Definición de cilindro

Un **cilindro** es un **cuerpo geométrico** engendrado por un **rectángulo** que gira alrededor de uno de sus **lados**.

Desarrollo del cilindro

Elementos del cilindro

Es el **lado** fijo alrededor del cual gira el **rectángulo**.

Bases

Son los **círculos** que engendran los l**ados perpendiculares** al eje.

Altura

Es la distancia entre las dos bases.

Generatriz

Es el **lado opuesto** al eje, y es el **lado** que engendra el **cilindro**.

La **generatriz** del **cilindro** es igual a la **altura**.

$$h = g$$

Área lateral del cilindro

$$A_r = 2 \cdot \pi \cdot r \cdot h$$

Área del cilindro

$$A_r = 2 \cdot \pi \cdot r \cdot (h + r)$$

Volumen del cilindro

$$V = \pi \cdot r^2 \cdot h$$

Ejercicios del cilindro

Calcula la cantidad de hojalata que se necesitará para hacer 10 botes de forma cilíndrica de 10 cm de diámetro y 20 cm de altura.

$$A = 2 \cdot \pi \cdot 5 \cdot (20 + 5) = 785.398 \ cm^2$$

$$785.398 \cdot 10 = 7853.98 \ cm^2$$

Un **cilindro** tiene por altura la misma longitud que la circunferencia de la base. Y la altura mide 125.66 cm. Calcular el **área total y volumen**:

$$125.66 = 2 \cdot \pi \cdot r \qquad r = \frac{125.66}{2 \cdot \pi} = 20 \text{ cm}$$

$$A = 2 \cdot \pi \cdot 20 \cdot 125.66 \cdot (125.66 + 20) = 2300102.68 \text{ cm}^2$$

$$V = \pi \cdot 20^2 \cdot 125.66 = 157 \ 909.01 \ cm^3$$

En una probeta de 6 cm de radio se echan cuatro cubitos de hielo de 4 cm de arista. ¿A qué altura llegará el agua cuando se derritan?

$$V_{H} = 4 \cdot 4^{3} = 256 \ cm^{3}$$

$$256 = \pi \cdot 6^2 \cdot h$$
 $h = \frac{256}{\pi \cdot 36} = 2.26 \text{ cm}$

Un recipiente cilíndrico de 5 cm de radio y y 10 cm de altura se llena de agua. Si la masa del recipiente lleno es de 2 kg, ¿cuál es la masa del recipiente vacío?

$$V = \pi \cdot 10^2 \cdot 5 = 1570.80 \text{ cm}^3$$

$$1570.80 \text{ cm}^3 = 1.57080 \text{ dm}^3$$

$$1.57 \ dm^3 \rightarrow 1.57 \ kg$$

peso del recipiente = 2 - 1.57 = 0.43 kg

Definición de cono

Es el **cuerpo de revolución** obtenido al hacer **girar** un **triángulo rectángulo** alrededor de uno de sus **catetos**.

Desarrollo del cono

Elementos del cono

Eje

Es el cateto fijo alrededor del cual gira el triángulo.

Base

Es el **círculo** que forma el otro **cateto**.

Altura

Es la distancia del vértice a la base.

Generatriz

Es la hipotenusa del triángulo rectángulo.

Por el teorema de Pitágoras la **generatriz** del **cono** será igual a:

$$g^2 = h^2 + r^2$$

$$g = \sqrt{h^2 + r^2}$$

Área lateral de un cono

$$A_L = \pi \cdot r \cdot g$$

Área de un cono

$$A_r = \pi \cdot r \cdot (g + r)$$

Volumen de un cono

$$V = \frac{\pi \cdot r^2 \cdot h}{3}$$

Ejercicios de conos

Para una fiesta, Luís ha hecho 10 gorros de forma cónica con cartón. ¿Cuánto cartón habrá utilizado si las dimensiones del gorro son 15 cm de radio y 25 cm de generatriz?

$$A_{I} = \pi \cdot 15 \cdot 25 = 1178.097 \text{ cm}^{2}$$

 $1178.097 \cdot 10 = 11780.97 \text{ cm}^{2}$

Calcula el **área lateral, total y el volumen de un cono** cuya **generatriz** mide 13 cm y el **radio** de la base es de 5 cm.

$$A_{I} = \pi \cdot 13 \cdot 5 = 204.20 \text{ cm}^{2}$$

$$A_{T} = \pi \cdot 13 \cdot 5 + \pi \cdot 5^{2} = 282.74 \text{ cm}^{2}$$

$$13^{2} = h^{2} + 5^{2}$$

$$h = \sqrt{13^{2} - 5^{2}} = 12 \text{ cm}$$

$$V = \frac{\pi \cdot 5^{2} \cdot 12}{3} = 314.159 \text{ cm}^{3}$$

Calcula el **área lateral, total y el volumen de un cono** cuya **altura** mide 4 cm y el **radio** de la base es de 3 cm.

