

Exercise 9B

Question 3:

ABCD is a parallelogram in which DA=60° and bisectors of A and B meetsDCatP.

(i) In a parallelogram, opposite angles are equal.

So,
$$\angle C = \angle A = 60^{\circ}$$

In a parallelogram the sum of all the four angles is 360°.

$$\Rightarrow \angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

Now,
$$\angle B + \angle D = 360^{\circ} - (\angle A + \angle C)$$

$$=360^{\circ}-(60^{\circ}+60^{\circ})=240^{\circ}$$

$$2\angle B = 240^{\circ} \qquad [\because \angle B = \angle D]$$

So,
$$\angle B = \angle D = \frac{240^{\circ}}{2} = 120^{\circ}$$

Since AB || DP and APis a transversal

So,
$$\angle APD = \angle PAB = \frac{60^{\circ}}{2} = 30^{\circ} \dots (1)$$

[.·, alternate angles]

Also, AB | PCand BP is a transversal.

So,
$$\angle ABP = \angle CPB$$

But,
$$\angle ABP = \frac{\angle B}{2} = \frac{120^{\circ}}{2} = 60^{\circ}$$

Now, $\angle APD + \angle APB + \angle CPB = 180^{\circ}$

[As DPC is a straightline]

$$30^{\circ} + \angle APB + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle APB = 180^{\circ} - 30^{\circ} - 60^{\circ} = 90^{\circ}$

(ii) Since
$$\angle APD = 30^{\circ}$$
 [from (1)]

and
$$\angle DAP = \frac{60^{\circ}}{2} = 30^{\circ}$$

So,
$$\angle APD = \angle DAP$$

Now in AAPD,

$$\angle APD = \angle DAP.....(3)$$

As
$$\angle CPB = 60^{\circ}$$
 [from (2)]

As
$$\angle CPB = 60^{\circ}$$
 [from (
and $\angle C = 60^{\circ}$

So,
$$\angle PBC = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$$

Since all angles in the △PCB are equal,

it is an equilateral triangle.

$$=\frac{1}{2}DC\left[::DP=PC\Rightarrow P\text{ is the midpoint of DC}\right]$$

$$DC = 2AD$$
.