PLSC 504 – Fall 2024 Class Intro + Review: Likelihoods, Optimization, etc.

August 28, 2024

Welcome!

Class details:

- "Proseminar" in methods
- We'll be meeting Wednesday mornings from 09:00-12:00 ET in Borrowes, Room 025
- Texts: Various (mostly articles; see the syllabus)
- All course materials: https://github.com/PrisonRodeo/PLSC504-2024-git
- Methods Preceptor: Morrgan Herlihy
- Software: R...
- Grading: Ten homework assignments (@ 50 points), plus a final project (500 points)
- Contact me: zorn@psu.edu, or @prisonrodeo, or text (803) 553-4077

Intuition

A Model:

$$Y \sim N(\mu, \sigma^2)$$

$$E(Y) = \mu$$
$$Var(Y) = \sigma^2$$

And some data:

$$Y = 74$$
 73
 69
 81
 78

Probabilities, Marginal

Model implies:

$$Pr(Y_i = y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

So

$$Pr(Y_1 = 74) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(74 - \mu)^2}{2\sigma^2} \right]$$

$$Pr(Y_2 = 73) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(73 - \mu)^2}{2\sigma^2} \right]$$
.

Probabilities, Joint

Joint probabilities are:

$$\Pr(A, B|\Pr(A) \perp \Pr(B)) = \Pr(A) \times \Pr(B)$$

So:

$$\Pr(Y_1 = 74, Y_2 = 73) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(74 - \mu)^2}{2\sigma^2}\right] \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(73 - \mu)^2}{2\sigma^2}\right]$$

More Generally...

$$Pr(Y_i = y_i \ \forall \ i) \equiv L(Y|\mu, \sigma^2)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right]$$

The likelihood:

$$L(\hat{\mu}, \hat{\sigma}^2 | Y) \propto \Pr(Y | \hat{\mu}, \hat{\sigma}^2)$$

For $\hat{\mu} = 78$, $\hat{\sigma} = 4$:

$$L = \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(74-78)^2}{32}\right] \times \\ \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(73-78)^2}{32}\right] \times \\ \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(69-78)^2}{32}\right] \times \dots$$
$$= \text{ some reeeeeeally small number...}$$

What a Likelihood Looks Like

Log-Likelihood

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

$$= \sum_{i=1}^{N} \ln\left\{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]\right\}$$

$$= -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2\right]$$

What a Log-Likelihood Looks Like

The "Maximum" Part

For
$$L = f(Y, \theta)$$
,

- Calculate $\frac{\partial \ln L}{\partial \theta}$,
- Set $\frac{\partial \ln L}{\partial \theta} = 0$, solve for $\hat{\theta}$,
- Calculate $\frac{\partial^2 \ln L}{\partial \theta^2}$,
- Verify $\frac{\partial^2 \ln L}{\partial \theta^2} < 0$.

Example: Normal Y

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2 \right]$$

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (Y_i - \mu)$$

$$\frac{\partial \ln L}{\partial \sigma^2} = \frac{-N}{2\sigma^2} + \frac{1}{2} \sigma^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

Example: Normal Y (continued)

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

Example: Linear Regression

 μ varies linearly in X:

$$E(Y) \equiv \mu = \beta_0 + \beta_1 X_i$$

$$Var(Y) = \sigma^2$$

...which implies:

$$L(\beta_0, \beta_1, \sigma^2 | Y) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2}\right]$$

Linear Regression (continued)

Log-likelihood:

$$\ln L(\beta_0, \beta_1, \sigma^2 | Y) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2} \right]$$
$$= -\frac{N}{2} \ln(2\pi) - \sum_{i=1}^{N} \left[\frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right]$$

Kernel:

$$-\sum_{i=1}^{N} \left[\frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (\underbrace{Y_i - \beta_0 - \beta_1 X_i}_{\hat{u}_i})^2 \right]$$

MLE in General

$$\begin{aligned} \mathsf{Pr}(Y) &= f(\mathbf{X}, \theta) \\ L &= \prod_{i=1}^{N} f(Y_i | \mathbf{X}_i, \theta) \\ \ln L &= \sum_{i=1}^{N} \ln f(Y_i | \mathbf{X}_i, \theta) \\ \ln L(\hat{\theta} | Y, \mathbf{X}) &= \max_{\theta} \left\{ \ln L(\theta | Y, \mathbf{X}) \right\} \end{aligned}$$

