Scilab Textbook Companion for Gas Turbines by V. Ganesan¹

Created by
Manikandan D
M.E.,
Others
Government College of Engineering, Salem
College Teacher
None
Cross-Checked by
Spandana

June 9, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Gas Turbines

Author: V. Ganesan

Publisher: Tata McGraw-Hill, New Delhi

Edition: 3

Year: 2010

ISBN: 978-0-07-068192-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
5	Ideal Cycles and their Analysis	5
6	Practical Cycles and their Analysis	20
7	Jet Propulsion Cycles and Their Analysis	44
8	Centrifugal Compressors	56
9	Axial Flow Compressors	66
11	Impulse and Reaction Turbines	79

List of Scilab Codes

Calculation of MEP and Efficiency	5
Calculation of Improvement in Efficiency	6
calculation of net power output of the cycle	7
Calculation of Efficiency and work of compression	7
Calculation of Thermal Efficiency	8
Calculation of Pressure ratio of compressor and turbine	9
Calculation of temperature drop across the turbine	10
Calculation of turbine pressure ratio	11
Estimation of thermal efficiency of the plant	11
Determination of the cycle thermal efficiency	12
Calculation of Efficiency under conditions giving maxi-	
mum work	13
Comparison of basic cycle with modified cycles	14
Comparison of Carnot efficiency with Brayton efficiency	15
Calculation of Improvement in Efficiency	16
Calculation of Efficiency ratio of the power plants	17
Determination of Net power output	18
Calculation of Net power and overall efficiency of instal-	
lation	20
Calculation of ratio of compressor to turbine work	21
Calculation of effect of pressure loss	22
Calculation of net power out SFC and overall Efficiency	25
Calculation of the thermal efficiency and air rate	27
Calculation of Compressor efficiency and the tempera-	
ture ratio	29
Calculation of suitable pressure ratio	29
Calculation of minimum temperature ratio	30
Calculation of Isentropic efficiency of Turbine	31
	Calculation of Improvement in Efficiency

Exa 6.10	Plotting variation of Isentropic efficiency over a range
	of pressure ratio
Exa 6.11	Calculation of the power output thermal efficiency and
	the heat exchanger effectiveness
Exa 6.12	Calculation of the isentropic efficiency of the turbine
	and the mass flow of air
Exa 6.13	Determination of pressure of the gas entering the low
	pressure turbine
Exa 6.14	Calculation of pressure ratio and cycle efficiency
Exa 6.15	Estimation of the temperature of the gases at entry to
	the turbine
Exa 6.16	Calculation of efficiency and work ratio of modern tur-
	bines and old turbines
Exa 6.17	Determination of necessary mass flow rate
Exa 6.18	Estimation of intermediate pressure and temperature
	between the two turbine stages
Exa 6.19	Determination of the percentage of the total air intake
	that passes to the turbine and the thermal efficiency of
	the plant
Exa 6.20	Calculation of the Thermal efficiency
Exa 6.21	Calculation of cycle thermal efficiency
Exa 7.1	Calculation of Thrust power and Heat Input
Exa 7.2	Calculation of The Total Design Thrust
Exa 7.3	Calculation of the velocity leaving the nozzle
Exa 7.4	Calculation of propulsive efficiency
Exa 7.5	Calculation of the thrust and Specific fuel consumption
Exa 7.6	Calculation of specific power output
Exa 7.7	Determination of rate of fuel consumption
Exa 7.8	Calculation of the take off thrust
Exa 7.9	Calculation of thrust provided by the engine and the
	thrust power developed
Exa 7.10	Calculation of exit speed of the gases and the thrust
	developed
Exa 8.1	Calculation of compressor efficiency
Exa 8.2	Estimation of the probable axial width of the impeller
Exa 8.3	Calculation of theoretical blade angles
Exa 8.4	Calculation of final temperature of the gases and the
	work done per kg of gas

Exa 8.5	Calculation of impeller diameters and the width at the	
	impeller exit	59
Exa 8.6	Calculation of the minimum possible depth of the diffuser	60
Exa 8.7	Calculation of impeller and diffuser blade angles at inlet	61
Exa 8.8	Calculation of slip factor	62
Exa 8.9	Determination of number of radial impeller vanes	63
Exa 8.10	Calculation of the torque power required and the head	
	developed	64
Exa 9.1	Estimation of blade angles	66
Exa 9.2	Calculation of mass flow rate and degree of reaction .	67
Exa 9.3	Estimation of number of stages of the compressors	68
Exa 9.4	Determination of Mach number relative to Rotor	69
Exa 9.5	Calculation of pressure rise per blade ring and the power	
	input per stage	70
Exa 9.6	Determination of the direction of the air entry to and	
	exit from the rotor	71
Exa 9.7	Calculation of the rotational speed and the length of the	
	last stage	72
Exa 9.8	Calculation of the stage stagnation pressure ratio and	
	the power input	74
Exa 9.9	Determination of the stage efficiency and the work done	
	factor of an axial flow compressor	75
Exa 9.10	Determination of blade and air angle	76
Exa 9.11	Calculation of rotational speed	77
Exa 11.1	Estimation of maximum number of stages required	79
Exa 11.2	Determination of output power developed by the turbine	
	shaft	80
Exa 11.3	Estimation of the blade angle and power produced	81
Exa 11.4	Calculation of blade angle used and the mass flow rate	
	required	82
Exa 11.5	Determination of gas temperature velocities and dis-	
	charge angles at the blade root and tip radii	83

Chapter 5

Ideal Cycles and their Analysis

Scilab code Exa 5.1 Calculation of MEP and Efficiency

```
1 clc:
2 p1=1; // Pressure before compression in bar
3 T1=350; // Temperature before compression in kelvin
4 T3=2000; // Temperature after combustion in kelvin
5 rp=1.3; // Pressure ratio
6 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
7 r=1.4; // Specific heat ratio
8 R=287; // Characteristic gas constant in J/kg K
10 T2=T1*(rp)^{(r-1)/r}; // Temperature at the end of
     the compression
11 T4=T3*(1/rp)^((r-1)/r); // Temperature after
     expansion
12 Wc=Cp*(T2-T1); // Work done during compression
13 WT=Cp*(T3-T4); // Work done during expansion
14 WN=WT-Wc; // Net work done
15 p2=rp*p1; // Pressure at state 2
16 p3=p2; p4=p1; // Constant pressure process
17 V1=R*T1/(p1*10^5); // specific Volume at state 1
18 V2=R*T2/(p2*10^5); // specific Volume at state 2
```

```
19 V3=R*T3/(p3*10^5); // specific Volume at state 3
20 V4=R*T4/(p4*10^5); // specific Volume at state 4
21 imep=WN*10^3/(V4-V2); // Mean effective pressure
22 q=Cp*(T3-T2); // Heat supplied
23 eff=WN/q; // Efficiency of a Joule cycle
24 disp ("bar",imep*10^-5,"Mean effective pressure = ")
;
25 disp ("%",eff*100," Efficiency of a Joule cycle = ");
```

Scilab code Exa 5.2 Calculation of Improvement in Efficiency

```
1 clc;
2 p1=1; // Pressure before compression in bar
3 T1=350; // Temperature before compression in kelvin
4 T3=2000; // Temperature after combustion in kelvin
5 rp=1.3; // Pressure ratio
6 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
7 r=1.4; // Specific heat ratio
8 R=287; // Characteristic gas constant in J/kg K
10 T2=T1*(rp)^{(r-1)/r}; // Temperature at the end of
     the compression
11 T4=T3*(1/rp)^{((r-1)/r)}; // Temperature after
     expansion
12 Wc=Cp*(T2-T1); // Work done during compression
13 WT=Cp*(T3-T4); // Work done during expansion
14 WN=WT-Wc; // Net work done
15 T5=T4; // For a perfect heat exchange
16 q=Cp*(T3-T5); // Heat added
17 eff2=WN/q; // Efficiency of a modified Joule cycle
18 eff1=0.072220534; // Efficiency of a joule cycle
19 disp ("%", eff2*100, "Efficiency of a modified Joule
     cycle = ");
20 disp (eff2/eff1, "Improvement in efficiency = ");
```

Scilab code Exa 5.3 calculation of net power output of the cycle

```
1 clc;
2 rp=6; // Pressure ratio
3 T1=300; // Inlet air temperature to the compressor
     in kelvin
4 T3=577+273; // Inlet temperature of air at turbine
     in kelvin
5 Vr=240; // Volume rate in m^3/s
6 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
7 r=1.4; // Specific heat ratio
8 R=287; // Characteristic gas constant in J/kg K
9 p1=1; // pressure at state 1 in bar
10
11 T2=T1*(rp)^{(r-1)/r}; // Temperature at the end of
     the compression
12 T4=T3*(1/rp)^{((r-1)/r)}; // Temperature after
     expansion
13 Wc=Cp*(T2-T1); // Work done during compression
14 WT=Cp*(T3-T4); // Work done during expansion
15 WN=WT-Wc; // Net work done
16 q=Cp*(T3-T2); // Heat supplied
17 row1=p1*10^5/(R*T1); // Density of air at state 1
18 P=WN*Vr*row1; // Power output
19 eff=WN/q; // Efficiency of a cycle
20 disp ("MW (roundoff error)", P/1000, "Power Output =
      ");
21 disp ("%", eff * 100, "Efficiency of a cycle = ");
```

Scilab code Exa 5.4 Calculation of Efficiency and work of compression

```
1 clc;
2 T1=300; // Inlet air temperature to the compressor
     in kelvin
3 p1=1; // pressure at state 1 in bar
4 T2=475; // Temperature at discharge in kelvin
5 p2=5; // Pressure at state 2
6 T5=655; // Temperature after heat exchanger in
     kelvin
7 T3=870+273; // Temperature at he turbine inlet in
     kelvin
8 T4=450+273; // Temperature after turbine in kelvin
9 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
10 r=1.4; // Specific heat ratio
11 R=287; // Characteristic gas constant in J/kg K
12
13 Wc=Cp*(T2-T1); // Work done during compression
14 WT=Cp*(T3-T4); // Work done during expansion
15 WN=WT-Wc; // Net work done
16 q=Cp*(T3-T5); // Heat supplied
17 eff=WN/q; // Efficiency of a cycle
18
19 disp ("kJ/kg", WN, "(i). The output per kg of air = ")
20 disp ("%", eff*100," (ii). The efficiency of the cycle
     = ");
21 disp ("kJ/kg", Wc, "(iii). The work required to drive
     the compressor = ");
```

Scilab code Exa 5.5 Calculation of Thermal Efficiency

```
1 clc;
2 p1=1.4; // Pressure at state 1 in bar
3 T1=310; // Temperature at state 1 in kelvin
4 rp=5; // Pressure ratio
```

```
5 Tmax=1050; // Maximum temperatuer in kelvin
6 WN=3000; // Net output in kW
7 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
8 r=1.4; // Specific heat ratio
9 R=287; // Characteristic gas constant in J/kg K
10
11 T3 = Tmax;
12 T2=T1*(rp)^((r-1)/r); // Temperature at the state 2
13 T4=T3/(rp)^((r-1)/r); // Temperature at the state 4
14 T5=T4; // As regenerator effectiveness in 100 \%
15 m=WN/(Cp*((T3-T4)-(T2-T1))); // mass flow rate of
      air
16 eff=(T3-T4-T2+T1)/(T3-T5); // Efficiency of a cycle
17 disp ("%", eff*100,"(i). Thermal efficiency of the
     cycle = ");
18 disp ("kg/min (roundoff error)", m*60, "(ii). The
     mass flow rate of air per minute = ");
```

Scilab code Exa 5.6 Calculation of Pressure ratio of compressor and turbine

```
1 clc;
2 T1=290; // Compressor inlet temperature in kelvin
3 T2=460; // Compressor outlet temperature in kelvin
4 T3=900+273; // Turbine inlet temperature in kelvin
5 T4=467+273; // Turbine outlet temperature in kelvin
6 Cp=1.005; // Specific heat at constant pressure in kJ/kg K
7 r=1.4; // Specific heat ratio
8 R=287; // Characteristic gas constant in J/kg K
9
10 c=T2/T1; // Temperature ratio
11 rpc=c^(r/(r-1)); // Compression ratio
12 WN=(Cp*((T3-T4)-(T2-T1))); // Specific power
```

Scilab code Exa 5.7 Calculation of temperature drop across the turbine

```
1 clc;
2 nW_WT=0.563; // Ratio of net work to turbine work
3 T1=300; // Inlet temperature to the compressor in
     kelvin
4 eff=0.35; // Thermal efficiency of the unit
5 m=10; // massflow rate in kg/s
6 Cp=1; // Specific heat at constant pressure in kJ/kg
7 r=1.4; // Specific heat ratio
9 c=1/(1-eff); // For ideal simple cycle
10 T2=T1*c; // Temperature at state 2
11 Wc=Cp*(T2-T1); // Compressor work
12 WT=Wc/(1-nW_WT); // Turbine work
13 WN=WT-Wc; // Net work
14 q=WN/eff; // Net heat supplied per kg of air
15 T3=(q/Cp)+T2; // Temperature at state 3
16 T4=T3/c; // Temperature at state 4
```

Scilab code Exa 5.8 Calculation of turbine pressure ratio

Scilab code Exa 5.9 Estimation of thermal efficiency of the plant

```
1 clc;
2 T1=300; // Minimum operating temperature in kelvin
3 T3=900; // Maximum operating temperature in kelvin
4 p1=1; // Minimum pressure in bar
5 p3=4; // Maximum pressure in bar
6 m=1600; // Mass flowrate in kg/min
7 r=1.4; // Specific heat ratio
8 Cp=1.005; // Specific heat at constant pressure in kJ/kg K
```

Scilab code Exa 5.10 Determination of the cycle thermal efficiency

```
1 clc;
2 T1=15+273; // Inlet temperature of air at compressor
       inlet in kelvin
3 rp=6; // Compressor pressure ratio
4 T3=750+273; // Maximum permissible temperature in
     kelvin
5 T5=T3; // After reheat
6 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
7 r=1.4; // Specific heat ratio
9 c=rp^((r-1)/r);
10 T2=T1*c; // Temperature at state 2
11 p3_p4=sqrt (rp); // For maximum expansion work
12 T4=T3/(p3_p4)^((r-1)/r); // Temperature at state 4
13 T6=T4; // As pressure ratio is same
14 Wc=Cp*(T2-T1); // Compressor work
15 WT = Cp * (T3 - T4) + Cp * (T5 - T6); // Turbine work
16 T7=T4; // Because of 100% regeneration
17 q=Cp*(T3-T7)+Cp*(T5-T4); // Heat supplied
```

```
18 WN=WT-Wc; // Net work done
19 eff=WN/q; // Efficiency of the plant
20 Wratio=WN/WT; // Work ratio
21 disp ("kJ/kg of air",q,"Heat supplied = ");
22 disp ("kW (roundoff error)",WN,"Net shaft work = ");
23 disp ("%",eff*100,"The cycle thermal efficiency = ");
24 disp (Wratio,"Work ratio = ");
```

Scilab code Exa 5.11 Calculation of Efficiency under conditions giving maximum work

```
1 clc;
2 Tmin=5+273; // Minimum operating temperature in
     kelvin
3 Tmax=839+273; // Maximum operating temperature in
     kelvin
4 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
5 r=1.4; // Specific heat ratio
7 eff_carnot=1-Tmin/Tmax; // Efficiency of the carnot
     cycle
8 c=1/(1-eff_carnot);
9 p2_p1=c^(r/(r-1)); // Pressure ratio
10 disp (p2_p1,"(i). Pressure ratio at which efficiency
      equals Carnot cycle efficiency = ");
11 t=Tmax/Tmin; // Temperature ratio
12 // Pressure ratio for maximum work is obtained when
13 c = sqrt (t);
14 p2_p1=c^(r/(r-1)); // Pressure ratio
15 eff=1-1/c; // Efficiency at maximum work output
16 disp (p2_p1,"(ii). Pressure ratio at which maximum
     work is obtained = ");
```

```
17 disp ("%", eff*100," (iii). Efficiency at maximum work output = ");
```

Scilab code Exa 5.12 Comparison of basic cycle with modified cycles

```
1 clc:
2 rp=4; // Overall pressure ratio
3 T1=300; // Temperature at state 1 in kelvin
4 T3=1000; // Temperature at state 3 in kelvin
5 Cp=1; // Specific heat at constant pressure in kJ/kg
6 Cv=0.717; // Specific heat at constant volume in kJ/
     kg K
8 // Basic cycle
9 r=Cp/Cv; // Specific heat ratio
10 c=rp^((r-1)/r);
11 t=T3/T1; // Temperature ratio
12 WN=Cp*T1*(t*(1-1/c)-(c-1)); // Net work output
13 eff=(1-1/c)*100; // Efficiency of the cycle
14
15 // Basic cycle with heat exchanger
16 \, \text{WN}_h = \text{WN};
17 eff_he=(1-c/t)*100; // Efficiency of the cycle with
     heat exchanger
18 dev_WN1=(WN_he-WN)*100/WN; //Percentage deviation of
      Net work from basic cycle
  dev_eff1=(eff_he-eff)*100/eff; // Percentage
      deviation of efficiency from basic cycle
20
21 // Basic cycle with intercooled compressor
22 WN_ic = (Cp*T1)*(t*(1-1/c)-2*(sqrt(c)-1));
23 eff_ic=(1-(((t/c)+sqrt(c)-2)/(t-sqrt(c))))*100;
24 dev_WN2=(WN_ic-WN)*100/WN; //Percentage deviation of
      Net work from basic cycle
```

```
25 dev_eff2=(eff_ic-eff)*100/eff; // Percentage
     deviation of efficiency from basic cycle
26
27 // Basic cycle with heat exchanger and intercooled
     compressor
28 WN_iche=WN_ic;
29 eff_iche=(1-((2*(sqrt(c)-1))/(t*(1-1/c))))*100;
30 dev_WN3=(WN_iche-WN)*100/WN; //Percentage deviation
     of Net work from basic cycle
31 dev_eff3=(eff_iche-eff)*100/eff; // Percentage
      deviation of efficiency from basic cycle
32
33 printf ("Cycle \t \t \t \t \t \ WN(kJ/kg) \t \
      tefficiency (in percentage) \t percentage
     Change in WN \t\tpercentage change in efficiency"
34 printf("\n \t \t \t \t \t \t \ (roundoff error)
                                             \ t (
     roundoff error) \t \t \t \ (roundoff error) \t \t \t \t
      (roundoff error)");
35 printf ("\n\nBasci cycle \t\t\t\t
     \t \
36 printf ("\n\nWith Heat Exchanger \t \t \t \ %f \t \t \t \
     %f \ t \ t \ t \ %f \ \ t \ t \ %f", WN_he, eff_he, dev_WN1,
     dev_eff1);
37 printf ("\n\nWith intercooling \t \t \t \ %f \t \t \ %f
     \t \t \t \t \t \ f \t\t\t\ \t\ \%f", WN_ic, eff_ic, dev_WN2,
     dev_eff2);
38 printf ("\n\nWith Heat Exchanger & Intercooling \t\t
      eff_iche,dev_WN3,dev_eff3);
```

Scilab code Exa 5.13 Comparison of Carnot efficiency with Brayton efficiency

```
1 clc;
```

```
2 T1=27+273; // Temperature at state 1 in kelvin
3 T3=827+273; // Temperature at state 3 in kelvin
4 Cp=1.005; // Specific heat at constant pressure in
      kJ/kg K
5 r=1.4; // Specific heat ratio
7 t=T3/T1; // Temperature ratio
8 \operatorname{Wmax}=\operatorname{Cp}*((T3*(1-1/\operatorname{sqrt}(t)))-T1*(\operatorname{sqrt}(t)-1)); //
      Maximum work
  eff_wmax=(1-1/sqrt(t)); // Efficiency of brayton
      cycle
10 Tmax=T3; Tmin=T1;
11 eff_carnot=(Tmax-Tmin)/Tmax; // Carnot efficiency
12 disp ("kJ/kg of air", Wmax, "Maximum net work per kg
      of air = ");
13 disp ("%",eff_wmax*100, "Brayton cycle efficiency = "
14 disp ("%", eff_carnot*100, "Carnot cycle efficiency =
      ");
```

Scilab code Exa 5.15 Calculation of Improvement in Efficiency

```
1 clc;
2 p1=1; // Pressure at state 1 in bar
3 T1=300; // Temperature at state 1 in kelvin
4 p4=5; // Pressure at state 4 in bar
5 T5=1250; // Temperature at state 5 in kelvin
6 Cp=1.005; // Specific heat at constant pressure in kJ/kg K
7 r=1.4; // Specific heat ratio
8
9 rp=p4/p1; // pressure ratio
10 p2=sqrt (rp); // Because of perfect intercooling
11 c1=p2^((r-1)/r);
12 T2=T1*c1; // Temperature at state 2
```

```
13 T4=T2; T3=T1;
14
15 Wc1=Cp*(T2-T1); // Work of compressor 1
16 Wc=2*Wc1; // net work of compressor
17 WT1=Wc;
18 T6=T5-(WT1/Cp); // Temperature at state 6
19 p5_p6=(T5/T6)^(r/(r-1)); // Pressure ratio
20 p6=rp/p5_p6; // Pressure at state 6
21 p7=p1; T7=T5; p8=p6;
22 T8=T7*(p7/p8)^((r-1)/r); // Temperature in state 8
23 WT2=Cp*(T7-T8); // Turbine 2 work
24 q=Cp*(T5-T4)+Cp*(T7-T6); // Heat supplied
25 eff=WT2/q; // Efficiency of the cycle
26 // With regenerator
27 T9 = T8;
28 q_withregen=Cp*((T5-T9)+(T7-T6)); // Heat supplied
     with regenerator
29 eff_withregen=WT2/q_withregen; // Efficiency of the
      cycle with regenerator
30 I_eff=(eff_withregen-eff)/eff_withregen; //
     Percentage improvement in efficiency
31
32 disp ("%", eff*100, "Efficiency of the cycle = "," kJ/
     kg", q, "Heat supplied = ", "kJ/kg", WT2, "Work of
     turbine = ","(i). Without regenerator ");
33 disp ("%",eff_withregen*100, "Efficiency of the cycle
      = ","kJ/kg (roundoff error)",q_withregen,"Heat
      supplied = ","(ii). With regenerator");
34
35 disp ("%", I_eff*100, "Percentage improvement in
      efficiencv = ");
```

Scilab code Exa 5.16 Calculation of Efficiency ratio of the power plants

```
1 clc;
```

```
2 p1=1; // pressure at inlet in bar
3 T1=27+273; // Temperature at inlet in kelvin
4 T4=1200; // Maximum temperature in kelvin
5 t=T4/T1; // Temperature ratio
6 r=1.4; // Specific heat ratio
8 rp=t;
9 c=rp^((r-1)/r);
10 x=(1-sqrt(c)/rp)/(1-c/rp);
11 eff2_1=x;
12 r1=sqrt(rp);
13 r2=r1; r3=r1; r4=r1;
14
15 disp (eff2_1, "Efficiency ratio of power plants = ");
16 disp (r4, "pressure ratio of LPT = ",r3," pressure
     ratio of HPT = ",r2," pressure ratio of HPC = ",r1
     ", pressure ratio of LPC = ");
```

Scilab code Exa 5.19 Determination of Net power output

```
1 clc;
2 m=30; // Mass flow rate in kg/s
3 p1=1; // pressure of air at compressor inlet in bar
4 T1=273+15; // Temperature of air at compressor inlet
    in kelvin
5 p2=10.5; // Pressure of air at compressor outlet
6 T_R=420; // Temperature rise due to combustion in
    kelvin
7 p4=1.2; // Pressure at turbine outlet in bar
8 Cp=1.005; // Specific heat at constant pressure in
    kJ/kg K
9 r=1.4; // Specific heat ratio
10
11 T2=T1*(p2/p1)^((r-1)/r); // Temperature at state 2
12 T3=T2+T_R; // Temperature at state 3
```

```
13 p3=p2;
14 T4=T3/(p3/p4)^((r-1)/r);
15 Wc=m*Cp*(T2-T1); // Compressor work
16 WT=m*Cp*(T3-T4); // Turbine work
17 WN=WT-Wc; // Net work output
18 Q=m*Cp*(T3-T2); // Heat supplied
19 eff_th=WN/Q; // Thermal efficiency
20
21 disp ("%",eff_th*100,"Thermal efficiency = ","kW roundoff error)",WN,"Power output = ","kW",Q," Heat supplied = ");
```

Chapter 6

Practical Cycles and their Analysis

Scilab code Exa 6.1 Calculation of Net power and overall efficiency of installation

```
1 clc:
2 p01=1; // Pressure at state 1 in bar
3 T01=30+273; // Temperature at state 1 in kelvin
4 p02=6; // Pressure of air after compressed in bar
5 eff_c=0.87; // Isentropic efficiency of compressor
6 T03=700+273; // Temperature at state 3 in kelvin
7 eff_T=0.85; // Isentropic efficiency of the turbine
8 CV=43.1; // calorific value of fuel in MJ/kg
9 ma=80; // Mass flow rate of air in kg/min
10
11 Cpa=1.005; // Specific heat of air at constant
     pressure in kJ/kg K
12 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
13 rg=1.33; // Specific heat ratio of fuel
14 r=1.4; // Specific heat ratio of air
15 T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram
16 T02=T01+(T_02-T01)/eff_c; // Temperature after
```

```
compression
17 // Neglecting the addition of fuel in the combustion
       chamber we have mf+ma=ma
18 mf = (ma/60) * Cpg * (T03 - T02) / (CV * 10^3);
19 ma_mf = (ma/60) * (1/mf); // Air fuel ratio
20 \quad A_F = ma_mf;
21 p04=p01; p03=p02;
T_04=T03*(p04/p03)^((rg-1)/rg);
23 T04=T03-eff_T*(T03-T_04);
24 \text{ WN} = (\text{ma}/60) * \text{Cpg} * (\text{T03} - \text{T04}) - (\text{ma}/60) * \text{Cpa} * (\text{T02} - \text{T01}); //
      The net power of installation
25 eff_th=WN/(mf*CV*10^3); // The overall thermal
       efficiency
26
  disp (A_F,"(i).Air fuel ratio of the turbine gases =
27
28 disp ("K", T04," (ii). The final temperature of exhaust
       gases = ");
29 disp ("kW", WN," (iii). The net power of installation =
        ");
30 disp ("%", eff_th*100," (iv). The overall thermal
      efficiency = ");
```

Scilab code Exa 6.2 Calculation of ratio of compressor to turbine work

```
1 clc;
2 p01=1; // Air inlet pressure in bar
3 T01=7+273; // Air inlet temperature in kelvin
4 p02=4; // Pressure at state 2 in bar
5 eff_c=0.82; // Isentropic efficiency of compressor
6 T03=800+273; // Maximum temperature at the turbine inlet in kelvin
7 eff_T=0.85; // Isentropic efficiency of the turbine
8 CV=43.1; // calorific value of fuel in MJ/kg
9 Cpa=1.005; // Specific heat of air at constant
```

```
pressure in kJ/kg K
10 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
11 rg=1.33; // Specific heat ratio of fuel
12 r=1.4; // Specific heat ratio of air
13 LS=0.85;
14 mf=1; // Let assume mass of fuel to be 1 kg
15
T_0^2 = T_0^2 + (p_0^2/p_0^2)^((r_1^2)/r); // from T_S diagram
17 T02=T01+(T_02-T01)/eff_c; // Temperature after
      compression
18 Wc=Cpa*(T02-T01); // Work of compression
19 Q=Cpg*(T03-T02); // Heat supplied
20 p04=p01; p03=p02;
T_04=T03*(p04/p03)^((rg-1)/rg);
22 \quad T04 = T03 - eff_T * (T03 - T_04);
23 WT=Cpg*(T03-T04); // Turbine work
24 WN=WT-Wc; // Net work done
25 eff_th=WN/(Q/LS); // The thermal efficiency
26 ma_mf = (LS*CV*10^3/Q)-1; // AIR FUEL ratio
27 \text{ ma=mf*ma_mf};
28 sfc=(3600/(ma_mf*WN)); // specific fuel consumption
29 Wc_WT = (Wc*ma)/(WT*(ma+mf)); // work ratio
30
31 disp ("kJ/kg of air", Wc,"(i). Compressor work = ");
32 disp ("kJ/kg of air",Q,"(ii). Heat supplied = ");
33 disp ("kJ/kg of air", WT, "(iii). Turbine work = ");
34 disp ("kJ/kg of air", WN, "(iv). Net work = ");
35 disp ("%",eff_th*100,"(v). Thermal Efficiency = ");
36 disp (ma_mf,"(vi).Air/Fuel ratio = ")
37 disp ("kg/kWh", sfc, "(vii). Specific fuel consumption
38 disp (Wc_WT," (viii). Ratio of compressor work to
      turbine work = ");
```

Scilab code Exa 6.3 Calculation of effect of pressure loss

```
1 clc;
2 eff_c=0.82; // Isentropic efficency of the
     compressor
3 eff_T=0.85; // Isentropic efficency of the turbine
4 eff_m=0.99; // Mechanical transmission efficiency
5 rp=7; // Pressure ratio
6 T03=1000; // Maximum cycle temperature in kelvin
7 eff_comb=0.97; // Combustion efficiency
8 CV=43.1; // Calorific value in MJ/kg
9 ma=20; // Air mass flow rate in kg/s
10 eff_reg=0.75; // Regenerator effectiveness
11 del_P=0.1; // Regenerator gas side pressure loss in
     bar
12 T01=327; // Ambient temperature in kelvin
13 p01=1; // Ambient pressure in bar
14 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
15 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
16 rg=1.33; // Specific heat ratio of fuel
17 r=1.4; // Specific heat ratio of air
18
19 //(i). With Regeneration and pressure loss
20 T_02=T01*(rp)^((r-1)/r);
21 T02=T01+(T_02-T01)/eff_c;
22 p04=p01+del_P;
23 p03=rp/p01;
24 T_04=T03*(p04/p03)^((rg-1)/rg);
25 \quad T04_1 = T03 - eff_T * (T03 - T_04);
26 T05=T02+eff_reg*(T04_1-T02);
27 mf1=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By
     neglecting the effect of change in mass flow rate
      due to mf in combustion chamber
28 p03_p04_1=p03/p04;
29 WT1=(ma+mf1)*Cpg*(T03-T04_1); // Turbine work
30 WN1=(ma+mf1)*Cpg*(T03-T04_1)-(ma*Cpa*(T02-T01)/eff_m
```

```
); // Net work output
31 sfc1=mf1*3600/WN1; // Specifc fuel consumption
32 eff_th1=WN1/(mf1*CV*10^3); // Thermal efficiency
33
34
35
36 //(ii). Without Regenerator and without pressure loss
37
38 p04=p01;
39 T_04=T03*(p04/p03)^((rg-1)/rg);
40 T04_2 = T03 - eff_T * (T03 - T_04);
41 mf2=(ma*Cpg*(T03-T02))/(CV*10^3*eff_comb);
42 WT2 = (ma*Cpg*(T03-T04_2));
43 WN2 = (ma * Cpg * (T03 - T04_2)) - (ma * Cpa * (T02 - T01) / eff_m);
      // Net work output
44 p03_p04_2=p03/p04;
45 sfc2=mf2*3600/WN2; // Specific fuel consumption
46 eff_th2=WN2/(mf2*CV*10^3); // Thermal efficiency
47
48
49 //(iii). With Regenerator and without pressure loss
50 T_02=T01*(rp)^((r-1)/r);
51 T02=T01+(T_02-T01)/eff_c;
52 p04=p01;
53 p03=rp/p01;
54 T_04=T03*(p04/p03)^((rg-1)/rg);
55 \quad T04_3 = T03 - eff_T * (T03 - T_04);
56 \quad T05 = T02 + eff_reg*(T04_3 - T02);
57 \text{ WT3} = (\text{ma} * \text{Cpg} * (\text{T03} - \text{T05}));
58 mf3=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By
      neglecting the effect of change in mass flow rate
       due to mf in combustion chamber
59 p03_p04_3=p03/p04;
60 WN3 = (ma + mf3) * Cpg * (T03 - T04_3) - (ma * Cpa * (T02 - T01) / eff_m
      ); // Net work output
61 sfc3=mf3*3600/WN3; // Specifc fuel consumption
62 eff_th3=WN3/(mf3*CV*10^3); // Thermal efficiency
63
```

```
64
65 printf ("Quantities t t t t t t egenerator t t t t t
     \t Without");
66 printf ("\n \t \t \t \t \
     \tregenerator and Del_P");
67 printf ("\n \t \t \t \t \ (roundoff error)\t \ (roundoff error
     )\t\t\t(roundoff error)");
68 printf("\n\n P03/P04\t\t\t\f\f\t\t\f\t\t\t\t\f\f\",
     p03_p04_1,p03_p04_3,p03_p04_2);
  T04_1,T04_3,T04_2);
70 printf ("\n\nmf (kg/s)\t\t\t\f\f\t\t\t\t\t\t\f\f\",
     mf1, mf3, mf2);
71 printf ("\n\nWT (kW)\t\t\t\f\f\t\t\f\f\t\t\t\f\f\",
     WT1, WT3, WT2);
72 printf ("\n\nsfc (kg/kW h)\t\t\f\f\t\t\f\t\t\t\t\t\f\f\
     ",sfc1,sfc3,sfc2);
73 printf ("\n\nefficiency (in percentage)\t\%f\t\t\f\t\
     t \setminus t \setminus t \%f", eff_th1*100, eff_th3*100, eff_th2*100);
74
75 printf ("\n nAs can be seen from the table that
     pressure loss plays a major role in the
     efficiency than the regenerator. \n\nHence, more
     care should be taken in the design to have
     minimum pressure loss.");
```

Scilab code Exa 6.4 Calculation of net power out SFC and overall Efficiency

```
1 clc;
2 eff_c=0.8; // Isentropic efficiency of compression
        each stage
3 eff_CT=0.88; // Isentropic efficiency of compressor
        turbine
4 eff_PT=0.88; // Isentropic efficiency of power
```

```
turbine
5 eff_trans=0.98; // Turbine to compressor
      transmission efficiency
6 rp=3; // Pressure ratio in each stage of compression
7 T08=297; // Temperature after intercooler in kelvin
8 ma=15; // Air mass flow in kg/s
9 eff_reg=0.8; // Regenerator effectiveness
10 del_P=0.1; // Regenerator gas side pressure loss in
      bar
11 T01=327; // Ambient temperature in kelvin
12 p01=1; // Ambient pressure in bar
13 T03=1000; // Maximum cycle temperature in kelvin
14 CV=43.1; // Calorific value in MJ/kg
15 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
16 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
17 rg=1.33;// Specific heat ratio of fuel
18 r=1.4; // Specific heat ratio of air
19 p03=rp^2; // Pressre at state 3 in bar
20 T_07 = T01 * (rp)^{(r-1)/r};
21 \quad T07 = T01 + (T_07 - T01) / eff_c;
22 WLPC=ma*Cpa*(T07-T01); // Work of low pressue
      compressor
23 T_02=T08*(rp)^((r-1)/r);
24 T02=T08+(T_02-T08)/eff_c;
25 \text{ WHPC=ma*Cpa*(T02-T08)};
26 WC=WLPC+WHPC; // Compressor work
27 WCa=WC/eff_trans; // Actual compressor work
28 // Neglecting effect of mf
29 T09=T03-(WCa/(ma*Cpg));
30 T_09=T03-(T03-T09)/eff_PT;
31 p09=p03/(T03/T_09)^(rg/(rg-1));
32 p04=p01+del_P;
T_04=T09*(p04/p09)^((rg-1)/rg);
34 \quad T04 = T09 - eff_PT * (T09 - T_04);
35 WTP=ma*Cpg*(T09-T04); // Work output of power
      turbine
```

```
36 T05=T02+eff_reg*(T04-T02);
37 mf=(ma*Cpg*(T03-T05))/(CV*10^3);
38 sfc=mf*3600/(WTP);//Specifc fuel consumption
39 eff_th=WTP/(mf*CV*10^3); // Thermal efficiency
40
41
42 disp ("kW (roundoff error)", WTP, "Work output of power turbine = ");
43 disp ("kg/kW h", sfc, "Specifc fuel consumption = ");
44 disp ("%", eff_th*100, "Thermal efficiency = ");
```

Scilab code Exa 6.5 Calculation of the thermal efficiency and air rate

```
1 clc;
2 Wplant=1850; // Plant work output in KW
3 p01=1; // Ambient pressure in bar
4 T01=27+273; // Ambient temperature in kelvin
5 T03=720+273; // Maximum cycle temperature in kelvin
6 rp=2.5; // Pressure ratio
7 eff_T=0.80; // Turbine and compressor efficiency
8 eff_reg=0.75; // Regenerator effectiveness
9 eff_comb=0.98; // Combustion efficiency
10 CV=43.1; // Calorific value in \mathrm{MJ/kg}
11 del_p=0.03; // Pressure drop
12 p02=6.25; // Pressure in bar
13 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
14 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
15 rg=1.33; // Specific heat ratio of fuel
16 r=1.4; // Specific heat ratio of air
17
18 T_07 = T01 * rp^{((r-1)/r)};
19 T07 = T01 + (T_07 - T01) / eff_T;
20 \text{ T02=T07};
```

```
21 WLPC=Cpa*(T07-T01); // Work of low pressure
      compressor
22 \text{ WHPT=WLPC};
23 T09=T03-WHPT/Cpg;
24 T_09=T03-(T03-T09)/eff_T;
25 p03 = (1-del_p)^2 * p02
26 p09=p03/(T03/T_09)^(rg/(rg-1));
27 p10=p09*(1-del_p);
28 T10 = T03;
29 p04=p01+del_p;
30 T_04=T10*(p04/p10)^((rg-1)/rg);
31 \quad T04 = T10 - eff_T * (T10 - T_04);
32 \text{ Wlpt=Cpg*(T10-T04)};
33 WN=Wlpt-WHPT;
34 \text{ ma=Wplant/WN};
35 \quad T05 = T02 + eff_reg*(T04 - T02);
36 \quad Q = Cpg * (T03 - T05 + T10 - T09);
37 \text{ eff\_th=WN/Q};
38 \text{ WHPT}_1 = \text{ma} * \text{WHPT};
39 Wlpt_1=ma*Wlpt;
40 mf=ma*Q*3600/(eff_comb*CV*10^3);
41 sfc=mf/Wplant;
42
43 disp ("K", T_07, "T_07 = ");
44 disp ("K", T07, "T07 = ");
45 disp ("K", T09, "T09 = ");
46 disp ("K", T_09, "T_09 = ");
47 disp ("K", T_04, "T_04 = ");
48 disp ("K", T04, "T04 = ");
49 disp ("K", T05, "T05 = ");
50 disp ("bar", p03, "P03 = ");
51 disp ("bar", p09, "P09 = ");
52 \text{ disp } ("bar",p10,"P10 = ");
53 disp ("kg/s", ma, "Mass flow rate = ");
54 disp ("%",eff_th*100,"The overall efficiency = ");
55 disp ("kg of fuel/kW h", sfc, "Specific fuel
      consumption = ");
```

Scilab code Exa 6.6 Calculation of Compressor efficiency and the temperature ratio

```
1 clc;
2 rp=11.3137; // Pressure ratio
3 WN=0; // Net work output
4 Q=476.354; // Heat added per kg of air mass in kJ
5 T01=300; // Inlet air total temperature in kelvin
6 eff_T=0.71; // turbine efficiency
7 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
8 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
9 rg=1.33;// Specific heat ratio of fuel
10 r=1.4; // Specific heat ratio of air
11
12 T_02=T01*rp^((r-1)/r);
13 T03_T02=Q/Cpa;
14 T03_T_04=rp^((r-1)/r);
15 T04_T03=1-(eff_T*(1/T03_T_04)*(T03_T_04-1));
16 \quad T04 = T01 + (T03_{T02});
17 T03=T04/T04_T03;
18 t=T03/T01; //Temperature ratio
19 T02=T03-T03_T02;
20 eff_C=(T_02-T01)/(T02-T01); // Compressor efficiency
21
22 disp ("%",eff_C*100,"Compressor Efficiency = ",);
23 disp (t, "Temperature ratio = ");
```

Scilab code Exa 6.7 Calculation of suitable pressure ratio

```
1 clc;
```

```
2 eff_C=0.7042; // Efficiency of the compressor
3 eff_T=0.71; // Efficiency of the turbine
4 Q=476.354; // Head added in kJ/kg
5 WR=0.0544; // Work ratio
6 T01=300; // Total inlet temperature in kelvin
7 Cpa=1.005; // Specific heat of air at constant
     pressure in kJ/kg K
8 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
9 rg=1.33; // Specific heat ratio of fuel
10 r=1.4; // Specific heat ratio of air
11
12 c_t=(1-WR)*(eff_T*eff_C);
13 t=((Q/(Cpg*T01))+1-1/eff_C)/(1-c_t/eff_C); //
     Temperature ratio
14 c=c_t*t;
15 rp=c(r/(r-1)); // Pressure ratio
16
17 disp (rp, "Pressure ratio = ");
18 disp (t, "Temperature ratio = ");
```

Scilab code Exa 6.8 Calculation of minimum temperature ratio

```
1 clc;
2 WR=0.3; // Work ratio
3 rp=12; // Pressure ratio
4 t=4; // Temperature ratio
5 Cpa=1.005; // Specific heat of air at constant pressure in kJ/kg K
6 Cpg=1.147; // Specific heat of fuel at constant pressure in kJ/kg K
7 rg=1.33; // Specific heat ratio of fuel
8 r=1.4; // Specific heat ratio of air
9
10 c=rp^((r-1)/r);
```

```
11 eff_C_T=1/((1-WR)*t/c);
12 tmin=c/eff_C_T;
13 eff=1-1/c;
14
15 disp (tmin, "Minimum Temperature ratio = ");
16 disp ("%", eff*100, "Efficiency = ");
```

Scilab code Exa 6.9 Calculation of Isentropic efficiency of Turbine

```
1 clc;
2 eff_pe=0.85; // Polytropic efficiency of the
     compressor
3 T_02_T01=2;
4 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
5 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
6 rg=1.33; // Specific heat ratio of fuel
7 r=1.4; // Specific heat ratio of air
9 rc=(T_02_T01)^(r/(r-1));
10 eff_C=(T_02_T01-1)/(((rc^(((r-1)/r)*(1/eff_pe)))-1))
     ; // Compressor efficiency
11 eff_T=(1-(1/rc)^(eff_pe*(r-1)/r))/(1-(1/rc)^((r-1)/r))
     )); // Turbine efficiency
12
13
14 disp ("%", eff_C*100," Isentropic compressor
      efficiency = ");
15 disp ("%",eff_T*100," Isentropic Turbine efficiency
     = ");
```

Scilab code Exa 6.10 Plotting variation of Isentropic efficiency over a range of pressure ratio

```
1 clc;
2 eff_C=0.85; // Isentropic efficiency of the
      compressor
3 rp=4; // Pressure ratio
4 r=1.4; // specific heat ratio
5 eff_pc=(((r-1)/r)*log (rp))/log (((rp^((r-1)/r)-1)/r))
      eff_C)+1);
6 disp ("%",eff_pc*100," Polytropic efficiency = ");
7 disp ("variation of compressor efficiency with
      compression ratio is shown in window1");
8 xset('window',1);
9 function eff_c=f(rc)
       eff_c = (rc^0.286-1)/(rc^0.326-1);
10
11 endfunction
12 rc=linspace (2,10,4);
13 plot(rc,f);
14 title ("variation of compressor efficiency with
      compression ratio", "fontsize", 4, "color", "blue");
15 xlabel("compression ratio (rc)", "fontsize", 4, "color"
      ,"blue");
16 ylabel ("Compressor efficiency", "fontsize", 4, "color"
     ,"blue");
```

Scilab code Exa 6.11 Calculation of the power output thermal efficiency and the heat exchanger effectiveness

```
1 clc;
2 eff_pe=0.88; // Compressor and turbine polytropic
    efficiencies
3 T01=310; // Temperature at LP compressor inlet in
    kelvin
4 p01=14; // Pressure at LP compressor inlet in bar
```

```
5 rp=2; // Compressor pressure ratio
6 T03=300; // Temperature at HP compressor inlet in
     kelvin
7 m=180; // Mass flow of Helium in kg/s
8 Q=500; // Heat input to gas turbine in MW
9 T07=700; // Helium Temperature at entry to reactor
     channels in kelvin
10 P_precoller=0.34; // Pressure loss in pre-cooler and
      intercooler in bar
11 P_loss_HE=0.27; // Pressure loss in heat exchanger
     in bar
12 P_loss_RC=1.03; // Pressure loss in reactor channel
     in bar
13 eff_pc=0.88; // Polytropiic efficiency
14 Cp=5.19; // Specific heat at constant pressure in
     kJ/kg K
15 r=1.66; // Specific heat ratio
16
17 n_1=((r-1)/r)*(1/eff_pc);
18 T02=T01*rp^n_1_n;
19 T04=T03*rp^n_1_n;
20 T05 = ((Q*10^3)/(m*Cp)) + T07;
21 T_press_loss=P_precoller+P_loss_HE+P_loss_RC; //
     Total pressure loss
20 p05=56-T_press_loss;
23 p06=p01+P_precoller+P_loss_HE;
24 n_1=eff_pc*((r-1)/r);
25 \quad T06=T05/(p05/p06)^n_1_1_n;
26 WC=m*Cp*((T02-T01)+(T04-T03)); // Work of compressor
27 WT=m*Cp*(T05-T06); // Work of Turbine
28 WN=WT-WC; // Net work output
29 eff_th=WN/(Q*10^3); // Efficiency
30 eff=(T07-T04)/(T06-T04); // Effectiveness
31
32 disp ("MW
             (roundoff error)", WN/1000, "Power output
     = ");
33 disp ("%
            (roundoff error)",eff_th*100,"Thermal
     efficiency = ");
```

```
34 disp ("% (roundoff error)", eff*100, "Effectiveness = ");
```

Scilab code Exa 6.12 Calculation of the isentropic efficiency of the turbine and the mass flow of air

```
1 clc;
2 rp=4; // Pressure ratio
3 WN=1500; // Net work output in kW
4 T01=25+273; // Inlet temperature in kelvin
5 p01=1; // Inlet pressure in bar
6 p03=4; // Turbine inlet pressure in bar
7 T03=700+273;// turbine inlet temperature in kelvin
8 eff_c=0.85; // Compressor efficiency
9 eff_over=0.21; // Overall efficiency
10 Cp=1.005; // Specific heat of air at constant
     pressure in kJ/kg K
11 r=1.4; // Specific heat ratio of air
12
13 T02=T01+T01*(rp^{((r-1)/r)-1)/eff_c};
14 Q=WN/eff_over;
15 m=Q/(Cp*(T03-T02));
16 Wn=WN/m; // Net work per kg
17 T04 = T03 - T02 + T01 - (Wn/Cp);
18 T_04=T03/rp^{((r-1)/r)};
19 eff_T=(T03-T04)/(T03-T_04);
20
21 disp ("kg/s",m,"Mass flow rate = ");
22 disp ("%",eff_T*100," Isentropic efficiency of the
     Turbine = ");
```

Scilab code Exa 6.13 Determination of pressure of the gas entering the low pressure turbine

```
1 clc;
2 rp=4; // Pressure ratio
3 eff_c=0.86; // Compressor efficiency
4 eff_Thp=0.84; // High pressure turbine efficiency
5 eff_Tlp=0.8; // Low pressure turbine efficiency
6 eff_M=0.92; // Mechanical efficiency
7 T03=660+273; // in kelvin
8 T05=625+273; // In kelvin
9 T01=15+273; // Inlet temperature in kelvin
10 p01=1; // Inlet pressure in bar
11 Cp=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
12 r=1.4; // Specific heat ratio of air
13 eff= 0.75; // Heat exchanger effectiveness
14
15 T_02=T01*(rp)^((r-1)/r);
16 T02 = ((T_02 - T01) / eff_c) + T01;
17 T04=T03-((T02-T01)/eff_M);
18 // In HP turbine
19 T_04=T03-((T03-T04)/eff_Thp);
20 p_04=rp/(T03/T_04)^(r/(r-1));
21 // In LP turbine
22 p05=p_04; p_06=p01;
23 T_06=T05/(p05/p_06)^((r-1)/r);
24 T06=T05-(eff_Tlp*(T05-T_06));
25 \quad T07 = T02 + eff * (T06 - T02);
Q = Cp * (T03 - T07 + T05 - T04);
27 \text{ Wc} = \text{Cp} * (\text{T02} - \text{T01});
28 WT = Cp * (T03 - T04 + T05 - T06);
29 eff_th=(WT-Wc)/Q;
30
31 disp ("bar", p_04,"(i). Pressure of gas entering low
      pressure turbine = ");
32 disp ("%",eff_th*100,"Overall efficiency = ");
```

Scilab code Exa 6.14 Calculation of pressure ratio and cycle efficiency

```
1 clc;
2 T01=38+273; // Inlet temperature of compressor in
     kelvin
3 eff_c=0.82; // Compressor efficiency
4 T03=650+273; // Turbine inlet temperature in kelvin
5 eff_T=0.8; // Turbine efficiency
6 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
7 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
8 rg=1.33; // Specific heat ratio of fuel
9 r=1.4; // Specific heat ratio of air
10
11 t=T03/T01;
12 // For maximun specific work we know that
13 ropt=(sqrt (t*eff_c*eff_T))^(r/(r-1));
14 T_02=T01*ropt^{(r-1)/r};
15 T02=T01+(T_02-T01)/eff_c;
16 T_04=T03/ropt^{((rg-1)/rg)};
17 T04=T03-eff_T*(T03-T_04);
18 eff_th=((Cpg*(T03-T04))-(Cpa*(T02-T01)))/(Cpg*(T03-T04))
     T02));
19
20 disp (ropt, "Optimum pressure ratio = ");
21 disp ("%",eff_th*100, "Overall efficiency = ");
```

Scilab code Exa 6.15 Estimation of the temperature of the gases at entry to the turbine

```
1 clc;
2 p01=1; // Stagnation pressure at entry in bar
3 pa=0.93; // Static pressure at entry in bar
4 T1=10+273; // Static temperature in entry in kelvin
```

```
5 p02=6; // Pressure at state 2 in bar
6 T02=230+273; // Temperature at state 2 in kelvin
7 P=5100; // Turbine output power in kW
8 A=0.1; // Compressor entry area in m^2
9 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
10 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
11 rg=1.33; // Specific heat ratio of fuel
12 r=1.4; // Specific heat ratio of air
13 R=287; // Characteristic constant in J/kg K
14 T04=460+273; // Exhaust pipe temperature in kelvin
15
16 M = sqrt (((p01/pa)^((r-1)/r)-1)/((r-1)/2));
17 T01=T1*(1+(r-1)/2*M^2);
18 T_02=T01*(p02/p01)^((r-1)/r);
19 eff_c=(T_02-T01)/(T02-T01);
20 row_s = (pa*10^5)/(R*T1);
21 a = sqrt (r*R*T1);
22 V = M * a;
23 \text{ m=row\_s*A*V};
24 \text{ T03=(P/(m*Cpg))+T04};
25
26 disp ("%",eff_c*100, "Compressor efficiency = ");
27 disp ("kg/s",m," Mass flow rate = ");
28 disp ("K (roundoff error)", T03, "Turbine inlet
      stagnation temperature = ");
```

Scilab code Exa 6.16 Calculation of efficiency and work ratio of modern turbines and old turbines

```
1 clc;
2 T01=27+273; // Inlet temperature in kelvin
3 p01=1; // Inlet pressure in bar
4 rp=3; // Pressure ratio
```

```
5 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
6 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
7 rg=1.33; // Specific heat ratio of fuel
8 r=1.4; // Specific heat ratio of air
9 R=287; // Characteristic constant in J/kg K
10
11 T_02=T01*rp^{(r-1)/r};
12 // Turbines 70 years ago
13 eff_c=0.65; // Compressor efficiency
14 eff_T=0.7; // Turbine efficiency
15 T03=700+273; // in kelvin
16 T02=T01*(1+((rp^((r-1)/r)-1)/eff_c));
17 T04=T03*(1-eff_T*(1-(1/rp^((rg-1)/rg))));
18 eff_th=(Cpg*(T03-T04)-Cpa*(T02-T01))/(Cpg*(T03-T02))
19 WR = (Cpg*(T03-T04)-Cpa*(T02-T01))/(Cpg*(T03-T04));
20
21 disp (WR, "Work ratio = ", eff_th*100," The Efficiency
     = ","(i).70 years ago");
22
23 //Modern turbines
24 eff_c=0.85; // Compressor efficiency
25 eff_T=0.9; // Turbine efficiency
26 T03=1000+273; // in kelvin
27 T02=T01+(T_02-T01)/eff_c;
28 T_04=T03/rp^{((rg-1)/rg)};
29 T04=T03-eff_T*(T03-T_04);
30 \text{ Wc=Cpa*}(T02-T01);
31 \text{ WT} = \text{Cpg} * (\text{T03} - \text{T04});
32 \text{ WN=WT-Wc};
33 eff_th=WN/(Cpg*(T03-T02));
34 \text{ WR} = \text{WN/WT};
35
36 disp (WR, "Work ratio = ","%", eff_th*100, "The
      Efficiency = ","(ii). Modern turbines");
```

Scilab code Exa 6.17 Determination of necessary mass flow rate

```
1 clc:
2 rp=7; // Pressure ratio
3 T03=1000; // Maximum temperature in kelvin
4 eff_c=0.85; // Compressor efficiency
5 eff_T=0.9; // Turbine efficiency
6 T01=288; // Air entering temperature in kelvin
7 PN=750; // Power output in kW
8 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
9 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
10 rg=1.33; // Specific heat ratio of fuel
11 r=1.4; // Specific heat ratio of air
12 R=287; // Characteristic constant in J/kg K
13
14 // Actual cycle
15 T02=T01*(1+((rp^((r-1)/r)-1)/eff_c));
16 T04=T03*(1-(eff_T*(1-(1/rp^((r-1)/r)))));
17 WN_a = (Cpa*(T03-T04)-Cpa*(T02-T01));
18 eff_th=WN_a/(Cpa*(T03-T02));
19 disp ("%", eff_th*100, "The Efficiency = ", "kJ/kg",
     WN_a, "Net work = ","(i).Actual cycles");
20
21 // Ideal cycle
22 WN=Cpa*((T03*(1-(1/rp^((r-1)/r))))-T01*((rp^((r-1)/r)))
     )-1)));
23 eff_th=1-(1/rp^{((r-1)/r)});
24 \text{ ma=PN/WN_a};
25
26 disp ("kg/s",ma, "Mass flow rate = ", "%", eff_th*100,
     "The Efficiency = ","kJ/kg", WN, "Net work = ","(ii
      ). Ideal cycles");
```

Scilab code Exa 6.18 Estimation of intermediate pressure and temperature between the two turbine stages

```
1 clc;
2 m=5; // Mass flow rate in kg/s
3 p01=1; // Pressure at state 1 in bar
4 p02=5; // Pressure at state 2 in bar
5 eff_c=0.85; // Compressor efficiency
6 eff_Thp=0.87; // High pressure turbine efficiency
7 eff_Tlp=0.82; // Low pressure turbine efficiency
8 T03=675+273; // HP turbine inlet temperature in
      kelvin
9 eff=0.7; // Effectiveness of the heat exchanger
10 T01=15+273; // Temperature at state 1 in kelvin
11 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
12 r=1.4; // Specific heat ratio of air
13 R=287; // Characteristic constant in J/kg K
14 p03=p02;
15
T_02=T01*(p02/p01)^((r-1)/r);
17 T02=T01+(T_02-T01)/eff_c;
18 \quad T04 = T01 - T02 + T03;
19 T_04=T03-(T03-T04)/eff_Thp;
20 p04=p03/(T03/T_04)^(r/(r-1));
21 p05=p01;
T_05=T04/(p04/p05)^((r-1)/r);
23 T05=T04-eff_Tlp*(T04-T_05);
24 T0x = eff * (T05 - T02) + T02;
25 \text{ Wlpt=Cpa*}(T04-T05);
26 Plpt=Wlpt*m;
27 \ Q = Cpa*(T03-T0x);
28 eff_th=Wlpt/Q;
29
```

Scilab code Exa 6.19 Determination of the percentage of the total air intake that passes to the turbine and the thermal efficiency of the plant

```
1 clc;
2 rlp=3; // Pressure ratio
3 rhp=rlp;
4 eff_c=0.82; // Compressor efficiency
5 T04=650+273; // Temperature at state 4 in kelvin
6 T05=540+273; // Temperature at state 5 in kelvin
7 eff_T=0.87; // Efficiency of turbine
8 T01=15+273; // Temperature at compressor inlet in
     kelvin
9 Cpa=1.005; // Specific heat of air at constant
     pressure in kJ/kg K
10 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
11 rg=1.33; // Specific heat ratio of fuel
12 r=1.4; // Specific heat ratio of air
13
14 T02=T01*(1+(rlp^{((r-1)/r)-1)/eff_c};
15 T03=T02*(1+(rhp^((r-1)/r)-1)/eff_c);
16 T_06=T05/(rlp)^(2*(rg-1)/rg);
17 T06=T05-eff_T*(T05-T_06);
18 x1=1-((T02-T01)/(((Cpg/Cpa)*(T05-T06)-(T03-T02))));
19 x = abs (x1);
20 T07=T04*(1-(eff_T*(1-(1/rhp^((rg-1)/rg)))));
21 eff_th=(x*Cpg*(T04-T07))/((1-x)*Cpg*(T05-T03)+x*Cpg
     *(T04-T02));
```

```
22
23 disp ("%",(x)*100,"Percentage of the total air
    intake that passes to the power turbine = ");
24 disp ("% (Roundoff error)",(eff_th)*100,"The
    overall efficiency = ");
```

Scilab code Exa 6.20 Calculation of the Thermal efficiency

```
1 clc:
2 rp=2; // Pressure ratio
3 T01=15+273; // Inlet temperature in kelvin
4 p01=1; // Inlet pressure in bar
5 T05=700+273; // Temperature at state 5 in kelvin
6 \text{ T07} = \text{T05};
7 eff_c=0.85; // compressor efficiency
8 eff_T=0.85; // Turbine efficiency
9 eff=0.5; // Effectiveness of heat exchanger
10 Cp=1.147; // Specific heat at constant pressure in kJ
      /kg K
11 rg=1.33; // Specific heat ratio of fuel
12 r=1.4; // Specific heat ratio of air
13
14 T03=T01;
15 / p02/p01=p04/p03=rp
16 / p04/p01=p05/p08=rp^2
17 T_02=T01*(rp)^((r-1)/r);
18 T02=T01+(T_02-T01)/eff_c;
19 T04 = T02;
20 T_06=T05/rp^{((rg-1)/rg)};
21 \quad T06 = T05 - eff_T * (T05 - T_06);
22 T08=T06;
23 T09=T04+eff*(T08-T04);
24 \text{ WN} = \text{Cp} * (\text{T07} - \text{T08});
25 \quad Q = Cp * (2 * T05 - T06 - T09);
26 \text{ eff\_th=WN/Q};
```

```
27  
28    disp ("kJ/kg", WN, "Net work done = ");  
29    disp ("%", eff_th*100, "The overall efficiency = ");
```

Scilab code Exa 6.21 Calculation of cycle thermal efficiency

```
1 clc;
2 T01=270+273; // Temperature at state 1 in kelvin
3 T03 = T01;
4 p01=1; // Inlet pressure in bar
5 rp=6; // Pressure ratio
6 eff_c=0.85; // Compressor efficiency
7 T05=1150+273; // Temperature at inlet to expansion
      in kelvin
8 eff_T=0.9; // Turbine efficiency
9 n=1.24; // Polytropic index
10 R=10.05; // \text{ in } kJ/kg K
11
12 T_02=T01*rp^((n-1)/n);
13 T02=T01+(T_02-T01)/eff_c;
14 Cv=R/(n-1);
15 Cp=R+Cv;
16 Wc = 2 * Cp * (T02 - T01);
17 T_06=T05/rp^((n-1)/n);
18 T06=T05-eff_T*(T05-T_06);
19 WT = 2 * Cp * (T05 - T06);
20 Q = Cp * (T05 - T02) + Cp * (T05 - T06);
21 \quad WN = WT - Wc;
22 \text{ eff\_th=WN/Q};
23
24 disp ("%",eff_th*100,"The Cycle efficiency = ");
```

Chapter 7

Jet Propulsion Cycles and Their Analysis

Scilab code Exa 7.1 Calculation of Thrust power and Heat Input

```
1 clc;
2 CV=43; // Calorific value of fuel in MJ/kg
3 mf=0.18*9000/3600; // Fuel consumption in kg/s
4 F=9; // Thrust in kN
5 ci=500; // Aircraft velocity in m/s
6 ma=27; // Mass of air passing through compressor in kg/s
7
8 A_F=ma/mf; // Air fuel ratio
9 PT=F*ci; // Thrust power
10 Q=mf*(CV*10^3); // Heat supplied
11 eff=PT/Q; // Overall efficiency
12 disp (A_F, "Air fuel ratio = ");
13 disp ("%", eff*100, "Overall efficiency = ");
```

Scilab code Exa 7.2 Calculation of The Total Design Thrust

```
1 clc;
2 T03=1200; // Maximum turbine inblet temperature in
      kelvin
3 rc=4.25; // Pressure ratio across compressor
4 ma=25; // Mass flow rate in kg/s
5 eff_C=0.87; // Isentropic efficiency of the
      compressor
6 eff_T=0.915; // Isentropic efficiency of turbine
7 eff_n=0.965; // Propelling nozzle efficiency
8 eff_Tr=0.985; // Transmission efficiency
9 del_pcomb=0.21; // Combustion chamber pressure loss
10 Cpa=1.005; // Specific heat at constant pressure of
      air in kJ/kg K
11 ra=1.4; // Specific heat ratio of air
12 Cpg=1.147; // Specific heat of fuel in kJ/kg\ K
13 rg=1.33; // Specific heat of fuel
14 T01=293; // Ambient temperature in kelvin
15 p01=1; // Ambient pressure in bar
16 A_F=50; // Air Fuel ratio
17 p02=rc/p01;
18
19 T02=(T01*((rc)^((ra-1)/ra)-1)/eff_C)+T01; // Actual
      temperature at state 2
20 T04=T03-((Cpa*(T02-T01))/(eff_Tr*Cpg)); //
      Temperature at state 4
21 rt=(1/(1-((T03-T04)/(eff_T*T03))))^(1/((rg-1)/rg));
     // Pressure ratio across turbine
22 \text{ p04=(p02-del_pcomb)/rt; // Pressure at 4}
23 p5=p01;
24 T_5=T04/(p04/p5)^((rg-1)/rg); // Temperature at 5
25 \quad T5 = T04 - eff_n * (T04 - T_5);
26 c5=sqrt (2*Cpg*10^3*(T04-T5));
27 F=ma*c5; // Total design thrust
28 p04_pc=1/(1-((1/eff_n)*((rg-1)/(rg+1))))^(rg/(rg-1))
29 \text{ pc=p04*(1/p04_pc)};
30 \text{ Tc}=\text{T04}*(1/\text{p04}_\text{pc})^((\text{rg}-1)/\text{rg});
31 R = Cpg * 10^3 * (rg - 1) / rg;
```

```
32 \text{ cj=sqrt (rg*R*Tc)};
33 row_c = (pc*10^5)/(R*Tc);
34 A=ma/(row_c*cj); // Area of the propelling nozzle
35 d=sqrt (4*A/3.14); // Diameter of the nozzle
36 pa=p01;
37 Fp=(pc-pa)*10^5*A; // Pressure thrust
38 \text{ Fm=ma*cj};
39 Ft=Fp+Fm; // Total thrust
40 sfc=(ma/A_F)*3600/Ft;
41
42 disp ("N (roundoff error)", F, "Total design thrust
      /s = ");
43 disp ("N (roundoff error)", Ft, "Total thrust /s ="
      );
44 disp ("kg/ N thrust h", sfc, "Specific fuel
      consumption = ");
```

Scilab code Exa 7.3 Calculation of the velocity leaving the nozzle

Scilab code Exa 7.4 Calculation of propulsive efficiency

```
1 clc;
2 cj=2700; // The effective jet velocity from jet
        engine in m/s
3 ci=1350; // Flight velocity in m/s
4 ma=78.6; // Air flow rate in m/s
5
6 a=ci/cj;
7 F=ma*(cj-ci); // Thrust
8 P=F*ci; // Thrust power
9 eff_P=2*a/(a+1); // Propulsive efficiency
10
11 disp ("N",F,"(i).Thrust = ");
12 disp ("MN",P/10^6,"(ii). Thrust power = ");
13 disp ("%",eff_P*100,"(iii). Propulsive efficiency = ");
```

Scilab code Exa 7.5 Calculation of the thrust and Specific fuel consumption

```
1 clc;
2 pa=0.458; // Ambient pressure in bar
3 Ta=248; // Ambient temperature in kelvin
4 Ci=805*1000/3600; // Speed of the aircraft in m/s
5 rp=4; // Pressure ratio
6 DelP_comb=0.21; // Combustion chamber pressure loss in bar
```

```
7 T03=1100; // Turbine inlet temperature in kelvin
8 eff_ram=0.95; // Intake duct efficiency
9 eff_c=0.85; // Compressor efficiency
10 eff_T=0.90; // Turbine efficiency
11 eff_m=0.99; // Mechanical efficiency of transmission
12 eff_nozzle=0.95; // Nozzle efficiency
13 CV=43; // Low calorific value in MJ/kg
14 Ac=0.0935; // Nozzle outlet area in m^2
15 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
16 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
17 rg=1.33; // Specific heat ratio of fuel
18 r=1.4; // Specific heat ratio of air
19 R=287; // Characteristic gas constant in J/kg K
20
21 p01=pa*(1+eff_ram*((1+Ci^2/(2*Cpa*Ta*10^3))^(r/(r-1))
      )-1));
22 p02=p01*rp;
23 T01=Ta+Ci^2/(2*Cpa*10^3);
24 T02=T01+T01*(rp^{((r-1)/r)-1)/eff_c};
25 T04=T03-(Cpa*(T02-T01))/(Cpg*eff_m);
26 p03=p02-DelP_comb;
27 T_04 = T03 - (T03 - T04) / eff_T;
28 p04=p03*(T_04/T03)^(r/(r-1));
29 \text{ p04_pc=1/(1-(((rg-1)/(rg+1))/eff_nozzle))^(rg/(rg-1))}
      );
30 \text{ Tc}=\text{T04}*(1/\text{p04}_\text{pc})^((\text{rg}-1)/\text{rg});
31 pc=p04/p04_pc;
32 \text{ row_c=(pc*10^5)/(R*Tc)};
33 \text{ cj=sqrt (rg*R*Tc)};
34 \text{ m=row\_c*Ac*cj};
35 F=m*(cj-Ci)+Ac*(pc-pa)*10^5; // Total thrust
36 mf = (m*Cpg*(T03-T02))/(CV*10^3);
37 sfc=mf*3600/F; // specific fuel consumption
38
39 disp ("N (roundoff error)", F, "Total thrust = ");
40 disp ("kg/N h (roundoff error)", sfc, "specific fuel
```

Scilab code Exa 7.6 Calculation of specific power output

```
1 clc;
2 ci=600*1000/3600; // Velocity in m/s
3 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
4 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
5 rg=1.33; // Specific heat ratio of fuel
6 r=1.4; // Specific heat ratio of air
7 R=287; // Characteristic gas constant in J/kg K
8 pa=0.458; // Ambient pressure in bar
9 Ta=-15+273; // Ambient temperature in kelvin
10 rp=9; // pressure ratio
11 T03=1200; // Maximum temperature in kelvin
12 eff_ram=0.9; // Intake duct efficiency
13 eff_c=0.89; // Compressor efficiency
14 eff_T=0.93; // Turbine efficiency
15 eff_m=0.98; // Mechanical efficiency of transmission
16
17 cj=ci
18 T_01=Ta+(ci^2/(2*Cpa*10^3));
19 p_01=pa*(T_01/Ta)^(r/(r-1));
20 p01=eff_ram*(p_01-pa);
21 p02=rp*p01;
22 \quad T01 = T_01;
23 T_02=T01*rp^((r-1)/r);
24 T02=T01+(T_02-T01)/(eff_c);
T_04=T03*(1/rp)^((rg-1)/rg);
26 \quad T04 = T03 - eff_T * (T03 - T_04);
27 WN=Cpg*(T03-T04)-Cpa*(T02-T01)/eff_m;// net work
28 eff_th=WN/(Cpg*(T03-T02)); // Thermal efficiency
```

```
29
30 disp ("kJ/kg (roundoff error)", WN, "Net work done =
        ");
31 disp ("%", eff_th*100, "Thermal efficiency = ");
```

Scilab code Exa 7.7 Determination of rate of fuel consumption

```
1 clc;
2 pa=0.7; // Ambient pressure in bar
3 Ta=1+273; // Ambient temperature in kelvin
4 Ci=800*1000/3600; // Speed of the aircraft in m/s
5 rp=5; // Pressure ratio
6 eff_ram=1.00; // Intake duct efficiency
7 eff_c=0.85; // Compressor efficiency
8 eff_T=0.90; // Turbine efficiency
9 eff_comb=0.98; //Combustion efficiency
10 eff_nozzle=0.95; // Nozzle efficiency
11 rp_T=2.23; // Turbine pressure ratio
12 CV=43; // Low calorific value in MJ/kg
13 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
14 Cpg=1.005; // Specific heat of fuel at constant
      pressure in kJ/kg K
15 rg=1.4;// Specific heat ratio of fuel
16 r=1.4; // Specific heat ratio of air
17 R=287; // Characteristic gas constant in J/kg K
18 F=25000; // Thrust in N
19
20 \text{ cj} = 2 * \text{Ci};
T_01=Ta+(Ci^2/(2*Cpa*10^3));
22 T01=T_01;
23 T02=T01+(T01*(((rp)^((r-1)/r))-1))/eff_c;
24 p_01=pa*(1+Ci^2/(2*Cpa*10^3*Ta))^(r/(r-1));
25 p01=eff_ram*(p_01-pa);
26 p02=rp*p01;
```

```
27 T03=(T02-T01)/(eff_T*(1-1/rp_T^((r-1)/r)));
28 ma=F/(cj-Ci);
29 // Neglecting the effect of the mass addition of
     fuel on the right hand side
30 mf=(ma*Cpa*(T03-T02))/(eff_comb*CV*10^3);
31
32 disp ("kg/s",ma,"Mass flow rate of air = ");
33 disp ("kg/s (roundoff error)",mf,"Mass flow rate
     of fuel = ");
```

Scilab code Exa 7.8 Calculation of the take off thrust

```
1 clc;
2 Ta=288; // Ambient temperature in kelvin
3 pa=1.01; // Ambient pressure in bar
4 p04=2.4; // Stagnation pressure in bar
5 T04=1000; // Stagnation temperature in kelvin
6 m=23; // Mass flow rate in kg/s
7 rp=1.75; // Pressure ratio
8 \text{ eff_f=0.88}; // Efficiency of the fan
9 eff_ft=0.9; // Efficiency of the fan turbine
10 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
11 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
12 rg=1.33; // Specific heat ratio of fuel
13 r=1.4; // Specific heat ratio of air
14 R=284.6; // Characteristic gas constant in J/kg K
15 T01=Ta;
16 p01=pa;
17 pc=p04*(2/(r+1))^(r/(r-1));
18 // since pc>pa the nozzle will choke
19 Tc=T04*(2/(r+1));
20 row_c=pc*10^5/(R*Tc);
21 \text{ cj=sqrt (r*R*Tc)};
```

```
22 \quad A=m/(row_c*cj);
23 p1=pa;
24 F=m*cj+(A*(pc-p1)*10^5);
25 // For fan engine
T_02=T01*(rp)^((r-1)/r);
27 T02 = T01 + (T_02 - T01) / eff_f;
28 // For cold nozzle
29 m_nozzle=2*m; // Flow through cold nozzle
30 pc1=p01*rp*(2/(r+1))^(r/(r-1));
31 F_cold=m_nozzle*sqrt (2*Cpa*10^3*(T02-T01));
32 // Fan Turbine
33 T05=T04-((m_nozzle*Cpa*(T02-T01))/(m*Cpg));
34 T_05 = T04 - (T04 - T05) / eff_ft;
35 p_05=p04*(T_05/T04)^(rg/(rg-1));
36 \text{ pc=p\_05*(2/(rg+1))^(rg/(rg-1))};
37 F_{hot=m*sqrt} (2*Cpg*10^3*(T05-T01));
38 Takeoffthrust= F_cold + F_hot;
39
40 \text{ disp } (\text{"m}^2)
                 (roundoff error)", A, "Nozzle Exit area =
       ");
41 disp ("N
               (roundoff error)", F, "Total Thrust = ");
               (roundoff error)", Takeoffthrust, "Take-off
42 disp ("N
       Thrust = ");
```

