Jiyanshu Dhaka

Final Year Undergraduate

Major: Statistics and Data Science

Minors: Computer Science - Machine Learning, Cognitive Sciences

jiyanshudhaka2003@gmail.com Jiyanshu Dhaka | ☑ jiyanshud22@iitk.ac.in Qjiyanshud22 | ✓+91-9413186425

ACADEMIC QUALIFICATIONS

Year	Degree/Certificate	Institute	CPI/%
2022 - present	Bachelor's	Indian Institute of Technology Kanpur	8.1/10
2021	RBSE (XII)	Disha Delphi Senior Secondary School	97.8%
2018	CBSE (X)	Gurukul International School	94.8%

SCHOLASTIC ACHIEVEMENTS

- KVPY(SB) Scholar 2021 with All India Rank 28 in common rank list conducted by Indian Institute of Science, Bangalore
- KVPY(SA) Scholar 2019 with All India Rank 832 in common rank list conducted by Indian Institute of Science, Bangalore
- Secured All India Rank 3846 in Joint Entrance Exam (Advanced) 2022 among the 0.16 million shortlisted candidates
- Secured All India Rank 4025 in Joint Entrance Exam (Main) 2022 among more than 1 million appeared candidates
- Awarded the Reliance Foundation UG Scholarship, a merit-cum-means scholarship granted to 5,000 students nationwide
- Achieved A* in Human Centered Computing and Computational Cognitive Science for Outstanding performance
- Achieved A or higher grades in 14 mandatory or elective courses at IIT Kanpur for Excellent academic performance

PROGRAMMING EXPERIENCE

- Achieved Rating of 1600+ (Codeforces Expert) with Global Rank 95 in Round 1035 | Profile : Imvengeance 3846
- Active on Platforms: LeetCode: (Jiyanshu_Dhaka) | Kaggle: (jiyanshudhaka) | IB: (jiyanshu-dhaka) | GFG: (jiyanshudifcz)

WORK EXPERIENCE

CHAMPHUNT INC | Machine Learning Internship

(Sep'24-Jan'25)

- Built Hybrid Post Recommender (content + collaborative filtering), boosting relevance by 28% & engagement by 3 min
- Built Q-Learning friend recommender using Q-table updates from user interactions, achieving 78% user acceptance rate
- Integrated location match, follower overlap, & noise factors with weight tuning, boosting personalization for 5k users
- Built Cricket Ball Detection Algorithm using Contour Detection + YOLOv8, HSV masking & temporal checks
 Applied Gaussian blur & morphological operation to reduce noise; Used Optical Flow & Kalman Filter for smoothing
- Automated extraction of ball-pitch contact frames; classifying deliveries as yorker, bouncer, etc. to improve analysis

SALTMINE USA INC | Workspace Design Automation Intern |

(Feb'25-Jul'25)

- $\bullet \ \, \text{Built Workspace Stacking algorithm using greedy allocation, proportional distribution}, \, \& \ \text{adjacency modeling}$
- Generated 85% + valid stack plans, with $\sim 90\%$ match to manual outputs, reducing manual workload by ($\sim 3-4$ hrs/day)
- Built grid-based zoning engine using **ILP** optimization to satisfy adjacency, periphery, diagonal, and block-pattern constraints
- Implemented MCMC + combinatorial optimization based sampling to optimize objective functions across constraints
- Developed zoning web app with **NLP-driven interface** translating custom rules into constraints and visualized grid layouts

RESEARCH EXPERIENCE

Passive Image Forgery Detection | Prof. Nisheeth Srivastava |

(Dec'23-Feb'24)

- Reviewed IEEE research on passive forgery detection, studying demosaicing artifacts, JPEG traces, and CFA methods
- Implemented Error Level Analysis with HSV contour analysis to expose tampered regions via pixel-level inconsistencies
 Detected fake medical scans, X-rays, and morphed reports, aligning with ongoing cybersecurity forensics research
- Classified **507 bonafide** and **210 morph** images as **original or forged**, achieving **80.1%** and **78.7%** accuracy respectively

RL for Odor-Guided Task | Course Research Project CS786 | Prof. Nisheeth Srivastava | 🗘

