五、垂直剖面圖分析原理與應用

五、1 剖面圖分析

五 D. 第七章 剖面圖的分析

§ 五-1 前言 (Ref. Ch 6. of Saucier, 1965, for more information) (搞自江火明老師之天気冷講義)

為了瞭解大氣的垂直結構,剖面圖的分析是很簡單且直接 的工具。一般而言, 橫坐標為水平距離 S (可能是東西方向 X; 或南北方向y),縱坐標為-Inp,垂直尺度對水平尺度的比約為 1:125 或 1:250 ° (See below)

五· \$ D - 2 穩定層與對流層項的位溫分析

$$0 = T \left(\frac{P_{00}}{P} \right)^{R/cp}$$

大氣的穩定層是指氣溫垂直遞減率浪小的地方,也就是位 温隨高度增加浪大的地方。

由於平流層大氣極為穩定,位溫的垂直變化率很大,因此 ,浪容易從氣溫的遞減率判斷對流層頂,它幾乎是在某一等位 温面上。

圖7-1 是 1947 平 12月 25日 1500GCT 的位温垂直剖面圖,粗 黒線是對浓層頂,陰影區是穩定層,在高緯度對流層頂約在320 0 K的位温面上;在低緯度對流層項約在 $360~{}^{0}$ K的位温面上,在 對流層頂限陡直的地方,就很難去確定。

圖7-2 是位温的剖面圖,陰影區是一傾斜的穩定層,我們 知道處處 $\frac{\partial \theta}{\partial x}$ 均為正,在穩定層 (即過度層) 内 $\frac{\partial \theta}{\partial x}$ 為極大。在 其邊緣 $\frac{\partial \theta}{\partial x}$ 不連續。换句話說,穩定層可視為位溫水平梯度很大

- 的地方,但沒有改變梯度的方向。 *使用重苞剖面图 运饱由.(骶恕在例行之天美分析中不常用它) 1.它可捏供三维之天美多统结構

 - 2、5天是多统之垂直结構比水平结構簡明許多,可較客观的各分析、
 - 3、許多重要的水平系统,可以由垂直剖面图中清楚的定位出来及去了解它
 - 4、分析的探密资料(sounding),下一個仓手遇輔的步驟就是重克剖面分析。

圖 7-1

圖 7-2

對流層項也是穩定層的邊界,它卻可飲改變位溫水平 梯度的方向。一般而言,對流層項與低平流層的位溫面是同相位的,即對流層項凸起的地方位溫面也凸起;對流層項凹陷的地方

位溫面也凹陷。而對流層就不一樣了,在對流層項較低的北方,對流層的位溫面是凸起的;在對流層項較高的南方,對流層的位溫面是凹陷的。

り、③) §77-3 魚温分析

圖7-3 是1947 平12月25日1500GCT 的垂直剖面圖,粗黑線是對流層項,陰影區是穩定層,實線是氣溫,虛線是位溫(與圖7-1相同),在穩定層內,氣溫垂直遞減率狠小。

圖 7-3

, D. (4)

§ 70-4 濕度分析

圖7-4是1947 平12月25日1500GCT 的垂直剖面圖,粗黑線是對浓層項,陰影區是穩定層,實線是比濕 (g/kg) ,虛線是位溫 (與圖7-1相同) 。

3 7-4

一般而言,在高溫處濕度梯度很大,在過渡帶濕度型式很近溫度分佈型式。在穩定層,濕度隨高度遞減很快

三、D、(5) § D-5 斜壓性

6.11. Density and specific volume.—By stant pressure, $(\partial \alpha/\partial s)_p = (R_d/p)(\partial T^*/\partial s)_p$. differentiating the equation of state at conbaric temperature gradient is large (Fig. 6.11). Barotropy exists where isosteres Thus, isosteres (isopycnics) are steeply inclined to isobaric surfaces where the iso-

more briefly, solenoids. The parallelograms tions of solenoid tubes at varying angles at the surface of the earth. These parallelepipeds are isosteric-isobaric solenoids or, seen in vertical cross sections are intersecwith the plane of the cross section.

Consider a plane defined along the re-

Fig. 6.11.—Cross section of density and specific volume (continuous lines) and temperature (° C) (deshed

parallel isobars, and the atmosphere is most baroclinic where intersections of isosteres with isobars are numerous. 6.12. Solenoids and baroclinity.-If all having also unit isobars, there results a unit isosteres are drawn on a cross section pattern of parallelograms bounded on alternate sides by the respective isosteres and isobars (Fig. 6.12a). These parallelograms extend into space as parallelepipeds bounded by isosteric and isobaric surfaces and which either are closed rings or terminate

For all practical purposes this plane is a vertical cross section with azimuth along plane. In the isobaric pattern of a in Figure 6.12b the normal plane through B intersects the isobaric surface along ABC. If in this intervals of α , then each strip of the isobaric It follows that, in the vicinity of the point, solenoid tubes are perpendicular to the plane. This we shall call the solenoid normal drawing the isosteres are drawn for unit sultant pressure and specific volume ascendthe isobaric ascendant of specific volume, ant vectors at a point in space (Fig. 6.12a)

Cross-Section Analysis

155

surface $\delta n=\delta a/(\partial a/\partial n)_p$. By substitution, $A=a(-\delta b\delta a)/g(\partial a/\partial n)_p$. The area A' per

unit of p and a, $[A' = A/(-\delta p \delta a)]$, is then $A' = \alpha/g(\partial \alpha/\partial n)_p$). The dimensions of A'

surface bounded by two isosteres is the lower face of the solenoid tube above and the upper face of the one below.

The diagram in the right of Figure 5.12a

-7PML(. Ja 122 A-2

Fig. 6.12b (宮西南上)

are sec², A' has a geometric connotation and also a physical one of energy. The importance of solenoids lies in the reciprocal of A', N = 1/A', which is the number of unit solenoids per unit area in the normal plane, or the solenoid density. illustrates the pattern of isobars and isosteres in the normal plane for the vector cross section of a unit solenoid. The area A is scheme at the left. Shaded region A is the the product of the spacing δz of unit isobars and the isobaric spacing δn of unit isosteres;

$$N = (g/a)(\partial a/\partial n)_p . \tag{1}$$

From the above formula for A' we have

 $A = \delta z \delta n$. From the hydrostatic equation $\delta z = (a/g)(-\delta p)$, and along an isobaric

5 - 5 / 34

圖7-5 為力管(Solenoid Tube)剖面的示意圖,橫線是等壓線(Isobars),間距為 δp ,斜線是等比容線(Isosteres),間距為 $\delta \alpha$,當等 比容面與等壓面不平汀時,相鄰兩等壓面與相鄰兩等比容面就形成力管,如圖7-5 中陰影區就是一力管的剖面。

■ 7-5 (垂 包 部 面)

設相鄰兩等壓面之垂直距離為 δz ,在等壓面上相鄰兩等 比容面之距離為 δn ,則力管截面積A可以下式表之,

$$A = \delta z \, \delta n \,, \tag{7-1}$$

由浓體靜力平衡知

$$\delta z = \frac{\alpha}{g} \ (-\delta p) \tag{7-2}$$

又因為

$$\delta n = \frac{\delta \alpha}{\left(\frac{\partial \alpha}{\partial n}\right)_{p}}, \quad \delta n = \left(\frac{\partial n}{\partial \alpha}\right)_{p} \delta \alpha = \frac{\delta \alpha}{\left(\frac{\partial \alpha}{\partial n}\right)_{p}}$$
 (7-3)

故浔

$$A = \frac{\alpha(-\delta p \delta \alpha)}{g \left(\frac{\partial \alpha}{\partial n}\right)_{p}}, \qquad (7-4)$$

単位壓力 $(\delta p=1)$ 與單位比容 $(\delta \alpha=1)$ 之力管截面積 A'為,

$$A' = \frac{A}{(-\delta p \delta \alpha)} = \frac{\alpha}{g \left(\frac{\partial \alpha}{\partial n}\right)_p} , \qquad (sec^2)$$
 (7-5)

在垂直剖面上單位面積之單位力管數 () 稱為力管密度,則

$$N = \frac{1}{A'} = \frac{g(\frac{\partial \alpha}{\partial n})_p}{\alpha}, \quad \text{alway } 70$$

$$(\sec^{-2}) \quad \text{N: is specific energy per unit}$$

$$(7-6)$$

N永遠保持正値。定義力管向量N為 $\overrightarrow{N} = \nabla \alpha \times (-\nabla p)$ $- \oint \alpha dp = - \oint \alpha \nabla p \cdot d\hat{\ell} = - \oint_A (\nabla x (\alpha \nabla p) \cdot \hat{k} dA)$ (7-7) 它的大小為N $\therefore the solenoidal term in vorticity <math>(7-8)$ $\Rightarrow \nabla \alpha \times (-\nabla p) = \nabla \alpha \times \nabla p$ $(2\alpha \times p) = -(\nabla \alpha \times \nabla p) \cdot \hat{k}$ (7-8) 其中 θ 為 $\nabla \alpha$ 與 $-\nabla p$ 的夾角。N表示斜壓性的大小,故一般用N 做為斜壓性 (Baroclinity) 分析的參數。若大氣是正壓分布, 等密度面與等壓面平行,則N為0。

3 7-6

圖7-6 是等壓面上等比容線,前頭所示者為力管向量內, 垂直剖面無法處處都垂直力管, 如沿著DEFG, 只有在E 處剖面 垂直力

管向量,在垂直剖面上F處等壓線與等比容線平行,雖然真實的斜壓性很大,但在此垂直剖面上斜壓性的分量卻為()。

設在剖面上之斜壓性為 N_{sz} ,而總斜壓性為N, θ_{sz} 為剖面方位(s)與等比容線(α)(或等溫線T)在等壓面上減少方向之夾角,則

$$N_{sz} = N \cos \theta_{sz} \tag{7-9}$$

若 $\nabla \alpha$ 與剖面方位 反向,則 N_{sz} 為負,由式 (7-6), N_{sz} 可寫成

$$N_{sz} = \frac{g}{\alpha} \left(\frac{\partial \alpha}{\partial s} \right)_{p}, \qquad (7-10)$$

由狀態方程可得

$$\frac{1}{\alpha} \left(\frac{\partial \alpha}{\partial s} \right)_{p} = \frac{1}{T} \left(\frac{\partial T}{\partial s} \right)_{p}, \tag{7-11}$$

由位温定義可得

$$\frac{1}{T} \left(\frac{\partial T}{\partial s} \right)_{p} = \frac{1}{\theta} \left(\frac{\partial \theta}{\partial s} \right)_{p} , \qquad (7-12)$$

女

$$N_{sz} = \frac{g}{\alpha} \left(\frac{\partial \alpha}{\partial s} \right)_{p} = \frac{g}{T} \left(\frac{\partial T}{\partial s} \right)_{p} = \frac{g}{\theta} \left(\frac{\partial \theta}{\partial s} \right)_{p}, \qquad (7-13)$$

總斜壓性為

$$N = \frac{g}{\alpha} \left(\frac{\partial \alpha}{\partial n} \right)_{p} = \frac{g}{T} \left(\frac{\partial T}{\partial n} \right)_{p} = \frac{g}{\theta} \left(\frac{\partial \theta}{\partial n} \right)_{p}, \qquad (7-14)$$

换言之,斜壓性為 α (或T或 θ)在等壓面上的水平變化百分比,乘以重力(g)。注意:靜力穩定度是位溫的垂直變化百分比乘以重力(即 $\frac{g}{\theta}(\frac{\partial \theta}{\partial z})$)。

圖7-7 是1947 平12月25日1500GCT 的垂直剖面圖,粗黑線是對淶層項,實線是比容線,虛線是溫度線(與圖7-3 相同)。在Greensboro與Tampa之間800Hpa至400Hpa層斜壓性浪强,在圖7-1 中亦可看出。

由浓體靜力平衡知,斜壓性可以壓力的垂直結構解釋之, ∂Z 為單位壓力面之厚度,則

$$\frac{g}{\delta z} \left(\frac{\partial \delta z}{\partial n} \right)_{p} = \frac{g}{T} \left(\frac{\partial T}{\partial n} \right)_{p} = N , = \nabla \alpha \times (-\nabla p)$$

$$(7-14)$$

在北半球熱力風向量與力管向量反向,而大小成正比。故在等壓面上,面對著暖風,力管向量指向右側,熱力風向量指向左側,鄰近的等壓面很快地沿視線方向輻散。

第D. 全面的科学 (Ref. P&N ch. 7) 全面: 兩特性 ふ同之一 気里接觸面 (or 节) 稅之。 同一 気围 闪很 女有天 気 現 裏 (雷雨 徐介) 、大部分之 天 交 現 裏 均 萬 生 全 暖 支 園 之 奏 接 必, 即 聲面 附 近。 **Fronts are layer or buffer zone separating air masses of different origin (月, I , I , V) 、 市 平 1 あ 像 顶 2 上 下 冬 京 可 視 第二 不同 気 園 。 (Fronts may be treated as a zero-order discontinuity of c of I の I 一 I と I と I と I を I	1
同一英国内很欠有天负现象(雷丽管外),大部分之天负现象均遗生 一个 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•
同一英国内很欠有天负现象(雷丽管外),大部分之天负现象均遗生 一个 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
文 暖 复 围 之 交 接 处, 即 锋 面 附 近。 ** Fronts are layer or buffer 20ne separating air masses of different origin (f , T , g , v).	在
(f, T, g, v)、 中对 屬爾顶之上下冬点亦可視為二不同美国。 Fronts may be treated as a zero-order discontinuity sfc of f or f . (D) 大	
Fronts may be treated as a zero-order discontinuity sfc of f on T . (B 表 T b Z - 次 Z 事 Z . (Old Warm $P'-P \neq 0$) Z	"
個地域 $P'-P+0$	
Cold warm $f'-f+0$	
β が δz β が δz β が δz $\delta $	
S 一 設 Q 代表某連续物理量,刻由图中 Z a Z の Z	· · · · · · · · · · · · · · · · · · ·
N 。 S 。 A	→C
$(Q_c - Q_b) + (Q_b - Q_a) = (Q_c - Q_d) + (Q_d - Q_a)$ $\Rightarrow \frac{\partial Q'}{\partial n} \delta n + \frac{\partial Q'}{\partial z} \delta z = \frac{\partial Q}{\partial z} \delta z + \frac{\partial Q}{\partial n} \delta n$	
$\Rightarrow \frac{\partial Q'}{\partial n} \delta n + \frac{\partial Q'}{\partial z} \delta z = \frac{\partial Q}{\partial z} \delta z + \frac{\partial Q}{\partial n} \delta n$	
$\frac{1}{1} - \left(\frac{\partial Q'}{\partial n} - \frac{\partial Q}{\partial n}\right) \delta n = \left(\frac{\partial Q'}{\partial z} - \frac{\partial Q}{\partial z}\right) \delta z$	
$\tan \varphi = \frac{\delta^2}{\delta n} = -\frac{\frac{\partial Q'}{\partial n} - \frac{\partial Q}{\partial n}}{\frac{\partial Q'}{\partial z} - \frac{\partial Q}{\partial z}} (x)$	
10月10月11日本江東東	决定
	.,,,
(warm) (cold)	
$X'' \beta' = \frac{-1}{g} \frac{\partial \beta'}{\partial z} , \beta = \frac{-1}{g} \frac{\partial \beta}{\partial z}$	
$\left(\frac{dV_n}{dt} = f\left(V_{gT} - V_T\right) = -\left(\frac{f}{f}\frac{\partial P}{\partial n} + fV_T\right)\right)$	
$\frac{\partial f}{\partial t} = -\frac{1}{g} \frac{\partial f}{\partial y} - f u = f u = f (u_g - u)$	
設水平面上,平约锋面之同建分量为 5万, 重览分量为 5万,	
划重左鋒面之風場加速改為den,但其方向約平行鋒面(fur)	
) 令Q=P。分子為水平氣壓梯度(即地轉風)差,分母為垂直氣壓梯度	· ()
力)差。 力)差。	x ('

分母:為冷暖區之溫差(浮力差),即鋒面兩側之水平溫度梯度,即斜壓性。 越大越斜,越小越直。

分子:為冷暖區之風速差,即風速之梯度或風切大小,為系統的深淺(彎曲)。

锋面上之直接:次还别差持续存在,划会使还总超於多 Warm 限大、但事实上没有,以有 Coriolis 及 Centifigal forces 之作用来限制包由 由 dy = fva, i ageostrophic wind 被部队对 向来加速U,造成缝面上方之jet stream、 X上面老属锋面态一個界面,但实際上鋒皇一個常狀(20ne), 、温度就不是零次不事鎮了,因此特温度在鋒帶上視为一次不事鏡,而是底 划者二次不連續。 frontal P:鋒帶內之压力 P': 鋒 以外 (厥例) 2压力、 小前面主(*) 於可令Q= on (在此灸压治一次連續) (在禁压面上) 在zero-order: VgT=-片部为不连续,但 2g- 是連续的。 1: tan 4 > 0 图暖侧 $0 > \frac{\partial T'}{\partial n} > \frac{\partial T}{\partial n}$: more eyclonic wind shear in the front

The spear is less anticyclonic	(more cyclonic) within the frontal zone			
即锋面常发点旋收风切最				
∂V_{g}^{\prime} , $\partial V_{g}^{\dagger} < 0$	另外,在对流層顶,它也是两点固問的界面;但公平息			
$\frac{\partial V_{g}'}{\partial n} > 0$ $\frac{\partial V_{g}'}{\partial n} > 0$ $\frac{\partial V_{g}}{\partial n} > 0$	原的交温虚温率(瑟)很小,较後式之分母很大			
The state of the s	· 对试图顶的斜率很小,相当接近水平。			
The state of the s	, ,			
X 差再加上曲率的作用 (梯度	$ \begin{bmatrix} A \\ A \\ \end{bmatrix}, \begin{bmatrix} A \\ A \\ \end{bmatrix} $ $ \begin{bmatrix} A \\ A \\$			
7 - 3v'	- 3v			
$\tan \Psi = \frac{1}{g} \left(f + 2kv \right) \frac{\partial T'}{\partial T'}$	- 2T , & (= +1 (1920)			
_ <u>@v'</u>	= 2V			
$\tan \Psi = \frac{\partial v'}{\partial z}$ $\tan \Psi = \frac{\partial v'}{\partial z} \left(f + 2 k \overline{v} \right) \frac{\partial v'}{\partial z}$	_ <u>2</u> L			
3-2-	25			
"For given slope, if \$<0 (6	or becoming smaller). The wind shear is			
·For given slope, if 长<0 (or becoming smaller), the wind shear is more accentuated. 公反美旋風切較大。				
* The difficience between the slope	(tan Y) D. level and isobarive ste in			
* The diffierence between the slope (tan 4) of level and isobaric sfc is negitible in front, but not for tropopause.				
"在水平面上看鲜面之邻率为	· ·			
1				
亦左等压面上看"""浩 tam ys", 小等压面并水平面(lovel)之灰角(或是等压面倾斜之角度),以着.				
+ 715 + 715 - f vg	- 1 (10 × 10)			
$\tan \psi - \tan \psi_i = -\frac{\int \overline{\psi}_i}{g}$ (level) (isobaric)	= (= 9.8)			
	甘屬东就很平缓的 tropopause 東講,≪就			
题得相当大。别且在上对流	爱: Vg 东来就 敷大, 校 x 亦大。			
* In case of the curved discon	tinuity sfc.			
(a) No mid-latitude.	0 3			
In general: 2k v << f	-4)			
(a) \sqrt{n} $mid-latitude_{1/0}$ In general: $2kv << f^{(10-4)}$ $\frac{1}{2}$ $2kv = \frac{2\times40 \text{m/s}}{1500 \text{km}} \sim 10^{-5} \text{sec}^{-1} $ $\frac{1}{2}$ $\frac{1}{$				
り Intropics: f おか、こを	large → 2kv >> f			
. 如厂图服四周之票,籍,到可剂	2 左.一作文章 z transient layer			

五、3 鋒面附近之特性與鋒面之移動 (ref: 明文-- Ch 2 氣團和鋒)

- * 鋒面附近之特性
- 1. 當其他因子不變時,鋒面斜率隨緯度增加而增大。而冷鋒南下時,其坡度漸漸減小。 若不考慮曲率,在赤道上 f=0,所以 $\tan \varphi=0$,即赤道上不可能存在鋒。
- 2. 鋒面斜率隨兩邊氣團間溫差之減小而增大。當 $\Delta T = 0$ 時, $\tan \varphi \to \infty$,即 $\varphi \to 90^\circ$ 。即鋒成為鉛直,其實就是沒有鋒。(回想水平溫梯度與斜壓性的關係)
- 3. 當兩側平行鋒之風速差越大時,坡度也愈大。風速差為0, $\tan \varphi = 0$,也就沒有鋒。只有 $\Delta V = V w V c > 0$,即有氣旋性風切時才能使鋒面維持一定的坡度。而在對流層頂,因為 $\tan \varphi$ 可以 > 0 or < 0,所以 ΔV (對流層與平流層間之風速差)亦可以> 0 or < 0。另外,鋒面上之 ΔV > 0,在近地面處因為摩擦力加強,故其效應亦會更顯著。
- 4. 理論上,鋒面為物質面,所以垂直鋒面之風分量應該是連續的,即Vn'=Vn,而且為鋒 面的移動速度。
- 5. 實際大氣中,冷鋒前方多為西-西南風,鋒後為西北風;暖鋒前方為東南風,鋒後為南-西南風;滯留鋒兩側分別為偏東風和偏西風。這些都具有明顯之氣旋性風切。在冬季,當寒潮冷鋒南下時,有時鋒前、鋒後的風向常為一致之東北風,但鋒後之風速遠大於鋒前,亦為氣旋性風切(下圖)。
- 6. 鋒附近的另一個特徵是其水平溫度梯度很大,所以其上方之熱力風亦很大,即風之垂 直切變很大;即在冷暖鋒上方,風速隨高度增大而快速變強。所以暖(冷)鋒前之測 站,因為有強之暖(冷)平流,所以風向隨高度增加做順(逆)時針方向轉。

一台灣東北方海面上之冷鋒兩側都吹偏東風。多在寒潮高壓之南緣,鋒面在高壓氣團內。 西側山前移速較慢,暖鋒消失。山後形成台灣低壓。

5 - 17 / 34

鋒面的坡度

梯度場均與對流層裏的方向相反。高、低緯兩個對流層頂則從北、南側趨向鋒層,並在 鋒層附近稍向下傾斜。(d)將鋒層上、下界分別與其南、北側的對流層相連。

70 · 天 氣

四、鋒的坡度

鋒在空間是一個傾斜的穩定層,它隨高度向冷空氣一側傾斜,其傾斜角不大,冷鋒約為 $\frac{1}{50}-\frac{1}{100}$,暖鋒約為 $\frac{1}{100}-\frac{1}{150}$,甚至更小,且隨時間、地點、高度而變化。 鋒的這種傾斜與鋒區內氣象要素場的分布有密切聯繫。

爲理論上討論方便,假設鋒是物質面,有上、下兩個界面,且互相平行。取 z 軸與鋒面平行, y 軸由暖氣團(以W表示)通過鋒區(以P表示)指向冷空氣(以C表示)

圖 2.13 對流層頂附近鋒面分析

,如圖 2.14 所示。現在在上界面上取 A、B兩點,對於任一氣象要素 φ 有:

$$(\psi_B - \psi_A)_{\psi} = (\frac{\partial \psi_W}{\partial z}) \Delta z + (\frac{\partial \psi_W}{\partial y}) \Delta y$$

$$(\psi_B - \psi_A)_{\psi} = (\frac{\partial \psi_F}{\partial z}) \Delta z + (\frac{\partial \psi_F}{\partial y}) \Delta y$$
(2.3)

 $^-$ 因 ϕ 在鋒面上是連續的,有 $(\phi_{\scriptscriptstyle B} - \phi_{\scriptscriptstyle A})_{\scriptscriptstyle W} = (\phi_{\scriptscriptstyle B} - \phi_{\scriptscriptstyle A})_{\scriptscriptstyle F}$

$$\left(\frac{\partial \phi_{w}}{\partial z}\right) \Delta z + \left(\frac{\partial \phi_{w}}{\partial y}\right) \Delta y = \left(\frac{\partial \phi_{z}}{\partial z}\right) \Delta z + \left(\frac{\partial \phi_{z}}{\partial y}\right) \Delta y \tag{2.4}$$

根據圖2.14所示,鋒面坡度爲

 $\mathrm{tg}lpha=\Delta z/\Delta y$,則得

大and
$$\tan \alpha$$
 第二章 無國和鋒 71 $\tan \alpha = -(\frac{\partial \phi_w}{\partial y} - \frac{\partial \phi_p}{\partial y})/(\frac{\partial \phi_w}{\partial z} - \frac{\partial \phi_p}{\partial z})$ (2.5)

押可得

$$tg\alpha = -\left(\frac{\partial \phi_{x}}{\partial y} - \frac{\partial \phi_{c}}{\partial y}\right) / \left(\frac{\partial \phi_{x}}{\partial z} - \frac{\partial \phi_{c}}{\partial z}\right)
如果鋒只有一個界面,則
$$tg\alpha = -\left(\frac{\partial \phi_{y}}{\partial y} - \frac{\partial \phi_{c}}{\partial y}\right) / \left(\frac{\partial \phi_{y}}{\partial z} - \frac{\partial \phi_{c}}{\partial z}\right)$$
(2.6)$$

取溫度了代替

$$ag{tg} lpha = (rac{\partial T_w}{\partial y} - rac{\partial T_F}{\partial y}) / (\gamma_F - \gamma_F)$$

$$ag{tg} lpha = (rac{\partial T_F}{\partial y} - rac{\partial T_C}{\partial y}) / (\gamma_F - \gamma_C)$$

(2.8)

在鋒區及其兩側, $\dfrac{\partial T}{\partial y}<0$,但鋒區中的 $\dfrac{\partial T_{F}}{\partial y}$ 絕對值遠大於兩側氣團中的値;在

冷、暖氣團中, $r_{m v}$ 、 r_o 均大於0,但在鋒區中 $r_{m v}$ <0,或為很小的正値。所以, $\dfrac{\partial T_{m w}}{\partial y}$

 $\frac{\partial T_P}{\partial y}>0$,對應有 $f_{I^w}-f_P>0$; $\frac{\partial T_o}{\partial y}-\frac{\partial T_o}{\partial y}<0$,對應有 $f_P-f_o<0$ 。因此,(2.8)式中的 $\mathrm{tg}\,\alpha>0$,這與實況相符。這說明鋒的傾斜與鋒區溫度場的兩大特性(即鋒區內水平溫度梯度遠大於氣團中的;鋒區是逆溫、等溫或很小值的溫度垂直遞減率)

如果取氣壓力代替少,則類同(2.7)式有

$$tg\alpha = -\left(\frac{\partial p_w}{\partial y} - \frac{\partial p_o}{\partial y}\right) / \left(\frac{\partial p_w}{\partial z} - \frac{\partial p_o}{\partial z}\right)$$
 (2.

根據靜力方程和地轉風關係,可得

$$tg\alpha = -\frac{f}{g} \left(\rho_{u}u_{\varrho v} - \rho_{o}u_{\varrho c} \right) / \left(\rho_{v} - \rho_{e} \right) \tag{2.10}$$

或
$$\operatorname{tg} lpha = -rac{f}{g} \left(\left. T_{\mathcal{O}} u_{\mathfrak{o} w} - T_{\mathcal{W}} u_{\mathfrak{o} c} \right) / \left(\left. T_{\mathcal{O}} - T_{\mathcal{W}} \right)
ight.$$
 $\overline{\chi}$ $\overline{u}_{\mathfrak{o}} = rac{1}{2} \left(u_{\mathfrak{o} w} + u_{\mathfrak{o} c} \right) \; , \; \Delta u_{\mathfrak{o}} = \left(u_{\mathfrak{o} w} - u_{\mathfrak{o} c} \right)$

(2.10)'

Ж 72

$$\vec{T} = \frac{1}{2} (T_w + T_c)$$
, $\Delta T = (T_w - T_c)$

$$\overline{
ho}=rac{1}{2}\left(\,
ho_{w}+
ho_{c}\,
ight)$$
 , $\Delta
ho=\left(\,
ho_{w}-
ho_{c}\,
ight)$

$$tg\alpha = -\frac{f}{g}\rho \frac{\Delta u_{\sigma}}{\Delta \rho} - \frac{f}{g}\overline{u_{\sigma}}$$

(2.11)

$$tg\alpha = \frac{f}{g} T \frac{\Delta u_o}{\Delta T} - \frac{f}{g} u_o$$
 (2.11)

2.11)和(2.11)/式中右端第二項較第一項小得多,可略去,最後得

$$S = \Delta I = S$$
和 (2.11) ,式中右端第二項較第一項小得多,可略去,最後得 $tg\alpha \cong \frac{f}{g}T = \frac{u_{ov} - u_{oo}}{T_w - T_o}$ (2.12)

這就是鋒面坡度公式 (Margules 公式)。

由(2.12)式可得以下結論:

(1)當其他因子不變時,鋒面坡度隨緯度增加而增大,這說明冷鋒南下時,坡度漸漸 威小。在赤道上,f=0, $\mathsf{tg}\alpha=0$,即赤道上不可能存在鋒。

(2)鋒面坡度隨兩種氣團間溫差的減小而增大,當 ΔT = 0 時, tgα→∞,α = 90° 即鋒成了鉛直的,其實質就是沒有鋒。

(3)當鋒兩側平行於鋒的風速差愈大時,坡度也愈大,風速差爲0時,lpha=0,也即 沒有鋒。只有 △ﺳ。= ﺳ- - ﺳ。>0(即有氣旋性切變)時,才能使鋒面維持一定的坡度

五、鋒附近的風場和氣壓場

(一)國總

如前面所述,鋒面兩側平行於鋒的風速呈氣旋性切變,即有 $\Delta u_{\mathfrak{o}} = u_{\mathfrak{o}r} - u_{\mathfrak{o}c} > 0$ 這種現象在近地面層,加上摩擦的影響,尤爲顯著 在理論上,鋒爲物質面,垂直於鋒面的分速應該是連續的,而且也就是鋒面的移速

冬季,當寒潮冷鋒南下時,有時鋒前、鋒後的風向常爲一致的東北風,但鋒後的風速遠 在實際大氣中,冷鋒鋒前多寫西-西南風, 鋒後爲西北風;暖鋒鋒前爲東南風,鋒 後爲南-西南風; 靜止鋒兩側分別爲偏東風和偏西風。這些都具有明顯的氣旋性切變。 大於鋒前的,這種風速分布形成風的輻合,鋒同樣地可存在其中。 🤻 🥂 (45 [f3,4.7b])

第二章 氣團和鋒 73

鋒附近風場的另一個特徵是,鋒區水平溫度梯度很大,所以在垂直方向上,通過鋒 化,一般是:在地面暖鋒之前的測站,自底層至高空通過鋒層,風向作順時針旋轉,對 最快。因此在鋒面的上空都對應有風速很大的區域,可出現急流。關於風向隨高度的變 區的熱成風很大,即風的垂直切變很大,這種現象在冷、暖鋒上均有,風速隨高度增大 應有暖平流。在地面冷鋒之後的測站,自底層至高空,通過鋒層時風向作逆時針旋轉, 對應有冷平流。如圖 2.15 所示

■2.15 高空風向在鋒層上、下改變示意圖

(二)氣壓場

由鋒的坡度公式

$$tg\alpha = (\frac{\partial p_w}{\partial y} - \frac{\partial p_c}{\partial y})/g(\rho_w - \rho_c)$$

 $tg\alpha>0$,而 $(\rho_{\rm W}-\rho_{\rm G})<0$,故有

KI

$$\frac{\partial p_w}{\partial y} - \frac{\partial p_c}{\partial y} < 0$$

(2.14)

$$\frac{\partial p_w}{\partial x} - \frac{\partial p_c}{\partial x} = 0$$

(2.15)

由此可得出氣壓場和地轉風場的分布如圖 2.16 所示。其中上面三幅圖是在

$$rac{\partial p_w}{\partial x}=rac{\partial p_o}{\partial x}=0$$
 即 $v_{ow}=v_{o\sigma}=0$ 的情况下, 等壓線與鋒相平行,鋒星準靜止狀態

圖的下部是在 $\frac{\partial p_w}{\partial x} = \frac{\partial p_o}{\partial x} \div 0$,即 $v_{ow} = v_{oo} \div 0$ 的情況下,聳處於氣壓場的" V"

在密度一級不連續條件下,鋒面附近有

形槽中;也就是說通過鋒的等壓線要由低壓向高壓處折角。

圖 2.16 鋒附近的氣壓場和風場 (矢線表示地轉風場)

$$\mathbb{R} \qquad \frac{\partial}{\partial y} \left(\frac{\partial p_w}{\partial y} - \frac{\partial p_r}{\partial y} \right) dy + \frac{\partial}{\partial z} \left(\frac{\partial p_w}{\partial y} - \frac{\partial p_r}{\partial y} \right) dz = 0 \tag{2.16}$$

$$\frac{dz}{dy} = -\frac{\partial^2 p_w}{\partial y^2} - \frac{\partial^2 p_x}{\partial y^2} = \frac{\partial^2 p_w}{\partial y^2} - \frac{\partial^2 p_x}{\partial y^2} - \frac{\partial^2 p_x}{\partial y}$$

$$= \frac{dz}{dy} = -\frac{\partial^2 p_w}{\partial y^2} - \frac{\partial^2 p_x}{\partial y^2} = \frac{\partial^2 p_w}{\partial y} - \frac{\partial^2 p_x}{\partial y} - \frac{\partial^2 p_x}{\partial y}$$

$$\alpha = \frac{\partial^2 p_F}{\partial y^2} - \frac{\partial^2 p_C}{\partial y^2} \frac{1}{1}$$

$$\alpha = \frac{\partial^2 p_F}{\partial y^2} - \frac{\partial^2 p_C}{\partial y^2} \frac{1}{g}$$

$$\beta = \frac{\partial^2 p_F}{\partial y^2} - \frac{\partial^2 p_C}{\partial y^2}$$
(2)

因為鋒面上密度一級不連續,故氣壓爲二級不連續,分子、分母都不等於0。又因 $rac{\partial
ho_r}{\partial y} \gg rac{\partial
ho_w}{\partial y}$ 和 $rac{\partial
ho_o}{\partial y}$,故 $rac{\partial^2
ho_w}{\partial y^2} \gg rac{\partial^2
ho_v}{\partial y^2}$ 。 也就是說,等壓線通過鋒區時 氣旋性曲率最大。

六、地面鋒附近的變壓場

在鋒面上,有 $\frac{d}{dt}$ $(p_r - p_c) = 0$,則

$$\frac{\partial}{\partial t} (p_{\rm w} - p_{\rm o}) + C \frac{\partial}{\partial y} (p_{\rm w} - p_{\rm o}) = 0$$
 (2.18)

其中C 爲鋒面沿 y 軸的移速。據上所知,有

 $\frac{\partial p_n}{\partial y} - \frac{\partial p_o}{\partial y} < 0$,冷鋒時,C < 0,故 $\frac{\partial p_w}{\partial t} - \frac{\partial p_o}{\partial t} < 0$, 鋒後冷氣團中正變壓

第二章 氣團和鋒 75 大;暖鋒時, $\mathsf{C} > 0$,故 $rac{\partial oldsymbol{
ho_v}}{\partial t} - rac{\partial oldsymbol{
ho_v}}{\partial t} > 0$, 鋒前冷氣闥中負變壓較大;錮囚鋒附近變 壓場則由冷暖鋒兩者的變壓場組成,其分布更爲複雜(如圖2.17)

七、鋒附近的垂直運動

與鋒附近大範圍雲和降水相對應,常存在着大規模系統性垂直運動。造成鋒附近垂 直運動的因素主要有以下幾種:

(一)地面摩擦影響

由於在低層,鋒位於低壓槽中,因地面摩擦作用使鋒兩側氣流向鋒線輻合,自地面 鋒線向上至相當高的高度有上升運動。地面低槽越強,則上升運動亦越強

(二)鋒兩側冷、嚴空氣相對運動

鋒在移動過程中,當其移速與兩側冷、暖空氣垂直於鋒線的風的分速不等時(vo ÷ vw),空氣將沿着鋒作上、下滑動,引起了垂直運動。可導得

$$w = (v_{\rm w} - C) \operatorname{tg}\alpha$$

其中, C.是鋒面移速, vw.是暖空氣中垂直於鋒面的分速, w.是暖空氣的垂直分速 。在暖鋒上,當 v=> C 時,w > 0,有上升運動,暖空氣沿鋒面上升,稱上滑鋒。 反 之,當 v v < C 時, v < 0 ,暖空氣沿鋒面下沉,稱下滑鋒。還可看出,當鋒的坡度陡的 時候,上升運動強烈;反之微弱。

(三)高空槽與地面鋒的相對位置的影響

一般,在高空槽前和槽線附近有上升連動,槽後有下沉運動,所以當地面鋒位於高 空槽前時,鋒上可有強烈的上升運動;當鋒位於高空槽後時,鋒上有下沉運動

(四)溫度平流作用

一般說,暖平流地區有上升運動,在冷平流地區有下沉運動,由於在地面暖鋒前方 的上空,如 850 、 700 h Pa 面上,蜂區附近常有暖平流,而在冷鋒後上空常有冷平流 所以暖鋒前方上空有上升運動,而在冷鋒後方上空有下沉運動。

76 天 氣 舉

綜合以上結果,鋒附近的垂直運動可概括爲下圖 2.18 表示。

82.4 蜂的移動

正確估計缝的移動,是做好天氣預報的重要環節。在我國,冷鋒的移遠,一般情況下,北方要比南方快。尤其是西北地區,平均約為35—50km/小時,最快的可移動1,30km/小時以上;華北、東北地區的鋒,多數情況下,可移動30—40km/小時,最快的可達90—100km/小時;在華東、華中約移動20km/小時,最快可達60—80km/小時;華南地區更慢一些。據分析,地面鋒線走向爲南北向時,冷鋒從西北向東南移動的速度較快;而地面鋒緩爲東西向時,冷鋒從北向南移動的速度較慢。暖鋒的移速較慢,也無一定規律。總的講,鋒的移動不且因地而異,還因季節而變,一般講冬季較快,春季次之,秋季第三,夏季最優。

鋒的移動基本上可以根據其過去移向移速的演變來均匀地外推或作加速度外推,但也必須考慮若干個影響鋒移動的因素。這裏對地面變壓場、地面地轉風、氣壓形勢及地形對鋒移動的影響作一討論:

一、地面變壓場與鋒的移動

取り軸與鋒面移動方向一致,假定鋒面是氣壓的零級連續面,則:

1

取 C, 爲鋒的移速, 則有

$$\frac{\partial}{\partial t} (p_w - p_e) = (\frac{\partial p_w}{\partial t} - \frac{\partial p_e}{\partial t}) + C_y (\frac{\partial p_w}{\partial y} - \frac{\partial p_e}{\partial y})$$
 (2.20)

因鋒在移動過程中,其上任一點均得保持 $p_w-p_s=0$, $\frac{\delta}{\delta t}(p_w-p_s)=0$,則

$$C_{\nu} = -\left(\frac{\partial p_{\nu}}{\partial t} - \frac{\partial p_{\mathbf{e}}}{\partial t}\right) / \left(\frac{\partial p_{\nu}}{\partial y} - \frac{\partial p_{\epsilon}}{\partial y}\right) \tag{2.21}$$

式中 $rac{\partial
ho_w}{\partial t}$ 是暧空氣內的氣壓局地變化,而 $rac{\partial
ho_c}{\partial t}$ 為冷空氣內的變壓。

因鋒位於低壓槽中,故 (2.21) 式中的 $\frac{\partial p_w}{\partial y}$ 與 $\frac{\partial p}{\partial y}$ 總是異號的。對於冷鋒來講, $\frac{\partial p_w}{\partial y}>0$, $\frac{\partial p_e}{\partial y}<0$;對於暖鋒來講, $\frac{\partial p_w}{\partial y}<0$, $\frac{\partial p}{\partial y}>0$ 。低壓槽越淺,(2.21)

式中分母絕對值越小,則移速就大;低槽越深,分母絕對值越大,則移速就小。

(2.21)式中的分子即寫鋒兩側的變壓差,即鋒附近的變壓梯度。若 $\frac{\partial p_w}{\partial t}$ 與 $\frac{\partial b_e}{\partial t}$ 與 $\frac{\partial b_e}{\partial t}$ 與親,且兩者的絕對值越大,則變壓梯度越大,鋒的移速就越快;反之,當 $\frac{\partial p_w}{\partial t}$ 與 $\frac{\partial p_e}{\partial t}$ 同號,兩者相差不大,則變壓梯度小,鋒的移動就慢。

應設指出:首先,上述討論是假定氣壓變化僅由鋒面移動所引起的。實際上,影響氣壓變化的因素是很多的,如除了氣壓日變化外,還有輻散與輻合等動力因素。其次,地面圖上的變壓是過去的3小時變壓,而 $\frac{\partial p}{\partial y}$ 又爲現時的情況,所以這種方法的實質是外推法。

二、地面地轉風、氣壓形勢與鋒的移動

他不考慮摩擦影響,地面鋒線約以兩側地轉風垂直於鋒線的分速而移動。地轉風分速愈大,鋒移勤愈快。地轉風的大小與等壓線的密度成比例,因此等壓線與鋒線交角愈大及等壓愈密,則鋒移動愈快;等壓線與鋒線交角愈小及等壓線愈稀,則鋒移動愈慢。在下墊面比較平坦,地轉風垂直於地面鋒線的分量不很小時,利用鋒附近地轉風來估計鋒的移速,效果較好。

鋒的移速,效果較好。

《小客/孫]

位於高壓邊緣的某些冷繞,有時雖然與之垂直的地轉風分量近於零,但冷鋒仍向前
移動,甚至可以很快。這是因為這些冷缝後有很大的正變壓,氣壓場與流場來不及達到
平衡,實際風(近似地為地轉風與變壓風之和)仍然有垂直於鋒線的分速,使鋒向前移
動;或者是因為鋒後的高壓本身整個在多動或部分伸展,從而推動鋒移行。鋒的移向,
一般約與鋒後高壓的長軸方向一致;在同一季節裏,高壓強度大時冷鋒移動較快,且能到達較南地區;當地面高壓突然加強時,鋒也常常加速移動。

鋒前的氣壓場對鋒移動的影響也很大。通常,當鋒前是均壓區或者是低壓帶時;鋒 移動較快,鋒前爲高壓(或脊)時,尤其當鋒移近暖性高壓,而高壓並無減弱、崩潰的

78 天

三、地面摩擦及地形對鋒的影響 趨勢時,鋒的移速會減慢

由於地面摩蔡和地形能使鋒的移動速度、鋒的坡度和鋒附近的垂直運動發生變化 從而對鋒上天氣有很大影響,必須加以重視。

(一)地面摩擦對鋒的影響變

先看對暖鋒的影響,暖鋒在移動過程中,近地面部分由於受摩擦影響,鋒移動較慢 有時甚至會拖出一條長"尾巴",如圖 2.19(a)所示,這條"尾巴"因亂流遇合作用而很 快消失。在它消失的同時,在圖中虛線所示的位置上,鋒又再次生成。這種現象,看起 而在上層因風速較大,鋒移動較快。由於上、下層移速不同,近地面鋒的坡度變小, 來就像是鋒在忽快忽慢地跳躍前進。

(b)地面摩擦對冷終移動的影響

冷鋒在移動過程中,同樣會受到地面摩擦的影響,近地面的鋒移動軟上層的慢,結 果在低層形成向前的"鼻狀"形,如圖 2.19(b)所示。這"鼻狀"形成不久,就因亂流 混合等作用而消失。在消失的同時,在圖中所示虛線位 置上,鋒又出現,看起來好像鋒在跳躍前進。

(二)地形對鋒的影響

地形對鋒的影響是複雜的,其中以山地影響最為突 出。鋒在移動過程中,遇到高原或山脈時,其形狀和移 部分就不能很快越過山脈,甚至在山前靜止下來,成為 速都會受到很大影響,如冷鋒遇到較高的山脈時,受阻 準靜止鋒。我國著名的天山準靜止鋒以及雲貴準靜止鋒 的山是孤立的,則鋒的兩端會繞山而過,當它在山後相 更是這樣形成的。如冷鋒遇到山脈群,不僅鋒的移速減 結果地面鋒線就會變成臀彎曲曲的形狀。如果冷鋒遇到 慢,地面鋒線還會發生變形,在山口處冷鋒首先進入,

圖2.20 冷绛爬坡示意圖

遇時,形成地形錮囚鋒。這在我國浙閩山區常會遇見

山頂;山的背風坡因受下降氣流的影響,那裏的雲層將趨於消散,雲區和降水區也就相 再看冷鋒遇山爬坡的情況(圖 2.20 所示)。當冷鋒移近山坡時,移速減慢,鋒 的坡度增大,位於鋒與山脊之間的暖空氣受強烈推擠而急劇上升,於是雲層的垂直發展 加強,降水加劇,降水區也變寬(圖(a))。隨着鋒不斷沿山坡上升,雲與降水隨之推向 應變窄(圖(b),(c))。當鋒越過山頂後,移速加快;離開背風坡一段距離時,雲和降水 區又大致恢復到越山前的情況(見圖(d))。

82.5 蜂生和蜂消

大氣中鋒的形成、加強或減弱、消失,導致了天氣的急劇變化。因此,了解和正確 預報鋒的生、消活動,不僅是作好天氣預報的重要環節,而且亦關係到氣旋的形成和發 要的預報。

一、鋒生、鋒消的概念

凡新鋒生成,或已有鋒的強度增強的過程,稱為鋒生;凡原有鋒的強度減弱、消失 的過程,稱爲鋒消。鋒的生、消過程,就其本質而言,最重要的是表現在水平溫度梯度 的變化,當水平溫度梯度隨時間增大時,稱爲鋒生作用,當水平溫度梯度隨時間減小時 , 稱鋒消作用。

設兩氣國之間的水平溫度梯度爲一₹7,則水平溫度梯度的個助變化:

$$F = \frac{d}{dt} |\nabla T| \tag{2.22}$$

稱爲個別鋒生函數(或稱個別鋒生強度)。在等壓面圖上,等溫線就是等位溫線,故可 用 $\nabla \theta$ 代替 ∇T ,這時個別鋒生函數可寫爲:

$$F=rac{d}{d\,t}\,\left|\,
abla heta\,
ight|$$

(2.23)

當F>0時,水平溫度梯度隨時間增大,有鋒生作用;當F<0時,水平溫度梯度 隨時間減小,有鋒消作用

二、鋒生、鋒稍公式

在鋒區附近,可近似認爲等heta線爲一組平行直線。現取x軸平行於等heta線,y軸垂 直於等θ線,並指向冷空氣一側,這樣

$$\frac{\partial \theta}{\partial x} = 0 \qquad |\nabla \theta| = -\frac{\partial \theta}{\partial y}$$

$$A = F = \frac{d}{dt} \left(-\frac{\partial \theta}{\partial y} \right)$$

展開得:

$$F = \frac{\partial}{\partial t} \; (- \, \frac{\partial \theta}{\partial y} \,) + \nu \; \frac{\partial}{\partial y} \; (- \, \frac{\partial \theta}{\partial y} \,) + \omega \; \frac{\partial}{\partial \rho} \; (- \, \frac{\partial \theta}{\partial y} \,)$$

(2.24)

(2.23)'

同理有

$$\frac{d\theta}{dt} = \frac{\partial \theta}{\partial t} + v \frac{\partial \theta}{\partial y} + w \frac{\partial \theta}{\partial p}$$

而據定義
$$\theta = T\left(\frac{1000}{p}\right)^{\frac{48}{0p}}$$

$$\frac{d\theta}{dt} = \frac{\theta dT}{Tdt} - \frac{AR}{C_r} \frac{\theta}{p} \frac{dp}{dt}$$

(2.26)

設在單位時間內,加給單位質量空氣的熱量爲 $rac{dQ}{dt}$,則

$$\frac{dQ}{dt} = C_p \frac{dT}{dt} - \frac{ART}{p} \frac{dp}{dt}$$

(2.27)

因比

$$\frac{d\theta}{dt} = \frac{\theta}{T} \cdot \frac{1}{C} \frac{dQ}{dt}$$

(2.28)

(2.28)'

$$\Rightarrow \frac{\theta}{T} \frac{1}{C_p} \frac{dQ}{dt} = H$$

將(2.28)式代入(2.25)式,有:

$$\frac{\partial \theta}{\partial t} + v \frac{\partial \theta}{\partial y} + w \frac{\partial \theta}{\partial p} = H$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \theta}{\partial y} \right) + v \frac{\partial}{\partial y} \left(\frac{\partial \theta}{\partial y} \right) + w \frac{\partial}{\partial p} \left(\frac{\partial \theta}{\partial y} \right) + \frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y} + \frac{\partial w}{\partial y} \frac{\partial \theta}{\partial p}$$

最後將(2.29)式代入(2.24)式,得

 $F = \frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y} + \frac{\partial w}{\partial y} \frac{\partial \theta}{\partial p}$

(2.30)式中 $\frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y}$ 表示水平運動對鋒生、鋒消的作用; $\frac{\partial w}{\partial y} \frac{\partial \theta}{\partial \rho}$ 表示垂直運動對

鋒生、鋒消的作用; $-rac{\partial H}{\partial y}$ 表示非絕熱變化對鋒生、鋒消的作用

三、各項因子的作用

(一)水平氣流的輻合與輻散

$$F_1 = rac{\partial heta}{\partial y} rac{\partial v}{\partial y}$$

(2.25)

因爲,軸是指向冷空氣的,故有 $\frac{\partial \theta}{\partial y}>0$ 。所以當 $\frac{\partial v}{\partial y}<0$ 時, $F_1>0$,有鋒生作用

當 $rac{\partial v}{\partial y}>0$ 時, $F_1<0$,有鋒稍作用。如圖 2.21 所示,在圖(a)、(b)中有鋒生作用;在 圈(c)、(d)中有鋒消作用。實際大氣中,有利的鋒生形勢,如圖 2.22 所示。 冷空氣向槽線 附近滙台,使溫度梯度加大,故有鋒生現象產生

圖 2.22 (a) 冷鋒鋒生 (b) 暖鋒鋒生

(二)空氣的垂直運動

(2.29)

82 天 氣 舉

$$F_2=rac{\partial \omega}{\partial y}rac{\partial heta}{\partial p}$$

(2.32)

式中 $\frac{\partial \theta}{\partial p}$ 代表彰空氣的層結穩定度。一般說,大氣層結是穩定的,即 $\frac{\partial \theta}{\partial p} < 0$ 。這項作用就取決於垂直運動的分布。在p坐標中,上升運動區 $\omega < 0$,下沉運動區, $\omega > 0$ 。而p軸是指向冷空氣一側,所以當暖空氣有上升運動,冷空氣有下沉運動時,有 $\partial \omega > 0$,即 $P_{\rm R} < 0$,有鋒消作用。這一項的鋒消作用,在冷鋒下到平原情況較明顯。在大氣層結不穩定時,暖空氣上升、冷空氣下沉的作用可引起鋒生。

(三)加熱作用

$$F_s = -rac{\partial H}{\partial y}$$

(2.33)

加熱作用主要是凝結加熱和下墊面加熱。

當暖空氣的水汽含量比較充沛時,在上升運動中能產生雲和降水,可釋放出潛熱, 使空氣增溫,而冷空氣較乾燥,無雲和降水(或很少)產生,也就沒有(或很少)凝結 加熱,這樣可有 $\frac{\partial H}{\partial \nu}$ < 0,即 $F_{\rm s}>0$,有鋒生作用。因此在水平流場具有鋒生作用的情 況下,暖空氣中發生大量凝結加熱 ($F_{\rm s}$)能抵消垂直運動 ($F_{\rm s}$) 的鋒消作用,助長水平 運動 ($F_{\rm l}$) 的鋒生作用,促使形成新鋒或使原有的鋒增強。例如在華南或江淮流域,常 先有大片雲、雨區出現,然後地面鋒形成。

下墊面加熱主要是通過傳導、亂流、對流輸送及輻射過程而產生。冷空氣南下時變暖,暖空氣北上時變冷,均使 $\frac{\partial H}{\partial y}>0$,即 $F_{3}<0$,有鋒消作用。加北方強冷鋒南下到華南後,強度明顯減弱,主要就是冷氣團變暖的緣故。

四、我國鋒生、鋒消的概況

在我國,主要鋒生區有兩個:一個在東北以及中蒙邊境一帶;另一個是華南到長江 流域。這兩個鋒生帶對應高空圖上有兩支鋒區,並隨鋒區的季節變化而有相應的位移。 我國境內的鋒生大多數和高空氣流的輻合(即高空槽)有關。

東北地區:旣有冷鋒鋒生,也有暖鋒鋒生。河西地區:當冷空氣從北方或西方移來 · 受阿爾金山、祁連山的阻擋,常出現輻合氣流而鋒生。

江南地區:鋒生比較頻繁,尤以春季最多。高空槽自西藏高原移來,700 或 800-

第二章 氣國和錄 83 加內24 上有明顯的切變線,有時還表現出一個弱的變形場。位於南海的高壓或高壓脊消有加強北伸的趨勢,因此,江南地區上空出現大片偏南風,暖平流很強。地面圖上的特點是: 江南原有的冷鋒東移入海並消失,鋒後的高壓中心則在 30°— 35°N 之間東移入海,北方冷高壓主體仍在蒙古,江南地區常有倒槽發展,倒槽槽線由北北東-南南西。江南地區鋒生時,暖平流很強,鋒生初期表現出具有暖鋒性質,由於它移動緩慢,常可分析為準無於。當西北方有較強冷空氣南下時,準靜止鋒轉爲各鋒南移,或在靜止鋒上產生被動東移入海。

我國的鋒消區主要位於西藏高原以東 30°—40°N—帶,這是因為該地區常處在東亞大槽槽後,高原東側,下沉氣流較強,促使鋒消,尤其在夏半年較多。在黃淮流域一帶,除了高空槽減弱、變平,治平流減弱或中斷引起鋒消外,還受地形的影響/當冷鋒從黄土高原移到華北平原時,由於下沉氣流的影響,鋒常出現減弱的現象。//五淮和華南準冊上鋒的消失有三種情況:一是華靜止鋒上產生氣旋波,其東段轉爲暖鋒隨氣旋向東偏北移出我國,其西段則變爲冷鋒而南下;二是準靜止鋒在原地作南北擺動中,冷氣團進一步變性,使其鋒消;三是北方有新冷空氣南下,鋒後冷空氣勢力加強,使其轉變爲冷鋒雨下。

雲貴準靜止鋒消失,基本上有兩種情況:一是鋒後冷氣團在貴州山地繼續變性,促便鋒消。在這種情況下,高空仍是西南氣流,故鋒消後在貴州山地仍為陰天或小雨,但強度減弱;另一種是當高原上 500 nPa 面上大槽過後,高壓脊移到了靜止鋒上,隨即出現下沉氣流,導致鋒消。

82.6 影響我國的鋒

蜂在我國的活動很頻繁,一年四季均有,其中冷鋒最多,準靜止鋒次之,暖鋒和錮 囚鋒較少。

一、布鎔

冷鋒活動的一般特點: 我國各地區都有冷鋒活動。冷鋒的活動頻數,北方多於南方, 西南地區冷鋒出現的頻率最小; 冬半年多於夏半年, 春季最多, 秋季最少。

冷蜂的強度,冬季最強,常能直驅華南及南海。常造成寒潮天氣。夏季,冷鋒較弱,主要活動在北方,夏季的冷鋒常帶來冒陣雨天氣。

西北地區一年四季均有冷鋒活動,冬季強,夏季弱,而出現的頻數相近。其形狀和移速受地形影響極大。西來冷鋒常受天山、祁連山、秦嶺阻擋而一直往東偏南方向移動。少數可越過天山,進入南疆盆地,或從天山的東北部,從馬辮形開口地帶倒灌入南疆

第二章 氣團和鋒 85

,少數強冷鋒可越過秦備、大巴山,進入四川盆地。西北地區的冷鋒,冬季很少形成大 片的雲和降水,往往是晴天無雲,但有大風和風沙。夏季都有降水,雲系多數在鋒區的上 西

84 天 氣

華北是我國境內冷藥活動的必經之地。東北地區則一年四季都有冷鋒活動,尤其是春秋季節,冷鋒活動頻繁。這兩個地區的冷鋒來源都有西路、西北路、北-東北路三種。冬天,冷鋒主要引起大風和降溫,夏天都能產生雷雨天氣。春季,冷鋒在東北常易造成大風和降溫,夏天都能產生雷雨天氣。春季,冷鋒在東北常易造成大風和降水,而在華北往在只引起風沙天氣。

冬春季節,冷鋒在華東和華南地區活動頻繁,造成寒潮大風和降水天氣,春季夏易引起華南的暴雨。盛夏季節,冷鋒可達華東、華中地區,是江淮流域梅雨和盛夏觜雨的土要製造者之一。但夏季冷空氣很難影響到華南地區。

較強的冷鋒有時也可經河西走廊進入四川盆地,但多數冷鋒入川後鋒區不明顯。

冬半年,四川盆地上空常保持着一層較強的逆溫,多陰沉天氣。當有冷鋒或冷平流從高空進入四川時,使逆溫層破壞或轉變成下沉逆溫,天氣轉晴。夏半年,低層空氣暖而濕,常處於不穩定狀態,當有冷鋒或冷平流進入時促使對流發展,出現實庫雨及大風等天氣。

二、準靜止鋒

我國的準靜止鋒活動頻繁,引起持久的降水和暴雨,是我國天氣的主要特色之一。 影響最大的是華南(南嶺)準靜止鋒和江淮準靜止鋒。 華南準靜止鋒是由南下冷鋒減速停滯轉變而成,或者在華南局地鋒生所形成。一年四季均有出現,但以12一7月爲最頻繁,秋季最少。華南準靜止鋒的坡度,冬季較小,一般小於1/200;夏季較大,有時可達 1/100以上,華南地區水汽充沛,準靜止鋒上都有雲系和降水,春季和初夏易造成華南前汎期暴雨。冬春季節,由於南支西風槽帶來暖濕氣流,沿華南靜止鋒北上,雲雨區可往北擴展到長江流域。

江淮準靜止鋒是勢均力敵的冷暖空氣在江淮流域對峙的結果。它既可以是冷缝南下停滯所造成,也可以是在地面橫槽中鋒生而成。江淮準靜止鋒與低層江淮切變線相對應。 主要出現在春季和初夏,是春季連陰雨和初夏梅雨的主要製造者。它常常可以引起暴雨,尤其當有西南渦東移,或其上有氣旋發展時,常可出現暴雨以致大暴雨。

由於地形影響,冬半年冷鋒南下時,其西郡可在貴川一雲南之間停滯,形成北北西-南南東走向、持久的昆男準靜止鋒。在其冷空氣一側的貴州造成連綿陰雨,俗稱貴州"天無三日暗"。在其簽空氣一側的雲南,冬季晴朗暖和,俗稱昆明"四季四春"。但一語上鋒西進南下,雲南東部冬季也可降雨雪,俗稱"一兩便成冬"。

新疆中部因天山阻擋,常常形成天山準靜止鋒。

三、暖鋒

在我國,暖鋒很少單獨出現,它常常存在於鋒面氣旋之中。因此,我國主要的暖鋒出現在東北地區的東北低壓之中。華南沿海地區當有江淮氣旋明顯發展時,或華北的東部有黃河氣旋強烈發展時,都可短時期出現緩鋒活動。

春夏之間,當有強烈西南氣流活動時(春奉有南支西風槽強烈發展,夏季當西南季風加強時),華西出現一個地面倒槽,低層可能有西南渦發生發展。在其東部西南-東南氣流之間的暖式切變處常常會引起暖鋒鋒生,但維持時間不長,由於降水冷却或北方冷鋒南下,倒槽中生成江淮氣旋,暖鋒隨之東移出海。

夏季,在副高南側,有時有東-東南暖濕氣流向較涼乾的內陸推進時,兩支氣流之間似乎具有某種暖鋒性質,但與一般含意的暖鋒性質完全不同。

四、錮囚鋒

我國大陸上典型的錮囚鋒活動主要只出現在東北地區,是東北低壓中冷鋒趕上暖鋒所形成。蒙古氣旋中也有錮囚鋒,但錮囚點的緯度位置偏高,在蒙古,甚至在貝加爾湖地區,極少數可達內蒙和華北。

其他就是因特殊地形影響,兩條冷鋒迎面相遇造成的地形錮囚鋒,如華北地區(是華北春季降水的一個重要天氣系統)、武夷山、塔里木盆地和柴達木盆地的地形錮囚鋒

82.7 能量

一、大氣中能量的主要形式

除輻射能外,大氣能量邊有如下幾種主要形式;內能、重力位能、動能、潛熱能、壓力能、全位能、顯熱能(感熱能)、溫濕能、靜力能、總能量。現在分別扼要介紹如一

(1)內能: $U = C_r T$,即氣體分子運動的動能。它與大氣絕對溫度成正比,即單位質量物體在定容情況下,從外界獲取熱量,表現爲內能增加。

(2)重力位能: $\Phi=gz$,亦稱重力位勢,即將 1kg 物質從海平面舉到該點時反抗地球

^{*}督雨順、吳正華:能量鋒及其實用意義,北方災害柱天氣交集,氣象出版社,16-21,1981年。 *留雨順:靜力能量的天氣舉分析原理及應用,北方天氣交集 (3)北京大出版社 1-11,1982年。 *营雨順:能量天氣舉 陝西氣象特刊 15pp 1983年。

86 天 無 學

重力場所必須作的功。亦稱爲單位質量的重力位能

(3)動能:
$$W=\frac{1}{2}\,v^z$$
,單位質量空氣運動所具有的能量,它與速度平方成正比。

(4)潛熱能: Ta,單位質量空氣中g克水汽等溫發生相變時,需加入或放出的熱能 爲潛熱能。 (5)壓力能: $J=p\alpha$,單位質量空氣膨脹時,克服壓力所做的功,爲 $pd\alpha$,據狀態力程亦可寫爲 J=RT。

(6)全位能: $P = C_s T + gz$,空氣內能和重力位能之和,即單位質量全位能。

(7)顯熟能(慰熱能): $h = C_s T = C_s T + RT$,即單位質量空氣的焓,爲內能與壓力能之和。由熱力學第一定律可知,在等壓過程中,如無相變,則空氣吸收的熱量全部轉爲焓的增加。

(8)溫濕能: $E_s = C_p T + Lq$,爲單位質量空氣的溫濕能,亦稱濕焓。顯熱能只與溫度有關,潛熱能只與空氣濕度有關(當然嚴格地講L也與溫度有關)。二者結合稱溫濕能。 (9)濕蘚力能:整溫鴉能和看力你能經合在一种密度很輕力於,單位歷是完會的溫輕

(9)濕靜力能:將溫濕能和重力位能結合在一起稱爲濕靜力能。單位質量空氣的濕靜力能爲:

$$E_{\sigma} = C_p T + gz + Lq \tag{2.34}$$

若考慮的是乾空氣,則無相變發生,

$$E_d = C_p T + g z \tag{2.35}$$

稱爲單位質量空氣的乾靜力能。

(10)總能量:內能、位能、動能、潛熱能、壓力能的總和,稱為總能量。

$$E_t = C_v T + gz + \frac{1}{2}v^2 + Lq + \rho\alpha$$
 (2.36)

或
$$E_t = C_p T + gz + Lq + \frac{1}{2}v^2$$
 (2.36)

相應地可定義出空氣的總溫度(或稱總比能溫度)

$$T_t = E_t/C_p = T + gz/C_p + Lq/C_p + v^2/(2C_p)$$
 (2.37)
對於乾空氣,總能量爲
$$E_{at} = C_p T + gz + \frac{1}{2}v^2$$
 (2.38)

乾糰溫度爲

$$T_{dt} = T + gz/C_p + v^2/(2C_p)$$
 (2.39)

二、能量鋒

鋒面是冷暖氣團之間的狹窄過渡帶(區),一般可根據溫、壓、濕、風的特徵來確定。近年來,雷雨順等用總溫度來分析能量場。等總溫度線密集的區域就是能量鋒區,(以與日常業務中所分析的鋒相區別)如圖 2.23。通常,在氣團內部總溫度的水平梯度一般小於 3°C/100km, 直至可達 20 — 30°C/100km以上,和強降水等天氣聯繫的能量鋒可達 10°C/100km, 甚至可達 20 — 30°C/100km以上。據分析和研究,夏秋能量鋒以溫度蜂四顯得多,而能量鋒與降水等天氣有良好的對應關係。如 1977年5月 27 日至 31 日,粤東海、陸豐地區出現罕見的特大暴雨,從 30 日 17 時至 31 日 14時(北京時間)共 21 小時降水量達 646.8 mm。在 30 日 08 時的地面總溫度形勢圖上,能量餘的位置非常明顯(圖 2.24)。在 30、31 日 08 時,陸豐附近面海溫度形勢圖上,能度高達 25°C/50km,平均能級達 78°C,這兩羌陸豐的暴雨最強,中心正位於能量鋒

圖 2.23 1976 年 7 月 23 日 08 時 850 h Pa Tt 分佈 (粗箭頭急流軸線)

圖2.24 1977年5月30日08時地面總溫度形勢(實線,單位, C)和表來24小時雨量(虛線,單位mm)分布

88 天 氣 舉

附近。

能級:能量鋒區的平均 \overline{T} ,為能級,而鋒區等總溫度線方向的平均梯度 $\overline{\partial}$

鋒的強度。對我國5-8月134次大範圍降水統計發現: 未來24 小時降水強度隨起始時刻地面能量鋒強度和能級的增加而增加,如表2.1所示。

表 2.1 地面能量鋒強度、能級與未來 24小時降水量最大強度的關係

大 暴 雨 >100mm	∞	29	18
小 雨 中 雨 太 雨 暴 雨 太 暴 雨 <10mm 10-25mm 25-50mm 50-100mm >100mm	7	65	39
大 和 25-50mm	9	09	28
中 雨 10-25mm	2	61	25
小 < 10mm	. 4	46	24
摲	km)		ш
盤	後 度 (°C/100km)	能 級 T _r (°C)	凝
*	$\frac{\partial \overline{\mathrm{Tt}}}{\partial \mathrm{n}}$ (°C	能 T,(网
嫂	怨 嘈	缴	圓

用自然坐標,對總溫度線法線方向取偏導數時,得:

$$\frac{\partial T_i}{\partial n} = \frac{\partial T}{\partial n} + \frac{\partial}{\partial n} \left(\frac{g_r}{C_p} \right) + \frac{\partial}{\partial n} \left(\frac{L}{C_p} \ b \right) + \frac{\partial}{\partial n} \left(\frac{1}{2C_p} \ V^2 \right) \tag{2.40}$$

由(2.40)式可見,能量鋒是大氣中各種不穩定能量(即有較位能)的集中表現, 它可以分解出各種不穩定屬性的鋒。

當大氣乾燥且溫度對比明顯時,能量鋒即爲一般意義的鋒區,亦即爲濕熱鋒。如溫度梯度弱、露點梯度大,能量鋒即爲潛熱鋒,亦稱露點鋒(或乾鋒)。夏半年的梅雨鋒大多是潛熱鋒。一般說來,風、壓梯度要比溫濕梯度小1—2個量級。但在高空急流附

近,風速達 $100\,\mathrm{m/s}$,風速水平切變達 $20 imes10^{-i}\,\mathrm{s^{-1}}$,相應的 $rac{\partial T^i}{\partial n}$ $=2^{\circ}\mathrm{C}/100\mathrm{km}$,

這時動能鋒才有實際意義。位能鋒 $(rac{\partial g_z}{\partial n})$ 通常無實際意義。

在實際分析上,常取等 θ. 線密集的帶區作為能量鋒區。θ. 能綜合反映溫度錫和濕度揚。這樣定義的能量鋒區也與強烈天氣有密切關係。

三、錮囚高能舌

錮囚离能舌是兩個低能區之間所來的舌狀高能區,是和能量鋒同時出現的另一能量

(b) 28 日 14 時 图 2.25 1976 年 7 月 28 — 29 日地面總溫度形勢和氣旋設的演變

系統。圖 2.23 中,在能量鋒前的高能區即為錮囚高能舌,由於形狀如"Ω",類似高空等壓面上的阻塞高壓,又稱為Ω型高能舌。錮囚高能舌的出現與氣旋的發展有密切的關係,一般來講,能量鋒發生波動的地方,就是鋒面波動的所在地,未來的氣旋中心就在能量鋒波動附近發生。當總溫度線呈現出鎦囚高能舌(Ω)以後,氣旋便很快進入錮囚降段。圖 2.25 就是 1976 年 7 月 28 — 29 日一次河 套氣旋發展過程中地面總溫度形

28日02時,河套地區有一寬獨的由南向北伸的高能舌,其東、西兩側分別是從內蒙古中部伸向山西和河北南部和從河西走廊向東伸的冷乾空氣所形成的低能舌(注意工; = 64°C線)。在高能舌北端(40°N)的東西向能量鋒區,由於暖濕空氣的向北推進,在107—110°E地區發生了振幅較大的波動。到28日14時,就在這個被動處出現了低壓中心。在這過程中,河套地區的高能區繼續向北伸並變熔,出現"Q"型式。在氣旋中心之北,出現了具有兩根閉合等值線的高能中心,6小時後,氣旋進入早期網囚階段。高能舌在兩側低能區的來擊下變得更為來釋,且有小股冷空氣從西側插入氣旋中心。這可以看為氣旋中心的暖濕空氣將要被冷空氣拾權地面。說明隨着錮囚進一步加深,氣裝將進入消亡階段。由此可見,可利用6小時間隔的地面能量場分析能量鋒上波動發氣裝裝

五、4 補充資料

(江火明老師之天氣學講義)

五、D: 鋒面的斜率.

