Analogový vs digitální signál

Analogový signál

- přirozeně vytvořený
- spojitý jak v čase tak v amlpitudě

Digitální signýl

- umělé vytvořený
- diskrétní jak v čase tak v aplitudě
- čas milisekundy, amplituda napětí
 - měřený jen v některých časových okamžicích
- nikoli neustále
- je tvořen řadou čísel

Co to vlasně je?

- Elektronická součástka, která umí převést spojitý signál na digitální.
- používá se několik typu převodníků pro různé účely

Proč?

- Pro zpracovávání a použití přirozených signálů v čislicové technice.

Princip přenosu

- Analogový signál se převádí na digitální signál v 3 krocích
- 1. Vzorkování
 - rozdělením vodorovné osy rovnoměrnými vertikálními úseky
 - tam kde se vodorovná osa protíná se svislou odebereme vzorek
 - vzdálenost vzorků přesnost se liší vzorkovací frekvencí
 - jak často tam jsou ty svislé osy

2. Kvantování

- přidájí se pevně dané kvantizační hladiny a mezi ními rozhodující hladiny
- přiřazuje hodnoty úrovním které jsme schopni detekovat
- třeba max 1000, víc se nedá
- podle rozhodujících hladin se hodnota zaokrouhlí nahoru nebo dolů
 - vznik kvantizačního šumu
- odchylka mezi skutečnou hodnotou a digitální hodnotou
- závisí na počtu kvantizačních hladin

3. Kódování

- hladiny jsou pak převedené na binární číslo
- s tím už umí pracovat číslicové stroje (PC, ...)

S dvojitou integrací

- použití kondenzátorů
- Má 2 fáze
 - Integrace vstupu (měření)
 - Kondenzátor se nabíjí napětím přímo z analogového signálu Uin
 - nabíjí se impulzama po nějakou dobu T
 - Dezintegrace
 - vybití kontenzátoru opačným napětím Uref
 - měří se čas návratu do nuly
- čím menší napětí Uin tím rychleji se vráti na nulu viz obrázek
- pomalý ale velice přesný

A/D převodníky

- Charakteristika, použití, přesnost a princip převodu
- Analogový vs. digitální signál
- Popis a funkce převodníků
 - Paralelní
 - Přírůstkový
 - S vratným čítačem
 - S postupnou aproximací
 - S dvojitou integrací

- rozdělen na Analogovou a Digitální část

- na výstupu je jen řada jedniček a nul

po několika odpovědích se zprůměruje

- stačí 1bitový jeden komparátor

pořád se ptá jestli ta hodnota není nahodou taková?

 když je signál větší než odhad - výstup 1 když je signál menší než odhad - výstup 0

Sigma-delta

Sigma-delta

- hádá

nejčastěji 8bitový - používají se (2-8bitové) - 255 komparátorů - počet komparátorů - 2^8 -1 = 255

- 10 bitový by potřeboval 1023 komparátorů

FLASH / přímý / komparační / paralelní

- paralelní převodník - analogový signál převede na všechyny komparátory zároveň
- prostě všechno se vyhodnocuje najednou paralelně - najrychlejší v jednom časovém okamžiku
- používá několik komparátorů potovnává 2 napětí
- pro ušetření komarátorů kaskadové zapojení (4bit a 4bit)
- z 255 komparátorů klesneme na 30!
- první 4bit převede horní bity MSB
- druhý 4bit převede dolní bity LSB vstupem jsou horní bity MSB
- trošku delší doba převodu vyšší přesnost a rozlíšení

Přírůstkový

- přidává / odečítá malé hodnoty, tím se snaží dosáhnout skutečný signál
- pamatuje si poslední stav a jen se snižuje nebo roste podle vstupu
- neustále porovnává svůj výstup s analogovým signálem
- pomocí D/A převodník

R/2

Paralelní A/D převodník

S vrátným čítačem

- zvyšuje hodnotu dokud není výstupní signál ≥ vstup
- je trochu pomalý vždy se nuluje po dosažení hodnoty
 - trvá mu dlouho se dopočítat do aktualnímu vstupnímu napětí
 - v tom čase se analogový signál může strmě změnit a vzniká chyba

S postupnou aproximací

- postupně zkouší od MSB bitu do LSB začne od největší 10000...
- když je vstup větší ponechá 1 na začátku a jde na další bit
- když je vstup menší změní se na 0 a na další bit napiše 1 - a tak stále dokola až dojde do LSB bitu a má nejpřesnější možnou hodnotu
- potřebuje velmi přesný DA převodník

