BykovDS 19022025-160308

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Частота колебаний опорного генератора (ОГ) 110 МГц. Частота колебаний ГУН 1330 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 110.8 дБн/Гц для ОГ и плюс 40.5 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=0.046734$, $\tau=639.8839$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.6 МГц/В. Крутизна характеристики фазового детектора 1.1 В/рад.

Рисунок 1 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 36 к Γ ц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- Варианты ОТВЕТА:
- 1) на плюс 8.5 дБ
- 2) на плюс 8.1 дБ
- на плюс 7.7 дБ
- 4) на плюс 7.3 дБ
- на плюс 6.9 дБ
- 6) на плюс 6.5 дБ
- та плюс 6.1 дБ
- на плюс 5.7 дБ
- 9) на плюс 5.3 дБ

Источник колебаний с доступной мощностью -1 дБм и частотой 5900 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 81 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 5899.996 МГц, если спектральная плотность мощности его собственных шумов равна минус 92 дБм/Гц, а полоса пропускания ПЧ установлена в положение 1000 Гц?

- 1)-51.6 дБм
- 2) -53.3 дБм
- 3) -55 дБм
- 4)-56.7 дБм
- 5)-58.4 дБм
- 6)-60.1 дБм
- 7) -61.8 дБм
- 8) -63.5 дБм
- 9)-65.2 дБм

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 4240 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 93 дBн/ Γ ц . Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 92 дBн/ Γ ц, а частота его равна 4760 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше некогерентном синтезе?

- 1)-114.2 дБн/Гц
- 2) -111.2 дБн/ Γ ц
- 3) -108.2 дБн/ Γ ц
- 4)-101.9 дБн/Гц
- 5) -98.9 дБн/Гц
- 6) -95.9 дБн/Гц
- 7) -92.5 дБн/Гц
- 8) -89.5 дБн/Гц
- 9) -86.5 дБн/ Γ ц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Коэффициент передачи цепи обратной связи частотно независим и равен 10¹, а крутизна характеристики фазового детектора равна 1 В/рад. Частота колебаний опорного генератора (ОГ) 300 МГц. Частота колебаний ГУН 1780 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 4.9 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 1992 кГц на 5.7 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики управления частотой ГУН?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) $1.03 \text{ M}\Gamma \text{H}/\text{B}$
- 2) $1.18 \text{ M}\Gamma \text{H}/\text{B}$
- 3) 1.33 MΓ_{II}/B
- 4) 1.48 MΓ_H/B
- 5) 1.63 MΓ_{II}/B
- 6) $1.78 \text{ M}\Gamma \text{H}/\text{B}$
- 7) 1.93 MΓ_Ц/B
- 8) 2.08 MΓ_{II}/B
- 9) 2.23 MΓη/B

Если цепь на рисунке 3 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 6.771 кГц меньше на 3.4 дБ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ меньше на 5.2 дБ, чем вклад ГУН. Известно, что C=12.75 нФ, а $R_1=2264$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 3 – Электрическая схема цепи обратной связи

- $1)1480\,\mathrm{Om}$
- $2)1683 \, \mathrm{Om}$
- 3) 1886 Ом
- 4) 2089 Om
- 5) 2292 Ом
- 6) 2495 Ом
- $7)2698 \, O_{\rm M}$
- 8) 2901 Ом
- 9) 3104 Ом

Источник колебаний с частотой 1480 М Γ ц имеет равномерную спектральную плотность мощности фазового шума равную минус 172 д $\text{Бh}/\Gamma$ ц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1589 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 1 Γ ц, если с доступная мощность на выходе источника равна 0.3 дБm? Варианты ОТВЕТА:

- 1) -163.6 дБн/ Γ ц
- 2) -164.1 дБн/Гц
- 3)-164.6 дБн/Гц
- 4) -165.1 дБн/ Γ ц
- 5) -165.6 дБн/Гц
- 6) -166.1 дБн/Гц
- 7) -166.6 дБн/Гц
- 8) -167.1 дБн/Гц
- 9) 167.6 дБн/Гц