Simulazione di un Sistema a Code M/M/1 con Arrivi Standard

Passerini Alessio

1 Introduzione

Una coda M/M/1 è un processo stocastico in cui lo spazio degli stati possibili corrisponde al numero di clienti o pacchetti nel sistema, inclusi quelli in servizio. La notazione M/M/1 descrive un sistema con:

- Tempi di arrivo secondo una distribuzione di Poisson con media $1/\lambda$,
- Tempi di servizio con distribuzione esponenziale con media $1/\mu$,
- Un singolo server.

I sistemi a code sono il fondamento delle infrastrutture informatiche moderne, e studiarli tramite simulazioni è di grande importanza per la ricerca e sviluppo.

2 Obiettivo

L'obiettivo è la simulazione di un sistema a coda M/M/1 con arrivi standard, per valutare graficamente i risultati ottenuti e calcolare gli errori rispetto ai valori teorici attesi. Le principali metriche di interesse sono:

- L_s : Numero medio di pacchetti nel sistema
- \bullet L_q : Numero medio di pacchetti in coda
- W_s : Tempo medio di permanenza nel sistema
- W_q : Tempo medio di attesa in coda
- \bullet ρ : Fattore di utilizzo del server

3 Metodo

La simulazione è stata realizzata in Python, utilizzando programmazione a oggetti (OOP) per creare le classi dei componenti del sistema: generatore di pacchetti, coda, server e statistiche. La funzione principale experiment_standard(avg_gen_time, avg_ser_time, clock_max, seed) esegue la simulazione per il sistema M/M/1 con arrivi standard. I pacchetti vengono generati con una distribuzione di Poisson, determinata da avg_gen_time (cioè $1/\lambda$), e serviti con un tempo medio di servizio avg_ser_time (cioè $1/\mu$).

Per la visualizzazione dei dati è stata utilizzata la libreria matplotlib e per l'analisi numerica la libreria numpy.

4 Funzionamento

La simulazione avanza in cicli di clock discreti. Ogni pacchetto arriva con tempi di interarrivo secondo una distribuzione di Poisson con parametro λ , e viene servito con tempi esponenziali di media μ . Se il server è occupato, i pacchetti vengono messi in una coda FIFO (First In, First Out) e serviti in ordine di arrivo.

5 Formule Teoriche vs Implementazione nel Codice

Di seguito si presentano le formule teoriche utilizzate e la loro implementazione nel codice, per garantire la correttezza della simulazione.

5.1 Fattore di utilizzo del server (ρ)

La formula teorica per il fattore di utilizzo ρ è:

$$\rho = \frac{\lambda}{\mu}$$

Nel codice, ρ viene calcolato come:

lambda_th = 1 / avg_gen_time
mu_th = 1 / avg_ser_time
rho_th = lambda_th / mu_th

Entrambe le espressioni risultano equivalenti, poiché λ e μ sono calcolate rispettivamente come l'inverso del tempo medio di generazione e di servizio.

5.2 Numero medio di pacchetti nel sistema (L_s)

La formula teorica per il numero medio di pacchetti nel sistema è:

$$L_s = \frac{\rho}{1-\rho}$$

Nel codice, questo è implementato come:

Anche qui, le due formule sono identiche, confermando la correttezza dell'implementazione.

5.3 Numero medio di pacchetti in coda (L_q)

La formula teorica per il numero medio di pacchetti in coda è:

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

Nel codice, L_q è calcolato come:

lq_th = (lambda_th * lambda_th) / (mu_th * (mu_th - lambda_th))

Anche questa espressione è coerente con la formula teorica.

5.4 Tempo medio di permanenza nel sistema (W_s)

La formula teorica per il tempo medio di permanenza nel sistema è:

$$W_s = \frac{1}{\mu - \lambda}$$

Nel codice, W_s è calcolato come:

L'implementazione rispecchia la formula teorica.

5.5 Tempo medio di attesa in coda (W_q)

La formula teorica per il tempo medio di attesa in coda è:

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)}$$

Nel codice, ${\cal W}_q$ è calcolato come:

Anche qui, le formule sono equivalenti.

6 Risultati

I risultati mostrano le statistiche teoriche e sperimentali per L_s , L_q , W_s , W_q e ρ , al variare del carico ρ . Di seguito vengono riportati i grafici di confronto:

Figure 1: Numero medio di pacchetti nel sistema e in coda al variare di ρ .

6.1 Numero medio di pacchetti nel sistema e in coda $(L_s \in L_q)$

Il grafico mostra il confronto tra i valori teorici e sperimentali per L_s e L_q al variare di ρ .

Osservazioni: - I valori sperimentali per L_s (blu) e L_q (arancione) seguono bene l'andamento delle curve teoriche per L_s (verde) e L_q (rosso). - Tuttavia, per valori di ρ più elevati (oltre 0.8), i valori sperimentali iniziano a deviare dai valori teorici, specialmente per L_q , a causa della maggiore variabilità stocastica. Questo è comune quando il sistema si avvicina alla saturazione ($\rho \approx 1$). - Le fluttuazioni più marcate per L_q in ρ alti sono dovute al fatto che le code tendono a crescere rapidamente e a introdurre variabilità nel sistema.

Figure 2: Confronto tra il fattore di utilizzo teorico e sperimentale al variare di ρ .

6.2 Fattore di utilizzo (ρ)

Il fattore di utilizzo sperimentale si avvicina molto a quello teorico, con una leggera variazione dovuta alla natura casuale del processo.

Osservazioni: - Il rapporto tra il fattore di utilizzo teorico e sperimentale oscilla attorno al valore 1, indicando che ρ sperimentale segue molto da vicino ρ teorico. - Le oscillazioni aumentano con l'aumentare di ρ , soprattutto a valori elevati di ρ , dove il sistema è più vicino alla saturazione e presenta maggiore variabilità nei risultati.

Figure 3: Tempo medio di permanenza e di attesa in coda al variare di ρ .

6.3 Tempo medio di permanenza nel sistema e di attesa in coda $(W_s \in W_q)$

Anche per queste metriche, il grafico mostra un allineamento stretto tra risultati teorici e sperimentali. **Osservazioni**: - Similmente ai risultati per L_s e L_q , i valori sperimentali per W_s e W_q seguono da vicino quelli teorici, con qualche deviazione crescente per $\rho > 0.8$. - Per ρ elevati, il tempo medio di attesa in coda aumenta in modo significativo, creando maggiore variabilità nel comportamento sperimentale. - In generale, i risultati sperimentali rimangono vicini ai valori attesi, a conferma della correttezza del modello.

7 Conclusioni

I risultati ottenuti dalla simulazione del sistema M/M/1 con arrivi standard confermano le previsioni teoriche. Le metriche sperimentali L_s , L_q , W_s , W_q e ρ sono tutte vicine ai valori attesi, con piccole variazioni dovute alla casualità del processo, in particolare per valori elevati di ρ , dove la saturazione del sistema genera maggiore variabilità. Questa simulazione dimostra l'efficacia del modello teorico nel rappresentare un sistema a coda M/M/1 in condizioni standard.