Reinforcement Learning with Human Feedback for Aligning Large Language Models

Suhas Palwai and Stuart Powers

November 8, 2024

Outline

- 1 Introduction to Reinforcement Learning
- Value Functions
- Reinforcement Learning with Human Feedback (RLHF)
- 4 Proximal Policy Optimization (PPO)
- 5 Direct Preference Optimization (DPO)
- Conclusion

What is Reinforcement Learning (RL)?

- RL is a framework where an agent learns to make decisions by interacting with an environment.
- The goal is to maximize cumulative **rewards**.
- Applications include robotics, game playing, and natural language processing.

Key Components of RL

- Agent: Learns and makes decisions.
- **Environment**: The system the agent interacts with.
- State Space (S): All possible states $s \in S$.
- Action Space (A): All possible actions $a \in A$.
- Transition Dynamics (P(s'|s, a))
 - Inputs: Current state s, action a, next state s'.
 - Output: Probability of transitioning to s'.
- Reward Function (R(s, a))
 - Inputs: State s, action a.
 - Output: Reward r = R(s, a).

Policy and Objective

- Policy $(\pi_{\theta}(a|s))$
 - Maps states to action probabilities.
 - Defines the agent's behavior.
- Trajectory $\tau = (s_0, a_0, s_1, a_1, \dots, s_T)$
- Probability of Trajectory

$$P(\tau|\pi_{\theta}) = \rho_0(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t, a_t)$$

Return along Trajectory

$$R(\tau) = \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t)$$

Objective Function

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim P(\cdot \mid \pi_{\theta})}[R(\tau)]$$

Central Optimization Problem

$$\pi_{ heta}^* = \arg\max_{\pi_{ heta}} J(\pi_{ heta})$$

• Find the optimal policy π_{θ}^* that maximizes expected return.

State-Value Function

Definition:

$$V^{\pi_{ heta}}(s) = \mathbb{E}_{ au \sim P(\cdot \mid \pi_{ heta})} \left[R(au) \middle| s_0 = s
ight]$$

• Expected return starting from state s and following policy π_{θ} .

Action-Value Function

Definition:

$$Q^{\pi_{ heta}}(s, a) = \mathbb{E}_{ au \sim P(\cdot \mid \pi_{ heta})} \left[R(au) \middle| s_0 = s, a_0 = a
ight]$$

• Expected return starting from state s, taking action a, then following π_{θ} .

Relationship between $V^{\pi_{ heta}}(s)$ and $Q^{\pi_{ heta}}(s,a)$

$$V^{\pi_{ heta}}(s) = \sum_{ extbf{ extit{a}} \in \mathcal{A}} \pi_{ heta}(extbf{ extit{a}}|s) Q^{\pi_{ heta}}(s, extbf{ extit{a}})$$

• The value of a state is the expected value of action-values under policy π_{θ} .

What is RLHF?

- Incorporates human feedback into the RL framework.
- Useful for tasks where rewards are hard to define.
- Aligns Al behavior with human values and preferences.

Policy Gradient Methods

- Directly adjust policy parameters θ to maximize expected return $J(\pi_{\theta})$.
- Policy Gradient Theorem:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) G_t \right]$$

• High variance and instability can be issues.

Derivation of the Policy Gradient Theorem

Objective Function:

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim P(\cdot \mid \pi_{\theta})}[R(\tau)]$$

Gradient of the Objective:

$$abla_{ heta} J(\pi_{ heta}) = \mathbb{E}_{ au \sim P(\cdot | \pi_{ heta})} \left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t | s_t) G_t
ight]$$

where
$$G_t = \sum_{k=0}^{T-t-1} \gamma^k R(s_{t+k}, a_{t+k})$$

Challenges with Policy Gradient Methods

- High Variance: Stochastic sampling leads to high variance in gradient estimates, making learning unstable.
- Instability: Large updates to policy parameters can cause drastic policy changes, potentially degrading performance.

