AI-Powered Early Detection of Embolism Using Multimodal Clinical Data

AI IN HEALTHCARE

INTRODUCTION

- Project Focus:
 - AI-driven early detection of Pulmonary Embolism (PE) and Deep Vein Thrombosis (DVT)
- Clinical Significance:
 - Thromboembolic diseases are major contributors to preventable hospital mortality
 - » ~100,000 PE-related deaths annually in the U.S.
- Core Challenge:
 - Predict onset 8–24 hours before clinical symptoms for earlier intervention
- High-Risk Factors:
 - Multimodal clinical data integration
 - Time-critical predictions
 - Requirement for clinician-trustworthy explanations

PROBLEM STATEMENT

- Limitations of Current Tools:
 - Clinical scoring systems (e.g., Wells criteria, PERC) have limited sensitivity
 - » Often activated too late in the disease progression
- Critical Impact:
 - Each hour of delayed treatment for PE/DVT increases mortality risk
- Project Objective:
 - Develop a deep learning model to:
 - Predict embolism 8–24 hours before diagnosis
 - Analyze vital signs, labs, clinical notes, medications
 - Identify hidden patterns beyond clinician perception
 - Provide interpretable explanations to ensure clinical trust

METHODOLOGY OVERVIEW

- III Data Source:
 - MIMIC-IV: De-identified clinical data from 40,000+ patients
- Q Extracted Features:
 - Temporal Vitals: Heart rate, oxygen saturation
 - Lab Values: D-dimer and others
 - Clinical Notes: Indicators like leg swelling
 - Medications & Demographics

CHALLENGES & SOLUTIONS

- 1. Class Imbalance
 - Challenge: Embolism is a rare event
 - Solution: Balanced sampling + class-weighted loss during training
- 2. Temporal Drift
 - Challenge: Model performance declined on newer patient data
 - Solution: Identified need for continuous model retraining in deployment
- 3. High False Positives
 - Challenge: Risk of alert fatigue due to over-triggering
 - Solution: Optimized decision threshold using clinical impact (not just AUC/F1)
- 4. Interpretability Issues
 - Challenge: Initial explanations were not intuitive to clinicians
 - Solution: Refined to produce context-aware, clinically relevant explanations

RESULTS OVERVIEW

Performance Metrics:

- Model AUROC: 0.82
- Sensitivity: 0.77
- Outperformed traditional tools:
 - Wells Criteria:AUROC 0.67
 - PERC Rule: AUROC0.63

Q Top Predictive Features (SHAP Analysis):

- D-dimer elevation
- Tachycardia (>100 bpm)
- Leg swelling / chest pain in notes
- Hypoxemia (<94% O₂ saturation)
- Recent surgery or immobilization

Wey Insight

- Nursing notes often flagged early signs 12– 18 hours before diagnosis
- Highlights value of unstructured text data

Clinical Feedback

- Physicians confirmed model surfaced high-risk cases earlier than typical clinical suspicion
- Potential for life-saving early interventions

LESSONS LEARNED & FUTURE DIRECTIONS

• Key Takeaways:

- Model Maintenance is Essential
 - → Continuous updates needed to handle dataset shift
- Sensitivity vs. Specificity Tradeoff
 - → Must balance to prevent alert fatigue
- Cross-Disciplinary Collaboration
 - >>> Clinical + technical input vital throughout development
- Explainability Drives Adoption
 - » Clinically relevant explanations build trust

7 Future Directions:

- Prospective clinical validation
- Enhanced explanation methods aligned with physician reasoning
- Advanced strategies for handling temporal drift

Goal: Enable earlier, life-saving interventions for PE/DVT

CONCLUSION

- Multimodal deep learning can detect early signs of PE/DVT
- We use the property of the proper
- Demonstrated strong predictive performance and clinical relevance
- Challenges remain in real-world deployment
- » But potential life-saving impact makes further research essential

Thank you!

