Lucrarea de laborator nr. 5

Registre

Scopul lucrării:

100110

6.

Studierea experimentală a registrelor de tip paralel, consecutiv și universal.

Experimentul nr. 1. Registrul paralel de ordinul şase

1.1. Construiți schema prezentată în Fig. 1.

Fig. 1. Schema registrului paralel de ordinul şase.

1.2. Cu ajutorul comutatoarelor [5], [4], [3], [2], [1] și [0] aplicați codul binar, indicat în tabelul 1, la intrările D ale registrului de ordinul șase (studentul alege varianta codului din tabelul 1 conform variantei prestabilite).

Nr. Coduri binare Nr. Coduri binare d/o d/o 1. 100001 13. 101100 2. 100010 14. 101101 3. 100011 15. 101110 100100 16. 101111 4. 5. 100101 17. 110000

18.

110001

Tabelul 1. Coduri binare

7.	100111	19.	110010
8.	101000	20.	110011
9.	101001	21.	110100
10.	101010	22.	110101
11.	101011	23.	110110
12.	101100	24.	110111

- 1.3. Aplicați tensiune de la sursa de tensiune $+V_{CC}$ prin conectarea/deconectarea comutatorului [C] și înscriți în registru codul binar aplicat la intrările lui.
 - 1.4. Introduceți codul binar, obținut la ieșirile registrului, în tabelul 2.

Tabelul 2. Stările pentru registrul paralel de ordinul șase

Nr.		Intrări								Ies	şiri		Q0			
	С	5	4	3	2	1	0	Q5	Q4	Q3	Q2	Q1	Q0			
1	1															

Experimentul nr. 2. Registrul consecutiv cu deplasare directă de ordinul șase

2.1. Construiți schema prezentată în Fig. 2.

Fig. 2. Schema electrică a registrului cu deplasare directă de ordinul șase.

2.2. Cu ajutorul comutatorului [**D**] aplicați la intrarea D al registrului valoarea ordinului inferior al codului binar ales prealabil (studentul alege varianta codului din tabelul 1 conform variantei prestabilite). După instalarea valorii ordinului inferior al codului binar

aplicați tensiune de la sursa $+V_{CC}$ (conectați și deconectați comutatorul [C]) și înscrieți această valoare în registru.

- 2.3. Repetați punctul 2.2 și pentru celelalte ordine ale codului binar. Fixați stările ordinelor registrului conform indicatoarelor luminescente și completați Tabelul 3 (regimul înscriere).
- 2.4. Deconectați comutatorul **[D]** (starea "0"). Fixați starea ordinului superior al registrului (bistabilul din stânga în schemă). Consecutiv, conectînd și deconectînd comutatorul **[C]**), deplasați bitul din bistabilul "5" în bistabilul "0".
- 2.5. Completați Tabelul 3 (regimul citire). Convingeți-vă, că la ieșirea Q0 s-a obținut numărul înscris prealabil în registru.

Nr.	Dagimul	Intr	ări			Ies	şiri		
d/o	Regimul	С	D	Q5	Q4	Q3	Q2	Q1	Q0
0		↑							
1	g	\uparrow							
2	Înscriere	\uparrow							
3	1SC	\uparrow							
4	Îı	\uparrow							
5		\uparrow							
6		\uparrow	0						
7		\uparrow	0						
8	Citire	\uparrow	0						
9	Ci	↑	0						
10		↑	0						

Tabelul 3. Stările pentru registrul cu deplasare directă de ordinul șase

Experimentul nr. 3. Registrul ciclic cu deplasare directă

3.1. Construiți schema prezentată în Fig. 3.

Fig. 3. Schema electrică a registrului ciclic cu deplasare directă.

- 3.2. Înscriți în registru codul binar ales din tabelul 1 (studentul alege varianta codului binar din tabelul 1 conform variantei prestabilite), folosind comutatoarele [D], [C] și [R] și sursa de tensiune +V_{CC} (comutatorul [G] deconectat).
 - 3.3. Deconectați comutatoarele [D], [C] și [R]. Nu deconectați butonul
- 3.4. Introduceți valorile frecvenței f, DUTY CYCLE și amplitudinei U pe panoul generatorului de semnale (studentul alege varianta pentru date conform variantei prestabilite).
- 3.5. Aplicați la intrarea C a registrului semnal dreptunghiular de la generatorul FUNCTION GENERATOR prin conectarea comutatorului [G] și explicați fenomenul observat.
- 3.6. Conectați în scemă analizatorul logic și obțineți diagramele temporale pentru canalul G și toate ieșirile Q ale bistabililor.

Experimentul nr. 4. Registrul consecutiv cu deplasare inversă de ordinul șase

4.1. Construiți schema prezentată în Fig. 4.

Fig. 4. Schema electrică a registrului cu deplasare inversă de ordinul șase.

- 4.2. Cu ajutorul comutatorului [**D**] aplicați la intrarea D al registrului valoarea ordinului superior al codului numeric ales prealabil (studentul alege varianta codului din tabelul 1 conform variantei prestabilite). După instalarea valorii ordinului superior al codului numeric aplicați tensiune de la sursa $+V_{CC}$ (conectați și deconectați comutatorul [C]) și înscrieți această valoare în registru.
- 4.3. Repetați punctul 4.2 și pentru celelalte ordine ale numărului. Fixați stările ordinelor registrului conform indicatoarelor luminescente și completați Tabelul 3 (regimul înscriere).

- 4.4. Deconectați comutatorul **[D]** (starea "0"). Fixați starea ordinului superior al registrului (bistabilul din stânga în schemă). Consecutiv, conectînd și deconectînd comutatorul **[C]**), deplasați bitul din bistabilul "0" în bistabilul "5".
- 4.5. Completați Tabelul 4 (regimul citire). Convingeți-vă, că la ieșirea Q5 s-a obținut numărul înscris prealabil în registru.

