STA 221: LECTURE 3

KRISHNA BALASUBRAMANIAN

(University of California, Davis)

 \triangleright For a m by m matrix A, if

$$A\mathbf{y}=\lambda\mathbf{y},$$

then we say

 λ is an eigenvalue of A

y is the corresponding eigenvector

- ▷ Eigen decomposition defined only for square matrices.
- ▷ Eigenvalues in general can be real or complex numbers.

▷ Consider $A \in \mathbb{R}^{m \times m}$ to be a square, symmetric matrix. The eigenvalue decomposition of A is:

$$A = V \Lambda V^T$$
, $V^T V = I(V \text{ is unitary})$, $\Lambda \text{ is diagonal}$

$$\triangleright A = V \wedge V^{T} \Rightarrow AV = V \wedge AV = V \wedge AV = \lambda_{i} = \lambda_{i} V_{i}, \quad \forall i = 1, \cdots, m$$

- \triangleright Each \mathbf{v}_i is an eigenvector, and each λ_i is an eigenvalue
- ▶ Usually, we assume the diagonal numbers are organized in descending order:

$$\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_m),$$

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$$

▶ Eigenvalue decomposition is unique when there are m unique eigenvalues.

▷ Each eigenvector \mathbf{v}_i will be mapped to $A\mathbf{v}_i = \lambda \mathbf{v}_i$ after the linear transform:

Scaling without changing the direction of eigenvectors

$$\triangleright A\mathbf{x} = \sum_{i=1}^{m} \lambda_i \mathbf{v}_i (\mathbf{v}_i^T \mathbf{x})$$

Project x to eigenvectors, and then scaling each vector

Visualization of matrix as transformation.

LOW-RANK APPROXIMATION

- \triangleright Big Matrix A: Want to approximate by "simple" matrix \widehat{A}
- \triangleright Goodness of approximation of \widehat{A} can be measured by

$$\|A - \widehat{A}\|$$

(e.g., using $\|\cdot\|_F$)

▷ Low-rank approximation: $A \approx BC$

IMPORTANT QUESTION

 \triangleright Given A and k, what is the best rank-k approximation?

$$\min_{B,C \text{ are rank } k} \|A - BC\|_F$$

▶ Minimizing B and C are obtained by SVD (Singular Value Decomposition) of A ▷ Any real matrix $A \in \mathbb{R}^{m \times n}$ has the following Singular Value Decomposition (SVD):

$$A = U \Sigma V^T$$

- $\lor U$ is a $m \times m$ unitary matrix $(U^T U = I)$, columns of U are orthogonal
- $\lor V$ is a $n \times n$ unitary matrix $(V^T V = I)$, columns of V are orthogonal
- $\triangleright \Sigma$ is a diagonal $m \times n$ matrix with **non-negative** real numbers on the diagonal.
- ▶ Usually, we assume the diagonal numbers are organized in descending order:

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_n),$$

 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$

SINGULAR VALUE DECOMPOSITION

- ho $m{u}_1, m{u}_2, \cdots, m{u}_m$: left singular vectors, basis of column space $m{u}_i^T m{u}_i = 0 \ \, \forall i \neq j, \quad m{u}_i^T m{u}_i = 1 \ \, \forall i = 1, \cdots, m$
- ho $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$: right singular vectors, basis of row space $\mathbf{v}_i^T \mathbf{v}_i = 0 \ \forall i \neq j, \ \mathbf{v}_i^T \mathbf{v}_i = 1 \ \forall i = 1, \cdots, n$
- ▷ SVD is unique (up to permutations, rotations)

Computing Eigenvectors

Algorithm 1 Power Method

```
Input: Unit-vector \mathbf{c}^{(0)} \in \mathbb{R}^d (Randomly generated) and number of iterations T. for t=1,\ldots,T do \mathbf{c}^{(t)} = \mathbf{A}\mathbf{c}^{(t-1)} \mathbf{c}^{(t)} = \frac{\mathbf{c}^{(t)}}{\|\mathbf{c}^{(t)}\|_2} (Normalization step) end for
```

POWER METHOD

- \triangleright Note that, if we ignore the normalization step, we have $\mathbf{c}^{(t)} = \mathbf{A}^t \mathbf{c}^{(0)}$.
- \triangleright Note that any vector could be written as a linear combination of the d eigenvectors \mathbf{v}_i .
- \triangleright Specifically, the random vector $\mathbf{c}^{(0)}$ given as input to Algorithm 1 could be written as follows, for some constants $\gamma_1, \dots, \gamma_d$.

