Relatório: Fenômenos magnéticos e corrente elétrica. Lei de Ampère

Luis Gustavo Dias Simão Pedro Paulo Henrique da Fonseca Ramon Gregório Percy Instituto de Matemática e Física Universidade Federal de Itajubá Turma: 09

21/10/19

Resumo

Este relatório apresenta o estudo de conceitos relativos ao campo magnético e a Lei de Ampère, por meio da observação de corpos condutores sob o efeito de campo magnético. Também foi possível verificar as relações do campo magnético para com a intensidade da corrente elétrica, distância e deflexão da agulha imantada de uma bússola, calculando-se o campo magnético da Terra.

Palavras-chave: Corrente elétrica. Ímãs. Campo magnético. Lei de Ampère.

1 Introdução

Segundo Halliday, Resnick e Walker (2013), os campos magnéticos são produzidos de duas maneiras. Utilizando-se partículas elementares, como os ímãs, que produzem campo magnético de maneira intrínseca. Ou então através de partículas eletricamente carregadas em um fluxo líquido de elétrons.

Este experimento busca: descrever campos magnéticos produzidos por ímãs e correntes elétricas; verificar o efeito de uma corrente elétrica sobre uma agulha imantada; investigar a dependência do campo magnético com corrente e distância, à fim de determinar o valor do módulo do campo magnético da Terra.

Para visualizar o efeito do campo magnético, foram realizados experimentos utilizando os ímãs sobre a mesa projetável para espectros magnéticos e uma corrente através de espiras retangulares que passavam por placas de plástico. Por último, visando compreender a relação entre a força, corrente e distância, aferiu-se a variação angular da bússola imantada à diversas correntes e distâncias de um fio condutor.

Foi possível deduzir "que o módulo da força $\vec{F_B}$ que age sobre uma partícula na presença de um campo magnético é proporcional à carga q e à velocidade v da partícula. Assim, a força é zero se a carga é zero ou se a partícula está parada. A Equação 1 também mostra que a força é zero se v e B são paralelos ($\phi = 0^o$) ou antiparalelos ($\phi = 180^o$) e é máxima quando v e B são perpendiculares" (HALLIDAY; RESNICK; WALKER, 2013), considerando-se os erros da experimentação.

$$\vec{F_B} = q\vec{v} \times \vec{B} \tag{1}$$

Também foi possível, por meio da Lei de Biot-Savart dada pela Equação 2, onde $(d\vec{B})$ é a variação do campo magnético, podemos definir o módulo do campo magnético (B_F) para um fio retilíneo. Para tanto, utilizou-se a Lei de Ampère

dada pela Equação 3 e obteve-se a Equação 4.

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i d\vec{s} \times \vec{r}}{r^2} \tag{2}$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = \mu_0 i \tag{3}$$

$$B_F = \frac{\mu_0}{2\pi} \frac{i}{\rho} \tag{4}$$

Foi possível estimar o valor de campo magnético da Terra.

2 Metodologia

Para este experimento foram utilizados os instrumentos listados abaixo, com suas respectivas especificações abaixo.

- 1 Fonte de tensão/corrente, Tabela 1: Fonte de Tensão/Corrente
- 1 Amperímetro ¹, Tabela 2: Amperímetro
- 2 Ímãs cilíndricos de 100 mm com protetores
- 1 Ímã retangular
- 1 Bússola graduada de agulha imantada, Tabela 3: Bussola Graduada
- 2 Espiras retangulares
- Limalha de Ferro
- 1 Fio de cobre
- 1 Mesa projetável para espectros magnéticos
- 2 Placas de plástico
- 1 Régua milimetrada, com erro de 0,5(mm)

¹ "Precisão em porcentagem da leitura mais número de dígitos menos significativos", (ICEL, 2016).

Marca	Elektro-Automatik
Modelo	EA-PS 2032-050
Faixa Dinâmica	0 a 5(A)

Tabela 1: Fonte de Tensão/Corrente Fonte: Adaptado de Elektro-Automatik (2019)

Marca	ICEL-Manaus
Modelo	MD-6111
Faixa Dinâmica	0,01 a 20(A)
Precisão	$\pm (2\% + 5d)$

Tabela 2: Amperímetro Fonte: Adaptado de ICEL (2016)

Faixa Dinâmica	$0 \text{ a } 360(^{o})$
Precisão	$\pm 2,5(^{o})$

Tabela 3: Bussola Graduada Fonte: Adaptado de Elektro-Automatik (2019)

2.1 Fenômenos Magnéticos

2.1.1 Linhas de campo magnético gerado por ímãs

Sobre a mesa projetável para espectros magnéticos, posicionou-se um ímã verticalmente, tal como apresentado na Figura 4: Ímã cilíndrico sobre mesa para espectros magnéticos

Ainda sobre a mesa projetável para espectros magnéticas, posicionou-se outro ímã tal que ambos ficaram com os mesmos polos virados para cima, ver Figura 5: Imãs cilíndricos de mesma polaridade sobre mesa para espectros magnéticos

Inverteu-se um dos ímãs, de tal forma que um destes ficasse com o polo sul e o outro com o polo norte apontados para cima, observou-se a Figura 6: Ímãs cilíndricos de polos distintos sobre mesa para espectros magnéticos.

Agora sobre a mesa, posicionou-se ao centro, o ímã retangular horizontalmente e observou-se a Figura Figura 7: Ímã retangular sobre mesa para espectros magnéticos.

2.1.2 Linhas de campo magnético gerado por correntes elétricas

Com o multímetro em 20(A), ajustou-se a saída de corrente da fonte para $4,0\pm0,1(A)$. Conectou-se à esta uma espira retangular, que por sua vez passa pelo buraco entre as placas de plástico, tal como ilustrado pela Figura 1: Esquema ilustrativo de ligação em série da fonte de corrente à uma espira. Com a fonte de tensão ligada, polvilhou-se limalha de ferro sobre as placas de plástico, dando leves batidas sobre a superfície e observou-se a Figura 8: Limalha de ferro submetida à campo magnético gerado por corrente elétrica.

Em seguida, posicionou-se a segunda espira, também atravessando a placa de plástico. A ligação como ilustrada na Figura 2: Esquema ilustrativo de ligação em série da fonte

de corrente à duas espiras com correntes em mesmo sentido, faz com que o sentido da corrente que atravessa as placas seja o mesmo. Novamente, polvilhando-se a limalha de ferro sobre a superfície e dando leves batidas, foi possível observar a Figura 9: Limalha de ferro submetida à campo magnético gerado por correntes elétricas de mesmo sentido.

Alterando a ligação, tal como ilustrado na Figura 3: Esquema ilustrativo de ligação em série da fonte de corrente a duas espiras com correntes em sentidos opostos, foi possível observar um comportamento distinto da limalha de ferro, tal como apresentado na Figura 3: Esquema ilustrativo de ligação em série da fonte de corrente a duas espiras com correntes em sentidos opostos.

Figura 1: Esquema ilustrativo de ligação em série da fonte de corrente à uma espira

Fonte: Autoria Própria

Figura 2: Esquema ilustrativo de ligação em série da fonte de corrente à duas espiras com correntes em mesmo sentido

Fonte: Autoria Própria

Figura 3: Esquema ilustrativo de ligação em série da fonte de corrente a duas espiras com correntes em sentidos opostos

Figura 4: Ímã cilíndrico sobre mesa para espectros magnéticos

Fonte: Autoria Própria

Para dois polos iguais, os segmentos apresentaram com-

Espira Retangular Retangular Placa de Plástico Plástico Fonte de Corrente

Fonte: Autoria Própria

portamento de repulsa entre si, como quando carregados com cargas iguais.

2.1.3 Força entre condutores percorridos por corrente elétrica

Estando uma das espiras suspensa por um barbante e a outra cerca de 1,0 cm, fixa em um suporte, tal que no trecho mais próximo entre elas suas correntes estivessem em paralelo. Em seguida alterou-se as ligações de maneira que as correntes tivessem sentidos opostos.

2.2 Campo magnético gerado por corrente elétrica

2.2.1 Dependência do campo com a corrente

Com a bússola, sobre um fio de cobre à aproximadamente 1,0(cm), verificou-se a variação angular $\alpha(^o)$ da agulha em relação à $1,0,\ 2,0,\ 3,0$ e 4,0(A). A Tabela 4: Variação do ângulo da bússola pela variação da corrente

Tabela 4: Variação do ângulo da bússola pela variação da corrente

d(mm)	i(A)	$\alpha(^{o})$
$1,00 \pm 0,05$	$1,0 \pm 0,1$	$15,0 \pm 2,5$
$1,00 \pm 0,05$	$2,0 \pm 0,1$	$28,0 \pm 2,5$
$1,00 \pm 0,05$	$3,0 \pm 0,1$	$38,0 \pm 2,5$
$1,00 \pm 0,05$	$4,0 \pm 0,1$	$45,0 \pm 2,5$

3 Resultados e discussões

3.1 Fenômenos magnéticos

Um único ímã, sobre a mesa projetável para espectros magnéticos, se comporta como o nó próprio das linhas formadas, ou seja, um único polo sobre um plano provoca linhas radiais a si.

Figura 5: Imãs cilíndricos de mesma polaridade sobre mesa para espectros magnéticos

Fonte: Autoria Própria

Como esperado quando os polos são invertidos, as linhas parecem partir de um dos polos e incidir no outro, tal como cargas elétricas distintas.

Figura 6: Ímãs cilíndricos de polos distintos sobre mesa para espectros magnéticos

Fonte: Autoria Própria

Por fim, o mesmo resultado para polos distintos foi observado com o ímã magnético retangular.

Figura 7: Ímã retangular sobre mesa para espectros magnéticos

Fonte: Autoria Própria

Outro fenômeno magnético observado foi a disposição da limalha de ferro sobre as placas de plástico. Quando submetida à um campo magnético gerado por uma corrente, observou-se a formação de órbitas concêntricas à espira.

Figura 8: Limalha de ferro submetida à campo magnético gerado por corrente elétrica

Fonte: Autoria Própria

Ao adicionar outra espira com uma corrente em sentido iguais, notou-se a formação de uma elipse com centro entre as espiras.

Figura 9: Limalha de ferro submetida à campo magnético gerado por correntes elétricas de mesmo sentido

Fonte: Autoria Própria

Alterando o sentido de uma das correntes, de modo que estas se encontrem em sentidos opostos, é possível notar duas órbitas concêntricas uma à cada espira.

Figura 10: Limalha de ferro submetida à campo magnético gerado por correntes elétricas de sentidos opostos

Fonte: Autoria Própria

Em seguida, foi possível observar uma força de atração entre as espiras, postas a um centímetro de distância uma da outra e percorridas por correntes elétricas com sentidos opostos. Com o sentido invertido de uma das correntes, de modo que elas tenham sentidos iguais, notou-se uma força de repulsão. Tais fenômenos são explicados pela relação entre a direção da corrente e direção do campo magnético na geração da força magnética.

3.2 Campo magnético gerado por uma corrente elétrica

Com o fio condutor, posto a uma distância fixa $(\rho) = 0,01 \pm 0,0005(m)$ da bússola graduada imantada, aplicando diferentes valores de corrente (i(A)), obteve-se a mudança angular da agulha, chamada de ângulo de deflexão (α) . Os dados aferidos são apresentado na Tabela 5, destes dados obteve-se o gráfico apresentado pela Figura 11: Gráfico entre a tangente do ângulo de deflexão pela corrente, relacionando a $\tan(\alpha)$ pelacorrente(i).

Tabela 5: Tangente do ângulo de deflexão da bússola imantada sob efeito de campo gerado por fio variando a corrente

cierto de campo gerado por no variando e		
i(A)	d(cm)	$\alpha(^{o})$
$0,0 \pm 0,1$	$1,00 \pm 0,05$	$0,0 \pm 2,5$
$1,0 \pm 0,1$	$1,00 \pm 0,05$	$-15,0 \pm 2,5$
$2,0 \pm 0,1$	$1,00 \pm 0,05$	$-28,0 \pm 2,5$
$3,0 \pm 0,1$	$1,00 \pm 0,05$	$-38,0 \pm 2,5$
$4,0 \pm 0,1$	$1,00 \pm 0,05$	$-45,0 \pm 2,5$

