, and the second second	العلامة	+ 5 11 - + + 11 + 11 + 11							
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول							
	2x0,25	$Cr_2O_7^{2-}/Cr^{3+}, CO_2/H_2C_2O_4:$ (ox/red) : $Cr_2O_7^{2-}/Cr^{3+}, CO_2/H_2C_2O_4:$ (ox/red) - الثنائيتان $Cr_2O_7^{2-}/Cr^{3+}, CO_2/H_2C_2O_4:$ (ox/red) - جدول التقدم : $3H_2C_2O_{4(ag)} + Cr_2O_7^{2-}(ag) + 8H^+(ag) = 6CO_{2(g)} + 2Cr^{3+}(ag) + 7H_2O_4$ التقدم الحالة كمية المادة بالمول							
	0,5	بوفرة بوفرة $x=0$							
3.0	2×0,25	$x_{max} = C_2 V_2 = 16 \times 10^{-3} \times 50 \times 10^{-3} = 8 \times 10^{-4} mol$ $x_{max} = 2 \times 10^{-4} mol$: ومنه المحد هو $H_2 C_2 O_4$ وبالتالي $H_2 C_2 O_4$ ومنه المحمية :							
	$v_{vol} = rac{1}{V} rac{dx}{dt}$. $v_{vol} = rac{1}{V} rac{dx}{dt}$. $v_{vol} = rac{1}{V} rac{dx}{dt}$. $v_{vol} = -rac{1}{V} rac{dx}{dt}$								
	0,25 0,25	$v_{12\mathrm{min}} = -\frac{1}{3} \times \frac{(0-3,1) \times 10^{-3}}{20,8-0} = 5,0 \times 10^{-5} (mol/L.\mathrm{min})$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الناء							
	0,25	$\left[H_2C_2O_4\right]_{4/2} = \frac{C_1V_1}{V} - \frac{3\frac{X_{\text{max}}}{2}}{V} = \frac{12\times10^{-3}\times50\times10^{-3}}{0.1} - \frac{3\times2\times10^{-4}}{0.2} = 3\times10^{-3}\text{mol/1}$ $\mathbf{t}_{1/2} = 5.6\text{min}: \text{at the sign}$							

العلامة		\$ Ex
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	2×0,25	$u_R+u_c=0\Rightarrow RC rac{du_c}{dt}+u_c=0\Rightarrow rac{du_c}{dt}+rac{u_c}{RC}=0$ التمرين الثاني : $u_R+u_c=0$
	3×0,25	ب $u_c(t) = Ae^{at}$ وبالتعويض في المعادلة التفاضلية $u_c(t) = Ae^{at}$ وبالتعويض في المعادلة التفاضلية $u_c(t) = Ae^{at}$ $ A\alpha e^{at} + \frac{A}{RC}e^{at} = 0 \Rightarrow Ae^{at}(\alpha + \frac{1}{RC}) = 0, Ae^{at} \neq 0 \Rightarrow \alpha + \frac{1}{RC} = O \Rightarrow \alpha = -\frac{1}{RC}$ نجد : $u_c(0) = A = E \Rightarrow u_c(t) = Ee^{-\frac{t}{RC}}$
	0,25	$E_c = \frac{1}{2} C E^2 e^{-2 \frac{t}{Rc}}$: عبارة الطاقة -2
	0,25	$E_0 = 140 \mu J$: الطاقة العظمى للمكثفة: من البيان نجد $-140 \mu J$
3.5	0.05	: ب $E_C(t) = at + b, a = \frac{dE_c}{dt}, t = 0 \Rightarrow \frac{dE_C}{dt} = \frac{-CE^2}{\tau}e^{-2\frac{t}{\tau}} \Rightarrow a = -\frac{CE^2}{\tau}$
	0,25×3 0,25	$E_{c}(0) = \frac{1}{2}CE^{2} \Rightarrow E_{c}(t) = -\frac{CE^{2}}{\tau}t + \frac{1}{2}CE^{2} \Rightarrow -\frac{CE^{2}}{\tau}t + \frac{1}{2}CE^{2} = 0$ $\Rightarrow -\frac{CE^{2}}{\tau}t = \frac{1}{2}CE^{2} \Rightarrow t = \frac{\tau}{2}$ $\frac{\tau}{2} = 1 \Rightarrow \tau = 2ms : \tau \Rightarrow -\frac{\tau}{2}$
	0,25	$\frac{1}{2}$ = 1 \Rightarrow t = 2ms . t جساب سعة المكثفة $F = 2 \times 10^{-6} F = 2 \mu F$