$$\mathbf{c}^{(0)} = \gamma_1 \mathbf{v}_1 + \gamma_2 \mathbf{v}_2 + \ldots + \gamma_d \mathbf{v}_d$$

POWER METHOD

Now, look at the iterates of Algorithm 1, without normalization step. We then have

$$\mathbf{c}^{(1)} = \mathbf{A}\mathbf{c}^{(0)} = \gamma_1 \mathbf{A}\mathbf{v}_1 + \gamma_2 \mathbf{A}\mathbf{v}_2 + \ldots + \gamma_d \mathbf{A}\mathbf{v}_d$$
$$= \gamma_1 \lambda_1 \mathbf{v}_1 + \gamma_2 \lambda_2 \mathbf{v}_2 + \ldots + \gamma_d \lambda_d \mathbf{v}_d.$$

▷ Similarly, we have

$$\mathbf{c}^{(2)} = \mathbf{A}\mathbf{c}^{(1)} = \gamma_1 \lambda_1 \mathbf{A} \mathbf{v}_1 + \gamma_2 \lambda_2 \mathbf{A} \mathbf{v}_2 + \ldots + \gamma_d \lambda_d \mathbf{A} \mathbf{v}_d$$
$$= \gamma_1 \lambda_1^2 \mathbf{v}_1 + \gamma_2 \lambda_2^2 \mathbf{v}_2 + \ldots + \gamma_d \lambda_d^2 \mathbf{v}_d.$$

$$\mathbf{c}^{(t+1)} = \mathbf{A}\mathbf{c}^{(t)} = \gamma_1 \lambda_1^{(t+1)} \mathbf{v}_1 + \gamma_2 \lambda_2^{(t+1)} \mathbf{v}_2 + \ldots + \gamma_d \lambda_d^{(t+1)} \mathbf{v}_d.$$

Power Method

- \triangleright Recall that, we have assumed λ_1 is larger than other other eigenvalues. So, when it is raised to the power (t+1), the vector $\mathbf{c}^{(t+1)}$ is most correlated (or aligned) in the direction of \mathbf{v}_1 .
- \triangleright But if λ_2 is very close to λ_1 , then t might have to be really large to get $\mathbf{c}^{(t+1)}$ correlated with \mathbf{v}_1 .

Algorithm 2 Truncated Power Method

Input: Unit-vector $\mathbf{c}^{(0)} \in \mathbb{R}^d$ (Randomly generated) and number of iterations T.

$$\begin{array}{l} \textbf{for} \ t=1,\ldots,T \ \textbf{do} \\ \textbf{c}^{(t)} = \textbf{A} \textbf{c}^{(t-1)} \\ \textbf{c}^{(t)} = \frac{\textbf{c}^{(t)}}{\|\textbf{c}^{(t)}\|_2} \end{array} \quad \text{(Normalization step)} \end{array}$$

Let $F^{(t)} \subset \{1, \dots, d\}$ be the set of co-ordinates of $\mathbf{c}^{(t)}$ corresponding to top k absolute values.

Keep the values of $\mathbf{c}^{(t)}$ in the co-ordinates index by the set $F^{(t)}$ as such and set the rest of the coordinates to zero and renormalize.

end for

In linear PCA, we try to represent each data sample as linear combination of some fixed basis vector.

$$X^{(i)} = \sum_{j=1}^{p} \mathbf{v}_j \beta_j^{(i)} = \mathbf{V} \beta^{(i)}$$

where $\mathbf{V} \in \mathbb{R}^{d \times p}$ is the matrix with the basis vectors \mathbf{v}_j as its columns and $\beta_j^{(i)}$ denote the j^{th} coordinate of the vector $\beta^{(i)}$. Note that the basis vectors are fixed and does not change with i and the coefficients change with i. The reasoning behind this is that, you want to represent each sample as a different linear combination of the same basis vector.

PCA ON COVARIANCE MATRIX

Algorithm 3 Stochastic/Online Algorithm for PCA

```
Input: Unit-vector \mathbf{v}^{(0)} \in \mathbb{R}^d (Randomly generated) and step-size
for t = 1, \ldots, T do
      Sample X^{(t)} from the distribution P(X).
      Let \mathbf{v}^{(t)} = \mathbf{v}^{(t-1)} + \beta X^{(t)} X^{(t)} \mathbf{v}^{(t-1)}
     \mathbf{v}^{(t)} = \frac{\mathbf{v}^{(t)}}{\|\mathbf{v}^{(t)}\|_2}
end for
```