Visit www.brpaper.com for

downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com

APPLIED MATHEMATICS-II 2nd Exam/Common/2354/2251/5422/Nov'17

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. Choose the correct answer.

5x1=5

- Which one is a measure of dispersion?
- b) Median
- c) Mode
- d) Range
- Order of differential equation $(y''')^2 + 2y'' + 3y = x$ ii.
 - a) 1
- b) 2

- A square matrix A is singular if |A| is iii.
- b) 1
- d) 3
- If $x = \sin 3t$, then acceleration at $\frac{\pi}{2}$ is (x stands for displacement at time t)

- The equation of the normal to the curve $y = \sin x$ at (0, 0) is
 - a) x = 0
- b) v = 0
- c) x + y = 0 d) x y = 0

Q2. State True or False.

5x1=5

- a. $\lim_{\theta \to 0} \frac{Sin\theta^{\circ}}{\theta}$ is equal to 1
- b. $\int \sin 4x \ dx = \cos 4x$
- c. If D≠0, then system has unique solution
- d. If the mean of 4, 3, 7, x, 10 is 6 then x = 6
- e. The integral of $\log x$ w.r.t x is $\frac{1}{x}$

Q3. Fill in the blanks.

- i. $\int e^{mx} dx$ is equal to -----.
- ii. Area of trapezoid = $\frac{1}{2}$ (sum of parallel side) x -
- iii. If AB is defined then $(AB)^t = ----$
- iv. Integration is defined as the ----- of differentiation.
- v. The differential co-efficient of a constant is -----.

SECTION-B

Q4. Attempt any six questions.

6x5 = 30

- If $= a(t + \frac{1}{t})$, $y = a(t \frac{1}{t})$ where "a" is constant. Then prove that $\frac{dy}{dx} = \frac{x}{y}$
- If kx + y z = 0; x 2y + z = 3 and 4x 3y + z = 5, and system is inconsistent, then find (ii) the value of k.
- Evaluate $\int_0^{\pi/2} \frac{dx}{1+\cot x}$ (iii)
- (iv) If $y = (\sin^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 = 2$
- Evaluate $\int \cos^4 x \, dx$ (v)
- The probability of the horse A winning the race is 1/4 and the probability of horse B winning the (vi) race is 1/3, find the probability that one of the horse wins the race.

Visit www.brpaper.com for

downloading previous years question papers of B-tech, Diploma, BBA, BCA, MBA, MCA, Bsc-IT, M-Tech, PGDCA, B-com

(vii) Calculate the median of the following data:-

Class Interval	0-5	5-10	10-15	15-20	20-25	25-30	30-35
Frequency	12	15	25	40	42	14	8

- (viii) Evaluate $\int x \tan^{-1} x \ dx$
- (ix) Find the point on the curve $y = 10 + 2x x^2$ where the curve has slope unity.

SECTION-C

Q5. Attempt any three questions.

- (i) Solve the following equations by matrix method x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1
- (ii) Using Simpson's Rule, calculate the approximate value of $\int_0^1 \frac{1}{1+x^2} dx$ by dividing the interval 0 to 1 into four equal parts. Hence obtain the value of π correct to four places of decimals.
- (iii) Solve the differential equation

$$y^2(x^2-1)\frac{dy}{dx}-x^2(y^2-1)=0$$

- (iv) a) Differentiate $e^{\tan x}$ w.r.t $\sin x$.
 - b) Determine the point of maxima of $f(x) = \sin x + \cos x$ in $0 \le x \le \frac{\pi}{2}$
- (v) Find S.D and coefficient of variation of following data

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of students	5	10	20	40	30	20	10	4

Visit www.brpaper.com for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

APPLIED MATHEMATICS – II 2nd Exam/Common/2354/2251/5422/May'17

Duration: 3 Hours M. Marks:75 SECTION - A

Q1. (A) Choose the correct answer:

5x1=5

- (i) If $D \neq 0$, then system has
 - (a) Infinite Solution
- (b) Unique Solution
- (c) Not a Solution
- (d) None of the above

- (ii) $\lim_{x\to 0} \frac{\sin x x}{x} =$

- (b) -1
- (c) 0
- (d) ∞

- (iii) $\int_0^1 \frac{1}{1+x^2} dx =$
- (b) $\frac{\pi}{4}$
- (c) 1

- (d) 0
- (iv) The order of differential equation $\left(\frac{d^4y}{dx^4}\right)^2 + 3\left(\frac{d^2y}{dx^2}\right)^4 + y = 0$ is
 - (a) 4
- (b) 2

(d) 1

- (v) If f(-x) = f(x) then the function is
 - (a) odd
- (c) both
- (d) none

(B) State true or false.

- i. $\int \log x \, dx = \frac{1}{x}$
ii. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ then |A| = 1
- iii. The differential coefficient of a constant is one.
- iv. Tossing of a coin is an event and the turning up of head and tail is a trial.
- v. Median is a measure of central tendency.

(C) Fill in the blanks.

5x1=5

- i. Derivative of x^6 w.r.t x^3 is
- ii. A matrix is said to be singular if its
- iii. The square of is called variance.
- iv. Arithmetic mean of 10 terms is 7. If each term is decreased by 3, then the new mean is
- v. Area bounded by the curve, $y = 4x x^2$ and x-axis and the ordinates x=1 and x=3 is

SECTION - B

Q2. Attempt any six questions.

6x5 = 30

- (i) If $x^y = e^{x-y}$ Prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$
- (ii) Evaluate $\int x \cos^2 x \, dx$
- (iii) Using Cramer's rule find the value of x and y for

$$6 x - 4y = -24$$
$$5x - 11y = -43$$

- (iv) If $y = (\tan^{-1} x)^2$ Prove that $(1 + x^2)^2 y_2 + 2x(1 + x^2) y_1 = 2$
- (v) Find the equation of tangent to the curve $y = 9x^2 12x + 9$ which is parallel to x- axis

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), B-Tech, Diploma, BBA, BCA, MBA, MCA, M-Tech, PGDCA, B-Com, BSC-IT, MSC-IT.

(vi) Find the approximate area under the smooth curve whose ordinates are given below by the method of trapezoidal rule

х	1	2	3	4	5	6	7	8
y	2	2.6	3	3.2	2.8	2	1.5	1

- (vii) Evaluate $\int \frac{\cos x \, dx}{2\cos x + \sin x}$
- (viii) The students work independently on a problem. The probability that the first will solve it is $\frac{2}{3}$ and probability that the second one will solve is $\frac{2}{9}$. Find the probability that the problem will be solved.
- (ix) Solve $(xy^2 + x) dx / dy = yx^2 y$

SECTION - C

Q3. Attempt any three questions.

3x10=30

(i) Solve the following equations by matrix method

$$x + y - z = -2$$

 $2x - y - z = -7$
 $4x + y + 2z = 4$

(ii) Find the maximum and minimum values of the function

$$2x^3 - 15x^2 + 36x + 10$$

(iii) Calculate the standard deviation from the following data

х	25	35	45	55	65	75	85
f	3	61	132	153	140	51	2

(iv) Show that

$$\int_0^{\pi/4} \log \left(1 + \tan \theta\right) d\theta = \frac{\pi}{8} \log 2$$

(v) Solve

$$x^2 \frac{dy}{dx} = x^2 - 2y^2 + xy$$

i. 5x + 2y = 3

j. 3x + 2y = 5k. Evaluate $\int_{1}^{3} \frac{\cos(\log x)}{x} dx$

APPLIED MATHEMATICS-II 2nd Exam/Common/2354/2251/5422/Nov'18

Duration: 3Hrs. M.Marks:75 **SECTION-A** Q1. a) Choose the correct answer. 15x1=15 i. If A is a non singular matrix, then A^{-1} is d) $\frac{(adj A)^T}{|A|}$ c) $(adjA)^T$ a) |A| adj Aii. $\int_0^1 \frac{1}{1+X^2} dx =$ d) $\frac{\pi}{6}$ iii. $\lim_{x\to 0} \frac{\sin x^{\circ}}{x} =$ d) -π iv. Order of differential equation $(y''')^2 + 2y'' + 3y = x$ is d) 2 v. The differential coefficient of $\sin x^2$ w.r.t $\cos x^2$ is a) $-\tan x^2$ c) 2xd) -2xb) State True or False. vi. The differential coefficient of a constant is one. vii. $\int_{-a}^{a} f(x) dx = 0$ if f(x) is even. viii. Mean Deviation = $\frac{5}{4}$ Standard Deviation ix. Volume of a sphere of radius 'a' is $\frac{4}{3}\pi a^3$ $x. \cos 2A = \cos^2 A - \sin^2 A$ c) Fill in the blanks xi. The angles in trigonometric functions are supposed to be measured in xii. A square matrix is said to be a diagonal matrix if all its non-diagonal elements are_____. xiii. $\int \frac{g'(x)}{g(x)}$ is equal to____ xiv. Central value of the set of observation is called_ xv. The derivative of e^x is equal to_ **SECTION-B** Q2. Attempt any six questions. 6x5 = 30a. In a class of 30 students with roll no. 1 to 30, a student is picked up at random to answer a question. Find the probability that the roll number of selected students is either a multiple of 4 or b. If $y = e^{x+y}$, prove that $\frac{dy}{dx} = \frac{y}{1-y}$ c. Calculate by Simpson's rule an approximate value of $\int_{-3}^{3} x^4 dx$ by taking seven equidistant ordinates. d. Find the equation of the tangent to the curve $y = x^2$, whose slope is $\frac{1}{2}$. e. Evaluate $\int \frac{dx}{5+4\cos x}$ f. Find the area bounded by the curve $y = \log x$ between the x-axis and the ordinates x = 2 and x = 3.g. If $y = \tan^{-1} x$, prove that $(1 + x^2)y_2 + 2xy_1 = 0$ h. Solve the equations by Crammer's rule

SECTION-C

Q3. Attempt any three questions.

3x10=30

i. Solve the following equations by matrix method

$$3x + y + 2z = 3
2x - 3y - z = -3$$

- x + 2y + z = 4
- ii. Find the maximum and minimum values of the function $x^3 6x^2 + 9x + 15$
- iii. Find the standard deviation from the following data

Wages	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	12	18	35	42	50	45	20	8

iv. Solve the differential equation

$$y^2(x^2 - 1)\frac{dy}{dx} - x^2(y^2 - 1) = 0$$
v. Integrate $x^2 sin^2 x dx$

APPLIED MATHEMATICS-II 2nd Exam/Common/2354/2251/5422/May'18

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. Choose the correct answer

5x1=5

i) If a square matrix A has two identical rows or columns, then det A =

ii) $\frac{d}{dx}$ (tan⁻¹(cot x)) =

a) $-cosec^2x$

b) -1 c) $sin^2 x$

d) 1

iii) $\int \log x \, dx$ is equal to

a) $\frac{1}{2}(\log x)^2$ b) $\frac{1}{x}$ c) $x\log x - x$ d) $2\log x$ iv) If $x = a \cos^3 t$, $y = a \sin^3 t$, then $\frac{dy}{dx}$ is equal to

b) $\cos t$

c) cosect d) -tan t

a) cot t b) cos t v) Degree of $(\frac{d^2y}{dx^2})^2 = (1 + \frac{dy}{dx})^3$ is b) 3

c) 1

d) 4

Q2. State True or False.

5x1=5

a.
$$\frac{d}{dx}(x \sin x) = x \cos x$$

a.
$$\frac{d}{dx}(x\sin x) = x\cos x$$

b. If $D = D_1 = D_2 = D_3 = 0$, system has infinite solution.
c. $\frac{d}{dx}(\frac{1}{x}) = \log x$

c.
$$\frac{d}{dx}(\frac{1}{x}) = \log x$$

d. If tangent is parallel to x -axis, then slope of curve is zero.

e.
$$\int e^{mx} dx = me^{mx}$$

Q3. Fill in the blanks.

- i. If S = cos2t, then velocity is
- ii. The anti derivative of x^n is

iii.
$$\int_{-a}^{a} f(x) dx = 0 \text{ is an} \text{ function.}$$

- v. The probability of an impossible event is

SECTION-B

Q4. Attempt any six questions.

6x5 = 30

i) Solve by means of determinants the following equations

$$3x + 2y = 7$$

$$11x - 4y = 3$$

ii) The velocity of a body moving in a straight line at different times is given below

t (sec)	0	1	2	3	4	5
v (m/sec)	4	3.98	3.87	3.55	2.83	0.61

Evaluate the distance in 5 sec.

- iii) Evaluate $\int_0^{\pi/6} \cos^5 3x \ dx$
- iv) Solve $3e^{x} \tan y \, dx + (1+e^{x}) \, Sec^{2}y \, dy = 0$
- v) Find the equation of the normal to the curve $y = 6x^2 5x + 3$ at (1,4)

vi) If
$$y = \tan(x + y)$$
, prove that $\frac{dy}{dx} = -\frac{1+y^2}{y^2}$.

vii) Find
$$\frac{d^4y}{dx^4}$$
 if $y = x^3 \log x$

viii) Evaluate
$$\int \frac{e^x}{e^{2x} + 6e^x + 5} dx$$
.

Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU, MRSSTU, PSBTE, PUNJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE

S.B. Roll No.....

ix) A card is drawn from a well shuffled pack of playing cards. What is the probability that it is either a spade or an ace?

SECTION-C

Q5. Attempt any three questions.

- i) Find the maximum or minimum values of the function $2x^3 21x^2 + 36x 20$
- ii) a) Evaluate $\int \frac{\cos x}{\cos 3x}$
 - b) Differentiate $Sin^n x^n$ w.r.tx.
- iii) Solve the following equations by matrix method

$$10x + 10y - z = -2$$

 $x + 5y + 2z = 0$
 $x - 5y - z = 4$

- iv) Evaluate $\int \frac{(x^2+4)}{(x^2+1)(x^2+3)} dx$
- v) Calculate the median and standard deviation from the following data

Class Interval	1-10	11-20	21-30	31-40	41-50	51-60
Frequency	3	16	26	31	16	8

APPLIED MATHEMATICS-II 2nd Exam/Common/2354/2251/5422/May'19

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. a) Choose the correct answer.

i.
$$\frac{d}{dx}(e^x)=$$

a)
$$e^x \log a$$

b)
$$a^x \log_a^e$$

c)
$$e^x$$

15x1=15

ii.
$$\int_{0}^{1} \frac{1}{1+x^2} dx =$$
 a) $\frac{\pi}{2}$ b) $\frac{\pi}{4}$

a)
$$\frac{\pi}{2}$$

b)
$$\frac{\pi}{4}$$

iii.
$$\frac{d}{dx}(Tan^{-1}x) =$$
 a) $\frac{1}{1+x^2}$ b) $-\frac{1}{1+x^2}$ c) $\frac{1}{x}$ d) $tan^{-1}x$

$$a) \frac{1}{1+x^2}$$

b)
$$-\frac{1}{1+x^2}$$

c)
$$\frac{1}{x}$$

d)
$$tan^{-1}$$

iv.
$$\frac{d}{dx}(\log x) = \begin{cases} a \end{cases} e^x$$
 b) x c) $\frac{1}{x}$ d) $\frac{x^2}{2}$ v. If $A = \begin{bmatrix} 2 & -1 \\ 4 & 4 \end{bmatrix}$, then $|A| = \begin{bmatrix} a \\ 4 \end{bmatrix} - 4$ b) 4 c) 8 d) 12

a)
$$e^x$$

c)
$$\frac{1}{x}$$

d)
$$\frac{x^2}{2}$$

vi. If
$$y = \sqrt{x}$$
, then $\frac{dy}{dx} = \frac{1}{\sqrt{x}}$

vii.
$$\frac{d}{dx} \left(Sin^{-1}x + Cos^{-1}x \right) = 0.$$

viii. For tangent parallel to y-axis,
$$\frac{dy}{dx} = 0$$

x. If
$$y = \log(\sin x)$$
, then $\frac{dy}{dx} = \cot x$

c) Fill in the blanks.

xi. If
$$\frac{x^n - 2^n}{n - 2} = 80$$
, then $n = ______$

c) Fill in the blanks.

xi. If
$$\frac{x^n - 2^n}{n - 2} = 80$$
, then $n =$ _____

xii. Matrix $A = \begin{bmatrix} K & 4 \\ 3 & 4 \end{bmatrix}$ is singular if K=_____

$$xv. \int \sec x \, dx = \underline{\hspace{1cm}}$$

SECTION-B

Q2. Attempt any six questions.

a. Prove that
$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = a^2 (3x+a)$$

- b. Calculate by Simpson's rule an approximate value of $\int_{-3}^{3} x^4 dx$, by taking seven equidistant and ordinates.
- c. A card is drawn at random from a well shuffled pack of cards. Find the probability of its being a

d. Solve the differential equation
$$(1+x^2) dy = (1+y^2) dx$$

e. Evaluate
$$\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$$

f. If
$$x = at^2$$
, $y = 2at$, find $\frac{dy}{dx}$

g. Find maximum and minimum value of the function $y = x^3 - 6x^2 + 9x - 8$.

h. Find derivative of
$$y = \log(x + \sqrt{x^2 - a^2})$$

i. Find equation of the tangent to the curve $y = x^4 - 6x^3 + 13x^2 - 10x + 5$ at (1, 3)

SECTION-C

Attempt any three questions.

3x10=30

Q3. Find standard Deviation of fallowing data.

