TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG GIẢI TÍCH 1

CHƯƠNG I. GIỚI HẠN VÀ SỰ LIÊN TỤC CỦA HÀM MỘT BIẾN

§1. Giới hạn hàm số

ThS. Đinh Tiến Dũng

NỘI DUNG CHÍNH

- * Định nghĩa giới hạn hàm số, giới hạn một phía, giới hạn mở rộng.
- * Các tính chất, qui tắc tính giới hạn.

§2. Giới hạn hàm số

1. Khoảng cách và lân cận trên trục số thực:

1.1 Khoảng cách:

Khoảng cách giữa hai số thực a và b trên trục số thực được định nghĩa là |a-b|.

VD.

- Khoảng cách từ 3 đến 1 là: |3 1| = 2.
- Khoảng cách từ -1 đến 3 là: |-1 3| = 4.

1.2 Lân cận mở:

Cho $x_0 \in R$, với mỗi số dương δ , khoảng $(x_0 - \delta, x_0 + \delta)$ gọi là một lân cận mở bán kính δ của điểm x_0 . Lân cận mở gọi tắt là lân cận.

$$x_0 - \delta \quad x_0 \quad x_0 + \delta$$

§2. Giới hạn hàm số

2. Giới hạn hữu hạn của hàm số tại một điểm hữu hạn: 2.1 Ví dụ mở đầu:

Xét hàm số $f(x) = \frac{\sin x}{x}$ khi cho đối số x dần tới 0.

Hãy dùng máy tính CASIO tính giá trị của hàm số và điền vào bảng sau đây:

x	-1	-0,5	-0,3	-0,1	0	0,05	0,4	0,6	1
$\mathbf{f}(x) = \frac{\sin x}{x}$									

Vẽ đồ thị và nhận xét giá trị của f(x) khi cho x tiến dần tới 0 từ phía bên trái và bên phải.

Dùng máy tính CASIO ta tính được:

x	-1	-0,5	-0,3	-0,1	0	0,05	0,4	0,6	1
$\mathbf{f}(x) = \frac{\sin x}{x}$	0,84	0,95	0,98	0,99	Ш	0,999	0,97	0,94	0,84

Nhận xét: Khi x tiến dần tới 0 từ phía trái thì $f(x) \rightarrow 1$

Dùng máy tính CASIO ta tính được:

\boldsymbol{x}	-1	-0,5	-0,3	-0,1	0	0,05	0,4	0,6	1
$\mathbf{f}(x) = \frac{\sin x}{x}$	0,84	0,95	0,98	0,99	П	0,999	0,97	0,94	0,84

Nhận xét: Khi x tiến dần tới 0 từ phía phải thì $f(x) \rightarrow 1$

* Nhận xét: Khi x tiến dần đến $\mathbf{0}$ từ phía bất kỳ ta luôn có f(x) tiến dần đến $\mathbf{1}$. Kí hiệu: $\lim_{x\to\mathbf{0}}\frac{\sin x}{x}=\mathbf{1}$. Tóm lại:

 $\lim_{x\to \mathbf{0}} f(x) = \mathbf{1} \text{ vì } f(x) \text{ có thể gần } \mathbf{1} \text{ một cách tùy ý khi } x \text{ đủ gần } \mathbf{0}.$

Tổng quát

$$\lim_{x \to x_0} f(x) = \mathbf{L}$$

$$\overset{\mathrm{dn}}{\Leftrightarrow} f(x) \text{ có thể gần L một cách tùy ý}$$

$$x \, \mathrm{đu} \, \mathrm{gần} \, x_0 \, (\mathrm{về cả hai phía})$$

$$x \, \mathrm{không \, bằng} \, x_0$$

f(x) có thể gần L một cách tùy ý x đủ gần x_0 (về cả hai phía) x không bằng x_0 x có thể gần L một cách tùy ý x đủ gần x_0 (về cả hai phía) x không bằng x_0 x có thể gần L một cách tùy ý x đư gần x_0 x không bằng x_0 x không bằng x_0

với một δ dương nào đó

2.2 Định nghĩa

Cho hàm số f(x) xác định trong một lân cận của điểm x_0 (có thể không xác định tại x_0). Ta nói hàm số f có giới hạn L khi x dần tới x_0 nếu với mọi số $\varepsilon > 0$, tồn tại số $\delta > 0$ sao cho với mọi x mà $0 < |x - x_0| < \delta$ thì ta có $|f(x) - L| < \varepsilon$.

