# Limbaje Formale, Automate și Compilatoare

Curs 5

2017-18

### Curs 5

- Gramatici şi limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami

#### Curs 5

- Gramatici şi limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor
- 3 Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami

## Gramatici independente de context

- Gramatici de tip 2 (independente de context): G = (N, T, S, P)
  - N şi T sunt mulţimi nevide, finite, disjuncte de neterminali (variabile), respectiv terminali
  - $S \in N$  este simbolul de start
  - $P = \{x \rightarrow u | x \in N, u \in (N \cup T)^*\}$  este mulţimea regulilor (producţiilor).
- Un limbaj L este de tip 2 (independent de context:  $L \in \mathcal{L}_2$ ) dacă există o gramatică G de tip 2 astfel încât L(G) = L

# Derivări extrem stângi/drepte

Fie 
$$G = (N, T, S, P)$$
 si  $w \in L(G)$ 

- derivare extrem stângă pentru w: derivarea în care, la orice pas se înlocuieşte cel mai din stânga neterminal din cuvântul obţinut
- derivare extrem dreaptă pentru w: derivarea în care, la orice pas se înlocuieşte cel mai din dreapta neterminal din cuvântul obţinut

$$G = (\{E\}, \{a, b, +, *), (\}, E, P)$$
 unde:

$$P: E \rightarrow E + E|E*E|(E)|a|b$$

Fie 
$$a + (b * a)$$

Derivare extrem stângă:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow a + (E*E) \Rightarrow a + (b*E) \Rightarrow a + (b*a)$$

Derivare extrem dreaptă:

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a) \Rightarrow E + (b * a) \Rightarrow a + (b * a)$$

Există derivări care nu sunt nici extrem drepte nici extrem stângi!

### Arbori sintactici

#### Definiție 1

Un arbore sintactic (arbore de derivare, arbore de parsare) în gramatica G este un arbore ordonat, etichetat, cu următoarele proprietăți:

- rădăcina arborelui este etichetată cu S ;
- fiecare frunză este etichetată cu un simbol din T sau cu  $\epsilon$ ;

etichetat cu A are un singur descendent etichetat cu  $\epsilon$ .

- fiecare nod interior este etichetat cu un neterminal;
- dacă A etichetează un nod interior care are n succesori etichetaţi
  de la stânga la dreapta respectiv cu X₁, X₂,..., Xn, atunci
  A → X₁X₂...Xn este o regulă.
  Cazul în care regula este A → ε reprezintă un caz special: nodul

#### Arbori sintactici

#### Definiție 2

- Frontiera unui arbore de derivare este cuvântul w = a₁a₂ ... an unde a<sub>i</sub>, 1 ≤ i ≤ n sunt etichetele nodurilor frunză în ordinea de la stânga la dreapta.
- Arbore de derivare pentru un cuvânt w: arbore de derivare cu frontiera w.

$$G = (\{E\}, \{a, b, +, *\}, (\}, E, P)$$
 unde:  
 $P : E \to E + E | E * E | (E) | a | b$ 

$$a + (b * a)$$

Derivare extrem stângă:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow$$
  
 $a + (E * E) \Rightarrow a + (b * E) \Rightarrow a + (b * a)$ 

Derivare extrem dreaptă:

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a) \Rightarrow E + (b * a) \Rightarrow a + (b * a)$$

Arbore de derivare pentru a + (b \* a):



### **Ambiguitate**

#### Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

• Echivalent: w are 2 derivări extrem stângi(drepte) distincte.

### **Ambiguitate**

#### Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

• Echivalent: w are 2 derivări extrem stângi(drepte) distincte.

Gramatica precedentă este ambiguă: cuvântul a + b \* a are 2 arbori de derivare:



## **Ambiguitate**

#### Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

- Echivalent: w are 2 derivări extrem stângi(drepte) distincte.
- Problema ambiguității gramaticilor de tip 2 este nedecidabilă: nu există un algoritm care pentru o gramatică oarecare G să testeze dacă G este sau nu ambiguă

# Exemplu: o gramatică echivalentă neambiguă

 $G = (\{E, T, F\}, \{a, b, +, *), (\}, E, P)$  unde P:

- $\bullet$   $E \rightarrow E + T$
- $\bullet$   $E \rightarrow T$
- $\bullet$   $T \rightarrow T * F$
- $\bullet$   $T \rightarrow F$
- $\bullet$   $F \rightarrow (E)$
- lacktriangledown F o a | b

Arbore de derivare pentru a + b \* a:



#### Curs 5

- Gramatici și limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor
- Forma normală Chomsky
- 4 Problema recunoaşterii: algoritmul Cocke Younger Kasami

# Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma  $A \to \epsilon$ )

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ &\quad i = i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

# Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma  $A \to \epsilon$ )

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ i &= i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

#### Are loc:

- $\bullet \ \ N_0 \subseteq N_1 \ldots \subseteq N_i \subseteq N_{i+1} \subseteq \ldots N_{\epsilon} \subseteq N$
- $\bullet$   $A \in N_{\epsilon} \iff A \Rightarrow^{+} \epsilon$

# Eliminarea regulilor de ştergere

#### P' se obţine din P astfel:

• în fiecare regulă  $A \to \alpha \in P$  se pun în evidență simbolurile din  $N_{\epsilon}$  ce apar în  $\alpha$ :

$$\alpha = \alpha_1 X_1 \alpha_2 X_2 \dots \alpha_n X_n \alpha_{n+1}, X_i \in N_{\epsilon}$$

 se înlocuieşte fiecare regulă de acest fel cu mulţimea de reguli de forma

$$A \rightarrow \alpha_1 Y_1 \alpha_2 Y_2 \dots \alpha_n Y_n \alpha_{n+1}$$
 unde  $Y_i = X_i$  sau  $Y_i = \epsilon$ 

în toate modurile posibile  $(2^n)$ 

- se elimină toate regulile de ştergere
- pentru a obţine cuvântul nul (dacă S este în  $N_{\epsilon}$ ) se adaugă S' simbol de start nou şi regulile  $S' \to S$ ,  $S' \to \epsilon$

$$G = (\{S, A, B, C\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- S → aAbC|BC
- A → aA|aB
- lacksquare B o bB|C
- $C \rightarrow cC|\epsilon$

$$G' = (\{S', S, A, B, C\}, \{a, b, c\}, S', P')$$
 unde  $P'$ :

- $\circ$   $S' \to S|\epsilon$
- $\bullet$   $S \rightarrow aAbC|aAb|B|C$
- A → aA|aB|a
- lacksquare B o bB|b|C
- lacksquare C o cC|c

# Eliminarea redenumirilor $(A \rightarrow B, A, B \in N)$

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine redenumiri

```
for (A \in N)
      N_0 = \{A\}; i = 0;
      do{
             i = i + 1:
              N_i = N_{i-1} \cup \{C | C \in N, \exists B \rightarrow C \in P, B \in N_{i-1}\};
      } while N_i \neq N_{i-1};
      N_A = N_i: //N_A = \{X \in N | A \Rightarrow^* X\}
P' = \{X \to \alpha \in P | \alpha \notin N\}
for (X \to \alpha_1 | \alpha_2 | \dots | \alpha_n \in P')
      for (A \in N \&\& X \in N_A, X \neq A)
            P' = P' \cup \{A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n\}
```

$$G = (\{x, y, z\}, \{a, b, c\}, x, P), \text{ unde P:}$$

- $x \rightarrow y|ax|a$
- $y \rightarrow z|by|b$
- lacktriangledown z 
  ightarrow cz|c

$$N_x = \{x, y, z\}, N_y = \{y, z\}, N_z = \{z\}$$

Gramatica echivalentă fără redenumiri  $G' = (\{x, y, z\}, \{a, b, c\}, x, P')$  unde P':

