk menganalisis perbandingan perilaku balok beton bertulang yang lemah terhadap beban geser (unstrengthened specimen) dengan balok beton yang telah diperkuat (strengthened specimen). Metode perkuatan yang diusulkan adalah metode deep embedment (DE). Jumlah total benda uji yang direncanakan adalah 3 buah; 1 buah benda uji balok eksisiting dan 2 buah benda uji balok yang diperkuat dengan metode DE. Yang pertama kali dilakukan adalah membuat model balok beton bertulang (control specimen) dengan skala 1:2 dan dilakukan pengujian eksperimental di laboratorium. Untuk mempelajari perilaku geser, penulangan balok didisain sedemikian rupa sehingga lemah terhadap beban geser. Pengujian dilakukan dengan memberikan beban statik (monotonic load) secara perlahan-lahan sampai benda uji mengalami keruntuhan. Hasil yang didapatkan dari pengujian ini adalah kurva hubungan beban-lendutan, pola retak dan perilaku keruntuhan balok.

Kemudian, balok beton bertulang dengan dimensi dan penulangan yang sama dengan benda uji kontrol (control specimen) diperkuat dengan dengan metode DE. Jumlah tulangan geser yang ditambahkan bervariasi untuk mendapatkan pengaruh jumlah penambahan tulangan geser terhadap perilaku balok. Pengujian yang sama dilakukan terhadap benda uji yang diperkuat (strengthened specimen) untuk mendapatkan hubungan beban-lendutan, pola retak dan perilaku keruntuhan balok.

Luaran yang akan dihasilkan dari penelitian ini berupa luaran wajib yaitu paper yang disubmit ke jurnal terindex scopus 3, sertifikat Hak Kekayaan Intelektual (HKI) atas laporan penelitian dan Draft Buku Monograf yang berisikan hasil pelaksanaan penelitian.

Nilai indikator TKT pada awal pelaksanaan penelitian adalah 2 (TKT 2), dengan skor rata-rata pada TKT 1 dan 2 masing-masing 80%. Pada posisi ini, studi literatur dan hipotesis terhadap penelitian telah diformulasikan dengan baik. Selain itu, peralatan dan sistem pengukuran yang akan dilakukan pada tahap eksperimen juga telah diidentifikasi dengan baik, pre analisis terhadap benda uji telah disimulasikan sehingga perilakunya dapat diketahui, peralatan yang akan digunakan telah terkalibrasi dan tahapan eksperimen sudah tersusun dalam alur penelitian (flowchart). Nilai indikator TKT yang diharapkan pada akhir penelitian adalah 3, di mana dari hasil pengujian di laboratorium dan analisis parametrik studi, teknologi perkuatan struktur yang diusulkan layak secara ilmiah.

Identitas Anggota Kegiatan Penelitian

I. Ketua Peneliti

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	:	Dr. Ridwan, S.T., M.T
2	Jenis Kelamin	:	Laki-laki
3	Jabatan Fungsional	:	Lektor
4	NIP	:	19730708 199903 1 002
5	NIDN	:	0008077304
6	Tempat dan tanggal lahir	:	P. Marpoyan, 8 Juli 1973
7	Email	:	ridwan@eng.unri.ac.id
	Sinta ID	:	6020361
	Orcid ID	:	0000-0002-4582-0251
8	Nomor Telefon	:	+6281277112952
9	Alamat Kantor	:	Jurusan Teknik Sipil Jl. Subrantas KM 12,5 Panam Pekanbaru, 28293
10	Nomor Telefon	:	,
11	Lulusan yang telah dihasilkan	:	S1 = 4 orang; S2: 2 orang
			Struktur Beton Gedung (D3)
			Dasar-Dasar Pemrograman (D3)
12	Mata kuliah yang diampu		Mekanika Rekayasa IV
12	wata Kunan yang trampu		Forensik dan Rehabilitasi Struktur (S2)
			Perilaku Struktur (S2)
			Pemodelan Analisis Struktur (S2)

B. Riwayat Pendidikan

	S1	S2	S3
Nama Perguruan	Universitas Islam	Universitas Gadjah	University of
Tinggi	Indonesia	Mada	Birmingham
Bidang Ilmu	Teknik Sipil -	Teknik Sipil –	Teknik Sipil -
	Struktur	Struktur	Struktur
Tahun masuk-lulus	1992-1997	2001-2004	2012-2016
Judul	Komparasi Kuat	Perilaku Balok	Reinforced Concrete
Skripsi/Tesis/Disertasi	Dukung Tanah Pada	Berlubang Empat	Beam- Column Joints
	Pondasi Dangkal	Persegi Panjang dan	Strengthened in
	Menurut Teori	Lingkaran Pada Joint	Shear with
	Meyerhof, Terzaghi	Balok Kolom	Embedded Bars
	dan Hansen	Eksterior Akibat	
		Beban Gempa	
Nama	Dr. Ir. Edy Purwanto,	Prof. Ir. Bambang	Dr. Samir Dirar
Pembimbing/Promotor	CES, DEA	Suhendro, M.Sc,	
		PhD	
	Ir. Ruzardi, MS	Dr. Ing. Ir.	Dr. Marios
		Andreas Triwiyono	Theofanous

C. Pengalaman Penelitian 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pend	anaan
140.	Tanun	Judui i chendan	Sumber	Jumlah (juta Rp)
1	2012	Kajian Eksperimental Pengaruh	Hibah Dikti	59
		Dinding Bata Tanpa Tulangan	Kemdikbud	
		(URM) dan Dinding Bata		
		Bertulang (RM) Terhadap		
		Perilaku Portal Beton Bertulang		
		Akibat Beban Gempa		
2	2015	Asesmen dan Mitigasi Terhadap	Hibah Bersaing	54
		Kekuatan Struktur Gedung di Kota	DIKTI	
		Pekanbaru – Tahun 1		
3	2016	Asesmen dan Mitigasi Terhadap	Hibah Bersaing	66,1
		Kekuatan Struktur Gedung di Kota	DIKTI	
		Pekanbaru – Tahun 2		
4	2016	Reinforced Concrete Beam-		
		Column Joints Strengthened in		
		Shear with Embedded Bars		
5	2017	Keruntuhan Progresif Struktur	DIPA UNRI	49,640
		Bangunan Beton Bertulang Sistem		
		Ganda		
6	2018	Pemanfaatan Fibre Reinforced	DIPA UNRI	33
		Polymer (FRP) Sebagai Alternatif		

		Pengganti Tulangan Baja		
		Konvensional Pada Struktur		
		Bangunan Gedung Beton Bertulang		
		di Daerah Pekanbaru		
7	2018	Keruntuhan Progresif Struktur	DIPA UNRI	
		Bangunan Beton Bertulang Pada		
		Sistem Rangka Beraturan dan		
		Tidak Beraturan		
8	2019	Perkuatan Geser Pada Balok	DIPA UNRI	36
		Jembatan Beton Bertulang Dengan		
		Menggunakan Metode Deep		
		Embedment		

D. Pengalaman Pengabdian 5 tahun terakhir

No. Tahun		Judul Publikasi	Pendanaan	
1,01	2 442.47.1	0.00011.001111001	Sumber	Jumlah (juta Rp)
1	2017	Sosialisasi Pengenalan Teknik Menggambar Bangunan Untuk Kader Teknik Infrastruktur Desa Tanah Merah Kecamatan Tanah Merah Kabupaten Indragiri Hilir		
2	2018	Perencanaan Jalan Kawasan Wisata Desa Simpang Petai Kec. Rumbio Jaya Kab. Kampar	DIPA FT UNRI	5
3	2019	Survey Dan Pemetaan Infrastruktur Desa Simpang Petai Kec. Rumbio Jaya Kab. Kampar	DIPA FT UNRI	4

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel	Nama Jurnal	Volume / Nomor / Tahun
1	Modeling of Reinforced Concrete Beam-Column Subassemblages Subjected to Earthquake-type Loading Using Vector-5	Dinamika Teknik Sipil	12/2/Mei 2012
2	Risk and Uncertainty in the Medan- Binjai Toll Road Infrastructure	European Journal of Engineering Research	3/6/June 2018

	Project, Indonesia Based on the	and Science	
	Stochastic Analyzes		
3	Experimental Behavior and Design	Journal of Composite	22/6/Desember 2018
	of Exterior Reinforced Concrete	for Construction	
	Beam-Column Joints Strengthened		
	with Embedded Bars		
4	Finite Element Modelling of	Journal of Applied	1/1/September 2019
	Reinforced Concrete Beam	Materials and	
	Strengthened with Embedded Steel	Technology	
	Reinforcement Bars		

F. Pemakalah Seminar Ilmiah 5 tahun terakhir

No.	Tahun	Nama Temu Ilmiah	Judul Makalah	Waktu dan Tempat
1	2015	Advance Composite in Construction	Shear Strengthening of Exterior Beam-Column Joints Using Embedded Carbon Fibre Reinforcement Polymer Bars	9-11 September 2015, University of Cambridge, UK
2	2017	Konferensi Nasional Teknik Sipil 11	Keruntuhan Progresif Struktur Rangka Beton Bertulang Sistem Ganda	26 – 27 Oktober 2017, Universitas Tarumanagara, Jakarta
3	2017	4th Andalas Civil Engineering (ACE) Conference	Penggunaan High Damping Rubber Bearing System pada Struktur Bangunan Gedung Dengan Analisis Time History	9 – 10 November 2017, Universitas Andalas, Padang
4	2018	1 st ICAnCEE	Strengthening of Seismically Deficient Exterior Beam-Column Connections Using Embedded Steel Bars	24-25 Oktober 2018, Prime Plaza Hotel and Suites, Bali
5	2018	1 st ICAnCEE	Seismic Performance of Building Reinforced with CFRP Bars	24-25 Oktober 2018, Prime Plaza Hotel and Suites, Bali

6	2019	Advance Composite	Numerical and Analytical	3-5
		in Construction	Modelling of RC beam-	September
			column Joints Shear-	2019,
			strengthened with	University
			Embedded CFRP Bars	of
				Birmingham,
				UK
7	2019	Konferensi Nasional	Pemodelan Balok Beton	19-21 September
/	2019			1
		Teknik Sipil 13	Bertulang Yang Diperkuat	2019, Hermes
			Dengan Metode Deep	Palace Hotel,
			Embedment Menggunakan	Banda Aceh
			Software Berbasis Elemen	
			Hingga	

