Аннотация

Пояснительная записка 20 с., 3 рис., 2 табл., 3 источников, 2 приложения.

СПИСОК КЛЮЧЕВЫХ СЛОВ, НАЗВАНИЯ ТЕОРЕМ, ЗАДАЧ, НАЗВАНИЯ АЛГОРИТМОВ, И ДРУГИЕ ТЕГИ ДЛЯ КАТАЛОГИЗАЦИИ ВАШЕЙ РАБОТЫ

Рассматривается задача такая-то ...

Работа состоит из частей ...

Создано программное приложение, способное рассчитывать ...

Abstract

Master thesis 20 p., 3 fig., 2 tab., 3 s, 2 app.

KEYWORDS LIST, LIST OF THEOREM NAMES, TASKS, ALGORYTHMS NAMES, AND OTHER TAGS FOR YOUR WORK.

Considered the task of ...

The thesis consists of two parts ...

A software application has been created that is able to calculate \dots

ФГБОУ ВО «Уфимский госуларственный авиационный

	кий государственный авиационн неский университет»
Ракультет ОН Кафедра математики	
	УТВЕРЖДАЮ
	Руководитель
	Фамилия
	<u>""</u>
1502	2.103ШИФР.000 ПЗ
	Руководитель разработки
	Фамилия
	<u>"</u> "

Содержание

					Содержание	
	Вв	едение				8
1	По	становка	задач	И		9
	1.1	Исходны	е данн	ње.		9
	1.2				и	9
2	Пр	имеры ис	споль	зован	ия РТЕХ	10
	2.1	-			DB	10
		_			ый список	10
					ий список	10
	2.2		_		тинок	10
				_	вки растровых картинок	10
					вки векторных картинок	11
	2.3					11
	$\frac{2.5}{2.4}$	_			да	11
	2.5				ания формул	12
	2.0	Примерь	и испо,	льэоьс	ания формул	14
3	Еп	цё один ра	аздел			13
4	Pe	зультаты				14
	3a	ключение)			15
C	пис	ок литера	туры			16
П	рил	ожение А	. Фун	кция	вычисления матриц латентных признаков	
	ме	годом AL	\mathbf{S}			17
		E	' O			
11			OllT	имиз	ация вычисления матриц латентных при-	
	ЗНа	ков				19
					1502.103ШИФР.000 ПЗ	
Изм. Разр	Лист раб	№ докум. Студент	Подп.	Дата	Лит. Лист Лис	стов
т азр Про		Фамилия				20
и -	OHES.	Мухаметова			ГРУППА	
н. к Утв.		мухаметова Байков				

1	Введение
Какой-то текст введения.	
В разных разделах будут в	ставки примеров использования РТЕХ

Подп.

№ докум.

Дата

Изм Лист

1 Постановка задачи

1.1 Исходные данные

Какой-то текст описания исходных данных и постановки задачи.

1.2 Требования к модели

бла-бла-бла.

кстати, вот так [1] можно делать ссылки на библиограифю, LATeX сам соберёт их и вставит в список литературы в том порядке, в котором они встречаются в документе.

пример [2] и еще один [3] пример.

Изм	Лист	№ докум.	Подп.	Дата

2 Примеры использования LATEX

Параграф Какой-то текст, курсив и полужирный.

2.1 Отображение списков

2.1.1 Маркированный список

Пример использования маркированного списка:

- вариант 1
- вариант 2

— . . .

2.1.2 Нумерованный список

Пример использования нумерованного списка:

- а) шаг 1
- б) шаг 2
- в) ...

2.2 Пример вставки картинок

2.2.1 Пример вставки растровых картинок

Рисунок 1 – Представление метода коллаборативной фильтрации

Изм	Лист	№ докум.	Подп.	Дата

2.2.2 Пример вставки векторных картинок

Рисунок 2 – Кривые с индексами от -2 (слева) до 3 (справа).

