Tentamen SSY080 Transformer, Signaler och System, D3

Examinator: Ants R. Silberberg

1 November 2018 kl. 08.30-12.30 sal: Hörsalsvägen

Förfrågningar: Ants Silberberg, tel. 1808 Resultat: Rapporteras in i Ladok

Granskning: Torsdag 15 november kl. 12.00 - 13.00, rum 3311 på

plan 3 i ED-huset (Lunnerummet), korridor parallell med Hörsalsvägen.

Bedömning: Del A: Rätt svar ger 1p.

Del B: En korrekt och välmotiverad lösning med ett tyd-

ligt angivet svar ger full poäng.

Hjälpmedel

- Typgodkänd miniräknare
- Beta Mathematics Handbook
- Fyra sidor med egna anteckningar. Endast egenproducerade och handskrivna anteckningar. Inga kopior eller 'maskin(dator)skriven' text.

Krav för godkänt.

Del A	5 p	av tot 10 p
Del B	7 p	av tot 15 p

Betygsgränser.

Poäng	12-15	16-20	21-25
Betyg	3	4	5

Lycka till!

Del A. En poäng (1p) per A-uppgift. **Ange endast svar**. Flera del A svar kan ges på samma blad. Inga uträkningar eller motsvarande kommer att beaktas.

- A1. Beräkna z-transformen för signalen x[n+2]u[n] då $x[n]=(0.5)^n$
- A2. Impulssvaren h[n] från fyra olika diskreta system visas överst i figur 1. Övriga värden hos h[n] som ej visas i figurerna är noll. Stegsvaren som representerar dessa fyra olika system visas nederst i samma figur men i blandad ordning. Para ihop impulssvaren (A,B,C,D) med motsvarande stegsvar (1,2,3,4).

Figur 1: Impulssvar och stegsvar från fyra diskreta system

A3. Den kontinuerliga signalen $x(t) = e^{-5t}u(t)$ samplas med sampelintervallet T = 20 ms och bildar den diskreta signalen x[n]. Första sampelvärdet tas vid t = 0. Beräkna z-transformen för x[n].

A4. Signalen $x(t)=\sin(\omega t)$ samplas med sampelintervallet T och bildar den diskreta signalen $x[n]=\sin(\Omega n)$ som visas i figur 2. Vilket värde har Ω ?

Figur 2: Diskret signal x[n]

A5. Ett kontinuerligt LTI-system H(s) har ett frekvenssvar enligt Bodediagrammet i figur 3. En kontinuerlig sinusformat signal utgör insignal till systemet. Signalens periodtid är $\frac{\pi}{500}$ s. Tre olika par av insignal (heldragen) och utsignal (streckad) från ett LTI-system visas i figur 4. Vilken av dem (A,B,C) svarar mot vårt system H(s)?

Figur 3: Frekvenssvar till H(s)

Figur 4: Tre insignal(-)/utsignal(\cdots) par

A6. En kontinuerlig sinusformad signal $x(t) = A\sin(\omega t)$ bildar insignal till ett LTI-system med överföringsfunktionen

$$G(s) = \frac{K}{s+5}$$

där A och K är konstanter. Vid vinkelfrekvensen $\omega=100~{\rm rad/s}$ är utsignalens amplitud =8. Vilken amplitud får utsignalen om vinkelfrekvensen ökar till $\omega=1000~{\rm rad/s}$?

A7. En period av en kontinuerlig periodisk signal visas i figur 5. Signalens Fourierserie kan tecknas som

$$x(t) = \frac{1}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi t}{L}\right)$$

Vilken är signalens fundamentala period T_o ?

Figur 5: En period av x(t)

A8. Signalen $x(t)=\cos(\omega t)$ samplas med sampelintervallet $T=\frac{\pi}{60}$ s och bildar den diskreta signalen x[n]. Fyra olika vinkelfrekvenser ω används enligt nedan och fyra diskreta signaler bildas.

k	1	2	3	4
$\omega [\mathrm{rad/s}]$	$\omega_1 = 10$	$\omega_2 = 50$	$\omega_3 = 70$	$\omega_4 = 170$
Signal	$x_1[n]$	$x_2[n]$	$x_3[n]$	$x_4[n]$

Är någon/några av signalerna $x_k[n]$ lika (k = 1, 2, 3, 4)?

