Aflevering 6b

Øvelse U23

I denne opgave betragtes

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 2 - x^2\},\,$$

som er en delmængde af planen \mathbb{R}^2 . Desuden betragtes funktionen

$$f(x,y) = xy - x.$$

- a) Lav en skitse af D og marker D's randpunkter.
- b) Find det kritiske punkt for f, og afgør om det er et lokalt maksimumspunkt, et lokalt minimumspunkt eller et saddelpunkt.
- c) Gør rede for, at f antager såvel en største som en mindste værdi på D.
- d) Find den største og den mindste værdi som f antager på D. Forklar din metode.
- e) For ethvert tal a > 0 sætter vi

$$D_a = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 2 - ax^2\}.$$

Find det naturlige tal a, som opfylder at $(\frac{1}{2}, 1)$ er et randpunkt for D_a .

$$a = \boxed{}$$
.

Skriv dit svar, et helt tal mellem 0 og 99.

Opgave a)

Hele den ydre kant ovenfor x-aksen af det skitserede område er D's randpunkter.

Opgave b)

f er givet ved

$$f(x,y) = x \cdot y - x$$

Jeg bestemmer gradienten, og finder det omtalte kritiske punkt:

$$\nabla f(x,y) = \left(f_x(x,y), f_y(x,y) \right)$$

$$f_{x}(x,y) = y - 1$$

$$f_{y}(x, y) = x$$

$$\nabla f = (y - 1, x)$$

Det kritiske punkt (*v y 0) bestemmes ved:

$$\nabla f(x_0, y_0) = (0, 0)$$

$$\begin{bmatrix} y_0 - 1 \\ x_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow y_0 = 1 \land x_0 = 0$$

<u>Det kritiske punkt er (0, 1).</u> Jeg bestemmer hvilken form for ekstremum der er tale om. Jeg bestemmer determinanten til hessematricen:

$$D = f_{xx} f_{yy} - (f_{xy})^2$$

$$f_{xx} = \frac{\partial}{\partial x} (f_x(x, y)) = \frac{\partial}{\partial x} (y - 1) = 0$$

$$f_{yy} = \frac{\partial}{\partial y} \left(f_y(x, y) \right) = \frac{\partial}{\partial y} (x) = 0$$

$$f_{xy} = \frac{\partial}{\partial y} \left(f_x(x, y) \right) = \frac{\partial}{\partial y} (y - 1) = 1$$

$$D = f_{xx} \cdot f_{yy} - (f_{xy})^2 = 0 \cdot 0 - 1 = -1$$

Da determinanten er negativ, er der tale om et saddelpunkt.

Opgave c)

Min delmængde er en lukket mængde på en kontinuer funktion. Derfor vil funktionen antage en største såvel som en mindste værdi i delmængden D.

Opgave d)

Jeg ved at for x=0, får jeg en funktionsværdi på 0.

Jeg ved, at det kritiske punkt beskriver et saddelpunkt, og derfor ikke antager et minimum eller maksimum. Så dette er jeg ikke interesseret i at undersøge. Funktionsforskriften betragtes:

$$f(x,y) = x \cdot y - x$$

Jeg vælger at faktorisere udtrykket:

$$f(x,y) = x \cdot (y-1)$$

Ved tilfældet hvor y=1 vil det gælde at funktionsværdien er 0. Det kan åbenlyst gennemskues at funktionen kan antage funktonsværdier større og mindre end nul. Derfor vil jeg undersøge for en anden y-værdi, så fjern fra y=1 som muligt.

For at bestemme maksimum, benytter jeg mig af følgende logik: Det vil altid gælde at en funktionsværdi er mindre eller lig med den numeriske værdi til funktionsværdien:

$$f(x,y) \le |f(x,y)|$$

$$|f(x,y)| = |x| \cdot |(y-1)|$$

De to y-værdier der er fjernest fra y=1 er $y=0 \land y=2$. I begge tilfælde vil det gælde at:

$$|f(x, 0)| = |x| \cdot |(0 - 1) = |x|$$

$$|f(x, 2)| = |x| \cdot |(2 - 1)| = |x|$$

Derved:

$$f(x, y) \leq |x|$$

Den funktionsværdi, der er maksimum i delmængden, vil altså være mindre eller lig med den numeriske værdi for x. Funktionsværdien kan godt antage værdien for x, når y=0: Jeg ønsker at undersøge punkter i randen hvor x-værdien er fjernest fra x=0. Da jeg har tegnet funktionen i opgave 1, ved jeg at x-værdien antager sin største forskel fra x=0 ved punkterne:

$$(-\sqrt{2},0) \wedge (\sqrt{2},0)$$

Fra min anvendte logik ovenfor, vil det altså gælde at maksimum kan findes ved:

$$f(x,y) \leq \left| \, \pm \sqrt{2} \, \right|$$

$$f(x,y) \le \sqrt{2}$$

Fra logikken anslået ovenfor kan jeg bestemme den største værdi som funktionen kan antage til at være $\sqrt{2}$. Logikken kan også fremføres omvendt for minimum. Her vil det gælde at;

$$f(x,y) \le - \big| \pm \sqrt{2} \big|$$

Derved vil minimum for funktionen i delmængden være $-\sqrt{2}$.

Opgave e)

Jeg kan konkludere, at $\left(\frac{1}{2}, 1\right)$ må være et randpunkt for D_a når;

$$2 - a \cdot x^2 = 1$$

Fordi den øvre grænse for y vil definere randen af funktionen. Jeg indsætter x-værdi og isolerer for a:

$$2 - a \cdot \frac{1}{2}^2 = 1 \Rightarrow 2 - \frac{1}{4}a = 1 \Rightarrow 1 = \frac{1}{4}a \Rightarrow a = 4$$

Jeg bestemmer derfor a=4.