PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-114197

(43) Date of publication of application: 15.05.1991

(51)Int.CI.

H05B 33/14 C09K 11/06

H05B 33/06

(21) Application number: **01-253207**

(71)Applicant: NEC CORP

(22)Date of filing:

28.09.1989

(72)Inventor: ISHIKO MASAYASU

NUNOMURA KEIJI

(54) ORGANIC THIN-FILM EL ELEMENT

(57) Abstract:

PURPOSE: To provide an EL element having high brightness with low voltage and an excellent light emission efficiency by interposing a layer as a mixture of electric charge implanting material and an organic fluorescent substance between an electric charge implant layer and a light emitting layer. CONSTITUTION: A clear electrode 2 consisting of ITO is formed on a glass plate 1, which is followed by formation of three layers one after another-i.e., a pos. hole implant layer 3 consisting of N,N,N',N'-tetraphenyl-4,4'- diaminobyphenyl, a layer 4 as mixture of diamine and tris (8-hydroxyquinoline) aluminum as organic fluorescent substance in the proportion of 1:1, and a light emitting layer 5 using almi-quinoline. Finally a metal electrode 6 is formed by the electron beam evaporation method, and thus an organic thin film light emitting element is accomplished.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩日本国特許庁(JP)

平3-114197 ⑩ 公 開 特 許 公 報 (A)

®Int. Cl. 5

識別記号

庁内整理番号

@公開 平成3年(1991)5月15日

H 05 B 33/14 11/06 C 09 K H 05 B 33/06

6649-3K 7043-4H 6649-3K Z

請求項の数 1 (全4頁) 審査請求 未請求

有機薄膜EL素子 50発明の名称

> 頭 平1-253207 创特

> > 中

頭 平 1 (1989) 9月28日 22出

石 子 個発 明 者

雅

東京都港区芝 5 丁目33番 1 号

日本電気株式会社内

個発 明 者 惠 ф 東京都港区芝5丁目33番1号

日本電気株式会社内

の出 頭 人 日本電気株式会社

東京都港区芝5丁目7番1号

弁理士 菅 野 理 何代

布

村

1. 発明の名称

有機薄膜EL素子

2. 特許請求の範囲

(1) 少なくとも一方が透明である一対の電極間 に少なくとも1以上の電荷注入層と少なくとも1 以上の有機蛍光体よりなる発光層を積層してなる 有機薄膜EL素子において、前記電荷注入層と発 行層間に、電荷注入材料と有機蛍光体とを混合し てなる混合層を挿入したことを特徴とする有機薄 膜EL素子。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は平面光源やディスプレイに使用される 有機薄膜発光素子に関するものである。

〔従来の技術〕

有機物質を原料としたEL(電界発光)素子は、 その豊富な材料数と分子レベルの合成技術で、安 価な大面積フィルム状フルカラー表示素子を実現 するものとして注目を集めている。例えばアント

ラセンやペリレン等縮合多環芳香族系を原料とし てLB法や真空蒸着法等で薄膜化した直流駆動の 有機薄膜発光素子が製造され、その発光特性が研 究されている。更に、最近有機薄膜を 2層構造に した新しいタイプの有根薄膜発光素子が報告され、 強い関心を集めている(アプライド・フィジック ス・レターズ、51巻、913 ページ、1987年)。こ れは第4図に示すように強い蛍光を発する金属キ レート化合物を発光層44に、アミン系材料を正孔 伝導性有機物の正孔注入層43に使用したもので明 るい緑色発光を得たと報告している。6~7Vの 直流印加で約100 cd/mlの輝度を得ている。41は ガラス杖、42は透明電極、45は金属電極である。

更に、発光層への電子注入を促進するため、電 子注入層を追加した3層構造袋子が提案されてい 8.

(雅明が解決しようとする課題)

第4図に示したような構造をもつ有機薄膜EL 素子の発光領域は正孔注入層43と発光層44の界面 約200 人程度であるといわれている。他の領級は

直接発光には関与していないと考えられている。 そればかりか、この非発光領域は高抵抗層として 働くため、発光関値電圧を上げその結果発光効率 を低下させている。更に発光に関与していないこ の領域の抵抗値が高いと高輝度領域での輝度飽和 現象を早めてしまう効果がある。

しかし、発光層 44が 500 A 以下と薄いと素子の ピンホール数が大きく増加し、表示素子としての 特性を大きく損ねる結果となる。従って、発光層 44はある程度の膜厚が信頼性向上のために必要で あった。

有機薄膜BL素子の実用化のためには従来の素子と同程度の信頼性を確保しつつ、発光効率・発光輝度の向上が求められている。そのためには、従来の素子以上に発光領域を広げることが必要であるが、従来の技術ではこの問題を解決することができなかった。

本発明の目的は前記課題を解決した有機薄膜 E し素子を提供することにある。

[課題を解決するための手段]

光領域がほぼ約200 入程度と、小さいということ が最近の研究から明らかになった。

有機薄膜BL素子の場合、正孔注入層と発光層の外面に正孔注入層と発光層からる混合層を発光を見たまするものの、若干移動度が低下するものの、までは ングによる電荷輸送が可能であった。この電子 送過程で電子・正孔再結合の機会に比べ増え 発光層が完全に分離している場合に比べ増え、実 質従来素子より再結合領域が拡大していた。発光 効率・輝度の向上が認められた。