	0,23	^ 4- زمن تناقص الطاقة إلى النصف:
	0,25	$E(t_{1/2}) = \frac{E_0}{2} \Rightarrow \frac{1}{2} CE^2 e^{-2\frac{t_{1/2}}{\tau}} = \frac{1}{42} CE^2 \Rightarrow e^{-2\frac{t_{1/2}}{\tau}} = \frac{1}{2} \Rightarrow -2\frac{t_{1/2}}{\tau} = -\ln 2 \Rightarrow t = \frac{\tau}{2} \ln 2$
	0,25	قیمته : t _{1/2} = ln2=0,693ms

العلامة							
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول					
		التمرين الثالث (3 نقاط):					
	0,25	$C_1 = \frac{n}{V} = \frac{m}{MV} = 1.5 \times 10^{-2} mol / L : C_1 = -1 c$					
	0,25	$CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^{(aq)} + H_3O^+_{(aq)}$: كتابة المعادلة					
		جــ حدول تقدم التفاعل :					
		المعادلة $CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO^{(aq)} + H_3O^+_{(aq)}$					
		كميات المادة بالمول التقدم الحالة					
	2×0,25	<u> </u>					
		x n ₀ -x بوفرة x x					
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$					
	0,25	$n_{H_2O^+}=X_{eq}=igl[H_3O^+igr]_{eq} imes V=10^{-PH} imes V$					
3.0	0,20	(200 4)() 200					
	0,25	$PK_{a} = PH - \log \frac{\left[CH_{3}COO^{-}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq}} = PH - \log \frac{X_{eq}}{n_{0} - X_{eq}} = 3,3 - \log \frac{4 \times 10^{-4}}{1,2 \times 10^{-2} - 4 \times 10^{-4}} = 4,76 - 2.5$					
		3-أ- كتابة معادلة التفاعل:					
	0,25	$CH_3COOH_{(aq)} + NH_{3(aq)} = CH_3COO^{-}_{(aq)} + NH_4^{+}_{(aq)}$					
		ب-حساب ثابت التوازن k:					
	0,25×2	$K = \frac{\left[CH_{3}COO^{-}\right]_{eq} \times \left[NH_{4}^{+}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq} \times \left[NH_{3}\right]_{eq}} \times \frac{\left[H_{3}O^{+}\right]}{\left[H_{3}O^{+}\right]} = \frac{K_{a1}}{K_{a2}} = \frac{10^{-pk_{a1}}}{10^{-pka_{2}}} = 10^{pka2-pka1} = 2,75 \times 10^{4}$					
		$ au_{eq} = rac{\sqrt{K}}{1+\sqrt{K}}$: إثبات العلاقة $-$					
	0,25	$K = \frac{\left[CH_{3}COO^{-}\right]_{eq} \times \left[NH_{4}^{+}\right]_{eq}}{\left[CH_{3}COOH\right]_{eq} \times \left[NH_{3}\right]_{eq}} = \frac{X_{eq}^{2}}{(n_{0} - X_{eq})^{2}} \Rightarrow \sqrt{K} = \frac{X_{eq}}{n_{0} - X_{eq}} \Rightarrow X_{eq} = n_{0}\sqrt{K} - X_{eq}\sqrt{K}$ $X_{eq}(1 + \sqrt{K}) = n_{0}\sqrt{K} \Rightarrow \frac{X_{eq}}{n_{0}} = \frac{\sqrt{K}}{1 + \sqrt{K}} \Rightarrow \tau_{eq} = \frac{\sqrt{K}}{1 + \sqrt{K}}$					
	0,25	\					
	0,25	. ومنه التفاعل تام $ au_{eq}=rac{\sqrt{2,75 imes10^4}}{1+\sqrt{2,75 imes10^4}}=0,99=1$: $ au_{ m eq}$ د حساب					
	4000 ACT (ICC)						

امة	العلا	
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	0,25	التمرين الرابع: (03.5 نقطة) التمرين الرابع: (03.5 نقطة) التمرين الرابع المسار مستقيم و السرعة متزايدة فالحركة مستقيمة متغيرة بانتظام.
