Problem 247. Golomb's Self-Describing Sequence.

The Golomb's self-describing sequence $\{G(n)\}$ is the only nondecreasing sequence of natural numbers such that n appears exactly G(n) times in the sequence. The values of G(n) for the first few n are

\overline{n}															
G(n)	1	2	2	3	3	4	4	4	5	5	5	6	6	6	6

You are given that $G(10^3)=86,\ G(10^6)=6137.$ You are also given that $\sum_{n=1}^{999} G(n^3)=153506976.$

Find
$$\sum_{n=1}^{999999} G(n^3)$$
.

SOLUTION

Since there is no explicit formula for G(n) and apparently no special property for $G(n^3)$, this problem is about storing and retrieving the terms in $\{G(n)\}$ efficiently.

First, note that $\{G(n)\}$ can be stored in compact form by omitting duplicate terms and keeping only the largest n for a given value. Let F denote the generalized inverse function of G: F(k) is the location of the last appearance of k in $\{G(n)\}$. Formally,

$$F(k) = \max\{n \mid G(n) = k\}.$$

The first 10 values of F(k) are

\overline{k}	1	2	3	4	5	6	7	8	9	10
F(k)										

Below is a plot of the first 98 values of G(n) and first 20 values of F(k):

It is easy to find the recurrence relation

$$F(k) = F(k-1) + G(k), (1)$$

with the starting value F(0) = 0. To understand this, note that F(k-1) is the location of the last appearance of (k-1) in $\{G(n)\}$, and k appears after (k-1) for G(k) times. Therefore the location of the last appearance of k is F(k-1) + G(k).

Once we have obtained the values of $\{F(k)\}$, we can back out G(n) as follows. Find the unique k such that $F(k-1) < n \le F(k)$, then G(n) = k.

Now we move one step further, and claim that F(k) is also the largest value that appears k times in $\{G(n)\}$. This is because all $\{G(n)\}$ where $F(k-1) < n \le F(k)$ are equal to k, so every n where $F(k-1) < n \le F(k)$ appears k times in the sequence. But F(k) is, by definition, the largest such n. So it is the largest value that appears k times.

Next, let F(F(k)) be the location of the last appearance of F(k) in $\{G(n)\}$. The first few values of F(F(k)) are

$\overline{}$	1	2	3	4	5	6	7	8	9	10
F(k)	1	3	5	8	11	15	19	23	28	33
F(F(k))	1	5	11	23	38	62	90	122	167	217

We find the following recurrence relation for F(F(k)):

$$F(F(k)) = F(F(k-1)) + kG(k),$$
(2)

with the starting value F(F(0)) = 0. To understand this, note that each n where $F(k-1) < n \le F(k)$ appears k times in the sequence, and there are G(k) values that appear k times.

Once we have obtained the sequence $\{F(k), F(F(k))\}$, we can back out G(n) as follows. Given n, find the unique k such that $F(F(k-1)) < n \le F(F(k))$. By construction, every n where $F(k-1) < n \le F(k)$ appears k times, and G(F(F(k))) = F(k). It follows that

$$G(n) = F(k) - \left| \frac{F(F(k)) - n}{k} \right|.$$

The algorithm is outlined as follows. We use equation (1) to build and store the sequence $\{F(k)\}$, which is then used to find out G(n) for small n. Then we use equation (2) to compute the sequence $\{F(F(k))\}$. As we compute, we back out the values of $G(n^3)$. So there is no need to store $\{F(F(k))\}$.

To estimate the complexity of the algorithm, we run a regression on the first one million values of F(k) (with 1000 samples at $k = 1000, 2000, \ldots$) and get the following empirical relation:

$$F(k) \approx \varphi^{1-\varphi} k^{\varphi},$$

where $\varphi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. A few useful results follow:

$$F^{-1}(n) \approx \varphi^{2-\varphi} n^{\varphi-1}.$$

$$F^{-1}(F^{-1}(n)) \approx \varphi^{\varphi-1} n^{2-\varphi}.$$

$$F^{-1}(F^{-1}(F^{-1}(n))) \approx \varphi^{4-2\varphi} n^{2\varphi-3}.$$

In this problem, we are asked to find $F(F(k)) \ge n$ for $n = 10^{18}$. This corresponds to $k \approx F^{-1}(F^{-1}(n)) = 10105311$. To use equation (2) to compute F(F(k)), we need to know G(k), which can in turn be backed out using equation (1). This requires a storage of $F^{-1}(k) \approx 25638$.

Complexity

Time complexity: $\mathcal{O}(1.35 \times n^{1.15})$ Space complexity: $\mathcal{O}(1.44 \times n^{0.71})$

Answer

56098610614277014