Financial Mathematics 32000

Lecture 5

Roger Lee

 $2023~\mathrm{April}~19$

UNIT 3: Monte Carlo

Generating random variables

Variance reduction: Antithetic variates

Monte Carlo estimate

Let Y be a discounted payoff. Example: $Y = e^{-\int_0^T r_t dt} (S_T - K)^+$.

Want to calculate the time-0 price $C = \mathbb{E}Y$

Generate Y_1, Y_2, \ldots independently and identically distributed as Y.

(How?)

Then the random variable

$$\hat{C}_M := \frac{Y_1 + Y_2 + \dots + Y_M}{M}$$

is the Monte Carlo estimate of C. Note that

$$\mathbb{E}\hat{C}_M = C$$

By the strong law of large numbers, with probability 1 we have

$$\hat{C}_M \to C$$
 as $M \to \infty$.

How fast does convergence occur?

Let $\sigma^2 := \operatorname{Var}(Y)$. (Here σ does not denote volatility.) Then

$$Var(\hat{C}_M) = \frac{1}{M^2} Var(Y_1 + Y_2 + \dots + Y_M) = \frac{1}{M^2} (M\sigma^2) = \frac{\sigma^2}{M}$$

By the Central Limit Theorem, we have convergence in distribution

$$\frac{\hat{C}_M - \mathbb{E}\hat{C}_M}{\sqrt{\operatorname{Var}\,\hat{C}_M}} \xrightarrow{d} N(0,1) \qquad \text{hence} \qquad \frac{\hat{C}_M - C}{\sigma/\sqrt{M}} \xrightarrow{d} N(0,1)$$

as $M \to \infty$. Conclusion still holds using sample stdev in place of σ :

$$\frac{C_M - C}{\hat{\sigma}_M / \sqrt{M}} \xrightarrow{d} N(0, 1)$$

because $\hat{\sigma}_M^2 \to \sigma^2$ where

$$\hat{\sigma}_M^2 := \frac{1}{M-1} \sum_{m=1}^M (Y_m - \hat{C}_M)^2.$$

is the "sample variance" and $\hat{\sigma}_M$ is the "sample standard deviation."

3: Monte Carlo Generating random variables Variance reduction: Antithetic

Confidence intervals

So an asymptotic (for large M) confidence interval of 100(1-p)% is

$$\left(\hat{C}_M - \mathcal{N}^{-1} \left(1 - \frac{p}{2}\right) \frac{\hat{\sigma}_M}{\sqrt{M}}, \ \hat{C}_M + \mathcal{N}^{-1} \left(1 - \frac{p}{2}\right) \frac{\hat{\sigma}_M}{\sqrt{M}}\right)$$

where \mathcal{N} is the standard Normal cdf.

- ▶ $\mathcal{N}^{-1}(1-\frac{p}{2})$ tells us: a radius of how many standard deviations of a normal distribution contains 100(1-p)% of the probability?
- ► The $\hat{\sigma}_M/\sqrt{M}$ is called the *standard error*. It gives us the estimated standard deviation of \hat{C}_M .
- ▶ Example: Let p = 0.05. Then $\mathcal{N}^{-1} \left(1 \frac{p}{2}\right) \approx 1.96$ and

$$\left(\hat{C}_M - 1.96 \frac{\hat{\sigma}_M}{\sqrt{M}}, \ \hat{C}_M + 1.96 \frac{\hat{\sigma}_M}{\sqrt{M}}\right)$$

is an asymptotic 95% confidence interval for C.

Confidence intervals

▶ If $\hat{\sigma} = 20$ and we run M = 10000 simulations, then a 95% confidence interval has radius

$$1.96 \times \frac{20}{\sqrt{10000}} = 0.40$$

To reduce this to 0.04, we need to take M=1 million.

So we will want to use variance reduction techniques, which reformulate the problem to keep σ small, or which carefully introduce dependence in the simulations to keep Var \hat{C}_M small.

UNIT 3: Monte Carlo

Generating random variables

Variance reduction: Antithetic variates

The inverse CDF method

- ▶ Assume the existence of a pseudo-random number generator whose output can be treated as if it is IID uniform on (0,1). Python: numpy.random.Generator has method random()
- ▶ To generate a random variable X having a CDF F, generate $U \sim \text{Uniform}(0,1)$, then apply F^{-1} , the inverse CDF, to produce

$$X := F^{-1}(U)$$

As desired, $\mathbb{P}(X \leq x) = \mathbb{P}(F^{-1}(U) \leq x) = \mathbb{P}(U \leq F(x)) = F(x)$. (If F not invertible, letting $F^{-1}(u) := \min\{x : F(x) \geq u\}$ works.) Intuition: randomly choose the *percentile* between 0% and 100%, uniformly. The inverse CDF finds the corresponding value of X.

Generating normal random variables

▶ Python: numpy.random.Generator has method normal()

But what if you need to build your own?

- Could do $\mathcal{N}^{-1}(U)$, if an implementation of the inverse of the normal CDF \mathcal{N} is available. Excel: NORMSINV(RAND())
- Box-Muller method: If (X, Y) are independent Normal(0, 1), then $R := X^2 + Y^2$ has CDF $\mathbb{P}(R \le r) = 1 e^{-r/2}$. Given R, the point (X, Y) is uniformly distributed on the circle of radius \sqrt{R} . So generate *pairs* of independent normals by drawing U_1 and U_2 IID from a Uniform(0, 1) distribution, and taking

$$R := -2\log(U_1)$$
$$(X,Y) := (\sqrt{R}\cos(2\pi U_2), \sqrt{R}\sin(2\pi U_2))$$

Python

```
[1] import numpy
     rng = numpy.random.default_rng(seed=0)
[2] rng.random(size=5)
    array([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024])
[3] rng.random(size=5)
    array([0.91275558, 0.60663578, 0.72949656, 0.54362499, 0.93507242])
[4] rng.normal(size=5)
    array([-0.62327446, 0.04132598, -2.32503077, -0.21879166, -1.24591095])
[5] rng.normal(size=(2,5))
    array([[-0.73226735, -0.54425898, -0.31630016, 0.41163054, 1.04251337],
           [-0.12853466, 1.36646347, -0.66519467, 0.35151007, 0.90347018]])
```

Simple dynamics

If Y is a known function of random variables with distributions that you can readily simulate, then it is easy to generate Y_1, Y_2, \ldots

Example: Consider a call paying $(S_T - K)^+$ where S is GBM.

$$dS_t = rS_t dt + \sigma S_t dW_t$$

Then

$$Y = e^{-rT}(S_T - K)^+ = e^{-rT}(S_0 e^{(r - \sigma^2/2)T + \sigma W_T} - K)^+$$

where $W_T \sim N(0,T)$. So let

$$Y_m := e^{-rT} (S_T - K)^+ = e^{-rT} (S_0 e^{(r - \sigma^2/2)T + \sigma\sqrt{T}Z^{(m)}} - K)^+$$

where the $Z^{(m)}$ are IID standard normal: N(0,1).

But sometimes we need to simulate entire path

▶ But what about more complicated dynamics, such as

$$dS_t = rS_t dt + \sigma(S_t, t)S_t dW_t$$

- ightharpoonup Or what if σ or r follows a process driven by a second BM.
- ▶ What about more complicated contracts, such as an Asian option or a barrier option.

We may need to simulate the whole path.

Geometric Brownian motion: $dX_t = \mu X_t dt + \sigma X_t dW_t$

Let $X_0 = 100$. Trajectories for $\mu = -0.15, +0.15$ and $\sigma = 0.20, 0.40$:

Simulating the path of a state variable: Euler method

Suppose X satisfies

$$dX_t = a(X_t, t)dt + b(X_t, t)dW_t$$

Divide the time interval [0,T] into N parts: $\Delta t = T/N$, $t_n = n\Delta t$. Define the mth simulated path by initializing $X_0^{(m)} = X_0$, and given X_{t_n} , obtain $X_{t_{n+1}}$ by

$$X_{t_{n+1}}^{(m)} = X_{t_n}^{(m)} + a(X_{t_n}^{(m)}, t_n)\Delta t + b(X_{t_n}^{(m)}, t_n)Z_n^{(m)}\sqrt{\Delta t}$$

where $Z_n^{(m)}$ are IID standard normal. Evaluate the discounted payoff for the mth path. Take the average across all paths $m=1,\ldots,M$. This extends directly to multidimensional state vectors X and multidimensional standard Brownian motion W.

Euler method convergence

With some assumptions on a and b, the Euler method has weak order of convergence 1 for general f, meaning

$$|\mathbb{E}f(X_T) - \mathbb{E}f(X_T^{(m)})| = O(\Delta t)$$

(Estimating $\mathbb{E}f(X_T^{(m)})$ produces additional error, not included here.)

Error analysis: Let $a_t = a(X_t)$ and $b_t = b(X_t)$. First subinterval:

$$X_{t_1} = X_0 + \int_0^{t_1} a_t dt + \int_0^{t_1} b_t dW_t$$

$$= X_0 + \int_0^{t_1} \left(a_0 + \int_0^t a \frac{\partial a}{\partial x} + \frac{1}{2} b^2 \frac{\partial^2 a}{\partial x^2} ds + \int_0^t b \frac{\partial a}{\partial x} dW_s \right) dt$$

$$+ \int_0^{t_1} \left(b_0 + \int_0^t a \frac{\partial b}{\partial x} + \frac{1}{2} b^2 \frac{\partial^2 b}{\partial x^2} ds + \int_0^t b \frac{\partial b}{\partial x} dW_s \right) dW_t$$

The Euler scheme keeps three terms to generate $X_{t_1}^{(m)}$

Crude analysis of discretization error of Euler scheme

- ▶ Intuition for weak error: $|\mathbb{E}(X_T X_T^{(m)})|$ is $O(\Delta t)$, because there are N time steps, and \mathbb{E} of error is $O(\Delta t)^2$ at each step (the only nonzero- \mathbb{E} error term in previous equation is the dsdt term).
- ▶ Euler scheme has strong order of convergence 1/2, meaning that

$$\mathbb{E}|X_T - X_T^{(m)}| = O(\Delta t)^{1/2} \quad \text{as } \Delta t \to 0$$

Intuition for strong error: Biggest ignored term is $\mathrm{d}W_s\mathrm{d}W_t$. Variance of error at one time step = $O(\mathrm{Var}(\Delta W)^2) = O(\Delta t)^2$. Variance of total error $X_T - X_T^{(m)}$ after N time steps = $O(\Delta t)$. Standard deviation of $X_T - X_T^{(m)}$ after N time steps = $O(\Delta t)^{1/2}$. This suggests that strong order of convergence is 1/2.

Milstein scheme

Milstein scheme: Don't ignore the term

$$\int_0^{t_1} \int_0^t b(X_s) \frac{\partial b}{\partial x} (X_s) dW_s dW_t.$$

Approximate it as

$$b(X_0)\frac{\partial b}{\partial x}(X_0) \int_0^{t_1} \int_0^t dW_s dW_t = b(X_0)\frac{\partial b}{\partial x}(X_0) \int_0^{t_1} W_t dW_t$$
$$= \frac{1}{2}b(X_0)\frac{\partial b}{\partial x}(X_0)(W_{t_1}^2 - t_1)$$

So Milstein is

$$X_{t_{n+1}}^{(m)} = X_{t_n}^{(m)} + a(X_{t_n}^{(m)})\Delta t + b(X_{t_n}^{(m)})Z_n^{(m)}\sqrt{\Delta t} + \frac{1}{2}b\frac{\partial b}{\partial x}(X_{t_n}^{(m)})([Z_n^{(m)}]^2 - 1)\Delta t$$

Milstein has strong order of convergence 1, and weak order 1.

Weak convergence (important in option pricing): same order as Euler.

Covariance and correlation matrices

Recall that the covariance matrix of a zero-mean vector Z is $\mathbb{E}(ZZ^{\top})$.

Let M be a real symmetric matrix. The following are equivalent:

- ightharpoonup M is a covariance matrix of some vector.
- ▶ M is positive semi-definite, which means that $x^{\top}Mx \ge 0$ for all real vectors x.
- \triangleright The eigenvalues of M are all nonnegative.
- The principal minors of M are all nonnegative. (Principal minors = the determinants of the matrices formed by crossing out any rows and corresponding columns of M).
- ▶ M has a Cholesky decomposition $LL^{\top} = M$ for some real lower-triangular matrix L with diagonal entries ≥ 0 .

Covariance and correlation matrices

Moreover, the following are equivalent:

- ightharpoonup M is a correlation matrix
- ightharpoonup M is a covariance matrix and its diagonal elements are all 1.

Moreover, if M is a 3×3 matrix, the following are equivalent

- ightharpoonup M is a correlation matrix.
- ▶ M is symmetric, its entries $\in [-1, 1]$, its diagonal entries = 1, and det $M \ge 0$.

Interview question

Suppose $Corr(X, Y) = Corr(X, Z) = Corr(Y, Z) = \rho$.

What are the possible values of ρ ?

Generating correlated Brownian motions

To get a D-dimensional vector \bar{W} of BM with correlation matrix H, find a matrix $L \in \mathbb{R}^{D \times D}$ such that $LL^{\top} = H$, and let $\bar{W} = LW$, where W is standard BM in \mathbb{R}^D .

So the process $dX_t = a(X_t, t)dt + b(X_t, t)d\overline{W}_t$ becomes

$$dX_t = a(X_t, t)dt + b(X_t, t)L dW_t$$

Simulation by Euler method:

$$X_{t_{n+1}}^{(m)} = X_{t_n}^{(m)} + a(X_{t_n}^{(m)}, t_n)\Delta t + b(X_{t_n}^{(m)}, t_n)L Z_n^{(m)} \sqrt{\Delta t}$$

where $Z_n^{(m)}$ are IID standard normal in \mathbb{R}^D . How to find L?

- lacktriangle numpy.random.Generator.multivariate_normal generates LZ
- ightharpoonup numpy.linalg.cholesky returns L given H

Simulating correlated Brownian motions

Example: if we want $\bar{W} = {W^{[1]} \choose W^{[2]}}$ with $\operatorname{corr}(\Delta W^{[1]}, \Delta W^{[2]}) = \rho$, then

$$H = \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right)$$

and Cholesky finds $LL^{\top} = H$ where

$$L = \left(\begin{array}{cc} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{array} \right)$$

If Cholesky routine unavailable, can solve for L by traversing [the upper or lower triangular part of] H entry-by-entry. Each entry gives rise to an equation involving elements of L and only one unknown.

Generating correlated Brownian motions

Sometimes it is not necessary to simulate the entire path.

- Suppose $X_T X_0$ is known to be multivariate normal with mean μT and covariance matrix HT.
- ▶ Suppose the option payoff depends only on X_T .

Then no need to divide [0,T] into N steps. No need for Euler.

▶ Just generate

$$X_T^{(m)} := X_0 + \mu T + L\sqrt{T}Z^{(m)}$$

where $LL^{\top} = H$ and the $Z^{(m)}$ are IID standard normal in \mathbb{R}^{D} .

UNIT 3: Monte Carlo

Generating random variables

Variance reduction: Antithetic variates

Variance reduction

Recall the radius of a 100(1-p)% confidence interval is

$$\mathcal{N}^{-1} \left(1 - \frac{p}{2} \right) \sqrt{\operatorname{Var}(\hat{C})}$$

Variance reduction techniques try to construct alternative estimators with smaller variance. We will examine four:

- \blacktriangleright Antithetic variates: \hat{C}_M^{av}
- \blacktriangleright Control variates: \hat{C}_M^{cv}
- ▶ Importance sampling: \hat{C}_M^{is}
- ightharpoonup Conditional Monte Carlo: $\hat{C}_{M}^{\mathrm{cmc}}$

Antithetic variates

Let Y be discounted payoff. So

$$C = \mathbb{E}Y$$
.

Ordinary MC: $\hat{C} = \frac{1}{M}(Y_1 + \cdots + Y_M)$, where each Y_m is IID as Y.

Example: Call on stock under GBM:

$$Y_m = e^{-rT} (S_0 e^{(r-\sigma^2/2)T + \sigma\sqrt{T}Z_m} - K)^+$$

where we generate the Z_m to be IID N(0,1) for $m=1,\ldots,M$.

Antithetic Variates: If you draw a realization from the qth percentile, then you should also draw one from the (100-q)th percentile.

Symmetry of normal \Rightarrow for each realization of Z, rerun also with -Z.

Antithetic variates

In the same example, for each m = 1, ..., M, let

$$\begin{split} \tilde{Z}_m &:= -Z_m \\ \tilde{Y}_m &:= e^{-rT} (S_0 e^{(r-\sigma^2/2)T + \sigma\sqrt{T}\tilde{Z}_m} - K)^+ \\ Y_m^{\text{av}} &:= \frac{Y_m + \tilde{Y}_m}{2} \\ \hat{C}_M^{\text{av}} &:= \frac{1}{M} (Y_1^{\text{av}} + Y_2^{\text{av}} + \dots + Y_M^{\text{av}}) \end{split}$$

This is the antithetic-variate Monte Carlo estimate.

Its expectation is

$$\mathbb{E}\hat{C}_{M}^{\mathrm{av}} = \frac{1}{M} \sum_{m} \mathbb{E}Y_{m}^{\mathrm{av}} = \mathbb{E}\left(\frac{Y + \tilde{Y}}{2}\right) = \frac{\mathbb{E}Y + \mathbb{E}\tilde{Y}}{2} = \mathbb{E}Y = C$$

so \hat{C}_{M}^{av} is an unbiased estimate of C.

Antithetic variates: variance analysis

Variance of AV estimate is

$$\begin{split} \operatorname{Var}(\hat{C}_{M}^{\operatorname{av}}) &= \operatorname{Var}\bigg(\frac{1}{M} \sum_{m} Y_{m}^{\operatorname{av}}\bigg) = \frac{1}{M^{2}} M \operatorname{Var}(Y^{\operatorname{av}}) \\ &= \frac{1}{M} \operatorname{Var}\bigg(\frac{Y + \tilde{Y}}{2}\bigg) = \frac{1}{M} \frac{\operatorname{Var} Y + 2\operatorname{Cov}(Y, \tilde{Y}) + \operatorname{Var}(\tilde{Y})}{4} \\ &= \frac{1}{M}\bigg(\frac{1}{2} \operatorname{Var} Y + \frac{1}{2} \operatorname{Cov}(Y, \tilde{Y})\bigg) \end{split}$$

Compare to ordinary MC:

$$\operatorname{Var}(\hat{C}) = \frac{1}{M} \operatorname{Var}(Y).$$

Note that
$$Cov(Y, \tilde{Y}) \le \sqrt{Var(Y)Var(\tilde{Y})} = Var(Y)$$

hence $\operatorname{Var}(\hat{C}_{M}^{\operatorname{av}}) \leq \operatorname{Var}(\hat{C})$.

But maybe this overstates the benefit of AV.

Antithetic variates: variance analysis

Maybe better to compare

$$\mathrm{Var}(\hat{C}_{M}^{\mathrm{av}}) = \frac{1}{M} \bigg(\frac{1}{2} \mathrm{Var} Y + \frac{1}{2} \mathrm{Cov}(Y, \tilde{Y}) \bigg)$$

against

$$\operatorname{Var}(\hat{C}_{2M}) = \frac{1}{2M} \operatorname{Var}(Y).$$

So $\operatorname{Var}(\hat{C}_M^{\mathrm{av}})$ is smaller iff $\operatorname{Cov}(Y, \tilde{Y}) < 0$.

This often holds, but for some payoffs, it doesn't.

Antithetic variates: variance analysis

Because

$$\operatorname{Var}(\hat{C}_{M}^{\operatorname{av}}) = \frac{1}{M} \operatorname{Var}(Y^{\operatorname{av}}),$$

an asymptotic 100(1-p)% confidence interval has endpoints

$$\hat{C}_M^{\text{av}} \pm \mathcal{N}^{-1} \left(1 - \frac{p}{2} \right) \frac{\hat{\sigma}_M^{\text{av}}}{\sqrt{M}}$$

where

$$\hat{\sigma}_M^{\mathrm{av}} := \sqrt{\frac{1}{M-1} \sum_m (Y_m^{\mathrm{av}} - \hat{C}_M^{\mathrm{av}})^2}.$$

Note that $\hat{\sigma}_{M}^{\text{av}}$ is the sample standard deviation of the pair averages, not of the individual realizations.

Dividing it by \sqrt{M} gives the standard error $\hat{\sigma}_M^{\rm av}/\sqrt{M}$, an estimate of the standard deviation of $\hat{C}_M^{\rm av} = \frac{1}{M} \sum_m Y_m^{\rm av}$.