# **Enhanced Logistic Regression Lab**

## **Objective**

This notebook enhances the original Logistic Regression lab by:

- Clarifying key concepts and underlying mathematical principles.
- Exploring advanced concepts such as regularization, decision boundaries, and performance metrics.
- Providing visualizations to improve understanding.
- Applying the concepts to a real-world dataset: **Pima Indians Diabetes dataset**.
- Comparing Logistic Regression with other classification models like Decision Trees and Random Forests.
- Discussing the advantages and disadvantages of different models.

Let's begin by loading the dataset.

## **Loading the Dataset**

|                                                                                                                                       | daning the   | Datasct                                        |                                  |        |                             |         |      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------|----------------------------------|--------|-----------------------------|---------|------|--|--|
| import pandas as pd                                                                                                                   |              |                                                |                                  |        |                             |         |      |  |  |
| <pre># Load the Pima Indians Diabetes dataset df = pd.read_csv('pima-indians-diabetes.csv') df.head() # Display first five rows</pre> |              |                                                |                                  |        |                             |         |      |  |  |
| DM.                                                                                                                                   | •            | Glucose                                        | BloodPre                         | ssure  | SkinThickness               | Insulin |      |  |  |
| BM:<br>0                                                                                                                              | 6            | 148                                            |                                  | 72     | 35                          | 0       | 33.6 |  |  |
| 1                                                                                                                                     | 1            | 85                                             |                                  | 66     | 29                          | 0       | 26.6 |  |  |
| 2                                                                                                                                     | 8            | 183                                            |                                  | 64     | 9                           | 0       | 23.3 |  |  |
| 3                                                                                                                                     | 1            | 89                                             |                                  | 66     | 23                          | 94      | 28.1 |  |  |
| 4                                                                                                                                     | 9            | 137                                            |                                  | 40     | 35                          | 168     | 43.1 |  |  |
|                                                                                                                                       |              |                                                |                                  |        |                             |         |      |  |  |
| 0<br>1<br>2<br>3<br>4                                                                                                                 | DiabetesPedi | greeFuncti.<br>0.6<br>0.3<br>0.6<br>0.1<br>2.2 | 27 50<br>51 31<br>72 32<br>67 21 | Outcom | ne<br>1<br>0<br>1<br>0<br>1 |         |      |  |  |

## **Understanding Logistic Regression**

Logistic Regression is a statistical model used for binary classification. It predicts the probability of an instance belonging to a particular class using the sigmoid function:

$$P(y=1 \lor X) = \frac{1}{1+e^{-z}}$$

where

$$z = wX + b$$

(Linear combination of weights and input features)

- The model is trained using Maximum Likelihood Estimation (MLE) to optimize the weights.
- Logistic Regression outputs probabilities and applies a threshold (e.g., 0.5) to classify istances.

### **Data Preprocessing**

Before training the model, check for missing values in the dataset

```
# Check for missing values
print("Missing values per column:\n", df.isnull().sum())
Missing values per column:
Pregnancies
                              0
                             0
Glucose
BloodPressure
                             0
SkinThickness
                             0
Insulin
                             0
                             0
BMI
DiabetesPedigreeFunction
                             0
                             0
Aae
                             0
Outcome
dtype: int64
```

## Feature Selection and Model Training

To trainther modele define the features and target variable. Additionall, e standardize the numerical features to improve model performance and split the data into training and testing sets

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Define features (X) and target variable (y)
X = df.iloc[:, :-1] # All columns except the last one
y = df.iloc[:, -1] # The last column is the target variable
```

```
# Standardize the feature values
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
print("Training set size:", X_train.shape)
print("Testing set size:", X_test.shape)

Training set size: (614, 8)
Testing set size: (154, 8)
```

## **Training Logistic Regression Model**

Ttraiingn a **Logistic Regression model** using the training dataset. Logistic Regression works by estimating the probability of a given input belonging to a specific class using the **sigmoid function**. The model is trained using **Maximum Likelihood Estimation (MLE)** to find the best parameters.

#### **Key Hyperparameters in Logistic Regression**

- max\_iter=1000: Increases the number of iterations for optimization to ensure convergence.
- penalty='l2': Default L2 regularization (Ridge) helps prevent overfitting.
- solver='liblinear' or 'saga': Determines the optimization algorithm (use 'liblinear' for small datasets, 'saga' for larger ones).
- C=1.0: Inverse of regularization strength (higher values reduce regularization).

