# Retrieval Performance Bound Analysis for Single Term Queries

Peilin Yang and Hui Fang University of Delaware

### The Motivation

- IR Ranking models have been studied for decades
- Many models:
  - are based on "bag-of-terms" assumption
  - only play with Document Term Frequency (TF), Inverted Document Frequency (IDF), Document Length (DL) and other collection statistics

### The question is ...

- Do we reach the upper bound of such models?
  - if so, what would it be?
  - if not, how can we improve?

### Find the performance upper bound:

- It is really hard...
- It might be easier if we focus on the simplest case:
  - the queries with only one query term (Single Term Queries)

#### when there is only one query term...

#### **BM25**

$$f(Q,d) = \sum_{t \in Q} \frac{(k_3+) c_t^q}{k_3 + c_t^q} \cdot \frac{(k_1+1) \cdot c_t^d}{c_t^d + k_1 \cdot (1-b+b \cdot \frac{|d|}{avdl})} \cdot \ln \left( \frac{N-N_t + 0.5}{N_t + 0.5} \right)$$

### **Pivoted Document Length Normalization**

$$f(Q,d) = \sum_{t \in Q} \frac{1 + \ln(1 + \ln(c_t^d))}{1 - s + s \cdot \frac{|d|}{avdl}} \cdot \ln\left(\frac{N + 1}{N_t}\right)$$

### Dirichlet Language Model

$$f(Q,d) = \sum_{l \in Q} \ln \left( \frac{c(t,d) + \mu \cdot p(t|C)}{|d| + \mu} \right) \text{Ranking invariants are omitted}$$

Summarization is omitted

### If there is only one query term...

#### **BM25**

$$f(Q,d) = \frac{c_t^a}{c_t^d + k_1 \cdot (1 - b + b \cdot \frac{|d|}{avdl})}$$

### **Pivoted Document Length Normalization**

$$f(Q, d) = \frac{1 + \ln(1 + \ln(c_t^d))}{1 - s + s \cdot \frac{|d|}{avdl}}$$

#### **Dirichlet Language Model**

$$f(Q, d) = \frac{c_t^d + \mu \cdot p(t|C)}{|d| + \mu}$$

## The simplified model

$$f(c_t^d, |d|) = \frac{\alpha \cdot g(c_t^d) + c_1}{\gamma \cdot c_t^d + \beta \cdot h(|d|) + c_2}$$

- g(\*) and h(\*) are arbitrary non-linear functions
- alpha, beta, gamma, c1, c2 are constants

# Partial list of the models that can be transformed to this form

**BM25** 

**Pivoted Normalization** 

Dirichlet Language Model

F2EXP

BM3

DIR+

. . .

# In order to find the performance upper bound:

- We can use brute force method to find the optimum
- But this is too expensive yet inefficient

# Follow the cost/gain analysis of learning-to-rank...

#### Minimize the cost

Cost: pairwise cross-entropy cost applied to the logistic of the difference of the model scores.

$$C_{ij} = \frac{1}{2}(1 - S_{ij})\sigma(s_i - s_j) + \log(1 + e^{-\sigma(s_i - s_j)})$$

Use gradient boost

$$\frac{\partial C_{ij}}{\partial s_i} = \sigma \left( \frac{1}{2} (1 - S_{ij}) - \frac{1}{1 + e^{\sigma(s_i - s_j)}} \right) = -\frac{\partial C_{ij}}{\partial s_j}$$

Simplified as

$$\frac{\partial C_{ij}}{\partial s_i} = \frac{-\sigma}{1 + e^{\sigma(s_i - s_j)}}$$

# Follow the cost/gain analysis of learning-to-rank...

Minimize the cost (cont.)

Reduce the cost via stochastic gradient

$$p_k \to p_k - \eta \frac{\partial C}{\partial p_k} = p_k - \eta \left( \frac{\partial C}{\partial s_i} \frac{\partial s_i}{\partial p_k} + \frac{\partial C}{\partial s_j} \frac{\partial s_j}{\partial p_k} \right)$$

Unfortunately this is the "optimization" cost NOT the actual cost



# Follow the cost/gain analysis of learning-to-rank...

### Maximize the gain

Inspired by LambdaRank

$$\lambda_{ij} = rac{\partial C(s_i - s_j)}{\partial s_i} = rac{\sigma}{1 + e^{\sigma(s_i - s_j)}} |\Delta_{MAP}|$$



$$\lambda_{ij} = \frac{\sigma}{1 + e^{\sigma(s_i - s_j)}} \frac{1}{|R|} \left( \left| \frac{n}{r_j} - \frac{m}{r_i} \right| + \sum_{k=r_i+1}^{r_i-1} \frac{I(k)}{k} \right)$$

### **Experiments: Tested Models**

• DIR

$$\frac{c(t,d) + \mu \cdot p(t|C)}{|d| + \mu}$$

• TFDL1

$$\frac{c(t,d)+c_1}{|d|+c_2}$$

• TFDL2

$$\frac{\alpha \cdot c(t,d) + c_1}{\beta \cdot |d| + c_2}$$

### **Collections and Queries**

| Collections | Topics                                          | # of queries |  |
|-------------|-------------------------------------------------|--------------|--|
| disk1&2     | 57,75,77,78                                     | 4            |  |
| ROBUST04    | 312,348,349,364,367,379,<br>392,395,403,417,424 | 11           |  |
| WT2G        | 403,417,424                                     | 3            |  |
| GOV2        | 757,840                                         | 2            |  |

# **Experiment Results**

|                 | Models             | disk1&2 | Robust04 | WT2G   | GOV2   |
|-----------------|--------------------|---------|----------|--------|--------|
| Basic           | DIR                | 0.4009  | 0.3823   | 0.3660 | 0.2083 |
|                 | BM25               | 0.4016  | 0.3824   | 0.4038 | 0.2896 |
|                 | PIV                | 0.3987  | 0.3812   | 0.4038 | 0.3079 |
|                 | F2EXP              | 0.4000  | 0.3682   | 0.3183 | 0.1950 |
|                 | ВМЗ                | 0.4015  | 0.3823   | 0.3792 | 0.2554 |
|                 | DIR+               | 0.4009  | 0.3823   | 0.3794 | 0.2083 |
| Upper<br>Bounds | DIR <sup>U</sup>   | 0.4244  | 0.4136   | 0.4055 | 0.2724 |
|                 | TFDL1 <sup>U</sup> | 0.4273  | 0.4209   | 0.4095 | 0.3193 |
|                 | TFDL2 <sup>U</sup> | 0.4273  | 0.4209   | 0.4095 | 0.3255 |

### **Future Work**

- Extend to the queries with multiple terms
- Mathematical prove

# Thank You! Q & A