# Lab 2 – interpolacja

#### Barbara Doncer

#### 1. Polecenie

Wyznacz dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona. Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20). Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa. Oceń dokładność, z jaką wielomian przybliża zadaną funkcję. Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję. Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

## 2. Zadana funkcja i jej wykres

$$f(x) = 20 + \frac{x^2}{2} - 20 \cdot \cos(2x)$$
$$x \in [-3\pi, 3\pi]$$



Wykres 2.1 Funkcja f(x) na zadanym przedziale

## 3. Wyniki interpolacji

Poniżej przedstawione są wykresy funkcji (niebieski) oraz wyniku interpolacji metodą Lagrange'a (żółty) oraz Newtona (zielony). Na niektórych wykresach nie widać zielonej linii dlatego, że wynik uzyskany metodą Newtona pokrywa się znacząco z tym uzyskanym metodą Lagrange'a. Zastosowano oznaczenie:

n – liczba węzłów

Tabela 3.1 Wykresy interpolacji dla różnych typów i liczby węzłów





## 4. Błędy interpolacji

Sprawdzenie dokładności wielomianu odbyło się na dwa sposoby. Kolorem niebieskim zostały oznaczone najlepsze wyniki. Zastosowano oznaczenia:

$$f(x) - funkcja podana w zadaniu$$
  
 $W(x) - wyznaczony wielomian$ 

#### a. Błąd kwadratowy

$$\sum_{i=1}^{n} (f(x_i) - W(x_i))^2$$

Tabela 4.1 Błąd kwadratowy dla poszczególnych przypadków

| n  | węzły rozmieszcz       | one równolegle         | węzły Czebyszewa       |                        |
|----|------------------------|------------------------|------------------------|------------------------|
|    | Lagrange               | Newton                 | Lagrange               | Newton                 |
| 5  | 570791.0243059717      | 570791.0243059718      | 316484.6841492898      | 316484.68414928974     |
| 10 | 837940.0667131372      | 837940.066713121       | 377448.6770810762      | 377448.67708107556     |
| 20 | 156348398.73501274     | 156348398.7369383      | 14594.878451740395     | 14594.878452933344     |
| 30 | 5939.575619249512      | 5939.576138355226      | 0.000932268200010994   | 0.0009322593886365957  |
| 40 | 7.362797283010531e-05  | 7.325753966284045e-05  | 1.3375327865550092e-14 | 9.282581294633787e-09  |
| 50 | 0.00011915332764571147 | 4.1401305995081276e-06 | 5.400694766619709e-25  | 1.7294693185269263e-05 |
| 60 | 165.87079026560224     | 3.1297350015053884     | 8.83519737787731e-25   | 0.00017212364403539356 |
| 70 | 133147398.08562024     | 176487.99819582625     | 1.0671965102317458e-24 | 126.53445048622882     |

## b. Maksymalne odchylenie

$$\max_{i=1,\dots,N}|f(x_i)-w(x_i)|$$

Tabela 4.2 Błąd kwadratowy dla poszczególnych przypadków

| n  | węzły rozmieszczone równolegle |                       | węzły Czebyszewa       |                       |
|----|--------------------------------|-----------------------|------------------------|-----------------------|
|    | Lagrange                       | Newton                | Lagrange               | Newton                |
| 5  | 52.73861440526481              | 52.7386144052648      | 37.856002611244215     | 37.85600261124421     |
| 10 | 58.05045316407126              | 58.050453164068266    | 42.508455868625994     | 42.508455868625944    |
| 20 | 1918.602438424995              | 1918.6024383749038    | 7.708519649689342      | 7.708519649759313     |
| 30 | 15.21479085662451              | 15.214790847708649    | 0.0015605344019438763  | 0.0015605327295273442 |
| 40 | 0.002014827254527063           | 0.002000738813933367  | 5.929287283379381e-09  | 1.927847241489644e-05 |
| 50 | 0.0050108848670618045          | 0.0007258528783609108 | 9.947598300641403e-14  | 0.0008599450532074115 |
| 60 | 5.764648899522939              | 0.6165853244382689    | 1.2789769243681803e-13 | 0.0029658186261727337 |
| 70 | 6651.885921004967              | 167.8336607256207     | 1.4210854715202004e-13 | 4.4576343616624       |

