Contents

1	Liq	uid interfaces	3			
	1.1	xx	3			
	1.2	Diffusion dynamic	3			
	1.3	Shearing at interface	3			
	1.4	Delville's experiment	3			
2	SOS	S model	4			
	2.1	Hamiltonian: from Ising to SOS	4			
	2.2	Transfer Matrix method	4			
	2.3	Discretization of the system with respect to continuous models	4			
		2.3.1 Correlation length and temperature	4			
	2.4	Three magnetic fields	4			
		2.4.1 A: fluctuation suppresing model -B	4			
		2.4.2 B: fluctuation enhancing model +B	4			
		2.4.3 C : symetric model B	4			
3	Strip geometry 5					
	3.1	Interface probability distribution, David's Airy computation.	5			
	$3.1 \\ 3.2$	Other stuff	5			
	9.2	Offici Stuff	0			
4	\mathbf{Sim}	ulations	6			
	4.1	Monte Carlo method	6			
		4.1.1 Metropolis algorithm	6			
		4.1.2 Technicalities about parallelisation and pRNG	6			
		4.1.3 Equilibrium and Autocorrelation time	6			
	4.2	Glauber dynamics	6			
		4.2.1 The pinning problem on a Glauber dynamics. How				
		model B answers that	6			
	4.3	Kawasaki dynamics	6			
	4.4	Differences between the two dynamics	6			
5	Sen	niinfinite geometry	7			
	5.1	No magnetic field case, analytical computations	7			
	5.2	?	7			

6	Kav	m wasaki~SOS + shear	8
	6.1	Corresponding experiment	8
	6.2	Results with respect to the drive	8
		6.2.1 Interpretation	8
		6.2.2 Abraham's paper on shearing suppresing fluctuations .	8
7	Fin	ite size effects	9
	7.1	Casimir force on a strip	9
		7.1.1 Free energy and integration of observables	9
		7.1.2 Coupling parameter approach (Lopes)	9
	7.2	Adaptation with semiinfinite plane	9
8	Kav	wasaki+Glauber SOS	10
	8.1	Corresponding experiment with mixing %ages of Glauber	10
		8.1.1 Fluctuation of height	10
	8.2	Results	10
9	Wra	ap-up and perspectives	11

Liquid interfaces

- 1.1 xx
- 1.2 Diffusion dynamic
- 1.3 Shearing at interface
- 1.4 Delville's experiment

SOS model

- 2.1 Hamiltonian: from Ising to SOS
- 2.2 Transfer Matrix method
- 2.3 Discretization of the system with respect to continuous models
- 2.3.1 Correlation length and temperature
- 2.4 Three magnetic fields
- 2.4.1 A: fluctuation suppresing model -B
- 2.4.2 B: fluctuation enhancing model +B
- 2.4.3 C: symetric model |B|

Strip geometry

- 3.1 Interface probability distribution, David's Airy computation
- 3.2 Other stuff

Simulations

- 4.1 Monte Carlo method
- 4.1.1 Metropolis algorithm
- 4.1.2 Technicalities about parallelisation and pRNG
- 4.1.3 Equilibrium and Autocorrelation time
- 4.2 Glauber dynamics
- 4.2.1 The pinning problem on a Glauber dynamics. How model B answers that
- 4.3 Kawasaki dynamics
- 4.4 Differences between the two dynamics

Semiinfinite geometry

- 5.1 No magnetic field case, analytical computations
- 5.2 ?

Kawasaki SOS + shear

- 6.1 Corresponding experiment
- 6.2 Results with respect to the drive
- 6.2.1 Interpretation
- 6.2.2 Abraham's paper on shearing suppresing fluctuations

Finite size effects

- 7.1 Casimir force on a strip
- 7.1.1 Free energy and integration of observables
- 7.1.2 Coupling parameter approach (Lopes)
- 7.2 Adaptation with semiinfinite plane

Kawasaki+Glauber SOS

- 8.1 Corresponding experiment with mixing %ages of Glauber
- 8.1.1 Fluctuation of height
- 8.2 Results

Wrap-up and perspectives