1

Assignment 3

Dontha Aarthi - CS20BTECH11015

Download all python codes from

https://github.com/Dontha-Aarthi/AI1103/tree/main/Assignment3/Codes

and latex-tikz codes from

https://github.com/Dontha-Aarthi/AI1103/blob/main/Assignment3/main.tex

1 Problem

(GATE 2019-XE Q.no 1 (Page Number:4)

Let X be the Poisson random variable with parameter $\lambda = 1$. Then, the probability $\Pr(2 \le X \le 4)$ equals

2 SOLUTION

Let

$$X \in \{0, 1, 2, 3, 4, 5...\}$$
 (2.0.1)

We know that, for a poisson random variable X with a given parameter λ , probability of X = k is:

$$\Pr(X = k) = \left(\frac{\lambda^k e^{-\lambda}}{k!}\right) \tag{2.0.2}$$

First, lets calculate the PMF of the distribution by plugging the values of k into 2.0.2,

k	0	1	2	3	4
Pr(X = k)	1/e	1/e	1/2e	1/6e	1/24e

TABLE 0: PMF

The CDF is as follows:

X	0	1	2	3	4
F(x)	1/e	2/e	5/2e	8/3e	65/24e

TABLE 0: CDF

The graph of CDF is shown below

CDF

175

150

125

100

0.75

And also,

0.50

0.25

0.00

0.0

$$\Pr(x < X \le y) = F(y) - F(x) \tag{2.0.3}$$

2.0

2.5

3.0

3.5

4.0

So, now we can find the value of $Pr(2 \le X \le 4)$ and also its given that $\lambda=1$.

We can represent the value of $Pr(2 \le X \le 4)$ as $Pr(1 \le X \le 4)$.

Now by using 2.0.3,

0.5

10

1.5

$$Pr(2 \le X \le 4) = Pr(1 < X \le 4)$$
 (2.0.4)

$$= F(4) - F(1) \tag{2.0.5}$$

$$=\frac{65}{24e} - \frac{2}{e} \tag{2.0.6}$$

$$=\frac{17}{24e}\tag{2.0.7}$$

The graph for theoretical result vs simulation is given below

