Perturbation Methods (MAT 1572)

Winter Semester 2017/2018

List 1

- 1. Write down an order relation that expresses the fact that $\varepsilon^2(1 + \ln \varepsilon)$ decays to zero faster than ε as $\varepsilon \to 0$ and prove your assertion.
- 2. Verify the following order relations:
 - (a) $e^{\varepsilon} 1 = O(\varepsilon)$ as $\varepsilon \to 0$.
 - (b) $x = O(x^2)$ as $x \to \infty$.
 - (c) $\int_0^\varepsilon e^{-x^2} dx = O(\varepsilon)$ as $\varepsilon \to 0$.
 - (d) $\sin \varepsilon = O(\varepsilon)$ as $\varepsilon \to 0$.
 - (e) $\ln \varepsilon = o(\varepsilon^{-p})$ as $\varepsilon \to 0$ for all p > 0.
 - (f) $e^{-\varepsilon} = o(\varepsilon^{-p})$ as $\varepsilon \to 0$ for all p > 0.
 - (g) $e^{-1/\varepsilon} = o(\varepsilon^p)$ as $\varepsilon \to 0$ for all $p \in \mathbb{R}$.
- 3. Consider the function $f(x) = (1 + \varepsilon x)^{-3/2}$, $x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots$ Expand f in powers of ε up to $O(\varepsilon^2)$.
- 4. Find an asymptotic expansion of $f(x) = e^{1/x^2} \cos(e^{1/x^2})$ for $x \to 0$. Consider the derivative of this expansion and compare it with f'(x).
- 5. Consider the approximation of $f(x) = x + \varepsilon^{-x/\varepsilon}$ by g(x) = x for $x \in [0, 1]$. Is this approximation uniformly valid?