Outils Mathématiques 4: Exercices

Fonctions de plusieurs variables et calcul vectoriel

A savoir

- 1. Définition du graphe G(f) d'une fonction f
- 2. Courbes de niveau.
- 3. Représentation graphique de G(f) en utilisant des courbes de niveau.
- 4. Produit scalaire, vectoriel et mixte.

1. Fonctions partielles. courbes de niveau.

Exercice 1.1. Soit $k \in \mathbb{R}$; l'ensemble $\{(x,y) \in \mathbb{R}^2$; tel que $f(x,y) = k\}$ est la courbe de niveau k de la fonction f.

Trouver les courbes de niveaux 0, 1, -1, 2 et 3 des fonctions de deux variables $g_1 = \sqrt{x^2 + y^2}$ et $g_2 = \frac{y}{x}$.

Exercice 1.2. Soit f une fonction de $D \subset \mathbb{R}^2$ dans \mathbb{R} et P = (a, b) un point intérieur de D. Les fonctions: $x \mapsto f(x, b)$ et $y \mapsto f(a, y)$ définies sur un intervalle ouvert contenant respectivement a et b, sont appelées les fonctions partielles associées à f au point P.

Trouver les fonctions partielles aux points (0,0) et (1,2) de $g_1(x,y) = \sqrt{x^2 + y^2}$, $g_2(x,y) = xy$ et $g_3(x,y) = x^2y - 1$.

Exercice 1.3. Pour chacune des fonctions suivantes déterminer le domaine de définition \mathcal{D}_f et tracer les courbes de niveau $\{(x,y) \in \mathcal{D}_f$; tel que $f(x,y) = k\}$ pour les valeurs de k indiquées :

$$f(x,y) = \frac{x^2 + y}{x + y^2}, \qquad k = 0, -1$$

$$f(x,y) = \frac{xy - x + y}{xy}, \qquad k = 1, 2$$

$$f(x,y) = \frac{x^4 + y^4}{8 - x^2 y^2}, \qquad k = 2$$

$$f(x,y) = x - y - |x - y|, \qquad k \in \mathbb{R},$$

Pour la dernière question, traiter séparément k = 0 et k > 0 et k < 0.

Exercice 1.4. (a) Soit $f_1(x,y) = x^2 + y^2$. Déterminer les courbes de niveaux z = a du graphe $G(f_1)$ de f_1 et l'intersection de $G(f_1)$ avec le plan $P \subset \mathbb{R}^3$ d'équation y = 0. Représenter graphiquement $G(f_1)$.

(b) Soit $f_2(x,y) = x^2 - y^2$. Déterminer les courbes de niveaux de $G(f_2)$ et l'intersection de $G(f_2)$ avec le plan x = 0; le plan y = 0. Représenter graphiquement $G(f_2)$.

Exercice 1.5. Associer un des graphes à la fonction z = f(x,y) représentée par ses courbes de niveau

(e)

(f)

(1)
$$z = x^2 - y^2$$

$$(2) z = \frac{15x^2y^2e^{-x^2-y^2}}{x^2+y^2}$$

$$(3) z = \sin(x) + \sin(y)$$

$$(4) z = e^{-x^2} + e^{-4y^2}$$

(5)
$$z = \sin(\sqrt{x^2 + y^2})$$

(6)
$$z = y^4 - 8y^2 - 4x^2$$

2. Calcul vectoriel

Exercice 2.1. L'espace à trois dimensions est muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. On donne les vecteurs

$$\vec{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{B} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \vec{C} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.$$

Calculer $\vec{A} \wedge \vec{B}$, $\vec{B} \wedge \vec{A}$, $\vec{A} \cdot \vec{B}$, $\vec{A} \cdot (\vec{A} \wedge \vec{B})$, $||\vec{A}||$, $||\vec{A} + \vec{B}||$, $(\vec{A} \wedge \vec{B}) \wedge \vec{C}$, $\vec{A} \wedge (\vec{B} \wedge \vec{C})$.

Exercice 2.2. L'espace à trois dimensions \mathbb{R}^3 est muni d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$. On donne les vecteurs

$$\vec{u} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix}, \vec{v} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix}, \vec{w} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}.$$

- 1. Montrer que $(\vec{u}, \vec{v}, \vec{w})$ est une base de l'espace.
- 2. Calculer les normes de \vec{u}, \vec{v} et \vec{w} , puis les produits scalaires $\vec{u}.\vec{v}, \vec{u}.\vec{w}, \vec{v}.\vec{w}$.

Exercice 2.3. L'espace à trois dimensions \mathbb{R}^3 est muni d'un repère orthonormé $(O, \vec{1}, \vec{j}, \vec{k})$. Soient

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \vec{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}.$$

Etablir l'identité:

$$\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u}.\vec{w})\vec{v} - (\vec{u}.\vec{v})\vec{w}.$$

Indication : calculer les coordonnées des deux membres.

Exercice 2.4. Soient A et B deux points de $\mathcal{E} = \mathbb{R}^2$.

- 1. Déterminer l'ensemble des points $M \in \mathcal{E}$ tels que $\vec{AM} \cdot \vec{AB} = 0$.
- 2. Déterminer l'ensemble des points $M \in \mathcal{E}$ tels que $\vec{AM} \cdot \vec{BM} = 0$. (Indication : introduire le point I milieu de [AB].)
- 3. Représenter ces deux ensembles sur un dessin.

4. Que se passe-t-il lorsque $\mathcal{E} = \mathbb{R}^3$?

Exercise 2.5. Trouver l'angle θ entre les vecteurs joignant l'origine aux points $P_1(1,2,3)$ et $P_2(2,-3,-1)$.

Exercice 2.6. Soit $\vec{a} = a_1 \vec{1} + a_2 \vec{j} + a_3 \vec{k}$ et $\vec{b} = b_1 \vec{1} + b_2 \vec{j} + b_3 \vec{k}$ deux vecteurs issus d'un même point P et soit

$$\vec{c} = \det \begin{pmatrix} a_2 & a_3 \\ b_2 & b_3 \end{pmatrix} \vec{\mathbf{1}} + \det \begin{pmatrix} a_1 & a_3 \\ b_1 & b_3 \end{pmatrix} \vec{\mathbf{J}} + \det \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \vec{k}$$

Montrer que $||c|| = ||a|| ||b|| \sin \theta$, où θ est le plus petit angle entre les vecteurs \vec{a} et \vec{b} .

Exercice 2.7. Soient \vec{U} et \vec{V} deux vecteurs de l'espace à trois dimensions.

1. Etablir l'identité

$$\|\vec{U} + \vec{V}\|^2 + \|\vec{U} - \vec{V}\|^2 = 2(\|\vec{U}\|^2 + \|\vec{V}\|^2).$$

2. Montrer que pour que \vec{U} et \vec{V} soient orthogonaux, il faut et il suffit que

$$\|\vec{U} + \vec{V}\|^2 = \|\vec{U}\|^2 + \|\vec{V}\|^2.$$

(le théorème de Pythagore)

Exercice 2.1. (Travail personnel) Dessiner les surfaces $S_i \subset \mathbb{R}^3$, i = 1, 2 en déterminant les courbes de niveaux et l'intersection de S avec des plans appropriés pour:

(a)
$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + 4y^2 + z^2 = 1\};$$
 (b) $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 0\}.$

Exercice 2.2. (Travail personnel) Déterminer les courbes de niveaux du graphe G(f) de f(x,y) = xyet l'intersection de G(f) avec le plan y=x, le plan y=-x. Représenter graphiquement G(f).

