

net = nocle

- (2) KCL
- 3) Ohn's Law

 (3) Source transformations

 (3) Superposition
- 6 series/parallel circuits

A KCL is more vseful

node 2: ground

IN TO TE TENTO IS

* always defined

I flowing into node = 0

node (:

$$I_{\alpha} - I_{1} - I_{2} = 0$$

$$I_{1} = \frac{V_{1} - V_{3}}{R_{1}} \qquad I_{2} = \frac{V_{1} - V_{2}}{R_{2}}$$
What is In §

* voltage source

I oty vz skz

how would solve for V?

$$N-1$$
 loops 3 variable $M-1$ nodes 3 variable $(0V)$

cornot sobe 1 early

 $\frac{\log \# 3 \circ - V_S - (i_3 - i_2) R_{4} - (i_3 - i_1) R_{3} = 0}{\log \# 3 \circ - V_S - (i_3 - i_2) R_{4}}$

What is Vs?

 \rightarrow V_5 can be any value

$$V_1 = L_1 \frac{di}{dt}$$

$$\frac{V_{l}}{N_{l}} = \frac{V_{z}}{N_{z}} - \frac{V_{z}}{N_{z}} = \frac{N_{z}}{N_{z}} V_{l}$$

$$\frac{V_{l}}{N_{l}} = \frac{N_{z}}{N_{z}} V_{l}$$

$$V_1 = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$

$$V_2 = L_2 \frac{di_2}{dt} - M \frac{di_1}{dt}$$

$$\oint = \oint_{1} + \oint_{2}$$

$$V_{1} = \int_{1}^{1} \frac{di}{dt} + M \frac{di}{dt}$$

$$V_{2} = \int_{2}^{2} \frac{di}{dt} + M \frac{di}{dt}$$

$$\frac{\text{@ side 2:}}{\emptyset = \emptyset_2 - \emptyset_1}$$

$$V_1 = \frac{N_2}{N_2} \left(\frac{N_1}{N_2} \right) C_1 R_1$$

$$\frac{V_1}{\hat{c}_1} = \left(\frac{N_1}{N_2}\right)^2 R_L \quad \text{for } R_{eq} = \frac{V_1}{\hat{c}_1}$$

$$|0V - (2H)\frac{di}{dt} = 0$$

$$\frac{di}{dt} = \frac{10V}{2H} = 5\frac{A}{5}$$

$$t \to \infty$$
 : $('(t)) \to \infty$

differential

Vegrs force - limited crust