

Цель проекта:

Предсказать, появится ли ребро между парой вершин (u, v) к моменту времени t", если на момент времени t* ребро между этими вершинами отсутствовало.

Наша команда

Тарелкина
Анастасия

Task 1.1 Task 2.5

Киселёв Владимир

Task 1.3 , 1.4 Task 2.A(III)

Федорова Анастасия

Task 1.2AB Task 2.A(I)

Данные

Ol opsahl-ucsocial

отправленные сообщения между пользователями онлайн-сообщества студентов

02 radoslaw_email

сеть электронной связи между сотрудниками производственной компании

osoc-sign-bitcoinotc

сеть доверия/недоверия между пользователями от внебиржевой платформы Bitcoin

04 dnc-corecipient

сеть людей, получивших одно и то же электронное письмо во время утечки электронной почты Нац. комитета Демократической партии в 2016 году

05 email-Eu-core-temporal

сеть была создана с использованием данных электронной почты крупного европейского исследовательского учреждения

Структура данных для хранения

_	v1	v2	timestamp	1.
0	582	364	0	
1	168	472	2797	
2	168	912	3304	
3	2	790	4523	
4	2	322	7926	

Структура для работы с файлами

- DataFrame
 - структура данных табличного типа.
 - манипулирование и управление столбцами и строками.
 - позволяет читать и записывать данные разных форматов
 - быстрое слияние и объединение наборов больших данных, например, два и более объектов DataFrame.

Свойства сетей (для статических графов)

Для расчета статических свойств данных мы считаем ребра в графе неориентированными (без учета кратности рёбер)

Task 1.1

Далее рассмотрим такие характеристики графа:

- Число вершин
- Число направленных рёбер
- Число ненаправленных рёбер (некратные ненаправленные ребра)
- Плотность графа отношение числа рёбер к максимально возможному числу рёбер
- Число компонент слабой связности поиск компонент происходил с помощью DFS
- Доля максимальной компоненты связности

	opsahl- ucsocial	radoslaw_ email	soc-sign- bitcoinotc	dnc- corecipient	email-Eu- core- temporal
Число вершин	1899	167	5881	906	986
Число направленных рёбер	59835	82927	35592	12085	332334
Число ненаправленных рёбер	13838	3251	21492	10429	16064
Плотность графа	0.007678601 848568738	0.234542962 26823462	0.0012430205 88612932	0.02543875696 7058163	0.033080384 262929745
Число компонент слабой связности	4	1	4	25	1
Доля максимальной компоненты связности	0.996840442 3380727	1	0.9989797653 460296	0.93708609271 52318	1

Task 1.2

Для наибольшей компоненты слабой связности оценить значения диаметра, радиуса сети и 90 процентиля

"Случайные вершины"

Выбираются 500 случайных вершин из наибольшей компоненты.

"Снежный ком"

Выбираются 2 случайных вершины, затем, пока кол-во <500 добавляем соседей этих вершин, соседей соседей и так далее.

Для наибольшей компоненты слабой связности		opsahl- ucsocial	radoslaw – email	soc-sign- bitcoinotc	dnc- corecipi ent	email-Eu- core- temporal
Подграф - 500 случайно выбранных вершин	Радиус	5	3	5	4	4
	Диаметр	8	5	9	8	7
	90 процентиль	4	3	4	4	3
Подграф - "снежный ком" (500 вершин)	Радиус	5	3	6	4	4
	Диаметр	6	5	7	6	6
	90 процентиль	4	3	4	4	3

Для наибольшей компоненты слабой связности		opsahl- ucsocial	radoslaw – email	soc-sign- bitcoinotc	dnc- corecip ient	email-Eu- core- temporal
Подграф - 1000 случайно выбранных вершин	Радиус	<u>4</u>	3	5	4	4
	Диаметр	8	5	9	8	7
	90 процентиль	4	3	<u>5</u>	4	3
Подграф - "снежный ком" (1000 вершин)	Радиус	<u>4</u>	3	<u>5</u>	4	4
	Диаметр	6	5	7	<u>8</u>	7
	90 процентиль	4	3	4	4	3

Средний кластерный коэффициент

Чтобы получить множество Г требуется найти всех соседей для каждой из вершины данной компоненты.

Lu - пересечение двух множеств всевозможных пар между соседями узла u. Далее зная, как найти Г(u) и Lu подставляем в формулу и считаем АСС.

$$\overline{C}l = \frac{1}{|V|} \sum_{u \in G} Cl_u \qquad \qquad Cl_u = \begin{cases} \frac{2L_u}{|\Gamma(u)| \cdot |\Gamma(u) - 1|}, & |\Gamma(u)| \geqslant 2\\ 0 & \text{иначе.} \end{cases}$$

Коэффициент корреляции Пирсона (Коэффициент ассортативности по степени вершин)

Для расчета нам также потребуется список всех соседей для каждой из вершин. Как результат, k_i это модуль от множества всех соседей і-й вершины. Подставляем известные нам данные в нашу формулу и считаем DA(PCC)

$$r = \frac{\sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m}\right) k_i k_j}{\sum_{i,j} \left(k_i \delta_{ij} - \frac{k_i k_j}{2m}\right) k_i k_j} = \frac{R_e R_1 - R_2^2}{R_3 R_1 - R_2^2},$$
 где $R_1 = \sum_i k_i = 2m, \ R_2 = \sum_i k_i^2$, $R_3 = \sum_i k_i^3$, $R_e = \sum_{i,j} A_{ij} k_i k_j$.

	opsahl- ucsocial	radoslaw_ email	soc-sign- bitcoinotc	dnc- corecipient	email-Eu- core- temporal
Средний кластерный коэффициент	0.109745671	0.591863208	0.1776857752	0.50718591119	0.407050447
	63130962	5486949	3831092	00863	5195388
Коэффициент корреляции Пирсона (Коэффициент ассортативности по степени вершин)	-0.187775787	-0.294424160	-0.164833594	-0.1248924428	-0.02574336
	1466803	38907004	51314522	3998932	8083089496

Предсказания появления ребер в графе. Признаки.

Static topological features

01 Common Neighbours (CN)

Функция CN равна числу общих соседей двух вершин. Для рассматриваемой пары вершин находим общих соседей - их число CN.

02 Adamic-Adar (AA)

Функция АА учитывает всех общих соседей. Она определяется как сумма обратных логарифмических степеней центральности соседей.

Static topological features

03 Jaccard Coefficient (JC)

Функция JC определяется как отношение числа общих соседей к числу соседей обеих вершин вместе (объединение).

O4 Preferential Attachment (PA)

Функция РА определяется как произведение количества соседей вершин.

Node activity features

01 Temporal weighting - топологическое взвешивание

```
Необходимо посчитать топологический вес в зависимости от времени появления ребра. I = 0.2 - нижняя граница t_min = df.timestamp.min() t_max = df.timestamp.max() delta_t = t_max - t_min
```

Node activity features

O2 Aggregation of node activity - агрегирование активности

Чтобы получить фиксированный вектор признаков для каждого узла, набор весов агрегируется с использованием 7-ми функций: (1) нулевой, (2) первый, (3) второй, (4) третий, (5) четвертый квартиль, (6) сумма и (7) среднее значение

```
def get zeroth(w):
  return np.min(w)
def get first(w):
  return np.quantile(w, .25)
def get second(w):
  return np.median(w)
def get third(w):
  return np.quantile(w, .75)
def get fourth(w):
  return w[-1]
def get sum(w):
  return np.sum(w)
def get mean(w):
  return np.mean(w)
```

Node activity features

Combining node activity - Объединение активности узла

Используем четыре различные комбинированные функции:
(1) сумма, (2)абсолютная разница, (3) минимум и (4) максимум.
Делая это, мы получаем вектор признаков активности узла.

```
def get sum c(a, b):
  return a + b
def get abs diff(a, b):
  return abs(a - b)
def get min(a, b):
  return min(a, b)
def get max(a, b):
  return max(a, b)
```

Первая попытка обучить

- Рассматриваем весь датасет
- Выберем пары узлов, которые находятся на расстоянии 2.
- Для исходных пар вершин и расположенных на расстоянии 2 посчитаем вектора признаков (функции, о которых говорили ранее).
- С помощью выборки с повторениями выберем 10000 пар вершин между которыми существует ребро и 10000 пар вершин между которыми ребра нет - далее будем работать с этими данными.

Первая попытка обучить

- Мы разделили нашу выборку на 2 части train и test
- Из выборки train составляет 70% пар вершин (14000), test - 30% (7000)
- Получив результаты обучения, подозрительно высокие значения метрики ROCAUC
- И решили проверить, как полученные фичи коррелируют с результатом

opsahl-ucsocial
0.888708111111111
radoslaw email email
0.9540153425809162
soc-sign-bitcoinotc
0.916159111111111
dnc-corecipient
0.985314777777778
email-Eu-core-temporal.txt
0.967028444444444

Корреляция

Вывод

- Такой результат получился из-за того, что мы
 "заглядывали в будущее": например, у нас в
 признаках фигурирует количество соседей. И,
 соответственно, у пар вершин положительного класса
 метрики, зависящие от количества соседей во много
 раз больше
- Далее мы решили попробовать другим способом

Вторая попытка обучить

Во второй раз мы изначально разделили наш датасет на dataset_before и dataset_after. dataset_before - датасет, в котором время появления ребер меньше указанного timestampa.

Соответственно, в dataset_after - оставшиеся ребра.

Далее по датасету dataset_before мы находили пары вершин, где кратчайшее расстояние - 2(считая dataset_before исходным графом).

Вторая попытка обучить

Далее находили пары вершин, которые появятся после нашего timestamp (list_of_good[i] - будет хранить пары вершин)

Cоответственно, list_of_bad[i] - датасет с ребрами которые не появятся после нашего timestamp.

Результаты!

Проверим корреляцию

ROCAUC

Смешанные

Статические

Временные

opsahl-ucsocial 0.8626110555555555

radoslaw_email_email
0.8810643888888889

soc-sign-bitcoinotc 0.9560036666666666

dnc-corecipient 0.9551271666666667

email-Eu-core-temporal
0.8664972222222221

opsahl-ucsocial 0.767269222222222

soc-sign-bitcoinotc
0.879497777777778

dnc-corecipient
0.946120277777779

email-Eu-core-temporal 0.8085819444444444

opsahl-ucsocial 0.8426486111111111

radoslaw_email_email
0.8440225

soc-sign-bitcoinotc
0.948844777777779

dnc-corecipient
0.948120722222222

email-Eu-core-temporal
0.7590081111111111

soc-sign-bitcoinotc 0.87949777777778

email-Eu-core-temporal.txt 0.808581944444444

opsahl-ucsocial 0.842648611111111

email-Eu-core-temporal.txt 0.759008111111111

radoslaw_email_email
0.8440225

soc-sign-bitcoinotc 0.948844777777779

Спасибо за внимание :)