II. Anggota Peneliti I

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Ir. Alfian Kamaldi, MT
2	Jenis Kelamin	Laki-laki
3	Jabatan Fungsional	Lektor
4	NIP/NIK/Identitas lainnya	196806251995121001
5	NIDN	0025066806
6	Tempat dan Tanggal Lahir	Dalu-dalu, 25 Juni 1968
7	E-mail	akamaldi@eng.unri.ac.id
	Sinta ID	6677883
8	Nomor Telepon/Faks/HP	08127523622
9	Alamat Kantor	Lab. Struktur, Jurusan Teknik Sipil FT Universitas Riau
10	Nomor Telepon/HP	0761-66596
11	Lulusan yang Telah Dihasilkan	S-1= 25 orang; S-2= – orang; S-3 – orang
12	Mata Kuliah yang Diampu	Mekanika Rekayasa I
		Mekanika Rekayasa II
		Mekanika Rekayasa III
		Struktur Kayu
		Struktur Jembatan

B. Riwayat Pendidikan

	S1	S2	S3
Nama Perguruan Tinggi	Universitas Andalas	Universitas Gadjah Mada	
Bidang Ilmu	Teknik Sipil	Rekayasa Struktur	Struktur
Tahun masuk-lulus	1987-1993	1996-1999	
Judul Skripsi/Tesis/Disertasi	Analisis tegangan pada pondasi tiang pancang akibat beban lateral dengan metode elemen hingga	Aplikasi kayu kelapa pada struktur rumah susun sederhana	
Nama Pembimbing/Promotor	Dr. Amrinsyah Nasution, MSCE	Dr. Ir. Morisco	

C. Pengalaman Penelitian 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pendanaan	
110.	Tanan	Judui i chentian	Sumber	Jumlah (juta Rp)
1	2018	Rekayasa hybrid geopolimer untuk pembuatan blok beton dan stabilisasi subgrade di tanah gambut (Anggota)	PT (Desentralisasi)	55
2	2014	Rekayasa beton tahan lingkungan asam menggunakan limbah agro- industri untuk konstruksi di tanah gambut (Ketua)	PT (Desentralisasi)	52.5

D. Pengalaman Pengabdian 5 tahun terakhir

No.	No. Tahun Judul Publikasi	Indul Publikasi	Pendanaan	
		Sumber	Jumlah (juta Rp)	
1	2018	Perencanaan Lansekap Kawasan Wisata Waduk Desa Simpang Petai Kecamantan Rumbio Jaya Kabupaten Kampar	FT UNRI	

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel	Nama Jurnal	Volume / Nomor / Tahun
1	Analisis sifat fisik dan mekanik kayu kelapa hasil kompregnasi melamine formaldehyde	Jurnal Online Mahasiswa	2014
2	Agregat buatan geopolimer dengan bahan dasar abu terbang (fly ash) dan abu sawit (palm oil fuel ash)	Jurnal Online Mahasiswa	2015
3	Perilaku mekanis beton menggunakan serat polypropylene	Jurnal Online Mahasiswa	2015
4	Durabilitas beton bubuk kulit kerang di lingkungan air laut	Jurnal Online Mahasiswa	2016
5	Kuat tekan dan sorptivity beton dengan serbuk kerang (Anadara granosa)	Jurnal Online Mahasiswa	2016

F. Pemakalah Seminar Ilmiah 5 tahun terakhir

No.	Nama Temu Ilmiah	Judul Makalah	Waktu dan
			Tempat
1	International Conference on Advances in Civil Environmental Engineering	Peat soil mass stabilization using geopolymeric hybrid material	Bali, 24-25 Oktober 2018
2	Malaysia Indonesia Geopolymer Symposium (MIGS 2014)	Properties of geopolymer concrete from local fly ash (FA) and palm oil fuel ash (POFA)	Kuala Lumpur, 11- 12 May 2014

III. Anggota Peneliti II

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	:	Alek Kurniawandy, ST, MT
2	Jenis Kelamin	:	Laki-laki
3	Jabatan Fungsional	:	Lektor
4	NIP	:	19730830 199903 1 001
5	NIDN	:	0030087302
6	Tempat dan tanggal lahir	:	Padang, 30 Agustus 1973
7	Email	:	alexkurniawandy@eng.unri.ac.id
	Sinta ID	:	6041388
8	Nomor Telefon	:	0811 7566 46
9	Alamat Kantor	:	Bina widya, Panam Pekanbaru
10	Nomor Telefon	:	(0761) 66596/ (0761) 66595
11	Lulusan yang telah dihasilkan	:	S-1= 65 orang
12	Mata kuliah yang diampu		Mekanika Rekayasa
			2. Struktur Baja
			3. Struktur Beton
			4. Bahan Bangunan
			5. Rekayasa Jembatan

B. Riwayat Pendidikan

	S1	S2	S3
Nama Perguruan	Universitas Andalas	Institut Teknologi	-
Tinggi		Bandung	
Bidang Ilmu	Teknik Sipil	Struktur – Teknik	-
		Sipil	
Tahun masuk-lulus	1992-1997	1998-2000	-
Judul	Analisa perencanaan	Perilaku Mekanik	-
Skripsi/Tesis/Disertasi	struktur Silo	Beton Bertulang	
	Indarung IV Semen	dengan penambahan	
	Padang	serat type Harex -SF	
Nama	Dr. Djafril Tanjung	Prof. Binsar	-
Pembimbing/Promotor		Hariandja	

C. Pengalaman Penelitian 5 Tahun Terakhir

No.	Tahun	Tahun Judul Penelitian	Pendanaan	
110.	ranan	Judui i chenduii	Sumber	Jumlah (juta Rp)
1	2008	Analisis Pengaruh Penambahan Abu Sekam dan Kapur terhadap Karakteristik Batu Bata yang Menggunakan Tanah Lempung	Mandiri	
2	2008	Analisa Perilaku Struktur Slab On Pile dengan Menggunakan Metode Precast Half - Slab	Mandiri	
3	2009	Pengaruh Metode Monolit dan Segmental pada Struktur Balok I Girder Terhadap Aspek Teknis dan Non Teknis pada Gelagar Jembatan Bentang Panjang (Studi Kasus Jembatan Perawang)	Mandiri	
4	2009	Pengaruh Aditif Fly Ash pada Beton Mutu Tinggi yang menggunakan Agregat Alam	Mandiri	
5	2009	Analisis Sambungan Struktur Baja menggunakan Braced Frame dan Rigid Frame di Bawah Beban Gempa	Mandiri	
6	2009	Analisa Perilaku Struktur dan Efisiensi Struktur pada Pelat	Mandiri	

		Komposit Bondek (Bondek Composite Slab) dan Pelat Konvensional		
	2012	Analisa karakteristik beton	Hibah Berbasis	5
7		Dengan varian cangkang sawit – batu pecah	Lab	
	2012	Analisa karakteristik Conblock	Hibah Berbasis	5
8		menggunakan cangkang	Lab	
9	2013	Evaluasi Cepat Struktur Beton Terhadap Gempa Pada Konstruksi Gedung Di Pekanbaru	BOPTN	50
10	2013	Pemanfaatan limbah bottom ash sebagai bahan substitusi agregat halus dan semen pada material penyusun beton	BOPTN	15
	2014	Perbandingan nilai kuat tekan	Hibah Berbasis	5
11		beton dengan menggunakan semen tipe 1 dan PCC	Lab	
12	2015	Asesmen dan mitigasi terhadap kekuatan struktur gedung di kota pekanbaru	Hibah Bersaing	50
13	2015	Pengaruh Steel Slag Sebagai Bahan Substitusi Pasir Pada Sebagian Sifat Beton Segar dan Beton Keras	Hibah Berbasis Lab	5

D. Pengalaman Pengabdian 5 tahun terakhir

No.	Tahun	Judul Publikasi	Pendanaan	
110.	o. Tandii Juddi Luonkasi		Sumber	Jumlah (juta Rp)
1	2015	Pengenalan pengujian beton	Hibah Peningkatan Akreditasi Prodi Fakultas Teknik	1

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No	Judul Artikel Ilmiah	Nama Jurnal	Volume/Nomor
			/Tahun
1	Pengaruh Abu Terbang Terhadap Karakteristik Mekanik Beton Mutu Tinggi	Teknobiologi — Jurnal Ilmiah Sains Terapan	2011
2	Perilaku Mekanik Beton Mutu Tinggi dengan Menggunakan Silica Fume Sebagai Bahan Tambah	Aptek – Jurnal Ilmiah Fakultas Teknik Universitas Pasir Pengaraian	2011
3	Analisa Karakteristik Beton dengan Varian Cangkang Sawit – Batu Pecah	Aptek – Jurnal Ilmiah Fakultas Teknik Universitas Pasir Pengaraian	2013

F. Pemakalah Seminar Ilmiah 5 tahun terakhir

No.	Tahun	Nama Temu Ilmiah	Judul Makalah	Waktu	dan
				Tempat	
1	Seminar Hasil Penelitian JTS UR	Kapur tohor dan Abu Sawit sebagai bahan tambah atau subsitusi semen pada mortar	Pekanbaru 2008	1	
2	Seminar Hasil Penelitian JTS UR	Hubungan Antara Kuat Tekan Dan Faktor Air Semen Dengan Mengunakan Agregat Danau Bingkuang	Pekanbaru 2010	2	

Daftar Isi

Ringkasan Rencana Penelitian	iii
Identitas Anggota Kegiatan Penelitian	v
Daftar Isi	xvi
Daftar Gambar	xvii
Daftar Tabel	xviii
A. LATAR BELAKANG PENELITIAN	1
B. PERUMUSAN MASALAH	3
C. MAKSUD DAN TUJUAN PENELITIAN	3
D. LUARAN/MANFAT PENELITIAN	4
E. TINJAUAN PUSTAKA	5
E. 1. Perilaku Geser Balok Beton Bertulang	5
E.2. Perkuatan Balok Beton Bertulang dengan Metode Konvensional	9
E.3. Perkuatan dengan metode Deep Embedment (DE)	13
E.4. Road Map Penelitian	17
F. METODE PENELITIAN	20
F.1. Lokasi dan Waktu Penelitian	20
F.2. Pengujian Eksperimental	20
F.3. Metode Perkuatan yang diusulkan	24
F. 4. Setup Pengujian	25
F. 5. Bagan Alir Penelitian	27
G. DAFTAR PUSTAKA	28
H. JADWAL KEGIATAN	30
I. REKAPITULASI BIAYA	30
J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI	31
K. JUSTIFIKASI ANGGARAN PENELITIAN	33
I I AMPIRAN – PENGLIKURAN TKT	40

