1. МАТРИЦЫ КОСИНУСОВ

Матрицы косинусов как математический объект были предложены ранее в рамках курсовых и дипломной работ. Теоретические результаты предыдущих работ здесь будут изложены, по возможности, кратко и без доказательств, но систематично. Здесь они необходимы, прежде всего, для правильного изложе □ ния новых результатов, касающихся нового объекта - релятивистской матрицы косинусов. Кроме того, терминология данной главы может местами отличаться от терминологии предыдущих работ, что связано с тем, что она ещё не устоя □ лась, и требует некоторых изменений для большей систематичности.

1.1. Базовые определения

Пусть имеется некоторое гильбертово пространство \mathcal{H} (в частном случае некоторое конечномерное евклидово пространство \mathbb{R}^k). Пусть в данном про странстве задана последовательность точек (ломаная) $X=(x_i)$, где $i=\overline{0,n}$. Обозначим $\mathbf{p}_i=x_i-x_{i-1}$, где $i=\overline{1,n}$, тогда ненормализованной матрицей косинусов по ломаной X будем называть квадратную матрицу вида:

$$C_E = (\langle \mathbf{p}_i, \mathbf{p}_j \rangle)_{ij} \in \mathbb{R}_{n,n}. \tag{1.1}$$

Если выполняется условие:

$$||\mathbf{p}_i|| = 1, i = \overline{1, n},\tag{1.2}$$

то говорят о *нормализованных матрицах косинусов* или собственно *мат* □ *рицах косинусов*. На практике, удобнее всего работать с нормализованными мат □ рицами косинусов, ненормализованные матрицы косинусов могут возникнуть при некоторых операциях над обычными матрицами косинусов. Далее в работе, если не оговорено противное, будет подразумеваться наличие нормализации.

Название матриц следует из того факта, что при условии 1.2:

$$C_E = (\langle \mathbf{p}_i, \mathbf{p}_j \rangle)_{ij} = (||\mathbf{p}_i||||\mathbf{p}_j||\cos \mathbf{p}_i \wedge \mathbf{p}_j)_{ij} = (\cos \mathbf{p}_i \wedge \mathbf{p}_j)_{ij}.$$
(1.3)

Объект, определенный выше, строится по и описывает одну ломаную. Пусть

имеется две последовательности точек: $X'=(x'_i)$, где $i=\overline{0,m}$ и $X''=(x''_j)$, где $j=\overline{0,n}$. Тогда аналогично 1.1 можно построить матрицу косинусов по двум ломаным X' и X'':

$$C_{X',X''} = (\langle \mathbf{p'}_i, \mathbf{p''}_j \rangle)_{ij} \in \mathbb{R}_{m,n}.$$
 (1.4)

Определения 1.1 и 1.4 здесь фундаментальны, на практике полезны также матрица косинусов, кодирующая поворот ломаной C_A , и кодирующая вектор относительно ломаной C_{ν} - они являются частными случаями 1.4, и их опре деления для краткости опустим.

Непрерывное обобщение матрицы косинусов можно назвать noверхно стью косинусов. Пусть $x(\alpha)$ - гладкая кривая $x:[0,l]\to \mathcal{H}$ и $\mathbf{p}(\alpha)=\frac{\partial x(\alpha)}{\partial \alpha}$. Тогда 1.1 можно переписать как:

$$C(\alpha_1, \alpha_2) = \langle \mathbf{p}(\alpha_1), \mathbf{p}(\alpha_2) \rangle. \tag{1.5}$$

Таким образом, получаем действительную функцию о двух параметров $C:[0,l] \times [0,l] \to \mathbb{R}.$ Условие нормализации для 1.5 выглядит следующим образом:

$$||\mathbf{p}(\alpha)|| = 1, \forall i \in [0, l]. \tag{1.6}$$

Использование непрерывной 1.5 для вычислений затруденено. Гораздо удоб □ нее исследовать и использовать матрицы.

