

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International Advanced Level Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2025
Question Paper Log Number P764049A
Publications Code WFM01_01_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- The total number of marks for the paper is 75
- The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and completing an attempt to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- ft follow through
- cao correct answer only
- cso correct solution only. There must be no clear errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent
- dM dependent method mark
- dp decimal places
- sf significant figures
- * The answer is given on the paper apply cso

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out provided it is not cursory.
 - If either all attempts are crossed out or none are crossed out, mark all attempts and score for the best attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer unless the mark scheme indicates otherwise.
- 8. Mark question parts separately unless the mark scheme indicates otherwise.

<u>Usual rules for the method mark for solving a 3 term quadratic:</u>

(Note: There may be schemes where the below does not apply)

If no method is shown then one root must be obtained that is consistent with their equation but refer to scheme.

1. Factorisation

$$(x^2+bx+c) = (x+p)(x+q)$$
, where $|pq| = |c|$ or $(ax^2+bx+c) = (mx+p)(nx+q)$, where $|pq| = |c|$ and $|mn| = |a|$

both leading to at least one solution x = ...

2. Formula

Correctly use the correct formula with values for a, b and c to obtain at least one solution x = ... (may be unsimplified).

3. Completing the square (where a = 1; if $a \ne 1$ must divide by a first but allow equivalent work e.g., if a is a perfect square)

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, \ q \neq 0$

leading to at least one solution x = ...

Question Number	Scheme	Notes	Marks
1	$\mathbf{M} = \begin{pmatrix} 1 & a \\ 3 & -5 \end{pmatrix}$	$\mathbf{M}^{-1} = 2\mathbf{M} + 8\mathbf{I}$	
	Condone any brackets (or missing b		
(a)	Allow clear miscopying slips (e.g., $-5-3e^{-3}$		
(a)	$\left\{\det\mathbf{M}=\right\}-5-3a$	Correct determinant. Allow unsimplified	B1
	$\{\mathbf{M}^{-1} = \} \frac{1}{-5 - 3a} \begin{pmatrix} -5 & -a \\ -3 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{-5}{-5 - 3a} & \frac{-a}{-5 - 3a} \\ \frac{-3}{-5 - 3a} & \frac{1}{-5 - 3a} \end{pmatrix}$ $\text{May see e.g., } \frac{-1}{5 + 3a} \begin{pmatrix} -5 & -a \\ -3 & 1 \end{pmatrix}, \frac{1}{5 + 3a} \begin{pmatrix} 5 & a \\ 3 & -1 \end{pmatrix}$	M1: For $\frac{1}{\pm 5 \pm 3a} \times$ a changed matrix or a	M1
	$\begin{pmatrix} -5 - 3a & -5 - 3a \end{pmatrix}$	correct Adj(M) seen i.e., $\begin{bmatrix} 3 & a \\ -3 & 1 \end{bmatrix}$	A1
	May see e.g., $\frac{-1}{5+3a} \begin{pmatrix} -5 & -a \\ -3 & 1 \end{pmatrix}$, $\frac{1}{5+3a} \begin{pmatrix} 5 & a \\ 3 & -1 \end{pmatrix}$	A1: Any correct inverse	
a >			(3)
(b)	$\left\{\frac{1}{-5-3a}\begin{pmatrix} -5 & -a\\ -3 & 1 \end{pmatrix} = \right\} 2 \begin{pmatrix} 1 & a\\ 3 & -5 \end{pmatrix} + 8 \begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 2a \\ 6 & -10 \end{pmatrix} + \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 10 & 2a \\ 6 & -2 \end{pmatrix}$	
	Substitutes M into the RHS of the equation obtaining one correct element which may be use e.g., $-5 = 2(-5-3a)+8$ but next mark is I	unsimplified e.g., 2 + 8. Apply BOD if only M0. Allow equivalent work if writes as e.g,	M1
	$\mathbf{M}^{-1} - 2\mathbf{M} = +8\mathbf{I}$ so $\frac{-5}{-5 - 3a} - 2 = 8$ implies If $\mathbf{I} = 0$ th	en M0.	
	Note that it is fine to just use 1 element and proceed directly to an equation.		
	e.g., $\Rightarrow -5 = 10(-5 - 3a)$ or $-5 = -50 - 3a$	$80a \text{ or } 5 = 10(5+3a) \Rightarrow a = \dots \left\{-\frac{3}{2}\right\}$	
	Obtains a non-zero value for a from a consistence of the fraction is not dealt with (going straig) Equation must come from $\frac{1}{+5+3a} \times a$ characteristics and $\frac{1}{+5+3a} \times a$	_	
		st correctly get $-\frac{3}{2}$ oe. Ignore usual rules if	M1
		en multiplied out it must be consistent with of $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. If $\mathbf{I} = 0$ then M0.	
	May see: $-a = 2a(-5-3a)$, $-3 = 6(-5-3a)$	$-5-3a$), $1=-2(-5-3a) \Rightarrow a =$	
	a = 2a(5+3a), 3 = 6(5+3a),	$, -1 = -2(5+3a) \Longrightarrow a = \dots$	
	A1: $-\frac{3}{2}$ or $-1\frac{1}{2}$ or -1.5 and allow	v equivalent fractions e.g., $-\frac{45}{30}$	
		r checks if they are wrong but unused. But do	A1
	not isw if any extra incorrect unrejected solut	tions are offered e.g., $a = 0$ from $6a^2 + 9a = 0$	(2)
	Some alternatives for (h	o) are shown overleaf	(3) Total 6
	- (•	

1(b)	$\mathbf{M} = \begin{pmatrix} 1 & a \\ 3 & -5 \end{pmatrix} \qquad \mathbf{M}^{-1} = 2\mathbf{M} + 8\mathbf{I}$	
Alt 1	$\mathbf{M}^{-1} = 2\mathbf{M} + 8\mathbf{I} \Rightarrow \mathbf{I} = 2\mathbf{M}^2 + 8\mathbf{M} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{6a+10}{0} & 0 \\ 0 & 6a+10 \end{pmatrix} \Rightarrow 6a+10=1 \Rightarrow a = -\frac{3}{2}$	
	M1: Achieves $\underline{pa+q}$ M1: Solves $pa+q=1$ A1: Correct value (no others or incorrect I)	
	$\det \mathbf{M}^{-1} = \det (2\mathbf{M} + 8\mathbf{I}) \Rightarrow \frac{1}{-5 - 3a} = \underline{-20 - 12a} \Rightarrow 36a^2 + 120a + 99 = 12a^2 + 40a + 33 = (2a + 3)(6a + 11) = 0 \Rightarrow a = -\frac{3}{2}$	
Alt 2	M1: Achieves $pa+q$ M1: Solves $\frac{1}{\pm 5 \pm 3a} = pa+q$ A1: Correct value and no others	
	Determinants may also be used to form the equation in Alt 1 i.e., $1 = (6a + 10)^2$	
Others	Another (unlikely) possibility is to equate the traces of the matrices:	
	$\frac{1}{-5-3a}(-5+1) = 10 + (-2) \Rightarrow -4 = -40 - 24a \Rightarrow a = -\frac{3}{2}$	

Question Number	Scheme	Notes	Marks
2	$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\mathbf{Q} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$	
	Condone any brackets (or missing	brackets) for matrices throughout	
(a)	Rotation	Identifies the transformation as a rotation. Allow any reasonable attempt at this word e.g., "rotate". M0 for a combination of transformations or if any different types of transformation are given as alternatives. Note that giving an angle does not imply "rotation".	M1
	Correct full description for the rotation, ind stated then assume anticlockwise is meant	wise of $\frac{\pi}{2}$ (90°) about/around/from (etc.) O cluding angle & direction (if no direction is a) and any mention of origin or O or $(0, 0)$. in degrees (symbol not required) or exact	A1
	radians. {Note also that $-\frac{\pi}{2}$ (-90°) or	$-\frac{3\pi}{2}$ (-270°) clockwise are acceptable}	
(1-)		I low (Circulation of constitution of	(2)
(b)	Enlargement	Identifies the transformation as an enlargement. Allow any reasonable attempt at this word e.g., "inlarge", "large". Nothing else so e.g. "stretch" is M0. M0 for a combination of transformations or if any different types of transformation are given as alternatives.	M1
	of scale factor/factor/scale/size 5, centre/from (etc.) <i>O</i>	Correct full description for the enlargement including scale factor and centre. Allow any mention of "5" and any mention of origin, <i>O</i> or (0, 0) Condone "original" for "origin".	A1
			(2)
(c)	$\{\mathbf{R} = \} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	Correct matrix	B1
			(1)
(d)	$\left\{ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \right\} (-3, -4)$	Correct coordinates for A. Brackets may be missing. May be stated as $x =, y =$ Condone answer given as a vector. Isw if necessary. Score B0 if an incorrect R has clearly been used in this part. Allow if correct answer comes from multiplying the wrong way round. No ft.	B1
			(1)

