Chương 3: HỆ TỔ HỢP

I. Giới thiệu – Cách thiết kế hệ tổ hợp:

Mạch logic được chia làm 2 loại:

- Hệ tổ hợp (Combinational Circuit)
- Hệ tuần tự (Sequential Circuit).

Hệ tổ hợp là mạch mà các ngõ ra chỉ phụ thuộc vào giá trị của các ngõ vào. Mọi sự thay đổi của ngõ vào sẽ làm ngõ ra thay đổi theo.

1

* Các bước thiết kế:

- Phát biểu bài toán.
- Xác định số biến ngõ vào và số biến ngõ ra.
- Thành lập bảng giá trị chỉ rõ mối quan hệ giữa ngõ vào và ngõ ra.

Λ	lgõ vào	Ngõ ra		
X _{n-1}	\dots X_1 X_0	Y _{m-1} Y ₁ Y ₀		
0	0 0			
1	cuu duor 1 g t	han cong. com		

- Tìm biểu thức rút gọn của từng ngõ ra phụ thuộc vào các biến ngõ vào.
- Thực hiện sơ đồ logic.

<u>Vd:</u> Thiết kế hệ tổ hợp có 3 ngõ vào X, Y, Z; và 2 ngõ ra F, G.

- Ngõ ra F là 1 nếu như 3 ngõ vào có số bit 1 nhiều hơn số bit 0; ngược lại F = 0.

- Ngõ ra G là 1 nếu như giá trị nhị phân của 3 ngõ vào lớn hơn 1 và nhỏ hơn 6; ngược lại G = 0.

X	Y	Z	F G
0	0	0	0 0
0	0	1	o cuo dud
0	1	0	0 1
0	1	1	1 1
1	0	0	0 1
1	0	1	1 1
1	1	0	1 0
1	1	1	1 0

$$G = \overline{X} Y + X \overline{Y} = X \oplus Y$$

$$\mathbf{F} = \mathbf{X} \mathbf{Y} + \mathbf{Y} \mathbf{Z} + \mathbf{X} \mathbf{Z}$$

$\mathbf{G} = \overline{\mathbf{X}} \ \mathbf{Y} + \mathbf{X} \ \overline{\mathbf{Y}} = \mathbf{X} \oplus \mathbf{Y}$

Trường hợp hệ tổ hợp không sử dụng tất cả 2ⁿ tổ hợp của ngõ vào, thì tại các tổ hợp không sử dụng đó ngõ ra có giá trị tùy định.

<u>Vd:</u> Thiết kế hệ tổ
hợp có ngõ vào biểu
diễn cho 1 số mã BCD.
Nếu giá trị ngõ vào
nhỏ hơn 3 thì ngõ ra có
giá trị bằng bình
phương giá trị ngỗ
vào; ngược lại giá trị
ngõ ra bằng giá trị ngõ
vào trừ đi 3.

$$F2 = A + B C D + \overline{B} C \overline{D}$$

$$F1 = A D + B \overline{C} D + B C \overline{D}$$

$$F0 = A \overline{D} + B \overline{D} + \overline{A} \overline{B} \overline{C} D$$

A	В	C	D	$F_2 F_1 F_0$
0	0	0	0	0 0 0
0	0	0	1	0 0 1
0	0	1	0	1 0 0
0	0	1	1	0 0 0
0	1	0	0	0 0 1
an oc	ong	0	1	0 1 0
0	1	1	0	0 1 1
0	1	1	1	1 0 0
1	0	0	0	1 0 1
1	0	0	1	1 1 0
ian 1 c	0	. 100	0	X X X
1	0	1	1	X X X
1	1	0	0	X X X
1	1	0	1	X X X
1	1	1	0	X X X
1	1	1	1	XXX

II. Bộ cộng - trừ nhị phân:

1. Bộ cộng (Adder):

a. Bộ cộng bán phần (Half Adder – H.A):

Bộ cộng bán phần là hệ tổ hợp có nhiệm vụ thực hiện phép cộng số học x + y (x, y là 2 bit nhị phân ngõ vào); hệ có 2 ngõ ra: bit tổng S (Sum) và bit nhớ C (Carry).

