Package 'biclustermd'

October 12, 2022

Type Package

Title Biclustering with Missing Data

Version 0.2.3

Maintainer John Reisner < johntreisner@gmail.com>

Description Biclustering is a statistical learning technique that simultaneously partitions and clusters rows and columns of a data matrix. Since the solution space of biclustering is in infeasible to completely search with current computational mechanisms, this package uses a greedy heuristic. The algorithm featured in this package is, to the best our knowledge, the first biclustering algorithm to work on data with missing values. Li, J., Reisner, J., Pham, H., Olafsson, S., and Vardeman, S. (2020) Biclustering with Missing Data. Information Sciences, 510, 304–316.

URL https://github.com/jreisner/biclustermd

```
BugReports https://github.com/jreisner/biclustermd/issues
```

```
Depends ggplot2 (>= 3.0.0), R (>= 3.5.0), tidyr (>= 0.8.1)
```

Imports biclust (>= 2.0.1), doParallel (>= 1.0.14), dplyr (>= 0.7.6), foreach (>= 1.4.4), magrittr (>= 1.5), nycflights13 (>= 1.0.0), phyclust (>= 0.1-24)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Author John Reisner [cre, aut, cph], Hieu Pham [ctb, cph], Jing Li [ctb, cph]

Repository CRAN

Date/Publication 2021-06-17 15:10:06 UTC

2 biclustermd-package

R topics documented:

biclustermd-package	 2
as.Biclust	 3
autoplot.biclustermd	 4
autoplot.biclustermd_sim	 5
autoplot.biclustermd_sse	 6
biclustermd	 7
binary_vector_gen	 9
cell_heatmap	 10
cell_mse	 11
cluster_iteration_sum_sse	11
col.names	 12
col.names.biclustermd	 12
col_cluster_names	 13
compare_biclusters	 14
fill_empties_P	14
fill_empties_Q	 15
format_partition	 16
gather.biclustermd	 16
jaccard_similarity	 17
mse_heatmap	 18
partition_gen	 19
partition_gen_by_p	 19
part_matrix_to_vector	 20
position_finder	 20
print.biclustermd	 21
reorder_biclust	 21
rep_biclustermd	 22
results_heatmap	 24
row.names.biclustermd	 25
row_cluster_names	 25
runtimes	 26
synthetic	 27
tune_biclustermd	 27

biclustermd-package biclustermd: A package to bicluster data with missing values

Description

Index

The main function is biclustermd(). Results can be plotted with autoplot() and as.Biclust() converts results to Biclust objects.

30

as.Biclust 3

as.Biclust

Convert a biclustermd object to a Biclust object

Description

Convert a biclustermd object to a Biclust object

Usage

```
as.Biclust(object)
```

Arguments

object

The biclustermd object to convert to a Biclust object

Value

Returns an object of class Biclust.

```
data("synthetic")
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,</pre>
                miss_val = mean(synthetic, na.rm = TRUE),
                miss_val_sd = sd(synthetic, na.rm = TRUE),
                col_min_num = 2, row_min_num = 2,
                col_num_to_move = 1, row_num_to_move = 1,
                max.iter = 10)
bc
as.Biclust(bc)
# biclust::drawHeatmap won't work since it doesn't exclude NAs
## Not run: biclust::drawHeatmap(synthetic, as.Biclust(bc), 6)
# bicluster 6 is in the top right-hand corner here:
autoplot(bc)
# compare with bicust::drawHeatmap2:
biclust::drawHeatmap2(synthetic, as.Biclust(bc), 6)
# bicluster 3 is in the bottom right-hand corner here:
autoplot(bc)
# compare with bicust::drawHeatmap2:
biclust::drawHeatmap2(synthetic, as.Biclust(bc), 3)
```

autoplot.biclustermd

autoplot.biclustermd Make a heatmap of sparse biclustering results

Description

Make a heatmap of sparse biclustering results

Usage

4

```
## S3 method for class 'biclustermd'
autoplot(
  object,
  axis.text = NULL,
  reorder = FALSE,
  transform_colors = FALSE,
  c = 1/6,
  cell_alpha = 1/5,
  col_clusts = NULL,
  row_clusts = NULL,
  ...
)
```

