is constant on disjoint "connected components" and which takes possibly distinct values on disjoint components. This can be stated in terms of the concept of a locally constant function.

**Definition 37.22.** Given two topological spaces X, Y, a function  $f: X \to Y$  is *locally constant* if for every  $x \in X$ , there is an open set  $U \subseteq X$  such that  $x \in U$  and f is constant on U.

We claim that a locally constant function is continuous. In fact, we will prove that  $f^{-1}(V)$  is open for every subset,  $V \subseteq Y$  (not just for an open set V). It is enough to show that  $f^{-1}(y)$  is open for every  $y \in Y$ , since for every subset  $V \subseteq Y$ ,

$$f^{-1}(V) = \bigcup_{y \in V} f^{-1}(y),$$

and open sets are closed under arbitrary unions. However, either  $f^{-1}(y) = \emptyset$  if  $y \in Y - f(X)$  or f is constant on  $U = f^{-1}(y)$  if  $y \in f(X)$  (with value y), and since f is locally constant, for every  $x \in U$ , there is some open set,  $W \subseteq X$ , such that  $x \in W$  and f is constant on W, which implies that f(w) = y for all  $w \in W$  and thus, that  $W \subseteq U$ , showing that U is a union of open sets and thus, is open. The following proposition shows that a space is connected iff every locally constant function is constant:

**Proposition 37.17.** A topological space is connected iff every locally constant function is constant. See Figure 37.23.



Figure 37.23: An example of a locally constant, but not constant, real-valued function f over the disconnected set consisting of the disjoint union of the two solid balls. On the pink ball, f is 0, while on the purple ball, f is 1.

*Proof.* First, assume that X is connected. Let  $f: X \to Y$  be a locally constant function to some space Y and assume that f is not constant. Pick any  $y \in f(X)$ . Since f is not constant,  $U_1 = f^{-1}(y) \neq X$ , and of course,  $U_1 \neq \emptyset$ . We proved just before Proposition