Exercise 7.1 More properties of linear codes (all)

Show the following properties of a (binary) linear [n, k]-code C.

a.) The minimal distance d(C) is the minimal Hamming weight of all (non-zero) codewords.

Solution: For a binary linear [n,k]-code C, for any $c,c'\in C$, we have $x=c\oplus c'\in C$. Minimal distance:

$$\begin{split} d(C) &= \min_{c,c' \in C, c \neq c'} \delta(c,c') = \min_{c,c' \in C, c \neq c'} |\{i : c_i \neq c_i'\}| \\ &= \min_{c,c' \in C, c \neq c'} |\{i : c_i \oplus c_i' = 1\}| = \min_{x \in C, x \text{ non-zero}} |\{i : x_i \neq 0\}|. \end{split}$$

Thus, the minimal distance is the minimal Hamming weight of all non-zero codewords.

b.) If H is the parity check matrix of C, then d(C) equals the number of columns of H that are linearly dependent.

Solution: Let $H = [h_1^T, \dots, h_n^T] \in \{0, 1\}^{(n-k) \times n}$, where $h_i^T \in \{0, 1\}^{(n-k) \times 1}$. Let $c = [c_1, \dots, c_n]^T$ be the codeword with minimal Hamming weight. Since H is the parity check matrix of C, then

$$0 = Hc = \sum_{i=1}^{n} h_i^T c_i = \sum_{i:c_i \neq 0}^{n} h_i^T = 0.$$

Thus, d(C) is the number of columns of H that are linearly dependent.

c.) Prove that (after permuting the coordinates if necessary) C has a generator matrix of the form $G = [I_k \ G']^T$ where I_k is the $k \times k$ identity matrix, and where G' is some $k \times (n-k)$ matrix.

Solution: Since k is the minimal number of codewords needed for a basis and k columns of generator matrix $G \in \{0,1\}^{n \times k}$ span C, then G must contain a $k \times k$ identity matrix I_k . Then by permuting the columns of G, we can always write the generating matrix as

$$G = \left[\begin{array}{c} I_k \\ G' \end{array} \right].$$

Exercise 7.2 Modified linear codes (all)

Some of the following operations on rows or columns of the generator matrix G or the parity-check matrix H may decrease the minimum distance of a linear block code? Which of the operations below can cause a reduction in the minimum weight? **Note:** Here G is a $n \times k$ matrix.

a.) Exchanging two rows of G.

Solution: No.

b.) Exchanging two rows of H.

Solution: No.

c.) Exchanging two columns of G.

Solution: No.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	ო	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9
	6 1 8 4 7 9	6 7 1 9 8 5 4 2 7 1 9 6 2 8	6 7 2 1 9 8 8 5 9 4 2 6 7 1 3 9 6 1 2 8 7	6 7 2 1 1 9 8 3 8 5 9 7 4 2 6 8 7 1 3 9 9 6 1 5 2 8 7 4	6 7 2 1 9 1 9 8 3 4 8 5 9 7 6 4 2 6 8 5 7 1 3 9 2 9 6 1 5 3 2 8 7 4 1	6 7 2 1 9 5 1 9 8 3 4 2 8 5 9 7 6 1 4 2 6 8 5 3 7 1 3 9 2 4 9 6 1 5 3 7 2 8 7 4 1 9	6 7 2 1 9 5 3 1 9 8 3 4 2 5 8 5 9 7 6 1 4 4 2 6 8 5 3 7 7 1 3 9 2 4 8 9 6 1 5 3 7 2 2 8 7 4 1 9 6	6 7 2 1 9 5 3 4 1 9 8 3 4 2 5 6 8 5 9 7 6 1 4 2 4 2 6 8 5 3 7 9 7 1 3 9 2 4 8 5 9 6 1 5 3 7 2 8 2 8 7 4 1 9 6 3

Figure 1: A typical Sudoku and its solution (from Wikipedia)

d.) Exchanging two columns of H.

Solution: No.

e.) Deleting a row of G.

Solution: Yes. Since the length n of the codeword is shortened and the minimum weight $d \le n - k + 1$.

f.) Deleting a row of H.

Solution: Yes, n is unchanged but n-k is reduced and thus k increases. This may cause a reduction in d.

g.) Deleting a column of G and the corresponding column of H.

Solution: Not valid. After deleting a column of G and H, they cannot yield a valid code.

h.) Adding a column to G and a corresponding column to H.

Solution: Adding a column to G means will make G become a $n \times (k+1)$ matrix. Adding a corresponding column to H will make H become a $(n-k) \times (n+1)$ matrix. This cannot yield a valid code.

i.) Adding one column of H to another column of H.

Solution: Yes. From Problem (b) in Exercise 6.2, for example, we have a code such that d(C) = 3, $h_1^T + h_2^T + h_3^T = \mathbf{0}$ and h_2^T, h_3^T are linearly independent. If we add h_3^T to h_2^T and denote the new column 2 as \tilde{h}_2^T , then $\tilde{h}_2^T - h_3^T = 0$ and the new code C' may have minimum distance d(C') less or equal to 2.

Exercise 7.3 Sudoku and the belief propagation algorithm (all)

Sudoku is a classical mathematical puzzle in which a player is asked to fill in missing numbers in a 9×9 array where each of the nine rows, nine columns, and nine 3×3 sub-arrays consists of numbers $\{1, \ldots, 9\}$. An example is given in Figure 1.

a.) Denote the configuration of a Sudoku by $\{x_{i,j}\}_{i,j}$ where, for each $(i,j) \in \{1,\ldots,9\}^2$, $x_{i,j} \in \{1,\ldots,9\}$ is the number at the (i,j)-th location. Define the function $g:\{1,\ldots,9\}^{81} \to \{0,1\}$ as

$$g(x_{i,j}:i,j\in\{1,\ldots,9\}) = \begin{cases} 1 & \text{if } \{x_{i,j}\}_{i,j} \text{ composes a valid Sudoku} \\ 0 & \text{otherwise} \end{cases}.$$

Represent g as a factorization of f over different arguments, where $f:(x_1,\ldots,x_9)\mapsto 1\{\{x_1,\ldots,x_9\}=\{1,\ldots,9\}\}.$

Solution:

$$g(\boldsymbol{x}) = \prod_{a=1}^{9} f(x_{a,j} : j \in \{1, \dots, 9\}) \cdot \prod_{b=1}^{9} f(x_{i,b} : i \in \{1, \dots, 9\})$$
$$\cdot \prod_{c_1=0}^{2} \prod_{c_2=0}^{2} f(x_{i,j} : i \in \{3c_1+1, \dots, 2c_1+3\}, j \in \{3c_2+1, \dots, 3c_2+3\}).$$

b.) Draw the factor graph corresponding to the factorization in a.).

Solution:

c.) Suppose $\{x_{i,j}\}_{(i,j)\in\mathcal{A}}$ is known as the initial condition of the Sudoku, where \mathcal{A} is a proper subset of $\{1,\ldots,9\}^2$. One could use the belief propagation algorithm to estimate the remaining positions. To do so, a partially finished MATLAB program has been provided. Please fill in the gaps in the program and run the program to solve the embedded Sudoku.

Solution: Please refer to the file 'Sudoku sol.m'.