Interpreting & Manipulating Models via their Training Data

Pang Wei Koh Stanford University

Kai-Siang Ang

Hubert Teo Jacob Steinhardt

Percy Liang

Top-5 error on ImageNet

Top-5 error on ImageNet

- [1] Defense Systems Information Analysis Center
- [2] Krizhevský, Sutskever, and Hinton, 2012

Why did the model make this prediction?

Why did the model make this prediction?

- Make better decisions [1]
- Improve the model [2]
- Discover new science [3]
- Provide end-users explanations [4]

- [1] Lakkaraju, Bach, and Leskovec, 2016
- [2] Amershi et al., 2015
- [3] Shrikumar, Greenside, and Kundaje, 2017
- [4] Goodman & Flaxman, 2016

"Dog"

"Dog"

What inputs maximally activate these neurons? [1]

Can we represent this model with a simpler one? [6-7]

Which part of the input was most responsible for this prediction? [2-6]

- [1] Girshick et al., 2014
- [2] Zeiler and Fergus, 2013
- [3] Simonyan, Vedaldi, and Zisserman, 2013
- [4] Li, Monroe, and Jurafsky, 2016
- [5] Shrikumar, Greenside, and Kundaje, 2017
- [6] Strobel, Sliwinski, and Zick, 2018
- [7] Ribeiro, Singh, and Guestrin, 2016
- [8] Bastani, Kim, and Bastani, 2017

"Dog"

Why did the model make this prediction?

Why did the model make this prediction?

Which training points were most responsible for this prediction?

Outline

I. The influence of individual training points

Outline

- I. The influence of individual training points
- II. The influence of groups of training points

The influence of individual training points

Koh & Liang, Understanding Black-box Predictions via Influence Functions, ICML 2017

Training data z_1, z_2, \dots, z_n

Training data z_1, z_2, \dots, z_n

Fish

Pick $\hat{\theta}$ to minimize $\frac{1}{n}\sum_{i=1}^{n}L(z_i,\theta)$

Training data z_1, z_2, \dots, z_n

Fish

Pick $\hat{\theta}$ to minimize $\frac{1}{n}\sum_{i=1}^{n}L(z_i,\theta)$

 z_{train}

Training data z_1, z_2, \dots, z_n

Fish

Pick $\hat{\theta}$ to minimize $\frac{1}{n}\sum_{i=1}^{n}L(z_i,\theta)$

 z_{train}

Training data z_1, z_2, \dots, z_n

 z_{train}

Training data z_1, z_2, \dots, z_n

Pick $\hat{\theta}$ to minimize $\frac{1}{n}\sum_{i=1}^{n}L(z_i,\theta)$

Pick $\hat{\theta}_{-z_{train}}$ to minimize

$$\frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)$$

Test input z_{test}

"Dog" (82% confidence)

"Dog" (79% confidence)

What is $L(z_{test}, \hat{\theta}_{-z_{train}}) - L(z_{test}, \hat{\theta})$?

VS.

Why did the model make this prediction?

Which training points were most responsible for this prediction?

How would the prediction change if we removed a training point?

Problem

Repeatedly removing a training point and retraining the model is too slow

Problem

Repeatedly removing a training point and retraining the model is too slow

Solution

Approximation via influence functions (a classical technique from the 1970s)

• Goal: Compute $L(\mathbf{z}_{test}, \hat{\theta}_{-\mathbf{z}_{train}}) - L(\mathbf{z}_{test}, \hat{\theta})$

$$\hat{\theta}_{-z_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)$$

• Goal: Compute $L(\mathbf{z}_{test}, \hat{\theta}_{-\mathbf{z}_{train}}) - L(\mathbf{z}_{test}, \hat{\theta})$

$$\hat{\theta}_{-z_{train}} \stackrel{\text{\tiny def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)$$

• Equivalent to removing $\frac{1}{n}$ weight from z_{train} in the empirical distribution, then renormalizing

• Goal: Compute $L(\mathbf{z}_{test}, \hat{\theta}_{-\mathbf{z}_{train}}) - L(\mathbf{z}_{test}, \hat{\theta})$

$$\hat{\theta}_{-z_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)$$

- Idea:
 - Assume $\frac{1}{n}$ is small
 - Use calculus to compute effect of removing ϵ weight from z_{train}
 - Linearly extrapolate to removing $\frac{1}{n}$ weight

• Goal: Compute $L(\mathbf{z}_{test}, \hat{\theta}_{-\mathbf{z}_{train}}) - L(\mathbf{z}_{test}, \hat{\theta})$

$$\hat{\theta}_{-z_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) - \frac{1}{n} L(z_{train}, \theta)$$

Specifically, compute gradient of

$$\hat{\theta}_{\epsilon, \mathbf{Z}_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(\mathbf{Z}_{train}, \theta)$$

w.r.t. *∈* .

- $\hat{\theta}_{\epsilon, z_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{train}, \theta)$
- Under smoothness assumptions,

$$I_{up,loss}(z_{train}, z_{test}) \stackrel{\text{def}}{=} \frac{dL(z_{test}, \hat{\theta}_{\epsilon, z_{train}})}{d\epsilon} \bigg|_{\epsilon=0}$$

- $\hat{\theta}_{\epsilon, z_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{train}, \theta)$
- Under smoothness assumptions,

$$\begin{split} I_{up,loss}(\mathbf{z}_{train}, \mathbf{z}_{test}) & \stackrel{\text{def}}{=} \frac{dL(\mathbf{z}_{test}, \widehat{\theta}_{\epsilon, \mathbf{z}_{train}})}{d\epsilon} \bigg|_{\epsilon=0} \\ & = -\nabla_{\theta} L(\mathbf{z}_{test}, \widehat{\theta})^{\mathsf{T}} H_{\widehat{\theta}}^{-1} \nabla_{\theta} L(\mathbf{z}_{train}, \widehat{\theta})^{\mathsf{T}} \end{split}$$
 where $H_{\widehat{\theta}} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} L(z_{i}, \widehat{\theta}).$

- $\hat{\theta}_{\epsilon, z_{train}} \stackrel{\text{def}}{=} \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z_{train}, \theta)$
- Under smoothness assumptions,

$$\begin{split} I_{up,loss}(z_{train}, z_{test}) & \stackrel{\text{def}}{=} \frac{dL(z_{test}, \hat{\theta}_{\epsilon, z_{train}})}{d\epsilon} \bigg|_{\epsilon=0} \\ & = -\nabla_{\theta} L(z_{test}, \hat{\theta})^{\mathsf{T}} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z_{train}, \hat{\theta})^{\mathsf{T}} \end{split}$$
 where $H_{\hat{\theta}} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta}^{2} L(z_{i}, \hat{\theta}).$

•
$$L(\mathbf{z}_{test}, \hat{\theta}_{-\mathbf{z}_{train}}) - L(\mathbf{z}_{test}, \hat{\theta}) = -\frac{1}{n} I_{up,loss}(\mathbf{z}_{train}, \mathbf{z}_{test})$$

RBF SVM Logistic regression (raw pixels) (Inception features)

Test image

RBF SVM (raw pixels)

Logistic regression (Inception features)

Test image

Other applications

- Debugging model errors
- Fixing training data

Influence Functions in Deep Learning are Fragile

Samyadeep Basu, Phillip Pope, Soheil Feizi

Department of Computer Science University of Maryland, College Park

Outline

- Intro to Influence Functions
- Influence with Exact Hessian
- Influence for Shallow Architectures
- Influence for Deep Architectures
- Influence for ImageNet

- First introduced in **robust statistics** by Jaeckel (1972), Cook(1977)
- From the context of ML, influence functions address the following question:
 - How do the parameters of a machine learning model change when the empirical weight distribution of the training samples are perturbed infinitesimally?

Prior Works on Influence Functions

Interpretability

- Koh et al. (2017): Finding influential samples.
- Koh et al. (2019): Finding influential group of samples.

0

- Chen et al. (2019): Identification of influential pre-training samples.
- □ Brunet et al. (2018): Interpretation of word-embeddings with influence functions.

Prior Works on Influence Functions

Interpretability

- □ Koh et al. (2017): Finding influential samples.
- ☐ Koh et al. (2019): Finding influential group of samples.
- Chen et al. (2019): Identification of influential pre-training samples.
- Brunet et al. (2018): Interpretation of word-embeddings with influence functions.

Uncertainty Estimation

 Schulam et al. (2019):
 Confidence intervals for test-predictions using influence

functions

- ☐ Giordano et al. (2019): Infinitesimal jackknife for uncertainty estimation.
 - Madras et al. (2019): Extrapolation detection using influence functions.

Prior Works on Influence Functions

Interpretability

- ☐ Koh et al. (2017): Finding influential samples.
- Koh et al. (2019):
 Finding influential
 group of samples.
- Chen et al. (2019): Identification of influential pre-training samples.
- □ Brunet et al. (2018): Interpretation of word-embeddings with influence functions.

Uncertainty Estimation

- Schulam et al. (2019):
 Confidence intervals
 for test-predictions
 using influence
 functions
- Giordano et al. (2019): Infinitesimal jackknife for uncertainty estimation.
- Madras et al. (2019):
 Extrapolation
 detection using
 influence functions

Other Applications

- Koh et al. (2019): Data poisoning attacks using influence functions.
- Cohen et al. (2020):
 Detecting adversarial
 examples using
 influence functions
- Wang et al. (2019): Influence functions for improving model fairness.

$$\theta^* = \arg\min_{\theta \in \theta} \ L_{\emptyset}(\theta) := \frac{1}{|\mathcal{S}|} \sum_{z \in \mathcal{S}} \ell(h_{\theta}(z))$$
 Err

$$\theta^{\epsilon}_{\{z\}} = \arg\min_{\theta \in \theta} \ \frac{1}{|\mathcal{S}|} \sum_{e \in \mathcal{E}} \ell(h_{\theta}(z_i)) + \epsilon \ell(h_{\theta}(z)) \implies \text{ERM with one sample up-weighted}$$

How to quantify $\Delta \theta = \theta^{\epsilon}_{\{z\}} - \theta^*$?

Assumption: If the loss function is twice differentiable and **strictly convex** around θ^*

$$heta^\epsilon_{\{z\}}pprox heta^*-\epsilon H_{ heta^*}^{-1}
abla_ heta\ell(h_{ heta^*}(z))$$
 By First-Order Taylor's Approximation

$$\mathcal{I}(z) = \frac{d\theta^{\epsilon}_{\{z\}}}{d\epsilon}|_{\epsilon=0} = -H^{-1}_{\theta^*} \nabla_{\theta} \ell\left(h_{\theta^*}(z)\right) \qquad \qquad \text{Change in model parameters when a training example is up-weighted by an infinitesimal amount}$$

First-Order Influence Function

where $H_{\theta^*} = \nabla^2_{\theta} L_{\emptyset}(\theta)$

How to quantify the change in loss for a test-sample z_t ?

$$\mathcal{I}(z, z_t) = -\nabla \ell (h_{\theta^*}(z_t))^T H_{\theta^*}^{-1} \nabla \ell (h_{\theta^*}(z))$$

Issues for Influence Functions in Deep Learning

- Loss function is highly non-convex
- Different initialisations of the perturbed model can lead to different model parameters (with similar loss values)
- High values of loss curvature can widen the Taylor's gap leading to poor influence estimates
- Inverse Hessian-vector product (e.g. Stochastic Estimation) can be erroneous
- Ground-truth influence can be noisy for large models and datasets (e.g. ImageNet)

Influence Estimates with Exact Hessian

Dataset: Iris

Influence Estimates with Exact Hessian

Influence Estimates for Shallow Architectures

Weight-decay is important for shallow architectures

Dataset: MNIST

Influence Estimates for Shallow Architectures

Influence Estimates for Deep Architectures

Dataset Architecture	MNIST						CIFAR-10					
	A (With Decay)		B (With Decay)		A (Without Decay)		A (With Decay)		B (With Decay)		A (Without Decay)	
	P	S	P	S	P	S	P	S	P	S	P	S
Small CNN	0.95	0.87	0.92	0.82	0.41	0.35	-	-	-	-	-	-
LeNet	0.83	0.51	0.28	0.29	0.18	0.12	0.81	0.69	0.45	0.46	0.19	0.09
VGG13	0.34	0.44	0.29	0.18	0.38	0.31	0.67	0.63	0.66	0.63	0.79	0.73
VGG14	0.32	0.26	0.28	0.22	0.21	0.11	0.61	0.59	0.49	0.41	0.75	0.64
ResNet18	0.49	0.26	0.39	0.35	0.14	0.11	0.64	0.42	0.25	0.26	0.72	0.69
ResNet50	0.24	0.22	0.29	0.19	0.08	0.13	0.46	0.36	0.24	0.09	0.32	0.14

Table 1: Correlation estimates on MNIST And CIFAR-10; A=Test-point with highest loss; B=Test-point at the 50^{th} percentile of test-loss spectrum; P=Pearson correlation; S=Spearman correlation

Influence estimates are erroneous for deeper networks such as ResNet-18/50

Influence Estimates for Deep Architectures

Influence Estimates for Deep Architectures

CIFAR-100: Inconsistent top influential points across different test-points

Influence Estimates for ImageNet

Future Directions

- Improvement in influence estimates by regularizing the loss curvature
- Theory for our empirical observations
- Make influence functions work for ImageNet and beyond!