$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
For
$$real$$

$$\sin \theta = \frac{e^{i\theta} - e^{i\theta}}{2i}$$

to complex extends n um bers

$$Cos Z = \frac{e^{iz} - iz}{2}$$

$$Z \in C$$

$$Sin Z = \frac{e^{iz} - e^{iz}}{2i}$$

Complex Power Series

E CM ZM

ZEC

R radius of Convergence

> Series converges absolutely for |Z| < Rdiverges for |Z| > R

W. R

Proof (outline)

Assume series converges absolutely for when $Z = W \in \mathbb{C}$. Show that Series converges if |Z| < |W|. Assume series not absolutely

Convergent for $z = W' \in \mathbb{Z}$ Show that series diverges if |z| > |W'|.

How to compute R?

Can use root/ratio
test. Can also exploit
properties of complex
power series (see Complex
Analysis next year)

Consider power series

$$\frac{1}{1+z^2} = 1-z^2+z^4-z^6+\dots$$

$$(R=1)$$

LHS blows up at z = i or z = -i

RMS = a power series which converges in a disc of radius R

R must be < 1 since otherwise = sangut RHS Would he well de fined for $z = \pm i$ Achially in Mis case R is equal 1. Some theory (holomorphic functions) be tween R = distance nearest origin and

Singularity.

Examples

$$(i)$$
 tanz (ii) $\frac{1}{1+e^{z}}$ = $z+\frac{z^{3}}{3}+\frac{2}{15}z^{5}+...$

Singularities where
$$\cos z = 0$$

 $Z = \frac{1}{2}T$ in odd integer
Can show $\cos z$ has

no other zeros

 $-\frac{3\pi}{2} - \frac{\pi}{2} \qquad \frac{3\pi}{2}$

 $R = \frac{T}{2} = distance between origin and sungularities at <math>Z = \frac{T}{2}$ and $-\frac{T}{2}$

Q What is R for $tanh z = z - \frac{z^3}{3} + \frac{2}{15}z^5 - \dots$

$$\frac{1}{e^{z}+1} = \frac{1}{z} + \dots$$

$$e^{z} = -1$$

Complex Conjugation

The complex conjugate of
$$z = x + iy = re^{iQ}$$
 is defined through

$$\overline{z} = x - iy = re^{iQ}$$
Properties:
$$\overline{z} = z \qquad \overline{z}^n = (\overline{z})^n$$

$$|z|^2 = z\overline{z}$$

Re
$$(e^{io}) = cos O = e^{io} + \overline{e}^{io}$$

 \overline{z}
 \overline{z}
 \overline{z}
 \overline{z}
 \overline{z}

Poly nomials

A complex polynomial of degree n has

Fundamental Theorem of Algebra any polynomial (of degree >1) has at least one root ie. P(z)=0 has at least one solution. In general for degree n there are n roots (these can be repeated so number of roots can be less than n)

A complex polynomial can be factorised

 $P(z) = C_n \left(z-a_1\right) \left(z-a_2\right) - \ldots \left(z-a_n\right)$

Where a,, 92, --, an

are the roots of P

(can be repeated roots)

If coefficients are real Co, ---, Cn are real roots ai, ---, an can Still be complex -

complex roots will appear in complex conjugate pairs

If a is a root

So is 9.

Proof Suppose

Co, C,,--, Cn are real

and a is a root

of $P(z) = Co + C_1 z + -- + C_n z^n$ we have $P(a) = Co + C_1 a + C_2 a^2 + -- + C_n a^n$

Take complex conjugate $\overline{C}_0 + \overline{C}_1 \overline{a} + \overline{C}_2 \overline{a}^2 + \dots \overline{C}_n \overline{a}^n$ $= C_0 + C_1 \overline{a} + C_2(\overline{a})^2 + \dots + C_n(\overline{a})^n = 0$ So that $P(\overline{a}) = 0$ $\left(\overline{C}_0 = C_0, \overline{C}_1 = C_1, ek_-\right)$

Simple explample $P(z) = 1 + z^{2} = (z+i)(z-i)$ $Roots \pm i \quad a \quad complex$ $Conjugate \quad pair$

example

$$P(z) = z^6 - 7z^3 - 8$$

= $(z^3 - 8)(z^3 + 1)$

$$z^{3}=8=8e^{2\pi i}=8e^{4\pi i}$$

 $z=2$, $z=2e^{2\pi i/3}$, $z=2e^{4\pi i/3}=2e^{-2\pi i/3}$

$$Z^3 = -1 = e^{i \pi} = e^{3i\pi} = e^{5i\pi}$$

$$z = e^{i\pi/3}$$
, $z = e^{i\pi} = -1$, $z = e^{-i\pi/3}$

