- (19) Japanese Patent Office (JP)
- (12) Publication of Laid Open Patent Application (A)
- (11) Publication Number of Patent Application:

Japanese Patent Laid Open Publication No. 4-22925

(43) Date of Publication of Application

January 27, 1992 (Heisei 4)

(51) Int. Cl.5:

G 02 F 1/35

G 02 B 6/00

H 01 S 3/07

3/0915

H 04 B 10/08

Identification Mark 501

Intraoffice Reference Number:

7246.2K

8426-5K H 04 B 9/00 K

7630-4M H 01 S 3/091 J

9017-2K G 02 B 6/00

Request for Substantive Examination: not requested

Number of Claims: 6 (Total 9 pages)

(54) Title of the Invention:

Optical Fiber Transmission System

(21) Application Number:

Japanese Patent Application No. 2-126802,

- (22) Date of Filing: May 18, 1990 (Heisei 2)
- (71) Applicant:

Toshiba Corporation

Horikawa-cho 72, Saiwai-ku, Kawasaki, Kanagawa Prefecture

(72) Inventors:

Toshifumi Tamura

c/o Toshiba Komukai kojo, Komukai Toshiba cho 1, Saiwai ku, Kawasaki,

Kanagawa Prefecture

Akitoshi Yoshinaga

c/o Toshiba Komukai kojo, Komukai Toshiba cho 1, Saiwai ku, Kawasaki,

Kanagawa Prefecture

Ken Koseki

c/o Toshiba Komukai kojo, Komukai Toshiba cho 1, Saiwai ku, Kawasaki, Kanagawa Prefecture

(74) Agent:

patent attorney Takehiko Suzue and three other persons

SPECIFICATION

- 1. Title of the Invention: Optical Fiber Transmission System
- 2. Claims
- (1) An optical fiber transmission system in which an optical fiber amplifier based on an optical fiber is provided in an optical transmission line from an optical transmitter to an optical receiver and transmitted signal light entering said optical fiber amplifier is multiplexed with exciting light and optically amplified to reduce transmission loss, the system comprising:

exciting light abnormality detection means, located in said optical fiber amplifier, to monitor the condition of said exciting light and detect an exciting light abnormality according to information obtained by monitoring;

modulation means, located in said optical fiber amplifier, to modulate the intensity of said exciting light according to the result of detection by said exciting light abnormality detection means; and

monitoring means, located in said optical receiver, to demultiplex exciting light from transmitted signal light and decide whether an abnormality exists at the upstream, according to the condition of demultiplexed exciting light.

- (2) The optical fiber transmission system as claimed in Claim 1, characterized in that said modulation means modulates the intensity of said exciting light in a range where the gain of said optical fiber amplifier is saturated.
- (3) The optical fiber transmission system as claimed in Claim 1, characterized in that said modulation means modulates the intensity of said exciting light with a frequency which is much higher than the frequency band of said transmitted signal light.
- (4) The optical fiber transmission system as claimed in Claim 1, characterized in that said optical fiber amplifier has an input abnormality detection means to demultiplex

exciting light from input light and detect an abnormality existing at the upstream according to the condition of the demultiplexed exciting light, and when an abnormality is detected by this means, said exciting light is intensity-modulated.

- (5) The optical fiber transmission system as claimed in Claim 1, characterized in that said optical fiber amplifier has an output abnormality detection means to monitor output light and detect an output abnormality according to information obtained by monitoring and when an abnormality is detected by this means, said exciting light is intensity modulated.
- (6) The optical fiber transmission system as claimed in Claim 1, characterized in that:

said optical fiber amplifier has an input abnormality detection means to demultiplex exciting light from input light and detect an abnormality existing at the upstream according to the condition of the demultiplexed exciting light; an output abnormality detection means to monitor output light and detect an output abnormality according to information obtained by monitoring; and modulation control means to selectively change and control the modulation frequency of said modulation means according to abnormality detection information from said input abnormality detection means, output abnormality detection means and exciting light abnormality detection means; and that

said optical receiver has a frequency identifying means to identify the modulation frequency of said demultiplexed exciting light.

3. Detailed Description of the Invention

[Object of the Invention]

[Industrial Field of Utilization]

The present invention relates to an optical fiber transmission system in which an optical fiber amplifier for amplifying an optical signal by an optical fiber is provided in a optical transmission line between an optical transmitter and an optical receiver.

[Prior Art]

In an existing optical fiber transmission system, repeaters are provided at regular intervals in an optical transmission line in order to compensate for transmission loss. In each of these repeaters, transmitted signal light is converted into an electric signal by a photodetector; then the electric signal is amplified by an amplifier and reconverted into an optical signal through a semiconductor laser, LED or the like, then the optical signal is sent to the optical transmission line. Hereinafter, a repeater which involves

optical electrical and electrical optical conversion processes is referred to as an "electrical optical repeater."

Recently, research in optical amplifiers which use optical fibers (hereinafter referred to as optical fiber amplifiers) has been in progress and demonstrates that they provide excellent characteristics. Unlike electrical optical repeaters, optical fiber amplifiers do not involve optical electrical and electrical optical conversion processes in repeating operation and may be thus considered as all-optical repeaters. The use of optical fiber amplifiers as repeaters contributes to repeater size reduction and power saving.

Fig.6 shows an optical fiber transmission system which uses an optical fiber amplifier. As shown in the figure, there is a signal source 11 on the transmitting side. A signal coming from this signal source 11 is modulated by an optical transmitter 12 to become signal light in the 1.5 µm wavelength band and sent to an optical transmission line 13 as an optical fiber line. Since this optical transmission line 13 does not have an amplifying function, the signal light undergoes transmission loss. The transmission loss in the signal light is compensated for by an optical fiber amplifier 14.

This optical fiber amplifier 14 is composed of an exciting light source, a multiplexer for multiplexing input light with exciting light and an Er-doped optical fiber, an optical fiber with a core doped with erbium. The latest type of optical fiber amplifier provides excellent characteristics. Fig.7 shows the internal structure of the abovementioned optical fiber amplifier 14. As shown in Fig.7, signal light coming through an input port 141 from the optical transmission line 13 enters a multiplexer 142. In the multiplexer 142, incoming signal light is multiplexed with exciting light (for example, light in the 1.48 µm band) from the exciting light source 143. The multiplexed light is sent to an Er-doped optical fiber 144. This optical fiber 144 has an amplifying function. The signal light amplified by the optical fiber 144 and the remaining exciting light are sent through an output port 145 to an optical transmission line 15.

In this way, the signal light whose transmission loss has been compensated for by the optical fiber amplifier 14 again enters the optical transmission line 15 which has no amplifying function, and then goes to an optical receiver 16 located a certain distance away. Fig.8 shows the structure of an input portion of the optical receiver 16. As shown in Fig.8, the multiplexed light coming through an input port 161 from the optical transmission line 15 once enters a bandpass filter 162. This bandpass filter 162 is intended to remove the exciting light in the 1.48 µm band from the multiplexed light. After removal of the exciting light, the signal light is sent to a light receiving device 163

where it is converted into an electric signal as a reception signal. An optical fiber transmission system is thus constituted.

As compared with an electrical optical repeater, an all-optical repeater which uses an optical fiber amplifier as mentioned above has a problem to be solved from the viewpoints of operation, management and maintenance because of its special feature that optical-electrical conversion and electrical-optical conversion processes are not involved.

Generally, in an electrical optical repeater, the condition of a signal which has been subjected to optical electrical conversion and transmitted is monitored and processed by an electrical means and if an abnormality is found, information indicating the abnormality is added to the electrical signal; then it is reconverted into an optical signal which is then sent to an optical fiber. In this constitution, an abnormality existing at the upstream of the transmission system can be detected at its downstream, which makes operation, monitoring and maintenance of the transmission system easy.

On the other hand, an all-optical repeater has neither effective means to monitor the condition of the signal and deal with it nor effective means to detect an abnormality and add information on the existence of the abnormality, so it is impossible for an abnormality existing at the upstream to be detected at the downstream. This means that in a transmission system using an all-optical repeater, if it does not have a monitoring line independently from a transmission line which carries a main signal, operation, management and maintenance of the system is difficult.

[Problem to be Solved by the Invention]

As described above, in an optical fiber transmission system which uses a conventional all-optical repeater, a monitoring line independent from a main signal transmission line is needed in order for an abnormality at the upstream to be detected at the downstream and it is not easy to perform operation, management and maintenance of the system.

The present invention has been made to solve the above problem and its primary object is to provide an optical fiber transmission system which allows an abnormality existing at the upstream to be easily detected at the downstream without a special monitoring line, and thus makes operation, management and maintenance of the system easy.

[Constitution of the Invention]
[Means for Solving the Problems]

In order to achieve the above object, the present invention provides an optical fiber transmission system in which an optical fiber amplifier based on an optical fiber is provided in an optical transmission line from an optical transmitter to an optical receiver and transmitted signal light entering the optical fiber amplifier is multiplexed with exciting light and optically amplified to reduce transmission loss. The system comprises: exciting light abnormality detection means, located in the optical fiber amplifier, to monitor the condition of the exciting light and detect an exciting light abnormality according to information obtained by monitoring; modulation means, located in the optical fiber amplifier, to modulate the intensity of the exciting light according to the result of detection by the exciting light abnormality detection means; and monitoring means, located in the optical receiver, to demultiplex exciting light from transmitted signal light and decide whether an abnormality exists at the upstream, according to the condition of the demultiplexed exciting light.

[Function]

In the above optical fiber transmission system, the condition of the transmission system is continuously monitored for an abnormality and if an abnormality is detected, the intensity of exciting light is modulated and the modulated exciting light is multiplexed with the signal light; in the optical receiver, the exciting light is removed (demultiplexed) from the transmitted optical signal and the condition of the resulting signal is checked to see if there is an abnormality at the upstream.

[Preferred Embodiments]

Next, preferred embodiments of the present invention will be described referring to Figs. 1 to 4.

Fig.1 shows a first embodiment of the invention. In Fig.1, the same components as those shown in Figs. 5 and 6 are designated by the same reference numerals, and a description given here focuses on other components.

Signal light coming from the optical transmission line 13 enters an optical fiber amplifier 21. The optical fiber amplifier 21 sends the signal light from the optical transmission line 13 connected with an input port 211 to a multiplexer 212 where the signal light is multiplexed with exciting light from an exciting light source 213 and optically amplified with an Er-doped optical fiber 214 before being sent to the optical transmission line 15.

The optical fiber amplifier 21 further comprises a monitor circuit 216 for monitoring output of the exciting light source 213 for an abnormality and a modulator

217 for modulating the optical output intensity of the exciting light source 16. If the output intensity of the exciting light source 213 is not within a prescribed range, the monitor circuit 216 detects it and generates an abnormality detection signal; upon reception of this abnormality detection signal, the modulator 217 modulates the optical output intensity of the exciting light source 213 with a given frequency.

The output light from the optical fiber amplifier 21 goes through the optical transmission line 15 to an optical receiver 22. This optical receiver 22 receives the light coming through an input port 221 from the optical transmission line 15. This incoming light is made incident on a demultiplexer 222. The demultiplexer 222 sends the light in the signal light wavelength band to a light receiving device 223 for receiving signals and the remaining light (including exciting light) to a light receiving device 224 for monitoring the transmission line. The signal received by the light receiving device 223 for receiving signals is sent to a reception circuit and demodulated. The signal received by the light receiving device 224 for monitoring the transmission line is sent to an abnormality detector 225 where an abnormality in the optical fiber amplifier 21 is detected by checking if the intensity of exciting light has been modulated or not.

Referring to Fig.2, the abnormality detection sequence in the above constitution is explained below.

Fig.2 is a characteristic graph for the optical fiber amplifier 21, where the horizontal axis represents the intensity of exciting light and the vertical axis represents the gain of the optical fiber amplifier. As can be understood from the graph, in the lower exciting light intensity range (1), as the exciting light intensity goes up, the gain of the optical fiber amplifier increases, but after the exciting light intensity reaches a certain level (namely, in the higher exciting light intensity range (2)), the gain of the optical fiber amplifier remains unchanged (saturation state) even when the exciting light intensity goes up.

When the exciting light in the intensity range (1) is modulated, the optical fiber amplifier gain for the signal light is intensity modulated and as a consequence, the signal light is also intensity modulated, which unfavorably affects the demodulation on the receiving side. For example, if the transmitted signal light is a PCM signal, a deterioration in reception signal eye opening and an increase in jitter may result; if the transmitted signal light is an FM signal, AM-PM conversion may result, causing a deterioration in the reception signal's S/N ratio. On the other hand, when the exciting light in the intensity range (2) is modulated, the optical fiber amplifier gain for the signal light remains unchanged and as a consequence, the signal light does not newly undergo intensity modulation and there is no unfavorable influence on the

demodulation on the receiving side.

For the above reason, in this embodiment, the exciting light source 213 in the optical fiber amplifier 21 is driven with an intensity above a prescribed level and its output is monitored by the monitor circuit 216 and in the case of occurrence of an abnormality, the modulator 217 modulates the exciting light source 213 to make its output intensity above the predetermined level so that the abnormality in the optical fiber amplifier 21 is detected by the optical receiver 22. In this constitution, only the exciting light component of the multiplexed light sent to the optical receiver 22 is modulated. In the optical receiver 22, the exciting light component separated by the demultiplexer 222 is sent through the monitoring light receiving device 224 to the abnormality detector 225 which detects if the exciting light has been modulated. Thus, an abnormality in the optical fiber amplifier 21 can be detected without a special monitoring line.

In the above embodiment, upon occurrence of an abnormality, the exciting light source 213 is modulated. An alternative approach which is contrary to this may be that the exciting light source 213 is modulated in a normal condition and the modulation is stopped upon occurrence of an abnormality. This approach produces the same effects as above.

Next, another preferred embodiment of the present invention will be explained referring to Fig.3. The same components as those shown in Fig.1 are designated by the same reference numerals and their descriptions are omitted here.

This embodiment makes it possible to not only detect or monitor for an abnormality in the exciting light in the optical fiber amplifier 21 but also detect or monitor for an exciting light abnormality in a device upstream of the optical fiber amplifier 21 or an abnormality other than exciting light abnormality in the optical fiber amplifier 21 (for example, an abnormality in the optical fiber 214).

As shown in Fig.2, the transmitted signal light entering through the input port 211 is partially sent through a demultiplexer 218 to a monitoring light receiving device 219. The light receiving device 219 detects the level of the transmitted signal light and sends the detection signal to a modulation control circuit 2110. The modulation control circuit 2110 controls the modulation frequency of a modulator 217 depending on how it judges the situation. Specifically, if the level of the transmitted signal light coming from the light receiving device 219 is not within a prescribed range, it decides that an abnormality has occurred upstream of the optical fiber amplifier 21 (for example, in the transmission line or optical transmitter); and if the detection signal comes from a monitor circuit 216, it decides that the output light of the exciting light source 213 of the

optical fiber amplifier 21 is abnormal. In the modulator 217, the modulation frequency should be variable.

In the above constitution, the modulation control circuit 2110 works as follows.

