電力工学

問題 1. ガスタービン発電に関する以下の問いに答えよ。

図 1にガスタービン発電で用いられるブレイトンサイクルの P-V線図を示す。ここで、Pは圧力、Vは体積であり、1 mol の理想気体の系が図 1 の経路に沿って準静的に変化すると仮定する。各状態(i=1,..,4)では、圧力 P_i 、体積 V_i 、温度 T_i をとるものとする。ただし、 $P_3=P_2$ 、 $P_4=P_1$ である。また、内部エネルギーをU、温度をT、熱量をQ、仕事をWとすると、熱力学第 1 法則の微分形は $dU=d^iQ-d^iW$ であり、 $d^iW=PdV$ 、 $U=C_VT+A$ と書ける。ここで、 C_V は

定積比熱、A は定数であり、dX はX の微小変化量を表すが、X が状態量でない場合にはd'X で表す。さらに、系の状態方程式はPV=RT、断熱変化は $PV^{\gamma}=B$ で与えられ、R は気体定数、B は定数、 γ は比熱比で $\gamma=C_P/C_V$ 、 C_P は定圧比熱であり、 $C_P-C_V=R$ の関係がある。

- (1) 図 1 において、 $1\rightarrow 2$ と $3\rightarrow 4$ の過程は断熱変化である。 $T_1/T_2=T_4/T_3$ が成り立つことを示せ。
- (2) $2\rightarrow 3$ の過程において、外部から受けた熱量が $C_P(T_3-T_2)$ となることを示せ。
- (3) 次の各式について、このサイクルの効率 η を与える式として正しいものに \bigcirc 、正しくないものに \times を付けよ。

1.
$$\eta = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$
, 2. $\eta = 1 - \frac{T_4}{T_3}$, 3. $\eta = 1 - \frac{T_2 - T_1}{T_3 - T_4}$, 4. $\eta = 1 - \frac{T_4 - T_1}{T_2 - T_3}$, 5. $\eta = 1 - \frac{T_1}{T_2}$, 6. $\eta = 1 - \frac{T_3}{T_1}$

- (4) 効率が $\eta=1-\left(\frac{P_1}{P_2}\right)^{\frac{\gamma-1}{\gamma}}$ とも表されることを示せ。
- (5) 上の(2)から、このサイクルが外部に対してする仕事は、 $W_B = \eta C_P(T_3 T_2)$ である。 $x = \left(\frac{P_1}{P_2}\right)^{\frac{\gamma-1}{\gamma}}$

と定義すると(0 < x < 1)、(4)より $x = 1 - \eta$ となる。 W_B を T_3 、 T_1 、 x 、および C_P のみで表せ。 (6) T_3 と T_1 を一定として x を変化させるとき、 W_B が最大になるときの x の値を T_3 と T_1 のみを用いて表せ。

問題 2. ガスタービンに極対数 1 の三相同期発電機が接続されており、その界磁巻線、電機子巻線の模式図が図 2 に示されている。界磁巻線が作る磁束は U、V、W の各相の電機子巻線に鎖交し、U 相巻線の鎖交磁束は、正弦的変化を仮定して、 $\Phi_U = \Phi_F \cos\theta$ と表される。ここで、 Φ_F は界磁による鎖交磁束の最大値、 θ は界磁巻線軸の U 相巻線軸からの角度であり、 ω を界磁巻線の回転角速度すなわち交流の角周波数、t を時刻、 σ を任意位相とすると、 $\theta = \omega t + \sigma$ である。各電機子巻線には負荷が接続されており、対称三相交流電流が流れているとする。

図 3 は U 相巻線に関する複素平面上のフェーザ図であり、界磁巻線による鎖交磁束のフェーザ $\dot{\Phi}_F = \Phi_F \, \mathrm{e}^{\mathrm{j}\sigma} \, \epsilon$ を虚軸 (Im) に沿ってとり、他のフェーザは番号で表されている。また英小文字はフェーザの終点あるいは交点を表し、O は原点であり、フェーザ 1 とフェーザ 3 は互いに直角である。点線は b と f を結ぶ補助線で、それと実軸 (Re) との交点が g である。なお、位相は反時計回りに進むものとし、V 相や W 相の巻線による影響は考えないものとする。図 3 に関する各問いに答えよ。 (1) 電機子反作用に関する次の文章の空欄に適切な番号を記入せよ。

鎖交磁束 $\dot{\phi}_F$ により、U 相巻線に生じる起電力 \dot{E} はフェーザ(r) で表される。これにより負荷に電流が流れるが、負荷は遅れ力率角 ϕ を持つとすると、電流 \dot{I} はフェーザ6 で示される。このU 相電流により発生した磁束はフェーザ(r) で表されるが、これは元の $\dot{\phi}_F$ と合成されてフェーザ(r) で表され、その合成磁束がU 相巻線に鎖交していることになる。このフェーザ(r) で示される磁束により発生する起電力はフェーザ(r) で表される。この起電力はフェーザ(r) で表された起電力と異なるため、インピーダンス \dot{Z} を導入して、 $\dot{E}-\dot{Z}\dot{I}$ がフェーザ(r) を表すと考えると、 $\dot{Z}\dot{I}$ はフェーザ(r) となる。

- (2) \dot{Z} が誘導性リアクタンスとなることを次の手順で示せ。ただし、 $\triangle \alpha \beta \gamma$ は α 、 β 、 γ を頂点とする三角形を表し、 $\angle \alpha \beta \gamma$ は辺 $\beta \alpha$ と辺 $\beta \gamma$ の侠角を表す。
- 1) $\dot{\Phi}_F$ と \dot{E} の大きさの比は、フェーザ (\dot{p}) とフェーザ(x) の大きさの比に等しいことを利用して、 $\triangle aOb$ と $\triangle cOd$ が相似となることを示せ。
- 2) $\angle Ofg$ と $\angle Oce$ が等しいことを示し、 $\triangle Oce$ と $\triangle Ofg$ が相似となることを示せ。
- 3) 角度 δ の値を導き、 \dot{Z} が誘導性リアクタンスとなることを説明せよ。

この \dot{Z} が同期インピーダンスの主要な要素となる。