SP2003 Datasheet

2-in/6-out CMOS PMIC

December 2021

e-mail: leolsi@leolsi.com

The world is driven by analog

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. LEOLSI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. LeoLSI disclaims all liability arising from this information and its use. Use of LeoLSI devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless LeoLSI from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any LeoLSI intellectual property rights.

GENERAL DESCRIPTION_____

The SP2003 is a PMIC with four LDOs and two current limit switches for supplying power during four DUT test. The LDOs are controllable output voltage with wide range and high resolution. Each LDO has Current Limit function. In addition, the thermal shutdown function will automatically turn off All channel temperature exceeds 170°C.

All digital input pins adopt the Schmitt trigger I/O, which has 0.5-V to 1.3-V input noise margin to ensure TTL/CMOS-logic compatibility when using a 1.8-V power supply.

And these feature output active discharge function. Finally The SP2003 can configure up to 16 Daisy chains.

APPLICATIONS_____

Power distribution system Industrial equipment Memory test Probe Card

FEATURE

SPI protocol interface

1.8V logic-compatible input (V_{IH}=1.3V, V_{IL}=0.5V) Dual supply operation: 1.8V for digital, 5V for analog

Analog signal frequency: DC-to-10KHz LDO maximum load current: 200mA

Wide range analog input from 1.65V to 4.8V Wide range LDO output from 0.4V to 3.35V High resolution LDO output step: 10mV

Low on leakage current LDO: 400nA (@125°C)

LDO Output accuracy: < ±1.5% Low on-resistance: 0.3Ω (@typ) Thermal shutdown temperature:

170°C All Channel Off(CLS no Operating)

150°C Corresponding Channel Off(CLS Operating)

Current Limit Level: 220mA

Fold-back Current Limit Level: 110mA

Reverse Current Block Active Discharge 24-pin SiP package Daisy chain

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS_____

PIN MAPPING TABLE	5
PIN DESCRIPTIONS	5
ABSOLUTE MAXIMUM RATINGS	6
ELECTRICAL CHARACTERISTICS	6
TIMING CHARACTERISTICS	13
Timing Diagram of Digital SPI I/O Signals	13
Power up and down Sequence	14
SW On/Off Timing Diagram	15
Current Limit Operating Timing Diagram	16
Current Limit Foldback Operating Timing Diagram	16
Thermal Shutdown Operating Diagram	17
TEST CIRCUITS	18
TEST RESULTS	19
LDO TABLE	20
FUNCTIONAL DESCRIPTION	22
- Current Limiting	37
- Foldback	37
- Thermal Shutdown and Flag	38
- Active Discharge	38
- Reverse Current Blocking	38
PACKAGE INFORMATION	39
APPLICATION EXAMPLE	40
REVISION HISTORY	41
DOCUMENT INFORMATION	40

LIST OF FIGURES_____

Figure 1. Timing Diagram of Digital Signals.	13
Figure 2. Power-up Sequence	14
Figure 3. Power-down Sequence.	14
Figure 4. SW ON/OFF Timing Diagram	15
Figure 5. Current Limit Operating Timing Diagram	16
Figure 6. Current Limit Foldback Operating Timing Diagram.	16
Figure 7. Thermal Shutdown Operating Diagram	17
Figure 8. Package Information	39

PIN MAPPING TABLE

	1	2	3	4	5	6	
Α	LDO2	SCLK_OUT	VPP1(DVDD)	VPP0(DVDD)	SCLK_IN	LDO0	A
В	SW1	CSN_OUT	SDO	SDI	CSN_IN	SW0	В
С	AIN1	TEST1	NC1	NC0	TEST0	AIN0	С
D	LDO3	AVSS	AVDD	DVSS	DVDD	LDO1	D
	1	2	3	4	5	6	•

PIN DESCRIPTIONS_____

D: Digital, A: Analog

O: Output, I: Input, P: Power, G: Ground

Power

Name	I/O	Description
AVDD	Р	Analog Power.
DVDD	Р	Digital Power.
AVSS	G	Analog Ground
DVSS	G	Digital Ground
VPP[1:0]	Р	Digital Power.

SPI Interface (6 pins)

Name	I/O	Description
SCLK_IN	I	SPI Clock In
SDI	I	SPI Data In
CSN_IN	I	Chip Select In
SCLK_OUT	0	SPI Clock Out
SDI	0	SPI Data Out
CSN_IN	0	Chip Select Out

Analog

Name	I/O	Description
AIN[1:0]	I	Analog Switch/LDO Input
SW OUT[1:0]	0	Analog Switch Output
LDO OUT[3:0]	0	Analog LDO Output

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. The functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

 $(T_A = 25 \, ^{\circ}C)$

Parameter	Symbol	Conditions	Rating	Unit
Input Voltage	Vin		-0.3 to 6.0	V
Control Voltage	VCT		-0.3 to 6.0	V
Output Voltage	VOUT		-0.3 to 6.0	V
Output Current	IOUT		Internally limited	-
Power Dissipation	PD		TBD	mW
Operating Temperature Range	Topr		-40 to 125	°C
Junction Temperature	Tj		175	°C
Storage Temperature	Tstg		-55 to 150	°C

NOTE: The device is not guaranteed to operate properly above those listed in "Absolute Maximum Ratings".

ELECTRICAL CHARACTERISTICS(TA = +25°C)_

VDD=5.0V, VSS=0V, DVDD=1.8V, DVSS=0V and TA = +25°C, unless otherwise noted.

