Depth-Optimized Quantum Implementation of ARIA

Yujin Yang, Kyungbae Jang, Yujin Oh, and Hwajeong Seo

Index

Our Contribution

Background

Proposed Quantum Implementation

Evaluation

Conclusion

Our Contribution

Low depth quantum implementation of ARIA

Toffoli-depth and Full-depth reduction for the quantum circuit of Korean cryptosystems ARIA

Various techniques for optimization

 Use of optimized multiplication(Karatsuba), linear layer optimization method(XZLBZ), and parallel processing implementation

Evaluation of post-quantum security

 Evaluation of quantum security by comparing the estimated cost of Grover key search with the security level provided by NIST

Quantum Computer (Background)

- Quantum computers are built upon the principles of quantum mechanics (superposition and entanglement)
 - Can solve specific problems at a faster rate compared to classical computers
- The advancement of large-scale quantum computers has the potential to pose a threat to the security of current cryptographic systems.
 - Symmetric-key ciphers can be compromised by general attacks using the Grover's search algorithm (reduce the data search complexity $N \to \sqrt{N}$)
- In recent years, studies have been conducted to evaluate post-quantum security in existing symmetric-key ciphers.
 - Estimation the complexity of recovering secret keys using the Grover's search algorithm
 - Evaluation security strength based on these findings

ARIA Block Cipher (Background)

- ARIA is a symmetric-key cryptography algorithm
 - · optimization for ultra-light environments and hardware implementation
- ARIA holds significance as symmetric key cipher included in the validation subjects of the KCMVP (Korean Cryptographic Module Validation Program).
 - For preparedness against emerging threats, assessing the quantum security strength of ARIA is crucial.
- There is already a study that measured the quantum security strength of ARIA in 2020 by Chauhan et al.^[1].
 - However, Chauhan et al.^[1] primarily focuses on qubit optimization.
 - → need for research that addresses the recent emphasis on optimizing depth.

Quantum Gates (Background)

In the quantum computer environment, logic gates not available
→ Quantum gates are utilized as replacements for logic gates

- The X gate replaces classical NOT operation
- The CNOT gate replaces classical XOR operation
- The Toffoli gate replaces classical AND operation

Fig. 4: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli (right bottom) gates.

Quantum Gates (Background)

- Toffoli gates are highly complex quantum gates.
 - one Toffoli gate = 8 Clifford gates (CNOT, H) + 7 T gates
- We employ the Toffoli gate construction proposed by Amy et al. [2]

[Fig] Decomposition of Toffoli gate^[1]

Grover's Key Search Algorithm (Background)

1. [Initialization] n-qubit key has the same amplitude at all state of the qubits

$$|\psi\rangle = (H|0\rangle)^{\otimes n} = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle$$

2. [Oracle Operator] f(x) = 1, sign of the solution key is changed to negative. Amplify the amplitude of the negative sign state.

3. [Diffusion Operator] a key state (target key state) is transforming with a negative amplitude into a symmetric state.

each key state

$$D=2\left| s
ight
angle \left\langle s
ight| -I$$
 average value

In quantum computers, qubit states are unknown → Look-up table method can't be used ⇒ Implement S-box circuit based on generation equation using quantum gates

S-box generation equation

In quantum computers, qubit states are unknown → Look-up table method can't be used ⇒ Implement S-box circuit based on generation equation using quantum gates

S-box generation equation

process

- 1. Get x^{-1}
- 2. Matrix-vector Multiplication $(8 \times 8 \text{ Matrix}) \cdot x^n$
- 3. constant(vector) Multiplication

Get x^{-1}

(1) Itoh Tsuji Inversion Algorithm

$$x^{-1} = x^{254} = ((x \cdot x^2) \cdot (x \cdot x^2)^4 \cdot (x \cdot x^2)^{16} \cdot x^{64})^2$$

(2) Squaring – XZLBZ^[3]

- XZLBZ^[3] proposed a heuristic search algorithm based on factorization in binary matrices
- implement in-place structure
 → consist of CNOT gates
- 10 CNOT gates, circuit depth of 7

Fig. 5: Quantum circuit implementation for Squaring in $\mathbb{F}_{2^8}/(x^8+x^4+x^3+x+1)$

Get x^{-1}

(3) Multiplication – Karatsuba multiplication optimized for Toffoli depth (quantum-quantum multiplication)

Table 1: Quantum resources required for multiplication.

schoolbook Karatsuba

	Source	#Clifford	#T	Toffoli depth	Full depth
(CMMP [2]	435	448	28	195
	J++ [13]	390	189	1	28

*: The multiplication size n is 8.

Matrix-vector Multiplication & constant(vector) Multiplication

classical-quantum multiplication → use XZLBZ

Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and opti mization of a quantum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) TQC 2008. LNCS, vol. 5106, pp. 96-104. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2-9
Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized implementation of quantum binary field multiplication with toffoli depth one. In: International Conference on Information Security Applications, Springer (2022) 251–264

Proposed Quantum Implementation of Diff-layer

Diffusion function A is expressed as 16 x 16 binary matrix multiplication

$$A: GF(2^8)^{16} \to GF(2^8)^{16}$$

1byte (8-bit)

- 0:8 x 8 zero matrix
- 1:8 x 8 identity matrix

(maintaining qubits)

Through using XZLBZ, reduction of 51.04% (CNOT gates) and 45.16% (depth)

Table 2: Quantum resources required for Diffusion layer.

Source	#CNOT	qubit	Depth	
PLU factorization	768	128	31	
XZLBZ [25]	376	128	17	

$$768 (= 96 \times 8), 376 (= 47 \times 8)$$

Proposed Quantum Implementation of Key-Schedule

1) Key Initialization

Fig. 3: Key Initialization of ARIA

Algorithm 1: Quantum circuit implementation of key schedule for ARIA.

Input: master key MK, key length l, vector a, b, ancilla qubit anc, round number r **Output:** round key ek

$$K_L$$
 $ightharpoonup K_R$ $ightharpoonup K_R$ $ightharpoonup K_R$ $ightharpoonup MK[: 128] ext{ is } K_L$ 2: Constant_XOR($W_1[l-128:128], MK[l-128:l]$) $ightharpoonup MK[l-128:l] ext{ is } K_R$

- 3: $W_2 \leftarrow F_e(W_1, a, b, anc)$ 4: $W_2 \leftarrow \text{CNOT128}(MK[: 128], W_2)$
- 5: $W_3 \leftarrow F_o(W_2, a, b, anc)$ 6: $W_3 \leftarrow \text{CNOT128}(W_1, W_3)$
- K_L value is **identical** to W_0 value \rightarrow instead of generating W_0 , **use** K_L \Rightarrow **reduce** the number of **qubits**
- K_R is a constant \rightarrow replace CNOT gates with X gates
- ⇒ reduce the number of gates and gate cost

Proposed Quantum Implementation of Key-Schedule

2) Key Generation

Algorithm 1: Quantum circuit implementation of key schedule for ARIA.

Input: master key MK, key length l, vector a, b, ancilla qubit anc, round number r **Output:** round key ek

```
7: num = [19, 31, 67, 97, 109]
8: for i \leftarrow 0 to r do
9: | if i = 0 \pmod{4} then K_L = W_0
10: | Constant_XOR(ek, MK[: 128])
11: | else
12: | ek \leftarrow \text{CNOT128}(W_{(i\%4)}, ek)
13: | ek \leftarrow \text{CNOT128}(W_{(i+1)\%4} \gg num[i\%4], ek)
```

```
\begin{array}{lll} ek_{1} = (W_{0}) \oplus (W_{1} \gg 19), & ek_{2} = (W_{1}) \oplus (W_{2} \gg 19) \\ ek_{3} = (W_{2}) \oplus (W_{3} \gg 19), & ek_{4} = (W_{0} \gg 19) \oplus (W_{3}) \\ ek_{5} = (W_{0}) \oplus (W_{1} \gg 31), & ek_{6} = (W_{1}) \oplus (W_{2} \gg 31) \\ ek_{7} = (W_{2}) \oplus (W_{3} \gg 31), & ek_{8} = (W_{0} \gg 31) \oplus (W_{3}) \\ ek_{9} = (W_{0}) \oplus (W_{1} \ll 61), & ek_{10} = (W_{1}) \oplus (W_{2} \ll 61) \\ ek_{11} = (W_{2}) \oplus (W_{3} \ll 61), & ek_{12} = (W_{0} \ll 61) \oplus (W_{3}) \\ ek_{13} = (W_{0}) \oplus (W_{1} \ll 31), & ek_{14} = (W_{1}) \oplus (W_{2} \ll 31) \\ ek_{15} = (W_{2}) \oplus (W_{3} \ll 31), & ek_{16} = (W_{0} \ll 31) \oplus (W_{3}) \\ ek_{17} = (W_{0}) \oplus (W_{1} \ll 19) \end{array}
```

14: return ek

- When assigning W to ek, since W_0 is equal to K_L (constant), the CNOT gate operation can be replaced with the X gate operation
- ⇒ reduce the number of gates and gate cost

Evaluation

(Clifford + T Level)

Table 4: Required decomposed quantum resources for ARIA quantum circuit imple-

mentation					<i>M</i>			TD	$TD\times M$
	Cipher	Source	#Cliford	#T	T-depth	#Qubit	Full depth	Toffoli depth	TD- M cost
•	ARIA-128	CS [2] [♦]	1,494,287	1,103,872	17,248	1,560	37,882	4,312	6,726,720
		This work	481,160	181,440	240	29,216	$4,\!241$	60	1,752,960
_	ARIA-192	CS [2] ^{\$}	1,742,059	1,283,576	20,376	1,560	44,774	5,096	7,949,760
		This work	$551,\!776$	205,632	272	32,928	$5,\!083$	68	$2,\!239,\!104$
	ARIA-256	CS [2] ^{\$}	2,105,187	1,555,456	24,304	1,688	$51,\!666$	$6,\!076$	10,256,288
_		This work	$616,\!920$	229,824	304	36,640	5,693	76	$2,\!784,\!640$
-	♦ Extrapolated result						88.8%	98.7%	72.9%
							reduction	reduction	reduction

- In CS's paper^[1], the decomposed quantum resources were not explicitly provided.
 → the quantum resources are extrapolated based on the information provided in the paper
- Significantly reduces depth-related metrics (Full depth, Toffoli depth, TD-M cost) while considering the trade-off between qubit and depth.

[1] Chauhan, A.K., Sanadhya, S.K.: Quantum resource estimates of grover's key search on aria. In: Security, Privacy, and Applied Cryptography Engineering: 10th International Conference, SPACE 2020, Kolkata, India, December 17–21, 2020, Proceedings 10, Springer (2020) 238–258

Evaluation

[Table 5] = [Table 4]
$$\times \left[\frac{\text{key size}}{\text{block size}} \right] \times 2 \times \left[\frac{\pi}{4} \sqrt{2^k} \right]$$

Total gates X Full depth = Cost(complexity)

Table 5: Cost of the Grover's key search for ARIA

Cipher	Source	Total gates		(complexity)	#Qubit		NIST Level ^[6,7]	
ARIA-128	CS [2]		$1.816 \cdot 2^{79}$		1,561	$1.26\cdot 2^{87}$	(Level 1) 2 ¹⁵⁷	
A1(1A-120	This work	$1.985 \cdot 2^{83}$	$1.626 \cdot 2^{76}$		$29,\!217$	$1.313\cdot 2^{84}$	(LCVCI I/ Z	
ARIA-192	CS [2]	$1.133\cdot 2^{119}$	$1.073 \cdot 2^{113}$	$1.216 \cdot 2^{232}$	3,121	$1.489\cdot 2^{121}$	(Level 3) 2 ¹⁹² , 2 ²²¹	
A1(1A-192	This work	$1.135 \cdot 2^{117}$						
ARIA-256	CS [2]	$1.371\cdot 2^{151}$	$1.238\cdot 2^{145}$	$1.698 \cdot 2^{296}$	3,377	$1.921\cdot 2^{153}$	(Level 5) 2 ²⁷⁴ , 2 ²⁸⁵	
A1(1A-200	This work	$1.268 \cdot 2^{149}$	$1.092 \cdot 2^{142}$	$1.385 \cdot 2^{291}$	73,281	$1.04 \cdot 2^{152}$		

NIST Level Achieve

Evaluation

Table 5: Cost of the Grover's key search for ARIA

Cipher	Source	Total gates	Full depth	Cost	#Qubit	TD- M cost
	00 [0]	1.046. 085	1.016.079	$\frac{\text{(complexity)}}{1.767 \cdot 2^{165}}$	1 701	$1.26\cdot 2^{87}$
ARIA-128		$1.946 \cdot 2^{85}$	1		$1,\!561$	
				$1.614\cdot2^{160}$	29,217	$1.313\cdot 2^{84}$
ARIA-192		$1.133 \cdot 2^{119}$		$1.216 \cdot 2^{232}$		$1.489\cdot 2^{121}$
AniA-192		$1.135 \cdot 2^{117}$		$1.106 \cdot 2^{227}$	· ·	$1.672\cdot 2^{119}$
ARIA-256					3,377	$1.921\cdot 2^{153}$
A111A-200	This work	$1.268 \cdot 2^{149}$	$1.092 \cdot 2^{142}$	$1.385 \cdot 2^{291}$	73,281	$1.04\cdot 2^{152}$

NIST MAXDEPTH[8]

 $2^{40}, 2^{64}, 2^{96}$

- ARIA-128 meets the MAXDEPTH requirement (ARIA-128 < 2⁹⁶)
- In the case of exceeding MAXDEPTH (ARIA-192, 256), the focus should be on minimizing the costs of relevant metrics ($FD^2 \times M$, $TD^2 \times M$) instead of directly imposing a MAXDEPTH limit on the cost.

[8] NIST.: Call for additional digital signature schemes for the post-quantum cryptography standardization process (2022) https://csrc.nist.gov/csrc/media/ Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022. pdf.

Conclusion

- We propose the quantum circuit for ARIA, focusing on circuit depth optimization.
 - Our quantum circuit implementation achieves the full depth improvement of over 88.8% and Toffoli depth by more than 98.7% compared to the previous work (Chauhan et al.)
- We estimate the cost of Grover's attacks for the proposed circuit, and then
 evaluate the security strength based on the criteria provided by NIST.
 - ARIA achieves post-quantum security levels 1, 3, and 5 for all key sizes.
 - Only ARIA-128 satisfies the MAXDEPTH limit.
- Future work
 - Optimization of ARIA's quantum circuit further with consideration for the MAXDEPTH limit

Thank you