Prof. Dr. rer. nat. habil. Martin O. Steinhauser Frankfurt University of Applied Sciences, Germany

Faculty of Computer Science and Engineering

Short Lecture Course:

Introduction to Computational Science with Applications in Molecular Dynamics

Sessions 5-6: Analysis of Algorithms and Asymptotic Analysis

Overview of this short course

Topics Covered (subject to change)

1st Session: Lec. 1-2 Introduction & Bits and Bytes

2nd Session: Lec 3 (2x) Bits and Bytes continued

3rd Session: Lec 4-6 Molecular Dynamics

4th Session: Lec 7-8
MD continued / Algorithms

5th Session: Lec 9 (2x) Algorithms/ Problem of Sorting

6th Session: Lec 10-11 Asymptotic Analysis of Algorithms

7th Session: Lec 12-13 Monte Carlo/Random Numbers

Session 5 / 6: Overview

- OUTLINE OF LECTURES
- Short Review
- Asymptotic Analysis of Algorithms
- Some practical Examples

Overview of Lecture 7

1	Short Review
2	Asymptotic Analysis of Algorithms
3	Some Practical Examples

Overview of Lecture 7

1	Short Review
2	Asymptotic Analysis of Algorithms
3	Some Practical Examples

Short Review

- Algorithm: finite, deterministic, effective, efficient
- Performance is often at the edge of scientific innovation (simulating things that have never been done) and determines what is feasible and unfeasible.

Short ReviewInsertion Sort

Pseudo-Code of *Insertion Sort*:

```
for j = 2 to n
do key = A[j]
// Remark: Insert A[j] into the sorted sequence A[1,...,j-1]
i = j -1
while i > 0 and A[j] > key
do A[i+1] = A[i]
i = i - 1
A[i+1] = key
```

Short Review What does the running time T(n) of Insertion Sort depend on?

- Input size (sorting more elements takes more time)
- Input itself (whether it is already sorted)
- Running time T(n) of an algorithm means the number of elementary operations (or steps) executed.

We usually want to know upper bounds on the running time!

Overview of Lecture 7

- 1 Short Review
- 2 Asymptotic Analysis of Algorithms
- 3 Some Practical Examples

Classification of Algorithms

algorithm	runtime	N=10	N=20	N=50	N=100
A_1	N	$10 ES$ $10^{-8} s$			
A_2	N^2				
A_3	N^3				
A_4	2^N				
A_5	N!				

Classification of AlgorithmsP and NP Problems

- P: Polynomial time solvable
- NP: Nondeterministic polynomial time solvable

Why are Non-Polynomial Algorithms Inefficient?

Assume a technology jump with a speedup factor of 10 or 100

algorithm	runtime	efficiency	speedup factor 10	speedup factor 100
A_1	N	N_1		
A_2	N^2	N_2		
A_3	N^3	N_3		
A_4	2^N	N_4		
A_5	N!	N_5		

Why are Non-Polynomial Algorithms Inefficient?

Assume a technology jump with a speedup factor of 10 or 100

algorithm	runtime	efficiency	speedup factor 10	speedup factor 100
A_1	N	N_1		
A_2	N^2	N_2		
A_3	N^3	N_3		
A_4	2^N	N_4		
A_5	N!	N_5		

- Polynomial algorithms are shifted by a constant factor
- Non-Polynomial algorithms are shifted by an additive constant

So, is insertion sort fast?

```
for j = 2 to n
do key = A[j]
// Remark: Insert A[j] into the sorted sequence A[1,...,j-1]
i = j -1
while i > 0 and A[j] > key
do A[i+1] = A[i]
i = i - 1
A[i+1] = key
```

Is Insertion Sort FAST?

- Moderately so, for small N: O(N)
- Not at all for large N!

An Algorithm that is fast than IS Merge-Sort: A Divide-and-Conquer Approach

Asymptotic Notations: Overview $\theta-$, Big-O and Ω -Notation

g(n) is:

asymtotically tight bound an asymptotic upper bound an asymptotic lower bound

Overview of Lecture 7

- 1 Short Review
- 2 Asymptotic Analysis of Algorithms
- 3 Some Practical Examples

Example: Maximum Subarray Problem

Find the maximum partial sum of consecutive numbers in a given array:

Example: -59, 52, 46, 14, -50, 58, -87, -77, 34, 15

The maximum partial sum would be:

Used for e.g.:

- Detection of praphical patterns
- Analysis of share prices at the stock market

Maximum Subarray Problem Cubic Algorithm

```
int \max (int z[], int n){
  int i,j,k, sum, max=-10000000;
    for (i = 0; i < n; i++)
       for (j = i; j < n; j++){
          sum = 0;
          for (k = i; k \le j; k++)
            sum += z[k];
          if (sum > max)
          max = sum;
     return(max);
```

3 nested loops! Time required is proportional to n³

Maximum Subarray Problem Quadratic Algorithm

```
int maxsum2(int z[], int n){
  int i,j,k, sum, max=-10000000;
     for (i = 0; i < n; i++)
       sum = 0;
       for (j = i; j < n; j++){
         sum += z[i];
                               saves the third loop
        if (sum > max)
         max = sum:
     return(max);
```

Access to the sum already calculated: S(i,j-1) ---> S(i,j) = S(i,j-1) + z[i]

2 nested loops! Time required is proportional to n²

Maximum Subarray Problem Kinear Algorithm = Optimum!

```
int maxsum3(int z[], int n){
  int i,s, totalmax=-10000000, endsum = 0;
  for (i = 0; i < n; i++){
    endsum = ((s = endsum + z[i]) > 0) ? s : 0;
    if (endsum > totalmax)
        totalmax = endsum;
    }
  return (totalmax);
}
```

No nested loops!

Each element is accessed only once!

Time required is proportional to n

Checking for Primes: Exponential Growth

This algorithm checks recursively, whether number is a prime

```
int prim(int number, int divisor, int *z) {
    (*z)++;
    if (number < 2 || number%2 == 0 || number%divisor == 0)
        return 0;
    else if (divisor*divisor > number)
        return 1;
    return prim(number, divisor+1, z);
}
```

Checking for Primes: Exponential Growth

The number of recursive calls depends on the number of digits; here: 1-9

Complexity of Algorithms Memory is also Important

Besides the complexity with respect to time, the complexity with respect to memory is also important!

Example: Two algorithms that solve the same problem but with different memory usage

Array of size n stores integers [0, n-1].

The problem is now, to check, whether there are numbers in the array that are doubly listed.

Complexity of Algorithms Quadratic Complexity of Memory Storage

```
int doppcheck1(int z[]) {
  for (int i=0; i<MAX-1; i++)
     for (int j=i+1; j < MAX; j++)
         if (z[i] == z[j])
           return 1;
  return 0;
```

Just an array with n numbers

BUT:

Two nested loops: complexity of running time ~n² Complexity of memory storage: ~n²

Complexity of Algorithms

Exponential Complexity of Memory Storage

```
int help [ MAXNUMBER] = {0};
....
int doppcheck2(int z[]) {
   for (int i=0; i<MAX; i++)
       if (help z[i]] != 0)
       return 1;
   else
       help [z[i]] = 1;
   return 0;
}</pre>
Prize for linear complexity in time:
Exponential complexity in memory
```

```
Just one loop: complexity of running time ~ n (perfect!)

BUT: Complexity of memory storage is: ~2<sup>m</sup> (worst!)

Problem size: m is the number of bit-positions needed to store the largest number
```

Example: Sequential Search O(N) Complexity

Is a certain number element of an array?

Example: Quick Exponentiation O log N Complexity

Legendre algorithm for quick exponentiation of a number (pseudo code)

```
x = a; y = b; z = 1;
while (y < 0){
   if (y "uneven")
      z = z * x;
   y = y / 2;
   x = x * x;
}
/* z = a to the power of b */</pre>
```

Complexity of Algorithms Program Demonstrations

Some simple, practical tricks of the trade for program performance optimizations!

Constant Propagation

Operator Strength Reduction

Copy Propagation

Loop Strength Reduction

Invariant Code Motion

Loop Jamming

Constant Propagation

Use constants, not variables in expressions

Without Optimization

for (i=1; i < 1000000000; i++){ x = 2; y = x + 5; a = x; b = 0; c = a / x; d = x * c * c * c * c; e = x + b + b + b; }</pre>

```
for (i=1; i < 100000000; i++){
    x = 2;
    y = 7;

b = 0;
    c = 1;

e = d = e = x;
}</pre>
```

Operator Strength Reduction

Avoid unnecessary function calls

Without Optimization

```
for (i=1; i < 100000000; i++){
    x = ceil(pow(2,17))
    x = a / 8;
    c = b * 16,
    if (d%2!=0)
        e = x + 3;
}</pre>
```

```
for (i=1; i < 1000000000; i++){
    y = 2.17 * 2.17;
    x = y + 0.5
    x = a >> 3
    c = b << 4
if (d&1)
    e = x + 3;
}</pre>
```

Copy Propagation

Avoid unnecessary or double calculations

Without Optimization

for (i=1; i < 100000000; i++){ a = x * y; b = x; c = b * y; d = x * y; }</pre>

```
for (i=1; i < 100000000;
i++){
   b = x;
   a = b = d = x * y;
}</pre>
```

Loop Strength Reduction

Avoid unnecessary loops

Without Optimization

for (i=1; i <= 100000; i++){ for (j=0; i <= 1000; j++){ if (j%10 ==0) array[j] = j; }</pre>

```
for (i=1; i <= 100000; i++){
  for (j=0; i <= 1000; j+=10){
    array[j] = j;</pre>
```

Invariant Code Motion

Remove constant terms from loops

Without Optimization

```
for (i=1; i <= 10000; i++){
  for (j=1; i <= 1000; j++)
    array[j] = a + b * sin(2.33)

  for (j = 1; j < strlen(string) - sqrt(h); j++)
    string[j] = ,-';
}</pre>
```

```
x = a + b * sin (2.33);
for (i=1; i <= 10000; i++){
  for (j=1; i <= 1000; j++)
     array[j] = x;
  l = strlen(string) - sqrt(h);
     for (j=1; i < l; j++)
        string[j] = ,-';
}</pre>
```

Loop Jamming

Combine loops of the same size

Without Optimization

```
for (i=1; i <= 10000000; i++){
  for (j=0; j <= 1000; j++)
    a[j] = j;
  for (j=0; j <= 1000; j++)
    b[j] = a[j] + x;
  for (j=0; j <= 1000; j++)
    c[j] = a[j];
}</pre>
```

```
for (i=1; i <= 10000000; i++){
  for (j=0; j <= 1000; j++) {
    a[j] = j;
    b[j] = j + x;
    c[j] = j;
}</pre>
```

Learning Objectives

- Understand the Importance of Asymptotic Analysis
- Understand the Concept of Divide and Conquer
- Be aware of Optimization Techniques

