

Gaussian Basis Function

•
$$\phi_M(X) = \exp(\frac{-1}{2s_M}||X - cM||^2)$$

•
$$\phi_{M-1}(X) = \exp(\frac{-1}{2s_{M-1}}||X - c_{M-1}||^2)$$

•
$$\phi_2(X) = \exp(\frac{-1}{2s_2}||X - c_2||^2)$$

•
$$\phi_2(X) = \exp(\frac{-1}{2s_2}||X - c_2||^2)$$

• $\phi_1(X) = \exp(\frac{-1}{2s_2}||X - c_1||^2)$

•
$$\phi_0(X) = 1$$

Three RBFs (blue) form f(x) (pink)

Gaussian Basis Function

Three RBFs (blue) form f(x) (pink)

•
$$\phi_M(X) = \exp(\frac{-1}{2s_M}||X - cM||^2)$$

•
$$\phi_{M-1}(X) = \exp(\frac{-1}{2s_{M-1}}||X - c_{M-1}||^2)$$

•
$$\phi_2(X) = \exp(\frac{-1}{2s}||X - c_2||^2)$$

•
$$\phi_2(X) = \exp(\frac{-1}{2s_2}||X - c_2||^2)$$

• $\phi_1(X) = \exp(\frac{-1}{2s_2}||X - c_1||^2)$

•
$$\phi_0(X) = 1$$

$$f(X) = \beta_M \phi_M(X) + \beta_{M-1} \phi_{M-1}(X) \dots + \beta_2 \phi_2(X) + \beta_1 \phi_1(X) + \beta_0$$

Gaussian Basis Function

$$f(X) = \beta_M \phi_M(X) + \beta_{M_-1} \phi_{M-1}(X) \dots + \beta_2 \phi_2(X) + \beta_1 \phi_1(X) + \beta_0$$

= $W^T \phi(X)$

where,

$$W = \begin{bmatrix} \beta_M \\ \beta_{M-1} \\ \vdots \\ \beta_1 \\ \beta_0 \end{bmatrix} \text{ and } \phi(X) = \begin{bmatrix} \phi_M(X) \\ \phi_{M-1}(X) \\ - \\ - \\ \phi_1(X) \\ \phi_0(X) \end{bmatrix}$$

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, we need to solve

$$Min_{(\beta_1,\beta_0)} \quad J(W) = \sum_{i=1}^{N} (yi-(W^T\phi(X_i)))^2$$
(1)

If we assume

$$A = \begin{bmatrix} \phi_0(X_1), & \phi_1(X_1), & \dots & \dots & \phi_M(X_1) \\ \phi_0(X_2), & \phi_1(X_2), & \dots & \dots & \phi_M(X_2) \\ \phi_0(X_N), & \phi_1(X_N), & \dots & \dots & \phi_M(X_N) \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix}$$
 and $u = W = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$

$$u = W = (A^T A)^{-1} A^T Y$$

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, we need to solve

$$Min_{(\beta_1,\beta_0)} \quad J(W) = \sum_{i=1}^{N} (yi-(W^T\phi(X_i)))^2$$
(1)

If we assume

$$A = \begin{bmatrix} \phi_0(X_1), & \phi_1(X_1), & \dots & \dots & \phi_M(X_1) \\ \phi_0(X_2), & \phi_1(X_2), & \dots & \dots & \phi_M(X_2) \\ \phi_0(X_N), & \phi_1(X_N), & \dots & \dots & \phi_M(X_N) \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix}$$
 and $u = W = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$

$$u = W = (A^T A)^{-1} A^T Y$$

Sigmoidal function

$$\sigma'(x) = \sigma(x) \sigma(1-x)$$

$$\sigma(x) (1-\sigma(x))$$

Sigmoidal Function

$$\sigma(x, c_M, dM) = \frac{1}{1 + e^{-(c_M x + d_M)}} = \frac{e^{(c_M x + d_M)}}{1 + e^{(c_M x + d_M)}}.$$

$$\sigma(x, c_{1}, d_{1}) = \frac{1}{1 + e^{-(c_{M_{-1}}x + d_{M-1})}} = \frac{e^{(c_{M_{-1}}x + d_{M-1})}}{1 + e^{(c_{M_{-1}}x + d_{M-1})}}$$

...

$$\sigma(x, c_1, d_1) = \frac{1}{1 + e^{-(c_1 x + d_1)}} = \frac{e^{(c_1 x + d_1)}}{1 + e^{(c_1 x + d_1)}}$$

$$\sigma(x,c_0,d_0) = \frac{1}{1+e^{-(c_0x+d_0)}} = \frac{e^{(c_0x+d_0)}}{1+e^{(c_0x+d_0)}} = 1.$$

Sigmoidal Function

$$\phi_M(X) = \sigma(X, c_M, dM) = \frac{1}{1 + e^{-(c_M^T X + d_M)}} = \frac{e^{(c_M^T X + d_M)}}{1 + e^{(c_M X + d_M)}}.$$

$$\phi_{M-1}(X) = \sigma(X, c_1, d_1) = \frac{1}{1 + e^{-(c_{M_{-1}}^T X + d_{M-1})}} = \frac{e^{(c_{M_{-1}}^T X + d_{M-1})}}{1 + e^{(c_{M_{-1}}^T X + d_{M-1})}}$$

