

A-611212



## PROPERTIES OF PIEZOELECTRIC MATERIALS

by

BRUCE D. WEDLOCK

|            |   |    |              |    |
|------------|---|----|--------------|----|
| COPY       | 3 | OF | 3            | ed |
| HARD COPY  |   |    | \$ . 3 0 0   |    |
| MICROFICHE |   |    | \$ . 0 . 7 5 |    |

80 p



ARCHIVE COPY

MATERIALS TECHNOLOGY DIVISION  
U. S. ARMY MATERIALS RESEARCH AGENCY  
WATERTOWN, MASSACHUSETTS 02172

JUNE 1964

## PROPERTIES OF PIEZOELECTRIC MATERIALS

Bruce D. Wedlock  
Materials Technology Division



June 1964

## PROPERTIES OF PIEZOELECTRIC MATERIALS

The purpose of this monograph is to provide a source of data on a wide variety of piezoelectric materials which will be useful to those conducting research in this area as well as to the engineer designing ultrasonic transducers, filters, and other piezoelectric devices.

The references are keyed to the data by the number heading each column of data. In some cases, the reference reports additional data not included in this monograph. The reader is therefore urged to consult the references before embarking upon a research program.

The numerical data are given in the rationalized MKS system in accordance with the IRE Standards on Piezoelectricity, as are the symbols employed. Table I defines the symbols employed and gives their MKS unit. Since a large amount of literature still uses the CGS system, Table II presents the factors to convert CGS units to MKS units. On the data pages, the digits in the data columns are to be multiplied by the power of ten in the column immediately to the right of the symbol to obtain the value in the MKS system.

The compounds are arranged alphabetically by chemical name. The pure compounds are followed by the binary alloys, followed by ternary compounds, etc. The multiple component compounds are arranged alphabetically by main constituent, secondary constituent, etc., and by decreasing amount of main constituent.

## REFERENCE TEXTS

The following books and articles will provide a foundation of the theory of piezoelectricity and its many applications:

"A Textbook on Crystal Physics", W. A. Wooster, Cambridge University Press, 1938.

"Der Ultraschall", Bergmann, S. Hirzel Verlag, Stuttgart, 1954 (in German).

"IRE Standards on Piezoelectric Crystals", Proceedings, IRE, v. 45, 1957, p. 353-358.

"IRE Standards on Piezoelectric Crystals", Proceedings, IRE, v. 46, 1958, p. 764-778.

"IRE Standards on Piezoelectric Crystals", Proceedings, IRE, v. 49, 1961, p. 1161-1 69.

"Radio Engineers Standards on Piezoelectric Crystals", Proceedings, IRE, v. 37, 1949, p. 1378-1395.

"Piezoelectricity", Cady, McGraw-Hill, New York, 1946.

"Piezoelectric Crystals and Their Applications to Ultrasonics", Mason, D. van Nostrand, New York, 1950.

"Ultrasonics" Second edition, Carlin, McGraw-Hill, New York, 1960.

"Ultrasonic Physics", Richardson, Elsevier, New York, 1952.

TABLE I  
Definition of Symbols

| Symbol       | Quantity                                    | MKS Units*        |
|--------------|---------------------------------------------|-------------------|
| c            | Elastic Stiffness                           | N/m <sup>2</sup>  |
| d            | Piezoelectric Strain Constant (Coefficient) | C/N or m/V        |
| D            | Electric Displacement                       | C/m <sup>2</sup>  |
| e            | Piezoelectric Stress Constant (Moduli)      | C/m <sup>2</sup>  |
| E            | Electric Field Strength                     | V/m               |
| g            | Piezoelectric Strain Constant               | m <sup>2</sup> /C |
| h            | Piezoelectric Stress Constant               | N/C or V/m        |
| k            | Coupling Coefficient                        |                   |
| K            | Dielectric Constant                         | N/C or V/M        |
| P            | Dielectric Polarization                     | C/m <sup>2</sup>  |
| Q            | Mechanical Q                                |                   |
| $E^{**}$     | Elastic Compliance (E = constant)           | m <sup>2</sup> /N |
| S            | Strain                                      |                   |
| T            | Stress (Tensile Positive)                   | N/m <sup>2</sup>  |
| u            | Elastic Displacement                        | m                 |
| Y            | Young's Modulus                             | N/m <sup>2</sup>  |
| $\beta^T$    | Dielectric Impermeability (T = constant)    | m/F               |
| $\epsilon^T$ | Permittivity (T = constant)                 | F/m               |
| $\eta^S$     | Dielectric Susceptibility (S = constant)    |                   |
| $\theta$     | Absolute Temperature                        | °K                |
| $\rho$       | Density                                     | kg/m <sup>3</sup> |
| $x^T$        | Reciprocal Susceptibility (T = constant)    |                   |

\* N = newton, m = meter, V = volt, C = coulomb, F = farad,  
°K = degrees kelvin, kg = kilogram

\*\* Superscript denotes quantity which is held constant.

**TABLE II**  
**Conversion Factors from CGS to Rationalized MKS Units**

| Symbol     | Factor                        |                                                  |
|------------|-------------------------------|--------------------------------------------------|
| c, T, Y    | $10^{-1}$                     | N/m <sup>2</sup> per dyne/cm <sup>2</sup>        |
| d          | $\frac{1}{3} \times 10^{-4}$  | C/N per statcoulomb/dyne                         |
| D          | $\frac{1}{12\pi \times 10^5}$ | C/m <sup>2</sup> per statcoulomb/cm <sup>2</sup> |
| e, P       | $\frac{1}{3} \times 10^{-5}$  | C/m <sup>2</sup> per statcoulomb/cm <sup>2</sup> |
| E          | $3 \times 10^4$               | V/m per statvolt/cm                              |
| g          | $3 \times 10^5$               | m <sup>2</sup> /C per dyne/statcoulomb           |
| h          | $3 \times 10^4$               | N/C per dyne/statcoulomb                         |
| s          | 10                            | m <sup>2</sup> /N per cm <sup>2</sup> /dyne      |
| $\epsilon$ | $\frac{1}{36\pi \times 10^9}$ | F/m per statfarad/cm                             |
| $\eta$     | $4\pi$                        | (numeric)                                        |
| $\rho$     | $10^3$                        | kg/m <sup>3</sup> per gram/cm <sup>3</sup>       |

## DATA SHEET REFERENCES

1. ROBERTS, S. Dielectric Properties of Lead Zirconate and Barium-Lead Zirconate. *Journal of the American Ceramic Society*, v. 33, no. 2, February 1950, p. 63-66.
2. BERLINCOURT, D. A., and KULCSAR, F. Electromechanical Properties of Barium Titanate Compositions Showing Substantial Shifts in the Phase Transition Points. *Journal of the Acoustical Society of America*, v. 24, 1952, p. 709-13.
3. BAKEWALD, H. G., and BERLINCOURT, D. A. Electromechanical Response and Dielectric Loss of Prepolarized Barium Titanate Under Maintained Electric Bias. *Journal of the Acoustical Society of America*, v. 25, no. 4, July 1953, p. 703-10.
4. JAFFE, B., ROTH, R. S., and MARZULLO, S. Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid Solution Ceramics. *Journal of Applied Physics*, v. 25, June 1954, p. 809-10.
5. MASON, W. P., and JAFFE, H. Methods for Measuring Piezoelectric, Elastic, and Dielectric Coefficients of Crystals and Ceramics. *Proceedings, IRE*, v. 42, no. 6, June 1954, p. 921-930.
6. HUETER, T. F., NEUHAUS, D. P., and KOLB, J. An Experimental Study of Polarization Effects in Barium Titanate Ceramics. *Journal of the Acoustical Society of America*, v. 26, no. 5, September 1954, p. 696-703.
7. MASON, W. P. Aging of the Properties of Barium Titanate and Related Ferroelectric Ceramics. *Journal of the Acoustical Society of America*, v. 27, 1955, p. 73-85.
8. JAFFE, B., ROTH, R. S., and MARZULLO, S. Properties of Piezoelectric Ceramics in the Solid Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate. *Journal of Research, National Bureau of Standards*, v. 55, no. 5, November 1955, p. 239-254.
9. DOBELL, A. C. Piezoelectric Transducers. *Acoustica*, v. 6, 1956, p. 346-56.
10. BECHMANN, S. Elastic, Piezoelectric, and Dielectric Constants of Polarized Barium Titanate Ceramics and Some Applications of the Piezoelectric Electric Equations. *Journal of the Acoustical Society of America*, v. 28, 1956, p. 347-350.
11. BERLINCOURT, D. Recent Developments in Ferroelectric Transducer Materials. *Transactions, IRE, on Ultrasonic Engineering*, v. PGUE-4, August 1956, p. 53-65.

12. MASON, W. P. *Properties of Transducer Materials*. American Institute of Physics Handbook. McGraw Hill Book Co., New York, 1951, 3-89 to 3-100.
13. SCHOFIELD, D., and BROWN, R. F. Improved Barium Titanate Composition. *Journal of the Acoustical Society of America*, v. 29, no. 3, March 1957, p. 394-395.
14. JAFFE, B. and COOK, W. Ceramics for High-Temperature Piezoelectric Applications. *Quarterly Scientific Report No. 4, Piezoelectric Materials and Applications*. WADC Contract AF 33(616)-3609, ASTIA AD 130 067, March 1957.
15. SCHOFIELD, D., and BROWN, R. F. An Investigation of Some Barium Titanate Compositions for Transducer Applications. *Canadian Journal of Physics*, v. 35, April 1957, p. 594-607.
16. BERI INCOURT, D., and JAFFE, H. Elastic and Piezoelectric Coefficients of Single Crystal Barium Titanate. *Physical Review*, v. 111, no. 1, July 1958, p. 143-148.
17. ISUPOV, V. A., and KOSIAKOV, V. L. Dielectric Polarization and Piezoelectric Properties of Ferroelectric Solid Solutions of Calcium, Strontium and Barium Metaniobate in Lead Metaniobate. *Soviet Physics Technical Physics (English Trans.)*, v. 3, no. 10, October 1958, p. 2002-10.
18. JAFFE, H. Piezoelectric Ceramics. *Journal of the American Ceramic Society*, v. 41, no. 11, part 2, November 1958, p. 494-8.
19. HUIBREGTSE, E. J., BESSEY, W. H., and DROUGARD, M. E. Electromechanical Behavior of Single Crystals of Barium Titanate from 25 to 160 C. *Journal of Applied Physics*, v. 30, 1959, p. 899-905.
20. KULCSAR, F. Electromechanical Properties of Lead Titanate Zirconate Ceramics with Lead Partially Replaced by Calcium or Strontium. *Journal of the American Ceramic Society*, v. 42, no. 1, January 1959, p. 49-51.
21. HUSIMI, K. and KATAOKA, K. Piezoelectric Properties of Triglycine Sulphate Crystal. *Journal of the Physical Society of Japan*, v. 14, no. 1, January 1959, p. 105.
22. IKEDA, T. Studies on (Ba-Pb) (Ti-Zr)O<sub>3</sub> System. *Journal of the Physical Society of Japan*, v. 14, no. 2, February 1959, p. 168-174.
23. EGERTON, L. and DILLON, D. Piezoelectric and Dielectric Properties of Ceramics in the Potassium-Sodium Niobate System. *IRE Convention Record--1959*, part 6, March 1959, p. 219.

