Artificial Intelligence AI 2002 Lecture 15

Mahzaib Younas

Lecturer Department of Computer Science
FAST NUCES CFD

Connection between ∀ and ∃

Asserting that "Everyone dislikes parsnips" is the same as asserting there does not exist someone who likes them, and vice versa:

```
\forall x \ \neg Likes(x, Parsnips) is equivalent to \neg \exists x \ Likes(x, Parsnips)
```

We can go one step further: "Everyone likes ice cream" means that there is no one who does not like ice cream:

```
\forall x \ Likes(x, IceCream) is equivalent to \neg \exists x \ \neg Likes(x, IceCream)
```

Connection between ∀ and ∃

- I ∀ is really conjunction over the universe of objects while ∃ is a disjunction.
- Quantifiers obey De Morgan's rules. The De Morgan rules for quantified and unquantified sentences are as follows:

```
\forall x \ \neg Likes(x, Parsnips) is equivalent to \neg \exists x \ Likes(x, Parsnips)
\forall x \ Likes(x, IceCream) is equivalent to \neg \exists x \ \neg Likes(x, IceCream)
```

$$\neg \exists x \ P \equiv \forall x \ \neg P
\neg \forall x \ P \equiv \exists x \ \neg P
\neg \exists x \ \neg P \equiv \exists x \ \neg P
\neg \exists x \ \neg P \equiv \forall x \ P
\neg \forall x \ \neg P \equiv \exists x \ P$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q
\neg (P \land Q) \equiv \neg P \lor \neg Q
P \land Q \equiv \neg (\neg P \lor \neg Q)
P \lor Q \equiv \neg (\neg P \land \neg Q)$$

Equality

We can use the equality symbol to signify that two

terms refer to the same object. For example

$$Father(John) = Henry$$

- The equality symbol can be used to state facts about a given function.
- To say that Richard has at least two brothers,

```
\exists x, y \; Brother(x, Richard) \land Brother(y, Richard)
```

The above sentence does not have the intended meaning. The correct version is:

```
\exists x, y \; Brother(x, Richard) \land Brother(y, Richard) \land \neg(x = y)
```

AI2002

FOL - Syntax

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
 AtomicSentence \rightarrow Predicate | Predicate(Term, ...) | Term = Term
ComplexSentence \rightarrow (Sentence) | [Sentence]
                         ¬ Sentence
                         Sentence \wedge Sentence
                         Sentence \lor Sentence
                         Sentence \Rightarrow Sentence
                         Sentence \Leftrightarrow Sentence
                          Quantifier Variable, . . . Sentence
```

FOL - Syntax

```
Term \rightarrow Function(Term,...)
                                            Constant
                                            Variable
                    Quantifier \rightarrow \forall \mid \exists
                      Constant \rightarrow A \mid X_1 \mid John \mid \cdots
                       Variable \rightarrow a \mid x \mid s \mid \cdots
                      Predicate \rightarrow True \mid False \mid After \mid Loves \mid Raining \mid \cdots
                      Function \rightarrow Mother \mid LeftLeg \mid \cdots
OPERATOR PRECEDENCE : \neg, =, \land, \lor, \Rightarrow, \Leftrightarrow
```

Assertions

- Sentences are added to a knowledge base using TELL are called assertions
- We want to TELL things to the KB

TELL(KB, King(John))

 $TELL(KB, \forall x king(x) => Person(x))$

John is a king and that king is a person.

AI2002

Queries

- Questions are asked to the knowledge base using ASK called as queries or goals.
- We want to ASK things to the KB

TELL(KB, King(John))
TELL(KB, \forall x king(x) => Person(x))
John is a king and that king is a person.

$$Ask(KB, King(John))$$
 $Ask(KB, Person(John))$

AI2002

Assertions and Queries in FOL

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such sentences are called assertions.

```
Tell(KB, King(John)).

Tell(KB, Person(Richard)).

Tell(KB, \forall x \ King(x) \Rightarrow Person(x))
```

```
Ask(KB, King(John))
Ask(KB, Person(John))
Ask(KB, \exists x \ Person(x))
```

AI2002

9

Inferences in First Order Logics

Inference in First Order Logic

Two ways of inference in First Order Logic

- I The *first-order* inference can be done by converting the knowledge base to *propositional* logic
 - some simple inference rules that can be applied to sentences
 - with quantifiers to obtain sentences without quantifiers.

The inference methods that manipulate first-order sentences directly.

Universal Instantiation

- We can infer any sentence obtained by substituting a ground term for the variable.
- Ground term is the term that is without variables.

