Design of IR-HARQ-Based Network Coding for Secure Optical Satellite System

Luan Doan

Computer Communications Lab.
The University of Aizu

May. 14th, 2025

I. Research Background

II. System Model

III. Numerical Results & Discussions

IV. Conclusion

Free-Space Optics (FSO)-Based Satellite Systems

Free-space Optics (FSO):

- Infrared wavelength (700-1600nm)
- Extremely high data rate (Gbps or even Tbps)

Low-earth Orbit (LEO) Satellite:

- Reduce latency compared to other satellites: LEO (160-2000km), MEO (2000-35,786km), GEO (35,786km)
- Provide global coverage through a constellation network => provide internet access to remote areas

FSO Based Satellite Systems could be considered "keys" in 6G infrastructure.

Problems in FSO-Based Satellite Systems

Unreliable transmission

Atmospheric turbulence:

- Due to variations in temperature and pressure within the Earth's atmosphere => refractive index variations => distort the light => scintillation effect
- => results in signal power fluctuations at the receiver

O Atmospheric attenuation :

- Laser beam propagates through the atmosphere, it may interact with various gas molecules and aerosol particles
- => molecular absorption and scattering phenomenon
- => results in the attenuation of optical signal power

o Pointing error:

- Caused by the vibration of LEO satellite and the sudden change in the velocity of Bob
- Lead to the misalignment between the beam center and the detector center
- => Increases the geometric loss (when considering the Gaussian beam)
- => the receiver detector can only capture a fraction of power from the satellite

=> HARQ is proposed for reliable transmission

- (a) Without misalignment
- (b) With misalignment between the centers of satellite beam footprint and receiver detector

Hybrid ARQ (HARQ)

Hybrid ARQ (HARQ): A combination of ARQ and ECC to enhance reliable transmission

Retransmit erroneous frames

Error Correction Code (ECC)

 Add redundancy to the frame so that errors can be corrected at the receiver

HARQ Classification

Comparison of HARQ Types

Problems in FSO-Based Satellite Systems

- Consider the FSO communication from LEO satellite to Bob and Eve
 - Bob and Eve are internet of vehicles: selfdriving cars
 - LEO satellite transmit private data to Bob and Eve want to overhear it
 - The channel is affected by atmospheric turbulence, atmospheric turbulence and pointing error

The risk of security

- Presence of eavesdropper
- The wider laser beam footprint
- Retransmission of ARQ

Fig. 1. An illustration of FSO-based satellite-assisted loV systems in the presence of an eavesdropper.

To combat the risk of security => Propose HARQ-based network coding schemes to enhance the security and reliability of system

Network Coding

- **Network coding** is employed to enhance the **transmission security** (per-frame level)
- The private file is divided into Noriginal frames with $s = (s_1, s_2, ..., s_N)$
- s is encoded to $F = (F_1, F_2, ..., F_N)$

If N is odd
$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & 0 & \ddots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 1 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 \end{bmatrix}_{N \times N}$$

If N is even
$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & 0 & \ddots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 1 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & \dots & 1 & 1 \end{bmatrix}_{N \times N}$$

Coding scheme: F = G(mod2)s

Where: G is a $mod - 2 N \times N$ encoding matrix

If *N* is even

$$s_1 \oplus s_2 = F_1$$

$$s_1 \oplus s_3 = F_2$$

$$s_1 \oplus s_N = F_{N-1}$$

$$s_1 \oplus s_N = F_{N-1} \qquad s_1 \oplus s_N = F_{N-1}$$

$$s_2 \oplus s_3 \dots \oplus s_N = F_I$$

If *N* is odd

$$s_1 \oplus s_2 = F_1$$
 $s_1 \oplus s_2 = F_1$

$$s_1 \oplus s_3 = F_2 \qquad \qquad s_1 \oplus s_3 = F_2$$

$$s_1 \oplus s_N = F_{N-1}$$

$$s_2 \oplus s_3 \dots \oplus s_N = F_N \quad s_1 \oplus s_2 \oplus \dots \oplus s_N = F_N$$

s are encoded F

$$F = (F_1, F_2, \dots, F_N)$$

Network Decoding

Example: - The private file comprises 4 frames $s = (s_1, s_2, s_3, s_4)$ - s are encoded to frames $F = (F_1, F_2, F_3, F_4)$

Coding scheme:

$$F = G(mod2)s$$

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$

$$s_1 \oplus s_2 = F_1$$

$$s_1 \oplus s_3 = F_2$$

$$s_1 \oplus s_4 = F_3$$

$$s_2 \oplus s_3 \oplus s_4 = F_4$$

Decoding scheme:

$$s = [G(mod2)]^{-1}F$$

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$

$$F_1 \oplus F_2 \oplus F_3 \oplus F_4 = s_1$$

$$F_2 \oplus F_3 \oplus F_4 = s_2$$

$$F_1 \oplus F_3 \oplus F_4 = s_3$$

$$F_1 \oplus F_2 \oplus F_4 = s_4$$

=> Need N-1 frames to decode any of the frames S_2, \ldots, S_N

=> Needs N frames to decode s_1

=> The number of received frames < N - 1, the receiver cannot decode any frames

Network coding enhance the **transmission security** (per-frame level)

