

Algoritmos e Estruturas de Dados Ano letivo 2024/2025

Trabalho 1

Relatório

Turma: P7

Grupo: 114250 - 112726

114250 – Tiago Alexandre Rodrigues Ramos112726 – Bruno Miguel Borlido Pereira

Introdução

Este relatório tem como objetivo analisar computacionalmente as funções ImageCreateChessboard(...) e ImageAnd(...) para sua melhor compreensão. Nele irá ser abordado conceitos discutidos em aula como complexidade de algoritmos e analise formal de algoritmos.

Análise Formal de ImageCreateChessboard(...)

A função ImageCreateChessboard(...) cria uma imagem com quadrados alternados a preto e branco como um tabuleiro de xadrez. A seguir na Tabela A estão presentes os dados de vários testes em relação ao espaço que a imagem criada ocupa:

Assumindo:

w = width h = height s = square_edge No de runs = w/s Size of an Integer = 4 bits Size = h*(w/s + 2)*4 bits

W	Н	S	Size	W	Н	S	Size
4	4	1	96	16	8	2	320
8	4	1	160	4	16	2	256
16	4	1	288	8	16	2	384
4	8	1	192	16	16	2	640
8	8	1	320	4	4	4	48
16	8	1	576	8	4	4	64
4	16	1	384	16	4	4	96
8	16	1	640	4	8	4	96
16	16	1	1152	8	8	4	128
4	4	2	64	16	8	4	192
8	4	2	96	4	16	4	192
16	4	2	160	8	16	4	256
4	8	2	128	16	16	4	384
8	8	2	192				

Tabela A, Tamanhos em bits de testes com várias imagens

A imagem com mais runs ocorre quando S = 1, o número de runs é W.

A imagem com menos runs ocorre quando S = W, o número de runs é 1.

Gráfico 1 Gráfico 2

Gráfico 3

Análise Formal de ImageAND(...)

A função ImageAND(...) usa duas imagens como input e cria uma terceira imagem, sendo esta o resultado da operação lógica AND de cada um dos pixéis das imagens de input.

Assumindo:

```
w = width
h = height
n = n<sup>o</sup> de pixéis da imagem(n=w*h)
```

O Nº de execuções do código principal do algoritmo é igual a quantidade de pixéis da imagem Organização dos dados não afeta a complexidade do algoritmo Ordem de complexidade = Θ(n), linear

W\H	4	5	6	7
4	16	20	24	28
5	20	25	30	35
6	24	30	36	42
7	28	35	42	49

Tabela B

Gráfico 4

No melhor caso possível o algoritmo é executado 1 vez.

No pior caso possível o algoritmo é executado n vezes.

Conclusão

De forma sucinta, ao desenvolver este relatório, foi-nos possível explorar as funções ImageCreateChessboard(...) e ImageAnd(...), analisando o seu funcionamento e a variação de suas complexidades. No caso da função ImageCreateChessboard(...), foi observado como as variáveis width, height e square_edge influenciam o tamanho final da imagem e o número de execuções (runs), sendo também validada a fórmula para o cálculo do espaço ocupado pela imagem em bits. Para a função ImageAnd(...), verificou-se que o número de execuções do algoritmo é proporcional ao número de píxeis da imagem resultante, apresentando uma complexidade linear Θ(n). Constatou-se ainda que essa complexidade não é afetada pela organização dos dados, mas apenas pelas dimensões das imagens de entrada.

Essa análise auxiliou o entendimento de como os algoritmos funcionam na prática, evidenciando a importância de avaliar a sua eficácia e o impacto computacional.