

941365 (11) (21) Patenttihakemus - Patentansökan

(51) Kv.1k.6 - Int.cl.6 D 21F 1/02 , 1/06

(22) Hakemispäivä – Ansökningsdag 24.03.94

24.03.94 (24) Alkupäivä - Löpdag

25.09.95 (41) Tullut julkiseksi - Blivit offentlig

SUOMI-FINLAND

10.10.1998

(FI)

Patentti- ja rekisterihallitus Patent- och registerstyrelsen

/ Hakija – Sökande

1. Valmet Paper Machinery Inc., Panuntie 6, 00620 Helsinki, (FI)

(72) Keksijä – Uppfinnare

Huovila, Jyrki, Paavalinvuorentie 32, 40950 Muurame, (FI)
 Huuskonen, Reijo, Tikkamannila, 41160 Tikkakoski, (FI)

(74) Asiamies - Ombud: Forssén & Salomaa Oy

(54) Keksinnön nimitys - Uppfinningens benämning

Laitteisto ja menetelmä paperikoneen perälaatikon säädössä Anläggning och förfarande vid reglering av inloppslådan i en pappersmaskin

(57) Tiivistelmä - Sammandrag

Keksinnön kohteena on menetelmä ja laitteisto perälaatikon säädössä. Perälaatikossa suoritetaan massan sakeusprofilointi, jolloin paperimassavirta säädetään neliöpainoltaan perälaatikon leveydeltä / rainan leveydeltä. Perälaatikkoon tuodaan laimennusjae; laimennusvirtaus (Q1) keskimääräisen konsentraation omaavan massasuspension virtaukseen (Qm) perälaatikon eri leveyskohtiin. Laimennusvirtaus (Q1) tuodaan virtaukseen (Qm) siten, että laimennusvirtauksen (Q1) kanavan (11) ja keskimääräisen massakonsentraation omaavan massan virtauksen (Qm) kanavan (10) keskeisakselien (X,Y) välinen kulma (β) on alueella 90-180°.

Uppfinningen avser ett förfarande och en anläggning vid regleringen av en inloppslåda. I inloppslådan utförs en tjockhetsprofilering av massan, varvid pappersmassaströmmen regleras över bredden av inloppslådan / bredden av banan med avséende på ytvikt. En utspädningsfraktion införs till inloppslådan; en utspädningsström (Q1) till olika breddställen av inloppslådan till massasuspensionsströmmen (Qm) med genomsnittlig koncentration. Utspädningsströmmen (Q1) införs till strömmen (Qm) på sådant sätt, att vinkeln (\beta) av centralaxlarna (X,Y) mellan kanalen (11) av utspädningsströmmen (Q1) och kanalen (10) av massaströmmen (Qm) med genomsnittlig massakoncentration är inom området 90-180°.

Laitteisto ja menetelmä paperikoneen perälaatikon säädössä Anläggning och förfarande vid reglering av inloppslådan i en pappersmaskin

5

10

15

20

25

30

Keksinnön kohteena on laitteisto ja menetelmä paperikoneen perälaatikon säädössä

Paperin/kartongin kuivumiskutistuman aiheuttamaa neliömassaprofiilin epätasaisuutta pyritään kompensoimaan huuliaukkoa bombeeraamalla niin, että huuliaukko on massasuihkun keskeltä paksumpi. Paperi/kartonkirainaa kuivattaessa kutistuu rainan keskialueelta vähemmän kuin reuna-alueilta kutistuman ollessa yleensä keskeltä noin 1-3 % ja reuna-alueelta noin 4-6 %. Mainittu kutistuman profiili aiheuttaa rainaan vastaavan neliöpainon poikkiprofiilin muutoksen niin, että kutistuman johdosta puristimen jälkeen nelipainoprofiilitaan poikkisuunnassa tasaisen rainan kuivaneliöpainoprofiili muuttuu kuivatuksen aikana siten, että rainan molemmilla reuna-alueilla on vähän suurempi neliöpaino kun keskialueilla. Ennestään tunnetusti mainittua neliömassaprofiilia on säädetty suihkun paksuutta profiloimalla, joko kärkilistakonstruktiolla tai huulikanavan muotoa säätämällä siten, että suihkun paksuus säädetään suuremmaksi keskialueelta kuin reunoilta. Mainitun järjestelyn avulla massasuspensio on pakotettu siirtymään rainan keskialueelle päin. Kyseinen seikka vaikuttaa huulisuihkun suunnan poikkeamakulmaprofiiliin, joka edelleen määrää kuituorientaation vinoutumaprofiilin. Kuituverkoston suuntajakautuman eli orientaation pääakselien tulisi yhtyä paperin pääakselin suuntiin ja orientaation tulisi olla symmetrinen näiden akselien suhteen. Mainitussa suihkun paksuutta profiloivassa säädössä vaikutetaan orientaation muuttumiseen massauspensiovirtauksen saadessa sivuttaissuuntaisia komponentteja.

Perälaatikon huulen säätäminen aiheuttaa muutoksen myös massasuihkun poikittaisvirtauksiin, vaikka säädön tarkoituksena on vaikuttaa pelkästään neliömassaprofiiliin, siis syötettävän massasuspensiokerroksen paksuusprofiiliin. Poikittaisvirtauksilla on näin ollen suora relaatio kuituorientaation jakautumaan.

Keksinnön mukaisessa ratkaisussa käytetään perälaatikkoa, joka on pitkin sen leveyttä jaettu väliseinillä osastoihin. Ratkaisussa yksittäisessä osastossa on ainakin yksi tulojohto osavirran johtamista varten. Lisäksi ratkaisussa yksittäisen tulojohdon eteen on kytketty venttiili, jolla massasuspensiosuhde on säädettävissä.

Tässä hakemuksessa on esitetty ratkaisu perälaatikon laimennusvirtauksen ja massavirtauksen sekoittamiseksi. Keksinnön mukaisesti ohjataan laimennusvirtaus massavirtauksen nähden kohtisuorasti tai suoraan sitä vasten. Näin ollen massavirtauksen virtauskanavan 10 ja laimennusvirtauksen virtauskanavan 11 välinen kulma on edullisesti alueella 90-180°. Mainitulla järjestelyllä varmistetaan se, että tuotaessa laimennusvirtaus Q_l sekoituspisteeseen virtauksen Q_m yhteyteen vähennetään virtausta Q_m vastaavalla määrällä kuin pisteeseen tuodaan laimennusvirtausta Q_l . Näin ollen järjestelyssä summavirtaus $Q_m + Q_l$ pysyy vakiona. Sekoitussuhde säätyy halutuksi säätämällä virtauksen Q_l kuristusta kanavassa 11.

Näin ollen keksinnön mukaisessa ratkaisussa tuotaessa lisävirtaus Q_l keskimääräisen massasuspension virtaukseen Q_m , vähennetään virtausta Q_m vastaavalla määrällä kuin tuodaan virtausta Q_l saumauspisteeseen A. Virtauksen Q_m pienentäminen tapahtuu käyttämällä hyväksi virtauksen Q_l kanavan asennointia virtauksen Q_m kanavaan nähden. Näin ollen virtaus Q_l saatetaan törmäämään virtaukseen Q_m , jolloin virtauksen Q_l impulssi vähentää virtausta Q_m . Toinen tekijä, millä vaikutetaan virtauksen Q_m pienentämiseen on virtauksen Q_d muoto ja virtauksen Q_l nopeus V_l suhteessa virtauksen Q_m nopeuteen V_m . Suhde V_l/V_m on alueella 5 - 20. Virtaus Q_l muodostetaan verhosuihkuksi virtauksen Q_m eteen. Tämä tapahtuu muotoilemalla virtauksen Q_l virtauskanavan pääty siten, että muodostetaan ohut virtausverho, joka tasoltaan T_l on poikittainen virtaukseen Q_m nähden.

Keksinnön mukaiselle laitteistolle paperikoneen perälaatikon säädössä on pääasiallisesti tunnusomaista, että laimennusvirtaus tuodaan virtaukseen siten, että laimennusvirtauksen kanavan ja keskimääräisen massakonsentraation omaavan massan virtauksen kanavan keskeisakselien välinen kulma on alueella 90-180°, jolloin virtaus saadaan

törmäämään virtaukseen, jolloin virtauksien liittymäkohdassa aiheutetaan häiriö virtaukseen, jolloin summavirtaus pysyy vakiona.

Keksinnön mukaiselle menetelmälle on pääasiallisesti tunnusomaista, että kussakin sekoituskohdassa virtaus saatetaan törmäämään virtaukseen, jolloin törmäyskulma on alueella 90-180°.

Keksintöä selostetaan seuraavassa viittaamalla oheisien piirustuksien kuvioissa esitettyihin keksinnön eräisiin edullisiin suoritusmuotoihin, joihin keksintöä ei ole tarkoitus kuitenkaan yksinomaan rajoittaa.

Kuviossa 1A on esitetty kaaviomaisesti paperikoneen perälaatikko, joka on varustettu sakeusprofiloinnilla.

15 Kuviossa 1B on esitetty leikkaus I-I kuviosta 1A.

Kuviossa 1C on esitetty leikkaus II-II kuviosta 1A.

Kuviossa 1D on esitetty leikkaus III-III kuviosta 1A.

20

Kuviossa 2 on esitetty periaatteellisesti laimennusvirtauksen ja massavirtauksen yhdistäminen.

Kuviossa 3 on esitetty kuvion 2 ratkaisu tarkemmin.

25

Kuviossa 4 on esitetty keksinnön suoritusmuoto, jossa massavirtaukseen Q_m vaikutetaan muotoamalla laimennusvirtauksen Q_l virtauskanavan pääty kapenevaksi ja muodostamalla laimennusvirtauksesta verhosuihku massavirtauksen Q_m eteen.

30 Kuviossa 5 on esitetty leikkaus IV-IV kuviosta 4.

Kuviossa 1A esitetyssä perälaatikossa suoritetaan ns. sakeusprofilointi eli paperimassavirta on säädettävissä neliöpainoltaan perälaatikon leveydeltä / rainan leveydeltä. Säätö suoritetaan tuomalla laimennusjae; laimennusvirtaus Q_1 keskimääräisen konsentraation omaavaan massasuspensiovirtaukseen Q_m perälaatikon eri leveyskohtiin. Keksinnön mukaisesti on laimennusvirtauksena Q_1 edullisesti 0-vesi, joka poikkeaa konsentraatioltaan keskimääräisestä massasuspensiokonsentraatiosta keskimääräisen massasuspensiovirtauksen Q_m ja laimennusvirtauksen Q_1 kulloisessakin sekoituskohdassa $A_1,A_2...$

10 Kuviossa 1A on esitetty keksinnön mukainen paperikoneen perälaatikkorakenne. Huulikartiosta K ulos tulevan massasuspension neliöpainon säätämiseksi paperikoneen leveyssuunnassa johdetaan laimennusvirtaus Q_L, edullisesti laimennusvesivirtaus, jakotukista J₂ kanavaa 11a₁ pitkin venttiilin 14a₁ kautta sekoituspisteeseen A₁. Massan jakotukista J₁ johdetaan keskimääräisen konsentraation omaava massavirtaus kanavan 10a₁ kautta. Virtaus Q_L jakotukista J₂ ja virtaus Q_M jakotukista J₁ yhdistyvät ja yhdistynyt virtaus Q_{L+M} johdetaan edelleen kanavasta 12a₁, kanavaan 140_{2.1} ja kanavaan B_{2.2} kuristuksen 15 sijaitessa virtauksien Q_L ja Q_M yhdistymispisteen jälkeen virtaussuuntaan nähden. Virtaus Q_{M+L} johdetaan edelleen kanavasta B_{2.2} kuristuksen E kautta kanavaan C_{3.1} ja edelleen huulikartioon K.

20

25

Kullekin paperikoneen leveyskohdalle on oma esitetynlainen laimennusvirtauksen Q_L tuontijärjestely. Jakotukista J_1 johdetaan massavirtaus kanavien $141a_{1.1},141a_{1.2}...$ $141a_{3.1},141a_{3.2}...$ ja kanavien $140a_{1.1},140a_{1.2}...$ $140a_{3.1},140a_{3.2}...$ kautta siten, että esim. kanavasta $140_{1.1}$ johdetaan massavirtaus kanavaan $B_{1.1}$ ja edelleen turbulenssigeneraattorin G turbulenssiputkiin $C_{1.1},C_{2.1}$ ja esim. kanavasta $140a_{3.1}$ johdetaan keskimääräisen konsentraation omaava jakotukin J_1 massa kanavaan $B_{3.1}$ ja edelleen turbulenssigeneraattorin G turbulenssiputkiin $C_{4.1},C_{5.1}$.

Näin ollen keksinnön mukaisessa laitejärjestelyssä säätämällä kunkin virtauksen Q_L 30 kuristusta venttiileillä 14a₁,14a₂... säädetään kussakin paperikoneen leveyspisteessä

keskimmäisen kerroksen kautta saadun massan konsentraatiota rainan eri leveyskohdissa ja siten säädetään edelleen paperin neliöpainoa.

Kuviossa 1B on leikkaus I-I kuviosta 1A. Kuviossa 1B esitetysti on kuhunkin sekoituskohtaan A₁,A₂... kanava 11a₁,11a₂... ja edelleen kanava 10a₁,10a₂... Näin ollen mainitussa massan keskikerroksessa säädetään rainaan tuodun lisävirtauksen Q_L, edullisesti laimennusvesivirtauksen, avulla paperin neliöpainoa.

Kuviossa 1C on esitetty muuten kuvion 1B mukainen rakenne paitsi kuvioon on otettu myös venttiilit 14a₁,14a₂,14a₃, joilla kullakin on säädettävissä jakotukista J₂ tuodun laimennusvirtauksen kuristus.

Kuviossa 1D on esitetty leikkaus III-III kuviosta 1A. Kuviossa 1D esitetysti johdetaan massa huulikanavaan K rainan pohjimmaiseksi kerrokseksi jakotukista J₁ putkistojen 141a_{3.1},141a_{3.2}... kuristusten 16 ja kanavien 140a_{3.1},140a_{3.2}, 140a_{3.3}... sekä kanavien B_{3.1},B_{3.2},B_{3.3}... sekä kuristusten D että turbulenssigeneraattorin G turbulenssiputkien C_{5.1},C_{5.2},C_{5.3} kautta. Vastaavasti päällimmäinen kerros johdetaan jakotukista J₁ putkistojen 141a_{1.1},141a_{1.2}...;140a_{1.1},140a_{2.2}...;B_{1.1};B_{1.2}... ja turbulenssiputkien C_{1.1},C_{1.2}... kautta.

20

25

30

15

Kekinnön mukainen sekoitussuutin on esitetty tarkemmin seuraavissa kuvioissa.

Kuviossa 2 on esitetty periaatteellisesti virtausten sekoittuminen lohkossa F. Laimennusvirtaus Q_l ollen esim. 0-vettä, tuodaan massavirtaukseen Q_m . Virtauksen Q_l konsentraatio poikkeaa olennaisesti virtauksen Q_m konsentraatiosta. Virtaus Q_m on olennaisesti keskimääräisen konsentraation omaavaa massasuspensiovirtausta. Edullisesti virtaus Q_l on vesivirtaus. Summavirtaus Q_{m+1} on siten sakeudeltaan säädetty ja riippuvainen tuodusta osavirtauksesta Q_l . Tuotaessa virtausta Q_l vastaavalla määrällä, pienennetään virtausta Q_m . Näin ollen virtaus Q_{m+1} on vakio. Virtauksen $Q_m + Q_l$ sakeutta säädetään esim. säätämällä virtauksen Q_l kuristusta. Virtaus Q_l säädetään venttiilillä 14. Venttiili 14 sijaitsee laimennusnestejakotukin J_2 ja sekoituskohdan välillä. Virtaus Q_m

tulee esim. jakotukista J_1 paineessa P_1 ja virtaus Q_1 esim. laimennusveden jakotukista J_2 paineessa P_2 . Virtauksien Q_1 ja Q_m sekoituskohdan jälkeen voi olla erillinen kuristus 15 virtauksen Q_1 ja Q_m sekoittumisen edelleentehostamiseksi. Paine P_2 jakotukissa J_2 on olennaisesti suurempi kuin paine P_1 jakotukissa J_1 .

5

10

Kuviossa 3 on esitetty sakeussäädöllä varustetun perälaatikon erillinen lohko F_1 . Lohkossa C_1 tuodaan laimennusvirtaus Q_2 keskimääräiseen massasuspensiovirtaukseen Q_m . Perälaatikon virtausta on siten merkitty Q_m :lla ja laimennusvirtausta Q_l :llä. Yhdistynyttä virtausta on merkitty Q_{m+1} :llä. Yhdistyneen virtauksen tulee pysyä sakeussäädössä vakiona. Tämä on keksinnön mukaisessa rakenteessa ratkaistu siten, että virtaus Q_l on sovitettu virtaamaan joko poikittain massavirtaukseen Q_m sen virtaussuuntaan nähden tai sitä vasten. Summavirtaus Q_{m+1} pidetään vakiona virtauksien Q_l ja Q_m suhteen vaihdellessa valitsemalla virtauksien kohtauskulma (β) halutuksi. Säätämällä virtauksen Q_2 kuristusta säädetään virtauksen Q_m+1 seossuhdetta. Virtauksen Q_l impulssi vähentää virtausta Q_m virtauksen Q_l suuruisella määrällä. Virtauksen Q_m kanavan 10 ja virtauksen Q_l kanavan 11 välinen kulma β on alueella 90-180°. Kanavan 11 keskeisakselia on merkitty Y:llä ja kanavan 10 keskeisakselia X:llä. Yhdistynyt virtaus Q_{m+1} kulkee kanavaa 13 pitkin. Virtauksien Q_m ja Q_l sekoitumista edistetään lisäksi kuristuksella 15 kanavassa 13.

20

25

Kuviossa 4 on esitetty keksinnön suoritusmuoto, jossa virtaukseen Q_m vaikutetaan lisäksi virtauksen Q_l muotoilulla ja virtauksen Q_l nopeudella sekoituskohdassa A.

Virtaus Q_l ohjataan virtauksen Q_m yhteyteen ns. verhosuihkuna (S). Virtaus Q_l muodostetaan verhosuihkuksi (S); seinämäksi T_l , johon virtaus Q_m törmää. Siten luodaan turbulenssialue virtausten Q_l ja Q_m yhdistekohtaan A. Virtausta Q_m vähennetään virtauksen Q_l määrällä. Virtauksien Q_l ja Q_m välinen nopeussuhde V_l : V_m on välillä 5-20.

Kuviossa 5 on esitetty leikkaus IV-IV kuviosta 4. Riittävä virtausnopeus virtaukselle Q_1 saavutetaan siten, että kavennetaan virtauksen Q_1 virtauskanavaa 11. Kanavan 11

päätymuoto on edullisesti sellainen, että virtauskanava 11 kapenee kartiomaisesti virtausraoksi 12, jonka leveys b on 0,5-1 kertaa virtauksen Q_m virtauskanavan 10 halkaisija d_2 .

Patenttivaatimukset

- 1. Laitteisto perälaatikon säädössä, jossa perälaatikossa suoritetaan massan sakeusprofilointi, jolloin paperimassavirta säädetään neliöpainoltaan perälaatikon leveydeltä / rainan leveydeltä, jolloin perälaatikkoon tuodaan laimennusjae; laimennusvirtaus (Q₁) keskimääräisen konsentraation omaavan massasuspension virtaukseen (Qm) perälaatikon eri leveyskohtiin, jolloin tuotaessa laimennusvirtausta (Q₁) vastaavalla määrällä pienennetään massavirtausta (Q_m), että laimennusvirtaus (Q_l) tuodaan virtaukseen (Q_m) siten, että laimennusvirtauksen (Q1) kanavan (11) ja keskimääräisen massakonsentraation omaavan massan virtauksen (Q_m) kanavan (10) keskeisakselien (X,Y) välinen kulma (β) on alueella 90-180°, jolloin virtaus (Q_l) saadaan törmäämään virtaukseen (Q_m) , jolloin virtauksien $(Q_m$ ja Q_l) liittymäkohdassa aiheutetaan häiriö virtaukseen (Q_m) , jolloin summavirtaus (Q_{l+m}) pysyy vakiona, tunnettu siitä, että virtauskanavan (11) liittymäkohta kanavaan (10) on virtauspoikkipinta-alaltaan kavennettu, jolloin kiihdytetään laimennusvirtauksen (Q₁) virtausnopeutta (V₁) ja että kartiomaisesti kapenevan kanavan (11) leveys (b) on 0,5-1 kertaa virtauksen (Q_m) virtauskanavan (10) halkaisija (D₁), jolloin virtauskanava (11) on kavennettu virtausraoksi (12) ja jolloin virtausraosta (12) on tuotettu verhosuihku (S); seinämäksi (T₁) virtauksen (Q_m) eteen.
- Edellisen patenttivaatimuksen mukainen laitteisto, t u n n e t t u siitä, että laimennusvirtauksen (Q₁) virtausnopeuden (V₁) suhde massavirtauksen (Q_m) virtausnopeuteen (V_m) on alueella 5-20.
- Jonkin edellä olevan patenttivaatimuksen mukainen laitteisto, t u n n e t t u siitä,
 että massavirtaus (Q_m) tuotetaan paineessa (P₁) jakotukistaan (J₁) ja laimennusvirtaus (Q₁) paineessa (P₂) jakotukistaan (J₂) sekoituskohtaan ja että paine (P₂) on olennaisesti suurempi kuin paine (P₁).
- 4. Jonkin edellä olevan patenttivaatimuksen mukainen laitteisto, tunnettu siitä, 30 että virtauskanava (11) käsittää venttiilin (14), jolla säädetään virtauksen (Q_l) kuristusta ja siten virtauksen (Q_{m+1}) virtausosuuksien (Q_l) seossuhdetta.

5. Edellä olevan patenttivaatimuksen mukainen laitteisto, t u n n e t t u siitä, että yhdistyneelle virtaukselle (Q_{m+1}) on erillinen kuristus (15), jossa edistetään virtauksien $(Q_l$ ja $Q_m)$ sekoittumista.

Patentkrav

- 1. Anläggning vid reglering av en inloppslåda, i vilken inloppslåda man utför en tjockhetsprofilering av massan, varvid ytvikten av pappersmassaströmmen regleras över bredden av inloppslådan / över bredden av banan, varvid man till inloppslådan inför en utspädningsfraktion; en utspädningsström (Q_1) till massasuspensionströmmen (Q_m) med genomsnittlig koncentration till olika breddställen av inloppslådan, och då man inför utspädningsströmmen (Q₁) minskas massaströmmen (Q_m) med motsvarande mängd, att utspädningsströmmen (Q_1) införs till strömmen (Q_m) på sådant sätt, att vinkeln (β) mellan kanalen (11) av utspädningsströmmen (Q1) och mittaxlarna (X,Y) av kanalen (10) för massaströmmen (Q_m) med genomsnittlig massakoncentration är inom området 90-180°, varvid strömmen fås att stöta mot strömmen (Q_m), varvid man i anslutningsstället mellan strömmarna (Q_m och Q₁) förorsakar en störning i strömmen (Q_m), varvid summaströmmen (Q_{1+m}) hålls konstant, kännetecknad därav, att anslutningsstället av strömningskanalen (11) till kanalen (10) har en avsmalnad strömningstväryta, varvid man accelererar strömningshastigheten (V₁) av utspädningsströmmen (Q₁) och att bredden (b) av den konformigt avsmalnande kanalen (11) är 0,5-1 gånger diametern (D_1) av strömningskanalen (10) för strömmen (Q_m) , varvid strömningskanalen (11) är avsmalnad till en strömningsspringa (12) och varvid man producerat en ridåstråle (S) för strömningsspringan (12); till en vägg (T_1) framför strömmen (Q_m) .
- 2. Anläggning enligt föregående patentkrav, k ä n n e t e c k n a d därav, att förhållandet mellan strömningshastigheten (V_1) av utspädningsströmmen (Q_1) och strömningshastigheten (V_m) av massaströmmen är inom området 5-20.
- 3. Anläggning enligt något av ovanstående patentkrav, känneteck nad därav, att massaströmmen (Q_m) produceras vid trycket (P_1) från fördelningsbommen (J_1) och utspädningströmmen (Q_1) vid trycket (P_2) från fördelningsbommen (J_2) till blandningsstället och att trycket (P_2) är väsentligen högre än trycket (P_1) .

30

25

10

15

20

- 4. Anläggning enligt något av ovanstående patentkrav, k ä n n e t e c k n a d därav, att strömningskanalen (11) infattar en ventil (14), med vilken man reglerar strypningen av strömmen (Q_1) och sålunda blandningsförhållandet av strömningsdelarna (Q_1) och Q_m av strömmen (Q_{m+1}) .
- 5
- 5. Anläggning enligt ovanstående patentkrav, k ä n n e t e c k n a d därav, att det finns en separat strypning (15) för den kombinerade strömmen (Q_{m+1}) med vilket man befrämja blandningen av strömmarna (Q_1 och Q_m).

F16.10

FIG 2

FIG. 3

FIG. 1A

F1G.1B

KÄÄNNÄ!

PATENTTI-JA REKISTERIHALLITUS PATENTTIOSASTO

PATENTTIHAK.NRO	LUOKE	LUOKKA				TUTKIJA			TUTKIMUSTUL.				SAATU				
941365	Pas	DD (F-1/10), 100 PM					-						+				
TUTKITUT LUOKAT	TUT	10111111111											TUTK.				
	FI	FI SE NO DK CH DE WO EP GB US *)															
DSIF1/05,1/0 55 d S/10	少人	XX	< ×	X	X	<u>,</u> Ł	X	X	X								
55 d S/10		乂			X												
	-																
	_																
	-																
	_				 							†					
	_			+		 		<u> </u>		 	-	$\mid \mid$					
				 	 		ļ			 	\vdash	$+ \mid$					
	$-\mid -\mid$			-							-	$\mid \mid$					
	-								ļ	-	-	$\left\{ \ \right\}$					
	_		_	ļ	-		<u> </u>	-				$\ \ $					
		1		<u> </u>	l	l	<u> </u>	1	İ	1	<u></u>]					
PATENTTIVIRASTOJ JULKAISUT	EN	LUC	KKA			I	HUOI	м!	·· <u>·</u> ···								
1) FI-A- 93/5	08	2	SIF	1/0	ヹ					-							
2) SE-C-205	1 .	•															
3) DE-A-4323			シバニ			_ -											
4)																	
5)																	
6)																	
7)																	
8)																	
9)																	
*) TUTKIMUS	S KESK	EYTE	TTY E	ESTE	EEN	*) TUTKIMUS KESKEYTETTY ESTEEN LÖYTYMISEN TAKIA											