2.3 Отображение таблиц

Из CSV файла:

Таблица 1 – Матрица с предсказанными значениями

client	story 1	story 2	story 3	story 4	story 5	story 6	 story n
client 1	0.004	-0.345	1	0.111	-0.136	0.3	 0.041
client 2	0.676	0.154	0.438	0.672	1	-0.524	 -0.244
client 3	1	0.512	-0.285	1	0.357	0.021	 1
client 4	-0.654	1	0.008	0.176	0.997	0.127	 0.451
client 5	-0.123	0.009	0.238	-0.006	-0.078	1	 0.022
client 6	0.998	0.134	0.031	0.076	0.008	0	 0.302
client m	0.475	-0.189	0.454	1	0.526	0.255	 0.342

2.4 Примеры вставки кода

(пример вставки кода из файла можно посмотреть в приложениях 1 и 2) пример вставки кода прямо сюда:

```
1 const confidence = matrix.scalar(alpha);
2 let X = Matrix.random(users, features);
3 let Y = Matrix.random(stories, features);
4 let X_I = Matrix.identity(users);
5 let Y_I = Matrix.identity(stories);
6 let I = Matrix.identity(features);
7 let 1I = I.scalar(lambda);
```

Изм	Лист	№ докум.	Подп.	Дата

2.5 Примеры использования формул

$$S(u,i) = \frac{\sum_{j \in N} W_{i,j} r_{u,i}}{\sum_{j} |W_{i,j}|}$$

а также $R = U \times V$ и

$$p_{ui} = \begin{cases} 1, r_{ui} > 0 \\ 0, r_{ui} = 0 \end{cases} \tag{1}$$

а также

$$\frac{1}{2\pi i} \int_{S_{\rho}} \frac{f(z)}{z - z_0} dz - f(z_0) =
= \frac{1}{2\pi i} \int_{S_{\rho}} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \int_{S_{\rho}} \frac{f(z_0)}{z - z_0} dz =
= \frac{1}{2\pi i} \int_{S_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz.$$

Пример формул с описанием значений:

У нас есть Y-transpose-Y и X-transpose-X, независимые от u и i, что означает, что мы можем вычислить его предварительно. Итак, с учетом этого наши конечные уравнения имеют вид:

$$x_{u} = (Y^{T}Y + Y^{T}(C^{u} - I)Y + \lambda I)^{-1}Y^{T}C^{u}p(u)$$

$$y_i = (X^T X + X^T (C^i - I)X + \lambda I)^{-1} X^T C^i p(i)$$

где X и Y - наши случайно инициализированные матрицы. Они будут попеременно обновляться.

Cu и Ci - наши ценности доверия.

 λ - регуляризатор для уменьшения переоснащения (мы используем 0.1). p(u) и p(i) - двоичное предпочтение. 1, если мы знаем предпочтение, и 0, если не знаем.

I матрица идентичности. Квадратная матрица с единицами по диагонали и нулями повсюду.

Изм	Лист	№ докум.	Подп.	Дата

3 Ещё один раздел

Пример вставки диаграммы из файла.

Рисунок 3 – Схема «обогащения» реакциями

и табличка прямо тут

Таблица 2 — Расчет весомости параметров $\Pi\Pi$

Парамотр и	Параметр x_j				Первый шаг		Второй шаг	
Параметр x_i	X_1	X_2	X_3	X_4	w_i	$K_{{\scriptscriptstyle \mathrm{B}}i}$	w_i	$K_{{\scriptscriptstyle \mathrm{B}}i}$
X_1	1	1	1.5	1.5	5	0.31	19	0.32
X_2	1	1	1.5	1.5	5	0.31	19	0.32
X_3	0.5	0.5	1	0.5	2.5	0.16	9.25	0.16
X_4	0.5	0.5	1.5	1	3.5	0.22	12.25	0.20
Итого:					16	1	59.5	1

Изм	Лист	№ докум.	Подп.	Дата

Результаты 4 Как видно из ... Лист 1502.103ШИФР.000 ПЗ 14 Изм Лист № докум. Подп. Дата

			Заключение	
	По итогал	м работы мы п	юлучили	
			1502.103ШИФР.000 ПЗ	Лис
Изм. Л	ист № докум.	Подп. Дата	1902.109ШИФР.000 113	15

Список литературы

- [1] K. Weiler. «An incremental angle point in polygon test». B: Graphic Gems IV (1994). Под ред. Р. Heckbert, с. 16—23.
- [2] Agathos A. Hormann K. «The point in polygon problem for arbitrary polygons». B: Comput. Geom. Theory Appl. 20 (2001), c. 131—144. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf.
- [3] Евграфов М. А. «Аналитические функции». В: 3-е издание. Москва: Наука. Гл. ред. физ.-мат. лит, 1991. Гл. 1. Введение.

