Recent advancements in machine learning relevant to ecological science

Masahiro Ryo

Free University of Berlin
Berlin-Brandenburg Institute of Advanced Biodiversity Research

PART 1

Introduction to Machine Learning

Why Machine learning?

Biology: The big challenges of big data

Vivien Marx

Nature 498, 255–260 (13 June 2013) | doi:10.1038/498255a Published online 12 June 2013 A Decade of Digital Universe Growth:
Storage in Exabytes

8000

4000

2000

2015

Source: IDC's Digital Universe Study, sponsored by EMC, June 2011

CONCEPTS AND QUESTIONS __

Hampton et al. (2013)

Big data and the future of ecology

Stephanie E Hampton^{1*}, Carly A Strasser², Joshua J Tewksbury³, Wendy K Gram⁴, Amber E Budden⁵, Archer L Batcheller⁶, Clifford S Duke⁷, and John H Porter⁸

Environmental Modelling & Software

Volume 63, January 2015, Pages 185-198

Review

Web technologies for environmental Big Data

Claudia Vitolo^a, 📥 X, Yehia Elkhatib^b, Dominik Reusser^c, Christopher J.A. Macleod^d, Wouter

What is Machine learning?

"A field of study that gives computers the ability to learn without being explicitly programmed"

first definition by Samuel A. (1959)

"A computer program is said to learn from experience E with respect to some class of <u>tasks</u> T and performance measure P, if its performance at tasks in T, as measured by <u>P, improves</u> with experience E'

popular definition by Mitchell T.M. (1997)

What Machine learning does?

Statistics vs Machine learning?

Statistics

- Hypothesis-testing, theory-driven
- Strict assumptions
 (e.g. Linearity, normality, additivity)
- Probability

Machine learning

- Information-searching, data-driven (missing data)
- Loose assumptions
 (e.g. non-linearity, non-normality, non-additivity)
- Predictability

When Machine learning > Statistics?

- Fields where techniques advance faster than theories (no theoretical hypothesis/prediction possible)
- Exploratory study with many predictors
- Data synthesis with many missing values
- Prediction is more important than explanation
- Nonlinear, non-additive modelling is preferred
- Unexpected outcomes wanted (cf. hypothesis generation)

PART 2

Recent trends in machine learning

In a nutshell

Predictability

Big-data

Small-data

Interpretability

Pattern detection & visualization Integration with statistics

So many DL algorithms have been proposed since 2006 See) https://arxiv.org/pdf/1807.08169.pdf

chihuahua or muffin

labradoodle or fried chicken

Predictability: Small data

Opening a black-box: LIME (Local Interpretable Model-Agnostic Explanations)

In a nutshell

Predictability

Big-data: Deep learning

Small-data: Transfer learning

Interpretability

Interaction detection

Integration with statistics

?

What are the most important abiotic interactions?

Macroinvertebrate diversity in Swiss rivers (n = 518)

- Family richness (α -diversity)
- 70 abiotic factors
- Nonlinear interactions of abiotic factors are often fully neglected at the regional scale

?

What are the most important abiotic interactions?

Random Forest testing significance of each predictor

- 70 factors
- **2415** of 2-way interactions
- **54740** of 3-way interactions
- 20 factors
- **190** of 2-way interactions
- 1140 of 3-way interactions

Mutual Information Theory

cf. Kelly & Okada (2012)

Interaction importance /(A∩B ∩C)

Elevation X Forest coverage **X** Geographic region

More crazy interaction detection... but is it accurate?

Iterative random forests to discover predictive and stable high-order interactions

Sumanta Basu, Karl Kumbier, James B. Brown, and Bin Yu

PNAS February 20, 2018 115 (8) 1943-1948; published ahead of print January 19, 2018

POLR2A POLR2AphosphoS2 H3K36me3 H3K79me2 H3K9me3 POLR2AphosphoS2 H3K36me3 H3K4me1 POLR2A H3K27ac H3K36me3 H3K79me2 H3K36me3 H3K4me3 H3K79me2 POLR2A H3K36me3 H3K9ac POLR2AphosphoS2_H3K27ac_H3K36me3_H3K79me2 POLR2AphosphoS2_H3K36me3_H3K4me3 H3K36me3 H3K79me2 H3K9ac POLR2A H3K36me3 H3K4me3 H3K27ac H3K36me3 H3K79me2 H4K20me1 H3K36me3_H3K4me3_H4K20me1 POLR2A H3K27ac H3K36me3 H4K20me1 POLR2A POLR2AphosphoS2 H3K27ac H3K36me3 POLR2AphosphoS2 H3K27ac H3K36me3 H4K20me1 H3K36me3 H3K4me2 POLR2A H3K36me3_H3K79me2_H3K9me3_H4K20me1 POLR2AphosphoS2_H3K36me3_H3K79me2_H3K9me3_H4K20me1 H3K36me3 H3K4me1 H3K79me2 H4K20me1 POLR2A H3K36me3 H3K4me1 H3K79me2 POLR2A_POLR2AphosphoS2_H3K36me3_H3K79me2_H3K9me1_H4K20me1

Do little interactions get lost in dark random forests?

March 2016 · BMC Bioinformatics 17(1):145 DOI: 10.1186/s12859-016-0995-8

License · CC BY 4.0

💄 Marvin N. Wright · 🌑 Andreas Ziegler · 🌑 Inke König

In a nutshell

Predictability

Big-data: Deep learning

Small-data: Transfer learning

Interpretability

Interaction detection: controversial but needed Integration with statistics

Statistics vs Machine learning?

Statistics

- Hypothesis-testing, theory-driven
- Strict assumptions
 (e.g. Linearity, normality, additivity)
- Probability

Machine learning

- Information-searching, data-driven (missing data)
- Loose assumptions
 (e.g. non-linearity, non-normality, non-additivity)
- Predictability

Breiman, 2001

Statistically reinforced machine learning

EMERGING TECHNOLOGIES

Statistically reinforced machine learning for nonlinear patterns and variable interactions

Masahiro Ryo^{1,2,†} and Matthias C. Rillig^{1,2}

Statistically reinforced machine learning

High predictability & model-free hypothesis test

Prediction with p-value Variable selection

Using only useful info. increases model performance

Hypothesis-testing with Minimal Information-searching

Discovering nonlinearity & interactive effect without a priori assumption

Root traits are more than analogues of leaf traits: the case for diaspore mass

Joana Bergmann^{1,2}, Masahiro Ryo^{1,2}, Daniel Prati³, Stefan Hempel^{1,2} and Matthias C. Rillig^{1,2}

Root traits are more than analogues of leaf traits: the case for diaspore mass

Joana Bergmann^{1,2}, Masahiro Ryo^{1,2}, Daniel Prati³, Stefan Hempel^{1,2} and Matthias C. Rillig^{1,2}

Parameter estimates of stats model with ML?

SUMMARY

PART1: What is machine learning?

- Like statistics: regression, classification, clustering
- No a priori assumptions on data structure
- Nonlinear, non-additive modeling
- OK with Missing values

PART2: What are the recent advances?

- Along predictability-interpretability tradeoff
- Predictability: deep learning with big-data & small-data
- Interpretability: interaction detection & mix w/ statistics

Acknowledgement

Bridging in Biodiversity Science -BIBS

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

VERBUNDPROJEKT

