Optimization Theory and Methods

Prof. Xiaoe Ruan

Email: wruanxe@xjtu.edu.cn

Tel:13279321898

2019, Fall

Chapter 6. Linearly Constrained Optimization Methods

- 1. Projected Gradient Method and Reduced Gradient Method
- 2. Constrained Null Space Method
- 3. Active Set Method
- 4. Quadratic Programming

Nonlinear Optimization with Linear Constraints (NOLC) Model:

$$\begin{cases} \min f(x), & \text{s. t.} \\ a_i^{\mathsf{T}} x = b_i, i \in E = \{1, 2, \dots, m_e\}, \\ a_i^{\mathsf{T}} x \ge b_i, i \in I = \{m_e + 1, \dots, m\}. \end{cases}$$

f(x) --Nonlinear smooth fcn. $a_i \in \mathbb{R}^n, b_i \in \mathbb{R}, i = 1, \dots, m$.

$$D = \{x | a_i^{\mathsf{T}} x = b_i, i \in E, a_i^{\mathsf{T}} x \ge b_i, i \in I\}$$

-- Constraint Set, Constraint Domain or Feasible Domain.

Optimization Strategy:

Construct iterative sequence $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$. s.t.

(1)
$$f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)})$$
. (2) $x^{(k)} + \alpha_k d^{(k)} \in D$.

1. Rosen Projected Gradient Algorithm

Given matrix $P = P^T$ and linear transform $y = Px, \forall x \in \mathbb{R}^n$.

If $y^{T}(x-Px)=0$, then y=Px is a projection transform.

(1)
$$P^2 = P$$
. (2) P is semi-PD. $P = [P_1/P_2/\cdots/P_n]$

(3)
$$\longleftrightarrow I-P$$
 is a projection matrix. \vec{e}_3

(4) Subspace
$$L = \{Px, x \in R^n\}$$

= $\{P_1x_1 + P_2x_2 + \dots + P_nx_n, x \in R^n\}$

is orthogonal to subspace

$$L^{\perp} = \left\{ x - Px, x \in \mathbb{R}^n \right\}.$$
 e.g.

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad Px = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}.$$

Lemma1 Suppose $x^{(k)}$ is a feasible point of NOLC model.

Denote
$$I_e^{(k)} = I_e(x^{(k)}) = \{i | a_i^T x^{(k)} = b_i, i \in E\} = E = \{1, 2, \dots, m_e\},$$

$$I_{I}^{(k)} = I_{I}(x^{(k)}) = \left\{ i + m_{e} \middle| a_{i+m_{e}}^{T} x^{(k)} = b_{i+m_{e}}, i + m_{e} \in I \right\},$$

$$I^{(k)} = I_e^{(k)} \cup I_I^{(k)}, \quad A_{I^{(k)}} = \left[a_1 / \cdots / a_{m_e} / a_{m_e+1} / \cdots / a_{m_k} \right]$$

If the column rank of $A_{{m J}^{(k)}}$ is full, then

(1)
$$P = I - A_{I^{(k)}} \left(A_{I^{(k)}}^{T} A_{I^{(k)}} \right)^{-1} A_{I^{(k)}}^{T}$$
 is a projection matrix.

(2) If
$$P\nabla f(x^{(k)}) \neq 0$$
, then $d^{(k)} = -P\nabla f(x^{(k)})$

is feasible descending direction of NOLC at $x^{(k)}$.

Proof: (1)
$$I - P = A_{I^{(k)}} \left(A_{I^{(k)}}^{\mathsf{T}} A_{I^{(k)}} \right)^{-1} A_{I^{(k)}}^{\mathsf{T}}$$
 then

$$(I - P)^{2} = |A_{I^{(k)}} (A_{I^{(k)}}^{\mathsf{T}} A_{I^{(k)}})^{-1} A_{I^{(k)}}^{\mathsf{T}} | A_{I^{(k)}} (A_{I^{(k)}}^{\mathsf{T}} A_{I^{(k)}})^{-1} A_{I^{(k)}}^{\mathsf{T}} | = I - P$$

(2)
$$\nabla f\left(x^{(k)}\right)^{\mathrm{T}} d^{(k)} = -\nabla f\left(x^{(k)}\right)^{\mathrm{T}} P \nabla f\left(x^{(k)}\right) = -\nabla f\left(x^{(k)}\right)^{\mathrm{T}} P^{\mathrm{T}} P \nabla f\left(x^{(k)}\right)$$

$$= -\left\|P\nabla f\left(x^{(k)}\right)\right\|^{2} < 0. \text{ i.e. } d^{(k)} = -P\nabla f\left(x^{(k)}\right) \text{ is descending direction.}$$

In addition
$$A_{I^{(k)}} = [a_1/a_2/\cdots/a_{m_k}], P = I - A_{I^{(k)}} (A_{I^{(k)}}^T A_{I^{(k)}})^{-1} A_{I^{(k)}}^T.$$

Therefore
$$A_{I^{(k)}}^{T}d^{(k)} = -A_{I^{(k)}}^{T}\left[I - A_{I^{(k)}}\left(A_{I^{(k)}}^{T}A_{I^{(k)}}\right)^{-1}A_{I^{(k)}}^{T}\right]\nabla f\left(x^{(k)}\right) = 0$$

Thus a. If $i \in I^{(k)}$, then for any step $\alpha_k > 0$,

$$a_i^{\mathrm{T}}\left(x^{(k)}+\alpha_k d^{(k)}\right)=b_i$$
 holds.

b. If
$$i \in E \cup I \setminus I^{(k)}$$
, i.e. $a_i^T x^{(k)} > b_i$. Choose $0 < \alpha_k << 1$,

s.t.
$$a_i^{\mathrm{T}} \left(x^{(k)} + \alpha_k d^{(k)} \right) > b_i$$
 guaranteed.

i.e. If
$$P\nabla f(x^{(k)}) \neq 0$$
,

then
$$d^{(k)} = -P\nabla f(x^{(k)})$$
 is feasible descending direction.

Lemma2 Assume that (A1) $x^{(k)}$ is a feasible point of NOLC model.

$$I_e^{(k)} = I_e(x^{(k)}) = \{i | a_i^T x^{(k)} = b_i, i \in E\} = E = \{1, 2, \dots m_e\}.$$

$$I_I^{(k)} = I_I(\bar{x}^{(k)}) = \{i + m_e | a_{i+m_e}^T \bar{x}^{(k)} = b_{i+m_e}, i + m_e \in I \}, \qquad I^{(k)} = I_e^{(k)} \cup I_I^{(k)}.$$

(A2) Column rank of $A_{I^{(k)}} = |a_1/\cdots/a_{m_e}/a_{m_e+1}/\cdots/a_{m_k}|$ is full,

$$P = I - A_{I^{(k)}} \left(A_{I^{(k)}}^{\mathsf{T}} A_{I^{(k)}} \right)^{-1} A_{I^{(k)}}^{\mathsf{T}}$$
 is corresponding

$$P = I - A_{I^{(k)}} \left(A_{I^{(k)}}^{\mathsf{T}} A_{I^{(k)}} \right)^{-1} A_{I^{(k)}}^{\mathsf{T}}$$
 is corresponding projection matrix and $P \nabla f \left(x^{(k)} \right) = 0$.

Denote
$$u = \left(A_{I^{(k)}}^{\mathsf{T}} A_{I^{(k)}}\right)^{-1} A_{I^{(k)}}^{\mathsf{T}} \nabla f\left(x^{(k)}\right) = \left[\underbrace{u_1, \cdots, u_{m_e}}_{} / \underbrace{u_{m_e+1}, \cdots, u_{m_k}}_{}\right]^{\mathsf{T}} = \left[\begin{smallmatrix} v \\ w \end{smallmatrix}\right]$$

Then (1) If $w \ge 0$, then $x^{(k)}$ is KT point of NOLC model.

(2) If
$$w_j < 0$$
, then $\bar{P} = I - \bar{A}_{I^{(k)}} \left(\bar{A}_{I^{(k)}}^{\mathsf{T}} \bar{A}_{I^{(k)}} \right)^{-1} \bar{A}_{I^{(k)}}^{\mathsf{T}}$ is projection matrix .

$$\overline{d}^{(k)} = -\overline{P}\nabla f(x^{(k)})$$
 is feasible descending direction of NOLC model.

Here
$$\overline{A}_{I^{(k)}} = [a_1 / \cdots / a_{m_e} / \cdots / a_{m_e+j-1} / a_{m_e+j+1} / \cdots / a_{m_k}]$$

 w^{1}

Recall1 (1st-order Kuhn-Tucker Necessity Conditions)

For (NP):
$$\begin{cases} \min f(x), \\ s. t. & c_i(x) = 0, i \in E = \{1, 2, \dots m'\}, \\ c_i(x) \ge 0, i \in I = \{m' + 1, \dots m\}. \end{cases}$$

Given χ^* is local minimizer of NP, f(x) and $c_i(x)(i \in E \cup I)$ are 1-st-order continuously differentiable at χ^*

If
$$SFD(x^*,d) = LFD(x^*,d)$$
, then there exists $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*)^T$

Kuhn-Tucker point

Kuhn-Tucker cond.

s.t.

$$\nabla f\left(x^*\right) - \sum_{i=1}^{m} \lambda_i^* \nabla c_i\left(x^*\right) = 0, i \in E \cup I,$$

$$\lambda_i^* \ge 0, i \in I, \quad \lambda_i^* c_i\left(x^*\right) = 0, i \in I.$$

Complementary relaxed cond.

Proof: (1) From Assumptions (A1) and (A2),

min f(x), s.t.

For NP:
$$\begin{cases} a_i^{\rm T} x^{(k)} = b_i, i \in E = \{1, 2, \cdots m_e\}, \\ a_i^{\rm T} x^{(k)} \ge b_i, i \in I = \{m_e + 1, \cdots m\}. \end{cases}$$

$$I_e^{(k)} = I_e(x^{(k)}) = \{i | a_i^T x^{(k)} = b_i, i \in E\} = E = \{1, 2, \dots m_e\},$$

$$I_I^{(k)} = I_I\left(x^{(k)}\right) = \left\{i + m_e \middle| a_{i+m_e}^{\mathrm{T}} x^{(k)} = b_{i+m_e}, i + m_e \in I\right\}, \quad I^{(k)} = I_e^{(k)} \bigcup I_I^{(k)}.$$

We have
$$0 = P\nabla f\left(x^{(k)}\right) = \nabla f\left(x^{(k)}\right) - A_{I^{(k)}}u$$

$$= \nabla f\left(x^{(k)}\right) - \sum_{i=1}^{m_e} v_i a_i - \sum_{j=m_e+1}^{m_k} w_{j-m_e} a_j - \sum_{j=m_k+1}^{m} 0 \cdot a_j.$$
 and $w_{j-m_e} \left(a_j^{\mathrm{T}} x^{(k)} - b_j\right) = 0, \quad j = m_e + 1, \cdots, m_k,$ i.e. $x^{(k)}$ is KT pnt. $0 \cdot \left(a_j^{\mathrm{T}} x^{(k)} - b_j\right) = 0, \quad j = m_k + 1, \cdots, m.$

and
$$w_{j-m_e}(a_j^T x^{(k)} - b_j) = 0, \quad j = m_e + 1, \dots, m_k$$

$$0 \cdot (a_i^T x^{(k)} - b_i) = 0, \quad j = m_k + 1, \dots, m$$

Proof: (2)
$$\overline{A}_{I^{(k)}} = [a_1/\cdots/a_{m_e}/\cdots/a_{m_e+j-1}/a_{m_e+j+1}/\cdots/a_{m_k}],$$

$$\overline{P} = I - \overline{A}_{I^{(k)}} \left(\overline{A}_{I^{(k)}}^{\mathrm{T}} \overline{A}_{I^{(k)}} \right)^{-1} \overline{A}_{I^{(k)}}^{\mathrm{T}},$$

Let
$$\overline{u} = \left(\overline{A}_{I^{(k)}}^{\mathrm{T}} \overline{A}_{I^{(k)}}\right)^{-1} \overline{A}_{I^{(k)}}^{\mathrm{T}} \nabla f\left(x^{(k)}\right)$$
. Contrarily suppose that

$$0 = \overline{P}\nabla f\left(x^{(k)}\right) = \left[I - \overline{A}_{I^{(k)}}\left(\overline{A}_{I^{(k)}}^{\mathrm{T}}\overline{A}_{I^{(k)}}\right)^{-1}\overline{A}_{I^{(k)}}^{\mathrm{T}}\right]\nabla f\left(x^{(k)}\right)$$

$$= \nabla f(x^{(k)}) - \overline{A}_{I^{(k)}} \overline{u} = \nabla f(x^{(k)}) - \sum_{i=1}^{m_e} \overline{u}_i a_i - \sum_{i=m_e+1, i \neq m_e+j}^{m_k} \overline{u}_i a_i.$$

Then
$$\sum_{i=1}^{m_e} (u_i - \overline{u}_i) a_i + \sum_{i=m_e+1, i \neq m_e+j}^{m_k} (w_{i-m_e} - \overline{u}_i) a_i + w_j a_{m_e+j} = 0.$$

This contradicts to the full column rank of matrix $A_{j^{(k)}}$.

Analogous to Lemma 1, it is easy to prove \overline{P} is a projection matrix and $\bar{d}^{(k)} = -\bar{P}\nabla f(x^{(k)})$ is descending direction.

Feasibility: First, similar to Lemma 1, it is easy to prove $\bar{A}_{r(k)}^{T} \bar{d}^{(k)} = 0$.

Thus a. If $i \in I^{(k)} \setminus \{m_e + j\}$ then for any $\overline{\alpha}_i > 0$, $a_i^{\mathrm{T}}\left(x^{(k)} + \overline{\alpha}_k \overline{d}^{(k)}\right) = b_i$ holds.

b. If $i \in E \cup I \setminus I^{(k)}$ then $a_i^{\mathrm{T}} x^{(k)} > b_i$. Choose $0 < \overline{\alpha}_k << 1$, s.t. $a_i^{\mathrm{T}} \left(x^{(k)} + \bar{\alpha}_k \bar{d}^{(k)} \right) > b_i$ is guaranteed.

c. If $i = m_e + j$, recalling $\nabla f(x^{(k)}) - A_{I^{(k)}} u = 0$ induces

$$\begin{aligned} a_{m_{e}+j}^{\mathsf{T}} \overline{d}^{(k)} &= -a_{m_{e}+j}^{\mathsf{T}} \overline{P} \nabla f \left(x^{(k)} \right) = -a_{m_{e}+j}^{\mathsf{T}} \overline{P} A_{I^{(k)}} u = -a_{m_{e}+j}^{\mathsf{T}} \overline{P} \left[\overline{A}_{I^{(k)}} \hat{u} + w_{j} a_{m_{e}+j} \right] \\ &= -a_{m_{e}+j}^{\mathsf{T}} \left[I - \overline{A}_{I^{(k)}} \left(\overline{A}_{I^{(k)}}^{\mathsf{T}} \overline{A}_{I^{(k)}} \right)^{-1} \overline{A}_{I^{(k)}}^{\mathsf{T}} \right] \overline{A}_{I^{(k)}} \hat{u} - w_{j} a_{m_{e}+j}^{\mathsf{T}} \overline{P} a_{m_{e}+j} \end{aligned}$$

$$\mathbf{C}_{m_e+j} = \mathbf{I}_{I^{(k)}} \mathbf{I}$$

$$=-w_{j}a_{m_{e}+j}^{\mathrm{T}}\bar{P}a_{m_{e}+j}\geq 0. \text{ Thus } a_{m_{e}+j}^{\mathrm{T}}\left(x^{(k)}+\bar{\alpha}_{k}\bar{d}^{(k)}\right)\geq b_{i} \quad \left(\forall \bar{\alpha}_{k}>0\right)$$

$$d^{(k)} = -P\nabla f\left(x^{(k)}\right) \quad \text{or} \quad d^{(k)} = -\overline{P}\nabla f\left(x^{(k)}\right)$$

Determination of α : Suppose that $x^{(k)}$ is a feasible but not KT pnt.

$$\begin{cases} a_i^{\rm T} x^{(k)} = b_i, i \in E = \{1, 2, \cdots m_e\}, \\ a_i^{\rm T} x^{(k)} \geq b_i, i \in I = \{m_e + 1, \cdots m\} \end{cases}$$
 From Lemma1 & 2

a. While
$$i \in I_e^{(k)} = \left\{i \middle| a_i^{\mathsf{T}} x^{(k)} = b_i, i \in E\right\} = E = \left\{1, 2, \cdots m_e\right\}$$
 for any step $\alpha > 0$, $a_i^{\mathsf{T}} \left(x^{(k)} + \alpha d^{(k)}\right) = b_i$ holds.

b. While $i \in E \cup I \setminus I_e^{(k)}$, i.e. $a_i^{\mathsf{T}} x^{(k)} \ge b_i$.

If
$$a_i^{\mathrm{T}}d^{(k)} \ge 0$$
, then for any $\alpha > 0$, $a_i^{\mathrm{T}}\left(x^{(k)} + \alpha d^{(k)}\right) \ge b_i$ true.

If
$$a_i^{\mathrm{T}} d^{(k)} < 0$$
 and $a_i^{\mathrm{T}} \left(x^{(k)} + \alpha d^{(k)} \right) \ge b_i$, then $0 < \alpha < \frac{a_i^{\mathrm{T}} x^{(k)} - b_i}{-a_i^{\mathrm{T}} d^{(k)}}$.

Hence $\alpha_{\max} = \min \left\{ \frac{a_i^{\mathrm{T}} x^{(k)} - b_i}{-a_i^{\mathrm{T}} d^{(k)}} \middle| a_i^{\mathrm{T}} d^{(k)} < 0, i \in E \cup I \setminus I_e^{(k)} \neq \emptyset \right\}$ or $\alpha_{\max} = +\infty$.

Hence
$$\alpha_{max} = min \left\{ \frac{a_i^T x^{(k)} - b_i}{-a_i^T d^{(k)}} \middle| a_i^T d^{(k)} < 0, i \in E \cup I \setminus I_e^{(k)} \neq \emptyset \right\}$$
 or $\alpha_{max} = +\infty$

In 1989, Du and Zhang proved that Rosen Projected Gradient Algorithm is globally convergent.

(2) Wolfe Reduced Gradient Algorithm

Define relaxed variable
$$z_i \ge 0$$
, $i \in I = \{m_e + 1, \dots m\}$.

Then
$$a_i^T x \ge b_i, i \in I = \{m_e + 1, \dots m\}$$

$$a_i^{\mathrm{T}} x - z_i = b_i, i \in I = \{m_e + 1, \dots m\}$$

NOLC:

$$\begin{cases} \min f(x), & \text{s. t.} \\ a_i^{\mathsf{T}} x = b_i, i \in E = \{1, 2, \dots m_e\}, \\ a_i^{\mathsf{T}} x \ge b_i, i \in I = \{m_e + 1, \dots m\}. \end{cases}$$

NOLEC:

$$\begin{cases} \min f(x), \\ \text{s. t. } Ax = b, \\ x \ge 0. \end{cases}$$

Def.1: Basis(Basis Matrix) ——If a square submatrix B of A is

invertible, then matrix B is said as a basis (basis matrix).

$$P_1 \quad \dots \quad P_m \quad P_{m+1} \quad \dots \quad P_n$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1m} & a_{1,m+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2m} & a_{2,m+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} & a_{m,m+1} & \cdots & a_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} P_1 & \cdots & P_m \end{bmatrix}, \quad N = \begin{bmatrix} P_{m+1} & \cdots & P_m \end{bmatrix}$$

Basis vectors: P_1, \dots, P_m . Non-basis vectors: P_{m+1}, \dots, P_n .

Basis variable:
$$X_B = [x_1, \dots, x_m]^T$$
,

Non-basis variable:
$$x_N = [x_{m+1}, \dots x_n]^T$$
,

$$x = \left[x_B^{\mathrm{T}} | x_N^{\mathrm{T}} \right]^{\mathrm{T}}.$$

Then
$$A = [B/N], x = \begin{vmatrix} x_B \\ x_N \end{vmatrix}$$
. And $Ax = b \implies Bx_B + Nx_N = b$

$$x_B(x_N) = B^{-1}b - B^{-1}Nx_N$$

$$f(x) - f(x(x)) = B^{-1}b - B^{-1}Nx_N$$

$$f(x) = f(x_B(x_N), x_N) \triangleq F(x_N)$$
 Thus

NOLEC:
$$\begin{cases} \min f(x), \\ \text{s. t. } Ax = b, \end{cases}$$
 NONNC:
$$\begin{cases} \min F(x_N), \\ \text{s. t. } x_B(x_N) \ge 0, \\ x \ge 0. \end{cases}$$

$$\begin{cases} \min F(x_N), \\ \text{s. t. } x_B(x_N) \ge 0, \\ x_N \ge 0. \end{cases}$$

$$r(x_N) \triangleq \nabla F(x_N) = \nabla f(x_B(x_N), x_N)$$
$$= \nabla_{x_N} f(x_B(x_N), x_N) - (B^{-1}N)^{\mathrm{T}} \nabla_{x_B} f(x_B(x_N), x_N)$$

--Reduced gradient

Lemma3 Suppose that
$$x^{(k)} = \left[x_B^{(k)T} | x_N^{(k)T} \right]^T \quad \left(x_B^{(k)} > 0 \right)$$

is a nonzero feasible point of NOLEC $\min f(x)$, s.t. Ax = b, $x \ge 0$.

Its reduced gradient
$$r(x_N^{(k)}) = \nabla F(x_N^{(k)}) = [r_1(x_N^{(k)}), \cdots, r_{n-m}(x_N^{(k)})]^T$$

Let
$$d^{(k)} = [d_B^{(k)T} | d_N^{(k)T}]^T$$
, where $d_B^{(k)} = -B^{-1}Nd_N^{(k)}$,

$$d_{N}^{(k)} = \begin{bmatrix} d_{N_{1}}^{(k)}, \cdots, d_{N_{n-m}}^{(k)} \end{bmatrix}^{T} \quad \text{with } d_{N_{j}}^{(k)} = \begin{cases} -x_{N_{j}}^{(k)} r_{j} \left(x_{N}^{(k)} \right), & \text{if } r_{j} \left(x_{N}^{(k)} \right) > 0, \\ -r_{j} \left(x_{N}^{(k)} \right), & \text{if } r_{j} \left(x_{N}^{(k)} \right) \leq 0; \end{cases}$$

Then

(1) If
$$d^{(k)} \neq 0$$
, $\Longrightarrow d^{(k)}$ is a feasible descending direction of NOLEC.

(2) If
$$d^{(k)} = 0$$
 $\chi^{(k)}$ is KT point of NOLEC.

Proof: (1)
$$Ad^{(k)} = Bd_B^{(k)} + Nd_N^{(k)} = B(-B^{-1}Nd_N^{(k)}) + Nd_N^{(k)} = 0$$

Then
$$Ax^{(k+1)} = A(x^{(k)} + \alpha d^{(k)}) = b$$
. For non-basis vector $X_N^{(k)}$,

If
$$r_{N_j}\left(x_N^{(k)}\right) \le 0$$
, then for any $\alpha > 0$, we have $x_{N_j}^{(k)} + \alpha d_{N_j}^{(k)} \ge 0$.

If
$$r_{N_j}(x_N^{(k)}) > 0$$
, $x_{N_j}^{(k)} > 0$, properly choose $\alpha > 0$, s.t. $x_{N_j}^{(k)} + \alpha d_{N_j}^{(k)} \ge 0$.

If
$$r_{N_j}(x_N^{(k)}) > 0$$
, $x_{N_j}^{(k)} = 0$, then $d_{N_j}^{(k)} = 0$. i.e. $x_{N_j}^{(k)} + \alpha d_{N_j}^{(k)} = 0$.

Therefore
$$x_B^{(k)} > 0$$
, Properly choose $\alpha > 0$, s.t. $x_B^{(k)} + \alpha d_B^{(k)} \ge 0$.

This means that $d^{(k)}$ is feasible direction.

Besides
$$\nabla f(x^{(k)})^{\mathrm{T}} d^{(k)} = \nabla_{x_B^{(k)}} f(x^{(k)})^{\mathrm{T}} d_B^{(k)} + \nabla_{x_N^{(k)}} f(x^{(k)})^{\mathrm{T}} d_N^{(k)}$$

$$= \left[-\nabla_{x_B^{(k)}} f(x^{(k)})^{\mathrm{T}} B^{-1} N + \nabla_{x_N^{(k)}} f(x^{(k)})^{\mathrm{T}} \right] d_N^{(k)} = r(x_N^{(k)})^{\mathrm{T}} d_N^{(k)} < 0.$$

This implies that $d^{(k)}$ is descending direction.

Proof: (2) $d^{(k)} = 0$ $x^{(k)}$ is KT pnt of NOLEC

Let
$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}$$
, then
$$\begin{cases} \min f(x), \\ \text{s. t. } Ax = b, \\ x \ge 0. \end{cases} \begin{cases} \min f(x), \text{s. t.} \\ b_j - A_j x = 0, j = 1, \cdots, m; \\ x_i \ge 0, i = 1, \cdots, n \end{cases}$$

Construct Lagrange fcn:
$$L(x,v,u) = f(x) - \sum_{j=1}^{m} v_j (b_j - A_j x) - \sum_{i=1}^{n} u_i x_i$$

Then
$$\nabla_x L(x^{(k)}, v, u) = \begin{vmatrix} \nabla_{x_B} f(x^{(k)}) \\ \nabla_{x_N} f(x^{(k)}) \end{vmatrix} + \begin{bmatrix} B^T \\ N^T \end{bmatrix} v - \begin{bmatrix} u_B \\ u_N \end{bmatrix} = 0, \quad u = \begin{bmatrix} u_B \\ u_N \end{bmatrix} \ge 0,$$

and $u_{B_i} x_{B_i}^{(k)} = 0$, $u_{N_j} x_{N_j}^{(k)} = 0$. As $x_B^{(k)} > 0$ implies $u_B = 0$.

Thus
$$\nabla_{x_B} f(x^{(k)}) + B^T v = 0$$
 i.e. $v = -(B^T)^{-1} \nabla_{x_B} f(x^{(k)})$ Hence

$$u_{N} = \nabla_{x_{N}} f\left(x^{(k)}\right) - \left(B^{-1}N\right)^{T} \nabla_{x_{B}} f\left(x^{(k)}\right) = r\left(x_{N}^{(k)}\right) \geq 0. \quad \text{But} \quad u_{N_{j}} x_{N_{j}}^{(k)} = 0,$$

Therefore
$$x_j^{(k)} = 0$$
 or $u_{N_j} = r_{N_j} \left(x^{(k)} \right) = 0$. i.e. $d^{(k)} = 0$.

$$\Rightarrow$$

$$d_N^{(k)} = \left[d_{N_1}^{(k)}, \cdots, d_{N_{n-m}}^{(k)}\right]^{\mathrm{T}}, \quad d_B^{(k)} = -B^{-1}Nd_N^{(k)},$$

If
$$d^{(k)} = 0$$
 then $r_j(x_N^{(k)}) = 0$ or $x_{N_j}^{(k)} r_j(x_N^{(k)}) = 0$ (if $r_j(x_N^{(k)}) > 0$)

If
$$r_j(x_N^{(k)}) = 0$$
 Choose $u_{N_j} = 0$

If
$$r_j(x_N^{(k)}) > 0$$
 then $x_{N_j}^{(k)} = 0$ Choose $u_{N_j} = r_j(x_N^{(k)}) > 0$

Let
$$u_B = 0$$
, $v = -(B^T)^{-1} \nabla_{x_B} f(x^{(k)})$ Then

$$\nabla_{x}L(x^{(k)},v,u) = \begin{vmatrix} \nabla_{x_{B}}f(x^{(k)}) \\ \nabla_{x_{N}}f(x^{(k)}) \end{vmatrix} + \begin{bmatrix} B^{T} \\ N^{T} \end{bmatrix}v - \begin{bmatrix} u_{B} \\ u_{N} \end{bmatrix} = 0, u = \begin{bmatrix} u_{B} \\ u_{N} \end{bmatrix} \geq 0,$$

$$u_i x_i^{(k)} = 0, i = 1, \dots, n.$$
 holds. i.e. $x^{(k)}$ is KT point.

Above discussion results in

$$\begin{cases}
\min f(x), \\
\text{S. t. } Ax = b, \\
x \ge 0.
\end{cases}$$

NONNC:
$$\begin{cases} \min \ F(x_N), \\ \text{s. t. } x_B(x_N) \ge 0, \\ x_N \ge 0. \end{cases}$$

Then, the conclusions

(1) If
$$d^{(k)} \neq 0$$
, $d^{(k)}$ is descending direction of NOLEC.

(2)
$$d^{(k)} = 0$$
 iff $\chi^{(k)}$ is KT point of NOLEC.

(1) If
$$d_N^{(k)} \neq 0$$
, $d_N^{(k)}$ is descending direction of NONNC.

(2)
$$d_N^{(k)} = 0$$
 iff $x_N^{(k)}$ is KT point of NONNC.

KT conditions of NONNC:
$$r(x_N^{(k)}) \ge 0$$
 and $r(x_N^{(k)})^1 x_N^{(k)} = 0$.

Determination of step α :

$$x^{(k)} + \alpha d^{(k)} \ge 0.$$

$$\alpha_{\max} = \min \left\{ -\frac{x_j^{(k)}}{d_j^{(k)}} \middle| d_j^{(k)} < 0, \left\{ j \right\} \neq \varnothing \right\} \quad \text{or} \quad \alpha_{\max} = +\infty.$$

For NOLEC: min
$$f(x)$$
, s. t. $Ax = b$, $x \ge 0$.

Convergence conclusion

If any m columns of matrix A are independent, then any accumulation point of the sequence, which is generated by the reduced gradient algorithm starting from a nonzero basis

feasible point, is KT point.

Generalization:
$$\begin{cases} \min f(x), \\ s. \ t. \ Ax = b, \end{cases}$$
$$x \ge 0.$$

$$\begin{cases} \min & \nabla f(x^{(k)})^{T} x, \\ \text{s. t. } Ax = b, \\ & x \ge 0. \end{cases}$$

2. Description of Null Space

Suppose that column rank of matrix
$$A = [a_1/a_2/\cdots/a_m]$$
 is full.

Then
$$\begin{cases} \min f(x), & \text{s. t.} \\ a_i^{\mathsf{T}} x = b_i, i = 1, 2, \dots m. \end{cases} \begin{cases} \min f(x), \\ \text{s. t. } A^{\mathsf{T}} x = b. \end{cases}$$

Let
$$V = \{k_1 a_1 + k_2 a_2 + \dots + k_m a_m | k_i \in R\}$$
. Basis: S_1, S_2, \dots, S_m .

Denote
$$W = \{y | A^T y = 0 | y \in R^n\}$$
 --Constrained Null Space.

$$dimW = n-m$$
 and $W \perp V$, Basis: Z_1, Z_2, \dots, Z_{n-m} .

Let
$$S = [S_1/S_2/\cdots/S_m]$$
, $Z = [Z_1/Z_2/\cdots/Z_{n-m}]$. Then $S^TZ = 0$. $\{S_1, S_2, \cdots, S_m\}$ is equivalent to $\{a_1, a_2, \cdots, a_m\}$

Thus $A^{T}Z = 0$, and $A^{T}S$ nonsingular. Simply set $A^{T}S = I$.

As
$$S_1, S_2, \dots, S_m, Z_1, Z_2, \dots, Z_{n-m}$$
 is a set of basis of \mathbb{R}^n

If
$$x = \hat{y}_1 S_1 + \hat{y}_2 S_2 + \dots + \hat{y}_m S_m + \hat{x}_1 Z_1 + \hat{x}_2 Z_2 + \dots + \hat{x}_{n-m} Z_{n-m}$$

$$= \left[S/Z \right] \begin{bmatrix} \hat{y} \\ \hat{x} \end{bmatrix} = S\hat{y} + Z\hat{x} \text{ is a feasible point, then}$$

$$A^{\mathsf{T}} x = A^{\mathsf{T}} \left(S\hat{y} + Z\hat{x} \right) = A^{\mathsf{T}} S\hat{y} + A^{\mathsf{T}} Z\hat{x} = \hat{y} = b \text{ and}$$

$$A^{\mathsf{T}}x = A^{\mathsf{T}}\left(S\hat{y} + Z\hat{x}\right) = A^{\mathsf{T}}S\hat{y} + A^{\mathsf{T}}Z\hat{x} = \hat{y} = b$$
 and

$$x = S\hat{y} + Z\hat{x} = Sb + Z\hat{x}$$
. Thus $f(x) = f(Sb + Z\hat{x}) \triangleq F(\hat{x})$

NOLEC:
$$\begin{cases} \min f(x), & \text{s. t.} \\ a_i^{\mathsf{T}} x = b_i, i = 1, 2, \cdots m. \end{cases} \xrightarrow{\min_{\hat{x} \in R^{n-m}}} F(\hat{x}). \text{ No constraint!}$$

$$\implies \min_{\hat{x} \in R^{n-m}} F(\hat{x})$$
. No constraint

Difference of basis $Z = \left[Z_1 / Z_2 / \cdots / Z_{n-m} \right]$ produces different algorithms. May adopt non-constraint optimization algorithm.