I. Introduction

II. System Model

III. Numerical Results & Discussions

IV. Conclusion

Fig.2. An illustrative example of the operation IR-HARQ-NC

➤ To enhance reliability, network-coded frames are appended with a CRC for error detection and encoded using an RS code for error correction

(1) Encoding Phase

(2) Transmission Phase

(3) Decoding Phase

- Each burst transmission will be transmitted in fixed time slot (10ms)
- One burst transmission contain frames from different network coding group
- Redundancy of erroneous frames will be transmitted right after next time slot until receiver decode successfully those frames of reaching the maximum retransmission

- (1) Encoding Phase
 - •
- (2) Transmission Phase
 - 1
- (3) Decoding Phase

- Bob can successfully decode the original frame s_k if all required network coded frames in the group are received
- With HARQ-NC, Bob can eventually decode all frames in a network coding group
- Eve may miss some frames, preventing her from reconstructing any data within the network coding group

I. Introduction

II. System Model

III. Numerical Results & Discussions

IV. Conclusion

Performance

> Frame leakage probability, frame loss probability, goodput

1. Frame leakage probability

If Eve received 1 network coding group with size N frames

If Eve can decode successfully N frames of this network coding group

$$P_{frame\ leakage\ probability} = \frac{N}{N} = 1$$

• If Eve can decode successfully N-1 frames of this network coding group

$$P_{frame\ leakage\ probability} \approx \frac{1}{N}$$

If Eve can decode successfully fewer than N-1 frame of this network coding group

$$P_{frame\ leakage\ probability} = 0$$

If Eve received K network coding groups

- m: the number of network coding group that Eve can decode successful all frames (N) in each network coding group
- n: the number of network coding group that Eve can decode successful N-1 frames in each network coding group

$$P_{frame\ leakage\ probability} pprox rac{m*1+n*rac{1}{N}}{K}$$

Performance

2. Frame loss probability

If Bob received 1 network coding group with size N frames

■ If Bob can decode successfully *N frames* of this network coding group

$$P_{frame\ loss\ probability} = 1 - \frac{N}{N} = 0$$

• If Bob can decode successfully $N-1\ frames$ of this network coding group

$$P_{frame\ loss\ probability} \approx 1 - \frac{1}{N} \approx \frac{N-1}{N}$$

If Eve can decode successfully fewer than N-1 frame of this network coding group

$$P_{frame\ loss\ probability} = 1$$

If Bob received K network coding groups

- m: the number of network coding group that Bob can decode successfully fewer than
 N-1 in each network coding group
- n: the number of network coding group that Bob can **decode successful** N-1 **frames** in each network coding group

$$P_{frame\ loss\ probability} pprox \frac{m*1+n*\frac{N-1}{N}}{K}$$

3. Goodput

If Bob decoded successfully N frames in t time slots

$$Goodput = \frac{N*number_of_information_bits_per_frame}{t}$$

Numerical Results And Discussion

Fig.1. Performance comparison vs. different transmitted power levels.

- The security enhancement comes at the cost of an increased frame loss probability
- It is importance to select an appropriate transmitted power level to achieve a targeted performance balance

Fig.2. The intercept and outage probabilities vs. network coding size.

A larger network coding group size enhance security. However, this also leads to an increase in frame loss probability

Numerical Results And Discussion

Fig.3. Goodput with different network coding size

- IR-HARQ provide better goodput than IR-HARQ-NC for each code rate
- Larger sizes reduce goodput and the goodput of IR-HARQ-NC with $Mother\ code = 1/2$ decrease more significantly than that of IR-HARQ-NC with $Mother\ code = 1/3$

Fig.4. Energy efficiency and goodput with different transmitted power levels.

- Selecting optimal transmitted power levels can balance goodput and energy efficiency
- ightharpoonup Using IR-HARQ-NC with *Mother code* = 1/3 can provide the system with higher energy efficiency and better throughput

I. Introduction

II. System Model

III. Numerical Results & Discussions

IV. Conclusion

Conclusion

Limitation of the system model

- The model does not consider channel coherent time follow the change of LEO satellite's position
- The security of the model is not significantly improved

Plan for the next step

- Consider channel coherent time follow the change of LEO satellite's position
- Improve the security of the system
- Apply a theoretical framework
- Consider NOMA-HARQ for the system

Thank you for your listening!