Hoja de problemas 3

1. Sea \mathbf{w} un vector d-dimensional con $||\mathbf{w}||_2 = 1$. La matriz

$$P(\mathbf{w}) = I - 2\mathbf{w}\mathbf{w}^{\mathbf{T}}$$

se llama el reflector de Householder asociado a w.

- a) Demuestre que, al actuar sobre cada vector \mathbf{v} que está en la dirección de \mathbf{w} , $P(\mathbf{w})$ produce el vector opuesto, es decir, $P(\mathbf{w})\mathbf{v} = -\mathbf{v}$.
- b) Pruebe que $P(\mathbf{w})$ deja invariantes los vectores ortogonales a \mathbf{w} .
- c) Deduzca que, geométricamente, $P(\mathbf{w})$ describe la reflexión especular sobre el hiperplano vectorial ortogonal a \mathbf{w} .
- d) Concluya, sin efectuar cálculos, que $P(\mathbf{w})$ es una matriz ortogonal de cuadrado la identidad.
- 2. Demuestre que dados dos vectores *d*-dimensionales hay un reflector de Householder que envía el primero en el segundo si y sólo sí ambos vectores tienen la misma norma.
- 3. Sea A una matriz cuadrada $d \times d$ de la que se conoce un autovector \mathbf{x} . Supongamos que \mathbf{x} es unitario y construyamos un reflector P que envíe el primer vector coordenado $\mathbf{e_1}$ en \mathbf{x} .
 - a) ¿Qué estructura tiene la matriz $B = P^{-1}AP$?
 - b) Deducir que los autovalores de A son el asociado a \mathbf{x} y los de una matriz menor de B. Notar que el problema de hallar los autovalores de A se ha reducido al de hallar los autovalores de una matriz de dimensión inferior en una unidad.
 - c) ¿Podríamos usando este procedimiento cacular sucesivamente, usando el método de la potencia, todos los autovalores de una matriz?
- 4. Sea A una matriz cuadrada simétrica $d \times d$, con autovalores

$$\lambda_1 > \lambda_2 \geq ... \geq \lambda_d$$

y $v_1,...,v_d$ sus respectivos autovectores ortogonales dos a dos. El cociente de Raileigh se define como el número:

$$R(x) = \frac{x^T A x}{x^T x}, \qquad x \neq 0.$$

- a) Probar que $\lambda_1 \geq R(x) \geq \lambda_d$ para todo $x \neq 0$.
- b) Presentar un algoritmo para obtener λ_1 .
- 5. Sea A es una matriz real cuadrada $d \times d$. Sea $\mathbf x$ (no nulo) autovector aproximado de la matriz A obtenido por cualquier procedimiento. Hay entonces un escalar λ que casi satisface el sistema de d ecuaciones y una incógnita

$$\mathbf{x}\lambda = A\mathbf{x}$$
.

Probar que el cociente de Raileigh $R(\mathbf{x})$ es la solución de mínimos cuadrados de tal sistema sobredeterminado.

- 6. Suponga que A es una matriz real simétrica $d \times d$ que verifica:
 - (i) A tiene d autovectores reales linealmente independientes $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_d}$.
 - (ii) Los autovalores $\lambda_1, \cdots, \lambda_d$ satisfacen

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_d|$$
.

Suponga que parte de un iterante inicial x_0 que tiene componente no nula en la dirección del autovector dominante v_1 .

- a) Pruebe que para los vectores definidos por la recurrencia $\mathbf{x_n} = A\mathbf{x_{n-1}}$, $n \ge 1$ la diferencia entre el cociente de Raileigh y el autovalor dominante es $O[(|\lambda_2|/|\lambda_1|)^{2n}]$.
- b) Para cada vector no nulo \mathbf{x} denotemos por $M(\mathbf{x})$ el valor de una de las componentes que tengan mayor módulo. Denotemos ahora $\mathbf{y_0} = M(\mathbf{x_0})^{-1}\mathbf{x_0}$ y pongamos $\mathbf{z_n} = A\mathbf{y_{n-1}}$, $\mathbf{y_n} = M(\mathbf{z_n})^{-1}\mathbf{z_n}$, $n \geq 1$. ¿Qué ocurre con los cocientes de Raileigh de los vectores $\mathbf{y_n}$?
- c) Deduzca que para matrices simétricas en el método de la potencia es mucho mejor tomar como aproximación al autovalor el cociente de Raileigh de y_n que la cantidad $M(z_n)$.
- 7. Sea A una matriz real con autovalores reales que satisfacen

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_{d-1} \ge \lambda_d$$
.

Se aplica el método de la potencia a $A-\lambda I$ y se suma λ al resultado para aproximar λ_1 . ¿Qué valor de λ llevará a una convergencia más rápida?

8. Se considera la matriz

$$A = \left[\begin{array}{rrr} 19 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 18 \end{array} \right]$$

- a) Aproximar, por el método de las potencias, su autovalor más grande. **Nota**: se puede hacer una buena elecciónn del v_0 inicial.
- b) Aproximar el autovalor menor de A utilizando potencias inversas.
- c) Aproximar el autovalor intermedio utilizando potencias inversas con desplazamiento.
- 9. Sea $D \in \mathbb{R}^{4 \times 4}$ una matriz simétrica cuyos autovalores son -7, -3, 1, 5.
 - a) Si se usa el método de la potencia, a qué autovalor podemos esperar que converja. Por qué.
 - b) Supongamos que no conocemos el autovalor -3 pero sí el resto (es decir, -7, 1 y 5) y sabemos que el que falta está entre -3.5 y -2. Proponer un algoritmo (decir cuál y describirlo) para calcular el autovalor -3 y decir qué velocidad de convergencia se puede esperar de dicho algoritmo y por qué.
- 10. Considere la matriz A $d \times d$ tridiagonal simétrica cuyos elementos diagonales valen 4 y los de las diagonales adyacentes valen 1.
 - a) Demuestre que A tiene sus autovalores en el intervalo [2,6]. Puede demostrarse que A no tiene autovalores múltiples de modo que el método de la potencia es de aplicación en la aproximación del autovalor dominante λ_1 .

- b) Se forma la matriz B=A-2I cuyos autovalores difieren en 2 de los de A. ¿Qué es más conveniente, usar el método de la potencia en A para aproximar λ_1 ó usar el método de la potencia en B y sumar 2 al resultado obtenido?
- 11. Suponga que el iterante inicial en el método de la potencia no tiene componente sobre el autovalor dominante y suponga que no hay errores de redondeo. ¿A qué vector convergen los iterantes?