

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Pato Branco

Disciplina de Fundamentos de Programação Professora Mariza Miola Dosciatti Curso de Tecnologia em Análise e Desenvolvimento de Sistemas

Lista 3 - Estrutura de Repetição

Exercícios para sala de aula

- 1) Apresente (separados por tabulação) os números entre 1 e 1000 que são divisíveis por 11 e ímpares.
- 2) Faça um programa que apresente uma tabela de lucro esperado, em decorrência do número de pessoas e valor do ingresso. O valor do ingresso vai de R\$ 15,00 até R\$ 20,00 aumentando de R\$ 0,50 centavos. É informada a quantidade de pessoas.

Exemplo:

Informe a quantidade de pessoas: 1000

VALOR DO R\$ 15.00	INGRESSO	10.0725	LOR TOTAL 15000.00	RECEBIDO
R\$ 15.50		R\$	15500.00	
R\$ 16.00		2000	16000.00	
R\$ 16.50			16500.00	
R\$ 17.00		7070700	17000.00	
R\$ 17.50		5050500	17500.00	
R\$ 18.00			18000.00	
R\$ 18.50		5100700	18500.00	
R\$ 19.00		3050500	19000.00	
R\$ 19.50		5050500	19500.00	
R\$ 20.00		K\$	20000.00	

3) Faça um programa que mostre o resultado da seguinte soma, sendo n o valor informado pelo usuário:

Soma =
$$1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/n$$

4) Leia dois valores que representam os limites de um intervalo. O usuário pode informar os valores em ordem crescente ou decrescente. Validar para que o programa não aceite valores iguais para os limites do intervalo. Mostrar os divisíveis por x e não divisíveis por y nesse intervalo. x e y são variáveis informadas pelo usuário.

Exemplo:

```
Informe um valor para o limite inferior de um intervalo: -15
Informe um valor para o limite superior de um intervalo: 15
Informe um valor para x: 2
Informe um valor para y: 3
-14 -10 -8 -4 -2 2 4 8 10 14
```

- 5) Mostrar os valores ímpares e não divisíveis por 5 entre 200 e 1. Apresentar os valores em ordem decrescente. Fazer a média dos valores desse intervalo que são divisíveis por 3 e por 5.
- 6) Apresente os pares entre 0 e 100, sem utilizar *if* dentro do *for*. Também calcule e forneça a média dos pares.
- 7) Ler 10 números e desses contar quantos são pares, quantos são ímpares e quantos são divisíveis por 7. Apresentar essas quantidades.
- 8) Apresentar os números pares entre 100 e 200. Contar quantos são ímpares e não divisíveis por 3 nesse intervalo. Fazer a média dos valores pares e divisíveis por 5 do intervalo.
- 9) Ler dois valores que representam os limites de um intervalo. O usuário pode informar os valores em ordem crescente ou decrescente. Para os limites do intervalo validar para que:
- 1) O programa não aceite valores iguais, ou seja, que o limite inferior seja igual ao superior e vice-versa;
- 2) Em cada limite não seja informado valor menor ou igual a zero.

Apresentar os valores separados por tabulação. Fazer a média dos valores que são divisíveis por 11 e por 7, desse intervalo.

10) Escreva um algoritmo que gere a série de *Fibonacci* até o termo *n* que é informado pelo usuário. A série de *Fibonacci* é formada pela sequência: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ..., etc.

Exemplo:

11) Um número é primo quando é divisível de maneira exata somente por 1 e por ele mesmo. Na figura a seguir, os números destacados são primos:

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Elaborar um programa que leia um número inteiro e determine se o mesmo é ou não um número primo.

- 12) Faça um programa que imprima os n (indicado pelo usuário) primeiros números pares (começa em 0). Apresentar 5 valores por linha.
- 13) Apresentar os múltiplos de 10 entre 1000 e 0 (ordem decrescente). Mostrar os valores separados por uma marca de tabulação e em colunas com 8 números por linha.