Ge samt punkte:

MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 09	Andrés Montoya	405409
26. Juni 2021	_	Til Mohr	405959

Aufgabe 1

E-Test

Aufgabe 2

Aufgabe 3

Da alle Blätter Axiome sind, ist die Sequenz gültig.

Aufgabe 4

- (a) (i)
 - (ii) Dagnicht in $\Gamma \cup \Delta \cup \{\varphi\}$ vorkommt, kann man gso wählen, dass g(x)genau dem yaus der Konklusion entspricht. Gilt die Prämisse, so folglich auch die Konklusion, da wir ymit dem g(x) "ersetzen" können.
- (b) (i)
 - (ii)

Aufgabe 5

(a) (i) Damit \sim eine Äquivalenzrelation auf $\mathcal{P}(\mathbb{N})$ ist, muss sie reflexiv, symmetrisch und transitiv sein.

Für jedes $A \in \mathcal{P}(\mathbb{N})$ gilt offensichtlich $A \sim A$, da |A| = |A|. \sim ist also reflexiv.

Seien $A, B \in \mathcal{P}(\mathbb{N})$. Angenommen es gilt $A \sim B$. Dann gilt |A| = |B|, welches äquivalent ist zu |B| = |A|. Folglich ist \sim symmetrisch.

Seien $A, B, C \in \mathcal{P}(\mathbb{N})$. Angenommen es gilt sowohl $A \sim B$ als auch $B \sim C$. Dann muss ja gelten, dass |A| = |B| und |B| = |C|. Insbesondere gilt dann auch |A| = |C|. Folglich muss dann auch $A \sim C$ gelten. \sim ist also transitiv.

Damit ist \sim eine Äquivalenzrelation auf $\mathcal{P}(\mathbb{N})$.

(ii) Damit \sim auf ${\mathfrak A}$ eine Kongruenz
relation ist, muss unter anderem \cup mit
 \sim verträglich sein.

Seien
$$A_1 := \{1, 2\}, A_2 := \{3, 4\}, B_1 := \{5, 6\}, B_2 := \{6, 7\}.$$

Es gilt offensichtlich $A_1 \sim B_1$ und $A_2 \sim B_2$. Jedoch gilt $A_1 \cup A_2 \sim B_1 \cup B_2$
nicht, da $|A_1 \cup A_2| = |\{1, 2, 3, 4\}| = 4 \neq 3 = |\{5, 6, 7\}| = |B_1 \cup B_2|$.

Damit ist \sim keine Kongruenzrelation auf \mathfrak{A} .

(b) (i) Seien $A_1, A_2, B_1, B_2 \in \mathcal{P}(\mathbb{N})$ und gelte $A_1 \sim_2 B_1, A_2 \sim_2 B_2$. Wir müssen nun zeigen, dass \cup und \cap mit \sim_2 verträglich sind.

Es gelte $A_1 \cup A_2 \sim_2 B_1 \cup B_2$, denn:

$$((A_1 \cup A_2) \cap 2\mathbb{N}) = (A_1 \cap 2\mathbb{N}) \cup (A_2 \cap 2\mathbb{N})$$

$$\stackrel{*}{=} (B_1 \cap 2\mathbb{N}) \cup (B_2 \cap 2\mathbb{N})$$

$$= ((B_1 \cup B_2) \cap 2\mathbb{N})$$

* gilt, da eben $A_1 \sim_2 B_1, A_2 \sim_2 B_2$. Folglich ist \cup mit \sim verträglich.

Es gelte $A_1 \cap A_2 \sim_2 B_1 \cap B_2$, denn:

$$((A_1 \cap A_2) \cap 2\mathbb{N}) \stackrel{*}{=} (A_1 \cap A_2 \cap 2\mathbb{N} \cap 2\mathbb{N})$$

$$= (A_1 \cap 2\mathbb{N}) \cap (A_2 \cap 2\mathbb{N})$$

$$\stackrel{**}{=} (B_1 \cap 2\mathbb{N}) \cap (B_2 \cap 2\mathbb{N})$$

$$\stackrel{*}{=} (B_1 \cap B_2 \cap 2\mathbb{N} \cap 2\mathbb{N})$$

$$= ((B_1 \cap B_2) \cap 2\mathbb{N})$$

* gilt, da eben $A_1 \sim_2 B_1, A_2 \sim_2 B_2$.

** gilt, da offensichtlich für jede Menge X gilt: $X = X \cap X$.

Folglich ist \cap mit \sim verträglich.

Also ist \sim_2 eine Kongruenz relation auf ${\mathfrak A}.$

(ii)