ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ, 6 СЕМЕСТР Конспект лекций Додонова Н. Ю.

https://github.com/artemZholus/funcan

Содержание

1	Линейные операторы в банаховых пространствах	2
	1.1 Сопряженный оператор	2
	1.2 Ортогональное дополнение в банаховых пространствах	
2	D	5
	Элементы спектральной теории линейных операторов	
_	Элементы спектральной теории линейных операторов 2.1 Определение спектра и резольвенты оператора	5

1 Линейные операторы в банаховых пространствах

1.1 Сопряженный оператор

Здесь и далее, если не оговорено иного, считаем, что мы находимся в В-пространствах.

Определение (сопряженное пространство). $X^* = \left\{ f : X \xrightarrow{\text{лин.}} \mathbb{R} \right\}$ — пространство сопряженное к X.

Заметим, что это пространство линейных функционалов, а значит, мы можем ввести в нем норму как норму линейного функционала.

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \tag{1}$$

(2)

По свойствам числовой оси получаем, что X^* всегда банахово (независимо от X). Рассмотрим теперь $A \in \mathcal{L}(X,Y)$. Пусть $f(x) = \varphi(Ax)$, где $\varphi \in Y^*$.

Определение. Сопряженный оператор к A имеет вид $A^*(\varphi) = \varphi \circ A$.

Утверждение 1.1. Если A нерперывный, то A^* тоже непрерывный.

$$||A^*(\varphi)|| \le ||\varphi|| \cdot ||A||. \tag{3}$$

Переходя к sup по φ получаем непрерывность A^* .

Теорема 1.2. $||A^*|| = ||A||$

Доказательство. Мы доказали неравенство в одну сторону (неравенство 3). Докажем в другую. По определению sup: $\forall \varepsilon > 0, \exists x_{\varepsilon} : \|x_{\varepsilon}\| = 1 \implies \|A\| - \varepsilon < \|Ax_{\varepsilon}\|$. Пусть $Z = \mathcal{L}(Ax_{\varepsilon})$. Рассмотрим $f : Z \to \mathbb{R}$, $f(z) = \alpha \|Ax_{\varepsilon}\|$. Очевидно, что $f \in Y^*$. Поэтому, по теореме Хана-Банаха распространим f на все Y, и назовем ее φ_{ε} . Тогда, по свойствам f, $\|\varphi_{\varepsilon}\| = 1$, $\varphi_{\varepsilon}(Ax_{\varepsilon}) = \|Ax_{\varepsilon}\|$. Следовательно, $\|A\| - \varepsilon < \varphi_{\varepsilon}(Ax_{\varepsilon}) = A^*(\varphi_{\varepsilon}, x_{\varepsilon})$. Тогда $\|A\| - \varepsilon < \|A^*\| \cdot \|\varphi_{\varepsilon}\| \cdot \|x_{\varepsilon}\| = \|A^*\|$. Переходя к sup по ε получаем нужное неравенство.

Пример: ТООО

Теорема 1.3 (теорема Рисса). Пусть H — гильбертово пространство. Тогда $\forall f \in H^*$, f можно представить как $f(x) = \langle x, y \rangle$, где $y \in H$, ||f|| = ||y||.

Доказательство. Докажем в 3 этапа.

1. Построим соотвестсвующий функционал по данному y. Пусть $g(x) = \langle x, y \rangle$. Очевидно, что это линейный функционал. По неравенству Шварца $|g(x)| \leq \|y\| \|x\| \implies \|g\| \leq \|y\|$. Это значит, что g ограничен. Возьмем $x = \frac{y}{\|y\|}$.

$$g\left(\frac{y}{\|y\|}\right) = \left\langle \frac{y}{\|y\|}, y \right\rangle = \frac{1}{\|y\|} \left\langle y, y \right\rangle = \|y\|$$

Сопоставляя это с тем, что $||g|| \le ||y||$, получаем, что ||g|| = ||y||.