Method1:
$$A = Q \begin{bmatrix} R_{m \times m} \\ 0 \end{bmatrix} = [Q_1/Q_2] \begin{bmatrix} R_{m \times m} \\ 0 \end{bmatrix} = Q_1 R.$$

$$Q$$
 is orthogonal. i.e. $Q^{\mathrm{T}}Q = I_{n\times n}$, $Q_1^{\mathrm{T}}Q_1 = I_{m\times m}$, $Q_1^{\mathrm{T}}Q_2 = 0$.

 $R_{m \times m}$ is upper triangular and invertible.

Let
$$S = Q_1 R^{-T}$$
, $Z = Q_2$. Then $A^T Z = R^T Q_1^T Q_2 = 0$, $A^T S = R^T Q_1^T Q_1 R^{-T} = I$. $A(A^T A)^{-1} A^T = Q_1 R(R^T Q_1^T Q_1 R)^{-1} R^T Q_1^T = Q_1 Q_1^T$, $QQ^T = [Q_1/Q_2] \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix} = Q_1 Q_1^T + Q_2 Q_2^T = I$ and $ZZ^T = Q_2 Q_2^T = I - Q_1 Q_1^T = I - A(A^T A)^{-1} A^T$.

Projection of ZZ^{T} is obvious and thus Rosen PG adoptable.

3. Active Set Method

Find the searching direction by reforming NOLC to NOLEC

or only considering equality constraints at the point $x^{(k)}$.

i.e.
$$\begin{cases} \min f(x), & \text{s. t.} \\ a_i^{\mathsf{T}} x = b_i, i \in E = \{1, 2, \dots m_e\}, \\ a_i^{\mathsf{T}} x \geq b_i, i \in I = \{m_e + 1, \dots m\}. \end{cases}$$
 NOLEC
$$\begin{cases} \min f(x), & \text{s. t.} \\ a_i^{\mathsf{T}} x = b_i, i = 1, 2, \dots m. \end{cases}$$

Idea of ASM: Given $x^{(k)}$ be a feasible pnt of NOLEC.

Solving
$$\left\{\min f\left(x^{(k)}+d\right), \text{s. t. } a_i^{\text{T}}d=0, i=1,2,\cdots m. \text{ yields } d^{(k)}\right\}$$

If $d^{(k)} = 0$ then $x^{(k)}$ is the minimizer of NOLEC.

If
$$d^{(k)} \neq 0$$
 then $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$. Find $d^{(k+1)}$

Given the feasible point $x^{(k)}$, achieve $x^{(k+1)}$ following

Solve NOLEC:

$$\begin{cases} \min \frac{1}{2} x^{T} G x + p^{T} x \\ s.t. \ a_{i}^{T} x = b_{i}, \ i \in E \cup I(x^{(k)}) = S_{k} \end{cases}$$
 (2.1)

Let
$$\delta = x - x^{(k)}$$
 (2.1)+(2.2) becomes

$$\begin{cases} \min \frac{1}{2} \delta^{\mathsf{T}} G \delta + p_k^{\mathsf{T}} \delta \\ s.t. \ a_i^{\mathsf{T}} \delta = 0, \ i \in S_k \end{cases}$$
 (2.3)

Here
$$p_k = Gx^{(k)} + p$$

Solving(2.3)+(2.4) yields $\delta^{(k)}$

Case1:
$$\delta^{(k)} \neq 0$$

If
$$\chi^{(k)} + \delta^{(k)}$$
 is a feasible point. Let $\chi^{(k+1)} = \chi^{(k)} + \delta^{(k)}$

If
$$x^{(k)} + \delta^{(k)}$$
 is not a feasible point. Then for an index $j \in I \setminus S_k$

$$\textbf{s.t.} \quad a_j^{\mathrm{T}}(x^{(k)} + \delta^{(k)}) < b_j \quad \text{and} \quad a_j^{\mathrm{T}}\delta^{(k)} < 0$$

Choose
$$\alpha_k$$
 s.t. $x^{(k+1)} = x^{(k)} + \alpha_k \delta^{(k)}$ is a feasible point.

i.e.
$$a_j^{\mathrm{T}}(x^{(k)} + \alpha_k \delta^{(k)}) \ge b_j$$
 Denote $\alpha_k = \min_{\substack{j \in I \setminus S_k \\ a_j^{\mathrm{T}} \delta^{(k)} < 0}} \frac{b_j - a_j^{\mathrm{T}} x^{(k)}}{a_j^{\mathrm{T}} \delta^{(k)}}$

Then
$$\alpha_k = \min \left\{ \min_{\substack{j \in I \setminus S_k \\ a_j^\mathsf{T} \mathcal{S}^{(k)} < 0}} \frac{b_j - a_j^\mathsf{T} x^{(k)}}{a_j^\mathsf{T} \mathcal{S}^{(k)}}, 1 \right\}$$
 (2.5)

Let
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$$

$$\mathbf{If} \circ \alpha_{k} = \min_{\substack{j \in I \setminus S_{k} \\ a_{j}^{\mathsf{T}} \mathcal{S}^{(k)} < 0}} \frac{b_{j} - a_{j}^{\mathsf{T}} x^{(k)}}{a_{j}^{\mathsf{T}} \mathcal{S}^{(k)}} = \frac{b_{p} - a_{p}^{\mathsf{T}} x^{(k)}}{a_{p}^{\mathsf{T}} \mathcal{S}^{(k)}} < 1,$$

$$a_p^{\mathsf{T}} x^{(k+1)} = a_p^{\mathsf{T}} x^{(k)} + \alpha_k a_p^{\mathsf{T}} \delta^{(k)} = b_p$$

Update
$$S_{k+1} = S_k \cup \{p\}$$

If
$$\alpha_k = 1$$
, $S_{k+1} = S_k$

Case2:
$$\delta^{(k)} = 0$$
 Testify $x^{(k)}$ is the minimizer

Computing Lagrange multiplier:
$$\lambda_q^{(k)} = \min_{i \in I(x^{(k)}) \cap S_t} \lambda_i^{(k)}$$

If
$$\lambda_a^{(k)} \ge 0$$
, from 1-st-order necessity $x^{(k)}$ is KT point.

