# Układ okresowy pierwiastków

Projekt wykonywany w ramach zajęć z przedmiotu:

Bazy danych I

# Tadeusz Raczek

Wydział Fizyki i Informatyki Stosowanej Akademii Górniczo-Hutniczej Informatyka Stosowana Rok 3 I st.

#### Założenia do projektu

#### Temat projektu

Aplikacja internetowa przechowująca dane o pierwiastkach chemicznych w bazie danych, pozwalająca na ich przejrzystą prezentację.

#### Funkcjonalności

Pierwiastki z bazy danych są wyświetlane w układzie okresowym na dwa sposoby:

- Pogrupowane według właściwości alkalicznych, oznaczone kolorami wg legendy
- Pogrupowane według stanu skupienia. Na podstawie temperatur wrzenia i topnienia ustalany jest stan skupienia w temperaturze 20°C Po wpisaniu w formularz zadanej temperatury układ zmienia swoje stany skupienia.

W układzie okresowym podane są informacje: . symbol, nazwa, liczby i masy atomowej oraz wartościowości które może przyjąć pierwiastek.

Po kliknięciu na każdy z pierwiastków wyświetlają się rozszerzone dane dot. pierwiastka, oraz jego odkrycia (jeśli są znane): roku i odkrywców. Ponadto baza danych potrafi zwrócić obliczoną konfigurację podpowłokową, która tu jest wyświetlana.

Ponadto informacje o pierwiastkach mogą być wyszukane na podstawie początkowego fragmentu symbolu lub nazwy. Po wpisaniu szukanego tekstu, program wyświetla w postaci linków pierwiastki pasujące do wzorca, po kliknięciu w które mamy dostęp do rozszerzonych danych nt. pierwiastka.

Wśród informacji o pierwiastku znajduje się także rok odkrycia i odkrywcy. Na nazwisko(lub nazwę w przypadku instytucji naukowych) odkrywcy można kliknąć i otrzymać informację na jego temat oraz o pierwiastkach odkrytych przez niego.

Odkrywców również możemy wyszukiwać wpisując w odpowiedni formularz albo fragment imienia albo nazwiska. Wtedy też pojawia się lista pasujących odkrywców na której elementy można kliknąć aby przejść do danych odkrywcy.

Program pozwala ponadto na przeglądanie odkryć chronologicznie, pogrupowanych według wieku w którym został odkryty wraz z odkrywcami. Dostępna jest też lista wszystkich odkrywców.



#### Logika bazy danych

#### Tabele

#### Pierwiastki

- idpierwiastki SERIAL NOT NULL pole będące identyfikatorem i kluczem głównym
- alkaliczneWlasciwosci\_idalkaliczneWlasciwosci INTEGER NOT NULL-klucz obcy tabeli alkaliczneWlasciwosci
- Wystepowanie\_idWystepowanie INTEGER NOT NULL ,- klucz obcy do tabeli Wystepowanie
- symbol VARCHAR(5) ,
- nazwaPL VARCHAR(30) ,
- nazwaLAT VARCHAR(30) ,
- masaAt REAL ,
- liczbaAt INTEGER ,
- grupa INTEGER ,
- okres INTEGER ,
- tempTopnienia REAL ,
- tempWrzenia REAL ,
- elektroujemnosc REAL ,
- blok VARCHAR(10) ,
- opis VARCHAR(100),

#### Odkrywcy

- idOdkrywcy SERIAL NOT NULL, -klucz główny tabeli
- imie VARCHAR(512), pole ma tak dużo znaków, gdyż w przypadku instytucji naukowych cała nazwa przechowywana jest w polu imię.
- nazwisko VARCHAR(30), dla instytutów pole jest puste
- opis VARCHAR(512),

#### Wystepowanie

- idWystepowanie SERIAL NOT NULL klucz główny
- nazwaGdzie VARCHAR(30), np. naturalny, z rozpadów ...

#### Wartosciowosci

- idWartosciowosci SERIAL NOT NULL, klucz główny
- wartosciowosc VARCHAR(10) przechowuje rzymski symbol wartościowości

#### TypWartosciowosci

- idtypWartosciowosci SERIAL NOT NULL klucz główny
- nazwaTypuWartosciowosci VARCHAR(20) pierwiastki mogą przyjmować pewne wartościowości częściej inne rzadziej

#### AlkaliczneWlasciwosci

- idalkaliczneWlasciwosci SERIAL NOT NULL klucz główny
- nazwaWlasciwosciAlk VARCHAR(30)

#### Pierwiastki\_has\_Wartosciowosci

Tabela pośrednicząca pomiędzy tabelami pierwiastki oraz wartościowości przechowująca dodatkową informację czy jak często pierwiastek przyjmuje daną wartościowość.