24. JAFFE, H., and KRUEGER, H. Transducer Properties of Lead Titanate Zirconate Ceramics. IRE Convention Record--1959, part 6, March 1959, p. 227.
25. CRAWFORD, A. E. Lead Zirconate Piezoelectric Ceramics. British Communications and Electronics, v. 6, no. 7, July 1959, p. 516-519.
26. KULCSAR, F. Electromechanical Properties of Lead Titanate Zirconate Ceramics Modified with Certain Three or Five Valant Additions. Journal of the American Ceramic Society, v. 42, no. 7, July 1959, p. 343-349.
27. BAXTER, P., HELLICOR, N. I., and LEWIS, B. Effect of Additives of Limited Solid Solubility on Ferroelectric Properties of Barium Titanate Ceramics. Journal of the American Ceramic Society, v. 42, no. 10, October 1959, p. 465-470.
28. MCKINNEY, J. E. and BOWYER, C. S. Determination of Piezoelectric Properties as a Function of Pressure and Temperature. Journal of the Acoustical Society of America, v. 32, no. 1, January 1960, p. 56-61.
29. BERLINCOURT, D. A., CMALIK, C., and JAFFE, H. Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions. Proceedings, IRE, v. 48, no. 2, February 1960, p. 220-29.
30. BERLINCOURT, D., JAFFE, B., JAFFE, H., and KRUEGER, H. H. A. Transducer Properties of Lead Titanate Zirconate Ceramics. Transactions, IRE, on Ultrasonic Engineering, VUE-7, N 1, February 1960, p. 1-6.
31. MATTIAT, O. K. Piezomagnetic Ceramic Transducer. IRE Convention Record--1960, part 6, March 1960, p. 212.
32. TANAKA, T. and TANAKA, S. Measurement of Piezoelectric Constants of a CdS Crystal. Journal of the Physical Society of Japan, v. 15, no. 4, April 1960, p. 726.
33. HUTSON, A. R. Piezoelectricity and Conductivity in ZnO and CdS. Physical Review Letters, v. 4, no. 10, May 1960, p. 505-7.
34. BAXTER, P., and HELLICOR, N. I. Electrical Properties of Lead Barium Niobates and Associated Materials. Journal of the American Ceramic Society, v. 43, no. 11, November 1960, p. 578-583.

35. FANG, P. H., ROBBINS, C., and FORRAT, F. Ferroelectric Properties of Mixed Titanates of the System  $\text{Bi}_4\text{Ti}_3\text{O}_12$ -N  $\text{Ba Ti O}_3$ . *Comptes Rendus Academy Science (Paris)*, v. 252, 30 January 1961, p. 683-5.
36. GILLETTE, F. Determination of the Elastic Compliances and the Piezoelectric Moduli of Triglycine Sulphate. *Comptes Rendus Academie Science (Paris)*, v. 253, 9 October 1961, p. 1556-8.
37. KRUGER, H. H. A. and BERLINCOURT, D. Effect of High Static Stress on the Piezoelectric Properties of Transducer Materials. *Journal of the Acoustical Society of America*, v. 33, no. 1, October 1961, p. 1339-1344.
38. CRAWFORD, A. E. Lead Zirconate-Titanate Piezoelectric Ceramics. *British Journal of Applied Physics*, v. 12, October 1961, p. 529-534.
39. IKEDA, T., TANAKA, Y., and TOYODA, H. Piezoelectric Properties of Triglycine Sulphate. *Journal of the Physical Society of Japan*, v. 16, December 1961, p. 2593-94.
40. KELL, R. C. Properties of Niobate High Temperature Ceramics. *Proceedings, IEE*, v. 109, part B, Supp 21-22, 1962, p. 369-373.
41. JAFFE, H. Properties of Ferroelectric Ceramics in the Lead Titanate Zirconate System. *Proceedings, IEE*, v. 109, part B, Supp 21-22, 1962, p. 351-354.
42. BROWN, C. S., KELL, R. C., TAYLOR, R., and THOMAS, L. A. Piezoelectric Materials. *Proceedings, IEE*, v. 109, part B, no. 44, January '62, p. 99-114.
43. GERSON, R. Piezoelectric and Dielectric Properties of Lead Titanate-Zirconate Ceramics at Low Temperatures. *Journal of Applied Physics*, v. 33, March 1962, p. 830-32.
44. BROWN, R. F. and McMAHON, G. W. Material Constants of Ferroelectric Ceramics at High Pressure. *Canadian Journal of Physics*, v. 40, May 1962, p. 672-674.
45. IKEDA, T., TANAKA, T., and TOYODA, H. Piezoelectric Properties of Triglycine Sulphate. *Japanese Journal of Applied Physics*, v. 1, no. 1, July 1962, p. 13-21.

MATERIAL: Barium Titanate (Pure)

| Property          | Reference           | 2     | 10    | 13   | 16    | 17   | 18   | 23   |
|-------------------|---------------------|-------|-------|------|-------|------|------|------|
| $T_C$             | - -                 |       |       | 108  |       | 130  | 115  | 115  |
| $K$               | - -                 |       |       | 2300 |       | 1620 | 1700 | 1700 |
| $Y$               | $\times 10^{10}$    | 11    |       |      |       |      | 11   | 11   |
| $\rho$            | $\times 10^3$       | 5.7   |       |      |       |      |      | 5.8  |
| $c_{33}^D$        | $\times 10^{10}$    |       | 18.9  |      |       |      |      |      |
| $d_{15}$          | $\times 10^{-12}$   |       | 270   |      | 392   |      |      |      |
| $d_{31}$          | $\times 10^{-12}$   | -78   | -79   | -97  | -34.5 | -50  | -78  | -78  |
| $d_{33}$          | $\times 10^{-12}$   |       | 191   |      | 85.6  |      | 190  | 190  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       | 1900  |      | 168   |      |      |      |
| $g_{31}$          | $\times 10^{-3}$    | -5.2  | -4.7  |      | -23   |      |      |      |
| $g_{33}$          | $\times 10^{-3}$    |       | 11.4  |      | 57.5  |      |      | 13.0 |
| $k_{15}$          | - -                 |       |       |      | 0.57  |      |      |      |
| $k_{31}$          | - -                 | 0.214 |       |      | 0.315 |      | 0.22 | 0.22 |
| $k_{33}$          | - -                 |       |       |      | 0.56  |      | 0.52 | 0.52 |
| $k_r$             | - -                 |       |       | 0.37 | 0.37  | 0.20 |      | 0.37 |
| $s_{11}^E$        | $\times 10^{-12}$   |       | 8.55  |      | 8.05  |      |      |      |
| $s_{12}^E$        | $\times 10^{-12}$   |       | -2.61 |      | -2.35 |      |      |      |
| $s_{13}^E$        | $\times 10^{-12}$   |       | -2.85 |      | -5.24 |      |      |      |
| $s_{33}^E$        | $\times 10^{-12}$   |       | 8.93  |      | 15.7  |      |      |      |
| $s_{44}^E$        | $\times 10^{-12}$   |       | 23.3  |      | 18.4  |      |      |      |
| $Q$               | - -                 |       |       |      |       | 400  | 400  |      |

**MATERIAL: Barium Titanate (Pure) Con't**

| Reference<br>Property | 38                  | 42    | 12    | 19            |      |  |  |
|-----------------------|---------------------|-------|-------|---------------|------|--|--|
| $T_C$                 | - -                 |       | 120   |               |      |  |  |
| $K$                   | - -                 | 1700  | 1900  |               |      |  |  |
| $Y$                   | $\times 10^{10}$    |       |       |               |      |  |  |
| $\rho$                | $\times 10^3$       | 5. 7  | 5. 72 |               |      |  |  |
| $c_{33}^D$            | $\times 10^{10}$    | 17. 6 |       |               |      |  |  |
| $d_{15}$              | $\times 10^{-12}$   |       |       |               |      |  |  |
| $d_{31}$              | $\times 10^{-12}$   | - 78  |       | - 56          | - 33 |  |  |
| $d_{33}$              | $\times 10^{-12}$   | 190   |       | 130 to<br>160 |      |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |       |       |               |      |  |  |
| $g_{31}$              | $\times 10^{-3}$    |       |       |               |      |  |  |
| $g_{33}$              | $\times 10^{-3}$    |       |       | 10. 7         |      |  |  |
| $k_{15}$              | - -                 |       |       | 0. 41         |      |  |  |
| $k_{31}$              | - -                 | 0. 21 | 0. 21 | 0. 17         |      |  |  |
| $k_{33}$              | - -                 | 0. 50 | 0. 49 | 0. 45         |      |  |  |
| $k_r$                 | - -                 | 0. 36 | 0. 35 |               |      |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   | 9. 99 |       |               | 8. 0 |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |       |       |               |      |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |       |       |               |      |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   | 9. 52 |       |               |      |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |       |       |               |      |  |  |
| Q                     | - -                 | 400   |       |               |      |  |  |

**MATERIAL: Cadmium Sulphide (Annealed in Sulphur Vapor)**

| Property          | Reference           | 33    | 32     |  |  |  |  |
|-------------------|---------------------|-------|--------|--|--|--|--|
| $T_C$             | - -                 |       |        |  |  |  |  |
| $K$               | - -                 |       | 9.0    |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |        |  |  |  |  |
| $\rho$            | $\times 10^3$       |       |        |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |        |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       | -14.35 |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -3.67 | -1.53  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 10.65 | 2.56   |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |        |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |        |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |        |  |  |  |  |
| $k_{15}$          | - -                 |       |        |  |  |  |  |
| $k_{31}$          | - -                 |       |        |  |  |  |  |
| $k_{33}$          | - -                 |       |        |  |  |  |  |
| $k_r$             | - -                 |       |        |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |        |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |        |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |        |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   | 16    |        |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |        |  |  |  |  |
| $Q$               | - -                 |       |        |  |  |  |  |

**MATERIAL: Ceramic A - (Brush Electronics)**

| Property          | Reference           | 11   | 12    |  |  |  |  |
|-------------------|---------------------|------|-------|--|--|--|--|
| $T_C$             | - -                 |      |       |  |  |  |  |
| $K$               | - -                 |      |       |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      | 11.0  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5.77 |       |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |       |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |       |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      | -78   |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      | 190   |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      | 1720  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |       |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |       |  |  |  |  |
| $k_{15}$          | - -                 |      | 0.49  |  |  |  |  |
| $k_{31}$          | - -                 |      | 0.214 |  |  |  |  |
| $k_{33}$          | - -                 |      | 0.52  |  |  |  |  |
| $k_r$             | - -                 |      |       |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |       |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |       |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |       |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |       |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |       |  |  |  |  |
| Q                 | - -                 |      |       |  |  |  |  |

**MATERIAL: Ceramic B (Brush Electronics) (A Barium - Calcium Titanate)**

| Property \ Reference                  | 37     |  |  |  |  |  |
|---------------------------------------|--------|--|--|--|--|--|
| $T_C$ - -                             | 115    |  |  |  |  |  |
| $K$ - -                               | 1200   |  |  |  |  |  |
| $Y$ $\times 10^{10}$                  |        |  |  |  |  |  |
| $\rho$ $\times 10^3$                  | 5. 5   |  |  |  |  |  |
| $D_{33}^T$ $\times 10^{10}$           |        |  |  |  |  |  |
| $d_{15}$ $\times 10^{-12}$            |        |  |  |  |  |  |
| $d_{31}$ $\times 10^{-12}$            | - 50   |  |  |  |  |  |
| $d_{33}$ $\times 10^{-12}$            | 150    |  |  |  |  |  |
| $\epsilon_{33}^T$ $\times \epsilon_0$ |        |  |  |  |  |  |
| $g_{31}$ $\times 10^{-3}$             |        |  |  |  |  |  |
| $g_{33}$ $\times 10^{-3}$             |        |  |  |  |  |  |
| $k_{15}$ - -                          |        |  |  |  |  |  |
| $k_{31}$ - -                          | 0. 190 |  |  |  |  |  |
| $k_{33}$ - -                          | 0. 490 |  |  |  |  |  |
| $k_r$ - -                             | 0. 325 |  |  |  |  |  |
| $s_{11}^E$ $\times 10^{-12}$          | 8. 62  |  |  |  |  |  |
| $s_{12}^E$ $\times 10^{-12}$          |        |  |  |  |  |  |
| $s_{13}^E$ $\times 10^{-12}$          | 9. 0   |  |  |  |  |  |
| $s_{33}^E$ $\times 10^{-12}$          |        |  |  |  |  |  |
| $s_{44}^E$ $\times 10^{-12}$          |        |  |  |  |  |  |
| Q - -                                 | 400    |  |  |  |  |  |

**MATERIAL: Lead Niobate**

| Property          | Reference           | 18     | 23     | 34    |  |  |  |  |
|-------------------|---------------------|--------|--------|-------|--|--|--|--|
| $T_C$             | - -                 | 570    | 490    | 565   |  |  |  |  |
| $K$               | - -                 | 225    | 225    | 165   |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 3. 5   | 3. 5   |       |  |  |  |  |
| $\rho$            | $\times 10^3$       |        | 5. 9   | 5. 5  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |        |        |       |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |        |        |       |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 11   | - 11   |       |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 80     | 80     |       |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |        |        |       |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |        |        |       |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |        | 40     |       |  |  |  |  |
| $k_{15}$          | - -                 |        |        |       |  |  |  |  |
| $k_{31}$          | - -                 | 0. 045 | 0. 045 |       |  |  |  |  |
| $k_{33}$          | - -                 | 0. 42  | 0. 42  | 0. 30 |  |  |  |  |
| $k_r$             | - -                 | 0. 07  | 0. 07  |       |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |        |        |       |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |        |        |       |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |        |        |       |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |        |        |       |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |        |        |       |  |  |  |  |
| $Q$               | - -                 | 11     |        | 5     |  |  |  |  |

MATERIAL: Triglycine Sulphate (Pure)

| Property   | Reference         | 39 | 21   | 36    | 45 |  |  |  |
|------------|-------------------|----|------|-------|----|--|--|--|
| $T_C$      | - -               | 47 |      |       |    |  |  |  |
| $Q$        | - -               |    |      |       |    |  |  |  |
| $K$        | - -               |    |      |       |    |  |  |  |
| $Y$        | $\times 10^{10}$  |    |      |       |    |  |  |  |
| $\rho$     | $\times 10^3$     |    |      |       |    |  |  |  |
| $d_{23}$   | $\times 10^{-12}$ | 65 | 84   | 14    |    |  |  |  |
| $d_{21}$   | $\times 10^{-12}$ |    | 22.7 | 5     | 30 |  |  |  |
| $d_{22}$   | $\times 10^{-12}$ |    | 22   | 9.3   |    |  |  |  |
| $d_{25}$   | $\times 10^{-12}$ |    |      | 2     |    |  |  |  |
| $k_{21}$   | - -               |    | 0.18 |       |    |  |  |  |
| $k_{22}$   | - -               |    | 0.18 |       |    |  |  |  |
| $k_{23}$   | - -               |    | 0.44 |       |    |  |  |  |
| $s_{11}^E$ | $\times 10^{-12}$ |    |      | 35.1  | 34 |  |  |  |
| $s_{12}^E$ | $\times 10^{-12}$ |    |      | -10.1 |    |  |  |  |
| $s_{13}^E$ | $\times 10^{-12}$ |    |      | -53.8 |    |  |  |  |
| $s_{33}^E$ | $\times 10^{-12}$ | 82 |      | 86.0  | 87 |  |  |  |
| $s_{44}^E$ | $\times 10^{-12}$ |    |      | 95.7  |    |  |  |  |
| $s_{66}^E$ | $\times 10^{-12}$ |    |      | 164.9 |    |  |  |  |

**MATERIAL: Zinc Oxide (Pure with Lithium Dopant)**

| Property          | Reference           |         |  |  |  |  |  |
|-------------------|---------------------|---------|--|--|--|--|--|
|                   | 33                  |         |  |  |  |  |  |
| $T_C$             | - -                 |         |  |  |  |  |  |
| $K$               | - -                 | 8. 2    |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |         |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |         |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |         |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   | - 13. 3 |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 4. 67 |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 12. 0   |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |         |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |         |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |         |  |  |  |  |  |
| $k_{15}$          | - -                 |         |  |  |  |  |  |
| $k_{31}$          | - -                 |         |  |  |  |  |  |
| $k_{33}$          | - -                 |         |  |  |  |  |  |
| $k_r$             | - -                 |         |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |         |  |  |  |  |  |
| $Q$               | - -                 |         |  |  |  |  |  |

**MATERIAL: Barium Titanate (95%) Barium Zirconate (5%)**

| Property          | Reference           |       |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|
|                   | 42                  |       |  |  |  |  |  |
| $T_C$             | - -                 | 105   |  |  |  |  |  |
| $K$               | - -                 |       |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5. 44 |  |  |  |  |  |
| $D_{c_{33}}$      | $\times 10^{10}$    |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -60   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 150   |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ | 1400  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | -4. 8 |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    | 12. 1 |  |  |  |  |  |
| $k_{15}$          | - -                 | 0. 15 |  |  |  |  |  |
| $k_{31}$          | - -                 | 0. 40 |  |  |  |  |  |
| $k_{33}$          | - -                 | 0. 28 |  |  |  |  |  |
| $k_r$             | - -                 |       |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 11    |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| Q                 | - -                 | 200   |  |  |  |  |  |

MATERIAL: Barium Niobate (60%) Lead Niobate (40%)

| Property \ Reference | 34                  | 33    |       |  |  |  |
|----------------------|---------------------|-------|-------|--|--|--|
| $T_C$                | - -                 | 300   | 300   |  |  |  |
| $K$                  | - -                 | 750   | 800   |  |  |  |
| $Y$                  | $\times 10^{10}$    |       |       |  |  |  |
| $\rho$               | $\times 10^3$       | 5. 6  | 5. 6  |  |  |  |
| $c_{33}^D$           | $\times 10^{10}$    |       |       |  |  |  |
| $d_{15}$             | $\times 10^{-12}$   |       |       |  |  |  |
| $d_{31}$             | $\times 10^{-12}$   |       | -25   |  |  |  |
| $d_{33}$             | $\times 10^{-12}$   |       |       |  |  |  |
| $\epsilon_{33}^T$    | $\times \epsilon_0$ |       |       |  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |       |       |  |  |  |
| $g_{33}$             | $\times 10^{-3}$    |       |       |  |  |  |
| $k_{15}$             | - -                 |       |       |  |  |  |
| $k_{31}$             | - -                 |       |       |  |  |  |
| $k_{33}$             | - -                 |       |       |  |  |  |
| $k_r$                | - -                 | 0. 16 | 0. 16 |  |  |  |
| $s_{11}^E$           | $\times 10^{-12}$   |       | 10. 3 |  |  |  |
| $s_{12}^E$           | $\times 10^{-12}$   |       |       |  |  |  |
| $s_{13}^E$           | $\times 10^{-12}$   |       |       |  |  |  |
| $s_{33}^E$           | $\times 10^{-12}$   |       |       |  |  |  |
| $s_{44}^E$           | $\times 10^{-12}$   |       |       |  |  |  |
| Q                    | - -                 |       |       |  |  |  |

MATERIAL: Barium Niobate (50%) Lead Niobate (50%)

| Property          | Reference           | 17    | 34   | 40   |     |  |  |  |
|-------------------|---------------------|-------|------|------|-----|--|--|--|
| $T_C$             | - -                 | 315   | 260  | 260  |     |  |  |  |
| $K$               | - -                 | 1205  | 1530 | 1550 |     |  |  |  |
| $Y$               | $\times 10^{10}$    |       |      |      |     |  |  |  |
| $\rho$            | $\times 10^3$       |       |      | 5.6  | 5.6 |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |      |      |     |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |      |      |     |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -36.6 |      | -58  |     |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |      |      |     |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |      |      |     |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |      |      |     |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |      |      |     |  |  |  |
| $k_{15}$          | - -                 |       |      |      |     |  |  |  |
| $k_{31}$          | - -                 |       |      |      |     |  |  |  |
| $k_{33}$          | - -                 |       |      |      |     |  |  |  |
| $k_r$             | - -                 | 0.16  | 0.25 | 0.25 |     |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |      | 10.1 |     |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |      |      |     |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |      |      |     |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |      |      |     |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |      |      |     |  |  |  |
| $Q$               | - -                 |       |      |      |     |  |  |  |

MATERIAL: Barium Titanate (97%) Calcium Titanate (3%)

| Property          | Reference           |      |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | - -                 | 12   |  |  |  |  |  |  |
| $K$               | - -                 |      |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 12.2 |  |  |  |  |  |  |
| $D_{c33}$         | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -53  |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 135  |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ | 1390 |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | - -                 | 0.39 |  |  |  |  |  |  |
| $k_{31}$          | - -                 | 0.17 |  |  |  |  |  |  |
| $k_{33}$          | - -                 | 0.43 |  |  |  |  |  |  |
| $k_r$             | - -                 |      |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $Q$               | - -                 |      |  |  |  |  |  |  |

**MATERIAL: Barium Titanate (95%) Calcium Titanate (5%)**

| Property \ Reference | 2                   | 13    | 15   | 24   |       |  |  |
|----------------------|---------------------|-------|------|------|-------|--|--|
| $T_C$                | - -                 |       | 115  | 118  | 115   |  |  |
| $K$                  | - -                 | 1190  | 1160 | 1320 |       |  |  |
| $Y$                  | $\times 10^{10}$    | 11.6  |      | 12.4 |       |  |  |
| $\rho$               | $\times 10^3$       | 5.5   |      | 5.74 | 5.5   |  |  |
| $D_{c_{33}}$         | $\times 10^{10}$    |       |      |      | 15.8  |  |  |
| $d_{15}$             | $\times 10^{-12}$   |       |      |      | 257   |  |  |
| $d_{31}$             | $\times 10^{-12}$   | -58   | -53  | -61  | -58   |  |  |
| $d_{33}$             | $\times 10^{-12}$   |       |      |      | 150   |  |  |
| $\epsilon_{33}^T$    | $\times \epsilon_0$ |       |      |      | 1355  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |       |      | -5.2 | -5.5  |  |  |
| $g_{33}$             | $\times 10^{-3}$    |       |      |      |       |  |  |
| $k_{15}$             | - -                 |       |      |      | 0.495 |  |  |
| $k_{31}$             | - -                 | 0.193 |      |      | 0.19  |  |  |
| $k_{33}$             | - -                 |       |      |      | 0.49  |  |  |
| $k_r$                | - -                 |       | 0.29 | 0.34 | 0.325 |  |  |
| $E_{11}$             | $\times 10^{-12}$   |       |      |      | 8.7   |  |  |
| $E_{12}$             | $\times 10^{-12}$   |       |      |      |       |  |  |
| $E_{13}$             | $\times 10^{-12}$   |       |      |      |       |  |  |
| $E_{33}$             | $\times 10^{-12}$   |       |      |      | 9.0   |  |  |
| $E_{44}$             | $\times 10^{-12}$   |       |      |      | 22.7  |  |  |
| Q                    | - -                 |       |      | 500  |       |  |  |

**MATERIAL:** Barium Titanate (96%) Lead Titanate (4%)

| Reference<br>Property | 12                  |      |  |  |  |  |  |
|-----------------------|---------------------|------|--|--|--|--|--|
| $T_C$                 | - -                 |      |  |  |  |  |  |
| $K$                   | - -                 |      |  |  |  |  |  |
| $Y$                   | $\times 10^{10}$    | 11.4 |  |  |  |  |  |
| $\rho$                | $\times 10^3$       |      |  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |      |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |      |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | - 38 |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   | 105  |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ | 995  |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |      |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |      |  |  |  |  |  |
| $k_{15}$              | - -                 | 0.34 |  |  |  |  |  |
| $k_{31}$              | - -                 | 0.14 |  |  |  |  |  |
| $k_{33}$              | - -                 | 0.39 |  |  |  |  |  |
| $k_r$                 | - -                 |      |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| Q                     | - -                 |      |  |  |  |  |  |

**MATERIAL: Barium Titanate (95%) Lead Titanate (5%)**

| Property          | Reference           |       |  |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|--|
|                   | 2                   |       |  |  |  |  |  |  |
| $T_C$             | - -                 |       |  |  |  |  |  |  |
| $K$               | - -                 | 1175  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 11.0  |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5.7   |  |  |  |  |  |  |
| $D_{33}^T$        | $\times 10^{10}$    |       |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -53   |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | -5.1  |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |  |  |  |  |  |  |
| $k_{15}$          | - -                 |       |  |  |  |  |  |  |
| $k_{31}$          | - -                 | 0.172 |  |  |  |  |  |  |
| $k_{33}$          | - -                 |       |  |  |  |  |  |  |
| $k_r$             | - -                 |       |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| Q                 | - -                 |       |  |  |  |  |  |  |

**MATERIAL: Barium Titanate (90%) Lead Titanate (10%)**

| <b>Reference<br/>Property</b> | 18                  |      |  |  |  |  |  |  |
|-------------------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$                         | - -                 | 150  |  |  |  |  |  |  |
| $K$                           | - -                 | 500  |  |  |  |  |  |  |
| $Y$                           | $\times 10^{10}$    | 12   |  |  |  |  |  |  |
| $\rho$                        | $\times 10^3$       |      |  |  |  |  |  |  |
| $c_{33}^D$                    | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$                      | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$                      | $\times 10^{-12}$   | -23  |  |  |  |  |  |  |
| $d_{33}$                      | $\times 10^{-12}$   | 70   |  |  |  |  |  |  |
| $\epsilon_{33}^T$             | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$                      | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$                      | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$                      | - -                 |      |  |  |  |  |  |  |
| $k_{31}$                      | - -                 | 0.12 |  |  |  |  |  |  |
| $k_{33}$                      | - -                 | 0.36 |  |  |  |  |  |  |
| $k_r$                         | - -                 | 0.20 |  |  |  |  |  |  |
| $s_{11}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{12}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $Q$                           | - -                 | 800  |  |  |  |  |  |  |

**MATERIAL: Barium Titanate (88%) Lead Titanate (12%)**

| Reference<br>Property | 37                  |       |  |  |  |  |  |
|-----------------------|---------------------|-------|--|--|--|--|--|
| $T_C$                 | --                  | 150   |  |  |  |  |  |
| $K$                   | --                  | 850   |  |  |  |  |  |
| $Y$                   | $\times 10^{10}$    |       |  |  |  |  |  |
| $\rho$                | $\times 10^3$       | 5.7   |  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |       |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |       |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -30   |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   | 90    |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |       |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |       |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |       |  |  |  |  |  |
| $k_{15}$              | --                  |       |  |  |  |  |  |
| $k_{31}$              | --                  | 0.125 |  |  |  |  |  |
| $k_{33}$              | --                  | 0.365 |  |  |  |  |  |
| $k_r$                 | --                  | 0.210 |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   | 7.82  |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   | 8.13  |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |       |  |  |  |  |  |
| $Q$                   | --                  | 1200  |  |  |  |  |  |

**MATERIAL: Ceramic A (95%) Calcium Titanate (5%)**

| Property          | Reference           |       |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|
| $T_C$             | --                  | 12    |  |  |  |  |  |
| $K$               | --                  |       |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 11.6  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |       |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -58   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 150   |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ | 1185  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |  |  |  |  |  |
| $k_{15}$          | --                  |       |  |  |  |  |  |
| $k_{31}$          | --                  | 0.193 |  |  |  |  |  |
| $k_{33}$          | --                  | 0.50  |  |  |  |  |  |
| $k_r$             | --                  |       |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| Q                 | --                  |       |  |  |  |  |  |

**MATERIAL: Lead Hafnate (50%) Lead Titanate (50%)**

| Reference<br>Property | 8                   |        |  |  |  |  |  |
|-----------------------|---------------------|--------|--|--|--|--|--|
| $T_C$                 | - -                 | 330    |  |  |  |  |  |
| $K$                   | - -                 | 672    |  |  |  |  |  |
| $Y$                   | $\times 10^{10}$    |        |  |  |  |  |  |
| $\rho$                | $\times 10^3$       | 8. 4   |  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |        |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |        |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | - 54   |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |        |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |        |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    | - 8. 8 |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |        |  |  |  |  |  |
| $k_{15}$              | - -                 |        |  |  |  |  |  |
| $k_{31}$              | - -                 |        |  |  |  |  |  |
| $k_{33}$              | - -                 |        |  |  |  |  |  |
| $k_r$                 | - -                 | 0. 38  |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |        |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |        |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |        |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |        |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |        |  |  |  |  |  |
| Q                     | - -                 |        |  |  |  |  |  |

MATERIAL: Lead Niobate (80%) Barium Niobate (20%)

| Reference<br>Property | 34                  | 40    |       |  |  |  |  |
|-----------------------|---------------------|-------|-------|--|--|--|--|
| $T_C$                 | - -                 | 430   | 425   |  |  |  |  |
| $K$                   | - -                 | 400   | 400   |  |  |  |  |
| $Y$                   | $\times 10^{10}$    |       |       |  |  |  |  |
| $\rho$                | $\times 10^3$       | 5. 9  | 5. 9  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |       |       |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |       |       |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   |       | 25    |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |       |       |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |       |       |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |       |       |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |       |       |  |  |  |  |
| $k_{15}$              | - -                 |       |       |  |  |  |  |
| $k_{31}$              | - -                 |       |       |  |  |  |  |
| $k_{33}$              | - -                 |       |       |  |  |  |  |
| $k_r$                 | - -                 | 0. 20 | 0. 20 |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |       | 12. 2 |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |       |       |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |       |       |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |       |       |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |       |       |  |  |  |  |
| Q                     | - -                 | 20    | 15    |  |  |  |  |

**MATERIAL · Lead Niobate (70%) Barium Niobate (30%)**

| Reference<br>Property | 17                  | 34    | 40   | 42   |      |  |  |
|-----------------------|---------------------|-------|------|------|------|--|--|
| $T_C$                 | - -                 | 345   | 340  | 350  | 340  |  |  |
| $K$                   | - -                 | 640   | 900  | 640  |      |  |  |
| $Y$                   | $\times 10^{10}$    |       |      |      |      |  |  |
| $\rho$                | $\times 10^3$       |       |      | 5.9  | 5.9  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |       |      |      |      |  |  |
| $d_{15}$              | $\times 10^{-12}$   |       |      |      |      |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -36.6 |      | -41  | -40  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |       |      |      | 100  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |       |      |      | 900  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |       |      |      | -5.0 |  |  |
| $g_{33}$              | $\times 10^{-3}$    |       |      |      | 12.5 |  |  |
| $k_{15}$              | - -                 |       |      |      |      |  |  |
| $k_{31}$              | - -                 |       |      |      | 0.13 |  |  |
| $k_{33}$              | - -                 |       |      |      | 0.33 |  |  |
| $k_r$                 | - -                 | 0.19  | 0.24 | 0.24 | 0.24 |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |       |      | 10.9 | 10.9 |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |       |      |      |      |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |       |      |      |      |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |       |      |      |      |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |       |      |      |      |  |  |
| $Q$                   | - -                 |       | 350  | 350  | 350  |  |  |

MATERIAL: Lead Niobate (65%) Barium Niobate (35%)

| Property          | Reference           | 34    | 40    |     |  |  |  |  |
|-------------------|---------------------|-------|-------|-----|--|--|--|--|
| $T_C$             | - -                 | 300   | 300   |     |  |  |  |  |
| $K$               | - -                 | 1020  | 1250  |     |  |  |  |  |
| $\gamma$          | $\times 10^{10}$    |       |       |     |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5. 9  |       |     |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |       |     |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |       |       | -60 |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |       |     |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |       |     |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |       |     |  |  |  |  |
| $k_{15}$          | - -                 |       |       |     |  |  |  |  |
| $k_{31}$          | - -                 |       |       |     |  |  |  |  |
| $k_{33}$          | - -                 |       |       |     |  |  |  |  |
| $k_r$             | - -                 | 0. 30 | 0. 34 |     |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |       |     |  |  |  |  |
| Q                 | - -                 | 400   | 330   |     |  |  |  |  |

**MATERIAL: Lead Niobate (60%) Barium Niobate (40%)**

| Property          | Reference           | 17      | 40    | 42    | 34     |  |  |
|-------------------|---------------------|---------|-------|-------|--------|--|--|
| $T_C$             | - -                 | 290     | 270   | 260   |        |  |  |
| $K$               | - -                 | 1190    | 1500  |       | 1600   |  |  |
| $Y$               | $\times 10^{10}$    |         |       |       |        |  |  |
| $\rho$            | $\times 10^3$       |         | 5. 9  | 5. 9  | 5. 9   |  |  |
| $c_{33}^T$        | $\times 10^{10}$    |         |       |       |        |  |  |
| $d_{15}$          | $\times 10^{-12}$   |         |       |       |        |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 56. 6 |       | - 91  | - 90   |  |  |
| $d_{33}$          | $\times 10^{-12}$   |         |       |       | 220    |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |         |       |       | 1500   |  |  |
| $g_{31}$          | $\times 10^{-3}$    |         |       |       | - 6. 8 |  |  |
| $g_{33}$          | $\times 10^{-3}$    |         |       |       | 16. 5  |  |  |
| $k_{15}$          | - -                 |         |       |       |        |  |  |
| $k_{31}$          | - -                 |         |       |       | 0. 22  |  |  |
| $k_{33}$          | - -                 |         |       |       | 0. 55  |  |  |
| $k_r$             | - -                 | 0. 27   | 0. 38 | 0. 38 | 0. 38  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |         |       | 11. 5 | 11. 5  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |         |       |       |        |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |         |       |       |        |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |         |       |       |        |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |         |       |       |        |  |  |
| Q                 | - -                 |         |       |       |        |  |  |

MATERIAL: Lead Niobate (55%) Barium Niobate (45%)

| Property          | Reference           | 34   | 40   |  |  |  |  |  |
|-------------------|---------------------|------|------|--|--|--|--|--|
| $T_C$             | - -                 | 250  | 250  |  |  |  |  |  |
| $K$               | - -                 | 1620 | 1600 |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |      |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5.8  |      |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |      |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      | -74  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |      |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |      |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |      |  |  |  |  |  |
| $k_{15}$          | - -                 |      |      |  |  |  |  |  |
| $k_{31}$          | - -                 |      |      |  |  |  |  |  |
| $k_{33}$          | - -                 |      |      |  |  |  |  |  |
| $k_r$             | - -                 | 0.35 | 0.37 |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $Q$               | - -                 | 230  | 260  |  |  |  |  |  |

**MATERIAL: Lead Niobate (90%) Barium Titanate (10%)**

| Property \ Reference | 34                  | 40  |      |  |  |  |  |
|----------------------|---------------------|-----|------|--|--|--|--|
| $T_C$                | - -                 | 495 | 500  |  |  |  |  |
| $K$                  | - -                 | 250 | 250  |  |  |  |  |
| $Y$                  | $\times 10^{10}$    |     |      |  |  |  |  |
| $\rho$               | $\times 10^3$       | 5.6 | 5.6  |  |  |  |  |
| $c_{33}^D$           | $\times 10^{10}$    |     |      |  |  |  |  |
| $d_{15}$             | $\times 10^{-12}$   |     |      |  |  |  |  |
| $d_{31}$             | $\times 10^{-12}$   |     | -21  |  |  |  |  |
| $d_{33}$             | $\times 10^{-12}$   |     |      |  |  |  |  |
| $\epsilon_{33}^T$    | $\times \epsilon_0$ |     |      |  |  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |     |      |  |  |  |  |
| $g_{33}$             | $\times 10^{-3}$    |     |      |  |  |  |  |
| $k_{15}$             | - -                 |     |      |  |  |  |  |
| $k_{31}$             | - -                 |     |      |  |  |  |  |
| $k_{33}$             | - -                 | 0.3 |      |  |  |  |  |
| $k_r$                | - -                 |     | 0.20 |  |  |  |  |
| $s_{11}^E$           | $\times 10^{-12}$   |     | 14.0 |  |  |  |  |
| $s_{12}^E$           | $\times 10^{-12}$   |     |      |  |  |  |  |
| $s_{13}^E$           | $\times 10^{-12}$   |     |      |  |  |  |  |
| $s_{33}^E$           | $\times 10^{-12}$   |     |      |  |  |  |  |
| $s_{44}^E$           | $\times 10^{-12}$   |     |      |  |  |  |  |
| $Q$                  | - -                 | 8   | 5    |  |  |  |  |

MATERIAL: Lead Niobate (70%) Barium Titanate (30%)

| Property          | Reference           | 34   |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | - -                 | 285  |  |  |  |  |  |  |
| $K$               | - -                 | 860  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5.88 |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | - -                 |      |  |  |  |  |  |  |
| $k_{31}$          | - -                 |      |  |  |  |  |  |  |
| $k_{33}$          | - -                 |      |  |  |  |  |  |  |
| $k_r$             | - -                 | 0.22 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $Q$               | - -                 | 675  |  |  |  |  |  |  |

MATERIAL: Lead Niobate (70%) Barium Zirconate (30%)

| Property          | Reference           | 34   |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | - -                 | 125  |  |  |  |  |  |  |
| $K$               | - -                 | 1820 |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5.94 |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | - -                 |      |  |  |  |  |  |  |
| $k_{31}$          | - -                 |      |  |  |  |  |  |  |
| $k_{33}$          | - -                 |      |  |  |  |  |  |  |
| $k_r$             | - -                 | 0.10 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| Q                 | - -                 | 56   |  |  |  |  |  |  |

MATERIAL: Lead Niobate (70%) Cadmium Niobate (30%)

| Property          | Reference           | 34    | 34    |  |  |  |  |  |
|-------------------|---------------------|-------|-------|--|--|--|--|--|
| $T_C$             | - -                 | 485   | 355   |  |  |  |  |  |
| $K$               | - -                 | 182   | 320   |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |       |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5. 55 | 5. 60 |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |       |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |       |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |       |  |  |  |  |  |
| $k_{15}$          | - -                 |       |       |  |  |  |  |  |
| $k_{31}$          | - -                 |       |       |  |  |  |  |  |
| $k_{33}$          | - -                 |       |       |  |  |  |  |  |
| $k_r$             | - -                 |       |       |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| Q                 | - -                 |       |       |  |  |  |  |  |

**MATERIAL: Lead Niobate (70%) Niobium Oxide (30%)**

| Property          | Reference           |      |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|
|                   | 34                  |      |  |  |  |  |  |
| $T_C$             | - -                 | 570  |  |  |  |  |  |
| $K$               | - -                 | 550  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5.56 |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |
| $k_{15}$          | - -                 |      |  |  |  |  |  |
| $k_{31}$          | - -                 |      |  |  |  |  |  |
| $k_{33}$          | - -                 |      |  |  |  |  |  |
| $k_r$             | - -                 | 0.05 |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $Q$               | - -                 | 575  |  |  |  |  |  |

**MATERIAL: Lead Niobate (90%) Strontium Niobate (10%)**

| Property          | Reference           | 34    |  |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|--|
| $T_C$             | - -                 | 600   |  |  |  |  |  |  |
| $K$               | - -                 | 212   |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5. 60 |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |  |  |  |  |  |  |
| $k_{15}$          | - -                 |       |  |  |  |  |  |  |
| $k_{31}$          | - -                 |       |  |  |  |  |  |  |
| $k_{33}$          | - -                 |       |  |  |  |  |  |  |
| $k_r$             | - -                 | 0. 12 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| Q                 | - -                 | 10    |  |  |  |  |  |  |

**MATERIAL: Lead Niobate (80%) Strontium Niobate (20%)**

| Property        | Reference | 17  |      |  |  |  |  |  |
|-----------------|-----------|-----|------|--|--|--|--|--|
| $T_C$           |           | 450 |      |  |  |  |  |  |
| $K$             |           | 440 |      |  |  |  |  |  |
| $Y$             |           |     |      |  |  |  |  |  |
| $\rho$          |           |     |      |  |  |  |  |  |
| $c_{33}^D$      |           |     |      |  |  |  |  |  |
| $d_{15}$        |           |     |      |  |  |  |  |  |
| $d_{31}$        |           |     |      |  |  |  |  |  |
| $d_{33}$        |           |     |      |  |  |  |  |  |
| $\epsilon_{33}$ |           |     |      |  |  |  |  |  |
| $g_{31}$        |           |     |      |  |  |  |  |  |
| $g_{33}$        |           |     |      |  |  |  |  |  |
| $k_{15}$        |           |     |      |  |  |  |  |  |
| $k_{31}$        |           |     |      |  |  |  |  |  |
| $k_{33}$        |           |     |      |  |  |  |  |  |
| $k_r$           |           |     | 0.26 |  |  |  |  |  |
| $s_{11}^E$      |           |     |      |  |  |  |  |  |
| $s_{12}^E$      |           |     |      |  |  |  |  |  |
| $s_{13}^E$      |           |     |      |  |  |  |  |  |
| $s_{33}^E$      |           |     |      |  |  |  |  |  |
| $s_{44}^E$      |           |     |      |  |  |  |  |  |
| Q               |           |     |      |  |  |  |  |  |

**MATERIAL: Lead Niobate (70%) Strontium Niobate (30%)**

| Property \ Reference | 17                  | 34    |      |  |  |  |  |
|----------------------|---------------------|-------|------|--|--|--|--|
| $T_C$                | - -                 | 380   | 400  |  |  |  |  |
| $K$                  | - -                 | 502   | 1030 |  |  |  |  |
| $Y$                  | $\times 10^{10}$    |       |      |  |  |  |  |
| $\rho$               | $\times 10^3$       |       | 5.65 |  |  |  |  |
| $c_{33}^D$           | $\times 10^{10}$    |       |      |  |  |  |  |
| $d_{15}$             | $\times 10^{-12}$   |       |      |  |  |  |  |
| $d_{31}$             | $\times 10^{-12}$   | -53.3 |      |  |  |  |  |
| $d_{33}$             | $\times 10^{-12}$   |       |      |  |  |  |  |
| $\epsilon_{33}^T$    | $\times \epsilon_0$ |       |      |  |  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |       |      |  |  |  |  |
| $g_{33}$             | $\times 10^{-3}$    |       |      |  |  |  |  |
| $k_{15}$             | - -                 |       |      |  |  |  |  |
| $k_{31}$             | - -                 |       |      |  |  |  |  |
| $k_{33}$             | - -                 |       |      |  |  |  |  |
| $k_r$                | - -                 | 0.31  | 0.15 |  |  |  |  |
| $s_{11}^E$           | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{12}^E$           | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{13}^E$           | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{33}^E$           | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{44}^E$           | $\times 10^{-12}$   |       |      |  |  |  |  |
| $Q$                  | - -                 | 38    |      |  |  |  |  |

**MATERIAL: Lead Niobate (60%) Strontium Niobate (40%)**

| Property          | Reference           | 17   |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | - -                 | 310  |  |  |  |  |  |  |
| $K$               | - -                 | 755  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |      |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | 53.3 |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | - -                 |      |  |  |  |  |  |  |
| $k_{31}$          | - -                 |      |  |  |  |  |  |  |
| $k_{33}$          | - -                 |      |  |  |  |  |  |  |
| $k_r$             | - -                 | 0.26 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| Q                 | - -                 |      |  |  |  |  |  |  |

**MATERIAL: Lead Niobate (55%) Strontium Niobate (45%)**

| Property          | Reference           | 17     |  |  |  |  |  |  |
|-------------------|---------------------|--------|--|--|--|--|--|--|
| $T_C$             | - -                 | 250    |  |  |  |  |  |  |
| $K$               | - -                 | 1060   |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |        |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |        |  |  |  |  |  |  |
| $D_{c33}^T$       | $\times 10^{10}$    |        |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 50.0 |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |        |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |        |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |        |  |  |  |  |  |  |
| $k_{15}$          | - -                 |        |  |  |  |  |  |  |
| $k_{31}$          | - -                 |        |  |  |  |  |  |  |
| $k_{33}$          | - -                 |        |  |  |  |  |  |  |
| $k_r$             | - -                 | 0.22   |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| Q                 | - -                 |        |  |  |  |  |  |  |

**MATERIAL: Lead-Tin Oxide (60%) Lead Titanate (40%)**

| Property          | Reference           |      |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|
|                   | 8                   |      |  |  |  |  |  |
| $T_C$             | - -                 | 225  |  |  |  |  |  |
| $K$               | - -                 | 776  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 8.2  |  |  |  |  |  |
| $D_{c33}^T$       | $\times 10^{10}$    |      |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -28  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | -5.0 |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |
| $k_{15}$          | - -                 |      |  |  |  |  |  |
| $k_{31}$          | - -                 |      |  |  |  |  |  |
| $k_{33}$          | - -                 |      |  |  |  |  |  |
| $k_r$             | - -                 | 0.20 |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |
| Q                 | - -                 |      |  |  |  |  |  |

MATERIAL: Lead-Tin Oxide (55%) Lead Titanate (45%)

| Property          | Reference           | 8     |  |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|--|
| $T_C$             | - -                 | 235   |  |  |  |  |  |  |
| $K$               | - -                 | 1260  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 8.0   |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 46  |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | - 5.1 |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |  |  |  |  |  |  |
| $k_{15}$          | - -                 |       |  |  |  |  |  |  |
| $k_{31}$          | - -                 |       |  |  |  |  |  |  |
| $k_{33}$          | - -                 |       |  |  |  |  |  |  |
| $k_r$             | - -                 | 0.25  |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |  |
| Q                 | - -                 |       |  |  |  |  |  |  |

**MATERIAL: Lead Titanate (52%) Lead Zirconate (48%)**

| Reference<br>Property | 29                  |       |  |  |  |  |  |
|-----------------------|---------------------|-------|--|--|--|--|--|
| $T_C$                 | - -                 |       |  |  |  |  |  |
| $K$                   | - -                 |       |  |  |  |  |  |
| $\gamma$              | $\times 10^{10}$    |       |  |  |  |  |  |
| $\rho$                | $\times 10^3$       | 7.9   |  |  |  |  |  |
| $D_{c33}$             | $\times 10^{10}$    | 14.0  |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   | 166   |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -43.0 |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   | 110   |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |       |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    | -7.3  |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    | 18.7  |  |  |  |  |  |
| $k_{15}$              | - -                 | 0.408 |  |  |  |  |  |
| $k_{31}$              | - -                 | 0.170 |  |  |  |  |  |
| $k_{33}$              | - -                 | 0.435 |  |  |  |  |  |
| $k_r$                 | - -                 | 0.289 |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   | 10.8  |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   | -3.35 |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   | -3.21 |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   | 10.9  |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   | 28.3  |  |  |  |  |  |
| Q                     | - -                 | 1170  |  |  |  |  |  |

MATERIAL: Lead Titanate (50%) Lead Zirconate (50%)

| Property \ Reference | 8                   | 29  |       |  |  |  |  |  |
|----------------------|---------------------|-----|-------|--|--|--|--|--|
| $T_C$                | - -                 | 400 |       |  |  |  |  |  |
| $K$                  | -                   | 641 |       |  |  |  |  |  |
| $Y$                  | $\times 10^{10}$    |     |       |  |  |  |  |  |
| $\rho$               | $\times 10^3$       | 7.1 | 7.55  |  |  |  |  |  |
| $D_{33}$             | $\times 10^{10}$    |     | 13.5  |  |  |  |  |  |
| $d_{15}$             | $\times 10^{-12}$   |     | 166   |  |  |  |  |  |
| $d_{31}$             | $\times 10^{-12}$   |     | -43.0 |  |  |  |  |  |
| $d_{33}$             | $\times 10^{-12}$   |     | 110   |  |  |  |  |  |
| $\epsilon_{33}^T$    | $\times \epsilon_0$ |     |       |  |  |  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |     | -9.35 |  |  |  |  |  |
| $g_{33}$             | $\times 10^{-3}$    |     | 23.1  |  |  |  |  |  |
| $k_{15}$             | - -                 |     | 0.504 |  |  |  |  |  |
| $k_{31}$             | - -                 |     | 0.230 |  |  |  |  |  |
| $k_{33}$             | - -                 |     | 0.546 |  |  |  |  |  |
| $k_r$                | - -                 |     | 0.397 |  |  |  |  |  |
| $s_{11}^E$           | $\times 10^{-12}$   |     | 12.4  |  |  |  |  |  |
| $s_{12}^E$           | $\times 10^{-12}$   |     | -3.35 |  |  |  |  |  |
| $s_{13}^E$           | $\times 10^{-12}$   |     | -4.22 |  |  |  |  |  |
| $s_{33}^E$           | $\times 10^{-12}$   |     | 13.3  |  |  |  |  |  |
| $s_{44}^E$           | $\times 10^{-12}$   |     | 32.8  |  |  |  |  |  |
| $Q$                  | - -                 |     | 950   |  |  |  |  |  |

MATERIAL: PZT-4 (Lead Titanate - Lead Zirconate)  
(Clevite Corp.)

| Property          | Reference           | 18   | 24   | 37   | 2    |  |  |
|-------------------|---------------------|------|------|------|------|--|--|
| $T_C$             | --                  | 340  | 340  | 328  |      |  |  |
| $K$               | --                  | 1200 |      | 1350 | 1200 |  |  |
| $\gamma$          | $\times 10^{10}$    | 8.1  |      |      | 8.15 |  |  |
| $\rho$            | $\times 10^3$       |      | 7.5  | 7.5  |      |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      | 15.  | .    |      |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      | 256  |      |      |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -105 | -111 | -117 | -131 |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 250  | 450  | 270  |      |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      | 1885 |      |      |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |      |      |      |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |      |      |      |  |  |
| $k_{15}$          | --                  |      | 0.65 |      |      |  |  |
| $k_{31}$          | --                  | 0.29 | ~ 31 | 0.31 |      |  |  |
| $k_{33}$          | --                  | 0.63 | 0.64 | 0.64 |      |  |  |
| $k_r$             | --                  | 0.50 | 0.52 |      |      |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      | 12.3 | 11.8 |      |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |      |      |      |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |      |      |      |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      | 14.9 | 14.9 |      |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      | 38.4 |      |      |  |  |
| Q                 | --                  | 600  | 600  | 500  |      |  |  |

