1 Texas Housing Time Analysis

By: Brian Lee

▼ 1.1 Business problem:

As multiple markets like the streaming and tech companies are interested in Texas due to relatively low house prices and no income tax. We have been hired by a housing agency that is looking into investing into Houston, Texas early. This will allow for the company to better expect price jumps early, allowing for earlier buys at lower prices and selling at higher prices.

1.2 Data Preparation

```
# Import necessary packages
In [1]:
            import pandas as pd
            import numpy as np
            import matplotlib as mpl
            from matplotlib import pyplot as plt
            %matplotlib inline
            plt.style.use('seaborn-whitegrid')
            import warnings
            warnings.filterwarnings('ignore')
            import itertools
            import statsmodels.api as sm
            from statsmodels.tsa.seasonal import seasonal_decompose
            from statsmodels.graphics.tsaplots import plot acf,plot pacf
            from pandas.plotting import autocorrelation_plot,lag_plot
            from statsmodels.tsa.statespace.sarimax import SARIMAX
            executed in 1.53s, finished 22:25:54 2021-11-14
```

Out[2]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996
0	84654	60657	Chicago	IL	Chicago	Cook	1	334200.0	33540
1	90668	75070	McKinney	TX	Dallas- Fort Worth	Collin	2	235700.0	23690
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	21220
3	84616	60614	Chicago	IL	Chicago	Cook	4	498100.0	50090
4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	7730

5 rows × 272 columns

Out[3]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996
1	90668	75070	McKinney	TX	Dallas- Fort Worth	Collin	2	235700.0	23690
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	21220
4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	7730
5	91733	77084	Houston	TX	Houston	Harris	6	95000.0	9520
8	91940	77449	Katy	TX	Houston	Harris	9	95400.0	9560

5 rows × 272 columns

```
In [4]:  # Houston dataset
houston_df = TX_df[TX_df['Metro'] == 'Houston']
executed in 14ms, finished 22:25:54 2021-11-14
```

We will use **Return on Investment (ROI)** in order to determine whether the home value in the area is best for the model.

Calculated (Final Value - Initial Value) / Cost of Investment

```
In [5]: # 5 year ROI
houston_df['ROI_5_years'] = round((houston_df['2018-04'] - houston_df['2013-0]
# 3 year ROI
houston_df['ROI_10_years'] = round((houston_df['2018-04'] - houston_df['2008-houston_df.head()]
executed in 30ms, finished 22:25:54 2021-11-14
```

Out[5]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	21220
5	91733	77084	Houston	TX	Houston	Harris	6	95000.0	9520
8	91940	77449	Katy	TX	Houston	Harris	9	95400.0	9560
22	92036	77573	League City	TX	Houston	Galveston	23	141400.0	14100
23	92045	77584	Pearland	TX	Houston	Brazoria	24	138500.0	13870

5 rows × 274 columns

```
In [7]: # Remove unnecessary columns
houston_df.drop(columns=['RegionID','State','Metro','SizeRank'], inplace=True
executed in 15ms, finished 22:25:54 2021-11-14
```

▶ houston_df.head() In [8]:

executed in 30ms, finished 22:25:54 2021-11-14

Out[8]:

	RegionName	City	CountyName	1996-04	1996-05	1996-06	1996-07	1996-08	1
2	77494	Katy	Harris	210400.0	212200.0	212200.0	210700.0	208300.0	2(
5	77084	Houston	Harris	95000.0	95200.0	95400.0	95700.0	95900.0	ţ
8	77449	Katy	Harris	95400.0	95600.0	95800.0	96100.0	96400.0	(
22	77573	League City	Galveston	141400.0	141000.0	140600.0	140500.0	140400.0	14
23	77584	Pearland	Brazoria	138500.0	138700.0	139200.0	139900.0	140700.0	14

5 rows × 270 columns

▶ houston_df.isna().sum().sort_values(ascending=False) In [9]:

executed in 14ms, finished 22:25:54 2021-11-14

Out[9]: ROI_10_years

0 2003-01 0

2004-03 0 2004-02 0

2004-01 0

2010-07 0

2010-06 2010-05 0

2010-04 RegionName

Length: 270, dtype: int64

melt_df = melt_data(houston_df) In [10]: melt_df.head()

executed in 46ms, finished 22:25:54 2021-11-14

Out[10]:

	RegionName	City	CountyName	ROI_5_years	ROI_10_years	Date	value
0	77494	Katy	Harris	0.2842	0.2983	1996-04-01	210400.0
1	77084	Houston	Harris	0.4617	0.2494	1996-04-01	95000.0
2	77449	Katy	Harris	0.5021	0.2908	1996-04-01	95400.0
3	77573	League City	Galveston	0.4130	0.3189	1996-04-01	141400.0
4	77584	Pearland	Brazoria	0.3783	0.2749	1996-04-01	138500.0

Out[11]:

	Zipcode	City	County	ROI_5_years	ROI_10_years	Date	Price
0	77494	Katy	Harris	0.2842	0.2983	1996-04-01	210400.0
1	77084	Houston	Harris	0.4617	0.2494	1996-04-01	95000.0
2	77449	Katy	Harris	0.5021	0.2908	1996-04-01	95400.0
3	77573	League City	Galveston	0.4130	0.3189	1996-04-01	141400.0
4	77584	Pearland	Brazoria	0.3783	0.2749	1996-04-01	138500.0

Out[13]:

	Zipcode	City	County	ROI_5_years	ROI_10_years	Price
Date						
1996-04-01	77494	Katy	Harris	0.2842	0.2983	210400.0
1996-04-01	77084	Houston	Harris	0.4617	0.2494	95000.0
1996-04-01	77449	Katy	Harris	0.5021	0.2908	95400.0
1996-04-01	77573	League City	Galveston	0.4130	0.3189	141400.0
1996-04-01	77584	Pearland	Brazoria	0.3783	0.2749	138500.0
2018-04-01	77514	Anahuac	Chambers	0.3933	0.2795	136400.0
2018-04-01	77050	Houston	Harris	0.5695	0.2468	115200.0
2018-04-01	77650	Port Bolivar	Galveston	0.2758	0.1968	247500.0
2018-04-01	77534	Danbury	Brazoria	0.3290	0.2795	164800.0
2018-04-01	77577	Liverpool	Brazoria	0.4772	0.2110	149200.0

49555 rows × 6 columns

```
In [14]:
           ▶ # Double Check for missing values
              melt_df.isna().sum()
               executed in 29ms, finished 22:25:54 2021-11-14
    Out[14]: Zipcode
                                 0
               City
                                 0
               County
                                 0
               ROI_5_years
                                 0
               ROI_10_years
                                 0
                                 0
               Price
               dtype: int64
```

1.3 EDA and Visualization

Questions we can ask:

- 1. How have Houston housing prices generally trended over time?
- 2. Which counties have higher home prices?
- 3. Which counties have the highest ROIs?
- 4. Which Zipcodes in Houston have the highest home prices?

▼ 1.3.1 How have Houston housing prices generally trended over time?

 Outside of the dip in housing prices between 2007 and 2011, the average price of a Texas home has steadily increased.

1.3.2 Which counties have higher home prices?

• Harris, Fort Bend, and Montgomery have clearly the highest average home values in the past 20 years.

▼ 1.3.3 Which counties have the highest ROIs?

```
In [18]: # 5 year ROI
ROI_5_df = melt_df.copy()
ROI_5_df = ROI_5_df.groupby('County').ROI_5_years.mean().sort_values(ascendin
executed in 14ms, finished 22:25:55 2021-11-14
```

```
In [19]: N ROI_5_df.plot.barh(color='teal')
plt.title('Average ROI of Home in 5 Years by County Area')
plt.xlabel('Investment gained (%)')
plt.show()
executed in 155ms, finished 22:25:55 2021-11-14
```



```
In [20]: # 10 year ROI
ROI_10_df = melt_df.copy()
ROI_10_df = ROI_10_df.groupby('County').ROI_10_years.mean().sort_values(ascer
executed in 15ms, finished 22:25:55 2021-11-14
```

```
In [21]: N ROI_10_df.plot.barh(color='teal')
plt.title('Average ROI of Home in 10 Years by County Area')
plt.xlabel('Investment gained (%)')
plt.show()
executed in 205ms, finished 22:25:55 2021-11-14
```


1.3.4 Which Zipcodes in Houston have the highest home prices?

```
In [23]: N zip_df.plot.barh(color='teal')
plt.title('Average Value of Home by Zipcode')
plt.xlabel('Value ($)')
plt.show()
executed in 185ms, finished 22:25:55 2021-11-14
```


• 77024 appears to be the zipcode with the Highest average home value in the past 20 years.

1.4 Time Series Modeling

executed in 15ms, finished 22:25:56 2021-11-14

Type *Markdown* and LaTeX: α^2

```
In [26]:
               zip_list = ['77486', '77021', '77030', '77541', '77077', '77035', '77018',
               executed in 14ms, finished 22:25:56 2021-11-14
In [27]:
               ts = \{\}
               for code in zip_list:
                    temp_df = melt_df.groupby('Zipcode').get_group(code).sort_index()['Price'
                    ts[code] = temp df
               executed in 60ms, finished 22:25:56 2021-11-14
In [28]:
               ts df = pd.DataFrame(ts)
               ts df.head()
               executed in 29ms, finished 22:25:56 2021-11-14
    Out[28]:
                        77486
                                 77021
                                           77030
                                                   77541
                                                             77077
                                                                       77035
                                                                                 77018
                                                                                          77080
                                                                                                    77092
                 Date
                1996-
                       67000.0 45500.0
                                        559900.0 45600.0 177100.0 118800.0
                                                                             182500.0
                                                                                       107400.0
                                                                                                   95600.0
                04-01
                1996-
                       66700.0 45200.0
                                        563500.0
                                                  45500.0
                                                           180000.0
                                                                    119700.0
                                                                              185900.0
                                                                                        106100.0
                                                                                                   96900.0
                05-01
                1996-
                       66500.0 44900.0
                                        567200.0 45400.0 182700.0 120900.0
                                                                              189100.0
                                                                                       105100.0
                                                                                                   98400.0
                06-01
                1996-
                       66200.0 44800.0
                                       570900.0 45300.0
                                                          185100.0 122300.0 191700.0 104200.0
                                                                                                   99900.0
                07-01
                1996-
                       66100.0
                               44600.0
                                        574500.0 45200.0 187100.0 124100.0
                                                                              193400.0
                                                                                                 101500.0
                08-01
           Let's start with our first Zipcode
In [29]:
               zip_1 = zip_list[0]
```



```
In [31]: M def plot_autocorr(ts, figsize=(8,8),lags=24):
    fig, ax = plt.subplots(nrows=3, figsize=figsize)
    ## Plot ts
    ts.plot(ax=ax[0])

## Plot acf, pacf
    plot_acf(ts,ax=ax[1],lags=lags)
    plot_pacf(ts, ax=ax[2],lags=lags)
    fig.tight_layout()

fig.suptitle(f"Zipcode {ts.name}",y=1.1,fontsize=15)

for a in ax[1:]:
    a.xaxis.set_major_locator(mpl.ticker.MaxNLocator(min_n_ticks=lags, in a.xaxis.grid())
    return fig, ax

executed in 15ms, finished 22:25:56 2021-11-14
```

In [32]: plot_autocorr(ts,lags=20);
 executed in 530ms, finished 22:25:56 2021-11-14

Zipcode 77486

10

13

0

-1

20 21

In [33]: # Let's do a difference to remove trends d = 1 plot_autocorr(ts.diff(d).dropna(),lags=20); executed in 579ms, finished 22:25:57 2021-11-14

Zipcode 77486

1.4.1 Model 1

```
In [34]: # selected params
d = 1
p = 1
q = 1
executed in 14ms, finished 22:25:57 2021-11-14
```

```
In [35]:
          # Train Test Split
             train size = 0.8
              split_idx = round(len(ts)* train_size)
              split_idx
             ## Split
             train = ts.iloc[:split_idx]
             test = ts.iloc[split_idx:]
             ## Visualize split
             fig,ax= plt.subplots()
             kws = dict(ax=ax,marker='o')
             train.plot(**kws)
             test.plot(**kws)
             ax.legend(bbox_to_anchor=[1,1])
             plt.show()
              executed in 216ms, finished 22:25:57 2021-11-14
```


C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\b
ase\tsa_model.py:524: ValueWarning: No frequency information was provided,
so inferred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\b
ase\tsa_model.py:524: ValueWarning: No frequency information was provided,
so inferred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep.	Variable:		7	7486	No	o. Obse	rva	tions:	212
	Model:	SAF	RIMAX(1,	1, 1)		Log Li	ikel	ihood	-1600.990
	Date:	Sun	, 14 Nov	2021				AIC	3207.980
	Time:		22:	25:57				BIC	3218.036
	Sample:		04-01-	-1996				HQIC	3212.045
			- 11-01-	-2013					
Covariar	nce Type:			opg					
	coef		std err	;	z	P> z		[0.025	0.975]
ar.L1	0.6493		0.052	12.499	9	0.000		0.548	0.751
ma.L1	-0.4618		0.058	-7.992	2	0.000		-0.575	-0.349
sigma2	1.672e+05	1.	12e+04	14.90	5	0.000	1.4	45e+05	1.89e+05
Ljun	g-Box (L1) (Q):	69.61	Jarqu	e-E	Bera (JE	3):	354.53	
	Prob(Q):	0.00			Prob(JE	3):	0.00	
Heterosk	cedasticity (H):	2.95			Ske	w:	-0.95	
Prob(H) (two-side	d):	0.00			Kurtos	is:	9.06	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).


```
In [40]: | def plot_train_test_pred(train, test, pred_df):
    fig, ax = plt.subplots()
    kws = dict(marker='o')

ax.plot(train, label='Train', **kws)
    ax.plot(test, label='Test', **kws)
    ax.plot(pred_df['prediction'], label='prediction', ls='--', **kws)

ax.fill_between(x=pred_df.index, y1=pred_df['lower'], y2=pred_df['upper'])
    ax.legend(bbox_to_anchor=[1,1])
    fig.tight_layout()
    return fig, ax

executed in 14ms, finished 22:25:58 2021-11-14
```

In [41]: plot_train_test_pred(train,test,pred_df) plt.show() executed in 204ms, finished 22:25:59 2021-11-14

1.4.2 Model 2

In [42]:

!pip install --user pmdarima

import pmdarima as pm

from pmdarima import auto_arima

executed in 3.44s, finished 22:26:02 2021-11-14

Requirement already satisfied: pmdarima in c:\users\leebr\appdata\roaming\python\python38\site-packages (1.8.2)

Requirement already satisfied: joblib>=0.11 in c:\users\leebr\anaconda3\env s\learn-env\lib\site-packages (from pmdarima) (0.17.0)

Requirement already satisfied: scikit-learn>=0.22 in c:\users\leebr\anacond a3\envs\learn-env\lib\site-packages (from pmdarima) (0.23.2)

Requirement already satisfied: pandas>=0.19 in c:\users\leebr\anaconda3\env s\learn-env\lib\site-packages (from pmdarima) (1.1.3)

Requirement already satisfied: statsmodels!=0.12.0,>=0.11 in c:\users\leebr\anaconda3\envs\learn-env\lib\site-packages (from pmdarima) (0.12.2)

Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\users\leeb r\anaconda3\envs\learn-env\lib\site-packages (from pmdarima) (50.3.0.post20 201103)

Requirement already satisfied: Cython!=0.29.18,>=0.29 in c:\users\leebr\ana conda3\envs\learn-env\lib\site-packages (from pmdarima) (0.29.21)

Requirement already satisfied: numpy~=1.19.0 in c:\users\leebr\anaconda3\envs\learn-env\lib\site-packages (from pmdarima) (1.19.5)

Requirement already satisfied: urllib3 in c:\users\leebr\anaconda3\envs\learn-env\lib\site-packages (from pmdarima) (1.25.10)

Requirement already satisfied: scipy>=1.3.2 in c:\users\leebr\anaconda3\env s\learn-env\lib\site-packages (from pmdarima) (1.5.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\leebr\anaco nda3\envs\learn-env\lib\site-packages (from scikit-learn>=0.22->pmdarima) (2.1.0)

Requirement already satisfied: pytz>=2017.2 in c:\users\leebr\anaconda3\env s\learn-env\lib\site-packages (from pandas>=0.19->pmdarima) (2020.1)

Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\leebr\ana conda3\envs\learn-env\lib\site-packages (from pandas>=0.19->pmdarima) (2.8. 1)

Requirement already satisfied: patsy>=0.5 in c:\users\leebr\anaconda3\envs \learn-env\lib\site-packages (from statsmodels!=0.12.0,>=0.11->pmdarima) (0.5.1)

Requirement already satisfied: six>=1.5 in c:\users\leebr\anaconda3\envs\le arn-env\lib\site-packages (from python-dateutil>=2.7.3->pandas>=0.19->pmdar ima) (1.15.0)

SARIMAX Results

Covariance Type:

Dep. Variable:	у	No. Observations:	212
Model:	SARIMAX(1, 1, 0)	Log Likelihood	-1583.510
Date:	Sun, 14 Nov 2021	AIC	3173.019
Time:	22:26:03	BIC	3183.075
Sample:	0	HQIC	3177.084
	- 212		

	coef	std err	z	P> z	[0.025	0.975]
intercept	180.8387	25.951	6.968	0.000	129.975	231.702
ar.L1	0.2309	0.008	27.555	0.000	0.214	0.247
sigma2	1.45e+05	9471.287	15.309	0.000	1.26e+05	1.64e+05

opg

Ljung-Box (L1) (Q): 61.20 **Jarque-Bera (JB):** 377.38

 Prob(Q):
 0.00
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 3.15
 Skew:
 -0.88

