# Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC

Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, Max Welling

May 30, 2017

## Bayesian MF Literature



#### PMF:



- ▶ Rating Matrix:  $R \in \mathbb{R}^{L \times M}$  (# users = L, # items = M)
- ▶ User latent features:  $U \in \mathbb{R}^{D \times L}$
- ▶ User latent features:  $V \in \mathbb{R}^{D \times M}$

#### PMF → Bayesian PMF

- ▶ In reality, *R* is very sparse!
- ▶ MLE estimation for *U* and *V* lead to severe over-fitting
- We want to model the uncertainty in the items





#### Model

- Introduce priors for the parameters
- Allow model complexity to be controlled automatically



#### Inference

predictive distribution:

$$p(R_{ij}^*|\mathbf{R},\Theta_0) = \int \int p(R_{ij}^*|\underline{U_i,V_j})p(\mathbf{U},\mathbf{V}|\mathbf{R},\Theta_U,\Theta_V)$$
$$p(\Theta_U,\Theta_V|\Theta_0)d\{\mathbf{U},\mathbf{V}\}d\{\Theta_U,\Theta_V\}$$

MCMC

$$p(R_{ij}^*|\mathbf{R},\Theta_0) \approx \frac{1}{T} \sum_{t=1}^T p(R_{ij}^*|U_i^{(t)},V_j^{(t)}).$$

where  $\{U_i^t, V_j^t\}$  is generated by a markov-chain whose stationary distribution is the posterior distribution over the model parameters:

$$p(\mathbf{U}, \mathbf{V}, \Theta_U, \Theta_V | \mathbf{R}, \Theta_0)$$
=  $p(\mathbf{U}, \mathbf{V} | \mathbf{R}, \Theta_U, \Theta_V) p(\Theta_U, \Theta_V | \Theta_0)$ 



#### Inference

#### Algorithm 1 Gibbs Sampling for BPMF

```
1: Initialize model parameters \mathbf{U}^{(1)}, \mathbf{V}^{(1)}
2: for t=1:T do
3: // Sample hyperparameters \Theta_U^{(t)} \sim p(\Theta_U | \mathbf{U}^{(t)}, \Theta_0), \quad \Theta_V^{(t)} \sim p(\Theta_V | \mathbf{V}^{(t)}, \Theta_0)
4: for i=1:L in parallel do
5: U_i^{(t+1)} \sim p(U_i | \mathbf{R}, \mathbf{V}^{(t)}, \Theta_U^{(t)}) // sample user features
6: end for
7: for j=1:M in parallel do
8: V_j^{(t+1)} \sim p(V_j | \mathbf{R}, \mathbf{U}^{(t)}, \Theta_V^{(t)}) // sample item features
9: end for
10: end for
```

#### Inference

Sampling from conditionals for  $U_i$ ,  $V_j$  in Gibbs, involve  $O(D^3)$  computation per iteration (inverting  $D \times D$  precision matrix)

$$p(U_i|R, V, \Theta_U, \alpha) = \mathcal{N}(U_i|\mu_i^*, \left[\Lambda_i^*\right]^{-1})$$
$$\sim \prod_{j=1}^M \left[\mathcal{N}(R_{ij}|U_i^T V_j, \alpha^{-1})\right]^{I_{ij}} p(U_i|\mu_U, \Lambda_U),$$

where

$$\begin{split} & \Lambda_i^* &= & \Lambda_U + \alpha \sum_{j=1}^M \left[ V_j V_j^T \right]^{I_{ij}} \\ & \mu_i^* &= & \left[ \Lambda_i^* \right]^{-1} \left( \alpha \sum_{j=1}^M \left[ V_j R_{ij} \right]^{I_{ij}} + \Lambda_U \mu_U \right). \end{split}$$

 Each iteration of MCMC requires computations over the entire dataset



## Langevin Dynamics

$$\theta_{t+1} \leftarrow \theta_t + \frac{\epsilon_t}{2} \left( \nabla_{\theta_t} \log p(\theta_t) + \sum_{x \in X} \nabla_{\theta_t} \log p(x|\theta) \right) + \mathcal{N}(0, \epsilon_t)$$

Converges to true posterior distribution if step size  $\epsilon_t$  is annealed to 0 at a rate satisfying:

$$\sum_{t=1}^{\infty} \epsilon_t = \infty, \quad \sum_{t=1}^{\infty} \epsilon_t^2 < \infty$$

- ▶ No accept-reject tests since acceptance rate  $\rightarrow$  1 as  $\epsilon_t \rightarrow$  0.
- ▶ Requires O(N) computation per iteration.

## Stochastic Gradient Langevin Dynamics (SGLD)

[Welling and Teh, 2011]

$$\theta_{t+1} \leftarrow \theta_t + \frac{\epsilon_t}{2} \left( \text{Stochastic Gradient} \right) + \mathcal{N}(0, \epsilon_t)$$

$$\theta_{t+1} \leftarrow \theta_t + \frac{\epsilon_t}{2} \left( \nabla_{\theta_t} \log p \left( \theta_t \right) + \frac{N}{m} \sum_{\mathbf{x} \in \mathcal{M}} \nabla_{\theta_t} \log p \left( \mathbf{x} | \theta \right) \right) + \mathcal{N}(0, \epsilon_t)$$

▶ O(m << N) computation per iteration.