PARAMETER		CVMDOL	CONDITION		LINUT		
Ρ,	PARAMETER		SYMBOL CONDITION —		TYP	MAX	UNIT
POWER SI	UPPLIES						
Analog Sup	oply Voltage	AVDD		4.5	5	5.5	V
Digital Sup	ply Voltage	DVDD		1.62	1.8	1.98	V
Analog Gro	ound Voltage	AVSS			0		V
Digital Grou	Digital Ground Voltage				0		V
ANALOG S	SWITCH						
Input Voltag	ge Range	V _{AIN}	VDD=5V	1.65V		4.8V	V
Output Volt	age Range	V _{SWOUT}	VDD=5V	1.65V		4.8V	V
Switch On-	resistance	R _{ON}	I _{CH_ON} =10mA		0.3	0.4	Ω
	Channel ON Leakage Current	I _{CH_ON}	V _{AIN} =3.3V			10	nA
Switch Leakage Current	Channel OFF Leakage Current Input	I _{CH_OFFI}	V _{AIN} =3.3V, V _{SWOUT} =0V			10	nA
	Channel OFF Leakage Current Output	I _{CH_OFFO}	V _{AIN} =3.3V, V _{SWOUT} =0V			10	nA

Current Limit I	_evel	I _{CL}	Fold-back Off	187	220	253	mA
Fold-back Cur	rent Limit Level	I _{FCL}	Fold-back On	93	110	127	mA
Fold-back Time		T _F		100		200	us
Reverse Curre	ent Block	I _{RC}	V _{AIN} =1.65V, V _{SWOUT} =3.0V		-10		nA
		T _{ON_CLN}	V _{AIN} =4.8V, Current Limit Function ON, Load R=500Ω, Load C=100nF	7.9	10.7	14.3	us
Switch On /	Switch On Time	T _{ON_CLF}	V _{AIN} =4.8V, Current Limit Function OFF, Load R=500Ω, Load C=100nF	3.96	4.82	5.82	us
OFF Time		T _{OFF_CLN}	V _{AIN} =4.8V, Current Limit Function ON, Load R=500Ω, Load C=100nF	3.53	3.72	3.88	us
	Switch Off Time	T _{OFF_CLF}	V_{AIN} =4.8V, Current Limit Function OFF, Load R=500 Ω , Load C=100nF	21.9	24.2	26.6	us
	Input Off- Capacitance	C _{AIN_OFF}				500	pF
Capacitance	Output Off- Capacitance	C _{SWOUT}	*Guaranteed by design. Cannot be guaranteed by testing			500	pF
	Output On- Capacitance	C _{SWOUT}				1000	pF
LOW DROP		011					
Input Voltage	Range	V _{AIN}	VDD=5V	1.65		4.8	V
Output Voltage	e Range	V _{LDOOUT}	VDD=5V	0.4		3.35	V
Output Contro	l Step Voltage	V _{STEP}			10		mV
Maximum Loa	d Current	I _{MAX}			200		mA
Current Limit I	_evel	I _{CL}	Fold-back Off	187	220	253	mA
Fold-back Cur	rent Limit Level	I _{FCL}	Fold-back On	93	110	127	mA
Fold-back Tim	е	T _F		100		200	us
Drop Out Volta	200	V_{DO}	V _{LDOOUT} =1.8V, Load = 200mA	183	207	221	mV
Diop Out voite	age	V DO	V _{LDOOUT} =1.2V, Load = 200mA	453	470	505	mV
Load Dagulati			V_{AIN} =3.3V, V_{LDOOUT} =1.8V Load = 1uA ~ 200mA	0.4	0.5	0.6	%
Load Regulation			V_{AIN} =3.3V, V_{LDOOUT} =1.2V Load = 1uA ~ 200mA	0.6	0.7	0.8	%
Line Regulation			V _{AIN} =1.65V ~ 4.8V, V _{LDOOUT} =1.2V, Load = 10mA	0.7	0.8	0.9	%
Reverse Current Block		I _{RC}	V _{AIN} =1.65V, V _{LDOOUTT} =3.0V		10		nA
LDO	Channel ON Leakage Current	I _{CH_ON}	V _{AIN} =3.3V, V _{LDOOUT} =1.2V			310	nA
Leakage Current	Channel OFF Leakage Current Input	I _{CH_OFFI}	V _{AIN} =3.3V, V _{LDOOUT} =0V			10	nA

	Channel OFF Leakage Current Output	I _{CH_OFFO}	V _{AIN} =3.3V, V _{LDOOUT} =0V			10	nA
	LDO On Time	T _{ON_CLN}	V _{AIN} =4.8V, Current Limit Function ON, Load R=500Ω, Load C=100nF	18.8	23.8	30.1	us
LDO On /	LDO On Time	T _{ON_CLF}	V _{AIN} =4.8V, V _{LDOOUT} =1.2V Current Limit Function OFF, Load R=500Ω, Load C=100nF	14.6	18.8	23.6	us
OFF Time	L DO 041 T	T _{OFF_CLN}	V_{AIN} =4.8V, V_{LDOOUT} =1.2V Current Limit Function ON, Load R=500Ω, Load C=100nF	3.34	3.53	3.71	us
	LDO Off Time	T _{OFF_CLF}	V_{AIN} =4.8V, V_{LDOOUT} =1.2V Current Limit Function OFF, Load R=500Ω, Load C=100nF	3.34	3.53	3.71	us
	Input Off- Capacitance	C _{AIN OFF}				500	pF
Capacitance	Output Off- Capacitance	C _{LDOOUT}	*Guaranteed by design. Cannot be guaranteed by testing			500	pF
	Output On- Capacitance	C _{LDOOUT}	Carriot be guaranteed by testing			1000	pF
TSD / Active	•	ON					
		T _{ST_CLN}			+170		°C
Thermal Shute	down Temperature	T _{ST_CLF}	Guaranteed by design. Cannot be guaranteed by		+150		С
Thermal Shute	down Hysteresis	T _{SH}	testing.		15		°C
Output Discha	arge Resistance	R _{DS}			1		kΩ
Leakage(Swi	tch + LDO[1:0])		l				
Leakage Curr	ent	I _{CH_OFF}	V_{AIN} =3.3V, V_{SWOUT} =0V, V_{LDOOUT} =1.2V	-10		30	nA
Leakage Guin	ont	I _{CH_ON}	V _{AIN} =3.3V, V _{LDOOUT} =1.2V			700	nA
Reverse Curre	ent Block	I _{RC}	V _{AIN} =1.65V, V _{SWOUT} =3.0V, V _{LDOOUTT} =3.0V	-10		30	nA
Power CONS	UMPTION						
			Load R=3Ω, Load C=100nF (ALL CLS Operating)		1.3		mA
Analog Operating	Static	I _{AVDD_ST}	Load R=500Ω, Load C=100nF (ALL CLS No Operating)		0.8		mA
Current (AVDD)			Load R=500Ω, Load C=100nF (ALL OFF)		0.5		mA
	Dynamic	I _{AVDD_DYN}	AVDD=5V, f _{CLK} =25MHz, f _{SW} =10kHz		0.8		mA
Digital Operating	Static	I _{DVDD_ST}	DVDD=1.8V				mA
-				-	•		

