12 Àlgebra multilineal i formes

Exercici 124: (Propietats elementals del producte exterior). Siguin S un tensor alternat d'ordre p, T un d'ordre q i U un d'ordre r. Feu la comprovació explícita de les propietats següents:

1. (Associativitat)

$$(S \wedge T) \wedge U = S \wedge (T \wedge U)$$

2. (Anticommutativitat)

$$S \wedge T = (-1)^{pq} T \wedge S$$

Solució: Els càlculs són als apunts de teoria.

L'única observació no trivial que, potser, cal afegir és que una reordenació dels índex $\sigma(1), \ldots, \sigma(\ell)$ consisteix a prendre $\sigma(\tau(1)), \ldots, \sigma(\tau(\ell))$ per a una certa reordenació $\tau(1), \ldots, \tau(\ell)$ dels índexs $1, \ldots, \ell$.

Exercici 125: Sigui $f: \mathbb{R}^n \to \mathbb{R}^m$. Es defineix l'aplicació $f^*: \Lambda^p(\mathbb{R}^m) \to \Lambda^p(\mathbb{R}^n)$ considerant, per a cada tensor alternat T d'ordre p sobre \mathbb{R}^m , l'aplicació $f^*(T)$ que compleix

$$f^*(T)(v_1, \dots, v_p) = T(f(v_1), \dots, f(v_p))$$

si v_1, \ldots, v_p són vectors de \mathbb{R}^n .

Feu les comprovacions de:

- 1. $f^*(T)$ és un tensor alternat de \mathbb{R}^n i, per tant, la imatge de f^* està, realment, en $\Lambda^p(\mathbb{R}^n)$.
- 2. f^* és una aplicació lineal. És a dir $f^*(S+T)=f^*(S)+f^*(T)$ i $f^*(\lambda T)=\lambda f^*(T)$.
- 3. f^* és compatible amb el producte exterior: $f^*(S \wedge T) = f^*(S) \wedge f^*(T)$

Solució: Només s'han d'escriure les definicions. Aplicar f als arguments d'un tensor és compatible amb la suma, el producte per escalars i la reordenació.

Exercici 126: 1. Per a cada família v_1, \ldots, v_n de n vectors de \mathbb{R}^n considerem la matriu $A = \begin{pmatrix} a_i^j \end{pmatrix}$ formada per les components dels vectors v_i respecte la base canònica e_1, \ldots, e_n de forma que, per a cada i, es tingui

$$v_i = \sum_j a_i^j \, e_j$$

Demostreu que l'aplicació D determinada per

$$D(v_1,\ldots,v_n)=\det(A)$$

és un element de $\Lambda^n(\mathbb{R}^n)$.

2. Demostreu que per a cada $T \in \Lambda^n(\mathbb{R}^n)$ existeix una constant α tal que

$$T(v_1,\ldots,v_n)=\alpha D(v_1,\ldots,v_n)$$

3. Deduïu de l'anterior que, per a qualsevol endomorfisme f de \mathbb{R}^n , l'aplicació f^* : $\Lambda^n(\mathbb{R}^n) \to \Lambda^n(\mathbb{R}^n)$ compleix

$$f^*(T) = \det(f) T$$

Solució:

- 1. No s'ha de fer res, el determinant és una aplicació multilineal alternada.
- 2. La constant α és el valor $T(e_1, \ldots, e_n)$ o, si es vol dir d'una altra manera, el determinant és l'única aplicació multilineal alternada (d'ordre n) que val 1 sobre e_1, \ldots, e_n .
- 3. Si $T = \alpha D$ es complirà $f^*(\alpha D)(e_1, \dots, e_n) = \alpha f^*(D)(e_1, \dots, e_n) = \alpha D(f(e_1), \dots, f(e_n)) = \alpha \det(f) = \det(f) T(e_1, \dots, e_n)$

Exercici 127: Sigui e_1, \ldots, e_4 la base canònica de \mathbb{R}^4 i $\theta_1, \ldots, \theta_4$ la seva base dual $(\theta_i(e_i) = 1 \text{ i } \theta_i(e_j) = 0 \text{ si } i \neq j)$. Demostreu que és impossible escriure

$$\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4 = S \wedge T$$

amb $S, T \in \Lambda^1(\mathbb{R}^4)$. (Hi ha 2-tensors alternats que no són producte exterior de dos 1-tensors).

