0.1 Capitulo 1

Problema 1. Sea $(z_n)_{n\in\mathbb{N}}$, $\lim_{n\to\infty}z=w$ si y solamente si $\lim_{n\to\infty}\Re(z_n)=\Re(w)$ y $\lim_{n\to\infty}\Im(z_n)=\Im(w)$

Solucion. (\Longrightarrow) Supongamos que $\lim_{n\to\infty}\Re(z_n)=\Re(w)$ y $\lim_{n\to\infty}\Im(z_n)=\Im(w)$, sea $\varepsilon>0$, luego tenemos que existe N_1 tal que si $n>N_1$ entonces $|\Re(z_n)-\Re(w)|<\frac{\varepsilon}{2}$ y de manera analoga existe N_2 tal que si $n>N_2$ entonces $|\Im(z_n)-\Im(w)|<\frac{\varepsilon}{2}$. Tomemos $N=\max\{N_1,N_2\}$, luego tenemos que si n>N

$$|z_n - w| = |\Re(z_n) + \Im(z)i - \Re(w) - \Im(w)| \le |\Re(z_n) - \Re(w)| + |\Im(z_n)i - \Im(w)i| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Por lo tanto $\lim_{n\to\infty} z_n = w$

Problema 2. Sea $\Omega \subset \mathbb{C}$ abierto, Ω es conexo si y solo si es arcoconexo

Solucion. (Arcoconexo implica conexo) Supongamos que Ω es arcoconexo y no conexo, entonces $\Omega = \Omega_1 \cup \Omega_2$ tal que Ω_1, Ω_2 son abiertos y $\Omega_1 \cap \Omega_2 = \emptyset$.

Sea $\omega_1 \in \Omega_1$ y $\omega_2 \in \Omega_2$, sea γ la curva que conecta a estos 2 puntos y $\varphi : [0,1] \to \Omega$ una parametrización continua de γ , consideremos el siguiente valor

$$t^* = \sup_{t \in [0,1]} \{t | \varphi(s) \in \Omega_1, 0 \le s < t\}$$

Notemos que t^* esta bien definido pues el conjunto esta acotado por 1 y es no vacio pues φ es continua y $\varphi(0) \in \Omega_1$ donde Ω_1 es abierto, por lo tanto esta bien definido.

1. Supongamos que $\varphi(t^*) \in \Omega_1$, luego dado que Ω_1 es abierto existe $\varepsilon > 0$ tal que $B_{\varepsilon}(\varphi(t^*)) \subset \Omega_1$, por la continuidad de φ tenemos que $\varphi^{-1}(B_{\varepsilon}(\varphi(t^*)))$ es abierto, dado que t^* .

Problema 3. Sea \mathbb{C}^* el grupo multiplicativo de los numeros complejos, es decir

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$

Demuestre que

 $\mathbb{C}^{*^2} = \mathbb{C}^*$

Donde

 $\mathbb{C}^{*^2} = \{ z \in \mathbb{C}^* : z = \omega^2, \omega \in \mathbb{C} \}$

Problema 4. Encuentre todas las soluciones en $\mathbb C$ a la ecuacion

 $z^3 = 1$

donde $z \in \mathbb{C}$

Problema 5. Se define la siguiente funcion