F241: MICROPROCESSOR, PROGRAMMING AND INTERFACING

DIGITAL ALARM CLOCK

DESIGN ASSIGNMENT

Submitted by: Group 17

Group members:

Ananth Vishnubhotla (2019A7PS1009G)
Bhargav Kishor Kulkarni (2019A7PS1008G)
Rishabh Anil Keste (2019A8PS1021G)
Vishnu Teja Soorea (2019A7PS1005G)
Saketh Ram Kilaru (2019AAPS1022G)
Deepak Anantha Bhaskar (2019AAPS1020G)

Date: 19/04/2021

Contents

User Requirements and Technical Specifications	3
User Interface:	3
Assumptions & Justifications	4
Assumptions:	4
Justifications:	4
Components used	5
ICs Used:	5
Other Components Used:	6
Thumb Switch mapping:	7
Address Map	8
Memory Map:	8
I/O Map:	8
Design	9
Flow Charts	10
Flow Chart of the Main Program:	10
Flow Chart of Normal Clock Running (NMI Interrupt):	11
Flow Chart of Set Hour:	12
Flow Chart of Set Minute:	13
Flow Chart of Set Second:	14
Flow Chart of Set Date:	15
Flow Chart of Set Month:	16
Flow Chart of Set Year:	17
Flow Chart of Set Alarm Hour:	18
Flow Chart of Set Alarm Minute:	19
Flow Chart of the Display:	20
Flow Chart of Get Month Max:	21
Flow Chart of Leap Year:	22
Flow Chart of Display Alarm:	23
Variations in Proteus Implementation with Justification	24
Firmware	25
List of Attachments	26

User Requirements and Technical Specifications

Design a digital alarm clock that displays time.

User Interface:

- Time is displayed in Hours and minutes and seconds.
- An LCD is available for display.
- The LCD displays the time as well as date and day.
- Using the Set Switch user can set Minutes, Hours, Seconds, Date, Month, Year, Alarm Hour, Alarm Minute by placing the sliding switch at the appropriate positions.
- When the set switch is in LOCK position the clock functions normally.
- "ALARM ON/OFF" switch is used for toggling the Alarm.
- The Hour and the Minute of the Alarm can be set using the "INC/DEC" push switch with its corresponding set mode.
- "INC" push button is used for incrementing values displayed and "DEC" switch is used for decrementing values displayed.
- Time can be displayed in AM/PM or 24 hour format.
- Users can toggle between any of the display formats at any time by pressing the "12/24" switch.
- While Time/Alarm is being set the value being set should be seen on the display.

Assumptions & Justifications

Assumptions:

- The clock will start from 00:00:00 on 1st of January, 20xx. The clock starts from the year 2000 and for the year, it displays the last two digits.
- Only one button can be pressed at a time.
- The alarm will trigger only on the 0th second of aligned time and only if its toggle state is ON, and the clock is operating in LOCK state.
- 12/24 is a switch which when pressed changes the mode to 12-hour mode. The default mode is 24-hour.
- One can only view the alarm time (hour : minute) when in set alarm hour or minute state. When the alarm is ringing, time is displayed normally.
- Alarm rings for one minute.

Justifications:

- 2 8255 chips have been used. One 8255 chip is used to interface with the LCD Screen, and the switches for 12/24 format change and alarm on/off. The other 8255 chip is used to interface with the BCD thumb switch, increment and decrement buttons and buzzer.
- 8254 is used to generate an interrupt every second, using a 1kHz external clock.
- 2716 (2k ROM) is used because it is the smallest ROM chip available. This ROM's data bus is 8 bits wide, but the 8086's data bus is 16 bit wide. Therefore 2 ROM chips have been used, one for even bank and one for odd bank.
- 6116 (2k RAM) is used because it is the smallest ROM chip available. This RAM's data bus is 8 bits wide, but the 8086's data bus is 16 bit wide. Therefore 2 RAM chips have been used, one for even bank and one for odd bank.
- We have used a 16×2 LCD screen (LM016L) because we only need two separate lines (one for displaying date, and one for displaying time) and not more than 16 characters.
- The 10th position of the thumb switch is not mapped, because there are only 9 options.
- We are not using an 8254 chip because the design does not need the 8254's read back functionality.
- Data has been stored as a BCD value in memory.

Components used

ICs Used:

Component	IC number	Quantity
Microprocessor	8086	1
Octal Latch	74LS373	3
Octal Bus Transceiver	74LS245	2
3 to 8 Line Decoder	74LS138	2
4 to 10 Line Decoder	4028	1
EPROM	2732	2
RAM	6116	2
Programmable Interval Timer	8253A	1
Programmable Peripheral Interface	8255A	2

Other Components Used:

Component	Quantity
2 i/p OR Gate	4
NOT Gate	4
2 i/p AND Gate	1
3 i/p AND Gate	1
4 i/p NOR Gate	1
BCD Thumbswitch	1
SW-SPDT (Alarm ON/OFF) Switch , Reset Switch and 12/24 Switch	3
SW-SPDT-MOM Switch (INC / DEC)	2
LM016L (LCD)	1
5.0K (Potentiometer)	1
Digital Sounder	1
Red LED	1

Thumb Switch mapping:

Number on Thumb Switch	Function
0	LOCK
1	Set Hour
2	Set Minute
3	Set Seconds
4	Set Date
5	Set Month
6	Set Year
7	Set Alarm Hour
8	Set Alarm Minute

Address Map

Memory Map: ROM: 8KB = 4KB (even) + 4KB (odd)

ROM start address	00000Н
ROM end address	01FFFH

RAM: 4KB = 2KB (even) + 2KB (even)

RAM start address	02000H
RAM end address	02FFFH

I/O Map:

8255 #1	00H - 06H
8253	08H - 0EH
8255 #2	10H - 16H

Design

Complete design shown with proper labelling (design attached as "g17_digital_alarm_clock.dsn")

Flow Charts

Flow Chart of the Main Program:

Flow Chart of Normal Clock Running (NMI Interrupt):

Flow Chart of Set Hour:

Flow Chart of Set Minute:

Flow Chart of Set Second:

Flow Chart of Set Date:

Flow Chart of Set Month:

Flow Chart of Set Year:

Flow Chart of Set Alarm Hour:

Flow Chart of Set Alarm Minute:

Flow Chart of the Display:

Flow Chart of Get Month Max:

Flow Chart of Leap Year:

Flow Chart of Display Alarm:

Variations in Proteus Implementation with Justification

- 8284 has been omitted from the Proteus implementation because Proteus does not support 8284. Instead a 2 MHz clock has been directly edited into the 8086 chip in Proteus.
- 2732 (4KB) chips have been used instead of 2716 because 2716 chips are not available in Proteus.

Firmware

"g17_digital_alarm_clock.asm" file implemented using emu8086 attached

List of Attachments

Complete Hardware Real World Design

• "G17 Pinout Diagrams.pdf"

Manuals Attached

- 8086 Microprocessor
- 74LS373 Octal Latch
- 74LS245 Octal Bus Transceiver
- 74LS138 3 to 8 Line Decoder
- 4028 4 to 10 Line Decoder
- 2732 EPROM
- 6116 RAM
- 8253A Programmable Interval Timer
- 8255A Programmable Peripheral Interface
- LM016L LCD

Proteus File

• "g17_digital_alarm_clock.dsn"

EMU8086 ASM File

• "g17_digital_alarm_clock.asm"

Binary File after assembly

• "g17_digital_alarm_clock.bin"