SYLLABUS CÁLCULO NUMÉRICO

Unidad académica responsable: Departamento de Ingeniería Ma-

temática

Carrera a la que se imparte: Ingeniería Civil (varias especiali-

dades)

Módulo: No aplica.

I. Identificación

Nombre: Cálculo Numérico				
Código: 521230	Créditos: 4			
Prerequisitos: 503201; 52	itos: 503201; 521218; 521227			
Modalidad: Presencial	Calidad: Obligatoria	Duración: Semestral		
Trabajo Académico:				
Horas teóricas: 3	Horas prácticas: 0	Horas de laboratorio: 2		
Docentes responsables:	oonsables: Leonardo Figueroa C. (coordinador)			
	Jorge Aguayo A.			
	Mauricio Vega H. (coord	inador laboratorio)		
Duración:	15 semanas			

II. DESCRIPCIÓN

Asignatura teórico-práctica que contiene los fundamentos de los algoritmos numéricos para resolver problemas de la Matemática Aplicada por medio del computador.

Esta asignatura contribuye a la formación de las siguientes competencias del perfil de egreso:

• Conocimientos sobre el área de estudios y la profesión.

III. RESULTADOS DE APRENDIZAJE ESPERADOS

Al completar en forma exitosa esta asignatura, los estudiantes serán capaces de:

- 1. Deducir algoritmos que se detallan en los contenidos.
- 2. Estimar cotas de errores de los resultados obtenidos.
- 3. Usar técnicas para demostrar propiedades sencillas relacionadas con los algoritmos.
- 4. Resolver modelos matemáticos sencillos por medio de algunos métodos computacionales.

IV. Contenidos

Los contenidos son los mismos pero el orden es distinto al de otros semestres.

- 1. Errores:
 - Errores absolutos.
 - Errores relativos.
 - Pérdida de cifras significativas.

2. Interpolación:

- Interpolación polinomial, fórmula de Lagrange.
- Interpolación por polinomios *splines*. Estimación del error.
- 3. Aproximación:
 - Cuadrados mínimos.
 - Las ecuaciones normales y factorización QR.
- 4. Integración Numérica:
 - Reglas del trapecio y de Simpson.
 - El método de Romberg.
 - Fórmulas de tipo Gauss.
 - Estimación de errores. Integración multidimensional.
- 5. Ecuaciones diferenciales ordinarias:
 - Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales.
 - Ecuaciones de orden superior.
 - Método de Euler. Error local de truncamiento. Error global.
 - Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
 - Métodos de paso múltiple: Métodos explícitos: Adams—Bashforth. Métodos implícitos: Adams—Moulton. Métodos predictor-corrector.
 - Ecuaciones stiff: Estabilidad de las ecuaciones y de los métodos numéricos.
 - Problemas de valores de contorno: Existencia y unicidad de solución. Método de shooting. Método de diferencias finitas. Método de elementos finitos.
- 6. Ecuaciones no lineales:
 - Métodos de convergencia garantizada: Bisección. Convergencia lineal.
 - Métodos de convergencia veloz: Newton-Raphson. Condiciones de convergencia. Criterio de detención.
 - Método de la secante.
 - Sistemas de ecuaciones no lineales: Método de Newton.
- 7. Sistemas de Ecuaciones Lineales:
 - Algoritmos: eliminación de Gauss, factorización LU, Choleski, pivoteo.
 - Condicionamiento de matrices.
 - Normas de vectores y matrices. Cotas de errores.
 - Métodos Iterativos: El método iterativo general.
 - Algoritmos de Jacobi y de Gauss-Seidel.
 - Métodos de descenso.

V. Metodología

El curso se desarrolla con tres horas de clases teóricas. Además de las clases teóricas el curso contempla un laboratorio computacional semanal, de dos horas, y al cual **la asistencia es obligatoria**. Los alumnos se deberán inscribir en los laboratorios a partir del medio día del 13 de marzo y hasta el medio día del 15 de marzo mediante internet, en la dirección electrónica:

http://www.ing-mat.udec.cl/numerico

La elección de laboratorios será estrictamente por orden de inscripción. Esta inscripción de laboratorio es independiente de la inscripción formal de la asignatura.

VI. EVALUACIÓN

- a. La evaluación en la asignatura se hará por medio de dos (2) certámenes y dos (2) tests de laboratorio.
- b. Los dos (2) certámenes consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la nota final de un $40\,\%$. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la nota final de un $10\,\%$.
- c. Al final del semestre habrá una (1) evaluación de recuperación global y que remplazará una evaluación parcial de manera que la nota final resultante sea la que favorezca más al alumno (modalidad b del artículo 17.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas).
- d. En las evaluaciones, así como en los tests, se prohíbe estrictamente el uso de calculadoras y teléfonos celulares.
- e. La no asistencia a un certamen significará obtener nota final NCR. No obstante, quien justifique su inasistencia a un certamen (ver letra g siguiente) se deberá presentar a una evaluación escrita para regularizar su situación, a la cual se le citará oportunamente.
- f. La no asistencia a un test significará obtener la calificación NCR. Quien justifique su inasistencia por los canales oficiales (ver letra g siguiente), se podrá presentar a un test de recuperación. No existe un test de recuperación para mejorar nota.
- g. Quien deba justificar una inasistencia a una evaluación **deberá hacerlo dentro de los plazos** y de acuer a los procedimientos dispuestos en el Artículo 18.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.
- h. La asistencia de un alumno a cualquiera de las evaluaciones consideradas en la asignatura no permite justificaciones posteriores, sean éstas de salud o de otra índole.

