Patterns Matching

1. State diagram

2. Execution result:

cycle	1	reset	1	data		flag
0	1	1		1		0
1	Τ	0	Ī	0	1	0
2	Τ	0	Ī	1	-	0
3	Ι	0	Ī	1	1	0
4	Τ	0	Ī	1	1	0
5	1	0	Ī	0	1	0
6	Τ	0	Ī	1	1	1
7	Ι	0	Ī	0	1	0
8	Τ	0	Ī	1	1	0
9	1	0	1	1		1
10	١	1	1	0		0
11	1	0	1	1		0

Traffic light controller

Execution result:

cycle	Ī	LR_has_Car	1	HW_light		LR_light
0	1	0	\perp	100		001
1	1	0	\perp	100		001
2	1	0	\perp	100		001
3	1	0	\perp	100		001
4	1	0	\perp	100		001
5	Ī	0		100		001
6	Τ	1	\perp	010		001
7	Ι	1	\perp	010		001
8	1	1	\perp	010		001
9	Ι	1	\perp	001	- [001
10	Τ	1	\perp	001		100
11	1	1	\perp	001	- [100
12	Τ	1	\perp	001		100
13	Τ	0	\perp	001		100
14	Τ	0		001		100
15	Ι	1	\mathbf{T}	001		010
16	Ι	1		001		010
17	Τ	1	\mathbf{I}	001		010
18	1	1		001		001
19	Ī	1		100		001
20	Ī	1	Ī	100		001
			1 7			

Problem faced:

The most significant problem I faced is the testherich's coding. The flip

-flop way to design the clock took me sometime to think of how

to implement. Second, the gate delay or "setup time" also

took me a while, which I thought is the regular code's problem

Until I used GTK wave to draw the execution result.

Notes For Problem 1:

If we implement the module by making the flag

If we implement the module by making the flag change every time, the result will be the following chart:

However, a mealy machine should only update Values when reset == 1 or posclk edge, so I implement in another way, The result will be:

And there will be a gate delay when we output the flag value at posclk edge without a small delay!