Solution for problem 4.53 from O&S, problem #5 on hmwk 6

(a)

If $X(e^{j\omega})$ and $H_0(e^{j\omega})$ are as shown in Figure P4.53-2, sketch (to within a scale factor) $X_0(e^{j\omega})$, $G_0(e^{j\omega})$, $Y_0(e^{j\omega})$.

First, $X(e^{j\omega})$ is plotted.

The lowpass filter cuts off at $\frac{\pi}{2}$.

The downsampler expands the frequency axis. Since $R_0(e^{j\omega})$ is bandlimited to $\frac{\pi}{M}$, no aliasing occurs.

The upsampler compresses the frequency axis by a factor of 2.

The lowpass filter cuts off at $\frac{\pi}{2} \Rightarrow Y_0(e^{j\omega}) = R_0(e^{j\omega})$ as sketched above.

(b)

Write a general expression for $G_0(e^{j\omega})$ in terms of $X(e^{j\omega})$ and $H_0(e^{j\omega})$. Do not assume that $X(e^{j\omega})$ and $H_0(e^{j\omega})$ are as shown in Figure 4.53-2.

$$\begin{array}{lcl} R_0(e^{j\omega}) & = & X(e^{j\omega})H_0(e^{j\omega}) \\ X_0(e^{j\omega}) & = & \frac{1}{2}\left(R_0\left(e^{j\frac{\omega}{2}}\right) + R_0\left(e^{j\left(\frac{\omega}{2} - \pi\right)}\right)\right) \\ G_0(e^{j\omega}) & = & X_0(e^{j2\omega}) \\ & & \text{So combining these together...} \\ X_0(e^{j\omega}) & = & \frac{1}{2}\left(X_0\left(e^{j\frac{\omega}{2}}\right)H_0\left(e^{j\frac{\omega}{2}}\right) + X_0\left(e^{j\left(\frac{\omega}{2} - \pi\right)}\right)H_0\left(e^{j\left(\frac{\omega}{2} - \pi\right)}\right)\right) \\ G_0(e^{j\omega}) & = & \frac{1}{2}\left(X_0\left(e^{j\omega}\right)H_0\left(e^{j\omega}\right) + X_0\left(e^{j\left(\omega - \pi\right)}\right)H_0\left(e^{j\left(\omega - \pi\right)}\right)\right) \end{array}$$

(c)

Determine a set of conditions on $H_0(e^{j\omega})$ that is as general as possible and that will guarantee that y[n] is proportional to $x[n-n_d]$ for any stable input x[n].

NOTE: If you have a particular version of 2nd edition, the wording is different: $|Y(e^{j\omega})| \propto |X(e^{j\omega})|$. The final reconstruction is also a difference rather than a sum: $y[n] = y_0[n] - y_1[n]$. This will be discussed at the end.

$$Y_{0}(e^{j\omega}) = H_{0}(e^{j\omega})G_{0}(e^{j\omega})$$

$$= \frac{1}{2}X(e^{j\omega})H_{0}^{2}(e^{j\omega}) + X(e^{j(\omega-\pi)})H_{0}(e^{j\omega})H_{0}(e^{j(\omega-\pi)})$$
Similarly,
$$Y_{1}(e^{j\omega}) = \frac{1}{2}X(e^{j\omega})H_{1}^{2}(e^{j\omega}) + X(e^{j(\omega-\pi)})H_{1}(e^{j\omega})H_{1}(e^{j(\omega-\pi)})$$

$$Y(e^{j\omega}) = Y_{0}(e^{j\omega}) + Y_{1}(e^{j\omega})$$

$$= \frac{1}{2}X(e^{j\omega})\left[H_{0}^{2}(e^{j\omega}) + H_{1}^{2}(e^{j\omega})\right] + \frac{1}{2}X(e^{j(\omega-\pi)})\left[H_{0}(e^{j\omega})H_{0}(e^{j(\omega-\pi)}) + H_{1}(e^{j\omega})H_{1}(e^{j(\omega-\pi)})\right]$$

Using the given relationship that $H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)}),$

$$Y(e^{j\omega}) = \frac{1}{2}X(e^{j\omega}) \left[H_0^2(e^{j\omega}) + H_0^2(e^{j(\omega-\pi)}) \right] + \frac{1}{2}X(e^{j(\omega-\pi)}) \left[H_0(e^{j\omega})H_0(e^{j(\omega-\pi)}) + H_0(e^{j(\omega-\pi)})H_0(e^{j\omega}) \right]$$

$$= \frac{1}{2}X(e^{j\omega}) \underbrace{\left[H_0^2(e^{j\omega}) + H_0^2(e^{j(\omega-\pi)}) \right]}_{A(\omega)} + X(e^{j(\omega-\pi)}) \underbrace{\left[H_0(e^{j\omega})H_0(e^{j(\omega-\pi)}) \right]}_{B(\omega)}$$

