МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №1

Выполнил: Студент группы Р3207 Алферов Г. А.

Преподаватель:

Санкт-Петербург, 2025

Цель работы

Изучить численные методы решения нелинейных уравнений и реализовать три из них средствами программирования. Понять их сходства и различия.

Ход работы

Часть 1.

$$2.74x^3 - 1.93x^2 - 15.28x - 3.72$$

Графическое отделение корней:

Интервалы изоляции корней:

Приближенные значения корней:

$$X \approx -1.9$$
, $X \approx -0.3$, $X \approx 2.9$

Интервалы на оси Х:

$$(-\infty,\,-1.9), (-1.9,-0,3), (-0,3,2.9), (2.9,+\infty)$$

Вычисление знака функции на интервалах:

1 интервал: x = -2 f(-2) = -2.8 Знак: -

2 интервал: x = -1 f(-1) = 6.89 Знак: +

3 интервал: x = 0 f(0) = -3.72 3нак: -

4 интервал: x = 3 f(3) = 7.05 3нак: +

(-2,-1)(-1,0)(2,3)

Уточнение корней:

 $X1 \approx -1.88$

 $X2 \approx \text{-}0.25$

 $X3\approx 2.84\,$

Правый корень – метод половинного деления

№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
1	2.000	3.000	2.500	-20.079	7.050	-11.170	1.000
2	2.500	3.000	2.750	-11.170	7.050	-3.352	0.500
3	2.750	3.000	2.875	-3.352	7.050	1.509	0.250
4	2.750	2.875	2.812	-3.352	1.509	-1.004	0.125
6	2.812	2.875	2.843	-1.023	1.509	0.222	0.063
7	2.812	2.843	2.827	-1.023	0.202	-0.416	0.031
8	2.827	2.843	2.835	-0.436	0.202	-0.118	0.016
9	2.835	2.843	2.839	-0.118	0.202	0.041	0.008

Рабочая формула метода:

$$x_i = \frac{a_i + b_i}{2}$$

Центральный корень – Метод простой итерации

№ итерации	X_k	X_{k+1}	$f(X_{k+1})$	X _{k+1} - X _k
1	-1.000	-0.549	3.634	0.451
2	-0.549	-0.311	0.765	0.238
3	-0.311	-0.261	0.089	0.050
4	-0.261	-0.255	0.009	0.005

Проверка сходимости:

Отрезок [-1, 0]

$$f'(x) = 8.22x^2 - 3.86x - 15.28$$

$$f'(a) = -3.2 < 0, f'(b) = -15.28 < 0$$

$$\max(|f'(a)|, |f'(b)|) = 15.28$$

$$\lambda = 1/15.28$$

$$\varphi(x) = x + \lambda f(x) = x + \frac{2.74x^3 - 1.93x^2 - 15.28x - 3.72}{15.28}$$

$$\varphi'(x) = 1 + \lambda f'(x) = 1 + \frac{8.22x^2 - 3.86x - 15.28}{15.28}$$

$$|\varphi'(a)| = 0.790$$

$$|\varphi'(b)| = 0$$

 $0 \le q < 1$ Итерационная последовательность сходится

Рабочая формула:

$$x_{i+1} = \varphi(x_i)$$

Левый корень – метод секущих

№ итерации	X_{k-1}	X_k	X_{k+1}	$f(X_{k+1})$	X _{k+1} - X _k
1	-2.000	-1.000	-1.711	3.049	0.711
2	-1.000	-1.711	-2.275	-11.227	0.564
3	-1.711	-2.275	-1.831	0.956	0.443
4	-2.275	-1.831	-1.866	0.264	0.035
5	-1.831	-1.866	-1.879	-0.011	0.013
6	-1.866	-1.879	-1.878	0.000004	0.00002

Рабочая формула:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 ...$

Часть 2.

$$\begin{cases} sin(x+1)-y=1.2 \\ 2x + cosy = 2 \end{cases}$$
 , Метод простой итерации

$$\begin{cases} x = \varphi 1(x, y) \\ y = \varphi 2(x, y) \end{cases}$$
$$\begin{cases} x = 1 - \cos y/2 \\ y = \sin(x + 1) - 1.2 \end{cases}$$

Проверка сходимости:

Условие: $|\partial \phi 1/\partial x| + |\partial \phi 1/\partial y| < 1$ и $|\partial \phi 2/\partial x| + |\partial \phi 2/\partial y| < 1$

$$0 + |\sin(y)/2| < 1$$
 и $|\cos(x+1)| + 0 < 1$

Это условие выполняется.

Итерации:

Начальное приближение x0 = 0, y0 = 0

Формула:
$$x_{k+1} = 1 - \cos(y_k) / 2$$
, $y_{k+1} = \sin(x_k + 1) - 1.2$

1.

$$X1 = 1 - \cos(0)/2 = 0.500$$

$$Y1 = \sin(1) - 1.2 = -0.358$$

Проверка точности: X |0.500-0| = 0.500 > 0.01 и Y |-0.358-0| > 0.01

2.

$$X2 = 1 - \cos(-0.358)/2 = 0.532$$

$$Y2 = \sin(1.5) - 1.2 = -0.202$$

Проверка точности: X |0.532-0.500| = 0.032 > 0.01 и Y |-0.202+0.358| = 0.156 > 0.01

3.

$$X3 = 1 - \cos(-0.202)/2 = 0.510$$

$$Y3 = \sin(1.532) - 1.2 = -0.200$$

Проверка точности: X |0.510-0.532| = 0.022 > 0.01 и Y |-0.200+0.202| = 0.002 < 0.01

4.

$$X3 = 1 - \cos(-0.200)/2 = 0.509$$

$$Y3 = \sin(1.510) - 1.2 = -0.200$$

Проверка точности: X |0.509-0.510| = 0.001 < 0.01 и Y |-0.200+0.200| = 0 < 0.01

Решение системы с точностью до 0.01:

X≈0.509, Y≈-0.200