Description

[INTERCONNECT PROCESS AND METHOD FOR REMOVING METAL SILICIDE]

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the priority benefit of Taiwan application serial no. 92124837, filed September 09, 2003.

BACKGROUND OF INVENTION

- [0002] Field of the Invention
- [0003] The present invention relates to a semiconductor process.

 More particularly, the present invention relates to an interconnect process and a method for removing metal silicide.
- [0004] Description of the Related Art
- [0005] With great advancement in semiconductor fabrication technologies, dimensions of devices continue to shrink.

 When the level of integration increases, the surface area on a chip becomes insufficient to accommodate all interconnects. To meet the increase demands for interconnects

with device miniaturization, a multi-layered design has been developed. In fact, most very large scale integrated (VLSI) circuit chips deployed a multi-layered interconnect design.

[0006] In the process of fabricating interconnects with a dimension smaller than 0.11µm, a conventional etching operation using a photoresist layer as an etching mask can no longer produce a contact or conductive line with very small dimensions due to photolithographic limitations. Therefore, polysilicon with a high etching selectivity relative to the dielectric layer must be used as an etching mask. Because the metal in a metallic layer may react with silicon in the polysilicon at a high temperature, metal silicide layer is often formed on the surface of the polysilicon layer when polysilicon is used as an etching mask in the interconnect process. To facilitate subsequent fabrication processes, removing the silicide layer is a very important

SUMMARY OF INVENTION

step.

[0007] Accordingly, at least one object of the present invention is to provide an interconnect process for removing silicide material without damaging the internal metallic structure of interconnects whenever a polysilicon layer is used as an

etching mask so that a metal silicide layer is formed over the polysilicon mask.

[0008] At least a second object of this invention is to provide an effective method of removing metal silicide layer that differs from the conventional method.

[0009] To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention provides an interconnect process. First, a substrate having a dielectric layer and silicon-containing mask layer on the dielectric layer is provided. Using the silicon-containing mask layer as an etching mask, the dielectric layer is patterned to form an opening. Thereafter, a metallic glue layer is formed over the silicon-containing mask layer and the interior surfaces of the opening. A metallic layer is formed over the substrate to fill the opening and cover the metallic glue layer. A thermal treatment process is next carried out so that the molecules within the metallic glue layer reacts with the material inside the silicon-containing mask layer to form a metal silicide layer. Using the metal silicide layer as a polishing stop layer, a chemical-mechanical polishing operation is performed to remove a portion of the metallic layer until the metal silicide layer is exposed. A cleaning process is performed to remove the metal silicide layer and expose the silicon-containing mask layer. In the cleaning process, a solution mixture containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid is used. Finally, another chemical-mechanical polishing process is used to remove the silicon-containing mask layer until the dielectric layer is exposed.

- [0010] This invention also provides a method of removing a metal silicide layer. In this method, a solution mixture containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid is used to flush the metal silicide layer. The ratio of hydrogen peroxide, sulfuric acid and water in the solution is 1 ~ 10: 1 ~ 10: 1 ~ 100 and the concentration of hydrofluoric acid in the solution mixture is about 1~ 20 ppm.
- [0011] In this invention, a cleaning solution containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid is used to clear away the metal silicide layer grown over a siliconcontaining mask layer in an interconnect process. The cleaning solution is effective for removing metal silicide material but has no adverse effects on the structural organization within the metallic interconnects.

[0012] Furthermore, the method of using a solution containing

hydrogen peroxide, sulfuric acid, water and hydrofluoric acid as an agent for removing metal silicide material is an untried technique that differs from the conventional method of removing metal silicide layer.

- [0013] Moreover, using the aforementioned cleaning solution to remove metal silicide material costs less than some other cleaning methods (for example, performing a chemical-mechanical polishing operation).
- [0014] It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF DRAWINGS

- [0015] The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
- [0016] Figs. 1A through 1F are schematic cross-sectional views showing the steps for forming metallic interconnects according to a preferred embodiment of this invention.

DETAILED DESCRIPTION

- [0017] Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
- [0018] Figs. 1A through 1F are schematic cross-sectional views showing the steps for forming metallic interconnects according to a preferred embodiment of this invention. As shown in Fig. 1A, a substrate 100 having a dielectric layer 102 and a silicon-containing mask layer 104 over the dielectric layer 102 is provided. The dielectric layer 102 has an opening 106 therein. The opening 106 is formed using the silicon-containing mask layer 104 as an etching mask. Here, the opening 106 can be a contact opening, a trench or a dual damascene opening, for example.
- [0019] In one embodiment of this invention, the silicon-containing mask layer 104 is fabricated from polysilicon, for example. Since in the fabrication of contacts or conductive lines with a dimension smaller than 0.11µm using a photoresist layer as an etching mask is subjected to photolithography limitations, a polysilicon with a high etching selectivity relative to the dielectric layer must be used as

an etching mask.

[0020] After forming the opening 106, a cleaning process is performed to remove any residues from the opening 106. In one embodiment, the opening 106 is cleaned using a buffer oxide etchant (BOE) diluted with water in a 400:1 ratio. The cleaning process is carried out for a period of about 60 seconds, for example.

[0021] As shown in Fig. 1B, a conformal metallic glue layer 108 is formed over the substrate 100 to cover the silicon—containing mask layer 104 and the interior surface of the opening 106. In one preferred embodiment, the metallic glue layer 108 is a titanium nitride/titanium layer with a thickness between 180Å to 220Å, for example. Thereafter, a metallic layer 110 is formed over the substrate 100 to fill the opening 106 completely and cover the metallic glue layer 108. In one preferred embodiment, the metallic layer is a tungsten layer, for example.

[0022] As shown in Fig. 1C, a thermal process is carried out so that the metallic atoms in the metallic glue layer 108 reacts with silicon in the silicon-containing mask layer 104 to form a metal silicide layer 112. Since the substrate 100 is made from silicon, the metallic glue layer 108 at the bottom of the opening 106 may react with the substrate

100 to form a metal silicide layer 112 as well. If the metallic glue layer 108 is fabricated from titanium nitride/titanium, the metal silicide layer 112 after the reaction is a titanium silicide layer. In one preferred embodiment of this invention, the thermal process is a rapid thermal annealing operation with a reaction temperature below 600°C, for example.

[0023] As shown in Fig. 1D, a portion of the metallic layer 110 is removed to form a metallic layer 110a and expose the metal silicide layer 112. In the process, the metallic glue layer 108 above the metal silicide layer 112 is also removed so that a metallic glue layer 108a within the opening 106 remains. In one preferred embodiment, the method of removing a portion of the metallic layer 110 includes performing a chemical-mechanical polishing operation using the metal silicide layer 112 as a polishing stop layer. Since titanium silicide layer 112 is an ideal stopping layer for polishing tungsten, metal silicide layer is often used as a polishing stop layer when polysilicon is used as a mask layer in the fabrication of metallic interconnects.

[0024] As shown in Fig. 1E, the metal silicide layer 112 is removed so that the siliconcontaining mask layer 104 is exposed. In one preferred embodiment, the method of removing the metal silicide layer 112 includes flushing with a solution mixture containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid. The ratio of hydrogen peroxide, sulfuric acid and water in the cleaning solution is $1 \sim 10$: $1 \sim 10$: $1 \sim 100$ and the concentration of hydrofluoric acid in the solution is about $1 \sim 20$ ppm, for example. Preferably, the ratio of hydrogen peroxide, sulfuric acid and water in the cleaning solution is 7:3:50 and the concentration of hydrofluoric acid in the cleaning solution is 10 ppm.

- [0025] Since the metallic silicide layer 112 must be removed before the silicon-containing mask layer 104, the process of removing the metal silicide layer 112 without damaging the metallic layer 110a is very important.
- [0026] In this invention, the aforementioned cleaning solution is applied to remove the metal silicide layer 112. The cleaning solution is strong enough to remove the metal silicide layer 112 completely but mild enough not to damage the internal structure of the metallic layer 110a. Hence, the solution using the aforementioned ingredients and mixed according to the specified proportion is an ideal cleaning agent.

- [0027] As shown in Fig. 1F, the silicon-containing mask layer 104 is removed so that the dielectric layer 102 is exposed thereby completing the fabrication of metallic interconnects. In one preferred embodiment, the method of removing the silicon-containing mask layer 104 includes performing a chemical-mechanical polishing operation to expose the upper surface of the dielectric layer 102.
- [0028] In this invention, a cleaning solution containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid is used to clear away the metal silicide layer grown over a siliconcontaining mask layer in an interconnect process. The cleaning solution is effective for removing metal silicide material but has no adverse effects on the structural organization within the metallic interconnects.
- [0029] Furthermore, the method of using a solution containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid as an agent for removing metal silicide material is an untried technique that differs from the conventional method of removing metal silicide layer.
- [0030] In addition, using the aforementioned method to remove the metal silicide material costs less than other conventional methods (for example, performing a chemicalmechanical polishing operation).

[0031] It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.