

CirPark Scada

Scada software for parking management

XML Protocol Manual V4.2.2

MU610105-16A-EN-CirPark Scada-5-XML Protocol

1	VA.	RIABLES	3
2	DE	VICES	3
	2.1	Converters	3
	2.2	SENSORS	
	2.3	DISPLAYS	4
	2.4	CL-Park	5
	2.5	MR4/DP	5
	2.6	CDU-TCP-PARK	6
	2.7	MR50-TCP-PARK	6
	2.8	MR44-PARK	
	2.9	MR42-PARK	
	2.10	PK-ENERGY-KIT - ANALIZADOR DE REDES	7
3	DE'	VICES STATE	12
4	PA	RKING COUNTERS	12
5	EV	ENTS VARIABLES	13
6	CA	LCULATED VARIABLES	14
7	XM	IL SERVICES	14
	7.1	/SERVICES/USER/DEVICES.XML	14
	7.2	/SERVICES/USER/DEVICEINFO.XML?ID=DEVICE&	
	7.3	/SERVICES/USER/VARINFO.XML?VAR=DEVICE.VARIABLE&&ID=DEVICE&	15
	7.4	/SERVICES/USER/VALUES.XML?VAR=DEVICE.VARIABLE&&ID=DEVICE&	
	7.5	/SERVICES/USER/FORCEVARIABLES.XML?ID=DEVICE	
	7.6	/SERVICES/USER/RECORDS.XML?BEGIN=&END=&VAR=&PERIOD=900	
	7.7	/SERVICES/ USER/EVENTSEXTENDED.XML	
	7.8	/SERVICES/PARKING/FINDYOURCARSENSOR.JSON	
	7.9	/SERVICES/PARKING/FINDYOURCARMAP.JSON	20
8	SEI	RVICE SUPPORT	21

1 Variables

In order to use references to the variables measured by devices, in Scada, reports, charts and tables, it will be necessary to know the encoding used by the software for each of them.

The basic encoding is made of the device name of the device and the variable code separated by one point.

name.variable

In this way the software will know which variable is involved and which device should be asked for the said variable.

This encoding (variable-name) can be used in formulas, graphs and tables; although in the case of reports, graphs and tables we can display variables saved in values log files.

On those occasions we wish to discriminate a variable, as long as the variable can be discriminated, for instance in the case of energy, the discriminator information will be added to the basic coding.

name_discriminator @ name_type_time: name.variable

Here the name of the discriminator and the name of the type of hour upon which the variable values will be discriminated are indicated.

This type of encoding with discriminators may only be used in reports, graphs and tables, and with variables that have been saved in values of log files.

2 Devices

2.1 Converters

Variable	Description
PTIME	Line pooling time (the time it takes the motor to read the status of all the converter
	sensors).

2.2 **Sensors**

Variable	Description
	Sensor mode:
MODE*	0 – Normal (green)
IVIODE	1 – Reserved (orange)
	2 – Prohibited (red)
	Sensor Status:
STATE	0 – Error
STATE	1 – free
	2 – occupied
	Space type
TYPE	0 – Normal (green)
ITPE	1 – Handicap (blue)
	2 – Electric vehicle (white)

	3 – Family (light orange)
	Configured sensor status
	0 – Normal
CONFSTATE	1 – Reserved
	2 – Prohibited
BUSYDATE	Date and time since the space has been occupied
BUSYTIME	Occupation time in seconds
ALARMTIME	Parking alarm time in seconds
	Mark if the sensor is in alarm status due to parking time
ALARM	"T" – Yes
	"F" – No
HANDICAPPED*	Activates (1) if sensor is reserved for handicapped and (0) if not
MOVEMENTS	Returns a history log with the number of sensor occupancies in the period
OCCUPANCY	Returns a history log with percentages of the sensor occupancy time in the period
STEAL	Indicates if the alarm is activated because of theft
STOLEN	Indicates if the alarm was tripped because of theft
STEAL_YEAR	Year of the date of minimum occupation
STEAL_MONTH	Month of the date of minimum occupation
STEAL_DAY	Day of the date of minimum occupation
STEAL_HOUR	Hour of the date of minimum occupation
STEAL_MINUTE	Minute of the date of minimum occupation
RESERVE_BEGIN_YEAR	Year the reservation began
RESERVE_BEGIN_MONTH	Month the reservation began
RESERVE_BEGIN_DAY	Day the reservation began
RESERVE_BEGIN_HOUR	Hour the reservation began
RESERVE_BEGIN_MINUTE	Minute the reservation began
RESERVE_END_YEAR	Year the reservation ends
RESERVE_END_MONTH	Month the reservation ends
RESERVE_END_DAY	Day the reservation ends
RESERVE_END_HOUR	Hour the reservation ends
RESERVE_END_MINUTE	Minute the reservation ends
RESERVE	Programmed reservation
BRIGHT	Enables forcing the sensor brightness (it does not display it, but only forces the
BRIGHT	value).
OCCUPATION_ALARM	Variable that marks the maximum occupation time of a space (in hours)
	Variable that marks the type of maximum occupation time of a space
OCCUPATION ALARM FLAG	0 – General
OCCOPATION_ALARM_FLAG	1 – Personalised
	2 - Deactivated
	(ONLY ONE) Which LEDS are lit
	0 – ALL ON
LED_ON	1 – LEFT ON
	2 – RIGHT ON
	3 – ALL OFF

