Marking Sheet Assignment 1	CS370 Winter 2018
Name:	ID:
Section: 1 (8:30am) 2	(11:30am) 3 (1:30pm)
1. (a) roots by quadratic formula	la (4)
(b) alternate quadratic formu	ıla (3)
(c) roots by alternate formul	la (3)
2. (a) Matlab function	(4)
(b) stability analysis	(6)
(c) number of steps	(5)
	/15
3. (a) Conditions and values	(6)
(b) Lagrange	(4)
	/10
4. (a) Linear system	(8)
(b) Spline coefficients	(8)
(b) Graphic	(4)
	/20
5. (a) points	(4)
(b) lines	(4)
(c) splines	(12)

Total: (75)

A1:

a)

$$x_{1} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-22.41 - \sqrt{22.41^{2} - 4 \times 1.03 \times 0.1123}}{2 \times 1.03}$$

$$= \frac{-22.41 - \sqrt{502.20 - 4.12 \times 0.1123}}{2.06}$$

$$= \frac{-22.41 - \sqrt{502.20 - 0.46267}}{2.06}$$

$$= \frac{-22.41 - 22.399}{2.06}$$

$$= \frac{-44.809}{2.06}$$

$$= -21.751$$

Relative error: $\left| \frac{(-21.752) - (-21.751)}{-21.752} \right| \times 100\% = 0.004597\%$

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-22.41 + 22.399}{2.06}$$

$$= \frac{-0.011}{2.06}$$

$$= -0.0053398$$

Relative error: $\left| \frac{(-0.0050123) - (-0.0053398)}{-0.0050123} \right| \times 100\% = 6.133\%$

b)

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$right = \frac{c}{ax_1}$$

$$= \frac{c}{a\left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)}$$

$$= \frac{2c}{(-b - \sqrt{b^2 - 4ac})}$$

$$= \frac{2c(-b + \sqrt{b^2 - 4ac})}{(-b - \sqrt{b^2 - 4ac})(-b + \sqrt{b^2 - 4ac})}$$

$$= \frac{-2bc + 2c\sqrt{b^2 - 4ac}}{b^2 - (b^2 - 4ac)}$$

$$= \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$= x_2$$

$$= left$$

c)

 x_1 is unchanged

$$x_1 = -21.751$$

Relative error: $\left| \frac{(-21.752) - (-21.751)}{-21.752} \right| \times 100\% = 0.004597\%$

$$x_2 = \frac{c}{ax_1}$$

$$= \frac{0.1123}{1.03 \times (-21.751)}$$

$$= \frac{0.1123}{-22.403}$$

$$= -0.0050127$$

Relative error: $\left| \frac{(-0.0050127) - (-0.0050123)}{-0.0050123} \right| \times 100\% = 0.007980\%$

- a) The answer becomes an extremely negative number. $(-4.063562 \times 10^{13})$.
- b) the error in the first step is $e_1=0$, in the second step it is $e_2=\left|0.5714285-\frac{4}{7}\right|\leq\frac{1}{14000000}$. Since $e_n+\frac{41}{14}e_{n-1}-2e_{n-2}=0$ for $n\geq 3$, let $a=\frac{41}{14}$ and b=-2, solve $x^2+ax+b=0$ gives $x_1=-\frac{7}{2}$, $x_2=\frac{4}{7}$. Hence $|e_{40}|=\left|c_1\left(-\frac{7}{2}\right)^{40}+c_2\left(\frac{4}{7}\right)^{40}\right|\approx\left|c_1\left(\frac{7}{2}\right)^{40}\right|$, which grows very big, therefore the final answer is far off from the correct answer.

c) assume $p_0^{approx} = p_0^{exact}$,

$$p_1^{approx} = p_1^{exact}(1 + \epsilon)$$
$$= p_1^{exact} + e_1$$

Where $e_1 = p_1^{approx} \epsilon$.

$$\begin{split} p_2^{approx} &= -\frac{41}{14} p_1^{approx} + 2 p_0^{approx} \\ &= -\frac{41}{14} p_1^{exact} - \frac{41}{14} e_1 + 2 p_0^{exact} \\ &= p_2^{exact} - \frac{41}{14} e_1 \end{split}$$

$$\begin{split} p_3^{approx} &= -\frac{41}{14} p_2^{approx} + 2 p_1^{approx} \\ &= \left(-\frac{41}{14} \right) p_2^{exact} - \left(-\frac{41}{14} \right) \frac{41}{14} e_1 + 2 p_1^{exact} + 2 e_1 \\ &= p_3^{exact} + \frac{41^2 + 2 \times 14^2}{14^2} e_1 \end{split}$$

by some induction steps similar as above, we know for $n \ge 3$,

$$p_n^{qpprox} = p_n^{exact} + xe_1$$

Where x is some function of n and |x| increases as n increases.

Even though e_1 is small, when n gets big, the error $|xe_1|$ becomes large, and the answer becomes unreliable.

Q3:

$$S(x) = \begin{cases} 28 + a_1 x + 9x^2 + x^3, & x \in [-3, -1] \\ a_2 + 19x + a_3 x^2 - x^3, & x \in [-1, 0] \\ 26 + 19x + 3x^2 + a_4 x^3, & x \in [0, 3] \end{cases}$$

a)

when x = -1, we have

$$28 + a_1x + 9x^2 + x^3 = a_2 + 19x + a_3x^2 - x^3$$
$$28 - a_1 + 9 - 1 = a_2 - 19 + a_3 + 1$$
$$a_1 + a_2 + a_3 = 54$$

And

$$\frac{d}{dx}(28 + a_1x + 9x^2 + x^3) = \frac{d}{dx}(a_2 + 19x + a_3x^2 - x^3)$$

$$a_1 + 18x + 3x^2 = 19 + 2a_3x - 3x^2$$

$$a_1 - 18 + 3 = 19 - 2a_3 - 3$$

$$a_1 + 2a_3 = 31$$

When x = 0, we have

$$a_2 + 19x + a_3x^2 - x^3 = 26 + 19x + 3x^2 + a_4x^3$$

 $a_2 = 26$

And

$$\frac{d}{dx}(a_2 + 19x + a_3x^2 - x^3) = \frac{d}{dx}(26 + 19x + 3x^2 + a_4x^3)$$

$$19 + 2a_3x - 3x^2 = 19 + 6x + 3a_4x^2$$

$$19 = 19$$

We have
$$\begin{cases} a_1 + a_2 + a_3 = 54 \\ a_1 + 2a_3 = 31 \\ a_2 = 26 \end{cases} \implies \begin{cases} a_1 = 25 \\ a_2 = 26. \\ a_3 = 3 \end{cases}$$

Since it is a natural spline, when x = 3 we have

$$\frac{d}{dx} \left(\frac{d}{dx} (26 + 19x + 3x^2 + a_4 x^3) \right) = 0$$

$$6 + 6a_4 x = 0$$

$$a_4 = -\frac{1}{3}$$

Hence
$$\begin{cases} a_1=25\\ a_2=26\\ a_3=3 \text{ is the solution.} \\ a_4=\frac{1}{3} \end{cases}$$

b)

by substitute
$$x = -3, -1,0,3$$
 into $S(x)$ we get
$$\begin{cases} S(-3) = 7 \\ S(-1) = 11 \\ S(0) = 26 \\ S(3) = 101 \end{cases}$$

the interpolation is

$$L(x) = 7 \times \frac{(x+1)x(x-3)}{(-3+1)(-3)(-3-3)} + 11 \times \frac{(x+3)x(x-3)}{(-1+3)(-1)(-1-3)} + 26 \times \frac{(x+3)(x+1)(x-3)}{(0+3)(0+1)(0-3)} + 101 \times \frac{(x+3)(x+1)x}{(3+3)(3+1)3}$$

$$= 7 \times \frac{(x+1)x(x-3)}{-36} + 11 \times \frac{(x+3)x(x-3)}{8} + 26 \times \frac{(x+3)(x+1)(x-3)}{-9} + 101 \times \frac{(x+3)(x+1)x}{72}$$

Q4:

$$\begin{split} S_1(x) &= a_1 + b_1(x+1) + c_1(x+1)^2 + d_1(x+1)^3 & -1 \le x \le 1 \\ S_2(x) &= a_2 + b_2(x-1) + c_2(x-1)^2 + d_2(x-1)^3 & 1 \le x \le 2 \\ S_3(x) &= a_3 + b_3(x-2) + c_3(x-2)^2 + d_3(x-2)^3 & 2 \le x \le 5 \\ S_4(x) &= a_4 + b_4(x-5) + c_4(x-5)^2 + d_4(x-5)^3 & 5 \le x \le 7 \end{split}$$

a)

From second derivatives we know

$$\begin{cases} 2c_1 + 6d_1(0) = 0 \\ 2c_1 + 6d_1(2) = 2c_2 + 6d_2(0) \\ 2c_2 + 6d_2(1) = 2c_3 + 6d_3(0) \\ 2c_3 + 6d_3(3) = 2c_4 + 6d_4(0) \\ 2c_4 + 6d_4(2) = 0 \end{cases}$$

since $x_{1,2,3,4,5} = -1,1,2,5,7$ and $y_{1,2,3,4,5} = 2,1,4,3,-1$ respectively, we can see

$$\begin{cases} \Delta x_1 = 2 \\ \Delta x_2 = 1 \\ \Delta x_3 = 3 \\ \Delta x_4 = 2 \end{cases} \text{ and } \begin{cases} \Delta y_1 = -1 \\ \Delta y_2 = 3 \\ \Delta y_3 = -1, \text{ therefore } \\ \Delta y_4 = -4 \end{cases} \begin{cases} y_1' = -\frac{1}{2} \\ y_2' = 3 \\ y_3' = -\frac{1}{3} \\ y_4' = -2 \end{cases}$$