Scilab code Exa 7.9 Calculation of thrust provided by the engine and the thrust power developed

```
1 clc;
2 ma=18.2; // Massflow rater in m/s
3 Mi=0.6; // Mach number
4 pa=0.55; // Ambient pressure in bar
5 Ta=255; // Ambient temperature in kelvin
6 rp=5; // Pressure ratio
7 T03=1273; // Maximum temperature in kelvin
8 eff_c=0.81; // Compressor efficiency
```

```
9 eff_T=0.85; // Turbine efficiency
10 eff_nozzle=0.915; // Nozzle efficiency
11 eff_ram=0.9; // Intake duct efficiency
12 CV=45870; // Low calorific value in kJ/kg
13 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
14 Cpg=1.147; // Specific heat of fuel at constant
      pressure in kJ/kg K
15 rg=1.33; // Specific heat ratio of fuel
16 r=1.4; // Specific heat ratio of air
17 R=284.6; // Characteristic gas constant in J/kg K
18
19  ci=Mi*sqrt(r*R*Ta);
20 T_01=Ta+ci^2/(2*Cpa*10^3);
21 \quad T01 = T_01;
22 p_01=pa*(T01/Ta)^(r/(r-01));
23 p01 = eff_ram*(p_01 - pa) + pa;
24 p02=rp*p01;
25 \quad T02=T01*(1+((rp^((r-1)/r))-1)/eff_c);
26 \text{ Wc=ma*Cpa*}(T02-T01);
27 \text{ WT} = \text{Wc};
28 mf=ma/((CV/(Cpg*(T03-T02)))-1);
29 f1=mf/ma;
30 T04=T03-(WT/((ma+mf)*Cpg));
31 rp_T=(1/(1-((1-(T04/T03))/eff_T)))^(r/(r-1));
32 p03=p02;
33 p04=p03/rp_T;
34 \text{ p04_pc=1/(1-((rg-1)/((rg+1)*eff_nozzle)))^(rg/(rg-1))}
      );
35 \text{ pc=p04_pc/p04};
36 \text{ Tc}=\text{T04}*(1/\text{p04}_\text{pc})^{((\text{rg}-1)/\text{rg})};
37 \text{ cj=sqrt (r*R*Tc)};
38 \text{ row\_c=pc*10^5/(R*Tc)};
39 An=(ma+mf)/(row_c*cj);
40 F=(ma+mf)*cj-ma*ci+An*(pc-pa);
41 Fp=F*ci;
42
43 disp ("kW (roundoff error)", Wc, "Work of
```

Scilab code Exa 7.10 Calculation of exit speed of the gases and the thrust developed

```
1 clc;
2 ma=(12*10^4)/3600; // Air flow rate in kg/s
3 T01=15+273; // Temperature in kelvin
4 rp=4; // pressure ratio
5 p01=1.03; // Pressure in bar
6 T02=182+273; // Temperature in kelvin
7 T03=815+273; // Temperature in kelvin
8 T04=650+273; // Temperature in kelvin
9 ci=800*1000/3600; // Velocity in m/s
10 eff_nozzle=0.90; // Nozzle efficiency
11 Cpa=1.005; // Specific heat of air at constant
      pressure in kJ/kg K
12 Cpg=1.147; // Specific heat of fuel at constant
     pressure in kJ/kg K
13 rg=1.33; // Specific heat ratio of fuel
14 r=1.4; // Specific heat ratio of air
15 p03=4.12; // in bar
16
17 eff_c=1/((T02-T01)/(T01*((rp^((r-1)/r))-1)));
18 eff_T=eff_c;
19 Wc=ma*Cpa*(T02-T01);
20 rp_T=(1/(1-((T03-T04)/(eff_T*T03))))^((r/(r-1)));
21 p04=p03/rp_T;
22 \text{ p04_pc=1/(1-((rg-1)/((rg+1)*eff_nozzle)))^(rg/(rg-1))}
```

Chapter 8

Centrifugal Compressors

Scilab code Exa 8.1 Calculation of compressor efficiency

```
1 clc;
2 N=11500; // Speed in rpm
3 T01=21+273; // Inlet total temperature in kelvin
4 p01=1;// Inlet total pressure in bar
5 p02=4;// Outlet total pressure in bar
6 D=0.75; // impeller diameter in m
7 mu=0.92;//slip factor
8 Cp=1.005; // specific heat at constant pressure in
     kJ/kg K
9 r=1.4; // Specific heat ratio
10
11 u=3.14*D*N/60;
12 W=mu*u^2;
13 T02=W/(Cp*10^3)+T01;
14 T_02=T01*(p02/p01)^((r-1)/r);
15 eff_c=(T_02-T01)/(T02-T01);
16
17 disp ("%",eff_c*100," Efficiency of the compressor =
     ");
```

Scilab code Exa 8.2 Estimation of the probable axial width of the impeller

```
1 clc;
2 m=35; // mass flow rate of air in kg/s
3 D=0.76; // Impeller diameter in m
4 N=11500; // speed in rpm
5 eff_c=0.8; // Efficiency of the compressor
6 rp=4.2; // Pressure ratio
7 cr=120; // Radial velocity in m/s
8 p01=1; // Inlet pressure in bar
9 T01=47+273; // Inlet temperature in kelvin
10 Cp=1.005; // specific heat at constant pressure in
     kJ/kg K
11 r=1.4; // Specific heat ratio
12 R=287; // Characteristic gas constant in J/kg K
13
14 T_02=T01*rp^{((r-1)/r)};
15 T02=T01+(T_02-T01)/eff_c;
16 // ignoring the effects of the velocity of flow
17 p02=rp/p01;
18 \text{ row2=p02*10^5/(R*T02)};
19 Atip=m/(row2*cr);
20 AW=Atip/(3.14*D); // Axial width
21
22 disp ("cm", AW*100, "Axial Width = ");
```

Scilab code Exa 8.3 Calculation of theoretical blade angles

```
1 clc;
2 D=0.15; // Inlet eye diameter in m
3 N=20000; // Speed in rpm
4 ca1=107; // Axial velocity in m/s
```

```
5 T01=294; // Inlet temperature in kelvin
6 p01=1.03; // Inlet pressure in kg/cm<sup>2</sup>
7 Cp=1.005; // specific heat at constant pressure in
     kJ/kg K
8 r=1.4; // Specific heat ratio
9 R=287; // Characteristic gas constant in J/kg K
10
11 u1=3.14*D*N/60;
12 beta_1=atand (ca1/u1); // Blade angle
13 cr=u1/cosd (beta_1);
14 a = sqrt (r*R*(T01-ca1^2/(2*Cp*10^3)));
15 M=cr/a; // Mach number at the tip
16
17 disp ("degree", beta_1, "(i). Theoretical angle of the
     blade at this point = ");
  disp (M,"(ii). Mach number of the flow at the tip of
     the eve = ");
```

Scilab code Exa 8.4 Calculation of final temperature of the gases and the work done per kg of gas

```
1 clc;
2 T01=0+273; // Inlet gas temperature in kelvin
3 p01=0.7; // Inlet pressure in bar
4 p02=1.05; // Delivery pressure in bar
5 eff_c=0.83; // Compressor efficiency
6 Cp=1.005; // Specific heat at constant pressure in kJ/kg K
7 Cv=0.717; // Specific heat at constant volume in kJ/kg K
8 r=1.4; // Specific heat ratio
9
10 T_02=T01*(p02/p01)^((r-1)/r);
11 T02=T01+(T_02-T01)/eff_c; // Final temperature of the gas
```

```
12 Wc=Cp*(T02-T01); // Work of compression
13
14 // With additional compressor
15 T_03=T02*(p02/p01)^((r-1)/r);
16 T03=T02+(T_03-T02)/eff_c;
17 T_03=T01*(p02/p01)^(2*(r-1)/r);
18 eff_overall=(T_03-T01)/(T03-T01);
19
20 disp ("K",T02," Final temperature of the gas = ");
21 disp ("kJ/kg", Wc," Work of compression = ");
22 disp ("%",eff_overall*100," Overall efficiency = ");
```

Scilab code Exa 8.5 Calculation of impeller diameters and the width at the impeller exit

```
1 clc;
2 N=12500; // Speed in rpm
3 m=15; // Mass flow rate in kg/s
4 rp=4; // Pressure ratio
5 eff_c=0.75; // Isentropic efficiency
6 mu=0.9; // Slip factor
7 pi=0.3; // Flow coefficient at impeller exit
8 D=0.15; // Hub diameter in m
9 ca2=150; // Axial velocity in m/s
10 T01=275; // Inlet temperature in kelvin
11 p01=1; // Inlet pressure in bar
12 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
13 Cv=0.717; // Specific heat at constant volume in kJ
     /kg K
14 r=1.4; // Specific heat ratio
15 R=287; // Characteristic gas constant in J/kg K
16
17 u2=ca2/pi;
18 P=m*mu*u2^2/1000; // Power output
```

```
19 D2=u2*60/(3.14*N);
20 T1=T01-ca2^2/(2*Cp*10^3);
21 p1=p01*(T1/T01)^(r/(r-1));
22 \text{ row1=p1*10^5/(R*T1)};
23 A1=m/(row1*ca2);
24 D1=sqrt ((A1*4/(3.14))+D^2);
25 p3_p1=rp;
26 p2=2*p1;
T_2=T1*(p2/p1)^((r-1)/r);
28 T2=T1+(T_2-T1)/eff_c;
29 row2=p2*10^5/(R*T2);
30 \text{ W2=(m)/(row2*ca2*3.14*D2)};
31
32 disp ("kW",P,"Power = ");
33 disp ("Impeller Diameters");
34 disp ("cm", D2*100, "D2 = ", "cm (roundoff error)", D1
      *100, "D1 = ");
35 disp ("Impeller width")
36 disp ("cm (roundoff error)", W2*100, "W2 = ");
```

Scilab code Exa 8.6 Calculation of the minimum possible depth of the diffuser

```
1 clc;
2 m=14; // mass flow rate in kg/s
3 rp=4; // pressure ratio
4 N=12000; // Speed in rpm
5 T01=288; // Inlet temperature in kelvin
6 p01=1.033; // Inlet pressure in bar
7 Cp=1.005; // Specific heat at constant pressure in kJ/kg K
8 Cv=0.717; // Specific heat at constant volume in kJ/kg K
9 r=1.4; // Specific heat ratio
10 R=287; // Characteristic gas constant in J/kg K
```

```
11 mu=0.9; // Slip factor
12 chi=1.04; // Power input factor
13 eff_c=0.8; // Compressor efficiency
14
15 T03 = (((rp^((r-1)/r))-1)*T01/eff_c)+T01;;
16 U=sqrt ((T03-T01)*Cp*10^3/(chi*mu));
17 D=U*60/(3.14*N);
18
19 T3 = T03/1.2;
20 c2 = sqrt (r*R*T3);
21 ca2=sqrt (c2^2-(mu*U)^2);
22 T02 = eff_c * (T03 - T01) + T01;
23 \quad Loss = T03 - T02;
24 T2=T3-Loss/2
25 p2=p01*(T2/T01)^(r/(r-1));
26 \text{ row2=p2*10^5/(R*T2)};
27 A=m/(row2*ca2);
28 Depth=A/(2*3.14*D/2);
29
30 disp ("cm",D*100, "Overall diameter of the Impeller
     = ");
                (roundoff error)", Depth*100, "Depth of
31 disp ("cm
      the diffuser = ");
```

Scilab code Exa 8.7 Calculation of impeller and diffuser blade angles at inlet

```
1 clc;
2 N=10000; // Speed in rpm
3 Q=600; // Flow rate m^2/min
4 rp=4; // Pressure ratio
5 eff_c=0.82; // Compressor efficiency
6 T01=293; // Inlet temperature in kelvin
7 p01=1.0; // Inlet pressure in bar
8 Cp=1.005; // Specific heat at constant pressure in
```

```
kJ/kg K
9 Cv=0.717; // Specific heat at constant volume in kJ
      /kg K
10 r=1.4; // Specific heat ratio  
11 R=287; // Characteristic gas constant in J/kg K
12 ca=60; // Axial velocity in m/s
13 D2_D1=2 ;// Diameter ratio
14
15 T_03=T01*rp^{(r-1)/r};
16 \quad T03 = T01 + (T_03 - T01) / eff_c;
17 u2=sqrt (Cp*10^3*(T03-T01));
18 Wc=u2^2; // Work of compression
19 D2=(u2*60/(3.14*N));
20 D1 = D2/D2_D1;
21 T1=T01-(ca^2/(2-Cp*10^3));
22 p1=p01*(T1/T01)^(r/(r-1));
23 \text{ row1=p1*10^5/(R*T1)};
24 Wroot=(Q/60)*(1/(ca*3.14*D1));
25 \text{ u1}=3.14*N*D1/60;
26 alpha_root=atand (ca/u1);
27 alpha_tip= atand (ca/u2);
28
29 disp ("(i). Power input ");
30 disp ("kW/kg/s", Wc/1000, "Wc = ");
31 disp ("(ii). Impeller Diameters");
32 disp ("m",D2,"D2 = ","m",D1,"D1 = ");
33 disp ("(iii). Impeller and diffuser blade angles at
      inlet");
34 disp ("degree", alpha_tip, "alpha_tip = ", "degree",
      alpha_root, "alpha_root = ");
```

