Header styling inspired by Berkeley EECS Department: https://eecs.berkeley.edu/

Problem 1

In this problem we will consider the reflection and transmission of EM waves in linear medium with the oblique incidence of a monochromatic sinusoidal plane wave and the polarization of the incidence wave to be *perpendicular* to the plane of incidence. The coordinates are set up in a way as shown in the right figure. (You might need to zoom in with the pdf file to see the angle ϕ_R and ϕ_T). In this problem, you can assume that Snell's law holds, and we define the parameters $\beta \equiv \frac{\mu_1 v_1}{\mu_0 v_2}$ and $\alpha \equiv \frac{\cos \theta_2}{\cos \theta_1}$.

(a) Using boundary conditions, show that the reflected and transmitted waves have the same polarization as the incident wave. That is, show that

$$\phi_R = \phi_T = \frac{\pi}{2}$$

Solution: First, we break each field down via vector decomposition:

$$\mathbf{E}_{I} = E_{I}\hat{\mathbf{y}}$$

$$\mathbf{E}_{R} = E_{R} \left[\sin \phi_{R} \hat{\mathbf{y}} + \cos \phi_{R} \sin \theta_{1} \hat{\mathbf{z}} + \cos \phi_{R} \cos \theta_{1} \hat{\mathbf{x}} \right]$$

$$\mathbf{E}_{T} = E_{T} \left[\sin \phi_{T} \hat{\mathbf{y}} + \cos \phi_{T} \sin \theta_{2} \hat{\mathbf{z}} - \cos \phi_{T} \cos \theta_{2} \hat{\mathbf{x}} \right]$$

The **B** field can also be found, using $\mathbf{B} = \frac{1}{c}\mathbf{k} \times \mathbf{E}$ to get the direction:

$$\mathbf{B}_{I} = B_{I}(\sin \theta_{1} \hat{\mathbf{z}} - \cos \theta_{1} \hat{\mathbf{x}})$$

$$\mathbf{B}_{R} = B_{R}(\cos \phi_{R} \hat{\mathbf{y}} + \sin \phi_{R} \sin \theta_{1} \hat{\mathbf{z}} + \sin \phi_{R} \cos \theta_{1} \hat{\mathbf{x}})$$

$$\mathbf{B}_{T} = B_{T}(\cos \phi_{T} \hat{\mathbf{y}} + \sin \phi_{T} \sin \theta_{2} \hat{\mathbf{z}} - \sin \phi_{T} \cos \theta_{2} \hat{\mathbf{x}})$$

The boundary conditions are imposed just the same as in lecture:

$$\epsilon_1(\mathbf{E}_I + \mathbf{E}_R)_z = \epsilon_2(\mathbf{E}_T)_z \tag{1}$$

$$(\mathbf{E}_I + \mathbf{E}_R)_{x,y} = (\mathbf{E}_T)_{x,y} \tag{2}$$

$$(\mathbf{B}_I + \mathbf{B}_R)_z = (\mathbf{B}_T)_z \tag{3}$$

$$\frac{1}{\mu_1} (\mathbf{B}_I + \mathbf{B}_r)_{x,y} = \frac{1}{\mu_2} (\mathbf{B}_T)_{x,y} \tag{4}$$

So, imposing all the boundary conditions, we have:

1:
$$\epsilon_1 E_R \cos \phi_R \sin \theta_1 = \epsilon_2 E_T \cos \phi_T \sin \theta_2$$

2:
$$\begin{cases} E_R \cos \phi_R \cos \theta_1 = -E_T \cos \phi_T \cos \theta_2 & \text{(x direction)} \\ E_I + E_R \sin \phi_R = E_T \sin \phi_T & \text{(y direction)} \end{cases}$$
3:
$$\frac{1}{v_1} (E_I \sin \theta_1 + E_R \sin \phi_R \sin \theta_1) = \frac{1}{v_2} E_T \sin \phi_T \sin \theta_2$$
4:
$$\begin{cases} \frac{1}{\mu_1 v_1} (-E_I \cos \theta_1 + E_R \sin \phi_R \cos \theta_1) = -\frac{1}{\mu_2 v_2} E_T \sin \phi_T \cos \theta_2 & \text{(x direction)} \\ \frac{1}{\mu_1 v_1} E_R \cos \phi_R = -\frac{1}{\mu_2 v_2} E_T \cos \phi_T & \text{(y direction)} \end{cases}$$

Now, combining the first part of 2 and second part of 4, we get:

$$-\beta E_T \cos \phi_T \cos \theta_1 = -E_T \cos \phi_T \cos \theta_2 \implies E_T \cos \phi_T (\cos \theta_2 - \beta \cos \theta_1) = 0$$

We know that $\cos \theta_2 - \beta \cos \theta_1$ is not always zero, so this leaves $\cos \phi_T = 0$, which requires $\phi_T = \frac{\pi}{2}$. Plugging this back into the second part of 4, this also implies $\phi_R = \frac{\pi}{2}$.

(b) Show that the complex amplitudes \tilde{E}_{0I} , \tilde{E}_{0R} and \tilde{E}_{0T} are related to each other by

$$\tilde{E}_{0R} = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta}\right) \tilde{E}_{0I}$$
 and $\tilde{E}_{0T} = \left(\frac{2}{1 + \alpha \beta}\right) \tilde{E}_{0I}$

Solution: With the condition on ϕ_R and ϕ_T , it helps to simplify the boundary conditions, so $\sin \phi_R = 1$ and $\cos \phi_R = 0$:

2:
$$E_I + E_R = E_T$$

3:
$$\frac{1}{v_1}(E_I \sin \theta_1 + E_R \sin \theta_1) = \frac{1}{v_2} E_T \sin \theta_2$$

4:
$$\frac{1}{\mu_1 v_1} (-E_I \cos \theta_1 + E_R \cos \theta_1) = -\frac{1}{\mu_2 v_2} E_T \cos \theta_2$$

The third equation can be written in terms of α and β :

$$-E_I + E_R = -\alpha\beta E_T$$

Now substitute in the first equation:

$$-E_I + E_R = -\alpha\beta(E_I + E_R) \implies E_R = \left(\frac{1 - \alpha\beta}{1 + \alpha\beta}\right)E_I$$

as desired. Substituting this back into the first equation, we have:

$$E_I + \left(\frac{1 - \alpha \beta}{1 + \alpha \beta}\right) E_I = E_T \implies E_T = \left(\frac{2}{1 + \alpha \beta}\right) E_I$$

as desired.

(c) In the case where $\mu_1 \simeq \mu_2 \simeq \mu_0$, show that the reflected wave has a π -phase shift with respect to the incident wave then $v_2 < v_1$.

Solution: In this case, then $\beta \approx \frac{v_1}{v_2} > 1$, so all we need to show is that $1 - \alpha \beta < 1$, or in other words $\alpha > 1$. We show this by rewriting α using Snell's law

$$\alpha = \frac{\cos \theta_2}{\cos \theta_1} = \frac{\sqrt{1 - \sin^2 \theta_2}}{\cos \theta_1} = \left(\frac{1 - \left(\frac{v_2}{v_1}\right)^2 \sin^2 \theta_1}{1 - \sin^2 \theta_1}\right)^{1/2}$$

Now, take a look at this quantity. We know that $\frac{v_2}{v_1} < 1$, so the quantity in the numerator is larger than that in the denominator. Therefore, the fraction is larger than one, so $\alpha > 1$. Therefore $\alpha\beta > 1$, and as such $1 - \alpha\beta < 1$, so that introduces a minus sign:

$$E_R = -\frac{|1 - \alpha\beta|}{|1 + \alpha\beta|} E_I$$

which is equivalent to a π phase shift.

(d) Is there *Brewster's angle* when the incident wave has a polarization perpendicular to the plane of incidence? That is, is there an incident angle such that $\tilde{E}_{0R} = 0$?

Solution: Continuing the math from the previous section, we know that we can write:

$$\alpha = \frac{1}{\beta} \frac{\sqrt{\beta^2 - \sin^2 \theta_1}}{\cos \theta_1}$$

For $\tilde{E}_{0R}=0$, then we require $1-\alpha\beta=0$, so we are looking for an angle θ_1 such that:

$$1 - \frac{\sqrt{\beta^2 - \sin^2 \theta_1}}{\cos \theta_1} = 0 \implies \cos \theta_1 = \sqrt{\beta^2 - \sin^2 \theta_1}$$

This eventually simplifies to $\beta=1$, which is the case where the two media are identical (i.e. no boundary exists). Therefore, there is no Brewster's angle.

(e) Consider the *z*-component of the Poynting vector.

$$\langle |\mathbf{S}_I \cdot \hat{\mathbf{z}}| \rangle = \frac{|\tilde{E}_{0I}|^2}{2\mu_1 v_1} \cos \theta_1, \quad \langle |\mathbf{S}_R \cdot \hat{\mathbf{z}}| \rangle = \frac{|\tilde{E}_{0R}|^2}{2\mu_1 v_1} \cos \theta_1, \quad \text{and} \quad \langle |\mathbf{S}_T \cdot \hat{\mathbf{z}}| \rangle = \frac{|\tilde{E}_{0T}|^2}{2\mu_2 v_2} \cos \theta_2$$

where $\langle \ldots \rangle$ means time average. The reflection and transmission coefficients are defined as

$$R \equiv \frac{\langle |\mathbf{S}_R \cdot \hat{\mathbf{z}}| \rangle}{\langle |\mathbf{S}_I \cdot \hat{\mathbf{z}}| \rangle} \quad \text{and} \quad T \equiv \frac{\langle |\mathbf{S}_T \cdot \hat{\mathbf{z}}| \rangle}{\langle |\mathbf{S}_I \cdot \hat{\mathbf{z}}| \rangle}$$

Explicitly check that R + T = 1.

Solution: We use the formulas that we have from part (b):

$$R = \frac{\frac{|E_R|^2}{2\mu_1 v_1} \cos \theta_1}{\frac{|E_I|^2}{2\mu_1 v_1} \cos \theta_1} = \frac{|E_R|^2}{|E_I|^2} = \left(\frac{1 - \alpha\beta}{1 + \alpha\beta}\right)^2 \quad T = \frac{\frac{|E_T|^2}{2\mu_2 v_2} \cos \theta_2}{\frac{|E_I|^2}{2\mu_1 v_1} \cos \theta_1} = \alpha\beta \frac{|E_T|^2}{|E_I|^2} = \alpha \left(\frac{2}{1 + \alpha\beta}\right)^2$$

Adding these two up:

$$R+T = \left(\frac{1-\alpha\beta}{1+\alpha\beta}\right)^2 + \alpha\beta\left(\frac{2}{1+\alpha\beta}\right)^2 = \frac{(1-\alpha\beta)^2 + 4\alpha\beta}{(1+\alpha\beta)^2} = \frac{(1+\alpha\beta)^2}{(1+\alpha\beta)^2} = 1$$

as desired.

Problem 2

According to Snell's law, when light passes from an optically dense medium into a less dense one $(n_1 > n_2)$, the propagation vector **k** bends *away* from the normal (Fig. below). In particular, if the light is incident at the **critical angle**

$$\theta_c \equiv \sin^{-1}(n_2/n_1)$$

then $\theta_T = 90^{\circ}$, and the transmitted ray just grazes the surface. If θ_I exceeds θ_c , there is no refracted ray at all, only a reflected one (this is the phenomenon of **total internal reflection**, on which light pipes and fiber optics are based). But the *fields* are not zero in medium 2; what we get is a so-called **evanescent wave**, which is rapidly attenuated and transports no energy into medium 2.

A quick way to construct the evanescent wave is simply to quote the results of Section 9.3.3, with $k_T = \omega n_2/c$ and

$$\mathbf{k}_T = k_T (\sin \theta_T \hat{\mathbf{x}} + \cos \theta_T \hat{\mathbf{z}})$$

the only change is that

$$\sin \theta_T = \frac{n_1}{n_2} \sin \theta_I$$

is now greater than 1, and

$$\cos \theta_T = \sqrt{1 - \sin^2 \theta_T} = i\sqrt{\sin^2 \theta_T - 1}$$

is imaginary. (Obviously, θ_T can no longer be interpreted as an angle!)

(a) Show that

$$\mathbf{E}_T(\mathbf{r},t) = \tilde{\mathbf{E}}_{0\tau} e^{-\kappa z} e^{i(kx - \omega t)}$$

where

$$\kappa \equiv \frac{\omega}{c} \sqrt{(n_1 \sin \theta_I)^2 - n_2^2}$$
 and $k \equiv \frac{\omega n_1}{c} \sin \theta_I$

this is a wave propagating in the x direction (parallel to the interface!), and attenuated in the z direction.

Solution: We did this portion in lecture. Consider first that the transmitted wave can be written as:

$$\mathbf{E}_T = \operatorname{Re}\left\{ E_{0T} e^{i(\mathbf{k}_T \cdot \mathbf{r} - \omega t)} \right\}$$

Here, we write

$$\mathbf{k}_T = k_T \cos \theta_T \mathbf{\hat{z}} + k_T \sin \theta_T \mathbf{\hat{x}}$$

From the problem statement, we know that $\cos \theta_T$ is purely imaginary, so we can write $i\kappa$ as:

$$i\kappa = k_T \cos \theta_T = k_T i \sqrt{\sin^2 \theta_T - 1} = i \frac{k_T}{n_2} \sqrt{(n_1 \sin \theta_I)^2 - n_2^2} = i \frac{\omega}{c} \sqrt{(n_1 \sin \theta_I)^2 - n_2^2}$$

Now, we can do the same thing for the \hat{x} direction, using Snell's law once again:

$$k = k_T \sin \theta_T = k_T \frac{n_1}{n_2} \sin \theta_I = \frac{\omega}{c} n_1 \sin \theta_1$$

Combining these two equations, we get the desired result:

$$\mathbf{E}_T = \mathbf{E}_{0T} e^{i(i\kappa z + kx - \omega t)} = \mathbf{E}_{0T} e^{-\kappa z} e^{i(kx - \omega t)}$$

as desired.

(b) Noting that α is now imaginary, use Eq. 9.110 to calculate the reflection coefficient for polarization parallel to the plane of incidence. [Notice that you get 100 percent reflection, which is better than a conducting surface (see, for example, prob. 9.23).]

Solution: Equation 9.110 reads:

$$\tilde{E}_{0R} = \left(\frac{\alpha - \beta}{\alpha + \beta}\right) \tilde{E}_{0I}$$

Now that α is purely imaginary, then we can write $\alpha = ia$ for $a \in \mathbb{R}$, so therefore:

$$R = \left|\frac{\alpha - \beta}{\alpha + \beta}\right|^2 = \left|\frac{-\beta + ia}{\beta + ia}\right|^2 = \left|\frac{a^2 + \beta^2}{a^2 + \beta^2}\right| = 1$$

as desired. \Box

(c) Do the same for polarization perpendicular to the plane of incidence (use the results of Prob. 9.17).

Solution: We will take the results from problem 1 of the homework. None of the math actually changes except for the fact that now α is again imaginary, so we have:

$$R = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta}\right) E_I, \quad T = \frac{2}{1 + \alpha \beta} E_I$$

Again, let $\alpha = ia$ where $a \in \mathbb{R}$, so:

$$R = \left| \frac{1 - ia\beta}{1 + ia\beta} \right|^2 = \frac{1 + a^2 \beta^2}{1 + a^2 \beta^2} = 1$$

so this is the same.

(d) In the case of polarization perpendicular to the plane of incidence, show that the (real) evanescent wave fields are

$$\mathbf{E}(\mathbf{r},t) = E_0 e^{-\kappa z} \cos(kx - \omega t) \hat{\mathbf{y}}$$

$$\mathbf{B}(\mathbf{r},t) = \frac{E_0}{\omega} e^{-\kappa z} \left[\kappa \sin(kx - \omega t) \hat{\mathbf{x}} + k \cos(kx - \omega t) \hat{\mathbf{z}} \right]$$

Solution: From part (a) we know that:

$$\mathbf{E}_T = \mathbf{E}_{0T} e^{-\kappa z} e^{i(kx - \omega t)}$$

From problem 1, we know that \mathbf{E}_{0T} points strictly in the $\hat{\mathbf{y}}$ direction, so taking the real part:

$$\mathbf{E}_T = E_{0T}e^{-\kappa z}\cos(kx - \omega t)\hat{\mathbf{y}}$$

For the B field, we know from problem 1 that:

$$\mathbf{B}_T = B_T(\mathbf{r}, t)(\sin \theta_T \hat{\mathbf{z}} - \cos \theta_T \hat{\mathbf{x}}) = \frac{E_T(\mathbf{r}, t)}{v}(\sin \theta_T \hat{\mathbf{z}} - \cos \theta_T \hat{\mathbf{x}})$$

From here, it will be useful to define a new constant a:

$$a = \frac{1}{n_2} \sqrt{\sin^2 \theta_T - 1}$$

so we may write $\cos \theta_T = ia$. Likewise, we can substitute $\sin \theta_T = \frac{n_1}{n_2} \sin \theta_I$. This leaves us with:

$$\mathbf{B}_{T}(\mathbf{r},t) = \frac{E_{0T}}{v}e^{-\kappa z}\operatorname{Re}\left\{\left(\cos(kx - \omega t) + i\sin(kx - \omega t)\right)\left(\frac{n_{1}}{n_{2}}\sin\theta_{I}\hat{\mathbf{x}} - ia\hat{\mathbf{z}}\right)\right\}$$

The real part is given by:

$$\mathbf{B}_{T}(\mathbf{r},t) = \frac{E_{0T}}{v}e^{-\kappa z} \left(\frac{n_{1}}{n_{2}} \sin \theta_{I} \cos(kx - \omega t) \hat{\mathbf{z}} + a \sin(kx - \omega t) \hat{\mathbf{x}} \right)$$

Rewriting a in terms of κ and other constants, we find that $a = \frac{\kappa c}{\omega n_2}$. So, we have:

$$\mathbf{B}_{T}(\mathbf{r},t) = \frac{E_{0T}}{v} e^{-\kappa z} \left(\frac{n_{1}}{n_{2}} \sin \theta_{I} \cos(kx - \omega t) \hat{\mathbf{z}} + \frac{\kappa c}{\omega n_{2}} \sin(kx - \omega t) \hat{\mathbf{x}} \right)$$

$$= \frac{E_{0T}}{v_{2}} e^{-\kappa z} \frac{1}{n_{2}} \frac{c}{\omega} \left(n_{1} \sin \theta_{I} \frac{\omega}{c} \cos(kx - \omega t) \hat{\mathbf{z}} + \kappa \sin(kx - \omega t) \hat{\mathbf{x}} \right)$$

$$= \frac{E_{0T}}{\omega} e^{-\kappa z} \left(k \cos(kx - \omega t) \hat{\mathbf{z}} + \kappa \sin(kx - \omega t) \hat{\mathbf{x}} \right)$$

as desired. Note that $E_{0T} = E_0$ defined in the problem statement. It took me while to realize that this isn't the incident magnitude, but instead just another way of denoting the magnitude of the transmitted wave.

(e) Check that the fields in (d) satisfy all of Maxwell's equations (Eq. 9.68).

Solution: We'll check these one by one. Starting with $\nabla \cdot \mathbf{E} = 0$:

$$\nabla \cdot \mathbf{E} = \frac{\partial}{\partial y} E_0 e^{-\kappa z} \cos(kx - \omega t) = 0$$

Now for $\nabla \cdot \mathbf{B} = 0$:

$$\nabla \cdot \mathbf{B} = \frac{E_{0T}}{\omega} \left(\frac{\partial}{\partial x} e^{-\kappa z} \kappa \sin(kx - \omega t) + \frac{\partial}{\partial z} e^{-\kappa z} \cos(kx - \omega t) \right)$$
$$= \frac{E_{0T}}{\omega} \left[e^{-\kappa z} \kappa k \cos(kx - \omega t) - \kappa e^{-\kappa z} k \cos(kx - \omega t) \right] = 0$$

Now, $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$, starting with $\nabla \times \mathbf{E}$:

$$\nabla \times \mathbf{E} = \epsilon^{ijk} \partial_j E_k = \frac{\partial}{\partial x} E_y \hat{\mathbf{z}} - \frac{\partial}{\partial z} E_y \hat{\mathbf{x}} = E_{0T} \kappa e^{-\kappa z} \cos(kx - \omega t) \hat{\mathbf{x}} - E_{0T} e^{-\kappa z} \kappa \sin(kx - \omega t) \hat{\mathbf{z}}$$

Now for $-\partial_t \mathbf{B}$:

$$-\partial_t \mathbf{B} = -\frac{E_{0T}}{\omega} e^{-\kappa z} \left(-\kappa \omega \cos(kx - \omega t) \hat{\mathbf{x}} + k\omega \sin(kx - \omega t) \hat{\mathbf{z}} \right)$$
$$= E_0 e^{-\kappa z} \left(\kappa \cos(kx - \omega t) \hat{\mathbf{x}} - k \sin(kx - \omega t) \hat{\mathbf{z}} \right)$$

Indeed they are equal. Finally, for $\nabla \times \mathbf{B} = \mu \mathbf{J} + \mu \epsilon \partial_t \mathbf{E}$, we first note that $\mathbf{J} = 0$ here, so we need to show $\nabla \times \mathbf{B} = \mu \epsilon \partial_T \mathbf{E}$. Starting with $\nabla \times \mathbf{B}$:

$$\nabla \times \mathbf{B} = \epsilon^{ijk} \partial_j B_k = \frac{\partial}{\partial z} B_x \hat{\mathbf{y}} - \frac{\partial}{\partial y} B_x \hat{\mathbf{z}} + \frac{\partial}{\partial y} B_z \hat{\mathbf{x}} - \frac{\partial}{\partial x} B_z \hat{\mathbf{y}}$$

Note that neither component of ${\bf B}$ has y-dependence, so this simplifies to:

$$\nabla \times \mathbf{B} = \frac{\partial}{\partial z} B_x \hat{\mathbf{y}} - \frac{\partial}{\partial x} B_z \hat{\mathbf{y}} = \frac{E_{0T}}{\omega} (-\kappa) e^{-\kappa z} \kappa \sin(kx - \omega t) - \frac{E_{0T}}{\omega} e^{-\kappa z} (-k^2 \sin(kx - \omega t))$$
$$= \frac{E_{0T}}{\omega} e^{-\kappa z} \sin(kx - \omega t) (k^2 - \kappa^2)$$

Now, we compute $\mu \epsilon \partial_t \mathbf{E}$:

$$\mu \epsilon \partial_T \mathbf{E} = E_{0T} e^{-\kappa z} \omega \sin(kx - \omega t)$$

To match these, we simplify $k^2 - \kappa^2$, using their definitions listed in the problem outline:

$$k^{2} - \kappa^{2} = \left(\frac{\omega}{c}n_{1}\right)\sin^{2}\theta_{I} - \left[\left(\frac{\omega}{c}\right)^{2}(n_{1}\sin\theta_{I})^{2} - \left(\frac{\omega n_{2}}{c}\right)^{2}\right] = \left(\frac{\omega n_{2}}{c}\right)^{2}$$

Therefore:

$$\nabla \times \mathbf{B} = \frac{E_{0T}}{\omega} e^{-\kappa z} \sin(kx - \omega t) \left(\frac{\omega n_2}{c}\right)^2 = E_{0T} e^{-\kappa z} \omega \sin(kx - \omega t) \left(\frac{n_2}{c}\right)^2$$

Using the fact that $\frac{n_2}{c} = \frac{1}{v_2} = \sqrt{\mu \epsilon}$, then we get the desired equality:

$$\nabla \times \mathbf{B} = \mu \epsilon E_{0T} e^{-\kappa z} \omega \sin(kx - \omega t) = \mu \epsilon \partial_t \mathbf{E}$$

(f) For the fields in (d), construct the Poynting vector, and show that, on average, no energy is transmitted in the z direction.

Solution: The Poynting vector is defined as:

$$\mathbf{S} = \frac{1}{\mu} (\mathbf{E} \times \mathbf{B}) = \frac{1}{\mu} \epsilon^{ijk} E_j B_k = \frac{1}{\mu} (E_y B_z \hat{\mathbf{x}} - E_y B_x \hat{\mathbf{z}})$$

Expanding this out, we get:

$$\mathbf{S} = \frac{1}{\mu} \left(E_{0T} e^{-\kappa z} \cos(kx - \omega t) \frac{E_{0T}}{\omega} e^{-\kappa z} k \cos(kx - \omega t) \hat{\mathbf{x}} - E_{0T} e^{-\kappa z} \cos(kx - \omega t) \frac{E_{0T}}{\omega} e^{-\kappa z} \kappa \sin(kx - \omega t) \hat{\mathbf{z}} \right)$$

$$= \frac{1}{\mu\omega} \left(E_{0T} e^{-\kappa z} \right)^2 \left(k \cos^2(kx - \omega t) \hat{\mathbf{x}} - \kappa \cos(kx - \omega t) \sin(kx - \omega t) \hat{\mathbf{z}} \right)$$

Averaged over time, we see that the Poynting vector in the $\hat{\mathbf{z}}$ direction has a $\sin\theta\cos\theta$ term, and we know that

$$\langle \sin \theta \cos \theta \rangle = \left\langle \frac{1}{2} \sin(2\theta) \right\rangle = 0$$

Therefore, there is no energy transmitted in the z direction.