**MATERIAL: PZT-5 (Lead Titanate - Lead Zirconate)**  
**(Clevite Corp.)**

| Property \ Reference | 24                  | 25    | 37   |       |  |  |  |
|----------------------|---------------------|-------|------|-------|--|--|--|
| $T_C$                | - -                 | 360   |      | 365   |  |  |  |
| $K$                  | - -                 |       | 1500 | 1500  |  |  |  |
| $Y$                  | $\times 10^{10}$    |       | 6.75 |       |  |  |  |
| $\rho$               | $\times 10^3$       | 7.5   |      | 7.55  |  |  |  |
| $c_{33}^D$           | $\times 10^{10}$    | 13.5  |      |       |  |  |  |
| $d_{15}$             | $\times 10^{-12}$   | 495   |      |       |  |  |  |
| $d_{31}$             | $\times 10^{-12}$   | -140  |      | -140  |  |  |  |
| $d_{33}$             | $\times 10^{-12}$   | 320   |      | 320   |  |  |  |
| $\epsilon_r$         | $\times \epsilon_0$ | 1690  |      |       |  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |       |      |       |  |  |  |
| $g_{33}$             | $\times 10^{-3}$    |       |      |       |  |  |  |
| $k_{15}$             | - -                 | 0.655 |      |       |  |  |  |
| $k_{31}$             | - -                 | 0.32  |      | 0.32  |  |  |  |
| $k_{33}$             | - -                 | 0.675 |      | 0.675 |  |  |  |
| $k_r$                | - -                 | 0.54  |      |       |  |  |  |
| $s_{11}^E$           | $\times 10^{-12}$   | 14.8  |      | 14.8  |  |  |  |
| $s_{12}^E$           | $\times 10^{-12}$   |       |      |       |  |  |  |
| $s_{13}^E$           | $\times 10^{-12}$   |       |      |       |  |  |  |
| $s_{33}^E$           | $\times 10^{-12}$   | 17.1  |      | 17.1  |  |  |  |
| $s_{44}^E$           | $\times 10^{-12}$   | 50    |      |       |  |  |  |
| Q                    | - -                 | 75    |      |       |  |  |  |

MATERIAL: Lead Zirconate (53%) Lead Titanate (47%)

| Reference<br>Property | 20                  |         |  |  |  |  |  |
|-----------------------|---------------------|---------|--|--|--|--|--|
| $T_C$                 | - -                 | 385     |  |  |  |  |  |
| $K$                   | - -                 | 542     |  |  |  |  |  |
| $Y$                   | $\times 10^{10}$    |         |  |  |  |  |  |
| $\rho$                | $\times 10^3$       | 7. 40   |  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |         |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |         |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | - 71    |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |         |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |         |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    | - 14. 7 |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |         |  |  |  |  |  |
| $k_{15}$              | - -                 |         |  |  |  |  |  |
| $k_{31}$              | - -                 |         |  |  |  |  |  |
| $k_{33}$              | - -                 |         |  |  |  |  |  |
| $k_r$                 | - -                 | 0. 48   |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |         |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |         |  |  |  |  |  |
| Q                     | - -                 |         |  |  |  |  |  |

MATERIAL: Lead Zirconate (60%) Lead Titanate (40%)

| Property          | Reference           | 8    | 29      |  |  |  |  |  |
|-------------------|---------------------|------|---------|--|--|--|--|--|
| $T_C$             | - -                 | 350  |         |  |  |  |  |  |
| $K$               | - -                 | 524  |         |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |         |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 7. 3 | 7. 60   |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      | 18. 9   |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      | 293     |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      | - 44. 2 |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      | 117     |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |         |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      | - 13. 3 |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      | 35. 2   |  |  |  |  |  |
| $k_{15}$          | - -                 |      | 0. 625  |  |  |  |  |  |
| $k_{31}$          | - -                 |      | 0. 238  |  |  |  |  |  |
| $k_{33}$          | - -                 |      | 0. 585  |  |  |  |  |  |
| $k_r$             | - -                 |      | 0. 400  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      | 10. 4   |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      | - 2. 96 |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      | - 3. 72 |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      | 12. 05  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      | 36. 9   |  |  |  |  |  |
| $Q$               | - -                 |      | 430     |  |  |  |  |  |

MATERIAL: Lead Zirconate (58%) Lead Titanate (42%)

| Reference<br>Property | 29                  |        |  |  |  |  |  |
|-----------------------|---------------------|--------|--|--|--|--|--|
| $T_C$                 | - -                 |        |  |  |  |  |  |
| $K$                   | - -                 |        |  |  |  |  |  |
| $\gamma$              | $\times 10^{10}$    |        |  |  |  |  |  |
| $\rho$                | $\times 10^3$       | 7. 64  |  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    | 15. 8  |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   | 325    |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -48. 9 |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   | 129    |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |        |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    | -13. 9 |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    | 36. 1  |  |  |  |  |  |
| $k_{15}$              | - -                 | 0. 646 |  |  |  |  |  |
| $k_{31}$              | - -                 | 0. 254 |  |  |  |  |  |
| $k_{33}$              | - -                 | 0. 607 |  |  |  |  |  |
| $k_r$                 | - -                 | 0. 428 |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   | 10. 5  |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   | -3. 07 |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   | -4. 12 |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   | 12. 8  |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   | 37. 7  |  |  |  |  |  |
| $Q$                   | - -                 | 500    |  |  |  |  |  |

MATERIAL: Lead Zirconate (56%) Lead Titanate (44%)

| Property          | Reference           |         |  |  |  |  |  |  |
|-------------------|---------------------|---------|--|--|--|--|--|--|
|                   | 29                  |         |  |  |  |  |  |  |
| $T_C$             | - -                 |         |  |  |  |  |  |  |
| $K$               | - -                 |         |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |         |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 7. 59   |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    | 15. 3   |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   | 357     |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 54. 3 |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 142     |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |         |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | - 14. 5 |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    | 37. 8   |  |  |  |  |  |  |
| $k_{15}$          | - -                 | 0. 657  |  |  |  |  |  |  |
| $k_{31}$          | - -                 | 0. 267  |  |  |  |  |  |  |
| $k_{33}$          | - -                 | 0. 619  |  |  |  |  |  |  |
| $k_r$             | - -                 | 0. 450  |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 11. 0   |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   | - 3. 22 |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   | - 4. 63 |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   | 14. 0   |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   | 39. 8   |  |  |  |  |  |  |
| $Q$               | - -                 | 490     |  |  |  |  |  |  |

**MATERIAL: Lead Zirconate (55%) Lead Titanate (45%)**

| Property          | Reference           | 4          | 8     | 18   |  |  |  |  |
|-------------------|---------------------|------------|-------|------|--|--|--|--|
| $T_C$             | - -                 |            | 330   | 350  |  |  |  |  |
| $K$               | - -                 | 585        | 606   | 500  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 7.5        |       | 7.5  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 7.1        | 7.2   |      |  |  |  |  |
| $D_{c33}$         | $\times 10^{10}$    |            |       |      |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |            |       |      |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -50        | -56   | -56  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 130        |       | 130  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |            |       |      |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | -11.0      | -11.7 |      |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    | 29         |       |      |  |  |  |  |
| $k_{15}$          | - -                 |            |       |      |  |  |  |  |
| $k_{31}$          | - -                 | 0.22       |       | 0.23 |  |  |  |  |
| $k_{33}$          | - -                 | 0.5 to 0.6 |       | 0.55 |  |  |  |  |
| $k_r$             | - -                 | 0.37       | 0.36  | 0.39 |  |  |  |  |
| $E_{11}$          | $\times 10^{-12}$   |            |       |      |  |  |  |  |
| $E_{12}$          | $\times 10^{-12}$   |            |       |      |  |  |  |  |
| $E_{13}$          | $\times 10^{-12}$   |            |       |      |  |  |  |  |
| $E_{33}$          | $\times 10^{-12}$   |            |       |      |  |  |  |  |
| $E_{44}$          | $\times 10^{-12}$   |            |       |      |  |  |  |  |
| $Q$               | - -                 |            |       | 300  |  |  |  |  |

MATERIAL: Lead Zirconate (54%) Lead Titanate (46%)

| Property          | Reference           | 26   | 29    |  |  |  |  |
|-------------------|---------------------|------|-------|--|--|--|--|
| $T_C$             | - -                 | 390  |       |  |  |  |  |
| $K$               | - -                 |      |       |  |  |  |  |
| $\gamma$          | $\times 10^{10}$    |      |       |  |  |  |  |
| $\rho$            | $\times 10^3$       | 7.41 | 7.62  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      | 14.8  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      | 440   |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -71  | 60.2  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      | 152   |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |       |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      | 15.1  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      | 38.1  |  |  |  |  |
| $k_{15}$          | - -                 |      | 0.701 |  |  |  |  |
| $k_{31}$          | - -                 |      | 0.280 |  |  |  |  |
| $k_{33}$          | - -                 |      | 0.626 |  |  |  |  |
| $k_r$             | - -                 | 0.49 | 0.470 |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      | 11.6  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      | -3.33 |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      | -4.97 |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      | 14.8  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      | 45.0  |  |  |  |  |
| Q                 | - -                 |      | 680   |  |  |  |  |

**BLANK PAGE**

**MATERIAL: Lead Zirconate (52%) Lead Titanate (48%)**

| <b>Reference<br/>Property</b> | 29                  | 42    |     |  |  |  |  |
|-------------------------------|---------------------|-------|-----|--|--|--|--|
| $T_C$                         | --                  |       | 370 |  |  |  |  |
| $K$                           | --                  |       |     |  |  |  |  |
| $Y$                           | $\times 10^{10}$    |       |     |  |  |  |  |
| $\rho$                        | $\times 10^3$       | 7.55  |     |  |  |  |  |
| $c_{33}^D$                    | $\times 10^{10}$    | 13.4  |     |  |  |  |  |
| $d_{15}$                      | $\times 10^{-12}$   | 494   |     |  |  |  |  |
| $d_{31}$                      | $\times 10^{-12}$   | -93.5 |     |  |  |  |  |
| $d_{33}$                      | $\times 10^{-12}$   | 223   |     |  |  |  |  |
| $\epsilon_{33}^T$             | $\times \epsilon_0$ | 730   | 730 |  |  |  |  |
| $g_{31}$                      | $\times 10^{-3}$    | -14.5 |     |  |  |  |  |
| $g_{33}$                      | $\times 10^{-3}$    | 34.5  |     |  |  |  |  |
| $k_{15}$                      | --                  | 0.694 |     |  |  |  |  |
| $k_{31}$                      | --                  | 0.313 |     |  |  |  |  |
| $k_{33}$                      | --                  | 0.670 |     |  |  |  |  |
| $k_r$                         | --                  | 0.529 |     |  |  |  |  |
| $s_{11}^E$                    | $\times 10^{-12}$   | 13.8  |     |  |  |  |  |
| $s_{12}^E$                    | $\times 10^{-12}$   | -4.07 |     |  |  |  |  |
| $s_{13}^E$                    | $\times 10^{-12}$   | -5.80 |     |  |  |  |  |
| $s_{33}^E$                    | $\times 10^{-12}$   | 17.1  |     |  |  |  |  |
| $s_{44}^E$                    | $\times 10^{-12}$   | 48.2  |     |  |  |  |  |
| Q                             | --                  | 860   |     |  |  |  |  |

**MATERIAL: LZ-4A (Lead Zirconate - Lead Titanate)**  
**(Brush Electronics)**

| Reference<br>Property | 38                  | 42   |       |  |  |  |  |
|-----------------------|---------------------|------|-------|--|--|--|--|
| $T_C$                 | --                  |      | 320   |  |  |  |  |
| $K$                   | --                  | 1200 |       |  |  |  |  |
| $\gamma$              | $\times 10^{10}$    |      |       |  |  |  |  |
| $\rho$                | $\times 10^3$       | 7.6  |       |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |      |       |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |      |       |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -130 |       |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   | 300  |       |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |      | 1200  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |      | -12.3 |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |      | 28.3  |  |  |  |  |
| $k_{15}$              | --                  |      |       |  |  |  |  |
| $k_{31}$              | --                  | 0.30 |       |  |  |  |  |
| $k_{33}$              | --                  | 0.76 |       |  |  |  |  |
| $k_r$                 | --                  | 0.55 |       |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   | 14.6 |       |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |      |       |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |      |       |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   | 14.8 |       |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |      |       |  |  |  |  |
| Q                     | --                  | 500  |       |  |  |  |  |

