MLFA LAB Assignment - 3

Name: Aryan Satpathy

Roll: 20EC10014

Experiment 1

Plot of % Accuracy v/s Learning Rate on the validation set:

Figure 1: % Accuracy v/s Learning Rate

Remarks:

- 1. Best Learning Rate: 0.1
- These results are very specific to the seed chosen. I changed my seed and got
 0.05 as the best Learning Rate. This is because the validation set is very small and might end up containing data of only one class due to a certain unfortunate seed.

Experiment 2

Plot of Probabilities v/s Epochs on train set(separated based on class):

Figure 2: Average Probabilities v/s Epochs

Remarks:

- The model learns to classify Iris Setosa really well. However, it struggles with Iris Versicolor as the model confuses its features with that Iris Virginica. This effect is also visible in the plot for Iris Virginica.
- 2. My understanding behind this phenomenon, is that the data might look something like this:

Green might be very concentrated and a lot of its portion lies near somewhat dense regions of Blue. This will lead to wrong predictions of those Green samples.

Whereas Blue is rather spread out and its prediction will not suffer as much as green will. Amidst all this, Red will be perfectly separable(also noticed as accuracy = 1 in next experiment).

Figure 3: Visualization

Experiment 3

Heatmap of Confusion Matrix on test data:

Figure 4: Confusion Matrix

Confusion Matrix in tabular form:

Class	Iris - Setosa	Iris - Versicolor	Iris - Virginica
Iris - Setosa	8	0	0
Iris - Versicolor	0	9	1
Iris - Virginica	0	2	10

Table 1: Confusion Matrix in Tabular Form
(Row represents Data and Column represents Prediction)

Performance Metrics on the test data are as follows:

Class	Precision	Recall	F1
Iris - Setosa	1.00	1.00	1.00
Iris - Versicolor	0.82	0.90	0.86
Iris - Virginica	0.91	0.83	0.87

Table 2: Performance Metrics on test data

Observation and remarks about the results:

- Iris Setosa is perfectly separable. This can be concluded from the fact that precision and recall are 1.
- 2. Iris Versicolor has a relatively bad classification score. The model confuses Iris Versicolor with Iris Virginica. This could be because of the explanation I provided in Experiment 2 Figure-3. We also notice this in the Average Probability v/s Epochs graph. Notice how the prediction probability for Iris Virginica increases at first, followed by steady dropping(Figure 2 b).
- Iris Virginica has a relatively better performance than that of Iris Versicolor, however it's not perfect(like that of Iris - Setosa). I have tried to explain this in Experiment 2 Figure-3.