1 Asymptotic computational complexity

Task 1. Расположите функции по увеличению скорости роста

•
$$f(n) = \log n$$
 • $f(n) = 3$ • $f(n) = n^3$ • $f(n) = n^2 * \log n$ • $f(n) = 2^n * \log n$ • $f(n) = 2^n$ • $f(n) = n * (\log n)^2$

Task 2. Поставьте в пары функции с одинаковой скоростью роста.

1.
$$f(n) = 4$$

2.
$$f(n) = 4 * n + 23$$

3.
$$f(n) = (\log n)^2 + \log n$$

4.
$$f(n) = (n^2 + n)^3$$

5.
$$f(n) = n * (n^2 + 1) * (n^2 + 2)$$

(a)
$$g(x) = n + 1$$

(b)
$$g(x) = e^2$$

(c)
$$g(x) = n^5 + 4 * n^2$$

(d)
$$g(x) = \log n^2 + (\log n^2)^2$$

(e)
$$q(x) = n^6 + 4$$

Task 3. Представьте, что у нас есть два алгоритма, которые решают одну и ту же задачу. Количество операций, совершаемых первым алгоритмом, равно $f(n) = 5 \cdot n \cdot \log_{10} n$, а вторым — $g(n) = 25 \cdot n$. Несмотря на то, что мы знаем, что скорость роста f(n) больше, чем g(n) — легко убедиться, что при небольших n нам следует выбрать f(n). А при каком n > 0 количество операций, выполняемых данными алгоритмами, одинаково?

Task 4. Выберите верные утверждения из списка

1.
$$5n + 8 * n^2 + 100 * n^3 = O(n^4)$$

2.
$$O(f+g) = O(f) + O(g)$$

3.
$$5n + 8 * n^2 + 100 * n^3 = O(n * \log n)$$

4.
$$O(f * q) = O(f) * O(q)$$

5. If
$$f = O(g)$$
 and $f = O(h)$ then $g = O(h)$

Task 5. Выберите верные утверждения из списка

1.
$$100 * n * \log n + n^3 + 100 * n = O(n^3)$$

$$2. \ 2^n = O(n^{100500})$$

3.
$$500 * n + 100 * n^{1.5} + 50 * n * \log n = O(n * \log n)$$

4.
$$5 + 0.001 * n^3 + 0.025 * n = O(n^3)$$

5.
$$100 * n * \log n + 0.1 * n^2 = O(n^2)$$

6.
$$100 * n * \log n + n^3 + 100 * n = O(n^4)$$

7.
$$0.003 * \log n + \log \log n = O(\log \log n)$$

Task 6. Подсчитать асимптотическую сложность алгоритмов:

- 1. Bubble sort
- 2. Merge sort
- 3. Binary Tree
- 4. Sorted and unsorted linked list
- 5. Graph via adjacency list with operations memory, find_max, add_edge, remove_edge, add_vertex, remove_vertex, neighborhood_check.

Task* 7. Подсчитать асимптотическую сложность алгоритмов:

- 1. Quick sort
- 2. Heap sort
- 3. Prim's algorithm

Figure 1: graphs

- 4. B-tree
- 5. AVL tree
- 6. binomial tree
- 7. Bfs, dfs
- 8. Iterative matrix multiplication and Strassen algorithm
- $9. \ \, Graph \ (other \ representations) \ list \ with \ operations \ memory, find_max, \ add_edge, \ remove_edge, \ add_vertex, \ remove_vertex, \ neighborhood_check.$

Task* 8. Докажите, что:

1.
$$n^2 + 100 * n + 88 = \Theta(n^2)$$
 4. $2(n-1) + \frac{n(n+1)}{2} + 4\frac{n(n-1)}{2} = \Theta(n^2)$
2. $\lfloor n + \frac{1}{2} \rfloor = \Theta(n)$ 5. $\sum_{k=1}^{n} (k+2) = \Theta(n^2)$

Task* 9. Расположите приведенные ниже функции по скорости их ассимптотического роста, т.е. постройте такую последовательность функций g_1, g_2, \ldots, g_{30} , что $g_1 = \Omega(g_2), \ g_2 = \Omega(g_3), \ \ldots, g_{29} = \Omega(g_{30})$. Расбейте полученный список на классы эквивалентности так, что f и g принадлежать одному классу $\Leftrightarrow f(n) = \Theta(g(n))$.

2 Flows

Task 10. Решить задачу нахождения максимального потока в транспортной сети с помощью алгоритма Форда-Фалкерсона, и построить разрез сети. 0 — исток, 7 — сток. Дуги:

$$\begin{array}{lllll} m[0,1]=39 & m[4,7]=44 & m[6,3]=33 & m[5,7]=53 & m[0,2]=10 \\ m[4,2]=18 & m[6,7]=95 & m[5,4]=16 & m[0,3]=23 & m[2,5]=61 \\ m[2,1]=81 & m[6,5]=71 & m[1,4]=25 & m[2,6]=15 & m[3,2]=20 \end{array}$$

Task 11. Решить задачу нахождения максимального потока в транспортной сети. 1. fig 1a; 2. fig 1b; 3^* . fig 1c. **Task 12 [Programming].** Реализовать алгоритмы:

- Форда-Фалкерсона
- Эдмондса-Карпа
- Диница
- Масштибирование потока