Hidden Markov Models (HMMs)

Seungjin Choi

Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr

1

HMM vs LDS

- What are common in both HMM and LDS (a.k.a. Kalman filter and smoother)?
 - Both have the same independence diagram and consequently the learning and inference algorithms for both have the same structure.
 - Both assume that a hidden state variable evolves with Markovian dynamics.
- What are different?
 - HMM uses a discrete state variable with arbitrary dynamics and arbitrary measurements.
 - LDS uses a continuous state variable with linear Gaussian dynamics and measurements.

HMMs?

- HMMs are a ubiquitous tool for modeling time series data.
- Assume that the observation X_t was generated by some process whose state S_t is hidden from the observer.
- Discrete hidden state satisfies the Markov property.
- HMMs can be viewed as a particular instance of Bayesian network.

2

Three Basic Tasks in HMM

Classification Compute the probability that a measurement sequence $\{x_1, \ldots, x_N\}$ came from this model, i.e. $p(x_1, \ldots, x_N | \theta)$.

Inference Compute the probability that the system was in state ξ at time t, i.e., $p(s_t = \xi | x_1, \dots, x_N)$.

Learning Determine the parameter settings that maximize the probability of the measurement sequences.

Learning HMMs will be done by EM!

Parameterization of HMM

The joint distribution of a sequence of states and observations is given by

$$p(s_{1:N}, x_{1:N}) = p(s_1)p(x_1|s_1) \prod_{t=2}^{N} \left[p(s_t|s_{t-1})p(x_t|s_t) \right].$$

The following parameterization is required to define a probability distribution over sequences of observations:

- Initial state: $\pi = p(s_1)$.
- State transition probability: $A_{ij} = p(s_{t,i}|s_{t,j})$.
- Emission probability: $E_{ij} = p(x_{t,i}|s_{t,j})$.

5

Learning HMM

The log probability of the hidden variables and observations is written as

$$\log p(s_{1:N}, x_{1:N}) = \log p(s_1) + \sum_{t=1}^{N} \log p(x_t | s_t) + \sum_{t=2}^{N} \log p(s_t | s_{t-1})$$
$$= s_1^{\top} \log \pi + \sum_{t=1}^{N} x_t^{\top} (\log E) s_t + \sum_{t=2}^{N} s_t^{\top} (\log A) s_{t-1}.$$

EM for HMM

E-step Evaluate $\langle \log p(s_{1:N}, x_{1:N}) \rangle_{p(s|x,\theta)} \Rightarrow \text{Need to compute } \langle s_t \rangle \text{ and } \langle s_t s_{t-1}^\top \rangle.$ **M-step** Re-estimate θ which maximizes the complete-data log-likelihood.

Details on Parameterization

The log probability of the hidden variables and observations is written as

$$\log p(s_{1:N}, x_{1:N}) = \log p(s_1) + \sum_{t=1}^{N} \log p(x_t|s_t) + \sum_{t=2}^{N} \log p(s_t|s_{t-1}).$$

Transition probability

$$p(s_t|s_{t-1}) = \prod_{i=1}^K \prod_{j=1}^K (A_{ij})^{s_{t,i}s_{t-1,j}},$$
 $\log p(s_t|s_{t-1}) = \sum_{i=1}^K \sum_{j=1}^K s_{t,i}s_{t-1,j}\log A_{ij} = s_t^{\top} (\log A) s_{t-1}.$

- Initial state probability: $\log p(s_1) = s_1^{\top} \log \pi$.
- Emission probability: $\log p(x_t|s_t) = x_t^{\top} (\log E) \, s_t. \ (E \in \mathbb{R}^{D \times K})$

The parameter set is $\theta = \{A, \pi, E\}$.