The Gradient

$$\mathbf{g}(\hat{\theta}) = \frac{\partial \ln L(\hat{\theta})}{\partial \hat{\theta}}$$

Taylor series:

$$\frac{\partial \ln L}{\partial \hat{\theta}} \approx \frac{\partial \ln L}{\partial \theta} + \frac{\partial^2 \ln L}{\partial \theta^2} (\hat{\theta} - \theta)$$

$$\hat{\theta} - \theta = \left(-\frac{\partial^2 \ln L}{\partial \theta^2} \right)^{-1} \frac{\partial \ln L}{\partial \theta}$$
$$= -\mathbf{H}(\theta)^{-1} \mathbf{g}(\theta)$$

Consistency

Need

$$\mathsf{plim}(\hat{\theta} - \theta) = 0$$

So:

- Assume $\mathbf{H}(\theta) \stackrel{\mathsf{a}}{\to} \mathbf{A} < \infty$
- Show $\mathsf{E}[\mathbf{g}(\theta)] \to \mathbf{0}$ as $\mathsf{N} \to \infty$

Consistency (continued)

$$E[\mathbf{g}(\theta)] = \frac{1}{N} E\left(\frac{\partial \ln L_1}{\partial \theta} + \frac{\partial \ln L_2}{\partial \theta} + \dots + \frac{\partial \ln L_N}{\partial \theta}\right)$$
$$= \frac{1}{N} \left[E\left(\frac{\partial \ln L_1}{\partial \theta}\right) + E\left(\frac{\partial \ln L_2}{\partial \theta}\right) + \dots \right]$$
$$\stackrel{\text{a}}{=} \mathbf{0}$$

Efficiency

Cramer-Rao say:

$$\mathsf{Var}(\hat{ heta}) \geq \left[-\mathsf{E}\left(rac{\partial^2 \mathsf{In} \ L(heta)}{\partial heta^2}
ight)
ight]^{-1}$$

Efficiency, continued

$$Var(\hat{\theta}) = E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)']$$

$$= E\left[\left(-\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)^{-1} \frac{\partial \ln L}{\partial \theta} \frac{\partial \ln L'}{\partial \theta} \left(-\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)^{-1}\right]$$

For MLE:

$$\mathsf{E}\left[\frac{\partial \mathsf{ln} \, L}{\partial \theta} \frac{\partial \mathsf{ln} \, L'}{\partial \theta}\right] \quad = \quad \mathsf{E}\left[\frac{\partial^2 \mathsf{ln} \, L}{\partial \theta^2}\right]$$

So,

$$Var(\hat{\theta}) = \left[-E \left(\frac{\partial^2 \ln L}{\partial \theta^2} \right) \right]^{-1}$$
$$= [I(\theta)]^{-1}$$

Normality

By LLN:

$$rac{\hat{ heta} - heta}{\sqrt{\mathbf{I}(heta)^{-1}}} \sim extstyle extstyle extstyle (0, 1)$$

Or:

$$\hat{\theta} \sim \textit{N}(\theta, \textbf{I}(\theta)^{-1})$$

Invariance: Parameters

For

$$\gamma = h(\theta)$$

$$\hat{\gamma}_{\mathit{ML}} = \mathit{h}(\hat{ heta}_{\mathit{ML}})$$

Suppose

$$\phi^2 = 1/\sigma^2$$

so that

$$Y \sim N(\mu, \phi^2).$$

Invariance: Example

Then:

$$\ln L(\hat{\mu}, \hat{\phi}^2) = -\left[\sum_{i=1}^{N} \frac{1}{2} \ln \phi^2 - \frac{1}{2\phi^2} (Y_i - \mu)^2\right]$$

and:

$$\frac{\partial \ln L}{\partial \phi^2} = \frac{-N}{2\phi^2} + \frac{1}{2}\phi^4 \sum_{i=1}^N (Y_i - \mu)^2$$

and:

$$\hat{\phi}^2 = \frac{N}{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}$$
$$= \frac{1}{\hat{\sigma}^2}$$

Summary

MLEs:

- Maximize $L(\theta|Y, \mathbf{X})$
- Are consistent in N
- Are asymptotically efficient
- Are asymptotically Normal
- Are invariant to (injective) transformations and varying sampling methods

Optimization

Unconstrained Optimization

The basic problem: find

$$\max_{\hat{oldsymbol{eta}} \in \mathbb{R}^k} \ln L(\hat{oldsymbol{eta}}|Y,\mathbf{X})$$

The intuition:

- Start with $\hat{\beta}_0$
- Adjust:

$$\boldsymbol{\hat{\beta}_1} = \boldsymbol{\hat{\beta}_0} + \boldsymbol{\mathsf{A_0}}$$

Repeat.

