Chapter Test

Classify each statement as true or false.

- 1. Opposite angles of an inscribed quadrilateral must be congruent.
- 2. If a chord in one circle is congruent to a chord in another circle, the arcs of these chords must have congruent central angles.
- 3. A diameter that is perpendicular to a chord must bisect the chord.
- 4. If a line bisects a chord, that line must pass through the center of the circle.
- 5. If \overrightarrow{GM} intersects a circle in just one point, \overrightarrow{GM} must be tangent to the circle.
- **6.** It is possible to draw two circles so that no common tangents can be drawn.
- 7. An angle inscribed in a semicircle must be a right angle.
- 8. When one chord is farther from the center of a circle than another chord, the chord farther from the center is the longer of the two chords.
- **9.** In $\bigcirc O$, if $\widehat{mAB} = 100$, then $\widehat{mAC} = \frac{?}{}$.
- **10.** If the radius of $\bigcirc O$ is 17 and AB = 30, then OE = ?

\overline{DA} and \overline{DB} are tangent to the circle.

11. If
$$\overline{AB} \cong \overline{BC}$$
 and $\widehat{mBC} = 80$, then $m \angle ABC = \frac{?}{}$.

12. If
$$m \angle D = 110$$
, then $m \angle BCA = \frac{?}{}$.

13. Given: $\widehat{mBC} = \widehat{mAB}$ Prove: $\overline{AC} \parallel \overline{DB}$

- **14.** If $\widehat{mAC} = 40$ and $\widehat{mBD} = 28$, then $m \angle AEC = \frac{?}{}$.
- **15.** If AE = 10, EB = 9, and CE = 15, then $ED = \frac{?}{}$.

\overline{PT} is tangent to the circle.

16. If
$$\widehat{mRS} = 120$$
 and $\widehat{mST} = 160$, then $m \angle P = \frac{?}{}$.

17. If
$$PT = 12$$
 and $PS = 18$, then $PR = \frac{?}{}$.

18. Given: $\Box ABCD$ is inscribed in a circle. Prove: ABCD is a rectangle.

