WHAT IS CLAIMED IS:

- 1. A method for imaging a thrombus comprising the steps of:
 - a. localizing a radiolabelled compound at the thrombus;
 - b. acquiring image slices representing a physical property of the radiolabelled thrombus;
 - c. assembling the image slices into a three-dimensional matrix of data;
 - d. scanning the three-dimensional matrix of data along an array of parallel lines to determine a maximum value along each line; and
 - e. assigning the maximum value along each line to a pixel in a two-dimensional array, the position of the pixel corresponding to the position of the line in the array of parallel lines.
- The method of Claim 1 wherein the localization step comprises the step of localizing a compound that preferentially binds to activated platelets of the thrombus.
- The method of Claim 2 wherein the localization step comprises the step of localizing a compound that binds to activated platelets of the thrombus via the glycoprotein IIb/IIIa receptor.
- 4. The method of Claim 3 wherein the localization step comprises the step of localizing a compound of the formula (I), and pharmaceutically acceptable salts thereof, at the thrombus:

 $|Q|d - L_n - C_h |_{X} - M_T (A_{L1})_{Y} (A_{L2})_{Z}$

(I),

wherein,

```
Q is a glycoprotein IIb/IIIa binding compound;
d' is 1 - 20;
```

Ln is a linking group of formula:

 $M^{1}-[Y^{1}(CR^{55}R^{56})f(Z^{1})f''Y^{2}]f'-M^{2},$

wherein:

 M^{1} is $-[(CH_{2})_{g}Z^{1}]_{g'}-(CR^{55}R^{56})_{g''}-;$

 M^2 is $-(CR^{55}R^{56})_{q''}-[Z^1(CH_2)_{q}]_{q'}-;$

g is independently 0-10;

g' is independently 0-1;

g" is independently 0-10;

f is independently 0-10;

f' is independently 0-10;

f" is independently 0-1;

Y¹ and Y², are independently selected at each occurrence from: a bond, O, NR⁵⁶, C=O, C(=O)O, OC(=O)O, C(=O)NH-, C=NR⁵⁶, S, SO, SO₂, SO₃, NHC(=O), (NH)₂C(=O), and (NH)₂C=S;

Z¹ is independently selected at each occurrence from a C6-C14 saturated, partially saturated, or aromatic carbocyclic ring system, substituted with 0-4 R⁵⁷; and a heterocyclic ring system, substituted with 0-4 R⁵⁷;

 R^{55} and R^{56} are independently selected at each occurrence from: hydrogen; C_1 - C_{10} alkyl substituted with 0-5 R^{57} ; and alkaryl wherein the aryl is substituted with 0-5 R^{57} ;

R⁵⁷ is independently selected at each occurrence from the group: hydrogen, OH, NHR⁵⁸, $C(=0)R^{58}$, $OC(=0)R^{58}$, $OC(=0)OR^{58}$, $C(=0)OR^{58}$, $C(=0)OR^{58}$, $C(=0)OR^{58}$, $C(=0)NR^{58}$, C=N, SR^{58} , SOR^{58} , SO_2R^{58} , SO_3R^{58} , $SO_3R^$

R⁵⁸ is independently selected at each occurrence from the group: hydrogen; C₁-C₆ alkyl; benzyl, and phenyl;

 M_T is a transition metal radionuclide;

 C_h is a radionuclide metal chelator or bonding unit bound to the transition metal radionuclide selected from the group consisting of: $R^{40}N=N^+=$, $R^{40}R^{41}N-N=$, $R^{40}N=$, or $R^{40}N=N$ (H)-;

 $\rm R^{40}$ is independently selected at each occurrence from the group: a bond to $\rm L_{\rm n},~C_{\rm 1}\text{-}C_{\rm 10}$ alkyl substituted with 0-3 $\rm R^{52},~aryl$ substituted with 0-3 $\rm R^{52},~cycloaklyl$ substituted with 0-3 $\rm R^{52},~heterocycle$ substituted with 0-3 $\rm R^{52},~heterocycloalkyl$ substituted with 0-3 $\rm R^{52},~aralkyl$ substituted with 0-3 $\rm R^{52}$ and alkaryl substituted with 0-3 $\rm R^{52}$;