Solució: Noteu que un tensor de la forma $S \wedge T$, amb S i T d'ordre 1, sempre complirà $(S \wedge T) \wedge (S \wedge T) = S \wedge S \wedge T \wedge T = 0$ mentre que $(\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4) \wedge (\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4) = 2 \theta_1 \wedge \theta_2 \wedge \theta_3 \wedge \theta_4$ que és diferent del tensor nul (el seu valor sobre e_1, \ldots, e_4 és 2).

Exercici 128: Demostreu que, si T és un producte interior (2-tensor simètric i definit positiu) d'un cert espai vectorial V de dimensió n, existeix una aplicació lineal bijectiva $f: \mathbb{R}^n \to V$ tal que $f^*(T)$ és el producte escalar ordinari de \mathbb{R}^n .

Solució: Si es té en compte que 2-tensor simètric i definit positiu és una forma sofisticada de dir producte escalar i que per a qualsevol producte escalar es poden construir bases ortonormals, tot el problema es redueix a construir una base ortonormal v_1, \ldots, v_n per a T i considerar l'aplicació lineal f que transforma els vectors de la base canònica de \mathbb{R}^n en els vectors v_i . Prenent aquesta aplicació, $f^*(T)(e_i, e_j) = T(v_i, v_j) = \delta_{ij}$ i, per tant, $f^*(T)$ actua com el producte escalar ordinari.

Recordeu que si es té una família de vectors v_1, \ldots, v_k ortonormals respecte T $(T(v_i, v_j) = \delta_{ij})$ i un altre vector v que no estigui en el subespai vectorial que generen, sempre es pot afegir un nou vector v_{k+1} a la família prenent el vector $v - \sum T(v, v_i) v_i$ (que serà perpendicular a tots els anteriors) i dividint aquest resultat per la seva norma.

Exercici 129: (Per a repassar si no ha quedat clar a les classes de teoria)

Siguin $x_i : \mathbb{R}^n \to \mathbb{R}^n$ les funcions que a cada $p \in \mathbb{R}^n$ li fan correspondre la seva component *i*-èsima. Comproveu que les 1-formes dx_i donen, en cada punt, la base dual de la base canònica de \mathbb{R}^n

Solució: El vector $e_i = (0, ..., 1, ..., 0)$ de la base canònica, que té el coeficient 1 en la posició i, en el punt $p = (x_1, ..., x_n)$ és el vector tangent a la corba $\gamma_i(t) = (x_1, ..., x_i + 1)$

 t, \ldots, x_n). En general, si f és una funció definida en un entorn de p i v un vector tangent en aquest punt, el valor df(v) es calcularà prenent una corba $\alpha(t)$ tal que $\alpha'(0) = v$ i fent la derivada $\frac{d(f(\alpha(t)))}{dt}\Big|_{t=0}$. A partir d'aquí és clar que

$$dx_{j}(e_{i}) = \begin{cases} \frac{d(x_{i} + t)}{dt} \Big|_{t=0} = 1 & \text{quan } i = j \\ \frac{dx_{j}}{dt} \Big|_{t=0} = 0 & \text{quan } i \neq j \end{cases}$$

que correspon al que s'havia de demostrar.

