#### Lab 6: RNN

# Lab Objective:

In this project, you are going to build a LSTM structure to do the copy experiment.

## Turn in:

Report: 4/18(二) 18:00 Demo: 4/18(二) 下課後

## **Lab Description:**

- LSTM is a RNN-based network
  - Please see L10 lecture note.
- Neural Turing Machine(NTM)
  - NTM combines recurrent neural network controller and external memory resources.
  - Controller: the controller interacts with the external world via input and output vectors. It also interacts with a memory matrix using selective read and write operations.
  - Read and Write heads: the way controller interacts with memory matrix.



#### • Copy task:

- The input of the network is a sequence random integer (numpy.random.randint()).
- After encode input sequence, the output is exactly the same sequence.
- LSTM experiment shown below (graphical result).



# **Implementation Details:**

### Parameter

◆ Sequence length: see the table below.

lacktriangle Word size = 256.

♦ Batch size: 64

♦ Hidden size: 500

♦ Embedding size: 100

♦ Iteration: 10000

#### ■ LSTM

◆ You can use sequence-to-sequence model (embedding\_rnn\_seq2seq).

◆ You should not give the decoder input.



◆ You need to implement padding or bucket.

# Requirements:

1. Please show the accuracy rate table.

| Training |    | 20  | Training |    | 30  |
|----------|----|-----|----------|----|-----|
| length   |    |     | length   |    |     |
|          | 10 | 99% |          | 20 | 99% |
| Testing  | 20 | 99% | Testing  | 30 | 99% |
| length   | 30 | 10% | length   | 50 | 10% |
|          |    |     |          |    |     |

- 2. You need to use encode-decode structure.
- 3. Word size = 256.

### References:

- [1] Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
- [2] https://www.tensorflow.org/tutorials/seq2seq/
- [3] https://www.tensorflow.org/api\_docs/python/tf/contrib/legacy\_seq2seq/embeddin g rnn seq2seq

# Report Spec: [black: Demo, Gray: No Demo]

- 1. Introduction (15%, 15%)
- 2. Experiment setup (15%, 15%)
- 3. Result (30%, 40%)
- 4. Discussion (20%, 30%)

Demo (20%) [抽 20 人]

----實驗結果標準-----

Training length >= Testing length

Accuracy  $97 \sim 100\% = 100\%$ 

Accuracy  $95\sim97\% = 90\%$ 

Accuracy  $90 \sim 95\% = 80\%$ 

Training length < Testing length 需可執行

### Extra Bonus:

- Visualize the LSTM experiment results. (you can use any other tools) 5%
- You have reasonable accuracy rate when training length < testing length 10%
- Use NTM to implement the experiment. 20% (demo)