markdown-version

Group 1

2024-04-28

Pima Indians Diabetes Dataset

Dataset: Pima Indians Diabetes Dataset

Variables

- pregnancies (int)
- plasma glucose (int)
- blood pressure (int)
- skin thickness (int)
- BMI (dec)
- diabetes pedigree function (dec)
- age (int)

Outcome

- binary value indicating diabetes diagnosis within a 5-year period.

The diagnostic criteria defined as 2 hour post-load plasma glucose at 200 (mg/dl)

Data Cleaning: Eliminating Null/NA records

knitr::kable(head(pima))

pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age	diabetes
6	148	72	35	NA	33.6	0.627	50	pos
1	85	66	29	NA	26.6	0.351	31	neg
8	183	64	NA	NA	23.3	0.672	32	pos
1	89	66	23	94	28.1	0.167	21	neg
0	137	40	35	168	43.1	2.288	33	pos
5	116	74	NA	NA	25.6	0.201	30	neg

Pima Dataset

```
knitr::kable(head(pima_clean))
```

	pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age	outcome
4	1	89	66	23	94	28.1	0.167	21	0
5	0	137	40	35	168	43.1	2.288	33	1
7	3	78	50	32	88	31.0	0.248	26	1
9	2	197	70	45	543	30.5	0.158	53	1
14	1	189	60	23	846	30.1	0.398	59	1
15	5	166	72	19	175	25.8	0.587	51	1

Cleaned Pima Dataset: Summary

```
knitr::kable(summary(pima_clean))
```

pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age	outcome
Min.:	Min.:	Min.:	Min.:	Min.:	Min.	Min.	Min.	Min.
0.000	56.0	24.00	7.00	14.00	:18.20	:0.0850	:21.00	:0.0000
1st Qu.:	1st Qu.:	1st Qu.:	1st	1st Qu.:	1st	1st	1st	1st
1.000	99.0	62.00	Qu.:21.00	76.75	Qu.:28.40	Qu.:0.2697	Qu.:23.00	Qu.:0.0000
Median:	Median	Median:	Median	Median	Median	Median	Median	Median
2.000	:119.0	70.00	:29.00	:125.50	:33.20	:0.4495	:27.00	:0.0000
Mean:	Mean	Mean:	Mean	Mean	Mean	Mean	Mean	Mean
3.301	:122.6	70.66	:29.15	:156.06	:33.09	:0.5230	:30.86	:0.3316
3rd Qu.:	3rd	3rd Qu.:	3rd	3rd	3rd	3rd	3rd	3rd
5.000	Qu.:143.0	78.00	Qu.:37.00	Qu.:190.00	Qu.:37.10	Qu.:0.6870	Qu.:36.00	Qu.:1.0000
Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
 :17.000	:198.0	:110.00	:63.00	:846.00	:67.10	:2.4200	:81.00	:1.0000

Explantory Variables

```
bycols <- colnames(pima_clean)
melted_continuous <- reshape2::melt(data=pima_clean[c("glucose", "pressure", "triceps", "insulin", "mas

# Plot histograms for continuous variables
ggplot(melted_continuous, aes(x = value, fill = variable, color = variable)) +
    geom_histogram() +
    facet_wrap(~variable, scales = "free")</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Identifying Outliers

```
pima_clean %>%
  select(-c(outcome)) %>%
  reshape2::melt() %>%
  ggplot(aes(y=value)) +
  geom_boxplot() +
  # geom_histogram() +
  facet_wrap(~variable, scales = "free")
```

No id variables; using all as measure variables

Plotted against outcome

Plotted against Blood Glucose

```
pima_clean %>%
  dplyr::select(-c(outcome)) %>%
  reshape2::melt(id.vars = "glucose") %>%
  ggplot(aes(x = value, y = glucose, color = variable)) +
  geom_point() +
  facet_wrap(~variable, scales = "free")
```


Plotting Correlations within the Dataset: Pearson's correlation

