Melanoma Detection Model

Computer Vision

A.Y. 2023-2024

Corsi Danilo - 1742375 Lucciola Alessio - 1823638 Scarcelli Domiziano - 1872664

Task and goals

- Melanoma: skin cancer that develops in the cells that produce melanin
- Responsible for 75% of skin cancer deaths
- An early and accurate detection can make treatment more effective

Task and goals

- Melanoma: skin cancer that develops in the cells that produce melanin
- Responsible for 75% of skin cancer deaths
- An early and accurate detection can make treatment more effective

Task and motivation:

- Build a useful predictive model
- Help people detect this problem in time

Related works:

Various implementations (most of them uses pre-trained ConvNets)

• Starting point:

- Paper: MSLANet multi-scale long attention network for skin lesion classification, 2022
- Trying to implement the same structure (by doing some modification)

Dataset

- **ISIC-2018:** Collection of dermatoscopic images of common pigmented skin lesions (~ **10k images**)
- Images splitted into **train**, **validation** and **test** sets
- Apply **z-score normalization** (stabilize training process)

Figure 1: ISIC-2018 example image

Dataset

- **ISIC-2018:** Collection of dermatoscopic images of common pigmented skin lesions (~ **10k images**)
- Images splitted into **train**, **validation** and **test** sets
- Apply z-score normalization (stabilize training process)

Figure 1: ISIC-2018 example image

Class imbalance

- 7 classes in total, with 4 benign and 3 malignant
- Significant imbalance (particularly in malignant classes)

Resolution

- Applied various techniques from the referenced paper
- Aiming at balancing classes and increasing model robustness
 - Included Transposition, Flipping, and CutOut

GAN (their approach)

GAN (our approach)

Generation

GradCAM

LANet Block

Long Attention Mechanism repeated for **each ResNet-50 layer**. The output is a concatenation of each OX_i and the feature map X of the last layer:

Out = $[X, OX_1, OX_2, ..., OX_{L-1}] \forall i \in [1, L], L$: Number of ResNet50 layers

MSLANet Block

MSLANet

Model Evaluation

MSLANet (Ours)

MSLANet (Theirs)

Avg. AUC: 93.70%

Class	ACC	AUC	SE	SP	ACC	AUC	SE	SP
Melanocytic nevi	66.16	76.59	96.93	35.40	-	-	-	-
Seborrheic keratosis	89.40	60.18	22.72	97.63	93.50	97.10	82.20	95.50
Melanoma	89.46	59.50	21.02	98.04	85.80	90.30	55.60	93.20
Invasive carcinoma	96.83	58.24	16.94	99.54	-	-	-	-
Basal cell carcinoma	95.78	66.76	34.40	99.12	-	-	-	-
Dermatofibroma	98.83	55.38	15.05	99.77	-	-	-	-
Vascular lesions	98.94	74.83	50.12	99.66	-	-	-	-

Avg. AUC: 59.84% (All classes: 64.49%)

*Results are expressed in percentages (%). We consider Accuracy, AUC (Area under the curve), Sensitivity (Recall) and Specificity.

MSLANet v2

Training Segmentation Pipeline

Fine-tuning **Segment Anything Model** (SAM) to obtain segmentation masks

After Fine Tuning: Mean **Intersection Over Union** of 88%

Inference Segmentation Pipeline

Model Evaluation 2

MSLANet v2 (Ours)

MSLANet (Theirs)

Class	ACC	AUC	SE	SP	ACC	AUC	SE	SP
Melanocytic nevi	84.08	89.33	86.82	78.52	-	-	-	-
Seborrheic keratosis	91.01	87.54	51.01	95.95	93.50	97.10	82.20	95.50
Melanoma	86.80	85.49	52.02	91.14	85.80	90.30	55.60	93.20
Invasive carcinoma	97.28	91.51	52.54	98.79	-	-	-	-
Basal cell carcinoma	95.08	93.76	63.44	96.60	-	-	-	-
Dermatofibroma	98.61	87.80	15.05	99.55	-	-	-	-
Vascular lesions	99.05	98.32	80.76	99.38	-	-	-	-

Avg. AUC: 86.51% (All classes: 90.53%)

Avg. AUC: 93.70%

^{*}Results are expressed in percentages (%). We consider Accuracy, AUC (Area under the curve), Sensitivity (Recall) and Specificity.

Demo

Conclusions

- Data transformation + Data augmentation + Synthetic Image
 Generation (GAN): solve class imbalances
- **Normalization:** stabilize the learning process
- **GradCAM approach:** find the most important areas (too heavy)
- **SAM model:** exploits the segmentations of the dataset (more lightweight)

Conclusions

- Data transformation + Data augmentation + Synthetic Image
 Generation (GAN): solve class imbalances
- **Normalization:** stabilize the learning process
- GradCAM approach: find the most important areas (too heavy)
- **SAM model:** exploits the segmentations of the dataset (more lightweight)

- Configuration tested
 - Data transformation + GradCAM + MSLANet (theirs)
 - GAN + Data augmentation + SAM + MSLANet v2 (ours)
- Final results
 - Avg. AUC: 93.70% (theirs)
 - Avg. AUC: 86.51% (All classes: 90.53%) (ours) + Lighter
 + Faster to train

References

 MSLANet: multi-scale long attention network for skin lesion classification (Yecong Wan, Yuanshuo Cheng & Mingwen Shao, 2022)

https://link.springer.com/article/10.1007/s10489-022-03320-x

- 2. **HAM10000 Dataset (Harvard Dataverse, 2018):**https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
- 3. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions:
- 4. https://www.nature.com/articles/sdata2018161
- 5. Deep Residual Learning for Image Recognition (Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2015):

https://arxiv.org/abs/1512.03385

- 6. **ResNet-50 pretrained model (Google, 2020):** https://huggingface.co/microsoft/resnet-50
- 7. **Segment Anything Model (SAM) (MetaAl , 2023)**: https://github.com/facebookresearch/segment-anything?tab=readme-ov-file
- 8. **Cancer Stat Facts, Melanoma of the Skin:**https://seer.cancer.gov/statfacts/html/melan.html
- 9. Image2StyleGAN++- How to Edit the Embedded Images? (Abdal Et Al.)
 https://arxiv.org/abs/1911.11544

Thank you

