Probabilistic Machine Learning: 7. Belief Networks: representation

Tomasz Kajdanowicz, Przemysław Kazienko (substitution)

Department of Computational Intelligence Wroclaw University of Technology

Wrocław University of Science and Technology

The presentation was inspired by Chapter 3 of D. Koller and N.Friedman book "Probabilistic Graphical Models - Principles and Techniques", 2009.

Already covered

We have covered:

- inferring a distribution over a discrete variable drawn from a finite hypothesis space given a series of discrete observations
- inferring the probability that a coin shows up heads and dice has given value given a series of discrete observations
- basic notations used in graphical models

Now we will focus on graphical models:

- representation: directed and undirected (template and plate models*)
- inference: exact and approximate, decision making
- learning: parameters and structure

Graphical models

Bayesian networks

Markow networks

Graphical models

Computer-based Patient Case Study¹
448 nodes, 908 edges

Markov Random Field over OpenCV example

¹M. Pradhan, G. Provan, B. Middleton and M. H, Knowledge Engineering for Large Belief Networks, UAI, 1994

Why graphical representation?

- ► intuitive and compact data structure
- efficient reasoning using general-purpose algorithms
- sparse parametrization: by hand, learnt from data

Applications

- medical diagnosis
- natural language processing
- social network models
- computer vision
- ► speech recognition
- etc.

Example application: image segmentation

Joint Distribution

- ► Intelligence (I)
 - ► *i*⁰ (low), *i*¹ (high)
- ► Difficulty (D)
 - \rightarrow d^0 (easy), d^1 (hard)
- Grade (G)
 - g^1 (A), g^2 (B), g^3 (C)

	D	G	P(I,D,G)
i ⁰	d ⁰	g ¹	0.126
i ⁰	d ⁰	g^2	0.168
i ⁰	d ⁰	g^3	0.126
i ⁰	d ¹	g ¹	0.009
i ⁰	d ¹	g ²	0.045
i ⁰	d ¹	g^3	0.126
i ¹	d ⁰	g ¹	0.252
i ¹	d ⁰	g ²	0.0224
i ¹	d ⁰	g^3	0.0056
i ¹	d ¹	g ¹	0.06
i ¹	d ¹	g ²	0.036
i ¹	d ¹	g^3	0.024

Conditioning

condition on g^1

I	D	G	P(I,D,G)
i ⁰	d ⁰	g ¹	0.126
i ⁰	d ⁰	g ²	0.168
i ⁰	d ⁰	g^3	0.126
i ⁰	d ¹	g ¹	0.009
i ⁰	d ¹	g ²	0.045
i ⁰	d ¹	g^3	0.126
i ¹	d ⁰	g ¹	0.252
i ¹	d ⁰	g^2	0.0224
i ¹	d ⁰	g^3	0.0056
i ¹	d ¹	g ¹	0.06
i ¹	d ¹	g ²	0.036
i ¹	d ¹	g^3	0.024

Conditioning: Reduction

condition on g^1

Conditioning: Renormalization

		D	G	$P(I,D,g^1)$
i	О	d ⁰	g ¹	0.126
i)	d ¹	g ¹	0.009
i	1	d ⁰	g ¹	0.252
i	1	d ¹	g ¹	0.06

$$P(I, D, g^1)$$

I	D	$P(I,D g^1)$
i ⁰	d ⁰	0.282
i ⁰	d ¹	0.02
i ¹	d ^o	0.564
i ¹	d^1	0.134

$$P(I,D|g^1)$$

Marginalization

Marginalize I

ı	D	$P(I,D g^1)$
i ⁰	d ⁰	0.282
i ⁰	d ¹	0.02
i ¹	d ⁰	0.564
i ¹	d ¹	0.134

D	$P(D g^1)$
d ⁰	0.846
d ¹	0.154

Bayesian Network

Working example

- ► **G**rade
- ► Course Difficulty
- Student Intelligence
- ► Student SAT
- ► Refference Letter

Bayesian Network

Working example

0.01

 g^3

0.99

Chain rule for Bayesian Networks

$$P(D,I,G,S,L) = P(D)P(I)P(G|I,D)P(S|I)P(L|G)$$

Distribution defined as a product of factors

Bayesian Network(Belief Network)

Bayesian Network

- ▶ is a directed acyclic graph (DAG) G whose nodes represents the random variables X_1, \ldots, X_n
- for each node X_i is given the conditional probability distribution (CPD) $P(X_i|pa_G(X_i))$

Joint distribution representation Bayesian Network represents a joint distribution via the chain rule for Bayesian Networks

$$P(X_1,\ldots,X_n)=\prod_i P(X_i|pa_G(X_i))$$

$\blacktriangleright \ P \geq 0$ ightharpoonup $\sum P = 1$ 18/30

Does Bayesian Network represents a legal distribution?

Does Bayesian Network represents a legal distribution? $P \ge 0$

- ► P is a product of CPD
- ► CPD are non-negative
- ► thus *P* is non-negative

Does Bayesian Network represents a legal distribution? P = 1

$$\sum_{D,I,G,S,L} P(D,I,G,S,L) = \sum_{D,I,G,S,L} P(D)P(I)P(G|I,D)P(S|I)P(L|G)$$

$$= \sum_{D,I,G,S} P(D)P(I)P(G|I,D)P(S|I) \sum_{L} P(L|G)$$

$$= \sum_{D,I,G,S} P(D)P(I)P(G|I,D)P(S|I)$$

$$= \sum_{D,I,G} P(D)P(I)P(G|I,D) \sum_{S} P(S|I)$$

$$= \sum_{D,I,G} P(D)P(I) \sum_{G} P(G|I,D)$$

When distribution P factorizes over G?

P factorizes over G

Let G be a graph over X_1, \ldots, X_n . P factorizes over G if

$$P(X_1,\ldots,X_n)=\prod_i P(X_i|Pa_G(X_i))$$

Reasoning patterns

Possible reasoning patterns:

- casual reasoning
- evidential reasoning
- intercasual reasoning

Reasoning patterns

Casual reasoning - top down

- ► $P(I^1) = ?$
- $ightharpoonup P(I^1) \approx 0.5$

- $ightharpoonup P(I^{1}|i^{0},d^{0})$
- ► $P(I^1|i^0, d^0) \approx 0.51$

Evidential reasoning - bottom up

Initially we know that:

$$P(d^1) = 0.4$$

$$P(i^1) = 0.3$$

$$P(d^1|g^3) \approx 0.63$$

$$\blacktriangleright \ P(i^1|g^3)\approx 0.08$$

Reasoning patterns

Intercausal reasoning

Initially we know that:

$$P(d^1) = 0.4$$

$$P(i^1) = 0.3$$

$$P(d^1|g^3) \approx 0.63$$

$$\blacktriangleright P(i^1|g^3)\approx 0.08$$

►
$$P(i^1|g^3, d^1) \approx 0.11$$

Independence

For events α , β , $P \models$ (satisfies) $\alpha \perp \beta$ (independent) if:

- $ightharpoonup P(\alpha, \beta) = P(\alpha)P(\beta)$ or
- $ightharpoonup P(\alpha|\beta) = P(\alpha)$ or
- $P(\beta|\alpha) = P(\beta)$

For random variables $X, Y, P \models X \perp Y$ if:

- ightharpoonup P(X,Y) = P(X)P(Y) or
- P(X|Y) = P(X) or
- P(Y|X) = P(Y)

Independence

ı	D	G	P(I,D,G)
i ⁰	d ⁰	g ¹	0.126
i ⁰	d ⁰	g^2	0.168
i ⁰	ď ⁰	g^3	0.126
i ⁰	d ¹	g ¹	0.009
i ⁰	d ¹	g^2	0.045
i ⁰	d ¹	g^3	0.126
i ¹	ď ⁰	g ¹	0.252
i ¹	ď ⁰	g^2	0.0224
i ¹	d ⁰	g^3	0.0056
i ¹	d ¹	g ¹	0.06
i ¹	d ¹	g ²	0.036
i ¹	d^1	g^3	0.024

I	D	P(I,D)
i ⁰	d ⁰	0.42
i ⁰	d ¹	0.18
i ¹	d ⁰	0.28
i ¹	d^1	0.12

Π	P(I)
i ⁰	0.6
i ¹	0.4

Difficulty	Intelligence
*	
	Grade

D	P(D)
d ⁰	0.7
d ¹	0.3

Conditional Independence

For sets of random variables $X, Y, Z, P \models (X \perp Y|Z)$ if:

- ightharpoonup P(X,Y|Z) = P(X|Z)P(Y|Z) or
- ightharpoonup P(X|Y,Z) = P(X|Z) or
- P(Y|X,Z) = P(Y|Z)

Conditional Independence

	S	G	P(I,S,G)
i ⁰	s ⁰	g ¹	0.114
i ⁰	s ⁰	g ²	0.1938
i ⁰	s ⁰	g^3	0.2622
i ⁰	s ¹	g ¹	0.006
i ⁰	s ¹	g ²	0.0102
i ⁰	s ¹	g^3	0.0138
i ¹	s ⁰	g ¹	0.252
i ¹	s ⁰	g^2	0.0224
i ¹	s ⁰	g^3	0.0056
i ¹	s ¹	g ¹	0.108
i ¹	s ¹	g ²	0.0096
i ¹	s ¹	g^3	0.024

S	G	P(S,G <i>i</i> ⁰)
s ⁰	g ¹	0.19
s ⁰	g^2	0.323
s ⁰	g^3	0.437
s ¹	g ¹	0.01
s ¹	g^2	0.017
s ¹	g^3	0.023

S	P(S)
s ⁰	0.95
s ¹	0.05

G	P(G)
g ¹	0.2
g ²	0.34
g^3	0.46

Summary

We have covered today:

- joint distribution
- conditioning, reduction and renormalization
- marginalization
- chain rule for Bayesian Network
- Bayesian Network
- reasoning patterns
- conditional independence