Daftar Gambar

Gambar 1. Distribusi tegangan geser	6
Gambar 2. Tegangan pada balok homogen	7
Gambar 3. Ragam keruntuhan geser pada balok beton bertulang	9
Gambar 4. Prosedur perkuatan geser dengan metode external bonded (Qin, 2016)	10
Gambar 5. Prosedur perkuatan geser dengan metode Near Surface Mounted (Dias Salv	ador dan
Barros Joaquim, 2008)	12
Gambar 6. Prosedur perkuatan geser dengan metode DE yang dilakukan pada sambung	an balok
dan kolom beton bertulang (Ridwan et al., 2018)	14
Gambar 7. Perbandingan pola keruntuhan pada benda uji kontrol (Beam-CS) dan benda	ı uji yang
diperkuat (Beam-SS-3EB) hasil pengujian eksperimenal (Ridwan et al., 2019)	15
Gambar 8. Kurva hubungan beban-lendutan benda uji (a) Beam-CS dan (b) Beam-SS-3	EB
(Ridwan et al., 2019)	16
Gambar 9. Perbandingan kurva beban-lendutan hasil analisis FE dengan berbagai ukura	ın elemen
dengan perhitungan analitis (Chandra et al., 2019)	17
Gambar 10. Road Map Penelitian	18
Gambar 11. Prototipe standar jembatan beton bertulang dengan bentang 5-25 m: (a) Ga	mbar
memanjang, (b) Gambar potongan (Bina Marga, 2005)	22
Gambar 12. Detail penulangan rencana benda uji	23
Gambar 13. Langkah-langkah perkuatan geser dengan metode DE pada balok (Ridwan	et al.,
2019)	25
Gambar 14. Set up pengujian a) Loading frame, b) Data acquisition system	26
Gambar 15 Bagan alir penelitian	27

Daftar Tabel

Tabel 1. Perbandingan beban dan lendutan maksimum benda uji kontrol dan benda uji yang	
diperkuat (Chandra et al., 2019)	17
Tabel 2. Pengujian karakteristik material beton	21
Tabel 3. Pengujian karakteristik material baja	21
Tabel 4 Detail rencana benda uji balok beton bertulang	23
Tabel 5. Jadwal Kegiatan Penelitian	30
Tabel 6. Rekapitulasi Biaya	30
Tabel 7. Organisasi Kegiatan Penelitian	31
Tabel 8. Justifikasi Penggunaan Anggaran	33

A. LATAR BELAKANG PENELITIAN

Menurut UU No 38 tahun 2004, jembatan, sebagai bagian dari sistem transportasi nasional, memiliki peranan yang sangat penting dalam menunjang pertumbuhan ekonomi, sosial dan budaya. Sarana transportasi jalan dan jembatan ini dikembangkan melalui pendekatan pengembangan wilayah agar tercapai keseimbangan dan pemerataan pembangunan antar daerah. Dari struktur jembatan yang ada, 2% dari populasi jembatan dibangun di atas sungai dengan bentang 100m, 13% adalah jembatan yang dibangun di atas sungai dengan bentang sedang (40-100m) dan sisanya adalah jembatan bentang pendek yang dibangun dan menghubungkan sungaisungai dengan panjang mulai dari 5m sampai dengan 40m (Chen dan Duan, 2014). Pemerintah melalui Kementerian PUPR sejak 2004 telah mengembangkan disain standar tipikal untuk jembatan dengan bentang pendek ini. Struktur jembatan yang banyak digunakan adalah tipe balok beton bertulang dengan bentang tipikal antara 5m sampai dengan 25m (Bina Marga, 2005).

Kerusakan yang sering terjadi pada struktur beton bertulang biasanya berupa retak pada penampang struktur. Retak pada struktur beton akan mengakibatkan tulangan baja mengalami korosi karena pengaruh lingkungan seperti garam, bahan kimia dan kelembaban. Hal ini juga akan bertambah parah bila struktur beton bertulang tersebut berada di lingkungan yang bersifat korosif, seperti yang banyak ditemukan di daerah rawa/gambut. Korosi yang terjadi pada baja tulangan akan mengakibatkan kerusakan pada beton, yang pada akhirnya akan menyebabkan berkurangnya kekuatan dan kemampuan layan dari struktur tersebut (Mady et al., 2011). Kemampuan dari struktur beton bertulang eksisting untuk menahan beban geser seringkali tidak sesuai dengan yang direncanakan. Penurunan kekuatan ini bisa terjadi akibat peningkatan beban layan (service load), kesalahan dalam perencanaan awal dan penurunan kekuatan material penyusun akibat korosi dan lain sebagainya (Valerio et al., 2009).

Kerusakan yang terjadi pada elemen struktur jembatan berjalan sangat cepat, dan akibatnya biaya perbaikan dan penggantian elemen jembatan tersebut juga meningkat. Selain itu, kerusakan yang terjadi pada elemen struktur dapat menyebabkan terjadinya bencana akibat kegagalan pada teknologi konstruksi jembatan. Walaupun biaya perbaikan tersedia, namun waktu pelaksanaan perbaikan elemen jembatan juga bisa sangat lama, dan konsekwensinya dapat mengganggu lalu lintas jembatan selama perbaikan dilakukan. Untuk mengurangi resiko bencana kegagalan pada struktur jembatan beton bertulang ini, telah dikembangkan berbagai metode untuk memperbaiki/meningkatkan kemampuan struktur jembatannya. Perbaikan struktur atau elemen dari struktur tersebut perlu dilakukan dengan berbagai alasan, antara lain umur bangunan

yang sudah tua, perawatan struktur yang tidak baik, korosi akibat pengaruh lingkungan, perencanaan awal yang tidak memenuhi kriteria disain dan kelebihan beban layan (*service load*) akibat peningkatan lalu lintas dan fungsi jalan serta beban akibat gempa.

Banyak cara yang telah dilakukan untuk meningkatkan kapasitas beban pada balok beton bertulang, di antaranya dengan a) menempelkan plat baja atau lembaran fiber reinforced polymer (FRP) yang dilekatkan ke permukaan beton (external bonded, EB), b) lembaran FRP yang diberi gaya prategang dan direkatkan di sekeliling penampang balok (prestressed strap) dan c) tulangan yang ditambahkan dan dipasang pada permukaan selimut beton (near-surface mounted, NSM). Akan tetapi, metode perbaikan seperti ini sulit dilakukan pada struktur balok beton yang dipasang saling berdekatan dan dicor menyatu dengan sistem lantai jembatan, sehingga penampang beton yang bisa diakses hanya salah satu sisi balok saja (bagian atas atau bawah). Akibatnya, perkuatan dengan metode konvensional seperti yang disebutkan sebelumnya tidak dapat dilakukan. Selain itu, perkuatan struktur beton dengan menggunakan metode EB dan NSM rentan terhadap kegagalan struktur karena metode perkuatan ini mengandalkan lekatan antara epoxy dan selimut betonnya. Berdasarkan hasil pengujian, kegagalan pada metode perkuatan dengan metode EB dan NSM ini terjadi akibat terlepasnya material FRP dari permukaan beton (debonding). Debonding ini dipicu oleh kuat tarik beton yang jauh lebih kecil; kuat tarik beton berkisar antara 20-30% dari kuat tarik ultimit material yang digunakan untuk perkuatannya (Dirar et al., 2012). Jika kuat tarik beton terlampaui, maka permukaan beton akan retak dan akibatnya lekatan antara beton dengan material FRP akan berkurang.

Untuk mengatasi masalah ini, metode perkuatan dengan metode *deep embedment* (DE) diusulkan untuk perkuatan geser pada balok beton bertulang. DE adalah metode perkuatan dengan cara menambahkan tulangan geser ke dalam penampang beton. Perkuatan dengan metode DE dapat memberikan kapasitas geser yang lebih besar karena metode ini mengandalkan transfer tegangan langsung dari tulangan yang ditambahkan ke inti beton. Lebih jauh, pada metode ini tidak membutuhkan pekerjaan persiapan yang rumit seperti pada metode EB dan NSM. Kemudian, karena tulangan yang ditambahkan untuk perkuatan geser pada metode DE ini dipasang di dalam penampang betonnya, maka akan lebih aman terhadap panas akibat temperatur luar atau api akibat bahaya kebakaran serta bebas dari gangguan tangan usil (*vandalism*). Hasil penelitian juga menunjukkan bahwa perkuatan dengan metode DE pada sambungan balok kolom beton bertulang, dapat meningkatkan kuat geser join, daktilitas dan

kekakuan masing-masing sebesar 21%, 93% dan 35% dibandingkan dengan geser join, daktilitas dan kekakuan pada sambungan balok kolom eksisting (Ridwan et al., 2018).

B. PERUMUSAN MASALAH

Berdasarkan pemaparan latar belakang masalah di atas, maka perlu dilakukan penelitian untuk mengkaji perilaku balok beton bertulang eksisting dan balok beton bertulang yang diperkuat kapasitas gesernya dengan menggunakan metode DE. Analisis dilakukan melalui studi parametrik dan pengujian eksperimental untuk mendapatkan perbandingan antara perilaku balok beton bertulang eksisting dengan perilaku balok beton bertulang yang telah diperkuat. Material yang digunakan sebagai perkuatan geser pada metode DE adalah tulangan baja konvensional. Pemilihan tulangan baja dilakukan berdasarkan fakta bahwa material ini memiliki kuat tarik yang cukup tinggi dan mudah diperoleh.

