

Claims:

1 25. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera
3 comprising the steps of:
4 selecting a pulsed ablation laser having a pulsed output beam
5 of predetermined wavelength;
6 selecting a beam spot controller mechanism for reducing and
7 focusing said selected ablative laser's output beam onto a
8 predetermined spot size on the surface of the cornea;
9 selecting a scanning mechanism for scanning said ablative laser
10 output beam;
11 coupling said ablative laser beam to a scanning device for
12 scanning said ablative laser over a predetermined area of the
13 corneal sclera; and
14 controlling said scanning mechanism to deliver said ablative
15 laser beam in a predetermined pattern in said predetermined area
16 onto the surface of the cornea to photoablate the sclera tissue
17 outside the limbus, whereby a presbyopic patient's vision is
18 corrected by expansion of the sclera.

2

1 26. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera in
3 accordance with claim 25 in which the step of selecting a pulsed
4 ablation laser includes selecting a pulsed ablative laser having a
5 predetermined wavelength between 0.15 - 0.32 microns.

6 3 27. A laser beam ophthalmological surgery method for
7 treating presbyopic in a patient's eye by ablating the sclera in
8 accordance with claim 25 in which the step of selecting a pulsed
9 ablation laser includes selecting a pulsed ablative laser having a
10 wavelength between 2.6 and 3.2 microns.

1 4 28. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera in
3 accordance with claim 25 in which the step of selecting a pulsed
4 ablation laser includes selecting a solid state laser.

1 5 29. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera in
3 accordance with claim 25 in which the step of selecting a pulsed

14

1 ablation laser includes selecting a pulsed gas laser having a pulse
2 duration shorter than 200 nanoseconds.

1 *C* 30. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera in
3 accordance with claim *25* in which said the step of selecting a beam
4 spot controller includes selecting a pulsed ablative laser having
5 a focusing lens with focal length of between 10 and 100 cm selected
6 to obtain a predetermined laser beam spot size having a diameter of
7 between 0.1 and 0.8 mm on the corneal surface.

1 *T* 31. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera in
3 accordance with claim *25* in which the step of selecting a beam spot
4 controller includes selecting beam spot controller having a
5 focusing lens with cylinder focal length of between 10 and 100 cm
6 to obtain a laser beam spot having a line size of about 0.1-0.8 mm
7 x 3-5 mm on the corneal surface.
A,
Corneal

1 *G* 32. A laser beam ophthalmological surgery method for
2 treating presbyopic in a patient's eye by ablating the sclera in
3 accordance with claim *25* in which the step of selecting a scanning
4 mechanism includes selecting a scanning mechanism having a pair of
5 reflecting mirrors mounted to a galvanometer scanning mechanism for
6 controlling said laser output beam into a predetermined pattern.

7 *G* 33. A laser beam ophthalmological surgery method for
8 treating presbyopic in a patient's eye by an ablating laser beam in
9 accordance with claim *25* in which said ablative laser is delivered
10 to the surface of the cornea by an optical fiber.

11
12 *D* 34. A laser beam ophthalmological surgery method for
13 treating presbyopic in a patient's eye by ablating the sclera in
14 accordance with claim *25* in which the step of selecting a scanning
15 mechanism includes selecting a hand-held optical fiber coupled to
16 the ablation laser for scanning said laser output beam into a
17 predetermined pattern.

18