```
from sklearn.linear_model import LogisticRegression

# Initialize and train Logistic Regression model
model = LogisticRegression(max_iter=1000, penalty='l2',
solver='liblinear') # Adding solver and penalty for clarity
model.fit(X_train, y_train)

print("Model training complete.")

Model training complete.
```

### **Model Evaluation**

After training the Logistic Regression modele evaluainge its performance using:

- Classification Report: Provides precision, recall, F1-score, and support for each class.
- Confusion Matrix: Shows how well the model correctly classifies each category.
- Accuracy Score: Measures overall model accuracy.

• ROC-AUC Score: Evaluates model performance based on the area under the ROC crve.

```
from sklearn.metrics import classification report, confusion matrix,
accuracy_score, roc_auc_score
# Make predictions
y pred = model.predict(X test)
# Print evaluation metrics
print("Classification Report:\n", classification report(y test,
y pred))
print("Confusion Matrix:\n", confusion matrix(y test, y pred))
print("Accuracy Score:", accuracy score(y test, y pred))
# Calculate ROC-AUC Score (for binary classification)
y prob = model.predict proba(X test)[:, 1] # Get probability of
positive class
roc auc = roc auc score(y test, y prob)
print("ROC-AUC Score:", roc auc)
Classification Report:
                            recall f1-score
               precision
                                               support
                   0.81
           0
                             0.80
                                       0.81
                                                    99
           1
                   0.65
                             0.67
                                       0.66
                                                    55
                                       0.75
                                                   154
    accuracy
                   0.73
                             0.74
                                       0.73
                                                   154
   macro avg
                   0.76
                             0.75
                                       0.75
                                                   154
weighted avg
Confusion Matrix:
 [[79 20]
 [18 37]]
Accuracy Score: 0.7532467532467533
ROC-AUC Score: 0.8145087235996327
```

#### **Confusion Matrix Visualization**

A confusion matrix provides a detailed breakdown of model predictions by showing:

- True Positives (TP) Correctly predicted as positive (Diabetes).
- True Negatives (TN) Correctly predicted as negative (No Diabetes).
- False Positives (FP) Incorrectly predicted as positive (Type I Error).
- False Negatives (FN) Incorrectly predicted as negative (Type II Error).

A well-balanced confusion matrix suggests a model that correctly classifies instances across both casses.

```
import seaborn as sns
import matplotlib.pyplot as plt
```

```
from sklearn.metrics import confusion_matrix

# Generate the confusion matrix
cm = confusion_matrix(y_test, y_pred)

# Plot the confusion matrix as a heatmap
plt.figure(figsize=(6,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['No Diabetes', 'Diabetes'], yticklabels=['No Diabetes', 'Diabetes'])

# Labels and title
plt.xlabel('Predicted Label')
plt.ylabel('Actual Label')
plt.title('Confusion Matrix')

# Show plot
plt.show()
```



## Receiver Operating Characteristic (ROC) Curve

The **ROC Curve** is a graphical representation of a classifier's performance across different threshold values. It plots:

- True Positive Rate (TPR) = Sensitivity (Recall)
- False Positive Rate (FPR) = 1 Specificity

#### **Key Insights:**

- A perfect classifier has an area under the curve (AUC) of 1.0.
- A random classifier (no predictive power) has an AUC of 0.5 (diagonal line).
- A model with **higher AUC** is generally better at distinguishing between lasses.

