Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Резонанс напряжений в последовательном контуре [3.2.2]

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 2021

Содержание

1	Аннотация	1
	1.1 Теоретическое вступление и модель	1
	1.2 Экспериментальная установка	1
2	Ход работы	2
3	Обработка результатов	4
4	Графики и таблицы	4
5	Вывод	4
6	Литература	5

1 Аннотация

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно частотных и фазово-частотных характеристик, определение основных па раметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

1.1 Теоретическое вступление и модель

XXX

1.2 Экспериментальная установка

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Схема экспериментального стенда показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжсением источника напрялсения (см., например, [3]), собранного на операционном усилителе, питание которого осуществляется встроенным блоком-выпрямителем от сети $\sim 220~\mathrm{B}$ (цепь питания на схеме не показана). Источник напряжсения (источник с нулевым внутренним сопротивлением) обеспечивает с высокой точностью постоянство амплитуды сигнала $\mathcal{E} = \mathcal{E}_0 \cos{(\omega t + \varphi_0)}$ на меняющейся по величине нагрузке - последовательном колебательном контуре, изображённом на рис. 1 в виде эквивалентной схемы.

Источник напряжения, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией. На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Величины ёмкостей C_n указаны на установке. Напряжение $\mathcal E$ на контуре через разъём « U_1 » попадает одновременно на канал 1 осциллографа и вход 1-го цифрового вольтметра. Напряжение на конденсаторе U_C подаётся через разъём « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра.

Рис. 1. Схема экспериментального стенда

2 Ход работы

- 1. Подготавливаем установку к работе и включаем приборы.
- 2. Выставляем на входе контура напряжение $E=100~{\rm MB},$ в течении всей работы поддерживая его постоянным.
- 3. Добиваемся получения двух отцентрованных синусоид на осциллографе. Убеждаемся, что одна из синусоид при изменении частоты f генератора меняет амплитуду относительно начала координа, в то время как амплитуда другой не меняется с погрешностью не более 1%.
- 4. Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измеряем резонансные частоты f_{0n} и напряжения $U_C(f_{0n})$. Регистрируйем также напряжения $E(f_{0n})$, игнорируя отклонения в пределах относительной погрешности 1
- 5. Для контуров ёмкостями $C_1 = 25$ нФ и $C_1 = 57.2$ нФ снимаем амплитудно-частотные характеристики $U_C(f)$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E.

	$C_1 = XX$ нФ					$C_4 = XX$ нФ				
n	f , к Γ ц	σ_f , к Γ ц	A, B	σ_A , B	n	f, кГц	σ_f , к Γ ц	A, B	σ_A , B	
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										

Таблица 1: таблица X

6. Для тех же двух контуров снимите фазово-частотные характеристики $\varphi_C(f)$ ($\sim 10-15$ точек в сумме по обе стороны от резонанса) при том же напряжении E.

C	$Z_1 = XX$	ΤΗΦ	$C_4 = XXH\Phi$				
n	f , к Γ	$-\varphi/\pi$	n	f , к Γ ц	$-\varphi/\pi$		
1			1				
2			2				
3			3				
4			4				
5			5				
6			6				
7			7				
8			8				
9			9				
10			10				

Таблица 2: таблица X

3 Обработка результатов

- XXX
- XXX
- XXX
- XXX
- XXX

XXX

4 Графики и таблицы

XXX

5 Вывод

XXX

6 Литература

1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.