Create an orthogonal polygon with n arbitrary vertices

Mục lục

- Kiến thức cần chuẩn bị
- Mô tả và trình bày thuật toán
- Ví dụ và hình ảnh minh họa
- Đề xuất hướng cải thiện bài toán
- Kết luận

I. Kiến thức cần chuẩn bị

- Khái niệm đa giác trực giao
- Hệ tọa độ Descartes
- Cấu trúc dữ liệu và thuật toán cơ bản
- Ngôn ngữ lập trình Julia
- Thư viện Plots.jl
- Hình học tính toán
- Kiến thức về số ngẫu nhiên

1. Khái niệm đa giác trực giao

- Đa giác đơn, các cạnh song song với trục hoành hoặc trục tung.
- Góc trong 90° (vuông) hoặc 270° (lồi).
- Chu trình đóng, không giao nhau.

2. Hệ tọa độ Descartes

- Biểu diễn các điểm trong mặt phẳng 2 chiều dưới dạng tọa độ (x,y).
- Cách tính toán khoảng cách và xác định hướng giữa các điểm.

2. Hê toa đô Descartes

Tích vô hướng:

• Với hai vectơ $\vec{u} = (x_1, y_1), \vec{v} = (x_2, y_2), \text{ ta có:}$

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 (= \|\vec{u}\| \cdot \|\vec{v}\| \cdot \cos(\theta))$$

• Úng dụng: Tính góc giữa hai vectơ, kiểm tra vuông góc ($\vec{u} \cdot \vec{v} = 0$)

3. Cấu trúc dữ liệu và thuật toán cơ bản

- Tập hợp (Set): Dùng để kiểm tra điểm đã xuất hiện hay chưa.
- Danh sách (List / Array): Dùng để lưu trữ đường đi, các đỉnh của đa giác.
- Vòng lặp và rẽ nhánh: Được sử dụng để điều hướng và xây dựng cấu trúc fractal.
- Hiểu về khái niệm và cách xây dựng chu trình trên đồ thị.

4 & 5. Ngôn ngữ Julia và Thư viện Plots.jl

Ngôn ngữ Julia

- Khai báo hàm, biến, package
- Xử lý ngoại lệ (try-catch)
- Thao tác với Tuple, Array, Set

Thư viện Plots.jl

- Trực quan hóa dữ liệu với backend GR
- Lệnh: plot, scatter, fill, savefig
- Thiết lập tỷ lệ, màu sắc, tiêu đề

6. Hình học tính toán

- Hiểu biết cơ bản về hình học rời rạc: xác định hướng quay (trái/phải/lên/xuống), kiểm tra giao nhau giữa các đoạn thẳng.
- Úng dụng trong việc xây dựng và xác minh tính chất của đa giác trực giao.

7. Kiến thức về số ngẫu nhiên

- Sử dụng hàm rand trong Julia để chọn vị trí, sinh nhánh một cách ngẫu nhiên.
- Hiểu được tác động của tính ngẫu nhiên đến kết quả hình học.

II.1. Mô tả thuật toán

- Tạo đa giác trực giao fractal khép kín với số đỉnh do người dùng chỉ định.
- Sử dụng Julia và thư viện Plots.
- Năm hàm chính:
 - 0 is_right_angle
 - generate_fractal_like_path
 - 3 save_path_to_csv
 - draw_path
 - main

1. Hàm is_right_angle

Hàm is_right_angle kiểm tra xem góc tại điểm p_2 (giữa hai đoạn thẳng p_1p_2 và p_2p_3) có phải là góc vuông không.

Các bước thực hiện:

- Tính vector $\vec{v}_1 = (p_2[1] p_1[1], p_2[2] p_1[2])$
- Tính vector $\vec{v}_2 = (p_3[1] p_2[1], p_3[2] p_2[2])$
- Tính tích vô hướng: $\vec{v}_1 \cdot \vec{v}_2 = v_1[1] \cdot v_2[1] + v_1[2] \cdot v_2[2]$
- Nếu tích vô hướng bằng $0 \Rightarrow$ góc tại p_2 là $90^\circ \Rightarrow$ trả về true, ngược lại trả về false.

2. Hàm generate_fractal_like_path

- Mục tiêu: Tạo danh sách tọa độ cho đa giác fractal(Path)
- Các bước:
 - Khởi tạo hình vuông khép kín: $(0,0) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (0,1) \rightarrow (0,0)$
 - Lưu vào visited, 4 góc 90°
 - Thêm đỉnh ngẫu nhiên (2 đỉnh) cho đến khi đủ num_points
 - Giới hạn di chuyển (4 hướng): (1,0), (−1,0), (0,1), (0,−1)
- Độ phức tạp: $O(n^2)$ trung bình, tối đa $O(T*n^2)$

3. Hàm save_path_to_csv

- Lưu path vào file csv:
 - Ghi tiêu đề "x, y", rồi mỗi tọa độ (x, y) thành "x, y"

4. Hàm draw_path

- Trực quan hóa đa giác bằng Plots.jl
- Tách tọa độ x, y, vẽ nét mỏng, tỷ lệ 1:1
- Tô màu vùng trong (độ trong suốt 0.15, nếu yêu cầu)
- Đánh dấu đỉnh bằng hàm is_right_angle, vẽ chấm đỏ
- Điểm đầu/cuối (ngôi sao đỏ)

5. Hàm main

- Điều phối quy trình:
 - Nhập số đỉnh, kiểm tra hợp lệ (chẵn, ≥ 4)
 - ullet Goi generate_fractal_like_path $v\grave{a}$ draw_path
 - Lưu ảnh PNG (fractal_<num_points>_dinh.png)
 - Xử lý lỗi, in thời gian thực thi
- Đảm bảo đa giác khép kín, trực giao, không trùng đính.

