第13章 热质同时传递的过程

13.1概述

- (1) 过程目的:
 - ①传热,伴有传质 如热水直接空气冷却
 - ②传质,伴有传热 如气体增减湿
- (2) 原理: 温度差、分压差(判据没变)
- (3) 实施方法: 气液直接接触
- (4) 操作费用: 热量(汽化、冷凝)

输送机械能

(5) 过程新特点:
①传热方向或传质方向可能发生逆转
②极限不一定是 θ =t,p**=pe</sub>
传递方向会逆转的原因:
气相双组分,有两个独立变量t,p***
液相单组分,只有一个独立变量pe= $f(\theta)$ t** t**

(3) 相对湿度φ

$$arphi = rac{p_{\star \star \star}}{p_s}$$
 (当 $p_s \le p$)
 $p_s \to t$ 温度下的饱和蒸汽压
 $arphi = rac{p_{\star \star \star}}{p}$ (当 $p_s \ge p$)

- (4) 湿空气的焓 I kJ/kg干气 $I = (c_{pg} + c_{pV}H)t + r_0H$ I = (1.01 + 1.88H)t + 2500H
- (5) 湿空气的比容 v_H m³/kg干气 常压下, $v_{H} = (\frac{22.4}{M_{\pi}} + \frac{22.4}{M_{\pi}}H)\frac{t + 273}{273}$

(6) 极限温度

①湿球温度tw

$$A\alpha(t-t_w) = Ak_H(H_w-H)r_w$$

传热速率 汽化潜热
空气 t_w-t

$$t_{W} = t - \frac{k_{H}}{\alpha} (H_{W} - H) r_{W}$$

tw的影响因素:

a.物性,b.气体状态: $t, p_{\Lambda / 1}$ (或H), 总压pc.流动条件: α, k_H 空气-水系统,流动时 $\frac{\alpha}{k_{yy}}$ = 1.09 kJ/kgK

②绝热饱和温度

气体在绝热条件下,

增湿至饱和(等焓过程)

 $Vc_{pH}(t-t_{as})=V(H_{as}-H)r_{as}$

气温下降放热 气体增湿带热 空气 $t_{as} = t - \frac{r_{as}}{s} (H_{as} - H)$ t, H $t_{as} = t - \frac{r_{as}}{c_{pH}} (H_{as} - H)$

路易斯规则:空气-水系统: $\frac{\alpha}{k_{rr}} \approx c_{pH}$, $t_{as} \approx t_W$

湿球温度的物理含义是什么? 绝热饱和温度的物理含义是什么?

两者有什么异同点?

焓-湿图(总压一定,两个独立变量)

注意: $t_d, p_{\Lambda R}, H$ 相互不独立

 I, t_{as}, t_{W} 相互不独立

例: 已知: 100kPa, t=50℃, p_{水汽}=4kPa 求: φ,H,I,t_d (査表50℃, p_S=12.4kPa)

计算:
$$\varphi = \frac{p_{***}}{p} = \frac{4}{12.4} = 32.3\%$$

计算:
$$\varphi = \frac{p_{***}}{p_S} = \frac{4}{12.4} = 32.3\%$$

$$H = 0.622 \frac{p_{***}}{p - p_{***}} = 0.622 \times \frac{4}{100 - 4}$$

=0.026kg水/kg干气

I = (1.01 + 1.88H)t + 2500H = 118kJ/kg于气

查表p_{水汽}=4kPa的饱和温度29℃

 $t_d=29^{\circ}C$

查图

查图

例: 已知: t_d=20℃, φ=30%

查: H,t,p,I

例2 常压下,现需调节气温及湿度,新鲜空气经喷水室与水充分接触,被冷却后排去冷凝水,再经加热器升温至所需温度。试求:

 $\oplus H_1$

 $2t_1$

③整个过程前后湿度变化

设离开喷水室的气、液温度相同

解: ① H_1 = H_2 ,出喷水室 φ_1 =100%先算 H_2 ,查20%, p_S =2.27kPa H_1 = H_2 = $0.622\frac{\varphi p_S}{p-\varphi p_S}$ = $0.622\times\frac{0.5\times2.27}{101.3-0.5\times2.27}$ =0.007水/kg干气

② p_{π} =0.5×2.27=1.14 kPa 由 φ_1 =100%,查表得 t_1 =9℃

③査 t_W =25°C, r_W =2441kJ/kg, p_W =3.186 kPa $\alpha(t_0 - t_W) = k_H r_W (H_W - H_0)$ $H_0 = H_W - \frac{\alpha}{k_H r_W} (t_0 - t_W)$ $= 0.622 \frac{p_w}{p - p_w} - \frac{1.09}{r_w} (t_w - t_w) = 0.0178 \text{kg} \text{ 水/kg}$ $\Delta H = H_0 - H_w = 0.007 - 0.0178 = -0.0108 \text{kg} \text{ 水/kg}$

或
$$t_1 = \frac{(1.01 + 1.88H)t + 2500(H - H_1)}{1.01 + 1.88H_1}$$

等焓增湿至55℃, H_1 =? 此空气的 t_{as} =? 路易斯规则:空气-水系统 t_{W} ≈ t_{as} 査: t_{W} =30℃, t=45℃, H=?

查: t=80℃, H=0.03 kg水/kg干气

本次讲课习题: 第13章 1, 2, 3, 4

