

План

Ансамбли алгоритмов: примеры и обоснование (статистическое, вычислительное, функциональное)

Повышение разнообразия в ансамблях

Комитеты (голосование, Voting Ensembles), усреднение

Бэгинг (Bagging)

Пэстинг (Pasting)

Случайные подпространства (Random Subspaces)

Случайные патчи (Random Patches)

Cross-Validated Committees

Стекинг (Stacking)

Блендинг (Blending)

Ансамбль алгоритмов (Ensemble / Multiple Classifier System)

 алгоритм, который состоит из нескольких алгоритмов машинного обучения (базовых алгоритмов – base learners)

простой ансамбль в регрессии:

$$a(x) = \frac{1}{n} \left(b_1(x) + \ldots + b_n(x) \right)$$

простой ансамбль в классификации:

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитет большинства

В чём может быть усложнение?

Ансамбль алгоритмов

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм (meta-estimator),

 $b_{\scriptscriptstyle i}$ – базовые алгоритмы (base learners)

в бустинге - слабые (weak)

Реализация в scikit-learn

sklearn.ensemble.VotingClassifier

estimators	Список базовых алгоритмов	
voting="hard"	Голосование по меткам или усреднение вероятностей	
weights=None	Beca	
n_jobs=None	« number of jobs»	
flatten_transform=True	Формат ответа (для soft-ансамбля)	

есть ещё ensemble.VotingRegressor

Ошибка суммы регрессоров: теоретическое обоснование

Если ответы регрессоров на объекте – независимые случайные величины с одинаковым матожиданием и дисперсией

$$\xi = \frac{1}{n} (\xi_1 + \dots + \xi_n)$$

$$E\xi = \frac{1}{n} (E\xi_1 + \dots + E\xi_n) = E\xi_i$$

$$\mathbf{D}\xi = \frac{1}{n^2} (\mathbf{D}\xi_1 + \dots + \mathbf{D}\xi_n) = \frac{\mathbf{D}\xi_i}{n}$$

ДЗ А если есть корреляция между базовыми алгоритмами?

решите в постановке, что корреляция между любыми двумя алгоритмами равна ho

Ошибка комитета большинства: теоретическое обоснование

Пусть три (независимых) классификатора на два класса с вероятностью ошибки $\, {\cal D} \,$

Пусть верный ответ - 0

$$egin{array}{lll} (0,0,0) & (1-p)(1-p)(1-p) \ (1,0,0) & p(1-p)(1-p) \ (0,1,0) & (1-p)p(1-p) \ (0,0,1) & (1-p)(1-p)p \ \end{array}$$
 верный ответ $(1,1,1) & ppp \ (1,1,0) & pp(1-p) \ \end{array}$

(0,1,1) (1-p)pp

(1,0,1) p(1-p)p

ошибка

вероятность ошибки

$$p^3 + 3(1-p)p^2 = p^2(3-2p)$$

Ошибка комитета большинства

При малых $\,p\,$ ошибка комитета очень мала!

При p = 0.2 – почти в два раза меньше

Ошибка комитета большинства

Общий случай:

$$\sum_{t=0}^{\lfloor n/2 \rfloor} C_n^t (1-p)^t p^{n-t} \le e^{-\frac{1}{2}n(2p-1)^2}$$

неравенство Хёфдинга (Hoeffding)

Ошибка экспоненциально снижается с увеличением числа базовых алгоритмов... но это в теории

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

- Решают одну задачу
- Настраиваются на один целевой вектор
- Могут быть из одной модели (ну, 2-3 разных)!

Выход

Пытаться делать алгоритмы разнообразными

Пусть алгоритмы ошибаются, но по-разному: ошибки одних компенсируются правильными ответами других

Пример: подвыборки и подмножества признаков в RF

Ещё почему алгоритмы в ансамбле должны быть разными

одинаковые	похожие	разные
1111110000 q=0.6	1111110000 q=0.6	1010010111
1111110000 q=0.6	1111101000 q=0.6	1100110011
1111110000 q=0.6	1111100100 q=0.6	1111110000
		1110110011
$q_{ens} = 0.6$	q_ens = 0.5	$q_{ens} = 0.7$

Выход

Пытаться делать алгоритмы разнообразными

Пусть алгоритмы ошибаются, но по-разному: ошибки одних компенсируются правильными ответами других

Пример: подвыборки и подмножества признаков в RF

Ещё почему алгоритмы в ансамбле должны быть разными

одинаковые	похожие	разные
1111110000 q=0.6	1110111000 q=0.6	1010010111
1111110000 q=0.6	1101110100 q=0.6	1100110011
1111110000 q=0.6	1011101100 q=0.6	1111110000
		1110110011
q_ens = 0.6	q_ens = 0.8	$q_{ens} = 0.7$

ДЗ Честный эксперимент, оценивающий зависимость качество (разнообразие)

Повышения разнообразия – что «варьируют»

• обучающую выборку

(бэгинг)

• признаки

(Random Subspaces)

• целевой вектор

(ECOC, f(y))

• модели

(стекинг)

• алгоритмы в модели

(разные гиперпараметры, инициализации, snapshot, разные random seed в RF, ...)

Варьирование алгоритмов в модели

л/к полиномов разной степени

л/к случайных лесов с разной глубиной

л/к НС с разной инициализацией / после разных эпох

Обоснования применения ансамблей

Статистическое (Statistical)

Вычислительное (Computational)

Функциональное (Representational)

- ошибка может быть меньше
- обучение = оптимизация функции, а ансамбль «распараллеливает» процесс
- можно представить функции, которые нельзя было с помощью базовых алгоритмов

Ансамбли

• комитеты (голосование) / усреднение

в том числе, различные усреднения, с предварительной деформацией, калибровкой, бэгинг (bagging) + обобщения (RF)

• перекодировки ответа

кодирование целевого вектора,

ECOC (error-correcting output coding)

• стекинг (stacking)

построение метапризнаков — ответов алгоритмов на объектах выборки, обучение на них мета-алгоритма

• бустинг (boosting)

построение суммы алгоритмов: каждое следующее

слагаемое строится с учётом ошибок предыдущих

• «ручные методы»

эвристические способы комбинирования ответов базовых алгоритмов

• однородные ансамбли

рекурсия в формуле мета-алгоритм(базовые) + общая схема оптимизации (пример: нейросети)

Комитеты (голосование, Voting Ensembles)

голосование по большинству (Majority vote)

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитеты единогласия

в бинарной задаче классификации – $a(x) = \min(b_1(x),...,b_n(x))$

обнаружение аномалий:

мата-алгоритм - максимум

«тревога при малейшем подозрении»

$$a(x) = \max(b_1(x), \dots, b_n(x))$$

Усреднение

«среднее арифметическое»

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

+ любые другие средние (ех: по Колмогорову)

$$a(x) = \frac{1}{n} f^{-1} (f(b_1(x)) + \dots + f(b_n(x)))$$

Ранговое усреднение (Rank Averaging)

$$a(x) = \frac{1}{n} \left(\operatorname{rank}(b_1(x)) + \dots + \operatorname{rank}(b_n(x)) \right)$$

ориентировано на конкретный AUC ROC

Усреднение с весами (weighted averaging)

Усреднение (регрессия)

Голосование (классификация)

$$a(x) = \frac{1}{w_1 + \dots + w_n} \left(w_1 \cdot b_1(x) + \dots + w_n \cdot b_n(x) \right)$$

$$a(x) = \arg \max_{j} \left[\sum_{t: b_t(x) = j} w_t \right]$$

Feature-Weighted Linear Stacking

Области компетентности алгоритмов – линейные регресии

$$a(x) = w_1(x) \cdot b_1(x) + ... + w_n(x) \cdot b_n(x) =$$

$$= \sum_{t} \left(\sum_{i} w_{ti} x_{[i]} \right) b_{t}(x) = \sum_{t,i} w_{ti} x_{[i]} b_{t}(x)$$

Бэгинг (Bagging) – bootstrap aggregating

каждый базовый алгоритм настраивается на случайной подвыборке обучения

Бэгинг (Bagging)	подвыборка обучающей выборки берётся с помощью бутстрепа
Пэстинг (Pasting)	случайная обучающая подвыборка
Случайные подпространства (Random Subspaces)	случайное подмножество признаков
Случайные патчи (Random Patches)	одновременно берём случайное подмножество объектов и признаков
Cross-Validated Committees	k обучений на (k-1)-м фолде

Бэгинг (Bagging)

- 1. Цикл по t (номер базового алгоритма)
 - 1.1. Взять подвыборку [X',y'] обучающей выборки [X,y]
 - 1.2. Обучить t-й базовый алгоритм на этой подвыборке:

$$b_t = \operatorname{fit}(X', y')$$

2. Ансамбль

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

(для задач регрессии).

Каждый базовый алгоритм обучается ~ на 63% данных, остальные называются – out-of-bag-наблюдениями (ООВ)

$$1 - \frac{1}{e} \approx 0.632$$

~ процедура снижения variance в статистическом обучении

OOB-prediction

На ООВ-части выборки можно получить ответы алгоритма Пусть на і-й итерации это часть: OOB_i и мы построили алгоритм b_i

ООВ-ответы бэгинга (ООВ-prediction)

$$a_{\text{OOB}}(x_j) = \frac{1}{|\{i : x_j \in \text{OOB}_i\}|} \sum_{i: x_j \in \text{OOB}_i} b_i(x_j)$$

Можно вычислить ООВ-ошибку бэгинга

хорошая оценка ошибки на тесте похожа на CV-ошибку...

Д/З Сравнить ООВ-ошибку и ошибку на ООВ-ответе (экспериментально)

Особенности ансамблирования

Не всегда получается «как было задумано»...

model.fit(X, y)

класс 1

класс 0

Устойчивость модели (stable learners)

Разброс (variance) показывает изменение алгоритма из модели при незначительном изменении обучающей выборки

high variance	low variance
CART	SVM
1NN	kNN, k>>1

В бэгинге используются неустойчивые модели, но несмещённые (small bias)!

Но тут нет хороших теоретических результатов...

Устойчивость модели (stable learners)

Пример – если выбрать правильную базовую модель для бэгинга

здесь - kNN(1)

Реализация в scikit-learn

sklearn.ensemble.BaggingClassifier

base_estimator	Базовая модель
n_estimators=10	Число алгоритмов в ансамбле
max_samples=1.0	Размер подобучения (доля или число)
max_features=1.0	Число / доля признаков для обучения базового алгоритма
bootstrap=True	Выбирать ли подобучение с возвращением
bootstrap_features=False	Аналогичная опция для признаков
oob_score=False	Вычислять ли ООВ-ошибку
warm_start=False	Использовать ли в качестве начальных приближений старые
	веса

n jobs=None, random state=None, verbose=0

есть ещё ensemble.BaggingRegressor

Примеры бэгинга

одно дерево

ближайший сосед

Александр Дьяконов (dyakonov.org)

бэгинг 100 деревьев

бэгинг 100 ближайших соседей

Идеи из бэгинга, RS и т.п. на практике

Часто признаки делятся / можно разделить на группы:

- по источнику данных (БКИ1, БКИ2, ...)
- по типу признака (вещественный, категориальный, ...)
- по кодированию (OHE, hash, label, ...)
- по способу агрегирования (PCA, t-SNE, кластеризация,...)

Иногда объекты:

- по источнику данных
- по времени
- по значениям каких-то признаков (в том числе по кластерам)
- эти деления можно использовать при формировании подвыборок...

как?

