CS 305 Lab Tutorial Lab9 DHCP & Packet-Tracer

Dept. Computer Science and Engineering Southern University of Science and Technology

Part A. DHCP

of Science and Technology

- DHCP is built on a Client-Server model
 - server: a host providing initialization parameters through DHCP
 - client: a host requesting initialization parameters from a DHCP server
 - designated DHCP server hosts allocate network addresses and deliver configuration parameters to dynamically configured hosts
- BOOTP is a transport mechanism for a collection of configuration information. BOOTP using port 67 AND 68 of UDP.

DHCP

RFC 2131

234567	8 9 0 1 2 3 4 5 6 7	8 9 0 1 2 3	3 4 5 6 7 8 9 0 1	
op (1)	htype (1)	hlen (1)	hops (1)	
	xid (4	1)		
secs (2)		flags (2)		
	ciaddr	(4)		
	yiaddr	(4)		
	siaddr	(4)		
	giaddr	(4)		
	chaddr	(16)		
	sname	(64)		
	file	(128)		
	options	(variable)		

Dynamic Host Configuration Protocol

Figure	1:	Format	of	a	DHCP	message

FIELD	OCIEI	5 DESCRIPTION
ор	1	Message op code / message type. 1 = BOOTREQUEST, 2 = BOOTREPLY
htype	1	Hardware address type, see ARP section in "Assigned Numbers" RFC; e.g., '1' = 10mb ethernet.
hlen	1	Hardware address length (e.g. '6' for 10mb ethernet).
hops	1	Client sets to zero, optionally used by relay agents when booting via a relay agent.
xid	4	Transaction ID, a random number chosen by the client, used by the client and server to associate messages and responses between a client and a server.
secs	2	Filled in by client, seconds elapsed since client began address acquisition or renewal process.
flags	2	Flags (see figure 2).
ciaddr	4	Client IP address; only filled in if client is in BOUND, RENEW or REBINDING state and can respond to ARP requests.
yiaddr	4	'your' (client) IP address.
siaddr		IP address of next server to use in bootstrap; returned in DHCPOFFER, DHCPACK by server.
giaddr	4	Relay agent IP address, used in booting via a relay agent.
chaddr	16	Client hardware address.
sname	64	Optional server host name, null terminated string.
file	128	Boot file name, null terminated string; "generic" name or null in DHCPDISCOVER, fully qualified directory-path name in DHCPOFFER.
options	var	Optional parameters field. See the options documents for a list of defined options.

DESCRIPTION

FIELD

March 1997

OCTETS

DHCP Session(1)

 Client-Server interaction when allocating a new network address

Source	Destination	Protocol	Inf≎
0.0.0.0	255.255.255.255	DHCP	DHCP Discover - Transaction ID 0x3e5e0ce3
192.168.1.1	255.255.255.255	DHCP	DHCP Offer - Transaction ID 0x3e5e0ce3
0.0.0.0	255.255.255.255	DHCP	DHCP Request - Transaction ID 0x3e5e0ce3
192.168.1.1	255.255.255.255	DHCP	DHCP ACK - Transaction ID 0x3e5e0ce3
192.168.1.101	192.168.1.1	DHCP	DHCP Request - Transaction ID 0x257e55a3
192.168.1.1	255.255.255.255	DHCP	DHCP ACK - Transaction ID 0x257e55a3
192.168.1.101	192.168.1.1	DHCP	DHCP Release - Transaction ID 0xb7a32733

Tips in command line:

While network interface card is set as DHCP client, using 'ipconfig /renew' to request a dynamically assigned IP addresses. using 'ipconfig /release' to release the dynamically assigned IP addresses.

Tips in Wireshark display filter: DHCP or udp.port == 67 || udp.port == 68

Tigure 3: Timeline diagram of messages exchanged between DHCP client and servers when allocating a new network address

DHCP Discover

```
> Frame 2: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits)
> Ethernet II, Src: Dell 4f:36:23 (00:08:74:4f:36:23), Dst: Broadcast (ff:ff:ff:ff:ff)
> Internet Protocol Version 4, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.255.255)
> User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)

    Bootstrap Protocol (Discover)

    Message type: Boot Request (1)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
                                                                           v Option: (53) DHCP Message Type (Discover)
    Hops: 0
                                                                               Length: 1
    Transaction ID: 0x3e5e0ce3
                                                                               DHCP: Discover (1)
    Seconds elapsed: 0

∨ Option: (116) DHCP Auto-Configuration

  > Bootp flags: 0x0000 (Unicast)
                                                                               Length: 1
   Client IP address: 0.0.0.0 (0.0.0.0)
                                                                               DHCP Auto-Configuration: AutoConfigure (1)
    Your (client) IP address: 0.0.0.0 (0.0.0.0)
                                                                           ∨ Option: (61) Client identifier
    Next server IP address: 0.0.0.0 (0.0.0.0)
                                                                               Length: 7
    Relay agent IP address: 0.0.0.0 (0.0.0.0)
                                                                               Hardware type: Ethernet (0x01)
    Client MAC address: Dell 4f:36:23 (00:08:74:4f:36:23)
                                                                               Client MAC address: Dell 4f:36:23 (00:08:74:4f:36:23)
    ∨ Option: (50) Requested IP Address
    Server host name not given
                                                                               Length: 4
    Boot file name not given
                                                                               Requested IP Address: 192.168.1.101 (192.168.1.101)
    Magic cookie: DHCP
    Option: (53) DHCP Message Type (Discover)
                                                                           ∨ Option: (12) Host Name
                                                                               Length: 4
  > Option: (116) DHCP Auto-Configuration
                                                                               Host Name: Noho
  > Option: (61) Client identifier
  > Option: (50) Requested IP Address

∨ Option: (60) Vendor class identifier
                                                                               Length: 8
  > Option: (12) Host Name
                                                                               Vendor class identifier: MSFT 5.0
  > Option: (60) Vendor class identifier
  > Option: (55) Parameter Request List
                                                                           v Option: (55) Parameter Request List
  > Option: (255) End
                                                                               Length: 11
    Padding: 0000000000000000000
                                                                               Parameter Request List Item: (1) Subnet Mask
                                                                               Parameter Request List Item: (15) Domain Name
                                                                               Parameter Request List Item: (3) Router
                                                                               Parameter Request List Item: (6) Domain Name Server
```

Parameter Request List Item: (44) NetBIOS over TCP/IP Name Server Parameter Request List Item: (46) NetBIOS over TCP/IP Node Type Parameter Request List Item: (47) NetBIOS over TCP/IP Scope

Parameter Request List Item: (249) Private/Classless Static Route (Microsoft)

Parameter Request List Item: (31) Perform Router Discover

Parameter Request List Item: (33) Static Route

DHCP Offer

```
> User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)

∨ Bootstrap Protocol (Offer)

    Message type: Boot Reply (2)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0

∨ Option: (53) DHCP Message Type (Offer)
    Transaction ID: 0x3e5e0ce3
                                                                  Length: 1
    Seconds elapsed: 0
                                                                  DHCP: Offer (2)
  > Bootp flags: 0x0000 (Unicast)
                                                             v Option: (1) Subnet Mask
    Client IP address: 0.0.0.0 (0.0.0.0)
                                                                  Length: 4
    Your (client) IP address: 192.168.1.101 (192.168.1.101)
                                                                  Subnet Mask: 255.255.255.0
                                                             ∨ Option: (3) Router ✓
    Next server IP address: 0.0.0.0 (0.0.0.0)
                                                                  Length: 4
    Relay agent IP address: 0.0.0.0 (0.0.0.0)
                                                                  Router: 192.168.1.1 (192.168.1.1)
    Client MAC address: Dell 4f:36:23 (00:08:74:4f:36:23)

∨ Option: (6) Domain Name Server

    Length: 8
    Server host name not given
                                                                  Domain Name Server: ns10.attbi.com (63.240.76.19)
    Boot file name not given
                                                                  Domain Name Server: 204.127.198.19 (204.127.198.19)
    Magic cookie: DHCP
                                                             ∨ Option: (15) Domain Name ∠
                                                                  Length: 22
                                                                  Domain Name: ne2.client2.attbi.com
                                                             ∨ Option: (51) IP Address Lease Time
                                                                  Length: 4
                                                                  IP Address Lease Time: (86400s) 1 day
                                                             ∨ Option: (54) DHCP Server Identifier
                                                                  Length: 4
                                                                  DHCP Server Identifier: 192.168.1.1 (192.168.1.1)
                                                             v Option: (255) End
                                                                  Option End: 255
```


