

Talk Overview

- A bit of history
 - What goes around comes around
- Modern Hardware
 - Hitting the walls
- Modern Databases
 - One size does not fit all

A bit of history

- Early 1970s
 - Overabundance of database offerings
 - Incompatible, exposing many implementation details
- Ted Codd proposed a new model
 - Relational model
 - Structured Query Language (SQL)
 - Implementation differences became largely irrelevant
- Uniformity brought direct competition
 - DB market dominated by 3 players

Today

- Recent explosion in the number of database offerings
 - Different interfaces
 - Lost uniformity

amazon

webservices™

Tokyo Cabinet 8192

Musc

Talk Overview

- A bit of history
 - What goes around comes around
- Modern Hardware
 - Hitting the walls
- Modern Databases
 - One size does not fit all

Getting the data to the CPU

• Latency and bandwidth (source David Patterson, Oct 2004)

	CPU	DRAM
Annual Bandwidth Improvement	1.50) 1.27
Annual Latency Improvement	1.17	1 .07

- Memory getting further away from the CPU
- Solution?
 - Cache locality
 - Stack chips vertically

Getting the *right* data to the *right* CPU

- Hardware is multicore and heterogeneous:
 - Non-Uniform Memory Architectures

- Solution?
 - "Islands" of computation → Smarter software

Getting the data from storage

HDD Capacity growing (source Seagate, 2009)

Getting the data from storage

 But HDD latency and bandwidth not increasing fast enough (source David Patterson, Oct 2004)

	CPU	HDD
Annual Bandwidth	1.50) 1.28

Jim Gray in 2006:

"Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is

- Random b/w growing ~10% of sequential (source James Hamilton, 2011)
- HDD RPMs not improving: Impacting DBMS!
- Solutions: Flash?

Phase-Change Memory

PCM vs Flash

4K accesses	PCM today	PCM expected	NAND Flash circa 2011	
Read BW	800 MB/s	5-6 GB/s	3 GB/s	
Read latency (HW)	20 μs	4-5 μs	60 μs	
Write BW	40 MB/s	600-650 MB/s	1 GB/s	
Write latency (HW)	250 μs	20-200 μs	300 μs	
Endurance	1M cycles	>1M cycles	100K cycles	

PCM will likely offer:

- Better endurance and latency than Flash
- Supports writes in byte-size pieces like DRAM

Bandwidth / Latency Improvement

Slide by Steven Swanson, UCSD

1/Latency Relative to Disk

Software Latency Will Dominate

Software Energy Will Dominate

Slide by Steven Swanson, UCSD

(PAL

Overall

- Memory further away from CPU
- Some CPUs/cores very close, others further away
 - ... but our s/w is not prepared for that!
- HDDs very far from the CPUs
- Flash/PCM better
- Future NVMs even better
 - ... but our s/w is not prepared for that!

Era of "software oblivious" speed ups is over

Talk Overview

- A bit of history
 - What goes around comes around
- Modern Hardware
 - Hitting the walls
- Modern Databases
 - One size does not fit all

Scaling Up
Scaling Out
Scientific DBs
Usability & Maintenance

Scaling Up the DB Engine

Traditional Transaction Execution

- Unpredictable access pattern
- Source of contention

Data-oriented Transaction Execution

 Each transaction input is a graph of Actions & RVPs

TPC-C Payment

Actions

- Table/Index it is accessing
- Subset of routing fields

Rendezvous Points

- Decision points (commit/abort)
- Separate different phases
- Counter of the # of actions to report
- Last to report initiates next phase
- Enqueue the actions of the next phase

Data-oriented Transaction Execution

- Predictable access patterns
- Optimizations possible (e.g. no centralized locks)

DORA vs. Conventional – At 100% CPU

- Eliminate contention on the centr. lock manager
- Significantly reduced work (lightweight locks)

Rows, Columns and Hybrids

Given the table:

And the linear representation in memory:

• Let's SUM(C1)

Memory wall: CPU spends ~95% of time waiting for data!

Rows, Columns and Hybrids

- Option 2: Column-store
- Cache locality is King
- Major RDBMS remain row-stores but adding colstore features
 - Row-stores great for transactional workloads
 - Column-stores great for analytics (e.g. aggregations)

 Active research into compression, hybrids, switching between representations, qry optimiz.

