Tables of simulation results

Contents

Simple ra	andom sampling
Typ	pe I errors $(n = 100)$
Typ	pe I errors $(n = 250)$
Typ	pe I errors $(n = 500)$
Typ	pe I errors $(n = 1000)$
Typ	pe I errors $(n = 2000)$
Typ	pe I errors $(n = 3000)$
Pov	$\text{ver} \ (n=100) \ \dots $
Pov	$\text{ver} \ (n=250) \ \dots $
Pov	ver(n = 500)
Pov	ver $(n = 1000)$
Pov	ver $(n = 2000)$
Pov	$ver(n = 3000) \dots 13$
Complex	sampling
Typ	pe I errors (Stratified sampling)
Typ	pe I errors (Cluster sampling)
Typ	pe I errors (Stratified cluster sampling)
Pow	ver (Stratified sampling)
Pow	ver (Cluster sampling)
Pov	ver (Stratified cluster sampling)

Simple random sampling

Type I errors (n = 100)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	991	934	17	0.020	0.005	0.000
RSS,MM3	991	934	17	0.020	0.007	0.000
PearsonV2,MM3	991	934	17	0.019	0.006	0.000
Pearson	991	934	17	0.019	0.007	0.001
WaldV3	991	934	17	0.090	0.044	0.009
WaldV2,MM3	991	934	17	0.002	0.001	0.000
Wald	991	934	17	0.092	0.047	0.009
1F 8V						
Multn,MM3	998	979	12	0.054	0.020	0.003
RSS,MM3	998	979	12	0.051	0.018	0.001
PearsonV2,MM3	998	979	12	0.054	0.021	0.000
Pearson	998	979	12	0.058	0.027	0.003
WaldV3	998	979	12	0.097	0.049	0.009
WaldV2,MM3	998	979	12	0.010	0.006	0.002
Wald	998	979	12	0.102	0.051	0.008
1F 15V						
Multn,MM3	998	986	41	0.118	0.060	0.011
RSS,MM3	998	986	41	0.100	0.045	0.004
PearsonV2,MM3	998	986	41	0.095	0.043	0.004
Pearson	998	986	41	0.103	0.051	0.009
WaldV3	998	986	41	0.144	0.074	0.019
WaldV2,MM3	998	986	41	0.021	0.005	0.001
Wald	998	986	41	0.151	0.078	0.020
2F 10V						
Multn,MM3	992	872	77	0.021	0.010	0.000
RSS,MM3	992	872	77	0.024	0.009	0.002
PearsonV2,MM3	992	872	77	0.028	0.010	0.003
Pearson	992	872	77	0.034	0.013	0.003
WaldV3	992	872	77	0.097	0.045	0.009
WaldV2,MM3	992	872	77	0.007	0.003	0.002
Wald	992	872	77	0.112	0.050	0.010
3F 15V						
Multn,MM3	993	841	222	0.017	0.006	0.002
RSS,MM3	993	841	222	0.013	0.004	0.000
PearsonV2,MM3	993	841	222	0.015	0.004	0.000
Pearson	993	841	222	0.029	0.013	0.005
WaldV3	993	841	222	0.107	0.058	0.013
WaldV2,MM3	993	841	222	0.002	0.000	0.000
Wald	993	841	222	0.120	0.067	0.014

Type I errors (n = 250)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	998	3	0.062	0.027	0.003
RSS,MM3	1000	998	3	0.063	0.023	0.001
PearsonV2,MM3	1000	998	3	0.067	0.023	0.001
Pearson	1000	998	3	0.065	0.023	0.001
WaldV3	1000	998	3	0.096	0.044	0.011
WaldV2,MM3	1000	998	3	0.009	0.005	0.000
Wald	1000	998	3	0.098	0.045	0.012
1F 8V						
Multn,MM3	1000	1000	5	0.094	0.037	0.005
RSS,MM3	1000	1000	5	0.087	0.037	0.008
PearsonV2,MM3	1000	1000	5	0.080	0.039	0.007
Pearson	1000	1000	5	0.082	0.042	0.009
WaldV3	1000	1000	5	0.104	0.042	0.006
WaldV2,MM3	1000	1000	5	0.026	0.007	0.001
Wald	1000	1000	5	0.109	0.044	0.006
1F 15V						
Multn,MM3	1000	1000	19	0.086	0.041	0.011
RSS,MM3	1000	1000	19	0.080	0.033	0.006
PearsonV2,MM3	1000	1000	19	0.082	0.039	0.004
Pearson	1000	1000	19	0.084	0.040	0.004
WaldV3	1000	1000	19	0.091	0.042	0.011
WaldV2,MM3	1000	1000	19	0.030	0.011	0.002
Wald	1000	1000	19	0.095	0.043	0.011
2F 10V						
Multn,MM3	1000	996	23	0.060	0.023	0.002
RSS,MM3	1000	996	23	0.052	0.023	0.000
PearsonV2,MM3	1000	996	23	0.052	0.026	0.003
Pearson	1000	996	23	0.053	0.029	0.005
WaldV3	1000	996	23	0.092	0.044	0.006
WaldV2,MM3	1000	996	23	0.004	0.000	0.000
Wald	1000	996	23	0.099	0.047	0.006
3F 15V						
Multn,MM3	1000	996	76	0.067	0.035	0.008
RSS,MM3	1000	996	76 76	0.054	0.033 0.024	0.003
PearsonV2,MM3	1000	996	76 76	0.062	0.024	0.001
Pearson	1000	996	76 76	0.062	0.030	0.003
WaldV3	1000	996	76 76	0.003	0.052 0.054	0.003
WaldV3,MM3	1000	996	76 76	0.009	0.004	0.013
* * COLCL * 4 . IVIIVIO	1000	330	10	0.003	0.002	0.000

Type I errors (n = 500)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	2	0.082	0.045	0.006
RSS,MM3	1000	1000	2	0.081	0.039	0.009
PearsonV2,MM3	1000	1000	2	0.084	0.040	0.008
Pearson	1000	1000	2	0.084	0.041	0.008
WaldV3	1000	1000	2	0.096	0.050	0.008
WaldV2,MM3	1000	1000	2	0.036	0.014	0.001
Wald	1000	1000	2	0.096	0.051	0.008
1F 8V						
Multn,MM3	1000	1000	2	0.100	0.043	0.011
RSS,MM3	1000	1000	$\overline{2}$	0.105	0.046	0.010
PearsonV2,MM3	1000	1000	2	0.098	0.051	0.008
Pearson	1000	1000	$\frac{1}{2}$	0.098	0.052	0.010
WaldV3	1000	1000	$\frac{1}{2}$	0.104	0.047	0.011
WaldV2,MM3	1000	1000	$\frac{1}{2}$	0.039	0.014	0.003
Wald	1000	1000	$\frac{1}{2}$	0.104	0.047	0.012
1F 15V						
Multn,MM3	1000	1000	10	0.115	0.053	0.009
RSS,MM3	1000	1000	10	0.113	0.053	0.003
PearsonV2,MM3	1000	1000	10	0.104	0.052 0.053	0.003
Pearson	1000	1000	10	0.100	0.055	0.012
WaldV3	1000	1000	10	0.100 0.117	0.053	0.009
WaldV2,MM3	1000	1000	10	0.050	0.018	0.005
Wald	1000	1000	10	0.118	0.010	0.009
2F 10V						
Multn,MM3	1000	1000	16	0.095	0.053	0.011
RSS,MM3	1000	1000	16	0.094	0.044	0.011
PearsonV2,MM3	1000	1000	16	0.094	0.044	0.011
Pearson	1000	1000	16	0.099	0.043	0.013
WaldV3	1000	1000	16	0.105	0.043	0.013
WaldV2,MM3	1000	1000	16	0.109	0.001	0.002
Wald V2,WIVIS	1000	1000	16	0.030 0.112	0.010 0.065	0.002
3F 15V						
Multn,MM3	1000	1000	30	0.087	0.042	0.010
RSS,MM3	1000	1000	30 30	0.087 0.099	0.042 0.040	0.010
PearsonV2,MM3	1000	1000	30	0.099	0.040 0.051	0.008
Pearson	1000	1000	30	0.098	0.051 0.052	0.008
WaldV3	1000	1000	30	0.098 0.094	0.052 0.050	0.010
WaldV2,MM3	1000	1000	30	0.094 0.032	0.030 0.013	0.011 0.002
Wald V2,MM3	1000	1000	30	0.032 0.107	0.013	0.002
waiu	1000	1000	90	0.107	0.001	0.011

Type I errors (n = 1000)

name	n_sims	n _converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	0	0.071	0.038	0.005
RSS,MM3	1000	1000	0	0.074	0.033	0.004
PearsonV2,MM3	1000	1000	0	0.078	0.030	0.005
Pearson	1000	1000	0	0.076	0.032	0.005
WaldV3	1000	1000	0	0.077	0.040	0.005
WaldV2,MM3	1000	1000	0	0.048	0.019	0.003
Wald	1000	1000	0	0.079	0.040	0.005
1F 8V						
Multn,MM3	1000	1000	4	0.092	0.048	0.007
RSS,MM3	1000	1000	4	0.093	0.038	0.007
PearsonV2,MM3	1000	1000	4	0.088	0.043	0.008
Pearson	1000	1000	4	0.088	0.046	0.009
WaldV3	1000	1000	4	0.094	0.050	0.007
WaldV2,MM3	1000	1000	4	0.064	0.030	0.002
Wald	1000	1000	4	0.095	0.051	0.007
1F 15V						
Multn,MM3	1000	1000	12	0.115	0.052	0.016
RSS,MM3	1000	1000	12	0.113	0.057	0.018
PearsonV2,MM3	1000	1000	12	0.110	0.053	0.015
Pearson	1000	1000	12	0.111	0.058	0.016
WaldV3	1000	1000	12	0.115	0.052	0.016
WaldV2,MM3	1000	1000	12	0.085	0.039	0.006
Wald	1000	1000	12	0.118	0.054	0.016
2F 10V						
Multn,MM3	1000	1000	8	0.092	0.045	0.010
RSS,MM3	1000	1000	8	0.090	0.047	0.011
PearsonV2,MM3	1000	1000	8	0.083	0.045	0.010
Pearson	1000	1000	8	0.085	0.049	0.011
WaldV3	1000	1000	8	0.097	0.046	0.011
WaldV2,MM3	1000	1000	8	0.052	0.021	0.003
Wald	1000	1000	8	0.105	0.049	0.011
3F 15V						
Multn,MM3	1000	1000	28	0.084	0.051	0.011
RSS,MM3	1000	1000	28	0.085	0.046	0.007
PearsonV2,MM3	1000	1000	28	0.089	0.047	0.004
Pearson	1000	1000	28	0.089	0.048	0.007
WaldV3	1000	1000	28	0.085	0.054	0.013
WaldV2,MM3	1000	1000	28	0.058	0.026	0.000
Wald	1000	1000	28	0.096	0.056	0.015

Type I errors (n = 2000)

name	n_sims	$n_converged$	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	2	0.084	0.041	0.005
RSS,MM3	1000	1000	2	0.082	0.039	0.011
PearsonV2,MM3	1000	1000	2	0.080	0.041	0.011
Pearson	1000	1000	2	0.080	0.041	0.013
WaldV3	1000	1000	2	0.084	0.042	0.006
WaldV2,MM3	1000	1000	2	0.068	0.031	0.007
Wald	1000	1000	2	0.086	0.042	0.006
1F 8V						
Multn,MM3	1000	1000	1	0.103	0.049	0.016
RSS,MM3	1000	1000	1	0.104	0.057	0.009
PearsonV2,MM3	1000	1000	1	0.110	0.052	0.009
Pearson	1000	1000	1	0.112	0.057	0.011
WaldV3	1000	1000	1	0.103	0.050	0.016
WaldV2,MM3	1000	1000	1	0.083	0.035	0.007
Wald	1000	1000	1	0.103	0.052	0.016
1F 15V						
Multn,MM3	1000	1000	16	0.115	0.063	0.015
RSS,MM3	1000	1000	16	0.113	0.003 0.057	0.013
PearsonV2,MM3	1000	1000	16	0.106	0.062	0.015
Pearson	1000	1000	16	0.100 0.107	0.062	0.016
WaldV3	1000	1000	16	0.115	0.063	0.015
WaldV2,MM3	1000	1000	16	0.093	0.049	0.008
Wald	1000	1000	16	0.115	0.045	0.015
2F 10V						
Multn,MM3	1000	1000	13	0.097	0.045	0.008
RSS,MM3	1000	1000	13	0.093	0.046	0.008
PearsonV2,MM3	1000	1000	13	0.093	0.036	0.010
Pearson	1000	1000	13	0.093	0.040	0.013
WaldV3	1000	1000	13	0.099	0.045	0.008
WaldV2,MM3	1000	1000	13	0.067	0.049	0.004
Wald	1000	1000	13	0.105	0.052	0.004
3F 15V						
Multn,MM3	1000	1000	38	0.107	0.053	0.009
RSS,MM3	1000	1000	38	0.107 0.096	0.058	0.009
PearsonV2,MM3	1000	1000	38	0.096	0.056	0.013 0.014
Pearson	1000	1000	38	0.096	0.050 0.059	0.014 0.015
WaldV3	1000	1000	38	0.090 0.113	0.059 0.056	0.013
WaldV2,MM3	1000	1000	38	0.113 0.082	0.030 0.031	0.010
Wald V2,MM3	1000	1000	38	0.082 0.124	0.060	0.003
vvaiu	1000	1000	38	0.124	0.000	0.011

Type I errors (n = 3000)

name	n_sims	$n_converged$	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn, MM3	1000	1000	2	0.099	0.047	0.007
RSS,MM3	1000	1000	2	0.094	0.047	0.007
PearsonV2,MM3	1000	1000	2	0.095	0.041	0.007
Pearson	1000	1000	2	0.095	0.043	0.008
WaldV3	1000	1000	2	0.099	0.048	0.007
WaldV2,MM3	1000	1000	2	0.086	0.036	0.006
Wald	1000	1000	2	0.099	0.048	0.007
1F 8V						
Multn,MM3	1000	1000	1	0.107	0.052	0.016
RSS,MM3	1000	1000	1	0.106	0.052	0.017
PearsonV2,MM3	1000	1000	1	0.102	0.046	0.016
Pearson	1000	1000	1	0.105	0.053	0.019
WaldV3	1000	1000	1	0.108	0.052	0.016
WaldV2,MM3	1000	1000	1	0.094	0.047	0.010
Wald	1000	1000	1	0.111	0.052	0.018
1F 15V						
Multn,MM3	1000	1000	20	0.108	0.048	0.003
RSS,MM3	1000	1000	20	0.099	0.043	0.010
PearsonV2,MM3	1000	1000	20	0.092	0.044	0.011
Pearson	1000	1000	20	0.093	0.047	0.013
WaldV3	1000	1000	20	0.108	0.048	0.003
WaldV2,MM3	1000	1000	20	0.088	0.039	0.007
Wald	1000	1000	20	0.109	0.050	0.003
2F 10V						
Multn,MM3	1000	1000	16	0.109	0.045	0.012
RSS,MM3	1000	1000	16	0.092	0.051	0.012
PearsonV2,MM3	1000	1000	16	0.094	0.046	0.011
Pearson	1000	1000	16	0.094	0.050	0.016
WaldV3	1000	1000	16	0.108	0.046	0.012
WaldV2,MM3	1000	1000	16	0.082	0.037	0.005
Wald	1000	1000	16	0.111	0.051	0.012
3F 15V						
Multn,MM3	1000	1000	57	0.094	0.046	0.009
RSS,MM3	1000	1000	57	0.034	0.040	0.003
PearsonV2,MM3	1000	1000	57	0.093	0.044	0.009
Pearson	1000	1000	57	0.094	0.042 0.045	0.003
WaldV3	1000	1000	57	0.094	0.045 0.047	0.011
WaldV2,MM3	1000	1000	57	0.074	0.047	0.003
Wald	1000	1000	57	0.104	0.051	0.009

