Anchoring Synthetic DNA to a Membrane: A Novel Application of Free Energy Perturbations

Ezry Santiago Seminar Presentation November 9, 2021

Motivation: Drug Delivery

The Problem of Drug Delivery

- The distribution of a drug in the body is hard to control.
- Non-specific delivery leads to side-effects.

Simple Drug-Delivering Vesicle

Bottom-Up Design

Polar Lipids (and other amphipaths)

- Obvious choice for membranes
- Cheap
- Easy to manipulate
- Stable and biocompatible

Proteins?

- Pros:
 - Structural and functional
 - Diverse conjugation chemistry
- Cons:
 - Difficult to design
 - Expensive to prototype

Structures: 2OAU (left) 3JBR (right)

DNA nanotechnology

• Pros:

- Tractable design due to base-pairing
- o Both structural and functional
- Diverse conjugation chemistry
- Cons:
 - Less scalable
 - Polyanion

A Problem:

How can we get DNA to interact stably with the hydrophobic region of a membrane?

Prosthetic groups can act as anchors:

Chemical interfaces between DNA and other molecules

DNA Patched to a Membrane (MD Simulation)

- Nitrogen
- Oxygen
- Carbon
- Phosphorous
- Lipids

Water not shown

The question:

Which prosthetic group stabilizes the DNA-Membrane complex most?

Current Problem: Which prosthetic group is optimal?

a small selection of possible prosthetic groups (sterols and sphingosine derivatives)

Which is Better: CholTEG or SterolTEG?

Our Approach:

Comparing Free Energies of Insertion

Free Energy Comparisons

Free Energy Calculations Option 1: Spatial Method(s)

Example:

- 1. Push/pull the prosthetic group in/out of the membrane
- 2. Measure the resulting reactive forces to estimate the change in F over time
- 3. Sum the changes over dt to get the total
- 4. Repeat for each prosthetic group

Free Energy Comparisons: Thermodynamic Cycle

$$\Delta G_{chol} + \Delta G_{membrane} - \Delta G_{sterol} - \Delta G_{solvent} = 0$$

$$\Delta\Delta G_{chol \rightarrow sterol} = \Delta G_{sterol} - \Delta G_{chol}$$

$$\Delta\Delta G_{chol \rightarrow sterol} = \Delta G_{membrane} - \Delta G_{solvent}$$

Getting $\Delta G_{membrane}$ and $\Delta G_{solvent}$: Alchemical Free Energy Calculations (FEP)

$$\Delta G_{a \to b} = \sum_{\lambda_i=0}^{1} \ln \left\langle \exp \left[-\beta \left[E_{\lambda_{i+1}} - E_{\lambda_i} \right] \right] \right\rangle_{\lambda_i}$$

- 1. Decompose the two states into N intermediates: $\{\lambda_0, \lambda_1, \lambda_2, ..., \lambda_N\}$
- 2. Simulate in state λ_1
- 3. Periodically calculate the internal energy (E) as if we were in state λ_{i+1}
- 4. Use the Boltzmann distribution to estimate $\Delta G(\lambda_i, \lambda_{i+1})$
- 5. Sum over all substates

Uses and Challenges of Alchemical Free Energy Perturbations

Uses:

- Traditionally used in drug discovery
- Application to membrane dynamics is very new (<5 years)
- When it works, it's much more efficient than spatial methods

Challenges:

- Windows can't be too wide
- Each window must be simulated for a sufficient time

Question: Will FEP work in this system?

Two Main Criteria:

1. Convergence:

Does our estimate stabilize over simulation time?

2. Error:

How large is the remaining error?

Hysteresis Plots and Convergence

$$\Delta G_{a \to b} = \sum_{\lambda_i=0}^{1} \ln \left\langle \exp \left[-\beta \left[E_{\lambda_{i+1}} - E_{\lambda_i} \right] \right] \right\rangle_{\lambda}$$

For every pair λ_i and λ_{i+1}

With sufficient simulation time: $\Delta G(\lambda_i, \lambda_{i+1}) = \Delta G(\lambda_{i+1}, \lambda_i)$

I.e. The calculation converges

First Attempt (July)

- 1. Differences are large
- 2. Sign switch near 0.5

Second Attempt

- 1. Differences are large
- 2. Sign switch near 0.5
- 3. Stubborn difference at 1

Penultimate Attempt

We tried everything

- 1. Differences are large
- 2. Sign switch near 0.5
- 3. Stubborn difference at 1

There was a bug in NAMD

With implications for many other labs

namd-I: Bug advisory and workaround: alchemical FEP with IDWS can give wrong comparison energies D Inbox ×

Latest Results (still running, preliminary)

- 1. Differences are smaller stil
- 2. Sign switch near 0.5
- 3. Stubborn difference at 1

Sterol is more stable in the membrane

$$\Delta G_{\text{mutation}} = -1.6 \pm 0.6 \text{ kcal/mol}$$

Summary

Applicability	Cholesterol vs Sterol	Improvements	More Prosthetic Groups
We have demonstrated that free energy perturbation calculations converge (work) for these systems	We now know that a sterol-TEG is marginally more stable than chol-TEG in the membrane	Calculations still take several days. This can be improved.	Selection of more prosthetic groups is already underway
	Need to calculate $\Delta G_{\text{solution}}$		

Acknowledgements

Advisors:

Dr. Grace Brannigan
 Dr. Jinglin Fu
 Dr. Julie Griepenburg
 Dr. Jerome Henin
 Dr. Tom Joseph
 Primary Advisor
 Secondary Advisor
 Collaborator
 Collaborator
 Collaborator

Lab Members:

- Jesse Sandberg, MS
- Connor Pitman
- Jahmal Ennis

Resources:

- Compute Resources: Office of Advanced Research Computing (OARC)
- Funding: Department of Defence (DoD)

How do biological systems deliver metabolites across the body?

The biological approach (e.g. Oxygen Transport):

Outline

Introduction:

Big-picture - moving and manipulating small groups of molecules

Biological inspiration - vesicles and associated proteins

Our toolbox - DNA, chemical modifications, and synthetic vesicles

Problem statement: optimizing prosthetic groups

Approach: Collect and organize candidates

Compare the free energies of solvation for various prosthetic groups

Energy components

Methods: Free energy perturbation (compare and contrast with LogP)

Results: Convergence and hysteresis?

Applicability of FEP:

Ensuring Convergence and Reducing Error

Our "Best Practices" so far:

- 1. Sample frequently
 - a. ~every 16-20 fs
- 2. Use double-wide sampling
 - a. Simulate intermediate state N while sampling N-1 and N+1
- 3. Equilibrate thoroughly
 - a. Initially ~100ns
 - b. ~10ps for each window
- 4. Use long enough sampling times (~2ns)
- 5. Use small windows to ensure good overlap (~100 divisions between A and B)

Add thermodynamic cycle

Add movie of mutation

Add slide numbers

Define convergence

Free Energy Comparisons

Best estimate so far:

Combining DNA and Membranes

- A) Simulate in state A
- B) Periodically calculate the internal energy (E) as if we were in state B
- C) Use the Boltzmann distribution to estimate dF

$$\Delta F(\mathbf{A} \to \mathbf{B}) = F_{\mathbf{B}} - F_{\mathbf{A}}$$

$$\Delta F_{a \to b} = \sum_{\lambda_i=0}^{1} \ln \left\langle \exp \left[-\beta [E_{\lambda_{i+1}} - E_{\lambda_{i+1}}] \right] \right\rangle_{\lambda}$$

Nitrogen

Oxygen

Carbon

Phosphorous

Lipids

Refinement: decompose the tv intermediates: $\{\lambda_0, \lambda_1, \lambda_2, ..., \lambda_N\}$

AFEP: a closer look

- Nitrogen
- Oxygen
- Carbon
- Phosphorous
- Lipids

$$\Delta F({f A}
ightarrow {f B}) = F_{f B} - F_{f A}$$

$$\Delta F_{a \to b} = \sum_{\lambda_i=0}^{1} \ln \left\langle \exp \left[-\beta [E_{\lambda_{i+1}} - E_{\lambda_{i+1}}] \right] \right\rangle_{\lambda}$$

Organization Paradigms

B) by Tanimoto Distance:
$$J(A,B) = \frac{|A\cap B|}{|A\cup B|} = \frac{|A\cap B|}{|A|+|B|-|A\cap B|}$$
 Basic cheminformatics:

- C) by MCS with tuning by CHARMM parameter distances:
 - A, but including CHARMM parameters as additional data

Approach

Organize candidate prosthetic groups

Compute the relative free energies of solvation/insertion for each

Methods: Simulation

- Nitrogen
- Oxygen
- Carbon
- Phosphorous
- Lipids