

\(\frac{1}{2}\) \(\frac{1}{2}\ liz = lim (lim x - y) = lim x = 1.

liz = lim (lim x - y) = lim x = 1.

liz = lim (lim x - y) = lim - y = -1. Cum lizzele sista (x,y) co,0) f(x,y) i) $f(x,y) = \frac{2}{3}x$ nu are e^{-2x} nu e^{-2x} $(\times n, yn) = (\wedge, \sqrt{yn}) + (0,0)$ $\lim_{n\to\infty} f(x_n, y_n) = \lim_{n\to\infty} \frac{1}{n} + \lim_{n\to\infty} \frac{3}{n}$ $(\times_{n}, y_{n}) = (-\frac{1}{n}, y_{n}) \rightarrow (0, 0)$ lim f(x,y) (x,y)->(0,0) f(x,y) $(x_{1},y_{1})=(x_{1},y_{2})=$

 $\begin{array}{c|c} & & \\ & \times & \\ & \times & \\ & & \end{array}$ $6. f(x,y) = \int_{x+y}^{x+y} (x,y) + (0,0)$ 10, (x, y) = (0,0) i) f = cont partial cont(0,0) c= > x = 0 cig=0 cin = 0 cin = $\lim_{x \to 0} f(x, 0) = 0$ $\lim_{x \to 0} f(0, y) = 0$ $\lim_{x \to 0} f(0, y) = 0$ $\lim_{x \to 0} f(0, y) = 0$ => f - partial cont u) f_dixont. $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ $\lim_{x \to y} f(x,y) = \lim_{x \to y} \frac{2}{x}$ (x,y) $(x,y) \neq 0 = 0$ $f \in discontinua$

x,y,>,(0,0) f(x,y)=0 pimx < X $\lim_{(x,y)\to(0,0)} \frac{3}{x+y} \frac{3}{x+y$ (y > 6,0) e continua $0 + f(x, y) = (-\cos(x^3y^3), (x, y) + (0, 0)$ 0 + (x, y) = (0, 0) 0 + (x, y) = (0, 0)(x,y)-7(0,0) f (x,y) = 0 $\lim_{(x,y)\to(0,0)} 1 - \cos(x^3y^3) \times y$ $\lim_{(x,y)\to(0,0)} 1 - \cos(x^3y^3) \times y$ $f(x,y) = \begin{cases} e^{x^2} + e^{x^2} \\ e^{x^2} + e^{x^2} \end{cases}$ $\frac{2}{2}$ $\frac{2}$ (x,y)-x(0,0) $=\lim_{x,y\to(0,0)} (x,y) \rightarrow (0,0)$ $=\lim_{x,y\to(0,0)} (x,y) \rightarrow (0,0)$

