Parking Space Status Inference upon a Deep CNN and

Multi-task Contrastive Network with Spatial Transform

黃敬群 Ching-Chun Huang

Hoang Tran Vu and Ching-Chun Huang

IEEE Transactions on Circuits and Systems for Video Technology

Goal

 Introducing a CNN-based deep learning framework for parking space detection system

Challenges

Challenges

• Difference of space size

Occlusion problem becomes severer

Parking displacement becomes uncontrollable

Small size Medium size Large size

Proposed method

- Three main parts:
 - Spatial Transformer network (STN)
 - Contrastive Feature Extraction Network (CFEN)
 - Status Inference Layer

3-space as an input unit

3-space as an input unit

Spatial Transformer network

- Reducing the variations from perspective distortion, parking displacement, and vehicle size.
 - Using a spatial transformer network (STN) [25]

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = T_{\theta}(G_i) = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

 (x^s, y^s) : the source coordinate in the input image T_θ : 2D affine transformation (6 parameters) (x^t, y^t) : the target coordinate in the transformed image

[25] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu, "Spatial transformer networks," in Advances in Neural Information Processing Systems, pages 2017–2025, 2015.

Results and Discussions

Transformed Patches based on Different Network Structures:

- Red boxes: false detection

- Green boxes: correct detection

- The true status of the target space: "V" is vacant and "O" is

occupied.

	Input Patch	CNN-STN ₂	CNN-STN ₈	Our method		
(a) "O"	W. B.		BE 1	No		
(b) "O"				The second second		
(c) "V"						

Contrastive Feature Extraction Network

• Solving the inter-occlusion/lighting problem.

Designing a CNN-based deep learning network to learn the occlusion

pattern within the transformed patch.

Contrastive Feature Extraction Network

- This network is designed with the following properties.
 - Being determined by many stages separated by a pooling layer.
 - down-sampling the input image to a small size before applying fully connected layers for classification.
 - Increasing the number of kernels in the later layers
 - Applying FC layers to reduce the feature dimension

Inference layer

- Inferring the status of the considered space.
 - Building a 2- class logistic regression model on the top of CFEN.

$$L_S(W_F, W_\theta, W_C | \{X_t, H\}) = -\frac{1}{N} \sum_{n=1}^N [y_n \log(S_n^1) + (1 - y_n) \log(S_n^0)].$$

 W_C : inference layer parameters.

N : sample number.

 y_n : the label of the middle space of the n^{th} 3-space unit.

 S_n^1 and S_n^0 : the occupied and vacant probabilities of the middle space.

Results and Discussions

Evaluation under Different Parking Space Sizes

Table VI. The Performance of Status Inference under Different Space Sizes

	ACC (%)			FPR (%)			FNR (%)		
Space Size	S	M	L	S	M	L	S	M	L
Huang's work [17]	98.44	99.61	99.69	1.28	0.5	0.40	1.73	0.31	0.25
CNN ₂	96.78	98.26	99.00	6.66	1.7	1.12	1.36	1.78	0.91
CNN ₈	98.71	99.53	99.82	1.29	0.64	0.17	1.29	0.28	0.20
Our method	99.68	99.74	99.87	0.24	0.39	0.14	0.37	0.12	0.13

Huang's work [17]: IEEE TCSVT 2016

 CNN_2 : $CNN(considered space) + <math>L_2(.)$

 CNN_8 : $CNN(three spaces) + L_2(.)$

Results and Discussions

• The real-time camera view and detection results.

Demo Time: 08:00 ~ 17:15 【GMT+0800 (Taipei Standard Time)】

Real Time Parking System Demo