- 2. Докажем, что этому функционалу соответствует только один y. Пусть для какого-то \widetilde{y} справедливо $g(x) = \langle x, \widetilde{y} \rangle$. Тогда $0 = \langle x, y \rangle \langle x, \widetilde{y} \rangle = \langle x, y \widetilde{y} \rangle$. Пусть $x = y \widetilde{y}$, тогда $\langle y \widetilde{y}, y \widetilde{y} \rangle = 0 \implies y = \widetilde{y}$
- 3. Найдем y для данного функционала f. Рассмотрим произвольный функционал $f \in H^*$. Как известно, $\ker f$ гиперплоскость, т.е. $\cot H_1 = \dim H_2 = 1$, где $H_1 = \ker f$, $H_2 = H_1^\perp$, и $H = H_1 \oplus H_2$. Это по определению значит, что x единственным образом представим как $x = x_1 + x_2$, где $x_1 \in H_1$, $x_2 \in H_2$. Поэтому, $f(x) = f(x_1) + f(x_2) = f(x_2) = f(\alpha e) = \alpha \cdot f(e)$, так как $x_1 \in \ker f$, а e базисный вектор из H_2 . Итак, $\alpha \cdot f(x) = \langle x, y \rangle \Leftrightarrow f(e) = \langle e, y \rangle$. Очевидно, y можно брать из H_2 , так как если y него будет компонента из $\ker f$, то она будет ортогональна e. Поэтому, считаем, что $y = \beta e$. Получаем $f(e) = \langle e, \beta e \rangle = \beta \cdot \|e\|^2$. Положим $\beta = \frac{f(e)}{\|e\|^2}$, тогда $y = \frac{f(e)}{\|e\|^2}e$.

Пример: ТООО

Пусть $H=L_2(E), \varphi\in L_2^*(E)$. Тогда $\varphi(f)=\int_E g\cdot fd\mu$. Согласно теореме Рисса, возвращаясь к сопряженному оператору, мы видим следующее. $A^*(\varphi,x)=\varphi(Ax)=\langle Ax,y\rangle=\langle x,z\rangle$ - последнее равенство по теореме Рисса. Причем y и z выбираются единственным образом, и $z=A^*(y)$. В гильбертовом пространстве это может служить определением сопряженного оператора:

Определение (Сопряженный оператор в гильбертовом пространстве). Пусть $x, y \in H$. Пусть $A : H \to H$. Тогда A^* - такой, что $\langle Ax, y \rangle = \langle x, A^*y \rangle$.

1.2 Ортогональное дополнение в банаховых пространствах

Определение (ортогональное дополнение в В-пространстве). Пусть $S \subset X$. Тогда $S^{\perp} = \{f \mid f \in X^*, \forall x \in S \implies f(x) = 0\}.$

Определение (ортогональное дополнение в сопряженном пространстве). Пусть $S \subset X^*$. Тогда $S^{\perp} = \{x \mid x \in X, \forall f \in S \implies f(x) = 0\}$.

Заметим, что независимо от S, S^{\perp} замкнуто в силу непрерывности f(x)

Утверждение 1.4.

- 1. $X^{\perp} = \{0\};$
- 2. $X^{*\perp} = \{0\}.$

Доказательство.

- 1. $f \in X^{\perp}$. Если $\forall x \in X, f(x) = 0$, то $f \equiv 0$.
- 2. Рассмотрим $\forall f \in X^*$. Очевидно, f(0) = 0, а это значит, что $0 \in X^{*\perp}$. Предположим, что $\exists x_0 \neq 0 : x_0 \in X^{*\perp}$. По теореме 1.2:

$$\exists f \in X^* : f(x_0) = ||x_0|| \neq 0 \implies x_0 \notin X^{*\perp}.$$

Определение (множество значений оператора). $R(A) \stackrel{\text{def}}{=} \{Ax \mid x \in X\}.$

Теорема 1.5. $\operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^{\perp}$.

Доказательство.

