(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2006 年3 月16 日 (16.03.2006)

(10) 国際公開番号 WO 2006/028042 A1

(51) 国際特許分類: F04B 49/06 (2006.01)

(21) 国際出願番号: PCT/JP2005/016237

(22) 国際出願日: 2005年9月5日(05.09.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2004-258476 2004年9月6日(06.09.2004) JF

- (71) 出願人 (米国を除く全ての指定国について): 株式会 社小松製作所 (KOMATSU LTD.) [JP/JP]; 〒1078414 東京都港区赤坂2丁目3番6号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 岩本 祐一 (IWAMOTO, Yuuichi) [JP/JP]; 〒9230392 石川県小

松市符津町ツ23 株式会社小松製作所粟津工場内 Ishikawa (JP).

- (74) 代理人: 木村 高久、外(KIMURA, Takahisa et al.); 〒 1040043 東京都中央区湊1丁目8番11号 千代ビル 6階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY,

[続葉有]

- (54) Title: LOAD CONTROLLER FOR ENGINE OF WORK VEHICLE
- (54) 発明の名称: 作業車両のエンジンの負荷制御装置

- 100 WORK VEHICLE (WHEEL LOADER)
- 13 HYDRAULIC CYLINDER FOR STEERING
- 15 HYDRAULIC MOTOR FOR FAN
- 16 FAN
- 6 PTO SHAFT
- 11 CONTROL VALVE FOR STEERING
- 9 HYDRAULIC PUMP FOR FAN
- 7 HYDRAULIC PUMP FOR STEERING
- 18 CONTROLLER
- 17 ACCELERATOR PEDAL
- 17a STROKE SENSOR
- 1a ENGINE ROTATIONAL SPEED DETECTION SENSOR
- 1 ENGINE
- 8 HYDRAULIC PUMP FOR LOADER
- 10 HYDRAULIC PUMP FOR LUBRICATING TORQUE CONVERTER
- 2 TORQUE CONVERTER
- 3 TRANSMISSION
- 4 DIFFERENTIAL
- 12 CONTROL VALVE FOR LOADER
- 12 CONTROL VALVE FOR LOADER

 14 HYDRAULIC CYLINDER FOR LOADER

(57) Abstract: A load controller for the engine of a work vehicle capable of preventing the engine from being stopped when the rise of the torque of the engine cannot follow up the abrupt rise of hydraulic pressure load. The work vehicle comprises the engine (1) in which a target rotational speed is set between a low idle rotational speed and a high idle rotational speed, a plurality of variable displacement hydraulic pumps (7, 8, 9) driven by the engine (1), a plurality of hydraulic actuators (13, 14, 15) to which hydraulic oil discharged from the plurality of variable displacement hydraulic pumps (7, 8, 9) is supplied, absorbed torque changing means (19, 22, 23) changing absorbed torques for one or more of the variable displacement hydraulic pumps (7, 8, 9), a rotational speed detection means (1a) detecting the rotational speed of the engine, and a control means (18) lowering the absorbed torques of the variable displacement hydraulic pumps (7, 8, 9) when the detected rotational speed of the engine is lowered to a specified threshold or below.

KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

(57) 要約:

本発明は、作業車両のエンジンの負荷制御装置において、急激な油圧負荷上昇にエンジンのトルク上昇が間に合わずに、エンジンが停止してしまうことを防止するものである。

本発明は、ローアイドル回転数からハイアイドル回転数の間で目標回転数が設定されるエンジン(1)と、エンジン(1)によって駆動される複数の可変容量型油圧ポンプ(7、8、9)と、複数の可変容量型油圧ポンプ(7、8、9)から吐出された圧油が供給される複数の油圧アクチュエータ(13、14、15)と、1つ以上の可変容量型油圧ポンプ(7、8、9)について、吸収トルクを変化させる吸収トルク変化手段(19、22、23)と、エンジンの回転数を検出する回転数検出手段(1a)と、検出したエンジン回転数が、所定のしきい値以下に低下した場合に、可変容量型油圧ポンプ(7、8、9)の吸収トルクを低下させる制御手段(18)とを備えた作業車両のエンジンの負荷制御装置として構成される。

明細書

作業車両のエンジンの負荷制御装置

技術分野

- [0001] 本発明は、作業車両のエンジンの負荷制御装置に関する。 背景技術
- [0002] ホイールローダは、エンジンを駆動源としてトルクコンバータを介して駆動輪(車輪) が駆動され、走行される。また、エンジンは、ステアリング機構やローダ等の作業機の 駆動源となっている。すなわち、エンジンによってステアリング用油圧ポンプが駆動され、ステアリング用油圧ポンプから吐出された圧油が、ステアリング用油圧シリンダに 供給され、これに応じてステアリング機構が作動される。また、エンジンによってローダ用油圧ポンプが駆動され、ローダ用油圧ポンプから吐出された圧油が、ローダ用油圧シリンダに供給され、これに応じてローダが作動される。ステアリング用油圧ポンプ、ローダ用油圧ポンプには、容量が一定の固定容量型油圧ポンプが使用されている。
- [0003] ホイールローダの走行速度は、アクセルペダルの踏み込み量に応じて変化する。 すなわち、アクセルペダルの踏み込み量に応じて、エンジンの回転数が変化され、そ れに応じて車速が変化する。エンジンの目標回転数は、ローアイドル回転数からハイ アイドル回転数まで変化する。
- [0004] アクセルペダルを踏み込まない状態にすることで、車速が零になり、停止状態で作業が行われる。
- [0005] このためホイールローダは、他の油圧ショベルなどの作業車両と比較して、エンジンの目標回転数をローアイドル回転数(アイドリング状態)に設定する機会が多い。
- [0006] 一方で、エンジンは、高回転域、つまりハイアイドル回転数にあるときと比較して、低回転域、つまりローアイドル回転数にあるときの方が、急激な油圧負荷の上昇に対するエンジントルクの上昇が、鈍くなるという特性がある。

発明の開示

発明が解決しようとする課題

- [0007] 作業者としては、アイドリング状態のままで、ステアリングを切りながら、積み荷が積み込まれたローダ(ブームおよびバケット)を持ち上げるという高油圧負荷が急激にかかる作業を行うことがある。
- [0008] 図3は、エンジン回転数NとエンジントルクTeとの関係を示している。
- [0009] 今、エンジンの目標回転数がローアイドル回転数NLに設定されている場合には、エンジンは、ローアイドル回転数NLに対応するレギュレーションラインFL上で油圧負荷とマッチングする。油圧負荷が低負荷の場合には、レギュレーションラインFL上の低トルクのマッチング点V0でマッチングしているが、ここで、オペレータがステアリングハンドル、操作レバーを急操作して、上述した「ステアリングを切りながらローダを持ち上げるという高油圧負荷が急激にかかる作業」が行われると、油圧負荷が急上昇し、油圧負荷はTp1で示すラインに切り替わる。このためエンジンとしては、この高油圧負荷Tp1(レギュレーションラインFL上のポイントV1)とマッチングするために、トルクが上昇しようとするが、Bで示すように、急激な油圧負荷上昇に、エンジンのトルク上昇が間に合わずに(時間遅れが生じ)、ついにはエンジンが停止(エンスト)することがあった。
- [0010] そこで、このような問題を解決するために、エンジンのローアイドル回転数を高めに 設定して、エンジンのアイドリング時のトルク上昇を早めて、高油圧負荷の急激な上 昇にエンジントルクの上昇を間に合わせるようにすることが考えられる。
- [0011] しかし、エンジンのローアイドル回転数を高めに設定すると、アイドリング状態における燃費が悪化するという問題が招来する。また、エンジンのローアイドル回転数を高めに設定すると、トルクコンバータで発生するクリープが強くなるという問題も招来する。
- [0012] また、油圧ポンプで吸収されるトルク自体を減らすために、固定容量型油圧ポンプの容量を小さく設定することが考えられる。しかし、固定容量型油圧ポンプの容量を小さく設定すると、ローアイドル時にステアリングが十分に切れなくなるという問題が発生する。ホイールローダでは、エンジンがアイドリング状態(ローアイドル回転時)でも、十分にステアリングが切れることが要求される。ローアイドル回転時であっても、ステアリング用油圧シリンダに多くの流量の圧油が流れるようにするためには、ポンプの

容量は一定レベル以上確保することが必要となる。仮にポンプ容量を小さくすれば、ローアイドル回転時に油圧シリンダに供給され得る最大流量が減り、ステアリングを切る速度が遅くなるという問題が生じる。また、ローダ用油圧ポンプの容量を小さく設定すれば、同じく流量が減り、ローダを上げ下げする速度が遅くなり、作業効率が損なわれる。このように固定容量型油圧ポンプの容量を減らすことは、車体性能のダウンにつながる。

- [0013] 当然、エンジンを大型化してエンジントルクに余裕を持たせることで、対処することも 考えられるが、稀にしか起きないエンジン停止のために、エンジンを大型化すること は、コスト上昇を招くとともに、エネルギーの無駄となる。
- [0014] ローアイドル回転時に急激な高油圧負荷がかかった場合について説明したが、 アクセルペダルを踏み込んだ状態で急激な高油圧負荷がかかった場合についても 同様にエンジン停止のおそれがあり、このような場合もエンジン停止を未然に防止す る必要がある。
- [0015] 本発明はこうした実状に鑑みてなされたものであり、ホイールローダ等の作業車両において、燃費悪化や、車体性能のダウンや、エネルギーの無駄等の問題を生じさせることなく、急激な高油圧負荷がかかった場合のエンジン停止を確実に防止することを解決課題とするものである。

課題を解決するための手段

[0016] 第1発明は、

ローアイドル回転数からハイアイドル回転数の間で目標回転数が設定されるエンジン(1)と、

エンジン(1)によって駆動される複数の可変容量型油圧ポンプ(7、8、9)と、 複数の可変容量型油圧ポンプ(7、8、9)から吐出された圧油が供給される複数の 油圧アクチュエータ(13、14、15)と、

1つ以上の可変容量型油圧ポンプ(7、8、9)について、吸収トルクを変化させる吸収トルク変化手段(19、22、23)と、

エンジンの回転数を検出する回転数検出手段(1a)と、

検出したエンジン回転数が、所定のしきい値以下に低下した場合に、可変容量型

油圧ポンプ(7、8、9)の吸収トルクを低下させる制御手段(18)とを備えたことを特徴とする。

- [0017] 第2発明は、第1発明において、 前記所定のしきい値は、ローアイドル回転数以下の回転数であること を特徴とする。
- [0018] 第3発明は、第1発明において、
 ステアリング機構を作動させる油圧アクチュエータ(13)と、作業機を作動させる油
 圧アクチュエータ(14)とを備えたこと

を特徴とする。

[0019] 第4発明は、第1発明において、

前記吸収トルク変化手段は、油圧ポンプの最大吸収トルクを変化させる手段(19)であること

を特徴とする。

[0020] 第5発明は、第1発明において、

前記吸収トルク変化手段は、

可変容量型油圧ポンプ(8)の吐出圧と油圧アクチュエータ(14)の負荷圧との差圧が設定差圧となるように可変容量型油圧ポンプ(8)の容量を制御する容量制御手段(22)と、

前記設定差圧を変化させる手段(23)と

で構成されていること

を特徴とする。

[0021] 第6発明は、第1発明において、

複数の可変容量型油圧ポンプ(7、8、9)から複数の油圧アクチュエータ(13、14、15)に対して、それぞれ独立した油路を経由して圧油が供給されることを特徴とする。

- [0022] 第1発明~第6発明の作用、効果について、図面を参照しながら説明する。
- [0023] すなわち、オペレータがステアリングハンドルを操作しながら、ローダ用操作レバー を上昇方向に急操作すると、ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8の油

圧負荷が急上昇する。

- [0024] このため図4(a)において、油圧負荷は、Tp1で示す高油圧負荷のラインに移動する。このためエンジン1としては、この高油圧負荷Tp1(レギュレーションラインFL上のポイントV1)とマッチングさせるために、トルクを上昇させようとするが、C1で示すように、急激な油圧負荷上昇に、エンジンのトルク上昇が間に合わずに(時間遅れが生じ)、エンジン1の実際の回転数Nrが、しきい値Nc以下となる。
- [0025] コントローラ18は、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、 しきい値Nc以下に低下したと判断すると、可変容量型油圧ポンプ7、8、9の吸収トル クを低下させる制御を実行する。
- [0026] これにより、図4(b)に示すように、油圧負荷は、Tp2で示す低油圧負荷のラインに移動する。油圧負荷が高油圧負荷Tp1から、低油圧負荷Tp2(レギュレーションライン FL上のポイントV2)に変化したことで、今現在のエンジン1のトルクが低油圧負荷Tp2 に対して余裕をもった大きさとなり、C2で示すように、エンジン1の実際の回転数Nrが 上昇し、しきい値Ncを超えて、レギュレーションラインFL上に復帰する。
- [0027] つぎに、コントローラ18は、検出したエンジン回転数Nrが、しきい値Ncを超えたと 判断すると、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を終了させる。これにより、図4(c)に示すように、油圧負荷は、現在の作業内容に応じた高負荷なラインTp1に復帰するが、既にエンジン1のトルクTeは、その間に、ある程度上昇しているので、高油圧負荷Tp1のマッチング点V1でマッチングすることができる。
- [0028] なお、上述したように、検出したエンジン回転数Nrが、しきい値Ncを超えた場合に、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を終了させてもよく、また、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を開始してから所定時間経過後に、同制御を終了させてもよい。
- [0029] 以上のように、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる時間は、エンジン停止を防止するために必要最小限の時間だけであり、エンジン停止のおそれがないときは、吸収トルクは通常の大きさのままである。また、ローアイドル回転数NLも上げる必要はなく、エンジンを大型化してエンジントルクに余裕を持たせる必要もない。

- [0030] このため、ホイールローダ等の作業車両において、燃費悪化や、車体性能のダウンや、エネルギーの無駄等の問題を生じさせることなく、急激な高油圧負荷がかかった場合のエンジン停止を確実に防止することができる。
- [0031] また、図7に示すように、ホイールローダ100に既存のPC制御、「モード」選択の機能、装置を利用して、図5の矢印Dで示すように、PC制御を実行し、エンジン回転数Nrがしきい値Nc以下になった場合に、油圧ポンプ7、8、9の最大吸収トルクを低下させてもよい(第4発明)。このように作業車両に既存のPC制御、「モード」選択の機能、装置を利用すれば、エンジン停止防止制御を実現するために必要な装置コストをさらに低下させることができる。
- [0032] また、図8に示すように、ホイールローダ100に既存のLS制御、差圧設定値変更制御の機能、装置を利用して、図6に矢印Eで示すように、差圧設定値変更制御を実行し、エンジン回転数Nrがしきい値Nc以下になった場合に、油圧ポンプ7、8、9の容量を低下させてもよい(第5発明)。このように作業車両に既存のLS制御、差圧設定値変更制御の機能、装置を利用すれば、エンジン停止防止制御を実現するために必要な装置コストをさらに低下させることができる。 第6発明では、図1に示すように、複数の可変容量型油圧ポンプ7、8、9から複数の油圧アクチュエータ13、14、15に対して、それぞれ独立した油路を経由して圧油が供給される油圧回路を前提として、上述したエンジン停止防止制御が行われる。
- [0033] このように複数の可変容量型油圧ポンプ7、8、9から複数の油圧アクチュエータ13、14、15に対して、それぞれ独立した油路を経由して圧油が供給される油圧回路を採用した場合には、各油圧アクチュエータ13、14、15の最大負荷に応じて、それぞれ対応する油圧ポンプ7、8、9の容量を定めなければならないため、各可変容量型油圧ポンプ7、8、9の容量が大きくなる傾向にある。
- [0034] これに対して複数の可変容量型油圧ポンプから吐出された圧油を合流させて、圧力補償弁によって、各制御弁の前後差圧を調整した上で、複数の油圧アクチュエータに圧油を分流して供給する油圧回路を採用した場合には、各油圧アクチュエータの負荷に応じて流量を配分できるため、各可変容量型油圧ポンプの容量を小さくすることができる。

- [0035] このため図1に示す第6発明の油圧回路は、圧力補償弁を使用した油圧回路と比較して、油圧負荷が大きくなる傾向にあり、エンジン停止防止制御を行う必要性が高い。
- [0036] 第7発明は、

操作量に応じてエンジンの目標回転数を設定する操作子(17)が備えられ、 前記操作子(17)の操作量に応じて、前記所定のしきい値が設定されており、 前記制御手段(18)は、検出したエンジン回転数が、前記所定のしきい値以下に低 下した場合に、可変容量型油圧ポンプ(7、8、9)の吸収トルクを低下させること を特徴とする。

- [0037] 第7発明の作用、効果について、図面を参照しながら説明する。
- [0038] すなわち、オペレータが、例えば、アクセルペダル17を踏み込んだ状態で、ステアリングハンドルを操作しながら、ローダ用操作レバーを上昇方向に急操作すると、ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8の油圧負荷が急上昇する。
- [0039] アクセルペダル17が踏み込まれたときは、その踏み込み量SMに対応するエンジン目標回転数NMが設定される(図10、図9(a)参照)。また、そのときのアクセルペダル踏み込み量SMに応じて、しきい値Nc(SM)が定まる(図10、図9(a)参照)。
- [0040] 図9(a)に示すように、アクセルペダル17が操作量SMまで踏み込まれ、低回転低油圧負荷のマッチング点V0(レギュレーションラインFL上のポイントV0)から、高回転高油圧負荷のマッチング点V2(レギュレーションラインFM上のポイントV2)に移行する過程で、コントローラ18は、検出したエンジン回転数Nrが、上記所定のしきい値Nc(SM)以下に低下したか否かを判断する。コントローラ18で、検出したエンジン回転数Nrが、上記所定のしきい値Nc(SM)以下に低下したことが判断されると、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を実行する。これにより、図9(a)に示すように、油圧負荷は、Tp2で示す低油圧負荷のラインに移動する。油圧負荷が高油圧負荷Tp1から、低油圧負荷Tp2に変化したことで、今現在のエンジン1のトルクが低油圧負荷Tp2に対して余裕をもった大きさとなり、エンジン1の実際の回転数Nrは迅速に上昇する。
- [0041] 低回転低油圧負荷のマッチング点V0(レギュレーションラインFL上のポイントV0)

から、高回転高油圧負荷のマッチング点V2(レギュレーションラインFM上のポイントV2)に移行する過程で、コントローラ18で、検出したエンジン回転数Nrが、上記所定のしきい値Nc(SM)以下ではなくなったと判断した場合には、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を終了させる。また、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を開始してから所定時間経過後に、同制御を終了させてもよい。

- [0042] この結果、レギュレーションラインFM上のマッチング点V2に迅速に移行する。
- [0043] 以上のように、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる時間は、エンジン停止や加速悪化を防止するために必要最小限の時間だけであり、エンジン停止のおそれがないときは、吸収トルクは通常の大きさのままである。また、エンジンを大型化してエンジントルクに余裕を持たせる必要もない。
- [0044] このため、ホイールローダ等の作業車両において、燃費悪化や、車体性能のダウンや、エネルギーの無駄等の問題を生じさせることなく、アクセルペダルを踏み込んだときに急激な高油圧負荷がかかった場合のエンジン停止を確実に防止することができる。
- [0045] また、本発明によれば、高油圧負荷状態であってもアクセルペダル17を踏み込んだときに、目標回転数Nc(SM)まで迅速に上昇するため、加速性に優れ、作業効率が飛躍的に向上するという効果も得られる。

発明を実施するための最良の形態

- [0046] 以下図面を参照して本発明に係る作業車両のエンジン負荷制御装置の実施の形態について説明する。
- [0047] 図1は、実施形態のホイールローダの構成を、本発明に係る部分について示している。
- [0048] 同図1に示すように、ホイールローダ100のエンジン1の出力軸は、PTO軸6に連結されている。PTO軸6は、トルクコンバータ2に連結されているとともに、ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8、ファン用油圧ポンプ9、トルコン潤滑用油圧ポンプ10に連結されている。
- [0049] ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8、ファン用油圧ポンプ9

- は、可変容量型油圧ポンプであり、それぞれ斜板7a、8a、9aの傾転角が変化されることにより、ポンプ容量g(cc/rev)が変化される。
- [0050] エンジン1の出力は、トルクコンバータ2、トランスミッション3、ディファレンシャルギア 4を介して駆動輪5に伝達される。
- [0051] また、エンジン1の出力は、ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8、ファン用油圧ポンプ9、トルコン潤滑用油圧ポンプ10に伝達される。
- [0052] ステアリング用油圧ポンプ7が駆動されると、吐出圧油がステアリング用制御弁11を 介してステアリング用油圧シリンダ13に供給される。
- [0053] ステアリング用油圧シリンダ13はステアリング機構に接続されている。ステアリング 用油圧シリンダ13に圧油が供給されると、ステアリング機構が作動し、車体が旋回さ れる。ステアリング用制御弁11のスプールは、図示しないステアリングハンドルの操 作に応じて、移動され、それに応じて制御弁11の開口面積が変化し、ステアリング用 油圧シリンダ13に供給される流量が変化される。
- [0054] ローダ用油圧ポンプ8が駆動されると、吐出圧油がローダ用制御弁12を介してローダ用油圧シリンダ14に供給される。
- [0055] ローダ用油圧シリンダ14は、車体前部のローダに接続されている。ローダ用油圧シリンダ14に圧油が供給されると、ローダが作動される。つまり、ローダを構成するブームが上昇ないしは下降し、バケットがチルトする。ローダ用制御弁12のスプールは、図示しないローダ用操作レバーの操作に応じて、移動され、それに応じて制御弁12の開口面積が変化し、ローダ用油圧シリンダ14に供給される流量が変化される。
- [0056] ファン用油圧ポンプ9が駆動されると、吐出圧油がファン用油圧モータ15に供給され、冷却用ファン16が作動される。
- [0057] トルコン潤滑用油圧ポンプ10が駆動されると、吐出圧油がトルクコンバータ2に供給され、トルクコンバータ2が潤滑される。
- [0058] エンジン1の出力軸には、エンジン1の実際の回転数Nrを検出するエンジン回転数 検出センサ1aが設けられている。エンジン回転数検出センサ1aで検出されたエンジン回転数Nrは、コントローラ18に入力される。
- [0059] アクセルペダル17は、オペレータによって操作され、アクセルペダル17に設けられ

たストロークセンサ17aによって操作量(踏み込み量)が検出され、操作量を示す信号がコントローラ18に入力される。

- [0060] コントローラ18は、アクセルペダル17の操作量に応じた目標回転数となるようにエンジン1を制御する。エンジン1はディーゼルエンジンであり、その出力の制御は、シリンダ内に噴射する燃料量を調整することで行われる。この調整はエンジン1の燃料噴射ポンプに付設したガバナを制御することで行われる。ガバナとしては、一般的にオールスピード制御方式のガバナが用いられ、アクセルペダル踏み込み量に応じた目標回転数となるように、負荷に応じてエンジン回転数と燃料噴射量とを調整する。すなわちガバナは目標回転数と実際のエンジン回転数との差がなくなるよう燃料噴射量を増減する。
- [0061] 図2はエンジン1の制御方法を示している。図2の横軸は、エンジン回転数Nであり、縦軸がエンジントルクTeである。
- [0062] 図2において最大トルク線で規定される領域がエンジン1が出し得る性能を示す。 ガバナはトルクが最大トルク線を超えて排気煙限界とならないように、またエンジン回 転数Nがハイアイドル回転数NHを超えて過回転とならないようにエンジン1を制御す る。
- [0063] アクセルペダル17が最大限に踏み込まれると最大目標回転数が設定され、ガバナ は定格点とハイアイドル点NHとを結ぶ最高速レギュレーションラインFe上で調速を 行う。
- [0064] アクセルペダル17の踏み込み量が小さくなり目標回転数が小さくなるに伴ってレギュレーションラインFe-1、Fe-2…Fe-n…FLが順次定められ、各レギュレーションライン上で調速が行われる。
- [0065] アクセルペダル17の踏み込み量が最小、つまり踏み込まれていないときは、目標回転数としてローアイドル回転数NLが設定され、ローアイドル点NLを結ぶレギュレーションラインFL上で調速を行う。油圧負荷Tpが矢印Aに示すように変動すると、エンジン2の出力とポンプ吸収馬力とが釣り合うマッチング点Vは、その変動に従いレギュレーションラインFL上を移動する。
- [0066] ここで、エンジン1の特性上、レギュレーションライン上でマッチング点が低負荷から

高負荷まで移動する時間は、高回転数域(ハイアイドル回転数NH)よりも低回転数域(ローアイドル回転数NL)の方が長くかかる(エンジン1の応答性がにぶい)。このため従来技術にあっては、図3で前述したように、高油圧負荷Tp1が急激にかかったときに、エンジンが停止することがあった。

- [0067] そこで、本実施形態では、可変容量型油圧ポンプ7、8、9に、吸収トルクを変化させる吸収トルク変化手段を設けて、コントローラ18によって図4に示すように吸収トルクを低下させる制御を実行する。
- [0068] 以下、図11(a)に示すフローチャートを併せ参照して説明する。
- [0069] 図4(a)に示すように、ローアイドル回転数NL以下の回転数Ncがしきい値として設定される。このしきい値Ncは、エンジン1が停止するおそれあり、と判断する回転数に設定される。
- [0070] アクセルペダル17が踏み込まれていない状態であって、油圧負荷が低負荷の場合には、レギュレーションラインFL上の低トルクのマッチング点V0でマッチングしている
- [0071] ここで、オペレータがステアリングハンドルを操作しながら、ローダ用操作レバーを 上昇方向に急操作すると、ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8の油 圧負荷が急上昇する。
- [0072] このため図4(a)において、油圧負荷は、Tp1で示す高油圧負荷のラインに移動する。このためエンジン1としては、この高油圧負荷Tp1(レギュレーションラインFL上のポイントV1)とマッチングさせるために、トルクを上昇させようとするが、C1で示すように、急激な油圧負荷上昇に、エンジンのトルク上昇が間に合わずに(時間遅れが生じ)、エンジン1の実際の回転数Nrが、しきい値Nc以下となる。
- [0073] コントローラ18は、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、 しきい値Nc以下に低下したと判断すると(ステップ201の判断YES)、可変容量型油 圧ポンプ7、8、9の吸収トルクを低下させる制御を実行する。
- [0074] これにより、図4(b)に示すように、油圧負荷は、Tp2で示す低油圧負荷のラインに 移動する。油圧負荷が高油圧負荷Tp1から、低油圧負荷Tp2(レギュレーションライン FL上のポイントV2)に変化したことで、今現在のエンジン1のトルクが低油圧負荷Tp2

に対して余裕をもった大きさとなり、C2で示すように、エンジン1の実際の回転数Nrが上昇し、しきい値Ncを超えて、レギュレーションラインFL上に復帰する(ステップ202)。

- [0075] つぎに、コントローラ18は、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Ncを超えたと判断すると(ステップ203の判断YES)、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を終了させる。これにより、図4(c)に示すように、油圧負荷は、現在の作業内容に応じた高負荷なラインTp1に復帰するが、既にエンジン1のトルクTeは、その間に、ある程度上昇しているので、高油圧負荷Tp1のマッチング点V1でマッチングすることができる(ステップ204)。
- [0076] なお、上述したように、検出したエンジン回転数Nrが、しきい値Ncを超えた場合に(ステップ203の判断YES)、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を終了させてもよく(ステップ204)、また、図11(b)に示すように、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を開始してから所定時間経過後に(ステップ203′の判断YES)、同制御を終了させてもよい(ステップ204)。
- [0077] つぎに、吸収トルクを変化させる手段の具体的な構成例について、説明する。
- [0078] 図7は、ローダ用油圧ポンプ8をPC制御するための構成を示している。図7では、ローダ用油圧ポンプ8を代表させて示しているが、他の可変容量型油圧ポンプ7、9をPC制御する場合も同様に構成される。
- [0079] PC弁19は、油圧ポンプ8の吐出圧Pp(kg/cm2)と油圧ポンプ8の容量q(cc/rev) の積が一定トルクを超えないように、油圧ポンプ8の斜板7aの傾転角を制御する。エンジン1の回転数が一定であれば、油圧ポンプ8の吐出圧Pp(kg/cm2)と油圧ポンプ8の流量Q(l/min)の積が一定の馬力を超えないように、油圧ポンプ8の斜板8aを制御することになる。
- [0080] また、油圧ポンプ7、8、9をまとめてPC制御する場合は、これらポンプ7、8、9の吐 出圧の平均値がPC弁19に入力される。
- [0081] PC弁19は、油圧ポンプ8の吐出圧Ppをパイロット圧として入力し、吐出圧Ppに応じた駆動圧油をサーボ弁20に供給することで、油圧ポンプ8の容量qを制御する。
- [0082] PC制御の内容は、図5を用いて説明される。図5の横軸は油圧ポンプ8の吐出圧P

p(kg/cm2)であり、縦軸は油圧ポンプ8の容量q(cc/rev)、つまり斜板8aの傾転角である。

- [0083] 同図5に示すように、油圧ポンプ8の吐出圧Ppが一定圧以下であれば、油圧ポンプ8の斜板8aの傾転角が最大に設定され、最大容量qmaxとなっている。油圧負荷が大きくなり、ポンプ吐出圧Ppが一定圧を超えると、特性LN1にしたがいポンプ容量qを減少させて、斜板傾転角を最小、最小容量qminにする。
- [0084] 以上のようにして、油圧ポンプ8では、油圧負荷、つまり吸収トルクが、最大吸収トルクTp1を超えない範囲で、ポンプ吐出圧Ppに応じてポンプ容量qが制御される。
- [0085] PC弁19には、コントローラ18から制御信号i1が加えられており、この制御信号i1に 応じて、最大吸収トルクが変化される。図示しない操作盤には、「モードスイッチ」が設 けられており、モードスイッチで選択したモードに応じて、最大吸収トルク値が変化す る。
- [0086] 今、あるモードが選択されている場合には、油圧ポンプ8の最大吸収トルクがTp1という大きな値に設定され、油圧ポンプ8は、特性LN1にしたがい、制御される。また、別のモードが選択された場合には、矢印Dに示すように、特性LN1から特性LN2に変化して、ポンプ容量の減少を開始するポンプ吐出圧の値が小さくなり、最大吸収トルク値が小さな値Tp2に設定される。
- [0087] このような、ホイールローダ100に設けられたPC制御の機能、「モード」設定の機能、装置を利用して、本実施例では、エンジン停止を防止する制御が行われる。
- [0088] すなわち、コントローラ18は、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Ncを超えている場合には、PC弁19に対して、油圧ポンプ8の最大吸収トルクを大きな値Tp1に設定する制御信号i1を出力する。そして、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Nc以下になった場合には、PC弁19に対して、油圧ポンプ8の最大吸収トルクを小さな値Tp2に設定する制御信号i1を出力する。そして、再度、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Nc以下を超えた場合には、PC弁19に対して、油圧ポンプ8の最大吸収トルクを大きな値Tp1に設定する制御信号i1を出力する。これにより図4(a)、(b)、(c)に示す制御が実現され、エンジン1を停止させることなく、エンジン

1のトルクを油圧負荷に合わせて上昇させ、高油圧負荷Tp1のマッチング点V1でマッチングさせることができるようになる。

- [0089] なお、油圧ポンプ8の最大吸収トルクを小さな値Tp2に設定してから所定時間後に、油圧ポンプ8の最大吸収トルクの設定値を大きな値Tp1に戻してもよい。
- [0090] 以上のように本実施例によれば、ホイールローダ100に既存のPC制御、「モード」 選択の機能、装置を利用して、高油圧負荷が急激にかかった場合のエンジン停止を 防止することができる。
- [0091] 図8(a)は、ローダ用油圧ポンプ8をLS制御するための構成を示している。図8(a) では、ローダ用油圧ポンプ8を代表させて示しているが、他の可変容量型油圧ポンプ7、9をLS制御する場合も同様に構成される。
- [0092] LS弁22は、油圧ポンプ8の吐出圧Ppと、ローダ用油圧シリンダ14の負荷圧PLSとの差圧 Δ Pが一定差圧 Δ PLSとなるように、油圧ポンプ8の斜板8aの傾転角を制御する。
- [0093] LS弁22には、一定差圧 Δ PLSを設定するバネが付与されている。LS弁22のバネ 側と反対側のパイロットポートには、油圧ポンプ8の吐出圧Ppがパイロット圧として加 えられ、バネ側のパイロットポートには、ローダ用油圧シリンダ14の負荷圧PLSがパイロット圧として加えられる。LS弁22から駆動圧油がサーボ弁20に供給されることで、油圧ポンプ8の容量gが制御される。
- [0094] ローダ用制御弁12の開口面積をA、抵抗係数をcとすると、油圧ポンプ8の吐出流量Qは、

 $Q = c \cdot A \cdot \sqrt{(\Delta P)}$

で表される。差圧 Δ Pは、LS弁22により一定になるのでポンプ流量Qは制御弁12のスプールの開口面積Aによってのみ変化する。

[0095] ローダ用操作レバーを操作すると操作量に応じてローダ用制御弁12の開口面積Aが増加し、開口面積Aの増加に応じてポンプ流量Qが増加する。このときポンプ流量Qは油圧負荷の影響を受けずローダ用操作レバーの操作量のみによって定まる。このようにLS弁22を設けたことにより、ポンプ流量Qは油圧負荷によって増減することなくオペレータの意思通りに(ローダ用操作レバーの操作位置に応じて)変化しファイ

ンコントロール性つまり中間操作領域における操作性が向上する。

- [0096] しかし、ファインコントロール時など、油圧ポンプ8の最大流量を超えない領域でも、 常にローダ用油圧シリンダ14が要求する通りの流量を供給するために、エンジン1が 低回転域でも高回転域と同じ吐出流量となってしまう。
- [0097] このためコントローラ18では、エンジン1の回転数が低い場合には、差圧設定値 Δ PLSを下げて、吐出流量を下げる制御が行われる。LS弁22には、バネの設定バネ 力を変化させる差圧設定部23が付設され、コントローラ18から差圧設定部23に対し て制御信号i2を出力すると、差圧設定部23は、LS弁22のバネの設定バネ力を変化 させ、差圧設定値 Δ PLSを変更する。
- [0098] なお、図8(b)に示すように、LS弁22の電磁ソレノイドに制御信号i2を加えることで、LS弁22のバネの設定バネ力を変化させ、差圧設定値 Δ PLSを変更してもよい。
- [0099] このような差圧設定値変更制御の内容は、図6を用いて説明される。図6の横軸は油圧ポンプ8の吐出圧Pp(kg/cm2)であり、縦軸は油圧ポンプ8の容量q(cc/rev)、つまり斜板8aの傾転角である。
- [0100] 同図6に示すように、油圧ポンプ8の吐出圧Ppが、ある値Pp1になっており、ポンプ 容量qが最大値qmaxとなっているときに、差圧設定値 Δ PLSを小さい値に変更すると 、上記式(Q=c・A・√(ΔP))の右辺が小さくなったことに相当し、これにより矢印E に示すように、ポンプ容量qは、最大値qmaxから小さな値q1に変更される。ポンプ容量qが小さくなることで、油圧ポンプ8の吸収トルク、つまり油圧負荷が小さくなる。
- [0101] 上述したホイールローダ100に設けられたLS制御の機能、差圧設定値変更の機能を利用して、本実施例では、エンジン停止を防止する制御が行われる。
- [0102] すなわち、コントローラ18は、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Ncを超えている場合には、LS弁22に対して、差圧設定値ΔPL Sを大きな値に設定し油圧ポンプ8の吸収トルクを大きくする制御信号i2を出力する。そして、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Nc 以下になった場合には、LS弁22に対して、差圧設定値ΔPLSを小さな値に設定し油圧ポンプ8の吸収トルクを小さくする制御信号i2を出力する。そして、再度、エンジン回転数検出センサ1aで検出したエンジン回転数Nrが、しきい値Nc以下を超えた

場合には、LS弁22に対して、差圧設定値 Δ PLSを大きな値に設定し油圧ポンプ8の 吸収トルクを大きくする制御信号i2を出力する。これにより図4(a)、(b)、(c)に示す エンジン停止防止制御が実現され、エンジン1を停止させることなく、エンジン1のトル クを油圧負荷に合わせて上昇させて、高油圧負荷Tp1のマッチング点V1でマッチン グさせることができるようになる。

- [0103] なお、差圧設定値 Δ PLSを小さな値に設定し油圧ポンプ8の吸収トルクを小さくして から所定時間後に、差圧設定値 Δ PLSを大きな値に設定し油圧ポンプ8の吸収トル クを大きな値に戻してもよい。
- [0104] 以上のように本実施例によれば、ホイールローダ100に既存のLS制御、差圧設定 値変更制御の機能、装置を利用して、高油圧負荷が急激にかかった場合のエンジン 停止を防止することができる。
- [0105] なお、図5に示す最大吸収トルクを変更する制御と、図6に示すポンプ容量を変更する制御を組み合わせて、エンジン停止を防止してもよい。
- [0106] なお、エンジン回転数Nrが、しきい値Nc以下になった場合に、全ての可変容量型油圧ポンプ7、8、9について、最大吸収トルクまたは容量を小さくしてもよく、可変容量形油圧ポンプ7、8、9のうちの1つまたは2つの可変容量型油圧ポンプについて、最大吸収トルクまたは容量を小さくしてもよい。
- [0107] ところで、上述した実施例では、図1に示すように、複数の可変容量型油圧ポンプ7 、8、9から複数の油圧アクチュエータ13、14、15に対して、それぞれ独立した油路 を経由して圧油が供給される油圧回路を採用している。
- [0108] このように複数の可変容量型油圧ポンプ7、8、9から複数の油圧アクチュエータ13、14、15に対して、それぞれ独立した油路を経由して圧油が供給される油圧回路を採用した場合には、各油圧アクチュエータ13、14、15の最大負荷に応じて、それぞれ対応する油圧ポンプ7、8、9の容量を定めなければならないため、各可変容量型油圧ポンプ7、8、9の容量が大きくなる傾向にある。
- [0109] これに対して複数の可変容量型油圧ポンプから吐出された圧油を合流させて、圧力補償弁によって、各制御弁の前後差圧を調整した上で、複数の油圧アクチュエータに圧油を分流して供給する油圧回路を採用した場合には、各油圧アクチュエータ

- の負荷に応じて流量を配分できるため、各可変容量型油圧ポンプの容量を小さくすることができる。
- [0110] このため図1に示す油圧回路は、圧力補償弁を使用した油圧回路と比較して、油 圧負荷が大きくなる傾向にあり、エンジン停止防止制御を行う必要性が高い。
- [0111] 上述した説明では、アクセルペダル17が踏み込まれておらずエンジン回転数がローアイドル回転数NLの場合に、図4に示すエンジン停止防止制御を行うものとして説明したが、本発明としては、エンジン1の回転数がいかなる回転数であっても、同様に図4に示すエンジン停止防止制御を行ってもよい。ただし、エンジン1が停止するおそれがあると判断するためのしきい値Ncは、現在のエンジン回転数Nrに応じて異なる値に設定することができる。たとえば、ローアイドル回転数NLよりも高い回転数Nrで稼働中の場合には、エンジン停止を判断するためのしきい値Ncとしては、ローアイドル回転数NLよりも僅かに高い回転数に設定してもよい。もちろん、エンジン回転数Nrがいかなる回転数であっても、しきい値Ncを一律に、ローアイドル回転数NL以下の回転数に設定してもよい。
- [0112] また、上記しきい値は、アクセルペダル17の踏み込み量(アクセルペダル開度)Sに 応じて設定し、このアクセルペダル操作量Sを変数とするしきい値Nc(S)を用いて同 様にポンプ吸収トルクを低下させる制御を行う実施も可能である。
- [0113] すなわち、オペレータが、例えば、アクセルペダル17を踏み込んだ状態で、ステアリングハンドルを操作しながら、ローダ用操作レバーを上昇方向に急操作すると、ステアリング用油圧ポンプ7、ローダ用油圧ポンプ8の油圧負荷が急上昇する。
- [0114] このような状況で本発明の制御を行った場合のエンジンの過渡特性(図9(a))と、本発明の制御を行わない場合のエンジンの過渡特性(図9(b))とを対比して説明する。
- [0115] 図9(b)において、油圧負荷は、Tp0で示す低油圧負荷のラインから、Tp1で示す 高油圧負荷のラインに移動する。また、アクセルペダル17を踏み込んでいるため、エ ンジン1の目標回転数は、ローアイドル回転数NLから、高回転数の目標回転数NM に変化する。
- [0116] エンジン1のレギュレーションラインとしては、低回転のレギュレーションラインFLか

ら、高回転のレギュレーションラインFMに移行させる必要がある。また、エンジントルクとしては、低油圧負荷Tp0に対応する低トルクから、高油圧Tp1に対応する高トルクに移行させる必要がある。

- [0117] このためエンジン1としては、エンジン回転を上昇させようとし、エンジントルクと油圧 負荷のマッチング点は、低回転低油圧負荷のV0(レギュレーションラインFL上のポイントV2)に ントV0)から、高回転高油圧負荷のV2(レギュレーションラインFM上のポイントV2)に 変化しようとするが、油圧負荷が高い値Tp1のままでありエンジントルクに余裕がない ために、エンジン1の回転数Nrの上昇が鈍く、マッチング点V2に移行するまでに長 時間を要する。また、場合によっては、図4(a)に示した状態に至り、エンジン停止に 至るおそれもある。
- [0118] これに対して、本発明の場合には、図10に示すように、アクセルペダル17の操作 量S(アクセルペダル開度)に応じて、しきい値Nc(S)が設定される。このしきい値Nc(S)は、エンジン停止のおそれや加速の悪化のおそれがあると判断するしきい値で あり、実際のエンジン回転数Nrがしきい値Nc(S)以下(同図10に斜線で示す領域) であるならば、エンジン停止のおそれや加速悪化のおそれがあると判断し、可変容 量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を実行する。
- [0119] 図10において、N(S)で示す直線は、アクセルペダル17の操作量S(アクセルペダル開度)に応じて、設定されるエンジン目標回転数(無負荷状態回転数)を示している。
- [0120] アクセルペダル17が踏み込まれたときは、その踏み込み量SMに対応するエンジン目標回転数NMが設定される(図10、図9(a)参照)。また、そのときのアクセルペダル踏み込み量SMに応じて、しきい値Nc(SM)が定まる(図10、図9(a)参照)。
- [0121] 図9(a)に示すように、アクセルペダル17が操作量SMまで踏み込まれ、低回転低油圧負荷のマッチング点V0(レギュレーションラインFL上のポイントV0)から、高回転高油圧負荷のマッチング点V2(レギュレーションラインFM上のポイントV2)に移行する過程で、コントローラ18は、検出したエンジン回転数Nrが、上記所定のしきい値Nc(SM)以下に低下したか否かを判断する。コントローラ18で、検出したエンジン回転数Nrが、上記所定のしきい値Nc(SM)以下に低下したことが判断されると、可変容

量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を実行する。これにより、図9(a)に示すように、油圧負荷は、Tp2で示す低油圧負荷のラインに移動する。油圧負荷が高油圧負荷Tp1から、低油圧負荷Tp2に変化したことで、今現在のエンジン1のトルクが低油圧負荷Tp2に対して余裕をもった大きさとなり、エンジン1の実際の回転数Nrは迅速に上昇する。

- [0122] 低回転低油圧負荷のマッチング点V0(レギュレーションラインFL上のポイントV0) から、高回転高油圧負荷のマッチング点V2(レギュレーションラインFM上のポイントV 2)に移行する過程で、コントローラ18で、検出したエンジン回転数Nrが、上記所定のしきい値Nc(S)以下ではなくなったと判断した場合には、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を終了させる。また、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させる制御を開始してから所定時間経過後に、同制御を終了させてもよい。
- [0123] この結果、レギュレーションラインFM上のマッチング点V2に迅速に移行する。
- [0124] 以上のように、可変容量型油圧ポンプ7、8、9の吸収トルクを低下させている時間は、エンジン停止や加速悪化を防止するために必要最小限の時間だけであり、エンジン停止のおそれや加速悪化のおそれがないときは、吸収トルクは通常の大きさのままである。また、エンジンを大型化してエンジントルクに余裕を持たせる必要もない。
- [0125] このため、ホイールローダ等の作業車両において、燃費悪化や、車体性能のダウンや、エネルギーの無駄等の問題を生じさせることなく、アクセルペダルを踏み込んだときに急激な高油圧負荷がかかった場合のエンジン停止を確実に防止することができる。
- [0126] また、本実施例によれば、高油圧負荷状態であってもアクセルペダル17を踏み込んだときに、目標回転数Nc(SM)まで迅速に上昇するため、加速性に優れ、作業効率が飛躍的に向上するという効果も得られる。

産業上の利用可能性

[0127] 本発明は、ホイールローダに限定されることなく、エンジン回転数が広い回転数で変化する(ローアイドル回転数からハイアイドル回転数まで)作業車両であれば、同様に適用することができる。

図面の簡単な説明

[0128] [図1]図1は、実施形態の作業車両の構成を示す図である。

[図2]図2はエンジン回転数とエンジントルクとの関係を示す図である。

「図3]図3は従来技術でエンジンが停止する様子を説明する図である。

[図4]図4(a)、(b)、(c)は実施形態のエンジン停止防止制御の内容を説明する図である。

[図5]図5は油圧ポンプの最大吸収トルクを変更する制御を説明する図である。

[図6]図6は油圧ポンプの容量を変更する制御を説明する図である。

[図7]図7はPC制御を行うための構成例を示した図である。

[図8]図8はLS制御を行うための構成例を示した図である。

[図9]図9(a)は実施形態のエンジン停止防止制御の内容を説明する図で、図9(b)はエンジン停止防止制御を行わない場合を比較例として示す図である。

[図10]図10はアクセルペダル開度とエンジン目標回転数、しきい値との関係を示した 図である。

[図11]図11(a)、(b)は実施例の制御内容を説明するフローチャートである。

請求の範囲

[1] ローアイドル回転数からハイアイドル回転数の間で目標回転数が設定されるエンジン (1)と、

エンジン(1)によって駆動される複数の可変容量型油圧ポンプ(7、8、9)と、

複数の可変容量型油圧ポンプ(7、8、9)から吐出された圧油が供給される複数の油圧アクチュエータ(13、14、15)と、

1つ以上の可変容量型油圧ポンプ(7、8、9)について、吸収トルクを変化させる吸収トルク変化手段(19、22、23)と、

エンジンの回転数を検出する回転数検出手段(1a)と、

検出したエンジン回転数が、所定のしきい値以下に低下した場合に、可変容量型油圧ポンプ(7、8、9)の吸収トルクを低下させる制御手段(18)と

を備えたことを特徴とする作業車両のエンジンの負荷制御装置。

- [2] 前記所定のしきい値は、ローアイドル回転数以下の回転数であることを特徴とする請求項1記載の作業車両のエンジンの負荷制御装置。
- [3] ステアリング機構を作動させる油圧アクチュエータ(13)と、作業機を作動させる油圧 アクチュエータ(14)とを備えたこと

を特徴とする請求項1記載の作業車両のエンジンの負荷制御装置。

[4] 前記吸収トルク変化手段は、油圧ポンプの最大吸収トルクを変化させる手段(19)であること

を特徴とする請求項1記載の作業車両のエンジンの負荷制御装置。

[5] 前記吸収トルク変化手段は、

可変容量型油圧ポンプ(8)の吐出圧と油圧アクチュエータ(14)の負荷圧との差圧が設定差圧となるように可変容量型油圧ポンプ(8)の容量を制御する容量制御手段(22)と、

前記設定差圧を変化させる手段(23)と

で構成されていること

を特徴とする請求項1記載の作業車両のエンジンの負荷制御装置。

[6] 複数の可変容量型油圧ポンプ(7、8、9)から複数の油圧アクチュエータ(13、14、1

- 5)に対して、それぞれ独立した油路を経由して圧油が供給されることを特徴とする請求項1記載の作業車両のエンジンの負荷制御装置。
- [7] 操作量に応じてエンジンの目標回転数を設定する操作子(17)が備えられ、 前記操作子(17)の操作量に応じて、前記所定のしきい値が設定されており、 前記制御手段(18)は、検出したエンジン回転数が、前記所定のしきい値以下に低 下した場合に、可変容量型油圧ポンプ(7、8、9)の吸収トルクを低下させること を特徴とする請求項1記載の作業車両のエンジンの負荷制御装置。

[図7]

[図8]

[図10]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/016237

	ATION OF SUBJECT MATTER				
F04B49/06(2006.01)					
According to Inte	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SE.					
Minimum docum F04B49/06	entation searched (classification system followed by cla	assification symbols)			
F04B49700	(2000:01)				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005					
Kokai Ji	Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005				
Electronic data b	ase consulted during the international search (name of d	lata base and, where practicable, search te	erms used)		
C. DOCUMEN	TS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X	JP 56-159580 A (Hitachi Cons	truction	1-5,7		
Y	Machinery Co., Ltd.), 08 December, 1981 (08.12.81),		6		
	Page 2, upper left column, li				
	lower right column, line 17;	-			
		37838 A1 2072890 A			
	& GB 2072890 B & SE	447594 B			
	& US 4395199 A & WO	1981/001031 A			
Y	JP 6-221301 A (Mihoshi Jukog	vo Kabushiki	6		
_	Kaisha),	, 0 13330 33211111			
	09 August, 1994 (09.08.94),				
	Par. No. [0018]; Fig. 1 (Family: none)				
	(Idmiri, Iddie)				
Further do	cuments are listed in the continuation of Box C.	See patent family annex.			
	gories of cited documents:	"T" later document published after the inte			
	efining the general state of the art which is not considered cular relevance	date and not in conflict with the applic the principle or theory underlying the i			
"E" earlier applic filing date	earlier application or patent but published on or after the international "X" document of particular relevance filing date "X" document of particular relevance considered novel or cannot be		claimed invention cannot be dered to involve an inventive		
"L" document w	hich may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the			
special reaso	on (as specified)	considered to involve an inventive	step when the document is		
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than		combined with one or more other such being obvious to a person skilled in the			
the priority date claimed "&" document member of the same patent fam			family		
Date of the actual completion of the international search Date of mailing of the international search report			ch report		
22 November, 2005 (22.11.05)		06 December, 2005			
Name and mailing address of the ISA/		Authorized officer			
Japanese Patent Office					
Facsimile No.		Telephone No.			

国際調査報告

発明の属する分野の分類(国際特許分類(IPC))

Int.Cl. F04B49/06 (2006.01)

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. **F04B49/06** (2006.01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

関連すると認められる文献 Ċ.

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 56-159580 A(日立建機株式会社)1981.12.08, 第2頁左上欄第3行-第3頁右下欄第17行,第1-11図 & DE 3049938 C2 & EP 37838 A1 & EP 37838 B1 & GB 2072890 A & GB2072890 B & SE 447594 B & US 4395199 A & WO 1981/001031 A1	1-5, 7 6
Y	JP 6-221301 A(三星重工業株式會社)1994.08.09, 【0018】段落,第1図 (ファミリーなし)	6

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「〇」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

22.11.2005

国際調査報告の発送日

06.12.2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

3 T

8816

刈間 宏信

電話番号 03-3581-1101 内線 3 3 9 5