TECHNISCHE UNIVERSITÄT MÜNCHEN

Übungsblatt 3

Potenzreihen, Exponentialfunktion, Stetigkeit, Konvergenz, Grenzwert 12.03.2014

1. Konvergenzradien von Potenzreihen I

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} (n^4 - 4n^3) x^n$$

b)
$$\sum_{n=0}^{\infty} \frac{e^n + e^{-n}}{2} x^n$$

c)
$$\sum_{n=0}^{\infty} \frac{x^{5n+1}}{1+2n}$$

d)
$$\sum_{n=1}^{\infty} \frac{(2+(-1)^n)^n}{n} x^n$$

2. Funktionalsgleichung der Exponentialfunktion

Beweisen Sie für $z, w \in \mathbb{C}$ mit Hilfe des Cauchy-Produkts:

$$\exp(z) \cdot \exp(w) = \exp(z + w)$$

3. Stetigkeit der Exponentialfunktion

Benutzen Sie die Stetigkeit der Exponentialfunktion, um $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}}=1$ zu zeigen.

Hinweis: Betrachten Sie hierzu den Grenzwert der Folge $b_n=e^{a_n}$

4. Konvergenzradien von Potenzreihen II

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} a^{n^2} x^n$$
, $a \in \mathbb{R}$

b)
$$\sum_{n=0}^{\infty} a^n x^{n^2}$$
, $a \in \mathbb{R}$
c) $\sum_{n=0}^{\infty} n! x^n$

c)
$$\sum_{n=0}^{\infty} n! x^n$$

d)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)^n \cdot n!} x^n$$

5. Sinus, Cosinus

Zeigen Sie, dass für alle $x \in \mathbb{R}$ gilt:

a)
$$\cos(3x) = 4\cos^3(x) - 3\cos(x)$$

b)
$$\sin(3x) = -4\sin^3(x) + 3\sin(x)$$

c)
$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$$

Hinweis: Benutzen Sie bei c) die Exponentialdarstellung

6. Konvergenz von Potenzreihen III

a)
$$\sum_{n=0}^{\infty} \left(\frac{(n+3)}{n} \right)^{n^2} x^n$$

b)
$$\sum_{n=0}^{\infty} 7x^{\frac{n}{3}}$$

c)
$$\sum_{n=0}^{\infty} \frac{3^{n+2}}{2^n} x^n$$

d)
$$\sum_{n=0}^{\infty} \frac{n+2}{2^n} x^n$$

7. Stetigkeit

a) Sei $s \in \mathbb{R}$. Zeigen Sie, dass die Funktion $f : \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto x^s$ stetig ist

b) Sei
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x \sin\left(\frac{1}{x}\right)$ für $x \neq 0$ und $f(x) = 0$ für $x = 0$. Zeigen Sie, dass f stetig ist

8. Gleichmäßige Stetigkeit

Untersuchen Sie, welche der Funktionen gleichmäßig stetig sind:

a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$

b)
$$f:[10^{-4},\infty)\to \mathbb{R}, \ f(x)=\frac{1}{x}$$

c)
$$f: [\sqrt{2}, 6] \to \mathbb{R}, \ f(x) = \frac{x^{2014} - 18}{46 + |x|^7}$$

9. Gleichmäßige Stetigkeit, Lipschitz-Stetigkeit

Sei $f:[0,1]\to\mathbb{R}, f(x)\coloneqq\sqrt{x}$. Zeigen Sie, dass die Funktion f gleichmäßig stetig, aber nicht Lipschitz-Stetig ist.

10. Gleichmäßige Konvergenz

Entscheiden Sie, ob die folgenden auf $(0, \infty)$ definierten Funktionenfolgen nicht, punktweise oder sogar gleichmäßig gegen eine Grenzfunktion konvergieren. Geben Sie, falls existent, den Grenzwert an.

a)
$$a_n = x + \frac{1}{n}$$

b)
$$a_n = \frac{x}{n}$$

c)
$$a_n = e^x \cdot \sqrt[n]{e}$$

11. Zwischenwertsatz

Zeigen Sie: Ein Polynom $p: \mathbb{R} \to \mathbb{R}$ ungeraden Grades besitzt mindestens eine reelle Nullstelle.