6

b. Bộ cộng toàn phần (Full Adder – F.A):

Bộ cộng toàn phần thực hiện phép cộng số học 3 bit x + y + z (z biểu diễn cho bit nhớ từ vị trí có trọng số nhỏ hơn gởi tới)

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

S	y ₀₀	01	11	10_
z_0		1		1
1	1		1	

$$S = \overline{x} \overline{y} z + \overline{x} y \overline{z} + x \overline{y} \overline{z} + x y z$$

$$C = xy + xz + yz$$

$$S = \overline{x} \overline{y} z + \overline{x} y \overline{z} + x \overline{y} \overline{z} + x y z$$

$$= \overline{z} (\overline{x} y + x \overline{y}) + z (\overline{x} \overline{y} + x y)$$

$$= \overline{z} (x \oplus y) + z (\overline{x} \oplus y)$$

$$S = z \oplus (x \oplus y)$$

$$C = xy + xz + yz$$

$$= xy + x \overline{y}z + xyz + \overline{x}yz$$

$$= xy(1+z) + z(\overline{x}y + x\overline{y})$$

$$C = xy + z(x \oplus y)$$

2. Bộ trừ (Subtractor):

a. Bộ trừ bán phần (Half Subtractor – H.S):

Bộ trừ bán phần có nhiệm vụ thực hiện phép trừ số học x - y (x, y là 2 bit nhị phân ngõ vào); hệ có 2 ngõ ra: bit hiệu D (Difference) và bit mượn B (Borrow).

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

b. Bộ trừ toàn phần (Full Subtractor – F.S):

Bộ trừ toàn phần thực hiện phép trừ số học 3 bit x - y - z (z biểu diễn cho bit mượn từ ví trị có trọng số nhỏ hơn)

X	y	Z	В	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

D	y ₀₀	01	11	_10_
z		1		1
1	1		1	

$$S = \overline{x} \overline{y} z + \overline{x} y \overline{z} + x \overline{y} \overline{z} + x y z$$

$$\underline{S} = z \oplus (x \oplus y)$$

$$C = \bar{x}y + \bar{x}z + yz$$

$$C = \bar{x}y + z(\bar{x} \oplus y)$$

3. Bộ cộng/trừ nhị phân song song:

CuuDuongThanCong.com

b. Bộ trừ nhị phân:

- Sử dụng các bộ trừ toàn phần F.S
- Thực hiện bằng phép cộng với bù 2 của số trừ

$$M - N = M + B\dot{u}_2(N) = M + B\dot{u}_1(N) + 1$$

c. Bộ cộng/trừ nhị phân:

Phép toán	C_0 y_i	Ngõ vào điều kh	<u>iển</u>		
CỘNG TRỪ	$\begin{array}{cc} 0 & \frac{N_i}{N_i} \\ 1 & \overline{N_i} \end{array}$	$ \frac{T = 0:}{T = 1:} C\hat{\rho} ng $ $ \underline{T = 1:} Tr \hat{u} $	\Rightarrow	$\underline{C_0} = \underline{T}$ $\underline{y_i} = \underline{T} \oplus I$	<u>V_i</u>
S N3 X	$ \begin{array}{c c} M2 & N2 \\ \hline x & y \\ \hline C & z \\ \hline S \\ S2 \end{array} $	mg than colstant x y $F.A$ C z		$ \begin{array}{c c} M0 & N0 \\ \hline x & y \\ \hline C & S \end{array} $ $ \begin{array}{c c} S0 & 1 \end{array} $	<i>T C0</i>

III. Hệ chuyển mã (Code Conversion):

- Hệ chuyển mã là hệ tổ hợp có nhiệm vụ làm cho 2 hệ thống tương thích với nhau, mặc dù mỗi hệ thống dùng mã nhị phân khác nhau.