More Specifically...

Iterative process:

$$oldsymbol{\hat{eta}}_\ell = oldsymbol{\hat{eta}}_{\ell-1} + oldsymbol{\mathsf{A}}_{\ell-1}$$

$$\hat{oldsymbol{eta}} = \hat{oldsymbol{eta}}_{\ell}
i \hat{oldsymbol{eta}}_{\ell} - \hat{oldsymbol{eta}}_{\ell-1} (\equiv oldsymbol{\mathsf{A}}_{\ell}) < au$$

How do we adjust?

$$\mathbf{A} = f[\mathbf{g}(\hat{\boldsymbol{\beta}})]$$

Intuition: $\mathbf{g}(\hat{\boldsymbol{\beta}}) =$ "directionality" of change

- $\mathbf{g}(\hat{\beta}_k) < 0 \rightarrow A_k < 0$
- $\mathbf{g}(\hat{\beta}_k) > 0 \rightarrow A_k > 0$

"Steepest Ascent"

Adjustment:

$$\mathbf{A}_{\ell} = \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}}$$

At each iteration:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

Add Some Information

"Step size":

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \lambda_{\ell-1} \boldsymbol{\Delta}_{\ell-1}$$

- $\Delta \rightarrow direction$
- $\lambda \rightarrow amount$ ("step size")

Key: Hessian

$$\mathbf{H}(\hat{\boldsymbol{\beta}}) = \frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}^2}$$

How?

Newton-Raphson

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left(\frac{\partial^{2} \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}^{2}}\right)^{-1} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

$$= \hat{\boldsymbol{\beta}}_{\ell-1} - \mathbf{H}(\hat{\boldsymbol{\beta}}_{\ell-1})^{-1} \mathbf{g}(\hat{\boldsymbol{\beta}}_{\ell-1})$$
(1)

Sidebar: Newton-Raphson, re-revealed

Taylor series, anyone?

$$f(X) \approx f(a) + f'(a)(x - a)$$

Here,

$$\frac{\partial \ln L}{\partial \hat{\beta}_{\ell}} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

What we really want...

$$\frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}} = \mathbf{0}$$

So:

$$\mathbf{0} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

$$egin{array}{ll} \hat{oldsymbol{eta}}_{\ell} &pprox & \hat{oldsymbol{eta}}_{\ell-1} - \left(rac{\partial^2 \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}^2}
ight)^{-1} rac{\partial \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}} \ &pprox & \hat{oldsymbol{eta}}_{\ell-1} - \mathbf{H}(\hat{oldsymbol{eta}}_{\ell-1})^{-1} \mathbf{g}(\hat{oldsymbol{eta}}_{\ell-1}) \end{array}$$

Other Methods

Newton-Raphson requires $\mathbf{H}(\hat{\beta})^{-1} \to calculates \, \mathbf{H}(\hat{\beta})^{-1}$ at every iteration. This can make it somewhat slow / computationally demanding.

Modified Marquardt:

- Used when $\mathbf{H}(\hat{\boldsymbol{\beta}})$ isn't invertable
- Adds a constant $\hat{\mathbf{C}}$ to diag[$\mathbf{H}(\hat{\boldsymbol{\beta}})$]
- Variants: Add **C**(h_k)

"Method of Scoring" (due to Fisher) uses:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left[\mathsf{E} \left(\frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}^2} \right)^{-1} \right] \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}} \\
= \hat{\boldsymbol{\beta}}_{\ell-1} - \left\{ \mathsf{E} [\mathbf{H} (\hat{\boldsymbol{\beta}}_{\ell-1})] \right\}^{-1} \mathbf{g} (\hat{\boldsymbol{\beta}}_{\ell-1})$$

Berndt, Hall², and Hausman ("BHHH")

Uses:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left(\sum_{i=1}^{N} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}'\right)^{-1} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

Advantages:

- (Relatively) very easy to compute
- Reasonably accurate...

