Automatic Control

Transfer function of LTI dynamical systems Representations of LTI dynamical systems

Transfer function of LTI SISO continuous time systems

Transfer function of the RLC circuit

In the presence of <u>zero initial conditions</u>, the solution of an LTI dynamical system can be obtained more directly by computing the relationship between the system input and output in the Laplace transform domain:

$$V \stackrel{j}{\longrightarrow} V_{R} \stackrel{L}{\longrightarrow} V_{C} \qquad U(t) = V(t), y(t) = V_{C}(t)$$

$$V \stackrel{j}{\longrightarrow} V_{C} \qquad V(0) = 0, V_{C}(0) = 0$$

$$V(t) = V_{R}(t) + V_{L}(t) + V_{C}(t) = \\ = R i(t) + L di(t) / dt + V_{C}(t) \rightarrow V(s) = R I(s) + sLI(s) + V_{C}(s) \\ i(t) = C dV_{C}(t) / dt \\ V(s) = R I(s) + sLI(s) + V_{C}(s) = SRC V_{C}(s) + S^{2}LC V_{C}(s) + V_{C}(s) \\ \rightarrow V(s) = \left(s^{2}LC + sRC + 1\right) V_{C}(s)$$

Transfer function of the RLC circuit

$$V = V_{R}$$

$$V_{R}$$

$$V_{C}$$

$$V(s) = (s^{2}LC + sRC + 1)V_{C}(s)$$

$$\to V_{C}(s) = \underbrace{\frac{1}{s^{2}LC + sRC + 1}}V(s)$$

$$\to H(s) = \underbrace{\frac{V_{C}(s)}{V(s)}} = \underbrace{\frac{Y(s)}{U(s)}} = \underbrace{\frac{1}{s^{2}LC + sRC + 1}}$$

$$H(s) \to \text{ transfer function}$$

The **transfer function** H(s) of a single input single output (SISO) LTI dynamical system is the ratio between the system output and input Laplace transforms

 $\rightarrow H(s) = \frac{Y(s)}{U(s)}$

The system transfer function

The transfer function H(s) is referred to as the

input-output representation

of a single input single output (SISO) LTI dynamical system

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$
 input - output representation

Note that, without loss of generality, the leading coefficient of the denominator of H(s) is assumed to be unitary

Transfer fuction as impulse response of LTI systems

Consider the zero state output response of an LTI dynamical system in the presence of a Dirac's delta impulse input (i.e. $u(t) = \delta(t) \rightarrow U(s) = 1$)

We have:

$$Y(s) = H(s)U(s) = H(s) \cdot 1 = H(s)$$

$$U(s)=1$$

Therefore, the transfer function can be viewed also as the Laplace transform of the zero state output impulse response h(t)

$$\downarrow$$

$$H(s) = \mathcal{L}(h(t))$$

Transfer function

The transfer function of an LTI (SISO) dynamical system is a real rational function (i.e. the ratio of two polynomials) of the complex variable s:

$$H(s) = \frac{N_H(s)}{D_H(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}, \quad m \le n$$

- *m* < *n* → strictly proper
- $m = n \rightarrow proper$
- Roots of $N_H(s) \rightarrow$ system zeros
- Roots of $D_H(s) \rightarrow$ system poles

Examples:
$$H(s) = \frac{s+5}{s^2+3s+2}$$
, $H(s) = \frac{s+1}{s+2}$

Definition of transfer functions with MatLab

$$H(s) = \frac{1}{s^2 + 3s + 2}$$

• Define the Laplace variabile s using tf statement

Transfer function:

S

Define

$$>> H=1/(s^2+3*s+2)$$

Transfer function:

1

 $s^2 + 3 s + 2$

Computation of zeros and poles of a transfer function using MatLab

$$H(s) = \frac{s+5}{s^2+3s+2}$$

• Use the statements zero and pole

```
>> s=tf('s');
>> H=(s+5)/(s^2+3*s+2);
>> zeros_H = zero(H)
zeros_H =
        -5
>> poles_H = pole(H)
poles_H =
        -2
        -1
```

The system transfer function: zero-pole-gain form

$$H(s) = K_{\infty} \frac{(s - Z_1)(s - Z_2) \cdots (s - Z_m)}{(s - \rho_1)(s - \rho_2) \cdots (s - \rho_n)}$$

- $z_1, \ldots, z_m \rightarrow \text{Zeros of } H(s)$
- $p_1, \dots, p_n \rightarrow \text{Poles of } H(s)$
- $K_{\infty} \rightarrow gain$

$$K_{\infty} = \lim_{s \to \infty} s^{n-m} H(s)$$

Example:
$$H(s) = \frac{s+5}{s^2+3s+2} = 1 \cdot \frac{s+5}{(s+1)(s+2)}$$

Zero-pole-gain form

Computation of the zero-poles-gain form of a transfer function using MatLab

 $H(s) = \frac{4(2s+6)}{s^2+3s+2}$

• Use the statement zpk

```
>> s=tf('s');
>> H=4*(2*s+6)/(s^2+3*s+2);
>> zpk(H)
Zero/pole/gain:
  8 (s+3)
-----(s+2) (s+1)
```

The system transfer function: dc-gain form

$$H(s) = K \frac{(1 - s / z_1)(1 - s / z_2) \cdots (1 - s / z_m)}{s'(1 - s / p_1)(1 - s / p_2) \cdots (1 - s / p_{n-r})}$$

- $z_1, \ldots, z_m \rightarrow \text{zeros of } H(s)$
- $r \rightarrow$ poles of H(s) at the origin
- $p_1, \dots, p_{n-r} \rightarrow \text{poles of } H(s)$
- $K \rightarrow$ generalized static gain (dc-gain) $\rightarrow K = \lim_{s \to 0} s^r H(s)$

Example:
$$H(s) = \frac{s+5}{s^2+3s+2} = \frac{5(1+s/5)}{1\cdot(1+s)\cdot2\cdot(1+s/2)} = \frac{5}{2}\frac{1+s/5}{(1+s)(1+s/2)}$$

No specific MatLab statement

Computation example 3

Given the following transfer function of an LTI dynamical system:

$$H(s) = \frac{2s+1}{(s+4)^2}$$

compute the output response y(t) when $u(t) = 2 t \varepsilon(t)$ (linear ramp) The solution in Laplace domain can be computed as

$$Y(s) = H(s)U(s)$$

with

$$U(s) = \frac{2}{s^2}$$

Computation example 3

$$Y(s) = H(s)U(s) = \frac{2s+1}{\underbrace{(s+4)^2}} \frac{2}{\underbrace{s^2}} = \frac{2(2s+1)}{s^2(s+4)^2} =$$

$$= \frac{R_{1,1}}{s} + \frac{R_{1,2}}{s^2} + \frac{R_{2,1}}{s+4} + \frac{R_{2,2}}{(s+4)^2} =$$

$$= \frac{0.1875}{s} + \frac{0.125}{s^2} - \frac{0.1875}{s+4} - \frac{0.875}{(s+4)^2}$$

Computation example 3

$$Y(s) = \frac{0.1875}{s} + \frac{0.125}{s^2} - \frac{0.1875}{s+4} - \frac{0.875}{(s+4)^2}$$

$$Re^{at}\varepsilon(t)=\mathcal{L}^{-1}\left\{\frac{R}{s-a}\right\}, Rte^{at}\varepsilon(t)=\mathcal{L}^{-1}\left\{\frac{R}{(s-a)^2}\right\}$$

$$y(t) = (0.1875 + 0.125t - 0.1875e^{-4t} - 0.875te^{-4t})\varepsilon(t)$$

Define the Laplace variabile s using tf statement

```
>> s=tf('s')
Transfer function:
s
• Define the system input
>> U=2/s^2
Transfer function:
2
---
```

s^2

Introduce the system transfer fuction

$$>> H=(2*s+1)/(s+4)^2$$

Transfer function:

$$2s + 1$$

$$s^2 + 8 s + 16$$

• Compute Y(s) = H(s)U(s)use statements minreal and zpk, in order to simplify and highlights denominator roots respectively

```
>> Y=zpk(minreal(H*U))
Zero/pole/gain:
4 (s+0.5)
------
```

 $s^2 (s+4)^2$

• For Y(s), compute the PFE using the statements tfdata and residue

```
>> [num Y,den Y]=tfdata(Y,'v')
num Y =
                 0 0 4.0000 2.0000
           0
den_Y =
     1,0000
             8.0000
                          16,0000
                                                            0
>> [r,p]=residue(num Y, den Y)
r = -0.1875
   -0.8750
                      Y(s) = \frac{0.1875}{s} + \frac{0.125}{s^2} - \frac{0.1875}{s+4} - \frac{0.875}{(s+4)^2} 
     0.1875
    0.1250
p = -4.0000
   -4.0000
                    \rightarrow y(t) = (0.1875 + 0.125t - 0.1875e^{-4t} - 0.875te^{-4t})\varepsilon(t)
           0
           0
```

LTI systems representation

Representation of LTI dynamical systems

A SISO LTI system can be described through

State space representation (→ ss)

$$\begin{cases} \dot{x}(t) = A x(t) + B u(t) \\ y(t) = C x(t) + D u(t) \end{cases}$$

Transfer function (input-output representation → tf)

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

In the following, the relationships between these two representations will be discussed, i.e. ss \rightarrow tf and tf \rightarrow ss

Consider the Laplace transform of output response:

$$Y(s) = C(sI - A)^{-1}X(0) + [C(sI - A)^{-1}B + D]U(s)$$

of the LTI system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

In the presence of zero initial conditions x(0) = 0 (i.e. zero state response), we have

$$Y(s) = \left\lceil C(sI - A)^{-1}B + D\right\rceil U(s)$$

$$Y(s) = \underbrace{\left[C(sI - A)^{-1}B + D\right]}_{H(s)}U(s) = H(s)U(s)$$

Thus, given matrices A, B, C and D of the state space representation, the system transfer function can be computed as:

$$H(s) = C(sI - A)^{-1}B + D = C\frac{Adj(sI - A)}{\det(sI - A)}B + D$$

State space representation → Transfer function

The solution is unique

$$\begin{cases} \dot{x}(t) = A x(t) + B u(t) \\ y(t) = C x(t) + D u(t) \\ \downarrow \\ H(s) = C (sI - A)^{-1} B + D \end{cases}$$

Example 1

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$A = \begin{bmatrix} -3 & 2 \\ -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

$$H(s) = C \frac{Adj(sI - A)}{\det(sI - A)}B + D$$

$$sI - A = \begin{bmatrix} s+3 & -2 \\ 2 & s+3 \end{bmatrix} \rightarrow \det(sI - A) = (s+3)^2 + 4 = s^2 + 6s + 13$$

$$Adj(sI - A) = \begin{bmatrix} s+3 & 2 \\ -2 & s+3 \end{bmatrix}$$

$$H(s) = C \frac{Adj(sI - A)}{\det(sI - A)} B + D = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{D=0} \underbrace{\begin{bmatrix} \frac{s+3}{s^2+6s+13} & \frac{2}{s^2+6s+13} \\ -2 & \frac{s+3}{s^2+6s+13} \end{bmatrix}}_{\frac{Adj(sI - A)}{\det(sI - A)}} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{B} = -\frac{-2}{s^2+6s+13}$$

- The MatLab statement tf allows the computation of the transfer function of a dynamical system starting from its ss representation
- Example

$$\dot{x}(t) = \begin{bmatrix} -3 & 2 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

Introduce the system matrices A, B, C (and D)

Issue the ss statement

• Use **tf** to obtain the transfer function H(s)

Transfer function:

-2

 $s^2 + 6 s + 13$

$$V \stackrel{f}{\longleftarrow} V_{R} \stackrel{L}{\longleftarrow} V_{C}$$

$$\begin{cases} \dot{x}_1(t) = \frac{1}{L} \left[-R x_1(t) - x_2(t) + u(t) \right] & \dot{x}(t) = A x(t) + B u(t) \\ \dot{x}_2(t) = \frac{1}{C} x_1(t) & y(t) = C x(t) + D u(t) \end{cases}$$

$$y(t) = x_2(t)$$

$$A = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & 0 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

$$H(s) = C \frac{Adj(sI - A)}{\det(sI - A)}B + D$$

$$A = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & 0 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

$$sI - A = \begin{bmatrix} s + R/L & 1/L \\ -1/C & s \end{bmatrix} \rightarrow \det(sI - A) = (s + R/L)s + 1/(LC)$$
$$= s^2 + R/L s + 1/(LC)$$

$$Adj(sI - A) = \begin{bmatrix} s & -1/L \\ 1/C & s + R/L \end{bmatrix}$$

$$H(s) = C \frac{Adj(sI - A)}{\det(sI - A)} B + D =$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{s}{s^2 + R/L s + 1/(LC)} & \frac{-1/L}{s^2 + R/L s + 1/(LC)} \\ \frac{1/C}{s^2 + R/L s + 1/(LC)} & \frac{s + R/L}{s^2 + R/L s + 1/(LC)} \end{bmatrix} \begin{bmatrix} 1/L \\ 0 \end{bmatrix} =$$

$$= \frac{1/LC}{s^2 + R/L s + 1/(LC)} = \frac{1}{LCs^2 + RCs + 1}$$

State space representation:

$$\begin{cases} \dot{x}_{1} = -\frac{R_{1}}{L} x_{1} - \frac{1}{L} x_{2} + \frac{1}{L} u_{1} \\ \dot{x}_{2} = \frac{1}{C} x_{1} - \frac{1}{R_{2}C} x_{2} + \frac{1}{C} u_{2} \end{cases} \qquad \dot{x}(t) = A x(t) + B u(t) \\ \dot{x}_{1} = R_{1} x_{1} \\ \dot{y}_{2} = R_{1} x_{1} \\ \dot{y}_{2} = x_{2} \end{cases}$$

$$A = \begin{bmatrix} -R_{1}/L & -1/L \\ 1/C & -1/R_{2}C \end{bmatrix}, B = \begin{bmatrix} 1/L & 0 \\ 0 & 1/C \end{bmatrix}, C = \begin{bmatrix} R_{1} & 0 \\ 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$H(s) = C \frac{Adj(sI - A)}{\det(sI - A)}B + D$$

$$A = \begin{bmatrix} -R_1/L & -1/L \\ 1/C & -1/R_2C \end{bmatrix}, B = \begin{bmatrix} 1/L & 0 \\ 0 & 1/C \end{bmatrix}, C = \begin{bmatrix} R_1 & 0 \\ 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$sI - A = \begin{bmatrix} s + R_1/L & 1/L \\ -1/C & s + 1/R_2C \end{bmatrix} \rightarrow \det(sI - A) = (s + R_1/L)(s + 1/R_2C) + 1/(LC)$$
$$= s^2 + (R_1/L + 1/R_2C)s + R_1/(LR_2C) + 1/(LC)$$

$$Adj(sI - A) = \begin{bmatrix} s + 1/R_2C & -1/L \\ 1/C & s + R_1/L \end{bmatrix}$$

$$H(s) = C \frac{Adj(sI - A)}{\det(sI - A)}B + D =$$

$$= \begin{bmatrix} R_1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{s+1/R_2C}{s^2 + (R_1/L + 1/R_2C)s + R_1/(LR_2C) + 1/(LC)} & \frac{-1/L}{s^2 + (R_1/L + 1/R_2C)s + R_1/(LR_2C) + 1/(LC)} \\ \frac{-1/C}{s^2 + (R_1/L + 1/R_2C)s + R_1/(LR_2C) + 1/(LC)} & \frac{s+R_1/L_1}{s^2 + (R_1/L + 1/R_2C)s + R_1/(LR_2C) + 1/(LC)} \end{bmatrix} \begin{bmatrix} 1/L & 0 \\ 0 & 1/C \end{bmatrix}$$

$$= \begin{bmatrix} \frac{R_{1}(s+1/R_{2}C)/L}{s^{2} + (R_{1}/L + 1/R_{2}C)s + R_{1}/(LR_{2}C) + 1/(LC)} & \frac{-\frac{R_{1}}{CL}}{s^{2} + (R_{1}/L + 1/R_{2}C)s + R_{1}/(LR_{2}C) + 1/(LC)} \\ \frac{-\frac{1}{CL}}{s^{2} + (R_{1}/L + 1/R_{2}C)s + R_{1}/(LR_{2}C) + 1/(LC)} & \frac{(s+R_{1}/L_{1})C}{s^{2} + (R_{1}/L + 1/R_{2}C)s + R_{1}/(LR_{2}C) + 1/(LC)} \end{bmatrix}$$

 \rightarrow The transfer function H(s) of a system with p inputs and q outputs is a $q \times p$ matrix of real rational functions.

Computation of a physical system transfer function

In order to compute the transfer function of a physical system, it is more convenient to \mathcal{L} -transform directly the dynamic equations in the presence of zero initial conditions than deriving at first the ss representation and then applying the relation $C(sI-A)^{-1}B+D$

$$F(t) = u(t)$$
 input (applied force)

$$z(t) = y(t)$$
 output (mass position)

$$m\ddot{z}(t) = -kz(t) - b\dot{z}(t) + F(t)$$

$$m\ddot{y}(t) = -ky(t) - b\dot{y}(t) + u(t)$$

Computation of a physical system transfer function

$$m\ddot{y}(t) = -ky(t) - b\dot{y}(t) + u(t)$$

$$m\ddot{y}(t) = -ky(t) - b\dot{y}(t) + u(t)$$

$$\downarrow \mathcal{L} \qquad \downarrow \mathcal{L} \qquad \downarrow \mathcal{L}$$

$$ms^{2}Y(s) = -kY(s) - bsY(s) + U(s)$$

$$(ms^{2} + bs + k)Y(s) = U(s)$$

$$Y(s) = \frac{1}{ms^{2} + bs + k}U(s)$$

Computation of a physical system transfer function

$$V_{o}(s) = -\frac{Z_{f}(s)}{Z_{a}(s)}V_{a}(s) = -\frac{\left(C_{f}s + \frac{1}{R_{f}}\right)^{-1}}{\left(C_{a}s + \frac{1}{R_{a}}\right)^{-1}}V_{a}(s) = -\frac{R_{f}}{R_{a}} \cdot \frac{1 + R_{a}C_{a}s}{1 + R_{f}C_{f}s}V_{a}(s)$$

Transfer function → State space representation

$$H(s) = \frac{b_{m}s^{m} + b_{m-1}s^{m-1} + \dots + b_{0}}{s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}}$$

$$\downarrow$$

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

$$A = ??, B = ??, C = ??, D = ??$$

The solution is not unique

In order to compute a ss representation of a given tf H(s), some preliminary manipulations of H(s) are needed when H(s) is not strictly proper (i.e. m = n):

$$H(s) = \frac{b'_{n} s^{n} + b'_{n-1} s^{n-1} + \dots + b'_{0}}{s^{n} + a_{n-1} s^{n-1} + \dots + a_{0}} = \frac{b_{n-1} s^{n-1} + \dots + b_{1} s + b_{0}}{\text{divide numerator by denominator}}$$

$$= \frac{b_{n-1} s^{n-1} + \dots + b_{1} s + b_{0}}{s^{n} + a_{n-1} s^{n-1} + \dots + a_{1} s + a_{0}} + b_{n}$$

When H(s) is strictly proper (i.e. m < n) preliminary manipulations are not needed:

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

Consider

$$H(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + b_n$$

$$H(s) = \frac{Y(s)}{U(s)} \to Y(s) = H(s)U(s) = \left(\frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + b_n\right)U(s)$$

Define the intermediate variable $X_1(s)$ as:

$$X_{1}(s) = \frac{1}{s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}} U(s)$$
$$Y(s) = X_{1}(s) \left(b_{n-1}s^{n-1} + \dots + b_{1}s + b_{0} \right) + b_{n}U(s)$$

$$X_{1}(s) = \frac{1}{s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}} U(s) \to X_{1}(s)(s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}) = U(s)$$

$$\to \frac{d^{n}X_{1}(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}X_{1}(t)}{dt^{n-1}} + \dots + a_{1}\frac{dX_{1}(t)}{dt} + a_{0}X_{1}(t) = u(t)$$

