LEARNING GOAL

1. I can solve inequalities by solving a related equation and then checking which values are solutions to the original inequality.

KEY VOCABULARY

- 1. solution set
- 2. ray
- 3. end point

Learning goal: I can describe the set of numbers that make an inequality true.

$$c + 19 \le 100$$

A **solution** is a number that makes an inequality true.

$$c = 89$$

SOLUTION

$$c = ?$$

Learning goal: I can graph the solution to an inequality in one variable.

$$c + 19 \le 100$$

 $c = \cos t$ of Thomas' cleats

In mathematics, a **ray** is a connected part of a line that has only one end point.

SOLUTIONS TO THOMAS' INEQUALITY

$$c + 19 \le 100$$

 $c = \cos t$ of Thomas' cleats

Directions: Fill in the table to find which values are solutions to Thomas' inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of c is c + 19 = 100?:

Graph of the **solution set**:

SOLUTIONS TO JOE'S INEQUALITY

$$21 + 3g \le 30$$

 $g={\sf how\ many\ GB\ of\ data\ Joe}$ uses

Directions: Fill in the table to find which values are solutions to Joe's inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of g is 21 + 3g = 30?:

Graph of the **solution set**:

$$x + 5 > 10$$

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is x + 5 = 10 true?:

Graph of the **solution set**:

$$3 - x > 5$$

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is -x + 3 = 5 true?:

Graph of the **solution set**:

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is 50-2x=10 true?:

Graph of the **solution set**:

$$2x + 4 < 8$$

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is 2x + 4 = 8 true?:

Graph of the **solution set**:

$$5 - 2x < 1$$

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is 5-2x=1 true?:

Graph of the **solution set**:

$$4-2x<0$$

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is 4-2x=0 true?:

Graph of the **solution set**:

$$2x - 8 > 4$$

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is 2x - 8 = 4 true?:

Graph of the **solution set**:

Directions: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

Find the endpoint: For which value of x is 2x - 8 = 25 true?:

Graph of the **solution set**:

-3x-10>-40 irections: Fill in the table to find which values are solutions to the inequality. Then graph the inequality on the number line, and write a simpler inequality describing the solutions.

$oldsymbol{x}$	-30	-20	-10	0	10	20	30	Answer blocks:
-3x - 10								Solution Not a
Solution or not a solution?								<u>Not a</u> <u>solution</u>

Find the endpoint: For which value of x is -3x - 10 = -40 true?:

Graph of the **solution set**: