1. (004770) 已知 a 是实常数, 集合 $A = \{x|x^2 - 5x + 4 \le 0\}$ 与 $B = \{x|x^2 - 2ax + a + 2 \le 0\}$ 满足 $B \subseteq A$, 求 a 的取值范围.

- 2. (000067) 设常数 a > 0 且 $a \neq 1$, 若函数 $y = \log_a(x+1)$ 在区间 [0,1] 上的最大值为 1, 最小值为 0, 求实数 a 的值.
- 3. (000087) 已知函数 $y = -x^2 + 2ax + 1 a$, $x \in [0,1]$ 的最大值为 2. 求实数 a 的值.
- 4. (000884) 函数 $y = \sqrt{x^2 + 2} + \frac{1}{\sqrt{x^2 + 2}}$ 的最小值为_____.
- - (3) 函数 $y = 6x x^2$, $x \in [-3, 0]$ 的最大值为________,最小值为_______,最大值点为_______,最
 - (4) 函数 $y = 2x^2 4x + 5$, $x \in [2,4]$ 的最大值为_______,最小值为______,最大值点为______,
- - (3) 函数 $y = \frac{x-5}{3x+2}$, $x \in [0,3]$ 的最大值为________,最小值为_______,最大值点为_______,最小值点为_______;
- 7. (001231) 已知函数 $y=rac{1}{2}x^2-x+rac{3}{2}$ 的定义域为 [1,b], 最大值为 b, 最小值为 1. 求 b.
- 8. (001276) 已知 a 是实数, 函数 $y = -x^2 + 2ax + 1 a$, $x \in [0,1]$ 的最大值为 2. 求 a.
- 9. (001277) 已知 a,b 是实数, 函数 $y = ax^2 2ax + 2 + b$ 在 [2,3] 上的最大值和最小值分别为 5 和 2, 求 a,b.
- 10. (002955) 设常数 a > 0, $a \ne 1$. 函数 $f(x) = a^x$ 在 [0,1] 上的最大值和最小值之和为 a^2 , 则 a =______.
- 11. (002959) 已知函数 $y=(\log_2\frac{x}{2^a})(\log_2\frac{x}{4}),\,x\in[\sqrt{2},4],$ 试求该函数的最大值 g(a).

- 12. $(002966)^*$ 已知常数 a>1, 函数 $y=|\log_a x|$ 的定义域为区间 [m,n], 值域为区间 [0,1]. 若 n-m 的最小值为 $\frac{5}{6}$, 则 a=______.
- 13. (002975) 设常数 $a \in \mathbf{R}$. 若函数 $y = -x^2 + 2ax(0 \le x \le 1)$ 的最小值用 g(a) 表示,则 g(a) =______.
- 14. (002986) 设常数 $m \in \mathbb{R}$. 若函数 $f(x) = x^2 (m-2)x + m 4$ 的图像与 x 轴交于 A, B 两点, 且 |AB| = 2, 则函数 y = f(x) 的最小值为______.
- 15. (002991) 设常数 $a \in \mathbb{R}$, 并将函数 $f(x) = 1 2a 2a\cos x 2\sin^2 x$ 的最小值记为 g(a).
 - (1) 写出 g(a) 的表达式;
 - (2) 是否存在 a 的值, 使得 $g(a) = \frac{1}{2}$? 若存在, 求出 a 的值以及此时函数 y = f(x) 的最大值; 若不存在, 说明理由.
- $16. \ {}_{(004439)}$ 函数 $f(x) = |x^2 a|$ 在区间 [-1,1] 上的最大值是 a, 那么实数 a 的取值范围是 ().
 - A. $[0, +\infty)$
- B. $\left[\frac{1}{2}, 1\right]$
- C. $\left[\frac{1}{2}, +\infty\right)$
- D. $[1, +\infty)$
- 17. (005344) 已知函数 $f(x) = x^2 2x + 3$ 在 [0, m] 上有最大值 3, 最小值 2, 求正数 m 的取值范围.
- 18. (000555) 已知函数 f(x) = x|2x a| 1 有三个零点, 则实数 a 的取值范围为_______.
- 19. (000622) 若函数 $f(x) = 2^x(x+a) 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是______.
- 20. (003013) 函数 f(x) = 3ax 2a + 1 在 [-1,1] 上存在一个零点, 则实数 a 的取值范围是______.
- 21. (003648) 已知 $f(x) = ax + \frac{1}{x+1}, a \in \mathbf{R}.$
 - (1) 已知 a = 1 时, 求不等式 f(x) + 1 < f(x + 1) 的解集;
 - (2) 若 f(x) 在 $x \in [1, 2]$ 时有零点, 求 a 的取值范围.
- 22. (004720) 已知函数 $f(x) = x^2 + mx + 3$, 其中 $m \in \mathbf{R}$.
 - (1) 若不等式 f(x) < 5 的解集是 (-1,2), 求 m 的值;
 - (2) 若函数 y = f(x) 在区间 [0,3] 上有且仅有一个零点, 求 m 的取值范围.
- 23. (003032) 设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = 4^x a \cdot 2^x + a + 3$.
 - (1) 若函数 y = f(x) 有且仅有一个零点, 求 a 的取值范围;
 - (2) 若函数 y = f(x) 有零点, 求 a 的取值范围.
- 24. (010196) 证明: 方程 $\lg x + 2x = 16$ 没有整数解.
- 25. (009530) 用函数的观点解不等式: $2^x + \log_2 x > 2$.
- 26. (005236) 解不等式: |x+2| |x-3| < 4.
- 27. (010197) 解不等式: $\frac{2}{x^2} \ge 3x 1$.
- 28. (009531) 对于在区间 [a,b] 上的图像是一段连续曲线的函数 y = f(x), 如果 $f(a) \cdot f(b) > 0$, 那么是否该函数在区间 (a,b) 上一定无零点? 说明理由.

- 29. (009532) 已知函数 $y=2x^3-3x^2-18x+28$ 在区间 (1,2) 上有且仅有一个零点. 试用二分法求出该零点的近似值. (结果精确到 0.1)
- 30. (010192) 已知函数 $y=x^3+x^2+x-1$ 在区间 (0,1) 上有且仅有一个零点,用二分法求该零点的近似值. (结果精确到 0.1)