```
cormat <- round(cor(pima_clean[,-9]), 2)
knitr::kable(head(cormat))</pre>
```

	pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age
pregnant	1.00	0.20	0.21	0.09	0.08	-0.03	0.01	0.68
glucose	0.20	1.00	0.21	0.20	0.58	0.21	0.14	0.34
pressure	0.21	0.21	1.00	0.23	0.10	0.30	-0.02	0.30
triceps	0.09	0.20	0.23	1.00	0.18	0.66	0.16	0.17
insulin	0.08	0.58	0.10	0.18	1.00	0.23	0.14	0.22
mass	-0.03	0.21	0.30	0.66	0.23	1.00	0.16	0.07

Plotting Correlations within the Dataset: Spearman correlation

```
cormat_sp <- round(cor(pima_clean[,-9], method='spearman'), 2)
knitr::kable(head(cormat_sp))</pre>
```

	pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age
pregnant	1.00	0.19	0.15	0.05	0.12	-0.07	0.01	0.63
glucose	0.19	1.00	0.24	0.22	0.66	0.20	0.09	0.35
pressure	0.15	0.24	1.00	0.25	0.13	0.32	-0.02	0.33
triceps	0.05	0.22	0.25	1.00	0.24	0.67	0.09	0.24
insulin	0.12	0.66	0.13	0.24	1.00	0.30	0.13	0.26
mass	-0.07	0.20	0.32	0.67	0.30	1.00	0.10	0.17

Correlation Heatmaps: Pearsons vs Spearman

```
melted_cormat <- reshape2::melt(cormat)
ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) +
   geom_tile()</pre>
```



```
melted_cormat_sp <- reshape2::melt(cormat_sp)
ggplot(data = melted_cormat_sp, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile()</pre>
```


Regression Analysis: Univariate Logistic Regression

summary(pima_clean)

##	nrognant	alucoso	pressure	tricons
		•	-	-
##	Min. : 0.000	$\mathtt{Min.} : 56.0$	Min. : 24.00	$\mathtt{Min.} : \ 7.00$
##	1st Qu.: 1.000	1st Qu.: 99.0	1st Qu.: 62.00	1st Qu.:21.00
##	Median : 2.000	Median :119.0	Median : 70.00	Median :29.00
##	Mean : 3.301	Mean :122.6	Mean : 70.66	Mean :29.15
##	3rd Qu.: 5.000	3rd Qu.:143.0	3rd Qu.: 78.00	3rd Qu.:37.00
##	Max. :17.000	Max. :198.0	Max. :110.00	Max. :63.00
##	insulin	mass	pedigree	age
##	Min. : 14.00	Min. :18.20	Min. :0.0850	Min. :21.00
##	1st Qu.: 76.75	1st Qu.:28.40	1st Qu.:0.2697	1st Qu.:23.00
##	Median :125.50	Median :33.20	Median :0.4495	Median :27.00
##	Mean :156.06	Mean :33.09	Mean :0.5230	Mean :30.86
##	3rd Qu.:190.00	3rd Qu.:37.10	3rd Qu.:0.6870	3rd Qu.:36.00
##	Max. :846.00	Max. :67.10	Max. :2.4200	Max. :81.00
##	outcome			
##	Min. :0.0000			
##	1st Qu.:0.0000			
##	Median :0.0000			
##	Mean :0.3316			

