

Técnicas Digitais para Computação

Funções Booleanas: Mintermos e Maxtermos

Aula 10

1. Mintermos e Maxtermos - Introdução

• Definição de uma função booleana através de uma tabela-verdade

expressão algébrica da função F = soma dos termos-produto para os quais <math>F = 1

- Mintermo = termo-produto no qual cada variável aparece exatamente 1 vez, complementada (se bit da tabela = 0) ou não (se bit da tabela = 1)
- Tabela-verdade de função com n variáveis tem 2ⁿ mintermos
- Para 3 variáveis

X	Y	Z	Termo-Produto	Mintermo
0	0	0	XYZ	m0
0	0	1	$\overline{\mathbf{X}}\overline{\mathbf{Y}}\mathbf{Z}$	m1
0	1	0	$\overline{X}Y\overline{Z}$	m2
0	1	1	$\overline{\mathbf{X}}\mathbf{Y}\mathbf{Z}$	m3
1	0	0	\overline{XYZ}	m4
1	0	1	$X\overline{Y}Z$	m5
1	1	0	$XY\overline{Z}$	m6
1	1	1	XYZ	m7

- Maxtermo = termo-soma no qual cada variável aparece exatamente 1 vez, complementada (se bit da tabela = 1) ou não (se bit da tabela = 0)
- n variáveis => 2ⁿ maxtermos

$$\mathbf{Mj} = \overline{\mathbf{mj}}$$

$$\mathbf{M1} = \overline{\mathbf{X}} + \overline{\mathbf{Y}} + \overline{\mathbf{Z}}$$

$$\mathbf{m1} = \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}} \cdot \mathbf{Z}$$
DeMorgan

X	Y	Z	Termo-Produto	Termo-Soma	Maxtermo
0	0	0	XYZ	X + Y + Z	M 0
0	0	1	XYZ	$X + Y + \overline{Z}$	M1
0	1	0	XYZ	$X + \overline{Y} + Z$	M2
0	1	1	$\overline{\mathbf{X}}\mathbf{Y}\mathbf{Z}$	$X + \overline{Y} + \overline{Z}$	M3
1	0	0	\overline{XYZ}	$\overline{\mathbf{X}} + \mathbf{Y} + \mathbf{Z}$	M4
1	0	1	$X\overline{Y}Z$	$\overline{\mathbf{X}} + \mathbf{Y} + \overline{\mathbf{Z}}$	M5
1	1	0	$XY\overline{Z}$	$\overline{\mathbf{X}} + \overline{\mathbf{Y}} + \mathbf{Z}$	M6
1	1	1	XYZ	$\overline{\mathbf{X}} + \overline{\mathbf{Y}} + \overline{\mathbf{Z}}$	M7

2. Representação de Funções Booleanas por Mintermos e Maxtermos

• Expressão algébrica de função booleana dada por tabela-verdade = soma lógica dos mintermos que produzem 1 na função

Exemplo

X	Y	\mathbf{Z}	F	$\overline{\mathbf{F}}$
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

$$F = XYZ + XYZ + XYZ + XYZ = m0 + m2 + m5 + m7 = \Sigma m (0,2,5,7)$$

$$\overline{F} = \Sigma m (1,3,4,6)$$
 (os mintermos que faltam em F)

$$\overline{F} = \overline{m1 + m3 + m4 + m6} = \overline{m1 \cdot m3 \cdot m4} \cdot \overline{m6} = M1 \cdot M3 \cdot M4 \cdot M6$$

- Portanto F = ΠM (1,3,4,6) produto lógico dos maxtermos que produzem 0 na função
- Tomando uma função que não é uma soma de mintermos $\mathbf{E} = \overline{\mathbf{Y}} + \overline{\mathbf{X}} \, \overline{\mathbf{Z}}$ pode-se obter a forma de soma dos mintermos através da tabela-verdade

X	Y	Z	E
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$E = \Sigma m (0,1,2,4,5)$$

soma de mintermos produto de maxtermos

"formas - padrão" de expressões algébricas (também ditas "formas canônicas")

- soma de mintermos contém
 - máximo número de termos-produto
 - máximo número de literais em cada termo

3. Soma de Produtos (SDP)

- Uma forma de soma de mintermos pode ser simplificada para uma soma de produtos, reduzindo-se número de termos e de literais.
 - manipulação algébrica
 - outras técnicas
- Soma de produtos (SDP) contém termos com 1, 2, ..., n literais
- Exemplo $\mathbf{F} = \overline{\mathbf{Y}} + \overline{\mathbf{X}}\mathbf{Y}\overline{\mathbf{Z}} + \mathbf{X}\mathbf{Y}$

Circuito Lógico

Circuito tipo AND-OR.

Esta é uma implementação em 2 níveis (...)

Tomando uma expressão que não é SDP

$$F = AB + C (D + E)$$

Esta é uma implementação em 3 níveis 4 portas, 8 entradas

tempo de propagação máximo = 3 x tempo de uma porta

Convertendo para uma SDP

$$F = AB + C (D + E)$$
$$= AB + CD + CE$$

implementação em 2 níveis 4 portas, 9 entradas

tempo de propagação máximo = 2 x tempo de uma porta

4. Produto de Somas

- Exemplo $\mathbf{F} = \mathbf{X}.(\overline{\mathbf{Y}} + \mathbf{Z}).(\mathbf{X} + \mathbf{Y} + \overline{\mathbf{Z}})$
- Circuito Lógico

Implementação também em 2 níveis circuito tipo OR-AND