Our goal is to have $y[n] \propto x[n-n_d]$, or in the frequency domain, $Y(e^{j\omega}) = ce^{j\omega n_d}X(e^{j\omega})$. Note that this is the same as the 3rd edition wording because $|Y(e^{j\omega})| = |ce^{j\omega n_d}X(e^{j\omega})| = |c| \cdot |X(e^{j\omega})|$. Thus, we want the aliasing term $X(e^{j(\omega-\pi)})$ to go away completely. Therefore we choose $B(\omega) = 0$, $\forall \omega$. Additionally, we desire to have $A(\omega) = ce^{j\omega n_d}$.

Analyzing $B(\omega)$

Supposing we have $H_0(e^{j\omega})$ with lower cutoff frequency ω_L and upper cutoff frequency ω_R , then $B(\omega) = 0$, $\forall \omega$ can be enforced if $H_0(e^{j\omega})$ and $H_0(e^{j(\omega-\pi)})$ do not overlap, i.e. $\pi + \omega_L > \omega_R$. Rearranging terms we have $\pi > -\omega_L + \omega_R$, or the width of the low-pass filter must be less than π .

Analyzing $A(\omega)$

Case 1: $n_d = 0$

For case of $n_d = 0$, our goal simplifies to $Y(e^{j\omega}) = cX(e^{j\omega})$, so we want $A(\omega) = c_1$, some constant c_1 , for all $\{\omega | X(e^{j\omega}) \neq 0\}$ (the support of $X(e^{j\omega})$). However, to make this system general for all signals (even ones that aren't bandlimited), let us say that $A(\omega) = c_1 \,\forall \omega$.

$$H_0^2(e^{j\omega}) + H_0^2(e^{j(\omega-\pi)}) = c_1$$

Combined with the fact that $B(\omega) = 0$,

$$H_0^2(e^{j\omega}) = c_1, \ \omega \in \{\omega_L, \omega_R\}$$

 $H_0^2(e^{j(\omega-\pi)}) = c_1, \ \omega \in \{\pi + \omega_L, \pi + \omega_R\}$ redundant, so I will drop this line of reasoning $H_0(e^{j\omega}) = \sqrt{c_1}, \ \omega \in \{\omega_L, \omega_R\}$

Choosing $c_1 = 2c$, we satisfy the necessary condition. Therefore, $H_0(e^{j\omega})$ should have constant height over its support and zero phase. This is equivalent to an ideal low pass filter.

Case 2: $n_d \neq 0$

For the case of $n_d \neq 0$,

$$\begin{split} \frac{1}{2} \left[H_0^2(e^{j\omega}) + H_0^2(e^{j(\omega-\pi)}) \right] &= ce^{j\omega n_d} \\ \frac{1}{2} \left[|H_0(e^{j\omega})| e^{j\angle H_0(e^{j\omega})} \right]^2 + \frac{1}{2} \left[|H_0(e^{j(\omega-\pi)})| e^{j\angle H_0(e^{j(\omega-\pi)})} \right]^2 &= ce^{j\omega n_d} \\ \frac{1}{2} |H_0(e^{j\omega})|^2 e^{2j\angle H_0(e^{j\omega})} + \frac{1}{2} |H_0(e^{j(\omega-\pi)})|^2 e^{2j\angle H_0(e^{j(\omega-\pi)})} &= ce^{j\omega n_d} \end{split}$$

Now we consider two cases: (a) $\omega \in \{\omega_L, \omega_R\}$ (in the support of $H_0(e^{j\omega})$) and (b) $\omega > \omega_R$ or $\omega < \omega_L$ (in the support of $H_0(e^{j(\omega-\pi)})$.

Case 2a

For $\omega \in \{\omega_L, \omega_R\}$, $H_0(e^{j(\omega-\pi)}) = 0$, so

$$\begin{split} \frac{1}{2}|H_0(e^{j\omega})|^2 e^{j2\angle H_0(e^{j\omega})} &= ce^{j\omega n_d} \\ &\frac{1}{2}|H_0(e^{j\omega})|^2 &= c \to |H_0(e^{j\omega})| = \sqrt{2c} \\ &e^{j2\angle H_0(e^{j\omega})} &= e^{j\omega n_d} \to \angle H_0(e^{j\omega}) = \frac{1}{2}\omega n_d \end{split}$$

In other words, $H_0(e^{j\omega})$ must have constant magnitude and linear phase.

Case 2b

For $\omega \notin \{\omega_L, \omega_R\}$, $H_0(e^{j\omega}) = 0$, so

$$\frac{1}{2}|H_0(e^{j(\omega-\pi)})|^2 e^{j2\angle H_0(e^{j(\omega-\pi)})} = ce^{j\omega n_d}$$

$$\frac{1}{2}|H_0(e^{j(\omega-\pi)})|^2 = c \to |H_0(e^{j(\omega-\pi)})| = \sqrt{2c}$$

$$e^{j2\angle H_0(e^{j(\omega-\pi)})} = e^{j\omega n_d} \to \angle H_0(e^{j(\omega-\pi)}) = \frac{1}{2}\omega n_d$$

Thus, we see that when shifted $H_0(e^{j\omega})$ should still have constant magnitude (which is consistent with what we saw in case 2a). We also see that the phase of shifted $H_0(e^{j\omega})$ is the same as the phase of unshifted $H_0(e^{j\omega})$. This implies that the phase is periodic with period π .

Thus our final conditions for $H_0(e^{j\omega})$ are that:

$$|H_0(e^{j\omega})| = \sqrt{2c}$$

and

$$\angle H_0(e^{j\omega}) = \begin{cases} \frac{1}{2}\omega n_d, & \omega \in \{\omega_L, \omega_R\} \\ \frac{1}{2}(\omega - \pi)n_d, & \omega \in \{\pi + \omega_L, \pi + \omega_R\} \end{cases}.$$

Note that if we choose $n_d = 0$, this reduces to our previous conditions.

Alternate version of problem

For the particular version of the 2nd edition/3rd edition:

$$Y(e^{j\omega}) = Y_0(e^{j\omega}) - Y_1(e^{j\omega})$$

$$= \frac{1}{2}X(e^{j\omega}) \left[H_0^2(e^{j\omega}) - H_1^2(e^{j\omega})\right] + \frac{1}{2}X(e^{j(\omega-\pi)}) \left[H_0(e^{j\omega})H_0(e^{j(\omega-\pi)}) - H_1(e^{j\omega})H_1(e^{j(\omega-\pi)})\right]$$

Using the given relationship that $H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)}),$

$$Y(e^{j\omega}) = \frac{1}{2}X(e^{j\omega})\left[H_0^2(e^{j\omega}) - H_0^2(e^{j(\omega-\pi)})\right] + \frac{1}{2}X(e^{j(\omega-\pi)})\left[H_0(e^{j\omega})H_0(e^{j(\omega-\pi)}) - H_0(e^{j(\omega-\pi)})H_0(e^{j\omega})\right]$$

$$= \frac{1}{2}X(e^{j\omega})\underbrace{\left[H_0^2(e^{j\omega}) + H_0^2(e^{j(\omega-\pi)})\right]}_{A(\omega)}$$

We desire $|Y(e^{j\omega})| \propto |X(e^{j\omega})|$, so

$$\begin{split} |Y(e^{j\omega})| &= c|X(e^{j\omega})| \\ |\frac{1}{2}X(e^{j\omega})A(\omega)| &= c|X(e^{j\omega})| \\ \frac{1}{2}|X(e^{j\omega})|\cdot|A(\omega)| &= c|X(e^{j\omega})| \\ |A(\omega)| &= 2c \end{split}$$

So long as $A(\omega) = H_0^2(e^{j\omega}) + H_0^2(e^{j(\omega-\pi)})$ has constant magnitude, we have $|Y(e^{j\omega})| \propto |X(e^{j\omega})|$. Note that in this version of the problem, we do not have the requirement that $H_0(e^{j\omega})$ not overlap with $H_0(e^{j(\omega-\pi)})$.

Note to graders

Since this problem was different depending the students' textbooks, please be aware that if they had the alternate version of the problem $(y[n] = y_0[n] - y_1[n])$, they should have completed the analysis in the above section for full credit. If they had the first version of the problem $(y[n] = y_0[n] + y_1[n])$, they need to have completed the analysis at least for the $n_d = 0$ case. Any additional analysis is optional.