Power (n = 100)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	885	6	0.027	0.008	0.001
RSS,MM3	1000	885	6	0.034	0.015	0.000
PearsonV2,MM3	1000	885	6	0.037	0.014	0.000
Pearson	1000	885	6	0.036	0.015	0.000
WaldV3	1000	885	6	0.087	0.041	0.009
WaldV2,MM3	1000	885	6	0.010	0.003	0.000
Wald	1000	885	6	0.096	0.045	0.010
1F 8V						
Multn,MM3	1000	934	6	0.067	0.031	0.004
RSS,MM3	1000	934	6	0.067	0.034	0.005
PearsonV2,MM3	1000	934	6	0.070	0.030	0.006
Pearson	1000	934	6	0.079	0.039	0.013
WaldV3	1000	934	6	0.116	0.054	0.009
WaldV2,MM3	1000	934	6	0.027	0.013	0.004
Wald	1000	934	6	0.122	0.056	0.011
1F 15V						
Multn,MM3	998	962	18	0.131	0.072	0.015
RSS,MM3	998	962	18	0.113	0.061	0.016
PearsonV2,MM3	998	962	18	0.111	0.060	0.018
Pearson	998	962	18	0.119	0.065	0.022
WaldV3	998	962	18	0.150	0.086	0.018
WaldV2,MM3	998	962	18	0.038	0.016	0.004
Wald	998	962	18	0.163	0.090	0.019
2F 10V						
Multn,MM3	998	848	68	0.033	0.011	0.001
RSS,MM3	998	848	68	0.027	0.014	0.002
PearsonV2,MM3	998	848	68	0.040	0.013	0.006
Pearson	998	848	68	0.044	0.018	0.008
WaldV3	998	848	68	0.118	0.064	0.014
WaldV2,MM3	998	848	68	0.005	0.002	0.001
Wald	998	848	68	0.130	0.072	0.014
3F 15V						
Multn,MM3	996	797	172	0.020	0.010	0.005
RSS,MM3	996	797	172	0.015	0.006	0.001
PearsonV2,MM3	996	797	172	0.024	0.008	0.001
Pearson	996	797	172	0.040	0.019	0.005
WaldV3	996	797	172	0.146	0.075	0.014
WaldV2,MM3	996	797	172	0.010	0.008	0.003
Wald	996	797	172	0.169	0.089	0.016

Power (n = 250)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	986	0	0.096	0.050	0.010
RSS,MM3	1000	986	0	0.090	0.051	0.007
PearsonV2,MM3	1000	986	0	0.090	0.053	0.007
Pearson	1000	986	0	0.089	0.056	0.007
WaldV3	1000	986	0	0.119	0.065	0.014
WaldV2,MM3	1000	986	0	0.040	0.014	0.001
Wald	1000	986	0	0.121	0.068	0.014
1F 8V						
Multn,MM3	1000	1000	0	0.083	0.036	0.006
RSS,MM3	1000	1000	0	0.071	0.033	0.007
PearsonV2,MM3	1000	1000	0	0.071	0.030	0.005
Pearson	1000	1000	0	0.072	0.032	0.006
WaldV3	1000	1000	0	0.096	0.039	0.007
WaldV2,MM3	1000	1000	0	0.043	0.012	0.000
Wald	1000	1000	0	0.098	0.041	0.007
1F 15V						
Multn,MM3	1000	1000	3	0.116	0.064	0.016
RSS,MM3	1000	1000	3	0.100	0.061	0.013
PearsonV2,MM3	1000	1000	3	0.106	0.054	0.017
Pearson	1000	1000	3	0.108	0.054	0.018
WaldV3	1000	1000	3	0.120	0.066	0.016
WaldV2,MM3	1000	1000	3	0.064	0.034	0.006
Wald	1000	1000	3	0.122	0.068	0.018
2F 10V						
Multn,MM3	1000	989	21	0.091	0.032	0.004
RSS,MM3	1000	989	21	0.104	0.044	0.009
PearsonV2,MM3	1000	989	21	0.109	0.051	0.014
Pearson	1000	989	21	0.110	0.054	0.017
WaldV3	1000	989	21	0.130	0.062	0.012
WaldV2,MM3	1000	989	21	0.015	0.005	0.001
Wald	1000	989	21	0.143	0.068	0.015
3F 15V						
Multn,MM3	1000	988	55	0.110	0.051	0.010
RSS,MM3	1000	988	55	0.105	0.056	0.010
PearsonV2,MM3	1000	988	55	0.113	0.056	0.010
Pearson	1000	988	55	0.114	0.056	0.012
WaldV3	1000	988	55	0.157	0.085	0.016
WaldV2,MM3	1000	988	55	0.025	0.008	0.000
Wald	1000	988	55	0.176	0.101	0.020

Power (n = 500)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	0	0.113	0.058	0.015
RSS,MM3	1000	1000	0	0.115	0.051	0.016
PearsonV2,MM3	1000	1000	0	0.112	0.059	0.017
Pearson	1000	1000	0	0.110	0.059	0.018
WaldV3	1000	1000	0	0.124	0.062	0.016
WaldV2,MM3	1000	1000	0	0.080	0.029	0.008
Wald	1000	1000	0	0.124	0.064	0.017
1F 8V						
Multn,MM3	1000	1000	0	0.097	0.045	0.007
RSS,MM3	1000	1000	0	0.112	0.047	0.005
PearsonV2,MM3	1000	1000	0	0.107	0.043	0.006
Pearson	1000	1000	0	0.108	0.047	0.009
WaldV3	1000	1000	0	0.100	0.047	0.007
WaldV2,MM3	1000	1000	0	0.066	0.028	0.002
Wald	1000	1000	0	0.106	0.050	0.008
1F 15V						
Multn,MM3	1000	1000	5	0.119	0.065	0.014
RSS,MM3	1000	1000	5	0.125	0.062	0.018
PearsonV2,MM3	1000	1000	5	0.123	0.066	0.019
Pearson	1000	1000	5	0.124	0.070	0.021
WaldV3	1000	1000	5	0.122	0.066	0.014
WaldV2,MM3	1000	1000	5	0.086	0.043	0.009
Wald	1000	1000	5	0.126	0.071	0.014
2F 10V						
Multn,MM3	1000	998	7	0.193	0.119	0.032
RSS,MM3	1000	998	7	0.243	0.161	0.056
PearsonV2,MM3	1000	998	7	0.235	0.151	0.044
Pearson	1000	998	7	0.236	0.161	0.060
WaldV3	1000	998	7	0.216	0.133	0.045
WaldV2,MM3	1000	998	7	0.118	0.053	0.016
Wald	1000	998	7	0.227	0.146	0.049
3F 15V						
Multn,MM3	1000	1000	27	0.204	0.133	0.045
RSS,MM3	1000	1000	27	0.300	0.191	0.080
PearsonV2,MM3	1000	1000	27	0.283	0.190	0.077
Pearson	1000	1000	27	0.287	0.197	0.085
WaldV3	1000	1000	27	0.225	0.142	0.048
WaldV2,MM3	1000	1000	27	0.133	0.084	0.024
Wald	1000	1000	27	0.247	0.154	0.055

