	Ф.И.О.:				
	1. (a)	(b)	(c)	(d)	
<u> </u>	2. (a)	(b)	(c)	(d)	
	3. (a)	(b)	(c)	(d)	
	4. (a)	(b)	(c)	(d)	
	5. (a)	(b)	(c)	(d)	
	6.				

— Множественная

СПбГУ

Матметоды

Bap.№ 01

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента stack.loss
 - (a) 1.2953
 - (b) NA

2014-11-12

регрессия

- (c) -39.9197
- (d) -0.1521
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (a) не позволяет правомерно сравнить силу эффектов разнородных предикторов
 - (b) позволяет обойтись без проверки состоятельности модели
 - (c) центрует значения зависимой переменной ${f Y}$ вокруг нуля вместо средней
 - (d) позволяет правомерно сравнить силу эффектов разнородых предикторов
- 3. Отметьте условия применимости линейной регрессии
 - (а) Нормальное распределение остатков
 - (b) Гомогенность дисперсий остатков
 - (с) Линейная связь
 - (d) Независимость значений ${\it y}$ друг от друга

- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (а) самый слабый предиктор
 - (b) скорость изменения зависимой переменной при фиксированном значении предиктора X_i
 - (с) один из параметров модели
 - (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
- 5. Поправка adjusted R^2 :
 - (a) позволяет правомерно сравнивать модели с разным количеством предикторов
 - (b) всегда растет с увеличением количества предикторов
 - (c) всегда равна или имеет значение выше, чем R^2
 - (d) всегда уменьшается с увеличением количества предикторов

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 69, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

	Ф.И.О.:				
_	1. (a)	(b)	(c)	(d)	
	2. (a)	(b)	(c)	(d)	
	3. (a)	(b)	(c)	(d)	
	4. (a)	(b)	(c)	(d)	
	5. (a)	(b)	(c)	(d)	
	6.				

СПбГУ

Bap.№ 02

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента stack.loss
 - (a) 0.9136
 - (b) 0.7156
 - (c) NA

2014-11-12

регрессия

- (d) 1.2953
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (a) не позволяет правомерно сравнить силу эффектов разнородных предикторов
 - (b) позволяет оценить ошибку предсказания модели
 - (c) позволяет правомерно сравнить силу эффектов разнородых предикторов
 - (d) центрует значения каждого предиктора X_i вокруг нуля вместо средней
- 3. Отметьте условия применимости линейной регрессии
 - (a) Коэффициент детерминации $R^2 > 0.79$
 - (b) Независимость значений y друг от друга
 - (c) Корреляция между независимыми переменными (мультиколлинеарность) велика

- (d) Независимые переменные стандартизованы
- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (а) один из параметров модели
 - (b) угловой коэффициент регрессионной прямой
 - (с) самый слабый предиктор
 - (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
- 5. Поправка adjusted R^2 :
 - (a) всегда равна или имеет значение выше, чем R^2
 - (b) всегда уменьшается с увеличением количества предикторов
 - (c) всегда растет с увеличением количества предикторов
 - (d) позволяет скорректировать рост *R*² при добавлении каждого нового предиктора

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 68, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Ф.И.О.:				
1. (a)	(b)	(c)	(d)	
2. (a)	(b)	(c)	(d)	
3. (a)	(b)	(c)	(d)	
4. (a)	(b)	(c)	(d)	
5. (a)	(b)	(c)	(d)	
6.				

СПбГУ

Bap.№ 03

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента Water.Temp
 - (a) 0.7156

2014-11-12

регрессия

- (b) 1.2953
- (c) -39.9197
- (d) NA
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (a) позволяет оценить ошибку предсказания модели
 - (b) не позволяет правомерно сравнить силу эффектов разнородных предикторов
 - (c) центрует значения каждого предиктора X_i вокруг нуля вместо средней
 - (d) позволяет правомерно сравнить силу эффектов разнородых предикторов
- 3. Отметьте условия применимости линейной регрессии
 - (а) Дисперсия остатков равна единице
 - (b) Гомогенность дисперсий остатков
 - (c) Коэффициент детерминации $R^2 > 0.79$
 - (d) Корреляция между независимыми переменными (мультиколлинеарность) велика

- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (a) скорость изменения зависимой переменной при фиксированном значении предиктора X_i
 - (b) один из параметров модели
 - (с) угловой коэффициент регрессионной прямой
 - (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
- 5. Поправка adjusted R^2 :
 - (a) всегда растет с увеличением количества предикторов
 - (b) позволяет определить наиболее значимый предиктор множественной модели
 - (c) позволяет скорректировать рост *R*² при добавлении каждого нового предиктора
 - (d) всегда равна или имеет значение выше, чем R^2

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 68, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

	Ф.И.О.:				
ı	1. (a)	(b)	(c)	(d)	
	2. (a)	(b)	(c)	(d)	
	3. (a)	(b)	(c)	(d)	
	4. (a)	(b)	(c)	(d)	
	5. (a)	(b)	(c)	(d)	
	6.				

— Множественная

СПбГУ

Матметоды

Bap.№ 04

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента Water.Temp
 - (a) 1.2953

2014-11-12

регрессия

- (b) -0.1521
- (c) -39.9197
- (d) 0.7156
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (a) центрует значения зависимой переменной Y вокруг нуля вместо средней
 - (b) позволяет оценить ошибку предсказания модели
 - (c) центрует значения каждого предиктора X_i вокруг нуля вместо средней
 - (d) позволяет обойтись без проверки на нормальность
- 3. Отметьте условия применимости линейной регрессии
 - (а) Гомогенность дисперсий остатков
 - (b) Нормальное распределение остатков
 - (c) Независимость значений y друг от друга

- (d) Линейная связь
- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (а) один из предикторов модели
 - (b) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
 - (с) угловой коэффициент регрессионной прямой
 - (d) самый слабый предиктор
- 5. Поправка adjusted R^2 :
 - (a) всегда уменьшается с увеличением количества предикторов
 - (b) всегда растет с увеличением количества предикторов
 - (c) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
 - (d) всегда равна или имеет значение выше, чем R^2

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 66, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

	Ф.И.О.:				
	1. (a)	(b)	(c)	(d)	
1	2. (a)	(b)	(c)	(d)	
	3. (a)	(b)	(c)	(d)	
	4. (a)	(b)	(c)	(d)	
	5. (a)	(b)	(c)	(d)	
	6.				

СПбГУ

Bap.№ 05

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента Air.Flow
 - (a) -39.9197
 - (b) 0.9136

2014-11-12

регрессия

- (c) 0.7156
- (d) 1.2953
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (а) позволяет обойтись без проверки на нормальность
 - (b) не позволяет правомерно сравнить силу эффектов разнородных предикторов
 - (c) центрует значения каждого предиктора X_i вокруг нуля вместо средней
 - (d) позволяет обойтись без проверки состоятельности модели
- 3. Отметьте условия применимости линейной регрессии
 - (а) Дисперсия остатков равна единице
 - (b) Линейная связь
 - (c) Независимые переменные стандартизованы
 - (d) Корреляция между независимыми переменными (мультиколлинеарность) велика

- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (а) угловой коэффициент регрессионной прямой
 - (b) один из предикторов модели
 - (с) один из параметров модели
 - (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
- 5. Поправка adjusted R^2 :
 - (a) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
 - (b) применима только для моделей с предварительно стандартизированными предикторами
 - (c) всегда уменьшается с увеличением количества предикторов
 - (d) позволяет определить наиболее значимый предиктор множественной модели

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 66, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Ф.И.О.	:				
1 ()		, .		٦	(1) <u></u>
1. (a) (e)	(b) (f)	(c))		(d)
2. (a)	(b)	(c)		(d)	
3. (a)	(b)	(c)		(d)	
4. (a)	(b)	(c)		(d)	
5. (a)	(b)	(c)		(d)	
6.		П			

Множественная

СПбГУ

Матметоды

Bap.№ 06

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента Acid.Conc.
 - (a) -39.9197

2014-11-12

регрессия

- (b) позволяет правомерно сравнивать модели с разным количеством предикторов
- (c) 1.2953
- (d) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (а) позволяет обойтись без проверки на нормальность
 - (b) центрует значения зависимой переменной ${m Y}$ вокруг нуля вместо средней
 - (c) центрует значения каждого предиктора X_i вокруг нуля вместо средней
 - (d) позволяет правомерно сравнить силу эффектов разнородых предикторов
- 3. Отметьте условия применимости линейной регрессии
 - (а) Дисперсия остатков равна единице
 - (b) Независимые переменные стандартизованы
 - (с) Гомогенность дисперсий остатков

- (d) Корреляция между независимыми переменными (мультиколлинеарность) велика
- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (а) один из параметров модели
 - (b) угловой коэффициент регрессионной прямой
 - (c) скорость изменения зависимой переменной при фиксированном значении предиктора X_i
 - (d) один из предикторов модели
- 5. Поправка adjusted R^2 :
 - (a) позволяет правомерно сравнивать модели с разным количеством предикторов
 - (b) всегда уменьшается с увеличением количества предикторов
 - (c) применима только для моделей с предварительно стандартизированными предикторами
 - (d) всегда равна или имеет значение выше, чем R^2

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 70, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Ф.И.О.:				
1. (a)	(b)	(c)	(d)	
2. (a)	(b)	(c)	(d)	
3. (a)	(b)	(c)	(d)	
4. (a)	(b)	(c)	(d)	
5. (a)	(b)	(c)	(d)	
6.				

СПбГУ

Bap.№ 07

- 1. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc предикторами. Проведите регрессионный анализ и определите значение коэффициента Water.Temp
 - (a) -0.1521
 - (b) 0.7156
 - (c) NA

2014-11-12

регрессия

- (d) 1.2953
- 2. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:
 - (a) позволяет оценить ошибку предсказания модели
 - (b) позволяет обойтись без проверки состоятельности модели
 - (c) не позволяет правомерно сравнить силу эффектов разнородных предикторов
 - (d) позволяет правомерно сравнить силу эффектов разнородых предикторов
- 3. Отметьте условия применимости линейной регрессии
 - (а) Дисперсия остатков равна единице
 - (b) Независимость значений y друг от друга
 - (c) Независимые переменные стандартизованы

- (d) Корреляция между независимыми переменными (мультиколлинеарность) велика
- 4. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (а) угловой коэффициент регрессионной прямой
 - (b) один из параметров модели
 - (с) один из предикторов модели
 - (d) один из предикторов и параметров модели
- 5. Поправка adjusted R^2 :
 - (a) позволяет определить наиболее значимый предиктор множественной модели
 - (b) всегда равна или имеет значение выше, чем R^2
 - (c) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
 - (d) всегда уменьшается с увеличением количества предикторов

6. ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 70, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.