BASES DE DONNÉES III ALGÈBRE RELATIONNELLE

Laurent Kaczmarek

PCSI² 2013-2014 Lycée Louis Le Grand

Lundi 26 mai 2014

Bases de données III

LAURENT

KACZMAREK

Introduction

ES RELATIONS

FONCTIONS D'AGRÉGATION

I Introduction

Bases de données III

RELATIONNELLE

LAURENT KACZMAREK

Introduction

OPERATIONS SUR LES RELATIONS

GROUPES ET FONCTIONS D'AGRÉGATION

Exemples plus élaborés

Р	Nb	S	Α
Liz	5	F	2012
Lohan	9	М	2012

- ▶ Pour déterminer le nombre de fois que le prénom *Julie* a été donné à Paris en 2012, il suffit de considérer la relation **prenom** et de supprimer les lignes inutiles (celles où $A \neq 2012$ ou $P \neq "Julie"$).
- Afin de trouver une information dans une base de données, on effectue des opérations sur les relations.
- ▶ Les traitements que nous ferons subir aux relations formant une base de données s'apparentent à des opérations ensemblistes (intersection, etc) mais aussi à des collages, des découpages, des suppressions de lignes ou de colonnes, etc.
- L'algèbre relationnelle étudie ces opérations.

Laurent Kaczmarek

Introduction

II Opérations sur les relations

Bases de données III

RELATIONNELLE

Laurent Kaczmarek

Introduction

Opérations sur les relations

GROUPES ET FONCTIONS D'AGRÉGATION

Exemples plus élaborés

LAURENT

KACZMAREK

Intersection, union et différence

- Les opérations sur les relations les plus élémentaires sont du type ensembliste.
- ► Soient R et R' deux relations ayant le même schéma relationnel. On définit les relations suivantes par le même schéma relationnel que R et R' et les conditions suivantes :
 - ▶ la réunion de R et R' est la relation formée des enregistrements figurant dans R ou R'.
 - ▶ L'intersection de R et R' est la relation formée des enregistrements figurant dans R et R'.
 - ► R privé de R' est la relation formée des enregistrements figurant dans R mais pas dans R'.

NOTATIONS

Celles de l'algèbre : $R \cup R'$, $R \cap R'$ et $R \setminus R'$.

► Soient les deux relations suivantes :

	R	
Prénom	Classe	Sexe
Guy	TS1	М
François	TS5	M
Julie	TS3	F

Prénom	Classe	Sexe
Gustave	TS2	М
Viviane	TS1	М
François	TS5	M

R'

On obtient clairement :

R	1	i.	R	,

Prénom	Classe	Sexe
Guy	TS1	M
François	TS5	M
Julie	TS3	F
Gustave	TS2	M
Viviane	TS1	M

$R \cap R'$ Classe

Sexe

Prénom

François	TS5	М	
R \ R'			
Prénom	Classe	Sexe	
Prénom Guy	Classe TS1	Sexe M	

La projection d'une relation R sur les attributs A_1, \ldots, A_n est la relation obtenue à partir de R en supprimant les attributs ne figurant pas dans $\{A_1, \ldots, A_n\}$ et en supprimant les éventuels enregistrements doublons.

NOTATION

On note $\pi[A_1,\ldots,A_n](R)$ la projection de R sur A_1,\ldots,A_n .

Exemple de projection

► Soit R définie par :

 $\blacktriangleright \pi[Prénom, Sexe](R)$

Prénom	Classe	Sexe
John	TS4	М
Julie	TS3	F
Julie	TS6	F
Marc	TS3	M

Prénom	Sexe
John	М
Julie	F
Marc	M

LAURENT KACZMAREK

vérifiant la condition C.

NOTATION

On note $\sigma[C](R)$.

Exemple de sélection

► Soit R définie par :

Prénom	Classe	Sexe
John	TS4	М
Julie	TS3	F
Julie	TS6	F
Marc	TS3	М

Prénom	Sexe	
Julie	TS3	F
Julie	TS6	F

LE RENOMMAGE

Le renommage de l'attribut A de R en A' est la relation obtenue en changeant dans R le nom de A en A'.

NOTATION

On note $\rho[A:A'](R)$.

Exemple de renommage

► Soit *R* définie par :

Prénom	Classe	Sexe
John	TS4	М
Julie	TS3	F
Julie	TS6	F
Marc	TS3	M

ightharpoonup
ho[Sexe:S](R)

Prénom	Classe	S
John	TS4	М
Julie	TS3	F
Julie	TS6	F
Marc	TS3	М

Bases de données III

RELATIONNELLE

Laurent Kaczmarek

INTRODUCTIO

Opérations sur les relations

GROUPES ET FONCTIONS D'AGRÉGATION

Exemples p.

LE PRODUIT CARTÉSIEN

Soient R et R' deux relations n'ayant pas d'attribut commun. de R par R' est la relation formée de toutes les combinaisons possibles d'enregistrements des relations R et R'.

NOTATION

On note $R \times R'$.

Exemple de produit cartésien

► Soient *R* définie par...

Classe	Sexe
TS4	М
TS3	F
TS6	F
TS3	М
	TS4 TS3 TS6

▶ ...et R' par...

Numéro	Ville
123	Naples
567	Venise

Bases de données III

DELATIONNELLE

Laurent Kaczmarek

NTRODUCTION

Opérations sur les relations

GROUPES ET FONCTIONS D'AGRÉGATION

EXEMPLES PLU

Exemple de produit cartésien (suite)

Le produit cartésien $R \times R'$ est donné par :

Prénom	Classe	Sexe	Numéro	Ville
John	TS4	М	123	Naples
Julie	TS3	F	123	Naples
Julie	TS6	F	123	Naples
Marc	TS3	М	123	Naples
John	TS4	М	567	Venise
Julie	TS3	F	567	Venise
Julie	TS6	F	567	Venise
Marc	TS3	М	567	Venise

Bases de données III

Laurent Kaczmarek

TRODUCTION

Laurent Kaczmarek

dans R.

TRODUCTION

NOTATION

CROUPES ET

On note $R \div R'$.

FONCTIONS
D'AGRÉGATION

Exemple de division cartésienne

► Soient *R* définie par...

▶ ...et *R'* par...

Prénom	Classe	Sexe
John	TS4	М
Julie	TS3	F
Julie	TS6	F
Marc	TS3	М
iviarc	153	IVI

Prénom	Sexe
Julie	F
Marc	М

Exemple de division cartésienne (suite)

La division cartésienne $R \div R'$ est donnée par :

Classe TS3

C'est la liste des classes où tous les prénoms de R' apparaissent.

LA JOINTURE

La jointure de deux relations R et R' suivant une condition C donnée est la sous-relation de $R \times R'$ formée des enregistrements vérifiant C.

NOTATION

On note $R \bowtie [C]R'$.

Bases de données III

RELATIONNELLE

Laurent Kaczmarek

INTRODUCTION

LES RELATIONS

GROUPES ET

D'AGRÉGATION

Exemple de jointure

- Coiont D définie nor

Joient	<i>1</i> \	dennie	pai

Prénom	Classe	Sexe	
John	TS4	М	
Julie	TS3	F	
Julie	TS6	F	
Marc	TS3	М	

▶ ...et *R'* par...

Terminale	Voyage
TS3	Venise
TS4	Londres

▶ La jointure $R \bowtie [Classe = Terminale]R'$ est donnée par :

Prénom	Classe	Sexe	Terminale	Voyage
John	TS4	М	TS4	Londres
Julie	TS3	F	TS3	Venise
Marc	TS3	М	TS3	Venise

III FONCTIONS D'AGRÉGATION USUELLES

Bases de données III

RELATIONNELLE

Laurent Kaczmarek

Introduction

Opérations sur les relations

Groupes et fonctions d'agrégation

Exemples plus élaborés $\dots A_n$

Si R est une relation, A, B des attributs de R et f une fonction d'agrégation, ${}_{A}\gamma(R)_{A,f(B)}$ est la relation à deux attributs, A et f(B), dont chaque enregistrement est formé des valeurs de A et f(B) sur les groupes d'enregistrements de R ayant le même attribut A.

 Les fonctions d'agrégation permettent d'effectuer des opérations statistiques sur une relation R : comptage,

▶ Soient A_1, \ldots, A_n des attributs de R. Il est possible de

d'enregistrements de R ayant les mêmes attributs A_1 ,

maximum, minimum, somme et moyenne.

n'effectuer ces opérations que sur les groupes

▶ On généralise à $A_1,...,A_m\gamma(R)_{A'_1,...,A'_p,f_1(B_1),...,f_k(B_k)}$ avc $\{A_1,...,A'_p\}\subset\{A_1,...,A_m\}.$

EXEMPLE D'AGRÉGATION

► Soient *R* définie par :

Р	C	Ν
John	TS3	17
Julie	TS2	15
Julien	TS2	12
Marc	TS3	14

 $ightharpoonup c \gamma(R)_{somme(N)}$

somme(N)	
31	
27	

 $ightharpoonup C\gamma(R)_{C,somme(N)}$

somme(N)
31
27

Bases de données III

Laurent Kaczmarek

PÉRATIONS SU

Groupes et fonctions d'agrégation

IV Exemples plus élaborés

Bases de données III

RELATIONNELLE

Laurent Kaczmarek

Introduction

Opērations sur les relations

GROUPES ET FONCTIONS D'AGRÉGATION

Exemples plus élaborés

LA RELATION prenom

Р	Nb	S	Α
Liz	5	F	2012
Lohan	9	М	2012
Emilien	14	М	2005
Elio	11	М	2007
Margot	75	F	2013
Alienor	24	F	2006
Cesar	25	M	2006
Alban	24	M	2008
Anna	127	F	2008
Zakaria	32	М	2009
Abdoul	10	М	2010
Amalia	7	F	2011

Bases de données III

Laurent Kaczmarek

Rappel

Р	Nb	S	Α
Liz	5	F	2012
Lohan	9	М	2012
Emilien	14	М	2005
Elio	11	М	2007
Margot	75	F	2013
Alienor	24	F	2006
Cesar	25	М	2006
Alban	24	М	2008
Anna	127	F	2008
Zakaria	32	М	2009
Abdoul	10	М	2010
Amalia	7	F	2011

▶
$$S = \sigma[A = 2008](prenom)$$

Р	Nb	S	Α
Alban	24	М	2008
Anna	127	F	2008

► $T = \sigma[A = 2012](prenom)$

Р	Nb	S	Α
Liz	5	F	2012
Lohan	9	М	2012

$V = S \cup T$

Р	Nb	S	Α
Alban	24	М	2008
Anna	127	F	2008
Liz	5	F	2012
Lohan	9	М	2012

π[P](U)

Р
Alban
Anna
Liz
Lohan

Laurent Kaczmarek

Combien de prénoms donnés entre 2011 et 2013?

Rappel

D

•	$T = \sigma[A > 2010](\mathit{prenom})$

Р	IND	5	Α
Liz	5	F	2012
Lohan	9	М	2012
Emilien	14	М	2005
Elio	11	М	2007
Margot	75	F	2013
Alienor	24	F	2006
Cesar	25	М	2006
Alban	24	М	2008
Anna	127	F	2008
Zakaria	32	М	2009
Abdoul	10	М	2010
Amalia	7	F	2011

NIL

Р	Nb	S	Α
Liz	5	F	2012
Lohan	9	М	2012
Margot	75	F	2013
Amalia	7	F	2011

 $ightharpoonup \gamma(T)_{somme(Nb)}$

somme(Nb)

La base de donnée Biblio

Opera

IdOpéra	Chaîne
Titre	Chaîne
Compositeur	Chaîne

Emprunt

#IdCD	Chaîne
#IdClient	Chaîne
Date	Date

CD

IdCD	Chaîne
#IdOpéra	Chaîne
Chef	Chaîne
Année	Entier

Client

IdClient	Chaîne
Nom	Chaîne
Téléphone	Chaîne
Adresse	Chaîne

LAURENT KACZMAREK

Date des emprunts des opéras de Britten?

► Relation **Emprunts**

IdEmprunt	#IdCD	#IdClient	Date
E001	CD006	CL002	12/12/2013
E002	CD001	CL003	13/04/2014
E003	CD009	CL001	16/05/2014
E004	CD004	CL002	12/12/2013
E005	CD001	CL003	13/04/2014
E006	CD010	CL001	16/05/2014

► Relation CD

IdCD	#IdOpéra	Chef	Annee
CD001	OP010	Mackerras	1978
CD002	OP003	Kubelik	1982
CD003	OP009	Jacobs	1997
CD004	OP004	Britten	1965
CD005	OP006	Boulez	1974
CD006	OP002	Gardiner	1982
CD007	OP007	Bohm	1973
CD008	OP008	Solti	1968
CD009	OP009	Haim	2004
CD010	OP011	Colin Davis	1978

Bases de données III

Laurent Kaczmarek

ONCTIONS)'AGRÉGATION

Date des emprunts des opéras de Britten?

► Relation **Opera**

IdOpera	Titre	Compositeur
OP001	Alceste	Gluck
OP002	Les Boréades	Rameau
OP003	Parsifal	Wagner
OP004	Billy Budd	Britten
OP005	Elektra	Strauss
OP006	Wozzeck	Berg
OP007	Cosi fan tutte	Mozart
OP008	Don Carlo	Verdi
OP009	Orfeo	Monteverdi
OP010	Katia Kabanova	Janacek
OP011	Peter Grimes	Britten

$ightharpoonup R = \sigma[Compositeur = Britten]Opera$

IdOpera	Titre	Compositeur
OP004	Billy Budd	Britten
OP011	Peter Grimes	Britten
	OP004	OP004 Billy Budd

Bases de données III

Laurent Kaczmarek

Date des emprunts des opéras de Britten?

 $ightharpoonup S = R \bowtie [R.IdOpera] CD$

IdOpera	Titre	Compo.	IdCD	IdOpera	Chef	Annee
OP004	Billy Budd	Britten	CD004	OP004	Britten	1965
OP011	Peter Grimes	Britten	CD010	OP011	Colin Davis	1978

► $T = S \bowtie [S.IdCD = Emprunt.IdCD]Emprunt$

IdOpera	Titre	Compositeur	IdCD	IdOpera	Chef	
OP004	Billy Budd	Britten	CD004	OP004	Britten	
OP011	Peter Grimes	Britten	CD010	OP011	Colin Davis	

 Annee	IdEmprunt	#IdCD	#IdClient	Date
 1965	E004	CD004	CL002	12/12/2013
 1978	E006	CD010	CL001	16/05/2014

 \blacktriangleright $\pi[Date](T)$

Date	
12/12/2013	3
16/05/2014	4

Nombre de CD empruntés par le client Kaczmarek?

► La relation Client

IdClient	Nom	Tel	Adresse
CL001	Kaczmarek	06.12.34.56.78	Paris
CL002	Vrick	06.11.22.33.44	Paris
CL003	Kazan	06.98.76.54.32	Lille

► Relation **Emprunt**

IdEmprunt	#IdCD	#IdClient	Date
E001	CD006	CL002	12/12/2013
E002	CD001	CL003	13/04/2014
E003	CD009	CL001	16/05/2014
E004	CD004	CL002	12/12/2013
E005	CD001	CL003	13/04/2014
E006	CD010	CL001	16/05/2014

2

Bases de données III

Laurent Kaczmarek