ACM/ICPC Template Manaual

 CSL

October 18, 2017

Contents

0	Incl	lude 1
1	Mat	th
	1.1	Prime
		1.1.1 Eratosthenes Sieve
		1.1.2 Eular Sieve
		1.1.3 Prime Factorization
		1.1.4 Miller Rabin
		1.1.5 Segment Sieve
	1.2	Eular phi
		1.2.1 Eular
		1.2.2 Sieve
	1.3	Basic Number Theory
		1.3.1 Extended Euclidean
		1.3.2 ax+by=c
		1.3.3 Multiplicative Inverse Modulo
	1.4	Modulo Linear Equation
		1.4.1 Chinese Remainder Theory
		1.4.2 ExCRT
	1.5	Combinatorics
		1.5.1 Combination
		1.5.2 Lucas
		1.5.3 Big Combination
		1.5.4 Polya
	1.6	Fast Power
	1.7	Mobius Inversion
		1.7.1 Mobius
		1.7.2 Number of Coprime-pair
		1.7.3 VisibleTrees
	1.8	Fast Transformation
		1.8.1 FFT
		1.8.2 NTT
	1.9	Others
		1.9.1 Digit
		1.9.2 Josephus
	1.10	Formula
2	Stri	ing Processing
		KMP
	2.2	ExtendKMP
	2.3	Manacher
	2.4	Aho-Corasick Automaton
	2.5	Suffix Array
_	ъ.	
3		a Structure
	3.1	Binary Indexed Tree
	3.2	Segment Tree
		3.2.1 Single-point Update
	9.9	3.2.2 Interval Update
	3.3	Binary Search Tree
		3.3.1 Treap
	0.4	3.3.2 Splay
	3.4	Functional Segment Tree
	3.5	Partition Tree
	3.6	Sparse Table

${ m ACM/ICPC}$ Template Manaual by CSL

4	Gra	ph Theory	27
	4.1	Union-Find Set	27
	4.2	Minimal Spanning Tree	27
		4.2.1 Kruskal	27
		4.2.2 Prim	28
	4.3	Shortest Path	28
			28
		U .	29
			30
	4.4	v	30
	4.4	*	30
			31
	4 5		
	4.5		31
		3	31
			32
	4.6		33
		•	33
		5 v	34
		4.6.3 2-SAT	35
	4.7	Eular Path	36
		4.7.1 Fleury	36
	4.8	Bipartite Graph Matching	37
		4.8.1 Hungry(Matrix)	37
		4.8.2 Hungry(List)	38
			38
		4.8.4 Hungry(Multiple)	40
		4.8.5 Kuhn-Munkres	41
	4.9		42
	1.0	4.9.1 EdmondKarp	43
		•	44
			45
			45
		4.9.4 MINCOST MAXIFIOW	41
5	Cor	nputational Geometry	49
J	5.1		49
	5.2		49
	5.2		49
			-
			49
		5.2.3 Segment-Segment	50
		5.2.4 Line-Segment	50
		5.2.5 Point-Line	50
		5.2.6 Point-Segment	50
		5.2.7 Point on Segment	50
	5.3	Polygon	51
		5.3.1 Area	51
		5.3.2 Point in Convex	51
		5.3.3 Point in Polygon	51
		5.3.4 Judge Convex	52
	5.4	Integer Points	52
		5.4.1 On Segment	52
		5.4.2 On Polygon Edge	52
			52
	5.5	v 0	52
	٥.٠	5.5.1 Circumcenter	52

${ m ACM/ICPC}$ Template Manaual by CSL

6	Dyr	namic Programming	53
	6.1	Subsequence	53
		6.1.1 Max Sum	53
		6.1.2 Longest Increase	53
		6.1.3 Longest Common Increase	54
	6.2	Digit Statistics	54
7	Oth	ners	55
	7.1	Matrix	55
		7.1.1 Matrix FastPow	55
		7.1.2 Gauss Elimination	55
	7.2	Tricks	55
		7.2.1 Stack-Overflow	55
		7.2.2 Fast-Scanner	56
		7.2.3 Strok-Sscanf	56
	7.3	Mo	56
	7.4	BigNum	57
		7.4.1 High-precision	57
		7.4.2 Complete High-precision	58
	7.5	VIM	60

0 Include

```
#include <bits/stdc++.h>
using namespace std;
#define clr(a, x) memset(a, x, sizeof(a))
#define mp(x, y) make_pair(x, y)
#define pb(x) push_back(x)
#define X first
#define Y second
#define fastin

ios_base::sync_with_stdio(0);

typedef long long ll;
typedef long double ld;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-6;
```

1 Math

1.1 Prime

1.1.1 Eratosthenes Sieve

 $O(n \log \log n)$ 筛出 maxn 内所有素数

```
notprime[i] = 0/1 0 为素数 1 为非素数
1 const int maxn = "Edit";
  bool notprime[maxn] = {1, 1};
                                   // 0 && 1 为非素数
  void GetPrime()
3
4
       for (int i = 2; i < maxn; i++)
5
           if (!notprime[i] && i <= maxn / i) // 筛到√n为止
6
               for (int \bar{j} = i * i; j < maxn; j += i)
7
                   notprime[j] = 1;
8
9
  }
```

1.1.2 Eular Sieve

O(n) 得到欧拉函数 phi[]、素数表 prime[]、素数个数 tot 传入的 n 为函数定义域上界

```
1 const int maxn = "Edit";
2 bool vis[maxn];
3 int tot, phi[maxn], prime[maxn];
4 void CalPhi(int n)
5
       clr(vis, 0);
6
7
       phi[1] = 1;
8
       tot = 0;
9
       for (int i = 2; i < n; i++)
10
            if (!vis[i])
11
                prime[tot++] = i, phi[i] = i - 1;
12
            for (int j = 0; j < tot; j++)
13
14
                if (i * prime[j] > n) break;
15
                vis[i * prime[j]] = 1;
16
                if (i % prime[j] == 0)
17
18
                    phi[i * prime[j]] = phi[i] * prime[j];
19
20
21
                }
22
                else
                    phi[i * prime[j]] = phi[i] * (prime[j] - 1);
23
24
           }
       }
25
   }
26
```

1.1.3 Prime Factorization

函数返回素因数个数 数组以 $fact[i][0]^{fact[i][1]}$ 的形式保存第 i 个素因数

```
ll fact[100][2];
   int getFactors(ll x)
2
3
        int cnt = 0;
4
       for (int i = 0; prime[i] <= x / prime[i]; i++)</pre>
5
6
            fact[cnt][1] = 0;
7
            if (x % prime[i] == 0)
8
9
                fact[cnt][0] = prime[i];
10
                while (x % prime[i] == 0) fact[cnt][1]++, x /= prime[i];
11
12
                cnt++;
            }
13
       }
14
       if (x != 1) fact[cnt][0] = x, fact[cnt++][1] = 1;
15
       return cnt;
16
17
   }
   1.1.4 Miller Rabin
   O(s \log n) 内判定 2^{63} 内的数是不是素数, s 为测定次数
   bool Miller_Rabin(ll n, int s)
2
   {
       if (n == 2) return 1;
3
       if (n < 2 | | !(n & 1)) return 0;
4
       int t = 0;
5
       11 x, y, u = n - 1;
6
       while ((u \& 1) == 0) t++, u >>= 1;
7
       for (int i = 0; i < s; i++)
8
9
            ll a = rand() \% (n - 1) + 1;
10
            11 x = Pow(a, u, n);
11
            for (int j = 0; j < t; j++)
12
13
                ll y = Mul(x, x, n);
14
                if (y == 1 \&\& x != 1 \&\& x != n - 1) return 0;
15
16
                x = y;
17
            if (x != 1) return 0;
18
19
20
       return 1;
21
  }
   1.1.5 Segment Sieve
   对区间 [a,b) 内的整数执行筛法。
   函数返回区间内素数个数
   is_prime[i-a]=true 表示 i 是素数
   a < b \le 10^{12}, b - a \le 10^6
1 const int maxn = "Edit";
2 bool is_prime_small[maxn], is_prime[maxn];
3 int prime[maxn];
4 int segment_sieve(ll a, ll b)
5
   {
6
       int tot = 0;
```

```
for (ll i = 0; i * i < b; ++i)
7
            is_prime_small[i] = true;
8
       for (ll i = 0; i < b - a; ++i)
9
            is_prime[i] = true;
10
       for (ll i = 2; i * i < b; ++i)
11
            if (is_prime_small[i])
12
13
                for (ll j = 2 * i; j * j < b; j += i)
14
                    is_prime_small[j] = false;
15
                for (ll j = max(2LL, (a + i - 1) / i) * i; j < b; j += i)
16
                    is_prime[j - a] = false;
17
18
       for (ll i = 0; i < b - a; ++i)
19
20
           if (is_prime[i]) prime[tot++] = i + a;
21
       return tot;
   }
22
   1.2 Eular phi
   1.2.1 Eular
   ll Euler(ll n)
1
2
3
       ll rt = n;
       for (int i = 2; i * i <= n; i++)
4
           if (n \% i == 0)
5
6
7
                rt -= rt / i;
8
                while (n \% i == 0) n /= i;
9
       if (n > 1) rt -= rt / n;
10
       return rt;
11
12 }
   1.2.2 Sieve
1 const int N = "Edit";
   int phi[N] = \{0, 1\};
   void CalEuler()
3
   {
4
       for (int i = 2; i < N; i++)
5
            if (!phi[i])
6
                for (int j = i; j < N; j += i)
7
8
                    if (!phi[j]) phi[j] = j;
9
                    phi[j] = phi[j] / i * (i - 1);
10
                }
11
12 }
   1.3 Basic Number Theory
   1.3.1 Extended Euclidean
   ll exgcd(ll a, ll b, ll &x, ll &y)
1
2
   {
3
       if (b) d = exgcd(b, a \% b, y, x), y -= x * (a / b);
```

```
else x = 1, y = 0;
6
        return d;
   }
7
   1.3.2 ax+by=c
   引用返回通解: X = x + k * dx, Y = y-k * dy
   引用返回的 x 是最小非负整数解, 方程无解函数返回 0
   #define Mod(a, b) (((a) % (b) + (b)) % (b))
   bool solve(ll a, ll b, ll c, ll& x, ll& y, ll& dx, ll& dy)
2
3
       if (a == 0 \&\& b == 0) return 0;
4
       11 x0, y0;
5
       11 d = exgcd(a, b, x0, y0);
6
       if (c % d != 0) return 0;
7
       dx = b / d, dy = a / d;
8
       x = Mod(x0 * c / d, dx);
9
       y = (c - a * x) / b;
10
       // y = Mod(y0 * c / d, dy); x = (c - b * y) / a;
11
12
       return 1;
13 }
   1.3.3 Multiplicative Inverse Modulo
   利用 exgcd 求 a 在模 m 下的逆元,需要保证 gcd(a, m) == 1.
1 ll inv(ll a, ll m)
2
   {
3
       11 x, y;
       ll d = exgcd(a, m, x, y);
4
       return d == 1 ? (x + m) % m : -1;
5
   }
6
   a < m 且 m 为素数时,有以下两种求法
  ll inv(ll a, ll m) { return a == 1 ? 1 : inv(m % a, m) * (m - m / a) % m; }
ll inv(ll a, ll m) { return Pow(a, m - 2, m); }
   1.4 Modulo Linear Equation
   1.4.1 Chinese Remainder Theory
   X = r_i(modm_i); 要求 m_i 两两互质
   引用返回通解 X = re + k * mo
   void crt(ll r[], ll m[], ll n, ll &re, ll &mo)
1
2
3
       mo = 1, re = 0;
       for (int i = 0; i < n; i++) mo *= m[i];</pre>
4
       for (int i = 0; i < n; i++)
5
6
7
            ll x, y, tm = mo / m[i];
8
            ll d = exgcd(tm, m[i], x, y);
            re = (re + tm * x * r[i]) \% mo;
9
10
       re = (re + mo) \% mo;
11
12 }
```

1.4.2 ExCRT

```
X = r_i(modm_i); m_i 可以不两两互质
   引用返回通解 X = re + k * mo; 函数返回是否有解
   bool excrt(ll r[], ll m[], ll n, ll &re, ll &mo)
2
3
       11 x, y;
       mo = m[0], re = r[0];
4
5
       for (int i = 1; i < n; i++)
6
           ll d = exgcd(mo, m[i], x, y);
7
           if ((r[i] - re) % d != 0) return 0;
8
           x = (r[i] - re) / d * x % (m[i] / d);
9
           re += x * mo;
10
           mo = mo / d * m[i];
           re %= mo;
13
       re = (re + mo) \% mo;
14
       return 1;
15
16 }
   1.5 Combinatorics
   1.5.1 Combination
   0 \le m \le n \le 1000
1 const int maxn = 1010;
2 11 C[maxn][maxn];
   void CalComb()
4
   {
       C[0][0] = 1;
5
       for (int i = 1; i < maxn; i++)
6
7
           C[i][0] = 1;
8
           for (int j = 1; j <= i; j++) C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
9
       }
10
11 }
   0 \le m \le n \le 10^5, 模 p 为素数
1 const int maxn = 100010;
   11 f[maxn];
   void CalFact()
3
   {
4
5
       for (int i = 1; i < maxn; i++) f[i] = (f[i - 1] * i) % mod;
6
   11 C(int n, int m) { return f[n] * inv(f[m] * f[n - m] % mod, mod) % mod; }
   1.5.2 Lucas
   1 \le n, m \le 10000000000, 1  是素数
1 const int maxp = 100010;
  11 f[maxp];
3 void CalFact(ll p)
```

```
{
4
        f[0] = 1;
5
        for (int i = 1; i \le p; i++) f[i] = (f[i - 1] * i) % p;
6
7
   ll Lucas(ll n, ll m, ll p)
8
9
   {
10
        ll ret = 1;
        while (n && m)
11
12
            11 \ a = n \% p, b = m \% p;
13
            if (a < b) return 0;
14
            ret = (ret * f[a] * Pow(f[b] * f[a - b] % p, p - 2, p)) % p;
15
            n \neq p, m \neq p;
16
17
        }
18
        return ret;
19
   1.5.3 Big Combination
   0 \le n \le 10^9, 0 \le m \le 10^4, 1 \le k \le 10^9 + 7
1 vector<int> v;
2 int dp[110];
3 ll Cal(int l, int r, int k, int dis)
4
5
        ll res = 1;
        for (int i = 1; i <= r; i++)
6
7
            int t = i;
8
            for (int j = 0; j < v.size(); j++)</pre>
9
10
11
                 int y = v[j];
                 while (t % y == 0) dp[j] += dis, t /= y;
12
13
            res = res * (ll)t \% k;
14
15
        return res;
16
17
18
  11 Comb(int n, int m, int k)
19
   {
        clr(dp, 0);
20
        v.clear();
21
22
        int tmp = k;
        for (int i = 2; i * i <= tmp; i++)
23
24
            if (tmp \% i == 0)
25
                 int num = 0:
26
                 while (tmp % i == 0) tmp /= i, num++;
27
                 v.pb(i);
28
29
        if (tmp != 1) v.pb(tmp);
30
31
        ll ans = Cal(n - m + 1, n, k, 1);
        for (int j = 0; j < v.size(); j++) ans = ans * Pow(v[j], dp[j], k) % k;
32
        ans = ans * inv(Cal(2, m, k, -1), k) % k;
33
        return ans;
34
```

35 }

1.5.4 Polya

```
推论: 一共 n 个置换,第 i 个置换的循环节个数为 \gcd(i,n)
    N*N的正方形格子,c^{n^2}+2c^{\frac{n^2+3}{4}}+c^{\frac{n^2+1}{2}}+2c^{n\frac{n+1}{2}}+2c^{\frac{n(n+1)}{2}}正六面体,\frac{m^8+17m^4+6m^2}{24}正四面体,\frac{m^4+11m^2}{12}
1 // 长度为n的项链串用C种颜色染
 2 ll solve(int c, int n)
3 {
         if (n == 0) return 0;
4
         11 ans = 0;
5
         for (int i = 1; i \le n; i++) ans += Pow(c, __gcd(i, n));
6
         if (n & 1) ans += n * Pow(c, n + 1 >> 1);
else ans += n / 2 * (1 + c) * Pow(c, n >> 1);
         return ans / n / 2;
9
10 }
    1.6 Fast Power
1 ll Mul(ll a, ll b, ll mod)
2
3
         11 t = 0;
         for (; b; b >>= 1, a = (a << 1) % mod)
4
              if (b \& 1) t = (t + a) \% mod;
5
         return t;
6
 7
   ll Pow(ll a, ll n, ll mod)
8
9
10
         ll t = 1;
         for (; n; n >>= 1, a = (a * a % mod))
11
12
             if (n \& 1) t = (t * a % mod);
         return t;
13
14 }
    1.7 Mobius Inversion
    1.7.1 Mobius
    F(n) = \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})
    F(n) = \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)
 1 ll ans;
2 const int maxn = "Edit";
3 int n, x, prime[maxn], tot, mu[maxn];
 4 bool check[maxn];
5 void calmu()
6
    {
7
         mu[1] = 1;
         for (int i = 2; i < maxn; i++)
8
9
              if (!check[i]) prime[tot++] = i, mu[i] = -1;
10
              for (int j = 0; j < tot; j++)
11
12
                   if (i * prime[j] >= maxn) break;
check[i * prime[j]] = true;
13
14
                   if (i % prime[j] == 0)
15
```

```
{
16
                     mu[i * prime[j]] = 0;
17
18
                     break;
19
                 else mu[i * prime[j]] = -mu[i];
20
21
            }
22
        }
23 }
   1.7.2 Number of Coprime-pair
   有 n 个数 (n \le 100000), 问这 n 个数中互质的数的对数
   ll solve()
1
2
   {
        int b[100005];
3
        ll _max, ans = 0;
4
        clr(b, 0);
5
6
        for (int i = 0; i < n; i++)
7
8
            scanf("%d", &x);
9
             if (x > _max) _max = x;
10
            b[x]++;
11
        for (int i = 1; i <= _max; i++)
12
13
             int cnt = 0;
14
             for (ll j = i; j \leftarrow \max; j += i) cnt += b[j];
15
            ans += 1LL * mu[i] * cnt * cnt;
16
17
18
        return ans - b[1]) / 2;
19
   }
   1.7.3 VisibleTrees
   gcd(x,y) = 1 的对数, x \le n, y \le m
1 ll solve(int n, int m)
2
   {
        if (n < m) swap(n, m);
3
        11 \text{ ans} = 0;
4
        for (int i = 1; i <= m; ++i) ans += (ll)mu[i] * (n / i) * (m / i);
5
6
        return ans;
   }
7
   1.8 Fast Transformation
   1.8.1 FFT
1 const double PI = acos(-1.0);
  //复数结构体
   struct Complex
3
4
        double x, y; //实部和虚部 x+yi
5
        Complex(double \_x = 0.0, double \_y = 0.0) { x = \_x, y = \_y; } Complex operator-(const Complex& b) const { return Complex(x - b.x, y - b.y); }
6
7
        Complex operator+(const Complex& b) const { return Complex(x + b.x, y + b.y); }
```

```
Complex operator*(const Complex& b) const { return Complex(x * b.x - y * b.y, x * b
9
       .y + y * b.x); }
   };
10
11
   * 进行FFT和IFFT前的反转变换。
12
   * 位置i和 (i二进制反转后位置) 互换
13
  * len必须取2的幂
14
  */
15
16 void change(Complex y[], int len)
17
       for (int i = 1, j = len / 2; i < len - 1; i++)
18
19
20
           if (i < j) swap(y[i], y[j]);</pre>
           //交换互为小标反转的元素, i<j保证交换一次
21
           //i做正常的+1, j左反转类型的+1, 始终保持1和j是反转的 int k = len / 2;
22
23
           while (j \ge k) j = k, k \ne 2;
24
           if (j < k) j += k;
25
       }
26
27 }
28 /*
29 * 做FFT
30 * len必须为2^k形式,
31 * on==1时是DFT, on==-1时是IDFT
32 */
33 void fft(Complex y[], int len, int on)
   {
34
       change(y, len);
35
       for (int h = 2; h <= len; h <<= 1)
36
37
           Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
38
           for (int j = 0; j < len; <math>j += h)
39
           {
40
               Complex w(1, 0);
41
               for (int k = j; k < j + h / 2; k++)
42
43
                    Complex u = y[k];
44
45
                    Complex t = w * y[k + h / 2];
                    y[k] = u + t, y[k + h / 2] = u - t;
46
                    W = W * Wn;
47
               }
48
           }
49
50
       if (on == -1)
51
           for (int i = 0; i < len; i++) y[i].x /= len;
52
53 }
   1.8.2 NTT
   模数 P 为费马素数, G 为 P 的原根。G^{\frac{P-1}{n}} 具有和 w_n = e^{\frac{2i\pi}{n}} 相似的性质。具体的 P 和 G 可参考 1.10
1 const int mod = 998244353;
2 const int G = 3;
3 11 wn[20];
4 void getwn()
       // 千万不要忘记
       for (int i = 0; i < 20; i++) wn[i] = Pow(G, (mod - 1) / (1 << i), mod);
7
   }
```

```
void change(ll y[], int len)
9
   {
       for (int i = 1, j = len / 2; i < len - 1; i++)
10
11
12
            if (i < j) swap(y[i], y[j]);
            int k = len / 2;
13
            while (j >= k) j -= k, k /= 2;
14
            if (j < k) j += k;
15
       }
16
17
   }
   void ntt(ll y[], int len, int on)
18
19
       change(y, len);
20
       for (int h = 2, id = 1; h \le len; h \le 1, id++)
21
22
            for (int j = 0; j < len; <math>j += h)
23
24
25
                11 w = 1;
                for (int k = j; k < j + h / 2; k++)
26
27
                    ll u = y[k] \% mod;
28
                    ll t = w * (y[k + h / 2] \% mod) \% mod;
29
                    y[k] = (u + t) \% \mod, y[k + h / 2] = ((u - t) \% \mod + \mod) \% \mod;
30
31
                    w = w * wn[id] % mod;
32
                }
           }
33
34
       if (on == -1)
35
36
            // 原本的除法要用逆元
37
            11 inv = Pow(len, mod - 2, mod);
38
            for (int i = 1; i < len / 2; i++) swap(y[i], y[len - i]);
39
            for (int i = 0; i < len; i++) y[i] = y[i] * inv % mod;
40
       }
41
42
   }
   1.9 Others
   1.9.1 Digit
   n^n 最左边一位数
1 int leftmost(int n)
2
       double m = n * log10((double)n);
3
       double g = m - (11)m;
4
       return (int)pow(10.0, g);
5
   }
6
   n! 位数
1 int count(ll n)
2
       if (n == 1) return 1;
3
       return (int)ceil(0.5 * log10(2 * M_PI * n) + n * log10(n) - n * log10(M_E));
4
   }
5
```

1.9.2 Josephus

n 个人围成一圈, 从第一个开始报数, 第 m 个将被杀掉

```
1 int josephus(int n, int m)
2 {
3     int r = 0;
4     for (int k = 1; k <= n; ++k) r = (r + m) % k;
5     return r + 1;
6 }</pre>
```

1.10 Formula

- 1. 约数定理: 若 $n = \prod_{i=1}^{k} p_i^{a_i}$, 则
 - (a) 约数个数 $f(n) = \prod_{i=1}^{k} (a_i + 1)$
 - (b) 约数和 $g(n) = \prod_{i=1}^{k} (\sum_{j=0}^{a_i} p_i^j)$
- 2. 小于 n 且互素的数之和为 $n\varphi(n)/2$
- 3. 若 gcd(n,i) = 1, 则 $gcd(n,n-i) = 1(1 \le i \le n)$
- 4. 错排公式: $D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^k n!}{k!} = \left[\frac{n!}{e} + 0.5\right]$
- 5. 威尔逊定理: p is $prime \Rightarrow (p-1)! \equiv -1 \pmod{p}$
- 6. 欧拉定理: $gcd(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- 7. 欧拉定理推广: $gcd(n,p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}$
- 8. 素数定理: 对于不大于 n 的素数个数 $\pi(n)$, $\lim_{n\to\infty}\pi(n)=\frac{n}{\ln n}$
- 9. 位数公式: 正整数 x 的位数 N = log10(n) + 1
- 10. 斯特灵公式 $n! \approx \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$

$$G = \gcd(C_n^1, C_n^2, ..., C_n^{n-1}) = \begin{cases} n, & n \text{ is prime} \\ 1, & n \text{ has multy prime factors} \\ p, & n \text{ has single prime factor } p \end{cases}$$

gcd(Fib(m), Fib(n)) = Fib(gcd(m, n))

- 13. 若 gcd(m,n) = 1, 则:
 - (a) 最大不能组合的数为 m*n-m-n
 - (b) 不能组合数个数 $N = \frac{(m-1)(n-1)}{2}$
- 14. $(n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1)$
- 15. 若 p 为素数,则 $(x+y+...+w)^p \equiv x^p + y^p + ... + w^p \pmod{p}$
- 16. 卡特兰数: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012 $h(0)=h(1)=1, h(n)=\frac{(4n-2)h(n-1)}{n+1}=\frac{C_{2n}^n}{n+1}=C_{2n}^n-C_{2n}^{n-1}$
- 17. 常系数线性递推:

$$a_{n+m} = \sum_{i=0}^{m-1} b_i a_{n+i} \Rightarrow \begin{pmatrix} a_{n+m} \\ a_{n+m-1} \\ \vdots \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} b_{m-1} & \cdots & b_1 & b_0 \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+m-1} \\ a_{n+m-2} \\ \vdots \\ a_n \end{pmatrix}$$

$$a_{n+m} = \sum_{i=0}^{m-1} b_i a_{n+i} + c \Rightarrow \begin{pmatrix} a_{n+m} \\ a_{n+m-1} \\ \vdots \\ a_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} b_{m-1} & \cdots & b_1 & b_0 & c \\ 1 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{n+m-1} \\ a_{n+m-2} \\ \vdots \\ a_n \\ 1 \end{pmatrix}$$

18. FFT 常用素数

FFI 吊用系数			
$r 2^k + 1$	r	k	g
3	1	1	2
5	1	2	2
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

2 String Processing

2.1 KMP

```
1 // 返回y中x的个数
  const int N = "Edit";
  int next[N];
3
   void initkmp(char x[], int m)
4
5
        int i = 0, j = next[0] = -1;
6
7
        while (i < m)
8
        {
            while (j != -1 \&\& x[i] != x[j]) j = next[j];
9
10
            next[++i] = ++j;
        }
11
12
   }
int kmp(char x\lceil, int m, char y\lceil, int n)
   {
14
        int i, j, ans;
15
        i = j = ans = 0;
16
        initkmp(x, m);
17
        while (i < n)
18
19
            while (j != -1 \&\& y[i] != x[j]) j = next[j];
20
            i++, j++;
if (j >= m) ans++, j = next[j];
21
22
23
24
        return ans;
  }
25
```

