Introdução Motivação Resultados Considerações finais

A Study of Critical Snarks

Breno L. Freitas Cândida N. Silva Cláudio L. Lucchesi

CTIC 2015

Histórico

Teorema das 4 cores

Todo grafo planar sem arestas de corte admite uma 4-coloração de suas faces.

 Em 1880, Tait acreditou ter provado o Teorema das 4 cores por ter mostrado que era equivalente a afirmar que todo grafo planar cúbico tem 3-coloração de arestas, acreditando que todos planares cúbicos eram hamiltonianos.

Histórico

- A partir destas observações Tutte apresentou um contra exemplo para a conjectura de Tait.
- Com isso começou o estudo de uma classe interessante de grafos: os snarks.

Snarks

- Um snark é um grafo cúbico, sem arestas de corte e sem 3-coloração de arestas.
- Nenhum snark é hamiltoniano.
- Snarks s\u00e3o usualmente restritos a terem cintura no m\u00eanimo 5, serem conexos e ciclicamente 4-aresta-conexos.
- Snarks podem ser vistos como grafos cúbicos minimais sem 3-coloração de arestas.

Snarks

- Um snark é um grafo cúbico, sem arestas de corte e sem 3-coloração de arestas.
- Nenhum snark é hamiltoniano.
- Snarks s\u00e3o usualmente restritos a terem cintura no m\u00eanimo 5, serem conexos e ciclicamente 4-aresta-conexos.
- Snarks podem ser vistos como grafos cúbicos minimais sem 3-coloração de arestas.
- Grafo de Petersen foi o primeiro snark descoberto (1898).
- O nome referencia o poema de Lewis Carroll The Hunting of the Snark onde o Snark era uma criatura muito rara e também desconhecida.

k-fluxo

- É um par (D, φ) .
- D é um direcionamento das arestas de um grafo G.
- φ é uma atribuição de pesos em $\{1,\cdots,k-1\}$ para as arestas.

k-fluxo

- É um par (D, φ) .
- D é um direcionamento das arestas de um grafo G.
- φ é uma atribuição de pesos em $\{1,\cdots,k-1\}$ para as arestas.
- O fluxo líquido de um vértice v é a soma de todas as arestas entrando menos as que saem de v.
- ullet O fluxo líquido de todos os vértices do grafo G deve ser zero.

Pistorico
Snarks
k-fluxo
Conjectura de Tutte e outros teoremas
Definições

Conjecturas de Tutte e outros teoremas

Conjectura dos 5-fluxos (Tutte, 1954)

Todo grafo 2-aresta-conexo admite um 5-fluxo.

Teorema dos 6-fluxos (Seymour, 1981)

Todo grafo 2-aresta-conexo admite um 6-fluxo.

Snarks
k-fluxo
Conjectura de Tutte e outros teoremas
Definições

Conjecturas de Tutte e outros teoremas

Conjectura dos 5-fluxos (Tutte, 1954)

Todo grafo 2-aresta-conexo admite um 5-fluxo.

Teorema dos 6-fluxos (Seymour, 1981)

Todo grafo 2-aresta-conexo admite um 6-fluxo.

Teorema de Tutte

Todo grafo cúbico admite um 4-fluxo se e somente se admite uma 3-coloração de arestas.

Importância dos Snarks

- A importância dos snarks vem em parte de que provar certas conjecturas para estes grafos é suficiente.
- Jaeger, 1988: Se existe um contra-exemplo para a Conjectura dos 5-fluxos de Tutte, este deve ser um snark.

Notação

- G/e é o grafo G após a contração da aresta e.
- $G \setminus e$ é o grafo G após a $remoç\~ao$ da aresta e.

Grafos k-fluxo-críticos

- Silva e Lucchesi, 2008:
- G não admite k-fluxo.
- $G/e, e \in E(G)$ admite k-fluxo.
- $G \setminus e, e \in E(G)$ adimite k-fluxo.

Grafos k-fluxo-críticos admitem (k+1)-fluxo

Teorema (Jaeger, 1988)

Todo grafo cúbico 3-aresta-conexo G, tal que $G \setminus e$ admite 4-fluxo, admite um 5-fluxo.

Teorema (Silva e Lucchesi, 2008)

Todo grafo 2-aresta-conexo G, tal que $G \setminus e$ admite k-fluxo, admite um (k+1)-fluxo.

- O grafo cúbico subjacente G_e de um snark G, para uma aresta
 e := (u, v) de G, é o grafo obtido de G \ e após a contração
 de uma das arestas incidentes a v e u.
- G_e admite um 4-fluxo se e somente se G \ e admite um 4-fluxo.

- O grafo cúbico subjacente G_e de um snark G, para uma aresta
 e := (u, v) de G, é o grafo obtido de G \ e após a contração
 de uma das arestas incidentes a v e u.
- G_e admite um 4-fluxo se e somente se G \ e admite um 4-fluxo.

- O grafo cúbico subjacente G_e de um snark G, para uma aresta
 e := (u, v) de G, é o grafo obtido de G \ e após a contração
 de uma das arestas incidentes a v e u.
- G_e admite um 4-fluxo se e somente se G \ e admite um 4-fluxo.

- O grafo cúbico subjacente G_e de um snark G, para uma aresta
 e := (u, v) de G, é o grafo obtido de G \ e após a contração
 de uma das arestas incidentes a v e u.
- G_e admite um 4-fluxo se e somente se G \ e admite um 4-fluxo.

- O grafo cúbico subjacente G_e de um snark G, para uma aresta
 e := (u, v) de G, é o grafo obtido de G \ e após a contração
 de uma das arestas incidentes a v e u.
- G_e admite um 4-fluxo se e somente se G \ e admite um 4-fluxo.

Motivação

Teorema (Da Silva, Pesci e Lucchesi, 2013)

Todo snark G tem um snark 4-fluxo-crítico H como minor

- H tem 5-fluxo.
- Podemos estender o fluxo de *H* para *G*?
- Poderia ser mais fácil se houvesse alguma estrutura próxima de um grafo hamiltoniano?

Objetivo do trabalho

Tentar estender o 5-fluxo do minor para o grafo original, contribuindo com a Conjectura dos 5-fluxos de Tutte.

Grafos hipohamiltonianos

- G não é hamiltoniano.
- $G \setminus v$ é hamiltoniano para todo vértice v.
- Vários snarks conhecidos são hipohamiltonianos.

Outras classes de criticalidade

- Um snark é 2-vértice-crítico se a remoção de dois vértices adjacentes induz um grafo com 3-coloração de arestas.
- Um snark é 2-vértice-cocrítico se a remoção de dois vértices não adjacentes induz um grafo com 3-coloração de arestas.
- Um snark é bicrítico se é 2-vértice-crítico e 2-vértice-cocrítico ao mesmo tempo.

Outras classes de criticalidade

- A resistência de um grafo cúbico G, $\rho(G)$, é o número mínimo de arestas que devem ser removidas para se obter um grafo 3-aresta-colorível.
- A **imparidade** de um grafo G, $\omega(G)$, é o número mínimo de ciclos ímpares em qualquer 2-fator de G.

Outras classes de criticalidade

- A **resistência** de um grafo cúbico G, $\rho(G)$, é o número mínimo de arestas que devem ser removidas para se obter um grafo 3-aresta-colorível.
- A **imparidade** de um grafo G, $\omega(G)$, é o número mínimo de ciclos ímpares em qualquer 2-fator de G.

Teorema de Steffen

Um grafo cúbico G tem imparidade dois se e somente se G tem resistência dois.

Proposição

Um grafo cúbico G tem 3-coloração de arestas se e somente se tem imparidade zero.

A Survey on Critical Snarks

Cavicchioli, Murgolo, Ruini and Spaggiari, 2003

- Questão 6.1: Podemos dizer que todo snark hipohamiltoniano satisfaz a Conjectura dos 5-fluxos de Tutte?
- Snarks críticos até 28 vértices:

ordem	10	12	14	16	18	20	22	24	26	28
snarks	1	0	0	0	2	6	20	38	280	2900
snarks 2-vértice-críticos	1	0	0	0	2	1	2	0	111	33
snarks 2-vértice-cocríticos	1	0	0	0	2	1	2	2	113	35
snarks bicríticos	1	0	0	0	2	1	2	0	111	33
snarks hipohamiltonianos	1	0	0	0	2	1	2	0	95	31

Snarks 4-fluxo-críticos

Silva, Pesci and Lucchesi, 2013: snarks 4-fluxo-críticos até 28 vértices:

ordem	10	12	14	16	18	20	22	24	26	28
snarks	1	0	0	0	2	6	20	38	280	2900
snarks 4-fluxo-críticos	1	0	0	0	2	1	2	0	111	33
snarks 2-vértice-críticos	1	0	0	0	2	1	2	0	111	33
snarks 2-vértice-cocríticos	1	0	0	0	2	1	2	2	113	35
snarks bicríticos	1	0	0	0	2	1	2	0	111	33
snarks hipohamiltonianos	1	0	0	0	2	1	2	0	95	31

Teorema

Todo snark hipohamiltoniano tem 5-fluxo

Rascunho da prova:

- $G \setminus v$ é hamiltoniano para qualquer v.
- Portanto, G_e também é hamiltoniano.
- G_e tem 3-coloração de arestas, e portanto, 4-fluxo.
- Segue que $G \setminus v$ admite 4-fluxo, e portanto, G admite um 5-fluxo.

Teorema

Um snark G é 4-fluxo-crítico se e somente se é 2-vértice-crítico

Rascunho da prova (\Rightarrow) :

O que queremos mostrar

Que é possível obter uma 3-coloração para $G\setminus\{u,v\}$ a partir de uma 3-coloração de G_e .

Rascunho da prova (\Rightarrow) :

- G_e tem 3-coloração de arestas.
- G_e é supergrafo de $G \setminus \{v, u\}$.
- Logo $G \setminus \{v, u\}$ tem 3-coloração de arestas.

Rascunho da prova (⇐):

O que queremos mostrar

Que é possível obter uma 3-coloração para G_e a partir de uma 3-coloração de $G \setminus \{v, u\}$.

Rascunho da prova (\Leftarrow) :

O que queremos mostrar

Que é possível obter uma 3-coloração para G_e a partir de uma 3-coloração de $G \setminus \{v, u\}$.

- $G \setminus \{v, u\}$ tem 3-coloração de arestas.
- Seja M_i as arestas com cor i em uma 3-coloração de G.
- M_i cobre um número par de vértices.
- Existem 4 vértices (u_1, u_2, v_1, v_2) de grau 2 que não possuem uma cor incidente.

Rascunho da prova (←):

- Nos casos em que os pares $\{u_1, u_2\}$ e $\{v_1, v_2\}$ não são cobertos por alguma cor em comum, podemos atribuir a (u_1, u_2) e (v_1, v_2) tal cor.
- Isto induz uma 3-coloração de G_e.

Rascunho da prova (⇐):

• No caso em que os pares $\{u_1, u_2\}$ e $\{v_1, v_2\}$ não possuem uma cor em comum faltante, podemos estender a 3-coloração para G, uma contradição. \square

Proposição

Todo snark 4-fluxo-crítico G tem imparidade 2

Rascunho da prova:

- *G*_e tem 3-coloração de arestas.
- Seja M_e um emparelhamento perfeito de G_e .
- $M:=M_e\cup\{e\}$ é um emparelhamento perfeito de G.

Proposição

Todo snark 4-fluxo-crítico G tem imparidade 2

Rascunho da prova:

- *G*_e tem 3-coloração de arestas.
- Seja M_e um emparelhamento perfeito de G_e .
- $M := M_e \cup \{e\}$ é um emparelhamento perfeito de G.
- $G \setminus M$ pode ser obtido por uma subdivisão de duas arestas em $G_e \setminus M_e$.
- Se ambas estiverem no mesmo ciclo em $G_e \setminus M_e$, então G teria imparidade zero, uma contradição.

A recíproca é falsa (um snark não 4-fluxo-crítico):

Considerações finais

- Existem maneiras de se estender o 5-fluxo do minor para o grafo original.
- Relações de equivalência ajudam na compreensão da estrutura do problema.
- Será possível estender de outro modo o 5-fluxo do minor? É possível utilizar este conhecimento para a solução de outras conjecturas?

Considerações finais

- Existem maneiras de se estender o 5-fluxo do minor para o grafo original.
- Relações de equivalência ajudam na compreensão da estrutura do problema.
- Será possível estender de outro modo o 5-fluxo do minor? É possível utilizar este conhecimento para a solução de outras conjecturas?
- Projetos de pesquisa contam com incertezas.
- É difícil mensurar o tempo para realização de projetos teóricos.

Grande parte deste trabalho foi publicado na forma de um artigo com o título *Hypohamiltonian Snarks Have a 5-flow* no VIII Latin-American Algorithms, Graphs and Optimization Symposium.

Introdução Motivação Resultados Considerações finais

Obrigado!