

PROGRAMACIÓN II - UNIDAD 5

Ing. Gastón Weingand (gaston.weingand@uai.edu.ar)

Agenda

- Descripción y ejemplos de algunas de las librerías más utilizadas: Pygame, RE, Collections, NumPy, SQLAlchemy, Request, Pillow, etc.
- 2. Introducción al machine learning.
 - A. Introducción al Deep learning.
 - Algoritmos de redes neuronales.
 - ii. Práctica de generación de red neuronal sobre placa microbit y/o simulación.
 - B. Framework Anaconda y miniconda

Agenda

- Descripción y ejemplos de algunas de las librerías más utilizadas: Pygame, RE, Collections, NumPy, SQLAlchemy, Request, Pillow, etc.
- 2. Introducción al machine learning.
 - A. Introducción al Deep learning.
 - i. Algoritmos de redes neuronales.
 - ii. Práctica de generación de red neuronal sobre placa microbit y/o simulación.
 - B. Framework Anaconda y miniconda, descripción

Artificial Intelligence

Reasoning

Machine Learning

Natural Language Processing (NLP)

Planning

Supervised Learning Unsupervised Learning

Reinforcement Learning Deep Learning

Neural Networks

APRENDIZAJE SUPERVISADO SE UTILIZA PARA PREDECIR UN VALOR CONTINÚO SE UTILIZA PARA PREDECIR UNA CLASE O CATEGORÍA TREGRESIÓN - ESTIMACIÓN Célula maligna Ccélula benigna CLASE O CATEGORÍA CLASE O CATEGORÍA

APRENDIZAJE POR REFUERZO

DETERMINA QUÉ ACCIONES DEBE ESCOGER UN
AGENTE DE SOFTWARE EN UN ENTORNO DADO CON
EL FIN DE MAXIMIZAR ALGUNA NOCIÓN DE "RECOMPENSA" O PREMIO ACUMULADO

No freno castigo
Disminuyó velocidad
ante señal

APRENDIZAJE POR REFUERZO

APRENDIZAJE NO SUPERVISADO

Agenda

- Descripción y ejemplos de algunas de las librerías más utilizadas: Pygame, RE, Collections, NumPy, SQLAlchemy, Request, Pillow, etc.
- Introducción al machine learning.
 - A. Introducción al Deep learning.
 - i. Algoritmos de redes neuronales.
 - ii. Práctica de generación de red neuronal sobre placa microbit y/o simulación.
 - B. Framework Anaconda y miniconda, descripción y uso práctico.

Tipos y algoritmos de redes neuronales

Perceptrón (Funciones separables linealmente, binaria)

Red ADALINE/MADALINE (Similar al perceptrón pero analógica)

Perceptrón multicapa (Algoritmo de descenso de gradiente/Backpropagation)

- Codificación de información
- Traducción de texto en lenguaje hablado
- Reconocimiento óptico de caracteres (OCR)

Redes neuronales convolucionales (Imagen, video)
Algoritmos genéticos (Selección, cruzas, mutaciones) combinados con redes neuronales

Tipos y algoritmos de redes neuronales

Estructura	Regiones de Desición	Problema de la XOR	Clases con Regiones Mezcladas	Formas de Regiones más Generales
1 Capa	Medio Plano Limitado por un Hiperplano	(A) (B) (B) (A)	B	
2 Capas	Regiones Cerradas o Convexas	A B		
3 Capas	Complejidad Arbitraria Limitada por el Número de Neuronas		BA	06

Tipos y algoritmos de redes neuronales

El **Perceptron** simple, también conocido una red neuronal de una sola capa (Single-Layer Neural Network), es un algoritmo de clasificación binaria creado por Frank Rosenblatt a partir del modelo neuronal de Warren McCulloch y Walter Pitts desarrollado en 1943.

BASIC NEURON VISUALIZATION

z = "net input"

b = "bias term"

f = activation function

a = output to next layer

$$z = b + \sum_{i=1}^{m} x_i w_i$$

$$z = b + x^T w$$

$$a = f(z)$$

RELATION TO LOGISTIC REGRESSION

This is called the "sigmoid" function: $\sigma(z) = \frac{1}{1 + e^{-z}}$

EXAMPLE NEURON COMPUTATION

EXAMPLE NEURON COMPUTATION

EXAMPLE NEURON COMPUTATION

EXAMPLE NEURON COMPUTATION

"APRENDIENDO UNA COMPUERTA AND"

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

Redes neuronales

El problema XOR

Input 1	Input 2	Output
0	0	0
0	1	1
1	1	0
1	0	1

Redes neuronales

El problema XOR

Input 1	Input 2	Output
0	0	0
0	1	1
1	1	0
1	0	1

Redes neuronales multicapa

Reconociendo imágenes: Tomado de la Arquitectura de la corteza visual

Reducción de capas usando strides

Pooling layer (Achicar imágenes)

Arquitectura CNN tradicional

LeNet-5 AlexNet GoogLeNet ResNet

Libro recomendado

Agenda

- Descripción y ejemplos de algunas de las librerías más utilizadas: Pygame, RE, Collections, NumPy, SQLAlchemy, Request, Pillow, etc.
- Introducción al machine learning.
 - A. Introducción al Deep learning.
 - i. Algoritmos de redes neuronales.
 - ii. Práctica de generación de red neuronal sobre placa microbit y/o simulación.
 - B. Framework Anaconda y miniconda, descripción y uso práctico.

Guía para microbit (Python)

https://microbit.org/get-started/user-guide/python/

Compass bearing

Turn your micro:bit into a simple compass

Compass North

Create a simple compass to show which way is North

Door alarm

Make your own micro:bit wireless door alarm

Sunlight sensor

Make your micro:bit light up when the sun comes up

■ 0 0 Beginner

Nightlight

Create a light that turns on when it's dark

Intermediate

Thermometer

Make a simple thermometer with your micro:bit

■00 Beginner

Max-min thermometer

Track high and low temperatures with your micro:bit

Intermediate

Music

https://wiki.keyestudio.com/Ks0356 keyestudio
Micro:bit Mini Smart Robot Car

Agenda

- Descripción y ejemplos de algunas de las librerías más utilizadas: Pygame, RE, Collections, NumPy, SQLAlchemy, Request, Pillow, etc.
- 2. Introducción al machine learning.
 - A. Introducción al Deep learning.
 - Algoritmos de redes neuronales.
 - ii. Práctica de generación de red neuronal sobre placa microbit y/o simulación.
 - B. Framework Anaconda y miniconda, descripción.

2.B Framework Anaconda y miniconda

Anaconda es una distribución libre y abierta de los lenguajes Python y R, utilizada en ciencia de datos, y aprendizaje automático (machine learning). Esto incluye procesamiento de grandes volúmenes de información, análisis predictivo y cómputos científicos. Está orientado a simplificar el despliegue y administración de los paquetes de software.

https://www.anaconda.com/

https://www.anaconda.com/distribution/#download-section

2.B Framework Anaconda y miniconda

2.B Framework Anaconda y miniconda

En lugar de instalar Anaconda, pueden instalar **Miniconda**, que es una versión pequeña de Anaconda que solo incluye Python, pip y conda (y otros paquetes necesarios para su funcionamiento).

- ¿Qué son pip y conda? Son "package managers", que sirven para bajar e instalar paquetes automáticamente, entre otras cosas.
- ¿Por qué instalaría Miniconda en lugar de Anaconda? Hay varias razones posibles:
- •Por cuestiones de espacio en disco: en lugar de instalar todo, pueden instalar solo lo que necesitan.
- •Para aprovechar y aprender a instalar paquetes, por si alguna vez necesitan uno que Anaconda no incluya. Por ejemplo, <u>Lantz</u>, que sirve para controlar instrumentos

2.B Framework Anaconda y miniconda, descripción y uso práctico.

