01 - Estimation des incertitudes

E. Machefer

September 17, 2023

Incertitude

Type A (statistique)

Soit une série de mesures x_i , l'estimation de la valeur vraie est donnée par

$$x_E = \hat{x} \pm u(x)$$

où \hat{x} correspond à l'estimateur de la moyenne¹ et u(x) l'incertitude définie par

$$u(x) = \frac{1}{\sqrt{N}} \times \hat{\sigma}$$

où σ_{N-1} correspond à l'écart type expérimental

Type B (mesure)

Affichage digital

Soit Δ_{num} le pas de l'affichage, la valeur est contenue dans l'intervalle $[x - \Delta_{\text{num}}; x + \Delta_{\text{num}}]$, soit

$$u(x) = \frac{\Delta_{\text{num}}}{\sqrt{3}}$$

Compatibilité de la mesure

Théorie

La mesure x du mesurande X est compatible avec le modèle x' si

$$|x - x'| \le k \times u(x - x'),$$

soit
$$|x - x'| \le k \times \frac{1}{\sqrt{N}} \times \hat{\sigma}$$

7-test

Le mesurage M du mesurande X suivant une loi normale de moyenne μ et d'écart type σ connus

$$z = \frac{M - \mu}{u(x)}$$

Ne fonctionne que pour N > 50 ou pour distribution connue.

Vocabulaire

Moyenne

Definition

Soit une série de mesures x_i , l'estimateur de la moyenne est

$$\hat{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Écart type

Definition

L'écart-type est défini par

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

où μ est la moyenne de la distribution.

Ressources

▶ Eduscol - mesure et incertitudes au lycée