正孔注入層としては電子写真等に使用されてかります。 す機低分子材料で、という。 が中心誘導体、アミン誘導体、オリフェニルメタン が使用できる。有機シン・ステンとして、 カリスアントのセン、イリンとに、 カリスアントリンと、カリン・ステンと、 カリステントの発光層に電子注入を促進する 目的で、発光層と金属電石の間に電子注入層を 前記目的を達成するため、本発明に係る有機薄膜 限E L 素子は、少なくとも一方が透明である一対 の電極間に少なくとも1以上の電荷注入層と少な くとも1以上の有機蛍光体よりなる発光層を積層 してなる有機薄膜 E L 素子において、前記電荷注 入層と発行層間に、電荷注入材料と有機蛍光体と を混合してなる混合層を挿入したものである。 (作用)

この有機薄膜尼し素子の発光メカニズムは次のように考えられている。すなわち、第4切において、「TO等の電極42から正孔注入周43へ正孔が流れ込むが、発光層44には正孔は入りにく、死光層44との界面近傍で正孔濃度が高くなる。一方、電子は金属電極45から発光層44に入り、この中を伝導し正孔注入層43との界面に到達する。そのの地界、正孔注入層43と発光層44の界面では電子と正孔が再結合し、一重項励起子が生成され、従来の有機薄膜区し案子では電子・正孔の移動度が小さいために再結合領域が非常にせまく、その結果発

入した、いわゆる3層構造素子においても、電子 注入層・発光層間に混合層を挿入しても、同様に 発光特性の向上という効果が得られた。

(実施例)

以下実施例を以て、木発明を詳細に説明する。 (実施例1)

この素子の発光特性を乾燥窒素中で測定したと ころ、約5Vの直流電圧の印加で300 cd/mlの段 色の発光が得られた。従来の素子に比べ発光輝度・効率が2から5倍改善されていることがわかる。この有機薄膜発光素子を電流密度0.5mA/diの状態でエージング試験をしたところ輝度半減時間は100時間以上であった。従来の素子では10から50時間であったから、この素子の信頼性は大幅に改善されている。また、電気特性のシフトも5V程度と、従来より大幅に低下した。

本発明はトリス(8-ハイドロキントとのというのは、 10 キャン 13 準体 に 10 キャン 13 準体 に 10 キャン 13 半 かっという 10 キャン 13 半 かっという 10 キャン 13 半 かっという 10 キャン 10 中の 10 キャン 10 中の 10 キャン 10 キ

本実施例は第3図に示すように610nm から630nmに強い蛍光を発するフタロペリノン誘導体を発光層33に用い、電子注入層35としてアルミキノリンを用いた有機を展上素子である。31はガラス板、32は透明である。混合層34はアルミキノリン100%からフタロペリノン誘導体100%に徐々に変化している。この混合層34の膜厚は700%に変化しての混らである。フタロペリノン誘導体からなる発光層33の膜厚は400人である。最後にMgを発光層33の膜厚は400人である。最後にMgを発光層33の膜原は300人である。最後にMgを光光層33による1500人形成して有機薄膜発光素子が完成する。

電子注入層 35の材料としてアントラセン、テトラセンなどを用いてもよい。更に、正孔注入層を加えた 4 層あるいは 5 層構造の案子でも同様な効果が得られた。

(発明の効果)

以上述べたように、本発明により従来の有機薄膜とし案子に比べより低い電圧で発光輝度が高く、かつ発光効率の優れた素子を提供することが可能

い有機分子を更に添加して、発光波長を変えることができる。透明電極 2 は I T O 以外に Z n O: A Q や S n O。: S b、I n。O。、A u など仕事関数が 4.5 e V 以上ある導電性材料であればよい、(実施例 2)

本実施例は第1図において610nm から630nm に強い立発を発するペリレン誘導体を発光層5に用い、正孔注入層3としてトリフェニルメタン誘導体を用いた有機でして、第2図に示すように、混合を間がは100%に徐々に変化してリンカある。最後にMg Pは400人では100人である。最後にMg Pは400人では100人で成分の金属である。最後にMg Pは400人では100人で成分の金属である。最後にMg Pによるの金属である。最近にMg Pによる。人で成分の金属である。最近にMg Pによる。人で成分の金属である。最近にMg Pに成する。人が完成する。

第2図の混合層4の濃度分布は階段状であって も効果が認められた。

(実施例3)

となった。更に、従来より低い電圧で明るく発光 するため、小さな投入電力で素子を駆動できる。 この結果、従来の素子に比べ素子劣化が少なく、 100 時間でも駆動電圧の上昇・輝度低下が少ない。

このように、本発明は有機薄膜EL素子の工業 化に寄与している。

4. 図面の簡単な説明

第1図は本発明の実施例1及び実施例2に係る 有機薄膜Eし素子を示す断面図、第2図は本発明 の実施例2に使用した有機薄膜Eし素子の濃度分 布を示す図、第3図は本発明の実施例3に係る有 機薄膜Eし素子を示す図、第4図は従来の有機薄 膜Eし素子を示す図である。

1 , 31 , 41 ··· ガラス板 2 , 32 , 42 ··· 透明電伍 3 , 43 ··· 正孔注入層 5 , 33 , 44 ··· 発光屑 35 ··· 電子注入層 4 , 34 ··· 混合屑

6,36,45…金属電極

第 1 図

第 2 図

第 3 図

第 4 図