1.2. Свойства матриц косинусов

Для исследования свойств описанных матриц, необходимо записать их в более удобном виде. Пусть речь идёт об евклидовом простанстве \mathbb{R}^k , тогда в нём можно ввести репер $O=(x_0,\mathbf{v}_1,...,\mathbf{v}_k)$, пораждающий декартову систе му координат. Тогда каждой точке x_i и вектору \mathbf{p}_i можно поставить в соответ ствие координатный вектор-столбец из $\mathbb{R}_{k,1}$. Полученные столбцы координат \mathbf{p}_i можно объединить в матрицу $P\in\mathbb{R}_n$. Тогда 1.1 и 1.4 можно переписать как:

$$C_E = P^{\mathrm{T}} P, \tag{1.7}$$

$$C_{X_1,X_2} = P_1^{\mathrm{T}} P_2. (1.8)$$

1.2.1. Базовые свойства

Приведём основные свойства матриц косинусов (без доказательств):

- 1. Все значения матриц косинусов лежат на отрезке [-1, 1];
- 2. Все диагональные элементы матрицы C_E равны 1;
- 3. Матрицы косинусов не зависят от выбора системы координат;
- 4. Ранг матрицы C_E равен размерности ломаной X;
- 5. Матрица C_E симметричная. Все её собственные значения неотри цательны, и в сумме равны n;
- 6. Ломаную X (ломаные X_1 и X_2) можно восстановить из C_E (C_{X_1,X_2}) с точностью до выбора системы координат, причём как для норми рованных, так и для ненормированных матриц (в случае последних с C_{X_1,X_2} необходимо знание длин векторов \mathbf{p}_i).

1.2.2. Восстановление исходных ломаных

Последнее свойство наиболее важно, так как оно позволяет использо □ вать матрицы косинусов как инвариантное представление геометричеких ло □ маных (что крайне полезно при исследовании белковых молекул и их взаи □ модействий). Зная и легко построить соответсвующие матрицы. Ниже приве □ дём без доказательств алгоритмы, которые позволяют строить ломаные по этим матрицам:

1. Восстановление X из C_E

Из описанного выше свойства 5 следует, что матрица C_E будет обла \square дать k неотрицательными собственными значениями $\lambda_1,...,\lambda_k$ и соб \square ственными векторами $v_1,...,v_k\in\mathbb{R}_{n,1}$. Тогда в некоторой системе ко \square ординат матрица P примет вид:

$$P = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_k})[v_1, ..., v_k]^{T}.$$
(1.9)

Где координаты точек ломаной X восстанавливаются из P через ку мулятивную сумму. Формула 1.9 работает и для ненормализованных матриц.

2. Восстановление X_2 из C_{X_1,X_2} при известном X_1

Введём следующую крайне важную матрицу:

$$T_P = (PP^{\mathrm{T}})^{-1}P,$$
 (1.10)

данная матрица (с поправкой на транспонирование) представляет со бой матрицу вычисления параметров линейной регрессии. Из 1.2 и 1.10 следует, что:

$$T_{P_1}C_{X_1,X_2} = (P_1P_1^{\mathrm{T}})^{-1}P_1P_1^{\mathrm{T}}P_2 = P_2,$$
 (1.11)

данная формула позволяет посчитать P_2 из C_{X_1,X_2} при известном P_1 , из которого, с помощью кумулятивной суммы, можно получить X_2 . Формула 1.11, опять же, работает и для ненормализованных матриц.

3. Восстановление X_1 и X_2 из C_{X_1,X_2}

Для выполнения данной операций существует следующий алгоритм, доказательство которого было приведено в предыдущей работе:

- 1. let X_1 be matrix of $C_{P_1,P_2}C_{P_1,P_2}^{\mathrm{T}}$ eigenvectors and X_2 be matrix of $C_{P_1,P_2}^{\mathrm{T}}C_{P_1,P_2}$ eigenvectors
- 2. let $Y_1 \leftarrow X_1^{\mathrm{T}} C_{P_1, P_2}$ and $Y_2 \leftarrow (C_{P_1, P_2} X_2)^{\mathrm{T}}$
- 3. let $Z_1 \leftarrow T_{Y_2} C_{P_1, P_2} T_{Y_1}^{\mathrm{T}}$
- 4. let Z_2 be matrix of $Y_1Y_1^{\mathrm{T}}$ eigenvectors
- 5. let $Z_3 \leftarrow Z_2^{\mathrm{T}} Z_1 Y_2$
- 6. sum $T_{[Z_3]^2}$ along rows into a column-vector s
- 7. let \hat{P}_1 be $diag(sqrt(s))Z_3$ with normalized column-vectors
- 8. let \hat{P}_2 be $T_{\hat{P}_1}C_{P_1,P_2}$ with normalized column-vectors

[здесь перевести и оформить - мне пока лень]