C. MAKSUD DAN TUJUAN PENELITIAN

Objek penelitian adalah model balok jembatan beton bertulang yang diperkuat dengan metode *deep embedment* (DE). Metode DE adalah metode perkuatan dengan memasang atau menambahkan tulangan geser tambahan ke dalam penampang balok beton (*concrete core*). Perkuatan dengan metode DE ini diusulkan karena memiliki kelebihan dibandingkan dengan metode perkuatan konvensional, seperti metode EB dan NSM. Keunggulan metode DE antara lain pengerjaannya lebih mudah dan dapat memberikan kapasitas beban geser yang lebih tinggi. Parameter-parameter yang didapatkan dari hasil penelitian ini adalah perbandingan antara kurva beban-perpindahan (*load-displacement*), pola retak (*crack pattern*) dan mekanisme keruntuhan balok antara balok eksisting dan balok yang telah diperkuat.

Tujuan dari penelitian ini adalah sebagai berikut:

- a) Menganalisis perbandingan perilaku balok beton bertulang eksisting (*unstrengthened specimen*) dan balok beton bertulang yang diperkuat (*strengthened specimen*) dengan menggunakan metode DE.
- b) Membandingkan pola retak dan keruntuhan balok beton bertulang eksisting (*unstrengthened specimen*) dan balok beton bertulang yang diperkuat (*strengthened specimen*) dengan menggunakan metode DE.

- c) Membandingkan pola perubahan kekakuan (*stiffness degradation*) balok beton bertulang eksisting (*unstrengthened specimen*) dan balok beton bertulang yang diperkuat (*strengthened specimen*) dengan menggunakan metode DE.
- d) Menganalisis pengaruh penambahan jumlah tulangan DE terhadap perilaku keruntuhan balok beton bertulang.

D. LUARAN/MANFAT PENELITIAN

Manfaat dari penelitian ini adalah:

- a) Memberikan informasi tentang perbandingan antara perilaku balok beton bertulang eksisting dengan balok beton bertulang yang diperkuat dengan metode DE.
- b) Memberikan bahan pertimbangan bagi perencana struktur dan praktisi dalam melaksanakan perkuatan balok jembatan.
- c) Sebagai bahan referensi untuk pemutakhiran buku ajar Struktur Beton
- d) Memberikan manfaat bagi mahasiswa untuk dapat mengelaborasi topik penelitian ini sebagai bagian dari Tugas Akhir mahasiswa.

Luaran yang akan dihasilkan dari penelitian ini selain laporan penelitian adalah a) publikasi ilmiah, b) materi bahan ajar, c) metode baru teknologi perkuatan balok beton dan d) skripsi/tugas akhir bagi mahasiswa yang terlibat dalam penelitian ini.

E. TINJAUAN PUSTAKA

E. 1. Perilaku Geser Balok Beton Bertulang

Selain menerima momen lentur, pada saat yang sama gelagar/balok juga menahan gaya geser akibat lentur. Kondisi kritis geser akibat lentur ditunjukkan dengan timbulnya tegangan-tegangan tarik tambahan ditempat-tempat tertentu pada komponen struktur terlentur. Pada struktur beton bertulang, apabila gaya geser yang bekerja sedemikian besar hingga di luar kemampuan beton untuk menahannya, maka diperlukan tulangan geser untuk menahan geser tersebut.

Percobaan-percobaan yang telah dipublikasikan menunjukkan bahwa sifat keruntuhan akibat gaya geser pada suatu elemen struktur beton bertulang adalah getas (*brittle*), tidak daktail dan keruntuhannya terjadi secara tiba-tiba tanpa ada peringatan. Hal tersebut disebabkan kekuatan geser beton bertulang terutama tergantung pada kuat tarik dan kuat tekan beton. Keadaan ini sangat berbeda dengan tujuan perencanaan yang selalu menginginkan struktur yang daktail. Sehingga meskipun prediksi keruntuhan geser cukup sulit, seorang perencana harus berupaya agar jenis keruntuhan geser tidak terjadi.

Metode Analisis dan Perencanaan

Pada balok elastis homogen, distribusi tegangan geser V pada jarak tinggi tertentu dalam penampang akan bervariasi tergantung pada bentuk penampang dan diagram tegangan-regangan. Tegangan geser horizontal v pada setiap titik yang berjarak y dari garis netral dirumuskan sebagai berikut:

$$\mathbf{v} = \frac{\mathbf{V}}{\mathbf{b} \mathbf{I}_{\mathbf{z}}} \int_{\mathbf{y}_{1}}^{\frac{\mathbf{y}_{2}}{2}} \mathbf{y} \, d\mathbf{A} \qquad (1)$$

dengan:

V = gaya geser total pada penampang

b = lebar penampang

 I_z = momen inersia penampang terhadap garis netral dalm sumbu z

y = jarak titik yang ditinjau terhadap garis netral

Bagian integral dari Persamaan (1) merupakan momen statik penampang terhadap garis netral. Untuk penampang segi empat, dengan mensubstitusikan $dA=b\times d_y$, persamaan tersebut dapat diubah menjadi:

$$\mathbf{v} = \frac{\mathbf{V}}{2I} \left(\frac{\mathbf{h}^2}{4} - \mathbf{y}_1^2 \right) \tag{2}$$

Persamaan ini memperlihatkan bahwa tegangan geser tidak terdistribusi secara merata dalam penampang balok. Tegangan geser maksimum terletak pada garis netral dan berkurang mengikuti garis parabola hingga bernilai nol pada serat terluar atas dan bawah. Nilai tegangan geser maksimum untuk penampang ini adalah $\frac{3V}{2hh}$, sebab $I = \frac{bh^2}{12}$.

Gambar 1. Distribusi tegangan geser

Dengan memanfaatkan lingkaran Mohr, tegangan-tegangan utama dari suatu elemen dapat dirumuskan menjadi:

$$t_{\text{maks}} = \frac{f}{2} \pm \sqrt{\frac{f^2}{4} + V^2}$$
 (3)

Sudut kemiringan α dapat diperoleh melalui rumus $\tan 2\alpha = \frac{2v}{f}$. Karena nilai tegangan geser

v dan tegangan lentur f bervariasi sepanjang balok dan juga berubah menurut jarak dari sumbu netral, maka sudut kemiringan α dan nilai tegangan utama ($principal\ stress$) t juga bervariasi dari satu titik ke titik lainnya. Kemiringan tegangan utama ini, untuk balok segi empat di atas dua tumpuan dan balok kantilever yang dibebani merata, diperlihatkan dalam Gambar 2. Garis-garis yang menggambarkan arah tegangan utama, tekan ataupun tarik, yang bekerja pada titik yang ditinjau disebut sebagai trayektori tegangan ($stress\ trajectories$).

Pada gambar terlihat bahwa kurva-kurva trayektori ini memotong garis netral dengan sudut 45° dan memiliki garis singgung yang horizontal atau vertikal pada titik yang tegangan gesernya nol.

dengan:

 f_c = tegangan tekan

 f_t = tegangan tarik

v = tegangan geser

t = tegangan utama

titik 1, di atas garis netral

titik 2, di bawah garis netral

Gambar 2. Tegangan pada balok homogen

Keretakan diagonal pada badan balok dapat berkembang sebelum terjadinya keretakan lentur (flexural cracks) ataupun sebagai perpanjangan keretakan lentur yang telah ada. Jenis keretakan diagonal web-shear cracks terjadi pada titik yang tegangan gesernya melampaui kekuatan tarik beton, dan flexural-shear crack timbul apabila kombinasi tegangan geser dan tegangan tarik melampaui kekuatan tarik beton. Flexural-shear crack ini selalu diawali dengan keretakan lentur.

Bila a menyatakan rasio momen dibagi geser M/V, maka berdasarkan nilai rasio a/d, keruntuhan geser balok beton bertulang dapat dibagi menjadi empat jenis:

Jenis I, balok tinggi dengan a/d \langle \frac{1}{2}

Untuk jenis ini, tegangan geser lebih menentukan dari tegangan lentur. Setelah terjadi retak miring, balok ini cenderung berperilaku sebagai suatu busur dengan beban luar ditahan oleh tegangan tekan beton dan tegangan tarik pada tulangan memanjang. Begitu keretakan miring terjadi, balok segera berubah menjadi suatu busur yang memiliki kapasitas yang cukup besar (Gambar 3.a).

Jenis II, balok pendek dengan $1 \langle a/d \langle 21/2, yang kekuatan gesernya melampaui kapasitas retak miring.$

Seperti balok tinggi, kapasitas geser ultimit juga melampaui kapasitas keretakan geser. Keruntuhan akan terjadi pada tingkat beban tertentu yang lebih tinggi dari tingkat beban yang menyebabkan keretakan miring. Setelah terjadi retak geser lentur, retak ini menjalar ke daerah tekan beton bila beban terus bertambah (Gambar 3.b)

Jenis III, balok dengan $2\frac{1}{2}$ \langle a/d \langle 6, yang kekuatan geser sama dengan besar kapasitas keretakan miring.

Pada jenis ini, lentur mulai bersifat dominan, dan keruntuhan geser sering dimulai dengan retak lentur murni yang vertikal di tengah bentang dan akan semakin miring jika semakin dekat ke perletakan yang tegangan gesernya semakin besar (Gambar 3.c).

Jenis IV, balok dengan rasio a/d > 6, dengan kekuatan lentur yang lebih kecil dibanding kekuatan gesernya, atau dengan kata lain keruntuhan akan sepenuhnya ditentukan oleh ragam lentur.

Gambar 3. Ragam keruntuhan geser pada balok beton bertulang

E.2. Perkuatan Balok Beton Bertulang dengan Metode Konvensional

Perkuatan Geser dengan Metode External Bonding (EB)

Perkuatan geser dengan metode EB ini telah banyak dilakukan, antara lain oleh Chaallal et al. (1998), Triantafillou (1998), Bousselham dan Chaallal (2008) dan Chaallal et al. (2011). Perkuatan balok dengan metode EB ini dilakukan dengan merekatkan material *fibre reinforced polymer* (FRP) pada sisi-sisi balok dengan menggunakan epoxy. Hasil penelitian yang dilakukan oleh Triantafillou (1998) menunjukkan bahwa kapasitas geser balok yang diperkuat dengan metode EB meningkat 65-95% dibandingkan dengan kapasitas geser balok eksisting.

