Problem Set 1

The model used in the simulation has the following structure:

$$x_{i1}=1, x_{i2}: x_{i11} \sim \mathcal{N}(0,1)$$

$$y_i = \mathbf{x}_i'\boldsymbol{\beta} + \varepsilon$$
 with $\boldsymbol{\beta}=\begin{pmatrix} 1 & 0.5 & 0 & 0 \end{pmatrix}$ and $\boldsymbol{\varepsilon} \sim \mathcal{N}(0,\sigma^2=1)$ and $n=100$.

Simulation

- Define the deterministic- and simulate all random quantities in an R Script.
- •

Estimating model parameters

Calculate - $\hat{\beta}$ - \hat{y} and - $\hat{\varepsilon}$ and the standard errors of the coefficient estimates.

Please try to program these entities yourself instead of using pre-specified functions in R.

Automization

Write a simulation function that takes three arguments:

- n: number of observations
- σ : standard deviation of the error term
- B

The function should return two objects: **X** and **y**.

Write an estimation function that takes two arguments:

- X
- y

The function should return $\hat{\beta}$ and the associated standard errors.

Simulation study

In a suitably designed simulation study show the behavior of the OLS estimator of the standard errors of the coefficients by varying

- n
- σ^2 .

Plot the results in two different plots to demonstrate the properties of the OLS estimator.