Name	:	Elle	No	ıwı	en
					-

Daniel B. Szyld

5 October 2023

Due Tuesday 17 October 2023, 11 AM

Linear Algebra, Math 2101-003 Homework set for extra credit

(It is not mandatory to turn this in)

Consider a $n \times n$ projection P, i.e., $P^2 = P$. It projects onto $W = \mathcal{R}(P)$ along (or parallel to) $V = \mathcal{N}(P)$. That is, if $v \in V$, then Pv = 0 and if $w \in W$, Pw = w. Recall that for any vector space with a norm (here \mathbb{R}^n), we can define the matrix norm

$$||P|| = \max_{||x||=1} ||Px||.$$

- **1.** (1 point). Show that if $P \neq 0$, $||P|| \geq 1$.
- **2.** (1 point). Show that if $P \neq 0$ and if $V \perp W$, that is $P^T = P$, then ||P|| = 1.
- **3.** (4 points). Show that if $P \neq 0$, and $P \neq I$, then ||I P|| = ||P||.
- Given $P^2 = P$ If $P \neq 0$ then $0 \neq ||P|| = ||P^2|| \leq ||P||^2$ $||P|| \leq ||P||^2$
 - $|\cdot| \leq ||P|| (divide by ||P|| \neq 0) \text{ or } ||P|| \geqslant 1$ QED!
- Take a non-zero vector x such that x = Ix = (P+I-P)x = Px + (I-P)xConsider < Px, (I-P)x>

= (Px) T(I-P)x by definition of matrix norm

=
$$x^T P^T (I - P)x$$
 by property of transposition (AB)^T = $B^T A^T$
= $x^T P (I - P)x$ since $P^T = P$ (given)

$$= x^{T}(PI - P^{2})x$$
 by distributive law

=
$$x^{T}(PI - P^{2})x$$
 by distributive law
= $x^{T}(P - P)x$ since $P^{2} = P$ (given) & $PI = P$

$$= x^T 0 x = 0$$
 $\therefore < Px, (I - P)x > = 0$

(3)