MATERIAL: LZ-5A (Lead Zirconate - Lead Titanate)  
(Brush Electronics)

| Property<br>Reference | 38                  | 42   |      |       |  |  |  |
|-----------------------|---------------------|------|------|-------|--|--|--|
| $T_C$                 | - -                 |      | 350  |       |  |  |  |
| $K$                   | - -                 |      | 1500 |       |  |  |  |
| $Y$                   | $\times 10^{10}$    |      |      |       |  |  |  |
| $\rho$                | $\times 10^3$       |      | 7.5  |       |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |      | 13.5 |       |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |      |      |       |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   |      | -140 |       |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |      | 320  |       |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |      |      | 1500  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |      |      | -10.6 |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |      |      | 24.4  |  |  |  |
| $k_{15}$              | - -                 |      |      |       |  |  |  |
| $k_{31}$              | - -                 | 0.32 | 0.32 |       |  |  |  |
| $k_{33}$              | - -                 | 0.68 | 0.68 |       |  |  |  |
| $k_r$                 | - -                 | 0.54 | 0.54 |       |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   | 14.7 | 14.8 |       |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |      |      |       |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |      |      |       |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |      | 16.9 |       |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |      |      |       |  |  |  |
| $Q$                   | - -                 | 75   |      |       |  |  |  |

**MATERIAL: LZ-6 (Lead Zirconate - Lead Titanate)  
(Brush Electronics)**

| Property          | Reference           |       |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|
|                   | 38                  |       |  |  |  |  |  |
| $T_C$             | - -                 |       |  |  |  |  |  |
| $K$               | - -                 | 1075  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 7.5   |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -78   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 191   |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |  |  |  |  |  |
| $k_{15}$          | - -                 |       |  |  |  |  |  |
| $k_{31}$          | - -                 | 0.229 |  |  |  |  |  |
| $k_{33}$          | - -                 | 0.54  |  |  |  |  |  |
| $k_r$             | - -                 | 0.39  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 11.5  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $Q$               | - -                 | 340   |  |  |  |  |  |

**MATERIAL: Potassium Niobate (50%) Sodium Niobate (50%)**

| Property          | Reference           |      |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|
|                   | 23                  |      |  |  |  |  |
| $T_C$             | --                  | 410  |  |  |  |  |
| $K$               | --                  | 294  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 10.4 |  |  |  |  |
| $\rho$            | $\times 10^3$       | 4.3  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -32  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 80   |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    | 32   |  |  |  |  |
| $k_{15}$          | --                  |      |  |  |  |  |
| $k_{31}$          | --                  | 0.21 |  |  |  |  |
| $k_{33}$          | --                  | 0.51 |  |  |  |  |
| $k_r$             | --                  | 0.34 |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |
| $Q$               | --                  | 140  |  |  |  |  |

**MATERIAL: Sodium Niobate (95%) Cadmium Niobate (5%)**

| Property          | Reference           | 40   |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | --                  | 375  |  |  |  |  |  |  |
| $K$               | --                  | 600  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 4.2  |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -6   |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | --                  |      |  |  |  |  |  |  |
| $k_{31}$          | --                  |      |  |  |  |  |  |  |
| $k_{33}$          | --                  |      |  |  |  |  |  |  |
| $k_r$             | --                  | 0.04 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 11.9 |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| Q                 | --                  |      |  |  |  |  |  |  |

**MATERIAL: Sodium Niobate (90%) Cadmium Niobate (10%)**

| <b>Reference<br/>Property</b> | <b>40</b>           |      |  |  |  |  |  |
|-------------------------------|---------------------|------|--|--|--|--|--|
| $T_C$                         | --                  | 330  |  |  |  |  |  |
| $K$                           | --                  | 950  |  |  |  |  |  |
| $Y$                           | $\times 10^{10}$    |      |  |  |  |  |  |
| $\rho$                        | $\times 10^3$       | 4.3  |  |  |  |  |  |
| $c_{33}^D$                    | $\times 10^{10}$    |      |  |  |  |  |  |
| $d_{15}$                      | $\times 10^{-12}$   |      |  |  |  |  |  |
| $d_{31}$                      | $\times 10^{-12}$   | -22  |  |  |  |  |  |
| $d_{33}$                      | $\times 10^{-12}$   |      |  |  |  |  |  |
| $\epsilon_{33}^T$             | $\times \epsilon_0$ |      |  |  |  |  |  |
| $g_{31}$                      | $\times 10^{-3}$    |      |  |  |  |  |  |
| $g_{33}$                      | $\times 10^{-3}$    |      |  |  |  |  |  |
| $k_{15}$                      | --                  |      |  |  |  |  |  |
| $k_{31}$                      | --                  |      |  |  |  |  |  |
| $k_{33}$                      | --                  |      |  |  |  |  |  |
| $k_r$                         | --                  | 0.11 |  |  |  |  |  |
| $s_{11}^E$                    | $\times 10^{-12}$   | 11.6 |  |  |  |  |  |
| $s_{12}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{13}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{33}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{44}^E$                    | $\times 10^{-12}$   |      |  |  |  |  |  |
| Q                             | --                  |      |  |  |  |  |  |

**MATERIAL: Sodium Niobate (89%) Cadmium Niobate (11%)**

| Property          | Reference           | 18   |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | - -                 | 220  |  |  |  |  |  |  |
| $K$               | - -                 | 2000 |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 11   |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |      |  |  |  |  |  |  |
| $D_{c_{33}}$      | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | 70   |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 175  |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | - -                 |      |  |  |  |  |  |  |
| $k_{31}$          | - -                 | 0.18 |  |  |  |  |  |  |
| $k_{33}$          | - -                 |      |  |  |  |  |  |  |
| $k_r$             | - -                 | 0.30 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| Q                 | - -                 | 300  |  |  |  |  |  |  |

**MATERIAL: Sodium Niobate (85%) Cadmium Niobate (15%)**

| Property          | Reference           | 40    |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|
| $T_C$             | - -                 | 285   |  |  |  |  |  |
| $K$               | - -                 | 1350  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 4. 3  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -40   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       |  |  |  |  |  |
| $\epsilon_{31}$   | $\times 10^{-3}$    |       |  |  |  |  |  |
| $\epsilon_{33}$   | $\times 10^{-3}$    |       |  |  |  |  |  |
| $k_{15}$          | - -                 |       |  |  |  |  |  |
| $k_{31}$          | - -                 |       |  |  |  |  |  |
| $k_{33}$          | - -                 |       |  |  |  |  |  |
| $k_r$             | - -                 | 0. 18 |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 11. 6 |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| Q                 | - -                 |       |  |  |  |  |  |

**MATERIAL: Sodium Niobate (80%) Cadmium Niobate (20%)**

| Reference<br>Property               | 40  | 42   |  |  |  |  |  |
|-------------------------------------|-----|------|--|--|--|--|--|
| $T_C$ - -                           | 240 | 240  |  |  |  |  |  |
| $K$ - -                             |     |      |  |  |  |  |  |
| $\gamma \times 10^{10}$             |     |      |  |  |  |  |  |
| $\rho \times 10^3$                  | 4.3 | 4.3  |  |  |  |  |  |
| $c_{33}^D \times 10^{10}$           |     |      |  |  |  |  |  |
| $d_{15} \times 10^{-12}$            |     |      |  |  |  |  |  |
| $d_{31} \times 10^{-12}$            |     | -80  |  |  |  |  |  |
| $d_{33} \times 10^{-12}$            |     | 200  |  |  |  |  |  |
| $\epsilon_{33}^T \times \epsilon_0$ |     | 2000 |  |  |  |  |  |
| $g_{31} \times 10^{-3}$             |     | -4.5 |  |  |  |  |  |
| $g_{33} \times 10^{-3}$             |     | 8.5  |  |  |  |  |  |
| $k_{15}$ - -                        |     |      |  |  |  |  |  |
| $k_{31}$ - -                        |     | 0.17 |  |  |  |  |  |
| $k_{33}$ - -                        |     | 0.42 |  |  |  |  |  |
| $k_r$ - -                           |     | 0.30 |  |  |  |  |  |
| $s_{11}^E \times 10^{-12}$          |     | 10.5 |  |  |  |  |  |
| $s_{12}^E \times 10^{-12}$          |     |      |  |  |  |  |  |
| $s_{13}^E \times 10^{-12}$          |     |      |  |  |  |  |  |
| $s_{33}^E \times 10^{-12}$          |     |      |  |  |  |  |  |
| $s_{44}^E \times 10^{-12}$          |     |      |  |  |  |  |  |
| Q - -                               |     |      |  |  |  |  |  |

**MATERIAL: Sodium Niobate (75%) Cadmium Niobate (25%)**

| Property          | Reference           | 40    | 42    |  |  |  |  |  |
|-------------------|---------------------|-------|-------|--|--|--|--|--|
| $T_C$             | - -                 | 200   | 200   |  |  |  |  |  |
| $K$               | - -                 |       |       |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       |       |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 4. 4  | 4. 4  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -60   | -60   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       | 150   |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |       | 2000  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       | -3. 4 |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       | 8. 5  |  |  |  |  |  |
| $k_{15}$          | - -                 |       |       |  |  |  |  |  |
| $k_{31}$          | - -                 |       | 0. 14 |  |  |  |  |  |
| $k_{33}$          | - -                 |       | 0. 35 |  |  |  |  |  |
| $k_r$             | - -                 | 0. 26 | 0. 26 |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 9. 0  | 9. 0  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |       |  |  |  |  |  |
| Q                 | - -                 |       |       |  |  |  |  |  |

**MATERIAL: Sodium Niobate (70%) Cadmium Niobate (30%)**

| Property          | Reference           | 40   |  |  |  |  |  |  |
|-------------------|---------------------|------|--|--|--|--|--|--|
| $T_C$             | --                  | 155  |  |  |  |  |  |  |
| $K$               | --                  | 2500 |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 4.2  |  |  |  |  |  |  |
| $D_{c_{33}}$      | $\times 10^{10}$    |      |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -66  |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |  |  |  |  |  |  |
| $k_{15}$          | --                  |      |  |  |  |  |  |  |
| $k_{31}$          | --                  |      |  |  |  |  |  |  |
| $k_{33}$          | --                  |      |  |  |  |  |  |  |
| $k_r$             | --                  | 0.24 |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 10.1 |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |  |  |  |  |  |  |
| Q                 | --                  |      |  |  |  |  |  |  |

**MATERIAL:** Barium Titanate (95%) Calcium Titanate (5%)  
Cobalt Carbonate (0.25%)

| Property          | Reference           | 13   | 15   |     |  |  |  |
|-------------------|---------------------|------|------|-----|--|--|--|
| $T_C$             | --                  | 112  | 111  |     |  |  |  |
| $K$               | --                  | 1110 | 1270 |     |  |  |  |
| $\gamma$          | $\times 10^{10}$    |      | 11.6 |     |  |  |  |
| $\rho$            | $\times 10^3$       |      | 5.61 |     |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |      |     |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |      |     |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |      | -51  | -60 |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |      |     |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |      |     |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      | -5.3 |     |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |      |     |  |  |  |
| $k_{15}$          | --                  |      |      |     |  |  |  |
| $k_{31}$          | --                  |      |      |     |  |  |  |
| $k_{33}$          | --                  |      |      |     |  |  |  |
| $k_r$             | --                  | 0.30 | 0.33 |     |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |      |     |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |      |     |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |      |     |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |      |     |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |      |     |  |  |  |
| Q                 | --                  |      |      |     |  |  |  |

**MATERIAL: Barium Titanate (95%) Calcium Titanate (5%)  
Cobalt Carbonate (0.5%)**

| Property          | Reference           | 13   | 15   |  |  |  |  |  |
|-------------------|---------------------|------|------|--|--|--|--|--|
| $T_C$             | - -                 | 108  | 110  |  |  |  |  |  |
| $K$               | - -                 | 1200 | 1340 |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      | 12.2 |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |      | 5.64 |  |  |  |  |  |
| $D_{c_{33}}$      | $\times 10^{10}$    |      |      |  |  |  |  |  |
| $a_{15}$          | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -50  | -59  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |      |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      | -5.0 |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |      |  |  |  |  |  |
| $k_{15}$          | - -                 |      |      |  |  |  |  |  |
| $k_{31}$          | - -                 |      |      |  |  |  |  |  |
| $k_{33}$          | - -                 |      |      |  |  |  |  |  |
| $k_r$             | - -                 | 0.29 | 0.32 |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |      |  |  |  |  |  |
| $Q$               | - -                 |      |      |  |  |  |  |  |

