# Lecture 8: Model Assessment & Selection, Generalization Theory

Readings: ESL (Ch. 7), ISL (Ch. 5-6), Bach (Ch. 4); code

Soon Hoe Lim

September 18, 2025

### Outline

- 1 Part I: Model Assessment & Selection
- 2 How Optimistic is Your Training Error
- 3 Estimating Optimism with Information Criteria
- 4 Estimating Test Error with Cross-Validation
- 5 Estimating Test Error with Bootstrap Methods
- 6 Part II: Generalization Theory
- 7 Exercises

### Overview

⚠ In our last lectures, we have unlocked incredible power of kernel methods but this immense power comes with a hidden danger (why?).

• How to understand and build models that generalize well to unseen data?

# I: Practical Model Assessment & Selection (ESL Ch. 7, ISL Ch. 5) Goal: Learn how to assess and select models in practice.

- Understanding prediction error and the bias-variance tradeoff
- ► Cross-validation and resampling methods
- Information criteria (AIC, BIC) for model selection
- Bootstrap methods and uncertainty quantification

# II: Theoretical Foundations via Learning Theory (Bach Ch. 4)

Goal: Understand why certain models generalize better through learning theory.

- Convex surrogates for intractable problems
- Risk decomposition and the sources of error
- Rademacher complexity for generalization bounds

# The Fundamental Challenge: Test vs Training Error

### **Definition 1: Training vs Test Error**

Given training set<sup>a</sup>  $\mathcal{T} = \{(x_1, y_1), \dots, (x_N, y_N)\}$  and learned model  $\hat{f}$ :

- Training Error:  $\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i)).$
- **Test Error (Generalization Error):**  $\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^0,Y^0}[L(Y^0,\hat{f}(X^0)) \mid \mathcal{T}]$  where  $(X^0,Y^0)$  is a new test point independent of  $\mathcal{T}$ . This conditional test error refers to the error for the specific training set  $\mathcal{T}$ . Taking another average over *all* randomness gives the *expected test error*.  $\operatorname{Err} = \mathbb{E}[\operatorname{Err}_{\mathcal{T}}]$ .

- ▶ **Regression:**  $L(Y, \hat{f}(X)) = (Y \hat{f}(X))^2$  (squared error)
- ► Classification:  $L(G, \hat{G}(x)) = \mathbb{I}[G \neq \hat{G}(x)]$  (0-1 loss), or,  $L(G, \hat{G}(x)) = -2\sum_{k=1}^{K} \mathbb{I}(G = k) \log \hat{p}_k(X) = -2 \log \hat{p}_G(X) = 2 \times \text{NLL}$
- Arr Estimation of  $Err_{\mathcal{T}}$  is the goal, but Err is more amenable to analysis. Let's focus on the regression setting for ease of exposition.

<sup>&</sup>lt;sup>a</sup>We have used the notation  $D_N$  to denote the dataset in earlier lectures. Here we are using  $\mathcal T$  to emphasize that it is a training set. This also matches the notation of ESL.

### Bias-Variance Tradeoff

**The Core Challenge:** We want to minimize test error, but we can only observe training error. Low training error  $\neq$  low test error due to **overfitting**.



**FIGURE 7.1.** Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error  $\overline{\text{err}}$ , while the light red curves show the conditional test error  $\text{Err}_T$  for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error  $\text{E}[\overline{\text{err}}]$ .

# Model Assessment vs Model Selection

#### Definition 2: Model Assessment vs Model Selection

- ► **Model Selection:** Choose the best model from a set of candidates by comparing their estimated test performance
- ▶ Model Assessment: Estimate the test error (generalization error) of our final chosen model to understand its performance on new data

▲ Golden Rule: The same data should not be used for both model selection and final assessment! This leads to overly optimistic performance estimates.

How to estimate the expected test error for a model?

### In Practice

If we are in a data-rich situation, then we can randomly divide<sup>1</sup> the dataset into three sets (a training set, a validation set, a test set).