Query Compilation

- Background:
 - Database engines convert declarative user queries to a tree of operators
 - Data flows bottom-up
- Idea: generate queryspecific machine code at optimization time
 - Reducing Instruction Cache
 Misses
 - Shorter code paths

Query-specific optimizations

(Hardware Query Compilation)

- Idea: translate entire queries or commonly used operations to hardware circuits
- e.g., field-programmable gate arrays for data processing:
 Systems@ETHzürich
 - Low latency
 - High throughput
 - Low power
- But historically difficult:

- Workload changes are costly!
- But recent progress with pre-defined building blocks

SSDs and Databases

- How leverage SSDs to improve DBMS perf.?
- Example: Supporting on-line updates in a data warehouse
 - Negligible query overhead
 - Higher update rate

(Pfl

Performance

Figure 4 Cortex-A15-Cortex-A7 DVFS Curves

Programmability?

Scaling Out the DB Engine

(CAP Theorem)

 CAP Theorem says "choose any two of Consistency

Use CAP as a guide not as a rule

(Eventual Consistency)

- 1. Be wary of *guaranteed eventual consistency*
- 2. Eventual consistency is often not enough
 - Tunable knobs to strengthen consistency
- 3. Not easy to strengthen consistency later on, at the database or application-side

"Eventual consistency is eventually not enough" Mehul Shah (Nou Data)

Start from consistent "core" and relax it, not the other way around

NoSQL

- NoSQL simplifies programming model and relaxes constraints
- Different design points from classical RDBMS:
 - Relational model encourages joins: may be expensive and unpredictable at scale
 - Drop or relax atomicity, consistency, isolation, durability
 - Limited support for schemas
- Individual design choices lead to very different products
- Ideal for some workloads and some hardware configurations
- NoSQL's low-entry barrier appealing
 - Despite many heterogeneous, incompatible offerings

NewSQL

ACID-compliant databases

- Highly scalable
- How: data partitioning

 simplified code paths (e.g. no locks)
- But data partitioning difficult, suffer under skews
- Research: partitioning techniques, minimizing 2PC overhead, ...

Other scaling-out ideas

- Giving up determinism for scalability: Calvin
- Give up freedom to:
 - Non-deterministically abort
 - Reorder requests on the fly
- Get
 - Scalability
 - ACID-compliance
- How?
 - Order requests in advance
 - Execute deterministically

Yale University

MapReduce

Widely used for:

- Extract, Transform, Load
- In situ big data processing
- Ad hoc queries

MapReduce community:

- Implementing indexes, views, query optimization
- Friendlier DB-like declarative interfaces: Pig Latin, Hive
- Combining MapReduce with RDBMS:
 - MapReduce for task distribution
 - RDBMS for queries within a worker node

Scientific Database(s)

Array DBs

- RDBMS lack support for arrays
- But array are common:
 - Scientific applications
 - Financial services
- Array DBs support:
 - Integrated storage and computation
 - Declarative languages:
 SciDB, SciQL
 - Query optimization

Relational			
	Data	base	
I	J	value	
0	0	32.5	
0 1 2 3 0	0	90.9	
2	0 0	42.1	
3	0	96.7	
0	1	46.3	
1		35.4	
2	1	35.7	
1 2 3	1	41.3	
0	2	81.7	
0	2	35.9	
2	2 2 3	35.3	
3	2	89.9	
0		53.6	
1	3 3 3	86.3	
1 2 3	3	45.9	
3	3	27.6	

Array Database					
32.5	46	81.7	54		
90.9	35	35.9	86		
42.1	36	35.3	46		
96.7	41	89.9	28		

16 cells

48 cells

Usability & Maintenance

Auto-tuning

- Database tuning decisions:
 - What indexes to create?
 - Which parts of the data?
 - When to create them?
- Traditionally:
 - Offline indexing
- More recently:
 - Online indexing
 - Cracking select from R where R.A > 10 and

R.A < 14

In situ query processing

- Idea: drop proprietary DB file format, use qry. engine with seamless support for gexisting data files/formats/tools
- No data loading

 no replication
- No vendor lock-in
- No explicit indexing

 continuous adaptation,
 evolutionary data layout

Cloud

- The Cloud is where all previous technologies come together in easy to manage manner
 - "Smart" RDBMS
 - Storage technologies
 - NoSQL
 - MapReduce

But:

- Predictability?
- Privacy?

One size does not fit all

- Cambrian Explosion in Database Research
 - Column stores, Arrays, MapReduce, NoSQL, Cloud, ...
 - Plus many areas not mentioned: GPUs, Networking
- Disruption in hardware, software and even economics
- Expect to see a zoo of database services
 - Convergence still far out
 - Data integration a growing problem
- Expect more database services to move to the cloud
 - Even database components to be deployed as services
- Expect more h/w-driven developments
 - Dennard scaling
- Expect the DBMS paradigm declarative data processing to be widely adopted to ease parallel programming