(Sep'24-Nov'24)

- Modeled an **odor-guided choice task in rats**, where odors signaled forced and free-choice trials, to study task representation
- Developed two RL models: 4-state model (generalization across trials) and 6-state model (odor-action specific)
- Applied Hierarchical Bayesian inference with MCMC sampling on trial-by-trial behavioral data for each animal (rat)
- Conducted WAIC model comparison, showing the 6-state model better predicted rat choices with limited generalization

PROJECTS

Cells | Course Project MTH312 | Prof. Dootika Vats | **k** | **\Color**

(Feb'25-Mar'25)

- Clustered 10,000 cells into 8 distinct types via spectral clustering, outperforming PCA+CCA by 79.6% in ARI metrics
- Achieved the highest ARI score of 0.87981 in class by integrating multi-omics data using a Dual-branch Autoencoder
- Visualized cell latent space with **UMAP**, revealing separation of **cell type** and overlapping modalities across 2 omics layers

EMG Classification | Course Project MTH209 | Prof. Subhajit Datta | 🕥

(Feb'24-Apr'24)

- Developed gesture recognition model using 6 Time-Domain features per channel, classifying 12 gestures with 66k records
- Captured dual-channel sEMG signals at 100Hz, normalized with Min-Max scaling, and segmented into 1000ms windows
- Modeled SVM (RBF kernel), LR (softmax), & kNN (Euclidean); optimized hyperparameters via gradient descent
- Applied PCA to identify top features and reduce dimensionality; Achieved 94.1% accuracy with SVM & 92.7% with kNN

Generative AI | GDSC | 😯

Dec'23-Jan'24

- Learned about NLP preprocessing, Word Embeddings, RNNs, LSTM, Transformers, and Fine-Tuning of LLMs
- Web scraped quotes via **BeautifulSoup** and generated **bag-of-words embeddings** using **NNs** & **co-occurrence matrices**
- Fine-tuned GPT-2 model on preprocessed text derived from word embeddings to generate high-quality quotes efficiently
- Compared performance of Vanilla GANs (FC/DC), WGANs, cGANs, and text-to-image GANs for generating images

