

Fung Ho Kit 3035779105 Zhang Yuhan 3035771672 Jing Jingderong 3035771775

Table of contents

01 1

Introduction

02

Reproduction & Analysis

03

Improvement

Q&A Session

Introduction

- Replicate and examine "DreamFusion: Text-to-3D Using 2D Diffusion"
- Novel approach for text-to-3D synthesis
- No need for 3D training data or image diffusion model modifications

- Probability density distillation-based loss functions
- Generates 3D models from Neural Radiance Fields (NeRF)
- Optimizes via gradient descent for photorealistic results
- Potential applications: gaming, entertainment, architecture

- Neural Radiance Field (NeRF) algorithm
- Randomly initialized for each caption
- Trained using images to learn radiance values
- Tailored to specific scene descriptions

- Utilizes latent variables to generate new data samples
- Gradually transforms samples from noise distribution to data distribution
- Reversible transformations

Code contributor: ashawky from GitHub

Stable-Dreamfusion

A pytorch implementation of the text-to-3D model **Dreamfusion**, powered by the Stable Diffusion text-to-2D model.

	DreamFusion: text-to-3D Using 2D Diffusion	Stable-DreamFusion
Main Model	Conditional Imagen Model	Stable-Diffusion Model
Operation Method	Operates on the image space	Operates on the latent space, requires extra time for propagating the loss back from VAE

 Reproduction backbone choose: Instant-NGP NeRF backbone instead of Vanilla NeRF backbone to achieve faster rendering speed (around 10 frames per second at 800 x 800 resolution).and less GPU memory use (around 16GB GPU memory) Why DreamFusion?

- DreamFusion's promising approach to text-to-3D synthesis
- Extra dimension compared to traditional text-to-2D synthesis
- Expands potential applications of text-to-image synthesis
- Aims to explore possibilities and boundaries of 3D modeling

Demo Trials

Prompts	Correct output	Completeness
i) A rex rabbit	Т	Т
ii) A snake flying in the sky	Т	F
iii) Four dogs are playing chess	F	F
iv) A Spiderman is on top of a car	Not Finished Yet	Not Finished Yet

Coherence Reproduction

4. Optimization. Our 3D scenes are optimized on a TPUv4 machine with 4 chips. Each chip renders a separate view and evaluates the diffusion U-Net with per-device batch size of 1. We optimize for 15,000 iterations which takes around 1.5 hours. Compute time is split evenly between rendering the NeRF and evaluating the diffusion model. Parameters are optimized using the Distributed Shampoo optimizer (Anil et al., 2020). See Appendix A.2 for optimization settings.

	R-Precision					
	CLIP	B/32	CLIP B/16		CLIP L/14	
Method	Color	Geo	Color	Geo	Color	Geo
GT Images	77.1	5	79.1	S .	-	-
Dream Fields	68.3	-	74.2			-
(Reimpl.)	78.6	1.3	-99.9	-0.8	82.9	1.4
CLIP-Mesh	67.8	-	75.8	-	74.5	-
DreamFusion	75.1	42.5	77.5	46.6	79.7	58.5
Stable dream fusion						
matte painting of a castle made of cheesecake surrounded by a moat made of ice cream	30.9	22.62	35.57	24.85	27.96	21.69
a vase with a hamburger pink flower	27.51	24.84	30.04	24.49	28.6	20.08
a hamburger	33.98	23.68	33.32	27.87	28.98	25.04

We only run 10000 iteration with 1 hours on GPU A3070

Coherence Reproduction

Text:

matte painting of a castle made of cheesecake surrounded by a moat made of ice cream

Ablation Test Reproduction

Figure 6: An ablation study of DreamFusion. **Left**: We evaluate components of our unlit renderings on albedo, full shaded and illuminated renderings and textureless illuminated geometry using CLIP L/14 on object-centric COCO. **Right**: visualizations of the impact of each ablation for "A bulldog is wearing a black pirate hat." on albedo (top), shaded (middle), and textureless renderings (bottom). The base method (i) without view-dependent prompts results in a multi-faced dog with flat geometry. Adding in view-dependent prompts (ii) improves geometry, but the surfaces are highly non-smooth and result in poor shaded renders. Introducing lighting (iii) improves geometry but darker areas (e.g. the hat) remain non-smooth. Rendering without color (iv) helps to smooth the geometry, but also causes some color details like the skull and crossbones to be "carved" into the geometry.

