West TopologiesIn SOFA »

Hervé DELINGETTE

Brina Goyette

Geometry vs Topology

A mesh is composed of :

A set of DOFs (Degrees of Freedom),
 e.g. positions of each node

Geometry Description

 A description of how those DOFS are connected,
 e.g. edges, triangles, tetrahedra

Topology Description

Topology description is independent of geometry

Example of Topologies

2 common mesh topologies :

Mesh composed of n-simplices,

Edge Triangle
2. Meshes composed of n-cube

Tetrahedron

SOFA

Topology description

- Far more complex classification :
 - Conformal vs Manifold meshes

- Structured vs Unstructured grid

Mesh Geometry

Where are mesh vertices located in space?

(position of each vertex)

Mesh Topology

How are mesh vertices connected to each other?

(edges, triangles, tetrahedron, ...)

COMPUTATIONAL MESH

- Mesh Visualization
- Collision Detection
- Mechanical Modeling (deformation)
- Haptic Rendering
- Description of Scalar Fields (temperature, electric potential, ...)
 or Vectorial Fields (speed, fiber orientation, ...)

Open source C++ platform SOFA:

" Real-time Modeling of Deformable Structures for Medical Simulation and Planning"

Simulation Tree gathering software Components acting on meshes

Information flow is carried on by Visitors

Visitors traverse the Simulation Tree to propagate spatial positions

top down and forces

bottom up

Topological Changes

Changing topology is key for medical simulation

Modifying topology entails huge impact for all aspects of the simulation (visual, mechanical, collision detection,..)

Problem Position

"How to ensure visual, mechanical, haptic and collision behavior stay valid and consistent upon any topological change?"

Static and Dynamic Topologies

Static Topology

- No changes throughout the simulation
- MeshTopology Component

Dynamic Topology

- Can change connections
- Requires changes to propogate throughout scene graph

BaseMeshTopology Component – common interface to both

Implementation choices

- Efficient storage of information into simple arrays
 - elements renumbering if topological changes
- time to update data structures only depends on the number of modified elements
- Mesh related data not centralized but stored in the software *Components* and spread out in the *Simulation Tree*
- Update of data structures transparent to the user through the propagation of topological events

Container Data Structures

- Force Fields, Constrains, Mapping may require to store information for each topological item (point, edge,...)
- Defined 2 container classes that handle topological changes
 - PointData<MyType>, EdgeData<MyType> are arrays (same as std::vector) of item of type MyType
 - PointSubset, EdgeSubset are arrays of points or edges
 - There are used-defined functions that are called when an item is created or destroyed

Container Data Structures

- Those container data structures are "aware" of topological changes.
- User only provide callback functions to handle:
 - Destruction of a topological item
 - Creation of a topological item

<u>Hierarchical decomposition of meshes into k-cells</u>

• Edges = 1-cells

• Triangles, Quads = 2-cells

• Tetrahedron, Hexahedron = 3-cells

SHELL	Vertex	Edge	Triangle	Tetrahedron
Vertex	•	V	4	
Edge	\	/		\Leftrightarrow
Triangle			_	
Tetrahedron	\Leftrightarrow	\bigoplus		

p < k

SHELL: k-cells adjacent to one p-cell

SUB : p-cells included in one k-cell

Mesh topologies structured as a Family Tree

Topology objects composed of 3 functional members

TopologyAlgorithms

removeTriangles(I) InciseAlongPointsList(I) InciseAlongEdge(i)

Geometry

computeTriangleArea(i) computeTriangleNormal(i) computeSegmentTriangleIntersection(i) computeIntersectedPointsList(...)

TopologyContainer

getTriangleArray()
getTriangleEdgeArray()
getTriangleVertexShell(i)
getTriangleEdgeShell(i)
getEdgeArray()
getEdgeVertexShell(i)
load()
addTrianglesWarning(I)
addTrianglesProcess(I)
removeTrianglesProcess(I)

Two clinical applications

References

- 1. Cgal: Computational geometry algorithms library, http://www.cgal.org
- 2. Gipsi: General physical simulation interface, http://gipsi.case.edu
- 3. Opentissue, http://www.opentissue.org
- 4. Sofa: Simulation open framework architecture, http://www.sofa-framework.org
- 5. Springs, http://spring.stanford.edu
- 6. Agus, M., Gobbetti, E., Pintore, G., Zanetti, G., Zorcolo, A.: Real-time cataract surgery simulation for training. In: Eurographics Italian Chapter Conference, Catania, Italy, Eurographics Association (2006)
- 7. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa an open source framework for medical simulation. In: Medicine Meets Virtual Reality (MMVR 1915), Long Beach, USA (February 2007)
- 8. Forest, C., Delingette, H., Ayache, N.: Removing tetrahedra from manifold tetrahedralisation: application to real-time surgical simulation. Medical Image Analysis 9(2), 113–122 (2005)
- 9. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics 23(3), 385–392 (2004)
- 10. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Dingliana, J., Ganovelli, F. (eds.) Eurographics (short papers) (August 2005)