else if $n \geq m$, then we let

$$D = \begin{pmatrix} \sigma_1 & \dots & 0 & \dots & 0 \\ & \sigma_2 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \vdots & 0 \\ & & \dots & \sigma_m & 0 & \dots & 0 \end{pmatrix}.$$

In either case, the above equations prove that

$$V^{\top}AU = D$$
.

which yields $A = VDU^{\top}$, as required.

The equation $A = VDU^{\top}$ implies that

$$A^{\top}A = UD^{\top}DU^{\top} = U\operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, \underbrace{0, \dots, 0}_{n-r})U^{\top}$$

and

$$AA^{\top} = VDD^{\top}V^{\top} = V\operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2, \underbrace{0, \dots, 0}_{m-r})V^{\top},$$

which shows that $A^{\top}A$ and AA^{\top} have the same nonzero eigenvalues, that the columns of U are eigenvectors of $A^{\top}A$, and that the columns of V are eigenvectors of AA^{\top} .

A triple (U, D, V) such that $A = VDU^{\top}$ is called a *singular value decomposition (SVD)* of A. If $D = \operatorname{diag}(\sigma_1, \ldots, \sigma_p)$ (with $p = \min(m, n)$), it is customary to assume that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$.

Example 22.7. Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
. Then $A^{\top} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ $A^{\top}A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, and $AA^{\top} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. The reader should verify that $A^{\top}A = U\Sigma^{2}U^{\top}$ where $\Sigma^{2} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ and $U = U^{\top} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$. Since $AU = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, set $v_{1} = \frac{1}{\sqrt{2}}\begin{pmatrix} \sqrt{2} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, and complete an orthonormal basis for \mathbb{R}^{3} by assigning $v_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $v_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Thus $V = I_{3}$, and the reader should verify that $A = VDU^{\top}$, where $D = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$.