2.3 **Displays**

Variable	Description
VALUE	Display value
BRIGHT	Enables forcing the display brightness
SHOW_FREE_TEXT	Shows free text
	"T" – Yes
	"F" – No
FREE_TEXT	Free text
ZERO_TEXT	Zero text
DIGIT_COLOR	Digit colour in BGR
ZERO_COLOR	Indicates the colour in BGR of the character to be shown as zero
FREE_TEXT_COLOR	Indicates the colour in BGR of the free text
IMAGEDXVMS	Image for the DXVMSF and DXVMSP

DIGIT_NUMBER	Number of digits
ARROW_POSITION	Indicates the position of the cross arrow character
	0 – Left
	1 – Right
ZERO_CHARACTER	Indicates the character to be represented when there is a zero being displayed
	0 – Arrow
	1 – Cross
	2 – Text
ARROW_TYPE	Towards the direction of the arrow
	1 – Right
	2 – Up
	3 – Left
	4 – Down
	7 - Up/Left
	8 . Down/Right
	9 – Up/Left
	10 – Down/Left
REFRESH_TIME	Display refresh time
ARROW_MOVEMENT	Arrow movement
	0 – Yes
	1 – No

2.4 CL-Park

Variable	Description
BRIGHT	Enables forcing the display brightness

2.5 MR4/dp

Variable	Description
DI1	State of input 1, Open (0) or closed (1)
DI2	State of input 2, Open (0) or closed (1)
DI3	State of input 3, Open (0) or closed (1)
DI4	State of input 4, Open (0) or closed (1)
DI5	State of input 5, Open (0) or closed (1)
DI6	State of input 6, Open (0) or closed (1)
DI7	State of input 7, Open (0) or closed (1)
DI8	State of input 8, Open (0) or closed (1)
DO1	State of output 1, Open (0) or closed (1)
DO2	State of output 2, Open (0) or closed (1)
DO3	State of output 3, Open (0) or closed (1)
DO4	State of output 4, Open (0) or closed (1)
CDP1	Pass counter 1 in sense A
CDP2	Pass counter 2 in sense A
CDP3	Pass counter 3 in sense A
CDP4	Pass counter 4 in sense A
CDP5	Pass counter 5 in sense B
CDP6	Pass counter 6 in sense B
CDP7	Pass counter 7 in sense B
CDP8	Pass counter 8 in sense B

Outputs state can be forced using '0' to open the relay and '1' to close the corresponding variable.

2.6 CDU-TCP-ParK

Variable	Description
//Digital Inputs	
"DI1"	Digital Input 1
"DI2"	Digital Input 2
"DI3"	Digital Input 3
"DI4"	Digital Input 4
//Counters	
"C1"	Counter 1
"C2"	Counter 2
"C3"	Counter 3
"C4"	Counter 4
"C1B"	Initial counter 1 value in the period
"C2B"	Initial counter 2 value in the period
"C3B"	Initial counter 3 value in the period
"C4B"	Initial counter 4 value in the period
"C1E"	Final counter 1 value in the period
"C2E"	Final counter 2 value in the period
"C3E"	Final counter 3 value in the period
"C4E"	Final counter 4 value in the period
//Flow rates	
"F1"	Flow Input 1
"F2"	Flow Input 2
"F3"	Flow Input 3
"F4"	Flow Input 4
//Digital Outputs per level	
"DO1"	Level 1 Digital Output
"DO2"	Level 2 Digital Output
"DO3"	Level 3 Digital Output
"DO4"	Level 4 Digital Output
//Digital Outputs per pulse	
"DOP1"	Digital Output 1 Pulse
"DOP2"	Digital Output 2 Pulse
"DOP3"	Digital Output 3 Pulse
"DOP4"	Digital Output 4 Pulse

2.7 MR50-TCP-PARK

Variable	Description	
//Digital Inputs		
Dix	Digital input x (x: 150)	
//Counters		
Cx	Counter x (x: 150)	
//Flow rates		
Fx	Flow x (x: 150)	

The MR50 counters can be forced between 0 and the maximum value permitted by the device. All counter variables can be discriminated.

