```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy as sp
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

Link do folderu z kodem: https://aghedupl-my.sharepoint.com/my?

id=%2Fpersonal%2Fdracz%5Fstudent%5Fagh%5Fedu%5Fpl%2FDocuments%2FUczenie%20Maszynowe%2FUczenie%20nadzorowane%2F

```
In [59]: names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', "PTRATIO", 'B', 'LSTAT', 'MEDV'
    data = pd.read_csv('housing.data.txt', delimiter = r'\s+', names = names)
    data.head()
```

Out[59]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

Opis zmiennych

- CRIM wskaźnik przestępczości na mieszkańca (ilość zgłoszonych przestępstw podzielona przez ilość mieszkańców miasta)
- ZN odsetek gruntów pod zabudowę mieszkaniową o powierzchni powyżej 25 000 stóp kwadratowych
- INDUS odsetek biznesów niezajmujących się handlem detalicznym dla miasta
- CHAS 1 jeżeli leży nad rzeką Charles; 0 jeśli nie
- NOX koncentracja tlenków azotu (ilość części na 10 milionów)
- RM średnia ilość pokoi mieszkalnych
- AGE odsetek budynków, zamieszkanych przez właścicieli, wybudowanych przed 1940 r.
- DIS zważone odległości od pięciu dużych centrów zatrudnienia
- RAD indeks dostępności do dróg radialnych
- TAX pełna stawka podatku od nieruchomości na \$10,000
- PTRATIO stosunek ilości uczniów do ilości nauczycieli dla miasta
- B $1000(B_k 0.63)^2$, gdzie B_k to odsetek czarnoskórych mieszkańców
- LSTAT % ludności o niższym statusie
- MEDV mediana cen mieszkań zajętych przez właścicieli (w tysiącach dolarów)

```
In [3]: data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 506 entries, 0 to 505
      Data columns (total 14 columns):
       # Column Non-Null Count Dtype
       0
          CRIM
                   506 non-null
                                   float64
                                float64
                   506 non-null
           ZN
       1
           INDUS
                   506 non-null
                                float64
           CHAS
                                int64
       3
                   506 non-null
           NOX
                    506 non-null
                                  float64
           RM
                   506 non-null
                                  float64
       6
           AGE
                   506 non-null
                                float64
       7
           DIS
                   506 non-null
                                  float64
       8
           RAD
                    506 non-null
                                   int64
                   506 non-null
                                  float64
       9
           TAX
       10 PTRATIO 506 non-null
                                  float64
       11 B
                   506 non-null
                                   float64
       12 LSTAT
                    506 non-null
                                   float64
       13 MEDV
                    506 non-null
                                   float64
```

Eksploracyjna analiza danych

Ilość wartości brakujących

dtypes: float64(12), int64(2)
memory usage: 55.5 KB

```
In [4]: data.isnull().sum()
Out[4]: CRIM
         ΖN
                     0
         INDUS
                     0
         CHAS
                     0
         NOX
                     0
         RM
                     0
         AGE
                     0
         DIS
                     0
         RAD
                     0
         TAX
                     0
         PTRATIO
                     0
         В
                     0
         LSTAT
                     0
         MEDV
                     0
         dtype: int64
         W zbiorze danych nie występują żadne wartości brakujące
```

Statystyki opisowe

In [5]:	data.d	describe()										
Out[5]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	5
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	
	4											Þ

Ilość wartości unikalnych w całym zbiorze danych

```
In [6]: print(f"Ilość rekordów: {len(data)}")
        for name in names:
            print(f"Ilość unikalnych wartości dla zmiennej {name}: {len(data[name].unique())}")
       Ilość rekordów: 506
       Ilość unikalnych wartości dla zmiennej CRIM: 504
       Ilość unikalnych wartości dla zmiennej ZN: 26
       Ilość unikalnych wartości dla zmiennej INDUS: 76
       Ilość unikalnych wartości dla zmiennej CHAS: 2
       Ilość unikalnych wartości dla zmiennej NOX: 81
       Ilość unikalnych wartości dla zmiennej RM: 446
       Ilość unikalnych wartości dla zmiennej AGE: 356
       Ilość unikalnych wartości dla zmiennej DIS: 412
       Ilość unikalnych wartości dla zmiennej RAD: 9
       Ilość unikalnych wartości dla zmiennej TAX: 66
       Ilość unikalnych wartości dla zmiennej PTRATIO: 46
       Ilość unikalnych wartości dla zmiennej B: 357
       Ilość unikalnych wartości dla zmiennej LSTAT: 455
       Ilość unikalnych wartości dla zmiennej MEDV: 229
```

Zmienne, które mają wyraźnie mniejszą ilość wartości unikalnych:

- ZN
- CHAS
- RAD

Zmienne te są zmiennymi kategorycznymi, co widać na poniższych wykresach:

```
In [7]: fig, axes = plt.subplots(1, 3, figsize = (8,5), facecolor = 'white')
fig.suptitle("Wskaźnik przestępstw a inne zmienne", fontsize = 'x-large', fontweight = 'bold')
names1 = ['ZN', 'CHAS', 'RAD']
for i in range(3):
    sns.scatterplot(data = data, x = names1[i], y = 'CRIM', size = 1, ax = axes[i], legend = False)
    axes[i].set_title(names1[i])
```


Wskaźnik przestępstw a inne zmienne

Zmiennych tych (np. CHAS) można użyć, żeby według nich pogrupować inne zmienne.

Badanie rozkładu zmiennych

Wybrane zmienne zostaną przedstawione na histogramach (z dodaniem jądrowego estymatora gęstości), a także na innych typach wykresów celem zbadania ich rozkładu.

```
In [58]: fig, axes = plt.subplots(2, 3, figsize = (10, 7), facecolor = 'white')

names2 = np.array(['DIS', 'INDUS', 'NOX', 'RM', 'AGE', 'TAX']).reshape(2,3)

fig.suptitle("Histogramy dla zmiennych numerycznych", fontsize = 'x-large', fontweight = 'bold')

colors = np.array(["palegoldenrod", "lightskyblue", "pink", "springgreen", "plum", "lightsteelblue"]).reshape(2)

for i in range(2):
    for j in range(3):
        axes[i,j].grid(visible = True, axis = 'y')
        sns.histplot(data = data[names2[i,j]], ax = axes[i,j], color = colors[i,j], stat = "density")
        sns.kdeplot(data = data[names2[i,j]], color = "firebrick", ax = axes[i,j], linewidth = 2.1)
        axes[i,j].set_title(names2[i,j])

plt.tight_layout()
```

Histogramy dla zmiennych numerycznych

Rozkłady są skośne (z wyjątkiem RM, który jest prawie symetryczny). Dla zmiennych INDUS i TAX można zaobserwować bimodalność.

Wykresy boxplot (zaznaczona na nich również wartość średnia znakiem x):

```
In [79]: fig, axes = plt.subplots(2, 3, figsize = (10, 7), facecolor = 'white')
fig.suptitle("Wykresy pudekkowe dla wybranych zmiennych", fontsize = 'x-large', fontweight = 'bold')

for i in range(2):
    for j in range(3):
        axes[i,j].grid(visible = True, axis = 'y')
        sns.boxplot(data = data[names2[i,j]], ax = axes[i,j], color = colors[i,j], showmeans = True, meanprops axes[i,j].set_title(names2[i,j])
        axes[i,j].set_title(names2[i,j])
        axes[i,j].yaxis.label.set_visible(False)
```

Wykresy pudełkowe dla wybranych zmiennych

Wykresy dla zmiennej MEDV

Badanie zależności między wybranymi zmiennymi

Celem zbadania zależności, w pierwszym kroku można zwizualizować macierz korelacji, która pozwoli ocenić liniowe zależności między zmiennymi:

```
In [74]: fig, ax = plt.subplots(1, 1, figsize = (12, 8), facecolor = 'white')
sns.heatmap(data.corr(), annot = True, cbar = True, cmap = 'viridis', ax = ax)
ax.set_title("Macierz korelacji", fontweight = "bold")
```

Out[74]: Text(0.5, 1.0, 'Macierz korelacji')

Poniżej w celu przeglądowym przedstawione zostały również relacje między wybranymi parami zmiennych:

```
In [66]: fig, axes = plt.subplots(2, 3, figsize = (12,7), facecolor = 'white')
fig.suptitle("MEDV a inne zmienne", fontsize = "x-large", fontweight = 'bold')
```

```
for i in range(2):
    for j in range(3):
        sns.scatterplot(data = data, x = names2[i,j], y = 'MEDV', ax = axes[i,j], color = colors[i,j])
        axes[i,j].set_title(f"MEDV a {names2[i,j]}")

plt.tight_layout()
```



```
fig, axes = plt.subplots(2, 3, figsize = (12,7), facecolor = 'white')
fig.suptitle("MEDV a inne zmienne (w zależności od CHAS)", fontsize = "x-large", fontweight = 'bold')

for i in range(2):
    for j in range(3):
        sns.scatterplot(data = data, x = names2[i,j], y = 'MEDV', ax = axes[i,j], hue = 'CHAS', palette = 'Set2 axes[i,j].set_title(f"MEDV a {names2[i,j]}")

plt.tight_layout()
```


Można zauważyć, że zmienna CHAS = 1 (miasta leżące nad rzeką), stanowi jedynie niewielką część całego zbioru danych.

```
fig.suptitle("INDUS a inne zmienne", fontsize = "x-large", fontweight = 'bold')
nn = ['DIS', 'AGE', 'ZN']

colors = ['orange', 'green', 'violet']

for i in range(3):
    sns.scatterplot(data = data, x = nn[i], y = 'INDUS', ax = axes[i], color = colors[i])
    axes[i].set_title(f"INDUS a {nn[i]}")

plt.tight layout()
```

INDUS a inne zmienne


```
In [129... fig, axes = plt.subplots(1, 3, figsize = (12,5), facecolor = 'white')
fig.suptitle("LSTAT a inne zmienne", fontsize = "x-large", fontweight = 'bold')
nn = ['PTRATIO', 'TAX', "CRIM"]
for i in range(3):
    sns.scatterplot(data = data, x = nn[i], y = 'LSTAT', ax = axes[i], color = colors[i])
    axes[i].set_title(f"LSTAT a {nn[i]}")

plt.tight_layout()
```

LSTAT a inne zmienne


```
In [130... fig, axes = plt.subplots(1, 3, figsize = (12,5), facecolor = 'white')
fig.suptitle("NOX a inne zmienne", fontsize = "x-large", fontweight = 'bold')
nn = ['ZN', 'INDUS', "DIS"]
for i in range(3):
    sns.scatterplot(data = data, x = nn[i], y = 'NOX', ax = axes[i], color = colors[i])
    axes[i].set_title(f"NOX a {nn[i]}")
```

NOX a inne zmienne


```
fig, axes = plt.subplots(1, 3, figsize = (12,5), facecolor = 'white')
fig.suptitle("RM a inne zmienne", fontsize = "x-large", fontweight = 'bold')
nn = ['MEDV', 'INDUS', "RAD"]
for i in range(3):
    sns.scatterplot(data = data, x = nn[i], y = 'RM', ax = axes[i], color = colors[i])
    axes[i].set_title(f"RM a {nn[i]}")
plt.tight_layout()
```

RM a inne zmienne


```
fig, axes = plt.subplots(1, 3, figsize = (12,5), facecolor = 'white')
fig.suptitle("DIS a inne zmienne", fontsize = "x-large", fontweight = 'bold')
nn = ['AGE', 'TAX', "RAD"]
for i in range(3):
    sns.scatterplot(data = data, x = nn[i], y = 'DIS', ax = axes[i], color = colors[i])
    axes[i].set_title(f"DIS a {nn[i]}")

plt.tight_layout()
```

DIS a inne zmienne

Ogólne wnioski ze wstępnej analizy:

· rozkłady danych są niesymetryczne,

grid.fit(X_train, y_train)

- w zbiorze nie ma wartości brakujących, ale dla niektórych zmiennych można zauważyć wartości odstające,
- związki między poszczególnymi zmiennymi nie są zazwyczaj liniowe (wyjątek: np. LSTAT i MEDV), ale między większością można zauważyć znaczącą korelację

Podział na zbiór treningowy i testowy

```
In [106... X = data.drop("MEDV", axis = 1)]
         y = data['MEDV']
         X train, X test, y train, y test = train test split(X, y, test size = 0.2)
In [108... # regresja liniowa
         lr = LinearRegression()
         lr.fit(X train, y train)
Out[108...
         ▼ LinearRegression □
         LinearRegression()
In [112... # XGBoost
         xg_reg1 = xgb.XGBRegressor(objective='reg:squarederror', colsample_bytree = 0.3, n_estimators = 10, max_depth =
         xg_reg1.fit(X_train, y_train)
Out[112...
                                          XGBRegressor
         XGBRegressor(base score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample bytree=0.3, device=None, early stopping rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types=None
                       feature weights=None, gamma=None, grow policy=None,
                       importance type=None, interaction constraints=None,
                       learning rate=None, max bin=None, max cat threshold=None,
                       max cat to onehot=None, max delta step=None, max depth=5,
In [113... from sklearn.model_selection import GridSearchCV
         params = {'learning_rate' : [0.01, 0.1, 0.3], 'max_depth' : [3,5,7], 'n_estimators' : [50, 100, 200]}
         xg_reg2 = xgb.XGBRegressor(objective = 'reg:squarederror', colsample_bytree = 0.3)
         grid = GridSearchCV(estimator = xg_reg2, param_grid = params, cv = 5, scoring = 'neg_mean_squared_error')
```

Ewaluacja modeli

```
In [123... from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, root_mean_squared_error
In [125... # regresja liniowa
         y_pred_lr = lr.predict(X_test)
         print("Regresja liniowa\n")
         print(f"MSE = {mean_squared_error(y_test, y_pred_lr)}")
         print(f"RMSE = {root_mean_squared_error(y_test, y_pred_lr)}")
         print(f"MAE = {mean_absolute_error(y_test, y_pred_lr)}")
         print(f"R2 = {r2_score(y_test, y_pred_lr)}")
        Regresja liniowa
        MSE = 18.92465064382449
        RMSE = 4.350247193416081
        MAE = 3.081907244576049
        R2 = 0.7260575002484574
In [126... # XGBoost (bez GridSearch)
         y_pred_xg1 = xg_reg1.predict(X_test)
         print(f"MSE = {mean_squared_error(y_test, y_pred_xg1)}")
         print(f"RMSE = {root_mean_squared_error(y_test, y_pred_xg1)}")
         print(f"MAE = {mean_absolute_error(y_test, y_pred_xg1)}")
         print(f"R2 = {r2_score(y_test, y_pred_xg1)}")
        MSE = 15.249609972633426
        RMSE = 3.905074899746921
        MAE = 2.9630483702117325
        R2 = 0.7792553027919453
In [127... # XGBoost (GridSearch)
         y pred grid = grid.predict(X test)
         print("XGBoost - GridSearch\n")
         print(f"MSE = {mean squared error(y test, y pred grid)}")
         print(f"RMSE = {root_mean_squared_error(y_test, y_pred_grid)}")
         print(f"MAE = {mean_absolute_error(y_test, y_pred_grid)}")
         print(f"R2 = {r2_score(y_test, y_pred_grid)}")
        XGBoost - GridSearch
        MSE = 7.156309591327898
        RMSE = 2.675127957935451
        MAE = 1.9412962305779553
        R2 = 0.896409324782752
```

Założenia dla regresji liniowej

Sprawdzenie dla modelu LinearRegression()

Najlepiej dopasowany model to ten przy użyciu GridSearch

```
In [139... vals = data.columns[:-2].values.reshape(4,3)
In [148... fig, ax = plt.subplots(4, 3, figsize = (15, 9), facecolor = 'white')
    fig.suptitle("Wymodelowana wartość MEDV na tle wykresów punktowych", fontsize = "x-large", fontweight = "bold")
    yy = lr.predict(X)
    for i in range(4):
        for j in range(3):
            sns.lineplot(data = data, x = vals[i,j], y = yy, ax = ax[i,j], color = 'red', alpha = 0.6, errorbar = Note the substitute of the substitut
```

Wymodelowana wartość MEDV na tle wykresów punktowych MEDV a CRIM MEDV a ZN MEDV a INDUS 40 100 80 CRIM 7N INDUS MEDV a RM MEDV a CHAS MEDV a NOX 1.0 0.2 CHAS NOX RM MEDV a AGE MEDV a DIS MEDV a RAD 12 20 AGE DIS RAD MEDV a TAX MEDV a PTRATIO MEDV a B 40 MEDV 20 500 600 200

fig, ax = plt.subplots(1, 1, figsize = (12, 8), facecolor = 'white')
sns.lineplot(data = data, x = 'LSTAT', y = yy, ax = ax, color = 'red', alpha = 0.6, errorbar = None)
sns.scatterplot(data = data, x = 'LSTAT', y = yy, ax = ax, size = 2.3, legend = False)
ax.set_title("MEDV a LSTAT")

Out[147... Text(0.5, 1.0, 'MEDV a LSTAT')

- Zmienna wyjaśniana jest zmienną ilościową
- Wizualnie można stwierdzić, że homoskedastyczność (stałość wariancji błędu) jest zachowana
- Zmienne wyjaśniające nie są idealnie współliniowe
- Istnieje liniowy związek między zmienną wyjaśnianą a predyktorami

A zatem można stwierdzić, że założenia regresji liniowej są spełnione.