Midterm Examination (Close Book)

Exam date & time: October 31, 2019, 10:10AM-11:50AM (100 minutes)

Notations:

• $\Sigma_{01} = \{ 0, 1 \}.$

• $\#_a(w)$ is the number of symbol a in string w.

Do the following problems. The points are specified in the brackets (i.e., []). There are 100 points in total.

1. [15] For NFA $N_1=(\{\ q_0,q_1\ \}\ ,\Sigma_{01},\delta_1,q_0,\{\ q_0\ \}),$ where δ_1 is

$$\begin{array}{c|cccc} & \varepsilon & 0 & 1 \\ \hline q_0 & \emptyset & \{\,q_1\,\} & \{\,q_0,q_1\,\} \\ q_1 & \emptyset & \{\,q_0,q_1\,\} & \{\,q_0\,\} \end{array}$$

(a) [5] Draw the state diagram of N_1 .

(b) [10] Convert N_1 to an equivalent DFA.

2. [15] For DFA $D_2 = (\{q_0, q_1\}, \Sigma_{01}, \delta_2, q_0, \{q_1\})$, where δ_2 is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_0 & q_1 \end{array}$$

(a) [5] Draw the state diagram of D_2 .

(b) [10] Convert D_2 to an equivalent regular expression by firstly eliminating q_0 and then q_1 .

3. [30] For $w \in \Sigma_{01}^*$, prove or disprove the following statements:

(a) [15] $L_{3a} = \{ w \mid \#_0(w) = \#_1(w) \} \text{ is regular.}$

(b) [15] $L_{3b} = \{ x \mid x \neq ww, x \in \Sigma_{01}^*, w \in \Sigma_{01}^* \}$ is context-free.

4. [10] Convert PDA $M_4 = (Q_4 = \{ q_1, q_2, q_3, q_4, q_5 \}, \Sigma_{01}, \Sigma_{01} \cup \{ \$ \}, \delta_4, q_1, \{ q_5 \}),$ where δ_4 is given by the following table, to a CFG. (All the rules have to be written out except for $p, q, r \in Q_4, A_{pq} \to A_{pr}A_{rq}$.)

Input:	arepsilon				0				1 1			
Stack:	ε	\$	0	1	ε	\$. 0	1	ε	\$	0	1
q_1 q_2	$\{(q_2,\$)\}\$ $\{(q_4,0)\}$				$\{(q_2, 0)\}$				$\{(q_2, 1)\}$			
$\begin{array}{c}q_3\\q_4\end{array}$		$\{(q_5, \varepsilon)\}$	$\{(q_3,arepsilon)\}$				$\{(q_3,\varepsilon)\}$					$\{(q_3,\varepsilon)\}$

Formal Languages and Computational Complexity Midterm Examination

5. [10] For CFG
$$G_5 = (\{S\}, \{a, b\}, R, S)$$
, where $R = S \rightarrow ab \mid aSb$

Convert G_5 to a PDA. All the states have to be written out.

- 6. [10] Convert G_5 to an equivalent CFG G_6 in Chomsky normal form step by step.
- 7. [10] For CFG $G_7 = (\{S, A, B, C, D\}, \Sigma_{01}, R, S)$, where R =

$$S \rightarrow AB \mid CB$$

$$A \rightarrow 0$$

$$B \rightarrow 1$$

$$\begin{array}{ccc} A & \rightarrow & \mathbf{0} \\ B & \rightarrow & \mathbf{1} \\ C & \rightarrow & AD \end{array}$$

$$D \rightarrow AB \mid CB$$

Use CYK algorithm to check whether or not each of the following strings can be generated by G_7 .

- (a) [5] 00011.
- (b) [5] 000111.