Análise de dispersão de ondas Love

Atividade prática de Teoria das Ondas Sísmicas

Leonardo Uieda 12/Junho/2008

Sismo

O sismo analisado neste trabalho ocorreu em São Vicente, São Paulo, no dia 28 de Abril de 2008. Foram utilizados os sismogramas registrados em Valinhos e Rio Claro, ambas cidades do estado de São Paulo.

Figura 1: Sismogramas registrados em Valinhos (acima) e Rio Claro (claro).

Ajuste

Foi feita uma análise da dispersão das ondas Love para tentar ajustar um modelo de duas camadas homogêneas e isotrópicas. As velocidades de fase utilizadas neste trabalho foram correspondentes a períodos 13 e 26 segundos. Inicialmente, foram assumidas densidades ρ_1 = 2.7 g/cm³ e ρ_2 = 3.3 g/cm³ para as camadas 1 (superior) e 2 (inferior). As

velocidades de onda S (β_1 e β_2) e a espessura da camada 1 (h) foram os parâmetros buscados no ajuste.

O ajuste foi feito minimizando o erro quadrático médio (EQM) entre os dados e a curva teórica dada pela equação de dispersão:

$$T = \frac{\frac{2\pi h}{c} \sqrt{c^2/\beta_1^2 - 1}}{\arctan\left(\frac{\rho_2}{\rho_1} \frac{\sqrt{\beta_2^4 - c^2\beta_2^2}}{\sqrt{c^2\beta_1^2 - \beta_1^4}}\right)}$$

onde c é a velocidade de fase e T o período.

O mínimo foi buscado utilizando uma adaptação do algoritmo Ant Colony Optimization denominada ACO_R (Socha e Dorigo, 2008). O espaço de soluções foi limitado a:

$$\begin{cases} 1.0 < \beta_1 < 3.5 & km/s \\ 3.8 < \beta_2 < 5.0 & km/s \\ 20 < h < 40 & km \end{cases}$$

Os limites de β_1 e β_2 foram escolhidos com base nos dados de velocidade de fase. As velocidades estavam limitadas entre 3.5 e 3.8 km/s. Estes limites correspondem a condições para que as raízes quadradas na equação de dispersão sejam números reais.

Na Figura 2 são mostrados os oito ajustes realizados e na Tabela 1 os valores de β_1 e β_2 e h obtidos. Note que não há grande variação entre os ajustes, garantindo que o algoritmo achou o mínimo global no espaço limitado dos parâmetros. Porém, ao observar a Tabela 1, nota-se que os valores de h sempre caem perto do menor valor permitido. Isto é um indício de que valores menores de h podem também ajustar o modelo.

Para testar esta hipótese, h foi permitido variar de 1 a 40 km. Os demais limites e as densidades foram mantidos iguais. Foram feitos 10 ajustes para testar a estabilidade do algoritmo sob estas novas circunstâncias. Os resultados destes ajustes estão dispostos na Figura 3 e Tabela 2. Com esta nova liberdade para h o ajuste foi superior e h se concentra em torno de 3 e 6.5 km. Os β_1 obtidos estão em torno de 1.3 e 2.6 km/s e β_2 foi aproximadamente 3.8 km/s para todos os ajustes. Estes valores também são incompatíveis com um modelo de crosta-manto, reforçando ainda mais a necessidade de rever o modelo de densidades.

Este modelo de densidades corresponde a uma interface crosta-manto, logo, era de se esperar que h estivesse entre 20 e 40 km. Porém, os valores h obtidos são muito menores. Estas espessuras são geologicamente inaceitáveis, o que indica que o modelo de densidades deve ser inadequado. As espessuras obtidas nos ajustes estão mais compatíveis com um modelo de sedimentos-embasamento. Logo, um novo modelo de densidades (ρ_1 = 1.9 g/cm³ e ρ_2 = 2.7 g/cm³) foi escolhido para representar este cenário geológico.

Os ajustes para esse novo modelo estão apresentados na Figura 4 e Tabela 3. Novamente os ajustes foram superiores aos da Figura 2 e a estabilidade do algoritmo foi comprovada. As espessuras obtidas foram aproximadamente entre 4 e 8 km, β_1 entre 1.8 e 2.7

km/s e β_2 foi aproximadamente 3.8 km/s. Estes novos valores são compatíveis com o modelo de densidade sedimento-embasamento.

Figura 2: Diferentes ajustes aos dados. Note que os ajustes são muito próximos, garantindo a estabilidade do algoritmo de otimização.

Ajuste	1	2	3	4	5	6	7	8
Beta1	3.35	3.35	3.37	3.37	3.37	3.36	3.36	3.37
Beta2	3.97	3.97	3.95	3.96	3.96	3.96	3.96	3.95
h	20.02	20.01	20.14	20.09	20.06	20.00	20.08	20.15
Erro	2.45	2.46	2.45	2.44	2.44	2.43	2.44	2.46

Tabela 1: Dados dos ajustes com densidades ρ_1 = 2.7 g/cm³ e ρ_2 = 3.3 g/cm³. Erro é o erro quadrático médio do ajuste. Note que h sempre cai perto do mínimo permitido, um indício de que valores menores podem ajustar melhor os dados.

Figura 3: Diferentes ajustes aos dados para um modelo crosta-manto de densidade e h variando de 1 a 40 km. Novamente os ajustes são muito próximos, garantindo a estabilidade do algoritmo de otimização. Este ajuste é superior ao ajuste apresentado na Figura 2, porém não possui muito significado físico. As profundidades ajustadas são incompatíveis com o modelo de densidade (h varia entre 3 e 6.5 km).

Crosta - Manto										
Ajuste:	1	2	3	4	5	6	7	8	9	10
Beta1:	2.07	2.60	2.09	2.02	1.33	2.60	2.33	1.73	2.25	2.55
Beta2:	3.85	3.87	3.85	3.85	3.84	3.87	3.86	3.85	3.85	3.86
h:	4.38	6.36	4.44	4.19	3.00	6.33	5.24	3.63	4.86	6.01
Erro:	0.98	1.08	0.98	1.07	0.97	1.07	1.03	0.97	1.01	1.06

Tabela 2: Dados do modelo correspondente a interface crosta-manto. Ajustes feitos com densidades ρ_1 = 2.7 g/cm³ e ρ_2 = 3.3 g/cm³ e h variando de 1 a 40 km. Erro é o erro quadrático médio do ajuste.

Figura 4: Diferentes ajustes aos dados para um modelo sedimento-embasamento de densidade e h variando de 1 a 40 km. Novamente os ajustes são muito próximos, garantindo a estabilidade do algoritmo de otimização. Este ajuste é superior ao ajuste apresentado na Figura 2.. Este ajuste é condizente com o modelo de densidade assumido. h assume valores típicos para profundida de embasamento e β₁ e β₂ assumem valores compatíveis com sedimentos e rocha cristalina.

Sedimento - Embasamento										
Ajuste:	1	2	3	4	5	6	7	8	9	10
Beta1:	2.15	2.75	2.02	2.36	1.79	2.08	2.38	2.71	1.83	2.36
Beta2:	3.85	3.86	3.85	3.86	3.84	3.85	3.85	3.86	3.84	3.85
h:	5.03	7.71	4.68	5.87	4.05	4.90	5.89	7.52	4.25	5.79
Erro:	0.97	1.06	0.96	1.00	0.98	0.98	0.99	1.04	0.96	0.98

Tabela 3: Dados do modelo correspondente a interface sedimento-embasamento. Ajustes feitos com densidades $\rho_1 = 1.9 \text{ g/cm}^3 \text{ e } \rho_2 = 2.7 \text{ g/cm}^3 \text{ e } h \text{ variando de 1 a 40 km. Erro \'e o erro quadrático médio do ajuste.}$

Conclusão

O modelo que melhor se ajustou aos dados, mantendo coerência geológica, foi o modelo de sedimento-embasamento. As propriedades físicas deste modelo são ρ_1 = 1.9 e ρ_2 = 2.7 g/cm³, β_1 = 2.24 e β_2 = 3.85 km/s e h = 5.57 km¹. Os demais modelos testados foram

¹ Valores obtidos através da média entre os dez ajustes.

descartados por falta de significado geológico, embora tenham ajustado os dados de forma satisfatória. Estes resultados são meramente matemáticos.

Referências

Socha K. e Dorigo M., 2008. Ant colony optimization for continuous domains. European Journal of Operational Research, 185, pp. 1155–1173.