Topologie - Opdracht 5

Luc Veldhuis - 2538227

Maart 2017

- Q1) Vind een open over dekking voor $\mathbb{Q} \cap [0,1] \subset (\mathbb{R}, \mathcal{T}_{st})$, die geen eindige deeloverdekking bevat. $C = \left\{ \left(-\frac{1}{n}, \frac{1}{\sqrt{2}} - \frac{1}{n} \right) \cup \left(\frac{1}{\sqrt{2}} + \frac{1}{n}, 1 + \frac{1}{n} \right) \right\}_{n=4}^{\infty} = \left(-\frac{1}{4}, 1\frac{1}{4} \right) \setminus \left\{ \frac{1}{\sqrt{2}} \right\} \subset \mathbb{Q} \cap [0, 1].$ Maar als C eindig is voor een N, dan geldt dat het interval $D = \left[\frac{1}{\sqrt{2}} - \frac{1}{N}, \frac{1}{\sqrt{2}} + \frac{1}{N} \right]$ niet in C zit. Maar $D \cap (\mathbb{Q} \cap [0,1]) \neq \emptyset$ want $\frac{1}{\sqrt{2}} - \frac{1}{N}$ en $\frac{1}{\sqrt{2}}$ zijn irrationeel, dus $\exists q \in \mathbb{Q}$ zodat $q \in [\frac{1}{\sqrt{2}} - \frac{1}{N}, \frac{1}{\sqrt{2}}]$. Dus er bestaat geen eindige deeloverdekking.
- Q3) Bepaal de compacte deelversamelingen van $(\mathbb{R}, \mathcal{T}_{fin})$. (\mathcal{T}_{fin}) is de coeindige topologie.) Laat $Z \subseteq \mathbb{R}$. Dan geldt dat Z compact is als voor elke collectie $\{U_a\}_{a\in A}$ van open deelverzamelingen met $Z \subseteq \bigcup_{a \in A} U_a$ een eindig aantal indices bestaan $a_1, \ldots, a_n \in A$ zodat $Z \subseteq$ $U_{a_1} \cup \ldots \cup U_{a_n}$

Laat $\bigcup_{a\in A} U_a$ een open overdekking zijn van Z. Dan geldt dat $Z\setminus U_0$ eindig is, want $\mathbb{R}\setminus U_0$ is eindig. Noem deze eindige punten $\{x_1,\ldots,x_k\}$. Omdat deze punten ook in de overdekking zitten, moeten er open deelverzamelingen zijn die deze punten bevatten. Laat $U_i \in \bigcup_{a \in A} U_a$ de deelverzameling zijn die het punt x_i bevat. Dan zijn er eindig veel open ruimten, U_i voor $1 \le i \le k$ die dit deze punten bevatten.

De verzameling $\bigcup_{0 \le i \le k} U_i$ is dan een eindige deelverzameling voor een willekeurige Z. Elke deelverzameling van $(\mathbb{R}, \mathcal{T}_{fin})$ is dus compact. Dus $\mathcal{P}(\mathbb{R})$ zijn alle compacte deelverzamelingen.

Q4) Gegeven is een compacte ruimte X. Gegeven zijn verder een rij van gesloten deelverzamelingen $\{C_n\}_{n\in\mathbb{N}}$ en een open deelverzameling $U\subseteq X$ zo dat $\bigcap_{n=1}^{\infty}C_n\subset U$. Bewijs dat er een $N\in\mathbb{N}$ bestaat zodat $\bigcap_{n=1}^{N} C_n \subset U$.

X is compact en elke $\{C_n\}_{n\in\mathbb{N}}$ is gesloten. Uit stelling 7.6 volgt nu dat elke $\{C_n\}_{n\in\mathbb{N}}$ ook compact is.

Uit de definitie van gesloten verzamelingen volgt dat de doorsnede van een mogelijk oneindig aantal gesloten delen weer gesloten is.

Dus $\bigcap_{n=1}^{\infty} C_n \subset U$ is gesloten en compact. We weten ook $\bigcap_{n=1}^{\infty} C_n = X \setminus \bigcup_{i=0}^{\infty} U_i$. Dus $\bigcup_{n=1}^{\infty} U_n = X \setminus \bigcap_{n=1}^{\infty} C_n$. Maar ook $\bigcup_{n=1}^{\infty} U_n \supseteq X \setminus U$

We weten dat $X \setminus U$ gesloten is omdat U open is.

Nu is $\bigcup_{n=1}^{\infty} U_n \supseteq X \setminus U$ een open overdekking van $X \setminus U$.

 $X \setminus U \subseteq X$ en gesloten, dus volgens 7.6 is $X \setminus U$ weer compact.

Dat betekent dat voor elke open overdekking er een eindige deelverzameling van bestaat zodat $X \setminus U \subseteq \bigcup_{i \in A} U_i$.

Neem nu $N = \max(A)$. Dit geeft $X \setminus U \subseteq \bigcup_{i \in A} U_i \subseteq \bigcup_{i=1}^N U_i$ Neem hier nu het complement van. Dit geeft $U \supseteq X \setminus \bigcup_{i=1}^N U_i = \bigcap_{i=1}^N (X \setminus U_i) = \bigcap_{n=1}^N C_n$ Dus er bestaat een N zodat $\bigcap_{n=1}^{N} C_n \subseteq U$.