Power (n = 1000)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	1	0.096	0.047	0.009
RSS,MM3	1000	1000	1	0.102	0.049	0.008
PearsonV2,MM3	1000	1000	1	0.100	0.045	0.007
Pearson	1000	1000	1	0.099	0.045	0.009
WaldV3	1000	1000	1	0.101	0.049	0.009
WaldV2,MM3	1000	1000	1	0.082	0.039	0.004
Wald	1000	1000	1	0.103	0.050	0.009
1F 8V						
Multn,MM3	1000	1000	2	0.102	0.058	0.016
RSS,MM3	1000	1000	2	0.116	0.059	0.008
PearsonV2,MM3	1000	1000	2	0.116	0.066	0.014
Pearson	1000	1000	2	0.117	0.067	0.014
WaldV3	1000	1000	2	0.103	0.058	0.015
WaldV2,MM3	1000	1000	2	0.093	0.043	0.006
Wald	1000	1000	2	0.107	0.060	0.016
1F 15V						
Multn,MM3	1000	1000	4	0.115	0.053	0.008
RSS,MM3	1000	1000	4	0.111	0.051	0.005
PearsonV2,MM3	1000	1000	4	0.119	0.050	0.008
Pearson	1000	1000	4	0.121	0.053	0.010
WaldV3	1000	1000	4	0.118	0.055	0.008
WaldV2,MM3	1000	1000	4	0.086	0.040	0.009
Wald	1000	1000	4	0.120	0.059	0.009
2F 10V						
Multn,MM3	1000	1000	5	0.305	0.215	0.080
RSS,MM3	1000	1000	5	0.405	0.294	0.151
PearsonV2,MM3	1000	1000	5	0.383	0.269	0.139
Pearson	1000	1000	5	0.384	0.279	0.146
WaldV3	1000	1000	5	0.309	0.216	0.085
WaldV2,MM3	1000	1000	5	0.283	0.179	0.059
Wald	1000	1000	5	0.323	0.230	0.101
3F 15V						
Multn,MM3	1000	1000	23	0.364	0.262	0.116
RSS,MM3	1000	1000	23	0.502	0.403	0.226
PearsonV2,MM3	1000	1000	23	0.477	0.373	0.211
Pearson	1000	1000	23	0.480	0.381	0.226
WaldV3	1000	1000	23	0.367	0.266	0.119
WaldV2,MM3	1000	1000	23	0.369	0.246	0.103
Wald	1000	1000	23	0.392	0.280	0.124

Power (n = 2000)

name	n_sims	$n_converged$	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						· · · · · · · · · · · · · · · · · · ·
Multn,MM3	1000	1000	0	0.103	0.059	0.012
RSS,MM3	1000	1000	0	0.108	0.052	0.009
PearsonV2,MM3	1000	1000	0	0.110	0.051	0.011
Pearson	1000	1000	0	0.110	0.052	0.012
WaldV3	1000	1000	0	0.104	0.060	0.012
WaldV2,MM3	1000	1000	0	0.099	0.048	0.005
Wald	1000	1000	0	0.104	0.061	0.012
1F 8V						
Multn,MM3	1000	1000	1	0.108	0.062	0.013
RSS,MM3	1000	1000	1	0.096	0.052	0.014
PearsonV2,MM3	1000	1000	1	0.097	0.053	0.013
Pearson	1000	1000	1	0.098	0.053	0.015
WaldV3	1000	1000	1	0.110	0.063	0.013
WaldV2,MM3	1000	1000	1	0.102	0.047	0.010
Wald	1000	1000	1	0.112	0.064	0.013
1F 15V						
Multn,MM3	1000	1000	3	0.129	0.071	0.016
RSS,MM3	1000	1000	3	0.119	0.071	0.016
PearsonV2,MM3	1000	1000	3	0.120	0.067	0.017
Pearson	1000	1000	3	0.121	0.071	0.019
WaldV3	1000	1000	3	0.121 0.127	0.073	0.016
WaldV2,MM3	1000	1000	3	0.107	0.062	0.017
Wald	1000	1000	3	0.131	0.074	0.016
2F 10V						
Multn,MM3	1000	1000	12	0.500	0.400	0.231
RSS,MM3	1000	1000	12	0.604	0.525	0.367
PearsonV2,MM3	1000	1000	12	0.577	0.494	0.319
Pearson	1000	1000	12	0.579	0.503	0.346
WaldV3	1000	1000	12	0.496	0.397	0.225
WaldV2,MM3	1000	1000	12	0.500	0.401	0.224
Wald	1000	1000	12	0.515	0.413	0.242
3F 15V						
Multn,MM3	1000	1000	30	0.641	0.549	0.372
RSS,MM3	1000	1000	30	0.779	0.695	0.542
PearsonV2,MM3	1000	1000	30	0.745	0.659	0.500
Pearson	1000	1000	30	0.745	0.665	0.500
WaldV3	1000	1000	30	0.639	0.549	0.371
WaldV2,MM3	1000	1000	30	0.699	0.543 0.587	0.409
Wald	1000	1000	30	0.666	0.562	0.386

Power (n = 3000)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	2	0.107	0.057	0.010
RSS,MM3	1000	1000	2	0.110	0.054	0.011
PearsonV2,MM3	1000	1000	2	0.109	0.054	0.010
Pearson	1000	1000	2	0.109	0.056	0.012
WaldV3	1000	1000	2	0.108	0.058	0.011
WaldV2,MM3	1000	1000	2	0.099	0.051	0.011
Wald	1000	1000	2	0.109	0.059	0.011
1F 8V						
Multn,MM3	1000	1000	3	0.096	0.060	0.009
RSS,MM3	1000	1000	3	0.109	0.049	0.012
PearsonV2,MM3	1000	1000	3	0.111	0.050	0.012
Pearson	1000	1000	3	0.113	0.054	0.015
WaldV3	1000	1000	3	0.098	0.060	0.009
WaldV2,MM3	1000	1000	3	0.097	0.047	0.008
Wald	1000	1000	3	0.102	0.062	0.009
1F 15V						
Multn,MM3	1000	1000	10	0.157	0.077	0.011
RSS,MM3	1000	1000	10	0.140	0.072	0.011
PearsonV2,MM3	1000	1000	10	0.140	0.080	0.017
Pearson	1000	1000	10	0.143	0.083	0.019
WaldV3	1000	1000	10	0.158	0.075	0.012
WaldV2,MM3	1000	1000	10	0.137	0.069	0.013
Wald	1000	1000	10	0.162	0.086	0.015
2F 10V						
Multn,MM3	1000	1000	11	0.672	0.560	0.397
RSS,MM3	1000	1000	11	0.756	0.694	0.543
PearsonV2,MM3	1000	1000	11	0.732	0.659	0.503
Pearson	1000	1000	11	0.732	0.664	0.526
WaldV3	1000	1000	11	0.664	0.557	0.391
WaldV2,MM3	1000	1000	11	0.682	0.588	0.406
Wald	1000	1000	11	0.678	0.568	0.409
3F 15V						
Multn,MM3	1000	1000	37	0.792	0.698	0.542
RSS,MM3	1000	1000	37	0.876	0.831	0.711
PearsonV2,MM3	1000	1000	37	0.845	0.792	0.669
Pearson	1000	1000	37	0.847	0.797	0.688
WaldV3	1000	1000	37	0.787	0.698	0.539
WaldV2,MM3	1000	1000	37	0.834	0.748	0.592
Wald	1000	1000	37	0.799	0.713	0.558

Complex sampling

Type I errors (Stratified sampling)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V					-	-
Multn,MM3	1000	1000	2	0.107	0.055	0.011
RSS,MM3	1000	1000	$\frac{2}{2}$	0.110	0.050	0.007
PearsonV2,MM3	1000	1000	$\frac{2}{2}$	0.108	0.045	0.007
Pearson	1000	1000	$\frac{2}{2}$	0.106	0.050	0.008
WaldV3	1000	1000	$\frac{2}{2}$	0.106	0.052	0.011
WaldV2,MM3	1000	1000	$\frac{1}{2}$	0.074	0.034	0.006
Wald	1000	1000	$\frac{2}{2}$	0.111	0.056	0.012
1F 8V						
Multn,MM3	1000	1000	3	0.131	0.066	0.018
RSS,MM3	1000	1000	3	0.191	0.042	0.013
PearsonV2,MM3	1000	1000	3	0.092	0.042	0.007
Pearson	1000	1000	3	0.092 0.093	0.040	0.007
WaldV3	1000	1000	3	0.033	0.043 0.061	0.003
WaldV2,MM3	1000	1000	3	0.110	0.001	0.013
Wald V2,WIWIS	1000	1000	3	0.030 0.134	0.043 0.067	0.007
	1000	1000	3	0.134	0.007	0.016
$1F\ 15V$						
Multn,MM3	1000	1000	27	0.257	0.169	0.062
RSS,MM3	1000	1000	27	0.088	0.032	0.006
PearsonV2,MM3	1000	1000	27	0.093	0.036	0.006
Pearson	1000	1000	27	0.094	0.038	0.007
WaldV3	1000	1000	27	0.192	0.103	0.033
WaldV2,MM3	1000	1000	27	0.069	0.036	0.006
Wald	1000	1000	27	0.249	0.155	0.051
2F 10V						
Multn,MM3	1000	1000	12	0.149	0.083	0.020
RSS,MM3	1000	1000	12	0.079	0.042	0.010
PearsonV2,MM3	1000	1000	12	0.081	0.038	0.007
Pearson	1000	1000	12	0.082	0.044	0.008
WaldV3	1000	1000	12	0.128	0.061	0.014
WaldV2,MM3	1000	1000	12	0.081	0.038	0.009
Wald	1000	1000	12	0.146	0.078	0.017
3F 15V						
Multn,MM3	1000	1000	47	0.284	0.172	0.063
RSS,MM3	1000	1000	47	0.109	0.055	0.011
PearsonV2,MM3	1000	1000	47	0.110	0.054	0.014
Pearson	1000	1000	47	0.112	0.058	0.015
WaldV3	1000	1000	47	0.205	0.124	0.037
WaldV2,MM3	1000	1000	47	0.088	0.045	0.007
Wald	1000	1000	47	0.272	0.159	0.055

Type I errors (Cluster sampling)

name	n_sims	$n_converged$	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn, MM3	1000	1000	1	0.141	0.084	0.022
RSS,MM3	1000	1000	1	0.119	0.060	0.007
PearsonV2,MM3	1000	1000	1	0.116	0.060	0.009
Pearson	1000	1000	1	0.115	0.061	0.011
WaldV3	1000	1000	1	0.130	0.078	0.017
WaldV2,MM3	1000	1000	1	0.105	0.049	0.009
Wald	1000	1000	1	0.189	0.116	0.037
1F 8V						
Multn,MM3	1000	1000	5	0.356	0.242	0.094
RSS,MM3	1000	1000	5	0.071	0.029	0.005
PearsonV2,MM3	1000	1000	5	0.074	0.031	0.006
Pearson	1000	1000	5	0.074	0.035	0.007
WaldV3	1000	1000	5	0.257	0.158	0.047
WaldV2,MM3	1000	1000	5	0.082	0.039	0.004
Wald	1000	1000	5	0.598	0.475	0.289
1F 15V						
Multn,MM3	1000	1000	138	0.932	0.856	0.596
RSS,MM3	1000	1000	138	0.045	0.016	0.000
PearsonV2,MM3	1000	1000	138	0.051	0.019	0.000
Pearson	1000	1000	138	0.052	0.023	0.001
WaldV3	1000	1000	138	1.000	1.000	1.000
WaldV2,MM3	1000	1000	138	0.040	0.015	0.001
Wald	1000	1000	138	1.000	1.000	1.000
2F 10V						
Multn,MM3	1000	1000	18	0.573	0.455	0.249
RSS,MM3	1000	1000	18	0.072	0.028	0.007
PearsonV2,MM3	1000	1000	18	0.077	0.036	0.009
Pearson	1000	1000	18	0.077	0.039	0.010
WaldV3	1000	1000	18	0.505	0.390	0.182
WaldV2,MM3	1000	1000	18	0.078	0.032	0.005
Wald	1000	1000	18	0.821	0.736	0.572
3F 15V						
Multn,MM3	1000	1000	190	0.937	0.877	0.668
RSS,MM3	1000	1000	190	0.954	0.020	0.003
PearsonV2,MM3	1000	1000	190	0.054	0.020 0.022	0.003
Pearson	1000	1000	190	0.061	0.022	0.005
WaldV3	1000	1000	190	1.000	0.024 0.999	0.998
WaldV2,MM3	1000	1000	190	0.056	0.022	0.002
Wald	1000	1000	190	1.000	1.000	1.000

Type I errors (Stratified cluster sampling)

name	n_sims	$n_converged$	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn, MM3	1000	1000	2	0.123	0.065	0.016
RSS,MM3	1000	1000	2	0.087	0.039	0.006
PearsonV2,MM3	1000	1000	2	0.087	0.041	0.007
Pearson	1000	1000	2	0.084	0.043	0.009
WaldV3	1000	1000	2	0.123	0.065	0.014
WaldV2,MM3	1000	1000	2	0.079	0.041	0.009
Wald	1000	1000	2	0.158	0.097	0.027
1F 8V						
Multn,MM3	1000	1000	2	0.318	0.217	0.083
RSS,MM3	1000	1000	2	0.091	0.036	0.007
PearsonV2,MM3	1000	1000	2	0.094	0.044	0.006
Pearson	1000	1000	2	0.095	0.048	0.011
WaldV3	1000	1000	2	0.337	0.227	0.097
WaldV2,MM3	1000	1000	2	0.083	0.040	0.016
Wald	1000	1000	$\frac{1}{2}$	0.555	0.446	0.249
1F 15V						
Multn,MM3	1000	1000	187	0.890	0.813	0.593
RSS,MM3	1000	1000	187	0.037	0.009	0.001
PearsonV2,MM3	1000	1000	187	0.048	0.010	0.001
Pearson	1000	1000	187	0.048	0.011	0.001
WaldV3	1000	1000	187	1.000	1.000	1.000
WaldV2,MM3	1000	1000	187	0.048	0.015	0.001
Wald	1000	1000	187	1.000	1.000	1.000
2F 10V						
Multn,MM3	1000	1000	23	0.540	0.424	0.227
RSS,MM3	1000	1000	23	0.073	0.029	0.001
PearsonV2,MM3	1000	1000	23	0.079	0.032	0.004
Pearson	1000	1000	23	0.080	0.035	0.006
WaldV3	1000	1000	23	0.596	0.492	0.316
WaldV2,MM3	1000	1000	23	0.084	0.043	0.003
Wald	1000	1000	23	0.853	0.778	0.590
3F 15V						
Multn,MM3	1000	1000	261	0.937	0.874	0.655
RSS,MM3	1000	1000	261	0.052	0.020	0.000
PearsonV2,MM3	1000	1000	261	0.049	0.019	0.001
Pearson	1000	1000	261	0.049	0.022	0.001
WaldV3	1000	1000	261	1.000	1.000	1.000
WaldV2,MM3	1000	1000	261	0.044	0.017	0.004
Wald	1000	1000	261	1.000	1.000	1.000

Power (Stratified sampling)