Other "Newton Jr.s"

- Davidson-Fletcher-Powell ("DFP")
- Broyden et al. ("BFGS")
- They are:
 - Faster / more efficient
 - ullet Comparatively bad at getting $-\left(\mathbf{H}(\hat{eta})
 ight)^{-1}$

Summary: Optimization & Inference

Method	"Step size" (∂^2) matrix	Variance-Covariance Estimate
Newton	Inverse of the observed	Inverse of the negative
	second derivative (Hessian)	Hessian
Scoring	Inverse of the expected	Inverse of the negative
	value of the Hessian	information matrix
	(information matrix)	
ВННН	Outer product approximation	Inverse of the outer
	of the information matrix	product approximation

Software Issues: R

Lots of optimizers:

- maxLik package: options for Newton-Raphson, BHHH, BFGS, others
- optim (in stats) quasi-Newton, plus others
- nlm (in stats) nonlinear minimization "using a Newton-type algorithm"
- newton (in Bhat) Newton-Raphson solver
- solveLP (in linprog) linear programming optimizer

R: Using maxLik

- Must provide log-likelihood function
- Can provide $\mathbf{H}(\hat{\boldsymbol{\beta}})$, $\mathbf{g}(\hat{\boldsymbol{\beta}})$, both, or neither
- Choose optimizer (Newton, BHHH, BFGS, etc.)
- Returns an object of class maxLik

R: An Example

Rayleigh distribution density:

$$Pr(X = x) = \frac{x}{b^2} \exp \left[\frac{-x^2}{2b^2} \right], \ b > 0$$

Other traits:

- Support $\in [0, \infty)$
- $E(X) = b\sqrt{\frac{\pi}{2}}$
- Mode = *b*
- $Var(X) = \frac{4-\pi}{2}b^2$

Rayleigh Densities

R: What We Like To See

We can generate a Rayleigh-distributed random variable X with parameter b via inverse transform sampling, as:

$$X = b\sqrt{-2\ln(1-U)}$$

where $U \in \text{Uniform}[0,1]$. So, for (e.g.) b = 3:

```
> library(maxLik,distr)
> set.seed(7222009)
> U<-runif(100)
> rayleigh<-3*sqrt(-2*log(1-U))  # b = 3
> loglike <- function(param) {
        b <- param[1]
+        l1 <- (log(x)-log(b^2)) + ((-x^2)/(2*b^2))
+        l1
+     }</pre>
```

R: What We Like To See

```
> x<-rayleigh
> hats <- maxLik(loglike, start=c(1))</pre>
> summary(hats)
Maximum Likelihood estimation
Newton-Raphson maximisation, 8 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -195.7921
1 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1.] 2.9168 0.1459 20 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Comparing Optimizers

R : What We *Don't* Like To See

```
> Y<-c(0,0,0,0,0,1,1,1,1,1)
> X<-c(0,1,0,1,0,1,1,1,1,1)
> logL <- function(param) {
+ b0<-param[1]
+ b1<-param[2]
+ l1<-Y*log(exp(b0+b1*X)/(1+exp(b0+b1*X))) +
+ (1-Y)*log(1-(exp(b0+b1*X)/(1+exp(b0+b1*X))))
+ l1
+ }</pre>
```

R: What We Don't Like To See

```
> Bhat<-maxLik(logL,start=c(0,0))
> summary.maxLik(Bhat)
Maximum Likelihood estimation
Newton-Raphson maximisation, 9 iterations
Return code 1: gradient close to zero
Log-Likelihood: -4.187887
2 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1,] -104.3 Inf
[2,] 105.2 Inf 0
```

Practical Optimization...

- Potential Problems
- Likely Causes
- Tips

Problems

Enemy # 1: Noninvertable $\mathbf{H}(\hat{\boldsymbol{\beta}})$

- "Non-concavity," "non-invertability," etc.
- (Some part of) the likelihood is "flat"
- Why? (Bob Dole...)

Problems

Identification

- Possible due to functional form alone...
- "Fragile"
- Manifestation: parameter instability

Poor Conditioning

- Numerical issues
- Potentially:
 - Collinearity
 - Other weirdnesses (nonlinearities)

Potential Causes

- Misspecification.
- Missing data
- Variable scaling
- Typical Pr(Y)

Hints

- T-h-i-n-k!
- Know thy data
- Keep an eye on your iteration logs...
- Don't overreach