Prob(H) (two-sided): 0.00 Kurtosis: 9.31

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

1.4.3 Facebook Prophet Model

executed in 941ms, finished 22:37:32 2021-11-14

1.4.4 Model 3

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\b
ase\tsa_model.py:524: ValueWarning: No frequency information was provided,
so inferred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa\b
ase\tsa_model.py:524: ValueWarning: No frequency information was provided,
so inferred frequency MS will be used.

warnings.warn('No frequency information was'

SARIMAX Results

Dep.	Variable:		7	7486	No. Obs	erva	tions:	265
	Model:	SAF	RIMAX(1,	1, 0)	Log l	ikel	ihood	-2081.875
	Date:	Sun	i, 14 Nov	2021			AIC	4167.751
	Time:		22:	26:04			BIC	4174.903
	Sample:		04-01-	-1996			HQIC	4170.625
			- 04-01-	-2018				
Covaria	псе Туре:			opg				
	coe	F	std err	Z	z P> z		[0.025	0.975]
	COE	•	Stu en		2		[0.025	0.973]
ar.L1	0.2651		0.006	45.176	0.000		0.254	0.277
ar.L1 sigma2	0.2651 2.882e+05		0.006 .82e+04			2.5		0.277 3.24e+05
sigma2		5 1.		15.807				3.24e+05
sigma2	2.882e+05	5 1. (Q):	.82e+04	15.807	7 0.000	B):	52e+05	3.24e+05
sigma2 Ljun	2.882e+05	5 1. (Q): (Q):	.82e+04 71.94	15.807	7 0.000 e-Bera (J Prob(J	B):	52e+05 2542.4	3.24e+05

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).


```
In [45]:  pred = model3.get_forecast(steps=12)
  pred_df = forecast_to_df(pred,zip_1)
  display(plot_train_test_pred(train,test,pred_df));
  plt.show()
  executed in 217ms, finished 22:26:04 2021-11-14
```

(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)


```
In [46]: ► RESULTS = {}
             for zc in zip list:
                 print(zc)
                 ## Make empty dict for district data
                 zipcode d = {}
                 ## Copy Time Series
                 ts_final = ts_df[zc].copy()
                 ## Train Test Split Index
                 train_size = 0.8
                 split idx = round(len(ts)* train size)
                 ## Split
                 train = ts final.iloc[:split idx]
                 test = ts_final.iloc[split_idx:]
                 ## Get best params using auto arima
                 gridsearch_model = auto_arima(ts_final,start_p=0,start_q=0)
                 model3 = SARIMAX(ts final, order=gridsearch model.order,
                                   seasonal order=gridsearch model.seasonal order).fit()
                 ## Get predictions
                 pred = model3.get forecast(steps=36)
                 pred_df = forecast_to_df(pred,zip_1)
                 ## Save info to dict
                 zipcode_d['pred_df'] = pred_df
                 zipcode d['model'] = model3
                 zipcode_d['train'] = train
                 zipcode_d['test'] = test
                 ## Display Results
                 display(model3.summary())
                 plot_train_test_pred(train,test,pred_df)
                 plt.xlabel('Year')
                 plt.ylabel('Value in US Dollars ($)')
                 plt.show()
                 ## Save district dict in RESULTS
                 RESULTS[zc] = zipcode d
                 print('---'*20,end='\n\n')
             executed in 21.7s, finished 22:26:26 2021-11-14
```

77486

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa
\base\tsa_model.py:524: ValueWarning: No frequency information was provid
ed, so inferred frequency MS will be used.

warnings.warn('No frequency information was'

C:\Users\leebr\anaconda3\envs\learn-env\lib\site-packages\statsmodels\tsa
\base\tsa_model.py:524: ValueWarning: No frequency information was provid
ed, so inferred frequency MS will be used.

warnings.warn('No frequency information was'

CADIMAN Deculto

Best 3 Zipcodes appear to be:

- 77043
- 77018
- 77541

Looking at the models, theses Zipcodes have less a chance of decline with still great possibilities of the home price increasing.

1.5 Results

 RegionName
 City
 CountyName
 1996-04
 1996-05
 1996-06
 1996-07
 1996-08
 1996-08

 6457
 77541
 Freeport
 Brazoria
 45600.0
 45500.0
 45300.0
 45200.0
 45300

 1 rows × 270 columns

1.6 Conclusion

Invest in 3 zipcode areas early before the price increase further:

- 77043
- 77018
- 77541

▼ 1.7 Next Steps

- · Test time series with model using Facebook prophet
- Get another dataset looking the years in which historical oil prices are listed. Houston is known as an "oil industry" city. Would be interesting to see impact on home prices