Functions

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Basics of Functions

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f: \mathcal{A} \to \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation

 $f(a) = b \ (a \in \mathcal{A}, b \in \mathcal{B})$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, $f: A \to \mathbb{N}$ $(A = (a_{ij})_{m \times n}$ is an $m \times n$ array) is defined by, $f(a_{ij}) = (i-1)n + j$.

(2) Floor and ceiling functions, $f : \mathbb{R} \to \mathbb{Z}$, are defined by, $f(x) = \lfloor x \rfloor$ and $g(y) = \lceil y \rceil$ $(x, y \in \mathbb{R})$. f(2.7) = 2, f(-2.7) = -3, f(2) = 2, f(-2) = -2 and g(2.7) = 3, g(-2.7) = -2, g(2) = 2, g(-2) = -2.

Image and Pre-image: If f(a) = b, then b is the image of a under f and a is the pre-image of b.

Domain and Codomain: In $f: \mathcal{A} \to \mathcal{B}$, \mathcal{A} is the domain of f and \mathcal{B} is the codomain of f.

Range: Set of all images for elements of \mathcal{A} in \mathcal{B} , $f(\mathcal{A}) \subset \mathcal{B}$.

Properties of Functions

```
Number of Functions: Let \mathcal{A} = \{a_1, \dots, a_m\} (|\mathcal{A}| = m) and \mathcal{B} = \{b_1, \dots, b_n\} (|\mathcal{B}| = n). f: \mathcal{A} \to \mathcal{B} is described as, \{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}. So, Total Count = n^m = |\mathcal{B}|^{|\mathcal{A}|} (by rule-of-product).
```

Image of Subset: If $f: \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f(\mathcal{A}') = \{b \in \mathcal{B} \mid b = f(a)\}$ (for some $a \in \mathcal{A}'$), and $f(\mathcal{A}')$ is called the image of \mathcal{A}' under f.

Restriction: If $f: \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f|_{\mathcal{A}'}: \mathcal{A}' \to \mathcal{B}$ is called the restriction of f to \mathcal{A}' if $f|_{\mathcal{A}'}(a) = f(a)$ for all $a \in \mathcal{A}'$.

Extension: Let $\mathcal{A}' \subseteq \mathcal{A}$ and $f : \mathcal{A}' \to \mathcal{B}$. If $g : \mathcal{A} \to \mathcal{B}$ and g(a) = f(a) for all $a \in \mathcal{A}'$, then g is called an extension of f to \mathcal{A} .

```
Let f: \mathcal{A} \to \mathcal{B}, with \mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}. Then, (i) If \mathcal{A}_1 \subset \mathcal{A}_2 \Rightarrow f(\mathcal{A}_1) \subseteq f(\mathcal{A}_2), (ii) f(\mathcal{A}_1 \cup \mathcal{A}_2) = f(\mathcal{A}_1) \cup f(\mathcal{A}_2), and (iii) f(\mathcal{A}_1 \cap \mathcal{A}_2) \subseteq f(\mathcal{A}_1) \cap f(\mathcal{A}_2).
```

Proof: (ii) For each $b \in \mathcal{B}$, $b \in f(\mathcal{A}_1 \cap \mathcal{A}_2) \Rightarrow b = f(a)$, for some $a \in (\mathcal{A}_1 \cap \mathcal{A}_2)$ $\Rightarrow [b = f(a) \text{ for some } a \in \mathcal{A}_1] \land [b = f(a) \text{ for some } a \in \mathcal{A}_2] \Rightarrow b \in f(\mathcal{A}_1) \land b \in f(\mathcal{A}_2)$ $\Rightarrow b \in f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$, implying the result.

(i) and (ii) Left for You as an Exercise!

One-to-One or Injective Functions

- One-to-one (Injective) Function: $f: \mathcal{A} \to \mathcal{B}$ is a one-to-one (or injective) function, if each element in \mathcal{B} appears at most once as image of an element of \mathcal{A} .
 - For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
 - If $f: A \to B$ is one-to-one with A, B finite, then $|A| \le |B|$.
 - Examples: (i) $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1, $\forall x \in \mathbb{R}$ is one-to-one; because for all $x_1, x_2 \in \mathbb{R}$, we have $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow x_1 = x_2$.
 - (ii) $g: \mathbb{R} \to \mathbb{R}$ where $g(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is NOT one-to-one; because g(-1) = 0 and g(0) = 0.
- Number of Injective Functions: Let $\mathcal{A}=\{a_1,\ldots,a_m\}$ $(|\mathcal{A}|=m)$ and $\mathcal{B}=\{b_1,\ldots,b_n\}$ $(|\mathcal{B}|=n)$ $(m\leq n).$ $f:\mathcal{A}\to\mathcal{B}$ is described as, $\{(a_1,x_1),(a_2,x_2),\ldots,(a_m,x_m)\}.$ So, Total Count $=n(n-1)\cdots(n-m+1)=\frac{n!}{(n-m)!}=P(|\mathcal{B}|,|\mathcal{A}|).$
- $f: \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, $f(\mathcal{A}_1 \cap \mathcal{A}_2) = f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$, if f is one-to-one.

Onto or Surjective Functions

Onto (Surjective) Function: $f: \mathcal{A} \to \mathcal{B}$ is a onto (or surjective) function, if $f(\mathcal{A}) = \mathcal{B}$, i.e. for all $b \in \mathcal{B}$ there is at least one $a \in \mathcal{A}$ with f(a) = b.

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is onto if and only if $\forall b \in \mathcal{B}, \exists a \in \mathcal{A}, \text{ so that } f(a) = b.$
- If $f: A \to B$ is onto with A, B finite, then $|A| \ge |B|$.

Examples: (i) $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 1$, $\forall x \in \mathbb{R}$ is onto; because for each $y = x^3 + 1 \in \mathbb{R}$, there is an $x = \sqrt[3]{y - 1}$.

(ii) $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$, $\forall x \in \mathbb{R}$ is NOT onto; because for an $y = -4 \in \mathbb{R}$, we get $x = \sqrt{y} = 2i$ or $-2i \notin \mathbb{R}$.

Number of Onto Functions: Counting is non-trivial and will be addressed later!

One-to-one & Onto (Bijective) Function:

 $f: A \to B$ is bijective if it is both one-to-one (injective) and onto (surjective).

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is bijective if and only if $\forall b \in \mathcal{B}, \exists a \in \mathcal{A}, \text{ so that } f(a) = b \text{ and } \forall a'(\neq a) \in \mathcal{A}, f(a') \neq b.$
- If $f: A \to B$ is bijective with A, B finite, then |A| = |B|.

(Binary) Operations and Properties

Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f: \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on \mathcal{A} (also \mathcal{A} is closed under f). (Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g: A \to A$ is called unary (or monary) operation on A.

Properties:

Let $f: \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is a binary operation.

Commutativity: If $\forall (x,y) \in \mathcal{A} \times \mathcal{A}$, f(x,y) = f(y,x) then f is commutative.

Associativity: If f is closed and $\forall x, y, z \in \mathcal{A}$, f(f(x, y), z) = f(x, f(y, z)), then f is associative.

Example

- ① $g: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ defined as g(x,y) = x y, is a binary operation on \mathbb{Z} which is NOT closed as $g(1,2) = -1 \notin \mathbb{Z}^+$, though $1,2 \in \mathbb{Z}^+$.
- ② $h: \mathbb{R}^+ \to \mathbb{R}^+$ defined as $h(x) = \frac{1}{x}$ is an unary operation on \mathbb{R}^+ .
- ① $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(x,y) = x y, is a closed binary operation on \mathbb{Z} which is neither commutative nor associative. (Why?)
- ① $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a,b) = a+b-ab is both commutative and associative.

More Properties of Binary Operation

Properties:

Let $f: \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is a binary operation.

Identity: $x \in \mathcal{A}$ is an identity (or identity element) for f if

 $f(a,x) = f(x,a) = a, \ \forall a \in A.$

Property: If *f* has an identity, then that identity is *unique*.

(**Proof:** Let two identities, $x_1, x_2 \in \mathcal{A}$. Then, by definition

 $f(x_1, x_2) = x_1 = f(x_2, x_1) = x_2$, leading to contradiction!)

Example: $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a,b) = a+b-ab has 0 as the unique identity, because f(a,0) = a+0+a.0 = a=0+a+0.a = f(0,a).

Projection: For sets A, B, if $C \subseteq A \times B$, then –

(i) $\pi_{\mathcal{A}}: \mathcal{C} \to \mathcal{A}$ defined by $\pi_{\mathcal{A}}(a,b) = a$, is called the projection on the first coordinate. (ii) $\pi_{\mathcal{B}}: \mathcal{C} \to \mathcal{B}$ defined by $\pi_{\mathcal{B}}(a,b) = b$, is called the projection on the second coordinate.

Property: If $C = A \times B$, then π_A and π_B both are *onto* functions.

Example: Let $\mathcal{A}=\mathcal{B}=\mathbb{R}$ and $\mathcal{C}\subseteq\mathcal{A}\times\mathcal{B}$ where $\mathcal{C}=\{(x,y)\mid y=x^2,\ x,y\in\mathbb{R}\}$ representing the Euclidean plane that contains points on the parabola $y=x^2$. Here, $\pi_{\mathcal{A}}(3,9)=3$ and $\pi_{\mathcal{B}}(3,9)=9$. Note that, $\pi_{\mathcal{A}}(\mathcal{C})=\mathbb{R}$ and hence $\pi_{\mathcal{A}}$ is onto (and one-to-one as well). Whereas, $\pi_{\mathcal{B}}(\mathcal{C})=[0,+\infty]\subset\mathbb{R}$ and hence $\pi_{\mathcal{B}}$ is NOT onto (nor it is one-to-one as $\pi_{\mathcal{B}}(2,4)=4=\pi_{\mathcal{B}}(-2,4)$).

Equal, Identity and Composite Functions

Identity Function: The function, $1_{\mathcal{A}}: \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ $(\forall a \in \mathcal{A})$, is called the identity function for \mathcal{A} .

Equal Functions: Two functions $f,g:\mathcal{A}\to\mathcal{B}$ are said to be equal (denoted as f=g) if $f(a)=g(a),\ \forall a\in\mathcal{A}.$

Note: Domain and Codomain of f, g must also be the same!

Example:
$$f,g:\mathbb{R}\to\mathbb{Z}$$
 are defined as, $f(x)=\left\{ egin{array}{ll} x, & \mbox{if }x\in\mathbb{Z}\\ \lfloor x\rfloor+1, & \mbox{if }x\in\mathbb{R}-\mathbb{Z} \end{array} \right.$ and $g(x)=\lceil x\rceil$, then $f(x)=g(x)$ for every $x\in\mathbb{R}$ (Why?). So, $f=g$.

Composite Function: If $f: \mathcal{A} \to \mathcal{B}$ and $g: \mathcal{B} \to \mathcal{C}$, we define the composite function, $g \circ f: \mathcal{A} \to \mathcal{C}$ by $(g \circ f)(a) = g(f(a)), \ \forall a \in \mathcal{A}$.

- Range of $f \subseteq Domain$ of g sufficient for Function Composition!
- ullet For two identity functions $1_{\mathcal{A}}: \mathcal{A} \to \mathcal{A}$ and $1_{\mathcal{B}}: \mathcal{B} \to \mathcal{B}$, $f \circ 1_{\mathcal{A}} = f = 1_{\mathcal{B}} \circ f$.

Example: Let $f, g : \mathbb{R} \to \mathbb{R}$ defined as, $f(x) = x^2$ and g(x) = x + 1. Then, $(f \circ g)(x) = x^2 + 2x + 1$ and $(g \circ f)(x) = x^2 + 1$. So, $(f \circ g)(x) \neq (g \circ f)(x)$.

Commutativity of Function Compositions:

Does NOT Hold!

Function Composition is NOT Commutative, that is, we shall NOT always have $f \circ g(x) \neq g \circ f(x)$ for any two functions, $f, g : A \to A$ (and $x \in A$).

Composite Function Properties

Associativity of Function Compositions

If $f: \mathcal{A} \to \mathcal{B}$, $g: \mathcal{B} \to \mathcal{C}$ and $h: \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Proof: For every $x \in A$, we can show,

$$(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$$

= $h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$

Recursive Compositions of Functions

Let $f: \mathcal{A} \to \mathcal{A}$. Then, $f^1 = f$, and for $n \in \mathbb{Z}^+$, $f^{n+1} = f \circ (f^n) = (f^n) \circ f$.

Bijective Nature of Function Compositions

If $f: A \to B$ and $g: B \to C$ both are one-to-one , then $g \circ f: A \to C$ is one-to-one.

Proof: Let $a_1, a_2 \in A$.

$$(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$$
 (as g is one-to-one).

Again, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ (as f is one-to-one). Hence, $g \circ f$ is one-to-one.

If $f: A \to B$ and $g: B \to C$ both are onto, then $g \circ f: A \to C$ is onto.