 R^{41} is independently selected from the group: hydrogen, aryl substituted with 0-3 R^{52} , C_1 - C_{10} alkyl substituted with 0-3 R^{52} , and a heterocycle substituted with 0-3 R^{52} ;

 R^{52} is independently selected at each occurrence from the group: a bond to $L_{\rm II}$, =0, F, Cl, Br, I,-CF3,-CN, -CO2R⁵³, -C(=0)R⁵³, -C(=0)N(R⁵³)2, -CH0, -CH2OR⁵³, -OC(=0)R⁵³, -OC(=0)OR^{53a}, -OR⁵³, -OC(=0)N(R⁵³)2, -NR⁵³C(=0)R⁵³, -NR⁵⁴C(=0)OR^{53a}, -NR⁵³C(=0)N(R⁵³)2, -NR⁵⁴SO2N(R⁵³)2, -NR⁵⁴SO2R^{53a}, -SO3H, -SO2R^{53a}, -SR⁵³, -S(=0)R^{53a}, -SO2N(R⁵³)2, -N(R⁵³)2, -NHC(=NH)NHR⁵³, -C(=NH)NHR⁵³, -NOR⁵³, NO2, -C(=0)NHOR⁵³, -C(=0)NHNR⁵³R^{53a}, -OCH2CO2H, 2-(1-morpholino)ethoxy;

 R^{53} , R^{53a} , and R^{54} are each independently selected at each occurrence from the group: hydrogen, C_1 - C_6 alkyl, and a bond to L_n ;

A_{L1} is a first ligand wherein each of the y first ligands are selected from the group consisting of: dioxygen ligands, functionalized aminocarboxylates, halides, and combinations thereof;

A_{L2} is a second ligand wherein each of the z second ligands are selected from the group consisting of: trisubstituted phosphines, trisubstituted arsines, tetrasubstituted diphosphines, tetrasubstituted diarsines, and combinations thereof;

x is independently 1-2;

y is independently 1-2; and

z is independently 0-4.

- 5. The method of Claim 4 wherein $M_{\scriptscriptstyle T}$ is selected from the group consisting of: technetium-99m, rhenium-186, and rhenium-188.
- 6. The method of Claim 4 wherein the localization step comprises the step of localizing a compound of the

formula (II), at the thrombus wherein Q is of the formula

or a pharmaceutically acceptable salt or prodrug form thereof wherein:

 ${
m R}^{31}$ is a C6-C14 saturated, partially saturated, or aromatic carbocyclic ring system substituted with 0-4 ${
m R}^{10}$ or ${
m R}^{10a}$;

R³² is selected from:

-C(=O)-;

-C(=S)-

 $-S(=0)_{2}-;$

-S(=0)-;

 $-P(=Z)(ZR^{13})-;$

Z is S or O;

n" and n' are independently 0-2;

 R^1 and R^{22} are independently selected from the following groups:

hydrogen,

C1-C8 alkyl substituted with 0-2 R11;

C2-C8 alkenyl substituted with 0-2 R11;

C2-C8 alkynyl substituted with 0-2 R¹¹;
C3-C₁₀ cycloalkyl substituted with 0-2 R¹¹;

aryl substituted with 0-2 R12;

a 5-10-membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, said heterocyclic ring being substituted with 0-2 R¹²;

=0, F, Cl, Br, I, -CF₃, -CN, -CO₂R¹³, -C(=0)R¹³, -C(=0)N(R¹³)₂, -CHO, -CH₂OR¹³, -OC(=0)R¹³, -OC(=0)OR¹³a, -OR¹³, -OC(=0)N(R¹³)₂, -NR¹³C(=0)R¹³, -NR¹⁴C(=0)OR¹³a, -NR¹³C(=0)N(R¹³)₂, -NR¹⁴SO₂N(R¹³)₂, -NR¹⁴SO₂R¹³a, -SO₃H, -SO₂R¹³a, -SR¹³, -S(=0)R¹³a, -SO₂N(R¹³)₂, -NHC(=NH)NHR¹³, -C(=NH)NHR¹³, =NOR¹³, NO₂, -Q(=0)NHOR¹³, -C(=0)NHOR¹³R¹³a, -OCH₂CO₂H, 2-(1-morpholino)ethoxy;

