

Skladištenje energije

Energijske tehnologije FER 2008.

Sadržaj predavanja

- Što je skladištenje energije
- Zašto skladištimo energiju
- Osnovne značajke spremnika
- Vrste spremnika
- Usporedba načina skladištenja
- Zaključak

Skladištenje energije

 transformacija prijelaznog u stalni oblik energije, pogodan za povratnu transformaciju

prijelazni: električna energija, toplinska

energija, mehanički rad

stalni: neki oblik unutrašnje energije

ovdje: transformacije električne energije!

Zašto skladištiti energiju?

- 1. istovremenost potrošnje i proizvodnje električne energije
- 2. povremena nedostupnost pojedinih energenata

Zašto skladištiti energiju? (2)

1. istovremenost potrošnje i proizvodnje električne energije

- moguće smanjenje ulaganja u vršna postrojenja
- pouzdanost opskrbe
- kvaliteta električne energije

Zašto skladištiti energiju? (3)

2. povremena nedostupnost nekih energenata

Sunčevo zračenje, vjetar, voda

 spremnik: proizvodi kad nema energenta, skladišti kad je dostupan

Osnovne značajke spremnika energije

- gustoća energije (volumna ili masena)
 - e=E_s/m [J/kg] i e=E_s/V [J/m³]
 E_s energija sadržana u spremniku

- trajanje skladištenja
 - pogonski ciklus spremnika energije sastoji se od tri dijela:
 - punjenje (τ_c)
 - skladištenje (τ_s)
 - pražnjenje (τ_d)

Osnovne značajke spremnika energije (2)

učinkovitost skladištenja

 omjer energije koja napusti spremnik za vrijeme pražnjenja i energije koja uđe u spremnik za vrijeme punjenja

$$\eta_s = E_d/E_c = 1 - E_g/E_c$$
,
$$E_g - energija gubitaka$$

brzina punjenja/pražnjenja

- količina energije u jedinici vremena koja ulazi/izlazi iz spremnika
- punjenje (*charge*): $P_c = dE_s/dt$
- pražnjenje (*discharge*): $P_d = dE_s/dt$

Korišteni oblici energije

- elektromagnetska potencijalna energija
 - elektrokemijska
 - magnetska
- mehanička energija
 - kinetička
 - gravitacijska potencijalna
- unutrašnja kalorička energija
 - plin pod tlakom

Elektrokemijska energija

- električna potencijalna energija na razini molekula
- spremnici
 - akumulatori
 - punjive baterije
 - reverzibilne gorivne ćelije
 - superkondenzatori

Akumulatori i punjive baterije

- akumulatori i baterije (eng. battery)
- baterija skup galvanskih elemenata

Galvanski elektricitet

Galvanski spremnici

- galvanski članci kojima je elektrokemijsko djelovanje reverzibilno
 - kad se baterija/akumulator prazni, teče tzv. galvanska struja
 - prilikom punjenja, električna struja iz vanjskog izvora teče u obratnom smjeru od galvanske

izvedbe

- olovni akumulator
- NiCd baterija
- NiMH baterija
- Li-ion baterija
- ...

Olovni akumulator

- konstruiran 1859. godine, u najširoj upotrebi
- napunjeni akumulator sastoji se od
 - pozitivne elektrode kojoj je aktivna masa olovni dioksid PbO₂
 - negativne elektrode kojoj je aktivna masa spužvasto olovo Pb
 - elektrolita sumporne kiseline H₂SO₄, razrijeđene destiliranom vodom

Olovni akumulator (2)

pražnjenje

2008.

$$2H_2SO_4 -> 4H^+ + 2SO_4^{2-}$$

Na negativnoj elektrodi

$$Pb -> Pb^{2+} + 2e$$

$$Pb^{2+} + SO_4^{2-} -> PbSO_4$$

Na pozitivnoj elektrodi

$$PbO_2 + 2H_2O -> Pb^{4+} + 4 OH^{-1}$$

$$Pb^{4+} + 2e -> Pb^{2+}$$

$$Pb^{2+} + SO_4^{2-} -> PbSO_4$$

$$40H^{-} + 4H^{+} -> 4H_{2}O$$

Olovni akumulator (3)

- prilikom pražnjenja, za dvije molekule utrošene sumporne kiseline (jedna na anodi, jedna na katodi), dva električna naboja prijeđu kroz članak od negativne na pozitivnu elektrodu
- na objema elektrodama nastaje olovni sulfat
- $U = E IR_U$
- $I = E/(R_U + R_T)$
- I = nF
 - n broj molova elektrona po molu H_2SO_4 (=1)
 - F Faradayeva konstanta (električni naboj sadržan u jednom molu elektrona, 96487 C/mol)

Zadatak 1: Olovni akumulator

12 V olovni akumulator pri određenom opterećenju daje struju jakosti 60 A. Potrebno je izračunati trenutnu snagu koju akumulator daje i potrošnju sumporne kiseline u g/s.

```
U = 12 V

I = 60 A

P = ?

dm_{H2SO4}/dt = ?
```

Trenutna snaga P = UI = 720 W

Potrošnja H₂SO₄ određena je sljedećom jednadžbom

```
N_{H2SO4} = I/F [mol/s]
= 60[A] / 96487 [C/mol]
= 6,22 e-4 mol/s
m_{H2SO4} = N_{H2SO4} M_{H2SO4} [g/s] = 6,22 e-4 [mol/s] (2+32+4·16) [g/mol]
= 0,061 g/s
```

Podjela akumulatora

- prema namjeni
 - napajanje potrošača
 - pokretanje motora
 - pogon vozila
- prema ciklusu
 - starteri
 - potpunopražnjenje akumulatora(deep cycle)
- prema izvedbi
 - mokri
 - gel
 - silikatno staklo

Punjive baterije

nikal-kadmijska baterija

- najveći broj punjenja i pražnjenja (više od 1500 ciklusa),
- niska gustoća energije
- memorijski efekt, ali smanjen zahvaljujući razvoju
- kadmij je otrovan, pa predstavlja opasnost po okoliš
- katoda: nikal
- anoda: kadmij

nikal-metal hidridna baterija

- slične NiCd, ali je anoda hidridna legura, pa je manje štetna po okoliš
- može imati nekoliko puta veći kapacitet od NiCd baterije iste veličine
- manje izražen memorijski efekt
- koristi se u hibridnim vozilima, npr. Toyota Prius i potrošačkoj elektronici

Punjive baterije (2)

litij-ionska baterija

- velika gustoća energije
- posve uklonjen memorijski efekt
- katoda: LiCoO2, LiMn2O4, LiNiO2 ili Li-Ph
- anoda: ugljik
- primjena: laptop, mobitel, MP3 playeri...

- elektromobil

100 000 km vožnje s Li-ion baterijom (više tisuća) 350 km po punjenju

http://www.teslamotors.com/index.php 2008.

Baterije i olovni akumulator - usporedba

Energetska gustoća – po jedinici mase i volumena

Usporedba baterija

- brzina punjenja i gustoća energije

Gustoća energije

Reverzibilne gorivne ćelije

- Proces u svakoj gorivnoj ćeliji može biti reverzibilan
- 'pražnjenje':
 - u reakciji tvari A i B proizvodi se električna energija i tvar C
- 'punjenje':
 - uz potrošnju električne energije iz tvari C proizvode se tvari A i B
- reverzibilnost
 - =>način skladištenja energije
- problem:
 - niska učinkovitost u jednom smjeru

Electrolyte Tanks

Superkondenzatori

- kapacitet idealnog pločastog kondenzatora
 - ₣ je produkt relativne permitivnosti i permitivnosti praznog prostora
- energija pohranjena u kondenzatoru

$$E = \frac{CU^2}{2}$$

$$C = \frac{\varepsilon \cdot A}{d}$$

- razlike prema konvencionalnom kondenzatoru
 - velika površina ploča
 - mali razmak među pločama
 - kapacitet nekoliko tisuća F!
- prednosti u odnosu na baterije
 - brže punjenje i pražnjenje,
 - nema kemijskih reakcija veća trajnost materijala i veći broj ciklusa
 - veći raspon napona
 - mogućnost čestih pulseva energije

Magnetski spremnici energije

- energija magnetskog polja dana je formulom
 - –I jakost struje [A]

$$E = \frac{LI^2}{2}$$

- –L induktivitet [H]; za selenoid:
 - za feromagnetske materijale ovisi o magnetskom toku
 - μ produkt relativne permeabilnost i permabilnosti praznog prostora
- skladištenje magnetske energije zasniva se na supravodičima

 $L = \mu \cdot N^2 \cdot \frac{A}{I}$

Supravodiči

- materijali koji na dovoljno niskim temperaturama gube električni otpor i pritom iz svoje unutrašnjosti istiskuju magnetska polja
- priroda supravodljivosti je kvantna
- električni otpor vodiča posljedica je raspršenja elektrona u gibanju na primjesama i drugim defektima kristalne rešetke
- povezivanjem elektrona u parove raspršenje postaje nedjelotvorno i javlja se supravodljivost
- zbog pada električnog otpora na nulu, električna struja može bez gubitaka teći supravodljivim krugom

Meissnerov efekt

Supravodiči i skladištenje energije

- magnetsko polje
 - indukcija do 15 T
 - istosmjerna struja u supravodljivoj zavojnici
- prednosti:
 - pohranjena energija do 200 MWh
 - velika trajnost, uz osiguranje hlađenja
 - električna energija je gotovo trenutno raspoloživa
 - visoka učinkovitost, oko 85%
 - nepokretni dijelovi => pouzdanost

nedostatci:

- temperatura,
 magnetska indukcija,
 struja i frekvencija
- Hg 4,16 K
- organski spojevi Nb₃Sn,
 23 K, 30 T
- visokotemperaturna
 supravodljivost –
 anizotropni keramički
 materijali, 125 K (-148°C!)
 - hlađenje ukapljenim dušikom umjesto helijem!

Supravodiči i skladištenje energije (2)

- sustav se sastoji od tri dijela:
 - supravodljiva zavojnica
 - energetska elektronika
 - hladioc
- ispravljač/izmjenjivač ispravlja izmjeničnu struju i izmjenjuje istosmjernu struju (gubici 2-3%)

Spremnici mehaničke energije

- spremnici kinetičke energije
 - zamašnjak
 - pohranjuje energiju kretanja
 - baziraju se na rotacijskom gibanju
- spremnici gravitacijske potencijalne energije

Zamašnjak

- velika gustoća energije
- trajan
- naprezanje najveće na rubovima

$$I = \int r^2 \rho dV$$

$$E = \frac{1}{2}I\omega^2$$

E – pohranjena energija

 $I = \int r^2 \rho dV$ I – moment inercije

ω – kutna brzina

- punjenje
 - električni motor pokreće zamašnjak
 - akumulira se energija rotacije

- pražnjenje
- zamašnjak pokreće rotor generatora
- generatorski režim rada

Razvoj sustava sa zamašnjakom

sve privlačniji razvojem novih materijala i tehnologija

čelik 24 Wh/kg azbest 320 Wh/kg Al₂O₃ 513 Wh/kg

- razvoj: materijali, eksperimenti s oblicima
- Izazovi:
 - upravljanje snagom i momentom
 - visoka gustoća energije
 - efikasnost (magnetski ležajevi, motor, elektronika)
 - sigurnost
 - integriranje

Usporedba - snaga i energija po kg

Usporedba

- volumna i masena gustoća energije

Spremnici gravitacijske potencijalne energije

u gravitacijskom polju

$$W_{pot} = mgh$$

100 t na 10 m =>
$$E_p = 2,73$$
 kWh

- ne zaboraviti efikasnost
- primjenjivo kod skladištenja vodnih snaga
 - reverzibilna hidroelektrana

Godišnja proizvodnja	2006. (HEP)
Generatorski rad	405 GWh
Motorski rad	177 GWh

Reverzibilna hidroelektrana

- koriste se dva bazena gornji i donji
 - ili konfiguracija terena omogućava prirodne spremnike, ili se donji spremnik ukopava
- postrojenje može raditi kao elektrana
 - voda pokreće turbinu
 - turbina okreće generator

- ... i kao pumpa
- generator se prebaci u motorski režim rada
 - turbina služi kao pumpa

Reverzibilna hidroelektrana (2)

- gubici
 - dio vode zaobilazi lopatice turbine
 - pretvorba u toplinu zbog trenja
 - isparavanje vode iz bazena
- ukupna učinkovitost od ispod 65% do 85%

prednosti

- poznata tehnologija
- visoka pouzdanost
- niski troškovi održavanja
- brzi start (1/2-3 min)
- nedostaci
 - veliko zauzeće zemljišta (skupo, sve skuplje)
 - dugotrajna izgradnja

Zadatak 2: Reverzibilna hidroelektrana

Srednji godišnji protok reverzibilne hidroelektrane jednak je instaliranom protoku i iznosi 55 m³/s, a neto pad 510 m. Učinkovitost pretvorbe mehaničke u električnu energiju iznosi 85%, a učinkovitost pumpanja 60%. Faktor opterećenja hidroelektrane iznosi 0,285 za proizvodnju el. en. U razdobljima niske cijene električne energije sva utrošena voda prebacuje se iz donjeg u gornji bazen.

- 1. Kolika je instalirana snaga elektrane?
- 2. Koliko se električne energije za pumpanje potroši iz mreže?
- 3. Kolika je učinkovitost čitavog ciklusa skladištenja energije?
- 4. Koliki je najmanji volumen spremnika potreban?

$$Q_{sr} = 55 \text{ m}^3/\text{s}$$
 $h_{neto} = 510 \text{ m}$
 $\eta_{m_el} = 0.85; \ \eta_p = 0.6$
 $m = 0.285$

Zadatak 2: Reverzibilna hidroelektrana

Instalirana snaga RHE:

$$P_{el} = \eta_{m_el} P_{meh} = \eta_{m_el} \rho g h_{neto} Q =$$

$$= 0.85 \ 1000[kg/m^3] \ 9.81[m/s^2] \ 510[m] \ 55[m^3/s]$$

$$= 234 \ MW$$

Proizvedena el. en. u RHE:

$$E_{el \ god} = P_{el} t_{el} = 234 [MW] 0,285 \cdot 365 \cdot 24 [h] = 584 GWh$$

-da bi se ta energija proizvela, u gornjem spremniku treba biti akumulirano energije:

$$E_{akumulirano} = E_{el_god} / \eta_{m_el} = 584 / 0.85 = 687 \text{ GWh}$$

- -akumulacija energije u gornjem spremniku postignuta je pomoću pumpi, čija je efikasnost 60%
- -električna energija potrebna za pogon pumpi iznosi

$$E_{el\ p}=E_{akumulirano}/\eta_p=687\ [GWh]/0,6=1145\ GWh$$

Zadatak 2: Reverzibilna hidroelektrana

učinkovitost ciklusa skladištenja energije

$$\eta_{uk}$$
= $E_{dobiveno}/E_{ulozeno}$
= E_{el_god}/E_{el_p}
= $584 / 1145$
= $0,51$

potrebni volumen spremnika

V = Q't = Q 'm 't_{god}
=
$$55 [m^3/s]$$
'0,285'8760 [h] ' 3600 [s/h]
= $495 e6 m^3$

Spremnici unutrašnje kaloričke energije

spremnici plina pod tlakom

Photo Courtesy of CAES Development Company

Skladištenje komprimiranog zraka

- u tlu postoje ili se mogu napraviti spremnici zraka – rudnici, podzemni džepovi
- u razdobljima niske potrošnje (i cijene) električne energije, kompresorom se tlači zrak u podzemno spremište
- najčešće:
 - zrak koji izlazi iz kompresora pohranjuje se u spremnik (pod tlakom)
 - kad je potrebno, vraća se u turbinu (komoru za izgaranje)
- energija predana sustavu pohranjuje se u obliku unutrašnje kaloričke energije plina
- => bolje iskorištenje goriva

Skladištenje komprimiranog zraka (2)

- danas u svijetu postoje dva ovakva spremnika
 - u Njemačkoj, 290 MW
 - u SAD, 100 MW

Usporedba spremnika - vrijeme i snaga

Zaključak

- postoje različiti načini skladištenja energije
 - elektrokemijska potencijalna
 - magnetska
 - mehanička
 - unutrašnja kalorička
- svaki način ima svoje prednosti i nedostatke
- najvažniji elementi pri izboru su
 - snaga i količina energije
 - gustoća energije
 - učinkovitost i brzina punjenja-pražnjenja
 - trajnost pohrane energije
 - cijena, trajnost, održavanje, sigurnost

Zadatak

Gornja akumulacija hidroelektrane smještena je 200 m iznad rijeke. Stupanj je djelovanja crpenja vode 0,65, a proizvodnje električne energije 0,85. Odredite:

- a) električnu energiju (MWh) potrebnu za dnevno crpenje vode u gornju akumulaciju kako bi hidroelektrana proizvodila 400 MWh dnevno;
- b) volumen vode koja se dnevno prebacuje u gornju akumulaciju kako bi se ostvarila proizvodnja pod a).
 Računajte s neto visinom od 200 m.

Zadatak - nastavak

a)
$$W_{p.dnevno} = \frac{100MW \cdot 4h}{0,65 \cdot 0,85} = 723,98MWh$$

b) volumen potrebne vode određuje potrebna proizvodnja el. en. i efikasnost. Za proizvodnju 400 MWh potrebno je, uz efikasnost od 85%, pohraniti u akumulaciji energiju:

$$W_{ak.} = \frac{400MWh}{0.85} = 470,59MWh = 1,694 \cdot 10^{12} J.$$

To je gravitacijska potencijalna energija vode u akumulaciji i njena masa iznosi: $m = \frac{W_{ak.}}{gH} = 8,63 \cdot 10^8 \, kg$, a volumen

$$V = \frac{m}{\rho} = 863000 \ m^3.$$