# Phase Retrieval

### ECE 554 Final Presentation Amir Reza Vazifeh

December 17, 2024



# Outline

Why Does Phase Matter?

When Is Phase Lost?

How Difficult Is Phase Retrieval?

Algorithms for Phase Retrieval

Current Research





# Relevance: Phase Matching

$$\frac{\omega_{1}}{\omega_{2}} \qquad \chi^{(2)} \qquad \frac{\omega_{3} = \omega_{1} + \omega_{2}}{\sum_{\substack{i \in \mathbb{Z} \\ \text{generated wave}}} 1$$

$$I_{3} = I_{3}^{(\text{max})} \left[ \frac{\sin(\Delta k L/2)}{(\Delta k L/2)} \right]^{2} \longrightarrow \text{Intensity of generated wave}$$

$$\Delta k = k_{1} + k_{2} - k_{3}$$

$$\frac{\omega_{3} = \omega_{1} + \omega_{2}}{\sum_{\substack{i \in \mathbb{Z} \\ \text{generated wave}}} 1$$

$$0$$

$$-3\pi$$

$$\frac{\partial}{\partial k L/2}$$

• Significant reduction in sum-frequency generation efficiency occurs when  $\Delta k \neq 0$ . (No perfect phase-matching)



# Why does Phase Matter?





More information in phase of Fourier Transform of an image!

- Intensity of light doesn't change so much in transparent materials!
- Phase Contrast Imaging: Enhances contrast by detecting phase shifts in light.



### Phase Problem Example: Coherent Diffraction Imaging (CDI)

- In CDI, a highly coherent beam of wavelike particle (X-rays, electrons, photons) is incident on an object.
- Diffraction pattern = Magnitude of the Fourier transform of the object (In far-field)
- Phase is not captured!





### **Notation**

#### **Fourier Transform**

Continuous

$$\hat{\rho}(\boldsymbol{q}) = \int \rho(\boldsymbol{r}) e^{-2\pi i (\boldsymbol{r}.\boldsymbol{q})} d\boldsymbol{r}$$
  $\rho(\boldsymbol{r}) = \int \hat{\rho}(\boldsymbol{q}) e^{-2\pi i (\boldsymbol{r}.\boldsymbol{q})} d\boldsymbol{q}$ 

#### **Inverse Fourier Transform**

$$\rho(\mathbf{r}) = \int \hat{\rho}(\mathbf{q}) e^{-2\pi i (\mathbf{r} \cdot \mathbf{q})} d\mathbf{q}$$

#### **Sample Electron Density**

$$\rho(\mathbf{r})$$



2D Sample



3D Sample

#### **Diffraction Intensity**

$$I(\boldsymbol{q}) = |\hat{\rho}(\boldsymbol{q})|^2$$



2D Diffraction Image



### What is Phase Retrieval problem?



$$\hat{\rho}(\boldsymbol{q}) = \sqrt{I(\boldsymbol{q})} \, e^{i(\phi(\boldsymbol{q}))}$$

$$\text{Magnitude Phase}$$

$$\text{Measured Not Measured}$$

**Goal:** Reconstruct the density  $\rho(r)$  from the measured diffraction intensities I(q)

**Challenge:** The complex phases  $\phi(q)$  are not measured and need to be retrieved.

**Requirement:** Additional constraints are needed to determine the phases (support constraint)



### How hard is Phase Retrieval?

Translation



$$\rho(\mathbf{r}) \leftrightarrow \hat{\rho}(\mathbf{q})$$
$$\rho(\mathbf{r} + \mathbf{\tau}) \leftrightarrow \hat{\rho}(\mathbf{q})e^{2\pi i(\mathbf{\tau}.\mathbf{q})}$$

$$\left|\hat{\rho}(\boldsymbol{q})e^{2\pi i(\boldsymbol{\tau}.\boldsymbol{q})}\right| = \left|\hat{\rho}(\boldsymbol{q})\right|$$

Inverse Problem

Inversion



$$\rho(\mathbf{r}) \leftrightarrow \widehat{\rho}(\mathbf{q}) \\
\rho(-\mathbf{r}) \leftrightarrow \overline{\widehat{\rho}(\mathbf{q})}$$

$$\left|\overline{\hat{\rho}(q)}\right| = \left|\hat{\rho}(q)\right|$$

Global Phase Factor



$$\rho(\mathbf{r}) \leftrightarrow \hat{\rho}(\mathbf{q}) 
\rho(\mathbf{r})e^{i\phi} \leftrightarrow \hat{\rho}(\mathbf{q})e^{i\phi}$$

$$\left|\hat{\rho}(\boldsymbol{q})e^{i\boldsymbol{\phi}}\right|=\hat{\rho}(\boldsymbol{q})$$



