

planetmath.org

Math for the people, by the people.

derivation of properties on interior operation

 ${\bf Canonical\ name} \quad {\bf Derivation Of Properties On Interior Operation}$

Date of creation 2013-03-22 17:55:28 Last modified on 2013-03-22 17:55:28

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Derivation Classification msc 54-00

Let X be a topological space and A a subset of X. Then 1. $int(A) \subseteq A$. *Proof.* If $a \in \text{int}(A)$, then $a \in U$ for some open set $U \subseteq A$. So $a \in A$ A. 2. int(A) is open. *Proof.* Since int(A) is a union of open sets, int(A) is open. 3. int(A) is the largest open set contained in A. *Proof.* If U is open set with $\operatorname{int}(A) \subseteq U \subseteq A$, then $U \subseteq \bigcup \{V \subseteq A \mid$ V open $\} = int(A)$, so U = int(A). 4. A is open if and only if A = int(A). *Proof.* If A is open, then A is the largest open set contained in A, and so int(A) = A by property 3 above. On the other hand, if int(A) = A, then A is open, since int(A) is, by property 2 above. 5. int(int(A)) = int(A). *Proof.* Since int(A) is open by property 2, int(A) = int(int(A)) by property 4. 6. int(X) = X and $int(\emptyset) = \emptyset$.

Proof. This is so because both X and \varnothing are open sets.

7. $\overline{A^{\complement}} = (\operatorname{int}(A))^{\complement}$.

Proof. (LHS \subseteq RHS). If $a \in \overline{A^{\complement}}$, then $a \in B$ for every closed set B such that $A^{\complement} \subseteq B$. In particular, $a \in (\operatorname{int}(A))^{\complement}$, for $(\operatorname{int}(A))^{\complement}$ is the complement of an open set by property 2, and $A^{\complement} \subseteq (\operatorname{int}(A))^{\complement}$ by taking the complement of property 1.

(RHS \subseteq LHS). If $a \in (\text{int}(A))^{\complement}$, then $a \notin \text{int}(A)$. If B is a closed set such that $A^{\complement} \subseteq B$, then $B^{\complement} \subseteq A$. Since B^{\complement} is open, $B^{\complement} \subseteq \text{int}(A)$ by property 3, so $a \notin B^{\complement}$, and thus $a \in B$. Since B is arbitrary, $a \in \overline{A^{\complement}}$ as desired.

8. $\overline{A}^{\complement} = \operatorname{int}(A^{\complement}).$

Proof. Set $B = A^{\complement}$, and apply property 7. So $\overline{A}^{\complement} = \overline{B^{\complement}}^{\complement} = (\operatorname{int}(B))^{\complement \complement} = \operatorname{int}(B) = \operatorname{int}(A^{\complement}).$

9. $A \subseteq B$ implies that $int(A) \subseteq int(B)$.

Proof. This is so because int(A) is open (property 2), contained in A (and therefore contained in B), so contained in int(B), as int(B) is the largest open set contained in B (property 3).

10. $int(A) = A \setminus \partial A$, where ∂A is the boundary of A.

Proof. Recall that $\partial A = \overline{A} \cap \overline{A^{\complement}}$. So $\partial A = \overline{A} \cap (\operatorname{int}(A))^{\complement}$ by property 7. By direct computation, we have $A \setminus \partial A = A \setminus (\overline{A} \cap (\operatorname{int}(A))^{\complement}) = (A \setminus \overline{A}) \cup (A \setminus (\operatorname{int}(A))^{\complement})$. Since $A \setminus \overline{A} = \emptyset$ and $A \setminus (\operatorname{int}(A))^{\complement} = A \cap (\operatorname{int}(A))^{\complement} = A \cap \operatorname{int}(A)$, which is $\operatorname{int}(A)$ by property 2.

11. $\overline{A} = \operatorname{int}(A) \cup \partial A$.

Proof. Again, by direct computation:

$$\operatorname{int}(A) \cup \partial A = \operatorname{int}(A) \cup (\overline{A} \cap (\operatorname{int}(A))^{\complement}) \qquad \text{because } \partial A = \overline{A} \cap (\operatorname{int}(A))^{\complement}$$
$$= (\operatorname{int}(A) \cup \overline{A}) \cap (\operatorname{int}(A) \cup (\operatorname{int}(A))^{\complement}) \qquad \cap \text{distributes over } \cup$$
$$= \overline{A} \cap X = \overline{A}. \qquad \operatorname{int}(A) \subseteq A \subseteq \overline{A}$$

12. $X = int(A) \cup \partial A \cup int(A^{\complement}).$

Proof. By property 11, $\operatorname{int}(A) \cup \partial A \cup \operatorname{int}(A^{\complement}) = \overline{A} \cup \operatorname{int}(A^{\complement})$, which, by property 8, is $\overline{A} \cup \overline{A}^{\complement}$, and the last expression is just X.

13. $int(A \cap B) = int(A) \cap int(B)$.

Proof. (LHS \subseteq RHS). Let $C = \operatorname{int}(A \cap B)$. Since C is open and contained in both A and B, C is contained in both $\operatorname{int}(A)$ and $\operatorname{int}(B)$, since $\operatorname{int}(A)$ and $\operatorname{int}(B)$ are the largest open sets in A and B respectively. (RHS \subseteq LHS). Let $D = \operatorname{int}(A) \cap \operatorname{int}(B)$. So D is open and is a subset of both A and B, hence a subset of $A \cap B$, and therefore a subset of $\operatorname{int}(A \cap B)$, since it is the largest open set contained in $A \cap B$.

Remark. Using property 7, we see that an alternative definition of interior can be given:

$$\operatorname{int}(A) = \overline{A^{\complement}}^{\complement}.$$