$\mathbf{Ex1}$

$$\mathcal{H}^{+} = \sum_{k=1}^{R} \frac{1}{\sqrt{\mu_{k}}} u_{k} v_{k}^{*} \to \mathcal{H} = \sum_{n=1}^{R} \sqrt{\mu_{n}} v_{n} u_{n}^{*}$$

$$\mathcal{H}^{+} \mathcal{H} \mathcal{H}^{+} = \sum_{k=1}^{R} \frac{1}{\sqrt{\mu_{k}}} u_{k} v_{k}^{*} \sum_{n=1}^{R} \sqrt{\mu_{n}} v_{n} u_{n}^{*} \sum_{k=1}^{R} \frac{1}{\sqrt{\mu_{k}}} u_{k} v_{k}^{*}$$

$$Since \sum_{k=1}^{R} v_{k}^{*} \sum_{n=1}^{R} v_{k} = \delta_{kn}$$

$$Then = \sum_{k=1}^{R} u_{k} u_{k}^{*} \sum_{k=1}^{R} \frac{1}{\sqrt{\mu_{k}}} u_{k} v_{k}^{*}$$

$$Similarly, \sum_{k=1}^{R} u_{k}^{*} \sum_{k=1}^{R} u_{k} = \delta_{kk}$$

$$Then, = \sum_{k=1}^{R} u_{k} \frac{1}{\sqrt{\mu_{k}}} v_{k}^{*}$$

$$= \sum_{k=1}^{R} \frac{1}{\sqrt{\mu_{k}}} u_{k} v_{k}^{*} = \mathcal{H}^{+}$$

So $\mathcal{H}^+\mathcal{H}\mathcal{H}^+ = \mathcal{H}^+$ is satisfied.

Ex2
Let
$$\mathcal{H} = \sum_{k=1}^{R} \sqrt{\mu_k} v_k u_k^*$$
; $\mathcal{H}^* = \sum_{k=1}^{R} \sqrt{\mu_k} u_k v_k^*$; $\mathcal{I}_{\mathbb{V}} = \sum_{k=1}^{R} v_k v_k^*$, $\mathcal{H}^* + \eta \mathcal{I}_{\mathbb{V}} = \sum_{k=1}^{R} \sqrt{\mu_k} v_k u_k^* \sum_{n=1}^{R} \sqrt{\mu_n} u_n v_n^* + \eta \sum_{k=1}^{N} v_k v_k^*$

$$= \sum_{k=1}^{R} \mu_k v_k v_k^* + \sum_{k=1}^{N} \eta v_k v_k^*$$

$$= \sum_{k=1}^{R} (\mu_k + \eta) v_k v_k^*, \text{ since } v_k = 0 \text{ if } k \in [R+1, N]$$
Then $(\mathcal{H}\mathcal{H}^* + \eta \mathcal{I}_{\mathbb{V}})^{-1} = \sum_{k=1}^{N} \frac{1}{\mu_k + \eta} v_k v_k^*$
Apply \mathcal{H}^* to it, $\mathcal{H}^*(\mathcal{H}\mathcal{H}^* + \eta \mathcal{I}_{\mathbb{V}}) = \sum_{k=1}^{R} \sqrt{\mu_k} u_k v_k^* \sum_{k=1}^{N} \frac{1}{\mu_k} v_k^* v_k^*$

Apply
$$\mathcal{H}^*$$
 to it, $\mathcal{H}^*(\mathcal{H}\mathcal{H}^* + \eta \mathcal{I}_{\mathbb{V}}) = \sum_{k=1}^R \sqrt{\mu_k} u_k v_k^* \sum_{k=1}^N \frac{1}{\mu_k + \eta} v_k v_k^*$

$$= \sum_{k=1}^{N} \frac{\sqrt{\mu_k}}{\mu_k + \eta} u_k v_k^*$$

So
$$\lim_{\eta \to 0} \mathcal{H}^* (\mathcal{H}\mathcal{H}^* + \eta \mathcal{I}_{\mathbb{V}}) = \sum_{k=1}^{R} \frac{1}{\sqrt{\mu_k}} u_k v_k^* = \mathcal{H}^+$$

The previous \mathcal{H}^+ is the left inverse of \mathcal{H} , when the dimension of \mathcal{U} is higher than \mathcal{V} . The later \mathcal{H}^+ is the right inverse of \mathcal{H} , when the dimension of \mathcal{U} is lower than \mathcal{V} . The previous one faces solution problem and the later one faces uniqueness problem.

Ex3

Suppose
$$g = \sum_{n} \beta_n v_n$$
.

Consider
$$H^+g = \sum_k \frac{1}{\sqrt{\mu_k}} u_k u_k^* \sum_n \beta_n v_n = \sum_k \frac{1}{\sqrt{\mu_k}} \beta_k u_k$$

$$HH^+g = \sum_k \sqrt{\mu_k} v_k u_k^* \sum_k \frac{1}{\sqrt{\mu_k}} \beta_k u_k = \sum_k \beta_k v_k = g$$

So
$$P_{cons} = HH^+$$
.

$$P_{incons} = I_{\mathbb{V}} - P_{cons} = I_{\mathbb{V}} - HH^{+}$$

$$P_{incons}g = g_{null} \to H^+ P_{incons}g = 0$$

$$H^+(I_{\mathbb{V}} - HH^+)g = 0$$

$$(H^+ - H^+ H H^+)g = 0$$

 $H^+ = H^+ H H^+$, which satisfies the second Penrose equation.

Ex4

a. Let
$$f(x) = \sum_{n=1}^{R} a_n x^n$$
, so $f(\lambda_k) = \sum_{n=1}^{R} a_n \lambda_k^n$ and $f(A) = \sum_{n=1}^{R} a_n A^n$

Plug in $A^n = \sum_{k=1}^{n-1} \lambda_k^n P_k$, then

$$f(A) = \sum_{n=1}^{R} a_n \sum_{k} \lambda_k^n P_k = \sum_{k} P_k \sum_{n=1}^{R} a_n \lambda_k^n = \sum_{k} f(\lambda_k) P_k$$

b. Since \mathcal{H} is hermitian, $\mathcal{H} = \mathcal{H}^*$, then

$$\mathcal{U}^* = exp(i\mathcal{H})^* = exp(-i\mathcal{H}^*) = exp(-i\mathcal{H}) = \frac{1}{exp(i\mathcal{H})} = \frac{1}{\mathcal{U}} = \mathcal{U}^{-1}$$

So $\mathcal{U}^* = \mathcal{U}^{-1}$, \mathcal{U} is unitary.

c. Since \mathcal{U} is unitary, let $\mathcal{U} = QUQ^*$, where Q is unitary and $U = diag(\mu_1, \mu_2, ..., \mu_k)$ is a diagonal matrix.

$$log\mathcal{U} = Qlog(U)Q^* = i\mathcal{H} \longrightarrow \mathcal{H} = Q(-ilog(U))Q^*$$

Let
$$\mathcal{H} = Q\Lambda Q^* = Qdiag(\lambda_1, \lambda_2, ..., \lambda_k)Q$$

So
$$diag(\lambda_1, \lambda_2, ..., \lambda_k) = diag(-ilog\mu_1, -ilog\mu_2, ..., -ilog\mu_k)$$

$$\lambda_k = -ilog\mu \to \mu_k = exp(i\lambda_k)$$

Extra: Assume $A = Q\Lambda Q^*$, where Q is unitary.

So
$$A^n = (Q\Lambda Q^*)(Q\Lambda Q^*)...(Q\Lambda Q^*)$$

$$=Q\Lambda(Q^*Q)\Lambda(Q^*...Q)\Lambda Q^*=Q\Lambda^nQ^*$$
. The eigenvalue of A^n is $\{\lambda_1^n,\lambda_2^n,...,\lambda_k^n\}$.

Suppose
$$A = \sum_{k} \lambda_k P_k$$
, then $A^n = \sum_{k} \lambda_k^n P_k$