

Problemas Tema 3: Espacio Vectorial Euclídeo

Fundamentos de Matemática Aplicada a la Inteligencia Artificial II

1 Decir si las siguientes expresiones definen productos escalares en \mathbb{R}^2 o no:

a)
$$\vec{u} \cdot \vec{v} = (u_1, u_2) \cdot (v_1, v_2) = 2u_1v_1 + u_2v_2 - u_1v_2 - u_2v_1$$

b)
$$\vec{x} \cdot \vec{y} = (x_1, x_2) \cdot (y_1, y_2) = x_1 y_1 - 3x_2 y_2$$

2 Decir si las siguientes expresiones definen productos escalares en \mathbb{R}^3 o no:

a)
$$\vec{u} \cdot \vec{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2$$

b)
$$\vec{x} \cdot \vec{y} = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = \frac{1}{2}x_1y_1 + \frac{1}{4}x_2y_2 + \frac{1}{2}x_3y_3$$

3 Sea V el espacio vectorial de las matrices reales 2×3 con el producto escalar $A \cdot B = \text{tr}(AB^t)$. Considerando las matrices:

$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ $C = \begin{pmatrix} 3 & -5 & 2 \\ 1 & 0 & -4 \end{pmatrix}$

Calcular:

- a) A B, A C y B C.
- **b)** $(2A + 3B) \cdot 4C$.
- c) El módulo o norma de A: |A|.
- d) A normalizada.
- 4 Resolver los siguientes apartados:
 - a) Deducir la ley del paralelogramo: $|\vec{u} + \vec{v}|^2 + |\vec{u} \vec{v}|^2 = 2|\vec{u}|^2 + 2|\vec{v}|^2$
 - **b)** Deducir la forma polar del producto escalar: $\vec{u} \cdot \vec{v} = \frac{|\vec{u} + \vec{v}|^2 |\vec{u} \vec{v}|^2}{4}$
 - c) Verificar que se cumplen ambas igualdades para $\vec{u}=(1,0,2,\lambda)$ y $\vec{v}=(2,\mu,0,1)$, donde $\lambda,\mu\in\mathbb{R}$.

- 5 Considerando dos vectores \vec{u} y \vec{v} de un espacio euclídeo, calcular la norma de \vec{v} sabiendo que: $|\vec{u}| = 2$, $|\vec{u} + \vec{v}| = \sqrt{6}$ y el ángulo entre \vec{u} y \vec{v} es $\frac{\pi}{4}$.
- 6 En un espacio vectorial euclídeo, se consideran dos vectores unitarios \vec{u} y \vec{v} que forman un ángulo de 60°. Calcular $|2\vec{u} + \vec{v}|$.
- 7 Dados los vectores $\vec{u} = (1, 1, 0)$ y $\vec{v} = (1, -1, 1)$, comprobar si son ortogonales:
 - a) Respecto al producto escalar estándar de \mathbb{R}^3 .
 - **b)** Respecto al producto escalar de \mathbb{R}^3 :

$$\vec{x} \cdot \vec{y} = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = 3x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 + 2x_3y_3$$

8 Dado el producto escalar de \mathbb{R}^3 definido por:

$$\vec{x} \cdot \vec{y} = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = 3x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 + 2x_3y_3$$

- a) Determinar la matriz de Gram respecto de la base canónica.
- **b)** Determinar un vector $\vec{u} \in \mathbb{R}^3$, unitario, que forme un ángulo de 45° con el vector (1, -1, 0).
- **9** Se define el siguiente producto escalar en \mathbb{R}^3 :

$$\vec{x} \cdot \vec{y} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

Calcular:

- a) $\vec{u} \cdot \vec{v}$, siendo $\vec{u} = (1, -1, 0)$ y $\vec{v} = (2, -1, 1)$.
- **b)** La matriz de Gram respecto a la base canónica de \mathbb{R}^3 .
- c) La matriz de Gram respecto a la base:

$$B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$$

- d) El módulo de los vectores \vec{u} y \vec{v} .
- e) El ángulo que forman los vectores \vec{u} y \vec{v} .
- 10 En \mathbb{R}^3 , se considera un producto escalar tal que si $B = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ es una cierta base de \mathbb{R}^3 , entonces:

$$\vec{v_2} \cdot \vec{v_3} = 5$$

$$\vec{v_1} \cdot \vec{v_3} = \vec{v_1} \cdot \vec{v_2}$$

$$\vec{v_3} \cdot \vec{v_3} = 37$$

Calcular la matriz de Gram en la base B si se sabe que el vector $12\vec{v_1} - 5\vec{v_2}$ es ortogonal al vector $\vec{v_1} + \vec{v_2}$ y que $(\vec{v_1} + \vec{v_2}) \cdot (\vec{v_2} + \vec{v_3}) = 19$.

11 Sea $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ una base del espacio vectorial euclídeo \mathbb{R}^3 con el producto escalar canónico. Sabiendo que los vectores de dicha base son unitarios y forman entre sí un ángulo de $\frac{\pi}{6}$, hallar el producto $\overrightarrow{u} \cdot \overrightarrow{v}$, siendo:

$$\vec{u} = 3\vec{u_1} - 2\vec{u_3}$$
 y $\vec{v} = \vec{u_1} + \vec{u_2}$

12 Dado el siguiente producto escalar de \mathbb{R}^3 :

$$\vec{x} \cdot \vec{y} = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = 3x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 + 2x_3y_3$$

y la base $B = \{(1, 1, 0), (0, 1, 1), (1, 1, 1)\}$, determinar una base ortogonal del espacio vectorial euclídeo (\mathbb{R}^3 , •).

- En \mathbb{R}^4 con el producto escalar usual, calcular una base ortonormal a partir de los vectores (1, 1, 1, 1), (1, 1, 0, 0), (1, 1, 1, 0) y (1, 0, 0, 0).
- 14 En el espacio vectorial euclídeo \mathbb{R}^4 con el producto escalar estándar, se pide:
 - a) Calcular un vector unitario que sea ortogonal a los vectores:

$$(1, 2, 1, 0), (0, -1, 1, 0), (1, 1, -2, 1)$$

- **b)** Obtener una base de vectores ortonormales del subespacio U, generado por los vectores anteriores.
- 15 Determinar la expresión matricial de un producto escalar de \mathbb{R}^3 para el cual los siguientes vectores sean una base ortogonal:

$$\vec{w}_1 = (1, 1, 0), \ \vec{w}_2 = (1, -1, 1), \ \vec{w}_3 = (1, 1, 1)$$

y, además, se cumpla que $|\overrightarrow{w_1}|=1$, $|\overrightarrow{w_2}|=\sqrt{2}$ y $|\overrightarrow{w_3}|=\sqrt{3}$, siendo $|\cdot|$ la norma definida a partir de dicho producto escalar.

Se considera el siguiente subespacio de \mathbb{R}^4 , junto con el producto escalar usual:

$$U = L\{(2, 1, 5, -1), (-1, 1, 2, 0)\}$$

Calcular una base de U^{\perp} .

17 Calcular el complemento ortogonal de los siguientes subespacios de \mathbb{R}^4 :

$$U \equiv \{x + y = 0, z + t = 0\}$$
 $W \equiv \{x + y = 0, z = 0, t = 0\}$

Determinar también la proyección ortogonal del vector $\vec{x} = (1, 1, 1, 0)$ sobre U y sobre W.

Consideremos en \mathbb{R}^3 el producto escalar cuya matriz de Gram, en la base canónica $C = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\} = \{(1,0,0), (0,1,0), (0,0,1)\}$, viene dada por:

$$G_C = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right)$$

Determinar la proyección ortogonal de $\overrightarrow{e_3}$ sobre $U = L\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$.

- En un espacio vectorial real V, tenemos un producto escalar que, respecto a una base $B = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$, cumple que:
 - a) $|\vec{v_1}| = \sqrt{2}$, $|\vec{v_2}| = \sqrt{7}$ y $|\vec{v_3}| = \sqrt{4}$.
 - **b)** El complemento ortogonal de $U = L\{\vec{v_3}\}$ es $U^{\perp} \equiv \{5y + 4z = 0\}$.
 - c) La proyección ortogonal del vector $\overrightarrow{v_2} + \overrightarrow{v_3}$ sobre $W = L\{\overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3}\}$ es el vector $\frac{22}{25}(\overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3})$.

Determinar la matriz de Gram del producto escalar en la base B.

- Descomponer el vector (1, 3, -1, 4) en suma de dos vectores, uno perteneciente al subespacio $U = L\{(2, 1, 0, 1), (0, 3, 1, 1)\}$ y el otro ortogonal a U.
- 21 Hallar la solución aproximada de los siguientes sistemas sobredeterminados por el método de mínimos cuadrados:

- 22 Obtener la recta de regresión que mejor ajusta los siguientes pares de datos:
 - a) (1,1), (2,-1), (-1,0), (3,3).
 - **b)** (-2,0), (-1,2), (0,3), (1,5), (2,6).

Para cada caso, representar los puntos y la recta de regresión obtenida.

4

Soluciones

- 1 a) La expresión sí define un producto escalar de \mathbb{R}^2 , ya que se cumplen las 4 propiedades.
 - **b)** La expresión no define un producto escalar de \mathbb{R}^2 , pues falla la propiedad 4: $\vec{x} \cdot \vec{x}$ puede ser negativo.
- 2 a) La expresión no define un producto escalar en \mathbb{R}^3 , pues falla la propiedad 3: $\alpha(\vec{u} \cdot \vec{v}) \neq (\alpha \vec{u}) \cdot \vec{v}$.
 - **b)** La expresión sí define un producto escalar en \mathbb{R}^3 , ya que se cumplen las 4 propiedades.
- 3 a) $A \cdot B = 119$, $A \cdot C = -9$, $B \cdot C = -21$.
 - **b)** $(2A + 3B) \cdot 4C = 8A \cdot C + 12B \cdot C = -324.$
 - c) $|A| = \sqrt{A \cdot A} = \sqrt{271}$
 - **d)** $A_{\text{NORM}} = \frac{1}{|A|}A = \frac{1}{\sqrt{271}} \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$.
- 4 a) Calculamos $|\vec{u} + \vec{v}|^2$ y $|\vec{u} \vec{v}|^2$:

$$|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

$$= |\vec{u}|^2 + 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$$

$$|\vec{u} - \vec{v}|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

$$|\vec{u} - \vec{v}|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$
$$= |\vec{u}|^2 - 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$$

Sumando las dos expresiones obtenemos la ley del paralelogramo.

- **b)** Restando las dos expresiones y despejando $\vec{u} \cdot \vec{v}$ llegamos a la forma polar del producto escalar.
- c) Se cumplen ambas expresiones al sustituir los siguientes resultados:

$$|\vec{u} + \vec{v}|^2 = \lambda^2 + 2\lambda + \mu^2 + 14 \qquad |\vec{u}|^2 = \lambda^2 + 5$$

$$|\vec{u} - \vec{v}|^2 = \lambda^2 - 2\lambda + \mu^2 + 6 \qquad |\vec{v}|^2 = \mu^2 + 5 \qquad \vec{u} \cdot \vec{v} = \lambda + 2$$

- **5** $|\vec{v}| = 2 \sqrt{2}$.
- **6** $|2\vec{u} + \vec{v}| = \sqrt{7}$.
- 7 a) \vec{u} y \vec{v} son ortogonales $(\vec{u} \perp \vec{v})$, ya que $\vec{u} \cdot \vec{v} = 0$.
 - **b)** \vec{u} y \vec{v} no son ortogonales $(\vec{u} \not\perp \vec{v})$, ya que $\vec{u} \cdot \vec{v} = 2 \neq 0$.
- - **b)** Tomando y=0 y $z=\frac{\sqrt{2}}{4}$ tenemos que: $\vec{u}=\left(\frac{1}{2},0,\frac{\sqrt{2}}{4}\right)$.

