课程三:哈密顿量

QAOA

$$H = \begin{bmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{bmatrix}$$

本 源 量 子 · QAOA 哈密顿量

	状态	值
	а	True(1)
布尔变量a	$\neg a$	False(0)

本 源 量 子 · QAOA 哈密顿量

	状态	值
	а	True(1)
布尔变量 <i>a</i>	$\neg a$	False(0)
$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1
	$ 1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	-1

状态	哈密顿量	泡利表达式	布尔变量
$ 0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\frac{1}{2} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right) = \frac{I + \sigma^z}{2}$	а
$ 1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$I - \frac{I + \sigma^z}{2} = \frac{I - \sigma^z}{2}$	$\neg a$

计算逻辑表达式*a* ∧ *b*的哈密顿量

$a \wedge b$		b	
		true	false
	true	1	0
a	false	0	0

QAOA 练一练

计算逻辑表达式 $a \wedge b$ 的哈密顿量

$a \wedge b$		b	
$a, \mathbf{b} \equiv 0\rangle$ $\neg a, \neg \mathbf{b} \equiv 1\rangle$		0>	1>
	0>	1	0
a	1>	0	0

$$a \wedge b$$

$$a, \mathbf{b} \equiv |\mathbf{1}\rangle$$

$$\neg a, \neg \mathbf{b} \equiv |\mathbf{0}\rangle$$

$$|0\rangle$$

$$|1\rangle$$

$$a$$

$$|1\rangle$$

$$0$$

$$1$$

计算逻辑表达式 $a \lor b$ 的哈密顿量

$a \lor b$		b	
		true	false
	true	1	1
a	false	1	0

$$H_{a \lor b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

· QAOA 练一练

计算逻辑表达式 $a \lor b$ 的哈密顿量

$a \lor b$ $a, \mathbf{b} \equiv 0\rangle$ $\neg a, \neg \mathbf{b} \equiv 1\rangle$		b	
		0>	1>
	0>	1	1
a	1>	1	0

$$\begin{array}{c|c}
a \lor b & \mathbf{b} \\
a, \mathbf{b} \equiv |\mathbf{1}\rangle & |0\rangle & |1\rangle \\
\neg a, \neg \mathbf{b} \equiv |\mathbf{0}\rangle & 0 & 1
\end{array}$$

$$a \lor b = \neg(\neg a \land \neg b)$$

$$H_{a \lor b} = I - \frac{I - \sigma_0^z}{2} \cdot \frac{I - \sigma_1^z}{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$H_{a \lor b} = I - \frac{I + \sigma_0^z}{2} \cdot \frac{I + \sigma_1^z}{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

计算a + b的哈密顿量, 其中 $a, b \in \{0,1\}$

a + b		b	
		0	1
	0	0	1
a	1	1	2

$$H_{a+b} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

QAOA 练一练

计算a + b的哈密顿量, 其中 $a, b \in \{0,1\}$

a+b		b	
a , b 取 $1 \equiv 0\rangle$ a , b 取 $0 \equiv 1\rangle$		0>	1>
	0>	2	1
a	1>	1	0

$$H_{a+b} = \frac{I + \sigma_0^z}{2} + \frac{I + \sigma_1^z}{2} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$a+b$$
b a, b 取1 \equiv $|1\rangle$ $|0\rangle$ $|1\rangle$ a, b 取0 \equiv $|0\rangle$ 01 a $|1\rangle$ 12

$$H_{a+b} = \frac{I - \sigma_0^z}{2} + \frac{I - \sigma_1^z}{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$C_{ij} = \frac{1}{2} (1 - z_i z_j)$$
 其中 $\begin{cases} Z_i, Z_j \in 0 \text{组,} & Z_i, Z_j = 1 \\ Z_i, Z_j \in 1 \text{组,} & Z_i, Z_j = -1 \end{cases}$

$$MaxCut = \sum_{ij} C_{ij}$$

• QAOA 哈密顿量

$$H = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$a \oplus b$		b	
		0	1
	0	0	1
a	1	1	0

$$a \oplus b = a \wedge \neg b + \neg a \wedge b$$

$$H_{a \oplus b} = \frac{I + \sigma_0^z}{2} \cdot \frac{I - \sigma_1^z}{2} + \frac{I - \sigma_0^z}{2} \cdot \frac{I + \sigma_1^z}{2}$$
$$= \frac{I - \sigma_0^z \sigma_1^z}{2}$$
$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$H_{MaxCut} = H_1 + H_2 + \dots + H_n = \sum_{ij} \frac{1}{2} (I - \sigma_i^z \sigma_j^z)$$

如何在QPanda中构造最大切割问题的哈密顿量?

$$\frac{I - \sigma_i^z \sigma_j^z}{2}$$

计算a + b的哈密顿量, 其中 $a, b \in \{0,1,2,3\}$

计算a * b的哈密顿量,其中 $a, b \in \{0,1,2,3\}$

追本溯源 高掌远跖

支持与交流

https://github.com/OriginQ/QPanda-2

https://www.originqc.com.cn