Wage	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Freq.	12	18	35	42	50	45	20	8

Q4. Solve the system of equations, using matrix method (By finding inverse)

$$x + y + z = 3$$

$$x + 2y + 3z = 4$$

$$x + 4y + 9z = 6$$

Q5. Differentiate the following function $y = x^x + (Sin x)^x$

Q6. a) Use Cramer's rules to find the value of x and y

$$2x - y = 1 \qquad 7x - 2y = -7$$

b) Evaluate
$$\int Cos^3 x \ dx$$

Q7. If
$$x = a(\theta - \sin \theta)$$
; $y = a(1 + \cos \theta)$, find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$

APPLIED MATHEMATICS-II

2nd Exam/Civil/Mech./ Electrical/ECE/IT/CSE/Auto/Mechatronics/0553/May'19 (FOR 2018 BATCH)

Duration: 3Hrs. M.Marks:75

SECTION-A

Q1. a) Choose the correct answer.

i. $\lim_{\theta \to 0} \sin \frac{2\theta}{\theta}$ is equal to

b) 1

d) 2

ii. $\int_{-\pi}^{\frac{n}{2}} \cos x dx$ is equal to

a) – 1

b) 0

c) 1

d) 2

iii. The deviation of $x^2 \log x$ is equal to

c) $x(1 + 2 \log x)$

c) $\frac{1}{2}$

15x1=15

a) X $(1 - 2 \log x)$ b) $\frac{(1 - 2 \log x)}{x}$ iv. Order of differential equation $(y''')^2 + 2y'' + 3y = x$ is

d) 4

v. The equation of the normal to the curve $y = \sin x$ at (0, 0) is

a) 0

d) x-y=0

b) State True or False.

vi. $\int_{-a}^{a} f(x) dx = 0 \text{ If } f(x) \text{ is odd.}$ vii. $\lim_{x \to 0} \frac{\tan 2x}{\tan 3x} = \frac{2}{3} .$ viii. $\int e^{-mx} dx = \frac{e^{-mx}}{m} .$

ix. $\frac{d}{dx}(x\sin x) = x\cos x$.

x. Every LPP admits an optimal solution.

c) Fill in the blanks.

xi. Derivative of x¹⁰ w.r.t x⁵ is

xii. Area of the region bounded by the curve of $y = x-x^2$ between x = 0 and x = 1 is

xiii. Anti derivative of $x \sin x$ w.r.t x is _____

xiv. $\int_0^{\frac{\pi}{2}} \cos 2x dx$ is equal to _____ xv. If y = log x ,then $\frac{d^2x}{dy^2}$ is equal to _____

Q2. Attempt any six questions.

6x5 = 30

a. If $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$, find $\frac{dy}{dx}$

b. If $y = e^{m \sin^{-1} x}$ prove that $(1 - x^2) y^2 - xy_1 = m^2 y$.

c. Find the equation of the normal to the curve $y = 6x^2 - 5x + 3$ at (1,4).

d. Solve the differential equation, ydx - xdy = xydx.

e. Evaluate $\int_0^{\pi} \cos^2 \frac{x}{2} dx$.

f. Integrate $x^2 \cot^{-1} x$.

g. Find the area of the curve $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ between x = 0 & x = a.

h. Evaluate $\int \frac{dx}{1+3\sin^2 x}$

i. If the side of a square is increasing at the rate of 1m per min., find the rate of increase of its area, when the side of square is 5m.

SECTION-C

Q3. Attempt any three questions.

3x10=30

i. Find the maximum and minimum or extreme values of $2x^3-15x^2+36x+10$.

ii. Differentiate $x^{\sin x}$ w.r.t($\sin x$) x .

- iii. Minimize and Maximize z = 5x + 10y subject to the constraints $x + 2y \le 120$, $x + y \ge 60$, $x 2y \ge 0$, $x + y \ge 0$.
- iv. Differentiate $y = \cos x$ by first principle.
- v. Find the approximate area under the curve whose ordinates are given below by the method of trapezoidal rule.

х	0	1	2	3	4	5
У	0	2.5	3	4.5	5	7.5

- vi. Evaluate:
 - a. $\int \sin^{-1} x$.
 - b. $\int_1^3 \frac{\cos(\log x) \, dx}{x} \, .$

APPLIED MATHEMATICS-II 2nd Exam/Common/2354/2251/5422/Sep'2020

Duration: 1.15 Hrs. M.Marks:25

SECTION-A

Q1. Attempt any three questions.