- 1. Пусть $y \in R(A)$, это значит, что y = Ax для некоторого x. Рассмотрим $\varphi \in \operatorname{Ker} A^*$. По определению, $A^*\varphi = 0$, это значит, что $\forall x \in X \implies \varphi(Ax) = \varphi(y) = 0$. Следовательно, $y \in (\operatorname{Ker} A^*)^{\perp}$
- 2. Пусть теперь $y \in \operatorname{Cl} R(A) \Longrightarrow \exists y_n : y_n \to y$. По предыдущему пункту, $y_n \in (\operatorname{Ker} A^*)^{\perp}$. $\forall \varphi \in \operatorname{Ker} A^* \Longrightarrow \varphi(y_n) = 0$, при этом, φ непрерывен. $\varphi(y_n) \to \varphi(y) = 0 \Longrightarrow y \in (\operatorname{Ker} A^*)^{\perp}$.
- 3. Осталось проверить, что $(\operatorname{Ker} A^*)^{\perp} \subset \operatorname{Cl} R(A)$. Вместо этого, мы проверим эквивалентный факт: $y \notin \operatorname{Cl} R(a) \implies y \notin (\operatorname{Ker} A^*)^{\perp}$. Итак, пусть $L = \operatorname{Cl} R(A)$. Очевидно, это линейное подпространство в Y. Пусть $\widehat{L} = \{z + ty \mid z \in L, t \in \mathbb{R}\}$. Очевидно, \widehat{L} линейное подпространство Y. Рассмотрим $\varphi : X \to \mathbb{R}$, $\varphi(z+ty) \stackrel{\text{def}}{=} t$. По теорема Хана-Банаха его можно продлить на Y с сохранением нормы: $\exists \widehat{\varphi} \in Y^* : \widehat{\varphi}|_{\widehat{L}} = \varphi$. Причем, если $z \in L$, то $\widehat{\varphi}(z) = 0$, значит $\widehat{\varphi} \in \operatorname{Ker} A^*$. Но, при этом $\widehat{\varphi}(y) = 1 \implies y \notin (\operatorname{Ker} A^*)^{\perp}$.

Теорема 1.6. $R(A) = \operatorname{Cl} R(A) \implies R(A^*) = (\operatorname{Ker} A)^{\perp}$.

Доказательство. Рассмотрим $f \in R(A^*)$. По определению, для некоторого φ , $f = A^*\varphi$. Возьмем теперь $x \in \operatorname{Ker} A$. $Ax = 0 \implies f(x) = (\varphi \circ A)(x) = \varphi(Ax) = \varphi(0) = 0$. Значит, $R(A^*) \subset (\operatorname{Ker} A)^{\perp}$.

Пусть теперь $f \in (\operatorname{Ker} A)^{\perp}$. В силу того, что R(A) - В-пространство (как замкнутое линейное подпространство другого В-пространства), Возьмем произвольный $y \in R(A)$, и x такой, что y = Ax, и запишем φ как $\varphi(y) \stackrel{\text{def}}{=} f(x)$. Покажем, что такое определение действительно корректное. Пусть y = Ax'; тогда

 $A(x-x')=0 \implies x-x' \in {\rm Ker}\, A$. Поэтому $f(x-x')=0 \implies f(x)=f(x')$. Это значит, что значение φ не зависит от выбора конкретного x. Значит, наша формула корректная. Осталось показать ограниченность $\|\varphi\|$. Рассмотрим ассоциированный оператор $\mathcal{U}_A: X/{\rm Ker}\, A \to R(A)$. Покажем, что он непрерывен.

