## 第4章:GLMのモデル選択(前半)

太田研究室 学部4年 和田

# 章の概要:「良い」モデルとは何か?どのような規準で選択すればいいか?

パラメーター数(k)を多くすればする分、最大対数尤度は大きくなる



# 章の概要:「良い」モデルとは何か?どのような基準で選択すればいいか?

パラメーター数(k)を多くすればする分、<u>最大対数尤度</u>は大きくなる





こちらの方がモデルとして 優れている ……とは限らない!

観測データへのあてはまりの良さ

【理由】、要確認

- 計算処理
- ・実際の現象と
- の乖離

最大対数尤度以外の、新しいモデルの評価法・選択規準: 「当てはまりの悪さ」**→逸脱度** 「そのモデルは良い<u>予測をする</u>のか? | → AIC

## 4.1 データはひとつ、モデルはたくさん

**モデル候補の選定** 「あてはまりの良さ」 <sup>|</sup> |集進は万能ではない **逸脱度** てはまりの

「あてはまりの悪さ」という評価法

AIC 「予測の良さ」 という選択規準 **ネストの** 問題 ネストとは **AICの有用性** なぜ**AIC**はモデル選択 基準として有用なのか

# 一つのデータに対し、考慮する説明変数のパターン(=候補となるモデル)はたくさんある

体のサイズ $x_i$ も施肥の有無も、種子の量 $y_i$ に影響しない





施肥の有無 $\mathbf{f}_i$ のみが種子の量 $\mathbf{y}_i$ に影響する

体のサイズ $\mathbf{x}_i$ のみが種子の量 $\mathbf{y}_i$ に影響する





施肥の有無 $f_i$ と、体のサイズ $x_i$ の両方が、種子の量 $y_i$ に影響する

一つのデータに対し、考慮する説明変数のパ ターン(=候補となるモデル)はたくさんある このうち、どれを採用するべきか? を考えたときに..... 子の量yiに影響する 子の量yiに影響する 施肥処理

(テキストより)

## 4.2 統計モデルのあてはまりの悪さ:逸脱度

モデル候補の選定

「あてはまりの良さ」 基準は万能ではない 逸脱度

AIC

「予測の良さ」 という選択規準

ネストの 問題 ネストとは AICの有用性

なぜAICはモデル選択 基準として有用なのか

### モデルのデータへのあてはまりの悪さ 一逸脱度しは、最大対数尤度の変形

- 「逸脱度」, Deviance, D
- 統計モデルの、データへの「あてはまりの悪さ」の指標

$$D = -2 \log L$$

D=-2 logL\*  $logL(\{eta_j\})$ をlogL、 その最大対数尤度をlogL\*と表記

glm()コマンドの出力結果に表示

| 名前       | In English        | 定義                       |
|----------|-------------------|--------------------------|
| 逸脱度 (D)  | Deviance          | $-2~logL^{~*}$           |
| 最小の逸脱度   | Minimum deviand   | e フルモデル(後述)をあてはめたときのD    |
| 残差逸脱度    | Residual deviance | D-最小のD                   |
| 最大の逸脱度   | Maximum deviand   | ce Nullモデル(後述)をあてはめたときのD |
| Null 逸脱度 | Null deviance     | 最大のD-最小のD                |

フルモデル、Nullモデルはそれぞれ、パラメーター数を最大、最小(1)にした場合のモデルである①

「フルモデル」(full model) … 最もあてはまりがいいモデル

- 個々のデータに、一対一対応でパラメーターλが定まっている
  - 100個のデータがあれば100個のλを定めている

```
例:y_i = \{6,6,6,12,...\}のとき、i \in \{1,2,3\}のy_iは6なので、\{\lambda_1,\lambda_2,\lambda_3\} = \{6,6,6\}i = 4のy_4は12なので、\lambda_4 = 12...(以後同上)
```

フルモデルを当てはめた時の 逸脱度=最小のD(minimum deviance)

- (同じ回帰で)他のどのモデルを使った時よりも、必然的に対数 尤度は最大、逸脱度は最小になる
- 「現象を説明しうる理想のモデルを考えている」のではなく、 「現在のデータ(のみ)にモデルを近づけている」ので、モデル としての価値はない

フルモデル、Nullモデルはそれぞれ、パラメーター数を最大、最小(1)にした場合のモデルである②

「Null モデル」(Null model) ... 最もあてはまりが悪いモデル

- パラメーター数が1
  - つまり、この文脈においては $\lambda = \exp(\beta_1)$
- パラメーターは、全ての説明変数から完全に独立である
- (同じ回帰で)他のどのモデルを使った時よりも、必然的に対数 尤度は最小、逸脱度は最大になる

Null モデルを当てはめた場合の逸脱度 = 最大のD (Maximum deviance)

### 種々の逸脱度の関係性は以下



R実践:残差逸脱度の算出・比較

## R実践:残差逸脱度の算出・比較



| モデル          | k   | logL*  | Deviance | Residual D |
|--------------|-----|--------|----------|------------|
| <b>A</b> :一定 | 1   | -237.6 | 475.3    | 89.5       |
| B: f         | 2   | -237.6 | 475.3    | 89.5       |
| C: x         | 2   | -235.4 | 470.8    | 85.0       |
| D: x+f       | 3   | -235.3 | 470.6    | 84.8       |
| フル           | 100 | -192.9 | 385.8    | 0.0        |

## 4.3 モデル選択規準AIC

モデル候補の選定 「あてはまりの良さ」 基準は万能ではない 逸脱度

「あてはまりの悪さ」という評価法

AIC 「予測の良さ」 という選択規準 **ネストの** 問題 ネストとは **AICの有用性** なぜ**AIC**はモデル選択 基準として有用なのか

## AICの比較により「予測の良さ」を重視したモデル選択を行うことができる

#### **AIC** (Akaike's information criiterion)

- 「モデル選択規準」(model selection criterion)の一つ
- 予測の良さを重視する (<del>当てはまりの良さ</del>)
- 小さい方が「良い」モデル

$$AIC = -2\{(最大対数尤度) - (パラメーター数)\}$$
  
=  $-2(logL^* - k)$   
=  $-2logL^* + 2k$ 

#### 要確認

#### <sup>「</sup>基準」と「規準」 の違いとは?

「**規準**」…何を測定するか。 何の指標を用いるか。

辞書「何かを行う際に手本・標準とすべきもの|

Eg「道徳の規準」「社会生活の規準」

「**基準**」…どこまで達成できたか。測定された値に基づく評価。

辞書「物事を判断するためのより どころ。標準と見なす数値など」 Eg「選考基準」「前年を基準に予 算を決める」

## AICの比較により「予測の良さ」を重視したモデル選択を行うことができる

#### AIC (Akaike's information criiterion)

- 「モデル選択規準」(model selection criterion)の一つ
- 予測の良さを重視する (<del>当てはまりの良さ</del>)
- 小さい方が「良い」モデル

$$AIC = -2\{(最大対数尤度) - (パラメーター数)\}$$

$$= -2(logL^* - k)$$

これを小さ くしたい

= D + 2k

右辺の二項、両方 を小さくしたい



#### <u>逸脱度とパラメーター数の両方が小さい→「良い」モデル</u>

逸脱度の概念は必要か?最大対数尤度じゃダメなのか? 残差逸脱度の概念が必要なのは分かるのだが... (AICが選択規準として有用である理由は以後)

## R実践:AICの算出・比較

## R実践:AICの算出・比較









| モデル    | k   | logL*  | Deviance | Residual D | AIC   |
|--------|-----|--------|----------|------------|-------|
| A:一定   | 1   | -237.6 | 475.3    | 89.5       | 477.3 |
| B: f   | 2   | -237.6 | 475.3    | 89.5       | 479.3 |
| C: x   | 2   | -235.4 | 470.8    | 85.0       | 474.8 |
| D: x+f | 3   | -235.3 | 470.6    | 84.8       | 476.6 |
| フル     | 100 | -192.9 | 385.8    | 0.0        | 585.8 |

残差逸脱度が**D**より大きい のに、**AIC**は**C**が最小

### ここまでのまとめ

- 最大対数尤度は「あてはまりの良さ」を表現している
- 最大対数尤度は、モデルの良さの評価規準としてふさわしいのか??
  - 「一つのデータセット」の説明に終始**→**実際の現象と乖離する可能性が高い
- <u>逸脱度</u> = 「<u>あてはまりの悪さ</u>」という値でモデルを評価可能
- <u>残差逸脱度</u>は、他のモデルの逸脱度と比較した相対的な規準である
  - ・ <u>フルモデル</u>採用時の逸脱度=最小のDとの比較
- **モデル選択規準 AIC**の値が<u>小さい</u>ほど「良い」モデルと言える
- AICは「モデルの<u>予測の良さ</u>」を判断規準とする
- パラメーター数kと逸脱度Dの双方が程よく小さい時:AICが最小
- 「良い予測をする」モデルは、kとDが小さい

### 4.4 AICを説明するためのまた別の問題

モデル候補の選定 「あてはまりの良さ」 基準は万能ではない 逸脱度

「あてはまりの悪さ」という評価法

AIC 「予測の良さ」 という選択規準 **ネストの** 問題 ネストとは **AICの有用性** なぜAICはモデル選択 <u>基準として</u>有用なのか

## モデルAがモデルBの部分集合であるとき、 モデルA,Bは「**ネストしている**」

#### 「ネストしている/した」(nested)

• 一方のモデルが他方に含まれている状態

モデルA: 
$$\log \lambda = \beta_1 + \beta_2 x_1$$
  
モデルB:  $\log \lambda = \beta_1 + \beta_2 x_1 + \beta_3 x_2$ 

- 上記の場合、モデルAはモデルBの部分集合
  - = 「モデルAとBはネストしている」
- どんなモデルも、フルモデルの部分集合
  - = フルモデルは、必然的にどんなモデルともネストしている
- ネストしたモデル間の検定:Wald検定、尤度比検定など

## 4.5 なぜAICでモデル選択して良いのか?

モデル候補の選定 「あてはまりの良さ」 基準は万能ではない 逸脱度

「あてはまりの悪さ」という評価法

AIC

「予測の良さ」 という選択規準 **ネストの** 問題 ネストとは **AICの有用性** なぜAICはモデル選択 は進なしても思なのか