```
## 3rd Qu.:1.0000
## Max. :1.0000
Indicators <- pima_clean[, c("pregnant", "glucose", "pressure", "triceps", "insulin", "mass", "pedigree</pre>
models <- list()</pre>
model summaries <- list()</pre>
# Iterate over the columns of 'Indicators' dataframe
for (col in colnames(Indicators)) {
  # Fit a logistic regression model for each predictor variable
 form = as.formula(paste("outcome ~", col))
 models[[col]] <- glm(formula=form, family = binomial(link = "logit"), data=pima_clean)</pre>
  # Storing summary of each model in the list
 model_summaries[[col]] <- summary(models[[col]])</pre>
for (col in names(model_summaries)) {
  print(paste("Summary for", col, "predictor:"))
 print(model_summaries[[col]])
## [1] "Summary for pregnant predictor:"
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                           0.16671 -7.707 1.29e-14 ***
## (Intercept) -1.28480
## pregnant
               0.16674
                           0.03443
                                     4.843 1.28e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 473.03 on 390 degrees of freedom
## AIC: 477.03
##
## Number of Fisher Scoring iterations: 4
## [1] "Summary for glucose predictor:"
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                           0.629787 -9.679 <2e-16 ***
## (Intercept) -6.095521
                                    8.911 <2e-16 ***
## glucose
               0.042421
                           0.004761
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
      Null deviance: 498.10 on 391 degrees of freedom
##
## Residual deviance: 386.67 on 390 degrees of freedom
## AIC: 390.67
## Number of Fisher Scoring iterations: 4
## [1] "Summary for pressure predictor:"
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.168012
                          0.676646 -4.682 2.84e-06 ***
## pressure
               0.034492
                          0.009233
                                    3.736 0.000187 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 483.16 on 390 degrees of freedom
## AIC: 487.16
##
## Number of Fisher Scoring iterations: 4
## [1] "Summary for triceps predictor:"
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.32588
                          0.35765 -6.503 7.86e-11 ***
                          0.01101 4.910 9.09e-07 ***
## triceps
               0.05404
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 471.96 on 390 degrees of freedom
## AIC: 475.96
## Number of Fisher Scoring iterations: 4
## [1] "Summary for insulin predictor:"
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
```

```
## (Intercept) -1.612947
                          0.203687 -7.919 2.40e-15 ***
## insulin
              0.005653
                          0.001058
                                   5.345 9.04e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 462.92 on 390 degrees of freedom
## AIC: 466.92
## Number of Fisher Scoring iterations: 4
## [1] "Summary for mass predictor:"
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                          0.59173 -6.094 1.10e-09 ***
## (Intercept) -3.60614
              0.08633
                          0.01705 5.062 4.14e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 469.03 on 390 degrees of freedom
## AIC: 473.03
## Number of Fisher Scoring iterations: 4
## [1] "Summary for pedigree predictor:"
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3912
                           0.2104 -6.613 3.76e-11 ***
## pedigree
                1.2809
                           0.3289
                                  3.895 9.82e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
##
## Residual deviance: 481.37 on 390 degrees of freedom
## AIC: 485.37
## Number of Fisher Scoring iterations: 4
##
## [1] "Summary for age predictor:"
```

```
##
## Call:
## glm(formula = form, family = binomial(link = "logit"), data = pima_clean)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.05823
                          0.38793 -7.884 3.18e-15 ***
                          0.01165 6.405 1.50e-10 ***
               0.07461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
##
## Residual deviance: 450.67 on 390 degrees of freedom
## AIC: 454.67
##
## Number of Fisher Scoring iterations: 4
```

Regression Analysis: Multivariate Logistic Regression

```
all_vars <- glm(outcome ~ ., family = binomial(link = "logit"), data=pima_clean)
summary(all_vars) #slightly smaller .. so not contributing more than our 3 strongest values 361
##
## Call:
## glm(formula = outcome ~ ., family = binomial(link = "logit"),
      data = pima_clean)
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.004e+01 1.218e+00 -8.246 < 2e-16 ***
## pregnant
              8.216e-02 5.543e-02
                                     1.482 0.13825
## glucose
               3.827e-02 5.768e-03
                                     6.635 3.24e-11 ***
## pressure
              -1.420e-03 1.183e-02 -0.120 0.90446
              1.122e-02 1.708e-02
## triceps
                                    0.657 0.51128
## insulin
              -8.253e-04 1.306e-03 -0.632 0.52757
               7.054e-02 2.734e-02 2.580 0.00989 **
## mass
## pedigree
               1.141e+00 4.274e-01
                                     2.669 0.00760 **
## age
               3.395e-02 1.838e-02 1.847 0.06474 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 344.02 on 383 degrees of freedom
## AIC: 362.02
## Number of Fisher Scoring iterations: 5
```

```
strong_vars <- glm(outcome ~ glucose + age + mass + pedigree, family = binomial(link = "logit"), data=p
summary(strong_vars)
##
## Call:
## glm(formula = outcome ~ glucose + age + mass + pedigree, family = binomial(link = "logit"),
      data = pima_clean)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.092018
                          1.080251 -9.342 < 2e-16 ***
                0.036189
                           0.004982
                                      7.264 3.76e-13 ***
## glucose
                0.053012 0.013439
                                      3.945 8.00e-05 ***
## age
## mass
                0.074449
                           0.020267
                                      3.673 0.000239 ***
                                      2.592 0.009541 **
## pedigree
                1.087129
                           0.419408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 498.10 on 391 degrees of freedom
## Residual deviance: 347.23 on 387 degrees of freedom
## AIC: 357.23
##
## Number of Fisher Scoring iterations: 5
```

Comparing Model Outcome: AIC - Akaike's Information Criterion

For logistic regression, we use AIC to compare model fit, similar to adjusted R^2 where we see a penalty for additional parameters which don't contribute to the model. A lower AIC indicates a more parsimonious model.

```
k = number of parameters LL = log-likelihood AIC = 2 * (k - LL)
```

Model Comparison using AIC: Which model performs best?

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Tue, Apr 30, 2024 - 21:35:27

Best fit model analysis: Log-odds Ratios

```
## Waiting for profiling to be done...
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Tue, Apr 30, 2024 - 21:35:27

In the context of our analysis, we apply to the Bonferroni correction, adjusting the significance threshold by dividing it by the number of comparisons being made.

Even with this new threshold, the p-values for all four variables remain significant.

Table 6:

					Depend	ent variable:				
	outcome							G.		
	pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age	All vars	Strong var
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
pregnant	0.167*** (0.034)								0.082 (0.055)	
glucose		0.042*** (0.005)							0.038*** (0.006)	0.036*** (0.005)
pressure			0.034*** (0.009)						-0.001 (0.012)	
triceps				0.054*** (0.011)					0.011 (0.017)	
insulin					0.006*** (0.001)				$^{-0.001}_{(0.001)}$	
mass						0.086*** (0.017)			0.071*** (0.027)	0.074*** (0.020)
pedigree							1.281*** (0.329)		1.141*** (0.427)	1.087*** (0.419)
age								0.075*** (0.012)	0.034* (0.018)	0.053*** (0.013)
Constant	$^{-1.285^{***}}_{(0.167)}$	-6.096*** (0.630)	-3.168*** (0.677)	-2.326*** (0.358)	$^{-1.613^{***}}_{(0.204)}$	-3.606*** (0.592)	-1.391*** (0.210)	-3.058*** (0.388)	-10.041*** (1.218)	-10.092*** (1.080)
Observations Log Likelihood Akaike Inf. Crit.	392 -236.517 477.035	392 -193.333 390.666	392 -241.579 487.159	392 -235.978 475.956	392 -231.459 466.917	392 -234.516 473.031	392 -240.686 485.372	392 -225.334 454.668	392 -172.011 362.021	392 -173.617 357.235

Table 7:

	Table 1.
	Dependent variable:
	outcome Strong vars
glucose	1.037 (1.027, 1.047) t = 7.264
age	p = 0.000 $1.054 (1.028, 1.083)$ $t = 3.945$
mass	p = 0.0001 1.077 (1.036, 1.122) $t = 3.673$
pedigree	p = 0.0003 $2.966 (1.327, 6.871)$ $t = 2.592$
Constant	$\begin{array}{c} p = 0.010 \\ 0.00004 \; (0.00000, 0.0003) \\ t = -9.342 \\ p = 0.000 \end{array}$
Observations Log Likelihood Akaike Inf. Crit.	392 -173.617 357.235
Note:	*p<0.1; **p<0.05; ***p<0.01

14

Conclusions

The model with lowest AIC contained the four strongest performing parameters

- Blood Glucose
- Mass
- Age
- Pedigree

Limitations

- $\bullet\,$ The study findings might not be generalisable to a larger population.
- Null/Missing data limited the amount of viable observations.

References