Numerical Analysis Assignment 7

亚历 克上 M202161029
Assignment - 7 Ex. 5.2
1. Using Euler's method to approximate the solution for each following initial value problems:
a) $y' = te^{3t} - 2y$ where $0 \le t \le 1$, $y(0) = 0$ while $h = 0.5$
i to = ti-, th w: = wi-, thyl(ti, wi) to = 0 and yo = 0
$t_1 = t_0 + h = 0 + 0,5$ $w_1 = w_0 + h_1(t_{i,y_0}) = 0 + 0,5 + (t_{i,y_0})$
t, = 0,5 W, = 0
t2 = t, +0,5 = 0,5+0,5
$t_2 = 1$ $w_2 = 1,120 + 223$
. The output is :-
n ti wi
0 0 0
1 0,5 0
2 . 1 1,12 04
b) $\dot{y} = 1 + (t - \dot{y})$ where $2 \le t \le 3$, $\dot{y}(2) = 1$ while $\dot{h} = 0.5$
in to=2, yo=1 Wo=1 The output is :-
$t_{i} = t_{0} + h = 2 + 0, s$ $w_{i} = w_{0} + h_{1}(t_{0}, y_{0})$ $= 2 + c_{0} + c_{0}(1/2 - 1)^{2}$
1 -111 -25100 = 2
tr = 3
$ w_2 = 2 + 0.5 (1 + 2.5 - 2)^2) $ = 2,6250

```
2a) The actual solutions to the notal value problem in Exercise
    I are given her and compare the actual error at each step to
   the error bound
  a) y(t) = 1/3 te - 1/25 e3t + 1/25 e-2t
  ". Actual value

y(t) = y(0) = 1/5 () = 20) /25 e + 25 e = 0 + 1 - 1 = 0
         y(t) = y(0,5) = 1/5 (0,5) e 3(0,5) 1/25 e 7(0,5) = 0,2836
        4(t) = 4(1) = 4(1) = 1/2(1) / se + / se = 3,2191
  Actual error = (Actual value - Approximated value)
            to > (0-0) = 0
            ti = 0,2836165-0=,0,2836165
             t2 =73,2190993-1,1204223 =2,098677
        Error bound
     Error Bound = | y: -wil \le hM[e(ti-a)] in range at t \le b
     \left(\frac{\partial +}{\partial y}\right) \leq L \left(\frac{\partial +}{\partial y}\left(te^{2}-2y\right)\right) = 2 = 2
         \left|\frac{\partial b}{\partial y}\right| \leq 2 . L=2
          150 Km;
       y(t) = 1/5 te3t = 25e3t = 25e2t
             => 9/5 te3+ 24 et 4/6-26
     at t=1 (using mean value (b) =1)
     y"(+) = y" = 95(1) e 3(1) + 21 (36) + 4/25e -2(1)
   M = y"(1) = 53,04747,
```

2b)
$$y(t) = t + \frac{1}{1-t}$$

- Achiel value

 $y(t) = y(2) = 2 + \frac{1}{1-2} = 1$
 $y(t_1) = y(2,5) = 2,5 + \frac{1}{1-2,5} = \frac{1}{5} \times \frac{333}{333}$
 $y(t_2) = y(3) = 3 + \frac{1}{1-3} = \frac{2}{5}$

Achiel Error

 $y(t_1) = (1-1) = 0$
 $(t_2) = \frac{1}{5} \times \frac{333}{333} - 2 = -0,16667$
 $t_3 = \frac{2}{5} - \frac{2}{5} = \frac{0}{5} \cdot \frac{125}{333}$

Error bound = $|y(t) - y_1| \le \frac{hM}{2L} \left[\frac{2(t_1 - a)}{3} \right]$
 $\left| \frac{3}{5} \right| \le L = \left| \frac{3}{5} \right| (1+(t-y)^2) = \frac{1}{2} (y-t) \right|$