 $\|\mathcal{U}_A\| = \sup_{\|[x]\|=1} \|\mathcal{U}_A[x]\|$, так как $\|[x]\| = \inf_{z \in [x]} \|z\| = 1$, то существует $x' \in [x] : \|x'\| \leqslant 2$. Возьмем x' в качестве представителя. Тогда

$$\|\mathcal{U}_{A}\| = \sup_{\|[x]\|=1} \|\mathcal{U}_{A}[x]\| \leqslant \sup_{\|x\| \leqslant 2} \|Ax\| \leqslant \sup_{\|y\| \leqslant 1} \|A(2y)\|$$

$$= 2 \cdot \sup_{\|y\| \leqslant 1} \|Ay\| = 2 \|A\|$$
(4)

Заметим еще, что он биективен, так как все точки x для которых y = Ax (для какого-то одного фиксированного y) лежат в одном классе эквивалентности. Это значит, что по теореме Банаха о гомеоморфизме, \mathcal{U}_A^{-1} непрерывен. Напомним, что норма на элементах $X/\operatorname{Ker} A$ определяется как

$$||[x]|| \stackrel{\text{def}}{=} \inf_{z \in [x]} ||z|| \tag{5}$$

По непрерывности обратного оператора получаем $\|[x]\| \le K \cdot \|y\|$. Нам нужно сделать неравенство строгим, поэтому считаем, что $\|[x]\| < 2K \cdot \|y\|$. Дальше, по определению инфимума, $\exists z \in [x] : \|z\| < 2K \cdot \|y\|$. Значит, $z-x \in \operatorname{Ker} A$. В силу того, что значение функционала f одно и то же внутри класса эквивалентности, можно вместо x взять z. Таким образом, $|\varphi(y)| \le 2K \cdot \|f\| \cdot \|y\|$, из этого следует, что φ непрерывен. Далее, по теореме Хана-Банаха, продолжим φ на все пространство и получим, что $\exists \widehat{\varphi} \in Y^* : f = A^* \widehat{\varphi} \implies f \in R(A^*)$.

В силу того, что во второй теореме требуется замкнутость, возникает вопрос: а когда это действительно будет? Одним из инструментов, дающих ответ на этот вопрос, является априорная оценка решения операторного уравнения.

Определение (априорная оценка решения операторного уравнения). Пусть $A: X \to Y$ - линейный оператор, $y \in R(A)$, $\exists \alpha = \text{const}$, такая что $||x|| \leqslant \alpha ||y||$, где y = Ax. Коэффициент α называется априорной оценкой.

Ответ на поставленный вопрос дает следующая теорема:

Теорема 1.7. Если A — линейный ограниченный оператор, такой что для уравнения y = Ax существует априорная оценка, то R(A) — замкнуто.

Доказательство. Рассмотрим последовательность значений оператора $y_n \in R(A)$, такую что $y_n \to y$. Проверим, что тогда $y \in R(A)$. Пусть $\varepsilon_n = \frac{1}{2^n}$, в силу банаховости пространства Y, можем написать ряд утверждений:

для
$$\varepsilon_1 \exists n_1 : \forall n, m \geqslant n_1 \implies \|y_m - y_n\| \leqslant \varepsilon_1$$
 для $\varepsilon_2 \exists n_2 : \forall n, m \geqslant n_2 \implies \|y_m - y_n\| \leqslant \varepsilon_2$...

для $\varepsilon_k \exists n_k : \forall n, m \geqslant n_k \implies \|y_m - y_n\| \leqslant \varepsilon_k$

при этом, очевидно, что $n_k \leqslant n_{k+1}$. Теперь рассмотрим ряд $y_{n_1} + (y_{n_2} - y_{n_1}) + (y_{n_3} - y_{n_2}) + \ldots = y$. Слагаемое этого ряда мажорируется сходящейся геометрической прогрессией, поэтому, он сходится абсолютно.

