데이터 전처리

데이터 전처리 개요

- 데이터 전처리
 - 데이터를 분석에 사용할 때 성능이 더 좋게 나오도록 데이터를 수정하거나 형태를 변형하는 것
- 수집한 데이터를 머신 러닝 등에 바로 사용할 수 있는 경우는 거의 없다.
- 수집한 데이터가 너무 크면 한번에 분석하기 어려우므로 적절한 크기로 줄여야 한다.
- 데이터가 비정형이라면 이를 정형 데이터로 바꾸어야 한다.
 - 이미지나 텍스트와 같은 비정형 데이터의 의미를 컴퓨터가 바로 다룰 수는 없다.
- 분석 목적에 맞게 데이터의 품질을 확인, 필요하면 품질을 높이는 작업
- 데이터 품질
 - 신뢰성
 - 정확성
 - 적시성 (최신성) 등

데이터 전처리 – 전처리 유형

- 전처리의 유형
 - 중간에 데이터가 빠진 경우
 - 틀린 값이 들어 있는 경우
 - 데이터의 단위가 틀리는 경우 (m/inch, kg/파운드 등)
 - 범주형 데이터의 경우 카테고리를 나타내는 표현으로 변경 필요
 - 예) 월요일: 1, 화요일: 2, 등
- 데이터 변환
 - 로그 변환
 - 역수 변환
 - 정규분포로 변환
 - 예) 10점 만점으로 처리한 것과 100점 만점으로 처리한 데이터를 같이 활용하려면 동일한 분포로 변환할 필요
 - *** 변환의 목적 : 선형시스템이어야 정확한 예측이 가능

데이터 전처리 – 전처리 유형

구분	처리 방법
결측치 (missing) 처리	 결측치가 포함된 항목을 모두 버리는 방법 버리는 항목의 비중이 크면 무시하기 어려움 결측치를 적절한 값으로 대체 0, 평균값, 최소값, 특정 상수, 인접 값으로 추정 등 분석 단계로 결측치 처리를 넘김 (NA로 표기) 별도의 범주형 변수를 정의하여 추적 가능하게 관리
틀린 값 (invalid) 처리	 틀린 값이 포함된 항목을 모두 버리는 방법 틀린 값을 다른 적절한 값으로 대체 분석 단계로 틀린 값의 처리를 넘김
이상치 (outlier) 검출	 값이 일반적인 범위를 벗어나 특별한 값을 갖는 경우 데이터 분석 과정의 활동이므로 분석 단계로 넘김 도난 카드의 사용, 불법 보험료 청구 등의 탐지

데이터 전처리 - 데이터 변환

- 데이터를 주어진 그대로 사용하지 않고 다른 형태로 바꾸어 사용한 것이 필요한 경우가 많다
 - 같은 성적을 나타내는데 A, B, C 등 학점으로 표현하거나 100점 만점으로 환산하기도 한다 (97, 94, 91 등)
 - 변환의 종류
 - 범주형 변환
 - 로그 변환
 - 역수 변환

데이터 전처리 – 범주형으로 변환

- · 수치형 데이터의 개별 값 구분이 오히려 혼란스러울 경우
 - 나이: 10대, 20대, 30대, 40대 등
 - 연간 소득 : 고소득층, 중간층, 저소득층 등
- 수치형 데이터를 범주형으로 변환할 때, 각 구간의 범위를 균등하게 정할 수도 있고 서로 다른 범위를 정할 수도 있다.
 - 고교 내신 성적: 1등급/9등급(각 4%), 2등급/8등급(15%) 등

데이터 전처리 – 범주형 변수 코딩

- 요일을 1, 2, 3, 4, 5, 6, 7 등으로 표시한 경우 이 변수를 컴퓨터가 연산(덧셈이나 곱셈)을 할 수 있는 숫자로 인식해서는 안 된다.
 - 이 숫자를 범주형(Category형)으로 분명하게 처리되어야 한다.
 - 컴퓨터가 범주형 변수를 분명히 인식하게 하는 방법이 필요하다
- one hot encoding
 - 하나의 특성(컬럼)만 1이 될 수 있고, 다른 특성은 모두 0으로 코딩하는 방법
 - 월요일: (1, 0, 0, 0, 0, 0, 0)
 - 수요일: (0, 0, 1, 0, 0, 0, 0)
 - get_dummies() : pandas
 - 범주형 변수들을 one hot encoding으로 만들어준다

데이터 전처리 – 스케일링(Scaling)