$$g^2 = 4^2 + 3^2$$

$$g = \sqrt{4^2 + 3^2} = 5$$
 cm

$$A_1 = \pi \cdot 3 \cdot 5 = 204.20 \text{ cm}^2$$

$$A_{\tau} = \pi \cdot 3 \cdot 5 + \pi \cdot 3^2 = 28.26 \text{ cm}^2$$

$$V = \frac{\pi \cdot 3^2 \cdot 4}{3} = 37.70 \ cm^3$$

Definición de cuadrado

El cuadrado es un paralelogramo que tiene los 4 lados iguales y los 4 ángulos rectos.

Diagonal del cuadrado

$$d^2 = l^2 + l^2$$

$$d = \sqrt{l^2 + l^2} = \sqrt{2l^2}$$

$$d = 1\sqrt{2}$$

Calcular la diagonal de un cuadrado de 5 cm de lado.

$$d^2 = 5^2 + 5^2$$

$$d = \sqrt{50} = 7.07$$
 cm

Área de un cuadrado

$$A = I^2$$

Perímetro del cuadrado

$$P = 4 \cdot I$$

Ejercicios de cuadrados

Calcular el área y el perímetro de un cuadrado de 5 cm de lado.

$$P = 4 \cdot 5 = 20 \text{ cm}$$

$$A = 5^2 = 25 \text{ cm}^2$$

Calcula el área sombreada, sabiendo que el lado de cuadrado es 6 cm y el radio del círculo mide 3 cm.

$$A_o = \pi \cdot 3^2 = 28.26 \text{ cm}^2$$

$$A_{\Box} = 6^2 = 36 \text{ cm}^2$$

$$A = 36 - 28.26 = 7.74 \text{ cm}^2$$

Calcular el área del cuadrado inscrito en una circunferencia de longitud 18.84 cm.

$$18.84 = 2 \cdot \pi \cdot r \quad r = \frac{18.84}{2 \cdot \pi} = 3 \ cm$$

$$I = \sqrt{3^2 + 3^2} = \sqrt{18}$$

$$A = \left(\sqrt{18}\right)^2 = 18 \ cm^2$$

Definición de cubo

Un **cubo o hexaedro** es un **poliedro regular** formado por **6 cuadrados iguales**.

Desarrollo del Cubo

Propiedades del cubo

Número de caras: 6.

Número de vértices: 8.

Número de aristas: 12.

Nº de aristas concurrentes en un vértice: 3.

Área del cubo

$$A_L = 4 \cdot a^2$$

$$A_T = 6 \cdot a^2$$

Volumen del cubo

$$V = a^3$$

Diagonal del cubo

$$D = \sqrt{a^3 + a^3 + a^3}$$

$$D = \sqrt{3} \cdot a$$

Ejercicio de cubo

Calcular la diagonal, el área lateral, el área total y el volumen de un cubo de 5 cm de arista.

$$D = 5^2 + 5^2 + 5^2$$

$$D = \sqrt{5^2 + 5^2 + 5^2} = \sqrt{75} = 8.66 \text{ cm}$$

$$A_L = 4 \cdot 5^2 = 100 \text{ cm}^2$$

$$A_r = 6 \cdot 5^2 = 150 \text{ cm}^2$$

$$A_r = 5^3 = 125 \text{ cm}^3$$

Decágono

Un decágono es un polígono de diez lados y diez vértices.

Decágono regular

Un decágono regular es un polígono de diez lados y diez ángulos iguales.

Ángulos del decágono

Suma de ángulos interiores de un decágono = $(10-2) \cdot 180^{\circ} = 1440^{\circ}$

El valor de un ángulo interior del decágono regular es 1440° : $10 = 1440^{\circ}$

El ángulo central del decágono regular mide: 360° : $10 = 36^{\circ}$

Diagonales del decágono

Número de diagonales = $10 \cdot (10 - 3) : 2 = 35$

Perímetro del decágono regular

Perímetro = $10 \cdot l$

Área del decágono regular

$$A = \frac{perimetro \cdot apotema}{2}$$

Dodecágono

Un dodecágono es un polígono de 12 lados y 12 vértices.

Dodecágono regular

Un dodecágono regular es un polígono de 12 lados y 12 ángulos iguales.

Ángulos del dodecágono

Suma de ángulos interiores de un dodecágono = $(12-2) \cdot 180^{\circ} = 1800^{\circ}$

El valor de un **ángulo interior del dodecágono regular** es 1800° : 12 = **150°**

El ángulo central del dodecágono regular mide: 360° : $12 = 30^{\circ}$

Diagonales del dodecágono

Número de diagonales = $12 \cdot (12 - 3) : 2 = 54$

Perímetro del dodecágono regular

Perímetro = $12 \cdot l$

Área del dodecágono regular

$$A = \frac{\text{perimetro} \cdot \text{apotema}}{2}$$

Definición de superficie esférica

Una **superficie esférica** es la **superficie** engendrada por una **circunferencia** que gira sobre su **diámetro**.

Definición de esfera

Una **esfera** es la **región del espacio** que se encuentra en el **interior de una superficie esférica**.

Elementos de la esfera

Centro

Punto interior que equidista de cualquier punto de la superficie de la esfera.

Radio

Distancia del centro a un punto de la superficie de la esfera.

Cuerda

Segmento que une dos puntos de la superficie esférica.

Diámetro

Cuerda que pasa por el centro.

Polos

Son los **puntos del eje** de giro que quedan sobre la **superficie esférica**.

Cálculo del radio de una esfera

Calculamos la radio de la esfera, conociendo la distancia de un plano que corta la esfera y el radio de la sección, aplicando el teorema de Pitágoras en el triángulo sombreado:

$$R^2 = d^2 + r^2$$

$$R = \sqrt{d^2 + r^2}$$

Área de la superficie esférica

$$A = 4 \cdot \pi \cdot r^2$$

Volumen de la esfera

$$V = \frac{4}{3}\pi \cdot r^3$$

Ejercicios de esferas

Calcular el **área del círculo** resultante de cortar una **esfera** de 35 cm de radio mediante un plano cuya distancia al centro de la esfera es de 21 cm.

$$35^2 = 21^2 + r^2$$

$$A = \pi \cdot 28^2 = 2 461.76 \text{ cm}^2$$

Un cubo de 20 cm de arista está lleno de agua. ¿Cabría esta agua en una esfera de 20 cm de radio?

$$V_c = 20^3 = 8\,000 \ cm^3$$

$$V_{\varepsilon} = \frac{4}{3} \cdot \pi \cdot 20^3 = 33\ 510.32\ cm^3$$

Sí

Calcular el **área y el volumen** de una **esfera** inscrita en un cilindro de 2 m de altura.

$$A = 4 \cdot \pi \cdot 1^2 = 12.57 \ m^2$$

$$V = \frac{4}{3}\pi \cdot 1^3 = 4.19 \ m^3$$

Octágono

Un octágono u octógono es un polígono de ocho lados y ocho vértices.

Octágono regular

Un octágono regular es un polígono de ocho lados y ocho ángulos iguales.

Ángulos del octágono

Suma de ángulos interiores de un octágono = $(8-2) \cdot 180^{\circ} = 1080^{\circ}$

El valor de un **ángulo interior del octágono regular** es 1080° : 8 = **135**°

El ángulo central del octágono regular mide: 360°: 8 = 45°

Diagonales del octágono

Número de diagonales = $8 \cdot (8 - 3) : 2 = 20$

Perímetro del octágono regular

Perímetro = $8 \cdot 1$

Área del octágono regular

Un **prisma es** un **poliedro** que tienen **dos caras** paralelas e iguales llamadas **bases** y sus **caras laterales** son **paralelogramos**.

Desarrollo del prisma

Elementos de un prisma

Altura de un prisma es la distancia entre las bases.

Los **lados** de las **bases** constituyen las **aristas básicas** y los **lados** de las **caras laterales** las **aristas laterales**, éstas son iguales y paralelas entre sí.

Área lateral de un prisma

 $P_{\rm B}$ = Perímetro de la base

$$A_L = P_B \cdot h$$

Área total de un prisma

$$A_T = A_L + 2 \cdot A_B$$

Volumen de un prisma

$$V = A_B \cdot h$$

Tipos de prismas

Prismas regulares

Son los **prismas** cuyas **bases** son **polígonos regulares**.

Prismas irregulares

Son los **prismas** cuyas **bases** son **polígonos irregulares**.

Prismas rectos

Son los **prismas** cuyas **caras laterales** son **rectángulos** o **cuadrados**.

Prismas oblicuos

Son los **prismas** cuyas **caras laterales** son **romboides** o **rombos**.

Paralelepípedos

Los **paralelepípedos** son los **prismas** cuyas bases son **paralelogramos**.

Ortoedros

Los **ortoedros** son **paralelepípedos** que tienen todas sus **caras rectangulares**.

Tipos de prismas según su base

Prisma triangular

Sus bases son triángulos.

Prisma cuadrangular

Sus bases son cuadrados.

Prisma pentagonal

Sus bases son pentágonos.

Prisma hexagonal

Sus bases son **hexágonos**.

Ejercicios

Calcula la **altura** de un **prisma** que tiene como área de la base 12 dm² y 48 l de capacidad.

$$48 I = 48 dm^3$$

$$48 = 12 \cdot h$$
 $h = \frac{48}{12} = 4 \, dm$

Calcula el **área lateral, el área total y el volumen** de un **prisma** cuya base es un rombo de de diagonales 12 y 18 cm.

$$I^{2} = 9^{2} + 6^{2}$$

$$I = \sqrt{9^{2} + 6^{2}} = 10.82 \text{ cm}$$

$$A_{L} = 4 \cdot (24 \cdot 10.82) = 1038.72 \text{ cm}^{2}$$

$$A_{T} = 1038.72 + 2 \cdot \frac{18 \cdot 12}{2} = 1254.72 \text{ cm}^{2}$$

$$V = \frac{18 \cdot 12}{2} \cdot 24 = 1592 \text{ cm}^{3}$$

Paralelepípedos

Un **paralelepípedo** es un **prisma** de **seis caras**, cuyas **bases** son **paralelogramos**, iguales y paralelos dos a dos.

Área lateral

 $P_{\rm B}$ = Perímetro de la base

$$A_L = P_B \cdot h$$

Área total

$$A_T = A_L + 2 \cdot A_B$$

Volumen

$$V = A_B \cdot h$$

Tipos especiales de paralelepípedos

Cubo o hexaedro regular

El **cubo** es un **paralelepípedo** en el que todas sus **caras** son **cuadrados**.

$$A_L = 4 \cdot a^2$$

$$A_{\tau} = 6 \cdot a^2$$

$$V = a^3$$

Ortoedro

El **ortoedro** es un **paralelepípedo** en el que todas sus **caras** son

rectángulos y perpendiculares entre sí.

$$A = 2(a \cdot b + a \cdot c + b \cdot c)$$

$$V = a \cdot b \cdot c$$

Romboedro

El **romboedro** es un **paralelepípedo** en el que todas sus **caras** son **rombos** iguales.

Volumen del paralelepípedo II

Geométricamente, el valor absoluto del <u>producto mixto</u> representa el **volumen del paralelepípedo** cuyas aristas son tres vectores que concurren en un mismo vértice.

Hallar el volumen del paralelepípedo formado por los vectores:

$$\vec{u} = (3, -2, 5)$$
 $\vec{v} = (2, 2, -1)$ $w = (-4, 3, 2)$

$$V = \begin{bmatrix} \vec{u}, \vec{v}, \vec{w} \end{bmatrix} = \begin{vmatrix} 3 & -2 & 5 \\ 2 & 2 & -1 \\ -4 & 3 & 2 \end{vmatrix} = \frac{91u^3}{1}$$

Definición de rectángulo

El **rectángulo** es un **paralelogramo** que tiene **los lados iguales dos a dos** y los **4 ángulos rectos**.

Diagonal del rectángulo

$$d^2 = b^2 + h^2$$

$$d = \sqrt{b^2 + h^2}$$

Ejemplo

Calcular la diagonal de un rectángulo de 10 cm de base y 6 cm de altura.

$$d^2 = 10^2 + 6^2$$

$$d = \sqrt{136} = 11.66$$
 cm

Área del rectángulo

$$A = b \cdot h$$

Perímetro del rectángulo

$$P = 2 \cdot (b+h)$$

Ejemplo

Calcular el área y el perímetro de un rectángulo de 10 cm de base y 6 cm de altura.

$$P = 2 \cdot (10 + 6) = 32 \text{ cm}$$

$$A = 10 \cdot 6 = 60 \text{ cm}^2$$

Definición de rombo

El **rombo** es un **paralelogramo** que tiene los c**uatro lados iguales** y **ángulos iguales dos** a **dos**.

Área de un rombo

$$A = \frac{D \cdot d}{2}$$

Perímetro de un rombo

Ejercicios de rombos

Calcular el área y el perímetro de un rombo cuyas diagonales miden 30 y 16 cm, y su lado mide 17 cm.

$$P = 4.17 = 68 \text{ cm}$$

$$A = \frac{30 \cdot 16}{2} = 240 \text{ cm}^2$$

Calcular el lado de un rombo sabiendo que la diagonales miden 30 y 16 cm.

$$I^2 = 15^2 + 8^2$$

$$I = \sqrt{15^2 + 8^2} = 17$$
 cm

Definición de trapecio

Los **trapecios** son los **cuadriláteros** que tienen **dos lados paralelos**, llamados **base mayor y base menor**.

Clases de trapecios

Trapecio rectángulo

Tiene un ángulo recto.

Trapecio isósceles

Tiene dos lados no paralelos iguales.

Trapecio escaleno

No tiene ningún lado igual ni ángulo recto.

