$\mathcal{O}(n)$ 复杂度的随机最近点对算法[1]

wzy

SUSTC

April 2, 2025

Content

- ① 记号及约定
- ② 筛选最近点对算法
- ③ 如何推广到三维

记号及约定

记号及约定

- $\delta(S)$ 表示二维点集 S 中的最近点对的距离,
- 对于 $x \in S$, d(x) 表示 x 到 S 中的其他点的最近距离,
- S_i 表示第 i 轮迭代时的点集。

算法的核心思想是通过筛选法求出 $\delta(S)$ 的一个近似解,然后再通过这个近似解求出 $\delta(S)$ 。筛选过程如下:

算法的核心思想是通过筛选法求出 $\delta(S)$ 的一个近似解,然后再 通过这个近似解求出 $\delta(S)$ 。筛选过程如下:

初始化 $S_1 \leftarrow S$,随机选取一个点 $x_i \in S_i$ 并求出 $d(x_i)$ (此时 d是相对于 S_i 的,后文同理)。

算法的核心思想是通过筛选法求出 $\delta(S)$ 的一个近似解,然后再通过这个近似解求出 $\delta(S)$ 。筛选过程如下:

初始化 $S_1 \leftarrow S$,随机选取一个点 $x_i \in S_i$ 并求出 $d(x_i)$ (此时 d 是相对于 S_i 的,后文同理)。

将平面按照 $b = d(x_i)/3$ 分块,若一个点的 8-邻居 块都为空且其自身所在的块仅有他自己,则删去这个点。删去所有符合条件的点后,得到 S_{i+1} 。

算法的核心思想是通过筛选法求出 $\delta(S)$ 的一个近似解,然后再通过这个近似解求出 $\delta(S)$ 。筛选过程如下:

初始化 $S_1 \leftarrow S$,随机选取一个点 $x_i \in S_i$ 并求出 $d(x_i)$ (此时 d 是相对于 S_i 的,后文同理)。

将平面按照 $b = d(x_i)/3$ 分块,若一个点的 8-邻居 块都为空且其自身所在的块仅有他自己,则删去这个点。删去所有符合条件的点后,得到 S_{i+1} 。

不断进行上述过程直到将点集删空(每轮迭代至少删除一个点),记最小的使得 $S_{i^*+1}=\emptyset$ 的时刻为 i^* 。

如何推广到三维

记号及约定

筛选过程

引理1

 $d(x_{i^*})$ 満足 $\delta(S) \leq d(x_{i^*}) < 3\delta(S)$ 。

引理1

 $d(x_{i^*})$ 満足 $\delta(S) \leq d(x_{i^*}) < 3\delta(S)$ 。

证明:左半边是平凡的,考虑证明右半边。首先有两个观察:

引理1

 $d(x_{i^*})$ 满足 $\delta(S) \leq d(x_{i^*}) < 3\delta(S)$ 。

证明: 左半边是平凡的, 考虑证明右半边。首先有两个观察:

- **①** 满足 $d(x) > 2\sqrt{2}b$ 的点一定会被删除,
- ② 满足 d(x) < b 的点一定会被保留。

引理 1

 $d(x_{i*})$ 满足 $\delta(S) < d(x_{i*}) < 3\delta(S)$ 。

证明: 左半边是平凡的, 考虑证明右半边。首先有两个观察:

- **①** 满足 $d(x) > 2\sqrt{2}b$ 的点一定会被删除,
- ② 满足 d(x) < b 的点一定会被保留。

如图,方格中能塞下的最长距离为 $2\sqrt{2}b$, $b < d(x) < 2\sqrt{2}b$ 的点可能被保留也可能被删除。由于 $2\sqrt{2}/3 < 1$, 所以 $d(x) \ge d(x_i)$ 的 x 都被删除了,因此每轮迭代中的 $d(x_i)$ 是**递减**的。

如图,方格中能塞下的最长距离为 $2\sqrt{2}b$, $b < d(x) < 2\sqrt{2}b$ 的点可能被保留也可能被删除。由于 $2\sqrt{2}/3 < 1$, 所以 $d(x) \ge d(x_i)$ 的 x 都被删除了,因此每轮迭代中的 $d(x_i)$ 是递减的。

令 (u,v) 为 S 中的最近点对, j^* 表示 (u,v) 任一点被删除的最早时间,根据上面的性质我们知道 $\delta(S) \geq d(x_{j^*})/3 > d(x_{i^*})/3$,即 $d(x_{i^*}) < 3\delta(S)$ 。

求解最近点对

此时我们已经得到了一个 $\delta(S)$ 的近似解 $d(x_{i^*})$ 。 再将平面按照 $b=d(x_{i^*})$ 分块,由于块长是 $\delta(S)$ 的常数倍,因此每个块内只有 $\mathcal{O}(1)$ 个点。

求解最近点对

此时我们已经得到了一个 $\delta(S)$ 的近似解 $d(x_{i^*})$ 。 再将平面按照 $b=d(x_{i^*})$ 分块,由于块长是 $\delta(S)$ 的常数倍,因此每个块内只有 $\mathcal{O}(1)$ 个点。

对于每个点,检查其所在的块以及其 δ -邻居 块,用这些块内的点更新答案(其余的块距离该点 $> \delta(S)$),即求出 $\delta(S)$ 。

对于块长为 b 的分块,相当于是建立一个 $(x,y) \rightarrow \left(\left| \frac{x}{b} \right|, \left| \frac{y}{b} \right| \right)$ 的映射。

对于块长为 b 的分块,相当于是建立一个 $(x,y) \to \left(\left\lfloor \frac{x}{b} \right\rfloor, \left\lfloor \frac{y}{b} \right\rfloor \right)$ 的映射。

对 $\left(\left\lfloor \frac{x}{b}\right\rfloor,\left\lfloor \frac{y}{b}\right\rfloor\right)$ 建哈希表,将每个点存到对应的块中,哈希表的 查询复杂度可以认为是期望 $\mathcal{O}(1)$ 。

对于块长为 b 的分块,相当于是建立一个 $(x,y) \to \left(\left\lfloor \frac{x}{b} \right\rfloor, \left\lfloor \frac{y}{b} \right\rfloor \right)$ 的映射。

对 $\left(\left\lfloor \frac{x}{b}\right\rfloor,\left\lfloor \frac{y}{b}\right\rfloor\right)$ 建哈希表,将每个点存到对应的块中,哈希表的 查询复杂度可以认为是期望 $\mathcal{O}(1)$ 。

查询 8-邻居 块和自身块相当于查询块 $\left(\left\lfloor \frac{x}{b}\right\rfloor + \Delta x, \left\lfloor \frac{y}{b}\right\rfloor + \Delta y\right)$, 其中 $\Delta x, \Delta y \in \{-1,0,1\}$ 。

对于块长为 b 的分块,相当于是建立一个 $(x,y) \to \left(\left\lfloor \frac{x}{b} \right\rfloor, \left\lfloor \frac{y}{b} \right\rfloor \right)$ 的映射。

对 $\left(\left\lfloor \frac{x}{b}\right\rfloor,\left\lfloor \frac{y}{b}\right\rfloor\right)$ 建哈希表,将每个点存到对应的块中,哈希表的查询复杂度可以认为是期望 $\mathcal{O}(1)$ 。

查询 8-邻居 块和自身块相当于查询块 $\left(\left\lfloor \frac{x}{b}\right\rfloor + \Delta x, \left\lfloor \frac{y}{b}\right\rfloor + \Delta y\right)$, 其中 $\Delta x, \Delta y \in \{-1,0,1\}$.

需要处理好重点和哈希冲突的情况。

先分析筛选过程的时间复杂度,检查邻居只需要检查 $\mathcal{O}(1)$ 个点,因此每轮迭代的时间复杂度是 $\mathcal{O}(|S_i|)$ 。特别地,我们有:

先分析筛选过程的时间复杂度,检查邻居只需要检查 $\mathcal{O}(1)$ 个点,因此每轮迭代的时间复杂度是 $\mathcal{O}(|S_i|)$ 。特别地,我们有:

$$\mathbb{E}\left(\sum_{i=1}^{i^*} |S_i|\right) \le 2n\tag{1}$$

先分析筛选过程的时间复杂度,检查邻居只需要检查 $\mathcal{O}(1)$ 个点,因此每轮迭代的时间复杂度是 $\mathcal{O}(|S_i|)$ 。特别地,我们有:

$$\mathbb{E}\left(\sum_{i=1}^{i^*} |S_i|\right) \le 2n\tag{1}$$

证明:给出一个粗略的估计,将 S_i 中的点按照 d(x) 的大小升序排序,其中选取到第 j 名**至多**能在 S_{i+1} 中保留 j-1 个点,因此

先分析筛选过程的时间复杂度,检查邻居只需要检查 $\mathcal{O}(1)$ 个点,因此每轮迭代的时间复杂度是 $\mathcal{O}(|S_i|)$ 。特别地,我们有:

$$\mathbb{E}\left(\sum_{i=1}^{i^*} |S_i|\right) \le 2n\tag{1}$$

证明:给出一个粗略的估计,将 S_i 中的点按照 d(x) 的大小升序排序,其中选取到第 j 名**至多**能在 S_{i+1} 中保留 j-1 个点,因此

$$\mathbb{E}\left(|S_{i+1}|\right) \le \frac{1}{|S_i|} \sum_{i=0}^{|S_i|-1} j = \frac{|S_i|-1}{2} \tag{2}$$

先分析筛选过程的时间复杂度,检查邻居只需要检查 $\mathcal{O}(1)$ 个点,因此每轮迭代的时间复杂度是 $\mathcal{O}(|S_i|)$ 。特别地,我们有:

$$\mathbb{E}\left(\sum_{i=1}^{i^*} |S_i|\right) \le 2n\tag{1}$$

证明:给出一个粗略的估计,将 S_i 中的点按照 d(x) 的大小升序排序,其中选取到第 j 名**至多**能在 S_{i+1} 中保留 j-1 个点,因此

$$\mathbb{E}\left(|S_{i+1}|\right) \le \frac{1}{|S_i|} \sum_{i=0}^{|S_i|-1} j = \frac{|S_i|-1}{2} \tag{2}$$

也就是说<mark>每轮迭代 S_i 期望减少一半。</mark>

每次筛选是O | Si | 的用hash检查邻域

将(2)式带回(1)式即证

将(2)式带回(1)式即证

$$\mathbb{E}\left(\sum_{i=1}^{i^*} |S_i|\right) = \sum_{i=1}^{i^*} \mathbb{E}\left(|S_i|\right) \le \sum_{i=1}^{n} \frac{n}{2^{i-1}} \le 2n$$

将(2)式带回(1)式即证

$$\mathbb{E}\left(\sum_{i=1}^{i^*}|S_i|\right) = \sum_{i=1}^{i^*}\mathbb{E}\left(|S_i|\right) \leq \sum_{i=1}^{n}\frac{n}{2^{i-1}} \leq 2n$$

对于第二部分求解 $\delta(S)$ 的过程,每个点只会检查 $\mathcal{O}(1)$ 个相邻点,所以这部分的时间复杂度也是线性的。总时间复杂度 $\mathcal{O}(n)$ 。

如何推广到三维

wzy

推广到三维是平凡的,我们照猫画虎地把检查 8-邻居 改成检查 26-邻居 就好了。但是三维中用 $b=d(x_i)/3$ 会出问题,因为立方体中能塞下的最长距离是 $2\sqrt{3}/3>1$,无法保证 $d(x_i)$ 递减。

只需要把块长调整为 $b = d(x_i)/4$,此时 $\sqrt{3}/2 < 1$ 满足条件。

April 2, 2025

References

S. Khuller and Y. Matias. "A Simple Randomized Sieve [1]Algorithm for the Closest-Pair Problem". In: Information and Computation 118.1 (1995), pp. 34–37. ISSN: 0890-5401. DOI: https://doi.org/10.1006/inco.1995.1049. URL: https://www.sciencedirect.com/science/article/ pii/S0890540185710498.

