or equal to 2 but less than $k = 3n + 2$ has a poune division of form $3l + 2$. Now we want to show that $k = 3n + 2$ has a prime divisor of form $3l + 2$
pourne division at form 3l+2.
now we sout to have that 6=20.
has a wine live and last 30 10
prime divisor of form 31+2
Case 1:-40 h-2
of k= sn+2 is prime
12 is itself a prime divisor of
Case 1: - If $k = 3n+2$ is prime $\Rightarrow k = 3n+2$ is itself a prime divisor of the form $3l+2$.
Case 2: - If $k = 3n + 2$ is not prime
P - 3 m +) il Managorita
$\Rightarrow k = 3n+2 = ab \text{ for some } a, b \in \mathbb{Z}$ $1 \leq a, b \leq k = 3n + 2$
$1 \leq a, b \leq k = 3n + 2$
while the middled ab is the bound and
the contract of the contract o
3k+2 and other is of form 3k+1
3k+2 and other is of form $3k+1$ we are write $k = 3m+2 = (3k+2)(3k+1)$
- $ -$
By induction hypothesis a= 3k, +2 has a
prime divisor of the form $3k$, $+2$ has a grime divisor of the form $3k$, $+2$ hence $3n+2$ has a prime divisor at torm $3n+2$
3n+2 has a prime division 1 to
at low 3n+2
(c) n3-1 vis given for us
(n²-n+1) can be written as product of (n-1) and
(n2-n+1)
$n^3 - 1 = (n - 1)(m^2 - n + 1)$
$n^3 - 1 = ab \qquad box interes $
or else we can have more than 2 factors
(or else we can have a on b must be)
- Than & factors

Thus either
$m-1=1$ or $n^2-n+1=1$
$n=2 \qquad n^2-n=Q$
(if it is true) $m = 0,1$
(if it is true).
So we rest $n = 0$, $n = 1$ and $n = 2$ in $n^3 - 1$ to see which one (1) are prime
see which one (1) are prime
$n=0$ $n^3-1=0-1=-1$ not poime
$m^{-1} - m^{-1} = 1 - 1 = 0$ and prime
$m=2$ $m^3-1=8-1=7$ prime.
$n=2$ $n^3-1=8-1=7$ prime. Thus 7 is the only prime in form of n^3-1 .
(d). 3p+1 is perfect square.
3p+1=q
$\frac{3p-q^2-1}{}$
3p = (q-1)(q+1)
left hand side is product of two primes 3 and
p. Therefore 3 divides exactly one of (q-1) and
Left hand side is product of two primes 3 and p. Therefore 3 divides exactly one of (q-1) and (q+1) and p divides one of (q-1) and (q+1).
Because q-1 <q+1, 1.="" be="" cont="" q+1="" thousare<br="">the only possibilities are:</q+1,>
$a \rightarrow q - 1 = 3$, $q + 1 - p$
$\begin{array}{c} 5 \to q - 1 = p \\ / q + 1 = 3 \\ / 2 + 1 = 1 \\ / 2 + 1 = 3p \end{array}$
a & If q-1=3 then p=5, p is voime satisfy the
a & If q-1=3, then p=5 p is voime satisfy the condition of the possiblem
b > 1 g+1=3 then P=1. This cant be one case
since p is supposed to be prime, this is not satisfy the condition of problem.
satisfy the condition of problem.
c > Af g-1=1 then 3=3p that is p=1. This