 $Ki \ hi\hat{e}u: \lim_{x \to x_0} f(x) = \mathbf{L} \ hoặc \ f(x) \to \mathbf{L} \ khi \ x \to x_0.$

Luu ý:

- Giả thiết hàm số f(x) xác định trong một lân cận của điểm x_0 là điều kiện để ta xét được giá trị của f(x) khi biến x có thể tiến tới x_0 từ hai phía.
- Ta chỉ quan tâm đến giá trị của hàm số f(x) khi x nhận những giá trị gần x_0 . Vậy ta không cần quan tâm đến hàm số có xác định tại x_0 hay không. Chẳng hạn, hàm $f(x) = \frac{\sin x}{x}$ không xác định tại $x_0 = 0$ nhưng vẫn tồn tại $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

❖Luu ý:

• Weierstrass là người đầu tiên sử dụng định nghĩa epsilon-delta cho giới hạn và vẫn được dùng đến ngày nay. Định nghĩa ngắn gọn và chuẩn xác nhất:

$$\lim_{x \to x_0} f(x) = \mathbf{L} \stackrel{\mathrm{dn}}{\Leftrightarrow} (\forall \varepsilon > 0, \exists \delta > 0: 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon).$$

3. Giới hạn một phía ($\lim_{x \to x_0^{\pm}} f(x) = L$)
3.1 Ví dụ mở đầu: Xét hàm $f(x) = 1 + \sqrt{x}$ ta thấy:

\boldsymbol{x}	-1	-0,5	-0,3	-0,1	0	0,01	0,04	0,09	1
$\mathbf{f}(x) = 1 + \sqrt{x}$					1	1,1	1,2	1,3	2

Tập xác định của hàm số $D = [0; \infty)$, nên x chỉ có thể tiến về 0 từ phía bên phải số 0. Khi đó hàm số f(x) có giới hạn phải bằng 1 khi x dần tới 0 từ bên phải.

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} (\mathbf{1} + \sqrt{x}) = \mathbf{1}.$$

Tổng quát:
$$\lim_{x \to x_0^+} f(x) = \mathbf{L} \iff \mathbf{dn}$$

dn f(x) có thể gần L một cách tùy ý x đủ gần x_0 về phía bên phải $(x \text{ lớn hơn } x_0)$

f(x) có thể gần L một cách tùy ý

x đủ gần x_0 về phía bên phải (x lớn hơn x_0)

 $|f(x) - L| < \varepsilon$ với mọi ε dương bé tùy ý

 $0 < |x - x_0| < \delta; x > x_0$ với δ dương nào đó

3.2 Các định nghĩa

a) Định nghĩa giới hạn phải:

$$\exists \delta > 0 \colon 0 < x - x_0 < \delta$$

$$\lim_{x\to x_0^+} f(x) = \mathbf{L} \stackrel{\mathrm{dn}}{\Leftrightarrow} \forall \varepsilon > 0, \exists \delta > 0: (0 < x - x_0 < \delta \Rightarrow |f(x) - L| < \varepsilon).$$

Ngoài ra $\lim_{x \to x_0^+} f(x) = L$ còn ký hiệu là: $f(x) \to L$ khi $x \to x_0^+$.

b) Định nghĩa giới hạn trái:

$$\lim_{x \to x_0^-} f(x) = \mathbf{L} \stackrel{\mathrm{dn}}{\Leftrightarrow} (\forall \varepsilon > 0, \exists \delta > 0: 0 < x_0 - x < \delta \Rightarrow |f(x) - L| < \varepsilon).$$

Ngoài ra $\lim_{x \to x_0^-} f(x) = L$ còn ký hiệu là: $f(x) \to L$ khi $x \to x_0^-$.

❖ Nhận xét:

- Nếu $\lim_{x \to x_0} f(x) = L$ thì $\lim_{x \to x_0^-} f(x) = L$ và $\lim_{x \to x_0^+} f(x) = L$.
- Dùng định nghĩa giới hạn một phía ta chứng minh được thêm một công thức cơ bản:
 - $\bullet \quad \lim_{x \to \mathbf{0}^+} \sqrt{x} = 0;$
 - $\lim_{x\to 0^-} \sqrt{x}$ không tồn tại.

4. Các khái niệm giới hạn mở rộng:

• Giới hạn hữu hạn của hàm số f(x) tại điểm x_0 hữu hạn chính là:

$$\lim_{x \to x_0} f(x) = \mathbf{L}$$

$$h\tilde{u}u han \qquad h\tilde{u}u han$$

Lần lượt thay x₀ hữu hạn bởi ±∞ hoặc thay L hữu hạn bởi ±∞ ta có các khái niệm giới hạn mở rộng:

$$\lim_{x \to \pm \infty} f(x) = \mathbf{L} \longrightarrow Giới hạn của f(x) tại vô cùng.$$

$$\lim_{x \to x_0} f(x) = \pm \infty \longrightarrow Giới hạn vô cùng của f(x).$$

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \longrightarrow Giới hạn vô cùng của f(x) ở vô cùng.$$

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \longrightarrow Giới hạn vô cùng một phía của f(x).$$

$$\lim_{x \to x_0^{\pm}} f(x) = \pm \infty \longrightarrow Giới hạn vô cùng một phía của f(x).$$

4.1 Định nghĩa giới hạn tại vô cùng, tiệm cận ngang

$$\lim_{x\to +\infty} f(x) = \mathbf{L} \iff (\forall \varepsilon > 0, \exists N \in \mathbb{R}: \forall x > N \Rightarrow |f(x) - L| < \varepsilon).$$

$$\lim_{x \to -\infty} f(x) = \mathbf{L} \iff (\forall \varepsilon > 0, \exists N \in \mathbb{R}: \forall x < N \Rightarrow |f(x) - L| < \varepsilon).$$

Ngoài ra, nếu $\lim_{x \to +\infty} f(x) = \mathbf{L}$ hoặc $\lim_{x \to -\infty} f(x) = \mathbf{L}$ thì đường thẳng y= \mathbf{L} gọi là tiệm cận ngang của đồ thị hàm số y=f(x).

VD.

Đồ thị $y = \arctan x$ có TCN: $y = \pm \pi/2$. Vì $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$; $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$.

Chú ý:

Các Đ.lý 2,3,4,5,6 vẫn đúng khi thay $x \to x_0$ bởi $x \to +\infty$ hoặc $x \to -\infty$.

4.2 Định nghĩa giới hạn vô cùng, giới hạn vô cùng một phía và tiệm cận đứng:

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow (\forall M > 0, \exists \delta > 0: 0 < |x - x_0| < \delta \Rightarrow f(x) > M).$$

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow (\forall N < 0, \exists \delta > 0: 0 < |x - x_0| < \delta \Rightarrow f(x) < N).$$

$$\lim_{x \to x_0^+} f(x) = +\infty \Leftrightarrow (\forall M > 0, \exists \delta > 0: 0 < x - x_0 < \delta \Rightarrow f(x) > M).$$

$$\lim_{x \to x_0^-} f(x) = +\infty \Leftrightarrow (\forall M > 0, \exists \delta > 0: 0 < x - x_0 < \delta \Rightarrow f(x) > M).$$

$$\lim_{x \to x_0^-} f(x) = +\infty \Leftrightarrow (\forall M > 0, \exists \delta > 0: -\delta < x - x_0 < 0 \Rightarrow f(x) > M).$$

$$\lim_{x \to x_0^+} f(x) = -\infty \Leftrightarrow (\forall N < 0, \exists \delta > 0: 0 < x - x_0 < \delta \Rightarrow f(x) < N).$$

$$\lim_{x \to x_0^-} f(x) = -\infty \Leftrightarrow (\forall N < 0, \exists \delta > 0: -\delta < x - x_0 < 0 \Rightarrow f(x) < N).$$

Ngoài ra, nếu $\lim_{x\to x_0^+} f(x) = \pm \infty$; $\lim_{x\to x_0^-} f(x) = \pm \infty$ thì đường thẳng $x=x_0$ gọi là tiệm cận đứng của đồ thị hàm số y=f(x).

