MATEMÁTICA UNINOVE

Módulo - IV

Trigonometria

Círculo trigonométrico

Objetivo: Reconhecer as razões trigonométricas (seno, cosseno e tangente) para ângulos maiores que 90°, possibilitando a aplicação da trigonometria a triângulos quaisquer.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Situação-problema 1

Um atleta corria em uma pista circular de 50 metros de raio. Após ter completado meia volta, ele precisou interromper a corrida. Quantos metros, aproximadamente, ele percorreu?

Resposta:
$$C = \frac{2\pi r}{2} = \pi * 50 = 50\pi \approx 157 \text{ metros}$$

Situação-problema 2

Um relógio marca 13 horas e 25 minutos. Qual a medida, em graus, do ângulo formado pelos ponteiros das horas e dos minutos? E em radianos?

Resposta: O ângulo central da circunferência mede 360 °. Logo, o ângulo entre cada hora é de $\alpha=\frac{360}{12}=30^o$. Portanto, o ângulo formado pelos ponteiros das horas e dos minutos quando o relógio marca 13 horas e 25 minutos é 120° ou $\frac{2\pi}{3}$ radianos.

Para resolver estes tipos de problemas, precisamos conhecer unidades de medidas de um arco, comprimento de arco e o ciclo trigonométrico.

Arcos de circunferência

Considere dois pontos quaisquer A e B em uma circunferência; eles dividem a circunferência em duas partes chamadas de arco de circunferência:

- **Arco(AB):** arco de extremidades A e B, contendo P.
- Arco(BA): arco de extremidades A e B, contendo Q.

Medidas de arcos e ângulos

As unidades mais utilizadas para medir um arco são o grau (°) e o radiano (rad).

Um arco mede 1° (um grau) quando equivale a $\frac{1}{360}$ da circunferência que o contém. Dizemos, então, que a circunferência mede 360°. Por outro lado, um arco mede 1 rad (1 radiano) quando seu comprimento é igual ao do raio da circunferência que o contém.

Comprimento de arco

Na Grécia Antiga já se sabia que, em qualquer circunferência, a razão entre o comprimento (C) e o raio (r), ou seja, $\frac{c}{r}$ é uma constante. A metade desta constante foi chamada de π .Assim temos, $\frac{1}{2} \cdot \frac{c}{r} = \pi$ e, portanto $C = 2\pi r$.

Por outro lado, sabe-se também que para arcos determinados por um mesmo ângulo central, a razão entre o comprimento do arco l e o raio r da circunferência que o contém é constante e representa a medida do arco, em radiano. Logo, $\frac{I}{r}=\alpha$ e, portanto, $I=\alpha$ r.

Exemplos:

1)Calcule o comprimento de uma circunferência cujo raio mede 15 cm.

Resposta: Sabemos que $C=2\pi r$ então $C=2\pi .15=30\pi \cong 94,25$ cm.

2)Calcule o comprimento de um arco de $\frac{\pi}{6}$ rad determinado em uma

circunferência de raio 12 cm.

Resposta: Sabemos que $I=\alpha r$ então $I=\frac{\pi}{6}$.12 = $2\pi\cong 6$,28cm.

Conversão de medidas

Vimos que o comprimento de arco é dado por $I=\alpha\,r$, logo o comprimento da circunferência pode ser escrito como $C=\alpha\,r$. No entanto, sabemos também que o comprimento da circunferência de raio é $C=2\pi\,r$. Igualando estas duas expressões, concluímos que $\alpha\,r=2\pi\,r$ e, portanto, $\alpha=2\pi$. Logo, o ângulo central da circunferência, medido em radianos, é $2\pi\,$ rad. Portanto, podemos concluir que $2\pi\,$ rad = 360^{o} , ou seja, $\pi\,$ rad = 180^{o} .

Exemplos:

1. Determine, em radiano, a medida do ângulo de 30°.

Resposta: Sabendo que $\pi \operatorname{rad} = 180^{\circ}$, podemos utilizar a seguinte

regra de três:

2. Determine, em graus, a medida do ângulo de $\frac{2\pi}{3}$ rad.

Resposta: Sabendo que $\pi \operatorname{rad} = 180^{\circ}$, podemos concluir que: $\frac{2\pi}{3}\operatorname{rad} = \frac{2.180^{\circ}}{3} = \frac{360^{\circ}}{3} = 120^{\circ}.$

Circunferência orientada

Podemos percorrer uma circunferência em dois sentidos: **horário** (no sentido do movimento dos ponteiros do relógio) e **anti-horário** (no sentido contrário ao do movimento dos ponteiros do relógio). Por convenção, o segundo é considerado **positivo** e o sentido horário, **negativo**.

Circunferência ou ciclo trigonométrico

A circunferência trigonométrica, ou ciclo trigonométrico, é uma circunferência orientada com centro na origem do plano cartesiano e raio unitário, ou seja, o centro é o ponto (0, 0) e o raio mede 1 unidade. Na circunferência trigonométrica, o ponto A(1, 0) é a origem de todos os arcos, isto é, o ponto a partir do qual percorremos a circunferência até um ponto B para formar o arco(AB).

Os eixos x e y dividem a circunferência trigonométrica em quatro quadrantes, conforme ilustra a figura a seguir:

Como a circunferência tem 360 ° ou 2π rad , concluímos que cada um destes arcos mede 90 ° ou $\frac{\pi}{2}$ rad.

Arcos trigonométricos

São os arcos de uma circunferência trigonométrica com mesma origem e mesma extremidade.

Observe que um arco trigonométrico também pode ser positivo ou negativo. Ainda que é possível determinar arcos de qualquer medida, pois arcos maiores que 360° ou 2π rad são obtidos após completarmos mais de uma volta no ciclo trigonométrico.

Assim, dado um arco de origem em A (1,0) e extremidade B, tal que a medida do arco (AB) é 30 °, temos infinitos outros arcos de mesma origem e extremidade, mas com medidas diferentes, dependendo do número de voltas no sentido anti-horário (positivo) ou no sentido horário (negativo).

Logo, se a partir do ponto B dermos uma volta completa no sentido anti-horário, a medida do arco(AB) será 30° + 360° = 390°. Se dermos duas voltas completas, a medida do arco(AB) será 30°+2x360°= 750°. Se dermos três voltas completas, a medida do arco(AB) será 30° + 3 . 360° = 1110° e, assim, sucessivamente.

Analogamente, se dermos uma no sentido horário a medida do arco(AB) será 30° - 360° = -330°. Se dermos duas voltas completas no sentido horário, a medida do arco (AB) será 30° - 2 x 360° = - 690°.

Dessa forma, podemos concluir que quando, medido em graus, a

x do arco (AB) pode medida ser representada

$$x = x_0 + k .360^o, k \in Z.$$

Analogamente, quando os arcos são medidos em radianos,

a medida x do arco (AB) pode ser representada por:

 $x = x_0 + k \cdot 2\pi = x_0 + 2k\pi, k \in \mathbb{Z}$

Exemplos:

1. Considere o arco de origem em A e extremidade em B, tal

que a medida do arco(AB) = 40 °. Determine a medida do arco de

mesma origem, mas cuja extremidade é obtida após completar

2 voltas no sentido anti-horário a partir de B.

Resposta: Sabemos que $x = x_0 + k .360^\circ$, logo, $x = 40^\circ + 2 .360^\circ = 760^\circ$.

2. Considere o arco de origem em A e extremidade em B, tal que

a medida do arco (AB) = $\frac{\pi}{4}$ rad. Determine a medida do arco de mesma

origem, mas cuja extremidade é obtida após completar

3 voltas no sentido anti-horário a partir de B.

Resposta: Sabemos que $x = x_0 + 2k\pi$ logo:

$$x = \frac{\pi}{4} + 2.3$$
. $\pi = \frac{\pi}{4} + 6$. $\pi = \frac{\pi + 24\pi}{4} = \frac{25\pi}{4}$ rad.

Arcos simétricos

Dizemos que dois arcos trigonométricos são simétricos se as extremidades destes arcos são pontos simétricos em relação ao eixo x, ou ao eixo y, ou à origem (0, 0).

Observando a figura abaixo, podemos verificar que:

- P e Q são simétricos em relação ao eixo x. Logo, $arco(AQ) = 360^{\circ} arco(AP) = 2\pi arco(AP)$.
- P e R são simétricos em relação ao eixo y. Logo, $arco(AR) = 180^{\circ} arco(AP) = \pi arco(AP)$.
- P e S são simétricos em relação à origem do plano cartesiano,
 ou seja, em relação ao ponto (0, 0). Logo,
 arco(AS) = 180° + arco(AP) = π + arco(AP).

Exemplo:

Determine os arcos simétricos ao arco de 60 °, em relação ao eixo x, ao

eixo y e à origem do plano cartesiano.

Resposta:

• Simétrico em relação ao eixo x: 360 °-60 °= 300 °.

• Simétrico em relação ao eixo y: 180 ° - 60 ° = 120 °.

• Simétrico em relação ao eixo à origem do plano cartesiano:

80°+60°=240°.

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o

espaço online da UNINOVE para assistir à videoaula referente ao conteúdo

assimilado.

REFERÊNCIAS

IEZZI, GELSON. Fundamentos da Matemática Elementar - Ensino Médio.

8. ed. São Paulo: Saraiva, 2004. v.3

MELLO, José Luiz Pastore. Matemática: construção e significado – Ensino

médio. São Paulo: Moderna, 2005.