Análise de Desempenho da Virtualização de Rede nos Sistemas Xen e OpenVZ

Adler Hoff Schmidt², Márcio Parise Boufleur¹, Ronaldo Canofre M. dos Santos², Andrea Schwertner Charão¹,²

¹Laboratório de Sistemas de Computação (LSC)

²Programa de Educação Tutorial (PET)
Curso de Ciência da Computação – Universidade Federal de Santa Maria (UFSM)
Campus UFSM – 97105-900 – Santa Maria – RS – Brasil

{adlerhs, boufleur, canofre, andrea}@inf.ufsm.br

Resumo. Tecnologias de virtualização vêm sendo amplamente utilizadas em sistemas interligados em rede. Existem diferentes abordagens e ferramentas para o suporte a múltiplas máquinas virtuais compartilhando os recursos físicos de um sistema hospedeiro. Neste trabalho, analisa-se o desempenho de rede dos sistemas Xen e OpenVZ, que seguem diferentes abordagens e constituem duas soluções populares de virtualização. O foco no desempenho de rede justifica-se porque muitos sistemas virtualizados executam serviços e aplicações que necessitam de comunicação pela rede. Para investigar o impacto da virtualização no desempenho de rede, utilizou-se um benchmark clássico em um mesmo sistema, com e sem o uso de virtualização.

1. Introdução

Atualmente, a virtualização em ambientes computacionais constitui um tema de pesquisa e desenvolvimento que permeia várias áreas da computação. A capacidade de multiplexação de diversos sistemas operacionais sobre um mesmo *hardware* permite um aproveitamento mais racional dos recursos disponíveis. Outros benefícios decorrentes do uso de virtualização incluem economia, flexibilidade, segurança, isolamento de falhas e gerenciabilidade de sistemas de *software* [Smith and Nair 2005].

Diversos métodos e ferramentas de virtualização têm sido propostos, tornando pouco trivial a escolha de uma solução que atenda aos requisitos de cada ambiente. Dentre os fatores a considerar, o desempenho de rede é um crucial, uma vez que os sistemas atuais dependem fortemente de comunicação entre si.

Dentre as soluções de virtualização disponíveis atualmente no mercado, VMware [WMware Inc. 2007], Xen [Barham et al. 2003] e OpenVZ [SWsoft 2007] vêm ganhando atenção considerável. De fato, estes sistemas são expoentes de abordagens de virtualização populares, sendo o primeiro uma solução proprietária e os demais soluções livres. Estas soluções têm sido extensivamente comparadas ultimamente [Padala et al. 2007], sendo que Xen já foi alvo de avaliações de desempenho [Urschei et al. 2007]. Neste trabalho, tem-se como objetivo analisar o desempenho da rede em sistemas que usam Xen ou OpenVZ. Para avaliar o desempenho das soluções, optou-se por utilizar o *benchmark* de rede Netperf [Jones 2007]. Esta ferramenta foi escolhida por sua capacidade de análise sintética de resultados e por sua ampla utilização em estudos similares [Urschei et al. 2007].

O restante deste artigo está organizado como segue: na seção 2, expõe-se os conceitos gerais sobre virtualização e as tecnologias existentes, abordando-se as características gerais de Xen e OpenVZ. Na seção 3, descreve-se as formas como ambas as tecnologias implementam a virtualização da rede. Na seção 4, apresenta-se a análise de desempenho, que constitui a principal contribuição deste trabalho, detalhando-se a metodologia utilizada e os resultados obtidos. Na seção 5, por fim, apresenta-se as considerações finais sobre o trabalho.

2. Tecnologias de Virtualização

Visando o melhor aproveitamento do poder dos *mainframes*, no início da década de 70, foi criada uma técnica para permitir que diversas máquinas virtuais compartilhassem o mesmo *hardware* subjacente [Goldberg 1974]. Basicamente, a virtualização é uma técnica que insere uma camada extra de *software* entre o sistema físico e o sistema operacional. Dessa forma, diversos sistemas operacionais podem executar concorrentemente sobre o mesmo *hardware*, com a camada extra de *software*, conhecida como Monitor de Máquinas Virtuais (MMV) ou *hypervisor*, controlando o acesso físico dos mesmos ao *hardware*. Esta organização clássica de um sistema virtualizado é ilustrada na figura 1.

Figura 1. Estrutura clássica de um sistema virtualizado

Com o aumento do poder de processamento dos computadores atuais, algumas soluções de virtualização foram implementadas para executar em sistemas de médio e pequeno porte, incluindo computadores pessoais. Dentre essas soluções, Xen [Barham et al. 2003] destaca-se por ser um monitor de máquinas virtuais de código aberto, que provê um alto grau de desacoplamento entre os sistemas hospedados e o *hardware* abaixo deles.

Atualmente, uma nova técnica de virtualização começou a receber destaque: a virtualização em nível de sistema operacional. Essa técnica difere da técnica clássica por inserir as máquinas virtuais no mesmo nível do *hypervisor*. Assim, as máquinas virtuais sobre essa arquitetura compartilham o mesmo *kernel* do sistema hospedeiro, o que reduz significativamente a sobrecarga de criação de uma nova máquina virtual. Porém, essa solução possui flexibilidade reduzida, uma vez que só é possível a execução de um sistema operacional hospedado idêntico ao hospedeiro. Um expoente desse método de virtualização é o MMV OpenVZ [SWsoft 2007].

As seções 2.1 e 2.2 apresentam outras características de Xen e OpenVZ que motivaram a escolha destes sistemas para a realização deste trabalho.

2.1. Xen

Xen é um monitor de máquinas virtuais de código aberto, com suporte a diversas arquiteturas, como IA-32, AMD64 e EM64T. Para implementar a virtualização nessas arquiteturas, Xen utiliza-se da técnica de paravirtualização [Youseff et al. 2006]. Esta técnica consiste em fazer uma pequena modificação dos sistemas operacionais que irão executar, de modo a garantir que os mesmos não sejam executados no mesmo nível do MMV. Apesar da necessidade da modificação do sistema operacional para execução sobre o Xen, esta abordagem é eficiente e não torna necessária a modificação das aplicações do usuário.

Algumas arquiteturas mais recentes possuem extensões de virtualização em nível de processador. Exemplos incluem AMD *Pacifica* e Intel *Virtualization Technology* (VT). Com o uso de tais arquiteturas, sistemas operacionais cujos núcleos não permitem modificação podem executar normalmente sobre o *hypervisor* Xen.

2.2. OpenVZ

OpenVZ é uma tecnologia de virtualização em nível de sistema operacional baseada no sistema GNU/Linux. Nesta abordagem de virtualização, todas as máquinas executam o mesmo núcleo do sistema operacional, o que impõe uma sobrecarga baixa na criação e gerenciamento de máquinas virtuais.

Em OpenVZ, as máquinas virtuais são totalmente isoladas entre si, possuindo arquivos, usuários e grupos, árvores de processos, rede, dispositivos e comunicação entre processos de forma totalmente única e compartimentada.

Devido ao fato de utilizar virtualização no nível de sistema operacional, OpenVZ suporta apenas sistemas hospedados que sejam compatíveis com o núcleo do hospedeiro. Ou seja, apenas o sistema operacional GNU/Linux pode ser hospedado, mas a distribuição do mesmo não é necessariamente a mesma do hospedeiro.

3. Virtualização da Rede em Xen e OpenVZ

Existem diversos métodos de se implementar uma interface de rede virtualizada. Os sistemas Xen e OpenVZ utilizam abordagens distintas para resolver esta questão.

Em Xen, as interfaces de rede virtuais são implementadas através de páginas de memória compartilhada entre o *hypervisor* e o sistema operacional hospedado. Este compartilhamento se dá através de anéis de descritores assíncronos, que contêm *buffers* de entrada e saída que são alocados pelo sistema operacional hospedado [Urschei et al. 2007]. Dessa forma, a necessidade de cópias entre o MMV e o sistema hospedado é reduzida.

Para comunicação entre as máquinas virtuais, Xen implementa uma *bridge* virtual, dispensando assim a necessidade de *broadcast* entre as interfaces virtuais. A figura 2 apresenta a organização da rede virtual de Xen. Nesta figura, tem-se no domínio administrativo (*Driver Domain*) uma *bridge* virtual entre a interface física e as interfaces virtualizadas, provendo assim conectabilidade entre as máquinas virtuais hospedadas (*Guest Domain*) e a rede externa. A conexão entre os domínios hospedados e o domínio administrativo é feita através de um canal de entrada e saída (*I/O channel*).

No que diz respeito a OpenVZ, uma vez que as máquinas virtuais situam-se no mesmo nível do sistema hospedeiro, são criadas interfaces virtuais interligadas com

Figura 2. Estrutura de rede virtual de Xen [Menon et al. 2006]

o hospedeiro via uma conexão ponto-a-ponto. Esta abordagem permite que o envio e o recebimento de pacotes sejam feitos pelo módulo de roteamento do núcleo do sistema hospedeiro, fator esse que simplifica a questão da virtualização da rede de OpenVZ [SWsoft 2007].

4. Análise de Desempenho

Os experimentos realizados tinham como principal objetivo analisar o desempenho de rede face ao uso das ferramentas Xen e OpenVZ. Para isso, decidiu-se utilizar o *bench-mark* Netperf em um ambiente composto por dois computadores idênticos interconectados. Esse ambiente foi alternadamente configurado de três formas: sem virtualização, com virtualização baseada em Xen e com virtualização baseada em OpenVZ. Nos dois casos com virtualização, utilizou-se apenas uma máquina virtual sobre cada máquina real.

Para a realização dos testes foram utilizados dois computadores com arquitetura Intel x86, Pentium IV com processadores de 2.8 GHz e memória de 512 Mbytes. O sistema operacional adotado para os testes foi Ubuntu Linux 7.04, com *kernel* 2.6.19-4. As versões do Xen e do OpenVZ analisados são respectivamente 3.0.3 e 028stab035.1. A interligação entre as máquinas foi feita através de um *switch* Ethernet de 100 Mbps. Os testes foram realizados em um ambiente controlado, para evitar influência de tráfego adicional na rede.

O benchmark Netperf permite medir o desempenho de rede segundo diferentes métricas. Para os experimentos realizados, a métrica escolhida foi a taxa de transferência da rede, analisada através de comunicações Request-Response com os protocolos TCP e UDP. Os testes foram realizados com três grupos de tamanhos de mensagens: mensagens pequenas (até 512 bytes), médias (até 512 Kbytes) e grandes (até 50 Mbytes). Em todos os casos, foram mantidos os valores default em Netperf para outros parâmetros da comunicação (por exemplo, buffer de sistema e MTU [Jones 2007]). Para a obtenção dos resultados a seguir foram realizadas 10 execuções para cada tamanho de pacote, sendo que para análise dos dados calculou-se a média aritmética, o desvio padrão e o coeficiente de variação.

4.1. Resultados Obtidos

Os gráficos apresentados a seguir reúnem os resultados obtidos nas medições efetuadas. Todos os gráficos apresentam o tamanho das mensagens no eixo das abscissas e a taxa de transferência no eixo das ordenadas.

Nas figuras 3 e 4 tem-se os resultados obtidos com o protocolo TCP para mensagens de tamanho pequeno e médio, respectivamente. Mensagens deste grupo são comuns em serviços básicos de rede. Os coeficientes médios de variação para mensagens pequenas ficaram abaixo de 2,5% nos casos com e sem virtualização. Para mensagens de tamanho médio, os coeficientes médios de variação ficaram abaixo de 1%.

Figura 3. Taxas de transferência TCP, com mensagens pequenas, até 512 bytes

Figura 4. Taxas de transferência TCP, com mensagens de tamanho médio, entre 8 e 512 Kbytes

Na figura 5 tem-se os resultados para mensagens de tamanho grande, também com o protocolo TCP. Mensagens deste grupo são típicas em aplicações que exigem transferência de arquivos. Nestes experimentos, os coeficientes médios de variação ficaram abaixo de 7%.

As figuras 6 e 7 apresentam os resultados das medições com o protocolo UDP para mensagens pequenas e médias, respectivamente. Para as mensagens pequenas transferidas por UDP, os coeficientes médios de variação ficaram abaixo de 2,5%. No caso das

mensagens de tamanho médio, os coeficientes médios de variação ficaram abaixo de 9%. Vale ressaltar que, devido às restrições do protocolo, o Netperf por *default* não permite a transmissão de mensagens grandes com UDP.

4.2. Análise dos Resultados

Como se pode observar, os gráficos para mensagens pequenas evidenciam diferenças significativas entre as taxas de transferência nas situações analisadas. Esperava-se, de fato, que o desempenho da comunicação entre as máquinas sem virtualização seria melhor do que nos casos com Xen ou OpenVZ. Essa expectativa se concretizou na maior parte dos casos.

Quanto à comparação entre Xen e OpenVZ, o desempenho deste último foi superior ao primeiro, principalmente para mensagens de tamanho pequeno e médio. Isso explica-se pois Xen usa a técnica de paravirtualização, em que são necessárias modificações no *kernel* do sistema operacional hóspede. Já OpenVZ utiliza virtualização no nível do sistema operacional, assim o mesmo *kernel* é usado para executar os ambientes no hospedeiro. Embora este comportamento fosse esperado, notou-se que para certos tamanhos dos pacotes OpenVZ consegue atingir uma taxa de transmissão muito próxima, senão igual, ao caso sem virtualização. Essa constatação é um ponto favorável para a escolha do OpenVZ para sistemas virtualizados em que o desempenho da rede é crítico.

Figura 5. Taxas de transferência TCP, com mensagens grandes, de 1 a 50 Mbytes

5. Considerações Finais

Neste trabalho, analisou-se o desempenho da comunicação em uma rede entre máquinas não virtuais, virtuais usando Xen e virtuais usando OpenVZ. Observou-se que OpenVZ obteve um desempenho de rede superior ao de Xen, tanto com o protocolo TCP como com o protocolo UDP, principalmente para mensagens pequenas e médias. Também observou-se que, usando OpenVZ, o desempenho de rede é próximo àquele medido no caso sem virtualização, evidenciando uma baixa sobrecarga na rede.

Assim, dependendo da abordagem de virtualização adotada, pode-se obter resultados de desempenho significativamente diferentes. Esses resultados, juntamente com a análise de outros fatores relevantes e o tipo de uso das máquinas virtuais, podem prover

Figura 6. Taxas de transferência UDP, com mensagens pequenas, até 512 bytes

Figura 7. Taxas de transferência UDP, com mensagens médias, de 8 a 32 Kbytes

um embasamento a administradores de sistemas no momento de selecionar uma tecnologia de virtualização a ser implantada. Além disso, a experiência obtida com este trabalho abre perspectivas para outras análises mais aprofundadas, considerando outros parâmetros que possam influenciar na comparação de desempenho entre monitores de máquinas virtuais.

Referências

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the art of virtualization. In *Proc. 19th ACM Symposium on Operating Systems Principles (SOSP '03)*, pages 164–177, Bolton Landing, USA. ACM.

Goldberg, R. (1974). Survey of virtual machine research. IEEE Computer, 7(6):34-45.

Jones, R. (2007). *Netperf Manual 2.4.3*. Hewlett-Packard. Disponível em: http://www.netperf.org/netperf/. Acesso em: agosto de 2007.

Menon, A., Cox, A., and Zwaenepoel, W. (2006). Optimizing Network Virtualization in Xen. *Proc. USENIX Annual Technical Conference (USENIX 2006)*, pages 15–28.

- Padala, P., Zhu, X., Wang, Z., Singhal, S., and Shin, K. (2007). Performance Evaluation of Virtualization Technologies for Server Consolidation. Technical report, Hewlett-Packard Development Company, L.P.
- Smith, J. E. and Nair, R. (2005). *Virtual machines: versatile platforms for systems and processes*. Morgan Kaufmann.
- SWsoft (2007). Server Virtualization Open Source Project. Disponível em: http://openvz.org/. Acesso em: agosto de 2007.
- Urschei, F., Pelegrini, J. P., Lima e Silva, M. A. L. S., Midorikawa, E. M., and Carvalho, T. C. C. (2007). Análise Multiparamétrica do Overhead de Rede em Máquinas Virtuais. *IV Workshop de Sistemas Operacionais (WSO'2007)*.
- WMware Inc. (2007). Página da empresa VMware Inc. Disponível em: http://www.vmware.com. Acesso em: agosto de 2007.
- Youseff, L., Wolski, R., Gorda, B., and Krintz, C. (2006). Paravirtualization for HPC Systems. Technical report, UCRL-TR-225347, Lawrence Livermore National Laboratory (LLNL), Livermore, CA.