#### In practice:

Soon Hoe Lim

- We have multiple candidate models (LDA, logistic regression, SVM, etc.)
  (fit on a training set)
- Models have **tuning parameters** (regularization strength  $\lambda$ , kernel bandwidth, etc.) (use a validation set)
- We need reliable estimates of how well our final model will perform (on a test set)
- 0 But what if we do not have sufficient<sup>2</sup> data to do the split? How should we estimate the expected test error for a given model f?

 $<sup>^{1}</sup>$ Difficult to give a general rule on how to choose the number of samples in each of the three sets, as this depends on the SNR in the data and the training sample size.

<sup>&</sup>lt;sup>2</sup>Again, it is difficult to give a general rule on how much training data is enough, as this could depend on the SNR of the underlying function and the model complexity.

# The Optimism of Training Error

- ▶ **Training error:**  $\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$ , i.e. loss on the same training responses  $(x_i, y_i)$ . Typically too optimistic (see Exercise 8.2).
- ► In-sample error:

$$\mathsf{Err}_{in} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{Y_i^0}[L(Y_i^0, \hat{f}(x_i)) \mid \mathcal{T}].$$

Average loss on new responses  $Y_i^0$  at the same training inputs  $x_i$ .

► Test (extra-sample) error:

$$\mathsf{Err}_{\mathcal{T}} = \mathbb{E}_{X^0, Y^0}[L(Y^0, \hat{f}(X^0)) \mid \mathcal{T}].$$

Average loss on fully new input-output pairs  $(X^0, Y^0)$ .

The optimism in err is easier to understand if we focus on the in-sample error.

### **Definition 3: Optimism**

The **optimism** is the gap between in-sample and training error: op =  $\text{Err}_{in}$  -  $\overline{\text{err}}$ , and the average optimism is  $\omega = \mathbb{E}_{\mathbf{v}}[\text{op}]$ .

# An Important Relation

#### Fundamental relationship:

$$\mathbb{E}_{\mathbf{y}}[\mathsf{Err}_{in}] = \mathbb{E}_{\mathbf{y}}[\overline{\mathsf{err}}] + \omega.$$

**General form.** For squared error loss<sup>a</sup>, one can show that (see Exercise 8.1):

$$\omega = \frac{2}{N} \sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i).$$

<sup>a</sup>In fact, also for 0-1 and other loss functions.

**Special case.** Consider the additive error model  $Y=f(X)+\epsilon$ , where the noise  $\epsilon$  is independent of X,  $\mathbb{E}[\epsilon]=0$ ,  $\mathrm{Var}(\epsilon)=\sigma^2I$ . For the linear models with d parameters fitted by least squares,  $\omega=\frac{2\sigma^2d}{N}$  (the overfitting amount you derived for an exercise in Lecture 2).

# Information Criteria: AIC, BIC, and $C_p$

Prediction error can be estimated by correcting the **training error** with an estimate of the **optimism**, i.e. the gap between  $Err_{in}$  and  $\overline{err}$ .

#### **Definition 4: General Form**

$$\widehat{\mathsf{Err}}_{\mathsf{in}} = \overline{\mathsf{err}} + \widehat{\omega}$$

where  $\widehat{\omega}$  estimates the average optimism  $\omega = \mathbb{E}[\mathsf{Err}_{\mathsf{in}} - \overline{\mathsf{err}}].$ 

# Specific Criteria

- ▶ Mallows'  $C_p$  (linear regression):  $C_p = \overline{\text{err}} + \frac{2d}{N}\hat{\sigma}^2$ , with  $d = \text{number of parameters and } \hat{\sigma}^2 = \text{estimated noise variance.}$
- ▶ Akaike Information Criterion (AIC):  $AIC = -2 \log \mathcal{L}(\hat{\theta}) + 2d$ , where  $\mathcal{L}$  is the maximized likelihood. For Gaussian models<sup>3</sup>:  $AIC = N \log(2\pi\hat{\sigma}^2) + \frac{RSS}{\hat{\sigma}^2} + 2d$ .
- ▶ Bayesian Information Criterion (BIC): BIC =  $-2 \log \mathcal{L}(\hat{\theta}) + d \log N$ . Since  $\log N > 2$  for N > 7, BIC applies a stronger penalty than AIC.