Question Number	Scheme	Notes	Marks
2(e)	$\mathbf{p}_{-}\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\mathbf{o}_{-}(5 \ 0)$	
	$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$		
	For either mark there must be no clear ematrix in this part e.g., using their	matrix R for the reflection in part (c),	
	i.e, sight of their $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	even if this is labelled as P .	
	Do not allow confusion between their	A(-3, -4) and the given point $(4, 3)$ and	
	there are no marks if a matrix or point restated in this part. This also applies miscopied into the		
	Both marks can be scored fr	` '	
	$\left(\frac{4}{5},\ldots\right)$ or $\left(0.8,\ldots\right)$ or $\left(\ldots,-\frac{3}{5}\right)$ or $\left(0.8,\ldots\right)$	$(, -0.6)$ or $\left(-\frac{"-4"[y]}{5}, \frac{"-3"[x]}{5}\right)$	
	For one correct coordinate or ft non-zero couse (4, 3) even if that is their	• • •	М1
	Examples of foll	¥ ', '	M1
		$\rightarrow \left(-\frac{3}{5}, -\frac{4}{5}\right) \left(4, -3\right) \rightarrow \left(\frac{3}{5}, \frac{4}{5}\right)$	
	$(-3,4) \rightarrow \left(-\frac{4}{5}, -\frac{3}{5}\right) (3,-4)$, (5 5)	
	May be stated as $x = / y =$ and condobut do not condone a correct value	=	
	$\{B:\}\left(\frac{4}{5},-\frac{3}{5}\right)$ or	(0.8, -0.6) only	A1
	Both correct coordinates. Not ft. May be sta	ated as $x =, y =$ and condone if given vector. Isw if necessary.	
	Examples of	-	
	Do not allow confusion between their	` '	
	Using matrices (Note that the matrices can transform	n be applied in either order with these two nations):	
	Using i $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ -5 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -3 \\ -4 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix}$		
	Using the actual		
	$(-3,-4) \Rightarrow \left(-\frac{3}{5},-\frac{4}{5}\right) \Rightarrow \left(\frac{4}{5},-\frac{3}{5}\right)$	or $(-3, -4) \Rightarrow (4, -3) \Rightarrow \left(\frac{4}{5}, -\frac{3}{5}\right)$	
			(2)
			Total 8

Question Number	Scheme	Notes	Marks
3(i)	There is no credit if only signs instead of values are used		
	$f(x) = x^2 + 5 - 8^{5x}$ f(0) = 4, f(0.5) = -175.769, [f(1) = -32762]	Obtains a value for $f(0.5)$ and at least one of $f(0)$ and $f(1)$ with at least one correct: $f(0) = 4$, $f(0.5) = awrt - 180$, $[f(1) = awrt - 33000]$	M1
	Having obtained different signs of values for	in $[0, 0.5]$ } \Rightarrow f $(0.25) =$ or f(0.5) and f(0), obtains a value for f(0.25).	
	If by error the sign change occurs with $f(0.5)$ and $f(1)$, allow for attempting $f(0.75)$ $\{=-2429.93\approx -2400\}$. Accept using a full list/table of values e.g., $f(0)=4, \ f(0.25)=-8.39184, \ f(0.5)=-175.769, \ f(0.75)=-2429.93, \ f(1)=-32762$ $f(0)=4, \ f(0.25)=awrt-8.4 \ f(0.5)=awrt-180, \ f(0.75)=awrt-2400, \ f(1)=awrt-33000$ Allow the values to be calculated in any order. Previous mark required.		d M1
	f(0.25) = awrt -8.4 and all other values use bisections e.g., f(0.125), f(0.375), f(0.625), [0, 0.25]. Accept e.g., (0, 0.25). Condone e allow e.g., (0.25, 0). Must give an interval Ignore further bisections provided correct in	\Rightarrow ($\alpha \in$) [0, 0.25] d correct to 2 sf (ignore values from further f(0.875)) and concludes required interval is .g., $0 \le x \le 0.25$, $0 < \beta'' < 0.25$ but do not val so e.g., "It's between 0 & 0.25" is A0. Interval has been seen. Allow 2 sf truncated uses.	A1
			(3)

Question Number	Scheme	Notes	Marks
3(ii)(a)	$g(x) = 3^{\sin x} - 3\cos x$ g(4) = 2.396, g(5) = -0.502	Attempts both g(4) and g(5) with at least one correct (using radians): g(4) = awrt 2.4 (or 2.3 truncated), g(5) = awrt -0.5	M1
	Sign change oe and g (x) is continuous therefore a root oe e.g., β is between $x = 4$ and $x = 5$	Both $g(4) = awrt 2.4$ (or 2.3 truncated) and $g(5) = awrt -0.5$, sign change (accept equivalents e.g., $g(4) > 0$ & $g(5) < 0$ or $g(4)g(5) < 0$ or "positive, negative"), continuous and conclusion all given. Be generous with attempt at "continuous" and condone e.g., " x is continuous". Minimum in bold. Condone a wrong interval following e.g., "There is a solution in" May use f for g.	A1
(ii)(b)		Head a compact intermediation	(2)
(ii)(b)	$\frac{\beta - 4}{"2.396"} = \frac{5 - \beta}{-"-0.502"} \Rightarrow \beta =$ $\frac{5 - \beta}{\beta - 4} = \frac{-"-0.502"}{"2.396"} \Rightarrow \beta =$ $\frac{\beta - 4}{5 - 4} = \frac{"2.396"}{"2.396"-"-0.502"} \Rightarrow \beta =$ $\frac{4("-0.502") - 5("2.396")}{"-0.502" - "2.396"} =$ or $m = \frac{"-0.502" - "2.396"}{5 - 4} \{ = -2.8986 \}$ $\Rightarrow \text{e.g., } y - "2.396" = m(x - 4), y = 0$ $\Rightarrow x \text{ or } \beta =$ If only unsubstituted $\frac{ag(b) - bg(a)}{g(b) - g(a)} \text{ oe}$ is seen followed by value it must round to $4.83 \text{ unless } a, b, g(a) \& g(b) \text{ are}$ identified. May use f for g.	Uses a correct interpolation equation/expression for their values (allow for any value provided $g(4)$ positive, $g(5)$ negative and condone clear miscopying) and finds a value for β or x etc. Accept any correct statement for their values followed by any attempt to solve. If not fully substituted, values for $g(4)$ & $g(5)$ may be seen separately here or in part (a). May use f for g . Alternatively finds the gradient and then the line joining the endpoints and sets $y=0$ to get β . Straight line equation must be correct for their values but allow a correct unsimplified gradient seen which is miscalculated later and allow errors finding c from a consistent equation with a correctly substituted point. Ignore how the value is labelled (may be unlabelled or x or α used). If their variable denotes e.g., the distance between $(4,0)$ and $(\beta,0)$ then 4 must be added later. Implied by awrt 4.83 provided no evidence of incorrect equation but must not clearly be using the actual root of 4.8245 from solving by calculator. Note that failure to change the sign of $g(5)$ leads to 5.265	M1
	= 4.827 (4 s.f.)	awrt 4.827 Accept answer only. Ignore further interpolations.	A1
			(2) Total 7

Question Number	Scheme	Notes	Marks
4(a)	For the first two marks if any ambiguous fractions within fractions are seen e.g., $\frac{-9}{t^2}$		
	then marks must be confirmed by appropriate later processing. $\frac{\overline{9}}{9}$		
	$xy = 81, P\left(9t, \frac{9}{t}\right) \Rightarrow \frac{dy}{dx} = -\frac{81}{x^2} \text{ or } \frac{dy}{dx} = \frac{\frac{-9}{t^2}}{9} \text{ or } x\frac{dy}{dx} + y = 0 \left\{\Rightarrow \frac{dy}{dx} = -\frac{y}{x}\right\}$		
	Any correct equation involving $\frac{dy}{dx}$	or $\frac{\mathrm{d}x}{\mathrm{d}y}$). Accept just $\frac{\mathrm{d}y}{\mathrm{d}x}$ or $m_T = -\frac{1}{t^2}$.	B1
	May see e.g. $x = \frac{81}{y} \Rightarrow$	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{81}{y^2} \text{ or } -\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{81}{y^2}$	
	e.g., $-\frac{81}{x^2} \to \frac{x^2}{81}$, $-\frac{81}{(9t)^2} \to \frac{(9t)^2}{81}$, $\frac{-\frac{9}{t^2}}{9}$	$\rightarrow \frac{9}{\frac{9}{t^2}}, -\frac{y}{x} \rightarrow \frac{x}{y}, -\frac{1}{t^2} \rightarrow -\frac{1}{-\frac{1}{t^2}} \{ \Rightarrow t^2 \}$	
	Applies correct perpendicular gradient rule	to obtain a gradient for the normal. Allow in	
	terms of t , x , y , or x and y . $\frac{dy}{dx}$ may be in	acorrect - just look for clear use of $-\frac{1}{m_T}$.	M1
	Could just chang	ge the sign of $\frac{dx}{dy}$.	
	If starts with just m	$t_N = t^2$ then 0110 max	
	$y - \frac{9}{t} = t^2 (x - 9t)$ or $\frac{9}{t} = t^2 \times 9t + c \Rightarrow c = \dots \left\{ \frac{9}{t} - 9t^3 \right\}$	Correct straight line method with any changed gradient in terms of <i>t</i> . "Changed" gradient may just be the negative or reciprocal instead of negative reciprocal. Condone (for all marks) late substitution if gradient not initially in terms of <i>t</i> (but no "x"s or "y"s can be combined before this substitution)	M1
	$\Rightarrow ty - 9 = t^3x - 9t^4 \text{ or } y = t^2x + \frac{9}{t} - 9t^3$ $\Rightarrow ty = t^3x + 9(1 - t^4) *$	Correct equation reached with an intermediate step and no errors seen. Allow recovery of poor bracketing provided it is before the final answer. Allow e.g., $yt = 9(1-t^4) + xt^3$ (yt must be on its own on one side, +9 must have been factorised out)	A1*
(b)			(4)
(b)	$\{x = 0 \Longrightarrow\} ty = 9(1 - t^4) \Longrightarrow y = \dots$	Sets $x = 0$ in given equation of normal and obtains an expression in t for y (which may be incorrect)	M1
	$A\left(0, \frac{9}{t} \times (1 - t^4)\right) \text{ or oe e.g.,}$ $\left(0, \frac{9}{t} - 9t^3\right), \left(0, \frac{9 - 9t^4}{t}\right), \left(0, 9\left(\frac{1}{t} - t^3\right)\right)$	Correct answer - coordinates or $x = 0$, $y = \dots$ stated separately. Brackets may be missing. The $x = 0$ must be seen at some point in	A1
		this part. Isw once a correct <i>y</i> is seen.	(2)

Question Number	Scheme	Notes	Marks
4(c)	$A: \left(0, \frac{9}{\frac{1}{3}} \left(1 - \frac{1}{3^4}\right)\right) \text{ or } \left(0, \frac{80}{3}\right)$ $\Rightarrow \left\{\text{Area } OPA = \right\}$ $\frac{1}{2} \times 9 \times \frac{1}{3} \times \frac{9}{\frac{1}{3}} \left(1 - \frac{1}{3^4}\right) \text{ or } \frac{1}{2} \times 9 \times \frac{1}{3} \times \frac{80}{3} \text{ or } \frac{1}{2} \times 3 \times \frac{80}{3} \text{ may see alternatives e.g.,}$ $27 \times 3 - \frac{1}{2} \times \left(27 - \frac{80}{3}\right) - \frac{1}{2} \times 3 \times 27$	Uses $t = \frac{1}{3}$ to obtain a positive value/expression for the y coordinate of A using their result from (b) provided it is a function of t and obtains a consistent exact numerical expression or value for the area of OPA . If there is no work calculating y_A then the value must be correct and exact. Note that subsequent work could recover an exact expression. The coordinate/coordinates of P that are used must be correct. Do not allow if any length is negative. May use "shoelace" algorithm - award once multiplications are set up e.g., $\frac{1}{2} \begin{vmatrix} 3 \times \frac{80}{3} \\ -0 \end{vmatrix}$. If modulus is missing and expression within is negative, it must be corrected to positive. M0 if the x -axis intercept (-240) of the normal is used. Allow if correct method for area in terms of t followed by substitution to obtain a numerical expression or value e.g., $\left[\frac{1}{2} \times 9t \times \frac{9}{t}(1-t^4)\right]_{t=\frac{1}{3}} \Rightarrow \dots$	M1
	= 40	40 only. No equivalents. Allow if e.g., the <i>y</i> -coordinate of <i>P</i> is incorrect but not used	A1
	O	the triangle are used work must be exact (or be recovered) to score any marks	
			(2)
			Total 8

Question Number	Scheme	Notes	Marks
5	$z_1 = r \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right), \qquad z_1 z_2 = 15$	$ z_2 = 5$ $\left\{ z_1 = -\frac{3\sqrt{3}}{2} - \frac{3}{2}i = 3e^{\frac{7\pi}{6}i} \right\}$	
(a)	$r = 3$ Allow $z_1 = 3\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$	Correct value. No others and not ± 3 . Accept just "3" but $ z_1 = 3$ is insufficient unless later work implies $r = 3$	B1 (1)
(b)	$z_2 = a + bi, z_1 + z_2 = c + 0i \Rightarrow r \sin \frac{7\pi}{6} + b = 0$ $\Rightarrow b = -3\sin \frac{7\pi}{6} \left\{ = -3 \times -\frac{1}{2} = \frac{3}{2} \right\}$	Obtains " b " = \pm "3"sin $\frac{7\pi}{6}$ or \pm "3"× $\pm\frac{1}{2}$ with their real "3" from (a) which may have been negative or \pm . The " b " may be implied by e.g., $z_2 = x + \frac{3}{2}i$ or later work	M1
	$a^2 + b^2 = 25$ or e.g	$a_{1}, \sqrt{a^2 + \left(\frac{3}{2}\right)^2} = 5$	
	Uses the modulus of z_2 to form a correct Allow even if equation has no real	al solution. See SC below if $r = 5$	M1
	Using $ z_1 z_2 = 15$ leads to $\sqrt{\left(-\frac{3\sqrt{3}}{2}\right)}$	$(a + \frac{3}{2}b)^2 + (-\frac{3}{2}a - \frac{3\sqrt{3}}{2}b)^2 = 15$ oe	
	Must see a correct equation ft the	eir r and value for b if necessary.	
	$a = \sqrt{25 - \left(\frac{3}{2}\right)^2} = \dots \pm \frac{\sqrt{91}}{2}$ Allow $a = (\pm)\sqrt{25 - \left(\frac{3}{6}\right)^2}$	Substitutes <i>b</i> into a correct equation and finds at least one value or expression for <i>a</i> . Pythagoras must be used correctly and expression must be real.	M1
	SC: If $r = 5$ in (a) we will allow access	to the M marks (and the M only in (c)):	
	"b" = $\pm 5 \sin \frac{7\pi}{6}$ or $\pm 5 \times \pm \frac{1}{2} \Rightarrow a^2 + b^2 = 9$ or e.g.,	$\sqrt{a^2 + \left(\frac{5}{2}\right)^2} = 3 \Rightarrow a = \sqrt{9 - \left(\frac{5}{2}\right)^2} \left\{ = \dots \pm \frac{\sqrt{11}}{2} \right\}$	
	${z_{2a} = }\frac{\sqrt{91}}{2} + \frac{3}{2}i, \ {z_{2b} = } - \frac{\sqrt{91}}{2} + \frac{3}{2}i$	or exact equivalents e.g., $\pm \sqrt{\frac{91}{4}} + \frac{3}{2}i$	
	A1: One correct answer: (±awrt 4.8) +1.5i a	nd allow $-3\sin\frac{7\pi}{6}$ for 1.5 (but final A0 and	A1
	a must be a valu	e for any marks)	***
	A1: Both correct exact answ	vers. Accept e.g., $\frac{\pm\sqrt{91}+3i}{2}$	
	Allow both marks for e.g., $a = \pm \frac{\sqrt{91}}{2}$, $b =$		A1
	subsequent evidence of a or b wrongly define	ned) or e.g., $z_2 = x + \frac{3}{2}i$ seen and $x = \pm \frac{\sqrt{91}}{2}$	
		elling of the answers. Isw if necessary.	
	A possible	variation is:	(5)
	$z_1 = 3\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right), z_2 = 5\left(\cos\theta + i\sin\theta\right)$	(θ) , $z_1 + z_2 = c + 0i \Rightarrow 3\sin\frac{7\pi}{6} + 5\sin\theta = 0$ (M1)	
	$\Rightarrow \sin \theta = \frac{3}{10} \Rightarrow \left(\frac{3}{10}\right)^2 + \cos^2 \theta = 1 \text{ (M1)} \Rightarrow \cos \theta = \pm \frac{\sqrt{10}}{10}$	$\frac{91}{0}$ (M1) $\Rightarrow z_2 = 5 \left(\pm \frac{\sqrt{91}}{10} + \frac{3}{10} i \right) \text{ or } \pm \frac{\sqrt{91}}{2} + \frac{3}{2} i \text{ (A1A1)}$	

Question Number	Scheme	Notes	Marks
5(c)	(b) which conditions (b) which conditions (b) which conditions (b) which conditions (c) which	qi $p > 0$, $q > 0$ or $(\pm p) - q$ i $p > 0$, $q > 0$ from ould be inexact. S, e.g., $\pm \sqrt{25 - \left(3\sin\frac{7\pi}{6}\right)^2} - 3\sin\frac{7\pi}{6}$ i number/axis labelling. May use points/lines. numbers indicated is M0. For $(\pm p) - q$ i: Three complex numbers: 2 in Q3 and one in Q4 (not on axes). e.g. ,	M1
	$(\pm \operatorname{awrt} 4.8) + 1.5i$ and allow if $\pm \sqrt{25 - \left(3\sin\frac{7\pi}{6}\right)^2} - 3\sin\frac{7\pi}{6}i$ and ig	(b) but condone inexact equivalents still have trig expressions, e.g., gnore attempts to write z_2 in trig form valuation of z_1 $\left\{i.e., if \neq -\frac{3\sqrt{3}}{2} - \frac{3}{2}i\right\}$ provided in Q3 and is closest to O Correct sketch with complex number in Q3 clearly closest of the three to the origin, otherwise ignore relative positions. Condone e.g., asymmetry of z_{2a} and z_{2b} May use points/lines. If real and imaginary axes have been labelled the wrong way round then A0 but ignore all other labelling	A1
			(2) Total 8

Question Number	Scheme	Notes	Marks
6(a)	$f(x) = 3x^2 + kx - 5 \Rightarrow \{\alpha\beta =\} -\frac{5}{3}$	Correct value for $\alpha\beta$. Accept $-1.\dot{6}$ Allow if e.g., "(a)" omitted and seen later	B1
			(1)
(b)	$\alpha + \beta = 9\alpha\beta \Rightarrow -\frac{k}{3} = 9 \times "-\frac{5}{3}" \Rightarrow k = \dots$	Uses $\pm \frac{k}{3}$ for the sum of roots, sets equal to 9 times their product of roots and solves for k	M1
	$\{k=\}45$	Correct value (no equivalents) from correct work . Answer only is M1A1	A1
			(2)
(c)	$\left\{ \left(\alpha + \beta\right)^3 = \right\} \alpha^3 + 3\alpha^2 \beta + 3\alpha \beta^2 + \beta^3$	Correct expansion seen. Terms may be uncollected e.g., $\alpha^3 + 2\alpha^2\beta + \alpha\beta^2 + \alpha^2\beta + 2\alpha\beta^2 + \beta^3$	B1
	$\Rightarrow \alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha^{2}\beta - 3\alpha\beta^{2}$ $= (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)^{*}$	Achieves given answer via an intermediate step following expansion that is not just collecting terms on RHS of $(\alpha + \beta)^3 =$ No errors seen. Both sides must be seen but allow correct use of LHS=/RHS=. Previous mark required.	d B1*
	Worki	ing backwards:	
	_	$\alpha^2 \beta + 3\alpha \beta^2 + \beta^3 - 3\alpha^2 \beta - 3\alpha \beta^2 = \alpha^3 + \beta^3$	
	B1: $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta$	or e.g., $\alpha^3 + 2\alpha^2\beta + \alpha\beta^2 + \alpha^2\beta + 2\alpha\beta^2 + \beta^3$	
	d B1*: Correct proof with $-3\alpha\beta(\alpha+\beta)$	seen expanded. Both sides must be seen but allow	
	correct use of LHS=/RH	IS=. Previous mark required.	
			(2)

Question Number	Scheme	Notes	Marks
6(d)		arks might be seen embedded in a quadratic	
	expression/equation. May also see use of $(x-\alpha^2-\beta)(x-\alpha-\beta^2)$		
	If the work clearly relies on using the solutions to $3x^2 + 45x - 5 = 0$		
	$\left(-45 \pm \sqrt{2085}\right)$ or 0.1103 & -1	15.1103 then allow a max of 101010	
	6		
	$\alpha^{2} + \beta + \alpha + \beta^{2} = \alpha + \beta^{2} + \alpha^{2} + \beta$	Evidence of a correct algebraic expression in terms of $\alpha + \beta$ and $\alpha\beta$ only for the new sum	1st M1
	$=\alpha+\beta+\left(\alpha+\beta\right)^{2}-2\alpha\beta$	of roots. If not seen in its entirety it could be implied by e.g. a numerical expression/value.	(Sum)
		Correct value for new sum. If inexact allow	
	(5)	awrt 213 from a correct calculation. Allow if exact values are recovered later.	
	$=-15+(-15)^2-2\left(-\frac{5}{3}\right)$	Must have used a correct expression and	A 4
	$=-15+225+\frac{10}{3}=\frac{640}{3}$	$\alpha\beta = -\frac{5}{3}$, $\alpha + \beta = -\frac{45}{3}$ but allow slip in	A1
	3 3	algebra if it is clearly recovered by e.g., an appropriate calculation	
	$(\alpha^2 + \beta)(\alpha + \beta^2) = \alpha^3 + \beta^3 + \alpha\beta + (\alpha\beta)^2$	Evidence of a correct algebraic expression for	
	$= (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) + \alpha\beta + (\alpha\beta)^{2}$	the new product of roots in terms of $\alpha + \beta$	2nd
	Allow $\alpha^2 \beta^2$ for $(\alpha \beta)^2$ but $\alpha \beta^2$ must	and $\alpha\beta$ only. If not seen in its entirety it could be implied by e.g. a numerical	M1 (Product)
	be recovered by later work	expression/value.	(
	$= (-15)^3 - 3\left(-\frac{5}{3}\right)(-15) - \frac{5}{3} + \left(-\frac{5}{3}\right)^2$	Correct value for new product. If inexact allow awrt -3450 from a correct calculation. Must have used a correct expression and	
	$= -3375 - 75 - \frac{5}{3} + \frac{25}{9} = -\frac{31040}{9}$	$\alpha\beta = -\frac{5}{3}$, $\alpha + \beta = -\frac{45}{3}$ but allow slip in	A1
	3 9 9	algebra if it is clearly recovered by e.g., an appropriate calculation	
		Applies	
		x^2 – (their <i>new</i> sum of roots) x + their <i>new</i> product of roots correctly (e.g., no missing " x ") with non-zero	
	$x^{2} - \left(\frac{640}{3}\right)x + \left(-\frac{31040}{9}\right) = 0$	values (which could be inexact). Allow	3.61
	$x - \left(\frac{3}{3}\right)x + \left(-\frac{9}{9}\right) = 0$	without the "=0" for this mark. Not	M1
		dependent. If just see e.g., $a =, b =, c =$ then must	
		see e.g., $ax^2 + bx + c$	
		Correct equation as shown or an integer	
		multiple. Could recover inexact values. Must	
	_	include the "= 0". Could use e.g., z	
	$9x^2 - 1920x - 31040 = 0$	consistently for <i>x</i> . Requires all previous marks.	A1
		If just see e.g., $a =, b =, c =$ then must	
		see e.g., $ax^2 + bx + c = 0$	
		<u> </u>	(6)
			Total 11

Question Number	Scheme	Notes	Marks
7	$f(z) = Pz^4 - 36z^3 + Qz^2$	$z^2 + 192z + 68$, $z = 3 + 5i$	
	Condone x used consist	tently for z throughout	
(a)	3-5i	Correct second root	B1
			(1)
(b)	Either $(z-3-5i)(z-3+5i)$, -	
	$\alpha_1 + \alpha_2 = 6, \ \alpha_1 \alpha_2 = M =$		
	For completing a correct strategy to find a 3	- · · · · · · · · · · · · · · · · · · ·	M1
	expand with correct starting point achieving	_	
	product of roots and reaches z		
	$z^2 - 6z + 34$	Correct factor. Accept answer only & "=0"	A1
(a)			(2)
(c)	Alternatives for (c)		
	$(z^2-6z+34)("a"z^2+"b"z+"c"$	~	
	34c = 68	, - -	B1
	" c " = 2 seen or implied. Allow $c = -2$ from	$z^2 - 6z - 34$ but no other follow throughs.	(ft on -34)
		Expands $("z^2 - 6z + 34")(az^2 + bz + c)$	
	$az^4 + (b-6a)z^3 + (c-6b+34a)z^2 + (34b-6c)z + 34c$	[which could be implied] and compares	
	$\Rightarrow b - 6a = -36, \ c - 6b + 34a = Q, \ -6c + 34b = 192$	coefficients for at least two of the z^3 , z^2 and z^3	
	${a = P, 34c = 68}$	terms obtaining at least 2 equations (could be implied) with real coefficients (may include	M1
	With $c = 2$ substituted:	the variable e.g., $34bz - 12z = 192z$). Must	
	$\Rightarrow b - 6a = -36, \ 2 - 6b + 34a = Q, \ -12 + 34b = 192$	use at least 2 terms from the expansion per	
	241 12 102 1	equation. Their 3TQ must have real coeffs.	
	e.g., $\Rightarrow 34b-12=192 \Rightarrow b=6$,		
	Solves sufficient equations of correct form to find a real non-zero value for <i>P</i> (allow " <i>a</i> ") or <i>Q</i> . No need to check algebra and accept a value following equations. Note that only 2 equations		d M1
	from comparing z^3 and z coefficients are needed to find P . It is possible to find Q first although		ulvii
	it is not common e.g. $b = 6$ in $Q = 2 - 6b + 34(\frac{b}{6} + 6) \Rightarrow Q = 204$. Previous mark required.		
	e.g., $Q = c - b + 34a = 2 - 36 + 238 = 204$		
	Solves sufficient equations of correct form to f		dd M1
	and Q . No need to check algebra and		uuivii
		arks required.	
	P = 7 and $Q = 204$ only Allow $a = 7$ if $P = a$ (only) seen	P = 7 (not "a") and $Q = 204No other answers. May be embedded in f(z)$	A1
	1110 ii u = 1111 - u (oiiiy) sooii	in the same and th	(5)
(d)	(d) " $7z^2 + 6z + 2$ " = 0 (Allow with their other 3TQ factor - must have real coefficients		
	$\Rightarrow z = \frac{-6 \pm \sqrt{6^2 - 4 \times 7 \times 2}}{2 \times 7} \text{ or } \frac{-6 \pm \sqrt{-20}}{14} \text{ or } \frac{-6 \pm \sqrt{20} i}{14} \text{ or } z^2 + \frac{6}{7}z + \frac{2}{7} = \left(z + \frac{3}{7}\right)^2 - \frac{9}{49} + \frac{2}{7} = 0 \Rightarrow z = \dots \left\{-\frac{3}{7} \pm \frac{\sqrt{-5}}{7}\right\}$		
	$\Rightarrow z = \frac{1}{2 \times 7} \text{or} \frac{1}{14} \text{or} \frac{1}{7} + \frac{1}{7} = \left(z + \frac{1}{7}\right) - \frac{1}{49} + \frac{1}{7} = 0 \Rightarrow z = \dots \left\{-\frac{1}{7} \pm \frac{1}{7}\right\}$		
	Either uses correct formula correctly or completes the square - usual rules - shown for solving		M1
	their other three term quadratic factor (which must have complex roots). Do not accept factorisation or just writing down simplified roots from calculator. 1 root is sufficient.		
	If forms equations e.g., $z_1 + z_2 = -\frac{6}{7}$, $z_1 z_2 = \frac{2}{7}$ (allow sign errors only) a full algebraic method		
	for obtaining 1 root must be seen.		
		Correct simplified other roots from correct factor.	
	$\frac{-3 \pm i\sqrt{5}}{7}$ or $-\frac{3 \pm i\sqrt{5}}{7}$ or $\frac{-3}{7} \pm \frac{\sqrt{5}}{7}i$	Must see "i". Ignore the presence of $3 \pm 5i$ if also listed. Ignore lebelling. Does not require $5/5$ in (a)	A1
	, , , , , ,	listed. Ignore labelling. Does not require 5/5 in (c)	(2)
			\ - _/

Question Number	Scheme/Notes		Marks
7(c)	If long division is not completed/equations not seen allow access to the marks if the correct		
	values for P and/or Q are deduced provided there is no clearly inappropriate work. For example it is possible to deduce that $b = 6$ as well as $c = 2$ and compare z^3 coeffs. from long		
Alt 1a	division. If their quadratic factor is incorrect then equations must be seen for the 1st M1 Allow for equivalent work using e.g., a multiplication grid		
Full	Allow for equivalent work using $Pz^2 + (6P - 36)z + (Q + 2P - 4)z + (Q + 2P $	• •	
Long	$z^2 - 6z + 34 \overline{Pz^4 - 36z^3 + Qz^2 + 192z + 6}$	58	
Division	$Pz^4 - 6Pz^3 + 34Pz^2$		
Use Alt	$\underbrace{(6P-36)z^{3}}_{} + (Q-34P)z^{2}$		
1b if they have a	$\frac{(6P-36)z^3-6(6P-36)z^2}{(6P-36)z^2}$		
value for	`~	+(1416-204P)z+68 +6(Q+2P-216)z+34(Q+2P-216)	B1
С	<u></u>	$\frac{6(Q+2I-210)z+3+(Q+2I-210)}{20-192P+6Q)z-68P-34Q+7412}$	M1
	$\Rightarrow 120 - 192P + 6Q = 0,$	-68P - 34Q + 7412 = 0	
	B1: Attempts long division using a 3TQ with a		
	first z^3 coefficient after subtraction (double M1: Carries out sufficient long division and sets		
	if remainder not seen explicitly) to form a pa	ir of linear simultaneous equations with real	
	coefficients. Must have come from comparing Both equations mus		
	${32P-Q=20, \ 2P+Q=218}$	Solves the equations to find a real non-zero	
	$\Rightarrow P = \dots \text{ or } Q = \dots$	value for either <i>P</i> or <i>Q</i> . No requirement to check algebra and accept a value following	d M1
	, , , , , , , , , , , , , , , , , , , ,	equations. Previous mark required.	
	$\Rightarrow P = \dots$ and $Q = \dots$	Solves the equations to find real non-zero values for both P and Q . No requirement to	dd M1
	→ 1 and g	check algebra and accept values following equations. 2 previous marks required.	uuwii
	P = 7 and $Q = 204$ only	P = 7 and Q = 204	A1
	1 = 7 and Q = 204 only	No other answers. May be embedded in $f(z)$	(5)
Alt 1b	$Pz^2 + (6P - 36)z + 2$		(3)
Long	$z^2 - 6z + 34 \boxed{Pz^4 - 36z^3 + Qz^2 + 192}$	2z + 68	
Division: using a	$Pz^4 - 6Pz^3 + 34Pz^2$		
value for	$(6P-36)z^{3} + (Q-34P-36)z^{3} - 6(6P-36)z^{3} - 6(6P-36)z^{$, -	
C	<u></u>	$\frac{30)z + 34(0P - 30)z}{6)z^2 + (1416 - 204P)z + 68}$	
	$(Q+2F-210)z + (1410-204F)z + 08$ $2z^2 -12z + 68$		
	${(2P+Q-218)z^2-(204P-1428)z}$		
	$\Rightarrow 2P + Q - 218 = 0, -204P + 1428 = 0$		
	B1: $c = 2$ implied M1: Carries out sufficient long division and sets remainder = 0 (which could be implied) to		
	form at least an equation with real coefficients in just P. Note that a remainder may not be		
	seen explicitly. Must have come from comparing coefficients (oe) of z^2 terms and z terms. d M1: Solves an equation in P to find a real non-zero value for P or solves two equations (one		
	in just P and one in both P and Q) to find a real non-zero value for Q .		
	However, it is very unlikely that Q will be seen with no answer for P given. dd M1: Solves two equations to find real non-zero values for both P and Q . Must have had		
	one equation in P only and or	ne equation in both P and Q .	
	A1: $P = 7$ and $Q = 204$ only	7. May be embedded in $f(z)$	

Question Number	Scheme/Notes		Marks
7(c)	$f(3\pm5i) = P(3\pm5i)^4 - 36(3\pm5i)^3 + Q(3\pm5i)^2 + 192(3\pm5i) + 68$		
Alt 2 Substitution	$= P(-644 \mp 960i) + Q(-16 \pm 30i) + 7772 \pm 600i$		
	or $-644P - 16Q + 777$	$2 + (\mp 960P \pm 30Q \pm 600)i$	B1
	Correct six term expression for f(3- Implied by cor	, , , ,	
	$f(3\pm5i) = 0 \Rightarrow P(-644\mp960i) -$	$-Q(-16\pm30i) + 7772\pm600i=0$	
	$\Rightarrow -644P - 16Q + 7772 = 0,$	$\mp 960P \pm 30Q \pm 600 = 0$	
	Attempts $f(3+5i)$ or $f(3-5i)$ and sets equal to 0 and equates real and imaginary parts to form a pair of linear simultaneous equations with real coefficients. Both equations must have no imaginary terms and both must include P and Q . Ignore extra equations		M1
	$\{161P + 4Q = 1943, 32P - Q = 20\}$ $\Rightarrow P = \text{ or } Q =$	Solves the equations to find a real non- zero value for either <i>P</i> or <i>Q</i> . No requirement to check algebra and accept a value following equations. Previous mark required.	d M1
	$\Rightarrow P = \dots$ and $Q = \dots$	Solves the equations to find real non-zero values for both <i>P</i> and <i>Q</i> . No requirement to check algebra and accept values following equations. 2 previous marks required.	dd M1
	P = 7 and $Q = 204$ only	P = 7 and $Q = 204$. No other answers. Maybe embedded in $f(z)$	A1
			(5)

Question Number	Scheme	Notes	Marks
8(a)	$\sum_{r=1}^{2n} (2r^2 - 1) = 2 \sum_{r=1}^{2n} r^2 - \sum_{r=1}^{2n} 1$ $= 2 \times \frac{2n}{6} (2n+1)(2(2n)+1) - \underline{2n}$ $\left\{ = \frac{2n}{3} (2n+1)(4n+1) - 2n = \frac{16n^3}{3} + 4n^2 - \frac{4n}{3} \right\}$	M1: Uses $2n$ for k in $2 \times \frac{k}{6}(k+1)(2k+1)$ Must replace k with $2n$ at least once. Must be otherwise correct i.e., only allow n or $2n$ for k Note that failing to replace the first k with $2n$ leads to $\frac{n}{3}()$ Award M0 if it is quite clear that the wrong formula for the sum of the squares has been used.	M1
		$\underline{\underline{\mathbf{B1}}}$: Correct $\sum_{r=1}^{2n} 1 = 2n$ seen/used	B1
	Obtains $n(3\mathbf{TQ} \text{ in } n)$ from a cubic we coefficients. Allow imp $\frac{4}{3}(4n^3 + 3n^2 - n) \text{ or } \frac{2}{3}(8n^3 + 6n^2 - 2n) \text{ by had a constant term. Can be scored if } n$	or $\frac{4n}{3}(4n^2+3n-1)$ with no constant. If 3TQ allow fractional lication of this mark with ut not just $\frac{16n^3}{3}+4n^2-\frac{4n}{3}$. Must not have instead of $2n$ used throughout the sum of but next ddM0. Condone poor algebra.	M1
	$= \frac{4}{3}n(n+1)(4n-1)$ Allow e.g., $\frac{4n(4n-1)(n+1)}{3}$	Obtains n (factorised 3TQ in n) Apply usual quadratic rules for the factorisation. If e.g., $\frac{2n}{3}$ () $\rightarrow \frac{4n}{3}$ () work must be on a consistent 3TQ. Factors must have all real & exact terms. Previous 2 method marks required. Correct result. Allow minor recovered	ddM1
	Note that e.g., if $2 \times \frac{2n}{6}(2n+1)(2(2n)+1) - 2n$ or $\frac{16n^3}{3} + 4n^2 - \frac{4n}{3}$ or $\frac{2n}{3}(2n+1)(4n+1) - 2n$ is immediately followed by $\frac{4}{3}n(n+1)(4n-1)$ score 11000. Allow expanding the given answer $\frac{4}{3}n(n+1)(an+b)$ and equating coefficients for the last three marks: $\frac{16n^3}{3} + 4n^2 - \frac{4n}{3} = \frac{4}{3}an^3 + \frac{4}{3}(a+b)n^2 + \frac{4}{3}bn \Rightarrow a = 4, \ b = -1 \Rightarrow \frac{4}{3}n(n+1)(4n-1)$ M1: Correct form for expansion of given answer and obtains a value for either a or b ddM1: Obtains values for both a and b A1: $\frac{4}{3}n(n+1)(4n-1)$ (allow just $a = 4$, $b = -1$ if $\frac{4}{3}n(n+1)(an+b)$ seen) Summation formulae must be used. No credit for attempts using induction or e.g., setting up simultaneous equations with 2 values of n , unless there is work that can score as above.		A1 (5)

8(b) $\sum_{r=1}^{1} r(3r-2)^2 \text{ or } LHS = I(3\times 1-2)^2 = 1 \text{ and } \frac{n^3(n+1)(9n-7)}{4} \text{ or } RHS = \frac{\Gamma \times 2\times 2}{4} = 1$ Achieves 1 from two numerical expressions (both not just "1"). No requirement here to say "true" etc. Allow as minimum, e.g., $1\times 1=\frac{4}{4}=1$. "(When $n=1$) both =1" is R0 but final A1 available. Adds an attempt at the $(k+1)$ th term to an attempt at the $(k+1)$ th term to an attempt at the $(k+1)$ th term to an attempt at the sum to k terms. Allow clear copying slips (e.g., losing the squared from the k^2) but must be a recognisable attempt at forming $= \frac{k^2(k+1)(9k-7)}{4} + (k+1)(3k+1)^2$ $= \frac{(k+1)}{4}(9k^3-7k^2+4(9k^2+6k+1)) = \frac{(k+1)}{4}(9k^3+29k^2+24k+4)$ $\left\{ \text{ or } = (k+1)\left(\frac{9}{4}k^3+\frac{29}{4}k^2+6+1\right)\right\}$ $OR = \frac{1}{4}(9k^4+38k^3+53k^2+28k+4) \left\{ \text{ or } = \frac{9}{4}k^4+\frac{19}{2}k^3+\frac{53}{4}k^2+7k+1 \right\}$ Reaches $\frac{(k+1)}{4}(4$ term cubic in k) or $(k+1)(4$ term cubic in k) OR expands to a $\frac{1}{4}(k+1)((k+1)(9k^2+20k+4))$ or $\frac{1}{4}(k+1)^2(k+2)(9k+2) = \frac{(k+1)^2((k+1)+1)(9(k+1)-7)}{4}$ Correctly reaches the result completely in terms of $k+1$ [but allow $k+2$ or $k+1+1$ for $((k+1)+1)$ with an intermediate step. Condone poor nation and allow the odd recovered algebraic slip/poor bracketing provided they reach the correct $\frac{1}{2}(4$ term cubic in k) or $(k+1)(4$ term cubic in k) or $(k+1)(4)$ term	Question Number	Scheme	Notes	Marks
Adds an attempt at the $(k+1)$ th term to an attempt at the sum to k terms. Allow clear copying slips (e.g., losing the squared from the k^2) but must be a recognisable attempt at forming $\frac{k^2(k+1)(9k-7)}{4} + (k+1)(3k+1)^2$ $= \frac{k^2(k+1)(9k-7)}{4} + (k+1)(3k+1)^2$ $= \frac{(k+1)}{4}(9k^3 - 7k^2 + 4(9k^2 + 6k + 1)) = \frac{(k+1)}{4}(9k^3 + 29k^2 + 24k + 4)$ $\left\{ \text{or } = (k+1)\left(\frac{9}{4}k^3 + \frac{29}{4}k^2 + 6k + 1\right) \right\}$ $\text{OR } = \frac{1}{4}(9k^4 + 38k^3 + 53k^2 + 28k + 4) \left\{ \text{or } = \frac{9}{4}k^4 + \frac{19}{2}k^3 + \frac{53}{4}k^2 + 7k + 1 \right\}$ Reaches $\frac{(k+1)}{4}(4 \text{ term cubic in } k) \text{ or } (k+1)(4 \text{ term cubic in } k) \text{ OR expands to a}$ $\text{5 term quartic. Must collect terms. Condone poor algebra. Previous mark required}$ $= \frac{1}{4}(k+1)((k+1)(9k^2 + 20k + 4)) \text{ or } \frac{1}{4}(k+1)^3(k+2)(9k+2) \Rightarrow \frac{(k+1)^3((k+1)+1)(9(k+1)-7)}{4}$ Correctly reaches the result completely in terms of $k+1$ [but allow $k+2$ or $k+1+1$ for $((k+1)+1)$] with an intermediate step. Condone poor notation and allow the odd recovered algebraic slip/poor bracketing provided they reach the correct $\frac{1}{2}(4 \text{ term cubic in } k) \text{ or } (k+1)(4 \text{ term cubic in } k) \text{ or } 5 \text{ term quartic and}$ there are no subsequent errors. Factorisation may be achieved via calculator use. Allow a final answer of $\frac{1}{4}(k+1)^2(k+2)(9(k+1)-7)$ and with brackets in any order. Meet in the middle approaches must clearly join and the final expression in $k+1$ must be seen in the work True for $n=1$ and if true for $n=k$ then it is also true for $n=k+1$ so by induction it is rue for (all). Acceptable proof (i.e., must have scored the previous A) and narrative/conclusion. Requires previous three marks and can only follow 80 if B0 was given for insufficient evidence of substitution. There must be no errors if one substitution was attempted and must have reached both sides = 1. "Assume (true) for $n=k$ or "if true for $n=k$ ", is true" with added reference to n . Condone $n \in \mathbb{D}$ but not $n \in \mathbb{D}$. Allow work in n rather than k throughout. There is no cre		$\sum_{r=1}^{1} r(3r-2)^2 \text{ or LHS} = 1(3\times1-2)^2 = 1 \text{ and } \frac{n^2(n+1)(9n-7)}{4} \text{ or RHS} = \frac{1^2\times2\times2}{4} = 1$ Achieves 1 from two numerical expressions (both not just "1"). No requirement here to say "true" etc.		B1
$\left\{ \text{or } = (k+1) \left(\frac{9}{4}k^3 + \frac{29}{4}k^2 + 6k + 1 \right) \right\}$ $\mathbf{OR} = \frac{1}{4} \left(9k^4 + 38k^3 + 53k^2 + 28k + 4 \right) \left\{ \text{or } = \frac{9}{4}k^4 + \frac{19}{2}k^3 + \frac{53}{4}k^2 + 7k + 1 \right\}$ $\mathbf{Reaches} \frac{(k+1)}{4} \left(4 \text{ term } \text{ cubic in } k \right) \text{ or } (k+1) \left(4 \text{ term } \text{ cubic in } k \right) \text{ OR } \text{ expands to a}$ $5 \text{ term } \text{ quartic. } \text{ Must } \text{ collect terms. } \text{ Condone poor algebra. } \mathbf{Previous mark } \mathbf{required}$ $= \frac{1}{4}(k+1)((k+1)(9k^2 + 20k + 4)) \text{ or } \frac{1}{4}(k+1)^2(k+2)(9k+2) \Rightarrow \frac{(k+1)^2((k+1)+1)(9(k+1)-7)}{4}$ $\mathbf{Correctly } \text{ reaches the result completely in terms of } k+1 \text{ [but allow } k+2 \text{ or } k+1+1 \text{ for } ((k+1)+1)] \text{ with an intermediate step. Condone poor notation and allow the odd recovered algebraic slip/poor bracketing provided they reach the correct \frac{k+1}{4}(4 \text{ term } \text{ cubic in } k) \text{ or } (k+1) \left(4 \text{ term } \text{ cubic in } k \right) \text{ or } 5 \text{ term } \text{ quartic and } \text{ there are no subsequent errors. Factorisation may be achieved via calculator use.} \mathbf{Allow } \text{ a final answer of } \frac{1}{4}(k+1)^2(k+2)(9(k+1)-7) \text{ and with brackets in any } \text{ order. Meet in the middle approaches must clearly join and the final expression in } \frac{k+1 \text{ must be seen in the work}}{k+1 \text{ must be seen in the work}} \mathbf{True} \text{ for } n=1 \text{ and } \text{ if true } \text{ for } n=k \text{ then it is also true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it is } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it } \frac{\text{ true } \text{ for } n=k+1 \text{ so by induction it } $		{Assume true for $n = k$, then} $\sum_{r=1}^{k+1} r(3r-2)^2 = \sum_{r=1}^{k} r(3r-2)^2 + (k+1)(3(k+1)-2)^2$	Adds an attempt at the $(k+1)$ th term to an attempt at the sum to k terms. Allow clear copying slips (e.g., losing the squared from the k^2) but must be a recognisable attempt at forming $\frac{k^2(k+1)(9k-7)}{4} + (k+1)(3(k+1)-2)^2$	M1
Correctly reaches the result completely in terms of $k+1$ [but allow $k+2$ or $k+1+1$ for $((k+1)+1)$] with an intermediate step. Condone poor notation and allow the odd recovered algebraic slip/poor bracketing provided they reach the correct $\frac{k+1}{4}$ (4 term cubic in k) or $(k+1)$ (4 term cubic in k) or 5 term quartic and there are no subsequent errors. Factorisation may be achieved via calculator use. Allow a final answer of $\frac{1}{4}(k+1)^2(k+2)(9(k+1)-7)$ and with brackets in any order. Meet in the middle approaches must clearly join and the final expression in $k+1$ must be seen in the work True for $n=1$ and if true for $n=k$ then it is also true for $n=k+1$ so by induction it is true for (all) n . Acceptable proof (i.e., must have scored the previous A) and narrative/conclusion. Requires previous three marks and can only follow B0 if B0 was given for insufficient evidence of substitution. There must be no errors if one substitution was attempted and must have reached both sides = 1. "Assume (true) for $n=k$ " or "If true for $n=k$ " in narrative followed by "true for $n=k+1$ " is sufficient for the "ifthen". Allow suitable surrogates for "true". Allow stating the result from the question paper or " P_n is true" with added reference to n . Condone $n \in \square$ but not $n \in \square$. Allow work in n rather than k throughout. There is no credit for attempts using summation formulae instead of induction unless there is		$\begin{cases} \operatorname{or} = (k+1) \left(\frac{9}{4} k^3 \right) \\ \operatorname{OR} = \frac{1}{4} \left(9k^4 + 38k^3 + 53k^2 + 28k + 4 \right) \end{cases}$ Reaches $\frac{(k+1)}{4} \left(4 \text{ term cubic in } k \right) \operatorname{or} \left(k \right)$	$+\frac{29}{4}k^{2} + 6k + 1$ $\left\{ \text{or } = \frac{9}{4}k^{4} + \frac{19}{2}k^{3} + \frac{53}{4}k^{2} + 7k + 1 \right\}$ $+1)(4 \text{ term cubic in } k) \text{ OR expands to a}$	dM1
Acceptable proof (i.e., must have scored the previous A) and narrative/conclusion. Requires previous three marks and can only follow B0 if B0 was given for insufficient evidence of substitution. There must be no errors if one substitution was attempted and must have reached both sides = 1. "Assume (true) for $n = k$ " or "If true for $n = k$ " in narrative followed by "true for $n = k + 1$ " is sufficient for the "ifthen". Allow suitable surrogates for "true". Allow stating the result from the question paper or " P_n is true" with added reference to n . Condone $n \in \square$ but not $n \in \square$. Allow work in n rather than k throughout. There is no credit for attempts using summation formulae instead of induction unless there is		Correctly reaches the result completel $k+1+1$ for $((k+1)+1)$] with an interal allow the odd recovered algebraic slip/ $(k+1)$ correct $(k+1)$ (4 term cubic in $(k+1)$) or $(k+1)$ (4 there are no subsequent errors. Factorisa Allow a final answer of $(k+1)$) order. Meet in the middle approaches mu	y in terms of $k + 1$ [but allow $k + 2$ or mediate step . Condone poor notation and poor bracketing provided they reach the 4 term cubic in k) or 5 term quartic and ation may be achieved via calculator use. 2)(9($k + 1$) – 7) and with brackets in any last clearly join and the final expression in	A1
-		is true for Acceptable proof (i.e., must have scored Requires previous three marks and or insufficient evidence of substitution. The was attempted and must have "Assume (true) for $n = k$ " or "If true for $n = k + 1$ " is sufficient for the "ifthen". A stating the result from the question paper Condone $n \in \square$ but not $n \in \square$. Allow work credit for attempts using summation form	the previous A) and narrative/conclusion. can only follow B0 if B0 was given for ere must be no errors if one substitution ave reached both sides = 1. If $n = k$ in narrative followed by "true for Allow suitable surrogates for "true". Allow or " P_n is true" with added reference to n . It is in n rather than k throughout. There is no mulae instead of induction unless there is	A1

Question Number	Scheme	Notes	Marks
8(c)	Attempts to form the given equation, of answer to (a) which must be cubic but not (a) could have been reattempted in this precreate an equivalent for the answer Allow if 8 and 15 are swapped or if one provided there are no other errors. If 8 and copying error but must have quartic = cut only error. Note that if they attempt to report then award M0 unless they have used n that are potential.	otaining an equation in n only with their t necessarily in the right form. (Note - part part but do not allow attempts that seek to ver to (b) via summation formulae). The is missing (but other correctly placed) do 15 correctly placed, condone one minor tubic unless n instead of n^2 on LHS is the clace the ' n 's in their answer to (a) with ' $2n$'s proughout part (a) in which case all marks thy available.	M1
]	sust be correct. Allow with " a " and " b " or	
	$\Rightarrow 2n(9n-7) = 20(4n-1)$ $\Rightarrow 18n^{2} - 94n + 20 = 0$ $\Rightarrow 9n^{2} - 47n + 10 = 0$ $\Rightarrow (9n-2)(n-5) = 0$ $\Rightarrow n = \dots$ May see, e.g. $18n^{3} - 94n^{2} + 20n = 0$ $9n^{3} - 47n^{2} + 10n = 0$	Simplifies to a 3TQ or 3 term cubic with no constant (see below if 4TC or quartic) and solves to find a value for n . If working is shown, apply usual rules (in this case solution does not have to be a positive integer). However, if answer/s are just written down one real positive integer root must be achieved and be correct for their 3TQ/3TC with no constant. If there is no 3TQ/3TC with no constant and $n = 5$ is just written down score 100. Do not allow solutions directly from just a quartic e.g., $9n^4 - 38n^3 - 37n^2 + 10n = 0$ or a cubic with constant e.g., $9n^3 - 38n^2 - 37n + 10 = 0$ unless there is a clear full method to factorise (e.g., factor theorem, long division, multiplication grid). Do not allow immediate factorisation. Previous mark required.	d M1
	Correct answer and no other unrej (Ignore any rejected incorrect values of dM1 wa	n = 5 jected solutions e.g., $n = \frac{2}{9}$, 0, -1 n provided quadratic oe was correct and s scored) led and accept e.g., $x = 5$	A1
			(3) Total 13
			10tal 13

Question Number	Scheme	Notes	Marks
9	Let M be point where perpendicular to directrix from P meets the directrix, then $PM = 5$	States, uses or implies the horizontal distance from <i>P</i> to the directrix is 5. If indicated on Figure 1 or on their own diagram it must be clearly the horizontal distance from <i>P</i> to the directrix. Could be implied by a correct <i>QM</i> or <i>QR</i> . Do not be concerned about any preceding algebra. There is no credit for just forming expressions/equations in e.g., <i>a</i> and/or <i>t</i> until a numerical distance is found.	B1
	$QM = \sqrt{10^2 - "5"^2} \ (= \sqrt{75} = 5\sqrt{3} \approx 8.66)$ May see: $QM = 10\sin\frac{\pi}{3}, 5\tan\frac{\pi}{3}, 10\cos\frac{\pi}{6}, \frac{5}{\tan\frac{\pi}{6}}$ $QM = 10\sin 60^\circ, 5\tan 60^\circ, 10\cos 30^\circ, \frac{5}{\tan 30^\circ}$	Obtains a correct numerical expression for QM (not QM^2) with their $PM = k$ where $0 < k < 10$ Pythagoras must be fully correctly applied. Implied by QR . This mark is not available for arbitrarily choosing a value for an angle but apply BOD and potentially full marks if a correct angle is used without working.	M1
	$QR = 2 \times \sqrt{10^2 - "5"^2} \ (= 2 \times 5\sqrt{3} \approx 17.3)$ May see: $QR = \sqrt{10^2 + 10^2 - 2 \times 10 \times 10 \times \cos \frac{2\pi}{3}}$	A correct numerical expression for QR (not QR^2) with their $PM = k$ where $0 < k < 10$ Previous mark required.	dM1
	$\{QR = \}10\sqrt{3}$	Correct answer. Allow any exact equivalent e.g., $2\sqrt{75}$, $\sqrt{300}$	A1
	Correct answer only or correct answer following no or minimal work scores $4/4$ If trigonometry is used the scheme applies as above so all work must be correct for their k where $0 < k < 10$ but allow premature rounding.		
			(4)

Total 4

Correct angles:
$$\angle MPQ = \angle MPR = \frac{\pi}{3} = 60^{\circ}$$
, $\angle MQP = \angle MRP = \frac{\pi}{6} = 30^{\circ}$, $\angle QPR = \frac{2\pi}{3} = 120^{\circ}$