

Reto -> Entrega 2 Equipo 118

Diana Valeria García Briones - A01793006

Octavio Alberto García Morán - A01213977

Descripción de los datos

Se tiene una base de datos que contiene la información de 1,068 registros de pozos subterráneos que se encuentran en los 32 estados de la república mexicana. Se ve de la siguiente manera:

	CLAVE	SITIO	ORGANISMO_DE_CUENCA	ESTADO	MUNICIPIO	ACUIFERO	SUBTIPO	LONGITUD	LATITUD	PERIODO	 CUMPLE_CON_DU	R CUMPLE_CON_CF	CUMPLE_CON_NO3	CUMPLE_CON_AS	CUMPLE_CON_CD	CUMPLE_COM
0	DLAGU6	POZO SAN GIL	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	ASIENTOS	VALLE DE CHICALOTE	POZO	-102.02210	22.20887	2020		SI SI	SI	SI	SI	
1 [DLAGU6516	POZO R013 CAÑADA HONDA	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	AGUASCALIENTES	VALLE DE CHICALOTE	POZO	-102.20075	21.99958	2020		SI SI	SI	SI	SI	
2	DLAGU7	POZO COSIO	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	COSIO	VALLE DE AGUASCALIENTES	POZO	-102.28801	22.36685	2020		SI SI	SI	NO	SI	
3	DLAGU9	POZO EL SALITRILLO	LERMA SANTIAGO PACIFICO	AGUASCALIENTES	RINCON DE ROMOS	VALLE DE AGUASCALIENTES	POZO	-102.29449	22.18435	2020		SI SI	SI	SI	SI	
4	DLBAJ107	RANCHO EL TECOLOTE	PENINSULA DE BAJA CALIFORNIA	BAJA CALIFORNIA SUR	LA PAZ	TODOS SANTOS	POZO	-110.24480	23.45138	2020		SI SI	NO	SI	SI	
5 row	5 rows × 57 columns															

Adicionalmente, se agregó al notebook del Colab el diccionario de datos adicionales

CALIDAD DEL AGUA PARA (COLIFORMES FECALES_subterraneas	CRITERIO	DESCRIPCIO
	Excelente	COLI_FEC menor a 1.1	Agua potable. Agua no contaminada o condicion .
	Buena calidad	COLI_FEC mayor o igual de 1.1 y menor o igual	Aguas para uso recreativo con contacto primari.
	Aceptable	COLI_FEC mayor de 200 y menor o igual a 1000	Aguas con calidad admisible como fuente de aba
	Contaminada	COLI_FEC mayor de 1000 y menor o igual a 10000	Aguas con contaminacion bacteriologica. Indic
	Fuertemente contaminada	COLI_FEC mayor de 10000	Aguas con fuerte contaminacion bacteriologica.

Limpieza de los datos (1/2)

Como primer paso se revisaron las columnas de las base de datos, se logró identificar una columna sin datos y se eliminó de la base de datos. También, se identificó un símbolo en las columnas numéricas por lo que se procedió a eliminarlo.

```
[ ] #Eliminar la columna que no contiene datos
Datos_Limpios.drop('SDT_mg/L', axis=1, inplace=True)
```

```
[ ] #Eliminamos los simbolos de las columnas numericas

Col_Num = ['ALC_mg/L','CONDUCT_mS/cm','SDT_M_mg/L','FLUORUROS_mg/L','DUR_mg/L','COLI_FEC_NMP/100_mL', 'N_NO3_mg/L','AS_TOT_mg/L',

'CD_TOT_mg/L','CR_TOT_mg/L','HG_TOT_mg/L','PB_TOT_mg/L','MN_TOT_mg/L',

Datos_Limpios[Col_Num] = Datos_Limpios[Col_Num].replace({'<':''}, regex=True) #Eliminamos el simbolo de < de todas las columnas numericas
```

Después, se transformaron las columnas al tipo correcto para asegurarse que se podrán realizar cálculos con las variables numéricas.

```
[ ] #Despues que eliminamos los simbolos podemos cambiar las columnas a su tipo correcto (numericas)

for name in Col_Num:
    mediana = Datos_Limpios[name].median()
    Datos_Limpios[name] = Datos_Limpios[name].astype('float')
    Datos_Limpios[name] = Datos_Limpios[name].replace(np.nan, mediana)
```

Limpieza de los datos (2/2)

Después, se revisó la base de datos para verificar que no existieran valores nulos que pudieran sesgar la base de datos y se identificaron valores perdidos. Por lo anterior, se procedió a hacer una sustitución de los datos por el promedio correspondiente.

```
#Remplazamos valores nulos por la media

for name in Col_Num:
    Datos_Limpios[name].replace(np.nan, np.mean)
```

Se revisó de nuevo la integridad de los datos para asegurar que sean útiles para los siguientes pasos.

```
#Valiamos la que ya no haya valores nulos en las variables numericas
    Datos Limpios.isnull().sum()
    SITIO
    ORGANISMO DE CUENCA
    MUNICIPIO
    ACUIFERO
    SUBTIPO
    LONGITUD
    LATITUD
    PERIODO
    ALC_mg/L
    CALIDAD ALC
    CONDUCT mS/cm
    CALIDAD_CONDUC
    SDT_M_mg/L
    CALIDAD SDT ra
    CALIDAD SDT salin
    FLUORUROS mg/L
    CALIDAD FLUO
    DUR mg/L
    CALIDAD DUR
    COLI FEC NMP/100 mL
    CALIDAD COLI FEC
    N_NO3_mg/L
    CALIDAD N NO3
    AS TOT mg/L
    CALIDAD AS
    CD TOT mg/L
    CALIDAD CD
    CR TOT mg/L
    CALIDAD CR
    HG_TOT_mg/L
    CALIDAD HG
    PB TOT mg/L
    CALIDAD PB
    MN TOT mg/L
    CALIDAD MN
    FE_TOT_mg/L
    CALIDAD FE
    SEMAFORO
```

