Let J =

 $\{w | \text{ either } w = 0x \text{ for some } x \in A_{\mathsf{TM}}, \text{ or } w = 1y \text{ for some } y \in \overline{A_{\mathsf{TM}}} \}.$

Step-by-step solution

Step 1 of 2

Turing-recognizable

Firstly demonstrate the reduction $f: \Sigma^* \to \Sigma^* \ \mbox{of} \ \overline{A_{\!T\!M}} \ \mbox{to} \ J$

Assume a string $z \in \Sigma^*$. So that f(z) = 1z.

By definition of $J_{\,,\,\,}z\in\overline{A_{\!\it TM}}\,$ iff $1z\in J_{\,\,}$

Hence f is a reduction of $\overline{A_{\rm TM}} \ \mbox{to} \, J$, Thus $\overline{A_{\rm TM}} \leq_{\rm m} J$.

By using the Corollary:

"If $\overline{A_{TM}} \leq_m B$, A is not a Turing-recognizable, then B is not Turing-recognizable."

Because $\overline{A_{\scriptscriptstyle TM}}$ is not Turing-recognizable, by Corollary J is not Turing-recognizable.

Comment

Step 2 of 2

Now demonstrate the reduction $\,f: \stackrel{}{\sum}^* \to \stackrel{}{\sum}^* \,$ of $A_{\! T\! M} \,$ to J

Assume a string $t \in \sum^*$. So that g(t) = 0t.

By definition of J , $t \in A_{\rm TM}$ iff $0t \in J$

Hence g is reduction of $~^{A_{T\!M}}$ to J , Thus $^{A_{T\!M}} \leq_{_{m}} ^{J}$.

A function which reduces language L_1 to language L_2 also reduces $\overline{L_1}$ to language $\overline{L_2}$. Hence, g is reduction from $\overline{A_{7M}}$ to \overline{J} , Thus $\overline{A_{7M}} \leq_m \overline{J}$. By using the Corollary:

"If $\overline{A_{7M}} \leq_{_{M}} B$, A is not a Turing-recognizable, then B is not Turing-recognizable."

Because $\overline{A_{\rm TM}}$ is not Turing-recognizable, by Corollary \overline{J} is also not Turing-recognizable.

Therefore neither J nor \overline{J} is Turing-recognizable.

Comment