- Hệ chuyển mã có ngõ vào cung cấp các tổ hợp mã nhị phân A và các ngõ ra tạo ra các tổ hợp mã nhị phân B. Như vậy, ngõ vào và ngõ ra phải có số lượng từ mã bằng nhau.

14

<u>Vd:</u> Thiết kế hệ chuyển mã từ mã BCD thành mã BCD quá 3.

A	В	C	D	W .	X	Y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	<i>1</i>
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	<i>1</i>
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	lu 1 mg
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	<i>1</i>
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	\boldsymbol{X}
1	0	1	1	X	X	\boldsymbol{X}	\boldsymbol{X}
1	1	0	0	X	X	X	\boldsymbol{X}
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

$$W = A + B (C + D)$$

$$X = B \oplus (C + D)$$

$$Y = \overline{C} \oplus \overline{D}$$

$$Z = \overline{D}$$

IV. Bộ giải mã (DECODER):

1. Giới thiệu:

- Bộ giải mã là hệ chuyển mã có nhiệm vụ chuyển từ mã nhị phân cơ bản n bit ở ngõ vào thành mã nhị phân 1 trong m ở

- Với giá trị i của tổ hợp nhị phân ở ngõ vào, thì ngõ ra Y_i sẽ tích cực và các ngõ ra còn lại sẽ không tích cực.
- Có 2 dạng: ngỗ ra tích cực cao (mức 1) và ngỗ ra tích cực thấp (mức 0).

https://fb.com/tailieudientucnt

a. Bộ giải mã ngõ ra tích cực cao:

X_1	\mathbf{X}_{0}	\mathbf{Y}_3	\mathbf{Y}_{2}	\mathbf{Y}_{1}	$\mathbf{Y_0}$
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Ngõ ra: $Y_i = m_i$ (i = 0, 1, ..., 2ⁿ-1)

b. Bộ giải mã ngõ ra tích cực thấp:

X_1	\mathbf{X}_{0}	$\overline{\mathbf{Y}}_{3}$	$\overline{\mathbf{Y}_{2}}$	$\overline{\mathbf{Y}}_{1}$	$\overline{\mathbf{Y_0}}$
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

$$Y_0 = X_1 + X_0 = M_0 = \overline{m_0}$$
 duona
 $Y_1 = X_1 + \overline{X_0} = M_1 = \overline{m_1}$ X_0
 $Y_2 = \overline{X_1} + X_0 = M_2 = \overline{m_2}$
 $Y_3 = \overline{X_1} + \overline{X_0} = M_3 = \overline{m_3}$ duona
 X_1

Ngõ ra: $Y_i = M_i$ (i = 0, 1, ..., 2ⁿ-1)

CuuDuongThanCong.con

https://fb.com/tailieudientucntt

c. Bộ giải mã có ngõ vào cho phép:

- Ngoài các ngõ vào dữ liệu, bộ giải mã có thể có 1 hay nhiều ngõ vào cho phép.
- Khi các ngõ vào cho phép ở trạng thái tích cực thì mạch giải mã mới được hoạt động. Ngược lại, mạch giải mã sẽ không hoạt động; khi đó các ngõ ra đều ở trạng thái không tích cực.

2. IC giải mã:

a. IC 74139: gồm 2 bộ giải mã 2 sang 4 ngõ ra tích cực thấp

20

b. IC 74138: bộ giải mã 3 sang 8 ngõ ra tích cực thấp

$\overline{G2A}$	$\overline{G2B}$	C	B	A	$\overline{\mathbf{Y}}_{7}$	$\overline{\mathbf{Y}}_{6}$	$\overline{\mathbf{Y}}_{5}$	$\overline{\mathbf{Y}}_{4}$	$\overline{\mathbf{Y}}_{3}$	$\overline{\mathbf{Y}}_{2}$	$\overline{\mathbf{Y}}_{1}$	$\overline{\mathbf{Y}}_{0}$
X	X	X	X	X	1	1	1	1	1	1	1	1
1	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	1	1	0	1
0	0	0	1	0	1	1	1	1	1	0	1	1
0	0	0	1	1	1	1	1	1	0	1	1	1
0	0	1	0	0	1	1	1	0	1	1	1	1
0	0	1	0	1	1	1	0	1	1	1	1	1
0	0	1	1	0	1	0	1	1	1	1	1	1
0	0	1	1	1	0	1	1	1	1	1	1	1
	X 1 X 0 0 0 0 0	X X 1 X X 1 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X 1 1 X X X X X 1 X 1 X X X X	X X X X X X X X 1 1 1 X X X X X 1 1 X 1 X X X X 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1	X X X X X X X X X X 1	X X	X X	X X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

21

3. Sử dụng bộ giải mã thực hiện hàm Boole:

Ngõ ra của bộ giải mã là minterm (ngõ ra tích cực cao) hoặc maxterm (ngõ ra tích cực thấp) của n biến ngõ vào. Do đó, ta có thể sử dụng bộ giải mã thực hiện hàm Boole theo dạng chính tắc.

V. Bộ mã hóa (ENCODER):

1. Giới thiệu:

- Encoder là hệ chuyển mã thực hiện hoạt động ngược lại với decoder. Nghĩa là encoder có m ngõ vào theo mã nhị phân $\underline{1}$ trong \underline{m} và n ngõ ra theo \underline{m} nhị phân cơ bản (với $m \leq 2^n$).
- Với ngõ vào I_i được tích cực thì ngõ ra chính là tổ hợp giá trị nhị phân i tương ứng.

* Bộ mã hóa có ưu tiên (Priority Encoder):

Bộ mã hóa có ưu tiên là mạch mã hóa sao cho nếu có nhiều hơn 1 ngõ vào cùng tích cực thì ngõ ra sẽ là giá trị nhị phân của ngõ vào có ưu tiên cao nhất.

I_3	I_2	I ₁	I_0	\mathbf{Z}_1	\mathbf{Z}_0	V
0	0	0	0	X	X	0
0	0	0	1	0	(0 U	41 10
0	0	1	\mathbf{X}	0	1	1
0	1	\mathbf{X}	\mathbf{X}	1	0	1
1	\mathbf{X}	X	X	1	1	1

Thứ tự ưu tiên:
$$I_3 > I_2 > I_1 > I_0$$

2. IC mã hóa ưu tiên $8 \rightarrow 3$ (74148):

<u>5</u> EI			ΕĪ	$\overline{\mathbf{I}}_{7}$	\overline{I}_6	\overline{I}_5	\overline{I}_4	$\overline{I_3}$	$\overline{I_2}$	\overline{I}_1	$\overline{I_0}$	$\overline{\mathbf{A}}_{2}$	$\overline{\mathbf{A}}_{1}$	$\overline{\mathbf{A_0}}$	GS :	EO
4 I	${f A_2}$	<u>6</u>	_						X			1	1	1	1	1
$\frac{3}{2}$ of I_6	$\mathbf{A_1}$	$0 \frac{7}{9}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 1	A 0				X X			$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0 1	0	1
$\frac{2}{1}$ of I_5	(LSB)A ₀	cuu	0	1 1	1h	0 1	X 0		X			$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 1	0 1	0	1 1
$\frac{13}{12}$ O I_3	GS	<u>14</u>	0	1	1	1	1	0		X		1	0	0	0	1
$\begin{array}{c c} I_2 \\ \hline I_1 \\ \hline \end{array} $ $\begin{array}{c c} I_2 \\ \hline I_1 \end{array}$	EO	15	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	1	1	1	0 1	X 0	X	1	0 1	0	0	1
		cuu	0	1 1	1h	a1 1	1	1 1	100 1	1 1	0 1	1 1	1 1	1 1	0 1	1 0

25

VI. Bộ dồn kênh (Multiplexer - MUX):

1. Giới thiệu:

- MUX $2^n \rightarrow 1$ là hệ tổ hợp có nhiều ngõ vào nhưng chỉ có 1 ngõ ra. Ngõ vào gồm 2 nhóm: m ngõ vào dữ liệu (data input) và n ngõ vào lựa chọn (select input).

- Với 1 giá trị i của tổ hợp nhị phân các ngõ vào lựa chọn, ngỗ vào dữ liệu D_i sẽ được chọn đưa đến ngỗ ra. $(m = 2^n)$

26

Tổng quát: $Y = \sum m_i D_i$ (với $i = 0, 1, ..., 2^n-1$)

2. IC dôn kênh:

<u>a. 74LS153:</u> gồm 2 bộ MUX 4 →1

28

<u>**b. 74151:</u> bộ** MUX 8 →1</u>

70	EN						
<u>11</u>	A(LSB)		EN	C	В	A	Y
<u>10</u>	В		1	X	X	X	0
9	C		0	0	0	0	$\mathbf{D_0}$
3	$\mathbf{D_0}$	uong than	0 g.	0 cm	0	1	$\mathbf{D_1}$
2	\mathbf{D}_1	6	0	0	1	0	$\mathbf{D_2}$
1	$\mathbf{D_2}$ Y	0 	0	0	1	1	$\mathbf{D_3}$
<u>15</u>	\mathbf{D}_3		0	1	0	0	$\mathbf{D_4}$
14	$\mathbf{D_4}$	uona than	0	1	0	$\frac{1}{2}$	$\mathbf{D_5}$
<i>13</i>	D ₅	Dong than	0	1	1	0	$\mathbf{D_6}$
<u>12</u>	$\mathbf{D_6}$		0	1	1	1	\mathbf{D}_7
	\mathbf{D}_7						

29

CuuDuongThanCong.com

3. Sử dụng bộ MUX thực hiện hàm Boole:

a. Bộ MUX 2ⁿ thực hiện hàm Boole n biến:

$$F(x, y, z) = \sum (0, 1, 4, 7)$$

$$= m_0 + m_1 + m_4 + m_7$$

$$= m_0 1 + m_1 1 + m_2 0 + m_3 0$$

$$+ m_4 1 + m_5 0 + m_6 0 + m_7 1$$

$$= m_0 D_0 + m_1 D_1 + m_2 D_2 + m_3 D_3$$

$$+ m_4 D_4 + m_5 D_5 + m_6 D_6 + m_7 D_7$$
cutu dueng than

$$D_0 = D_1 = D_4 = D_7 = 1$$

$$D_2 = D_3 = D_5 = D_6 = 0$$

b. Bộ MUX 2ⁿ thực hiện hàm Boole n+1 biến:

$$F(x, y, z) = \sum (0, 1, 4, 7)$$

$$= \bar{x} \bar{y} \bar{z} + \bar{x} \bar{y} z + x \bar{y} \bar{z} + x y z$$

$$= \bar{x} \bar{y} . 1 + \bar{x} y . 0 + x \bar{y} . \bar{z} + x y . z$$

$$= m_0 . 1 + m_1 . 0 + m_2 . \bar{z} + m_3 . z$$

$$Y = m_0 D_0 + m_1 D_1 + m_2 D_2 + m_3 D_3$$

$$D_0 = I; D_1 = 0; D_2 = \bar{z}; D_3 = z$$

$$x \quad y \quad z \quad F$$

$$0 \quad 0 \quad 0 \quad 1$$

$$0 \quad 1 \quad 0 \quad 0$$

$$0 \quad 1 \quad 1 \quad 0$$

$$0 \quad 0$$

$$1 \quad 0 \quad 0$$

VII. Bộ phân kênh (DEMUX):

1. Giới thiệu:

- Bộ DEMUX $1\rightarrow 2^n$ có chức năng thực hiện hoạt động ngược lại với bộ MUX. Mạch có 1 ngõ vào dữ liệu, n ngõ vào lựa chọn và 2^n ngõ ra.

