

Vorlesung Implementierung von Datenbanksystemen

15. Epilog – Zusammenfassung und Ausblick

Prof. Dr. Klaus Meyer-Wegener Wintersemester 2019/20

Datenbanksystem

- Zentrale IT-System-Komponente in fast jedem Unternehmen
- Systemtechnische Grundlage des eCommerce / eBusiness / e???

Architektur von Datenbanksystemen

- Strukturierung (Schichtenmodell, Komponentensichtweise)
- Schwerpunkt auf generischer Softwareentwicklung (Anwendungsneutralität)
- Definition / Erfüllung von Schnittstellen
- Wechselwirkungen beteiligter Komponenten
- Speicher-, Zugriffs- und Verarbeitungsschicht

Transaktionsverarbeitung

- Synchronisation gleichzeitiger Zugriffe auf gemeinsame Daten
- Protokollierung und Wiederherstellung

Ausführen Methode Adressierungseinheiten: Anwendungsobjekte Def. konz. u. ext. Schema Hilfsstrukturen: Objektverarbeitung Anwendungsstrukturen Adressierungseinheiten: Relationen, Sichten, Tupel mengenorientierte DB-Schnittstelle Sprachen wie SQL, Transaktionen Adressierungseinheiten: Relationen, Sichten, Tupel Übersetzung, Hilfsstrukturen: Schemabeschreibung, Logische Datenstrukturen Pfadoptimierung Integritätsregeln Adressierungseinheiten: Sätze, Indexe r := READ <Satzadr>; interne Satzschnittstelle <Satzadr> := INSERT r; Adressierungseinheiten: Sätze, Indexe Satzverwaltung, Hilfsstrukturen: Positionsindex, Freisp., **Speicherungsstrukturen** Hash-Buckets usw. Zugriffspfadverwaltung Adressierungseinheiten: Seiten, Segmente

Module im Bachelor oder Master wählbar

- jeweils 5 ECTS

SS

WS

Vorlesungen und Module

EIS und eBT:

- Einsatz von Datenbanksystemen in Unternehmen
- Datenbank-zentrierte Web-Anwendungen
- Transparenter Zugriff auf Datenbanken
- Umgang mit sich änderndem Bedarf

Vorlesungen und Module (2)

Transaktionssysteme:

- Fehlerbehandlung in Datenbanksystemen
- ACID-Transaktionen
- Erweiterte Transaktionsmodelle
- Synchronisation und Wiederherstellung im Detail

Vorlesungen und Module (3)

Datenbanken in Rechnernetzen:

- Verteilte Datenbanken
- Verteilte Anfrageverarbeitung
- Datenreplikation
- Heterogene Datenbanken → Föderative Datenbanken
- Parallele Anfrageverarbeitung: Umgang mit "Big Data"

Übergang Bachelor – Master

Ergänzende Angebote

Bachelor-Seminar

Z.B. im Wintersemester 2019/20: Big Data

Praktikum

 Z.B. im Sommersemester 2020: SWAT ("SWAT is a Web Application Tutorial" ☺; siehe nächste Folie

Bachelorarbeit

Angebote stets auch im UnivIS

Master-Seminar

Z.B. im Sommersemester 2020: Big Data und Topologische Datenanalyse

Projekt

Z.B. im Sommersemester 2020: individuell und projektbezogen (UnivIS)

Masterarbeit

Angebote stets auch im UnivIS

Task:

- Entwurf und Implementierung einer typischen Web-Applikation
- Kreatives Arbeiten im Team
- Agile Softwareentwicklung
- Verwendung von aktuellen Technologien
- Moderne Programmiertechniken

Tools & Techniques:

- Apache Jena; Spring; Vaadin
- Java; SPARQL; RDF; SCRUM

vaadin

Anmeldung auf StudOn

15.3 Forschungsthemen am Lehrstuhl INF6

Datenbanksysteme

Effiziente Speicherung und Verarbeitung von Daten

Evolutionäre Informationssysteme

Umgang mit Veränderung Architektur evolutionärer Informationssysteme Prozessunterstützung

Datenqualität

Methoden und Werkzeuge zur Verbesserung der Datenqualität in Unternehmen

Datenstromsysteme und Ereignisverarbeitung

Umgang mit zeitbehafteten Datensätzen

Forschung am Lehrstuhl INF6 (2)

Datenbanksysteme

Effiziente Verarbeitung von Daten

BIG-DATA-ASPEKTE

Neue Strategien für neue Anforderungen

Evolutionäre Informationssysteme

Umgang mit Veränderung Architektur evolutionärer Informationssysteme Prozessunterstützung Immer schnellere Reaktion auf neue Erkenntnisse

Datenqualität

Methoden und Werkzeuge zur Verbesserung der Datenqualität in Unternehmen Traditionelle Methoden der Qualitätssicherung versagen bei externen Datenquellen.

Datenstromsysteme und Ereignisverarbeitung Umgang mit zeitbehafteten Datensätzen

Aktuelle zeitbehaftete Daten müssen mit Unternehmensdaten verknüpft werden.

Datenbanksysteme

ReProVide:

Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis (DFG-Projekt)

- → Lekshmi B.G., M.Sc., M.Phil.
 - Ausnutzung neuer Hardware für die Anfrageoptimierung in Datenbanksystemen
 - Kooperation mit Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design, Prof. Teich)

Von Altera Corporation - Altera Corporation, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=6642224

Evolutionäre Informationssysteme

Unternehmen unterliegen einem ständigen Wandel IT ist Teil der Unternehmen und sollte den Wandel nicht behindern

IT-Unterstützung für die "Lernende Organisation"

Evolutionäre Informationssysteme (2)

- Anfrage-getriebenes offenes Datenmanagement für dynamisch wachsende Unternehmensdatenbestände
 - Anfrage-getriebene bedarfsorientierte Schemaentwicklung
 - **→** Peter Schwab
 - PHAROS: Learning schemata from SQL Queries and describing them in a knowledge graph
 - **→** David Haller

Warum Datenqualität ?

Datenqualitätsprobleme verursachen in USA jährlich Kosten in Höhe von \$ 600 000 000.

Quelle: Wayne Eckerson:

Data Quality and the Bottom Line: Achieving Business Success

through a Commitment to High Quality Data.

The Data Warehouse Institute. Repost Series. 2002

Das "Jahr-2000"-Problem war ein Datenqualitätsproblem, das geschätzte Kosten von \$ 1 500 000 000 000 verursacht hat.

Quelle: L.P. English:

Improving Data Warehouse and Business Information Quality.

Wiley & Sons. 1999

Projekte

- SIML Schema Inference and Machine Learning
 Knowledge Discovery; Functional Dependency; topologische
 Datenanalyse; Clustering; unsupervised Learning; Neural-Network
 Theory
 - → Luciano Melodia

Datenstromsysteme

Datenbanksysteme:

Es kommt genau so viel,
 wie ich möchte –
 aber nicht von allein.

- Ich will das verarbeiten, was sowieso kommt.

Data-Stream Management System (DSMS)

- Keine Speicherung von Daten, Auswertung "on the fly", geringe Latenz
- Sensornetzwerke als Datenquelle
- Identifikation von Ereignissen (Complex-Event Processing, CEP)
- Data-Stream Application Manager (DSAM)

Projekte:

- EFRE-E|ASY-Opt Teilprojekt
 Digitalisierung: Industrie 4.0 und Predictive Maintenance
 - → Vorausschauende Wartung der anfallenden Sensordaten bei Fertigungsanlagen mittels Data Mining bzw. Machine Learning
 - **→** Melanie Sigl

Informatik in den Geistes- und Sozialwissenschaften

- Analyse von Texten und Bildern, umfassende Annotationen
- Wissensbanken
- Multimedia

Projekt:

WissKI:

Wissenschaftliche Kommunikationsinfrastruktur; in der AG Digital Humanities (Prof. Dr. Günther Görz); Content Management (Drupal), RDF, OWL, Multimedia

→ Corina Lehmann, Peggy Große (AG Digital Humanities, GNM)

- Vorauss. am Freitag, dem 14. Februar 2020
 - Uhrzeit und Räume stehen noch nicht fest.
- Dauer: 90 Minuten
- Viel Multiple Choice
- Keine Hilfsmittel!
- Fragestunde heute, hier
- Fragen in der Vorbereitung werden auch im StudOn-Forum beantwortet.

Viel Erfolg und alles Gute!!!