#### Model

$$egin{array}{lll} p(\mathbf{U}|\Lambda_U) &=& \prod_{i=1}^L \mathcal{N}(U_i|0,\Lambda_U^{-1}), & & & & \lambda_{U_d},\lambda_{V_d} & \sim & \mathrm{Gamma}(lpha_0,eta_0). \ p(\mathbf{V}|\Lambda_V) &=& \prod_{j=1}^M \mathcal{N}(V_j|0,\Lambda_V^{-1}). & & & & \end{array}$$

- Slightly simplified model
- $ightharpoonup \Lambda_U$  and  $\Lambda_V$  are D-dimensional diagonal matrices with diagonal elements  $\lambda_{U_d}$  and  $\lambda_{V_d}$  respectively
- ▶ Each latent vector can be updated in O(D) instead of  $O(D^2)$  in the full-covariance case

#### Inference

Recall the full posterior:

$$p(\mathbf{U}, \mathbf{V}, \Theta_U, \Theta_V | \mathbf{R}, \Theta_0)$$

$$= p(\mathbf{U}, \mathbf{V} | \mathbf{R}, \Theta_U, \Theta_V) \ p(\Theta_U, \Theta_V | \Theta_0)$$

- Alternate b/w steps:
  - ▶ Step 1: Sample from  $p(U, V|R, \Theta_U, \Theta_V)$  using SGLD
  - ▶ Step 2: Sample from  $p(\Theta_U, \Theta_V | \Theta_0)$  using Gibbs

#### **Step 1: Sample from** $p(U, V|R, \Theta_U, \Theta_V)$ **using SGLD**

- ▶ Suppose rating matrix is:  $\mathcal{X} = \{x_n = (p_n, q_n, r_n)\}_{n=1}^N$
- ► Gradient of log-posterior w.r.t *U<sub>i</sub>*

$$G(\mathcal{X}) = \sum_{n=1}^N g_n(U_i;\mathcal{X}) - \Lambda_U U_i$$

$$g_n(U_i; \mathcal{X}) = \mathbb{I}[p_n = i | \mathcal{X}](r_n - U_{p_n}^{\top} V_{q_n}) V_{q_n}$$

▶ To use SGLD, need unbiased estimate of this gradient from a mini-batch  $\mathcal{M} = \{(p_n, q_n, r_n)\}_{n=1}^m$  of m tuples of  $\mathcal{X}$ 

$$G_1(\mathcal{M}) = N\bar{g}(U_i; \mathcal{M}) - \Lambda_U U_i$$

$$\bar{g}(U_i; \mathcal{M}) = \frac{1}{m} \sum_{n=1}^m g_n(U_i; \mathcal{M})$$



#### **Step 1: Sample from** $p(U, V|R, \Theta_U, \Theta_V)$ **using SGLD**

▶ Unbiased estimate of the gradient which needs only updating users in the mini-batch  $\mathcal{M}$ 

$$G_3(\mathcal{M}) = N ar{g}(U_i; \mathcal{M}) - \mathbb{I}[i \in \mathcal{M}_p] h_{i*}^{-1} \Lambda_U U_i.$$

$$h_{i*} = 1 - \left(1 - \frac{N_{i*}}{N}\right)^m$$

$$N_{i*} = \sum_{n=1}^{N} \mathbb{I}[p_n = i | \mathcal{X}]$$

▶ Overall update for  $U_i$  and  $V_i$  (s is a worker)

$$U_{i,t+1} \leftarrow U_{i,t} + \frac{\epsilon_t}{2} \left\{ \frac{N^{(s)}}{v^{(s)}} \bar{g}(U_{i,t}; \mathcal{M}_t^{(s)}) - \frac{\Lambda_U U_{i,t}}{\bar{h}_{i*}} \right\} + \nu_t \quad (29)$$

$$V_{j,t+1} \leftarrow V_{j,t} + \frac{\epsilon_t}{2} \left\{ \frac{N^{(s)}}{v^{(s)}} \bar{g}(V_{j,t}; \mathcal{M}_t^{(s)}) - \frac{\Lambda_V V_{j,t}}{\bar{h}_{*j}} \right\} + \nu_t. \quad (30)$$

#### Mini-batch for Step 1

| 2           | 1           | 3           |  |
|-------------|-------------|-------------|--|
| 2           | 2           | 1           |  |
| 3           | 2           | 2           |  |
| 1           | 3           | 5           |  |
| 2           | 4           | 2           |  |
| 3           | 3           | 4           |  |
|             |             |             |  |
| 4           | 1           | 2           |  |
|             |             |             |  |
| 4           | 1           | 2           |  |
| 4<br>5      | 1           | 2           |  |
| 4<br>5<br>6 | 1<br>1<br>2 | 2<br>4<br>1 |  |