Scilab code Exa 8.8 Calculation of slip factor

```
1 clc;
2 rp=4; // Pressure ratio
```

```
3 eff_c=0.8; // Compressor efficiency
4 N=15000; // Speed in rpm
5 T01=293; // Inlet temperature in kelvin
6 De=0.25; // Diameter of eye in \ensuremath{\text{m}}
7 C1=150; // Absolute velocity in m/s
8 Di=0.6; // Impeller diameter in m
9 a1=25; // in degree
10 Cp=1.005; // Specific heat at constant pressure in
     kJ/kg K
11 Cv=0.717; // Specific heat at constant volume in kJ
     /kg K
12 r=1.4; // Specific heat ratio
13 R=287; // Characteristic gas constant in J/kg K
14
15 T02=T01*rp^{((r-1)/r)};
16 DelT_actual=(T02-T01)/eff_c;
17 P=Cp*10^3*DelT_actual; // Power input
18 u1=3.14*De*N/60;
19 ct1=C1*sind (a1);
20 // At Exit
21 u2=3.14*Di*N/60;
22 ct2=(P+(u1*ct1))/u2;
23 mu=ct2/u2; // Slip factor
24
25 disp (mu, "Slip Factor = ");
```

Scilab code Exa 8.9 Determination of number of radial impeller vanes

```
1 clc;
2 P=180*10^3; // Power input in J
3 N=15000; // Speed in rpm
4 a1=25; // in degrees
5 De=0.25; // Mean dia of the eye in m
6 Di=0.6; // Impeller tip diameter in m
7 c1=150; // Absolute air velocity at inlet in m/s
```

```
8
9 u1=3.14*De*N/60;
10 u2=3.14*Di*N/60;
11 ct1=c1*sind (a1);
12 ct2=(P+(u1*ct1))/u2;
13 mu=ct2/u2;
14 z=(1.98)/(1-mu); // Number of impeller vanes
15 disp(z,"Number of impeller vanes using Stanitz formulae = ");
```

Scilab code Exa 8.10 Calculation of the torque power required and the head developed

```
1 clc;
2 m=30; // mass flow rate in kg/s
3 N=15000; // Speed in rpm
4 r2=0.3; // Radius in m
5 D2=r2*2; // Diameter in m
6 w2=100; // Relative velocity in m/s
7 beta_1=80; // in degrees
8 p01=1; // Inlet pressure in bar
9 T01=300 // Inlet temperature in kelvin
10 Cp=1.005; // specific heat at constant pressure in
     kJ/kg K
11 r=1.4; // Specific heat ratio
12 R=287; // Characteristic gas constant in J/kg K
13
14 u2=3.14*D2*N/60;
15 ct2=u2-(w2*cosd (beta_1));
16 Fr=m*ct2*r2;
17 P=Fr*(2*3.14*N/60);
18 W=u2*ct2;
19 P02=p01*(1+(W*10^-3/(Cp*T01)))^(r/(r-1));
20
21 disp ("Nm", Fr, "Torque = ");
```

```
22 disp ("kW",P/1000,"Power = ");
23 disp ("bar",P02,"Head Developed = ");
```

Chapter 9

Axial Flow Compressors

Scilab code Exa 9.1 Estimation of blade angles

```
1 clc;
2 n=10; // No of stages in the axial flow compressor
3 rp=5; // Overall pressure ratio
4 eff_C=0.87; // Overall isentropic efficiency
5 T1=15+273; // Temperature of air at inlet in kelvin
6 u=210; // Blade speed in m/s
7 ca=170; // Axial velocity in m/s
8 wf=1; // Work factor
9 r=1.33; // Specific heat ratio
10 Cp=1.005; // Specific heat in kJ/kg K
11
12 Del_Tstage=(T1*(rp^((r-1)/r)-1))/(n*eff_C); //
     Temperature increase per stage
13 // By property relations and let us assume
14 // \tan_b e \tan 1 - \tan_b e \tan 2 = Del_T stage *Cp/(wf*u*ca)
15 // tan_beta1+tan_beta2=u/ca for 50% reaction
16 // To solve this above equations using matrix method
17 a=[1,-1;1,1]; c=[(Del_Tstage*Cp*10^3/(wf*u*ca));u/ca]
     ];
18 b=a\c;
19 beta1=atand(b(1)); // Blade angles at inlet
```

```
20 beta2=atand(b(2)); // Blade angles at outlet
21
22 disp ("degree (roundoff error)", beta2, "Blade angle
        at outlet = ","degree (roundoff error)", beta1,
        "Blade angle at inlet = ");
```

Scilab code Exa 9.2 Calculation of mass flow rate and degree of reaction

```
1 clc:
2 P1=1.0132; // Inlet air pressure in bar
3 T01=288; // Inlet air temperature in kelvin
4 ca=150; // axial velocity in m/s
5 dtip=60; // Tip diameter of rotor in cm
6 dhub=50; // Hub diameter of rotor in cm
7 N=100; // Speed of rotor in rps
8 t_angle=30; // Deflected angle of air in degree (in
     question it is 30.2 but in solution it is 30)
9 P2_P1=1.2; // Stage pressure ratio
10 Cp=1005; // Specific heat in J/kg K
11 r=1.4; // Specific heat ratio
12 R=287; // Characteristic gas constant in J/kg K
13
u = (3.142857*(dhub+dtip)*10^-2*N)/2; // Mean blade
     velocity
15 beta_1=atand(u/ca); // Blade angle at inlet
16 beta_2=beta_1-t_angle; // As air is deflected by 30
17 // from velocity triangle
18 x=ca*tand(beta_2);
19 alpha_2=atand ((u-x)/ca);
20 C1=ca;
21 T1=T01-(C1^2/(2*Cp)); // Static temperature at inlet
22 P2=P1*P2_P1; // Pressure at outlet
23 T2=T1*(P2/P1)^((r-1)/r); // Static temperature at
     outlet
24 row_2 = (P2*10^5)/(R*T2); // Density at outlet
```

Scilab code Exa 9.3 Estimation of number of stages of the compressors

```
1 clc;
2 beta_1=45; // Inlet blade angle in degree
3 beta_2=10; // Outlet blade angle in degree
4 rp=6; // Compressor pressure ratio
5 eff_C=0.85;// Overall isentropic efficiency
6 T1=37+273; // Inet static temperature in kelvin
7 u=200; // Blade speed in m/s
8 Cp=1005; // Specific heat in J/kg~K
9 r=1.4; // Specific heat ratio
10 R=287; // Characteristic gas constant in J/kg K
11
12 // (i) . wf=1
13 wf=1; // Work factor
14 ca=u/(tand(beta_1)+tand(beta_2)); // Axial velocity
15 Del_Tstage=wf*u*ca*(tand(beta_1)-tand(beta_2))/Cp;
     // Stage temperature drop
16 Del_Toverall=(T1*(rp^((r-1)/r)-1))/eff_C; // Overall
      temperature drop
17 n=Del_Toverall/Del_Tstage; // No of stages
18
```

Scilab code Exa 9.4 Determination of Mach number relative to Rotor

```
1 clc;
2 rp=4; // Total head pressure ratio
3 eff_0=0.85; // Overall total head isentropic
      efficiency
4 T01=290; // Total head inlet temperature in kelvin
5 alpha_1=10; // Inlet air angle in degree
6 alpha_2=45; // Outlet air angle in degree
7 u=220; // Blade velocity in m/s
8 \text{ wf=0.86}; // Wok done factor
9 R=284.6; // Characteristic gas constant in kJ/kg K
10 Cp=1005; // Specific heat in J/kg K
11 r=1.4; // Specific heat ratio
12
13 eff_P=1/(log10(((rp^((r-1)/r)-1)/eff_0)+1)/(log10(rp)
     )*((r-1)/r)));;
14 // From velocity triangle
15 ca=u/(tand(alpha_1)+tand(alpha_2)); // Axial
      velocity
```

```
16 Del_Tstage=wf*u*ca*(tand(alpha_2)-tand(alpha_1))/Cp;
      // Stage temperature rise
17 T02=T01*(rp)^((r-1)/(r*eff_P)); // Total head
     temperature
18 T02_T01=T02-T01; // Total temperature rise
19 n=T02_T01/Del_Tstage; // Total number of stages
20 // from velocty traingles
21 w1=ca/cosd(alpha_2);
22 c1=ca/cosd(alpha_1);
23 T1=T01-c1^2/(2*Cp); // Static temperature
24 M=w1/sqrt(r*R*T1); // Mach number at inlet
25
26 disp (eff_P*100, "Polytropic efficiency of the
     compressor = ");
27 disp (n, "Total number of stages = ");
28 disp (M, "Mach number at inlet = ");
```

Scilab code Exa 9.5 Calculation of pressure rise per blade ring and the power input per stage

```
1 clc;
2 Q=1000; // Flow rate of free air in m^3/min
3 P1=0.98; // Inlet pressure in bar
4 T1=15+273; // Inlet temperature in kelvin
5 Dm=0.6; // Mean diameter in m
6 h=6.75; // blade length in cm
7 CL=0.6; CD=0.05; // At zero angle of incidence
8 Cp=1.005; // Specific heat in kJ/kg K
9 r=1.4; // Specific heat ratio
10 R=287; // Characteristic gas constant in J/kg K
11 k=1-0.1; //Blade occupys 10% of axial area
12 N=6000; // speed in rpm
13 Ac=19.25*10^-4; // Projected area in m^2
14 n=50;
15 eff_C=1; // Efficiency of compressor
```

```
16
17 row = (P1*10^5)/(R*T1); // Density
18 A=k*3.14*Dm*h*10^-2; // Area of axial
19 ca=Q/(60*A); // Axial velocity
20 u=3.14*Dm*N/60; // Blade velocity
21 beta_1=atand(u/ca); // Blade angle at inlet
22 w=sqrt (ca^2+u^2); // From velocity triangle
23 L=CL*row*w^2*Ac/2;
24 D = CD * row * w^2 * Ac/2;
25 P=(L*cosd(beta_1)+D*sind (beta_1))*u*n*10^-3; //
      Power input / stage
26 m=Q*row/60; // mass flow rate
27 \text{ rp} = ((P*eff_C/(m*Cp*T1))+1)^(r/(r-1)); // pressure
      ratio
28 P2=rp*P1; // Pressure
29
30 disp ("kW
               (Roundoff error)",P,"Power input/stage
     = ");
31 disp ("bar", P2, "Pressure at outlet = ");
```

Scilab code Exa 9.6 Determination of the direction of the air entry to and exit from the rotor

```
1 clc;
2 T1=290; // Temperature at inlet in kelvin
3 n=10; // Number of stages
4 rp=6.5; // Pressure ratio
5 m=3; // mass flow rate in kg/s
6 eff_C=0.9; // isentropic efficiency of the compression
7 ca=110; // Axial velocity in m/s
8 u=180; // Mean blade velocity in m/s
9 Cp=1.005; // Specific heat in kJ/kg K
10 r=1.4; // Specific heat ratio
11 R=287; // Characteristic gas constant in J/kg K
```

```
12
13 T_2=(rp)^((r-1)/r)*T1; // temperature after
      isentropic compression
14 T2=((T_2-T_1)/eff_C)+T_1; // Temperature after actual
     compression
15 P=m*Cp*(T2-T1); // Power given to the air
16 Del_Tstage=(T2-T1)/n; // Temperature rise per stage
17 Del_ct=Cp*10^3*Del_Tstage/u; // For work done per kg
      of air per second
18 // To find blade angles let solve the following
     equations
19 // Del_ct=ca(tan beta_1-tan beta_2) for symmetrical
     stages
20 // u=ca(tan beta_1=tan beta_2) for degree of
     reaction = 0.5
21 // Solving by matrix method
22 A=[1,-1;1,1]; C=[Del_ct/ca;u/ca];
23 B=A\C;
24 // Blade angles at entry and exit
25 beta_1=atand(B(1));
26 beta_2=atand(B(2));
27
28 disp ("kW (roundoff error)", P, "Power given to the
      air = ");
29 disp ("degree", beta_2, "Blade angle at exit = ","
     degree",beta_1, "Blade angle at inlet = ");
```

Scilab code Exa 9.7 Calculation of the rotational speed and the length of the last stage

```
1 clc;
2 rp=4; // Overall pressure ratio
3 m=3; // mass flow rate in kg/s
4 eff_pc=0.88; // Polytropic efficiency
5 Del_Tstage=25; // The stagnation temperature
```

```
pressure rise in kelvin
6 c1=165; // Absolute velocity in m/s
7 alpha_1=20; // air angle from axial direction in
     degree
8 wf=0.83; // Workdone factor
9 D=18; // Mean diameter of the last stage rotor in cm
10 P01=1.01; // Ambient pressure in bar
11 T01=288; // Ambient temperature in kelvin
12 Cp=1005; // Specific heat in J/kg~K
13 r=1.4; // Specific heat ratio
14 R=287; // Characteristic gas constant in J/kg K
15
16 n=1/(1-(r-1)/(r*eff_pc));
17 T02=T01*(rp)^((n-1)/n); // Total pressure at stage 2
18 Del_Toverall = T02-T01; // Overall temperature
      difference
19 Ns=Del_Toverall/Del_Tstage; // Number of stages
20 eff_C=((rp^{(r-1)/r})-1)/(rp^{(r-1)/(r*eff_pc)})-1));
     // Efficiency of compressor
21 rp1=(1+(eff_C*Del_Tstage/T01))^(r/(r-1)); //
      Pressure ratio acrocc first stage
22 Del_Tstage1=Del_Toverall/Ns; // Temperature rise
      across stage 1
23 T0ls=T02-Del_Tstage1; // Temperature at inlet to
      last stage
24 rpls=(1+(eff_C*Del_Tstage1/Tols))^(r/(r-1)); //
      Pressure ratio acrocc last stage
25 // For symmetrical blade, R=0.5
26 beta_2=alpha_1;
27 ca=c1*cosd (alpha_1); // Axial velocity
28 beta_1=atand(sqrt(((Cp*Del_Tstage1/(wf*ca))/ca)+(
     tand(beta_2))^2)); // blade angle
29 u=ca*(tand(beta_1)+tand(beta_2)); // mean velocity
     of blade
30 \text{ N=}60*\text{u/}(3.14*\text{D*}10^-2*60); // Speed in rps
31 Po=rp/rpls; // Total pressure at inlet to the last
      stage
32 TO=TOls; // Total temperature to the last stage
```

```
33 Tst=T0-c1^2/(2*Cp); // Static temperature
34 Pst=Po/(T0/Tst)^((r-1)/r); // Static pressure
35 row=(Pst*10^5)/(R*Tst); // Density
36 h=m/(ca*row*3.14*D*10^-2); // Length of last stage
37
38 disp (Ns,"Number of stages = ");
39 disp (rp1,"Pressure ratio across first stage = ");
40 disp (" (roundoff error)",rpls,"Temperature at inlet to last stage = ");
41 disp ("degree (roundoff error)",beta_1,"beta1=");
42 disp ("rps (roundoff error)",N,"Speed = ");
43 disp ("cm (roundoff error)",h*100,"Length of last stage = ");
```

