

Quantum Mechanics

for Computing Apps

Francisco Treviño August 31, 2018

Continental México

Contents

- 1. On the shoulders of giants...
- 2. Framework
- 3. Particle aspect of radiation
- 4. Wave Aspect of Particles
- 5. Particles vs Waves
- 6. Computational Quantum Mechanics

Etimology

Quantum

- The amount or quantity observably present, or available. [18th c.]
- (physics) The smallest possible, and therefore indivisible, unit of a given quantity or quantifiable phenomenon. [20th c.]
- (computing) The amount of time allocated for a thread to perform its work in a multithreaded environment.

On the shoulders of giants...

Copenhagen interpretation

Figure 1: Solvay Conference 1927 (17/29 Nobel prizes)

Framework

Concepts

Relativistic Energy: $E = mc^2$

Momentum: p = mv

Radiation: transmission of energy through space.

Waves

Frequency: $\nu = \frac{c}{\lambda}$

Electromagnetic Waves transport energy and momentum.

Waves: phase

Figure 2: Wave phase

Waves: Interference

Figure 3: Waves interference

Waves: Interference

Figure 3: Waves interference

LASER: wave sources are perfectly coherent if they have a constant phase difference and the same frequency, and the same waveform.

Particle aspect of radiation

Blackbody radiation [1900]

Blackbody radiation [1900]

Planck's quantization rule: the energy exchange between radiation and matter *must be discrete*:

$$E=nh\nu,\ n=1,2,3,...$$

8

Blackbody radiation [1900]

Planck's quantization rule: the energy exchange between radiation and matter *must be discrete*:

$$E = nh\nu, n = 1, 2, 3, ...$$

 $h\nu$ is the energy of a "quantum" of radiation, ν represents the frequency of an oscillating charge.

8

Particle behavior of Waves

- Planck's new idea, the *discrete* exchange of energy, solved the "ultraviolet catastrophe" as it matches experimental data.
- The spectrum of the blackbody radiation reveals the quantization of radiation, notably the particle behavior of electromagnetic waves.

The end of the world as we know it...

The introduction of the constant h had indeed heralded the *end of classical physics* and the dawn of a new era: physics of the microphysical world.

The end of the world as we know it...

The introduction of the constant h had indeed heralded the *end of classical physics* and the dawn of a new era: physics of the microphysical world.

$$h = 6.62 \times 10^{-34} J \cdot s$$

For a mass of 1 kg, length of 1 m, time 1 s, the Action = $981 \times 10^2 J \cdot s$

Einstein assumed that light is made of corpuscles each carrying an energy $h\nu$, called *photons*.

Einstein assumed that light is made of corpuscles each carrying an energy $h\nu$, called *photons*. When a beam of light of frequency ν is incident on a metal, each photon transmits all its energy $h\nu$ to an electron near the surface; in the process, the photon is entirely absorbed by the electron.

11

Einstein assumed that light is made of corpuscles each carrying an energy $h\nu$, called *photons*. When a beam of light of frequency ν is incident on a metal, each photon transmits all its energy $h\nu$ to an electron near the surface; in the process, the photon is entirely absorbed by the electron. The electron will thus absorb energy only in quanta of energy $h\nu$, irrespective of the intensity of the incident radiation.

Einstein assumed that light is made of corpuscles each carrying an energy $h\nu$, called *photons*. When a beam of light of frequency ν is incident on a metal, each photon transmits all its energy $h\nu$ to an electron near the surface; in the process, the photon is entirely absorbed by the electron. The electron will thus absorb energy only in quanta of energy $h\nu$, irrespective of the intensity of the incident radiation.

Photoelectric effect does provide compelling evidence for the corpuscular nature of the electromagnetic radiation.

Compton Effect [1923]

Compton Effect [1923]

Compton effect confirms that photons behave like particles: they collide with electrons like material particles

Pair production, annihilation [1932]

- Predicted by Dirac's relativistic quantum mechanics
- Is a direct consequence of the mass–energy equation of Einstein $E=mc^2$ which states that pure energy can be converted into mass and vice versa

Pair production, annihilation [1932]

- Predicted by Dirac's relativistic quantum mechanics
- Is a direct consequence of the mass–energy equation of Einstein $E=mc^2$ which states that pure energy can be converted into mass and vice versa

$$h\nu=E_{e^-}+E_{e^+}+E_N$$

Pair production, annihilation [1932]

- Predicted by Dirac's relativistic quantum mechanics
- Is a direct consequence of the mass–energy equation of Einstein $E=mc^2$ which states that pure energy can be converted into mass and vice versa

$$h
u = E_{e^-} + E_{e^+} + E_N$$

= $(m_e c^2 + k_{e^-}) + (m_e c^2 + k_{e^+}) + K_N$

Wave Aspect of Particles

Matter Waves [1923]

Matter Waves [1923]

de Broglie's Hypothesis: all material particles should also display a dual wave–particle behavior:

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Matter Waves [1923]

de Broglie's Hypothesis: all material particles should also display a dual wave–particle behavior:

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

e.g. BuckminsterFullerene (C60) is the largest object observed to exhibit wave–particle duality

Particles vs Waves

Classical View of Particles and Waves

Classical View of Particles and Waves

Quantum View of Particles and Waves

Quantum View of Particles and Waves

Double-slit experimet shows:

- microscopic material particles do give rise to interference patterns.
- it is impossible to trace the motion of individual electrons.
- electrons display both particle and wave properties.