## 5. Najlepsze przybliżenie funkcji

#### a. Błąd kwadratowy

Najmniejszy błąd kwadratowy:

Newton, wezły Czebyszewa: n = 40

• Pozostałe przypadki: n = 50

Najmniejszy błąd kwadratowy ze wszystkich: metoda Lagrange'a, węzły Czebyszewa, n = 50 (5.400694766619709e-25)



Wykres 5.1 Wynik interpolacji metodg Lagrange'a z użyciem 50 węzłów Czebyszewa

#### b. Maksymalne odchylenie

Najmniejsze maksymalne odchylenie:

• Lagrange, węzły rozmieszczone równolegle: n = 40

Newton, węzły Czebyszewa: n = 40

• Newton, węzły rozmieszczone równolegle: n = 50

• Lagrange, wezły Czebyszewa: n = 50

Najmniejszy błąd kwadratowy ze wszystkich: metoda Lagrange'a, węzły Czebyszewa, n = 50 (9.947598300641403e-14)



Wykres 5.2 Wynik interpolacji metodą Lagrange'a z użyciem 50 węzłów Czebyszewa

Zarówno w przypadku błędu kwadratowego jak i maksymalnego odchylenia najlepszym wielomianem interpolującym okazał się ten otrzymany dzięki metodzie Lagrange'a na 50 węzłach Czebyszewa.

## 6. Efekt Runge'go

Efekt ten polega na pogorszeniu się jakości interpolacji wielomianowej i następuje od pewnej liczby węzłów n i z jej wzrostem się pogłębia. Jest to szczególnie zauważalne na końcach przedziałów.

Zgodnie z oczekiwaniami w przypadku interpolacji używającej węzłów Czebyszewa ten efekt nie wystąpił aż tak intensywnie, natomiast w przypadku interpolacji używającej węzłów równoodległych można go coraz wyraźniej dostrzec od n = 60, szczególnie w przypadku metody Lagrange'a. Można zaobserwować to na wykresach oraz przy porównaniu błędów, które w przypadku użycia węzłów Czebyszewa są znacznie mniejsze.

### n = 60





Wykres 6.1 Wynik interpolacji dla 60 równooddalonych węzłów

Wykres 6.2 Wynik interpolacji dla 60 węzłów Czebyszewa

Tabela 6.1 Wyniki błędów dla 60 węzłów

| błąd           | węzły rozmieszczone równolegle |                    | węzły Czebyszewa       |                        |
|----------------|--------------------------------|--------------------|------------------------|------------------------|
|                | Lagrange                       | Newton             | Lagrange               | Newton                 |
| kwadratowy     | 165.87079026560224             | 3.1297350015053884 | 8.83519737787731e-25   | 0.00017212364403539356 |
| max odchylenie | 5.764648899522939              | 0.6165853244382689 | 1.2789769243681803e-13 | 0.0029658186261727337  |





Wykres 6.3 Wynik interpolacji Lagrange'a dla 70 równooddalonych węzłów

Wykres 6.4 Wynik interpolacji dla 70 węzłów Czebyszewa



Wykres 6.5 Wynik interpolacji Newtona dla 70 równooddalonych węzłów

Tabela 6.2 Wyniki błędów dla 70 węzłów

| błąd           | węzły rozmieszczone równolegle |                    | węzły Czebyszewa       |                    |
|----------------|--------------------------------|--------------------|------------------------|--------------------|
|                | Lagrange                       | Newton             | Lagrange               | Newton             |
| kwadratowy     | 133147398.08562024             | 176487.99819582625 | 1.0671965102317458e-24 | 126.53445048622882 |
| max odchylenie | 6651.885921004967              | 167.8336607256207  | 1.4210854715202004e-13 | 4.4576343616624    |

#### 7. Wnioski końcowe

- metoda Lagrange'a i Newtona dają zbliżone wyniki
- najlepszą dokładność daje użycie metody Lagrange'a na 50 węzłach Czebyszewa
- efekt Runge'go jest silniejszy w metodzie Lagrange'a niż Newtona
- efekt Runge'go rozpoczyna się po użyciu około 60 równoodległych węzłów i pogłębia się ze wzrostem ich ilości