Digital System Design 2022 Spring

DUE: 2022-04-04

- 1 total 103 pts = maximum 100 pts + 3 bonus pts
- Extension limit = { png , jpg , heic , zip , pdf }
- ▲ You must hand your answer in at the board before due time (2022-04-04 11:00 AM KST).

The problems start from the next page.

Name

71 7 2 In Korean

Student ID

20210994 8 digits

- 1. Obtain the truth table for the following four-variable functions, and express each function in <u>sum-of-minterms</u> and <u>product-of-maxterms form</u>: (8pts = 4pts each)
 - (a) (ac + b)(ab + d)
 - (b) (b + c'd')(a + bc')

(v)	0\	b	С	a	(actb)(abtd)	
	0	0	0	0	0	[M., M.
	0	٥	0	1	0	M_{i} , M_{i}
	0	0	1	0	0	M2 M2
	0	0	1	1	O	M_3 M_3
	0	\	0	0	0	M4 M4
	0	1	D	1	/	M5 :
	0	/	1	0	0	M6 :
	0	/	/	1	1	(m_1)
	/	0	0	0	0	m_{g}
	1	0	0	/	0	Mg
	(0	1	0	0	M _{lo}
	/	0	J	1	1	(N)
	1	1	0	0	1	M ₁₂
	/	1	0	/	/	M{13}
		1	1	0	/	Min
	_/	1	/	1	/	Mis
						ı

F(a.b. c.d)
$= M_5 + M_0 + M_{11} + M_{12} + M_{13} + M_{14} + M_{15}$
= ≥m (5,7,11,12,13.14.15)
= a'bc'd + a'bcd + abcd + abc'd' + abc'd + abcd' + abcd

F(a.b.c.d)= $M_0 M_1 M_2 M_3 M_4 M_6 M_8 M_9 M_{10}$ = TT M(0.1.2.3.4.6.8.9.10)= (a.b.c.d)(a.b.c.d)(a.b.d)

= (atb+c+d)(a+b+c+d)(a+b+c+d) (a+b+c+d)(a+b+c+d)(a+b+c+d) (a+b+c+d)(a+b+c+d)

	o	b	С	a	(b+c'd')(a+bc')	
	0	0	0	0	0	M., M.
	0	٥	0	1	0	m, M,
	0	0	1	0	0	M2 M2
	0	0	1	1	0	M_3 M_3
	0	/	0	О	/	(Mg) M4
•	0	1	D	1	/	(M ₅) ;
•	0	/	1	0	0	MG:
	0	/	/	1	0	m_1
	/	0	0	0	/	(Mg)
	1	D	0	/	0	M_{q}
	l	0	1	0	0	M ₆
	/	0	1	1	0	Mπ
	1	1	0	0	1	M ₁₂
	/	1	0	1	1	m_{i3}
•	1	1	1	0	/	Mill
	1	1	/	1	/	Mis

(b)

$$F(a.b.c.d) = Ma+M_5+M_8+M_{12}+M_{13}+M_{14}+M_{15}$$

$$= \sum M(4.5.8.12.13.14.15)$$

$$= \alpha'bc'd' + \alpha'bc'd + \alpha b'c'd' + \alpha bc'd' + \alpha bc'd' + \alpha bc'd' + \alpha bc'd' + \alpha bcd' + \alpha$$

$$F(a,b,c,d) = M_0 M_1 M_2 M_3 M_6 M_9 M_9 M_{10} M_{11}$$

$$= \pi M (0.1.2.3.6.7.9.10.11)$$

$$= (a+b+c+d) (a+b+c+d) (a+b+c+d)$$

$$(a+b+c+d) (a+b+c+d) (a+b+c+d)$$

$$(a+b+c+d) (a+b+c+d) (a+b+c+d)$$

2. Express the complement of the following functions in <u>sum-of-minterms</u> form: (8pts = 4pts each)

(a)
$$F(w, x, y, z) = \sum (1, 5, 7, 11, 12, 14, 15)$$

(b)
$$F(x, y, z) = \Pi(2, 4, 5)$$

(a)
$$F'(\omega, x, y, z) = \pi M(1.5.7.11.12.14.(5))$$

= $\Sigma M(0.2.3.4.6.8.9.10.13)$

(b)
$$F'(x,y,z) = \sum m(2.4.5)$$

- 3. Show that a <u>positive logic NAND</u> gate is a <u>negative logic NOR</u> gate and vice versa. (6pts)
- 1) positive logic NAND gate = negative logic NOR gate.