2.2 ExtendKMP

```
1 //next[i]:x[i...m-1]与x[0...m-1]的最长公共前缀
2 //extend[i]:y[i...n-1]与x[0...m-1]的最长公共前缀
3 const int N = "Edit"
4 int next[N], extend[N];
5 void pre_ekmp(char x[], int m)
6
7
       next[0] = m;
8
       int j = 0;
       while (j + 1 < m \&\& x[j] == x[j + 1]) j++;
9
       next[1] = j;
10
11
       int k = 1
       for (int i = 2; i < m; i++)
12
13
           int p = next[k] + k - 1;
14
           int L = next[i - k];
15
           if (i + L 
16
               next[i] = L;
17
           else
18
19
           {
               j = max(0, p - i + 1);
20
21
               while (i + j < m \&\& x[i + j] == x[j]) j++;
22
               next[i] = j;
               k = i;
23
           }
24
       }
25
26 }
```

```
void ekmp(char x[], int m, char y[], int n)
27
28
   {
       pre_ekmp(x, m, next);
29
30
       int j = 0;
       while (j < n \&\& j < m \&\& x[j] == y[j]) j++;
31
       extend[0] = j;
32
       int k = 0;
33
       for (int i = 1; i < n; i++)
34
35
36
            int p = extend[k] + k - 1;
37
            int L = next[i - k];
38
            if (i + L 
                extend[i] = L;
39
            else
40
            {
41
                j = max(0, p - i + 1);
42
                while (i + j < n \&\& j < m \&\& y[i + j] == x[j]) j++;
43
44
                extend[i] = j, k = i;
45
            }
       }
46
  }
47
   2.3 Manacher
   O(n) 求解最长回文子串
1 const int N = "Edit";
  char s[N], str[N << 1];</pre>
3 int p[N << 1];</pre>
   void Manacher(char s□, int& n)
4
5
       str[0] = '$', str[1] = '#';
6
       for (int i = 0; i < n; i++) str[(i << 1) + 2] = s[i], <math>str[(i << 1) + 3] = '\#';
7
       n = 2 * n + 2;
8
9
       str[n] = 0;
10
       int mx = 0, id;
       for (int i = 1; i < n; i++)
11
12
            p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
13
            while (str[i - p[i]] == str[i + p[i]]) p[i]++;
14
15
            if (p[i] + i > mx) mx = p[i] + i, id = i;
       }
16
17
   }
  int solve(char s[])
18
   {
19
       int n = strlen(s);
20
21
       Manacher(s, n);
22
       return *max_elememt(p, p + n) - 1;
23
  }
   2.4 Aho-Corasick Automaton
1 const int maxn = "Edit";
   struct Trie
^{2}
3
       int ch[maxn][26], f[maxn], val[maxn];
       int sz, rt;
5
```

```
int newnode() { clr(ch[sz], -1), val[sz] = 0; return sz++; }
6
        void init() { sz = 0, rt = newnode(); }
7
        inline int idx(char c) { return c - 'A'; };
8
        void insert(const char* s)
9
10
            int u = 0, n = strlen(s);
11
            for (int i = 0; i < n; i++)
12
            {
13
                int c = idx(s[i]);
14
                if (ch[u][c] == -1) ch[u][c] = newnode();
15
16
                u = ch[u][c];
17
            }
            val[u]++;
18
        }
19
        void build()
20
21
            queue<int> q;
22
23
            f[rt] = rt;
            for (int c = 0; c < 26; c++)
24
25
                if (~ch[rt][c])
26
27
                     f[ch[rt][c]] = rt, q.push(ch[rt][c]);
                else
28
29
                     ch[rt][c] = rt;
30
            while (!q.empty())
31
32
                int u = q.front();
33
                q.pop();
34
                // val[u] |= val[f[u]];
35
                for (int c = 0; c < 26; c++)
36
37
                     if (~ch[u][c])
38
                         f[ch[u][c]] = ch[f[u]][c], q.push(ch[u][c]);
39
                    else
40
                         ch[u][c] = ch[f[u]][c];
41
42
                }
43
            }
        }
44
        //返回主串中有多少模式串
45
        int query(const char* s)
46
47
            int u = rt, n = strlen(s);
48
49
            int res = 0;
            for (int i = 0; i < n; i++)
50
            {
51
52
                int c = idx(s[i]);
                u = ch[u][c];
53
                int tmp = u;
54
55
                while (tmp != rt)
56
57
                     res += val[tmp];
                     val[tmp] = 0;
58
                     tmp = f[tmp];
59
60
61
62
            return res;
63
        }
64 };
```

2.5 Suffix Array

```
1 //倍增算法构造后缀数组,复杂度0(nlogn)
2 const int maxn = "Edit";
3 char s[maxn];
4 int sa[maxn], t[maxn], t2[maxn], c[maxn], rank[maxn], height[maxn];
5 //n为字符串的长度,字符集的值为0~m-1
6 void build_sa(int m, int n)
7
   {
8
       n++;
       int *x = t, *y = t2;
9
10
       //基数排序
       for (int i = 0; i < m; i++) c[i] = 0;
11
12
       for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
13
       for (int i = 1; i < m; i++) c[i] += c[i - 1];
       for (int i = n - 1; \sim i; i--) sa[--c[x[i]]] = i;
14
       for (int k = 1; k <= n; k <<= 1)
15
16
           //直接利用SQ数组排序第二关键字
17
           int p = 0;
18
           for (int i = n - k; i < n; i++) y[p++] = i;
19
           for (int i = 0; i < n; i++)
20
               if (sa[i] >= k) y[p++] = sa[i] - k;
21
           //基数排序第一关键字
22
           for (int i = 0; i < m; i++) c[i] = 0;
23
           for (int i = 0; i < n; i++) c[x[y[i]]]++;
24
           for (int i = 0; i < m; i++) c[i] += c[i - 1];
25
26
           for (int i = n - 1; \sim i; i--) sa[--c[x[y[i]]]] = y[i];
27
           //根据Sa和y数组计算新的X数组
28
           swap(x, y);
           p = 1;
29
           x[sa[0]] = 0;
30
31
           for (int i = 1; i < n; i++)
32
               x[sa[i]] = y[sa[i - 1]] == y[sa[i]] & y[sa[i - 1] + k] == y[sa[i] + k] ? p
        -1:p++;
33
           if (p >= n) break; //以后即使继续倍增, sa也不会改变, 推出
                              //下次基数排序的最大值
34
           m = p;
35
       }
       n--;
36
37
       int k = 0:
38
       for (int i = 0; i <= n; i++) rank[sa[i]] = i;
       for (int i = 0; i < n; i++)
39
40
           if (k) k--;
41
           int j = sa[rank[i] - 1];
42
43
           while (s[i + k] == s[j + k]) k++;
           height[rank[i]] = k;
44
       }
45
   }
46
47
   int dp[maxn][30];
   void initrmq(int n)
50
   {
       for (int i = 1; i <= n; i++)
51
           dp[i][0] = height[i];
52
       for (int j = 1; (1 << j) <= n; j++)
53
           for (int i = 1; i + (1 << j) - 1 <= n; i++)
54
               dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
55
56 }
```

```
int rmq(int 1, int r)
57
    {
58
59
          int k = 0;
         while ((1 << (k + 1)) <= r - l + 1) k++;
return min(dp[l][k], dp[r - (1 << k) + 1][k]);</pre>
60
61
62
63
   // 求两个后缀的最长公共前缀
64
    int lcp(int a, int b)
65
    {
          a = rank[a], b = rank[b];
66
         if (a > b) swap(a, b);
return rmq(a + 1, b);
67
68
69 }
```

3 Data Structure

3.1 Binary Indexed Tree

```
O(\log n) 查询和修改数组的前缀和
  // 注意下标应从1开始 n是全局变量
   const int maxn = "Edit";
3
  int bit[N], n;
4 int sum(int x)
5 {
6
       int s = 0;
7
       for (int i = x; i; i -= i \& -i)
8
           s += bit[i];
9
       return s;
10 }
   void add(int x, int v)
11
   {
12
13
       for (int i = x; i <= n; i += i \& -i)
14
           bit[i] += v;
  }
15
   3.2 Segment Tree
  #define lson rt << 1</pre>
                              // 左儿子
  #define rson rt << 1 | 1</pre>
                              // 右儿子
3 #define Lson l, m, lson
                              // 左子树
  #define Rson m + 1, r, rson // 右子树
                              // 用lson和rson更新rt
  void PushUp(int rt);
  void PushDown(int rt[, int m]);
                                                  // rt的标记下移, m为区间长度(若与标记有关)
  void build(int 1, int r, int rt);
                                                 // 以rt为根节点,对区间[l, r]建立线段树
  void update([...,] int l, int r, int rt)
                                                 // rt[l, r]内寻找目标并更新
9 int query(int L, int R, int l, int r, int rt) // rt[l, r]内查询[L, R]
   3.2.1 Single-point Update
   const int maxn = "Edit";
  int sum[maxn << 2]; // sum[rt]用于维护区间和
3
   void PushUp(int rt) { sum[rt] = sum[lson] + sum[rson]; }
4
   void build(int l, int r, int rt)
5
   {
6
       if (l == r)
7
           scanf("%d", &sum[rt]); // 建立的时候直接输入叶节点
8
9
           return;
10
       int m = (l + r) >> 1;
11
12
       build(Lson);
       build(Rson);
13
14
       PushUp(rt);
15
   }
   void update(int p, int add, int l, int r, int rt)
16
17
       if (l == r)
18
19
           sum[rt] += add;
20
           return:
21
```

```
22
        int m = (l + r) >> 1;
23
24
        if (p \ll m)
            update(p, add, Lson);
25
26
        else
27
            update(p, add, Rson);
28
        PushUp(rt);
29
   }
  int query(int L, int R, int l, int r, int rt)
30
31
32
        if (L <= l && r <= R) return sum[rt];</pre>
33
        int m = (l + r) >> 1, s = 0;
        if (L <= m) s += query(L, R, Lson);</pre>
34
35
        if (m < R) s += query(L, R, Rson);
36
        return s;
37
   3.2.2 Interval Update
1 const int maxn = "Edit";
   int seg[maxn << 2], sum[maxn << 2]; // seg[rt]用于存放懒惰标记, 注意PushDown时标记的传递
   void PushUp(int rt) { sum[rt] = sum[lson] + sum[rson]; }
4
   void PushDown(int rt, int m)
5
   {
6
        if (seg[rt] == 0) return;
7
        seg[lson] += seg[rt];
        seg[rson] += seg[rt];
sum[lson] += seg[rt] * (m - (m >> 1));
8
9
        sum[rson] += seg[rt] * (m >> 1);
10
        seg[rt] = 0;
11
12
   }
13 void build(int l, int r, int rt)
14 {
15
        seg[rt] = 0;
        if(l == r)
16
        {
17
            scanf("%lld", &sum[rt]);
18
19
            return;
20
        }
21
        int m = (l + r) >> 1;
        build(Lson);
22
        build(Rson);
23
24
        PushUp(rt);
25
   void update(int L, int R, int add, int l, int r, int rt)
   {
27
        if (L <= 1 && r <= R)
28
29
            seg[rt] += add;
30
            sum[rt] += add * (r - l + 1);
31
32
            return;
33
34
        PushDown(rt, r - l + 1);
        int m = (l + r) >> 1;
35
        if (L <= m) update(L, R, add, Lson);</pre>
36
        if (m < R) update(L, R, add, Rson);</pre>
37
        PushUp(rt);
38
39 }
```

```
int query(int L, int R, int l, int r, int rt)
41
   {
        if (L <= l && r <= R) return sum[rt];</pre>
42
        PushDown(rt, r - l + 1);
43
44
        int m = (l + r) >> 1, ret = 0;
        if (L <= m) ret += query(L, R, Lson);</pre>
45
        if (m < R) ret += query(L, R, Rson);</pre>
46
        return ret;
47
48 }
        Binary Search Tree
   3.3.1 Treap
   struct Node
1
   {
2
        Node* ch[2]; // 左右子树
3
                      // 随机优先级
4
        int r;
                      // 值
5
        int v;
        int s;
6
                      // 结点总数
7
        Node(int v = 0) : v(v)
8
9
            ch[0] = ch[1] = NULL;
            r = rand();
10
            s = 1;
11
12
        }
13
        int cmp(int x) const
14
15
            if (x == v) return -1;
            return x < v ? 0 : 1;
16
17
18
        void maintain()
19
20
            s = 1;
            if (ch[0] != NULL) s += ch[0]->s;
21
            if (ch[1] != NULL) s += ch[1]->s;
22
23
24
   };
25 void rotate(Node*& o, int d)
26
   {
27
        Node* k = o \rightarrow ch[d \land 1];
        o->ch[d \land 1] = k->ch[d];
28
        k \rightarrow ch[d] = 0;
29
30
        o->maintain();
        k->maintain();
31
32
        o = k;
33
   void insert(Node*& o, int x)
34
35
   {
        if (o == NULL)
36
            o = new Node(x);
37
38
        else
        {
39
40
            int d = (x < o->v ? 0 : 1); // 不要用cmp函数, 因为可能会有相同结点
41
            insert(o->ch[d], x);
            if (o->ch[d]->r > o->r) rotate(o, d \land 1);
42
43
44
        o->maintain();
45
   }
```

```
Node* find(Node* o, int x)
46
47
   {
        if (o == NULL) return NULL;
48
49
        if (x == o->v) return o;
        return x < o \rightarrow v? find(o \rightarrow ch[0], x): find(o \rightarrow ch[1], x);
50
51
52
   // 要确保结点存在
   void remove(Node*& o, int x)
53
   {
54
        int d = o \rightarrow cmp(x);
55
56
        int ret = 0;
57
        if (d == -1)
58
             Node* u = o;
59
             if (o->ch[0] != NULL && o->ch[1] != NULL)
60
61
                 int d2 = (o->ch[0]->r > o->ch[1]->r ? 1 : 0);
62
                 rotate(o, d2);
63
                 remove(o->ch[d2], x);
64
             }
65
             else
66
             {
67
                 if (o->ch[0] == NULL)
68
69
                      o = o \rightarrow ch[1];
70
                      o = o \rightarrow ch[0];
71
72
                 delete u;
             }
73
74
        else remove(o->ch[d], x);
75
76
        if (o != NULL) o->maintain();
77
   int kth(Node* o, int k)
78
79
   {
        if (0 == NULL || k \le 0 || k > 0 -> s) return 0;
80
        int s = (o - > ch[0] == NULL ? 0 : o - > ch[0] - > s);
81
82
        if (k == s + 1)
83
             return o->v;
        else if (k <= s)
84
85
             return kth(o->ch[0], k);
86
        else
             return kth(o->ch[1], k - s - 1);
87
88
   // 在以O为根的子树中, 值比X小的结点总数加1
   int rank(Node* o, int x)
90
91 {
92
        if (o == NULL) return 1;
        if (x \le o \rightarrow v) return rank(o \rightarrow ch[0], x);
93
        return rank(o->ch[1], x) + (o->ch[0] == NULL ? 0 : o->ch[0]->s) + 1;
94
95 }
    3.3.2 Splay
1
   struct Node
2
        Node* ch[2];
3
4
        int s;
        int flip;
5
```

```
int v;
6
7
        int cmp(int k) const
8
             int d = k - ch[0] -> s;
9
             if (d == 1) return -1;
10
             return d <= 0 ? 0 : 1;
11
12
        void maintain() { s = ch[0]->s + ch[1]->s + 1; }
13
        void pushdown()
14
15
        {
             if (flip)
16
17
             {
                  flip = 0;
18
                  swap(ch[0], ch[1]);
19
                  ch[0] \rightarrow flip = !ch[0] \rightarrow flip;
20
                  ch[1]->flip = !ch[1]->flip;
21
             }
22
        }
23
24
    Node* null = new Node();
26 void rotate(Node*& o, int d)
27
28
        Node* k = o \rightarrow ch[d \land 1];
29
        o \rightarrow ch[d \land 1] = k \rightarrow ch[d];
30
        k \rightarrow ch[d] = o;
        o->maintain();
31
        k->maintain();
32
        o = k;
33
34
    void splay(Node*& o, int k)
35
36
    {
37
        o->pushdown();
        int d = o \rightarrow cmp(k);
38
        if (d == 1) k -= o -> ch[0] -> s + 1;
39
        if (d != -1)
40
41
42
             Node* p = o \rightarrow ch[d];
43
             p->pushdown();
             int d2 = p - cmp(k);
44
             int k2 = (d2 == 0 ? k : k - p -> ch[0] -> s - 1);
45
             if (d2 != -1)
46
47
                  splay(p->ch[d2], k2);
48
49
                  if (d == d2)
                       rotate(o, d \wedge 1);
50
                  else
51
52
                       rotate(o->ch[d], d);
53
             rotate(o, d \wedge 1);
54
55
        }
56
    }
   // 合并left和right。假定left的所有元素比right小。注意right可以是null, 但left不可以
    Node* merge(Node* left, Node* right)
58
59
        splay(left, left->s);
60
        left->ch[1] = right;
61
62
        left->maintain();
63
        return left;
64 }
```

```
65 // 把o的前k小结点放在left里, 其他的放在right里。1<=k<=o->s。当k=o->s时, right=null
   void split(Node* o, int k, Node*& left, Node*& right)
66
67
        splay(o, k);
68
69
        left = o;
        right = o \rightarrow ch[1];
70
        o->ch[1] = null;
71
        left->maintain();
72
   }
73
   const int maxn = "Edit";
   struct SplaySequence
75
76
   {
77
        int n;
        Node seq[maxn];
78
        Node* root;
79
        Node* build(int sz)
80
81
            if (!sz) return null;
82
            Node* L = build(sz / 2);
83
            Node* o = &seq[++n];
84
            o->v = n; // 节点编号
85
            o \rightarrow ch[0] = L;
86
            o->ch[1] = build(sz - sz / 2 - 1);
87
            o \rightarrow flip = o \rightarrow s = 0;
88
89
            o->maintain();
90
            return o;
91
        void init(int sz)
92
93
            n = 0;
94
95
            null->s = 0;
96
            root = build(sz);
97
        }
   };
98
   3.4 Functional Segment Tree
1 // 静态查询区间第k小的值
  const int maxn = "Edit";
3 int a[maxn], rt[maxn];
4 int cnt;
  int lson[maxn << 5], rson[maxn << 5], sum[maxn << 5];</pre>
   #define Lson l, m, lson[x], lson[y]
   #define Rson m + 1, r, rson[x], rson[y]
8
   void update(int p, int l, int r, int& x, int y)
9
   {
10
        lson[++cnt] = lson[y], rson[cnt] = rson[y], sum[cnt] = sum[y] + 1, x = cnt;
11
        if (l == r) return;
12
        int m = (l + r) >> 1;
13
14
        if (p <= m) update(p, Lson);</pre>
        else update(p, Rson);
15
   }
16
   int query(int 1, int r, int x, int y, int k)
17
18
19
        if (l == r) return l;
        int m = (l + r) >> 1;
20
        int s = sum[lson[y]] - sum[lson[x]];
21
```

```
if (s >= k) return query(Lson, k);
22
23
       else return query(Rson, k - s);
24 }
   3.5 Partition Tree
   #define Lson l, m, dep + 1
1
2
   #define Rson m + 1, r, dep + 1
3
4 int tree[20][maxn];
                         //表示每层每个位置的值
5 int sorted[maxn];
                         //已经排序好的数
  int toleft[20][maxn]; //toleft[p][i]表示第i层从1到i有数分入左边
7 void build(int l, int r, int dep)
8
       if (l == r) return;
9
       int m = (l + r) >> 1, same = m - l + 1; //表示等于中间值而且被分入左边的个数
10
       for (int i = 1; i <= r; i++)</pre>
11
           if (tree[dep][i] < sorted[m])</pre>
12
                same--;
13
14
       int lpos = 1;
       int rpos = m + 1;
15
16
       for (int i = 1; i <= r; i++)
17
           if (tree[dep][i] < sorted[m])</pre>
18
               tree[dep + 1][lpos++] = tree[dep][i];
19
           else if (tree[dep][i] == sorted[m] && same > 0)
20
            {
21
               tree[dep + 1][lpos++] = tree[dep][i];
22
               same--;
23
           }
24
           else
25
                tree[dep + 1][rpos++] = tree[dep][i];
26
           toleft[dep][i] = toleft[dep][l - 1] + lpos - l;
27
28
29
       build(Lson);
       build(Rson);
30
31 }
32 //查询区间第k小的数
33 int query(int L, int R, int k, int l, int r, int dep)
34 {
       if (L == R) return tree[dep][L];
35
       int m = (l + r) >> 1;
36
       int cnt = toleft[dep][R] - toleft[dep][L - 1];
37
       if (cnt >= k)
38
39
            int newl = l + toleft[dep][L - 1] - toleft[dep][l - 1];
40
           int newr = newl + cnt - 1:
41
42
           return query(newl, newr, k, Lson);
43
       }
       else
44
45
            int newr = R + toleft[dep][r] - toleft[dep][R];
46
47
           int newl = newr - (R - L - cnt);
           return query(newl, newr, k - cnt, Rson);
48
       }
49
50 }
```

3.6 Sparse Table

```
1 const int maxn = "Edit";
2 int mmax[maxn][30], mmin[maxn][30];
  int a[maxn], n, k;
4 void init()
5
   {
       for (int i = 1; i \le n; i++) mmax[i][0] = mmin[i][0] = a[i];
6
7
       for (int j = 1; (1 << j) <= n; j++)
           for (int i = 1; i + (1 << j) - 1 <= n; i++)
8
9
               mmax[i][j] = max(mmax[i][j - 1], mmax[i + (1 << (j - 1))][j - 1]);
10
               mmin[i][j] = min(mmin[i][j - 1], mmin[i + (1 << (j - 1))][j - 1]);
11
12
13
  // op=0/1 返回[l,r]最大/小值
14
15 int rmq(int l, int r, int op)
16
       int k = 0;
17
       while ((1 << (k + 1)) <= r - l + 1) k++;
18
       if (op == 0)
19
20
           return max(mmax[l][k], mmax[r - (1 << k) + 1][k]);
       return min(mmin[l][k], mmin[r - (1 \ll k) + 1][k]);
21
22 }
   二维 RMQ
   void init()
1
2
   {
3
       for (int i = 0; (1 << i) <= n; i++)
           for (int j = 0; (1 << j) <= m; j++)
4
5
6
                if (i == 0 \&\& j == 0) continue;
7
                for (int row = 1; row + (1 << i) - 1 <= n; row++)
                    for (int col = 1; col + (1 << j) - 1 <= m; col++)
8
                        //当x或y等于Ø的时候,就相当于一维的RMQ了
9
                        if (i == 0)
10
                            dp[row][col][i][j] = max(dp[row][col][i][j - 1],
11
                                                  dp[row][col + (1 << (j - 1))][i][j - 1]);
12
                        else if (j == 0)
13
                            dp[row][col][i][j] = max(dp[row][col][i - 1][j],
14
                                                  dp[row + (1 << (i - 1))][col][i - 1][j]);
15
                        else
16
                            dp[row][col][i][j] = max(dp[row][col][i][j - 1],
17
                                                  dp[row][col + (1 << (j - 1))][i][j - 1]);
18
           }
19
21 int rmq(int x1, int y1, int x2, int y2)
22
   {
23
       int kx = 0, ky = 0;
       while (x1 + (1 << (1 + kx)) - 1 <= x2) kx++;
24
       while (y1 + (1 << (1 + ky)) - 1 <= y2) ky++;
25
       int m1 = dp[x1][y1][kx][ky];
26
       int m2 = dp[x2 - (1 \ll kx) + 1][y1][kx][ky];
27
       int m3 = dp[x1][y2 - (1 << ky) + 1][kx][ky];
28
29
       int m4 = dp[x2 - (1 << kx) + 1][y2 - (1 << ky) + 1][kx][ky];
30
       return max(max(m1, m2), max(m3, m4));
31 }
```

4 Graph Theory

4.1 Union-Find Set

```
1 const int maxn = "Edit";
   int n, fa[maxn], ra[maxn];
   void init()
4
   {
5
       for (int i = 0; i \le n; i++) fa[i] = i, ra[i] = 0;
   }
6
   int find(int x)
7
8
   {
       return fa[x] != x ? fa[x] = find(fa[x]) : x;
9
10
   void unite(int x, int y)
11
12
   {
       x = find(x), y = find(y);
13
14
       if (x == y) return;
       if (ra[x] < ra[y])
15
16
            fa[x] = y;
17
       else
18
       {
19
            fa[y] = x;
            if (ra[x] == ra[y]) ra[x]++;
20
21
22
   bool same(int x, int y) { return find(x) == find(y); }
```

4.2 Minimal Spanning Tree

4.2.1 Kruskal

```
1 typedef pair<int, PII> Edge;
   vector<Edge> G;
  void add_edge(int u, int v, int d) { G.pb(mp(d, mp(u, v))); }
4 int Kruskal(int n)
5
6
       init(n);
7
       sort(G.begin(), G.end());
       int m = G.size();
8
       int num = 0, ret = 0;
9
       for (int i = 0; i < m; i++)
10
11
            Edge p = G[i];
12
            int x = p.Y.X, y = p.Y.Y;
13
            int d = p.X;
14
            if (!same(x, y))
15
            {
16
                unite(x, y);
17
18
                num++;
19
                ret += d;
20
            if (num == n - 1) break;
21
22
23
       return ret;
24 }
```

4.2.2 Prim

1 // 耗费矩阵cost□□,标号从0开始,0~n-1

```
// 返回最小生成树的权值,返回-1表示原图不连通
3 const int maxn = "Edit";
4 bool vis[maxn];
5 int lowc[maxn];
  int Prim(int cost[][maxn], int n)
7
   {
8
       int ans = 0;
9
       clr(vis, 0);
       vis[0] = 1;
10
       for (int i = 1; i < n; i++)
11
            lowc[i] = cost[0][i];
12
       for (int i = 1; i < n; i++)
13
14
            int minc = INF;
15
            int p = -1;
16
            for (int j = 0; j < n; j++)
17
                if (!vis[j] && minc > lowc[j])
18
19
                    minc = lowc[j];
20
21
                    p = j;
22
            if (minc == INF) return -1;
23
            vis[p] = 1;
24
25
            ans += minc;
            for (int j = 0; j < n; j++)
    if (!vis[j] && lowc[j] > cost[p][j])
26
27
                    lowc[j] = cost[p][j];
28
29
30
       return ans;
31 }
   4.3 Shortest Path
   4.3.1 Dijkstra
1 // pair<权值, 点>
2 // 记得初始化
3 const int maxn = "Edit";
4 typedef pair<int, int> PII;
5 typedef vector<PII> VII;
6 VII G[maxn];
   int vis[maxn], dis[maxn];
7
8
   void init(int n)
9
   {
       for (int i = 0; i < n; i++) G[i].clear();</pre>
10
11 }
12 void add_edge(int u, int v, int w) { G[u].pb(mp(w, v)); }
  void Dijkstra(int s, int n)
14
   {
       clr(vis, 0), clr(dis, 0x3f);
15
16
       dis[s] = 0;
17
       priority_queue<PII, VII, greater<PII> > q;
18
       q.push(mp(dis[s], s));
19
       while (!q.empty())
20
            PII t = q.top();
21
```

```
22
            int x = t.Y;
23
            q.pop();
            if (vis[x]) continue;
24
            vis[x] = 1;
25
            for (int i = 0; i < G[x].size(); i++)
26
27
28
                int y = G[x][i].Y, w = G[x][i].X;
29
                if (!vis[y] \&\& dis[y] > dis[x] + w)
30
                    dis[y] = dis[x] + w;
31
32
                    q.push(mp(dis[y], y));
33
                }
            }
34
35
       }
   }
36
   4.3.2 SPFA
1 // G[u] = mp(v, w)
2 // SPFA()返回0表示存在负环
3 const int maxn = "Edit";
4 vector<PII> G[maxn];
5 bool vis[maxn];
6 int dis[maxn];
  int inqueue[maxn];
8
   void init(int n)
9
   {
       for (int i = 0; i < n; i++) G[i].clear();
10
11 }
12 void add_edge(int u, int v, int w) { G[u].pb(mp(v, w)); }
13 bool SPFA(int s, int n)
14
   {
       clr(vis, 0), clr(dis, 0x3f), clr(inqueue, 0);
15
       dis[s] = 0;
16
       queue<int> q; // 待优化的节点入队
17
       q.push(s);
18
19
       while (!q.empty())
20
            int x = q.front();
21
22
            q.pop();
            vis[x] = false;
23
24
            for (int i = 0; i < G[x].size(); i++)
25
                int y = G[x][i].X, w = G[x][i].Y;
26
27
                if (dis[y] > dis[x] + w)
28
                    dis[y] = dis[x] + w;
29
30
                    if (!vis[y])
31
                    {
                        q.push(y);
32
33
                        vis[y] = true;
                        if (++inqueue[y] >= n) return 0;
34
35
                    }
36
                }
37
            }
38
39
       return 1;
40 }
```

4.3.3 Floyd

```
O(n^3) 求出任意两点间最短路
1 // 领接矩阵存图需注意判断重边
  const int maxn = "Edit";
   int G[maxn][maxn];
   void init(int n)
5
   {
       clr(G, 0x3f);
6
       for (int i = 0; i < n; i++) G[i][i] = 0;
7
8
   void add_edge(int u, int v, int w) { G[u][v] = min(G[u][v], w); }
   void Floyd(int n)
11
   {
       for (int k = 0; k < n; k++)
12
13
           for (int i = 0; i < n; i++)
               for (int j = 0; j < n; j++)
14
                   G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
15
   }
16
   4.4 Topo Sort
   4.4.1 Matrix
1 // 存图前记得初始化
  // Ans存放拓排结果, G为邻接矩阵, deg为入度信息
  // 排序成功返回1, 存在环返回0
  const int maxn = "Edit";
  int Ans[maxn];
                     // 存放拓扑排序结果
  int G[maxn][maxn]; // 存放图信息
                    // 存放点入度信息
   int deg[maxn];
   void init() { clr(G, 0), clr(deg, 0), clr(Ans, 0); }
9 void add_edge(int u, int v)
10
  {
11
       if (G[u][v]) return;
       G[u][v] = 1, deg[v]++;
12
13
14
   bool Toposort(int n)
15
   {
       int tot = 0;
16
17
       queue<int> q;
       for (int i = 0; i < n; ++i)
18
19
           if (deg[i] == 0) q.push(i);
       while (!q.empty())
20
21
       {
           int v = q.front();
22
23
           q.pop();
           Ans[tot++] = v;
24
           for (int i = 0; i < n; ++i)
25
26
               if (G[v][i] == 1)
27
                   if (--deg[i] == 0) q.push(i);
28
       if (tot < n) return false;</pre>
29
       return true;
30
31
  }
```