- pierwiastki\_idpierwiastki INTEGER NOT NULL
- Wartosciowosci\_idWartosciowosci INTEGER NOT NULL
- typWartosciowosci\_idtypWartosciowosci INTEGER NOT NULL\
   Kluczem głównym tej tabeli są wszystkie 3 pola.

#### Odkrycia

- idOdkrycia SERIAL NOT NULL klucz główny
- pierwiastki\_idpierwiastki INTEGER NOT NULL klucz obcy z tabeli pierwiastki
- rok YEAR
- uwagi VARCHAR(100)
   Tabela przechowuje tylko informacje o pierwiastku i roku jego odkrycia. Powiązanie z odkrywcami (relacja n do n) odbywa się przez poniższą tabelę:

#### Odkrywcy\_has\_Odkrycia

Tabela pośrednicząca między odkrywcami a odkrytymi przez nich pierwiastkami

- Odkrywcy\_idOdkrywcy INTEGER NOT NULL
- Odkrycia\_idOdkrycia INTEGER NOT NULL Kluczem głównym są oba pola w tabeli.

Do nawigacji po funkcjach programu służy panel u góry strony



Pod pierwszą kartą znajduje się układ okresowy pogrupowany względem właściwości alkalicznych



Na karcie stany skupienia mamy podział według stanu skupienia w danej temperaturze