9 a)
$$\vec{u} \cdot \vec{v} = 2$$
.

b)
$$G_C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

c)
$$G_B = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
.

d)
$$|\vec{u}| = \sqrt{\vec{u} \cdot \vec{u}} = 1$$
, $|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{5}$.

e)
$$\alpha = \arccos\left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}\right) = 26.6^{\circ}.$$

$$\mathbf{10} \quad G_B = \left(\begin{array}{ccc} 3 & 2 & 2 \\ 2 & 10 & 5 \\ 2 & 5 & 37 \end{array} \right).$$

$$\mathbf{11} \quad \overrightarrow{u} \cdot \overrightarrow{v} = 3 - \frac{\sqrt{3}}{2}.$$

12 Una base ortogonal podría ser:
$$B' = \{(1, 1, 0), (-\frac{1}{3}, \frac{2}{3}, 1), (\frac{2}{7}, -\frac{4}{7}, \frac{1}{7})\}.$$

$$B'' = \left\{ \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right), \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \right), \left(0, 0, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right), \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0, 0 \right) \right\}.$$

14 a) Un vector podría ser:
$$\left(-\frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, \frac{1}{3\sqrt{3}}, \frac{4}{3\sqrt{3}}\right)$$
.

b)
$$B_U'' = \left\{ \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0 \right), \left(\frac{1}{\sqrt{66}}, -\frac{2\sqrt{2}}{\sqrt{33}}, \frac{7}{\sqrt{66}}, 0 \right), \left(\frac{4}{\sqrt{33}}, -\frac{4}{3\sqrt{33}}, -\frac{4}{3\sqrt{33}}, \frac{\sqrt{11}}{3\sqrt{3}} \right) \right\}.$$

15
$$\vec{x} \cdot \vec{y} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} \frac{9}{4} & -\frac{5}{4} & -\frac{5}{2} \\ -\frac{5}{4} & \frac{5}{4} & \frac{3}{2} \\ -\frac{5}{2} & \frac{3}{2} & 4 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

16
$$B_{U^{\perp}} = \{(1, 1, 0, 3), (2, 0, 1, 9)\}.$$

17
$$U^{\perp} = \{(x, y, z, t) \in \mathbb{R}^4 / x - y = 0, z - t = 0\}.$$

$$W^{\perp} = \{(x, y, z, t) \in \mathbb{R}^4 / x - y = 0\}.$$

$$\text{proy}_{U}(\vec{x}) = (0, 0, \frac{1}{2}, -\frac{1}{2}), \text{proy}_{W}(\vec{x}) = (0, 0, 0, 0).$$

18 proy_{*U*}
$$(\vec{e_3}) = \vec{e_2} = (0, 1, 0).$$

$$\mathbf{19} \quad G_B = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 7 & 5 \\ 0 & 5 & 4 \end{array}\right).$$

$$\begin{array}{ll} \textbf{20} & (1,3,-1,4) = \overrightarrow{u} + \overrightarrow{v} \text{, donde:} \\ \\ \overrightarrow{u} = \left(\frac{51}{25},\frac{159}{50},\frac{18}{25},\frac{87}{50}\right) \in U \text{ y } \overrightarrow{v} = \left(-\frac{26}{25},-\frac{9}{50},-\frac{43}{25},\frac{113}{50}\right) \in U^{\perp}. \end{array}$$

21 a)
$$\hat{X} = \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \frac{7}{25} \\ \frac{14}{25} \end{pmatrix}$$
. b) $\hat{X} = \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} = \begin{pmatrix} -\frac{7}{6} \\ \frac{1}{2} \\ -1 \end{pmatrix}$.

22 a)
$$y = \frac{17}{35}x + \frac{1}{7}$$
.

b) $y = \frac{3}{2}x + \frac{16}{5}$.

