Conic section Assignment

Mohamed Hamdan

September 2022

Problem Statement - Find the area of the triangle formed by the lines joining the vertex of the parabola $x^2=12y$ to the ends of its latus rectum

Solution

Figure 1: Triangle formed by vertex and ends of latus rectum of parabola $x^2=12y$

The given equation of parabola $x^2 = 12y$ can be written in the general quadratic form as

$$\mathbf{x}^{\top} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\top} \mathbf{x} + f = 0 \tag{1}$$

where

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\tag{2}$$

$$\mathbf{u} = \begin{pmatrix} 1 \\ -6 \end{pmatrix},\tag{3}$$

$$f = 0 (4)$$

The parabola in (1) can be expressed in standard form (center/vertex at origin, major-axis - x axis) as

$$\mathbf{y}^{\top} \mathbf{D} \mathbf{y} = -2\eta \mathbf{e}_{1}^{\top} \mathbf{y} \qquad |V| = 0 \tag{5}$$

where

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c}$$
 (Affine Transformation) (6)

$$\mathbf{P}^{\mathsf{T}}\mathbf{V}\mathbf{P} = \mathbf{D}.$$
 (Eigenvalue Decomposition) (7)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},\tag{8}$$

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \quad \mathbf{P}^{\top} = \mathbf{P}^{-1}, \tag{9}$$

$$\eta = \mathbf{u}^{\top} \mathbf{p}_1 \tag{10}$$

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{11}$$

To find \mathbf{c} which is the center of the parabola in (1), substitute (6) in (1)

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^T \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^T (\mathbf{P}\mathbf{y} + \mathbf{c}) + f = 0, \quad (12)$$

yielding

$$\mathbf{y}^{T}\mathbf{P}^{T}\mathbf{V}\mathbf{P}\mathbf{y} + 2\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{P}\mathbf{y} + \mathbf{c}^{T}\mathbf{V}\mathbf{c} + 2\mathbf{u}^{T}\mathbf{c} + f = 0 \quad (13)$$

From (13) and (7),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{P}\mathbf{y} + \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \quad (14)$$

For a parabola $|\mathbf{V}| = 0, \lambda_1 = 0$ and

$$\mathbf{V}\mathbf{p}_1 = 0, \mathbf{V}\mathbf{p}_2 = \lambda_2\mathbf{p}_2. \tag{15}$$

where $\mathbf{p}_1, \mathbf{p}_2$ are the eigenvectors of \mathbf{V} such that (7)

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \tag{16}$$

Substituting (16) in (14),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\left(\mathbf{p}_{1} \quad \mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\Rightarrow \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{1}\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\Rightarrow \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\mathbf{u}^{T}\mathbf{p}_{1} \quad \left(\lambda_{2}\mathbf{c}^{T} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \text{ from (15)}$$

$$\Rightarrow \lambda_{2}y_{2}^{2} + 2\left(\mathbf{u}^{T}\mathbf{p}_{1}\right)y_{1} + 2y_{2}\left(\lambda_{2}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{p}_{2}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

which is the equation of a parabola. Thus, (17) can be expressed as (5) by choosing

$$\eta = \mathbf{u}^T \mathbf{p}_1 \tag{17}$$

and \mathbf{c} in (14) such that

$$\mathbf{P}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) = \eta \begin{pmatrix} 1\\0 \end{pmatrix} \tag{18}$$

$$\mathbf{c}^{T} \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^{T} \mathbf{c} + f = 0 \tag{19}$$

Multiplying (18) by \mathbf{P} yields

$$(\mathbf{V}\mathbf{c} + \mathbf{u}) = \eta \mathbf{p}_1, \tag{20}$$

which, upon substituting in (19) results in

$$\eta \mathbf{c}^T \mathbf{p}_1 + \mathbf{u}^T \mathbf{c} + f = 0 \tag{21}$$

(20) and (21) can be clubbed together to obtain (22).

$$\begin{pmatrix} \mathbf{u}^{\top} + \eta \mathbf{p}_{1}^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_{1} - \mathbf{u} \end{pmatrix} \qquad |V| = 0$$
 (22)