- Với 1 giá trị i của tổ hợp nhị phân các ngõ vào lựa chọn, ngõ vào dữ liệu D sẽ được đưa đến ngõ ra Y_i .

* Bộ DEMUX $1 \rightarrow 4$:

S_1	S_0	\mathbf{Y}_3	$\mathbf{Y_2}$	\mathbf{Y}_{1}	$\mathbf{Y_0}$
0	0	0	0	0	D
0	1	0	0	D	0
1	0	0	D	0	0
1	1	D	0	0	0

$$Y_0 = \overline{S_1} \, \overline{S_0} \, D = m_0 D$$

$$Y_1 = \overline{S_1} S_0 D = m_1 D$$

$$Y_2 = S_1 \overline{S_0} D = m_2 D$$

$$Y_3 = S_1 S_0 D = m_3 D$$

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

2. IC phân kênh 74LS155: gồm 2 bộ phân kênh $1 \rightarrow 4$

В	A	1G	1C	$\overline{1Y}_0$	$\overline{1Y}_1$	$\overline{1Y}_2$	$\overline{1Y}_3$
X	X	1	X	1	1	1	1
X	X	X	0	1	1	1	1
0	0	0	1	0	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	1	1	0	1
. 1 ha	$_{ m an}1_{ m co}$	0	c d n	1	1	1	0

	В	A	2 G	2 C	$\overline{2Y_0}$	$\overline{\mathbf{2Y}}_{1}$	$\overline{2}\overline{Y}_{2}$	$\overline{2}\overline{Y}_3$
	X	X	1	X	1	1	1	1
	X	X	X	1	1	1	1	1
8	0	n 0 cc	ing 0	0	0	1	1	1
	0	1	0	0	1	0	1	1
	1	0	0	0	1	1	0	1
	1	1	0	0	1	1	1	0

34

CuuDuongThanCong.com

VIII. Bộ so sánh 🗌 ộlớn (Comparator):

1. Giới thiệu:

- Bộ so sánh là hệ tổ hợp có nhiệm vụ so sánh 2 số nhị phân không dấu A và B (mỗi số n bit).
- Bộ so sánh có 3 ngõ ra (A>B), (A=B) và (A<B); chỉ có 1 ngõ ra tích cực theo kết quả so sánh.

* Bộ so sánh 3 bit:

A:
$$A_2$$
 A_1 A_0

B: B_2 B_1 B_0

Sử dụng biến trung gian:

 $x_i = A_i \oplus B_i$ $(i = 0, 1, 2)$

$$(A = B) = x_2 x_1 x_0$$

$$(A > B) = A_2 \overline{B}_2 + x_2 A_1 \overline{B}_1 + x_2 x_1 A_0 \overline{B}_0$$

$$(A < B) = \overline{A}_2 B_2 + x_2 \overline{A}_1 B_1 + x_2 x_1 \overline{A}_0 B_0 = \overline{(A = B) + (A > B)}$$

35

2. IC so sánh 74LS85:

2		
	ALTBIN	ACTROUT (AS D) . (A D) ACTRIN
<i>3 4</i>	AEQBIN	AGTBOUT = (A>B) + (A=B)AGTBIN
4	AGTBIN	AEQBOUT = (A=B) AEQBIN
<u>10</u>	$\mathbf{A_0}$	ALTBOUT = (A < B) + (A = B)ALTBIN
<u>12</u>	$egin{array}{c} \mathbf{A_0} \\ \mathbf{A_1} \end{array}$	$ALIDOUI = (A \triangleleft D) + (A - D)ALIDIN$
<u>13</u>	$egin{array}{c} oldsymbol{A_1} \ oldsymbol{A_2} \end{array}$	duong than cong. com
<u>15</u>	A_3 ALTBOUT	7
	AEQBOUT	6
9	B_0 AGTBOUT	5
	$\mathbf{B_1}$	
<u>14</u>	\mathbf{B}_{2}	duong than cong. com
1	$\mathbf{B_3}$	

37