Automatic differentiation in PSyclone

A prototype using reverse-mode AD

Team meeting July 24, 2023 Edited slide 8, July 28

Julien REMY (M1 student - Martin's trainee)
julien.remy@grenoble-inp.org

Automatic differentation

Program

Suppose we have a program computing return values of variables y_i from values of arguments x_i through intermediate values v_k , where each value is obtained from its direct predecessors through *elemental* operations $(+, \times, /, \exp, \text{etc.})$.

$$x_1 = v_{-2} \xrightarrow{} v_1 \xrightarrow{\varphi_5} v_5 \xrightarrow{} v_8 = y_1 \quad \text{Notations}$$

$$v_9 = y_2 \quad \text{Relation: } i \prec j \text{ if } v_j \text{ depends on } v_i, \text{ eg. } 1 \prec 5.$$

$$x_2 = v_{-1} \xrightarrow{} v_3 \xrightarrow{} v_7 \xrightarrow{} v_{10} = y_3 \quad \text{Predecessors: } u_j := (v_i)_{i \prec j} \quad \text{eg. } u_5 = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$x_3 = v_0 \xrightarrow{} v_4 \quad \text{Operation: } \varphi_j : u_j \mapsto v_j \quad \text{eg. } v_5 = \varphi_5(u_5)$$

Predecessors:
$$u_j := (v_i)_{i \prec j}$$
 eg. $u_5 = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$
Operation: $(v_i : u_i \mapsto v_i)$ eg. $v_5 = (o_5)(u_5)$

AD: Obtain $\frac{\partial y_j}{\partial x_i}(x_1,\ldots,x_n)$ automatically, by differentiating operations $\varphi_k:u_k\mapsto v_k$.

Forward mode Tangent linear

Derivatives

For one independent variable d chosen among the argument variables, say $d=x_1$,

let

$$\dot{v}_i = \frac{\partial v_i}{\partial d}$$

$$\dot{v}_{k+2} = \frac{\partial v_{k+2}}{\partial v_{k+1}} \left(\frac{\partial v_{k+1}}{\partial v_k} \dot{v}_k \right)$$

The chain rule gives

Easy to implement.

$$\dot{v}_j = \sum_{i \prec j} \frac{\partial \varphi_j}{\partial v_i} (u_j) \dot{v}_i$$

Initialize
$$\dot{d}=1$$
, and $\dot{v}_k=0, \forall v_k \neq d$, get $\left(\frac{\partial y_j}{\partial d}(x_1,\dots x_n)\right)_j$

Issue

We obtain $J((x_i)_i)(0...\dot{d}...0)^T$: all the derivatives $(\dot{y}_j)_j$ wrt a **single** $d \in (x_i)_i$. Interesting if $\#\{x_i\}_i \ll \#\{y_j\}_j$ but usually there are many arguments, few results.

Reverse mode Adjoint

Adjoints

For one dependent variable z chosen among the return variables, say $z=y_1$, denote

$$\bar{v}_i = \frac{\partial z}{\partial v_i}$$

The chain rule gives

In practice, increment.

$$\bar{v}_i = \sum_{j \succeq i} \bar{v}_j \frac{\partial \varphi_j}{\partial v_i} (\frac{?}{u_j})$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

$$\underbrace{\left(\bar{v}_k \frac{\partial v_k}{\partial v_{k-1}}\right) \frac{\partial v_{k-1}}{\partial v_{k-2}}}_{\bar{v}_{k-1}} = \bar{v}_{k-2}$$

Remark

We obtain the adjoints $(\bar{x}_i)_i$ of **all arguments** x_i for a single differentiated $z \in (y_j)_j$. Compute $\nabla^T z(x_1, \ldots, x_n) = (0 \ldots \bar{z} \ldots 0) J(x_1, \ldots, x_n)$ in one evaluation!

Reverse mode AD A simple math example, with non linearities

What about programs? First issue

Overwrites and non-returned variables

Consider the following Fortran code and its naive and wrong reverse-mode AD:

```
! here a == x + 1
a = x + 1 ! \text{ overwrite a}
c = \cos(a)
! now reverse
! here a == x + 1
a_adj = a_adj + c_adj * (-\sin(a)); \quad c_adj = 0.0
x_adj = x_adj + a_adj * 1; \quad a_adj = 0.0
a_adj = a_adj + b_adj * \cos(a) ! \text{ wrong!}
b_adj = 0.0
```

Taping

Record and restore the values of overwritten variables to a "tape".

Usually a LIFO stack. But then we can't parallelize. Instead, I'm using (static) arrays. Other possibility: recompute values, optional checkpointing.

What about programs? First issue

Overwrites, with taping

```
Recording routine \begin{array}{ll} \text{Returning routine} \\ b = \text{sin}(a) \\ \text{tape}(i) = a \\ a = x + 1 \text{! overwrite a} \\ c = \cos(a) \\ \end{array} \begin{array}{ll} \text{Returning routine} \\ \text{! here } a == x + 1 \\ a_a \text{dj} = a_a \text{dj} + c_a \text{dj} * (-\sin(a)); & c_a \text{dj} = 0.0 \\ x_a \text{dj} = x_a \text{dj} + a_a \text{dj} * 1; & a_a \text{dj} = 0.0 \\ a = \text{tape}(i) \\ a_a \text{dj} = a_a \text{dj} + b_a \text{dj} * \cos(a); & b_a \text{dj} = 0.0 \\ \end{array}
```

Taping results of operations

Can also be used for the results of composed operations. Not implemented yet. PSyclone: Operation nodes have no datatypes for now, especially shapes (for vectors).

What about programs? Edited July 28 Second issue

Iterative assignments

Consider the following Fortran code and its naive and wrong reverse-mode AD:

```
\begin{array}{lll} \mathsf{a} = 2 * \mathsf{a} + \mathsf{x} & \mathsf{a} = \mathsf{a
```

```
Solution: deal with the LHS adjoint last, edited July 28

a = 2 * a + x  x_adj = x_adj + a_adj * 1 ! correct
```

```
! now reverse a adj = a adj * 2! correct
```

Reversal schedules 1/2

Nested calls

```
Suppose we want to differentiate the subroutine foo, which calls bar and qux. subroutine foo(x, y) call bar(x, y) call qux(x, y) end subroutine foo
```

Reversal schedules

Let us call and denote:

- advancing □ routine the original,
- recording ▷ routine the one recording values to the tape,
- returning < routine the one computing the adjoints,
- reversing D⊲ routine the one combining the two preceding. Call it to differentiate.

Reversal schedules 2/2

"Link" reversal

Specify whether to use a split or joint reversal for each (caller o called) pair.

Reverse-mode AD in PSyclone - psyclone.autodiff

For now:

- · scalars only,
- recording, returning, reversing and "Jacobian" (scalars → scalars) routines,
- subroutines only, calls to subroutines,
- joint, split and "link" reversals,
- · adjoints are all double precision,
- no activity analysis (dependence DAG),
- no control on what is recorded (TBR),
- quite naive implementation:
 - operations are always recomputed, eg. v=1/u or $v=\exp(u)$ don't use v,
 - adjoints for every operation, even unary.

Examples of transformed programs 1/2

```
subroutine bar rec(a, b, value tape bar)
    double precision, intent(in) :: a
    double precision, intent(out) :: b
    double precision, dimension(3), intent(out) :: value tape bar
    double precision :: c
    c = 2
    value tape bar(1) = c
    c = 4
    h = 3
    value tape bar(2) = b
    h = h + c * a
    value tape bar(3) = c
end subroutine bar rec
subroutine bar rev(a, a adi, b, b adi)
   double precision, intent(in) :: a
   double precision, intent(out) :: b
   double precision, intent(inout) :: b adi
   double precision, intent(inout) :: a adi
   double precision :: c
   double precision, dimension(3) :: value tape bar
   call bar rec(a, b, value tape bar)
   call bar ret(a, a adi, b, b adi, value tape bar)
end subroutine bar rev
```

(Verbose mode)

```
subroutine bar ret(a, a adj, b, b adj, value tape bar)
   double precision, intent(in) :: a
   double precision, intent(inout) :: b
   double precision, intent(inout) :: a adj
   double precision, intent(inout) :: b adi
   double precision, dimension(3), intent(in) :: value tape bar
    double precision :: c
   double precision :: c adi
   double precision :: temp b adi
   double precision :: op adj
   c adi = 0.0
   c = value tape bar(3)
   b = value tape bar(2)
   ! Adjoining b = b + c * a, iterative
   temp b adi = b adi
    b adi = 0.0
    ! Adjoining b + c * a
   b adi = b adi + temp b adi * 1
   op adi = temp b adi * 1
   ! Adjoining c * a
   c adi = c adi + op adi * a
   a adi = a adi + op adi * c | Finished adioining b = b + c * a
   ! Adjoining b = 3
   b adi = 0.0 ! Finished adjoining b = 3
   c = value tape bar(1)
   ! Adjoining c = 4
   c adi = 0.0 ! Finished adjoining c = 4
    I Adjoining c = 2
   c adi = 0.0 ! Finished adjoining c = 2
end subroutine bar ret
```

Examples of transformed programs 2/2

```
subroutine foo rec(x, w, f, q, value tape foo)
   double precision, intent(in) :: x
   double precision, intent(in) :: w
   double precision, intent(out) :: f
   double precision, intent(out) :: a
   double precision, dimension(4), intent(out) :: value tape foo
   f = w ** 2
   q = 3 * x
   value tape foo(1) = f
   call bar rec(x + 2 * f, f, value tape foo(2:))
end subroutine foo rec
subroutine foo ret(x, x adi, w, w adi, f, f adi, g, g adi, value tape foo)
   double precision, intent(in) :: x
   double precision, intent(in) :: w
   double precision, intent(inout) :: f
   double precision, intent(inout) :: q
   double precision, intent(inout) :: x adi
   double precision, intent(inout) :: w adi
   double precision, intent(inout) :: f adi
   double precision, intent(inout) ... a adi
   double precision, dimension(4), intent(in) :: value tape foo
   double precision :: op adj
   double precision :: op adi 1
   f = value tape foo(1)
   ! Adjoining call bar(x + 2 * f. f)
   on adi = 0.0
   call bar ret(x + 2 * f, op adi, f, f adi, value tape foo(2:))
   I f is output so overwritten
   f adi = 0.0
   ! Adjoining x + 2 * f
   x adi = x adi + op adi * 1
   op adi 1 = op adi * 1
   ! Adjoining 2 * f
   f adj = f adj + op adj 1 * 2 ! Finished adjoining call bar(x + 2 * f, f)
   ! Adjoining g = 3 * x
   x adi = x adi + q adi * 3
   q adi = 0.0 ! Finished adioining q = 3 * x
   ! Adjoining f = w ** 2
   w adj = w adj + f adj * (2 * w ** (2 - 1))
   f adi = 0.0 | Finished adjoining f = w ** 2
end subroutine foo ret
```

```
! Independent variables as columns: ['x', 'w'].
! Dependent variables as rows: ['f', 'g'].
I df/dy df/dw
! da/dx da/dw
subroutine foo jacobian(f, g, x, w, J foo)
    double precision, intent(out) :: f
    double precision, intent(out) :: a
    double precision, intent(in) :: x
    double precision, intent(in) :: w
    double precision, dimension(2,2), intent(out) :: J foo
    double precision :: f adj
    double precision :: q adi
    double precision :: x adi
    double precision :: w adi
    f adi = 1.0
    q adi = 0.0
    x adi = 0.0
    w adi = 0.0
    call foo rev(x, x adi, w, w adi, f, f adi, q, q adi)
    J foo(1,1) = x adi
    J foo(2.1) = w adi
    q adi = 1.0
    f adi = 0.0
    x adi = 0.0
    w adi = 0.0
    call foo rev(x, x adi, w, w adi, f, f adi, q, q adi)
    J foo(1.2) = x adi
    J foo(2.2) = w adi
end subroutine foo jacobian
```

Next

Coming soon

- Numerical comparisons with AutoGrad / JAX (Tapenade?)
- · Finish writing unitary tests, more general ones

Some day...

- Vectors, matrices, functions
- Activity analysis (↔ dependence DAG)
- TBR (To Be Recorded) analysis
- · Loops: are run backward
 - except if trivial: record the loop indices, run-time length of the tape
- Control flow: record the boolean values of conditions? Tag the branches?

Questions? Remarks? Ideas?

