Guía de problemas de Análisis de Señales y Sistemas

Requisito para aprobación: Posee 10 problemas, 4 de resolución obligatoria y se requieren 8 correctamente resueltos para su aprobación.

Ejercicio Nro. 1:

Partiendo del esquema mostrado debajo se pide:

a) Completar la tabla, ensayado con una señal sinusoidal

Siendo:

Vi: Tensión de entrada eficaz del cuadripolo [V]

Zi: Impedancia de entrada del cuadripolo $[\Omega]$

Zo: Impedancia de salida del cuadripolo $[\Omega]$

G: Ganancia del cuadripolo [dB]

Pi: potencia de entrada del cuadripolo [dBm]

Po: Potencia de salida del cuadripolo [dBm]

	A1	A2	А3	L	Total	Unidad
Vi eff					-	[V]
Zi	75	300	600	8	-	[Ω]
Zo	300	600	8	-	-	[Ω]
		ı	1			
Pi	4.10-9				-	[W]
Ро				-	-	[W]
G		0.01		-		[-]
Pi				12.55	-	[dBm]
Ро				-	-	[dBm]
G	50			-		[dB]

b) ¿Qué valores cambiarían en los resultados, si fuera ensayado con una señal cuadrada simétrica?

Ejercicio Nro. 2:

En el sistema presentado en la figura y suponiendo que el ruido que ingresa es despreciable, se pide:

¿Cuál es la relación señal a ruido (S/R) a la salida del sistema en las siguientes condiciones?

- a) ¿Cuál es la relación señal a ruido (S/R) a la salida si el módulo "II" es igual aisladamente al "I"?
- b) ¿Cuál es la relación señal a ruido (S/R) a la salida si el módulo "II" adiciona -35 dBm de ruido?

Ejercicio Nro. 3 (OBLIGATORIO):

De acuerdo con el sistema planteado debajo se pretende una relación señal a ruido, indicada más adelante, (SNR = Ps / Pr) a la entrada del amplificador. Se sabe que la potencia de ruido de entrada del amplificador es de 50pW (Pr).

Se pide:

- a) Calcular la potencia de transmisión (en W, dBW y dBm) de un radioenlace para las siguientes distancias: 6 Km, 12 Km y 24 Km
- b) Repetir el punto anterior, pero en vez de un radioenlace usar un cable coaxil con una atenuación de 7 dB / km e impedancia característica $Z_0 = 75\Omega$.
- c) Encuentre la problemática que se produce al duplicar las distancias en cada caso. Compare y extraiga conclusiones. Proponga alguna solución práctica a esa problemática.

Datos:

SNR de Salida = 33 dB

Fc = 200 MHz

Ga = 2,15 dBi

Gs = 1.64 [veces]

El Adaptador y el amplificador son ideales, no agregan ruido.

dBi refiere a isotrópico, es la ganancia de la antena real respecto de una antena ideal isotrópica.

Complete la siguiente tabla con los resultados de los ítems a y b.

	d [km]				
	6	12	24		
Radioenlace				[dB]	Atenuación
				[W]	Potencia Trans.
				[dBW]	
				[dBm]	
Coaxil				[dB]	Atenuación
				[W]	
				[dBW]	Potencia Trans.
				[dBm]	
				[dBmV]	

Para la atenuación del radioenlace considere la fórmula de Friis para atenuación de espacio libre:

Donde:

$$L_{bf} = 20 \log \left(\frac{4\pi d}{\lambda} \right)$$

Lbf: atenuación espacio libre [dB]

d: Distancia entre antenas [m]

• λ: longitud de onda [m]

X [dBmV] = 20*log(X[Vef]/1mV) y Z=75ohms

Ejercicio Nro. 4 (OBLIGATORIO):

Dado el tren de pulsos de la figura:

x(t)

Se pide:

a) Grafique el espectro de amplitudes en frecuencias para los siguientes casos:

	1	2	3	4	
Α	1	1	0.5	1	
Т	40	40	40	200	[mSg]
t	20	10	20	20	[mSg]

b) En base a lo anterior $(x_{(t)})$ explique qué sucede para los siguientes casos límite:

I.
$$T \rightarrow \infty$$
 $\tau = cte$. $A = cte$. II. $T = cte$. $\tau \rightarrow T$ $A = cte$.

III. T = cte. $\tau \to 0$ A $\to \infty$ de manera que A* $\tau = cte$.

c) Para el caso "a.2", calcule en el dominio del tiempo la potencia normalizada total de la señal y en el dominio de la frecuencia la potencia y el valor cuadrático medio de cada una de las componentes significativas. Identifique y verifique una identidad definida en la teoría.

Ejercicio Nro. 5:

La figura presenta solo tres "pulsos de RF" pero la señal es periódica, es decir, es una sucesión infinita de estos pulsos de RF. Se pide hallar:

a) El espectro del módulo de la transformada de Fourier

$$fc = 10 \text{ MHz}$$
 $t_activo = 0.5 \text{ uS}$ $t_reposo = 0.5 \text{ uS}$

- b) Idem al a) pero duplicando la frecuencia de senoidal (fc = 20 MHz).
- c) Idem al a) pero reduciendo a la mitad los tiempos activo y de reposo (0.25uS).
- d) Idem al a) pero reduciendo a la mitad sólo el tiempo activo (0.25uS).
- e) Señale métodos alternativos para resolverlo y aplique uno a su elección.

