1 Cumulative distribution functions

Definition 1.1 Let $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$ be a \mathbb{R} -valued random variable. The **cumulative distribution function** of X is, by definition, the function $F_X : \mathbb{R} \longrightarrow [0,1]$ defined as follows:

$$F_X(x) := P(X \le x) = \mu(\{\omega \in \Omega \mid X(\omega) \le x\}), \text{ for each } x \in \mathbb{R}.$$

Definition 1.2 A function $f:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ is said to be

- non-decreasing if $f(x) \leq f(y)$, for any $x, y \in D$ with $x \leq y$.
- non-increasing if $f(x) \ge f(y)$, for any $x, y \in D$ with $x \le y$.
- monotone if f is either non-decreasing or non-increasing.

Theorem 1.3 (Theorem 4.29, [1])

Let $f:(a,b)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ be a non-decreasing function. Then,

$$f(x-) := \lim_{t \to x^{-}} f(t)$$
 and $f(x+) := \lim_{t \to x^{+}} f(t)$

exist for every $x \in (a,b)$. More precisely,

$$f(x-) = \sup_{a < t < x} f(t) \le f(x) \le \inf_{x < t < b} f(t) = f(x+).$$

Furthermore, if a < x < y < b, then

$$f(x+) \leq f(y-).$$

PROOF First note that, since f is non-decreasing, it immediately follows that:

$$\sup_{a < t < x} f(t) \le f(x) \le \inf_{x < t < b} f(t).$$

Next, we show that $f(x-) := \lim_{t \to x^-} f(t)$ exists and equals $A := \sup_{a < t < x} f(t)$. Let $\varepsilon > 0$ be given. We need to find $\delta > 0$ such that

$$|f(t) - A| < \varepsilon$$
, for every $t \in (x - \delta, x)$.

By definition of the supremum, there exists $\delta > 0$ with $x - \delta \in (a, x)$ such that

$$A - \varepsilon < f(x - \delta) \le A.$$

Since f is non-decreasing, we have

$$f(x-\delta) \le f(t) \le A := \sup_{\xi \in (x-\delta,x)} f(\xi), \text{ for every } t \in (x-\delta,x).$$

We therefore see that

$$|f(t) - A| < \varepsilon$$
,

as desired. This proves that $f(x-) := \lim_{t \to x^-} f(t)$ indeed exists and equals $A := \sup_{t \in (a,x)} f(t)$. The proof that f(x+) exists and equals $\inf_{t \in (x,b)} f(t)$ is analogous. Lastly, let a < x < y < b. Then, choose some $z \in (x,y) = (x,b) \cap (a,y)$. Hence, we have

$$f(x+) = \inf_{t \in (x,b)} f(t) \le f(z) \le \sup_{t \in (a,u)} f(t) = f(y-).$$

This proof the Theorem is complete.

Remark 1.4 The analogous results of the preceding Theorem for non-increasing functions hold, obviously.

Definition 1.5 Let $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$. A point $a \in \text{interior}(D)$ is a jump discontinuity of f if both

$$\lim_{x \to a^-} f(x)$$
 and $\lim_{x \to a^+} f(x)$

exist but they are unequal.

Corollary 1.6 A monotone \mathbb{R} -valued function defined on an interval of \mathbb{R} can have only jump discontinuities.

Theorem 1.7 A function $F : \mathbb{R} \longrightarrow [0,1]$ is a cumulative distribution function of some \mathbb{R} -valued random variable if and only if each of following four conditions holds:

- F is non-decreasing.
- F is right-continuous.
- $\lim_{x\to-\infty} F(x) = 0$.
- $\lim_{x\to+\infty} F(x) = 1$.

PROOF If $F : \mathbb{R} \longrightarrow [0,1]$ is a cumulative distribution function of some \mathbb{R} -valued random variable $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$, then the four conditions follow immediately from the property of the probability measure μ . Conversely, suppose the four conditions hold. Let $\Omega := [0,1]$ and $\mathcal{B}(\Omega)$ the Borel subsets of Ω . Let μ be the Lebesgue measure on $(\Omega, \mathcal{B}(\Omega))$, i.e. μ is determined by:

$$\mu([0,\omega]) := \omega$$
, for each $\omega \in \Omega = [0,1]$.

Define the random variable $X:(\Omega,\mathcal{B}(\Omega),\mu)\longrightarrow \mathbb{R}$ by:

$$X(\omega) := \inf \{ x \in \mathbb{R} \mid \omega \le F(x) \}, \text{ for each } \omega \in \Omega = [0, 1].$$

Note that X is simply the quantile function of F.

