SEMICONDUCTOR OPTICAL ELEMENT

Publication number: JP6244509

Publication date: 1994-09-02

Inventor: IRIKAWA MASANORI; IGA KENICHI

Applicant: FURUKAWA ELECTRIC CO LTD; IGA KENICHI

Classification:

- international: H01L33/00; H01S5/00; H01L33/00; H01S5/00; (IPC1-7):

H01S3/18; H01L33/00

- European:

Application number: JP19930163971 19930608

Priority number(s): JP19930163971 19930608; JP19920177437 19920610

Report a data error here

Abstract of JP6244509

PURPOSE:To provide a blue semiconductor optical element oscillating at a high temperature higher than a room temperature. CONSTITUTION:In a semiconductor optical element containing either Zn or Cd as group II element, composed of a compound semiconductor containing either S or Se or Te as group VI element and having a double-heterostructure containing an active layer 4 and clad layer 6, a part of the clad layer 6 or optical confinement layer 5 is provided with a multiple quantum barrier structure 8 using a strain superlattice layer and having the function of reflecting an incident carrier as wave motion and in the manner of entering a phase where an incident wave and reflected wave intensify each other.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-244509

(43)公開日 平成6年(1994)9月2日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 S 3/18

H01L 33/00

D 7376-4M

審査請求 未請求 請求項の数3 FD (全 5 頁)

(21)出顯番号

特顯平5-163971

(22)出願日

平成5年(1993)6月8日

(31)優先権主張番号 特願平4-177437

(32)優先日

平4(1992)6月10日

(33)優先権主張国

日本 (JP)

(71)出願人 000005290

古河電気工業株式会社

東京都千代田区丸の内2丁目6番1号

(71)出願人 591055399

伊賀 健一

東京都町田市つくし野 2-33-10

(72)発明者 入川 理徳

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会补内

(72)発明者 伊賀 健一

東京都町田市つくし野 2-33-10

(74)代理人 弁理士 鈴木 雄一

(54) 【発明の名称】 半導体光素子

(57)【要約】

【目的】 室温以上の髙温で発振する骨色半導体光素子 を提供する。

【構成】 2族元素として2nもしくはCdのいずれか を含み、6族元素としてS、SeもしくはTeのいずれ かを含む化合物半導体から構成され、活性層4とクラッ ド層6を含むダブルヘテロ構造を有する半導体光素子に おいて、クラッド層6あるいは光閉じ込め層5の一部 に、入射キャリアを波動として反射し、かつ、入射波と 反射波とが強め合う位相となるように反射し得る作用を 有する、歪超格子層を用いた多重量子障壁構造8を設け

【特許請求の範囲】

【請求項1】 2族元素としてZnもしくはCdのいず れかを含み、6族元素としてS、SeもしくはTeのい ずれかを含む化合物半導体から構成され、活性層とクラ ッド層を含むダブルヘテロ構造を有する半導体光素子に おいて、クラッド層あるいは光閉じ込め層の一部に、入 射キャリアを波動として反射し、かつ、入射波と反射波 とが強め合う位相となるように反射し得る作用を有す る、歪超格子層を用いた多重量子障壁構造を設けたこと を特徴とする半導体レーザ素子。

【請求項2】 多重量子障壁構造が2nx Cdi-x Sy Sei-y (0≤x≤1、0≤y≤1)を含むことを特徴 とする請求項1記載の半導体レーザ素子。

- 【請求項3】 多重量子障壁構造が2nx Cd1-x Te (0≤x≤1)を含むことを特徴とする請求項1記載の 半導体レーザ素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、青色発光をする半導体 光素子、特に半導体レーザ素子に関する。

[0002]

【従来技術】骨色レーザを実現する材料系として、2-6 族系が注目されている。従来の青色発光をする半導体 レーザ素子としては、次のようなものがある(文献1) 2参照)。この半導体レーザ素子は、例えば図4に示す 断面構造をなしている。即ち、n+ -GaAs基板1上 に、n^{*} -GaAsパッファ層1a、1.5μm厚さの n-ZnSo.054 Seo.946 クラッド層2、0,5 um*

