Instrucciones del proyecto

Este proyecto tiene como objetivo aplicar los conceptos de álgebra lineal al proceso de cifrado y descifrado de mensajes mediante matrices. Cada alumno recibe una matriz llave K y una cadena de números cifrados. Su tarea consiste en:

- 1. Calcular la matriz inversa K^{-1} utilizando el **método de Gauss-Jordan**.
- 2. Multiplicar la matriz inversa K^{-1} por los vectores de la cadena cifrada (en bloques de 3 en 3 números).
- 3. Obtener la secuencia numérica original y convertirla a texto según la tabla de equivalencias proporcionada.

El mensaje resultante corresponderá a una frase corta que deberá descifrarse correctamente. Presente todos los cálculos y procedimientos paso a paso en el espacio indicado.

Ejemplo de descifrado

Suponga que se le da la siguiente matriz y cadena cifrada:

$$K = \begin{pmatrix} 2 & 5 & 7 \\ 1 & 6 & 3 \\ 4 & 0 & 8 \end{pmatrix}$$
, Cadena cifrada: [7, 18, 3, 4, 9, 2, 15, 21, 5]

1. Calcular la matriz inversa K^{-1} utilizando el método de Gauss-Jordan. Para ello, se forma la matriz aumentada:

$$[K \mid I] = \begin{pmatrix} 2 & 5 & 7 & 1 & 0 & 0 \\ 1 & 6 & 3 & 0 & 1 & 0 \\ 4 & 0 & 8 & 0 & 0 & 1 \end{pmatrix}$$

Luego, aplicando operaciones elementales de fila (intercambio, multiplicación y suma), se transforma la parte izquierda en la identidad. El resultado final es:

$$[I \mid K^{-1}] = \begin{pmatrix} 1 & 0 & 0 & 0.50 & -0.39 & -0.22 \\ 0 & 1 & 0 & -0.10 & 0.26 & -0.09 \\ 0 & 0 & 1 & -0.25 & 0.24 & 0.18 \end{pmatrix} \quad \Rightarrow \quad K^{-1} = \begin{pmatrix} 0.50 & -0.39 & -0.22 \\ -0.10 & 0.26 & -0.09 \\ -0.25 & 0.24 & 0.18 \end{pmatrix}$$

2. Agrupar la cadena cifrada en vectores de tamaño 3:

3. Multiplicar K^{-1} por cada vector para recuperar los números originales del mensaje. Por ejemplo, para el primer bloque:

$$\begin{pmatrix} 0.50 & -0.39 & -0.22 \\ -0.10 & 0.26 & -0.09 \\ -0.25 & 0.24 & 0.18 \end{pmatrix} \begin{pmatrix} 7 \\ 18 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.50(7) - 0.39(18) - 0.22(3) \\ -0.10(7) + 0.26(18) - 0.09(3) \\ -0.25(7) + 0.24(18) + 0.18(3) \end{pmatrix} = \begin{pmatrix} 0.83 \\ 3.03 \\ 1.45 \end{pmatrix} \approx \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

Repitiendo este proceso para los demás bloques, se obtienen los números descifrados.

4. Convertir los números a letras utilizando la siguiente tabla de equivalencias:

5. Interpretar el mensaje obtenido.

Supongamos que el resultado final es:

$$[3, 15, 4, 9, 7, 15, 27, 19, 5, 3, 18, 5, 20, 15]$$

Usando la tabla anterior:

Por lo tanto, el mensaje descifrado es:

CODIGO SECRETO

Nota: el propósito de este ejemplo es ilustrar el procedimiento paso a paso del método de Gauss-Jordan. Cada alumno deberá aplicar el mismo proceso con su propia matriz y cadena cifrada.

Proyecto 030

Nombre del alumno: ______ Grupo: _____ Fecha de entrega: _____

Matriz llave:

$$K = \begin{pmatrix} 5.0 & 9.0 & 2.0 \\ 4.0 & 5.0 & 5.0 \\ 4.0 & 8.0 & 8.0 \end{pmatrix} \pmod{29}$$

Cadena cifrada:

230.0	256.0	364.0	279.0	194.0	272.0	103.0	136.0	208.0	181.0	153.0	180.0
140.0	136.0	172.0	194.0	119.0	176.0	343.0	232.0	328.0	305.0	251.0	356.0
321.0	293.0	404.0	71.0	65.0	92.0	348.0	236.0	332.0	160.0	176.0	248.0
191.0	190.0	292.0	221.0	229.0	364.0	206.0	122.0	188.0	255.0	238.0	352.0
126.0	151.0	220.0	181.0	153.0	180.0	116.0	111.0	132.0	234.0	246.0	372.0
114.0	157.0	220.0	144.0	90.0	132.0	187.0	140.0	176.0	324.0	210.0	300.0
255.0	265.0	388.0	48.0	77.0	116.0	128.0	192.0	276.0	161.0	106.0	160.0
191.0	190.0	292.0	306.0	250.0	388.0	256.0	231.0	348.0	144.0	90.0	132.0
328.0	328.0	460.0									

Espacio para cálculos y observaciones: