Using Algebraic Geometry

With 0 Figures

Anakin Dey

Last Edited on 8/21/24 at 18:31

Contents

1	Introduction		1
	1.1	Polynomials and Ideals	1
	1.2	Gröbner Bases	7
2 So	Solv	Solving Polynomial Equations	
	2.1	Solving Polynomial Systems by Elimination	8
	2.2	Finite Dimensional Algebras	12

Preface

At the time of writing this, I am starting my PhD at The Ohio State University. Currently a large part of my interests in algebra are about algorithms as they relate to polynomials and algebraic geometry. I've been doing a bunch of problems from *Ideals, Varieties, and Algorithms* [CLO15]. However, it seems that *Using Algebraic Geometry* [CLO05] moves through the material faster as it assumes you know more algebra. So I've moved onto working through this book as well as trying to comprehend Sturmfel's *Algorithms in Invariant Theory* [Str08].

Chapter 1

Introduction

1.1 Polynomials and Ideals

Exercise 1 (CLO05 1.1.1):

- (a) Show that $x^2 \in \langle x y^2, xy \rangle$ in k[x, y].
- (b) Show that $\langle x y^2, xy, y^2 \rangle = \langle x, y^2 \rangle$.
- (c) Is $\langle x y^2, xy \rangle = \langle x^2, xy \rangle$? Why or why not?

Proof:

- (a) We have that $x(x-y^2) + y(xy) = x^2 xy^2 + xy^2 = x^2$.
- (b) It suffices to check for generators. We have that $x + (-1)(y^2) = x y^2$, y(x) = xy, and $y^2 = y^2$ showing that $\langle x y^2, xy, y^2 \rangle \subseteq \langle x, y^2 \rangle$. Then $x y^2 + y^2 = x$ and $y^2 = y^2$ shows the reverse containment and overall the ideals are equal.
- (c) We already know from 1. that x^2 lives in $\langle x-y^2, xy \rangle$. Since xy=xy, we overall have that $\langle x^2, xy \rangle \subseteq \langle x-y^2, xy \rangle$. It remains to check if $x-y^2 \in \langle x^2, xy \rangle$. However, notice that every element of $\langle x^2, xy \rangle$ is divisible by x while $x-y^2$ is clearly not divisible by x. Thus $x-y^2 \notin \langle x^2, xy \rangle$ and the two ideals are not equal.

Exercise 2 (CLO05 1.1.2):

Show that $\langle f_1, ..., f_s \rangle$ is closed under sums in $k[x_1, ..., x_n]$. Also show that if $f \in \langle f_1, ..., f_s \rangle$ and $p \in k[x_1, ..., x_n]$ then $p \cdot f \in \langle f_1, ..., f_s \rangle$.

Proof:

Let $f,g \in \langle f_1,\ldots,f_s \rangle$. Then $\exists p_1,\ldots,p_s,q_1,\ldots,q_s$ such that $f=\sum_{i=1}^s p_i \cdot f_i$ and $g=\sum_{i=1}^s q_i \cdot f_i$. Thus $f+g=\sum_{i=1}^s (p_i+q_i) \cdot f_i$ which shows that $f+g\in \langle f_1,\ldots,f_s \rangle$. Then let $p\in k[x_1,\ldots,x_n]$. We have that $p\cdot f=p\sum_{i=1}^s p_i f_i=\sum_{i=1}^s (p\cdot p_i) \cdot f_i$ which shows that $\langle f_1,\ldots,f_s \rangle$ is an ideal.

Exercise 3 (CLO05 1.1.3):

Show that $\langle f_1, ..., f_s \rangle$ is the smallest ideal containing $\{f_1, ..., f_s\}$.

Proof:

We already know that $\langle f_1,\ldots,f_s\rangle$ is an ideal by Exercise 2. Now suppose that J is an ideal containing $\{f_1,\ldots,f_s\}$. Then, since ideals are closed under addition and scaling, we have that for all $p_1,\ldots,p_s\in k[x_1,\ldots,x_n]$ that $\sum_{i=1}^s p_i\cdot f_i\in J$. Thus, $\langle f_1,\ldots,f_s\rangle\subseteq J$.

Exercise 4 (CLO05 1.1.4):

Using Exercise 3, formulate and prove a general criterion for the equality of $I = \langle f_1, ..., f_s \rangle$ and $J = \langle g_1, ..., g_t \rangle$.

