

Computer Engineering - Sem IV

NCMPC 41: Design and Analysis of Algorithms

Module - 5 : Backtracking & Branch and Bound (05 Hours)

Instructor: Mrs. Lifna C S

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

Backtracking Method

- Systematic trial-and-error strategy used to solve constraint satisfaction problems. It builds the solution incrementally, and if a partial solution violates constraints, it backtracks (undoes the last step) and tries an alternative.
- Backtracking follows the depth-first search (DFS) paradigm:
 - 1. **Choose**: Make a choice from the available options.
 - 2. **Explore**: Recurse with the choice included.
 - 3. **Unchoose (Backtrack)**: If it leads to a dead-end, undo the choice and try the next option.
- Backtracking is used for problems that require:
 - Finding all solutions
 - Finding any one solution
 - Finding the **optimal solution** (sometimes, combined with bounding)

Backtracking Method

Problem Type	Examples
Constraint Satisfaction Problems	N-Queens, Sudoku, Graph Coloring
Combinatorial Problems	Subsets, Permutations, Combinations
Optimization Problems	Knapsack, TSP (with pruning/bounding)
Puzzle Solving	Maze problems, Crossword filling

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

Backtracking Method - N Queens Problem

- Classic problem in computer science and artificial intelligence.
- Goal: Place N queens on an N×N chessboard such that no two queens attack each other.
 - No two queens can be in the same row
 - No two queens can be in the same column
 - No two queens can be on the same diagonal

Backtracking

General algorithm for <u>finding all (or some) solutions</u> to computational problems by <u>incrementally building candidates</u> and <u>abandoning them ("backtrack") if they fail to satisfy the constraints.</u>

Backtracking Method - N Queens Problem

<u>Approach</u>

- Place queens row by row.
- At each row, try placing a queen in each column.
- Check for validity (no attacks from previously placed queens).
- If valid, move to the next row.
- If not valid or stuck, **backtrack** and try a different position.

Backtracking Method - 4 Queens Problem with Solution

Figure 7.6 Portion of the tree of Figure 7.2 that is generated during backtracking

NCMPC41: DAA (2024-25)

Backtracking Method - N Queens Problem

4 - Queens solution space with nodes numbered in DFS

Backtracking Method - 8 Queens Solution

Backtracking Method - N Queens Problem

- Time Complexity:
- Worst-case: O(N!)
 - For the first row, N choices, then N-1, then N-2... hence N!
 - Backtracking prunes many invalid paths.

Space Complexity:

- O(N²) for the board (can be optimized to O(N))
- O(N) for recursion stack

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

Backtracking Method - Sum of Subsets Problem

- classic **backtracking** problem.
- <u>Input</u>: Given a set of **positive integers** and a target **sum M**,
- Goal : Find all subsets of the set whose sum is equal to M.

Given:

- Set = $\{3,5,6,7\}$
- Sum = 15

Courtesy : Medium - DAA

Backtracking Method - Sum of Subsets Problem

- 1. Start with an empty subset and current sum = 0.
- 2. For each element, choose to either: Given: Set = {3, 4, 5, 2}, Sum = 7

Start -> Include 3 -> sum=3

- a. Include it in the subset.
- b. Exclude it from the subset.
- 3. Repeat recursively for the next element.
- 4. If the current sum equals the target sum, record
 - the solution.
- 5. If the current sum exceeds the target, backtrack (discard this path).

```
rd

→ Include 4 -> sum=7 ✓ Solution: [3,4]

→ Exclude 4 -> Include 5 -> sum=8 X (Backtrack)

→ Include 2 -> sum=5 X (Backtrack)

Ck

→ Exclude 3 -> Include 4 -> sum=4

→ Include 5 -> sum=9 X (Backtrack)

→ Include 2 -> sum=6 X (Backtrack)

→ Include 5 -> sum=5
```

Courtesy : Medium - DAA

└→ Include 2 -> sum=7 ✓ Solution: [5,2]

Backtracking Method - Sum of Subsets Problem

Time Complexity:

- In the worst case, each element has 2 choices (include or exclude) → O(2ⁿ)
- If pruning is efficient (e.g., sorted input, early exits), it can reduce the actual runtime.

