ECE2 – Mathématiques

DS₂

Exercice 1 (EML 2018, 44pts)

- 1. (a) Pour tout $i \in \mathbb{N}^*$, on note P_i l'événement « le i-ème lancer donne Pile » et F_i l'événement « le i-ème lancer donne Face ».
 - L'événement [X = 0] est égal à l'événement $P_1 \cap P_2$. Donc

$$P([X = 0]) = P(P_1 \cap P_2) = P(P_1)P_{P_1}(P_2) = \frac{4}{9}.$$

• L'événement [X = 1] est égal à l'événement $(F_1 \cap P_2 \cap P_3) \cup (P_1 \cap F_2 \cap P_3)$. Donc

$$\begin{split} P\left([X=1]\right) &= P\left((F_1 \cap P_2 \cap P_3) \cup (P_1 \cap F_2 \cap P_3)\right) \\ &= P\left(F_1 \cap P_2 \cap P_3\right) + P\left(P_1 \cap F_2 \cap P_3\right) \quad \text{car } F_1 \cap P_2 \cap P_3 \text{ et } P_1 \cap F_2 \cap P_3 \text{ sont incompatibles} \\ &= P(F_1)P_{F_1}(P_2)P_{F_1 \cap P_2}(P_3) + P(P_1)P_{P_1}(F_2)P_{P_1 \cap F_2}(P_3) \text{ d'après la formule des probabilités composées} \\ &= \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3} \\ &= \frac{8}{27}. \end{split}$$

• L'événement [X=2] est égal à l'événement $(F_1 \cap F_2 \cap P_3 \cap P_4) \cup (F_1 \cap P_2 \cap F_3 \cap P_4) \cup (P_1 \cap F_2 \cap F_3 \cap P_4)$. Donc

$$\begin{split} P\left([X=2]\right) &= P\left((F_1 \cap F_2 \cap P_3 \cap P_4) \cup (F_1 \cap P_2 \cap F_3 \cap P_4) \cup (P_1 \cap F_2 \cap F_3 \cap P_4)\right) \\ &= P\left(F_1 \cap F_2 \cap P_3 \cap P_4\right) + P\left(F_1 \cap P_2 \cap F_3 \cap P_4\right) + P\left(P_1 \cap F_2 \cap F_3 \cap P_4\right) \text{ (événements incompatibles)} \\ &= P(F_1)P_{F_1}(F_2)P_{F_1 \cap F_2}(P_3)P_{F_1 \cap F_2 \cap P_3}(P_4) + P(F_1)P_{F_1}(P_2)P_{F_1 \cap P_2}(F_3)P_{F_1 \cap P_2 \cap F_3}(P_4) \\ &+ P(P_1)P_{P_1}(F_2)P_{P_1 \cap F_2}(F_3)P_{P_1 \cap F_2 \cap F_3}(P_4) \text{ d'après la formule des probabilités composées} \\ &= \frac{4}{27}. \end{split}$$

3,5 pts : 0,5 pt pour [X=0], 1,5 pts pour les autres (pour avoir tous points chaque étape du calcul devait être justifiée)

(b) Soit $n \in \mathbb{N}^*$. L'événement [X = n] signifie qu'il y a eu n + 2 tirages (n Faces et 2 Piles), que le dernier tirage est une Pile et que le premier Pile a été obtenu lors d'un des n + 1 tirages. Ainsi :

$$[X = n] = \bigcup_{i=i}^{n+1} \left(P_{n+2} \cap P_i \cap \left(\bigcap_{j=1, j \neq i}^{n+1} F_j \right) \right).$$

Comme les événements $\left(P_{n+2} \cap P_i \cap \left(\bigcap_{j=1, j \neq i}^{n+1} F_j\right)\right)$ pour $i=1,\ldots,n+1$ sont deux à deux incompatibles, on obtient :

$$P([X = n]) = P\left(\bigcup_{i=1}^{n+1} \left(P_{n+2} \cap P_i \cap \left(\bigcap_{j=1, j \neq i}^{n+1} F_j\right)\right)\right)$$

$$= \sum_{i=1}^{n+1} P\left(P_{n+2} \cap P_i \cap \left(\bigcap_{j=1, j \neq i}^{n+1} F_j\right)\right)$$

$$= \sum_{i=1}^{n+1} \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^n \quad \text{d'après la formule des probabilités composées}$$

$$= (n+1) \frac{4}{2^{n+2}}$$

3pts : 1pt pour décrire l'événement [X = n], 2 pts pour le calcul avec les justifications.

2. (a) On a $U(\Omega) \subset \mathbb{N}$. De plus, pour tout $n \in \mathbb{N}$, on a

$$P(U = n) \ge P(X = n, U = n) = P_{[X = n]}(U = n)P(X = n) = \frac{1}{n+1}P(X = n) > 0.$$

Donc $U(\Omega) = \mathbb{N}$.

1pt

(b) Soit $n \in \mathbb{N}^*$. Sachant [X = n], l'urne contient n + 1 boules numérotées de 0 à n indiscernables. Donc la loi de U sachant [X = n] est une loi uniforme sur [0, n]. Ainsi

$$\forall k \in \mathbb{N}, \quad P_{[X=n]}(U=k) = \begin{cases} \frac{1}{n+1} & \text{si } k \in [0, n] \\ 0 & \text{sinon} \end{cases}$$

2pts

(c) Soit $k \in \mathbb{N}$. D'après la formule des probabilités totales appliquée avec le système complet d'événements $([X = n])_{n \in \mathbb{N}}$, on a

$$P(U = k) = \sum_{n=0}^{+\infty} P(X = n) P_{[X=n]}(U = k)$$
$$= \sum_{n=k}^{+\infty} P(X = n) \frac{1}{n+1}$$

car, d'après la question précédente, pour tout n < k, $P_{[X=n]}(U=k) = 0$. Compte tenu de la question 1)b), on trouve :

$$\begin{split} \mathrm{P}(\mathrm{U} = k) &= \sum_{n=k}^{+\infty} \mathrm{P}(\mathrm{X} = n) \frac{1}{n+1} = \sum_{n=k}^{+\infty} \frac{1}{n+1} \times \frac{4(n+1)}{3^{n+2}} \\ &= \frac{4}{9} \sum_{n=k}^{+\infty} \frac{1}{3^n} \\ &= \frac{4}{9} \left(\sum_{n=0}^{+\infty} \frac{1}{3^n} - \sum_{n=0}^{k-1} \frac{1}{3^n} \right) \\ &= \frac{4}{9} \left(\frac{1}{1 - \frac{1}{3}} - \frac{1 - \left(\frac{1}{3}\right)^k}{1 - \frac{1}{3}} \right) \\ &= \frac{2}{3} \frac{1}{3^k} \end{split}$$

3pts : 1pt pour la formule des probabilités totales utilisée correctement, 1 pt pour la justifier que la somme comme à l'indice k, 1pt pour le calcul.

