Нейронные сети с радиальными базисными функциями (RBF)

RBF – функции, радиально изменяющиеся вокруг некоторого центра, заданного вектором С, и принимающие ненулевые значения в окрестности этого центра.

Аргумент RBF - расстояние между входным вектором X и центром C:

$$\varphi = \varphi(\|\mathbf{X} - \mathbf{C}\|)$$

где

$$\|\mathbf{X} - \mathbf{C}\| = \sqrt{(x_1 - c_1)^2 + ... + (x_N - c_N)^2}$$

Гауссовы RBF

$$\varphi(\mathbf{X}) = \exp\left(-\frac{\|\mathbf{X} - \mathbf{C}\|^2}{2\sigma^2}\right)$$

Другие типы RBF

функция Коши:

линейный сплайн:

кубический сплайн:

мультиквадрика:

функция Коши:
$$\left(1+\left\|\mathbf{X}-\mathbf{C}\right\|^2\right)^{-1}$$
 thin — plate splines: $\left\|\mathbf{X}-\mathbf{C}\right\|\ln\left(\left\|\mathbf{X}-\mathbf{C}\right\|\right)$ линейный сплайн: $\left\|\mathbf{X}-\mathbf{C}\right\|$ кубический сплайн: $\left\|\mathbf{X}-\mathbf{C}\right\|^3$ $\left\|\mathbf{X}-\mathbf{C}\right\|^3$ мультиквадрика: $\sqrt{1+\frac{\left\|\mathbf{X}-\mathbf{C}\right\|^2}{\sigma^2}}$

Разбиение пространства на классы

$$W_1 X_1 + W_2 X_2 + W_0 = 0$$

Сигмоидальный нейрон

Нейрон RBF

Основное преимущество RBF

– легкость разбиения
 пространства на классы → снижение количества скрытых слоев.

 $N \text{ BX.} \rightarrow J \text{ RBF} \rightarrow 1 \text{ BMX.}$

Алгоритм функционирования RBF

$$\operatorname{net}_{j} = \left\| \mathbf{X} - \mathbf{C}_{j} \right\| =$$

$$= \sqrt{\left(x_{1} - c_{j1} \right)^{2} + \dots + \left(x_{N} - c_{jN} \right)^{2}}$$

$$\varphi_{j} = \varphi \left(-\operatorname{net}_{j}^{2} \right)$$

$$y = \sum_{j=1}^{J} w_{j} \varphi_{j} + w_{0}$$

Пример (XOR)

у	0	1	1	0
X ₁	0	0	1	1
X ₂	0	1	0	1

$$\varphi_1 = \exp(-\text{net}_1^2) =$$

$$= \sqrt{(x_1 - c_1)^2 + (x_2 - c_1)^2}$$

$$\varphi_2 = \exp(-\text{net}_2^2) =$$

$$= \sqrt{(x_1 - c_2)^2 + (x_2 - c_2)^2}$$

Пусть

$$c_1 = 1, \quad c_2 = 0$$

Тогда

<i>X</i> ₁	0	0	1	1
X ₂	0	1	0	1
$\boldsymbol{\varphi}_1$	e -2	e ⁻¹	e ⁻¹	1
$\boldsymbol{\varphi}_2$	1	e ⁻¹	e ⁻¹	e ⁻²

Пусть

$$W_1 = W_2 = 1$$
, $W_0 = -1$

Тогда дискриминантная прямая

$$W_1 \varphi_1 + W_2 \varphi_2 + W_0 = 0$$

имеет вид

$$\varphi_1 + \varphi_2 - 1 = 0$$
 или $\varphi_2 = 1 - \varphi_1$

Линейная разделимость по ϕ_1, ϕ_2 :

 $e^{-1} \sim 0.368$ $e^{-2} \sim 0.135$

Алгоритмы обучения RBF

Обучающая выборка:

$$\mathbf{X}^{(q)}, \quad q = \overline{1, Q}$$

Целевой выход:

$$t_q$$
, $q = \overline{1,Q}$

Система:

$$\begin{bmatrix} 1 & \|\mathbf{X}^{(1)} - \mathbf{C}_1\| & \dots & \|\mathbf{X}^{(1)} - \mathbf{C}_J\| \\ 1 & \|\mathbf{X}^{(2)} - \mathbf{C}_1\| & \dots & \|\mathbf{X}^{(2)} - \mathbf{C}_J\| \\ 1 & \dots & \dots & \dots \\ 1 & \|\mathbf{X}^{(Q)} - \mathbf{C}_1\| & \dots & \|\mathbf{X}^{(Q)} - \mathbf{C}_J\| \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_J \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_Q \end{bmatrix}$$

ИЛИ

$$\Phi w = t$$

Если

$$J = Q$$

TO

$$\mathbf{w} = \mathbf{\Phi}^{-1}\mathbf{t}$$

Плохо, т.к. при J >> 1 усложняется структура НС, возникает переобучение НС

Поэтому обычно

$$J \ll Q$$

→ матрица Ф – прямоугольная.Тогда

$$\mathbf{w} = \mathbf{\Phi}^{+} \mathbf{t}$$

где Ф+ – псевдообратная матрица

$$\mathbf{\Phi}^+ = \left(\mathbf{\Phi}^\mathsf{T}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^\mathsf{T}$$

Веса w_j определяются из условия СКО \rightarrow min:

$$\varepsilon = \sum_{q=1}^{Q} \left[\sum_{j=1}^{J} \mathbf{w}_{j} \varphi \left(\left\| \mathbf{X}^{(q)} - \mathbf{C}_{j} \right\| \right) + \mathbf{w}_{0} - t^{(q)} \right]$$

или методом Видроу-Хоффа.

$$\varphi_j(\mathbf{X}) = \exp\left(-\frac{\|\mathbf{X} - \mathbf{C}_j\|^2}{2\sigma_j^2}\right)$$

Выбор параметров

$$\mathbf{C}_{j}, \sigma_{j} - ?$$

1) При *J*=Q

$$\mathbf{C}_{j} = \mathbf{X}^{(j)} \quad (j = \overline{1, Q})$$

 σ_{j} – часть пространства, в которой $X^{(q)}$ была охвачена ФА, например:

$$\sigma_j = \sqrt{\frac{1}{P} \sum_{i=1}^{P} \left\| \mathbf{C}_j - \mathbf{C}_i \right\|}, \quad P = 3...5$$

Затем
$$\mathbf{w} = \mathbf{\Phi}^{-1}\mathbf{t}$$

2) При J<<Q

- предварительная кластеризация векторов X^(q)
- определение центров кластеров C_i
- ullet определение σ_{j}
- определение весов w (min LSE, Видроу-Хофф, w=Ф⁺t, ...)

Преимущества HC RBF

- простота топологии
- простота обучения
- частично решается проблема локальных min

Сложности

•
$$J - ?$$
• $C_j - ?$
• $\sigma_j - ?$

Недостаток:

RBF-сети неприменимы к задачам экстраполяции

Асимметричные RBF

(не все направления от центра RBF равноправны - анизотропия координат)

$$\varphi_j(x_1,...,x_k) = \exp\left(-\sum_{i=1}^k \alpha_{ij}(x_i - c_{ij})^2\right)$$

$$\varphi_j(\mathbf{X}_1,\ldots,\mathbf{X}_k) =$$

$$= \exp \left(-\sum_{i=1}^{k} \sum_{l=1}^{k} \alpha_{ijl} (x_i - c_{ij})(x_l - c_{lj})\right)$$

Произвольная асимметрия вдоль лучей из c_i (звездность)

Локальные полярные координаты:

$$\begin{cases} \rho_j = \|\mathbf{x} - \mathbf{c}_j\| \\ \theta_j = \arg(\mathbf{x} - \mathbf{c}_j) \end{cases}$$

Асимметричная RBF:

$$\varphi_j = \varphi(\rho - \mathbf{c}_j, \theta_j)$$

Пусть
$$\rho = f(\theta)$$

тогда

$$\varphi = \left(1 - \frac{\rho}{f(\theta)}\right)_{+}$$

где

$$t_{+} \equiv \begin{cases} t, & t \geq 0 \\ 0 & t < 0 \end{cases} = t \cdot (t \geq 0)$$

Многоугольная RBF:

Граница получается из полярных уравнений прямых:

Функция-«шапочка»:

Дифференцируемость (гладкость) на границе:

$$\frac{\partial \varphi_j}{\partial \mathbf{n}} = \mathbf{0}$$

где n – внешняя нормаль к границе.

