Memo: Komplexe Geometrie

Simon Kapfer

10. Januar 2014

Zusammenfassung

Merkzettel zu komplexer Geometrie.

1 Komplexe Strukturen

Sei X eine reelle C^{∞} -Mannigfaltigkeit der Dimension 2n.

- **1.1.** Notation. T_X , Ω_X bezeichnet die reellen Tangential-, Kotangentialbündel, \mathcal{T}_X (oder $T_X^{1,0}$) sowie $\Omega_X^{1,0}$ die holomorphen Versionen. Das Subskript-X wird gelegentlich auch weggelassen. Die Garben der C^∞ -Schnitte werden mit $C^\infty(\ldots)$ bezeichnet, die Garben holomorpher Schnitte mit $\mathcal{O}(\ldots)$.
- **1.2.** Fast komplexe Struktur. Eine fast komplexe Struktur auf X ist eine lineare (Bündel–)Abbildung $J: T_X \to T_X$, so daß $J^2 = -\mathrm{id}$ gilt. Alternativ kann man auch $J \in \mathrm{End}_{\mathbb{R}}(T_X)$ schreiben. J induziert eine duale Abbildung $J: \Omega_X \to \Omega_X$, deren Quadrat ebenfalls die negative Identität ist.
- **1.3.** *Holomorphe (Ko-)Tangentialbündel.* Setzt man J komplex auf $T_X \otimes_{\mathbb{R}} \mathbb{C}$ fort, so kann man eine Eigenraumzerlegung zu den Eigenwerten i und -i machen:

$$T \otimes_{\mathbb{R}} \mathbb{C} = \mathcal{T} \oplus \overline{\mathcal{T}} = T^{1,0} \oplus T^{0,1}$$

$$\Omega \otimes_{\mathbb{R}} \mathbb{C} = \Omega^{1,0} \oplus \Omega^{0,1}$$

$$\Omega^k \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=k} \Lambda^p \Omega^{1,0} \wedge \Lambda^q \Omega^{0,1} = \bigoplus_{p+q=k} \Omega^{p,q}$$

Man kürzt außerdem gern $T_X \otimes_{\mathbb{R}} \mathbb{C}$, $\Omega_X^k \otimes_{\mathbb{R}} \mathbb{C}$ durch $T_{X,\mathbb{C}}$, $\Omega_{X,\mathbb{C}}^k$ ab.

1.4. *Holomorphie.* Eine diff'bare Funktion $f: \mathbb{C} \longrightarrow \mathbb{C}$, $(x,y) \longmapsto f(x,y)$ heißt holomorph, falls $\frac{\partial}{\partial y} f = i \frac{\partial}{\partial x} f$ und antiholomorph, falls $\frac{\partial}{\partial y} f = -i \frac{\partial}{\partial x} f$. Die Identität id: $(x,y) \longmapsto x+iy$ und Polynome in x+iy sind holomorph, die komplexe Konjugation $(x,y) \longmapsto x-iy$ und Polynome darin sind antiholomorph.

Bei einer C^{∞} –Funktion $f:X\longrightarrow \mathbb{C}$ kann man bei Vorhandensein einer fast komplexen Struktur J auf X ganz entsprechend von Holomorphie reden: f heißt holomorph, falls für jedes Vektorfeld $\frac{\partial}{\partial w}\in T_X$ gilt: $\left(J\frac{\partial}{\partial w}\right)f=i\frac{\partial}{\partial w}f$ und antiholomorph, falls für jedes Vektorfeld $\left(J\frac{\partial}{\partial w}\right)f=-i\frac{\partial}{\partial w}f$ ist. Jedes f kann eindeutig als Summe einer holomorphen und einer antiholomorphen Funktion geschrieben werden. Wenn die Garbe aller holomorphen Funktionen mit \mathcal{O}_X bezeichnet wird und die der komplexwertigen glatten Funktionen mit $C^{\infty}_{X,\mathbb{C}}$, hat man also

$$C_{X,\mathbb{C}}^{\infty} = \mathcal{O}_X \oplus \overline{\mathcal{O}_X}$$

Definiert man die Dolbeault-Operatoren $\partial, \overline{\partial}$ durch $\partial f = \frac{1}{2}(df - idf \circ J)$ bzw. $\overline{\partial} f = \frac{1}{2}(df + idf \circ J)$ (beides lebt in $C^{\infty}(\Omega_{X,\mathbb{C}})$), so ist f genau dann holomorph, falls $\overline{\partial} f = 0$. Diese Definition von läßt sich allerdings nicht auf Formen fortsetzen¹. Dazu braucht man schon eine

- **1.5.** *Komplexe Struktur. J* ist eine komplexe Struktur, d. h. integrierbar, falls eine der folgenden äquivalenten Bedingungen erfüllt ist:
 - Es gibt einen Atlas von Karten nach \mathbb{C}^n mit holomorphen Übergangsabbildungen (holomorphe Koordinaten), so daß J auf den Tangentialräumen von \mathbb{C}^n genauso wirkt wie die dort übliche komplexe Struktur, nämlich Multiplikation mit der imaginären Einheit i.
 - Die Bündel \mathcal{T}_X , bzw. $\overline{\mathcal{T}_X}$ sind abgeschlossen unter Lieklammerbildung.
 - (Satz von Newlander-Nirenberg) Der Nijenhuistensor

$$\left[\frac{\partial}{\partial v}, \frac{\partial}{\partial w}\right] + J\left[J\frac{\partial}{\partial v}, \frac{\partial}{\partial w}\right] + J\left[\frac{\partial}{\partial v}, J\frac{\partial}{\partial w}\right] - \left[J\frac{\partial}{\partial v}, J\frac{\partial}{\partial w}\right]$$

verschwindet für je zwei Vektorfelder $\frac{\partial}{\partial v}$ und $\frac{\partial}{\partial w}$.

Wenn *X* mit einer komplexen Struktur *J* ausgestattet ist, heißt *X* komplexe Mannigfaltigkeit. Das soll ab jetzt der Fall sein.

1.6. (p,q)–Formen. Die Garbe der C^{∞} –Schnitte von $\Omega^{p,q}$ werde mit $\mathscr{A}^{p,q}$ bezeichnet. Dann ist $C^{\infty}(\Omega_{\mathbb{C}}^k) =: \mathscr{A}^k = \bigoplus_{p+q=k} \mathscr{A}^{p,q}$. Definiere darauf nun die Dolbeault–Operatoren $\partial: \mathscr{A}^{p,q} \to \mathscr{A}^{p+1,q}$ und $\overline{\partial}: \mathscr{A}^{p,q} \to \mathscr{A}^{p,q+1}$ durch Projizieren nach Anwenden des Differentials d. Für holomorphe Koordinaten $z^j = x^j +$

 $^{^1}$ Die Setzung für k–Formen $\alpha=f\ dx^{j_1}\dots dx^{j_k},\ \partial\alpha:=(\partial f)\wedge dx^{j_1}\dots dx^{j_k}$ bzw. $\overline{\partial}\alpha:=(\overline{\partial}f)\wedge dx^{j_1}\dots dx^{j_k}$ wäre nicht koordinatenunabhängig, sprich auf Bündeln nicht wohldefiniert, wenn auch in der gewählten Karte die schöne Gleichung $\partial^2=\overline{\partial}^2=\partial\overline{\partial}+\overline{\partial}\partial=0$ gälte. Für eine mögliche Definition, bei der $\overline{\partial}^2=0$ ohne Integrierbarkeit von J nicht mehr gilt, siehe 1.6.

 iy^j definiere $dz^j:=dx^j-idy^j$ und $d\overline{z}^j:=dx^j+idy^j$. Dann spannen die dz^j und die $d\overline{z}^j$ jeweils die Unterbündel $\Omega_X^{1,0}$ und $\Omega_X^{0,1}$ von $\Omega_{X,\mathbb{C}}$ auf und es gilt: $\partial \left(fdz_I\wedge d\overline{z}_K\right)=\left(\partial f\right)\wedge dz_I\wedge d\overline{z}_K$ bzw. $\overline{\partial}\left(fdz_I\wedge d\overline{z}_K\right)=\left(\overline{\partial}f\right)\wedge dz_I\wedge d\overline{z}_K$. Dann gilt auch $\partial^2=\overline{\partial}^2=\partial\overline{\partial}+\overline{\partial}\partial=0$.

- **1.7.** *Dolbeaultkohomologie.* Wir können nun auch von holomorphen Schnitten reden.
- **1.8.** *Gegenbeispiel.* Eine fast komplexe Struktur, welche nicht integrierbar ist: Fasse die S^6 als die Menge der imaginären normierten Oktonionen auf. Dann ist $T_{S^6,x} = \{h|xh+hx=0\}$. Für J nehme die Linksmultiplikation mit x. Auf einer riemannschen Fläche ist jede fast komplexe Struktur integrierbar.

2 Riemannsche Geometrie

Sei X eine reelle C^{∞} -Mannigfaltigkeit der Dimension n.

2.1. Zusammenhang. Für ein Vektorbündel E auf X ist ein Zusammenhang eine \mathbb{R} -lineare Abbildung $\nabla: E \to \Omega_X^1 \otimes E$, welche eine Leibnizregel erfüllt: $\nabla f s = f \nabla s + df \otimes s$. Das läßt sich zu einem Differential $d^{\nabla}: \Omega_X^n \otimes E \to \Omega_X^{n+1} \otimes E$ ausbauen. Allerdings gilt i. A. $\left(d^{\nabla}\right)^2 \neq 0$, sondern $\left(d^{\nabla}\right)^2 \beta = R \dot{\wedge} \beta$ für ein $R \in \Omega_X^2 \otimes \operatorname{End}(E)$. R heißt Krümmung des Zusammenhangs. Ein Schnitt $s \in E$ heißt flach 2 , falls $d^{\nabla} s = 0$

Sei ∇' ein Zusammenhang auf F. Dann gibt es kanonische Zusammenhänge auf

- $\mathscr{E} \otimes \mathscr{F}$: $\nabla (s \otimes t) = \nabla s \otimes t + s \otimes \nabla t$
- $\mathcal{H}om(\mathcal{E}, \mathcal{F})$: $(\nabla u)(s) = \nabla' u(s) u(\nabla(s))$

Ein Zusammenhang ∇ auf Ω^1_X oder T_X heißt affin. Für affine Zusammenhänge ist die Torsion $T^\nabla:=d^\nabla \mathrm{id}\in\Omega^2_X\otimes T_X$ erklärt.

- **2.2.** Riemannsche Struktur. Wenn X eine riemannsche Metrik, d. h. eine symmetrische, positive, nichtentartete Bilinearform \langle , \rangle oder $g: S^2T_X \to \mathbb{R}$ bzw. $g \in \Gamma(X,\Omega^1_X\otimes\Omega^1_X)$ besitzt, so heißt X riemannsche Mannigfaltigkeit.
- **2.3.** *Levi–Civita.* Es gibt einen eindeutig bestimmten affinen Zusammenhang ∇ auf T_X (X eine riemannsche Mannigfaltigkeit), der $\nabla g = 0$ und $T^{\nabla} = 0$ erfüllt.
- **2.4.** *Ricci–Tensor.* Der (symmetrische) Ricci-Tensor ist definiert als die Spur der Krümmung: Ric:= $\sum_i \langle \frac{\partial}{\partial x^i} R, dx^i \rangle \in \Gamma(X, \Omega^1_X \otimes \Omega^1_X)$

²Beziehung zur Flachheit von Moduln: Es scheint keine zu geben.

3 Symplektische Strukturen

Sei X eine reelle oder komplexe C^{∞} -Mannigfaltigkeit der Dimension 2n.

- **3.1.** *Symplektische Gruppe.* Ein symplektischer Vektorraum V ist einer von Dimension 2n (reell oder komplex), der ausgestattet ist mit einer nichtentarteten antisymmetrischen Bilinearform ω . Die symplektische Gruppe ist die Menge aller Matrizen, die $\omega(M_{_},M_{_})=\omega(_,_)$ erfüllen. Sie ist eine nichtkompakte, zusammenhängende Liegruppe von Dimension n(2n+1). Die zugehörige Liealgebra \mathfrak{sp}_{2n} ist die Menge aller Matrizen X, die $\omega(X_{_},_)+\omega(_,X_{_})=0$ erfüllen.
- **3.2.** Fast symplektische Struktur. Eine 2-Form $\omega \in \Omega_X^2$, welche überall nichtentartet ist (d.h. $\omega\left(\frac{\partial}{\partial v}, -\right) = 0 \iff \frac{\partial}{\partial v} = 0$), heißt fast symplektische Struktur.
- **3.3.** *Volumenform.* Aus der Nichtentartung von ω folgt sofort, daß $\omega^n \in \Omega_X^{2n}$ nirgends verschwindet, d. h. eine Volumenform ist.
- **3.4.** *Symplektische Struktur.* Gilt $d\omega = 0$, so heißt ω symplektische Form.

4 Hodgetheorie

5 Kählergeometrie

Sei *X* eine komplexe und riemannsche Mannigfaltigkeit. An diese beiden Strukturen werden im folgenden noch Bedingungen gestellt.