Exercice 2.3. (Travail personnel) Dessiner la surface $S \subset \mathbb{R}^3$ en déterminant les courbes de niveaux et l'intersection de S avec des plans appropriés pour $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1\}.$

Exercice 2.4. (Travail personnel) Calculer le volume du parallélépipè de construit sur les côtés ${\cal AM},$ AN et AP où

$$A = (2, 1, -1), M = (3, 0, 2), N = (4, -2, 1) \text{ et } P = (5, -3, 0).$$

Exercice 2.5. (Travail personnel) L'espace à trois dimensions \mathbb{R}^3 est muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k}).$

- 1. Déterminer l'ensemble des points $M \in \mathbb{R}^3$ tels que $\vec{AM} \wedge \vec{AB} = \vec{0}$.
- 2. Déterminer l'ensemble des points $M \in \mathbb{R}^3$ tels que $\vec{AM} \wedge \vec{BM} = \vec{0}$.

Démontrer que pour U et V vecteurs de \mathbb{R}^3 on a toujours : Exercice 2.6. (Travail personnel)

- (1) $||U V|| \ge ||U|| ||V||$. (2) $U.V = \frac{1}{4}(||U + V||^2 ||U V||^2)$

Continuité et différentiabilité

3. Limites et continuité

A savoir

- 1. Définition de la continuité d'une fonction à deux variables en un point.
- 2. Méthode pour démontrer la continuité d'une fonction: coordonnées polaires.
- 3. Méthode pour démontrer qu'une fonction n'est pas continue en un point.
- 4. Propriétés des fonctions continues: somme, produit, quotient, composée.

Exercice 3.1. Soit f la fonction définie par $f(x,y) = \frac{2xy-y^2}{x^2+y^2}$. Etudier la limite quand (x,y) tend vers (0,0) de la restriction de f à la droite d'équation y=ax, a donné. Montrer que f n'a pas de limite à l'origine.

Exercice 3.2. Soit f la fonction définie par

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 - 2x^2y + 3y^2} & \text{si} \quad (x,y) \neq 0\\ 0 & \text{si} \quad (x,y) = 0 \end{cases}$$

- 1. Étudier la limite quand (x, y) tend vers l'origine de la restriction de f à la droite d'équation y = ax, a donné. Montrer que la restriction de f à toute droite passant par l'origine est continue.
- 2. Calculer la limite à l'origine de la restriction de f à la parabole d'equation $y = x^2$.
- 3. Montrer que f n'a pas de limite à l'origine.

Exercice 3.3. Pour une fonction de deux variables on considère trois types de limites:

$$(A) \lim_{(x,y)\to(a,b)} f(x,y); \quad (B) \lim_{x\to a} (\lim_{y\to b} f(x,y)); \quad (C) \lim_{y\to b} (\lim_{x\to a} f(x,y)).$$

On considère les fonctions suivantes:

$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \quad f_2(x,y) = \frac{xy}{x^2 + y^2}, \quad f_3(x,y) = \frac{\sin x}{y}, \quad f_4(x,y) = \frac{\sin y}{x};$$

Montrer qu'en (0,0)

- Deux de ces trois limites peuvent exister sans que la troisième existe.
- Une de ces trois limites peut exister sans que les deux autres existent.
- (B) et (C) peuvent exister sans être égales.
- Si (A) et (B) existent alors elles sont égales.

Exercice 3.4. Décider si les fonctions suivantes peuvent être prolongées par continuité au point P.

(a)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, $P = (0,0)$; (b) $f(x,y) = \frac{x^2y}{x^2 + y^2 + xy} + 3$, $P = (0,0)$;

5

(c)
$$f(x,y) = \frac{x^3 + (y+1)^3}{x^2 + (y+1)^2}$$
, $P = (0,-1)$;
(d) $f(x,y) = \frac{(x-1)^2(y-2) - (y-2)^2(x-1)}{(x-1)^4 + (y-2)^2}$, $P = (1,2)$.

Exercice 3.1. (Travail personnel)

Étudier les limites suivantes :

$$(a) \lim_{(x,y) \to (0,0)} \frac{3xy}{x^2y^2}, \qquad (b) \lim_{(x,y) \to (0,0)} \frac{3x-y^2}{x^2+y^2}, \qquad (c) \lim_{(x,y) \to (0,0)} \frac{3x+2x}{x^2+y^2}.$$

Exercice 3.2. (Travail personnel) Soit f la fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Montrer que

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = f(0, 0) = \lim_{y \to 0} \lim_{x \to 0} f(x, y)$$

bien que $\lim_{(x,y)\to(0,0)} f(x,y)$ n'existe pas.

Exercice 3.3. (Travail personnel) Soit $f:(x,y)\mapsto f(x,y)$ une fonction de deux variables. Pour étudier la limite de f(x,y) lorsque (x,y) tend vers (a,b) je fixe x et je fais tendre y vers b, puis j'étudie la limite lorsque x tend vers a. Vrai ou faux?

Exercice 3.4. ($Travail\ personnel$) Décider si les fonctions suivantes peuvent être prolongées par continuité au point P.

(a)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
, $P = (0,0)$; (b) $f(x,y) = \frac{x + 5}{(x + 5)^2 + y^2} - 1$, $P = (-5,0)$; (c) $f(x,y) = \frac{x^7 + x^4y + x^3y}{x^6 + x^3y + y^2}$, $P = (0,0)$; (d) $f(x,y) = \frac{(x+1)^3(y+2) - (y+2)^3(x+1)}{(x+1)^2 + (y+2)^2}$, $P = (-1,-2)$ (e) $f(x,y) = \frac{(x+y)^2}{x^4 + y^2}$, $P = (0,0)$.

Exercice 3.5. (Travail personnel) (a) Etudier la continuité de la fonction suivante:

$$f(x,y) = \begin{cases} y \sin \frac{x}{y}, & \text{si } y \neq 0; \\ 0, & \text{si } y = 0. \end{cases}$$

(b) Décider si la fonction g suivante définie sur $\{(x,y)\in\mathbb{R}^2\mid y\neq 0\}$ peut être prolongée par continuité en une fonction continue définie sur \mathbb{R}^2 :

$$g(x,y) = \frac{\sin(xy)}{y},$$
 si $y \neq 0.$

4. Différentiabilité

A savoir

- 1. Définition de la dérivée partielle d'une fonction à deux variables; Interprétation géométrique.
- 2. Définition du gradient.
- 3. Définition de la dérivée directionnelle; Interprétation géométrique.
- 4. Rapport entre dérivée directionnelle et partielle.
- 5. L'insuffisance de la notion de dérivée partielle (directionnelle) pour la dérivabilité d'une fonction.
- 6. Si f est différentiable en X_0 alors f est nécessairement continue en X_0 .
- 7. On dit que f est de classe C^1 sur D si f admet dérivées partielles premières continues en tout point de D.
- 8. Si f est de classe C^1 sur D, alors <math>f est différentiable en tout point de D.
- 9. Définition du plan tangent au graphe d'une fonction f(x,y).

Exercice 4.1. Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$\begin{cases} f(x,y) = \frac{x^3 + y^3}{x^2 + y^2} \text{ pour } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

Est-elle continue en (0,0)? Calculer les dérivées partielles premières. Est-elle de classe C^1 ?

Exercice 4.2. Calculer les dérivées partielles des fonctions suivantes sur leur domaine de définition:

(a)
$$f(x,y) = (x^2 + y^2)e^{-xy}$$
; (b) $f(x,y) = \frac{x}{x^2 + y^2}$; $(x,y) \in \mathbb{R} \setminus \{(0,0)\}$.

Exercice 4.3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (a) La fonction f est-elle continue?
- (b) La dérivée directionnelle $f_v(0,0)$ existe-t-elle pour tout vecteur $v=(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$? En déduire que f n'est pas différentiable en (0,0).
 - (c) Calculer les dérivées partielles de f en (0,0).
- (d) Montrer en utilisant la définition de la différentiabilité d'une fonction que f n'est pas différentiable en (0,0).

Exercice 4.4. Soit l'application définie par:

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

1. Montrer que f est continue sur \mathbb{R}^2 .

2. Montrer que f possède en (0,0) des dérivées partielles dans toutes les directions mais n'est pas différentiable en ce point.

Exercice 4.5. (a) Montrer que la fonction f de 4.2 (a) est différentiable sur \mathbb{R}^2 .

(b) Soit f la fonction de 4.2 (b). Montrer que f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Trouver la dérivée directionnelle de f en (0,1) dans la direction (1,1) en utilisant: (i) la définition; (ii) le gradient de f.

Exercice 4.6. Soit
$$f$$
 l'application définie par
$$\begin{cases} f(x,y) = \frac{2x^3 + 3xy^2}{x^2 + y^2} & \text{pour } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$
.

Montrer que f est continue sur \mathbb{R}^2 . Calculer les dérivées directionnelles en (0,0) dans toutes les directions, puis $\overrightarrow{\nabla} f(0,0)$. f est-elle différentiable en (0,0)?

Exercice 4.7. Trouver la dérivée partielle de la fonction $f(x,y) = xy^2$ suivant le vecteur $\vec{v}(1,-2)$ au point A(2,1).

Exercice 4.8. Trouver la dérivée partielle de $z=ye^x$ en P=(0,3) suivant la direction a) $\theta=30^\circ$, b) $\theta=120^\circ$. (On peut utiliser la formule: $\frac{dz}{dr}=\frac{\partial z}{\partial x}\cos\theta+\frac{\partial z}{\partial y}\sin\theta$.)

Exercice 4.9. Trouver les différentielles de $z = x^3y + x^2y^2 + xy^3$ et de $Z = x \sin y - y \sin x$.

Exercice 4.10. On considère l'application définie sur \mathbb{R}^2 à valeurs dans \mathbb{R} : $f(x,y) = \ln \sqrt{x^2 + y^2 + 1}$.

- 1. Calculer les dérivées partielles premières de f.
- 2. Déterminer la norme de $\nabla f(x,y)$. Montrer qu'elle est constante le long du cercle $x^2 + y^2 = r^2$, où r est un réel strictement positif fixé.
- 3. Trouver le maximum de la dérivée directionnelle $f'_v(3,4)$ avec ||v|| = 1.

Exercice 4.11. La puissance utilisée dans une résistance électrique est donnée par $P = E^2/R$ (en watts). Si E = 200 volts et R = 8 ohms, quelle est la modification de la puissance si E décroît de 5 volts et R de 0.2 ohms?

Exercice 4.12. Soit la formule R = E/C. Trouver l'erreur maximale et le pourcentage d'erreur si C = 20 avec une erreur possible de 0, 1 et E = 120 avec une erreur possible de 0, 05.

Exercice 4.13. Soit z = f(x, y) une fonction continue de x et y ayant les dérivées partielles $\frac{\partial z}{\partial x}$ et $\frac{\partial z}{\partial y}$ continues. Supposons que y soit une fonction dérivable de x. Alors, z est une fonction dérivable de x.

- 1. Trouver $\frac{dz}{dx}$ avec $z = f(x, y) = x^2 + 2xy + 4y^2$, $y = e^{3x}$.
- 2. Trouver a) $\frac{dz}{dx}$ et b) $\frac{dz}{dy}$, avec $z = f(x, y) = xy^2 + x^2y$, $y = \ln x$.

Exercice 4.14.

Soit
$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2}$$
 (le laplacien de f)

- (a) Calculer Δf pour $f(x,y) = (x^2 + y^2)^{\alpha}$. Déterminer les valeurs de α telles que $\Delta f = 0$.
- (b) Calculer Δf pour $f(x,y) = \ln((x^2 + y^2)^k)$. Déterminer les valeurs de k telles que $\Delta f = 0$.

Dérivées partielles d'ordre supérieurs

Exercice 4.15. Calculer les dérivées partielles secondes des fonctions suivantes en spécifiant le domaine de définition D:

(a)
$$f(x,y) = y \ln x;$$
 (b) $g(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$

Le lemme de Schwarz s'applique-t-il sur D?

Exercice 4.16. Soit

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (a) Calculer les dérivées partielles premières $f'_x(0,0)$ et $f'_u(0,0)$.
- (b) Montrer que

$$f_{xy}''(0,0) = +1$$
 et $f_{yx}''(0,0) = -1$.

Pourquoi ceci ne contredit-il pas le lemme de Schwarz?

Exercice 4.17. Calculer $\frac{\partial^4 f}{\partial x \partial y^3}$, $\frac{\partial^4 f}{\partial x^2 \partial y^2}$ et $\frac{\partial^4 f}{\partial y \partial x \partial y^2}$ où $f(x,y) = y^3 \ln x$.

Exercice 4.1. (Travail personnel) Soit l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\begin{cases} f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2} \text{ pour } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

Démontrer que f est différentiable en (0,0). Calculer les dérivées partielles secondes en (0,0). Conclusion? **Exercice 4.2.** (Travail personnel) Pour chaque application préciser l'existence et le calcul éventuel des dérivées partielles en tout point; sont-elles de classe C^1 ?

(a)
$$\begin{cases} f(x,y) = x \text{ si } |x| > |y| \\ f(x,y) = y \text{ sinon} \end{cases}$$
 (b)
$$\begin{cases} f(x,y) = 1 - e^{1 - (x^2 + y^2)} \text{ lorsque } x^2 + y^2 \ge 1 \\ f(x,y) = 0 \text{ sinon} \end{cases}$$

(c)
$$\begin{cases} f(x,y) = \frac{x^2 y^3}{x^2 + y^2} \text{ pour } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$
 (d)
$$\begin{cases} f(x,y) = (x^2 + y^2) \sin\left(\frac{1}{xy}\right) \text{ lorsque } xy \neq 0 \\ f(x,y) = 0 \text{ sinon} \end{cases}$$

Exercice 4.3. (Travail personnel) Trouver $\frac{dz}{dt}$ lorsque $z = x^2 + 3xy + 5y^2$; $x = \sin t$ et $y = \cos t$.

Exercice 4.4. (Travail personnel)

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une application de classe C^2 et $F(x,y) = f(\sqrt{x^2 + y^2})$. Déterminer toutes les applications f telles que $\Delta F = r$ avec $r = \sqrt{x^2 + y^2}$.
- 2. Soit $g:(x,y)\mapsto g(x,y)=f(x^2-y^2,2xy)$. Exprimer les dérivées partielles de g en fonction de celles de f
- 3. On pose $\phi: \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R} \\ (r,\theta) \mapsto (r\cos(\theta),r\sin(\theta)) \end{array} \right.$ et $g=f\circ\phi$. Exprimer le Laplacien de g en coordonnées polaires.

Résoudre, à l'aide du changement de variables $x = \frac{u^2 + v^2}{2}$, $y = \frac{u}{v}$ Exercice 4.5. (Travail personnel) l'équation aux dérivées partielles:

$$2xy\frac{\partial f}{\partial x} + (1+y^2)\frac{\partial f}{\partial y} = 0.$$

Exercice 4.6. (Travail personnel) Déterminer l'équation du plan tangent au graphe de la fonction fau(x) point(s) donnés pour:

- (a) $f(x,y) = y^2(x^3 1)$ et le point (1,1); (b) $f(x,y) = x^2 + y^2$ et les points (0,0) et (1,1). Représenter graphiquement le graphe et les plans tangents.

Exercice 4.7. (Travail personnel) Soit $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$

- (a) Soit $P = (x_0, y_0, z_0)$ un point de S tel que $z_0 > 0$. Exprimer S comme graphe d'une fonction dans un voisinage de P. Déterminer l'équation du plan tangent à S au point P.
 - (b) Même question pour un P qui vérifie $x_0 < 0$.
 - (c) Montrer que le plan tangent vérifie dans les deux cas $x_0(x-x_0)+y_0(y-y_0)+z_0(z-z_0)=0$.

Exercice 4.8. (Travail personnel) Déterminer toutes les fonctions f telles que pour tout $(x,y) \in \mathbb{R}^2$,

(a)
$$\frac{\partial f}{\partial x}(x,y) = 0;$$
 (b) $\frac{\partial f}{\partial y}(x,y) = 1;$ (c) $\frac{\partial f}{\partial x}(x,y) = x + y;$ (d) $\frac{\partial^2 f}{\partial x \partial y}(x,y) = 1;$

Exercice 4.9. (Travail personnel) On considère l'application définie sur une partie de \mathbb{R}^2 à valeurs dans \mathbb{R} :

$$f(x,y) = \sqrt{\ln(2x + 3y + 1)}.$$

- (a) Trouver le domaine de définition puis le domaine de continuité de f (faire un dessin)...
- (b) Calculer les dérivées partielles et trouver leurs domaines d'existence.

Exercice 4.10. (Travail personnel) Calculer les dérivées partielles premières des fonctions données:

a)
$$f_1(x,y) = 3xy + e^y$$
 b) $f_2(x,y) = y\sin(2xy+1)$, c) $f_3(x,y) = e^{\sin(2x)+xy}$,
d) $f_4(x,y) = \sqrt{x^2 + \cos y + 1}$, e) $f_5(x,y) = \ln(x^2y^2)$.

d)
$$f_4(x,y) = \sqrt{x^2 + \cos y + 1}$$
, e) $f_5(x,y) = \ln(x^2y^2)$

Exercice 4.11. (Travail personnel) Soit

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (a) Déterminer la dérivée directionnelle $f_v(0,0)$ pour tout vecteur $v=(a,b)\in\mathbb{R}^2\setminus\{(0,0)\}$.
- (b) Calculer les dérivées partielles de f en (0,0).
- (c) Montrer en utilisant la définition de la dérivabilité d'une fonction que f n'est pas différentiable en (0,0).

Exercice 4.12. (Travail personnel) Calculer les dérivées partielles secondes des fonctions suivantes $f(x,y) = \ln \frac{1}{x^2 + y^2}$. en spécifiant le domaine de définition: (a) $f(x,y) = y^x$;

Le lemme de Schwarz s'applique-t-il sur le domaine de définition?

Extrema

5. Fonctions implicites

Exercice 5.1. Soit $f(x,y) = x^2 + 1 + xe^y - y$.

- (a) Montrer qu'il existe une fonction ϕ telle que, dans un voisinage du point (0,1), les relations f(x,y) = 0 et $y = \phi(x)$ soient équivalentes.
 - (b) Calculer $\phi(0)$, $\phi'(0)$ et $\phi''(0)$.
 - (c) Ecrire le développement limité à l'ordre 2 de ϕ au voisinage de 0.
 - (d) Représenter $\Gamma = \{(x,y) \mid f(x,y) = 0\}$ au voisinage du point (0,1).

Exercice 5.2. (a) Montrer que l'équation $y^3 + x + y = 0$ définit une fonction implicite $y = \phi(x)$ au voisinage de l'origine (0,0).

- (b) Calculer $\phi(0), \phi'(0), \phi''(0)$ et $\phi'''(0)$.
- (c) Ecrire le développement limité à l'ordre 3 de ϕ au voisinage de 0.
- (d) Représenter $\Gamma = \{(x, y) \mid f(x, y) = 0\}$ au voisinage du point (0, 0).

Exercice 5.3. On considère la fonction $F: \mathbb{R}^3 \to \mathbb{R}$ définie par $F(x,y,z) = x^3z^2 - z^3xy$.

- a) Dire pour quoi il n'existe pas de fonction $\phi(x,y)$ définie dans un voisinage U de (0,0),non-identiquement nulle, telle que $\phi(0,0)=1$ et $F(x,y,\phi(x,y))=0$ pour tout $(x,y)\in U$.
- b) Montrer que l'équation F(x, y, z) = 0 définie une fonction implicite $z = \psi(x, y)$ au voisinage du point $P_0 = (1, 1, 1)$.

Calculer les dérivées partielles premières de ψ en P_0 .

6. Développement limité

Exercice 6.1. Ecrire le développement limité à l'ordre 2 pour la fonction f au voisinage du point indiqué. En déduire l'équation du plan tangent.

(a)
$$f(x,y) = xy + x^2 + 4y^2$$
, en $(1,2)$;

(b)
$$f(x,y) = x^2y + 3xy + y^4$$
, en (1,2);

(c)
$$f(x,y) = \ln(1+2x+3y)$$
, en $(0,0)$.

Exercice 6.2. Soit $f(x,y) = e^x \cos y$.

- (a) Trouver le développement limité d'ordre 0, 1 et 2 de f au voisinage du point $(0, \pi/3)$.
- (b) Donner des valeurs approchées de $f(-\frac{1}{10}, \frac{\pi}{3} + \frac{1}{50})$ en utilisant les approximations de (a).

Exercice 6.1. (Travail personnel)

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ la fonction définie par $f(x,y) = x^2y + 3y - 2$.

- (a) Trouver le développement à l'ordre 2 de f(x,y) autour de (1,2).
- (b) Trouver l'équation du plan tangent au graphe de f en (1, 2).
- (c) Trouver les points du graphe de f qui admettent un plan tangent horizontal, c.à.d. parallèle au plan x0y.
- (d) Montrer en utilisant le théorème des fonctions implicites que l'équation f(x,y) = 0 peut être écrit (localement) comme $y = \psi(x)$. (Plus précisément: Pour chaque (x_0, y_0) qui vérifie $f(x_0, y_0) = 0$ on peut trouver un voisinage V de x_0 et une fonction $\psi: V \to \mathbb{R}$ tel que $f(x, \psi(x)) = 0$, pour $x \in V$.)

Exercice 6.2. (Travail personnel) (a) Détermier le développement limité à l'ordre 2 de la fonction $g(x) = e^x$ au voisinage du point 1 et de $h(y) = \sin(y)$ au voisinage de π .

- (b) En déduire le développement limité à l'ordre 2 de la fonction $f(x,y) = e^x \sin(y)$ au voisinage du point $P_0 = (1, \pi)$.
- (c) Calculer $f(P_0)$, $f_x(P_0)$, $f_y(P_0)$, $f_{xx}(P_0)$, $f_{xy}(P_0)$ et $f_{yy}(P_0)$. En déduire le développement limité à l'ordre 2 de $f(x,y) = e^x \sin(y)$ au voisinage de P_0 .

7. Extrema

Exercice 7.1. Chercher les points critiques des fonctions suivantes:

- (a) $f(x,y) = 2x^2y + 2x^2 + y$;
- (b) $f(x,y) = xy^2(1+x+3y)$;

Exercice 7.2. Chercher les points critiques de

$$f(x,y) = x((\ln x)^2 + y^2), \quad \text{pour} \quad x > 0$$

et décider s'il s'agit d'un minimum, maximum local (relatif) ou d'un point selle.

Exercice 7.3. Une boîte rectangulaire ouverte au-dessus a un volume de $32m^3$. Trouver les dimensions de la boîte pour que sa surface totale soit minimale

Exercice 7.4.

