2. Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento

$$P(s) = \frac{2(s+1)(s/5+1)}{(s^2/10^2 + 0.2s/10 + 1)(s/70 + 1)}$$

Sintetizzare il sistema di controllo in figura determinando

- h
- Kc

con **Kd** uguale a 0.5 in modo tale che l'errore per ingresso a rampa $\mathbf{u}(t)$ =8 $t\delta_{.1}(t)$ sia minore o uguale a 0.5.

Scelto il valore minimo di K_c compatibile con le specifiche, tracciare i diagrammi di

- BODE
- NYQUIST

della funzione a ciclo aperto, e determinare su questi la

- pulsazione di attraversamento ω_t
- e, in caso di sistema stabile a ciclo chiuso, i
 - margini di stabilità (m₆ e m_g)

2. Sia dato un processo ${\bf P}({\bf s})$ descrivibile mediante la funzione di trasferimento

$$P(s) = \frac{5(s/5+1)(s/100+1)}{(s^2/10^2+0.8s/10+1)(s/300+1)}$$

Sintetizzare il sistema di controllo in figura determinando

- h
- K_c

con Kd uguale a 4 in modo tale che l'errore per ingresso a rampa $u(t)=6\delta_{-2}(t)$ sia minore o uguale a 0.48

Scelto il valore minimo di K_{c} compatibile con le specifiche, tracciare i diagrammi di

- BODE
- NYQUIST

della funzione a ciclo aperto, e determinare su questi la

- pulsazione di attraversamento ω_t
- e, in caso di sistema stabile a ciclo chiuso, i
 - margini di stabilità (m_φ e m_g)