```
 E.g., \ \forall x \ King(x) \land Greedy(x) \ \Rightarrow \ Evil(x) \ \mathsf{yields}   King(John) \land Greedy(John) \ \Rightarrow \ Evil(John)   King(Richard) \land Greedy(Richard) \ \Rightarrow \ Evil(Richard)   King(Father(John)) \land Greedy(Father(John)) \ \Rightarrow \ Evil(Father(John))   \vdots
```

Universal Instantiation

$$rac{orall v \ lpha}{ ext{SUBST}(\{v/g\}, lpha)}$$

for any variable $oldsymbol{v}$ and ground term $oldsymbol{g}$

SUBST(θ , α) denotes the result of applying the substitution θ to the sentence α .

Universal Instantiation Example

```
E.g., \forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \; \text{yields}
King(John) \land Greedy(John) \Rightarrow Evil(John)
King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))
\vdots
```

The three sentences are obtained with substitutions {x/John}, {x/Richard }, and {x/Father (John)}.

Existential Instantiation

- The variable is replaced by a single new constant symbol.
- I For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base,

$$rac{\exists \, v \;\; lpha}{ ext{SUBST}(\{v/k\}, lpha)}$$
 .

Existential Instantiation

E.g.,
$$\exists x \; Crown(x) \land OnHead(x, John) \; \text{yields}$$

 $Crown(C_1) \land OnHead(C_1, John)$

I C₁ is the constant which does not appear elsewhere in the knowledge base. Such a constant is called Skolem constant and the process is called Skolemization.

- Universal Instantiation can be applied <u>several</u> times to add new sentences; the new KB is <u>logically equivalent</u> to the old one.
- Existential Instantiation can be applied <u>once</u> to replace the existential sentence; the new KB is <u>NOT</u> <u>equivalent</u> to the old,
- But it is **inferentially equivalent** in a sense that it is satisfiable iff the old KB was satisfiable.

FOL to Propositional Interference

FOL to Propositional Inference

In order to reduce FOL to propositional inference, we must have rules for inferring non-quantified sentences from quantified sentences.

For ∃:

An existentially quantified sentence can be replaced by <u>one</u> instantiation.

For ∀:

A universally quantified sentence can be replaced by the set of <u>all possible</u> instantiations.

FOL to Propositional Inference

Suppose the KB consisits of following sentances:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

Greedy(John)

Brother(Richard, John)
```

Instantiating the universal sentence in all possible ways, we have

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(John)

Greedy(John)

Greedy(John)

Brother(Richard, John)
```

- Propositionalization seems to generate the lots of irrelevant sentences. For Example
- Given the query Evil(x) for the following KB,

```
King(John) \land Greedy(John) \Rightarrow Evil(John)

King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)

King(John)

Greedy(John)

Greedy(John)

Brother(Richard, John)
```

It may generate sentences such as

King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard).

The inference is that John is evil

Propositionalization seems to generate lots of irrelevant sentences.

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

The propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With function symbols, it gets much much worse!

Solution:

- The inference is that John is evil— $\{x/John\}$ solves the query Evil(x)—The substitution $\theta = \{x/John\}$ achieves that goal.
- If there is some substitution θ
 - that makes the premise of the implication identical to sentences already in the knowledge base,
 - then we can assert the conclusion of the implication, after applying θ .
- In this case, the substitution $\theta = \{x/John\}$ achieves that aim.

For Example,

```
King(John) \wedge Greedy(John) \Rightarrow Evil(John)

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)

King(John)

Greedy(John)

Brother(Richard, John)
```

makes the premise of the implication identical to sentences already in the knowledge base

Suppose that instead of knowing Greedy(John), we know that everyone is greedy:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

Greedy(John) \forall y \ Greedy(y)

Brother(Richard, John)
```

- Then we would still able to conclude that Evil(John), because we know that
 - John is a king (given)
 - John is greedy (because everyone is greedy).

x/y

- Apply the substitution {x/John, y/John} to
 - the implication premises King(x) and Greedy(x)
 - the knowledge-base sentences King(John) and Greedy(y) will make them identical.
- In this way, we can infer the conclusion of the implication.

