Chapitre 8. Anneaux et corps

1 Anneaux

1.1 Généralités

Définition 1.1. Un anneau est un ensemble A muni de deux lois de composition interne + et \cdot tels que :

- * (A, +) est un groupe abélien, noté additivement (en particulier, son élément neutre est noté 0_A)
- * La loi \cdot est associative et possède un élément neutre 1_A

* La loi · distribue sur l'addition :
$$\forall x, y, z \in A : \begin{cases} x(y+z) = xy + xz \\ (y+z)x = yx + zx \end{cases}$$

Un anneau est dit commutatif si sa multiplication est commutative.

1.2 Règles de calcul

Proposition 1.2.

- * 0_A est <u>absorbant</u> : $\forall a \in A, 0_A \cdot a = a \cdot 0_A = 0_A$
- * (règle de signes) : $\forall a, b \in A$, $(-a)b = -(ab) = a \cdot (-b)$ (où (-a) est l'opposé de a pour la loi +)

Théorème 1.3. Soit *A* un anneau et $a, b \in A$ tels que ab = ba (a, b commutent)

Alors

$$\forall n \in \mathbb{N} : \begin{cases} (a+b)^n = \sum\limits_{k=0}^n \binom{n}{k} a^k b^{n-k} & \text{(Binôme de Newton)} \\ a^{n+1} - b^{n+1} = (a-b) \sum\limits_{k=0}^n a^k b^{n-k} \end{cases}$$

1.3 Groupe des inversibles

Définition 1.4. Soit *A* un anneau.

Le groupe des inversibles (ou des unités) de A est $A^{\times} = \{x \in A \mid \exists y \in A : xy = yx = 1_A\}$ Comme son nom l'indique, (A^{\times}, \cdot) est un groupe.

1.4 Sous-anneaux

Définition 1.5. Soit *A* un anneau.

Un sous-anneau de *A* est une partie *B* de *A* telle que :

- * B soit un sous-groupe de (A, +)
- * B soit stable par \cdot et $1_A \in B$

Proposition 1.6. Soit *A* un anneau et $B \subseteq A$

Pour que *B* soit un sous-anneau de *A*, il faut et il suffit que :

- * $1_A \in B$
- * $\forall x, y \in B, x y \in B$
- $* \forall x, y \in B, xy \in B$

1.5 Morphismes d'anneaux

Définition 1.7. Soit *A*, *B* deux anneaux.

Un morphisme (d'anneaux) $f: A \rightarrow B$ est une application telle que :

- * $\forall x, y \in A, f(x + y) = f(x) + f(y)$ (*f* morphisme de groupes additifs)
- $* f(1_A) = 1_B$
- $* \forall x, y \in A, f(xy) = f(x)f(y)$

Proposition 1.8. Soit $f: A \rightarrow B$ un morphisme d'anneaux.

Alors im(f) est un sous-anneau de B

2 Corps

2.1 Anneau intègre

Définition 2.1. Un anneau A est dit <u>intègre</u> s'il est commutatif, non nul (différent de l'anneau nul : $0_A \neq 1_A$) et que $\forall x, y \in A$, $xy = 0_A \implies (x = 0_A \text{ ou } y = 0_A)$

Proposition 2.2. Soit $n \in \mathbb{N}^*$

Alors $\mathbb{Z}/n\mathbb{Z}$ est intègre ssi n est premier.

3 Corps: généralités

Définition 3.1. Un corps est un anneau commutatif, non nul, et dans lequel tout élément non nul est inversible.

Proposition 3.2. Tout anneau intègre fini est un corps.

Définition 3.3. Soit *L* un corps.

Un sous-corps de L est un sous-anneau K de L tel que $\forall x \in K \setminus \{0\}$, $x^{-1} \in K$

On dit aussi que L est un sur-corps de K ou que L/K est une extension de corps.

Définition 3.4. Soit K_1 , K_2 deux corps.

Un morphisme de corps $K_1 \rightarrow K_2$ est un morphisme d'anneaux $K_1 \rightarrow K_2$

Proposition 3.5. Tout morphisme de corps est injectif.

3.1 Caractéristique d'un corps

Définition 3.6. La <u>caractéristique</u> car(K) d'un corps K est l'ordre de 1_K dans le groupe additif (K, +) s'il est fini, et 0 sinon.

Théorème 3.7. Soit *K* un corps.

- * Si K est de caractéristique non nulle, alors sa caractéristique est un nombre premier, et K continent un sous-corps isomorphe à \mathbb{F}_p
- * Si K est de caractéristique nulle, il contient un sous-corps isomorphe à Q

3.2 Corps des fractions d'un anneau intègre

On va construire un corps de fractions Frac(A) "contenant A".

L'ensemble Frac(A) est le quotient de $A \times (A \setminus \{0\})$ par la relation \sim définie par

$$\forall (a_1, b_1), (a_2, b_2) \in A \times (A \setminus \{0\}), (a_1, b_1) \sim (a_2, b_2) \iff a_1b_2 = a_2b_1$$

dont on vérifie que c'est une relation d'équivalence.

On note simplement $\frac{a}{b}$ le classe d'équivalence de $(a,b) \in A \times (A \setminus \{0\})$

On munit alors K = Frac(A) de deux lois :

$$\begin{split} \frac{a_1}{b_1} + \frac{a_2}{b_2} &= \frac{a_1b_2 + a_2b_1}{b_1b_2} \\ \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} &= \frac{a_1a_2}{b_1b_2} \end{split}$$

(avec $b_1b_2 \neq 0_A$)