Claim: Suppose $G : \mathbb{R} \longrightarrow [0,1]$ is non-decreasing and right-continuous. Then, for any $\omega \in [0,1]$ and $x \in \mathbb{R}$,

$$\inf \{ \xi \in \mathbb{R} \mid \omega < G(\xi) \} < x \iff \omega < G(x).$$

Proof of Claim: Suppose $\omega \leq G(x)$. Then, $x \in \{\xi \in \mathbb{R} \mid \omega \leq G(\xi)\}$. Hence, inf $\{\xi \in \mathbb{R} \mid \omega \leq G(\xi)\} \leq x$. Conversely, suppose inf $\{\xi \in \mathbb{R} \mid \omega \leq G(\xi)\} \leq x$. Since G is non-decreasing and right-continuous, we have:

$$\inf \left\{ \xi \in \mathbb{R} \mid \omega \leq G(\xi) \right\} \leq x \quad \Longrightarrow \quad \text{for any } \varepsilon > 0, \ \exists \ \xi \in \mathbb{R}, \ \text{satisfying } \omega \leq G(\xi), \ \text{such that } \xi \leq x + \varepsilon \\ \Longrightarrow \quad \text{for any } \varepsilon > 0, \ \exists \ \xi \in \mathbb{R}, \ \text{satisfying } \omega \leq G(\xi) \ \text{and } G(\xi) \leq G(x + \varepsilon) \\ \Longrightarrow \quad \text{for any } \varepsilon > 0, \ \omega \leq G(x + \varepsilon) \\ \Longrightarrow \quad \omega \leq \lim_{\varepsilon \to 0^+} G(x + \varepsilon) = G(x).$$

This completes the proof of the Claim.

Noting that, by hypothesis, F is non-decreasing right-continuous, and invoking the Claim above, we see that

$$P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}) = P(\{\omega \in \Omega \mid \inf \{\xi \in \mathbb{R} \mid \omega \le F(\xi)\} \le x\})$$

$$= P(\{\omega \in \Omega \mid \omega \le F(x)\}) = \mu(\{\omega \in [0,1] \mid \omega \le F(x)\}) = \mu([0,F(x)])$$

$$= F(x)$$

This shows that if F satisfies the four conditions, then F is the cumulative distribution function of the random variable X constructed above. The proof of the Theorem is now complete.

Theorem 1.8 (Darboux-Froda, Theorem 4.30, [1])

The set of discontinuities of a monotone \mathbb{R} -valued function defined on an interval of \mathbb{R} is at most countable.

PROOF We give the proof for non-decreasing functions; the proof for non-increasing functions is analogous. Let $f:(a,b) \longrightarrow \mathbb{R}$ be non-decreasing, and let $\mathcal{D}(f) \subset (a,b)$ be the set of discontinuities of f. By Corollary 1.6, each $x \in \mathcal{D}(f)$ is a jump discontinuity of f, i.e. both one-sided limits $\lim_{t\to x^-} f(t)$ and $\lim_{t\to x^+} f(t)$ exist, and

$$\lim_{t \to x^-} f(t) \ < \ \lim_{t \to x^+} f(t)$$

Thus, for each $x \in \mathcal{D}(f)$, we may choose a rational number $r(x) \in \mathbb{Q}$ such that

$$\lim_{t \to x^{-}} f(t) < r(x) < \lim_{t \to x^{+}} f(t).$$

This defines a function $r : \mathcal{D}(f) \longrightarrow \mathbb{Q}$. Note that this function is injective. Indeed, let $x, y \in \mathcal{D}(f)$ with x < y. Then, by Theorem 1.3,

$$r(x) < \lim_{t \to x^+} f(t) = f(x+) \le f(y-) = \lim_{t \to y^-} f(t) < r(y)$$

This shows $r: \mathcal{D}(f) \longrightarrow \mathbb{Q}$ is indeed injective. Since \mathbb{Q} is countable, we may now conclude that $\mathcal{D}(f)$ is at most countable.

Corollary 1.9 The cumulative distribution function of an \mathbb{R} -valued random variable can have only jump discontinuities, and its set of (jump) discontinuities is at most countable.

2 The O_P and o_P notations; convergence in distribution implies boundedness in probability

Definition 2.1 (The Big- O_P notation)

Let $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ be a sequence of \mathbb{R}^k -valued random variables. Let $\{a_n\}_{n \in \mathbb{N}}$ be sequence of positive numbers. The notation $X_n = O_p(a_n)$ means:

For every $\varepsilon > 0$, there exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq C_{\varepsilon} \cdot a_n) > 1 - \varepsilon$, for every $n \geq n_{\varepsilon}$.

Proposition 2.2 The following are equivalent:

- (a) $X_n = O_P(a_n)$.
- (b) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for each $n \in \mathbb{N}$.
- (c) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon$.
- (d) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon$.
- (e) $\lim_{C \to \infty} \limsup_{n \to \infty} P(|X_n| > C \cdot a_n) = 0.$
- (f) $\lim_{C \to \infty} \sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) = 0.$

Proof

$$(a) \Longrightarrow (b)$$

Let $\varepsilon > 0$ be given. By (a), there exist $B_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq B_{\varepsilon} \cdot a_n) > 1 - \varepsilon$, for each $n \geq n_{\varepsilon}$.

Claim: Let Y be an \mathbb{R}^k -valued random variable. Then, for each $\varepsilon > 0$, there exists $A_{\varepsilon} > 0$ such that $P(|Y| \le A_{\varepsilon}) > 1 - \varepsilon$.

Proof of Claim: Suppose the Claim were false. Then, there exists some $\varepsilon>0$ such that $P(|Y|\leq A)\leq 1-\varepsilon$, for every A>0; equivalently, $P(|Y|>A)>\varepsilon$, for every A>0. This implies $\lim_{A\to\infty}P(|Y|>A)=\limsup_{A\to\infty}P(|Y|>A)\geq\varepsilon>0$. But this is a contradiction since $\lim_{A\to\infty}P(|Y|>A)=0$, for every \mathbb{R}^k -valued random variable Y. This proves the Claim.

By the Claim, for each $i=1,2,\ldots,n_{\varepsilon}-1$, there exists $B_{\varepsilon}^{(i)}>0$ such that $P\left(|X_i|\leq B_{\varepsilon}^{(i)}\cdot a_i\right)>1-\varepsilon$. Now, let $C_{\varepsilon}:=\max\left\{B_{\varepsilon}^{(1)},B_{\varepsilon}^{(1)},\ldots,B_{\varepsilon}^{(n_{\varepsilon}-1)},B_{\varepsilon}\right\}$. Then, $P(|X_n|\leq C_{\varepsilon}\cdot a_n)>1-\varepsilon$, for every $n\in\mathbb{N}$. This proves the implication (a) \Longrightarrow (b).

- (b) \Longrightarrow (a) Trivial: Suppose (b) holds. Then (a) immediately follows with $n_{\varepsilon} = 1$.
- (a) \iff (c) Let $\varepsilon > 0$ be given.
 - (a) \iff There exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for every $n \ge n_{\varepsilon}$.
 - \iff There exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$, for every $n \geq n_{\varepsilon}$.
 - \iff There exist $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (c)
- (b) \iff (d) Let $\varepsilon > 0$ be given.
 - (b) \iff There exists $C_{\varepsilon} > 0$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for every $n \in \mathbb{N}$.
 - \iff There exists $C_{\varepsilon} > 0$ such that $P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$, for every $n \in \mathbb{N}$.
 - \iff There exist $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon \iff$ (d)
- (d) \iff (f) Let $\varepsilon > 0$ be given. We first establish that (f) \implies (d).
 - (f) \iff There exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) \le \varepsilon$, for each $C \ge C_{\varepsilon}$.
 - \implies There exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon \iff (d)$

Conversely, suppose (d) holds and $C \geq C_{\varepsilon}$. Then, $|X_n| > C \cdot a_n \Longrightarrow |X_n| > C_{\varepsilon} \cdot a_n$. Hence, $\{|X_n| > C \cdot a_n\} \subseteq \{|X_n| > C_{\varepsilon} \cdot a_n\}$, which in turn implies $P(|X_n| > C \cdot a_n) \leq P(|X_n| > C_{\varepsilon} \cdot a_n)$. Thus, we have

$$\sup_{n\in\mathbb{N}} P(\,|X_n|>C\cdot a_n\,) \ \leq \ \sup_{n\in\mathbb{N}} P(\,|X_n|>C_\varepsilon\cdot a_n\,) \ \leq \ \varepsilon,$$

i.e. (f) holds.

- (c) \iff (e) Let $\varepsilon > 0$ be given. We first establish that (e) \implies (c).
 - (e) \iff There exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C \cdot a_n) \leq \varepsilon$, for each $C \geq C_{\varepsilon}$.
 - \implies There exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (c)

Conversely, suppose (c) holds and $C \geq C_{\varepsilon}$. Then, $|X_n| > C \cdot a_n \Longrightarrow |X_n| > C_{\varepsilon} \cdot a_n$. Hence, $\{|X_n| > C \cdot a_n\} \subseteq \{|X_n| > C_{\varepsilon} \cdot a_n\}$, which in turn implies $P(|X_n| > C \cdot a_n) \leq P(|X_n| > C_{\varepsilon} \cdot a_n)$. Thus, we have

$$\limsup_{n\to\infty} \ P(\,|X_n|>C\cdot a_n\,) \ \le \ \limsup_{n\to\infty} \ P(\,|X_n|>C_\varepsilon\cdot a_n\,) \ \le \ \varepsilon,$$

i.e. (e) holds.

This completes the proof of the Proposition.

Definition 2.3 (Bounded in probability)

A sequence $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ of \mathbb{R}^k -valued random variables is said to be **bounded in probability** if $X_n = O_P(1)$.

Theorem 2.4

If a sequence $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}\}_{n \in \mathbb{N}}$ of \mathbb{R} -valued random variables converges in distribution to some random variable $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$, then the sequence $\{X_n\}$ is bounded in probability.

PROOF Let $\varepsilon > 0$ be given. We need to show that there exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that

$$P(|X_n| > C_{\varepsilon}) \le \varepsilon$$
, for each $n \ge n_{\varepsilon}$.

Denote by $F, F_n : \mathbb{R} \longrightarrow [0,1]$ the cumulative distribution functions of X and X_n , respectively. By Theorem 1.7 and the Darboux-Froda Theorem (Theorem 1.8), the cumulative distribution function F satisfies: $\lim_{x \to +\infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$, and that F can have at most countably many (jump) discontinuities. Thus for the given $\varepsilon > 0$, we may choose $C_{\varepsilon} > 0$ sufficiently large such that

$$0 \le F(-C_{\varepsilon}) < \frac{\varepsilon}{4}, \qquad |1 - F(C_{\varepsilon})| < \frac{\varepsilon}{4}, \qquad \text{and} \qquad \{ \pm C_{\varepsilon} \} \subset \mathcal{C}(F)$$

where C(F) denotes the continuity set of F. Now, since $\pm C_{\varepsilon} \in C(F)$, the convergence in distribution $X_n \xrightarrow{\mathcal{L}} X$ implies that the convergences $F_n(-C_{\varepsilon}) \longrightarrow F(-C_{\varepsilon})$ and $F_n(C_{\varepsilon}) \longrightarrow F(C_{\varepsilon})$ (of sequences of real numbers). Thus, we may choose $n_{\varepsilon} \in \mathbb{N}$ sufficiently large such that

$$|F_n(-C_{\varepsilon}) - F(-C_{\varepsilon})| < \frac{\varepsilon}{4}$$
, and $|F_n(C_{\varepsilon}) - F(C_{\varepsilon})| < \frac{\varepsilon}{4}$, for every $n \ge n_{\varepsilon}$.

Therefore, for each $n \geq n_{\varepsilon}$, we have:

$$P(|X_{n}| > C_{\varepsilon}) = P(X_{n} < -C_{\varepsilon}) + P(X_{n} > C_{\varepsilon}) = P(X_{n} < -C_{\varepsilon}) + 1 - P(X_{n} \leq C_{\varepsilon})$$

$$\leq P(X_{n} \leq -C_{\varepsilon}) + 1 - P(X_{n} \leq C_{\varepsilon}) = F_{n}(-C_{\varepsilon}) + 1 - F_{n}(C_{\varepsilon})$$

$$\leq |F_{n}(-C_{\varepsilon}) - F(-C_{\varepsilon})| + |F(-C_{\varepsilon})| + |1 - F(C_{\varepsilon})| + |F(C_{\varepsilon}) - F_{n}(C_{\varepsilon})|$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon$$

This completes the proof that a sequence $\{X_n\}_{n\in\mathbb{N}}$ of \mathbb{R} -valued random variables is bounded in probability whenever it converges in distribution.

References

[1] Rudin, W. Principles of Mathematical Analysis, third ed. McGraw-Hill, 1976.