МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский ядерный университет «МИФИ» Саровский физико-технический институт –

Саровский физико-технический институт - филиал НИЯУ МИФИ

ФИЗИКО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА КВАНТОВОЙ ЭЛЕКТРОНИКИ

А.Н. Маначинский

ФИЗИЧЕСКАЯ ОПТИКА. КУРС ЛЕКЦИЙ

Издание третье, переработанное

Утверждено Научно-методическим Советом СарФТИ НИЯУ МИФИ

А.Н. Маначинский Курс лекций «Физическая оптика»

Методическое пособие является основой курса «Физическая оптика», преподаваемого студентам кафедры квантовой электроники СарФТИ НИЯУ МИФИ. В пособии в полной мере освещены все основные оптические явления и использован материал, заимствованный из последних научных публикаций.

Данное пособие состоит из 8 разделов: электромагнитная теория света, геометрическая и матричная оптика, интерференция света, дифракция света, дисперсия, волны в анизотропных средах, аберрации оптических систем и рассеяние света.

Содержание

	стр.
Введение	5
Раздел 1. Электромагнитная теория света	6
Оптический диапазон длин волн. Уравнения Максвелла. Плоские монохроматические волны и световые пучки. Поляризация света. Поток энергии, интенсивность, мощность и энергия света. Давление света и оптическая левитация.	
Раздел 2. Геометрическая и матричная оптика	16
Законы отражения и преломления. Формулы Френеля, угол Брюстера и полное внутреннее отражение. Просветляющие и зеркальные покрытия. Оптическая сила сферической поверхности, тонкой линзы, толстой линзы, двух тонких линз. Диоптрические, отражательные и телескопические системы. Матрица преобразования лучей. Физический смысл элементов матрицы, матрицы преломления и переноса. Матрицы многоэлементных оптических систем, формулы построения изображения линзой.	
Раздел 3. Интерференция света	36
Интерференционная схема Юнга. Интерференционные полосы Юнга. Спектральное описание размывания интерференционной картины. Интерференционные схемы. Интерференционные полосы равного наклона и равной толщины. Интерферометры Майкельсона и Маха-Цендера. Интерферометр Релея, звёздный интерферометр Майкельсона. Многолучевая интерференция, интерферометр Фабри-Перо, формула Эйри.	
Раздел 4. Дифракция света	56
Принцип Гюйгенса-Френеля. Зоны Френеля, зонная пластинка. Дифракция Френеля на круглом отверстии, круглом диске и крае экрана.	

Приближения Френеля и Фраунгофера. Дифракция	
Фраунгофера на прямоугольном и круглом отверстиях.	
Дифракционные решетки. Амплитудная и фазовая	
модуляция. Пространственное разложение спектра,	
разрешающая способность решетки. Голография.	
Раздел 5. Дисперсия	77
Пространственная и частотная дисперсия. Дисперсия	
газов, абсорбционные светофильтры. Поляризация	
среды, формула Лоренц-Лоренца. Фазовая и групповая	
скорости в диэлектриках. Распространение волн в	
плазме.	
Раздел 6. Волны в анизотропных средах	84
Γ лавные показатели преломления, обыкновенная и	
необыкновенная волны. Угол анизотропии, лучевая	
скорость, двойное лучепреломление. Поверхности и	
уравнения нормалей Френеля. Поляризаторы, анализ	
состояния поляризации. Эффекты Керра, Поккельса и	
Фарадея.	
Раздел 7. Аберрации оптических систем	97
Поперечные, волновые и продольные аберрации.	
Дефокусировка, сферическая аберрация, кома,	
астигматизм, дисторсия, хроматизм. Разложение по	
полиномам Цернике.	
Адаптивные системы фазового сопряжения и	
апертурного зондирования. Деформируемые зеркала.	
Датчик волнового фронта Шака-Гартмана.	
Раздел 8. Рассеяние света	117
Виды рассеяния. Молекулярное рассеяние, формула	
Релея, коэффициент рассеяния. Рассеяние в мутных и	
мелкодисперсных средах. Спектральный состав	
рассеянного света.	
Список литературы	124
· -	

Ввеление

Методическое пособие является основой курса «Физическая оптика», преподаваемого студентам кафедры квантовой электроники СарФТИ НИЯУ МИФИ и имеет своей целью подробно познакомить студентов с основными оптическими явлениями.

Курс «Физическая оптика» является основой для изучения таких курсов, как «Основы физики лазеров», «Спектроскопия», «Лазерные измерения», «Нелинейная оптика» и т.д. Для успешного освоения дисциплины необходимы знания по курсам общей физики и математики, векторному анализу, электричеству и магнетизму.

В данном методическом пособии в полной мере освещены все основные оптические явления и использован материал, заимствованный из последних научных публикаций. Лекции сгруппированы в 8 разделов: электромагнитная теория света, геометрическая и матричная оптика, интерференция света, дифракция света, дисперсия, волны в анизотропных средах, аберрации оптических систем и рассеяние света.

каждого раздела В начале приведен перечень рассматриваемых вопросов. Изложение материала начинается с ознакомления с экспериментальными фактами, которые затем обобщаются в виде физических законов и соотношений. Для понимания возможностей оптических методов исследования и их практических приложений в лекциях приводятся количественные характеристики источников света (спектральные, энергетические и пр.), оптических элементов (линз, призм, решеток, многослойных диэлектрических зеркал, абсорбционных светофильтров и пр.) и оптических сред (частотные зависимости показателя преломления, дисперсия фазовой групповой скоростей, коэффициенты И поглощения, рассеяния и пр.).

Раздел 1. Электромагнитная теория света

Оптический диапазон длин волн. Уравнения Максвелла. Плоские монохроматические волны и световые пучки. Поляризация света. Поток энергии, интенсивность, мощность и энергия света. Давление света и оптическая левитация.

Оптический диапазон длин волн

Электромагнитные волны излучаются атомами, молекулами и охватывают большой диапазон длин волн от радиоволн до гаммалучей (рис. 1.1).

Рис 11

K оптическим волнам относят более узкий диапазон. Видимая глазом область оптических волн находится в интервале $400\,$ нм< λ < $700\,$ нм. Оптические волны длинами $700\,$ нм< λ < $1\,$ мм относят к инфракрасному (ИК) излучению, а оптические волны длинами $1\,$ нм< λ < $400\,$ нм – к ультрафиолетовому (УФ) излучению.

Уравнения Максвелла

Электромагнитная теория света базируется на уравнениях Максвелла

$$rot\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}; \qquad rot\mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j};$$

$$div\mathbf{D} = \rho; \qquad div\mathbf{B} = 0,$$
(1.1)

где ${\bf E}$ и ${\bf D}$ – напряженность и индукция электрического поля; ${\bf H}$ и ${\bf B}$ – напряженность и индукция магнитного поля; ${\bf \rho}$ – объемная плотность заряда; ${\bf j}$ – плотность тока. ${\bf B}$ силу закона сохранения заряда ${\bf \rho}$ и ${\bf j}$ связаны уравнением непрерывности

$$\frac{\partial \rho}{\partial t} + \text{div}\mathbf{j} = 0. \tag{1.2}$$

Для решения задачи необходимо определить пять векторных величин: Е, D, H, B, j и одну скалярную величину р. Три недостающие векторные уравнения называются материальными уравнениями среды. В общем виде они записываются в виде функций

$$D = D(E);$$
 $B = B(H);$ $j = j(E).$ (1.3)

Вид этих функций зависит от свойств среды, в которой распространяется волна. Для вакуума ($j = 0, \rho = 0$) материальные уравнения принимают простейший вид

$$\mathbf{D} = \varepsilon_0 \mathbf{E}; \qquad \mathbf{B} = \mu_0 \mathbf{H}, \tag{1.4}$$

 $\mathbf{D} = \varepsilon_0 \mathbf{E}; \quad \mathbf{B} = \mu_0 \mathbf{H},$ (1.4) где $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{м}, \; \mu_0 = 4\pi \cdot 10^{-7} \, \Gamma \text{H/м} - электрическая и$ магнитная постоянные.

электромагнитной волны определяется Скорость постоянными ε_0 , μ_0 и равна

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \approx 3.10^8 \text{ m/c.}$$
 (1.5)

Плоские монохроматические волны и световые пучки

На больших расстояниях от начала координат фрагмент сферической волны может быть представлен в виде плоской волны (рис. 1.2).

Для плоских волн из уравнений Максвелла можно вывести следующие соотношения

Рис. 1.2

$$\sqrt{\varepsilon_0} \mathbf{e} \times \mathbf{E} = \sqrt{\mu_0} \mathbf{H}; \qquad -\sqrt{\mu_0} \mathbf{e} \times \mathbf{H} = \sqrt{\varepsilon_0} \mathbf{E}.$$
 (1.6)

Из них следуют несколько важных выводов. В плоской бегущей волне:

- 1) векторы Е, Н и е взаимно перпендикулярны, поэтому волна является поперечной;
- образуют правую тройку 2) эти векторы (рис. 1.3);
- 3) величины напряженностей электрического и

Рис. 1.3

магнитного полей изменяются во времени синхронно, достигая одновременно максимальных и минимальных значений.

Действительно, из приведенных выше векторных уравнений следует, что амплитуды векторов ${\bf E}$ и ${\bf H}$ связаны соотношением

$$\sqrt{\varepsilon_0} E = \sqrt{\mu_0} H. \tag{1.7}$$

Мы рассмотрели пространственную геометрию волн. Далее обратимся к временной зависимости. Фундаментальной моделью волны является *монохроматическая* волна, у которой напряженности полей изменяются по гармоническому закону с некоторой круговой частотой ω .

Монохроматическая волна характеризуется периодом $T=2\pi/\omega$, частотой $\nu=1/T=\omega/(2\pi)$, длиной волны $\lambda=cT$ и волновым числом $k=2\pi/\lambda=\omega/c$. Если ввести волновой вектор $k=k\mathbf{e}=\frac{\omega}{c}\mathbf{e}$, то уравнение плоской монохроматической волны запишется в виде

$$f(\mathbf{r}, \mathbf{t}) = A_0 \cos[\mathbf{k}\mathbf{r} - \omega \mathbf{t} + \varphi_0]. \tag{1.8}$$

Здесь функция f(r,t) описывает изменение напряженностей Е и Н. Подобным образом записывается и уравнение сферической монохроматической волны

$$f(r,t) = \frac{A_0}{r} \cos[\mathbf{kr} - \omega t + \varphi_0]. \tag{1.9}$$

Амплитуда плоской волны не меняется с расстоянием, а амплитуда сферической волны убывает. Фаза ф у обеих волн определяется выражением в квадратных скобках. Фазовая поверхность также называется волновым фронтом.

Мы рассмотрели электромагнитные волны, далее обратимся к оптическому диапазону, в котором могут формироваться направленные пучки света, распространяющиеся преимущественно вдоль одной координатной оси. В поперечном же направлении амплитуда быстро спадает от середины пучка к его периферии. Такие пучки создаются достаточно просто с использованием лазеров. Если пучок распространяется вдоль оси Оz, то уравнение волны может быть записано в виде

$$f(x, y, z, t) = A(x, y) \cos[kz - \omega t + \varphi_0(x, y, z)].$$
 (1.10)

В этом выражении предполагается, что амплитуда A(x,y) быстро убывает в плоскости Оху при удалении от оси Ох.

Важнейшими моделями реальных световых пучков являются пучки с прямоугольным и гауссовым распределением амплитуды.

На рис. 1.4 амплитуда пучка равна A_0 в пределах круглого сечения радиуса r_0 , который называется радиусом пучка. Вне этого сечения волна отсутствует. На рис. 1.5 амплитуда спадает к периферии по закону $A = A_0 \exp(-r^2/r_0^2)$ и при $r = r_0$ уменьшается в e=2,7 раза. Радиус r_0 называется характерным радиусом гауссова пучка по уровню 1/e для амплитуды.

Поляризация света

Ha рис. 1.6 изображена ситуация, вектор когда колеблется вдоль оси Ох, а вектор Н - вдоль оси Ov. ЭТОМ случае говорят, что волна является плоскополяризованной

или линейно

Рис. 1.6

поляризованной. Плоскость поляризации — это плоскость, в которой колеблется вектор \mathbf{E} (в данном случае плоскость Oxz).

Возможна и другая ситуация, когда вектор \mathbf{E} колеблется вдоль оси Оу, а вектор \mathbf{H} — вдоль оси Ох, при этом \mathbf{E} , \mathbf{H} и \mathbf{e} также должны образовывать правую тройку векторов. Суперпозиция обеих ситуаций приводит к электромагнитной волне, у которой векторы \mathbf{E} и \mathbf{H} , оставаясь взаимно перпендикулярными, могут менять направление в плоскости Оху. В этом случае волна будет эллиптически поляризованной.

Действительно, пусть в некоторой плоскости z=const

электрическое поле представляет собой суперпозицию гармонических полей, колеблющихся с одинаковой частотой вдоль осей Ох и Оу

 ${\bf E}({\bf t}) = {\bf e_x} {\bf A_x} \cos ({\bf kz} - \omega {\bf t} + {\bf \phi_1}) + {\bf e_y} {\bf A_y} \cos ({\bf kz} - \omega {\bf t} + {\bf \phi_2}),$ (1.11) где ${\bf e_x}$ и ${\bf e_y}$ – единичные векторы. Конец вектора ${\bf E}$ будет, в общем случае, двигаться по эллиптической траектории.

Направление движения конца вектора Е вдоль траектории и

ориентация эллипса относительно осей Ох и Оу зависят от разности $\Delta \varphi = \varphi_2 - \varphi_1$. Ha фаз изображены рис. 1.7 траектории при различных значениях $\Delta \varphi$. Bce траектории пространстве заключены прямоугольнике $2A_x{ imes}2A_v$. При $\Delta\phi=0$, π поляризация называется линейной. При $\Delta \varphi =$ $\pi/2$, $3\pi/2$ И $A_x = A_v$ поляризация называется круговой.

Принято определять направление вращения конца вектора **E** с точки зрения наблюдателя, который смотрит навстречу волне. При движении конца вектора **E** по часовой стрелке поляризация

Рис. 1.7

называется правой, а при движении против часовой – левой.

Поток энергии, интенсивность, мощность и энергия света

Из повседневного опыта известно, что световая волна переносит энергию. Подсчитаем поток энергии, переносимой плоской волной через сечение, ориентированное перпендикулярно направлению распространения волны (оси Oz). Объемная плотность энергии электромагнитного поля равна

$$u = \frac{1}{2} \left(\varepsilon_0 E^2 + \mu_0 H^2 \right). \tag{1.12}$$

Если для определенности принять, что волна плоскополяризована ($\mathbf{E} = \mathbf{E_x} \mathbf{e_x}, \mathbf{H} = \mathbf{H_y} \mathbf{e_y}$), как это изображено на рис. 1.8, то через заштрихованную поверхность площади σ за время Δt будет перенесена энергия,

заключенная в параллелепипеде длиной с∆t

$$\Delta W = u\sigma c\Delta t = \frac{1}{2} \left(\epsilon_0 E_x^2 + \mu_0 H_y^2 \right) \frac{1}{\sqrt{\epsilon_0 \mu_0}} \sigma \Delta t.$$
 (1.13)

Поскольку в плоской волне $\sqrt{\epsilon_0} E_x = \sqrt{\mu_0} H_y$, последнее выражение легко преобразовать к виду

$$\Delta W = \epsilon_0 E_x^2 \frac{1}{\sqrt{\epsilon_0 \mu_0}} \sigma \Delta t = E_x H_y \sigma \Delta t. \tag{1.14}$$

Количество энергии, переносимой волной за единицу времени через площадку единичного сечения, ориентированную перпендикулярно распространяющейся волне, называется вектором Пойнтинга и определяет *поток энергии*. В рассматриваемом нами случае этот вектор имеет лишь одну компоненту вдоль оси Оz, которая равна

$$S_{z} = \frac{\Delta W}{\sigma \Delta t} = E_{x} H_{y}. \tag{1.15}$$

В общем случае выражение для вектора Пойтинга можем записать в следующем виде

$$\mathbf{S} = \mathbf{E} \times \mathbf{H}.\tag{1.16}$$

Если волна монохроматическая, то

$$E_{x} = A\cos(kz - \omega t + \varphi_{0}), \qquad H_{y} = \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}E_{x} = c\varepsilon_{0}E_{x}.$$
 (1.17)

Тогда

$$S_z = c\varepsilon_0 A^2 \cos^2(kz - \omega t + \varphi_0). \tag{1.18}$$

Поток энергии «пульсирует» с течением времени. Поэтому на практике пользуются усредненной за период величиной, которая называется интенсивностью волны и равна

$$I = \langle S_z \rangle = \frac{1}{T} \int_0^T S_z dt = \frac{1}{2} c \varepsilon_0 A^2;$$
 [I] = BT/CM². (1.19)

В световом пучке интенсивность изменяется в поперечном сечении. Поэтому вводят понятие мощности светового пучка, которая связана с интенсивностью следующим образом

$$P = \iint I(x,y)dxdy; \qquad [P] = B_T, \qquad (1.20)$$

где интегрирование производится по всему поперечному сечению z=const.

Для пучка с прямоугольным распределением амплитуды мощность пучка равна

$$P = I_0 \pi r_0^2. (1.21)$$

 $P = I_0 \pi r_0^2$. (1.21) гауссова пучка ($A = A_0 e^{-r^2/r_0^2}$) интенсивность распределена по закону

$$I = I_0 e^{-2r^2/r_0^2} (1.22)$$

и мощность такого пучка будет равна

$$P = \int_{0}^{\infty} I_0 e^{-2r^2/r_0^2} 2\pi r dr = \frac{1}{2} I_0 \pi r_0^2.$$
 (1.23)

С точностью до коэффициента, мощность гауссова пучка совпадает с мощностью пучка с прямоугольным распределением амплитуды. Поэтому в общем случае можно записать

$$P \sim I_0 \pi r_0^2$$
. (1.24)

Если излучение переносится световым импульсом, то мощность изменяется во времени и импульс переносит через поперечное сечение конечную энергию

$$W = \int P(t)dt = \iiint I(x, y, t)dxdydt; \qquad [W] = Дж. \qquad (1.25)$$

Для импульса с прямоугольным временным профилем мощность $P(t) = P_0$. При длительности импульса τ_0 энергия равна

$$W = P_0 \tau_0. \tag{1.26}$$

Для импульса с гауссовым временным профилем мощность изменяется во времени

$$P(t) = P_0 e^{-2t^2/\tau_0^2}. (1.27)$$

Энергия такого импульса равна

$$W = \int_{-\infty}^{\infty} P_0 e^{-2t^2/\tau_0^2} dt = \sqrt{\frac{\pi}{2}} P_0 \tau_0.$$
 (1.28)

С точностью до коэффициента, энергия гауссова импульса совпадает с энергией импульса с прямоугольным распределением по времени. Поэтому в общем случае можно записать

$$W \sim P_0 \tau_0 \sim I_0 \pi r_0^2 \tau_0. \tag{1.29}$$

Давление света и оптическая левитация

При падении на материальное тело свет оказывает на него давление. Давление света Солнца на десять порядков меньше атмосферного, поэтому в земных условиях световое давление не играет никакой роли. В космосе яркий пример светового давления — это отклонение хвостов комет в сторону от Солнца. Это отклонение возникает в результате воздействия солнечного света на частицы, составляющие хвост кометы.

Для расчета светового давления рассмотрим нормальное падение линейно поляризованной плоской волны на поверхность твердого тела (рис. 1.9). При воздействии электрического поля на частицу с зарядом q,

Рис. 1.9

входящую в состав атома, она приобретет скорость $v_x e_x$. Магнитное поле, воздействуя на движущуюся частицу, начнет ее «заталкивать» внутрь тела. У частицы появится и вторая компонента скорости $v_z e_z$. Через полпериода изменятся направления векторов E_x , H_y и $v_x e_x$ на противоположные, но магнитное поле по-прежнему будет «заталкивать» частицу вдоль оси Оz внутрь тела. Это и является

причиной светового давления.

Давление связано с интенсивностью падающего света формулой

$$p = \frac{I}{c}. (1.30)$$

Эта формула получена в предположении, что световой импульс полностью передается телу. При падении света на частично отражающую поверхность давление увеличивается, поскольку часть светового импульса уносится в обратном направлении. Поэтому давление света будет зависеть от коэффициента отражения R для интенсивности

$$p = \frac{I}{c}(1 + R). \tag{1.31}$$

При падении на идеальную зеркальную поверхность R=1 и давление увеличится вдвое.

На основе явления давления света построена идея лазерного термоядерного синтеза. В результате термоядерной реакции дейтерия и трития $\text{Д+T}=^4\text{He+n+Q}$ высвобождается большая энергия Q=17,6 MэB. Но для осуществления такой реакции необходимо сблизить ядра, преодолевая кулоновские силы отталкивания между протонами.

Один из способов сблизить ядра состоит в том, чтобы облучить ядерное топливо излучением многоканального лазера. На рис. 1.10 показана схема прямого облучения, в которой излучение лазера по нескольким направлениям с разных сторон падает на мишень. Такой метод получил название лазерный термоядерный синтез (ЛТС).

Оценки показывают, что для зажигания термоядерной мишени нужно создать лазерное давление р $\sim 5\cdot 10^9$ атм. Для этого интенсивность света, падающего на поверхность мишени, должна быть равна $I\sim 10^{15}~\rm BT/cm^2$. Поэтому для осуществления ЛТС необходимо использовать мощные лазерные системы. Сейчас в мире создаются такие установки – NIF (США), LMJ (Франция), УФЛ-2М (Россия) и т.д.

При прямом облучении поверхности мишени весьма сложно обеспечить сферическую симметрию процесса сжатия. По этой

причине используется непрямое облучение, при котором излучение лазера с разных направлений попадает на внутренние стенки полости (рис. 1.11), выполненные из вещества с большим атомным номером, например, золота. Эта полость называется хольраум. Около 80% световой энергии преобразуется в мягкое рентгеновское

излучение, которое с разных сторон падает на мишень, находящуюся в середине полости.

Световое давление также используют для практических целей. Одним из

Рис. 1.11

таких его применений является воздействие на малые частицы лучом лазера. Если излучение лазера сфокусировать на частицу, то на нее будет оказано давление и сила

$$p = \frac{I}{c};$$
 $F = pS = IS/c = P/c,$ (1.32)

где P – мощность светового пучка, S – площадь частицы.

Например, для лазера мощностью $P=1\,\mathrm{BT}$ и частиц радиусом $r_0=10$ мкм сила оптического давления в 10^2 раз больше силы тяжести. Для более мелких частиц радиусом $r_0=1$ мкм сила оптического давления в 10^5 раз больше силы тяжести. Это означает, что частицы разных размеров будут приобретать разные ускорения. Следовательно, воздействуя излучением лазера на частицы разных размеров (вирусы, макромолекулы и т.д.), можно произвести их пространственное разделение.

Если подсветить частицу лучом лазера снизу вверх, то можно при определенной мощности излучения скомпенсировать силу тяжести и тем самым удержать частицу в «подвешенном» состоянии. Оптическая левитация — это состояние «невесомости» для частицы, подсвеченной снизу лучом лазера. Оптическая левитация применяется для манипуляций над микрочастицами.

Раздел 2. Геометрическая и матричная оптика

Законы отражения и преломления. Формулы Френеля, угол Брюстера и полное внутреннее отражение. Просветляющие и зеркальные покрытия. Оптическая сила сферической поверхности, тонкой линзы, толстой линзы, двух тонких линз. Диоптрические, отражательные и телескопические системы.

Матрица преобразования лучей. Физический смысл элементов матрицы, матрицы преломления и переноса. Матрицы многоэлементных оптических систем, формулы построения изображения линзой.

Законы отражения и преломления

При падении световой волны на границу раздела двух сред возникают две волны – отраженная и проходящая через эту границу. При изменении угла наклона падающего луча меняются не только углы наклонов, но и яркости отраженного и преломленного лучей. При этом коэффициент отражения при наклонном падении больше, чем при падении, нормальном к поверхности.

коллимированный монохроматический световой Пусть пучок падает наклонно на плоскую границу раздела двух сред. Дифракцией и поглощением можно пренебречь, так как мы будем рассматривать пучки вблизи границы раздела. Рассмотрим ситуацию, когда обе среды являются прозрачными диэлектриками с действительной известными значениями части

преломления n_1 и n_2 . Пусть граница раздела сред 1 и 2 находится в плоскости z = 0, как изображено на рис. 2.1.

Падающий луч, лежащий в плоскости падения Охz, составляет угол θ_i с нормалью к границе раздела. Его направление задается единичным вектором e_i . Отраженный луч ориентирован направлении единичного В вектора $\mathbf{e_r}$, составляющего угол θ_r с нормалью, а преломленный – в направлении $\mathbf{e_t}$ под углом θ_t к нормали.

Рис. 2.1

Запишем напряженности электрического поля этих трех волн

$$\mathbf{E}_{\mathbf{i},\mathbf{r},\mathbf{t}} = \mathbf{A}_{\mathbf{i},\mathbf{r},\mathbf{t}} \cos\left(\overrightarrow{\mathbf{k}} \overrightarrow{\mathbf{r}} - \omega \mathbf{t} + \varphi_0\right). \tag{2.1}$$

Аргумент функции можно расписать следующим образом
$$\overrightarrow{\mathbf{k}} \overrightarrow{\mathbf{r}} - \omega t + \phi_0 = \omega \left(\frac{2\pi}{\lambda} \frac{\overrightarrow{\mathbf{e}} \ \overrightarrow{\mathbf{r}}}{2\pi \nu} - t \right) + \phi_0 = \omega \left(\frac{\overrightarrow{\mathbf{e}} \ \overrightarrow{\mathbf{r}}}{v} - t \right) + \phi_0. \tag{2.2}$$

Здесь $v = \lambda v = c/n$ – фазовая скорость волны. Поле в первой среде есть сумма полей падающей и отраженной волн, а во второй среде определяется полем лишь одной преломленной волны

$$E_1 = E_i + E_r$$
, $E_2 = E_t$. (2.3)

 $\begin{aligned} E_1 &= E_i + E_r, & E_2 &= E_t. \\ \Gamma \text{раничные} & \text{условия} & \text{требуют} \end{aligned}$ непрерывности тангенциальных (лежащих в плоскости Оху) компонент

$$E_{1\tau} = E_{2\tau}.$$
 (2.4)

Непрерывность тангенциальных компонент будет аргументы функций выполняться, напряженности если электрического поля изменяются синхронно, т.е. одинаковы в любой момент времени

$$\frac{\overrightarrow{e_i} \cdot \overrightarrow{r}}{V_1} = \frac{\overrightarrow{e_r} \cdot \overrightarrow{r}}{V_1} = \frac{\overrightarrow{e_t} \cdot \overrightarrow{r}}{V_2}.$$
 (2.5)

Так как вектор \vec{r} лежит в плоскости Оху, то это соотношение можно записать в следующем виде

$$\frac{e_{i\tau}}{v_1} = \frac{e_{r\tau}}{v_1} = \frac{e_{t\tau}}{v_2}$$
 (2.6)

или

$$\frac{\sin\theta_{i}}{v_{1}} = \frac{\sin\theta_{r}}{v_{1}} = \frac{\sin\theta_{t}}{v_{2}},\tag{2.7}$$

откуда следуют закон отражения

$$\theta_{i} = \theta_{r} \tag{2.8}$$

и закон преломления (закон Снеллиуса)

$$\frac{\sin\theta_{\rm i}}{\sin\theta_{\rm t}} = \frac{v_1}{v_2} = \frac{n_2}{n_1}.\tag{2.9}$$

Есть материалы с отрицательным показателем преломления. При падении света в среду с $n_2 < 0$ угол $\theta_t < 0$. Это означает, что преломленный луч будет находиться по одну сторону от нормали с падающим. Слева на рис. 2.2 схематично показан ход лучей от точечного источника через плоскопараллельную стеклянную пластинку, а справа - через слой материала с отрицательным показателем преломления $n_2 = -1$. В последнем случае слой формирует изображение точечного источника. Важно отметить, что какой бы угол не образовывали падающие лучи с нормалью к поверхности материала, все прошедшие лучи пересекутся в одной точке. Поэтому такой слой называют суперлинзой. Однако в отличие от обычной линзы он не фокусирует коллимированный пучок света.

Рис. 2.2

Формулы Френеля, угол Брюстера и полное внутреннее отражение

Электрическое и магнитное поля можно представить в виде векторной суммы параллельной (лежащей в плоскости падения Oxz) и перпендикулярной компонент

$$\mathbf{E} = \mathbf{E}_{\parallel} + \mathbf{E}_{\perp}, \qquad \mathbf{H} = \mathbf{H}_{\parallel} + \mathbf{H}_{\perp}. \tag{2.10}$$

Вначале положим, что электрическое поле ${\bf E}={\bf E}_{\parallel}$, как изображено на рис. 2.3. Так как векторы ${\bf E},\ {\bf H}$ и ${\bf e}$ образуют правую тройку векторов, то ${\bf H}={\bf H}_{\perp}$. Условие непрерывности ${\bf E}_{1\tau}={\bf E}_{2\tau}$ в этом случае примет вид

$$E_{i_{\parallel}}\cos\theta_{i} + E_{r_{\parallel}}\cos\theta_{r} = E_{t_{\parallel}}\cos\theta_{t}. \tag{2.11}$$

Второе условие $H_{1\tau} = H_{2\tau}$ означает, что $H_{i_{\perp}} + H_{r_{\perp}} = H_{t_{\perp}}$. Вектора электрического и магнитного полей в диэлектрической среде ($\epsilon \neq 1$) связаны соотношением $\sqrt{\epsilon_0 \epsilon} E = \sqrt{\mu_0} H$. Учитывая $\sqrt{\epsilon} = n$ получаем $H \sim nE$ и второе граничное условие запишем в виде

$$n_1 E_{i_{\parallel}} + n_1 E_{r_{\parallel}} = n_2 E_{t_{\parallel}}. \tag{2.12}$$

Таким образом, имеем систему уравнений

$$\begin{cases} E_{i_{\parallel}} \cos \theta_{i} + E_{r_{\parallel}} \cos \theta_{r} = E_{t_{\parallel}} \cos \theta_{t} \\ n_{1} E_{i_{\parallel}} + n_{1} E_{r_{\parallel}} = n_{2} E_{t_{\parallel}} \end{cases}$$
 (2.13)

решая которую с использованием законов отражения и преломления можно получить следующие две формулы для поляризации, параллельной плоскости падения

$$\begin{split} r_{\parallel} &= \frac{E_{r_{\parallel}}}{E_{i_{\parallel}}} = -\frac{tg(\theta_{i} - \theta_{t})}{tg(\theta_{i} + \theta_{t})};\\ t_{\parallel} &= \frac{E_{t_{\parallel}}}{E_{i_{\parallel}}} = \frac{2\sin\theta_{t}\cos\theta_{i}}{\sin(\theta_{i} + \theta_{t})\cos(\theta_{i} - \theta_{t})}. \end{split} \tag{2.14}$$

Рассуждая аналогично, можно получить формулы для поляризации, перпендикулярной плоскости падения

$$r_{\perp} = \frac{E_{r_{\perp}}}{E_{i_{\perp}}} = -\frac{\sin(\theta_{i} - \theta_{t})}{\sin(\theta_{i} + \theta_{t})};$$

$$t_{\perp} = \frac{E_{t_{\perp}}}{E_{i_{\perp}}} = \frac{2\sin\theta_{t}\cos\theta_{i}}{\sin(\theta_{i} + \theta_{t})}.$$
(2.15)

Поляризация, параллельная плоскости падения, называется р-поляризацией, а поляризация, перпендикулярная плоскости падения — s-поляризацией. Последние четыре формулы называются формулами Френеля, которые описывают коэффициенты отражения и пропускания для напряженности E электрического поля. На практике используют энергетические коэффициенты отражения R и пропускания E для интенсивности E EH.

На рис. 2.4 представлены зависимости $R_{\parallel}=r_{\parallel}^2$ и $R_{\perp}=r_{\perp}^2$ от угла падения при распространении волны из воздуха $(n_1=1)$ в стекло $(n_2=1,5)$.

При нормальном падении ($\theta_i = 0$) выражения

для энергетических коэффициентов отражения и пропускания не зависят от поляризации света и записываются следующим образом

$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2; \qquad T = \frac{4n_1n_2}{(n_1 + n_2)^2}.$$
 (2.16)

При распространении света из воздуха в стекло R=0,04, а T=0.96.

Рассмотрим ситуацию, когда $\theta_i+\theta_t=\pi/2$. В этом случае $r_{\parallel}=0$, т.е. одна из компонент не отражается. Соответствующий угол падения $\theta_i=\theta_{\rm B}$ называется *углом Брюстера*. Применяя закон

преломления, получим выражение для угла Брюстера

$$\frac{\sin\theta_{\rm B}}{\sin\theta_{\rm t}} = \frac{\sin\theta_{\rm B}}{\sin\left(\frac{\pi}{2} - \theta_{\rm B}\right)} = tg\theta_{\rm B} = \frac{n_2}{n_1}; \qquad \theta_{\rm B} = \arctan\left(\frac{n_2}{n_1}\right). \tag{2.17}$$

Угол Брюстера для границы воздух-стекло равен 56°. При падении под углом Брюстера света, поляризованного в плоскости падения, его отражения не происходит. Этот эффект применяется в газовых лазерных генераторах, когда окна лазерной кюветы заклоняются на угол Брюстера. При многократном отражении от окон излучение с поляризацией, перпендикулярной плоскости падения, частично отражается, т.е. испытывает потери. Излучение с поляризацией, параллельной плоскости падения, не отражается, т.е. не испытывает потери и именно с этим излучением развивается генерация.

Из закона преломления следует, что при падении света из оптически менее плотной в более плотную среду $(n_1 < n_2)$ преломленный угол меньше падающего $\theta_t < \theta_i$. И наоборот, в случае падения света из оптически более плотной в менее плотную среду $(n_1 > n_2)$ преломленный угол больше падающего $\theta_t > \theta_i$. При определенных условиях в последнем случае преломленный угол становится равным 90° и свет не проходит в оптически менее плотную среду. Такой угол падения называется углом полного внутреннего отражения. Величина этого угла находится из закона преломления

$$\frac{\sin\theta_{\Pi BO}}{\sin\frac{\pi}{2}} = \frac{n_2}{n_1}; \ \theta_{\Pi BO} = \arcsin\left(\frac{n_2}{n_1}\right). \tag{2.18}$$

Угол полного внутреннего отражения для границы стекловоздух равен 41°. Явление полного внутреннего отражения реализуется в волоконных световодах, предназначенных для передачи информации и световой энергии на большие расстояния. Они представляют собой тонкие длинные нити, изготовленные из плавленого кварца SiO_2 . В сердцевину нити добавлены примеси GeO_2 с целью увеличения показателя преломления. В простейшем случае нить, сечение которой изображено на рис. 2.5, имеет ступенчатый профиль показателя преломления.

Относительная разность показателей преломления невелика

$$\Delta = \frac{n_1 - n_2}{n_1} \approx 3.10^{-2}, \tag{2.19}$$

но этого оказывается достаточно, чтобы луч света, составляющий с осью световода небольшой угол, испытывал полное внутреннее отражение. Волна распространяется образом главным сердцевине, проникая незначительно оболочку.

Просветляющие и зеркальные покрытия

Несмотря на то, что энергетический коэффициент отражения от стеклянной поверхности составляет всего 4%, его можно заметно уменьшить, если на поверхность нанести тонкий слой диэлектрика, подобрав его показатель преломления и толщину. Такое покрытие называется просветляющим.

Пусть волна падает нормально на границу раздела, на которую нанесен тонкий слой толщиной L с показателем преломления n_3 , как изображено на рис. 2.6. Падающая волна будет испытывать отражение от обеих границ слоя. Выберем показатель преломления слоя равным $n_3 = \sqrt{n_1 n_2}$. Подставив эту величину в формулу для энергетического коэффициента

Рис. 2.6

отражения при нормальном падении получим, что коэффициенты отражения от обеих границ будут одинаковы $R_{13}=R_{32}.$

В силу малости коэффициентов отражения можно учесть лишь однократные отражения падающей волны от границ слоя. Тогда две отраженные волны будут иметь приблизительно равные амплитуды, а их разность фаз будет зависеть от оптической толщины n_3L слоя. Если

$$n_3L = (2m - 1)\frac{\lambda_0}{4}, \quad m = 1, 2, 3, ...,$$
 (2.20)

то отраженные волны при интерференции взаимно компенсируются. Слой, удовлетворяющий этому условию, называют четвертьволновым. Отраженная волна для такого слоя будет практически отсутствовать, а вся световая энергия проникнет через

четвертьволновый слой во вторую среду.

Просветляющие покрытия наносятся, например, на поверхность оптических линз фотоаппаратов и видеокамер. Показатель преломления и толщину подбирают с тем расчетом, чтобы обеспечить наилучшее проникновение для длины волны, принадлежащей к наиболее интенсивной желто-зеленой части спектра. Поскольку в отраженном свете эта часть спектра отсутствует, то поверхность линзы становится окрашенной в синий или фиолетовый цвета.

Если для четвертьволнового слоя показатель преломления выбрать равным не $n_3 = \sqrt{n_1 n_2}$, а $n_3 > n_1$, n_2 , то коэффициент отражения увеличится, как показано на рис. 2.7. Покрытия, увеличивающие отражение, называются зеркальными.

Из рис. 2.7 видно, что коэффициент отражения от одного слоя не очень большой $R \sim 0.5$, при этом отражаются волны, для которых слой

Рис. 2.7

является четвертьволновым. Для получения хорошо отражающих зеркал в широком спектральном диапазоне на поверхность стеклянной пластинки наносят напылением много чередующихся четвертьволновых слоев диэлектриков. В результате образуется

многослойное диэлектрическое зеркало с высоким коэффициентом отражения.

Например, при напылении на стекло 14 четвертьволновых слоев можно получить зеркало, спектральная зависимость коэффициента отражения которого показана на рис. 2.8.

Используя разнообразные покрытия и увеличивая число слоев можно изготавливать зеркала, хорошо отражающие свет в разных спектральных диапазонах с коэффициентом отражения $R=0,999\dots$

Выше мы рассматривали зеркала с диэлектрическим напылением, отражающие свет за счет интерференции. Также есть зеркала с металлическим напылением, которые отражают свет от одной границы раздела на основе законов отражения и преломления без интерференции.

Оптическая сила сферической поверхности, тонкой линзы, толстой линзы, двух тонких линз

При распространении света через сферическую поверхность раздела сред волновой фронт приобретает кривизну и пучок света расходящимся. становится сходящимся или протяженность границы раздела ограничена, то будет происходить вследствие которой радиус кривизны сформированной при пересечении границы, будет изменяться. При приближении волнового фронта к точке фокусировки из-за дифракции радиус усиливающейся кривизны неограниченно возрастать. Таким образом, сходящаяся волна фокусируется не в точку, а в пятно конечных размеров.

Рассмотрим приближение геометрической оптики без учета эффектов дифракции. На рис. 2.9 показана

сферическая поверхность раздела двух сред с радиусом кривизны R=OC и центром кривизны в точке C. Из законов геометрической оптики можно найти положение точки фокусировки P, т.е. расстояние f = OP.

$$\frac{1}{f} = \frac{n_2 - n_1}{n_1} \frac{1}{R} \qquad \text{или} \qquad \frac{1}{f} = \frac{D}{n_1}, \tag{2.21}$$

где $D = \frac{n_2 - n_1}{R} - \text{оптическая сила, } [D] = \text{дптр} = 1/\text{м}.$

Для границы воздух-стекло формулы преобразуются к следующему виду

$$\frac{1}{f} = D = \frac{n-1}{R}.$$
 (2.22)

Для нескольких поверхностей их оптические силы

складываются следующим образом

$$D = \frac{1}{r_1} \sum_{i=1}^{N} D_i r_i, \qquad (2.23)$$

где r_1 – расстояние между падающим на систему лучом и оптической осью.

Тонкая линза представляет собой прозрачное тело, ограниченное двумя сферическими поверхностями, при этом

толщина линзы много меньше их радиусов кривизны. На рис. 2.10 показаны двояковыпуклая и двояковогнутая линзы и указаны радиусы кривизны поверхностей линзы. Знаки радиусов кривизны определяются следующим образом:

если поверхность выгнута навстречу пучку, распространяющемуся слева направо, то её радиус считается положительным и наоборот.

Пусть ${\bf n_n}$ – показатель преломления линзы, а ${\bf n_0}$ – показатель преломления среды. Так как для тонкой линзы ${\bf r_1}={\bf r_2},$ то оптическая сила суммы двух поверхностей будет равна

$$D = D_1 + D_2 = \frac{n_{\pi} - n_0}{R_1} + \frac{n_0 - n_{\pi}}{R_2} =$$

$$= (n_{\pi} - n_0) \left(\frac{1}{R_1} - \frac{1}{R_2}\right). \tag{2.24}$$

Для двояковыпуклой линзы D>0, а для двояковогнутой — D<0. Используя связь оптической силы с фокусным расстоянием, получаем формулу тонкой линзы

$$\frac{1}{f} = \frac{D}{n_0} = \frac{n_{\pi} - n_0}{n_0} \left(\frac{1}{R_1} - \frac{1}{R_2}\right). \tag{2.25}$$

Для толстой линзы входящий и выходящий лучи находятся на разном расстоянии от оптической оси, то есть $r_1 \neq r_2$. Для оптической силы толстой линзы можно получить следующее выражение

$$D = \frac{1}{r_1} (D_1 r_1 + D_2 r_2) = D_1 + D_2 - \frac{D_1 D_2}{n_{\pi}} L,$$
 (2.26)

где L – толщина линзы.

В частности, для тонкой линзы L = 0 и $D = D_1 + D_2$. Зная оптическую силу, можно найти фокусное расстояние, которое отсчитывается от главной плоскости линзы Н

$$\frac{1}{f} = \frac{D}{n_0} = \frac{1}{n_0} \left(D_1 + D_2 - \frac{D_1 D_2}{n_{\pi}} L \right), \tag{2.27}$$
 где $D_1 = \frac{n_{\pi} - n_0}{R_1}$ и $D_2 = \frac{n_0 - n_{\pi}}{R_2}$.

Толстая линза, как и любая оптическая система, имеет две главные плоскости H_1 и H_2 , которые расположены на расстояниях h₁ и h₂ от внешних граней

Рис. 2.12

$$h_1 = \frac{D_2 L}{D n_{\pi}}, \qquad h_2 = \frac{D_1 L}{D n_{\pi}}.$$
 (2.28)

Ход луча, параллельного оптической оси, через систему из двух тонких линз показан на рис. 2.13. Оптическая сила тонкой линзы определяется по формуле

Рис. 2.13

$$D = (n_{\pi} - n_0) \left(\frac{1}{R_1} - \frac{1}{R_2} \right). \tag{2.29}$$

Если D_1 и D_2 – оптические силы каждой из линз, то для оптической силы системы из двух линз можно вывести соотношение

$$D = \frac{1}{r_1} (D_1 r_1 + D_2 r_2) = D_1 + D_2 - \frac{D_1 D_2}{n_0} L,$$
 (2.30)

которое совпадает с формулой для оптической силы толстой линзы. Зная оптическую силу, можно найти фокусное расстояние системы из двух линз, которое отсчитывается от главной плоскости системы Н

$$\frac{1}{f} = \frac{D}{n_0} = \frac{1}{n_0} \left(D_1 + D_2 - \frac{D_1 D_2}{n_0} L \right). \tag{2.31}$$

Диоптрические, отражательные и телескопические системы

Оптические системы подразделяют на три класса: диоптрические системы – системы, пропускающие свет (линза); отражательные системы – системы, отражающие свет (зеркало); телескопические системы – системы, преобразующие поперечный размер параллельного пучка (телескоп).

Рассмотрим *диоптрические системы*. Максвелл сформулировал два условия, которым должна удовлетворять диоптрическая система:

- 1) для любой точки P_0 существует точка P, в которой формируется действительное или мнимое изображение;
- 2) для любого плоского объекта, перпендикулярного оптической оси, существует сопряженная плоскость, где находится его изображение.

У диоптрических систем есть сопряженные, фокальные и главные плоскости. Сопряженные плоскости — это плоскости предмета и его изображения. Фокальные плоскости — это плоскости, сопряженные с бесконечно удаленными плоскостями. С

Рис. 2.14

бесконечно удаленными плоскостями. Свет, идущий от бесконечно удаленного предмета (параллельный пучок), фокусируется в одной из фокальных плоскостей, как показано на рис. 2.14. Если на выходе получается расходящийся пучок, то в одной из этих плоскостей пересекаются продолжения лучей.

Среди бесконечного числа пар сопряженных плоскостей особое место занимают главные плоскости. Главные плоскости— это сопряженные плоскости, для которых коэффициент увеличения

М=1. Для нахождения главных плоскостей рассмотрим ход лучей через систему, изображенную на рис. 2.15.

Луч 1, идущий из первого фокуса F_1 ,

 F_1 F_1 F_2 F_2 F_2 F_3 F_4 F_4

выходит параллельно главной оптической оси. Луч 2, идущий параллельно главной оптической оси на том же удалении от нее, что

и выходящий луч 1, проходит через второй фокус F_2 . Если через точки P_1 и P_2 , находящиеся на пересечениях продолжения лучей, провести две плоскости H_1 и H_2 , перпендикулярные оптической оси, то они и будут главными плоскостями.

Передним фокусным расстоянием называется величина $f_1=O_1F_1$, а задним фокусным расстоянием — величина $f_2=O_2F_2$. Фокальные отрезки — это расстояния F_1G_1 и F_2G_2 от фокальных точек до внешних граней оптической системы.

Если заданы положения фокальных и главных плоскостей, то можно построить ход лучей в системе не имея информации о других параметрах системы, таких как радиусы кривизны элементов, их количество, взаимное расположение и показатели преломления сред между ними. На

рис. 2.16 выполнено такое построение.

Из геометрических построений, приведенных на

Рис. 2.16

рис. 2.16, можно вывести следующее соотношение

$$\frac{f_1}{l_1} + \frac{f_2}{l_2} = 1, (2.32)$$

Это формула построения изображения оптической системой. Масштабный коэффициент увеличения при этом равен

$$M = \frac{d_2}{d_1} = \frac{f_1 l_2}{f_2 l_1}.$$
 (2.33)

В случае тонкой линзы, когда $f_1=f_2=f,$ формулы преобразуются к следующему виду

$$\frac{1}{l_1} + \frac{1}{l_2} = \frac{1}{f}, \qquad M = \frac{l_2}{l_1}.$$
 (2.34)

Для нахождения положений плоскостей предмета и изображения относительно фокальных плоскостей S_1 и S_2 используют формулу Ньютона

$$S_1 S_2 = f_1 f_2. (2.35)$$

Рассмотрим *отражательные системы* на примере вогнутого сферического зеркала. Пример построения изображения

для отражательной системы показан на рис. 2.17. Для такой системы обе главные плоскости Н1 и Н2 совпадают и можно вывести следующие соотношения

$$\frac{1}{f} = D = \frac{2}{R}, \qquad f = \frac{R}{2}.$$
 (2.36)

Рассмотрим телескопические системы. Система из двух линз называется телескопической, если софокусны, то есть фокуса F₁ и F₂ лин3 совпадают. рис. 2.18 показан ход лучей параллельного

Рис. 2.17

падающего на телескопическую систему. При $f_1 > f_2$ система из двух софокусных линз является телескопом, а при $f_1 < f_2$ – коллиматором.

света,

Фокусное расстояние телескопической системы равно бесконечности. а оптическая равна нулю

пучка

$$f \to \infty$$
, $\frac{1}{f} = D = 0$. (2.37)

Параллельный луч, прошедший через телескопическую систему, останется параллельным. Изменится лишь его расстояние от оптической оси.

Дифракционная расходимость наименышая это расходимость при заданном размере пучка. Для пучка круглого сечения дифракционная расходимость по уровню 80% энергии равна $\theta_{
m дифp} = 2,44\, \lambda/d, \; {
m a} \; {
m для} \; {
m пучка} \; {
m квадратного} \; {
m ceчения} \; - \; \theta_{
m дифp} =$ $2.0 \lambda/d$.

Если на телескопическую систему падает параллельный пучок света с дифракционной расходимостью θ_1 , то выходящий из нее параллельный пучок будет иметь дифракционную расходимость $\theta_2 \neq \theta_1$. Масштабный коэффициент увеличения такой системы равен

$$M = \frac{d_2}{d_1} = \frac{f_2}{f_1} = \frac{\theta_1}{\theta_2}.$$
 (2.38)

Чем больше размер пучка, тем меньше его расходимость.

Поэтому при транспортировке пучка на большие расстояния для уменьшения расходимости увеличивают его размер.

Если телескопическую систему немного расфокусировать, например увеличить расстояние между линзами $L > L_0 = f_1 + f_2$, то система будет фокусирующей с большим фокусным расстоянием $f \gg L_0$. Меняя расстояние между линзами можно менять фокусное расстояние оптической системы. Этот эффект используется в фотоаппаратах (функция «zoom»), когда меняя расстояние между линзами объектива меняется фокусное расстояние.

Матрица преобразования лучей

Основное действие оптической системы заключается в изменении хода лучей, которое описывается преобразованиями двух параметров — линейной и угловой координат луча. Параксиальными называются лучи, для которых линейная и угловая координаты малы. В прибижении параксиальных лучей преобразования линейной и угловой координат удобно описывать с помощью матричной оптики.

Опорная плоскость (ОП) — это некоторая произвольно выбранная плоскость, перпендикулярная оптической оси, в которой рассматриваются параметры луча. Опорные плоскости в пространстве предметов и изображений выбираются из соображений удобства и могут быть либо сопряженными, либо нет.

На рис. 2.19 показаны линейная координата луча у и угловая координата луча α.

Вместо угла α часто используют величину $Y=-n\alpha$, где n- показатель

преломления среды, в которой распространяется луч. Таким образом, луч в пространстве предметов однозначно определяется через линейную и угловую координаты $\binom{y}{y}$. Аналогично, луч в пространстве изображений определяется координатами $\binom{y'}{y'}$.

Действие оптической системы заключается в преобразовании координат лучей

$$\binom{y}{Y} \rightarrow \binom{y'}{Y'}$$
. (2.39)

Разложим выходные координаты луча в ряд по входным

$$y' = a_0 + a_1 y + a_2 Y + a_3 y^2 + a_4 y Y + a_5 Y^2 + \cdots$$

$$Y' = b_0 + b_1 y + b_2 Y + b_3 y^2 + b_4 y Y + b_5 Y^2 + \cdots$$
(2.40)

Если оптическая система является центрированной, то $a_0=b_0=0$. Все члены ряда, начиная с a_3 и b_3 , можно отбросить, так как они стремятся к нулю на порядок быстрее, чем предыдущие. Таким образом

$$y' = Ay + BY$$

$$Y' = Cy + DY.$$
(2.41)

Эту систему можно записать в матричном виде

$$\begin{pmatrix} y' \\ Y' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} y \\ Y \end{pmatrix}. \tag{2.42}$$

Все свойства идеальной оптической системы полностью описываются *матрицей преобразования* лучей G, называемой также ABCD-матрицей

$$G = \begin{pmatrix} A & B \\ C & D \end{pmatrix}. \tag{2.43}$$

Найдем элементы матрицы A, B, C, D на конкретном примере. Рассмотрим луч с координатами y=1,Y=0 и выберем опорные плоскости ОП и ОП' как показано на рис. 2.20.

На рис. 2.20 S'— расстояние между задней опорной и задней фокальной

плоскостями (задний фокальный отрезок), f' – заднее фокусное расстояние. Подставив в систему уравнений значения у и Y, получим

$$y' = Ay + BY = A;$$

 $Y' = Cy + DY = C.$ (2.44)

Из рис. 2.20 видно, что $\alpha'=\frac{y}{f'}=\frac{y'}{s'}$. Отсюда с учетом того, что y=1 можно получить выражения для y' и Y'

$$y' = \frac{S'}{f'};$$

$$Y' = -n\alpha' = -\frac{n}{f'}.$$
(2.45)

Таким образом, элементы А и С матрицы преобразования равны

$$A = \frac{S'}{f'};$$

$$C = -\frac{n}{f'} = -\Phi.$$
(2.46)

Здесь оптическая сила обозначена буквой Φ , так как буква D обозначает элемент матрицы преобразования. Аналогично можно получить выражения для коэффициентов B и D. Таким образом, получаем общий вид матрицы преобразования

$$G = \begin{pmatrix} \frac{S'}{f'} & \frac{f \cdot f' - S \cdot S'}{n \cdot f} \\ -\frac{n}{f'} & \frac{S}{f} \end{pmatrix}.$$
 (2.47)

Определитель матрицы преобразования любой оптической системы равен единице

$$detG = AD - BC = 1. (2.48)$$

По определению для обратной матрицы преобразования должно выполняться следующее равенство

$$GG^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{2.49}$$

Обратная матрица преобразования имеет следующий вид

$$G^{-1} = \begin{pmatrix} D & -B \\ -C & A \end{pmatrix} \tag{2.50}$$

и она описывает преобразование из выходных координат во входные

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \mathbf{G}^{-1} \begin{pmatrix} \mathbf{y}' \\ \mathbf{y}' \end{pmatrix}.$$
 (2.51)

Физический смысл элементов матрицы, матрицы преломления и переноса

Пусть для оптической системы известно положение главных, фокальных и опорных плоскостей в пространстве предметов и изображений, как изображено на рис. 2.21.

Физический смысл элементов матрицы преобразования можно выяснить из следующих рассуждений.

Пусть в системе $\binom{y'}{Y'} = \binom{A}{C} \binom{B}{Y} \binom{y}{Y}$ элемент A = 0. Это означает, что величина S' = 0, то есть изображение находится в фокальной плоскости. В этом случае первое уравнение системы

запишется в виде y' = BY, то есть все параллельные лучи, идущие под углом Y, пройдут через точку y', расположенную в задней фокальной плоскости, как изображено на рис. 2.22.

Пусть теперь B = 0. Тогда ff' = SS', то есть выполняется формула Ньютона и это означает, что опорные плоскости сопряжены. В ЭТОМ случае уравнение системы запишется в виде у' = Ау, то есть все лучи от точки у предмета проходят через точку у' изображения, как показано на рис. 2.23. Частный случай, когда f = S и f' = S', то есть предмет и изображение находятся на двойном фокусном расстоянии.

Если C=0, то $\Phi=n/f'=0$ и система является телескопической. В этом случае второе уравнение системы запишется в виде Y'=DY, то есть параллельные лучи, идущие под углом Y, выйдут из системы также параллельными,

Рис. 2.22

Рис. 2.23

Рис. 2.24

Рис. 2.25

но под углом У', как изображено на рис. 2.24.

Положим элемент D=0. Тогда S=0, то есть *предмет* находится в фокальной плоскости. В этом случае второе уравнение системы запишется в виде Y'=Cy, то есть все лучи от точки предмета выходят из системы под одним и тем же углом, как изображено на рис. 2.25.

Физический смысл элементов матрицы преобразования приведен в таблице 2.1.

Таблица 2.1

Элемент матрицы	Физический смысл
A=0	изображение находится в фокальной плоскости
B=0	опорные плоскости сопряжены
C=0	система является телескопической
D=0	предмет находится в фокальной плоскости

Существуют матрицы, описывающие простых два преобразования - преломление луча в оптической системе и свободном перенос луча В пространстве. Для вывода матрицы преломления (или матрицы тонкой линзы)

совместим опорные плоскости с главными плоскостями $O\Pi = H$, $O\Pi' = H'$.

Из рис. 2.26 видно, что y=y'. Поскольку опорные плоскости сопряжены, то B=0 и y'=Ay. Тогда A=1, а поскольку определитель матрицы всегда равен единице $\det G=AD-BC=1$, следовательно D=1. В этом случае матрица преобразования имеет смысл матрицы преломления

$$R = \begin{pmatrix} 1 & 0 \\ -\Phi & 1 \end{pmatrix}$$
 или $y' = y;$ $Y' = -\Phi y + Y.$ (2.52)

Таким образом, матрица преломления описывает преломление луча оптической системой, при этом у луча изменяется только угловая координата.

Аналогично можно получить матрицу переноса

$$T = \begin{pmatrix} 1 & \frac{d}{n} \\ 0 & 1 \end{pmatrix}, \tag{2.53}$$

где d/n – приведенное расстояние.

Матрицы многоэлементных оптических систем, формулы построения изображения линзой

Любую оптическую систему можно представить как совокупность нескольких компонент, разделенных промежутками. Пусть дана некоторая произвольная система, в которой для каждого компонента известно положение главных плоскостей и оптическая сила, а также известны расстояния между компонентами и показатели преломления. На рис. 2.27 указаны расстояния между главными плоскостями компонентов.

Матрица такой системы будет состоять из произведения матриц преломления R_n и переноса T_n для отдельных компонент, причем матрицы записываются в обратном порядке

$$G = T_3 R_3 T_2 R_2 T_1 R_1 T_0, \tag{2.54}$$
 где $R_n = \begin{pmatrix} 1 & 0 \\ -\Phi_n & 1 \end{pmatrix}$, $T_n = \begin{pmatrix} 1 & \frac{d_n}{n_n} \\ 0 & 1 \end{pmatrix}$.

помошью матричной выведем формулы оптики построения изображения линзой. Пусть предмет находится слева от положительной линзы с фокусным расстоянием $(\Phi = 1/f)$ f расстоянии l_1 . Искомое расстояние OT до

изображения обозначим через l_2 . Тогда матрица преобразования G найдется как произведение матриц

$$G = \begin{pmatrix} 1 & l_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\Phi & 1 \end{pmatrix} \begin{pmatrix} 1 & l_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - l_2 \Phi & l_1 - l_1 l_2 \Phi + l_2 \\ -\Phi & 1 - l_1 \Phi \end{pmatrix}. (2.55)$$

 $B = l_1 - l_1 l_2 \Phi + l_2 = 0$. Поделив это равенство на $l_1 l_2$, получим формулу построения изображения линзой

$$\frac{1}{f} = \frac{1}{l_1} + \frac{1}{l_2}. (2.56)$$

Выведем теперь формулу для коэффициента увеличения М при построении изображения линзой. Так как коэффициент В = 0, то $d_2 = Ad_1$, где d_1 и d_2 – размеры предмета и изображения. Таким образом, получаем соотношение $\frac{d_2}{d_1} = A = 1 - l_2 \Phi = 1 - \frac{l_2}{f}$.

Умножив правую и левую части формулы (2.56) на l_2 , получим $-\frac{l_2}{l_*} = 1 - \frac{l_2}{f}$. Сравнивая с предыдущей формулой, получим выражение для коэффициента увеличения

$$M = \frac{\dot{d}_2}{d_1} = -\frac{l_2}{l_1}.$$
 (2.57)

Раздел 3. Интерференция света

Интерференционная схема Юнга. Интерференционные полосы Юнга. Спектральное описание размывания интерференционной картины.

Интерференционные схемы. Интерференционные полосы равного наклона и равной толщины. Интерферометры Майкельсона и Маха-Цендера. Интерферометр Релея, звёздный интерферометр Майкельсона.

Многолучевая интерференция, интерферометр Фабри-Перо, формула Эйри.

Интерференционная схема Юнга

Интерференция и дифракция — это основные понятия в оптике. Под интерференцией понимают явление наложения волн, приводящее к перераспределению в пространстве плотности энергии электромагнитного поля. Существует много схем для наблюдения интерференции, но во всех схемах реализуется наложение в пространстве световых волн. Классическим примером интерференции является опыт Ньютона, в котором наблюдаются концентрические кольца при освещении выпуклой линзы, прижатой к плоской стеклянной пластинке.

Рассмотрим более подробно основные закономерности интерференции, обратившись рассмотрению сначала К интерференции двух волн. На рис. 3.1 схематично изображены две волны, пересекающиеся в точке Р.

Если векторы E_1 и E_2 ориентированы перпендикулярно плоскости рисунка, то напряженность суммарного поля в этой точке равна

$$E_{1+2}(t) = E_1(t) + E_2(t).$$
 (3.1)

Любой приемник излучения, находящийся в точке P, будет регистрировать интенсивность

$$I = \overline{E^2} = \frac{1}{\tau_{np}} \int_{0}^{\tau_{np}} E^2(t) dt,$$
 (3.2)

где τ_{np} – время быстродействия приемника.

Быстродействие приемников света $\tau_{\rm np} > 10^{-12} \, {\rm c.}$ Период оптических колебаний значительно меньше. Например, для колебаний зеленого света период оптических составляет $\tau_{3e\pi} \sim 10^{-15} \text{ c.}$

Используя два последних соотношения можно получить следующее равенство

$$\overline{E_{1+2}^2} = \overline{E_1^2} + \overline{E_2^2} + 2\overline{E_1}\overline{E_2}. \tag{3.3}$$

Последнее слагаемое называется интерференционным слагаемым. Таким образом, необходимым условием интерференции является отличие от нуля интерференционного слагаемого.

Рассмотрим интерференционную схему Юнга, изображенную на рис. 3.2. Свет от точечного источника ѕ попадает на экран Э₁ ДВУМЯ малыми c близкорасположенными отверстиями, а на втором экране Э2 формируется интерференционная картина.

хода.

Рис. 3.2

Волновые возмущения плоскости отверстий эквивалентны точечным источникам S₁ и S₂, посылающим в точку Р волны

$$E_{1}(t) = a_{1}(t)\cos[k_{0}r_{1} - \omega_{0}t + \varphi_{1}(t)];$$

$$E_{2}(t) = a_{2}(t)\cos[k_{0}r_{2} - \omega_{0}t + \varphi_{2}(t)].$$
(3.4)

В общем случае амплитуды α_1, α_2 и фазы ϕ_1, ϕ_2 являются медленно меняющимися функциями времени. Временной масштаб их изменения составляет $\tau_{\kappa B} \sim 1/\Delta \nu$, где $\Delta \nu$ – ширина спектральной линии излучения источника s.

Можно показать, что интенсивность волны в точке Р равна

$$I=I_1+I_2+2\sqrt{I_1I_2}\text{cos}\big[k_0(r_2-r_1)+(\phi_2-\phi_1)\big], \qquad (3.5)$$
 где $I_1=a_1^2/2$; $I_2=a_2^2/2$. Величина (r_2-r_1) называется разностью

Это распределение интенсивности в пространстве описывает интерференционную картину, наблюдаемую на экране Э2. Если бы разность фаз ($\phi_2 - \phi_1$) не менялась со временем, то картина была бы неподвижной. На самом деле разность фаз меняется случайным образом, поэтому интерференционная картина будет хаотически двигаться в разные стороны по экрану Э2. Вид интерференционной картины зависит от соотношения между временем изменения фазы $\tau_{\kappa B}$ и быстродействием приемника τ_{np} .

Если $\tau_{np} > \tau_{kB}$, то за время регистрации разность фаз не стационарной $\phi_2 - \phi_1 \neq const,$ поэтому приемник зарегистрирует усредненную за время τ_{np} «нерезкую» картину. Если, например, разность фаз изменится на величину $\pm \pi$, то картина сдвинется на половину расстояния между интерференционными полосами, а усредненная картина будет сильно смазана.

Если $\tau_{\text{пр}} < \tau_{\text{кв}}$, то можно считать разность фаз стационарной $\phi_2 - \phi_1 = {
m const}, \ {
m при} \ {
m этом} \ {
m наблюдается} \ {
m pезкая} \ {
m интерференционная} \ {
m картина}. \ {
m Качество} \ {
m картины} \ {
m будет} \ {
m тем} \ {
m выше}, \ {
m чем} \ {
m лучше} \ {
m выполняется}$ неравенство $|\phi_2 - \phi_1| < 2\pi$.

Интерференционные полосы Юнга

Проанализируем распределение интенсивности картине. Рассмотрим идеальную интерференционной ДЛЯ образования интерференционной картины ситуацию, излучение монохроматичное ($\Delta\lambda \rightarrow 0$ и $\tau_{\text{\tiny KB}} \rightarrow \infty$). Это означает, что $a_1, a_2, \phi_1, \phi_2 = \text{const.}$ Пусть $a_1 = a_2 = a, \phi_1 = \phi_2 = \text{const.}$ В этом случае выражение для распределения интенсивности интерференционной картине запишется в виде

$$I = 2I_0[1 + \cos(k_0(r_2 - r_1))]. \tag{3.6}$$

 $I - 2I_0[I + \cos(\kappa_0(I_2 - I_1))].$ (3.6) Здесь $I_0 = a^2/2$. В интерференционных максимумах интенсивность $I = 4I_0$. Их положение определяется условием $\mathbf{k}_0(\mathbf{r}_2-\mathbf{r}_1)=2\pi \mathbf{m}$ или $\mathbf{r}_2-\mathbf{r}_1=\mathbf{m}\lambda_0$, где $\mathbf{m}=0,\pm 1;\,\pm 2,...$ Целое число т определяет порядок интерференционного максимума или порядок интерференции. Если же $k_0(r_2-r_1)=2\pi m +\pi$ или $r_2 - r_1 = m\lambda_0 + \lambda_0/2$, то будут интерференционные минимумы, в которых I = 0.

На экране Э2 будут видны практически параллельные

полосы, называемые полосами Юнга. Они перпендикулярны плоскости рисунка. Распределение интенсивности I(x) вдоль оси Ох

показано на рис. 3.3.

Совместим начало отсчета интерференционным координаты c X максимумом нулевого порядка. Туда же поместим точку Р, как показано на рис. 3.4. Если увеличивать расстояние L, то длина r отрезков S₁P и S₂P будет приближаться к расстоянию L. Определим расстояния L, при которых $r - L \ll \lambda_0$. Обозначим между отверстиями расстояние запишем выражение

$$r_1$$
 $p^{m=1}$ p^{m} p^{m}

 $\frac{d^2}{4} = r^2 - L^2 = (r - L) \cdot \tag{3.7}$

 \cdot (r + L)pprox2L(r - L), где r + Lpprox2L.

Тогда искомое расстояние удовлетворяет неравенству $r-L=\frac{d^2}{8L}\ll \lambda_0$. Отсюда находим

$$\begin{array}{c|c}
s_1 & r \\
d & L \\
s_2 & r
\end{array}$$

Рис. 3.4

$$L \gg L_0 = \frac{d^2}{8\lambda_0}.$$
 (3.8)

Величина L_0 имеет размерность длины. Если $d{\sim}2$ мм, $\lambda_0=500$ нм, то $L_0=1$ м. Выделяют ближнюю ($L\ll L_0$) и дальнюю ($L\gg L_0$) зоны. Если в рассматриваемой интерференционной схеме экран

Рис. 3.5

 θ_2 поместить в дальнюю зону, как показано на рис. 3.5, то для точки P с координатой x можно приближенно записать $\frac{x}{t} \approx \frac{r_2 - r_1}{d}$.

Тогда выражение для интенсивности можно представить в виде

$$I(x) = 2I_0 \left[1 + \cos \left(\frac{2\pi}{\lambda_0} \frac{d}{L} x \right) \right]. \tag{3.9}$$

График этой зависимости показан на рис. 3.6. Координата т

ого максимума равна $x_m=\frac{m\lambda_0L}{d},$ а ширина интерференционной полосы или расстояние между максимумами $\Delta x=x_{m+1}-x_m=\frac{\lambda_0L}{d}.$

Ширина полос увеличивается с уменьшением расстояния d между отверстиями и удалением экрана θ_2 . В общем случае интерференции двух лучей с углом схождения $\alpha = \frac{d}{L}$ положение θ_2 максимума

равно $x_m = \frac{m\lambda_0}{\alpha}$, а ширина интерференционной полосы $\Delta x = \frac{\lambda_0}{\alpha}$.

Спектральное описание размывания интерференционной картины

Полосы Юнга, изображенные на рис. 3.6, соответствуют идеальной ситуации, когда излучение источника монохроматичное и длина волны равна λ_0 . Реальные источники являются квазимонохроматичными, т.е. $\lambda_0 \neq$ const, поэтому интерференционная картина размывается. Размывание можно описать, пользуясь спектральным представлением, которое сводится к суперпозиции интерференционных полос Юнга для разных длин волн.

Пусть имеется квазимонохроматичное излучение. Для простоты будем считать, что линия излучения источника имеет прямоугольный контур $S(\lambda)$ с центральной длиной волны λ_0 и шириной $\Delta\lambda = \lambda_2 - \lambda_1$, как показано на рис. 3.7. Если выделить узкий

Если выделить узкий тис. 5.7 спектральный интервал $d\lambda$, то интенсивность для этого интервала равна $dI_0 = S(\lambda)d\lambda$. Здесь I_0 – интенсивность излучения источника. Каждый монохроматичный источник света с такой интенсивностью и длиной волны λ сформирует свою элементарную интерференционную картину, симметричную относительно начала координат. Полная картина будет являться суперпозицией

элементарных картин.

Однако из-за разных длин волн эти картины будут иметь разные расстояния между полосами $\Delta x = \frac{\lambda L}{d}$. Поэтому, при увеличении λ интерференционные полосы будут расширяться и в некотором интерференционном порядке m_{max} сольются. При $m>m_{max}$ картина будет полностью смазана.

Максимальный порядок интерференции равен

$$m_{\text{max}} = \frac{l_{\text{KOT}}}{\lambda_0} = \frac{\lambda_0}{\Delta \lambda}.$$
 (3.10)

Здесь $l_{\rm коr}$ –длина когерентности, т.е. максимальная разность хода между лучами $({\bf r_2-r_1})_{\rm max}$, при которой еще будет наблюдаться интерференционная картина. Эта формула имеет фундаментальное значение — она связывает длину когерентности с шириной спектральной линии источника света.

Напомним, что для монохроматичного излучения $\lambda = \lambda_0 = \text{const}$ распределение интенсивности в интерференционной картине описывается формулой

$$I = 2I_0[1 + \cos(k_0(r_2 - r_1))], \tag{3.11}$$

где $k_0 = \frac{2\pi}{\lambda_0} = \text{const.}$

Перепишем аргумент этой функции $k_0(r_2-r_1)=\frac{2\pi c}{\lambda_0}\frac{(r_2-r_1)}{c}=2\pi v_0\frac{(r_2-r_1)}{c}=\omega_0 \tau$, где $\tau=(r_2-r_1)/c$ – время задержки, пропорциональное разности хода. Тогда распределение интенсивности в интерференционной картине для монохроматичного излучения можно записать в следующем виде

$$I = 2I_0[1 + \cos(\omega_0 \tau)]. \tag{3.12}$$

Для квазимонохроматичного излучения с прямоугольным контуром линии излучения после интегрирования можно получить

$$I = 2I_0 \left[1 + \operatorname{sinc}\left(\frac{\Delta\omega\tau}{2}\right) \cos(\omega_0\tau) \right], \tag{3.13}$$

где функция sinc(x) = sin(x)/x, причем sinc(0) = 1.

Распределение интенсивности по этой формуле приведено на рис. 3.8. Функция sinc(x) задает огибающую, а функция cos(x) – колебания интенсивности в пределах огибающей.

При увеличении τ качество картины (контраст) снижается, и при задержке $\tau_{\text{ког}} = 2\pi/\Delta\omega = 1/\Delta\nu$ картина смазывается. При дальнейшем увеличении τ качество несколько повышается, но

незначительно. Величина $\tau_{\text{ког}}$ называется временем когерентности излучения.

Таким образом, время когерентности — это масштаб времени, при котором амплитуда и

фаза квазимонохроматичного излучения меняются незначительно. Времени когерентности соответствует максимальная разность хода, которая называется длиной когерентности

$$l_{\text{KO}\Gamma} = c\tau_{\text{KO}\Gamma} = \frac{c}{\Delta \nu} = m_{\text{max}}\lambda_0 = \frac{\lambda_0^2}{\Delta \lambda}.$$
 (3.14)

Размывание интерференционной картины может происходить не только в случае немонохроматичного ($\lambda \neq const$)

источника, но также в случае протяженного монохроматичного ($\lambda = \text{const}$) источника света, как показано на рис. 3.9. В этом случае можно получить следующее

Рис. 3.9

распределение интенсивности в интерференционной картине

$$I = 2I_0 \left[1 + \operatorname{sinc}\left(\frac{k(\Delta_{S_1} - \Delta_{S_2})}{2}\right) \cos(k\Delta_S) \right], \tag{3.15}$$

где Δ_{S_1} , Δ_{S_2} — разность хода для крайних точек S_1 и S_2 источника, а Δ_S — разность хода для центральной точки S источника.

Формулы распределения интенсивности для разных источников света приведены в таблице 3.1.

Таблица 3.1

Источник света	Распределение интенсивности в интерференционной картине [/2π d \]	
точечный		
	$2I_0 \left[1 + \cos \left(\frac{2\pi u}{\lambda} x \right) \right]$	
λ=const	Γ /ν0 Γ / 1	
точечный	$2I_0\left[1+\operatorname{sinc}\left(\frac{\Delta\omega\tau}{2}\right)\cos(\omega_0\tau)\right]$	
λ≠const	$2I_0\left[1+\sin(\frac{1}{2})\cos(\omega_0\tau)\right]$	
протяженный λ=const	$2I_0 \left[1 + \operatorname{sinc}\left(\frac{k(\Delta_{S_1} - \Delta_{S_2})}{2}\right) \cos(k\Delta_{S}) \right]$	

Для описания качества картины Майкельсон ввел функцию видности, определяемую как

(3.16)где I_{max} И I_{min} интенсивности В интерференционном максимуме и ближайшем к нему минимуме. Чем ближе значение функции видности $-2\pi/\Delta\omega$ $2\pi/\Delta\omega$ к единице, тем лучше видна Рис. 3.10 интерференционная картина (рис. 3.10).

На рис. 3.11 показаны распределения интенсивности I(x) для разных источников света.

Рассмотрены следующие источники света — монохроматичный, прямоугольный и гауссов спектры, а также источник, спектр излучения которого состоит из двух линий. При этом для немонохроматичных источников света середине спектра соответствует длина волны $\lambda_0 = 525$ нм, а ширина спектра равна $\Delta\lambda = 50$ нм.

Для монохроматичного источника света функция видности постоянна. Для прямоугольного и гауссова спектров с увеличением времени задержки видность картины ухудшается. Для источника, спектр излучения которого состоит из двух линий, функция видности периодически изменяется от единицы до нуля.

Объединим основные введенные термины (интерференция, длина и время когерентности) следующим определением. Длина когерентности — это максимальная оптическая разность хода, а время когерентности — максимальный масштаб времени, при которых амплитуда и фаза излучения изменяются незначительно. Когерентные пучки образуют интерференционную картину.

Таким образом, для образования интерференционной картины необходимо выполнение следующих условий:

- 1) интерферирующие пучки должны быть сформированы от одного источника света;
- 2) источник света должен быть монохроматичным $(\lambda = \text{const}, \Delta\lambda \rightarrow 0)$ и, соответственно, когерентным $(l_{\text{ког}} \rightarrow \infty)$.

Интерференционные схемы

Интерференционные схемы можно разделить на схемы, в которых происходит деление амплитуды и схемы, в которых происходит деление волнового фронта.

В интерференционных схемах с делением амплитуды интерферирующие волны создаются при отражении падающей волны от двух поверхностей. Амплитуда каждой из интерферирующих волн меньше амплитуды исходной волны. Коэффициенты отражения поверхностей можно подобрать так, чтобы амплитуды обеих отраженных волн были одинаковыми. На рис. 3.12 свет от точечного источника s отражается от двух поверхностей прозрачной пластинки. В точке Р отраженные волны складываются.

Длина когерентности света $l_{\text{ког}}$ должна быть как минимум в

два раза больше толщины пластинки l. При произвольном положении источника наблюдения расчет интерферограммы является довольно сложной задачей. Наиболее важны два предельных случая, когда реализуются полосы равного наклона и полосы равной толшины.

Классическим примером схемы с делением волнового фронта является схема опыта Юнга с двумя отверстиями. отверстиях выделяются фрагменты волнового фронта сферической волны от источника. Такая же идея заложена В схемах, делителем волнового фронта является бипризма. Ход лучей в интерференционной схеме с бипризмой показан на рис. 3.13.

Рис 3 13

Бипризма – это двойная призма, формирующая две волны, исходящие из мнимых изображений s₁ и s₂ источника s. При малом преломляющем угле призмы ($\alpha \sim 1'$) угол перекрытия пучков $\theta =$ $2\alpha(n-1)$. Здесь n- показатель преломления материала призмы. При этом, как и в опыте Юнга, ширина интерференционных полос равна $\Delta x = \frac{\lambda}{\alpha}$. Подобным образом формируются интерферирующие волны с помощью билинзы и бизеркала.

К интерференционным схемам с делением амплитуды относятся схемы, в которых образуются полосы равного наклона и равной толщины, а также схемы интерферометров Майкельсона и Маха-Цендера. К интерференционным схемам волнового фронта относятся схемы интерферометра Релея и звёздного интерферометра Майкельсона.

Интерференционные полосы равного наклона и равной толщины

На рис. 3.14 изображена интерференционная схема с делением амплитуды. Найдем оптическую разность хода между одной из многочисленных пар интерферирующих волн

$$\Delta = (AB + BC)n - AD + \frac{\lambda_0}{2}, \qquad (3.17)$$

где n — показатель преломления материала пластинки.

Рис. 3.14

Слагаемое $\frac{\lambda_0}{2}$ учитывает набег фазы на π , возникающий между лучами при отражении. Это связано с тем, что при отражении от оптически более плотной среды в менее плотную фаза претерпевает изменение на π , а при отражении от менее плотной среды в более плотную скачка фазы не происходит.

Пусть l — толщина пластинки в месте падения, ϕ — угол падения, ψ — угол преломления, тогда

$$(AB + BC)n = \frac{2ln}{\cos\psi'},$$

$$AD = AC\cos\left(\frac{\pi}{2} - \varphi\right) = 2ltg\psi\sin\varphi = 2ltg\psin\sin\psi = \frac{2ln\sin^2\psi}{\cos\psi},$$

$$\Delta = (AB + BC)n - AD + \frac{\lambda_0}{2} = \frac{2ln}{\cos\psi} - \frac{2ln\sin^2\psi}{\cos\psi} + \frac{\lambda_0}{2} =$$

$$= 2ln\cos\psi + \frac{\lambda_0}{2}.$$
(3.18)

Таким образом, разность хода зависит от толщины пластинки l, показателя преломления n и наклона интерферирующих лучей, задаваемого углом преломления ψ . Если пластинка плоскопараллельная, то на удаленном экране будет интерферограмма, представляющая собой семейство полос. Каждой полосе соответствует определенный угол ψ , поэтому эти полосы называются полосами равного наклона. Для их наблюдения экран отодвигают как можно дальше от пластинки. Поэтому говорят, что полосы равного наклона локализованы в бесконечности.

В схеме, изображенной на рис. 3.15, полосы равного наклона имеют вид концентрических окружностей. Здесь расходящийся пучок

Рис. 3.15

света от источника s проходит сквозь экран Э с отверстием. После отражения от плоскопараллельной пластинки на экране наблюдаются интерференционные кольца. Положение интерференционных максимумов определяется выражением

$$\Delta = 2ln\cos\psi + \frac{\lambda_0}{2} = m\lambda_0, \tag{3.19}$$

где l = const, $\psi \neq \text{const}$.

Это условие реализации полос равного наклона. Если же точка наблюдения находится вблизи поверхности пластины, то интерферограмма будет состоять из полос равной толщины. В этом случае разность хода и положение интерференционных максимумов описываются таким же выражением

$$\Delta = 2l\text{ncos}\psi + \frac{\lambda_0}{2} = m\lambda_0, \tag{3.20}$$

но с другим условием $l \neq \text{const.}$ $\psi = \text{const.}$

Это условие реализации полос равной толщины, локализованных на поверхности пластины. Здесь угол ψ постоянный, а толщина l может изменяться. Поэтому интерференционные максимумы будут иметь вид полос, проходящих через те участки поверхности, где толщина

пластины одинакова и удовлетворяет написанному выше условию разности фаз (рис. 3.16).

Полосы равной толщины можно наблюдать на поверхности стеклянного клина при нормальном падении света. Искривление интерференционных полос свидетельствует о неровностях поверхности клина. На этом основан метод оптического контроля качества поверхности, суть которого состоит в следующем. К поверхности под небольшим углом сверху прикладывают

плоскопараллельную стеклянную пластинку высокого качества. Между пластинкой и поверхностью образуется воздушный клин. При падении света на пластинку на ее нижней стороне наблюдаются интерференционные полосы, форма которых свидетельствует о качестве поверхности. Таким методом можно контролировать неровности порядка десятых долей длины волны.

Показателен в этом смысле опыт, выполненный Ньютоном. К плоской приложил поверхности ОН плосковыпуклую линзу с радиусом кривизны R, как показано на рис. 3.17. В точке В волны, отраженные от поверхностей, складываются. B результате появляются кольца равной толщины, получившие название колец Ньютона.

Рис. 3.17

Воздушный зазор l при условии $r \ll R$ равен

$$l = BC = AC - AB = \sqrt{R^2 + r^2} - R \approx R\left(1 + \frac{r^2}{2R^2}\right) - R = \frac{r^2}{2R}.$$
 (3.21)

Тогда с учетом скачка фазы на π при отражении от плоской поверхности оптическая разность хода будет равна

$$\Delta = 2l + \frac{\lambda_0}{2} = \frac{r^2}{R} + \frac{\lambda_0}{2}.$$
 (3.22)

Расписав положение интерференционных минимумов

$$\phi = k\Delta = \frac{2\pi}{\lambda_0} \frac{r^2}{R} + \pi = 2\pi m + \pi, \qquad (3.23)$$

можно определить радиус первого темного кольца $r=\sqrt{\lambda_0 R}$.

Концентричность интерференционных колец в опыте Ньютона свидетельствует о высоком качестве выпуклой поверхности линзы. Искривление колец на интерферограмме свидетельствует об отличии поверхности линзы от сферической.

В таблице 3.2 приведены условия для реализации полос равного наклона и полос равной толщины.

Таблица 3.2

Тип интерферограммы	Плоскость наблюдения	Параметры <i>l</i> и ψ
полосы равного наклона	в бесконечности	$l = \text{const}, \ \psi \neq \text{const}$
полосы равной толщины	вблизи поверхности	$l \neq \text{const}, \ \psi = \text{const}$

Интерферометры Майкельсона и Маха-Цендера

Интерферометры Маха-Цендера Майкельсона И интерферометрами являются амплитуды. делением Схема интерферометра Майкельсона приведена на рис. 3.18. Эта схема схемам предыдущих аналогична формированию полос опытов ПО равного наклона и полос равной толщины. Реализация схемы зависит

Рис. 3.18

от юстировки интерферометра и настройки зрительной трубы Т, через которую наблюдают интерферограмму.

На рис. 3.18 штриховой линией изображена плоскость 3, сопряженная зеркалу 32. Сопряжение означает, что при мысленном повороте интерферометра относительно оси, проходящей через точку О, зеркало 32 совпадает с плоскостью 3.

Таблина 3.3

		,	
Тип интерферограммы	Настройка	Взаимное	
тип интерферограммы	трубы Т	расположение 3 ₁ и 3	
полосы равного	на наблюдение	породдении	
наклона	вдали	параллельны	
полосы равной	на плоскость 3	oppositor rathi	
толщины	на плоскость 5	образуют клин	

Если 3₁ и 3 параллельны, а зрительная труба настроена на наблюдение далеких предметов, то в плоскости изображения ее окуляра будут интерференционные полосы равного наклона. Если 3₁ и 3 не параллельны, то есть образуют клин, а зрительная труба настроена на наблюдение предметов, находящихся вблизи плоскости 3, то будут наблюдаться полосы равной толщины.

Схема интерферометра Маха-Цендера приведена на рис. 3.19. Свет от точечного источника ѕ проходит через коллимирующую линзу Л и падает на полупрозрачную делительную пластинку П₁. Образующиеся два пучка плоскими волновыми фронтами штриховыми (фронты отмечены линиями) после отражения от зеркал 31 попадают вторую 3_2 на полупрозрачную пластинку Π_2 .

Если между зеркалами 3_1 и 3_2 имеется небольшой угол, то между волновыми фронтами пучков на выходе так же будет угол. В этом случае

интерферограмма на экране Э будет представлять собой семейство параллельных полос шириной $\Delta x = \frac{\lambda}{\theta}$.

Интерферометр Релея, звёздный интерферометр Майкельсона

Интерферометр Рэлея предназначен для измерения показателя преломления газов. Схема интерферометра Рэлея представлена на

представлена на рис. 3.20. Параллельный пучок света от источника, формируемый линзой \mathcal{N}_1 , проходит экран с двумя отверстиями, формирующими два

пучка. Пучки распространяются вдоль вытянутых кювет, имеющих одинаковую длину, проходят через плоскопараллельные стеклянные пластинки и в фокальной плоскости линзы Λ_2 образуются интерференционные полосы.

Из-за необходимости использования кювет расстояние d между щелями велико, поэтому интерферограмма мелкая. Для ее увеличения устанавливают линзу Π_3 и получают увеличенную интерферограмму.

Если одну из кювет, например K_1 , наполнить газом с неизвестным показателем преломления n, то возникнет дополнительная оптическая разность хода и картина сместится. Пусть исходная разность хода в точке P, совпадающей с интерференционным максимумом m-го порядка, равна $m\lambda$, где λ – длина волны. Тогда после заполнения кюветы газом разность хода изменится на величину $l(n-1) = \Delta m\lambda$.

Например, при $\Delta m=1$ картина сдвинется на расстояние, равное ширине полосы. Если зафиксировать смещение меньшее, чем ширина полосы, например $\Delta m=1/50$, то при l=1 м, $\lambda=0.5$ мкм получаем $n-1=10^{-8}$. Таким образом, показатель преломления газов может быть измерен с точностью до восьмого знака после запятой.

Для удобства измерений столь малых смещений пластина Π_2 с переменной толщиной может поворачиваться вокруг оси, компенсируя смещение интерферограммы. При соответствующей градуировке величина Δm определяется по углу поворота пластины.

Звездный интерферометр Майкельсона используется для определения углового размера двойных звезд. Схема звездного интерферометра Майкельсона приведена на рис. 3.21. Если объектив закрыть диафрагмой с двумя отверстиями, находящимися на расстоянии d, то изображение далекой звезды в его фокальной плоскости будет представлять собой пятно конечных размеров, изрезанное интерференционными полосами. На рис. 3.21 размеры пятна и полос сильно увеличены.

Ширина полосы равна $\Delta x = \frac{\lambda f}{d}$, где f — фокусное расстояние объектива. Эта формула аналогична формуле для расстояния между полосами в опыте Юнга $\Delta x = \frac{\lambda}{\alpha} = \frac{\lambda L}{d}$. Угловой размер полосы, то есть угол, под

Рис. 3.21

которым она видна с места нахождения объектива, равен $\theta_0 = \frac{\Delta x}{f} = \frac{\lambda}{d}.$

Если на объектив падает свет от второй звезды, расположенной под углом θ (лучи помечены штриховой линией), то из-за некогерентности света независимых источников (звезд) в фокальной плоскости будет происходить наложение двух интерферограмм. Если бы источники были когерентными, то происходила бы интерференция и в фокальной плоскости была бы одна интерферограмма.

Если $\theta_0 \gg \theta$, то картина наложения интерферограмм будет резкой. При уменьшении угла θ_0 картина станет размытой, если интерференционные максимумы от одной интерферограммы совпадут с интерференционными минимумами от другой. Это произойдет при

$$\theta_{\text{разм}} = \frac{\theta_0}{2} = \frac{\lambda}{2d}.$$
 (3.24)

Эта формула является ключевой для определения угловых размеров двойных звезд. Пусть θ — угловой размер двойной звезды. Для его измерения постепенно увеличивается расстояние d, т.е. уменьшается θ_0 и фиксируется качество интерферограммы. Измерив расстояние $d_{\text{разм}}$, при котором произойдет первое размытие картины, определяют угловой размер двойных звезд по формуле

картины, определяют угловой размер двойных звезд по формуле
$$\theta_{\text{дв.зв.}} = \frac{\lambda}{2d_{\text{разм}}}. \tag{3.25}$$

Чтобы измерять малые угловые размеры, необходимо увеличивать d. Для этого вместо экрана с двумя отверстиями перед объективом телескопа устанавливают систему зеркал, как показано на рис. 3.22.

С помощью такого интерферометра Майкельсон измерил угловой размер звезды Двойная Капелла $\theta \sim 2'' = 2 \cdot 5 \cdot 10^{-6}$ рад = 10^{-5} рад. В настоящее время база интерферометров достигает величины ~ 20 м. Это позволяет измерять угловые размеры $\theta \sim 10^{-3}''$.

Рис. 3.22

Многолучевая интерференция, интерферометр Фабри-Перо, формула Эйри

В рассмотренных ранее схемах интерферировали две волны или два луча. Ширина максимумов в интерферограммах была практически такой же, как и расстояние между ними. Для практических целей часто необходимо получить узкие и яркие интерференционные максимумы, отстоящие друг от друга на расстояния, значительно превышающие ширину самих максимумов. Это достигается при интерференции большого числа волн, то есть при многолучевой интерференции.

На рис. 3.23 приведена одна из схем многолучевой интерференции, основанная на многократном отражении и преломлении падающей наклонно волны на плоскопараллельную прозрачную пластину.

При соответствующем подборе коэффициентов отражения от ее поверхностей можно получить большое число ($\sim 10^2$) интерферирующих лучей. Интерференционные полосы или кольца обычно наблюдаются в дальнем поле, поэтому они являются полосами равного наклона. Эти полосы можно наблюдать как в отраженном, так и проходящем свете.

В интерферометре Фабри-Перо реализован принцип многократного отражения. Конструктивно он выполнен в виде двух пластин, внутренние поверхности установлены параллельно, как показано на рис. 3.24.

Рис. 3.24

На поверхности наносят отражающие покрытия, обеспечивающие высокий коэффициент отражения света. Фактически интерферометр является плоским оптическим резонатором. Пластинки делают слегка клиновидными, чтобы не образовывался второй резонатор при отражении света от внешних

поверхностей. Между пластинами устанавливают сменные кольца различной толщины, с помощью которых фиксируют параллельность поверхностей и расстояние между ними.

При падении на интерферометр расходящегося пучка лучей в прошедшем и отраженном свете наблюдают полосы равного наклона в виде колец. Рассчитаем интерферограмму для прошедшего света. Пусть под углом ψ к оси резонатора падает монохроматичная плоская волна с длиной волны λ_0 и частотой $\omega_0 = 2\pi c/\lambda_0$. Предположим, что напряженность ее электрического поля при падении на левое зеркало интерферометра равна $E_0 = a_0 e^{i\omega_0 t}$. Если заданы коэффициенты отражения r и пропускания τ , то напряженности поля волны при однократном отражении от зеркала и прохождении через него будут равны соответственно

$$E_{\text{отр}} = r E_{\text{пад}}, \qquad E_{\text{прош}} = \tau E_{\text{пад}}, \tag{3.26}$$

где $E_{\text{пад}}$ – напряженность поля падающей на зеркало волны.

Тогда поле первой волны, дважды прошедшей через зеркала, равно $E_1=\tau^2E_0$. Вторая волна, которая испытывает еще и отражение от обоих зеркал, на выходе приобретет дополнительный набег фазы

$$\Phi = \frac{2\pi}{\lambda_0} \frac{2Ln}{\cos \psi'},\tag{3.27}$$

поэтому напряженность ее поля равна $E_2=\tau^2 r^2 e^{i\Phi}E_0.$ Следовательно, для р-й волны

$$E_{p} = \tau^{2} r^{2p-2} e^{i(p-1)\Phi} E_{0.}$$
 (3.28)

Тогда суммарное поле

$$E = E_1 + E_2 + E_3 + \dots = = E_0 \tau^2 (1 + r^2 e^{i\Phi} + r^4 e^{2i\Phi} + \dots) = = \frac{\tau^2}{1 - r^2 e^{i\Phi}} a_0 e^{i\omega_0 t}.$$
 (3.29)

Перейдя к интенсивности $I=\overline{E}^2$, введя обозначения $R=r^2, T=\tau^2, I_0=a_0^2/2$ и используя T+R=1, можно получить формулу Эйри

$$I(\Phi) = \frac{I_0}{1 + F\sin^2(\Phi/2)},$$
 (3.30)

где $F = \frac{4R}{(1-R)^2}$ – параметр резкости.

График этой зависимости приведен на рис. 3.25. Положение

колец определяется величиной $\Phi = \frac{2\pi}{\lambda_0} \frac{2 \text{Ln}}{\cos \psi}$, а яркость и ширина колец — величиной $F = \frac{4R}{(1-R)^2}$.

Таким образом, положение максимумов зависит от длины волны λ_0 , показателя

преломления среды внутри интерферометра n, расстояния L и угла падения ψ , а яркость и ширина – от коэффициента отражения поверхностей R.

Покажем, что интерферограмма, полученная в схеме интерферометра Фабри-Перо, представляет собой семейство ярких и узких колец. Ширина интерференционного кольца по уровню половины интенсивности, изображенная на рис. 3.25, равна $\Delta\Phi=\frac{4}{\sqrt{F}}.$ Если принять R=0.98, то $F{\approx}10^4$ и ширина кольца $\Delta\Phi=4{\cdot}10^{-2}$ рад. Это на два порядка меньше расстояния между кольцами, то есть интерференционные кольца узкие. Максимальная интенсивность в кольце $I_{max}=I_0,$ а минимальная интенсивность между кольцами $I_{min}=I_0/F{\,\sim}10^{-4}I_0,$ то есть максимальная и минимальная интенсивности в интерференционной картине отличаются на четыре порядка, то есть интерференционные кольца яркие.

Интерферометр Фабри-Перо широко используется для спектрального анализа. Если в спектре падающего света присутствуют две длины волны λ_1 и λ_2 , то возникнут две системы колец. Из-за конечной ширины интерференционных колец интерферометр разрешит эти две длины волны, если $\lambda_2 - \lambda_1 \ge \Delta \lambda_{min}(\Delta \Phi)$.

Раздел 4. Дифракция света

Принцип Гюйгенса-Френеля. Зоны Френеля, зонная пластинка. Дифракция Френеля на круглом отверстии, круглом диске и крае экрана.

Приближения Френеля и Фраунгофера. Дифракция Фраунгофера на прямоугольном и круглом отверстиях. Дифракционные решетки. Амплитудная и фазовая модуляция. Пространственное разложение спектра, разрешающая способность решетки. Голография.

Принцип Гюйгенса-Френеля

Опыт показывает, что плоская волна с ограниченным например, прошедшая через круглое размером, по мере распространения будет диаметром d. трансформироваться в сферическую. При прохождении плоской волны через щель ее фазовый фронт из плоского постепенно трансформируется в цилиндрический. Зафиксируем ширину щели d, сделав ее в несколько раз меньше ширины светового пучка, и введем величину r = d/2. Будем увеличивать расстояние L между щелью и экраном. При малых расстояниях L размер освещенной области в направлении, перпендикулярном щели, будет приблизительно равен ширине щели и с увеличением расстояния L практически не будет изменяться. Заметное расширение освещенной области развивается лишь на расстоянии

$$L > L_0 = \frac{r^2}{\lambda'},\tag{4.1}$$

где L_0 — характерная длина. Эта длина уже была использована ранее. При интерференции в опыте Юнга характерная длина получилась равной $L_{\rm Юнга}=\frac{d^2}{8\lambda}=\frac{r^2}{2\lambda}$, с точностью до коэффициента совпадающая с характерной длиной при дифракции.

Дифракция — это отступление от прямолинейного направления распространения света после прохождения препятствий. В переводе дифракция означает «разломанный». Законы дифракции объясняют распространение света во всех направлениях, заходя в область геометрической тени и огибая препятствия.

Для количественного описания дифракции Гюйгенс и

Френель свели задачу распространении волны интерференции фиктивных вторичных источников следующим образом. Рассмотрим распространение сферической волны OT

Рис. 4.1

точечного монохроматичного источника, расположенного в точке P_0 , как показано на рис. 4.1.

В точке Р напряженность электрического поля будет равна

$$A_{P} = \frac{C}{\rho} e^{i(k\rho - \omega t)}. \tag{4.2}$$

где С – константа, зависящая от мощности источника.

Процесс распространения волны точку P представить также в два этапа. На первом этапе сферическая волна достигает некоторой произвольной сферической поверхности Σ, охватывающей источник. На этой поверхности как бы появляются вторичные источники.

На втором этапе вторичные источники испускают свои сферические волны, которые интерферируют в точке Р. Однако, кроме частоты света, параметры этих источников неизвестны. Френель предположил, что возмущение, посылаемое элементарной площадкой, пропорционально ее площади do и зависит от угла наклона о между нормалью к площадке и направлением в точку наблюдения.

Так как в точке P регистрируется интенсивность $I = \overline{A}^2$, в $e^{-i\omega t}$ дальнейшем множитель опускаем. В соответствии с двухэтапным рассмотрением можно получить выражение для напряженности электрического поля в точке Р, которое называется дифракционным интегралом Гюйгенса-Френеля

$$A_{P} = \iint_{\Sigma} \frac{C}{\rho_{1}} e^{ik\rho_{1}} \frac{K(\varphi)}{\rho_{2}} e^{ik\rho_{2}} d\sigma = \iint_{\Sigma} \frac{CK(\varphi)}{\rho_{1}\rho_{2}} e^{ik(\rho_{1}+\rho_{2})} d\sigma, \qquad (4.3)$$

где $K(\varphi) = \frac{1}{2\lambda}(1 + \cos\varphi) - \kappa \varphi \varphi$ ициент наклона.

Зоны Френеля, зонная пластинка

Для вычисления дифракционного интеграла Гюйгенса-Френеля введем понятие зон Френеля. Для этого окружим точку P_0 сферой радиусом $\rho_1=\alpha$ (рис. 4.2).

Пусть точка P расположена на расстоянии b от поверхности сферы. Мысленно циркулем, одна ножка которого находится в точке P, проведем по поверхности сферы окружности. Соответствующие расстояния между ножками циркуля равны $\rho_2 = b + \frac{\lambda}{2}$, b + $2\frac{\lambda}{2}$, ..., b + $m\frac{\lambda}{2}$. Тогда сфера будет разделена на кольцевые области, называемые зонами Френеля.

Можно вывести формулы для радиуса и площади m-й зоны Френеля

$$r_{\rm m} = \sqrt{\frac{ab}{a+b}} m\lambda$$
, $\sigma_{\rm m} = \sigma_1 = \pi r_1^2 = \frac{\pi ab}{a+b} \lambda$, (4.4)

из которых видно, что радиусы зон увеличиваются $\sim \sqrt{m}$, а площади всех зон одинаковы.

При интегрировании в качестве элемента поверхности выберем бесконечно узкие кольца площадью $d\sigma$, концентричные с зонами Френеля. Если скалярной величине A поставить в соответствие вектор A, то интегрирование сведется к векторному суммированию

$$\mathbf{A} = \iint\limits_{\Sigma} \left[e^{\mathrm{i} k (a + \rho_2)} \right] \left[\frac{CK(\phi)}{a \rho_2} d\sigma \right] = \iint\limits_{\Sigma} e^{\mathrm{i} \psi} dA = \iint\limits_{\Sigma} d\mathbf{A}, \quad (4.5)$$

где вектор dA под интегралом определен своей абсолютной величиной dA = $\frac{CK(\phi)}{\alpha\rho_2}$ d σ и углом $\psi = k(\alpha + \rho_2)$, задающим его направление на диаграмме, как показано на рис. 4.3.

. . .

Вклад первой зоны определяется вектором $\mathbf{A}_1 = \int_{\sigma_1} d\mathbf{A}$,

который изображен на рис. 4.4 слева. Вклад первых двух зон определяется вектором $\mathbf{A}_{1+2} = \mathbf{A}_1 + \mathbf{A}_2 = \int_{\sigma_1} \mathrm{d}\mathbf{A} + \int_{\sigma_2} \mathrm{d}\mathbf{A}$, который изображен на рис. 4.4 справа.

Вклад второй зоны меньше по абсолютной величине, так как увеличились угол и расстояние. Кроме этого вклад второй зоны сдвинут по фазе на π относительно первой. Сдвиг по фазе на π становится понятным из следующих вычислений

Рис. 4.4

$$\Delta \psi_{1 \to 2} = \Delta [k(\alpha + \rho_2)]_{1 \to 2} = \Delta (k\rho_2)_{1 \to 2} =$$

$$= \frac{2\pi}{\lambda} \Delta (\rho_2)_{1 \to 2} = \frac{2\pi}{\lambda} \frac{\lambda}{2} = \pi.$$
(4.6)

В общем случае формула, определяющая фазу для излучения, прошедшего через диафрагму радиусом R, записывается в виде

$$\psi_{R} = \pi \frac{\sigma_{R}}{\sigma_{1}},\tag{4.7}$$

где σ_R – площадь круга радиусом $R, \, \sigma_1$ – площадь первой зоны Френеля.

Например, фаза для излучения, прошедшего через диафрагму радиусом R, которая соответствует N открытым зонам Френеля, равна $\psi_{RN}=\pi\frac{\sigma_{RN}}{\sigma_1}=\pi\frac{N\sigma_1}{\sigma_1}=N\pi$. Здесь использовано то, что площади всех зон Френеля равны.

Если провести интегрирование по всем зонам Френеля, то получим векторную диаграмму (спираль Френеля), изображенную на рис. 4.5. Начальная точка спирали Френеля может быть и внизу, тогда результирующий вектор **A** будет направлен вверх. Векторная диаграмма позволяет в относительных единицах определить амплитуду возмущения в точке P.

Рис. 4.5

Зная расположение зон Френеля, можно сделать зонную пластинку. Зонная пластинка представляет собой стеклянную

пластинку, на которую нанесены концентрические темные кольца, закрывающие либо только четные, либо только нечетные зоны Френеля. На рис. 4.6 изображена зонная пластинка, закрывающая только четные зоны Френеля.

Амплитуда возмущения для такой зонной пластинки, как видно из рис. 4.7, будет значительно больше. С помощью такой пластинки формировать изображения. яркие

Также используют фазовые пластинки, у которых на каждом прозрачном кольце будут укладываться 3, 5 и более зон Френеля.

Рис. 4.6

Дифракция Френеля на круглом отверстии, круглом диске и крае экрана

Пусть сферическая волна с центром в точке Ро падает на экран круглым отверстием r_0 , изображено на рис. 4.8. Амплитуда волны в точке Р на оси отверстия зависит от числа открытых зон Френеля.

Рис. 4.8

фиксированном При положении источника число открытых 30H изменяется расстоянием. Оно определяется из условия $r_m = \sqrt{\frac{ab}{a+b}} m \lambda = r_0$. Следовательно, $m = \frac{r_0^2}{\lambda} \left(\frac{1}{a} + \frac{1}{b} \right)$.

При перемещении точки Р вдоль оси амплитуда возмущения будет периодически изменяться, достигая максимума при нечетном т и минимума – при четном т. Абсолютный максимум достигается на расстоянии b, когда m = 1. В этом случае открыта одна зона Френеля и амплитуда волны равна

$$A_{\text{max}} = A_1 = 2A.$$
 (4.8)

При этом интенсивность волны повышается в четыре раза по сравнению с интенсивностью волны без экрана. Поэтому можно считать, что экран с отверстием подобен линзе. Он формирует изображение источника в точке P, для которой m=1. Подставляя в предпоследнюю формулу m=1, получим выражение $\frac{1}{a}+\frac{1}{b}=\frac{\lambda}{r_0^2}$, которое аналогично формуле линзы, у которой фокусное расстояние $f=\frac{r_0^2}{\lambda}$. Например, при $r_0=0.5$ мм и $\lambda=0.5$ мкм — f=0.5 м.

Пусть на экран с круглым отверстием падает не сферическая, а плоская волна. В этом случае $a=\infty,b=z$. Будем менять расстояние z между точкой P и экраном. Амплитуда волны для точки P определяется из

спирали Френеля. Распределение интенсивности на оси пучка, нормированное на интенсивность падающей волны, приведено на рис. 4.10.

Вблизи экрана число открытых зон $m=\frac{r_0^2}{\lambda z}\gg 1$, поэтому $A=A_0$, где A_0 — амплитуда падающей плоской волны

С увеличением z радиусы зон возрастают и на отверстии остается все меньше зон. При расстоянии $z=L_0=\frac{r_0^2}{\lambda}$ на отверстии остается лишь первая зона и $A=2A_0$. При $z>L_0$ амплитуда в точке P определяется вкладом центральной части первой зоны, поэтому $A<2A_0$.

Характерная длина $L_0 = \frac{r_0^2}{r_0^2}$ дает возможность выделить три области – при $z \ll L_0 \ (m \gg 1)$ зону геометрической оптики, при $z < L_0 \ (m > 1)$ ближнюю зону и при $z > L_0 \ (m < 1)$ дальнюю зону.

В зоне геометрической оптики профиль пучка остается прямоугольным, фазовый фронт плоским, а радиус пучка равен го. В ближней зоне наблюдается кольцеобразная дифракционная картина с темным или светлым пятном в середине. В дальней зоне интенсивность на оси с ростом z монотонно уменьшается. Это свидетельствует о том, что радиус пучка стал увеличиваться по мере его распространения с дифракционной расходимостью $\theta \sim \lambda/r_0$.

Рассмотрим теперь дифракцию на непрозрачном диске. Как и при дифракции на круглом отверстии интенсивность на оси за диском зависит от расстояния z. При

 $z \ll L_0 = \frac{r_0^2}{\lambda}$ m $\gg 1$ и диск закроет практически все зоны и интенсивность $I \approx 0$. В дальней зоне при $z > L_0$ m < 1 и диск закроет лишь небольшую центральную часть первой поэтому І≈Іо. График распределения интенсивности на оси Oz. совпадающей с осью диска, изображен на рис. 4.11.

Проникновение света за диск в дальней зоне огибание трактуется как светом диска. Дифракционная картина за диском изображена на рис. 4.12. В центре темного поля имеется светлое пятно, существование которого предсказал Пуассон, поэтому это пятно называется пятном Пуассона.

Рис. 4.12

Пусть на непрозрачный экран Э с прямолинейным краем, закрывающим часть волнового фронта, падает сферическая волна с центром в точке Р₀, как показано на рис. 4.13 слева. Край перпендикулярен плоскости чертежа. Для амплитуды в точке Р строится векторная диаграмма, называемая спиралью Корню. Вид спирали Корню отличается от спирали

Рассмотрим дифракцию на крае экрана.

Френеля и изображён на рис. 4.13 справа.

На рис. 4.14 приведены график зависимости нормированной интенсивности от координаты x и экспериментально наблюдаемая дифракционная картина.

1 110. 1.1

Приближения Френеля и Фраунгофера

При решении задачи дифракции на основе дифракционного

Гюйгенса-Френеля интеграла можно выделить два предельных этого рассмотрим случая. Для дифракцию волны точечного источника на экране с круглым отверстием радиуса r₀. Точки P₀ и P оси отверстия лежат на расстояниях $a > r_0$ и $b > r_0$, как

показано на рис. 4.15. При интегрировании ρ_1 и ρ_2 изменяются в следующих пределах

$$a \le \rho_1 \le a + \frac{r_0^2}{2a}; \quad b \le \rho_2 \le b + \frac{r_0^2}{2b'}$$
 (4.9)

где $\frac{r_0^2}{2a}$ и $\frac{r_0^2}{2b}$ — малые зазоры между сферами с радиусами а и b и плоскостью экрана, когда точка интегрирования M находится на краю отверстия. Величина зазоров была выведена при рассмотрении колец Ньютона.

Знаменатель подинтегрального выражения в дифракционном интеграле изменяется незначительно, поэтому в нем можно положить $\rho_1=a$, $\rho_2=b$. Однако в числителе из-за большого значения k экспоненциальные функции $e^{ik\rho_1}$ и $e^{ik\rho_2}$ могут изменяться. Функция $e^{ik(\rho_1+\rho_2)}$ будет осциллировать, если $k\frac{r_0^2}{2a}$, $k\frac{r_0^2}{2b}>2\pi\left(\frac{r_0^2}{2a},\frac{r_0^2}{2b}>\lambda$ или a, $b<\frac{r_0^2}{2\lambda}$).

Величина $L_{\text{дифр}}=\frac{r_0^2}{2\lambda}$ называется дифракционной длиной и по порядку величины совпадает с введенной ранее характерной длиной $L_0=\frac{r_0^2}{\lambda}$. Теперь условие осцилляций экспоненциальных функций можно записать в следующем виде

$$a, b < L_{\pi \mu \Phi \nu}.$$
 (4.10)

Это условие ближней зоны и в этом случае на отверстии помещается большое число зон Френеля (m>1). Такое приближение называется приближением Френеля.

И наоборот, функция $e^{ik(\rho_1+\rho_2)}$ не будет осциллировать, если $k\frac{r_0^2}{2a}$, $k\frac{r_0^2}{2b} < 2\pi \left(\frac{r_0^2}{2a},\frac{r_0^2}{2b} < \lambda$ или a, $b > \frac{r_0^2}{2\lambda}$). Это условие можно записать в следующем виде

$$a, b > L_{\text{дифр}}.$$
 (4.11)

В этом случае радиус первой зоны значительно превышает радиус отверстия и видна лишь часть первой зоны Френеля (m < 1). Такое приближение называется приближением Фраунгофера. Ситуация, соответствующая приближению Фраунгофера, наблюдается во многих оптических приборах.

В предыдущем разделе было рассмотрено распределение интенсивности на оси пучка при дифракции плоской волны на круглом отверстии. Было выделено три зоны в продольном направлении — зона геометрической оптики при $z \ll L_0$ ($m \gg 1$), ближняя зона (зона Френеля) при $z < L_0$ (m > 1) и дальняя зона (зона Фраунгофера) при $z > L_0$ (m < 1). На рис. 4.16 приведены поперечные профили пучка для этих трех зон. Слева показано

распределение поперечного профиля в зоне геометрической оптики, по центру – в ближней зоне, а справа – в дальней зоне.

В зоне геометрической оптики поперечный профиль интенсивности пучка остается прямоугольным. В ближней зоне профиль начинает «изрезаться», при четном m на оси пучка интенсивность уменьшается, а при нечетном m — увеличивается. В дальней зоне профиль пучка начинает заметно расширяться. Вместе с ним расширяются и дифракционные кольца. Интенсивность на оси пучка по мере его распространения уменьшается.

Дифракция Фраунгофера на прямоугольном и круглом отверстиях

Рассмотрим дифракцию Фраунгофера на экране с прямоугольным отверстием в области дальней зоны $L>L_0$ (m < 1). Пусть плоская волна падает нормально на экран с прямоугольным отверстием размером $d_1 \times d_2$. Интенсивность излучения в точке наблюдения P равна

$$I_{p} = I(0,0) \operatorname{sinc}^{2}\left(\frac{k_{x}d_{1}}{2}\right) \operatorname{sinc}^{2}\left(\frac{k_{y}d_{2}}{2}\right), \tag{4.12}$$
 где
$$\left(k_{x},k_{y}\right) = k\left(e_{x},e_{y}\right) = k\left(\operatorname{sin}\phi_{x},\operatorname{sin}\phi_{y}\right) = k\left(\frac{x}{b},\frac{y}{b}\right).$$

Вектор (k_x, k_y) определяет отклонение точки P в плоскости, перпендикулярной направлению распространения пучка. Интенсивность на оси определяется выражением $I(0,0) = I_0 \left(\frac{d_1 d_2}{\lambda b}\right)^2$, где I_0 – интенсивность падающего излучения; b – расстояние от экрана до точки P.

Это двухмерное распределение интенсивности хорошо описывает экспериментально наблюдаемую интерференционную картину, изображенную на рис. 4.17. Основная мощность волны сконцентрирована в пределах центрального дифракционного пятна. Чем меньше размеры отверстия, тем больше угловые размеры этого пятна и всей дифракционной картины.

Рис. 4.17

Если прямоугольное отверстие сильно вытянуто $(d_2\gg d_1)$, то говорят о щели шириной d_1 . В случае дифракции на щели распределение интенсивности в точке P будет выглядеть следующим образом

$$I_p = I(0,0) \operatorname{sinc}^2 \left(\frac{k_x d_1}{2} \right).$$
 (4.13)

Экспериментально наблюдаемая картина в случае дифракции на щели будет одномерной, как показано на рис. 4.18.

Рис. 4.18

Рассмотрим теперь дифракцию Фраунгофера на

круглом отверстии. Пусть в экране имеется круглое отверстие радиуса г. Интенсивность излучения в точке наблюдения Р равна

$$I_{\rm p} = I(0,0) \left[\frac{2J_1(k_{\perp}r)}{k_{\perp}r} \right]^2$$
 (4.14)

Здесь
$$\mathbf{k}_{\perp}=\sqrt{\mathbf{k}_{x}^{2}+\mathbf{k}_{y}^{2}}=ksin\theta$$
, где θ – угол между осью Оz и

направлением в точку P, J_1 — функция Бесселя, которая является решением уравнений Бесселя (линейные дифференциальные уравнения 2 порядка). Графически функции Бесселя напоминают затухающую синусоиду, но в отличии от синусоиды нули функций Бесселя расположены не периодически.

На рис. 4.19 слева показана экспериментально наблюдаемая картина при дифракции Фраунгофера на круглом отверстии (кольца Эйри), на рис. 4.19 справа — пропись интенсивности этой дифракционной картины.

Дифракционная картина представляет собой кольца, окружающие яркое круглое пятно. Дифракционные кольца называются кольцами Эйри. Угловой размер центрального пятна по уровню 80% энергии определяется из условия

Рис. 4.19

Иногда используют половинный угол $\theta = 1,22\frac{\lambda}{d} = 0,61\frac{\lambda}{r}$. Расходимость, рассчитанная по формуле (4.15), называется дифракционной и это наименьшая из возможных расходимостей. Она реализуется в дальней зоне Фраунгофера на расстояниях $L > L_0$. круглой апертуры пучка Например, ДЛЯ радиусом $r_0 = 10$ см с длиной волны $\lambda = 0.5$ мкм дальняя зона Фраунгофера формируется на расстояниях L > 10 км. Однако, такую же картину распределения интенсивности можно получить на небольших расстояниях в фокальной плоскости линзы. Зная расходимость θ и фокусное расстояние линзы F, можно по формуле $\theta = \frac{D}{E}$ определить размер пучка D в фокусе линзы.

В случае квадратной апертуры размером d×d дифракционная расходимость идеального пучка с плоским волновым фронтом равна $\theta_{\text{лифр}} = 2,0\frac{\lambda}{a}$.

На рис. 4.20 схематично изображено распространение вдоль оси Оz пучка с прямоугольным профилем интенсивности при дифракции на круглом отверстии.

Для большей наглядности штриховой линией выделена цилиндрическая область с радиусом, равным начальному радиусу светового пучка. В зоне геометрической оптики, когда $z \ll L_0$ (m \gg 1), пучок не претерпевает структурных изменений. В ближней зоне,

когда $z < L_0$ (m > 1), реализуется дифракция Френеля и наблюдаются структурные изменения пучка. В дальней зоне, когда $z > L_0$ (m < 1), реализуется дифракция Фраунгофера. При этом основная мощность заключена внутри пространства, характерные границы которого изображены двумя сплошными линиями, образующими между собой угол $\theta_{\text{дифр}}$.

Рис. 4.20

Дифракционные решетки

Среди многочисленных дифракционных явлений особое место занимает дифракция на периодических структурах. При распространении (отражении) плоской волны через одномерные или двухмерные структуры волна приобретает периодическую модуляцию амплитуды и фазы. В результате в угловом спектре появляются ярко выраженные пространственные частоты. Дифракционные максимумы, соответствующие этим частотам, будут узкими и интенсивными.

Дифракционной решеткой устройство, является любое периодическую обеспечивающее модуляцию вдоль одного направления амплитуды или фазы падающей волны. рис. 4.21 решетка схематично Ha изображена прозрачной виде пластинки с периодически меняющейся толщиной вдоль оси Ох.

Рис. 4.21

Модуляционные свойства решетки задаются комплексной функцией

$$t(x) = \frac{E(x, y)}{E_0(x, y)} = |t(x)|e^{-i\Phi(x)} = = t(x + d), \tag{4.16}$$

где $E_0(x,y)$ – волна, падающая на решетку, E(x,y) – волна, прошедшая через решетку.

Функция t(x) — периодическая, величина d называется периодом решетки. Число N таких периодов (штрихов) обычно велико: $10^2 < N < 10^4$. Для решеток, которые отражают свет, функция t(x) описывает модуляцию волны при отражении. По характеру модуляции решетки подразделяются на амплитудные и фазовые. Для амплитудных решеток $\Phi(x) = 0$, для фазовых |t(x)| = 1.

Рассмотрим амплитудную дифракционную решётку. Классическим примером амплитудной дифракционной решетки является стеклянная пластина с чередующимися прозрачными и непрозрачными полосами (штрихами). Введем переменную $p=e_x-e_{0x}=\sin\phi-\sin\phi_0$, где ϕ,ϕ_0 — углы, образуемые векторами е и e_0 с осью Оz соответственно. Интенсивность в точке Р при дифракции на решетке, состоящей из N штрихов с периодом d равна

$$I_{P} = I_{1P}H_{N}.$$
 (4.17)

Здесь ${\rm I_{1P}}-$ интенсивность в точке P при дифракции на одном

штрихе;
$$H_N = \left(\frac{\sin\frac{kpdN}{2}}{\sin\frac{kpd}{2}}\right)^2 - функция взаимодействия, описывающая$$

интерференцию N волн, каждая из которых образовалась в результате дифракции на одном штрихе решетки. Множитель ${\rm I_{1P}}$

называют дифракционным, а множитель H_N – интерференционным.

Рассмотрим более подробно интерференционный множитель H(N). График этой функции при N=10 представлен на рис. 4.22.

Главные максимумы этой функции $(H_{max} = N^2)$ реализуются при

$$\frac{\text{kpd}}{2} = \text{m}\pi, \tau. \, \text{e.} \, \text{p} = \text{m} \frac{\lambda}{\text{d}}$$
 или
$$\text{d} \left(\sin \phi - \sin \phi_0 \right) = \text{m}\lambda, \tag{4.18}$$

где $m = \pm 1, \pm 2, ...$

Каждому целому значению m соответствует свой угол ф. Для понимания физического смысла последней формулы обратимся к рис. 4.23.

Условие $d(\sin \phi - \sin \phi_0) = m\lambda$ означает, что разность хода $A_1B_1 - A_2B_2$ между крайними лучами, разнесенными на расстояние d в плоскости решетки, равна целому числу длин волн. В этом случае волны, дифрагировавшие от разных штрихов, складываются в фазе, и суммарное возмущение возрастает в N раз, а интенсивность — в N^2 раз.

Рис. 4.23

Минимумы образуются при

$$\frac{kpdN}{2} = n\pi, \tau. e. p = n \frac{\lambda}{dN} \quad \text{или}$$

$$Nd(\sin \phi - \sin \phi_0) = n\lambda,$$
 (4.19)

где $n = \pm 1, \pm 2, ... \pm (N-1), \pm (N+1), \pm (N+2), ...$

Здесь n — целое число n≠±N,±2N,..., так как при $n=\pm N,\pm 2N,...$ реализуется предыдущее условие главных максимумов.

Между двумя соседними максимумами находится (N-1) минимум. Интерферирующие волны от источников в направлениях, определяемых $Nd(\sin \phi - \sin \phi_0) = n\lambda$, гасят друг друга.

Амплитудная и фазовая модуляция

Рассмотрим амплитудную дифракционную решётку с чередующимися прозрачными и непрозрачными полосами (штрихами), для которой амплитуда |t(x)| принимает значения 0 или 1. Пусть на решетку падает пучок с плоским волновым фронтом под углом $\phi_0=0$.

Дифракционный множитель I_{1P} для такой решетки был введен ранее при рассмотрении дифракции на щели шириной d_1

$$\begin{split} I_{1P} &= I(0,0) \text{sinc}^2 \left(\frac{k_x d_1}{2} \right) = I(0,0) \text{sinc}^2 \left(\frac{k e_x d_1}{2} \right) = \\ &= I(0,0) \text{sinc}^2 \left(\frac{k \sin \phi d_1}{2} \right) = I(0,0) \text{sinc}^2 \left(\frac{k p d_1}{2} \right). \end{split} \tag{4.20}$$

График этой зависимости приведен на рис. 4.24, минимумы определены из условия

$$\frac{kpd_1}{2} = q\pi, \tau. e. p = q \frac{\lambda}{d_1} \quad \text{или}$$

$$d_1 \left(\sin \phi - \sin \phi_0\right) = q\lambda, \tag{4.21}$$

где $q = \pm 1, \pm 2, \pm 3, ...$

Так как $d_1 < d$ $(d_1$ — ширина щели, d — период решетки), то при перемножении $I_P = I_{1P}H_N$ минимумы функции I_{1P} будут располагаться реже, чем максимумы функции H_N , то есть функция I_{1P} будет огибающей. Поэтому минимумы, определяемые последним условием, называются главными минимумами.

Распределение интенсивности пучка, прошедшего через дифракционную решетку с шириной штриха $d_1=d/5$ и числом штрихов N=10, показано на рис. 4.25, а в таблице 4.1 приведены условия для определения положения главных максимумов, минимумов и главных минимумов.

Таблина 4 1

положение главных	положение	положение главных
максимумов	минимумов	минимумов
λ	λ	λ
$p = m - \frac{1}{d}$	$p = n \frac{dN}{dN}$	$p = q \frac{1}{d_1}$
$m = \pm 1, \pm 2,$	$n = \pm 1, \pm 2,$	$q = \pm 1, \pm 2, \pm 3,$
	$\pm (N-1), \pm (N+1),$	
	\pm (N + 2),	

В случае фазовой дифракционной решетки модулируется $\Phi(x)$, фаза амплитуда остается постоянной |t(x)| = 1.Современные отражательные решетки штрихи определенного профиля, нанесенные на слой напыленного

На рис. 4.26 показан профиль отражательной дифракционной решетки, при отражении от которой максимальное значение I_{1P} соответствует направлению зеркального отражения $\varphi = \varphi_0 + 2\alpha$.

Количество дифракционной штрихов ДЛЯ составляет 600 или 1200 штрих/мм. Процесс изготовления дифракционной решетки размером 40×40 см может занимать несколько месяцев.

Пространственное разложение спектра, разрешающая способность решетки

Наиболее распространенные спектральные приборы – это приборы пространственного разделения света по длинам волн. Основой таких приборов является диспергирующий элемент

(решетка, призма). На рис. 4.27 показана схема спектрального прибора на основе дифракционной решетки.

Параллельный световой пучок, падающий на дифракционную решетку, формируется объективом O_1 , в фокальной плоскости которого расположен точечный источник S.

Волны с различными длинами λ , дифрагируя под разными углами, проходят через объектив O_2 и фокусируются в плоскости, наклоненной под небольшим углом к плоскости, перпендикулярной оптической оси объектива. Наклон связан с зависимостью фокусного расстояния объектива от длины волны.

Конструкция прибора такова, что в плоскости формируется картина, соответствующая какому-либо дифракционному порядку m. Так как главные максимумы в дифракционной картине узкие, то при небольшом изменении длины волны можно зафиксировать их смещение. Поэтому решетки широко используются для спектрального анализа.

Рассмотрим разрешающую способность дифракционных решеток. Пусть спектр анализируемого света состоит из двух спектральных линий одинаковой интенсивности, но с разными длинами волн λ_1 и λ_2 . На рис. 4.28 изображена ситуация, когда максимум одной спектральной линии совпадает с первым минимумом другой.

B случае «проседание» функции середине достигает 20%. Наличие максимумов при таком ДВУХ контрасте вполне уверенно фиксируется как визуально, так и использованием фотоприемников. Ha ЭТОМ основан критерий Рэлея, согласно

которому минимальная разность длин волн, которую можно измерить с помощью решетки для m порядка дифракции, равна

$$\Delta \lambda_{\min} = \frac{\lambda_0}{mN}.$$
 (4.22)

Если $\lambda_2 - \lambda_1 \ge \Delta \lambda_{min}$, то решетка разделяет линии. Для дифракционной решетки вводят понятие разрешающей способности. Разрешающая способность равна произведению порядка дифракции m на число интерферирующих лучей N, то есть число периодов решетки

$$R = mN = \frac{\lambda_0}{\Delta \lambda_{\min}}.$$
 (4.23)

Эта формула похожа на формулу для определения максимального порядка при размывании интерференционных полос в опыте Юнга

$$m_{\text{max}} = \frac{\lambda_0}{\Lambda \lambda}.$$
 (4.24)

Нужно отметить условность критерия Рэлея, поскольку в современном эксперименте возможно разрешение значительно более близких спектральных линий, когда проседание функции $H_{\rm m}$ в середине составляет менее 5%.

Голография

Голография представляет собой метод получения объемного трехмерного изображения объекта. Информация о расстоянии до любой точки объекта заложена в кривизне и наклоне волнового фронта отраженной волны. В фотографическом методе эта информация утеряна и трехмерные объекты на фотографии регистрируются как двухмерные. Информацию о кривизне и наклоне волнового фронта можно записать с применением интерференции.

В основе голографии лежит запись интерферограмм и последующее восстановление с их помощью действительного или мнимого изображения трехмерного объекта. Такая процедура называется голографированием. x = x + y = 0

Рассмотрим голографирование плоской волны. Пусть плоская волна, несущая информацию об объекте (назовем ее сигнальной волной), распространяется под углом θ к оси Oz, как показано на рис. 4.29.

Опорная В

Рис. 4.29

Чтобы записать информацию о ней на фотопластинке, используем вторую волну (назовем ее опорной волной) с той же длиной волны, которую направим перпендикулярно пластинке. Тогда на пластинке образуются интерференционные полосы, ширина которых равна $\Delta x = \lambda/\theta$.

называется голограммой. Если на голограмму падает нормально плоская волна, то она будет дифрагировать по трем направлениям $d\sin\phi=m\lambda$, m=0,+1,-1. Одна из волн, для которой m=-1 и будет восстановленной сигнальной волной (рис. 4.30).

Рассмотрим голографирование сферической волны. При интерференции сферической сигнальной волны и плоской опорной (рис. 4.31 слева) образуется интерферограмма в виде концентрических колец (рис. 4.31 по центру).

Голограмма будет представлять собой гармоническую решетку, при освещении которой плоской волной из трех дифрагировавших волн расходящаяся будет соответствовать сигнальной волне (рис. 4.31 справа).

Рис. 4.31

Рассмотрим теперь голограмму Френеля. В эксперименте широкий параллельный лазерный пучок методом деления волнового фронта разделяется на два — опорный и освещающий объект, как показано на рис. 4.32 слева. От каждой точки P_0 объекта на фотопластинку падает сигнальная сферическая волна и голограмма будет представлять наложение гармонических решеток.

При освещении голограммы опорной волной формируются два изображения, как показано на рис. 4.32 справа. Мнимое изображение можно наблюдать сквозь голограмму, а действительное – на экране. При перемещении глаза ракурс мнимого изображения изменяется, как и должно быть в случае трехмерного объекта.

Рис. 4.32

Раздел 5. Дисперсия

Пространственная и частотная дисперсия. Дисперсия газов, абсорбционные светофильтры. Поляризация среды, формула Лоренц-Лоренца. Фазовая и групповая скорости в диэлектриках. Распространение волн в плазме.

Пространственная и частотная дисперсия

Процесс распространения света в материальной среде обусловлен воздействием поля волны на атомы и молекулы вещества. Поглощая световую энергию, атомы и молекулы переизлучают её, становясь источниками вторичных волн. Поэтому распространение света в среде отличается от распространения в вакууме, так как в среде волна является суперпозицией падающей волны и множества вторичных когерентных волн. С этим связано понятие дисперсии, то есть зависимости скорости распространения волны и показателя преломления среды от частоты.

Как известно, электромагнитная теория света базируется на уравнениях Максвелла и материальных уравнениях среды. В общем случае материальные уравнения среды записываются в следующем виде

$$D = D(E);$$
 $B = B(H);$ $j = j(E),$ (5.1) где E и D — напряженность и индукция электрического поля, H и B — напряженность и индукция магнитного поля, J — плотность тока.

Для вакуума диэлектрическая проницаемость $\epsilon=1$, магнитная проницаемость $\mu=1$, а электрическая проводимость $\sigma=0$, поэтому материальные уравнения принимают простейший вид

$$\mathbf{D} = \varepsilon_0 \mathbf{E}; \qquad \mathbf{B} = \mu_0 \mathbf{H}; \qquad \mathbf{j} = 0, \tag{5.2}$$

где ϵ_0 , μ_0 — электрическая и магнитная постоянные.

Для среды с дисперсией в оптическом диапазоне $\mu=1,\ a$ ϵ и σ являются тензорами, поэтому материальные уравнения среды записываются следующим образом

$$\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E}; \ D_i(t, \mathbf{r}) = \varepsilon_0 \sum_{j=1}^{3} \int_{0}^{\infty} dt' \int_{-\infty}^{\infty} \varepsilon_{ij}(t', \mathbf{r}') E_j(t - t', \mathbf{r} - \mathbf{r}') d\mathbf{r}'$$

$$\mathbf{B} = \mu_0 \mathbf{H}. \tag{5.3}$$

$$\mathbf{j} = \sigma \mathbf{E}; \quad j_i(t, \mathbf{r}) = \sum_{j=1}^{3} \int\limits_{0}^{\infty} \mathrm{d}t' \int\limits_{-\infty}^{\infty} \sigma_{ij}(t', \mathbf{r}') E_j(t - t', \mathbf{r} - \mathbf{r}') \mathrm{d}\mathbf{r}';$$

Среда, для которой значения векторов \mathbf{D} и \mathbf{j} в какой-либо точке пространства \mathbf{r} и момент времени \mathbf{t} зависят от значений вектора \mathbf{E} в этот же момент времени, но в других точках пространства, как показано на рис. 5.1 слева, называется средой с пространственной дисперсией. Среда, для которой значения векторов \mathbf{D} и \mathbf{j} определяются значениями вектора \mathbf{E} в той же точке пространства, но в предшествующие моменты времени, как показано на рис. 5.1 справа, называется средой с частотной дисперсией.

Рис. 5.1

Явление частотной дисперсии известно в виде зависимости показателя преломления среды от частоты. Рассмотрим её более продробно. Пусть монохроматичная волна распространяется в среде с частотной дисперсией. Решением уравнений Максвелла для этой ситуации будет выражение

$$E(z,t) = E_0 \exp[i(kz - \omega t)], \eqno(5.4)$$
 описывающее плоскую волну, распространяющуюся в направлении

В вакууме волновое число k связано c частотой ω соотношением $k=\frac{\omega}{c},$ а в среде c частотной дисперсией связь будет следующей

оси Oz.

$$k = -\frac{\omega}{c}n = -\frac{\omega}{c}(n_1 + in_2). \tag{5.5}$$

Здесь $n=n_1+in_2$ – комплексный показатель преломления, действительные и мнимые части которого являются функциями частоты.

Подставив выражение для волнового вектора в уравнение волны, получим

$$\begin{split} E(z,t) &= E_0 \exp[i(kz - \omega t)] = E_0 \exp\left[i\left(\frac{\omega}{c}n_1z + i\frac{\omega}{c}n_2z - \omega t\right)\right] = \\ &= E_0 \exp\left(-\frac{n_2\omega}{c}z\right) \exp\left[i\omega\left(\frac{n_1}{c}z - t\right)\right]. \end{split} \tag{5.6}$$

Величина n_1 называется показателем преломления, а величина n_2 называется показателем поглощения. Из последнего выражения следует, что интенсивность волны убывает по закону

$$I(z) = I_0 e^{-\alpha z}, (5.7)$$

получившему название закона Бугера-Ламберта-Бера. Здесь $\alpha = 2\frac{\omega}{c}n_2$ – коэффициент поглощения.

Дисперсия газов, абсорбционные светофильтры

На основе электронной теории дисперсии газов можно получить выражения для показателей преломления и поглощения

$$n_1 = 1 - K \frac{\frac{(\omega - \omega_0)}{\delta}}{\frac{(\omega - \omega_0)^2}{\delta^2} + 1}$$
, $n_2 = K \frac{1}{\frac{(\omega - \omega_0)^2}{\delta^2} + 1}$ (5.8)

где коэффициент $K=\frac{\omega_p^2}{4\delta\omega_0}$, ω_0 — собственная частота колебаний электронов, δ — показатель затухания колебаний электронов, $\omega_p^2=\frac{Ne^2}{m\epsilon_0}$ — плазменная частота.

На рис. 5.2 показаны графики зависимостей показателей преломления и поглощения от величины $\frac{\omega-\omega_0}{\delta}$. Область частот, где показатель преломления n_1 увеличивается с частотой ω , называется областью нормальной дисперсии. В этой области

показатель поглощения n_2 мал. Область частот, где n_1 уменьшается с частотой ω , называется областью аномальной дисперсии. Здесь показатель поглощения n_2 сильно возрастает и среда обладает линией поглощения, то есть излучение поглощается на собственной частоте колебаний электронов в атомах газа.

В жидкостях и твердых телах линии поглощения могут перекрывать друг друга и образовывать полосы поглощения. Между полосами поглощения будут расположены полосы пропускания. На этом принципе работают поглощающие (абсорбционные)

светофильтры, предназначенные для пропускания части света в узком спектральном диапазоне. Такие светофильтры изготавливают из стекол, содержащих присадки.

Наиболее распространены светофильтры, стеклянные выполненные из цветных стекол размером $80 \times 80 \text{ мм}^2$ или $40 \times 40 \text{ мм}^2$. В рис. примера на представлены спектральные коэффициенты пропускания сине-зеленого СЗС21, желто-зеленого ЖЗС9 и красного КС11 фильтров, имеющих толщину 3 мм.

Длины волн пропускания сине-зеленого фильтра $\lambda_{C3C21}=440$ нм ± 80 нм, желто-зеленого $\lambda_{K3C9}=540$ нм ± 50 нм, красного $\lambda_{KC11}{\ge}610$ нм. Следует отметить, что через область их перекрытия

свет практически не проходит и эта область выглядит темной, как например в случае двух светофильтров C3C21 и КС11.

В тех случаях, когда надо уменьшить в одинаковой степени интенсивность каждой спектральной компоненты, применяют нейтральные стеклянные

светофильтры НС. Спектральный коэффициент пропускания для нейтрального фильтра НС1 показан на рис. 5.4.

Поляризация среды, формула Лоренц-Лоренца

Рассмотрим воздействие поля на газовую среду. При воздействии поля среда приобретает дипольный момент, который слагается из дипольных моментов молекул, составляющих газ. Поляризация Р характеризует отклик среды на воздействие внешнего электрического поля Е

$$P = \varepsilon_0 \chi E, \tag{5.9}$$

где ϵ_0 — электрическая постоянная, χ — диэлектрическая восприимчивость.

Диэлектрическая восприимчивость χ характеризует способность среды поляризоваться под действием внешнего электрического поля и определяется формулой

$$\chi = N\beta, \tag{5.10}$$

где N- число молекул в единице объема, $\beta-$ поляризуемость одной молекулы среды.

Диэлектрическая восприимчивость χ связана с диэлектрической проницаемостью ϵ . Для разреженных газов эта связь записывается следующим образом

$$\chi = \varepsilon - 1, \tag{5.11}$$

а для плотных газов эта связь описывается формулой Лоренц-Лоренца

$$\frac{\chi}{3} = \frac{\varepsilon - 1}{\varepsilon + 2}.\tag{5.12}$$

Число молекул в единице объема N зависит от плотности вещества ρ известным соотношением

$$N = \frac{N_A \rho}{\mu},\tag{5.13}$$

где N_A – число Авогадро, μ – молекулярная масса.

C учетом последней формулы и зависимости $\sqrt{\epsilon}=n$ формулу Лоренц-Лоренца можно записать в виде

$$\frac{n^2 - 1}{\rho(n^2 + 2)} = \frac{N_A \beta}{3\mu} = R_{y\mu}, \tag{5.14}$$

где $R_{v\pi}$ – удельная рефракция.

Фазовая и групповая скорости в диэлектриках

Рассмотрим распространение света в диэлектриках ($\sigma=0$) в области нормальной дисперсии ($n_2=0$). Монохроматичная волна с частотой ω является моделью, которая хорошо описывает волну с узким частотным спектром. Реальные волны можно представить в виде группы волн, частоты которых занимают конечный интервал $\Delta\omega$ вблизи основной частоты ω_0 .

Рассмотрим простейшую ситуацию, когда группа состоит из двух плоских волн с близкими частотами ω_1 и ω_2 , распространяющихся в одном направлении. Волновые числа этих волн равны

$$k_1 = \frac{\omega_1}{c} n_1 = \frac{2\pi}{\lambda_1} n_1, \qquad k_2 = \frac{\omega_2}{c} n_2 = \frac{2\pi}{\lambda_2} n_2.$$
 (5.15)

Тогда поле рассматриваемой группы из двух волн можно записать в виде

$$\begin{split} E(z,t) &= E_0 \sin(k_1 z - \omega_1 t) + E_0 \sin(k_2 z - \omega_2 t) = \\ &= 2E_0 \cos\left(\frac{\Delta k}{2} z - \frac{\Delta \omega}{2} t\right) \sin(k_0 z - \omega_0 t) = \\ &= A(z,t) \sin(k_0 z - \omega_0 t). \end{split} \tag{5.16}$$

Здесь $\Delta \omega = \omega_2 - \omega_1$, $\Delta k = k_2 - k_1$, $\omega_0 = \frac{\omega_1 + \omega_2}{2}$, $k_0 = \frac{k_1 + k_2}{2}$. Функция A(z,t) является огибающей группы волн. График результирующего поля группы из двух волн приведен на рис. 5.5.

Рис. 5.5

Таким образом, результирующее поле группы из двух волн представляет собой колебания на средней частоте ω_0 с огибающей A(z,t).

Для фазовой скорости постоянной является фаза, то есть аргумент функции sin

$$\varphi = k_0 z - \omega_0 t = \text{const.}$$
 (5.17)

Продифференцировав, получаем условие $d\phi = k_0 dz - \omega_0 dt = 0$, из которого находим значение фазовой скорости

$$v = \frac{dz}{dt} = \frac{\omega_0}{k_0}.$$
 (5.18)

Для групповой скорости постоянным является аргумент огибающей A(z,t)

$$\frac{\Delta k}{2}z - \frac{\Delta \omega}{2}t = const. \tag{5.19}$$

Продифференцировав, получаем условие $\frac{\Delta k}{2} dz - \frac{\Delta \omega}{2} dt = 0$, из которого находим значение групповой скорости

$$u = \frac{dz}{dt} = \frac{\Delta\omega}{\Delta k}.$$
 (5.20)

Групповая скорость характеризует скорость переноса энергии, поэтому именно она используется для описания распространения света. В области нормальной дисперсии фазовая скорость больше групповой v > u, а в области аномальной дисперсии фазовая скорость меньше групповой v < u.

Распространение волн в плазме

Рассмотрим теперь распространение волн в плазме и металлах для которых $\sigma \neq 0$. В таких средах имеется большое число свободных электронов и зависимость показателя преломления от частоты выглядит следующим образом

$$n^2 = \varepsilon = 1 - \frac{\omega_p^2}{\omega^2},\tag{5.21}$$

где плазменная частота $\omega_p^2=\frac{Ne^2}{m\epsilon_0}$ была введена ранее.

При частотах $\omega < \omega_p$ диэлектрическая проницаемость $\epsilon < 0$. При этом излучение в плазме не поглощается, а полностью отражается. И наоборот, при частотах $\omega > \omega_p$ диэлектрическая проницаемость $\epsilon > 0$. При этом излучение поглощается в плазме и не отражается. Иногда вместо плазменной частоты используют плазменную длину волны

$$\lambda_{\rm p} = \frac{2\pi c}{\omega_{\rm p}} \tag{5.22}$$

В этом случае ситуации, когда излучение отражается от плазмы соответствует область длин волн $\lambda > \lambda_p$, а ситуации, когда излучение не отражается от плазмы, соответствует область длин волн $\lambda < \lambda_p$. Свойство плазмы не отражать излучение позволяет делать невидимыми для радиолокационных станций самолеты. Для этого на них устанавливается генератор электронов, создающий плазменное облако и ионизирующий пространство вокруг самолёта.

Раздел 6. Волны в анизотропных средах

Главные показатели преломления, обыкновенная и необыкновенная волны. Угол анизотропии, лучевая скорость, двойное лучепреломление. Поверхности и уравнения нормалей Френеля. Поляризаторы, анализ состояния поляризации. Эффекты Керра, Поккельса и Фарадея.

Главные показатели преломления, обыкновенная и необыкновенная волны

Рассмотрим распространение света в анизотропных средах. Такими средами являются прежде всего оптические кристаллы. В них характер распространения волны может изменяться в зависимости от направления распространения.

Характерным примером анизотропии является следующий опыт. Если пластинку, вырезанную из анизотропного кристалла, определенным образом положить на поверхность рисунка, то возникнут два изображения этого рисунка. Это явление получило название двойного лучепреломления. Поворот пластинки в плоскости рисунка приводит к тому, что одно изображение остается неподвижным, а второе вращается вокруг него.

Еще одним примером анизотропной среды являются прозрачные пластинки, вырезанные из кристалла турмалина. Если направить луч света на две такие пластинки, установленные одна за другой, то интенсивность прошедшего света можно изменять, поворачивая одну пластинку относительно другой. При некоторой взаимной ориентации пластинок солнечный свет проходить не будет. Этот опыт объясняется тем, что поглощение света в кристалле турмалина зависит от поляризации света, то есть от ориентации вектора напряженности электрического поля волны относительно кристаллографических осей. Зависимость поглощения света от его поляризации получила название дихроизма.

Описанные явления двойного лучепреломления и дихроизма позволяют управлять направлением распространения волны и ее интенсивностью, используя среды с искусственной анизотропией.

Напомним, что связь между векторами напряженности и индукции электрического поля записывается как $D = \epsilon_0 \epsilon E$, где для изотропной среды ϵ – число, а для анизотропной ϵ_{ii} – тензор.

Соответствующим выбором координат тензор ϵ_{ij} может быть приведен к диагональному виду

$$\varepsilon_{ij} = \begin{pmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{22} & 0 \\ 0 & 0 & \varepsilon_{33} \end{pmatrix}. \tag{6.1}$$

обозначения Введем $\varepsilon_{11} = \varepsilon_{x}, \quad \varepsilon_{22} = \varepsilon_{v}, \quad \varepsilon_{33} = \varepsilon_{z}$ и рассмотрим распространение плоской волны в анизотропной среде. Пусть волновой вектор k направлен вдоль оси Oz. Если волна поляризована в плоскости xOz, как показано на рис. 6.1 a, то материальное уравнение среды $D_{x} = \varepsilon_{0} \varepsilon_{x} E_{x}$. имеет вил Соответственно, показатель

Рис. 6.1

преломления $n_x = \sqrt{\epsilon_x}$, а фазовая скорость $v_x = \frac{c}{n_x} = \frac{c}{\sqrt{\epsilon_x}}$. Если волна поляризована в плоскости уОz, как показано на рис. 6.1 δ , то материальное уравнение среды имеет вид $D_y = \epsilon_0 \epsilon_y E_y$. Соответственно, показатель преломления $n_y = \sqrt{\epsilon_y}$, а фазовая скорость $v_y = \frac{c}{n_y} = \frac{c}{\sqrt{\epsilon_y}}$.

Характеристики для всех случаев распространения волны в анизотропной среде приведены в таблице 6.1. Индексы x, y и z означают индекс поляризации, а не направления распространения. Величины n_x , n_y и n_z называются главными показателями преломления, а скорости v_x , v_y и v_z — главными скоростями волны. Рассмотрим два частных случая.

1. Случай изотропной среды, когда $\varepsilon_x = \varepsilon_y = \varepsilon_z = \varepsilon$. Тогда $n = \sqrt{\varepsilon}$, $v = c/\sqrt{\varepsilon}$. У такой среды один показатель преломления и одна фазовая скорость для всех направлений распространения

волны и любой ее поляризации.

Tr ~	/ 1
Таблица	61
т иолици	0.1

			1
направление распространения	материальное уравнение	показатель преломления	фазовая скорость
распространения	урависиис	преломисния	скороств
Ox	$D_y = \epsilon_0 \epsilon_y E_y$	$n_y = \sqrt{\epsilon_y}$	$v_y = c/\sqrt{\varepsilon_y}$
Ox	$D_z = \epsilon_0 \epsilon_z E_z$	$n_z = \sqrt{\epsilon_z}$	$v_z = c/\sqrt{\varepsilon_z}$
Oy	$D_x = \epsilon_0 \epsilon_x E_x$	$n_x = \sqrt{\epsilon_x}$	$v_x = c/\sqrt{\varepsilon_x}$
Oy	$D_z = \epsilon_0 \epsilon_z E_z$	$n_z = \sqrt{\epsilon_z}$	$v_z = c/\sqrt{\epsilon_z}$
Oz	$D_{x} = \epsilon_{0}\epsilon_{x}E_{x}$	$n_x = \sqrt{\epsilon_x}$	$v_x = c/\sqrt{\varepsilon_x}$
	$D_y = \epsilon_0 \epsilon_y E_y$	$n_y = \sqrt{\epsilon_y}$	$v_y = c/\sqrt{\varepsilon_y}$

2. Случай, когда $\varepsilon_x = \varepsilon_y \neq \varepsilon_z$. Тогда $v_x = v_y \neq v_z$. Следовательно, обе волны, распространяющиеся вдоль оси Оz (рисунки a и δ), имеют одинаковую скорость $v_o = v_x = v_y$. Независимость скорости волны v_o от состояния поляризации является основанием говорить о выделенном направлении Оz как об оптической оси кристалла. Такое направление единственное, поэтому кристалл называется одноосным. В общем случае таких направлений может быть два и кристалл называется двуосным.

При распространении света перпендикулярно оптической оси одни волны (рисунки ε и e) распространяются по-прежнему со скоростью v_o , а другие волны (рисунки ε и d) — со скоростью $v_e = v_z$. Волна, скорость которой равна v_o , называется обыкновенной (ordinary), поскольку ее скорость такая же, как и вдоль оптической оси. У второй волны скорость $v_e \neq v_o$, поэтому волна называется необыкновенной (extraordinary). Обыкновенная и необыкновенная волны отличаются поляризацией.

Угол анизотропии, лучевая скорость, двойное лучепреломление

В общем случае, когда волновой вектор имеет произвольное направление в кристалле, векторы \mathbf{D} и \mathbf{E} связаны через тензор и их направления не совпадают. На рис. $6.2~\mathbf{e}$ – вектор нормали к волновому фронту пучка, \mathbf{s} – вектор

Рис. 6.2

переноса энергии или вектор Пойтинга. Угол между векторами **D** и Е, равный углу между векторами е и s, называется углом анизотропии θ. Векторы **e**, **D**, **H** и векторы **s**, **E**, **H** образуют правые тройки. Вектора е, s, D и Е лежат в заштрихованной плоскости, вектор Н перпендикулярен этой плоскости.

Несовпадение нормали е и луча **s** требует дополнительного пояснения. В анизотропной среде пучок с плоским волновым фронтом распространяется как изображено на рис. 6.3.

Поверхности волнового Рис 63

фронта изображены штриховыми линиями. Поверхности волнового фронта перемещаются в направлении вектора нормали е с фазовой скоростью v. Скорость переноса поверхности волнового фронта вдоль луча называется лучевой скоростью u. За время Δt волновой фронт или фаза переместится в направлении вектора нормали е на расстояние $v\Delta t$, а по лучу – на расстояние $u\Delta t$. Из рисунка видно, что

 $v = u \cos \theta$. (6.2)

Таким образом, лучевая скорость больше фазовой u > v.

Наличие двух лучей, как показано на рис. 6.4, двойного носит название лучепреломления. Двойное лучепреломление онжом наблюлать следующем опыте

Коллимированный узкий пучок неполяризованного света падает нормально на плоскопараллельную прозрачную пластинку, вырезанную из одноосного кристалла, оптическая ось которого наклонена к поверхности. После прохождения светом пластинки появляются два параллельных световых пучка, поляризованных во взаимно перпендикулярных плоскостях. При вращении кристалла вокруг оси, совпадающей с осью падающего пучка, один из выходящих пучков неподвижен, а второй вращается вместе с кристаллом.

Поверхности и уравнения нормалей Френеля

Поверхность нормалей Френеля диаграмма это зависимости скоростей распространения по нормали волновому фронту, то есть фазовых обыкновенной скоростей для необыкновенной волн OT направления одноосном кристалле. Поверхность нормалей

Рис. 6.5

Френеля для фазовых скоростей изображена на рис. 6.5. Здесь \mathbf{v}' обозначает скорость обыкновенной волны, а \mathbf{v}'' — скорость необыкновенной волны.

Кристалл, у которого $v_o > v_e$ называется положительным (рисунок а). Кристалл, у которого $v_o < v_e$ называется отрицательным (рисунок б). Поверхность v' для обыкновенной волны является сферой, а поверхность v'' для необыкновенной волны является овалоидом. Из рис. 6.5 видно, что в направлении Оz скорости обыкновенной и необыкновенной волн равны $v' = v'' = v_o$, а в других направлениях отличаются, причем в направлении, перпендикулярном направлению Oz $v' = v_o$, $v'' = v_e$.

Из уравнений Максвелла можно получить уравнение нормалей Френеля для фазовых скоростей v

$$\begin{aligned} e_x^2 (v^2 - v_y^2) (v^2 - v_z^2) + e_y^2 (v^2 - v_x^2) (v^2 - v_z^2) + \\ + e_z^2 (v^2 - v_x^2) (v^2 - v_y^2) &= 0, \end{aligned}$$
(6.3)

где e – вектор нормали, v_i – главные скорости.

Рассмотрим три ситуации — изотропная среда, одноосный кристалл и двуосный кристалл. В изотропной среде $v_x = v_y = v_z = v_o$. Тогда уравнение нормалей Френеля упростится

$$(v^2 - v_0^2)(v^2 - v_0^2)(e_x^2 + e_y^2 + e_z^2) = (v^2 - v_0^2)^2 = 0$$
 (6.4) и его решение $v = v_0$.

В одноосном кристалла $v_x = v_y = v_o$, $v_z = v_e$. Тогда $(v^2 - v_o^2)[(v^2 - v_e^2)(e_x^2 + e_y^2) + (v^2 - v_o^2)e_z^2] = 0$. (6.5)

Первое решение $v' = v_o$, а второе решение находится, если выражение в квадратных скобках приравнять к нулю

$$v''^{2} = v_{e}^{2} (e_{x}^{2} + e_{y}^{2}) + v_{o}^{2} e_{z}^{2}.$$
 (6.6)

Если ввести угол ϕ между вектором нормали e и осью Oz, то решение запишется в следующем виде

$$v''^2 = v_e^2 \sin^2 \varphi + v_o^2 \cos^2 \varphi. \tag{6.7}$$

Если $\varphi = 0$, то $v'' = v_o$, а при $\varphi = \pi/2$ $v'' = v_e$.

Для двуосного кристалла $v_x \neq v_y \neq v_z$ и анализ уравнения нормалей Френеля показывает, что в таком кристалле существуют два направления, вдоль которых v'' = v'.

Уравнение нормалей Френеля для лучевых скоростей и отличается от уравнения нормалей для фазовых скоростей и записывается в следующем виде

$$s_x^2 v_x^2 (u^2 - v_y^2) (u^2 - v_z^2) + s_y^2 v_y^2 (u^2 - v_x^2) (u^2 - v_z^2) + s_z^2 v_z^2 (u^2 - v_x^2) (u^2 - v_z^2) = 0.$$

$$(6.8)$$

где s — вектор Пойтинга или вектор направления распространения луча.

Для изотропной среды $v_x = v_y = v_z = v_o$, поэтому $u = v_o$ и лучевая поверхность является сферой.

Для одноосного кристалла $v_x = v_y = v_o, v_z = v_e.$ В этом случае решениями этого уравнения будут

$$u' = v_0 \,\mu \, \frac{1}{u''^2} = \frac{\sin^2 \varphi}{v_e^2} + \frac{\cos^2 \varphi}{v_o^2}. \tag{6.9}$$

Здесь ϕ — угол между вектором Пойтинга s и осью Oz. Первому решению соответствует сферическая лучевая поверхность, а второму — лучевая поверхность в виде эллипсоида. Из-за небольшой величины $\left|\frac{v_e-v_o}{v_o}\right|\ll 1$ эллипсоид необыкновенной волны лучевой скорости незначительно отличается от овалоида необыкновенной волны фазовой скорости.

Поляризаторы, анализ состояния поляризации

Наличие двух волн в анизотропном кристалле со взаимно перпендикулярными направлениями их плоскостей поляризации, открывает возможность для создания поляризационных приспособлений. Если одну из волн устранить, то свет становится плоскополяризованным. Устройства, работающие по этому принципу, называются поляризаторами света. Среди поляризаторов

наиболее распространены двоякопреломляющие призмы и поляризационные пленки.

Рассмотрим сначала двоякопреломляющие призмы Глана и Николя. Призмы изготовлены из одноосного кристалла исландского шпата, для которого $n_o=1,66,\,n_e=1,49.$ Геометрия углов призм и направление их оптических осей показаны на рис. 6.6. Зазор между частями призмы Глана заполнен воздухом, а зазор в призме Николя – веществом с показателем преломления n=1,55.

Если расписать законы отражения и преломления для обыкновенной и необыкновенной волн, то получится, что в обоих случаях обыкновенный луч $s_{\rm o}$ испытывает полное внутреннее отражение и выводится из призмы. В результате сквозь призму проходит только необыкновенный луч $s_{\rm e}$. Существует множество других поляризационных призм, пропускающих лишь один луч поляризованного света.

Другим типом поляризаторов являются поляризационные пленки. Принцип работы поляризационных пленок основан на явлении дихроизма — зависимости поглощения света веществом от его поляризации.

Рассмотрим оптическую схему, изображенную на рис. 6.7. Луч естественного (неполяризованного) белого света интенсивностью $I_{\text{ест}}$ падает нормально на систему, состоящую из двух поляризационных пленок, между которыми расположена плоскопараллельная прозрачная пластина из одноосного кристалла. Первая пленка Π_1 называется поляризатором, а вторая Π_2 – анализатором. В качестве поляризатора и анализатора могут применяться и поляризационные призмы. Оптическая ось пластины направлена вдоль оси Oz, толщина пластины l.

Главные плоскости пленок (плоскости, в которых становится

поляризованной волна, прошедшая через пленки) составляют углы α_1 и α_2 с оптической осью кристалла. Если главные плоскости взаимно перпендикулярны, то поляризатор и анализатор называют скрещенными.

Рис. 6.7

После прохождения поляризатора свет становится линейно поляризованным с интенсивностью $I_0 = \frac{I_{ect}}{2}$. Линейно поляризованная волна падает на одноосный кристалл. В последнем возникают обыкновенная и необыкновенная волны и на выходе из кристалла обе волны приобретают разность фаз

$$\Delta \varphi = kx = \frac{2\pi}{\lambda} (n_e - n_o) l. \tag{6.10}$$

Интенсивность волны за анализатором описывается следующим выражением

$$I = I_0 \left[\cos^2(\alpha_2 - \alpha_1) - \sin 2\alpha_1 \sin 2\alpha_2 \sin^2 \frac{\Delta \varphi}{2} \right]. \tag{6.11}$$

Проанализируем полученное выражение. Рассмотрим ситуацию, когда главные плоскости поляризатора и анализатора параллельны, то есть $\alpha_1=\alpha_2=\alpha$. Тогда

$$I = I_0 \left[1 - \sin^2 2\alpha \sin^2 \frac{\Delta \varphi}{2} \right]. \tag{6.12}$$

В этой ситуации выделим три случая. В первом случае $\alpha=0,\pi/2,\pi,...$ (0°, 90°, 180°, ...). Тогда $I=I_0$.

Во втором случае $\alpha=\pi/4$, $3\pi/4$, ... (45°, 135°, ...). Тогда I=0, если $\Delta\phi=\frac{2\pi}{\lambda}(n_e-n_o)l=(2m-1)\pi$, то есть оптическая разность хода равна

$$(n_e - n_o)l = (2m - 1)\frac{\lambda}{2}.$$
 (6.13)

Пластина, удовлетворяющая этому условию, называется полуволновой пластиной или пластиной $\lambda/2$. При падении плоскополяризованной волны на такую пластину при угле $\pi/4$ прошедшая волна будет плоско поляризована. Однако ее плоскость поляризации будет повернута относительно плоскости поляризации падающей волны на $\pi/2$. Поэтому она и не проходит через

анализатор, главная плоскость которого параллельна главной плоскости поляризатора. Таким образом, полуволновая пластина поворачивает плоскость поляризации на $\pi/2$.

В третьем случае $\alpha=\pi/4$, $3\pi/4$, ... (45°, 135°, ...). Тогда $I=I_0/2$, если $\Delta\phi=\frac{2\pi}{\lambda}(n_e-n_o)l=(2m-1)\frac{\pi}{2}$, то есть оптическая разность хода равна

$$(n_e - n_o)l = (2m - 1)\frac{\lambda}{4}.$$
 (6.14)

Пластина, удовлетворяющая этому условию, называется четвертьволновой пластиной или пластиной $\lambda/4$. Такая пластина превращает линейную поляризацию в круговую.

Рассмотрим теперь ситуацию, когда поляризатор и анализатор являются не параллельными, а скрещенными, то есть $\alpha_2-\alpha_1=\pi/2$. Тогда

$$I = I_0 \sin^2 2\alpha_1 \sin^2 \frac{\Delta \varphi}{2} \tag{6.15}$$

и ситуация становится диаметрально противоположной. Те компоненты, которые раньше проходили, будут задерживаться оптической системой и наоборот. Например, в случае $\alpha=0,\pi/2,\pi,...$ получается I=0, в случае $\alpha=\pi/4,3\pi/4,...$ и пластины $\lambda/2$ интенсивность прошедшей волны $I=I_0$, в случае $\alpha=\pi/4,3\pi/4,...$ и пластины $\lambda/4$ интенсивность прошедшей волны $I=I_0/2$. Результаты расчетов для разных случаев приведены в таблице 6.2.

Таблица 6.2

углы плоскостей	пластина	разность фаз	интенсивность	
поляризаторов α_1 , α_2	пластина	в пластине Дф	за анализатором I	
$\alpha_1 = \alpha_2 = 0, \pi/2, \pi, \dots$		любая	I_0	
$\alpha_1 = \alpha_2 = \pi/4, 3\pi/4,$	$\lambda/2$	$(2m-1)\pi$	0	
$\alpha_1 = \alpha_2 = \pi/4, 3\pi/4,$	λ/4	$(2m-1)\pi/2$	$I_0/2$	
$\alpha_1 = \alpha_2 - \pi/2$		любая	0	
$=0,\pi/2,\pi,$		люоая	U	
$\alpha_1 = \alpha_2 - \pi/2$	$\lambda/2$ $(2m-1)\pi$	Ι.		
$= \pi/4, 3\pi/4,$	\(\lambda/\) \(\lambda\) \(\la		10	
$\alpha_1 = \alpha_2 - \pi/2$	λ/4	$(2m-1)\pi/2$	I /2	
$= \pi/4, 3\pi/4,$	$\lambda/4$ $(2III - 1)\pi/2$		$I_0/2$	

Описанная выше оптическая схема с поляризатором, анизотропной пластиной и анализатором может быть использована как для создания пучков света с заданным состоянием поляризации, так и для решения обратной задачи – исследования состояния поляризации. При этом если исследуемый свет линейно поляризован, то достаточно одного анализатора. В этом случае интенсивность прошедшего света равна

$$I = I_0 \cos^2 \alpha, \tag{6.16}$$

где а – угол между плоскостью анализатора и плоскостью поляризации волны. Это соотношение называется законом Малюса, который удобно представлять в виде диаграммы, изображенной на рис. 6.8.

Из диаграммы видно, интенсивность меняется от $I_{\min} = 0$ до $I_{\text{max}} = I_0$. поляризационных Для устройств понятие вводят степени поляризации

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}.$$
 (6.17)

Степень поляризации меняется в диапазоне 0≤Р≤1. Например, для абсолютно поляризованного света интенсивность описывается законом Малюса и степень поляризации Р = 1. Для неполяризованного света диаграмма интенсивности является круговой,

Рис. 6.9

как изображено на рис. 6.9, и степень поляризации P=0.

Эффекты Керра, Поккельса и Фарадея

Впервые появление искусственной анизотропии было обнаружено при сжатии и растяжении Через кристаллов. систему, показанную на рис. 6.10, в отсутствии внешней силы свет проходить не будет. верхней Однако. если грани

Рис 68

кристалла приложить сжимающую силу F, сориентировав кристалл определенным образом, то свет начнет проходить сквозь систему.

Это является свидетельством появления двойного лучепреломления. Кристалл становится одноосным, а его оптическая ось направлена вдоль действующей силы.

Анализ состояния поляризации прошедшего света показывает, что

$$\Delta n = n_e - n_o = \gamma \sigma, \tag{6.18}$$

где γ — константа вещества; σ = F/S — механическое давление, приложенное к верхней грани площадью S.

Такой метод инициирования двулучепреломления с помощью приложения механического давления малоприменим на практике. Более распространенным методом инициирования двулучепреломления является приложение к жидкому веществу постоянного электрического поля напряженностью Е

$$\Delta n = n_e - n_o = \gamma E^2. \tag{6.19}$$

Этот эффект получил название квадратичного эффекта Керра. При смене направления поля знак величины Δn не изменяется. Ярко выраженным эффектом Керра обладает токсичная жидкость нитробензол. Эффект Керра связан с ориентацией внешним полем хаотически расположенных дипольных молекул. Если молекула не обладает собственным дипольным моментом, то под действием поля она его приобретает.

При изменении направления поля E на противоположное дипольные молекулы разворачиваются и изменяют направление дипольного момента на противоположное. Быстродействие эффекта Керра составляет $\tau \sim 10^{-12}$ сек.

Поккельс обнаружил двойное лучепреломление при воздействии электрического поля на кристаллы, при этом

$$\Delta n = n_e - n_o = \gamma E. \tag{6.20}$$

Эффект Поккельса линеен по полю, то есть при изменении направления поля Е величина Дп изменяет знак. Эффектом Поккельса обладает кристалл КDP. На основе эффекта Поккельса работают разнообразные модуляторы света. Если кристалл поместить между скрещенными поляризаторами, то интенсивность света, прошедшего через такую оптическую систему, будет пропорциональна разности потенциалов, прикладываемой к проводящим слоям. Таким образом, изменяя электрическое напряжение можно изменять интенсивность прошедшего света.

Эффект Поккельса малоинерционен и его быстродействие составляет $\tau \sim 10^{-13}$ сек, причем требуемые напряжения составляют десятки вольт. Сравнительные характеристики эффектов Керра и Поккельса приведены в таблице 6.3.

Таблица 6.3

эффект	Керра	Поккельса
среда	жидкость (нитробензол)	кристалл (KDP)
зависимость Δn от поля Е	квадратичная	линейная
изменение направления Е	Δn не меняет знак	Δn меняет знак

Особый интерес представляет эффект Фарадея, суть которого состоит не в возникновении двойного лучепреломления, а во вращении плоскости поляризации под действием внешнего магнитного поля, как показано на рис. 6.11.

Рис. 6.11

Если вещество поместить в постоянное магнитное поле H, то плоскость поляризации повернется на угол $\phi = \rho l$ H, где ρ – постоянная Верде, характеризующая вещество; l – длина пути света в веществе.

Большинство веществ вращают плоскость поляризации вправо, если смотреть навстречу магнитному полю. Причем, если после электромагнита на пути луча поставить зеркало, то при обратном распространении света через вещество угол поворота удвоится.

Широкое распространение получили оптические изоляторы, пропускающие свет лишь в одном направлении. Схема оптического изолятора приведена на рис. 6.12. Основу конструкции составляет ячейка Фарадея, которая поворачивает плоскость поляризации на угол $\varphi = 45^\circ$. Если такая ячейка расположена между двумя поляризаторами, главные плоскости которых повернуты на тот же

угол ф, то система будет пропускать плоскополяризованный свет преимущественно лишь в одном направлении. Такой изолятор используется в волоконных кольцевых лазерах.

Раздел 7. Аберрации оптических систем

Поперечные, волновые и продольные аберрации. Дефокусировка, сферическая аберрация, кома, астигматизм, дисторсия, хроматизм. Разложение по полиномам Цернике. Адаптивные системы фазового сопряжения и апертурного зондирования. Деформируемые зеркала. Датчик волнового фронта Шака-Гартмана.

Поперечные, волновые и продольные аберрации

Термин аберрация означает отклонение от нормы, ошибку, нарушение работы системы. Рассмотрим аберрации на примере объектива. Аберрации объектива - погрешности в формируемом объективом изображении из-за отклонения реального хода лучей от направлений, рассчитанных для идеальной безаберрационной системы

идеального случае объектива все лучи, исходящие из точки А, пересекаются в сопряженной с ней точке А0' (рис. 7.1). Если объектив имеет аберрации лучи либо пересекаются в некоторой точке А', которая не совпадает с точкой

Рис. 7.1

идеального изображения, либо не имеют общей точки пересечения.

Для вычисления аберраций необходимо определить точку идеального изображения, которой должно В находиться расчетное изображение. Относительно этой точки и определяют аберрации. Различают поперечные, волновые и продольные аберрации.

Поперечные аберрации $\Delta x', \Delta y'$ – отклонения координат точки А' пересечения реального луча с плоскостью изображения от координат точки A_0' идеального изображения в направлении, перпендикулярном оптической оси, как показано на рис. 7.2.

Рис. 7.2

$$\Delta x' = x' - x_0'$$

 $\Delta y' = y' - y_0'.$ (7.1)

Если точки A' и A_0' совпадают, то поперечные аберрации равны нулю ($\Delta x' = 0$, $\Delta y' = 0$). Различают поперечные аберрации в сагиттальном сечении $\Delta x'$ и в меридиональном сечении $\Delta y'$. Поперечные аберрации для изображения в ближней зоне выражаются в миллиметрах.

У каждого луча в пучке своя величина поперечной аберрации. Для всего пучка поперечные аберрации – это функции относительных зрачковых координат $\rho_{\mathbf{v}}$ и $\rho_{\mathbf{v}}$

$$\begin{split} \Delta x' &= \Delta x' \left(\rho_x, \rho_y \right), \\ \Delta y' &= \Delta y' \left(\rho_x, \rho_y \right). \end{split} \tag{7.2}$$

Относительные зрачковые координаты определяют положение луча в пучке и записываются следующим образом

$$\rho_{x} = \frac{P_{x}}{A_{x}}, \qquad \rho_{y} = \frac{P_{y}}{A_{y}}, \tag{7.3}$$

где (P_x, P_y) – координаты луча в пучке, (A_x, A_y) – апертуры пучка.

Верхний луч пучка имеет координаты $\rho_x=0,~\rho_y=1,~$ нижний луч $\rho_x=0,~\rho_y=-1,~$ главный луч $\rho_x=\rho_y=0~$ и т.д. Эти лучи показаны на рис. 7.3. Относительные зрачковые координаты можно выразить через полярные

Рис. 7.3

$$\rho_{x} = \rho \sin \varphi, \qquad \rho_{y} = \rho \cos \varphi, \qquad \text{где } \rho = \sqrt{\rho_{x}^{2} + \rho_{y}^{2}}.$$
(7.4)

Волновая аберрация W- это отклонение реального волнового фронта от идеального, измеренное вдоль луча, как показано на рис. 7.4.

$$W = \Delta l' \cdot n'. \tag{7.5}$$

Волновая аберрация — это функция относительных зрачковых координат $W\left(\rho_x,\rho_y\right)$. Поперечная и волновая аберрации — это разные формы представления одного явления, они связаны между собой соотношениями

Рис. 7.4

$$\Delta x' = \frac{\partial W}{\partial \rho_x}, \qquad \Delta y' = \frac{\partial W}{\partial \rho_y}.$$
 (7.6)

Таким образом, поперечная аберрация прямо пропорциональна первым частным производным волновой аберрации по относительным зрачковым координатам.

Продольная аберрация — это отклонение координаты точки пересечения реального луча с осью Оz' от координаты точки пересечения идеального луча с осью Оz', как показано на рис. 7.5

Рис. 7.5

$$\Delta S' = S' - S_0'. \tag{7.7}$$

Продольная аберрация связана с поперечной и следовательно, с волновой

$$\Delta S' = \frac{1}{\rho} \cdot \frac{\partial W}{\partial \rho}.$$
 (7.8)

Таким образом, волновая, поперечная и продольная аберрации — это разные формы представления одного явления. При оценке качества изображения в первую очередь рассматривают волновую аберрацию. Из волновой аберрации можно рассчитать поперечную и продольную аберрации.

Дефокусировка, сферическая аберрация, кома, астигматизм, дисторсия, хроматизм

Основные аберрации, характерные для объективов, следующие: дефокусировка, сферическая аберрация, кома, астигматизм, дисторсия, хроматическая аберрация. Рассмотрим каждый тип аберраций по отдельности. Если в оптической системе присутствуют все типы аберраций, то для описания отдельных типов аберраций волновую аберрацию можно разложить в ряд по степеням относительных зрачковых координат $\rho_{\rm x}$, $\rho_{\rm y}$. Данное разложение удобно записать перейдя от $\rho_{\rm x}$, $\rho_{\rm v}$ к полярным координатам ρ , $\cos \phi$

$$W(\rho, \varphi) = W_{00} + W_{20}\rho^{2} + W_{40}\rho^{4} + W_{60}\rho^{6} + \cdots + W_{11}\rho\cos\varphi + W_{31}\rho^{3}\cos\varphi + W_{51}\rho^{5}\cos\varphi + \cdots + W_{22}\rho^{2}\cos^{2}\varphi + W_{42}\rho^{4}\cos^{2}\varphi + \cdots,$$
 (7.9)

где W_{mn} (n-степень ρ , m-степень $\cos \phi$) — коэффициенты, значения которых определяют вклад конкретного типа аберраций в общую волновую аберрацию:

 $W_{00}\,$ – постоянная составляющая, которая может быть сведена к нулю,

 $W_{20}\rho^2$ – дефокусировка,

 $W_{40} \rho^4$ и $W_{60} \rho^6 - c$ ферическая аберрация 3 и 5 порядков,

 $W_{31}\rho^3\cos\varphi + W_{51}\rho^5\cos\varphi -$ кома 3 и 5 порядков,

 $W_{22}\rho^2\cos^2\varphi + W_{42}\rho^4\cos^2\varphi -$ астигматизм 3 и 5 порядков,

 $W_{11}\rho\cos\phi$ – дисторсия.

В разложении могут участвовать и более высокие порядки, но мы их рассматривать не будем. Порядок аберрации определяется как сумма степеней р и соя ф минус 1. Разложение поперечной аберрации в ряд получаем из выражений

$$\Delta x' = \frac{\partial W}{\partial \rho_x}, \qquad \Delta y' = \frac{\partial W}{\partial \rho_v}.$$
 (7.10)

Разложение продольной аберрации в ряд получаем из выражения

$$\Delta S' = \frac{1}{\rho} \cdot \frac{\partial W}{\partial \rho}.$$
 (7.11)

1. Дефокусировка. В идеальном случае изображение точки

формируется также в виде точки, расположенной в сопряженной плоскости. В случае дефокусировки все лучи собираются также в одной точке, но отстоящей от фокальной плоскости, как показано

Рис. 7.6

на рис. 7.6. Дефокусировка описывается слагаемым

$$W(\rho) = W_{20}\rho^2. \tag{7.12}$$

Поперечная и продольная аберрации в случае дефокусировки записываются следующим образом

$$\Delta y' = 2W_{20}\rho_v, \qquad \Delta S' = 2W_{20} = \text{const.}$$
 (7.13)

При дефокусировке продольная аберрация одинакова для всех лучей, поэтому все лучи на выходе оптической системы пересекаются в одной точке, но не в точке идеального изображения. Если дефокусировки нет, то плоскость изображения совпадает с плоскостью идеального изображения. Чтобы избавиться от дефокусировки нужно соответствующим образом передвинуть плоскость изображения.

При анализе аберраций оптических систем принято строить графики зависимости волновой, поперечной и продольной аберраций от относительных зрачковых координат. Если в оптической системе присутствует только дефокусировка, то эти графики будут выглядеть как показано на рис. 7.7.

2. Сферическая аберрация состоит в том, что лучи, падающие на края линзы, фокусируются ближе к линзе, чем лучи, падающие на центральную часть линзы, как показано на рис. 7.8. Из-за этого изображение точки получается в виде размытого кружка.

Рис. 7.8

На фотографиях действие сферической аберрации проявляется в виде смягченного изображения. Особенно часто эффект заметен на открытых диафрагмах. Единственный способ устранения сферической аберрации — это использование асферических элементов.

Рассмотрим сначала сферическую аберрацию 3 порядка, которая описывается слагаемым

$$W(\rho) = W_{40}\rho^4. \tag{7.14}$$

Графики волновой, поперечной и продольной аберраций в случае сферической аберрации 3 порядка представлены на рис. 7.9.

продольная аберрация

Сферическая аберрация 5 порядка аналогична сферической аберрации 3 порядка, только имеет более высокий порядок

$$W(\rho) = W_{60}\rho^6. (7.15)$$

В сложных оптических системах сферические аберрации 3 и 5 порядков могут иметь разные знаки и частично компенсировать друг друга, как показано на рис. 7.10. В результате суммарные аберрации становятся меньше, чем сами аберрации 3 и

Рис. 7.10

5 порядков. Однако возможны случаи, когда сферические аберрации

3 и 5 порядков могут наоборот усилить друг друга.

3. Кома — это частный вид сферической аберрации для наклонных лучей. Действие ее заключается в том, что лучи, приходящие под углом к оптической оси не собираются в одной точке, как показано на рис. 7.11.

Кома появляется при смещениях точки предмета с оси и описывается слагаемыми

$$W(\rho, \varphi) = W_{31}\rho^3 \cos \varphi + W_{51}\rho^5 \cos \varphi$$
. (7.16)

Рассмотрим более подробно кому 3 порядка и для удобства дифференцирования запишем соответствующее слагаемое в относительных зрачковых координатах

Рис. 7.11

$$W\left(\rho_{x},\rho_{y}\right) = W_{31}\left(\rho_{x}^{2} + \rho_{y}^{2}\right)\rho_{y} = W_{31}\left(\rho_{x}^{2}\rho_{y} + \rho_{y}^{3}\right). \tag{7.17}$$

Выражения для поперечных аберраций после дифференцирования выглядят следующим образом

$$\begin{split} \Delta x' &= \frac{\partial W}{\partial \rho_x} = W_{31} \left(2 \rho_x \rho_y \right), \\ \Delta y' &= \frac{\partial W}{\partial \rho_y} = W_{31} \left(\rho_x^2 + 3 \rho_y^2 \right). \end{split} \tag{7.18}$$

Графики поперечной аберрации $\Delta y'$ в зависимости от ρ_x и ρ_y при коме 3 порядка изображены на рис. 7.12.

Рис. 7.12

Для того чтобы лучше понять структуру поперечных аберраций при коме, рассмотрим точечную диаграмму лучей. Разобьем входную плоскость на множество равновеликих площадок и рассмотрим лучи, проходящие через центры этих площадок. Получим картину лучей, равномерно распределенных по входному зрачку, как показано на рис. 7.13 слева. На рис. 7.13 справа изображена точечная диаграмма для выходной плоскости, характеризующая кому.

входная плоскость

выходная плоскость

Рис. 7.13

4. Астигматизм или кривизна поля изображения. Астигматизм появляется при значительном смещении точки предмета с оси. Астигматизм состоит в том, что не совпадают точки фокусов в сагиттальной и меридиональной плоскостях. Кривизна поля означает, что наилучшее изображение получается не на плоскости, а на искривленной поверхности, как показано на рис. 7.14.

Когда центральная часть изображения фокусирована резко, то его края будут лежать не в фокусе и изобразятся не резко и наоборот.

Запишем слагаемые, соответствующие разложению в ряд волновой аберрации при наличии астигматизма 3 и 5 порядков

Рис. 7.14

$$W(\rho, \phi) = W_{22}\rho^2 \cos^2 \phi + W_{42}\rho^4 \cos^2 \phi =$$

$$= W_{22}\rho_y^2 + W_{42}\left(\rho_x^2 + \rho_y^2\right)\rho_y^2. \tag{7.19}$$

Пропустим построение волновых, поперечных и продольных аберраций и рассмотрим форму пятна рассеяния в плоскости изображения. В зависимости от положения плоскости изображения

при астигматизме пятно рассеяния может принимать форму эллипсов, отрезков или круга. Горизонтальный отрезок наблюдается, если

Рис. 7.15

плоскость изображения совпадает с меридиональным фокусом, а вертикальный – с сагиттальным. Посередине между ними пятно рассеяния имеет форму круга. В остальных положениях пятна эллиптической формы, как показано на рис. 7.15.

5. Дисторсия проявляется в искривлении и искажении геометрии фотоснимка, то есть при дисторсии масштаб изображения меняется с удалением от центра поля к краям, что приводит к искривлению прямых линий.

Различают отрицательную или бочкообразную и положительную или подушкообразную дисторсии. Отрицательная дисторсия наиболее характерна для широких углов (малых фокусов) и изображена на рис. 7.16 слева. Положительная дисторсия наиболее характерна для узких углов (больших фокусов) и изображена на рис. 7.16 справа.

Рис. 7.16

В современных объективах, в том числе с переменным фокусным расстоянием, дисторсия достаточно эффективно корректируется введением в оптическую схему асферических линз.

Разложение в ряд волновой аберрации при наличии дисторсии записывается в следующем виде

$$W(\rho, \varphi) = W_{11}\rho\cos\varphi = W_{11}\rho_{v}.$$
 (7.20)

6. Хроматические аберрации – это проявление зависимости характеристик оптической системы от длины волны света. Хроматические аберрации приводят к тому, что в изображениях неокрашенных предметов появляется окрашенность. Хроматические аберрации появляются из-за того, что показатель преломления оптических стекол зависит от длины волны.

Хроматизм – это аберрация, при которой изображения одной точки предмета расположены на разном расстоянии для разных длин волн, как изображено на рис. 7.17.

Хроматизм в оптической системе возникает из-за того, что все линзы сделаны из одного сорта стекла. В этом случае говорят, что оптическая система неахроматизована. Устранение хроматизма

может быть произведено двумя способами: использование зеркальных систем, где хроматизм в принципе отсутствует использование ИЛИ линзовых системах нескольких сортов стекла с различными коэффициентами характеризующими ν, степень дисперсии.

Рис. 7.17

Рассмотрим принцип ахроматизации оптических систем. Задача ахроматизации состоит в том, чтобы оптическая сила системы линз не зависела от длины волны. Пусть нам нужно получить ахроматическую линзу с оптической силой Ф. Для этого ахроматическая линза должна быть составлена из двух тонких линз с оптическими силами Φ_1 и Φ_2 . Если линзы расположены вплотную друг к другу, то должно выполняться равенство

$$\Phi = \Phi_1 + \Phi_2. \tag{7.21}$$

Пусть v_1 и v_2 – коэффициенты дисперсии стекла первой и второй линз. Система уравнений для ахроматизации двух сортов стекла записывается в следующем виде

$$\begin{cases}
\Phi_{1} = \frac{v_{1}}{v_{1} - v_{2}} \cdot \Phi \\
\Phi_{2} = -\frac{v_{2}}{v_{1} - v_{2}} \cdot \Phi.
\end{cases} (7.22)$$

Первую линзу с фокусным расстоянием Ф1 нужно делать из стекла с коэффициентом дисперсии v_1 , а вторую линзу с фокусным расстоянием Ф2 нужно делать из стекла с коэффициентом дисперсии у2. В этом случае выполняется условие $\Phi = \Phi_1 + \Phi_2$ и в тоже условие ахроматизации выполняется время

Рис. 7.18

системы. Обычно для системы из двух линз выбирают материалы крон с $v_1 = 60$ и флинт с $v_2 = 30$. В этом случае $\Phi_1 = 2\Phi$, а $\Phi_2 = -\Phi$, как показано на рис. 7.18.

Разложение аберраций по полиномам Цернике

Произвольную волновую аберрацию можно разложить в ряд с помощью различных систем полиномов

$$W(x,y) = \sum_{p=1}^{\infty} C_p Z_p(x,y),$$
 (7.23)

где полиномы $Z_p(x,y)$ составляют систему ортогональных полиномов внутри некоторой ограниченной поверхности, а коэффициенты C_p определяют вклад того или иного полинома $Z_p(x,y)$ в это разложение.

Условие ортогональности (линейной независимости) полиномов $Z_p(x,y)$, нормированных внутри ограниченной поверхности, содержащейся в угле Ω , записывается в следующем виде

$$\frac{1}{\Omega} \int_{\Omega} Z_{i}(x, y) Z_{j}(x, y) d\Omega = \delta_{ij}, \qquad (7.24)$$

где δ_{ij} — символ Кронекера, по определению имеющий значение $\delta_{ij}=1$ при i=j и $\delta_{ij}=0$ при $i\neq j$.

В качестве полиномов для разложения аберраций в ряд можно использовать полиномы Лежандра, полиномы Лагерра и другие, но часто для этого используют полиномы Цернике.

Полиномы Цернике определяются как

$$Z_n^m(\rho, \varphi) = R_n^m(\rho) \cos(m\varphi), \tag{7.25}$$

где

ρ – радиальная координата, 0≤ρ≤1,

 ϕ – азимутальный угол,

n и m — неотрицательные целые числа такие, что n — m — четное или ноль.

Число п определяет порядок полиномов. При n=0 получаем m=0, при n=1 получаем m=1, при n=2 получаем m=2, m=0 и так далее. Радиальные полиномы R_n^m определяются как

$$R_n^m(\rho) = \sum_{k=0}^{(n-m)/2} \frac{(-1)^k (n-k)!}{k! ((n+m)/2 - k)! ((n-m)/2 - k)!} \rho^{n-2k}.$$
 (7.26)

Функция разложения волновой аберрации в ряд по полиномам Цернике выглядит следующим образом

$$\begin{split} W(\rho,\phi) &= \sum_{n} \sum_{m} c_{nm} R_{n}^{m}(\rho) \cdot \cos(m\phi) = \\ &= c_{00} + c_{20} R_{2}^{0}(\rho) + c_{40} R_{4}^{0}(\rho) + c_{60} R_{6}^{0}(\rho) + \cdots \\ &+ c_{11} R_{1}^{1}(\rho) \cos(\phi) + c_{31} R_{3}^{1}(\rho) \cos(\phi) + c_{51} R_{5}^{1}(\rho) \cos(\phi) + \cdots \\ &+ c_{22} R_{2}^{2}(\rho) \cos(2\phi) + c_{42} R_{4}^{2}(\rho) \cos(2\phi) + \cdots, \end{split}$$

где ρ и ϕ – полярные координаты, n – степень ρ , m – степень ϕ .

Например, при n=2 и m=0 $W=c_{20}R_2^0(\rho)\cos(0)=c_{20}(2\rho^2-1)$ (дефокусировка), при n=4 и m=0 $W=c_{40}R_4^0(\rho)\cos(0)=c_{40}(6\rho^4-6\rho^2+1)$ (сферическая аберрация). Аналогично выводятся слагаемые для других типов аберраций.

Адаптивные системы фазового сопряжения и апертурного зондирования

Адаптивная система предназначена для коррекции аберраций волнового фронта, например, в астрономии для увеличения разрешающей способности телескопа, в офтальмологии для получения чёткого изображения сетчатки глаза, а также в лазерных установках для улучшения параметров лазерного излучения и получения пучка дифракционного качества.

Рассмотрим более подробно адаптивные системы для лазерных установок, предназначенных для исследований по проблемам ЛТС. В настоящее время создаются Nd-установки мегаджоульного уровня энергии — это установки LMJ во Франции, NIF в США, Shenguang в Китае и УФЛ-2М в России.

Для таких лазерных установок кроме энергетических параметров важное значение имеет расходимость излучения. Расходимость излучения зависит от аберраций волнового фронта. При наличии аберраций волнового фронта расходимость излучения

превышает дифракционную
$$\theta = \sqrt{\theta_{\text{дифр}}^2 + \theta_{\text{aбер}}^2} = \theta_{\text{дифр}} \sqrt{1 + \frac{\theta_{\text{aбер}}^2}{\theta_{\text{дифр}}^2}} \, \mu$$

размер пятна в фокусе линзы становится больше дифракционного

$$\mathrm{d}=\mathrm{d}_{\mathrm{ди} \varphi p}\sqrt{1+rac{ heta_{\mathrm{a} 6 \mathrm{e} \mathrm{p}}^2}{ heta_{\mathrm{д} \mathrm{u} \varphi \mathrm{p}}^2}}.$$
 При полной компенсации аберраций волнового

фронта расходимость излучения приближается к дифракционной $\theta=\theta_{\text{дифр}}.$ Задача коррекции аберраций волнового фронта лазерного излучения может быть решена за счет применения адаптивной системы.

В зависимости от принципа действия адаптивные системы можно разделить на системы фазового сопряжения и системы апертурного зондирования. Схемы адаптивных систем фазового сопряжения и апертурного зондирования приведены на рис. 7.19. ДЗ – деформируемое зеркало, СУ – система управления, ДВФ – датчик волнового фронта, ДИ – датчик интенсивности.

система фазового сопряжения система апертурного зондирования Рис. 7.19

В системе фазового сопряжения деформируемое зеркало и датчик волнового фронта расположены в сопряженных плоскостях. Математически работу системы коррекции на основе принципа фазового сопряжения можно описать следующим образом. Из данных, полученных от пришедшего на датчик сигнала, определяется его фазовый множитель $e^{i\phi}$, обусловленный суммарными искажениями. С помощью деформируемого зеркала формируется сопряженный сигнал $e^{-i\phi}$, который компенсируется под воздействием возмущающих факторов $(e^{i\phi} \cdot e^{-i\phi} = 1)$.

В системе апертурного зондирования процесс управления решает задачу максимизации интенсивности. Принцип апертурного зондирования основан на внесении в волновой фронт пробных фазовых возмущений $e^{i\phi_{np}}$, которые трансформируются в амплитудные возмущения. Анализируя вызванные пробными возмущениями фазы изменения интенсивности методом проб и ошибок волновой фронт деформируется до тех пор, пока не будет

максимизирована интенсивность I излучения в дальней зоне.

В таблице 7.1 для адаптивных систем фазового сопряжения и апертурного зондирования приведены критерии управления и их физический смысл.

Таблица 7.1

система	фазовое сопряжение	апертурное зондирование
критерий	$\iint [\phi(\rho)]^2 d^2 \rho \!\to\! min$	$\iint I(\rho) ^2 d^2 \rho \rightarrow \max$
физический	минимизация	максимизация
смысл	волнового фронта ф	интенсивности I

Рассмотрим некоторые особенности работы адаптивных систем. Одной из особенностей систем апертурного зондирования является $2\pi N$ -проблема. Для пояснения рассмотрим интерференцию двух пучков, отраженных от двух плоских зеркал. Предположим, что в результате интерференции удалось получить на цели яркую светлую полосу. Передвинем одно из зеркал так, чтобы фаза оптического пути излучения изменилась на $2\pi N$. В результате интерференционная картина не изменится и светлая полоса останется на цели, но это состояние неустойчивого равновесия. Таким образом, есть неопределенность взаимного положения субапертур деформируемого зеркала, что особенно актуально для деформируемого зеркала с непрерывной поверхностью.

В ряде случаев необходимо учитывать проблему изопланатизма. Наблюдая протяженный объект 3 через неоднородную среду 2, например толщу атмосферы, и исправив искажения для центральной точки, искажения в других точках могут быть не исправлены, так как за них ответственны другие неоднородности, как показано на рис. 7.20.

На вопрос, какие системы лучше, фазового сопряжения или апертурного зондирования, однозначного ответа нет. Ошибка одного контура адаптации может быть большой, в этом случае требуется два или более контуров, таким образом системы фазового сопряжения и

,

Рис. 7.20

апертурного зондирования могут дополнять друг друга.

Для выполнения своих функций адаптивная система должна

содержать три основных компонента – деформируемое зеркало, измерительный датчик и систему управления, преобразующую сигналы измерения в сигналы управления. Далее будет подробно рассмотрен каждый из этих компонентов.

Деформируемые зеркала

Для коррекции волнового фронта применяют разные конструкции зеркал. По структуре отражающей поверхности различают сегментированные и сплошные зеркала. В сегментированных зеркалах отражающая поверхность разбита на сегменты. В таких зеркалах каждый сегмент отражающей поверхности может перемещаться и наклоняться независимо. Сплошное зеркало представляет собой зеркало с непрерывной отражающей поверхностью, которая может деформироваться.

По типу воздействия на отражающую поверхность различают зеркала с винтовыми приводами, электростатические мембранные зеркала и пьезоэлектрические деформируемые зеркала. Зеркала с винтовыми приводами характеризуются стабильной формой поверхности. Недостатком таких зеркал является низкая частота работы, не позволяющая корректировать быстроменяющиеся изменения волнового фронта.

Принцип действия мембранных зеркал основан на электростатическом взаимодействии натянутой отражающей пленки с электродами, расположенными на некотором расстоянии от поверхности. Заземленная мембрана толщиной 1 мкм помещена на расстоянии 100 мкм от электродов. Если к какому-нибудь электроду будет приложено напряжение, то в соответствующем месте мембрана отклонится. Недостатком таких зеркал является низкая лучевая прочность.

Широкое распространение получили деформируемые зеркала с пьезоэлектрическими управляющими элементами. Для создания пьезоэлектрических управляющих элементов используют пьезокерамику — искусственный сегнетоэлектрический материал, который после поляризации во внешнем электрическом поле, сохраняет значительную остаточную поляризацию. Среди пьезоэлектрических зеркал наибольшее распространение получили биморфные деформируемые зеркала и деформируемые зеркала с пьезоэлектрическими толкателями. Конструкция биморфных

деформируемых зеркал приведена на рис. 7.21 слева.

Рис. 7.21

Рассмотрим процесс изготовления биморфного зеркала. С одной стороны биморфного пьезоэлемента вытравливают управляющие электроды. К другой стороне приклеивают тонкую стеклянную подложку. Затем стеклянную подложку полируют до требуемой плоскостности и наносят отражающее покрытие.

Простейший биморфный пьезоэлемент состоит из двух склеенных вместе пьезоэлектрических пластин. Под действием электрического поля возникает изменение поперечных размеров пьезоэлектрических пластин

$$\Delta l \sim k l U / h$$
, (7.28)

где k – поперечный пьезомодуль, l, h – длина и толщина пластины, U – электрическое напряжение.

Пластины в биморфном пьезоэлементе соединены таким образом, что при подаче напряжения одна из них удлиняется, а другая укорачивается. При этом происходит изгиб биморфного пьезоэлемента, что приводит к изменению формы поверхности стеклянной пластины.

Другой тип зеркал с пьезоэлектрическими толкателями представляет собой деформируемую стеклянную подложку с отражающим покрытием, прикрепленную к опорной металлической плите с помощью пьезокерамических толкателей (рис. 7.22 справа). В качестве толкателей используются пьезопакеты, набранные из большого числа параллельно соединённых пьезоэлектрических дисков с электродами на верхней и нижней гранях. Каждый толкатель при приложении напряжения изменяет свою длину и производит локальную деформацию отражающей подложки.

Датчик волнового фронта Шака-Гартмана

Существуют разные датчики, применяемые в составе адаптивной системы — например, интерферометр поперечного сдвига, датчик Шака-Гартмана, синхронный детектор. Интерферометр поперечного сдвига и датчик Шака-Гартмана применяются в системах фазового сопряжения, а синхронный детектор — в системах апертурного зондирования.

Рассмотрим более подробно датчик волнового фронта Шака-Гартмана, схема которого приведена на рис. 7.22. Основным элементом датчика является лензлет — набор

одинаковых линз, предназначенный для образования картины фокальных пятен на ССD-камере. Вместо лензлета может быть использован экран с отверстиями, фазовая пластина и другие элементы, формирующие картину фокальных пятен. Перед лензлетом обычно ставится телескоп, согласующий апертуры пучка с размером приемной площадки и фильтры, обеспечивающие необходимую плотность мощности на ССD-камере.

Сначала датчик калибруется опорным излучением с плоским волновым фронтом. В этом случае на ССD-камере формируется упорядоченная картина фокальных пятен, изображенная на рис. 7.23 слева. Затем на датчик направляется излучение с искажённым волновым фронтом и фокальные пятна смещаются относительно исходных положений (рис. 7.23 справа).

Величина смещения фокального пятна искажённого пучка от

лензлет.

Рассмотрим более подробно систему управления, то есть то, как происходит восстановление волнового фронта в датчике Шака-Гартмана ПО методу наименьших квадратов. На рис. 7.24 приведена схема расположения линз лензлета в проекции на ССО-камеру. Рассмотрим линзу с индексами k и і. Для этой линзы известными величинами являются градиенты волнового фронта g_x и g_v, измеренные ячейки. Искомыми В центре

Рис. 7.24

величинами являются значения фаз $\phi_1 - \phi_4$ в углах ячейки.

При выражении градиентов через искомые значения фаз для производной используется простейшая аппроксимация первого порядка $f' \approx (f_{n+1} - f_n)/h$, где h- размер ячейки.

Значения градиентов в этом случае выражаются через значения фаз следующим образом

$$g_{x} = \left[\frac{\varphi_{1} + \varphi_{2}}{2h} - \frac{\varphi_{3} + \varphi_{4}}{2h}\right],$$

$$g_{y} = \left[\frac{\varphi_{1} + \varphi_{3}}{2h} - \frac{\varphi_{2} + \varphi_{4}}{2h}\right]$$
(7.29)

Градиенты связаны с непосредственно измеряемыми смещениями фокальных пятен S через фокусное расстояние лензлета f соотношением $g=\frac{S}{f}$. Таким образом, получаем систему уравнений, которая может быть представлена в матричной форме

$$\frac{A\phi}{h} = \frac{S}{f'} \tag{7.30}$$

где ϕ – столбец искомых фаз, S – столбец измеренных смещений пятен, A – матрица коэффициентов.

Введем обозначение $b = \frac{h}{f} S$, тогда систему уравнений можно записать в простом виде

$$A\varphi = b. (7.31)$$

Если бы эта система была полной, то решение находилось бы однозначно и записывалось с использованием обратной матрицы. В нашем случае это не так и точного решения не существует. Поэтому определяется наиболее вероятное решение с помощью метода

наименьших квадратов, то есть составляется сумма квадратов невязок и ищется её минимум. Сумма квадратов невязок записывается как

$$J^{2} = |A\phi - b|^{2} = (A\phi - b)^{T}(A\phi - b) = = \phi^{T}A^{T}A\phi - \phi^{T}A^{T}b - b^{T}A\phi + b^{T}b.$$
 (7.32)

Продифференцировав J^2 по переменной ϕ и приравняв результат к нулю $\frac{dJ^2}{d\phi}=0$, получим выражение для искомых значений фаз

$$\varphi = (A^{T}A)^{-1}(A^{T}b) = (A^{T}A)^{-1}(A^{T}\frac{h}{f}S).$$
 (7.33)

Таким образом, измерив смещения фокальных пятен S, можно рассчитать поверхность волнового фронта φ (см. рис. 7.25). Поверхность или аберрации волнового фронта можно характеризовать двумя параметрами – PV (peak to valley или

амплитуда) и RMS (root mean square или среднеквадратичное отклонение от плоского)

$$PV = \max\left\{\phi_{ij}\right\} - \min\left\{\phi_{ij}\right\};$$

$$RMS = \sqrt{\frac{\sum(\phi_{ij} - \overline{\phi})^2}{N^2}}, \qquad \text{где } \overline{\phi} = \frac{\sum\phi_{ij}}{N^2}; \ i,j = 1,...,N.$$
 (7.34)

Также по поверхности волнового фронта $\phi(x,y)$ с помощью преобразования Фурье можно рассчитать распределение интенсивности в дальней зоне $I(\theta_x, \theta_y)$ (см. рис. 7.26) и число Штреля St

$$I(\theta_{x}, \theta_{y}) = \left| \frac{1}{\lambda} \iint \exp[-ik(\theta_{x} \cdot x + \theta_{y} \cdot y)] \varphi(x, y) dx dy \right|^{2},$$

$$St = \frac{\max(I)}{\max(I_{0})}$$
(7.35)

где $k=2\pi/\lambda$ — волновое число, I_0 — распределение интенсивности в дальней зоне для пучка с плоским волновым фронтом.

Раздел 8. Рассеяние света

Виды рассеяния. Молекулярное рассеяние, формула Релея, коэффициент рассеяния. Рассеяние в мутных и мелкодисперсных средах. Спектральный состав рассеянного света.

Виды рассеяния

Солнце днем имеет желтый цвет, а на закате красный. Это происходит из-за эффекта рассеяния света в атмосфере. В космосе, где нет атмосферы, солнце имеет белый цвет. Аналогично, лазерный луч в воздухе виден сбоку из-за эффекта рассеяния, а в вакууме лазерный луч сбоку не виден. В отличии от вакуума, рассеяние есть в любой среде. В некоторых средах рассеяние бывает столь значительным, что свет вообще через них не проходит, а в некоторых средах рассеяние практически незаметно.

Рассеянием света называют дифракцию света на малых оптических неоднородностях. Рассмотрим световой пучок, падающий на оптически однородную среду. В такой среде вторичные волны когерентны, то есть имеют одинаковые амплитуду и фазу. В результате интерференции вторичные когерентные волны гасят друг друга в направлениях, отличных от направления падающего пучка и рассеяния не наблюдается.

Если световой пучок падает на оптически неоднородную среду, то вторичные волны могут быть некогерентными, то есть иметь разные амплитуду и фазу. В результате при интерференции полного гашения волн в направлениях, отличных от направления падающего пучка, не будет. В таблице 8.1 приведены характеристики рассеяния разных сред.

Таблица 8.1

среда	не рассеивающая	рассеивающая
вторичные волны	когерентные	частично когерентные
амплитуда и фаза вторичных волн	одинаковые	могут отличаться
интерференция вторичных волн в боковых направлениях	есть взаимное гашение	нет взаимного гашения

Существует несколько видов рассеяния — молекулярное рассеяние, рассеяние в мутной среде и рассеяние в мелкодисперсной среде. Рассмотрим каждый вид подробнее. В чистой среде без примесей рассеяние происходит на флуктуациях плотности, то есть на разрежениях и сжатиях среды, приводящих к флуктуациям показателя преломления. Такое рассеяние называют молекулярным рассеянием. Примером молекулярного рассеяния является рассеяние в воздухе с флуктуациями показателя преломления.

Другим примером рассеяния является рассеяние в среде, содержащей частицы размером меньше длины волны $d < \lambda$. В этом случае среду называют мутной и такие среды наиболее сильно рассеивают свет. В случае, когда размер частиц сравним с длиной волны $d \sim \lambda$, среда называется мелкодисперсной. Примером мелкодисперсного рассеяния является рассеяние в тумане.

Молекулярное рассеяние, формула Релея, коэффициент рассеяния

Рассмотрим математическую модель молекулярного рассеяния. В случае изотропной среды диэлектрическая проницаемость записывается как $\epsilon = \overline{\epsilon} + \Delta \epsilon$, где $\overline{\epsilon}$ – среднее значение, $\Delta \epsilon$ – малые флуктуации.

Чаще всего флуктуации $\Delta \epsilon$ могут возникать вследствие флуктуаций плотности среды и тогда диэлектрическую проницаемость можно записать как

$$\varepsilon = \overline{\varepsilon} + \Delta \varepsilon = \overline{\varepsilon} + \left(\frac{\partial \varepsilon}{\partial \rho}\right) \Delta \rho, \tag{8.1}$$

где $\Delta \rho$ – флуктуации плотности.

Пусть монохроматичная волна с частотой ю распространяется вдоль оси Оz, проходя через объем V рассеивающей среды. Пусть волна поляризована в плоскости Оxz. Тогда интенсивность рассеянного света равна

$$I_{s} = I_{0} \frac{\omega^{4}}{(4\pi c^{2}r)^{2}} \left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)^{2} \frac{V}{N} \cos^{2} \theta_{z}, \tag{8.2}$$

где s — индекс, означающий рассеяние (scattering), θ_z — угол между направлением рассеяния и осью Oz.

Из этой формулы следует, что $I_s \sim \omega^4$, то есть короткие волны рассеиваются сильнее, чем длинные. Если пучок белого света

пропустить через рассеивающую среду, то на выходе из среды свет приобретает красный цвет. Это означает, что синий свет с более короткой длиной волны рассеивается в среде сильнее, чем свет с большей длиной волны.

Воспользуемся связью между показателем преломления п, восприимчивостью диэлектрической диэлектрической χ, проницаемостью є и поляризуемостью молекулы среды β для разреженных газов (для плотных газов – формула Лоренц-Лоренца)

$$n^2 = \varepsilon = 1 + \chi = 1 + N\beta = 1 + \frac{N_A}{\mu} \rho \beta.$$
 (8.3)

Тогда $\rho \frac{\partial \varepsilon}{\partial \rho} = (n^2 - 1) \approx 2(n - 1)$. Подставив это выражение в формулу для интенсивности рассеянного света и перейдя от частоты ω к длине волны λ, получаем формулу Релея

$$I_{s} = I_{0} \frac{4\pi^{2}}{\lambda^{4} r^{2}} (n - 1)^{2} \frac{V}{N} \cos^{2} \theta_{z}. \tag{8.4}$$

Из формулы Релея следует несколько важных следствий. интенсивность рассеянного обратно света пропорциональна четвертой степени длины волны.

Во-вторых, рассеянный свет имеет диаграмму направленности, изображенную на рис. 8.1. Она представляет собой объемную фигуру вращения вокруг оси Оz. Свет

Рис. 8.1

рассеивается по всем направлениям, за исключением направления, перпендикулярного оси Оz.

Диаграмма рассеяния Релея внешнему ПО виду похожа диаграмму ДЛЯ интенсивности плоскополяризованного света, прошедшего анализатор, через которая законом описывается

Малюса $I = I_0 cos^2 α$ и изображена на рис. 8.2. Здесь α – угол между плоскостью поляризации волны и плоскостью анализатора. Закон Малюса был выведен при рассмотрении распространения волн в анизотропных средах. Следует отличать эти две диаграммы. Диаграмма Релея является объемной, а диаграмма Малюса -

плоской.

Третье следствие из формулы Релея заключается в том, что рассеянный свет, как и падающий, поляризован в плоскости Охz. Если падающий на рассеивающую среду свет интенсивностью I_0 не поляризован, то в формуле Релея величину $I_0\cos^2\theta_z$ необходимо заменить величиной $I_0\frac{1+\cos^2\theta_z}{2}$. В этом случае интенсивность рассеянного излучения равна

$$I_{s} = I_{0} \frac{4\pi^{2}}{\lambda^{4} r^{2}} (n-1)^{2} \frac{V}{N} \frac{1 + \cos^{2} \theta_{z}}{2}.$$
 (8.5)

Диаграмма рассеяния для неполяризованного света изображена на рис. 8.3. Рассеянный свет распространяется по всем направлениям и он не поляризован. В таблице 8.2 приведены основные характеристики молекулярного рассеяния света.

Рис. 8.3

Таблица 8.2

поляризация падающего света	плоскополяризованный	неполяризованный
поляризация рассеянного света	плоскополяризованный	неполяризованный
диаграмма рассеяния	$\cos^2\theta_z$	$\frac{1+\cos^2\theta_z}{2}$

Если проинтегрировать I_s по поверхности произвольной сферы с центром в точке O, то получим мощность рассеянной волны $P_s=\int I_s d\sigma = I_0 \alpha_s V$, где

$$\alpha_{\rm s} = \frac{4\pi}{3\lambda^4} \frac{(n-1)^2}{N}.$$
 (8.6)

Величина α_s называется коэффициентом рассеяния.

Если в рассеивающей среде выделить слой толщиной dz, площадь поверхности которого равна Σ , то условие энергетического балланса можно записать в виде

$$I(z)\Sigma = I(z)\alpha_{c}dz\Sigma + I(z+dz)\Sigma. \tag{8.7}$$

Здесь слева стоит мощность падающей волны, которая равна сумме рассеянной мощности и мощности, вышедшей из слоя. Тогда

уменьшение интенсивности равно $dI = I(z + dz) - I(z) = -\alpha_s I(z) dz$. Интегрируя, получим экспоненциальный закон убывания интенсивности

$$I(z) = I_0 e^{-\alpha_S z}, \tag{8.8}$$

где α_s – коэффициент рассеяния.

В чистом воздухе для длины волны $\lambda = 0.5$ мкм коэффициент рассеяния равен $\alpha_s \approx 2.6 \cdot 10^{-7}$ см $^{-1}$. Это означает, что интенсивность света уменьшается в е раз на расстоянии z = 40 км.

Формула рассеяния света похожа на закон Бугера-Ламберта-Берра $I(z)=I_0e^{-\alpha z}$, описывающий поглощение света. Здесь $\alpha=2\frac{\omega}{c}n_2$ — коэффициент поглощения, связанный с мнимой частью показателя преломления.

Рассеяние в мутных и мелкодисперсных средах

В отличие от молекулярного рассеяния, которое происходит на флуктуациях плотности, рассеяние в мутных и мелкодисперсных средах происходит на частицах. Рассеяние на частицах по интенсивности превосходит молекулярное рассеяние. Рассмотрим случай мутной среды, когда размер частиц меньше длины волны $d < \lambda$. В этом случае интенсивность рассеянной волны будет равна

$$I_{s} = AI_{0} \frac{9\pi^{2}}{\lambda^{4} r^{2}} \cos^{2}\theta_{z}, \tag{8.9}$$

где A является функцией ϵ , ϵ_p , d_p , N_p . Здесь ϵ_p , d_p , N_p — диэлектрическая проницаемость, размер и количество частиц примеси. Эта зависимость аналогична зависимости в случае молекулярного рассеяния поляризованного света.

Рассмотрим теперь рассеяние в мелкодисперсных средах, когда размер частиц сравним с длиной волны $d\sim\lambda$. Математическая модель рассеяния на частицах такого размера была разработана немецким физиком Ми. Рассеяние Ми преимущественно происходит в направлении распространения падающего излучения. На рис. 8.4 слева показано рассеяние Ми при размере частиц $d\sim0,1\lambda$, а на рис. 8.4 справа – рассеяние Ми при размере частиц $d\sim\lambda$.

Диаграммы направленности для всех рассмотренных выше случаев рассеяния света приведены в таблице 8.3.

Рис. 8.4

Таблица 8.3

Спектральный состав рассеянного света

Рассмотрим спектральный состав рассеянного света на примере рассеяния Мандельштама-Бриллюэна. Рассеяние Мандельштама-Бриллюэна происходит в газовой среде на флуктуациях плотности, которые определяются бегущей звуковой волной и приводят к возникновению в спектре рассеяния смещенных боковых компонент. Более подробно рассеяние Мандельштама-Бриллюэна будет рассмотрено в курсе «Нелинейная оптика».

Эксперимент показывает, что если падающий свет является монохроматичным с частотой v_0 , то рассеянный свет имеет спектральную линию S(v), изображенную на рис. 8.5. Как видно из рис. 8.5 спектральная линия рассеянного света имеет центральную

компоненту и крылья. Центральная компонента имеет ширину

$$\Delta v_0 \sim \frac{1}{\tau_t} \sim 10^7 \; \Gamma$$
ц, $S(v)$ где τ_t — характерное время выравнивания плотности в рассеивающем Рис. 8.5

объеме. Также в спектре рассеянного света присутствуют две боковые компоненты — низкочастотная (стоксова) и высокочастотная (антистоксова), смещенные относительно центральной на величину $\Delta\nu_{ME}{\sim}10^9$ Гц. Поле рассеянной волны для боковых компонент можно записать следующим образом

$$E_{s}(t) \sim \frac{E_{0}}{2} \cos(\omega_{0} - \Omega)t + \frac{E_{0}}{2} \cos(\omega_{0} + \Omega)t, \tag{8.10}$$

где $\omega_0 = 2\pi \nu_0,\, \Omega = 2\pi \Delta \nu_{\text{MB}},\, \Omega$ – частота бегущей звуковой волны.

Аналогичное рассеяние в жидкостях с образованием смещенных компонент называется комбинационным рассеянием. Частота смещения $\Omega \sim 10^{13}$ Гц совпадает с частотами молекулярных колебаний. При комбинационном рассеянии как и в случае рассеяния Мандельштама-Бриллюэна низкочастотная компонента $\omega_0 - \Omega$ называется стоксовой, а высокочастотная компонента $\omega_0 + \Omega$ называется антистоксовой. При комбинационном рассеянии с повышением температуры интенсивность антистоксовой компоненты увеличивается.

Список литературы

- 1. Алешкевич В.А. Оптика. М.: Академия, 2009.
- 2. Ахманов С.А. Физическая оптика. М.: МГУ, Наука, 2018.
- 3. Ландсберг Г.С. Оптика. М.: Физматлит, 2003.
- 4. Фриш С.Э. Курс общей физики «Оптика. Атомная физика». М.: Лань, 2018.
- 5. Родионов С.А. Основы оптики. СПб.: ГИТМО, 2000.
- 6. Бабенко С.П. Дифракция световых волн. М.: МГТУ им. Н.Э. Баумана, 2018.
- 7. Колпачев А.Б., Колпачева О.В. Волновая оптика. Дифракция и дисперсия света. Ростов/Дон: Южный федеральный университет, 2018.
- 8. Шанин О.И., Тараненко В.Г. Адаптивная оптика в приборах и устройствах. М.: ЦНИИАТОМИНФОРМ, 2005.
- 9. Сивухин Д.В. Оптика. М.: Физматлит, 2005.
- 10. Архипкин В.Г., Патрин Г.С. Лекции по оптике. Красноярск, 2006.
- 11. Янг М. Оптика и лазеры, включая волоконную оптику и оптические волноводы. М.: Мир, 2018.