Since
$$c_n=rac{3y_n'-2s_n-s_{n+1}}{\Delta x_n}$$
, $d_n=rac{s_n+s_{n+1}-2y_n'}{\Delta x_n^2}$, we get

$$\begin{cases} c_1 = \frac{-\frac{3}{2} - 2s_1 - s_2}{2} \\ c_2 = \frac{9 - 2s_2 - s_3}{1} \\ c_3 = \frac{-1 - 2s_3 - s_4}{3} \\ c_4 = \frac{-6 - 2s_4 - s_5}{2} \end{cases} \quad \begin{cases} d_1 = \frac{s_1 + s_2 + 1}{4} \\ d_2 = \frac{s_2 + s_3 - 6}{1} \\ d_3 = \frac{s_3 + s_4 + \frac{2}{3}}{9} \\ d_4 = \frac{s_4 + s_5 + 4}{4} \end{cases}$$

Substitute all into the original gives

$$\begin{cases} 2\frac{-\frac{3}{2} - 2s_1 - s_2}{2} + 6\frac{s_1 + s_2 + 1}{4}(0) = 0\\ 2\frac{-\frac{3}{2} - 2s_1 - s_2}{2} + 6\frac{s_1 + s_2 + 1}{4}(2) = 2\frac{9 - 2s_2 - s_3}{1}\\ 2\frac{9 - 2s_2 - s_3}{1} + 6\frac{s_2 + s_3 - 6}{1}(1) = 2\frac{-1 - 2s_3 - s_4}{3}\\ 2\frac{-1 - 2s_3 - s_4}{3} + 6\frac{s_3 + s_4 + \frac{2}{3}}{9}(3) = 2\frac{-6 - 2s_4 - s_5}{2}\\ 2\frac{-6 - 2s_4 - s_5}{2} + 6\frac{s_4 + s_5 + 4}{4}(2) = 0 \end{cases}$$

Simplify gives

$$\begin{cases} 2s_1 + s_2 = -\frac{3}{2} \\ s_1 + 6s_2 + 2s_3 = \frac{33}{2} \\ 3s_2 + 8s_3 + s_4 = 26 \\ 2s_3 + 10s_4 + 3s_5 = -20 \\ s_4 + 2s_5 = -6 \end{cases}$$

b)

$$\begin{cases} 2s_1 + s_2 = -\frac{3}{2} \\ s_1 + 6s_2 + 2s_3 = \frac{33}{2} \\ 3s_2 + 8s_3 + s_4 = 26 \\ 2s_3 + 10s_4 + 3s_5 = -20 \\ s_4 + 2s_5 = -6 \end{cases}$$

 $\begin{cases} s_1 = -\frac{2205}{1248} \\ s_2 = \frac{1349}{624} \\ s_3 = \frac{6689}{2496} \\ s_4 = -\frac{1201}{624} \\ s_5 = -\frac{2543}{624} \end{cases}$

Since for any
$$S_n$$
 we have
$$\begin{cases} a_n = y_n \\ a_n + b_n(\Delta x_n) + c_n(\Delta x_n)^2 + d_n(\Delta x_n)^3 = y_{n+1} \\ b_n = s_n \\ b_n + 2c_n(\Delta x_n) + 3d_n(\Delta x_n)^2 = s_{n+1} \end{cases}$$

$$\text{Recall} \begin{cases} \Delta x_1 = 2 \\ \Delta x_2 = 1 \\ \Delta x_3 = 3 \\ \Delta x_4 = 2 \end{cases} \text{ and } \begin{cases} y_1 = 2 \\ y_2 = 1 \\ y_3 = 4 \text{ , substitute and solve gives} \\ y_4 = 3 \\ y_5 = -1 \end{cases}$$

$$\begin{cases} a_1 = y_1 \\ a_1 + b_1(\Delta x_1) + c_1(\Delta x_1)^2 + d_1(\Delta x_1)^3 = y_2 \\ b_1 = s_1 \\ b_1 + 2c_1(\Delta x_1) + 3d_1(\Delta x_1)^2 = s_2 \end{cases} \Rightarrow \begin{cases} a_1 = 2 \\ b_1 = -\frac{2285}{1248} \\ c_1 = 0 \\ d_1 = \frac{1661}{4992} \end{cases}$$

$$\begin{cases} a_2 = y_2 \\ a_2 + b_2(\Delta x_2) + c_2(\Delta x_2)^2 + d_2(\Delta x_2)^3 = y_3 \\ b_2 = s_2 \\ b_2 + c_2(\Delta x_2) + d_2(\Delta x_2)^2 = s_3 \end{cases} \Rightarrow \begin{cases} a_2 = 1 \\ b_2 = \frac{1349}{624} \\ c_2 = \frac{1661}{832} \\ d_2 = -\frac{2891}{2496} \end{cases}$$

$$\begin{cases}
... \\
... \\
... \\
delta = \frac{6689}{2496} \\
c_3 = -\frac{615}{416} \\
d_3 = \frac{91}{576}
\end{cases}$$

$$\begin{cases} \cdots \\ \cdots \\ \cdots \\ \cdots \\ d_4 = -\frac{1201}{624} \\ c_4 = -\frac{47}{832} \\ d_4 = \frac{47}{4992} \end{cases}$$