A9. Vilken kontinuerlig signal x(t) har Fouriertransformen

$$X(j\omega) = \begin{cases} 1, & |\omega| < a \\ 0, & \text{annars} \end{cases}$$

A10. En periodisk kontinuerlig signal $x(t) = x(t + T_o)$ som liknar en fyrkantsvåg samplas med samplingsvinkelfrekvensen 1000 rad/s. Antal sampel $N = 2^{11}$. Beloppet av signalens DFT (|X[k]|) för k = 0 till 40 visas i figur 6. Ingen aliasing (vikning) förekommer. Vilken är signalens fundamentala period T_o ?

Figur 6: Del av signalens DFT som |X[k]|

Del B. Fem poäng (5p) per B-uppgift. Fullständiga lösningar skall redovisas.

B11. Ett kontinuerligt LTI-system H(s) beskrivs med differentialekvationen

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 5x(t) .$$

(a) Systemet befinner sig i vila. Beräkna systemets utsignal y(t) då insignalen är (4p)

$$x(t) = e^{-2t}u(t) .$$

(b) Om systemet realiseras enligt figur 7 och $H_1(s) = \frac{2}{s+1}$. Vad är då $H_2(s)$? (1p)

Figur 7: Sammansatt system.

B12. Ett diskret LTI-system H(z) beskrivs med differensekvationen

$$y[n] + y[n-1] + 0.16y[n-2] = x[n-1] + 0.32x[n-2].$$

(a) Systemet befinner sig i vila. Beräkna systemets utsignal y[n] då insignalen är (4p)

$$x[n] = \left(-\frac{1}{2}\right)^n u[n] .$$

(b) Vad blir y[0]? (1p) (Kan användas för att snabbkontrollera resultatet)

B13. En kontinuerlig och periodisk signal kan beskrivas enligt ekvation 1. Signalen kan även tecknas som en Fourierserie enligt ekvation 2.

- a) Vilken grundvinkelfrekvens har signalen x(t)? (1p)
- b) Beräkna Fourierseriekoefficienten c_0 . (1p)
- c) Beräkna övriga Fourierseriekoefficienter c_k . (3p)

$$x(t) = \sum_{n = -\infty}^{\infty} u(t - 4n) - u(t - 4n - 1)$$
(1)

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 (2)

Al
$$x[n] = (0,5)^n$$
 $n+2$ z n
 $x[n+2] = (0,5)^n = 0,5 \cdot 0,5$
 $x[n+2]u[n] = 0,5 \cdot 0,5^n u[n]$

$$X(z) = f\{0,5,0,5,u[n]\} =$$

$$=0.5 \mathcal{L} \{0.5 \cdot u[n]\} = 0.25 \cdot \frac{2}{2-0.5}$$

AZ. Stegsvar: SENJ, Impulssvar: hEN]

$$SLnJ = \frac{D}{k=0} h[k] \qquad qer \qquad A - 2$$

$$k=0 \qquad \qquad B - 1$$

$$C - 4$$

$$D - 3$$

A3,
$$x(t) = e^{-5t}u(t)$$
, $T = 20 \text{ ms}$
 $-5T \cdot n$
 $x[n] = x(nT) = e^{-5t}u(t)$ $= \left(5 \cdot T = 0, 1\right)^{n}$
 $= \left(e^{-0,1}\right)^{n} \cdot u[n]$

2-transformera

$$X(z) = \frac{Z}{Z - e^{-0.1}} = \frac{Z}{Z - \frac{1}{e^{0.1}}}$$

A5. Periodhid
$$T = \frac{4t}{500} \le$$

$$W = \frac{2tr}{T} = \frac{2tr}{1500} = 1000 \text{ rad/s}$$

$$Wagnihude = 0 dB \ vid \ 1000 \text{ rad/s} \quad (OdB = 1qqr)$$

$$Phase $x - 70^{\circ} \quad (negahiv = 7)^{\circ} \quad (negah$$$

Svar. A

A6.
$$G(5) = \frac{K}{S+5}$$
, $G(i\omega) = \frac{K}{i\omega+5} = \frac{K/5}{1+i\frac{5\omega}{5}}$

$$|G(i\omega)| = \frac{K}{5} \cdot \frac{1}{|1+(\frac{5\omega}{5})^2|} \approx \frac{K}{5} \cdot \frac{5}{\omega} \text{ for } \omega 775$$

$$|G(j100)| = 1000 = 1$$

Alt:
$$|G(iw)|$$
 faller med $20dB/delead$ for $\omega 774s=5$ och $20\frac{10}{6}(i_11000)$ $|G(i_1100)|$ $|G(i_1100)|$ $|G(i_1100)|$

$$\log \left(\frac{|G(i1000)|}{|G(i100)|} \right) = -1 \Rightarrow \frac{|G(i1000)|}{|G(i100)|} = \frac{1}{10}$$

