

Targeting Weak links in the CIIs Chain: Qbot's new tactics in Ransomware Era.

Executive Summary

Sophos Labs reported recently ¹that high incidence of ransomware attacks is in India. Over 68% of respondents from India said that they were hit by ransomware. The recent spate of publicly disclosed attacks only confirms the trend. We investigated how this new wave of attacks on the infrastructure are being carried out. Our threat research team observed reorientation of the BOTNETs - oldest threat actors. Old malspam oriented Botnets are making themselves relevant in the ransomware era. They now employ improved and sophisticated techniques and appear to care about geographies. Their core objective appears to breach and identify meaty targets for ransomware attacks.

This is a dangerous trend for cyberspace. Hostile state actors and organised crime gangs had limited leads to penetrate CIIs. Botnets with their widespread reach can offer better leads. This dangerous development could be behind the sudden rise in attacks on the CIIs in India. This sudden shift could also have two more additional reasons.

- (a) There is an increased enforcement activity against cybercrime groups in the developed countries. This led to the taking down of the larger botnets. Consequently, large botnet operators are migrating into new jurisdictions such as India.
- (b) Pandemic created by the Wuhan virus (Covid-19) is a major force in this shift. It moved many CIIs to open their network for WFH. It also spawned many new CIIs who are rapidly scaling up with limited focus on cyber security. Consequently, large botnet operators are finding cyberspace attractive for their operations.

We observed an old BOTNET Qbot activity in India. It is recently connected with ransomware groups such as REVIL/Sodinokibi. Botnet has undergone total transformation. Its new campaign titled **Biden52** appears to be significantly focussed on India. As a part of the campaign, emails were targeted on breaching one of the port clearing agents. It is a common trend by the Qbot to hijack or pretend internal email threads. We see that email threads that were hijacked have a relation to a critical port in India. The malware that was enclosed as an attachment is more sophisticated than seen before in Qbot campaigns. Full analysis of the attachment is enclosed.

Target was one of the top clearing agents at JNPT. They are part of a regular trusted group for interaction by port authorities. This relationship is attempted to be exploited by the threat actors. There could be network level integration between the ports and clearing agents. This

-

¹ https://www.sophos.com/en-us/medialibrary/pdfs/whitepaper/sophos-state-of-ransomware-2021-wp.pdf

is new modus targeting the supply chain of entities related to a very important port operator in India. However, we don't have an indicator as to whether the attack was successful or not.

It may be noted that there was a previous attack on Maersk Terminal of JNPT in June 2017. Attack in 2017 disrupted port operations (container terminal) for days. History of a successful disruption makes port infrastructure an attractive proposition to ransomware operators. Detailed technical report is enclosed and it may be noted that this is a live campaign. This new trend requires a comprehensive policy response from the Government and Boards. They should ensure that their security is not put at risk due to the vendor's weak security posture. We are only as strong as our weakest link.

Saptang Labs

We are a young cyber security start-up from India with a strong R&D focus. We would continue to track and study specific threats to Indian cyber space. If you are interested in collaborating with us or working with us or reaching out, please feel free to email us tushar@saptanglabs.com

Qbot: Introduction

The decade old Qbot has been known as Qakbot, Pinkslip bot since 2008. Qbot is a continuously evolving Trojan that started as a banking trojan capable of stealing banking credentials, browser data, and other financial information but has been expanding its capabilities to become a persistent threat for Organizations. Unlike typical financially motivated Banking Trojans, Qbot doesn't just stop with banking information but creates a botnet of infected machines to distribute Ransomware, utilizing the harvested information to propagate the campaign.

The capabilities of Qbot Trojan include:

- Remote Command & Control over infected machines
- Exfiltrate financial and banking information
- Hijack victim's email threads to propagate the campaign
- Botnet for dropping Ransomware and Trojans.

The group uses evolving Techniques Tactics and Procedures (TTPs), anti-analysis features, and constantly changing delivery methods from the use of VBS scripts with XML4 Macros in Excel Software to drop payload from the malicious Excel file.

Qbot: Biden 52 Campaign

Our research in this report covers the Qbot with special focus on targeting of Indian cyber space. Multiple security companies including the Checkpoint have covered emerging trends in the operations of the organised cybercrime groups. We believe that recent crackdown and seizing of the Emotet botnet resulted in Qbot playing a bigger role acting as a botnet to deploy Trojans and Ransomware including Prolock ransomware and Egregor ransomware.

Modus-operandi

The current modus operandi is to compromise an email account and hijack an email thread to reply to conversations with organizations, making use of the benign email conversation to persuade the victims into downloading the attached zip file and opening the extracted XLSM file. A better understanding of the campaign can be achieved with the below image:

Figure.1: Modus Operandi of the Qbot Campaign

Attack Vector

The contents of the malicious emails are greatly socially engineered to not raise any suspicion and the strategy of hijacking email threads clearly has a greater probability of success since the malicious email is from a trusted source.

Figure 14

Figure 15

Figure 16

Figures.14,15,16: Screenshots of the e-mails received by the target organizations

Figure.2: Screenshot of an email containing the malicious zip file

The attachment contains a zip file² that contains a XLSM file as shown below:

DECIMAL	HEXADECIMAL	DESCRIPTION
- - 0	0x0	Zip archive data, at least v2.0 to extract, compr
essed size: 012021.xlsm	335485, uncompres	sed size: 343693, name: Overdue_Debt_1577895391_06
335671	0x51F37	End of Zip archive, footer length: 22

Figure.3: Binwalk analysis of the zip file

The extracted XLSM file³ is meant to be opened using Microsoft Office, displays the below content:

Figure.4: Screenshot of the malicious excel file as seen from above

PROPERTY OF SAPTANG LABS PRIVATE LIMITED 2021

 $^{^2\,\}textbf{Hash:}\,d9d964ab0dc7792c81df8f2b0fc08b532d73dc56eb98452e1ceb42933d69b6b3$

³ Hash: cf20e03d8b89cd17eb76f7f28db5d514baed57996d078aa21296acc15477de10

Microsoft disables Macros by default for such Security reasons which doesn't let the code run by just opening the file. The malicious actors, therefore, convince the target to explicitly enable the Macros as seen in the screenshot above. An **XLSM** file is a macro-enabled spreadsheet created by Microsoft Excel, analyzing it using the open-source tool developed by @decalage2 gave the below result:

Indicator	Value	 Risk	 Description
File format	MS Excel 2007+ Macro-Enabled Workbook (.xlsm)	info 	
Container format	OpenXML	info	Container type
Encrypted	False	none	The file is not encrypted
VBA Macros	No 	none 	This file does not contain VBA macros.
XLM Macros	Yes 	Medium 	 macros. Use olevba to analyse them.
External Relationships	0 	none 	External relationships such as remote templates, remote OLE objects, etc

Figure.5: Oleid view of XLSM file showing the presence of XLM macros in it

Unlike recently seen versions of QBot that make use of VBA Macros, this campaign adapted to XLM Macros as shown in the above screenshot. The XLSM file is made up of XML files that can be deobfuscated using the Open-Source tool developed by open-source tool developed by open-source</

The XML file "Content_Types.xml" described the initial structure of the XLSM file and following up with "xl/workbook.xml", the details of the sheets is displayed as below:

"<Override PartName="/xl/workbook.xml" ContentType="application/vnd.ms-excel.sheet.macroEnabled.main+xml"/>"

```
<sheet name="Sheet" sheetId="2" r:id="rId1"/>
<sheet name="Sheet1" sheetId="13" r:id="rId2"/>
<sheet name="Sheet2" sheetId="14" r:id="rId3"/>
<sheet name="Pervi" sheetId="3" state="hidden" r:id="rId4"/>
<sheet name="Pervi2" sheetId="4" state="hidden" r:id="rId5"/>
<sheet name="sobr" sheetId="5" state="hidden" r:id="rId6"/>
<sheet name="sobr1" sheetId="6" state="hidden" r:id="rId7"/>
<sheet name="sobr2" sheetId="7" state="hidden" r:id="rId8"/>
<sheet name="sobr3" sheetId="8" state="hidden" r:id="rId9"/>
<sheet name="zap1" sheetId="9" state="hidden" r:id="rId10"/>
<sheet name="zap2" sheetId="10" state="hidden" r:id="rId11"/>
<sheet name="zap3" sheetId="11" state="hidden" r:id="rId12"/>
<sheet name="osn" sheetId="12" state="hidden" r:id="rId13"/>
```

Figure.6: Hidden sheets in the XLSM file

The above results show that there are multiple sheets but most of which are hidden and not displayed to the victim as shown below:

Figure.7: Sheets visible to the victim

Once the victim enables Macros following the "Enable Editing", the auto-execution functionality starts working dynamically.

Figure.8: XLMDeobsufucator output for the XLSM file

The above screenshot depicts the call from URLmon.dll to URLDownloadFileToA to download files from three IPs:

- 190.14.37[.]113
- 101.99.95[.]206
- 51.195.38[.]41

The above IPs are used to host and distribute the **1st stage payloads** that are downloaded, renamed to **"Post.storg"**, and executed with the command:

"regsv32.exe -s ..\Post.storg"

The 1st stage payload is a malicious **DLL** file and dynamically loads the final Qbot Trojan payload into memory using DLL injection techniques.

Analysing the Dropper:

The dropped .dat(renamed to Post.storg) file⁴ is compiled with Borland Delphi Compiler and has import functions such as **VirtualAlloc()**, **LoadLibrary()**, **WriteFile()**, and **RegQueryValue()** all of which are commonly observed in malwares while doing DLL injection and Registry tampering.

The first stage payload is responsible for creating persistence in the system and autorunning after every Restart of the system. The final payload is dropped and executed by this payload which is seen in the "Dump 3" from the below figure:

The "Dump 3" is the main Qbot Trojan payload that is written to a file as "stager_1.dll"

⁴ Hash: 7cf30ffdb463a48d4148aa2aaa5d2cbe54502b9978642136f703c10d712ab33f

Figure.9: Dumping the main Qbot Trojan in the Memory

Analysing the Payload

The main payload⁵ is compiled using C/C++ and has a single export function - "DLLRegisterServer".

Figure.10: DIE tool view showing the overview of QBot Trojan

Analyzing using PE-Bear, the Open-Source tool developed by ohen-source tool developed by ohen-

⁵ Hash: 855ff14330f4a4e5924fa97b9a51211787f9a9b448250e3db28322563239cd6e

PROPERTY OF SAPTANG LABS PRIVATE LIMITED 2021

Figure.11: Exports and Characteristics view for the Qbot Trojan in PE-bear

▼ Resource		Name	Value
	CDATA(10) 18"	ID1	10
	0	ID2	"118"
▼ "52	24"	ID3	0
0		Address	0003a098
		Offset	00037c98
		Size	0000042e
Hex Strings			
Address	Hex		Symbols
0003a098	99 13 4e 39 81 00 4a b5 6b ee 0a	01 77 b0 e9 05	N9J.kw
0003a0a8	4b b0 f2 0e 3c e7 03 35 e7 9b 5d	80 82 cd ae cb	K<5]
0003a0b8	a4 76 dc 98 4b bd fa 13 4b bb 3b	18 f6 c1 9f 7c	.vKK.;
0003a0c8	ae c7 ec 0d 55 31 ee 2c b2 93 70	49 25 31 ce 03	U1.,pI%1
0003a0d8	59 40 e0 f6 d7 03 3f 37 18 f0 ce	5a a0 5c c6 f8	Y@?7Z.\
0003a0e8	d2 75 38 dc 7b bf 74 47 a2 b5 68	dd 70 cc 92 58	.u8.{.tGh.pX
0003a0f8	86 5c 4f 3b 96 f0 83 6e ba 35 63	4a c9 08 f8 51	.\0;n.5cJQ
0003a108	bc 24 e1 19 21 8f bb 78 04 26 4e	f1 82 1d 4e 2f	.\$!x.&NN/
0003a118	cd 53 7c 63 46 84 84 ec fe 44 8a	dc d5 14 ed f9	.S cFD
0003a128	eb e0 96 bb 63 d0 bc 1d 1c 2b d5	20 9a 75 35 39	c+u59

