Theoretical Guide

Miguel Nogueira

1 Math

$$MOD = 998'244'353$$

 $PI = acos(-1)$

1.1 Logarithm

$$\log_b mn = \log_b m + \log_b n \qquad \log_b \frac{m}{n} = \log_b m - \log_n n \qquad \log_b n^p = p \log_b n$$

$$\log_b \sqrt[q]{n} = \frac{1}{q} \log_b n \qquad \log_b n = \log_a n \log_b a \qquad b^{\log_b k} = k$$

$$\log_b a = \frac{\log_c a}{\log_c b} \qquad \log_b a = \frac{1}{\log_a b} \qquad \log_b a \log_a c = \log_b c$$

$$\log_b 1 = 0 \qquad \log_b b = 1$$

2 Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

3 Number Theory

$$(a+b) \mod m = (a \mod m + b \mod m) \mod m$$

 $(a-b) \mod m = (a \mod m - b \mod m) \mod m$
 $(a \times b) \mod m = ((a \mod m) \times (b \mod m)) \mod m$
 $a^b \mod m = (a \mod m)^b \mod m$
 $a \equiv b \pmod m \iff (b-a)|m$

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$
$$\operatorname{lcm}(a, b) \times \gcd(a, b) = a \times b$$
$$\operatorname{lcm}(a, b) = \frac{a \times b}{\gcd(a, b)} = \frac{a}{\gcd(a, b)} \times b$$

3.1 Some Primes

999999937	1000000007	1000000009	1000000021	1000000033
$10^{18} - 11$	$10^{18} + 3$	230584300921369	$93951 = 2^{61} - 1$	
998244353 =	$119 \times 2^{23} + 1$	$10^6 + 3$		
10552444859	5307659 1392	18122939170727	11789706629723344	41
25790025798	1 5845989512	47 98950993000	63 105539556781	
998244353	754974721 16	67772161 18824	4827 205587737	
555130769	809747989 57	72255561 39658	38799 327208423	
773840099	207936359 95	52818871 93545	66867 670948771	

3.2 Number of Divisors

The number of divisors of n is about $\sqrt[3]{n}$.

n	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

Given the prime factorization of some number n:

$$n = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3}$$

The number of divisors will be $(a_1 + 1)(a_2 + 1)(a_3 + 1)$.

3.3 Large Prime Gaps 5 GEOMETRY

3.3 Large Prime Gaps

For numbers until 10^9 the largest gap is 400. For numbers until 10^{18} the largest gap is 1500.

3.4 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

3.5 Chicken McNugget Theorem

The Chicken McNugget Theorem states that for any two relatively prime positive integers m, n, the greatest integer that cannot be written in the form am + bn for nonnegative integers a, b is mn - m - n.

A consequence of the theorem is that there are exactly $\frac{(m-1)(n-1)}{2}$ positive integers which cannot be expressed in the form am + bn. The proof is based on the fact that in each pair of the form (k, mn - m - n - k), exactly one element is expressible.

4 Graph

4.1 Graph

A Graph without an odd cycle is called an bipartite graph.

5 geometry

Geometry Identities and Transformations (Competitive Programming)

Basic Identities and Vector Operations

2D Geometry

- Point Representation: P = (x, y)
- Vector from P_1 to P_2 : $\vec{P_1P_2} = (x_2 x_1, y_2 y_1)$
- Distance between two points $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$: $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
- Midpoint of a segment connecting $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$: $M = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
- Area of a triangle with vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$: $A = \frac{1}{2}|x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)|$
- Signed Area of Triangle: $\frac{1}{2}((x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1))$ (positive for CCW, negative for CW)
- Cross Product (2D) for vectors $\vec{A} = (x_1, y_1)$ and $\vec{B} = (x_2, y_2)$: $\vec{A} \times \vec{B} = x_1y_2 x_2y_1$ (scalar value, positive if \vec{B} is CCW from \vec{A})
- **Dot Product (2D)** for vectors $\vec{A} = (x_1, y_1)$ and $\vec{B} = (x_2, y_2)$: $\vec{A} \cdot \vec{B} = x_1x_2 + y_1y_2 = |\vec{A}||\vec{B}|\cos\theta$

