

Relatório da Atividade Prática

Análise de Algoritmos

Prof. Paulo Henrique Ribeiro Gabriel

João Antônio Nardini Romaniello- 11811BCC028 Matheus Humberto G. F. Costa - 11811BCC006

Uberlândia- MG 04 de Outubro de 2020

Objetivos

Implementar e comparar o desempenho de um Algoritmo Simples de multiplicação de duas matrizes e o Algoritmo de Strassen.

Metodologia

Optamos por fazer a implementação de ambos os algoritmos na linguagem C. Como ambiente de desenvolvimento usamos o Code Blocks, por termos uma maior afinidade com a plataforma.

Para valores, comparações e plotagem do gráfico, usamos o Excel para fazer tabelas com os valores obtidos nas execuções dos códigos e usamos um site comum na internet para plotagem de gráficos.

Detalhes sobre a implementação do código é explicado no vídeo que enviamos como complemento deste relatório.

Resultados

Após a implementação do código, partimos para o experimento de fato. Para diferentes valores de entrada de **n** (dimensão da matriz nxn), realizamos 20 repetições para ambos os algoritmos, chegando aos resultados que apresentamos na tabela abaixo.

Obs: Valores em milissegundos (ms).

	Simples	Strassen		Simples	Strassen		Simples	Strassen
n=128	6	3	n=256	67	38	n= 512	568	233
	6	5		63	35		613	285
	5	4		63	35		563	288
	6	4		64	35		572	277
	6	4		63	35		598	283
	6	5		65	36		611	289
	6	5		63	35		548	279
	7	4		64	35		595	280
	6	3		65	35		578	269
	6	5		65	35		594	300
	7	4		63	35		549	284
	6	4		63	35		602	268
	6	4		70	37		597	278
	6	4		63	36		589	281

	7	4		66	37		583	277
	6	5		63	35		568	281
	6	4		65	35		572	269
	6	4		63	36		584	275
	5	5		63	35		575	267
	6	5		65	36		591	289
Média:	6,05	4,25		64,3	35,55		582,5	277,6
Desvio Padrão:	0,51041 77855	0,638666 3737		1,80933 2532	0,88704 12083		18,3374 7959	13,32745 484

Como foi dito, fizemos 20 execuções dos códigos para os diferentes valores de **n**, sendo 128, 256, 512. Também fizemos alguns testes com os valores para n = 1024, mas não foi colocado na tabela pois a execução estava demorando bastante e os valores deram algumas variações, assim optamos por deixar uma média de valor para usarmos apenas para a plotagem do gráfico.

Através desses valores obtidos na tabela, plotamos o seguinte gráfico:

Todos os valores foram testados com base em testes realizados 20 vezes

No gráfico percebemos a diferença de desempenho entre os dois algoritmos. A medida que o $\bf n$ vai aumentando, o Algoritmo de Strassen se mostra muito mais eficiente que o Algoritmo Simples. Mesmo ambos tendo a mesma complexidade $(O(n^3))$, a Algoritmo de Strassen ter uma divisão a menos do problema faz uma grande diferença quando lidamos com grandes matrizes. Como percebe-se no gráfico, a partir de 512 já há uma grande diferença entre os dois algoritmos, onde o de Strassen chega a ser até 3 vezes mais rápido do que o simples.

Conclusão

Após o estudo e implementação dos algoritmos discutidos nessa atividade, fica claro que o Algoritmo de Strassen realmente tem um melhor desempenho para multiplicação de matrizes do que o Algoritmo Simples. Esse estudo de Strassen se torna então muito importante para a Computação e a Matemática em geral, já que o produto de matrizes é amplamente usado por diversas áreas do conhecimento humano, tanto em situações complexas, como na produção de automóveis, por exemplo, ou até situações mais simples do dia a dia, como cálculo das notas dos alunos no final de um bimestre. Ter um algoritmo eficiente para fazer esses cálculos é um grande avanço para a matemática, facilitando muitos problemas que envolvem produtos de matrizes em suas resoluções.