Court be true same case as (b)
So only only in DES
So only solution is p=5
$(\tilde{0})$
2 18 given
2. n^2-4 is given $n^2=4$ can be written as product of $(n-2)$
and $(n-2)$
$\frac{n^2-4}{n^2-4} = (n-2)(n+2)$
- So we can write
So we can write $m^2-4=ab$ for integers a, b $4 + m^2-4=ab$ is prime either a or b must be cor else we should have more then two factors)
If m2-4=ab is prime, either a or 5 must
be you else we should have more the
two factors)
Thus either and n+2 can't be 1 (n-2<0)
$\gamma - 2 = 1$
n = 3 only soln
$n = 3 \text{ only soln}$ when $n = 3$; $n^2 - 4 = 3^2 - 4 = 5$ Thus 5 is only prime in term of $n^2 - 4$.
Thus 5 is only pourine in term of nº -4.
3. For p > 5 is a grime number then by the
quotient, remainder theorem, p can be expresse
as 6k on 6k+1 on 6k+2 on 6k+3 on 6k+4
on 6k+5 for some integer k
If it is given p is prime number so it an
be expressed in 6k, 6k+2, 6k+3 because
it is multiple of 2 and 3.
The only numbers which can expressed of
are 6k+1 on 6k+5
$\frac{4}{p^2 + 2} = \frac{6k+1}{2} + 2 = \frac{6k+1}{2} + 2$
$= 36k^2 + 12k + 1 + 2$
$=36k^2+12+3$

$= 3(12k^2 + 4k + 1)$
So it can be observe that p2+2 is composite
Now it p = 6k+5
$\rho^2 + 2 = (6k + 5)^2 + 2$
$= 36k^2 + 25 + 60k + 2$
$= 36k^2 + 60k + 27$
$= 3(12k^2 + 20k + 9)$
and if it also composite.
shus if P > 5 is a normal number,
then p2+2 is composite.
(a) We have to move than pm/an
Given that p is prime number and pla.
We know that if p is joinne and plas
Then pla or p/b - ()
Let assume $p/a^n = p/a^{n-1}a$
Then by 1 either plan-1 or pla as pris
- Joine m/n
$\frac{if}{f} p/a then p^m/a^n$
if plan-1 then again by (1) either plan-2 on pla if pla then again p nan so uf plan-2 then again by (1) either plan-3
2 p/a (nen again p/a 1
ao uf pla then again by (1) either pla
If pla, then again p^n/a^n in this process, ultimately pla which gives p^n/a^n.
of pla, then again pla
n 1 n
ρ / a
Hence proved.
Tronger proved.
BiAt is airen that and (a b) - and as is
Bist is given that ged (a, b) = p and p is a prime number.
The Thurston,

Case-\ $a = pm \ b = pn \ can be written$ when $p \ b = pn \ can be written$ when $p \ b = pn \ can be written$ have common factor Then $ged \ of :=$ $ged \ (a^2, b^2) = ged \ (p^2m^2, p^2n^2)$ $= p^2 \ ged \ (m^2, n^2)$ $= p^2$
When Ps na & ps n and m n does it
have common factor
Then and of:
$a(a^2 b^2) = a(a^2 p^2 m^2 p^2 n^2)$
$= p^2 \operatorname{acd} (m^2, n^2)$
$=$ p^2
$g(d(a^{2}, b) = g(d(p^{2}m^{3}, pn))$ $= p^{2} g(d(m^{3}, n))$
$= p^2 \operatorname{acd}(m^3, n)$
$= \rho^{20}$
$g(d(a^3,b^2) = g(d(p^3m^3,p^2m^2))$
$g(d(a^{3},b^{2}) = g(d(p^{3}m^{3},p^{2}m^{2}))$ $= p^{2}g(d(p^{3}m^{3},n^{2}))$ $= p^{2}$
$= p^2 $
Case-2 a = pm & b = pk m where K > 2. Where p & m & p & n and m, n downt have common factor.
Where p & m & p & n and m, n doesn't
have common factor.
then gcd of gcd $(a^2, b^2) = gcd (p^2m^2, p^{2k}, p^2)$
$= \frac{p}{2} geo(m^2, p^2)$
2.1(-21) 2.1(22-1) 122
g(a(a,b)=g(a(pm,pn))
$= r \operatorname{gco}(m^2, p^2, n)$
$acd(\frac{3}{3}, \frac{12}{12}) = acd(\frac{3}{3}, \frac{3}{3}, \frac{12}{3})$
= 23 acd (m3 2k-3 m2)
$= p^3$
Case 3: when a = pkm b = pn k > 2
$gcd(a^2, b^2) = p^2$
$\gcd(a^2,b)=p$
ged (a3, b2) - p2
possible values of gcd (a2, b2) = p2
$\gcd(a^2,b) = p \operatorname{or} p^2$

Scanned with CamScanner

gcd (a3, b2) = p2 or p3 form no + 4 with n >1 is composite $n^4 + 4 = (n^2 + 2n + 2)(n^2 - 2n + 2)$ (n^2+2n+2) and for $n \ge 1$ both the numbers are +ve and greater, than 1, 20 n4+4 is composite. b) Any integor of form 8^n+1 where $n \ge 1$ is composite $(2^{n+1})/(2^{2n}-2^{n+1})$ For m 21 both the numbers 2"+1 and are the and greater than 80 87 +1 is composite. 3. Each integers n>11 can be written as sum of to two composite numbers. If n is even then =2(K-3)= 2(k-3)+6both are composite 99 = 2k+1-9K-4)+9 are composites

Scanned with CamScanner

6). All journes < 50 will divide 50! since
each is a term of 50
By the fundamental theorem of withmelic each term k of 501 that is not prime
each term k of 501 that is not round
has a unique pointe factorization and sach term of unique factorization of k is smaller thank and so is a prime
each term of unique factorization of
is smallor thank and 80 is a prime
There is no prime >50
: all prime <50 are all journes that divide 50!
which are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
31, 37, 41, 43 and 47.
(7) x 7-1 is given to us.
and $(x^6+x^5+x^2+x^3+x^2+x+1)$
$x^{7}-1 = (x-1)(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1)$
so we can write.
So we can write, $x^7 - 1 = ab$ for integers a and b If ab is prime either a or b must be 1 (or else we would have more than two factors)
If as is prime either a or 5 must be
I (or else we would have more than
two factors)
Thus either
$x - 1 = 1$ or $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = 1$
$2C=2$ or $2c(x^5+x^4+x^3+x^2+x^4)=0$
20 1 25 + 24 + 23 + 2 2 + 2 + 1 = 1
$x^{3}(x^{2}+x+1)+1(x^{2}+x+1)$
$\frac{2x^{3}+1=0}{(x^{2}+x+1)} = \frac{x^{2}+x+1=0}{(x^{2}+x+1)}$
(2+1) (22-2+1)=0 No possible

-> No real solution prime expressed as oc re more than a power of 257=28+1

```
p=+1= (10k+1)2+1
               = 100 R2 +20R + 1-11
                   10 (10 k2+ 2k) + 2

Not divisible by 10
 for p = 10k + 1 dering either p^2 - 1 on p^2 + 1
 > p^2 - 1 is divisibly by 10
 P=10k+3
              p2-1= (10k+3
                   - 100R2+9+60 R. -1
                    = 100k2 +60k +8
= 10(10k2+6k)+8
                                Not divisible by 10
             p^2 + 1 = (10ke3)^2 + 1
= 100k^2 + 60k + 10
-p= 10k+7
              p2-1=(10x+7)2-
                      100k2 + 12pk
For p = 10k+7 -> p2+1 is divisible by 10
```

019CSO76
709 p=10k+9
$p^2 - 1 = (10k + 9)^2 - 1$
= 100k2 + 180k + 80
$=10 \left(10k^2 + 18k + 8 \right)$
$p^{2} + 1 = (10k + 9)^{2} + 1$
$= 100k^2 + 180k + 182$
For $p = 10R + 9 \Rightarrow p^2 - 1$ is divisible by 10
of these numbers
$\frac{2 \cdot 617}{10140 = 2^2 \cdot 5 \cdot 3 \cdot 13^2}$
36 000 = 2 ⁵ ,5 ³ ,3 ²