## Phase Retrieval Solvability Criterion

**Theorem:** If  $I(q) = |\hat{\rho}(q)|^2$  then  $\rho(r)$  can be uniquely reconstructed up to translation, multiplication by a global phase factor, and inversion if it satisfies certain conditions:

1. The Fourier magnitudes are oversampled by a factor of at least 2, i.e.  $L \ge 2D$  (D is Sample Diameter)



2. The sample should not be homometric. However, you have no control over it, and it's rare! [Additional Slides]



## Phase Retrieval with support constraint

**Support:** The support of an object is the region where it is nonzero

**Goal:** Given an intensity I(q) and finite support region S find  $\rho(r)$  that satisfies:

#### **Magnitude Constraint**

$$I(\boldsymbol{q}) = |\hat{\rho}(\boldsymbol{q})|^2$$







#### **Support Constraint**

 $supp(\rho)$  is contained within S



## Error Reduction Algorithm (ER)





## Hybrid Input-Output Algorithm (HIO)





# Comparison of HIO and ER Algorithms



Reconstructed (ER)





Reconstructed (HIO) Iteration 1





### **Current Research**



**2012:** Beginning of the deep learning era with the AlexNet paper, authored by Geoffrey E. Hinton, a winner of the 2024 Nobel Prize in Physics!

[1]: <u>Diffusion Posterior Sampling for</u> <u>General Noisy Inverse Problems</u>

[2]: <u>DOLPH: Diffusion Models for</u> <u>Phase Retrieval</u>

[3]: prDeep: Robust Phase Retrieval with a Flexible Deep Network

[4]: Phase Retrieval: From
Computational Imaging to Machine
Learning

•



# Thanks for your attention!



### Additional Slides: Imaging Through Thin Scattering Media





• Angular memory effect: Rotating the incident beam over small angles  $\theta$  does not significantly change the resulting speckle pattern; rather, it only translates it over a distance  $\Delta r \approx \theta d$ 

$$I(\theta) = \int_{-\infty}^{\infty} O(r)S(r - \theta d) d^{2}r = [O * S](\theta)$$

• **Theorem:** Operations of convolution and autocorrelation can be interchanged.

$$\langle I \star I \rangle (\Delta \theta) = \langle O \star S \rangle \star \langle O \star S \rangle$$
$$= \langle O \star O \rangle \star \langle S \star S \rangle = [O \star O] \star \langle S \star S \rangle$$

Speckle scale must be smaller than object size  $\rightarrow \approx \delta(x)$ 

$$|\mathcal{F}\{I\}|^2 = |\mathcal{F}\{0\}|^2 \rightarrow \text{Phase is lost!}$$



### Additional Slides: Homometric Structure

#### **Translation**

$$\rho(\mathbf{r}) \leftrightarrow \hat{\rho}(\mathbf{q})$$

$$\rho(\mathbf{r} + \mathbf{\tau}) \leftrightarrow \hat{\rho}(\mathbf{q})e^{2\pi i(\mathbf{\tau} \cdot \mathbf{q})}$$

$$\left|\hat{\rho}(\mathbf{q})e^{2\pi i(\mathbf{\tau} \cdot \mathbf{q})}\right| = \hat{\rho}(\mathbf{q})$$



#### Inversion

$$\begin{array}{l}
\rho(\mathbf{r}) \leftrightarrow \widehat{\rho}(\mathbf{q}) \\
\rho(-\mathbf{r}) \leftrightarrow \overline{\widehat{\rho}(\mathbf{q})} \\
\left| \widehat{\rho}(\mathbf{q}) \right| = |\widehat{\rho}(\mathbf{q})|
\end{array}$$



#### **Global Phase Factor**

$$\begin{array}{c} \rho(r) \leftrightarrow \hat{\rho}(q) \\ \rho(r)e^{i\phi} \leftrightarrow \hat{\rho}(q)e^{i\phi} \end{array}$$





**Homometric Structure:** Example of two homometric structures (top) formed by the convolution between two noncentrosymmetric structures (bottom) with different orientations. [f(r)] is non-centro-symmetric if  $f(r+\tau) \neq f(-r+\tau)$  for all  $\tau$ ]

**1D**: Almost all 1D functions have homometric structure

**2D**: Homometric structures are very rare in 2 and higher

dimensions

