

DATA REPRESENTATION

CS/COE 0449 Introduction to Systems Software

wilkie

(with content borrowed from Vinicius Petrucci and Jarrett Billingsley)

BINARY ENCODING

Bits, Bytes, and Nybbles

Positional Number Systems

• The numbers we use are written positionally: the position of a digit within the number has a meaning.

How many digit symbols do we have in our number system?
 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

CS/COE 0449 - Spring 2019/2020

Ranges of Representation

- Suppose we have a 4-digit numeric display.
- What is the smallest number it can show?
- What is the biggest number it can show?
- How many different numbers can it show?
 - 9999 0 + 1 = 10,000
- What power of 10 is 10,000?
 - **10**⁴
- With n digits:
 - We can represent 10ⁿ numbers
 - The largest number is 10ⁿ 1

Numeric Bases

- These 10s keep popping up... and for good reason
- We use a base-10 (decimal) numbering system
 - 10 different digits, and each place is a power of 10
- But we can use (almost) any number as a base!
- The most common bases when dealing with computers are base-2 (binary) and base-16 (hexadecimal)
- When dealing with multiple bases, you can write the base as a subscript to be explicit about it:

$$5_{10} = 101_2$$

Let's make a base-2 system

- Given base B,
 - There are B digit symbols
 - Each place is worth Bⁱ, starting with i = 0 on the right
 - Given n digits,
 - You can represent Bⁿ numbers
 - The largest representable number is **B**ⁿ **1**
- So how about base-2?

Binary (base-2)

- We call a Binary digIT a bit a single 1 or 0
- When we say an *n*-bit number, we mean one with *n* binary digits

 $1 \times 128 +$ **MSB** LSB $0 \times 64 +$ 1001 0110 $1 \times 16 +$ $0 \times 8 +$ $2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0$ $1 \times 4 +$ 128s 64s 32s 16s 8s 4s 2s 1s $1 \times 2 +$ 0×1 To convert binary to decimal: ignore 0s, add up place values wherever you see a 1.

Bits, Bytes, Nybbles, and Words

- A bit is one binary digit, and its unit is lowercase b.
- A byte is an 8-bit value, and its unit is UPPERCASE B.
 - This is why your 30 megabit (Mb/s) internet connection can only give you at most 3.75 megabytes (MB) per second!
- A nybble (awww!) is 4 bits half of a byte.
 - Corresponds nicely to a single hex digit.
- A word is the "most comfortable size" of number for a CPU.
- When we say "32-bit CPU," we mean its word size is 32 bits.
 - This means it can, for example, add two 32-bit numbers at once.
- BUT WATCH OUT:

Some things (Windows, x86) use word to mean 16 bits and double word (or dword) to mean 32 bits.

CS/COE 0449 - Spring 2019/2020

Why binary? Whynary?

- Because it's the easiest thing to implement!
- Basic arithmetic is a bit easier.
- So, everything on a computer is represented in binary.
 - everything.
 - EVERYTHING.
 - - ("EVERYTHING.")

Binary Representation

 Computers translate electrical signals to either 0 or 1.

- It is relatively easy to devise electronics that operate this way.
- In reality, there is no such thing as "binary" so we often have to approximate and mitigate error.

scilloscope visualization of several digital wires. From @computerfact on Twitter

CS/COE 0449 - Spring 2019/2020

Integer Encoding

Casting is Not Just a Witch or Wizard Thing

Hexadecimal

- Binary numbers can get really long, quickly.
 - **3**,927,664₁₀ = 11 1011 1110 1110 0111 0000₂
- But nice "round" numbers in binary look arbitrary in decimal.
 - **100000000000000**₂ = 32,768₁₀
- This is because 10 is not a power of 2!
- We could use base-4, base-8, base-16, base-32, etc.
 - Base-4 is not much terser than binary
 - e.g. 3,927,664₁₀ = 120 3331 2323 0000₄
 - Base-32 would require 32 digit symbols. Yeesh.
 - They do, oddly, have their place... but not really in this context.
 - Base-8 and base-16 look promising!

Hex Decimal Binary			
Het	Dec	iman Binary	
0 1 2 3	0 1 2 3 4	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
5 6 7	5 6 7	0110	
	7	0111	
8	8	1000	
9	9	1001	
A	10	1010	
В	11	1011	
С	12	1100	
D	13	1101	
E	14	1110	
F	15	1111	

Hexadecimal or "hex" (base-16)

- Digit symbols after 9 are A-F, meaning 10-15 respectively.
- Usually we call one hexadecimal digit a hex digit. No fancy name:

```
\begin{array}{c} 003BEF70 = \\ 16^7 & 16^6 & 16^5 & 16^4 & 16^3 & 16^2 & 16^1 & 16^0 \\ 16^7 & 16^6 & 16^5 & 16^4 & 16^3 & 16^2 & 16^1 & 16^0 \\ 10 & & & & & & & & & & & & & & \\ \hline \textbf{To convert hex to decimal: use a dang calculator} & & & & & & & & & & & \\ 10 & & & & & & & & & & & & \\ \hline \textbf{10} & & & & & & & & & & & & \\ \hline \textbf{10} & & & & & & & & & & \\ \textbf{10} & & & & & & & & & & \\ \textbf{10} & & & & & & & & & \\ \hline \textbf{10} & & & & & & & & & \\ \hline \textbf{10} & & & & & & & & \\ \hline \textbf{10} & & & & & & & & \\ \hline \textbf{10} & & & & & & & & \\ \hline \textbf{10} & & & & & & & \\ \hline \textbf{10} & & & & & & & \\ \hline \textbf{10} & & & & & & & \\ \hline \textbf{10} & & & & & & & \\ \hline \textbf{10} & & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & \\ \hline \textbf{10} & & & & & & \\ \hline \textbf{10} & & & & \\ \hline \textbf{10
```

3,927,664₁₀

0x4CA20261

32-bits! (Not so bad...)

Q: Create a random binary string and practice!

Signed Numbers (sign-magnitude)

- Seems like a good time to think about "negative" values.
 - These are numbers that have nothing good to say.
- Binary numbers have bits which are either 0 or 1.
 - Well, yeah...
- So what if we used one bit to designate "positive" or "negative"
 - Called sign-magnitude encoding:

$$00010110 = 22 (normal)$$

Signed Numbers (problems)

- Waaaaait a second.
 - What is negative zero???
- This encoding allows two different zeros.
 - This means we can represent how many different values (8-bit)?
 - 2^8 1 (minus the one redundant value) = 255 (-127 ... 0 ... 127)
- Sign-magnitude is a little naïve... let's try a different approach...

Signed Numbers (2's Complement)

- This one, I promise, is juuuuust right.
 - But it's a little strange!
- We'll just make SURE there is only one zero:

- So, we flip the bits... and add one.
 - Adding one makes sure our -0 is used for -1 instead!
- Sure, it's a little lopsided, but, hey, we get an extra number.
 - But, hmm, but -4 doesn't have a valid positive number.
 - That's the trade-off, but it's for the best.

Signed Numbers (2's Complement)

Let's look some examples:

- If the MSB is 1: Flip! Add one!
- Otherwise: Do nothing! It's the same!

Signed Numbers (2's Complement)

What happens when we add zeros to a positive number:

Can I Get an Extension?

- Sometimes you need to widen a number with fewer bits to more
- zero extension is easy: put 0s at the beginning.

$$1001_2 \rightarrow to 8 bits \rightarrow 0000 1001_2$$

- But there are also signed numbers... what about those?
 - The top bit (MSB) of signed numbers determines the sign (+/-)
- sign extension puts copies of the sign bit at the beginning

$$1001_2 \rightarrow to 8 bits \rightarrow 1111 1001_2$$

 $0010_2 \rightarrow to 8 bits \rightarrow 0000 0010_2$

Q: What happens when you sign extend the largest unsigned value? $_{20}$

Integer Ranges

- Recall:
 - The range of an unsigned integer is 0 to 2ⁿ 1
 - Q: Why do we subtract 1?
- What is the range of a 2's complement number?
 - Consider the sign bit, how many positive integers?
 - Consider, now, the negative integers.
 - Remember 0.

$$-2^{n-1}$$
 to $2^{n-1} - 1$

Integers in C

- C allows for variables to be declared as either signed or unsigned.
 - Remember: "signed" does not mean "negative" just that it *can* be negative.
- An unsigned integer variable has a range from 0 to 2ⁿ 1
- And signed integers are usually 2's complement: 2^{n-1} to $2^{n-1} 1$
 - Where "n" is determined by the variable's size in bits.
- Integer Types: (signed by default, their sizes are arbitrary!!)

• char	unsigned char	8 bits (byte)
<pre>short int</pre>	unsigned short int	16 bits (half-word)
■ int	unsigned int	32 bits (word)
<pre>long int</pre>	unsigned long int	64 bits (double-word)

Usually no strong reason to use anything other than (un)signed int.

Q: What is the range of a signed char?

Integers in C: Limits

- Since sizes of integers are technically arbitrary...
 - They are usually based on the underlying architecture.
- ... C provides standard library constants defining the ranges.
 - https://pubs.opengroup.org/onlinepubs/009695399/basedefs/limits.h.html

Casting

- C lets you move a value from an unsigned integer variable to a signed integer variable. (and vice versa)
- However, this is not always valid! Yet, it will do it anyway.
 - The binary value is the same, its interpretation is not!
 - This is called **coercion**, and this is a relatively simple case of it.
 - Since it ignores obvious invalid operations this is sometimes referred to as "weak" typing.
 - The strong/weak terminology has had very fragile definitions over the years and are arguably useless in our context. Let's ignore them.
- Moving values between different types is called casting
 - Which sounds magical and it sometimes is.
 - Q: What happens when we cast the smallest signed int to unsigned?