Так как R(A) — подпространство, значит $y_{n_{k+1}}-y_{n_k}\in R(A)$. Следовательно, $y_{n_{k+1}}-y_{n_k}=Ax_k$. По условию теоремы, для x_k выполняется $\|x_k\|\leqslant \alpha \|y_{n_{k+1}}-y_{n_k}\|\leqslant \alpha\varepsilon_k$. Возьмем ряд $x_0+x_1+x_2+\ldots$, где $y_{n_1}=Ax_0$. Ряд из норм его слагаемых можно ограничить сходящимся рядом: $\|x_0\|+\|x_1\|+\|x_2\|+\ldots\leqslant \|x_0\|+\alpha\cdot(\varepsilon_1+\varepsilon_2+\ldots)=\|x_0\|+\alpha$. Поэтому у него есть предел x, и мы можем применить к нему оператор почленно (в силу его непрерывности): $Ax=Ax_0+Ax_1+Ax_2+\ldots=y_{n_1}+(y_{n_2}-y_{n_1})+(y_{n_3}-y_{n_2})+\ldots=y$. Таким образом, $y\in R(A)$.

2 Элементы спектральной теории линейных операторов

2.1 Определение спектра и резольвенты оператора

Определение (регулярная точка). Число $\lambda \in \mathbb{C}$, называется *регулярной точкой* для оператора A, если оператор $\lambda I - A$ — непрерывно обратим.

Определение (резольвента). Множество всех регулярных точек называется *резольвентой* (обозначается $\rho(A)$) оператора A.

Определение (резольвентный оператор). Оператор $R_{\lambda}(A) = (\lambda I - A)^{-1}$ называется *резольвентным оператором*.

Определение (спектр). Множество $\sigma(A) = \mathbb{C} \setminus \rho(A)$ называется спектром оператора A.

Рассмотрим $\lambda \in \sigma(A)$. Может быть два случая:

- 1. $\operatorname{Ker}(\lambda I A) \neq \{\mathbf{0}\}$. Это значит, что оператор $\lambda I A$ имеет нетривиальное собственное подпространство, в котором (по определению) выполняется $Ax = \lambda x, \ x \neq \mathbf{0}$, для некоторых x (то, что часто называется собственными числами и векторами).
- 2. $Ker(\lambda I A) = \{0\}$. Здесь необходимо рассмотреть два подслучая:
 - (a) $\dim X < +\infty$. В конечномерном случае из сюрьективности следует биективность, поэтому обратный оператор всегда существует. А спектр будет состоять из собственных значений.
 - (b) $\dim X = +\infty$. В этом случае может отсутствовать непрерывная обратимость. Если при этом $\operatorname{Cl} R(\lambda I A) = X$, то говорят, что λ принадлежит непрерывной части спектра. Иначе говорят, что λ принадлежит остаточной части спектра. (те λ для которых ядро нетривиально называют дискретной частью спектра).

Утверждение 2.1. Резольвентное множесство является открытым в \mathbb{C} .

 \mathcal{A} оказательство. Пусть $\lambda_0 \in \rho(A)$, тогда $\lambda_0 I - A$ - непрерывно обратим. Напишем тождество: $\lambda I - A = (\lambda - \lambda_0)I + \lambda_0 I - A$. $I = (\lambda_0 I - A)R_{\lambda_0}(A)$. Отсюда, $\lambda I - A = (\lambda_0 I - A) \cdot (R_{\lambda_0}(\lambda - \lambda_0) - I)$. Заметим, что если $\|R_{\lambda_0}\| \cdot |\lambda - \lambda_0| < 1$, то по теореме Банаха о непрерывной обратимости оператора I - C, оператор $R_{\lambda_0}(\lambda - \lambda_0) - I$ - непрерывно обратим. Получается, что если $\lambda : |\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|}$, то $\lambda \in \rho(A)$.

Следствие 2.2. Спектр - замкнутое множество.