Arguments

object	An object of class "biclustermd".
axis.text	A character vector specifying for which axes text should be drawn. Can be any of "x", "col" for columns, "y", "row" for rows, or any combination of the four. By default this is NULL; no axis text is drawn.
reorder	A logical. If TRUE, heatmap will be sorted according to the cell-average matrix, ${\sf A}.$
transform_colo	rs
	If equals TRUE then the data is scaled by c and run through a standard normal cdf before plotting. If FALSE (default), raw data values are used in the heat map.
С	Value to scale the data by before running it through a standard normal CDF. Default is 1/6.
cell_alpha	A scalar defining the transparency of shading over a cell and by default this equals 1/5. The color corresponds to the cell mean.
col_clusts	A vector of column cluster indices to display. If NULL (default), all are displayed.
row_clusts	A vector of row cluster indices to display. If NULL (default), all are displayed.
	Arguments to be passed to geom_vline() and geom_hline().

Value

An object of class ggplot.

Examples

```
data("synthetic")
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,</pre>
                miss_val = mean(synthetic, na.rm = TRUE),
                miss_val_sd = sd(synthetic, na.rm = TRUE),
                col_min_num = 2, row_min_num = 2,
                col_num_to_move = 1, row_num_to_move = 1,
                max.iter = 10)
autoplot(bc)
autoplot(bc, axis.text = c('x', 'row')) +
    ggplot2::scale_fill_distiller(palette = "Spectral", na.value = "white")
# Complete shading
autoplot(bc, axis.text = c('col', 'row'), cell_alpha = 1)
# Transformed values and no shading
autoplot(bc, transform_colors = TRUE, c = 1/20, cell_alpha = 0)
# Focus on row cluster 1 and column cluster 2
autoplot(bc, col_clusts = 2, row_clusts = 1)
```

autoplot.biclustermd_sim

Plot similarity measures between two consecutive biclusterings.

Description

Creates a ggplot of the three similarity measures used in biclustermd::bicluster() for both row and column dimensions.

Usage

```
## S3 method for class 'biclustermd_sim'
autoplot(object, similarity = NULL, facet = TRUE, ncol = NULL, ...)
```

Arguments

object	Object of class "biclustermd_sim"
similarity	A character vector indicating which similarity measure to plot. Can be any of "Rand", "HA", "Jaccard", or "used". If "used", plot only the measure used as
	the stopping condition in the algorithm). By default (NIIII) all three are plotted

the stopping condition in the algorithm). By default (NULL) all three are plotted.

When plotted, the used measure will have an asterisk.

facet If TRUE (default), each similarity measure will be in its own plot. if FALSE, all

three similarity measures for rows and columns are given in one plot.

ncol If faceting, the number of columns to arrange the plots in.

... Arguments to pass to ggplot2::geom_point()

Value

A ggplot object.

Examples

autoplot.biclustermd_sse

Plot sums of squared errors (SSEs) consecutive biclustering iterations.

Description

Creates a ggplot of the decrease in SSE recorded in biclustermd::bicluster().

Usage

```
## S3 method for class 'biclustermd_sse'
autoplot(object, ...)
```

Arguments

```
object Object of class "biclustermd_sse" with columns "Iteration" and "SSE"

... Arguments to pass to ggplot2::geom_point()
```

Value

A ggplot object.

biclustermd 7

Examples

biclustermd

Bicluster data with non-random missing values

Description

Bicluster data with non-random missing values

Usage

```
biclustermd(
  data,
  row_clusters = floor(sqrt(nrow(data))),
  col_clusters = floor(sqrt(ncol(data))),
  miss_val = mean(data, na.rm = TRUE),
  miss_val_sd = 1,
  similarity = "Rand",
  row_min_num = floor(nrow(data)/row_clusters),
  col_min_num = floor(ncol(data)/col_clusters),
  row_num_to_move = 1,
  col_num_to_move = 1,
  row_shuffles = 1,
  col\_shuffles = 1,
  max.iter = 100,
  verbose = FALSE
)
```

Arguments

Dataset to bicluster. Must to be a data matrix with only numbers and missing values in the data set. It should have row names and column names.

The number of clusters to partition the rows into. The default is floor(sqrt(nrow(data))).

The number of clusters to partition the columns into. The default is floor(sqrt(ncol(data))).

Value or function to put in empty cells of the prototype matrix. If a value, a random normal variable with sd = miss_val_sd is used each iteration. By default, this equals the mean of data.

8 biclustermd

miss_val_sd Standard deviation of the normal distribution miss_val follows if miss_val is

a number. By default this equals 1.

similarity The metric used to compare two successive clusterings. Can be "Rand" (default),

"HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See RRand

for details.

row_min_num Minimum row prototype size in order to be eligible to be chosen when filling an

empty row prototype. Default is floor(nrow(data) / row_clusters).

col_min_num Minimum column prototype size in order to be eligible to be chosen when filling

an empty row prototype. Default is floor(ncol(data) / col_clusters).

row_num_to_move

Number of rows to remove from the sampled prototype to put in the empty row

prototype. Default is 1.

col_num_to_move

Number of columns to remove from the sampled prototype to put in the empty

column prototype. Default is 1.

row_shuffles Number of times to shuffle rows in each iteration. Default is 1.

col_shuffles Number of times to shuffle columns in each iteration. Default is 1.

max.iter Maximum number of iterations to let the algorithm run for.

verbose Logical. If TRUE, will report progress.

Value

A list of class biclustermd:

params a list of all arguments passed to the function, including defaults.

data the inputted two way table of data.

P0 the initial column partition matrix.

Q0 the initial row partition matrix.

InitialSSE the SSE of the original partitioning.

P the final column partition matrix.

Q the final row partition matrix.

SSE a matrix of class biclustermd_sse detailing the SSE recorded at the end of each

iteration.

Similarities a data frame of class biclustermd_sim detailing the value of row and column

similarity measures recorded at the end of each iteration. Contains information for all three similarity measures. This carries an attribute "used" which provides

the similarity measure used as the stopping condition for the algorithm.

iteration the number of iterations the algorithm ran for, whether max.iter was reached

or convergence was achieved.

A the final prototype matrix which gives the average of each bicluster.

References

Li, J., Reisner, J., Pham, H., Olafsson, S., and Vardeman, S. (2020) *Biclustering with Missing Data*. *Information Sciences*, 510, 304–316.

binary_vector_gen 9

See Also

rep_biclustermd, tune_biclustermd

Examples

```
data("synthetic")
# default parameters
bc <- biclustermd(synthetic)</pre>
autoplot(bc)
# providing the true number of row and column clusters
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2)</pre>
bc
autoplot(bc)
# an example with the nycflights13::flights dataset
library(nycflights13)
data("flights")
library(dplyr)
flights_bcd <- flights %>%
  select(month, dest, arr_delay)
flights_bcd <- flights_bcd %>%
  group_by(month, dest) %>%
  summarise(mean_arr_delay = mean(arr_delay, na.rm = TRUE)) %>%
  spread(dest, mean_arr_delay) %>%
  as.data.frame()
rownames(flights_bcd) <- flights_bcd$month</pre>
flights_bcd <- as.matrix(flights_bcd[, -1])</pre>
flights_bc <- biclustermd(data = flights_bcd, col_clusters = 6, row_clusters = 4,
                  row_min_num = 3, col_min_num = 5,
                  max.iter = 20, verbose = TRUE)
flights_bc
```

binary_vector_gen

Make a binary vector with all values equal to zero except for one

Description

Make a binary vector with all values equal to zero except for one

Usage

```
binary_vector_gen(n, i)
```

10 cell_heatmap

Arguments

n Desired vector length.

i Index whose value is one.