2.8 **MR44-PARK**

Variable	Description
//Digital Inputs	
DIx	Digital input (x: 14)
//Counters	
Cx	Counter x (x: 14)
//Flow rates	
Fx	Flow x (x: 14)
//Digital Outputs per level	
DOx	Digital Output x per level (x: 14)
//Digital Outputs per pulse	
DOPx	Digital Output Pulse x (x: 14)

2.9 **MR42-PARK**

Variable	Description
//Analogical Inputs	
Alx	Analogical input x (x: 14)
//Digital Inputs	
DIx	Digital input (x: 14)
//Counters	
Cx	Counter x (x: 14)
//Flow rates	
Fx	Flow x (x: 14)
//Digital Outputs per level	
DOx	Digital Output x per level (x: 14)
//Digital Outputs per pulse	
DOPx	Digital Output Pulse x (x: 14)

2.10 PK-ENERGY-KIT - Analizador de redes

Measurement Variables

For a better understanding, the variables are displayed in separate tables depending on the type of variable measured by the devices.

The columns on the left correspond to the type of variable measured: whether the variable is instantaneous, maximum or minimum, the phase to which it corresponds, or any other information depending on the variable, and finally the code used (for example the instantaneous phase-neutral voltage of phase 1 will correspond to the code VI1).

On the other hand, the columns to the right of each table will correspond to devices that can measure each of the variables, indicating with an 'X' if the variable will be measured by the device and with an 'O'.

Voltage

					F	hase – neu	ıtral voltag	e					
		Instantaneous Maximum Minimums											
	L1	L2 L3 III L1 L2 L3 III L1 L2 L3 III											
	VI1	VI2	VI3	VI	VMX1	VMX2	VMX3	VMX	VMN1	VMN2	VMN3	VMN	
CVM-MINI	Х	X X X X X X X X X X											

Phase- phase - voltage

		Instant	aneous			Maxi	mum			Minir	nums	
	L1	L1 L2 L3 III				L2	L3	III	L1	L2	L3	III
	VI12	VI23	VI31	VI123	VMX12	VMX23	VMX31	VMX123	VMN12	VMN23	VMN31	VMN123
CVM-MINI	Х	Х	Х		Х	Х	Х		Х	Х	Х	

				Vo	oltage distortio	on								
		Instantaneous Maximum Minimums												
	L1	L1												
	DVI1	DVI2	DVI3	DVMX1	DVMX2	DVMX3	DVMN1	DVMN2	DVMN3					
CVM-MINI	Х	X X X X X X X X X X												

Current

						Cur	rent							
		Instantaneous Maximum Minimum												
	L1	.1 L2 L3 III L1 L2 L3 III L1 L2 L3 III										III		
	Al1	AI2	AI3	Al	AMX1	AMX2	AMX3	AMX	AMN1	AMN2	AMN3	AMN		
CVM-MINI	Х	x												

		Neutral current									
	Instantaneous Maximum Minimum										
	ANI	ANMX	ANMN								
CVM-MINI	X X X										

				Cı	urrent distortio	on							
		Instantaneous			Maximum			Minimum					
	L1	L1 L2 L3 L1 L2 L3 L1 L2 L3											
	DVI1	DVI2	DVI3	DVMX1	DVMX2	DVMX3	DVMN1	DVMN2	DVMN3				
CVM-MINI	Х	X X X X X X X X X X X											

Frequency

		Frequency	
	Instantaneous	Maximum	Minimum
	HZI	HZMX	HZMN
CVM-MINI	X	X	X

Power

					Ар	parent pov	ver consum	ned					
		Instantaneous Maximum Minimum											
	L1	. L2 L3 III L1 L2 L3 III L1 L2 L3 III									III		
	VAI1	VAI2	VAI3	VAI	VAMX1	VAMX2	VAMX3	VAMX	VAMN1	VAMN2	VAMN3	VAMN	
CVM-MINI	Х	X											

					Ар	parent pov	ver generat	ted				
		Instantaneous Maximum Minimum										
	L1	L2 L3 III L1 L2 L3 III L1 L2 L3 III								III		
	NVAI1	NVAI2	NVAI3	NVAI	NVAMX1	NVAMX2	NVAMX3	NVAMX	NVAMN1	NVAMN2	NVAMN3	NVAMN
CVM-MINI	Х	x										

					А	ctive powe	r Consume	d				
		Instant	aneous			Maxi	mum			Mini	mum	
	L1	1 L2 L3 III L1 L2 L3 III L1 L2 L3 III										III
	API1	API2	API3	API	APMX1	APMX2	APMX3	APMX	APMN1	APMN2	APMN3	APMN
CVM-MINI	Χ											X

Active power generated														
	Instantaneous Maximum Minimum													
L1 L2 L3 III L1 L2 L3 III L1 L2 L3 III														

	NAPI1	NAPI2	NAPI3	NAPI	NAPMX1	NAPMX2	NAPMX3	NAPMX	NAPMN1	NAPMN2	NAPMN3	NAPMN
CVM-MINI	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Х

		Capacitive power consumed												
		Instantaneous Maximum Minimum												
	L1	L2	L3	III	L1	L2	L3	III	L1	L2	L3	III		
	CPI1	CPI2	CPI3	CPI	CPMX1	CPMX2	CPMX3	CPMX	CPMN1	CPMN2	CPMN3	CPMN		
CVM-MINI	Х													

			Capacitive power generated												
		Instan	taneous			Maxi	mum			Mini	mum				
	L1	.1 L2 L3 III L1 L2 L3 III L1 L2 L3 II										III			
	NCPI1	NCPI2	NCPI3	NCPI	NCPMX1	NCPMX2	NCPMX3	NCPMX	NCPMN1	NCPMN2	NCPMN3	NCPMN			
CVM-MINI	Х														

		Inductive Power consumed												
		Instant	aneous			Maxi	mum			Mini	mum			
	L1	L2	L3	III	L1	L2	L3	III	L1	L2	L3	III		
	IPI1	IPI1 IPI2 IPI3 IPI IPMX1 IPMX2 IPMX3 IPMX IPMN1 IPMN2 IPMN3 IPMN										IPMN		
CVM-MINI	Х													

		Inductive power generated												
		Instantaneous Maximum Minimum												
	L1	L2	L3	III	L1	L2	L3	III	L1	L2	L3	III		
	NIPI1	NIPI2	NIPI3	NIPI	NIPMX1	NIPMX2	NIPMX3	NIPMX	NIPMN1	NIPMN2	NIPMN3	NIPMN		
CVM-MINI	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

		Consumed power factor												
		Instant	aneous			Maxi	mum			Mini	mum			
	L1	L2	L3	III	L1	L2	L3	III	L1	L2	L3	III		
	PFI1 PFI2 PFI3 PFI PFMX1 PFMX2 PFMX3 PFMX PFMN1 PFMN2 PFMN3								PFMN3	PFMN				
CVM-MINI											Х			

		Power factor generated												
		Instant	aneous			Maxi	mum			Mini	mum			
	L1	L1 L2 L3 III				L2	L3	III	L1	L2	L3	III		
	NPFI1	NPFI2	NPFI3	NPFI	NPFMX1	NPFMX2	NPFMX3	NPFMX	NPFMN1	NPFMN2	NPFMN3	NPFMN		
CVM-MINI	X							Χ	Х	Χ	Х	Х		

		Cos φ consumed												
		Instant	aneous			Maxi	mum			Mini	mum			
	L1	L2	L3	III	L1	L2	L3	III	L1	L2	L3	III		
	COSI1	COSI1 COSI2 COSI3 COSI COSMX1 COSMX2 COSMX3 COSMX COSMN1 COSMN2 C										COSMN		
CVM-MINI		X X X												

						Cos φ ge	enerated						
		Instantaneous Maximum Minimum											
	L1	L2 L3 III L1 L2 L3 III L1 L2 L3 II										III	
	NCOSI1	NCOSI2	NCOSI3	NCOSI	NCOSMX1	NCOSMX2	NCOSMX3	NCOSMX	NCOSMN1	NCOSMN2	NCOSMN3	NCOSMN	
CVM-MINI				Х				Х				Χ	

Energies

		Apparen	t energy	
	Cons	umed	Gene	rated
	III	Tariff y (y:19)	III	Tariff y (y:19)
	VAE	VAETy	NVAE	NVAETy
CVM-MINI	X		X	

Active energy Consumed

	11	12	12	Ш	Partial	Tar	iff y	Contract	x (x:13)
	LI	LZ	LS	111	Partial	y:13	y:49	Tariff y (y:19)	Total
	AE1	AE2	AE3	AE	PAE	AETy	AETy	AECxTy	AECxTOT
CVM-MINI				Х					