Exercici 130: Determineu quines són les formes diferencials ω a \mathbb{R}^4 compleixen

$$\omega \wedge (dx \wedge dy + dz \wedge dt) = dx \wedge dy \wedge dz \wedge dt$$

i les que compleixen

$$\omega \wedge \omega = dx \wedge dy \wedge dz \wedge dt$$

Solució: Posant coeficients indeterminats a una 2-forma ω

$$\omega = a_1 dx \wedge dy + a_2 dx \wedge dz + a_3 dx \wedge dt + a_4 dy \wedge dz + a_5 dy \wedge dz + a_6 dz \wedge dt$$

la primera condició serà

$$dx \wedge dy \wedge dz \wedge dt = (a_1 + a_6) dx \wedge dy \wedge dz \wedge dt$$

de forma que en aquest cas l'única restricció és $a_1 + a_6 = 1$.

En el segon cas l'equació s'escriurà

$$dx \wedge dy \wedge dz \wedge dt = 2(a_1 a_6 - a_2 a_5 + a_3 a_4) dx \wedge dy \wedge dz \wedge dt$$

i la restricció correspondrà a $a_1 a_6 - a_2 a_5 + a_3 a_4 = 1/2$.

Exercici 131: Si en \mathbb{R}^3 es consideren les coordenades cilíndriques (r, θ, z) , quina és l'expressió de l'element de volum usual $\eta = dx \wedge dy \wedge dz$ en funció de dr, $d\theta$, dz? (Recordeu que, respecte les coordenades cilíndriques, $x = r \cos(\theta)$, $y = r \sin(\theta)$ i la coordenada z és la mateixa en els dos casos).

I si en comptes de les coordenades cilíndriques es consideren les esfèriques?

Solució: Tenint en compte les expressions de (x, y, z) en funció de (r, θ, z) els càlculs es resumeixen en les manipulacions següents:

$$\eta = dx \wedge dy \wedge dz = d(r \cos(\theta)) \wedge d(r \sin(\theta)) \wedge dz$$
$$= (\cos(\theta) dr - r \sin(\theta) d\theta) \wedge (\sin(\theta) dr + r \cos(\theta) d\theta) \wedge dz$$
$$= r dr \wedge d\theta \wedge dz$$

En el cas de les coordenades esfèriques les relacions són

$$x = r \cos(\theta) \sin(\varphi)$$
$$y = r \sin(\theta) \sin(\varphi)$$
$$z = r \cos(\varphi)$$

de forma que

$$\eta = dx \wedge dy \wedge dz = (\cos(\theta) \sin(\varphi) dr - r \sin(\theta) \sin(\varphi) d\theta + r \cos(\theta) \cos(\varphi) d\varphi)$$

$$\wedge (\sin(\theta) \sin(\varphi) dr + r \cos(\theta) \sin(\varphi) d\theta + r \sin(\theta) \cos(\varphi) d\varphi)$$

$$\wedge (\cos(\varphi) dr - r \sin(\varphi) d\varphi)$$

$$= -r^2 \sin(\varphi) dr \wedge d\theta \wedge d\varphi$$

$$= r^2 \sin(\varphi) dr \wedge d\varphi \wedge d\theta$$

Exercici 132: Es considera a \mathbb{R}^3 una forma del tipus $\omega = x \, dy \wedge dz - 2 \, z \, f(y) \, dx \wedge dy + y \, f(y) \, dz \wedge dx$ amb f diferenciable tal que f(1) = 1. Determineu la funció f si

- 1. $d\omega = dx \wedge dy \wedge dz$,
- $2. d\omega = 0.$

Solució: Com que la diferencial de ω s'escriu com

$$d\omega = (1 - f(y) + y f'(y)) dx \wedge dy \wedge dz$$

1. S'ha de complir

$$1 - f + yf' = 1$$

i no costa gaire veure que les solucions d'aquesta equació diferencial són totes de la forma f(y) = k y (k constant). Si ha de ser f(1) = 1 la funció és f(y) = y.

2. En aquest cas l'equació diferencial és

$$1 - f + y f' = 0$$

i tampoc costa gaire veure que la solució amb f(1) = 1 ha de ser la funció constant f(y) = 1.