• In the realm of classical physics waves and particles are mutually exclusive.

- In the realm of classical physics waves and particles are mutually exclusive.
- Quantum mechanics provides the proper framework for reconciling the particle and wave aspects of matter.

- In the realm of classical physics waves and particles are mutually exclusive.
- Quantum mechanics provides the proper framework for reconciling the particle and wave aspects of matter.
- An experiment designed to isolate the particle features of a quantum system gives no information about its wave features, and vice versa

- In the realm of classical physics waves and particles are mutually exclusive.
- Quantum mechanics provides the proper framework for reconciling the particle and wave aspects of matter.
- An experiment designed to isolate the particle features of a quantum system gives no information about its wave features, and vice versa
- Particle and wave manifestations do not contradict or preclude one another, they are just complementary. Bohr.

• Heisenberg uncertainty principle:

 Heisenberg uncertainty principle: it is impossible to design an apparatus which allows us to determine the slit that the electron went through without disturbing the electron enough to destroy the interference pattern.

 Heisenberg uncertainty principle: it is impossible to design an apparatus which allows us to determine the slit that the electron went through without disturbing the electron enough to destroy the interference pattern.

$$\Delta x \Delta p \geq \frac{\hbar}{2}$$

 Heisenberg uncertainty principle: it is impossible to design an apparatus which allows us to determine the slit that the electron went through without disturbing the electron enough to destroy the interference pattern.

$$\Delta x \Delta p \geq \frac{\hbar}{2}$$

• If a particle is accurately localized (i.e., $\Delta x \to 0$), there will be total uncertainty about its momentum (i.e., $\Delta px \to \infty$)

Probabilistic Interpretation

In quantum mechanics the state (or one of the states) of a particle is described by a wave function $\psi(\vec{r},t)$, corresponding to de Broglie wave of this particle. It describes the wave properties of a particle.

Probabilistic Interpretation

In quantum mechanics the state (or one of the states) of a particle is described by a wave function $\psi(\vec{r},t)$, corresponding to de Broglie wave of this particle. It describes the wave properties of a particle.

Max Born interpreted as the probability of finding the particle somewhere in space:

$$\int_{\mathit{allSpace}} |\psi(\vec{r},t)|^2 d^3 r = 1$$

where ψ is a solution of the Schrödinger equation.

Classic: Rutherford Atom [1911]

Fails to explain:

- atoms are stable (should lose energy)
- radiate energy over discrete frequency ranges (should emit over continuous range)

Quantum: Bohr Atom [1913]

Shown by experiment:

- atoms are stable
- radiate energy over discrete frequency ranges
- Only a discrete set of circular stable orbits are allowed.
- Emission or absorption of radiation can take place only when an electron jumps from one allowed orbit to another.

Postulates of Quantum Mechanics

- Spatial distribution of a particle is defined by a wave function.
- A state vector (wave function) $\psi(\vec{r},t)$ contains all the information we need to know about the system and from which all needed physical quantities can be computed.
- Quantum postulates cannot be derived; they result from experiment.

 \bullet The state of any physical system is specified, at each time t, by a state vector $|\psi(t)\rangle$

- The state of any physical system is specified, at each time t, by a state vector $|\psi(t)\rangle$
- The time evolution of the state vector $|\psi(t)\rangle$ of a system is governed by the time-dependent Schrödinger equation:

$$i\hbar rac{\partial \ket{\psi(t)}}{\partial t} = \hat{H}\ket{\psi(t)}$$

- The state of any physical system is specified, at each time t, by a state vector $|\psi(t)\rangle$
- The time evolution of the state vector $|\psi(t)\rangle$ of a system is governed by the time-dependent Schrödinger equation:

$$i\hbar \frac{\partial \ket{\psi(t)}}{\partial t} = \hat{H} \ket{\psi(t)}$$

The square norm of wave function $|\psi(\vec{r},t)|^2$ represents a position probability density, that is the probability of finding the particle at time t in a volume element.

Superposition Principle

- Digression on vectors in R^2
- Superposition of wave functions solutions of Schrödinger equation:

$$\psi(\vec{r},t) = \alpha_1 \psi_1(\vec{r},t) + \alpha_2 \psi_2(\vec{r},t)$$

Measurement in Quantum Mechanics

- In QM the measurement process perturbs the system significantly.
- The act of measurement generally changes the state of the system

Computational Quantum

Mechanics

Quantum Information

The minimum unit of quantum information is a quantum bit, qubit. Is a linear superposition of two orthogonal quantum states:

$$|0
angle = egin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1
angle = egin{pmatrix} 0 \\ 1 \end{pmatrix}$ $|\psi
angle = lpha |0
angle + eta |1
angle$

where α and β are arbitrary complex values satisfying $|\alpha|^2 + |\beta|^2 = 1$.