EE 360C - ALGORITHMS

Lecture 9 Graphs 2

Vallath Nandakumar
University of Texas at Austin

"We'll know whether to treat it with any special moral consideration when we see if it passes the Turing test."

- Bipartite Graph
 - Undirected graph G = (V,E) where nodes can be colored red or blue such that all edges have one red end and one blue end
- Applications
 - Stable marriage: men = red, women = blue
 - Scheduling: machines = red, jobs = blue

TESTING BIPARTITENESS

- Checking whether graph bipartite
 - Many graph problems become
 - Easier if underlying graph bipartite (matching)
 - Tractable if underlying graph bipartite (independent set)

Lemma

If graph bipartite, cannot contain odd length cycle

Proof Sketch

Not possible to "2-color" odd cycle

bipartite (2-colorable)

not bipartite (not 2-colorable)

Lemma

- Let G be connected graph and $L_0, ..., L_k$ be layers produced by BFS starting at node s
- Exactly one of following holds
 - 1) No edge of G joins two nodes of same layer
 - G is bipartite
 - 2) Edge of G joins two nodes in same layer
 - G contains odd length cycle and not bipartite

Case 1

Case 2

Prove that if no edge of *G* joins two nodes of same layer of a BFS search tree, *G* is bipartite

Prove that if edge of G joins two nodes in same layer
 of a BFS search tree, G contains odd length cycle and
 not bipartite

DIRECTED GRAPH

- Directed Reachability
 - Given node s, find all nodes reachable from s
- Graph Search
 - BFS and DFS extend naturally to Directed Graph

STRONG CONNECTIVITY

- If path from node *u* to *v* and from *v* to *u*, then *u* to *v* are mutually reachable
- Strongly Connected
 - Every pair of nodes mutually reachable
- Lemma
 - G strongly connected iff every node reachable from s and s reachable from every node

DETERMINING STRONG CONNECTIVITY

- Theorem
 - Can determine if G strongly connected in O(m+n)
- Algorithm
 - Pick any node s
 - Run BFS from s in G
 - Run BFS from s in G_{rev} (reverse direction edges)
 - Return true iff all nodes reached in both BFS runs

not strongly connected

STRONG COMPONENTS

- Strong Component containing node s in directed graph
 - Set of all v such that s and v mutually reachable
- Theorem
 - For any two nodes s and t in directed graph, their strong components are either identical or disjoint

- Directed Acyclic Graph (DAG)
 - Contains no directed cycles
- Topological Order
 - Ordering of nodes $v_1, v_2, ..., v_n$ in directed graph so that i > j for every edge (v_i, v_i)

- Precedence constraints
 - edge (v_i, v_j) means v_i must precede v_j
- Example Applications
 - Course prerequisite graph
 - Course v_i must be taken before v_i
 - Compilation
 - Module v_i must be compiled before v_i
 - Pipeline of computing jobs
 - Output of job v_i needed to determine input of job v_i

- Lemma
 - If G has topological order, then G is DAG
- Proof (by contradiction)
 - Suppose G has topological order $v_1,...,v_n$ and G has cycle
 - Let v_i be lowest-indexed node in cycle and let v_j be node just before v_i
 - By choice of i, we have i < j
 - Contradiction because topological order requires j < i for edge (v_i, v_i)

the directed cycle C

Lemma

If G is DAG, then G has a node with no incoming edges

Lemma

• If G is DAG, then G has topological ordering

- Theorem
 - Algorithm finds topological order in O(m+n) Time
- Proof
 - Maintain following information
 - _count[w] count of incoming edges for node w
 - S remaining nodes with no incoming edges
 - Initialization takes O(m+n) via single scan through graph
 - Update to delete v takes O(m)
 - Remove v from S
 - Decrement count[w] for all edges v to w and add w to S if count[w] hits 0

iClicker

How many topological orderings do the following graphs have?

A: 3, 6

B: 2, 4

C: 3, 4

D: 4, 5

E: Other

EXERCISE

- n node undirected graph contains two nodes s and t
 - If distance between s and t greater than n/2, show some node v exists such that deleting v destroys all paths from s to t.
 - Hint: Use BFS and layer concepts

EXERCISE

Given undirected graph G, for some pair of nodes v and w, give algorithm to compute number of shortest paths from v to w in O(m+n).