Proof: For any
$$z \in C$$
, $\exists y \in \mathcal{B}$ (as g is onto) and $y \in \mathcal{B}$, $\exists x \in \mathcal{A}$ (as f is onto).

So,
$$z = g(y) = g(f(x)) = (g \circ f)(x)$$
 and Range of $(g \circ f) = \mathcal{C} = \text{Codomain of } (g \circ f)$.

Composite Function Properties

Bijective Nature of Function Compositions

Let $f: \mathcal{A} \to \mathcal{B}$ and $g: \mathcal{B} \to \mathcal{C}$ and the composition $g \circ f: \mathcal{A} \to \mathcal{C}$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one). **Explanation:**

```
f is one-to-one (Proof): Assuming f is NOT one-to-one, implies \exists x_1, x_2 \in \mathcal{A} such that f(x_1) = f(x_2). So, g \circ f(x_1) = g \circ f(x_2), contradicting g \circ f is injective!
```

```
g is not one-to-one (Example): f,g:\mathbb{R}\to\mathbb{R} are defined as, f(x)=e^x and g(x)=x^2 (x\in\mathbb{R}). Here, g\circ f:\mathbb{R}\to\mathbb{R} is defined as, g\circ f(x)=e^{2x}. So, (g\circ f) is one-to-one, but g is NOT (note that, f is one-to-one as proven)!
```

Let $f: \mathcal{A} \to \mathcal{B}$ and $g: \mathcal{B} \to \mathcal{C}$ and the composition $g \circ f: \mathcal{A} \to \mathcal{C}$ is a onto (surjective) function. Then, g is onto (however, f need NOT be onto).

Explanation:

```
g is onto (Proof): As (g \circ f) is onto, for any z \in \mathcal{C}, \ \exists x \in \mathcal{A} such that, z = g \circ f(x) = g(f(x)), implying that z has a pre-image defined as f(x) \in \mathcal{B} – thus making g onto.
```

```
f is not onto (Example): f,g:\mathbb{Z}\to\mathbb{Z} are defined as, f(x)=2x and g(x)=\lfloor\frac{x}{2}\rfloor (x\in\mathbb{Z}). Here, g\circ f:\mathbb{Z}\to\mathbb{Z} is defined as, g\circ f(x)=x. So, (g\circ f) is onto, but f is NOT (note that, g is onto as proven)!
```

Inverse Functions and Invertibility

Inverse Functions: For a function $f: \mathcal{A} \to \mathcal{B}$, if $f_L^{-1}, f_R^{-1}: \mathcal{B} \to \mathcal{A}$ are defined such that $f_L^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f_R^{-1} = 1_{\mathcal{B}}$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Invertible Functions: A function $f: \mathcal{A} \to \mathcal{B}$ is said to be invertible if there exist a function $f^{-1}: \mathcal{B} \to \mathcal{A}$ such that $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}}$. f^{-1} is called the inverse function of f.

Unique Inverse: An invertible function $f: \mathcal{A} \to \mathcal{B}$ has a unique inverse $f^{-1}: \mathcal{B} \to \mathcal{A}$. (Proof: Assume two inverses, f_1^{-1} and f_2^{-1} . Using the definition, we get, $f_1^{-1} = f_1^{-1} \circ 1_{\mathcal{B}} = f_1^{-1} \circ (f \circ f_2^{-1}) = (f_1^{-1} \circ f) \circ f_2^{-1} = 1_{\mathcal{A}} \circ f_2^{-1} = f_2^{-1}$.)

Examples: (1) Let $f,g:\mathbb{Z}\to\mathbb{Z}$ are defined as f(x)=2x and $g(x)=\lfloor\frac{x+1}{2}\rfloor$ $(x\in\mathbb{Z}).$ So, $g\circ f, f\circ g:\mathbb{Z}\to\mathbb{Z}$ are defined by, $g\circ f(x)=g(2x)=x$ and $f\circ g(x)=f(\lfloor\frac{x+1}{2}\rfloor)=\left\{\begin{array}{cc} x+1, & \text{if } x \text{ is odd} \\ x, & \text{if } x \text{ is even} \end{array}\right.$ So, $g\circ f=1_{\mathbb{Z}}$ meaning g is the left inverse of f, but $f\circ g\neq 1_{\mathbb{Z}}$ meaning g is NOT the right inverse of f.