Proof:

We claim that $\langle f_1,\ldots,f_s\rangle=\langle g_1,\ldots,g_t\rangle$ if and only if $\{g_1,\ldots,g_t\}\subseteq I$ and $\{f_1,\ldots,f_s\}\subseteq J$. The forward implication is immediate. Then by Exercise 3, if $\{g_1,\ldots,g_t\}\subseteq I$ then $J\subseteq I$. Similarly, $\{f_1,\ldots,f_s\}\subseteq J\implies I\subseteq J$ and overall I=J. This fact was used in Exercise 1 (b).

Exercise 5 (CLO05 1.1.5):

Show that $\langle y - x^2, z - x^3 \rangle = \langle y - x^2, z - xy \rangle$ in $\mathbb{Q}[x, y, z]$.

Proof:

It suffices to show that $z-x^3 \in \langle y-x^2, z-xy \rangle$ and and $z-xy \in \langle x-y^2, z-x^3 \rangle$. Indeed we have that $(z-xy)+x(y-x^2)=z-x^3$ which also yields that $z-xy=z-x^3-x(y-x^2)$.

Exercise 6 (CLO05 1.1.6):

Show that every ideal $I \subseteq k[x]$ is generated by a single polynomial.

Proof:

If $I = \{0\}$ then $I = \langle 0 \rangle$. So suppose $I \neq 0$. Let $d \in I$ be of minimal degree. $\langle d = \gcd(I) \text{ but I need} \}$ infinite Bezout. \rangle Then we claim that $\langle d \rangle = I$. Since $d \in I$, we have that $\langle d \rangle \subseteq I$. Now let $f \in I$. By Euclidean division, there exists $q, r \in k[x]$ such that f = qd + r where either r = 0 or $0 \leq \deg(r) \leq \deg(d) - 1$. If r = 0 then $f \in \langle d \rangle$ and we are done. So suppose $r \neq 0$. Then $f, qd \in I \implies r = f - qd \in I$. Thus, $r \in I$ is of degree strictly less than d, contradicting the minimality of the degree of d. So we must have that r = 0 and overall $\langle d \rangle = I$.

Exercise 7 (CLO05 1.1.7):

- (a) Show that $\sqrt{\langle x^n \rangle} = \langle x \rangle$ in k[x].
- (b) If $p(x) = (x a_1)^{e_1} \cdots (x a_m)^{e_m}$, find $\sqrt{\langle p(x) \rangle}$.
- (c) Let $k = \mathbb{C}$. What are the radical ideals in $\sqrt{\mathbb{C}[x]}$?

Proof:

- (a) Suppose $f(x) \in \langle x \rangle$. Then $f(x)^m \in \langle x^n \rangle$ so $f(x) \in \sqrt{\langle x^n \rangle}$ Now suppose that $f(x) \in \sqrt{\langle x^n \rangle}$. Then $\exists k$ such that $f(x)^k \in \langle x^n \rangle$. Thus $f(x)^k$ is a multiple of x^n . This implies that $f(x)^k$ is a multiple of x. Then notice that the unique factorization of $f(x)^k$ into irreducibles is the kth power of the factorization of f(x) into irreducibles. Thus x must be a factor of f(x) and so $f(x) \in \langle x \rangle$. Note, this heavily uses the fact that k[x] is a unique factorization domain for all fields k.
- (b) We claim that $\sqrt{\langle p(x)\rangle} = \langle (x-a_1)\cdots(x-a_m)\rangle = I$. Suppose $f(x) \in I$. Let $k = \max e_1, \dots, e_n$. Then $p(x) \mid f(x)^k$ so $f(x) \in \sqrt{\langle p(x)\rangle}$. Now suppose that $f(x) \in \sqrt{\langle p(x)\rangle}$. Then $\exists k$ such that $f(x)^k \in \langle p(x)\rangle$. Thus $f(x)^k$ is a multiple of each $(x-a_i)$. Then notice that the unique factorization of $f(x)^k$ into irreducibles is the kth power of the factorization of f(x) into irreducibles. Thus f(x) is a multiple of each $(x-a_i)$ and so $f(x) \in I$.
- (c) Radical ideals are the ideals I such that $\sqrt{I} = I$. Notice that $\mathbb{C}[x]$ is a principal ideal domain and so any such I must be generated by a single polynomial. Since every polynomial in $\mathbb{C}[x]$ splits into linear factors, (b) immediately implies that the only radical ideals of $\mathbb{C}[x]$ are the ones which are of the form $\langle (x-a_1)\cdots(x-a_m)\rangle$ for $a_1,\ldots,a_m\in\mathbb{C}[x]$.

Exercise 8 (CLO05 1.1.8):

- (a) Show that a prime ideal is radical.
- (b) What are the prime ideals in $\mathbb{C}[x]$? What about the prime ideals in $\mathbb{R}[x]$ or $\mathbb{Q}[x]$?

Proof:

- (a) Let \mathfrak{p} be a prime ideal in $k[\overline{x}]$. Clearly $\mathfrak{p} \subseteq \sqrt{\mathfrak{p}}$ always. Let $f(\overline{x}) \in \sqrt{\mathfrak{p}}$. Then $f(\overline{x})^m \in \mathfrak{p}$ for some $m \in \mathbb{Z}_{\geq 1}$. We prove the reverse inclusion by induction on m. If m = 1 then $f(\overline{x}) = f(\overline{x})^1 \in \mathfrak{p}$. Now let m > 1 and suppose the claim holds for all $k \leq m$. Then suppose $f(\overline{x})^{m+1} \in \mathfrak{p}$. Then $f(\overline{x}) \cdot f(\overline{x})^m \in \mathfrak{p}$ Either $f(\overline{x}) \in \mathfrak{p}$ or $f(\overline{x})^m \in \mathfrak{p}$ which by induction implies that $f(\overline{x}) \in \mathfrak{p}$. Thus, $f(\overline{x})^m \in \mathfrak{p} \implies f(\overline{x}) \in \mathfrak{p}$ for all $m \in \mathbb{Z}_{\geq 1}$ and so $\sqrt{\mathfrak{p}} \subseteq \mathfrak{p}$. Thus, all prime ideals are radical.
- (b) Notice that for all fields k that k[x] is a principal ideal domain. Thus, all the prime ideals are the ones generated by a single irreducible polynomial. Also, in k[x] we have that (0) is a prime ideal as well as k[x] is an integral domain. In $\mathbb{C}[x]$, these are the ideals generated by x-z for some $z \in \mathbb{C}$. In $\mathbb{R}[x]$, the primes are the ideals generated by x-r for some $r \in \mathbb{R}$ or x^2+r for some positive $r \in \mathbb{R}$. (\langle What would be a general condition for $\mathbb{Q}[x]$? \rangle)

Exercise 9 (CLO05 1.1.9):

- (a) Show that $\langle x_1, ..., x_n \rangle$ is maximal in $k[x_1, ..., x_n]$.
- (b) Show that for any point $(a_1, ..., a_n) \in k^n$ that $(x_1 a_1, ..., x_n a_n)$ is maximal in $k[x_1, ..., x_n]$.
- (c) Show that $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$. Is $\langle x^2 + 1 \rangle$ maximal in $\mathbb{C}[x]$?

Proof:

- (a) First, observe that $\langle x_1, \ldots, x_n \rangle$ is the ideal consisting exactly of polynomials which have no constant term. Let I be an ideal in $k[x_1, \ldots, x_n]$ such that $\langle x_1, \ldots, x_n \rangle \subsetneq I$. Thus there exists $f(x_1, \ldots, x_n) \in I \setminus \langle x_1, \ldots, x_n \rangle$. We have by our observation that f has a nonzero constant term z. Then note that the nonconstant terms of f form a polynomial $g(x_1, \ldots, x_n)$ in $\langle x_1, \ldots, x_n \rangle$. Thus, we have that $z = f(x) g(x) \in I$. Since I contains a nonzero constant term, we must have that $I = k[x_1, \ldots, x_n]$.
- (b) Recall that an ideal I is maximal if and only if R/I is a field. Let $I = \langle x_1 a_1, \dots, x_n a_n \rangle$. Consider the evaluation map $\operatorname{ev}_{\overline{a}} \colon k[x_1, \dots, x_n] \to k$ sending $f(x_1, \dots, x_n) \mapsto f(a_1, \dots, a_n)$. Clearly this map is surjective. Then since for all i we have that $x_i \equiv a_i \pmod{I}$, we have that $f(x_1, \dots, x_n) \equiv f(a_1, \dots, a_n) \pmod{I}$ for all $f(x_1, \dots, x_n) \in k[x_1, \dots, x_n]$. Thus, $\operatorname{ev}_{\overline{a}}(f) = f(a_1, \dots, a_n) = 0$ if and only if $f(x_1, \dots, x_n) \in I$. Thus, $\operatorname{ker}(\operatorname{ev}_{\overline{a}}) = I$ and $k[x_1, \dots, x_n]/I$ is a field, meaning $\langle x_1 a_1, \dots, x_n a_n \rangle$ is maximal.
- (c) Since $\mathbb{R}[x]$ is a principal ideal domain, any ideal I strictly containing $\langle x^2+1 \rangle$ is of the form $\langle g(x) \rangle$ for some $g(x) \mid x^2+1$. However, since x^2+1 is irreducible in $\mathbb{R}[x]$, we have that g(x) is either $z(x^2+1)$ for some nonzero $z \in \mathbb{C}$ or g(x) = z for some nonzero $z \in \mathbb{C}$, meaning $\langle g(x) \rangle = \langle x^2+1 \rangle$ or or $\langle g(x) \rangle = \mathbb{R}[x]$. Thus, $\langle x^2+1 \rangle$ is maximal. However, in $\mathbb{C}[x]$, we have that $x^2+1=(x+i)(x-i)$ and so $\langle x^2+1 \rangle \subsetneq \langle x-i \rangle \subsetneq \mathbb{C}[x]$.

Exercise 10 (CLO05 1.1.10):

- (a) Let $I = \langle x^2 + y^2, x^2 z^3 \rangle \subseteq k[x, y, z]$. Show that $y^2 + z^3$ is in the first elimination ideal with respect to the ordering x > y > z.
- (b) Show that if I is an ideal in $k[x_1, ..., x_n]$ then for all $\ell \ge 1$, I_ℓ is an ideal in $k[x_{\ell+1}, ..., x_n]$.

Proof:

- (a) Since $x^2 + y^2 (x^2 z^3) = y^2 + z^3$ is an element of *I* which does not depend on x, $y^2 + z^3$ is in I_1 .
- (b) For all $\ell \geq 1$, we have that $0 \in I_{\ell}$. Then, if $f(x_{\ell+1}, \ldots, x_n)$, $g(x_{\ell+1}, \ldots, x_n)$ are two polynomials in I who do not depend on the first ℓ variables, then so is f+g. Finally, let $r(x_{\ell}+1, \ldots, x_n) \in k[x_{\ell+1}, \ldots, x_n]$. Then $r \cdot f \in I_{\ell}$ since $r \cdot f \in I$ and still does not depend on any of the first ℓ variables.

Exercise 11 (CLO05 1.1.11):

Let I, J be ideals in $k[\overline{x}]$.

- (a) Show that I + J is an ideal.
- (b) Show that I + J is the smallest ideal containing $I \cup J$.
- (c) If $I = \langle f_1, \dots, f_s \rangle$ and $J = \langle g_1, \dots, g_t \rangle$, what is a finite generating set of I + J?

Proof:

- (a) ((meh))
- (b) ((**meh**))
- (c) We claim that $I + J = \langle f_1, \dots, f_s, g_1, \dots, g_t \rangle$. Clearly $I, J \subseteq \langle f_1, \dots, f_s, g_1, \dots, g_t \rangle$ and thus so is $I \cup J$. By (b), this shows that $I + J \subseteq \langle f_1, \dots, f_s, g_1, \dots, g_t \rangle$. Then, since $f_i = f_i + 0$ and $g_j = 0 + g_j$ for all i, j, we have the reverse inclusion and thus the two ideals are equal.

Exercise 12 (CLO05 1.1.12):

Let I, J be ideals in $k[\overline{x}]$.

- (a) Show that $I \cap J$ is an ideal.
- (b) Show that $IJ \subseteq I \cap J$. Give an example where $IJ \subseteq I \cap J$.

Proof:

- (a) ((meh))
- (b) Suppose that $h(\overline{x}) \in IJ$. Note that IJ is generated by the products $f(\overline{x}) \cdot g(\overline{x})$ for $f(\overline{x}) \in I$, and $g(\overline{x}) \in J$. Then $h(\overline{x})$ consists of sums of terms of the form $r(\overline{x}) \cdot f(\overline{x}) \cdot g(\overline{x})$ for $r(\overline{x}) \in k[\overline{x}]$, $f(\overline{x}) \in I$, and $g(\overline{x}) \in J$. Thus, each term is in both I and J and overall so is $h(\overline{x})$.

To see an example where $IJ \subsetneq I \cap J$, consider $I = \langle x^2y \rangle$ and $J = \langle xy^2 \rangle$ in k[x,y]. Then $I \cap J = \langle x^2y^2 \rangle$ and $IJ = \langle x^3y^3 \rangle$. Thus $IJ \subsetneq I \cap J$ as $I \cap J$ contains x^2y^2 and IJ does not contain x^2y^2 .

1.2 Gröbner Bases

Exercise 1 ($\langle\langle CLO05 1.3.11 \rangle\rangle$):

Chapter 2

Solving Polynomial Equations

2.1 Solving Polynomial Systems by Elimination

Exercise 1 ($\langle\langle CLO05 \ 2.1.1 \rangle\rangle$):

Exercise 2 ($\langle\langle CLO05 \ 2.1.2 \rangle\rangle$):

Exercise 3 (CLO05 2.1.3):

Suppose $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ is a monic polynomial in $\mathbb{C}[z]$. Then all roots \overline{z} of p(z) satisfy

$$\overline{z} \le B := \max\{1, |a_{n-1}| + \dots + |a_0|\}.$$

Proof:

We may freely rewrite the polynomial as $p(z)=z^n-a_{n-1}z^{n-1}-\cdots-a_0$ We have that $0=\overline{z}^n-a_{n-1}\overline{z}^{n-1}-\cdots-a_0$ and so $\overline{z}^n=a_{n-1}\overline{z}^{n-1}+\cdots+a_0$. Suppose now that $|\overline{z}|\geq 1$. Then

$$|\overline{z}|^n = |a_{n-1}\overline{z}^{n-1} + \dots + a_0| \le |a_{n-1}||z|^{n-1} + \dots + a_0 \le |a_{n-1}|\overline{z}^{n-1} + \dots + a_0|\overline{z}^{n-1}.$$

Thus, $|\overline{z}| \le |a_{n-1}| + \dots + |a_0|$. However, we assumed that $|\overline{z}| \ge 1$. This may not be the case. Thus, $|\overline{z}| \le B := \max\{1, |a_{n-1}| + \dots + |a_0|\}$.

Exercise 4 (((CLO05 2.1.4))):

Numerically find all roots of $2z^6 + 2z^5 - z^4 - z^3 - 2z^2 - 2z - 2$.

Exercise 5 (CLO05 2.1.5):

Verify that if x > y then $G = [x^2 + 2x + 3 + y^5 - y, y^6 - y^2 + 2y]$ is a lex Gröbner basis for the ideal that G generates in $\mathbb{R}[x, y]$

Proof:

We apply Buchberger's Criterion. Let $f(x, y) = x^2 + 2x + 3 + y^5 - y$ and $g(x, y) = y^6 - y^2 + 2y$. Then we have that

$$S(f,g) = \frac{x^2y^6}{x^2} \cdot (x^2 + 2x + 3 + y^5 - y) - \frac{x^2y^6}{y^6} \cdot (y^6 - y^2 + 2y) = y^6 \cdot (x^2 + 2x + 3 + y^5 - y) - x^2 \cdot (y^6 - y^2 + 2y).$$

This shows that $\overline{S(f,g)}^G = 0$ which yields that G is a Gröbner basis.

Exercise 6 ($\langle\langle CLO05 \ 2.1.6 \rangle\rangle$):

Exercise 7 ($\langle\langle CLO05 \ 2.1.7 \rangle\rangle$):

Exercise 8 (CLO05 2.1.8):

Newton's method for an equation p(z)=0 is the sequence of points $\{z_k\}_{k\geq 0}$ starting from a chosen z_0 and defining $z_{k+1}=N_p(z_k)$ for $N_p(z)=z-\frac{p(z)}{p'(z)}$.

- (a) Prove that a simple root of a polynomial p(z) is a fixed point of $N_p(z)$.
- (b) Show that multiple roots of p(z) are removable singularities of $N_p(z)$. That is, show that $|N_p(z)|$ is bounded in a neighborhood of each multiple root. How should $N_p(z)$ be defined at a multiple root of p(z) to make $N_p(z)$ continuous.
- (c) Show that $N_p'(\overline{z}) = 0$ if \overline{z} is a simple root, meaning that $p(\overline{z}) = 0$ and $p'(\overline{z}) \neq 0$.
- (d) Show that if \overline{z} is a root of multiplicity k of p(z), meaning $p(overlinez) = p'(\overline{z}) = \cdots = p^{(k-1)}(\overline{z}) = 0$ and $p^{(k)}(\overline{z}) \neq 0$, then

$$\lim_{z \to \overline{z}} N_p'(z) = 1 - \frac{1}{k}.$$

(e) Show that by replacing p(z) with

$$p_{red}(z) = \frac{p(z)}{\gcd p(z), p'(z)}$$

that the difficulty in (d) is eliminated as all roots of $p_{red}(z)$ are simple.