- (i) ViewAug: Without view-dependent prompts
- (ii) ViewDeep: Improve geometry
- (iii) Lighting: Improve geometry
- (iv) Texttureless: Smooth the geometry

Limitationof Dream Fusion

03

- Fail to generate multiple objects
- 2. GPU Resources Occupation
- Omit a significant amount of information

Dream Fusion Art Gallery

Our generation

(dreamfusion) [ImMusic@dslab Train]\$

2. Relationship - RelNet (GNN)

2. Relationship - RelNet (FFN)

Second Trial


```
df = pd.read_csv("Relnet_data2.csv")
df
       words x y z
            1 0 0
   ascend
            -1 0 0
   descend
   direct
            1 0 0
   enter
            1 0 0
67 straight
            1 0 0
68 there
            0 0 0
69 underfoot 0 0 0
70 upwards 0 0 0
```



```
X_train, X_test, y_train, y_test = train_test_split(X, x,random_state=42)
regr = MLPRegressor(random_state=42, max_iter=500).fit(X_train, y_train)
regr.predict(X_test[:2])
regr.score(X_test, y_test)
-2760.521410364419
```

```
class TextClassifier(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_classes)
        super(TextClassifier, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, num_classes)

def forward(self, x):
        x = self.embedding(x)
        h, _ = self.gru(x)
        h = h[:, -1, :]
        out = self.fc(h)
        return out
```

2. Relationship -RelNet (Rule base)

words	X	у	Z
approach	0	1	0
left	1	0	0
ascend	0	1	0
descend	0	-1	0
direct	0	1	0
enter	0	1	0
exit	0	-1	0
face	99	99	0
follow	0	-1	0
head	0	1	0
lean	99	99	0

```
def randomised(x):
    if x == 99:
        x = np.random.rand()
    return x
```

3D model - Editing and rendering

Trimesh + (pyvista)

python mesh_to_video.py
--center_obj 'mesh_whiterabbit/mesh.obj'
--surround_obj 'mesh_snake/mesh.obj'

--transform_vector [1,0,0]

```
(dreamfusion) [ImMusic@dslab Train]$ python mesh to video.py --center obj 'mesh whiterabbit/me
sh.obj' --surround obj 'mesh snake/mesh.obj' --transform vector [1,0,0]
[0.03760918 \ 0.2461\overline{3}992 \ 0.214\overline{8}0175] \ [1.0, \ 0.0, \ 0.0] \ 1.065\overline{3}440554936726
----> merge mesh done
Generating frames ...
                                                               | 21/100 [00:04<00:15, 5.07it/s]
channel 3: open failed: connect failed: Connection refused
channel 4: open failed: connect failed: Connection refused
                                                                100/100 [00:19<00:00, 5.03it/s]
----> rotation done
Rendering video ...
ffmpeg version 4.3 Copyright (c) 2000-2020 the FFmpeg developers
 built with gcc 7.3.0 (crosstool-NG 1.23.0.449-a04d0)
 configuration: --prefix=/home/ImMusic/.conda/envs/dreamfusion --cc=/opt/conda/conda-bld/ffmp
eg 1597178665428/ build env/bin/x86 64-conda cos6-linux-gnu-cc --disable-doc --disable-openssl
--enable-avresample --enable-gnutls --enable-hardcoded-tables --enable-libfreetype --enable-l
ibopenh264 --enable-pic --enable-pthreads --enable-shared --disable-static --enable-version3 -
-enable-zlib --enable-libmp3lame
                 56. 51.100 / 56. 51.100
                 58. 91.100 / 58. 91.100
  libayformat 58, 45,100 / 58, 45,100
  libaydevice 58, 10,100 / 58, 10,100
                 7. 85.100 / 7. 85.100
  libswscale
```


Future Work

- 1. Automate the pipeline
- 2. Enhance the generation quality
- 3. Enable more DOF

Thanks!

Any question?