ただし、ΔΕε:バンドギャップ差

EAfp : 活性層の発振時のホールに対する擬フェルミレ ベル

EAV : 活性層の発振時の価電子帯上端のレベル

Eclfp:pクラッド層の発振時のホールに対する擬フェ ルミレベル

Ectv: pクラッド層の発振時の価電子帯上端のレベル 式(1)において、| 内は、pクラッド層へ十分な ドーピングが行われれば、通常、小さい。このとき、Δ E』が小さいことは、そのまま、伝導帯へテロ障壁が小 さいことを意味する。一方、pクラッド層へのドーピン 40 1)3619. グが不十分な場合、 | 内第2項が増大し、AEc は 更に小さくなる。

【0004】図4に示す実施例では、ZnSeとCd 0.2 Zno.8 Seとの間のAE は、O. 26eVとさ れている(文献1参照)。この値はGaInAsP/I n P系(1. 3μm帯)のΔEε ≒0. 4 e Vと比べる と40%も小さい。活性層への注入キャリアレベルを3 ~6×10¹⁸ c m⁻³とすると、式(1)第2項は50~ 80meVとなる。また、一方で、量子井戸の最低量子 準位は伝導帯下端からおよそ50meV高く、活性層の 50

厚さのn-ZnSe (Clドープ: 5×10¹⁷ cm⁻³) 光閉じ込め層3、Cdo.2 Zno.8 Se井戸層4bとZ nSe障壁層4aの多重量子井戸構造からなる活性層 4、0.5μm厚さのp-ZnSe(Nドープ:4×1 0¹⁷ c m⁻³) 光閉じ込め層 5、1 μ m 厚さの p - Z n S 0.054 Se0.946 クラッド層6、厚さ1000Åのp - 2 n S e キャップ層 7 を順次積層したものである。上 述のような2-6族系の半導体レーザ素子には、二つの 問題点があった。即ち、

- 10 1) p、nのドーピングが困難であった。
 - 2) ヘテロ障壁が小さい。

第1の問題については、プラズマを用いたNドーピング により、1018 c m-3台のp型ドーピングが可能にな り、ほぼ解決されてきている。第2の問題については、 骨色領域において発光し、格子整合する材料どうしでへ テロ障壁(バンドギャップ差)の大きい材料が存在しな いことから、本質的な難しさを有していると考えられ る。即ち、活性層とキャリア閉じ込めを行うクラッド層 のいずれかが歪超格子層とならざるを得ない。ところ 20 で、歪超格子層の臨界膜厚と歪量の制約から、歪量を大 きくすることには限界がある。従って、活性層とクラッ ド層とのバンドギャップ差にも制約が存在し、十分大き いバンドギャップ差を実現できないことになる。

【0003】ここで、ダブルヘテロ接合レーザ構造にお けるレーザ発振時のヘテロ障壁の高さについて述べる。 例えば、活性層にpドーピングを行った場合の活性層と pクラッド層との伝導帯側のヘテロ障壁 Δ Ec は次式で 表される。

 $\Delta E_{c} = \Delta E_{g} - | (E_{Afp} - E_{AV}) - (E_{Clfp} - E_{CLV}) | \cdot \cdot \cdot (1)$

30 電子の擬フェルミレベルは、発振時にはこの量子準位よ り40~10meV髙くなるから、活性層の擬フェルミ レベルから測ったヘテロ障壁高さは約60~120me Vとなる。このように、図4にその一例を示す従来構造 では、ΔEc は十分な大きさでなく、この為に、キャリ ア、特に電子がpクラッド層側にオーバーフローし、リ ークすることが、室温以上の高温側でのCW発振、良好 な特性を実現する妨げの原因となっていると考えられ

文献 1:H. Jeon et al., Appl. Phys. Lett., 59(199

文献 2: W. Xie et al., 日本応用物理学会年会 1992春 予稿集28a.

[0005]

【発明が解決しようとする課題】上述のように、従来の 育色発光をする半導体光素子の構造では、ΔEc は十分 な大きさでなく、室温以上の高温側でのCW発振、良好 な特性を実現することが困難であるという問題があっ

[0006]

【課題を解決するための手段】本発明は上記問題点を解

決した半導体光素子を提供するもので、2族元素として ZnもしくはCdのいずれかを含み、6族元素として S、SeもしくはTeのいずれかを含む化合物半導体か ら構成され、活性層とクラッド層を含むダブルヘテロ構 . 造を有する半導体光素子において、クラッド層あるいは 光閉じ込め層の一部に、入射キャリアを波動として反射 し、かつ、入射波と反射波とが強め合う位相となるよう に反射し得る作用を有する、歪超格子層を用いた多重量 子障壁構造を設けたことを特徴とするものである。

[0007]

【作用】多重量子障壁構造の原理は、K. Iga 等により提 案されたもので、入射キャリアを波動として反射し、入 射波と反射波とが強め合う位相となるように超格子構造 ・を構成することにより、入射キャリアを超格子構造体で 波動として"共鳴散乱"させることで、古典的障壁高さ よりも高い障壁高さを実現するものである(文献3、4 参照)。一方、歪超格子構造によるヘテロ障壁の増大、 制御の考え方は、3-5族系では文献5に提示されてい る。この考え方を多重量子障壁構造に応用し、GaIn AsP系発光素子において、より高い実効バリア高さを 実現した多重量子障壁構造の構成法については、特開平 5-7051および文献6に開示した。本発明は、上記 概念を2-6族系骨色半導体レーザ素子に適用したもの であり、その効果は次の通りである。即ち、

1) 歪超格子とすることで、ヘテロ障壁高さを人為的に 制御、設定でき、より大きいヘテロ障壁をもつ材料を組 み合わせることで、より大きい実効バリア高さを実現で きる(文献5参照)。

2) 2-6族系でバルククラッド層を用いる限り、ΔΕ c を大きくするには、活性層の歪量を増大させるしか方 法がないが、この方法では現状で限界に近い。これに対 して、クラッド層の一部を歪超格子とすることで、より ヘテロ障壁の大きい材料をクラッド層の一部に用いるこ とができる。このとき、多重量子障壁構造の原理を用い ることで、トンネリングなどによるリークが存在せず、 有効にキャリアを閉じ込め得るクラッド層を構成する事 が出来る。

文献 3 : K. Iga et al., Electron. Lett., 22, 1008 (198 6).

文献 4: K. Iga, Conference on Laser and Electro-Opti cs. California, Tech. Digest12 (1992) 2.

文献 5: F. L. Schuermeyer et al., Appl. Phys. Lett., 5 5, 1877 (1989) .

文献 6: M. Irikawa et al., Jpn. J. Appl. Phys., 31, L135 1 (1992).

[0008]

【実施例】以下、図面に示した実施例に基づいて本発明 を詳細に説明する。図1(a)、(b)は、それぞれ本 考案にかかる半導体レーザ素子の一実施例の断面図と、 レーザ発振時の伝導帯エネルギーパンドの概念図であ

る。本実施例は、歪超格子多重量子障壁層8を除いて は、図4で説明した従来例と同様である。9はn電極、 10はp電極である。 歪超格子多重量子障壁層 8は、図 2 (a) に示すように、活性層 4 に近い側から、障壁層 8aとして、層厚さ80ML(モノレーヤー)および2 OMLのZnSe層を各1層、障壁層8bとして、1. 4 %引張り歪を有する 6 M L の Z n So.3 S e o.7 層を 5層、を用いている。また、井戸層8cとして、1.4 %圧縮歪を有する6MLのCdo.2 Zno.8 Se層を7 10 層、用いている。引張り歪み層と圧縮歪み層とを交互に **穳層することで、この様に比較的厚い歪超格子の形成が** 可能となる。

【0009】このような多重量子障壁構造に対する1次 元ポテンシャルモデルを図2(a)に示す。このポテン シャルモデルにシュレディンガー方程式を適用し、トラ ンスファーマトリックス法(文献3参照)を用いて、活 性層4から歪超格子多重量子障壁層8へ向かって入射す る電子に対する反射率を計算した結果を図2(b)に示 す。ここで、有効質量としては、Cdo.2 Zno.8 Se 20 については0. 15mo、ZnSeについては0. 16 mo 、 Zn So.3 Seo.7 については O. 23 mo とし た。ここにmo は電子の静止質量である。図2(b)か らわかるように、実効バリア高さとして O. 4 e V の値 が得られる。図2(a)のモデルにおいて、今、活性層 4のCd0.2 Zn0.8 Se井戸層4bの電子に対する擬 フェルミレベルを70meVと仮定すると、擬フェルミ レベルから測った障壁高さは、従来の2nSeで180 meV、歪超格子多重量子障壁層8で330meVとな る。即ち、この場合には、活性層の擬フェルミレベルか ら測ったヘテロ障壁高さは実効的に図4の例より150 meV高くなり、210meV~270meVとなる。 この値は、現在通信用に実用化されているGalnAs P/InP系レーザのそれと同等の値である。このよう にして、本実施例によれば、ヘテロ障壁高さを従来の2 倍近くに大きくすることができる。図3に、しきい値電 流密度の温度依存性を、従来構造の素子と本実施例につ いて示した。図中、□印は報告されている測定値、CW (従来例) を示す直線は光励起データから推定したもの である。この様に、本実施例によれば、背色半導体レー ザ素子の温度特性が大幅に改善され、特に、室温以上の 髙温でも十分低いしきい値で発振可能な実用レベルの素 子の実現が可能になる。

【0010】なお、本発明は上記実施例に限らず、多重 量子障壁構造を構成する材料系としては、GaP基板上 もしくはGaAs基板上に(Zn、Cd)S系を、ま た、GaAs基板上もしくはInGaAs基板上に(Z n、Cd)(S、Te)系を用いてもよい。本発明の素 子は、MOCVD法の他、MBE法あるいはガスソース MBE法などを用いて成長させることもできる。

[0011] 50

30

5

【発明の効果】以上説明したように本発明によれば、2 族元素としてZnもしくはCdのいずれかを含み、6族 元素としてS、SeもしくはTeのいずれかを含む化合 物半導体から構成され、活性層とクラッド層を含むダブ ルヘテロ構造を有する半導体光素子において、クラッド 層あるいは光閉じ込め層の一部に、入射キャリアを波動 として反射し、かつ、入射波と反射波とが強め合う位相 となるように反射し得る作用を有する、歪超格子層を用 いた多重量子障壁構造を設けるため、室温以上の温度で CW発振を起こさせることができるという優れた効果が ある。

【図面の簡単な説明】

【図1】(a)、(b)は、それぞれ本考案にかかる半 ・ 導体レーザ素子の一実施例の断面図と、レーザ発振時の 伝導帯エネルギーバンドの概念図である。

【図2】(a)、(b)は、それぞれ上記実施例の多重 量子障壁構造に対する1次元ポテンシャルモデルを示す 図と、入射電子のエネルギー準位と反射率の関係につい ての計算結果を示す図である。

【図3】上記実施例のしきい値電流密度と温度との関係を示す図である。

【図4】従来の半導体レーザ素子の断面図である。 【符号の説明】

. 1	n+ -GaAs基板
1 a	n+ ーGaAsパッファ層
2	n-ZnS0.054 Se0.946 ク
ラッド層	
. 3	n-ZnSe光閉じ込め層
4,14	活性層
4 a	ZnSe障壁層
4 b	Cdo.2 Zno.8 Se井戸層
5	p-ZnSe光閉じ込め層
6	p-ZnS0.054 Se0.946 ク
ラッド層	
7	p ⁺ -ZnSeキャップ層
8	歪超格子多重量子障壁層
8 a	ZnSe障壁層
8 Ъ	Zn So.3 Seo.7 障壁層
8 c	C d 0.2 Z n 0.8 S e 井戸層
9	n電極
1 0	p電極

【図1】

[図2]

(a)