Теорема 2.3. Пусть A - ограничен, тогда $\sigma(A) \neq \varnothing$

Определение (Спектральный радиус оператора).

$$r_{\gamma}(A) \stackrel{\text{def}}{=} \sup_{\lambda \in \sigma(A)} |\lambda|$$

Утверждение 2.4. $\exists \lim \sqrt[n]{\|A^n\|} = r_{\gamma}(A)$

Доказательство. Очевидно, что всегда существует $\inf_n \sqrt[n]{\|A^n\|} = r$. Итак, $\forall \varepsilon > 0 \exists n_0 : \sqrt[n_0]{\|A^{n_0}\|} < r + \varepsilon$. Рассмотрим теперь $n > n_0$. $n = m_n \cdot n_0 + d_n$. Тогда

$$\|A^n\|^{\frac{1}{n}} = \|A^{m_n \cdot n_0} \cdot A^{d_n}\|^{\frac{1}{n}} \leqslant \|A^{n_0}\|^{\frac{m_n}{n}} \cdot \|A\|^{\frac{d_n}{n}}, \text{ где } \|A\|^{\frac{d_n}{n}} \to 0.$$

$$\|A^{n_0}\|^{\frac{m_n}{n}} < \left(\|A^{n_0}\|^{\frac{1}{n_0}}\right)^{\frac{n_0 \cdot m_n}{n}} < (r + \varepsilon)^{\frac{m_n \cdot n_0}{n}}$$

Следовательно, $r \leqslant \|A^n\|^{\frac{1}{n}} \leqslant (1+\alpha_n) \cdot (r+\varepsilon)^{1-\frac{d_n}{n}} = (1-\alpha_n) \cdot (r-\varepsilon)^{\frac{d_n}{n}} \cdot (r+\varepsilon) = (1+\gamma_n) \cdot (r+\varepsilon).$

Пример. Пространство C[0,1]. Оператор $A(f,t)=t\cdot f(t)$. Очевидно, что $\|A(f)\|\leqslant \|f\|$. Пусть $\lambda I-A=A_\lambda$. $A_\lambda(f,t)=(\lambda-t)\cdot f(t)=g(t)\Longrightarrow f(t)=\frac{g(t)}{\lambda-t}$. При каких λ , A_λ непрерывно обратим? Очевидно, при $\lambda\notin [0,1]$. Это значит, что если $\lambda\in [0,1]\Longrightarrow \lambda\in \rho(A)$. Поэтому $\sigma(A)=[0,1]$.

Пример. Пространство C[0,1]. $A(f,x) = \int_0^x f(t)dt, x \in [0,1]$. Вычислим его спектральный радиус.

$$A(f,x) = \int_0^x f(t)dt$$

$$A^2(f,x) = \int_0^x \left(\int_0^{x_1} f(t)dt\right) dx_1$$

$$A^n(f,x) = \int_0^x dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n+1}} f(t)dt \leqslant \frac{\|f\|}{n!}$$

$$\|f\| \leqslant 1 \implies \|A^n\| \leqslant \frac{1}{n!} \implies r_n \leqslant \frac{1}{\sqrt[n]{n!}} \to 0 \implies r_\sigma(A) = 0$$

Теорема 2.5 (Об отображении спектра полиномами). $\sigma(P(A)) = P(\sigma(A))$

Лемма 2.6. P(A) - непрерывно обратим $\Leftrightarrow 0 \notin P(\sigma(A))$

Доказательство. 1. Необходимость.

Сначала проверим следующий факт. Если два оператора коммутируют и их произведение непрерывно обратимо, то и каждый из них непрерывно обратим. $T=A\cdot B=B\cdot A, \exists T^{-1}$ - непрерывно обратимый. $I=T^{-1}T=T^{-1}\cdot (AB)=(T^{-1}A)\cdot B=B^{-1}B.$ Для A аналогично. В общем случае, p(t) имеет вид $p(t)=a(t-\lambda_1)^{m_1}\cdot (t-\lambda_2)^{m_2}\cdots (t-\lambda_n)^{m_n},$ а $p(A)=a(A-\lambda_1I)^{m_1}\cdot (A-\lambda_2I)^{m_2}\cdots (A-\lambda_nI)^{m_n}.$ Так как p(A) - непрерывно обратим, то, по доказанному, каждый из множителей непрерывно обратим. Это значит, что каждое из $\lambda_j\in \rho(A).$ Поэтому, если $0\in p(\sigma(A)),$ то одно из λ_j является корнем уравнения p(t)=0. То есть, при каком-то $\lambda_i,\ p(\lambda_i)=0,$ это значит что $\lambda_i\in \sigma(A).$ Но $\lambda_i\in \rho(A).$ Противоречие.

2. Достаточность. Тут все аналогично необходимости, только в другую сторону.

Доказательство теоремы. Рассмотрим полином $p_1(t) = p(t) - \lambda$. Тогда, по лемме, $p_1(A)$ - непрерывно обратим тогда и только тогда когда $0 \notin p_1(\sigma(A))$, что эквивалентно $p(A) - \lambda I$ - непрерывно обратим, тогда и только тогда когда $\lambda \notin p(\sigma(A))$. Но $\exists (p(A) - \lambda I)^{-1} \Leftrightarrow \lambda \notin \sigma(p(A))$

2.2 Альтернатива Фредгольма-Шаудера

Определение (Компактный оператор). Оператор $A: X \to Y$ называется *компактным* если $\forall M$ - ограниченное множество, A(M) - относительный компакт.

ТОООпример оператора фредгольма.

Утверждение 2.7 (Компактность произведения). Пусть A - компактный оператор, a B - ограниченный. Тогда AB u BA - компактны.

Доказательство. Достаточно проверить компактность в единичном шаре. Пусть V_1 - замкнутый шар единичного радиуса, проверим, что $B(A(V_1))$ - относительный компакт. Так как $A(V_1)$ - относительный компакт, можем подобрать конечную ε -сеть. $\forall \varepsilon \exists y_1, \ldots, y_n \forall x \in V_1 \exists j \|A(x) - y_j\| < \varepsilon$. Пусть $z_j = B(y_j)$. $\forall x \in V_1 \|B(A(x)) - z_j\| = \|B(A(x) - y_j)\| \le \|A(x) - y_j\| \cdot \|B\| \le \varepsilon \|B\|$

Утверждение 2.8. В бесконечномерных пространствах, компактный оператор не может быть непрерывно обратимым.

Доказательство. Пусть A - компактный, $\exists A^{-1}$ - непрерывный. Тогда $I = A \cdot A^{-1}$ - компактный. Однако, это не так (потому что бесконечномерная сфера - не компакт).

В классе сепарабельных банаховых пространств важную роль имеют пространства с базисом Шаудера.

Определение (базис Шаудера). Пусть X - баназово пространство. $\exists e_1, \dots, e_n, \dots$ - линейно независимые точки. $\forall x \in X, \ x = \sum_{1}^{+\infty} \alpha_j e_j$. Тогда e_j - называется базисом Шаудера.

Теорема 2.9 (О почти конечномерности компактного оператора). Пусть $A: X \to X$ - компактный оператор. X - имеет базис Шаудера. Тогда $\forall \varepsilon > 0 \exists B, C: \dim R(B) < +\infty, \|C\| \leqslant \varepsilon, A = B + C$

