

Contact Information

Instructor: Qi Hao

E-mail: hao.q@sustc.edu.cn

Office: Nanshan Zhiyuan A7 Room 906

Office Hours: M 2:00-4:00pm

Available other times by appointment or the open door policy

Office Phone: (0755) 8801-8537

QQ: 463715202 机器学习2017

Web: http://hqlab.sustc.science/teaching/

Class Schedule

■ Lectures: T 8:00 am - 9:50 am Teaching Building 1 Room 405

■ Computer Lab: W 10:20 am – 12:10 pm LiYuan Park Room 406

Grading policy

In-class test :		20%	Quiz (5~2	LO times):	20%
Assignment (8~10 times):		20%			
Projects (2 per group):		20%	Final Projects:		20%
90~93: A-	94~97:	Α	98~100:	A+	
80~82: B-	83~86:	В	87~89:	B+	
70~72: C-	73~76:	С	77~79:	C+	
60~62: D-	63~66:	D	67~69:	D+	

Textbook and Lecture Notes

Textbooks:

[1] Pattern Recognition and Machine Learning, by Christopher M. Bishop, 2006 Springer

Other books:

- [1] Deep Learning, by Bengio
- [2] Reinforcement Learning: An Introduction, by Richard S. Sutton
- [3] The Elements of Statistical Learning Data Mining, Inference, and Prediction

Paper reading:

- [1] Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature, 2015, 521(7553):452-9.
- [2] Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-44.
- [3] Littman M L. Reinforcement learning improves behaviour from evaluative feedback. Nature, 2015, 521(7553):445-51.

Lecture notes:

http://hqlab.sustc.science/teaching/

Other Resources

Assignment platform: sakai.sustc.edu.cn

Textbook resource: https://www.microsoft.com/en-us/research/people/cmbishop/#prml-book

Matlab implementation: http://prml.github.io/

Teaching Objectives

- Fundamental knowledge about machine learning and pattern recognition, from Bayesian approaches to deep learning frameworks through lectures, quizzes and assignments
- Machine learning system development methods with Matlab/Python through labs and projects
- Model-based and data-driven machine learning system design and integration skills through the final project, literature surveys and reports

Schedule

Section 0	Course Introduction
Section 1	Probability Distributions
Section 2	Linear Models for Regression and Classification
Section 3	Neural Networks
Section 4	Kernel Methods and Sparse Kernel Machine
Section 5	Graphical Models
Section 6	Mixture Models and EM learning
Section 7	Approximate Inference
Section 8	Sequential Data
Section 9	Bayesian Networks
Section 10	Manifold Learning
Section 11	Deep Learning
Section 12	Reinforcement Learning

Outlines

- > Framework
- Problem Statement
- Related Areas
- > History
- Optimization for Machine Learning
- > Algorithms
- > Examples

Outlines

- > Framework
- Problem Statement
- Related Areas
- History
- Optimization for Machine Learning
- Algorithms
- > Examples

Framework

Outlines

- > Framework
- Problem Statement
- Related Areas
- > History
- Optimization for Machine Learning
- Algorithms
- > Examples

Problem Statement

Problem: Predict the label \hat{Y} and data \hat{X} with training set (X,Y)?

 $\begin{bmatrix} Y \ or \ X \ is \ known : \ \text{supervised learning} \end{bmatrix} \begin{bmatrix} Y, \ \hat{Y} \ are \ continuous : \ \text{Regression} \end{bmatrix}$ $\begin{bmatrix} Y \ \hat{Y} \ are \ discrete : \ classification \end{bmatrix}$

Outlines

- > Framework
- Problem Statement
- Related Areas
- > History
- Optimization for Machine Learning
- Algorithms
- > Examples

The Whole Picture

Outlines

- > Framework
- Problem Statement
- Related Areas
- History
- Optimization for Machine Learning
- Algorithms
- > Examples

History

Outlines

- > Framework
- Problem Statement
- Related Areas
- History
- Optimization for Machine Learning
- Algorithms
- > Examples

Machine learning and Optimization

Machine Learning—many machine learning problems are formulated as minimization of some loss function.

Optimization algorithms can minimize the loss.

What is optimization?

Finding (one or more) minimizer of a function subject to constraints

$$\underset{x}{\arg\min} f_0(x)$$

$$s.t. f_i(x) \le 0, i = \{1, ..., k\}$$

$$f_i(x) = 0, i = \{1, ..., l\}$$

Most of the machine learning problems are, in the end, optimization problems

General Problem

\blacksquare Minimize f(x)

Optimization

- Convex
 - Unconstrained optimization
 - Constrained optimization
- Non-convex
 - Heuristic algorithms
 - Neural networks

What is Convex?