- 1. Etudier les extrema relatifs (locaux) de $f(x,y) = x^2 + xy + y^2 + 2x + 3y$. Admet-elle des extrema absolus (globaux)?
- 2. Même question pour

 - $\begin{array}{lll} (a) & f(x,y) = (x-y)^2 + (x+y)^3 & (b) & f(x,y) = xe^y + ye^x \\ (c) & f(x,y) = (3x+4y)e^{-(x^2+y^2)} & (d) & f(x,y) = x^4 + y^4 (x-y)^3 \\ (e) & f(x,y) = x^3 + y^3 + 3xy & (f) & f(x,y) = x^3 + 3xy y^2 + y + 1 \end{array}$

Exercice 7.5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie sur \mathbb{R}^2 par $f(x,y) = 2x^3 + 6xy - 3y^2 + 2x^3 +$

- 1. Déterminer les extrema relatifs (locaux) de la fonction f.
- 2. La fonction f possède-t-elle des extrema absolus sur \mathbb{R}^2 ?
- 3. Représenter le segment de droite L défini par

$$L = \{(x, y) \in \mathbb{R}^2 \mid -2 \le x \le 0, \ y = x + 1\}.$$

Déterminer les extrema absolus de la restriction de f à L et préciser en quels points de L ils sont atteints.

Exercice 7.6. Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x,y) = 2x^3 - y^2 + 2xy + 1$.

- 1. Déterminer les extrema locaux de f.
- 2. f possède-t-elle des extrema absolus sur \mathbb{R}^2 ?
- 3. Représenter $T = \{(x,y) \in \mathbb{R}^2 / x \ge 0; y \ge 0; x+y \le 1\}$ Justifier l'existence d'un maximum absolu M et d'un minimum absolu m pour la restriction de f à T. Les déterminer.

Exercice 7.7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par $f(x,y) = 2x^2 + 2y^2 + x^2y^2 - x^4 - y^4$.

- 1. Déterminer les extrema locaux de f.
- 2. Montrer que $f(x,y) \le 2r^2 \frac{r^4}{4}$ où $r^2 = x^2 + y^2$. En déduire que $f(x,y) \le 4$.
- 3. Trouver le maximum global de f et les points où il est atteint. Y a-t-il un minimum global?

Exercice 7.8. Trouver la plus petite distance de l'origine (0,0) à l'hyperbole $x^2 + 8xy + 7y^2 = 225$.

Exercise 7.9. Soient $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 - 1 \le y \le 1 - x^2\}$ et $F(x, y) = y^2 - x^2y + x^2$.

- (a) Trouver les points critiques de F.
- (b) Trouver des paramétrisations pour les deux morceaux réguliers du bord Γ de D.
- (c) Trouver les maxima et les minima globaux de la fonction F restreinte au bord Γ de D.
- (d) Trouver les maxima et les minima globaux de la fonction F restreinte à D.

Exercice 7.10. Soit $f(x,y) = (x^2 - y)(3x^2 - y)$.

- (a) Pour $t \in \mathbb{R}$ fixé, montrer que la restriction de f à la droite d'équation y = tx admet un minimum en 0.
 - (b) Soit $\lambda \in \mathbb{R}$. On note C_{λ} la parabole d'équation $y = \lambda x^2$.

Pour quelles valeurs de λ la restriction de f à C_{λ} admet-elle un minimum en 0? un maximum en 0?

(c) Le point (0,0) est-il un extremum de f?

Exercice 7.1. (Travail personnel) Trouver le point du plan 2x - y + 2z = 16, le plus proche de l'origine.

Exercice 7.2. (Travail personnel)

- (a) Déterminer les points critiques de la fonction de 2 variables: $f(x,y) = x^2 + y^2 xy$.
- (b) Déterminer les points critiques de la fonction f sous la contrainte $x^2 + y^2 = 1$.
- (c) Quels sont les maxima et les minima de la fonction f restreint au disque $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Exercice 7.3. (Travail personnel)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{xy}{1 + x^2 + y^2}.$$

- (a) Montrer que f est C^2 sur \mathbb{R}^2 .
- (b) Donner le développement de Taylor de f à l'ordre 2 à l'origine.
- (c) Déterminer les extrema de f.

Exercice 7.4. (Travail personnel) On considère la fonction $f(x,y) = xye^{-\frac{1}{2}(x^2+y^2)}$

- 1. Etudier les extrema relatifs (locaux) de f sur \mathbb{R}^2 . Suggestion: on pourra utiliser les symétries de la fonction f(x,y) pour réduire le nombre de cas à étudier.
- 2. Démontrer que $f(x,y) \to 0$ quand $x^2 + y^2 \to \infty$.
- 3. Déduire de ce qui précède l'existence des extrema globaux de f sur \mathbb{R}^2 et les déterminer.

8. Différentielles totales. Opérateurs gradient, divergence et rotationnel.

Exercice 8.1. Déterminer si les formes différentielles suivantes sont des formes différentielles exactes (ou totales)?

a) 2(x+y)dx + 2(x-3)dy, b) $\cos(x)dx + \sin(y)dy$, c) (x+y)dx + (x-y)dy

Exercice 8.2. Soit f une fonction et \vec{V} un champ de vecteurs, tous deux de classe C^2 dans un ouvert de l'espace. Le champs vectoriel $\overrightarrow{rot}(\overrightarrow{\nabla}f+\overrightarrow{rot}V)$ est égale à :

$$\mathbf{a}) \overrightarrow{\nabla} f \wedge \overrightarrow{V}, \quad \mathbf{b}) \overrightarrow{\operatorname{rot}} (\overrightarrow{\operatorname{rot}} \overrightarrow{V}), \quad \text{ou } \mathbf{c}) \overrightarrow{0}.$$

Exercice 8.3. Pour le champ de vecteurs $\vec{B} = xy^2\vec{i} + 2x^2yz\vec{j} + 3yz^2\vec{k}$, trouver $\text{div}\vec{B}$ et $\overrightarrow{\text{rot}}\vec{B}$.

Exercice 8.4. Déterminer si les champs suivants sont des champs de gradients, si oui déterminer leurs potentiels scalaires.

a)
$$\vec{V}(x,y) = (y,x)$$
, b) $\vec{V}(x,y) = (3x^2y + 2x + y^3, x^3 + 3xy^2 - 2y)$, c) $\vec{V}(x,y) = (\cos(x), \sin(y))$.

Exercice 8.5. A tout point M de $\mathbb{R}^2 - \{(0,0)\}$, on associe le vecteur unitaire $\overrightarrow{u}(M) = \frac{\overrightarrow{OM}}{\parallel \overrightarrow{OM} \parallel}$. En posant $\rho = \parallel \overrightarrow{OM} \parallel$, montrer que la divergence de ce champ de vecteurs est égale à $\frac{1}{\rho}$.

Exercice 8.6. Un champ central dans \mathbb{R}^3 est donné par $\vec{V}(\vec{x}) = f(r)\vec{x}$ où $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$ et f est une application dérivable de \mathbb{R} dans \mathbb{R} . Montrer qu'un champ central est toujours un champ de gradients et calculer son potentiel.

Exercice 8.7. Soit le champ de vecteurs défini dans \mathbb{R}^3 par:

 $\vec{V}(x,y,z) = (yz + x^2y^3, xz + x^3y^2, f(x,y))$ où $f: \mathbb{R}^2 \to \mathbb{R}$ est une application de classe \mathcal{C}^1 . Trouver les applications f pour que \vec{V} soit un champ de gradients. Calculer alors les potentiels de \vec{V} .

Exercice 8.8. Montrer que l'expression

$$\omega = \frac{xdx}{x^2 + y^2} + y \frac{1 - x^2 - y^2}{x^2 + y^2} dy$$

est la différentielle totale d'une fonction f que l'on déterminera.

Exercice 8.1. (Travail personnel) Déterminer si les formes différentielles suivantes sont des formes différentielles totales?

a)
$$(\sin y - y \cos x)dx + (x \cos y - \sin x)dy$$
, b) $(x^2 - yz)dx + (y^2 - zx)dy + (z^2 - xy)dz$.

Exercice 8.2. (Travail personnel) Déterminer si les champs suivants sont des champs de gradients, si oui déterminer leurs potentiels scalaires:

1)
$$\vec{V}(x,y) = (y + \frac{1}{x}, x + \frac{1}{y})$$
 2) $\vec{V}(x,y) = (x+y, x-y)$ 3) $\vec{V}(x,y,z) = (x^2 - yz, y^2 - zx, z^2 - xy)$

Exercice 8.3. (Travail personnel) On considère la forme différentielle

$$\omega = \frac{dx}{\sqrt{x^2 + y^2}} + \frac{\sqrt{x^2 + y^2} - x}{y\sqrt{x^2 + y^2}} dy.$$

Montrer en passant en coordonnées polaires que ω est est la forme différentielle totale d'une fonction $U(\rho, \theta)$ et donner l'équation des courbes U = Cte.

Intégration

9. Intégrales curvilignes

Exercice 9.1. Calculer la longueur de chacun des arcs de courbes suivant:

- 1) $x = y^2$ avec $0 \le y \le 1$;
- 2) $x = a \cos t$, $y = a \sin t$, z = bt avec $0 \le t \le t_0$;
- 3) $\rho = a(1 + \cos \theta)$ avec a > 0 et $0 \le \rho \le a$ (cardioïde):

Exercice 9.2. Calculer l'intégrale curviligne

$$\int_C (x+y) \, dx + (x-y) \, dy$$

où C est l'arc de cercle défini par $x = \cos t$ et $y = \sin t$, t variant de 0 à 2π .

Exercice 9.3. Calculer l'intégrale curviligne

$$\int_C xy \, dx + (x+y) \, dy$$

où C est l'arc de cercle défini par $x=\cos t$ et $y=\sin t,\,t$ variant de 0 à 2π .

Exercice 9.4. Calculer l'intégrale curviligne

$$\int_{C} \frac{(y+z) \, dx + (z+x) \, dy + (x+y) \, dz}{x^2 + y^2}$$

lorsque:

- 1) C est le segment de droite allant de A = (1,1,1) à B = (2,2,2).
- 2) C est l'hélice définie par $x = \cos t$, $y = \sin t$ et z = t, t variant de 0 à 2π .

Exercice 9.5. Calculer l'intégrale curviligne

$$\int_{\Gamma} y^2 \, dx - x^2 \, dy$$

lorsque:

- 1) Γ est le segment de droite allant de A=(1,0) à B=(0,1).
- 2) Γ est l'arc de cercle de centre (0,0), de rayon 1 et d'extrémités A=(1,0) et B=(0,1).

Exercice 9.6. Montrer que l'intégrale curviligne $\int_{\Gamma} xy^2 dx + x^2y dy$ est nulle lorsque Γ est un arc de simple fermé.

Calculer cette intégrale lorsque $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ où $\Gamma_1 = AB$ est l'arc de parabole d'équation $y^2 = 4 - 3x$ limité en A par la droite d'équation y = x et en B par l'axe des $x \ge 0$, Γ_2 est le segment de droite allant de B à O et Γ_3 est le segment de droite allant de D à A.

15

Calculer une primitive de $xy^2 dx + x^2y dy$. Retrouver $\int_{\Gamma_i} xy^2 dx + x^2y dy$ pour i = 1, 2, 3.

Exercice 9.7. Déterminer une fonction u(x,y) telle que: $du = \frac{(x+2y) dx + y dy}{(x+y)^2}$

Exercice 9.8. Soit $\omega = P(x, y) dx + Q(x, y) dy$ avec:

$$P(x,y) = \frac{(3x^2 - y^2)(x^2 + y^2)}{x^2y}$$
 et $Q(x,y) = \frac{(3y^2 - x^2)(x^2 + y^2)}{xy^2}$.

- 1) Montrer que, dans le domaine $D = \{(x, y); x > 0, y > 0\}, \omega$ est une forme différentielle totale.
- 2) Déterminer u dans D, telle que $du = \omega$.
- 3) Calculer l'intégrale curviligne $\int_{\Gamma} \omega$ lorsque Γ est l'arc défini par: $x=t+\cos^2 t,\ y=1+\sin^2 t$ avec $0\leq t\leq 2\pi$.

Exercice 9.9.

- 1. Calculer le travail du champ de vecteurs $\vec{V}(x,y) = (y^2,x^2)$ sur la demi ellipse $x^2 + 4y^2 4 = 0; y \ge 0$ parcourue une fois dans le sens direct.
- 2. Calculer le travail du champ de vecteurs $\vec{V}(x,y) = (\cos(x),\sin(y))$ sur le cercle unité parcouru deux fois dans le sens des aiguilles d'une montre.
- 3. Calculer le travail du champ de vecteurs $\vec{V}(x,y) = (x^2 + y^2, x^2 y^2)$ sur le triangle OAB avec A = (1,0), B = (0,1) parcouru une fois dans le sens direct.

Exercice 9.10. Calculer le travail effectué par la force $\overrightarrow{F} = (y+z)\overrightarrow{i} + (x+z)\overrightarrow{j} + (x+y)\overrightarrow{k}$ pour déplacer une particule de l'origine O au point C = (1,1,1),

- 1. le long de la droite (OC).
- 2. le long de la courbe x = t, $y = t^2$, $z = t^3$.

Même question pour la force $\overrightarrow{G} = (x + yz)\overrightarrow{i} + (y + xz)\overrightarrow{j} + (z + xy)\overrightarrow{k}$.

10. Intégrales doubles

Exercice 10.1. Changer l'ordre d'intégration dans l'intégrale double:

$$\int_0^4 \left(\int_{3x^2}^{12x} f(x,y) \, dy \right) dx$$

Exercice 10.2. Changer l'ordre d'intégration dans l'intégrale double:

$$\int_{0}^{1} \left(\int_{2x}^{3x} f(x,y) \, dy \right) dx$$

Exercice 10.3. Changer l'ordre d'intégration dans l'intégrale double:

$$\int_{\frac{a}{2}}^{a} \left(\int_{0}^{\sqrt{2ax - x^2}} f(x, y) \, dy \right) dx$$

Exercice 10.4. Déterminer l'aire de la partie D du plan délimitée par les courbes d'équation :

$$y = x$$
, $y^2 = x$.

Exercice 10.5. a) Calculer $\iint_D (x-y) dxdy$ où D est une partie du plan délimitée par les droites

d'équation :

$$x = 0, \quad y = x + 2, \quad y = -x$$

Exercice 10.6. Calculer $\iint_D xy \ dxdy$ où D est la partie du plan délimitée par les courbes d'équation :

$$y = x^2$$
, $y = x^3$.

Exercice 10.7. Soit $f:[0,1]\times[0,1]\to\mathbb{R}$ une fonction continue. La droite d'équation y=x délimite dans les carré $[0,1]\times[0,1]$ deux triangles égaux T_1 et T_2 . Montrer qu'en général,

$$\iint_{T_1} f(x,y) \ dxdy \neq \iint_{T_2} f(x,y) \ dxdy.$$

Puis, en utilisant le changement de variable $u=y,\ v=x,$ montrer que $\iint_{T_1} xy\ dxdy = \iint_{T_2} xy\ dxdy$.