Soon Hoe Lim Lecture 8: Model Assessment & Selection, Generalizati

<sup>&</sup>lt;sup>3</sup>For model comparison in Gaussian models, the constant terms cancel, giving AIC  $\propto \frac{RSS}{\hat{\sigma}^2} + 2d$ . Scaling by  $\frac{\hat{\sigma}^2}{N}$  yields  $C_p = \overline{\text{err}} + \frac{2d\hat{\sigma}^2}{N}$ , showing the explicit  $\frac{2d\hat{\sigma}^2}{N}$  factor.

### Information Criteria: Remarks and Caveats

- AIC: Asymptotically equivalent to leave-one-out cross-validation under certain conditions
  - ► Tends to select models with complexity close to optimal for prediction
  - ► Can overfit in small samples
- ▶ BIC: Asymptotically consistent, arises in the Bayesian approach to model selection (see ESL Ch. 7.7)
  - lacktriangle If true model is in candidate set, BIC selects it with probability ightarrow 1
  - ► More conservative (selects simpler models) than AIC
  - ▶ Better for interpretation, worse for prediction when truth is complex

### Practical Guidelines

- ▶ Use AIC when primary goal is prediction accuracy
- ▶ Use BIC when seeking to identify "true" parsimonious model
- Both require likelihood-based models and proper parameter counting
- Not directly applicable to non-likelihood methods (SVM, trees, etc.)

**Limitation:** Information criteria rely on asymptotic approximations and may be unreliable with small samples or misspecified models.

# Cross-Validation: The Gold Standard

Cross-validation (CV) directly estimates test error Err by simulating the train/test process:

- Split data into training and validation sets
- Train on training set, evaluate on validation set
- ▶ Repeat with different splits to get stable estimate

#### K-Fold Cross-Validation

- 1: **Input:** Dataset  $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}$ , number of folds K
- 2: Randomly partition  $\mathcal{D}$  into K disjoint folds:  $\mathcal{D} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_K$
- 3: **for** k = 1, 2, ..., K **do**
- 4:  $\mathcal{D}_{\text{train}}^{(k)} \leftarrow \mathcal{D} \setminus \mathcal{D}_k$

 $\triangleright$  Training = all except fold k

5:  $\mathcal{D}_{\mathsf{val}}^{(k)} \leftarrow \mathcal{D}_k$ 

 $\triangleright$  Validation = fold k

- 6: Train model:  $\hat{f}^{(-k)} \leftarrow \text{Learn}(\mathcal{D}_{\text{train}}^{(k)})$
- 7: Compute validation error:  $\operatorname{Err}_k \leftarrow \frac{1}{|\mathcal{D}_k|} \sum_{(x,y) \in \mathcal{D}_k} L(y, \hat{f}^{(-k)}(x))$
- 8: end for
- 9: **Return:**  $CV_K(\hat{f}) \leftarrow \frac{1}{K} \sum_{k=1}^{K} Err_k$

It turns out that CV estimates effectively the average error Err (not the conditional error  $\text{Err}_{\mathcal{T}}$ ); see Ch 7.12 in ESL.

# Cross-Validation: Variants and Bias-Variance Properties

- ▶ **5-fold or 10-fold CV:** Good bias-variance tradeoff, computationally feasible. 10-fold CV most common.
- **Leave-One-Out CV (LOOCV)**<sup>4</sup>: Use K = N, nearly unbiased but high variance.
- **Stratified CV:** Maintains class proportions in each fold (for classification).
- ► **Generalized CV (GCV):** Approximation to LOOCV for linear fitting under squared-error loss (see Exercise 8.4 to see how GCV can be related to AIC).

#### Bias:

- ightharpoonup CV uses (N N/K) training samples vs. N for final model
- ▶ Small K (few folds) → more bias (pessimistic estimates)
- ▶ Large K (many folds)  $\rightarrow$  less bias

#### Variance:

- ▶ Small  $K \rightarrow$  less variance (fewer, more different estimates to average)
- ▶ Large  $K \rightarrow$  more variance (many, highly correlated estimates)
- ► LOOCV often has very high variance

<sup>&</sup>lt;sup>4</sup>See Exercise 8.3 to derive LOOCV for linear smoothers and kernel ridge regression.

### Cross-Validation for Model Selection

#### Model Selection via Cross-Validation

- 1: **Input:** Dataset  $\mathcal{D}$ , candidate models  $\mathcal{M}_1, \ldots, \mathcal{M}_m$
- 2: **for** each model  $\mathcal{M}_j$  **do**
- 3: Compute  $CV_K(\mathcal{M}_j)$  using K-fold cross-validation
- 4: end for
- 5:  $\hat{j} \leftarrow \operatorname{arg\,min}_{j} \operatorname{CV}_{\mathcal{K}}(\mathcal{M}_{j})$
- 6: **Return:** Best model  $\mathcal{M}_{\hat{i}}$

▷ Select best model

When both selecting and assessing models:

- 1. Outer loop: Split data into train/test
- 2. **Inner loop:** Use CV on training set to select best model
- 3. Assessment: Evaluate selected model on held-out test set

This prevents **selection bias** - overly optimistic estimates from using the same data for both selection and assessment.

▲ Common Mistake: Using the CV score from model selection as the final performance estimate. This is biased! Need separate test set or nested CV.

# Example: Selecting A Polynomial Regression Model



| Degree | AIC     | BIC     | CV_MSE |
|--------|---------|---------|--------|
| 0      | 1335.76 | 1342.36 | 46.30  |
| 1      | 891.15  | 901.04  | 4.97   |
| 2      | 794.39  | 807.58  | 3.15   |
| 3      | 580.27  | 596.76  | 1.06   |
| 4      | 566.52  | 586.31  | 1.00   |
| 5      | 565.40  | 588.49  | 1.00   |
| 6      | 567.21  | 593.60  | 1.00   |
| 7      | 568.14  | 597.82  | 1.00   |
| 8      | 562.42  | 595.40  | 0.96   |

# Bootstrap Methods

If we can't get new samples from the population, create "new" samples by resampling from our data.

#### **Bootstrap Procedure**

- 1: **Input:** Original dataset  $T = \{(x_1, y_1), \dots, (x_N, y_N)\}, z_i := (x_i, y_i)$
- 2: **for** b = 1, 2, ..., B **do**
- 3: Create  $\mathcal{T}^{*b}$  by sampling N points from  $\mathcal{T}$  with replacement
- 4: Train model:  $\hat{f}^{*b} \leftarrow \text{Learn}(\mathcal{T}^{*b})$
- 5: Compute statistic of interest on  $\hat{f}^{*b}$
- 6: end for
- 7: Analyze distribution of statistics across bootstrap samples

The bootstrap is another resampling method for estimating risk. It involves drawing *B* "bootstrap samples" of size *N* from the training data *with* replacement.

Each bootstrap sample omits, on average<sup>5</sup>, 36.8% of the original data points. We can use these "out-of-bag" (OOB) points to form an error estimate.

<sup>&</sup>lt;sup>5</sup>Why 36.8%? See Exercise 8.5.

# Bootstrap Procedure



**FIGURE 7.12.** Schematic of the bootstrap process. We wish to assess the statistical accuracy of a quantity  $S(\mathbf{Z})$  computed from our dataset. B training sets  $\mathbf{Z}^{*b}$ ,  $b=1,\ldots,B$  each of size N are drawn with replacement from the original dataset. The quantity of interest  $S(\mathbf{Z})$  is computed from each bootstrap training set, and the values  $S(\mathbf{Z}^{*1}),\ldots,S(\mathbf{Z}^{*B})$  are used to assess the statistical accuracy of  $S(\mathbf{Z})$ .

# **Bootstrap Error Estimation**

The leave-one-out bootstrap (LOOB) error estimate is:

$$\widehat{\mathsf{Err}}^{(1)} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} \ell(y_i, \hat{f}^{*b}(x_i))$$

where  $C^{-i}$  is the set of indices of the bootstrap samples b that do not contain observation i.