Define the states x_2, \dots, x_n as

$$\begin{cases} x_{2}(t) = \frac{dx_{1}(t)}{dt} = \dot{x}_{1}(t) \\ x_{3}(t) = \frac{d^{2}x_{1}(t)}{dt^{2}} = \frac{dx_{2}(t)}{dt} = \dot{x}_{2}(t) \\ \dots \\ x_{n-1}(t) = \frac{d^{n-2}x_{1}(t)}{dt^{n-2}} = \frac{dx_{n-2}(t)}{dt} = \dot{x}_{n-2}(t) \\ x_{n}(t) = \frac{d^{n-1}x_{1}(t)}{dt^{n-1}} = \frac{dx_{n-1}(t)}{dt} = \dot{x}_{n-1}(t) \\ \rightarrow \frac{dx_{n}(t)}{dt} = \dot{x}_{n}(t) = \frac{d^{n}x_{1}(t)}{dt^{n}} = -a_{n-1}x_{n-1}(t) - \dots - a_{1}x_{2}(t) - a_{0}x_{1}(t) + u(t) \end{cases}$$

The state equation is:

$$\begin{cases} \dot{X}_{1}(t) = X_{2}(t) \\ \dot{X}_{2}(t) = X_{3}(t) \\ \vdots \\ \dot{X}_{n}(t) = -a_{0}X_{1}(t) - a_{1}X_{2}(t) - \dots - a_{n-1}X_{n}(t) + u(t) \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Note that matrix A is expressed in the lower companion form

 \rightarrow the characteristic polynomial is $\rho_A(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + ... + a_1\lambda + a_0$

As to the output equation, we have:

$$Y(s) = X_{1}(s) \left(b_{n-1} s^{n-1} + \dots + b_{1} s + b_{0} \right) + b_{n} U(s)$$

$$y(t) = b_{n-1} \underbrace{\frac{d^{n-1} X_{1}(t)}{dt}}_{X_{n}(t)} + \dots + b_{1} \underbrace{\frac{d X_{1}(t)}{dt}}_{X_{2}(t)} + b_{0} X_{1}(t) + b_{n} U(t) =$$

$$= b_{n-1} X_{n}(t) + \dots + b_{1} X_{2}(t) + b_{0} X_{1}(t) + b_{n} U(t)$$

$$C = \begin{bmatrix} b_{0} & b_{1} & \cdots & b_{n-1} \end{bmatrix} \qquad D = \begin{bmatrix} b_{n} \end{bmatrix}$$

Reordering we obtain the controller canonical form:

$$\begin{cases} \dot{X}_{1}(t) = X_{2}(t) \\ \dot{X}_{2}(t) = X_{3}(t) \\ \vdots \\ \dot{X}_{n}(t) = -a_{0}X_{1}(t) - a_{1}X_{2}(t) - \dots - a_{n-1}X_{n}(t) + u(t) \end{cases}$$

$$y(t) = b_0 x_1(t) + b_1 x_2(t) + ... + b_{n-1} x_n(t) + b_n u(t)$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} b_0 & b_1 & \cdots & b_{n-1} \end{bmatrix} \qquad D = \begin{bmatrix} b_n \end{bmatrix}$$

$tf \rightarrow ss$ (controller canonical form)

$$H(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + b_n$$

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} b_0 & b_1 & \cdots & b_{n-1} \end{bmatrix}$$

$$D = \lceil b_n \rceil$$

Controller canonical form: example

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0} + b_3$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b_0 & b_1 & b_2 \end{bmatrix} D = \begin{bmatrix} b_3 \end{bmatrix}$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} x(t)$$

tf -> ss observer canonical form

$$H(S) = \frac{b_{n-1}S^{n-1} + \dots + b_1S + b_0}{S^n + a_{n-1}S^{n-1} + \dots + a_1S + a_0} + b_n$$

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

$$A = \begin{bmatrix} 0 & \cdots & 0 & -a_0 \\ 1 & \ddots & \ddots & -a_1 \\ 0 & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} b_n \end{bmatrix}$$

Observer canonical form: example

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0} + b_3$$

$$A = \begin{bmatrix} 0 & \cdots & 0 & -a_0 \\ 1 & \ddots & \ddots & -a_1 \\ 0 & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} b_n \end{bmatrix}$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x(t)$$

Computation of a ss representation of a tf using MatLab

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1}$$

Define the transfer fuction as usual

• Use ss to obtain the A, B, C, D matrices

```
>> sys=ss(H)
         x2 x3
      x1
  x1 -1 -0.5 -0.5
  x2 2
         0
  x3
    0 1
                0
b =
     u1
      2
  x1
  x2
      0
  x3
      0
      x1
        x2
             x3
  y1 0.5 0.75 0.25
d =
   u1
  y1 0
```