```
from sklearn.metrics import roc curve, auc
import matplotlib.pyplot as plt
# Compute ROC curve and AUC score
y prob = model.predict proba(X test)[:, 1] # Probabilities for
positive class (Diabetes)
fpr, tpr, _ = roc_curve(y_test, y_prob) # Compute False Positive Rate
and True Positive Rate
roc auc = auc(fpr, tpr) # Compute AUC score
# Plot ROC curve
plt.figure(figsize=(6,4))
plt.plot(fpr, tpr, label=f'ROC Curve (AUC = {roc auc:.2f})',
linewidth=2)
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', linewidth=1) #
Diagonal reference line
# Labels and title
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc='lower right')
# Show plot
plt.show()
```



## Comparing Logistic Regression with Other Models

To evaluate the effectiveness of **Logistic Regression**, we compare it with:

- **Decision Tree Classifier** A rule-based model that splits data based on conditions.
- Random Forest Classifier An ensemble model that aggregates multiple Decision Trees.

#### **Key Differences:**

| Model                  | Strengths                                          | Weaknesses                        |
|------------------------|----------------------------------------------------|-----------------------------------|
| Logistic<br>Regression | Interpretable, works well for linear relationships | Struggles with non-linear data    |
| Decision<br>Tree       | Handles non-linearity, simple to interpret         | Prone to overfitting (deep trees) |
| Random<br>Forest       | Reduces overfitting, handles large feature spaces  | Can be computationally expensive  |

We evaluate these models using classification reports and accuacy scores. acy scores.

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score
# Train Decision Tree model
```

```
dt model = DecisionTreeClassifier(random state=42)
dt model.fit(X train, y train)
dt pred = dt model.predict(X test)
# Train Random Forest model
rf model = RandomForestClassifier(n estimators=100, random state=42)
rf_model.fit(X_train, y_train)
rf pred = rf model.predict(X test)
# Print performance comparison
print("Decision Tree Classification Report:\n",
classification report(y test, dt pred))
print("Random Forest Classification Report:\n",
classification report(y test, rf pred))
# Print Accuracy Scores
print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred))
print("Decision Tree Accuracy:", accuracy_score(y_test, dt_pred))
print("Random Forest Accuracy:", accuracy score(y test, rf pred))
Decision Tree Classification Report:
               precision
                            recall f1-score
                                                support
           0
                                                    99
                   0.83
                             0.76
                                        0.79
           1
                   0.62
                             0.73
                                        0.67
                                                    55
                                                   154
    accuracy
                                        0.75
                             0.74
                                        0.73
                                                   154
   macro avq
                   0.73
weighted avg
                   0.76
                             0.75
                                        0.75
                                                   154
Random Forest Classification Report:
                            recall f1-score
               precision
                                                support
           0
                   0.79
                             0.79
                                        0.79
                                                    99
           1
                   0.62
                             0.62
                                        0.62
                                                    55
    accuracy
                                        0.73
                                                   154
                   0.70
                             0.70
                                        0.70
                                                   154
   macro avq
                   0.73
weighted avg
                             0.73
                                        0.73
                                                   154
Logistic Regression Accuracy: 0.7532467532467533
Decision Tree Accuracy: 0.7467532467532467
Random Forest Accuracy: 0.72727272727273
```

#### Conclusion

This notebook enhances the **Logistic Regression lab** by:

• Applying the model to a real-world dataset (Pima Indians Diabetes dataset) to demonstrate practical usage.

- Visualizing results using confusion matrices, ROC curves, and performance metrics, providing intuitive insights into model predictions.
- Comparing Logistic Regression with Decision Trees and Random Forests to evaluate how different classification methods perform.
- Clarifying key concepts such as probability estimation, decision boundaries, and regularization in Logistic Regression.
- **Exploring advanced evaluation techniques** beyond accuracy, including precision-recall trade-offs and AUC-ROC analysis.
- **Providing hands-on implementation** with structured, executable Python code for seamless experimentation.

#### **Key Takeaways**

- **Logistic Regression** is an effective model for binary classification, particularly when relationships are **linear**.
- **Decision Trees** capture **non-linear decision boundaries**, but they can easily **overfit** without proper pruning.
- Random Forests provide better generalization by aggregating multiple trees, often leading to higher accuracy.
- Visualizations such as the confusion matrix highlight misclassifications, helping to diagnose errors in model predictions.
- The ROC curve demonstrates how well each model differentiates between positive and negative cases, with the AUC score indicating predictive power.
- **Evaluation beyond accuracy is crucial**—metrics like precision, recall, and F1-score provide deeper insights into model reliability.

#### Visual Insights

- **Confusion Matrix**: Provided a clear view of correct and incorrect predictions, helping to assess class imbalances.
- **ROC Curve**: Showed how well the model distinguishes between classes at different threshold levels.
- Feature Scaling Impact: Improved Logistic Regression's convergence and performance.
- **Model Comparisons**: Highlighted strengths and weaknesses of each classifier, demonstrating why Random Forest often outperforms individual trees.

#### Final Thoughts

This enhanced lab **bridges theoretical concepts with practical insights** by combining **model implementation**, **visualization**, and performance evaluation.

By **integrating real-world data, visual analysis, and comparative modeling,** this notebook provides a **comprehensive learning experience** in classification techniques. []

Future improvements could explore hyperparameter tuning, feature engineering, and deep learning-based classifiers for more advanced insights.

# **REFERENCE**

[UCI Machine Learning]. (2017). [Pima Indians Diabetes Dataset], [Version 1], https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database