Übung zur Vorlesung Berechenbarkeit und Komplexität

Lösung Blatt 12

Tutoriumsaufgabe 12.1

Das Makespan-Scheduling-Problem ist das folgende Optimierungsproblem:

Makespan-Scheduling

Eingabe: m Maschinen, n Jobs mit Laufzeiten p_1, \ldots, p_n .

zulässige Lösungen: Jede Zuteilung $s\colon\{1,\ldots,n\}\to\{1,\ldots,m\}$ der Jobs auf die Maschinen.

Zielfunktion: Minimiere den Makespan, d.h. minimiere $\max_{1 \le i \le m} \sum_{j: s(j) = i} p_j$.

(a) Definieren Sie die Entscheidungsvariante des Makespan-Scheduling-Problems.

MAKESPAN-SCHEDULING-E

Eingabe: m Maschinen, n Jobs mit Laufzeiten $p_1, \ldots, p_n, b \in \mathbb{N}$

Frage: Gibt es eine Abbildung $s: \{1, \ldots, n\} \to \{1, \ldots, m\}$, sodass $\sum_{j:s(j)=i} p_j \leq b$ für alle $1 \leq i \leq m$?

(b) Beschreiben Sie eine polynomielle Reduktion von Subset-Sum auf die Entscheidungsvariante von Makespan-Scheduling und beweisen Sie ihre Korrektheit.

Hinweis: Einen NP-Härte-Beweis könnte man ganz einfach über BIN PACKING führen. Hier wurde jedoch die Reduktion von Subset-Sum verlangt.

Die Eingabe für Subset-Sum sei $((a_1, \ldots, a_N), b)$. Wir konstruieren daraus eine Eingabe für Makespan-Scheduling-E. Diese hat N+2 Jobs. Für alle $1 \le i \le N$ setze die Laufzeiten der Jobs auf $p_i = a_i$. Weiterhin: $p_{N+1} = 2A - b$ und $p_{N+2} = A + b$, wobei $A = \sum_{i=1}^{N} a_i$. Die Anzahl der Maschinen setzen wir auf 2. Sei 2A der geforderte Makespan, also die maximale Laufzeit einer Maschine. Diese dadurch gegebene transformierende Funktion ist polynomiell berechenbar.

Sei jetzt $((a_1, \ldots, a_N), b) \in \text{Subset-Sum}$. Also gibt es eine Indexmenge $M \subseteq \{1, \ldots, N\}$ mit $\sum_{i \in M} a_i = b$. Definiere die Zuordnung $s \colon \{1, \ldots, N+2\} \to \{1, 2\}$

mit

$$s(i) = \begin{cases} 1 & \text{falls } 1 \le i \le N \text{ und } i \in M \\ 2 & \text{falls } 1 \le i \le N \text{ und } i \notin M \\ 1 & \text{falls } i = N+1 \\ 2 & \text{falls } i = N+2 \end{cases}$$

Nachrechnen ergibt, dass dieser Schedule einen Makespan von 2A hat.

Sei umgekehrt $(p_1, \ldots, p_{N+2}, 2, 2A) \in Makespan - Scheduling - E$. Dann existiert eine Zuordnung s, die die Jobs auf 2 Maschinen so anordnet, dass ein Makespan von höchstens 2A erreicht wird. Wie leicht einzusehen ist, haben beide Maschinen damit auch eine Last von exakt 2A. Die Jobs p_{N+1} und p_{N+2} sind keinesfalls derselben Maschine zugeordnet. Eine gültige Lösung von SUBSET-SUM erhalten wir jetzt über $M = \{1 \le i \le N \mid s(i) = s(N+1)\}.$

Tutoriumsaufgabe 12.2

Zeigen Sie, dass BINPACKING stark NP-schwer ist.

Wir zeigen, dass Three-Partition \leq_p BinPacking, wobei sich in der Reduktion der maximale Wert von Zahlen nur um einen polynomiellen Faktor vergrößert.

Sei $a_1, \ldots, a_n, b_1, \ldots, b_n$ und c_1, \ldots, c_n die Eingabe für Three-Partition, sodass

$$\sum_{i=1}^{n} (a_i + b_i + c_i) = nS$$

gilt.

Wir konstruieren daraus folgende Instanz für BINPACKING. Sei $A = \max_{1 \leq i \leq n} \{a_i, b_i, c_i\}$ der maximale Zahlenwert der gegebenen THREE-PARTITION-Instanz. Wir setzen die Kapazität der Bins auf b = S + 28A, die maximale Anzahl der Bins auf $\gamma = n$ und konstruieren 3n Objekte mit Gewichten

$$16A + a_1, \ldots, 16A + a_n, 8A + b_1, \ldots, 8A + b_n, 4A + c_1, \ldots, 4A + c_n.$$

Offenbar können wir die neue Instanz in polynomieller Zeit berechnen. Außerdem ist der maximale Wert einer Zahl in der neuen BINPACKING-Instanz polynomiell beschränkt in A.

Wir müssen also nur noch die Korrektheit zeigen. Zunächst sei (α, β) eine Lösung für die Three-Partition-Instanz, also $a_{\alpha(i)} + b_{\beta(i)} + c_i = S$ für alle $1 \le i \le n$. Für $1 \le i \le n$ befüllen wir nun den *i*-ten Bin mit den Gewichten $16A + a_{\alpha(i)}$, $8A + b_{\beta(i)}$ und $4A + c_i$. Dabei wird die Kapazität b = S + 28A genau eingehalten.

Nehmen wir nun an, dass die konstruierte BINPACKING-Instanz eine Lösung besitzt. Zunächst gilt, das kein Bin zwei Gewichte vom Typ $16A + a_i$ enthält, denn 16A + 16A = 32A > 28A + S = b (beachte, dass $S \le 3A$). Also muss jeder Bin genau ein Objekt vom Typ $16A + a_i$ enthälten. Nun gilt aber, dass kein Bin zwei Gewichte vom Typ $8A + b_i$ enthält, denn 8A + 8A + 16A = 32A > 28A + S = b (beachte, dass jeder Bin bereits ein Gewicht von mindestens 16A enthält). Also muss jeder Bin genau ein Objekt vom Typ $8A + b_i$ enthalten. Mit einer weiteren Wiederholung des Arguments erhalten wir, dass kein

Bin zwei Gewichte vom Typ $4A+c_i$ enthält, denn 4A+4A+8A+16A=32A>28A+S=b. Also muss jeder Bin genau ein Objekt vom Typ $4A+c_i$ enthalten. Wir nummerieren nun die Bins so, dass der *i*-te Bin gerade das Gewicht $4A+c_i$ enthält. Weiter definieren wir α und β , sodass der *i*-te die Gewichte $16A+a_{\alpha(i)}$ und $8A+b_{\beta(i)}$ enthält. Dann gilt $a_{\alpha(i)}+b_{\beta(i)}+c_i \leq S$ aufgrund der Kapazität der Bins. Da $\sum_{i=1}^n (a_i+b_i+c_i)=nS$ gilt, folgt weiter, dass $a_{\alpha(i)}+b_{\beta(i)}+c_i=S$ für alle $1\leq i\leq n$.

Tutoriumsaufgabe 12.3

Wir betrachten sogenannte primitive Programme, die durch die Hintereinanderausführung von Zuweisungen " $x_i := x_j + c$ " und If-Befehlen "IF ($x_i = c'$) THEN $x_j := x_k + c$ " ENDIF" (mit Konstanten $c, c', c'' \in \mathbb{N}$) entstehen. If-Befehle können nicht ineinander verschachtelt werden, und es gibt keine ELSE-Klauseln. Die Eingabe des Programms steht in den Variablen x_1, \ldots, x_k , und die Ausgabe des Programms steht am Ende in der Variable x_0 . Die Variable x_0 enthält keinen Eingabewert und wird mit 0 initialisiert. Beweisen Sie, dass das folgende Problem **coNP-**schwer ist:

```
PRIMITIVEEQ
```

Eingabe: Zwei primitive Programme P_1 und P_2 mit Variablen x_0, \ldots, x_k . Frage: Berechnen diese beiden Programme dieselbe Funktion $f: \mathbb{N}^k \to \mathbb{N}$?

Wir zeigen UNSAT \leq_p PRIMITIVEEQ.

Aus einer CNF-Formel φ konstruieren wir ein primitives Programm P_{φ} , das φ auf der gegebenen Eingabe auswertet, wie folgt. Es seien v_1, \ldots, v_n die Variablen von φ und C_1, \ldots, C_m die Klauseln.

Das Programm P_{φ} verwendet die Variablen x_0 (für das Endergebnis), x_1, \ldots, x_n (zur Eingabe der Variablenwerte), y_1, \ldots, y_m (zum Speichern der Klauselzwischenergebnisse) und y (zum Zwischenspeichern des Endergebnisses). Um die Zuweisung von Konstanten zu simulieren, verwenden wir die Variable x_0 .

Für jede Klausel C_i werden nun Befehle eingefügt, die diese auswerten und das Ergebnis in der Variable y_i speichern. Dies wird hier am Beispiel der Klausel $C_4 = v_1 \vee v_2 \vee \neg v_3$ beschrieben:

```
y_4 \coloneqq x_0 + 0;
IF (x_1 = 1) THEN y_4 \coloneqq x_0 + 1 ENDIF;
IF (x_2 = 1) THEN y_4 \coloneqq x_0 + 1 ENDIF;
IF (x_3 = 0) THEN y_4 \coloneqq x_0 + 1 ENDIF
```

Hinter den Befehlen zum Auswerten der Klauseln folgen nun Befehle, um die gesamte Formel auszuwerten. Dazu gehen wir wie folgt vor:

```
y := x_0 + 1;
IF (y_1 = 0) THEN y := x_0 + 0 ENDIF;
IF (y_2 = 0) THEN y := x_0 + 0 ENDIF;
:
```

IF
$$(y_m = 0)$$
 THEN $y := x_0 + 0$ ENDIF; $x_0 := y + 0$

Die neue Instanz für PRIMITIVEEQ ist jetzt (P_{φ}, P_0) , wobei P_0 ein Programm ist, das die gleichen Variablen wie P_{φ} verwendet, aber immer 0 als Ergebnis liefert. Dieses Programmpaar ist offensichtlich in polynomieller Zeit berechenbar.

Korrektheit: Zeige, dass φ unerfüllbar ist genau dann, wenn die beiden Programme dieselbe Funktion berechnen. Angenommen, φ ist erfüllbar. Für eine erfüllende Belegung x_1,\ldots,x_n berechnet P_{φ} auf der Eingabe $(x_1,\ldots,x_n,0,\ldots,0)$ eine 1, weshalb die Programme P_{φ} und P_0 nicht dieselbe Funktion berechnen. Umgekehrt sei φ so, dass die Programme P_{φ} und P_0 nicht dieselbe Funktion berechnen. Dann existiert eine Eingabe $(x_1,\ldots,x_n,y_1,\ldots,y_m,y)$, auf der von P_{φ} eine 1 berechnet wird; andere Werte kann das Programm nicht ausgeben. In diesem Fall enthielten also alle Variablen y_1,\ldots,y_m den Wert 1. Dies bedeutet, das für jede Klausel eine der Eingaben x_1,\ldots,x_n auf 0 oder 1 gesetzt ist und zwar so, dass diese Klausel erfüllt ist. Indem man nun für die Werte der x_1,\ldots,x_n , die ungleich 0 und 1 sind, beliebig 0 oder 1 wählt, erhält man eine erfüllende Belegung für φ .