

TD n°3: Algèbre I

Informatique Appliquée - S1 - 2023/2024 - Pr. El Mahjour

Groupes, anneaux et corps finis

Exercice 1

Soit G un ensemble non-vide muni d'une loi de composition interne * associative qui vérifie de plus les assertions suivantes :

- $\exists e \in G, \forall x \in G, x*e = x.$
- $\forall x \in G, \exists y_x \in G \text{ tel que } x * y_x = e.$

Montrer que (G,*) est un groupe.

[01]

Exercice 2

On considère le groupe des permutations \mathfrak{S}_5 . Soit $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$ et $\sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$ et $\sigma_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 3 & 5 \end{pmatrix}$

- 1. Calculer σ_1^2 et en déduire σ_1^{-1} .
- 2. Quel est l'ordre de σ_4 ?
- 3. Sans faire de calculs dire si : $\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1$? $\sigma_3 \circ \sigma_1 = \sigma_1 \circ \sigma_3$?
- 4. Comment appelle-t-on σ_1 et σ_2 ? Représentez-les autrement.
- 5. Quelle est la relation entre σ_1 , σ_2 et σ_3 .

[02]

Exercice 3

Pour tout couple (a,b) de \mathbb{R}^2 , on pose la matrice $M_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Soit $\mathscr{S} = \{M_{a,b} : (a,b) \in \mathbb{R}^2\}$. Soit l'application

$$f: \quad \mathscr{S} \longrightarrow \mathbb{C}$$
 $M_{a,b} \longmapsto a+ib.$

- 1. Montrer que $(\mathscr{S},+)$ est un sous-groupe pour la loi usuelle d'addition des matrices carrées $\mathscr{M}_2(\mathbb{R})$.
- 2. Montrer que f est un isomorphisme du groupe $(\mathcal{S},+)$ dans le groupe $(\mathbb{C},+)$.

[03]

Exercice 4

- 1. Montrer que $(\mathbb{Z}/3\mathbb{Z}, +, \times)$ est un corps fini.
- 2. Cherchez des structures de corps à 4 éléments.

1 Artihmétique dans \mathbb{Z}

Exercice 5

- 1. Calculer 37 + 35 modulo 63 et 37×55 modulo 63.
- 2. Trouver le pgcd(433014481,18000) en décomposant 18000 en produit de facteurs premiers.
- 3. Pour les questions qui suivent, on peut utiliser une petite calculatrice :
 - (a) Calculer le pgcd de a=42098 et de b=36146 avec l'algorithme d'Euclide.
 - (b) Retrouver ce résultat en décomposant a et b en produit de facteurs premiers.
 - (c) Déterminer des entiers u et v tels que pgcd(a,b) = au + bv.
 - (d) Quel est l'inverse de 583 dans $\mathbb{Z}/679\mathbb{Z}$.

[05]

Exercice 6 Petit théorème de Fermat ¹

- 1. Soient p un nombre premier et k un entier tel que $1 \le k < p$. Montrer que C_p^k est divisible par p.
- 2. Montrer que $a^p \equiv a [p]$ pour tout entier a par récurrence sur a

[06]

^{1.} Petit exercice supplémentaire : démontrez que l'équation $x^n + y^n = z^n$ n'a pas de solutions en entiers strictement positifs, pour tout entier n > 2. La légende dit que Pierre Fermat n'avait pas assez de place sur la marge de son cahier pour compléter la preuve de ce théorème.