Теория групп. Лекция 4

Штепин Вадим Владимирович

26 сентября 2019 г.

Теорема (вторая теорема об изоморфизме; теорема о соответствии)

Пусть Sub(G) — множество подгрупп G. Inter(H,G) — множество подгрупп, занимающее промежуточное положение между H и G. $Inter(H,G)=\{K\leq G\mid H\leq K\leq G\}$. Пусть $H\triangleleft G$ и $H\leq K\leq G$. Тогда

- 1. $K/H \leq G/H$
- 2. Отображение $\phi: Inter(H,G) \to Sub(G/H) \ \phi(K) = K/H$ осуществляет взаимнооднозначное соответствие между Inter(H,G) и Sub(G/H), причем ϕ сохраняет включение (но не обязательно является гомоморфизмом)
- 3. Отображение ϕ сохраняет отношение нормальности: $K \triangleleft G \Leftrightarrow (K/H) \triangleleft (G/H)$ Причем, если верно одно из этих эквивалентных условий, то имеет место изоморфизм $G/K \simeq (G/H)/(K/H)$

Доказательство (продолжение)

 $(K/H) \triangleleft (G/H)$. Пусть $k \in K$, $x \in G$ — произвольные. Тогда $(kH)^{xH} \in K/H \Leftrightarrow (xH)^{-1}(kH)(xH) \in K/H \Leftrightarrow (x^{-1}H)(kH)(xH) \in K/H \Leftrightarrow (x^{-1}kxH \in K/H \Leftrightarrow k^xH \in K/H \Leftrightarrow k^x \in K$. Значит, $(K/H) \triangleleft (G/H) \Leftrightarrow K \triangleleft G$.

Рассмотрим $p:G\to G/H,\ \psi:G/H\to (G/H)/(K/H)$ — канонические эпиморфизмы. Тогда $\psi\circ p:G\to (G/H)/(K/H)$ — сюръекция.

 $Ker(\psi \circ p) = (\psi \circ p)^{-1}(e) = (p^{-1} \circ \psi^{-1})(e) = p^{-1}(K/H)$, так как $\psi^{-1}(e) = Ker(\psi) = K/H$. $p^{-1}(K/H) = K$.

По теореме о гомоморфизме: $G/K \simeq (G/H)/(K/H)$.

Примеры:

1. Первая теорема об изоморфизме

 $G=S_4;\ H=\{\sigma\in S_4\mid \sigma(4)=4\}\simeq S_3.\ V_4=K=\{e,(12)(34),(13)(24),(14)(23)\}$ $\triangleleft S_4$ — четверная группа Клейна. Так как |K|=4, то K абелева. K — нормальная, так как является дизъюнктным объединением классов сопряженных элементов S_4 . Очевидно, что $H\cap K=\{e\}$. Все произведения hk, где $h\in H,\ k\in K$ попарно различны. Докажем это. Пусть не так, значит $h_1k_1=h_2k_2\Rightarrow h_2^{-1}h_1=k_2k_1^{-1}$. Очевидно, $h_2^{-1}h_1\in H,\ k_2k_1^{-1}\in K$. Значит, $h_2^{-1}h_1=k_2k_1^{-1}=e$, так как оба произведения лежат в $H\cap K=\{e\}$.

Значит, всего таких произведений |HK|=|H||K|=24 и $HK=S_4$. По первой теореме получаем: $S_4/V_4=S_3/e=S_3$.

2. Теорема о соответствии

 $G = (Z, +), H = nZ, G/H = Z_n$. Пусть n делится на k. Рассмотрим подгруппу $kZ_n \leq Z_n$ — группа кратных k вычетов.

Вопрос: Какая подгруппа $K \in Inter(H,G)$ соответствует подгруппе kZ_n ?

У циклической группы всякая подргуппа и всякая факторгруппа является циклической

Используем теорему о соответствии: $G/K \simeq Z_n/kZ_n$, а $|kZ_n| = \frac{n}{k}$

 $|Z_n/kZ_n| = \frac{n}{(\frac{n}{k})} = k$, причем G/K — циклична $\Rightarrow G/K \simeq Z_k$. Чтобы получить группу из k элементов, нужно факторизовать по K = kZ.

1 Действие группы на множество

Пусть G—группа, Ω — непустое множество.

Опр. Действие G на Ω — это отображение $G \times \Omega \to \Omega$, которое действует так: $(a,\omega) \to a\omega = a(\omega)$

Причем отображение удовлетворяет аксиомам:

- 1. Групповой операции соответствует композиция действий: $\forall a,b \in G \ (ab)\omega = a(b(\omega))$
- 2. $e \in G$ действует тождественным образом.

<u>Опр.</u> Пусть G—группа и Ω —непустое множество, $S(\Omega)$ —группа биекций Ω на себя относительно композиции. Действие G на Ω —произвольный гомоморфизм $I:G\to S(\Omega)$

Теорема (эквивалентность определений) Определения действия эквивалентны Доказательство

$1. 1 \Rightarrow 2$

Пусть $I_a(\omega)=a\omega$. Покажем, что I_a — биекция. Для этого явно предъявим единственный обратный элемент: $(I_{a^{-1}}\circ I_a)(\omega)=I_{a^{-1}}(I_a(\omega))=a^{-1}a\omega=e\omega=\omega$. Аналогично, $(I_a\circ I_{a^{-1}})(\omega)=\omega$.

