

Conception Aérodynamique d'un Aileron de F1

4 février 2025

Alexian Hélaine, Yacine Ghanassi, Martin Potier, Raphaël Brugère

Introduction

Pourquoi un aileron en Formule 1?

- Générer de l'appui (portance négative)
- Améliorer la stabilité en virage
- Optimiser le compromis entre vitesse en virage et vitesse de pointe

Forces en jeu sur une F1 en virage

Pourquoi l'appui aérodynamique est crucial en virage?

- L'appui aérodynamique (\vec{A}) augmente la force appliquée sur les pneus, améliorant l'adhérence.
- Sans appui suffisant, la force centrifuge $(\vec{F_i})$ domine \rightarrow la voiture décroche.
- Avec un bon appui, la force de frottement $(\vec{F_f})$ compense la force centrifuge et permet de garder le contrôle.
- Objectif: Trouver un équilibre entre vitesse en ligne droite et appui en virage.

Cahier des Charges

Profil monocorps

Mach: 0.3

• Reynolds : 3.4×10^6

• Corde : 50 cm

• Épaisseur minimale : 18%

• Objectif : Maximiser la portance

sans contrainte de traînée

Méthodologie et Outils

Outil utilisé:

• XFOIL : Simulation 2D en écoulement visqueux

Hypothèses:

- Écoulement incompressible
- Transition naturelle de la couche limite

Démarche de Conception

Approche incrémentale :

- Départ d'un profil connu (ex : NACA 0018)
- Modifications progressives du bombage et de l'épaisseur de l'extrados (bas de l'aileron arrière)
- Évaluation des performances à chaque itération

Analyse des Profils Bombés

Comparaison de trois profils :

- Variation du bombage
- Maximisation de la succion sur l'extrados
- Observation de l'impact sur la stabilité et la portance

Bombe 3

Détermination du Point de Fonctionnement

- Tracer la polaire $C_L = f(C_D)$
- Identifier le meilleur compromis portance/traînée
- Déduire $\alpha_{fonctionnement}$ et comparer avec $\alpha_{decrochage}$
 - Lorsque $\alpha_{fonctionnement}$ est trop proche ou dépasse $\alpha_{decrochage}$, il y a un risque de décrochage entraînant une perte de portance.

Coefficient de Portance (C_L) en fonction de l'angle d'attaque

- C_L mesure l'appui généré par le profil en fonction de l'angle d'attaque α .
- Un profil avec un C_L plus élevé (en valeur absolue) à bas α est plus performant en virage.
- Le NACA 0018 surpasse nos profils 1, 2 et 3. Nous changeons de démarche.

Analyse d'autres profils

Comparaison de trois profils type NACA non symétrique :

Profil thickness 18.2

Profil thickness 21.8

Profil thickness 25.1

Coefficient de Portance (C_L) en fonction de l'angle d'attaque

- C_L mesure l'appui généré par le profil en fonction de l'angle d'attaque α .
- Un profil avec un C_L plus élevé (en valeur absolue) à bas α est plus performant en virage.

Polaire C_L en fonction de C_D

Position de Transition Laminaire-Turbulent (X_{tr})

- X_{tr}/c détermine où l'écoulement devient turbulent.
- Une transition tardive réduit la traînée, mais peut causer une instabilité.

Choix du Meilleur Profil

- Plage angulaire de fonctionnement meilleure que le NACA : -12 à -15 degrès
- Plage angulaire d'appui aérodynamique : -15 à 2 degrès
- Coefficient de portance optimal : $C_L = -1.8$
- Coefficient de trainée associé : $C_D = 3.75 \times 10^{-2}$

Analyse du Moment de Tangage C_m et Comparaison des Profils

Rôle de C_m :

- Indique la tendance d'un aileron à cabrer $(C_m > 0)$ ou piquer $(C_m < 0)$.
- Influence la stabilité longitudinale et l'équilibre aérodynamique en virage.

Comparaison des Profils :

- **Profil cambré**: plus d'appui mais tendance à piquer (C_m négatif).
- Profil symétrique : plus stable mais moins d'appui.

Coefficient de Moment (C_M) en fonction de l'angle d'attaque

- C_M indique la stabilité du profil.
- Un C_M trop négatif peut induire une tendance au cabrage/picotement, influençant la maniabilité.

Conclusions et Perspectives

Conclusions:

- Optimisation du profil pour maximiser C_L et retarder le décrochage
- Validation par étude du coefficient du moment de tangage
- Meilleures performances qu'un profil NACA classique

Perspectives:

- Tester des becs de bord d'attaque, mettre des volets
- Étendre l'analyse à des écoulements compressibles
- Simulation CFD 3D pour optimisation avancée

Merci de votre attention!