Value

A vector

cell_heatmap

Make a heat map of bicluster cell sizes.

Description

Make a heat map of bicluster cell sizes.

Usage

```
cell_heatmap(x, ...)
```

Arguments

x An object of class biclustermd.

... Arguments to pass to geom_tile()

cell_mse 11

cell_mse

Make a data frame containing the MSE for each bicluster cell

Description

Make a data frame containing the MSE for each bicluster cell

Usage

```
cell_mse(x)
```

Arguments

Х

An object of class biclustermd.

Value

A data frame giving the row cluster, column cluster, the number of data points in each row and column cluster, the number of data points missing in the cell, and the cell MSE.

Examples

cluster_iteration_sum_sse

Calculate the sum cluster SSE in each iteration

Description

Calculate the sum cluster SSE in each iteration

Usage

```
cluster_iteration_sum_sse(data, P, Q)
```

12 col.names.biclustermd

Arguments

data The data being biclustered. Must to be a data matrix with only numbers and

missing values in the data set. It should have row names and column names.

P Matrix for column prototypes.

Q Matrix for row prototypes.

Value

The SSE for the parameters specified.

col.names

A generic to gather column names

Description

A generic to gather column names

Usage

```
col.names(x)
```

Arguments

Х

an object to retrieve column names from

 ${\it col.} \, {\it names.biclustermd} \quad {\it Get \, data \, matrix \, column \, names \, and \, their \, corresponding \, column \, cluster \, membership}$

Description

Get data matrix column names and their corresponding column cluster membership

Usage

```
## S3 method for class 'biclustermd'
col.names(x)
```

Arguments

Х

and object of class biclustermd

Value

a data frame with column names of the shuffled matrix and corresponding column cluster names.

col_cluster_names 13

Examples

```
data("synthetic")
# default parameters
bc <- biclustermd(synthetic)
bc
col.names(bc)
# this is a simplified version of the output for gather(bc):
library(dplyr)
gather(bc) %>% distinct(col_cluster, col_name)
```

col_cluster_names

Get column names in each column cluster

Description

Get column names in each column cluster

Usage

```
col_cluster_names(x, data)
```

Arguments

x Biclustering object to extract column cluster designation from

data Data that contains the column names

Value

A data frame with two columns: cluster corresponds to the column cluster and name gives the column names in each cluster.

14 fill_empties_P

compare_biclusters

Compare two biclusterings or a pair of partition matrices

Description

Compare two biclusterings or a pair of partition matrices

Usage

```
compare_biclusters(bc1, bc2)
```

Arguments

bc1 the first biclustering or partition matrix. Must be either of class biclustermd or

matrix.

bc2 the second biclustering or partition matrix. Must be either of class biclustermd

or matrix.

Value

If comparing a pair of biclusterings, a list containing the column similarity indices and the row similarity indices, in that order. If a pair of matrices, a vector of similarity indices.

Examples

```
data("synthetic")
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2)
bc2 <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2)
# compare the two biclusterings
compare_biclusters(bc, bc2)
# determine the similarity between initial and final row clusterings
compare_biclusters(bc$Q0, bc$Q)</pre>
```

fill_empties_P

Randomly select a column prototype to fill an empty column prototype with

Description

Randomly select a column prototype to fill an empty column prototype with

Usage

```
fill_empties_P(data, obj, col_min_num = 10, col_num_to_move = 5)
```

fill_empties_Q

Arguments

data	The data being biclustered. Must to be a data matrix with only numbers and
	missing values in the data set. It should have row names and column names.

obj A matrix for column clusters, typically named P.

col_min_num Minimum column prototype size in order to be eligible to be chosen when filling

an empty column prototype. Default is 10.

col_num_to_move

Number of columns to remove from the sampled prototype to put in the empty

column prototype. Default is 5.

