CellPAD: Detecting Performance Anomalies in Cellular Networks via Regression Analysis

Introduction

CellPAD is a tool for KPI time-series anomaly detection based on regression analysis. It implements a pipeline to detect anomalies and update prediction models for streaming data in an automated manner. It takes into account both trend and seasonality component of a time series. It can detect two types of anomalies: sudden drops in a time series and correlation changes of two correlated time series.

Prerequsites

CellPAD is written in Python 3. To run CellPAD, please install the following packages first.

- Python 3.x;
- scikit-learn 0.19.0 or higher.

Installation

Run:

python setup.py install

Algorithm and Feature Selection

CellPAD integrates various statistical-based and machine-learning-based regression algorithms. They include:

- Statistical algorithms:
 - WMA, EWMA, and Holt-Winters (HW)
 - Local Correlation Score (LCS)
- Machine-learning-based regression regression:
 - Random Forest Regression (RF), Regression Tree (RT), Simple Linear Regression (SLR), and Huber Regression (HR).

How to call different algorithms?

DropController.detect(predictor)

ChangeController.detect(predictor)

• For DropController, "predictor" can be "RF", "RT", "SLR", "HR", "WMA", "EWMA", "HW".

• For ChangeController, "predictor" can be "RF", "RT", "SLR", "HR", "LCS".

How to perform feature selection?

- "feature_types" can be a subset of ["Numerical", "Indexical"]
- "feature_time_grain" can be a subset of ["Hourly", "Daily", "Hourly"]
- "feature_operations" can be a subset of ["Raw", "Mean", "Median", "Wma", "Ewma"]

How to remove any trend components?

- "to_remove_trend" is **True** or **False** to indicate whether to remove the trend or not.
- "trend_remove_method" is "center_mean" or "past_mean".
 - "center_mean": the trend at time i is the mean of the points in [i-84,i+83].
 - "past_mean": the trend at time i is the mean of the points in [i-167,i].
 - Note that the accuracy of "past_mean" is slightly less than that of "center_mean" in general, as the latter considers the time interval closer to time i.

Examples and test data

We provide two examples on how to run CellPAD for anomaly detection of sudden drops and correlation changes. Run the following:

sudden drop

```
cd ./example
python example_drop.py
```

correlation change

```
cd ./example
python example_change.py
```