Teoría de la computación Problema 37

10 de marzo de 2025

Expediente	Nombre
223210350	Amaya Soria Angel Alberto
219208106	Bórquez Guerrero Angel Fernando
223215039	Miranda Sanchez Javier Leonardo

37. Pruebe la propiedad 3. Sugerencia: demuestre por inducción, que $\forall n \geq 0$:

P(n): si |w| = n y $r \in \hat{\delta}(q, w)$ entonces $(q, w) \vdash (r, \epsilon)$.

Q(n): si $(q, w) \stackrel{*}{\models} (r, \varepsilon)$ en n movimientos entonces $r \in \hat{\delta}(q, w)$.

Propiedad 3. Sea δ la función de transición de un AFND. Para todo estado q y cadena de símbolos de entrada w:

$$\hat{\delta}(q, w) = \{ r \in Q : (q, w) \vdash (r, \varepsilon) \}.$$

Suponemos

 $|w| = n = 0 = \varepsilon$

Para P(n):

Por definición: $\hat{\delta}(q,\varepsilon) = q$

Como q requiere 0 pasos para llega a r, se cumple $(q, w) \vdash (r, \varepsilon)$

Para Q(n):

Si $(q, w) \vdash (r, \varepsilon)$ en n movimientos, por definición de la relación de transición extendida, $q \in \hat{\delta}(q, \varepsilon)$ se cumple Q(n).

Paso inductivo

Suponemos que P(n) y Q(n) son ciertos para un cierto $n \ge 0$.

Probamos para |w| = n + 1

Para P(n+1):

Sea w una palabra de tamaño $n+1,\,w=xa,\,x$ es una palabra de longitud n y a un símbolo.

Por hipótesis de inducción si $r \in \hat{\delta}(q, x)$, entonces (q, x) en n pasos llega a (r, ε) procesamos a, aplicamos la transición extendida $\hat{\delta}(q, xa) = \bigcup_{i=1}^{m} \delta(p_i, a)$.

Si $r' \in \hat{\delta}(q, xa)$, entonces existe algún $p \in \hat{\delta}(q, x)$ tal que $r' \in \delta(p, a)$.

Como (q, x) en n pasos llega a (p, ε) y p al procesar a llega a r' entonces n+1 pasos $(q, xa) \vdash (r', \varepsilon)$

QED

Para Q(n+1):

Si (q, xa) en n+1 pasos llega a (r, ε) , entonces en los primeros n pasos (q, x) llega a algún estado p, y en un paso adicional (p, a) llega a (r, ε) .

Por hipótesis de inducción sabemos que $p \in \hat{\delta}(q, x)$, además, por definición de $\hat{\delta}$ r debe pertenecer a $\delta(p, a)$.

Como $\hat{\delta}(q, xa)$ está definida como la unión de todas las transiciones de $\delta(p, a)$ para $p \in \hat{\delta}(q, x)$, concluimos que r pertenece a $\hat{\delta}(q, xa)$

QED