Predicting The Functionality Of Water Wells In Tanzania

Soohyun Kim Mitch McElderry Eric Denbin

Presentation Outline

- Purpose of Analysis
- Data & Methods
- Results
- Conclusions
- Future Steps

Purpose Of Analysis

Predict if water pumps are functional or non-functional.

Stakeholder: Tanzanian Ministry of Water

Key Performance Indicator: Functionality

Key Metric: Accuracy

Data & Methods

Data provided by DataDriven: Tanzanian Ministry of Water

Number of Records: ~59,400

Important features:

- Quantity of water
- Waterpoint Type
- Management Group

Class split: ~60% functional, ~40% non-functional

Results - XGBoost Model

Final Model Accuracy:

85.8%

Results

Recommendations

Perform regular checks of water quantity for all pumps

 Replace 'other' waterpoint types with standpipe waterpoint types

 Put policies in place that ensure the management company of a well are performing regular checks and maintenance

Future Steps

 Identify the categories of certain features that are labeled as 'other' and 'unknown'.

 Use machine learning to create a model that predicts the quantity of water in a well

Determine if the funders of a well impact its functionality

Thank you

Eric Denbin - Github @ericdnbn

Soohyun Kim - Github @soohyunnie

Mitch McElderry - Github @mmceld2