Consider the below graph of a function f(x) (integer coordinates can be assumed where clear).

Find the following limits, if they exist. If they do not, indicate whether the limit is ∞ , $-\infty$, or DNE. (No proofs required.)

(a)
$$\lim_{x \to -\infty} f(x)$$

(f)
$$\lim_{x \to -4^+} f(x)$$

(k)
$$\lim_{x \to 0^-} f(x)$$

(p)
$$\lim_{x\to 2} f(x)$$

Solution:
$$-2$$

Solution: 0

Solution: ∞

(b)
$$\lim_{x \to -6^-} f(x)$$

(g)
$$\lim_{x \to -4} f(x)$$

(l)
$$\lim_{x \to 0^+} f(x)$$

(q)
$$\lim_{x \to 8^-} f(x)$$

Solution: $-\infty$

Solution:
$$-2$$

Solution: 0

Solution: ∞

(c)
$$\lim_{x \to -6^+} f(x)$$

$$(h) \lim_{x \to -3^-} f(x)$$

(m)
$$\lim_{x\to 0} f(x)$$

(r)
$$\lim_{x \to 8^+} f(x)$$

Solution: 0

Solution: -3

Solution: 0

Solution: $-\infty$

(d)
$$\lim_{x \to -6} f(x)$$

(i)
$$\lim_{x \to -3^+} f(x)$$

(n)
$$\lim_{x \to 2^-} f(x)$$

(s)
$$\lim_{x \to 8} f(x)$$

Solution: DNE

Solution: 3

Solution: ∞

Solution: DNE

(e)
$$\lim_{x \to -4^-} f(x)$$

$$(j) \lim_{x \to -3} f(x)$$

(o) $\lim_{x \to 2^+} f(x)$

(t) $\lim_{x \to \infty} f(x)$

Solution: -2

Solution: DNE

Solution: ∞

Solution: 1

Where is the function discontinuous? Identify the type of discontinuity at such points.

Solution: Removable discontinuity at 0.

Jump discontinuity at -3.

Infinite discontinuities at -6, 2, 8.