

Российская Федерация Министерство промышленности и торговли Департамент авиационной промышленности Сибирский научно-исследовательский институт авиации имени С. А. Чаплыгина

Научно-техническая конференция «Технические концепции и проекты создания авиационных двигателей для малой и региональной авиации»

«Прогноз спроса на воздушные суда малой и региональной авиации. О текущих и перспективных проектах СибНИА в области разработки (создания) воздушных судов малой и региональной авиации.

Оценка возможностей импортозамещения»

начальник отдела перспективных исследований, к.т.н.

Москва, ЦИАМ, 03 октября 2017

РЫНОК МАЛОЙ АВИАЦИИ

На 60% территории РФ малая авиация является единственным средством обеспечения транспортной доступности В 15 субъектах РФ авиаперевозки являются доминирующей составляющей транспортной системы 28 тысяч населенных пунктов РФ не имеют доступа к наземным транспортным сетям

Действующий парк малой авиации нуждается в скорейшей замене:

- 90% эксплуатируемого парка авиационной техники старше 15 лет, морально устарело, нуждается в дорогостоящем техническом обслуживании;
- к 2023 году суммарное выбытие воздушных судов малой авиации в связи с физическим износом окажется критичным: подлежит списанию 89% воздушных судов коммерческой авиации и 79% самолетов авиации общего назначения, действующий парк сократится на 481 воздушное судно

РЫНОК МАЛОЙ АВИАЦИИ (2013-2016 ГОДЫ)

Выявление перспективных сегментов рынка и ниш с использованием самолётов коммерческой авиации с взлётным весом до 8 600 кг

Прогноз количества поставок самолетов малой гражданской авиации на 7-19 пассажиров (для коммерческих перевозок и АОН)

Прогноз структуры поставок

В период 2016-2025 гг., для гражданской авиации, может потребоваться 360-490 новых самолетов, из них ~70% в классе пассажировместимости 7-9 чел. Еще ~400 самолетов может потребоваться для государственной авиации.

Распределение авиаперевозок на ВВЛ РФ в 2016 г. по протяженности маршрутов*

^{* -} по данным ФГУП «ГосНИИ ГА»

ТРЕБОВАНИЯ К ЛЕТНО-ТЕХНИЧЕСКИМ И ЭКСПЛУАТАЦИОННЫМ ХАРАКТЕРИСТИКАМ ПЕРСПЕКТИВНЫХ ВС

Основные характеристики и требования	9 мест	19 мест				
Летно-технические характеристики						
Количество пилотов	1 - 2	1- 2				
Дальность полета с полной загрузкой, км	1 500	1 500				
Дальность полета с полной заправкой, км	2 500	2 500				
Максимальные взлетный вес, кг	5 700	8 600				
Максимальная коммерческая нагрузка, кг	2 400	3 600				
Тип двигателя	Дизельный / Газотурбинный	Дизельный / Газотурбинный				
Количество двигателей	1-2	2				
Обеспечен запуск при температуре воздуха	до -45°С	до -45°С				
Межремонтный срок службы, часы	не менее 2 000 / 5 000	не менее 2 000 / 5 000				
Требования	к условиям эксплуатации и базирован	ния				
Конструкция и состав оборудования самолета	при температурах:	при температурах:				
должны обеспечивать выполнение полетов и	от -55°C до +40°C	от -55°С до +40°С				
эксплуатацию	в высоких широтах до 75° с.ш.	в высоких широтах до 75° с.ш.				
	взлет-посадку на грунтовые,	взлет-посадку на грунтовые,				
	снежные, ледовые площадки длиной	снежные, ледовые площадки длиной				
	1500 м и прочностью грунта 7 кг/см2,	1500 м и прочностью грунта 7 кг/см2,				
	водную поверхность	водную поверхность				
Требования к системе об	Требования к системе обслуживания самолета в эксплуатации и оборудованию					
Оборудование, системы и бортовой	Эксплуатацию	Эксплуатацию				
интеллект, позволяющие осуществлять	по техническому	по техническому				
широкий и глубокий контроль и диагностику	состоянию	состоянию				
всех систем и параметров полета, объем,						
глубина и периодичность работ по						
обслуживанию самолета и его систем						
должны обеспечивать						

КОМПЛЕКСНЫЕ ИССЛЕДОВАНИЯ В ОБЛАСТИ СОЗДАНИЯ ПЕРСПЕКТИВНЫХ ВОЗДУШНЫХ СУДОВ ДЛЯ РЕГИОНАЛЬНЫХ И МЕСТНЫХ АВИАПЕРЕВОЗОК (2013-2017 гг.)

Основные результаты реализации программы Малая авиация

- 1. Анализ и прогноз спроса и потребности в новых ВС по классам и группам
- 2. Разработка предложений и формирование приоритетных направлений и критериев развития ЛМС в России
- 3. Комплекс технических требований к перспективным летательным аппаратам малой авиации на 9-19 мест по результатам исследований и отработки их аэродинамики и прочности
- 4. База данных по современным технологиям изготовления конструкций из ПКМ, исходные данные для проектирования ВС (получены характеристики прочности ПКМ из препрегов на 30-40% выше, чем у титана)
- 5. Анализ влияния на ценообразование конструкций самолетов с Мвзл. < 8600 кг, отработка производства ЛМС 9-19 из ПКМ и оценка его себестоимости (снижение трудозатрат на производство в 7-10 раз)

Замена силовой установки АШ-62ИР на современный ГТД (TPE331-12 компании «Honeywell»)

- перевод с дефицитного и дорогого авиационного бензина на широко применяемый в авиации керосин ТС-1;
- снижение расхода топлива по сравнению с бензиновым поршневым двигателем АШ-62ИР на 10%;
- сокращение себестоимости лётного часа почти в 3 раза;
- эксплуатация в условиях Крайнего Севера, в том числе на колёсно-лыжном шасси;
- высота полёта до 4 000 метров (с пассажирами), крейсерская скорость 210 км/ч;
- стоимость модернизированного самолёта ТВС-2МС 1 280 000 долл.;
- конвертирование вариантов применения

25 BC модернизировано, из них 21 в эксплуатации! Подготовлены более 200 пилотов и техников!

РАЗРАБОТКА САМОЛЁТА ТВС-2ДТС НА ЗАМЕНУ Ан-2 (ПРОЕКТ НОВОГО САМОЛЁТА)

- ✓ Самолёт проектируется с большим модернизационным запасом
- ✓ Сохранение взлётно-посадочных характеристик самолёта Ан-2 (короткий разбег и пробег)
- Посадочная скорость не более 110 км/ч
- ✓ Крейсерская скорость полёта 290 км/ч
- ✓ Дальность полёта практическая с полной коммерческой загрузкой и АНЗ на 45 минут полёта — не менее 1 800 км
- ✓ Дальность полёта максимальная 5 915 км
- ✓ Продолжительность полёта максимальная 28 часов
- √ Высота крейсерского полёта 2 700 м
- ✓ Максимальный потолок 4 000 м
- ✓ Увеличение коммерческой загрузки до 3 000 кг
- ✓ Взлётный вес максимальный 7 400 кг
- ✓ Эксплуатация с грунтовых, ледовых и снеговых площадок (с прочностью грунта не ниже 3,6 кг/см²)
- ✓ Возможность выполнения полётов днём и ночью, в том числе — в сложных метеоусловиях
- ✓ Возможность эксплуатации в северных широтах
- ✓ Безангарное хранение самолёта

Замена двигателей АИ-25 на современный ГТД (TFE731 компании «Honeywell») обеспечивает:

- соответствие нормам Главы 4 ІСАО по шуму;
- соответствия нормам ICAO 2008 г. по эмиссии;
- снижение среднего расхода топлива на 25...30%;
- увеличение дальности полёта в 1,5...2 раза;
- обеспечить сохранение взлётных характеристик до $t_{\rm H}$ = +30°C;
- использовать ВС для корпоративных и бизнес-перевозок.

Параметры	Як-40 до модернизации	Як-40 после модернизации
Максимальная коммерческая загрузка, кг	2 300	3 200
Расход топлива, кг/ч	1 150	590
Крейсерская скорость полёта, км/ч	510	560
Крейсерская высота полёта, м	7 000	7 000
Максимальная дальность полёта, км	2 200	5 500

РАЗРАБОТКА ПЕРСПЕКТИВНОГО СКОРОСТНОГО САМОЛЁТА ДЛЯ МЕСТНЫХ ВОЗДУШНЫХ ЛИНИЙ (СТР-40ДТ)

Формирование технического облика нового самолёта на основе опыта, полученного в ходе ремоторизации Як-40 и создания новых элементов конструкции переходного варианта машины

- √ Крейсерская скорость полёта 700 км/ч
- ✓ Дальность полёта не менее 3 000 км
- Высота крейсерского полёта 7 000 м
- ✓ Максимальный потолок 9 000 м
- ✓ Взлётный вес максимальный 15 500 кг
- ✓ Посадочная скорость 200 км/ч
- ✓ Эксплуатация с ВПП класса «Г»
- Возможность выполнения полётов днём и ночью, в т. ч. в сложных метеоусловиях
- ✓ Диапазон рабочих температур от −60 до +50°C

ТЕНДЕНЦИИ И ЦЕЛЕВЫЕ ИНДИКАТОРЫ НАУЧНО-ТЕХНИЧЕСКОГО РАЗВИТИЯ

Основные тенденции в мире:

- Повышение экологичности
- Появление многофункциональных автономных BC
- Переосмысление воздушной мобильности

Для больших расстояний и глобального междугороднего сообщения необходим эффективный трансзвуковой транспорт с традиционной инфраструктурой

Для городских расстояний - воздушные транспортные средства личного использования (маленькие, подвижные, автономные, тихие, удобные)

Согласно П	Ілана деятельности	НИЦ
------------	--------------------	------------

Национования доказатоля	Динамика целевых индикаторов*				
Наименование показателя	2020	2025	2030		
Повышение безопасности полетов					
Снижение аварийности относительно базового уровня в (раз)	3.0	5.0	7.0		
Повышение среднего налета на отказ воздушного судна относительно базового уровня на (%)	45	65	100		
Снижение числа задержанных вылетов по техническим причинам относительно базового уровня на (%)	50	65	85		
Повышение экономической доступности услуг, оказываемых с применением авиатехники российского производства					
Снижение расхода топлива относительно базового уровня на (%)	25	45	60		
Повышение назначенных межремонтных и календарных сроков службы относительно базового уровня на (%)	20	30	40		
Снижение удельной стоимости жизненного цикла воздушного судна относительно базового уровня на (%)	10	15	25		
Снижение вредного воздействия авиации на окружающую среду					
Снижение шума относительно норм Международной организации гражданской авиации на (децибел)	10	20	30		
Снижение эмиссии ${ m NO}_{ m x}$ относительно норм Международной организации гражданской авиации на (%)	45	65	80		
Снижение эмиссии ${\rm CO_2}$ относительно базового уровня на (%)	25	45	60		

ТЕНДЕНЦИИ И ЦЕЛЕВЫЕ ИНДИКАТОРЫ НАУЧНО-ТЕХНИЧЕСКОГО РАЗВИТИЯ

Концепция семейства самолётов на базе одного двигателя

Концепция конвертоплана мультикоптерного типа

Концепция самолёта с несущим фюзеляжем для МВЛ

Концепция дирижабля для МВЛ

ФОРМИРОВАНИЕ ОБЛИКА АВИАЦИОННОЙ ТЕХНИКИ ДЛЯ ПЕРВОНАЧАЛЬНОГО ОБУЧЕНИЯ

Подготовка летного состава (школьная):

БРО-11М Одноместный планер первоначальной подготовки

Л-13 «Бланик» 2-х местный планер

Вильга-35А Самолет-буксировщик

Янтарь-стандарт-3 Одноместный спортивный планер

L-29 Двухместный учебнотренировочный самолет

Восстановление ЮПШ (СибНИА)

пилотный проект в 2016 году – 75 кадетов

Планер на замену (СибНИА)

Возобновление производства **(S7)**

Ремоторизация (СибНИА)

Самолет на замену (СибНИА)

Возобновление производства (СибНИА)

Ремоторизация (СибНИА)

Самолет на замену (СибНИА)

Сформирована концепция подготовки, а инструменты для первоначальной подготовки - модернизация и выпуск ВС

Потребное число **BC = 788 единиц!**

ФОРМИРОВАНИЕ ОБЛИКА ПЕРСПЕКТИВНЫХ АВТОНОМНЫХ ВС АОН

Сочетание широкого применения датчиков и машинного обучения может увеличить авиационную безопасность

- Революционная силовая установка
- Еще более безопасное программное обеспечение
- Машинное обучение и адаптивные системы
- Моделирование полетов в более сложных режимах
- Масштабируемость структуры и производства
- Революционный дизайн

ФОРМИРОВАНИЕ ОПТИМАЛЬНОГО РЯДА СИЛОВЫХ УСТАНОВОК ДЛЯ ВС МВЛ ОЦЕНКА ПЕРСПЕКТИВ ИМПОРТОЗАМЕЩЕНИЯ

Малые ГТД

- АЛ-55, <u>ВК-800</u>, ТВД-1500 пока серийно не выпускаются

SMA engines (Франция) 230 л.с. Дизельные двигатели работающие на керосине

- в России не выпускаются

Rotax 912/914 80/100 л.с. Переход на автомобильный бензин

- низкое качество бензина в РФ, ограничение по высотности

Ми-8ТГ

Газовое топливо (АСКТ)

- требуется производство АСКТ, необходима доработка двигателей и ТЗК

ЭСУ и ГСУ

Находятся в стадии разработки

- В России не выпускаются

ЗАКЛЮЧЕНИЕ

- Действующий парк малой авиации России нуждается в скорейшей замене. В период до 2030 года потребуется порядка 600 ВС в размерности 9-19 мест. Ввиду отсутствия в настоящий момент конкурентоспособных отечественных двигателей для ВС МВЛ целесообразно использовать известные и хорошо зарекомендовавшие себя двигатели импортного производства с возможностью последующей локализации их производства и выпуском аналогичных двигателей отечественной разработки
- Выделены основные мировые тенденции и перспективные направления развития авиационной техники в мире:
 - повышение роли авиации в экономике;
 - создание АТ перспективных, в том числе нетрадиционных компоновок;
 - ужесточение норм по шуму и эмиссии вредных веществ в атмосферу, а так же планы по мерам их снижения, такие как: новые виды топлива (органическое, водородное) и переход на экологически более чистые двигатели (ГСУ и электродвигатели)
 - Реализация НИР в области малой авиации является основой технического и технологического обеспечения производства ВС для региональных и местных перевозок, удовлетворяющих как действующим, так и перспективным мировым экологическим требованиям по эмиссии вредных веществ и шуму, создаваемому на местности, а также повышения безопасности воздушных перевозок и роста транспортной мобильности населения, в том числе в удалённых регионах РФ (Сибири, Дальнего Востока и Крайнего Севера)

