1 Nonlinear Pendulum

The Nonlinear Pendulum function:

$$1) \ddot{\theta} + \Omega^2 \sin(\theta) = 0$$

where $\Omega^2 = gl^{-1}$.

Figure 1: A fourth-order Runge Kutta subroutine computes the motion of the pendulum. The plot represents the phase space trajectory, ω vs. θ . The initial conditions are $x_0 = \frac{\pi}{2}$ and $\omega_0 = 0$.

2 Forced Nonlinear Pendulum

The Forced Nonlinear Pendulum function:

1)
$$\ddot{\theta} + \Omega^2 \sin(\theta) = f\sin(\tilde{t})$$

where
$$\tilde{t}=\mathrm{t}\omega_0^{-1},\,\Omega^2=gl^{-1}\omega_0^{-2},\,\mathrm{and}\;\mathrm{f}=A\omega_0^{-1}.$$

2.1 Chaotic Pendulum

Figure 2: The initial conditions are $x_0 = \frac{\pi}{2}$ and $\omega_0 = 0$. The chaotic pendulum is plotted over course of 50 seconds. The various constants Ω^2 and f are noted in the figures. With f > 1, the pendulum deviates largely from its initial position. With f < 1, it deviates closely to its initial position.

2.2 Lyopunov Exponent

The Lyoponuv Exponential function:

1)
$$\delta Z = \delta Z_0 e^{\lambda_L \tilde{t}}$$

where
$$\tilde{t}=\mathrm{t}\omega_0^{-1},\,\Omega^2=gl^{-1}\omega_0^{-2},\,\mathrm{and}\;\mathrm{f}=A\omega_0^{-1}.$$

Figure 3: The plots: (a),(c),(e),(g) represent the phase trajectory of two chaotic pendulums with initial conditions differing by 1E-03. The mean Lyopunov Exponent is noted and plotted alongside its corresponding phase trajectory.