 R^1 and R^{21} can alternatively join to form a 3-7 membered carbocyclic ring substituted with 0-2 R^{12} ;

when n' is 2, R^1 or R^{21} can alternatively be taken together with R^1 or R^{21} on an adjacent carbon atom to form a direct bond, thereby to form a double or triple bond between said carbon atoms;

 R^{22} and R^{23} can alternatively join to form a 3-7 membered carbocyclic ring substituted with 0-2 R^{12} ;

when n" is 2, R^{22} or R^{23} can alternatively be taken together with R^{22} or R^{23} on an adjacent carbon atom to form a direct bond, thereby to form a double or triple bond between the adjacent carbon atoms;

 R^1 and R^2 , where R^{21} is H, can alternatively join to form a 5-8 membered carbocyclic ring substituted with 0-2 R^{12} ;

R¹¹ is selected from one or more of the following:

=0, F, Cl, Br, I, -CF₃, -CN, -CO₂R¹³, -C(=0)R¹³, $-C (=0) N (R^{13})_2, -CHO, -CH_2OR^{13}, -OC (=0) R^{13},$ $-OC(=O)OR^{13a}$, $-OC(=O)N(R^{13})_2$, $-NR^{13}C(=O)R^{13}$, $-NR^{14}C(=0)OR^{13}a$, $-NR^{13}C(=0)N(R^{13})_2$, $-NR^{14}SO_2N(R^{13})_2$, $-NR^{14}SO_2R^{13a}$, $-SO_3H$, $-SO_2R^{13a}$, $-SR^{13}$, $-S(=0)R^{13a}$ $-SO_2N(R^{13})_2$, $-N(R^{13})_2$, $-NHC(=NH)NHR^{13}$, $-C(=NH)NHR^{13}$. $=NOR^{13}$, NO_2 , $-C(=0)NHOR^{13}$, $-C(=0)NHNR^{13}R^{13}a$, -OCH2CO2H, 2-(1-norpholino)ethoxy,

C1-C5 alkyl, C2-C4 alkenyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6 alkoxyalkyl, C3-C6 cycloalkoxy, C1-C4 alkyl (alkyl being substituted with 1-5 groups selected independently from: $-NR^{13}R^{14}$, $-CF_3$, NO_2^1 , $-SO_2R^{13}a$, or $-S(=0)R^{13}a$),

aryl substituted with 0-2 R12,

a 5-10-membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, said heterocyclic ring being substituted with $0-2 R^{12}$;

R¹² is selected from one of more of the following:

phenyl, benzyl, phenethyl, phenoxy, benzyloxy, halogen, hydroxy, nitro cyano, C1-C5 alkyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C7-C10 arylalkyl, C_1 - C_5 alkoxy, $-C_2R^{13}$, -C(=0) NHOR^{13a}, $-C(=0) \text{ NHN } (R^{13})_2, = NOR^{13} \setminus -B(R^{34}) (R^{35}), C_3-C_6$ cycloalkoxy, $-OC(=0)R^{13}$ $-C(=0)R^{13}$, $-OC(=0)OR^{13}$, $-OR^{13}$, $-(C_1-C_4 \text{ alkyl}) -OR^{13}$, $-N(R^{13})_2$, $-OC(=0)N(R^{13})_2$, $-NR^{13}C(=0)R^{13}$, $-NR^{13}C(=0)OR^{13}a$, $-NR^{13}C(=0)N(R^{13})_2$, $-NR^{13}SO_2N(R^{13})_2$, $-NR^{13}SO_2R^{13}a$, $-SO_3H$, $-SO_2R^{13a}$, $-S(=0)R^{13a}$, $-SR^{13}$, $-SO_2N(R^{13})_2$, C2-C6 alkoxyalkyl, methylenedioxy, ethylenedioxy,

C1-C4 haloalkyl, C1-C4 haloalkoxy, C1-C4 alkylcarbonyloxy, C1-C4 alkylcarbonyloxy, C1-C4 alkylcarbonylamino, -OCH₂CO₂H, 2-(1-morpholino)ethoxy, C1-C4 alkyl (alkyl being substituted with -N(R^{13})₂, -CF₃, NO₂, or -S(=0) R^{13a});

 R^{13} is selected independently from: H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_4 - C_{12} alkylcycloalkyl, aryl, -(C_1 - C_{10} alkyl)aryl, or C_3 - C_{10} alkoxyalkyl;

 R^{13a} is C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_4 - C_{12} alkylcycloalkyl, aryl, -(C_1 - C_{10} alkyl)aryl, or C_3 - C_{10} alkoxyalkyl;

when two R^{13} groups are bonded to a single N, said R^{13} groups may alternatively be taken together to form $-(CH_2)_{2-5}$ or $-(CH_2)_{3-5}$ or $-(CH_2)_{3-5}$

R¹⁴ is OH, H, C₁-C₄ alkyl, or benzyl;

R²¹ and R²³ are independently selected from:

hydrogen; C1-C4 alkyl, optionally substituted with 1-6 halogen; benzyl;

R² is H or C₁-C₈ alkyl

R¹⁰ and R^{10a} are selected independently from one or more of the following:

phenyl, benzyl, phenethyl, phenoxy, benzyloxy, halogen, hydroxy, nitro, cyano, C₁-C₅ alkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkylmethyl, C₇-C₁₀ arylalkyl, C₁-C₅ alkoxy, -CO₂R¹³, -C(=O)N(R¹³)₂,

J is 3-aminopropionic acid or an L-isomer or D-isomer amino acid of structure $-N(R^3)C(R^4)(R^5)C(=0)$ -, wherein:

R3 is H or C1-C8 alkyl;

R4 is H or C1-C3 alkyl

 ${\tt R}^{\tt 5}$ is selected from:

hydrogen;

C1-C8 alkyl substituted with 0-2 R11;

C2-C8 alkenyl substituted with 0-2 R11;

C2-C8 alkynyl substituted with 0-2 R11;

C3-C10 cycloalkyl substituted with 0-2 R11;

aryl substituted with 0-2 R12;

a 5-10-membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, or O, said heterocyclic ring being substituted with 0-2 $\rm R^{12}$;

=0, F, Cl, Br, I, -CF₃, -CN, -CO₂R¹³, -C(=0)R¹³,

```
-C(=0)N(R^{13})_{2}, -CHO, -CH_{2}OR^{13}, -OC(=0)R^{13},
       -OC(=0)OR^{13}a -OR^{13}, -OC(=0)N(R^{13})_2, -NR^{13}C(=0)R^{13},
       -NR^{14}C(=0)OR^{1/3}a, -NR^{13}C(=0)N(R^{13})_2, -NR^{14}SO_2N(R^{13})_2,
       -NR^{14}SO_2R^{13a}, -SO_3H, -SO_2R^{13a}, -SR^{13}, -S(=O)R^{13a},
       -SO_2N(R^{13})_2
                          -N(R^{13})_2, -NHC(=NH)NHR^{13}, -C(=NH)NHR^{13}.
                          C (=0) \text{ NHOR}^{13}, -C (=0) \text{ NHNR}^{13} R^{13} a, = \text{NOR}^{13},
       =NOR^{13}, NO_2,
       -B(R^{34})(R^{35}), -OCH_2CO_2H, 2-(1-morpholino)ethoxy,
       -SC(=NH)NHR<sup>13</sup>, N<sub>3</sub>, -Si(CH<sub>3</sub>)<sub>3</sub>, (C<sub>1</sub>-C<sub>5</sub> alkyl)NHR<sup>16</sup>;
       -(C_0-C_6 \text{ alkyl}) \mathbf{\dot{x}};
                                                  where q is
independently 0,1;
                                  CH<sub>2</sub>X
-(CH_2)_mS(0)_{D'}(CH_2)_2X, where m = 1,2 and p' = 0-2;
wherein X is defined below; and
R<sup>3</sup> and R<sup>4</sup> may also be taken together to form
                     -, where n = 0,1 and X is
```


 R^3 and R^5 can alternatively be taken together to form $-(CH_2)_{t-}$ or $-CH_2S(O)_{p}\cdot C(CH_3)_{2-}$, where t=2-4 and p'=0-2; or

 R^4 and R^5 can alternatively be taken together to form $-(CH_2)_{u}$, where u=2-5;

R¹⁶ is selected from:

an amine protecting group;

1-2 amino acids;

1-2 amino acids substituted with an amine protecting group;

K is a D-isomer or L-isomer amino acid of structure $-(R^6)CH(R^7)C(=0)$ -, wherein:

R6 is H or C1-d8 alkyl;

R⁷ is selected from:

 $-(C_1-C_7 \text{ alkyl})X;$

wherein each q is

independently 0-2 and substitution on the phenyl is at the 3 or 4 position;

wherein each

q is independently 0-2 and substitution on the cyclohexyl is at the 3 or 4 position;

 $-(CH_2)_{m}O-(C_1-C_4 \text{ alkyl})-X$, where m = 1 or 2;

 $-(CH_2)_mS(O)_p$; $-(C_1-C_4 \text{ alkyl})-X$, where m = 1 or 2 and p' = 0-2; and

X is selected from:

 $-N(R^{13})R^{13}$; $-C(=NH)(NH_2)$; $-SC(=NH)-NH_2$; -NH-C(=NH)(NHCN); $-NH-C(=NCN)(NH_2)$; $-NH-C(=N-OR^{13})(NH_2)$;

```
R^6 and R^7 can alternatively be taken together to form  \frac{(CH_2)_n X}{-(CH_2)_q CH(CH_2)_q} - , \text{ wherein each q is independently 1}  or 2 and wherein n=0 or 1 and X is -NH_2 or
```

L is $-Y(CH_2)_VC(=0)$ -, wherein:

Y is NH, $N(C_1-C_3 \text{ alkyl})$, O, or S; and v = 1 or 2;

M is a D-isomer or L-isomer amino acid of structure

, wherein:

is 0-2

 R^{17} is H, C_1 - C_3 alkyl;

R⁸ is selected from:

-CO₂R¹³, -SO₃R¹³, -SO₂NHR¹⁴, -B(R³⁴)(R³⁵), -NHSO₂CF₃, -CONHNHSO₂CF₃, -PO(OR¹³)₂, -PO(OR¹³)_R13, -SO₂NH-heteroaryl (said heteroaryl being 5-10-membered and having 1-4 heteroatoms selected independently from N, S, or O), -SO₂NH-heteroaryl (said heteroaryl being 5-10-membered and having 1-4 heteroatoms selected independently from N, S, or O), -SO₂NHCOR¹³, -CONHSO₂R^{13a}, -CH₂CONHSO₂R^{13a}, -NHSO₂NHCOR^{13a}, -NHCONHSO₂R^{13a}, -SO₂NHCONHR¹³;

 ${\bf R^{34}}$ and ${\bf R^{35}}$ are independently selected from:

-OH,

-F,

 $-N(R^{13})_2$, or

C1-C8-alkoxy;

R³⁴ and R³⁵ can alternatively be taken together form:
a cyclic boron ester where said chain or ring
contains from 2 to 20 carbon atoms and, optionally,
1-4 heteroatoms independently selected from N, S, or
O;

a divalent cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-4 heteroatoms independently selected from N, S, or O;

a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-4 heteroatoms independently selected from N, S, or O.

The method of Claim 6 wherein the localization step comprises the step of localizing a compound of the formula (I) at the thrombus wherein Q is of the formula (III),

(III)

or a pharmaceutically acceptable salt or prodrug form thereof wherein:

the shown phenyl ring may be further substituted with 0-3 R^{10} ;

 R^{10} is selected independently from: H, C_1 - C_8 alkyl, phenyl, halogen, or C_1 - C_4 alkoxy;

 R^1 is H, C_1 - C_4 alkyl, phenyl, benzyl, or phenyl- $(C_1$ - C_4) alkyl;

R² is H or methyl;

 R^{13} is selected independently from: H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_4 - C_{12} alkylcycloalkyl, aryl, -(C_1 - C_{10} alkyl)aryl, or C_3 - C_{10} alkoxyalkyl;

 R^{13a} is C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_4 - C_{12} alkylcycloalkyl, aryl, -(C_1 - C_{10} alkyl)aryl, or C_3 - C_{10} alkoxyalkyl;

when two R^{13} groups are bonded to a single N, said R^{13} groups may alternatively be taken together to form $-(CH_2)_{2-5}$ - or $-(CH_2)_{0}$:

 R^{14} is OH, H, C₁-C₄ alkyl, or benzyl;

J is β -alanine or an L-isomer or D-isomer amino acid of structure $-N(R^3)C(R^4)(R^5)C(=0)$ -, wherein:

 \mathbb{R}^3 is H or $\mathbb{C}\mathbb{H}_3$;

R4 is H or C₁-C₃ alkyl;

 $\rm R^5$ is H, C1-C8 alkyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C1-C6 cycloalkylethyl, phenyl, phenylmethyl, CH2OH, CH2SH, CH2OCH3, CH2SCH3, CH2CH2SCH3, (CH2)sNH2, -(CH2)sNHC(=NH)(NH2), -(CH2)sNHR^{16}, where s = 3-5; or

R¹⁶ is selected from:

an amine protecting group;

1-2 amino acids; or

1-2 amino acids substituted with an amine protecting group;

 R^3 and R^5 can alternatively be taken together to form $-CH_2CH_2CH_2-$; or R^4 and R^5 can alternatively be taken together to form

 ${\rm R}^4$ and ${\rm R}^5$ can alternatively be taken together to form -(CH2)u-, where u = 2-5;

K is an L-isomer amino acid of structure $-N(R^6)CH(R^7)C(=0)$ -, wherein:

R⁶ is H or C₁-C₈ alkyl;

 R^7 is:

$$-(CH_2)_q$$
 NH, where $q = 0$ or 1;

 $-(CH_2)_{r}X$, where r = 3-6;

___CH₂_____CH₂____X

-(CH_2) mS(CH_2) 2X, where m = 1 or 2;

 $-(C_3-C_7 \text{ alkyl})-NH-(C_1-C_6 \text{ alkyl});$

 $-(CH_2)_{m}-O-(C_1-C_4 \text{ alkyl})-NH-(C_1-C_6 \text{ alkyl})$, where m=1 or 2;

 $-(CH_2)_m-S-(C_1-C_4 \text{ alkyl})-NH-(C_1-C_6 \text{ alkyl})$, where m=1 or 2; and

X is $-\mathrm{NH}_2$ or $-\mathrm{NHC}(=\mathrm{NH})$ (NH $_2$), provided that X is not $-\mathrm{NH}_2$ when r = 4; or

 ${\tt R}^6$ and ${\tt R7}$ are alternatively be taken together to form $({\tt CH_2})_n X$

---CH₂CHCH₂---, where n = 0,1 and X is -NH₂ or

-NHC(=NH)(NH $_2$);

L is $-Y(CH_2)_VC(=0)$ -, wherein:

Y is NH, O, or S; and v = 1,2;

M is a D-isomer or L-isomer amino acid of structure

, wherein:

q' is 0-2;

 R^{17} is H, C₁-C₃ alkyl;

R⁸ is selected from:

- $-\text{CO}_2\text{R}^{13}, -\text{SO}_3\text{R}^{13}, -\text{SO}_2\text{NHR}^{14}, -\text{B}\left(\text{R}^{34}\right)\left(\text{R}^{35}\right), -\text{NHSO}_2\text{CF}_3,\\ -\text{CONHNHSO}_2\text{CF}_3, -\text{PO}\left(\text{OR}^{13}\right)_2, -\text{PO}\left(\text{OR}^{13}\right)_R\text{1}^3,\\ -\text{SO}_2\text{NH-heteroaryl} \text{ (said heteroaryl being}\\ 5-10-\text{membered and having 1-4 heteroatoms selected}\\ \text{independently from N, S, or O)}, -\text{SO}_2\text{NH-heteroaryl}\\ \text{(said heteroaryl being 5-10-membered and having 1-4}\\ \text{heteroatoms selected independently from N, S, or O)},\\ -\text{SO}_2\text{NHCOR}^{13}, -\text{CONHSO}_2\text{R}^{13a}, -\text{CH}_2\text{CONHSO}_2\text{R}^{13a},\\ -\text{NHSO}_2\text{NHCOR}^{13a}, -\text{NHCONHSO}_2\text{R}^{13a}, -\text{SO}_2\text{NHCONHR}^{13}.$
- 8. The method of Claim 4 wherein the localization step comprises the step of localizing a compound of the formula (IV) at the thrombus:

(IV).

9. The method of Claim 4 wherein the localization step

comprises the step of localizing a compound of the formula (V) at the thrombus:

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & & \\ & \\ & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

- 10. The method of Claim 1 wherein the acquisition step comprises the step of acquiring image slices representing a concentration of radioactivity associated with the thrombus.
- 11. The method of Claim 10 wherein the acquisition step comprises the step of acquiring single photon emission computed tomography images of the thrombus.
- 12. The method of Claim 1 wherein the acquisition step comprises the step of acquiring transaxial image slices and further comprising the step of reformatting the transaxial image slices into image slices that are parallel to a long axis associated with the thrombus.
- 13. The method of Claim 1 comprising the step of displaying the two-dimensional array as a reprojected image.

- 14. The method of Claim 1 wherein the scanning step is performed at a series of angles.
- 15. The method of Claim 14 wherein the assignment step is performed at each of the series of angles.
- 16. The method of Claim 15 comprising the step of sequentially displaying the two-dimensional arrays as reprojected images.
- 17. A method for imaging a pulmonary embolus comprising the steps of:
 - a. localizing a radiolabelled compound at the pulmonary embolus;
 - b. acquiring image slices representing a physical property of the radiolabelled pulmonary embolus;
 - c. assembling the image slices into a three-dimensional matrix of data;
 - d. scanning the three-dimensional matrix of data along an array of parallel lines to determine a maximum value along each line; and
 - e. assigning the maximum value along each line to a pixel in a two-dimensional array, the position of the pixel corresponding to the position of the line in the array of parallel lines.
- 18. A method for imaging an arterial thrombus comprising the steps of:
 - a. localizing a radiolabelled compound at the arterial thrombus;
 - acquiring image slices representing a physical property of the radiolabelled arterial thrombus;
 - c. assembling the image slices into a three-dimensional matrix of data;
 - d. scanning the three-dimensional matrix of data along an array of parallel lines to determine a maximum

- e. assigning the maximum value along each line to a pixel in a two-dimensional array, the position of the pixel corresponding to the position of the line in the array of parallel lines.
- 19. A method for imaging a coronary thrombus comprising the steps of:
 - a. localizing a radiolabelled compound at the coronary thrombus;
 - b. acquiring image slices representing a physical property of the radiolabelled coronary thrombus;
 - c. assembling the image slices into a three-dimensional matrix of data;
 - d. scanning the three-dimensional matrix of data along an array of parallel lines to determine a maximum value along each line; and
 - e. assigning the maximum value along each line to a pixel in a two-dimensional array, the position of the pixel corresponding to the position of the line in the array of parallel lines.