A

在j固定的情况下, c_i 越大, $a_j + b_j \times c_i$ 的值越大。

因此可以先对 c_i 排序, 然后二分第 k 大的值 S, 求满足 $1 \leq i,j \leq n$, $a_j + b_j \times c_i \leq S$ 的 i,j = 元组个数:

- 遍历j,在已经排序的c上,对每个 j 二分出有多少个 i 使得 $a_j + b_j imes c_i \leq S$
- 可以在 $O(n \lg n)$ 的时间内求出小于等于 S 的二元组个数k'。

如果k'
eq k,通过第一次二分调整S即可,直到k' = k。

B龟派气功

考虑区间 DP,设 $f_{l,r,k}$ 表示将 [l,r] 内的气墙全部击碎,剩下的攻击能量值为 k 时的最小值。

枚举区间内最后一个被击碎的气墙 mid,那么 [l,mid] 与 [mid+1,r]的部分就可以独立处理,于是有

$$dp_{l,r,k} = \min_{l \leq mid \leq r} \min_{p \leq k} \left(dp_{l,mid,p} + dp_{mid+1,r,k-p}
ight)$$

注意特判一下最后一个破碎的是 r 号气墙的情况。

考虑直接转移的复杂度,可以发现 k 一定 $\leq \max a_i$,否则多出的部分在遇到下一个气墙后必定毫无作用,反而还要减半。

记 $V=\max a_i$,于是复杂度为 $\mathcal{O}\left(n^3V^2\right)$,并且带有 $\frac{1}{8}$ 的小常数,可以通过此题。

C 不和谐因素

C.1 30 pts

我会 DP! 直接记 f_i 表示以 i 结尾的最长上升长度,暴力转移即可

C.2 100 pts

我会分治! 分治转移,每层左半部分向右半部分转移 f_i 即可

算法1

枚举所有的 a,b,c, 复杂度 $\Theta\left(P^{3}\right)$, 可以过subtask1, 期望得分 30。

算法2

可以逆推得到 N_2 的所有取值及对应的 C, 然后可以得到所有 N_1 的取值及对应的 a, 对每个 N_1 的取值可以二分出所有合法的 N_2 的个数及求对应的方案。 复杂度 $\Theta\left(P^2\lg P\right)$, 可以过 subtask1,2, 期望得分65。

算法3

 $\lfloor N_2/c \rfloor imes c + N_3 = N_2$,发现求 N_1 的取值同算法 2。 $\sum_{c=1}^P \lfloor P/c \rfloor = O(P\lg P)$,因此可以枚举 c 的值和 $\lfloor N_2/c \rfloor$ 的值来得到 N_2 ,且只有 $O(P\lg P)$ 中取值。 然后可以用二分或者前缀和来得到合法的 b 。时间复杂度 $O(P\lg P)$

期望得分 100。