1 김

식물분류학의 이해

이병윤 교수

목차

- --- 01 분류학의 정의
- ---- 02 식물의 명명과 학명
- ---- 03 식물조사와 표본 제작

주요용어

동정(同定)

같고 다름을 확인하는 작업으로, 식별, 판별이라는 용어를 이용하기도 함

기준표본

새로운 종을 기재할 때 이용된 표본

Silica gel

DNA 분석 샘플을 빠르게 건조시키는 물질

1강 식물분류학의 이해

분류학의 정의

1) 분류학이란?

식물의 중요성

지원 기능 (support) 산소 발생, 이산화탄소 흡수, 생태계의 기초 구성원

자원 기능 (resources) 식량, 에너지, 약품, 음료, 목재, 섬유, 기호품 등

1) 분류학이란?

분류, 분류학

분류 (分類)

• 나누고(分), 비슷한 것(類)끼리 모으는 일

분류학 (分類學)

- Taxonomy= Taxis(arrangement) + nomos(law)
- 일정한 질서 안에서 생물을 분류하는 작업

2) 분류학의 기초 용어

동정(同定, identification)

- 같음을 확인하는 일
- 식별, 판별이라는 용어를 이용하기도 함

기재(記載, description) 생물의 특징을 글로 작성함
 (예: 식물지, 도감 등)

2) 분류학의 기초 용어

명명법(命名法, nomenclature)

■ 생물에 학술적으로 이름을 붙이는 방법

이명법(이명법, binomial)

종명(속명+종소명, Homo sapiens)

명명법의 다른 사례

- 제네바 명명법(Geneva nomenclature):
 유기화합물의 국제 명명 규약
- 토양 명명법(Soil nomenclature)
 - : 토양을 특성에 따라 분류

3) 분류학 연구

분류학의 목적

- 자연적, 계통적 유연관계(멀고 가까움)를 반영하여 분류체계를 정립
- 니물군의 목록을 작성하고, 지역적, 대륙적 식물상을 밝힘
- [14] 식물의 진화 과정과 유연관계를 밝힘
- 여러 분야의 증거를 수집하여 다른 종과의 관계를 밝혀 종의 실체를 확인

3) 분류학 연구

분류학과 계통학

분류학 (taxonomy)

- 생물 특징을 기재, 명명하고 분류하는 일을 주로 함
- 표본 중심의 연구로 외부형태 분석 및 기재
- 분류군들의 계급 변경, 분류학적 위치 및 재배열

계통학 (systematics)

- 조상형과 현생종의 형질 비교를 통해 유연관계를 밝힘
- 새로운 정보 확인시 계통학적 해석 변경 가능

1강 식물분류학의 이해

식물의 명명과 학명

1) 종다양성

- 지구상에 수 많은 생물종들이 살고 있으며, 다양성이 엄청남
- 식물은 지구상에 28만 종 이상의 종 다양성이 알려져 있음

ⓒ 한국방송통신대학교 All Rights Reserved.

2) 분류계급

분류계급의 단위

- 계(kingdom) : Plantae(식물계)
- 문(division): Magnoliophyta(피자식물문, 속씨식물문)
- 강(class): Magnoliopsida(쌍자엽식물강)
- 아강(subclass) : Rosidae(장미아강)
- 목(order) : Fab<mark>ales</mark>(콩목)
- 과(family) : Fabaceae(콩과)
- 분류군(taxa) 분류계급이하의 모든 종
- 속(genus) : *Glycine* (콩속), 종(species) : *Glycine max*

′3) 기준법

식물명명규약

- 새로운 종을 명명할 때 지켜야 하는 국제적인 약속(규칙)
- 세계 식물 총회(International Botanical Congress)에서 수정
 - 가장 최근의 규정 수정(심천, '17.7월)
- 맬버른 버전('11년)의 주요 수정 내용
 - 온라인 출판물에 소개된 신종의 학명도 인정(정당발표)
 - 신종의 기재문은 영어로 작성되어도 학술적으로 인정

4) 식물명명규약의 주요 내용

학명의 선취권 부여

- 식물의 학명은 린네가 1753년 5월 1일
 출간한 'species plantarum'에 수록된
 학명에게 선취권을 부여
- 1753년 5월 이후 발표된 학명
 - 가장 이른 시기에 발표된 학명에 정당성을 인정

Linnaeus, Carolus: Species Plantarum. Photo. Encyclopædia Britannica Online. Web. 20 Jul. 2018.

4) 식물명명규약의 주요 내용

정당이름과 소급력

- 하나의 정당한 이름만 인정
 - 콩과는 Fabaceae, Leguminosae 등 2가지 이름 사용
 - 산형과도 Apiaceae, Umbelliferae 둘 다 사용
- 학명의 소급력
 - 학명이 정당한 이름으로 인정되면, 새로운 연구에 의해 학명이 변경되지 않는 한 원래의 학명을 이용해야 하는 소급력을 가짐
- 식물명명규약은 동물명명규약과 다르게 적용

4) 식물명명규약의 주요 내용

학명의구성

- 라틴 또는 라틴어화되어 작명되어짐
- 종의 학명: 속명 + 종소명으로 구성 (+ 학명을 작명한 명명자)
 - 산당근 : *Daucus carota* L.

Daucus (속명), *carota* (종소명), L.(린네의 이니셜)

5) 기준표본 (type specimen)

새로운 종을 기재할 때 이용된 표본

- 정기준표본(holotype): 신종 형태 기재시 인용된 하나의 표본
- 동기준표본(isotype): 정기준표본과 같은 장소, 같은 날 채집
- 동가기준표본(syntype): 정기준표본없이 여러 표본을 인용
- 부기준표본(paratype): 동일한 장소와 같은 날에 채집되지 않았으나, 신종 발표시 인용되었던 표본
- 선정기준표본(type): 정기준표본이 없을 때 동가기준표본에서 선정
- 신기준표본(neotype): 기준표본이 없어 새롭게 선정

5) 기준표본 (type specimen)

학명의 보유와 선택 (I)

- 학명을 지은 명명자가 2명일 때: & 또는 et로 연결

& 또는 et로 연결

학명 명명자(A)와 학명을 유효 출판한 사람(B)이 다름

A ex B

A가 학명을 짓고, 기재문을 작성하다 B가 완성 출판한 경우

A in B

5) 기준표본 (type specimen)

학명의 보유와 선택(Ⅱ)

종소명이 나중에 다른 분류계급으로 수정되거나 옮겨진 경우:
 종소명 명명자의 이름을 ()속에 넣어 인용하고 새 명명자이름 병기

Glycine max (L.) Wild : 종소명(max)은 L. 가 처음 사용

1강 식물분류학의 이해

식물조사와 표본 제작

1) 식물조사에서 표본제작 순서

사전조사준비

- 조사 목적의 명확화, 무엇을 조사?, 허가는 필요한가?
- 조사 장비 및 개인 보호 장비 등 안전성 고려
 - 자외선 차단제, 긴 셔츠와 바지, 구급약품, 식음료 등
 - 두 사람 이상 동행 (비상상황 발생시 긴급 대응 필요)
 - 수생식물 조사, 열매 수집 시 특히 조심

© 한국방송통신대학교 All Rights Reserved.

조사장비

- 조사 용품 : 굴취칼, 전지가위, 돈 띠, 지퍼백 등
- 제작 용품
 - : 신문지, 흡습지, 골판지, 야책 등

조사시유의사항

- 채집된 식물은 꽃이나 열매가 있어야 함
- 초본은 뿌리가 포함되어야 함
- 채집된 모든 식물체에 돈띠(장소 정보)를 달고 지퍼백에 담음
- 동일한 위치에서 채집된 개체는 동일한 지퍼백에 넣음

고려 사항

지역절멸 가능성 있는 소수 개체 종은 채집하지 않으며, 집단 생존이 유지될 수 있도록 최소한 간섭이 필수

<u>ⓒ 한국</u>방송통신대학교 All Rights Reserved.

채집 번호의 부여

- 채집자가 채집 순서에 따라 번호 부여
 - 자유로운 방식을 이용(Lee-1104, LeeBY-18100 등)
 - 한번 사용한 채집 번호는 고유성이 있어 재사용이 안됨
- 동일한 장소에서 채집한 표본은 동일한 채집 번호를 부여
 - 복제표본 : 동일한 번호의 여러 장 표본(1/3, 2/3, 3/3)
- 동일 개체의 목본 식물을 다른 시기에 채집하는 경우
 - 다른 채집 번호를 부여함

'3) 식물표본 제작

표본제작전처리물품

- 간지: 식물체가 처음 놓이는 종이로 습기 제거(주로 신문지)
- 흡습지: 식물체의 습기를 급속히 제거하며 면섬유로 제작
- 통풍지: 바람이 통해 채집물의 습기를 제거(주로 골판지 이용)
 - 채집물: 통풍지, 흡습지, 간지, 식물체, 간지, 흡습지, 통풍지 순으로 정리함
- 스펀지: 부피가 큰 부위(열매, 뿌리 등)를 원형 상태로 유지
- 압착판(야책): 채집물의 위와 아래에 위치시켜 채집물이 상하지 않게 함

'3) 식물표본 제작

채집물처리 및 배열

- 채집 식물은 연구 목적에 따라 표본 제작(건조표본, 액침표본)
 - DNA 분석 샘플은 티백 등에 넣고 silica gel로 건조
- 신문지에 들어가지 않는 채집물은 자르고 표시 (1/2, 2/2 등)
- 야책 판 사이에 채집물을 넣고 야책 끈으로 고정

표본건조

- 채집제작물에서 수시로 흡습지만 갈아줌
 - 식물체의 형태는 재정리함(접혀진 잎 등)
- 건조기를 이용하기도 함

표본제작물품(I)

- 표본 대지 : 무광택, 중성화된 종이(acid free) 이용
- 대지 한 쪽을 들었을 때 어느 정도 수평이 유지되는 정도의
 두께 권장 : 크기 : 29.2 x 42cm(뉴욕식물원 표준 규격) 이용
- 접착제: 무독성, 산도(중성), 주로 PVA(polyvinyl acetate)

접착제 사용

'3) 식물표본 제작

표본제작물품(Ⅱ)

- 접착 테이프: 화서, 뿌리, 잎(벼과, 사초과)의 2차 고정에 이용
- 유산지: 표본 완성품 위에 덮는 보호 종이
- 종이봉투: 채집물에서 떨어져 나온 조직이나 부속물들을 넣어 두는 봉투(예; DNA 추출용)
- 표본 제작 누름틀: 표본 접착제가 완전히 마를 때 까지 표본이 움직이지 않도록 지지하는 틀

표본 접칙

표본 접착

표본 접착

제작하고 남은 건조물은 봉투에

표본 접착

다른 방향 X

라벨, 바코딩 작업

표본분류및소독

같은 종끼리 분류 정리

소독: 72시간@-20도

4) 식물표본 수장

동일한 종끼리 보관 관리

- 분류체계에 따라 보관
- 속내 종 배열은 알파벳 순서
- 지역별로 나누어 보관도 함 (아프리카, 만주지역, 일본 등)

수고하셨습니다.

1강 식물분류학의 이해

다음시간에는

식물분류학의 발달사