Unification

 The Unify algorithm takes two sentences and returns a unifier for them if one exists:

```
Unify(p,q) = \theta where Subst(\theta,p) = \text{Subst}(\theta,q).
```

- Suppose we have a query AskVars(Knows(John, x)): whom does John know?
- To answer this question, we have to find all sentences in the knowledge base that unify with Knows(John, x).

Unification

- The condition for unification are
- 1. Predicate symbol must be same in both sentences.
- 2. Number of arguments in both expression must be identical
- 3. Unification will fail if the two similar variable present in the same expression.

Unification

Here are the results of the unification

```
\begin{aligned} &\text{Unify}(Knows(John,x),\ Knows(John,Jane)) = \{x/Jane\} \\ &\text{Unify}(Knows(John,x),\ Knows(y,Bill)) = \{x/Bill,y/John\} \\ &\text{Unify}(Knows(John,x),\ Knows(y,Mother(y))) = \{y/John,x/Mother(John)\} \\ &\text{Unify}(Knows(John,x),\ Knows(x,Elizabeth)) = fail\ . \end{aligned}
```

- The last unification fails because x cannot take on the values John and Elizabeth at the same time
- Knows(x, Elizabeth) means "Everyone knows
 Elizabeth," and we can infer that John knows Elizabeth

Unification --- Standardizing Apart

- This problem arises because two sentences happen to use the same variable name, x
- The problem can be avoided by standardizing apart which means <u>renaming its variables</u> to avoid name clashes.
- Standardizing apart eliminates overlap of variables.
- For example, we can rename x in Knows(x, Elizabeth)
 to x₁₇ (a new variable name) without changing its
 meaning.

Unify $(Knows(John, x), Knows(x_{17}, Elizabeth)) = \{x/Elizabeth, x_{17}/John\}$

Unification Example

•
$$O(F(y), y)$$
 and $O(F(x), J)$.

• Q(y,G(A,B)) and Q(G(x,x),y).

Unification Example

• O(F(y), y) and O(F(x), J).

Progressive unification:

```
O (<u>F</u>(<u>y</u>), y), O (<u>F</u>(<u>x</u>), J) : {} needs recursion
O (F (<u>y</u>), y), O (F(<u>x</u>), J) : {y/x}
O (F (x), <u>x</u>), O (F (x), <u>J</u>) : {y/x, x/J} = {y/J, x/J}
O (F (J), J), O (F (J), J) : {y/x, x/J} = {y/J, x/J}
```

Unification Example

• Q(y, G(A, B)) and Q(G(x, x), y).

Progressive unification:

```
Q(\underline{y}, G(A, B)), Q(\underline{G}(x, x), y) : {\underline{y}/\underline{G}(x, x)}, Q(G(x, x), \underline{G}(A, B)), Q(G(x, x), \underline{G}(x, x)) : {\underline{y}/\underline{G}(x, x)} needs recursion Q(G(x, x), G(\underline{A}, B)), Q(G(x, x), G(\underline{x}, x)) : {\underline{y}/\underline{G}(x, x), \underline{x}/\underline{A}} Q(G(A, A), G(A, \underline{B})), Q(G(A, A), G(A, \underline{A})) : {\underline{y}/\underline{G}(x, x), x/A} Cannot unify constant A with constant B.
```

FOL Examples

Kinship Domain:

One's husband is one's male spouse:

$$\forall w, h \; Husband(h, w) \Leftrightarrow Male(h) \land Spouse(h, w)$$
.

Male and female are disjoint categories:

$$\forall x \; Male(x) \Leftrightarrow \neg Female(x)$$
.

Parent and child are inverse relations:

$$\forall p, c \; Parent(p, c) \Leftrightarrow Child(c, p)$$
.

A grandparent is a parent of one's parent:

$$\forall g, c \; Grandparent(g, c) \Leftrightarrow \exists p \; Parent(g, p) \land Parent(p, c)$$
.

A sibling is another child of one's parents:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow x \neq y \land \exists p \; Parent(p, x) \land Parent(p, y)$$

Reading Material

- Artificial Intelligence, A Modern Approach Stuart J. Russell and Peter Norvig
 - Chapter 8 & 9.