Случайный лес (Random Forest)

дальнейшие улучшения независимости базовых классификаторов

бэгинг + случайности при построении деревьев

отдельная лекция

Стекинг (stacking)

Идея: хорошо усреднять алгоритмы, но почему именно усреднять?приходит в голову всем...

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм, который нужно отдельно настроить!

Д. Волпертом, автором серии теорем «No free lunch...» в 1992 году

Стекинг (stacking)

Используем ответы алгоритмов как признаки для нового мета-алгоритма машинного обучения

уже есть реализация в scikit-learn!

Наивная форма стекинга

что здесь неправильно?

Наивная форма стекинга

Наивная форма стекинга

происходит переобучение

базовый алгоритм на обучении воспроизводит истинные метки, метаалгоритм ему доверят... но на тесте он уже не знает правильных меток

Блендинг (Blending) – простейшая форма стекинга

Блендинг

– термин введён победителями конкурса Netflix

Сейчас блендингом называются простейшие формы стекинга, например, выпуклую комбинацию алгоримтов

Недостатки

Используется не вся обучающая выборка

- можно усреднить несколько блендингов
- можно «состыковать»
- долго и не всегда лучше по качеству
- ответы всё равно надо будет усреднить

Блендинг: усреднение ответов

Блендинг: состыковка таблиц

ещё можно усреднить значения мета-признаков на тесте

но это меняет распределения

Настройка параметров блендинга

задача Boosters

Стекинг – хотим использовать всю обучающую выборку

м.б. разные разбиения на фолды и усреднить ответы базовых алгоритмов или стекингов

Стекинг – хотим использовать всю обучающую выборку

получаем k-Fold-методом все метапризнаки (используем все базовые алгоритмы) обучаем мета-алгоритм

Стекинг – другой способ получения метапризнаков на контроле

Стекинг

также можно брать разные разбиения и усреднять

Недостаток

Метапризнаки на обучении и тесте разные!

- регуляризация
- нормальный шум к метапризнакам

ДЗ Реализовать и сравнить разные виды стекинга

Стекинг

На данных реальной задачи mlbootcamp

Использование признаков с мета-признаками

можно добавлять результаты обучения без учителя...

Геометрия стекинга

Геометрия стекинга

Стекинг vs Блендинг

Результаты очень похожи...

Стекинг

- Нужны достаточно большие выборки
- Заточен на работу алгоритмов разной природы

Но для каждого м.б. своё признаковое пространство

• Хорош на практике (бизнес-задачи)

Пример: регрессоры + RF = устойчивость к аномальным значениям признаков

• Метаалгоритм должен минимизировать целевую функцию

He всё так просто... log_regs + log_reg может не справится с Log_loss

• Многоуровневый стекинг

Оправдан только в спортивном анализе данных

Стекинг

• Пространство метапризнаков удобнее признакового, но признаки сильно коррелированны

Но нет хорошей теории на эту тему

- используют, как правило, регрессоры базовые алгоритмы не сильно оптимизируют,
- настраиваются не на целевой признак
 (на его квадрат, на разницу между каким-то признаком и целевым),
- используют модели ориентированные на разные функционалы качества,
- пополняют множество базовых алгоритмов алгоритмами, которые решают другую
 задачу (например кластеризаторами)
 - Появляются дополнительные гиперпараметры количество фолдов, уровень шума

Минутка кода: стекинг

```
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.model selection import train test split
from sklearn.model selection import cross val predict
class DjStacking(BaseEstimator, ClassifierMixin):
    """Стэкинг моделей scikit-learn"""
    def __init__(self, models, ens_model):
        Инициализация
        models - базовые модели для стекинга
        ens model - мета-модель
        11 11 11
        self.models = models
        self.ens model = ens model
        self.n = len(models)
        self.valid = None
```

https://github.com/Dyakonov/ml_hacks/blob/master/dj_stacking.ipynb

```
def fit(self, X, y=None, p=0.25, cv=3, err=0.001, random state=None):
                                                          cv (при p=0) - сколько фолдов использовать
        Обучение стекинга
       р - в каком отношении делить на обучение / тест err (при p=0) - случайная добавка к метапризнакам
            если р = 0 - используем всё обучение!
                                                         random state - инициализация генератора
        77 77 77
        if (p > 0): # делим на обучение и тест
            # разбиение на обучение моделей и метамодели
            train, valid, y_train, y_valid = train_test_split(X, y, test_size=p, random_state=random_state)
            self.valid = np.zeros((valid.shape[0], self.n)) # заполнение матрицы для обучения метамодели
            for t, clf in enumerate(self.models):
                clf.fit(train, y train)
                self.valid[:, t] = clf.predict(valid)
            self.ens model.fit(self.valid, y valid)
                                                           # обучение метамодели
        else: # используем всё обучение
            self.valid = err*np.random.randn(X.shape[0], self.n) # для регуляризации - берём случ. добавки
            for t, clf in enumerate(self.models):
                # это oob-ответы алгоритмов
                self.valid[:, t] += cross val predict(clf, X, y, cv=cv, n jobs=-1, method='predict')
                clf.fit(X, y) # но сам алгоритм надо настроить
            self.ens model.fit(self.valid, у) # обучение метамодели
        return self
```

Простейший стекинг – кодирование категорий

mean-target-encoding

J

использование байесовского алгоритма для формирования мета-признака

ECOC = Error-Correcting Output Code

Пусть есть задача с L классами, а у нас классификаторы на 2 класса

1. One-vs-All – каждый класс отделяем от остальных

$$0 - 1000$$

$$1 - 0100$$

$$2 - 0010$$

$$3 - 0001$$

можно по тах вероятности среди 4х вероятностей принадлежности к 4м классам

2. One-vs-One - попарно классы друг от друга

$$2 - -0 - 0 - 1$$

$$3 - --0-00$$

прочерк – объекты соответствующего класса не участвуют в задаче можно сложить вероятности принадлежности к классам для каждого класса и по тах

ECOC

3. Допустима произвольная кодировка классов:

0 - 00

1 - 01

2 - 10

3 - 11

это минимальная кодировка, но тут высока цена ошибки бинарного классификатора

4. В том числе, с помощью ЕСОС

0 - 000111

1 - 011100

2 - 101010

3 - 110001

Бустинг

Главная идея – базовые алгоритмы строятся не независимо, каждый следующий мы строим так, чтобы он исправлял ошибки предыдущих и повышал качество всего ансамбля

Основной принцип реализации бустинга – Forward stagewise additive modeling (FSAM)

Основной принцип реализации бустинга – Forward stagewise additive modeling (FSAM)

Задача регрессии –
$$(x_i, y_i)_{i=1}^m$$

функция ошибки – L(y,a)

уже есть алгоритм a(x), строим b(x):

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

т.е. в идеале

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}.$$

Бустинг: Forward stagewise additive modeling (FSAM)

- **0.** Начать с $a_0(x) \equiv 0$
- 1. Цикл

$$(b,\eta) = \underset{b,\eta}{\arg\min} \sum_{i=1}^{m} L(y_i, a_{k-1}(x_i) + \eta b(x_i))$$

$$a_k = a_{k-1} + \eta b$$

Пример: L₂-бустинг

$$\eta = 1, L(y,a) = (y-a)^{2}$$

$$\sum_{i=1}^{m} (y_{i} - a_{k-1}(x_{i}) - b(x_{i}))^{2} \to \min$$

тут м.б. обычная регрессия

градиентный бустинг – отдельная лекция...

