Add new entries to Exhibit 6.11 on page 111, for the following values:

- (a) $\phi = \pm 0.99$.
- (b) $\phi = \pm 0.5$.
- (c) $\phi = \pm 0.1$.

A stationary time series of length 121 produced sample partial autocorrelation of $\hat{\phi}_{11} = 0.8$, $\hat{\phi}_{22} = -0.6$, $\hat{\phi}_{33} = 0.08$, and $\hat{\phi}_{44} = 0.00$. Based on this information alone, what model would we tentatively specify for the series?

The sample ACF for a series and its first difference are given in the following table. Here n = 100.

lag	1	2	3	4	5	6
ACF for Y_t	0.97	0.97	0.93	0.85	0.80	0.71
ACF for ∇Y_t	-0.42	0.18	-0.02	0.07	-0.10	-0.09

Consider an AR(1) series of length 100 with $\phi = 0.7$.

- (a) Would you be surprised if $r_1 = 0.6$?
- (b) Would $r_{10} = -0.15$ be unusual?

The time plots of two series are shown below.

- (a) For each of the series, describe r_1 using the terms strongly positive, moderately positive, near zero, moderately negative, or strongly negative. Do you need to know the scale of measurement for the series to answer this?
- (b) Repeat part (a) for r_2 .

