P1 Chapter 1: Algebra

Factorising

Factorising

Informally, factorising is the opposite of expanding brackets.

More formally, a factorised expression is one which is expressed as **a product of expressions**.

$$x(x+1)(x+2)$$
 Factorised as it is the product of 3 linear factors, $x, x+1$ and $x+2$.

Note: A linear expression is of the form ax + b. It is called linear because plotting y = ax + b would form a straight line.

$$x(x+1) + (x-1)(x+1)$$
 \longrightarrow Not factorised because the outer-most operation is a sum, not a product.

Basic Examples:

$$x^3 + x^2 = x^2(x+1)$$

 $4x - 8xy = 4x(1-2y)$

Factorising Quadratics

Recap:

$$\oplus$$
 \otimes

We find two numbers which multiply to give the coefficient of x and multiply to give the constant term.

$$x^2 - 5x - 14 = (x - 7)(x + 2)$$

Fro Note: The *coefficient* of a term is the constant on front of it, e.g. the coefficient of $4x^2$ is 4.

But what if the coefficient of x^2 is not 1?

$$2x^2 + 5x - 12 = (2x - 3)(x + 4)$$

The easiest way is to use your common sense to guess the brackets. What multiplies to give the $2x^2$? What multiplies to give the constant term of -12?

$$2x^2 + 5x - 12 \quad \stackrel{\oplus 5}{\otimes}_{-24}$$

$$=2x^2+8x-3x-12$$

$$= 2x(x+4) - 3(x+4)$$

$$= (x + 4)(2x - 3)$$

Or you can 'split the middle term' (don't be embarrassed if you've forgotten how to!)

STEP 1: Find two numbers which add to give the middle number and multiply to give the first times last.

STEP 2: Split the middle term.

STEP 3: Factorise first half and second half ensuring bracket is duplicated..

STEP 4: Factorise out bracket.

Other Factorisations

Difference of two squares:

$$4x^2 - 9 = ?$$

Using multiple factorisations:

$$\begin{array}{c}
x^3 - x \\
= \\
= \\
?
\end{array}$$

Tip: Always look for a common factor first before using other factorisation techniques.

$$x^3 + 3x^2 + 2x$$

$$= ?$$

Other Factorisations

Difference of two squares:

$$4x^2 - 9 = (2x + 3)(2x - 3)$$

Using multiple factorisations:

$$x^3 - x$$

$$= x(x^2 - 1)$$

$$= x(x + 1)(x - 1)$$

Tip: Always look for a common factor first before using other factorisation techniques.

$$x^{3} + 3x^{2} + 2x$$

$$= x(x^{2} + 3x + 2)$$

$$= x(x + 2)(x + 1)$$

Test Your Understanding

Factorise completely: $6x^2 + x - 2$

Factorise completely: $x^3 - 7x^2 + 12x$

- ?
- ?

Factorise completely: $x^4 - 1$

Factorise completely: $x^3 - 1$

Test Your Understanding

Factorise completely: $6x^2 + x - 2$

$$6x^{2} + x - 2 \qquad \oplus 1 \otimes -12$$

$$= 6x^{2} + 4x - 3x - 2$$

$$= 2x(3x + 2) - 1(3x + 2)$$

$$= (3x + 2)(2x - 1)$$

Factorise completely: $x^4 - 1$

$$= (x^2 + 1)(x^2 - 1)$$

= $(x^2 + 1)(x + 1)(x - 1)$

Factorise completely: $x^3 - 7x^2 + 12x$

$$= x(x^2 - 7x + 12)$$

= $x(x - 3)(x - 4)$

Factorise completely:

$$x^3 - 1$$

$$=(x-1)(x^2+x+1)$$

Note: You would not be expected to factorise this at A Level (but you would in STEP!).

In general, the difference of two cubes:

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Exercise 1.3

Pearson Pure Mathematics Year 1/AS Page 2

Homework Exercise

1 Factorise these expressions completely:

a
$$4x + 8$$

d
$$2x^2 + 4$$

g
$$x^2 - 7x$$

$$i 6x^2 - 2x$$

$$m x^2 + 2x$$

p
$$5y^2 - 20y$$

s
$$5x^2 - 25xy$$

$$v 12x^2 - 30$$

b
$$6x - 24$$

e
$$4x^2 + 20$$

h
$$2x^2 + 4x$$

$$k 10y^2 - 5y$$

$$n 3y^2 + 2y$$

$$q 9xy^2 + 12x^2y$$

$$t 12x^2y + 8xy^2$$

$$\mathbf{w} \ xy^2 - x^2y$$

c
$$20x + 15$$

f
$$6x^2 - 18x$$

i
$$3x^2 - x$$

1
$$35x^2 - 28x$$

o
$$4x^2 + 12x$$

$$\mathbf{r} = 6ab - 2ab^2$$

u
$$15y - 20yz^2$$

$$x 12y^2 - 4yx$$

2 Factorise:

a
$$x^2 + 4x$$

d
$$x^2 + 8x + 12$$

$$\mathbf{g} x^2 + 5x + 6$$

i
$$x^2 + x - 20$$

$$m 5x^2 - 16x + 3$$

o
$$2x^2 + 7x - 15$$

$$q x^2 - 4$$

$$4x^2 - 25$$

$$v 2x^2 - 50$$

b
$$2x^2 + 6x$$

e
$$x^2 + 3x - 40$$

h
$$x^2 - 2x - 24$$

$$k 2x^2 + 5x + 2$$

$$n 6x^2 - 8x - 8$$

$$\mathbf{p} \ 2x^4 + 14x^2 + 24$$

$$r x^2 - 49$$

$$t 9x^2 - 25y^2$$

$$\mathbf{w} 6x^2 - 10x + 4$$

c
$$x^2 + 11x + 24$$

$$f x^2 - 8x + 12$$

i
$$x^2 - 3x - 10$$

$$1 3x^2 + 10x - 8$$

Hint For part **n**, take 2 out as a common factor first. For part **p**, let $y = x^2$.

u
$$36x^2 - 4$$

$$x 15x^2 + 42x - 9$$

Homework Exercise

3 Factorise completely:

$$a x^3 + 2x$$

b
$$x^3 - x^2 + x$$
 c $x^3 - 5x$

$$c x^3 - 5x$$

d
$$x^3 - 9x$$

$$e^{-}x^3 - x^2 - 12x$$

e
$$x^3 - x^2 - 12x$$
 f $x^3 + 11x^2 + 30x$

$$\mathbf{g} x^3 - 7x^2 + 6x$$

h
$$x^3 - 64x$$

g
$$x^3 - 7x^2 + 6x$$
 h $x^3 - 64x$ **i** $2x^3 - 5x^2 - 3x$

$$i 2x^3 + 13x^2 + 15x^2$$

$$k x^3 - 4x$$

j
$$2x^3 + 13x^2 + 15x$$
 k $x^3 - 4x$ l $3x^3 + 27x^2 + 60x$

4 Factorise completely $x^4 - y^4$.

(2 marks)

Problem-solving

Watch out for terms that can be written as a function of a function: $x^4 = (x^2)^2$

5 Factorise completely $6x^3 + 7x^2 - 5x$.

(2 marks)

Challenge

Write $4x^4 - 13x^2 + 9$ as the product of four linear factors.

Homework Answers

1 a
$$4(x + 2)$$
 b $6(x - 4)$
c $5(4x + 3)$ d $2(x^2 + 2)$
e $4(x^2 + 5)$ f $6x(x - 3)$
g $x(x - 7)$ h $2x(x + 2)$
i $x(3x - 1)$ j $2x(3x - 1)$
k $5y(2y - 1)$ l $7x(5x - 4)$
m $x(x + 2)$ n $y(3y + 2)$
o $4x(x + 3)$ p $5y(y - 4)$
q $3xy(3y + 4x)$ r $2ab(3 - b)$
s $5x(x - 5y)$ t $4xy(3x + 2y)$
u $5y(3 - 4z^2)$ v $6(2x^2 - 5)$
w $xy(y - x)$ x $4y(3y - x)$

2 **a**
$$x(x + 4)$$
 b $2x(x + 3)$
c $(x + 8)(x + 3)$ **d** $(x + 6)(x + 2)$
e $(x + 8)(x - 5)$ **f** $(x - 6)(x - 2)$
g $(x + 2)(x + 3)$ **h** $(x - 6)(x + 4)$
i $(x - 5)(x + 2)$ **j** $(x + 5)(x - 4)$
k $(2x + 1)(x + 2)$ **l** $(3x - 2)(x + 4)$
m $(5x - 1)(x - 3)$ **n** $2(3x + 2)(x - 2)$
o $(2x - 3)(x + 5)$ **p** $2(x^2 + 3)(x^2 + 4)$
q $(x + 2)(x - 2)$ **r** $(x + 7)(x - 7)$
s $(2x + 5)(2x - 5)$ **t** $(3x + 5y)(3x - 5y)$
u $4(3x + 1)(3x - 1)$ **v** $2(x + 5)(x - 5)$
w $2(3x - 2)(x - 1)$ **x** $3(5x - 1)(x + 3)$

3 a
$$x(x^2 + 2)$$
 b $x(x^2 - x + 1)$
c $x(x^2 - 5)$ d $x(x + 3)(x - 3)$
e $x(x - 4)(x + 3)$ f $x(x + 5)(x + 6)$
g $x(x - 1)(x - 6)$ h $x(x + 8)(x - 8)$
i $x(2x + 1)(x - 3)$ j $x(2x + 3)(x + 5)$
k $x(x + 2)(x - 2)$ l $3x(x + 4)(x + 5)$

4
$$(x^2 + y^2)(x + y)(x - y)$$

5 $x(3x + 5)(2x - 1)$
Challenge $(x - 1)(x + 1)(2x + 3)(2x - 3)$