Lab3: Significance of Network Metrics

Simon Van den Eynde Martí Renedo Mirambell

October 27, 2016

1 Introduction

In this session we study the significance of the mean local clustering coefficient in syntactic dependency networks obtained from different languages. To test the significance of this metric, we will compare its values on our networks to those in two null models: the Erdös-Renyi graph and a random graph preserving the original degree sequence obtained with the switching model. We will estimate the corresponding p-values both by generating a large enough sample of each of the random networks and through analytical work.

2 Results

3 Discussion

As we can see in table 2, the results of the clustering coefficient of all languages are reasonably large for such sparse networks. In comparison, the corresponding Erdös-Renyi models have clustering coefficients of around 3 orders of magnitude smaller (both in the analytical and experimental cases). This, combined with the low variance of the metric (which is estimated analytically in 4.1) gives a p-values of 0 for all languages with R's default precision (i.e. it is almost impossible to obtain a higher clustering coefficient generating a random Erdös-Renyi graph with the parameters of our networks). **** add comment about experimental ER results (¿are all p-values also zero, as expected?)*****

Table 1: Summary of the properties of the degree sequences. N is the number of vertices of the network, E is the number of edges, $\langle k \rangle = 2E/N$ is the mean degree and $\delta = 2E/(N(N-1))$ is the network density of edges.

Language	$\mid N \mid$	E	$\langle k \rangle$	δ
Arabic	21532	68767	6,4	3,0e-04
Basque	12207	25558	4,2	3,4e-04
Catalan	36865	197318	10,7	2,9e-04
Chinese	40298	181081	9,0	2,2e-04
Czech	69303	257295	7,4	1,0e-03
English	29634	193186	13,0	4,4e-04
Greek	13283	43974	6,6	5,0e-04
Hungarian	36126	106716	5,9	$1,\!6\mathrm{e}\text{-}04$
Italian	14726	56042	7,6	5,2e-04
Turkish	20409	45642	$4,\!5$	2,2e-04

Table 2: Values of the mean local clustering coefficient and its *p*-values with respect to the binomial (Erdös-Renyi) and switching models.

Language C_{WS} p-value (binomial) p-value (switching)

4 Methods

4.1 Analytical estimation of the p-value

4.1.1 Erdös-Rényi Graph

Given our original graph with N vertices and E edges, the Erdös-Rényi graph has the same size and order but with its edges randomized. Of the two possible Erdös-Renyi models, we will use G(N,p) where p will be such that the expected number of edges is E (which is $p = \frac{E}{\binom{N}{2}}$). This has the advantage that X_j the random variables that for every possible vertex indicate wether it exists $(X_j=1)$ or not $(X_j=0)$ are independent, which will be very useful later on. When working with large values of N and E (such as those we study in this lab session), the models G(N,E) and G(N,p) should give very similar random graphs. For X_j where j is the index of any vertex, we calculate its expectation and variance:

$$E[X_j] = 0 \cdot (1 - p) + 1 \cdot p = p$$
$$Var(X_j) = E[X^2] - (E[X])^2 = p - p^2$$

Given a vertex v of the graph, it can have N-1 neighbours (each with probability p), which results in $\binom{N-1}{2}$ possible pairs of neighbours. The expected number of pairs. This gives an expected number of pairs of neighbours $n_v = p^2 \binom{N-1}{2}$. Then, we can estimate the local clustering of v by

$$C_v^{ER} pprox \frac{\sum_{j=1}^{\lfloor n_v \rfloor} X_j}{n}.$$

Since X_j are independent and equally distributed, we can apply the central limit theorem, which states that for a large enough sample size, the distribution of C_v^{ER} is the normal $N(\mathrm{E}(C_v^{ER}), \frac{\mathrm{Var}(X_j)}{n}) \approx N(C_v^S, \frac{p-p^2}{p\binom{n-1}{2}}) = N(C_v^S, \frac{1-p}{p\binom{N-1}{2}}).$

We can apply the central limit theorem again to $C_{WS}^{ER} = \frac{1}{N} \sum_{i=1}^{N} C_i$, which gives us the distribution of C_{WS}^{ER} : the normal distribution

$$N(C_v^S, \frac{1-p}{pN\binom{N-1}{2}}) = N(C_v^S, \frac{1-p}{E(N-2)}).$$

Note that in the last step we used the equality $pN\binom{N-1}{2} = \frac{EN\binom{N-1}{2}}{\binom{N}{2}} = E(N-2)$. Now the p-value of C_{WS} , which is given by $p(C_{WS}^{ER} \ge C_{WS})$, can be calculated