Proof:

- (a) Let \overline{z} be a simple root of p(z), so p(z) = 0 but $p'(z) \neq 0$. Then $N_p(\overline{z}) = \overline{z} \frac{p(\overline{z})}{p'(\overline{z})} = \overline{z}$ meaning \overline{z} is a fixed point of $N_p(z)$.
- (b) Suppose that \overline{z} is a multiple root of p(z) with multiplicity $m \ge 2$. Then we may express $p(z) = \tilde{p}(z)(z-\overline{z})^m$ such that $\tilde{p}(\overline{z}) \ne 0$. Thus, we have that

$$\begin{split} N_p(z) &\coloneqq z - \frac{p(z)}{p'(z)} \\ &= z - \frac{\tilde{p}(z)(z - \overline{z})^m}{\tilde{p}'(z)(z - \overline{z})^m + m\tilde{p}(z)(z - \overline{z})^{m-1}} = z - \frac{\tilde{p}(z)(z - \overline{z})}{\tilde{p}'(z)(z - \overline{z}) + m\tilde{p}(z)} \end{split}$$

Note that $m\tilde{p}(\bar{z}) \neq 0$. Thus, we have that

$$\left|N_p(\overline{z})\right| = \left|\overline{z} - \frac{\tilde{p}(\overline{z})(\overline{z} - \overline{z})}{\tilde{p}'(\overline{z})(\overline{z} - \overline{z}) + m\tilde{p}(\overline{z})}\right| = |\overline{z}| \le \mathrm{LC}(p) \cdot B$$

where *B* is the value from Exercise 3 and Lc(p) is the leading coefficient of p(z).

(c) Suppose now that \overline{z} is a simple root of $p(\overline{z})$. Then we may express $p(z) = \tilde{p}(z)(z - \overline{z})$ such that $\tilde{p}(\overline{z}) \neq 0$. We have that

$$p'(z) = \tilde{p}'(z)(z - \overline{z}) + \tilde{p}(z)$$

and evaluation of p'(z) at \overline{z} is nonzero.

(d) Let \overline{z} be a root of multiplicity m. Following (b), we write $p(z) = \tilde{p}(z)(z-\overline{z})^m$ such that $\tilde{p}(\overline{z}) \neq 0$. Then we have, by differentiating the expression for $N_p(z)$ from (b), that

$$N_p'(z) = 1 - \frac{(\tilde{p}'(z)(z-\overline{z}) + \tilde{p}(z))(\tilde{p}'(z)(z-\overline{z}) + m\tilde{p}(z)) - (\tilde{p}(z)(z-\tilde{z}))(\tilde{p}''(z)(z-\overline{z}) + \tilde{p}'(z) + m\tilde{p}'(z))}{(\tilde{p}'(z)(z-\overline{z}) + m\tilde{p}(z))^2}.$$

Evaluation at $z = \overline{z}$ yields that $\lim_{z \to \overline{z}} N_p'(z) = 1 - \frac{1}{m}$.

(e) Let \overline{z} be a root of multiplicity m. Following (b), we write $p(z) = \tilde{p}(z)(z-\overline{z})^m$ such that $\tilde{p}(\overline{z}) \neq 0$. Then

$$p'(z) = \tilde{p}'(z - \overline{z})^m + m\tilde{p}(z)(z - \overline{z})^{m-1} = (z - \overline{z})^{m-1}(\tilde{p}'(z)(z - \overline{z}) + m\tilde{p}(z)).$$

Notice that $\tilde{p}'(\overline{z})(\overline{z}-\overline{z})+m\tilde{p}(\overline{z})=m\tilde{p}(\overline{z})\neq 0$. Thus, a root of multiplicity $m\geq 1$ of p(z) is a root of multiplicity m-1 of p'(z). This implies that if we have roots $\overline{z}_1,\ldots,\overline{z}_k$ with multiplicities $m_1,\ldots,m_k\geq 1$, then $\gcd(p(z),p'(z))=(z-\overline{z}_1)^{m_1}\cdots(z-\overline{z}_k)^{m_k}$. Thus, the polynomial $p_{\mathrm{red}}(z)=\frac{p(z)}{\gcd(p(z),p'(z))}$ has the same roots of p(z) but all with multiplicity 1 which is the best case for Newton's method.

Exercise 9 (CLO05 2.1.9):

(a) What happens if you do Newton's method to solve $z^2 + 1 = 0$ starting from a real z_0 versus a complex z_0 ?

(b) Let
$$p(z) = z^4 - z^2 - \frac{11}{36}$$
. Let $N_p(z) = z - \frac{p(z)}{p'(z)}$. Show that $N_p\left(\pm \frac{1}{\sqrt{6}}\right) = \mp \frac{1}{\sqrt{6}}$ and $N_p'\left(\frac{1}{\sqrt{6}}\right) = 0$.