6

Expected Complete-Data Log-Likelihood

We have to consider the following constraints:

$$\sum_{i=1}^{K} A_{ij} = 1, \quad \sum_{i=1}^{D} E_{ij} = 1, \quad \sum_{i=1}^{K} \pi_i = 1.$$

To this end, we consider the following Lagrangian:

$$\left\langle \widetilde{\mathcal{L}} \right\rangle \quad = \quad \left\langle \mathcal{L} \right\rangle + \sum_{j=1}^K \, \lambda_j \left(1 - \sum_{i=1}^K \, A_{ij} \right) \\ + \sum_{j=1}^K \, \rho_j \left(1 - \sum_{i=1}^D \, E_{ij} \right) \\ + \, \eta \left(1 - \sum_{i=1}^K \, \pi_i \right) \, , \label{eq:local_local_local_local_local_local}$$

where the expected complete-data log-likelihood is given by

$$\langle \mathcal{L} \rangle = \sum_{i=1}^{K} \langle s_{1,i} \rangle \log \pi_i + \sum_{t=1}^{N} \sum_{i} \sum_{j} x_{t,i} \log E_{ij} \langle s_{t,j} \rangle$$

$$+ \sum_{t=2}^{N} \sum_{i} \sum_{j} \log A_{ij} \langle s_{t,i} s_{t-1,j} \rangle.$$

M-Step

Solving

$$\frac{\partial \left\langle \widetilde{\mathcal{L}} \right\rangle}{\partial A_{ij}} = 0, \quad \frac{\partial \left\langle \widetilde{\mathcal{L}} \right\rangle}{\partial E_{ij}} = 0, \quad \frac{\partial \left\langle \widetilde{\mathcal{L}} \right\rangle}{\partial \pi_i} = 0,$$

leads to the following updating rules:

$$A_{ij} = \frac{\sum_{t=2}^{N} \langle s_{t,i} s_{t-1,j} \rangle}{\sum_{t=2}^{N} \langle s_{t-1,j} \rangle},$$

$$E_{ij} = \frac{\sum_{t=1}^{N} x_{t,i} \langle s_{t,j} \rangle}{\sum_{t=1}^{N} \langle s_{t,j} \rangle},$$

$$\pi_{i} = \langle s_{1,i} \rangle.$$

9

Generic Forward-Backward Propagation (1)

Each state variable separates the graph into three independent parts:

$$p(B_t, s_t, x_t, F_t) = p(B_t, s_t)p(x_t|s_t)p(F_t|s_t),$$

where

$$B_t = \{s_1, \dots, s_{t-1}, x_1, \dots, x_{t-1}\},$$

$$F_t = \{s_{t+1}, \dots, s_N, x_{t+1}, \dots, x_N\}.$$

Inference for E-Step

- Due to the restrictive assumption of a Markov chain, we are able to get an exact inference algorithm.
- E-step is relatively complicated, however, there exists a well-known algorithm, forward-backward recursion.
- In order to compute the expected complete-data log-likelihood, we need to calculate the posterior distribution over latent variables, i.e., $p(s_t|x_{1:N})$.
- Inference involves filtering as well as smoothing.

- Filtering: $p(s_t|x_1,\ldots,x_t)$.

- Prediction: $p(s_t|x_1,\ldots,x_{\tau})$ for $\tau < t$.

- Smoothing: $p(s_t|x_1,\ldots,x_{\tau})$ for $\tau > t$.

10

Generic Forward-Backward Propagation (2)

We are interested in computing $p(s_t, x_{1:N})$:

$$p(s_t, x_{1:N}) = \sum_{s_1, \dots, s_{t-1}} \sum_{s_{t+1}, \dots, s_N} p(B_t, s_t, x_t, F_t)$$

$$= \left[\sum_{s_1, \dots, s_{t-1}} p(B_t, s_t) \right] p(x_t | s_t) \left[\sum_{s_{t+1}, \dots, s_N} p(F_t | s_t) \right]$$

$$= p(B_t^x, s_t) p(x_t | s_t) p(F_t^x | s_t),$$

where

$$B_t^x = \{x_1, \dots, x_{t-1}\},\$$

 $F_t^x = \{x_{t+1}, \dots, x_N\}.$

Generic Forward-Backward Propagation (3)

The main idea is to compute $p(B_t^x,s_t)$ and $p(F_t^x|s_t)$ recursively on the left and right subgraphs.

We define

$$\alpha_t(s_t) = p(B_t^x, s_t)p(x_t|s_t)$$

$$= p(s_t, B_t^x, x_t),$$

$$\beta_t(s_t) = p(F_t^x|s_t).$$

With these definitions, we have
$$p(s_t, x_{1:N}) = lpha_t(s_t) eta_t(s_t)$$

13

Backward Recursion

It follows from the independence diagram that we have

$$\beta_{t-1}(s_{t-1}) = p(F_{t-1}^{x}|s_{t-1})$$

$$= \sum_{s_{t}} p(F_{x}^{x}, x_{t}, s_{t}|s_{t-1})$$

$$= \sum_{s_{t}} [p(s_{t}|s_{t-1})p(x_{t}|s_{t})p(F_{t}^{x}|s_{t})]$$

$$= \sum_{s_{t}} [p(s_{t}|s_{t-1})p(x_{t}|s_{t})\beta_{t}(s_{t})].$$

Initialization

$$\beta_N(s_N) = 1.$$

Forward Recursion

It follows from the independence diagram that we have

$$\alpha_{t}(s_{t}) = p(x_{t}|s_{t})p(B_{t}^{x}, s_{t})$$

$$= p(x_{t}|s_{t}) \sum_{s_{t-1}} p(B_{t-1}^{x}, x_{t-1}, s_{t-1}, s_{t})$$

$$= p(x_{t}|s_{t}) \sum_{s_{t-1}} \left[p(B_{t-1}^{x}, s_{t-1})p(x_{t-1}|s_{t-1})p(s_{t}|s_{t-1}) \right]$$

$$= p(x_{t}|s_{t}) \sum_{s_{t-1}} \left[\alpha_{t-1}(s_{t-1})p(s_{t}|s_{t-1}) \right].$$

Initialization

$$\alpha_1(s_1) = p(s_1)p(x_1|s_1).$$

14

E-Step

We need to compute $\langle s_{t,i} \rangle$, $\langle s_{t,i} s_{t-1,j} \rangle$.

$$\begin{split} \langle s_{t,i} \rangle &= \gamma_{t,i} &= p(s_{t,i} = 1 | x_{1:N}) \cdot 1 + p(s_{t,i} = 0 | x_{1:N}) \cdot 0 \\ &= p(s_{t,i} = 1 | x_{1:N}) \\ &= \frac{\alpha_{t,i} \beta_{t,i}}{\sum_{j} \alpha_{t,j} \beta_{t,j}}, \\ \langle s_{t,i} \, s_{t-1,j} \rangle &= \xi_{t,ij} &= p(s_{t,i}, s_{t-1,j} = 1 | x_{1:N}) \\ &= \frac{\alpha_{t-1,j} A_{ij} p(x_t | s_{t,i} = 1) \beta_{t,i}}{\sum_{k,l} \alpha_{t-1,l} A_{kl} p(x_t | s_{t,k} = 1) \beta_{t,k}}, \end{split}$$

where we used

$$p(s_{t-1}, s_t, x_{1:N}) = p(B_{t-1}^x, s_{t-1})p(x_{t-1}|s_{t-1})p(s_t|s_{t-1})p(x_t|s_t)p(F_t^x|s_t)$$

= $\alpha_{t-1}(s_{t-1})p(s_t|s_{t-1})p(x_t|s_t)\beta_t(s_t).$

Algorithm Outline: HMM

E-step: Forward-backward recursion

$$\alpha_t(s_t) = p(x_t|s_t) \sum_{s_{t-1}} [\alpha_{t-1}(s_{t-1})p(s_t|s_{t-1})],$$

$$\beta_{t-1}(s_{t-1}) = \sum_{s_t} [p(s_t|s_{t-1})p(x_t|s_t)\beta_t(s_t)].$$

Compute $\langle s_{t,i} \rangle$, $\langle s_{t,i} s_{t-1,j} \rangle$:

$$\begin{array}{rcl} \langle s_{t,i} \rangle & = & \frac{\alpha_{t,i}\beta_{t,i}}{\sum_{j}\alpha_{t,j}\beta_{t,j}}, \\ \\ \langle s_{t,i}\,s_{t-1,j} \rangle & = & \frac{\alpha_{t-1,j}A_{ij}p(x_{t}|s_{t,i}=1)\beta_{t,i}}{\sum_{k,l}\alpha_{t-1,l}A_{kl}p(x_{t}|s_{t,k}=1)\beta_{t,k}} \end{array}$$

M-step: Update parameters:

$$A_{ij} = \frac{\sum_{t=2}^{N} \left\langle s_{t,i} s_{t-1,j} \right\rangle}{\sum_{t=2}^{N} \left\langle s_{t-1,j} \right\rangle}, \quad E_{ij} = \frac{\sum_{t=1}^{N} x_{t,i} \left\langle s_{t,j} \right\rangle}{\sum_{t=1}^{N} \left\langle s_{t,j} \right\rangle}, \quad \pi_{i} = \left\langle s_{1,i} \right\rangle.$$

17

Recursion for $\widehat{\alpha}_t(s_t)$ and $\widehat{\beta}_t(s_t)$

• Recursion for $\widehat{\alpha}_t(s_t)$:

$$\alpha_{t}(s_{t}) = p(x_{t}|s_{t}) \sum_{s_{t-1}} \left[\alpha_{t-1}(s_{t-1})p(s_{t}|s_{t-1}) \right],$$

$$\left(\prod_{\tau=1}^{t} c_{\tau} \right) \widehat{\alpha}_{t}(s_{t}) = p(x_{t}|s_{t}) \sum_{s_{t-1}} \left[\left(\prod_{\tau=1}^{t-1} c_{\tau} \right) \widehat{\alpha}_{t-1}(s_{t-1})p(s_{t}|s_{t-1}) \right].$$

 $\widehat{\alpha}_t(s_t) = \frac{1}{c_t} \sum_{s_{t-1}} \left[\widehat{\alpha}_{t-1}(s_{t-1}) p(s_t | s_{t-1}) \right].$

• Recursion for $\widehat{\beta}_t(s_t)$:

$$\hat{\beta}_{t-1}(s_{t-1}) = \frac{1}{c_t} \sum_{s_t} \left[p(s_t|s_{t-1}) p(x_t|s_t) \hat{\beta}_t(s_t) \right].$$

Scaling

We reformulate the forward-backward recursion in terms of scaled α 's and β 's. The rescaling is also useful for avoiding numerical underflow.

Define $c_t = p(x_t | x_1, \dots, x_{t-1})$.

We factor c_t out of the original definition of $\alpha_t(s_t)$:

$$\alpha_t(s_t) = p(s_t, x_1, \dots, x_t)$$

$$= p(x_1, \dots, x_t)p(s_t|x_1, \dots, x_t)$$

$$= \left(\prod_{\tau=1}^t c_\tau\right)\widehat{\alpha}_t(s_t).$$

Similarly, we define

$$\beta_t(s_t) = p(x_{t+1}, \dots, x_N | s_t)$$

$$= \left(\prod_{\tau=t+1}^N c_\tau \right) \widehat{\beta}_t(s_t).$$

18

Marginal Distribution

The marginal distribution become exact in terms of the scaled α 's and β 's (the distribution do not require normalization):

$$p(s_t|x_{1:N}) = \widehat{\alpha}_t(s_t)\widehat{\beta}_t(s_t),$$

$$p(s_{t-1}, s_t|x_{1:N}) = \frac{1}{c_t}\widehat{\alpha}_{t-1}(s_{t-1})p(s_t|s_{t-1})p(x_t|s_t)\widehat{\beta}_t(s_t).$$