中国农业大学

2011—2012 学年春季学期

大学物理 C(上)课程考试试题答案

一、填空题(52 分)
1、一质点沿 x 轴作直线运动,它的运动学方程为 x =3+5t+6t ² —t ³ (SI)
则 (1) 质点在 t =0 时刻的速度 V =5;
(2) 加速度为零时,该质点的速度 v =171 .
2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:
$\theta = \frac{1}{4} \frac{1}{2} $
$\theta = \frac{1}{4} \cdot \frac{1}{2} t^2 \qquad (SI)$
则其切向加速度为
3、如果一个箱子与货车底板之间的静摩擦系数为 μ , 当这货车爬一与水平方向成 θ 角的平缓山坡
时,要不使箱子在车底板上滑动,车的最大加速度 $a_{max}=$ g(ucos θ -sin θ)
4、一圆锥摆摆长为 l、摆锤质量为 m , 在水平面上作匀速圆周运动 , ———————————————————————————————————
摆线与铅直线夹角 θ ,则 /
(1) 摆线的张力 $T =mg/cos\theta;$
(2) 摆锤的速率 $v = sin \theta \sqrt{\frac{gl}{cos\theta}}$
$V_{\text{COS}\theta} = V_{\text{COS}\theta} = $
5、两个滑冰运动员的质量各为 70 kg , 均以 6.5 m/s 的速率沿相反的 方向滑行 , 滑行路线间的垂直距离为 10 m , 当彼此交错时 , 各抓住一 10 m 长的绳索的一端 , 然后相对旋转 , 则抓住绳索之后各自对绳中心的角动量
方向滑行 , 滑行路线间的垂直距离为 10 m ,当彼此交错时 , 各抓住一 10 m
方向滑行,滑行路线间的垂直距离为 10 m, 当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量
方向滑行, 滑行路线间的垂直距离为 10 m, 当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s
方向滑行, 滑行路线间的垂直距离为 10 m, 当彼此交错时, 各抓住一 10 m 长的绳索的一端, 然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L=2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ⁻³¹ kg,则电子的总能量是
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 1 kg,则电子的总能量是 5.8X10^-3 J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s ;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ⁻³¹ kg,则电子的总能量是5.8X10^-3 J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁴ ·K ⁴)
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11×10 ⁻³¹ kg,则电子的总能量是5.8X10^-3J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁻⁴ ·K ⁻⁴) 8、某理想气体在温度为 T = 273 K 时,压强为 p=1.0×10 ⁻² atm,密度 P=1.24×10 ⁻²
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s ;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ⁻³¹ kg,则电子的总能量是5.8X10^-3 J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁴ ·K ⁴)
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11×10 ⁻³¹ kg,则电子的总能量是5.8X10^-3J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁻⁴ ·K ⁻⁴) 8、某理想气体在温度为 T = 273 K 时,压强为 p=1.0×10 ⁻² atm,密度 P=1.24×10 ⁻²
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 31 kg,则电子的总能量是5.8X10^-3J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住— 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ⁻³¹ kg,则电子的总能量是5.8X10^-3J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁻¹ ·K ⁻¹) 8、某理想气体在温度为 T = 273 K 时,压强为 p=1.0 x 10 ⁻² atm,密度 P=1.24 x 10 ⁻² kg/m ⁻³ ,则该气体分子的方均根速率为495m s-1 (1 atm = 1.013 x 10 ⁻⁵ Pa) 9、右图为一理想气体几种状态变化过程的 p - V 图,其中 MT 为 p
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ⁻³¹ kg,则电子的总能量是5.8X10^-3J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁻⁴ ·K ⁻⁴) 8、某理想气体在温度为 T = 273 K 时,压强为 p=1.0 x 10 ⁻² atm,密度 P=1.24 x 10 ⁻² kg/m ³ ,则该气体分子的方均根速率为495m s-1 (1 atm = 1.013 x 10 ⁵ Pa) 9、右图为一理想气体几种状态变化过程的 p - V 图,其中 MT 为 p 等温线, MQ 为绝热线,在 AM、BM、CM 三种准静态过程中:
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住一 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ³¹ kg,则电子的总能量是5.8X10^-3 J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁴ ·K ⁴) 8、某理想气体在温度为 T = 273 K 时,压强为 p=1.0 x 10 ² atm,密度 P=1.24 x 10 ² kg/m ³ ,则该气体分子的方均根速率为495m s-1 (1 atm = 1.013 x 10 ⁵ Pa) 9、右图为一理想气体几种状态变化过程的 p - V 图,其中 MT 为 p 等温线, MQ 为绝热线,在 AM、BM、 CM 三种准静态过程中:
方向滑行,滑行路线间的垂直距离为 10 m,当彼此交错时, 各抓住— 10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =2275kgm^2/s;它们各自收拢绳索, 到绳长为 5 m 时,各自的速率 v = 13 m/s 6、一电子以 0.99 c 的速率运动(电子静止质量为 9.11 x 10 ⁻³¹ kg,则电子的总能量是5.8X10^-3J,电子的经典力学的动能与相对论动能之比是0.0804 7、一铁球由 10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高0.19(已知铁的比热 c = 501.6 J·kg ⁻¹ ·K ⁻¹) 8、某理想气体在温度为 T = 273 K 时,压强为 p=1.0 x 10 ⁻² atm,密度 P=1.24 x 10 ⁻² kg/m ⁻³ ,则该气体分子的方均根速率为495m s-1 (1 atm = 1.013 x 10 ⁵ Pa) 9、右图为一理想气体几种状态变化过程的 p - V 图,其中 MT 为 p 等温线, MQ 为绝热线,在 AM、BM、CM 三种准静态过程中: (1) 温度升高的是BM、CM过程; (2) 气体吸热的是 CM过程;

为 $10\sqrt{3}$ cm = 17.3 cm ,则第二个简谐振动的振幅为10 cm ,第一、二两个
简谐振动的相位
差 🖣 🗕 🖢 为 /2 .
11、一声波在空气中的波长是 0.25 m,传播速度是 340 m/s,当它进入另一介质时,波 长变成了 0.37 m,它在该介质中传播速度为 503 m/s
12、折射率分别为 n_1 和 n_2 的两块平板玻璃构成空气劈尖,用波长为 λ 的单色光垂直照射.如果将该劈尖装置浸入折射率为 n_2 的透明液体中,且 n_2 > n_3 n_4 ,则劈尖厚度为 n_4 的地
方两反射光的光程差的改变量是 2ne
13、平行单色光垂直入射在缝宽为 a=0.15 mm 的单缝上. 缝后有焦距为 f=400mm 的凸
透镜 ,在其焦平面上放置观察屏幕 . 现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的
距离为 8 mm,则入射光的波长为 λ =500 nm.
14、一束单色光垂直入射在光栅上,衍射光谱中共出现 5 条明纹 . 若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第1
3级谱线 .
15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上, 以 光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的 5 倍,则入射光中,自 然光强 I_0 与线偏振光强 I 之比为1/2
16、假设某一介质对于空气的临界角是 45°,则光从空气射向此介质时的布儒斯特角是
54.7 <u>°</u> .
二、计算题(38 分)
17、空心圆环可绕光滑的竖直固定轴 AC 自由转动,转动惯量为 J_0 ,环的半径为 R,初
$_{ m MN}$ 大小

17、空心圆环可绕光滑的竖直固定轴 AC 自由转动,转动惯量为 J_0 ,环的半径为 R,初始时环的角速度为 ω_0 . 质量为 m 的小球静止在环内最高处 A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心 O 在同一高度的 B 点和环的最低处的 C 点时,环的角速度及小球相对于环的速度各为多大 ?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径 r<< R.)

17、

解:选小球和环为系统.运动过程中所受合外力矩为零,故角动量守恒.即系统起初的角动量 J0 0与小球滑到 B点时系统角动量相同,

 $J0 = (J0 + mR^2)$

所以 **=J**0 0/(J0+mR^2)

又因环的内壁和小球都是光滑,只有保守力做功,系统机械能守恒.取过环心的水平面为势能零点,则有

$$\frac{1}{2}J_0\omega_0^2 + mgR = \frac{1}{2}J_0\omega^2 + \frac{1}{2}m(\omega^2R^2 + v_B^2)$$

式中 v_B 表示小球在 B 点时相对地面的竖直分速度,也等于它相对于环的速度. 代入 ω 得:

$$v_{B} = \sqrt{2gR + \frac{J_{0}\omega_{0}^{2}R^{2}}{mR^{2} + J_{0}}}$$

当小球滑到 C 点时,由角动量守恒定律,系统的角速度又回复至 ω_0 ,又由机械能守恒定律可知,小球在 C 的动能完全由在 A 点的重力势能转换而来。所以:

$$\frac{1}{2}mv_{c}^{2} = mg(2R)$$
, $v_{c} = \sqrt{4gR}$

18、3 mol 温度为 T_0 = 273 K 的理想气体,先经等温过程体积膨胀到原来的 5 倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为 $Q = 8 \times 10^4 \, J$.试画出此过程的 p - V 图,并求这种气体的比热容比 $Y = C_p / C_V$ 值. (普适气体常量 R=8.31J mol $^{-1}$ K $^{-1}$)

解: P-V 图如右所示,

末态温度为 T=5T₀.

等温过程:

$$Q_T = vRT_0 \ln(v_2/v_1)$$

= $3RT_0 \ln 5 = 1.09 \times 10^4 J$

等容过程:

$$Q_v = vC_v(T - T_0) = 3C_v(4T_0)$$

= 3276 C_v

曲
$$Q = Q_T + Q_V = Q_T + 3276 C_V$$

得: $C_V = (Q - Q_T) / 3276 = 21.1 J/mol.k$

$$\gamma = \frac{\mathbf{C_P}}{\mathbf{C_V}} = \frac{\mathbf{C_V} + \mathbf{R}}{\mathbf{C_V}} = 1.39$$

19、一质量为 0.20 kg 的质点作简谐振动,其振动方程为
$$x = 0.6 \cos(5t - \frac{1}{2}\pi)$$

求: (1) 质点的初速度;

(2) 质点在正向最大位移一半处所受的力.

解: (1)
$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = -3.0\sin(5t - \frac{\pi}{2})$$
 (SI) $t_0 = 0$, $v_0 = 3.0 \text{ m/s}$. 2分 (2) $F = ma = -m\omega^2 x$ $x = \frac{1}{2}A$ 时, $F = -1.5$ N. (无负号扣1分) 3分

20、一平面简谐波沿 Ox 轴的负方向传播,波长为 λ , P 处质点的振动规律如图所示 .

- (1) 求 P 处质点的振动方程;
- (2) 求此波的波动表达式;
- (3) 若图中 $d = \frac{1}{2} \lambda$, 求坐标原点 O 处质点的振动方程 .

答 案 : (1)
$$y_p = A\cos(\frac{1}{2}\pi t + \pi)$$
 ; (2) o p x

$$y = A\cos[2\pi(\frac{t}{4} + \frac{x-d}{\lambda}) + \pi];$$
 (3) $y_0 = A\cos(\frac{1}{2}\pi t)$

解: (1) 由振动曲线可知, P处质点振动方程为

$$y_P = A\cos[(\frac{2\pi}{4}t) + \pi] = A\cos(\frac{1}{2}\pi t + \pi)$$

(2) 波动表达式为
$$y = A\cos[2\pi(\frac{t}{4} + \frac{x-d}{\lambda}) + \pi]$$

(3)
$$O$$
 处质点的振动方程 $y_0 = A\cos(\frac{1}{2}\pi t)$

21、在双缝干涉实验中, 用波长 λ = 546.1nm (1 nm=10 $^{-9}$ m) 的单色光照射, 双缝与屏的距离 D = 300 mm . 测得中央明条纹两侧的两个第五级明条纹的间距为 12.2 mm ,求双缝间的距离 .

解:由题给数据可得相邻明条纹之间的距离为

$$x=12.2/(2-5)$$
n**x**m = 1.22 mm
由公式 $\Delta X = D$ d , 得 d = D / $x=0.134$ mm

22、在惯性系 S中,有两事件发生于同一地点,且第二事件比第一事件晚发生 Δt =2s;而在另一惯性系 S'中,观测第二事件比第一事件晚发生 Δt'=3s.那么在 S'系中发生两事件的地点之间的距离是多少?

解: (1)
$$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\sqrt{1 - \frac{v^2}{c^2}} = \frac{\Delta t}{\Delta t'} = \frac{2}{3}$$

$$v = \frac{\sqrt{5}}{3}c$$

(2)
$$x_{B}' - x_{A}' = \frac{x_{B} - x_{A} - v(t_{B} - t_{A})}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{0 - \frac{\sqrt{5}}{3}c \times 2}{\sqrt{1 - (\frac{\sqrt{5}}{3})^{2}}} = -\sqrt{5}c = -6.7 \times 10^{8} \text{ m}$$

三、问答题(5分)

23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?

解: 弹性球跳得较高,是因为在撞击地面时,小球的动能有更多的能量转化为弹性势能,

所以之后弹性势能再转化为动能 ,所以弹性小球会跳得更高。

地面对他们的冲量是不同的。

由 Ft-mgt=m(vt+v0)

可以得出 Ft=m(vt+v0)+mgt

因为弹性小球速度变化量更大 (注意速度反向!)

所以地面对弹性小球冲量更大