Proof:

(a) Let $p(z) = z^2 + 1$. We have that

$$N_p(z) = z - \frac{z^2 + 1}{2z} = \frac{2z^2 - z^2 + 1}{2z} = \frac{z^2 + 1}{2z} = \frac{x^2 + 2ixy - y^2 + 1}{2x + 2iy}.$$

If z is real then y = 0 and so $N_p(x) = \frac{x^2+1}{2x}$ which is always real. Thus, Newton's method will never reach the imaginary roots of $z^2 + 1$. However, if we begin with a guess with nonzero imaginary part, then the guess does converge as expected.

(b) (\langle Just basic arithmetic not worth doing. \rangle)

Exercise 10 (CLO05 2.1.10):

Let $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ be a monic polynomial in $\mathbb{C}[z]$. Then all roots \overline{z} of p(z) satisfy

$$\overline{z} \leq B := 1 + \max\{|a_{n-1}|, \dots, |a_0|\}.$$

Proof:

Let \overline{z} be a root of p(z). Then $-\overline{z}^n = a_{n-1}\overline{z}^{n-1} + \cdots + a_0$ and so

$$\begin{split} |\overline{z}|^n &= \left|a_{n-1}\overline{z}^{n-1} + \dots + a_0\right| \\ &\leq \max_i \left\{ |a_i| \right\} \cdot \left|\overline{z}^{n-1} + \dots + 1\right| \\ &\leq \max_i \left\{ |a_i| \right\} \cdot \left(|\overline{z}|^{n-1} + \dots + 1 \right) \\ &= \max_i \left\{ |a_i| \right\} \cdot \frac{|\overline{z}|^n + 1}{|\overline{z}| - 1} \leq \max_i \left\{ |a_i| \right\} \cdot \frac{|\overline{z}|^n}{|\overline{z}| - 1}. \end{split}$$

Thus, $|\overline{z}|^n \leq \max_i \{|a_i|\} \cdot \frac{|z|^n}{|z|-1}$ which implies that $|z|-1 \leq \max_i \{|a_i|\}$. Thus, $|z| \leq 1 + \max_i \{|a_i|\}$.

2.2 Finite Dimensional Algebras

Exercise 1 ($\langle\langle CLO05 \ 2.2.1 \rangle\rangle$):

Exercise 2 (CLO05 2.2.2):

Let $p_i(x_i)$ as in [CLO05, 2.2 (2.6)]. Then show that $p_i(x_i)$ generates $I \cap k[x_i]$.

Proof:

It is clear that $\langle p_i(x_i) \rangle \subseteq I \cap k[x_i]$. Now suppose that $f(x_i) \in I \cap k[x_i]$. Then $\deg(f(x_i))$ must be $\geq m_i$. If not, then by the minimality of m_i we would arrive at a contradiction. Now by the division algorithm, write $f(x_i) = q(x_i)p_i(x_i) + r(x_i)$ where $\deg(r_{x_i}) < m_i$. Then $r(x_i) = f(x_i) - q(x_i)p(x_i) \in I$ and so $r(x_i)$ must be 0 since if not, we would arrive at a contradiction of the minimality of m_i .

This gives us an algorithm to compute $p_i(x_i)$. Let I be a zero dimensional ideal and G a Gröbner basis for I. Then we know there exists m_i such that $\{1, [x_i], \ldots, [x^{m_i}]\}$ is linearly dependent in $k[\overline{x}]/I$. In fact, we may use the Finiteness Theorem to set m_i to the smallest integer such that $x_i^{m_i} = \operatorname{LT}(g)$ for some $g \in G$. Since $k[x_1, \ldots, x_n]/I$ is a vector space, we can check linear independence in the usual way. See code/ch2/2_2_sage for a SageMath implementation of this.

Exercise 3 (CLO05 2.2.3):

Let $p(x) \in k[x]$ be a nonzero polynomial. Then $\sqrt{\langle p(x) \rangle} = \langle p_{\rm red}(x) \rangle$.

