EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 8	le 25 Avril 2022

Exercice 1.

Soit $\phi: A \to B$ un homomorphisme d'anneaux. Montrer que:

- (a) Si $a \in A$ inversible, alors $\phi(a)$ est inversible.
- (b) Si $a, b \in A$ tel que $a \sim b$, alors $\phi(a) \sim \phi(b)$.
- (c) Si $a \in A$ irréductible, déterminer si $\phi(a)$ est irréductible ou non.

Exercice 2. (a) Soit A un anneau intègre. Si $a_1, \ldots, a_n \in A$ sont des racines distinctes de $f(x) \in A[x]$, montrer que $\prod_{i=1}^{n} (x - a_i)$ divise f(x).

- (b) Soient p et q deux nombres premiers impairs et distincts dans \mathbb{Z} . Montrer que le polynôme $t^2 [1]_{pq}$ de $(\mathbb{Z}/pq\mathbb{Z})[t]$ possède quatre racines distinctes $a_1, a_2, a_3, a_4 \in \mathbb{Z}/pq\mathbb{Z}$, mais que $(t a_1)(t a_2)(t a_3)(t a_4)$ ne divise pas $t^2 [1]_{pq}$.
- (c) Soient $f, g \in \mathbb{Z}[t]$ des polynômes primitifs. Montrer que si f divise g dans $\mathbb{Q}[t]$, alors f divise g dans $\mathbb{Z}[t]$.
- (d) Décomposer les polynômes X^4+1 et X^8-1 sur les anneaux \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{F}_2 et \mathbb{F}_{11} .

Exercice 3 (Polynômes irréductibles I). (a) Montrer que $\frac{2}{9}x^5 + \frac{5}{3}x^4 + x^3 + \frac{1}{3}$ est un polynôme irréductible de $\mathbb{Q}[x]$.

- (b) Montrer que $x^4 + [2]_5$ est un polynôme irréductible de $\mathbb{F}_5[x]$ et conclure que $x^4 + 15x^3 + 7$ est un polynôme irréductible de $\mathbb{Q}[x]$.
- (c) Montrer que $x^2 + y^2 + 1$ est un polynôme irréductible de $\mathbb{R}[x, y]$.
- (d) Montrer que $x^2 + y^2 + [1]_2$ n'est pas un polynôme irréductible de $\mathbb{F}_2[x,y]$.
- (e) Montrer que $y^4 + x^3 + x^2y^2 + xy + 2x^2 x + 1$ est un polynôme irréductible de $\mathbb{Q}[x,y]$.
- (f) Montrer que $4x^3 + 120x^2 + 8x 12$ est un polynôme irréductible de $\mathbb{Q}[x]$.
- (g) Montrer que $t^6 + t^3 + 1$ est un polynôme irréductible de $\mathbb{Q}[t]$.
- (h) Montrer que $y^4 + xy^3 + xy^2 + x^2y + 3x^2 2x$ est un polynôme irréductible de $\mathbb{Q}[x,y]$.

Exercice 4 (Polynômes irréductibles II).

Soit
$$f(t) = t^{4} + 4t^{3} + 3t^{2} + 7t - 4$$
 dans $\mathbb{Z}[t]$.

- (a) Montrer que $\pi_2(f)$, la réduction modulo 2, n'est pas irréductible.
- (b) Montrer que $\pi_3(f)$, la réduction modulo 3, n'est pas irréductible.
- (c) Utiliser les décompositions des parties précédentes pour conclure néanmoins que f est irréductible.

1 Supplementary exercise

Cet exercice était l'exercice bonus de l'année 2021.

Exercice 5. (a) Montrer que F[[t]] est un anneau factoriel où F est un corps.

- (b) Montrer que $x^{2021}-t^{42}\in (F[[t]])[x]$ est irréductible.
- (c) Montrer que $x^{2021}+y^{2021}-t^{42}\in (F[[t]])[x,y]$ est irréductible.