Operációkutatás

1. előadás

Dósa György

Pannon Egyetem / Matematika Tanszék

2021.02.19.

Operációkutatás, tematika:

- Lineáris Programozás
- Szállítási feladat
- Hozzárendelési feladat
- (némi) Játékelmélet
- Diszkrét Programozás:
- hátizsák feladat
- utazó ügynök
- Cutting Stock feladat

A kezdet (OpKut)

- (Hadműveleti Operációk Kutatása)
- Lineáris Programozás
- George Dantzig, szimplex módszer

Irodalom

- Wayne L. Winston, Operations Research, Applications and algorithms, Duxbury Press, 1991
- Éles András, Gyorgy Dosa, Tutorial for Operations Research, Modeling in GNU MathProg, February 12, 2020, http://dtk.tankonyvtar.hu/xmlui/handle/123456789/13112
- Tomor Benedek, Matematika VI, Veszprémi Egyetem jegyzete
- Tomor Benedek: Az Operációkutatás matematikai alapjai, Útmutató, Veszprémi Egyetem
- Bertók Botond, Network Synthesis and Optimization, http://dtk.tankonyvtar.hu/xmlui/handle/123456789/13111
- Dósa György honlapja: https://math.uni-pannon.hu/~dosa/

Egy termelési probléma

Adott a következő táblázat:

	T_1	T_2	T_3	T_4	T_5	Készlet
Erőf ₁	1	2	1	3	0	24
Erőf ₂	0	1	1	5	1	43
Erőf ₃	1	0	0	2	2	18
Haszon	19	23	15	42	33	

- Termékek (*T*₁, ..., *T*₅).
- Erőforrások
- Készlet
- Pl. termelünk 1 egységnyit T_1 -ből...
- Pl. termelünk 2 egységnyit T₁-ből...
- Pl. termelünk 8 egységnyit T_2 -ből és még 1 egységnyit T_4 -ből, akkor összesen fogyasztunk $8 \cdot 2 + 1 \cdot 3 = 19$ egységnyit az első erőforrásból.
- többi erőforrás: hasonlóan
- Termelési terv: pl. x(0,8,0,1,0), ha c(19,23,15,42,33) jelöli a hasznon vektorát, az összes haszon ennyi lesz: $c \cdot x = (19,23,15,42,33) \cdot (0,8,0,1,0) = 226$.
- Mi lesz a "legjobb" termelési terv?

Próbálkozzunk!

	T_1	T_2	T ₃	T_4	T ₅	Készlet
Erőf ₁	1	2	1	3	0	24
Erőf ₂	0	1	1	5	1	43
Erőf ₃	1	0	0	2	2	18
Haszon	19	23	15	42	33	

a,
$$x(18,0,0,0,0)$$
, $z_1 = 18 \cdot 19 = 342$
b, $x(0,12,0,0,0)$, $z_2 = 12 \cdot 23 = 276$
c, $x(0,0,24,0,0)$, $z_3 = 24 \cdot 15 = 360$
d, $x(0,0,0,8,0)$, $z_4 = 8 \cdot 42 = 336$
e, $x(0,0,0,0,9)$, $z_5 = 9 \cdot 33 = 297$
f. ???

Definíciók:

- Egy x vektor megoldás (mo), ha behelyettesítve, nem lépjük túl a készleteket
- Egy x vektor megengedett megoldás (memo), ha megoldás, és komponensei nemnegatív számok
- Egy x vektor optimális megoldás (opt mo), ha megengedett megoldás, és az ilyenek között a "legjobb".

	T_1	T_2	T_3	T_4	T_5	Készlet
Erőf ₁	1	2	1	3	0	24
Erőf ₂	0	1	1	5	1	43
Erőf ₃	1	0	0	2	2	18
Haszon	19	23	15	42	33	

Példák ezekre:

x(-1,1,1,1,1) megoldás, de nem megengedett

x(10, 1, 1, 0, 0) megengedett megoldás

Hogyan keressünk optimális megoldást?

- Van-e egyáltalán?
- Ha igen, akkor mennyi van?
- Hogyan találjuk meg?
- Egy lehetséges megoldási módszer: Szimplex Módszer

Hogyan keressünk optimális megoldást?