positive logic: _ high voltage = /ogic 1 low voltage = logic 0

negative logic: Thigh voltage = logic D Llow voltage = logic 1

($\forall H$, positive logic NAND gated $\exists T$.) ($L \Rightarrow 0$, $H \Rightarrow 12$ $\forall T$.) $\left(\begin{array}{c} L \Rightarrow 0 \\ L \Rightarrow 1 \end{array}, H \Rightarrow 0 \stackrel{\circ}{=} 2 \stackrel{\forall}{=} 1 \end{array} \right)$

			NAND	yottaak	
00	L	٦	/	/ H \	
0 (L	Н	/	[
1 0	Н	L	/	H	
//	Н	Н	0	L	

			MR	voltage
/ /		L	0	/4 4
10	L	Н	0	[H
0 1	Н	L	Ď	H
00	Н	Н	/	L

positive logic NAND gatelt negative logic KIOR gate 2t (1.1.1.0), (00.0.1) } 0. 101 thang uplant Positiveit regative of 2 High voltage et low wotage 미 쪽에 대당으로 같은 gate라 밝았다.

2) negative logic NAND gate = positive logic NOR gate.

negative logic NAND gate

positive logic NOR gate.

				NAND	voltage
1	/	L	L	0	/ H \ \
1	O	L	Н	1	
0	1	Н	L	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0	0	Н	Н	/	L
					Ť

			NOR	ustrage
D 0		L	/	[/ 4]
0 1	L	Н	0	
10	Н	L	0	
<i>l</i> 1	Н	Н	0	

바건가지 whage 값이 똑같이 내기 때문에, gate 두개가 같아.

4. Simplify the following Boolean functions, using three-variable K-maps: (9pts = 3pts each)

(a)
$$F(x, y, z) = \sum (0, 1, 2, 4, 5, 6)$$

(b)
$$F(x, y, z) = \sum (1, 2, 3, 5, 6, 7)$$

(c)
$$F(x, y, z) = \sum (1, 3, 5, 7)$$

0	1	3	2
4	5	1	6

 $(\alpha) \geq (0.1.2.4.5.6)$

XX	00	01	[[]	10
0	Í	/	D	/
/ _	1	/	D	1
'		4	ı	Z

(b) \(\mathbb{Z}(1.2.3.5.6.7)\)

_	XXX	00	01		[]	10	
	0	D	/		/	/	
•	/	0	/		/	/	
	Z Y						

$$\Rightarrow y+z$$

(c) $\sum (1.3,5.7)$

XX	00	01	[[]	10		
0	0	/	/	0		
	0	ſ	1	0		
		·				

5. Simplify the following Boolean expressions, using three-variable K-maps: (6pts = 3pts each)

(a)
$$F(x, y, z) = x'y'z + xyz' + x'yz + xy$$

(b)
$$F(x, y, z) = xz' + x'z + x'y + xy'$$

0	1	3	2
4	5	1	6

(a) x'y'z + xyz' + x'yz + xy

×	y	ヱ	minterms
0	0	0	x'y'z' = Mo
0	0	/	x'y'z = (m1)
0	/	0	x'yz' = M1
0	~	1	$x'yz = (M_3)$
1	0	6	×y'Z' = M4
1	٥	1	Xy'Z = M5
1	1	0	×yz' =(m6)
1	1	1	x42 = (mg)

Ū				/ X'Z		
	XX	00	01/		10	
	0	0	_	/	0	
	1	0	0	/	1	хy

$$F(x,y,z) = x'z + xy$$

(b) XZ' + X'Z + X'Y + XY'

×	y	Z	minterms
0	0	0	x'y'z' = Mo
0	0	/	x'y'z =(m1)
0	/	D	x'yz' = (M1)
0	/	/	$x'yz = (M_3)$
	0	Ó	×y'≥' =(M4)
	0	1	Xy'z = (05)
1	1	0	×yz' =(m6)
1	/	ſ	x42 = mg