Secara sederhana, prosedur yang biasa dilakukan untuk perkuatan balok beton bertulang dengan motode EB adalah sebagai berikut:

- a) Sudut-sudut pada tepi bawah balok pada daerah yang akan diperkuat dibuat bulat untuk menghindari konsentrasi tegangan antara beton dan material yang digunakan untuk perkuatan (Gambar 4.a)
- b) Kemudian sisi-sisi samping dan bawah balok beton (di lokasi yang akan diperkuat) dikasarkan dengan menggunakan girinda dan kemudian dibersihkan dengan kompresor udara untuk menghilangkan debu dan partikel beton yang terlepas (Gambar 4.b).
- c) Permukaan beton yang sudah dibersihkan kemudian dilapisi dengan cairan perekat/adhesif (Gambar 4.c)
- d) Kemudian, material perkuatannya direkatkan ke permukaan beton. Pastikan lapisan perkuatan menempel dengan baik dan tidak ada gelembung udara yang terperangkap di bawah lapisan perkuatan (Gambar 4.d)

Gambar 4. Prosedur perkuatan geser dengan metode external bonded (Qin, 2016)

Namun, pelaksanaan perkuatan geser dengan metode EB ini memiliki kelemahan yaitu membutuhkan pekerjaan persiapan yang detail dan rumit. Hasil penelitian juga menunjukkan

debonding adalah kelemahan yang paling utama yang ditemui pada perkuatan geser dengan metode EB. Hal ini disebabkan karena kapasitas geser pada metode ini mengandalkan lekatan antara permukaan beton dengan epoxy. Ketika kuat tarik selimut beton terlampaui, maka balok akan kehilangan kemampuannya menahan beban geser (Chaallal et al., 2011).

Perkuatan Geser dengan Metode Near-Surface Mounted (NSM)

Perkuatan geser balok dengan menggunakan metode NSM pertama kali diusulkan oleh Laura De dan Antonio (2001). Hasil penelitian menunjukkan bahwa metode ini dapat meningkatkan kapasitas geser balok sampai 106% dibandingkan dengan benda uji kontrol yang tanpa tulangan geser sama sekali. Sementara untuk benda uji yang memiliki tulangan geser eksisting kurang dari yang disyaratkan, perkuatan denga metode NSM dapat meningkatkan kuat geser sampai dengan 35% (Laura De dan Antonio, 2001). Prinsip dari perkuatan dengan metode NSM ini adalah memasang tulangan geser tambahan ke dalam alur yang dibuat di permukaan balok beton, kemudian tulangan dengan beton direkatkan dengan menggunakan resin/epoxy.

Langkah-langkah yang dilakukan dalam perkuatan balok beton bertulang dengan menggunakan metode NSM adalah sebagai berikut:

- a) Buat alur pada permukaan beton sesuai dengan konigurasi tulangan geser yang akan ditambahkan (Gambar 5.a)
- b) Rapikan sisi-sisi alur yang telah dibuat pada langkah sebelumnya sehingga lebar dan kedalamannya sesuai dengan yang diinginkan (Gambar 5.b)
- c) Untuk menjamin lekatan antara beton dengan tulangan, bersihkan alur tersebut dari debu atau serpihan-serpihan beton dengan menggunakan kuas atau kompresor udara (Gambar 5.c)
- d) Potong tulangan sesuai dengan panjang yang dibutuhkan (Gambar 5.d)
- e) Kemudian bersihkan tulangan yang telah dipersiapkan pada langkah sebelumnya (Gambar 5.e)
- f) Isi alur pada permukaan beton dengan cairan perekat atau adhesif sampai setengah penuh (Gambar 5.f)
- g) Lapisi juga seluruh permukaan tulangan dengan cairan perekat atau adhesif (Gambar 5.g)
- h) Tempatkan tulangan ke dalam alur yang telah diberi bahan perekat dan tekan pelan-pelan (Gambar 5.h)

i) Isi kembali alur yang sudah berisi tulangan dengan cairan perekat dan ratakan permukaannya (Gambar 5.i)

Gambar 5. Prosedur perkuatan geser dengan metode Near Surface Mounted (Dias Salvador dan Barros Joaquim, 2008)

Hasil penelitian di laboratorium juga menunjukkan terjadi pengelupasan selimut beton (*detachment*) di lokasi di mana balok diperkuat dengan metode NSM. Akibatnya kapasitas beban geser maksimum yang diharapkan dari perkuatan dengan metode ini tidak tercapai. Tulangan geser eksisting juga menyebabkan retak vertikal yang kemudian akan memicu terjadinya pengelupasan selimut beton (Barros dan Dias (2006) dan Rizzo dan De Lorenzis (2009)).

E.3. Perkuatan dengan metode *Deep Embedment* (DE)

Metode perkuatan balok dengan metode EB dan NSM dapat meningkatkan kapasitas geser balok. Akan tetapi, hasil eksperimen juga menunjukkan bahwa terlepasnya material dari permukaan beton (*debonding*) adalah kekurangan utama dari metode-metode ini sehingga kapasitas beban ultimit materialnya tidak dapat tercapai (Antonopoulos dan Triantafillou, 2003). *Debonding* ini disebabkan karena kuat tarik selimut beton sangat rendah, berkisar antara 20%-30% dari kuat ultimit material yang digunakan untuk perkuatan (Dirar et al., 2013).

Di samping itu, perkuatan dengan metode EB dan NSM membutuhkan persiapan yang rumit, material yang telah terpasang bersifat ekspos sehingga perlu dilindungi dengan material *coating* untuk menghindari pengaruh dari temperatur yang tinggi dan tangan-tangan jahil (*vandalism*). Pengaplikasian metode EB dan NSM juga akan sulit dilaksanakan pada struktur jembatan eksisting, di mana jarak antar balok sangat dekat (1,7m) sehingga tidak ada ruang yang cukup untuk perkerjaan persiapan dan perkuatan baloknya.

Pada penelitian ini diusulkan metode DE untuk perkuatan geser pada balok bertulang. Prinsip dari metode perkuatan yang diusulkan ini adalah menambahkan tulangan geser ke dalam penampang balok beton. Metode DE ini sudah digunakan pada perkuatan sambungan balok dan kolom bertulang pada struktur bangunan gedung (Ridwan et al., 2018).

Gambar 6. Prosedur perkuatan geser dengan metode DE yang dilakukan pada sambungan balok dan kolom beton bertulang (Ridwan et al., 2018)

Prosedur perkuatan geser dengan metode DE yang dilakukan pada sambungan balok dan kolom beton bertulang adalah sebagai berikut:

- a) Sebelum dilaksanakan pengecoran, batang akrilik dengan diameter 10mm ditempatkan di lokasi di mana tulangan geser akan ditambahkan (Gambar 6.a dan Gambar 6.b).
- b) Sehari setelah pengecoran batang akrilik tersebut dilepas.
- c) Setelah betonnya mengeras, maka lubang yang telah dipersiapkan tadi diperbesar dengan menggunakan mata bor 12mm. Hal ini dilakukan untuk memastikan bahwa permukaan dalam lubang kasar sehingga tulangan dan epoxy dapat melekat dengan baik. Debu-debu kemudian dibersihkan dengan kuas dan kompresor udara (Gambar 6.c).
- d) Lubang diinjeksikan dengan epoxy sampai 2/3 penuh. Kemudian permukaan tulangan yang akan ditambahkan juga dilapisi dengan epoxy, lalu dimasukkan ke dalam lubang yang sudah dibuat (Gambar 6.d)

Perkuatan dengan metode DE ini menunjukkan bahwa kapasitas geser, daktilitas dan kekakuan sambungan balok kolom dapat meningkat masing-masing sebesar 21%, 93% dan 35% dibandingkan sambungan balok kolom eksisting.

Perkuatan dengan metode DE juga telah dilakukan pada balok beton bertulang yang lemah terhadap geser oleh Ridwan et al. (2019). Dua benda uji balok beton bertulang terdiri dari benda uji control (Beam-CS) dan benda uji yang diperkuat dengan metode DE (Beam-SS-

3EB). Kedua benda uji mempunyai ukuran dan detail penulangan yang sama dan didisain lemah terhadap geser. Kemudian benda uji Beam-SS-3EB diperkuat dengan menambahkan tulangan geser tambahan dengan ukuran diameter 12mm sebanyak 3 buah, dipasang pada daerah bentang geser di kiri dan kanan balok. Hasil penelitian menunjukkan bahwa perkuatan dengan metode DE ini dapat mengubah perilaku keruntuhan struktur dari keruntuhan geser yang terjadi secara tiba-tiba menjadi keruntuhan daktail. Hal ini dapat dilihat dari pola retak yang terjadi; pada benda uji kontrol, retak yang terjadi adalah retak diagonal pada daerah bentang geser di dekat tumpuan. Sementara itu, pada benda uji yang telah diperkuat, retak yang terjadi adalah retak lentur berupa retak vertikal yang terjadi pada tengah-tengah balok.

Gambar 7. Perbandingan pola keruntuhan pada benda uji kontrol (Beam-CS) dan benda uji yang diperkuat (Beam-SS-3EB) hasil pengujian eksperimenal (Ridwan et al., 2019)

Gambar 8 memperlihatkan perbandingan kurva hubungan beban-lendutan benda uji balok kontrol (Beam-CS) dan benda uji balok yang diperkuat dengan metode DE (Beam-SS-3EB). Kapasitas geser benda uji Beam-SS-3EB meningkat 30,2% dibandingkan kapasitas geser benda uji kontrol Beam-CS yang hanya sebesar 53 kN.

Gambar 8. Kurva hubungan beban-lendutan benda uji (a) Beam-CS dan (b) Beam-SS-3EB (Ridwan et al., 2019)

Analisis dengan metode elemen hingga (*finite element*, FE) menggunakan *software* ABAQUS (Abaqus, 2008) untuk mempelajari perilaku balok beton bertulang yang diperkuat dengan metode DE juga telah dilakukan oleh Chandra et al. (2019). Analisis ini dilakukan dengan memodelkan balok yang diperoleh dari hasil pengujian eksperimental yang dilakukan oleh (Ridwan et al., 2019). Hasil analisis menunjukkan bahwa model elemen hingga yang diusulkan menghasilkan perilaku kurva hubungan beban-lendutan yang sesuai dengan kurva hubungan beban-lendutan hasil perhitungan analitis. Hasil yang ditampilkan pada Gambar 9 dan Tabel 1 menunjukkan bahwa pemodelan menggunakan *software* ABAQUS juga menunjukkan bahwa kapasitas beban pada balok yang diperkuat meningkat 17,67% bila dibandingkan dengan kapasitas beban pada balok kontrol.

Gambar 9. Perbandingan kurva beban-lendutan hasil analisis FE dengan berbagai ukuran elemen dengan perhitungan analitis (Chandra et al., 2019)

Tabel 1. Perbandingan beban dan lendutan maksimum benda uji kontrol dan benda uji yang diperkuat (Chandra et al., 2019)

Benda uji	P _{max}	Lendutan	Rasio	Selisih
	(kN)	(mm)	beban	(%)
Beam-CS	25,75	4,14		
Beam-SS-3EB	30,30	5,00	1,18	17,67

E.4. Road Map Penelitian

Banyak metode telah dilakukan untuk perbaikan struktur beton bertulang, seperti concrete jacketing dan steel jacketing. Akan tetapi, metode perbaikan ini sangat rumit karna perlu persiapan yang rumit, tenaga yang terampil dan biasanya menambah berat sendiri struktur. Penelitian ini mengusulkan metode perkuatan yang baru, yaitu metode Deep Embedment (DE). Pada metode DE ini, tulangan tambahan ditambahkan dengan cara mengebor penampang beton pada lokasi tertentu dan kedalamnya dipasang tulangan tambahan sesuai dengan kebutuhan;

cairan epoksi digunakan untuk merekatkan tulangan beton. Gambar 10 memperlihatkan kemajuan penelitian yang sudah dan akan dilakukan berkaitan dengan mitigasi dan perkuatan struktur beton bertulang.

Gambar 10. Road Map Penelitian

Pada periode 2015-2018, perkuatan dengan metode DE diaplikasikan pada sambungan balok-kolom beton bertulang. Pada periode ini, fokus penelitian adalah mempelajadi perilaku perkuatan

sambungan balok-kolom yang diperkuat akibat beban gempa. Penelitian yang dilakukan pada periode 2015-2018 ini telah menghasilkan tiga publikasi terindex Scopus.

Kemudian pada periode tahun 2019, untuk pertama kalinya perkuatan dengan menggunakan metode DE ini diaplikasikan pada model balok jembatan beton bertulang melalui pengujian di laboratorium. Penelitian ini sudah dipublikasikan di jurnal internasional dan juga dipresentasikan pada konferensi tingkat nasional.

Periode berikutnya, 2020-2021, adalah aplikasi perkuatan dengan metode DE ini pada balok jembatan bertulang dan studi parametrik untuk medapatkan jumlah tulangan tambahan yang efisien pada perkuatan balok beton bertulang menggunakan metode DE ini. Ouput/publikasi yang telah dihasilkan pada masing-masing periode ini juga dapat dilihat pada Gambar 10 di atas.

F. METODE PENELITIAN

Pendekatan yang dilakukan untuk mencapai tujuan dalam penelitian ini adalah metode a) eksperimen dan b) analisis menggunakan aplikasi berbasis elemen hingga untuk memprediksi perilaku nonlinear serta mendapatkan hubungan gaya-gaya dalam dari elemen struktur balok beton bertulang yang diperkuat dengan menggunakan metode DE. Objek dari penelitian ini adalah model balok beton bertulang dari prototipe balok jembatan standar Bina Marga Tahun 2005.

F.1. Lokasi dan Waktu Penelitian

Secara garis besar kegiatan yang dilakukan dalam penelitian ini dibagi dalam tiga tahap, yaitu:

- a) *Preliminary analysis* dengan menggunakan *software* berbasis elemen hingga untuk memprediksi perilaku balok beton bertulang.
- b) Pengujian karakteristik material beton dan tulangan. Karakteristik beton yang diperlukan adalah berupa kuat tekan, kuat lentur dan kuat tarik beton. Pengujian ini dilakukan di Laboratorium Bahan Jurusan Teknik Sipil Fakultas Teknik UNRI. Sementara pengujian karakteristik tulangan baja adalah untuk mendapatkan nilai modulus elastis, kuat leleh dan kuat ultimit tulangan baja. Pengujian ini dilakukan di Laboratorium Pengujian Bahan Jurusan Teknik Mesin Fakultas Teknik UNRI.
- c) Pengujian struktur balok beton bertulang eksisting dan balok beton bertulang yang diperkuat. Pengujian dilakukan di Laboratorium Struktur Jurusan Teknik Sipil Fakultas Teknik UNRI.

Jangka waktu penelitian adalah 8 bulan, mulai dari bulan Maret sampai dengan bulan Oktober 2019.

F.2. Pengujian Eksperimental

Seperti yang telah dijelaskan sebelumnya, ada dua pendekatan yang dilakukan dalam penelitian ini yaitu eksperimen dan analisis menggunakan *software* elemen hingga. Adapun tahapan eksperimen yang dilakukan pada penelitian ini adalah sebagai berikut.

Pengujian Karakteristik Material Beton dan Tulangan

Pengujian karakteristik bahan beton dilakukan untuk mendapatkan nilai kuat tekan, kuat lentur dan kuat tarik material beton. Pengambilan data pengujian karakteristik material beton ini dilakukan pada saat umur beton 28 hari dan pada umur saat pengujian balok beton bertulang strukturnya dilakukan. Jumlah benda uji untuk setiap tipe pengujian dan waktu pengujian adalah 3 buah. Karena pengecoran balok beton bertulang tidak dilakukan pada saat bersamaan, maka uji karakteristik material dilakukan untuk setiap benda uji baloknya, baik balok beton bertulang eksisting maupun balok beton yang diperkuat. Kebutuhan jumlah sampel untuk setiap pengujian dapat dilihat pada Tabel 2.

Tabel 2. Pengujian karakteristik material beton

No.	Pengujian	Benda uji	Jumlah
			benda uji
1.	Uji kuat tekan	Silinder diameter 150 mm dan tinggi silinder 300 mm	3×2×3=18
2.	Uji kuat lentur	Balok beton polos 100	3×2×3=18
2.	Oji kuat lehtui	mm x 100 mm x 500 mm	3×2×3-16
3.	Uji kuat tarik belah	Silinder diameter 150 mm dan tinggi silinder	3×2×3=18
		300 mm	

Pengujian karakteristik tulangan dilakukan untuk mendapatkan sifat bahan tulangan berupa nilai modulus elastis (E_s) , kuat leleh (f_y) dan kuat ultimit (f_u) tulangan baja. Ada 2 ukuran tulangan baja yang digunakan, yaitu tulangan deformasi D12 (tulangan pokok) dan D6 (sengkang dan tulangan untuk perkuatan). Jumlah sampel yang diperlukan untuk setiap tulangan adalah 3 buah. Kebutuhan jumlah sampel untuk setiap pengujian karakteristik tulangan baja ini dapat dilihat pada Tabel 2.

Tabel 3. Pengujian karakteristik material baja

No.	Tipe tulangan	Benda uji		Jumlah
				benda uji
1.	D12	Tulangan	dengan	3
		panjang 500 mm		
2.	D6	Tulangan	dengan	3
		panjang 500 mm	_	

Pengujian Struktur Balok Beton Bertulang

Pengujian balok struktur beton dilakukan untuk mengetahui perilaku balok beton bertulang eksisting dan perilaku balok beton bertulang yang diperkuat kapasitas gesernya dengan metode *deep embedment* (DE). Prototipe dari balok yang ditinjau adalah balok memanjang dari jembatan standar Bina Marga dengan bentang 5 sampai dengan 25 m seperti yang tampak pada Gambar 11.

Gambar 11. Prototipe standar jembatan beton bertulang dengan bentang 5-25 m: (a) Gambar memanjang, (b) Gambar potongan (Bina Marga, 2005)

Analisis model dengan memenuhi persyaratan *similitude requirement* dilakukan untuk mendapat model fisik laboratorium. Dengan skala model 1:2, didapatkan model benda uji balok di laboratorium dengan ukuran penampang balok 150 mm × 250 mm dan panjang balok 2000 mm. Jumlah total benda uji balok struktur adalah 3 buah dengan perincian: (a) 1 buah benda uji balok struktur eksisting dan (b) 2 buah benda uji balok struktur yang diperkuat. Ada 2 variasi jumlah tulangan perkuatan yang ditambahkan untuk mendapatkan pengaruh jumlah penambahan tulangan geser terhadap perilaku balok. Kebutuhan jumlah benda uji untuk pengujian balok

struktur dapat dilihat pada Tabel 4 dan detail penulangan benda uji balok beton bertulang dapat dilihat pada Gambar 12.

Tabel 4 Detail rencana benda uji balok beton bertulang

	K	Karakteristik balok					
Kode benda uji	Penampang (mm)	1 oeser		Jumlah tulangan Embedded bars			
Beam-CS		1-		0			
Beam-SS-45	150×250	2D12 2D6	D6-600	12D6			
Beam-SS-65		200		20D6			

Gambar 12. Detail penulangan rencana benda uji

Beam-CS adalah benda uji balok kontrol, benda uji ini didisain lemah terhadap gaya geser. Beam-SS-45 dan Beam-SS-64 masing-masing adalah benda uji balok yang diperkuat dengan persentase penambahan tulangan geser adalah 45% dan 65% dari kebutuhan tulangan geser menurut standar yang berlaku. Ketiga benda uji memiliki ukuran penampang 150 mm x 250 mm dan panjang 2000 mm, dengan tulangan pokok pada daerah tarik 2D12 dan tulangan pokok pada daerah tekan 2D6. Untuk benda uji yang diperkuat, dipasang tulangan geser tambahan 2D6 masing-masing dengan jarak 200 mm untuk benda uji Beam-SS-45 dan 2D6 dengan jarak 100 mm untuk benda uji Beam-SS-65.