- 원래 데이터가 갖는 값의 범위를 다르게 조정하는 작업
- · 스케일링을 하는 이유
 - 여러 특성 변수의 중요도를 같도록 맞추기 위해서
 - 예) 모든 시험은 100점 만점으로 환산해야 동일한 비중으로 취급된다
 - 어떤 과목은 50점 만점, 어떤 과목을 80점 만점이면 동일한 조건으로 특성이 반영되지 않는다.
- 최소-최대 스케일링
 - 주어진 값을 (최소값=0, 최대값=1)로 재조정하는 것
 - MinMaxScaler() 함수 (sklearn)
- 표준 스케일링
 - 데이터 분포를 표준 정규분포(평균 0, 표준 편차 1)이 되도록 정규화하는 방법
 - 표준화(standardization), z-score 정규화
 - StandardScaler() 함수 (sklearn)

데이터전처리 - 정규 분포(Normal Distribution)

데이터 전처리 – 표준 스케일링

• 모든 과목 (동일)

- 100점 만점

- 학급 평균: 60점

• 과목의 표준편차

- 과목 A: 20점

- 과목 B: 5점

학생	과목 A	과목 B	평균
갑	90	80	85
a	80	90	85

• 누가 더 공부를 잘 하는 학생일까?

데이터 전처리 – 표준 스케일링

- · 과목 B는 편차가 작은데 이것의 의미는
 - 대부분의 학생이 60점 근처에 모여 있다는 것이고 따라서 고득점을 받기가 <mark>매</mark>우 어려운 과목인 것을 의미
- 이러한 과목의 점수 분포 특성을 고려하면 학생 율이 어려운 과목에서 90점을 받았으므로 더 우수한 학생이라는 생각이 든다.
 - 이러한 문제를 정확히 해결하려면 원 점수가 아니라 표준편차를 고려한 점수를 사용해야 한다.
 - 표준 변환
 - 각 점수가 평균에서 얼마나 떨어져 있는 지를 표준편차를 기준으로 나누 어 비교

$$z = \frac{x - u}{\sigma}$$

데이터 전처리 – 표준 스케일링

• 각 점수가 평균에서 얼마나 떨어져 있는 지를 표준편차를 기준으로 나누어 비교

$$z = \frac{x - u}{\sigma}$$

• 표준[z] 변환 후의 데이터 분포 : 평균 0, 표준편차 1

	학생	과목 A	과목 B	평균
변환 전	갑	90	80	85
	을	80	90	85
변환 후	갑	(90 - 60) / 20 = 1.5	(80 - 60) / 5 = 4	2.75
	일	(80 - 60) / 20 = 1	(90 - 60) / 5 = 6	3.50

데이터 전처리 – 로그 변환

- 체감형 수치를 선형적으로 표현할 때 사용
 - 사람이 자연적으로 느끼는 느낌의 양을 수학적 모델로 설명할 때 사용
 - 돈, 소리, 빛, 압력, 냄새 등 생물학적인 자극을 주는 경우
- 같은 자극 정도를 느끼려면 현재 보유한 양이 많을수록 이에 비례한 더 강한 자극이 필요하다.
 - 느끼는 자극 정도 : 현재 보유량에 반비례
 - 이를 수학적으로 표현하면 로그 함수가 됨
 - 현재 보유한 양 x, 이의 변화량(미분값) 1/x
 - 로그 형태로 변화하는 신호의 기울기(입력의 변화대 출력의 변화량)은
 현재의 양에 반비례
- 로그를 취한 후의 값에 대해서 사람들이 변화량을 느끼는 것이 선형적이 라는 특성

데이터 전처리 – 로그 변환

실제 소리의 크기와 느낌의 차이는 로그 관계

• 스피커 소리를 들을 때 소리가 2배, 3배, 4배 크 게 들리게 하려면 실제 소리의 크기는 지수 함수 로 키워야 한다.

데이터 전처리 – 로그 변환

데이터 전처리 – 역수 변환

- 역수를 사용하면 선형적인 특성을 가져 분석의 정확도가 높아지는 경우
- · 역수 관계 : 자동차의 성능 지표
 - 자동차 마일리지 [연료 1l로 가는 거리 km)
 - 연비 [100 km 주행하는데 필요한 연료 l]
- 측정 목적
 - 같은 비용을 얼마나 멀리 갈 수 있는가?
 - 같은 거리를 여행하는데 비용이 얼마가 드는가?

데이터 전처리 – 데이터 변환

구분	내용
범주형으로 변환	• 수치 데이터가 아닌 것을 명시
min-max 정규화	・ 수치 데이터의 범위가 다를 때
z-score 정규화	• 일반 정규화에 표준 편차를 고려한 변환
로그 변환	· 로그를 취하면 선형 특성을 가질 때 (또는 로그 정규 분포를 가질 때)
역수 변환	• 역수를 사용하면 선형적인 특성을 가질 때

• 적절히 잘 선택을 해야 한다