VD. Tìm các tiệm cận đứng của mỗi hàm số sau:

$$a) f(x) = \frac{2x}{x-3}$$

$$b) f(x) = \log_a x$$

Giải.

a) Ta có:
$$\lim_{x \to 3^+} \frac{2x}{x-3} = +\infty \text{ và} \lim_{x \to 3^-} \frac{2x}{x-3} = -\infty.$$

Vậy đ. thẳng x = 3 là TCĐ của đồ thị hàm số.

b) Vì
$$\lim_{x\to 0^+} \log_a x = \begin{bmatrix} -\infty & \text{n\'eu } a > 1 \\ +\infty & \text{n\'eu } 0 < a < 1 \end{bmatrix}$$

nên đồ thị hàm số có tiệm cận đứng là trục Oy: x = 0.

4.3 Định nghĩa giới hạn vô cùng tại vô cùng và tiệm cận xiên:

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow (\forall M > 0, \exists N > 0: \forall x > N \Rightarrow f(x) > M).$$

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow (\forall M < 0, \exists N > 0: \forall x > N \Rightarrow f(x) < M).$$

$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow (\forall M > 0, \exists N < 0: \forall x < N \Rightarrow f(x) > M).$$

$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow (\forall M < 0, \exists N < 0: \forall x < N \Rightarrow f(x) < M).$$

Ngoài ra, Đường thắng y = ax + b được gọi là tiệm cận *x*iên của đồ thị hàm số y = f(x) nếu:

$$\lim_{x \to +\infty} [f(x) - (ax + b)] = 0 \text{ hoặc } \lim_{x \to -\infty} [f(x) - (ax + b)] = 0.$$

* Chú ý:

- 1. Điều kiện cần để đồ thị hàm y=f(x) có tiệm cận xiên là $\lim_{x\to +\infty} f(x) = \pm \infty$ hoặc $\lim_{x\to -\infty} f(x) = \pm \infty$.
- 2. Nếu f(x) = ax + b + g(x), $a \ne 0$ và hàm g(x) thỏa điều kiện $\lim_{x \to +\infty} g(x) = 0$ hoặc $\lim_{x \to -\infty} g(x) = 0$ thì y = ax + b là đường tiệm cận *x*iên của đồ thị hàm y=f(x).
- 3. Trường hợp tổng quát, các hệ số *a*, *b* của đường tiệm cận *x*iên được *x*ác định theo công thức sau:

$$\begin{cases} \lim_{x \to -\infty} \frac{f(x)}{x} = a(a \neq 0) \\ \lim_{x \to -\infty} [f(x) - ax] = b \end{cases} \text{ hoặc } \begin{cases} \lim_{x \to +\infty} \frac{f(x)}{x} = a(a \neq 0) \\ \lim_{x \to +\infty} [f(x) - ax] = b \end{cases}.$$

5. Tính chất của giới hạn

* Định lý 1: (Bảng công thức giới hạn cơ bản)

1)
$$\lim_{x \to x_0} C = C$$
; $\lim_{x \to \pm \infty} C = C$

2)
$$\lim_{x \to x_0} x^n = x_0^n \text{ v\'oi } n = 1,2,3,...$$

$$3) \lim_{x \to +\infty} x^{n} = +\infty$$

4)
$$\lim_{x \to -\infty} x^n = \begin{bmatrix} -\infty \text{ n\'eu n l\'e} \\ +\infty \text{ n\'eu n ch\'an} \end{bmatrix}$$

5)
$$\lim_{x \to +\infty} a^x = \begin{bmatrix} +\infty & \mathbf{n} \in u \ a > 1 \\ 0 & n \in u \ 0 < a < 1 \end{bmatrix}$$

6)
$$\lim_{x \to +\infty} (\log_a x) = \begin{bmatrix} +\infty & \mathbf{n} \in a > 1 \\ 0 & n \in a < 1 \end{bmatrix}$$

7)
$$\lim_{x \to \pm \infty} \frac{C}{x^n} = 0$$

8)
$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

8.
$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$9. \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$10. \lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

11.
$$\lim_{x\to 0} \frac{\tan x}{x} = 1$$

$$12. \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$13. \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

14.
$$\lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$$

❖ Ví dụ

- $\lim_{x \to -\infty} e^{-x} = \lim_{t \to \infty} e^{t} = \infty \text{ (ADCT 5)}$
- $\lim_{x \to -\infty} \left(\frac{1}{5}\right)^x = \lim_{x \to -\infty} 5^{-x}$

$$= \lim_{\text{D} \neq t} \frac{5^t}{t = -x} = \infty \text{ (ADCT 5)}$$

 $\lim_{x \to +\infty} (\ln(2x+1)) = \lim_{t \to +\infty} \ln t = \infty \text{ (ADCT 6)}$

- * Định lý 2: (Tính duy nhất của giới hạn)
 Giới hạn của hàm số f(x) tại điểm x_0 (nếu có) là duy nhất.
- * Định lý 3: (Tương đương định nghĩa)

Cho hàm số f(x) xác định trong một lân cận D của điểm x_0 (có thể không xác định tại x_0). Ta có $\lim_{x \to x_0} f(x) = L$ khi và chỉ khi: $\forall \{x_n\} \subset D$, mà $\lim_{n \to +\infty} x_n = x_0$ thì $\lim_{n \to +\infty} f(x_n) = L$.

* Chú ý:

ĐL này thường dùng để chứng tỏ một hàm không có giới hạn tại x_0 . Nếu tìm được hai dãy (x_n) , (x'_n) cùng hội tụ đến x_0 mà $f(x_n)$, $f(x'_n)$ hội tụ về hai giá trị khác nhau thì hàm f(x) không có giới hạn tại x_0 .

VD. Chứng tỏ rằng không tồn tại giới hạn $\lim_{x\to 0} \sin \frac{1}{x}$.

Giải:

Đặt $f(x) = \sin \frac{1}{x}$ thì f có miền xác định D=R\{0}.

Trên D, chọn dãy hai dãy đối số: $x_n = \frac{1}{2n\pi}$; $x_n' = \frac{1}{2n\pi + \frac{\pi}{2}}$, với $n \in \mathbb{N}^*$.

Rõ ràng: $x_n \rightarrow 0$, $x'_n \rightarrow 0$, khi $n \rightarrow +\infty$.

Tuy nhiên: $\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin \frac{1}{x_n} = \lim_{n \to +\infty} \sin(2n\pi) = \lim_{n \to +\infty} 0 = \mathbf{0};$

$$\lim_{n\to+\infty} f(x'_n) = \lim_{n\to+\infty} \sin\frac{1}{x'_n} = \lim_{n\to+\infty} \sin(2n\pi + \frac{\pi}{2}) = \lim_{n\to+\infty} 1 = 1.$$

Vì $\lim_{n\to+\infty} f(x_n) \neq \lim_{n\to+\infty} f(x_n')$ nên $\lim_{x\to 0} \sin\frac{1}{x}$ không tồn tại.

* Định lý 4: (Về sự tồn tại giới hạn)

$$\lim_{x\to x_0} f(x) = L \Leftrightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = L$$

VD. Cho
$$f(x) = \begin{cases} 3 & n \in u \ x \ge 0 \\ x^2 & n \in u - 1 \le x < 0 \text{. Tim } \lim_{x \to 0} f(x), \lim_{x \to -1} f(x). \\ x^4 & n \in u \ x < -1 \end{cases}$$

Giải

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2}) = 0; \qquad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (3) = 3.$$

Vì $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^-} f(x)$ nên $\lim_{x\to 0} f(x)$ không tồn tại.

$$\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} (x^2) = 1; \qquad \lim_{x \to (-1)^-} f(x) = \lim_{x \to (-1)^-} (x^4) = 1.$$

Vì
$$\lim_{x \to (-1)^+} f(x) = 1 = \lim_{x \to (-1)^-} f(x)$$
 nên $\lim_{x \to -1} f(x) = 1$.

* Định lý 4: (Bất đẳng thức qua giới hạn)

Nếu f(x) < g(x) hoặc $f(x) \le g(x)$, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$ và tồn tại giới hạn của cả hai hàm f và g khi x tiến đến x_0 thì $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

* Định lý 5: (Giới hạn kẹp)

Nếu
$$f(x) \le g(x) \le h(x), \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$$
 và $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$ thì $\lim_{x \to x_0} g(x) = L$.

❖Hệ quả:

Nếu
$$|g(x)| \le M, \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\} \text{ và } \lim_{x \to x_0} f(x) = 0$$

thì $\lim_{x \to x_0} [f(x), g(x)] = 0.$

Ví dụ: CMR:
$$\lim_{x\to 0} \left(x^2 \sin \frac{1}{x}\right) = 0$$
.

Giải

Cách 1: Ta thấy:
$$-1 \le \sin \frac{1}{x} \le 1, \forall x \in R \setminus \{0\}$$

$$\Rightarrow -x^2 \le x^2. \sin \frac{1}{x} \le x^2, \forall x \in R \setminus \{0\}.$$

Mặt khác
$$\lim_{x\to 0} (-x^2) = 0$$
 và $\lim_{x\to 0} (x^2) = 0$ nên $\lim_{x\to 0} (x^2 \sin \frac{1}{x}) = 0$.

Cách 2: Ta thấy:
$$|\sin \frac{1}{x}| \le 1$$
, $\forall x \in R \setminus \{0\}$ và $\lim_{x \to 0} (x^2) = 0$

nên
$$\lim_{x\to 0} \left(x^2 \sin \frac{1}{x}\right) = 0.$$

Định lý 6: (Quy tắc tính giới hạn hữu hạn) Giả sử $\lim_{x\to x_0} f(x)=a$, $\lim_{x\to x_0} g(x)=b$ mà a,b hữu hạn, ta có:

- 1) $\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = a \pm b$
- 2) $\lim_{x \to x_0} [Cf(x)] = C \lim_{x \to x_0} f(x) = C.a$ (Với C là hằng số)
- 3) $\lim_{x \to x_0} [f(x)g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = a.b$ 4) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{a}{b}$, $(n \in b \neq 0)$
- 5) $\lim_{x \to x_0} [f(x)]^n = [\lim_{x \to x_0} f(x)]^n = a^n \quad v \circ i \quad n = 1,2,3,...$
- 6) $\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to x_0} f(x)} = \sqrt[n]{a}$ (Khi n chẵn thêm ĐK a > 0)
- 7) $\lim_{x \to x_0} |f(x)| = \left| \lim_{x \to x_0} f(x) \right| = |a|$
- 8) $\lim_{x \to x_0} [f(x)^{g(x)}] = \left[\lim_{x \to x_0} f(x)\right]^{\lim_{x \to x_0} g(x)} = a^b \text{ (n\'eu } 0 < a \neq 1)$

VD1. Tính các giới hạn sau

a)
$$\lim_{x\to 5} (2x^2 - 3x + 4)$$

b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Giải

a)
$$\lim_{x \to 5} (2x^2 - 3x + 4) = \lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} (4)$$
 (AD Quy tắc 1)

$$= 2 \cdot \lim_{x \to 5} (x^2) - 3 \lim_{x \to 5} (x) + \lim_{x \to 5} (4)$$
 (AD Quy tắc 2)

$$= 2 \cdot 5^2 - 3 \cdot 5 + 4 = 39$$
 (Giới hạn cơ bản)

* Tổng quát: Qui tắc giới hạn hàm đa thức

Nếu
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \text{ thì } \lim_{x \to x_0} P(x) = P(x_0).$$

AD ta có ngay:
$$\lim_{x\to 5} (2x^2 - 3x + 4) = 2.5^2 - 3.5 + 4 = 39.$$

b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)}$$
 (AD Quy tắc lim thương)
$$= \frac{(-2)^3 + 2 \times (-2)^2 - 1}{5 - 3 \times (-2)}$$
 (AD Quy tắc giới hạn hàm đa thức)
$$= -\frac{1}{11}.$$

* Tổng quát: Qui tắc giới hạn hàm phân thức

Nếu P(x) và Q(x) là các đa thức và $Q(x_0) \neq 0$ thì $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$.

AD ta có ngay:
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{(-2)^3 + 2 \times (-2)^2 - 1}{5 - 3 \times (-2)} = -\frac{1}{11}$$
.

VD2. Tính các giới hạn sau

a)
$$\lim_{x \to 1} (2x+1)^{x^2+5}$$
 b) $\lim_{x \to 2} g(x)$, với $g(x) = \begin{cases} |1-3x| & \text{khi } x \neq 2 \\ 2x-1 & \text{khi } x = 2 \end{cases}$.

