OPT:

LIGHTWEIGHT SOURCE AUTHENTICATION & PATH VALIDATION

Tiffany Hyun-Jin Kim,¹ Cristina Basescu,² Limin Jia,¹ Soo Bum Lee,³ Yih-Chun Hu,⁴ and Adrian Perrig²

¹Carnegie Mellon University, ²ETH Zurich, ³Qualcomm, ⁴Univ. of Illinois at Urbana-Champaign

ACM SIGCOMM, August 20, 2014

REAL INTERNET PATH MISDIRECTION

■ Limited control of paths → hijacked & redirected

POTENTIAL ATTACK SURFACES

Traffic diversion

Attacker eavesdrops any parts of packets
 (e.g., metadata) with potentially sensitive info

Fictitious premium path usage

ISPs use inferior path but charge for premium path

Packet injection with spoofed source address

Routers inject extra packets to incriminate source

CURRENT INTERNET DOESN'T SUPPORT

Path validation

- Client selects an intended path
 - Could be at AS-level or router-level
- Endhosts check if packet followed intended path in the correct order

Source authentication

- Routers check the sender of received packet
- To mitigate address spoofing attacks

HOW SOURCE CAN BE AUTHENTICATED

Use shared secret key with S

- R₂ shares secret key with S
- S creates an authentication field (e.g., MAC) using
- Correct MAC can only be generated by S

HOW PATH CAN BE VALIDATED

Set up shared secret keys

- Using →, R₁ checks path has been followed so far
- Using , R₁ creates a proof for R₂ that it has seen the packet
- Using →, R₁ creates a proof for D as well

COWARD ATTACKS [1]

- Typical source authentication & path validation
 - Require key setup in advance
- Attacker's goal is not to get caught
 - If malicious routers know they are being monitored → attackers start obeying protocol

Can we design a mechanism for source authentication and path validation that is *practical* for deployment?

OUR DESIGN DECISION

RETROACTIVE-OPT

- No key setup before packet forwarding
 - Only with suspected misbehavior, S and D set up keys for previous packets

RETROACTIVE-OPT

- No key setup before packet forwarding
 - Only with suspected misbehavior, S and D set up keys for previous packets

- Routers commit some value during forwarding
 - Reveal keys used for the commitment later
 - Wrong key or incorrect commitment → misbehavior detected

EFFICIENCY ON ROUTERS

- Dynamically re-creatable keys on the fly
 - S selects Parameters that other routers use for key setup
 - Parameters in packet header + local secret in memory →

- Constant crypto computation during forwarding
 - Independent of path length
 - O(1) Message Authentication Code (MAC) operation per packet

RETROACTIVE-OPT PROCESS

- Each OPT downstream node derives a key
 - Parameters in packet header + local secret in memory
- Commits PVF with 1 MAC operation

RETROACTIVE-OPT PROCESS

- Each OPT downstream node derives a key
 - Parameters in packet header + local secret in memory
- Commits PVF with 1 MAC operation

DYNAMICALLY RECREATABLE KEY

- Later when S or D wants to validate path for previous packets
 - S forwards Parameters to routers
 - Parameters + single local secret → Router recomputes key
 - Forward encrypted & signed keys
 - To detect misbehavior, D recomputes

LIGHTWEIGHT ON ROUTERS

Pushes complexity to end hosts

	ROUTER	SOURCE / DESTINATION
MAC operations	O(1)	O(n)
Storage	local secret	Parameters MAC PVF PVF

- Retroactive-OPT header size independent of path length & small
 - Higher goodput

OPT VARIATIONS IN PAPER

Keys are set up before protocol starts

OPT & EXTENDED-OPT OVERVIEW

S selects a path to D

Nodes establish shared secret key(s) with S & D

- S prepares special fields for each node in the packet header
 - Helps each router derive shared key & authenticate source
- Each node updates a verification field in the packet header
 - Helps downstream nodes validate path

2 OTHER VARIATIONS OF OPT

OPT

- S & D obey the protocol
- R shares 1 key with S & D
- All nodes detect

Extended-OPT

- S may be malicious
- R shares 2 keys
- Destination detects

CAN OPT DEFEND AGAINST ATTACKS?

Proof-based (mechanized) formal verification [2]

ATTACKER	DEFENSE
Alters packets	Cannot compute <i>valid PVF</i> without secret keys
Deviates path	Cannot compute valid PVF
Coward attacks	Retroactive version mitigates
State-exhaustion DoS attacks	Memory-lookup of <i>a single value</i> & <i>O(1) MAC</i> operation
Collude & redirect packets	Honest router or destination drops

OPT IMPLEMENTATION

- Router performance evaluation goals
 - 1. Per-packet processing overhead
 - 2. Scalability w.r.t. path length
- Compare generic OPT with ICING [3]

Pairwise key-based source authentication & path validation for all nodes

OUR DESIGN DECISION

OPT THROUGHPUT & GOODPUT

Traffic generated for 10 sec at 40 Gbps

OPT throughput vs.

ICING throughput

OPT THROUGHPUT & GOODPUT

Traffic generated for 10 sec at 40 Gbps

OPT goodput vs.
ICING goodput

OPT PATH LENGTH SCALABILITY

- Ratio between goodput & throughput
 - Small (256B) and large (1024B) packets with varying path lengths

CONCLUSIONS

- OPT: efficient protocol for source and path validation
 - Without burdening routers
- OPT achieves performance improvements
 - Minimal storage & computational overhead on routers
 - Regardless of path length
- Retroactive-OPT to defend against coward attacks

Thank you

hyunjin@cmu.edu

Special thanks to: George Danezis, Yue-Hsun Lin, Ratul Mahajan, Raphael Reischuk, XIA team, and anonymous reviewers ©