(d) U admet une espérance si et seulement si la série $\sum_{k \geqslant 0} k P(U = k)$ converge absolument. Comme cette série est à termes positifs, elle est absolument convergente si et seulement si elle est convergente. Montrons qu'elle est convergente. On a

$$\sum_{k \ge 0} k \mathsf{P}(\mathsf{U} = k) = \sum_{k \ge 0} k \frac{2}{3^{k+1}} = \frac{2}{9} \sum_{k \ge 0} k \left(\frac{1}{3}\right)^{k-1}$$

et on reconnaît dans le membre de droite une série géométrique dérivée première de raison $\frac{1}{3}$ (donc convergente). Par conséquent, la série à termes positifs $\sum_{k\geqslant 0} k P(U=k)$ converge. On peut donc conclure que U possède une espérance et :

$$E(U) = \sum_{k=0}^{+\infty} k P(U = k) = \frac{2}{9} \sum_{k=0}^{+\infty} k \left(\frac{1}{3}\right)^{k-1} = \frac{2}{9} \frac{1}{\left(1 - \frac{1}{3}\right)^2} = \frac{1}{2}.$$

Pour montrer que U possède une variance, il suffit de montrer que U possède un moment d'ordre 2 c'est-à-dire que $\sum_{k\geqslant 0} k^2 P(U=k)$ converge absolument. Cette série est à termes positifs donc il suffit de montrer qu'elle est convergente. Or

$$\begin{split} \forall k \in \mathbb{N}, \quad k^2 \mathrm{P}(\mathrm{U} = k) &= k^2 \frac{2}{3^{k+1}} = (k(k-1) + k) \frac{2}{3^{k+1}} \\ &= \frac{2}{3^3} k(k-1) \left(\frac{1}{3}\right)^{k-2} + \frac{2}{3^2} k \left(\frac{1}{3}\right)^{k-1}. \end{split}$$

Ainsi, la série $\sum_{k\geqslant 0} k^2 P(U=k)$ est combinaison linéaire d'une série géométrique dérivée seconde et première de raison $\frac{1}{3}$ toutes deux convergentes (car $0\leqslant \frac{1}{3}<1$). Ainsi la série converge et :

$$E(U^{2}) = \sum_{k=0}^{+\infty} k^{2} P(U = k) = \frac{2}{3^{3}} \times \frac{2}{\left(1 - \frac{1}{2}\right)^{2}} + \frac{2}{3^{2}} \times \frac{1}{\left(1 - \frac{1}{3}\right)} = 1.$$

Finalement, d'après la formule de Koenig-Huygens on trouve

$$V(U) = E(U^2) - E(U)^2 = 1 - \frac{1}{4} = \frac{3}{4}.$$

Remarque: on pouvait aussi remarquer que U + 1 suit une loi géométrique de paramètre $\frac{2}{3}$.

6pts : 1pt pour rappeler ce que signifie avoir une espérance et 1,5pt pour justifier la convergence et trouver la somme. Pour la variance : 1 pt pour la formule de Koenig-Huygens (donc dire qu'il faut un moement d'ordre 2), 2 pts pour la convergence et la somme de la série $\sum_{k\geqslant 0} k^2 P(U=k)$ et 0,5 pt pour le résultat final.

3. (a) On a toujours $0 \le U \le X$ donc $V(\Omega) \subset \mathbb{N}$. De plus, pour tout $n \in \mathbb{N}$ on a

$$P(V = n) \ge P(X = 2n, U = n) = P_{[X=2n]}(U = n)P(X = 2n) > 0.$$

Donc $V(\Omega) = \mathbb{N}$.

1pt : il fallait mentionner que $U \leq X$

(b) Soit $n \in \mathbb{N}$ et soit $k \in \mathbb{N}$. Alors

$$\begin{split} \mathbf{P}_{[\mathbf{X}=n]}(\mathbf{V}=k) &= \mathbf{P}_{[\mathbf{X}=n]}(\mathbf{X}-\mathbf{U}=k) = \mathbf{P}_{[\mathbf{X}=n]}(n-\mathbf{U}=k) = \mathbf{P}_{[\mathbf{X}=n]}(\mathbf{U}=n-k) \\ &= \left\{ \begin{array}{l} \frac{1}{n+1} & \text{si } n-k \in \llbracket 0, n \rrbracket \\ 0 & \text{sinon} \end{array} \right. \\ &= \left\{ \begin{array}{l} \frac{1}{n+1} & \text{si } k \in \llbracket 0, n \rrbracket \\ 0 & \text{sinon} \end{array} \right. \end{split}$$

Ainsi, sachant [X = n], V suit une loi uniforme sur [0, n].

2pts : 1pt pour le lien entre $P_{[X=n]}(V=k)$ et $P_{[X=n]}(U=n-k)$ et 1pt pour le résultat.

(c) Le même calcul qu'en 2.c) donne :

$$\forall k \in \mathbb{N}, \quad P(V = k) = \frac{2}{3^{k+1}}.$$

1pt

4. Soit $(n, k) \in (\mathbb{N})^2$. Alors

$$\begin{split} \mathrm{P}(\mathrm{U} = n, \mathrm{V} = k) &= \mathrm{P}(\mathrm{U} = n, \mathrm{X} - \mathrm{U} = k) = \mathrm{P}(\mathrm{U} = n, \mathrm{X} = n + k) \\ &= \mathrm{P}_{[\mathrm{X} = n + k]}(\mathrm{U} = n) \mathrm{P}(\mathrm{X} = n + k) \\ &= \frac{1}{n + k + 1} \times \frac{4(n + k + 1)}{3^{n + k + 2}} \\ &= \frac{4}{3^{n + k + 2}}. \end{split}$$

D'autre part, d'après 2.c et 3.c :

$$P(U = n)P(V = k) = \frac{2}{3^{n+1}} \times \frac{2}{3^{k+1}} = \frac{4}{3^{n+k+2}}.$$

Ainsi, pour tout $(n, k) \in U(\Omega) \times V(\Omega)$ on a

$$P(U = n, V = k) = P(U = n)P(V = k).$$

Les variables aléatoires U et V sont donc indépendantes.

2,5pts: 1pt pour P(U = n, V = k), 1pt pour P(U = n)P(V = k) et 0,5pt pour la conclusion

5. D'après la question précédente, Cov(U,V) = 0 car la covariance de deux variables aléatoires discrètes indépendantes est toujours nulle. Par linéarité à gauche puis par symétrie de la covariance, on a

$$Cov(X, U) = Cov(U + V, U) = Cov(U, U) + Cov(V, U) = V(U) + Cov(U, V) = V(U) = \frac{3}{4}$$
.

2pts: 1pt pour Cov(U, V), 1 pour le calcul de Cov(X, U) avec justifications.

4pts: 1pt pour la structure de fonction, 1 pt pour la boucle while, 1pt pour la structure conditionnelle, 1p pour le reste (iniatiliastion des variables etc)

- (b) La fonction mystere renvoie la fréquence de victoire du joueur A lors de 10 000 parties. **1pt**
- (c) En ordonnée, on lit la probabilité que A gagne : elle est d'environ $\frac{1}{2}$ lorsque que p vaut environ 0,8. **1pt.**
- 7. (a) Z est le rang du premier Pile et suit donc une loi géométrique de paramètre p. Ainsi

$$E(Z) = \frac{1}{p}$$
 et $V(Z) = \frac{1-p}{p^2}$.

2 pts: 1pt pour la loi; 0,5pt pour l'espérance et 0,5 pt pour la variance

(b) On a Y + 1 = Z donc Y possède une espérance et une variance :

$$\mathrm{E}(\mathrm{Y}) = \mathrm{E}(\mathrm{Z} - 1) = \mathrm{E}(\mathrm{Z}) - 1 = \frac{1 - p}{p} \quad \text{et} \quad \mathrm{V}(\mathrm{Y}) = \mathrm{V}(\mathrm{Z} - 1) = \mathrm{V}(\mathrm{Z}) = \frac{1 - p}{p^2}.$$

2 pts : 1pt pour Y + 1 = Z; **0,5pt pour l'espérance et 0,5 pt pour la variance**

(c) Soit $n \in \mathbb{N}$.

$$\begin{split} \mathsf{P}(\mathsf{Y} \geqslant n) &= \mathsf{P}(\mathsf{Z} - 1 \geqslant n) = \mathsf{P}(\mathsf{Z} \geqslant n + 1) = 1 - \mathsf{P}(\mathsf{Z} < n + 1) \\ &= 1 - \mathsf{P}\left(\bigcup_{i=1}^{n} [\mathsf{Z} = i]\right) \\ &= 1 - \sum_{i=1}^{n} \mathsf{P}(\mathsf{Z} = i) \\ &= 1 - \sum_{i=1}^{n} p(1 - p)^{i - 1} \\ &= 1 - p\frac{1 - (1 - p)^n}{1 - (1 - p)} \\ &= (1 - p)^n \end{split}$$

2 pts: 1pt pour se ramener à un calcul de somme et 1pt pour le résultat.

8. (a) D'après la formule des probabilités totales, appliquée avec le système complet d'événements $([X = n])_{n \in \mathbb{N}}$, on a

$$P(X \le Y) = \sum_{n=0}^{+\infty} P(X = n, X \le Y) = \sum_{n=0}^{+\infty} P(X = n, n \le Y)$$
$$= \sum_{n=0}^{+\infty} P(X = n) P(n \le Y) \quad \text{car les joueurs sont indépendants}$$

1 pt (il fallait faire appel explicitement à la formule des probabilités totales)

(b) D'après les questions précédentes, on trouve

$$\begin{split} \mathbf{P}(\mathbf{X} \leqslant \mathbf{Y}) &= \sum_{n=0}^{+\infty} \mathbf{P}(\mathbf{X} = n) \mathbf{P}(n \leqslant \mathbf{Y}) \\ &= \sum_{n=0}^{+\infty} (n+1) \times \frac{4}{3^{n+2}} \times (1-p)^n \\ &= \frac{4}{9} \sum_{n=0}^{+\infty} (n+1) \times \left(\frac{1-p}{3}\right)^n \\ &= \frac{4}{9} \left(\sum_{n=0}^{+\infty} n \times \left(\frac{1-p}{3}\right)^n + \sum_{n=0}^{+\infty} \times \left(\frac{1-p}{3}\right)^n\right) \\ &= \frac{4}{9} \left(\frac{1-p}{3} \sum_{n=0}^{+\infty} n \times \left(\frac{1-p}{3}\right)^{n-1} + \frac{1}{1-\frac{1-p}{3}}\right) \\ &= \frac{4}{9} \left(\frac{1-p}{3} \times \frac{1}{\left(1-\frac{1-p}{3}\right)^2} + \frac{1}{1-\frac{1-p}{3}}\right) \\ &= \frac{4}{9} \left(\frac{1-p}{3} \times \frac{9}{\left(2+p\right)^2} + \frac{3}{2+p}\right) \\ &= \frac{4}{(2+p)^2} \end{split}$$

2 pts

(c) Le jeu est équilibré lorsque la probabilité que A gagne vaut $\frac{1}{2}$. Or, la probabilité que A gagne est $P(X \le Y)$. Ainsi, le jeu est équilibré si et seulement si $\frac{4}{(2+p)^2} = \frac{1}{2}$. Or,

$$\frac{4}{(2+p)^2} = \frac{1}{2} \iff 8 = (2+p)^2 \iff p^2 + 4p - 4 = 0 \iff p = -2 + 2\sqrt{2} \text{ ou } p = -2 - 2\sqrt{2}.$$

Comme p > 0, le jeu est équilibré si et seulement si $p = -2 + 2\sqrt{2}$ (on remarque que $-2 + 2\sqrt{2}$ vaut environ 0,8 donc cohérent avec la question précédente).

2 pts: 1pt pour la mise en équation et 1pt pour la résolution

Exercice 2 (d'après ecricome 2019, 32pts+2pts bonus)

Partie A

1. (a) Soient $((x, y, z), (x', y', z')) \in (\mathbb{R}^3)^2$ et $\lambda \in \mathbb{R}$. Alors

$$\begin{split} f((x,y,z) + \lambda(x',y',z')) &= f((x+\lambda x',y+\lambda y',z+\lambda z')) \\ &= \left(\frac{-(x+\lambda x') + 2(y+\lambda y') + z + \lambda z'}{3}, \frac{-(x+\lambda x') - (y+\lambda y') - 2(z+\lambda z')}{3}, \frac{x+\lambda x' + y + \lambda y' + 2(z+\lambda z')}{3}\right) \\ &= \left(\frac{-x + 2y + z}{3}, \frac{-x - y - 2z}{3}, \frac{x + y + 2z}{3}\right) + \lambda\left(\frac{-x' + 2y' + z'}{3}, \frac{-x' - y' - 2z'}{3}, \frac{x' + y' + 2z'}{3}\right) \\ &= f((x,y,z)) + \lambda f((x',y',z')) \end{split}$$

Ainsi, pour tout $((x, y, z), (x', y', z')) \in (\mathbb{R}^3)^2$ et tout $\lambda \in \mathbb{R}$:

$$f((x, y, z) + \lambda(x', y', z')) = f((x, y, z)) + \lambda f((x', y', z')).$$

Ainsi f est linéaire.

3pts: 1pt pour la caractérisation de la linéarité, 2 pts pour le caclul

(b) Soit $(x, y, z) \in \mathbb{R}^3$. Alors

$$(x, y, z) \in \ker(f) \iff f((x, y, z)) = (0, 0, 0)$$

$$\iff \begin{cases}
-x + 2y + z = 0 \\
-x - y - 2z = 0
\end{cases}$$

$$\iff \begin{cases}
-x + 2y + z = 0 \\
-x - y - 2z = 0
\end{cases}$$

$$\iff \begin{cases}
-x + 2y + z = 0 \\
-x - y - 2z = 0
\end{cases}$$

$$\iff \begin{cases}
-x + 2y + z = 0 \\
-x - 3y - 3z = 0
\end{cases}$$

$$L_2 \leftarrow L_2 - L_1$$

$$\iff \begin{cases}
x = -z \\
y = -z
\end{cases}$$

Ainsi,

$$\ker(f) = \{(-z, -z, z), z \in \mathbb{R}\} = \text{Vect}((-1, -1, 1)).$$

Le vecteur (-1,-1,1) est un vecteur générateur de $\ker(f)$ non nul donc c'est une base de $\ker(f)$. En particulier, $\dim(\ker(f)) = 1$ et f n'est pas injective.

4pts : 1pt pour la première équivalence, 1 pt pour la résolution du système, 1 pt pour la base et la dim, 1 pt l'injectivité.

(c) D'après le théorème du rang, on a

$$\dim(E) = \dim(\ker(f)) + \operatorname{rg}(f), \quad ie \quad 3 = 1 + \operatorname{rg}(f).$$

Ainsi f est de rang 2. Comme dim(\mathbb{R}^3) = 3, on a donc (Im)(f) $\neq \mathbb{R}^3$ donc f n'est pas surjective.

2 pts: 1 pt pour le théorème du rang, 1 pt pour le rang et la non surjectivité

(d) Soit $(x, y, z) \in \mathbb{R}^3$.

$$f^{2}((x,y,z)) = \frac{1}{3}f((-x+2y+z,-x-y-2z,x+y+2z))$$

$$= \frac{1}{3}((-x+y+z)f((1,0,0)) + (-x-y-2z)f((0,1,0)) + (x+y+2z)f((0,0,1))) \quad \text{par linéarité}$$

$$= \frac{1}{3}((-x+y+z)(-\frac{1}{3},-\frac{1}{3},\frac{1}{3}) + (-x-y-2z)(\frac{2}{3},-\frac{1}{3},\frac{1}{3}) + (x+y+2z)(\frac{1}{3},-\frac{2}{3},\frac{2}{3}))$$

$$= \frac{1}{9}((-x+y+z)(-1,-1,1) + (-x-y-2z)(2,-1,1) + (x+y+2z)(1,-2,2))$$

$$= \frac{1}{9}((x-y-z,x-y-z,-x+y+z) + (-2x-2y-5z,x+y+2z,-x-y-2z)$$

$$+ (x+y+2z,-2x-2y-4z,2x+2y+4z))$$

$$= \frac{1}{9}(-3y-3z,-3y-3z,3y+3z)$$

$$= \frac{1}{9}(-y-z,-y-z,y+z)$$

et, en remarquant que $\frac{1}{3}(-y-z,-y-z,y+z)=\frac{x+y}{3}(-1,-1,1)\in\ker(f)$, on trouve

$$f^3((x,y,z)) = f(f^2((x,y,z))) = f\left(\frac{x+y}{3}(-1,-1,1)\right) = \frac{x+y}{3}f((-1,-1,1)) = (0,0,0).$$

Ainsi

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f^2((x, y, z)) = \left(\frac{-y - z}{3}, \frac{-y - z}{3}, \frac{y + z}{3}\right) \quad \text{et} \quad f^3((x, y, z)) = (0, 0, 0).$$

4pts : 2pts pour le calcul de f^2 et 2pts pour le calcul de f^3

2. Soit g un tel endomorphisme de E. On remarque que

$$g(e_1) = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}\right) = f(e_1) \; ; \; g(e_2) = \left(\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}\right) = f(e_2) \; ; \; g(e_3) = \left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right) = f(e_3).$$

Ainsi, f et g sont deux endomorphismes de \mathbb{R}^3 qui coïncident sur la base (e_1, e_2, e_3) de \mathbb{R}^3 . Donc f = g. **2pts**

3. (a) Montrons que \mathscr{B}' est une famille libre. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. Alors

$$\begin{split} \lambda_1 e_1' + \lambda_2 e_2' + \lambda_3 e_3' &= (0,0,0) \Longleftrightarrow \begin{cases} -\lambda_1 & + & 2\lambda_2 & - & \lambda_3 & = & 0 \\ -\lambda_1 & - & \lambda_2 & + & 2\lambda_3 & = & 0 \\ \lambda_1 & + & \lambda_2 & + & \lambda_3 & = & 0 \end{cases} \\ & \iff \begin{cases} 3\lambda_2 & = & 0 \\ 3\lambda_3 & = & 0 \\ \lambda_1 & + & \lambda_2 & + & \lambda_3 & = & 0 \end{cases} \\ & \iff \lambda_1 = \lambda_2 = \lambda_3 = 0 \end{split}$$

Ainsi la famille \mathscr{B}' est une famille libre de \mathbb{R}^3 . Comme son cardinal est égal à la dimension de \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 .

3pts: 2pts pour le système et 1pt pour l'argument de cardinal.

(b) On trouve:

$$f(e_1') = (0,0,0)$$
 ; $f(e_2') = e_1'$; $f(e_3') = e_2'$.

1 pt

(c)

$$\begin{aligned} \operatorname{Mat}_{\mathcal{B}'}(f) &= \operatorname{Mat}_{\mathcal{B}'}(f(e_1'), f(e_2'), f(e_3')) \\ &= \operatorname{Mat}_{\mathcal{B}'}((0, 0, 0), e_1', e_2') \\ &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$

2 pts

Partie B

1. Comme par hypothèse $g \circ g = f$ alors

$$g \circ f = g \circ g \circ g = f \circ g^2 = f \circ g$$
.

1pt

2. (a) Calculons $f(g(e'_1))$:

$$f(g(e'_1)) = (f \circ g)(e'_1) = (g \circ f)(e'_1) = g(f(e'_1)) = g((0,0,0)) = (0,0,0).$$

Donc $g(e_1')$ appartient au noyau de f. Or, d'après la question 1.a de la partie A, on sait que $\ker(f) = \operatorname{Vect}(e_1')$. Ainsi, $g(e_1')$ appartient $\operatorname{Vect}(e_1')$: il existe donc $a \in \mathbb{R}$ tel que $g(e_1') = ae_1'$.

2pts: 1pt pour le calcul et 1pt pour l'existence du a

(b) Calculons $f(g(e_2') - ae_2')$:

$$f(g(e'_2) - ae'_2) = f(g(e'_2)) - af(e'_2)$$
 par linéarité de f
= $g(f(e'_2)) - ae'_1$ car $f \circ g = g \circ f$ et $f(e'_2) = e'_1$
= $g(e'_1) - ae'_1$
= $g(e'_1) = ae'_1$.

Ainsi, $g(e_2') - ae_2'$ appartient à $\ker(f) = \operatorname{Vect}(e_1')$. Donc, il existe $b \in \mathbb{R}$ tel que $g(e_2') - ae_2' = be_1'$, c'est-à-dire

$$g(e_2') = ae_2' + be_1'.$$

3pts: 2pt pour le calcul (avec justification) et 1pt pour l'existence du b

(c) Comme $f \circ g = g \circ f$, on a

$$f \circ g(e_3') = g \circ f(e_3') = g(e_2') = ae_2' + be_1'.$$

Calculons $f(g(e_3') - ae_3' - be_2')$:

$$\begin{split} f(g(e_3') - ae_3' - be_2') &= f(g(e_3')) - af(e_3') - bf(e_2') \quad \text{par lin\'earit\'e de } f \\ &= g(f(e_3')) - ae_2' - be_1' \quad \text{car } f \circ g = g \circ f, \quad f(e_3') = e_2' \quad \text{et } f(e_2') = e_1' \\ &= g(e_2') - ae_2' - be_1' \\ &= 0 \quad \text{car } g(e_2') = ae_2' + be_1'. \end{split}$$

7

Ainsi, $g(e_3') - ae_3' - be_2'$ appartient à $ker(f) = Vect(e_1')$. **1pt**

(d) Donc, il existe $c \in \mathbb{R}$ tel que $g(e_3') - ae_3' - be_2' = ce_1'$, c'est-à-dire

$$g(e_3') = ae_3' + be_2' + ce_1'.$$

1pt

3. Par linéarité de g, on trouve

$$g^{2}(e'_{1}) = g(g(e'_{1})) = g(ae'_{1}) = ag(e'_{1}) = a^{2}e'_{1} \quad ; \quad g^{2}(e'_{2}) = g(be'_{1} + ae'_{2}) = bg(e'_{1}) + ag(e'_{2}) = 2abe'_{1} + a^{2}be'_{2}$$

et

$$g^{2}(e_{3}') = g(ae_{3}' + be_{2}' + ce_{1}') = ag(e_{3}') + bg(e_{2}') + cg(e_{1}') = (b^{2} + 2ac)e_{1}' + 2abe_{2}' + a^{2}e_{3}'.$$

Comme on a supposé que $g \circ g = f$ (c'est-à-dire $g^2 = f$), on a donc

$$a^2e_1' = g^2(e_1') = f(e_1') = (0,0,0)$$
; $2abe_1' + a^2be_2' = g^2(e_2') = f(e_2') = e_1'$

donc, puisque (e'_1, e'_2, e'_3) est libre, on en déduit que

$$a = 0$$
 puis $e'_1 = 2abe'_1 + a^2be'_2 = (0,0,0).$

Ceci est une contradiction. Ainsi, il n'existe pas d'endomorphisme g de E vérifiant $g \circ g = f$.

5pts: 3pts pour les images par g^2 , 2pts pour la conclusion

Exercice 3 (ecricome 2015, 47pts)

I - Une loi exponentielle et une suite (26,5pts)

1. (a) Voir cours de première année.

2pts: 1pt pour la densité et 1pt pour espérance et variance

(b) Soit *f* la densité définie à la question précédente. Alors, pour tout réel *x* on a :

$$F(x) = P([X \le x]) = \int_{-\infty}^{x} f(t)dt = \begin{cases} \int_{-\infty}^{x} 0dt & \text{si } x < 0, \\ \int_{0}^{x} e^{-t}dt & \text{si } x \ge 0. \end{cases}$$
 car $\forall t < 0, f(t) = 0$

$$= \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-x} & \text{si } x \ge 0. \end{cases}$$

2,5 pts : 1pt pour faire apparaître la définition de F, 0.5pt pour F(x), x < 0 et 1pt pour F(x) avec $x \ge 0$

2. (a) Soit φ la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad \varphi(x) = e^x - x - 1.$$

La fonction ϕ est dérivable sur $\mathbb R$ en tant que somme de fonctions dérivables sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \quad \varphi'(x) = e^x - 1.$$

- Pour tout $x \in]-\infty,0]$, $\varphi' \le 0$ avec égalité si et seulement si x = 0 donc φ est strictement décroissante sur $]-\infty,0]$.
- Pour tout $x \in [0, +\infty[$, $\phi' \ge 0$ avec égalité si et seulement si x = 0 donc ϕ est strictement croissante sur $[0, +\infty[$.

Ainsi, pour tout $x \in \mathbb{R}$, on a

$$\varphi(x) \geqslant \varphi(0) = 0$$

avec égalité si et seulement si x = 0. De manière équivalente, pour tout $x \in \mathbb{R}$

$$e^x \ge x + 1$$

avec égalité si et seulement si x = 0.

4pts : 1pt pour penser à étudier la fonction, 1 pt pour la dérivabilité et le calcul de φ' , 1 pt pour les variations, 1pt pour la conclusion (le cas d'égalité devait être rédigé soigneusement)

- (b) Montrons par récurrence que pour tout entier naturel non nul n, on a : $u_n > 0$.
 - Initialisation : $u_1 = 1 > 0$ donc la propriété est vraie au rang 1.

• Hérédité : supposons la propriété vraie à un rang rang $n \in \mathbb{N}^*$ et montrons qu'elle est vraie au rang n+1. Par hypothèse de récurrence, $u_n > 0$ donc, par croissance de la fonction exponentielle, on a $e^{-u_n} < 1$ puis $1 - e^{u_n} > 0$. Ainsi

$$u_{n+1} = F(u_n) = 1 - e^{-u_n} > 0.$$

La propriété est donc vraie au rang n + 1.

• Conclusion : par le principe de récurrence, pour tout $n \in \mathbb{N}^*$, on a : $u_n > 0$.

2pts

(c) D'après la définition de la suite :

1 pt

(d) On peut conjecturer que la suite $(u_n)_{n\geq 1}$ est décroissante et converge vers 0.

1pt

(e) Soit $n \in \mathbb{N}^*$. Alors

$$u_{n+1} - u_n = F(u_n) - u_n = 1 - e^{-u_n} - u_n < 0$$

d'après l'inégalité de la question 2)a) appliquée avec $x = -u_n$. Cela montre que la suite est décroissante.

1pt

(f) D'après les questions 2)b) et 2)e), la suite $(u_n)_{n\geqslant 1}$ est décroissante et minorée. Ainsi, par le théorème de convergence monotone, on peut conclure que cette suite converge vers une limite $\ell \in \mathbb{R}$. Comme la fonction F est continue sur \mathbb{R} , ℓ est un point fixe de F. Remarquons que pour tout x < 0, F(x) = 0 donc x n'est pas un point fixe de F. De plus, pour tout $x \geqslant 0$,

$$F(x) = x \iff 1 - e^{-x} = x \iff 1 - x = e^{-x} \iff -x = 0$$

d'après la question 2)a). Ainsi, l'unique point fixe de F est 0 et par conséquent $\ell=0$.

2pts : 1pt pour le théorème de convergence monotone, 1pt pour trouver la limite (il fallait faire appel à la continuité de F où de exp)

(g) Soit $n \in \mathbb{N}^*$. D'après l'inégalité de la question 2(a) appliquée avec $x = u_n$, on a

$$e^{u_n} \geqslant 1 + u_n$$

puis en passant à l'inverse

$$e^{-u_n} \leqslant \frac{1}{1+u_n}.$$

Ainsi

$$u_{n+1} = 1 - e^{-u_n} \ge 1 - \frac{1}{1 + u_n} = \frac{u_n}{1 + u_n}.$$

En passant à l'inverse dans cette inégalité on trouve

$$\frac{1}{u_{n+1}} \le \frac{1}{\frac{u_n}{1+u_n}} = \frac{1+u_n}{u_n} = 1 + \frac{1}{u_n}.$$

Remarquons que tous les passages à l'inverse sont licites car les quantités manipulées sont strictement positives d'après la question 2)b).

3pts: 2pts pour la première inégalité, 1pt pour la deuxième

- (h) Initialisation : $u_1 = 1$ donc la propriété est vraie au rang 1.
 - Hérédité : supposons la propriété vraie à un rang rang $n \in \mathbb{N}^*$ et montrons qu'elle est vraie au rang n+1. Par hypothèse de récurrence, $u_n \geqslant \frac{1}{n}$ donc, par décroissance de la fonction inverse sur \mathbb{R}_+^* , on a $\frac{1}{u_n} \leqslant n$. D'après la question précédente, on a donc

$$\frac{1}{u_{n+1}} \leqslant 1 + \frac{1}{u_n} \leqslant 1 + n$$

puis en repassant à l'inverse

$$u_{n+1} \geqslant \frac{1}{n+1}.$$

Ici encore tous les passages à l'inverse sont rendus licites par la question 2)b). La propriété est donc vraie au rang n + 1.

• Conclusion : par le principe de récurrence, pour tout $n \in \mathbb{N}^*$, on a : $u_n \ge \frac{1}{n}$.

