本周教学内容

动态规划算法的 重要应用

图像压缩

最大子段和

最优二 叉检索 树算法

最优二 叉检索 树概念 RNA

二级 结构 预测 序列比对

图像压缩

黑白图像存储

像素点灰度值:0~255,为8位二进制数

图像的<mark>灰度值序列</mark>:{ p_1, p_2, \ldots, p_n }, p_i 为第i个像素点灰度值

图像存储:每个像素的灰度值占8位, 总计空间为 8n

图像变位压缩的概念

变位压缩存储: 将 $\{p_1, p_2, ..., p_n\}$ 分成 m 段 $S_1, S_2, ..., S_m$

同一段的像素占用位数相同第t段有l[t]个像素,每个占用b[t]位段头:记录l[t](8位)和b[t](3位)需要11位总位数为 $b[1]\cdot l[1]+b[2]\cdot l[2]+...+b[m]\cdot l[m]+11m$

图像压缩问题

约束条件: 第 t 段像素个数 $l[t] \le 256$ 第 t 段占用空间: $b[t] \times l[t] + 11$

$$b[t] = \left\lceil \log(\max_{p_k \in S_t} p_k + 1) \right\rceil \leq 8$$

问题: 给定像素序列{ $p_1, p_2, ..., p_n$ },确定最优分段,即

$$\min_{T} \{ \sum_{t=1}^{m} (b[t] \times l[t] + 11) \},$$

$$T = \{ S_{1}, S_{2}, ..., S_{m} \}$$
 为分段

实例

```
灰度值序列
```

分法1:
$$S_1 = \{10, 12, 15\}$$
, $S_2 = \{255\}$, $S_3 = \{1, 2, 1, 1, 2, 2, 1, 1\}$

分法2:
$$S_1$$
={10,12,15,255,1,2,1,1,2,2,1,1}

分法3: 分成12组,每组一个数

存储空间

子问题界定与计算顺序

子问题前边界为1,后边界为i对应像素序列为 $< p_1, p_2, ..., p_i>$ 优化函数值S[i]为最优分段存贮位数计算顺序

$$i = 1$$
 $i = 2$
...

$$i = n$$

算法设计

递推方程: 设S[i]是 $\{p_1, p_2, \dots, p_i\}$ 的最优分段需要的存储位数, S_m 是最后分段

$$S[i] = \min_{1 \le j \le \min\{i, 256\}} \{ S[i-j] + j \times b[i-j+1,i] \} + 11$$

$$b[i-j+1,i] = \begin{bmatrix} \log(\max_{p_k \in S_m} p_k + 1) \end{bmatrix} \le 8$$

$$p_1 \quad p_2 \quad \dots \quad p_{i-j} \quad p_{i-j+1} \quad \dots \quad p_i$$

$$S[i-j] \land \dot{\Box} \qquad \qquad j \wedge \dot{E}$$

$$j \times b[i-j+1,i] \dot{\Box}$$

Compress (P,n)

伪码

子问题后

边界i

- 1. $Lmax \leftarrow 256$; $header \leftarrow 11$; $S[0] \leftarrow 0$
- 2. for $i \leftarrow 1$ to n do
- 3. $b[i] \leftarrow length(P[i])$
- 4. $bmax \leftarrow b[i]$
- 5. $S[i] \leftarrow S[i-1] + bmax$
- 6. $l[i] \leftarrow 1$
- 7. for $j \leftarrow 2$ to min $\{i, Lmax\}$ do
- 8. if bmax < b[i-j+1]
- 9. then $bmax \leftarrow b[i-j+1]$ 10. if S[i] > S[i-j] + j *bmax
- 11. then $S[i] \leftarrow S[i-j] + j *bmax$
- 12. $l[i] \leftarrow j$
- 13. $S[i] \leftarrow S[i] + header$

最后

段长j

$$P = <10, 12, 15, 255, 1, 2>.$$

 $S[1]=15, S[2]=19, S[3]=23, S[4]=42, S[5]=50$
 $l[1]=1, l[2]=2, l[3]=3, l[4]=1, l[5]=2$

10	12	15	255	1	2	
S[5]=	=50			1×2-	⊢11 63	
10	12	15	255	1	2	
S[4]=42						
10	12	15	255	1	2	
S[3]=	23			$3\times8+11$ 58		
10	12	15	255	1	2	
S[2]=19			$4\times8+11$ 62			
10	12	15	255	1	2	
S[1]=15			5×8+11 66			
10	12	15	255	1	2	
$6 \times 8 + 11$					59	

追踪解

```
算法 Traceback (n, l)
```

输入:数组1

输出:数组C

1. j ← 1 // j 为正在追踪的段数

第j段

- 2. while $n \neq 0$ do
- 3. $C[j] \leftarrow l[n] \leftarrow kg$
- 4. $n \leftarrow n l[n]$
- 5. $j \leftarrow j + 1$

C[j]: 从后向前追踪的第j段的长度

时间复杂度: O(n)

小结

- 图像变位存储问题的建模
- 子问题边界的界定
- 递推方程及初值
- 伪码
- 标记函数与解的追踪
- 时间复杂度

最大子段和

最大子段和

问题: 给定n个数(可以为负数)的序列

$$(a_1, a_2, \dots, a_n)$$

求
$$\max\{0, \max_{1 \le i \le j \le n} \sum_{k=i}^{j} a_k\}$$

实例

$$(-2, 11, -4, 13, -5, -2)$$

解:最大子段和为 $a_2+a_3+a_4=20$

算法

算法1:对所有的(i,j)对,顺序求和

 $a_i + ... + a_j$ 并比较出最大的和

算法2: 分治策略,将数组分成左右两半,分别计算左边的最大和、右边的最大和、跨边界的最大和,然后比较其中最大者

算法3: 动态规划

算法1

和的

边界*i-j*

算法 Enumerate

输入:数组 A[1..n],

输出: sum, first, last

- 1. $sum \leftarrow 0$
- 2. for $i \leftarrow 1$ to n do
- 3. for $j \leftarrow i$ to n do
- 4. $thissum \leftarrow 0$
- 5. for $k \leftarrow i$ to j do
- 6. $thissum \leftarrow thissum + A[k]$
- 7. if thissum > sum
- 8. then $sum \leftarrow thissum$
- 9. $first \leftarrow i$
- 10. $last \leftarrow j$

1

找到更

大和

算法2 分治策略

将序列分成左右两半,中间分点center 递归计算左段最大子段和 leftsum 递归计算右段最大子段和 rightsum center 到 a_1 的最大和 S_1 , k=center center +1 到 a_n 的最大和 S_2 max { leftsum, rightsum, S_1 + S_2 }

伪码

算法 MaxSubSum (A, left, right)

输入: 数组 A, left, right (左,右边界)

输出:最大子段和sum及子段边界

- 1. if |A|=1 then 输出元素(值为负输出0)
- 2. $center \leftarrow \lfloor (left + right)/2 \rfloor$
- 3. $leftsum \leftarrow \underline{MaxSubSum}(A, left,center)$
- 4. $righsum \leftarrow MaxSubSum(A, center+1, right)$
- 5. $S_1 \leftarrow A_1[center]$ //从center向左
- 6. $S_2 \leftarrow A_2[center+1]$ //从center+1向右
- 7. $sum \leftarrow S_1 + S_2$
- 8. if leftsum>sum then $sum \leftarrow leftsum$
- 9. if rightsum>sum then sum←rightsum

时间复杂度

大和,每次加1个元素,得到 A[k], A[k]+A[k-1], A[k]+A[k-1]+A[k-2],..., A[k]+...+A[1]比较上述的最大和,时间为O(n), 右半边也是O(n)

$$T(n) = 2T(n/2) + O(n)$$

$$T(c) = O(1)$$

$$T(n) = O(n \log n)$$

算法3: 动态规划

子问题界定:前边界为 1,后边界 i, C[i] 是 A[1...i]中必须包含元素 A[i] 的 向前连续延伸的最大子段和

$$C[i] = \max_{1 \le k \le i} \left\{ \sum_{j=k}^{i} A[j] \right\}$$

优化函数的递推方程

```
递推方程:
C[i] = \max\{C[i-1] + A[i], A[i]\}
     i = 2, ..., n
C[1]=A[1] 若A[1]>0
          否则
C[1]=0
      OPT(A) = max\{C[i]\}
```

