

Chapter 2

Signals and Spectra

(Part 4 of 5)

The following 2 Fourier transform pairs are commonly used in the study of communication systems:

Time domain

Frequency domain

1.
$$A \operatorname{rect} \frac{t}{\tau}$$

$$FT \longleftrightarrow$$

$$A \tau \mathrm{sinc} f \tau$$

2. Asinc
$$\frac{t}{a}$$

$$A\tau$$
rect $f\tau$

Frequency domain

Rectangular pulse

Arect
$$\frac{t}{\tau}$$

 $FT \iff$

Spectrum of rectangular pulse

Time domain

Asinc $\frac{t}{\tau}$

Frequency domain

Example 2.11

Sketch the amplitude spectrum of $x(t) = 3 \operatorname{rect} 20t$

Solution

Comparing with the standard expression of rectangular pulse,

$$x(t) = 3 \operatorname{rect} 20t \equiv A \operatorname{rect} \frac{t}{\tau}$$

Hence, A = 3, and
$$\frac{1}{\tau} = 20$$
 or $\tau = \frac{1}{20}$ s

The amplitude spectrum is $A \tau sinc f \tau$

|X(f)|

 $A\tau = pulse area$

Fourier Transform of an unit impulse train

Impulse train

$$x(t) = \sum_{n=-\infty}^{n=\infty} \delta(t - nT)$$

$$= ... + \delta(t+2T) + \delta(t+T) + \delta(t) + \delta(t-T) + \delta(t-2T)...$$

$$n = -2 \qquad n = -1 \qquad n = 0 \qquad n = 1 \qquad n = 2$$

Fourier transform of a unit impulse train

In appendix part D, it is shown its FT is given by

$$\therefore x(t) \stackrel{FT}{\Leftrightarrow} X(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(f - nf_0) \text{ where } f_0 = \frac{1}{T}$$

Note: Important result used in analysing sampling process

Example 2.12

Sketch the amplitude spectrum of a unit impulse train p(t) of frequency 1 kHz.

Solution

Given
$$f_0 = \frac{1}{T} = 1$$
 kHz.

The amplitude spectrum is an impulse train:

2.5 Signal Bandwidth

Signal bandwidth (B)

The width of positive frequencies contained in a signal.

Bandwidth of a signal with positive frequencies ranging from f_L to f_H:

B =
$$f_H - f_L$$
 (Hz)
where to $0 \le f_L \le f_H$

For non-bandlimited signls, bandwidth is the width of significant spectrum.

e.g.

Natural speech has a significant spectrum of 100 Hz – 10 kHz. Thus, the bandwidth of natural speech is approximately 10 kHz.

Example 2.13

The significant frequency range of a telephone signal is between 300 Hz and 3.4 kHz. What is the bandwidth of the signal?

Solution

Bandwidth (B):

$$B = f_H - f_L = 3.4 - 0.3 = 3.1 \text{ (kHz)}$$

Signal power in decibels (dB):

A relative measure of two different power level in base 10 logarithmic measure.

A dimensionless unit convenient for representing very large or small numbers.

- Expressions for measurement of
 - Gain/loss of a system
 - Attenuation of signal power
 - Signal to noise ratios

Power gain in dB: G (dB)

A number indicating the relative value of output power with respect to the input power:

$$G(dB) = 10log \frac{P_o}{P_i}$$

where P_o and P_i are measured in same units (watts or milliwatts).

If the dB value is known, the power ratio can be obtained by

$$\frac{P_o}{P_i} = 10^{\frac{G(dB)}{10}}$$

Example 2.14

Express the power gain/loss in dB in the table below.

P ₁ (Watts)	P ₂ (Watts)	$\frac{P_2}{P_1}$	$\frac{dB}{(10log\frac{P_2}{P_1})}$	Remarks
2	4			
2	20			
2	2			

P ₁ (Watts)	P ₂ (Watts)	$\frac{P_2}{P_1}$	$\frac{dB}{(10log\frac{P_2}{P_1})}$	Remarks
2	4	2		
2	20	10		
2	2	1		

P ₁ (Watts)	P ₂ (Watts)	$\frac{P_2}{P_1}$	$\frac{dB}{(10log\frac{P_2}{P_1})}$	Remarks
2	4	2	3	
2	20	10	10	
2	2	1	0	

P ₁ (Watts)	P ₂ (Watts)	$\frac{P_2}{P_1}$	$\frac{dB}{(10log\frac{P_2}{P_1})}$	Remarks
2	4	2	3	Power gain is 3 dB
2	20	10	10	Power gain is 10 dB
2	2	1	0	Power gain is 0 dB

Power in dBm

Power measurement relative to 1 mW

$$10log \frac{P(mW)}{1 \ mW} = X \ dBm$$

- 0 dBm equivalent to one milliwatt, and 1 dBm is equivalent to 1.259 mW.
- When the dBm value is known, the power in mW can be obtained by

$$P=10^{\frac{X}{10}} \quad (mW)$$

Power in dBW

Power measurement relative to 1 W

$$10log\frac{P(Watt)}{1Watt} = XdBW$$

- 0 dBW is equivalent to one watt, and 1 dBW is equivalent to 1.259 W.
- When the dBW value is known, the power in Watt can be obtained by

$$P=\mathbf{10}^{\frac{X}{10}} \quad (W)$$

Example 2.15

Express the power in table in terms of dBW, dBm.

Power	dBW	dBm
30 W		
3 μW		

$$P = 30 W$$

P (dBW) =
$$10log \frac{P(Watt)}{1 Watt}$$
 = 10log(30) = 14.77 dBW

P (dBm) =
$$10\log \frac{P(mW)}{1 \text{ mW}}$$
 = $10\log(30 \times 10^3)$ = $14.77 + 30 = 34.77 \text{ dBm}$

$$P = 3 \mu W$$

P (dBW) =
$$10log \frac{P(Watt)}{1 Watt}$$
 = 10log(3×10-6) = -55.23 dBW

P (dBm) =
$$10\log \frac{P(mW)}{1 \text{ mW}}$$
 = $10\log(3 \times 10^{-3})$ = -25.23 dBm

Power	dBW	dBm
30 W	14.77 dBW	34.77 dBm
3 μW	-55.23 dBW	-25.23 dBm

Linear Time Invariant (LTI) Systems

The output due to a sum of different inputs is the sum of the corresponding individual outputs.

■ The input-output relationship of a system does not change with time.

Linear Time Invariant (LTI) Systems

A LTI system is described by its impulse response, h(t)

Linear Time Invariant (LTI) Systems

The output of an A LTI system can be obtain by

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)\mathrm{d}\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)\mathrm{d}\tau = x(t)*h(t) \text{ convolution integral}$$

Linear Time Invariant (LTI) Systems

The output signal spectrum is obtained by

$$Y(f) = X(f) \cdot H(f)$$
 H(f) - frequency response of the system

Linear Time Invariant (LTI) Systems

The impulse response and frequency response are a Fourier transform pair:

$$h(t) \stackrel{FT}{\longleftrightarrow} H(f)$$

The frequency response, H(f), consists of amplitude and phase response

$$H(f) = \frac{Y(f)}{X(f)} = |H(f)| \angle H(f)$$

$$|\mathbf{H}(\mathbf{f})| = \frac{|V_o(f)|}{|V_i(f)|}$$
 Amplitude response

Phase response

End

CHAPTER 2

(Part 4 of 5)