3pts.

(i) Le vecteur-ligne S contient les 100 premiers termes de la suite des sommes partielles de la série de terme général u_n . La courbe en trait plein est la courbe représentative de la fonction logarithme, on peut donc conjecturer que la série de terme général u_n diverge.

2pts

(j) Les séries $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} \frac{1}{n}$ sont à termes positifs et la série $\sum_{n\geqslant 1} \frac{1}{n}$ est une série de Riemann divergente. D'après la question 2)h) et le théorème de comparaison des séries à termes positifs, on en déduit que la série $\sum_{n\geqslant 1} u_n$ diverge aussi.

3pts : 1pt pour dire que les séries sont à termes positifs, 1pt pour la divergence de la série de Riemann, 1pt pour conclure par comparaison.

II - Une fonction et une variable aléatoire à densité (20,5pts)

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = \begin{cases} 0 & \text{si } x < 0, \\ xe^{-x} & \text{si } x \ge 0. \end{cases}$$

1. Étude de la fonction g.

(a) La fonction g est dérivable sur $]-\infty,0[$ (fonction constante) et sur $]0,+\infty[$ (produit de fonctions dérivables sur $]0,+\infty[$). On a

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} xe^{-x} = 0 = g(0) = \lim_{x \to 0^-} g(x).$$

Ainsi g est continue en 0. En revanche

$$\lim_{x \to 0^+} \frac{g(x) - g(0)}{x} = \lim_{x \to 0^+} \frac{xe^{-x}}{x} = \lim_{x \to 0^+} e^{-x} = 1$$

et

$$\lim_{x \to 0^{-}} \frac{g(x) - g(0)}{x} = \lim_{x \to 0^{-}} 0 = 0.$$

Donc g n'est pas dérivable en 0.

2,5pts : 0,5pt pour la dérivabilité sur] $-\infty$, 0[et sur]0, $+\infty$ [, 1pt pour la continuité en 0, 1 pt pour le reste

(b) Cependant, g est dérivable sur $[0, +\infty[$ (elle est dérivable sur $]0, +\infty[$ et dérivable à droite en 0 d'après les questions précédentes) et pour tout $x \in [0, +\infty[$ on a

$$g'(x) = e^{-x}(1-x).$$

Ainsi:

x	0		1		+∞
Signe de $g'(x)$		+	0	_	
Variation de g	0 -		$\rightarrow e^{-1}$		• 0

Pour la limite en 0, il s'agit d'une croissance comparée.

3pts: 2pts pour l'étude de fonction, 1pt pour la limite

(c) La fonction g est de classe \mathscr{C}^2 sur $]0, +\infty[$ en tant que produit de fonctions de classe \mathscr{C}^2 sur $]0, +\infty[$. De plus, pour tout $x \in \mathscr{C}^2$ sur $]0, +\infty[$, on a

$$g''(x) = e^{-x}(x-2).$$

Par conséquent,

$$g''(x) \geqslant 0 \iff x \geqslant 2.$$

La fonction g est donc convexe sur $[2, +\infty[$ et concave sur]0,2].

2pts : 1pt pour la caractérisation des fonctions convexes de classe \mathscr{C}^2 , 1pt pour l'étude du signe de g'' et la conclusion

- (d) 2pts pour le graphique
- 2. (a) La fonction g est continue sur \mathbb{R} positive et $\int_{-\infty}^{+\infty} g(t) dt = E(X) = 1$. Donc g est une densité de probabilité.

1 pt

- (b) Soit $x \in \mathbb{R}$.
 - Si x < 0:

$$G(x) = P(Y \le x) = \int_{-\infty}^{x} g(t) dt = 0$$

 $\operatorname{car} g(t) = 0$ pour tout t < 0.

• Si $x \ge 0$:

$$G(x) = P(Y \le x) = \int_{-\infty}^{x} g(t)dt = \int_{0}^{x} te^{-t}dt.$$

En faisant une intégration par partie, on trouve

$$G(x) = \left[-te^{-t}\right]_0^x + \int_0^x e^{-t} dt = -xe^{-x} - e^{-x} + 1 = 1 - e^{-x}(1+x).$$

Ainsi

$$\forall x \in \mathbb{R}, \quad G(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-x} (1 + x) & \text{si } x \ge 0. \end{cases}$$

2,5pts : 1pt pour écrire $G(x) = P(Y \le x) = \int_{-\infty}^{x} g(t) dt$, **0.5pt pour le calcul pour** x < 0, 1pt pour l'IPP

(c) G est de classe \mathscr{C}^1 sur $]0, +\infty[$ et sur $]-\infty, 0[$. De plus,

$$\forall x \in \mathbb{R}^*, \quad G'(x) = \begin{cases} 0 & \text{si } x < 0 \\ xe^{-x} & \text{si } x > 0 \end{cases}$$

Étudions la dérivabilité de G en O. Comme G(O) = O on a

$$\lim_{x \to 0^{-}} \frac{G(x) - G(0)}{x} = \lim_{x \to 0^{-}} 0 = 0,$$

et

$$\lim_{x \to 0^+} \frac{G(x) - G(0)}{x} = \lim_{x \to 0^+} \frac{1 - e^{-x}(1 + x)}{x} = 0$$

car $x\mapsto 1-e^{-x}(1+x)$ est dérivable en 0 et sa dérivée en zéro vaut 0. Ainsi,

$$\lim_{x \to 0^{-}} \frac{G(x) - G(0)}{x} = \lim_{x \to 0^{+}} \frac{G(x) - G(0)}{x} = 0$$

donc G est dérivable en 0 et G'(0) = 0. Enfin,

$$\lim_{x \to 0^{-}} G'(x) = \lim_{x \to 0^{+}} G'(x) = 0 = G'(0)$$

donc G' est continue en 0. Finalement, G est dérivable sur \mathbb{R} et sa dérivée est continue sur \mathbb{R} donc G est de classe \mathscr{C}^1 sur \mathbb{R} .

3,5pts : 0,5pt pour l'étude sur \mathbb{R}^* , 2pts pour la dérivabilité en 0, 1 pt pour la continuité en 0 de G'

(d) Soit A > 0. Par intégration par partie, on a

$$\int_0^A t g(t) dt = \int_0^A t^2 e^{-t} dt = \left[-t^2 e^{-t} \right]_0^A - \int_0^A 2t \times (-e^{-t}) dt = -A^2 e^{-A} + 2 \int_0^A g(t) dt.$$

1pt

(e) La variable aléatoire Y admet une espérance si l'intégrale $\int_{-\infty}^{+\infty} tg(t)dt$ convergence absolument. Comme g(t)=0 pour tout t<0, Y possède une espérance si $\int_0^{+\infty} tg(t)dt$ convergence absolument. Or, pour tout $t\geqslant 0$, $tg(t)\geqslant 0$ donc il suffit de montrer que l'intégrale $\int_0^{+\infty} tg(t)dt$ converge. Par croissance comparée et d'après la question 2)a)

$$\lim_{A\to +\infty} -A^2 e^{-A} = 0 \quad \text{et} \quad \lim_{A\to +\infty} \int_0^A g(t) dt = \int_{-\infty}^{+\infty} g(t) dt = 1.$$

Donc, d'après la question précédente

$$\lim_{A\to+\infty}\int_0^A tg(t)\,dt=2.$$

Ainsi, Y possède une espérance et E(Y) = 2.

3pts : 1pt pour mentionner l'absolue convergence, 1pt pour étudier l'absolue convergence, 1pt pour le calcul d'espérance.

Problème (40pts)

1. Pour tout n de \mathbb{N} , les fonctions $x \mapsto \frac{x^n}{(1+x)^2}$ et $x \mapsto \frac{x^n}{1+x}$ sont continues sur [0,1] donc les intégrales I_n et J_n existent.

1pt

2.

$$I_0 = \int_0^1 \frac{1}{(1+x)^2} dx = \left[\frac{-1}{x+1}\right]_0^1 = \frac{1}{2}.$$

et

$$\begin{split} \mathrm{I}_1 &= \int_0^1 \frac{x}{(1+x)^2} dx = \int_0^1 \frac{x+1-1}{(1+x)^2} dx = \int_0^1 \left(\frac{1}{x+1} - \frac{1}{(1+x)^2}\right) dx \\ &= \int_0^1 \frac{1}{x+1} dx - \mathrm{I}_0 \\ &= \left[\ln\left(1+x\right)\right]_0^1 - \frac{1}{2} \\ &= \ln\left(2\right) - \frac{1}{2}. \end{split}$$

3pts: 1pt pour I_0 et 2pts pour I_1

3. (a) Soit n de \mathbb{N} . Par linéarité de l'intégrale, on a

$$I_{n+2} + 2I_{n+1} + I_n = \int_0^1 \frac{x^{n+2}}{(1+x)^2} dx + 2 \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx + \int_0^1 \frac{x^n}{(1+x)^2} dx$$

$$= \int_0^1 \frac{x^{n+2} + 2x^{n+1} + x^n}{(1+x)^2} dx$$

$$= \int_0^1 x^n \cdot \frac{x^2 + 2x + 1}{(1+x)^2} dx$$

$$= \int_0^1 x^n dx \quad \operatorname{car} x^2 + 2x + 1 = (x+1)^2$$

$$= \left[\frac{x^{n+1}}{n+1} \right]_0^1$$

$$= \frac{1}{n+1}.$$

2nts

(b) La relation précédente avec n = 0 donne

$$I_2 + 2I_1 + I_0 = \frac{1}{1+0} = 1$$

donc

$$I_2 = 1 - 2I_1 - I_0 = 1 - \frac{1}{2} - 2\ln(2) = \frac{3}{2} - 2\ln(2).$$

1pt

(c) Compte tenu de la relation de récurrence obtenue en 3)a):

```
n=input ('donnez une valeur pour n: ')
a=1/2
b= log(2) - 1/2
for k=2: n
    aux = a
    a=b
    b=1/(k-1)-2*a-aux
end
disp (b)
```

2pts

4. (a) Soit $n \in \mathbb{N}$. Pour tout $x \in [0,1]$, $(1+x)^2 \ge 1$ donc

$$0 \leqslant \frac{x^n}{(1+x)^2} \leqslant x^n.$$

Par croissance de l'intégrale, on en déduit :

$$0 \leqslant \mathbf{I}_n \leqslant \int_0^1 x^n dx = \frac{1}{n+1}.$$

Ainsi

$$\forall n \in \mathbb{N}, 0 \leqslant I_n \leqslant \frac{1}{n+1}.$$

2pts

(b) On sait que $\lim_{n\to+\infty}\frac{1}{n+1}=0$ donc par encadrement, on déduit de la question précédente que la suite (I_n) converge vers 0.

5. Soit $n \in \mathbb{N}^*$. Par intégration par parties, on trouve

$$I_n = \int_0^1 \frac{x^n}{(x+1)^2} dx = \left[x^n \frac{-1}{x+1} \right]_0^1 - \int_0^1 n x^{n-1} \frac{-1}{x+1} dx$$
$$= -\frac{1}{2} + n J_{n-1}.$$

Ainsi

$$\forall n \in \mathbb{N}^*, I_n = nJ_{n-1} - \frac{1}{2}.$$

lpt

6. (a) On a

$$J_0 = \int_0^1 \frac{1}{1+x} dx = [\ln(1+x)]_0^1 = \ln(2).$$

Soit $n \in \mathbb{N}$. Par linéarité de l'intégrale :

$$J_n + J_{n+1} = \int_0^1 \frac{x^n}{1+x} dx + \int_0^1 \frac{x^{n+1}}{x+1} dx$$
$$= \int_0^1 \frac{x^n + x^{n+1}}{x+1} dx$$
$$= \int_0^1 x^n \cdot \frac{1+x}{x+1} dx$$
$$= \int_0^1 x^n dx = \frac{1}{n+1}.$$

2pts

(b) En utilisant la relation ci-dessus pour n = 0, on trouve :

$$J_0 + J_1 = 1$$
 donc $J_1 = 1 - \ln(2)$.

1pt

7. En utilisant les questions 5) et 6), on trouve

```
n=input ('donnez une valeur pour n: ')
 J=log(2)
 for k=1: n-1
     J=1/k-J
 end
I=n*J-1/2
disp(I)
```

2pts

8. Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$\forall n \in \mathbb{N}^*, \quad \nu_n = (-1)^n \left(\ln 2 - \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \right).$$

Montrons par récurrence que pour tout $n \in \mathbb{N}^*$, $v_n = J_n$.

• Initialisation : $v_1 = (-1)^1 \left(\ln(2) - \frac{(-1)^0}{1} \right) = 1 - \ln(2) = J_1$ et la propriété est donc vraie au rang 1.

• Hérédité : supposons la propriété vraie pour un certain rang $n \in \mathbb{N}^*$ et montrons qu'elle est vraie au rang n + 1. Remarquons que :

$$\begin{split} \nu_{n+1} + \nu_n &= (-1)^{n+1} \left(\ln 2 - \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k} \right) + (-1)^n \left(\ln 2 - \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \right) \\ &= (-1)^n \left(\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k} - \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \right) \\ &= (-1)^n \frac{(-1)^n}{n+1} = \frac{1}{n+1}. \end{split}$$

Donc, d'après la question 6)a), on a

$$u_{n+1} + u_n = \frac{1}{n+1} = J_n + J_{n+1}$$

et comme par hypothèse de récurrence $u_n = J_n$, on en déduit que $J_{n+1} = u_{n+1}$. Ainsi la propriété est vraie au rang n+1.

• Conclusion : d'après le principe de récurrence, on a montré que

$$\forall n \in \mathbb{N}^*, \quad J_n = v_n = (-1)^n \left(\ln 2 - \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \right).$$

3pts: 1pt pour les étapes de la récurrence, 2pts pour le calcul dans l'hérédité

9. (a) D'après la question 5), on a

$$\forall n \in \mathbb{N}^*, \quad \mathbf{J}_n = \frac{1}{n+1} \left(\mathbf{I}_{n+1} + \frac{1}{2} \right).$$

D'après la question 4), $\lim_{n\to+\infty} I_n = 0$ donc on déduit que

$$\lim_{n\to+\infty} J_n = 0$$

1pt

(b) Par continuité de la valeur absolue en 0 et la question précédente, on a

$$\lim_{n \to +\infty} \left| \ln 2 - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \right| = \lim_{n \to +\infty} J_n = 0.$$

Cela montre que la série de terme général $\frac{(-1)^{k-1}}{k}$ converge et que

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} = \ln(2).$$

1pt

(c) D'après la question 5), on a

$$\forall n \in \mathbb{N}^*, \quad J_n = \frac{1}{n+1} \left(I_{n+1} + \frac{1}{2} \right).$$

Soit $\alpha > 0$. Alors J_n est équivalent à $\frac{1}{\alpha n}$ en $+\infty$ si et seulement si

$$\lim_{n\to+\infty}\alpha n \mathsf{J}_n=1.$$

Or

$$\alpha n \mathbf{J}_n = \frac{\alpha n}{n+1} \left(\mathbf{I}_{n+1} + \frac{1}{2} \right)$$

donc $\lim_{n\to +\infty} \alpha n J_n = \frac{\alpha}{2}$. Ainsi, $\lim_{n\to +\infty} \alpha n J_n = 1$ si et seulement si $\alpha = 2$. Donc J_n est équivalent à $\frac{1}{2n}$ en $+\infty$.

2pts

10. (a) On remarque que pour tout $n \in \mathbb{N}^*$, $u_n = (-1)^n J_n$ donc par compatibilité des équivalents par produit, on trouve

$$u_n \underset{n \to +\infty}{\sim} \frac{(-1)^n}{2n}.$$

1pt

(b) On a $\sum_{n\geqslant 1} \frac{(-1)^n}{2n} = -\frac{1}{2} \sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n}$ donc est convergente d'après la question 9)b). est convergente. Comme les séries $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} \frac{(-1)^n}{2n}$ ne sont pas à termes positifs (ni de signe constant), on ne peut rien conclure sur la convergence de la série $\sum_{n\geqslant 1} u_n$.

2pts

11. (a) Soit $k \in \mathbb{N}^*$.

$$(k+1)u_{k+1} - ku_k + (-1)^k = (k+1)\left(\ln 2 - \sum_{i=1}^{k+1} \frac{(-1)^{i-1}}{i}\right) - k\left(\ln 2 - \sum_{i=1}^{k} \frac{(-1)^{i-1}}{i}\right) + (-1)^k$$

$$= \ln(2) + k\left(\sum_{i=1}^k \frac{(-1)^{i-1}}{i} - \sum_{i=1}^{k+1} \frac{(-1)^{i-1}}{i}\right) - \sum_{i=1}^{k+1} \frac{(-1)^{i-1}}{i} + (-1)^k$$

$$= \ln(2) - k\frac{(-1)^k}{k+1} - \sum_{i=1}^k \frac{(-1)^{i-1}}{i} + (-1)^k$$

$$= \ln(2) - k\frac{(-1)^k}{k+1} - \sum_{i=1}^k \frac{(-1)^{i-1}}{i} - \frac{(-1)^k}{k+1} + (-1)^k$$

$$= u_k - k\frac{(-1)^k}{k+1} - \frac{(-1)^k}{k+1} + (-1)^k$$

$$= u_k$$

2pts

(b) Soit $n \in \mathbb{N}^*$.

$$S_n = \sum_{k=1}^n u_k = \sum_{k=1}^n ((k+1)u_{k+1} - ku_k + (-1)^k)$$

$$= \sum_{k=1}^n ((k+1)u_{k+1} - ku_k) + \sum_{k=1}^n (-1)^k$$

$$= (n+1)u_{n+1} - u_1 + \sum_{k=1}^n (-1)^k \quad \text{par t\'elescopage}$$

$$= (n+1)u_{n+1} - u_1 + (-1) \times \frac{1 - (-1)^n}{1 - (-1)}$$

$$= (n+1)u_{n+1} - u_1 - \frac{1}{2} \left(1 - (-1)^n\right).$$

Ainsi

$$\forall n \in \mathbb{N}^*, \quad S_n = (n+1)u_{n+1} - u_1 - \frac{1}{2}(1 - (-1)^n)$$

2pts

- (c) De la question précédente, on déduit que
 - pour tout $n \in \mathbb{N}^*$

$$S_{2n} = (2n+1)u_{2n+1} - u_1 - \frac{1}{2}(1 - (-1)^{2n}) = (2n+1)u_{2n+1} - u_1.$$

Or d'après la question 10)a), on a

$$u_{2n+1} \underset{n \to +\infty}{\sim} \frac{(-1)^{2n+1}}{2(2n+1)} = -\frac{1}{2(2n+1)}$$

donc par compatibilité des équivalents avec le produit

$$(2n+1)u_{2n+1} \underset{n \to +\infty}{\sim} -\frac{1}{2}.$$

En particulier, $\lim_{n\to+\infty} (2n+1)u_{2n+1} = -\frac{1}{2}$. Donc

$$\lim_{n \to +\infty} S_{2n} = -\frac{1}{2} - u_1 = \frac{1}{2} - \ln(2).$$

• pour tout $n \in \mathbb{N}^*$

$$S_{2n+1} = (2n+2)u_{2n+2} - u_1 - \frac{1}{2}\left(1 - (-1)^{2n+1}\right) = (2n+1)u_{2n+1} - u_1 - 1.$$

Or d'après la question 10)a), on a

$$u_{2n+2} \underset{n \to +\infty}{\sim} \frac{(-1)^{2n+2}}{2(2n+2)} = \frac{1}{2(2n+2)}$$

donc par compatibilité des équivalents avec le produit

$$(2n+2)u_{2n+2} \underset{n \to +\infty}{\sim} \frac{1}{2}.$$

En particulier, $\lim_{n\to+\infty} (2n+2)u_{2n+2} = \frac{1}{2}$. Donc

$$\lim_{n \to +\infty} S_{2n+1} = \frac{1}{2} - u_1 - 1 = \frac{1}{2} - \ln(2).$$

Ainsi

$$\lim_{n \to +\infty} S_{2n} = \lim_{n \to +\infty} S_{2n+1} = \frac{1}{2} - \ln 2.$$

D'après le résultat admis dans l'énoncer, on a donc

$$\lim_{n\to+\infty} S_n = \frac{1}{2} - \ln(2).$$

5pts : 2 pts pour la limite de (S_{2n}) , **2pts pour la limité de** (S_{2n+1}) et 1pt pour la conclusion

12. On a montré que

$$\sum_{k=1}^{+\infty} u_k = \sum_{k=1}^{+\infty} \left(\ln 2 - \sum_{j=1}^{k} \frac{(-1)^{j-1}}{j} \right) = \frac{1}{2} - \ln(2).$$

Or, en 9)a) on a montré que

$$\sum_{j=1}^{+\infty} \frac{(-1)^{j-1}}{j} = \ln(2).$$

Ainsi, pour tout $k \in \mathbb{N}^*$, on a

$$\ln 2 - \sum_{j=1}^{k} \frac{(-1)^{j-1}}{j} = \sum_{j=1}^{+\infty} \frac{(-1)^{j-1}}{j} - \sum_{j=1}^{k} \frac{(-1)^{j-1}}{j} = \sum_{j=k+1}^{+\infty} \frac{(-1)^{j-1}}{j}.$$

Au final, on a prouvé

$$\sum_{k=1}^{+\infty} \sum_{j=k+1}^{+\infty} \frac{(-1)^{j-1}}{j} = \frac{1}{2} - \ln 2.$$

3pts