2/2

-1/2

2/2

2/2

2/2

-1/2

2/2

2/2

2/2

2/2

+311/1/32+

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) :	
PEGORIER - LACHHANN	□0 □1 □2 □3 □4 □5 ■6 □7 □8 □9	
Theodore		
	□0 □1 □2 🖏3 □4 □5 □6 □7 □8 □9	
	□0 □1 □2 □3 □4 □5 □6 □7 □8 ■9	
. B2.	□0 □1 □2 □3 □4 前5 □6 □7 □8 □9	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.		
Q.2 Soit L_1 et L_2 deux langages sur l'alphabet Σ .	Si $L_1 \cap \overline{L_2} = \emptyset$ alors	
	$\emptyset \qquad \qquad \square L_1 \supseteq L_2 \qquad \qquad \boxtimes L_1 \subseteq L_2$	
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = (\{a\}^* \{b\}^*)^*$:		
	$\Box L_1 \stackrel{\not\subseteq}{\to} L_2 \qquad \blacksquare L_1 = L_2$	
Q.4 Soit le langage $L = \{a, b\}^*$.		
	$Guff(L) = Pref(L)$ \square $Suff(L) \subseteq Pref(L)$ $L) \cup Pref(L) = \emptyset$	
Q.5 Que vaut $Fact(L)$ (l'ensemble des facteurs):		
$ \square Suff(\overline{Pref(L)}) \qquad \square Pref(Pref(L)) $		
Q.6 Que vaut $Fact(\{a\}\{b\}^*)$ (l'ensemble des facteur	rs)	
Q.7 Pour toute expression rationnelle e , on a $\emptyset + e$	$e \equiv e + \emptyset \equiv \emptyset.$	
□ vrai	faux	
Q.8 Pour toutes expressions rationnelles e, f , on a	$\mathbf{a} (e+f)^* \equiv (e^*f^*)^*.$	
☐ faux	vrai	
Q.9 Pour $e = (a + b)^*, f = a^*b^*$:		
\Box $L(e) \subseteq L(f)$ \Box $L(e) = L(f)$		
Q.10 L'expression Perl "([a-zA-Z] \\)+" engen	dre:	
■ "\\\"		
Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :		

2/2	 est toujours inclus (⊆) dans un langage rationnel peut avoir une intersection non vide avec son complémentaire peut n'être inclus dans aucun langage dénoté par une expression rationnelle Q.19 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si :
2/2	\square L_1 est rationnel \square L_1, L_2 sont rationnels \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_2 est rationnel
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):
2/2	\square 4^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square 2^n \square Il n'existe pas.
	Q.21 Déterminiser cet automate :
2/2	$\Box \stackrel{b}{\longleftrightarrow} \stackrel{b}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} \qquad \Box \stackrel{b}{\longleftrightarrow} \stackrel{b}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} \qquad \Box \stackrel{b}{\longleftrightarrow} \stackrel{b}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} \qquad \Box$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.6/2	Fact Suff Men Pref Sous – mot Transpose Aucune de ces réponses n'est correcte.
	√ Q.23 ② Quelle(s) opération(s) préserve(nt) la rationnalité?
0.8/2	 Complémentaire ☑ Union ☑ Intersection ☑ Différence ☑ Différence symétrique ☐ Aucune de ces réponses n'est correcte.
	Q.24 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.
2/2	Rec = Rat \square Rec \subseteq Rat \square Rec \supseteq Rat \square Rec $\not\supseteq$ Rat
	Q.25 Si L_1, L_2 sont rationnels, alors:
2/2	$ \Box \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2} \qquad \Box L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1 \\ \Box \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n \text{ aussi} $ \(\begin{align*} \left(L_1 \cap \overline{L_2} \right) \cup \left(\overline{L_1} \cap L_2 \right) \text{ aussi} \\ \end{align*}
	Q.26 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	 □ accepte un langage infini □ est déterministe □ a des transitions spontanées
	Q.27 On peut tester si un automate nondéterministe reconnaît un langage non vide.
2/2	☐ souvent 🛍 oui, toujours ☐ rarement ☐ jamais

 $(bab)^{333}$ $(bab)^{666666}$

☐ (bab)⁴⁴⁴⁴ ☐ (bab)²²

Q.28 Quel mot reconnait le produit de ces automates?

2/2

2/2

2/2

2/2

Q.29 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.

2/2 vrai en temps fini faux en temps infini faux en temps fini vrai en temps constant

Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a, b\}^+$?

Q.32 & Quels états peuvent être fusionnés sans changer le langage reconnu.

Q.33 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2 \square Il existe un DFA qui reconnaisse \mathcal{P} \square Il existe un ε -NFA qui reconnaisse \mathcal{P} \square Il existe un ε -NFA qui reconnaisse \mathcal{P} \square P ne vérifie pas le lemme de pompage

Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de $\frac{b}{a}$

2/2

Q.36 Sur $\{a, b\}$, quel est le complémentaire de \rightarrow

2/2

Fin de l'épreuve.

,

•