						Active energy ge	enerated		
	11	12	L3	Ш	Partial	Ta	riff	Contract	x (x:13)
	L1	LZ	L3	""	Partial	y:13	y:49	Tariff y (y:19)	Total
	NAE1	NAE2	NAE3	NAE	NPAE	NAETy	NAETy	NAECxTy	NAECxTOT
CVM-MINI				Х					

					Capaci	itive energy	consumed			
			Ta	riff			2	2nd quadrai	nt (2Q)	
	Ш	Partial	Tariff	11	12	L3	III	Contract x (x:13)		
			y:13 y:49		L1	L2	LS	111	Tariff y (y:19)	Total
	CE	PCE	СЕТУ СЕТУ	CE2Q1	CE2Q2	CE2Q3	CE2Q	CE2QCxTy	CE2QCxTOT	
CVM-MINI	Х									

					Capac	citive energ	y generated	t		
			Та	r:ff				4nd quadra	nt (2Q)	
	Ш	Partial	Id	Tariff		L2	1.2	Ш	Contract x (x:13)	
			y:13	y:49	L1	LZ	L3	111	Tariff y (y:19)	Total
	NCE	PNCE	NCETy	NCETy	CE4Q1	CE4Q2	CE4Q3	CE4Q	CE4QCxTy	CE4QCxTOT
CVM-MINI	Х									

					Induct	tive energy	consumed			
			Ta	riff				1 st quadrar	nt (1Q)	
	III	Partial	Ia	Tariff		12			Contract x (x:13)	
			y:13	y:49	L1	L2	L3	III	Tariff y (y:19)	Total
	IE	PIE	IETy	IETy	IE1Q1	IE1Q2	IE1Q3	IE1Q	IE1QCxTy	IE1QCxTOT
CVM-MINI	Х									

					Induc	tive energy	generated			
			То	~:tt				3 rd quadra	nt (3Q)	
	III	Partial	Id	Tariff		L2	L3		Contract x (x:13)	
			y:13	y:49	L1	LZ	LS	III	Tariff y (y:19)	Total
	NIE	PNIE	NIETy	NIETy	IE3Q1	IE3Q2	IE3Q3	IE3Q	IE3QCxTy	IE3QCxTOT
CVM-MINI	Х									

All energy variables can be discriminated.

Maximal demand

					Maximum de	mand consu	ımed			
			Instanta	aneous				Maxin	num	
	L1	L2	L3	III	Tariff y (y:13)	L1	L2	L3	III	Tariff y (y:13)
	MDI1	MDI2	MDI3	MDI	MDITy	MDMX1	MDMX2	MDMX3	MDMX	MDMXTy
CVM-MINI	0	0	0	0		0	0	0	0	

All maximal demand variables can be discriminated.

Harmonics

				Voltage h	armonics			
	L1		L	2	L	3	Neutral	
	x:115	x:1650	x:115	x:1650	x:115	x:1650	x:115	x:1650
	ARM	1xV1	ARM	1xV2	ARM	1xV3	ARM	lxVN
CVM-MINI	Х		Х		Х			

						Current h	armonics					
		L1			L2			L3			Neutral	
	x:115	x:1631	x:3250	x:115	x:1631	x:3250	x:115	x:1631	x:3250	x:115	x:1631	x:3250
		ARMxA1			ARMxA2			ARMxA3			ARMxAN	
CVM-MINI	Х			Х			Х					

Inputs and outputs

						Analogue inputs						
	Instantaneous				Maximum				Minimum			
	x:11	x:11 x:23 x:48 x:924			x:11	x:23	x:48	x:924	x:11	x:23	x:48	x:924
	Allx				AIMXx				AIMNx			
CVM-MINI	Х				Х				Х			

The analogue input of the CVM-MINI devices is the temperature variable measured in the devices types.

				Digital outputs:			
	1	2	3	4	x:518	x:1920	x:2124
	DO1	DO2	DO3	DO4		DOx	
CVM-MINI	X	X					

Digital outputs can be forced to 0 (Open output) or to 1 (closed output).

Graphical variables and special tables

Special variables for graphs and tables serve to indicate to CirPark Scada that we want to make a graph or non-standard table. On a non-standard graph or table the values that appear in the X and Y axis, rows and columns on a table, may switch from one type to another, depending on the variables represented. For a better understanding of these graphs and tables see the section on the java client.

When you want to make special graphs or tables, such as the waveform or harmonics, it will be necessary to use the following variables.

		Harmonics								
		Volt	age:			Curi	rent			
	L1	L2	L3	Neutral	L1	L2	L3	Neutral		
	ARMV1	ARMV2	ARMV3	ARMVN	ARMA1	ARMA2	ARMA3	ARMVN		
CVM-MINI	Х	Х	Х		Х	Х	Х			

3 Devices state

Sometimes it will be necessary to know the status of a device, for example when you want to activate an event when a device stops communicating. To ascertain the status we use the STATUS variable.

name. STATUS

The following are the possible values that this status variable may have.

Status of the device	Value
The device is working properly.	1
Device not initialized, initial communication with the device has not been established.	4
The communication port is incorrect or nonexistent.	18
Communication error with the device is produced.	34
The type of device you are trying to communicate with is different from the specified device.	66
The device communicates correctly, but it detects that some of the phases are badly connected.	130
The version of the device is incompatible with the software.	258
The SD Memory Card is invalid, write-protected or not present.	514

4 Parking counters

The parking counters will be coded for use in formulas and expressions such as

R\$PKC_nombreContador.variable

Using the R\$PKC prefix the program will ascertain that this is a parking counter rather than a device variable.

The following table shows the different variables associated with each counter.

Variable	Description
EMPTY	Number of free spaces in normal mode
FULL	Number of occupied spaces in normal mode
STOLEN	Spaces in stolen status
OCCUPIED	Occupied spaces
ERROR	Number of spaces in communication error in normal mode
UNKNOWN	Number of spaces where the normal mode is unknown
EMPTYRESERVED	Number of free spaces in reserved o prohibited mode
STOLENRESERVED	Reserved spaces in stolen status
OCCUPIEDRESERVED	Occupied reserved spaces
ERRORRESERVED	Number of spaced in communications error reserved or prohibited
UNKNOWNRESERVED	Number of spaces where the reserved or prohibited mode in unknown
FULLRESERVED	Number of occupied spaces in reserved or prohibited mode
//totals	
EMPTYTOTAL	Total number of free spaces
FULLTOTAL	Total number of occupied spaces
STOLENTOTAL	Total spaces in stolen status
OCCUPIEDTOTAL	Total occupied spaces (for maintaining a logic state)
ERRORTOTAL	Total number of spaces in communications error
UNKNOWNTOTAL	Total number of unknown state spaces
TOTAL	Total spaces number
// historical variables	
EMPTYPERCENT	Percentage of free spaces in normal mode

Percentage of occupied spaces in normal mode
Stolen spaces
Occupied spaces (for maintaining a logic state)
Percentage of spaces in communication error in normal mode
Percentage where state in unknown in normal mode
Percentage of free spaces in reserved or prohibited mode
Percentage of occupied spaces in reserved or prohibited mode
Stolen reserved spaces
Occupied reserved spaces (for maintaining a logic state)
Percentage of spaces in communication error in reserved or prohibited mode
Percentage of spaces where the state is unknown in reserved or prohibited mode
Percentage of total free spaces
Percentage of total occupied spaces
Total stolen spaces
Total occupied spaces (for maintaining a logic state)
Percentage of total spaces in communication error
Percentage of total spaces where state is unknown
Value of the actual pass zone
Allow forcing the brightness of the sensors belonging to the counter.
Enables forcing the mode of the sensors comprising the counter
Enables forcing the configured state mode of the sensors comprising the counter
Returns the historic with the number of counter occupancies in the period
Returns the historic with the percentage of occupancy time of the counter in the period.
Sensor Mode: - Normal (green): 0 - Reserved (Orange): 1 - Prohibited (Red): 2
Reserved bay configured with handicapped bay type

Events variables

The event variables will be coded for use in formulas and expressions such as

R\$EVE_event.variable

Using the R\$EVE prefix the program will ascertain that this is an event variable rather than a device variable.

The following is a table with the different variables associated with each event

Identifier	Description
ST	State of the event (0 off, 1: Enabled)
TACT	Time the event has been active, the value is 0 when the event is disabled
CACT 1	Counter of the number of activations
CDIS 1	Counter of the number of deactivations
CACK 1 2	Counter of the number of acknowledgments
CTIM ¹	% Of the time of the consultation period that the incident is activated

¹ Only if the event is recorded on file ² Only if the incident is reported

6 Calculated Variables

The calculated variables will be coded for use in formulas and expressions such as

R\$CAL GrupoVariablesCalculadas.VariableCalculada

Using the R\$CAL prefix the program will ascertain that this is a calculated variable rather than a device variable.

7 XML Services

CIRPARK SCADA provides a range of XML services to enable, in some respects, communication with other applications.

In petitions where it is necessary to express a date and time, both in service petitions and the data from the response, these will be represented in UTC (Universal Coordinated Time) with the format DDMMAAAAHHMMSS (two digits for the day, two for the month, four for the year and two for the hour, minutes and seconds. It will also be possible represent only a date as DDMMAAAA assuming that the time is 00:00:00, or represent an hour as HHMMSS. Finally in cases where milliseconds are required these are represented with three digits after the seconds, DDMMAAAAHHMMSSUUU or HHMMSSUUU.

The petitions must follow the URI standard (RFC 2396) so that the user of these petitions has to take into account this detail when making such calls (especially in cases where the name of any device contains non-ASCII characters).

7.1 /services/user/devices.xml

Returns the list of configured devices.

Where:

- devices: Main field which will identify the main XML as a response to the devices list request.
- > id: Name of each one of the devices.

An extra parameter can be included to list virtual devices as well: /services/user/decvices.xml?info=ALL

7.2 /services/user/deviceInfo.xml?id=device&...

Returns information on devices. Each of the devices on which information is required must be included in the petition as:

?id=device1&id=device2

Where:

- **devices:** Main Field which identified the XML as a response to the information request from the devices.
- **device:** Information from each of the devices requested:
 - id: Name of the device.
 - description: Description of device
 - *type:* Type of device (for example SP3)
 - typeDescription: A description of the type of device (for example: SP3)
 - var: Name each of the variables of the device. The name is expressed as device.variable.

7.3 /services/user/varInfo.xml?var=device.variable&...&id=device& ...

Returns variable information when carrying out the XML request. Each of the variables that the value is required from should be included in the petition as:

?var=device.variable

And if you want to get information from all the variables of a device this must be indicated as

&id=device

With it being possible to request information from one or more variables and one or more devices in the same request.

Where:

- > varInfo: Main field which identifies the XML as a response to the requested info. about variables.
- var: Information from each of the variables requested:
 - > id: Variable name in device.variable format (see 0
 - Variables)
 - > title: Brief description of the variable.
 - has Value: Indicates if it possible to ask the instantaneous value of the variable (T) or not (F).
 - hasLogger: Indicates whether it is possible to ask the log value of the variable (T) or not (F).
 - > sampleMode: Variable type, mode used to group together the values of a variable:
 - none: Without type
 - average: Average value:
 - max: Maximum value.
 - min: Maximum value.
 - pfAverage: Power factor, average value
 - pfMax: Power factor, maximum value
 - pfMin: Power factor, minimum value
 - *last:* Last value:
 - differential: Differential Value between the current value and the previous one.
 - samples: samples. The value can not be grouped
 - discrete: Discreet values. The value can not be grouped
 - > measureUnits: Variable units:
 - #NONE → without units
 - #V → Voltage
 - #A → Current
 - #VA → Apparent power
 - #W → Active power
 - #VARL → Inductive power
 - #VARC → Capacitive power
 - #PF → Power factor
 - #HZ → Frequency
 - #PERCENT → Percentage
 - #WH → Active energy
 - #VARLH → Inductive energy
 - #VARCH → Capacitive energy
 - #DATETIME → Date and time
 - If not preceded by an # this is a unit defined by the user
 - unitsFactor: Power of 10 that indicates the value the variable is multiplied by the variable in the log file.
 - **decimals:** Decimals with this variable.

7.4 /services/user/values.xml?var=device.variable&...&id=device&...

Returns the instantaneous value of the variable when the XML request is carried out. Each of the variables that the value is required from should be included in the petition as:

?var=device.variable

If you want to ascertain the value of all the variables of a device it should be indicated as:

&id=device

With it being possible in a single request to request the value of one or more variable and values of one or more devices

Where:

- > values: Main field which will identify the XML as a response to the request from variable values
- variable: List of variables:
 - id: Identifier of the variable in the format device.variable (see 0
 - Variables)
 - value: Value of variable at the time of the request.

7.5 /services/user/forceVariables.xml?id=device

With this petition we may send the order to force variables to CIRPARK SCADA. The request must include the name of the device we want to force so that, if necessary, authentication can be checked. Only the variables belonging to the device indicated in the petition will be forced

Where:

- > forceVariables: Main field that will identify the XML as a petition to force variables.
- forceVar: Information on each of the variables to be forced:
 - forceName: Name of variable with format device.variable (0 Measurement Variables). Only variables
 that can be forced variables, for example digital output variables.
 - forceValue: Value at which we wish to force the variable.

7.6 /services/user/records.xml?begin=...&end=...&var=...&period=900

Returns information on one or more variables between the dates "begin" and "end". Each of the variables for which information is to be obtained must be included in the request as:

?var=device.variable

The format of "begin" and "end" will be DDMMAAAA when you wish only to indicate the date (in this case the time will 00:00:00) or DDMMAAAAHHMMSS when both the date and the hour are specified. Both "begin" as "end" must be expressed in UTC (Universal Coordinated Time).