Value

A matrix for column clusters, i.e., a P matrix.

fill_empties_Q	Randomly select a row prototype to fill an empty row prototype with
TIII_cmptIc3_Q	Randomly select a row prototype to fitt an empty row prototype with

Description

Randomly select a row prototype to fill an empty row prototype with

Usage

```
fill_empties_Q(data, obj, row_min_num = 10, row_num_to_move = 5)
```

Arguments

data The data being biclustered. Must to be a data matrix with only numbers and

missing values in the data set. It should have row names and column names.

obj A matrix for row clusters, typically named Q

row_min_num Minimum row prototype size in order to be eligible to be chosen when filling an

empty row prototype. Default is 10.

row_num_to_move

Number of rows to remove from the sampled prototype to put in the empty row

prototype. Default is 5.

Value

A matrix for row clusters, i.e., a Q matrix.

16 gather.biclustermd

 $format_partition$

Format a partition matrix

Description

Formats a partition matrix so that subsets in a partition will be ordered by the value of the smallest in each subset

Usage

```
format_partition(P1)
```

Arguments

Р1

A partition matrix.

Value

A formatted partition matrix.

 ${\tt gather.biclustermd}$

Gather a biclustermd object

Description

Gather a biclustermd object

Usage

```
## S3 method for class 'biclustermd'
gather(
   data,
   key = NULL,
   value = NULL,
   ...,
   na.rm = FALSE,
   convert = FALSE,
   factor_key = FALSE
)
```

jaccard_similarity 17

Arguments

data	a biclustermd object to gather.
key	unused; included for consistency with tidyr generic
value	unused; included for consistency with tidyr generic
	unused; included for consistency with tidyr generic
na.rm	unused; included for consistency with tidyr generic
convert	unused; included for consistency with tidyr generic
factor_key	unused; included for consistency with tidyr generic

Value

A data frame containing the row names and column names of both the two-way table of data biclustered and the cell-average matrix.

Examples

jaccard_similarity

Compute the Jaccard similarity coefficient for two clusterings

Description

Compute the Jaccard similarity coefficient for two clusterings

Usage

```
jaccard_similarity(clus1, clus2)
```

Arguments

clus1	vector giving the first set of clusters
clus2	vector giving the second set of clusters

18 mse_heatmap

Value

a numeric

References

Milligan, G.W. and Cooper, M. C. (1986) A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441-458.

mse_heatmap

Make a heatmap of cell MSEs

Description

Make a heatmap of cell MSEs

Usage

```
mse\_heatmap(x, ...)
```

Arguments

x An object of class biclustermd.

... Arguments to pass to geom_tile()

Value

A ggplot object.

partition_gen 19

sets/groups.	partition_gen	Generate an intial, random partition matrix with N objects into K subsets/groups.
--------------	---------------	---

Description

This function is used to randomly generate a partition matrix and assign rows or columns to prototypes. Must be the case that N > K.

Usage

```
partition_gen(N, K)
```

Arguments

N Number of objects/rows in a partition matrix

K Desired number of partitions

Value

A partition matrix.

Number of prototypes to create

Description

Create a partition matrix with a partition vector p

Usage

```
partition_gen_by_p(N, K, p)
```

Arguments

Κ

N Rows in a partition matrix

p Integer vector containing the cluster each row in a partition matrix is to be as-

signed to.

Value

A partition matrix.

20 position_finder

```
part_matrix_to_vector Convert a partition matrix to a vector
```

Description

For each row in a partition matrix, this function gets the column index for which the row is equal to one. That is, for row i, this function returns the index of the row entry that is equal to one.

Usage

```
part_matrix_to_vector(P0)
```

Arguments

P0

A partition matrix

Value

An integer vector

position_finder

Find the index of the first nonzero value in a vector

Description

Find the index of the first nonzero value in a vector

Usage

```
position_finder(vec)
```

Arguments

vec

A binary vector

Value

Position of the first nonzero value in a vector.

print.biclustermd 21

print.biclustermd

Print an object of class biclustermd

Description

Print an object of class biclustermd

Usage

```
## S3 method for class 'biclustermd' print(x, ...)
```

Arguments

x a biclustermd object.