4.4.2 List

```
1 // 存图前记得初始化
   // Ans排序结果, G邻接表, deg入度, map用于判断重边
3 // 排序成功返回1, 存在环返回0
4 const int maxn = "Edit";
5 int Ans[maxn];
6 vector<int> G[maxn];
7 int deg[maxn];
  map<PII, bool> S;
  void init(int n)
10 {
       S.clear();
11
12
       for (int i = 0; i < n; i++) G[i].clear();</pre>
       clr(deg, 0), clr(Ans, 0);
13
   }
14
   void add_edge(int u, int v)
15
16
   {
       if (S[mp(u, v)]) return;
17
18
       G[u].pb(v);
19
       S[mp(u, v)] = 1;
20
       deg[v]++;
21
22 bool Toposort(int n)
23
   {
       int tot = 0;
24
       queue<int> q;
25
       for (int i = 0; i < n; ++i)
26
27
           if (deg[i] == 0) q.push(i);
       while (!q.empty())
28
29
30
           int v = q.front();
           que.pop();
31
32
           Ans[tot++] = v;
           for (int i = 0; i < G[v].size(); ++i)</pre>
33
34
35
               int t = G[v][i];
36
               if (--deg[t] == 0) q.push(t);
           }
37
38
       if (tot < n) return false;</pre>
39
40
       return true;
   }
41
   4.5 LCA
   4.5.1 Tarjan
1 // Tarjan离线算法
2 // 时间复杂度O(n+q)
3 const int maxn = "Edit";
4 int par[maxn];
                                        //并查集
5 int ans[maxn];
                                        //存储答案
6 vector<int> G[maxn];
                                        //邻接表
   vector<int> query[maxn], num[maxn]; //存储查询信息
7
  bool vis[maxn];
                                        //是否被遍历
9 inline void init(int n)
10 {
       for (int i = 1; i <= n; i++)
11
```

```
{
12
            G[i].clear();
13
            query[i].clear();
14
            num[i].clear();
15
16
            par[i] = i;
            vis[i] = 0;
17
       }
18
   }
19
  inline void add_edge(int u, int v) { G[u].pb(v); }
20
   inline void add_query(int id, int u, int v)
23
       query[u].pb(v), query[v].pb(u);
       num[u].pb(id), num[v].pb(id);
24
   }
25
   void tarjan(int u)
26
27
28
       vis[u] = 1;
       for (int i = 0; i < G[u].size(); i++)</pre>
29
30
            int v = G[u][i];
31
32
            if (vis[v]) continue;
33
            tarjan(v);
            unite(u, v);
34
35
36
       for (int i = 0; i < query[u].size(); i++)</pre>
37
            int v = query[u][i];
38
            if (!vis[v]) continue;
39
            ans[num[u][i]] = find(v);
40
       }
41
   }
42
   4.5.2 DFS+ST
1 // DFS+ST在线算法
2 // 时间复杂度O(nlogn+q)
3 const int maxn = "Edit";
4 vector<int> G[maxn];
5 int dfs_clock;
6
  int pos[maxn], f[maxn << 1], dep[maxn << 1], dp[maxn << 1][30];</pre>
7
   inline void init(int n)
8
9
        for (int i = 0; i < n; i++) G[i].clear();
       dfs\_clock = 0;
10
11
   inline void add_edge(int u, int v) { G[u].pb(v); }
12
   void dfs(int u, int pre, int depth)
13
   {
14
       f[++dfs\_clock] = u;
                                 //记录遍历顺序
15
       pos[u] = dfs_clock;
                                //记录某个节点在f中第一次出现的位置
16
       dep[dfs_clock] = depth; //记录路径
17
       for (int i = 0; i < G[i].size(); i++)</pre>
18
19
20
            int v = G[u][i];
            if (v == pre) continue;
21
            dfs(v, u, depth + 1);
22
            f[++dfs\_clock] = u;
23
24
            dep[dfs_clock] = depth;
```

```
}
25
26
   void initrmq(int n) // n = dfs_clock
27
28
   {
       for (int i = 1; i \le n; i++) dp[i][0] = i;
29
       for (int j = 1; (1 << j) <= n; j++)
30
            for (int i = 0; i + (1 << j) - 1 <= tot; <math>i++)
31
32
                if (dep[dp[i][j - 1]] < dep[dp[i + (1 << (j - 1))][j - 1]])</pre>
33
34
                    dp[i][j] = dp[i][j - 1];
35
                    dp[i][j] = dp[i + (1 << (j - 1))][j - 1];
36
            }
37
   }
38
   int rmq(int 1, int r)
39
40
       l = pos[l], r = pos[r];
41
42
       if (l > r) swap(l, r);
       int k = 0;
43
       while ((1 << (k + 1)) <= r - l + 1) k++;
44
       return (dep[l][k] < dep[r - (1 << k) + 1][k])? dp[l][k] : dp[r - (1 << k) + 1][k];
45
  }
46
   4.6 Depth-First Traversal
   4.6.1 Biconnected-Component
1 //割顶的bccno无意义
  const int maxn = "Edit";
3 int pre[maxn], iscut[maxn], bccno[maxn], dfs_clock, bcc_cnt;
4 vector<int> G[maxn], bcc[maxn];
   stack<PII> s;
5
6
   void init(int n)
7
   {
8
       for (int i = 0; i < n; i++) G[i].clear();
9
inline void add_edge(int u, int v) { G[u].pb(v), G[v].pb(u); }
11 int dfs(int u, int fa)
12
13
       int lowu = pre[u] = ++dfs_clock;
       int child = 0;
14
       for (int i = 0; i < G[u].size(); i++)</pre>
15
16
17
            int v = G[u][i];
            PII e = mp(u, v);
18
            if (!pre[v])
19
20
21
                //没有访问过V
22
                s.push(e);
23
                child++;
                int lowv = dfs(v, u);
24
                lowu = min(lowu, lowv); //用后代的low函数更新自己
25
                if (lowv >= pre[u])
26
27
28
                    iscut[u] = true;
29
                    bcc_cnt++;
30
                    bcc[bcc_cnt].clear(); //注意! bcc从1开始编号
```

31

32

for (;;)

{

```
PII x = s.top();
33
34
                        s.pop();
                        if (bccno[x.X] != bcc_cnt)
35
                             bcc[bcc\_cnt].pb(x.X), bcc[x.X] = bcc\_cnt;
36
                        if (bccno[x.Y] != bcc_cnt)
37
                             bcc[bcc\_cnt].pb(x.Y), bcc[x.Y] = bcc\_cnt;
38
                        if (x.X == u \&\& x.Y == v) break;
39
                    }
40
                }
41
            }
42
            else if (pre[v] < pre[u] && v != fa)</pre>
43
44
45
                s.push(e);
                lowu = min(lowu, pre[v]); //用反向边更新自己
46
            }
47
48
       if (fa < 0 && child == 1) iscut[u] = 0;
49
       return lowu;
50
51
  void find_bcc(int n)
52
  {
53
       //调用结束后S保证为空, 所以不用清空
54
       clr(pre, 0), clr(iscut, 0), clr(bccno, 0);
55
56
       dfs_clock = bcc_cnt = 0;
57
       for (int i = 0; i < n; i++)
            if (!pre[i]) dfs(i, -1);
58
  }
59
   4.6.2 Strongly Connected Component
  const int maxn = "Edit";
1
   vector<int> G[maxn];
3 int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
  stack<int> S;
4
5 inline void init(int n)
   {
6
7
        for (int i = 0; i < n; i++) G[i].clear();
8
   }
   inline void add_edge(int u, int v) { G[u].pb(v); }
10
   void dfs(int u)
11
   {
       pre[u] = lowlink[u] = ++dfs_clock;
12
13
       S.push(u);
       for (int i = 0; i < G[u].size(); i++)</pre>
14
15
            int v = G[u][i];
16
            if (!pre[v])
17
            {
18
19
                dfs(v);
                lowlink[u] = min(lowlink[u], lowlink[v]);
20
21
            else if (!sccno[v])
22
23
                lowlink[u] = min(lowlink[u], pre[v]);
24
       if (lowlink[u] == pre[u])
25
26
27
            scc_cnt++;
            for (;;)
28
```

```
{
29
                 int x = S.top();
30
                 S.pop();
31
                 sccno[x] = scc_cnt;
32
33
                 if (x == u) break;
34
            }
35
        }
36
   }
   void find_scc(int n)
37
38
39
        dfs_clock = 0, scc_cnt = 0;
40
        clr(sccno, 0), clr(pre, 0);
        for (int i = 0; i < n; i++)
41
            if (!pre[i]) dfs(i);
42
   }
43
   4.6.3 2-SAT
   struct TwoSAT
1
2
   {
3
        int n;
        vector<int> G[maxn << 1];</pre>
4
        bool mark[maxn << 1];</pre>
5
        int S[maxn << 1], c;</pre>
6
7
        void init(int n)
8
        {
9
            this->n = n;
            for (int i = 0; i < (n << 1); i++) G[i].clear();</pre>
10
            clr(mark, 0);
11
12
13
        bool dfs(int x)
14
15
            if (mark[x ^ 1]) return false;
            if (mark[x]) return true;
16
            mark[x] = true;
17
18
            S[c++] = x;
            for (int i = 0; i < G[x].size(); i++)
19
20
                 if (!dfs(G[x][i])) return false;
21
            return true;
22
        //x = xval or y = yval
23
        void add_clause(int x, int xval, int y, int yval)
24
25
            x = (x << 1) + xval;
26
27
            y = (y << 1) + yval;
            G[x \wedge 1].pb(y);
28
            G[y \land 1].pb(x);
29
30
        bool solve()
31
32
            for (int i = 0; i < (n << 1); i += 2)
33
                 if (!mark[i] && !mark[i + 1])
34
35
                     c = 0;
36
                     if (!dfs(i))
37
38
                         while (c > 0) mark[S[--c]] = false;
39
                         if (!dfs(i + 1)) return false;
40
```

4.7 Eular Path

- 基本概念:
 - 欧拉图: 能够没有重复地一次遍历所有边的图。(必须是连通图)
 - 欧拉路: 上述遍历的路径就是欧拉路。
 - 欧拉回路: 若欧拉路是闭合的(一个圈,从起点开始遍历最终又回到起点),则为欧拉回路。
- 无向图 G 有欧拉路径的充要条件
 - G 是连通图
 - G 中奇顶点 (连接边的数量为奇数) 的数量等于 0 或 2.
- 无向图 G 有欧拉回路的充要条件
 - G 是连通图
 - G 中每个顶点都是偶顶点
- 有向图 G 有欧拉路径的充要条件
 - G 是连通图
 - u 的出度比入度大 1, v 的出度比入度小 1, 其他所有点出度和入度相同。(u 为起点, v 为终点)
- 有向图 G 有欧拉回路的充要条件
 - G 是连通图
 - G 中每个顶点的出度等于入度

4.7.1 Fleury

```
1 // 若有两个点的度数是奇数,则此时这两个点只能作为欧拉路径的起点和终点。
2 const int maxn = "Edit";
3 int G[maxn][maxn];
4 int deg[maxn][maxn];
   vector<int> Ans;
   inline void init() { clr(G, 0), clr(deg, 0); }
   inline void AddEdge(int u, int v) { deg[u]++, deg[v]++, G[u][v]++, G[v][u]++; }
   void Fleury(int s)
8
9
   {
10
       for (int i = 0; i < n; i++)
           if (G[s][i])
11
12
               G[s][i]--, G[i][s]--;
13
               Fleury(i);
14
15
16
       Ans.pb(s);
   }
17
```

4.8 Bipartite Graph Matching

- 1. 一个二分图中的最大匹配数等于这个图中的最小点覆盖数
- 2. 最小路径覆盖 = |G|-最大匹配数

在一个 $N \times N$ 的有向图中, 路径覆盖就是在图中找一些路经, 使之覆盖了图中的所有顶点, 且任何一个顶点有且只有一条路径与之关联;

(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.由上面可以得出:

- (a) 一个单独的顶点是一条路径;
- (b) 如果存在一路径 p_1, p_2,p_k, 其中 p_1 为起点, p_k 为终点,那么在覆盖图中,顶点 p_1, p_2,p_k 不再与其它的顶点之间存在有向边.

