# CORONA VIRUS ANALYSIS

**SQL** (Structure Query Language)

**BATCH NUMBER: MIP-DA-11** 

**Presenting By: VISHRUT VERMA** 

### **CONTENT**



## **OBJECTIVE**

The primary goal of this project is to perform data analysis using SQL. SQL data analysis is to locate the desired data that is necessary.

By using SQL we can efficiently retrieve and update the information.

The analysis reveals significant trends in the spread of COVID-19, highlighting the rapid growth of confirmed cases over time and identifying regions with the highest infection rates through geographic distribution maps.

#### **DESCRIPTION OF DATA**

In this project we are going to write some SQL queries to make analysis of data more efficient. Let us see the description of columns in data.

**Province:** Geographic subdivision within a country/region.

**Country/Region:** Geographic entity where data is recorded.

**Latitude:** North-south position on Earth's surface.

**Longitude:** East-west position on Earth's surface.

Date: Recorded date of CORONA VIRUS data.

Confirmed: Number of diagnosed Corona Virus cases. Deaths: Number of Corona Virus

related deaths.

**Recovered:** Number of recovered Corona Virus cases.

Write a code to check NULL values

SELECT FROM covid\_data

WHERE Confirmed IS NULL

OR Deaths IS NULL

OR Recovered IS NULL;

If NULL values are present, update them with zeros for all columns.

UPDATE covid\_data

SET Confirmed = COALESCE (Confirmed, 0),

Deaths COALESCE (Deaths, 0),

Recovered COALESCE (Recovered, 0)

WHERE Confirmed IS NULL

OR Deaths IS NULL

OR Recovered IS NULL;

Check total number of rows

SELECT COUNT(\*) AS total\_rows FROM covid\_data;

Check what is start\_date and end\_date.

SELECT MIN (Date) AS start\_date,

MAX (Date) AS end\_date

FROM covid\_data;

Number of month present in dataset.

SELECT COUNT (DISTINCT EXTRACT (YEAR\_MONTH

FROM STR\_TO\_DATE (Date, '%d-%m-%Y')))

AS total\_months

FROM covid\_data;

Find monthly average for confirmed, deaths, recovered

SELECT EXTRACT (YEAR FROM STR TO\_DATE (Date, '%d-%m-%Y')) AS year, EXTRACT (MONTH FROM STR TO DATE (Date, '%d- %m-%Y')) AS month,

AVG (Confirmed) AS avg\_confirmed,

AVG (Deaths) AS avg deaths,

AVG (Recovered) AS avg\_recovered

FROM coviddata

GROUP BY year, month ORDER BY year, month;

• Find most frequent value for confirmed, deaths, recovered each month.

SELECT year, month, Confirmed, Deaths, Recovered FROM (SELECT EXTRACT (YEAR FROM STR TO DATE (Date, d- %m-%Y')) AS year, EXTRACT (MONTH FROM STR TO DATE (Date, %d-%m-%Y')) AS month, Confirmed, Deaths, Recovered, ROW NUMBER() OVER (PARTITION BY EXTRACT (YEAR FROM STR TO DATE (Date, %d-%m-%Y')), EXTRACT (MONTH FROM STR TO DATE (Date, "%d-%m-%Y'))

ORDER BY COUNT (\*) DESC) AS row\_num FROM covid\_data
GROUP BY year, month, Confirmed, Deaths, Recovered) AS subquery
WHERE row\_num=1

• Find minimum values for confirmed, deaths, recovered per year.

SELECT EXTRACT (YEAR FROM STR\_TO\_DATE (Date, '%d-%m-%Y')) AS year,

MIN (Confirmed) AS min\_confirmed,

MIN (Deaths) AS min\_deaths,

MIN (Recovered) AS min\_recovered

FROM covid\_data

GROUP BY year

ORDER BY year;

• Find maximum values of confirmed, deaths, recovered per year.

SELECT EXTRACT (YEAR FROM STR\_TO\_DATE (Date, '%d-%m-%Y'))

AS year, MAX (Confirmed) AS max confirmed,

MAX (Deaths) AS max\_deaths,

MAX (Recovered) AS max\_recovered

FROM covid data

GROUP BY year

ORDER BY year;

• The total number of case of confirmed, deaths, recovered each month.

**SELECT** 

EXTRACT (YEAR FROM STR\_TO\_DATE (Date, '%d-%m-%Y')) AS year,

EXTRACT (MONTH FROM STR TO\_DATE (Date, '%d- %m-%Y')) AS month,

SUM (Confirmed) AS total\_confirmed,

SUM (Deaths) AS total deaths,

SUM (Recovered) AS total\_recovered

FROM covid data

GROUP BY year, month

ORDER BY year, month;

Check how corona virus spread out with respect to confirmed case.

SELECT EXTRACT (YEAR FROM STR TO\_DATE (Date, '%d-%m-%Y')) AS year, EXTRACT (MONTH FROM STR\_TO\_DATE (Date, "%d- %m-%Y')) AS month,

SUM (Confirmed) AS total\_confirmed,

AVG (Confirmed) AS avg\_confirmed,

VARIANCE (Confirmed) AS variance\_confirmed,

STDDEV (Confirmed) AS stddev confirmed

FROM covid\_data GROUP BY year, month

ORDER BY year, month

Check how corona virus spread out with respect to death case per month.

SELECT EXTRACT (YEAR FROM STR TO\_DATE (Date, '%d-%m-%Y')) AS year, EXTRACT (MONTH FROM STR\_TO\_DATE (Date, "%d- %m-%Y')) AS month,

SUM (Deaths) AS total\_deaths,

AVG (Deaths) AS avg\_deaths,

VARIANCE (Deaths) AS variance\_deaths,

STDDEV (Deaths) AS stddev\_deaths

FROM covid data

GROUP BY year, month

ORDER BY year, month;

Check how corona virus spread out with respect to recovered case.

SELECT EXTRACT (YEAR FROM STR TO\_DATE (Date, '%d-%m-%Y')) AS year, EXTRACT (MONTH FROM STR\_TO\_DATE(Date, "%d- %m-%Y')) AS month,

SUM (Recovered) AS total\_recovered,

AVG (Recovered) AS avg\_recovered,

VARIANCE (Recovered) AS variance\_recovered,

STDDEV (Recovered) AS stddev\_recovered

FROM covid data

GROUP BY year, month

ORDER BY year, month;

Find Country having highest number of the Confirmed case.

SELECT Country/Region AS country,

SUM (Confirmed) AS total\_confirmed

FROM covid\_data

**GROUP BY** country

ORDER BY total\_confirmed

ASC LIMIT 1;

Find Country having lowest number of the death case.

SELECT Country/Region AS country,

SUM(Deaths) AS total\_deaths

FROM covid\_data

**GROUP BY** country

ORDER BY total\_deaths

ASC LIMIT 1;

• Find top 5 countries having highest recovered case.

SELECT `Country/Region' AS country,

SUM (Recovered) AS total\_recovered

FROM covid\_data

**GROUP BY** country

ORDER BY total\_recovered

DESC LIMIT 5;

# THANK YOU