Стадия	Описание
Снятие с эксплуата-	Прекращение использования, демонтаж, архи-
ции	вирование системы

Контрольные вопросы для самопроверки самоподготовки

- 1. Перечислите этапы создания ИС.
- 2. В чем состоят содержание и результаты предпроектного обследования?
- 3. Каково содержание и результаты техно-рабочего проектирования?
- 4. На каком этапе формируется техническое задание на разработку ИС?
- 5. Что такое модель жизненного цикла (ЖЦ) и каковы ее разновидности?
- 6. Перечислите недостатки моделей ЖЦ ИС.
- 7. Что такое RAD-технологии и XP?
- 8. Перечислите и охарактеризуйте стандарты, задающие этапы ЖЦ.
- 9. Какие группы процессов ЖЦ определены в стандарте *ISO/IEC* 12207?

Тема 3. Понятие структурного системного анализа

В основе проектирования ИС лежит моделирование предметной области. При этом под моделью предметной области понимается некоторая система, имитирующая структуру или функционирование исследуемой предметной области и отвечающая основному требованию — быть адекватной этой области.

Обычно модели строятся на трех уровнях:

- на внешнем уровне (определении требований) определяется, что должна делать система, состав основных компонентов системы (объектов, функций, событий, технических средств) анализ требований;
- на концептуальном уровне (спецификации требований) определяется с помощью каких программно-технических

- средств реализуются требования к системе логическое (техническое) проектирование;
- внутреннем уровне (реализации требований) физическое (рабочее) проектирование.

Подходы к проектированию систем

На сегодняшний день в программной инженерии существуют два подхода к разработке ИС, принципиальное различие между которыми обусловлено разными способами декомпозиции систем. Первый называют функционально-модульным или структурным, в основу его положен принцип функциональной (алгоритмической) декомпозиции, при которой структура системы описывается в терминах иерархии ее функций и передачи информации между отдельными функциональными элементами. Второй — объектноориентированный подход использует объектную декомпозицию, структура системы описывается в терминах объектов и связей между ними, а поведение — в терминах обмена сообщениями между объектами.

Структурный системный анализ

Структурным системным анализом (ССА) принято называть метод исследования системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней. Для таких методов характерно:

- разбиение на уровни абстракции с ограничением числа элементов на каждом из уровней (обычно от 3 до 6—7);
- ограниченный контекст, включающий лишь существенные на каждом уровне детали;
- использование строгих формальных правил записи;
- последовательное приближение к конечному результату.

Принципы структурного системного анализа

Все методологии структурного анализа базируются на ряде общих принципов, часть из которых регламентирует организацию работ на начальных этапах ЖЦ, а часть используется при выработке рекомендаций по организации работ. В качестве базовых используются следующие: принцип «разделяй и властвуй» (т.е. трудная проблема разбивается на множество мелких независимых

задач) и принцип иерархического упорядочивания (т.е. система может быть понята и построена по уровням, каждый из которых добавляет новые детали).

Существуют и другие важные принципы, игнорирование которых может привести к неуспеху всего проекта. Отметим основные из них.

- Принцип абстрагирования заключается в выделении существенных с некоторых позиций аспектов системы и отвлечение от несущественных с целью представления проблемы в простом общем виде.
- Принцип формализации заключается в необходимости строгого методического подхода к решению проблемы.
- Принцип упрятывания заключается в упрятывании несущественной на конкретном этапе информации: каждая часть «знает» только необходимую ей информацию.
- Принцип концептуальной общности заключается в следовании единой философии на всех этапах ЖЦ (структурный анализ структурное проектирование структурное программирование структурное тестирование).
- Принцип полноты заключается в контроле на присутствие лишних элементов.
- Принцип непротиворечивости заключается в обоснованности и согласованности элементов.
- Принцип логической независимости заключается в концентрации внимания на логическом проектировании для обеспечения независимости от физического проектирования.
- Принцип независимости данных заключается в том, что модели данных должны быть проанализированы и спроектированы независимо от процессов их логической обработки, а также от их физической структуры и распределения.
- Принцип структурирования данных заключается в том, что данные должны быть структурированы и иерархически организованы.
- Принцип доступа конечного пользователя заключается в том, что пользователь должен иметь средства доступа к

базе данных, которые он может использовать непосредственно.

Соблюдение указанных принципов необходимо при организации работ на начальных этапах ЖЦ независимо от типа разрабатываемого ПО и используемых при этом методологий.

Средства структурного анализа и их взаимоотношения

Основными идеями функционально-ориентированной *CASE*-технологии являются идеи структурного анализа и проектирования ИС:

- декомпозиция всей системы на некоторое множество иерархически подчиненных функций;
- представление всей информации в виде графической нотации.

Для моделирования систем вообще, и для структурного анализа в частности, используются три группы средств, иллюстрирующих:

- функции, которые должна система выполнять;
- отношения между данными;
- зависящее от различных управляющих событий поведение системы (например, аспекты реального времени).

В основе классической DFD-технологии лежат группы средств моделирования:

- DFD (Data Flow Diagrams) диаграммы потоков данных совместно со словарями данных и спецификациями процессов или миниспецификациями;
- ERD (Entity-Relationship Diagrams) диаграммы «сущность-связь»;
- STD (State Transition Diagrams) диаграммы переходов состояний [4].

Перечисленные средства дают полное описание системы независимо от того, является ли она существующей или разрабатываемой с нуля.

Совокупность средств структурного системного анализа и проектирования и связь между ними представлена на рис. 4.

Рис. 4. Компоненты *DFD*-технологии

Процесс диаграммы потоков данных может быть описан диаграммой детализации или спецификацией процесса. Описание потоков данных хранит словарь данных, хранилище данных описывается диаграммой «сущность—связь», управляющие процессы описываются диаграммами переходов состояний.

Контрольные вопросы для самопроверки и самоподготовки

- 1. Что принято называть структурным системным анализом (ССА) систем?
- 2. Перечислите принципы ССА.
- 3. Что в системе иллюстрируют средства (или группы средств), применяемые в ССА и проектировании?
- 4. Какие средства ССА и проектирования можете назвать и охарактеризовать?

Тема 4. Функциональная модель. Диаграммы потоков данных

Основные символы диаграмм

Диаграммы потоков данных (*DFD*) — наиболее известные и часто используемые средства функционального моделирования.