# Mecânica dos Fluidos Computacional Métodos de Diferenças Finitas para Problemas Unidimensionais

#### lury Igreja

Programa de Pós-Graduação em Modelagem Computacional Departamento de Ciência da Computação Universidade Federal de Juiz de Fora iuryigreja@ice.ufjf.br

#### Conteúdo

- ► Problema Difusivo ou Elíptico
- ► Condições de Contorno
- ► Problema Difusivo-Convectivo
- ► Problema Difusivo Transiente

## Problema Difusivo ou Elíptico

Seja o domínio  $\Omega=[a,b]$ , dado  $\alpha$ ,  $\beta$  e f(x), encontrar u(x), com  $x\in[a,b]$ , tal que:

$$-\frac{d^2u}{dx^2} = f(x)$$

$$u(a) = \alpha \qquad u(b) = \beta$$
(1)

# Discretização do problema

Particionando o domínio  $\Omega=[a,b]$  em partes iguais h, onde h=(b-a)/Nel é a dimensão do elemento, Nel=J-1 o número de elementos da malha e J o número de nós da malha que podem ser localizados por  $x_j=jh$ , com j=1,2,...,J-1,  $x_0=a$  e  $x_J=b$ .



Aproximação por diferenças finitas central:

$$\frac{d^2u}{dx^2} \approx \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2}$$

ou ainda, para o problema elíptico (1):

$$-\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} = f(x_j)$$

 $com u_0 = \alpha e u_J = \beta.$ 

#### Consistência

Expandindo em série de Taylor os termos  $u(x_j+h)$  e  $u(x_j-h)$  e truncando no termo de derivada quarta:

$$u(x_j+h) = u(x_j) + h\frac{du}{dx}(x_j) + \frac{h^2}{2!}\frac{d^2u}{dx^2}(x_j) + \frac{h^3}{3!}\frac{d^3u}{dx^3}(x_j) + \frac{h^4}{4!}\frac{d^4u}{dx^4}(\xi_j^1)$$

$$u(x_j - h) = u(x_j) - h\frac{du}{dx}(x_j) + \frac{h^2}{2!}\frac{d^2u}{dx^2}(x_j) - \frac{h^3}{3!}\frac{d^3u}{dx^3}(x_j) + \frac{h^4}{4!}\frac{d^4u}{dx^4}(\xi_j^2)$$

com  $\xi_j^1 \in (x_j, x_j + h)$  e  $\xi_j^2 \in (x_j - h, x_j)$ . Somando as expansões e rearrumando os termos, geramos:

$$\frac{d^2u}{dx^2}(x_j) = \frac{u(x_j + h) - 2u(x_j) + u(x_j - h)}{h^2} + \tau_j$$

onde

$$\tau_j = -\frac{h^2}{4!} \left( \frac{d^4 u}{dx^4} (\xi_j^1) + \frac{d^4 u}{dx^4} (\xi_j^2) \right)$$

De acordo com o erro de truncamento, este método apresenta convergência de ordem 2.

# Estratégia de Resolução

**Problema**: achar  $u_j$ , com j = 1, 2, ..., J - 1, tal que:

$$-\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} = f(x_j)$$

com condições de contorno

$$u_0 = \alpha$$
  $u_J = \beta$ 

O sistema de equações para cada j pode ser montado como:

para 
$$j=1$$
,

$$-\frac{u_2 - 2u_1 + \alpha}{h^2} = f(x_1)$$

ou ainda

$$-\frac{u_2 - 2u_1}{h^2} = f(x_1) + \frac{\alpha}{h^2}$$

para 
$$j=2$$
,

$$-\frac{u_3 - 2u_2 + u_1}{h^2} = f(x_2)$$

## Cont....

para 
$$j=3$$
, 
$$-\frac{u_4-2u_3+u_2}{h^2}=f(x_3)$$
 :

para 
$$j = J - 1$$
,

$$-\frac{\beta - 2u_{J-1} + u_{J-2}}{h^2} = f(x_{J-1})$$

ou ainda

$$-\frac{-2u_{J-1} + u_{J-2}}{h^2} = f(x_{J-1}) + \frac{\beta}{h^2}$$

#### Cont....

A partir das equações para cada indice j, podemos gerar o seguinte sistema linear:

$$\frac{1}{h^2} \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & 0 & \dots & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ \vdots \\ u_{J-2} \\ u_{J-1} \end{bmatrix} = \begin{bmatrix} f(x_1) + \frac{\alpha}{h^2} \\ f(x_2) \\ f(x_3) \\ f(x_4) \\ \vdots \\ f(x_{J-2}) \\ f(x_{J-1}) + \frac{\beta}{h^2} \end{bmatrix}$$

Obs.: Por se tratar de um sistema linear tridiagonal, podemos utilizar além das metodologias clássicas de resolução de sistemas lineares ,eliminação de Gauss, LU, Cholesky..., o método direto de Thomas ou algoritmo de Thomas.

#### Resultados Numéricos

Em um domínio  $\Omega = [a,b] = [0,1]$ , escolhendo  $f(x) = \pi^2 \sin(\pi x)$ , estamos interessados em resolver o seguinte problema:

$$-\frac{d^2u}{dx^2} = \pi^2 \sin(\pi x)$$
$$u(0) = u(1) = 0$$

O problema em questão apresenta a seguinte solução exata:

$$u(x) = \sin(\pi x)$$

que satisfaz as condições de contorno u(0)=u(1)=0. Adotando refinamentos sucessivos de malha com  $Nel=4^i\ (i=1,2,3,4,5)$ , são gerados resultados comparando solução exata com aproximada e testes de convergência com o intuito de validar a metodologia e o código computacional.

## Taxa de convergência

Resultados para Nel = 4, 16, 64, 256, 1024 elementos.



Observação: erro obtido na norma do máximo, ou seja,

$$||u_j - u(x_j)||_{\infty} = \max_{0 \le j \le J} |u_j - u(x_j)|.$$

#### Método de alta ordem

Uma aproximação de quarta ordem para o problema diferencial de segunda ordem que estamos abordando pode ser escrito como:

$$\frac{d^2u}{dx^2} \approx -\frac{1}{12h^2}(u_{j-2} - 16u_{j-1} + 30u_j - 16u_{j+1} + u_{j+2}).$$

Assim, o problema modelo abordado pode ser aproximado como segue:

$$\frac{1}{12h^2}(u_{j-2} - 16u_{j-1} + 30u_j - 16u_{j+1} + u_{j+2}) = f(x_j).$$

Para mais detalhes sobre este método e sua implementação, ver página 34 da seguinte referência:

https://edisciplinas.usp.br/pluginfile.php/41896/mod\_resource/content/1/LeVeque%20Finite%20Diff.pdf

## Condições de Contorno

As condições de contorno mais comuns são as de Dirichlet e Neumann.

- Condição de Dirichlet
   Especifica os valores que uma solução necessita tomar no contorno do domínio.
- Condição de Neumann Especifica os valores que a derivada de uma solução deve tomar no contorno do domínio. Esta condição necessita de um tratamento especial, que pode se dar de 2 formas:
  - através da aproximação da derivada usando um método de Euler de primeira ordem. Para mais detalhes consulte a página 22 do livro<sup>1</sup>;
  - através da criação de um ponto fantasma fora do domínio, para aproximar a derivada usando um método de segunda ordem, como o método de diferença central. Detalhes na página 23 do livro<sup>1</sup>

https://edisciplinas.usp.br/pluginfile.php/41896/mod\_ resource/content/1/LeVeque%20Finite%20Diff.pdf

#### Problema Difusivo-Convectivo

Seja o domínio  $\Omega=[a,b]$ , dado  $\alpha$ ,  $\beta$ ,  $\varepsilon>0$ ,  $\kappa>0$  e f(x), encontrar u(x), com  $x\in[a,b]$ , tal que:

$$-\varepsilon \frac{d^2 u}{dx^2} + \kappa \frac{du}{dx} = f(x)$$

$$u(a) = \alpha \qquad u(b) = \beta$$
(2)

# Formas discretas para a Difusão-Convecção

Problema 1 (convecção - diferença regressiva): achar  $u_j$ , com j=1,2,...,J-1, tal que:

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_j - u_{j-1}}{h} = f(x_j)$$

com condições de contorno

$$u_0 = \alpha$$
  $u_J = \beta$ 

O sistema de equações para esta discretização pode ser montado como:

$$\frac{1}{h^2}\begin{bmatrix} 2\varepsilon + \kappa h & -\varepsilon & 0 & 0 & \dots & 0 \\ -\varepsilon - \kappa h & 2\varepsilon + \kappa h & -\varepsilon & 0 & \dots & 0 \\ 0 & -\varepsilon - \kappa h & 2\varepsilon + \kappa h & -\varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & -\varepsilon - \kappa h & 2\varepsilon + \kappa h \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{J-1} \end{bmatrix} = \begin{bmatrix} f(x_1) + \frac{\varepsilon \alpha}{h^2} + \frac{\kappa \alpha}{h} \\ f(x_2) \\ f(x_3) \\ \vdots \\ f(x_{J-1}) + \frac{\varepsilon \beta}{h^2} \end{bmatrix}$$

# Formas discretas para a Difusão-Convecção

Problema 2 (convecção - diferença progressiva): achar  $u_j$ , com j=1,2,...,J-1, tal que:

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_j}{h} = f(x_j)$$

com condições de contorno

$$u_0 = \alpha$$
  $u_J = \beta$ 

O sistema de equações para esta discretização pode ser montado como:

$$\frac{1}{h^2}\begin{bmatrix} 2\varepsilon-\kappa h & \kappa h-\varepsilon & 0 & 0 & \dots & 0\\ -\varepsilon & 2\varepsilon-\kappa h & \kappa h-\varepsilon & 0 & \dots & 0\\ 0 & -\varepsilon & 2\varepsilon-\kappa h & \kappa h-\varepsilon & \dots & 0\\ \vdots & & & & \ddots & \vdots\\ 0 & & \dots & & 0 & -\varepsilon & 2\varepsilon-\kappa h \end{bmatrix}\begin{bmatrix} u_1\\ u_2\\ u_3\\ \vdots\\ u_{J-1}\end{bmatrix} = \begin{bmatrix} f(x_1)+\frac{\varepsilon\alpha}{h^2}\\ f(x_2)\\ f(x_3)\\ \vdots\\ g(x_{J-1})+\frac{\varepsilon\beta}{h^2}\\ f(x_{J-1})+\frac{\varepsilon\beta}{h^2}\\ \frac{\kappa\beta}{h}\end{bmatrix}$$

# Formas discretas para a Difusão-Convecção

Problema 3 (convecção - diferença central): achar  $u_j$ , com j = 1, 2, ..., J - 1, tal que:

$$-\varepsilon \frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} + \kappa \frac{u_{j+1} - u_{j-1}}{2h} = f(x_j)$$

com condições de contorno

$$u_0 = \alpha$$
  $u_J = \beta$ 

O sistema de equações

$$AU = F$$

para esta discretização pode ser montado como:

$$\mathbf{A} = \frac{1}{h^2} \begin{bmatrix} 2\varepsilon & \kappa h/2 - \varepsilon & 0 & 0 & \dots & 0 \\ -\varepsilon - \kappa h/2 & 2\varepsilon & \kappa h/2 - \varepsilon & 0 & \dots & 0 \\ 0 & -\varepsilon - \kappa h/2 & 2\varepsilon & \kappa h/2 - \varepsilon & \dots & 0 \\ \vdots & & & & \ddots & \vdots \\ 0 & & \dots & & 0 & -\varepsilon - \kappa h/2 & 2\varepsilon \end{bmatrix}$$

$$\mathbf{U} = (u_1; u_2; u_3; \dots; u_{J-1})^T$$

$$\mathbf{F} = \left( f(x_1) + \frac{\varepsilon \alpha}{h^2} + \frac{\kappa \alpha}{2h}; f(x_2); f(x_3); \dots; f(x_{J-1}) + \frac{\varepsilon \beta}{h^2} - \frac{\kappa \beta}{2h} \right)^T$$

#### Resultados Numéricos

Em um domínio  $\Omega=[a,b]=[0,1]$ , escolhendo  $f(x)=\pi^2\sin(\pi x)$ , estamos interessados em resolver o seguinte problema:

$$-\varepsilon \frac{d^2 u}{dx^2} + \kappa \frac{du}{dx} = \varepsilon \pi^2 \sin(\pi x) + \kappa \pi \cos(\pi x)$$
$$u(0) = u(1) = 0$$

O problema em questão apresenta a seguinte solução exata:

$$u(x) = \sin(\pi x)$$

que satisfaz as condições de contorno u(0)=u(1)=0. Adotando refinamentos sucessivos de malha com  $Nel=4^i\ (i=1,2,3,4,5)$ , são gerados resultados comparando solução exata com aproximada e testes de convergência com o intuito de validar a metodologia e o código computacional.

## Taxa de convergência

Resultados para Nel = 4, 16, 64, 256, 1024 elementos.



Observação: erro obtido na norma do máximo, ou seja,

$$||u_j - u(x_j)||_{\infty} = \max_{0 \le j \le J} |u_j - u(x_j)|.$$

# Problema Modelo - Equação do Calor (Difusão Transiente)

Seja o domínio espacial  $\Omega=[a,b]$  e o domínio temporal I=[0,T], dada as funções  $f(x,t):\Omega\times I\to\mathbb{R},\ \alpha,\ \beta,\ \varphi(x):\Omega\to\mathbb{R}$  e  $\varepsilon>0$ , encontrar  $u(x,t):\Omega\times I\to\mathbb{R}$ , tal que:

$$\frac{\partial u}{\partial t} - \varepsilon \frac{\partial^2 u}{\partial x^2} = f(x, t), \quad (x, t) \in \Omega \times I$$

com condições de contorno

$$u(a,t) = \alpha$$
 e  $u(b,t) = \beta$ ,

e a condição inicial

$$u(x,0) = \varphi(x).$$

### Discretização

Definindo  $\Delta t=T/(N-1)$ , h=(b-a)/(J-1) e uma malha de pontos  $(x_j,t_n)$  com  $x_j=jh;\ j=1,2,...,J-1,\ x_0=a$  e  $x_J=b$  e  $t_n=n\Delta t;\ n=0,1,2,...,N$ , onde J e N são inteiros positivos. achar  $u_j^n$ , com j=1,2,...,J-1 e n=0,1,2,...,N, tal que:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - \varepsilon \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} = f(x_j, t_n)$$

com condições de contorno

$$u_0^n = \alpha \qquad u_J^n = \beta$$

e condição inicial

$$u_j^0 = \varphi(x_j)$$

A consistência deste método fornece os erros de truncamento da ordem de  $\mathcal{O}(\Delta t, h^2)$ 

# Validação Numérica

$$\frac{\partial u}{\partial t} - \varepsilon \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in [0, \pi] \quad \mathbf{e} \quad t \in [0, 1]$$

com condições de contorno

$$u(0,t) = 0$$
 e  $u(\pi,t) = 0$ ,

e a condição inicial

$$u(x,0) = \sin(x).$$

O problema em questão apresenta a seguinte solução exata:

$$u(x,t) = e^{-\varepsilon t} \sin(x).$$

#### Resultados Numéricos

Tabela:  $\Delta t = h$ 

|   | J    | N   | $  e^n  _{\infty}$ | Ordem | $  e^n  _2$ | Ordem |
|---|------|-----|--------------------|-------|-------------|-------|
| _ | 4    | 1   | 0.117E+00          | _     | 0.146E+00   | _     |
|   | 16   | 5   | 0.345E-01          | 0.88  | 0.432E-01   | 0.88  |
|   | 64   | 20  | 0.892E-02          | 0.98  | 0.112E-01   | 0.98  |
|   | 256  | 81  | 0.225E-02          | 0.99  | 0.282E-02   | 0.99  |
|   | 1024 | 326 | 0.564E-03          | 1.00  | 0.707E-03   | 1.00  |

Tabela:  $\Delta t = h^2$ 

| J    | N      | $  e^n  _{\infty}$ | Ordem | $\ e^n\ _2$ | Ordem |
|------|--------|--------------------|-------|-------------|-------|
| 4    | 2      | 0.106E+00          | _     | 0.133E+00   | _     |
| 16   | 26     | 0.814E-02          | 1.85  | 0.102E-01   | 1.85  |
| 64   | 415    | 0.517E-03          | 1.99  | 0.647E-03   | 1.99  |
| 256  | 6640   | 0.323E-04          | 2.00  | 0.405E-04   | 2.00  |
| 1024 | 106243 | 0.202E-05          | 2.00  | 0.253E-05   | 2.00  |