第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划的图解法
- ▶单纯形法的原理
- ▶单纯形法的计算步骤
- ▶应用举例

线性规划问题

例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的电力消耗、对污染指数的影响、相关限制以及单位产品利润如下表:

	甲	乙	相关限制
耗 电(千瓦)	1	1	6
污染指数	-1	2	8
利润 (万元)	3	1	

根据工艺要求,如果乙产品的产量必须是甲产品的2倍以上,问工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?

例1的数学表示

▶ 设变量x_{1、}x₂分别代表甲、乙两种产品的数量, z代表生产两种产品的利润总和。

• 目标函数:
$$\max z=3x_1+x_2$$

• 约束条件:
$$x_1 + x_2 \le 6$$

 $-x_1 + 2x_2 \le 8$
 $2x_1 - x_2 \le 0$
 $x_1 \ge 0, x_2 \ge 0$

一般情况下的数学模型

$$\max(\min)z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$s.t. \quad a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge)b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le (=, \ge)b_2$$

$$\dots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge)b_m$$

$$x_1, x_2, \dots, x_n \ge (\le)0, free$$

简写形式

$$\max(\min)z = \sum_{j=1}^{n} c_j x_j$$

$$s.t.$$
 $\sum_{j=1}^{n} a_{ij} x_{j} \leq (=, \geq) b_{i}$ $(i = 1, \dots, m)$

$$x_j \ge (\le)0, free \qquad (j = 1, \dots, n)$$

矩阵形式

$$\max(\min)z = cx$$

s.t.
$$Ax \le (=, \ge)b$$

 $x \ge (\le)0$, free

其中:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad \boldsymbol{c} = [c_1, c_2, \cdots, c_n]$$

向量形式

$$\max(\min)z = cx$$

$$s.t. \quad \sum_{j=1}^{n} \boldsymbol{p}_{j} x_{j} \leq (=, \geq) \boldsymbol{b}$$

$$x \ge (\le)0$$
, free

其中:
$$A = [p_1 \quad p_2 \quad \cdots \quad p_n]$$

$$\boldsymbol{p}_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划的图解法
- ▶单纯形法的原理
- ▶单纯形法的计算步骤
- ▶应用举例

线性规划的图解法

解的分析

- ▶ 有几种最优解的可能?
- ▶ 这些最优解的共同特点是什么?

1、单个最优解

2、无穷多个最优解

3、无界解

4、无可行解

图解法启示

- 1。解的情况: 唯一最优解、无穷最优解、无界解、无可行解
- 2。可行域很可能是一个凸集
- 3。最优解若存在,很可能就是可行域的顶点
- 4。必须寻找一种代数方法,来解决高维的情况。

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划的图解法
- ▶单纯形法的原理
- ▶单纯形法的计算步骤
- ▶应用举例

线性规划问题的标准形式

线性规划模型的结构

目标函数: max, min

约束条件: ≥,=,≤

变量符号: : ≥0, unr, ≤0

线性规划的标准形式

目标函数: max

约束条件 :=

变量符号 : ≥0

 $\max(\min)$ z = cx

s.t. $Ax \ge (=, \le)b$

 $x \ge (\le)0$, free

 $\max z = cx$

s.t. Ax = b

 $x \ge 0$

标准形式的转化

变量条件的转化

$$x_j \ge 0$$

$$x_j \leq 0$$

$$X_i$$
 无约束

$$\mathbb{R} \quad x_{j}^{'} = -x_{j}$$

约束条件的转化

约束条件

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}$$

$$\sum_{i=1}^{n} a_{ij} x_{j} \ge b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_j + x_{si} = b_i$$

$$\sum_{j=1}^{n} a_{ij} x_j - x_{si} = b_i$$

 $x_{si} \ge 0$ 称为松弛变量

目标函数的转化

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$\min z = \sum_{j=1}^{n} c_j x_j$$

加入松弛变量x。时

$$\mathfrak{P}z' = -z$$

$$\max z = \sum_{j=1}^{n} c_j x_j + 0x_{si}$$

非齐次线性方程组解

标准形式:

$$\max z = cx$$

$$s.t.$$
 $Ax = b$

$$x \ge 0$$

$$\diamondsuit$$
: $\overline{A} = [A \mid b]$

 $rank(A) = rank(\overline{A}) = n$

: 唯一解

rank(A) = rank(A) < n

: 无穷多个解

 $rank(A) < rank(\overline{A})$

: 无解

一般情况

$$rank(A) = rank(\overline{A}) = m < n$$

- 1、没有冗余约束
- 2、解有无穷多个

图解法启示

- 1。可行域很可能是一个凸集
- 2。最优解若存在,很可能就是可行域的顶点

可行域的定义

- ●可行解:满足两类约束条件的解x
- ●可行域:全部可行解的集合

$$\sum_{j=1}^{n} \boldsymbol{p}_{j} x_{j} = \boldsymbol{b}$$

$$x_j \ge 0$$
 $j = 1, 2, \dots, n$

凸集的定义

● 凸集: $a\mathbf{x}_1 + (1-a)\mathbf{x}_2 \in C$, 0 < a < 1 (凸组合)

问题: 哪些集合是凸集?

顶点的定义

● 顶点: 不存在 $x=ax_1+(1-a)x_2$, $0 \le a \le 1$, $x_1 \ne x_2 \in C$

线性规划最优解性质

定理1 若线性规划问题存在可行解,则问题的可行域是凸集。

定理2 线性规划的可行域顶点与基可行解一一对应。

定理3 若线性规划问题有最优解,一定存在一个最优解是基可行解。

约束交点的代数概念: 基解

●线性规划的基、基变量、非基变量

顶点的代数概念: 基可行解

- \bullet 基: 系数矩阵A中 $m \times m$ 的满秩子矩阵B
- ●基向量: 基B的每一个列向量,记作 \bar{p}_i
- ●基变量 x_B : 基向量 \overline{p}_i 对应的变量 \overline{x}_i
- ●非基变量 x_N : 基变量以外的变量
- ●基解: 非基变量取零, 基变量取值对应于由基构成的线性方程的解。有:

$$[\boldsymbol{x}_{B}^{T}, \boldsymbol{x}_{N}^{T}]^{T} = [\overline{x}_{1}, \overline{x}_{2}, \dots, \overline{x}_{m}, 0, \dots, 0]^{T}$$

- ●基可行解:满足非负条件的基解($x_B \ge 0$)
- ●可行基:对应于基可行解的基B。

基可行解

基解、基可行解举例

$$\max z=3x_1+x_2$$

s.t.
$$x_1 + x_2 + x_3 = 6$$

 $-x_1 + 2x_2 + x_4 = 8$
 $x_1, x_2, x_3, x_4 \ge 0$

投影点	O	A	В	C	D	E
\mathbf{X}_{1}	0	6	4/3	0	0	-8
X ₂	0	0	14/3	4	6	0
X ₃	6	0	0	2	0	14
X ₄	8	14	0	0	-4	0

基解、基可行解判断

	x_1	x_2	x_3	x_4	Z	基可行解
O	0	0	6	8	0	Y
A	6	0	0	14	18	Y
В	4/3	14/3	0	0	4	Y
C	0	4	2	0	2	Y
D	0	6	0	-4	/	N
E	-8	0	14	0	/	N

几何概念与代数概念

几何概念

代数概念

约束直线/超平面

约束半平面

约束半平面的交集: *凸多边形*

约束超平面的交点

(至少含n-m个象限分割超平面)

可行域的顶点

目标函数等值线

满足一个等式约束的解

满足一个不等式约束的解

满足一组不等式约束的解

基解

基可行解

目标函数值等于一个常数的解

单纯形法基本思路

- ▶基本思路: 基可行解的范围内搜索
- 1. 确定初始解
- 2. 寻找目标函数值更优的相邻基可行解
- 3. 迭代后检验解的最优性

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划的图解法
- ▶单纯形法的原理
- ▶单纯形法的计算步骤
- ▶应用举例

单纯形法流程

初始基可行解

>含单位矩阵的初始基,有

$$(\overline{p}_1, \dots, \overline{p}_m) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

方法:通过增加人工变量或松弛变量,可以使 $A_a=[AI]$

人工变量法

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} + x_{ai} = b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} + x_{ai} = b_{i}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} - x_{sj} + x_{ai} = b_{i}$$

$$\max z = \sum_{j=1}^{n} c_{j} x_{j} - Mx_{ai}$$

M如何选取?

举例

max
$$z=3x_1+x_2$$

s.t. $x_1+x_2+x_3=6$
 $-x_1+2x_2+x_4=8$
 $2x_1-x_2+x_5=0$

初始单纯形表

	c_{j}		3	1	0	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
0	x_3	6	1	1	1	0	0
0	x_4	8	-1	2	0	1	0
0	x_5	0	2	-1	0	0	1
$\sigma_{\!j}$			3	1	0	0	0

$$\mathbf{x}^{(0)} = [0, 0, 6, 8, 0]^{\mathrm{T}}$$

相邻基可行解

max
$$z=3x_1+x_2$$

s.t. $x_1+x_2 \le 6$
 $-x_1+2x_2 \le 8$
 $x_1, x_2 \ge 0$

	x_1	x_2	x_3	x_4
O	0	0	6	8
A	6	0	0	14
В	4/3	14/3	0	0
C	0	4	2	0

基矩阵为单位阵的特点

> 如果基矩阵是一个单位矩阵,有

$$(\overline{\boldsymbol{p}}_{1},\cdots,\overline{\boldsymbol{p}}_{m}) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \qquad \boldsymbol{p}_{j} = \sum_{i=1}^{m} a_{ij} \overline{\boldsymbol{p}}_{i}$$

$$\boldsymbol{p}_{j} = \sum_{i=1}^{m} a_{ij} \, \overline{\boldsymbol{p}}_{i}$$

$$\sum_{i=1}^{n} x_{j} \boldsymbol{p}_{j} = \sum_{i=1}^{m} \overline{x}_{i} \ \overline{\boldsymbol{p}}_{i} = \boldsymbol{b}$$

$$\overline{\boldsymbol{x}}_{i} = \boldsymbol{b}_{i}$$

第i行的基变量 \bar{x}_i 与第i行约束一一对应

相邻基可行解的转换

$$x^{(0)} = [\bar{x}_1^0, \dots, \bar{x}_m^0, 0 \dots 0]^T \ge 0$$
 初始基可行解

$$\sum_{j=1}^{n} x_{j}^{(0)} \boldsymbol{p}_{j} = \sum_{i=1}^{m} \overline{x}_{i}^{(0)} \overline{\boldsymbol{p}}_{i} = \boldsymbol{b} + \boldsymbol{p}_{j} = \sum_{i=1}^{m} a_{ij} \overline{\boldsymbol{p}}_{i}$$

$$\sum_{i=1}^{m} (\overline{x}_{i}^{(0)} - \theta a_{ij}) \overline{\boldsymbol{p}}_{i} + \theta \boldsymbol{p}_{j} = \boldsymbol{b}$$

$$(1) \quad \boldsymbol{r} = (0) \quad \boldsymbol{a} \quad \boldsymbol{r} = (0) \quad \boldsymbol{a} \quad \boldsymbol{r} = (0) \quad \boldsymbol{a} \quad \boldsymbol{r} = (0)$$

$$\mathbf{x}^{(1)} = [\overline{x}_1^{(0)} - \theta a_{1j}, \dots, \overline{x}_m^{(0)} - \theta a_{mj}, 0 \dots, \theta, \dots, 0]^T$$
 转换解

如何保证x(1)也是基可行解?

基可行解的条件

$$\boldsymbol{x}^{(1)} = [\overline{x}_1^{(0)} - \theta a_{1j}, \cdots, \overline{x}_m^{(0)} - \theta a_{mj}, 0 \cdots, \theta, \cdots, 0]^T$$

1、可行解条件:

$$x_i^{(1)} = \overline{x}_i^{(0)} - \theta a_{ii} \ge 0 \quad i = 1, 2, \dots, m$$

$$\theta = x_i^{(1)} > 0$$
 =0是否可以?

2、基解条件:

$$\min_{i} \{ \overline{x}_{i}^{(0)} - \theta a_{ij} \} = 0$$

$$\theta = \min_{i} \left\{ \frac{\overline{x}_{i}^{(0)}}{a_{ij}} \middle| a_{ij} > 0 \right\}$$
 所有 $a_{ij} \leq 0$ 会如何?