Scilab code Exa 9.8 Calculation of the stage stagnation pressure ratio and the power input

```
1 clc;
2 N=6000; // Speed in rpm
3 Del_rise=20; // Stagnation temperature rise in
     kelvin
4 wf=0.93; // Work done factor eff_c=0.89; //
     Isentropic efficiency of the state
5 c1=140; // Inlet velocity in m/s
6 p01=1.01; // Ambient pressure in bar
7 T01=288; // Ambient temperature in kelvin
8 M1=0.95; // Mach number
9 Cp=1.005; // Specific heat in J/kg~K
10 r=1.4; // Specific heat ratio
11 R=287; // Characteristic gas constant in J/kg K
12 H_T_ratio=0.6; // Hub tip ratio in
13 eff_s=0.89; // Stage efficiency
14 T1=T01-c1^2/(2*Cp*10^3);
15 w1=M1*sqrt (r*R*T1);
16 beta_1=acosd (c1/w1);
```

```
17 \text{ u=w1*sind (beta_1)};
18 beta_2=atand (tand(beta_1)-((Cp*10^3*Del_rise)/(u*wf
      *c1)));
19 p1=p01/(T01/T1)^(r/(r-1));
20 \text{ row}_1 = (p1*10^5)/(R*T1);
21 Rtip=60*u/(2*3.14*N);
22 Rroot=H_T_ratio*Rtip;
23 Rm = (Rtip+Rroot)/2;
24 h=Rtip-Rroot;
25 m=row_1*2*3.14*Rm*h*c1;
26 \text{ rp}=(1+(eff_s*Del_rise)/(T01))^(r/(r-1));
27 P=m*Cp*Del_rise;
28 \text{ uroot} = 2*3.14*Rroot*N/60;
29 beta_1root=atand (uroot/c1);
30 beta_2root=atand (tand (beta_1root)-((Cp*10^3*
      Del_rise)/(wf*uroot*c1)));
31
32 disp ("degree", beta_2, "beta 2 = ", "degree", beta_1,"
      beta 1 = ", "Rotor air angles at tip: ", "m", Rtip, "
      Tip Radius = ","(i). ");
33 disp ("kg/s
                  (Roundoff error)", m, "Mass flow rate =
      ","(ii).");
34 disp ("kW",P,"Power input = ",rp,"Stagnation
      pressure ratio = ","(iii).");
35 disp ("degree", beta_2root, "beta 2 = ", "degree",
      beta_1root, "beta 1 = ", "Rotor air angles at root
      sections", "(iv).");
```

Scilab code Exa 9.9 Determination of the stage efficiency and the work done factor of an axial flow compressor

```
1 clc;
2 rp=1.35; // Actual pressure ratio
3 DelT_rise=30; // Actual temperature rise in K
4 beta_1=47; // Inlet blade angle in degree
```

```
beta_2=15; // Outlet blade angle in degree
u=225; // Peripheral velocity in m/s
ca=180; // Axial velocity in m/s
T01=27+273; // Ambient temperature in kelvin
Cp=1.005; // Specific heat in KJ/kg K
r=1.4; // Specific heat ratio
R=287; // Characteristic gas constant in J/kg K

eff_s=(rp^((r-1)/r)-1)*T01/DelT_rise;
wf=(DelT_rise*Cp*10^3)/(u*ca*(tand(beta_1)-tand(beta_2)));

disp ("%",eff_s*100," Stage Efficiency = ");
disp (wf," Work done factor = ");
```

Scilab code Exa 9.10 Determination of blade and air angle

```
1 clc;
2 u=250; // Mean blade speed in m/s
3 rp=1.3; // Pressure ratio
4 ca=200; // Axial velocity in \ensuremath{\text{m/s}}
5 p01=1; // Inlet pressure in bar
6 T01=300; // Inlet temperature in kelvin
7 R1=0.5; // Degree of reaction
8 Cp=1.005; // Specific heat in \mathrm{KJ/kg}\ \mathrm{K}
9 r=1.4; // Specific heat ratio
10 R=287; // Characteristic gas constant in J/kg K
11
12 Del_T=(rp^((r-1)/r)-1)*T01;
13 / \tan b e t a 1 + \tan b e t a 2 = (R * 2 * u / ca);
14 / \tan beta1 - \tan beta2 = (Del_T *Cp *10^3 / (u * ca));
15 A=[1 1;1 -1]; B=[(R1*2*u/ca);(Del_T*Cp*10^3/(u*ca))
      ];
16 tan_beta=A\setminus B;
17 beta_1=atand (tan_beta(1));
```

Scilab code Exa 9.11 Calculation of rotational speed

```
1 clc;
2 n=4; // Number of stage
3 rp=10; // Pressure ratio
4 eff_p_ac=0.92; // Ploytropic efficiency of axial
     compressor
5 eff_p_cc=0.83; // Polytropic efficiency of
     centrifugal compressor
6 Del_Trise=30; // Axial compressor stage temperature
     in kelvin
7 R=0.5; // Reaction stage
8 beta_2=20; // Outlet stator angle in degree
9 D=0.25; // Mean diameter of each stage in m
10 wf=0.8; // Work done factor
11 ca=150; // Axial velocity in m/s
12 Di=0.33; //Impeller diameter in m
13 mu=0.9; // Slip factor
14 p01=1.01; // Ambient pressure in bar
15 T01=288; // Ambient temperature in kelvin
16 pif=1.04; // Power input factor
17 Cp=1.005; // Specific heat in KJ/kg K
18 r=1.4; // Specific heat ratio
19 R=287; // Characteristic gas constant in J/kg K
20
21 beta_1=atand (sqrt ((Cp*10^3*Del_Trise/(wf*ca^2))+(
     tand(beta_2)^2)));
```

```
22 u=ca*(tand (beta_1)+tand(beta_2));
23 Nac = (u/(3.14*D));
24 r1=(1+n*Del_Trise/T01)^(eff_p_ac*r/(r-1)); // Total
      pressure ratio across the axial compressor
25
26 r2=rp/r1; // Pressure ratio across centrifugal
      compressor
27 T02=T01*r1^((r-1)/(eff_p_ac*r));
28 T03=T02*r2^{((r-1)/(eff_p_cc*r))};
29 Del_Tsc=T03-T02;
30 \text{ u=sqrt ((Del_Tsc*Cp*10^3)/(pif*mu))};
31 \text{ Ncc=u/(3.14*Di)};
32
                 (roundoff error)", Nac, "Speed of the
33 disp ("rps
      axial compressor = ");
               (roundoff error)", Ncc, "Speed of the
34 disp ("rps
      centrifugal compressor = ");
```

Chapter 11

Impulse and Reaction Turbines

Scilab code Exa 11.1 Estimation of maximum number of stages required

```
1 clc;
2 p02=6; // Inlet pressure in bar
3 T02=900; // Inlet temperature in kelvin
4 pOfs=1; // Outlet pressure in bar
5 eff_isenT=0.85; // insentropic efficiency of turbine
6 alpha_2=75; // Nozzle outlet angle in degree
7 u=250; // Mean blade velocity in m/s
8 Cp=1.15*10^3; // Specific heat in J/ kg K
9 r=1.333; // Specific heat ratio
10
11 TOfs=TO2/(pO2/pOfs)^((r-1)/r); // Isentropic
     temperature at the exit of the final stage
12 Del_Toverall=eff_isenT*(T02-T0fs); // Actual overall
      temperature drop
13 c2=2*u/sind (alpha_2); // absolute velocity
14 c3= c2*cosd (alpha_2); // absolute velocity
15 c1=c3; // From velocity triangles
16 Del_Tstage=(c2^2-c1^2)/(2*Cp); // Stage temperature
     drop
17 n=Del_Toverall/Del_Tstage; // Number of stages
18
```

```
19 disp (round (n), "Number of stages n =");
```

Scilab code Exa 11.2 Determination of output power developed by the turbine shaft

```
1 clc;
2 N=10000; // Speed of gas turbine in rpm
3 T01=700+273.15; // Total head temperature at nozzle
      entry in kelvin
4 P01=4.5; //Total head pressure at nozzle entry in
     bar
5 PO2=2.6; // Outlet pressure from nozzle in bar
6 p3=1.5; // Pressure at trbine outlet annulus in bar
7 M=0.5; // Mach number at outlet
8 alpha_2=70; // outlet nozzle angle in degrees
9 D=64; // Blade mean diameter in cm
10 m=22.5; // Mass flow rate in kg/s
11 eff_T=0.99; // turbine mechanical efficiency
12 Cp=1.147; // Specific heat in kJ/kg~K
13 r=1.33; // Specific heat ratio
14 fl=0.03; // frictional loss
15 R=284.6; // characteristic gas constant in J/kg K
16
17 eff_N=1-fl; // Nozzle efficiency
18 T_02 = (P02/P01)^{((r-1)/r)} * T01; // Isentropic
     temperature after expansion
19 T02=T01-eff_N*(T01-T_02); // Actual temperature
      after expansion
20 c2=sqrt (2*Cp*10^3*(T01-T02)); // Absolute velocity
21 u = (3.14*D*10^-2*N)/60; // Mean blade velocity
22 // From velocity triangles
23 \text{ wt2=c2*sind (alpha_2)-u};
24 \text{ ca=c2*cosd (alpha_2)};
25 beta_2=atand((wt2)/ca);
26 T3=T02/(P02/p3)((r-1)/r); // Assuming rotor losses
```

Scilab code Exa 11.3 Estimation of the blade angle and power produced

```
1 clc;
2 alpha_2=65; // Nozzle discharge angle in degree
3 c3=300; // Absolute velocity in m/s
4 alpha_3=30; // in degrees
6 ca2=c3*cosd (alpha_3); // Axial velocity
7 c2=ca2/cosd(alpha_2); // Absolute velocity
8 // ca3=ca2=ca and equal blade angles then
9 ca=ca2;
10 beta_2=atand((c2*sind(alpha_2)+c3*sind(alpha_3))/(2*
     ca)); // Blade angle
11 beta_3=beta_2; // equal blade angles
12 u=c2*sind(alpha_2)-ca2*tand(beta_2); // Mean blade
      velocity
13 // From velocity triangles
14 ct2=c2*sind(alpha_2);
15 ct3=c3*sind(alpha_3);
16 WT=u*(ct2+ct3)/1000; // Work done
17 sigma=u/c2; // optimum speed ratio
18 eff_B=4*(sigma*sind(alpha_2)-sigma^2);
19
20 disp ("degree", beta_2, "Blade angle = beta_2 = beta_3
```

```
= ");
21 disp ("kJ/kg (roundoff error)", WT, "Power Produced
= ");
22 disp ("%", eff_B*100, "Blade efficiency = ");
```

Scilab code Exa 11.4 Calculation of blade angle used and the mass flow rate required

```
1 clc;
2 P01=7; // Pressure at inlet in bar
3 T01=300+273.15; // Temperature at inlet in kelvin
4 PO2=3; // Pressure at outlet in bar
5 alpha_2=70; // Nozzle angle in degree
6 eff_N=0.9; // Isentropic efficiency of nozzle
7 WT=75; // Power Produced in kW
8 Cp=1.15; // Specific heat in kJ/kg K
9 r=1.33; // Specific heat ratio
10
11 T_02=T01*(P02/P01)^((r-1)/r); // Isentropic
     temperature after expansion
12 T02=T01-eff_N*(T01-T_02); // Actual temperature
      after expansion
13 c2=sqrt (2*Cp*10^3*(T01-T02)); // Absolute velocity
14 // For optimum blade speed ratio
15 u=(c2*sind (alpha_2)/2); // Mean blade velocity
16 beta_2=atand((c2*sind(alpha_2)-u)/(c2*cosd(alpha_2))
     ); // Blade angle
17 // From velocity triangles
18 ct2=c2*sind(alpha_2);
19 w2=c2*cosd(alpha_2)/cosd(beta_2);
20 w3=w2; // Equal inlet and outlet angles
21 beta_3=54; // in degrees
22 \text{ ct3=w3*sind(beta_3)-u};
23 m = (WT*10^3)/(u*(ct2+ct3)); // Gas mass flow rate
24
```

```
25 disp ("degree", beta_2, "Blade angle = ");
26 disp ("kg/s", m, "Gas Mass Flow Rate = ");
```

Scilab code Exa 11.5 Determination of gas temperature velocities and discharge angles at the blade root and tip radii

```
1 clc;
2 P01=4.6; // Total head inlet pressure in bar
3 T01=700+273.15; // Total head inlet temperature in
     kelvin
4 P2=1.6; // Static head pressure at mean radius in
5 Dm_h=10; // Mean blade diameter/blade height
6 lc=0.1; // Nozzle losses coefficient
7 alpha_2=60; // Nozzle outlet angle in degree
8 Cp=1.147; // Specific heat in kJ/kg K
9 r=1.33; // Specific heat ratio
10 m=20; // Mass flow rate in kg/s
11 R=284.6; // characteristic gas constant in J/kg K
12
13 T_2=T01*(P2/P01)^((r-1)/r); // Isentropic
     temperature after expansion
14 T2=(1c*T01+T_2)/(1+1c); // Actual temperature after
     expansion
15 c2=sqrt(2*Cp*10^3*(T01-T2)); // Absolute velocity
16 // From velocity triangles
17 ca=c2*cosd(alpha_2);
18 row=P2*10^5/(R*T2); // Density of gas
19 A=m/(ca*row); // Area
20 Dm = sqrt (A*Dm_h/3.14); // Mean Diameter
21 h=Dm/10; // Blade height
22 rm=Dm/2; // Mean radius
23 // At root
24 r_{root} = (Dm - h) / 2;
25 //At the tip
```

```
26 \text{ r_tip=(Dm+h)/2};
27 // Free vorte flow
28 ct_mean=c2*sind (alpha_2);
29 // At the root
30 ct2_root=(ct_mean*rm)/r_root;
31 alpha2_root=atand(ct2_root/ca);
32 c2_root=ct2_root/sind (alpha2_root);
33 T2_root=T01-c2_root^2/(2*Cp*10^3);
34 // At the tip
35 ct2_tip=ct_mean*rm/r_tip;
36 alpha2_tip = atand (ct2_tip/ca);
37 c2_tip=ct2_tip/sind(alpha2_tip);
38 T2_{tip}=T01-c2_{tip}^2/(2*Cp*10^3);
39
40 disp ("degree", alpha2_root, "Discharge angle at the
     root = ","m/s",c2\_root,"Gas velocity at the root
     = ","K",T2_root,"Gas Temperature at the root = ",
     "A the Root");
41 disp ("degree", alpha2_tip, "Discharge angle at the
      tip = ","m/s",c2\_tip,"Gas velocity at the tip = "
      "K", T2_tip, "Gas Temperature at the tip = ", "A
      the tip");
```