This question paper contains 4 printed pages]				
Roll No.				
S. No. of Question Paper: 52				
Unique Paper Code : 32341502				
Name of the Paper : Theory of Computation				
Name of the Course : B.Sc. (H.) Computer Science				
Semester : V				
Duration: 3 Hours Maximum Marks: 75				
(Write your Roll No. on the top immediately on receipt of this question paper.)				
Instructions for Candidates:				
(1) All questions from Part A are compulsory. Attempt any				
four questions from Part B.				
(2) Assume $\Sigma = \{a \ b\}$ is the underlying alphabet unless				
mentioned otherwise. Parts of a question must be				
answered together.				
Part A				
1. (a) Prove that for all sets S, $(S^+)^*=S^*$. 2				
(b) Give regular expression for the language of all strings				
that do not end with double letter. 2				
P.T.O.				

- (c) Show that (ab)*a and a(ba)* defines the same language over alphabet {a b}.

 (d) Build an FA that accepts only those words that have exactly four letters.

 4

 (e) Build an FA that accepts only those words that do not end with ba.

 4

 (f) Find a CFG for the language Trailing count={salength(s) for all s in (a+b)*}.
- (g) Use the pumping lemma to show that the language Square= $\{a^n \text{ where } n \text{ is a square}\}$ is non-regular. 4
- (h) Show that if L_1 and L_2 are regular language then so are L_1+L_2 , L_1L_2 and L_1^* .

were they are be

(f) Design a right shifting turing machine.

Part B

		보면 25 시간 하는 사람들은 사람들은 사람들이 모든 사람들이 되었다. 그는 사람들이 되었다.
2.	(a)	Define Regular Expression. 2
	(b)	Build a regular expression for all words that have odd
		no. of b's.
	(c)	Build an FA that accepts all strings that start and end
		with different letters.
3.	(a)	For languages, $L_1=(a+b)*a$ and $L_2=(a+b)*aa(a+b)*$, find
		the deterministic finite automata for L_1+L_2 .
	(b)	Show that the following context free grammar is
		ambiguous:
		S->aSb Sb Sa a.
4.	(a)	Use the pumping lemma to show that the language anban
		where n=1 2 3 is non-regular. 4
	(b)	For the given, $L_1=(a+b)*a$ and $L_2=b(a+b)*$, find the
		automata and regular expression for $L_1 \cap L_2$.
5.	(a)	Construct a PDA for the language anbmambn where
		$m, n \ge 1$.
	(b)	Construct a CFG for the language (ba+ab)*.
		동생생 동일 동생 주의에는 기를 모르는 사람이 되었다면 사람이 그 가을 다른 하는 사람이 그리고 있을까요요.

6.	(a)	Prove that a recursive language is also recursively
		enumerable.
	(b)	Using pumping lemma prove that the language anbnanbn
that:		for n=1 2 3 is non-context free.
7.	(a)	Design a turing machine for the language anbncn where
		n=1 2 36

Describe "Universal Turing Machine".

52

(b)