AdaBoost: постановка задачи

– FSAM для бинарной задачи классификации $Y = \{+1, -1\}$ базовые классификаторы генерируют классы $b(x) \in \{+1, -1\}$

Ансамбль

$$a(x) = \operatorname{sgn}\left(\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

exponential loss

$$L(y,a) = \exp(s) = \exp(-y \sum_{j=1}^{s} \alpha_j b_j(x))$$

заметим, что

$$I[y \neq a] \leq \exp(y, a)$$

AdaBoost: весовая схема

У каждого объекта – вес (распределение!)

$$W = (w_1, \dots, w_m) \ge 0$$

$$\sum_{t=1}^m w_t = 1$$

Взвешенное число ошибок:

$$e_{W}(a) = \sum_{t: a(x_{t}) \neq y(x_{t})} w_{t} = \sum_{t=1}^{m} w_{t} I[a(x_{t}) \neq y(x_{t})]$$

«ошибка, порождённая распределением»

(формально не имеет общего с экспоненциальной ошибкой, но мы используем в оценке)

AdaBoost: алгоритм

Цикл

- перевзвешиваем выборку
 (чем больше ошибок раньше на объекте, тем больше вес)
- о обучаем новый слабый (weak) классификатор на взвешенной выборке
- о добавляем классификатор в ансамблы

уменьшается смещение, т.к. фокусируемся на «плохо классифицируемых» объектах

AdaBoost: алгоритм

- 0. Зададим начальное вероятностное распределение (веса)
- 1. Цикл по j от 1 до s 1.1. Построить классификатор b_j , который допускает ошибку $e_{\scriptscriptstyle W}(b_{\scriptscriptstyle i})$

1.2. Пусть
$$\alpha_j = \frac{1}{2} \ln \left(\frac{1 - e_W(b_j)}{e_W(b_j)} \right)$$

«перестроить» распределение

$$W = (w_1, \dots, w_m)$$
:

$$W = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$$

(вычисляется по распределению W) предполагаем, что $0 < e_W(b_i) < 0.5$

$$w_{t} \leftarrow \frac{w_{t} \exp(-\alpha_{j} y(x_{t}) b_{j}(x_{t}))}{\sum_{i=1}^{m} w_{i} \exp(-\alpha_{j} y(x_{i}) b_{j}(x_{i}))}$$
+ нормировка

вариант: перенастраивать веса только объектов, на которых ошибки...

Напомним, что экспоненциальная ошибка:

$$L(y, a(x)) = \exp\left(-y\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

Число ошибок оценивается так:

$$\sum_{t=1}^{m} I[y_t \neq a(x_t)] \leq \sum_{t=1}^{m} L(y_t, a(x_t)) = \sum_{t=1}^{m} \exp\left(-y_t \sum_{j=1}^{s-1} \alpha_j b_j(x_t) - y_t \alpha_s b_s(x_t)\right) =$$

$$= \sum_{t=1}^{m} \exp\left(-y_t \sum_{j=1}^{s-1} \alpha_j b_j(x_t)\right) \exp\left(-y_t \alpha_s b_s(x_t)\right) \sim \sum_{t=1}^{m} w_t \exp\left(-y_t \alpha_s b_s(x_t)\right)$$

первый множитель пропорционален весу объекта (с точностью до знаменателя)

Смотрим на формулу пересчёта весов...

$$w_{t} \leftarrow \frac{w_{t} \exp(-\alpha_{j} y(x_{t}) b_{j}(x_{t}))}{\sum_{i=1}^{m} w_{i} \exp(-\alpha_{j} y(x_{i}) b_{j}(x_{i}))}$$

если рекурсивно пересчитать...

$$\sum_{t=1}^{m} w_{t} |_{s=0} \exp(-y_{t} \alpha_{1} b_{1}(x_{t})) ... \exp(-y_{t} \alpha_{s-1} b_{s-1}(x_{t})) \exp(-y_{t} \alpha_{s} b_{s}(x_{t})) =$$

$$\sum_{t=1}^{m} w_{t} |_{s=0} \exp(-y_{t} (\alpha_{1} b_{1}(x_{t}) + ... + \alpha_{s-1} b_{s-1}(x_{t}) + \alpha_{s} b_{s}(x_{t}))) =$$

$$= \sum_{t=1}^{m} \exp(-y_{t} (\alpha_{1} b_{1}(x_{t}) + ... + \alpha_{s-1} b_{s-1}(x_{t}) + \alpha_{s} b_{s}(x_{t})))$$

Получили – после j-й итерации

$$w_t \sim \text{exploss}(y(x_t), a_j(x_t))$$

вес объекта пропорционален ошибке на этом объекте

теперь смотрим на формулу ошибки

$$\sim \sum_{t=1}^{m} w_{t} \exp(-y_{t}\alpha_{s}b_{s}(x_{t}))$$
exploss Ha s-1

exploss Ha s

пересчитываем exploss с учётом модификации ансамбля

это обосновывает предложенный способ пересчёта

$$\sum_{t=1}^{m} w_t \exp(-y_t \alpha_s b_s(x_t)) =$$

$$= \sum_{t:y_t = b_s(x_t)} w_t \exp(-\alpha_s) + \sum_{t:y_t \neq b_s(x_t)} w_t \exp(\alpha_s) =$$

$$= (1 - e) \exp(-\alpha_s) + e \exp(\alpha_s)$$

если хотим найти оптимальный множитель, продифференцируем и приравняем к нулю

$$\alpha_s = \frac{1}{2} \log \frac{1 - e}{e}$$

вот откуда та формула!

зависимость коэффициента от ошибки

если подставить в формулу...

$$\propto (1-e)\exp\left(-\log\sqrt{\frac{1-e}{e}}\right) + e\exp\left(\log\sqrt{\frac{1-e}{e}}\right) =$$

$$= \frac{(1-e)\sqrt{e}}{\sqrt{1-e}} + \frac{e\sqrt{1-e}}{\sqrt{e}} = 2\sqrt{e(1-e)} \le \exp(-2(0.5-e)^2)$$

т.е. верхняя оценка ошибки экспоненциально уменьшается

AdaBoost: пример

в итоге - комбинация классификаторов

Как реализуется минимизация $e_{\scriptscriptstyle W}(b)$

- встроенная весовая минимизация
 - пересэмплирование

AdaBoost: теория

Если на каждом шаге мы можем построить слабый (weak) классификатор:

$$e_{\scriptscriptstyle W}(b_{\scriptscriptstyle j}) \leq 0.5 - arepsilon, \, arepsilon > 0$$
, то ошибка ансамбля

$$a(x) = \operatorname{sgn}\left(\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

на обучении оценивается как

$$\sum_{t=1}^{m} I[a(x_t) \neq y(x_t)] \leq \exp(-2\varepsilon^2 s)$$

т.е. всего лишь из предположения, что слабый классификатор на ${\mathcal E}$ лучше случайного

В чём небольшая некорректность в этой фразе?

Доказательство

Пусть

$$\sum_{t=1}^{m} I[y_t \neq a_s(x_t)] \leq \sum_{t=1}^{m} L(y_t, a_s(x_t)) = \sum_{t=1}^{m} \exp\left(-y_t \sum_{j=1}^{s} \alpha_j b_j(x_t)\right) \equiv Z_s$$

получим оценку на это выражение, представив

$$Z_s = \frac{Z_1}{Z_0} \frac{Z_2}{Z_1} \cdot \dots \cdot \frac{Z_s}{Z_{s-1}}$$

если верно
$$Z_i / Z_{i-1} \le \exp(-2\varepsilon^2)$$
, то утверждение доказано

Доказательство

Действительно,

$$\frac{Z_{s}}{Z_{s-1}} = \frac{\sum_{t=1}^{m} \exp\left(-y_{t} \sum_{j=1}^{s-1} \alpha_{j} b_{j}(x_{t}) - y_{t} \alpha_{s} b_{s}(x_{t})\right)}{\sum_{t=1}^{m} \exp\left(-y_{t} \sum_{j=1}^{s-1} \alpha_{j} b_{j}(x_{t})\right)} = \sum_{t=1}^{m} w_{t} \exp\left(-y_{t} \alpha_{s} b_{s}(x_{t})\right)$$

для последнего выражения уже доказали

$$\leq \exp(-2(0.5-e)^2)$$

AdaBoost: минутка кода

model.fit(X, y)

AdaBoost: недостатки

Бустинг плох, когда есть выбросы.