	0,25	$ ext{v=at+v}_0: ext{o}$ ، ونظريا لدينا ، $ ext{v=}eta t+ ext{b}$
	0,25	$a = \beta = \frac{\Delta v}{\Delta t} = 2m / s^2$
	0,25	$AB = \frac{(20+10)}{2} \times 5 = 75m$: ب- حساب المسافة AB : تمثل مساحة شبه المنحرف \times
	الرسم 0,25	: F حساب شدة الله على الله الله الله الله الله الله الله ال
		ندرس الجملة في معلم غاليلي مرتبط بسطح الأرض:
		بتطبيق القانون الثاني لنيوتن ، وبالإسقاط على محور الحركة : $\vec{F} + \vec{f} + \vec{P} + \vec{R}_n = m\vec{a}$
	0,25	$F - f - mg \sin \alpha = ma \Rightarrow F = m(a + g \sin \alpha) + f$
	0,25	$F = 170(2 + 10 \times 0.174) + 500 = 1135.8N$ $m\vec{g} = m\vec{a} \Leftrightarrow \vec{a} = \vec{g}$: أ- معادلة المسار : بتطبيق القانون الثاني لنيوتن :
3,5	0,25	$a_x = 0m/s^2$ الحركة مستقيمة منتظمة $a_x = 0$
,,,	0,25	$a_x = 0m/s^2$ الحركة مستقيمة منتظمة $x = v_c \cos \alpha t$ الحركة مستقيمة الحركة $-*$
	0,25	$a_y=-g$ $ y=-rac{1}{2}gt^2+v_c\sin\alpha t(2) $ $:$ cy و الحركة م م بانتظام $=-*$
	0,25	: من (1) نجد $t = \frac{X}{v_c \cos \alpha}$ نجد) من (1) نجد
	0,25	$y = -\frac{g}{2v_c^2 \cos^2 \alpha} x^2 + \tan \alpha x$
	0,25	$y = -8.24 \times 10^{-3} x^2 + 0.176 x$ $p = -8.24 \times 10^{-3} x^2 + 0.176 x$ $p = -20$
	0,23	$h = CM = BC \sin \alpha = 56,323 \times 0,174 = 9,8 m$ - 9,8 = -8,24 × 10 ⁻³ x_P^2 + 0,176 x_P
		$-8,24 \times 10^{-3} x_P^2 + 0,176 x_P + 9,8 = 0$
	0,25	$\Delta = 0,254 \Rightarrow \sqrt{\Delta} = 0,6 \Rightarrow x_{1P} = 47,1 m$ $x_{2P} = -25,73 m \prec 0$
		. ومنه $x_{p}=47.1m\succ d$ ومنه $x_{p}=47.1m\succ d$

العلامة		, , <u> </u>
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	0,25	التمرين الخامس: (3,5 نقطة) S -/1 تمثيل القوى:
	0,25	2/- المرجع المناسب لدراسة حركة القمر الاصطناعي : هو المرجع المركزي الأرضى
	0,25	تعرُيفه : هُومرجع مركز ه مركز الأرض وله ثلاث محاور تُوازي محاور المُرَجع المركزي الشمسي .
	2x0,25	. عبارة السرعة : بتطبيق القانون الثاني لنيوتن و الإسقاط على المحور الناظمي . $\vec{F} = m\vec{a} \Leftrightarrow F = m_s a_n \Leftrightarrow G \frac{M_T imes m_s}{(R_T + h)^2} = m_s imes \frac{v^2}{(R_T + h)}$
	0,25	$v = \sqrt{\frac{GM_T}{R_T + h}}$
3,5	0,25	$v = \sqrt{\frac{6,67 \times 10^{-11} \times 6,0 \times 10^{24}}{(6380 + 35800) \times 10^3}} = 3080,24 m / s$
0,0	0,25	ت عبارة الدور: $T = \frac{2\pi (R_T + h)}{v} = 2\pi \sqrt{\frac{(R_T + h)^3}{GM_T}}$
	0,25	$T = 6,28\sqrt{\frac{(6380 + 35800)^3 \times 10^9}{6,67 \times 10^{-11} \times 6 \times 10^{24}}} = 85996,54s \approx 24h$ قيمة الدور:
	2x0,25	ب- نعم يمكن اعتبار هذا القمر جيومستقر لأن جهة دورانه بجهة دوران الأرض ودوره يساوى دور الأرض حول نفسها .
	0,25	5/- قَانُونَ كَبَلَرُ الثَّالَثُ : النسبة بين مربع دور القمر ومكعب البعد بين مركزي القمر والأرض
	2x0,25	. يساوي مقدار ثابت $T^2=rac{4\pi^2(R_T^{}+h)^3}{GM_T^{}}$ $\Rightarrow rac{T^2}{(R_T^{}+h)^3}=rac{4\pi^2}{GM_T^{}}=k pprox 10^{-13}$: الإثبات $T^2=rac{4\pi^2(R_T^{}+h)^3}{GM_T^{}}$

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

ي يوري ي		,
	مجزأة	عناصر الإجابة على الموضوع الأول
	0,25	التمرين التجريبي: (03.5 نقطة) -1 أ- النواة المشعة : هي نواة غير مستقرة تتفكك تلقائيا لتصدر جسيمات ($\beta \cdot \alpha$) مصحوبة في الغالب باشعاع γ .
	0,25	- النظائر : هي أُنوية لنفس العنصر الكيميائي تتفق في العدد الذري Z وتختلف في العدد الكري A وتختلف في العدد الكتلي A (لاختلافها في عدد النيترونات) .
	0,25	$^{23}_{11}~Na + ^1_0~n ightarrow ^{24}_{11}~Na : كتابة المعادلة : Na ightarrow ^{24}_{11}~Na ightarrow ^{0}_{11}~e + ^{A}_{Z}X : 24 عدادلة تفكك نواة الصوديوم -/2$
	0,25 2x0,25	بتطبیق قانونا صودي نجد $A=24$ ، $A=24$ و النواة البنت هي: $Z=12$ ، $A=24$ و النواة البنت هي: $Z=12$ ، $Z=12$
0.5	0,25	$n_0 = 10^{-5} \mathrm{mol}$: من البيان نجد : $t=0$ عند $t=0$ عند $n_0 = 10^{-5}$
3, 5	0,25 0,25	$-$ ب زمن نصف العمر : هو الزمن اللازم لتفكك نصف عدد الأنوية الأبتدائية . $t_{1/2} = 15h$. $-$ قيمته : بيانيا نجد : $t_{1/2} = 15h$.
	2×0,25	$N(t) = N_0 e^{-\lambda t} = n(t) \times N_A = n_0 N_A e^{-\lambda t} \Rightarrow n(t) = n_0 e^{-\lambda t}$ اثبات العلاقة: $-1 - 3$
	0,25	$n_{1}(6h) = 10^{-5}e^{\frac{-0.0920}{15}} = 7.6 \times 10^{-6}mo$ ب $: n_{1}(6h) = 10^{-5}e^{\frac{-0.0920}{15}}$
	2×0,25	$n_2 ightarrow V_2 = 10 mL$ ومنه $-/5$
		$V = \frac{n_1 \times V_2}{n_2} = 5L$

العلامة		*****					
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني					
		رين الأول (3.5 نقطة):	التمر				
		$_{1}^{3}H+_{1}^{2}H\longrightarrow _{Z}^{A}X+_{0}^{1}n$					
	0.25	${ m A} = (2+3)-1=4$ سب قانونا صودي: ${ m A} = (2+3)$	m>				
		4_2He النواة البنت $Z=(1+1)-0=2$					
	0.25	${}_{1}^{3}H + {}_{1}^{2}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$					
	0.25	- يتعلق زمن نصف العمر بنوع النظير المشع.	ب-				
	0.25	-أ- طاقة ربط النواة هي الطاقة الواجب إعطاؤها لنواة ساكنة لتفكيكها إلى نوياتها الساكنة.	-2				
	0.25	$E_{I}({}_{Z}^{A}X) = [Z m_{p} + (A-Z) m_{n} - m({}_{Z}^{A}X)] C^{2}$. ارتها:	عب				