First, it checks the output level of the light receiving device 219 and if it detects a decline in the output level, it decides that an abnormality has occurred in the optical transmitter 12 (see Fig.1) or in the optical transmission line up to the optical fiber amplifier 21. Furthermore, if it detects a decline in the output level of the monitor circuit 216, it decides that an abnormality has occurred in the exciting light source 213. It selects the modulation frequency depending on the decision it has made for each situation to control operation of the modulator 217. Here, the selectable modulation frequency range should match the optical fiber amplifier gain saturation range.

In the above constitution, since exciting light is modulated in a manner to suit the type of abnormality without affecting the signal light and sent to the optical receiver, the optical receiver can know the location of abnormality by checking the modulation frequency of the separated exciting light. This means that an abnormality existing at the upstream can be easily detected at the downstream without the use of a special monitoring line and thus operation, management and maintenance of the system are easy.

Referring to Fig.3, the output level of the Er-doped optical fiber 214 is detected by the light receiving device 2112 after demultiplexing by the demutiplexer 2111 and the result of detection is sent to the modulation control circuit 2110, and if the detected output level is below a prescribed level, it is decided that there is an abnormality in the optical fiber amplifier and exciting light is intensity-modulated with a specific frequency by the modulator 213, so that the optical receiver is notified of the output abnormality.

All the abovementioned embodiments assume that one optical fiber amplifier is provided in an optical transmission line. A case of using plural optical amplifiers in an optical transmission line is explained next.

In this case, if the same type of optical fiber amplifier as the above one is used, when a preceding optical fiber amplifier has modulated the exciting light component and an abnormality occurs in the present optical amplifier, the exciting light is intensity modulated with the same modulation frequency and therefore the optical receiver cannot identify which optical fiber amplifier is abnormal.

Fig.4 shows an optical fiber amplifier as an embodiment of the invention which enables the optical receiver to identify which optical fiber amplifier is abnormal when plural optical fiber amplifiers are used. In Fig.4, the same components as those shown

in Fig.1 are designated by the same reference numerals and their descriptions are omitted here.

This embodiment is different from the embodiment shown in Fig.3 in that the demultiplexer 218 (Fig.3) is replaced by a demultiplexer 2181. The transmitted light entering through the input port 211 is divided by the demultiplexer 2181 into a signal light component and a remaining light component and the signal light component and the remaining light component are respectively sent to the multiplexer 212 and the light receiving device 219 for monitoring the transmission line. If exciting light has been modulated in a preceding optical fiber amplifier, the detection signal obtained by the light receiving device 219 should have the same frequency as that of the modulated exciting light. The detection signal from the light receiving device 219 and the exciting light abnormality detection signal of the monitor circuit 216 are sent to the modulation control circuit 2110.

When the modulation control circuit 2110 receives a detection signal from the light receiving device 219, it decides that there is an abnormality in the preceding optical fiber amplifier; or if it receives a detection signal from the monitor circuit 216, it decides that the output light from the exciting light source 213 in the present optical fiber amplifier 21 is abnormal. Thus it controls the modulation frequency of the modulator 217 depending on how it judges the situation. In this case, the modulation frequency of the modulator 217 should be variable.

In the above constitution, the modulation control circuit 2110 works as follows like the embodiment shown in Fig.3.

First, it checks the output level of the light receiving device 219 and if it detects a decline in the output level, it decides that an abnormality has occurred in the output portion of the preceding optical fiber amplifier or the optical transmission line up to the present optical fiber amplifier 21. If it finds a signal with a specific frequency in the output of the light receiving device 219, it decides that an abnormality has occurred in the preceding optical fiber amplifier. Furthermore, if it detects a decline in the output level of the monitor circuit 216, it decides that an abnormality has occurred in the exciting light source 213. It selects the modulation frequency depending on the decision it has made for each situation to control operation of the modulator 217. Here, the selectable modulation frequency range should match the optical fiber amplifier gain saturation range.

In the above constitution, since exciting light is modulated in a manner to suit the type of abnormality without affecting the signal light and sent to the optical receiver, the optical receiver can know the location of abnormality by checking the modulation frequency of the separated exciting light. This means that an abnormality existing at the upstream can be easily detected at the downstream without the use of a special monitoring line and thus operation, management and maintenance of the system are easy.

Like the embodiment shown in Fig.3, the output level of the Er-doped optical fiber 214 is detected by the light receiving device 2112 after demultiplexing by the demutiplexer 2111 and the result of detection is sent to the modulation control circuit 2110, and if the detected output level is below a prescribed level, it is decided that there is an abnormality in the optical fiber amplifier and the intensity of exciting light is modulated with a specific frequency by the modulator 213, so that the optical receiver is notified of the output abnormality.

In the above embodiments, the gain saturation of the optical fiber amplifier is used for intensity modulation of exciting light. Alternatively, the characteristic of gain response may be used for the same purpose. This approach changes the intensity of exciting light in the range where the gain of the optical fiber amplifier cannot follow; the intensity of light which excites the optical fiber amplifier is modulated with a high frequency so that information for operation, monitoring and maintenance of the transmission system including abnormality information can be transmitted to the downstream of the transmission system without causing an unfavorable influence on the signal light.

In this approach, when the exciting light source is modulated, the gain response of the optical fiber amplifier depends on the material of the optical fiber amplifier. In case of a quartz optical fiber amplifier doped with Er, in the 1.5 µm wavelength band where the gain can be large, the gain response cannot follow exciting light intensity modulation with frequencies of several kilohertz or more. Therefore, if the exciting light is intensity modulated, for example, with a signal having a frequency component of several kilohertz, the gain of the optical fiber amplifier may be considered to remain unchanged over time. Contrariwise, if exciting light should be intensity modulated with a signal of 10 hertz or so, the gain of the optical fiber amplifier would follow the change in the exciting light and the signal light would also be intensity modulated, which would unfavorably affect the demodulation on the receiving side.

Fig.5(a) shows an unmodulated signal light pulse train. When this type of signal light is multiplexed with exciting light of 10 hertz or so, the resulting pulse train is as shown in Fig.5(b); here the pulse amplitude is not uniform, which will unfavorably affect the demodulation.

For the above reason, when the exciting light source is intensity-modulated at a

rate at which the gain of the optical fiber amplifier cannot response, only the wavelength of the exciting light can be changed without influencing the signal light. Therefore, this modulation means can also be used to give such information as optical fiber amplifier abnormality information to the downstream.

All the above embodiments have been described in connection with notification of an abnormality in the optical fiber amplifier to the downstream. However, if an optical transmitter is configured in the same way as above, it is possible to notify the downstream of a transmission problem in the optical transmitter. Also, the modulation means may be based on either the gain saturation or gain response of the optical fiber amplifier, or may be based on both to improve the reliability.

Furthermore, when the optical transmission line is a long distance one and an optical receiver is remotely located and it is more convenient for an optical amplifier located midway to monitor for an abnormality in various devices, a monitoring means to detect an abnormality may be provided in the optical fiber amplifier instead of in the optical receiver.

The invention may be embodied in any other forms without departing from the spirit and scope of the invention.

[Effects of the Invention]

As discussed so far, according to the present invention, it is possible to provide an optical fiber transmission system which allows an abnormality existing at the upstream to be easily detected at the downstream without a special monitoring line, and thus makes operation, management and maintenance of the system easy.

4. Brief Description of the Drawings

Fig.1 is a block diagram showing an optical fiber transmission system according to an embodiment of the present invention; Fig.2 is a characteristic graph for the explanation of a modulation means in the embodiment shown in Fig.1; Fig.3 and Fig.4 are block diagrams showing other embodiments of the invention; Figs.5(a) and (b) are waveform charts for the explanation of a modulation means in the embodiment shown in Fig.4; Fig.6 is a block diagram showing the basic configuration of the conventional optical fiber transmission system; Fig.8 is a block diagram showing the basic structure of an optical fiber amplifier in a system shown in Fig.7; and Fig.7 is a block diagram showing the structure of the input portion of an optical receiver in the system shown in Fig.6.

11...Signal source; 12...Optical transmitter; 13...Optical transmission line; 14, 21...Optical fiber amplifier; 15...Optical transmission line; 14, 21...Optical fiber amplifier; 15...Optical transmission line; 16, 21...Optical receiver; 141, 211...Input port; 142, 212...Multiplexer; 143, 213...Exciting light source; 144, 214...Er-doped optical fiber; 145, 215...Output port; 216...Monitor circuit; 217...Modulator; 218...Demultiplexer; 219...Light receiving device for monitoring the transmission line; 2110...Modulation control circuit; 2111...Demultiplexer; 2112...Light receiving device; 2181...Demultiplexer

Fig.1

12	光送信器	Optical transmitter
11	信号源	Signal source
212	光合波器	Multiplexer
213	励起光源	Exciting light source
216	モニタ回路	Monitor circuit
217	変調器	Modulator
222	光分波器	demultiplexer
223	受光素子	light receiving device
224	受光素子	light receiving device
225	異常検出時	Abnormality detector

Fig.2

光信号利得	Optical signal gain
励起強度	Exciting light intensity

Fig.3

•		
	伝送信号光	Transmitted signal light
	合波光	Multiplexed light
218	光分岐器	Demultiplexer
219	受光素子	Light receiving device
212	光合波器	Multiplexer
213	励起光源	Exciting light source
216	モニタ回路	Monitor circuit
217	変調器	Modulator
2110	制御回路	Modulation control circuit
2112	受光素子	Light receiving device

Fig.4

· ·	合波光	Multiplexed light
	合波光	Multiplexed light
218	光分岐器	Demultiplexer
219	受光素子	Light receiving device
212	光合波器	Multiplexer
213	励起光源	Exciting light source
216	モニタ回路	Monitor circuit
217	変調器	Modulator
2110	制御回路	Modulation control circuit
2112	受光素子	Light receiving device

Fig.6

12	光送信器	Optical transmitter
11	信号源	Signal source
14	光ファイバ増幅器	Optical fiber amplifier
16	光受信器	Optical receiver

Fig.7

	信号光	Signal light
	合波光	Multiplexed light
142	光合波器	Multiplexer
143	励起光源	Exciting light source

Fig.8

	合波光	Multiplexed light
163	受光素子	light receiving device
	受信信号	Reception signal

◎ 公 開 特 許 公 報 (A) 平4-22925

S)Int. Cl. 5

識別記号

庁内整理番号

@公開 平成 4 年(1992) 1 月27日

G 02 F 1/35

501

7246-2K 8426-5K 7630-4M

H 04 B 9/00 H 01 S 3/091 K J×

審査請求 未請求 請求項の数 6 (全9頁)

60発明の名称 光フアイバ伝送システム

郊特 願 平2-126802

健

20出 願 平 2 (1990) 5 月 18 日

@発明者 田村

敏 文

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向

工場内

@発明者 吉永 彰俊

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向

工場内

@発明者 小 関

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝小向

工場内

勿出 願 人 株式会社東芝

弁理士 鈴江

神奈川県川崎市幸区堀川町72番地

武彦 外3名

最終頁に続く

人

明細書

1. 発明の名称

個代 理

光ファイバ伝送システム

- 2. 特許請求の範囲
- (1)光送信器から光受信器への光伝送路に光ファイバによる光ファイバ増幅器を介在させ、この光ファイバ増幅器に入力する被伝送信号光に励起光を合波して光増幅することにより伝送損失を低減する光ファイバ伝送システムにおいて、

前記光ファイバ増幅器に設けられ、前記励起光の状態をモニタして、そのモニタ情報から励起光の異常を検出する励起光異常検出手段と、

前記光ファイバ増幅器に設けられ、前記励起光 異常検出手段の検出結果に応じて前記励起光の強 度を変調する変調手段と、

前記光受信器に設けられ、被伝送光信号から合波されている励起光を分波し、分波された励起光の状態から上流の異常の有無を検出する監視手段と、

を具確したことを特徴とする光ファイバ伝送シス

テム。

- (2)前記変調手段は、前記光ファイバ増幅器の利得が飽和特性を示す領域で前記励起光の強度を変調することを特徴とする請求項1記載の光ファイバ伝送システム。
- (3)前記変異手段は、前記被伝送信号光の周波数帯域より十分高い周波数で前記励起光を強度変調することを特徴とする請求項1記載の光ファイバ伝送システム。
- (4)前記光ファイバ増幅器は、入力光から励起光を分波し、分波された励起光の状態から上流の異常を検出する入力異常検出手段を備え、この手段で異常が検出されたとき前記励起光の強度変調を行うようにしたことを特徴とする請求項1記載の光ファイバ伝送システム。
- (5)前記光ファイバ増幅器は、出力光をモニタ して、そのモニタ情報から光ファイバ増幅器の出 力異常を検出する出力異常検出手段を備え、この 手段で異常が検出されたとき前記励起光の強度変 調を行うようにしたことを特徴とする請求項1記

戯の光ファイバ伝送システム。

前記光受信器は、前記分波された励起光の変調周波数を識別する周波数識別手段を備えることを特徴とする請求項1記載の光ファイバ伝送システ

3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

この発明は、光ファイバによって光信号を増 幅する光ファイバ増幅器を、光送信器及び光受信 器間の光伝送路に介在してなる光ファイバ伝送シ

手段である。

第6図に光ファイバ増幅器を一段用いた光ファイバ伝送システムの構成を示す。第6図において、送信側には信号源11があり、この信号源11の出力信号は光送信器12で変調を受けて波長1.5 [μm] 帯の信号光となり、光ファイバによる光伝送路13に送出される。この光伝送路13は増幅作用を持たず、信号光は伝送損失を受ける。この光伝送路13で伝送損失を受けた信号光は光ファイバ伝送路14で損失が補償される。

この光ファイバ増福器14は、励起光源、入力光に励起光を合波する光合波器及びEr(エルピウム)を光ファイバのコアにドーブしたErドーブ光ファイバとで構成されるものである。第7日において、入力ポート141に入力されるの第142において、入力ポート141に入力されれる。 この光合波器142は入力した信号光と励起光源 143からの励起光(例えば波長1.48[μm] ステムに関する。

(従来の技術)

一方、最近では光ファイバによる光増幅器(以下イバによるの研究が進み、の研究が進みなった。というないでは、ではいいでは、ではいいが増幅器は、では、では、では、全地では、では、全地では、全地では、では、中継器を中継器として、中継器のの小形化、省電力化をもたらするは、中継器のの小形に、なったがある。

帯)を合波するもので、この合波光はErドーブ 光ファイバ 144 に送出される。この光ファイバ 144 は増幅作用を有するもので、ここで増幅され た信号光と残存する励起光は出力ポート 145 を介 して光ファイバによる光伝送路 15へ送出される。

ところで、上記のような光ファイバ増幅器を用 いた全光式中継器は、その特徴、すなわち光/電 気・電気/光の変換過程を含まないがために、電 気的光中継器と比べ、伝送システムの運用、管理、 保守の面で未だ解決すべき問題が残されている。

すなわち、一般に 電気的光中継器では、 の状態を 気がれてきた信号のの 異常が に 気が は とを示す情報を付加 出 に で るの 構 な な に で と を 後 知 可能 で ま る に で と を 後 知 可能 で ま な に こ と を 後 知 可能 で ま な に で ま の 運用、 監 視、 保守が 容易に で き る。

(作用)

上記構成による光ファイバ伝送システムでは、 光ファイバ増幅器において、伝送系の状態を逐次 モニタしてその異常を検出し、例えば異常検出時 に励起光の強度を変調して信号光に合波し、光受 信器において、被伝送光信号から励起光を分波し、 その状態を識別することにより、上流の異常の有 無を判別する。

(実施例)

以下、第1図乃至第4図を参照してこの発明 に係る実施例を説明する。 (発明が解決しようとする課題)

以上述べたように従来の全光式中継器を用いた光ファイバ伝送システムでは、下流側で上流側の異常を検知するには主信号伝送回線とは別に監 切用回線が必要であり、容易にシステムの運用、 管理、保守を行うことができなかった。

この発明は上記の課題を解決するためになされたもので、別に監視用回線を用いることなく、下流側で上流側の異常を容易に検知することができ、これによって容易に運用、管理、保守を行うことのできる光ファイバ伝送システムを提供することを目的とする。

「発明の構成】

(課題を解決するための手段)

上記目的を達成するためにこの発明は、

光送信器から光受信器への光伝送路に光ファイバによる光ファイバ増幅器を介在させ、この光ファイバ増幅器に入力する被伝送信号光に励起光を合波して光増幅することにより伝送損失を低減する光ファイバ伝送システムにおいて、

第1図は第1の実施例を示すものである。第1図において、第5図、第6図と同一部分には同一符号を付して示し、ここでは異なる部分を中心に説明する。

前記光伝送路13から送られてくる信号光は光ファイバ増幅器21に入射される。この光ファイバ増幅器21は入力ポート211 に接続される光伝送路13からの信号光を光合波器212 に送り、励起光源213 からの励起光を合波した後、Erドーブ光ファイバ214 で光増幅して、出力ポート215 より光伝送路15へ送出するようになっている。

上記光ファイバ増幅器 21は、さらに励起光源213 の出力状態をモニタして異常を検出する変調器 217 を備えている。すなわち、モニする変調器 217 を備えている。すなわち、モニックの路 216 は励起光源 213 の出力強度が基準レルからずれた場合にこれを検出して異常検出信号を受けるようになっている。

この光ファイバ増幅器21の出力光は光光受信器22に送られる。この光カックに 221 を介して光伝送られる。送路15か器222 を介した光を光分波器222 に光光を光分波器222 に光光を光分波器222 に光光を光分波器222 に光光を引きる。 これの光光を引きる 224 で得られた 受光 信号 は 登 監 出 器 と 224 で 得られた 受光 信号 は 器 と 225 に また、 は 異常の 有 無 を 後 は で に よって 光ファイバ増幅器21の 異常の 有 無 な と に よって 光ファイバ増幅器21の 異常の 有 無 な と に と れる。

上記構成において、以下、第2図を参照して異常検出動作について説明する。

第2図は上記光ファイバ増幅器 21の特性を示すもので、機軸には励起光の強度、縦軸には光ファイバ増幅器の利得が示されている。同図からわかるように、励起光の強度が低い領域①では、励起

213 を所定強度以上で駆動しておき、その出力をモニタ回路 216 で監視し、異常発生時には変調器 217 で励起光源 213 の出力強度を所定値以上で変置の構成によれば、光受信器 22に送られる合 波光は励起光成分のみがが変調されることになる。したがって、光受信器 22において、光分波器 222 で分離される励起光成分を監視用受光素子 224 で受光して、異常検出器 225で変調の有無を検出することにより、別に監視用回線を用いなくても、光ファイバ増幅器 21で異常が発生したことを検知することができる。

尚、上記実施例では、励起光源 213 の変調を異常発生時に行うようにしたが、逆に正常状態で変調をかけておき、異常発生時に変調を停止するようにしても、同様の効果を得ることができる。

次に、第3図を参照して、この発明に係る他の実施例を説明する。但し、第3図において第1図と同一部分には同一符号を付して示し、その説明を省略する。

この実施例では、光ファイバ増幅器21の励起光

光の強度を増すに従って光ファイバ増幅器の利得が増大するが、励起光の強度がある値に達すると、それ以上励起光の強度を上げても(励起光の強度が高い領域②)光ファイバ増幅器の利得は増大せず、飽和状態となる。

したがって、①のおはであれば地でのおければであればいません。のおおりであれば地でのおおりである。のおおりである。のおおりでのおおりである。のははいかのははいかのははいかのははいかのはないのではない。のはないはないのはないのではない。のはないのはないのではない。のはないのはないのはないのはない。

そこで、この実施例では、光ファイバ増幅器 21 での異常発生を光受信器 22で検知できるようにす るため、光ファイバ増幅器 21において、励起光顔

の異常の検出・監視のみでなく、光ファイバ増幅器 21以前の上流での異常及び光ファイバ増幅器 21の励起光以外(例えば光ファイバ 214) の異常検出・監視も可能である。

上記構成において、変調処理制御回路 2110は、

例えば以下のような処理を行う。

まず、受光素子219の出力レベルをみだはに、例21には、光光には、光光増幅器21(第1図多照)あるいは当該光ファイバ増幅器21までの光伝を路には、光が増高。21までの光伝を31を21を213に変調のような数数では、大沢別に変調のよりを31が出て変調を31を駆動して変調の利得飽和範囲に設定する。

第4図は多数の光ファイバ増幅器を用いた場合に、いずれの光ファイバ増幅器が異常を生じたか 光受信器側で識別可能とする光ファイバ増幅器の 実施例を示すものである。但し、第4図において、 第1図と同一部分には同一符号を付して示し、そ の説明を省略する。

この変関処理制御回路 2110 は受光素子 219 から 検出信号が送られてくれば、前段の光ファイバ増 また、第3図に示すように、Erドーブ光ファイバ214の出力レベルを光分破器2111の分破器25111の分散出表子2112で検出し、その検出結果を別記の関係とは、後出レベル以下となったとき、光ファイバ増幅器に異常が生じたと判断することができ、変調器213を通じて、特定の周波数で励起光を強度変調することによって、出力部異常の情報を光受信器側に知らせることができる。

ところで、以上の実施例は、いずれも光ファイバ増幅器が光伝送路内に1個設けられた場合についての例であるが、複数の光ファイバ増幅器を用いた場合について以下に説明する。

この場合において、上記構成の光ファイバ増編器をそのまま用いると、前段の光ファイバ増編器で励扱光成分が変調されているときに当該光ファイバ増編器でも異常が生じたとすれば、同一の変調度を変更してしまうため、 光受信器でどの光ファイバ増編器が異常なのか区別することができない。

幅器に異常が発生していると判別し、またモニタ回路 216 から検出信号が送られてくれば、当該光ファイバ増幅器 21の励起光源 213 の出力光に取算が発生していると判別し、各判別状態に応じて変調器 217 の変調周波数を制御するものである。この場合、変調器 217 はその変調周波数を可変可能であるものとする。

上記構成において、変調処理制御回路 2110 は、 第3 図の実施例の場合と同様に、例えば以下のような処理を行う。

 変調周波数を選択して変調器 2.17 を駆動制御する。 但し、変調周波数の選択範囲は、光ファイバ増幅 器の利得飽和範囲に設定する。

このような構成によれば、信号光に影響を与えることなく、異常の種類別に励起光を変調して光 受信器に送出することができるので、光受信器側で、分離した励起光の変調周波数を識別することが可能となる。 により、異常箇所を判別することが可能となる。 これによって、別に監視用回線を用いることなる。 下流側で上流側の異常を容易に検知することができ、容易に運用、管理、保守を行うことができる。

1 〇 H z 程度の信号で励起光を強度変調すれば、 光ファイバ増幅器の利得は励起光の変化に追随してしまい、信号光も強度変調されて受信側での復 調に悪影響を及ぼすことになる。

第4図に一例を示す。第4図(a)は無変調時における信号光パルス列を示すもので、このような信号光に10Hz程度の励起光を合波すると、同図(b)に示すようにパルスの振幅が不揃いとなり、復調に悪影響を及ぼしてしまう。

このようなことから、励起光顔を光ファイバ増 幅器の利得が応答できない速度で強度変調すれば、 信号光に影響を与えることなく、励起光の波長の みを変化させることができる。したがって、この 変調手段によっても、光ファイバ増幅器の異常等 の情報を下流に知らせることができる。

尚、いずれの実施例も光ファイバ増幅器での異常発生を下流に知らせる場合について説明したが、 光送信器の出力部を同様に構成すれば、光送信器 自体の送信異常発生を下流に知らせることもでき る。また、変異手段は光ファイバ増幅器の利得飽

和特性、応答特性のいずれか一方を利用すればよいが、両方を同時に利用すれば、信頼性を向上させることができる。

また、例えば光伝送路が長距離にわたり、光受信器が遠方に存在し、光伝送路内の各異常の監視を途中の光増編器で行う方が都合がよい場合は、異常の有無を検出する監視手段を光受信器内に設ける代わりに、当該光ファイバ増編器内に設けてもよい。

その他、この発明の要旨を変更しない範囲で種々変形しても同様に実施可能であることはいうまでもない。

「発明の効果」

以上のようにこの発明によれば、別に監視用回線を用いることなく、下流側で上流側の異常を容易に検知することができ、これによって容易に運用、管理、保守を行うことのできる光ファイバ伝送システムを提供することができる。

4. 図面の簡単な説明

第1図はこの発明に係る光ファイバ伝送シス

テムの一実施例を示すずつ。ク図、第2図はは間のの変換を示すずるの、第2図はは、第2図はは、第2図はは、第2図はは、第2図はは、第2図はは、第2図はは、第2図はは、第2ののでは、第3ののでは、第4ののでは、10の

11…信号源、12…光送信器、13…光伝送路、14. 21…光ファイバ増幅器、15…光伝送路、

16, 22… 光受信器、141, 211 … 入力ポート、

142 . 212 … 光合波器、143 . 213 … 励起光源、

144 , 214 … Eェドープ光ファイバ、

145 , 215 …出力ポート、216 …モニタ回路、

217 … 変 調 器 、 218 … 光 分 岐 器 、

219 … 伝送路監視用受光素子、

2110 … 変 調 処 理 制 御 回 路 、 2111 … 光 分 岐 器 、

2112… 受光素子、2181… 光分波器。

第 1 図

第1頁の続き

庁内整理番号 識別記号 ⑤Int. Cl. 5

G 02 B H 01 S 7630-4M

G 02 B 6/00 H 01 S 3/07 3/0915 H 04 B 10/08 С G 02 B 6/00 9017-2K