最小路径覆盖就是找出最小的路径条数, 使之成为 G 的一个路径覆盖. 路径覆盖与二分图匹配的关系: 最小路径覆盖 =|G|-最大匹配数;

3. 二分图最大独立集 = 顶点数-二分图最大匹配 独立集: 图中任意两个顶点都不相连的顶点集合。

4.8.1 Hungry(Matrix)

```
1 /*
  初始化:g[][]两边顶点的划分情况
3 调用:res=hungary();输出最大匹配数
  优点:适用于稠密图,DFS找增广路,实现简洁易于理解
  时间复杂度:O(VE).顶点编号从O开始
6
7
   const int maxn = "Edit";
   int uN, vN;
                     //uN是匹配左边的顶点数, vN是匹配右边的顶点数
8
  int g[maxn][maxn]; //邻接矩阵g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
9
10 int linker[maxn];
   bool used[maxn];
12 bool dfs(int u)
13
   {
       for (int v = 0; v < vN; v++)
14
           if (g[u][v] && !used[v])
15
16
              used[v] = true;
17
              if (linker[v] == -1 || dfs(linker[v]))
18
19
                  linker[v] = u;
20
                  return true;
21
22
              }
23
24
       return false;
25
   }
  int hungary()
26
27
28
       int res = 0;
29
       clr(linker, -1);
       for (int u = 0; u < uN; u++)
30
31
32
           clr(used, 0);
33
           if (dfs(u)) res++;
34
35
       return res;
36
  }
```

4.8.2 Hungry(List)

```
1 /*
2 使用前用init()进行初始化
3 加边使用函数addedge(u,v)
  调用:res=hungary();输出最大匹配数
5
6 const int maxn = "Edit";
7
   int n;
   vector<int> G[maxn];
8
  int linker[maxn];
10 bool used[maxn];
11 inline void init(int n)
12
       for (int i = 0; i < n; i++) G[i].clear();</pre>
13
  }
14
  inline void addedge(int u, int v) { G[u].pb(v); }
16 bool dfs(int u)
17
   {
       for (int i = 0; i < G[u].size(); i++)</pre>
18
19
           int v = G[u][i];
20
           if (!used[v])
21
22
               used[v] = true;
23
               if (linker[v] == -1 || dfs(linker[v]))
24
25
                   linker[v] = u;
26
27
                   return true;
28
               }
           }
29
30
       }
31
       return false;
   }
32
  int hungary()
33
34
       int ans = 0;
35
       clr(linker, -1);
36
37
       for (int u = 0; u < n; v++)
38
39
           clr(vis, 0);
           if (dfs(u)) ans++;
40
41
42
       return ans;
43 }
   4.8.3 Hopcroft-Carp
1 /*
2 邻接表存图, vector实现
3 vector先初始化,然后加边
4 复杂度0(sqrt(n)*E)
5 uN 为左端的顶点数,使用前赋值(点编号0开始)
6
   const int maxn = "Edit";
7
   vector<int> G[maxn];
  int uN;
10 int Mx[maxn], My[maxn];
```

```
int dx[maxn], dy[maxn];
12 int dis;
   bool used[maxn];
13
   inline void init(int n)
15
   {
        for (int i = 0; i < n; i++) G[i].clear();</pre>
16
   }
17
   inline void addedge(int u, int v) { G[u].pb(v); }
18
   bool SearchP()
20
   {
21
        queue<int> Q;
22
        dis = INF;
        clr(dx, -1);
23
24
        clr(dy, -1);
        for (int i = 0; i < uN; i++)
25
            if (Mx[i] == -1)
26
27
            {
28
                 Q.push(i);
                 dx[i] = 0;
29
30
        while (!Q.empty())
31
32
            int u = Q.front();
33
34
            Q.pop();
35
            if (dx[u] > dis) break;
            int sz = G[u].size();
36
            for (int i = 0; i < sz; i++)
37
38
                 int v = G[u][i];
39
                 if (dy[v] == -1)
40
41
                     dy[v] = dx[u] + 1;
42
43
                     if (My[v] == -1)
                         dis = dy[v];
44
                     else
45
                     {
46
47
                         dx[My[v]] = dy[v] + 1;
48
                         Q.push(My[v]);
                     }
49
50
                 }
            }
51
52
        return dis != INF;
53
54
   bool DFS(int u)
55
56
   {
57
        int sz = G[u].size();
        for (int i = 0; i < sz; i++)
58
59
60
            int v = G[u][i];
61
            if (!used[v] && dy[v] == dx[u] + 1)
62
            {
63
                 used[v] = true;
                 if (My[v] != -1 \&\& dy[v] == dis) continue;
64
                 if (My[v] == -1 \mid I \mid DFS(My[v]))
65
66
67
                     My[v] = u, Mx[u] = v;
68
                     return true;
69
                 }
```

```
70
            }
71
72
        return false;
73
74 int MaxMatch()
75
   {
76
        int res = 0;
        clr(Mx, -1), clr(My, -1);
77
        while (SearchP())
78
79
80
            clr(used, false);
81
            for (int i = 0; i < uN; i++)
                if (Mx[i] == -1 \&\& DFS(i)) res++;
82
83
84
        return res;
85
   4.8.4 Hungry(Multiple)
1 const int maxn = "Edit";
2 const int maxm = "Edit";
3 int uN, vN;
                       //u,V的数目,使用前面必须赋值
4 int g[maxn][maxm]; //邻接矩阵
5 int linker[maxm][maxn];
6 bool used[maxm];
   int num[maxm]; //右边最大的匹配数
7
   bool dfs(int u)
8
9
        for (int v = 0; v < vN; v++)
10
            if (g[u][v] && !used[v])
11
            {
12
13
                used[v] = true;
                if (linker[v][0] < num[v])</pre>
14
15
                    linker[v][++linker[v][0]] = u;
16
17
                    return true;
18
                for (int i = 1; i <= num[0]; i++)</pre>
19
20
                    if (dfs(linker[v][i]))
21
22
                         linker[v][i] = u;
23
                         return true;
24
                    }
25
26
        return false;
27
  int hungary()
28
29
   {
30
        int res = 0;
        for (int i = 0; i < vN; i++) linker[i][0] = 0;</pre>
31
32
        for (int u = 0; u < uN; u++)
33
            clr(used, 0);
34
35
            if (dfs(u)) res++;
36
37
        return res;
38 }
```

4.8.5 Kuhn-Munkres

```
1 //二分图最大权匹配
2 const int maxn = "Edit";
                                           //两边的点数
3 int nx, ny;
4 int g[maxn][maxn];
                                           //二分图描述
5 int linker[maxn], lx[maxn], ly[maxn]; //y中各点匹配状态,x,y中的点标号
  int slack[N];
   bool visx[N], visy[N];
7
8 bool dfs(int x)
9
        visx[x] = true;
10
        for (int y = 0; y < ny; y++)
11
12
13
            if (visy[y]) continue;
            int tmp = lx[x] + ly[y] - g[x][y];
14
            if (tmp == 0)
15
16
17
                visy[y] = true;
                if (linker[y] == -1 || dfs(linker[y]))
18
19
20
                    linker[y] = x;
21
                    return true;
22
                }
23
            }
24
            else if (slack[y] > tmp)
25
                slack[y] = tmp;
26
27
        return false;
28
   }
   int KM()
29
30
   {
31
        clr(linker, -1), clr(ly, 0);
32
        for (int i = 0; i < nx; i++)
33
34
            lx[i] = -INF;
            for (int j = 0; j < ny; j++)
35
36
                if (g[i][j] > lx[i]) lx[i] = g[i][j];
37
38
        for (int x = 0; x < nx; x++)
39
40
            clr(slack, 0x3f);
41
            for (;;)
42
            {
                clr(visx, 0), clr(visy, 0);
43
44
                if (dfs(x)) break;
                int d = INF;
45
                for (int i = 0; i < ny; i++)
46
                    if (!visy[i] && d > slack[i]) d = slack[i];
47
                for (int i = 0; i < nx; i++)
48
                    if (visx[i]) lx[i] -= d;
49
50
                for (int i = 0; i < ny; i++)
                    if (visy[i])
51
52
                        ly[i] += d;
53
                    else
                        slack[i] -= d;
54
            }
55
56
        int res = 0;
57
```

4.9 Network Flow

使用如下数据结构表示一条弧

```
struct Edge
1
2
  {
       int from, to, cap, flow;
3
       Edge(int u, int v, int c, int f)
4
           : from(u), to(v), cap(c), flow(f) {}
5
  };
6
   费用流
  struct Edge
1
2
       int from, to, cap, flow, cost;
3
       Edge(int u, int v, int c, int f, int w)
4
           : from(u), to(v), cap(c), flow(f), cost(w) \{\}
5
  };
6
```

一些建模技巧

二分图带权最大独立集。给出一个二分图,每个结点上有一个正权值。要求选出一些点,使得这些点之间没有边相连,且权值和最大。

解: 在二分图的基础上添加源点 S 和汇点 T,然后从 S 向所有 X 集合中的点连一条边,所有 Y 集合中的点向 T 连一条边,容量均为该点的权值。X 结点与 Y 结点之间的边的容量均为无穷大。这样,对于图中的任意一个割,将割中的边对应的结点删掉就是一个符合要求的解,权和为所有权减去割的容量。因此,只需要求出最小割,就能求出最大权和。

公平分配问题。把 m 个任务分配给 n 个处理器。其中每个任务有两个候选处理器,可以任选一个分配。要求所有处理器中,任务数最多的那个处理器所分配的任务数尽量少。不同任务的候选处理器集 $\{p_1,p_2\}$ 保证不同。

解: 本题有一个比较明显的二分图模型,即 X 结点是任务,Y 结点是处理器。二分答案 x,然后构图,首先从源点 S 出发向所有的任务结点引一条边,容量等于 1,然后从每个任务结点出发引两条边,分别到达它所能分配到的两个处理器结点,容量为 1,最后从每个处理器结点出发引一条边到汇点 T,容量为 x,表示选择该处理器的任务不能超过 x。这样网络中的每个单位流量都是从 S 流到一个任务结点,再到处理器结点,最后到汇点 T。只有当网络中的总流量等于m 时才意味着所有任务都选择了一个处理器。这样,我们通过 $O(\log m)$ 次最大流便算出了答案。

区间 k **覆盖问题**。数轴上有一些带权值的左闭右开区间。选出权和尽量大的一些区间,使得任意一个数最多被 k 个区间覆盖。

解: 本题可以用最小费用流解决,构图方法是把每个数作为一个结点,然后对于权值为 w 的区间 [u,v) 加边 $u\to v$,容量为 1,费用为 -w。再对所有相邻的点加边 $i\to i+1$,容量为 k,费用为 0。最后,求最左点到最右点的最小费用最大流即可,其中每个流量对应一组互不相交的区间。如果数值范围太大,可以先进行离散化。

最大闭合子图。给定带权图 G(权值可正可负),求一个权和最大的点集,使得起点再该点集中的任意孤,终点也在该点集中。

解: 新增附加源 s 和附加汇 t, 从 s 向所有正权点引一条边,容量为权值;从所有负权点向汇点引一条边,容量为权值的相反数。求出最小割以后, $S-\{s\}$ 就是最大闭合子图。

4.9.1 EdmondKarp

```
const int maxn = "Edit";
   struct EdmonsKarp //时间复杂度O(v*E*E)
2
3
4
       int n, m;
       vector<Edge> edges; //边数的两倍
5
       vector<int> G[maxn]; //邻接表, G[i][j]表示节点i的第j条边在e数组中的序号
6
                             //起点到i的可改进量
7
       int a[maxn];
       int p[maxn];
                             //最短路树上p的入弧编号
8
       void init(int n)
9
10
            for (int i = 0; i < n; i++) G[i].clear();</pre>
11
12
            edges.clear();
13
       void AddEdge(int from, int to, int cap)
14
15
            edges.pb(Edge(from, to, cap, 0));
16
17
            edges.pb(Edge(to, from, 0, 0)); //反向弧
           m = edges.size();
18
19
           G[from].pb(m - 2);
20
           G[to].pb(m - 1);
21
       int Maxflow(int s, int t)
22
23
24
            int flow = 0;
25
            for (;;)
26
27
                clr(a, 0);
                queue<int> q;
28
                q.push(s);
29
                a[s] = INF;
30
31
                while (!q.empty())
32
33
                    int x = q.front();
34
                    q.pop();
                    for (int i = 0; i < G[x].size(); i++)
35
36
37
                        Edge& e = edges[G[x][i]];
38
                        if (!a[e.to] && e.cap > e.flow)
39
40
                            p[e.to] = G[x][i];
                            a[e.to] = min(a[x], e.cap - e.flow);
41
42
                            q.push(e.to);
43
44
                    if (a[t]) break;
45
46
                if (!a[t]) break;
47
                for (int u = t; u != s; u = edges[p[u]].from)
48
49
                    edges[p[u]].flow += a[t];
50
                    edges[p[u] ^1].flow -= a[t];
51
52
53
                flow += a[t];
            }
54
55
            return flow;
       }
56
   };
57
```

4.9.2 Dinic

```
const int maxn = "Edit";
   struct Dinic
2
3
   {
       int n, m, s, t;
                             //结点数,边数(包括反向弧),源点编号和汇点编号
4
       vector<Edge> edges;
                            //边表。edge[e]和edge[e^1]互为反向弧
5
       vector<int> G[maxn]; //邻接表, G[i][j]表示节点i的第j条边在e数组中的序号
6
       bool vis[maxn];
                             //BFS使用
7
       int d[maxn];
                             //从起点到i的距离
8
       int cur[maxn];
9
                             //当前弧下标
10
       void init(int n)
11
       {
12
            this->n = n;
13
            for (int i = 0; i < n; i++) G[i].clear();</pre>
            edges.clear();
14
15
       void AddEdge(int from, int to, int cap)
16
17
            edges.pb(Edge(from, to, cap, 0));
18
            edges.pb(Edge(to, from, 0, 0));
19
           m = edges.size();
20
           G[from].pb(m - 2);
21
22
           G[to].pb(m - 1);
23
       }
       bool BFS()
24
25
26
            clr(vis, 0);
27
            clr(d, 0);
28
            queue<int> q;
29
            q.push(s);
30
            d[s] = 0;
31
           vis[s] = 1;
32
           while (!q.empty())
33
                int x = q.front();
34
35
                q.pop();
36
                for (int i = 0; i < G[x].size(); i++)
37
38
                    Edge& e = edges[G[x][i]];
39
                    if (!vis[e.to] && e.cap > e.flow)
40
41
                        vis[e.to] = 1;
42
                        d[e.to] = d[x] + 1;
43
                        q.push(e.to);
44
                    }
                }
45
            }
46
            return vis[t];
47
48
       int DFS(int x, int a)
49
50
            if (x == t \mid | a == 0) return a;
51
            int flow = 0, f;
52
53
            for (int& i = cur[x]; i < G[x].size(); i++)
54
55
                //从上次考虑的弧
                Edge& e = edges[G[x][i]];
56
                if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
57
```

```
{
58
59
                    e.flow += f;
                    edges[G[x][i] \land 1].flow -= f;
60
61
                    flow += f;
                    a -= f;
62
                    if (a == 0) break;
63
                }
64
            }
65
            return flow;
66
67
       }
       int Maxflow(int s, int t)
68
69
70
            this -> s = s;
            this->t = t;
71
            int flow = 0;
72
            while (BFS())
73
74
                clr(cur, 0);
75
                flow += DFS(s, INF);
76
77
78
            return flow;
       }
79
   };
80
   4.9.3 ISAP
   const int maxn = "Edit";
1
2
   struct ISAP
3
       int n, m, s, t;
                             //结点数,边数(包括反向弧),源点编号和汇点编号
4
       vector<Edge> edges;
5
                             //边表。edges[e]和edges[e^1]互为反向弧
6
       vector<int> G[maxn]; //邻接表, G[i][j]表示结点i的第j条边在e数组中的序号
7
       bool vis[maxn];
                             //BFS使用
       int d[maxn];
8
                             //起点到i的距离
       int cur[maxn];
9
                             //当前弧下标
       int p[maxn];
                             //可增广路上的一条弧
10
11
       int num[maxn];
                             //距离标号计数
       void init(int n)
12
13
       {
            this->n = n;
14
            for (int i = 0; i < n; i++) G[i].clear();</pre>
15
            edges.clear();
16
17
       void AddEdge(int from, int to, int cap)
18
19
            edges.pb(Edge(from, to, cap, 0));
20
            edges.pb(Edge(to, from, 0, 0));
21
            int m = edges.size();
22
            G[from].pb(m - 2);
23
            G[to].pb(m - 1);
24
25
       }
       int Augument()
26
27
28
            int x = t, a = INF;
            while (x != s)
29
30
                Edge& e = edges[p[x]];
31
32
                a = min(a, e.cap - e.flow);
```

```
x = edges[p[x]].from;
33
            }
34
            x = t;
35
            while (x != s)
36
37
                 edges[p[x]].flow += a;
38
                 edges[p[x] ^1].flow -= a;
39
                 x = edges[p[x]].from;
40
41
42
             return a;
43
        }
        void BFS()
44
45
             clr(vis, 0);
46
             clr(d, 0);
47
             queue<int> q;
48
49
             q.push(t);
             d[t] = 0;
50
            vis[t] = 1;
51
            while (!q.empty())
52
             {
53
                 int x = q.front();
54
55
                 q.pop();
                 int len = G[x].size();
56
57
                 for (int i = 0; i < len; i++)
58
                     Edge& e = edges[G[x][i]];
59
                     if (!vis[e.from] && e.cap > e.flow)
60
61
                          vis[e.from] = 1;
62
63
                          d[e.from] = d[x] + 1;
                          q.push(e.from);
64
                     }
65
                 }
66
            }
67
68
69
        int Maxflow(int s, int t)
70
71
             this -> s = s;
             this->t = t;
72
             int flow = 0;
73
             BFS();
74
             clr(num, 0);
75
76
             for (int i = 0; i < n; i++)
                 if (d[i] < INF) num[d[i]]++;</pre>
77
             int x = s;
78
79
             clr(cur, 0);
            while (d[s] < n)
80
81
82
                 if(x == t)
83
84
                     flow += Augumemt();
85
                     X = S;
86
                 int ok = 0;
87
                 for (int i = cur[x]; i < G[x].size(); i++)</pre>
88
89
                     Edge& e = edges[G[x][i]];
90
                     if (e.cap > e.flow && d[x] == d[e.to] + 1)
91
```

```
{
92
                          ok = 1;
93
                          p[e.to] = G[x][i];
94
95
                          cur[x] = i;
96
                          x = e.to;
97
                          break;
                     }
98
99
                 if (!ok) //Retreat
100
101
102
                     int m = n - 1;
103
                     for (int i = 0; i < G[x].size(); i++)</pre>
104
                          Edge& e = edges[G[x][i]];
105
                          if (e.cap > e.flow) m = min(m, d[e.to]);
106
107
                     if (--num[d[x]] == 0) break; //gap优化
108
109
                     num[d[x] = m + 1] ++;
                     cur[x] = 0;
110
                     if (x != s) x = edges[p[x]].from;
111
                 }
112
             }
113
             return flow;
114
115
        }
116 };
    4.9.4 MinCost MaxFlow
    const int maxn = "Edit";
 2
    struct MCMF
 3
    {
 4
        int n, m;
 5
        vector<Edge> edges;
        vector<int> G[maxn];
 6
        int inq[maxn]; //是否在队列中
 7
                        //bellmanford
 8
        int d[maxn];
 9
        int p[maxn];
                        //上一条弧
10
        int a[maxn];
                       //可改进量
11
        void init(int n)
12
13
             this->n = n;
             for (int i = 0; i < n; i++) G[i].clear();</pre>
14
             edges.clear();
15
16
        void AddEdge(int from, int to, int cap, int cost)
17
18
             edges.pb(Edge(from, to, cap, 0, cost));
19
             edges.pb(Edge(to, from, 0, 0, -cost));
20
             m = edges.size();
21
             G[from].pb(m - 2);
22
             G[to].pb(m - 1);
23
24
25
        bool BellmanFord(int s, int t, int& flow, ll& cost)
26
             for (int i = 0; i < n; i++) d[i] = INF;
27
             clr(inq, 0);
28
             d[s] = 0;
29
30
             inq[s] = 1;
```

```
p[s] = 0;
31
            a[s] = INF;
32
            queue<int> q;
33
            q.push(s);
34
            while (!q.empty())
35
36
                int u = q.front();
37
                q.pop();
38
                inq[u] = 0;
39
                for (int i = 0; i < G[u].size(); i++)</pre>
40
41
                     Edge& e = edges[G[u][i]];
42
                     if (e.cap > e.flow && d[e.to] > d[u] + e.cost)
43
44
                         d[e.to] = d[u] + e.cost;
45
                         p[e.to] = G[u][i];
46
                         a[e.to] = min(a[u], e.cap - e.flow);
47
                         if (!inq[e.to])
48
49
                             q.push(e.to);
50
                             inq[e.to] = 1;
51
                         }
52
                     }
53
54
                }
55
            if (d[t] == INF) return false; // 当没有可增广的路时退出
56
            flow += a[t];
57
            cost += (ll)d[t] * (ll)a[t];
58
            for (int u = t; u != s; u = edges[p[u]].from)
59
60
                edges[p[u]].flow += a[t];
61
62
                edges[p[u] ^1].flow -= a[t];
63
            }
            return true;
64
65
        int MincostMaxflow(int s, int t, ll& cost)
66
67
68
            int flow = 0;
            cost = 0;
69
70
            while (BellmanFord(s, t, flow, cost));
71
            return flow;
        }
72
   };
73
```

5 Computational Geometry

5.1 Basic Function

```
#define zero(x) ((fabs(x) < eps ? 1 : 0))
   #define sqn(x) (fabs(x) < eps ? 0 : ((x) < 0 ? -1 : 1))
4 struct point
5
       double x, y;
6
       point(double a = 0, double b = 0) { x = a, y = b; }
7
       point operator-(const point& b) const { return point(x - b.x, y - b.y); }
8
       point operator+(const point& b) const { return point(x + b.x, y + b.y); }
9
       // 两点是否重合
10
       bool operator==(point& b) { return zero(x - b.x) && zero(y - b.y); }
11
       // 点积(以原点为基准)
12
       double operator*(const point& b) const { return x * b.x + y * b.y; }
13
       // 叉积(以原点为基准)
14
       double operator^(const point& b) const { return x * b.y - y * b.x; }
15
       // 绕P点逆时针旋转a弧度后的点
       point rotate(point b, double a)
17
18
           double dx, dy;
19
           (*this - b).split(dx, dy);
20
           double tx = dx * cos(a) - dy * sin(a);
21
           double ty = dx * sin(a) + dy * cos(a);
22
23
           return point(tx, ty) + b;
24
       // 点坐标分别赋值到a和b
25
26
       void split(double& a, double& b) { a = x, b = y; }
27
   };
  struct line
28
29
   {
       point s, e;
30
31
       line() {}
       line(point ss, point ee) { s = ss, e = ee; }
32
   };
33
   5.2 Position
   5.2.1 Point-Point
1 double dist(point a, point b) { return sqrt((a - b) * (a - b)); }
   5.2.2 Line-Line
1 // <0, *> 表示重合; <1, *> 表示平行; <2, P> 表示交点是P;
  pair<int, point> spoint(line l1, line l2)
2
3
       point res = l1.s;
4
       if (sgn((11.s - 11.e) \wedge (12.s - 12.e)) == 0)
5
           return mp(sqn((l1.s - l2.e) ^ (l2.s - l2.e)) != 0, res);
6
       double t = ((11.s - 12.s) \land (12.s - 12.e)) / ((11.s - 11.e) \land (12.s - 12.e));
7
       res.x += (l1.e.x - l1.s.x) * t;
8
       res.y += (l1.e.y - l1.s.y) * t;
9
       return mp(2, res);
10
11 }
```

```
5.2.3 Segment-Segment
1 bool segxseg(line l1, line l2)
2
   {
3
       return
4
           max(11.s.x, 11.e.x) >= min(12.s.x, 12.e.x) &&
5
           max(12.s.x, 12.e.x) >= min(11.s.x, 11.e.x) &&
           max(11.s.y, 11.e.y) >= min(12.s.y, 12.e.y) &&
6
           max(12.s.y, 12.e.y) >= min(11.s.y, 11.e.y) &&
7
           sgn((l2.s - l1.e) \land (l1.s - l1.e)) * sgn((l2.e-l1.e) \land (l1.s - l1.e)) <= 0 &&
8
           sgn((11.s - 12.e) \wedge (12.s - 12.e)) * sgn((11.e-12.e) \wedge (12.s - 12.e)) <= 0;
9
10 }
   5.2.4 Line-Segment
1 //11是直线,12是线段
2 bool segxline(line l1, line l2)
3
       return sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <=
4
       0;
   }
5
   5.2.5 Point-Line
   double pointtoline(point p, line l)
2
       point res;
3
       double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l.s));
4
       res.x = 1.s.x + (1.e.x - 1.s.x) * t, res.y = 1.s.y + (1.e.y - 1.s.y) * t;
5
       return dist(p, res);
6
7
  }
   5.2.6 Point-Segment
   double pointtosegment(point p, line l)
2
3
       point res:
       double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l.s));
4
       if (t >= 0 && t <= 1)
5
           res.x = l.s.x + (l.e.x - l.s.x) * t, res.y = l.s.y + (l.e.y - l.s.y) * t;
6
7
       else
           res = dist(p, l.s) < dist(p, l.e) ? l.s : l.e;
8
9
       return dist(p, res);
10 }
   5.2.7 Point on Segment
   bool PointOnSeg(point p, line l)
1
2
3
       return
```

 $sgn((1.s - p) \wedge (1.e-p)) == 0 \&\&$

sgn((p.x - l.s.x) * (p.x - l.e.x)) <= 0 &&

sgn((p.y - l.s.y) * (p.y - l.e.y)) <= 0;

4 5

6

7 }

```
5.3 Polygon
   5.3.1 Area
1 double area(point p∏, int n)
2
   {
3
       double res = 0;
       for (int i = 0; i < n; i++) res += (p[i] \land p[(i + 1) \% n]) / 2;
4
       return fabs(res);
5
6 }
   5.3.2 Point in Convex
1 // 点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
2 // 点的编号: [0,n)
3 // -1: 点在凸多边形外
4 // 0 : 点在凸多边形边界上
5 // 1 : 点在凸多边形内
6 int PointInConvex(point a, point p∏, int n)
7
   {
       for (int i = 0; i < n; i++)
8
          if (sgn((p[i] - a) \land (p[(i + 1) \% n] - a)) < 0)
9
10
              return -1;
          else if (PointOnSeg(a, line(p[i], p[(i + 1) \% n])))
11
              return 0;
12
13
       return 1;
14 }
   5.3.3 Point in Polygon
1 // 射线法,poly□的顶点数要大于等于3,点的编号0~n-1
2 // -1: 点在凸多边形外
3 // 0 : 点在凸多边形边界上
4 // 1 : 点在凸多边形内
  int PointInPoly(point p, point poly[], int n)
5
   {
6
7
       int cnt;
       line ray, side;
8
9
       cnt = 0;
10
       ray.s = p;
       ray.e.y = p.y;
11
       12
       for (int i = 0; i < n; i++)
13
14
          side.s = poly[i], side.e = poly[(i + 1) \% n];
15
          if (PointOnSeg(p, side)) return 0;
16
          //如果平行轴则不考虑
17
          if (sgn(side.s.y - side.e.y) == 0)
18
19
              continue;
          if (PointOnSeg(sid e.s, r ay))
20
21
              cnt += (sgn(side.s.y - side.e.y) > 0);
          else if (PointOnSeg(side.e, ray))
22
23
              cnt += (sgn(side.e.y - side.s.y) > 0);
          else if (segxseg(ray, side))
24
25
              cnt++;
26
27
       return cnt % 2 == 1 ? 1 : -1;
28 }
```

5.3.4 Judge Convex

```
1 //点可以是顺时针给出也可以是逆时针给出
  //点的编号1~n-1
3 bool isconvex(point poly[], int n)
4
       bool s[3];
5
       clr(s, 0);
6
       for (int i = 0; i < n; i++)
7
8
           s[sgn((poly[(i + 1) % n] - poly[i]) ^ (poly[(i + 2) % n] - poly[i])) + 1] = 1;
9
           if (s[0] && s[2]) return 0;
10
11
12
       return 1;
13 }
   5.4 Integer Points
   5.4.1 On Segment
int OnSegment(line l) { return __gcd(fabs(l.s.x - l.e.x), fabs(l.s.y - l.e.y)) + 1; }
   5.4.2 On Polygon Edge
1 int OnEdge(point p□, int n)
2
       int i, ret = 0;
3
       for (i = 0; i < n; i++)
4
           ret += \__gcd(fabs(p[i].x - p[(i + 1) % n].x), fabs(p[i].y - p[(i + 1) % n].y));
5
       return ret;
6
7
   }
   5.4.3 Inside Polygon
1 int InSide(point p□, int n)
2
   {
       int i, area = 0;
3
4
       for (i = 0; i < n; i++)
           area += p[(i + 1) % n].y * (p[i].x - p[(i + 2) % n].x);
5
       return (fabs(area) - OnEdge(n, p)) / 2 + 1;
6
7
   }
   5.5 Circle
   5.5.1 Circumcenter
   point waixin(point a, point b, point c)
1
2
       double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
3
       double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
4
       double d = a1 * b2 - a2 * b1;
5
       return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 - a2 * c1) / d);
6
7 }
```

6 Dynamic Programming

6.1 Subsequence

6.1.1 Max Sum

```
1  // 传入序列a和长度n, 返回最大子序列和
2  int MaxSeqSum(int a[], int n)
3  {
4    int rt = 0, cur = 0;
5    for (int i = 0; i < n; i++)
6         cur += a[i], rt = max(cur, rt), cur = max(0, cur);
7    return rt;
8  }</pre>
```