The LOOB estimate can be biased upwards because models are trained on smaller, less diverse datasets. The .632 estimators correct for this.

#### **Definition 5: The .632 Estimator**

A weighted average of the (optimistic) empirical risk and the (pessimistic) LOOB error estimate:

$$\widehat{\mathsf{Err}}^{(.632)} = 0.368 \cdot \overline{\mathsf{err}} + 0.632 \cdot \widehat{\mathsf{Err}}^{(1)}$$

This can fail in heavily overfit situations where  $\overline{\text{err}} \approx 0$ .

# The .632+ Estimator: An Improved Version

#### **Definition 6: The .632+ Estimator**

$$\widehat{\mathsf{Err}}^{(.632+)} = (1 - \hat{w}) \cdot \overline{\mathsf{err}} + \hat{w} \cdot \widehat{\mathsf{Err}}^{(1)}.$$

The weight  $\hat{w}$  adapts to the relative overfitting rate.

The adaptive weight is:

$$\hat{w} = \frac{0.632}{1 - 0.368 \cdot \hat{R}}$$

where the relative overfitting rate is:

$$\hat{R} = \frac{\widehat{\mathsf{Err}}^{(1)} - \overline{\mathsf{err}}}{\hat{\gamma} - \overline{\mathsf{err}}}$$

and  $\hat{\gamma}$  is the **no-information error rate**:  $\hat{\gamma} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} L(y_i, \hat{f}(x_j))$  (estimates the error rate when responses are randomly paired with predictors).

- ▶ When  $\hat{R} = 0$  (no overfitting),  $\hat{w} = 0.632$ , reducing to .632 estimator.
- lacktriangle When  $\hat{R} o 1$  (severe overfitting),  $\hat{w} o 1$ , trusting only bootstrap estimate.

# Bootstrap and Maximum Likelihood (See ESL Ch. 8)

### Maximum Likelihood Estimation (MLE)

- ► MLE:  $\hat{\theta} = \arg \max_{\theta} \prod_{i=1}^{N} f(y_i; \theta)$
- ▶ Under regularity:  $\hat{\theta}$  is approximately normal with variance  $\propto 1/N$
- ▶ Variance can be estimated using Fisher information:

$$I(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2}\log f(Y;\theta)\right]$$

#### **Bootstrap Inference**

- ► Resample data with replacement, refit model  $\Rightarrow$  distribution of  $\hat{\theta}^*$
- Provides standard errors, confidence intervals, bias estimates
- Practical when analytic formulas (like Fisher info) are hard
- PMLE gives asymptotic theory, bootstrap gives practical inference.

# Method Comparison and Recommendations

| Method                 | Pros                                                                                | Cons                                                                                                   |  |
|------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| AIC/BIC/C <sub>p</sub> | Fast computation, well-<br>established theory, good<br>for linear models            | Requires likelihood or OLS, assumes model is approximately correct, can be unreliable in small samples |  |
| 10-Fold CV             | Widely applicable, minimal assumptions, direct test error estimate                  | Computationally intensive ( $10 \times$ cost), can be unstable with small datasets                     |  |
| LOOCV                  | Nearly unbiased for test error, deterministic result                                | Very high variance, extremely expensive, can be unstable                                               |  |
| Bootstrap              | More stable than LOOCV, provides uncertainty estimates, handles complex models well | More complex to implement, can still have bias issues, requires many bootstrap samples                 |  |

### Practical Guidelines

- 1. For most applications: Use 10-fold cross-validation<sup>6</sup>
  - Excellent bias-variance tradeoff
  - ► Works with any learning algorithm
  - Widely accepted and understood
- For linear models with likelihood: Consider AIC/BIC as faster alternatives
  - ► AIC for prediction-focused applications
  - BIC for model interpretation and parsimony
- 3. For very small datasets (N < 100): Use LOOCV or bootstrap
  - Every sample counts
  - Higher variance acceptable given limited data
- For model selection + assessment: Use nested CV or train/validation/test split
  - Prevents optimistic bias
  - Essential for honest performance reporting

<sup>&</sup>lt;sup>6</sup>Despite the widespread use of CV and its seeming simplicity, its operating properties remain opaque; see, e.g., https://arxiv.org/abs/2104.00673.

# From Practice to Theory

- ▶ Part I (Practice): Data-driven heuristics for estimating test error
  - ► Criteria like AIC/BIC, resampling methods like CV and bootstrap
- ▶ **Limitation:** These methods usually work well in practice, but do not explain *why* models generalize.
- ► Part II (Theory): Statistical Learning Theory
  - Why does empirical risk approximate expected risk (if at all)?
  - How does model complexity affect generalization?

We will only attempt to give a brief introduction to statistical learning theory here (see, e.g., Bach Ch. 4 & 7 and https://cs.nyu.edu/~mohri/mlbook/for full details).

<sup>&</sup>lt;sup>7</sup>This is an optional topic that will not be tested in the exam.

# The Learning Problem: Formal Setup

### **Definition 7: Statistical Learning Framework**

- ▶ **Data:**  $(x_1, y_1), \dots, (x_N, y_N)$  drawn i.i.d. from unknown distribution P on  $\mathcal{X} \times \mathcal{Y}$
- ▶ **Goal:** Learn function  $f: \mathcal{X} \to \mathcal{Y}$  that minimizes expected risk:

$$R(f) = \mathbb{E}_{(x,y)\sim P}[\ell(y,f(x))]$$

- **Bayes Optimal:**  $f^* = \arg \min_f R(f)$  with  $R^* = R(f^*)$
- **Our Focus:** Methods based on **Empirical Risk Minimization (ERM)**:  $\hat{f} = \arg\min_{f \in \mathcal{F}} \hat{R}(f) = \arg\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i))$

We have focused on the regression setting so far. But how about classification?

**Key Challenge:** For binary classification with 0-1 loss, this is a combinatorial optimization problem. We need better approaches!

# The Convexification Strategy

For binary classification ( $\mathcal{Y} = \{-1, 1\}$ ) with 0-1 loss:

- 1. Learn real-valued function  $g:\mathcal{X}\to\mathbb{R}$  using convex surrogate loss  $\Phi(yg(x))$
- 2. Make predictions via f(x) = sign(g(x))

#### Benefits:

- Computational: Convex optimization (global optimum, efficient algorithms)
- ► Theoretical: Enables Rademacher complexity analysis
- Practical: Allows gradient-based methods and principled regularization

For binary classification, consider surrogate losses of the form  $\Phi(yg(x))$  where yg(x) is the **margin**.

- ► Margin > 0: Correct classification with confidence
- ► Margin < 0: Misclassification

# Convexification with Calibrated Surrogate Losses

A surrogate loss  $\Phi$  is **calibrated** if minimizing  $\mathbb{E}[\Phi(yg(x))]$  leads to the Bayes optimal classifier. All losses below can be shown to be calibrated:

- ▶ Hinge Loss (SVM):  $\Phi(u) = \max(0, 1 u)$
- ▶ Logistic Loss:  $\Phi(u) = \log(1 + e^{-u})$
- **Exponential Loss (AdaBoost):**  $\Phi(u) = e^{-u}$
- ▶ Squared Loss:  $\Phi(u) = (1 u)^2$



# Risk Decomposition: Sources of Error

We consider loss functions that are defined for real-valued outputs (for binary classification problems we will use a surrogate loss).

For any ERM estimator  $\hat{f} \in \mathcal{F}$  trained on N samples:

$$\mathbb{E}[R(\hat{f})] - R^* = \underbrace{\mathbb{E}[R(\hat{f})] - \inf_{f \in \mathcal{F}} R(f)}_{\text{Estimation Error}} + \underbrace{\inf_{f \in \mathcal{F}} R(f) - R^*}_{\text{Approximation Error}}$$

- **Approximation Error:** Fundamental limitation of the model class  ${\mathcal F}$ 
  - ▶ How well can the *best possible* function in  $\mathcal{F}$  approximate  $f^*$ ?
  - ightharpoonup Only reduced by choosing more flexible  $\mathcal{F}$  (more complex models)
  - ► Independent of sample size *N*
- **Estimation Error:** Error from finite sample learning
  - ▶ How much worse is our empirical solution  $\hat{f}$  vs. the best in class?
  - ▶ Decreases with more data (typically  $O(1/\sqrt{N})$  or better)
  - ▶ Increases with model complexity (richer 𝓕)

### Uniform Deviation

Estimation error is controlled by uniform deviation over the function class:

$$\mathbb{E}[R(\hat{f})] - \inf_{f \in \mathcal{F}} R(f) \le 2\mathbb{E}\left[\sup_{f \in \mathcal{F}} |R(f) - \hat{R}(f)|\right]$$

### Proposition 1: Application of McDiarmid's Inequality

Let  $Z = \sup_{f \in \mathcal{F}} (R(f) - \hat{R}(f))$  where loss is bounded:  $\ell(y, f(x)) \in [0, \ell_{\infty}]$ . Then,

$$P(Z \ge \mathbb{E}[Z] + t) \le \exp\left(-\frac{2Nt^2}{\ell_{\infty}^2}\right),$$

#### Proof.

See blackboard.

**The Problem:** We still need to bound  $\mathbb{E}[\sup_{f \in \mathcal{F}} |R(f) - \hat{R}(f)|]$ . This is where Rademacher complexity comes in.

# Rademacher Complexity: Definition

### **Definition 8: Rademacher Complexity**

Consider N i.i.d. sample  $z_1, \ldots, z_N \in \mathcal{Z}$  and a class  $\mathcal{H}$  of functions from  $\mathcal{Z}$  to  $\mathbb{R}$ . The Rademacher complexity of  $\mathcal{H}$  is:

$$\mathcal{R}_{N}(\mathcal{H}) = \mathbb{E}_{z,\varepsilon} \left[ \sup_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i} h(z_{i}) \right]$$

where  $\varepsilon_i \stackrel{\text{iid}}{\sim} \text{Rademacher}(\pm 1)$  are independent of the data.

- **Random Noise Test:** How well can functions in  $\mathcal{H}$  fit random noise  $(\varepsilon_i)$ ?
- ▶ Complexity Measure: Rich function classes can fit noise well  $\Rightarrow$  high  $\mathcal{R}_N(\mathcal{H})$
- ▶ Sample Size Effect: More data makes it harder to fit noise  $\Rightarrow \mathcal{R}_N(\mathcal{H})$  typically decreases as N increases
- ▶ **Dimension Independent:** Often gives dimension-free bounds

# Symmetrization: The Key Lemma

**Connection to Generalization:** Functions that can fit random noise well are prone to overfitting real data. Rademacher complexity quantifies this overfitting potential.

A useful lemma:

### Lemma 1: Symmetrization Lemma

For any function class  $\mathcal{H}$ :  $\mathbb{E}\left[\sup_{h\in\mathcal{H}}\left(\frac{1}{N}\sum_{i=1}^{N}h(z_i)-\mathbb{E}[h(Z)]\right)\right]\leq 2\mathcal{R}_N(\mathcal{H}).$ 

#### Proof.

# Rademacher Generalization Bound

#### Theorem 1: Rademacher Generalization Bound

Let  $\mathcal F$  be a function class and  $\ell$  be a loss function with  $|\ell(y,f(x))| \leq M$ . Define the loss function class  $\mathcal H = \{(x,y) \mapsto \ell(y,f(x)): f \in \mathcal F\}$ . Then for any  $\delta > 0$ , with probability at least  $1-\delta$ ,  $\sup_{f \in \mathcal F} (R(f) - \hat R(f)) \leq 2\mathcal R_N(\mathcal H) + M\sqrt{\frac{\log(1/\delta)}{2N}}$ .

### Proof.

See blackboard.

### **Proposition 2: Contraction Principle**

If  $\ell(y,\cdot)$  is L-Lipschitz for each y, then for loss class  $\mathcal{H} = \{\ell(\cdot,f(\cdot)): f \in \mathcal{F}\}$ ,  $\mathcal{R}_N(\mathcal{H}) \leq L \cdot \mathcal{R}_N(\mathcal{F})$ .

### Proof.

# Rademacher Complexity: Key Properties

### **Proposition 3: Linear Functions**

For 
$$\mathcal{F} = \{f_{\theta}(x) = \theta^{\top} \phi(x) : \|\theta\|_2 \leq D\}$$
:  $\mathcal{R}_N(\mathcal{F}) = \frac{D}{N} \mathbb{E} \left[ \left\| \sum_{i=1}^N \varepsilon_i \phi(x_i) \right\|_2 \right]$   
If  $\mathbb{E}[\|\phi(X)\|_2^2] \leq R^2$ , then:  $\mathcal{R}_N(\mathcal{F}) \leq \frac{DR}{\sqrt{N}}$ .

### Proof.



# Main Generalization Theorem

#### Theorem 2: Generalization Bound for Linear Predictors

#### Consider:

- ▶ Linear predictors:  $\mathcal{F} = \{f_{\theta}(x) = \theta^{\top} \phi(x) : \|\theta\|_2 \leq D\}$
- Loss function is L-Lipschitz and bounded
- ▶ Bounded features:  $\mathbb{E}[\|\phi(X)\|_2^2] \leq R^2$
- ▶ ERM estimator  $\hat{f} = \arg \min_{f \in \mathcal{F}} \hat{R}(f)$

Then  $\mathbb{E}[R(\hat{f})] - \inf_{f \in \mathcal{F}} R(f) \leq \frac{4LDR}{\sqrt{N}}$ . Moreover, for any  $\delta > 0$ , with probability

$$\geq 1 - \delta, \ R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f) \leq \tfrac{4LDR}{\sqrt{N}} + \ell_{\infty} \sqrt{\tfrac{\log(1/\delta)}{2N}}.$$

#### Proof.

- ▶ Rate  $O(1/\sqrt{N})$  is **minimax optimal** for this setting
- ▶ Bound scales with  $L \cdot D \cdot R$  (loss smoothness × model complexity × data scale)
- **Dimension-free:** Works for infinite-dimensional  $\phi(x)$  (kernels!)
- ▶ Others (not covered here): VC dimension bound, PAC-Bayes bound

# Key Takeaways

- ▶ **Practice:** Cross-validation, AIC/BIC, bootstrap methods give usable estimates of test error.
- ▶ **Theory:** Statistical learning theory explains why generalization is possible.
- ▶ Both perspectives are complementary:
  - Empirical tools guide model assessment and selection.
  - ► Theoretical tools justify and bound their performance.
    - **©** Controlling generalization error = unifying theme.

### **Exercises**

#### Exercise 8

- 1. Average Optimism in Training Error. Solve Exercise 7.4 and 7.5 in ESL.
- 2. Training vs. Test Error in Linear Regression. Solve Exercise 2.9 in ESL.
- 3. LOOCV for Linear Smoothers and kernel ridge regression (KRR).
  - (a) Consider the KRR with kernel matrix K and regularization parameter  $\lambda > 0$ . Show that the fitted values can be written as a linear smoother  $\hat{\mathbf{y}} = S\mathbf{y}$  where  $S = K(K + \lambda I)^{-1}$ ,  $K_{ij} = k(x_i, x_j)$  and  $\mathbf{y} = (y_1, \dots, y_N)$ .
  - (b) Using the linear smoother representation, derive the leave-one-out cross-validation (LOOCV) formula:  $y_i \hat{y}_i^{-i} = \frac{y_i \hat{y}_i}{1 S_{ii}}$ .
  - (c) Solve Exercise 7.3 in ESL to derive LOOCV for general linear smoothers.
- 4.  $C_p/\text{AIC}$  vs. GCV. Solve Exercise 7.7 in ESL. Discuss how the GCV formula can be applied to the KRR in Exercise 3 using the smoother matrix.
- How Likely Is an Observation to Appear in a Bootstrap Sample? Solve Exercise 2 in Ch. 5.4 of ISL.
- 6. [Experimental] Best Subset Analysis. Solve Exercise 7.9 in ESL.