- 6. Simplify the following Boolean functions, using <u>four-variable K-maps</u>: (8pts = 4pts each)
 - (a) $F(w,x,y,z) = \sum (0,2,3,4,6,8,9,12)$
 - (b) $F(w, x, y, z) = \sum_{x} (2, 3, 5, 7, 11, 13)$

D	/	ろ	2
4	5	$ \leftarrow $	6
12	13	15	14
8	٩	[]	10

(a) $\sum (0.2.3.4.6.8.9.12)$

	WX 92	00	61	11	10	(4)
	00	/	O	/	1	/ W'X'
y'z'	01_	/	0	0	1	/ W'Z'
V	11	1	0	0	0	
	10	/		O	0	[
			W	×′y′		

$$F(\omega, x, y, z) = y'z' + \omega'x'y + \omega'z' + \omega x'y'$$

(b) E(2,3,5,7,11,13)

- 7. Simplify the following Boolean expressions, using <u>four-variable K-maps</u>: (8pts = 4pts each)
 - (a) A'B'CD + A'BC + C'D + ABCD + AB'C
 - (b) A'B'C' + A'BD + A'BC'D' + BC'D + ABCD
 - (a) A'B'CD+A'PC+C'D+ABCD+AB'C

A	B	C	D	minterms
0	0	0	0	AIBICIDI = Mo
0	0	0	/	$A'B'C'D = (m_1)$
0	0	7	O	AIBICO = M1
0	0	1	1	$A^{1}B^{1}CD = (M_3)$
0	1	0	6	ABCO' = M4
0	1	0	1	A'BC'D = (Ms)
0	1	1	0	A'B(D' = m's
0	1	1	1	A'BCD - My
\overline{I}	0	0	0	$\forall \delta_i C_i b_i = W^{\delta}$
1	0	0	/	AB'C'D = (Mq)
1	0	1	O	ABICO' = MI
7	0	1	/	AB'CD = mi
1	1	0	Ó	ABC'D' = M12
7	1	0	1	AB ('D = (M13)
1	1	1	0	ABCD' = MI4
1	7	1	1	ABCD = (MIS)

HPC				· P	
AB CD	00	61	/11	10	
00	0	/	/	0	
01	0	1	/	1	- A'BC
11	0	1	/	0	
10	0	1	/	/	- AB'C

$$f(A,B,C,D) = A'BC + AB'C + D$$

(b) A'B'CI + AIBD + A'BCID' + BCID + ABCD

A	B	U	۵	minterms
0	0	0	0	AIBICIDI = Mo
0	0	0	~	A'B'C'D & m,
0	0	_	О	AIBICD = M2
0	0	~	~	AIBICD = M3
0	1	0	6	$ABC'D' = (M_4)$
0	1	٥	1	A'BC'D = (Ms)
D	1	1	0	A'BCD' = M6
0	1	1	1	A'BCD = (M)
1	0	0	0	Agicipi = Mg
1	0	0	~	$AB'C'D = m_q$
1	0	/	b	ABICO' = Mo
1	0	~	\	$AB^{I}CD = M_{II}$
1	1	0	6	ABCID' = M12
7	1	٥	1	$ABC'D = (M_{13})$
1	1	1	0	ABCD' = MI4
1	1	/	ſ	ABCD = (MIS)

		A	+	'C'				
AB	20	00		61	11	10	_	
DC)	/		/	0	0	_	20
0	I	/		/	/	0		BD
7 1		D		1	/	0		
10)	0		0	0	0		

- 8. Find <u>all the prime implicants</u> for the following Boolean functions, and determine which are essential: (6pts = 4pts each)
 - (a) $F(A, B, C, D) = \sum (0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$
 - (b) $F(w, x, y, z) = \sum (0, 1, 2, 5, 7, 8, 10, 15)$

- 9. Simplify the following Boolean functions by first finding the essential prime implicants: (8pts = 4pts each)
 - (a) $F(w,x,y,z) = \sum (0,2/5,7,8,10,12,13,14,15)$ (b) $F(A,B,C,D) = \sum (0,2,3,5,7,8,10,11,14,15)$

(a) EPI by Mo WX Z OO 10 DD EPI: X'Z', XZ 01 EPI by M_5 $\Rightarrow F(w.x.y.z) = x'z' + xz + wx$ 11 0 10 0

(b)				EPI 6	y Mo		
	AB CD	00	61	11	10		
	00		0	/			
EPI by Ms	01	6		ſ	0		
-12 9 13	11	0	0	1		-EPI by	m _{l4}
	10	1	0	1	1	_	

EPI: B'D', A'BD, AC

10. Using K-maps for F and F, convert the following Boolean function from a sum-of-products form to a simplified product-of-sums form. (7pts)

$$F(w, x, y, z) = \sum (1, 2, 4, 5, 9, 10, 13, 14)$$

₹ (1.2.4.5,9,10.13.14)

				EP)	E by m ₁
WX	00	61	11	10	EPI by M3
00	0	(/)	0		→ 먼저、EPI言 笑气 방법으로 STMpTify 된 13001 expression 76671
0,1		/	0	0	=> F(w.x.y.z) = y'z + x'yz' + w'xy' + wyz'
EPI by M4 11	0	1	0	/	-EPI by MA
10	O	1	O	/	→ olz sum of products formolet.

SOPOILY DOS로 Convert하기 위해서는 FION WAY SOP를 거해줘야 한다.

 $\Rightarrow \leq (6,3,6.9.8,11,12.15)$

					E	EPL by M3
	WX	00	61	11/	10	
EPI by mo	00		0		Ó	→ F'(ω.x.y.z) = x'y'z'+ yz+ ω'xy+ωy'z'
	01	0	0	/		HEPI by Mg
7.07		0	0	1	0	$F(\omega,x,y,z) = \langle F'(\omega,x,y,z) \rangle'$
by M12	10	/	0	/	0	$= \langle \times' y' Z' + y Z + \omega' \times y + \omega y' Z' y'$
		' '				= (x+y+z)(y'+z')(w+x'+y')(w'+y+z)
						401201 Product of sums form ofer.

11. Simplify the following expressions to (1) sum-of-products and (2) products-of-sums: (6pts)

$$A'B + A'B'C + CD$$

 $0 \ I$

(1) Fel K-map 22/7

(2) F'el k-map - Fel k-maporis 1,0 4-7-71

AB CD	00	61	11	10	
DD	/	1	0	0	
01	0	Ó	0	0	
11	/	(1)	0	(1)	
10_	/	1	0		
		EPI	_by Mi	EPI	bу М14

$$F'(A,B,C,D) = B'C' + AC' + AD'$$

$$F(A,B,C,D) = (B'C' + AC' + AD')'$$

$$= (B+C)(A'+C)(A'+D)$$

$$\Rightarrow POS$$

12. Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum-of-minterms form: (6pts)

$$F(A,B,C,D) = \sum (3,5,6,11)$$

$$d(A,B,C,D) = \sum (4,7,9,12,15)$$

< k-map>

	\sim 0		1	1	ı "E	PI by Ma			
AB	<v< td=""><td>00</td><td>61</td><td>11</td><td>10</td><td>EPI by M3</td><td></td><td></td><td></td></v<>	00	61	11	10	EPI by M3			
D	٥	0	0		0		. 1		ا
D	1	X		X	1	EPI by Ms	\Rightarrow	CD+A'B	= F
7	1	X	0	Х	0				
1	0	0	×	ſ	0				

13. Draw (a) the <u>multiple-level NAND circuit</u> for the following expression: w(x + y + z) + xyz

and **(b)** repeat (a) for a NOR circuit. (8pts = 4pts each)

output gate it OR = In on 322for 22271 (NAMP)

14. Find the <u>minimum SOP expression</u> for the following Boolean function using the Q-M method. (9pts)

$$F(A, B, C, D, E) = \sum (0, 1, 4, 5, 16, 17, 21, 25, 29)$$

$$0.1$$
 $0000 - \sqrt{0.4}$ $00-00 \sqrt{0.16}$ $00-00 \sqrt{0.16}$ $00-01 \sqrt{0.17}$ $00-01 \sqrt{0.17}$ $0010 - \sqrt{0.17}$ 001

$$\Rightarrow$$
 $f(A,B,C,D,E) = A'B'D' + B'C'D' + AD'E$

End of the Homework #2