

Figure 5.1. Calculation of wind loads along the height of the building.

In Eq. 5.1, the correlation coefficient  $C_s$  accounts for the fact that the points on the surface do not experience the maximum wind pressure all at the same time. The resonance coefficient  $C_d$  accounts for the increase in the building's displacements due to the turbulance-induced resonance vibrations of the building. They are calculated from the following equations:

$$C_{\rm s} = \frac{1 + 7I_{\rm w}(z_{\rm r})\sqrt{B^2}}{1 + 7I_{\rm w}(z_{\rm r})}$$
 and  $C_{\rm d} = \frac{1 + 7I_{\rm w}(z_{\rm r})\sqrt{B^2 + R^2}}{1 + 7I_{\rm w}(z_{\rm r})\sqrt{B^2}}$  (5.2a)

or

$$C_{\rm s} C_{\rm d} = \frac{1 + 7I_{\rm w}(z_{\rm r})\sqrt{B^2 + R^2}}{1 + 7I_{\rm w}(z_{\rm r})}$$
 (5.2b)

In Eqs. 5.2,  $z_r$  denotes the reference height in meters, which can be taken as the 60% of the total height (i.e.,  $z_r = 0.6h$ ), and  $I_w(z_r)$  is the turbulance intensity at the reference height (see Eq. 3.8).  $B^2$  and  $R^2$  are the correlation factor and the resonance factor, respectively. The expressions given by Eq. 5.2 are valid for buildings whose vibrations are dominated by the first mode.