Statistical Language Processing (CL III): 6 ECTS

Instructors: Prof. Dr. Erhard Hinrichs

Sommersemester 2024; meeting times: Tuesday, 16:15 – 17:45 and Thursday, 14:15 – 15:45

Room 0.02, Wilhelmstr. 19

First class meeting: Tue, April 16, 16:15 – 17:45

Successful completion of this course satisfies one of two course requirements for the ISCL-BA-08 module of the Bachelor of Arts Hauptfach curriculum in Computational Linguistics.

- a) Statistical Language Processing (CLIII) (4 semester credit hours, 6 ECTS)
- b) Tutorial Statistical Language Processing (CL III) (2 semester credit hours, 3 ECTS)

The **tutorial Statistical Language Processing (CL III)** will be taught this semester as well. There will be a separate Moodle page for that course.

Important Note:

For B.A. students with Computational Linguistics as their Hauptfach, enrollment in this course is only possible for those who fulfill the following pre-requisites: successful completion of modules ISCL-BA-06: Symbolic Computational Linguistics: Parsing, and ISCL-BA-07: Advanced Programming

For B.A./B.Sc. students enrolled in programs other than Computational Linguistics and for M.A. students in Computational Linguistics: please consult with me as the course instructor (email: erhard.hinrichs@uni-tuebingen.de) concerning pre-requisites for this course.

For M.A. students in Computational Linguistics, please consult with the M.A. Student Advisor Dr. Çagri Çöltekin as to whether you can receive credit for this course.

Credit Points and Grading Policy

The following requirements will be mandatory for all participants who want to receive course credit for this class:

1. Active participation in class: 4SWS * 15 = 60 hours (2 CP)

Please note: Missing more than two classes without valid excuses automatically results in failing the class. Attendance and participation will count for **20% of your final grade**.

Reading Assignments: 4h * 15 = 60 hours (2 CP)

Reading assignments need to be completed in advance of each lecture. Write down any open questions and raise these questions during class.

2 . Final Exam: 4h * 15 = 60h (2 CP)

This class concludes with a written examination (Klausur). The final exam will count for **80% of your final grade**.

Time Schedule

Week 1

Tue, April 16 Course Overview (30 min); Vector Semantics and Embeddings: Word Meaning

Reading: J&M, 6.1

Thur, Apr 18 Vector Semantics and Embeddings: Vector Semantics; Words and Vectors, Cosine similarity

Reading: J&M, 6.2 - 6.4

Week 2

Tue, April 23 Vector Semantics and Embeddings: TF-IDF, PMI, Word2Vec

Reading: J&M, 6.5 – 6.8.1; Further Reading: Alammar, Jay. The Illustrated Word2Vec.

Thur, April 25 Vector Semantics and Embeddings: Learning the Embeddings; Properties of Embeddings

Reading: J&M, 6.8.2 - 6.12

Week 3

Tue, April 31 Simple Neural Networks and Neural Language Models: Units in Neural Networks, The XOR problem

Reading: J&M, Chapter 7 - 7.2

Thur, May 02 Feedforward Neural Networks

Reading: J&M, Chapter 7.3

Week 4

Tue, May 07 Applying feedforward networks to NLP tasks: Classification and Language Modelling

Reading: J&M, Chapter 7.4 - 7.5

Thur, May 09 Holiday

Week 5

Tue, May 14 Training

Reading: J&M, Chapter 7.6 - 7.7

Videos: What is Backpropagation really doing?:

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Backpropagation Calculus:

https://www.youtube.com/watch?v=tIeHLnjs5U8

Thur, May 16 Training

Reading: J&M, Chapter 7.6 - 7.7

Week 6

No classes (Pfingstferien)

Week 7

Tue, May 28 English Word Classes, Part-of-Speech Tagging; Named Entity and Named Entity Tagging

Reading: J&M, Chapter 8.1 - 8.3

Thur, May 30 Holiday

Week 8

Tue, June 04 HMM Tagging

Reading: J&M, Chapter 8.4

Thur, June 06 Conditional Random Fields (CRF)

Reading: J&M, Chapter 8.5

Week 9

Tue, June 11 Recurrent Neural Networks (RNNs); RNNs as LMs; RNNs for other NLP tasks

Reading: J&M, Chapter 9.1; J&M, Chapter 9.2; J&M, Chapter 9.3

Thur, June 13 Stacked and bi-directional RNN architecture;

Reading: J&M, Chapter 9.4

Week 10

Tue, June 18 Common RNN NLP Architectures, The Encoder-Decoder Model with RNNs

Reading: J&M, Chapter 9.6 - 9.7

Thur, June 20 Attention

Reading: J&M, Chapter 9.8

Week 11

No classes

Week 12

Tue, July 02 The Transformer: A Self-Attention Network

Reading: J&M, Chapter 10.1

Thur, July 04 Multihead Attention; Transformer Blocks

Reading: J&M, Chapter 10.2.; Chapter 10.3.

Week 13

Tue, July 09 Chapter 10

Thur, July 11 Chapter 11: BERT

Week 14

Tue, July 16 Chapter 11: BERT

Thur, July 18 Prompting, In-Context Learning, and Instruct Tuning

Week 15

Tue, July 23 Prompting, In-Context Learning, and Instruct Tuning

Thur, July 25 Review

Final Exam: Tue, July 30 (mandatory date for all participants)

Textbook

Daniel Jurafsky and James H. Martin (2024). Speech and Language Processing - An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Third Edition draft. February 03, 2024.

URL: https://web.stanford.edu/~jurafsky/slp3/

Further Readings

Alammar, Jay. The Illustrated Word2Vec. https://jalammar.github.io/illustrated-word2vec/

Alammar, Jay. The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Alammar, Jay. Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention). https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Karpathy, Andrej. The Unreasonable Effectiveness of Recurrent Neural Networks. http://karpathy.github.io/2015/05/21/rnn-effectiveness/