Selección de variables: X y Y

Como siguiente paso, se procedió a escoger las variables dependientes (Y) y las independientes (X). Por definición, la variable dependiente es el semáforo, ya que es la variable de interés; por otro lado, las variables numéricas serán las independientes.

```
[ ] #Validaos el valor de Y
    Y = pd.DataFrame(Datos['SEMAFORO']) #Es nuestro target
    Y.shape

#Tomamos las variables numericas
import seaborn as sns
Datos_Num = Datos_Limpios[Col_Num]
[ ] Datos_Num.shape

(1068, 14)
```

Adicionalmente, se realizó un Label Encoding y una división de datos procurando que ésta sea balanceada.

```
[] #Importamos la libreria que vamos a utilizar
from sklearn import preprocessing

#Aplicamos el label encoding a la variable Y
lbe = preprocessing.LabelEncoder() #Salvamos metodo
Y["ENCODING"] = lbe.fit_transform(Y["SEMAFORO"]) #Creamos un nuevo campo con el valor del encoding
Y["ENCODING"].unique() #Validamos los valores unicos creados

array([2, 1, 0])
```

```
[] #Importamos la libreria
    from sklearn.model_selection import train_test_split

#Asignamos valor a la semilla
Semilla = 1

#Dividioms el conjunto en set de entrenamiento y prueba
    x_train, x_test, y_train, y_test = train_test_split(Datos_Num[Datos_Num.columns], Y[['ENCODING']], test_size=0.2, random_state=Semilla, stratify= Y)

print('X_train:',x_train.shape)
print('Y_test:',x_test.shape)
print('Y_train:',y_train.shape)
print('Y_test:',y_test.shape)

X_train: (854, 14)
X_test: (214, 14)
Y_train: (854, 1)
Y_test: (214, 1)
```

Construcción de modelos (1/2)

Primero se procedió con la construcción del Árbol de Decisión, resultando en un árbol con una profundidad de 7 ramas. Las características DUR_mg/L, N_NO3_mg/L y FE_TOT_mg/L determinaron los grupos más grandes.

Después, se obtuvo la precisión del árbol y fue de 92.0%; también, se graficó la importancia de cada una de las características, las tres más importantes fueron: FLUORUROS_mg/L, DUR_mg/L y

CD TOT ma/L

0.10

Relative Importance

0.15

0.20

N_NO3_mg/L

```
[ ] #Presicion del modelo:
    #from sklearn.metrics import accuracy_score
    accuracy_score(y_test, y_pred, normalize=True, sample_weight=None)
    0.9205607476635514
```

Construcción de modelos (2/2)

Después, se procedió con la construcción del Bosque Aleatorio, resultando en un árbol con una profundidad de 7 ramas. Las características FLUORUROS_mg/L/L y COLI_FEC_NMP/100_mL determinaron los grupos más grandes.

Después, se obtuvo la precisión del árbol y fue de 93.9%; también, se graficó la importancia de cada una de las características, las tres más importantes fueron: FLUORUROS_mg/L, DUR_mg/L y

AS_TOT_mg/L (Variable diferente al árbol de decisión).

```
[ ] #Precision del modelo
  y_pred_r = Random_Forest.predict(x_test)
  accuracy_score(y_test, y_pred_r, normalize=True, sample_weight=None)
0.9392523364485982
```


Resultados

Debido a las mínimas diferencias encontradas en las precisiones de los modelos, se analizó cada una de las métricas de votación para tener más información. Se encontró que los resultados son similares, solo cambian en la precisión y en el F1 para la clase 0.

8	Votos Soft					
		precision	recall	f1-score	support	
	0	0.84	0.84	0.84	49	
	1	1.00	0.90	0.95	78	
	2	0.91	0.99	0.95	87	
	accuracy			0.92	214	
	macro avg	0.91	0.91	0.91	214	
	weighted avg	0.92	0.92	0.92	214	
	Votos Hard					
		precision	recall	f1-score	support	
	0	0.81	0.98	0.89	49	
	1	1.00	0.87	0.93	78	
	2	0.98	0.98	0.98	87	
	accuracy			0.94	214	
	macro avg	0.93	0.94		214	
	weighted avg	0.95	0.94	0.94	214	
	bcu uvb	0.55	0.54	0154	217	

Para tener un poco más de claridad sobre esto, se procedió a elaborar la matriz de confusión para ambos.

Conclusión

A pesar que la diferencia de precisión parece menor (92.0% vs 93.9%) se puede destacar que esta pequeña diferencia afecta en mayor magnitud a la clase 0.

En ambos modelos las clasificaciones de las clases 1 y 2, obtuvimos exactamente los mismos resultados, así como los resultados de aciertos/fallos fueron en las clases, mientras que para la clase 0 se obtuvieron:

Árbol de Decisión: 41 aciertos y 8 fallos. Bosque Aleatorio: 46 aciertos y 3 fallos.

Se recomienda utilizar el bosque aleatorio, pues es el que menos perjudicó a las minorías y por lo tanto es el modelo que tendrá un menor sesgo.