$$\varphi = \left(1 - \frac{\rho}{f(\theta)}\right)_{+}^{2}$$

RBF с гладкой вершиной:

$$\varphi = \left(1 + \frac{2\rho}{f(\theta)}\right) \left(1 - \frac{\rho}{f(\theta)}\right)_{+}^{2}$$

Многомерные RBF:

$$\varphi_j = \varphi_j(\rho, \mathbf{V})$$

где

$$\rho = \left\| \mathbf{x} - \mathbf{c}_{j} \right\|$$

V – вектор на единичной гиперсфере

Алгебрологический синтез RBF

Пусть Ω_1 и Ω_2 – звездные относительно начала координат (полюса) области, с границами, описываемыми уравнениями

$$ho = f_1(heta)$$
 Ha $\partial \Omega_1$ $ho = f_2(heta)$ Ha $\partial \Omega_2$

При этом

$$\begin{cases} f_1(\theta) - \rho > 0 & \text{if } \Omega_1 \\ f_1(\theta) - \rho < 0 & \text{if } R \setminus \overline{\Omega}_1 \end{cases}$$

$$\begin{cases} f_2(\theta) - \rho > 0 & \text{if } \Omega_2 \\ f_2(\theta) - \rho < 0 & \text{if } R \setminus \overline{\Omega}_2 \end{cases}$$

Пусть Ω - сложная область (звездная):

$$\Omega = \Omega_1 \cap \Omega_2$$

ИЛИ

$$\Omega = \Omega_1 \cup \Omega_2$$

тогда

$$\rho = \min\{f_1(\theta), f_2(\theta)\}$$

или

$$\rho = \max\{f_1(\theta), f_2(\theta)\}$$

Так как

$$\min\{x, y\} = \frac{1}{2}(x + y - |x - y|)$$

$$\max\{x, y\} = \frac{1}{2}(x + y + |x - y|)$$

TO

$$\rho(\theta) = f_{1} \wedge f_{2} =$$

$$= \frac{1}{2} [f_{1}(\theta) + f_{2}(\theta) - |f_{1}(\theta) - f_{2}(\theta)|]$$

$$u\pi u$$

$$\rho(\theta) = f_{1} \vee f_{2} =$$

$$= \frac{1}{2} [f_{1}(\theta) + f_{2}(\theta) + |f_{1}(\theta) - f_{2}(\theta)|]$$

Пример 1. Прямоугольник

$$[-a, a] \times [-b, b]$$

Полоса, параллельная оси ОҮ

Полоса, параллельная оси ОХ

$$\rho(\theta) = f_1(\theta) \wedge f_2(\theta)$$

$$f_1(\theta) = \frac{a}{|\cos \theta|}, \quad f_2(\theta) = \frac{b}{|\sin \theta|}$$

$$\rho(\theta) = \frac{1}{2} \left[\frac{a}{|\cos \theta|} + \frac{b}{|\sin \theta|} - \frac{a}{|\cos \theta|} - \frac{b}{|\sin \theta|} \right]$$

Пример 2. Крест

$$f_{1}(\theta) = \frac{a}{|\cos \theta|}, \quad f_{2}(\theta) = \frac{b}{|\sin \theta|}$$

$$f_{3}(\theta) = \frac{c}{|\cos \theta|}, \quad f_{4}(\theta) = \frac{d}{|\sin \theta|}$$

$$\rho(\theta) = [f_1(\theta) \land f_2(\theta)] \lor [f_3(\theta) \land f_4(\theta)]$$

Сглаживание углов:

$$|x| \rightarrow \sqrt{x^2 + \varepsilon} \quad 0 < \varepsilon << 1$$

$$ho(heta)=f_1\wedge f_2=$$
 $=rac{1}{2}igg[f_1(heta)+f_2(heta)-\sqrt{ig[f_1(heta)-f_2(heta)ig]^2+arepsilon}igg]$ или

$$\rho(\theta) = f_1 \vee f_2 =$$

$$=\frac{1}{2}\left[f_1(\theta)+f_2(\theta)+\sqrt{\left[f_1(\theta)-f_2(\theta)\right]^2+\varepsilon}\right]$$

$$\rho(\theta) = \frac{1}{2} \left[\frac{a}{|\cos \theta|} + \frac{b}{|\sin \theta|} - \sqrt{\left(\frac{a}{|\cos \theta|} - \frac{b}{|\sin \theta|} \right)^2 + \varepsilon} \right]$$