I. Algebre

I. Astrazione Funzionale

Un programma corrisponde alla tripla $\{D, A, R\}$.

Un programma definisce un nuovo operatore sui dati perché trasforma i dati inziali in risultati; il repertorio di operatori può quindi essere ampliato scrivendo programmi.

L'astrazione funzionale è la tecnica che permette di potenziare il linguaggio disponibile introducendo nuovi operatori; questo viene fatto scrivendo funzioni (sottoprogrammi).

I costrutti linguistici per realizzare l'astrazione funzionale permettono di definire:

- **specifica**: definisce cosa ci si aspetta dalla funzione, cioè permette di capire cosa fa tramite l'intestazione e specifica cosa si aspetta in input e cosa restituisce in output;
- realizzazione: implementazione del comportamento della funzione.

II. Astrazione Dati

L'astrazione dati permette di ampliare il numero di tipi di dati disponibili, attraverso l'introduzione di nuovi dati e nuovi operatori.

L'astrazione dati consente di estendere l'algebra dei dati disponibile in un linguaggio di programmazione.

Un'algebra è un sistema matematico costituito da:

- un dominio, cioè un insieme di valori;
- una insieme di funzioni applicabili sui valori del dominio.

Allora la **corrispondenza tra algebra e tipo astratto** si basa sul fatto che entrambi hanno un dominio di definizione ed un insieme di operazioni lecite sul dominio.

2.1 - Requisiti dell'Astrazione Dati

Non tutti i linguaggi, però, permettono di definire dati astratti; alcuni permettono di definire solo nuovi tipi di dati, che non è la stessa cosa.

Si parla di dato astratto se le operazioni che possono essere effettuate sui rispettivi oggetti sono isolate dai dettagli usati per realizzare il tipo.

I requisiti per l'astrazione dati sono quindi:

- Requisito di Astrazione
 - Si deve poter dichiarare il dato astratto come ogni altro dato, indipendentemente dalla sua realizzazione.
- Requisito di Protezione

Gli operatori scritti per il dato astratto devono poter essere utilizzati solo su di esso.

2.2 - Specifica e Realizzazione per l'Astrazione Dati

Anche un'astrazione dati ha una specifica e una realizzazione.

La specifica sintattica descrive sinteticamente:

- i dati utilizzati per definire la struttura;
- gli operatori e i loro domini di partenza e di arrivo, cioè i tipi di dati richiesti in input e quelli restituiti in output.

La specifica semantica definisce invece:

- un insieme ad ogni nome introdotto nella specifica sintattica;
- un valore ad ogni costante;
- una funzione ad ogni nome di operatore, specificando:
 - **pre-condizione**, che definisce quando l'operatore è utilizzabile;
 - post-condizione, che stabilisce come il risultato sia vincolato agli argomenti dell'operatore.

Esprimere specifiche semantiche formalmente risulta difficile, perciò solitamente si utilizza un linguaggio naturale o matematico.

I. Algebre 1

La **realizzazione** descrive invece come dati e operatori vengono implementati usando dati e operatori già esistenti. Le decisioni in fase di realizzazione dipendono dal linguaggio.

2.3 - Algebre

Un'algebra dei dati è composta da:

1. Insieme di dati

Degli esempi di insiemi di dati sono interi, boolean, stringhe etc.

2. Operatori

Gli operatori possono essere aritmetici, logici, di confronto e di concatenazione.

3. Nomi per indicare l'insieme di dati

E necessario un nome per identificare l'insieme, come accade per gli interi, identificati da *integer* o per i booleani, identificati da *bool*.

4. Nomi per indicare gli operatori

E possibile utilizzare nomi e simboli per funzioni come, ad esempio, + per la somma, - per la sottrazione, *concat* per la concatenazione.

5. Costanti per indicare elementi singoli degli insiemi di dati

Queste costanti sono necessarie per indicare univocamente un dato, come, ad esempio, le stringhe che vengono scritte tra virgolette.

III. Strutture Dati

Come detto in precedenza, il dato è una struttura matematica che consiste di un dominio sul quale sono ammesse alcune funzioni.

Una **struttura dati** è un particolare tipo di dato caratterizzato dall'organizzazione degli elementi al suo interno (più che dal tipo).

Le strutture solitamente disponibili nei linguaggi sono gli array.

Abbiamo diversi tipi di strutture dati:

- lineari: dati disposti in sequenza;
- **statiche**: in cui il numero di elementi non può variare nel tempo;
- omogenee: dati dello stesso tipo

- non lineari: nessuna sequenza specifica;
- dinamiche: in cui il numero di elementi può variare nel tempo;
- non omogenee: dati non dello stesso tipo

IV. Tecniche di Specifica

Due tecniche per la scrittura di specifiche sono:

- Specifiche Assiomatiche (o Algebriche): queste si dicono self-contained, cioè specificano ogni oggetto come composizione di funzioni;
- Modelli Astratti (approccio costruttivo): definiscono la semantica delle operazioni in termini di un altro tipo di dato ben definito.

La chiave di queste e di altre tecniche di specifica sta nel fatto che la descrizione della semantica non fa riferimento alla realizzazione.

4.1 - Specifica di un Dato Astratto

Possiamo definire formalmente una specifica di un tipo di dato astratto come una tripla (D, F, A):

- D: insieme di tutti i domini usati per la definire il dato
 - Se stiamo definendo una struttura, essa stessa sarà il **dominio designato**, tutti gli altri, usati per la sua implementazione, saranno i **domini ausiliari**.
- F: insieme degli operatori
- A: insieme delle regole che descrivono la semantica degli operatori

Devono definire le caratteristiche della struttura, ad esempio la proprietà LIDO dello stack etc.

4.2 - Tipi di Operatori

Tra i diversi tipi di operatori abbiamo:

I. Algebre 2

Operatori di Base

Costruttori

Inizializzano una nuova istanza del dato.

Modificatori

Cambiano il dato in qualche modo.

Osservatori

Osservano lo stato senza modificarlo (es. isEmpty).

specifica assiomatica e costruttiva

Operatori Aggiuntivi

• Distruttori

Liberano la memoria occupata dal dato.

Iteratori

Permettono di iterare nella struttura componente per componente.

I. Algebre 3