If
$$\lambda_q^{(k)} < 0$$
, when \widetilde{x} deviates from line $a_q^{\mathrm{T}} x = b_q$ s.t.

$$a_q^{\mathrm{T}} \tilde{x} > b_q$$
 and $a_i^{\mathrm{T}} \tilde{x} = b_i$, $i \in S_k, i \neq q$.

Let
$$d=\tilde{\chi}-\chi^{(k)}$$
 then $a_q^{\mathrm{T}}d>0$ and $a_i^{\mathrm{T}}d=0,\ i\in S_k, i\neq q.$

From
$$\nabla f(x^{(k)}) = \sum_{i \in S_k} \lambda_i^{(k)} a_i$$
 yields $d^T \nabla f(x^{(k)}) = \sum_{i \in S_k} \lambda_i^{(k)} d^T a_i = \lambda_q^{(k)} d^T a_q < 0$

i.e.
$$d = \tilde{x} - x^{(k)}$$
 is a descending direction.

This means that the constraint $a_q^{\mathrm{T}} x = b_q$ is redundant.

Let
$$S_{k+1} = S_k \setminus \{q\}, \quad x_{k+1} = x_k$$
 Find $S^{(k)}$.

Ex1: Find the Minimizer of following QP by ASM.

 $x_2 \ge 0, \qquad (3)$

Solution: Objective fcn:
$$f(x) = \frac{1}{2}x^{T}Gx + p^{T}x$$

where
$$G = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, $p = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$.

At point
$$x^{(0)} = [0,0]^T$$
, Active Set $I_0 = \{2,3\}$

Let
$$p_0 = Gx^{(0)} + p$$
, $S_0 = I_0 = \{2, 3\}$

1-st iteration:

Solving NOLEC
$$\begin{cases} \min \varphi_0\left(\mathcal{S}\right) = \frac{1}{2}\mathcal{S}^{\mathsf{T}}G\mathcal{S} + p_0^{\mathsf{T}}\mathcal{S}, \\ s.t. \quad \mathcal{S}_1 = 0, \quad \mathcal{S}_2 = 0. \end{cases}$$
 yields
$$\mathcal{S}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

yields
$$\delta^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
.

Compute Lagrange multiplier:

Let
$$L_0(\delta) = \frac{1}{2} \delta^{\mathsf{T}} G \delta + p_0^{\mathsf{T}} \delta - \lambda_2 \delta_1 - \lambda_3 \delta_2$$

From 1-st-orderKuhn-Tucker necessity condition conducts

$$\begin{bmatrix} -3 \\ 0 \end{bmatrix} = \lambda_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 then $\lambda_2^{(0)} = -3$, $\lambda_3^{(0)} = 0$.

$$S_1 = S_0 \setminus \{2\} = \{3\}, \qquad x^{(1)} = x^{(0)} + \delta^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$p_1 = Gx^{(1)} + p = \begin{bmatrix} -3 \\ 0 \end{bmatrix}.$$

2-nd iteration:

Solving NOLEC
$$\min \varphi_1(\delta) = \frac{1}{2} \delta^T G \delta + p_1^T \delta$$
, s.t. $\delta_2 = 0$.

makes
$$\delta^{(1)} = \begin{bmatrix} \frac{3}{2} \\ 0 \end{bmatrix} \neq 0$$
 and $x^{(1)} + \delta^{(1)} = \begin{bmatrix} \frac{3}{2} \\ 0 \end{bmatrix}$ is feasible point!

Let
$$x^{(2)} = x^{(1)} + \delta^{(1)} = \begin{bmatrix} \frac{3}{2} \\ 0 \end{bmatrix}$$
, $p_2 = Gx^{(2)} + p = \begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix}$,

$$S_2 = S_1 = \{3\}.$$

3-rd iteration:

Solving NOLEC
$$\min \varphi_2(\mathcal{S}) = \frac{1}{2}\mathcal{S}^{\mathsf{T}}G\mathcal{S} + p_2^{\mathsf{T}}\mathcal{S}, s.t.$$
 $\mathcal{S}_2 = 0.$ obtains $\mathcal{S}^{(2)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

obtains
$$\delta^{(2)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Lagrange multiplier:

From
$$\begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix} = \lambda_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 gives rise to $\lambda_3^{(2)} = -\frac{3}{2}$

Therefore
$$S_3 = S_2 \setminus \{3\} = \Phi$$
, $x^{(3)} = x^{(2)} = \begin{bmatrix} \frac{3}{2} \\ 0 \end{bmatrix}$, $p_3 = p_2 = \begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix}$

4-th iteration:

Solving NO:
$$\min \frac{1}{2} \delta^{\mathsf{T}} G \delta + p_3^{\mathsf{T}} \delta$$
 gets $\delta^{(3)} = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$

$$x^{(3)} + \delta^{(3)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is not feasible point

$$\alpha_{3} = \frac{b_{1} - a_{1}^{\mathsf{T}} x^{(3)}}{a_{1}^{\mathsf{T}} \delta^{(3)}} = \frac{-2 + \frac{3}{2}}{\frac{3}{2}} = \frac{1}{3}$$

Therefore
$$S_4 = S_3 \cup \{1\} = \{1\}$$

$$x^{(4)} = x^{(3)} + \alpha_3 \delta^{(3)} = \begin{bmatrix} \frac{5}{3} \\ \frac{1}{3} \end{bmatrix}, \qquad p_4 = Gx^{(4)} + p = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

5-th iteration:

Solving
$$\begin{cases} \min \frac{1}{2} \mathcal{S}^{\mathrm{T}} G \mathcal{S} + p_4^{\mathrm{T}} \mathcal{S}, \\ \mathrm{s.t.} \quad -\mathcal{S}_1 - \mathcal{S}_2 = 0. \end{cases}$$
 captures
$$\mathcal{S}^{(4)} = \begin{bmatrix} -\frac{1}{6} \\ \frac{1}{6} \end{bmatrix}$$

$$x^{(4)} + \delta^{(4)} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}$$
 is a feasible point.

Then

$$x^{(5)} = x^{(4)} + \delta^{(4)} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}, S_5 = S_4 = \{1\}, p_5 = Gx^{(5)} + p = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

6-th iteration:

Solving
$$\min \frac{1}{2} \delta^{\mathrm{T}} G \delta + p_5^{\mathrm{T}} \delta$$
 makes $\delta^{(5)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ s.t. $-\delta_1 - \delta_2 = 0$

Lagrange multiplier:

From
$$-\frac{1}{2}\begin{bmatrix}1\\1\end{bmatrix} = \lambda_1\begin{bmatrix}-1\\-1\end{bmatrix}$$
 reaches $\lambda_1^{(5)} = \frac{1}{2} > 0$

Therefore

$$x^{(5)} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}$$

is the minimizer.

