Fraudulent Claim Detection

Rupam Mallick Muthumariappan B

Problem Statement

- Global Insure faces significant financial losses due to fraudulent claims.
- Current fraud detection relies on manual inspections, leading to:
 - Time-consuming processes
 - Late detection (after payouts)
 - Inefficiency

Objective

Build a predictive model to classify insurance claims as fraudulent or legitimate using:

- Historical claim data (claim amounts, types)
- Customer profiles
- Other relevant features

Key Questions to Address:

- 1. Pattern Analysis How can we detect fraud indicators in historical claims?
- 2. Predictive Features Which factors best predict fraud?
- 3. Fraud Likelihood Can we score new claims for fraud risk before approval?
- 4. Actionable Insights How can the model improve fraud detection?

Data Preparation

Objective: Load the dataset and get a basic understanding of its structure and content.

- 1. Import necessary libraries (pandas, numpy, seaborn, matplotlib).
- 2. Load the insurance_claims.csv dataset into a pandas DataFrame.
- 3. Display the first few rows of the DataFrame (df.head()) to preview the data.
- 4. Check the dimensions of the dataset (df.shape).
- 5. Inspect the data types of each column (df.dtypes).

Data Cleaning

Objective: Handle missing values, redundant columns/values, and incorrect data types to ensure data quality.

- Handle Null Values
- Dropped column with complete null values.
- Identify and Handle Redundant Values and Columns
- Fix Data Types

Train Validation Split

Objective: Divide the data into training and validation sets to train and evaluate the model effectively.

- 1. Import train_test_split from sklearn.model_selection.
- 2. Defined feature variables (X) by dropping the target column (fraud_reported).
- 3. Defined the target variable (y).
- 4. Split the data into 70% training and 30% validation sets using train_test_split.

EDA on Training Data

Objective: Explore and visualize the training data to understand feature distributions, relationships, and identify patterns related to fraudulent claims.

- Univariate Analysis
- Correlation Analysis
- Check Class Balance
- Bivariate Analysis

EDA - Univariate Analysis

EDA - Correlation Analysis

EDA - Class Distribution

EDA - Bivariate Analysis Results

Feature Engineering

Objective: Transform and create new features to improve model performance and handle data characteristics like class imbalance.

- 1. Perform Resampling
- 2. Feature Creation Created new features (year, month, dayofweek) from the incident_date column
- 3. Handle Redundant Columns dropped columns with high correlation
- 4. Combine values in Categorical Columns
- 5. Dummy Variable Creation
- 6. Feature Scaling

Model Building - Overview

- Logistic Regression & Random Forest Approaches
- Feature Selection, Training, Evaluation, and Optimization

Logistic Regression: Feature Selection

RFECV (Recursive Feature Elimination with Cross-Validation)

- Identifies most relevant features
- Optimal number of features chosen based on cross-validation performance

```
Summary of Model Building:

Optimal number of features (Logistic Regression): 43

Selected Features (Logistic Regression): ['incident_severity_Minor Damage', 'insured_hobbies_chess', 'incident_severity_Total Loss', 'i
```

Logistic Regression: Model Building

- Built using statsmodels library for detailed statistical outputs
- Checked P-values for feature significance
- Checked VIFs for multicollinearity detection

Logistic Regression	Model Summary:						
	Logit Regre	ssion Resul	ts				
Dep. Variable:	fraud_reported	No. Obser	vations:		1052		
	Model: Logit		Df Residuals:		1008		
Method:	MLE	Df Model:					
Date:	Tue, 12 Aug 2025	Pseudo R-		0.5065			
Time:	ime: 18:48:42 Log-Like		ihood:		-359.84		
converged: True		LL-Null:		-729.19			
Covariance Type:	nonrobust				01e-127		
						FO. 025	0.0753
		coef	std err	Z	P> z	[0.025	0.975]
const		-0.3446	0.405	-0.852	0.394	-1.138	0.448
umbrella limit		0.3297	0.103	3.206	0.001	0.128	0.531
witnesses		0.4075	0.105	3.883	0.000	0.202	0.613
policy state OH		0.3258	0.213	1.532	0.126	-0.091	0.743
policy_state_OH policy_csl 250/500		0.4284	0.240	1.787	0.074	-0.042	0.898
policy_cs1_250/500 policy_csl_500/1000		-0.2636	0.255	-1.035	0.301	-0.763	0.236
insured education level JD		0.8657	0.286	3.031	0.002	0.306	1.425
insured_education_level_JD		1.0819	0.305	3.551	0.000	0.485	1.679
insured_education_level_mD		0.7061	0.320	2,210	0.027	0.080	1.332
insured_education_level_PhD insured_occupation_adm-clerical		1.0016	0.487	2.056	0.040	0.047	1.956
insured_occupation_adm-clerical insured occupation armed-forces		1.3546	0.491	2.759	0.006	0.392	2.317
		0.6795	0.427	1.590	0.112	-0.158	1.517
insured_occupation_craft-repair		1.2657	0.427	2,911	0.004	0.414	2.118
insured_occupation_exec-managerial		0.7549	0.433	1,430	0.153	-0.280	1.790
insured_occupation_farming-fishing		0.7549	0.528	2.095	0.153	0.280	1.790
insured_occupation_machine-op-inspct		-0.1479				-1.175	
insured_occupation_priv-house-serv			0.524	-0.282	0.778		0.879
insured_occupation_prof-specialty		1.2676	0.413	3.070	0.002	0.458	2.077
insured_occupation_sales		0.8643	0.483	1.791	0.073	-0.081	1.810
insured_occupation_tech-support		0.7991	0.444	1.801	0.072	-0.071	1.669
insured_occupation_transport-moving		1.7103	0.402	4.251	0.000	0.922	2.499
insured_hobbies_bungie-jumping		-0.6862	0.488	-1.406	0.160	-1.642	0.270
insured_hobbies_chess		6.0343	0.655	9.219	0.000	4.751	7.317
insured_hobbies_skydiving		-0.3722	0.504	-0.739	0.460	-1.359	0.615
insured_hobbies_yachting		0.4412	0.452	0.976	0.329	-0.445	1.327
insured_relationship_not-in-family		0.6808	0.299	2.278	0.023	0.095	1.266
insured_relationship_other-relative		0.3966	0.291	1.362	0.173	-0.174	0.967
insured_relationship_own-child		-0.5901	0.315	-1.876	0.061	-1.207	0.026
insured_relationship		0.7753	0.314	2.471	0.013	0.160	1.390
collision_type_Front		0.6978	0.256	2.724	0.006	0.196	1.200
collision_type_Rear		0.7843	0.252	3.114	0.002	0.291	1.278
incident_severity_Mi		-4.0310	0.292	-13.814	0.000	-4.603	-3.459
incident_severity_To		-3.4324	0.275	-12.492	0.000	-3.971	-2.894
incident_severity_Tr		-4.0472	0.571	-7.089	0.000	-5.166	-2.928
authorities_contacte	d_Other	0.4487	0.244	1.839	0.066	-0.030	0.927
incident_state_NY		-0.2170	0.251	-0.863	0.388	-0.710	0.276
incident_state_VA		0.8417	0.335	2.514	0.012	0.186	1.498
incident state WV		-0.8190	0.290	-2.828	0.005	-1.387	-0.251
incident_city_Northb	rook	-0.7216	0.346	-2.087	0.037	-1.399	-0.044
property_damage_NO		-0.6207	0.226	-2.743	0.006	-1.064	-0.177
auto_make_Audi		1.4614	0.370	3.955	0.000	0.737	2.186
auto_make_BMW		0.5967	0.399	1.495	0.135	-0.186	1.379
auto make Dodge		0.6321	0.364	1.734	0.083	-0.082	1.347
auto make Nissan		-0.6645	0.423	-1.573	0.116	-1.493	0.164
auto make Other		1.0010	0.466	2.149	0.032	0.088	1.914

Logistic Regression: Training & Initial Evaluation

- Trained model on training data
- Evaluated using:
 - Accuracy
 - Confusion Matrix (cutoff = 0.5)

```
Logistic Regression Metrics on Training Data (Cutoff 0.5):
Accuracy: 0.8669201520912547
Confusion Matrix:
  [[453 73]
  [67 459]]
True Negative: 453
False Positive: 73
False Negative: 67
True Positive: 459
Sensitivity: 0.8726235741444867
Specificity: 0.8612167300380228
Precision: 0.8627819548872181
Recall: 0.8726235741444867
F1 Score: 0.8676748582230625
```

Logistic Regression: Optimal Cutoff

- Determined threshold by comparing:
 - Sensitivity
 - Specificity
 - Precision
 - Recall
- Used ROC and Precision-Recall curves

Logistic Regression: Final Evaluation

- Predictions made using optimal cutoff
- Re-evaluated model performance on training data

```
Logistic Regression Metrics on Training Data (Optimal Cutoff):
Accuracy: 0.879277566539924
Confusion Matrix:
[[466 60]
[67 459]]
True Negative: 466
False Positive: 60
False Negative: 67
True Positive: 459
Sensitivity: 0.8726235741444867
Specificity: 0.8859315589353612
Precision: 0.884393063583815
Recall: 0.8726235741444867
F1 Score: 0.8784688995215311
```

Random Forest: Feature Selection

- Obtained feature importance scores from initial model
- Selected features above importance threshold

\alluuiii	Forest Feature Importance:		27	insured_relationship_unmarried	0.017846
	Feature	Importance	6	insured_education_level_JD	0.017803
30	incident_severity_Minor Damage	0.129818	24	insured_relationship_not-in-family	0.016585
21	insured hobbies chess	0.085115	39	auto_make_Audi	0.015723
41	irisuled_Hobbles_chess	0.005115	8	insured_education_level_PhD	0.015334
31	incident_severity_Total Loss	0.077704	12	insured_occupation_exec-managerial	0.015122
2	witnesses	0.048884	41	auto_make_Dodge	0.014649
32	incident severity Trivial Damage	0.042676	19	insured_occupation_transport-moving	0.014292
			10	insured_occupation_armed-forces	0.014241
1	umbrella_limit	0.036350	16	insured_occupation_prof-specialty	0.014116
38	property_damage_NO	0.027926	37	incident_city_Northbrook	0.013911
36	incident state WV	0.027695	35	incident_state_VA	0.013686
			18	insured_occupation_tech-support	0.012375
3	policy_state_OH	0.024897	42	auto_make_Nissan	0.010936
28	collision_type_Front Collision	0.024682	11	insured_occupation_craft-repair	0.010761
4	policy_csl_250/500	0.023952	14	insured_occupation_machine-op-inspct	0.010680
		22023000000	15	insured_occupation_priv-house-serv	0.010105
5	policy_csl_500/1000	0.022861	40	auto_make_BMW	0.009942
29	collision_type_Rear Collision	0.022149		insured_occupation_sales	0.009551
34	incident_state_NY	0.021900	9	insured_occupation_adm-clerical	0.009536
00		0.001040	43	auto_make_Other	0.008955
33	authorities_contacted_Other	0.021040	13	insured_occupation_farming-fishing	0.008633
25	insured_relationship_other-relative	0.019196	22	insured_hobbies_skydiving	0.007378
26	insured_relationship_own-child	0.018632	20	insured_hobbies_bungie-jumping	0.007180
7	insured education level MD	0.018179	23	insured_hobbies_yachting const	0.007003

Random Forest: Model Training

- Trained model with selected features
- Evaluated using:
 - Accuracy
 - Confusion Matrix

```
Random Forest Metrics on Training Data (Base Model):
Accuracy: 1.0
Confusion Matrix:
[[526 0]
[ 0 526]]
True Negative: 526
False Positive: 0
False Negative: 0
True Positive: 526
Sensitivity: 1.0
Specificity: 1.0
Precision: 1.0
Recall: 1.0
F1 Score: 1.0
```

Random Forest: Overfitting Check

- Used Cross-Validation to assess generalization
- Checked for overfitting

Random Forest Cross Validation Scores: [0.90047393 0.96208531 0.97142857 0.94285714 0.94285714]

Random Forest: Hyperparameter Tuning

- Grid Search for best hyperparameters
- Optimized performance

```
Random Forest Best Hyperparameters:
{'max_depth': 20, 'max_features': 'log2', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}
Random Forest CV score: 0.9448973143759873
```

Random Forest: Final Model

- Built model with best hyperparameters
- Trained & evaluated on training data

```
Random Forest Metrics on Training Data (Tuned Model):
Accuracy: 0.9990494296577946

Confusion Matrix:
[[525 1]
[ 0 526]]

True Negative: 525

False Positive: 1

False Negative: 0

True Positive: 526

Sensitivity: 1.0

Specificity: 0.9980988593155894

Precision: 0.9981024667931688

Recall: 1.0

F1 Score: 0.9990503323836657
```

Predicting and Model Evaluation

Make predictions over validation data using logistic regression model:

- The relevant features were selected for the validation data, and a constant was added.
- Predictions were made on the validation data using the trained Logistic Regression model.
- A DataFrame was created to show the actual values and the predicted probabilities for the validation data.
- Final predictions were made using a cutoff value of 0.5.
- The accuracy, confusion matrix, TP, TN, FP, FN, sensitivity, specificity, precision, recall, and F1-score were calculated and printed for the validation data using the Logistic Regression model.

Predicting and Model Evaluation - Results

```
Summary of Prediction and Model Evaluation:
Logistic Regression Metrics on Validation Data:
Accuracy: 0.31333333333333333
Confusion Matrix:
[[ 23 203]
[ 3 71]]
True Negative: 71
False Positive: 203
False Negative: 3
True Positive: 23
Sensitivity: 0.8846153846153846
Specificity: 0.2591240875912409
Precision: 0.10176991150442478
Recall: 0.8846153846153846
F1 Score: 0.18253968253968256
```

Predicting and Model Evaluation

Make predictions over validation data using random forest model:

- The important features were selected for the validation data.
- Probability predictions were made on the validation data using the trained Random Forest model.
- The accuracy, confusion matrix, TP, TN, FP, FN, sensitivity, specificity, precision, recall, and F1-score were calculated and printed for the validation data using the Random Forest model with a cutoff of 0.5.

Predicting and Model Evaluation - Results

```
Random Forest Metrics on Validation Data:
Accuracy: 0.78
Confusion Matrix:
 [[195 31]
 [ 35 39]]
True Negative: 195
False Positive: 31
False Negative: 35
True Positive: 39
Sensitivity: 0.527027027027027
Specificity: 0.8628318584070797
Precision: 0.5571428571428572
Recall: 0.527027027027027
F1 Score: 0.541666666666666
```

Conclusion

- Random Forest clearly outperforms Logistic Regression in overall accuracy, specificity, precision, and F1 score, making it the better choice for balanced classification performance.
- Logistic Regression could still be preferred only if detecting every possible positive case (high recall) is the top priority and false positives are less costly.
- If the goal is balanced performance and fewer false positives, Random Forest is the more suitable model.