

DISTRIBUTION DE LAPLACE ASYMÉTRIQUE GÉNÉRALISÉE

FRANÇOIS PELLETIER, ANDREW LUONG

École d'actuariat, Université Laval

INTRODUCTION

On définit le prix au temps t d'un titre financier S(t) et le rendement cumulé sur ce titre

$$L_t = R_1 + \ldots + R_t = \log S(t) - \log S(0).$$

On veut modéliser R_t par la distribution de Laplace asymétrique généralisée, aussi appelée variance-gamma. L'estimation paramétrique se fera à partir de la méthode GMM. On pourra ainsi obtenir la distribution de L_t par convolution, afin d'évaluer le prix d'options européennes.

CHOIX DU MODÈLE

Inspirés par les modèles Mandelbrot, Press et Praetz, Madan et Seneta [4] présentent un ensemble de caractéristiques essentielles pour un modèle de rendements financiers:

- 1. Distribution de R_t ayant une queue longue
- 2. Distribution de R_t ayant des moments finis
- 3. Processus en temps continu ayant des accroissements stationnaires et indépendants. Distribution des accroissements de même famille peu importe la longueur.
- 4. Extension multivariée afin de conserver la validité du modèle CAPM.

Ce tableau décrit le respect des conditions pour les différents modèles étudiés par les auteurs

	Conditions			
Modèle	1	2	3	4
Mandelbrot	X			X
Press	X	X	X	X
Praetz	X	X		X
Madan et Seneta	X	X	X	X

GRAPHIQUE

FONCTION CARACTÉRISTIQUE

On définit la variable aléatoire Y

$$Y = \theta + \mu W + \sigma \sqrt{W}Z$$

La fonction caractéristique de la distribution de Y peut être obtenue en utilisant la formule de l'espérance conditionnelle.

$$\phi_Y(t; \theta, \sigma, \mu, \tau) = E\left[e^{ity}\right]$$

$$= E\left[E\left[e^{ity}|W\right]\right]$$

$$= \int_0^\infty E\left[e^{it(\theta + \mu w + \sigma\sqrt{w}Z)}\right] g(w)dw$$

$$= e^{i\theta t} \int_0^\infty e^{i\mu wt - \frac{\sigma^2 t^2 w}{2}} \times \frac{1}{\Gamma(\tau)} w^{\tau - 1} e^{-w}$$

$$= \frac{e^{i\theta t}}{\left(1 + \frac{1}{2}\sigma^2 t^2 - i\mu t\right)^{\tau}}$$

On retrouve la fonction de répartition par le théorème de Gil-Pelaez

$$F_Y(y) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{Im\left[e^{-ity}\phi_Y(t)\right]}{t} dt$$

MÉTHODE GMM

La méthode GMM a pour objectif d'estimer les paramètres θ d'une distribution en minimisant une norme quadratique

$$\|\hat{m}(\theta)\|_{W}^{2} = \hat{m}(\theta)' W \hat{m}(\theta)$$

pondérée par une matrice définie positive W et où $\hat{m}(\theta) = \left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \theta)\right)$ est la moyenne empirique des conditions de moment $g(Y_t, \theta)$. On utilise les conditions de moment basées sur l'espérance et la variance

$$g(Y_t, \theta) = \begin{bmatrix} \bar{Y} - (\theta + \mu \tau) \\ \frac{1}{T} \sum_{t=1}^{T} (Y_t - \bar{Y})^2 - \tau (\sigma^2 + \mu^2) \end{bmatrix}$$

La matrice optimale W est estimée en utilisant la méthode du GMM itératif [2]:

$$\hat{W}_{(1)} = \left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \hat{\theta}_{(0)}) g(Y_t, \hat{\theta}_{(0)})'\right)^{-1}$$

$$\hat{W}_{(i)} = \left(\frac{1}{T} \sum_{t=1}^{T} g(Y_t, \hat{\theta}_{(i-1)}) g(Y_t, \hat{\theta}_{(i-1)})'\right)^{-1}$$

SIMULATION

Le processus de Laplace Y(t) peut être représenté comme la différence de deux processus gamma G(t) [3].

$$Y \stackrel{d}{=} \theta + \frac{\sigma}{\sqrt{2}} \left(\frac{1}{\kappa} G_1 - \kappa G_2 \right)$$

où $G_1, G_2 \sim \Gamma$ ($\alpha = \tau, \beta = 1$). Il suffit donc de simuler deux réalisations de cette variable aléatoire pour obtenir une réalisation de la distribution Laplace asymétrique généralisée.

PRIX D'OPTIONS

L'évaluation du prix d'un option de vente européenne équivaut à calculer la valeur espérée de la réclamation contingente définie par le contrat

$$P(Y(t), T - t) = B(t, T) \int_0^K (K - Y(T)) d\hat{F}_t(Y(T))$$

où B(t,T) est la valeur d'une obligation zéro-coupon au taux sans risque r d'échéance T et K le prix d'exercice. Cette évaluation doit de faire sous une mesure neutre au risque, selon laquelle les investisseurs n'exigent pas une prime de risque. Cette mesure doit répondre à la propriété martingale. Pour la distribution étudiée, ceci se fait par une modification du paramètre de dérive θ en θ^*

$$e^{rt} = E\left[exp(L_t)\right] = M_{Y_1 + \dots + Y_t}(1) = (\phi_Y(-i))^t = \left(\frac{e^{\theta^*}}{(1 - \mu - \sigma^2/2)^{\tau}}\right)^t \Rightarrow \theta^* = r + \tau \log(1 - \mu - \frac{\sigma^2}{2})$$

On pourra ensuite évaluer la valeur du prix de l'option de vente avec la formule de Heston (1993) décrite dans [1]

$$P(Y(t), T - t) = B(t, T)K \int_0^K dF_t(Y(T)) - B(t, T) \int_0^K Y(T) \cdot dF_t(Y(T))$$

= $B(t, T)K\hat{F}_t(K) - Y(t)\hat{G}_t(K)$

où $\hat{G}_t(K)$ est la fonction de répartition de la transformée d'Esscher (h=1) de la mesure neutre au risque.

RÉFÉRENCES

Références

- [1] T.W. Epps. Pricing Derivative Securities. World Scientific Publishing Company Pte. Limited, 2007.
- [2] A.R. Hall. Generalized Method of Moments. Advanced Texts in Econometrics. OUP Oxford, 2005.
- [3] S. Kotz, T.J. Kozubowski, and K. Podgórski. *The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance*. Birkhäuser, 2001.
- [4] Dilip B Madan and Eugene Seneta. The variance gamma (vg) model for share market returns. *Journal of business*, pages 511–524, 1990.