# Distributed Systems

Tasniya Ahmed

Lecturer

IIT

**NSTU** 

## Systems 1.1 Characterization of distributed systems

#### 1. Introduction

#### What is a Distributed System?

A distributed system is one in which components located at networked computers

communicate and coordinate their actions only by passing messages

A distributed system consists of a collection of autonomous computers linked by a computer network and equipped with distributed system software. This software enables computers to coordinate their activities and to share the resources of the system hardware, software, and data.

#### How to characterize a distributed system?

- •concurrency of components
- •lack of global clock
- •independent failures of components

#### What are the challenges?

- •heterogeneity of their components
- •openness
- •security
- scalability the ability to work well when the load or the number of users increases
- •failure handling
- •concurrency of components
- transparency
- providing quality of service

### 1.2Examples of distributed systems

| Finance and commerce                  | eCommerce e.g. Amazon and eBay, PayPal, online banking and trading                             |
|---------------------------------------|------------------------------------------------------------------------------------------------|
| The information society               | Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace |
| Creative industries and entertainment | online gaming, music and film in the home, user-generated content, e.g. YouTube, Flickr        |
| Healthcare                            | health informatics, on online patient records, monitoring patients                             |
| Education                             | e-learning, virtual learning environments; distance learning                                   |
| Transport and logistics               | GPS in route finding systems, map services: Google Maps, Google Earth                          |
| Science                               | The Grid as an enabling technology for collaboration between scientists                        |
| Environmental management              | sensor technology to monitor earthquakes, floods or tsunamis                                   |

#### **1.2** Examples of distributed systems

### 1.2.1 Web search

1.2.2 Massively multiplayer online games (MMOGs)

An example: Google

Highlights of this infrastructure:

- physical infrastructure
- •distributed file system
- •structured distributed storage system
- •lock service
- •programming model

#### **Examples**

- •EVE online client-server architecture!
- •EverQuest more distributed architecture
- •Research on completely decentralized approaches based on *peer-topeer (P2P) technology*

### 1.2Examples of distributed systems

#### 1.2.3 Financlial

#### trading

• distributed even-based systems



- -Reuters market data events
- **FIX events** (events following the specific format of the Financial Informa-

<sup>z</sup> tion eXchange protocol)

```
WHE
        MSFTp r i c emoveso u t s i d e
                                      2%
               ofMSFTMoving Average
FOLLOWED-BY (
         MyBasketmovesupby
                               0.5%
        AND (
                                            5%
                 HPQ-spric
                 encovesupby
                 MSFT-spric
                                               2%
                 emovesdownby
ALLWITHIN
         any 2 minutetimeperiod
THEN
        BUYMSFT
        SELLHP
```

### 1.3Trends in distributed systems

#### 3. Trends in distributed systems

- •emergence of pervasive networking technology
- emergence of ubiquitous computing coupled with the desire to support user mobility
- •multimedia services
- •distributed systems as utility

#### 1.3.1 Pervasive networking and the modern Internet

networking has become a pervasive resource and devices can be conected at any time and any place

#### A typical portion of the Internet:



#### 2. Mobile and ubiquitous computing

- •laptop computers
- handheld devices (mobile phones, smart phones, tablets, GPS-enabled devices, PDAs, video and digital cameras)
- •wearable devices (smart watches, glasses, etc.)
- •devices embedded in appliances (washing machines, refrigerators, cars, etc.)

#### Portable and handheld devices in a distributed system

- •mobile computing
- location/contextaware computing
- ubiquitous computing
- spontaneous interoperation
- •service discovery



#### 3. Distributed multimedia systems

- •live or pre-ordered television broadcasts
- •video-on-demand
- •music libraries
- •audio and video conferencing

#### 4. Distributed computing as a utility

- •Cluster computing
- •Grid computing
- •Cloud computing



#### 4. Sharing resources

#### What are the resources?

- •Hardware
  - Not every single resource is for sharing
- •Data
  - Databases
  - Proprietary software
  - Software production
  - Collaboration

#### **22**Characterization of Distributed Systems

#### **Sharing Resources**

- Different resources are handled in different ways, there are however some generic requirements:
  - Namespace for identification
  - Name translation to network address
  - Synchronization of multiple access

#### 5. Challenges

#### 1. Heterogeneity

**Heterogeneity** – variety and difference in:

- networks
- •computer hardware
- •OS
- •programming languages
- •implementations by different developers

#### 24Characterization of Distributed

### Systems 1.5 Middleware

- *middleware* software layer providing:
  - programming abstraction
  - masking heteorogeneity of:
    - \* underlying networks
    - \* hardware
    - \* operating systems

#### Heterogeneity and mobile code

*Mobile code* – programming code that can be transferred from one computer to another and run at the destination (Example: think Java applets)

*Virtual machine* approach – way of making code executable on a variety of host computers – the compiler for a particular language generates code for a virtual ma- chine instead of a particular hardware order code.

#### **25**Characterization of Distributed

Systems1.5

1.5.2 Openness

#### **OPENNESS** of a:

Challer

**computer system -** can the system be extended and reimplemented in various ways?

**distributed system** - can new resource-sharing services be added and made available for use by variety of client programs?

Systems1.5

An open system –

key interfaces nee

#### An open distributed system has:

- •uniform communication mechanism
- •published interfaces to shared resources

Open DS - heterogeneous hardware and software, possibly from different vendors, but conformance of each component to published standard must be tested and verified for the system to work correctly

#### **27Characterization of Distributed**

#### Systems1.5

- 3. Security
  - 1. Confidentiality protection against disclosure to unauthor
  - 2. Integrity protection against alteration or corruption
  - 3. Availability protection against interference with the means sources

Security challenges not yet fully met:

- denial of service attacks
- security of mobile code

### Challer

4. Scalability

– the ability to work well when the system load or the numbe

Challer

Challanges with building scalable distributed systems:

- •Controlling the cost of physical resources
- Controlling the performance loss
- Preventing software resources running out (like 32-bit internet addresses, which are being replaced by 128 bits)
- •Avoiding performance bottlenecks
  - Example: some web-pages accessed very frequently remedy:
     caching and replication

### **Systems 1.5 5.** Failure handling

Techniques for dealing with failures

- Detecting failures
- Masking failures
  - 1. messages can be retransmitted
  - 2. disks can be replicated in a synchronous action
- •Tolerating failures
- •Recovery from failures

### Challei

#### **30Characterization of Distributed**

- Systems1.5
  •Redundancy
  - redundant components
    - 1. at least two different routes
    - 2. like in DNS every name table replicated in at least two different servers
    - 3. database can be replicated in several servers

Main goal: **High** availability—measure of the profor use

#### 31Characterization of Distributed

Systems1.5

#### 6. Concurrency

Example: Several clients trying to access shared resource at the same time Any object with shared resources in a DS must be responsible that it operates correctly in a concurrent environment

Discussed in Chapters 7 and 17 in the book

#### 7. Transparency

*Transparency*— conceal separation of components in a Distributed System for the system to be perceived as a whole rather than a collection of independent components

### 5 Challenges

- Acess transparency access to local and remote resources identical
- Location transparency resources accessed without knowing their physical or network location
- •Concurrency transparency concurrent operation of processes using shared resources without interference between them
- •Replication transparency multiple instances seem like one
- •Failure transparency fault concealment
- •Mobility transparency movement of resources/clients within a system without affecting the operation of users or programs

**Access and Location transparancy** – together

called also Network

transparency

#### Systems1.5

#### 1.5.8 Quality of service

Main nonfunctional properties of systems that affect *Quality of Service* (*QoS*):

- reliability
- security
- performance

Time-critical data transfers

Additional property to meet changing system configuration and resource availability:

• adaptability

Challer

### 1.6Case study: The World Wide Web

6. Case study: The World Wide Web

**CERN 1989** 

hypertext structure, hyperlinks

- •Web is an open system
- •content standards freely published and widely implemented
- Web is open with respect to types

Figure 1.7 Web servers and web

browsers

### 1.6Case study: The World Wide Web



#### HTML

HyperText Markup Language<u>www.w3.org</u> 36Characterization of Distributed Systems1.6 Case study: The World Wide Web

#### **URL-s**

Uniform Resource Locators (also known as URI-s - Uniform Resourse Identifiers)

http://servername[:port][/pathName][?query][#fragment]

#### **HTTP**

- •Request-reply interactions
- Content types
- •One resource per request
- •Simple access control
- Dynamic pages

Web services

### 37Characterization of Distributed Systems1.6 Case study: The World Wide Web

The Extensible Markup language (XML) designed to represent data in standard, structured, application-specific way

XML data can be transmitted by POST and GET operations

• Semantic web – web of linked metadata resources

Web as a system – main problem – the problem of

scale

End of week 1