鋒面是兩性質不同之氣團的交界面,因此,它是密度、 溫度、水汽、風等性質之交界面,可視為一不連續面,此不 連續面之動力邊界條件為兩側之氣壓是相等的,即

$$P_{w} = P_{c} \tag{7-15}$$

由狀態方程式知,在等壓面上密度不連續就是氣溫的不連續 ①一般而言,鋒面向冷氣團的一方傾斜,如圖7-8所示,鋒面 的斜角為中,則

$$\tan \Psi = \frac{\delta z}{\delta n} \tag{7-16}$$

圖 7-8

$$(Q_c - Q_b) + (Q_b - Q_a) = (Q_c - Q_d) + (Q_d - Q_a)$$
(7-17)

故

$$\left(\frac{\partial Q}{\partial n}\right)_{w}\delta n + \left(\frac{\partial Q}{\partial z}\right)_{w}\delta z = \left(\frac{\partial Q}{\partial z}\right)_{c}\delta z + \left(\frac{\partial Q}{\partial n}\right)_{c}\delta n \tag{7-18}$$

由此可得

$$\tan \Psi = \frac{\delta z}{\delta n} = \frac{-\left[\left(\frac{\partial Q}{\partial n}\right)_{w} - \left(\frac{\partial Q}{\partial n}\right)_{c}\right]}{\left[\left(\frac{\partial Q}{\partial z}\right)_{w} - \left(\frac{\partial Q}{\partial z}\right)_{c}\right]}$$
(7-19)

若取Q為P,則

$$\tan \Psi = \frac{-[(\frac{\partial P}{\partial n})_{w} - (\frac{\partial P}{\partial n})_{c}]}{[(\frac{\partial P}{\partial z})_{w} - (\frac{\partial P}{\partial z})_{c}]} \Rightarrow : 可由氮压稀度差别 来决定 (7-20)$$

若鋒面是一相當寬的交界帶,它是密度與溫度的連續面,但對其梯度卻是不連續的,即它是一階不連續,若取 $Q \triangleq \frac{\partial P}{\partial n}$,

則

$$\tan \Psi = \frac{-\left[\left(\frac{\partial^{2} P}{\partial n^{2}}\right)_{w} - \left(\frac{\partial^{2} P}{\partial n^{2}}\right)_{c}\right]}{\left[\left(\frac{\partial^{2} P}{\partial z \partial n}\right)_{w} - \left(\frac{\partial^{2} P}{\partial z \partial n}\right)_{c}\right]}$$
(7-21)

若取Q為
$$\frac{\partial P}{\partial z}$$
,則

$$\tan \Psi = \frac{-\left[\left(\frac{\partial^{2} P}{\partial z \partial n}\right)_{w} - \left(\frac{\partial^{2} P}{\partial z \partial n}\right)_{c}\right]}{\left[\left(\frac{\partial^{2} P}{\partial z^{2}}\right)_{w} - \left(\frac{\partial^{2} P}{\partial z^{2}}\right)_{c}\right]}$$
(7-22)

(一) 零階不連續

設V為風沿鋒面方向的分量,為 V_n 風垂直鋒面方向的分量,由運動方程式

$$\frac{\mathrm{d}}{\mathrm{d}t} \, \mathbf{V}_{n} = \mathbf{f} \, \left(\mathbf{V}_{g} - \mathbf{V} \right) = -\frac{1}{\rho} \, \frac{\partial \mathbf{P}}{\partial \mathbf{n}} - \mathbf{f} \mathbf{V} \tag{7-23}$$

可溽

$$\frac{\partial P}{\partial n} = -\rho \left(\frac{dV_n}{dt} + fV \right) \tag{7-24}$$

又由浓體靜力平衡方程得

$$\frac{\partial P}{\partial z} = -\rho g \tag{7-25}$$

故溽

$$\begin{split} \tan\Psi &= \frac{-[(\frac{\partial P}{\partial n})_w - (\frac{\partial P}{\partial n})_c]}{[(\frac{\partial P}{\partial z})_w - (\frac{\partial P}{\partial z})_c]} \\ &= \frac{f(\rho_w V_w - \rho_c V_c) + [\rho_w (\frac{dV_n}{dt})_w - \rho_c (\frac{dV_n}{dt})_c]}{-g[\rho_w - \rho_c]} \end{split} \quad \text{ Finit formula (1924)}.$$

或是由

$$\frac{\partial P}{\partial n} = -\rho f V_g \quad (\theta r f = \frac{P}{RT})$$
 (7-27)

見り

$$\tan \Psi = \frac{f(\rho_{w}V_{gw} - \rho_{c}V_{gc})}{-g(\rho_{w} - \rho_{c})}$$

$$= \frac{f(\frac{P_{w}}{T_{w}}V_{gw} - \frac{P_{c}}{T_{c}}V_{gc})}{-g(\frac{P_{w}}{T_{w}} - \frac{P_{c}}{T_{c}})}, \quad \gamma = \gamma_{c}$$

$$= \frac{f(T_{c}V_{gw} - T_{w}V_{gc})}{g(T_{w} - T_{c})}$$
(7-28)

(7-28) 稱為Margules (1906) 公式, 在經改寫成

$$\tan \Psi = \frac{fT}{g} \frac{(V_{gw} - V_{gc})}{(T_w - T_c)} - \frac{f}{g} V_g$$
 (7-29)

其中

$$\bar{T} = \frac{1}{2} (T_w + T_c)$$
 (7-30)

$$\overline{V}_{g} = \frac{1}{2} \left(V_{gw} + V_{gc} \right) = -\frac{1}{Pf} \frac{\partial \overline{P}}{\partial n}, \, 4 \, \text{Kal} \, \pm \frac{\partial \overline{P}}{\partial n} = 0 \tag{7-31}$$

(7-29)的第二項表示等壓面的斜率,它狠小,可以略去,

當冷暖氣團的溫差狠大時,鋒面斜率就狠小,也就是鋒 面較緩平,如强烈寒潮來臨時冷氣團很淺薄;當冷暖氣團的 温差較小時,鋒面斜率就很大,也就是鋒面較陡直。當鋒前 鋒 沒 沿 鋒 面 方 向 之 風 分 量 的 風 切 很 大 時 , 鋒 面 斜 率 就 很 大 , 也就是鋒面較陡直; 反之,鋒面斜率較小,也就是鋒面較緩 平。

或由 Margules formula, $tan \psi = \frac{fT}{g} \frac{Vgw - Vgc}{Tw - Tc}$

 $tan \psi = \frac{f \overline{I}}{g} \frac{v_w - v_c}{T_w - T_c} + \frac{\overline{I}}{g} \frac{k(v_w + v_c)(v_w - v_c)}{T_w - T_c}$

$$= \frac{\overline{T}}{9} \left(f + 2k \overline{v} \right) \frac{\overline{v_w} - \overline{v_c}}{T_w - T_c} : E_{X \text{ ner formula }} (1925)$$

二氢旋性 670,tan 中夕二锋面倾斜度噬大(冷锋) 反氢旋性 6<0,tan 中文,……减小(暖蜂) ⇒在此,当尼=0时, 别开 Margules formula 相同。

① ; tan4 >0 , 在对流層內之鋒面, tan4一定大於0, ::一穩定之鋒面必定 上暖而下冷。若上於下暖 (tan4 < 0) 到界面不穩定很快会 重掉 (多 equi li brian); 至於 tan4 = 10 则 至鋒面, 两负团团性。

tany >0 / tany <0, no equilibrum slope

: tan¥>0, Tw>Tc :.Vw>Vc (Vw-Vc>0) { cyclonic, R↑, tany Λ (全锋) b>0, antigclonic, LV, tany V (暖锋)

warm front "缓锋上发了",小tan少较大

(梅雨鋒面来臨前, 她面会出现强国⇒在暖区内)

 $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\$

⇒ direct solenoidal circulation →使鋒重要平(穩定,EK)

如此不断的循环会趋於舒服大,但実防上不会 因為Coriolis and centifugal forces 主作用 (即为 break 主作用) 此即锋面内之=2次还依(dy = fva),由ageostropic wind主作用 因此加强3 jet stream! (但会造成锋减)

* B实上,锋面是一带状而不是一個面,小温度在身也是連续的,以大负之連续作 二压将温度在锋面"带"中视着一次不连续,而压力则为二次不连续

(1、回到 P.82之一階3座鎮)

在對流層項,它也是兩氣團的不連續面,由於平流層大 氣的氣溫遞減率限小,(7-34)式的分母很大,故對流層項的斜 率限小,即對流層項相當接近水平。