3x5=15

- a. Using Crammer's rule find the values of x & y for the system of equations 3x + 2y = 7; 11x - 4y = 3
- b. Find the equation of tangent to the curve

$$y^2 = 16x$$
 at (4,8)

- c. A bag contains 6 white, 4 black & 2 blue balls. Find the chance of getting either a black or a blue ball in a single draw.
- d. If $y = \tan^{-1} x$, prove that $(1 + x^2)y_2 + 2xy_1 = 0$
- e. Evaluate $\int_0^{\frac{n}{2}} \cos^8 x \, dx$.
- f. Evaluate $\int tan^4 x dx$
- g. If $\sin y = x \sin(a + y)$ prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$
- h. Solve the differential equation y dx x dy = xy dx.
- i. Find the area bounded by the curve $y = \log x$ between the x axis and the ordinates x3 and x = 4.

Q2. Attempt any one question.

1x10=10

i. Solve the equations by matrix method

$$3x + 4y + 2z = 8;$$
 $2y - 3z = 3;$

$$x-2y+6z=-2$$

- Use trapezoidal rule to evaluate $\int_0^1 x^2 dx$ taking 10 equal intervals. ii.
- Find the maximum and minimum values of the function $f(x) = x^4 6x^2 + 8x + 11$. iii.
- iv. Find the mean and median from the following data

Class interval	0-7	7 - 14	14 - 21	21 - 28	28 - 35	35 - 42	42 - 49
Frequency	19	25	36	72	51	43	28

- v. a) If $y = e^{x+y}$, show that $\frac{dy}{dx} = \frac{y}{1-y}$. b) Evaluate $\int x \log x \ dx$.

APPLIED MATHEMATICS-II 2nd Exam/Common/2354/2251/5422/Jun'2021

Duration: 1.15Hrs. M.Marks:25

SECTION-A

Q1. Attempt any three questions.

3x5=15

- a. If $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$, find $\frac{dy}{dx}$.
- b. If y = $\tan^{-1} x$, prove that $(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$
- c. Find the equation of the tangent and normal to the curve $y^2 = 16x$ at (4,8).
- d. Solve e^y (dy +dx) = xe^y dx
- e. Evaluate $\int_0^{\pi/2} \cos^2 x \, dx$.
- f. A bag contains 6 white, 5 black and 4 blue balls. Find the chance of getting either a white or a blue ball in single draw.
- g. Find the area between the parabola $y = 4x^2$, y-axis and two abscissa y = 1 and y = 4.

SECTION-B

Q2. Attempt any one question.

- i. Differentiate $(\sin x)^{\tan x}$ w.r.t. x.
- ii. Compute the mean and standard deviation for the following data:

Х	25	35	45	55	65	75	85
f	3	61	132	153	140	51	2

- iii. Find the maximum and minimum or extreme values of $2x^3-15x^2+36x+10$
- iv. Solve with the help of matrices

$$x + y + z = 3$$

$$x + 2y + 3z = 4$$

$$x + 4y + 9z = 6$$

APPLIED MATHEMATICS-II 2nd Exam/Common/0553/Jun'2021 (For 2018 Batch Onwards)

Duration: 1.15Hrs. M.Marks:25

SECTION-A

Q1. Attempt any three questions.

3x5=15

- a. Evaluate $\lim_{x\to 0} \frac{\cos 5x \cos 11x}{\cos 3x \cos 7x}$ b. Find the equation of the tangent to the curve $y=x^2+7x+1$ which makes an angle of 45° with Xaxis.
- c. Evaluate $\int \frac{dx}{x(x+1)}$
- d. If $y = (\sin^{-1} x)^2$, prove that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 2$.
- e. Find the area of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ between x = 0 and x = a.
- f. Evaluate $\int_0^{\sqrt{3}} \frac{e^{m \tan^{-1} x}}{1+x^2} dx$
- g. Solve the differential equation $sec^2y \frac{dy}{dx} + 2x \tan y = x^3$.

SECTION-B

- Q2. Attempt any one question. i. (a) Show that $\int_0^{\frac{\pi}{2}} \frac{1}{a^2 sin^2 x + b^2 cos^2 x} \ dx = \frac{\pi}{2ab}$
 - (b) Evaluate $\int_0^{\pi} |\cos x| \ dx$.
 - ii. Differentiate $x^{\sin x}$ w.r.t. $(\sin x)^x$
 - iii. Find the maximum and minimum values of the function $y = 2x^3 21x^2 + 36x 20$.
 - iv. Solve the following linear programming problem graphically

Maximize
$$z = 3x + 2y$$
, subject to the constraints

$$x + 2y \le 10$$
$$3x + y \le 15$$
$$x, y \ge 0$$

