Polar Decoding on Sparse Graphs with Deep Learning

```
Weihong Xu<sup>1,2</sup>, Xiaohu You<sup>2</sup>,
Chuan Zhang<sup>1,2</sup>, Yair Be'ery<sup>3</sup>
```

Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)

- National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
 - School of Electrical Engineering, Tel-Aviv University, Israel

Outline

- 1. Related Work
- 2. Deep Learning for Polar Codes on Sparse Graphs
- 3. Results and Analysis
- 4. Conclusion

Outline

- 1. Related Work
- 2. Deep Learning for Polar Codes on Sparse Graphs
- Results and Analysis
- 4. Conclusion

Neural Network Decoder for Polar Codes

- Construct polar decoder based on fully-connected neural networks.
- Pros & cons:
 - Near-optimal performance for very short codes.
 - * Hard to be extended to long codes.
 - * Prohibitive complexity of NN inference.

¹[Gruber, Cammerer, Hoydis, et al., CISS 2017]

Neural Network Decoder for Linear Codes

Feed-forward network

Recurrent network

- Tanner graph is unfolded into feed-forward or recurrent neural networks.
- Pros & cons:
 - Improving performance through training.
 - * Easy to co-operate with other decoding methods, such as permutation.
 - * Complexity: Near-BP. Latency: 21

²[Nachmani, Marciano, Lugosch, et al., JSTSP 2018]

Neural Network Decoder for Polar Codes

- Construct polar decoder based on factor graph.
- Pros & cons:
 - * Near-BP performance.
 - * Easy to extend.
 - * Complexity: $\mathcal{O}(IN\log_2 N)$ with min-sum. Latency: $2I\log_2 N$

³[Xu, Wu, Ueng, et al., SiPS 2017]

Some Questions

- Substantial weights are unfriendly for implementation.
- Is it necessary to parameterize every edge?
- Constructing neural network decoder of polar codes on Tanner graph?

Outline

- 1. Related Work
- 2. Deep Learning for Polar Codes on Sparse Graphs
- Results and Analysis
- 4. Conclusion

Two Types of Factor Graphs

BP Decoding for Polar Codes

Original BP Decoding:

$$\begin{cases} L_{i,j}^{(t)} = \ g(L_{i+1,j}^{(t-1)}, L_{i+1,j+N/2^i}^{(t-1)} + R_{i,j+N/2^i}^{(t)}), \\ L_{i,j+N/2^i}^{(t)} = \ g(L_{i+1,j}^{(t-1)}, R_{i,j}^{(t)}) + L_{i+1,j+N/2^i}^{(t-1)}, \\ R_{i+1,j}^{(t)} = \ g(R_{i,j}^{(t)}, L_{i+1,j+N/2^i}^{(t-1)} + R_{i,j+N/2^i}^{(t)}), \\ R_{i+1,j+N/2^i}^{(t)} = \ g(R_{i,j}^{(t)}, L_{i+1,j}^{(t-1)}) + R_{i,j+N/2^i}^{(t)}, \end{cases}$$

Optimization on G-matrix Factor Graph

▶ Each node is approximated and parameterized:

$$g(x,y) = \ln \frac{1 + e^{x+y}}{e^x + e^y} \approx \alpha_{i,j} \times \operatorname{sign}(x)\operatorname{sign}(y) \times \min(|x|,|y|).$$

³[Xu, Wu, Ueng, et al., SiPS 2017]

BP Decoding for Polar Codes

BP Decoding on Tanner Graph:

$$\begin{split} L_{t,e=(v,c)} &= L_v + \sum_{e'=(c',v),c'\neq c} L_{t-1,e'}, \\ L_{t,e=(c,v)} &= \left(\prod_{e'=(v',c),v'\neq v} \operatorname{sign}\left(L_{t,e'}\right)\right) \times 2 \tanh^{-1}\left(\prod_{e'=(v',c),v'\neq v} \tanh\left(\frac{\left|L_{t,e'}\right|}{2}\right)\right). \end{split}$$

⁴[Cammerer, Ebada, Elkelesh, et al., ISIT 2018]

Optimization on Tanner Graph

 $\,\,\vartriangleright\,$ Assign weights $\alpha_{i,e,e'}$ to check-to-variable edges:

$$x_{i,e=(c,v)} = \alpha_{i,e,e^{'}} \times \prod_{e^{'}} \mathrm{sign}(x_{i-1,e^{'}}) \times \min_{e^{'}}(|x_{i-1,e^{'}}|).$$

An Example on BCH (63, 36)

- ▶ Using one unified weight achieves comparative performance.
- ▷ Assigning weights to every edge is redundant.

²[Nachmani, Marciano, Lugosch, et al., JSTSP 2018]

Weights Reduction

- ▷ Assigning weights to every edge is redundant.
- \triangleright Restrict training weights to one α parameter:

$$x_{i,e=(c,v)} = \alpha \times \prod_{e'} \operatorname{sign}(x_{i-1,e'}) \times \min_{e'}(|x_{i-1,e'}|).$$

Training Methods

 \triangleright The output LLRs are squashed to (0,1) probability by sigmoid:

$$o_i = \sigma(L_i) = \frac{1}{1 + e^{-L_i}}.$$

▶ Binary cross entropy (BCE) is adopted as loss function:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{o}) = -\frac{1}{N} \sum_{i} x_i \log(o_i) + (1 - x_i) \log(1 - o_i).$$

▶ **Optimization target**: Search optimal parameters or their combination resulting in minimum BCE loss.

$$\alpha^* = \arg\min_{\alpha} \mathcal{L}(\boldsymbol{x}, \boldsymbol{o}).$$

Outline

- 1. Related Work
- 2. Deep Learning for Polar Codes on Sparse Graphs
- 3. Results and Analysis
- 4. Conclusion

Experiment on Tanner Graph

Parameters	Value
Code Length	64, 128, 256
Channel	AWGN with BPSK
SNR Range	1, 2, 3, 4, 5, 6
Optimizer	Mini-batch SGD with Adam
Learning Rate	Lr=0.001
Weights Initialization	$\mathcal{N} \sim (\mu = 1, \sigma = 0.1)$
Training Samples per SNR	20
Training mini-batch Size	120
Training Codewords	All zero codewords with noise
Validation Set Size	50000 per SNR
Validation Codewords	Random codewords with noise

Training Results

 $\,\triangleright\,$ Converge at around 150 epochs.

Performance Comparison with N=64

Performance Comparison with N = 128

Optimizing with Just One Weight

- \triangleright Constraint multiple weights to one unified α .
- \triangleright **Initialization**: Initializing α to one provides a good starting point (equivalent to Min-sum):

$$x_{i,e=(c,v)} = \prod_{e^{'}} \mathrm{sign}(x_{i-1,e^{'}}) \times \min_{e^{'}}(|x_{i-1,e^{'}}|).$$

- ▷ Obtain good parameter through adaptive training instead of greedy searching as in [5].
- ▶ Train by unfolding to 10 iterations and test with 50 iterations.

⁵[Yuan and Parhi, TSP 2014]

Performance Comparison with N = 128

- \triangleright Trained α is close to 0.85.
- $\triangleright 0.2$ dB gain over empirical scaling factor $\alpha = 0.9375$ suggested in [5].

⁵[Yuan and Parhi, TSP 2014]

Performance Comparison with N = 256

 $\triangleright 0.1$ dB gain over empirical scaling factor $\alpha = 0.9375$ suggested in [5].

⁵[Yuan and Parhi, TSP 2014]

Complexity Comparison

Complexity Comparison

 \triangleright About 25% complexity reduction compared with original polar BP.

Comparison of Decoding Latency

- ho Latency on G-matrix factor graph: $2I\log_2 N$.
- \triangleright Latency on sparse Tanner graph: 2I code length independent.
- **▶** Latency reduction: $\log_2 N$.

Outline

- 1. Related Work
- 2. Deep Learning for Polar Codes on Sparse Graphs
- 3. Results and Analysis
- 4. Conclusion

Conclusion

- Polar neural network decoder based on Tanner graph.
 - Reduced decoding complexity
 - Higher parallelism
- Reduction of training weights.
 - Restricting training weights to only one
- Optimizing polar codes on two types of graphs.
 - Tanner graph
 - Original factor graph

Reference

- T. Gruber, S. Cammerer, J. Hoydis, et al., "On deep learning-based channel decoding," in Annual Conference on Information Sciences and Systems (CISS), IEEE, 2017, pp. 1–6
- E. Nachmani, E. Marciano, L. Lugosch, et al., "Deep learning methods for improved decoding of linear codes," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 119–131, 2018
- W. Xu, Z. Wu, Y.-L. Ueng, et al., "Improved polar decoder based on deep learning," in IEEE International Workshop on Signal Processing Systems (SiPS), 2017, pp. 1–6
- S. Cammerer, M. Ebada, A. Elkelesh, et al., "Sparse graphs for belief propagation decoding of polar codes," in *IEEE International Symposium on Information Theory* (ISIT), 2018, pp. 1465–1469
- B. Yuan and K. K. Parhi, "Early stopping criteria for energy-efficient low-latency belief-propagation polar code decoders," *IEEE Transactions on Signal Processing*, vol. 62, no. 24, pp. 6496–6506, 2014

Thanks for Your Attention!

