

Motivation

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

1. Introduction 28.8.18 ⟨Nr.>

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

2.1 Preliminaries

- \triangleright A Boolean Transition System S = (X, I, T) consists of
 - Set of boolean variables X
 - A conjunction representing the initial state /
 - A propositional formula T over variables in X and $X' = \{x \in X \mid x' \in X'\}$, called Transition Relation

- \triangleright States in S are cubes containing each variable from X with a boolean valuation of it
 - \rightarrow Finite number of states: $2^{|X|}$

➤ Transitions @Todo

2.1 Preliminaries

Fiven a formula φ over X, we get a primed formula φ' by replacing each variable with its corresponding variable in X'

- > A literal is a variable or ist negation
- ➤ A cube is a conjunction of literals
- A clause is a disjunction of literals
 - → Negation of a cube is a clause and vice versa

- \triangleright A Safety Property P is a formula over X that should be satisfiable by every state reachable from I
 - $\rightarrow \bar{P}$ being a set of bad states

2.2 Algorithm

 \triangleright PDR on hardware checks if states in \overline{P} are reachable from I

- For that it uses cubes of clauses, called Frames
 - Frame F_i represents an over-approximation of reachable states in at most i transitions from I

 \triangleright PDR maintains sequence of frames $[F_0, F_1, ..., F_k]$, called trace

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Checking for 0-counter-example

 \triangleright Is $I \land \bar{P}$ satisfiable?

- → If satisfiable:
 - Algorithm terminates and returns that a bad state is reachable
- → If unsatisfiable:
 - Algorithm initializes the first frame in the trace: $F_0 = I$ and continues

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
                                  Next Transition Phase
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Next Transition Phase:

- Checking if the next state is a good state:
 - Let $[F_0, F_1, ..., F_k]$ be the current trace
 - ► Is $F_k \wedge T \wedge \overline{P'}$ satisfiable?
 - → If unsatisfiable:
 - Continue with the next phase

2.2 Algorithm: Next Transition Phase:

- Checking if the next state is a good state
 - \triangleright Let $[F_0, F_1, ..., F_k]$ be the current trace
 - ► Is $F_k \wedge T \wedge \overline{P'}$ satisfiable?

→ If satisfiable:

- Take satisfying assignment $\vec{x} = \{x_1, x_2, \dots, x_{|X|}, x_1', x_2', \dots, x_{|X'|}'\}$
- The algorithm gets new bad state: $b = x_1 \land x_2 \land ... \land x_{|X|}$
- Construct the tuple t = (b, k), called proof-obligation

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
                                                                            Blocking-Phase
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Blocking-Phase

4: **loop**5: **while** \exists cube c, s.t. $trace.last() \land T \land c'$ is SAT and $c \Rightarrow \bar{P}$ **do**6: recursively block proof-obligation(c, trace.size() - 1)
7: and strengthen the frames of the trace.
8: **if** a proof-obligation(p, 0) is generated **then**9: **return** false

- Proving that new bad states are not reachable
- ➤ If there are proof-obligations:
 - Algorithm takes proof-obligation (b, i)
 - Tries to block bad state b by checking $F_{i-1} \wedge T \wedge b'$ for satisfiability
 - → If satisfiable:
 - Frame F_{i-1} is not strong enough to block b
 - Take satisfying assignment $\vec{x} = \left\{x_1, x_2, \dots, x_{|X|}, x_1', x_2', \dots, x_{|X'|}'\right\}$
 - The algorithm gets another new bad state: $c = x_1 \wedge x_2 \wedge ... \wedge x_{|X|}$
 - Construct new proof-obligation u = (c, i 1)

2.2 Algorithm: Blocking-Phase

- Proving that new bad states are not reachable
- ➤ If there are proof-obligations:
 - Algorithm takes proof-obligation (b, i)
 - Tries to block bad state b by checking $F_{i-1} \wedge T \wedge b'$ for satisfiability
 - → If unsatisfiable:
 - Algorithm strenghthens F_i with \bar{b}
 - $\rightarrow F_i = F_i \wedge \overline{b}$
 - Blocking bad state b at F_i

2.2 Algorithm: Blocking-Phase

- This continues recursively until:
 - There are no proof-obligations left
 - → Algorithm continues with the next phase
 - A proof-obligation (d, 0) is created
 - → Proving that a bad state can be reached, terminating the algorithm

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
                                                                      Propagation-Phase
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

- Propagating learned information
- \triangleright After no proof-obligations are left, the algorithm initializes new frame $F_{k+1}=P$

- > Algorithm passes on learned informations, e.g, which states are blocked:
 - For each clause c in F_k check: $F_k \wedge T \wedge \bar{c}'$ for satisfiability
 - → If satisfiable:
 - Do nothing, continue with next clause

- Propagating learned information
- \triangleright After no proof-obligations are left, the algorithm initializes new frame $F_{k+1}=P$

- > Algorithm passes on learned informations, e.g, which states are blocked:
 - For each clause c in F_k check: $F_k \wedge T \wedge \bar{c}'$ for satisfiability
 - → If unsatisfiable:
 - Algorithm strengthens F_{k+1} with c

$$\rightarrow F_{k+1} = F_{k+1} \wedge c$$

- Check for termination
- \triangleright After all clauses have been tested, algorithm checks if $F_k \equiv F_{k+1}$
 - If so, the algorithm has found a fixpoint and terminates
 - \rightarrow No states of \overline{P} are reachable
 - If not, the algorithm continues with a new Next Transition Phase

- Check for termination
- \triangleright After all clauses have been tested, algorithm checks if $F_k \equiv F_{k+1}$
 - If so, the algorithm has found a fixpoint and terminates
 - \rightarrow No states of \bar{P} are reachable
 - If not, the algorithm continues with a new Next Transition Phase

 \triangleright Algorithm repeats the three phases until a fixpoint is found, or a proof-obligation (d,0) is created

2.2 Algorithm: Pseudo-Code TEMPLATE

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
       trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.3 Example 28.8.18 ⟨Nr.>

2.4 Possible Improvements

- Blocking one state at a time is ineffective:
 - Generalize blocked states
 - → Eliminate insignificant cubes from states, that are not used by UNSAT-cores

- Ternary Simulation to reduce proof-obligations:
 - Extend binary variables with a new value: unknown
 - Check state variables of proof-obligations for importance
 - → Eliminate unimportant state variables

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

3.1 Preliminaries 28.8.18 ⟨Nr.>

3.2 Lifted Algorithm

Algorithm Pseudocode here

3.3 Example 28.8.18 ⟨Nr.>

3.4 Possible Improvements

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

4.1 Implementation 28.8.18 ⟨Nr.>

4.2 Implemented Improvements

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

5.1 Data Comparison

5.2 Discussion 28.8.18 ⟨Nr.>

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

6. Related Work

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

7.1 Further Improvements

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

8. Conclusion 28.8.18 ⟨Nr.>