Current (DVDD)	Dynamic	I _{DVDD_DYN}	DVDD=1.8V, f_{CLK} =25MHz, f_{SW} =10kHz Cp^* = 50pF Cp^* : Parasitic Capacitance				mA
----------------	---------	-----------------------	--	--	--	--	----

ELECTRICAL CHARACTERISTICS(TA = +125°C)_____

VDD=5.0V, VSS=0V, DVDD=1.8V, DVSS=0V and TA = +125°C, unless otherwise noted.

PARAMETER		OVMDOL	CONDITION		LINUT		
		SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
POWER SUF	PPLIES			•			
Analog Suppl	ly Voltage	AVDD		4.5	5	5.5	V
Digital Supply	/ Voltage	DVDD		1.62	1.8	1.98	V
Analog Groun	nd Voltage	AVSS			0		V
Digital Groun	d Voltage	DVSS			0		V
ANALOG SV	VITCH			•	1	1	
Input Voltage	Range	V _{AIN}	VDD=5V	1.65V		4.8V	V
Output Voltag	ge Range	V _{SWOUT}	VDD=5V	1.65V		4.8V	V
Switch On-re	sistance	R _{ON}	I _{CH_ON} =10mA		0.4	0.5	Ω
	Channel ON Leakage Current	I _{CH_ON}	V _{AIN} =3.3V			20	nA
Switch Leakage	Channel OFF Leakage Current Input	I _{CH_OFFI}	V _{AIN} =3.3V, V _{SWOUT} =0V			20	nA
Current	Channel OFF Leakage Current Output	I _{CH_OFFO}	V _{AIN} =3.3V, V _{SWOUT} =0V			20	nA
Current Limit	Level	I _{CL}	Fold-back Off	187	220	253	mA
Fold-back Cu	rrent Limit Level	I _{FCL}	Fold-back On	93	110	127	mA
Fold-back Time		T _F		100		200	us
Reverse Current Block		I _{RC}	V _{AIN} =1.65V, V _{SWOUT} =3.0V		-20		nA
Switch On /	Switch On Time	T _{ON_CLN}	V_{AIN} =4.8V, Current Limit Function ON, Load R=500 Ω , Load C=100nF	5.2	7.3	17	us
OFF Time	Switch On Time	T _{ON_CLF}	V _{AIN} =4.8V, Current Limit Function OFF, Load R=500Ω, Load C=100nF	3.6	4.4	6.1	us

		T _{OFF_CLN}	V _{AIN} =4.8V, Current Limit Function ON, Load R=500Ω, Load C=100nF	3.5	3.8	3.9	us
	Switch Off Time	T _{OFF_CLF}	V_{AIN} =4.8V, Current Limit Function OFF, Load R=500 Ω , Load C=100nF	22	24	27	us
	Input Off- Capacitance	C _{AIN_OFF}	,			500	pF
Capacitance	Output Off-	C _{SWOUT}	*Guaranteed by design. Cannot be guaranteed by testing			500	pF
	Output On- Capacitance	C _{SWOUT}	g a management			1000	pF
LOW DRO		, ON	,				
Input Voltage	e Range	V _{AIN}	VDD=5V	1.65		4.8	V
Output Volta	ge Range	V _{LDOOUT}	VDD=5V	0.4		3.35	V
Output Conti	rol Step Voltage	V _{STEP}			10		mV
Maximum Lo	oad Current	I _{MAX}			200		mA
Current Limi	t Level	I _{CL}	Fold-back Off	187	220	253	mA
Fold-back C	urrent Limit Level	I _{FCL}	Fold-back On	93	110	127	mA
Fold-back Ti	me	T _F		100		200	us
Drop Out Vo	D 0 11/1		V _{LDOOUT} =1.8V, Load = 200mA	170	210	230	mV
Drop Out Vo	itage	V_{DO}	V _{LDOOUT} =1.2V, Load = 200mA	460	480	510	mV
Land Danida			V_{AIN} =3.3V, V_{LDOOUT} =1.8V Load = 1uA ~ 200mA	0.5	0.6	0.7	%
Load Regula	ition		V_{AIN} =3.3V, V_{LDOOUT} =1.2V Load = 1uA ~ 200mA	0.7	0.8	1.0	%
Line Regulat	tion		V _{AIN} =1.65V ~ 4.8V, V _{LDOOUT} =1.2V, Load = 10mA	0.8	0.9	1.0	%
Reverse Cur	rent Block	I _{RC}	V _{AIN} =1.65V, V _{LDOOUTT} =3.0V		20		nA
	Channel ON Leakage Current	I _{CH_ON}	V _{AIN} =3.3V, V _{LDOOUT} =1.2V			350	nA
LDO Leakage	Channel OFF Leakage Current Input	I _{CH_OFFI}	V _{AIN} =3.3V, V _{LDOOUT} =0V			20	nA
Current	Channel OFF Leakage Current Output	I _{CH_OFFO}	V _{AIN} =3.3V, V _{LDOOUT} =0V			20	nA
		T _{ON_CLN}	V _{AIN} =4.8V, Current Limit Function ON, Load R=500Ω, Load C=100nF	18	23	37	us
	LDO On Time	T _{ON_CLF}	V _{AIN} =4.8V, V _{LDOOUT} =1.2V Current Limit Function OFF, Load R=500Ω, Load C=100nF	13	17	25	us
LDO On / OFF Time		T _{OFF_CLN}	V _{AIN} =4.8V, V _{LDOOUT} =1.2V Current Limit Function ON, Load R=500Ω, Load C=100nF	3.0	3.4	3.7	us
	LDO Off Time	T _{OFF_CLF}	V _{AIN} =4.8V, V _{LDOOUT} =1.2V Current Limit Function OFF, Load R=500Ω, Load C=100nF	3.0	3.4	3.7	us