Exercice 10.8. Soit D le quart de disque unité défini par :

$$D = \{(x,y) | 0 \le x, 0 \le y, x^2 + y^2 \le 1\}$$

Utiliser le passage en coordonnées polaires pour calculer l'intégrale :

$$I = \iint_D (4 - x^2 - y^2) \, dx dy.$$

Exercice 10.9. Déterminer le centre de gravité d'un demi-disque homogène.

Exercice 10.10. Déterminer le centre de gravité de la surface située à l'extérieur du cercle de rayon 1 et délimitée par la cardioïde $\rho = 1 + \cos \theta$.

Exercice 10.11. Soit $I = \iint_{T_a} \sqrt{xy} e^{-x-y} dx dy$. avec $T_a = \{(x,y) \in \mathbb{R}^2 / x \ge 0; y \ge 0; x+y \le a\}$ et a > 0. Calculer I à l'aide du changement de variables $\begin{cases} x = tu \\ y = (1-t)u \end{cases}$

Exercice 10.12. Aire en coordonnées polaires. Soit D le domaine limité par $r=p(\theta)$ avec $0 \le \theta \le 2\pi$; et le segment $\begin{cases} \theta=0 \\ p(0) \le r \le p(2\pi) \end{cases}$

Montrer que l'aire de D est égale à $\mathcal{A}(D)=\frac{1}{2}\int_{0}^{2\pi}p^{2}(\theta)\,d\theta.$

Trouver l'aire **a**) de la cardioïde : $r = a(1 + cos(\theta))$., **b**) de l'escargot : $r = a\theta$, (a > 0).

Dessiner les lignes de coordonnées $r = \mathcal{C}^{te}$ et $\phi = \mathcal{C}^{te}$ dans le plan des x, y.

Dessiner les lignes de coordonnées $x = \mathcal{C}^{te}$ et $y = \mathcal{C}^{te}$ dans le plan des r, ϕ .

Exercice 10.13. Soit \mathcal{D} le domaine limité par le cercle d'équation $x^2 + y^2 - 2y = 0$ parcouru dans le sens direct.

Calculer à l'aide de la formule de Green-Riemann $\int \int_{\mathcal{D}}{(x^2-y^2)dxdy}$

Exercice 10.14. Calculer l'intégrale curviligne I le long de la courbe fermée γ constituée par les deux arcs de parabole $y=x^2$ et $x=y^2$, orientée dans le sens direct avec

$$I = \int_{\gamma} (2xy - x^2) dx + (x + y^2) dy.$$

Vérifier le résultat en utilisant la formule de Green-Riemann.

Exercice 10.15. Le but de cet exercice est de calculer l'intégrale $I = \int_0^{+\infty} e^{-x^2} dx$, définie comme la limite $\lim_{n \to +\infty} I_n$, où $I_n = \int_0^n e^{-x^2} dx$.

Pour $n \in \mathbb{N}$, considérons le quart de disque : $D_n = \{x^2 + y^2 \le n^2, x \ge 0, y \ge 0\}$ et le carré : $C_n = \{0 \le x \le n, 0 \le y \le n\}$.

- 1. Calculer les intégrales $J_n = \int \int_{D_n} e^{-(x^2+y^2)} dx dy$ et $J_{2n} = \int \int_{D_{2n}} e^{-(x^2+y^2)} dx dy$ en utilisant le changement de variables en coordonnées polaires.
- 2. Considérons l'intégrale $K_n = \int \int_{C_n} e^{-(x^2+y^2)} dx dy$. Montrer que $K_n = I_n^2$.
- 3. D'après un dessin de $D_n,\ C_n$ et D_{2n} expliquer pourquoi $J_n \leq K_n \leq J_{2n}.$
- 4. Quelle est la limite $n \to +\infty$ de J_n et de J_{2n} ? et de K_n ? Trouver I.

11. Intégrales triples

Exercice 11.1. Calculer l'intégrale triple:

$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \int_0^a z \sqrt{x^2 + y^2} \, dz \, dy \, dx$$

Exercice 11.2. Soit D le domaine $D = \{(x, y, z) \in \mathbb{R}^3 \mid x \geq 0, y \geq 0, z \geq 0, x + 2y + z \leq 1\}$. Représenter graphiquement D. Calculer ensuite de deux manières différentes l'intégrale triple

$$\iiint_D x \, dx \, dy \, dz$$

(a) en intégrant "par piles", (b) en intégrant "par couches".

Exercice 11.3. Représenter graphiquement et calculer le volume limité par les surfaces de \mathbb{R}^3 d'équation $z = 2x^2 + y^2$ et $z = 4 - y^2$.

Exercice 11.4. Calculer l'intégrale triple:

$$\iiint_V \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz$$

où V est la boule de centre (0,0,0) et de rayon R.

Exercice 11.5. Calculer l'intégrale triple:

$$\iiint_V (x+y+z)^2 dx dy dz$$

où V est la partie commune au paraboloïde $\{2az \ge x^2 + y^2\}$ et à la boule $\{3a^2 \ge x^2 + y^2 + z^2\}$.

Exercice 11.6. Calculer l'intégrale triple:

$$\iiint_{V} z \, dx \, dy \, dz$$

où V est le domaine limité par le demi l'ellipsoïde supérieur $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ et par le plan d'équation z = 0.

Exercice 11.7. Calculer l'intégrale triple:

$$\iiint_V z \, dx \, dy \, dz$$

où V est le domaine limité par le cône d'équation $z^2 = \frac{h^2}{R^2}(x^2 + y^2)$ et le plan z = h.

Exercice 11.8. Calculer l'intégrale triple:

$$\iiint_V dx \, dy \, dz$$

où V est le domaine limité par la surface d'équations $x^2 + y^2 + z^2 = 2Rz$ et $x^2 + y^2 = z^2$ et contenant le point (0,0,R).

Exercice 11.1. (Travail personnel) Calculer la longueur de chacun des arcs de courbes suivant:

- 1) $y = 1 \ln(\cos x)$ avec $0 \le x \le \frac{\pi}{4}$;
- 2) $y = a \operatorname{ch}(\frac{x}{a})$ avec a > 0 et $0 \le x \le x_0$, (chaînette);
- 3) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ avec a > 0, (astroïde);
- 4) $\rho = ae^{k\theta}$ avec a > 0, $0 < \theta < 2\pi$ et $k \in \mathbb{R}$ (spirale logarithmique);
- 5) $(y-z)^2 = 3a(y+a)$ et $9x^2 + 8y^2 = 8z^2$ avec $0 \le x \le x_0$.

Exercice 11.2. (Travail personnel) Calculer l'intégrale curviligne

$$\int_{\Gamma} y^2 \, dx - \frac{1}{2 - x^2} \, dy$$

lorsque:

- 1) Γ est l'arc de cercle de centre (0,0), de rayon 1 et d'extrémités A=(1,0) et B=(0,1).
- 2) Γ est contour ACB réunion des deux segments: $\{(x,y); x=1, 0 \leq y \leq 1\}$ et $\{(x,y); y=1, 0 \leq x \leq 1\}$

Exercice 11.3. (Travail personnel) Calculer les intégrales suivantes par deux méthodes (i) en utilisant l'ordre d'intégration indiqué (ii) en inversant cet ordre

(a)
$$\int_{1}^{2} \int_{0}^{y} y dx dy$$
 (b) $\int_{0}^{1} \int_{0}^{x^{2}} dy dx + \int_{1}^{2} \int_{0}^{2-x} y dy dx$

Exercice 11.4. (Travail personnel) Considérons la forme différentielle suivante:

$$\omega(x,y) = (2xy + y^2 - 1) dx + (2xy + x^2) dy,$$

et soit \vec{V} le champ vectoriel qui correspond à ω .

