My Malloc Library

Learning Objectives

Upon completion of this assignment, you should be able:

- 1. Manipulate C pointers to traverse a process' address space
- 2. Use pointer arithmetic to adjust pointer references
- 3. Use casting to dereference memory storage as different types
- 4. Manually adjust the process heap

New mechanisms you will see and use include:

retrieves the first node of the free list

- C: enum, type casting, pointer arithmetic, fprintf(), stdout, stderr
- system calls: sbrk()

```
Function Specifications
```

```
NAME
  my malloc(), my free(), coalesce free list(),
  free list begin()
SYNOPSIS
  #include "my malloc.h"
  void * my malloc(size t size);
  void my free(void *ptr);
  void coalesce free list(void);
  FreeListNode free list begin( void );
  typedef struct freelistnode {
       struct freelistnode *flink;
       size t size;
  } * FreeListNode;
DESCRIPTION
  my malloc()
     allocates size bytes of memory
  my_free()
     deallocates memory allocation pointed to by ptr, previously allocated by my malloc()
  coalesce free list()
     merges logically adjacent chunks on the free list into single larger chunks
  free list begin()
```

RETURN VALUES AND ERRORS

On success, my_malloc() returns an 8-byte aligned pointer to the allocated memory. On failure, my_malloc() sets my_errno to MYENOMEM and returns NULL.

On success, my_free() returns nothing.

On failure, my_free() sets my_errno to MYEBADFREEPTR when passed a non-malloc'd pointer,

free list begin() returns the first free list node or NULL if the list is empty.

Implementation Details

Memory Allocation

We refer to the entire memory block of memory used to satisfy an allocation request as the "chunk" – the chunk will be bigger than the extent of memory we expect the user to access. The *minimum chunk size* should be 16 bytes or the size of the struct freelistnode plus any padding needed to make the chunk size a multiple of 8, whichever is larger.

Chunks

Allocated chunks returned by my malloc() will be inflated by:

- 1. chunk header: 8 bytes
- 2. internal fragmentation:
 - a. any padding necessary to make the chunk size a multiple of 8
 - b. potential wastage from using an oversized chunk

Chunk header

Use the 8 bytes just before the address returned by my_malloc() for your bookkeeping chunk header. Use the first four bytes for the total chunk size (including header and padding) and the second 4-bytes to designate that the chunk was allocated by my malloc().

An Example Allocated Chunk

Allocating a chunk

 $my_malloc()$ first searches the free list for a usable chunk. If no usable chunk is found, call $sbrk()^1$ to extend the heap segment. $my_malloc()$ returns a pointer referencing 8 bytes into the chunk, i.e. after the chunk header.

Chunk splitting

Oversized chunks (i.e. larger than needed for the request) must be split into two unless the remainder would be smaller than the *minimum chunk size*. In the former case, the remainder should be added to the free list. In the latter case, my_malloc() will return an oversized chunk that suffers small internal fragmentation.

Memory Deallocation

my free() places freed or deallocated chunks of memory onto a free list.

Free List Management

Use struct freelistnode in my_malloc.h to implement a singly-linked free list to manage free chunks. To add a chunk to the free list, embed a struct freelistnode at the beginning of the very same memory chunk². If ptr is the address of the chunk:

FreeListNode node;
node = (FreeListNode)ptr;

Then properly set node->size and node->flink and insert node into the free list. flink should be NULL for the last node in the list.

Example Free List

Chunk coalescing

Chunk coalescing is only done when coalesce_free_list() is called explicitly:

my free() does not coalesce adjacent memory chunks during or after chunk insertion!

¹ For this exercise, we use the simpler yet deprecated sbrk() not the more complex, POSIX-compliant mmap.

² This is why minimum chunk size must be the size of struct freelistnode.

Requirements and Constraints

- You may use no static variables and one global variable for the first free list node. (This
 does not include my_errno, which is declared but not yet defined.)
- 2. Always call sbrk(8192)³ except if a my_malloc() requests needs more than 8,192 bytes, then call sbrk() with the minimum size needed for the new chunk.
- 3. Assume that other library routines also may make calls to sbrk().
- 4. Besides sbrk(), you may not use **any** other library or system calls.
- 5. You may not use more than 8 bookkeeping bytes.
- 6. Your free list should always be sorted in ascending order by chunk address.
- 7. Use a *first fit* strategy to search the free list, i.e. return the first usable chunk found.

Submission

FOLLOW THESE INSTRUCTIONS PRECISELY

Requisite files:

- Sources: my_malloc.c and any auxiliary files needed to implement the functions in my_malloc.h
- README: you may submit an optional README file with comments, feedback, known issues, etc.

Your submission must use the following naming convention: firstinitiallastname_lab? where firstinitial is the initial of your first name, lastname is your last name, and '?' is the number of this lab [0-5]. For example, the Lab 3 directory for Candace Parker would be 'cparker lab3'.

Place the requisite files in your submission directory and execute the command:

```
tar -czf labdir.tgz labdir
```

where labdir is your submission directory. This will create a new file labdir.tgz containing the contents of labdir. You can verify the contents of this *compressed tar file* using:

```
tar -tzf labdir.tgz
```

Submit your assignment via Canvas.

```
my_malloc.h
//the size of the header for heap allocated memory chunks
#define CHUNKHEADERSIZE 8

//error signaling
typedef enum {MYNOERROR, MYENOMEM, MYBADFREEPTR} MyErrorNo;
extern MyErrorNo my_errno;

//my_malloc: returns a pointer to a chunk of heap allocated memory
void *my_malloc(size_t size);

//my_free: reclaims the previously allocated chunk referenced by ptr
void my_free(void *ptr);

//struct freelistnode: node for linked list of 'free' chunks
typedef struct freelistnode {
    struct freelistnode *flink; //pointer to next free chunk node
    size_t size; //size of current chunk
} * FreeListNode;
```

³ You may call sbrk(0) to identify the heap's current end.

```
//free_list_begin(): returns pointer to first chunk in free list
FreeListNode free_list_begin(void);
//coalesce_free_list(): merge adjacent chunks on the free list
void coalesce_free_list(void);
```