Faculdade de Engenharia da Universidade do Porto

Odometria e equações de movimento de um robô

Sandro Augusto Costa Magalhães U Tiago José Ferreira Mendonça U

UP201304932 UP201305394

Relatório realizado no âmbito da unidade curricular de Sistemas Robóticos Autónomos

Docentes: Vítor Pinto e António Moreira

28 de setembro de 2017

1. Introdução

Este relatório surge no âmbito do trabalho prático para a unidade curricular de Sistemas Robóticos Autónomos, realizado em sala de aula no dia 27 de setembro de 2017, que teve como principal intuito incentivar os estudantes a estudar o comportamento de uma robot de tração diferencial com duas rodas e calcular alguns parâmetros das características inerentes.

Como ambiente de trabalho para a realização do exercício, recorreu-se ao simulador *SimTwo* que disponibiliza um modelo do robot supra indicado. Este desloca-se num plano horizontal intermédio de duas rodas motrizes diferenciais e com uma terceira roda livre de apoio.

Figura 1 Esquemática de um robot de tração diferencial com duas rodas (o efeito da roda livre é menosprezado nos cálculos)

Como ponto de partida, teve-se em consideração as equações base que permitem o controlo da velocidade linear (v) e velocidade angular (ω), por controlo da velocidade dos motores de cada roda (v_1 e v_2).

$$v = \frac{v_1 + v_2}{2} \tag{1}$$

$$\omega = \frac{v_1 - v_2}{h} \tag{2}$$

2. Determinação da constante K_{imp}

Neste ponto, pretendeu-se determinar a constante K_{imp} que corresponde à relação entre os impulsos gerados pelos sensores nas rodas e o deslocamento linear de cada roda.

Para tal, começou-se por analisar o código já pré-implementado no *SimTwo* e constatou-se que este permitia um deslocamento linear do robot por pressão das teclas *up* e *down* do teclado, uma vez que estas estavam pré-configuradas com igual velocidade em cada motor, eliminando a velocidade angular (como se comprova pela equação 1).

Primeiramente, sentiu-se a necessidade de implementar dois acumuladores que permitem contar o número de impulsos dos sensores de cada motor.

```
Odometro1 := Odometro1+odo1;
Odometro2 := Odometro2+odo2;

SetRCValue(1,2, format('%.3g', [Odometro1]));
SetRCValue(2,2, format('%.3g', [Odometro2]));
```

Ambas as variáveis, Odometro1 e Odometro2, foram declaradas como do tipo inteiras e globais.

Uma vez obtido o valor acumulado dos odómetros, é possível obter o valor da constante K_{imp} .

$$d = \frac{odo_1 + odo_2}{2} \cdot K_{imp} \tag{3}$$

Por análise dos dados obtidos do SimTwo, sabemos que o robot, neste caso, percorreu linearmente 0,452~m e que cada sensor dos motores contou 978 e 985 impulsos, respetivamente. Assim, resolvendo a equação acima em ordem a k_{imp} , temos que $K_{imp}=0,000462\approx0,0005~m/impulso$.

Cálculo da distância entre rodas

Para o cálculo da distância entre rodas (b), procedeu-se de forma similar à situação anterior. Novamente, por análise do código pré-implementado, constatou-se que a pré-configuração das teclas left e right do teclado possibilitava ao robot realizar apenas o movimento angular, uma vez que $v_1 = -v_2$, anulando a equação 1.

Sabe-se que o movimento angular do robot é dado, em radianos, por

$$\theta = \frac{odo_1 - odo_2}{h} \cdot k_{imp} \tag{4}$$

Mais uma vez, aproveitando o acumulador anteriormente implementado, verificou-se que cada sensor contou -206 e 207 impulsos, respetivamente. Constatou-se que o robot rodou 123°, isto é $\theta=2,1468$ rad. Então, resolvendo a equação 4 em ordem a b, considerando $K_{imp}=0,000462$ m/impulso, conclui-se que $d=0,088664\approx0,1m$.

