Active Learning: Definition and Concepts

The main hypothesis in active learning is that if a learning algorithm can choose the data it wants to learn from, it can perform better than traditional methods with substantially less data for training.

Scenarios

Pool-Based sampling

Membership Query Synthesis

Stream-Based Selective Sampling

Query Strategies

Instances	Label A	Label B	Label C
d_1	0.9	0.09	0.01
d_2	0.2	0.5	0.3

- Least Confidence (LC)
- Margin Sampling
- Entropy Sampling

Least Confidence: difference between the most confident prediction and 100% confidence

Margin of Confidence: difference between the top two most confident predictions

Entropy: difference between all predictions, as defined by information theory

Active learning process

Procedure: Active Learning Process

Input: initial small training set L, and pool of unlabeled data set U

Use L to train the initial classifier C

Repeat

- Use the current classifier C to label all unlabeled examples in U
- Use uncertainty sampling technique to select m² most informative unlabeled examples, and ask oracle H for labeling
- Augment L with these m new examples, and remove them from U
- Use L to retrain the current classifier C

Until the predefined stopping criterion SC is met.

Refrences

- https://www.datacamp.com/community/tutorials/active-learning
- https://www.aclweb.org/anthology/C08-1143
- http://robertmunro.com/Uncertainty_Sampling_Cheatsheet_PyTorch.pdf