

Oxymètre de pouls

Partie informatique

Pierre-Jean BOUVET

Présentation

Description générale

Description de la partie informatique

 Récupération des valeurs mesurées de la lumière rouge (ACR et DCR) et de l'infra-rouge (ACIR et DCIR) via liaison USB

 Traitement des informations reçues afin d'éliminer les signaux parasites

Calcul de l'oxymétrie et de fréquence cardiaque

Visualisation des résultats via une interface utilisateur

Synoptique de la partie informatique

Les différents blocs

Filtrage (deux blocs : FIR et IIR)

Points essentiels

- Filtrage passe-bas (FIR) et passe-haut (IIR) des composantes AC_R et AC_{IR}
- Points critiques
 - Implémentation des filtres

Filtrage FIR

k	h[k]	k	h[k]	k	h[k]
0	1.4774946e-019	17	3.1294938e-002	34	2.7892178e-002
1	1.6465231e-004	18	3.4578348e-002	35	2.4459630e-002
2	3.8503956e-004	19	3.7651889e-002	36	2.1082435e-002
3	7.0848037e-004	20	4.0427695e-002	37	1.7838135e-002
4	1.1840522e-003	21	4.2824111e-002	38	1.4793934e-002
5	1.8598621e-003	22	4.4769071e-002	39	1.2004510e-002
6	2.7802151e-003	23	4.6203098e-002	40	9.5104679e-003
7	3.9828263e-003	24	4.7081811e-002	41	7.3374938e-003
8	5.4962252e-003	25	4.7377805e-002	42	5.4962252e-003
9	7.3374938e-003	26	4.7081811e-002	43	3.9828263e-003
10	9.5104679e-003	27	4.6203098e-002	44	2.7802151e-003
11	1.2004510e-002	28	4.4769071e-002	45	1.8598621e-003
12	1.4793934e-002	29	4.2824111e-002	46	1.1840522e-003
13	1.7838135e-002	30	4.0427695e-002	47	7.0848037e-004
14	2.1082435e-002	31	3.7651889e-002	48	3.8503956e-004
15	2.4459630e-002	32	3.4578348e-002	49	1.6465231e-004
16	2.7892178e-002	33	3.1294938e-002	50	1.4774946e-019

Filtrage IIR

$$y[n] = x[n] - x[n-1] + \alpha y[n-1]$$
 avec $\alpha = 0.992$

Mesure

 Prend en entrée les valeurs mesurées de la lumière rouge (AC_R et DC_R) et de l'infrarouge (AC_{IR} et DC_{IR})

- Extraction à partir des différentes composantes des quantités suivantes :
 - Taux de saturation d'oxygène dans le sang (SpO₂)
 - Fréquence cardiaque (pouls)


```
typedef struct{
    int spo2; /*!< SPO2 */
    int pouls; /*!< Pouls */
} oxy;</pre>
```


Mesure Sp0₂

Points essentiels

- Calcul de la valeur crête de chaque composante AC
- Calcul de RsIR puis Sp0₂ via une table de correspondance

Points critiques

• Calcul de SpO₂ au "fil de l'eau"

Mesure de la fréquence cardiaque

Points essentiels

 Calcul de la fréquence de l'onde de pouls (sur AC_R et AC_{IR})

Points critiques

• Calcul de la fréquence cardiaque au "fil de l'eau"

$$F = \frac{1}{T}$$

Affichage

Points essentiels

 Ecriture des informations dans le fichier Data.txt

Points critiques

• Exclusion mutuelle à l'aide d'un verrou

Affichage

■ Test existence d'un fichier

Effacer un fichier

```
remove(".verrouData")
```


Lecture

Points essentiels

• Lire chacun des champs

15

• Recentrer les composantes AC autour de 0

Points critiques

- Etablir la synchronisation afin de récupérer les valeurs
- Driver FTDI

Du fait du confinement due à l'épidémie COVID-19, l'accès à la carte électronique est potentiellement rendu impossible. Dans ce cas, la lecture sur le port USB sera <u>simulée</u>. A cet effet nous avons créé un fichier nommé record1 bin.dat contenant les données à lire sous format binaire.

Lecture

■ Détail de la trame

21 octets (rafraichissement toutes 2 ms)

)
Taille	4	1	4	1	4	1	4	1	1
(octets)									
Champ	AC_R	,	DC_R	,	AC_{IR}	,	DC_IR	LF	CR

Architecture

Convention de nommage

Bloc	Nom fonction	Nom fichier source	Nom fichier header
Filtrage FIR	fir	fir.c	fir.h
Filtrage IIR	iir	iir.c	iir.h
Mesure	mesure	mesure.c	mesure.h
Affichage	affichage	affichage.c	affichage.h
Intégration	integration	integration.c	integration.h
Lecture	lecture	lecture.c	lecture.h
Définition globales			define.h

Arborescence

main.c

Exemple de programme

```
int main(){
        int etat=0;
        absorp myAbsorp;
        oxy myOxy;
        param fir* myFIR = init fir(...); // init FIR
        param iir* myIIR = init iir(...); // init IIR
        param mesure* myMes = init mesure(...) // init mesure
        FILE* myFile = initFichier("record1.dat");
        do{
                 myAbsorp = lireFichier(myFile, &etat);
                 myAbsorp = fir(myAbsorp,myFIR);
                 myAbsorp = iir (myAbsorp, myIIR);
                 myOxy = mesure(myAbsorp, myMes);
                 affichage (myOxy);
        }while( etat != EOF );
        finFichier(myFile);
        fin mesure(myMes);
        fin iir(myIIR);
        fin fir(myFIR) ;
        return EXIT SUCCESS;
```

define.h

```
#ifndef DEFINE_H
#define DEFINE_H

typedef struct{
        float acr; /*!< AC R */
        float dcr; /*!< DC R */
        float acir; /*!< AC IR */
        float dcir; /*!< DC IR */
} absorp;
typedef struct{
        int spo2; /*!< SPO2 */
        int pouls; /*!< Pouls */
} oxy;
#endif</pre>
```


Déroulé du projet

4 phases

Lundi matin	Lundi après-midi	Mardi matin	Mardi après-midi		Mercredi après-midi	Vendredi matin	Vendredi après-midi
Analyse	Réalisation				Intégration		Rø cette

- ✓ Analyse de chaque bloc
- ✓ Architecture du programme
- ✓ Définition des Types de données
 - ✓ Code source de chaque bloc
 - √ Tests unitaires
 - ✓ Makefile

- ✓ Code source programme principal
- ✓ Test intégration avec le simulateur ou avec la carte
- ✓ Validation avec l'interface java
 - **✓ Code source à rendre avant 15:00**
 - ✓ QCM de 15:00 à 15:30
 - ✓ Validation automatique et manuelle par l'enseignant sur
 - PC enseignant à partir de 15:30
 - ✓ Qualimétrie

Au jour le jour

Travail en binôme

- Les binômes sont constitués le premier jour
 - Les binômes à constituer au sein de chaque sous-groupe
 - o Les redoublants doivent se mettre ensemble ou en monôme le cas échéant
- Chaque étudiant connait l'ensemble du projet
- Attention à bien se répartir le travail

Ressources externes

- Tous les documents sont autorisés...
 - o ... mais les informations nécessaires au projet sont fournies !!!
- Attention à utiliser avec une grande précaution tous documents venant du web (site de vulgarisation, forum, code d'autrui,...)

Livraison de code ou de document

- Ne pas attendre la dernière minute pour poster le livrable
 - Préparer des livrables intermédiaires
 - Sauvegarder régulièrement vos données

Recette

Ce qu'il faut rendre (CGSI3/CENT3/CBIO3/CEST3)

Sources pour tests automatiques

Pour vous aider, une coquille vide comprenant l'architecture imposée est disponible sur l'ENT

- Fichiers à modifier
- Fichiers à ne pas modifier

Sources pour tests manuels

- Fichiers précédents
- main.c
- Makefile
- Si USB: lecture.c et lecture.h

tests manuels xx yy.zip

Ce qu'il faut rendre (CIR3)

Sources pour tests automatiques

Pour vous aider, une coquille vide comprenant l'architecture imposée est disponible sur l'ENT

- Fichiers à modifier
- Fichiers à ne pas modifier

- Sources pour tests manuels
 - Fichiers précédents
 - main.c
 - Makefile

tests_manuels_xx_yy.zip

Le code source

Chaque bloc :

- Un fichier
- Une fonction

Les interfaces de <u>la fonction principale de chaque bloc</u> sont imposées afin de permettre un validation automatique lors de la recette. Les prototypes vous seront fournies en début de réalisation!

Programme principal

- Permet de tester chaque bloc de façon indépendante (ne doit pas remis)
- Permet de tester le programme complet (obligatoire pour tests manuels)
 - Avec le simulateur
 - Avec la carte électronique
- Makefile (obligatoire seulement pour tests manuels)
 - Permet de compiler automatiquement votre code source
- Revue de code
 - Lors de la recette, il vous sera demandé d'expliquer une ou plusieurs portions de votre code
 - Attention pénalité si les explications ne sont pas convaincantes
 - Pas de points données lors de la revue de code (seulement pénalités le cas échéant)

Barème final (indicatif)

	Coefficient
Recette programme	6
Qualimétrie code	2
QCM	2
Total	10

Barème recette (indicatif)

#	Nom du test	Туре	Barème A3 hors CIR3	Barème CIR3
1	FIR	Automatique	3,5	3
2	IIR	Automatique	3	2,5
3	Mesure SPO2	Automatique	2,5	2
4	Mesure Pouls	Automatique	2,5	2
5	Affichage	Automatique	2,5	2,5
6	Intégration	Automatique	3,5	3
7	Programme global simulation	Manuel	2.5	2
8	Lecture / USB	Automatique / manuel	Bonus	3
Total			20	20

- Aucun point donné au regard du code source (l'évaluateur ne rentre pas dans le code)
- Seulement sont testées les fonctionnalités d'exécution de votre code

Tests automatiques

Projet à sélectionner :

- Oxymétrie-A3 pour les A3 hors CIR3
- Oxymétrie-CIR3 pour les CIR3 / ou non CIR souhaitant tester la fonction lecture

Les ressources

Le matériel

Votre PC portable

- Analyse
- Réalisation
- Intégration

Casque / écouteur audio déconseillés (consignes non appliqués = pénalité)!

Boissons et nourriture interdites!

Carte électronique

• Validation de la partie USB

Outils de développement

Noyau de compilation

- Bash Windows
- Jupyterhub
- Linux natif

Editeur

- Notepad++
- Sublime Text
- Atom
- Visual studio code

41

•

Documentation

Support de présentation

Description détaillée

Guide de programmation FTDI

MERCI Des questions?

