THE SCALAR MAXIMUM PRINCIPLE

KYLE BRODER

Proposition. Let g(t), for $t \in [0,T)$, be a family of Riemannian metrics on a compact manifold M. Suppose $u: M \times [0,T) \to \mathbb{R}$ satisfies

$$\frac{\partial u}{\partial t} - \Delta_{g(t)} u \geq 0.$$

If $u(\bullet,0) \ge C$ for some $C \in \mathbb{R}$, then $u(\bullet,t) \ge C$ for all $t \in [0,T)$.

Proof. Fix $\varepsilon > 0$, and set $u_{\varepsilon} := u + \varepsilon(1+t)$; by assumption, $u_{\varepsilon}(\bullet,0) > C$. Proceed by contradiction, supposing that one may choose $\varepsilon > 0$ such that $u_{\varepsilon}(x,t) \leq C$ for some $(x,t) \in M \times [0,T)$. Since M is compact, there is a point $(x_0,t_0) \in M \times [0,T)$ such that $u_{\varepsilon}(x_0,t_0) = C$ and $u_{\varepsilon}(x,t) \geq C$ for all $x \in M$ and $0 \leq t \leq t_0$. Of course, at (x_0,t_0) , we have $\frac{\partial u_{\varepsilon}}{\partial t} \leq 0$ and $\Delta_{g(t)}u_{\varepsilon} \geq 0$. Hence,

$$0 \geq \frac{\partial u_{\varepsilon}}{\partial t} \geq \Delta_{g(t)} u_{\varepsilon} + \varepsilon > 0,$$

furnishing the desired contradiction. It follows that $u_{\varepsilon}(x,t) > C$ for all $(x,t) \in M \times [0,T)$, and since $\varepsilon > 0$ was arbitrary, we have $u(x,t) \geq C$ for all $(x,t) \in M \times [0,T)$.