Using a pot to vary gain $\times R i(1-\times)R =$ shorted X=)

$$Ad = \left(1 + \frac{2R_2}{2R_1}\right) \left(\frac{R_4}{R_3}\right)$$

$$Ad = \left(1 + \frac{2R_2}{100h}\right) \left(\frac{R4}{R3}\right)$$

$$X=1$$
 $2R_1=0$

$$Ad = \left(1 + 2R_2 \right) R_4$$

$$O R_3$$

Design instrumentation
amp
$$Ad \rightarrow 2V$$
 to 1000 V/V
 $Ad = \left(1 + 2R_2 \times \frac{2V}{R_3}\right)$
 $2R_1 = R_1 + 100 \text{ BR}$
 $x = 0$ $2R_1 = R_1 + 100 \text{ ER}$
 $\left(1 + 2R_2 \times \frac{2V}{R_3}\right) = 2$
 $\left(1 + 2R_2 \times \frac{2V}{R_1}\right) = 2$
 $\left(1 + 2R_2 \times \frac{2V}{R_1}\right) = 2$

$$X=1 \qquad 2R_1 = R_f$$

$$\left(1+\frac{2R_2}{2R_1}\right)\left(\frac{R_f}{R_3}\right) = 1000$$

$$\left(1+\frac{2R_2}{2R_1}\right)\left(\frac{R_2}{R_3}\right) = 1000$$

$$\frac{2R_2}{R_f} = 1000$$

$$\frac{2R_2}{R_f} = \frac{1}{2R_2} = \frac{999}{2}$$

$$\frac{2R_2}{2R_3} = \frac{1}{2R_4} = \frac{999}{2}$$

$$\frac{2R_4}{2R_5} = \frac{999}{2}$$

$$R_{f} + 100 M \Omega = 999 R_{f}$$

$$998 R_{f} = 100 M \Omega$$

$$R_{f} = 100.2 \Omega$$