- 1. Exprimer l'intégrale curviligne correspondant à la circulation du champ \vec{V} le long du segment de droite reliant les points A = (1,0) et B = (0,1) (orienté de A vers B), puis calculer cette intégrale.
- 2. Déterminer si ω est exacte. Le champ \vec{V} est-il un champ de gradients ? Si c'est le cas, déterminer f telle que $\vec{V} = \overrightarrow{\nabla} f$.
- 3. Calculer le travail du champ \vec{V} le long de la courbe Γ de paramétrisation $\begin{cases} x = \cos^5 t \\ y = \sin^4 t; \end{cases} t \in [0, \frac{\pi}{2}].$

Exercice 11.5. (Travail personnel) Trouver le centre de gravité de la surface plane délimitée par la parabole $y = 6x - x^2$ et la droite y = x.

Exercice 11.6. (Travail personnel) Soit l'ensemble $D = \left\{ (x,y) \in \mathbb{R}^2; \ \frac{x^2}{4} + \frac{y^2}{9} \le 1, \ x \ge 0, \ y \ge 0 \right\}.$

- 1. Déterminer l'aire de D en utilisant le changement de variables : $\left\{ \begin{array}{l} x=2r\cos\theta\\ y=3r\sin\theta \end{array} \right. .$
- 2. Calculer l'intégrale

$$I = \iint_D 12\cos(9x^2 + 4y^2) \, dx dy.$$

Exercice 11.7. (Travail personnel)

- 1. Calculer l'aire de l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 2. On considère le domaine limité par l'astroïde $\gamma(t) = (\cos^3(t), \sin^3(t))$. Calculer son aire.
- 3. La cardioïde est la courbe définie en coordonnées polaires par $r(\theta) = 1 + \cos(\theta)$. Calculer son aire.

Exercice 11.8. (Travail personnel) Calculer l'intégrale triple:

$$\iiint_V \frac{1}{(1+x+y+z)^3} \, dx \, dy \, dz$$

où V est limité par les plans de coordonnées et par le plan d'équation x+y+z=1.

Exercice 11.9. Calculer le volume du corps limité par le plan xOy, le cylindre $x^2 + y^2 = ax$ et la sphère $x^2 + y^2 + z^2 = a^2$.

12. Intégrales de Surface

1) Surfaces paramétrées

Exercice 12.1. Représenter graphiquement les surfaces de \mathbb{R}^3 suivantes :

$$S_1: \begin{cases} x = u \\ y = v \\ z = \sqrt{u^2 + v^2} \end{cases}$$
, $(u, v) \in \mathbb{R}^2$, $S_2: \begin{cases} x = u^2 \\ y = v \\ z = u \end{cases}$, $(u, v) \in \mathbb{R}^2$.

Exercice 12.2.

- 1. Donner une paramétrisation du cylindre infini, d'axe Oy et rayon R > 0.
- 2. Paramétrer la sphère centrée à l'origine et de rayon R > 0. Donner l'expression du verseur normal extérieur en tout point (a) en coordonnées cartésiennes, (b) en coordonnées sphériques (longitude et latitude).

Exercice 12.3. On considère une lamelle sphérique de rayon R et densité surfacique d_0 (constante).

- 1. Calculer la masse da la lamelle
- 2. Calculer le moment d'inertie par rapport à son centre de gravité
- 3. Calculer le moment d'inertie par rapport à un axe passant par le centre de gravité.

Exercice 12.4. On considère une balle de rayon R et densité volumique d_0 (constante).

- 1. Calculer le moment d'inertie par rapport à son centre de gravité
- 2. Calculer le moment d'inertie par rapport à un axe passant par le centre de gravité.

Exercice 12.5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable et Σ la surface de \mathbb{R}^3

$$\Sigma = \left\{ (x, y, f(x, y)) / (x, y) \in \mathbb{R}^2 \right\}.$$

Montrer que, pour tout point (x, y), le vecteur unitaire normal à Σ au point (x, y, f(x, y)) est $\vec{n}(x, y) = \frac{(-f'_x, -f'_y, 1)}{\sqrt{1+f'_x^2+f'_y^2}}$.

Exercice 12.6.

1. Calculer l'intégrale sur la surface

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 / z = x^3, \quad 0 \le x \le 1, \quad 0 \le y \le \pi \}$$

de la fonction définie par $f(x,y) = 3x^3 \sin y$.

2. Calculer l'intégrale sur la surface définie par

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = 1, \quad 0 \le z \le 3\}$$

de la fonction définie par f(x, y) = x + 1.

Exercice 12.7. Trouver l'équation du plan tangent en $A \equiv (1,0,1)$ à la surface Σ paramétrée par

$$S: \left\{ \begin{array}{l} x = u - v \\ y = uv \\ z = u^2 + v^2 \end{array} \right., \qquad u \ge 0, \quad v \ge 0.$$

Déterminer ensuite une équation cartésienne de cette surface.

Exercice 12.8. Calculer le flux à travers la surface limité par l'ellipse d'équations $\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ z = 0. \end{cases}$ (avec a > 0 et b > 0)

- 1. du champ de vecteurs de \mathbb{R}^3 : $\vec{V}(x,y,z) = (1,2,3)$
- 2. du champ de vecteurs de \mathbb{R}^3 : $\vec{W}(x,y,z) = (z,y,x^2)$.

2) Théorèmes de Stokes et Ostrogradski

Exercice 12.9. Calculer le flux du champ de vecteurs $\vec{V}(x,y,z)=(x,y,-z)$ à travers la demi-sphère $\begin{cases} x^2+y^2+z^2=1\\ z\geq 0. \end{cases}$

Exercice 12.10. Calculer la circulation du champ de vecteurs $\vec{V}(x,y,z) = (y-z,z-x,x-y)$ le long de l'ellipse \mathcal{E} (après avoir préciser le sens du parcours) d'équations $\begin{cases} x^2+y^2=1\\ x+z=1 \end{cases}$

1. directement. 2. En utilisant la formule de Stokes

Exercice 12.11. On considère l'intégrale $\int_C (y+z) \, dx + (z+x) \, dy + (x+y) \, dz$, où C est le cercle d'équations $\begin{cases} x^2+y^2+z^2=R^2 \\ x+y+z=0 \end{cases}$ Calculer cette intégrale en appliquant la formule de Stokes. Retrouver le résultat à l'aide d'un calcul direct.

Exercice 12.12. Calculer le flux du champ de vecteurs $\vec{V}(x, y, z) = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$ à travers la sphère $x^2 + y^2 + z^2 = R^2$: 1) Directement 2) A l'aide le la formule d'Ostrogradski.

Exercice 12.13. On considère la boîte cylindrique S composée du cylindre d'équation $x^2 + y^2 = R^2$ et $0 \le z \le h$ et de deux disques de rayon R aux niveau z = 0 et z = h (R > 0 et h > 0). Soit V le champ de vecteurs défini par

$$\vec{V}(x, y, z) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}.$$

- 1. Déterminer si \vec{V} est un champ de gradient.
- 2. Déterminer si \vec{V} est le rotationnel d'un autre champ de vecteurs.
- 3. Calculer le flux de \vec{V} à travers S directement.
- 4. Calculer le flux de \vec{V} à travers S en utilisant la formule d'Ostrogradski.

Exercice 12.14. On considère la boite cylindrique S composée du cylindre d'équation $x^2 + y^2 = a^2$, $0 \le z \le b$ (a > 0 et b > 0) et des deux disques de rayon a aux niveaux z = 0 et z = b. On définit le champ de vecteurs \vec{v} dans \mathbb{R}^3 par $\vec{v}(x,y,z) = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$.

- 1. Déterminer si \vec{v} est un champ de gradients.
- 2. Calculer directement le flux de \vec{v} à travers S.
- 3. Calculer le flux de \vec{v} à travers S en utilisant la formule d'Ostrogradski.