Figura 11: Gráfico entre a tangente do ângulo de deflexão pela corrente

Fonte: Autoria Própria

Em seguida, mantendo-se a fonte de corrente com um valor constante de $i=3,0\pm0,1(A),$ foi possível avaliar a relação entre a tangente do ângulo de deflexão e a distância do fio retilíneo à bússola imantada, os dados obtidos são apresentados na Tabela 6 e na Figura 12: Gráfico entre a tangente do ângulo de deflexão pela distância

Tabela 6: Ângulo de deflexão da bússola imantada sob efeito de campo gerado por fio com variação da distância

o Serado Per 110 centra (arragae da discarren		
i(A)	d(cm)	$\alpha(^{o})$
$3,0 \pm 0,1$	$1,00 \pm 0,05$	$-48,0 \pm 2,5$
$3,0 \pm 0,1$	$2,00 \pm 0,05$	$-45,0 \pm 2,5$
$3,0 \pm 0,1$	$3,00 \pm 0,05$	$-35,0 \pm 2,5$
$3,0 \pm 0,1$	$4,00 \pm 0,05$	$-28,0 \pm 2,5$

Figura 12: Gráfico entre a tangente do ângulo de deflexão pela distância

Fonte: Autoria Própria

Sabendo que $\vec{B_R} = \vec{B_T} + \vec{B_F}$, é possível determinar uma relação entre a tangente do ângulo de deflexão e os módulos do campo magnético da Terra e do fio retilíneo, dada pela Equação 5.

$$\tan(\alpha) = \frac{|\vec{B_F}|}{|\vec{B_T}|} \tag{5}$$

Aplicando-se a Equação 2, ao fio retilíneo podemos determinar a relação entre o módulo do campo magnético do fio retilíneo ($|B_F|$) e a corrente (i) através da Equação 6.

$$B_F \int_0^{2\pi} \rho d\varphi = 4\pi \cdot 10^{-7} \cdot i : B_F = 2 \cdot 10^{-5} \cdot i$$
 (6)

Os coeficiente da reta obtidos através da função Fit Linear do software SciDavis para o gráfico da Figura 11: Gráfico entre a tangente do ângulo de deflexão pela corrente foram, $B=-0,01\pm0,03$ e $A=-0,25\pm0,01$ para a Equação 7.

$$\tan(\alpha) = Ai + B \tag{7}$$

O coeficiente A da reta entre a tangente do ângulo de deflexão $(\tan(\alpha))$ e a corrente (i) é dado pela Equação 8. Isolando o campo magnético da Terra $|\vec{B_T}|$, temos a Equação 9.

$$A = \frac{\mu_0}{2\pi\rho|\vec{B_T}|}\tag{8}$$

$$|\vec{B_T}| = \frac{\mu_0}{2\pi\rho A} \tag{9}$$

Sendo assim, temos que $|\vec{B_T}| = 8, 0 \cdot 10^{-5}(T)$ ou $|\vec{B_T}| = 0, 8(\mu T)$.

4 Conclusão

Primeiramente, comprovou-se que ímãs e corrente elétricas geram campo magnético, visto que a presença destes próximo à corpos condutores livres, exerceram forças de atração ou repulsão, conforme a disposição dos polos ou sentido da corrente. Esta dedução é empírica, ao observar que os corpos sofreram uma força estando próximos ao ímã ou ao fluxo de correntes do fio. Da mesma maneira, verificou-se que o campo magnético possui relação direta com a polaridade e sentido da corrente, visto que cada configuração produziu espectros distintos.

Comprovou-se que é possível determinar o valor do campo magnético da Terra de maneira favorável considerando-se os erros de instrumentos e medição, utilizando-se a variação angular da bússola. Para uma precisão maior deste valor, faz-se necessário a utilização de instrumentos mais precisos.

Referências

ELEKTRO-AUTOMATIK, E. Laboratory Power Supplies Series Ps 2000. [S.l.], 2019. Disponível em: \(https://datasheet.octopart.com/ EA-PS-2032-050-EA-Elektro-Automatik-datasheet-8397323. pdf\). Acesso em: 24 ago. 2019.

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física: Eletromagnetismo. 9. ed. Cleveland State University: Grupo Editorial Nacional, 2013. v. 3.

ICEL. Manual de instruções do multímetro digital modelo MD-6111. [S.l.], 2016. Disponível em: (www.icel-manaus.com.br). Acesso em: 19 out. 2019.