Ejercicio Nro. 6:

Dadas las siguientes señales s1 y s2 definidas por:

$$\mathbf{s1}_{(t)} = A_0 + A_1 \cdot \cos(\omega_1 \cdot t)$$

Donde:

- A₀ = 1V
- A₁ = 0,5V
- $\omega_1 = 2 . \pi . 500 \text{ KHz}$

s2_(t) es tal que su transformada de Fourier es real y se corresponde con:

F2 = 2 MHz

$$A2 = 0.5V$$

Se pide:

a)
$$S3(f) = |S1_{(f)} * S2_{(f)}|$$
 ("*" = Convolución)

- b) Expresión en el dominio del tiempo de s3(t) en función de s1(t) y s2(t)
- c) Calcular la Potencia de s1 para una carga de 1 ohm
- d) Calcular la Potencia de s3 para una carga de 1 ohm

Ejercicio Nro. 7 (OBLIGATORIO):

Sea $v_{(t)}$ una función periódica con periodo T_0 , definida por la repetición de la función $z_{(t)}$ entre - $T_0/2$ y $T_0/2$:

$$z_{(t)} = 1 - \cos\left(\frac{\pi}{T_0} \cdot t\right)$$

Determine matemáticamente la serie de Fourier, expresada en formato exponencial.

Ejercicio Nro. 8:

Dado el siguiente diagrama en bloques:

Donde S1 y S2 son como se indican

Donde:

Se pide:

- a) Hallar el espectro antes del filtro pasa bajos
- b) Hallar el espectro a la salida del filtro pasa bajos
- c) Hallar el espectro a la salida del filtro pasa bajos si F2 = 1502 KHz
- d) Hallar el espectro antes del filtro pasa bajos si F2 = 1498 KHz

<u>Nota:</u> Se sugiere graficar el espectro negativo en un color y espectro positivo en otro color y vea qué sucede con ambos luego de la convolución.

Ejercicio Nro. 9 (OBLIGATORIO):

Dado un receptor Superheterodino pensado para recibir señales pasabanda de 200 KHz entre 88 y 108 MHz, con frecuencia intermedia, FI, igual a 10,7 MHz.

Se pide:

- a) Características de filtro de RF, considerado Brickwall (Banda de paso y de rechazo).
- b) Características de filtro de FI, considerado Brickwall (Banda de paso y de rechazo).
- c) Ambos rangos de operación del Oscilador Local.
- d) Rangos de las frecuencias imágenes.
- e) Frecuencia del oscilador para sintonizar 99,9 MHz

Ejercicio Nro. 10:

Determine el factor de cresta y la potencia sobre una carga de un ohm en función de A, para las siguientes señales:

a)
$$m_{(t)} = A \cdot \cos(\omega_1 \cdot t)$$

b)
$$m_{(t)} = \frac{A}{2} \cdot \cos(\omega_1 \cdot t) + \frac{A}{2} \cdot \cos(\omega_2 \cdot t)$$

c)
$$m_{(t)} = \frac{A}{4} \cdot \cos(\omega_1 \cdot t) + \frac{3 \cdot A}{4} \cdot \cos(\omega_2 \cdot t)$$

d) Para un tren de pulsos entre cero y A, con un duty cycle del 40%.

NOTA: ω_1 , ω_2 no poseen relación de armónica entre sí. El factor de cresta es la relación entre el valor máximo y valor eficaz.

Problemas extras con resultados

Ejercicio Nro. 1:

Siendo $f_{(t)}$ un pulso único de amplitud A y 2 ms. de duración (" τ "). Por otra parte $x_{(t)}$ es un tren de deltas de Dirac de valor 1 y 10 ms. de periodo (" τ "), como muestra la siguiente gráfica:

Se pide:

- a) Representar en el tiempo $f_{(t)} * x_{(t)}$ ("*" = Convolución)
- b) Hallar la transformada de Fourier de a) y graficar entre 2 KHz y 2 KHz.

Resultados

a)
$$f_{(t)} * x_{(t)}$$

b) Transformada de Fourier de a)

Ejercicio Nro. 2:

Se tiene un mezclador al que se ingresa con una señal v_1 acotada en banda y una señal v_2 obtenida a partir de filtrar una señal cuadrada de amplitud A_2 , ciclo de actividad d y período T.

Considerando que el ancho de banda B es mucho menor que 1/T, se pide:

- a) Determinar la expresión matemática del espectro genérico de la señal de salida v_3 si el filtro es un pasabajos brickwall con frecuencia de corte 4,5/T.
- b) Graficar el espectro determinado en el inciso a) si la señal cuadrada tiene un ciclo de actividad del 50%.
- c) Ajustar el espectro del inciso b) si se reemplaza el filtro por un pasabanda brickwall con frecuencia central 1/T y ancho de banda 1/T.
- d) Indicar las características del filtro y el ciclo de actividad que deberán utilizarse para trasladar la señal v1 a una frecuencia de 2/T con amplitud máxima igual a $0.827A_2A_1$.

Resultados

a)
$$V_3(f) = dA_2V_1(f) + \sum_{n=1}^4 dA_2 sinc(n\pi d) [V_1(f+nf_0) + V_1(f-nf_0)]$$