#### **Step 2: Sample from** $p(\Theta_U, \Theta_V | \Theta_0)$ **using Gibbs**

▶ This is easy because of conjugacy:

$$\lambda_{U_d}|\mathbf{U}, \mathbf{V} \sim \text{Gamma}\left(\alpha_0 + \frac{L}{2}, \beta_0 + \frac{1}{2}\sum_{i=1}^L U_{di}^2\right),$$
 (24)

$$\lambda_{V_d}|\mathbf{U}, \mathbf{V} \sim \text{Gamma}\left(\alpha_0 + \frac{M}{2}, \beta_0 + \frac{1}{2}\sum_{i=1}^{M} V_{dj}^2\right).$$
 (25)

#### Distributed SGLD

#### **Parameter Server Architecture**

- ▶ Worker s perform Step 1 Sample from  $p(U_s, V_s | R, \Theta_{U_s}, \Theta_{V_s})$
- ▶ Master performs Step 2 Sample from  $p(\Theta_U, \Theta_V | \Theta_0)$



#### Distributed SGLD

## Distribution of data (rating matrix R) and U, V among workers



- ▶ Rating matrix R is partitioned into mutually-exclusive blocks  $B_{ii}$
- ▶ Run 2 independent chains with parameters  $\{U^a, V^a\}$  and  $\{U^b, V^b\}$



## DSGLD: Algorithm (parameter server)

#### **Algorithm 2** DSGLD at parameter server

```
1: Initialize model parameters of each chain \{\mathbf{U}_1^c, \mathbf{V}_1^c, \Lambda_1^c\}_{c=1}^C
      step sizes \{\epsilon_t\}
 2: for each chain c parallel do
          for t=1:\max_{t=1}^{\infty}
 3:
 4:
              \mathcal{B}_c \leftarrow \text{GET\_ORTHO\_BLOCK\_GROUP}(c,t)
 5:
              for worker s \in \mathcal{B}_c do
                   \mathbf{U}_{t+1}^{(c,s)}, \mathbf{V}_{t+1}^{(c,s)} \leftarrow \text{WKR\_ROUND}(\mathbf{U}_{t}^{(c,s)}, \mathbf{V}_{t}^{(c,s)}, \Lambda_{t}^{(c)}, \epsilon_{t})
 6:
 7:
              end for
 8:
              if not burn-in then
                  Store \mathbf{U}_{t+1}^{(c)}, \mathbf{V}_{t+1}^{(c)} as a sample of chain c
 9:
                   Sample \Lambda_{t+1}^{(c)} | \mathbf{U}_{t+1}^{(c)}, \mathbf{V}_{t+1}^{(c)} using Eqn. (24) and (25)
10:
11:
               end if
12:
           end for
13: end for
```

## DSGLD: Algorithm (worker)

#### **Algorithm 3** DSGLD at worker s

```
1: Initialize \bar{h}_{i*}, \bar{h}_{*i}, round length \gamma, mini-batch size m
2: function WKR ROUND(\mathbf{U}^{(c,s)}, \mathbf{V}^{(c,s)}, \Lambda^{(c)}, \epsilon_t)
3:
        for t=1:\gamma do
           Sample a mini-batch \mathcal{M}_t from \mathcal{X}^{(s)}
4:
 5:
           for each user i and item j in \mathcal{M}_t parallel do
6:
               Update U_i, V_i using Eqn. (29) and (30)
7:
           end for
 8:
        end for
        Send updated \mathbf{U}^{(c,s)} and \mathbf{V}^{(c,s)} to the parameter server
10: end function
```

## DSGLD: Block Split Schemes



#### Two levels of parallelism

- (a) within-chain (both X and  $\{U, V\}$  are partitioned)
- ▶ (b) between-chain (X and U are partitioned, entire V is transmitted to parameter server)

|                | Optimization | MCMC        |
|----------------|--------------|-------------|
| Single Machine | SGD          | SGLD, Gibbs |
| Distributed    | DSGD         | DSGLD       |

| Dataset | # users      | # items     | # ratings |
|---------|--------------|-------------|-----------|
| Netflix |              | 18 <b>K</b> | 100M      |
| Yahoo   | 1.8 <b>M</b> | 136K        | 700M      |





Figure: Netflix dataset (D = 30)

Single node, multi core





Figure: Yahoo Music Rating dataset (D = 30)

▶ 16 nodes





Figure: The effect of the number of chains, number of workers, and block split



Figure: The effect of the latent feature dimension

#### Conclusion

- Paper combines ideas from DSGLD to scale Bayesian MF
- ightharpoonup Avoids O(N) computation over the entire dataset
- Using multiple chains and multiple workers in parallel gives the method better and faster mixing
  - More chains help explore a broader space
  - Updating orthogonal blocks in parallel helps chain mix faster
  - Averaging predictions from independent chains gives better generalization
- Limitations: Slow worker, Not fully model parallel (model parallelism at worker)