In this article, we will train a model using the linear regression algorithm to predict house prices, after exploring the dataset, performing exploratory data analysis (EDA) and normalizing the features

1. Import Necessary Libraries

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

2. Initialize the Linear Regression Model

Initialize the Linear Regression model

regression = LinearRegression()

3. Fit the Model to the Training Data

Fit the model to the scaled training data

regression.fit(X_train_norm, y_train)

In a linear regression model, the equation for the predicted output (ypred) given the input features (x) is:

ypred=mx+c

Here:

- m is the slope or coefficient of the regression line
- c is the y-intercept

When you fit a linear regression model using the LinearRegression class in scikit-learn, the *coef_* attribute gives you the m values (slopes), and the *intercept_* attribute gives you the c value (intercept).

Here's how you can access these values after fitting the model:

Retrieve the slope (m) values

slope_values = regression.coef_

Retrieve the y-intercept (c) value

intercept_value = regression.intercept_

Here, in this model we'll get 8 slope values and *slope_values* will contain an array of slopes corresponding to each feature in your dataset, and *intercept_value* will be a single value representing the y-intercept.