Convex sets

Def: A set $C \subseteq R$ is convex if for $x,y \in C$; $a \in [0,1]$

$$ax + (1-a)y \in C$$

What is Convex?

Convex functions

$$f(ax + (1-a)y) \le af(x) + (1-a)f(y)$$

■ Local minimizer = Global minimizer

- Unconstrained optimization
 - Gradient descent
 - Newton's method
 - Batch learning
 - Stochastic Gradient Descent
- Constrained optimization
 - Lagrange function
 - General methods

- Unconstrained optimization
 - Gradient descent
 - Newton's method
 - Batch learning
 - Stochastic Gradient Descent
- Constrained optimization
 - Lagrange function
 - General methods

Gradient descent

$$f(x_{t+1}) = f(x_t) - \eta \nabla f(x_t)^T (x - x_t)$$

Newton's method

Idea: use a second-order approximation to function

$$f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$

 \blacksquare Choose Δx to minimize above:

$$\Delta x = -[\nabla^2 f(x)]^{-1} \nabla f(x)$$

This is descent direction:

$$\nabla f(x)^T \Delta x = -\nabla f(x)^T [\nabla^2 f(x)]^{-1} \nabla f(x) < 0$$

Newton's method

 \hat{f} is 2-order approximation, f is true function.

Batch gradient descent

- Minimize empirical loss, assuming it's convex and unconstrained
 - ☐ Gradient descent on the empirical loss
 - ☐ At each step:

$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \left(\frac{1}{n} \sum_{i=1}^n \frac{\partial L(w, x_i, y_i)}{\partial w} \right)$$

- Note: ate each step, gradient is the average of the gradient for all samples (i=1,...n)
- ☐ Very slow when n is very large

Stochastic gradient descent

- Alternative: compute gradient from just one (or a few samples)
- Known as stochastic gradient descent:
 - At each step,

$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

(choose one sample i and compute gradient for that sample only)

- Unconstrained optimization
 - Gradient descent
 - Newton's method
 - Batch learning
 - Stochastic Gradient Descent
- Constrained optimization
 - Lagrange function
 - General methods

Lagrange function

Start with optimization problem:

$$\underset{x}{\arg\min} f_0(x)$$

$$s.t. f_i(x) \le 0, i = \{1, ..., k\}$$

$$f_i(x) = 0, i = \{1, ..., l\}$$

Is equivalent to min-max optimization:

$$\arg\min_{x} [\sup_{\lambda>0,\nu} (f_0(x) + \sum_{i=1}^k \lambda_i f_i(x) + \sum_{j=1}^l \nu_j h_j(x))]$$

Constrained optimization

- SVM
- Bayesian models:

 - Variational methods
 - ☐ Graph optimization

Optimization

- Convex
 - Unconstrained optimization
 - Constrained optimization
- Non-convex
 - Heuristic algorithms
 - Neural networks

Heuristic algorithms

Neural Networks

Outlines

- > Framework
- Problem Statement
- Related Areas
- History
- Optimization for Machine Learning
- Algorithms
- > Examples

Algorithms

- Bayesian
- K-means
- Decision tree
- Support Vector Machine
- Linear Statistical Learning (PCA, ICA, NMF)
- Nonlinear Statistical Learning (Manifold learning)
- Deep Neural Network
- Generative Adversarial Networks
- Reinforcement learning

Bayesian

K-Means

Mean-shift

Decision tree

■ Types of Decision Tree:

SVM

• eg. Linear SVM: $\arg\min_{w}\sum_{i=1}^{n}||w||^{2}+C\sum_{i=1}^{n}\xi_{i}$

s.t.
$$1 - y_i x_i^T w \le \xi_i$$

$$\xi_i \ge 0$$

Scatter Diagram with the Decision Boundary

Linear Statistical Learning

PCA

$$A_i \perp A_j$$

ICA

 $\max I(X)$

NMF

Data
$$Y = AX$$
 Coefficients

A, X > 0

Nonlinear Statistical Learning

Manifold learning

DNN

Task: recognition

Dataset: ILSVRC

■ Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[J]. arXiv preprint arXiv:1608.06993, 2016.

GAN

Reinforcement learning

Reward, state, action and value

Outlines

- > Framework
- Problem Statement
- Related Areas
- History
- Optimization for Machine Learning
- Algorithms
- Examples

Alphago

Alphago VS. 李世石

Supervised learning

Reinforcement learning

Priori knowledge

Alphago VS. 柯洁

Better network structure

Enhance the role of Reinforcement learning

Computer Vision-YOLOv2

Future-UAV

Dataset

- Stanford Drone Dataset
- > ASL Dataset
- > EPFL MMSPG drone dataset
- > INRIA Aerial Image Labeling Dataset
- > senseFly samples

Thanks!