3D Geometry

- Point Representation: P = (x, y, z)
- Vector from P_1 to P_2 : $\vec{P_1P_2} = (x_2 x_1, y_2 y_1, z_2 z_1)$
- Distance between two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$: $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- **Dot Product (3D)** for vectors $\vec{A} = (x_1, y_1, z_1)$ and $\vec{B} = (x_2, y_2, z_2)$: $\vec{A} \cdot \vec{B} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{A}| |\vec{B}| \cos \theta$
- Cross Product (3D) for vectors $\vec{A} = (x_1, y_1, z_1)$ and $\vec{B} = (x_2, y_2, z_2)$: $\vec{A} \times \vec{B} = (y_1 z_2 y_2 z_1, x_2 z_1 x_1 z_2, x_1 y_2 x_2 y_1)$

• Volume of Tetrahedron with vertices P_0, P_1, P_2, P_3 : $\frac{1}{6} |\det(P_0\vec{P}_1, P_0\vec{P}_2, P_0\vec{P}_3)|$ (scalar triple product)

Lines and Segments (2D)

- Line Equation: Ax + By + C = 0 (normal vector (A, B))
- Slope: $m = (y_2 y_1)/(x_2 x_1)$
- Perpendicular Slope: -1/m
- Point-Slope Form: $y y_1 = m(x x_1)$
- Intersection of two lines $(A_1x+B_1y+C_1=0,\ A_2x+B_2y+C_2=0)$: $x=\frac{B_1C_2-B_2C_1}{A_1B_2-A_2B_1},\ y=\frac{A_2C_1-A_1C_2}{A_1B_2-A_2B_1}$ (check for $A_1B_2-A_2B_1=0$ for parallel/coincident lines)
- Distance from a point $P_0(x_0,y_0)$ to line Ax+By+C=0: $d=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$
- Orientation of three points P_1, P_2, P_3 : Use cross product $\vec{P_1P_2} \times \vec{P_1P_3}$
 - ->0: Counter-clockwise (left turn)
 - -<0: Clockwise (right turn)
 - -=0: Collinear
- **Segment Intersection**: Check orientation of (P_1, P_2, P_3) , (P_1, P_2, P_4) , (P_3, P_4, P_1) , (P_3, P_4, P_2) . Special handling for collinear segments.

Circles (2D)

- Equation: $(x-h)^2 + (y-k)^2 = r^2$, center (h,k), radius r.
- Area: $A = \pi r^2$
- Circumference: $C = 2\pi r$
- Distance between two circle centers: $d = \sqrt{(h_2 h_1)^2 + (k_2 k_1)^2}$
- Intersection of two circles:
 - $-d > r_1 + r_2$: No intersection (disjoint)
 - $-d = r_1 + r_2$: One intersection point (external tangent)
 - $-|r_1-r_2| < d < r_1+r_2$: Two intersection points

- $-d = |r_1 r_2|$: One intersection point (internal tangent)
- $-d < |r_1 r_2|$: No intersection (one inside other)
- -d=0 and $r_1=r_2$: Coincident circles (infinite points)

Polygon Properties (2D)

- Area of a simple polygon with vertices $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$ (Shoelace Formula): $A = \frac{1}{2} \left| \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) \right|$, where $(x_n, y_n) = (x_0, y_0)$. (Sum of cross products: $\sum_{i=0}^{n-1} \vec{OP_i} \times \vec{OP_{i+1}}$ where $\vec{OP_i}$ is origin)
- Convex Polygon: All internal angles are less than or equal to 180°.
- Concave Polygon: Has at least one internal angle greater than 180°.
- Point in Polygon Test (Ray Casting): Draw a ray from the point in any direction (e.g., positive x-axis) and count intersections with polygon edges. If odd, point is inside; if even, outside. Handle horizontal edges and vertices carefully.
- Point in Convex Polygon Test: Check if the point is consistently on one side (e.g., left) of all directed edges of the polygon.

Convex Hull (2D)

- The smallest convex polygon enclosing a given set of points.
- Algorithms: Graham Scan $(O(N \log N))$, Monotone Chain $(O(N \log N))$.
- Graham Scan steps:
 - 1. Find lowest-most (and leftmost if ties) point P_0 .
 - 2. Sort all other points by angle with P_0 (or cross product $\vec{P_0P_i} \times \vec{P_0P_j}$).
 - 3. Iterate through sorted points, maintaining a stack. If new point creates a right turn with top two stack points, pop from stack until left turn.

Sweep Line Algorithms

- Used for problems involving geometric objects (segments, rectangles) where a vertical (or horizontal) line sweeps across the plane.
- Often involves a 'std::set' or segment tree to maintain active objects on the sweep line.

Floating Point Precision Issues

• Use a small epsilon ($\varepsilon \approx 10^{-9}$ to 10^{-12}) for comparisons instead of direct equality:

$$-a == b \Rightarrow |a - b| < \varepsilon$$

$$- a < b \Rightarrow a < b - \varepsilon$$

$$-a > b \Rightarrow a > b + \varepsilon$$

• Prefer integer arithmetic where possible (e.g., use cross products for collinearity/orientation instead of slopes).

Geometric Transformations (2D Homogeneous Coordinates)

A point (x, y) is represented as a column vector $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$.

Translation by (t_x, t_y)

$$T = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}$$

Scaling by (s_x, s_y) relative to origin

$$S = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation by angle θ relative to origin (counter-clockwise)

$$R = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Shear

• X-Shear (parallel to x-axis, factor k_x): $Sh_x = \begin{pmatrix} 1 & k_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

• Y-Shear (parallel to y-axis, factor k_y): $Sh_y = \begin{pmatrix} 1 & 0 & 0 \\ k_y & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Reflection

- Across X-axis: $Ref_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- Across Y-axis: $Ref_y = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- Across origin: $Ref_O = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- Across line y = x: $Ref_{y=x} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Geometric Transformations (3D Homogeneous Coordinates)

A point (x, y, z) is represented as a column vector $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$

Translation by (t_x, t_y, t_z)

$$T = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Scaling by (s_x, s_y, s_z) relative to origin

$$S = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation by angle θ (counter-clockwise)

• About X-axis:
$$R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• About Y-axis:
$$R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• About Z-axis:
$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

6 Counting Problems

Math, Counting, and Number Theory (Competitive Programming)

Combinatorics and Counting

- Factorial: $n! = n \times (n-1) \times \cdots \times 1$; 0! = 1.
- Permutations (arrangements without repetition): $P(n,k) = \frac{n!}{(n-k)!}$
- Combinations (selections without repetition): $C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$
- Pascal's Identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Stars and Bars: Number of ways to distribute n identical items into k distinct bins (or non-negative integer solutions to $x_1 + \cdots + x_k = n$):

$$\binom{n+k-1}{k-1}$$
 or $\binom{n+k-1}{n}$

Use Case: Find the number of ways to put 10 identical candies into 3 distinct bags. $(\binom{10+3-1}{3-1}) = \binom{12}{2})$

• Vandermonde's Identity:

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$$

Use Case: Choosing r people from a group of m men and n women. The LHS sums ways to choose k men and r-k women.

• Catalan Numbers (C_n) : Explicit formula:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Recursive formula:

$$C_0 = 1$$
, $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$ for $n \ge 0$

Applications:

- Number of Dyck paths of length 2n (paths from (0,0) to (n,n) using only right/up steps that don't go above y=x).
- Number of ways to correctly parenthesize n pairs of parentheses.
- Number of full binary trees with n+1 leaves.

Use Case: How many ways to form a balanced sequence of 3 pairs of parentheses? $(C_3 = 5)$

• Inclusion-Exclusion Principle: For two sets:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

For n sets: $|\bigcup_{i=1}^{n} A_i| = \sum |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \cdots + (-1)^{n-1} |A_1 \cap \cdots \cap A_n|$ Use Case: Count numbers up to 100 divisible by 2 or 3. $(|A_2 \cup A_3| = |A_2| + |A_3| - |A_2 \cap A_3|)$.

- **Pigeonhole Principle**: If N items are put into K bins, then at least one bin must contain $\lceil N/K \rceil$ items. *Use Case*: In any group of 13 people, at least two must share the same birth month.
- **Permutations with Repetitions**: Number of distinct permutations of n objects where there are k_1 identical objects of type 1, k_2 identical objects of type 2, ..., k_r identical objects of type r (and $k_1 + \cdots + k_r = n$):

$$\frac{n!}{k_1!k_2!\cdots k_r!}$$

 $\it Use~Case:$ How many distinct permutations of the letters in "MISSIS-SIPPI"? $(\frac{11!}{1!4!4!2!})$

• **r-Permutations**: Number of ways to arrange r items chosen from n distinct items (P(n,r)):

$$P(n,r) = \frac{n!}{(n-r)!}$$

Use Case: Number of ways to award gold, silver, and bronze medals to 10 runners. $(P(10,3) = \frac{10!}{7!})$