		$\mathrm{E_{1}}\left(_{1}^{2}H\right)=(1,00728+1,00866-2,0155) imes931,5=2,226\mathrm{MeV}$ نتها:	قيم				
3.5	0.25×3	$E_1(_1^3H) = (1,00728 + 2 \times 1,00866 - 3,0155) \times 931,5 = 8,477 \text{ MeV}$					
0.0		$E_1\left({}_{2}^{4}He\right) = (2\times1,00728 + 2\times1,00866 - 4,0015)\times931,5 = 28,29 \text{ MeV}$	200				
		مة طاقة الربط لكل نوية:	525				
	0.25×2	$\frac{E_1\binom{4}{2}He}{4} = \frac{28,29}{4} = 7,072MeV / nuc \qquad \frac{E_1\binom{2}{1}H}{2} = \frac{2,226}{2} = 1,113MeV / nuc$	1C				
	0.25	$\frac{E_I({}_{1}^{3}H)}{3} = \frac{8,477}{3} = 2,826 MeV / nuc$					
	0.25	$\cdot {}_2^4 He$ ة الأكثر استقرار هي	النواد				
		$\Delta E = \Delta E_1 - \Delta E_2 = \left(\operatorname{E_l} \left({}_1^3 H \right) + \operatorname{E_l} \left({}_1^2 H \right) \right) - \operatorname{E_l} \left({}_2^4 H e \right)$ أ- قيمة الطاقة المحررة:	-3				
	0.25	$E_{1ib} = \Delta E = (2, 226 + 8, 4777) - 28, 29 = -17, 59 MeV$					
		ارة السالبة تعني أن الجملة تقدم طاقة للوسط الخارجي.	الإشا				
		$N(_1^2H) + N(_1^3H) = (\frac{1}{2} + \frac{1.5}{3}) \times 6.02 \times 10^{23} = 6.02 \times 10^{23} (noy)$	ب-				
	0.25	$E_{\text{lib}} = N\Delta E = 6.02 \times 10^{23} \times 17.59 = 105.89 \times 10^{23} \ MeV$					

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

العلامة						
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني				
	ar and a second	التمرين الثاني (3.5 نقطة):				
	2×0.25	$rac{di}{dt} = rac{1}{R} rac{du_R}{dt}$ و $i = rac{u_R}{R}$ لكن $u_R + ri + L rac{di}{dt} = E$ و -1				
	0.25	$\frac{du_R}{dt} + (\frac{r+R}{L})u_R = \frac{RE}{L}$ و منه:				
	0.25	حلها: لدینا $u_R(t) = \frac{B}{A}(1 - e^{-At})$ ومنه $u_R(t) = \frac{B}{A}(1 - e^{-At})$ بالتعویض نجد -2				
	2×0.25	$Be^{-At}\left(1 - \frac{r+R}{AL}\right) + \frac{B}{A}\left(\frac{r+R}{L}\right) - \frac{RE}{L} = 0 \Rightarrow A = \frac{r+R}{L} , B = \frac{ER}{L}$				
	الرسم 0.25	Y_2 $-\mathfrak{f}-3$				
		Y_1				
	0.25	$u_R=0$. فإن $u_R=0$ الأن لما $u_R=0$ فإن $u_R=0$				
3.5	0.25	$u_{ m b}={ m E}:$ المنحني (2) يمثل $u_{ m b}$ لأن لما $t=0$ فإن				
	0.25	$.{ m E}=10\;{ m V}:$ (2) من البيان $:{ m E}$ قيمة $:{ m E}$ من البيان				
	0.25	$u_{_{b}}(t ightarrow\infty)=rac{rE}{R+r}$ = $1V$ \Rightarrow $r=rac{R}{E-1}$ = 10Ω : (2) من البيان				
		$\mathbf{u}_{\mathrm{b}} = \mathbf{u}_{\mathrm{R}}$: عند النقطة $\tau = \frac{t_{C}}{\ln(\frac{2R}{R-r})}$ عند النقطة $-\dot{1}-4$				
	0.25	$ au = \frac{t_C}{\ln(\frac{2R}{R-r})}$: ومنه $\frac{E}{R+r} (r + \operatorname{Re}^{-\frac{t}{\tau}}) = \frac{ER}{R+r} (1 - e^{-\frac{t}{\tau}})$				
	0.25	$ au=10~\mathrm{ms}$				
	0.25	$ au = \frac{L}{R+r} \Rightarrow L = au(R+r) = 1.0H$: ب- ذاتية الو شيعة				

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

العلامة		Till Controll to July walks		
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني		
		التمرين الثالث:(03.5 نقطة)		
	0,25	1- أ- طبيعة الحركة: بما أن المسار مستقيم والسرعة متزايد فالحركة م. م بانتظام.		
