Multimedia Computing

Fundamentals of Data Compression

Motivation

Text

1 page with 80 characters/line and 64 lines/page and 1 byte/char results in 80 * 64 * 1 * 8 = 40kbit/page

Still image

24 bits/pixel, 512 x 512 pixel/image results in 512 x 512 x 24 =
 6M bit/image

Audio

CD quality, sampling rate 44.1 KHz, 16 bits per sample results in 44.1 x 16 = 706 kbit/s (If stereo: 1.412 Mbit/s)

Video

- □ Full-size frame 1024 x 768 pixel/frame, 24 bits/pixel, 30 frames/s results in 1024 x 768 x 24 x 30 = $\frac{566}{100}$ Mbit/s.
- More realistic: 360 x 240 pixel/frame, 360 x 240 x 24 x 30 = 60
 Mbit/s
- Multimedia streams must be compressed for storage and transmission.

Binary & Decimal Representation

- $-15 = 1 \times 10^1 + 5 \times 10^0$
 - Thus the decimal representation of 15 is 15.
- 15 = 8 + 4 + 2 + 1 $= 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$
 - □ Thus the binary representation of 15 is 1111.
- Questions
 - What is the binary value of 19?
 - What is the decimal value of 10011?

Compression and Decompression

 Compression: the process of coding that will effectively reduce the total number of bits needed to represent certain information.

A General Data Compression Scheme.

Compression Ratio

- If the compression and decompression processes induce no information loss, then the compression scheme is lossless; otherwise, it is lossy.
- Compression ratio:

$$C_R = B_0/B_1$$

 B_0 : number of bits before compression

 B_1 : number of bits after compression

Lossless and Lossy Compression

Lossless Compression

- The original data can be reconstructed perfectly from the compressed data.
- Compression ratio usually ranges from 2:1 to 50:1.
- Example technique: Huffman coding

Lossy Compression

- There is a difference between the original data and the reconstructed data after compression.
- Higher compression ratios are possible than with lossless compression (typically up to 100:1).
- Example: JPEG, JPEG2000, MP3, MPEG2, H.264

Simple Lossless Compression Examples

■ Example 1: $ABC \rightarrow 1$; $EE \rightarrow 2$

■ Example 2: ABCEE→1

Outline

- Basics of Information Theory
- Run-Length Coding
- Variable-Length Coding
- Arithmetic Coding

Probability Distribution Function (PDF)

- The PDF for a discrete random variable is a function that assigns a probability to each value of the random variable.
- In discrete case, the PDF value p_i of a variable S is the frequency of S=i, i.e. p_i =prob(S=i).
- The PDF of a discrete image is usually called histogram.

PDF: an example

$$S = [1, 2, 1, 4, 3, 2, 3, 1]$$

 $p_1 = prob(S = 1) = 3/8;$
 $p_2 = prob(S = 2) = 2/8;$
 $p_3 = prob(S = 3) = 3/8;$
 $p_4 = prob(S = 4) = 1/8;$

i	1	2	3	4
p _i	3/8	2/8	2/8	1/8

The father of information theory

Claude Elwood Shannon (April 30, 1916 – February 24, 2001), an American electrical engineer and mathematician, has been called "the father of information theory".

Entropy

The *entropy* of an information *source* with alphabet $S = \{s_1, s_2, ..., s_n\}$ is:

$$\eta = H(S) = \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- p_i probability that symbol s_i will occur in S.
- Log₂(1/p_i) indicates the amount of information (self-information as defined by Shannon) contained in s_i, which corresponds to the number of bits needed to encode s_i.

Example

$$S = [1, 2, 1, 4, 3, 2, 3, 1]$$

i	1	2	3	4
p _i	3/8	2/8	2/8	1/8

$$\eta = H(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

$$= -\left(\frac{3}{8}\log_2 \frac{3}{8} + \frac{2}{8}\log_2 \frac{2}{8} + \frac{2}{8}\log_2 \frac{2}{8} + \frac{1}{8}\log_2 \frac{1}{8}\right) = 1.9056$$

The result means that we can use 1.9bit (in practice 2bits) in average to encode the symbols in S.

Entropy and Code Length

- It can be seen that the entropy is a weighted-sum of terms Log₂(1/p_i); hence it represents the average amount of information contained per symbol in the source S.
- The entropy specifies the Lower Bound for the average number of bits to code each symbol in S, i.e.,

len - the average length (measured in bits) of the codewords produced by the encoder.

Another example

Suppose the histogram of an image is with uniform PDF of gray-level intensities, i.e., p_i=1/256 for all i. Hence, the entropy of this image is:

$$\eta = -\sum_{i=1}^{n} p_i \log_2 p_i = -256 \times \frac{1}{256} \log \frac{1}{256} = 8$$

This implies that this image needs to be encoded with at least 8bits. It cannot be further (losslessly) compressed.

Outline

- Basics of Information Theory
- Run-Length Coding
- Variable-Length Coding
- Arithmetic Coding

Run Length Coding (RLC)

- Principle: Replace all repetitions of the same symbol in the text ("runs") by a repetition counter and the symbol.
- Example

Text:

AAAABBBAABBBBCCCCCCCCDABCBAABBBBCCD Encoding:

4A3B2A5B8C1D1A1B1C1B2A4B2C1D

As we can see, we can only expect a good compression rate when long runs occur frequently.

RLC for Binary Files

When dealing with binary files where a run of "1"s is always followed by a run of "0"s and vice versa, RLC is efficient for compression.

Outline

- Basics of Information Theory
- Run-Length Coding
- Variable-Length Coding
- Arithmetic Coding

Variable-Length Coding (VLC)

- Shannon-Fano Algorithm -- a top-down approach
 - 1. Sort the symbols according to the frequency count of their occurrences.
 - 2. Recursively divide the symbols into two parts, each with approximately the same number of counts, until all parts contain only one symbol.
- Example: coding of "HELLO"

Symbol	Н	Ε	L	0
Count	1	1	2	1

Frequency count of the symbols in "HELLO"

One Coding Tree for HELLO

Result of Performing Shannon-Fano on HELLO

Symbol	Count	$\log_2 \frac{1}{p_i}$	Code	# of bits used
L	2	1.32	0	2
Н	1	2.32	10	2
E	1	2.32	110	3
O 1 2.32 111 3				3
Т	TOTAL number of bits: 10			

Another coding tree for HELLO

Another Result of Performing Shannon-Fano on HELLO

Symbol	Count	$\log_2 \frac{1}{p_i}$	Code	# of bits used
L	2	1.32	00	4
н	1	2.32	01	2
E	1	2.32	10	2
O 1 2.32 11 2				2
Т	TOTAL number of bits: 10			

Huffman Coding

- Huffman Coding Algorithm a bottom-up approach
 - 1. Initialization: Put all symbols on a list sorted according to their frequency counts.
 - 2. Repeat until the list has only one symbol left:
 - i. From the list pick two symbols with the lowest frequency counts. Form a Huffman sub-tree that has these two symbols as child nodes and create a parent node.
 - ii. Assign the sum of the children's frequency counts to the parent and insert it into the list such that the order is maintained.
 - iii. Delete the children from the list.
 - 3. Assign a codeword for each leaf based on the path from the root.

Coding Tree for "HELLO" using the Huffman Algorithm

Properties of Huffman Coding

- Unique Prefix Property: No Huffman code is a prefix of any other Huffman code - precludes any ambiguity in decoding.
- Optimality: minimum redundancy code proved optimal for a given data model (i.e., a given, accurate, probability distribution):
 - The two least frequent symbols will have the same length for their Huffman codes, differing only at the last bit.
 - Symbols that occur more frequently will have shorter Huffman codes than symbols that occur less frequently.
 - □ The average code length for an information source S is strictly less than n + 1. We have:

$$\eta \leq len < \eta + 1$$

Outline

- Basics of Information Theory
- Run-Length Coding
- Variable-Length Coding
- Arithmetic Coding

Arithmetic Coding

- Arithmetic coding is a widely used entropy coder, such as in JPEG, etc.
- It has good compression ratio (better than Huffman coding), approaching to the lower bound of entropy coding. Only problem is it's computational cost due to large symbol tables.
- Why it is better than Huffman coding?
 - Huffman coding use an integer number (k) of bits for each symbol, and k is never less than 1.

Idea of Arithmetic Coding

- To have a probability line, between 0 1, and assign to every symbol a range in this line based on its probability.
- The higher the probability, the higher range which assigns to it.
- Once we have defined the ranges and the probability line, start to encode symbols.
- Every symbol defines where the output floating point number lands within the range.

An example

- Assume we have the following token symbol stream BACA
 - A occurs with probability 0.5
 - B and C occur with **probabilities 0.25**.

 Start by assigning each symbol to the probability range 0 –1. Sort symbols with the highest probability first

Symbol	Range
A	[0.0, 0.5)
В	[0.5, 0.75)
С	[0.75,1.0)

The first symbol in the example stream is B. Thus we know that the code will be in the range 0.5 to 0.74999

- We need to narrow down the range to obtain a code of the input stream.
- The arithmetic coding iteration: Subdivide the range for the first token given the probabilities of the second token then the third, etc.

```
For all the symbols:

range = high - low;

high = low + range * high_range of the symbol being coded;

low = low + range * low_range of the symbol being coded;

where:

range keeps track of where the next range should be.

high and low specify the output number.

Initially high = 1.0, low = 0.0
```

Symbol	Range	
A	[0.0, 0.5)	
В	[0.5, 0.75)	
C	[0.75,1.0)	

- The range of first symbol B is [0.5, 0.75), we know low=0.5, high=0.75 and range=high-low=0.25.
- The next symbol being coded is A. Thus high_range=0.5 and low_range=0.0. Now: high=0.5+0.25*0.5=0.625 low=0.5+0.25*0.0=0.5
- After the iteration for the second symbol A, we have the range of stream BA is [0.5, 0.625).

Symbol	Range	
A	[0.0, 0.5)	
В	[0.5, 0.75)	
С	[0.75,1.0)	

- The range stream BA is [0.5, 0.625). we know low=0.5, high=0.625 and range=0.125.
- The next symbol being coded is C. Thus high_range=1.0 and low_range=0.75. Now: high=0.5+0.125*1.0=0.625 low=0.5+0.125*0.75=0.59375
- After the iteration for the third symbol C, we have the range of stream BAC is [0.59375, 0.625).

Symbol	Range
A	[0.0, 0.5)
В	[0.5, 0.75)
С	[0.75,1.0)

- The range stream BAC is [0.59375, 0.625). we know low=0.59375, high=0.625 and range=0.03125.
- The next symbol being coded is A. Thus high_range=0.5 and low_range=0.0. Now: high=0.59375+0.03125*0.5=0.609375 low=0.59375+0.03125*0.0=0.59375
- After the iteration for the last symbol A, we have the range of stream BACA is [0.59375, 0.609375).

Arithmetic Coding: Encoder

```
BEGIN
   low = 0.0; high = 1.0; range = 1.0;
   while (symbol != terminator)
       {
         get (symbol);
         low = low + range * Range_low(symbol);
         high = low + range * Range_high(symbol);
         range = high - low;
   output a code so that low <= code < high;
END
```

Note that usually we put a terminator symbol "\$" at the end of the stream.

Binary codeword generation

- Now the output code for stream BACA is any number in the range [0.59375, 0.609375).
- However, there is still one problem left we need to convert the decimal number into binary format.
- Binary fractions:
 - \circ 0.1 binary =1*1/2¹= 0.5 decimal
 - $0.01 \text{ binary} = 0*1/2^1 + 1*1/2^2 = 0.25 \text{ decimal}$
 - \bigcirc 0.101binary = 1*1/2¹ +0*1/2² +1*1/2³= 0.625 decimal

Generating Binary Codeword

```
BEGIN
   code = 0;
   k = 1;
   while (value(code) < low)
       { assign 1 to the kth binary fraction bit
         if (value(code) > high)
            replace the kth bit by 0
         k = k + 1;
END
```

"code" is a binary codeword;

value(code) means getting the decimal value of binary "code".

The above algorithm will ensure that the shortest binary codeword is found.

The binary codeword of BACA

- The range of BACA is [0.59375, 0.609375).
- If we assign 1 to the first binary fraction bit, i.e. 0.1 binary, its decimal value(code) = value(0.1) = 0.5 decimal < low = 0.59375. Then we go to the next loop.</p>
- If we assign 1 to the second binary fraction bit, i.e. 0.11 binary, its decimal value(code) = value(0.11) = 0.75 > high = 0.609375. Then we let the second bit be 0.
- Since value(0.10) = 0.5 < low = 0.59375, we continue.
- If we assign 1 to the third binary fraction bit, i.e. 0.101 binary, its decimal value(code) = value(0.101) = 0.625 > high = 0.609375. Then we let the third bit be 0.

The binary codeword of BACA

- Since value(0.100) = 0.5 < low = 0.59375, we continue.
- If we assign 1 to the forth binary fraction bit, i.e. 0.1001 binary, its decimal value(code) = value(0.1001) = 0.5625 < low = 0.59375. We continue.</p>
- If we assign 1 to the fifth binary fraction bit, i.e. 0.10011 binary, its decimal value(code) = value(0.10011) = 0.59375 < high but = low.</p>
- Then we stop and get the binary codeword 0.10011.
- Exercise
 - Code BACA using Huffman coding and compare its codeword with arithmetic coding.

Decoding

```
BEGIN
   get binary code and convert to
       decimal value = value(code);
   Do
       { find a symbol s so that
              Range_low(s) <= value < Range_high(s);</pre>
         output s;
         low = Rang_low(s);
         high = Range_high(s);
         range = high - low;
         value = [value - low] / range;
   Until symbol s is a terminator
END
```

The decoding process is just the opposite of the encoding.

References

Ze-Nian Li, M. S. Drew, Fundamentals of Multimedia, Prentice Hall Inc., 2004. Chapter 7.