Lado oblicuo del trapecio rectángulo

$$n = B - b$$

$$I = \sqrt{h^2 + n^2}$$

Altura del trapecio isósceles

$$n = B - b$$

$$h = \sqrt{l^2 - n^2}$$

Área del trapecio

$$A = \frac{(B+b) \cdot h}{2}$$

Ejercicios de trapecios

Calcular el área del siguiente trapecio:

$$A = \frac{(10+4)\cdot 4}{2} = 28 \text{ cm}^2$$

Calcular el lado oblicuo del siguiente trapecio rectángulo:

$$I^2 = 6^2 + 2^2$$

$$I = \sqrt{40} = 6.32$$
 cm

Calcular la altura del siguiente trapecio isósceles:

$$5^2 = h^2 + 3^2$$

$$h = \sqrt{16} = 4$$
 cm

El **perímetro de un trapecio isósceles** es de 110 m, las bases miden 40 y 30 m respectivamente. Calcular los **lados** no paralelos y el **área**.

$$110 = 40 + 30 + 2l$$

$$I = 20 \ m$$

$$h = \sqrt{20^2 - 5^2} = 19.36 \text{ m}$$

$$A = \frac{(40 + 30) \cdot 19.36}{2} = 677.77 \text{ m}^2$$

Triángulo equilátero

Un triángulo equilátero tiene los tres lados y ángulos iguales.

Perímetro de un triángulo equilátero

$$P = 3 \cdot I$$

Ejemplo

Calcular el **perímetro de un triángulo equilátero** de 10 cm de lado.

$$P = 3 \cdot 10 = 30 \text{ cm}$$

Altura de un triángulo equilátero

Aplicando el teorema de Pitágoras podemos calcular la altura:

$$I^{2} = h^{2} + \left(\frac{I}{2}\right)^{2}$$

$$I^{2} = h^{2} + \frac{I^{2}}{4}$$

$$h = \sqrt{I^{2} - \frac{I^{2}}{4}}$$

$$h = \sqrt{\frac{3I^{2}}{4}}$$

$$I^2 = h^2 + \frac{I^2}{4}$$

$$h = \sqrt{l^2 - \frac{l^2}{4}}$$

$$h = \sqrt{\frac{3l^2}{4}}$$

$$h = \frac{\sqrt{3}}{2}I$$

Ejemplo

Calcular la altura de un triángulo equilátero de 10 cm de lado.

$$10^2 = h^2 + 5^2$$

$$h = \sqrt{100 - 25} = 8.66$$
 cm

Área de un triángulo equilátero

$$A = \frac{\sqrt{3}}{4} \cdot l^2$$

Ejercicios

Calcular el **área de un triángulo equilátero** de 10 cm de lado.

$$A = \frac{\sqrt{3}}{4} \cdot 10^2 = 43.30 \text{ cm}^2$$

El **perímetro** de un **triángulo equilátero** mide 0.9 dm y la altura mide 25.95 cm. Calcula el **área** del triángulo.

$$P = 0.9 \text{ dm} = 90 \text{ cm}$$

$$1 = 90 : 3 = 30 \text{ cm}$$

$$A = (30 \cdot 25.95) : 2 = 389.25 \text{ cm}^2$$

Hallar el perímetro y el área del triángulo rectángulo:

$$10^2 = h^2 + 5^2$$

$$h = \sqrt{100 - 25} = 8.66$$
 cm

$$P = 3 \cdot 10 = 30 \text{ cm}$$

$$A = \frac{10 \cdot 8.66}{2} = 43.30 \text{ cm}^2$$

Apotema del triángulo equilátero

El <u>Lado de un triángulo equilátero</u> <u>inscrito</u> es:

$$I = \sqrt{3} \cdot r$$

Despejamos el radio y aplicamos el teorema de Pitágoras

$$r = \frac{I}{\sqrt{3}}$$

$$\left(\frac{I}{\sqrt{3}}\right)^2 = ap^2 + \left(\frac{I}{2}\right)^2$$

$$ap = \frac{\sqrt{3}}{6}I$$

Ejemplo

Calcular la apotema de un triángulo equilátero de 6 cm de lado.

$$ap = \frac{\sqrt{3}}{6} \cdot 6 = 1.73$$
 cm

Elementos notables del triángulo equilátero

En un **triángulo equilátero** coinciden el **ortocentro, baricentro, circuncentro e incentro**.

El centro de la circunferencia es el baricentro y la altura coincide con la mediana, por tanto el radio de la circunferencia circunscrita es igual a dos tercios de la altura.

$$r = \frac{2 \cdot h}{3}$$

Ejercicios

Calcular el **área** de un **triángulo equilátero inscrito en una circunferencia** de radio 6 cm

$$r = \frac{2 \cdot h}{3}$$
 $6 = \frac{2 \cdot h}{3}$ $h = 9 \ cm$

$$I^{2} = h^{2} + \left(\frac{l}{2}\right)^{2} \qquad h^{2} = \frac{3l^{2}}{4}$$

$$I = \frac{2h}{\sqrt{3}} \qquad I = \frac{2 \cdot 9}{\sqrt{3}} = 10.39 \text{ cm}$$

$$A = \frac{10.39 \cdot 9}{2} = 46.77 \text{ cm}^{2}$$

Dado un **triángulo equilátero** de 6 m de lado, hallar el **área** de uno de los **sectores** determinado por la **circunferencia circunscrita** y por los radios que pasan por los vértices.

$$h = \sqrt{6^2 - 3^2} = 5.17$$
 cm

$$r = \frac{2}{3} \cdot 5.17 = 3.46 \text{ cm}$$

$$A = \frac{\pi \cdot 3.46^2 \cdot 120}{360} = 12.57 \text{ cm}^2$$

Calcular el **lado** de un **triángulo equilátero inscrito** en una **circunferencia** de 10 cm de radio.

$$10^2 = \left(\frac{l}{2}\right)^2 + 5^2$$

$$\left(\frac{l}{2}\right) = \sqrt{75}$$

$$I = 2 \cdot \sqrt{75} = 17.32$$

Definción de triángulo

Un **triángulo** es un **polígono** de **tres lados**.

Un **triángulo** está determinado por:

1. Tres **segmentos** de recta que se denominan **lados**.

2. Tres **puntos** no alineados que se llaman **vértices**.

Los **vértices** se escriben con letras **mayúsculas**.

Los **lados** se escriben en **minúscula**, con la mismas letras de los vértices opuestos.

Los **ángulos** se escriben igual que los **vértices**.

Propiedades de los triángulos

1 Un **lado** de un **triángulo** es **menor** que la **suma** de los **otros dos** y **mayor** que su **diferencia**.

$$a < b + c$$

$$a > b - c$$

2La suma de los ángulos interiores de un triángulo es igual a 180°.

$$A + B + C = 180^{\circ}$$

3 El valor de un **ángulo exterior** de un **triángulo** es igual a la **suma** de los **dos interiores no adyacentes**.

$$\alpha = A + B$$

$$\alpha=180^o$$
 - C

4En un **triángulo** a **mayor lado** se opone **mayor ángulo**.

5 Si un triángulo tiene dos lados iguales, sus ángulos opuestos también son iguales.

Triángulos iguales

1Dos **triángulos** son **iguales** cuando tienen **iguales un lado y sus dos ángulos adyacentes**.

2Dos **triángulos** son **iguales** cuando tienen **dos lados iguales y el ángulo comprendido**.

3Dos triángulos son iguales cuando tienen los tres lados iguales.

Clases de triángulos según sus lados

Triángulo equilátero

Tres lados iguales.

Triángulo isósceles

Dos lados iguales.

Triángulo escaleno

Clases de triángulos según sus ángulos

Triángulo acutángulo

Tres ángulos agudos

Triángulo rectángulo

Un ángulo recto El lado mayor es la hipotenusa. Los lados menores son los catetos.

Triángulo obtusángulo

Perímetro de un triangulo

Triángulo Equilátero

$$P = 3 \cdot I$$

Triángulo Isósceles

$$P = 2 \cdot l + b$$

Triángulo Escaleno

$$P = a + b + c$$

Área de un triángulo

$$A = \frac{b \cdot h}{2}$$

Ejemplo

Hallar el área del siguiente triángulo:

$$A = \frac{11 \cdot 7}{2} = 38.5 \text{ cm}^2$$

Área de un triángulo rectángulo

El área de un triángulo rectángulo es igual al producto de los catetos partido por 2.

Ejemplo

Hallar el área del triángulo rectángulo cuyos catetos miden 3 y 4 cm.

Semiperímetro

El semiperímetro de un triángulo es igual a la suma de sus lados partido por 2.

Se denota con la letra **p**.

$$p = \frac{a+b+c}{2}$$

Fórmula de Herón

La **fórmula de Herón** se utiliza para hallar el **área de un triángulo** conociendo sus **tres lados**.

$$A = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$$

Ejemplo

Hallar el área del triángulo cuyos lados miden 3, 4 y 5 cm.

$$p = \frac{3+4+5}{2} = 6 \text{ cm}$$

$$A = \sqrt{6 \cdot (6 - 3) \cdot (6 - 4) \cdot (6 - 5)} = \sqrt{6 \cdot 3 \cdot 2} = 6 \text{ cm}^2$$

ECUACION CUADRATICA

Las ecuaciones cuadráticas o de segundo grado son las expresiones de la forma:

$$ax^2 + bx + c = 0 \text{ con } a \neq 0.$$

Para resolver ecuaciones de segundo grado utilizamos la siguiente fórmula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x^2 - 5x + 6 = 0$$

$$x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 6}}{2} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2} = \frac{\times x_1 = \frac{6}{2} = 3}{\times x_2 = \frac{4}{2} = 2}$$

Si es a<0, multiplicamos los dos miembros por (-1).

$$-x^2 + 7x - 10 = 0$$

$$(-1) \cdot (-x^2 + 7x - 10) = (-1) \cdot 0$$

$$x^2 - 7x + 10 = 0$$

$$x = \frac{7 \pm \sqrt{7^2 - 4 \cdot 10}}{2} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm \sqrt{9}}{2} = \frac{7 \pm 3}{2} = \frac{x_1 = \frac{10}{2} = 5}{2} = \frac{x_2 = \frac{4}{2} = 2}{2}$$

Ecuaciones cuadráticas incompletas

Una **ecuación cuadrática o de segundo grado** es **incompleta** si alguno de los coeficientes, b o c, o ambos, son iguales a cero.

$$ax^2 = 0$$

La solución es x = 0.

$$2x^2 = 0$$
 $x = 0$

$$\frac{2}{5}x^2 = 0 \qquad x = 0$$

$$ax^2 + bx = 0$$

Extraemos factor común x:

$$x(ax + b) = 0$$

$$X = 0$$

$$ax + b = 0$$
 $x = \frac{-b}{a}$

$$x^2 - 5x = 0$$

$$\times (\times -5) = 0$$

$$X = 0$$

$$x - 5 = 0$$
 $x = 5$

$$ax^2 + c = 0$$

Despejamos:

$$ax^{2} = -c \qquad x^{2} = \frac{-c}{a} \qquad x = \pm \sqrt{\frac{-c}{a}}$$

$$x_{1} = \sqrt{\frac{-c}{a}}$$

$$x_{2} = -\sqrt{\frac{-c}{a}}$$

$$x^2 - 25 = 0$$

$$x^{2} = 25$$
 $x = \pm \sqrt{25} = 5$
 $x = -\sqrt{25} = -5$

$$2x^2 + 8 = 0$$

$$2x^2 = -8$$
 $x^2 = -4$ $x = \pm \sqrt{-4} \notin \mathbb{R}$

Soluciones de la ecuación cuadrática

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \rightarrow Discriminante$$

 b^2 – **4ac** se llama **discriminante** de la ecuación y permite averiguar en cada ecuación el número de soluciones. Podemos distinguir tres casos:

$$b^2 - 4ac > 0$$

La ecuación tiene dos soluciones, que son números reales distintos.

$$x^2 - 5x + 6 = 0$$

$$x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 6}}{2} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2} = \frac{\times_1}{2} = \frac{6}{2} = 3$$

$$x_1 = \frac{6}{2} = 3$$

$$x_2 = \frac{4}{2} = 2$$

$$b^2 - 4ac = 0$$

La ecuación tiene una solución doble.

$$x^{2} - 2x + 1 = 0$$

$$x = \frac{2 \pm \sqrt{2^{2} - 4 \cdot 1}}{2} = \frac{2 \pm \sqrt{4 - 4}}{2} = \frac{2 \pm \sqrt{0}}{2} = \frac{2 \pm 0}{2} = \frac{2}{2} = 1$$

$$\mathbf{b}^{2} - 4\mathbf{a}\mathbf{c} < \mathbf{0}$$

La ecuación no tiene soluciones reales.

$$x^{2} + x + 1 = 0$$

$$x = \frac{-1 \pm \sqrt{1^{2} - 4}}{1} = \frac{1 \pm \sqrt{-3}}{1} \notin \mathbb{R}$$

Propiedades de las soluciones de la ecuaciones cuadráticas

La suma de las soluciones de una ecuación de segundo grado es igual a:

$$X_1 + X_2 = \frac{-b}{a}$$

El producto de las soluciones de una ecuación de segundo grado es igual a:

$$X_1 \cdot X_2 = \frac{c}{a}$$

Ecuación cuadrática a partir de sus soluciones

Si conocemos las raíces de una ecuación, podemos escribir ésta como:

$$x^2 - Sx + P = 0$$

Siendo
$$S = x_1 + x_2 y P = x_1 \cdot x_2$$

Escribe una ecuación de segundo grado cuyas soluciones son: 3 y -2.

$$S = 3 - 2 = 1$$

$$P = 3 \cdot 2 = 6$$

$$x^2 - x + 6 = 0$$

Factorización de la ecuaciones cuadráticas

$$a x^2 + bx + c = 0$$

$$\mathbf{a} \cdot (\mathbf{x} - \mathbf{x}_1) \cdot (\mathbf{x} - \mathbf{x}_2) = \mathbf{0}$$

$$x^2 - 5x + 6 = 0$$

$$x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 6}}{2} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm 1}{2} = \frac{7^{1/2} = \frac{6}{2} = 3}{2} = \frac{1}{2}$$

$$x_1 = \frac{6}{2} = 3$$

$$x_2 = \frac{4}{2} = 2$$

$$(x-2)\cdot(x-3)=0$$

$$X^2 + 4X + 4 = 0$$

$$X = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 4}}{2} = \frac{-4 \pm \sqrt{0}}{2} = \frac{-4}{2} = -2$$

$$(X+2)^2=0$$

Definición de dodecaedro

Un dodecaedro regular es un poliedro regular formado por 12 pentágonos regulares iguales.

Desarrollo del dodecaedro

Propiedades del dodecaedro

Número de caras: 12.

Número de vértices: 20.

Número de aristas: 30.

Nº de aristas concurrentes en un vértice: 3.

Área del dodecaedro

$$A = 30 \cdot a \cdot ap$$

Volumen del dodecaedro

$$V = \frac{1}{4} \left(15 + 7\sqrt{5} \right) a^3$$

Ejercicio de dodecaedro

Calcula el **área** y el **volumen** de un **dodecaedro** de 10 cm de **arista**, sabiendo que la **apotema** de una de sus caras mide 6.88 cm.

$$A = 30 \cdot 10 \cdot 6.88 = 2064 \text{ cm}^2$$

$$V = \frac{1}{4} \left(15 + 7\sqrt{5} \right) 10^3 = 7663.12 \ cm^3$$

Definición de octaedro

Un octaedro es un poliedro regular formado por 8 triángulos equiláteros iguales.

Se puede considerar formado por la unión, desde sus bases, de **dos pirámides cuadrangulares regulares iguales**.

Desarrollo del octaedro

Propiedades del octaedro

Número de caras: 8.

Número de vértices: 6.

Número de aristas: 12.

Nº de aristas concurrentes en un vértice: 4.

Área del octaedro

$$A = 2\sqrt{3} \cdot a^2$$

Volumen del octaedro

$$V = \frac{\sqrt{2}}{3}a^3$$

Ejercicio de octaedro

Calcula el área y el volumen un octaedro de 5 cm de arista.

$$A = 2\sqrt{3} \cdot 5^2 = 86.60 \text{ cm}^2$$

$$V = \frac{\sqrt{2}}{3}5^3 = 58.92 \ cm^3$$

Cono truncado

El **cono truncado** o **tronco de cono** es el **cuerpo geométrico** que resulta al cortar un **cono** por un **plano paralelo** a la **base** y separar la parte que contiene al vértice.

Elementos del cono truncado

La sección determinada por al corte es la **base menor**.

La **altura** es el **segmento** que **une** perpendicularmente las **dos bases**

Los **radios** son los radios de sus bases.

La **generatriz** es el segmento que une dos puntos del borde de las dos bases.

Obtenemos la **generatriz del cono truncado** aplicando el **teorema de Pitágoras** en el triángulo sombreado:

$$g^2 = h^2 + (R - r)^2$$

$$g = \sqrt{h^2 + (R - r)^2}$$

Área lateral de un cono truncado

$$A_L = \pi \cdot (R + r) \cdot g$$

Área de un cono truncado

$$A_{\tau} = \pi \left[g \left(R + r \right) + R^2 + r^2 \right]$$

Volumen de un cono truncado

$$V = \frac{1}{3} \cdot \pi \cdot h \left(R^2 + r^2 + R \cdot r \right)$$

Ejemplos

Calcular el área lateral, el área total y el volumen de un tronco de cono de radios 6 y 2 cm, y de altura 10 cm.

$$g^{2} = 10^{2} + (6-2)^{2}$$

$$g = \sqrt{10^{2} + (6-2)^{2}} = 9.165 \text{ cm}$$

$$A_{L} = \pi \cdot (6+4) \cdot 9.165 = 287.93 \text{ cm}^{2}$$

$$A_{T} = 287.93 + \pi \cdot 6^{2} + \pi \cdot 4^{2} = 451.29 \text{ cm}^{2}$$

$$V = \frac{1}{3}\pi \cdot 10 \cdot (6^{2} + 4^{2} + \sqrt{6^{2} \cdot 4^{2}}) = 544.54 \text{ cm}^{2}$$

Calcular el área lateral, el área total y el volumen del tronco de cono de radios 12 y 10 cm, y de generatriz 15 cm.

$$A_{L} = \pi \cdot (12 + 10) \cdot 15 = 1036.73 \text{ cm}^{2}$$

$$A_{T} = 1036.72 + \pi \cdot 12^{2} + \pi \cdot 10^{2} = 1803.27 \text{ cm}^{2}$$

$$15^{2} = h^{2} + (12 - 10)^{2}$$

$$h = \sqrt{15^{2} - 2^{2}} = 14.866 \text{ cm}$$

$$V = \frac{1}{3}\pi \cdot 14.866 \cdot \left(12^2 + 10^2 + \sqrt{12^2 \cdot 10^2}\right) = 5666.65$$