- $\bullet \ x \to ax|a|by|b|cz|c$
- $y \rightarrow by|b|cz|c$
- ullet  $z \rightarrow cz|c$

#### Curs 5

- Gramatici şi limbaje independente de contex
- Eliminarea regulilor de ştergere şi a redenumirilor
- Forma normală Chomsky
- 4 Problema recunoaşterii: algoritmul Cocke Younger Kasami

# Forma normală Chomsky

#### Definiție 4

O gramatică este în formă normală Chomsky dacă regulile sale au forma:

 $A \rightarrow BC$ ,  $A \rightarrow a$  ( şi eventual  $S \rightarrow \epsilon$ ) ( $A, B, C \in N$  şi  $a \in T$ ).

#### Teorema 1

Orice limbaj independent de context poate fi generat de o gramatică în formă normală Chomsky.

### Demonstraţie

• Se elimină regulile de ștergere și redenumirile

### Demonstraţie

- Se elimină regulile de ştergere şi redenumirile
- Se elemină regulile care nu sunt în formă normală Chomsky: Dacă A → x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>, n > 1 este o astfel de regulă atunci o înlocuim cu A → Y<sub>1</sub>Y<sub>2</sub>...Y<sub>n</sub> unde:
  - $Y_i = x_i$ , dacă  $x_i \in N$  (neterminalii rămân la fel)
  - $Y_i = x_a$  dacă  $x_i = a \in T$  ( $x_a$  este neterminal nou) și se adaugă regula  $x_a \to a$

### Demonstrație

- Se elimină regulile de ştergere şi redenumirile
- Se elemină regulile care nu sunt în formă normală Chomsky: Dacă A → x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>, n > 1 este o astfel de regulă atunci o înlocuim cu A → Y<sub>1</sub>Y<sub>2</sub>...Y<sub>n</sub> unde:
  - $Y_i = x_i$ , dacă  $x_i \in N$  (neterminalii rămân la fel)
  - Y<sub>i</sub> = x<sub>a</sub> dacă x<sub>i</sub> = a ∈ T (x<sub>a</sub> este neterminal nou) şi se adaugă regula x<sub>a</sub> → a
- O regulă de forma  $A \rightarrow Y_1 Y_2 \dots Y_n$ , dacă n > 2, o înlocuim cu:
  - $\bullet \ A \rightarrow Y_1Z_1$
  - $Z_1 \rightarrow Y_2Z_2$
  - .....
  - $Z_{n-3} \to Y_{n-2}Z_{n-2}$
  - $Z_{n-2} \rightarrow Y_{n-1} Y_n$ , unde  $Z_1, Z_2, \dots, Z_{n-2}$  sunt neterminali noi.

$$G = (\{S, A\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- $S \rightarrow aSb|cAc$
- $A \rightarrow cA|c$

Gramatica echivalentă în formă normală Chomsky

$$G = (\{S, A, x_a, x_b, Z_1, Z_2\}, \{a, b, c\}, S, P'), \text{ unde } P'$$
:

- $S \rightarrow x_a Z_1 | x_c Z_2$
- $Z_1 \rightarrow Sx_b$
- ullet  $Z_2 o Ax_c$
- $\bullet$   $A \rightarrow x_c A | c$
- ullet  $x_a 
  ightarrow a$
- $\bullet$   $x_b \rightarrow b$
- $\bullet$   $x_c \rightarrow c$

#### Curs 5

- Gramatici și limbaje independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami

### Algoritmul Cocke Younger Kasami (CYK)

- Problema recunoașterii în gramatici în formă normală Chomsky se poate rezolva cu algoritmul CYK în timp  $O(n^3)$ .
- Dacă  $w = a_1 a_2 \dots a_n$  atunci se constuiesc mulțimile

$$V_{ij} = \{A|A \Rightarrow^+ a_i a_{i+1} \dots a_{i+j-1}\}$$

inductiv pentru j = 1, ..., n

$$w \in L(G) \Leftrightarrow S \in V_{1n}$$

# Algoritmul Cocke Younger Kasami

- Pentru *j* = 1:
  - $V_{i1} = \{A|A \Rightarrow^+ a_i\} = \{A|\exists A \rightarrow a_i \in P\}$
- Pentru j > 1,  $V_{ij}$ :
  - Dacă  $A \Rightarrow^+ a_i a_{i+1} \dots a_{i+j-1}$ :

$$A \Rightarrow BC \Rightarrow^{+} a_{i}a_{i+1} \dots a_{i+j-1}$$
 \$i
$$B \Rightarrow^{+} a_{i}a_{i+1} \dots a_{i+k-1}$$
 \$\begin{align\*} (B \in V\_{ik}) \\ C \Rightarrow^{+} a\_{i+k}a\_{i+k+1} \dots a\_{i+j-1} \end{align\*} (C \in V\_{i+k j-k}) \\ \text{unde } 1 < i < n+1-i, 1 < k < i-1 \end{align\*}

•  $V_{ii} = \bigcup_{k=1}^{j-1} \{A | A \to BC \in P, B \in V_{ik}, C \in V_{i+k, j-k}\}$ 

# Algoritmul Cocke Younger Kasami

Notaţie:

$$\{A|A \rightarrow BC \in P, B \in V_{ik}, C \in V_{i+k}\} = V_{ik} \circ V_{i+k}\}$$

Atunci:

pentru 
$$2 \le j \le n, 1 \le i \le n + 1 - j$$
:

$$V_{ij} = \bigcup_{k=1}^{j-1} (V_{ik} \circ V_{i+k \ j-k})$$

### Algoritmul Cocke Younger Kasami

- Intrare: G = (N, T, S, P) în formă normală Chomsky,  $w = a_1 a_2 \dots a_n$
- leşire:  $w \in L(G)$ ?

```
\begin{split} &\text{for}(\texttt{i} = 1; \ \texttt{i} < = n; \ \texttt{i} + +) \\ &V_{i1} = \{A | \exists A \to a_i \in P\}; \\ &\text{for}(\texttt{j} = 2; \ \texttt{j} < = n; \ \texttt{j} + +) \\ &\text{for}(\texttt{i} = 1; \ \texttt{i} < = n + 1 - \texttt{j}; \ \texttt{i} + +) \{ \\ &V_{ij} = \emptyset; \\ &\text{for}(\texttt{k} = 1; \ \texttt{k} < = \texttt{j} - 1; \ \texttt{k} + +) \\ &V_{ij} = V_{ij} \cup (V_{ik} \circ V_{i + k} \ \textit{j} - k); \\ &\} \\ &\text{if}(S \in V_{1n}) \ \ w \in L(G) \ \text{else} \ \ w \not\in L(G) \end{split}
```

$$G = (\{S, X, Y, Z\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- $\circ$  S  $\rightarrow$  XY
- $\bullet \ X \to XY|a$
- $\bullet \ \ Y \to YZ|a|b$
- ullet  $Z \rightarrow c$

$$w = abc$$

$$G = (\{S, X, Y, Z\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- $\circ$  S  $\rightarrow$  XY
- $\bullet X \to XY|a$
- $\bullet$  Y  $\rightarrow$  YZ|a|b
- ullet  $Z \rightarrow c$

$$w = abc$$

| $V_{11} = \{X, Y\}$ | $V_{12} = \{S, X\}$ | $V_{13} = \{S, X\}$ |
|---------------------|---------------------|---------------------|
| $V_{21} = \{Y\}$    | $V_{22}=\{Y\}$      |                     |
| $V_{31} = \{Z\}$    |                     |                     |

$$S \in V_{13} \Leftrightarrow abc \in L(G)$$