4. Quadratic Programming

$$\begin{cases} \min \ q(x) = \frac{1}{2} x^{T} G x + g^{T} x, \\ \text{s. t. } a_{i}^{T} x = b_{i}, i \in E = \{1, 2, \cdots m_{e}\}, \\ a_{i}^{T} x \ge b_{i}, i \in I = \{m_{e} + 1, \cdots m\}. \end{cases}$$

where $G \in \mathbb{R}^{n \times n}$ is real symmetric. $g \in \mathbb{R}^n$

Find searching direction by introducing relaxing variable or only considering active inequality constraint.

i.e. QPLC is reformed to QPLEC.

QPLEC:
$$A = [a_1/a_2/\cdots/a_m]$$
 full column rank

QPLEC: min
$$q(x) = \frac{1}{2}x^{T}Gx + g^{T}x$$
, s. t. $A^{T}x = b$.

Elimination Method1

Let
$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
, $\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$, $G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$, $g = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$.

$$A_1 \in R^{m \times m}$$
 invertible $x_1, g_1 \in R^m, x_2, g_2 \in R^{n-m}, G_{11} \in R^{m \times m},$

$$G_{12} \in R^{m \times (n-m)}, \quad G_{21} \in R^{(n-m) \times m}, \quad G_{22} \in R^{(n-m) \times (n-m)},$$

Then, from
$$A^{T}x = [A_{1}^{T}/A_{2}^{T}] \begin{vmatrix} x_{1} \\ x_{2} \end{vmatrix} = A_{1}^{T}x_{1} + A_{2}^{T}x_{2} = b$$

makes
$$x_1 = A_1^{-T} (b - A_2^T x_2)$$

min
$$q(x) = \frac{1}{2}x^{T}Gx + g^{T}x$$
, s. t. $A^{T}x = b$.

QP1:
$$\min_{x_2 \in R^{n-m}} \hat{q}(x_2) = \frac{1}{2} x_2^{\mathsf{T}} \hat{G} x_2 + \hat{g}^{\mathsf{T}} x_2 + \hat{c}$$

$$\hat{G} = G_{22} - G_{21}A_1^{-T}A_2^{T} - A_2A_1^{-1}G_{21} + A_2A_1^{-1}G_{11}A_1^{-T}A_2^{T},$$

$$\hat{g} = g_2 - A_2 A_1^{-1} g_1 + (G_{21} - A_2 A_1^{-1} G_{11}) A_1^{-1} b, \qquad \hat{c} = \frac{1}{2} b^{\mathsf{T}} A_1^{-1} G_{11} A_1^{-\mathsf{T}} b + g_1^{\mathsf{T}} A_1^{-\mathsf{T}} b.$$

$$\hat{c} = \frac{1}{2}b^{\mathrm{T}}A_{1}^{-1}G_{11}A_{1}^{-\mathrm{T}}b + g_{1}^{\mathrm{T}}A_{1}^{-\mathrm{T}}b.$$

(1) If \hat{G} PD, the minimizer of QP1: $x_2^* = -\hat{G}^{-T}\hat{g}$

Thus, the minimizer of QPLEC:
$$x^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} A_1^{-T}b + A_1^{-T}A_2^{T}\hat{G}^{-T}\hat{g} \\ -\hat{G}^{-T}\hat{g} \end{bmatrix}$$

(2) If G exists negative eigenvalue, then QP1 is not lower bounded.

i.e. QPLEC has no finite minimizer.

(3) If
$$\hat{G}$$
 semi-PD.

(3) If
$$\hat{G}$$
 semi-PD. If $\left(I - \hat{G}\hat{G}^+\right)\hat{g} = 0$

the minimizer of QP1 $x_2^* = -\hat{G}^+\hat{g} + (I - \hat{G}^+\hat{G})\tilde{x}$

Here \hat{G}^+ is generalized inversion of \hat{G} .

Then
$$x^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} A_1^{-T}b + A_1^{-T}A_2^{T}\hat{G}^{+}\hat{g} - A_1^{-T}A_2^{T}\left(I - \hat{G}^{+}\hat{G}\right)\tilde{x} \\ -\hat{G}^{+}\hat{g} + \left(I - \hat{G}^{+}\hat{G}\right)\tilde{x} \end{bmatrix}$$

If $(I - \hat{G}\hat{G}_{+})\hat{g} \neq 0$ QPLEC has no finite minimizer.

Advantages: Simple and explicit solution

Disadvantages:

Unstable by larger computing error of matrix inversion.

Elimination Method 2

Adopt Null Space transform $x = S\hat{y} + Z\hat{x} = Sb + Z\hat{x}$

QPLEC: min $q(x) = \frac{1}{2}x^{T}Gx + g^{T}x$, s. t. $A^{T}x = b$.

QP2:
$$\min_{\hat{x} \in R^{n-m}} \hat{q}(\hat{x}) = \frac{1}{2} \hat{x}^{T} \hat{G} \hat{x} + \hat{g}^{T} \hat{x} + \hat{c}$$

$$\hat{G} = Z^{\mathrm{T}}GZ$$
, $\hat{g} = (g + GSb)^{\mathrm{T}}Z$, $\hat{c} = \frac{1}{2}(2g + GSb)^{\mathrm{T}}Sb$.

If \hat{G} PD, the minimizer of QP2:

$$\hat{x}^* = -\left(Z^{\mathsf{T}}GZ\right)^{-1}Z^{\mathsf{T}}\left(g + GSb\right).$$

The minimizer of QPLEC
$$x^* = Sb - Z(Z^TGZ)^{-1}Z^T(g + GSb)$$
.

Also find Z and S by QR decomposition of A.

Lagrange Multiplier Method

Let
$$L(x,\lambda) = \frac{1}{2}x^{\mathrm{T}}Gx + g^{\mathrm{T}}x - \lambda^{\mathrm{T}}(A^{\mathrm{T}}x - b).$$

Then Kuhn-Tucker Eq.
$$\begin{cases} Gx + g - A\lambda = 0 \\ A^{T}x - b = 0 \end{cases}$$

This means that QP can be converted to solution of linear Eq.

Also convert QP to optimization by ASM:

$$\begin{cases} \min D(x) = \frac{1}{2}d^{T}Gd + g^{(k)T}d, \\ \text{s. t. } a_{i}^{T}x = 0, i \in I^{(k)}. \end{cases}$$