Tabelul 4. Stările pentru registrul cu deplasare inversă de ordinul șase

Nr.	Dagimul	Intra	ări			Ies	şiri		
d/o	Regimul	С	D	Q5	Q4	Q3	Q2	Q1	Q0
0		↑							
1	e	↑							
2	riei	↑							
3	Înscriere	↑							
4	Ţ	↑							
5		↑							
6		↑	0						
7		↑	0						
8	Citire	↑	0						
9	Ċ.	↑	0						
10		1	0						

Experimentul nr. 5. Registrul universal

- 5.1. Construţi de sinestătător schema electrică a unui registru de ordinul şase din bistabili JK care poate funcționa în următoarele regimuri:
 - a) registru consecutiv cu deplasare directă;
 - b) registru paralel;
 - c) registru consecutiv cu deplasare inversă;
 - d) reînoirea informației.

La ieșirile Q ale bistabililor conectați indicatoare luminiscente.

- 5.2. **Instalați registrul în regim de lucru cu deplasare directă.** Notați în tabelul 5 stările comutatoarelor utilizate pentru instalarea regimului de lucru al registrului. Înscriți în registru codul binar ales prealabil din Tabelul 1conform variantei prestabilite.
- 5.3. Completați tabelul 5. Convingeți-vă, că la ieșirea Q0 s-a obținut numărul înscris prealabil în registru.

Tabelul 5. Stările registrului universal în regim de lucru cu deplasare directă

Nr.	Regimul	Intrări	Ieşiri

d/o		С	D	Q5	Q4	Q3	Q2	Q1	Q0
0		↑							
1	e	↑							
2	rier	\uparrow							
3	Înscriere	\uparrow							
4	Ţ	\uparrow							
5		↑							
6		↑	0						
7	بو	\uparrow	0						
8	Citire	\uparrow	0						
9	Ö	<u> </u>	0						
10		<u> </u>	0						

- 5.4. **Instalați registrul în regim de lucru paralel.** Notați în tabelul 6 stările comutatoarelor utilizate pentru instalarea regimului de lucru al registrului. Înscriți în registru codul binar ales prealabil din tabelul 1.
 - 5.5. Introduceți numărul, obținut la ieșirile registrului, în tabelul 6.

Tabelul 6. Stările registrului universal în regim de lucru paralel

1	Nr.		Intrări							Ieşiri					
(d/o	C	5	4	3	2	1	0	Q5	Q4	Q3	Q2	Q1	Q0	
1	1	↑													

- 5.6. **Instalați registrul în regim de lucru cu deplasare inversă**. Notați în tabelul 7 stările comutatoarelor utilizate pentru instalarea regimului de lucru al registrului. Înscriți în registru codul binar ales prealabil din tabelul 1.
- 5.7. Completați tabelul 7. Convingeți-vă, că la ieșirea Q5 s-a obținut numărul înscris prealabil în registru.

Tabelul 7. Stările registrului universal în regim de lucru cu deplasare inversă

Nr. d/o	Dagimul	Intr	ări			Ieş	şiri		
d/o	Regimul	С	\mathbf{D}^*	Q5	Q4	Q3	Q2	Q1	Q0
0		↑							
1		↑							
2		↑							
3	ere	↑							
4	CTİ	1							
5	Înscriere	1							
6		↑	0						
7		↑	0						
8	Citire	1	0						
9	Cit	1	0						

10	↑	0			

- 5.8. Pentru a cerceta procesul de lucru al registrului în regim de lucru de reînoire a informației prealabil instalați registrul în regim de lucru cu deplasare directă și înscriți în registru codul binar ales din tabelul 1 conform variantei prestabilite.
- 5.9. Instalați registrul în regim de lucru de reînoire a informației. Notați în tabelul 8 stările comutatoarelor utilizate pentru instalarea regimului de lucru al registrului. Aplicați la intrarea C a registrului un set de nivele diferite de tensiune de la sursa $+V_{CC}$ și itroduceți rezultatele observate în tabelul 8.

Tabelul 8. Stările registrului universal în regim de reînoire a informației

Nr.		Starea n							Starea $n+1$						
d/o	C	$C = 1.05 \pm 0.4 \pm 0.3 \pm 0.2 \pm 0.1 \pm 0.0$						Q5	Q4	Q3	Q2	Q1	Q0		
1	↑														

Lucrarea de laborator se finalizează cu un raport, ce va conține:

- 1. Numărul și denumirea lucrării de laborator.
- 2. Numele, pronumele studentului, codul grupei academice,
- 3. Denumirea experimentelor.
- 4. Fiecare experiment va conține schemele electrice construite și tabelele de adevăr (diagramele temporale) cu datele primite în urma măsurătorilor.
- 5. Concluzii referitor la rezultatele obtinute.

Întrebări de control

La prezentarea raportului trebuie să fiți capabili să răspundeți la următoarele întrebări de control:

- 1. Ce numim registru?
- 2. Numiți parametrii de bază ai regiștrilor.
- 3. Cum se clasifică regiștrii?
- 4. Ce funcții poate îndeplini registrul de tip paralel?
- 5. Ce funcții poate îndeplini registrul de tip consecutiv cu deplasare directă?
- 6. Ce funcții poate îndeplini registrul de tip consecutiv cu deplasare inversă?

Bibliografie

- 1. KAF-Internet. Регистры памяти и сдвиговые регистры // Справочное руководство по Electronics Workbench, 2001// http://workbench.host. net.kg /show.php?chapter=3.3.2.
- 2. Valachi, A. și al. Analiza, sinteza și testarea dispozitivelor numerice. Buc.: Ed. Nord Est, 1993, p. 214-238.