标量导数

У	a	χ^n	$\exp(x)$	log(x)	$\sin(x)$
$\frac{dy}{dx}$	0	nx^{n-1}	$\exp(x)$	$\frac{1}{x}$	$\cos(x)$
	a = a	不是 x 的	勺函数		

导数是切线的斜率

$$y \qquad u + v \qquad uv \qquad y = f(u), u = g(x)$$

$$\frac{dy}{dx} \qquad \frac{du}{dx} + \frac{dv}{dx} \qquad \frac{du}{dx}v + \frac{dv}{dx}u \qquad \frac{dy}{du}\frac{du}{dx}$$

亚导数

• 将导数拓展到不可微的函数

$$\frac{\partial |x|}{\partial x} = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0\\ a & \text{if } x = 0, \quad a \in [-1, 1] \end{cases}$$

另一个例子

$$\frac{\partial}{\partial x} \max(x,0) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \\ a & \text{if } x = 0, \quad a \in [0,1] \end{cases}$$

梯度

• 将导数拓展到向量

$$\partial y/\partial \mathbf{x}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_n} \end{bmatrix}$$

$$\frac{\partial y}{\partial x}$$
 $\frac{\partial y}{\partial x}$

$$\frac{o}{\hat{c}}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

$$\frac{\partial}{\partial \mathbf{x}} x_1^2 + 2x_2^2 = [2x_1, 4x_2]$$
 方向 (2, 4) 跟等高线正交

样例

<i>y</i> 		аи	sum(x)	$\ \mathbf{x}\ ^2$	a is not a	function of x
$\frac{\partial y}{\partial \mathbf{x}}$	0^{T}	$a\frac{\partial u}{\partial \mathbf{x}}$	1^T	$2\mathbf{x}^T$	0 and 1 a	ire vectors
$\partial \mathbf{x}$		$\partial \mathbf{x}$	1	2X		
У	<u>u</u> -	+ <i>v</i>	uv		$\langle \mathbf{u}, \mathbf{v} \rangle$	

 $\frac{\partial y}{\partial \mathbf{x}} \mid \frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}} \quad \frac{\partial u}{\partial \mathbf{x}} v + \frac{\partial v}{\partial \mathbf{x}} u \quad \mathbf{u}^T \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$

$$\partial \mathbf{y}/\partial x$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \qquad \frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}$$

 $\partial y/\partial x$ 是行向量, $\partial y/\partial x$ 是列向量这个被称之为分子布局符号,反过来的版本叫分母布局符号

$$\partial y/\partial x$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \mathbf{x}} \\ \frac{\partial y_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial y_m}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1}, \frac{\partial y_1}{\partial x_2}, \dots, \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1}, \frac{\partial y_2}{\partial x_2}, \dots, \frac{\partial y_2}{\partial x_n} \\ \vdots \\ \frac{\partial y_m}{\partial x_1}, \frac{\partial y_m}{\partial x_2}, \dots, \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

r

 $\frac{\partial y}{\partial x}$

 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

X

y

 $\frac{\partial y}{\partial z}$

 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

样例

y	a	X	Ax	$\mathbf{x}^T \mathbf{A}$
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	0	I	A	\mathbf{A}^T

$$\mathbf{x} \in \mathbb{R}^n, \quad \mathbf{y} \in \mathbb{R}^m, \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n}$$

a, a and A are not functions of x

0 and I are matrices

$$\begin{array}{c|cccc}
\mathbf{y} & a\mathbf{u} & \mathbf{A}\mathbf{u} & \mathbf{u} + \mathbf{v} \\
\hline
\frac{\partial \mathbf{y}}{\partial \mathbf{x}} & a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \mathbf{A}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}
\end{array}$$

拓展到矩阵

		标量	向量	矩阵
		<i>x</i> (1,)	x (n,1)	\mathbf{X} (n,k)
标量	y (1,)	$\frac{\partial y}{\partial x}$ (1,)	$\frac{\partial y}{\partial \mathbf{x}}$ (1,n)	$\frac{\partial y}{\partial \mathbf{X}}$ (k, n)
向量	y (m,1)	$\frac{\partial \mathbf{y}}{\partial x}$ (m,1)	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ (m, n)	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$ (m, k, n)
矩阵	\mathbf{Y} (m,l)		$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$ (m, l, n)	

链式法则和自动求导

