Prueba de Bondad de Ajuste de Kolmogorov-Smirnov (KS)

Hipótesis a contrastar:

H₀: Los datos analizados siguen una distribución *M*.

H₁: Los datos analizados no siguen una distribución *M*.

Estadístico de contraste:

$$D = \sup_{1 \le i \le n} \left| \hat{F}_n(x_i) - F_0(x_i) \right|$$

donde:

- x_i es el i-ésimo valor observado en la muestra (cuyos valores se han ordenado previamente de menor a mayor).
- $\hat{F}_n(x_i)$ es un estimador de la probabilidad de observar valores menores o iguales que x_i .
- $F_0(x)$ es la probabilidad de observar valores menores o iguales que x_i cuando H_0 es cierta.

Así pues, D es la mayor diferencia absoluta observada entre la frecuencia acumulada observada $\hat{F}_n(x)$ y la frecuencia acumulada teórica $F_0(x)$, obtenida a partir de la distribución de probabilidad que se especifica como hipótesis nula.

Si los valores observados $\hat{F}_n(x)$ son similares a los esperados $F_0(x)$, el valor de D será pequeño. Cuanto mayor sea la discrepancia entre la distribución empírica $\hat{F}_n(x)$ y la distribución teórica, mayor será el valor de D.

Por tanto, el criterio para la toma de la decisión entre las dos hipótesis será de la forma:

Si
$$D \le D_{\alpha} \Rightarrow Aceptar H_0$$

Si $D > D_{\alpha} \Rightarrow Rechazar H_0$

donde el valor D_{α} se elige de tal manera que:

$$P({
m Rechazar}\, H_0/H_0 \ {
m es}\ {
m cierta}) =$$
 $= P(D>D_{lpha}/{
m Los}\ {
m datos}\ {
m siguen}\ {
m la}\ {
m distribucion}\ {
m M}) = lpha$

siendo α el nivel de significación del contraste.

Para el cálculo práctico del estadístico D deben obtenerse:

$$D^{+} = \max_{1 \le i \le n} \left\{ \frac{i}{n} - F_0(x_i) \right\}, \quad D^{-} = \max_{1 \le i \le n} \left\{ F_0(x_i) - \frac{i-1}{n} \right\}$$

y a partir de estos valores:

$$D = \max\left\{D^+, D^-\right\}$$

A su vez, el valor de D_{α} depende del tipo de distribución a probar y se encuentra tabulado. En general es de la forma:

$$D_{\alpha} = \frac{c_{\alpha}}{k(n)}$$

donde c_{α} y k(n) se encuentran en las tablas siguientes:

Cα		α				
Modelo	0.1	0.05	0.01			
General	1.224	1.358	1.628			
Normal	0.819	0.895	1.035			
Exponencial	0.990	1.094	1.308			
Weibull n=10	0.760	0.819	0.944			
Weibull n=20	0.779	0.843	0.973			
Weibull n=50	0.790	0.856	0.988			
Weibull n=∞	0.803	0.874	1.007			

DISTRIBUCIÓN QUE SE CONTRASTA	k(n)
General. Parámetros conocidos.	$k(n) = \sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}$
Normal	$k(n) = \sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}$
Exponencial	$k(n) = \sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}$
Weibull	$k(n) = \sqrt{n}$

Ejemplo 1:

Determinar si los valores de la primera columna se conforman a una distribución normal:

Υ	Y-ordenados	Orden	F	Z	Fo	D+	D-
6.0	1.9	1	0.1	-1.628	0.051	0.049	0.051
2.3	2.3	2	0.2	-1.332	0.091	0.109	-0.009
4.8	3.3	3	0.3	-0.592	0.276	0.024	0.076
5.6	3.4	4	0.4	-0.518	0.302	0.098	0.002
4.5	4.5	5	0.5	0.296	0.616	-0.116*	0.216*
3.4	4.5	6	0.6	0.296	0.616	-0.016	0.116
3.3	4.8	7	0.7	0.518	0.698	0.002	0.098
1.9	4.8	8	0.8	0.518	0.698	0.102	-0.002
4.8	5.6	9	0.9	1.11	0.867	0.033	0.067
4.5	6.0	10	1.0	1.406	0.920	0.080	0.020

(media: 4.1 varianza: 1.82)

$$D_{\alpha} = \frac{0.895}{\sqrt{10} - 0.01 + \frac{0.85}{\sqrt{10}}} = \frac{0.895}{3.42} = 0.262$$

Como el valor D = 0.216 < 0.262, no se rechaza H_0 y se acepta que los datos se distribuyen normalmente.

Modo alternativo de realizar la prueba de Kolmogorov Smirnov.

La toma de la decisión en el contraste anterior puede llevarse a cabo también mediante el empleo del p-valor asociado al estadístico D observado. El p-valor se define como:

p-valor =
$$P(D > D_{obs}/H_0$$
 es cierta)

Si el p-valor es grande significa que, siendo cierta la hipótesis nula, el valor observado del estadístico D era esperable. Por tanto no hay razón para rechazar dicha hipótesis. Asimismo, si el p-valor fuera pequeño, ello indicaría que, siendo cierta la hipótesis nula, era muy difícil que se produjera el valor de D que efectivamente se ha observado. Ello obliga a poner muy en duda, y por tanto a rechazar, la hipótesis nula. De esta forma, para un nivel de significación α , la regla de decisión para este contraste es:

Si p-valor
$$\geq \alpha \Rightarrow$$
 Aceptar H₀
Si p-valor $\leq \alpha \Rightarrow$ Rechazar H₀

Obviamente, la obtención del p-valor requiere conocer la distribución de *D* bajo la hipótesis nula y hacer el cálculo correspondiente. En el caso particular de la prueba de Kolmogorov Smirnov, la mayoría de los paquetes de software estadístico realizan este cálculo y proporcionan el p-valor directamente.

Ejemplo 2:

En los siguientes ejemplos se han simulado datos con distribución exponencial o normal, contrastándose en todos los casos si puede aceptarse que los datos siguen distribución exponencial. Se ha acompañado al contraste con el histograma de los datos y el gráfico Q-Q Plot (gráfico cuantil-cuantil: se representan los cuantiles de la distribución teórica supuesta frente a los cuantiles de la distribución empírica. En un buen ajuste, la gran mayoría de estos puntos deberían situarse sobre la recta y=x)

Simulación de datos con distribución exponencial n=1000

Simulación de datos con distribución exponencial: n=1000

Histogram of x

Q-Q Plot

x Kolmogorov Smirnov D = 0.018285 p-valor = 0.8917437

Simulación de datos con distribución exponencial n=1000

Nótese que, en este caso, aunque los datos se han generado realmente con distibución exponencial, el p-valor conduce a rechazar que ésta sea la distribución de los datos.

Simulación de datos con distribución normal n=1000

En este caso, obviamente se rechaza que la distribución sea exponencial, cosa que además se ve claramente en los gráficos.

Simulación de datos con distribución normal n=10

En este caso, aunque los datos se han generado con distribución normal, el contraste conduce a aceptar que siguen distribución normal. Ello se debe a que en general cuando hay poca información (en este caso sólo diez datos), la hipótesis nula tiende a no ser rechazada, salvo que haya una evidencia abrumadora en su contra.

Simulación de datos con distribución exponencial n=10

Aquí ha ocurrido lo contrario al caso anterior; a pesar de que los datos son originalmente exponenciales, el contraste rechaza que lo sean