...

$$\phi_1(X) = \sigma(X, c_1, d_1) = \frac{1}{1 + e^{-(c_1^T X + d_1)}} = \frac{e^{(c_1^T X + d_1)}}{1 + e^{(c_1^T X + d_1)}}$$

$$\phi_0(X) = \sigma(X, c_0, d_0) = \frac{1}{1 + e^{-(c_0^T X + d_0)}} = \frac{e^{(c_0^T X + d_0)}}{1 + e^{(c_0^T X + d_0)}} = 1.$$

$$f(X) = \beta_M \phi_M(X) + \beta_{M-1} \phi_{M-1}(X) \dots + \beta_2 \phi_2(X) + \beta_1 \phi_1(X) + \beta_0$$

For given Training Set $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, we need to solve

$$Min_{(N)} J(W) = \sum_{i=1}^{N} (yi-(W^T \phi(X_i)))^2$$
(1)

If we assume

$$A = \begin{bmatrix} \phi_0(X_1), & \phi_1(X_1), & \dots & \dots & \phi_M(X_1) \\ \phi_0(X_2), & \phi_1(X_2), & \dots & \dots & \phi_M(X_2) \\ \phi_0(X_N), & \phi_1(X_N), & \dots & \dots & \dots & \phi_M(X_N) \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix}$$
 and $u = W = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_1 \\ \vdots \\ \beta_M \end{bmatrix}$

$$u = W = (A^T A)^{-1} A^T Y$$

Credit Card Dataset

Income	Limit	Rating	Cards	Age	Balance
14.89	1 3606	283	2	34	333
106.02	5 6645	483	3	82	903
104.59	3 7075	514	4	71	580
148.92	4 9504	681	3	36	964
55.88	2 4897	357	2	68	331
80.1	8 8047	569	4	77	1151
20.99	6 3388	259	2	37	203
71.40	8 7114	512	2	87	872
15.12	5 3300	266	5	66	279
71.06	1 6819	491	3	41	1350
63.09	5 8117	589	4	30	1407

Evaluation

Income (hundred thousand dollar)	Balance (thousand dollar)			
0.550798	5.651202			
0.708148	7.321263			
0.290905	5.167304			
0.510828	5.609367			
0.892947	9.406379			
0.896293	9.379439			
0.125585	2.734997			
0.207243	4.876649			
0.051467	3.584138			
0.44081	5.437239			

Training data

Income (x) (hundred thousand dollar)	Balance (y) (thousand dollar)
0.96703	9.675083
0.547232	6.293266
0.972684	9.730614
0.714816	7.474346
0.697729	7.342933
0.216089	4.619033
0.976274	9.765597
0.00623	4.012784
0.252982	4.762698
0.434792	5.626166
0.779383	7.989045
0.197685	4.552625
0.862993	8.705537
0.983401	9.835217
0.163842	4.43522
0.597334	6.622444
0.008986	4.01882
0.386571	5.37153
0.04416	4.096522
0.956653	9.574695

Testing Data

Income (x) (thousand dollar)	Balance (y) (thousand dollar)	Estimated f(x) (thousand dollar)
0.96703	9.675083	9.41205399
0.547232	6.293266	6.47467789
0.972684	9.730614	9.45161938
0.714816	7.474346	7.64728226
0.697729	7.342933	7.5277212
0.216089	4.619033	4.15763074
0.976274	9.765597	9.47673972
0.00623	4.012784	2.68921946
0.252982	4.762698	4.41577473
0.434792	5.626166	5.68791617
0.779383	7.989045	8.09906511
0.197685	4.552625	4.02885271
0.862993	8.705537	8.6840969
0.983401	9.835217	9.52660279
0.163842	4.43522	3.79205019
0.597334	6.622444	6.8252457
0.008986	4.01882	2.70850244
0.386571	5.37153	5.35051307
0.04416	4.096522	2.95461902
0.956653	9.574695	9.33944573

Evaluation Metrics

•
$$SSE = \sum_{i=1}^{k} (yi - f(xi))^2$$

•
$$NMSE = \frac{\sum_{i=1}^{k} (yi - f(xi))^2}{\sum_{i=1}^{k} (yi - \bar{y})^2}$$

•
$$RMSE = \sqrt{\frac{1}{k} \sum_{i=1}^{k} (yi - f(xi))^2}$$

$$MAE = \frac{1}{k} \sum_{i=1}^{k} |(yi - f(xi))|$$

•
$$MAPE = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{(yi - f(x_i))}{y_i} \times 100 \right)$$

•
$$R^{2} = \frac{\sum_{i=1}^{k} (f(x_{i}) - \overline{f(x)})^{2}}{\sum_{i=1}^{k} (y_{i} - \overline{y})^{2}}$$

