1 Notation

- (statistical model) $X \sim P_{\theta}$ with values in \mathcal{X} , where $\theta \in \Omega$ is the parameter.
- (loss and risk) $L(\theta, d)$ and $R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta(X))]$, where $\delta(X)$ is a statistic.

2 Unbiasedness

- We say that a statistic T is complete if the only function f such that $\mathbb{E}_{\theta}[f(T(X))] = 0$ for all θ is $f \equiv 0$.
- U1 Assume T is a complete and sufficient statistic. Then for every function $g(\theta)$ that admits an unbiased estimator there is a (unique) UMVU given by the unique unbiased estimator that is a function of T. This is true for squared error loss, and any other convex loss function.
- U2 (Cramér-Rao information bound.) Suppose that \mathbb{P}_{θ} has density f_{θ} with respect to some (dominating) measure on \mathcal{X} . Under some regularity conditions, for an estimator δ such that $\mathbb{E}_{\theta}[\delta(X)] = g(\theta)$, we have $\operatorname{Var}_{\theta}[\delta(X)] \geq [\dot{g}(\theta)]^2/I(\theta)$, where $I(\theta) = \mathbb{E}_{\theta}[(\dot{f}_{\theta}(X)/f_{\theta}(X))^2] = \operatorname{Var}_{\theta}[\dot{f}_{\theta}(X)/f_{\theta}(X)] = -\mathbb{E}_{\theta}[\partial^2 \log f_{\theta}(X)]$.

3 Equivariance

- We say that a transformation $g: \mathcal{X} \to \mathcal{X}$ leaves the model invariant if (i) it is one-to-one; (ii) if for any $\theta \in \Omega$, $X \sim \mathbb{P}_{\theta}$ implies $gX \sim \mathbb{P}_{\theta'}$ for some $\theta' \in \Omega$, which allows one to define $\bar{g}: \Omega \to \Omega$ that associates θ' to θ ; (iii) \bar{g} is one-to-one (here we assume the model is identifiable).
- We work with a group G of transformations, each leaving the model invariant, and define $\bar{G} = \{\bar{g} : g \in G\}$.

- We work with an estimand $h(\theta)$ that is equivariant with respect to \bar{G} . This allows one to define g^* for each $g \in G$ such that $h(\bar{q}\theta) = q^*h(\theta)$ for all $\theta \in \Omega$.
- We work with a loss function L that is invariant in that $L(\bar{g}\theta, g^*d) = L(\theta, d)$ for all θ , all d, and all g.
- We then focus on estimators that are equivariant in the sense that $\delta(gx) = g^*\delta(x)$ for all x and all g.

3.1 Location model

This model is of the form $X = (X_1, \ldots, X_n) \sim f(x - \xi)$ where f is a given density on \mathbb{R}^n and $\xi \in \mathbb{R}$ is unknown. (As usual, $x - \xi$ is understood coordinate-wise.) The transformations of interest are of the form $x \mapsto a + x$ where $a \in \mathbb{R}$. We want to estimate ξ and work with a loss of the form $L(\xi, d) = \rho(d - \xi)$. Let $Y = (Y_1, \ldots, Y_{n-1})$ with $Y_i = X_i - X_n$.

- E1 Let δ_0 be any equivariant statistic with finite risk, and suppose we may define $v^*(y) = \arg\min_{v \in \mathbb{R}} \mathbb{E}_0[\rho(\delta_0(X) v) \mid Y = y]$. Then $\delta^*(x) = \delta_0(x) v^*(y)$ is MRE.
- E2 Under squared error loss, the MRE may be expressed as $\delta^*(x) = \int_{-\infty}^{\infty} v f(x-v) dv / \int_{-\infty}^{\infty} f(x-v) dv$.
- E3 Under squared error loss, if an UMVUE exists and is equivariant, then it is MRE.

3.2 Scale model

This model is of the form $X = (X_1, \ldots, X_n) \sim \tau^{-1} f(x/\tau)$ where f is a given density on \mathbb{R}^n and $\tau > 0$ is unknown. The transformations of interest are of the form $x \mapsto bx$ where b > 0. We want to estimate τ and work with a loss of the form $L(\xi, d) = \gamma(d/\tau)$. Let $Z = (Z_1, \ldots, Z_n)$ with $Z_i = X_i/X_n$ for $i \neq n$ and $Z_n = X_n/|X_n|$.

E4 In the present setting, let δ_0 be any equivariant statistic with finite risk, and suppose we may define $w^*(z) =$

 $\arg\min_{w>0} \mathbb{E}_1[\gamma(\delta_0(X)/w) \mid Z=z]$. Then $\delta^*(x) = \delta_0(x)/w^*(z)$ is MRE.

E5 When $L(\tau, d) = (d/\tau - 1)^2$, the MRE may be expressed as $\delta^*(x) = \int_0^\infty w^n f(wx) dw / \int_0^\infty w^{n+1} f(wx) dw$.

3.3 Location-scale model

This model is of the form $X = (X_1, ..., X_n) \sim \tau^{-n} f((x - \xi)/\tau)$ where f is a given density on \mathbb{R}^n and $\xi \in \mathbb{R}$ and $\tau > 0$ are both unknown. The transformations of interest are of the form $x \mapsto a+bx$ where $a \in \mathbb{R}$ and b > 0. When our goal is to estimate ξ , we work with a loss of the form $L(\xi, \tau; d) = \rho((d - \xi)/\tau)$. When our goal is to estimate τ , we work with a loss of the form $L(\xi, \tau; d) = \gamma(d/\tau)$.

4 Average risk

- The setting here is that $\Theta \sim \Lambda$ and $X \mid \Theta = \theta \sim P_{\theta}$.
- (average risk) For a prior Λ and estimator δ , we denote by $r(\Lambda, \delta) = \int R(\theta, \delta) \Lambda(\mathrm{d}\theta) = \mathbb{E}[L(\Theta, \delta(X))]$ its average risk with respect to Λ . We also let δ_{Λ} denote a Bayes estimator (when one exists) and $r_{\Lambda} = r(\Lambda, \delta_{\Lambda})$ the average risk of that estimator, also called the Bayes risk.
- B1 Let δ_0 be any statistic with finite average risk, and suppose we may define $\delta^*(x) = \arg\min_d \mathbb{E}[L(\Theta, d) \mid X = x]$. Then δ^* is Bayes.
- B2 Under loss $L(\theta, d) = w(\theta)(d h(\theta))^2$, the Bayes estimator is $\delta_{\Lambda}(x) = \mathbb{E}[w(\theta)h(\theta) \mid X = x] / \mathbb{E}[w(\theta) \mid X = x]$.
- B3 In a Bayesian setting, suppose the loss is strictly convex (in d) and that Q denotes the marginal of X. Then the Bayes estimator is unique if the Bayes risk is finite and, for any measurable set A, Q(A) = 0 implies $P_{\theta}(A) = 0$ for all $\theta \in \Omega$.

5 Maximum risk and admissibility

5.1 Minimaxity

- (maximum risk) For an estimator δ we let $\bar{R}(\delta) = \sup_{\theta \in \Omega} R(\theta, \delta)$, which is its maximum risk.
- M1 Suppose that Λ is a prior such that $r_{\Lambda} = \bar{R}(\delta_{\Lambda})$. Then δ_{Λ} is minimax, and uniquely so if it is unique Bayes.
- M2 If an estimator is Bayes for some prior and has constant risk, it is minimax.
- M3 If, for an estimator δ , we can find a sequence of priors (Λ_k) such that $\liminf_k r_{\Lambda_k} \geq \bar{R}(\delta)$, then δ is minimax.
- M4 Consider $\Omega_0 \subset \Omega$. If an estimator is minimax over Ω_0 and achieves its maximum risk at some $\theta \in \Omega_0$, then this estimator is also minimax over Ω .

5.2 Admissibility

- A1 A unique Bayes estimator is admissible.
- A2 (Karlin's theorem) Suppose $X \sim f_{\theta}$, where $f_{\theta}(x) = \beta(\theta)e^{\theta T(x)}$ with respect to some underlying measure. Let $\Omega = [\theta_*, \theta^*]$ denote the natural parameter space. Suppose $L(\theta, d) = (d h(\theta))^2$, where $h(\theta) = \mathbb{E}_{\theta}(T)$. Then, for $a \geq 0$ and $b \in \mathbb{R}$, a sufficient condition for $\frac{1}{1+a}T + \frac{a}{1+a}b$ to be admissible is that

$$\int_{\theta_*}^0 K(\theta) d\theta = \infty \text{ and } \int_0^{\theta^*} K(\theta) d\theta = \infty$$

where $K(\theta) = e^{-ba\theta}\beta(\theta)^{-a}$.

- A3 If an estimator has constant risk and is admissible, it is minimax.
- A4 If an estimator is unique minimax, it is admissible.