В приведённом примере бустинг плох над логистической регрессией (над стабильными алгоритмами)!

AdaBoost: переобучение / уменьшение ошибки

иногда ошибка на тесте уменьшается даже после обнуления на обучении

Теория без доказательства

Теорема. Чем больше зазор (margin), тем лучше обобщение.

идея: если большой, то алгоритм можно аппроксимировать простым

Теорема. При бустинге зазор увеличивается.

идея: аналогично, как смотрели на ошибку

Ручные методы ансамблирования

Метод Ефимова

$$f(a_1,a_2)$$

	$a_1 \le 0.1$	$0.1 < a_1 < 0.9$	$a_1 \ge 0.9$
$a_2 \le 0.1$	$\min(a_1, a_2)$	$\min(a_1, a_2)$	$0.55a_1 + 0.45a_2$
$0.1 < a_2 < 0.9$	$0.1a_1 + 0.9a_2$	$mean(a_1, a_2)$	$0.9a_1 + 0.1a_2$
$a_2 \ge 0.9$	$0.75a_1 + 0.25a_2$	$\max(a_1, a_2)$	$\max(a_1, a_2)$

Amazon Employee Access Challenge

Итог: ключевые идеи ансамблирования

1. Объединение ответов разных алгоритмов

усреднение / голосование / стекинг ...

2. Повышения разнообразия / независимости базовых алгоритмов

«варьирование» признаков, объектов, моделей, в модели и т.п. Использование подвыборок / весов

3. Ансамблирование: параллельное и последовательное

Parallel ensembles – все алгоритмы строятся независимо Идея: усреднить (high complexity, low bias)-модели, для снижения variance

Sequential ensembles – алгоритмы строятся последовательно

Общая классификация главных мета-алгоритмов

	разброс (model's variance)	смещение (model's bias)	функциональная выразимость	основа техники
Bagging	уменьшает			bootstrap
«среднее»	уменьшает			bootstiap
Boosting				
«взвешенное		уменьшает	(увеличивает)	градиентный спуск
среднее»				(сейчас)
Stacking	(20000000000000000000000000000000000000	(уменьшает)	увеличивает	суперпозиция
Мета-алгоритм	(уменьшает)			алгоритмов

Некоторые библиотеки

ML-Ensemble http://ml-ensemble.com/ General ensemble learning

mlxtend http://rasbt.github.io/mlxtend/ Regression and Classification ensembles

H20 http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
Distributed stacked ensemble learning. Limited to estimators in the H20 library

Литература

Статья про ансамбли

Dietterich, T. G. (2000). «Ensemble Methods in Machine Learning» // First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science (pp. 1-15). New York: Springer Verlag.

Предложен Feature-Weighted Linear Stacking

Sill, J.; Takacs, G.; Mackey, L.; Lin, D. (2009). «Feature-Weighted Linear Stacking». arXiv:0911.0460.

Бэгинг и аналогичные идеи:

- L. Breiman, Pasting small votes for classification in large databases and on-line, Machine Learning, 36(1), 85-103, 1999.
 - L. Breiman, Bagging predictors, Machine Learning, 24(2), 123-140, 1996.
- T. Ho, The random subspace method for constructing decision forests, Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998.
- G. Louppe and P. Geurts, Ensembles on Random Patches, Machine Learning and Knowledge Discovery in Databases, 346-361, 2012.

Ансамбли в машинном обучении

https://dyakonov.org/2019/04/19/ансамбли-в-машинном-обучении/

Стекинг (Stacking) и блендинг (Blending)

https://dyakonov.org/2017/03/10/стекинг-stacking-и-блендинг-blending/

AdaBoost – немного другой вывод:

http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/slides/lec09-slides.pdf