EE 254

Electronic Instrumentation

Dr. Tharindu Weerakoon

Dept. of Electrical and Electronic Engineering

Faculty of Engineering, University of Peradeniya

Content (Brief)

2. Op-Amp Applications

- ** Linear Applications
 - Inverting amplifiers
 - Noninverting amplifiers
 - Differential amplifiers
 - Summing amplifiers
 - Integrators
 - Differentiators
 - Low/ High pass filters
 - Instrumentational amplifiers

- ** Nonlinear Applications
 - Precision rectifiers
 - Peak detectors
 - Schmitt-trigger comparator
 - Logarithmic amplifiers

(1) Voltage Follower I-V Converter V-I Converter

1 Voltage Follower (Additional Reading)

- The closed-loop gain is independent of resistor R_2 (except when $R_2 = \infty$), so we can set $R_2 = 0$ to create a short circuit.
- Street terms used: impedance transformer or buffer.
- \Re The input impedance is essentially ∞ and output impedance is 0

1 Voltage Follower (Additional Reading)

If for example, the output impedance of a signal source is large, a voltage follower inserted between the source and a load (act as a buffer).

Hence can prevent loading effect/ Attenuation.

$$\frac{v_O}{v_L} = \frac{R_L}{R_L + R_S} = \frac{1}{1 + 100} \approx 0.01$$

Attenuation

$$v_O \cong v_I$$

Loading effect is eliminated

Current-to-Voltage Converter (Additional Reading)

The input resistance R_i at the virtual ground node is

$$R_i = \frac{v_1}{i_1} \cong 0$$

We can assume that $R_S \gg R_i$; therefore

$$i_2 = i_1 = i_S$$

And

$$v_O = -i_2 R_F = -i_S R_F$$

Voltage-to-Current Converter (Additional Reading)

Simple voltage-to-current converter

For this circuit;

$$i_2 = i_1 = \frac{v_I}{R_1}$$

Which means that current i_2 is directly proportional to input voltage v_I and is independent of the load impedance or resistance R_2 .

More Practical Voltage-to-current converter

(3) Voltage-to-Current Converter (Additional Reading)

From the virtual short-circuit concept

$$v_1 = v_2$$

Also note that,

$$v_1 = v_2 = v_L = i_L Z_L$$

Equating the currents i_1 and i_2 ,

$$\frac{v_I - i_L Z_L}{R_1} = \frac{i_L Z_L - v_O}{R_F} \longrightarrow 1$$

Summing the currents at the noninverting terminal

$$\frac{v_O - i_L Z_L}{R_3} = i_L + \frac{i_L Z_L}{R_2} \rightarrow 2$$

And then,
$$\frac{R_F}{R_1} \cdot \frac{(i_L Z_L - v_I)}{R_3} = i_L + \frac{i_L Z_L}{R_2}$$

Voltage-to-Current Converter (Additional Reading)

$$\frac{R_F}{R_1} \cdot \frac{(i_L Z_L - v_I)}{R_3} = i_L + \frac{i_L Z_L}{R_2}$$

Combining terms in i_L ,

$$i_L \left(\frac{R_F Z_L}{R_1 R_3} - 1 - \frac{Z_L}{R_2} \right) = v_I \left(\frac{R_F}{R_1 R_3} \right)$$

In order to make i_L independent of Z_L , we can design the circuit such that the coefficient of Z_L is zero;

$$\frac{R_F}{R_1 R_3} = \frac{1}{R_2}$$

And then;

$$i_L = -v_I \left(\frac{R_F}{R_1 R_3} \right) = \frac{-v_I}{R_2}$$

Example 01: Voltage-to-Current Converter

Determine a load current in a voltage-to-current converter. Consider the circuit in the figure. Let $Z_L = 100\Omega R_1 =$ $10 k\Omega$, $R_2 = 1 k\Omega$, $R_3 =$ $1 k\Omega$, and $R_F = 10 k\Omega$. If $v_I = -5 V$, determine the load current i_L and the output voltage v_0 .

Example 01: Voltage-to-Current Converter

Given $Z_L = 100\Omega R_1 = 10 k\Omega, R_2 =$ 1 $k\Omega$, $R_3 = 1 k\Omega$, and $R_F = 10 k\Omega$.

If $v_I = -5 V$, determine i_L and v_Q

Condition to be satisfied

$$\frac{R_F}{R_1 R_3} = \frac{1}{R_2} \qquad \frac{1}{R_2} = \frac{10}{(10)(1)} = 1$$

The load current
$$i_L = \frac{-v_I}{R_2} = \frac{-(-5)}{1 \times 10^3}$$
 $\equiv 5 \text{ mA}$

The voltage across the load
$$v_L = i_L Z_L = (5 \times 10^{-3})(100) = 0.5 V$$

Current
$$i_4$$
 and i_3
$$i_4 = \frac{v_L}{R_2} = \frac{0.5}{1} = 0.5 \, mA$$
$$i_3 = i_4 + i_L = 0.5 + 5 = 5.5 \, mA$$

Example 01: Voltage-to-Current Converter

The output voltage is then calculated as:

$$v_0 = i_3 R_3 + v_L$$

= $(5.5 \times 10^{-3})(10^3) + 0.5$
= $6.0 V$

We could also calculate the current i_1 and i_2 $i_1 = i_2 = -0.55 \, mA$

Example 01: V-to-I Converter

Solution:

PSpice Simulation for the input voltage variation between 0*V* to 10*V*

Input voltage 0V to -10V