Proximal Policy Optimization (PPO)

- Addresses instability in policy gradients.
- Introduces a clipped surrogate objective.
- Limits the magnitude of policy updates.

PPO Objective Function

$$L^{\mathsf{CLIP}}(\theta) = \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta_{\mathsf{old}}}} \left[\min \left(r_t(\theta) \hat{A}_t, \mathsf{clip} \left(r_t(\theta), 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t \right) \right]$$

- $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$
- \hat{A}_t is the estimated advantage.
- ϵ controls the clipping range (e.g., $\epsilon = 0.2$).

Derivation of PPO Objective Function

Surrogate Objective:

$$L^{\mathsf{CLIP}}(\theta) = \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta_{\mathsf{old}}}} \left[\mathsf{min} \left(r_t(\theta) \hat{A}_t, \mathsf{clip} \left(r_t(\theta), 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t \right) \right]$$

Clipping Mechanism:

$$\mathsf{clip}\left(r_t(heta), 1 - \epsilon, 1 + \epsilon
ight) = egin{cases} 1 - \epsilon & \mathsf{if} \ r_t(heta) < 1 - \epsilon \ r_t(heta) & \mathsf{if} \ 1 - \epsilon \le r_t(heta) \le 1 + \epsilon \ 1 + \epsilon & \mathsf{if} \ r_t(heta) > 1 + \epsilon \end{cases}$$

- Purpose:
 - Prevents $r_t(\theta)$ from deviating too much from 1.
 - Ensures updates are within a "trust region."

Intuition Behind PPO

- Prevents large policy updates that could destabilize training.
- Maintains policy within a "trust region."
- Balances exploration and exploitation.

What is DPO?

- Directly optimizes policy based on human preferences.
- Uses pairwise comparisons instead of scalar rewards.
- Effective for subjective tasks.

DPO Objective Function

$$L^{\text{DPO}}(\theta) = \sum_{i} \log \sigma \left(f_{\theta}(x_{i}, y_{i}^{+}) - f_{\theta}(x_{i}, y_{i}^{-}) \right)$$

- $f_{\theta}(x, y) = \log \pi_{\theta}(y|x)$
- $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function.
- Maximizes likelihood of preferred responses.

Derivation of DPO Objective Function

Probability of Preference:

$$P_{\theta}(y_{i}^{+} \succ y_{i}^{-}|x_{i}) = \frac{\exp(f_{\theta}(x_{i}, y_{i}^{+}))}{\exp(f_{\theta}(x_{i}, y_{i}^{+})) + \exp(f_{\theta}(x_{i}, y_{i}^{-}))}$$

Log-Likelihood:

$$L^{\text{DPO}}(\theta) = \sum_{i} \log \left(\frac{\exp(f_{\theta}(x_i, y_i^+))}{\exp(f_{\theta}(x_i, y_i^+)) + \exp(f_{\theta}(x_i, y_i^-))} \right)$$

Simplification:

$$L^{\mathsf{DPO}}(\theta) = \sum_{i} \left[f_{\theta}(x_i, y_i^+) - \log \left(\exp(f_{\theta}(x_i, y_i^+)) + \exp(f_{\theta}(x_i, y_i^-)) \right) \right]$$

Using Sigmoid Function:

$$L^{\mathsf{DPO}}(\theta) = \sum_{i} \log \sigma \left(f_{\theta}(x_{i}, y_{i}^{+}) - f_{\theta}(x_{i}, y_{i}^{-}) \right)$$

Intuition Behind DPO

- Directly aligns model outputs with human preferences.
- Simplifies training without explicit reward functions.
- Captures nuanced human judgments.

Key Takeaways

- RL is about maximizing expected cumulative rewards.
- RLHF incorporates human feedback for alignment.
- PPO provides stable policy updates.
- DPO directly optimizes for human preferences.
- Both methods enhance LLM alignment with human values.

Questions

Thank you! Questions?