Giải

a)
$$\lim_{x \to 1} (2x+1)^{x^2+5} = \left[\lim_{x \to 1} (2x+1)\right]^{\lim_{x \to 1} (x^2+5)}$$
 (AD Quy tắc 8)
= 3⁶.

b) Khi $x \to 2$ thì $x \ne 2$ nên g(x) = |1 - 3x| do đó:

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} |1 - 3x| = |\lim_{x \to 2} (1 - 3x)| \quad \text{(AD Quy tắc 7)}$$

$$= |1 - 3.2| \quad \text{(AD Quy tắc giới hạn hàm đa thức)}$$

$$= |-5| = 5.$$

* Định lý 7: (Quy tắc tính giới hạn mở rộng)

$\lim_{x\to x_0}\mathbf{f}(x)$	$\lim_{x\to x_0} \mathbf{g}(x)$	$\lim_{x\to x_0}\mathbf{f}(x).\mathbf{g}(x)$	$\lim_{x \to x_0} \frac{\mathbf{f}(x)}{\mathbf{g}(x)}$
$C \neq 0$	0	C.0 = 0	±∞
C > 0	∞	∞	0
C > 0	-∞	-∞	0
∞	C > 0	∞	∞
∞	∞	∞	vô định
∞	- ∞	$-\infty$	vô định
-∞	-∞	∞	vô định

* Chú ý:

- Các quy tắc trên vẫn đúng khi thay $x \to x_0$ bởi $x \to \infty$ hoặc $x \to -\infty$.
- Gặp dạng $\lim_{x \to x_0} [\mathbf{f}(x) \pm \mathbf{g}(x)]$ ta quy về dạng $\lim_{x \to x_0} \mathbf{f}(x)$. $\mathbf{g}(x)$ hoặc $\lim_{x \to x_0} \frac{\mathbf{f}(x)}{\mathbf{g}(x)}$.

VD. Tính các giới hạn:

a)
$$I = \lim_{x \to -\infty} (-x^3 + 3x^2 - x + 1)$$
 b) $J = \lim_{x \to \infty} x\sqrt{4x^2 - 3x}$.

Giải

a)
$$I = \lim_{x \to -\infty} x^3 \left(-1 + \frac{3}{x} - \frac{1}{x^2} + \frac{1}{x^3} \right)$$

Ta thấy:

$$\lim_{x\to-\infty} (x^3) = -\infty;$$

$$\lim_{x \to -\infty} \left(-1 + \frac{3}{x} - \frac{1}{x^2} + \frac{1}{x^3} \right) = \lim_{x \to -\infty} (-1) + \lim_{x \to -\infty} \frac{3}{x} - \lim_{x \to -\infty} \frac{1}{x^2} + \lim_{x \to -\infty} \frac{1}{x^3}$$
$$= -1 + 0 - 0 + 0 = -1.$$

Từ đó suy ra $I = \infty$.

* Chú ý: Chỉ được phép tách lim tích thành tích lim nếu cả hai lim sau khi tách ra đều hữu hạn.

b)
$$J = \lim_{x \to \infty} x \sqrt{4x^2 - 3x}$$

Giải

b)
$$J = \lim_{x \to \infty} x \sqrt{4x^2 - 3x}$$

 $= \lim_{x \to \infty} x \cdot \sqrt{x^2 (4 - \frac{3}{x})} = \lim_{x \to \infty} x |x| \sqrt{4 - \frac{3}{x}} = \lim_{x \to \infty} \left(x^2 \cdot \sqrt{4 - \frac{3}{x}} \right).$
Ta thấy:
 $\lim_{x \to \infty} (x^2) = \infty;$
 $\lim_{x \to \infty} \sqrt{4 - \frac{3}{x}} = \sqrt{\lim_{x \to \infty} (4 - \frac{3}{x})} = \sqrt{\lim_{x \to \infty} 4 - \lim_{x \to \infty} \frac{3}{x}} = \sqrt{4 - 0} = 2$

Từ đó suy ra $J = \infty$.

BÀI TẬP NHÓM

Tính giới hạn
$$K = \lim_{x \to -\infty} x \sqrt{4x^2 - 3x}$$
.

ĐÁP ÁN