# Wprowadzenie do sztucznej inteligencji

Ćwiczenie nr. 2



Bartosz Latosek

## 1. Opis ćwiczenia

Zadanie polega na zaimplementowaniu algorytmu ewolucyjnego znajdującego najkrótszy cykl Hamiltona w grafie nieskierowanym.

## Użyte technologie

Python (3.9.0) wraz z bibliotekami:

> matplotlib (3.4.3)

> numpy (1.21.2)

> argparse

#### Algorytm:

Omówienie algorytmu przeprowadzę na podstawie poniższego pseudokodu.

Tabela.1 Pseudokod nr.0

#### Oznaczenia:

Pop0 – populacja początkowa.
 PopCt – liczność populacji.
 maxT – maksymalna liczba generacji.
 PopMProb – prawdopodobieństwo mutacji osobnika.
 PopMGene – prawdopodobieństwo mutacji genu osobnika.

**TournamentSelection()** – Selekcja turniejowa, wybieramy 2 losowych osobników z danej populacji, a następnie lepszego z nich wrzucamy do populacji wyjściowej.

**Mutate()** – Mutacja populacji ze względu na prawdopodobieństwo mutacji osobnika i jego poszczególnych genów.

## Przykład działania:

(Po wnioskach wyciągniętych na końcu sprawozdania)

Dla 30 punktów rozrzuconych jednorodnie, 50 osobników w populacji, prawdopodobieństwo mutacji osobnika – 0.3

#### → SEED = 6003798956427469088

Generacja 1 –sza.



Generacja 50 –ta.



Generacja 5000 -ta.



# 2. Analiza algorytmu, wykresy

Przy dalszej analizie algorytmu w tym podpunkcie, używam SEED = 1234.

#### Parametry:

N = 30

**PopCt** = 20

maxT = 1000

**PopMProb** = 0.5

**GeneMProb** = 0.5



Widzimy, że rezultaty nie są zbyt dobre. Jest to spowodowane zbyt dużym prawdopodobieństwem mutacji, przez co najlepsze osobniki nie utrzymują się długo przy życiu.

#### Zmieńmy mutacje poszczególnych genów na:

#### GeneMProb = 0.1

Rysunek 2



Jest już lepiej, ale zwiększmy liczbę iteracji żeby zobaczyć działanie algorytmu w szerszej perspektywie. Zmniejszmy również szansę na mutację poszczególnych osobników.

maxT = 3000

PopMProb = 0.3

Rysunek 3



Wyniki są coraz bardziej zadowalające, jednak dalej można zauważyć rozrzucenie w działaniu algorytmu.

\_\_\_\_\_\_

## **UWAGA**

Na tym etapie zauważyłem, że mutacja 2 – etapowa na dobrą sprawę mija się z celem. Przy tak dużej liczbie iteracji nie potrzebujemy aż takiej gęstości mutacji, która powoduje pogorszenie najlepszego dystansu w losowej generacji. Zamiast losować czy poszczególny gen zostanie zmutowany ( miasto w kolejności zamieni się z innym miastem w osobniku ), zdecydowałem, że mutacja będzie mieć tylko jedno prawdopodobieństwo – mutacji osobnika. Jeżeli dany osobnik ulega mutacji, zamieniane są w nim 2 losowe miasta. W związku z czym uaktualniony pseudokod algorytmu ma postać:

```
Dane: Pop0, PopCt, maxT, PopMProb
Population <- Pop0;
While t < maxT do:
    Population <- TournamentSelection(Population);
    Population <- Mutate(Population, PopMProb);
    t <- t + 1;
return best(Population);</pre>
```

Tabela.2 Pseudokod nr.1

\_\_\_\_\_\_

A zatem uaktualniony algorytm przedstawia się w następujący sposób:

#### Przy parametrach:

```
N = 30
PopCt = 20
maxT = 3000
```

PopMProb = 0.3

Rysunek 4



Zwiększmy też rozmiar osobników w populacji do 200.

**PopCt** = 200

Rysunek 5





Znaleziona trasa jest relatywnie bliska najlepszej możliwej trasie pomiędzy punktami rozłożonymi równomiernie na planszy.

# 3. Najlepsze trasy dla wszystkich ułożeń punktów.

By zademonstrować ogólną jakość znalezionego rozwiązania przedstawię znalezione najlepsze trasy przy poniższych parametrów, dla 3 różnych rozmieszczeń punktów (miast). Nie podaję SEED'u, gdyż znalezione trasy zostały wygenerowane bez podania konkretnego SEED'a.

### **Parametry:**

N = 20

! Zdecydowałem się na zmniejszenie testowanej liczby punktów !

**PopCt** = 100

maxT = 10000

**PopMProb** = 0.3

## 1. Rozmieszczenie równomierne. (Opcja 0)





## 2. Rozmieszczenie w skupiskach miast. (Opcja 1)





## 3. Rozmieszczenie losowe. (Opcja 2)





#### Obserwacje:

Algorytm działa zaskakująco dobrze, w każdym przypadku jest w stanie znaleźć najoptymalniejsze rozwiązanie w poniżej 2000 generacjach.

# 4. Wnioski ogólne

Pierwszym wyciągniętym wnioskiem jest to, w jaki sposób należy przeprowadzać mutację. Zdecydowałem się na rezygnację z założonej w Tabeli nr. 0 konwencji mutacji z 2 prawdopodobieństwami na rzecz jednego prawdopodobieństwa - mutacji osobnika.

Wymyśliłem również, że należy przechowywać najlepszego obecnie znalezionego osobnika w pamięci i w każdej iteracji porównywać najlepszego osobnika danej generacji z obecnie najlepszym. W ten sposób nie tracimy najlepszego znalezionego rozwiązania na skutek mutacji lub niekorzystnej selekcji.