# **Optimization for Deep Learning**

Lecture 1-2: Introduction

Kun Yuan

Peking University

#### Main contents in the class

### • Part I: Fundamental algorithms for optimization

Gradient descent; projected gradient descent; proximal gradient descent; Nesterov acceleration; quasi-Newton algorithms; zeroth-order methods

### Part II: Fundamental algorithms for deep learning

Stochastic gradient descent (SGD); SGD stability; momentum SGD; adaptive SGD; variance reduction

### Part III: Advanced algorithms for deep learning

Mixed precision training; gradient clipping; adversarial learning; multi-task learning; meta learning; bilevel optimization

#### Part IV: Distributed algorithm for deep learning

Communication compression; federated learning; decentralized learning; asynchronous SGD; Byzantine learning;

# Deep netrual network (DNN)

- DNN is widely used in almost all AI applications
- A typical DNN model includes a feature extractor and a classifier
- Well-trained DNN can make precise predictions



## A practical DNN example<sup>1</sup>



 $<sup>^1 {\</sup>sf Source:\ analyticsvidhya.com}$ 

#### **DNN** model

- We model DNN as  $h(x; a) : \mathbb{R}^d \to \mathbb{R}^c$ 
  - $\circ \ x \in \mathbb{R}^d$  is the DNN model parameter to be trained
  - $\circ \ a$  is a random input data sample
  - $\circ$  c is the number of classes
- ullet Given the model parameter x, DNN outputs prediction scores  $\hat{b}$  for input  $\xi_i$



### **DNN** model: a trivial example

- Given model parameter x = [W; h], and a linear model h(x; a) = Wa + h,
- An illustration of the trivial DNN model and its output is as follows<sup>2</sup>



 $<sup>^2</sup>$ Source: https://cs231n.github.io/linear-classify/

### How to train a DNN model?

- Given good model x, DNN h(x;a) can make precise predictions
- ullet But how to train/achieve the model parameter x ?
- ullet Given a dataset  $\{a_i,b_i\}_{i=1}^m$  where  $b_i$  is the ground-truth label for data  $a_i$
- Define  $L(\hat{b}_i, b_i) = L(h(x; a_i), b_i)$  as a loss function to measure the difference/mismatch between predictions and ground-truth labels
- DNN training is to find a model parameter x such that the mismatch (between pred and real) are minimized across the entire dataset:

$$x^* = \underset{x \in \mathbb{R}^d}{\arg\min} \left\{ \frac{1}{m} \sum_{i=1}^m L(h(x; a_i), b_i) \right\}$$

## DNN model is notoriously difficult to train

 $\bullet$  DNN model L(h(x;a),b) is highly non-convex, and probably non-smooth

$$h(x;a) = \psi(\cdots \psi(W_2 \cdot \psi(W_1 a + h_1) + h_2) \cdots)$$
  
 $L(\hat{b};b) = \frac{1}{2} \|b - \hat{b}\|^2 \text{ or } -\sum_i b_i \log(\hat{b}_i) \text{ or others}$ 

where  $x = \{W_i, h_i\}$  and  $\psi(\cdot)$  is a non-linear activation function



## DNN model is notoriously difficult to train

- Cannot find global minima; trapped into local minima and saddle points
- The dimension of model parameter  $x = \{W_i, h_i\}$  (or model size) is huge<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>Image source: neowin.net

## DNN model is notoriously difficult to train

- Cannot find global minima; trapped into local minima and saddle points
- The dimension of model parameter  $x = \{W_i, h_i\}$  (or model size) is huge
- $\bullet$  The size of the dataset  $\{a_i,b_i\}_{i=1}^m$  is huge

 ${\sf DNN\ Trainig} = {\sf Non\text{-}convexity\ training} + {\sf Huge\ dimension} + {\sf Huge\ dataset}$ 

Our lectures will focus on algorithms to train DNN

## **Stochastic optimization: problem**

• Consider the stochastic optimization problem:

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\boldsymbol{\xi} \sim D}[F(x; \boldsymbol{\xi})]$$

- $\circ$   $\xi$  is a random variable indicating data samples
- $\circ D$  is the data distribution; unknown in advance
- o  $F(x; \boldsymbol{\xi})$  is differentiable in terms of x
- Many applications in signal processing and machine learning

## **Example:** deep neural network

• Recall the DNN training problem

$$\min_{x \in \mathbb{R}^d} \quad \frac{1}{m} \sum_{i=1}^m L(h(x; a_i), b_i)$$

which is a finite-sum problem

ullet Suppose we have infinite data (a,b) following distribution D, the above problem becomes

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{(\boldsymbol{a}, \boldsymbol{b}) \sim D} L(h(x; \boldsymbol{a}), \boldsymbol{b})$$

## Stochastic gradient descent: algorithm

Recall the problem

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \mathbb{E}_{\xi \sim D}[F(x; \boldsymbol{\xi})]$$

- ullet Closed-form of f(x) is unknown; gradient descent is not applicable
- Stochastic gradient descent (SGD):

$$x_{k+1} = x_k - \gamma \nabla F(x_k; \xi_k)$$

where  $\xi_k$  is a data realization sampled at iteration k.

- Our lecture will explore the following questions
  - o Can SGD converge to the desired solution and how fast?
  - o How does stochastic noise influence the convergence rate?
  - o How to tune learning rate?

### SGD Stability

- SGD was first proposed to relieve the computational overhead suffered in GD
- Surprisingly, it is often observed to generalize better than GD
- SGD first escapes from the GD solution and then converges to a better solution that can generalize better<sup>4</sup>



Figure 6: Fast escape phenomenon in fitting corrupted FashionMNIST.

<sup>&</sup>lt;sup>4</sup>Figure is from (Wu et al., 2018)

# **SGD Stability**

SGD favors flat solution<sup>5</sup>



- Our lecture will explore the following questions:
  - Why does SGD favor flat solution?
  - Why does flat solution generalize better?
  - Why does SGD outperform GD in generalization?

<sup>&</sup>lt;sup>5</sup>Figure is from Lei Wu's talk

#### Momentum SGD

• Momentum SGD can be rewritten into  $(m_0 = 0)$ 

$$m_k = \beta m_{k-1} + \nabla F(x_k; \xi_k)$$
$$x_{k+1} = x_k - \gamma m_k$$

• Equivalent to

$$x_{k+1} = x_k - \gamma \nabla F(x_k; \xi_k) + \beta \underbrace{(x_k - x_{k-1})}_{\text{momentum}}$$

- Our lecture will explore the following questions:
  - o Can momentum SGD converge to the desired solution and how fast?
  - Is momentum SGD theoretically faster than vanilla SGD?

- SGD performance is very sensitive to the learning rate. A good learning rate schedule can significantly speed up the convergence
- Adaptive stochastic gradient method

$$g_k = \nabla F(x_k; \xi_k)$$

$$s_k = s_{k-1} + g_k \odot g_k$$

$$x_{k+1} = x_k - \frac{\gamma}{\sqrt{s_k} + \epsilon} \odot g_k$$

where  $1/\sqrt{s_k} = \text{col}\{1/\sqrt{s_{k,1}}, \cdots, 1/\sqrt{s_{k,d}}\} \in \mathbb{R}^d$  is an element-wise operation,  $s_0$  is initialized as 0, and a small  $\epsilon$  is added for safe-guard.

ullet Learning rate is automatically tuned by  $s_k$ 

- AdaGrad falls into preconditioned SGD
- If we let  $P_k=\mathrm{diag}\{\frac{1}{\sqrt{s_{k,1}+\epsilon}},\cdots,\frac{1}{\sqrt{s_{k,d}+\epsilon}}\}\in\mathbb{R}^{d\times d}$ , AdaGrad becomes

$$x_{k+1} = x_k - \gamma P_k g_k$$

where  $P_k$  is a time-varying preconditioning matrix.

- AdaGrad imposes smaller learning rates for notable gradient directions
- AdaGrad imposes larger learning rates for insignificant gradient directions

AdaGrad alleviates the "Zig-Zag" phenomenon



Figure: SGD converges slow for ill-conditioned problem

### AdaGrad alleviates the "Zig-Zag" phenomenon



Figure: AdaGrad has alleviated "Zig-Zag" phenomenon

The learning rate in AdaGrad is adaptive; no need to tune.



Figure: AdaGrad automatically adapts to problem structure<sup>6</sup>.

<sup>&</sup>lt;sup>6</sup>These examples are from https://conferences.mpi-inf.mpg.de/adfocs/material/alina/adaptive-L1.pdf

# More adaptive algorithms

- RMSProp, ADAM, AdaBound, etc.
- Animation of different adaptive SGD: https://imgur.com/a/Hqolp
- Our lecture will explore the following questions
  - o How to prove convergence of these adaptive algorithms?
  - o Can the adaptability bring theoretical benefits?

### **Finite-sum minimization**

- In deep learning, we typically have a finite dataset
- If  $\pmb{\xi}$  takes samples uniformly from a finite dataset  $\{\xi_1,\cdots,\xi_m\}$ , then

$$\mathbb{E}[F(x;\xi)] = \frac{1}{m} \sum_{i=1}^{m} F(x;\xi_i) = \frac{1}{m} \sum_{i=1}^{m} F_i(x)$$

where  $F_i(x) := F(x; \xi_i)$ . Number m is typically very large.

• The stochastic optimization problem becomes

$$\min_{x \in \mathbb{R}^d} \quad f(x), \quad \text{where} \quad f(x) = \frac{1}{m} \sum_{i=1}^m F_i(x),$$

which is called **finite-sum minimization** problem.

### Solving finite-sum minimization with SGD

- Since finite-sum minimization is a special example of stochastic optimization, we can solve it with SGD
- ullet For any  $k=0,1,\cdots$ , the SGD recursion is as follows

Pick 
$$i_k \in [m]$$
 uniformly randomly; 
$$x_{k+1} = x_k - \gamma \nabla F_{i_k}(x_k)$$

- Unbiased stochastic gradient:  $\mathbb{E}[\nabla F_{i_k}(x)] = \frac{1}{m} \sum_{i=1}^m \nabla F_i(x) = \nabla f(x)$
- Convergence property follows SGD

### **Stochastic variance-reduced gradient**

• In SGD, stochastic gradient  $\nabla F_{i_k}(x)$  has constant variance:

$$\mathbb{E}[\nabla F_{i_k}(x)] = \nabla f(x), \qquad \mathbb{E}\|\nabla F_{i_k}(x) - \nabla f(x)\|^2 \le \sigma.$$

- The constant variance is the root reason why SGD is slow
- For infinite-data scenario, we can do little to reduce gradient variance
- But for finite-sum scenario, we can construct variance-reduced stochastic gradient with diminishing variance, and hence significantly improve the convergence rate, i.e.,  $\mathbb{E}\|\nabla F_{i_k}(x) \nabla f(x)\|^2 \to 0$ .
- We leave it to the main lecture

## **Numerical performance**



Figure: SGD, SVRG, and SAGA; figure is from (Gower et al., 2020)

## Summary

- DNN training can be formulated into a non-convex stochastic optimization problem
- We introduced various fundamental algorithms to train deep neural network: SGD, momentum SGD, adaptive SGD, and variance-reduction

#### References I

- L. Wu, C. Ma et al., "How sgd selects the global minima in over-parameterized learning: A dynamical stability perspective," Advances in Neural Information Processing Systems, vol. 31, 2018.
- R. M. Gower, M. Schmidt, F. Bach, and P. Richtárik, "Variance-reduced methods for machine learning," *Proceedings of the IEEE*, vol. 108, no. 11, pp. 1968–1983, 2020.