Space Complexity:

- O(n) for the recursion stack
- O(2ⁿ) for storing results in the worst case

Solve the Following Problems

- 1. Set = {1, 9, 7, 5, 18, 12, 20, 15} sum value = 35
- 2. Set = $\{5,10, 12, 13, 15, 18\}$ and m = 30

Courtesy : Medium - DAA

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

Input: Given a graph with N vertices,

Goal: Determine if it's possible to **color the vertices using at most M colors**

such that **no two adjacent vertices have the same color**.

<u>Logic</u>

- 1. Try every possible color (from 1 to M).
- 2. Check if it's safe (i.e., no adjacent vertex has the same color).
- 3. If it's safe, assign the color and move to the next vertex.
- 4. If stuck, **backtrack** and try a different color.

Courtesy : Compgeek

Courtesy : Compgeek

 $Courtesy: \underline{Compgeek}$

Time Complexity:

Worst-case: O(M^N)
 (Each of the N vertices could have up to M color choices)

Space Complexity:

- O(N) for color assignments
- O(N) for recursion stack

Courtesy : Compgeek

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

Branch and Bound

- General algorithm design paradigm used for solving combinatorial optimization problems,
 particularly those that involve discrete decision-making.
- Widely used when <u>A problem is too large for brute-force</u>,
- The search space can be represented as a state space tree, and
- We can **prune** parts of the tree that cannot contain better solutions than those already found.

Branch and Bound is used to solve problems such as:

- Traveling Salesperson Problem (TSP)
- 15 Puzzle Problem
- 0/1 Knapsack Problem
- Job Scheduling Problems
- Assignment Problem

State Space Tree

Bounding Function

Branching

Pruning

Priority Queue

NCMPC41: DAA (2024-25)

Mrs. Lifna C S

	The state of the s
Description	
	Description

Splitting the problem into smaller subproblems (child nodes).

Department of Computer Engineering, VESIT, Mumbai

A tree where each node represents a subproblem or partial solution.

A method to compute a lower bound (min possible cost) or upper bound (max benefit) for a

If the bound of a node is worse than the best known solution, that branch is not explored

Often used to explore the node with the best promise (lowest cost or highest value) next.

subproblem.

further.

Branch and Bound - Core Components

Branch and Bound - Step-by-Step working

- Start from the root of the state space tree (initial solution).
- 2. Generate children (branch) representing all valid options from the current state.
- For each child:
 - Compute the bound (e.g., minimum cost that can be achieved from this point).
- Insert children into a priority queue (sorted by bound).
- 5. Pick the most promising node (lowest bound) to expand next.
- 6. Prune nodes whose bounds exceed the current best solution.
- 7. Repeat until all nodes are either expanded or pruned.

Branch and Bound - Bounding Techniques

Bounding is crucial to reduce the search space. Common bounding methods:

- Greedy approximation
- Linear relaxation
- Cost matrix reduction (TSP)
- Manhattan distance (15 Puzzle)
- Fractional knapsack (used as a bound in 0/1 Knapsack)

Branch and Bound - Pros & Cons

Advantages of Branch and Bound

- Guarantees optimal solution
- Efficient pruning leads to faster results than brute force
- Flexible design: You can use problem-specific heuristics for bounding

Limitations

- Not polynomial-time (still exponential in the worst case)
- Requires good bounding functions for effective pruning
- May consume high memory due to large state space trees

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

- Sliding puzzle
- <u>Input</u>: 4x4 grid with **15 numbered tiles** and **1 empty space**.
- Goal: Move the tiles using the empty space to achieve the goal configuration.

<u>Logic :</u>

- 1. Start from the initial state.
- 2. Generate all possible moves (up, down, left, right).
- 3. Calculate a cost for each state using: c'=f(x) + g'(x)where f(x): path length from root to x.
 - g'(x): number of occupied tiles not in the goal position
- 4. Use a priority queue (min-heap) to explore the state with the lowest cost first.
- 5. Continue exploring until the goal state is found.

Common Heuristic: Manhattan Distance = Sum of distances of each tile from its goal position

$$h(n) = \Sigma | current_row - goal_row| + | current_col - goal_col|$$

NCMPC41: DAA (2024-25)

$$(2) = 1 + 4 = 5$$

 $(3) = 1 + 4 = 5$
 $(4) = 1 + 2 = 3$
 $(5) = 1 + 4 = 5$

NCMPC41: DAA (2024-25)

c'(10)=2+1=3c'(11)=2+3=5c'(12)=2+3=5

Time Complexity

- Worst-case: O(N!) → exploring all possible board configurations.
- N = 15 tiles → ~10¹³ possible states
- But with heuristic + pruning, we explore far fewer.

Space Complexity

- O(N!) for storing visited states (can be reduced with hashing)
- O(depth) for the recursion/priority queue

Topics to be covered

- Backtracking Method
 - N-queen problem
 - Sum of subsets
 - Graph coloring
- Branch and Bound Method
 - 15 Puzzle problem
 - Traveling Salesperson problem

Branch & Bound - Travelling Salesman Problem

Input: Given a list of cities and the cost (or distance) between each pair of cities

Goal: Visit each city exactly once and

Return to the starting city,

Minimizing the total travel cost.

Real-World Analogy:

A <u>delivery truck that needs to deliver packages to multiple cities</u>.

It must return to the starting depo while minimizing fuel or time.

- TSP is a **NP-hard problem**, so brute force (<u>checking all permutations</u>) is too slow for larger n.
- **Branch and Bound** helps by:
 - Systematically exploring all paths,
 - Pruning those that cannot possibly lead to a better solution,
 - Using <u>lower bound estimates to guide the search</u>.

<u>Logic</u>

- 1. Start from a city (say, city 0).
- 2. Generate all possible cities that can be visited next.
- 3. For each partial tour:
 - a. Calculate cost so far (g).
 - b. Calculate a **lower bound estimate** (h) on the remaining cost.
 - c. Total cost = g + h.
- 4. Use a priority queue (min-heap) to expand the least-cost node first.
- 5. If the current path visits all cities and returns to the start, check if it's the best solution so far.
- 6. Prune any path whose cost estimate is worse than the current best.

Courtesy : SJCE

Courtesy : SJCE

	2		3	A	5
					-
2	70	a	11	2	0
3	0	3	000	0	2
A	0 15	3	12	20	0
5	111	0	0	(-	7
	L	Cos	37 h	ATT	ZIX

Courtesy : SJCE

Department of Computer Engineering, VESIT, Mumbai

NCMPC41 : DAA (2024-25)

$$C(13) + 5 + 5$$
 $17 + 25 + 11 = 53$

Courtesy : SJCE

Courtesy : $\underline{\hbox{\scriptsize SJCE}}$

Courtesy : $\underline{\text{SJCE}}$

Courtesy : SJCE

Courtesy : <u>SJCE</u>

Courtesy : SJCE

Courtesy : SJCE

Courtesy: SJCE

Courtesy : SJCE

Courtesy : SJCE

	Α	В	С	D
А	8	10	15	20
В	10	8	35	25
С	15	35	8	30
D	20	25	30	8

Courtesy : <u>Gate Vidyalay</u>

- Optimal path is: $\mathbf{A} \to \mathbf{C} \to \mathbf{D} \to \mathbf{B} \to \mathbf{A}$
- Cost of Optimal path = 25 units

	A	В	С	D
Α	8	10	15	20
В	10	8	35	25
С	15	35	8	30
D	20	25	30	8

Optimal Path: $A \rightarrow B \rightarrow D \rightarrow C \rightarrow A$

Minimum Cost: 80

Courtesy : Gate Vidyalay

Time Complexity:

Worst-case: O(n!)
 (All possible permutations are checked in the worst case)

But with Branch and Bound pruning, we typically explore much fewer nodes.

Space Complexity:

- O(n²) for cost matrix storage
- O(n!) in worst case for storing all states in the priority queue

Backtracking Vs Branch & Bound

Parameter	Backtracking	Branch and Bound	
1. Problem Type	Typically used for decision and combinatorial problems	Used for optimization and combinatorial problems	
2. Solution Strategy	Explores all possibilities and backtracks when constraints are violated	Explores possibilities using cost-based bounding to prune suboptimal branches	
3. Node Evaluation	Nodes are accepted/rejected based on constraint satisfaction	Nodes are evaluated using a bound (cost estimate) to decide exploration order	
4. Optimality Guarantee	May not guarantee optimal solution unless all paths are explored	Always aims for optimal solution by expanding the least-cost (best) nodes first	
5. Efficiency	Can be inefficient for large search spaces due to exhaustive exploration	More efficient due to bounding and pruning of unpromising paths	