Проверим условие гомоморфизма: $I_{ab}=I_aI_b$, так как $I_{ab}(\omega)=ab\omega=I_a(I_b(\omega))=(I_a\circ I_b)(\omega)$

$2. 2 \Rightarrow 1$

Построим отображение, соответствующее первому определению. $(a,\omega) \to I_a(\omega)$. Причем $\forall \omega \in \Omega \ I_{ab}(\omega) = I_a(\omega)I_b(\omega), \ I_e(\omega) = \omega$

Опр. Пусть $I \to S(\Omega)$ — действие. Тогда $I_a \in S(\Omega)$ — действие элемента a на Ω .

<u>Опр.</u> **Ядро** действия $Ker(I)=\{a\in G\mid \forall\omega\in\Omega a(\omega)=\omega\}$. $Ker(I)\triangleleft G$ как ядро гомоморфизма.

Замечание. Всякая нормальная подгруппа является ядром канонического гомоморфизма $p:G \to G/H$

Опр. Действие I эффективное (точное), если $Ker(I) = \{e\}$

Опр. Действие I — **свободное**, если $\forall a \neq e \in G$ и $\forall \omega \in \Omega \ a(\omega) \neq \omega$.

 $\underline{3}$ амечание. Если I свободное, то I эффективное. Обратное неверно

Примеры:

- 1. Пусть G = SO(2)— группа вращений плоскости. Тождественное преобразование $e \in SO(2)$ нейтральный элемент, значит действие группы G на точки плоскости эффективно. $A \in SO(2) \; \exists \omega = (0,0), \; \text{что } A(0,0) = 0, \; \text{значит оно не свободно.}$
- 2. Опр. Пусть V линейное пространство над F. **Линейное представление** группы G в V произвольный гомоморфизм $T:G\to GL(V)$, где GL(V) группа невырожденных преобразований в V.

Матричное представление: $T: G \to GL_n(F)$.

Легко видеть, что матричное представление— частный случай действия.

3. Пусть $G \subset GL_n(F)$.

Стандартное представление G в пространство F^n — представление, задаваемое равенством T(A)(x)=Ax

- 4. Пусть $G = S_n$, $\Omega = \{1, 2, ..., n\}$. $I_{\sigma}(k) = \sigma(k)$ действие группы S_n .
- 5. G группа, $\Omega = H \le G, G/H$ множество левых смежных классов, $I_a(gH) = agH \in G/H$.

$$I_{ab}(gH) = abgH = I_a(I_b(gH)) = (I_a \circ I_b)(gH).$$

Этот пример универсальный, так как всякое действие есть действие над множеством левых смежных классов.

Опр. Пусть $I:G\to S(\Omega)$ — действие. **Орбита** элемента ω — множество $G(\omega)=\{a(\omega)\mid a\in\overline{G}\}$

Пример.

Если G = SO(3)— группа вращений пространства, ω — точка в R^3 , то $G(\omega)$ — сфера радиуса, равного расстоянию от ω до начала координат.

Опр. $\omega_1 \sim \omega_2$, если $\omega_2 \in G(\omega_1)$

Утв.

 \sim — отношение эквивалентности.

Доказательство

- 1. $\omega \sim \omega$, так как $e(\omega) = \omega$
- 2. $\omega_2 \sim \omega_1 \Rightarrow \omega_2 \in G(\omega_1) \Rightarrow \exists a \in G \ \omega_2 = a\omega_1 \Rightarrow \omega_1 = a^{-1}\omega_2 \Rightarrow \omega_1 \in G(\omega_2) \Rightarrow \omega_1 \sim \omega_2$
- 3. $\omega_1 \sim \omega_2, \ \omega_2 \sim \omega_3 \Rightarrow \exists a, b \in G: \ \omega_2 = a\omega_1, \ \omega_3 = b\omega_2 = ba\omega_1 \Rightarrow \omega_3 \in G(\omega_1) \Rightarrow \omega_1 \sim \omega_3$

 $\underline{\text{Опр.}}$ Классы эквивалентности — **орбиты** действия. Множество всех орбит обозначается Ω/\overline{G}

Опр. Стационарная подгруппа $I:G\to S(\Omega)$. Пусть ω — фиксированная. $St(\omega)=\{a\in G\mid a\omega=\omega\}$ — стационарная подгруппа (стабилизатор ω).

<u>Опр.</u> Пусть $\omega_2 \in G(\omega_1)$ Множество $Shift(\omega_1, \omega_2) = \{a \in G \mid a(\omega_1) = \omega_2\}$ — все элементы, сдвигающие первую точку во вторую.

Утв.

Пусть $\omega' \in G(\omega)$. Тогда $Shift(\omega,\omega') = St(\omega')s = sSt(\omega)$, где s—произвольный элемент из $Shift(\omega,\omega')$.

Доказательство

1. $St(\omega')s\subset Shift(\omega,\omega')$ и $sSt(\omega)\subset Shift(\omega,\omega')$, так как $St(\omega')*s(\omega)=St(\omega')(\omega')=\omega'$ и $sSt(\omega)(\omega)=s(\omega)=\omega'$

Проверим обратное, то есть что $Shift(\omega,\omega')\subset St(\omega')s\Leftrightarrow Shift(\omega,\omega')s^{-1}\subset St(\omega').$ Это верно, так как $Shift(\omega,\omega')s^{-1}(\omega')=\omega'$

Верно и то, что $Shift(\omega,\omega')\subset sSt(\omega)\Leftrightarrow s^{-1}Shift(\omega,\omega')\subset St(\omega)$, так как $s^{-1}Shift(\omega,\omega')(\omega)=\omega$

Следствие Если $\omega \sim \omega'$, то $\forall s \in Shift(\omega, \omega') \ St(\omega') = sSt(\omega)s^{-1}$