	Input Off- Capacitance	C _{AIN OFF}				500	pF
	Output Off- Capacitance	C _{LDOOUT}	*Guaranteed by design. Cannot be guaranteed by testing			500	pF
	Output On- Capacitance	C _{LDOOUT}				1000	pF
TSD / Active	e Discharge						
Thermal Shu	ıtdown Temperature	T _{ST_CLN}			+170		°C
Theimai Sho	ituowii reinperature	T _{ST_CLF}	Guaranteed by design. Cannot be guaranteed by testing.		+150		С
Thermal Shu	ıtdown Hysteresis	T _{SH}	tooting.		15		°C
Output Disch	narge Resistance	R _{DS}			1		kΩ
Leakage(Sw	/itch + LDO[1:0])						
Leakage Current		I _{CH_OFF}	V_{AIN} =3.3V, V_{SWOUT} =0V, V_{LDOOUT} =1.2V	-10		60	nA
		I _{CH_ON}	V _{AIN} =3.3V, V _{LDOOUT} =1.2V			750	nA
Reverse Cur	rent Block	I _{RC}	V _{AIN} =1.65V, V _{SWOUT} =3.0V, V _{LDOOUTT} =3.0V	-10		60	nA
Power CON	SUMPTION						
			Load R=3Ω, Load C=100nF		1.6	1.9	mA
Analog	Static	I _{AVDD_ST}	(ALL CLS Operating) Load R=500Ω, Load C=100nF		0.9	1.1	mA
Operating Current		'AVDD_S1	(ALL CLS No Operating)		0.0	1	1117 (
(AVDD) Dynamic			Load R=500Ω, Load C=100nF (ALL OFF)		0.5	0.6	mA
	Dynamic	I _{AVDD_DYN}	AVDD=5V, f _{CLK} =25MHz, f _{SW} =10kHz		1.0		mA
Digital	Static	I _{DVDD_ST}	DVDD=1.8V				mA
Operating Current (DVDD)	Dynamic	I _{DVDD_DYN}	DVDD=1.8V, f _{CLK} =25MHz, f _{SW} =10kHz Cp* = 50pF Cp* : Parasitic Capacitance				mA

ELECTRICAL CHARACTERISTICS (Continued)_____

DADA	PARAMETER		SYMBOL CONDITION		VALUE			
PARAI	VICIER	STIVIBUL	CONDITION	MIN	TYP	MAX	UNIT	
DIGITAL I/O	DIGITAL I/O							
Logic Input	Input High	V _{IH}		0.9			V	
Voltage	Input Low	V _{IL}				0.4	V	
Logic Input	Input High	I _{IH}		-1		1	μΑ	
Current	Input Low	I _{IL}		-1		1	μΑ	
SCLK_I	N Period	t _{PERIOD}			40		ns	
SDI to SCLK_	IN Setup Time	t _{SS}		2.5		5	ns	
SDI to SCLK	_IN Hold Time	t _{sh}		2.5		5	ns	
CSN to SCLK_IN Setup Time		t _{CS}		2.5		5	ns	
CSN to SCLK	_IN Hold Time	t _{CH}		2.5		5	ns	

TIMING CHARACTERISTICS

Timing Diagram of Digital SPI I/O Signals

PARAMETER	SYMBOL	CONDITION	VALUE			UNIT
FAINAMETER	STWIDOL	CONDITION	MIN	TYP	MAX	ONIT
SCLK_IN Period	t _{PERIOD}	SPI Clock Speed 25MHz				ns
SDI Setup Time	t _{SS}					ns
SDI Hold Time	t _{SH}					ns
CSN Setup Time	t _{CS}					ns
CSN Hold Time	t _{CH}					ns
SCLK_OUT Setup Time	t _{SOS}					ns
SCLK_IN High Pulse	t _{PH}	ratio of SCLK_IN				%
SCLK_IN Low Pulse	t _{PL}	ratio of SCLK_IN				%

Write Timing

Figure 1. Timing Diagram of Digital Signals.

Power up and down Sequence

Figure 2. Power-up Sequence.

Figure 3. Power-down Sequence.

Power up Operation Sequence

The Power-up Operation Sequence of SP2003 Shall Be Wait for OSC Stable time(250ns * 15).

The SP2003 does not have a EXTERNAL RESET PIN, it has to wait for the operation of the internal DIGITAL POR.

Figure 4. SP2003 Power UP Operation Diagram shows the Power-up sequence of SP2003.

Figure 4. Power-UP Operation Diagram.

SW On/Off Timing Diagram

Figure 5. SW ON/OFF Timing Diagram

Current Limit Operating Timing Diagram

Figure 6. Current Limit Operating Timing Diagram.

Current Limit Foldback Operating Timing Diagram

Figure 7. Current Limit Foldback Operating Timing Diagram.

Thermal Shutdown Operating Diagram

Figure 8. Thermal Shutdown Operating Diagram.

TEST CIRCUITS_____

TBD

TEST RESULTS

LDO 추가

TBD

On-resistance vs. Vain

TBD TBD

ALL ON Leakage vs. Vain ALL OFF Leakage vs. Vain

TBD **TBD**

Current limit vs. Time Current limit vs. Vain

TBD TBD

Fold-back Current limit vs. Vain Fold-back Current limit vs. Time

TBD TBD

LDOOUT vs. Load Current LDOOUT vs. Vain

LDO TABLE

Descriptions

Selects LDO output Voltage. Minimum Voltage step is 10mV in case of voltage range 0.35V ~ 3.5V

CODE	V _{LDOOUT}						
0d035	0.35V	0d078	0.78V	0d121	1.21V	0d164	1.64V
0d036	0.36V	0d079	0.79V	0d122	1.22V	0d165	1.65V
0d037	0.37V	0d070	0.80V	0d123	1.23V	0d166	1.66V
0d038	0.38V	0d081	0.81V	0d124	1.24V	0d167	1.67V
0d039	0.39V	0d082	0.82V	0d125	1.25V	0d168	1.68V
0d040	0.40V	0d083	0.83V	0d126	1.26V	0d169	1.69V
0d041	0.41V	0d084	0.84V	0d127	1.27V	0d170	1.70V
0d042	0.42V	0d085	0.85V	0d128	1.28V	0d171	1.71V
0d043	0.43V	0d086	0.86V	0d129	1.29V	0d172	1.72V
0d044	0.44V	0d087	0.87V	0d130	1.30V	0d173	1.73V
0d045	0.45V	0d088	0.88V	0d131	1.31V	0d174	1.74V
0d046	0.46V	0d089	0.89V	0d132	1.32V	0d175	1.75V
0d047	0.47V	0d090	0.90V	0d133	1.33V	0d176	1.76V
0d048	0.48V	0d091	0.91V	0d134	1.34V	0d177	1.77V
0d049	0.49V	0d092	0.92V	0d135	1.35V	0d178	1.78V
0d050	0.50V	0d093	0.93V	0d136	1.36V	0d179	1.79V
0d051	0.51V	0d094	0.94V	0d137	1.37V	0d180	1.80V
0d052	0.52V	0d095	0.95V	0d138	1.38V	0d181	1.81V
0d053	0.53V	0d096	0.96V	0d139	1.39V	0d182	1.82V
0d054	0.54V	0d097	0.97V	0d140	1.40V	0d183	1.83V
0d055	0.55V	0d098	0.98V	0d141	1.41V	0d184	1.84V
0d056	0.56V	0d099	0.99V	0d142	1.42V	0d185	1.85V
0d057	0.57V	0d100	1.00V	0d143	1.43V	0d186	1.86V
0d058	0.58V	0d101	1.01V	0d144	1.44V	0d187	1.87V
0d059	0.59V	0d102	1.02V	0d145	1.45V	0d188	1.88V
0d060	0.60V	0d103	1.03V	0d146	1.46V	0d189	1.89V
0d061	0.61V	0d104	1.04V	0d147	1.47V	0d190	1.90V
0d062	0.62V	0d105	1.05V	0d148	1.48V	0d191	1.91V
0d063	0.63V	0d106	1.06V	0d149	1.49V	0d192	1.92V
0d064	0.64V	0d107	1.07V	0d150	1.50V	0d193	1.93V
0d065	0.65V	0d108	1.08V	0d151	1.51V	0d194	1.94V
0d066	0.66V	0d109	1.09V	0d152	1.52V	0d195	1.95V
0d067	0.67V	0d110	1.10V	0d153	1.53V	0d196	1.96V
0d068	0.68V	0d111	1.11V	0d154	1.54V	0d197	1.97V
0d069	0.69V	0d112	1.12V	0d155	1.55V	0d198	1.98V
0d070	0.70V	0d113	1.13V	0d156	1.56V	0d199	1.99V
0d071	0.71V	0d114	1.14V	0d157	1.57V	0d200	2.00V
0d072	0.72V	0d115	1.15V	0d158	1.58V	0d201	2.01V
0d073	0.73V	0d116	1.16V	0d159	1.59V	0d202	2.02V
0d074	0.74V	0d117	1.17V	0d160	1.60V	0d203	2.03V
0d075	0.75V	0d118	1.18V	0d161	1.61V	0d204	2.04V
0d076	0.76V	0d119	1.19V	0d162	1.62V	0d205	2.05V
0d077	0.77V	0d120	1.20V	0d163	1.63V	0d206	2.06V

CODE	V _{LDOOUT}	CODE	V _{LDOOUT}	CODE	V_{LDOOUT}	CODE	V_{LDOOUT}
0d207	2.07V	0d250	2.50V	0d293	2.93V	0d336	3.36V
0d208	2.08V	0d251	2.51V	0d294	2.94V	0d337	3.37V
0d209	2.09V	0d252	2.52V	0d295	2.95V	0d338	3.38V
0d210	2.10V	0d253	2.53V	0d296	2.96V	0d339	3.39V
0d211	2.11V	0d254	2.54V	0d297	2.97V	0d340	3.40V
0d212	2.12V	0d255	2.55V	0d298	2.98V	0d341	3.41V
0d213	2.13V	0d256	2.56V	0d299	2.99V	0d342	3.42V
0d214	2.14V	0d257	2.57V	0d300	3.00V	0d343	3.43V
0d215	2.15V	0d258	2.58V	0d301	3.01V	0d344	3.44V
0d216	2.16V	0d259	2.59V	0d302	3.02V	0d345	3.45V
0d217	2.17V	0d260	2.60V	0d303	3.03V	0d346	3.46V
0d218	2.18V	0d261	2.61V	0d304	3.04V	0d347	3.47V
0d219	2.19V	0d262	2.62V	0d305	3.05V	0d348	3.48V
0d220	2.20V	0d263	2.63V	0d306	3.06V	0d349	3.49V
0d221	2.21V	0d264	2.64V	0d307	3.07V	0d350	3.50V
0d222	2.22V	0d265	2.65V	0d308	3.08V		
0d223	2.23V	0d266	2.66V	0d309	3.09V		
0d224	2.24V	0d267	2.67V	0d310	3.10V		
0d225	2.25V	0d268	2.68V	0d311	3.11V		
0d226	2.26V	0d269	2.69V	0d312	3.12V		
0d227	2.27V	0d270	2.70V	0d313	3.13V		
0d228	2.28V	0d271	2.71V	0d314	3.14V		
0d229	2.29V	0d272	2.72V	0d315	3.15V		
0d230	2.30V	0d273	2.73V	0d316	3.16V		
0d231	2.31V	0d274	2.74V	0d317	3.17V		
0d232	2.32V	0d275	2.75V	0d318	3.18V		
0d233	2.33V	0d276	2.76V	0d319	3.19V		
0d234	2.34V	0d277	2.77V	0d320	3.20V		
0d235	2.35V	0d278	2.78V	0d321	3.21V		
0d236	2.36V	0d279	2.79V	0d322	3.22V		
0d237	2.37V	0d280	2.80V	0d323	3.23V		
0d238	2.38V	0d281	2.81V	0d324	3.24V		
0d239	2.39V	0d282	2.82V	0d325	3.25V		
0d240	2.40V	0d283	2.83V	0d326	3.26V		
0d241	2.41V	0d284	2.84V	0d327	3.27V		
0d242	2.42V	0d285	2.85V	0d328	3.28V		
0d243	2.43V	0d286	2.86V	0d329	3.29V		
0d244	2.44V	0d287	2.87V	0d330	3.30V		
0d245	2.45V	0d288	2.88V	0d331	3.31V		
0d246	2.46V	0d289	2.89V	0d332	3.32V		
0d247	2.47V	0d290	2.90V	0d333	3.33V		
0d248	2.48V	0d291	2.91V	0d334	3.34V		
0d249	2.49V	0d292	2.92V	0d335	3.35V		

FUNCTIONAL DESCRIPTION

- Internal Structure

The SP2003 consists of 2Channel CMOS Analog Switch and 4Channel LDO.

The SP2003 Command structure consists of two types: Initial Command and Control Command.

The Initial Command must be used during the Power-Up sequence.

The Initial Command has a 2-Type data frame, 1st Command for used Chip ID Set. 2nd Command for used temperature Select.

SPI Interface

The SP2003 uses the serial peripheral interface and consists of four pins: SCLK, SDI, SDO, and CSN. The structure without Internal/External clocks operates the system using SCLK and Internal OSC CLOCK.

The SP2003 Max operating Speed at 25Mhz. Network configuration is connected by broadcasting method and up to 16 ICs can be connected.

Figure 8. Example for SPI Interface (1Byte) Timing Diagram.

- SPI Daisy Chain Pin Sharing

Figure 8. Example for SPI Interface (1Byte) Timing Diagram.

The SP2003 has 2 AIN, Switch, 4 LDO out Pin, and has Analog/Digital input voltage and ground as a pair. It also has a total of 24 pins including SCLK_IN, SCLK_OUT, SDI, CSN_IN, CSN_OUT, SDO, and VPP0,1 for SP2003 control.

- SP2003 Initial CMD

The SP2003 has 2-Type Initial CMD. In Sp2003, after the Power-UP Sequence(after System Reset), the ID of the IC must be set using initial CMD, and the Temperature Type must be determined.(Default High Temp Select).

Initial Chip ID Set

Figure 9. Example for SP2003 Chip Assign CMD Timing Diagram.

As SP2003 has an SPI Daisy Chain structure, IDs must be set as many as the ICs connected to the chain (Max 16ea).

When master (FPGA) transmits [0xAF], [0xFF], [0xFF], [0x00], [0x00], [0x00], [0x00] data through SPI Interface, the ID of SP2003 connected to the chain is set.

- Initial Temperature Type Select.

The SP2003 can select the Temperature Type according to the usage environment.

By default, High Temp is selected, and you can select and use Low Temp according to the usage environment.

If data of [0xAE], [0x1B], [0x00], [0x00], [0x00], [0x00] is transmitted from Master (FPGA) through SPI Interface, it is possible to change from High Temp to Low Temp.

Figure 10. Example for SP2003 Low Temp Select Timing Diagram.

To change from Low Temp state to High Temp, if data of [0xAE], [0x1C], [0x00], [0x00], [0x00], [0x00] is transmitted from Master(FPGA) through SPI Interface, or System Reset.

Figure 11. Example for SP2003 High Temp Select Timing Diagram.

- Switch & LDO Control Command List

Name	CMD Value	Description
INIT(ALL OFF)	0x0	All Chip Switch, LDO Off, Reject Clear
INIT(ALL ON)	0x1	All Chip Switch, LDO On, Reject Clear
Clipping Enable	0x2	All Chip CLS Function Enable.
Clipping Disable	0x3	All Chip CLS Function Disable.
All GRP ON, AC GRP	0x4	All Chip SW, LDO Same Control.
DC GRP	0x5	The same control of SW and LDO of a specific chip.
ICC/ICCQ	0x6	The individually control SW0/1, LDO0/1/2/3 of a specific chip
ALL CMD 1D REJ	0x7	The reject control of SW0/1, LDO0/1/2/3 of a specific chip individually.
Half CMD	0x8	The same Control for SW0/1, LDO0/1/2/3 of the selected chip.
Data Set	0x9	All Chip LDO Level Set.

Name	Description					
Name	Bit[3]	Bit[2]	Bit[1]	Bit[0]		
CTRL-1	-	Switch(0,1) ON / OFF	LDO(0,2) ON / OFF	LDO(1,3) ON / OFF		
CTRL-2	-	Switch(0) ON / OFF	LDO(0) ON/OFF	LDO(1) ON / OFF		
CTRL-3	-	Switch(1) ON / OFF	LDO(2) ON/OFF	LDO(3) ON / OFF		
CTRL-4	1DUT / 2DUT Select	Switch(0,1) Reject	LDO(0,2) Reject	LDO(1,3) Reject		

- Switch & LDO Control Command Overview

Figure 12. SP2003 Command Timing Diagram.

- INIT(ALL_OFF) CMD Example

INIT(ALL_OFF) CMD turns OFF all switches / LDOs of all SP2003 ICs connected in the SPI Chain. Also, it performs the operation to remove the set REJECT FLAG.

When Master (FPGA) transmits [0xA0], [0x00], [0x00], [0x00], [0x00], all switches / LDOs are OFF.

Figure 13. Example for INIT(ALL_OFF) Timing Diagram.

- INIT(ALL_ON) CMD

INIT(ALL_ON) CMD turns ON all switches / LDOs of all SP2003 ICs connected in the SPI Chain. Also, it performs the operation to remove the set REJECT FLAG.

When Master (FPGA) transmits [0xA1], [0x00], [0x00], [0x00], [0x00], all switches / LDOs are ON.

Figure 14. Example for INIT(ALL_ON) Timing Diagram.

- Clipping Circuit Enable(CLS_ON) CMD

The Clipping Circuit Enable (CLS_ON) CMD is enables (ON) the CLS (Current Limiting) function of all SP2003 ICs connected in the SPI Chain.

The operation of Switch / LDO of all Channels is not changed.

When Master (FPGA) transmits [0xA2],[0x00], [0x00], [0x00], [0x00], all SP2003 CLS Function are ON.

Figure 15. Example for Clipping Circuit(CLS_ON) Timing Diagram.

Clipping Circuit Disable (CLS_OFF) CMD

The Clipping Circuit Disable (CLS_OFF) CMD is disable (OFF) the CLS (Current Limiting) function of all SP2003 ICs connected in the SPI Chain.

The operation of Switch / LDO of all Channels is not changed.

When Master (FPGA) transmits [0xA3],[0x00], [0x00], [0x00], [0x00], all SP2003 CLS Function are OFF.

Figure 16. Example for Clipping Circuit(CLS_OFF) Timing Diagram.

- ALL / AC_GRP CMD

The ALL_GRP / AC_GRP CMD control the switch and LDO operation of all ICs of SP2003 in the SPI Chain in the same way.

CTRL-1	Description
0x0	All Chips Switch0/1, LDO0/1/2/3 OFF.
0x1	All Chips Switch 0/1 and LDO0/2 OFF, LDO1/3 ON.
0x2	All Chips Switch 0/1 and LDO0/2 OFF, LDO1/3 ON.
0x3	All Chips Switch 0/1 OFF, LDO0/1/2/3 ON.
0x7	All Chips Switch 0/1 and LDO0/1/2/3 ON.

Figure 17. Example for All/ AC_GRP Command Timing Diagram.

- DC_GRP CMD

The DC_GRP CMD controls the switch and LDO of the selected IC of SP2003 in the SPI Chain in the same way.

Chip Num	CTRL-1	Description
0x1	0x0	CHIP ID(1) Switch 0/1 and LDO0/1/2/3 is OFF.
UXI	0x1	CHIP ID(1) Switch 0/1 and LDO0/2 is OFF, LDO1/3 is ON.
0x7	0x2	CHIP ID(7) Switch 0/1, and LDO1/3 is OFF, LDO0/2 is ON.
UX7	0x3	CHIP ID(7) Switch 0/1 is OFF, LDO0/1/2/3 is ON.
	0x7	CHIP ID(15) Switch 0/1 and LDO0/1/2/3 is ON
0xF	0x6	CHIP ID(15) Switch 0/1 and LOD0/2 is ON, LDO1/3 is OFF
	0x5	CHIP ID(15) Switch 0/1 and LDO1/3 is ON, LDO0/2 is OFF
0x0	0x7	CHIP ID(0) Switch 0/1 and LDO0/1/2/3 is ON.

Figure 18. Example for DC_GRP Command Timing Diagram.

- ICC/ICCQ CMD

The ICC / ICCQ CMD individually control Switch and LDO for the selected chip in the SPI Chain.

Chip Num	CTRL-2	CTRL-3	Description
	0x7	0x0	Chip ID(1) DUT1(Switch0,LDO0/1) ON, DUT2(Switch1, LDO2/3) OFF.
0x1	0x6	0x1	Chip ID(1) DUT1(Switch0 and LDO0 ON, LDO1 OFF),
	UXO	UXI	DUT2 (Switch1 and LDO2 OFF, LDO3 ON).
	0x1	0x4	Chip ID(7) DUT1(Switch0 and LDO0 OFF, LDO1 ON),
0x7	UXI	UX4	DUT2 (Switch1 ON LDO2/3 OFF).
UX7	0x4	0x1	Chip ID(7) DUT1(Switch0 ON, LDO0/1 OFF),
	084	UXI	DUT2 (Switch1 and LDO2 ON, LDO3 OFF).
0v5	0v0	0x0	Chip ID(5) DUT1(Switch0and LDO0/1 OFF),
0.00	0x5 0x0		DUT2 (Switch1 and LDO2/3 OFF).

Figure 19. Example for ICC/ICCQ Command Timing Diagram.

ALL / 1DUT REJ(CMD)

The ALL / 1DUT_REJ CMD controls the same switch and LDO of the selected IC of SP2003 in the SPI Chain.

Depending on the CTRL-4 Filed, Switch 0/1, LDO0/2/, and LDO1/3 can be controlled respectively

Chip Num	CTRL-4	Description
0x1 0x7		Chip ID(1) Switch 0 and LDO0/1 Reject.
UXI	0xE	Chip ID(1) Switch 1 and LDO2 Reject. LDO3 OFF.
0x7	0x6	Chip ID(7) Switch 0 and LDO0 Reject. LDO1 OFF.
UX7	0x1	Chip ID(7) Switch 0 and LDO0 OFF, LDO1 Reject.
0x5	0x8	Chip ID(5) Switch 1 and LDO2/3 OFF.

Figure 20. Example for ALL/1DUT REJ Command Timing Diagram.

OFF

- Half (Chip Select) CMD

The Half (Chip Select) CMD controls Switch and LDO by selecting multiple ICs of SP2003 in SPI Chain.

Chip Num	CTRL-1	Description
0x001F	0x7	Chip ID (0),(1),(2),(3),(4) Switch0/1 and LDO0/1/2/3 is ON.
	0x6	Chip ID (0),(1),(2),(3),(4) Switch0/1 and LDO0/2 is ON. LDO1/3 is OFF.
0x03E0	0x6	Chip ID (5),(6),(7),(8),(9) Switch0/1 and LDO0/2 is ON. LDO1/3 is OFF.
	0x1	Chip ID (5),(6),(7),(8),(9) Switch0/1 and LDO0/2 is OFF. LDO1/3 is ON.
0x0333	0x6	Chip ID (0),(1), (4), (5), (8), (9) Switch 0/1 and LDO0/2 is ON, LDO1/3 is OFF.

Figure 21. Example for Half (Chip Select) Command Timing Diagram.

- PMIC DATA SET (LDO LEVEL SET) CMD

The PMIC DATA SET CMD sets the same LDO Level of all SP2003 in the SPI Chain.

When Master (FPGA) transmits data of [0xA9], [0x0B], [0x40], [0x00], [0x00], [0x00], [0x00], all LDOs of SP2003 connected to the chain have the same Level.

Figure 22. Example for PMIC DATA SET(LDO LEVEL SET) Command Timing Diagram.

- Current Limiting

SP2003 supports Current Limiting to protect itself from excessive high current. If current more than the threshold flows through a switch, the switch automatically increases the turn-on resistance by an internal protection circuit. The current limit is continuous type and is automatically released when the load current decreases.

Fold-back Current Limiting

SP2003 supports Current Limiting to protect itself from excessive high current. If current more than the threshold (Current Limit Level) flows through a switch, the switch automatically increases the turn-on resistance by an internal protection circuit.

When enable Fold-back function, the turn-on resistance increases reducing the current until Fold-back Current Limit Level. Due to this, the current limit value becomes smaller, which is advantageous for heat generation reduce heat to slow or reduce the probability of TSD operation

The current limit is continuous type and is automatically released when the load current decreases

Thermal Shutdown

SP2003 supports thermal shutdown to protect itself from excessive high temperature. If the temperature of a switch goes above the threshold (170°C), All channel automatically turn off by internal thermal shutdown circuit. When Current Limit function operating, the thermal shutdown function automatically turn off only channel exceeding temperature 150°C. The threshold is set from internal Thermal Shutdown Circuit. Thermal Shutdown is the secondary protection scheme for the case that Current Limiting does not work for some reasons even though excessive high current flows. The channel turns on again after the device temperature drops by approximately 15°C.

Active Discharge

This device has an active discharge circuit. When the switch is turned off, this function is automatically activated and the out pin is shorted to GND with $1k\Omega$. When switched on, this function is automatically turned off.

Reverse Current Blocking

This device has built-in reverse current blocking circuit (RCB) to block reverse current from VOUT to VIN. When switch ON condition, it works if the VOUT voltage is higher than VIN.

PACKAGE INFORMATION_____

Figure 9. Package Information.

APPLICATION EXAMPLE_

Table.XX is the command used in FPGA shows the command for the same operation when using SP2003.

ATE CMD	SP2003 CMD
	1st : Send to "0xA9" CMD -> Default LDO Level Set.
INIT(ALL OFF)	2nd : Send to "0xA1"CMD -> Switch 0/1 ON , LDO 0/2 ON, LDO1/3 OFF.
	*Reject Flag Clear.
	1st : Send to "0xA9" CMD -> Default LDO Level Set.
INIT(ALL ON)	2nd : Send to "0xA0" CMD -> All Channel OFF(Switch 0/1, LDO 01/2/3)
	*Reject Flag Clear.
Clipping Enable	Send To "0xA3" -> All Chips CLS Function Enable.
Clipping Disable	Send To "0xA2" -> All Chips CLS Function Disable.
All GRP ON,	1st : Send to "0xA9" CMD -> Default LDO Level Set.
All GRE ON,	2nd : Send to "0xA0"CMD -> All Channel OFF(Switch 0/1, LDO 01/2/3)
AC GRP	1st : Send to "0xA9" CMD -> LDO Level Set.
AC GRF	2nd : Send to "0xA4"CMD -> All Chip Sw0/SW1/LDO0/LDO2 ON, LDO1/LDO3 OFF
	Send to "0xA5" -> Select Chip SW0/1, LDO0/2 ON, Etc All Chips All Channels OFF.
DC GRP	OR
	Send to "0xA8" -> Select Chip SW0/1, LDO0/2 ON, Etc All Chips All Channels OFF.
ICC/ICCQ	Send to "0xA6" -> Select Chip Switch, LDO ON/OFF Control.
ALL CMD 1D REJ	Send to "0xA7"-> Select 1 DUT All Channel Reject.
AD DIT(DMD ON)	1st : Send to "0xA7" CMD -> Select DUT LDO1 or LDO3 Reject,
1D RJT(PWR ON)	2nd : Send to "0xA4"CMD -> SW0/LD00/SW1/LD02 ON, LD01/LD03 OFF.
Incoming Bypage Crn	Send to "0xA5" -> Select Chip SW0/1 ON, LDO All Channel OFF.
Incoming Bypass Grp	Non Select Chips All Channels OFF.
Incoming LDO Gro	Send to "0xA5" -> Select Chip LDO0/2 ON, SW0/1, LDO1/3 Channel OFF.
Incoming LDO Grp	Non Select Chips All Channels OFF.

The figure below shows the recommended configuration.

- 1. 0.1uF decoupling capacitors connected to between AVDD and AVSS, and the same capacitors to between DVDD and DVSS in Package.
- 2. IN pins or OUT pins capacitors connected to OUT and AVSS in Package.
- 3. If connecting capacitors at IN pins or OUT pins or AVDD or DVDD are optional. It should be placed as close to the chip as possible. If connecting capacitors at IN pins, output capacitors are optional.

REVISION HISTORY

Revision	Date	Description
0.0	2021-12	Initial draft

DOCUMENT INFORMATION_

File name: SP2003 Datasheet

Product code: SP2003

Product description: Power Switch & LDO IC

Document revision: 0.0 Revision date: 2021-12

Main Office

1F Jeongseong Building 414 Hyoryeong-ro, Seocho-gu, Seoul, Korea (06728)

Phone: 82-2-581-5510 Mail: leolsi@leolsi.com