



# NT93480

## 4-bit Microcontroller with LCD Driver

#### **Features**

■Memory

-RAM: 2048× 4-bit

Includes: RAM mapped registers

Memory registers

Stackers

LCD memory

-ROM: 8192× 10-bit Includes: Program code

Character Graphics table

■Subroutine nesting

-16-level subroutine nesting

■LCD Controller/Driver

-40 segments × 8 commons

-16-level contrast control

-Programmable duty: 1/4, 1/8

-Programmable bias: 1/3, 1/4

■Keyboard

-8× 4 keys maximum

■Battery-low detection

-4-level detection for battery-low

■I/O Pins

-20 general I/O pins

-16 I/O pins shared with LCD segment pins

■Timers/Counters

-One 8-bit Watch Timer driven by a standard 32.768KHz oscillator or external clock

-One 8-bit programmable Timer/Counter with external clock

-One 8-bit programmable Timer/Counter

-One 12-bit programmable Timer/Counter

■Communication port

-1 Serial I/O port

-1 Infra-red output pin

■Interrupts

-9 interrupts are available

■Sound generator

-1 programmable sound generator

■Power-down mode

-HALT mode

-STOP mode

■Dual Oscillators System

-Main oscillator frequency (fmain):

2MHz/2 built-in RC or 1MHz ceramic oscillator

determined by code option

-Watch oscillator frequency (fwaтch):

32.768KHz crystal oscillator

■Instruction Execution Time

-4μs or 8μs

■Power System

-Operating voltage range: 2.5~6.0V

-Standby current: 3µA for 3V

-Operating current: 300µA for 3V

■Package Type

-100-pin QFP package

## **General Description**

NT93480 is a single-chip CMOS 4-bit microcontroller for general purpose. To expand its capability, it integrates 4 timers/counters, 1 Infra-red communication port, 1 LCD driver driving up to 320 dots, 1 dual tone sound generator

and 20 I/O pins, 9 interrupt vectors providing rapid response to different internal or external events. Furthermore, it offers a really low power consumption mode for saving energy in idle condition.



## **Pin Configuration**





# **Block Diagram**



# **Pin Description**

| Pin No. | Designation             | I/O      | Voltage Range       | Description                                                                     |
|---------|-------------------------|----------|---------------------|---------------------------------------------------------------------------------|
| 1~22    | SEG0~21                 | 0        | GND-Vdd             | LCD segment signal output                                                       |
| 30~31   | SEG22~23                | 0        | GND-V <sub>DD</sub> | LCD segment signal output                                                       |
| 32~35   | SEG24~27 /<br>PORT8.3~0 | O<br>I/O | GND-V <sub>DD</sub> | LCD segment signal output / Programmable I/O port8, bit3~0                      |
| 36~39   | SEG28~31 /<br>PORT7.3~0 | O<br>I/O | GND-V <sub>DD</sub> | LCD segment signal output / Programmable I/O port7, bit3~0                      |
| 40~43   | SEG32~35 /<br>PORT6.3~0 | O<br>I/O | GND-V <sub>DD</sub> | LCD segment signal output / Programmable I/O port6, bit3~0                      |
| 44~47   | SEG36~39 /<br>PORT5.3~0 | O<br>I/O | GND-V <sub>DD</sub> | LCD segment signal output / Programmable I/O port5, bit3~0                      |
| 54~57   | KIN3~0 /<br>PORT2.3~0   | I<br>I/O | GND-V <sub>DD</sub> | Keyboard input port (INT2) (See note 1) / Programmable I/O port2, bit3~0        |
| 58      | VDD                     | Р        | -                   | Power supply input (See note 2)                                                 |
| 59      | XOUT                    | 0        | GND-Vdd             | 1MHz ceramic oscillator output                                                  |
| 60      | XIN                     | I        | GND-Vdd             | 1MHz ceramic oscillator input or 2MHz RC oscillator input                       |
| 61      | TEST                    | I        | GND-V <sub>DD</sub> | Enable TEST MODE when low ( for factory used only, user must connect it to Vpp) |
| 62      | XTOUT                   | 0        | GND-Vdd             | 32KHz crystal oscillator output                                                 |
| 63      | XTIN                    | I        | GND-V <sub>DD</sub> | 32KHz crystal oscillator input                                                  |



# **Pin Description (continued)**

| Pin No.                        | Designation              | I/O        | Voltage Range       | Description                                                                     |
|--------------------------------|--------------------------|------------|---------------------|---------------------------------------------------------------------------------|
| 64                             | RESET                    | I          | GND-Vdd             | System reset input ( High active )                                              |
| 65                             | SCK /<br>PORT0.0         | I/O<br>I/O | GND-V <sub>DD</sub> | Serial clock pin /<br>Programmable I/O port0, bit0                              |
| 66                             | SI /<br>PORT0.1          | -<br>I/O   | GND-V <sub>DD</sub> | Serial data input /<br>Programmable I/O port0, bit1                             |
| 67                             | SO /<br>BUZ /<br>PORT0.2 | 0 0 ½      | GND-V <sub>DD</sub> | Serial data output / Buzzer output (normal high) / Programmable I/O port0, bit2 |
| 68                             | BUZ /<br>PORT0.3         | O<br>I/O   | GND-V <sub>DD</sub> | Buzzer output (normal low) / Programmable I/O port0, bit3                       |
| 69                             | INT0 /<br>PORT1.0        | I<br>I/O   | GND-V <sub>DD</sub> | External interrupt input ( INT0 ) (See note 1) / Programmable I/O port1, bit0   |
| 70                             | INT1 /<br>PORT1.1        | -<br>I/O   | GND-Vdd             | External interrupt input ( INT1 ) (See note 1) / Programmable I/O port1, bit1   |
| 71                             | IRO /<br>PORT1.2         | 0 1/9      | GND-V <sub>DD</sub> | IR communication output Programmable I/O port1, bit2                            |
| 72                             | INT3 /<br>PORT1.3        | I<br>I/O   | GND-V <sub>DD</sub> | External interrupt input (INT3) (See note 1) / Programmable I/O port1, bit3     |
| 73                             | GND                      | Р          | -                   | Ground input                                                                    |
| 81~88                          | COM0~7                   | 0          | GND-Vdd             | LCD common signal output (Keyboard scanning outputs)                            |
| 89~92                          | PORT3.0~3                | I/O        | GND-V <sub>DD</sub> | Programmable I/O port3, bit0~3                                                  |
| 93~96                          | PORT4.0~3                | I/O        | GND-Vdd             | Programmable I/O port4, bit0~3                                                  |
| 23~29, 48~53,<br>74~80, 97~100 | NC                       | -          | -                   | -                                                                               |

**Notes:**1. All interrupt inputs would be triggered by any negative-edge signal.

<sup>2.</sup>  $VDD = 2.5 \sim 6.0 \text{ V}.$ 



## **Functional Description**

#### **Program memory**

The 4-bit CPU can directly address up to 16K words of program memory. The arithmetic logic unit (ALU) performs 4-bit addition, subtraction, logical and other operations in one cycle and branch operations in two or three cycles.

Vector address area (\$0000 to \$0019)

NT93480 provides a vector address area for program initialization and interrupt service.

### They are:

| \$00-01 | Jump to RESET ro   | utine           |
|---------|--------------------|-----------------|
| \$02-03 | Jump to INTO       | service routine |
| \$04-05 | Jump to INT1       | service routine |
| \$06-07 | Jump to INT2       | service routine |
| \$08-09 | Jump to INT3       | service routine |
| \$0A-0B | Jump to TIMER0     | service routine |
| \$0C-0D | Jump to TIMER1     | service routine |
| \$0E-0F | Jump to TIMER2     | service routine |
| \$10-11 | Jump to TIMER3     | service routine |
| \$12-13 | Jump to Serial I/O | service routine |
| \$14-19 | Reserved           |                 |

## **Random Access Data Memory**

Resident data memory is organized as 2,048× 4 bits (2048 nibbles). RAM is used for data storage, register storage, stack, and storage of segment data for LCD display RAM. All the interrupt control registers and other special function registers are implemented by means of memory mapping to the internal RAM space. Note that the upper 1K RAM can **only** be accessed by indirect addressing.

#### **RAM Addressing**

RAM data may be accessed by either direct or indirect addressing. Direct addressing is addressed by operand itself while indirect addressing is addressed via page register V. Addressing of RAM for each page is performed by register X and Y indirect addressing. There are 16 special digits in RAM that can be addressed directly without the use of X and Y. These digits make up memory register (R0~15).

## **RAM Mapping**

NT93480 employs memory-mapped I/O in which peripheral hardware (such as I/O port mode control and timers) is mapped onto address \$000 through \$03F in the data memory space.

### **ROM MAP**

| \$0000 |                       |
|--------|-----------------------|
|        | Vector Address Area   |
| \$0019 |                       |
| \$001A |                       |
|        | Zero-page Subroutines |
| \$003F |                       |
| \$0040 |                       |
|        |                       |
|        | System Program        |
|        | Gystem i Togram       |
|        |                       |
| \$1FFF |                       |

### RAM MAP

| \$000 | RAM Mapped Register             |
|-------|---------------------------------|
| \$040 | Memory Register (R0~R15)        |
| \$050 | Data                            |
| \$100 | LCD Display Area (Note)         |
| \$200 | Stack                           |
| \$240 | Data                            |
| \$400 |                                 |
|       | Data (Indirect addressing only) |
| \$7FF |                                 |

**Note:** \$1n0~\$1n3, \$1nE~1nF, \$1m0~1mF are empty space (no memory cell).

(n=0.1.2~7, m=8.9.A~F)



## **RAM Mapped Register**

| Regi    | ster         |                                        | Confi                                              | guration   |           |        |              |  |
|---------|--------------|----------------------------------------|----------------------------------------------------|------------|-----------|--------|--------------|--|
| Address | Name         | Bit 3                                  | Bit 2                                              | Bit 1      | Bit 0     | R/W    | s/r/t/N      |  |
| \$000   | SENSE0       | IE0 (R/W)                              | IRQ0 (R)                                           | RSP (R/W)  | IE (R/W)  | -      | s/r/t<br>r/t |  |
| \$001   | SENSE1       | IE2 (R/W)                              | IRQ2 (R)                                           | IE1 (R/W)  | IRQ1 (R)  | -      | s/r/t<br>r/t |  |
| \$002   | SENSE2       | IET1 (R/W)                             | IRQT1 (R)                                          | IET0 (R/W) | IRQT0 (R) | 1      | s/r/t<br>r/t |  |
| \$003   | SENSE3       | IET2 (R/W)                             | IRQT2 (R)                                          | IESI (R/W) | IRQSI (R) | -      | s/r/t<br>r/t |  |
| \$004   | TMOD0        | Timer 0 mode reg                       | gister                                             |            |           | W      | N            |  |
| \$005   | TMOD1        | Timer 1 mode reg                       | gister                                             |            |           | W      | N            |  |
| \$006   | TC00<br>TL00 | Timer 0 counter r<br>Timer 0 load regi | -                                                  |            |           | R<br>W | N            |  |
| \$007   | TC01<br>TL01 | Timer 0 counter r<br>Timer 0 load regi | •                                                  |            |           | R<br>W | N            |  |
| \$008   | TC10<br>TL10 | Timer 1 counter r<br>Timer 1 load regi | -                                                  |            |           | R<br>W | N            |  |
| \$009   | TC11<br>TL11 |                                        | Timer 1 counter register 1 Timer 1 load register 1 |            |           |        |              |  |
| \$00A   | SIOL         | Serial data regist                     | er , lower nibble                                  |            |           | R/W    | t/N          |  |
| \$00B   | SIOH         | Serial data regist                     | er , upper nibble                                  |            |           | R/W    | t/N          |  |
| \$00C   | SIOM         | Serial mode regis                      | ster                                               |            |           | W      | N            |  |
| \$00D   | CKS          | Reserved                               | Reserved                                           | CKS.1      | CKS.0     | W      | N            |  |
| \$00E   | -            | Reserved                               |                                                    |            |           | -      | -            |  |
| \$00F   | TESTM        | Test mode regist                       | er ( Confidential )                                |            |           | W      | N            |  |
| \$010   | PMODA        | Port mode regist                       | er A                                               |            |           | W      | N            |  |
| \$011   | PMODB        | Port mode registe                      | er B                                               |            |           | W      | N            |  |
| \$012   | PMODC        | Port mode registe                      | er C                                               |            |           | W      | N            |  |
| \$013   | TMOD3        | Timer 3 mode re                        | Timer 3 mode register                              |            |           |        |              |  |
| \$014   | PMODE        | Port mode registe                      | er E                                               |            |           | W      | N            |  |
| \$015   | PMODF        | Port mode registe                      | er F                                               |            |           | W      | N            |  |
| \$016   | IRM          | W1                                     | WO                                                 | IRM.1      | IRM.0     | R/W    | s/r/N        |  |
| \$017   | LCON         | Reserved                               | Reserved Reserved LCON.1 LCON.0                    |            |           |        |              |  |
| \$018   | LMOD0        | LCD mode regist                        | er 0                                               |            |           | W      | N            |  |
| \$019   | LMOD1        | LCD mode regist                        | er 1                                               |            |           | W      | N            |  |
| \$01A   | -            | Reserved                               |                                                    |            |           | -      | -            |  |



## **RAM Mapped Register (continued)**

| Reg     | ister        |                                        | Configuration |            |           |        |              |  |
|---------|--------------|----------------------------------------|---------------|------------|-----------|--------|--------------|--|
| Address | Name         | Bit 3                                  | Bit 2         | Bit 1      | Bit 0     | R/W    | s/r/t/N      |  |
| \$01B   | -            | Reserved                               |               |            |           | -      | -            |  |
| \$01C   | TC30<br>TL30 | Timer 3 counter r<br>Timer 3 load regi |               | R<br>W     | N         |        |              |  |
| \$01D   | TC31<br>TL31 | Timer 3 counter r<br>Timer 3 load regi |               |            |           | R<br>W | N            |  |
| \$01E   | TC32<br>TL32 | Timer 3 counter r<br>Timer 3 load regi | -             |            |           | R<br>W | N            |  |
| \$01F   | CTL0         | KPRS (R)                               | ENBAT (W)     | KPAD (W)   | KRVS (W)  | -      | t/N          |  |
| \$020   | SPA          | Reserved                               | Reserved      | Reserved   | SP.10     | R/W    | t/N          |  |
| \$021   | SPB          | SP.9                                   | SP.8          | SP.7       | SP.6      | R/W    | t/N          |  |
| \$022   | SPC          | SP.5                                   | SP.4          | SP.3       | SP.2      | R      | t/N          |  |
| \$023   | SENSE4       | Reserved                               | Reserved      | IET3 (R/W) | IRQT3 (R) | -      | s/r/t<br>r/t |  |
| \$024   | SENSE5       | Reserved                               | Reserved      | IE3 (R/W)  | IRQ3 (R)  | -      | s/r/t<br>r/t |  |
| \$025   | TMOD2        | Timer 2 mode reg                       | W             | N          |           |        |              |  |
| \$026   | TC20<br>TL20 | Timer 2 counter r<br>Timer 2 load regi | -             |            |           | R<br>W | N            |  |
| \$027   | TC21<br>TL21 | Timer 2 counter r<br>Timer 2 load regi | -             |            |           | R<br>W | t/N          |  |
| \$028   | KREG0        | K03                                    | K02           | K01        | K00       | R/W    | t/N          |  |
| \$029   | KREG1        | K13                                    | K12           | K11        | K10       | R/W    | t/N          |  |
| \$02A   | KREG2        | K23                                    | K22           | K21        | K20       | R/W    | t/N          |  |
| \$02B   | KREG3        | K33                                    | K32           | K31        | K30       | R/W    | t/N          |  |
| \$02C   | KREG4        | K43                                    | K42           | K41        | K40       | R/W    | t/N          |  |
| \$02D   | KREG5        | K53                                    | K52           | K51        | K50       | R/W    | t/N          |  |
| \$02E   | KREG6        | K63                                    | K62           | K61        | K60       | R/W    | t/N          |  |
| \$02F   | KREG7        | K73                                    | K72           | K71        | K70       | R/W    | t/N          |  |
| \$030   | P0           | Port 0                                 | Port 0        |            |           |        |              |  |
| \$031   | P1           | Port 1                                 | Port 1        |            |           |        |              |  |
| \$032   | P2           | Port 2                                 |               |            |           | R/W    | t/N          |  |
| \$033   | P3           | Port 3                                 |               |            |           | R/W    | t/N          |  |
| \$034   | P4           | Port 4                                 |               |            |           | R/W    | t/N          |  |



#### **RAM Mapped Register (continued)**

| Register |      |                             | Confi    | guration |       |     |         |  |
|----------|------|-----------------------------|----------|----------|-------|-----|---------|--|
| Address  | Name | Bit 3                       | Bit 2    | Bit 1    | Bit 0 | R/W | s/r/t/N |  |
| \$035    | P5   | Port 5                      |          |          |       | R/W | t/N     |  |
| \$036    | P6   | Port 6                      |          |          |       | R/W | t/N     |  |
| \$037    | P7   | Port 7                      |          |          |       | R/W | t/N     |  |
| \$038    | P8   | Port 8                      | Port 8   |          |       |     |         |  |
| \$039    | -    | Reserved                    | Reserved |          |       |     |         |  |
| \$03A    | SGM  | SGM.3                       | SGM.2    | SGM.1    | SGM.0 | R/W | t/N     |  |
| \$03B    | SGD  | SGD.3                       | SGD.2    | SGD.1    | SGD.0 | R/W | t/N     |  |
| \$03C    | -    | Reserved                    | Reserved |          |       |     |         |  |
| \$03D    | BAT  | Reserved                    | R        | t/N      |       |     |         |  |
| \$03E    | CVAR | CVAR.3 CVAR.2 CVAR.1 CVAR.0 |          |          |       |     | N       |  |
| \$03F    | -    | Reserved                    |          |          |       | -   | -       |  |

#### Notes:

s/r/t/N: s: Available for instructions, SM and SMD

r: Available for instructions, RM and RMDt: Available for instructions, TM and TMD

N: Available for Nibble operations instructions, for example, ITMD

IE: Enable all Interrupts of this chip

IEn:Enable Interrupt n,IRQn:Interrupt request of INTnIETn:Enable Interrupt of Timer n,IRQTn:Interrupt request of Timer nSP.y:Bit y of stack pointer,RSP:Reset Stack Pointer address

CKS: Clock selection register

CKS.0 and CKS.1 are used to select the system clock speed,

e.g. if CKS=xx01, then system clock = fmain(1MHz)/8 if CKS=xx10, then system clock = fmain (1MHz)/4

KPRS: It would be set when any key is pressed

KPAD: Enable Key pressed detection.

Once KPAD is set 1, Port2 will always be input no matter which status the Port2 I/O control register is.

KRVS: Reverse keyboard Scanning signal

IRM: IR mode register

SGM: Sound generator mode register
SGD: Sound generator data register
CVAR: Contrast control register (Write-only)
ENBAT: Enable low-battery detection when high

BAT.m: Battery power level data (Please refer to the Battery-low table)

 $(m = 0, 1, 2 \quad n = 0, 1, 2, 3 \quad x = 0, 1 \quad y = 2, ..., 10)$ 



#### Register and Flags

The NT93480 provides 9 registers and 2 flags for CPU operation. They are described below:

### Accumulator A (4 bits), Register B (4 bits)

Accumulator A and the Register B are 4-bit registers that hold the results of the arithmetic logic unit (ALU). They are the very basic registers for a CPU to execute all the arithmetic calculation, logic operation and data transfer among memories, I/Os and registers.

### Register V (4 bits)

Register V is a 4-bit register that holds the page address of RAM.

## Register X (4 bits), Register Y (4 bits)

The register X and Y are 4-bit registers, which are used for indirect RAM addressing. For instance:

Note: V3 must be set zero.

## Register EX (4 bits), Register EY (4bits)

The register EX and EY are 4-bit registers available to assisting registers X and Y, respectively.

#### Carry Flag, CY (1bit)

The carry flag holds the ALU overflow bit generated by arithmetic operation. It can be set or reset by instruction directly, and is affected by the rotation instruction.

#### Status Flag, SF (1bit)

The flag holds the ALU comparison, arithmetic instruction and the status of accumulator. This flag would be tested by

those instructions of conditional jump and conditional call. After execution of BR, LBR, CAL, or CALL instruction, the status bit would be set. Furthermore, SF will be pushed onto the stack during serving interrupt. Be care that SF will not be restored by instruction RET, but by instruction RETI.

#### **Program Counter PC (14 bits)**

The program counter is used for addressing ROM. It is combined of two address portions, page and offset:

Page (6 bits): pc13~8 Offset (8 bits): pc7~0

#### Stack pointer SP (11 bits)

The stack memory is implemented by means of RAM mapping so as to make the system become more extendible. SP is an 11-bits which holds the start address of the recent level of Stack. Stack is combined of sixteen 4-nibble registers, which holds the program counter of subroutines or interrupt return address. So, 16 levels of stack operation are possible. It can be initialized to the starting address (\$23F) of the stack either by chip reset or by transfer instruction.

The following table shows how the stack register is configured:

## Reset Stack Pointer Flag, RSP (1 bit)

RSP is used for resetting the stack pointer to \$23F and will be cleared while system is in RESET mode. Usually, user needs not do anything about this flag unless he wants to. It is of course that user can reset the stack pointer by setting RSP to one. Afterward, it must be recovered to zero right away before doing anything else.

Stack Register Bits Configuration: (For level 1)

| Address. | Bit 3 |       | Bit 2 |       | Bit 1 |       | Bit 0 |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| \$23F    | S3    | -PC3  | S2    | -PC2  | S1    | -PC1  | S0    | -PC0  |
| \$23E    | S7    | CY    | S6    | -PC6  | S5    | -PC5  | S4    | -PC4  |
| \$23D    | S11   | -PC10 | S10   | -PC9  | S9    | -PC8  | S8    | -PC7  |
| \$23C    | S15   | SF    | S14   | -PC13 | S13   | -PC12 | S12   | -PC11 |

Note: PC stored in the stack is a negative value

## **Memory Allocation of Stack Level**

| Level | Address     | Level | Address     | Level | Address     | Level | Address     |
|-------|-------------|-------|-------------|-------|-------------|-------|-------------|
| 16    | \$203~\$200 | 12    | \$213~\$210 | 8     | \$223~\$220 | 4     | \$233~\$230 |
| 15    | \$207~\$204 | 11    | \$217~\$214 | 7     | \$227~\$224 | 3     | \$237~\$234 |
| 14    | \$20B~\$208 | 10    | \$21B~\$218 | 6     | \$22B~\$228 | 2     | \$23B~\$238 |
| 13    | \$20F~\$20C | 9     | \$21F~\$21C | 5     | \$22F~\$22C | 1     | \$23F~\$23C |



## Interrupts

Nine interrupt sources are available for user:

- 1. General interrupts:
  - -INTO
  - -INT1
  - INT2 (Port2)
  - INT3
- 2. Timer/counter interrupts:
  - -Timer0 output
  - -Timer1\_output
  - -Timer2\_output
  - -Timer3\_output
- 3. Serial interface interrupt:

-SI

(This signal is generated by the built-in serial communication port.)

## **Interrupt Control Bits and Request flags:**

The RAM mapped register from \$000 through \$003 can only be accessed by bit operation instructions. Any interrupt,  $\overline{\mathsf{INTn}}$  may be enabled while IE and IEn were set. Flag IRQn will be set if there is an interrupt signal coming up and  $\overline{\mathsf{INTn}}$  has already been enabled. On the other hand, request flag IRWn can only be set by interrupt signal and also can only be cleared by system RESET.

## Interrupt Enable (IE)

The interrupt enable bit, IE, enables all interrupts request when it is set. It can also be by instruction RETI and should be reset by any interrupt service routine.

#### **General interrupts**

INTO, INT1:

Interrupt request flags, IRQ0/IRQ1, will be set while interrupt input,  $\overline{\text{INT0}}$  /  $\overline{\text{INT1}}$ , has received any negative

edge signal provided that both IE and IE0/IE1 were set. Also, INTO or INT1 can be programmed as an external clock input of Timer0 or Timer1 by the register, TMOD0 or TMOD1, respectively. In addition, IE0/IE1 must be cleared while making it as a timer clock.

#### INT2:

The interrupt request flag IRQ2, will be set while any one of the interrupt inputs, INT2 (Port2.0~3), has received any negative edge signal provided that both IE and IE2 were set. This interrupt function may be disabled by setting bit KPAD (\$01F.1) to one. When KPAD is set. Port2 are no longer to be a general interrupt input but key-detection input.

#### INT3:

The interrupt request flag IRQ3, will be set while any one of the interrupt input,  $\overline{\text{INT3}}$  has received any negative edge signal provided that both IE and IE3 were set.

## **Timer/counter Interrupts**

The interrupt request flag IRQTn, will be set by the output signal of Timer/counter n provided that both IE and IETn were set. (n=0, 1, 2, 3)

For details, please refer to the section on Timer/counter.

## Serial Interface Interrupt

Interrupt request flag IRQSI, will be set by the internal serial interface signal provided that both IE and IESI were set.



| Interrupt | Signal   | Priority         | Issued by | Condition                                       | Vector |
|-----------|----------|------------------|-----------|-------------------------------------------------|--------|
| RESET     | External | 1 <sup>st</sup>  | Reset pin | RESET PIN = 1 for at least 2 instruction cycles | \$00   |
| ĪNT0      | External | 2 <sup>nd</sup>  | IRQ0      | IE = IE0 = IRQ0 = 1                             | \$02   |
| ĪNT1      | External | 3 <sup>rd</sup>  | IRQ1      | IE = IE1 = IRQ1 = 1                             | \$04   |
| ĪNT2      | External | 4 <sup>th</sup>  | IRQ2      | IE = IE2 = IRQ2 = 1                             | \$06   |
| ĪNT3      | External | 5 <sup>th</sup>  | IRQ3      | IE = IE3 = IRQ3 = 1                             | \$08   |
| TIMER0    | Internal | 6 <sup>th</sup>  | IRQT0     | IE = IET0 = IRQT0 = 1                           | \$0A   |
| TIMER1    | Internal | 7 <sup>th</sup>  | IRQT1     | IE = IET1 = IRQT1 = 1                           | \$0C   |
| TIMER2    | Internal | 8 <sup>th</sup>  | IRQT2     | IE = IET2 = IRQT2 = 1                           | \$0E   |
| TIMER3    | Internal | 9 <sup>th</sup>  | IRQT3     | IE = IET3 = IRQT3 = 1                           | \$10   |
| SERIAL    | Internal | 10 <sup>th</sup> | IRQSI     | IE = IESI = IRQSI = 1                           | \$12   |

## Timing of interrupt sequence



## Hardware structure of interrupt control unit





## **Example of Timing of interrupt events**





#### **Input/Output Port**

There are 36 I/O pins, which are divided into 9 groups. These pins contain pull-up MOS transistor that can be controlled by program. If these pins are configured as input pins, the pull-up transistor is determined by software. If any port pin is set to one, then pull-up transistor of that pin would be enabled. Otherwise, the pull-up transistor

would be disconnected from that pin, Do not let any unused pin float because it may cause the noise problem to the chip. If you do so, it is better to put an external pull-up resistor (about  $100 \text{K}\Omega$ ) to that pin so as to keep the noise down.

| Port Mode Register | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Мо      | ode      |
|--------------------|----------|----------|----------|----------|---------|----------|
| PMODA (\$010)      | PORT3    | PORT2    | Reserved | PORT0    | 0:Input | 1:Output |
| PMODB (\$011)      | PORT7    | PORT6    | PORT5    | Reserved | 0:Input | 1:Output |
| PMODC (\$012)      | Reserved | Reserved | Reserved | PORT8    | 0:Input | 1:Output |
| PMODE (\$014)      | PORT1.3  | PORT1.2  | PORT1.1  | PORT1.0  | 0:Input | 1:Output |
| PMODF (\$015)      | PORT4.3  | PORT4.2  | PORT4.1  | PORT4.0  | 0:Input | 1:Output |

The I/O pin PORT 0.2 is also the PSG and SERIAL output, so it is controlled by the special condition.

| PORT 0.2         |             | PS           |             | Serial       | I/O Control     |                  |
|------------------|-------------|--------------|-------------|--------------|-----------------|------------------|
| status           | TnA(SGA1.3) | ENCHA(SGC.0) | TnB(SGB3.3) | ENCHB(SGC.1) | SIOM.3(\$00C.3) | PMODA.0(\$010.0) |
| Input by default | 0           | 0            | 0           | 0            | 0               | 0                |
| Normal           | 1           | 0            | Х           | 0            | 0               | 1                |
| output           | Х           | 0            | 1           | 0            | 0               | 1                |
| PSG              | Х           | 1            | Х           | Х            | 0               | 0                |
| output           | Х           | Х            | X           | 1            | 0               | 0                |
| Serial output    | Х           | ×            | Х           | ×            | 1               | 0                |

The I/O pin PORT 0.3 is also the PSG output, so it is controlled by the special condition.

| PORT 0.3         |             | PS           | I/O Control |              |                  |
|------------------|-------------|--------------|-------------|--------------|------------------|
| status           | TnA(SGA1.3) | ENCHA(SGC.0) | TnB(SGB3.3) | ENCHB(SGC.1) | PMODA.0(\$010.0) |
| Input by default | 0           | 0            | 0           | 0            | 0                |
| Normal           | 1           | 0            | Х           | 0            | 1                |
| output           | Х           | 0            | 1           | 0            | 1                |
| PSG              | Х           | 1            | Х           | Х            | X                |
| output           | Х           | Х            | Х           | 1            | X                |

Notes: TnA: PSG Channel A mode register

TnB: PSG Channel B mode register

ENCHA: PSG Channel A enable register

ENCHB: PSG Channel B enable register

SIOM.3: Serial I/O enable register PMODA.0: Port0 I/O control register

1: Tone 0: Noise

1: Tone 0: Noise

1: Enable 0: Disable 1: Enable 0: Disable

1: Enable 0: Disable

1: Output 0: Input



Port0 I/O control example:PORT 0.2 normal output

|        | ORG  | 0000H      |                                          |
|--------|------|------------|------------------------------------------|
|        | JMP  | RESET      |                                          |
|        | ORG  | 0050H      |                                          |
| RESET: | ITMD | 08H, \$03B | ; sound generator control mode: CH1=TONE |
|        | ITMD | 0BH, \$03A | ; load data to SGA                       |
|        | ITMD | 00H, \$03A | ; hold data                              |
|        | ITMD | 00H, \$03B | ; disable PSG                            |
|        | ITMD | 08H, \$03A | ; load data to SGC                       |
|        | ITMD | 00H, \$03A | ; hold data                              |
|        | ITMD | 00H, \$00C | ; disable SIO                            |
|        | ITMD | 0FH, \$010 | ; PORT0 = output                         |

#### **Serial Interface**

The serial interface is basically an 8-bit Half-duplex Serial Transmitter/Receiver, which consists of two data registers (SIOL, SIOH), a serial mode register (SIOM), and an internal octal counter. During execution of STS instruction, the octal counter would be reset first and then it will increment by one at the rising edge of the transfer clock (SCK). However the octal counter would be reset and the serial interrupt flag will also be set for every 8 transfer clocks (SCK).

#### Serial Data Register

This 8-bit read/write serial data register consists of a lower nibble (SIOL) and an upper nibble (SIOH). The data stored in serial data register can be shifted out through the SO pin. Similarly, the external data stream can be shifted in and stored in SIOL & SIOH simultaneously via SI pin. Both input data and output data stream are

synchronized by the falling edge of the transfer clock (SCK). Read/write operations of the serial data register must be performed after completion of data transfer. Otherwise, the data cannot be guaranteed.

## Serial Mode Register (SIOM (\$00C))

It is a 4-bit, write-only register, which determines what the I/O mode of SCK is, prescaler divided ratio, and where the clock source from. It may be reset by RESET instruction. Be ware that writing data to SIOM will initialize the data transfer operation no matter whether it is being data transfer or not. It means that the transfer clock will stop, octal counter will be reset and serial interrupt request (IRQSI) will also be set during writing SIOM. Furthermore, execution of STS instruction is necessary after writing SIOM.

### Serial mode register (SIOM, \$00C)

| SIOM.3 | SIOM.2 | SIOM.1 | SIOM0 | SCK    | Clock source        | Serial I/O |
|--------|--------|--------|-------|--------|---------------------|------------|
| 0      | Х      | Х      | Х     | -      | -                   | Disable    |
| 1      | 0      | 0      | 0     | Input  | External clock      | Enable     |
| 1      | 0      | 0      | 1     | Output | System clock        | Enable     |
| 1      | 0      | 1      | 0     | Output | System clock / 4    | Enable     |
| 1      | 0      | 1      | 1     | Output | System clock / 16   | Enable     |
| 1      | 1      | 0      | 0     | Output | System clock / 64   | Enable     |
| 1      | 1      | 0      | 1     | Output | System clock / 256  | Enable     |
| 1      | 1      | 1      | 0     | Output | System clock / 1024 | Enable     |
| 1      | 1      | 1      | 1     | Output | System clock / 4096 | Enable     |

## **Serial Transmission Data Format**



 $B7~4 \iff SIOH (\$00B.3~0); B3~0 \iff SIOL (\$00A.3~0).$ 



#### IR communication port

This chip also offers an extremely convenient way of communication with other data equipment through the light media, Infrared. IR Mode register (IRM) is such a register that is responsible for controlling the IR communication data format, such as carrier frequency and logic.

#### IR Mode Register (IRM)

The user can define the transmission data format by means of programming the IR Mode Register. IRM.1 and IRM.0 define its carrier frequency.

#### **IR Data Transmission**

Data transmission of IR communication can be issued by means of programming the IR Mode Register (IRM). The output pin, IRO, will directly respond to the value in P1.2 with the format previously defined after Port1.2 has been

defined as an output (PMODE.2=1). It is a static operation, so the output will not be changed until the value in P1.2 is changed. Obviously that this output waveform are fully software controlled. By employing a timer, the programmer can control the waveform and its frequency very accurately. Note that P1.2 will perform as a normal I/O pin when IRM.1=IRM.0=0.

## IR Date Receiving

In addition, if pin INT3 is employed to be the IR input pin, IRQ3 will be issued when there is IR incoming signal. Meanwhile bit P1.3 will directly respond to the logic level of pin INT3, and CPU has enough time to capture this bit data for further processing at this moment. Note that PMODE.3 was cleared to zero in this case, so that the CPU can read the data from pin INT3 /P1.3.

## IR Mode Register (IRM)

| DMODE 0 | ODE 2 14/4 14/0 | 14/0 | IRM.1 | IDMA  | Output signal  |           |  |
|---------|-----------------|------|-------|-------|----------------|-----------|--|
| PMODE.2 | W1              | W0   |       | IRM.0 | P1.2=0         | P1.2=1    |  |
| 0       | Х               | Х    | Х     | Х     | High impedance | Pull-high |  |
| 1       | Х               | Х    | 0     | 0     | LOW            | HIGH      |  |
| 1       | Х               | Х    | 0     | 1     | LOW            | 35.7KHz   |  |
| 1       | Х               | Х    | 1     | 0     | LOW            | 38.5KHz   |  |
| 1       | Х               | Х    | 1     | 1     | LOW            | 500KHz    |  |

## **IR Transmission Timing and Data Format**

EXAMPLE OF GENERATING A 38.5KHz CARRIER WAVEFORM WITH DATA STREAM 1.0.1.





#### **Timers / Counters**

There are 4 Timer/Counters (Timer0~3), in which prescaler and clock selection circuits have been built. By programming timer mode register TMOD0~TMOD3, user can choose different operation modes and speeds. They can also be configured as event counters.

## 1) TIMER 0 Operation: 8-bit Watch Timer

Timer0 is an 8-bit timer/counter, which consists of two 4-bit write only timer load registers (TL00, TL01) and two 4-bit read only timer/event counter registers (TC00, TC01). These registers share the same address \$006 & \$007. To program timer load register, user must write data to the lower nibble (\$006) first, then the upper nibble (\$007).

To read the data of the timer/counter register, the upper nibble (\$007) must be read first, then the lower nibble (\$006). The order of data reading and writing must be

followed, otherwise this counter will not work probably due to the wrong data.

There are three kinds of clock sources that can be chosen by controlling the timer mode register0 (TMOD0, \$004):

The first one is the system clock which can be programmed to fmain/4 or fmain/8, by writing 00, 01 or CKS.1~0 respectively.

The second one is the standard watch oscillator, 32768Hz/8.

The last one is the external source,  $\overline{\text{INT0}}$ .

Interrupt request flag (IRQT0) will be set when the 8-bit up-counter has been overflowed (one counting more after \$FF has been reached). Finally, reading will remain zero. For the prescaler value, please refer to the following table:

Timer Mode 0 Register (TMOD0, \$004)

| TMOD0.3 | TMOD0.2 | TMOD0.1 | TMOD0.0 | Prescaler Divide Ratio | Clock Source          |
|---------|---------|---------|---------|------------------------|-----------------------|
| 0       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8)     |
| 0       | 0       | 0       | 1       | /512                   | 1MHz/M (M=4 or 8)     |
| 0       | 0       | 1       | 0       | /128                   | 1MHz/M (M=4 or 8)     |
| 0       | 0       | 1       | 1       | /32                    | 1MHz/M (M=4 or 8)     |
| 0       | 1       | 0       | 0       | /8                     | 1MHz/M (M=4 or 8)     |
| 0       | 1       | 0       | 1       | /4                     | 1MHz/M (M=4 or 8)     |
| 0       | 1       | 1       | 0       | /2                     | 1MHz/M (M=4 or 8)     |
| 0       | 1       | 1       | 1       | -                      | External source, INT0 |
| 1       | 0       | 0       | 0       | /32                    | 4096Hz (32768Hz/8)    |
| 1       | 0       | 0       | 1       | /16                    | 4096Hz (32768Hz/8)    |
| 1       | 0       | 1       | 0       | /8                     | 4096Hz (32768Hz/8)    |
| 1       | 0       | 1       | 1       | /2                     | 4096Hz (32768Hz/8)    |
| 1       | 1       | Х       | Х       | -                      | Reserved              |

## **Timer 0 Block Diagram**





## 2) TIMER 1 Operation: 8-bit Timer/Counter

Auto-reload function has been implemented in Timer1. User can select different prescaler factor with or without auto-reload by putting the appropriate value into the timer mode register 1, TMOD1. Besides the internal clock source, 1MHz, an external clock source,  $\overline{\text{INT1}}$ , is also provided.

To program Timer 1 load register, user must write data to the lower nibble, TL10, first, then the TL11.

To read the data of this timer/counter register, the upper nibble, TC11 must be read out first, then the lower nibble, TC10. The order must be followed otherwise unexpected counting may occur.

Interrupt request flag (IRQT1) will be set when the 8-bit up-counter has been overflowed.

Timer Mode Register 1: (TMOD1 \$005)

| TMOD1.3 | TMOD1.2 | TMOD1.1 | TMOD1.0 | Prescaler Divide Ratio | Clock Source          | Auto-Reload |
|---------|---------|---------|---------|------------------------|-----------------------|-------------|
| 0       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8)     | No          |
| 0       | 0       | 0       | 1       | /1024                  | 1MHz/M (M=4 or 8)     | No          |
| 0       | 0       | 1       | 0       | /512                   | 1MHz/M (M=4 or 8)     | No          |
| 0       | 0       | 1       | 1       | /32                    | 1MHz/M (M=4 or 8)     | No          |
| 0       | 1       | 0       | 0       | /16                    | 1MHz/M (M=4 or 8)     | No          |
| 0       | 1       | 0       | 1       | /8                     | 1MHz/M (M=4 or 8)     | No          |
| 0       | 1       | 1       | 0       | /2                     | 1MHz/M (M=4 or 8)     | No          |
| 0       | 1       | 1       | 1       | -                      | External source, INT1 | No          |
| 1       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 0       | 0       | 1       | /1024                  | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 0       | 1       | 0       | /512                   | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 0       | 1       | 1       | /32                    | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 1       | 0       | 0       | /16                    | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 1       | 0       | 1       | /8                     | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 1       | 1       | 0       | /2                     | 1MHz/M (M=4 or 8)     | Yes         |
| 1       | 1       | 1       | 1       | -                      | External source, INT1 | Yes         |

**TIMER 1 Block Diagram** 





## 3) TIMER 2 Operation: 8-bit Timer/Counter

Auto-reload function has been implemented in Timer2. User can select different prescaler factor with or without auto-reload by putting the appropriate value into the timer mode register 2, TMOD2. Only the internal clock source, 1MHz, is provided for Timer 2.

To program Timer 2 load register, user must write data to the lower nibble, TL20, first, then the TL21.

To read the data of this timer/counter register, the upper nibble, TC21 must be read out first, then the lower nibble, TC20. The order must be followed otherwise unexpected counting may occur.

Interrupt request flag (IRQT2) will be set when the 8-bit up-counter has been overflowed.

Timer Mode Register 2: (TMOD2 \$0025)

| TMOD2.3 | TMOD2.2 | TMOD2.1 | TMOD2.0 | Prescaler Divide Ratio | Clock Source      | Auto-Reload |
|---------|---------|---------|---------|------------------------|-------------------|-------------|
| 0       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8) | No          |
| 0       | 0       | 0       | 1       | /1024                  | 1MHz/M (M=4 or 8) | No          |
| 0       | 0       | 1       | 0       | /512                   | 1MHz/M (M=4 or 8) | No          |
| 0       | 0       | 1       | 1       | /128                   | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 0       | 0       | /32                    | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 0       | 1       | /16                    | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 1       | 0       | /8                     | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 1       | 1       | /2                     | 1MHz/M (M=4 or 8) | No          |
| 1       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 0       | 0       | 1       | /1024                  | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 0       | 1       | 0       | /512                   | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 0       | 1       | 1       | /128                   | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 0       | 0       | /32                    | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 0       | 1       | /16                    | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 1       | 0       | /8                     | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 1       | 1       | /2                     | 1MHz/M (M=4 or 8) | Yes         |

## Timer 2 block Diagram





#### 4) TIMER 3 Operation: 12-bit Timer/Counter

Auto-reload function has been implemented in Timer3. User can select different prescaler factor with or without auto-reload by putting the appropriate value into the timer mode register 3, TMOD3. Only the internal clock source, 1MHz, is provided for Timer 3.

To program Timer 3 load register, user must write data to the lower nibble, TL30, first, then the TL31, and finally the TL32.

To read the data of this Timer/Counter register, the upper nibble, TC32 must be read out first, then the TC20, and finally the TC30. This order must be followed otherwise unexpected counting may occur.

Interrupt request flag (IRQT3) will be set when the 12-bit up-counter has been overflowed.

Timer Mode Register 3: (TMOD3 \$013)

| TMOD3.3 | TMOD3.2 | TMOD3.1 | TMOD3.0 | Prescaler Divide Ratio | Clock Source      | Auto-Reload |
|---------|---------|---------|---------|------------------------|-------------------|-------------|
| 0       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8) | No          |
| 0       | 0       | 0       | 1       | /1024                  | 1MHz/M (M=4 or 8) | No          |
| 0       | 0       | 1       | 0       | /512                   | 1MHz/M (M=4 or 8) | No          |
| 0       | 0       | 1       | 1       | /128                   | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 0       | 0       | /32                    | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 0       | 1       | /16                    | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 1       | 0       | /8                     | 1MHz/M (M=4 or 8) | No          |
| 0       | 1       | 1       | 1       | /2                     | 1MHz/M (M=4 or 8) | No          |
| 1       | 0       | 0       | 0       | /2048                  | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 0       | 0       | 1       | /1024                  | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 0       | 1       | 0       | /512                   | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 0       | 1       | 1       | /128                   | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 0       | 0       | /32                    | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 0       | 1       | /16                    | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 1       | 0       | /8                     | 1MHz/M (M=4 or 8) | Yes         |
| 1       | 1       | 1       | 1       | /2                     | 1MHz/M (M=4 or 8) | Yes         |

## **Timer 3 block Diagram**





#### **Sound Generator**

This built-in sound generator is a programmable dual tone signal generator that offers whatever a single tone, dual tone or single tone with noise signal, Loading different pattern down to the generator registers gives different effect of sound generation. In addition, the tone frequencies can be controlled by programming the Sound Generator Data Register (SGD) through Sound Generator Mode Register (SGM). In addition, the BUZ For example:

ITMD \$0, SGM ; Clear SGM.3

ITMD \$D, SGD ; 8KHz for CHA, 32KHz for CHB

ITMD \$9, SGM ; Load data to SGF

ITMD \$0, SGM ; Hold data by clear SGM.3

pin will keep low, and BUZ pin keep high, when VOL0=VOL1=0, channel A or B enable.

To down load a data to SGF, for example, the user must make sure that SGM.3 is zero. Afterward, the required data can be written to SGD. Next, the data in SGD has to be transferred directly by writing a \$9. Finally, SGM.3 must be cleared to hold the data.

## Sound Generator Mode Register: SGM

| SGM.3 | SGM.2 | SGM.1 | SGM.0 | Data strobe | SG Data Register (SGD) |
|-------|-------|-------|-------|-------------|------------------------|
| 0     | Х     | Х     | Х     | Hold data   | x                      |
| 1     | 0     | 0     | 0     | Load data   | SGC                    |
| 1     | 0     | 0     | 1     | Load data   | SGF                    |
| 1     | 0     | 1     | 0     | Load data   | SGA0                   |
| 1     | 0     | 1     | 1     | Load data   | SGA1                   |
| 1     | 1     | 0     | 0     | Load data   | SGB0                   |
| 1     | 1     | 0     | 1     | Load data   | SGB1                   |
| 1     | 1     | 1     | 0     | Load data   | SGB2                   |
| 1     | 1     | 1     | 1     | Load data   | SGB3                   |

## Sound Generator Data Register: SGD

| SG Data Register | SGC.3   | SGC.2   | SGC.1  | SGC.0  | Descriptions                                |
|------------------|---------|---------|--------|--------|---------------------------------------------|
|                  | Χ       | Χ       | Χ      | ENCHA  | Enable channel A (1:Enable 0:disable)       |
|                  | Χ       | Χ       | ENCHB  | Χ      | Enable channel B (1:Enable 0:disable)       |
|                  | VOL1    | VOL0    | Χ      | Χ      | 4-level volume control of sound output      |
| SGC              | 0       | 0       |        |        | level 0 (BUZ keeps low)                     |
|                  | 0       | 1       |        |        | Level 1                                     |
|                  | 1       | 0       |        |        | Level 2                                     |
|                  | 1       | 1       |        |        | Level 3 (Maximum)                           |
|                  | X       | X       | SGFA.1 | SGFA.0 | 4-option clock source for 7-bit generator,  |
|                  | ^       | ^       | SGFA.1 | SGFA.0 | 0:2KHz, 1:4KHz, 2:8KHz, 3:16KHz             |
| SGF              | SGFB.1  | SGFB.0  | X      | Х      | 4-option clock source for 15-bit generator, |
|                  | 3GI B.1 | 3GI B.0 | ^      | ^      | 0:2KHz, 1:4KHz, 2:8KHz, 3:16KHz             |
| SGA0             | SGRA.3  | SGRA.2  | SGRA.1 | SGRA.0 | Nibble 0 of 7-bit generator register        |
|                  | X       | SGRA.6  | SGRA.5 | SGRA.4 | Nibble 1 of 7-bit generator register        |
| SGA1             | TnA     | X       | X      | X      | Tone selection for channel A,               |
|                  | IIIA    | ^       | ^      | ^      | 1 for Tone, 0 for Noise                     |
| SGB0             | SGRB.3  | SGRB.2  | SGRB.1 | SGRB.0 | Nibble 0 of 15-bit generator register       |
| SGB1             | SGRB.7  | SGRB.6  | SGRB.5 | SGRB.4 | Nibble 1 of 15-bit generator register       |
| SGB2             | SGRB.B  | SGRB.A  | SGRB.9 | SGRB.8 | Nibble 2 of 15-bit generator register       |
|                  | Х       | SGRB.E  | SGRB.D | SGRB.C | Nibble 3 of 15-bit generator register       |
| SGB3             | ToD     | Х       | Х      | Х      | Tone selection for channel B,               |
|                  | TnB     | ^       | ^      | ^      | 1 for Tone, 0 for Noise                     |





## P0.2 & P0.3 function



| ENPSG | P0.3     |
|-------|----------|
| 0     | P0.3_SIG |
| 1     | BUZ_SIG  |

| ENPSG | ENSER | P0.2     |
|-------|-------|----------|
| 0     | 0     | P0.2_SIG |
| 0     | 1     | SERIAL_O |
| 1     | 0     | BUZ_SIG  |
| 1     | 1     | SERIAL_O |

**Note**: BUZ and BUZ is floating for application, when TnA=TnB=0 & P0.2=P0.3=0, PSG and SERIAL function disable. To get BUZ\_SIG or SERIAL\_O, port0 must be set to input mode.



## Music Table 1

Following is the music scale reference table for channel A (or channel B) under OSC=1MHz.

Frequency = 1M /2 /256 (1953.13Hz)

Frequency = 1M /2 /128 (3906.25Hz)

(SGFA.1=0, SGFA.0=0 or SGFB.1=0, SGFB.0=0) (SGFA.1=0, SGFA.0=1 or SGFB.1=0, SGFB.0=1)

| Note | Ideal   | Real1   | N1=1953.13<br>/ Ideal | N1 | Error% | Note       | Ideal   | Real1   | N1=3906.25<br>/ Ideal | N1 | Error% |
|------|---------|---------|-----------------------|----|--------|------------|---------|---------|-----------------------|----|--------|
| B1   | 61.74   | 61.04   | 31.63                 | 32 | -1.14% | B1         | 61.74   | 62.00   | 63.27                 | 63 | 0.42%  |
| C2   | 65.41   | 65.10   | 29.86                 | 30 | -0.47% | C2         | 65.41   | 65.10   | 59.72                 | 60 | -0.47% |
| D2   | 73.42   | 72.34   | 26.60                 | 27 | -1.47% | D2         | 73.42   | 73.70   | 53.20                 | 53 | 0.39%  |
| E2   | 82.41   | 81.38   | 23.70                 | 24 | -1.25% | E2         | 82.41   | 83.11   | 47.40                 | 47 | 0.85%  |
| F2   | 87.31   | 88.78   | 22.37                 | 22 | 1.68%  | F2         | 87.31   | 86.81   | 44.74                 | 45 | -0.58% |
| G2   | 98.00   | 97.66   | 19.93                 | 20 | -0.35% | G2         | 98.00   | 97.66   | 39.86                 | 40 | -0.35% |
| A2   | 110.00  | 108.51  | 17.76                 | 18 | -1.36% | A2         | 110.00  | 108.51  | 35.51                 | 36 | -1.36% |
| B2   | 123.47  | 122.07  | 15.82                 | 16 | -1.13% | B2         | 123.47  | 122.07  | 31.64                 | 32 | -1.13% |
| С3   | 130.81  | 130.21  | 14.93                 | 15 | -0.46% | С3         | 130.81  | 130.21  | 29.86                 | 30 | -0.46% |
| D3   | 146.83  | 150.24  | 13.30                 | 13 | 2.32%  | D3         | 146.83  | 144.68  | 26.60                 | 27 | -1.47% |
| E3   | 164.81  | 162.76  | 11.85                 | 12 | -1.24% | E3         | 164.81  | 162.76  | 23.70                 | 24 | -1.24% |
| F3   | 174.61  | 177.56  | 11.19                 | 11 | 1.69%  | F3         | 174.61  | 177.56  | 22.37                 | 22 | 1.69%  |
| G3   | 196.00  | 195.31  | 9.96                  | 10 | -0.35% | G3         | 196.00  | 195.31  | 19.93                 | 20 | -0.35% |
| А3   | 220.00  | 217.01  | 8.88                  | 9  | -1.36% | А3         | 220.00  | 217.01  | 17.76                 | 18 | -1.36% |
| В3   | 246.94  | 244.14  | 7.91                  | 8  | -1.13% | В3         | 246.94  | 244.14  | 15.82                 | 16 | -1.13% |
| E4   | 329.63  | 325.52  | 5.93                  | 6  | -1.25% | C4         | 261.63  | 260.42  | 14.93                 | 15 | -0.46% |
| G4   | 392.00  | 390.63  | 4.98                  | 5  | -0.35% | D4         | 293.66  | 300.48  | 13.30                 | 13 | 2.32%  |
| B4   | 493.88  | 488.28  | 3.95                  | 4  | -1.13% | E4         | 329.63  | 325.52  | 11.85                 | 12 | -1.25% |
| E5   | 659.26  | 651.04  | 2.96                  | 3  | -1.25% | F4         | 349.23  | 355.11  | 11.19                 | 11 | 1.68%  |
| B5   | 987.77  | 976.57  | 1.98                  | 2  | -1.13% | G4         | 392.00  | 390.63  | 9.96                  | 10 | -0.35% |
| В6   | 1975.53 | 1953.13 | 0.99                  | 1  | -1.13% | <b>A</b> 4 | 440.00  | 434.03  | 8.88                  | 9  | -1.36% |
|      |         |         |                       |    |        | B4         | 493.88  | 488.28  | 7.91                  | 8  | -1.13% |
|      |         |         |                       |    |        | B4         | 493.88  | 488.28  | 7.91                  | 8  | -1.13% |
|      |         |         |                       |    |        | E5         | 659.26  | 651.04  | 5.93                  | 6  | -1.25% |
|      |         |         |                       |    |        | B5         | 987.77  | 976.56  | 3.95                  | 4  | -1.13% |
|      |         |         |                       |    |        | В6         | 1975.53 | 1953.13 | 1.98                  | 2  | -1.13% |
|      |         |         |                       |    |        | В7         | 3951.07 | 3906.25 | 0.99                  | 1  | -1.13% |

<sup>\*</sup> The value |N1| of divider (7 Bit LSFR) is corresponding to the Reg SGRA6~SGRA0 or SGRBE~SGRB8 as that will be shown at Music Table 3.



Music Table 2 Frequency = 1M /2 /64 (7812.5Hz) (SGFA.1=1, SGFA.0=0 or SGFB.1=1, SGFB.0=0)

Frequency = 1M /2 /32 (15625Hz) (SGFA.1=1, SGFA.0=1 or SGFB.1=1, SGFB.0=1)

| (00.7      | ,      |        | JI D. 1– 1, OOI      | ,   |        | (801 A:1=1, 801 A:0=1 61 801 B:1=1, 801 B:0=1) |         |         |                     |     |        |
|------------|--------|--------|----------------------|-----|--------|------------------------------------------------|---------|---------|---------------------|-----|--------|
| Note       | Ideal  | Real1  | N1=7812.5<br>/ Ideal | N1  | Error% | Note                                           | Ideal   | Real1   | N1=15625<br>/ Ideal | N1  | Error% |
| B1         | 61.74  | 61.52  | 126.54               | 127 | -0.36% | B2                                             | 123.47  | 123.03  | 126.55              | 127 | -0.36% |
| C2         | 65.41  | 65.65  | 119.44               | 119 | 0.37%  | C3                                             | 130.81  | 131.30  | 119.45              | 119 | 0.38%  |
| D2         | 73.42  | 73.70  | 106.41               | 106 | 0.39%  | D3                                             | 146.83  | 147.41  | 106.42              | 106 | 0.39%  |
| E2         | 82.41  | 82.24  | 94.80                | 95  | -0.21% | E3                                             | 164.81  | 164.47  | 94.81               | 95  | -0.20% |
| F2         | 87.31  | 87.78  | 89.48                | 89  | 0.54%  | F3                                             | 174.61  | 175.56  | 89.49               | 89  | 0.55%  |
| G2         | 98.00  | 97.66  | 79.72                | 80  | -0.35% | G3                                             | 196.00  | 195.31  | 79.72               | 80  | -0.35% |
| A2         | 110.00 | 110.04 | 71.02                | 71  | 0.03%  | А3                                             | 220.00  | 220.07  | 71.02               | 71  | 0.03%  |
| B2         | 123.47 | 124.01 | 63.27                | 63  | 0.44%  | В3                                             | 246.94  | 248.02  | 63.27               | 63  | 0.44%  |
| СЗ         | 130.81 | 130.21 | 59.72                | 60  | -0.46% | C4                                             | 261.63  | 260.42  | 59.72               | 60  | -0.46% |
| D3         | 146.83 | 147.41 | 53.21                | 53  | 0.39%  | D4                                             | 293.66  | 294.81  | 53.21               | 53  | 0.39%  |
| E3         | 164.81 | 166.22 | 47.40                | 47  | 0.86%  | E4                                             | 329.63  | 332.45  | 47.40               | 47  | 0.85%  |
| F3         | 174.61 | 173.61 | 44.74                | 45  | -0.57% | F4                                             | 349.23  | 347.22  | 44.74               | 45  | -0.57% |
| G3         | 196.00 | 195.31 | 39.86                | 40  | -0.35% | G4                                             | 392.00  | 390.63  | 39.86               | 40  | -0.35% |
| А3         | 220.00 | 217.01 | 35.51                | 36  | -1.36% | A4                                             | 440.00  | 434.03  | 35.51               | 36  | -1.36% |
| В3         | 246.94 | 244.14 | 31.64                | 32  | -1.13% | B4                                             | 493.88  | 488.28  | 31.64               | 32  | -1.13% |
| C4         | 261.63 | 260.42 | 29.86                | 30  | -0.46% | C5                                             | 523.25  | 520.83  | 29.86               | 30  | -0.46% |
| D4         | 293.66 | 289.35 | 26.60                | 27  | -1.47% | D5                                             | 587.33  | 578.70  | 26.60               | 27  | -1.47% |
| E4         | 329.63 | 325.52 | 23.70                | 24  | -1.25% | E5                                             | 659.26  | 651.04  | 23.70               | 24  | -1.25% |
| F4         | 349.23 | 355.11 | 22.37                | 22  | 1.68%  | F5                                             | 698.46  | 710.23  | 22.37               | 22  | 1.68%  |
| G4         | 392.00 | 390.63 | 19.93                | 20  | -0.35% | G5                                             | 783.99  | 781.25  | 19.93               | 20  | -0.35% |
| <b>A</b> 4 | 440.00 | 434.03 | 17.76                | 18  | -1.36% | A5                                             | 880.00  | 868.06  | 17.76               | 18  | -1.36% |
| B4         | 493.88 | 488.28 | 15.82                | 16  | -1.13% | B5                                             | 987.77  | 976.56  | 15.82               | 16  | -1.13% |
| B4         | 493.88 | 488.28 | 15.82                | 16  | -1.13% | C6                                             | 1046.50 | 1041.67 | 14.93               | 15  | -0.46% |
| <b>C</b> 5 | 523.25 | 520.83 | 14.93                | 15  | -0.46% | D6                                             | 1174.66 | 1201.92 | 13.30               | 13  | 2.32%  |
| D5         | 587.33 | 600.96 | 13.30                | 13  | 2.32%  | E6                                             | 1318.51 | 1302.08 | 11.85               | 12  | -1.25% |
| E5         | 659.26 | 651.04 | 11.85                | 12  | -1.25% | F6                                             | 1396.91 | 1420.45 | 11.19               | 11  | 1.69%  |
| F5         | 698.46 | 710.23 | 11.19                | 11  | 1.68%  | G6                                             | 1567.98 | 1562.50 | 9.97                | 10  | -0.35% |
| G5         | 783.99 | 781.25 | 9.97                 | 10  | -0.35% | A6                                             | 1760.00 | 1736.11 | 8.88                | 9   | -1.36% |
| A5         | 880.00 | 868.06 | 8.88                 | 9   | -1.36% | В6                                             | 1975.53 | 1953.13 | 7.91                | 8   | -1.13% |
| B5         | 987.77 | 976.56 | 7.91                 | 8   | -1.13% | E7                                             | 2637.02 | 2604.17 | 5.93                | 6   | -1.25% |
|            |        |        |                      |     |        | G7                                             | 3135.96 | 3125.00 | 4.98                | 5   | -0.35% |
|            |        |        |                      |     |        | В7                                             | 3951.07 | 3906.25 | 3.95                | 4   | -1.13% |
|            |        |        |                      |     |        |                                                |         |         |                     |     |        |

<sup>\*</sup> The value |N1| of divider (7 Bit LSFR) is corresponding to the Reg SGRA6~SGRA0 or SGRBE~SGRB8 as that will be shown at Music Table 3.



## Music Table 3.

| SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1  | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1  | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1 | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1 | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1 | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1 | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1 | SGRA<br>(.6~.0)<br>or<br>SGRB<br>(.E~.8) | N1 |
|------------------------------------------|-----|------------------------------------------|-----|------------------------------------------|----|------------------------------------------|----|------------------------------------------|----|------------------------------------------|----|------------------------------------------|----|------------------------------------------|----|
| 01                                       | 127 | 14                                       | 111 | 16                                       | 95 | 3E                                       | 79 | 12                                       | 63 | 6F                                       | 47 | 4B                                       | 31 | 15                                       | 15 |
| 02                                       | 126 | 28                                       | 110 | 2C                                       | 94 | 7D                                       | 78 | 24                                       | 62 | 5E                                       | 46 | 17                                       | 30 | 2A                                       | 14 |
| 04                                       | 125 | 51                                       | 109 | 59                                       | 93 | 7A                                       | 77 | 49                                       | 61 | 3D                                       | 45 | 2E                                       | 29 | 55                                       | 13 |
| 08                                       | 124 | 23                                       | 108 | 33                                       | 92 | 74                                       | 76 | 13                                       | 60 | 7B                                       | 44 | 5D                                       | 28 | 2B                                       | 12 |
| 10                                       | 123 | 47                                       | 107 | 67                                       | 91 | 68                                       | 75 | 26                                       | 59 | 76                                       | 43 | 3B                                       | 27 | 57                                       | 11 |
| 20                                       | 122 | 0F                                       | 106 | 4E                                       | 90 | 50                                       | 74 | 4D                                       | 58 | 6C                                       | 42 | 77                                       | 26 | 2F                                       | 10 |
| 41                                       | 121 | 1E                                       | 105 | 1D                                       | 89 | 21                                       | 73 | 1B                                       | 57 | 58                                       | 41 | 6E                                       | 25 | 5F                                       | 9  |
| 03                                       | 120 | 3C                                       | 104 | ЗА                                       | 88 | 43                                       | 72 | 36                                       | 56 | 31                                       | 40 | 5C                                       | 24 | 3F                                       | 8  |
| 06                                       | 119 | 19                                       | 103 | 75                                       | 87 | 07                                       | 71 | 6D                                       | 55 | 63                                       | 39 | 39                                       | 23 | 7F                                       | 7  |
| 0C                                       | 118 | 72                                       | 102 | 6A                                       | 86 | 0E                                       | 70 | 5A                                       | 54 | 46                                       | 38 | 73                                       | 22 | 7E                                       | 6  |
| 18                                       | 117 | 64                                       | 101 | 54                                       | 85 | 1C                                       | 69 | 35                                       | 53 | 0D                                       | 37 | 66                                       | 21 | 7C                                       | 5  |
| 30                                       | 116 | 48                                       | 100 | 29                                       | 84 | 38                                       | 68 | 6B                                       | 52 | 1A                                       | 36 | 4C                                       | 20 | 78                                       | 4  |
| 61                                       | 115 | 11                                       | 99  | 53                                       | 83 | 71                                       | 67 | 56                                       | 51 | 34                                       | 35 | 19                                       | 19 | 70                                       | 3  |
| 42                                       | 114 | 22                                       | 98  | 27                                       | 82 | 62                                       | 66 | 2D                                       | 50 | 69                                       | 34 | 32                                       | 18 | 60                                       | 2  |
| 05                                       | 113 | 45                                       | 97  | 4F                                       | 81 | 44                                       | 65 | 5B                                       | 49 | 52                                       | 33 | 65                                       | 17 | 40                                       | 1  |
| 0A                                       | 112 | 0B                                       | 96  | 1F                                       | 80 | 09                                       | 64 | 37                                       | 48 | 25                                       | 32 | 4A                                       | 16 |                                          |    |



#### **Liquid Crystal Display (LCD)**

NT93480 can directly drive an LCD panel of up to 320 dots (40 segments  $\times$  8 commons). LCD driver contains:

- -LCD controller/driver
- -Display RAM for storing display data (\$100~ \$1FF)
- \$1n0~\$1n3 empty space (no memory cell)
- \$1n4~\$1nD LCD RAM
- \$1nE~\$1nF empty space (no memory cell)
- 1m0~1mF empty space (no memory cell)
- (n=0.1.2~7, m=8.9.A~F)
- -40 segment output pins (SEG0~ SEG39)
- -8 common output pins (COM0~ COM7)
- -16 level contrast control

LCD control register, LCON, is used to turn the LCD display on and off, so as to save energy in some cases. Also, it can control the LCD bias voltage to accommodate different type of LCD.

LCD mode register 0, LMOD0, is in charge of controlling the frame frequency of LCD and the display modes.

Register LMOD1 offer 5 choices of total number of segment to serve different application requirement.. In addition, When LCON.0 is set, the LCD would always be enabled even in STOP or HALT mode.

## LCD Control Register: LCON (\$017) and LMOD1.0 (\$19.0)

| LMOD1.0 | LCON.3 | LCON.2 | LCON.1 | LCON.0 | Function              |                 |               |         |  |  |
|---------|--------|--------|--------|--------|-----------------------|-----------------|---------------|---------|--|--|
| Х       | Х      | Х      | Х      | 0      | С                     | isable LCD ( L  | CD Power off) |         |  |  |
| Х       | Х      | Х      | Х      | 1      | Е                     | Enable LCD ( Lo | CD Power on ) |         |  |  |
|         |        |        |        |        | Duty                  | Bias            | COM0~3        | COM4~7  |  |  |
| 0       | 0      | 0      | 1      | Х      | 1/8                   | 1/4             | COM Pin       | COM Pin |  |  |
| 0       | 0      | 1      | 1      | Х      | 1/8                   | 1/3             | COM Pin       | COM Pin |  |  |
| 0       | 1      | 0      | 1      | Х      | 1/4                   | 1/3             | COM Pin       | Pull up |  |  |
| 0       | 1      | 1      | 1      | Х      | 1/4 1/3 COM Pin to Vo |                 |               |         |  |  |
| Х       | Х      | Х      | 0      | Х      | inhibited             |                 |               |         |  |  |
| 1       | Х      | Х      | Х      | Х      |                       | inhib           | ited          |         |  |  |

## LCD Mode Register 0: LMOD0 (\$018)

| LMOD0.3 | LMOD0.2 | LMOD0.1 | LMOD0.0 | Function                   |  |  |
|---------|---------|---------|---------|----------------------------|--|--|
| Х       | X       | 0       | 0       | All LCD dots off ( blank ) |  |  |
| Х       | Х       | 0       | 1       | All LCD dots on            |  |  |
| Х       | х       | 1       | 0       | Normal display             |  |  |
| Х       | Х       | 1       | 1       | Normal display             |  |  |
| 0       | 0       | Х       | Х       | Frame Frequency = 32Hz     |  |  |
| 0       | 1       | Х       | Х       | Frame Frequency = 64Hz     |  |  |
| 1       | 0       | Х       | Х       | Frame Frequency = 128Hz    |  |  |
| 1       | 1       | Х       | Х       | Frame Frequency = 256Hz    |  |  |



## LCD Mode Register 1: LMOD1 (\$019)

| LMOD1.3 | LMOD1.2 | LMOD1.1 | SEG24~27 | SEG28~31 | SEG32~35 | SEG36~39 | Total No. of Segments |
|---------|---------|---------|----------|----------|----------|----------|-----------------------|
| 0       | 0       | 0       | SEG port | SEG port | SEG port | SEG port | 40                    |
| 0       | 0       | 1       | SEG port | SEG port | SEG port | Port5    | 36                    |
| 0       | 1       | 0       | SEG port | SEG port | Port6    | Port5    | 32                    |
| 0       | 1       | 1       | SEG port | Port7    | Port6    | Port5    | 28                    |
| 1       | х       | Х       | Port8    | Port7    | Port6    | Port5    | 24                    |

## **LCD RAM Mapped Address**

LCD data RAM (\$104~\$17D) is of dual port control; data can be transferred to segment pins automatically without a lot of complicated software control statements. So, after the bit value of a display segment is set, the LCD display will be turned on. Similarly, after the bit value is reset to

zero, it will be turned off again, The following diagram shows the configuration of the RAM Mapped of LCD. Each bit in that area represents a segment value, SEGn, corresponding to a COMn and can be set (on) or reset (off) by bit or nibble operation instructions.

## **LCD RAM Area Configuration**

|      |       | СОМО  |       |       |      |       | COM1  |       |       |          |       | COM7  |       |       |
|------|-------|-------|-------|-------|------|-------|-------|-------|-------|----------|-------|-------|-------|-------|
| Addr | В3    | B2    | B1    | В0    | Addr | В3    | B2    | B1    | В0    | <br>Addr | В3    | B2    | B1    | В0    |
| 100h | -     | -     | -     | -     | 110h | -     | -     | -     | -     | <br>170h | -     | -     | -     | -     |
| 101h | -     | -     | -     | -     | 111h | -     | -     | -     | -     | <br>171h | -     | -     | -     | -     |
| 102h | -     | -     | -     | -     | 112h | -     | -     | -     | -     | <br>172h | -     | -     | -     | -     |
| 103h | -     | -     | -     | -     | 113h | -     | -     | -     | -     | <br>173h | -     | -     | -     | -     |
| 104h | SEG3  | SEG2  | SEG1  | SEG0  | 114h | SEG3  | SEG2  | SEG1  | SEG0  | <br>174h | SEG3  | SEG2  | SEG1  | SEG0  |
| 105h | SET7  | SEG6  | SEG5  | SEG4  | 115h | SET7  | SEG6  | SEG5  | SEG4  | <br>175h | SET7  | SEG6  | SEG5  | SEG4  |
| 106h | SEG11 | SEG10 | SEG9  | SEG8  | 116h | SEG11 | SEG10 | SEG9  | SEG8  | <br>176h | SEG11 | SEG10 | SEG9  | SEG8  |
| 107h | SEG15 | SEG14 | SEG13 | SEG12 | 117h | SEG15 | SEG14 | SEG13 | SEG12 | <br>177h | SEG15 | SEG14 | SEG13 | SEG12 |
| 108h | SEG19 | SEG18 | SEG17 | SEG16 | 118h | SEG19 | SEG18 | SEG17 | SEG16 | <br>178h | SEG19 | SEG18 | SEG17 | SEG16 |
| 109h | SEG23 | SEG22 | SEG21 | SEG20 | 119h | SEG23 | SEG22 | SEG21 | SEG20 | <br>179h | SEG23 | SEG22 | SEG21 | SEG20 |
| 10Ah | SEG27 | SEG26 | SEG25 | SEG24 | 11Ah | SEG27 | SEG26 | SEG25 | SEG24 | <br>17Ah | SEG27 | SEG26 | SEG25 | SEG24 |
| 10Bh | SEG31 | SEG30 | SEG29 | SEG28 | 11Bh | SEG31 | SEG30 | SEG29 | SEG28 | <br>17Bh | SEG31 | SEG30 | SEG29 | SEG28 |
| 10Ch | SEG35 | SEG34 | SEG33 | SEG32 | 11Ch | SEG35 | SEG34 | SEG33 | SEG32 | <br>17Ch | SEG35 | SEG34 | SEG33 | SEG32 |
| 10Dh | SEG39 | SEG38 | SEG37 | SEG36 | 11Dh | SEG39 | SEG38 | SEG37 | SEG36 | <br>17Dh | SEG39 | SEG38 | SEG37 | SEG36 |
| 10Eh | -     | -     | -     | -     | 11Eh | -     | -     | -     | -     | <br>17Eh | -     | -     | -     | -     |
| 10Fh | -     | -     | -     | -     | 11Fh | -     | -     | -     | -     | <br>17Fh | -     | -     | -     | -     |

Notes: \$1n0~\$1n3 empty space (no memory cell)

\$1n4~\$1nD LCD RAM

\$1nE~\$1nF empty space (no memory cell)

\$1m0~\$1mF empty space (no memory cell)

(n=0.1.2~7, m=8.9.A~F)



#### **LCD Contrast Control**

LCD contrast can easily be adjusted by software. Physically, as you can see in the circuit below, different Vo can give different LCD contrast. Similarly, different value of resister Rc can give different Vo. So, people can change the value of Rc by programming the register,



CVAR (\$03E). On the table below, it lists all the Rc values according to different programming value of register, CVAR. Be ware that the resultants are not in simple ascending order.

| CVAR.3 | CVAR.2 | CVAR.1 | CVAR.0 | Rc <b>(</b> Ω) |
|--------|--------|--------|--------|----------------|
| 0      | 0      | 0      | 0      | 210K           |
| 0      | 0      | 0      | 1      | 180K           |
| 0      | 0      | 1      | 0      | 150K           |
| 0      | 0      | 1      | 1      | 120K           |
| 0      | 1      | 0      | 0      | 90K            |
| 0      | 1      | 0      | 1      | 60K            |
| 0      | 1      | 1      | 0      | 30K            |
| 0      | 1      | 1      | 1      | 0              |
| 1      | 0      | 0      | 0      | 240K           |
| 1      | 0      | 0      | 1      | 270K           |
| 1      | 0      | 1      | 0      | 300K           |
| 1      | 0      | 1      | 1      | 330K           |
| 1      | 1      | 0      | 0      | 360K           |
| 1      | 1      | 0      | 1      | 390K           |
| 1      | 1      | 1      | 0      | 420K           |
| 1      | 1      | 1      | 1      | 450K           |

## **Low Power Consumption Modes**

To save power, user can issue one of the Low Power consumption modes by instructions, STOP or HAIT. Both of these modes can make the CPU sleeping. It means that CPU does nothing anyway until an external interrupt

or a reset signal comes up. STOP mode will save more power than that of the others (HALT or NORMAL), however, it takes a little bit longer to wake up the CPU due to the setting time for main oscillator.

| Operation<br>Mode | Issued by instruction | Main<br>oscillator | Watch<br>oscillator | RAM  | Register<br>& Flag | I/O  | Released by                            |
|-------------------|-----------------------|--------------------|---------------------|------|--------------------|------|----------------------------------------|
| STOP<br>Mode      | STOP                  | Stops              | Alive               | Hold | Hold               | Hold | Reset, INT0 ~ INT3 TIMER0 , Serial I/O |
| HALT<br>Mode      | HALT                  | Alive              | Alive               | Hold | Hold               | Hold | Any interrupt or reset                 |



## **Battery-low Detection**

To monitor power consumption, the function of battery-low detection is enabled by setting ENBAT (\$01F.2) to one. The Battery-low detection table shows that the 3bits, BAT.2~0 (\$03D.2~0), would respond while the battery power drops to a certain rank of voltage level.

## \*: For reference only

## **Battery-low detection table**

| Power Supply Level                                                  | BAT.2 | BAT.1 | BAT.0 |
|---------------------------------------------------------------------|-------|-------|-------|
| *4.3V <v<sub>DD</v<sub>                                             | 0     | 0     | 0     |
| *3.2V <vdd≦*4.3v< td=""><td>1</td><td>0</td><td>0</td></vdd≦*4.3v<> | 1     | 0     | 0     |
| *2.3V <v<sub>DD≦*3.2V</v<sub>                                       | 1     | 1     | 0     |
| V <sub>DD</sub> ≦*2.3V                                              | 1     | 1     | 1     |

## Pin definition with its structure





## Reset

To reset NT93480, the reset pin should be held high at least two instruction cycles. The following table shows the initial conditions for different operation mode after RESET.

| Hardware                                                                                     | RESET Input while in HALT/ STOP mode | RESET Input while in<br>Normal mode |
|----------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|
| Program Counter (PC)                                                                         | \$0000                               | \$0000                              |
| Carry Flag (CY)                                                                              | Retained                             | Undefined                           |
| Stack Pointer (SP)                                                                           | \$023F                               | \$023F                              |
| Status Flag (SF)                                                                             | 1                                    | 1                                   |
| RAM                                                                                          | Retained                             | Undefined                           |
| Register (A, B, V, Y, EX, EY)                                                                | Retained                             | Undefined                           |
| I/O Ports - Output latch status - Output Pull-up status - I/O mode registers                 | 1<br>1<br>0                          | 1<br>1<br>0                         |
| Timer/Counter - Counters (TCxx) - Loaders (TLxx) - Mode registers (TMODn)                    | \$00<br>\$00<br>\$00                 | \$00<br>\$00<br>\$00                |
| Serial Interface - SIOM - Internal octal counter - Serial data register (SIOH, SIOL)         | 0<br>0<br>Retained                   | 0<br>0<br>Undefined                 |
| LCD - Control register (LCON) - Mode register (LMOD0~1)                                      | 0<br>0                               | 0<br>0                              |
| Interrupt - Interrupt enable (IE) - All Interrupt enable flags - All Interrupt request flags | 0<br>0<br>0                          | 0<br>0<br>0                         |

**Note:** n=0,1,2,3



## **RAM Mapped Register Initial Value in Normal mode**

| Name     | Address   | Initial | R/W | Note                                                |
|----------|-----------|---------|-----|-----------------------------------------------------|
| CKS.1,0  | \$00D.1,0 | 10B     | W   | 01:Fmain /8, 10: Fmain/4                            |
| KPAD     | \$01F.1   | 0B      | W   | 0: disable 1: enable                                |
| KRVS     | \$01F.0   | 0B      | W   | 0: non-reverse 1: reverse                           |
| BAT.0    | \$03D.0   | 0B      | R   | 0: V <sub>DD</sub> >*2.3V 1: V <sub>DD</sub> ≤*2.3V |
| BAT.1    | \$03D.1   | 0B      | R   | 0: V <sub>DD</sub> >*3.2V 1: V <sub>DD</sub> ≤*3.2V |
| BAT.2    | \$03D.2   | 0B      | R   | 0: Vdd >*4.3V 1: Vdd ≤*4.3V                         |
| CVAR.3~0 | \$03E.3~0 | 0000B   | W   | Refer to the section of LCD Contrast Control        |
| ENBAT    | \$01F.2~0 | 000B    | W   | 0: disable 1: enable                                |
| SGM      | \$03A.3~0 | 0000B   | R/W | Refer to the section of Sound Generator             |
| SGD      | \$03B.3~0 | 0000B   | R/W | Refer to the section of Sound Generator             |
| W1,W0    | \$016.3~2 | 00B     | R/W | -                                                   |
| IRM.1~0  | \$016.1~0 | 00B     | R/W | Refer to section of IR Mode Register                |

<sup>\*:</sup> For reference only

## **Addressing Mode**

There are 8 addressing modes: 3 for RAM addressing, 5 for ROM addressing.

## **RAM addressing:**

| 1: | Register indirect addre | essing |    |    |    |    |    |    |    |    |    |    |    |
|----|-------------------------|--------|----|----|----|----|----|----|----|----|----|----|----|
|    | Bit 11~0                | 11     | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RAM address             | V3     | V2 | V1 | V0 | Х3 | X2 | X1 | X0 | Y3 | Y2 | Y1 | Y0 |
|    | Note: V3 must be set :  | zero.  |    |    |    |    |    |    |    |    |    |    |    |
| 2: | Direct addressing       |        |    |    |    |    |    |    |    |    |    |    |    |
|    | Bit 11~0                | 11     | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RAM address             | 0      | 0  | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| 3: | Memory Register Add     | essin  | g  |    |    |    |    |    |    |    |    |    |    |
|    | Bit 11~0                | 11     | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RAM address             | 0      | 0  | 0  | 0  | 0  | 1  | 0  | 0  | М3 | M2 | M1 | MO |



#### **ROM addressing**

1: Direct addressing

Bit 13~0 13 12 11 5 2 0 **ROM** address P3 P2 P1 P0 Α9 **8**A Α7 A6 A5 А3 A2 A0 A4 Α1

P3~P0 The LSB 4-bit of the 1st instruction opcode. A9~A0 The 10-bit of the 2nd instruction opcode.

Example: [LBR \$addr]

2: Short range addressing:

Bit 13~0 13 12 10 5 3 2 0 9 8 6 4 11 ROM address 0 0 0 A5 A4 А3 Α2 Α1 A0

0 Zero supplied by CPU.

A5~A0 The LSB 6-bit of instruction opcode.

Example: [CAL \$addr]

3: Current Page addressing:

Bit 13~0 12 11 10 9 8 6 5 4 0 ROM address PC13 PC12 PC11 PC10 PC9 PC8 Α7 A6 A5 A4 АЗ A2 A1 ΑO

PC13~PC8 The MSB 6-bit of current PC.
A7~A0 The LSB 8-bit of instruction opcode.

Example: [BR \$addr]

4: Table jump address data addressing

Bit 13~0 13 12 11 10 9 8 7 6 5 4 3 2 0 1 ROM address 0 P0 B3 B2 B1 B0 А3 A2

P3~P0 The LSB 4-bit of instruction opcode.

B3~B0 The value of REG B. A3~A0 The value of REG A.

Example: [TJMP page]

Note: Using this instruction, W1, W0 must be set zero.

5: Table data addressing

Bit 13~0 13 12 11 10 9 8 7 6 5 4 3 2 1 0 **ROM** address 0(W1) 0(W0) P3 P2 P1 P0 ВЗ B2 B1 B0 АЗ A2 Α1 A0

W1,W0 The bit3, bit2 of the RAM mapped register W/IR.

P3~P0 The LSB 4-bit of instruction opcode.

B3~B0 The value of REG B. A3~A0 The value of REG A.

ROM data=RO9, RO8, RO7, RO6, RO5, RO4, RO3, RO2, RO1, RO0.

If RO8=1,Reg. (B, A)←RO7~RO0. If RO9=1,PORT3, 2←RO7~RO0. Example:[T (table page address)]

**Note:** Using this instruction, PC13 and PC12 are zero if the program address jumps into range \$0000H~\$00FFH or \$0F00H~1FFFH. Else if the address jumps into range \$0100H~0EFFH, PC13 and PC12 are supplied with W1 and W0.



## **Instruction Set**

#### 1. Transfer Instructions

- 1) Immediate Instruction (4)
- 2) Register to Register Instruction (8)
- 3) RAM address Instruction (13)
- 4) RAM Register Instruction (27)

## 2. Bit Manipulation instruction (6)

- 3. Compare Instruction (12)
- 4. Arithmetic and Logical Instructions (25)

## 5. Control Instruction

- 1) Branch Instruction (4)
- 2) Subroutine Stack control Instruction (4)
- 3) CPU control Instruction (4)
- 4) Table data generator Instruction (1)

## **Descriptions**

## 1. Transfer Instructions

## 1) Immediate Instructions (4)

| Operation                              | Mnemonic       | Code   | SF | W/C | Function                   |
|----------------------------------------|----------------|--------|----|-----|----------------------------|
| Store immediate to A                   | ITA i          | 13i    |    | 1/1 | A←#i                       |
| Store immediate to B                   | ITB i          | 10i    |    | 1/1 | B←#i                       |
| Store immediate to Memory, increment Y | ITMIY i        | 19i    | NZ | 1/1 | M←#i,<br>Y←Y+1             |
| Store immediate to direct Memory       | ITMD i, \$addr | 2Ai, d |    | 2/2 | M←#i,<br>direct addressing |

**Notes:** W/C = Word(s)/Cycle(s)

i = immediate 4-bit data

d =10-bit RAM direct addressing

NZ, NB, OVF conditions are reflected in the Status Flag (SF)

## 2) Register to register Instruction (8)

| Operation           | Mnemonic | Code    | SF | W/C | Function |
|---------------------|----------|---------|----|-----|----------|
| Store B to A        | BTA      | 044     |    | 1/1 | A←B      |
| Store V to A        | VTA      | 200,000 |    | 2/2 | A←V      |
| Store Y to A        | YTA      | 0AF     |    | 1/1 | A←Y      |
| Store EX to A       | EXTA     | 064     |    | 1/1 | A←EX     |
| Store EY to A       | EYTA     | 054     |    | 1/1 | A←EY     |
| Store R(m) to A     | RTA m    | 17m     |    | 1/1 | A←R(m)   |
| Store A to B        | ATB      | 0C4     |    | 1/1 | В←А      |
| Exchange A and R(m) | XAR m    | 1Fm     |    | 1/1 | A↔R(m)   |

**Note:** m = memory register index (0~15)



## 3) RAM Address Instructions (13)

| Operation                   | Mnemonic | Code    | SF  | W/C | Function       |
|-----------------------------|----------|---------|-----|-----|----------------|
| Store immediate to V        | ITV i(4) | 0Fi     |     | 1/1 | V←#i(4)        |
| Store immediate to X        | ITX i(4) | 12i     |     | 1/1 | X←#i(4)        |
| Store immediate to Y        | ITY i(4) | 11i     |     | 1/1 | Y←#i(4)        |
| Store A to X                | ATX      | 0E4     |     | 1/1 | X←A            |
| Store A to Y                | ATY      | 0D4     |     | 1/1 | Y←A            |
| Store A to V                | ATV      | 210,000 |     | 2/2 | V←A            |
| Increment Y                 | IY       | 05C     | NZ  | 1/1 | Y←Y+1          |
| Decrement Y                 | DY       | 0DF     | NB  | 1/1 | Y <b>←</b> Y−1 |
| Y add A                     | YAA      | 058     | OVF | 1/1 | Y←Y+A          |
| Subtract A from Y           | YSA      | 0D8     | NB  | 1/1 | Y←Y−A          |
| Exchange X and EX           | XEX      | 001     |     | 1/1 | X↔EX           |
| Exchange Y and EY           | XEY      | 002     |     | 1/1 | Y↔EY           |
| Exchange (X,Y) and (EX, EY) | XEXY     | 003     |     | 1/1 | X⇔EX,<br>Y⇔EY  |

## 4) RAM Register Instruction (27)

| Operation                                                     | Mnemonic    | Code  | SF | W/C | Function                  |
|---------------------------------------------------------------|-------------|-------|----|-----|---------------------------|
| Store Memory to A                                             | MTA         | 090   |    | 1/1 | A←M                       |
| Store Memory to A,<br>Exchange X and EX                       | MTAX        | 091   |    | 1/1 | A←M,<br>X↔EX              |
| Store Memory to A,<br>Exchange Y and EY                       | MTAY        | 092   |    | 1/1 | A←M,<br>Y↔EY              |
| Store Memory to A,<br>Exchange X and EX,<br>Exchange Y and EY | MTAXY       | 093   |    | 1/1 | A←M,<br>X↔EX,<br>Y↔EY     |
| Store direct Memory to A                                      | MTAD \$addr | 290,d |    | 2/2 | A←M,<br>direct addressing |
| Store Memory to B                                             | MTB         | 040   |    | 1/1 | B←M                       |
| Store Memory to B,<br>Exchange X and EX                       | мтвх        | 041   |    | 1/1 | B←M,<br>X↔EX              |
| Store Memory to B,<br>Exchange Y and EY                       | МТВҮ        | 042   |    | 1/1 | B←M,<br>Y↔EY              |
| Store Memory to B,<br>Exchange X and EX,<br>Exchange Y and EY | MTBXY       | 043   |    | 1/1 | B←M,<br>X⇔EX,<br>Y↔EY     |
| Store A to Memory                                             | ATM         | 098   |    | 1/1 | M←A                       |
| Store A to Memory,<br>Exchange X and EX                       | ATMX        | 099   |    | 1/1 | M←A,<br>X↔EX              |



## 4) RAM Register Instruction (27) (continued)

| Operation                                                     | Mnemonic    | Code   | SF | W/C | Function                  |
|---------------------------------------------------------------|-------------|--------|----|-----|---------------------------|
| Store A to Memory,<br>Exchange Y and EY                       | ATMY        | 09A    |    | 1/1 | M←A,<br>Y↔EY              |
| Store A to Memory,<br>Exchange X and EX,<br>Exchange Y and EY | ATMXY       | 09B    |    | 1/1 | M←A,<br>X⇔EX,<br>Y⇔EY     |
| Store A to direct Memory                                      | ATMD \$addr | 298, d |    | 2/2 | M←A, direct addressing    |
| Store A to Memory, increment Y                                | ATMIY       | 050    | NZ | 1/1 | M←A,<br>Y←Y+1             |
| Store A to Memory,<br>increment Y,<br>Exchange X and EX       | ATMIYX      | 051    | NZ | 1/1 | M←A,<br>Y←Y+1,<br>X↔EX    |
| Store A to Memory,<br>Decrement Y                             | ATMDY       | 0D0    | NB | 1/1 | M←A,<br>Y←Y−1             |
| Store A to Memory, Decrement Y, Exchange X and EX             | ATMDYX      | 0D1    | NB | 1/1 | M←A,<br>Y←Y−1,<br>X↔EX    |
| Exchange A and Memory                                         | XAM         | 080    |    | 1/1 | A↔M                       |
| Exchange A and Memory,<br>Exchange X and EX                   | XAMX        | 081    |    | 1/1 | A↔M,<br>X↔EX              |
| Exchange A and Memory,<br>Exchange Y and EY                   | XAMY        | 082    |    | 1/1 | A↔M,<br>Y↔EY              |
| Exchange A and Memory, Exchange X and EX, Exchange Y and EY   | XAMXY       | 083    |    | 1/1 | A↔M,<br>X↔EX,<br>Y↔EY     |
| Exchange A and direct Memory                                  | XAMD \$addr | 280, d |    | 2/2 | A↔M,<br>direct addressing |
| Exchange B and Memory                                         | XBM         | 0C0    |    | 1/1 | B↔M                       |
| Exchange B and Memory, Exchange X and EX                      | XBMX        | 0C1    |    | 1/1 | B↔M,<br>X↔EX              |
| Exchange B and Memory,<br>Exchange Y and EY                   | XBMY        | 0C2    |    | 1/1 | B↔M,<br>Y↔EY              |
| Exchange B and Memory, Exchange X and EX, Exchange Y and EY   | XBMXY       | 0C3    |    | 1/1 | B↔M,<br>X↔EX,<br>Y↔EY     |



## 2. Bit Manipulation Instruction (6)

| Operation               | Mnemonic      | Code     | SF  | W/C | Function                          |
|-------------------------|---------------|----------|-----|-----|-----------------------------------|
| Set Memory Bit          | SM n          | 088+n    |     | 1/1 | M.n←1                             |
| Set direct Memory Bit   | SMD n, \$addr | 288+n, d |     | 2/2 | M.n←1,<br>direct addressing       |
| Reset Memory Bit        | RM n          | 084+n    |     | 1/1 | M.n←0                             |
| Reset direct Memory Bit | RMD n, \$addr | 284+n, d |     | 2/2 | M.n←0<br>direct addressing        |
| Test Memory Bit         | TM n          | 08C+n    | M.n | 1/1 | SF←Bit value                      |
| Test direct Memory Bit  | TMD n, \$addr | 28C+n, d | M.n | 2/2 | SF←Bit value<br>direct addressing |

**Note:** "n" is a 2-bit number, that indicates the bit location of a specific memory/register.

## 3. Compare Instruction (12)

| Operation                                      | Mnemonic        | Code   | SF | W/C | Function       |
|------------------------------------------------|-----------------|--------|----|-----|----------------|
| Immediate not Equals to Memory                 | INEM i          | 02i    | NZ | 1/1 | i ≠ M          |
| Immediate not Equals to direct Memory          | INEMD i, \$addr | 22i, d | NZ | 2/2 | i ≠ M (direct) |
| A not Equals to Memory                         | ANEM            | 008    | NZ | 1/1 | A ≠ M          |
| A not Equals to direct Memory                  | ANEMD \$addr    | 208, d | NZ | 2/2 | A ≠ M (direct) |
| B not Equals to Memory                         | BNEM            | 048    | NZ | 1/1 | B≠M            |
| Y not Equals to immediate                      | YNEI i          | 07i    | NZ | 1/1 | Y≠i            |
| Immediate Less than or Equals to Memory        | ILEM i          | 03i    | NB | 1/1 | $i \leq M$     |
| Immediate Less than or Equals to direct Memory | ILEMD i, \$addr | 23i, d | NB | 2/2 | i ≤ M (direct) |
| A Less than or Equals to Memory                | ALEM            | 018    | NB | 1/1 | $A \leq M$     |
| A Less than or Equals to direct Memory         | ALEMD \$addr    | 218, d | NB | 2/2 | A ≤ M (direct) |
| A Less then or Equals to immediate             | ALEI i          | 1Bi    | NB | 1/1 | A≤i            |
| B Less than or Equals to Memory                | BLEM            | 0C8    | NB | 1/1 | $B \le M$      |



# 4. Arithmetic and Logical Instruction (25)

| Operation                             | Mnemonic     | Code   | SF  | W/C | Function                                 |
|---------------------------------------|--------------|--------|-----|-----|------------------------------------------|
| Add immediate to A                    | AAI i        | 18i    | OVF | 1/1 | A←A+i                                    |
| Increment B                           | IB           | 04C    | NZ  | 1/1 | B←B+1                                    |
| Decrement B                           | DB           | 0CF    | NB  | 1/1 | B←B-1                                    |
| Decimal adjust for addition           | DAA          | 0A6    |     | 1/1 | To be adjusted if CY=1                   |
| Decimal adjust for subtraction        | DAS          | 0AA    |     | 1/1 | To be adjusted if CY=1                   |
| Negate A                              | NEGA         | 060    |     | 1/1 | A← A +1                                  |
| Complement B                          | NOTB         | 240    |     | 1/1 | B←B                                      |
| Rotate right A with CY                | RORC         | 0A0    |     | 1/1 |                                          |
| Rotate left A with CY                 | ROLC         | 0A1    |     | 1/1 |                                          |
| Set CY                                | SC           | 0EF    |     | 1/1 | CY←1                                     |
| Reset CY                              | RC           | 0EC    |     | 1/1 | CY←0                                     |
| Test CY                               | TC           | 06F    | CY  | 1/1 |                                          |
| Add Memory to A                       | AAM          | 004    | OVF | 1/1 | A←A+M                                    |
| Add direct Memory to A                | AAMD \$addr  | 204, d | OVF | 2/2 | A←A+M (direct)                           |
| Add Memory to A with CY               | AAMC         | 014    | OVF | 1/1 | A←A+M+CY,<br>CY←OVF                      |
| Add direct Memory to A with CY        | AAMCD \$addr | 214, d | OVF | 2/2 | A←A+M+CY,<br>CY←OVF<br>direct addressing |
| Subtract A from Memory with CY        | MSAC         | 094    | NB  | 1/1 | A←M-A- CY<br>CY←NB                       |
| Subtract A from direct Memory with CY | MSACD \$addr | 294, d | NB  | 2/2 | A←M-A-CY<br>CY←OVF<br>direct addressing  |
| OR A and B                            | ORB          | 248    |     | 1/1 | A←A OR B                                 |
| AND A with Memory                     | ANDM         | 09C    | NZ  | 1/1 | A←A AND M                                |
| AND A with direct Memory              | ANDMD \$addr | 29C, d | NZ  | 2/2 | A←A AND M (direct)                       |
| OR A with Memory                      | ORM          | 00C    | NZ  | 1/1 | A←A OR M                                 |
| OR A with direct Memory               | ORMD \$addr  | 20C, d | NZ  | 2/2 | A←A OR M (direct)                        |
| XOR A with Memory                     | XORM         | 01C    | NZ  | 1/1 | A←A XOR M                                |
| XOR A with direct Memory              | XORMD \$addr | 21C, d | NZ  | 2/2 | A←A XOR M (direct)                       |



#### 5. Control Instructions

## 1) Branch Instructions (4)

| Operation                    | Mnemonic       | Code     | SF | W/C | Function                                   |
|------------------------------|----------------|----------|----|-----|--------------------------------------------|
| Branch on status flag =1     | BR \$addr(8)   | 300+x    | 1  | 1/1 | If SF=0 then PC←PC+1 else PC←(PC&\$3F00+x) |
| Long branch on status flag=1 | LBR \$addr(14) | 270+p, d | 1  | 2/2 | branch if SF=1                             |
| Long jump unconditional      | JMP \$addr(14) | 250+p, d |    | 2/2 |                                            |
| Table jump                   | TJMP i         | 0B0+t    |    | 1/1 |                                            |

**Note:** x = 8-bit address

p = 4-bit address

t = 4-bit page address

d = 10-bit address

## 2) Subroutine stack control Instruction (4)

| Operation                                                     | Mnemonic        | Code     | SF | W/C | Function         |
|---------------------------------------------------------------|-----------------|----------|----|-----|------------------|
| Zero-page subroutine call on status (Please refer to ROM MAP) | CAL \$addr(6)   | 2C0+a    | 1  | 1/2 | Call if SF=1     |
| Subroutine call on status                                     | CALL \$addr(14) | 260+p, d | 1  | 2/2 | Call if SF=1     |
| Return from subroutine                                        | RET             | 010      |    | 1/3 |                  |
| Return form interrupt                                         | RETI            | 011      | SF | 1/3 | IE←1, restore CY |

**Note:** a = 6-bit address

p = 4-bit address

d = 10-bit page address

## 3) CPU control Instruction (4)

| Operation                 | Mnemonics | Code | SF | W/C | Function                  |
|---------------------------|-----------|------|----|-----|---------------------------|
| NO operation              | NOP       | 000  |    | 1/1 | CPU no operation          |
| HALT mode                 | HALT      | 24C  |    | 1/1 | Enter Halt Mode           |
| STOP mode                 | STOP      | 24D  |    | 1/1 | Enter Stop Mode           |
| Start serial transmission | STS       | 244  |    | 1/1 | Enter Serial Transmission |

## 4) Table data generation instruction (1)

| Operation                | Mnemonics | Code | SF | W/C | Function |
|--------------------------|-----------|------|----|-----|----------|
| Table pattern generation | Тр        | 2Bp  |    | 1/1 |          |

**Note:** p = 4-bit address

For example:

The opcode of "T5" instruction will generate the following address

A0 Bit 13~0 A12 A11 A10 A9 8A Α7 A6 A5 A4 АЗ A2 A1 A13 ROM address 0(W1) 0(W0) 0 1 0 1 В3 B2 B1 B0 АЗ A2 Α1 A0

And the referred ROM data =RO9, RO8, RO7, RO6, RO5, RO4, RO3, RO2, RO1, RO0.

If RO8 is set to 1,the content of Register B and A is RO7~RO0 (B=RO7~RO4, A=RO3~RO0).

If RO9 is set to 1,the content of PORT 3,2 is RO7~RO0.

W1, W0 refer to the section PROGRAM APPLICATION NOTICE.



#### PROGRAM APPLICATION NOTICE

## 1 W1,W0 Register:

W1, W0 are Bit3, Bit2 of \$16 register to expand the TP address up to 8K ROM.

If the program is running in the address ranges \$0100H ~ \$0EFFH, W1 and W0 must be set zero. And the default values of W1 and W0 are zero.

### 2 TP Instruction:

When the programmer uses the instruction TP, zero will be given to PC13 and PC12 by CPU at first. So the PC address is in the range \$0000H~\$0FFFH. And then, If the address is in range \$0000H~\$00FFH or \$0F00H~\$0FFFH, PC13 and PC12 are still zero supplied by CPU. Else if the address is in ranges \$0100H~\$0EFFH, PC13 and PC12 are supplied with W1 and W0.

The TP instruction addressing range is shown in the following table:

| tollowing table.                   |                    |                               |
|------------------------------------|--------------------|-------------------------------|
| PC address of<br>TP<br>instruction | W1,W0              | Table data address<br>Bit13~0 |
| \$0000H<br>~<br>\$00FFH            | 00~01H             | W1~0,P3~0,B3~0,A3~0           |
| \$0100H<br>~<br>\$0EFFH            | Must<br>be<br>zero | 0,0,P3~0,B3~0,A3~0            |
| \$0F00H<br>~<br>\$1FFFH            | 00~01H             | W1~0,P3~0,B3~0,A3~0           |

**Notes:** W1~0: RAM mapped register \$016H

bit3,bit2

P3~0: The LSB 4 bit of instruction opcode;

and P3~0 = 1~E is available; P3~0 = 0 or F is inhibited;

B3~0: Internal register B bit3~0; A3~0: Internal register A bit3~0.

## For example:

The TP instruction is running at address \$1400H, and the table data is in ROM address \$1345H

ORG 1400H

ITA #05H ; A=05H ITB #04H ; B=04H ITMD 04H, \$016H ; W1 W0 =01

T 03

Note: At first, the ROM address of the table data is \$0345H, and because the address is in range \$0100H~\$0EFFH, the final ROM address of the table data will be \$1345H since W1 W0 =01.

#### 3 TJMP Instruction

Before using the instruction TJMP, make sure that the value of W1 and W0 are zero.

TJMP instruction will make the program only jump to the range \$0000~\$0FFF.

The TJMP instruction addressing range is shown in the following table:

| PC address of TJMP instruction | W1,W0 | Object PC address  |
|--------------------------------|-------|--------------------|
| \$0000H                        | Must  |                    |
| ~                              | be    | 0,0,T3~0,B3~0,A3~0 |
| \$1FFFH                        | zero  |                    |

**Notes:** W1~0: RAM mapped register \$016H

bit3,bit2;

T3~0: The LSB 4 bit of instruction opcode;

B3~0: Internal register B bit3~0; A3~0: Internal register A bit3~0.

When the programmer uses the instruction TJMP, at first, zero will be given to PC13 and PC12 by CPU. So the program address is in range \$0000H~\$0FFFH. And then, If the address is in range \$0000H~\$00FFH or \$0F00H~\$0FFFH, PC13 and PC12 are still zero supplied by CPU. Else if the address is in range \$0100H~\$0EFFH, PC13 and PC12 are supplied with W1 and W0. And as the program goes on, errors may occur.

#### For example:

The TJMP instruction is running at address \$1400H, and Object PC address is \$0D45H

ORG 1400H

ITA #05H ; A=05H
ITB #04H ; B=04H
ITMD 00H, \$016H ; W1 W0 =00
TJMP 0D ; after this instruction
; PC will be \$0D45H

#### 4 Interrupt

The interrupt service program must be put in range \$0000H~\$00FFH or \$0F00H~\$1FFFH.

After setting W1 and W0 in range \$0000H~\$00FFH or \$0F00H~\$1FFFH, if the interrupt occurs and the Interrupt entrance is in range \$0100H~\$0EFFH, program will be wrong because of the effect of W1 and W0.



#### **Electrical Characteristics**

## **Absolute Maximum Ratings\***

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device under these or any other conditions above specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### \*Comments:

DC Electrical Characteristics (Temperature=0°C to 70°C, V<sub>DD</sub> =3.0V± 10%, GND=0V)

| Parameter                                                                                   | Symbol       | Min.                | Тур.        | Max.                | Unit | Conditions                                                                                    |
|---------------------------------------------------------------------------------------------|--------------|---------------------|-------------|---------------------|------|-----------------------------------------------------------------------------------------------|
| Operating Current                                                                           | loo          |                     | 200         | 300                 | μΑ   | VDD =3V -Normal mode -LCD on without loading                                                  |
| Standby Current                                                                             | lsв          |                     |             | 3                   | μΑ   | VDD =3V -Stop mode -LCD off                                                                   |
| Input High Voltage                                                                          | VIH1         | 0.9 Vdd<br>Vdd -0.3 |             | VDD +0.3<br>VDD+0.3 | V    | RESET<br>XIN,XTIN                                                                             |
|                                                                                             | VIH2         | 0.8Vpd              |             | VDD+0.3             | V    | All pins except RESET,XIN and XTIN                                                            |
| Input Low Voltage                                                                           | VIL1         | -0.3<br>-0.3        |             | 0.1Vpp<br>0.3       | V    | RESET<br>XIN,XTIN                                                                             |
|                                                                                             | VIL2         | -0.3                |             | 0.2 Vdd             | V    | All pins except RESET,XIN and XTIN                                                            |
| Output High Voltage                                                                         | Vон          | Vpp -1.0            |             |                     | V    | All output pins; Іон=-0.5mA                                                                   |
| Output Low Voltage                                                                          | Vol          |                     |             | 0.6                 | V    | All output pins; loL=1.6mA                                                                    |
| Output current of general ports:  Port0.3~0,  Port1.3~0,  Port2.3~0,  Port3.3~0,  Port4.3~0 | lон1<br>loL1 | -1.2<br>3.0         | -1.8<br>4.5 | -                   | mA   | V <sub>DD</sub> =3.0V, V <sub>OH</sub> =2.5V<br>V <sub>DD</sub> =3.0V, V <sub>OL</sub> =0.5V  |
| Output current of shared ports:  Port5.3~0, Port6.3~0, Port7.3~0, Port8.3~0                 | Ioh2<br>Iol2 | -0.9<br>1.8         | -1.2<br>2.5 | -                   | mA   | $V_{DD} = 3.0 \text{V}, V_{OH} = 2.5 \text{V}$ $V_{DD} = 3.0 \text{V}, V_{OL} = 0.5 \text{V}$ |
| Pull-up Resistance                                                                          | Rup          | 150                 | 200         | 250                 | ΚΩ   | Port pins with Pull-up pins ; Vvo = GND                                                       |

Note: All port pins should be given a voltage level by means of internal pull-high transistor or an external logic voltage level (GND / Vpp)



## DC Electrical Characteristics (Temperature=0 $^{\circ}$ C to 70 $^{\circ}$ C, V<sub>DD</sub> =5.0V $^{\pm}$ 10%, GND=0V )

| Parameter                                                                               | Symbol       | Min.                | Тур.        | Max.                | Unit | Conditions                                                                                   |
|-----------------------------------------------------------------------------------------|--------------|---------------------|-------------|---------------------|------|----------------------------------------------------------------------------------------------|
| Operating Current                                                                       | ldd          |                     | 600         | 900                 | μΑ   | VDD =5V -Normal mode -LCD on without loading                                                 |
| Standby Current                                                                         | lsв          |                     |             | 3                   | μΑ   | VDD =5V -Stop mode -LCD off                                                                  |
| Input High Voltage                                                                      | VIH1         | 0.9 Vdd<br>Vdd -0.3 |             | Vdd +0.3<br>Vdd+0.3 | V    | RESET<br>XIN,XTIN                                                                            |
|                                                                                         | VIH2         | 0.8Vpd              |             | VDD+0.3             | V    | All pins except RESET,XIN and XTIN                                                           |
| Input Low Voltage                                                                       | VIL1         | -0.3<br>-0.3        |             | 0.1Vdd<br>0.3       | V    | RESET<br>XIN,XTIN                                                                            |
|                                                                                         | VIL2         | -0.3                |             | 0.2 Vdd             | V    | All pins except RESET,XIN and XTIN                                                           |
| Output High Voltage                                                                     | Vон          | VDD -1.0            |             |                     | V    | All output pins; Іон=-1mA                                                                    |
| Output Low Voltage                                                                      | Vol          |                     |             | 0.6                 | V    | All output pins; loL=2mA                                                                     |
| Output current of general ports:  Port0.3~0, Port1.3~0, Port2.3~0, Port3.3~0, Port4.3~0 | lон1<br>loL1 | -2.4<br>3.0         | -3.0<br>4.5 | -                   | mA   | V <sub>DD</sub> =5.0V, V <sub>OH</sub> =4.5V<br>V <sub>DD</sub> =5.0V, V <sub>OL</sub> =0.5V |
| Output current of shared ports: Port5.3~0, Port6.3~0, Port7.3~0, Port8.3~0              | lон2<br>lol2 | -1.2<br>2.0         | -1.8<br>3.0 | -                   | mA   | V <sub>DD</sub> =5.0V, V <sub>OH</sub> =4.5V<br>V <sub>DD</sub> =5.0V, V <sub>OL</sub> =0.5V |
| Pull-up Resistance                                                                      | Rup          | 80                  | 110         | 140                 | ΚΩ   | Port pins with Pull-up pins ; Vvo = GND                                                      |

Note: All port pins should be given a voltage level by means of internal pull-high transistor or an external logic voltage level (GND / Vpb)



## AC Electrical Characteristics (Temperature=0 $^{\circ}$ C to 70 $^{\circ}$ C, V<sub>DD</sub> =3.0V $^{\pm}$ 10%, GND=0V )

| Parameter                        | Symbol   | Min.    | Тур.   | Max.    | Unit | Condition              |
|----------------------------------|----------|---------|--------|---------|------|------------------------|
| Main and illater from the second | <b>4</b> | 2/2-10% | 2/2    | 2/2+10% | MHz  | Built-in RC oscillator |
| Main oscillator frequency        | fmain    |         | 1      |         | MHz  | Ceramic oscillator     |
| Watch oscillator frequency       | fwatch   |         | 32.768 |         | KHz  |                        |
| Watch oscillator start-up time   | tws      |         |        | 1       | Sec  |                        |
| Reset Input High Duration        | tres     | 2       |        |         | tcyc |                        |
| Instruction Cycle                | tcyc     | 4.0     |        | 8.0     | μs   |                        |

## AC Electrical Characteristics (Temperature=0 $^{\circ}$ C to 70 $^{\circ}$ C, V<sub>DD</sub> =5.0V $^{\pm}$ 10%, GND=0V )

| Parameter                      | Symbol | Min.    | Тур.   | Max.    | Unit | Condition              |
|--------------------------------|--------|---------|--------|---------|------|------------------------|
| Main and Hatau function of     | 4      | 2/2-10% | 2/2    | 2/2+10% | MHz  | Built-in RC oscillator |
| Main oscillator frequency      | fmain  |         | 1      |         | MHz  | Ceramic oscillator     |
| Watch oscillator frequency     | fwatch |         | 32.768 |         | KHz  |                        |
| Watch oscillator start-up time | tws    |         |        | 1       | Sec  |                        |
| Reset Input High Duration      | tres   | 2       |        |         | tcyc |                        |
| Instruction Cycle              | tcyc   | 4.0     |        | 8.0     | μs   |                        |



# **Application Circuit (For Reference Only)**

## 1) 1MHz Ceramic oscillator



## 2) 2MHz RC oscillator



## 3) 32KHz Crystal oscillator





4) n × m Optional Keyboard ( n=4 or n=8, m=4)

To expand the number of keypads, sharing the keyboard scan-line with LCD driver (COM0~n) may be the best way to do so, It means the LCD drivers (COM0~n) serve not only the LCD display but keyboard scanning. Furthermore, port 2 (INT2) is chosen for detecting if any key was pressed. Port 2 only behaves as a normal I/O port unless the KPAD bit is set. After setting KPAD bit to 1, the built-in hardware circuit will automatically scan and sample the keyboard all the time, The sampling data would then be put into Keyboard registers (\$028 to \$02F). If there is any

one of the 32 bits going low (normal high), the KPRS bit will be set right away.

To prevent affecting the display quality from pressing key(s), a buffer may be added to isolate LCD driver signal. In this case the scanning signal must be reversed once before sending out to the keyboard. To do so just set KRVS bit. In addition, port2 must be set to input mode with data \$F to activate the pull-high transistors, and LCD must be enabled whenever using this keyboard scanning function.



## Note:

During the software programming, disposing the debouncing problem in keyboard application is necessary. Because there's no disposal for this problem in the hardware.



#### 5) 640 Dots LCD, 32 Key Application Circuit





## **Bonding Diagram**



- \* Substrate Connect to GND
- \* Pad window area: 90 µm x 90 µm



Bonding Dimensions ( unit: µm )

| No. | Designation | X     | Υ     | No. | Designation | х    | Υ     |
|-----|-------------|-------|-------|-----|-------------|------|-------|
| 1   | SEG0        | -970  | 1280  | 39  | PORT51      | 920  | -1280 |
| 2   | SEG1        | -1102 | 1280  | 40  | PORT50      | 1052 | -1280 |
| 3   | SEG2        | -1102 | 1150  | 41  | PORT23      | 1102 | -1150 |
| 4   | SEG3        | -1102 | 1020  | 42  | PORT22      | 1102 | -1020 |
| 5   | SEG4        | -1102 | 900   | 43  | PORT21      | 1102 | -900  |
| 6   | SEG5        | -1102 | 780   | 44  | PORT20      | 1102 | -780  |
| 7   | SEG6        | -1102 | 660   | 45  | Vdd         | 1102 | -660  |
| 8   | SEG7        | -1102 | 540   | 46  | XOUT        | 1102 | -540  |
| 9   | SEG8        | -1102 | 420   | 47  | XIN         | 1102 | -420  |
| 10  | SEG9        | -1102 | 300   | 48  | TEST        | 1102 | -300  |
| 11  | SEG10       | -1102 | 180   | 49  | XTOUT       | 1102 | -180  |
| 12  | SEG11       | -1102 | 60    | 50  | XTIN        | 1102 | -60   |
| 13  | SEG12       | -1102 | -60   | 51  | RESET       | 1102 | 60    |
| 14  | SEG13       | -1102 | -180  | 52  | PORT00      | 1102 | 180   |
| 15  | SEG14       | -1102 | -300  | 53  | PORT01      | 1102 | 300   |
| 16  | SEG15       | -1102 | -420  | 54  | PORT02      | 1102 | 420   |
| 17  | SEG16       | -1102 | -540  | 55  | PORT03      | 1102 | 540   |
| 18  | SEG17       | -1102 | -660  | 56  | PORT10      | 1102 | 660   |
| 19  | SEG18       | -1102 | -780  | 57  | PORT11      | 1102 | 780   |
| 20  | SEG19       | -1102 | -900  | 58  | PORT12      | 1102 | 900   |
| 21  | SEG20       | -1102 | -1020 | 59  | PORT13      | 1102 | 1020  |
| 22  | SEG21       | -1102 | -1150 | 60  | GND         | 1102 | 1150  |
| 23  | SEG22       | -1102 | -1280 | 61  | COM0        | 1052 | 1280  |
| 24  | SEG23       | -970  | -1280 | 62  | COM1        | 920  | 1280  |
| 25  | PORT83      | -844  | -1280 | 63  | COM2        | 794  | 1280  |
| 26  | PORT82      | -718  | -1280 | 64  | COM3        | 668  | 1280  |
| 27  | PORT81      | -592  | -1280 | 65  | COM4        | 542  | 1280  |
| 28  | PORT80      | -466  | -1280 | 66  | COM5        | 416  | 1280  |
| 29  | PORT73      | -340  | -1280 | 67  | COM6        | 290  | 1280  |
| 30  | PORT72      | -214  | -1280 | 68  | COM7        | 164  | 1280  |
| 31  | PORT71      | -88   | -1280 | 69  | PORT30      | 38   | 1280  |
| 32  | PORT70      | 38    | -1280 | 70  | PORT31      | -88  | 1280  |
| 33  | PORT63      | 164   | -1280 | 71  | PORT32      | -214 | 1280  |
| 34  | PORT62      | 290   | -1280 | 72  | PORT33      | -340 | 1280  |
| 35  | PORT61      | 416   | -1280 | 73  | PORT40      | -466 | 1280  |
| 36  | PORT60      | 542   | -1280 | 74  | PORT41      | -592 | 1280  |
| 37  | PORT53      | 668   | -1280 | 75  | PORT42      | -718 | 1280  |
| 38  | PORT52      | 794   | -1280 | 76  | PORT43      | -844 | 1280  |

# **Ordering Information**

| Part No. | Package   |
|----------|-----------|
| NT93480H | CHIP FORM |
| NT93480F | 100L QFP  |



# Package Information QFP 100L Outline Dimensions

unit: inches/mm



| Symbol         | Dimensions in inches | Dimensions in mm |
|----------------|----------------------|------------------|
| Α              | 0.130 Max.           | 3.30 Max.        |
| <b>A</b> 1     | 0.004 Min.           | 0.10 Min.        |
| A2             | $0.112 \pm 0.005$    | $2.85 \pm 0.13$  |
| b              | 0.012 +0.004         | 0.31 +0.10       |
|                | -0.002               | -0.05            |
| С              | 0.006 +0.004         | 0.15 +0.10       |
|                | -0.002               | -0.05            |
| D              | 0.551 ± 0.005        | 14.00 ± 0.13     |
| E              | $0.787 \pm 0.005$    | $20.00 \pm 0.13$ |
| е              | $0.026 \pm 0.006$    | $0.65 \pm 0.15$  |
| F              | 0.742 NOM.           | 18.85 NOM.       |
| GD             | 0.693 NOM.           | 17.60 NOM.       |
| GE             | 0.929 NOM.           | 23.60 NOM.       |
| Ho             | 0.740 ± 0.012        | 18.80 ± 0.31     |
| HE             | 0.976 ± 0.012        | 24.79 ± 0.31     |
| L              | $0.047 \pm 0.008$    | 1.19 ± 0.20      |
| L <sub>1</sub> | 0.095 ± 0.008        | 2.41 ± 0.20      |
| у              | 0.006 Max.           | 0.15 Max.        |
| θ              | 0° ~ 12°             | 0° ~ 12°         |

#### Notes

- 1. Dimensions D&E do not include resin fins.
- 2. Dimensions  $G_D$  &  $G_E$  are for PC Board surface mount pad pitch design reference only.