Чудесный мир регрессии, 2

Машинное обучение, 20!7

Спасибо К. В. Воронцову, МФТИ, Data Factory Яндекса, O.D.S. и кофеину.

Малютин Е. А.

Содержание

Планчик

- Трюки и финты
- Проблемы регрессии
- Приложения

W

Условности

Можно выписать модель регрессии явным образом для отдельного объекта:

$$y_i = \sum_{j=0}^n w_j X_{ij} + \epsilon$$

И, соответственно, мы приходим к некоторым условиям:

- lacktriangle матожидание: $\forall i: E[\epsilon_i] = 0$;
- гомоскедастичность: \forall : $Var(\epsilon_i) = \sigma^2 < \infty$
- lacktriangle некоррелированны: orall i
 eq j : $Cov(\epsilon_i,\epsilon_j)=0$

3/34

Чудесный мир регрессии, 2 Малютин Е. А.

Условности

Можно выписать модель регрессии явным образом для отдельного объекта:

$$y_i = \sum_{j=0}^n w_j X_{ij} + \epsilon$$

И, соответственно, мы приходим к некоторым условиям:

- lacktriangle матожидание: $\forall i: E[\epsilon_i] = 0$;
- гомоскедастичность: \forall : $Var(\epsilon_i) = \sigma^2 < \infty$
- lacktriangle некоррелированны: orall i
 eq j : $Cov(\epsilon_i,\epsilon_j)=0$

Чудесный мир регрессии, 2 Малютин Е. А. 4,

Метод максимального правдоподобия

Правдоподобие: $L = \Pi p(y_i x_i, \alpha)$

Log-likelihood: $W(\alpha) = log(L) = \sum ln(P(y|X,\alpha))$

Положим ошибки нормально-распределёнными: $\epsilon_i \backsim \mathcal{N}(0, \sigma^2)$

И тогда для нашей модели: $p(y_i|x_i,w) = \mathcal{N}(\sum w_j X_{ij},\sigma^2)$

$$log(p(X,y|w)) = log(\Pi \mathcal{N}(\sum_{j} w_{j}X_{ij},\sigma^{2})) = -\frac{n}{2}log2\pi\sigma^{2} - \frac{1}{2\sigma^{2}}\sum_{j}(y_{i} - \omega^{T}x_{i})^{2}$$

И, максимизируя это вот всё:

$$w = arg \max_{w} p(X, y|w) = arg \max_{\omega} -\mathcal{L}(X, y, \omega)$$

Вывод: минимизация МНК эквивалентна максимизации МП.

5/34 Чудесный мир регрессии, 2

Регуляризация

- При мультиколлинеарности в данных получаем $(X^TX)^{-1}$ экстремально большие значения собственных чисел $(\frac{1}{\lambda})$
- Решение? Регуляризация по Тихонову:

$$\mathcal{L}(X, \overrightarrow{y}, \overrightarrow{\omega}) = \frac{1}{2n} ||\overrightarrow{y} - X\overrightarrow{\omega}||^2 + ||\mathcal{G}\overrightarrow{\omega}||^2$$

- Часто используется в таком виде: $\mathcal{G} = \frac{\lambda}{2} E$
- Точное решение:

$$\overrightarrow{\omega} = (X^T X + \lambda E)^{-1} X^T \overrightarrow{y}$$

$$\exists X, P(X); \mathit{OR}(X) \equiv rac{P(X)}{1-P(X)};$$
 (отношение вероятностей) $P(X) \in [0,1]; \mathit{OR}(X) \in R$

Вычисляем лог. регрессию

- Вычислить значение $w_0 + w_1x_1 + w_2x_2 + ... = w^T \overrightarrow{x}$. (уравнение $\overrightarrow{w}^T \mathbf{x} = 0$ задает гиперплоскость, разделяющую примеры на 2 класса);
- Вычислить логарифм отношения шансов: $log(OR_+) = \overrightarrow{w}^T \overrightarrow{\chi}$.
- Вычисляем вероятность: $p_+ = \frac{OR_+}{1 + OR_+} = \frac{exp^{\overrightarrow{w}^T\overrightarrow{x}}}{1 + exp^{\overrightarrow{w}^T\overrightarrow{x}}} = \frac{1}{1 exp^{-\overrightarrow{w}^T\overrightarrow{x}}} = \sigma(\overrightarrow{w}^T\overrightarrow{x})$

Чудесный мир регрессии, 2 Малютин Е. А. 7/34

Рис.: Пример Gradient Descent на одномерной регрессии

В матрицах

$$g(x,a) = \sum_{j=1}^{n} a_{j} f_{j};$$
 пусть $y-$ вектор ответов, $F-$ матрица объект-признак;

В матрицах

- $g(x,a) = \sum_{j=1}^{n} a_{j}f_{j};$ пусть y вектор ответов, F матрица объект-признак;
- $Q(a) = ||Fa y||^2$, функционал ошибки;

В матрицах

- $g(x,a) = \sum_{j=1}^{n} a_{j}f_{j}$; пусть y вектор ответов, F матрица объект-признак;
- $Q(a) = ||Fa y||^2$, функционал ошибки;
- lacktriangle Минимум в матричном виде: $rac{\partial Q}{\partial a}Q(f)=2F^T(Fa-y)=0$

- $g(x,a) = \sum_{j=1}^{n} a_{j}f_{j}$; пусть y вектор ответов, F матрица объект-признак;
- $\mathbf{Q}(a) = ||Fa y||^2$, функционал ошибки;
- lacktriangle Минимум в матричном виде: $rac{\partial Q}{\partial a}Q(f)=2F^T(Fa-y)=0$
- $a^* = (F^T F)^{-1} F^T y$ аналитическое решение, $Q(a^*) = ||\mathcal{P}_F y y||^2$ функционал ошибки на решении

- $g(x,a) = \sum_{1}^{n} a_{j}f_{j}$; пусть y вектор ответов, F матрица объект-признак;
- $\mathbf{Q}(a) = ||Fa y||^2$, функционал ошибки;
- lacktriangle Минимум в матричном виде: $rac{\partial Q}{\partial a}Q(f)=2F^T(Fa-y)=0$
- $a^* = (F^T F)^{-1} F^T y$ аналитическое решение, $Q(a^*) = ||\mathcal{P}_F y y||^2$ функционал ошибки на решении
- $F^+ = (F^T F)^{-1} F^T$ псевдообратная матрица $\mathcal{P}_F = FF^+$ проекционная матрица

Регрессия svd

Singular value decomposition

■ Произвольную $I \times n$ -матрицу ранга n можно представить в виде сингулярного разложения, SVD

Perpeccия svd

Singular value decomposition

- Произвольную $I \times n$ -матрицу ранга n можно представить в виде сингулярного разложения, SVD
- $F = VDU^T$
 - **1** $n \times n$ -матрица D диагональна, $D = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$ общие ненулевые собственные значения F^TF и FF^T ;

Чудесный мир регрессии, 2 Малютин Е. А. 10/34

Регрессия svd

Singular value decomposition

- Произвольную $I \times n$ -матрицу ранга n можно представить в виде сингулярного разложения, SVD
- $\blacksquare F = VDU^T$
 - **1** $n \times n$ -матрица D диагональна, $D = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$ общие ненулевые собственные значения F^TF и FF^T ;
 - **2** $I \times n$ -матрица $V = (v_1, ..., v_n)$ ортогональна, $V^T V = I^n$, столбцы v_j являются собственными векторами матрицы FF^T , соответствующими $\lambda_1, ..., \lambda_n$;

Чудесный мир регрессии, 2 Малютин Е. А. 10/34

Регрессия svd

Singular value decomposition

- Произвольную $I \times n$ -матрицу ранга n можно представить в виде сингулярного разложения, SVD
- $F = VDU^T$
 - **1** $n \times n$ -матрица D диагональна, $D = diag(\sqrt{\lambda_1},...,\sqrt{\lambda_n})$ общие ненулевые собственные значения F^TF и FF^T ;
 - **2** $I \times n$ -матрица $V = (v_1, ..., v_n)$ ортогональна, $V^T V = I^n$, столбцы v_j являются собственными векторами матрицы FF^T , соответствующими $\lambda_1, ..., \lambda_n$;
 - **3** $n \times n$ -матрица $U = (u1, ..., u_n)$ ортогональна, $U^T U = I^n$, столбцы u_j являются собственными векторами матрицы $F^T F$, соответствующими $\lambda_1, ..., \lambda_n$;

Чудесный мир регрессии, 2 Малютин Е. А. 10/34

Peгрессия svd

В контексте регрессии:

■ Псевдообратную матрица:

$$F^{+} = (UDV^{T}VDU^{T})^{-1}UDV^{T} = UD^{-1}V^{T} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{T}$$

Peгрессия svd

В контексте регрессии:

■ Псевдообратную матрица:

$$F^{+} = (UDV^{T}VDU^{T})^{-1}UDV^{T} = UD^{-1}V^{T} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{T}$$

lacktriangle Вектор МНК-решения: $a^* = F^+ y = U D^{-1} V^T y = \sum\limits_{j=1}^n rac{1}{\sqrt{\lambda_j}} u_j (v_j^T y)$

Чудесный мир регрессии, 2 Малютин Е. А. 11/34

Регрессия svd

В контексте регрессии:

■ Псевдообратную матрица:

$$F^{+} = (UDV^{T}VDU^{T})^{-1}UDV^{T} = UD^{-1}V^{T} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{T}$$

- lacktriangle Вектор МНК-решения: $a^* = F^+ y = U D^{-1} V^T y = \sum\limits_{j=1}^n rac{1}{\sqrt{\lambda_j}} u_j (v_j^T y)$
- МНК-аппроксимация целевого вектора у:

$$F_a = P_F y = y^T V D^{-1} U D^{-1} V^T y = y^{\dagger} V D^{-2} V^T y = \sum_{i \neq j} \frac{1}{\lambda_i} (v_j^T y)^2$$

Чудесный мир регрессии, 2 Малютин Е. А. 11/34

Регрессия svd

В контексте регрессии:

Псевдообратную матрица:

$$F^{+} = (UDV^{T}VDU^{T})^{-1}UDV^{T} = UD^{-1}V^{T} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{T}$$

- Вектор МНК-решения: $a^* = F^+ y = U D^{-1} V^T y = \sum_{j=1}^n \frac{1}{\sqrt{\lambda_j}} u_j (v_j^T y)$
- МНК-аппроксимация целевого вектора у:

$$F_a = P_F y = y^T V D^{-1} U D^{-1} V^T y = y^T V D^{-2} V^T y = \sum_{i \neq j} \frac{1}{\lambda_i} (v_j^T y)^2$$

■ Норма вектора: $||a^*||^2 = yVD^{-1}U^TUD^{-1}V^Ty = y^TVD^{-2}V^Ty = \sum \frac{1}{\lambda_i}(v_jy)^2$

Чудесный мир регрессии, 2 Малютин Е. А. 11/34

Мультиколлинеарность

Число обусловленности:

■ *Матрица ковариации:* $\Sigma = F^T F$, на практике частенько попадается Σ – матрица неполного псевдоранга;

200

Мультиколлинеарность

Число обусловленности:

- *Матрица ковариации:* $\Sigma = F^T F$, на практике частенько попадается Σ матрица неполного псевдоранга;
- Число обусловленности:

$$\mu(\Sigma) = ||\Sigma||||\Sigma^{-1}|| = rac{\lambda_{ extit{max}}}{\lambda_{ extit{min}}}$$

Мультиколлинеарность

Число обусловленности:

- *Матрица ковариации:* $\Sigma = F^T F$, на практике частенько попадается Σ матрица неполного псевдоранга;
- Число обусловленности:

$$\mu(\Sigma) = ||\Sigma||||\Sigma^{-1}|| = rac{\lambda_{max}}{\lambda_{min}}$$

■ При умножении обратной матрицы на вектор, $z = \Sigma^{-1} u$, относительная погрешность усиливается в $\mu(\Sigma)$ раз:

$$\frac{||\delta z||}{||z||} \le \mu(\Sigma) \frac{||\delta u||}{||\delta u||}$$

4) Q (4

Гребневая регрессия

Скучно:

$$Q(a) = ||Fa - y||^2 + \tau ||a||^2$$

$$||a_*||^2 = \sum \frac{1}{\lambda_j + \tau} (v_j^T y)^2 < ||a||^2$$

13/34

Гребневая регрессия

Kак выбрать au?

lacktriangle Как выбрать au?

Гребневая регрессия

Как выбрать τ ?

- \blacksquare Как выбрать au?
- Скользящий контроль

Гребневая регрессия

Как выбрать τ ?

- Как выбрать т?
- Скользящий контроль
- Практическая рекомендация: $au \in [0.1, 0.4]$

Гребневая регрессия

Как выбрать τ ?

- Как выбрать т?
- Скользящий контроль
- Практическая рекомендация: $au \in [0.1, 0.4]$
- Ограничить число обусловленности:

$$M_0 = \mu(F^T F + \tau I_n) = \frac{\lambda_{max} + \tau}{\lambda_{min} + \tau} \Rightarrow \tau^* = \frac{\lambda_{max}}{M_0}$$

14/34

Лассо Тибширани

Скучно:

$$\begin{cases} Q(a) = ||F(a) - y||^2 \to min \\ \sum |a_j| \le \aleph \end{cases}$$

Задача ЛП. Большие № обращают компонента вектора в 0.

Пусть $a_j = a_j^+ - a_j^-$, тогда ограничение на а принимает вид:

$$\sum a_j^+ + a_j^- \le \aleph; a_j^+ \ge 0, a_j^- \ge 0$$

Сравнение

Рис.: Зависимость коэффициентов линейной модели от параметра $\sigma=1/ au$ для гребневой регрессии и от параметра κ для лассо Тибширани, по реальным данным задачи UCI.cancer

Метод главных компонент (РСА)

Постановка задачи:

- пусть дана: $F_{I \times n}$ признаковое описание
- $G_{m \times n}$ признаковое описание в новом пространстве R^m , m < n;
- F можно восстановить с помощью линейного преобразования $U=(u_{js})_{n\times m}$: $\widehat{f_j}=\sum g_s u_{js}$ или $\widehat{f}=zU^T$
- $lacksymbol{lack}$ причем $\Delta^2(G,U) = ||GU^{\mathcal{T}} F||^2
 ightarrow \min_{G,U}$

Теорема

Если m < rkF, то минимум $\Delta^2(G,U)$ достигается, когда столбцы матрицы U есть собственные векторы F^TF , соответствующие m максимальным собственным значениям. При этом G=FU, матрицы U и G ортогональны.

Связь с сингулярным разложением:

- Если m=n, то $\Delta^2(G,U)=0$. В этом случае представление $F=GU^T$ является точным и совпадает с сингулярным разложением: $F=GU^T=VDU^T$
- Если m < n, то представление $F \approx GU^T$ является приближённым. Сингулярное разложение матрицы GU^T получается из сингулярного разложения матрицы F путём отбрасывания(обнуления) n-m минимальных собственных значений.

Чудесный мир регрессии, 2 Малютин Е. А. 18/34

Регрессия Свойства РСА

Задача наименьших квадратов

В новом признаковом пространстве

- $\beta^* = D^{-1}V^Ty$
- Для вектора $a^* = U\beta^*$ МНК-решение выглядит так же, как и раньше, с той лишь разницей, что надо взять первые m-n слагаемых, а оставшиеся n-m просто отбросить

Pricipal Component Analysis

Снижение размерности

Эффективная размерность

■ Сортируем числа: $\lambda_1 > ... > \lambda_n > 0$

Снижение размерности

Эффективная размерность

- Сортируем числа: $\lambda_1 > ... > \lambda_n > 0$
- lacksquare Задаём $\epsilon \in [0,1]$

Снижение размерности

Эффективная размерность

- Сортируем числа: $\lambda_1 > ... > \lambda_n > 0$
- $lacksymbol{\bullet}$ Задаём $\epsilon \in [0,1]$
- $lacksymbol{\blacksquare}$ Считаем $E(m)=rac{||GU-F||^2}{||F||^2}=rac{\lambda_{m+1}+...+\lambda_n}{\lambda_1+...+\lambda_m}\leq \epsilon$

Снижение размерности

Эффективная размерность

- Сортируем числа: $\lambda_1 > ... > \lambda_n > 0$
- $lacksymbol{\bullet}$ Задаём $\epsilon \in [0,1]$
- $lacksymbol{\blacksquare}$ Считаем $E(m)=rac{||GU-F||^2}{||F||^2}=rac{\lambda_{m+1}+...+\lambda_n}{\lambda_1+...+\lambda_m}\leq \epsilon$
- "Крутой обрыв"

Снижение размерности

PCA

Визуализация многомерных данных

Категориальные признаки

Бинарное кодирование:

lacktriangle Пусть j-й признак - категориальный: $f_j(x) = \{c_1,...,c_n\}$

Категориальные признаки

Бинарное кодирование:

- lacktriangle Пусть j-й признак категориальный: $f_j(x) = \{c_1,...,c_n\}$
- вводятся n новых бинарных признаков: $b_1(x),...,b_n(x)$

Категориальные признаки

Бинарное кодирование:

- lacktriangle Пусть j-й признак категориальный: $f_j(x) = \{c_1,...,c_n\}$
- **в** вводятся *n* новых бинарных признаков: $b_1(x),...,b_n(x)$
- $b_i(x) = |f_j(x)| = c_i|$

Категориальные признаки

Бинарное кодирование:

- lacktriangle Пусть j-й признак категориальный: $f_j(x) = \{c_1,...,c_n\}$
- **в** вводятся n новых бинарных признаков: $b_1(x), ..., b_n(x)$
- $b_i(x) = |f_j(x) = c_i|$
- **Вопрос**: как быть с n+1-м на рантайме?

Категориальные признаки

Бинарное кодирование:

- lacktriangle Пусть j-й признак категориальный: $f_j(x) = \{c_1,...,c_n\}$
- **в** вводятся n новых бинарных признаков: $b_1(x), ..., b_n(x)$
- $b_i(x) = |f_j(x) = c_i|$
- **Вопрос**: как быть с n+1-м на рантайме?
- $b_1 = b_2 = ... = b_n = 0$

Проблемы с регрессией

XOR-проблема

Проблемы с регрессией

XOR-проблема

Проблемы с регрессией

XOR-проблема

Трюки

Новые признаки

Как генерировать признаки?

- lacktriangle Квадратичные признаки: $(x_1,...,x_d) o (x_1,...,x_d,x_2x_1,...,x_2x_d,x_1x_2,...,x_{d-1}x_d)$
- lacktriangle Полиномиальные признаки: $(x_1,...,x_d)
 ightarrow (x_1,...,x_d,...,x_ix_j,...,x_ix_jx_k,...)$
- lacksquare Логарифмирование: $x_i
 ightarrow (x_i, log(|x_i|+1))$

Кривые обучения и валидации

- Сделать модель сложнее или упростить?
- Добавить больше признаков?
- Или нам просто нужно больше данных для обучения?

Чудесный мир регрессии, 2 Малютин Е. А. 29/34

Кривые обучения и валидации

- Для простых моделей тренировочная и валидационная ошибка находятся где-то рядом, и они велики. Это говорит о том, что модель недообучилась: то есть она не имеет достаточное кол-во параметров.
- Для сильно усложненных моделей тренировочная и валидационная ошибки значительно отличаются.

Сколько нужно данных?

Рис.: Выставим au большим

Сколько нужно данных?

Рис.: Выставим au маленьким

Резюме:

Плюсы:

- Хорошо изучены
- Очень быстрые, могут работать на очень больших выборках
- Практически вне конкуренции, когда признаков очень много (от сотен тысяч и более), и они разреженные.
- Коэффициенты перед признаками могут интерпретироваться
- Логистическая регрессия выдает вероятности отнесения к разным классам.
- Модель может строить и нелинейную границу

Минусы:

- Плохо работают в задачах, в которых зависимость ответов от признаков сложная, нелинейная
- На практике предположения теоремы Маркова-Гаусса почти никогда не выполняются, поэтому чаще линейные методы работают хуже, чем,

*) q (·

Practice

- Идем сюда https://www.kaggle.com/c/bike-sharing-demand
- Собираем регрессию из scikit-learn с категориальными признаками
- Находим признак, который необходимо удалить из датасета (он почти повторяет целевой)
- Собираем без категориальных признаков регрессию
- Собираем с one-hot-encode признаками регрессию
- Сравниваем по MSE
- Находим способ найти и убрать лишние признаки
- Опять сравниваем

Чудесный мир регрессии, 2 Малютин Е. А. 34/34