

Claude Fried

2021

Problem Statement

Does the batting order impact the expected runs scored?

Are baseball lineups optimal?

Can we improve on tradition?

Business Value

- Finding the best batting order will improve the team's performance.
- By scoring more runs, the team is more likely to win more games.
- Increased team performance will lead to:
 - 1. Increased ticket sales.
 - 2. Increased merchandise sales.
 - 3. Increased publicity.

Methodology

1. Scrape regular-season data for every at-bat since 1950.

Engineer Players to track career stats and Pitcher/Hitter interactions.

- 3. Model to predict the outcome of a given at-bat (probabilities).
- 4. Create and deploy *Simulator* to simulate games and optimize batting orders.

Baseball Recommendations

- There is no one-size-fits-all method for setting your lineup.
 - Opposing pitchers' tendencies, game conditions, and player interactions should be at the forefront of the decision-making process.

After simulating 100 randomly-shuffled lineup permutations, it is clear how impactful the batting order is on expected runs scored.

After 300 innings, some batting orders were outperforming others by over 100%.

Baseball Recommendations

- When evaluating prospects, watch total-bases and strikeouts.
 - There is a strong correlation between <u>number of career-at-bats</u> and <u>difference between total-bases and strikeouts</u>.

A hitter's ability to hit for a high total-bases and low strikeout total shows longevity in the league.

Player contracts can use this information to offer long-term deals for team-friendly money.

Baseball Recommendations

- Young hitters are prone to sacrifice and strikeout.
- More experienced hitters are prone to hit homeruns and draw walks.

 Hitters with a high on-base-plus-slugging (OPS) tend to sacrifice very rarely while hitting many homeruns and drawing walks.

Modeling Recommendations

- 1. Model size and performance should be considered.
 - A stronger model with better predictions will be much bigger in size and slower to compute predictions and optimizations.

There is a massive difference in model performance. The fastest models were making predictions several hundred times faster than the slowest models.

Modeling Validation

Without having any prior knowledge about "runs scored", the models' predictions (compared to real past data) are quite good.

Yankees: Average Runs per Game

<u>Actual:</u>-----4.519 Simulated:----4.296

NN - 2010 Yankees Runs per Home Game

Mariners: Average Runs per Game

<u>Actual:</u>-----3.753 <u>Simulated:</u>-----3.914

NN - 2010 Mariners Runs per Home Game

Future Work / Next Steps

 Try out different modeling architectures to try to improve performance.

- Engineer more features:
 - More stats for players.
 - Hitter-vs.-Pitcher interaction stats.
- Collect data and do research on the <u>minor league system</u> to acquire high-quality prospects to fit the team's roster.

Thank you!

Questions?

Data source: Retrosheet.org

• Flatiron School – Data Science Bootcamp

The information used here was obtained free of charge from and is copyrighted by Retrosheet. Interested parties may contact Retrosheet at "www.retrosheet.org"