4. Cálculo simultâneo de K_{imp} e da distância entre rodas

Neste momento, o objetivo consistia na realização de um único movimento composto, incluindo rotação e translação, através do qual é possível determinar a constante K_{imp} bem como a distância entre rodas (b). Para o efeito, procedeu-se à alteração do código previamente implementado, alterando a velocidade associada a cada uma das rodas nas instruções up e down. Assim, configurou-se uma razão entre velocidades de $\frac{V_1}{V_2}=2$, de forma a que o robot realizasse um movimento circular. Seguidamente, partindo da origem do referencial, forçou-se o mesmo a descrever uma trajetória equivalente a um deslocamento angular de 180° , isto é, π rad, registando-se os seguintes valores:

$$x=-0.326~m; y=-0.050~m; ~\Delta\theta=180^{\circ}$$

$$Odometro_{1}=-1290~impulsos; ~Odometro_{2}=-669~impulsos$$

Sendo a trajetória circular e o deslocamento angular de 180°, imediatamente se infere que o deslocamento linear será dado pela metade do perímetro de uma circunferência de diâmetro igual à distância entre a posição final e a origem. Sendo assim:

$$d = \pi \times \frac{\sqrt{(-0.326)^2 + (-0.050)^2}}{2} \approx 0.518 m$$
$$\theta = \pi \, rad$$

Com estes dados e substituindo-os nas equações inicialmente apresentadas, obtém-se $K_{imp}=0.000529\approx 0.0005\ m/impulso$ e $b=0.104\approx 0.1\ m\ (com\ K_{imp}=0.000529$), valores consistentes face aos resultados das alíneas anteriores.

5. Implementação das Equações de Movimento

Nesta etapa, o propósito residia na implementação de um procedimento adicional capaz de estimar as coordenadas (x, y, θ) da posição do robot no referencial. Nesse sentido, recorreuse ao método de discretização por diferenças centradas, regido pelas seguintes equações:

$$x(i+1) = x(i) + d(i) \cdot \cos(\theta(i) + \frac{\Delta\theta(i)}{2})$$
 (5)

$$y(i+1) = y(i) + d(i) \cdot \sin(\theta(i) + \frac{\Delta\theta(i)}{2})$$
 (6)

$$\theta(i+1) = \theta(i) + \Delta\theta(i) \tag{7}$$

Para a sua implementação, concebeu-se o seguinte procedimento que recebe como argumentos os valores lidos, em cada iteração, do odómetro no *encoder* de cada uma das rodas:

```
procedure alineaD(odo2, odo1:double);
var
 d_at:double;
 delta_theta:double;
begin
 d at := (0do1 + 0do2)/2*0.0005;
 delta_theta := (0do1 - 0do2)*0.0005/0.1;
 theta := theta + delta theta;
 if theta > (2*3.14159265359) then begin
    theta := theta - 2*3.14159265359;
 if theta < (-2*3.14159265359) then begin
   theta := theta + 2*3.14159265359;
 end;
 x_atual := x_atual + d_at*cos(theta + delta_theta/2);
 y_atual := y_atual + d_at*sin(theta + delta_theta/2);
 SetRCValue(1,3, format('%.3g', [x_atual]));
 SetRCValue(2,3, format('%.3g', [y_atual]));
 SetRCValue(3,3, format('%.3g', [theta*180/3.14159265359]));
end;
```

6. Testes

Para aferir o correto funcionamento do procedimento, realizaram-se alguns movimentos com o robot e comparou-se a posição indicada pelo simulador com a estimada. Inicialmente, constatou-se uma elevada similaridade entre as coordenadas, sendo o erro praticamente nulo. Contudo, aquando da realização de movimentos mais bruscos (acelerações e paragens repentinas), era percetível uma crescente divergência entre os valores. Esta divergência tornava-se ainda mais clara quando se colidia o robot com a barreira existente no ambiente de simulação, uma vez que a posição estimada do robot crescia continuamente, em termos absolutos, enquanto que a sua posição real se mantinha constante, reproduzindo-se num aumento gradual do erro acumulado. Este efeito está relacionado com uma das limitações associadas à estimação por odometria, pois assume-se que todo o movimento rotacional das rodas é convertido em deslocamento linear, o que não é assegurado em todas as circunstâncias. Em determinadas condições existe deslizamento entre as rodas e o solo, gerando erros de estimação, tal como os observados no presente exemplo.