

General information

Designation

Swietenia macrophylla (L)

Typical uses

Furniture; cabinetwork; interior trim; pattern making; boat construction; fancy veneers; musical instruments; paneling; turnery; carving.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%
Composition detail (polymers and natural materials	3)	
Wood	100	%

Price

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 3.08e3	-	6.13e3	USD/m^3

Physical properties

Density	460	-	570	kg/m^3

Mechanical properties

wechanical properties				
Young's modulus	* 10.2	-	12.5	GPa
Yield strength (elastic limit)	* 39.8	-	48.6	MPa
Tensile strength	* 66.4	-	81.2	MPa
Elongation	* 1.75	-	2.14	% strain
Compressive strength	42.1	-	51.4	MPa
Flexural modulus	9.3	-	11.4	GPa
Flexural strength (modulus of rupture)	71.4	-	87.2	MPa
Shear modulus	* 0.75	-	0.93	GPa
Shear strength	7.6	-	9.3	MPa
Bulk modulus	* 0.42	-	0.47	GPa
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.3			
Hardness - Vickers	* 3.34	-	4.08	HV
Hardness - Brinell	* 43	-	52.6	НВ
Hardness - Janka	* 3.34	-	4.08	kN

Mahogany (swietenia macrophylla) (I)

SIEDOPIACK								
Fatigue strength at 10^7 cycles	* 21.4	-	26.2	MPa				
Mechanical loss coefficient (tan delta)	* 0.0074	-	0.0091					
Differential shrinkage (radial)	0.11	-	0.15	%				
Differential shrinkage (tangential)	0.17	-	0.22	%				
Radial shrinkage (green to oven-dry)	2.7	-	3.3	%				
Tangential shrinkage (green to oven-dry)	3.7	-	4.5	%				
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%				
Work to maximum strength	46.5	-	56.9	kJ/m^3				
Impact & fracture properties								
Fracture toughness	* 3.6	-	4.4	MPa.m^0.5				
Thermal properties								
Glass temperature	77	-	102	$\mathcal C$				
Maximum service temperature	120	-	140	$\mathcal C$				
Minimum service temperature	* -73	-	-23	$\mathcal C$				
Thermal conductivity	* 0.23	-	0.28	W/m.℃				
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃				
Thermal expansion coefficien	* 2	-	11	µstrain/℃				
Electrical properties								
Electrical resistivity	* 6e13	-	2e14	µohm.cm				
Dielectric constant (relative permittivity)	* 5.24	-	6.4					
Dissipation factor (dielectric loss tangent)	* 0.059	-	0.072					
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m				
Magnetic properties								
Magnetic type	Non-ma	gnet	ic					
Optical properties								
Transparency	Opaque)						
Critical materials risk								
Contains >5wt% critical elements?	No							
Durability								
Water (fresh)	Limited							
Water (salt)	Limited	use						
Weak acids	Limited	use						
Strong acids	Unacceptable							
Weak alkalis	Accepta	Acceptable						
Strong alkalis	Unacce	ptab	le					

Mahogany (swietenia macrophylla) (I)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.34	-	1.48	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.1	-	0.111	kg/kg
Fine machining energy (per unit wt removed)	* 9.11	-	10.1	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.683	-	0.755	kg/kg
Grinding energy (per unit wt removed)	* 17.7	-	19.6	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.33	-	1.47	kg/kg

Recycling and end of life

rice, circi circi circi	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse			
Reference			
Shape			