Cycle GAN

발표자: 문경환

Abstract

- Unpaired 데이터셋으로 학습이 가능한 image-to-image translation 메서드.
- 기존의 Image-to-Image 모델에서 도메인 간의 학습이 이루어지지 않을 수 있었던 문제 해결.
- Cycle-consistency loss를 통해 다양한 Task에서 좋은 결과를 도출.

Generative model

출처 : analyticsvidhya

$CGAN \rightarrow Pix2Pix \rightarrow CycleGAN$

$CGAN \rightarrow Pix2Pix \rightarrow CycleGAN$

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see https://phillipi.github.io/pix2pix/ for additional examples.

$CGAN \rightarrow Pix2Pix \rightarrow CycleGAN$

CycleGAN

- 도메인 X를 도메인 Y로 변환하였다가 다시 도메인 X로 변환시키며 이미지가 다시 복원될 수 있도록 학습함.
- cycle-consistency loss를 사용한 학습으로 원본을 복원하는 능력을 향상.

Cycle-consistent loss

- 한 사이클을 돌아 이미지가 생성 되었을 때에, 원본 이미지와 얼마나 달라졌는지를 평가.
- Loss의 값이 작을수록 원본 이미지와의 차이가 적다고 볼 수 있음.

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

cycle-consistency loss

Full Objective

• 각각의 GAN loss와 cycle-consistency loss의 합을 최소화하는 것이 generator의 목표.

$$\begin{split} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) &= \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] \\ &+ \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x))], \end{split}$$

$$\begin{split} \mathcal{L}(G, F, D_X, D_Y) = & \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) \\ &+ \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) \\ &+ \lambda \mathcal{L}_{\text{cyc}}(G, F), \end{split}$$

$$G^*, F^* = \arg\min_{G, F} \max_{D_x, D_Y} \mathcal{L}(G, F, D_X, D_Y).$$

Network Architecture & Training

- 여러 residual block을 사용
- Instance Normalization 从용
- Discriminator은 이미지를 여러 패치로 나누어서 진짜/가짜 구분을 수행
- Cross-entropy 기반의 loss에서 mse 기반의 loss를 사용함
 - Mse 기반의 loss가 더욱 학습이 잘되고, 퀄리티가 좋은 이미지를 만들어냄
- 50개의 이전에 생성된 이미지를 저장해두고, Discriminator을 업데이트함
 - 모델 oscillation을 줄임

Performance

Figure 6: Different methods for mapping aerial photos↔maps on Google Maps. From left to right: input, BiGAN/ALI [7, 9], CoGAN [32], feature loss + GAN, SimGAN [46], CycleGAN (ours), pix2pix [22] trained on paired data, and ground truth.

	$\mathbf{Map} \to \mathbf{Photo}$	Photo → Map % Turkers labeled <i>real</i>	
Loss	% Turkers labeled real		
CoGAN [32]	$0.6\% \pm 0.5\%$	$0.9\% \pm 0.5\%$	
BiGAN/ALI [9, 7]	$2.1\% \pm 1.0\%$	$1.9\% \pm 0.9\%$	
SimGAN [46]	$0.7\% \pm 0.5\%$	$2.6\% \pm 1.1\%$	
Feature loss + GAN	$1.2\% \pm 0.6\%$	$0.3\% \pm 0.2\%$	
CycleGAN (ours)	$26.8\% \pm 2.8\%$	$23.2\% \pm 3.4\%$	

Table 1: AMT "real vs fake" test on maps \leftrightarrow aerial photos at 256×256 resolution.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [22]	0.71	0.25	0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.45	0.11	0.08
BiGAN/ALI [9, 7]	0.41	0.13	0.07
SimGAN [46]	0.47	0.11	0.07
Feature loss + GAN	0.50	0.10	0.06
CycleGAN (ours)	0.58	0.22	0.16
pix2pix [22]	0.85	0.40	0.32

Table 3: Classification performance of photo→labels for different methods on cityscapes.

Q&A