Afinní podprostory, ortogonalita: úvod

Petr Olšák petr@olsak.net

http://petr.olsak.net/

Afinní kombinace a odvozené pojmy

■ Afinní kombinace je lineární kombinace prvků z Rⁿ, jejíž koeficienty mají součet 1, tedy:

$$AK(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k) = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k, \quad \text{kde } \sum_{i=1}^k \alpha_i = 1$$

- V kontextu afinních kombinací je užitečné si při geometrické interpreataci prvky z Rⁿ (vektory) představovat jako body v prostoru, ne jako orientované úsečky. AK totiž nezávisí na poloze počátku.
- Afinní obal zadaných bodů x₁, x₂,..., x_k je množina všech afinních kombinací těchto bodů.
- Afinní podprostor je podmnožina $M \subseteq \mathbb{R}^n$ uzavřená na afinní kombinace. Tedy je-li $\mathbf{x}_i \in M$, pak také všechny $\mathsf{AK}(\mathbf{x}_i) \in M$.
- Afinní zobrazení je zobrazení $f: \mathbb{R}^n \to \mathbb{R}^m$ zachovávající afinní kombinace, tedy pro $\sum_{i=1}^k \alpha_i = 1$ platí

$$\mathbf{f}(\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \dots + \alpha_k\mathbf{x}_k) = \alpha_1\mathbf{f}(\mathbf{x}_1) + \alpha_2\mathbf{f}(\mathbf{x}_2) + \dots + \alpha_k\mathbf{f}(\mathbf{x}_k)$$

Analogie: lineární kombinace, lineární obal, podprostor, zobrazení.

Afinní kombinace a podprostory: vlastnosti

- Afinní kombinace afinních kombinací je afinní kombinace.
- Afinní obal je afinní podprostor. Každý afinní podprostor lze zapsat jako afinní obal nějakých bodů.
- Množina řešení soustavy Ax = b je prázdná nebo to je afinní podprostor.
- Každý afinní podprostor lze zapsat jako součet jednoho vektoru s vektory nějakého lineárního prostoru, přesněji: je-li $A \subseteq \mathbb{R}^n$ afinní prostor, pak existuje $\mathbf{x}_0 \in \mathbb{R}^n$ a lineární podprostor $X \subseteq \mathbb{R}^n$ tak, že

$$A = \{ \mathbf{x}_0 + \mathbf{x}; \ \mathbf{x} \in X \} = \mathbf{x}_0 + X.$$

- Ke každému afinnímu podprostoru A existuje soustava Ax = b, jejíž množina řešení je rovna A.
- Afinní podprostor je z geometrického pohledu lineární podprostor plus posun.
- Dimenze afinního prostoru se definuje jako dimenze příslušného posunutého lineárního podprostoru.

Afinní zobrazení: vlastnosti

- Zobrazení f definované vztahem f(x) = Ax + b je afinní.
- Ke každému afinnímu zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ existuje jednoznačně lineární zobrazení $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ a vektor $\mathbf{b} \in \mathbb{R}^m$ tak, že $\mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x}) + \mathbf{b}$ pro všechna $\mathbf{x} \in \mathbb{R}^n$.
- Ke každému afinnímu zobrazení f existuje jednoznačně matice A a vektor b tak, že f(x) = Ax + b.
- Afinní zobrazení je z geometrického pohledu lineární zobrazení plus konstantní posun, například rotace a posun, zkosení a posun atd.
- Hodnota posunu je rovna f(0).
- Afinní zobrazení zobrazuje afinní podprostory na afinní podporostory.

Příklad

Zkusíme si geometricky znázornit, jak "pracuje" zobrazení $f: \mathbb{R}^2 \to \mathbb{R}^2$ definované předpisem:

$$\mathbf{f}(x_1, x_2) = \begin{bmatrix} 2 & 1/2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Různá vyjádření afinních prostorů

Od rovnicového popisu k parametrickému

Vyjádříme afinní podprostor A = {x; Ax = b} parametricky, tedy jako A = x₀ + Span{b₁, b₂,..., b_k}.

Řešení: najdeme bázi $\mathbf{b}_1, \dots, \mathbf{b}_k$ řešení přidružené homogenní soustavy $\mathbf{A}\mathbf{x} = \mathbf{0}$ a jedno partikulární řešení \mathbf{x}_0 .

Od parametrického popisu k rovnicovému

Pro afinní prostor zadaný parametricky $A = \mathbf{x}_0 + \operatorname{Span}\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\}$ najdeme matici **A** a vektor **b** tak, že $A = \{\mathbf{x}; \ \mathbf{A}\mathbf{x} = \mathbf{b}\}.$

Řešení: zapíšeme vektory \mathbf{b}_i do řádků matice \mathbf{B} a najdeme bázi prostoru řešení soustavy $\mathbf{B}\mathbf{x} = \mathbf{0}$. Tyto bázové vektory zapíšeme do řádků matice \mathbf{A} . Pak je Span $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k\} = \{\mathbf{x}; \ \mathbf{A}\mathbf{x} = \mathbf{0}\}$. Dále volíme $\mathbf{b} = \mathbf{A}\mathbf{x}_0$.

Skalární součin: úhly, velikosti

Skalární součin **x**^T**y** umožňuje měřit vzdálenosti a úhly:

Euklidovská norma:
$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}}$$

Euklidovská metrika (vzdálenost): d(x, y) = ||x - y||

Úhel:
$$cos φ = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Pravý úhel: $\mathbf{x}^T \mathbf{y} = 0$ (pro $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$)

Skalární součin geometricky: číslo ||x|| cos φ je orientovaná velikost průmětu vektoru x na přímku generovanou vektorem y. Vynásobíme-li toto číslo velikostí ||y||, máme skalární součin:

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \varphi.$$

Zakreslíme-li vektory korespondující s e₁, e₂,..., e_n ∈ ℝⁿ jako šipky na sebe kolmé a s jednotkovou velikostí, pak výše uvedené pojmy (úhel, velikost vektoru, vzdálenost) zavedené v ℝⁿ "numericky" mají přesně odpovídající geometrický význam.

Připomenutí

- Schwartzova nerovnost: |x^Ty| ≤ ||x|| ||y||, takže úhel je definován pro každé dva nenulové vektory. Rovnost nastává jen pro LZ vektory.
- Trojúhelníková nerovnost: ||x + y|| ≤ ||x|| + ||y||.
- Příklad odvození Pythagorovy věty (předpokládáme x ⊥ y):

$$\|\mathbf{x} - \mathbf{y}\|^2 = (\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y}) = \mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mathbf{y} + \mathbf{y}^T \mathbf{y} = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$$

Terminologie, základní vlastnosti

- Vektory jsou ortogonální (píšeme $\mathbf{x} \perp \mathbf{y}$), když $\mathbf{x}^T \mathbf{y} = 0$.
- Vektory jsou ortonormální, jsou-li ortogonální a mají jednotkovou velikost.
- Matice je s ortonormálními sloupci, jsou-li každé dva různé sloupce této matice ortonormální.
- Matice je ortogonální, je-li čtvercová a s ortonormálními sloupci.
- Tvrzení: Skupina nenulových vektorů, kde je každý s každým ortogonální, je lineárně nezávislá.
- Důsledek: Matice s ortonormálními sloupci je úzká nebo čtvercová a vždy s plnou hodností. Ortogonální matice je regulární.
- Tvrzení: Nechť **U** je s ortonormálními sloupci, $\mathbf{x} \in \text{rng } \mathbf{U}$. Tedy sloupce **U** (označíme je $\mathbf{u}_1, \ldots, \mathbf{u}_k$) tvoří ortonormální bázi podprostoru rng **U**. Pak souřadnice vektoru \mathbf{x} vzhledem k této bázi jsou $\mathbf{u}_i^T \mathbf{x}$, tedy

$$\mathbf{x} = (\mathbf{u}_1^T \mathbf{x}) \mathbf{u}_1 + (\mathbf{u}_2^T \mathbf{x}) \mathbf{u}_2 + \cdots + (\mathbf{u}_k^T \mathbf{x}) \mathbf{u}_k.$$

Tvrzení: Matice U je s ortonormálními sloupci, právě když U'U = I.

Vlastnosti ortogonální matice

- Následující vlastnosti jsou ekvivalentní.
 - **U** je ortogonální matice.
 - $U^{-1} = U^{T}$
 - U^T je ortogonální matice.

Vidíme tedy, že jakmile je matice ortogonální, má ortonormální nejen sloupce, ale i řádky.

Tvrzení: Součin ortogonálních matic je ortogonální matice.

Příklady ortogonálních matic

- Rotační matice v R².
- Matice P obsahuje ve sloupcích bázové vektory e; v libovolném pořadí: permutační matice. Pak vektor Px má stejné složky jako vektor x, jen v permutovaném pořadí.
- Householderova matice je definována pro libovolný vektor u jednotkové velikosti takto: H_{II} = I 2uu^T. Je ortogonální.

Lineární isometrie

Nechť **U** je matice s ortonormálními sloupci. Definujme lineární zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ předpisem $\mathbf{f}(\mathbf{x}) = \mathbf{U}\mathbf{x}$. Pak platí:

- \mathbf{f} zachovává skalární součin, přesněji: $\mathbf{x}^T \mathbf{y} = \mathbf{f}(\mathbf{x})^T \mathbf{f}(\mathbf{y})$.
- **f** zachovává velikosti vektorů (velikost vzoru je rovna velikosti obrazu).
- f zachovává úhly (úhel mezi vzory je stejný jako mezi jejich obrazy).
 Takové zobrazení f se nazývá isometrie.

Isometrie do stejného prostoru

- Je-li $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ (tj. je to transformace), pak z geometrického pohledu je zřejmé, že \mathbf{f} může být pouze rotace nebo rotace složená se zrcadlením.
- Nechť **U** je ortogonální matice, **f**(**x**) = **Ux**. Pak det **U** = ±1. Podle znaménka determinantu poznáme, zda součástí této transformace je zrcadlení.

Ortogonalita lineárních podprostorů

- Podprostory X a Y jsou na sebe ortogonální (píšeme $X \perp Y$), když každý vektor $\mathbf{x} \in X$ je kolmý na každý vektor $\mathbf{y} \in Y$, tedy pro ně platí $\mathbf{x}^T \mathbf{y} = 0$.
- Díky linearitě skalárního součinu stačí ověřit, že všechny bázové vektory z X jsou kolmé na všechny bázové vektory z Y.
- Pro $X \perp Y$ zřejmě platí $X \cap Y = \{0\}$.
- Jestiže $X \perp Y$ a navíc X a Y generují celý prostor, pak říkáme, že X je ortogonálním doplňkem Y nebo též Y je ortogonálním doplňkem X a značíme $X = Y^{\perp}$ nebo $Y = X^{\perp}$.
- Je-li dáno X svou bází, jak najdeme bázi X^{\perp} ?
- Je-li dáno X jako množina řešení soustavy $\mathbf{A}\mathbf{x} = \mathbf{0}$, tedy $X = \{\mathbf{x}; \ \mathbf{A}\mathbf{x} = \mathbf{0}\}$. Jak najdeme bázi X^{\perp} ?
- Povšimneme si, že $(rng \mathbf{A})^{\perp} = Null \mathbf{A}^{T}$ a $(Null \mathbf{A})^{\perp} = rng \mathbf{A}^{T}$.
- Důsledek: Soustava Ax = b nemá řešení, právě když existuje řešení soustavy A^Ty = 0, pro které neplatí y ⊥ b.