```
In [1]: import pandas as pd
import numpy as np
```

Out[2]:

	Name	Salary	Country
0	dan	40000	USA
1	elizabeth	32000	Brazil
2	john	45000	Italy
3	maria	54000	USA
4	mark	72000	USA
5	bill	62000	Brazil
6	jess	92000	Italy
7	julia	55000	USA
8	jeff	35000	Italy
9	ben	48000	Brazil

Out[3]:

	Name	Salary	Country
0	dan	40000	USA
1	elizabeth	32000	Brazil
2	john	45000	Italy
3	maria	54000	USA
4	mark	72000	USA
5	bill	62000	Brazil
6	jess	92000	Italy
7	julia	55000	USA
8	jeff	35000	Italy
9	ben	48000	Brazil

```
In [4]: df_csv=pd.read_csv('my_dict')
df_csv
```

Out[4]:

	Unnamed: 0	Name	Salary	Country
0	0	dan	40000	USA
1	1	elizabeth	32000	Brazil
2	2	john	45000	Italy
3	3	maria	54000	USA
4	4	mark	72000	USA
5	5	bill	62000	Brazil
6	6	jess	92000	Italy
7	7	julia	55000	USA
8	8	jeff	35000	Italy
9	9	ben	48000	Brazil

```
In [5]: mean = df['Salary'].mean()
        mean
Out[5]: 53500.0
In [6]: median = df['Salary'].median()
        median
Out[6]: 51000.0
In [7]: mode = df['Salary'].mode()
        mode
Out[7]: 0
             32000
             35000
        1
        2
             40000
             45000
        4
             48000
        5
             54000
        6
             55000
        7
             62000
        8
             72000
             92000
        dtype: int64
In [8]: sum = df['Salary'].sum()
Out[8]: 535000
```

```
In [9]: | max = df['Salary'].max()
         max
 Out[9]: 92000
In [10]: |min = df['Salary'].min()
         min
Out[10]: 32000
In [11]:
         count = df['Salary'].count()
         count
Out[11]: 10
         countrywise_sum = df.groupby(['Country'])['Salary'].sum()
In [12]:
         countrywise sum
Out[12]: Country
         Brazil
                    142000
         Italy
                    172000
         USA
                    221000
         Name: Salary, dtype: int64
In [13]: | countrywise_count= df.groupby(['Country']).count()
         countrywise_count
Out[13]:
                  Name Salary
          Country
                      3
            Brazil
                            3
             Italy
                      3
                            3
             USA
                      4
                            4
In [14]: #varience of sal
         var1 = df['Salary'].var()
         var1
Out[14]: 332055555.555556
         std1 = df['Salary'].std()
In [15]:
         std1
Out[15]: 18222.391598128816
```

```
In [16]: skew1= df.skew(axis = 0, skipna = True)
    skew1
```

C:\Users\MSCIT\AppData\Local\Temp/ipykernel_6284/1353041505.py:1: FutureWarnin g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=Non e') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

skew1= df.skew(axis = 0, skipna = True)

Out[16]: Salary 1.021551 dtype: float64

In [17]: # The skewnwss is positive so x will have right side tail.

Covarience and Correlation

```
In [19]: bw = pd.read_csv('BirthWeight.csv')
bw.head()
```

Out[19]:

	Infant ID	Gestational Age (Weeks)	Birth Weight (Grams)
0	1	34.7	1895
1	2	36.0	2030
2	3	29.3	1440
3	4	40.1	2835
4	5	35.7	3090

In [20]: bw.set_index('Infant ID', inplace = True)
bw.head()

Out[20]:

Gestational Age (Weeks) Birth Weight (Grams)

Infant ID		
1	34.7	1895
2	36.0	2030
3	29.3	1440
4	40.1	2835
5	35.7	3090

In [21]: bw.cov()

Out[21]:

	Gestational Age (weeks)	Birth Weight (Grams)
Gestational Age (Weeks)	9.963824	1798.025
Birth Weight (Grams)	1798.025000	485478.750

```
In [23]: bw.corr(method = 'pearson')
```

Out[23]:

Gestational Age (Weeks) Birth Weight (Grams)

Gestational Age (Weeks)	1.000000	0.817519
Birth Weight (Grams)	0.817519	1.000000

In [24]: #Covariance indicates that there is correlation exists between two #Correlation coefficient of 0.818 indicates the relationship between two is posit

In [26]: #importing required libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import skew
from scipy.stats import kurtosis

In [27]: pd.set_option('display.max_columns', None) #to display all the columns
pd.options.display.float_format = '{:,.2f}'.format #to display float value upto

In [29]: xls= pd.read_csv('diamonds.csv')
 xls.head()

Out[29]:

	id	carat	cut	color	clarity	depth	table	price	x	У	z
0	1	0.23	Ideal	Е	SI2	61.50	55.00	326	3.95	3.98	2.43
1	2	0.21	Premium	Е	SI1	59.80	61.00	326	3.89	3.84	2.31
2	3	0.23	Good	Е	VS1	56.90	65.00	327	4.05	4.07	2.31
3	4	0.29	Premium	1	VS2	62.40	58.00	334	4.20	4.23	2.63
4	5	0.31	Good	J	SI2	63.30	58.00	335	4.34	4.35	2.75

```
In [31]: des_df = xls.drop(['id'], axis = 1) #drop id column
for col in des_df: #drop all alpha-numeric columns
    if des_df[col].dtype == 'object':
        des_df = des_df.drop([col],axis=1)

des_r = des_df.describe() #describe() gives us mean.min.max,median,1Q,3Q,std
des_r = des_r.rename(index={'50%':'median/50%'})
des_r
```

Out[31]:

	carat	depth	table	price	x	у	z
count	53,940.00	53,940.00	53,940.00	53,940.00	53,940.00	53,940.00	53,940.00
mean	0.80	61.75	57.46	3,932.80	5.73	5.73	3.54
std	0.47	1.43	2.23	3,989.44	1.12	1.14	0.71
min	0.20	43.00	43.00	326.00	0.00	0.00	0.00
25%	0.40	61.00	56.00	950.00	4.71	4.72	2.91
median/50%	0.70	61.80	57.00	2,401.00	5.70	5.71	3.53
75%	1.04	62.50	59.00	5,324.25	6.54	6.54	4.04
max	5.01	79.00	95.00	18,823.00	10.74	58.90	31.80

```
In [32]: var_r = des_df.var()

varlist = []
for col in des_df.columns:
    if des_df[col].dtype == 'object':
        continue
    varlist.append(round(des_df[col],5))

df = pd.DataFrame([varlist], columns = des_r.columns, index = ['var'])
    mct = des_r.append(df)
    mct
```

Out[32]:

	carat	depth	table	price	x	у	z
count	53,940.00	53,940.00	53,940.00	53,940.00	53,940.00	53,940.00	53,940.00
mean	0.80	61.75	57.46	3,932.80	5.73	5.73	3.54
std	0.47	1.43	2.23	3,989.44	1.12	1.14	0.71
min	0.20	43.00	43.00	326.00	0.00	0.00	0.00
25%	0.40	61.00	56.00	950.00	4.71	4.72	2.91
median/50%	0.70	61.80	57.00	2,401.00	5.70	5.71	3.53
75%	1.04	62.50	59.00	5,324.25	6.54	6.54	4.04
max	5.01	79.00	95.00	18,823.00	10.74	58.90	31.80
var	0 0.23 1 0.21 2 0.23 3	0 61.50 1 59.80 2 56.90 3	0 55.00 1 61.00 2 65.00 3	0 326 1 326 2 327 3	0 3.95 1 3.89 2 4.05 3	0 3.98 1 3.84 2 4.07 3	0 2.43 1 2.31 2 2.31 3

In []: