Cycling Pedal Analysis

DGMD S-14 Summer 2021 Elaine Kristant

Outline

- Problem
- O Background
- Data Collection
- Data segmentation and cleaning
- Analysis

Problem

Cycling computers that attach to bikes typically give you data related to trip time, speeds, and sometimes cadence, but they typically don't provide any data on the mechanics of the rider unless you're willing to spend over \$1000. This project aims to use a set of sensors to analyze the pedal and foot movement to increase efficiency of the ride.

Current state of the art - standard bike computer

Lower End

- Inexpensive: \$20 \$300
- Self contained to one device but sometimes can stream data to smartphone
- Typical data collected:
 - Current speed
 - Maximum speed
 - Average speed
 - Elapsed time
 - Trip distance
 - Odometer
 - GPS*
 - Heart rate*

Higher End

- Expensive: \$300 \$1500
- Built into pedal or crank
- Communicates to smartphone or lower end bike computer
- Typical data collected:
 - Everything that a lower end computer can do
 - Forces applied throughout the stroke
 - Power
 - Position analysis

^{*}Typically only found on the more expensive models

Lower End

https://www.nashbar.com/cateye-urban-bike-computer-black-wireless-1604380/p-reqcqqqa2taeyaa

Higher End

https://www.sram.com/en/sram/models/pm-red-d1

https://static.garmincdn.com/en/products/010-01787-02/g/cf-lg-bf0b13cc-487b-41e1-ba67-3fad8423f174.jpg

Stroke Analysis

- Even power throughout cycle
- Foot/pedal angle matters

Theory:

- This is a two-dimensional problem
- Z Acceleration will be used to determine the stroke
- The rotation around the X axis (X for the gyro) will determine the foot position
- Y axis acceleration might also detect foot position

Bini, Rodrigo & Hume, Patria & Croft, James & Kilding, Andrew. (2013). Pedal force effectiveness in cycling: A review of constraints and training effects. Journal of Science and Cycling. 2. 11-24.

Classes

Ideal

Toes down

Up hill

No ankle

Flat

Goal and approach

The goal of this project aims to determine if proper pedaling technique can be done through an IMU instead of expensive power analysis pedals.

By looking at the acceleration and angle of the pedal, a profile can be created and analyzed against optimal performance and feedback can be provided.

Block diagram

Setup

- Commuter bike on stationary trainer
- Low force on trainer
- Pedals with toe-clips
- O Cycling shoes
- SensorTile with cradle expansion board attached to bottom of pedal
 - Acceleration Z axis vertical
 - Gyroscope X axis in line with pedal axis
 - Wall power
- RaspberryPi located within bluetooth range

Data collection

SensorTile running slightly modified "ALLMEMS1_V3.1.0"

Data transmitted to RasPi through BLE

Data then transferred to PC for analysis

```
Characteristic value was written successfully
Notification handle = 0x0011 value: 1d 6f 30 00 43 fc db fe fe ff e1 ff 01 00
Notification handle = 0x0011 value: 23 6f 30 00 43 fc dd fe fe ff e0 ff 01 00 d2 00 98 00 28 02
Notification handle = 0x0011 value: 29 6f 30 00 45 fc de fe ff ff e0 ff 01 00 d5 00 98 00 25 02
Notification handle = 0x0011 value: 2f 6f 2f 00 44 fc dd fe fe ff e1 ff 01 00 d2 00 a0 00 1f 02
Notification handle = 0x0011 value: 36 6f 31 00 43 fc dd fe fe ff e1 ff 01 00 cc 00 95 00 28 02
Notification handle = 0x0011 value: 3c 6f 2f 00 43 fc dd fe fe ff e0 ff 01 00 cf 00 95 00 24 02
Notification handle = 0x0011 value: 42 6f 30 00 44 fc de fe ff ff e2 ff 01 00 cd 00 9b 00 1e 02
Notification handle = 0x0011 value: 48 6f 31 00 44 fc dd fe fe ff e1 ff 01 00 d0 00 9a 00 24 02
Notification handle = 0x0011 value: 4f 6f 30 00 44 fc dd fe fe ff e0 ff 01 00 cf 00 94 00 22 02
Notification handle = 0x0011 value: 55 6f 31 00 44 fc de fe fe ff e2 ff 01 00 cf 00 97 00 21 02
Notification handle = 0x0011 value: 5b 6f 31 00 44 fc de fe fe ff e1 ff 01 00 ca 00 9d 00 1f 02
Notification handle = 0x0011 value: 61 6f 31 00 44 fc de fe fe ff e0 ff 01 00 d2 00 9b 00 25 02
Notification handle = 0x0011 value: 68 6f 31 00 43 fc dd fe fe ff e2 ff 01 00 cd 00 9b 00 2a 02
Notification handle = 0x0011 value: 6e 6f 31 00 43 fc dc fe fe ff e1 ff 01 00 d0 00 94 00 24 02
Notification handle = 0x0011 value: 74 6f 2f 00 43 fc dc fe fe ff e0 ff 01 00 cf 00 9d 00 2b 02
Notification handle = 0x0011 value: 7a 6f 30 00 44 fc dc fe fe ff e1 ff 01 00 d5 00 97 00 21 02
Notification handle = 0x0011 value: 81 6f 31 00 43 fc dc fe fe ff e1 ff 01 00 d2 00 94 00 25 02
Notification handle = 0x0011 value: 87 6f 30 00 43 fc db fe ff ff e0 ff 01 00 d5 00 9b 00 1e 02
Notification handle = 0x0011 value: 8d 6f 30 00 44 fc dc fe fe ff e2 ff 01 00 cf 00 97 00 24 02
Notification handle = 0x0011 value: 93 6f 31 00 43 fc dc fe fe ff e1 ff 01 00 d5 00 9d 00 28 02
Notification handle = 0x0011 value: 9a 6f 31 00 45 fc db fe fe ff e0 ff 01 00 d8 00 98 00 28 02
Notification handle = 0x0011 value: a0 6f 2f 00 43 fc da fe fe ff e2 ff 01 00 cd 00 94 00 25 02
Notification handle = 0x0011 value: a6 6f 30 00 43 fc da fe fe ff e1 ff 01 00 db 00 9d 00 24 02
Notification handle = 0x0011 value: ac 6f 30 00 43 fc db fe fe ff e0 ff 01 00 db 00 9a 00 1e 02
Notification handle = 0x0011 value: b3 6f 30 00 44 fc db fe fe ff e1 ff 01 00 d0 00 9b 00 24 02
Notification handle = 0x0011 value: b9 6f 30 00 43 fc dc fe fe ff e1 ff 01 00 d3 00 a0 00 28 02
Notification handle = 0x0011 value: bf 6f 31 00 43 fc dc fe fe ff e0 ff 01 00 d0 00 91 00 1e 02
Notification handle = 0x0011 value: c5 6f 31 00 43 fc dd fe fe ff e2 ff 02 00 d6 00 92 00 21 02
```

Data interpretation, cleaning, and segmentation

Classification

- Used video to classify each stroke
- Looked at pedal angle
- Looked at heel Good

Good Flat Toes Down

Example ACC Z data for different strokes

Data analysis

- EdgeImpulse
- Training Data:
 - Good: 40
 - Flat: 33
 - Toes down: 35
- Testing Data:
 - Good: 10
 - Flat: 11
 - Toes down: 10
- O Data:
 - o acc_y
 - acc_z
 - gyr_x
 - mag_x
 - mag_y
 - mag_z

Learning

- NN Classifier (keras)
- Training cycles: 30
- Learning rate: 0.01
- Minimum confidence: 0.6

	FLAT	GOOD	TOES
FLAT	88.9%	11.196	096
GOOD	0%	100%	096
TOES	0%	14.3%	85.7%
F1 SCORE	0.94	0.86	0.92

Feature explorer (full training set) ?

Testing

One data point mis-classified

 Cloned project, rebalanced, and retrained

Model testing results

	FLAT	GOOD	TOES	UNCERTAIN
FLAT	91.7%	8.3%	0%	0%
GOOD	0%	100%	0%	096
TOES	0%	14.3%	85.7%	0%
F1 SCORE	0.96	0.87	0.92	

Final thoughts

- More data with more riders
- Better pedals
- Try to increase # of classes
- Live classification