Изм	Лист	№ докум.	Подп.	Дата

Приложение А

Функция вычисления матриц латентных признаков методом ALS

```
function implicit(matrix) {
1
2
     const confidence = matrix.scalar(alpha);
3
            = Matrix.random(users,
4
     let X
                                       features);
5
     let Y = Matrix.random(stories, features);
6
     let X_I = Matrix.identity(users);
     let Y_I = Matrix.identity(stories);
            = Matrix.identity(features);
     let I
9
            = I.scalar(lambda);
     let lI
10
11
     for (let k = 0; k < iterations; ++k) {
12
       const yTy = Y.transpose().multiply(Y);
13
       const xTx = X.transpose().multiply(X);
14
15
       for (let u = 0; u < users; ++u) {
16
         let u_row
                       = confidence.row(u);
17
         const p_u
                        = u_row.copy();
                        = p_u.data.map(e => e !== 0 ? 1 : 0);
18
         p_u.data
                        = Matrix.diagonal(u_row);
19
         const CuI
20
                        = CuI.addition(Y_I);
         const Cu
         const yT_CuI_y = Y.transpose().multiply(CuI).multiply(Y)
21
22
                       = Matrix.from(p_u);
         const tempV
                      = Y.transpose().multiply(Cu);
23
         const tempM
24
         const yT_Cu_pu = tempM.multiply(tempV).col(0);
25
         const A
                        = yTy.addition(yT_CuI_y).addition(lI);
                         = X.setRow(u, A.solve(yT_Cu_pu));
26
         Χ
27
       }
28
29
       for (let i = 0; i < stories; ++i) {
                       = confidence.col(i);
30
         const i_row
31
                        = i_row.copy()
         const p_i
                        = p_i.data.map(e => e !== 0 ? 1 : 0);
32
         p_i.data
33
         const CiI
                        = Matrix.diagonal(i_row);
34
         const Ci
                        = CiI.addition(X_I);
         const xT_CiI_x = X.transpose().multiply(CiI).multiply(X)
35
36
         const tempV = Matrix.from(p_i);
37
         const tempM = X.transpose().multiply(Ci);
```

Изм	Лист	№ докум.	Подп.	Дата

Приложение Б

Оптимизация вычисления матриц латентных признаков

```
метод сопряженных градиентов
   def nonzeros(m, row):
2
       for index in xrange(m.indptr[row], m.indptr[row+1]):
3
           yield m.indices[index], m.data[index]
4
5
   def implicit_als_cg(Cui, features=20, iterations=20, lambda_val
      =0.1):
7
       user_size, item_size = Cui.shape
8
9
       X = np.random.rand(user_size, features) * 0.01
       Y = np.random.rand(item_size, features) * 0.01
10
11
12
       Cui, Ciu = Cui.tocsr(), Cui.T.tocsr()
13
14
       for iteration in xrange(iterations):
15
           print 'iteration %d of %d' % (iteration+1, iterations)
           least_squares_cg(Cui, X, Y, lambda_val)
16
17
           least_squares_cg(Ciu, Y, X, lambda_val)
18
19
       return sparse.csr_matrix(X), sparse.csr_matrix(Y)
20
21
22
     def least_squares_cg(Cui, X, Y, lambda_val, cg_steps=3):
23
       users, features = X.shape
24
25
       YtY = Y.T.dot(Y) + lambda_val * np.eye(features)
26
27
       for u in xrange(users):
28
29
           x = X[u]
           r = -YtY.dot(x)
30
31
32
           for i, confidence in nonzeros(Cui, u):
33
                r += (confidence - (confidence - 1) * Y[i].dot(x)) *
       Y[i]
34
```

Изм	Лист	№ докум.	Подп.	Дата

```
35
           p = r.copy()
36
            rsold = r.dot(r)
37
            for it in xrange(cg_steps):
38
39
                Ap = YtY.dot(p)
                for i, confidence in nonzeros(Cui, u):
40
41
                    Ap += (confidence - 1) * Y[i].dot(p) * Y[i]
42
                alpha = rsold / p.dot(Ap)
43
44
                x += alpha * p
                r -= alpha * Ap
45
46
                rsnew = r.dot(r)
47
                p = r + (rsnew / rsold) * p
48
49
                rsold = rsnew
50
51
            X[u] = x
52
   alpha_val = 15
53
   conf_data = (data_sparse * alpha_val).astype('double')
54
55
   user_vecs, item_vecs = implicit_als_cg(conf_data, iterations=20,
       features=20)
```

Изм	Лист	№ докум.	Подп.	Дата