... arguments passed to or from other methods

reorder_biclust

Reorder a bicluster object for making a heat map

Description

Reorder a bicluster object for making a heat map

Usage

```
reorder_biclust(x)
```

Arguments

x A bicluster object.

Value

A list containing the two partition matrices used by gg_bicluster.

22 rep_biclustermd

rep_biclustermd

Repeat a biclustering to achieve a minimum SSE solution

Description

Repeat a biclustering to achieve a minimum SSE solution

Usage

```
rep_biclustermd(
  data,
 nrep = 10,
 parallel = FALSE,
 ncores = 2,
 col_clusters = floor(sqrt(ncol(data))),
  row_clusters = floor(sqrt(nrow(data))),
 miss_val = mean(data, na.rm = TRUE),
 miss_val_sd = 1,
 similarity = "Rand",
 row_min_num = 5,
 col_min_num = 5,
  row_num_to_move = 1,
 col_num_to_move = 1,
 row_shuffles = 1,
 col\_shuffles = 1,
 max.iter = 100
)
```

Arguments

data	Dataset to bicluster. Must to be a data matrix with only numbers and missing values in the data set. It should have row names and column names.
nrep	The number of times to repeat the biclustering. Default 10.
parallel	Logical indicating if the user would like to utilize the foreach parallel backend. Default is FALSE.
ncores	The number of cores to use if parallel computing. Default 2.
col_clusters	The number of clusters to partition the columns into.
row_clusters	The number of clusters to partition the rows into.
miss_val	Value or function to put in empty cells of the prototype matrix. If a value, a random normal variable with sd = miss_val_sd is used each iteration.
miss_val_sd	Standard deviation of the normal distribution miss_val follows if miss_val is a number. By default this equals 1.
similarity	The metric used to compare two successive clusterings. Can be "Rand" (default), "HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See RRand and for details.

rep_biclustermd 23

row_min_num	Minimum row prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is 5.	
col_min_num	Minimum column prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is 5.	
row_num_to_mov	e	
	Number of rows to remove from the sampled prototype to put in the empty row prototype. Default is 1.	
col_num_to_move		
	Number of columns to remove from the sampled prototype to put in the empty column prototype. Default is 1.	
row_shuffles	Number of times to shuffle rows in each iteration. Default is 1.	
col_shuffles	Number of times to shuffle columns in each iteration. Default is 1.	
max.iter	Maximum number of iterations to let the algorithm run for.	

Value

A list of the minimum SSE biclustering, a vector containing the final SSE of each repeat, and the time it took the function to run.

References

Li, J., Reisner, J., Pham, H., Olafsson, S., and Vardeman, S. (2019) *Biclustering for Missing Data. Information Sciences, Submitted*

See Also

```
biclustermd, tune_biclustermd
```

```
data("synthetic")
# 20 repeats without parallelization
repeat_bc <- rep_biclustermd(synthetic, nrep = 20,</pre>
                             col_clusters = 3, row_clusters = 2,
                             miss_val = mean(synthetic, na.rm = TRUE),
                             miss_val_sd = sd(synthetic, na.rm = TRUE),
                             col_min_num = 2, row_min_num = 2,
                             col_num_to_move = 1, row_num_to_move = 1,
                             max.iter = 10)
repeat_bc
autoplot(repeat_bc$best_bc)
plot(repeat_bc$rep_sse, type = 'b', pch = 20)
repeat_bc$runtime
# 20 repeats with parallelization over 2 cores
repeat_bc <- rep_biclustermd(synthetic, nrep = 20, parallel = TRUE, ncores = 2,</pre>
                             col_clusters = 3, row_clusters = 2,
                             miss_val = mean(synthetic, na.rm = TRUE),
```

24 results_heatmap

```
miss_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)
repeat_bc$runtime
```

results_heatmap

Make a heatmap of sparse biclustering results

Description

Make a heatmap of sparse biclustering results

Usage

```
results_heatmap(
    x,
    reorder = FALSE,
    transform_colors = FALSE,
    c = 1/6,
    cell_alpha = 1/5,
    col_clusts = NULL,
    row_clusts = NULL,
    ...
)
```

Arguments

A biclustermd object. Χ reorder A logical. If TRUE, heatmap will be sorted according to the cell-average matrix, transform_colors If equals TRUE then the data is scaled by c and run through a standard normal cdf before plotting. If FALSE (default), raw data values are used in the heat map. Value to scale the data by before running it through a standard normal CDF. С Default is 1/6. A scalar defining the transparency of shading over a cell and by default this cell_alpha equals 1/5. The color corresponds to the cell mean. A vector of column cluster indices to display. If NULL (default), all are discol_clusts played. row_clusts A vector of row cluster indices to display. If NULL (default), all are displayed. Arguments to be passed to geom_vline() and geom_hline().

Value

An object of class ggplot.

row.names.biclustermd 25

row.names.biclustermd Get data matrix row names and their corresponding row cluster membership

Description

Get data matrix row names and their corresponding row cluster membership

Usage

```
## S3 method for class 'biclustermd'
row.names(x)
```

Arguments

Х

and object of class biclustermd

Value

a data frame with row names of the shuffled matrix and corresponding row cluster names.

Examples

```
data("synthetic")
# default parameters
bc <- biclustermd(synthetic)
bc
row.names(bc)
# this is a simplified version of the output for gather(bc):
library(dplyr)
gather(bc) %>% distinct(row_cluster, row_name)
```

row_cluster_names

Get row names in each row cluster

Description

Get row names in each row cluster

Usage

```
row_cluster_names(x, data)
```

Arguments

x Biclustering object to extract row cluster designation from

data Data that contains the row names

26 runtimes

Value

A data frame with two columns: cluster corresponds to the row cluster and name gives the row names in each cluster.

Examples

runtimes

Algorithm run time data

Description

This dataset stems from the R journal article introducing biclustermd to R users. It describes the data attributes and run time for varying data sizes and structures.

Usage

runtimes

Format

An object of class data. frame with 2400 rows and 13 columns.

Details

A data frame of 2400 rows and 13 variables (defined range, inclusive):

combination no Unique identifier of a combination of parameters.

rows Number of rows in the data matrix. (50, 1500)

cols Number of columns in the data matrix. (50, 1500)

N Product of the dimensions of the data. (2500, 2250000)

row_clusts Number of clusters to partition the rows into. (4, 300)

col_clusts Number of clusters to partition the columns into. (4, 300)

avg_row_clust_size Average row cluster size. rows / row_clusts

avg_col_clust_size Average column cluster size. cols / col_clusts

sparsity Percent of data values which are missing.

synthetic 27

```
user.self CPU time used executing instructions to calls (from ?proc.time.
```

sys.self CPU time used executing calls (from ?proc.time.

elapsed Amount of time in seconds it took the algorithm to converge.

iterations Number of iterations to convergence.

synthetic

Synthetic data for examples.

Description

This simple dataset allows users to use data that are easy to understand while learning biclustermd. This is a matrix with 6 rows and 12 columns. 50% of values are missing.

Usage

synthetic

Format

An object of class matrix with 6 rows and 12 columns.

tune_biclustermd

Bicluster data over a grid of tuning parameters

Description

Bicluster data over a grid of tuning parameters

Usage

```
tune_biclustermd(
  data,
  nrep = 10,
  parallel = FALSE,
  ncores = 2,
  tune_grid = NULL
)
```

28 tune_biclustermd

Arguments

data	Dataset to bicluster. Must to be a data matrix with only numbers and missing values in the data set. It should have row names and column names.
nrep	The number of times to repeat the biclustering for each set of parameters. Default 10.
parallel	Logical indicating if the user would like to utilize the foreach parallel backend. Default is FALSE.
ncores	The number of cores to use if parallel computing. Default 2.
tune_grid	A data frame of parameters to tune over. The column names of this must match the arguments passed to biclustermd().

Value

A list of:

best_combn The best combination of parameters,

best_bc The minimum SSE biclustering using the parameters in best_combn,

grid tune_grid with columns giving the minimum, mean, and standard deviation of

the final SSE for each parameter combination, and

runtime CPU runtime & elapsed time.

References

Li, J., Reisner, J., Pham, H., Olafsson, S., and Vardeman, S. (2019) *Biclustering for Missing Data. Information Sciences, Submitted*

See Also

biclustermd, rep_biclustermd

```
library(dplyr)
library(ggplot2)
data("synthetic")
tg <- expand.grid(
miss_val = fivenum(synthetic),
similarity = c("Rand", "HA", "Jaccard"),
col_min_num = 2,
row_min_num = 2,
col_clusters = 3:5,
row_clusters = 2
)
tg

# in parallel: two cores:
tbc <- tune_biclustermd(synthetic, nrep = 2, parallel = TRUE, ncores = 2, tune_grid = tg)
tbc</pre>
```

tune_biclustermd 29

```
tbc$grid %>%
 group_by(miss_val, col_clusters) %>%
 summarise(avg_sd = mean(sd_sse)) %>%
 ggplot(aes(miss_val, avg_sd, color = col_clusters, group = col_clusters)) +
 geom_line() +
 geom_point()
tbc <- tune_biclustermd(synthetic, nrep = 2, tune_grid = tg)</pre>
boxplot(tbc$grid$mean_sse ~ tbc$grid$similarity)
boxplot(tbc$grid$sd_sse ~ tbc$grid$similarity)
# nycflights13::flights dataset
library(nycflights13)
data("flights")
library(dplyr)
flights_bcd <- flights %>%
 select(month, dest, arr_delay)
flights_bcd <- flights_bcd %>%
 group_by(month, dest) %>%
 summarise(mean_arr_delay = mean(arr_delay, na.rm = TRUE)) %>%
 spread(dest, mean_arr_delay) %>%
 as.data.frame()
# months as rows
rownames(flights_bcd) <- flights_bcd$month</pre>
flights_bcd <- as.matrix(flights_bcd[, -1])</pre>
flights_grid <- expand.grid(</pre>
row_clusters = 4,
col_clusters = c(6, 9, 12),
miss_val = fivenum(flights_bcd),
similarity = c("Rand", "Jaccard")
# RUN TIME: approximately 40 seconds across two cores.
flights_tune <- tune_biclustermd(</pre>
 flights_bcd,
 nrep = 10,
 parallel = TRUE,
 ncores = 2,
 tune_grid = flights_grid
flights_tune
```

Index

```
* datasets
                                                row_cluster_names, 25
    runtimes, 26
                                                RRand, 8, 22
    synthetic, 27
                                                runtimes, 26
as.Biclust, 3
                                                synthetic, 27
autoplot.biclustermd, 4
                                                tune_biclustermd, 9, 23, 27
autoplot.biclustermd_sim, 5
autoplot.biclustermd_sse, 6
biclustermd, 7, 23, 28
biclustermd-package, 2
\verb|binary_vector_gen, 9|
cell_heatmap, 10
cell_mse, 11
cluster_iteration_sum_sse, 11
col.names, 12
col.names.biclustermd, 12
col_cluster_names, 13
compare_biclusters, 14
fill_empties_P, 14
fill_empties_Q, 15
format_partition, 16
gather.biclustermd, 16
jaccard_similarity, 17
mse_heatmap, 18
part_matrix_to_vector, 20
partition_gen, 19
partition_gen_by_p, 19
position_finder, 20
print.biclustermd, 21
reorder_biclust, 21
rep_biclustermd, 9, 22, 28
results_heatmap, 24
row.names.biclustermd, 25
```