	0.25	$h = \frac{8 \times 80}{2} = 320 m$. ب $-$ الارتفاع: من البيان:		
	0.25	g=a . و منه بالإسقاط على المحول $g=m$ و منه بالإسقاط على المحول $g=m$ و منه بالإسقاط على المحول $g=m$		
	2×0.25 0.25	$egin{aligned} egin{aligned} & igstar_{f z} & eta & egin{aligned} & eta & et$		
	الرسم 0.25	ightharpoonup -1 تمثیل القوی : $ ightharpoonup -1$ تمثیل القوی :		
		ب- المعادلة التفاضلية:		
3,5	2×0.25	z $mg - kv^2 = m \frac{dv}{dt}$: نجد Oz نجد $P + f = m$ a		
0,0	0.25	$\frac{dv}{dt} = g(1 - \frac{v^2}{\beta^2})$ وهي من الشكل: $\frac{dv}{dt} = g(1 - \frac{k}{mg}v^2)$		
		$\beta = \sqrt{m \frac{g}{k}}$: $\frac{1}{2}$		
	0,25	$v_{_{ m lim}}=\sqrt{mrac{g}{k}}=eta$ المقدار eta يمثل $v_{ m lim}$ لأن $v_{ m lim}$		
	0,25	$ m v_{lim}=40~m/s$. قيمة السرعة الحدية: $ m -4$		
	0,25	$[k] = \frac{[M][L][T]^{-2}[T]^2}{[L]^2} = [M][L]^{-1}$ ومن $k = \frac{mg}{v_{\text{lim}}^2}$:k ب. وحدة		
		ومنه وحدة k هي: kg/m .		
	0,25	$k = \frac{80 \times 9.8}{40^2} \approx 0.5 kg / m$:k فيمة		

امة	العلا	عناصر الإجابة على الموضوع الثاني							
مجموع	مجزأة		ي	ل الموصوع الناد	صر الإجابه علم				
		التمرين الرابع: (3نقاط)							
	0,25	$CH_{3}COOH_{(aq)} + H_{2}0_{(I)} = CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$: أ- معادلة الانحلال:							
	0,25		$ au_{eq} = rac{\left[H_3 O^+ ight]_{eq}}{C}$ ب						
	0,25			$C_a = \frac{\left[H_3 O^+\right]_e}{\tau_{eq}}$	$\frac{q}{0.0158} = \frac{10^{-3.8}}{0.0158} = 1$	$0^{-2} mol/L$:C	استتاج _a		
		ادلة	المع	СИ СООН	± <i>HO</i> ⁻∠ >	م التفاعل : = CH ₃ COO	2. أ- جدول تقد H +		
		حالة الحملة	التقدم	C113COO11	22 10324	- <i>حدا</i> عدد الما كميات الما	(aq) + 11 ₂ O _(l)		
	0.75	حالة إبتدائية	$\mathbf{x}=0$	n ₀₁	n_{02}	0			
		حالة إنتقالية	X	n ₀₁ -x	n ₀₂ -x	X	بوفرة		
	0,25	حالة نهائية	X E	$\frac{n_{01}-x_E}{E(V_E=18mL)}$	n ₀₂ -x _E	XE	*1 *1 > 1		
	0,25				$C_a = \frac{C_b \times V}{V}$	$\frac{V_{bE}}{M} = 10^{-2} mol M$	آ :C _a بات		
	0,25		<u>[</u> ($\frac{CH_3COO^{-}]}{CH_3COOH]} = 1$			3- أ- التعبير د		
	0,25			r	قدم X:	النسبة بدلالة الت	اب- التعبير عن		
3,0			$\frac{\left[CH_{3}COO^{-}\right]}{\left[CH_{3}COOH\right]} = \frac{x}{n_{a1} - x} = 1$						
	0,25	$x = \frac{n_{01}}{2} = \frac{c_a \times v_a}{2} = \frac{10^{-2} \times 18 \times 10^{-3}}{2} = 9 \times 10^{-5} mol$							
	0,25	عل	ومنه تفا $ au=0$	$\frac{X}{X_{\text{max}}} = \frac{X}{n_{02}} = \frac{9}{9}$	$\frac{\times 10^{-5}}{\times 10^{-5}} = 1$: Q	ة التقدم النهائ	د- حساب نسب المعايرة تام .		