Finally, we may specify the period of data grouping using the "period" parameter. This value may be:

FILE → Data not grouped, returning the register as they have saved in the log.

AUTO → Grouping will take place automatically depending on the specified dates "begin" and "end"

ALL → Data is grouped into a single value

>0 \rightarrow Value in seconds in which the data is grouped.

If the "period" parameter does not appear on the petition it shall be considered as value 0 and the data will not be grouped data.

Where:

- recordGroup: Main field which will identify the XML as a response to the requested variables. period: Register period. Will report on time elapsed between records.
- > record: Will Identify each of the records:
 - dateTime: Date and time of the sample.
 - field: Standard value record.
 - fieldARM: Harmonic value record

Here are the different types of values that can be returned by this request:

Standard value record (voltages, currents, power, energy, etc.).

- id: Variable identifier (device.variable)
- > value: Value
- Harmonic value record

id: Variable identifier (device.variable)

- Element: Reports from each of the harmonics
 - *harmonic:* Number of harmonic
 - value: Harmonic value.

7.7 /services/ user/eventsExtended.xml

Returns information on one or more events identified by id or by group, between the dates "begin" and "end" and with the flaq Totalize.

Permited parameters:

- id: event identifier
- group: group of events identifier
- begin: date of the begin of the period
- end: date of the end of the period
- totalize: flag to indicate if it is totalized or not (T o F)

Request examples:

/services/user/eventsExtended.xml?id=S1&begin=21052013000000&end=21052013230000

/services/user/events Extended.xml?id=S1&begin=21052013000000&end=21052013230000&totalize=Table for the control of the contr

/services/user/eventsExtended.xml?group=GRUP1&begin=21052013000000&end=21052013230000

* Respons examples (without totalize -> totalize=F):

```
<recordEventsGroup>
        <localEvents>
                                                (List of Local Events)
                <record>
                        <date>20052013063931</date>
                                                                                                                    (Date of Event)
                        <event>
                                <id>S1</id>
                                                                                                                   (Identifier Event)
                                <dateAck>20052013064708</dateAck>
                                                                                                          (Acknownledge Date of Event)
                                <dateDisabled>20052013064729</dateDisabled>
                                                                                                              (Disabled Date of Event)
                        </event>
                </record>
        </localEvents>
        <remoteEvents>
                                                                                                               (List of remote Events)
                <record>
                        <date>20052013063932</date>
                                                                                                                    (Date of Event)
                        <event>
                                <id>REMOTE_ENGINE.S1</id>
                                                                                                                   (Event Identifier)
                                <dateAck>20052013064708</dateAck>
                                                                                                          (Acknownledge Date of Event)
                                <dateDisabled>20052013064729</dateDisabled>
                                                                                                              (Disabled Date of Event)
                        </event>
                </record>
        </remoteEvents>
</recordEventsGroup>
```

Respons examples (totalize -> totalize=T):

(Identifier of event)

(Number of times of event activation)

(Number of reconnaissance answer)

(Number of disabilitations)

(time of whole event)

7.8 /services/parking/findYourCarSensor.json

Returns sensors occupied on a defined time period

Request:

/services/parking/findYourCarSensor.json

Permited parameters:

- begin (mandatory). Starting date of search.
- end (Optional). Ending date of search. If you not specify any date will be considered 5 minutes after starting date.
- **counter** (Optional). Search of occupied sensors will be done only on specified counter sensors. Will be possible to parameterize more than one counter (&counter=...&counter=...).

If any counter is specified, the search will be done over all of parking sensors.

```
Respons example:
```

Where:

- sensors: List of found sensors.
- name: name of sensors

7.9 /services/parking/findYourCarMap.json

Returns background of the screen where the sensors are positioned and plotted in it.

Request:

/services/parking/findYourCarMap.json

Permited parameters:

- ▶ id (optional). Sensor identifier that want to be searched. Will be possible to parameterize more than one sensor for each request (&id=...&id=...)
- counter (Optional).). Search of sensors will be done only for sensors of the counter. Will be possible to parameterize more than one counter (&counter=...&counter=...).

```
Respons example:
```


8 Service support

In the event that operation or damage, call for technical service of CIRCONTROL, S.A.

CIRCONTROL, S.A. – After sales service Innovació, 3 (Industrial Park Can Mitjans) 08232 Viladecavalls

Tel: (+34) 93 736 29 40 Fax: (+34) 93 736 29 41 Web: www.circontrol.com

E-mail: <u>ps-support@circontrol.com</u>