VII. BIBLIOGRAFÍA Y MATERIAL DE APOYO

Textos básicos u obligatorios.

- 1. Kendall E. Atkinson, An introduction to numerical analysis, Wiley, New York, 1978.
- 2. S. Grossman, Análisis numérico y visualización gráfica con MATLAB, Prentice—Hall Hispanoamericana, México, 1997.

Textos complementarios.

- 1. H. Alder & E. Figueroa, *Introducción al Análisis Numérico*, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 1995.
- 2. K. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.
- 3. R. L. Burden & J. D. Faires, Análisis Numérico, Thomson, 1998.
- 4. S. C. Chapra & R. P. Canale, *Métodos Numéricos para Ingenieros*, McGraw-Hill, 1999.

- 5. G. HÄMMERLIN & K.-H. HOFFMANN, *Numerical Mathematics*, Springer-Verlag, 1991.
- 6. D. R. Kincaid & W. Cheney, Análisis Numérico: las Matemáticas del Cálculo Científico, Addison-Wesley Iberoamericana, 1994.
- 7. A. Quarteroni & F. Saleri, Scientific Computing with MATLAB, Springer-Verlag, 2003.
- 8. H. R. Shwartz, Numerical Analysis. A Comprehensive Introduction, John Wiley and Sons, 1989.
- 9. J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1993.
- 10. L.N. Trefethen & D. Bau, Numerical linear algebra, SIAM, 1997.

VIII. PLANIFICACIÓN

Planificación de clases.

De nuevo notamos que el orden de los contenidos es distinto al de otros semestres.

Fecha	Contenido
Lun 06 Mar	Presentación; Errores
Mié 08 Mar	Errores (cont.)
Lun 13 Mar	Errores (cont.); Interpolación
Mié 15 Mar	Interpolación (cont.)
Lun~20~Mar	Interpolación (cont.); Aproximación
Mié 22 Mar	Aproximación (cont.)
Lun~27~Mar	Aproximación (cont.) Integración-I
Mié 29 Mar	Integración-I (cont.)
Lun 03 Abr	Integración-I (cont.); Integración-II
Mié 05 Abr	Integración-II (cont.)
Lun 10 Abr	Integración-II (cont.); EDO-I
Mié 12 Abr	EDO-I (cont.)
${\rm Lun}~17~{\rm Abr}$	EDO-I (cont.)
Mié 19 Abr	Feriado
Lun~24~Abr	EDO-I (cont.); EDO-II (cont.)
Mié 26 Abr	EDO-II (cont.)
Lun 01 May	Feriado
Mié 03 May	EDO-II (cont.)
Lun 08 May	EDO-II (cont.); Ec. no lin.
Mié 10 May	Ec. no lin. (cont.)
Lun 15 May	Ec. no lin. (cont.); Ec. linI
Mar 16 May	Evaluación 1
Mié 17 May	Ec. linI (cont.)
Lun 22 May	Ec. linII
Mié 24 May	Ec. linII (cont.); Ec. linIII
Lun 29 May	Ec. linIII (cont.); Ec. linIV
Mié 31 May	Ec. linIV (cont.)
Lun~05~Jun	Ec. linIV (cont.); Ec. linV
Mié 07 Jun	Ec. linV (cont.); Ec. linVI

Fecha	Contenido
Lun 12 Jun	Ec. linVI (cont.)
Mié 14 Jun	Comodín
Vie 30 Jun	Evaluación 2
Mié 12 Jul	Evaluación de recuperación

Planificación de laboratorios.

Semana	Fecha Lab.	Actividad de Laboratorio
1	8-9/mar	Semana sin actividades
2	$15-16/\mathrm{mar}$	Inscripción laboratorios vía Internet (13–15/mar)
3	$22-23/{ m mar}$	Lab. 01: Introducción a Matlab I
4	$29-30/{ m mar}$	Lab. 02: Introducción a Matlab II
5	5-6/abr	Lab. 03: Interpolación
6	12-13/abr	Lab. 04: Mínimos Cuadrados
7	19-20/abr	Semana sin actividades
8	26-27/abr	Lab. 05: Integración
9	3-4/may	Laboratorio Complementario
10	10-11/may	Test 1
11	17-18/may	Lab. 06: Ecuaciones diferenciales ordinarias
12	24-25/may	Lab. 07: Ecuaciones no lineales
13	31/may-1/jun	Lab. 08: S.E.L. (Métodos Directos)
14	7–8/jun	Lab. 09: S.E.L. (Métodos Iterativos)
15	$14-15/\mathrm{jun}$	Laboratorio Complementario
16	21– 22 /jun	Test 2
17	$28-29/\mathrm{jun}$	Muestra Test 1 y 2