O primeiro CLP surgiu na indústria automobilística, até então um usuário em potencial dos relés eletromagnéticos utilizados para controlar operações sequenciadas e repetitivas numa linha de montagem.

Este equipamento foi batizado nos Estados Unidos como PLC (*Programable Logic Control*), em português CLP (*Controlador Lógico Programável*) e este termo é registrado pela *Allen Bradley* (fabricante de CLPs).

Definição segundo a ABNT (Associação Brasileira de Normas Técnicas)

É um equipamento eletrônico digital com hardware e software compatíveis com aplicações industriais.

Definição segundo a Nema (National Electrical Manufacturers Association)

Aparelho eletrônico digital que utiliza uma memória programável para o armazenamento interno de instruções para implementações específicas, tais como lógica, seqüenciamento, temporização, contagem e aritmética, para controlar, através de módulos de entradas e saídas, vários tipos de máquinas ou processos.

Em 1968, cientes das dificuldades encontradas na época para se implementar controles lógicos industriais. David Emmett e William Stone da General Motors Corporation solicitaram aos fabricantes de instrumentos de controle que desenvolvessem um novo tipo de controlador lógico que incorporasse as seguintes características:

- •Ser facilmente programado e reprogramado para permitir que a seqüência de operação por ele executada pudesse ser alterada, mesmo depois de sua instalação;
- •Ser de fácil manutenção, preferencialmente constituído de módulos interconectáveis;

HISTÓRICO

- •Ter condições de operarem ambientes industriais com maior confiabilidade que os painéis de relês;
- Ser fisicamente menor que os sistemas de relês;
- •Ter condições de ser interligado a um sistema central de coleta de dados;
- •Ter um preço competitivo com os sistemas de relês e de estado-sólido usados até então.

HISTÓRICO

Esse equipamento recebeu o nome de "Controlador Lógico Programável" CLP ou PLC.

O primeiro protótipo desenvolvido dentro da General Motors funcionava satisfatoriamente, porém foi utilizado somente dentro da empresa

A primeira empresa que o desenvolveu, iniciando sua comercialização foi a MODICON (Indústria Norte- Americana)

Os primeiros Controladores Programáveis eram grandes e caros. só se tornando competitivos para aplicações que equivalessem a pelo menos 150 relês.

PRINCIPAIS FABRICANTES

Klocner Moeller - WEG

Autos - Aromat

Atos - Siemens

Allen Bradley

Conceitos Básicos

Ponto de Entrada: Considera-se cada sinal recebido pelo CLP, a partir de dispositivos ou componentes externos como um ponto de entrada. Ex: Micro-Chaves, Botões, termopares, relés etc.

Conceitos Básicos

Entradas Digitais: Somente possuem dois estados

Conceitos Básicos

 Entradas Analógicas: Possuem um valor que varia dentro de uma determinada faixa. (0 à 10V, -10 à 10V, 0 à 20mA e 4 a 20mA)

Conceitos Básicos

Ponto de Saída: Considera-se cada sinal produzido pelo CLP, para acionar dispositivos ou componentes do sistema de controle constitui um ponto de saída. Ex: Lâmpadas, Solenóides, Motores.

Conceitos Básicos

Saídas Digitais: Somente possuem dois estados

Conceitos Básicos

•Saídas Analógicas: Possuem um valor que varia dentro de uma determinada faixa. (0 à 10V, -10 à 10V, 0 à 20mA e 4 a 20mA)

Conceitos Básicos

Programa: É a Lógica existente entre os pontos de entrada e saída e que executa as funções desejadas de acordo com o estado das mesmas.

Conceitos Básicos

EEPROM: Memória que não perde seu conteúdo quando desligada a alimentação. Normalmente contém o programa do usuário.

BIT: é a unidade para o sistema de numeração binário. Um bit é a unidade básica de informação e pode assumir 0 ou 1.

Conceitos Básicos

Byte: Byte é uma unidade constituída de 8 bits consecutivos. O estado das entradas de um módulo digital de 8 pontos pode ser armazenado em um Byte.

Word: Uma word é constituída de dois Bytes. O valor das entradas e saídas analógicas podem ser indicados por words.

CPU: é a unidade inteligente do CLP. Na CPU são tomadas as decisões para o controle do processo.

Conceitos Básicos

Princípio de Funcionamento:

Conceitos Básicos

Princípio de Funcionamento:

Linguagens de Programação

As linguagens de programação permitem aos usuários se comunicarem com o CLP e definir as tarefas que o mesmo deverá executar.

Pela normalização os CLP's devem ter no mínimo três linguagens de programação: Ladder, Lista de Instruções e Diagrama de Funções.

- * Ladder (diagrama de contatos LAD)
- * Lista de instruções (IL instruction list)
- * Bloco de funções (FBD function block diagram)
- * Texto estruturado (ST structured text)

Linguagens de Programação

LADDER: São diagramas de contatos

Linguagens de Programação

IL: Lista de instruções

```
NETWORK 1

LD | 10.0

A | 10.1

Q0.0

NETWORK 2

LD | 10.4

O | 10.5

Q0.1
```

Linguagens de Programação

BLOCOS DE FUNÇÕES: Utiliza funções lógicas

Aplicações de CLP's na Indústria

Aplicações de CLP's na Indústria

Máquinas industriais (operatrizes, injetoras, têxteis, calçados).

Equipamentos industriais para processos (siderurgia, papel e celulose, pneumáticos, dosagem e pesagem, fornos, etc.)

Controle de processos com realização de sinalização, intertravamento, etc.

Aquisição de dados de supervisão em fábricas, prédios inteligentes etc.

A série S7 200 é uma linha de pequenos e compactos controladores Lógico Programáveis e módulos de expansão que oferecem todos os atributos que uma família de micro-CLP pode ter.

Aspectos de Hardware do S7 200

Bornes de Entrada: Se encontram na parte inferior

Aspectos de Hardware do S7 200

Bornes de Saída: Se encontram na parte superior

do CLP.

Aspectos de Hardware do S7 200

Entradas, saídas e porta de comuniação.

Aspectos de Hardware do S7 200

Esta família compreende quatro CPU's

Model Description	Power Supply	Input Types	Output Types
221 DC/DC/DC		6 DC Inputs	4 DC Outputs
221 AC/DC/Relay	85-264 VAC	6 DC Inputs	4 Relay Outputs
222 DC/DC/DC		8 DC Inputs	6 DC Outputs
222 AC/DC/Relay	85-264 VAC	8 DC Inputs	6 Relay Outputs
224 DC/DC/DC		14 DC Inputs	10 DC Outputs
224 AC/DC/Relay	85-264 VAC	14 DC Inputs	10 Relay Outputs
226 DC/DC/DC		24 DC Inputs	16 DC Outputs
226 AC/DC/Relay	85-264 VAC	24 DC Inputs	15 Relay Outputs

Aspectos de Hardware do S7 200

Pontos de entrada e saída podem ser adicionados através de módulos de expansão.

Número Máximo de expansões por módulo:

Modos de Operação:

Leds de Indicação de Estado:

Cartão de Memória:

Montagem:

Ligação ao Micro (Porta Serial):

Software de Programação (Step 7 Micro Win):

Software de Programação:

Funções Lógicas:

Funções Lógicas:

Funções Lógicas:

OR:

Funções Lógicas:

OR:

Exemplo 01:

Exemplo 01:

Exemplo 02:

Exemplo 02:

Exemplo 02:

Temporizadores:

TON:

TON:

EXEMPLO:

