ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА»

Физический факультет

Отчет по практическому заданию №1 Численные методы в физике.

> студента 427 группы Иванова Ивана Ивановича

1. Постановка задачи.

Выполнить дискретное комплексное преобразование Фурье используя одну из библиотечных программ для БП Φ при N=16 следующего сигнала:

 $0.349469, \, 1.106038, \, 0.623345, \, -0.945356, \, -1.371444, \, -0.109880, \, \, 1.045291, \, 0.803699, \, -0.448111, \\ -1.371336, \, -0.598131, \, 0.927789, \, \, 1.403043, \, 0.102628, \, -1.132961, \, -0.793362.$

Используя полученные гармоники, выполнить обратное преобразование Фурье и сравнить его с исходными отсчётами. Также необходимо построить графики исходных отсчетов и спектральной плотности мощности.

2. Используемый пакет для БПФ.

Для решения поставленной задачи использовались функции Fourier и InverseFourier из Wolfram Mathematica. Опишу некоторые особенности используемых функций.

Первое, что необходимо учесть - тот факт, что в программе используется отличное от лекционного материала определение прямого и обратного преобразования Фурье. Этот факт можно исправить с помощью функции FourierParametrs(a,b), с помощью которой можно поменять параметры а и b:

$$U(k) = \frac{1}{N^{(1-a)/2}} \sum_{j=0}^{N-1} u(j) e^{\frac{2\Pi i b j k}{N}}$$

$$u(j) = \frac{1}{N^{(1+a)/2}} \sum_{k=0}^{N-1} U(k) e^{\frac{-2\Pi i b j k}{N}}$$

Чтобы получить желаемый вид дискретного преобразования Фурье, необходимо положить a=-1 и b=-1, тогда получим следующий вид преобразования:

$$U(k) = \frac{1}{N} \sum_{j=0}^{N-1} u(j) e^{\frac{-2\Pi i j k}{N}}$$

$$u(j) = \sum_{k=0}^{N-1} U(k)e^{\frac{2\Pi ijk}{N}}$$

Также, так как в данной задаче число N отсчётов сигнала является является степенью числа 2, Wolfram воспользуется этим фактом для ускорения расчёта дискретного преобразований Фурье (БПФ). Также данный алгоритм использует меньшее количество памяти. Также важно учитывать, что гармоника с нулевой частотой появляется на первой позиции результирующем списке.

3. Программа.

На рисунке 1 представлен код программы написанный в Wolfram Mathematica. Данная программа реализует прямое и обратное преобразование Фурье с помощью описанных выше функций, также здесь вычисляется спектральная плотность мощности сигнала и строится её спектр.

Рис. 1: Код программы.

4. Результаты.

Ниже приведена таблица значений U(k) гармоник после дискретного преобразования Фурье исходного сигнала.

k	U(k)
0	-0.0255799 + 0 i
1	0.0186776 + 0.0461369 i
2	$-0.018311 + 0.00558207 \mathrm{\ i}$
3	0.209077 - 0.608806 i
4	-0.000286688 + 0.0165825 i
5	-0.0248117 + 0.0385016 i
6	$0.00203087+0.0196926~{\rm i}$
7	-0.00354798 - 0.000177683 i
8	$0.00939256+0\mathrm{i}$
9	-0.00354798 + 0.000177683 i
10	0.00203087 - 0.0196926 i
11	-0.0248117 - 0.0385016 i
12	-0.000286688 - 0.0165825 i
13	0.209077 + 0.608806 i
14	-0.018311 - 0.00558207 i
15	0.0186776 - 0.0461369 i

Также было произведено обратное преобразование Фурье и полученные значения немного отличаются от исходных значений:

j	u(j) исходное	$\mathrm{u}(\mathrm{j})$ восстановленное
0	0.349469	$0.349469+0\mathrm{i}$
1	1.10604	$1.10604 + 2.36362 * 10^{-18}i$
2	0.623345	0.623345 + 0i
3	-0.945356	$-0.945356 + 5.57073 * 10^{-17}i$
4	-1.37144	-1.37144 + 0i
5	-0.10988	$-0.10988 - 1.13386 * 10^{-16}i$
6	1.04529	1.04529 + 0i
7	0.803699	$0.803699 - 5.57073 * 10^{-17}i$
8	-0.448111	-0.448111 + 0i
9	-1.37134	$-1.37134 + 2.36362 * 10^{-18}i$
10	-0.598131	-0.598131 + 0i
11	0.927789	$0.927789 - 5.5315 * 10^{-17}i$
12	1.40304	1.40304 + 0i
13	0.102628	$0.102628 + 1.08659 * 10^{-16}i$
14	-1.13296	-1.13296 + 0i
15	-0.793362	$-0.793362 + 5.5315 * 10^{-17}i$

Из таблицы видно, что действительные части равны, а мнимые равны в пределах "машинной точности" вычислений. Полученный ответ можно записать в более красивом виде, используя, например, встроенную функцию Re, которая вернет список действительных частей исходного списка. Аналогичный ответ можно получить, если округлить исходный список, например, до 12 знака.

Рис. 2: Зависимость исходных отсчётов u(j) от числа j.

Рис. 3: Зависимость спектральной плотности мощности от номера гармоники k.

На рисунке 2 изображёны исходные отсчёты сигнала, а на рисунке 3 изображена зависимость спектральной плотности мощности от номера гармоники k. Из последней зависимости видно, что наибольший вклад в спектр вносят 3 и 13 гармоники, абсолютное значение которых равно 0.414357.