

Modelação Matemática

Teoria de Controlo

Licenciatura Engenharia Física - 3º ano

Tuesday, March 3, 2022

Vinícius Silva | Automação Controlo e Robótica | ID7267@alunos.uminho.pt

Função de transferência

Considere-se a seguinte equação diferencial:

$$a_0^{(n)} + a_1^{(n-1)} + \dots + a_{n-1}\dot{y} + a_n y$$

$$= b_0^{(m)} x + b_1^{(m-1)} + \dots + b_{m-1}\dot{x} + b_m x \qquad (n \ge m)$$

- Onde x é a entrada e y a saída
- A função de transferência é:

Función de transferencia = G(s) =
$$\frac{\mathcal{L}[\text{salida}]}{\mathcal{L}[\text{entrada}]}\Big|_{\text{condiciones iniciales cero}}$$

$$\frac{Y(s)}{X(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

- A função de transferência permite representar a dinâmica de um sistema em termos de equações algébricas em s.
- O termo de maior ordem do denominador determina a ordem do sistema

Função de Transferência

• Considere a seguinte função de transferência:

$$G(s) = \frac{Y(s)}{X(s)}$$

- X(s) a transformada de Laplace da entrada e Y(s) a da saída, supondo as condições iniciais nula.
- Pode obter-se a saída fazendo:

$$Y(s) = G(s)X(s)$$

Resposta ao Impulso

 A saída de um sistema para uma entrada de impulso unitário com condições inicias zero, dado que L [impulso unitário] = 1, ou seja X(s):

$$Y(s) = G(s)$$

• Cuja transformada inversa é designada de resposta ao impulso e corresponde à função g(t):

$$\mathcal{L}^{-1}[G(s)] = g(t)$$

 Diagrama de Blocos: corresponde a uma representação gráfica do sistema em termos de funções de cada componente e fluxo de sinais.

• Representação da função de transferência:

• Representação de um ponto de soma:

• Diagrama de blocos de um sistema realimentado

- R(s) corresponde à entrada de referência do sistema
- C(s) corresponde à saída do sistema, obtida multiplicando E(s).G(s)
- E(s) corresponde ao erro da saída para a referência

• Sistema Realimentado Sujeito a uma Perturbação

Resposta de saída para a perturbação considerando erro zero

$$\frac{C_D(s)}{D(s)} = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

• Resposta de saída para a referência, considerando a perturbação nula

$$\frac{G_R(s)}{R(s)} = \frac{G_1(s)G_2(s)}{+ G_1(s)G_2(s)H(s)}$$

• A resposta total C(s) inclui a soma das respostas anteriores

$$C(s) = C_R(s) + C_D(s)$$

$$= \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} [G_1(s)R(s) + D(s)]$$

Regras de álgebra dos diagramas de blocos

Funções de transferência genéricas (podem ser constantes, iguais ou diferentes de 1, ou razões de polinómios):

- H1(s)
- H2(s)
- Ca(s)
- F(s)
- G(s)
- S(s)

Variáveis genéricas:

- Y(s) saída, variável a controlar
- P(s) entrada, perturbação
- · Yr(s) entrada, referência
- Ym(s) medida
- U(s) comando
- Ea(s) erro

Exemplo (solução)

Obter a equação geral Y(s) = f(P(s), Yr(s)):

Considere o circuito RC:

• As equações do circuito são:

$$v_r = R. i$$

$$i_c = C. \frac{dv_c}{dt}$$

$$v_c = v_o$$

$$\begin{cases} v_i = v_c + v_r \\ i_c = C. \frac{dv_o}{dt} = i \end{cases} \qquad \begin{cases} v_i = v_o + R. C. \frac{dv_o}{dt} \end{cases}$$

• A que corresponde o diagrama:

 Considere o seguinte circuito RL série e determine a corrente i(t), considerando que s está fechado para t=0 e i(0)=0, ui(t) = E:

Pela lei das malhas:
$$u_i(t)=L\frac{di_l(t)}{dt}+Ri(t)$$
, como $i_l(t)=i(t)$, temos que: $u_i(t)=L\frac{di_l(t)}{dt}+Ri_l(t)$

Resolvendo a equação pela transformada de Laplace obtém-se:

$$L(sI_{l}(s) - i_{l}(0)) + RI_{l}(s) = U_{l}(s)$$

$$I_{l}(s) = \frac{1}{Ls + R} U_{l}(s) (=)I_{l}(s) = \frac{1}{Ls + R} \frac{E}{s} (=)I_{l}(s) = \frac{1}{L(s + \frac{R}{L})} \frac{E}{s}$$

$$I_{l}(s) = \frac{A_{1}}{Ls} + \frac{A_{2}}{Ls}$$

$$I_l(s) = \frac{A_1}{s} + \frac{A_2}{s + \frac{R}{L}}$$

 Considere o seguinte circuito RL série e determine a corrente i(t), considerando que s está fechado para t=0 e i(0)=0, ui(t) = E:

$$I_{l}(s) = \frac{A_{1}}{s} + \frac{A_{2}}{s + \frac{R}{L}}$$

$$A_{1} = \lim_{s \to 0} \frac{E}{L(s + \frac{R}{L})} = \frac{E}{R}$$

$$A_{1} = \lim_{s \to -\frac{R}{L}} \frac{E}{Ls} = -\frac{E}{R}$$

Então:

$$i_l(t) = \frac{E}{R}(u(t) - e^{-\frac{R}{L}t})$$

Representação em Espaço de Estados

• Considere as seguintes equações:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{k}{m}x_1 - \frac{b}{m}x_2 + \frac{1}{m}u$$

• Sendo a equação de saída:

• Na forma matricial pode escrever-se:
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u$$
 Y = $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Representação em Espaço de Estados

• As equações devem obedecer à forma standard:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$\mathbf{y} = \mathbf{c}\mathbf{x} + Du$$

Onde: A- matriz de estado, B- matriz de entrada
 C- matriz de saída, D- matriz directa

Representação em Espaço de Estados

Para o exemplo anterior:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0$$

 Correlação entre função de transferência e equações em espaço de estados

$$\mathbf{G}(\mathbf{s}) = \mathbf{C}(\mathbf{s}\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + D$$

Sistemas Elétricos

- Representação em Espaço de Estados
 - Considerando o circuito anterior, pode obter-se a seguinte equação diferencial:

$$\ddot{e}_o + \frac{R}{L}\dot{e}_o + \frac{1}{LC}e_o = \frac{1}{LC}e_i$$

 Pode definir-se as variáveis de estado e as variáveis de entrada e saída:

$$x_1 = v_o$$
 $u = v_i$
 $x_2 = \dot{v_o}$ $y = v_o = x_1$

Obtendo-se:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{LC} \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Outros sistemas

Exercício

- q_i is the input and h_1 is the output
- q_i is the input and h_2 is the output
- Representation Space of States

- Control system toolbox
- Matlab
- Simulink
- Instrument Control Toolbox
- Robust Control Toolbox

2 Tanques – Exercício

• Model the following system using state space notation:

Sistemas Hidráulicos – Grandezas

H Ní	vel m
V Vol	ıme m³
A Ár	ea m²
R Resistência	da Válvula m/(Kg/s)
F Caudal	Mássico Kg/s

F ou Q

Sistemas Mecânicos – Grandezas

Translação			Rotação		
Símbolo	Grandeza	Unidade	Símbolo	Grandeza	Unidade
F	Força	N	T	Binário	Nm
X	Deslocamento	m	θ	Ângulo	rad
V	Velocidade	m/s	ω	Velocidade Angular	rad/s
а	Aceleração	m/s ²	α	Aceleração Angular	rad/s²
M	Massa	Kg	J	Momento de Inércia	Kg m ²
K	Coeficiente de Elasticidade	N/m	К	Coeficiente de Elasticidade	Nm/rad
В	Coeficiente de Amortecimento	N/m/s	В	Coeficiente de Amortecimento	Nm/rad/s

Sistemas térmicos

Grandeza	Descrição
Fluxo de Calor	Calor transferido por unidade de tempo
Capacidade Calorífica	Quociente entre a quantidade de calor fornecida a um corpo e a correspondente variação de temperatura
Capacidade Térmica	Capacidade que um corpo possui para armazenar calor
Resistência Térmica	Resistência que um corpo oferece à passagem do calor
Caudal Mássico	Massa que atravessa uma área por unidade de tempo

Sistemas térmicos

Símbolo	Grandeza	Unidade
$oldsymbol{ heta}$	Temperatura	°C
$oldsymbol{q}$	Fluxo de Calor	J/s
C_p	Capacidade Calorífica	J/°C.Kg
C_t	Capacidade Térmica	J/°C
R_t	Resistência Térmica	°C/(J/s)
F	Caudal Mássico	Kg/s

Grandeza	Significado	Descrição
θ_b	Temperatura do Banho	Variável de Entrada
$\boldsymbol{ heta}_{M}$	Temperatura do Mercúrio	Variável a Controlar
q_{BM}	Calor Transferido Banho- Mercúrio	Variável Interna
q_{ACM}	Calor Acumulado Mercúrio	Variável Interna
R_{TBM}	Resistência Térmica Banho- Vidro	Parâmetro do Sistema
C_{TM}	Capacidade Térmica do Mercúrio	Parâmetro do Sistema

- entra = sai + acumula
- $q_{entra} = 0 + q_{acumula}$
- $q_{entra} = q_{BM} \mid q_{sai} = 0 \mid q_{acumula} = q_{ACM}$
- Assim a equação de balanço de calor é:
- $q_{BM} = q_{ACM}$
- $q_{transferido} = \frac{\theta_{quente} \theta_{frio}}{R_t} | q_{acumulado} = C_T \frac{d\theta(t)}{dt}$
- Então: $\frac{\theta_b \theta_M}{R_{TBM}} = C_{TM} \frac{d\theta_M(t)}{dt} (=) \frac{d\theta_M(t)}{dt} = \frac{\theta_b \theta_M}{R_{TBM} \times C_{TM}}$
- Laplace:
- $R_{TBM}C_{TM}(s\Theta(s) \theta_M(0)) = \Theta_b(s) \Theta_M(s)(=)\Theta_M(s) = \frac{1}{R_{TBM}C_{TM}s+1}\Theta_b(s) + \frac{R_{TBM}C_{TM}}{R_{TBM}C_{TM}s+1}\Theta(0)$

• Neste Segundo exemplo o vidro que compõe o termómetro é mais espesso, logo vai haver calor acumulado no vidro, fazendo com que exista transferência de calor do banho para o vidro e posteriormente do vidro para o mercúrio. Assim, há dois fenómenos de transferência de calor distintos.

Relacionar $\theta_b(t)$ e $\theta_M(t)$:

•
$$entra = sai + acumula$$

$$\bullet \quad q_{BV} = q_{VM} + q_{ACV}$$

•
$$\frac{\theta_b(t) - \theta_V(t)}{R_{TBV}} = \frac{\theta_V(t) - \theta_M(t)}{R_{TVM}} + C_{TV} \frac{d\theta_V(t)}{dt}$$

•
$$\frac{d\theta_V(t)}{dt} = \frac{\theta_b(t)}{R_{TBV} \times C_{TV}} + \frac{\theta_M(t)}{R_{TVM} \times C_{TV}} - \left(\frac{1}{R_{TBV} \times C_{TV}} + \frac{1}{R_{RTVM} \times C_{TV}}\right) \theta_V(t)$$

• Após obter a primeira equação diferencial, agora analisamos a transferência de calor do vidro para o mercúrio:

•
$$\frac{d\theta_M(t)}{dt} = \frac{\theta_V(t) - \theta_M(t)}{R_{TVM} \times C_{TM}}$$

$$R_{TVM} \times C_{TM} \frac{d^2\theta_M(t)}{dt^2} + \frac{d\theta_M(t)}{dt} = \frac{\theta_b(t)}{R_{TBV} \times C_{TV}} + \frac{\theta_M(t)}{R_{TVM} \times C_{TV}} - \left(\frac{1}{R_{TBV} \times C_{TV}} + \frac{1}{R_{RTVM} \times C_{TV}}\right) \times R_{TVM} \times C_{TM} \frac{d\theta_M(t)}{dt} + \theta_M(t)$$

• Espaço de Estados:

$$\bullet \begin{bmatrix} \frac{d\theta_{V}(t)}{dt} \\ \frac{d\theta_{M}(t)}{dt} \end{bmatrix} = \begin{bmatrix} -\left(\frac{1}{R_{TBV} \times C_{TV}} + \frac{1}{R_{RTVM} \times C_{TV}}\right) & \frac{1}{R_{TVM} \times C_{TV}} \\ \frac{1}{R_{TVM} \times C_{TM}} & \frac{-1}{R_{TVM} \times C_{TM}} \end{bmatrix} \begin{bmatrix} \theta_{V}(t) \\ \theta_{M}(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{R_{TBV} \times C_{TV}} \\ 0 \end{bmatrix} [\theta_{b}]$$

Grandeza	Significado	Descrição
θ_b	Temperatura do Banho	Variável de Entrada
$oldsymbol{ heta}_V$	Temperatura do Vidro	Variável a Controlar
θ_M	Temperatura do Mercúrio	Variável a Controlar
q_{BV}	Calor Transferido Banho-Vidro	Variável Interna
q_{VM}	Calor Transferido Vidro-Mercúrio	Variável Interna
q_{ACV}	Calor Acumulado Vidro	Variável Interna
q_{ACM}	Calor Acumulado Mercúrio	Variável Interna
R_{TBV}	Resistência Térmica Banho-Vidro	Parâmetro do Sistema
R_{TVM}	Resistência Térmica Vidro-Mercúrio	Parâmetro do Sistema
C_{TV}	Capacidade Térmica do Vidro	Parâmetro do Sistema
C_{TM}	Capacidade Térmica do Mercúrio	Parâmetro do Sistema

Grandeza	Significado	Descrição
$oldsymbol{ heta_i}$	Temperatura de Entrada	Variável de Entrada
$oldsymbol{ heta_o}$	Temperatura de Saída	Variável de Saída
$ heta_{estufa}$	Temperatura da Estufa	Variável a Controlar
$ heta_{ambiente}$	Temperatura Ambiente	Variável Externa
P	Potência Calorífica	Variável de Entrada
$q_{entrada}$	Fluxo de Calor de Entrada	Variável de Entrada
q saída	Fluxo de Calor de Saída	Variável de Saída
q_{perdas}	Calor Transferido Estufa Para o	Variável de Saída
•	Exterior	
q_{ACE}	Calor Acumulado na Estufa	Variável Interna
F entrada	Caudal Mássico de Entrada	Variável de Entrada
F _{saída}	Caudal Mássico de Saída	Variável de Saída
C_p	Capacidade Calorífica	Parâmetro do Sistema
R_{TEA}	Resistência Térmica Estufa Ambiente	Parâmetro do Sistema
C_{TE}	Capacidade Térmica da Estufa	Parâmetro do Sistema

- entra = sai + acumula
- $q_{entrada} + P = (q_{saida} + q_{perdas}) + q_{ACE}$
- Neste exemplo o fluxo de calor de entrada e saída é calculado através da seguinte equação, devido ao facto de não existir nenhum corpo ou massa entra a transferência de calor (ar):
- $q_{fornecido} = F \times \theta \times C_p$
- Ao aplicar tal equação o sistema fica:

•
$$F_{entrada} \times \theta_i \times C_p + P = F_{saida} \times \theta_o \times C_p + \frac{(\theta_o - \theta_{ambiente})}{R_{TEA}} + C_{TE} \frac{d\theta_{estufa}}{dt}$$

•
$$\frac{d\theta_{estufa}}{dt} = \frac{F_{entrada} \times \theta_i \times C_p + P - F_{saida} \times \theta_o \times C_p}{C_{TE}} + \frac{(\theta_o - \theta_{ambiente})}{R_{TEA} \times C_{TE}}$$