6.1.2 Longest Increase

```
1 // 序列下标从1开始, LIS()返回长度, 序列存在lis□中
const int N = "Edit";
int len, a[N], b[N], f[N];
  int Find(int p, int l, int r)
   {
5
6
       while (l \ll r)
7
8
            int mid = (l + r) >> 1;
9
            if (a[p] > b[mid])
                l = mid + 1;
10
           else
11
                r = mid - 1;
12
13
       return f[p] = 1;
14
15
16 int LIS(int lis[], int n)
17
   {
       int len = 1;
18
       f[1] = 1, b[1] = a[1];
19
       for (int i = 2; i <= n; i++)
20
21
            if (a[i] > b[len])
22
                b[++len] = a[i], f[i] = len;
23
            else
24
                b[Find(i, 1, len)] = a[i];
25
26
        for (int i = n, t = len; i >= 1 && t >= 1; i--)
27
28
            if (f[i] == t) lis[--t] = a[i];
29
       return len;
30 }
31
  // 简单写法(下标从0开始,只返回长度)
32
  int dp[N];
  int LIS(int a[], int n)
35  {
36
       clr(dp, 0x3f);
       for (int i = 0; i < n; i++) *lower_bound(dp, dp + n, a[i]) = a[i];
37
       return lower_bound(dp, dp + n, INF) - dp;
38
39 }
```

6.1.3 Longest Common Increase

```
// 序列下标从1开始
  int LCIS(int a[], int b[], int n, int m)
2
3
   {
      clr(dp, 0);
4
      for (int i = 1; i <= n; i++)
5
6
          int ma = 0;
7
          for (int j = 1; j <= m; j++)
8
9
             dp[i][j] = dp[i - 1][j];
10
             if (a[i] > b[j]) ma = max(ma, dp[i - 1][j]);
11
             if (a[i] == b[j]) dp[i][j] = ma + 1;
12
13
          }
14
      return *max_element(dp[n] + 1, dp[n] + 1 + m);
15
16
  }
   6.2 Digit Statistics
  int a[20];
   11 dp[20][state];
  ll dfs(int pos, /*state变量*/, bool lead /*前导零*/, bool limit /*数位上界变量*/)
3
4
      //递归边界, 既然是按位枚举, 最低位是0, 那么pos==-1说明这个数枚举完了
5
6
      if (pos == -1) return 1;
7
      /*这里一般返回1,表示枚举的这个数是合法的,那么这里就需要在枚举时必须每一位都要满足题目条件,
8
      也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。*/
      if (!limit && !lead && dp[pos][state] != -1) return dp[pos][state];
9
      /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应*/
10
      int up = limit ? a[pos] : 9; //根据limit判断枚举的上界up
11
12
      11 \text{ ans} = 0;
      for (int i = 0; i \le up; i++) //枚举, 然后把不同情况的个数加到ans就可以了
13
14
          if () ...
15
          else if () ...
16
          ans += dfs(pos - 1, /*状态转移*/, lead && i == 0, limit && i == a[pos])
17
18
          //最后两个变量传参都是这样写的
19
          /*当前数位枚举的数是i,然后根据题目的约束条件分类讨论
20
          去计算不同情况下的个数,还有要根据State变量来保证i的合法性*/
      }
21
22
      //计算完,记录状态
23
      if (!limit && !lead) dp[pos][state] = ans;
24
      /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,
      当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
25
26
      return ans;
27
  ll solve(ll x)
28
29
   {
      int pos = 0;
30
      do //把数位都分解出来
31
32
          a[pos++] = x \% 10;
      while (x \neq 10);
33
      return dfs(pos - 1 /*从最高位开始枚举*/, /*一系列状态 */, true, true);
34
35
      //刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0
36 }
```

Others

Matrix

```
7.1.1 Matrix FastPow
```

```
typedef vector<ll> vec;
   typedef vector<vec> mat;
3
   mat mul(mat& A, mat& B)
4
   {
        mat C(A.size(), vec(B[0].size()));
5
6
        for (int i = 0; i < A.size(); i++)</pre>
             for (int k = 0; k < B.size(); k++)
7
                 if (A[i][k]) // 对稀疏矩阵的优化
8
                      for (int j = 0; j < B[0].size(); j++)</pre>
9
10
                          C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
11
        return C;
12 }
13
   mat Pow(mat A, ll n)
14
        mat B(A.size(), vec(A.size()));
15
        for (int i = 0; i < A.size(); i++) B[i][i] = 1;
for (; n; n >>= 1, A = mul(A, A))
16
17
18
            if (n \& 1) B = mul(B, A);
        return B;
19
  }
20
    7.1.2 Gauss Elimination
1
   void gauss()
2
    {
        int now = 1, to;
3
        double t;
4
        for (int i = 1; i <= n; i++, now++)
5
6
             /*for (to = now; !a[to][i] && to <= n; to++);
7
             //做除法时减小误差, 可不写
8
             if (to != now)
9
                 for (int j = 1; j \leftarrow n + 1; j \leftrightarrow n
10
                      swap(a[to][j], a[now][j]);*/
11
             t = a[now][i];
12
             for (int j = 1; j \le n + 1; j++) a[now][j] /= t;
13
14
             for (int j = 1; j <= n; j++)
                 if (j != now)
15
16
                 {
                      t = a[j][i];
17
                      for (int k = 1; k \le n + 1; k++) a[j][k] -= t * a[now][k];
18
19
20
        }
21
   }
```

7.2Tricks

7.2.1 Stack-Overflow

```
1 // 解决爆栈问题
2 #pragma comment(linker, "/STACK:1024000000,1024000000")
```

7.2.2 Fast-Scanner

```
1 // 适用于正负整数
2 template <class T>
3 inline bool scan_d(T &ret)
4
5
       char c:
6
       int sqn;
       if (c = getchar(), c == EOF) return 0; //EOF
7
       while (c != '-' && (c < '0' || c > '9')) c = getchar();
8
       sgn = (c == '-') ? -1 : 1;
9
       ret = (c == '-') ? 0 : (c - '0');
10
       while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
11
12
       ret *= sqn;
       return 1;
13
14 }
15 inline void out(int x)
16 {
       if (x > 9) out(x / 10);
17
       putchar(x % 10 + '0');
18
  }
19
   7.2.3 Strok-Sscanf
1 // 空格作为分隔输入,读取一行的整数
2 gets(buf);
3 int v;
4 char *p = strtok(buf, " ");
5 while (p)
6
   {
       sscanf(p, "%d", &v);
7
       p = strtok(NULL," ");
8
   }
   7.3 Mo
   莫队算法, 可以解决一类静态, 离线区间查询问题。分成\sqrt{x}块, 分块排序。
1 struct query { int L, R, id; };
   void solve(query node[], int m)
2
3
   {
4
       tmp = 0;
5
       clr(num, 0);
6
       clr(ans, 0);
       sort(node, node + m, [](query a, query b) { return a.l / unit < b.l / unit || a.l /
7
        unit == b.l / unit && a.r < b.r; });
       int L = 1, R = 0;
8
       for (int i = 0; i < m; i++)
9
10
           while (node[i].L < L) add(a[--L]);
11
           while (node[i].L > L) del(a[L++]);
12
           while (node[i].R < R) del(a[R--]);
13
           while (node[i].R > R) add(a[++R]);
14
           ans[node[i].id] = tmp;
15
16
       }
17 }
```

7.4 BigNum

7.4.1 High-precision

```
1 // 加法 乘法 小于号 输出
2 struct bint
3
        int 1;
4
        short int w[100];
5
        bint(int x = 0)
6
7
            l = x == 0, clr(w, 0);
8
9
            while (x) w[l++] = x \% 10, x /= 10;
10
        bool operator<(const bint& x) const</pre>
11
12
            if (l != x.l) return l < x.l;</pre>
13
            int i = l - 1;
14
            while (i >= 0 \&\& w[i] == x.w[i]) i--;
15
            return (i >= 0 \& w[i] < x.w[i]);
16
17
        bint operator+(const bint& x) const
18
19
            bint ans;
20
            ans.1 = 1 > x.1 ? 1 : x.1;
21
            for (int i = 0; i < ans.l; i++)
22
23
24
                ans.w[i] += w[i] + x.w[i];
                ans.w[i + 1] += ans.w[i] / 10;
25
                ans.w[i] = ans.w[i] % 10;
26
27
            if (ans.w[ans.l] != 0) ans.l++;
28
29
            return ans;
30
        bint operator*(const bint& x) const
31
32
33
            bint res;
            int up, tmp;
34
            for (int i = 0; i < 1; i++)
35
36
37
                up = 0;
                for (int j = 0; j < x.1; j++)
38
39
                     tmp = w[i] * x.w[j] + res.w[i + j] + up;
40
                     res.w[i + j] = tmp % 10;
41
                    up = tmp / 10;
42
43
                if (up != 0) res.w[i + x.l] = up;
44
45
            res.l = l + x.l;
46
            while (res.w[res.l - 1] == 0 && res.l > 1) res.l--;
47
48
            return res;
49
        void print()
50
51
            for (int i = l - 1; ~i; i--) printf("%d", w[i]);
52
            puts("");
53
        }
54
55 };
```

7.4.2 Complete High-precision

```
#define N 10000
   class bint
2
3
4
   private:
       int a[N]; // 用 N 控制最大位数
5
       int len; // 数字长度
6
   public:
7
8
       // 构造函数
9
       bint() { len = 1, clr(a, 0); }
10
       // int -> bint
       bint(int n)
11
12
13
            len = 0;
            clr(a, 0);
14
            int d = n;
15
16
           while (n)
                d = n / 10 * 10, a[len++] = n - d, n = d / 10;
17
       }
18
19
       // char[] -> int
20
       bint(const char s[])
21
       {
            clr(a, 0);
22
23
            len = 0;
            int l = strlen(s);
24
25
            for (int i = l - 1; ~i; i--) a[len++] = s[i];
26
       }
       // 拷贝构造函数
27
       bint(const bint& b)
28
29
30
            clr(a, 0);
31
            len = b.len;
32
            for (int i = 0; i < len; i++) a[i] = b.a[i];
33
       // 重载运算符 bint = bint
34
       bint& operator=(const bint& n)
35
36
            len = n.len;
37
38
            for (int i = 0; i < len; i++) a[i] = n.a[i];
            return *this;
39
40
       }
       // 重载运算符 bint + bint
41
       bint operator+(const bint& b) const
42
43
           bint t(*this);
44
            int res = b.len > len ? b.len : len;
45
            for (int i = 0; i < res; i++)
46
47
            {
48
                t.a[i] += b.a[i];
                if (t.a[i] >= 10) t.a[i + 1]++, t.a[i] -= 10;
49
50
           t.len = res + a[res] == 0;
51
52
            return t;
53
       }
       // 重载运算符 bint - bint
54
       bint operator-(const bint& b) const
55
56
           bool f = *this > b;
57
```

```
bint t1 = f ? *this : b;
58
             bint t2 = f ? b : *this;
59
             int res = t1.len, j;
60
             for (int i = 0; i < res; i++)</pre>
61
                 if (t1.a[i] < t2.a[i])</pre>
62
63
                      j = i + 1;
64
                      while (t1.a[j] == 0) j++;
65
                      t1.a[j--]--;
66
                      while (j > i) t1.a[j--] += 9;
67
                      t1.a[i] += 10 - t1.a[i];
68
69
                 }
                 else
70
                      t1.a[i] -= t2.a[i];
71
             t1.len = res;
72
             while (t1.a[ien - 1] == 0 && t1.len > 1) t1.len--, res--;
if (f) t1.a[res - 1] = 0 - t1.a[res - 1];
73
74
75
             return t1;
         }
76
         // 重载运算符 bint * bint
77
         bint operator*(const bint& b) const
78
79
80
             bint t;
81
             int i, j, up, tmp, tmp1;
82
             for (i = 0; i < len; i++)
83
                 up = 0;
84
                 for (j = 0; j < b.len; j++)
85
86
                      tmp = a[i] * b.a[j] + t.a[i + j] + up;
87
88
                      if (tmp > 9)
                          tmp1 = tmp - tmp / 10 * 10, up = tmp / 10, t.a[i + j] = tmp1;
89
90
                      else
                          up = 0, t.a[i + j] = tmp;
91
92
                 if (up) t.a[i + j] = up;
93
94
             }
95
             t.len = i + j;
             while (t.a[t.len - 1] == 0 && t.len > 1) t.len--;
96
             return t;
97
         }
98
         // 重载运算符 bint / int
99
         bint operator/(const int& b) const
100
101
             bint t;
102
             int down = 0;
103
             for (int i = len - 1; ~i; i--)
104
                 t.a[i] = (a[i] + down * 10) / b, down = a[i] + down * 10 - t.a[i] * b;
105
             t.len = len;
106
107
             while (t.a[t.len - 1] == 0 && t.len > 1) t.len--;
108
             return t;
109
         }
         // 重载运算符 bint ^ n (n次方快速幂, 需保证n非负)
110
         bint operator^(const int n) const
111
112
             bint t(*this), rt(1);
113
114
             if (n == 0) return 1;
             if (n == 1) return *this;
115
             int m = n;
116
```

```
for (; m; m >>= 1, t = t * t)
117
                if (m & 1) rt = rt * t;
118
        }
119
        return rt;
120
        // 重载运算符 bint > bint 比较大小
121
122
        bool operator>(const bint& b) const
123
            int p;
124
            if (len > b.len) return 1;
125
            if (len == b.len)
126
127
128
                p = len - 1;
                while (a[p] == b.a[p] \&\& p >= 0) p--;
129
                return p >= 0 && a[p] > b.a[p];
130
131
            return 0;
132
        }
133
        134
        bool operator>(const int& n) const { return *this > bint(n); }
135
        // 输出
136
        void out()
137
138
        {
139
            for (int i = len - 1; ~i; i--) printf("%d", a[i]);
140
            puts("");
141
        }
142 };
    7.5 VIM
 1 syntax on
 2 set cindent
 3 set nu
 4 set tabstop = 4
 5 set shiftwidth = 4
 6 set background = dark
 7 map<C-A> ggVG"+y
 8
    map<F5>: call Run()<CR>
    func !Run()
 9
        exec "w"
10
        exec "!g++ -Wall % -o %<"
11
        exec "!./%<"
12
    endfunc
13
```