	ations Course Project CGS616 Prof. Nisheeth Srivastava 😯	(Feb'24-Mar'24)
• Implemen	l MovieLens-100k dataset (943 users×1682 movies), incorporating user demographics, gented item-based, user-based, & SVD models; designed hybrid recommender integrating ratings for unwatched movies using cosine similarity—based collaborative filtering and	ng similarity+factorization
Web Surfing	Behavior Analysis Course Project CGS616 Prof. Nisheeth Srivastava 🗬	(Jan'24–Feb'24)
Applied IBuilt wit	web log data to model individual cognitive behavior in browsing, mapping patterns of usage Latent Dirichlet Allocation to extract topic transitions, using dwell time to quantify en hin-day predictive model estimating likely next-hour topics and visit counts, improving stochastic framework to find recurrent and transitional websites, predicting future to	ngagement across sessions topic revisit prediction
World Demo	ographics Course Project MTH208 Prof. Dootika Vats 🕥	(Aug'23-Nov'23)
• Normalize	demographic indicators (population, fertility, mortality, GDP) for 115+ countries over ed variables for cross-sectional analysis and built R Shiny App, enabling Data Visualizat erpretation using heatmaps and statistical measures, identifying outliers, patterns.	ion in structured manner
Intro to Ma	chine Learning Stamatics Club, IITK 🗘	(May'23-Jul'23)
Applied 0Conducte	nted Linear, Polynomial, and Logistic Regression models from scratch, achieving R ² Gradient Descent optimization to minimize loss functions, reducing training time by 3 and unsupervised learning using KMeans and GMM, identifying 6 clusters and uncove Neural Networks and CNNs by generating data, visualizing outcomes, and evaluating in the contraction of the contraction o	2% versus naive updates ring hidden data patterns
Roads Cour	rse Project MTH312 Prof. Dootika Vats 🗬	$(Jan'25 ext{-}Feb'25)$
• Derived g	high and variable-resolution road-point datasets as curves or straight segments; achieved lageometric features using circumradius and turning angle from triplets of points to find red model performance by grid searching for feature thresholds and evaluating F1 score	oad geometry patterns
Bayesian Ca	usal Inference in Time Series Course Project MTH422 Prof. Arnab Hazra 🕥	(Feb '25– Apr '25)
 Modeled Designed	d Bayesian multivariate structural time series model to estimate causal effects of advertise spatial dependence using G-Wishart priors on precision matrix and applied stationarity a 2-stage estimation : EMVS for sparse variable selection followed by MCMC sationary Kolmogorov–Smirnov distance causal estimand, validated via simulations, improving destination.	y constraints on trend mpling for latent states
Teaching CN	NNs Gestalt principles Course Project CS786 Prof. Nisheeth Srivastava 🗬	(Sep '24-Oct '24)
Built PytTrained b	nted InceptionV4 in Keras, boosting CIFAR-10 accuracy by refining feature extraction hon pipeline for symmetry dataset, training InceptionV3 (TensorFlow) to achieve 0.55 binary classifier with InceptionV3 + RMSprop, applying early stopping to reach 0.9 performance using ROC/AUC in scikit-learn, obtaining AUC = 0.43 on preprocessed	error rate on 8k samples 8 validation accuracy
Hopfield Ne	tworks Course Project CS786 Prof. Nisheeth Srivastava 🔾	(Jul'24-Aug'24)
OptimizePreproces	ated custom Hopfield Network model for pattern recognition, achieving 54% accuracy on I d network performance via vectorized weight computation , reducing computational consed MNIST dataset via deskewing, cropping, and thresholding in TensorFlow, boosting F1 d Hopfield classifier to CNN and SVM using scikit-learn metrics, highlighting 54% vs. 9	nplexity for large patterns score from 0.06 to 0.52
Models of ca	ategorization Course Project CS786 Prof. Nisheeth Srivastava 🕥	$(\mathit{Oct'24} ext{-}\mathit{Nov'24})$
 Modeled s Optimize	nted Generalized Context Model for categorization, using exponential similarity to classification by the subject bias in GCM via prior probabilities, capturing politeness-driven tendencies in defeature weights ($\alpha = [0.65, 0.35]$), improving sensitivity of predictions and yielding a categories on test sets through iterative augmentation, producing stable labels (" $2 = a$)	height—weight judgments realistic category outputs
	nctions and policies Course Project CS786 Prof. Nisheeth Srivastava 😯	(Aug'24-Sep'24)
DevelopedSimulatedEvaluated	ated NN for 3-variable Boolean functions with NumPy, achieving perfect verification at \mathbf{Q} -learning agent for Frozen Lake using ϵ -greedy policy, optimizing paths with higher red Rulkov map neuronal dynamics with custom activation, generating bursting spikes at RL performance via cumulative reward curves, identifying optimal hyperparameter.	ewards over 100k episodes at $\alpha{=}4.5$ and $\mu{=}0.001$
TECHNICA		
Languages	C C++ Python R SQL MATLAB LATEX	-f.:- ND D 1
Libraries	Tidyverse ggplot2 tseries pracma R Shiny Rcpp Rvest RMarkdown Quarto Pr scikit-learn TensorFlow PyTorch Hugging Face XGBoost statsmodels Matplot	
Tools	Jupyter Notebook Google Colab RStudio VS Code MySQL MongoDB Tableau	Docker Git GitHub

Introduction to Machine Learning*

Bayesian Models & Data Analysis

Linear Regression & ANOVA

Web Secretary, CWC, IITK

Fundamentals of Computing (I) & (II)

(

RELEVANT COURSES

Data Structure & Algorithm

Time Series Analysis

Statistical Computing

Data Science Lab (I),(II) & (III)*

Academic Mentor, ICS, IITK

POSITIONS OF RESPONSIBILITY

 $* \to A, ** \to A*$

(Jul'23-Apr'24)

AI Techniques in Data Mining*

Computational Cognitive Science**

Matrix Algebra & Linear Estimation*

Elementary Stochastic Processes(I) & (II)

Executive, Stamatics Club, IITK | • •