name	n_sims	n_converged	n_rank_def	rej_rate10	rej_rate5	rej_rate1
1F 5V						
Multn,MM3	1000	1000	0	0.117	0.061	0.018
RSS,MM3	1000	1000	0	0.105	0.052	0.015
PearsonV2,MM3	1000	1000	0	0.108	0.053	0.013
Pearson	1000	1000	0	0.107	0.054	0.015
WaldV3	1000	1000	0	0.114	0.057	0.016
WaldV2,MM3	1000	1000	0	0.092	0.040	0.008
Wald	1000	1000	0	0.127	0.063	0.018
1F 8V						
Multn,MM3	1000	1000	1	0.164	0.097	0.027
RSS,MM3	1000	1000	1	0.138	0.065	0.021
PearsonV2,MM3	1000	1000	1	0.131	0.061	0.019
Pearson	1000	1000	1	0.132	0.065	0.022
WaldV3	1000	1000	1	0.142	0.084	0.018
WaldV2,MM3	1000	1000	1	0.123	0.061	0.009
Wald	1000	1000	1	0.177	0.109	0.034
1F 15V						
Multn,MM3	1000	1000	11	0.377	0.262	0.109
RSS,MM3	1000	1000	11	0.097	0.202 0.045	0.103
PearsonV2,MM3	1000	1000	11	0.096	0.048	0.013
Pearson	1000	1000	11	0.096	0.040 0.052	0.011
WaldV3	1000	1000	11	0.226	0.148	0.049
WaldV2,MM3	1000	1000	11	0.122	0.053	0.013
Wald	1000	1000	11	0.122 0.375	0.259	0.110
2F 10V						
Multn,MM3	1000	1000	12	0.590	0.480	0.266
RSS,MM3	1000	1000	12	0.771	0.686	0.468
PearsonV2,MM3	1000	1000	12	0.764	0.664	0.419
Pearson	1000	1000	12	0.765	0.676	0.455
WaldV3	1000	1000	12	0.551	0.440	0.220
WaldV2,MM3	1000	1000	12	0.520	0.379	0.171
Wald	1000	1000	12	0.595	0.480	0.262
3F 15V						
Multn,MM3	1000	1000	36	0.856	0.749	0.508
RSS,MM3	1000	1000	36	0.855	0.745	0.527
PearsonV2,MM3	1000	1000	36	0.820	0.698	0.442
Pearson	1000	1000	36	0.824	0.710	0.474
WaldV3	1000	1000	36	0.765	0.636	0.387
WaldV2,MM3	1000	1000	36	0.777	0.657	0.369
Wald	1000	1000	36	0.841	0.732	0.480

Power (Cluster sampling)

1F 5V Multn,MM3 RSS,MM3 PearsonV2,MM3	1000					
RSS,MM3						
· ·	1000	1000	0	0.128	0.064	0.013
PearsonV2 MM3	1000	1000	0	0.090	0.039	0.009
1 0010011 1 2,111110	1000	1000	0	0.099	0.040	0.007
Pearson	1000	1000	0	0.098	0.043	0.009
WaldV3	1000	1000	0	0.120	0.062	0.012
WaldV2,MM3	1000	1000	0	0.103	0.044	0.006
Wald	1000	1000	0	0.171	0.103	0.030
1F 8V						
Multn,MM3	1000	1000	2	0.346	0.255	0.098
RSS,MM3	1000	1000	2	0.122	0.058	0.015
PearsonV2,MM3	1000	1000	2	0.121	0.055	0.016
Pearson	1000	1000	$\frac{1}{2}$	0.123	0.059	0.022
WaldV3	1000	1000	$\frac{1}{2}$	0.300	0.202	0.073
WaldV2,MM3	1000	1000	2	0.117	0.064	0.007
Wald	1000	1000	$\frac{1}{2}$	0.536	0.434	0.263
1F 15V						
Multn,MM3	1000	1000	34	0.977	0.937	0.775
RSS,MM3	1000	1000	34	0.067	0.023	0.002
PearsonV2,MM3	1000	1000	34	0.077	0.023	0.002
Pearson	1000	1000	34	0.073	0.032	0.001
WaldV3	1000	1000	34	1.000	1.000	1.000
WaldV2,MM3	1000	1000	34	0.079	0.026	0.001
Wald	1000	1000	34	1.000	1.000	1.000
2F 10V						
Multn,MM3	1000	1000	17	0.892	0.834	0.677
RSS,MM3	1000	1000	17	0.832	0.744	0.524
PearsonV2,MM3	1000	1000	17	0.825	0.727	0.493
Pearson	1000	1000	17	0.828	0.735	0.536
WaldV3	1000	1000	17	0.890	0.831	0.682
WaldV2,MM3	1000	1000	17	0.589	0.418	0.164
Wald	1000	1000	17	0.970	0.955	0.900
3F 15V						
Multn,MM3	1000	1000	148	0.996	0.979	0.922
RSS,MM3	1000	1000	148	0.990 0.891	0.979 0.792	0.922 0.558
PearsonV2,MM3	1000	1000	148	0.858	0.792 0.753	0.538 0.513
Pearson	1000	1000	148	0.859	0.766	0.513 0.544
WaldV3	1000	1000	148	1.000	1.000	1.000
WaldV3,MM3	1000	1000	148	0.826	0.694	0.380
Wald V2,MM3	1000	1000	148	1.000	1.000	1.000

Power (Stratified cluster sampling)

0 0.14		
0 0 10	9 0.088	0.025
0 0.12	7 0.064	0.017
0 0.13	3 0.069	0.014
0 0.13	1 0.071	0.014
0 0.14	8 0.087	0.027
0 0.12	7 0.061	0.012
0 0.19	6 0.130	0.044
2 0.36	7 0.255	0.105
2 0.11		0.008
2 0.11		0.009
2 0.11		0.014
2 0.37		0.102
2 0.11		0.006
2 0.60		0.302
41 0.96	6 0.929	0.750
41 0.05		0.004
41 0.06		0.005
41 0.06		0.006
41 1.00		1.000
41 0.08		0.002
41 1.00		1.000
21 0.88	5 0.803	0.623
21 0.79		0.433
21 0.77		0.404
21 0.77		0.458
21 0.92		0.727
21 0.53		0.140
21 0.97		0.898
208 0.99	6 0.971	0.879
		0.406
		0.400 0.365
		0.303 0.397
		1.000
		0.279
200 0.11		1.000
	208 0.82 208 0.78 208 0.78 208 1.00 208 0.77	208 0.823 0.703 208 0.785 0.642 208 0.787 0.659 208 1.000 1.000 208 0.775 0.623