RUSTAM LATYPOV

Doctoral Candidate · Theoretical Computer Science Aalto University, Finland

A third-year PhD student, advised by Prof. Jara Uitto. My interests lie in the mathematical foundations of distributed and parallel computing, with an emphasis on the Massively Parallel Computation (MPC) model. Current research revolves around connectivity and coloring problems.

rustamlatypov.github.io

rustam.latypov@aalto.fi

EDUCATION

• Doctoral Candidate · Aalto University

Theoretical Computer Science Group

Supervisor: Prof. Jara Uitto

Funded by the CS department's competitive funding grant

• Master of Science • Aalto University • GPA 4.9/5

Mathematics and Operations Research

Major: Applied Mathematics \cdot 5/5 Minor: Computer Science \cdot 5/5

github.com/rustamlatypov/masters-thesis

 \circ Bachelor of Science \cdot Aalto University \cdot GPA 4.9/5

Engineering Physics and Mathematics

Major: Mathematics and Systems Analysis \cdot 5/5 Minor: Computer Science \cdot 5/5

github.com/rustamlatypov/bachelors-thesis

2016 - 2019

2019 - 2021

Jun 2021 -

ACADEMIC ACTIVITY

Publications (authors in alphabetical order, as is standard in the field)

Conditionally Optimal Parallel Coloring of Forests
 Christoph Grunau, Rustam Latypov, Yannic Maus, Shreyas Pai, Jara Uitto
 International Symposium on Distributed Computing, DISC, 2023.

[doi, arXiv]

Adaptive Massively Parallel Connectivity in Optimal Space
 Rustam Latypov, Jakub Lacki, Yannic Maus, Jara Uitto
 ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, 2023

[video, doi, arXiv]

• Fast Dynamic Programming in Trees in the MPC Model [doi, arXiv]

Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka Suomela,

Jara Uitto, and Hossein Vahidi

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, 2023

Optimal Deterministic Massively Parallel Connectivity on Forests
 Alkida Balliu, Rustam Latypov, Yannic Maus, Dennis Olivetti, Jara Uitto ACM-SIAM Symposium on Discrete Algorithms, SODA, 2023

[doi, arXiv]

Exponential Speedup Over Locality in MPC with Optimal Memory [doi, arXiv]
 Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis Olivetti,
 Jara Uitto
 International Symposium on Distributed Computing, DISC, 2022

BA: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees [video, doi, arXiv]
 Sebastian Brandt, Rustam Latypov, Jara Uitto
 International Symposium on Distributed Computing, DISC, 2021

 Coloring Trees in Massively Parallel Computation Rustam Latypov, Jara Uitto CoRR 2021. [arXiv]

Teaching

- Advanced Course in Algorithms Aalto University, Fall 2022 & 2023 (Head TA) [link]
- Principles of Algorithmic Techniques Aalto University, Fall 2021 (TA) [link]

Reviewer (at) SWAT'24, ICALP'24, ITCS'23, SPAA'23, PODC'23, DISC'22, PODC'22, DISC'21, OPODIS'20

AWARDS (2021-2024)

- Awarded 5000€ Nokia Scholarship, Nokia Foundation [link]
- Granted 24-month funding for my doctoral studies (out of 20 applicants) Dept. of CS, Aalto [link]
- Awarded 1000€ for academic success in mathematics Professor E. J. Nyström Fund [link]
- Awarded 500€ + 2 × 500€ for general academic success School of Science, Aalto [link] [link]

WORK EXPERIENCE

• Doctoral candidate • Aalto University

Charting the complexity landscape of fundamental graph problems, and exploring the algorithmic applications of powerful probabilistic tools in the context of Massively Parallel Computation.

• Research assistant • Aalto University Mar 2020 – May 2021 Worked on distributed graph algorithms in low-space Massively Parallel Computation. Developed a deterministic, state-of-the-art 3-coloring algorithm for trees (Master's thesis, see manuscript below).

• Giant Leap Intern • Vaisala Oyj

Developed software for forecasting 20% of the test failures in large scale radiosonde production using data mining, feature engineering and machine learning (XGBoost, Python).

• Research assistant • Aalto University

Solved non-linear, ill-posed inverse problems for resistor networks both symbolically and numerically using the Gauss-Newton algorithm and Tikhonov regularization (Bachelor's thesis, see project below).

PROGRAMMING

Prof	octs -	github com	rustamlatypov/	,
LIO	iecus –	21thub.com/	rustamiaty boy	

• Parallel matrix multiplication

C++

Parallel (CPU) matrix multiplication achieving 500-fold speedup w.r.t. sequential

• Tile-matching game

C++

Tournament grade Tetris and Pentis with controls in accordance with the Super Rotation System

• Parallel radix sort

Scala

Sequential and parallel (CPU) LSD radix sorts achieving 5- and 15-fold speedups w.r.t. scala.quickSort

• Inverse problem for resistor networks

MATLAI

Solving non-linear, ill-posed inverse problems for resistor networks both symbolically and numerically

• Machine learning classifier for music genres

Python

Solving a skewed, multiclass music genre classification problem with supervised PCA and SVM

• Parallel password cracker

Python

A command-line tool for cracking passwords in parallel (CPU) using dictionary and hybrid attacks