(2) Let $f,g:\mathbb{R}\to\mathbb{R}$ are defined as f(x)=2x and $g(x)=\frac{x}{2}$ $(x\in\mathbb{R})$. So, $g\circ f, f\circ g:\mathbb{R}\to\mathbb{R}$ are defined by, $g\circ f(x)=g(2x)=x$ and $f\circ g(x)=f(\frac{x}{2})=x$. So, $g\circ f=f\circ g=1_{\mathbb{R}}$ meaning g is inverse of f.

Properties of Invertible Functions

Properties

- $f: A \to B$ is invertible if and only if it is bijective (one-to-one + onto).
 - **Proof:** [If] f is invertible means inverse function $f^{-1}: \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_A$ and 1_A is injective, so f is injective.

 $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective.

[Only-If] Since f is bijective, $y \in \mathcal{B}$ has one and only one pre-image $x \in \mathcal{A}$.

We define $f^{-1}: \mathcal{B} \to \mathcal{A}$ as $f^{-1}(y) = x$ (pre-image of y under f), $y \in \mathcal{B}$.

So, $f^{-1} \circ f(x) = f^{-1}(y) = x$ and $f \circ f^{-1}(y) = f(x) = y$,

implying $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B \Rightarrow f$ is invertible.

- If $f: A \to B$, $g: B \to C$ are invertible, then $g \circ f: A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
 - **Proof:** f, g are invertible implies that f, g are bijective functions.

So, $(g \circ f)$ is also bijective and hence invertible (using above property).

 $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ 1_{\mathcal{B}} \circ f = f^{-1} \circ f = 1_{\mathcal{A}}.$ $(g \circ f) \circ (f^{-1} \circ g^{-1}) = 1_{\mathcal{B}}$. So, $(f^{-1} \circ g^{-1})$ is the inverse of $(g \circ f)$.

Example

 $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x + 1 $(x \in \mathbb{R})$. Note that, f is bijective (Why?) and hence invertible. Now, $f^{-1}: \mathbb{R} \to \mathbb{R}$ defined by $f^{-1}(y) = \frac{y-1}{3}, y \in \mathbb{R}$.

Properties with Direct and Inverse Images

Direct Image: Let $f: \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(A') \subseteq B$ given by, $f(A') = \{f(x) \mid x \in A'\}$.

Inverse Image: Let $f: A \to B$ and (non-empty) $B' \subseteq B$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq \mathcal{A}$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ $(x \in \mathbb{R})$. Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0,4]\}$ $(y \in \mathbb{R})$ and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2,2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Properties: • (RECAP) Let $f: A \to B$, with $A_1, A_2 \subseteq A$. Then, (i) If $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, (ii) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, and (iii) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

Note: In general, $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$. Consider, $f: \mathbb{R} \to \mathbb{R}$ as $f(x) = x^2$ and $A_1 = \{0, 1, \frac{1}{2}, \frac{1}{2}, \dots\}, A_2 = \{0, -1, -\frac{1}{2}, -\frac{1}{2}, \dots\}.$ Here, $f(A_1 \cap A_2) = \{0\} \neq \{0, 1, \frac{1}{2^2}, \frac{1}{2^2}\} = f(A_1) \cap f(A_2).$

• Let $f: A \to B$ be an onto mapping, with $B_1, B_2 \subseteq B$. Then, (i) If $\mathcal{B}_1 \subset \mathcal{B}_2 \Rightarrow f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$, (ii) $\overline{f^{-1}(\mathcal{B}_1)} = f^{-1}(\overline{\mathcal{B}_1})$. (iii) $f^{-1}(\mathcal{B}_1 \cup \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cup f^{-1}(\mathcal{B}_2)$, and (iv) $f^{-1}(\mathcal{B}_1 \cap \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cap f^{-1}(\mathcal{B}_2)$. **Proof:** (i) Let $x \in f^{-1}(\mathcal{B}_1) \Rightarrow f(x) \in \mathcal{B}_1$. Since $\mathcal{B}_1 \subset \mathcal{B}_2$, therefore $f(x) \in \mathcal{B}_1 \Rightarrow f(x) \in \mathcal{B}_2$. So, $x \in f^{-1}(\mathcal{B}_2)$ implying $f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$. (ii), (iii) and (iv) Left for You as an Exercise!

The Leftover: Number of Onto Functions under $f: \mathcal{A} \to \mathcal{B}$

```
If 0 < |\mathcal{A}| = m < n = |\mathcal{B}|, how many Onto functions? = 0

If |\mathcal{A}| = m = 1 = n = |\mathcal{B}|, how many Onto functions? = 1

If |\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|, how many Onto functions? = 2^m - 2

If \mathcal{A} = \{x, y, z\}, \mathcal{B} = \{1, 2\}, then all possible functions = |\mathcal{B}|^{|\mathcal{A}|} = 2^3; but f_1 = \{(x, 1), (y, 1), (z, 1)\} and f_2 = \{(x, 2), (y, 2), (z, 2)\} are NOT onto. Hence, number of onto functions = 2^3 - 2 = 6.

If |\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|, how many Onto functions? = \binom{3}{3}3^m - \binom{3}{2}2^m + \binom{3}{1}1^m
```

If $\mathcal{A}=\{w,x,y,z\},\ \mathcal{B}=\{1,2,3\},$ then all possible functions = 3^4 ; this includes 2^4 non-onto functions each from $\mathcal{A}\to\{1,2\},\ \mathcal{A}\to\{1,3\}$ and $\mathcal{A}\to\{2,3\}.$ Now, the running count for onto functions = $3^4-3.2^4.$ But, we removed the constant function $\{(w,2),(x,2),(y,2),(z,2)\}$ twice – both during function removal from $\mathcal{A}\to\{1,2\},\ \mathcal{A}\to\{2,3\}.$ So, the final onto functions count = $3^4-3.2^4+3=\binom{3}{3}3^4-\binom{3}{2}2^4+\binom{3}{1}1^4.$

If $|\mathcal{A}| = m \ge n = |\mathcal{B}|$, how many Onto functions? = O(m, n)What do the above steps reveal? \Rightarrow Principle of Inclusion-Exclusion!

 $O(m,n) = \binom{n}{n} n^m - \binom{n}{n-1} (n-1)^m + \binom{n}{n-2} (n-2)^m - \dots + (-1)^{n-2} \binom{n}{2} 2^m + (-1)^{n-1} \binom{n}{1} 1^m$ $= \sum_{i=0}^{n-1} (-1)^i \binom{n}{n-i} (n-i)^m = \sum_{i=0}^{n} (-1)^i \binom{n}{n-i} (n-i)^m$

Stirling Number of the Second Kind

Combinatorial Definition

- For $m \ge n$, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty $= \sum_{i=0}^{n} (-1)^{i} \binom{n}{n-i} (n-i)^{m}$.
- Removing numbering in containers yields the number of ways to distribute m objects into n perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} \binom{n}{n-i} (n-i)^{m} = S(m,n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f: A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to 'Principle of Inclusion-Exclusion'

Let
$$m, n \in \mathbb{Z}^+$$
 with $1 < n \le m$. Then, $S(m+1, n) = S(m, n-1) + n.S(m, n)$.

- Proof:
- S(m, n-1) ways to distribute m objects into (n-1) identical containers with none left empty and putting the $(m+1)^{th}$ object into n^{th} container alone \Rightarrow contributing S(m, n-1) ways to S(m+1, n).
- S(m, n) ways to distribute m objects into n identical containers with none left empty and then placing $(m+1)^{th}$ object in any of the already filled n containers \Rightarrow contributing n.S(m, n) ways to S(m+1, n).

Corollary:
$$\frac{1}{n}[n!.S(m+1,n)] = [(n-1)!.S(m,n-1)] + [n!.S(m,n)]$$
 (multiply by $(n-1)!$) $\Rightarrow \frac{1}{n}.O(m+1,n) = O(m,n-1) + O(m,n)$

Counting Problems: Are these problems well-recognized now?

- ① Suppose you set your computer password of length m from a fixed chosen set of n different characters available in the keyboard ($m \ge n$). How many different passwords can you set so that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will be present?
- ② An $m \times n$ 2-dimensional (2-D) array, $(a_{ij})_{m \times n}$ having m rows and n columns, is filled up with only 0 and 1 values. How many different 2-D arrays you can construct so that exactly one 1 is present in each row and at least one 1 is present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

- m different component manufacturing contracts of a high-security project is to be executed by n different companies so that every company works on some components of the project. How many possible ways these m contracts can get assigned to n companies?
- **⑤** For $n \in \mathbb{Z}^+$, verify that, $\sum_{k=0}^n (-1)^n \binom{n}{n-k} (n-k)^n = n!$.

Thank You!