

Name:	Date:
Grade and Section:	_

We Seek Knowledge Indeed!

Welcome to this interactive worksheet!

In this activity, you'll take on the role of a young geoscientist as you simulate the different processes that happen along plate boundaries—using a fun and delicious tool: Oreo or Presto Cream Cookies!

Through this hands-on experience, you'll **observe**, **predict**, and **illustrate** what forms or happens in these dynamic areas of the Earth's crust.

You'll also enhance your understanding by:

- Creating simple drawings of each simulation
- Answering guide questions
- Using your creativity and observation skills

Materials You Will Need:

- **2 packs of Oreo Cookies** (or any cream-filled cookies like Presto)
- **Paper**
- Nen or pencil
- Coloring materials (optional but encouraged for your drawings!)

Ready to explore the Earth's mighty movements in a tasty and creative way? Let's begin!

Activity 1: Convergent Boundary

Procedure:

- 1. **Carefully twist and remove** the **top biscuit** of one Oreo cookie. Set it aside—this will become your "tectonic plate."
- 2. **Break the top biscuit** (the one without the cream) **in half**. These two pieces will represent **Plate A** and **Plate B**.
- 3. **Place both broken pieces** gently on top of the **bottom cookie layer** (the one with the cream still intact). This creamy part represents the **Earth's asthenosphere**—the soft layer that tectonic plates move over.
- 4. **Slowly press down** on both biscuit halves, and **gently push them toward each other** at the center.

- 5. As they meet, you'll notice that **one half slides beneath the other**—just like what happens during **subduction** at a convergent plate boundary!
- 6. In the space below, draw what your biscuit model looked like after completing the activity. Make sure to include labels showing the parts. Be as neat and creative as you can!

-	•	
1)ra	wing	,
		۱

Questions:
1. What type of plate is the top part of the biscuit?
2. Describe what happens to Plate A as it collides with Plate B? Why?
3. What do you think may happen to the leading edge of Plate A as it continues to move downward? Why?
4. What do you call this molten material?
5. As the plates continue to grind against each other, what other geological events could take place? Explain.

Activity 2: Divergent Boundary

Procedure:

- 1. Carefully twist and remove the top biscuit of an Oreo cookie. Set it aside for now.
- **2. Break the top biscuit in half.** These two halves will represent **tectonic plates** moving away from each other.
- **3. Place both broken pieces** gently on top of the bottom biscuit with the creamy white center. This creamy layer represents the **asthenosphere** beneath the Earth's crust.
- **4. Press down gently** on each half of the biscuit. Then, **slowly slide them apart**—pushing them **away from each other in opposite directions**.
- **5. Observe what happens** as the plates move apart: The cream may stretch or separate, simulating how **magma rises** from beneath the Earth's surface to form **new crust**, such as **mid-ocean ridges** or **rift valleys**.
- **6.** In the space below, draw what your biscuit model looked like after completing the activity. Make sure to include **labels** showing the parts. Be as neat and creative as you can!

Drawing

()	uestion	
ι,	uesiioi	15

1. What does Plate A represent? 2. What happened to the creamy white center of the two broken biscuits as you pressed?												
3. W	/hat	landform	is	being	formed	in	this	kind	of j	olate	boundar	 ry?

Activity 3: Transform-Fault Boundary

Procedure:

- **1. Gently twist and remove the top biscuit** of an Oreo cookie. Set it aside for the simulation.
- **2. Break the top biscuit in half.** These two halves will represent two **tectonic plates** moving past each other.
- **3. Place the broken biscuit halves** carefully on top of the remaining biscuit with the creamy center. This bottom part represents the **asthenosphere**.
- 4. While **gently pressing down** on both biscuit halves, **slide one half toward you** and **the other half away from you**. This will cause the biscuits to **grind against each other**, just like what happens along a **transform boundary**.
- **5. Observe what happens** as the plates grind: The edges may break or crumble slightly, simulating the **intense friction** and **stress** that builds up along transform faults—often leading to **earthquakes**.
- **6.** In the space below, draw what your biscuit model looked like after completing the activity. Make sure to include **labels** showing the parts. Be as neat and creative as you can!

Drawing

Questions: