МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

> Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

> > Лабораторная работа № 2
> > По дисциплине «Прикладная математика»
> > Градиентный спуск.

Выполнил студент группы №М33091 Зернова Полина Алексеевна

Проверила Москаленко Мария Александровна

1. Реализация методов

https://github.com/a1irise/app_math/tree/master/lab2

2. Тестирование методов градиентного спуска

2.1.
$$f(x) = x^2 + y^2$$
, $x0 = [10, 10]$, epsilon = 1e-3

Краткое сравнение

Способ выбора величины шага	Количество итераций	Результат
Постоянная величина шага (0.1)	36	[4.05648192e-03, 4.05648192e-03]
Постоянная величина шага (0.9)	45	[5.44451787e-04, 5.44451787e-04]
Дробление шага (0.9)	45	[5.44451787e-04, 5.44451787e-04]
Золотое сечение	3	[8.68655007e-07, 8.68655007e-07]
Фибоначчи	3	[2.81214395e-05, 2.81214395e-05]

Визуализация

- Постоянная величина шага (0.1)

- Постоянная величина шага (0.9)

- Дробление шага (0.9)

- Золотое сечение

- Фибоначчи

2.2. $f(x) = x^2 + y^2$, x0 = [0.5, 0.5], epsilon = 1e-3

Краткое сравнение

Способ выбора величины шага	Количество итераций	Результат
Постоянная величина шага (0.1)	22	[0.00461169, 0.00461169]
Постоянная величина шага (0.9)	32	[-4.95176016e-04, -4.95176016e-04]
Дробление шага (0.9)	32	[-4.95176016e-04, -4.95176016e-04]
Золотое сечение	2	[-1.47364769e-04, -1.47364769e-04]

Фиооначчи 2 10.00083847. 0.00083847	Фибоначчи	2	[0.00083847, 0.00083847]
-------------------------------------	-----------	---	--------------------------

Визуализация

- Постоянная величина шага (0.1)

- Постоянная величина шага (0.9)

- Дробление шага (0.9)

- Золотое сечение

- Фибоначчи

2.3. $f(x) = x^2 + y^2 + xy - 4x - 5y$, x0 = [10, 10], epsilon = 1e-3

Краткое сравнение

Способ выбора величины шага	Количество итераций	Результат
Постоянная величина шага (0.1)	24	[1.33570529, 1.6689474]
Постоянная величина шага (0.9)	100	[9.61046123e+23, 9.24082811e+23]
Дробление шага (0.9)	9 (12)	[1.33152111, 1.66492414]
Золотое сечение	3	[1.33111362, 1.66453232]
Фибоначчи	3	[1.33109218, 1.66451171]

Визуализация

- Постоянная величина шага (0.1)

- Постоянная величина шага (0.9)

- Дробление шага (0.9)

- Золотое сечение

- Фибоначчи

2.4. $f(x) = x^2 + y^2 + xy - 4x - 5y$, x0 = [0.5, 0.5], epsilon = 1e-3

Краткое сравнение

Способ выбора величины шага	Количество итераций	Результат
Постоянная величина шага (0.1)	18	[1.33139475, 1.66395264]
Постоянная величина шага (0.9)	100	[-9.24082811e+22, -1.29371593e+23]
Дробление шага (0.9)	11 (5)	[1.34494531, 1.68292344]
Золотое сечение	2	[1.34894303, 1.68852025]
Фибоначчи	2	[1.34919139, 1.68886795]

Визуализация

- Постоянная величина шага (0.1)

- Постоянная величина шага (0.9)

- Дробление шага (0.9)

- Золотое сечение

- Фибоначчи

3. Тестирование метода Флетчера-Ривса

Краткое сравнение

Функция	Начальное	Epsilon	Количество	Результат
	приближение		итераций	
$x^2 + y^2$	[10, 10]	1e-3	3	[-2.56018289e-10, -2.56018289e-10]
$x^2 + y^2$	[0.5, 0.5]	1e-3	2	[-1.47364769e-04, -1.47364769e-04]
$x^2 + y^2 + xy - 4x - 5y$	[10, 10]	1e-3	3	[1.33111172, 1.6645305]
$x^2 + y^2 + xy - 4x - 5y$	[0.5, 0.5]	1e-3	2	[1.34894303, 1.68852025]

Визуализация

3.1.
$$f(x) = x^2 + y^2$$
, $x0 = [10, 10]$, epsilon = 1e-3

3.2. $f(x) = x^2 + y^2$, x0 = [0.5, 0.5], epsilon = 1e-3

3.3. $f(x) = x^2 + y^2 + xy - 4x - 5y$, x0 = [10, 10], epsilon = 1e-3

3.4. $f(x) = x^2 + y^2 + xy - 4x - 5y$, x0 = [0.5, 0.5], epsilon = 1e-3