更优解的判别

$$z^{(1)} = cx^{(1)} = c[\overline{x_1}^{(0)} - \theta a_{1j}, \dots, \overline{x_m}^{(0)} - \theta a_{mj}, 0 \dots, \theta, \dots, 0]^T$$

$$= \sum_{i=1}^{m} c_i (\overline{x_i}^{(0)} - \theta a_{ij}) + c_j \theta$$

$$= \sum_{i=1}^{m} c_i \overline{x_i}^{(0)} - \theta \sum_{i=1}^{m} c_i a_{ij} + c_j \theta$$

$$= z^{(0)} + \theta \left(c_j - \sum_{i=1}^{m} c_i a_{ij} \right) = z^{(0)} + \theta \sigma_j$$

检验数:
$$\sigma_j \triangleq c_j - \sum_{i=1}^m c_i a_{ij}$$
 $\sigma_j > 0$: z增大 $\sigma_j < 0$: z减小

入基、出基变量的选取

。确定入基变量 x_k

$$\sigma_k = \max_j \{ \sigma_j \mid \sigma_j > 0 \}$$

。确定出基变量 x_l

$$\theta = \min_{i} \left\{ \frac{\overline{x}_{i}^{(0)}}{a_{ik}} \middle| a_{ik} > 0 \right\} = \frac{b_{l}}{a_{lk}}$$

更新单纯形表

			3	1	0	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
0	x_3	6	0	1.5	1	0	-0.5
0	x_4	8	0	1.5	0	1	0.5
3	\boldsymbol{x}_1	0	1	-0.5	0	0	0.5
$\sigma_{\!j}$			0	2.5	0	0	-1.5

单纯形表迭代

第
$$l$$
行: $a'_{lj} = a_{lj} / a_{lk}$ $b'_{l} = \frac{b_{l}}{a_{lk}}$ 其他行: $a'_{ij} = a_{ij} - \frac{a_{lj}}{a_{lk}} a_{ik}$ $i \neq l$ $b'_{i} = b_{i} - \frac{b_{l}}{a_{lk}} a_{ik}$ $i \neq l$ 检验数迭代: $\sigma'_{l} = -\frac{1}{a_{lk}} \sigma_{k}$ $\sigma'_{j} = \sigma_{j} - \frac{a_{lj}}{a_{lk}} \sigma_{k}$ $j \neq k$

最终单纯形表

			3	1	0	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
1	x_2	4	0	1	2/3	0	-1/3
0	x_4	2	0	0	-1	1	1
3	x_1	2	1	0	1/3	0	1/3
$\sigma_{\!j}$			0	0	-5/3	0	-2/3

解的判别

- 。若存在 $\sigma_i > 0$,且 $p_i \le 0$ 无界解
- 。若存在 $\sigma_i > 0$,存在 $a_{ij} > 0$ 继续迭代
- 。所有 $\sigma_i \leq 0$,但有人工变量不为零 无可行解
- 。所有 $\sigma_i \leq 0$,若存在非基变量的 $\sigma_i = 0$ 无穷个最优解
- 。所有 $\sigma_j \le 0$,且没有非基变量的 $\sigma_j = 0$ 唯一最优解

最优性检验流程

退化与循环

退化: 基变量出现零的现象

影响:可能出现循环迭代

对策?

第二章 线性规划

- ▶线性规划问题及数学模型
- ▶线性规划的图解法
- ▶单纯形法的原理
- ▶单纯形法的计算步骤
- ▶应用举例

应用举例

- •套裁问题:
- •配料问题:
- •产品计划问题:
- •投资问题:
- •运输问题:

投资问题

例:某投资者有50万元可以用于长期投资,可供选择的投资项目包括购买国库卷、购买公司债卷、投资房地产、购买股票、银行短期或长期储蓄,各种投资方式的投资期限,年收益率,风险系数,增长潜力的具体参数见下表。若投资者希望投资组合的平均年限不超过5年,平均的期望收益率不低于13%,平均风险系数不超过4,收益的平均增长潜力不低于10%。问在满足上述要求的前提下,投资者该如何选择投资组合使平均年收益率最高?

投资问题参数表

序号	投资方式	投资年限 (年)	年收益率 (%)	风险系 数	增长潜力(%)
1	国库卷	3	11	1	0
2	公司债卷	10	15	3	15
3	房地产	6	25	8	30
4	股票	2	20	6	20
5	短期储蓄	1	10	1	5
6	长期储蓄	5	12	2	10
期望指标		5	13	4	10

投资问题模型

设xj为第j种投资方式在总投资方式中所占比例

$$\max z=11x_1+15x_2+25x_3+20x_4+10x_5+12x_6$$
s.t.
$$3x_1+10x_2+6x_3+2x_4+x_5+5x_6 \le 5$$

$$11x_1+15x_2+25x_3+20x_4+10x_5+12x_6 \ge 13$$

$$x_1+3x_2+8x_3+6x_4+x_5+2x_6 \le 4$$

$$15x_2+30x_3+20x_4+5x_5+10x_6 \ge 10$$

$$x_1+x_2+x_3+x_4+x_5+x_6=1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

套裁问题

例:某车间接到制作100套钢架的订单,每套钢架要用长为2.9m,2.1m,1.5m的圆钢各一根,已知原料长7.4m,问应如何下料,可使所用原料最省。

分析

先选择一些可行的方案:

方案	1	2	3	4	5
2.9	1	2	0	1	0
2.1	0	0	2	2	1
1.5	3	1	2	0	3
合计	7.4	7.3	7.2	7.1	6.6
料头	0	0.1	0.2	0.3	0.8

套裁问题模型

设xj为按方案j下料的原料根数

min
$$z=0x_1+0.1x_2+0.2x_3+0.3x_4+0.8x_5$$

s.t.
$$x_1 + 2x_2 + x_4 = 100$$

$$2x_3 + 2x_4 + x_5 = 100$$

$$3x_1 + x_2 + 2x_3 + 3x_5 = 100$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

配料问题

例:某糖果厂用原料A,B,C加工三种不同牌号的糖果甲、乙、丙。已知各种牌号糖果中A、B、C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价如下表所示。问该厂每月生产这三种牌号的糖果各多少kg,使该厂获利最大。试建立这个问题的线性规划数学模型。

配料问题

	甲	Z	丙	原料成本 (元/kg)	毎月限用 量(kg)
A	≥60%	≥30%		2.00	2000
В				1.50	2500
C	≤20 %	≤50%	≤60%	1.00	1200
加工费(元/kg)	0.50	0.40	0.30		
售价(元/kg)	3.40	2.85	2.25		

配料问题模型-目标函数

设x_{ii}代表生产第j种产品耗用第i种原料的kg数

max z=3.40(
$$x_{11}+x_{21}+x_{31}$$
)

销售收入

$$+2.85(x_{12}+x_{22}+x_{32})$$

$$+2.25(x_{13}+x_{23}+x_{33})$$

$$-0.50(x_{11}+x_{21}+x_{31})$$

加工成本

$$-0.40(x_{12}+x_{22}+x_{32})$$

$$-0.30(x_{13}+x_{23}+x_{33})$$

$$-2.0(x_{11}+x_{12}+x_{13})$$

$$-1.5(x_{21}+x_{22}+x_{23})$$

$$-1.0(x_{31}+x_{32}+x_{33})$$

原料 成本

配料问题模型-约束条件

$$x_{11} + x_{12} + x_{13} \le 2000$$

$$x_{21} + x_{22} + x_{23} \le 2500$$

$$x_{31} + x_{32} + x_{33} \le 1200$$

$$x_{11} \ge 0.6(x_{11} + x_{21} + x_{31})$$

$$x_{31} \le 0.2(x_{11} + x_{21} + x_{31})$$

$$x_{12} \ge 0.3(x_{12} + x_{22} + x_{32})$$

$$x_{13} \le 0.5(x_{12} + x_{22} + x_{32})$$

$$x_{33} \le 0.6(x_{13} + x_{23} + x_{33})$$

$$x_{ij} \ge 0$$

月限用量

含量成份

最优跟踪控制问题

▶已知被控对象的模型为:

$$y(k) = \sum_{i=1}^{2} b_i y(k-i) + \sum_{j=0}^{1} b_j u(k-i)$$

▶控制约束:

$$|u(i)| \le M$$
 $|u(i) - u(i-1)| \le N$

 \triangleright 求使下列目标最小的控制序列u(k)。

$$\min_{u(k),1\leq k\leq 10} \max |y(k)-r(k)|$$