A7.
$$\chi(t) = \frac{1}{2} - \frac{1}{4t} \sum_{n=1}^{\infty} \frac{1}{n} Sin(\frac{n t t}{L})$$
 eller all many $\chi(t) = \frac{1}{2} - \frac{1}{4t} \sum_{n=1}^{\infty} \frac{1}{n} Sin(n t w_0 t)$

$$w_0 = \frac{tt}{L} \implies T_0 = \frac{2tr}{w_0} = \frac{2tr}{tt} = 2L$$

A8,
$$\chi(t) = \cos(\omega t)$$
, $T = \frac{t}{60} \Rightarrow \omega_s = \frac{2t}{T} = 120 \text{ rad/s}$
 $\omega_1 = 10 \quad z \quad \omega_2 \quad \text{Ingen a diasing} \quad \Omega_2 = \omega_T = \frac{t}{6}$
 $\omega_2 = 50 \quad z \quad \omega_3 \quad \text{Ingen a diasing} \quad \Omega_2 = \omega_1 = \frac{5t}{6}$
 $\omega_3 = 70 \quad z \quad \omega_3 \quad \text{Adasing} \quad \Omega_3 = \omega_7 = \frac{7t}{6}$

Note a $\omega_s - \omega_3 = 120 - 70 = 50 = \omega_2$
 $\omega_4 = 170 \quad z \quad \text{Adasing} \quad \omega_4 = \omega_5 + \omega_2 \quad \Omega_4 = (\omega_5 + \omega_2)T = 2t + 122$
 $\chi[n] = (\cos(\Omega_1 n)) \quad \text{Undersiks}$
 $\chi_2[n] = (1, -0.866, 0.5, 0, -0.5, 0.866, ...)$

S var: Xz [n], Xz [n] och Xu[n] är lika

Xz [n] = (1, -0,866, 0,5,0, -0,5, 0,866, ...

A9.
$$X(i\omega) = \begin{cases} 1 & |\omega| < \alpha \\ 0 & |\alpha| < \alpha \end{cases}$$

Tabell get
$$x(t) = T^{-1} \int X(i\omega)^2 =$$

$$= \frac{\sin(at)}{Ht} = \frac{9}{At} \cdot \frac{\sin(at)}{at} =$$

$$= \frac{9}{At} \cdot \frac{\sin(at)}{at} = \frac{9}{At}$$

A10.
$$\omega_s = 1000 \text{ rad/s}$$
 $N = 2'' = 2048$
 $k = 7 \quad (\text{ur figur, qer qrund vinkel frekvens } \omega_o)$
 $\omega_o = \frac{k}{N}, \omega_s$

$$T_{0} = \frac{2\pi}{w_{0}} = \frac{2\pi \cdot 2048}{1000} \approx 1,845$$

BII.
$$\frac{d^2yH}{cH^2} + \frac{d^2yH}{cH^2} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$$

 $\frac{d^2yH}{cH^2} + \frac{d^2yH}{dt} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$
 $\frac{d^2yH}{cH^2} + \frac{d^2yH}{dt} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$
 $\frac{d^2yH}{cH^2} + \frac{d^2yH}{dt} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$
 $\frac{d^2yH}{cH^2} + \frac{d^2yH}{dt} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$
 $\frac{d^2yH}{dt} + \frac{d^2yH}{dt} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$
 $\frac{d^2yH}{dt} + \frac{d^2yH}{dt} + \frac{3yH}{cH^2} = \frac{dxH}{dt} + \frac{5xH}{s}$
 $\frac{(5)}{(5)} = \frac{5xH}{s}$
 $\frac{3yH}{cH^2} + \frac{3yH}{cH^2} + \frac{3yH}{s} = \frac{dxH}{s}$
 $\frac{3yH}{cH^2} + \frac{3yH}{s} = \frac{dxH}{s}$
 $\frac{3yH}{cH^2} + \frac{3yH}{s} = \frac{dxH}{s}$
 $\frac{3yH}{cH^2} + \frac{3yH}{s} = \frac{dxH}{s}$
 $\frac{3yH}{s} = \frac{3yH}{s}$
 $\frac{3yH}{s} = \frac{3yH}{s}$

$$ay \times (1+) = e^{-2t} u(t) \xrightarrow{X} X(s) = \frac{1}{s+2i}$$

 $Y(s) = H(s), X(s) = \frac{s+5}{(s+i)(s+3)(s+2)} = \frac{A}{s+3} + \frac{B}{s+2}$

$$\frac{1}{2} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3}$$

$$\frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}$$

B12,
$$y[n] + y[n-i] + O_{i}by[n-2] = x[n-i] + O_{i}32x[n-2]$$

$$Z - transformera$$

$$Y(z) \left(1 + z^{-1} + O_{i}16z^{-2}\right) = X(z)\left(z^{-1} + O_{i}32z^{-2}\right)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1} + O_{i}32z^{-2}}{1 + z^{-1} + O_{i}16z^{-2}} = \frac{z + O_{i}32}{z^{2} + z + O_{i}16}$$

$$Y(z) = \frac{Z}{Z(z)} = \frac{Z}{Z(z)} + \frac{Z}{Z(z)} + \frac{Z}{Z(z)} = \frac{Z}{Z(z)} + \frac{Z}{Z(z)} + \frac{Z}{Z(z)} = \frac{Z}{Z(z)} + \frac{Z}{Z(z)} + \frac{Z}{Z(z)} + \frac{Z}{Z(z)} = \frac{Z}{Z(z)} + \frac$$

$$Y(12) = H(12), X(12) = \frac{(2+0.32) 2}{(2+0.2)(2+0.8)(2+0.5)}$$

$$Y(12) = \frac{(2+0.32) 2}{(2+0.32)(2+0.5)} = \frac{A}{4} = \frac{B}{4} = \frac{C}{4}$$

$$\frac{2}{4} = \frac{(2+0.2)(2+0.8)(2+0.5)}{(2+0.5)(2+0.5)} = \frac{2+0.2}{2+0.2} = \frac{2+0.5}{2+0.5}$$

$$Z+0.32 = A(Z+0.8)(Z+0.5) + B(Z+0.2)(Z+0.5) + C(Z+0.2)(Z+0.8)$$

$$Z = -0.2: \quad 0.12 = A(0.6)(0.3) \quad A = \frac{0.12}{0.6.0.3} = \frac{12}{6.3} = \frac{2}{3}$$

$$Z = -0.8: \quad -0.48 = B(-0.6)(-0.3) \quad B = \frac{-0.48}{0.6.0.3} = -\frac{48}{18} = -\frac{8}{3}$$

$$Z = -0.5: \quad -0.18 = G(-0.3)(0.3) \quad C = \frac{0.18}{0.3.0.3} = \frac{18}{9} = 2$$

$$Y(z) = \frac{2}{3}, \frac{z}{z+0.2} = \frac{8}{3}, \frac{z}{z+0.8} + z, \frac{z}{z+0.5}$$

$$\gamma [n] = \mathcal{Z} \left\{ \gamma(2) \right\} = \left(\frac{2}{3} \cdot (-0.2)^{n} - \frac{8}{3} (-0.8)^{n} + 2(-0.5)^{n} \right) \cup [n]$$

by
$$y[0] = \frac{2}{3} - \frac{8}{3} + 2 = 0$$

Stämmer! Se diff. ekv vid $n=0$ med $y[n-1] = y[n-2] = 0$
och $x[n-1] = x[n-2] = 0$

 $\chi(t) = \sum_{n=1}^{\infty} u(t-4n) - u(t-4n-1) \qquad \chi(t)$ $\frac{\tau}{c_{1}} = \frac{1}{\sqrt{k\omega_{1}}} = \frac{1}{\sqrt{k\omega_{2}}} = \frac{1}{\sqrt{k\omega_{2}}$ $\frac{1}{4} \left[\frac{-ikw_0t}{e} \right] \frac{1}{4} \left(-ikw_0 \right) \left[\frac{-ikw_0}{e} \right] = \frac{1}{4} \left[\frac{-ikw_0}{e} \right]$ $\frac{j}{k\cdot 4\cdot \forall} = \frac{1}{e} = \frac{1}{2k\pi} \begin{bmatrix} -j\frac{\pi}{2} \\ e \end{bmatrix} = \frac{1}{2k\pi} \begin{bmatrix} -j\frac{\pi}{2} \\ e \end{bmatrix} = \frac{1}{k\pi} \begin{bmatrix} -j\frac{\pi}{2} \\ e \end{bmatrix}$ by Studera k=0 separat 6 = 4 Stat = 4 [t] = 4