Thuật toán is right angle

Input: Tọa độ ba điểm $p_1(x_1, y_1), p_2(x_2, y_2), p_3(x_3, y_3)$

Output: Trả về True nếu góc tại p_2 là 90 độ, ngược lại trả về False

Bước 1: Xác định vecto từ p_1 đến p_2 :

$$v_1 = (x_2 - x_1, y_2 - y_1)$$

Bước 2: Xác định vecto từ p_2 đến p_3 :

$$v_2 = (x_3 - x_2, y_3 - y_2)$$

Bước 3: Tính tích vô hướng của hai vecto v_1 và v_2 :

$$v_1[1] \times v_2[1] + v_1[2] \times v_2[2]$$

Bước 4: Kiểm tra nếu tích vô hướng bằng 0:

if
$$v_1[1] \times v_2[1] + v_1[2] \times v_2[2] == 0$$
 then

Return: True \rightarrow Góc tại p_2 là 90 độ else

Return: False \rightarrow Góc tại p_2 không phải là 90 độ end if

Algorithm 1 generate_fractal_like_path(num_points, step)

```
Require: num points là số chẵn và > 4
 1: if num points le hoăc num points < 4 then
       throw lõi
 3: Khởi tạo:
      \mathtt{path} \leftarrow \{(0,0), (1,0), (1,1), (0,1), (0,0)\}
      visited ← các điểm trong path
      directions \leftarrow \{(1.0), (0.1), (-1.0), (0.-1)\}
      right_angle_count \leftarrow 4
 8: while right angle count < num points do
       Chọn ngẫu nhiên đoạn (p,q) trong path
10:
       (dx, dy) \leftarrow q - p
       perp_dirs ← hoán vi của {(dv, -dx), (-dv, dx)}
11:
       for all huống (test dx, test dy) trong perp_dirs \cup directions do
12:
13:
           r \leftarrow p + (test \ dx, test \ dy) \times step
           s \leftarrow r + (dx, dy) \times step
14:
           if r, s \notin visited then
15:
16.
              Chèn r, s vào path tại vi trí sau p
17:
              new_count 
- right_angle_count
              if is_right_angle(p, r, s) then
18:
19-
                  new_count++
              if is_right_angle(r, s, q) then
20:
21:
                  new count++
22:
              if góc tại p hoặc q thay đổi then
                  cập nhật new_count
23:
              if new_count < num_points then
24.
                  Thêm r, s vào visited
26.
                  right_angle_count \leftarrow new_count
                  if right_angle_count = num_points then
27:
28
                      return path
              else
29:
30:
                  Loai bỏ r, s khỏi path
31: return path
```


Ham save_path_to_csv(path, filename)

- Mở file filename để ghi.
- Ghi tiêu đề "x,y".
- Với mỗi điểm (x, y) trong path:
 - Ghi "\$x,\$y" vào file.
- Dóng file.

Hàm draw_path(path, num_points, title, fill_polygon)

- Tách path thành danh sách x, y.
- Vẽ đường đi với x, y (màu đen, độ dày 0.5).
- Néu fill_polygon = true:
 - Tô đa giác với màu tím nhạt.
- Tìm các đỉnh góc 90 độ:
 - Với mỗi điểm i từ 2 đến n − 1:
 - * Nếu góc tại path[i] là 90 độ, thêm path[i] vào danh sách (right_angle_x, right_angle_y).
 - Kiểm tra góc tại điểm đầu/cuối (path[1] và path[n-1]).
- Vē:
 - Các đỉnh góc 90 độ (chấm đỏ).
 - Điểm đầu/cuối (ngôi sao đỏ).
- Trả về đối tượng plot.

Hàm main()

- Nhập số đỉnh góc 90 độ (num_points) từ người dùng.
- Nếu input không phải số nguyên, báo lỗi.
- Đo thời gian tổng.
- Goi generate_fractal_like_path(num_points).
- Đo thời gian tạo đường đi.
- Lưu đường đi vào file CSV "fractal_\$(num_points)_dinh.csv".
- Gọi draw_path với fill_polygon = true.
- Lưu hình vào "fractal_\$(num_points)_dinh.png".
- Đo thời gian vẽ.
- In các thông tin:
 - Thời gian tạo đường đi.
 - Tổng số điểm.
 - Thời gian vẽ.
 - Tổng thời gian.
- Xử lý lỗi nếu có.

III. Ví dụ (Đa giác trực giao với 10 đỉnh)

- Tổng số điểm: 12
- Thời gian tạo hình:0.012 giây

III. Ví dụ (Đa giác trực giao với 100 đỉnh)

- Tổng số điểm: 141
- Thời gian tạo hình:0.69 giây

III. Ví dụ (Đa giác trực giao với 1000 đỉnh)

- Tổng số điểm: 1557
- Thời gian tạo hình:0.11 giây

III. Ví dụ (Đa giác trực giao với 10000 đỉnh)

- Tổng số điểm:
 15775
- Thời gian tạo hình:1.36 qiây

III. Ví dụ (Đa giác trực giao với 100000 đỉnh)

- Tổng số điểm:
 157.371
- Thời gian tạo hình:11.53 giây

III. Ví dụ (Đa giác trực giao với 1000000 đỉnh)

- Tổng số điểm:
 1.570.385
- Thời gian tạo hình: 797.57