算法 MaxSum (A, n) 为码

输入:数组A

输出:最大子段和sum,子段最后位置c

- 1. $sum \leftarrow 0$
- 2. $b \leftarrow 0$
- 3. for $i \leftarrow 1$ to n do
- 4. if b > 0
- 5. then $b \leftarrow b + A[i]$
- 6. else $b \leftarrow A[i]$
- 7. if b > sum
- 8. then $sum \leftarrow b$
- 9. $c \leftarrow i$
- 10. return sum, c

时间复杂度: O(n), 空间复杂度: O(n)

后边界

大的和

小结

- 几个算法: 蛮力,分治,动态规划
- 动态归划算法: 子问题界定 列优化函数的递推方程和边界条件 (不一定是原问题的优化函数) 自底向上计算,设计备忘录(表格) 如何根据动态规划的解找原问题的解 时间复杂度估计

最优二叉检索树

二叉检索树

集合S为排序的n个元素, $x_1 < x_2 < ... < x_n$,将这些元素存储在一棵二叉树的结点上,以查找x是否在这些数中.如果x不在,确定x在那个空隙(方结点).

二叉树的检索方法

- 1. 初始, x与根元素比较;
- 2. x < 根元素,递归进入左子树;
- 3. x > 根元素, 递归进入右子树;
- 4. x = 根元素, 算法停止, 输出 x;
- 5. x 到叶结点算法停止,输出 x不在数组.

数据元素存取概率分布

空隙:

$$(x_0, x_1), (x_1, x_2), \dots, (x_{n-1}, x_n), (x_n, x_{n+1}),$$

 $x_0 = -\infty, x_{n+1} = +\infty$

给定序列
$$S = \langle x_1, x_2, ..., x_n \rangle$$
,

x 在 x_i 的概率为 b_i ,

x 在(x_i , x_{i+1})的概率为 a_i ,

S 的存取概率分布如下:

$$P = \langle a_0, b_1, a_1, b_2, a_2, \dots, b_n, a_n \rangle$$

实例

实例:
$$S = \langle 1, 2, 3, 4, 5, 6 \rangle$$

 $P = \langle 0.04, 0.1, 0.01, 0.2, 0.05, 0.2, 0.02, 0.1, 0.02, 0.1, 0.07, 0.05, 0.04 \rangle$

- 1, 2, 3, 4, 5, 6 检索的概率分别为: 0.1, 0.2, 0.2, 0.1, 0.1, 0.05
- 各个空隙的检索概率分别为:
- 0.04, 0.01, 0.05, 0.02, 0.02, 0.07, 0.04

检索数据的平均时间

$$S = < 1, 2, 3, 4, 5, 6 >$$
 $P = < 0.04, 0.1, 0.01, 0.2, 0.05,$
 $0.2, 0.02, 0.1, 0.02, 0.1,$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.04 >$
 $0.07, 0.05, 0.05, 0.04 >$
 $0.07, 0.05, 0.05, 0.04 >$
 $0.07, 0.05, 0.05, 0.05 >$
 $0.07, 0.05, 0.05, 0.05 >$
 $0.07, 0.05, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05, 0.05 >$
 $0.07, 0.05,$

检索数据的平均时间

$$S = < 1, 2, 3, 4, 5, 6 > P = < 0.04, 0.1, 0.01, 0.2, 0.05, 0.2, 0.02, 0.1, 0.05, 0.2, 0.02, 0.1, 0.07, 0.05, 0.04 > M (T2)
$$= [1 \times 0.1 + 2 \times 0.2 + 3 \times 0.1 + 4 \times (0.2 + 0.05) + 5 \times 0.1] \\ + [1 \times 0.04 + 2 \times 0.01 + 4 \times (0.05 + 0.02 + 0.04) \\ + 5 \times (0.02 + 0.07)]$$$$