**MATERIAL:** Barium Titanate (95%) Calcium Titanate (5%)  
Cobalt Carbonate (0.75%)

| Property          | Reference           | 13   | 15   | 24    |  |  |  |  |
|-------------------|---------------------|------|------|-------|--|--|--|--|
| $T_C$             | --                  | 106  | 105  | 105   |  |  |  |  |
| $K$               | --                  | 1100 | 1420 |       |  |  |  |  |
| $Y$               | $\times 10^{10}$    |      | 12.4 |       |  |  |  |  |
| $\rho$            | $\times 10^3$       |      | 5.69 | 5.7   |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |      |      |       |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |      |      |       |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -45  | -59  | -59   |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |      |      |       |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |      |      | 1605  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |      | -4.7 |       |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |      |      |       |  |  |  |  |
| $k_{15}$          | --                  |      |      |       |  |  |  |  |
| $k_{31}$          | --                  |      |      | 0.182 |  |  |  |  |
| $k_{33}$          | --                  |      |      |       |  |  |  |  |
| $k_r$             | --                  | 0.27 | 0.31 | 0.31  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |      |      | 8.06  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |      |      |       |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |      |      |       |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |      |      |       |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |      |      |       |  |  |  |  |
| Q                 | --                  |      |      |       |  |  |  |  |

**MATERIAL: Barium Titanate (95%) Calcium Titanate (5%)  
Cobalt Carbonate (1.0%)**

| Reference<br>Property | 13                  | 15   |      |  |  |  |  |
|-----------------------|---------------------|------|------|--|--|--|--|
| $T_C$                 | - -                 | 105  | 104  |  |  |  |  |
| $K$                   | - -                 | 1160 |      |  |  |  |  |
| $Y$                   | $\times 10^{10}$    |      | 11.8 |  |  |  |  |
| $\rho$                | $\times 10^3$       |      | 5.73 |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |      |      |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |      |      |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -45  | -56  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |      |      |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |      |      |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    |      | -4.3 |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |      |      |  |  |  |  |
| $k_{15}$              | - -                 |      |      |  |  |  |  |
| $k_{31}$              | - -                 |      |      |  |  |  |  |
| $k_{33}$              | - -                 |      |      |  |  |  |  |
| $k_r$                 | - -                 | 0.27 | 0.28 |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |      |      |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |      |      |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |      |      |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |      |      |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |      |      |  |  |  |  |
| Q                     | - -                 |      |      |  |  |  |  |

**MATERIAL:** Barium Titanate (95%) Calcium Titanate (5%)  
Cobalt Carbonate (1.25%)

| Reference<br>Property | 15                  |      |  |  |  |  |  |
|-----------------------|---------------------|------|--|--|--|--|--|
| $T_C$                 | - -                 | 100  |  |  |  |  |  |
| $K$                   | - -                 | 1500 |  |  |  |  |  |
| $Y$                   | $\times 10^{10}$    | 12.9 |  |  |  |  |  |
| $\rho$                | $\times 10^3$       | 5.70 |  |  |  |  |  |
| $c_{33}^D$            | $\times 10^{10}$    |      |  |  |  |  |  |
| $d_{15}$              | $\times 10^{-12}$   |      |  |  |  |  |  |
| $d_{31}$              | $\times 10^{-12}$   | -56  |  |  |  |  |  |
| $d_{33}$              | $\times 10^{-12}$   |      |  |  |  |  |  |
| $\epsilon_{33}^T$     | $\times \epsilon_0$ |      |  |  |  |  |  |
| $g_{31}$              | $\times 10^{-3}$    | -4.1 |  |  |  |  |  |
| $g_{33}$              | $\times 10^{-3}$    |      |  |  |  |  |  |
| $k_{15}$              | - -                 |      |  |  |  |  |  |
| $k_{31}$              | - -                 |      |  |  |  |  |  |
| $k_{33}$              | - -                 |      |  |  |  |  |  |
| $k_r$                 | - -                 | 0.29 |  |  |  |  |  |
| $s_{11}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{12}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{13}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{33}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| $s_{44}^E$            | $\times 10^{-12}$   |      |  |  |  |  |  |
| Q                     | - -                 |      |  |  |  |  |  |

MATERIAL: Barium Titanate (95%) Calcium Titanate (5%)  
Cuoalt Carbonate (1. 5%)

| Property          | Reference           | 15     |  |  |  |  |  |  |
|-------------------|---------------------|--------|--|--|--|--|--|--|
| $T_c$             | - -                 | 100    |  |  |  |  |  |  |
| $K$               | - -                 | 1500   |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 11. 6  |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       | 5. 71  |  |  |  |  |  |  |
| $D_{c_{33}}$      | $\times 10^{10}$    |        |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 59   |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |        |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    | - 4. 4 |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |        |  |  |  |  |  |  |
| $k_{15}$          | - -                 |        |  |  |  |  |  |  |
| $k_{31}$          | - -                 |        |  |  |  |  |  |  |
| $k_{33}$          | - -                 |        |  |  |  |  |  |  |
| $k_r$             | - -                 | 0. 29  |  |  |  |  |  |  |
| $E_{11}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $E_{12}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $E_{13}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $E_{33}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| $E_{44}$          | $\times 10^{-12}$   |        |  |  |  |  |  |  |
| Q                 | - -                 |        |  |  |  |  |  |  |

**MATERIAL:** Barium Titanate (90%) Calcium Titanate (6%)  
Lead Titanate (4%)

| Property          | Reference           |       |  |  |  |  |  |
|-------------------|---------------------|-------|--|--|--|--|--|
| $T_C$             | 12                  |       |  |  |  |  |  |
| $K$               | - -                 |       |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    | 12.4  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |       |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -40   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   | 115   |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ | 800   |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |  |  |  |  |  |
| $k_{15}$          | - -                 | 0.43  |  |  |  |  |  |
| $k_{31}$          | - -                 | 0.167 |  |  |  |  |  |
| $k_{33}$          | - -                 | 0.48  |  |  |  |  |  |
| $k_r$             | - -                 |       |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |  |  |  |  |  |
| $Q$               | - -                 |       |  |  |  |  |  |

**MATERIAL: Barium Titanate (84%) Calcium Titanate (8%)  
Lead Titanate (8%)**

| Property          | Reference           | 7     | 12   |  |  |  |  |
|-------------------|---------------------|-------|------|--|--|--|--|
| $T_C$             | --                  |       |      |  |  |  |  |
| $K$               | --                  |       |      |  |  |  |  |
| $Y$               | $\times 10^{10}$    |       | 13.1 |  |  |  |  |
| $\rho$            | $\times 10^3$       |       |      |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |       |      |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |       |      |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | -22.2 | -27  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |       | 80   |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ | 498   | 600  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |       |      |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |       |      |  |  |  |  |
| $k_{15}$          | --                  | 0.35  |      |  |  |  |  |
| $k_{31}$          | --                  | 0.124 |      |  |  |  |  |
| $k_{33}$          | --                  | 0.4   |      |  |  |  |  |
| $k_r$             | --                  | 0.208 |      |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 7.32  |      |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |       |      |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |       |      |  |  |  |  |
| Q                 | --                  | 1090  |      |  |  |  |  |

**MATERIAL:** Barium Titanate (80%) Calcium Titanate (12%)  
Lead Titanate (8%)

| Property          | Reference           | 7       | 42     |  |  |  |  |  |
|-------------------|---------------------|---------|--------|--|--|--|--|--|
| $T_C$             | - -                 |         | 160    |  |  |  |  |  |
| $K$               | - -                 |         |        |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |         |        |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |         | 5. 3   |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |         |        |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |         |        |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   | - 17. 9 | - 35   |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |         | 90     |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ | 417     | 600    |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |         | - 7. 3 |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |         | 18     |  |  |  |  |  |
| $k_{15}$          | - -                 |         |        |  |  |  |  |  |
| $k_{31}$          | - -                 |         | 0. 12  |  |  |  |  |  |
| $k_{33}$          | - -                 |         | 0. 30  |  |  |  |  |  |
| $k_r$             | - -                 | 0. 184  | 0. 22  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   | 7. 522  | 13     |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |         |        |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |         |        |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |         |        |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |         |        |  |  |  |  |  |
| Q                 | - -                 | 1185    | 350    |  |  |  |  |  |

**MATERIAL: Barium Titanate (80%) Lead Titanate (12%)  
Calcium Titanate (8%)**

| Property \ Reference | 23                  | 24   | 12   |       |  |  |  |
|----------------------|---------------------|------|------|-------|--|--|--|
| $T_C$                | - -                 | 145  | 140  |       |  |  |  |
| $K$                  | - -                 | 500  |      |       |  |  |  |
| $Y$                  | $\times 10^{10}$    | 11.9 |      | 12.8  |  |  |  |
| $\rho$               | $\times 10^3$       | 5.4  | 5.4  |       |  |  |  |
| $D_{c_{33}}$         | $\times 10^{10}$    |      |      |       |  |  |  |
| $d_{15}$             | $\times 10^{-12}$   |      |      |       |  |  |  |
| $d_{31}$             | $\times 10^{-12}$   | -31  |      | -20   |  |  |  |
| $d_{33}$             | $\times 10^{-12}$   | 79   |      | 60    |  |  |  |
| $\epsilon_{33}^T$    | $\times \epsilon_0$ |      |      | 400   |  |  |  |
| $g_{31}$             | $\times 10^{-3}$    |      |      |       |  |  |  |
| $g_{33}$             | $\times 10^{-3}$    | 18   |      |       |  |  |  |
| $k_{15}$             | - -                 |      |      | 0.30  |  |  |  |
| $k_{31}$             | - -                 | 0.15 |      | 0.113 |  |  |  |
| $k_{33}$             | - -                 | 0.41 |      | 0.34  |  |  |  |
| $k_r$                | - -                 | 0.24 | 0.19 |       |  |  |  |
| $s_{11}^E$           | $\times 10^{-12}$   | 7.8  |      |       |  |  |  |
| $s_{12}^E$           | $\times 10^{-12}$   |      |      |       |  |  |  |
| $s_{13}^E$           | $\times 10^{-12}$   |      |      |       |  |  |  |
| $s_{33}^E$           | $\times 10^{-12}$   |      |      |       |  |  |  |
| $s_{44}^E$           | $\times 10^{-12}$   |      |      |       |  |  |  |
| Q                    | - -                 | 600  | 1200 |       |  |  |  |

**MATERIAL :**

| Property          | Reference           |  |  |  |  |  |  |
|-------------------|---------------------|--|--|--|--|--|--|
| $T_C$             | --                  |  |  |  |  |  |  |
| $K$               | --                  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |  |  |  |  |  |  |
| $k_{15}$          | --                  |  |  |  |  |  |  |
| $k_{31}$          | --                  |  |  |  |  |  |  |
| $k_{33}$          | --                  |  |  |  |  |  |  |
| $k_r$             | --                  |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |
| $Q$               | --                  |  |  |  |  |  |  |

**MATERIAL :**

| Property          | Reference           |  |  |  |  |  |  |  |
|-------------------|---------------------|--|--|--|--|--|--|--|
| $T_C$             | - -                 |  |  |  |  |  |  |  |
| $K$               | - -                 |  |  |  |  |  |  |  |
| $Y$               | $\times 10^{10}$    |  |  |  |  |  |  |  |
| $\rho$            | $\times 10^3$       |  |  |  |  |  |  |  |
| $c_{33}^D$        | $\times 10^{10}$    |  |  |  |  |  |  |  |
| $d_{15}$          | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $d_{31}$          | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $d_{33}$          | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $\epsilon_{33}^T$ | $\times \epsilon_0$ |  |  |  |  |  |  |  |
| $g_{31}$          | $\times 10^{-3}$    |  |  |  |  |  |  |  |
| $g_{33}$          | $\times 10^{-3}$    |  |  |  |  |  |  |  |
| $k_{15}$          | - -                 |  |  |  |  |  |  |  |
| $k_{31}$          | - -                 |  |  |  |  |  |  |  |
| $k_{33}$          | - -                 |  |  |  |  |  |  |  |
| $k_r$             | - -                 |  |  |  |  |  |  |  |
| $s_{11}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $s_{12}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $s_{13}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $s_{33}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| $s_{44}^E$        | $\times 10^{-12}$   |  |  |  |  |  |  |  |
| Q                 | - -                 |  |  |  |  |  |  |  |

**BLANK PAGE**