| 1<br>H<br>wodor<br>1,00794       |                                  |                                     | Tempera<br>Temperati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tura: 20 °C<br>ura                         | 1                                            |                                               | Zmień                                       |                                              |                                       |                                         |                                             |                                        |                                      |                                         |                                         |                                           | 0<br>He<br>2<br>hei<br>4,0026               |
|----------------------------------|----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------|
| I<br>Li<br>3<br>lit<br>6.941     | # Be 4 beryl 9.01218             |                                     | GIECZE  5 B C 7N 8 O 9F 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                              |                                               |                                             |                                              |                                       | 0<br>Ne<br>10<br>neon<br>20.1797        |                                             |                                        |                                      |                                         |                                         |                                           |                                             |
| I<br>Na<br>11<br>sod<br>22,9898  | Mg<br>12 Mg<br>magnez<br>24.305  | To                                  | nieznane    III   IV   II,VVI   I,II,VVI   0   1,II,VVI   0   1,II |                                            |                                              |                                               |                                             |                                              |                                       |                                         |                                             |                                        |                                      |                                         |                                         |                                           |                                             |
| 1<br>K<br>19<br>potas<br>39,0983 | II<br>Ca<br>20<br>wapn<br>40.078 | III<br>SC<br>21<br>skand<br>44.9559 | III,IV<br>Ti<br>22<br>tytan<br>47.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | II,III,IV,V<br>V<br>23<br>wanad<br>50,9415 | II,III,VI<br>Cr<br>24<br>chrom<br>51.9961    | Mn<br>25<br>mangan<br>54,938                  | I,III,V/<br>Fe<br>26<br>zelazo<br>55.847    | II,III<br>Co<br>27<br>kobalt<br>58.9332      | II,III<br>Ni<br>28<br>nikiel<br>58.69 | I,II,III<br>Cu<br>29<br>miedz<br>63.546 | II<br>Zn<br>30<br>cynk<br>65.39             | III<br>Ga<br>31<br>gal<br>69,723       | //,IV<br>Ge<br>32<br>german<br>72.61 | III,V<br>As<br>33<br>arsen<br>74,9216   | II,IV,VI<br>Se<br>34<br>selen<br>78,96  | I,III,V;VII<br>Br<br>35<br>brom<br>79,904 | II<br>Se Kr<br>krypton<br>83.8              |
| Rb<br>37 Rb<br>rubid<br>85,4678  | 87.62                            | 39 Y<br>1tr<br>88.9059              | IV<br>Zr<br>cyrkon<br>91.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II,IV,V<br>Nb<br>41<br>niob<br>92,9064     | //,III,IV,V,VI<br>42 Mo<br>molibden<br>95.94 | TC<br>43 TC<br>technet<br>98.9063             | II,III,IV,VI,VI<br>44 Ru<br>ruten<br>101.07 | //,III,IV,V,V/<br>Rh<br>45<br>rod<br>102.906 | Pd<br>48<br>pallad<br>106.42          | I,//,///<br>47 Ag<br>srebro<br>107.868  | II<br>Cd<br>48<br>kadm<br>112.411           | I,III<br>In<br>49<br>ind<br>114.82     | II,IV<br>Sn<br>50<br>cyna<br>118.71  | Sb<br>51<br>antymon<br>121.75           | II,IV;VI<br>Te<br>52<br>tellur<br>127.6 | I,III,V,VII<br>I<br>53<br>jod<br>126.904  | II,IV,VI,VIII  Existence IXe  ksenon 131.29 |
| Cs<br>55<br>cez<br>132.905       | Ba<br>58 bar<br>137.327          | La<br>57<br>lantan<br>138.906       | 1V<br>72 Hf<br>hafn<br>178.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II,IV,V<br>73 Ta<br>tantal<br>180.948      | ###,##,#V,V<br>74 W<br>wolfram<br>183.85     | //,III,IV,∨I,VII<br>75 Re<br>ren<br>186.207   | 0s<br>76<br>0sm<br>190.2                    | //,III,IV,V,V/<br>77 Ir<br>iryd<br>192.22    | Pt<br>78<br>Platyna<br>195.08         | 1,III<br>79 Au<br>2loto<br>196,967      | 1,II<br>80 <b>Hg</b><br>rtec<br>200.59      | I,III<br>81 TI<br>tal<br>204.383       | II,IV<br>Pb<br>82<br>olow<br>207.2   | Bi<br>83<br>bizmut<br>208.98            | Po<br>84<br>Po<br>polon<br>208.982      | I,III,V,VII<br>85 At<br>astat<br>209.987  | Rn<br>86<br>radon<br>222.018                |
| Fr<br>87 Fr<br>frans<br>223.02   | II<br>Ra<br>88<br>rad<br>226.025 | 89<br>aktyn<br>227.028              | IV<br>Rf<br>104<br>rutherford<br>261,109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V<br>105<br>dubn<br>262.114                | VI<br>Sg<br>108<br>seaborg<br>263.118        | VII<br>Bh<br>107<br>bohr<br>262.123           | VIII<br>HS<br>108<br>has<br>265             | 109 Mt<br>meitner<br>266                     | Ds<br>110<br>darmsztadt<br>269        | Rg<br>111 Rg<br>roentgen<br>272         | Cn<br>112<br>copernicium<br>285             | 113 <b>Uut</b><br>113 ununtrium<br>284 | 114 FI<br>flerovium<br>289           | 115 Uup<br>ununpentiur<br>288           |                                         | 117 <b>Uus</b><br>ununseptium<br>294      | 118 Uuo<br>ununoctium<br>294                |
| Lantanowce                       |                                  | rce                                 | III,IV<br>Ce<br>58<br>cer<br>140,115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pr<br>59<br>prazeodym<br>140.908           | Nd<br>60<br>neodym<br>144.24                 | Pm<br>e1<br>promet<br>146.915                 | Sm<br>82<br>samar<br>150.36                 | II,///<br>Eu<br>63<br>europ<br>151,965       | Gd<br>84<br>gadolin<br>157.25         | III,/V<br>Tb<br>65<br>terb<br>158.925   | Dy de dysproz                               | ## Ho e7 holm 164.93                   | 88 erb                               | III<br>Tm<br>69<br>tul<br>168,934       | 111,11<br>Yb<br>70<br>iterb<br>173.04   | III<br>Lu<br>71<br>lutet<br>174,967       |                                             |
| Aktynowce                        |                                  | e                                   | 1V<br>Th<br>tor<br>232,038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV,V<br>Pa<br>91<br>protaktyn<br>231.036   | III,IV,V,V/<br>92<br>uran<br>238.029         | III,IV,V,VI,VII<br>93 NP<br>neptun<br>237.048 | Pu<br>94 Pu<br>pluton<br>244,064            | MI,IV,V,VI<br>95<br>Am<br>ameryk<br>243,061  | III,IV<br>96 Cm<br>kiur<br>247.07     | Bk<br>97<br>berkel<br>247.07            | //,III,IV<br>Cf<br>98<br>kaliforn<br>251,08 | //,III<br>99 Es<br>einstein<br>252.083 | //,III<br>100 Fm<br>ferm<br>257.095  | II,III<br>101 Md<br>mendelew<br>258.099 | II,III<br>102<br>No<br>nobel<br>259.101 | III<br>103 Lr<br>lorens<br>260.105        |                                             |

Widzimy również formularz dzięki któremu możemy zobaczyć jak zmieniają się stany skupienia przy zmianie temperatury:

## Temperatura: 20 °C

Temperatura: Zmień

#### Po kliknięciu:





Po kliknięciu na dany pierwiastek w układzie przenosimy się do widoku pojedynczego pierwiastka i wyświetlane są informacje na jego temat:

| Nazwa polska          | polon                                                                                                                          |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Nazwa łacińska        | polonium                                                                                                                       |  |  |  |  |  |
| Symbol chemiczny      | Po                                                                                                                             |  |  |  |  |  |
| Liczba atomowa        | 84                                                                                                                             |  |  |  |  |  |
| Masa                  | 208.982                                                                                                                        |  |  |  |  |  |
| Temperatura topnienia | 254                                                                                                                            |  |  |  |  |  |
| Temperatura wrzenia   | 962                                                                                                                            |  |  |  |  |  |
| Elektroujemność       | 2                                                                                                                              |  |  |  |  |  |
| Konfiguracja          | $1{s}^{2}{2s}^{2}{2p}^{6}{3s}^{2}{3p}^{6}{3d}^{10}{4s}^{2}{4p}^{6}{4d}^{10}{4f}^{14}{5s}^{2}{5p}^{6}{5d}^{10}{6s}^{2}{6p}^{4}$ |  |  |  |  |  |
| Wartościowości        | II <b>,IV</b> ,∨I                                                                                                              |  |  |  |  |  |
| Pochodzenie           | z rozpadow                                                                                                                     |  |  |  |  |  |
| Odkrycie              | 1898<br>Maria Sklodowska-Curie<br>Pierre Curie                                                                                 |  |  |  |  |  |

Konfiguracja elektronowa jest pobierana z funkcji w bazie danych zwracającą liczbę elementów na poszczególnej powłoce dla danego pierwiastka.

Nazwiska odkrywców są równocześnie linkami do informacji o nich w bazie. Po kliknięciu widzimy:

# Pierre Curie

Syn lekarza Eugene Curie, studiowal fizyke na Sorbonie.

Odkryte pierwiastki:



W pierwiastki te oczywiście możemy kliknąć co przeniesie nas do informacji o pierwiastku.

Program pozwala również na wyszukiwanie danych w bazie.

| Szukaj pierwiastka: | Ra | Szukaj |
|---------------------|----|--------|
|---------------------|----|--------|

Po kliknięciu Szukaj program zwróci listę dopasowanych wyników:

# Wyniki wyszukiwania

Rn radon

Ra rad

Na elementy tej listy można kliknąć co przeniesie nas do danych pierwiastka. Podobnie działa wyszukiwanie odkrywców:

Szukaj odkrywców: Curie Szukaj

Też otrzymujemy listę:

# Wyniki wyszukiwania

Maria Sklodowska-Curie

Pierre Curie

W której nazwiska możemy klikać.

Na karcie Historia odkryć mam uporządkowane chronologicznie i pogrupowane wiekami wszystkie odkrycia pierwiastków:

## Pierwiastki znane w starożytności:



| FI | flerovium   | 1999 r. | Zjednoczony | Instytut | Badan | Jadrowych |
|----|-------------|---------|-------------|----------|-------|-----------|
| Lv | livermorium | 2000 r. | Zjednoczony | Instytut | Badan | Jadrowych |

# Wiek XXI:

| Uuo | ununoctium  | 2002 r. | Zjednoczony Instytut Badan Jadrowych |
|-----|-------------|---------|--------------------------------------|
| Uup | ununpentium | 2003 r. | Zjednoczony Instytut Badan Jadrowych |
| Uut | ununtrium   | 2003 r. | Zjednoczony Instytut Badan Jadrowych |
| Uus | ununseptium | 2009 r. | Zjednoczony Instytut Badan Jadrowych |

Z listy tej można przejść zarówno do informacji o pierwiastku jak i odkrywcy(przez kliknięcie).

Ostatnią funkcjonalnością jest lista odkrywców podzielona na ludzi i instytucje naukowe.



#### **Podsumowanie**

Dane wprowadzane były półautomatycznie. Na podstawie tabel z danymi dot. pierwiastków dostępnych w Internecie przygotowywane były polecenia insert wypełniające bazę danymi. Tabele zostały wygenerowane automatycznie na podstawie skryptów wygenerowanych przez program *DB Designer Fork*. Aplikacja jest ukierunkowana na prezentację danych dostępnych w bazie oraz na swobodną nawigację między widokami.

#### **Dane**

Główne źródła danych w bazie:

http://pl.wikipedia.org/wiki/Pierwiastki\_chemiczne\_według\_symboli http://pl.wikipedia.org/wiki/Układ\_okresowy\_pierwiastków

oraz biografie odkrywców ze strony <a href="http://pl.wikipedia.org">http://pl.wikipedia.org</a>