Bioinformatics CS300 Crash course: Structure and Replication of DNA

Week 2, deck 3
Fall 2022
Oliver BONHAM-CARTER

Some Background in Biology

What's a MAJOR Commonality Here?

Organisms Have Genetic Systems!

... And DNA is Often the Genetic Language

What Does Natural DNA look Like?

NOT like this!

Like this!

DIY: Strawberry DNA Extraction

Link: https://www.youtube.com/watch?v=JofXXyFZn38

Central Dogma of Molecular Biology

Dogma: a principle, or set of principles, laid down by an authority as incontrovertibly true.

What is DNA?

- Found in the nucleus of a cell in two different structures: chromatin and chromosomes
- Genetic Material (Life's blueprints)
- Written inherited characteristics (genes)

DNA Double Helix: Discovery of Structure

Watson and Crick, 1953

Rosalind Franklin and her data from x-ray crystallography

- Double-stranded
- Diameter 2nm
- Helix
 - Complete turn =10bp, 3.4nm
 - Major groove
 - Minor groove

DNA Structure

- Formed like a twisted ladder
- There are two sides of the ladder
- Sugar (deoxyribose)
- Phosphates
- Alternating
- Rungs of the ladder
- Nitrogenous bases

Nucleotides

- The supporting of rungs in the "ladder" (base pairs).
- Nucleotides: composed of three subunit molecules:
 - a nucleobase,
 - a five-carbon sugar (ribose or deoxyribose),
 - a phosphate group consisting of one to three phosphates.
 - The four nucleobases in DNA: guanine, adenine, cytosine and thymine; Note: in RNA, uracil is used in place of thymine.

DNA Structure

Base to Base Bonds: How do nitrogenous bases pair?

Adenine-Thymine base pair

- Base-Specific bonding
- Preserves distance between (DNA's) backbones
- Hydrogen bonds
- Key to replication
- A-T's have two bonds
- G-C's have three bonds

Guanine-cytosine base pair

Purines and Pyrimidines

A and T are held together by two hydrogen bonds.

- Purines and Pyrimidines are nitrogenous bases that comprising the two different types of nucleotide bases in DNA and RNA.
- The two-carbon nitrogen ring bases (adenine and guanine) are purines, while the one-carbon nitrogen ring bases (thymine and cytosine) are pyrimidines.
- **Purines**: adenine and guanine
- Pyrimidine: thymine, cytosine, and uracil
- Purines include a number of biologically important compounds, such as adenosine, caffeine, uric acid, and the two bases adenine and guanine, which are components of DNA and RNA.

G and C are held together by three hydrogen bonds.

DNA Read in 5' to 3' Direction

- Nucleotides are joined by phosphodiester bonds
 - phosphate to sugar
 - covalent bonds
- Polarity
 - 5' end phosphate group
 - 3' end hydroxyl group
- AntiParallel: DNA read in 5' to 3' direction

bond

ALLEGHENY COLLEGE

5' and 3' Ends? 5'

- A key feature of all nucleic acids is that they have two distinctive ends: The 5' (5prime) and 3' (3-prime) ends.
- This terminology refers to the 5' and 3' carbons on the sugar.
- For both DNA and RNA, the 5' end bears a phosphate, and the 3' end a hydroxyl group.

Note the ordering of carbons, hence 5' to 3'

Proposed Mechanisms of Replication Process

- 1. The two sides of the parent molecule unwind/unzip
- 2. Daughter strands are synthesized using parent strands as templates
- 3. Parent/daughter duplex winds back together
 - Semi-conservative: a 2nd gen helix composed of parental strand and one daughter.

DNA Replication Process

http://www.hhmi.org/biointeractive/dna-replication-schematic

DNA Replication Enzymology

http://www.hhmi.org/biointeractive/dna-replication-basic-detail

http://highered.mheducation.com/sites/0073525324/student_view0/chapter20/dna_replication_fork.html

1. Test Your Understanding

In the DNA sequence 5'-AGCT-3', the phosphodiester linkage between the adenine and the guanine connects:

- The 2' end of the adenine to the 4' end of the guanine.
- The 5' end of the adenine to the 3' end of the guanine.
- The 5' end of the guanine to the 1' end of the adenine.
- The 3' end of the adenine to the 5' end of the guanine.

bond

1. Test Your Understanding

In the DNA sequence 5'-AGCT-3', the phosphodiester linkage between the adenine and the guanine connects:

- The 2' end of the adenine to the 4' end of the guanine.
- The 5' end of the adenine to the 3' end of the guanine.
- The 5' end of the guanine to the 1' end of the adenine.
- The 3' end of the adenine to the 5' end of the guanine.

bond

Major

groov

Minor

2. Test Your Understanding

In the DNA of certain bacterial cells, 16% of the nucleotides are adenine. What are the percentages of the other nucleotides in the bacterial helix of DNA?

- A. 34% thymidine, 34% guanine, 16% cytosine
- B. 34% uracil, 16% guanine, 16% cytosine
- C. 16% thymidine, 34% guanine, 34% cytosine
- D. 34% thymidine, 16% guanine, 34% cytosine

© 2014 W. H. Freeman and Company

GC

2. Test Your Understanding

In the DNA of certain bacterial cells, 16% of the nucleotides are adenine. What are the percentages of the other nucleotides in the bacterial helix of DNA?

A. 34% thymidine, 34% guanine, 16% cytosine

B. 34% uracil, 16% guanine, 16% cytosine

C. 16% thymidine, 34% guanine, 34% cytosine

D. 34% thymidine, 16% guanine, 34% cytosine

DNA replicates in a semi-conservative manner. This means:

- a) one daughter strand is synthesized as a large fragment while the other is synthesized in smaller fragments, both in the 5'-3' direction
- b) every newly formed double-stranded DNA molecule consists of one parental strand and one daughter strand
- c) every newly formed double-stranded DNA molecule is comprised of two new daughter strands
- d) one daughter strand is synthesized as a large fragment in the 5'-3' direction while the other is synthesized in smaller fragments in the 3'-5' direction

3. Test Your Understanding

DNA replicates in a semi-conservative manner. This means:

- a) one daughter strand is synthesized as a large fragment while the other is synthesized in smaller fragments, both in the 5'-3' direction
- every newly formed double-stranded DNA molecule consists of one parental strand and one daughter strand
- c) every newly formed double-stranded DNA molecule is comprised of two new daughter strands
- d) one daughter strand is synthesized as a large fragment in the 5'-3' direction while the other is synthesized in smaller fragments in the 3'-5' direction

- The Double Helix (Documentary about DNA discovery, 17 mins)
 - http://media.hhmi.org/biointeractive/films/Double_Helix.html
- The Chemical Structure of DNA (3 mins)
 - http://www.hhmi.org/biointeractive/chemical-structure-dna
- The Structure of DNA (6 mins)
 - https://www.youtube.com/watch?v=o -6JXLYS-k
- The def of 5' and 3' strands (1.5 mins)
 - https://www.youtube.com/watch?v=qWZYpHSXvJo

