

The ground state energy of 1D dilute many-body quantum systems

Johannes Agerskov

QMATH
University of Copenhagen

Abstract

We study the ground state energy of a gas of 1D bosons with density ρ , interacting through a general, repulsive 2-body potential with scattering length a, in the dilute limit $\rho|a| \ll 1$. The first terms in the expansion of the thermodynamic energy density are $\pi^2 \rho^3/3(1+2\rho a)$, where the leading order is the 1D free Fermi gas. This result covers the Tonks-Girardeau limit of the Lieb-Liniger model as a special case, but given the possibility that a>0, it also applies to potentials that differ significantly from a delta function.

Set up and previous results

The scattering length

Theorem 1 (ref needed)

For $B_R \coloneqq \{0 < |x| < R\} \subset \mathbb{R}^d$ with $R > R_0 \coloneqq \mathsf{range}(v)$, let $\phi \in H^1(B_R)$ satisfy

$$-\Delta\phi + \frac{1}{2}v\phi = 0, \qquad \text{on } B_R, \tag{1}$$

with boundary condition $\phi(x) = 1$ for |x| = R. Then $\phi(x) = f(|x|)$ for some $f:(0,R] \to [0,\infty)$, and for $\mathrm{range}(v) < r < R$, we have

$$f(r) = \begin{cases} (r-a)/(R-a) & \text{for } d = 1\\ \ln(r/a)/\ln(R/a) & \text{for } d = 2\\ (1-ar^{2-d})/(1-aR^{2-d}) & \text{for } d \ge 3, \end{cases}$$
 (2)

with some constant a called the (s-wave) scattering length.

Main result

Theorem 2 (A., R. Reuvers, J. P. Solovej, 2022)

Consider a Bose gas with repulsive interaction $v=v_{reg}+v_{h.c.}$ as defined above. Write $\rho=N/L$. For $\rho|a|$ and ρR_0 sufficiently small, the ground state energy can be expanded as

$$E(N,L) = N\frac{\pi^2}{3}\rho^2 \left(1 + 2\rho a + \mathcal{O}\left((\rho|a|)^{6/5} + (\rho R_0)^{6/5} + N^{-2/3}\right)\right),\tag{3}$$

where a is the scattering length of v.