

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Doctorado en Modelación Matemática

00029

PROGRAMA DE ESTUDIOS

NOMBRE DE I	SIGNATURA
	Ecuaciones diferenciales parciales

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	292902	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento de las ecuaciones diferenciales parciales, para utilizarlas en la elaboración de modelos relacionados con problemas de calor, onda, y potencial. Desarrollar la habilidad y aptitud del estudiante para dar solución analítica a estos problemas, haciendo énfasis en la interpretación de los resultados en forma geométrica y física.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Definiciones básicas.
- 1.2 Sistemas de ecuaciones diferenciales parciales.
- 1.3. Problemas bien planteados, soluciones clásicas.
- 1.4. Soluciones débiles y regularidad.

2. Ecuaciones en derivadas parciales de primer orden

- 2.1. Interpretación geométrica de la solución general y particular.
- 2.2. El problema de Cauchy para ecuaciones de primer orden.
- 2.3. Ecuaciones homogéneas.
- 2.4. Ecuaciones lineales y casilineales.

3. Ecuaciones diferenciales lineales de segundo orden

- 3.1. EDP de segundo orden con dos variables independientes.
- 3.2. Formas canónicas.
- 3.3. Ecuaciones con coeficientes constantes.
- 3.4. Soluciones generales.

4. Ecuaciones elípticas

- 4.1. Problemas que se reducen a la ecuación de Laplace.
- 4.2. El problema de valores en la frontera: condiciones tipo Dirichlet y tipo Neumann.
- 4.3. Solución fundamental de la ecuación de Laplace y de Poisson.
- 4.4. Fórmulas del valor medio.
- 4.5. Propiedades de las funciones armónicas.
- 4.6. Funciones de Green.
- 4.7. Métodos de energía.

5. Ecuaciones parabólicas

- 5.1. Problemas que se reducen a ecuaciones de tipo parabólico.
- 5.2 La ecuación de transporte.
- 5.3 Problemas de valores iniciales.
- 5.4 Problemas no homogéneos.
- 5.5. Solución fundamental de la ecuación de calor.
- 5.6. Fórmula del valor medio.
- 5.7 Propiedades de las soluciones.
- 5.8. Métodos de energía.
- 5.9. Método de separación de variables.

6. Ecuaciones hiperbólicas

- 6.1. Problemas que se reducen a ecuaciones de tipo hiperbólico
- 6.2. Método de separación de variables
- 6.3. Solución general de la ecuación de onda: el caso acotado y no acotado.
- 6.4. Solución por medias esféricas.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Doctorado en Modelación Matemática

00030

PROGRAMA DE ESTUDIOS

6.5. El problema no homogéneo.

6.6. Métodos de energía.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en el sustento teórico de los resultados y en las aplicaciones de los

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase y el cumplimiento de tareas.

BIBLIOGRAFÍA

Básica:

- 1. Linear Partial Differential Equations for Scientists and Engineers, Tyn Myint-U, Lokenath Debnath, Birkhäuser Boston Basel
- 2. Partial Differential Equations, Lawrence C. Evans, American Mathematical Society, Segunda edición, 2010.
- 3. An Introduction to Partial Differential Equations with MATLAB, Matthew P. Coleman, CRC Press, Taylor and Francis Group, Segunda edición, 2013.

Consulta:

- 1. Partial Differential Equations: An Introduction to Analytical and Numerical Methods, Wolfgang Arendt, Karsten Urban; Springer, 2023.
- 2. Primer curso de ecuaciones en derivadas parciales, Ireneo Peral Alonso, Addison Wesley, Boston- Madrid-Mexico, 1995.
- 3. Partial differential equations, Fritz John, Springer, cuarta edición, 1982.

PERFIL PROFESIONAL DEL DOCENTE

Estudios de Doctorado en Matemáticas o en Matemáticas Aplicadas.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS **DE POSGRADO**

DE POSGRADO

AUTORIZÓ

DR. RAFAEL MARTÍNEZ MARTÍNEZ VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA