Math 11, Fall 2007 Lecture 11

Scott Pauls 1

¹Department of Mathematics Dartmouth College

10/19/07

- Review and overview
 - Last class
- Today's material
 - Extremal values
 - Canonical examples
 - More examples
- Next class

- Review and overview
 - Last class
- 2 Today's material
 - Extremal values
 - Canonical examples
 - More examples
- Next class

Differentiation

The gradient vector field

•

$$\nabla f = \langle f_{\mathsf{X}}, f_{\mathsf{y}} \rangle$$

- The gradient encodes all the derivative information:

 - The gradient points in the direction of maximal ascent
 - **3** Extremal values must occur when $|\nabla f| = 0$
 - **4** For $f : \mathbb{R}^3 \to \mathbb{R}$, ∇f gives a normal vector to the level surface, f(x, y, z) = 0.

- Review and overview
 - Last class
- 2 Today's material
 - Extremal values
 - Canonical examples
 - More examples
- Next class

Locating Max/Min values

If z = f(x, y) has a maximum or minimum value at (x_0, y_0) then $\nabla f(x_0, y_0) = \vec{0}$.

Example:
$$f(x, y) = x^3y + 12x^2 - 8y$$

$$f_x = 3x^2y + 24x, \ f_y = x^3 - 8$$

Locating Max/Min values

If z = f(x, y) has a maximum or minimum value at (x_0, y_0) then $\nabla f(x_0, y_0) = \vec{0}$.

Example:
$$f(x, y) = x^3y + 12x^2 - 8y$$

$$f_x = 3x^2y + 24x, \ f_y = x^3 - 8$$

Second derivative test

Suppose the second partial derivatives of f are continuous on a disk with center (x_0, y_0) and that $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. Let

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - (f_{xy}(x_0, y_0))^2$$

- If D > 0 and $f_{xx}(x_0, y_0) > 0$ then $f(x_0, y_0)$ is a local minimum.
- If D > 0 and $f_{xx}(x_0, y_0) < 0$ then $f(x_0, y_0)$ is a local maximum.
- If D < 0 then $f(x_0, y_0)$ is a not a local minimum or maximum.
- If D = 0 then the test is inconclusive

- Review and overview
 - Last class
- 2 Today's material
 - Extremal values
 - Canonical examples
 - More examples
- Next class

Simple examples

•
$$f(x, y) = x^2 + y^2$$

$$f(x,y) = xy$$

•
$$f(x,y) = -x^2 - y^2$$

- Review and overview
 - Last class
- 2 Today's material
 - Extremal values
 - Canonical examples
 - More examples
- Next class

Examples

•
$$f(x,y) = xy - x^2 - y^2 - 2x - 2y + 4$$

•
$$f(x, y) = \sin(x^2 + y^2)$$

Work for next class

- Reading: 15.7
- Exam 1!
- f07hw12