= 2.3 + 0.95 = 3.25

平均比较次数计算

数据集 $S = \langle x_1, x_2, ..., x_n \rangle$ 存取概率分布

$$P=\langle a_0, b_1, a_1, b_2, \dots, a_i, b_{i+1}, \dots, b_n, a_n \rangle$$
 结点 x_i 在 T 中的深度是 $d(x_i)$, $i=1,2,\dots,n$, 空隙 L_j 的深度为 $d(L_j)$, $j=0,1,\dots,n$, 平均比较次数为:

$$t = \sum_{i=1}^{n} b_i (1 + d(x_i)) + \sum_{j=0}^{n} a_j d(L_j)$$

问题

给定数据集

$$S = \langle x_1, x_2, ..., x_n \rangle,$$

及 S 的存取概率分布如下:

$$P = \langle a_0, b_1, a_1, b_2, a_2, \dots, b_n, a_n \rangle$$

求一棵最优的(即平均比较次数最少的)二分检索树.

小结

- 二叉检索树的构成
- 给定概率分布下,一棵二叉检索树 的平均检索时间估计
- 什么是最优二叉检索树

最优二叉检索 树的算法

关键问题

子问题边界界定 如何将该问题归结为更小的子问题 优化函数的递推方程及初值 计算顺序 是否需要标记函数 时间复杂度分析

子问题划分

子问题边界为(i,j)数据集: $S[i,j] = \langle x_i, x_{i+1}, ..., x_i \rangle$ 存取概率分布: $P[i,j] = \langle a_{i-1}, b_i, a_i, b_{i+1}, \dots, b_i, a_i \rangle$ 输入实例: $S = \langle A, B, C, D, E \rangle$ $P = \langle 0.04, 0.1, 0.02, 0.3, 0.02, 0.1,$ 0.05, 0.2, 0.06, 0.1, 0.01>

子问题: $S[2,4] = \langle B, C, D \rangle$ $P[2,4] = \langle 0.02, 0.3, 0.02, 0.1, 0.05, 0.2, 0.06 \rangle$

子问题归约

以 x_k 作为根归结为子问题: S[i, k-1], P[i, k-1]S[k+1,j], P[k+1,j] $S[1,5] = \langle A, B, C, D, E \rangle$ $P[1,5] = \langle 0.04, 0.1, 0.02, 0.3, 0.02, 0.1,$ 0.05, 0.2, 0.06, 0.1, 0.01> $S[1,1] = \langle A \rangle$ $P[1,1] = \langle 0.04, 0.1, 0.02 \rangle$ $S[3,5] = \langle C,D,E \rangle$ $P[3,5] = \langle 0.02, 0.1, 0.05, 0.2, 0.06, 0.1, 0.01 \rangle$

子问题的概率之和

子问题界定 S[i,j] 和 P[i,j],令

$$w[i,j] = \sum_{p=i-1}^{j} a_p + \sum_{q=i}^{j} b_q$$

是P[i,j]中所有概率(数据与空隙)之和

实例:
$$S[2,4]=\langle B,C,D\rangle$$

$$P[2,4]=\langle 0.02,0.3,0.02,0.1,0.05,0.2,0.06\rangle$$

$$w[2,4]=(0.3+0.1+0.2)$$

$$+(0.02+0.02+0.05+0.06)$$

$$= 0.75$$

优化函数的递推方程

设m[i,j]是相对于输入S[i,j]和P[i,j]的最优二叉搜索树的平均比较次数

递推方程:

$$m[i,j] = \min_{i \le k \le j} \{ \underline{m[i,k-1]} + \underline{m[k+1,j]} + w[i,j] \},$$

$$1 \le i \le j \le n$$

$$m[i,i-1] = 0, \quad i = 1,2,..., n$$

$m[i,j]_k$ 公式的证明

 $m[i,j]_k$: 根为 x_k 时平均比较次数的最小值 $m[i,j]_k$

作为子 树增加 次数

$$= (m[i,k-1] + w[i,k-1]) + (m[k+1,j] + w[k+1,j]) + 1 \times b_k$$

$$= (m[i,k-1] + m[k+1,j]) + (w[i,k-1] + b_k + w[k+1,j])$$

$$= (m[i,k-1] + m[k+1,j]) + (\sum_{p=i-1}^{k-1} a_p + \sum_{q=i}^{k-1} b_q) + b_k + (\sum_{p=k}^{j} a_p + \sum_{q=k+1}^{j} b_q)$$

$$= (m[i,k-1] + m[k+1,j]) + \sum_{p=i-1}^{j} a_p + \sum_{q=i}^{j} b_q$$

$$= m[i,k-1] + m[k+1,j] + w[i,j]$$

化简

递推方程 $m[i,j] = \min_{i \le k \le j} \{m[i,k-1] + m[k+1,j] + w[i,j]\},$

平均比较次数: 在所有k的情况下 $m[i,j]_k$ 的最小值

$$m[i,j] = \min\{ m[i,j]_k | i \le k \le j \}$$

初值 m[i, i-1]=0对应于空的子问题,例如 $S = \langle A, B, C, D, E \rangle$,取 A 作根,i=1,k=1,左边子问题为空树,对应于: S[1,0],m[1,0]=0的情况.

实例

$$m[i,j] = \min_{i \le k \le j} \{ m[i,k-1] + m[k+1,j] + w[i,j] \}$$

$$m[i,i-1]=0$$

$$m[1,5] = 1 + \min_{k=2,3,4} \{ m[1,k-1] + m[k+1,5] \}$$

$$=1+\{m[1,1]+m[3,5]\}=1+\{0.16+0.88\}=2.04$$

计算复杂性估计

$$m[i,j] = \min_{i \le k \le j} \{ m[i,k-1] + m[k+1,j] + w[i,j] \}$$

$$1 \le i \le j \le n$$

$$m[i,i-1] = 0, \quad i = 1,2,...,n$$

i,j的所有组合 $O(n^2)$ 种

每种要对不同的 k 进行计算,k=O(n)

每次计算为常数时间

时间复杂性: $T(n) = O(n^3)$

空间复杂度: $S(n) = O(n^2)$

小结

- 划分子问题,以数据结点作为树根
- 定义优化函数,列出递推方程与边界条件
- 自底向上计算,设计备忘录(表格)
- 设立标记函数记录构成最优二叉搜索 树或子树时根的位置.
- 时间复杂度估计

RNA二级结构预测

375nt 的环形类病毒GHVd 的 RNA二级结构预测和RT-PCR、Northern blot检测结果

RNA二级结构

一级结构: 由字母A, C, G, U 标记的核苷酸构成的一条链.

实例: A-C-C-G-C-C-U-A-A-G-C-C-G-

U-C-C-U-A-A-G- ...

二级结构:

核苷酸相互 匹配构成的 平面结构

匹配原则

- 配对 *U-A*, *C-G*
- 末端不出现"尖角", 位置 i-j 配对, 则 $i \le j$ -4
- 每个核苷酸只能参加一个配对
- 不允许交叉,即如果位置 i_1, i_2, j_1, j_2 满足 $i_1 < i_2 < j_1 < j_2$,不允许 $i_1 j_1, i_2 j_2$ 配对,但可以允许 $i_1 j_2, i_2 j_1$ 配对.

匹配的结构

RNA二级结构问题

给定RNA的一条链(一级结构),预测 它的可能的稳定的二级结构

稳定二级结构满足的条件 生物学条件:具有最小自由能 简化条件:具有最多的匹配对数

问题:给定RNA链,求具有最多匹配对数的二级结构,即最优结构.

建模

- 子问题界定: 前边界i, 后边界j
- 若 *j*与*k* (所有可能)位置匹配,归约为 子问题 1: *i* 到 *k*-1的链

子问题 2: k+1到 j-1的链

• 若j不参与匹配,则原问题归约为i到j-1 的子问题

优化函数的递推方程

令C[i,j]是序列S[i..j]的最大匹配对数

$$C[i,j] = \max\{C[i,j-1],$$

$$\max_{i \le k \le j-4} \{1 + C[i,k-1] + C[k+1,j-1]\}\}$$

$$1 \le i, \quad j \le n, \quad j-i \ge 4$$

$$C[i,j] = 0 \quad j-i < 4$$

满足优化原则

计算顺序:按照子问题长度计算

计算复杂度分析

子问题个数: i,j 对的组合有 $O(n^2)$ 个

对于给定的 i 和 j , j 需要考察与所有可能的 k 是否匹配,其中 $i \le k \le j - 4$,需要 O(n) 时间.

算法时间复杂度是 $O(n^3)$.

小结

- 划分子问题,确定子问题边界*i*, *j* 与归约方法.
- 定义优化函数,列递推方程和初值.
- 自底向上计算,设计备忘录(表格)
- 设立标记函数,记下最优划分位置
- 时间复杂度估计

序列比对

序列比对

为确定两个序列之间的相似性或同源性,将它们按照一定的规律排列,进行比对.

• 应用:

生物信息学中用于研究同源性,如蛋白质序列或 DNA 序列. 在比对中, 错配与突变相对应,空位与插入或缺失相对应.

计算语言学中用于语言进化或文本相似性的研究.

序列之间的编辑距离

编辑距离:

给定两个序列 S_1 和 S_2 ,通过一系列字符编辑(插入、删除、替换)等操作,将 S_1 转变成 S_2 .

完成这种转换所需要的最少的编辑操作个数称为 S_1 和 S_2 的编辑距离.

实例

vintner 转变成 writers, 编辑距离≤6

vintner

删除 v: -intner

插入w: wintner

插入r: wrintner

删除 n: wri-tner

删除 n: writ-er

插入s: writers

子问题界定和归约

 $S_1[1..n]$ 和 $S_2[1..m]$ 表示两个序列 子问题: $S_1[1..i]$ 和 $S_2[1..j]$,边界(i,j)

操作	归约子问题	编辑距离
删除S ₁ [i]	(i-1,j)	+1
$S_1[i]$ 后插入 $S_2[j]$	(<i>i</i> , <i>j</i> -1)	+1
$S_1[i]$ 替换为 $S_2[j]$	(i-1, j-1)	+1
$S_1[i]=S_2[j]$	(i-1, j-1)	+0

优化函数的递推方程

C[i,j]: $S_1[1..i]$ 和 $S_2[1..j]$ 的编辑距离

$$C[i,j] = \min\{C[i-1,j]+1,C[i,j-1]+1,$$

$$C[i-1,j-1]+t[i,j]\}$$

$$t[i,j] = \begin{cases} 0 & S_1[i] = S_2[j] \\ 1 & S_1[i] \neq S_2[j] \end{cases}$$

$$C[0,j] = j,$$

$$C[i,0] = i$$

计算复杂度分析

- 子问题 由 *i*, *j*界定, 有 *O* (*m n*) 个子问题
- 每个子问题的计算 为常数时间
- 算法的时间复杂度是O(n m)

动态规划算法设计要点

- (1) 引入参数来界定子问题的边界.注意子问题的重叠程度.
- (2) 给出带边界参数的优化函数定义与优化函数的递推关系,找到递推关系的初值.
- (3) 判断该优化问题是否满足优化原则.
- (4) 考虑是否需要标记函数.

动态规划算法设计要点(续)

- (5) 采用自底向上的实现技术,从最小的 子问题开始迭代计算,计算中用备忘 录保留优化函数和标记函数的值.
- (6) 动态规划算法的时间复杂度是对所有 子问题(备忘录)的计算工作量求和(可 能需要追踪解的工作量)
- (7) 动态规划算法一般使用较多的存储空间,这往往成为限制动态规划算法使用的瓶颈因素.