Optimisation

Chapitre 4 : Existence et unicité de solution

Joseph GERGAUD, Serge GRATTON & Daniel RUIZ

10 septembre 2024

Théorème 4.2.1 – Existences de solution, cas avec contraintes

Soit (P) un problème d'optimisation avec contraintes $C \subset E$. Si f est continue et C est un compact non vide, alors le problème (P) admet une solution.

► C'est une application immédiate du théorème qui dit que l'image d'un compact par une application continue dans un espace séparé est un compact.

Définition 4.2.2 – Fonction 0–coercive

Une fonction $f:E\to\mathbb{R}$, E espace vectoriel normé, est dite 0-coercive si et seulement si

$$f(x) \longrightarrow +\infty \text{ quand } ||x|| \longrightarrow +\infty.$$
 (1)

Théorème 4.2.3

Soit (P) un problème d'optimisation avec contraintes où f est une fonction de \mathbb{R}^n à valeurs dans \mathbb{R} et C est un fermé non vide. Si f est continue et 0-coercive, alors le problème admet une solution.

▶ Soit $(x_k)_{k \in \mathbb{N}}$ une suite minimisante de points de C, c'est-à-dire une suite de point de C telle que $\lim_{k \to +\infty} f(x_k) = Inf_{x \in C}f(x) = \mu < +\infty$. Montrons que cette suite est bornée. Sinon il existe une sous-suite $(x_{n_k})_{\mathbb{N}}$ telle que $||x_{n_k}||$ tende vers $+\infty$ lorsque n_k tend vers $+\infty$ et donc, comme f est 0-coercive, $\lim_{n_k \to +\infty} f(x_{n_k}) = +\infty$, ce qui est impossible.

Par suite il existe un réel R>0 tel que la suite $(x_k)_{k\in\mathbb{N}}$ soit contenue dans $C\cap B_f(0,R)$ qui est un fermé borné de \mathbb{R}^n ; c'est donc un compact dont on peut extraire une soussuite qui converge vers x^* . Mais f est continue, et donc $f(x^*)=\mu$ et x^* est une solution du problème d'optimisation.

Remarque 4.2.1. Le théorème précédent s'applique si le problème d'optimisation est sans contraintes car dans ce cas C = E.

Théorème 4.3.1

Si C est un convexe de E espace vectoriel normé et si f est une fonction de C à valeurs dans $\mathbb R$ convexe, alors l'ensemble des solutions est soit vide soit un ensemble convexe de E.

▶ Supposons que l'ensemble des solutions ne soit pas vide. Soient x et y deux solutions alors f(x) = f(y) car $(f(x) \le f(y))$ et $f(y) \le f(x)$. Par suite, pour tout $\alpha \in]0,1[$, nous avons

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \le \alpha f(x) + (1 - \alpha)f(x) \le f(x).$$

En conséquence $\alpha x + (1 - \alpha)y$ est aussi une solution.

Théorème 4.3.2

Si C est un convexe de E espace vectoriel normé et si f est une fonction de C à valeurs dans $\mathbb R$ strictement convexe, alors il existe au plus un point x^* minimisant f sur C.

▶ Supposons qu'il existe deux solutions x_1 et x_2 . Pour $\alpha \in]0,1[$, on pose $x_\alpha = \alpha x_1 + (1-\alpha)x_2$, alors, puisque f est strictement convexe on a

$$f(x_{\alpha}) < \alpha f(x_1) + (1 - \alpha)f(x_2) = f(x_1) = f(x_2),$$

ce qui est impossible.

Théorème 4.3.3

Si C est un convexe de E espace vectoriel normé et si f est une fonction de C à valeurs dans $\mathbb R$ convexe, alors tout minimum local x* de f sur C est un minimum global de f sur C.

▶ Soit x* un minimum local de f sur C. Il existe donc $\eta>0$ tel que pour tout $x\in C\cap B(x^*,\eta), f(x^*)\leq f(x)$. Supposons maintenant qu'il existe dans C un point y tel que $f(y)< f(x^*)$. Alors, puisque f est convexe, on a pour tout $\alpha\in]0,1[$

$$f(x^* + \alpha(y - x^*)) = f((1 - \alpha)x^* + \alpha y) \le (1 - \alpha)f(x^*) + \alpha f(y)$$

$$< (1 - \alpha)f(x^*) + \alpha f(x^*) = f(x^*).$$

Mais pour α suffisamment proche de 0, $x^* + \alpha(y-x) \in B(x^*, \eta)$, d'où la contradiction.

Exercice 4.3.1. Soit le problème d'optimisation

$$(P) \begin{cases} \min f(x) = -x_2^3 - 2x_2^2 - x_2 \\ x \in C = \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 + x_2 = 0\}. \end{cases}$$

- **1.** Montrer que (P) possède une solution.
- **2.** Déterminer si (P) est convexe.

Exercice 4.3.2. Soit le problème d'optimisation

$$(P) \begin{cases} \min f(x) = (1/2) \langle Ax, x \rangle + \langle b, x \rangle + c \\ x \in \mathbb{R}^n \\ Cx = d \end{cases}$$

où $A \in \operatorname{Sym}(n,\mathbb{R}), \ b \in \mathbb{R}^n, \ c \in \mathbb{R}, \ C \in L(\mathbb{R}^n,\mathbb{R}^m)$ et $d \in \operatorname{Im} C$. Donner une condition suffisante sur A assurant l'existence et l'unicité de solution à (P).