Vezessük be a következő jelöléseket:

- Az együttható mátrix: A,
- az erőforrások készlete: b,
- célfüggvény együtthatók: c.
- Akkor a feladat a következő:

$$Ax \le b$$

$$x \ge 0$$

$$z = c \cdot x \to \max$$

Ennek neve: Lineáris Program (LP).

Részletesen kiírva:

Részletesen kiírva:

$$x_1 + 2x_2 + x_3 + 3x_4 \leq 24$$

$$x_2 + x_3 + 5x_4 + x_5 \leq 43$$

$$x_1 + 2x_4 + 2x_5 \leq 18$$

$$x_i \geq 0, 1 \leq i \leq 5$$

$$19x_1 + 23x_2 + 15x_3 + 42x_4 + 33x_5 = z \rightarrow \max$$

Kezdjük el megoldani. Első lépésként alakítjuk át = feltételekké (maradék változók bevezetésével):

$$x_1 + 2x_2 + x_3 + 3x_4 + s_1 = 24$$
 $x_2 + x_3 + 5x_4 + x_5 + s_2 = 43$
 $x_1 + 2x_4 + 2x_5 + s_3 = 18$
 $\mathbf{x} \ge \mathbf{0}, \mathbf{s} \ge \mathbf{0}$
 $19x_1 + 23x_2 + 15x_3 + 42x_4 + 33x_5 = z \to \max$

Ennek táblázatos alakja (elhagyjuk az x-eket, csak a lényeges információt hagyjuk meg):

Ami itt van alább: Szimplex Tábla

В	ΧB	a ₁	a 2	a 3	a_4	a 5	u_1	u_2	u_3
u_1	24	1	2	1	3	0	1	0	0
<i>u</i> ₂	43	0	1	1	5	1	0	1	0
		1							
Z	0	-19	-23	-15	-42	-33	0	0	0

B: bázis (max. független rendszer). Jelenleg: $B = \{u_1, u_2, u_3\}$, a kanonikus bázis

bázismegoldás: $x_B = (0, 0, 0, 0, 0, 24, 43, 18)$.

jelentése: olyan megengedett megoldás, hogy ha valamely a_i nincs a

bázisban, akkor $x_i = 0$

alsó sor: a célfüggvény értéke, valamint: **redukált költség** (a *c* vektor ellentettjei)

Mire jó ez???

Tétel (a szimplex tábla három esete), [Dantzig]

- Ha a legalsó sorban nincs negatív szám (a redukált költség minden komponense nemnegatív), akkor a bázismegoldás optimális.
- Ha van negatív szám a legalsó sorban (a redukált költség komponensei között), de az összes ilyen oszlopban a tábla belsejében (az alsó negatív szám fölött) nincs pozitív szám, akkor a célfüggvény felülről nem korlátos.
- Egyébként (nem is 1. és nem is 2.) vagyis van negatív szám alul, és ezek között olyan is hogy a negatív szám fölött a táblázat belsejében van pozitív szám, akkor végrehajtható olyan báziscsere, amelynek során a célfüggvény értéke nem romlik (általában javul).

Mire jó ez nekünk?

Szimplex módszer (Primál szimplex módszer második fázisa)

- Báziscseréket végzünk
- Fenntartjuk a bázismegoldás megengedettségét, ami azt jelenti hogy az x vektor komponensei nemnegatívok kell hogy maradjanak. Ezt biztosítja a minimum szabály!!!
- De a célfüggvény növekedjen (ha lehet), olyan oszlop megy a bázisba, ahol a redukált költség negatív.
- Ha már a célfüggvény nem tud növekedni, az akkor van ha a redukált költség vektora csupa nemnegatív számból áll, ez az "optimalitás kritériuma". Ekkor megállunk.
- Állítás: A szimplex módszer véges sok lépésben véget ér (megfelelő módon végrehajtva). Általában "gyorsan" véget ér.

Válasszuk a bázisba belépőnek az a_2 vektort. A **minimum szabály** akkor a következő: min $\left\{\frac{24}{2}, \frac{43}{1}\right\}$, az a_2 oszlopából vesszük a pozitív számokat, ezek a nevezők; a bázismegoldás oszlopából kerülnek ki a számlálók. A minimum: 24/2, emiatt a "24" sorában választjuk a generáló elemet. Vagyis u_1 hagyja el a bázist. A generáló elem angol neve "pivot" elem (vastaggal jelölve a táblázatban).

Hogyan hajtjuk végre a transzformációt?

- A generáló elem sorát elosztjuk a generáló elemmel (vagyis most 2-vel), továbbá
- a generáló elem sorának az 1/2-szeresét levonjuk a második sorból,
- a generáló elem sorának az 0/2-szeresét levonjuk a harmadik sorból,
- a generáló elem sorának a -23/2-szeresét levonjuk (vagyis a 23/2-szeresét hozzáadjuk) a célfüggvény sorából (sorához).
- Az előbbi szorzókat (1/2, 0/2, illetve 23/2) hogyan kaptuk: a számlálók a generáló elem oszlopában, a generáló elemtől különböző számok, a nevező mindig a generáló elem. A számolást elvégezve ez lesz a következő táblázat:

ez volt:

В	х _В	a ₁	a 2	a 3	a_4	a 5	u_1	u_2	u_3
		1	2	1	3	0	1	0	0
u ₂	43	0	1	1	5	1	0	1	0
и3	18	1	0	0	2	2	0	0	1
Z	0	-19	-23	-15	-42	-33	0	0	0

ez lett:

В	ΧB	a_1	a 2	a 3	a 4	a 5	u_1	u 2	и з
a ₂	12	1/2	1	1/2	3/2	0	1/2	0	0
<u>u</u> 2	31	-1/2	0	1/2	7/2	1	-1/2	1	0
		1							
Z	276	-15/2	0	-7/2	-15/2	-33	23/2	0	0

Most válasszuk az a_5 vektort a bázisba belépőnek. A minimum szabály szerint u_3 hagyja el a bázist. A számolás után ez lesz a következő táblázat:

ez volt:

В	х _В	a ₁	a 2	a 3	a_4	a 5	u_1	u_2	u_3
a ₂	12	1/2	1	1/2	3/2	0	1/2	0	0
<u>u</u> 2	31	-1/2	0	1/2	7/2	1	-1/2	1	0
и3	18	1	0	0	2	2	0	0	1
Z	276	-15/2	0	-7/2	-15/2	-33	23/2	0	0

ez lett:

В	ΧB	a 1	a 2	a 3	a 4	a 5	u_1	u_2	и з
a ₂	12	1/2	1	1/2	3/2	0	1/2	0	0
<i>u</i> ₂	22	-1	0	1/2	5/2	0	-1/2	1	-1/2
				0					
Z	573	9	0	-7/2	51/2	0	23/2	0	33/2

Egyetlen negatív szám maradt az alsó sorban, ezt kell választanunk hogy bemenjen a bázisba. A minimum szabáy szerint a_2 hagyja el a bázist. Összegezve, a célfüggvény változása a következőképpen történik:

- Ha olyan oszlop megy a bázisba ahol negatív a redukált költség, a célfüggvény (általában) növekszik
- Ha olyan oszlop megy a bázisba ahol pozitív a redukált költség, a célfüggvény (általában) csökken
- Ha olyan oszlop megy a bázisba ahol 0 a redukált költség, a célfüggvény nem változik

Az előbbiak csak akkor igazak, ha a bázismegoldás nemdegenerált. Ha a bázismegoldás degenerált, az azt jelenti, hogy van 0 a bázishoz tartozó x értékek között. Jelenleg $B(a_2,u_2,a_5)$ a bázis, és minden érték x_2,s_2,x_5 közül pozitív. Vagyis most a bázis nemdegenerált.

Lássuk mi történik a báziscsere után:

ez volt:

				a 3					
a 2	12	1/2	1	1/2	3/2	0	1/2	0	0
				1/2					
				0					
Z	573	9	0	-7/2	51/2	0	23/2	0	33/2

ez lett:

В	x _B	a 1	a 2	a 3	a 4	a 5	u_1	u 2	и3
		1							
		-3/2							
a ₅	9	1/2	0	0	1	1	0	0	1/2
Z	657	25/2	7	0	36	0	15	0	33/2

Optimális megoldást kaptunk: $x_B = (0, 0, 24, 0, 9 | 0, 10, 0)$.

- 24 illetve 9 egységnyit termelünk a harmadik illetve ötödik termékből (a többiből nem termelünk)
- megmarad 10 egységnyi erőforrás a második erőforrásból
- a célfüggvény értéke 657