F.3. Metode Perkuatan yang diusulkan

Prosedur aplikasi perkuatan balok bertulang dengan metode *deep embedment* ini di laboratorium dilakukan sebagai berikut:

- a) Lubang untuk penempatan tulangan geser tambahan dibuat dengan memasang batang akrilik diameter 6 mm pada lokasi di mana tulangan geser akan ditambahkan.
- b) Kemudian batang akrilik ini dilepaskan satu hari setelah pengecoran balok. Pada umur satu hari beton belum mengeras sempurna sehingga batang akrilik dapat dengan mudah dilepaskan dari beton.
- c) Pada umur beton 14 hari, lubang yang sudah dibuat tadi diperbesar dengan menggunakan bor berdiameter 9 mm. Pengeboran ini dilakukan agar permukaan lubang menjadi kasar sehingga lekatan antara tulangan tambahan, epoxy dan beton menjadi sempurna. Setelah itu debu hasil pengeboran dibersihkan dengan menggunakan kuas dan kompresor udara.
- d) Epoxy diinjeksikan ke dalam lubang yang telah dibuat hingga 2/3 penuh.
- e) Tulangan baja tambahan dilapisi dengan epoxy dan kemudian dimasukkan ke dalam lubang yang sudah terisi epoxy. Kemudian sisa-sisa epoxy dibersihkan dari permukaan beton.

Prosedur yang dijelaskan di atas dapat dilihat ilustrasinya pada Gambar 13.

Gambar 13. Langkah-langkah perkuatan geser dengan metode DE pada balok (Ridwan et al., 2019)

F. 4. Setup Pengujian

Pengujian balok beton bertulang dilakukan di Laboratorium Struktur Jurusan Teknik Sipil Fakultas Teknik UNRI dengan *set up* pengujian seperti yang terlihat pada Gambar 14. Balok yang akan diuji ditempatkan di atas tumpuan berupa sendi-rol. Tumpuan sendi – rol ini sudah dipersiapkan sebelumnya dan ditempatkan dalam *loading frame* dengan kapasitas beban 500 kN.

Beban diberikan ke balok dengan menggunakan pompa hidraulik dan diteruskan ke *hydraulic cylinder* dengan kapasitas beban maksimum 250 kN. Pemberian beban ini diberikan secara perlahan-lahan untuk menghindari kerusakan yang tidak diinginkan pada benda uji.

Data yang dihasilkan pada saat pengujian ini adalah:

- a) Besar beban yang diberikan pada balok; pembacaan beban dilakukan dengan menggunakan *load cell* dan *load cell indicator*.
- b) Besar perpindahan (*displacement*) yang terjadi pada balok akibat pembebanan. Besar perpindahan diukur secara digital dengan menggunakan LVDT.
- c) Pola retak yang terjadi pada setiap tahap pembebanan juga diamati dan dicatat besar beban pada saat retak timbul.
- d) Regangan yang terjadi pada tulangan pokok dan tulangan geser tambahan.

Data-data berupa beban, regangan tulangan, dan perpindahan (displacement) direkam secara kontinue melalui sebuah data acquisition system seperti tampak pada Gambar 14b. Data hasil pembacaan beban dan displacement kemudian dianalisis untuk mendapatkan kurva hubungan antara beban dan displacement (P- δ). Dari kurva hubungan P- δ dapat dianalisis dan dibandingkan kekakuan, beban maksimum, daktilitas dan laju penurunan kekakuan untuk setiap tahap pembebanan baik pada benda uji balok kontrol maupun benda uji yang diperkuat. Selain itu, pada saat pengujian juga akan diperoleh pola retak ($crack\ pattern$) yang terjadi pada balok yang kemudian dapat dianalisis dan dibandingkan pola keruntuhan untuk setiap balok yang diuji.

Gambar 14. Set up pengujian a) Loading frame, b) Data acquisition system

F. 5. Bagan Alir Penelitian

Bagan alir penelitian Perkuatan Geser Pada Balok Jembatan Beton Bertulang Dengan Menggunakan Metode *Deep Embedment* dapat dilihat pada Gambar 15.

Gambar 15. Bagan alir penelitian

G. DAFTAR PUSTAKA

- Abaqus (2008). ABAQUS analysis: user's manual, ABAQUS Inc., Providence, Rhode Island.
- Antonopoulos, C. P., Triantafillou, T. C. (2003). "Experimental Investigation of FRP-Strengthened RC Beam-Column Joints." *J Compos Constr*, 7(1), 39-49.
- Barros, J. A. O., Dias, S. J. E. (2006). "Near surface mounted CFRP laminates for shear strengthening of concrete beams." *Cement and Concrete Composites*, 28(3), 276-292.
- Bina Marga (2005). "Gambar standar pekerjaan jalan dan jembatan (in Indonesia language)."Jakarta.
- Bousselham, A., Chaallal, O. (2008). "Mechanisms of Shear Resistance of Concrete Beams Strengthened in Shear with Externally Bonded FRP." *J Compos Constr*, 12(5), 499-512.
- Chaallal, O., Mofidi, A., Benmokrane, B., Neale, K. (2011). "Embedded Through-Section FRP Rod Method for Shear Strengthening of RC Beams: Performance and Comparison with Existing Techniques." *J Compos Constr*, 15(3), 374-383.
- Chaallal, O., Nollet, M. J., Perraton, D. (1998). "Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: design guidelines for shear and flexure." *Canadian Journal of Civil Engineering*, 25(4), 692-704.
- Chandra, N., Ridwan, R., Ikhsan, M. (2019). "Finite Element Modelling of Reinforced Concrete Beam Strengthened with Embedded Steel Reinforcement Bars." *J.Appl.Mat and Tech.*, 1(1), 38-45.
- Chen, W.-F., Duan, L. (2014). *Handbook of International Bridge Engineering*, CRC Press Boca Raton, Florida.
- Dias Salvador, J. E., Barros Joaquim, A. O. (2008). "Shear Strengthening of T Cross Section Reinforced Concrete Beams by Near-Surface Mounted Technique." *J Compos Constr*, 12(3), 300-311.
- Dirar, S., Lees, J., Morley, C. (2012). "Precracked Reinforced Concrete T-Beams Repaired in Shear with Bonded Carbon Fiber-Reinforced Polymer Sheets." *Aci Struct J*, 109(2), 215-223.
- Dirar, S., Lees, J. M., Morley, C. T. (2013). "Precracked Reinforced Concrete T-Beams Repaired in Shear with Prestressed Carbon Fiber-Reinforced Polymer Straps." *Aci Struct J*, 110(5), 855-865.
- Laura De, L., Antonio, N. (2001). "Shear Strengthening of Reinforced Concrete Beams with Near-Surface Mounted Fiber-Reinforced Polymer Rods." *Structural Journal*, 98(1).

- Mady, M., El-Ragaby, A., El-Salakawy, E. (2011). "Seismic Behavior of Beam-Column Joints Reinforced with GFRP Bars and Stirrups." *J Compos Constr*, 15(6), 875-886.
- Qin, S. (2016). "Shear behaviour of corroded reinforced concrete t-beams repaired with fibre reinforced polymer systems." Ph.D, University of Birmingham.
- Ridwan, R., Dirar, S., Jemaa, Y., Elshafie, M. (2019). "Numerical modelling of reinforced concrete beam-column joints shear-strengthened with embedded CFRP bars." *Advanced Composites in Construction, ACIC 2019*, S. Dirar, and R. Helliwell, eds., NetComposites Limited, University of Birmingham, Birmingham; United Kingdom, 245-250.
- Ridwan, R., Dirar, S., Jemaa, Y., Theofanous, M., Elshafie, M. (2018). "Experimental Behavior and Design of Exterior Reinforced Concrete Beam-Column Joints Strengthened with Embedded Bars." *J Compos Constr*, 22(6), 1-15.
- Ridwan, R., Dirar, S., Jemaa, Y., Yang, J., Elshafie, M. (2015). "Shear strengthening of exterior beam-column joints using embedded carbon fibre reinforcement polymer bars." *Advanced Composites in Construction, ACIC 2015*, J. Lees, and S. Keighley, eds., NetComposites Limited, University of Cambridge, St John's CollegeCambridge; United Kingdom, 148-153.
- Ridwan, R., Kamaldi, A., Jemaa, Y., Rizki, M., Nurhud, W. M., Kurniawandy, A. (2019). "Pemodelan balok beton bertulang yang diperkuat dengan metode deep embedment menggunakan software berbasis elemen hingga." *KoNTekS-13*Banda Aceh, Indonesia, 24-31.
- Ridwan, R., Kamaldi, A., Kurniawandy, A. (2019). "Perkuatan Geser Pada Balok Jembatan Beton Bertulang dengan Menggunakan Metode Deep Embedment." Universitas Riau, Pekanbaru.
- Rizzo, A., De Lorenzis, L. (2009). "Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement." *Constr Build Mater*, 23(4), 1555-1567.
- Triantafillou, T. C. (1998). "Shear Strengthening of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites." *Structural Journal*, 95(2).
- Valerio, P., Ibell, T. J., Darby, A. P. (2009). "Deep Embedment of FRP for Concrete Shear Strengthening." *P I Civil Eng-Str B*, 162(5), 311-321.

H. JADWAL KEGIATAN

Jadwal kegiatan penelitian ini dapat dilihat pada Tabel 5.

Tabel 5. Jadwal Kegiatan Penelitian

No.	Kegiatan		Bulan ke -						
		1	2	3	4	5	6	7	8
1	Kajian literatur, survey bahan referensi								
2	Pembuatan model struktur dan <i>prelimary</i> analysis								
3	Pembuatan benda uji								
3	Pengujian								
4	Pembahasan hasil dan analisis								
5	Proses pembuatan output penelitian								
6	Pelaporan sementara								
7	Pelaporan akhir								
8	Diseminasi								

I. REKAPITULASI BIAYA

Tabel 6. Rekapitulasi Biaya

No	Komponen Biaya	Syarat Maksimum (%)	Usulan biaya (Rp.) – (%)
1	Honorarium (bagi anggota non dosen	30	9.600.000,00 - (19,20)
	PNS)		
2	Pembelian bahan habis pakai	60	28.625.000,00 - (57,25)
3	Laporan dan Registrasi pertemuan	40	9.975.000,00 - (19,95)
	ilmiah		
4	Sewa	40	1.800.000,00 - (3,60)
	Jumlal	n dalam satu tahun	50.000.000,00 - (100)

J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI

Organisasi penelitian terdiri dari ketua, dua orang anggota dan dua orang mahasiswa program sarjana yang berasal dari Program Studi S1 Teknik Sipil Fakultas Teknik Universitas Riau. Pelibatan mahasiswa untuk menjamin kontinuitas proses belajar mengajar utamanya bila dikaitkan dengan penyusunan tugas akhir. Rincian tugas dan tanggung jawab disajikan pada tabel. Selain itu, tabel tersebut juga merinci lamanya waktu penelitian (6 bulan), setiap minggu dalam 6 bulan tersebut dilakukan kegiatan penelitian, dalam satu minggu dialokasikan penelitian sebanyak 5 hari dan dalam satu hari tersebut dialokasikan waktu sebanyak 3,5 sampai 4 jam. Nilai 4 jam tersebut mengacu pada Standar Biaya Umum yakni Peraturan Menteri Keuangan Republik Indonesia No. 36/PMK.05/2012.

Tabel 7. Organisasi Kegiatan Penelitian

No	Nama/NIDN	Instansi	Bidang	Alokasi waktu	Uraian tugas
			Ilmu	(jam/minggu)	
					Ketua Peneliti,
	Ridwan 0008077304				bertanggung jawab
					penuh terhadap
					semua kegiatan
			Teknik		penelitian termasuk
1		Universitas	Sipil	20	terlibat dalam proses
1		Riau	Struktur	jam/minggu	penelitian mulai dari
					kajian literature,
					proses penelitian,
					termasuk penentuan
					output dan outcome
					penelitian
					Anggota peneliti,
					bertanggung jawab
	Alfian	Universitas	Teknik	15	penuh terhadap
2	Kamaldi	Riau	Sipil	jam/minggu	kesiapan peralatan
	0025066806	Kiau	Struktur	janii/minggu	pengujian
					laboratorium dan
					memberikan saran

					terhadap penelitian
					yang dilakukan
					Anggota peneliti,
					bertanggung jawab
					penuh terhadap
	Alex	Universitas	Teknik	15	preliminary analysis
3	3 Kurniawandy	Riau	Sipil Struktur	jam/minggu	menggunakan
	0030087302	Riau			software FE dan
					memberikan saran
					terhadap penelitian
					yang dilakukan
					Menyelesaikan tugas
					akhir yang
					merupakan salah satu
	Dua orang				output yang telah
	mahasiswa				disusun, membantu
4	yang			15	penyusunan laporan
4	menyusun			jam/minggu	dan proses penelitian,
	tugas akhir				mengolah data dan
	tugas akim				informasi serta
					mengerjakan konsep
					tugas akhir dan
					publikasi

K. JUSTIFIKASI ANGGARAN PENELITIAN

Anggaran yang disusun dalam bagian ini sudah termasuk pajak yang dipotong melalui bantuan manajemen Lembaga Penelitian dan Pengabdian Kepada Masyarakat. Selanjutnya justifikasi anggaran tersebut adalah:

Tabel 8. Justifikasi Penggunaan Anggaran

No.	Biaya Pelaksanaan		Komponen Belanja			Volume	Harga Satuan (Rp.)	Total (Rp.)
1	Bahan	1	ATI	ζ			\ 1 /	
			a.	Kertas	rim	4	50,000	200,000
			b.	Tinta Epson	Unit	4	75,000	300,000
		2	Bah paka	an Penelitian (habis ai)				
			a.	Material untuk pembuatan benda uji balok beton bertulang, ukuran 150 mm x 250 mm x 2000 m Biaya ini dibutuhkan untuk pembuatan benda uji balok beton bertulang. Bahan yang dibutuhkan adalah tulangan pokok polos D12, tulangan geser polos D6, multipleks untuk pembuatan bekisting balok, material beton (pasir, kerikil dan semen) serta biaya perakitan tulangan, pembuatan bekisting serta pengecoran.	buah	3	2,000,000	6,000,000
			b.	Material untuk pembuatan benda uji kuat tekan, silinder beton ukuran 150 mm x	buah	18	75,000	1,350,000

		300 mm				
		Biaya ini dibutuhkan untuk pembuatan sampel benda uji kuat tekan beton. Sampel benda uji berupa silinder dengan diameter 150mm dan tinggi 300mm. Pengujian kuat tekan dilakukan 2 kali, masing-masing 3 silinder, yaitu pada umur beton 28 hari dan umur beton pada saat pengujian balok.				
	c.	Material untuk pembuatan benda uji kuat tarik belah, silinder beton ukuran 150 mm x 300 mm Biaya ini dibutuhkan untuk	buah	18	75,000	1,350,000
		pembuatan sampel benda uji kuat tarik belah beton. Sampel benda uji berupa silinder dengan diameter 150mm dan tinggi 300mm. Pengujian kuat tekan dilakukan 2 kali, masing-masing 3 silinder, yaitu pada umur beton 28 hari dan				
	d.	umur beton pada saat pengujian balok Epoxy Hilti HIT RE 500	Unit	6	500,000	3,000,000
		Bahan ini diinjeksikan ke dalam lubang yang telah dibuat dan berfungsi untuk merekatkan tulangan perkuatan dengan beton				

		e.	Epoxy injector	Unit	1	1,800,000	1,800,000
			Alat ini digunakan untuk menginjeksikan epoxy ke dalam lubang yang telah dibuat. Alat ini digunakan bersama- sama dengan epoxy HIT-RE 500				-,,
		f.	Acrylic rod Acrylic rod ini digunakan untuk memudahkan pengeboran balok di tempat pemasangan tulangan perkuatan (DE bars)	Batang	4	150,000	600,000
		g.	Strain gauge Alat ini dipasang pada baja tulangan dan diperlukan untuk mengetahui regangan yang terjadi pada saat pengujian	Unit	20	200,000	4,000,000
		h.	Asesoris pemasangan strain gauge (Super glue, amplas, coating dan ethanol) Biaya ini digunakan untuk bahan pemasangan strain gauge, terdiri dari lem/superglue, amplas, alkohol pembersih residu dan coating pelindung strain gauge	Paket	1	1,000,000	1,000,000
		i.	Kabel strain gauge	m	50	7,000	350,000
	_	_					
	3	Bara a.	ang Persediaan Mata bor	Buah	3	175,000	525,000
		a.	141414 001	Duali	3	173,000	545,000

			b.	Pembuatan tumpuan sendi-rol dan spreader beam	Paket	1	2,000,000	2,000,000
2	Pengumpulan Data							
		1	HR	Pembantu Peneliti				
			a.	Pembantu peneliti 2 orang (15 jam/minggu. 20 minggu)	OJ	600	13,000	7,800,000
		2	HR Pen	Sekretariat/Administrasi eliti				
			a.	Administrasi peneliti 1 orang durasi 6 bulan	ОВ	6	300,000	1,800,000
3	Sewa Peralatan	1	Pera	Peralatan Penelitian				
			a.	Sewa Bridge completion module	Unit	6	300,000	1,800,000
4	Analisis Data							
		1	Bia	ya analisis sampel				
			a.	Pengujian benda uji balok beton bertulang Biaya ini dibutuhkan untuk pengujian balok beton bertulang, baik balok beton eksisting 1 buah (unstrengthened specimen) dan balok beton yang diperkuat dengan metode DE sebanyak 2 buah. Biaya termasuk biaya setup dan kalibrasi alat ukur beban load cell dan alat ukur displacement LVDT	Unit	3	600,000	1,800,000

	b.	Pengujian silinder benda	Unit	18	75,000	1,350,000
		uji kuat tekan				
		Biaya ini dibutuhkan untuk				
		pengujian sampel benda				
		uji kuat tekan beton.				
		Pengujian ini diperlukan				
		untuk mendapatkan nilai karakteristik kuat tekan				
		beton yang nantinya				
		digunakan untuk analisis				
		kekuatan benda uji				
		balok eksisting dan yang diperkuat dengan				
		metode DE. Sampel				
		benda uji berupa silinder				
		dengan diameter 150mm				
		dan tinggi 300m. Pengujian kuat tekan				
		dilakukan 2 kali,				
		masing-masing 3				
		silinder, yaitu pada				
		umur beton 28 hari dan umur beton pada saat				
		pengujian balok				
	c.	Pengujian silinder benda	Unit	18	75,000	1,350,000
		uji kuat tarik belah	Omt	10	73,000	1,330,000
		Pengujian ini diperlukan				
		untuk mendapatkan nilai				
		karakteristik kuat tarik				
		beton yang nantinya digunakan untuk analisis				
		kekuatan benda uji				
		balok eksisting dan yang				
		diperkuat dengan				
		metode DE. Sampel benda uji berupa silinder				
		dengan diameter 150mm				
		dan tinggi 300mm.				
		Pengujian kuat tekan				
		dilakukan 2 kali, masing-masing 3				
		silinder, yaitu pada				
		umur beton 28 hari dan				
		umur beton pada saat				

				pengujian balok.				
			d.	Pengujian tarik tulangan baja Pengujian ini diperlukan untuk mendapatkan nilai karakteristik tulangan baja yang digunakan pada pembuatan benda uji balok untuk mendapatkan nilai modulus elastis, kuat leleh dan kuat ultimit tulangan. Sampel benda uji tulangan dengan panjang 500 mm masing-masing 3 buah untuk tulangan pokok (D12), tulangan geser (D6) dan tulangan yang digunakan sebagai tulangan perkuatan (D6)	Unit	6	275,000	1,650,000
	D 1							
5	Pelaporan	1	T	anan Danalidian				
		1	•	Laporan Penelitian		2	75.000	227.000
			a.	Proposal	Buah	3	75,000	225,000
			b.	Laporan sementara	Buah	5	100,000	500,000
			c.	Laporan akhir	Buah	5	100,000	500,000
			d.	Pembuatan poster + standing banner	Buah	1	350,000	350,000
		2	Biay	Biaya luaran				
			a.	Registrasi HKI	Paket	1	400,000	400,000
			b.	Pembuatan dan pencetakan draft buku	Paket	1	1,000,000	1,000,000
6	Luaran Wajib dan tambahan	1	Pen	daftaran Seminar				

		a.	Pendaftaran seminar internasional, 1 orang	Paket	1	3,500,000	3,500,000
	2	Pub	Publikasi				
		a.	Biaya proofreading artikel (GBP90/10 ribu kata, total 20 ribu kata)	Paket	1	3,500,000	3,500,000
Total (Lima Puluh Juta Rupiah)							

L. LAMPIRAN – PENGUKURAN TKT