							المعايرة نام .		

العلامة		MAZAN SE AN ASSAULT SENSON
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
	0,25	التمرين الخامس: (3,5 نقطة)
	0,23	$\stackrel{ ightarrow}{a}$ تمثیل شعا انتسارع $-{f 1}$
		بما أن حركة القمر (S) حول الأرض حركة دائرية منتظمة فإن تسارعه تسارع ناظمي
		- 5
	0.005	التسارع \overrightarrow{a} لحركة القمر الإصطناعي (S) عبارة شعاع التسارع \overrightarrow{a} لحركة \overrightarrow{a} عبارة شعاع التسارع \overrightarrow{a} بد
	2×0,25	$\overrightarrow{a} = \overrightarrow{a}_n = \frac{v^2}{r} \cdot \overrightarrow{n}$
	الرسم 0,25	-3 عبارة سرعته
	5,25	
	2004 (SSA ASSASS	غاليليا
	2×0,25	$\sum \overrightarrow{F}_{out} = \overrightarrow{F} = m.\overrightarrow{a}$
	0,25	من قانون الجذب العام لدينا: $\overrightarrow{F}=G.rac{M_T.m_S}{r^2}.\overset{ ightarrow}{n}$ من قانون الجذب العام لدينا
	0,25	*
		$ec{F}=G.rac{M_T.m_{_{\mathcal{S}}}}{r^2}.\stackrel{ ightarrow}{n}=m_{_{\mathcal{S}}}rac{v^2}{r}.\stackrel{ ightarrow}{n}$ من العلاقتين نجد:
3,5		$\Leftarrow v = \sqrt{\frac{G.M_T}{r}}$ $v^2 = G.\frac{M_T}{r}$ و منه:
	0,25	العلاقة بين T ، و r : خلال دورة واحدة حول الأرض القمر S يقطع مسافة تساوي -4
		بي ي v بالسرعة الثابتة v بالسرعة الثابتة $2\pi.r$
		ومنه: $2\pi . r = v.T$
	0,25	$\frac{T^2}{r^3} = 9,85 \times 10^{-14} s^2 \cdot m^{-3}$: إثبات أن
	0,25	E20
	2×0,25	$T = rac{24}{14.55} = 1,65h = 5938,14s$ نحسب دور هذا القمر الإصطناعي:
		$r = R_T + h = 7100Km = 71 \times 10^5 m$
		$\frac{T^2}{r^3} = \frac{(5938,14)^2}{(71\times10^5)^3} = 9,85\times10^{-14}s^2.m^3$ و منه:
		M_T إستنتاج كتلة الأرض M_T :
	0,25	$\frac{4.\pi^2}{T} = 9.85 \times 10^{-14}$ و منه: $v = \frac{2\pi T}{T}$ $\Leftarrow \frac{T^2}{T} = \frac{4.\pi^2}{T}$
	0,20	$rac{4.\pi^2}{G.M_T} = 9.85 imes 10^{-14}$:و منه: $v = rac{2\pi.r}{T} \ v = \sqrt{rac{G.M_T}{r}} \Leftarrow rac{T^2}{r^3} = rac{4.\pi^2}{G.M_T}$
		$M_{\scriptscriptstyle T}=6 imes10^{24} Kg$: نجد كتلة الأرض

العلامة		عناصر الإجابة على الموضوع الثاني							
مجموع	مجزأة		ع الناني	جابه على الموصو	عناصر الإ				
		التمرين التجريبي (3.0 نقاط)							