Cross-validation

Income	Limit	Rating	Cards	Age	Balance	
14.89	3606	283	2	34	333	← Tosting Sat
106.02	25 6645	483	3	82	903	← Testing Set
104.59	93 7075	5 514	4	71	580	
148.92	24 9504	681	3	36	964	
55.88	32 4897	357	2	68	331	
80.:	18 8047	569	4	77	1151	Total or Co
20.99	96 3388	259	2	37	203	← Training Se
71.40	08 7114	512	2	87	872	
15.12	25 3300	266	5	66	279	
71.00	6819	491	3	41	1350	
63.09	95 8117	589	4	30	1407	

Test RMSE₁=
$$\sqrt{\frac{1}{k}\sum_{i=1}^{k}(yi - f_1(xi))^2} = 0.9426$$

Income		Limit	Rating	Cards	Age	Balance		
	14.891	3606	283	2	34	333		
	106.025	6645	483	3	82	903		
	104.593	7075	514	4	71	580	←—	Testing Set
	148.924	9504	681	3	36	964		_
	55.882	4897	357	2	68	331		
	80.18	8047	569	4	77	1151		
	20.996	3388	259	2	37	203		
	71.408	7114	512	2	87	872		
	15.125	3300	266	5	66	279		
	71.061	6819	491	3	41	1350		
	63.095	8117	589	4	30	1407		

Test RMSE₂=
$$\sqrt{\frac{1}{k}\sum_{i=1}^{k}(yi - f_2(xi))^2} = 0.8725$$

Income	Limit	Rating	Cards	Age	Balance	
14.891	3606	283	2	34	333	
106.025	6645	483	3	82	903	
104.593	7075	514	4	71	580	
148.924	9504	681	3	36	964	
55.882	4897	357	2	68	331	
80.18	8047	569	4	77	1151	
20.996	3388	259	2	37	203	
71.408	7114	512	2	87	872	
15.125	3300	266	5	66	279	To ation of Co.
71.061	6819	491	3	41	1350	Testing Se
63.095	8117	589	4	30	1407	

Test RMSE₅=
$$\sqrt{\frac{1}{k}\sum_{i=1}^{k}(yi - f_5(xi))^2} = 0.8721$$

Income	Limit	Rating	Cards	Age	Balance		
14.891	3606	283	2	34	333		
106.025	6645	483	3	82	903		
104.593	7075	514	4	71	580		
148.924	9504	681	3	36	964		
55.882	4897	357	2	68	331		
80.18	8047	569	4	77	1151		
20.996	3388	259	2	37	203		
71.408	7114	512	2	87	872		
15.125	3300	266	5	66	279		Tes
71.061	6819	491	3	41	1350	←	103
63.095	8117	589	4	30	1407		

Test RMSE= 0.8354 ± 0.123

Artifical

Three RBFs (blue) form f(x) (pink)

•
$$\phi_M(X) = \exp(\frac{-1}{2s_M}||X - cM||^2)$$

•
$$\phi_{M-1}(X) = \exp(\frac{-1}{2s_{M-1}}||X - c_{M-1}||^2)$$

•
$$\phi_2(X) = \exp(\frac{-1}{2s_2}||X - c_2||^2)$$

•
$$\phi_2(X) = \exp(\frac{-1}{2s_2}||X - c_2||^2)$$

• $\phi_1(X) = \exp(\frac{-1}{2s_2}||X - c_1||^2)$

•
$$\phi_0(X) = 1$$

$$f(X) = \beta_M \phi_M(X) + \beta_{M-1} \phi_{M-1}(X) \dots + \beta_2 \phi_2(X) + \beta_1 \phi_1(X) + \beta_0$$

• The human brain is made up of about 100 billion neurons

• Neurons receive electric signals at the dendrites and send them to the axon

• The axon of the neuron is connected to the dendrites of many other neurons

Similarities

- Neurons, connections between neurons
- Learning = change of connections, not change of neurons
- Massive parallel processing
- But artificial neural networks are much simpler
 - computation within neuron vastly simplified
 - discrete time steps
 - typically some form of supervised learning with massive number of stimuli

	X ₂	У
\mathbf{x}_1	Income (hundred	Balance
Age	thousand dollar)	(thousand dollar)
32	0.550798	5.651202
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

Artificial Neural Network

Artificial Neural Network

Artificial Neural Network

Introduction: Activation Functions

Many activation functions have been proposed, including:

- *linear* activation function: g(z) = z
- *step* activation function: $g(z) = \begin{cases} 0 & z < 0, \\ 1 & z \ge 0 \end{cases}$
- sigmoid activation function: $g(z) = \frac{1}{1 + e^{-z}}$
- ReLU activation function (ReLU stands for Rectified Linear Unit): $g(z) = \max(0,z)$
- tanh activation function (tanh is the hyperbolic tangent): $g(z) = \tanh z$

Apart from the *linear* activation function, these activation functions are non-linear, which is important to the power of neural networks.

Introduction: Activation Functions

Apart from the *linear* activation function, these activation functions are non-linear, which is important to the power of neural networks.

Activation functions and their derivatives -