DHCP Session(2)

 Client-Server interaction when reusing a previously allocated network address

dhcp			
Source	Destination	Protocol	Info
activate.adobe.com	255.255.255.255	DHCP	DHCP Request - Transaction ID 0x98bd1be8
192.168.2.1	LAPTOP-RITC8FUU.local	DHCP	DHCP ACK - Transaction ID 0x98bd1be8

DHCP Request & Ack

```
> User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
V Dynamic Host Configuration Protocol (Request)
    Message type: Boot Request (1)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0x98bd1be8
    Seconds elapsed: 0
  > Bootp flags: 0x0000 (Unicast)
    Client IP address: activate.adobe.com (0.0.0.0)
    Your (client) IP address: activate.adobe.com (0.0.0.0)
    Next server IP address: activate.adobe.com (0.0.0.0)
    Relay agent IP address: activate.adobe.com (0.0.0.0)
    Client MAC address: LAPTOP-RITC8FUU.local (90:61:ae:5c:69:58)
    Server host name not given
    Boot file name not given
    Magic cookie: DHCP
  > Option: (53) DHCP Message Type (Request)
  > Option: (61) Client identifier
  > Option: (50) Requested IP Address (192.168.2.104)
  > Option: (12) Host Name
  > Option: (81) Client Fully Qualified Domain Name
  > Option: (60) Vendor class identifier
  > Option: (55) Parameter Request List
  > Option: (255) End
```

```
SUSTech
Southern University
of Science and Technology
```

```
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
Dynamic Host Configuration Protocol (ACK)
  Message type: Boot Reply (2)
  Hardware type: Ethernet (0x01)
  Hardware address length: 6
  Hops: 0
  Transaction ID: 0x98bd1be8
  Seconds elapsed: 0
> Bootp flags: 0x0000 (Unicast)
  Client IP address: activate.adobe.com (0.0.0.0)
  Your (client) IP address: LAPTOP-RITC8FUU.local (192,168,2,104)
  Next server IP address: 192.168.2.1 (192.168.2.1)
  Relay agent IP address: activate.adobe.com (0.0.0.0)
  Client MAC address: LAPTOP-RITC8FUU.local (90:61:ae:5c:69:58)
  Server host name not given
  Boot file name not given
  Magic cookie: DHCP
> Option: (53) DHCP Message Type (ACK)
> Option: (1) Subnet Mask (255.255.255.0)
> Option: (2) Time Offset
> Option: (3) Router
> Option: (23) Default IP Time-to-Live
Option: (51) IP Address Lease Time
> Option: (54) DHCP Server Identifier (192.168.2.1)
> Option: (6) Domain Name Server
> Option: (58) Renewal Time Value
> Option: (59) Rebinding Time Value
> Option: (255) End
  Padding: 00
```

Part B. Simulator: Packet Tracer

- Packet Tracer allows users to create simulated network topologies by dragging and dropping routers, switches and various other types of network devices.
- Packet Tracer supports an array of simulated Application Layer protocols, as well as basic routing with RIP, OSPF, EIGRP, BGP to the extents required by the current CCNA curriculum.
- Packet Tracer can be run on Linux and Microsoft Windows.
 Similar Android and iOS apps are also available.

https://www.packettracernetwork.com/download/download-packet-tracer.html

Cisco CLI

- Different views
 - Three kinds of view, each supports different operations, and each view has different command prompt.

```
Router> Router# Router(config)#: Router(config-if)#:
```

- From user view to system view, using command "enable",
- From system view to function view, using function name or object name as command, such as "interface giga 0/0"
- Frequently used commands
 - show //display the info (ip routing table, interface, mac-address table)
 - exit, end //back to upper layer, back to root layer
 - ?, Tab // help to find the rest part of command
 - no *** //to cancel the following command ***, such as: using "route rip" to config rip while using "no route rip" to cancel the setting

Packet Tracer(1) Create Network

Packet Tracer(2) PC Configuration

- Open configure window by clicking the PC icon.
- We can make all the configurations of PC in different interfaces.
- In IP Configuration interface, we can make IP configurations.
- In Command Prompt interface, we can use cmd commands just as what we can do on our own PC.
- Commands such as ping, ipconfig, etc. are available.

PC0

O DHCP

IP Address

Subnet Mask

DNS Server

Default Gateway

Config Desktop

FastEthernet0

Programming

Attributes

Static

0.0.0.0

0.0.0.0

192.168.1.20

255.255.255.0

Packet Tracer(2) Server Configuration

• Open configure window by clicking the Server icon.

- The key configuration page of the Server is "Service".
- On the left hand of the "Service" page, list all the configurable services.
- The HTTP and HTTPS is turned on by defalut.

Packet Tracer(3) Realtime Mode

- Complete all the operations once start in realtime mode.
- User can get the result "Fail" or "Successful" quickly.

Packet Tracer(4) Simulation Mode

 All specified packets can be opbserved and analysed in simulation mode.

PDU Information at Device: PC1	
OSI Model Inbound PDU Details Outb	oound PDU Details
At Device: PC1 Source: PC0 Destination: 192.168.1.202	
In Layers	Out Layers
Layer7	Layer7
Layer6	Layer6
Layer5	Layer5
Layer4	Layer4
Layer 3: IP Header Src. IP: 192.168.1.101, Dest. IP: 192.168.1.202 ICMP Message Type: 8	Layer 3: IP Header Src. IP: 192.168.1.202, Dest. IP: 192.168.1.101 ICMP Message Type: 0
Layer 2: Ethernet II Header 0001.C7AE. 7969 >> 0030.A310.D9DE	Layer 2: Ethernet II Header 0030.A310.D9DE >> 0001.C7AE.7969
Layer 1: Port FastEthernet0	Layer 1: Port(s): FastEthernet0

Packet Tracer DHCP Server(1)

Choose "DHCP" from "SERVICES", then configure the DHCP server following the steps bellow:

- 1. Turn on the serice
- 2. Name the Pool
- 3. Configure the "Default Gateway", "DNS Server", "Start IP Adress" and "Subnet Mask"
- 4. click "Add" to add the Pool in the DHCP server

Tip:

- 1. The DHCP server should be configured with IP address
- 2. The DHCP client should work as DHCP client

Packet Tracer DHCP Server(2)

There are two ways to configure the IP address of a network node:

- 1. In "Config" page, choose the interface, then configue its IP address and Subnet Mask
- 2. In "Desktop" -> "IP Configuration" to finish the configuration

Packet Tracer: DHCP Client

- 1. Choose "Config" page
- 2. In "Clobal Settings" choose "DHCP" to set the PC work as the DHCP client

Packet Tracer: DHCP test

- 1. Using "ipconfig" or "ipconfig -all" to check the configuration.
- 2. Using "ping" to test if the IP address work.


```
Physical
         Config
                          Programming
                                        Attributes
                 Desktop
Command Prompt
C:\>ping 192.168.1.100
Pinging 192.168.1.100 with 32 bytes of data:
Reply from 192.168.1.100: bytes=32 time<1ms TTL=128
Reply from 192.168.1.100: bytes=32 time=1ms TTL=128
Reply from 192.168.1.100: bytes=32 time<1ms TTL=128
Reply from 192.168.1.100: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.1.100:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>
```

Practise 9.1

- 1. Initiates a DHCP session on your Notebook, capture the session:
 - What's the source IP address and destination IP address of a DHCP request? What is the type of these two IP address?
 - What info items are required for a host if it need to contact with others by its name on the Internet?
 - Find the Lease Time of a dynamic IP address, What's its value? In which type of DHCP packet could this field be set?

Tips:

- using 'ipconfig /renew' to request a dynamically assigned IP addresses.
- using 'ipconfig /release' to release the dynamically assigned IP addresses

Practise 9.2

- 2. Practice on Packet Tracer
 - DHCP configuration and test
 - Create a network with a PC and a Server, connect the two network nodes.
 - Configure the PC as DHCP client.
 - Configure the PC as DHCP server.
 - Test if DHCP work.
 - You are encouraged to practice more on the packet tracer (optional)
 - Enable HTTP server which could provide service to HTTP client
 - Enable DNS server which could provide service to DNS client
 - Make a network by connet more network nodes by using bridge, switch or router

Tips

Invoke the Web Browser to work as a http client.

