1. Problema

La figura muestra dos circuitos independientes. El circuito de la izquierda debe suministrar una tensión de salida v_0 proporcional a la temperatura T de un sensor. Este sensor es modelado como una **fuente de corriente ideal**. Proporciona una corriente, en μA , numéricamente igual a la temperatura T en grados Kelvin. Por ejemplo, a $250~{\rm K}$ suministra $250~\mu A$, etc.

Nota: $1 \, \mu A = 10^{-6} \, A$

Los amplificadores operacionales de los circuitos están alimentados a $\pm 15 \, \mathrm{V}$.

- 1. Considere el **circuito de la izquierda**. Este circuito debe (1) suministrar una tensión de salida v_0 **lineal** con la temperatura, que valga $v_0 = 0$ V cuando T = 300 K, y (2) tener una sensibilidad de 100 mV/K.
 - a) Dibuje v_0 para el margen de temperaturas [250, 350] K.
 - b) ¿Qué valor debe tener v_1 si $T = 300 \,\mathrm{K}$? ¿Y la corriente i? Use esta información para obtener el valor de R_A .
 - c) Con el valor de R_A obtenido en el apartado anterior, ¿qué valor tiene i cuando $T=350\,\mathrm{K}$? ¿Y la tensión v_1 ? Use esta información para obtener R_B .
 - d) Compruebe que el circuito diseñado cumple las especificaciones cuando $T=250\,\mathrm{K}$.
- 2. Suponga ahora que conectamos la salida v_0 del circuito de la izquierda con la entrada v_A del circuito de la derecha. ¿Para qué valores de T en el margen de temperaturas [250,350] K está encendido el diodo LED?

Solución 1

- 1. Este circuito debe producir una tensión de salida proporcional a la temperatura del sensor en el margen de $T \in [250, 350] \, \mathrm{K}$. Consta de dos etapas. (1) **Sumador de corriente**. El sensor suministra $300 \, \mu\mathrm{A}$ a $T = 300 \, \mathrm{K}$. Como queremos que a esa temperatura $v_0 = 0$, el circuito sumador debe eliminar el offset del sensor. (2) **Amplificador** de ganancia $5 \, \mathrm{V/V}$. Aumenta la sensibilidad del circuito al valor deseado.
 - a) La tensión de salida es lineal en el margen de $T \in [250, 350] \, \mathrm{K}, v_0 \in [-5, +5] \, \mathrm{V}$. Además, $v_0 = 0 \, \mathrm{V}$ para $T = 300 \, \mathrm{K}$.
 - b) La tensión de salida debe ser $v_0=0$ para T=300 K. Es decir, $v_1=0 \Rightarrow i=0$. Por tanto, $R_A=50$ k Ω .
 - c) Para $T=350\,\mathrm{K},\,i=-50\,\mu\mathrm{A}.$ Además, como a esa temperatura $v_0=5\,\mathrm{V} \Rightarrow v_1=1\,\mathrm{V}.$ Por tanto, $R_B=20\,\mathrm{k}\Omega.$
 - d) Para $T=250 \,\mathrm{K}, i=+50 \,\mu\mathrm{A} \Rightarrow v_1=-1 \,\mathrm{V}$ y, por tanto, $v_0=-5 \,\mathrm{V}$
- 2. El circuito de la derecha compara la tensión de entrada v_A con 3 V. Si $v_A < 3$ V, el amplificador operacional está saturado positivamente y el diodo LED conduce. Por tanto, si T < 330 K, el diodo LED está encendido.

2. Problema

El amplificador de tensión del circuito de la figura tiene las características siguientes: $R_{\rm in} = 5 \, \rm k\Omega$, $R_{\rm out} = 1 \, \rm k\Omega$ y ganancia de tensión A.

Se realizan las medidas siguientes:

- Si la tensión de entrada es senoidal de 5 mV de amplitud y de muy alta frecuencia, la salida es senoidal de 150 mV de amplitud y de la misma frecuencia.
- Si la señal de entrada v_i es senoidal de $100\,\mathrm{mV}$ de amplitud y frecuencia angular $\omega = 10^3\,\mathrm{rad/s}$, la salida es senoidal de $300\,\mathrm{mV}$ de amplitud y de la misma frecuencia.
- 1. Determine la ganancia A.

Sugerencia: Use el circuito equivalente de los amplificadores.

2. Obtenga el valor de la capacidad C

Solución 2

- 1. El circuito es una red paso alto. A muy bajas frecuencias el condensador es un circuito abierto y $v_0 = 0$. A muy altas frecuencias C es un cortocircuito y, por tanto, $v_0 \neq 0$.
- 2. La frecuencia angular de corte del circuito es $\omega_0=1/\tau$, donde τ es la constante de tiempo del circuito: $\tau=(1\,\mathrm{k}+4\,\mathrm{k})\,C$.
- 3. La ganancia del circuito a muy alta frecuencia es -4A/3. En el diagrama de Bode de amplitudes $G_{\text{max}} = 4A/3$.

De la información suministrada sabemos que:

- 1. A muy altas frecuencias, una tensión senoidal de entrada de $5\,\mathrm{mV}$ de amplitud produce una señal de salida senoidal de $150\,\mathrm{mV}$ de amplitud y de la misma frecuencia. Es decir, $G_{\mathrm{max}}=30\,\mathrm{V/V}$. Por tanto, $|A|=22.5\,\mathrm{V/V}$.
- 2. Además, para una señal senoidal de entrada de $100\,\mathrm{mV}$ de amplitud y frecuencia angular $\omega=10^3\,\mathrm{rad/s}$, la salida es senoidal de $300\,\mathrm{mV}$ de amplitud y de la misma frecuencia. Pero como esta señal es $10\,\mathrm{veces}$ menor que la amplitud que debería obtenerse a muy alta frecuencia, la frecuencia angular de corte es $\omega_0=10^4\,\mathrm{rad/s}$. Como $\omega_0=1/\tau\Rightarrow C=20\,\mathrm{nF}$.

3. Problema

El diagrama de bloques de la figura consta de cuatro circuitos:

- a) Un circuito para detectar la componente artificial de la intensidad luminosa (que denominamos E) de un recinto, similar al diseñado en el laboratorio. Este circuito produce una señal continua v_0 en el margen de [0, 3.9] V. Su **sensibilidad** es $2 \,\mathrm{mV/lx}$. Además, $v_0 = 0 \,\mathrm{V}$ cuando $E = 0 \,\mathrm{lx}$.
- b) Un conversor analógico-digital (AD) de **cuatro bits**. Este circuito está alimentado a +5 V. La característica de transferencia del conversor se muestra en la página siguiente. El eje horizontal representa la tensión analógica de entrada, v_0 en este caso. La salida es el código binario E_3 E_2 E_1 E_0 que aparece en el eje vertical. E_3 es el bit de mayor peso. Puede observarse que, por ejemplo, si $v_0 \in (1.25, 1.25 + \Delta)$, donde $\Delta = 5/16$ V, la salida del conversor AD es 0100.
- c) Un circuito digital. Es un circuito de lógica combinacional con tres salidas, alimentado a +5 V.
- d) Un conjunto de tres LEDs conectados a las salidas del circuito digital. La caída de tensión en los diodos cuando conducen es 2 V.

El **objetivo** de este problema es diseñar un circuito digital de lógica combinacional que encienda uno (y solo uno) de los LEDs cuando se cumplan las condiciones siguientes:

- El LED rojo (R) debe encenderse cuando $E \ge 1500 \, \mathrm{lx}$.
- El LED amarillo (A) debe encenderse cuando $850 \, \text{lx} \le E \le 1300 \, \text{lx}$.
- El LED verde (V) debe encenderse cuando $E \le 700 \, \mathrm{lx}$.

- 1. Determine los umbrales de la tensión v_0 para los que deben encenderse los diodos LED.
- 2. Use la característica de transferencia del conversor AD para determinar el número binario correspondiente a cada uno de los umbrales anteriores.
- 3. Escriba la tabla de verdad para las tres variables de salida del circuito digital.
- 4. Determine la función lógica simplificada para el LED rojo (R) y dibuje el circuito con puertas lógicas resultante.
- 5. Determine el valor de R_x para que la corriente en cada diodo LED sea menor que $5 \,\mathrm{mA}$.

Solución 3

- 1. Los umbrales de tensión son:
 - a) El LED rojo (R) debe encenderse cuando $v_0 \ge 3 \text{ V}$.
 - b) El LED amarillo (A) debe encenderse cuando $1.7 \le v_0 \le 2.6 \text{ V}$.
 - c) El LED verde (V) debe encenderse cuando $v_0 \le 1.4 \,\mathrm{V}$.

salida conversor AD: $(E_3 E_2 E_1 E_0)$

- 2. La salida E_3 E_2 E_1 E_0 del conversor AD para cada uno de los márgenes anteriores es:
 - a) El LED rojo (R) debe encenderse cuando E_3 E_2 E_1 $E_0 \ge 1001$.
 - b) El LED amarillo (A) debe encenderse cuando $0101 \le E_3 E_2 E_1 E_0 \le 1000$.
 - c) El LED verde (V) debe encenderse cuando E_3 E_2 E_1 $E_0 \le 0100$.
- 3. Las tablas de verdad de los diodos son:
 - a) Rojo: $R = \sum m(9, 10, 11, 12) + d(13, 14, 15)$
 - b) Amarillo: $A = \sum m(5, 6, 7, 8) + d(13, 14, 15)$
 - c) Verde: $V = \sum m(0, 1, 2, 3, 4) + d(13, 14, 15)$

donde m() representa minitérminos y d() representa minitérminos de condiciones libres.

- 4. La función simplificada para el LED rojo es $R=E_3$ $(E_0+E_1+E_2)$.
- 5. $R_x > 600 \,\Omega$.

4. Problema

Queremos diseñar el circuito lógico de un cambio secuencial para un vehículo de tres velocidades. El conductor dispone de:

- Una palanca P que tiene dos posiciones: punto muerto (P = 0) y marcha (P = 1).
- Un selector de velocidades formado por dos pulsadores, S y B, que permiten cambiar secuencialmente las velocidades del coche. Cada pulsador tiene dos posiciones. Cuando activamos un pulsador, S=1 (o B=1). De lo contrario, S=0 (o B=0).

La **salida** del sistema secuencial es una señal de dos bits que representa las velocidades del vehículo (primera = 01, segunda = 10, tercera = 11) y el punto muerto = 00.

Las características del cambio secuencial son las siguientes:

- a) Si la palanca se pone en la posición de punto muerto (P=0), el cambio pasa a (o permanece en) **punto muerto**, independientemente de la marcha en que se encuentre o del selector de velocidades.
- b) Si el vehículo está en **punto muerto** y ponemos la palanca en la posición P=1, el vehículo se pone en **primera**.
- c) Si la palanca está en la posición de marcha (P=1) y pulsamos S (S=1), el cambio salta a una velocidad superior. Por ejemplo, pasa de **primera** a **segunda**. Una vez en **tercera**, pulsar S no modifica el selector de velocidades.
- d) Si la palanca está en la posición de marcha (P = 1) y pulsamos B (B = 1), el cambio salta a una velocidad inferior. Por ejemplo, pasa de **tercera** a **segunda**. Una vez en **primera**, pulsar B no modifica el selector de velocidades.
- e) El sistema digital no modifica la velocidad del vehículo si activamos simultáneamente los dos pulsadores S y B.

Diseño:

- 1. Dibuje el diagrama de estados del cambio secuencial. El orden de las entradas en las transiciones de estado ha de ser *P*, *S*, *B*.
- 2. Justifique si es necesario usar el detector de flanco en alguna de las señales de entrada (P, S, B).

Solución 4

El diagrama de estados del cambio secuencial es el mostrado en la figura. Los **estados** y_k del sistema secuencial son N (punto muerto) y el número decimal correspondiente a la velocidad. La **salida** del sistema secuencial es una señal de dos bits S_1S_0 . El orden de las entradas en las transiciones de estado es P, S, B. El símbolo x representa **no importa**. Es necesario usar detector de flanco en las señales de entrada S y B, pero no en P.