		ĺ.		A.	اعل :	1/- جدول تقدم التق			
		1440/-00	المع	2C1O-(aq)	$=$ $2C1_{(aq)}$	+ O _{2(g}			
	0,25	حالة الجملة	التقدم		لميات المادة بالمول				
	0,20	حالة ابتدائية حالة انتقالية	x=0 x	n_0 n_0 -2x	0 2x	0 x			
		حالة نهائية	X X _{max}	576	62 2020-00-00				
		* 0	max	n_0 -2 x_{max} 2 x_{max} x_{max} : CIO^- ایجاد t -8 sem ایجاد					
	0,25		[0-]	2,00	= = = -03cm				
	60			=8sem =1,85mo					
	0,25		$\begin{bmatrix} CIO^- \end{bmatrix}_{t=8se}$	=1,25mol/l	$:\theta_2=40^{\circ}\text{C: (}$	من المنحنى (2)			
	0,25			ي سرعة التفاعل ف					
		:	جدول التقدم لدينا		L at				
	0,25			$n_{CIO^-} = n_0 - 2x \Longrightarrow 1$		at Bat			
	0,25		$\frac{a}{a}$	$\frac{dX}{dt} = -\frac{V}{2} \frac{d \left[CIO^{-1}\right]}{dt}$	$\frac{1}{2} \Rightarrow v_{vol} = -\frac{1}{2} \frac{d \cdot \sqrt{d}}{d \cdot \sqrt{d}}$	$\frac{CIO^{-}}{dt}$			
	0,23		ί	n Z ui	ے یمتھا عند Osem =	ai .			
	0,25	$v_{1(30^{\circ}C)} = -\frac{1}{2} \times \frac{(0-2,75)}{(20-0)} = 6.875 \times 10^{-2} mol. I^{-1}.sem^{-1} $: (1)							
3,0	0,25	$v_{2(40^{\circ}C)} = -\frac{1}{2} \times \frac{(0-2,75)}{(12-0)} = 1,146 \times 10^{-1} mol J^{-1} sem^{-1} $: (2)							
	0,25	د- نعم هذه النتائج تبرر ماكتب على اللاصقة (يحفظ في مكان بارد) - درجة الحرارة عامل حركي تزيد من سرعة التفاعل .							
	**		$\begin{bmatrix} C1O & - \end{bmatrix}_{(30)}$		X200 VIII 200 200				
		s.	V $(vol, 30 \circ C, t = 0)$	$_{sem}$ \prec $_{(vol)}$	$40 \circ C$, $t = 0 sem$)				
	0,25	صف تقدمه	لبلوغ تقدم التفاعل ن	هو الزمن اللازم	من نصف التفاعل:	3/- تعریف زه النهائي .			
		$\left[CIO^{-}\right]_{t_{1/2}} = \frac{I}{V}$	$\frac{a_0}{V} - \frac{2\frac{X_f}{2}}{V} = \left[CIO^{-1}\right]$	$\int_{0}^{\infty} -\frac{X_{f}}{V} = \left[ClO^{-1}\right]$	$\Big]_0 - \frac{n_0}{2v} \qquad : (2)$	– من المنحنى			
	0,25	$\left[CIO^{-}\right]_{t_{1/2}} = \left[$	CIO^{-}] ₀ $-\frac{[CIO^{-}]}{2}$	$\frac{0}{2} = \frac{\left[ClO^{-}\right]_{0}}{2} = 1,3$	375 <i>mol 1</i>				
	0,25			کلو ر	: t _{1/2} =7,2sem ق هو غاز ثنائ <i>ی</i> ال	vo vo 25			