Figure.12: The. rsrc section of the payload contains two indexes: "118" and "524"

The contents of the indexes are RC4 encrypted ciphertext

- "118" Command & Control server's IP address and Port information
- "524" Botnet configuration file

Figure.13: The Botnet configuration file for biden52

Remediation

- **Step.1)** The infected computer should be booted in Safe Mode by following the belowmentioned steps:
 - 1.1) Press "Windows key + R" that opens the Run tool and Enter "msconfig"

1.2) Navigate to the "Boot" tab in the System Configuration tool and click on the checkbox "Safe Boot" and press OK

1.3) Click on the Restart option to boot into safe mode

- **Step.2)** In order to defend against the persistence created by the Trojan, the following steps should be followed:
- **2.1)** To create persistence, by auto-execution at startup without user interaction, the Qbot creates a registry key as one of the mentioned below:

"HKEY_LOCAL_MACHINE\Microsoft\Windows\CurrentVersion\Run"
"HKEY_CURRENT_USER\Microsoft\Windows\CurrentVersion\Run"

The name consists of some "random characters" and data contains the command to run the Trojan at startup.

2.2) The trojan is a DLL file that is stored as seen in the above image at:

"C:\Users\{user}\AppData\Roaming\Microsoft\{random name}\{random}.dll

2.3) Navigate to the above-seen location and delete the Trojan and remove the Registry key created by the Qbot Trojan.

Conclusion

This research confirms that all bad actors are now gearing towards targeting perceived low risk and medium to high gain jurisdictions. India figures out among the top of the list. This calls for increasing policy importance to the Critical Information Infrastructure (CII) and its supply chain. It may be noted that defence of the critical information infrastructure is only as strong as its weakest link. We want to thank our intern **Shreesh Roliwal** for his key contribution to this research.

Simple policy advice could be to ensure that the vendors and suppliers of critical information infrastructure should be directed to adhere to the same security standards prescribed for the CIIs. Data about the campaign would be shared with the agencies and fellow cyber researchers. Please feel free to reach out to us at tushar@saptanglabs.com

References

To read other coverages of Qbot attacks from the past, refer to the links below:

- https://research.checkpoint.com/2020/exploring-qbots-latest-attack-methods/
- https://securityaffairs.co/wordpress/117558/cyber-crime/gakbot-latest-release.html
- https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html
- https://blog.cyberint.com/qakbot-banking-trojan
- https://n1ght-w0lf.github.io/malware%20analysis/qbot-banking-trojan/

List of Indicators of Compromise (IOCs):

XLSM file Hashes

- cf20e03d8b89cd17eb76f7f28db5d514baed57996d078aa21296acc15477de10
- f202c64f338d6815bde2a4a1a7946e5b037359e3701c1e7f90db31273e0cbf42
- cc9d719a9329627c13d44231374440e156eb7afb3be933d31f6767eafb65f2cd
- eec75f6090d0b4aafba01dc07c5a90a86a3a6221745387db9664511b7f4b83da
- a631dfa6707d85e26337da2e16a6358402a53329610952ff6e5a9f2bef74dca4
- df5037621d597247be2765dcd8e3dbf799c7a4bf051451150b9cc069a1b0b74c
- 01a7ec6f72ae8d9b4d53487763fe0679fe18672b9eefd105e8a72a3bc7c51e05
- 9631385508917c670f57f1225ddb43d8e3bd92f1db74e30fe6ce9841a4a52f1a
- b39cf2cddf259d3f226561747cd1386186fa6bf91e51d5e98071d9a8a1c9145f
- 0162ad73634f616f0dac77e09a032aba720c306efcdfb838ff122763eb02c95d
- d9ec7792072681636567594b980cd574bd0e69956c1ba10ffee41468f1e126d4

IP addresses

184.185.103.157:443	149.28.99.97:2222	86.173.143.211:443
71.187.170.235:443	149.28.99.97:443	47.196.213.73:443
86.220.62.251:2222	149.28.99.97:995	45.46.53.140:2222
75.67.192.125:443	45.63.107.192:995	186.154.175.13:443
96.61.23.88:995	97.69.160.4:2222	70.163.161.79:443
92.96.3.180:2078	83.196.56.65:2222	24.95.61.62:443
72.252.201.69:443	72.240.200.181:2222	78.63.226.32:443
24.152.219.253:995	75.137.47.174:443	195.6.1.154:2222
105.198.236.101:443	188.26.91.212:443	76.168.147.166:993
24.179.77.236:443	68.186.192.69:443	64.121.114.87:443
189.210.115.207:443	140.82.49.12:443	77.27.207.217:995
81.97.154.100:443	24.55.112.61:443	31.4.242.233:995
47.22.148.6:443	90.65.234.26:2222	125.62.192.220:443
		1

45.77.115.208:443	24.229.150.54:995	195.12.154.8:443
149.28.98.196:443	95.77.223.148:443	71.117.132.169:443
45.77.115.208:2222	122.58.117.81:995	96.21.251.127:2222
144.202.38.185:995	197.45.110.165:995	71.199.192.62:443
45.77.115.208:8443	50.29.166.232:995	70.168.130.172:995
207.246.77.75:8443	71.74.12.34:443	82.12.157.95:995
207.246.77.75:443	27.223.92.142:995	209.210.187.52:995
144.202.38.185:2222	144.139.47.206:443	209.210.187.52:443
45.77.117.108:995	50.244.112.106:443	67.6.12.4:443
149.28.98.196:995	76.25.142.196:443	189.222.59.177:443
149.28.101.90:443	75.118.1.141:443	174.104.22.30:443
149.28.98.196:2222	98.252.118.134:443	142.117.191.18:2222
45.32.211.207:995	98.192.185.86:443	189.146.183.105:443
144.202.38.185:443	67.165.206.193:993	213.60.147.140:443
92.59.35.196:2222	109.12.111.14:443	196.221.207.137:995
207.246.77.75:2222	190.85.91.154:443	108.46.145.30:443
45.77.115.208:995	175.136.38.142:443	187.250.238.164:995
45.77.117.108:443	83.110.108.161:2222	2.7.116.188:2222
149.28.101.90:8443	100.2.123.234:443	195.43.173.70:443
149.28.101.90:2222	105.198.236.99:443	106.250.150.98:443
207.246.116.237:443	81.214.126.173:2222	45.67.231.247:443
207.246.77.75:995	68.204.7.158:443	83.110.103.152:443
45.32.211.207:2222	151.205.102.42:443	83.110.9.71:2222
216.201.162.158:443	149.28.101.90:995	78.97.207.104:443
73.151.236.31:443	207.246.116.237:8443	59.90.246.200:443
173.21.10.71:2222	207.246.116.237:995	80.227.5.69:443
71.41.184.10:3389	45.77.117.108:2222	125.63.101.62:443
136.232.34.70:443	45.32.211.207:443	86.236.77.68:2222
76.94.200.148:995	45.32.211.207:8443	109.106.69.138:2222
71.63.120.101:443	45.77.117.108:8443	84.72.35.226:443
196.151.252.84:443	207.246.116.237:2222	217.133.54.140:32100
202.188.138.162:443	45.63.107.192:2222	197.161.154.132:443
74.68.144.202:443	45.63.107.192:443	89.137.211.239:995
69.58.147.82:2078	172.78.18.142:443	74.222.204.82:995
	96.37.113.36:993	122.148.156.131:995
	24.122.166.173:443	156.223.110.23:443
	73.25.124.140:2222	144.139.166.18:443
	71.163.222.223:443	202.185.166.181:443
	24.139.72.117:443	
	<u> </u>	<u> </u>