Proof:

Let $0 \neq f(x) \in \sqrt{\langle p(x) \rangle}$. Then there exists $m \geq 1$ such that $f^m \in \langle p(x) \rangle$ and so $p(x) \mid f(x)^m$. In particular, each linear factor $(x - \overline{z})$ of p(x) divides $f(x)^n$ and so divides f(x) as $(x - \overline{z})$ is irreducible. Thus, $p_{\text{red}}(x) \mid f(x)$ and so $f(x) \in \langle p_{\text{red}}(x) \rangle$. Conversely, suppose $f(x) \in \langle p_{\text{red}}(x) \rangle$ so that $\langle p_{\text{red}} \rangle \mid f(x)$. Label the roots of p(x) as $\overline{z}_1, \dots, \overline{z}_r$, each $\overline{z}_i \in \overline{k}$. Then for each $i, (x - \overline{z}_i) \mid f(x)$ Let m_i be the multiplicity of z_i in p(x) and $m = \max\{m_1, \dots, m_r\}$. Then $p(x) \mid f(x)^m$ and so $f(x) \in \sqrt{\langle p(x) \rangle}$

Exercise 4 (CLO05 2.2.4):

We use the algorithm from Exercise 2 implemented in code/ch2/2_2_2sage. See code/ch2/2_2_2sage for the code in action.

Exercise 5 (((CLO05 2.2.5))):

Let *I* as in Exercise 4. Compare the dimensions of $\mathbb{C}[x,y]/I$ and $\mathbb{C}[x,y]/\sqrt{I}$. How many points are in V(I)?

Proof:

Then $\sqrt{I} = I + \langle x(x-1), y(y-2) \rangle$. Since $I \subseteq \sqrt{I}$, we see that $\dim \mathbb{C}[x,y]/I \ge \dim \mathbb{C}[x,y]/\sqrt{I}$. A quick SageMath computation confirms this: $\dim \mathbb{C}[x,y]/I = 9$ and $\dim \mathbb{C}[x,y]/\sqrt{I} = 2$. See code/ch2/2_2_5. sage for the code in action. Then, since $I \subseteq \sqrt{I}$ we have that $V(\sqrt{I}) \subseteq V(I)$. Notice that

$$y^{4}x + 3x^{3} - y^{4} - 3x^{2} = y^{4}(x - 1) + 3x^{2}(x - 1) = (y^{4} + 3x^{2})(x - 1)$$
$$x^{2}y - 2x^{2} = x^{2}(y - 2)$$
$$2y^{4}x - x^{3} - 2y^{4} + x^{2} = 2y^{4}(x - 1) - x^{2}(x - 1) = (2y^{4} - x^{2})(x - 1).$$

Thus, (1,2) and (0,0) are the only two points in V(I). Since it is evident that $V(\sqrt{I})$ contains these two points, we see in this case that $V(\sqrt{I}) = V(I)$.

Exercise 6 (CLO05 2.2.6):

Let I as in Exercise 4. Compute the monomial basis for $\mathbb{C}[x,y]/I$ using grevlex order and the multiplication table.

Proof:

A grevlex Gröbner basis for I is $\{y^4-16y^2,x^3-x^2,-2x^2\}$. Thus, by the Finiteness Theorem, we know that the for monomials x^ay^b in $\mathbb{C}[x,y]/I$ we must have that $0 \le a \le 1$ and $0 \le b \le 3$. See code/ch2/2_2_6. sage for the code in action to compute the table.

Exercise 7 (CLO05 2.2.7):

Walk through the described construction to construct an zero dimensional ideal corresponding to a finite variety.

Proof:

We implement the algorithm described in Exercise 1. See $/ \text{code}/\text{ch} 2/2_2 - 7$, sage for the code in action. \Box

Exercise 8 (CLO05 2.2.7):

Use the method described in [CLO05, Prop. 2.2.7] to show that the ideal

$$I = \left\langle x^2 + \frac{3xy}{2} + \frac{y^2}{2} - \frac{3x}{2} - \frac{3y}{2}, xy^2 - x, y^3 - y \right\rangle$$

is a radical ideal.

Bibliography

- [CLO05] D.A. Cox, J. Little, and D. O'Shea. *Using Algebraic Geometry*. Springer-Verlag, 2005. ISBN: 0387207066. DOI: 10.1007/b138611. URL: http://dx.doi.org/10.1007/b138611.
- [CLO15] D.A. Cox, J. Little, and D. O'Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*. Undergraduate Texts in Mathematics. Springer International Publishing, 2015. ISBN: 9783319167213. URL: https://books.google.com/books?id=yL7yCAAAQBAJ.
- [Str08] Bernd Strumfels. *Algorithms in Invariant Theory*. Springer Vienna, 2008. ISBN: 9783211774175. DOI: 10.1007/978-3-211-77417-5. URL: http://dx.doi.org/10.1007/978-3-211-77417-5.