

Universidad Nacional de Río Negro Física 1 A - 2016

Unidad O1 – Energía

Clase 0107

Fecha 28 Mar 2016

Cont Escape y (al) Trabajo - II

Cátedra Asorey – Cutsaimanis

Web http://fisicareconocida.wordpress.com

Archivo a-2016-U01-C07-0329-escape-trabajo-2

La gráfica

Expresión para la energía cinética

Energia cinética

La energía cinética de un cuerpo a velocidad v_i es

$$E_k = \frac{1}{2} m v_i^2$$

 Si debido a algún cambio de energía, su nueva velocidad es v_f, la variación es:

$$\Delta E_k = E_{kf} - E_{ki} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

$$\Rightarrow \Delta E_k = \frac{1}{2} m (v_f^2 - v_i^2) = m g (h_f - h_i)$$
iRecordar ese signo y de donde viene!

Lo mismo podría hacerse con la general

$$\Delta E_{g12} = -GM m_2 \left(\frac{1}{(R+h)} - \frac{1}{R} \right) = -\frac{1}{2} m_2 (v_2^2 - v_1^2) = -\Delta E_{k12}$$

- Imaginemos lo siguiente: v₂ = 0 y h → ∞
- Luego, si $h \rightarrow \infty$, $1/(R+h) \rightarrow 0$. Entonces:

$$-G M m_{2} \left(-\frac{1}{R}\right) = -\frac{1}{2} m_{2} \left(-\frac{1}{R}\right) = \frac{1}{2} m_{2} \left(-\frac{1}{R}\right) = \frac{1}{2} v_{1}^{2}$$

$$v_{1}^{2} = \frac{2G M}{R}$$

$$v_{1} = \sqrt{\frac{2G M}{R}} \equiv v_{e}$$

 $-G\,M\,m_2\bigg(-\frac{1}{R}\bigg) = -\frac{1}{2}m_2\bigg(-v_1^2\bigg) \quad \begin{array}{l} v_e \text{ es la } \textbf{velocidad de escape: hay que darle} \\ \text{esa } \text{velocidad a un cuerpo para que sea capaz} \\ \text{de liberarse de la atracción gravitatoria de un} \\ \text{planeta y } \textbf{llegar al infinito con velocidad 0.} \end{array}$

$$v_{e\oplus} = \sqrt{\frac{2GM_{\oplus}}{R_{\oplus}}}$$
 Calcular v_{e} para la Tierra

Energia potencial y Fuerza

 ¿Cuál es la tasa de cambio de la energía potencial gravitatoria ante un cambio en la posición relativa?

$$\frac{\Delta E_g}{\Delta r} = \frac{E_{g2} - E_{g1}}{r_2 - r_1}$$

- Y ahora, dos posibles caminos:
 - a) Hacemos la cuenta
 - b) Ponemos unos números

Ok. Pongamos unos números

Usamos:

$$\frac{\Delta E_g}{\Delta r} = \frac{-G M_{\oplus} m}{h} \left(\frac{1}{(R_{\oplus} + h)} - \frac{1}{R_{\oplus}} \right)$$

- G = $6.67x10-11 \text{ m}^3/(\text{kg s}^2)$ R ~ $6 x10^6 \text{ m m}=1 \text{ kg}$
- h=10000m
- h= 1000m
- h= 100m
- Ahora calculen el peso del cuerpo m=1 kg (recordar g=9.8 m/s²)
- ¿Qué pasó?

Y ahora hagamos la cuenta

Empecemos

$$\frac{\Delta E_g}{\Delta r} = \frac{-G M_{\oplus} m}{(R_{\oplus} + h) - R_{\oplus}} \left(\frac{1}{(R_{\oplus} + h)} - \frac{1}{R_{\oplus}} \right)$$

Y entonces:

$$\frac{\Delta E_g}{\Delta r} = \frac{G M_{\oplus} m}{R_{\oplus}} \left(\frac{1}{R_{\oplus} + h} \right)$$

Y si hacemos h→0:

$$h \to 0 \Rightarrow \frac{\Delta E_g}{\Delta r} \to m \left(\frac{G M_{\oplus}}{R_{\oplus}^2} \right) = m g$$

Esta es la interacción (fuerza) asociada a la energía potencial gravitatoria: el peso

Cue trabajo fue llegar hasta aquil

- Alto. Si h \rightarrow 0 entonces vale $\Delta E_g = mgh$, ¿no?
- ¿Qué es (mg)? ¿Qué es h?
- Entonces:

$$\Delta E_g = (mg) h = Fuerza x Distancia$$

TRABAJO

- Finalmente:
- La variación de la energía potencial gravitatoria es igual al trabajo de (o contra de) la fuerza de gravedad

La variación neta de la energía total de un sistema es igual al trabajo realizado por un agente externo para lograr dicho cambio

En general, el trabajo es un producto escalar

Definición general (pánico):

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{r}$$

Luego, por definición de producto escalar:

$$W = \int_{A}^{B} F \cos(\theta) dr$$

• Finalmente, si la fuerza es constante y actúa a lo largo de una línea de longitud $l=|\vec{r_B}-\vec{r_A}|$

H. Asorey - A. Cutsaimanis

$$W = F l \cos(\theta)$$

 $l = |\vec{r}_B - \vec{r}_A|$

Algunos casos extremos

• Fylson paralelos: $\theta = 0 \rightarrow \cos(0) = 1$

$$W = F I$$

$$A \quad l = |\vec{r_B} - \vec{r_A}| \quad B$$

• Fylson antiparalelos: $\theta = \pi \rightarrow \cos(\pi) = -1$

$$W = -F l$$

$$\mathbf{F}_{\mathsf{A}} l = |\vec{r_B} - \vec{r_A}| \mathsf{B}$$

• Fylson perpendiculares: $\theta = \pi/2 \rightarrow \cos(\pi/2) = 0$

$$W=0$$

Recordarlo la próxima vez que vengan del super cargando una bolsa...

F $A \quad l = |\vec{r}_B - \vec{r}_A|$

Mar, 28, 2016

H. Asorey - A. Cutsaimanis

La variación neta de la energía total de un sistema es igual al trabajo realizado por un agente externo para lograr dicho cambio