PEI(EI)

(cubu 2-52)

Recapitulare

Dată o experiența aleatoare, tripletul (Ω, \mathcal{K}, P) spatiu de probabilitate, unde Ω -spaţiul tuturor realizărilor acestei exp, $\mathcal{K} \subset \mathcal{P}(\Omega)$ o familie (admisibila) de evenimente, iar $P:\mathcal{K}
ightarrow [0,1]$ funcția probabilitate

Ev. A	Multime A	$P(A) \in [0,1]$
Ev. sigur	Ω	1
Ev. imposibil	Ø	0
Ev. contrar lui A	$C_\Omega A$	$P(C_\Omega A) = 1 - P(A)$
Ev. reuniune	$A \cup B$	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Ev. intersectie	$A \cap B$	$P(A \cap B) = ?$
Ev. mutual exclusive	$A \cap B = \emptyset$	$P(A \cap B) = 0$
Ev. diferenta	$A \setminus B$	$P(A \setminus B) = P(A) - P(A \cap B)$

Definitio prebabilitatilar conditionate

Tie Ei, Ez errenimente din Ti

P(E1) +0

Atunci $P(E_2) = P(E_2|E_1) - \frac{P(E_1 \cap E_2)}{P(E_1)} - \frac{P(E_1 \cap E_2)}{P(E_1 \cap E_2)} = P(E_1) \cdot P(E_2|E_1)$

E1= eveniment conditionat = fixed

Propositie 0 & P(E2E1) & 1

P(R) = 1;

E7- mutual exclusive P(EUF) = PE(E) + PE(F)

Alg. probabilist pt. voluficate a egalitati a polinsame

Bas 1 5 = 11,2,..., 100 dy alegem aleator

Pas 2: +(2) = G(22) bA 7(x)=G(x)

Ersenimente independente

Def: realizatea evenimentului E, nu influentează evenimentul Es

$$P(E_{\Lambda} \cap E_{2}) = P(E_{\Lambda}) \cdot P(E_{2} | E_{\Lambda}) = P(E_{\Lambda}) \cdot P(E_{2})$$

Mai general, evenimentele E_1, E_2, \ldots, E_n cu proprietatea:

$$P(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_k}) = P(E_{i_1})P(E_{i_2}) \cdots P(E_{i_k}),$$

pentru orice $k \in \{2, \dots n\}$ și indicii $1 \le i_1 < i_2 < \dots < i_k \le n$ se numesc evenimente independente.

Observatio legate de evenimente independente

■ Pentru a testa independența a n- evenimente E_1, E_2, \ldots, E_n , avem de verificat $C_n^2 + C_n^3 + \ldots C_n^n = 2^n - (1+n)$ relații.

1. $\{E_1, E_2, ..., E_m\}$ > evenimente independente 2 câte 2

2. \E, ..., En \-> evenimente independente

m=3=> 23-(3+1) =4 relation

Dacă E_1, E_2, E_3 sunt trei evenimente, două câte două independente, atunci E_1, E_2, E_3 nu sunt neapărat independente, adică relațiile: $P(E_1 \cap E_2) = P(E_1)P(E_2), P(E_1 \cap E_3) = P(E_1)P(E_3), P(E_2 \cap E_3) = P(E_2)PE_1C), dar nu implică obligatoriu: <math display="block">P(E_1 \cap E_2 \cap E_3) = P(E_1)P(E_2)P(E_3). = P(E_1)P(E_2)P(E_3)$

Premorci legate de conceptul de probabilitate conditionata

- dat evenimentul E_1 , avem $P(E_1)$;
- date două evenimente E_1, E_2 , avem $P(E_1 \cap E_2) = P(E_1, E_2)$ probabilitatea ca evenimentele să se realizeze simultan (joint probability)
- probabilitate condiționată: $P(E_2|E_1) := \frac{P(E_1 \cap E_2)}{P(E_1)}$
- lacksquare regula produsului: $P(E_1 \cap E_2) = P(E_1)P(E_2|E_1)$
- simetria probabilitații ev. intersecție: $P(E_1 \cap E_2) = P(E_2 \cap E_1)$
- avem: $P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)} = \frac{P(E_1|E_2)P(E_2)}{P(E_1)}$
- prob cond. nu este simetrica: $P(E_1|E_2) \neq P(E_2|E_1)$
- avem: $P(E_2|\bar{E_1}) = 1 P(\bar{E_2}|\bar{E_1})$
- ev. independente: $P(E_2|E_1) = P(E_2) \Leftrightarrow P(E_1 \cap E_2) = P(E_1)P(E_2)$

Notații

- lacksquare (Ω,\mathcal{K},P) un câmp de probabilitate
- Fie evenimentele $H_1, H_2, ..., H_n \in \mathcal{K}$, ce formează o partiție a evenimentului sigur Ω :
 - lacksquare $\cup_{i=1}^n H_i = \Omega$
 - $\blacksquare H_i \cap H_j = \emptyset, \ i \neq j$
- Evenimentele H_i , $i \in \{1, n\}$ se numesc **ipoteze**. Ipotezele sunt acceptate cu o anumită probabilitate, $P(H_i)$.
- Avem:

$$1 = P(\Omega) = P(H_1) + P(H_2) + \cdots + P(H_n)$$

- Dacă apare o nouă informație A, atunci nivelul de veridicitate (verosimilitate) al acestei informații, se reprezintă prin probabilitătile condiționate $P(A|H_k)$, $k \in \{1, n\}$.
- $P(A|H_k)$ este nivelul de verosimilitate al informației A în condițiile acceptării ipotezei H_k .
- $P(H_k)$ probabilităților ipotezelor se mai numesc **probabilități** apriorice

Cum se calculează probabilitatea P(A), adică nivelul de veridicitate al informației A?

Figure: Evenimentele implicate în formula lui Prob Totale

Formula probabilității totale

Dacă $A \in \mathcal{K}$ este un eveniment informație, atunci gradul/nivelul de veridicitate al acestei informații este:

$$P(A) = \sum_{i=1}^{n} P(H_i)P(A|H_i)$$

Demonstrație:

- $H_1, H_2, ..., H_n$ fiind mutual exclusive două câte două, deci și $(A \cap H_i), (A \cap H_j), i \neq j$, mutual exclusive două câte două;
- scriem $A = (A \cap H_1) \cup (A \cap H_2) \cup \cdots \cup (A \cap H_n)$;
- $P(A) = \sum_{i=1}^n P(A \cap H_i);$
- Din formula probabilității condiționate avem: $P(A \cap H_i) = P(H_i)P(A|H_i)$,

Formula lui Bayes , re boara unei noi informatii (4), reevaluand poli en.

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{n} P(H_i)P(A|H_i)} \quad k \in \{1, n\}$$

Demonstrație Exprimăm $P(H_k \cap A)$ în două moduri: $P(H_k \cap A) = P(H_k)P(A|H_k) = P(A)P(H_k|A)$. Din ultima egalitate avem:

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{P(A)} = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{n} P(H_i)P(A|H_i)}, \quad k \in \{1, n\}$$

 $P(H_k|A)$ —se numesc probabilități posterioare