Доказательство. По условию, $x = \sum_{1}^{\infty} \alpha_{j} e_{j}$, пусть $S_{n}(x) = \sum_{1}^{n} \alpha_{j} e_{j}$, $R_{n}(x) = (I - S_{n})x$. Проверим, что оператор S_{n} непрерывен. Для начала, рассмотрим пространство $F = \{(\alpha_{1}, \ldots, \alpha_{n}, \ldots) \mid \sum_{1}^{\infty} \alpha_{j} e_{j}$ - сходится в $X\}$. Введем на этом множестве норму $\|\alpha\| \stackrel{\text{def}}{=} \sup_{n} \|S_{n}(x)\|$. Очевидно, что это норма, также можно показать, что F - банахово (Пространство F - это по сути то же пространство X только в координатном смысле). **ТОDO**Рассмотрим оператор $T: F \to X$, $T(x) = \sum_{0}^{\infty} \alpha_{j} e_{j}$ - это линейный оператор. Очевидно, $\|T(\alpha)\| \le \|\alpha\|$. В силу единственности разложения в ряд и того, как действует T, у него существует обратный оператор, который, по теореме Банаха о гомеоморфизме, будет ограниченным. $T^{-1}: X \to F$, $\|T^{-1}(x)\| \le m \cdot \|x\|$. С другой стороны, $T^{-1}(x) = \alpha$, $\|\alpha\| \le m \cdot \|x\| \implies \forall n \|S_{n}(x)\| \le \|x\|$. Последовательность операторов S_{n} - поточетчно сходится, и каждый из них непрерывен, тогда по теореме Банаха-Штейнгауза $\sup_{n} \|S_{n}\| = M < \infty$. Итак, мы доказали, что $I = S_{n} + R_{n}$, где S_{n} - непрерывный. Очевидно, что R_{n} - тоже непрерывен. Напишем тождество: $A = S_{n}A + R_{n}A$. Из них $S_{n}A$ - конечномерный. Проверим, что $\|R_{n}\| < \varepsilon$.

Так как оператор A - компактный, то у множества $A(V_1)$ есть конечная ε -сеть. Итак, $\forall \varepsilon \exists y_1, \cdots, y_n$ - ε -сеть для $A(V_1)$. $\forall x \in V_1 \|R_n(Ax)\| \leq \|R_n(Ax - y_j)\| + \|R_n(y_j)\| \leq \|R_n\| \cdot \|Ax - y_j\| \leq \varepsilon$. Первое слагаемое меньше ε за счет ε -сети, второе, становится маленьким, за счет увеличения n.

Утверждение 2.10. Если A - компактный оператор, то A^* - тоже компактный.

$$\bot$$
 Доказательство. \mathbf{TODO}

Для функционального анализа фундаментальную роль играют уравнения вида

$$y = (\lambda I - A)x \tag{6}$$

и, в частности, y = (I - A)x = Tx.

Утверждение 2.11. Пусть A - компактный оператор. Тогда $\dim \operatorname{Ker} T < \infty$.

Доказательство. Пусть $x \in \operatorname{Ker} T \implies x = Ax$. Таким образом, ядро - это множество неподвижных точек оператора A. И $\operatorname{Ker} T$ - подпространство X. Рассмотрим $V_1 \subset \operatorname{Ker} T$ - единичная сфера в этом подпространстве. Тогда, очевидно, $A(V_1) = V_1$. По лемме Рисса о почти перпендикуляре, в бесконечномерном пространстве, единичная сфера - не компакт. А у нас - компакт, значит, пространство не бесконечномерное.

Теорема 2.12. Пусть оператор A - компактный. Тогда $\operatorname{Cl} R(T) = R(T)$ $(R(T) - \operatorname{nodnpocmpancmeo} X)$.

Доказательство. Пусть $\operatorname{Ker} T = \mathcal{L}(\varphi_1, \cdots, \varphi_n)$. Для доказательства замкнутости, нужно показать существование априорной оценки. y можно представить как $y = T\left(x + \sum_{1}^{n} \alpha_k \varphi_k\right)$. Чтобы убедиться в существовании оценки, возьмем

$$\widehat{x} = \min_{\alpha_j, j = \overline{1, n}} \left\| x + \sum_{1}^{n} \alpha_k \varphi_k \right\| \tag{7}$$

Покажем, что \widehat{x} всегда существует и $\exists \alpha: \|\widehat{x}\| \leqslant \alpha \cdot \|y\|$. Пусть $f(\alpha_1, \cdots, \alpha_n) = f(\alpha) = \|x + \sum_1^n \alpha_k \varphi_k\|$. $|f(\alpha + \delta \alpha) - f(\alpha)| \leqslant \sum_1^n |\alpha_k| \cdot \|\delta \alpha\| \leqslant \sqrt{\sum_1^n \|\varphi_k\|^2} \cdot \sqrt{\sum_1^n \delta \alpha_k^2}$.