Programação Linear

Modelagem em PL

- A modelagem de um PPL envolve algumas etapas:
 - O estudo dos dados, a identificação do problema a ser resolvido, com as restrições, os limites e a função objetivo.
 - A construção de uma abstração do problema através de um modelo matemático.
 - A busca de uma solução através de uma técnica que explore alguma estrutura.
 - O teste do modelo, sua análise e sua reestruturação.
 - A implementação computacional do modelo.

Modelagem em PL: problema da dieta

- Suponha que uma certa dieta alimentar esteja restrita a leite, carne, peixe e salada.
- Deseja-se determinar uma dieta diária para uma redução calórica, de modo que os requisitos nutricionais(vitaminas A, C e D) sejam satisfeitos a um custo mínimo.
- A tabela a seguir traz os dados do problema.

vitami	na	leite	carne	peixe	salada	requisitos
A		2mg	2mg	10mg	20mg	11mg
C		50mg	20mg	10mg	30mg	70mg
D		80mg	70mg	10mg	80mg	250mg
custo)	R\$ 2	R\$ 4	R\$ 1,5	R\$ 1	

Modelagem em PL: problema da dieta

Formulação do problema.

- Definição das variáveis de decisão: x_j, quantidade do alimento j a ser utilizado na dieta, onde 1 corresponde a leite, 2 a carne, 3 ao peixe e 4 a salada respectivamente.
- ② Definição da função objetivo: min $2x_1 + 4x_2 + 1,5x_3 + x_4$
- Oefinição das restrições:
 - **1** demanda da vitamina A: $2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$
 - **9** demanda da vitamina C: $50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$
 - **3** demanda da vitamina D: $80x_1 + 70x_2 + 10x_3 + 80x_4 > 250$
 - o não negatividade: $x_j \ge 0, j = 1, \dots, 4$

Modelagem em PL: problema de produção

- Um determinado produtor deseja decidir quantas unidades deve produzir de dois diferentes produtos (A e B) de forma que se obtenha um lucro máximo.
- O lucro por uma unidade do produto A corresponde a R\$ 2 e o lucro por uma unidade do produto B corresponde a R\$ 5.
- Cada unidade do produto A requer 3 horas de máquina e 9 unidades de máteria-prima, enquanto o produto B requer 4 horas de máquina e 7 unidades de matéria-prima.
- O tempo máximo disponível de horas de máquina são 200 horas e a quantidade máxima disponível de máteria-prima são 300 unidades.

Modelagem PL: problema de produção

Formulação do problema.

- Definição das variáveis de decisão: x_i, j = 1, 2.
- ② Definição da função objetivo: max $2x_1 + 5x_2$
- Oefinição das restrições:
 - **1** disponibilidade de tempo: $3x_1 + 4x_2 \le 200$
 - 2 disponibilidade de máteria-prima: $9x_1 + 7x_2 \le 300$
 - **3** não negatividade: $x_j \ge 0$, j = 1, 2.

Modelagem em PL: problema de transporte

- Uma companhia transforma grãos de café em m fábricas. Em seguida esse café é enviado semanalmente para n armazéns para a venda a varejo, distribuição ou exportação.
- Suponha que o custo unitário de frete da fábrica i para o armazém j seja c_{ij}.
- Suponha ainda que a capacidade de produção na fábrica i seja a; e que a demada no armazém j seja d;.
- O problema temo como objetivo encontrar um padrão produção-entrega x_{ij} da fábrica i para o armazém j, onde $i=1,\ldots,m$ e $j=1,\ldots,n$ com custo total mínimo.

Modelagem em PL: problema de transporte

Formulação do problema.

- Definição das variáveis de decisão: x_{ij}, quantidade transportada da fábrica i para o armazém j, onde i = 1,2,..., m e j = 1,2,...,n.
- ② Definição das restrições:
 - capacidade de produção da fábrica i: $\sum_{i=1}^{n} x_{ij} \leq a_i, i = 1, ..., m$.
 - demanda do armazém $j: \sum_{i=1}^m x_{ij} = d_j, \ j = 1, \dots, n.$
 - não negatividade: $x_{ij} \ge 0, i = 1, 2, ..., m, j = 1, 2, ..., n.$
- ① Definição da função objetivo: min $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}$

Modelagem em PL: problema de dimensionamento de lotes

- Uma empresa precisa encontrar um planejamento de produção de um determinado item para atender a demandas ao longo do horizonte de n períodos.
- **9** Em cada período t a demanda d_t pode ser atendida por produção no período t ou itens em estoque, produzidos em períodos anterior.
- Suponha que no início do processo de produção, o estoque inicial seja zero, assim como no último período.
- Dados para o problema: f_t, custo fixo de produção no período t; p_t, custo de produção unitário no período t; h_t, custo de estoque unitário no período t; d_t, demanda no período t.
- Variáveis do problema: x_t , quantidade produzida no período t; s_t , quantidade em estoque no final do período t; $y_t = 1$, se ocorre produção no período t, 0, caso contrário.

Modelagem em PL: problema de dimensionamento de lotes

Formulação do problema

$$\min \sum_{t=1}^n \left(p_t x_t + h_t s_t + f_t s_t \right)$$

$$s_{t-1} + x_t = d_t + s_t \text{ para } t = 1, 2, \dots, n$$

$$x_t \le \left(\sum_{j=t}^n d_j \right) y_t \text{ para } t = 1, 2, \dots, n$$

$$s_0 = s_n = 0$$

$$x_t, s_t \in \mathbb{Z}_+ \text{ para } t = 1, 2, \dots, n$$

$$y_t \in \{0, 1\} \text{ para } t = 1, 2, \dots, n$$