```
In [1]: # moduls for data
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from pyecharts.charts import Pie
        from pyecharts import options as opts
        from plotly.subplots import make_subplots
        import plotly.graph_objects as go
        # moduls for preprocessing ans model selection
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
        from sklearn.model_selection import GridSearchCV
        # moduls for model implementation
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import classification report
        from sklearn.ensemble import BaggingClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import VotingClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.ensemble import AdaBoostClassifier
        from xgboost import XGBClassifier
        import warnings
        warnings.filterwarnings("ignore")
In [2]: df = pd.read_csv("mobile_data.csv")
In [3]: df.shape
```

```
Out[3]: (2000, 21)
```

In [4]: df.head().T

Out[4]:

	0	1	2	3	4
battery_power	842.0	1021.0	563.0	615.0	1821.0
blue	0.0	1.0	1.0	1.0	1.0
clock_speed	2.2	0.5	0.5	2.5	1.2
dual_sim	0.0	1.0	1.0	0.0	0.0
fc	1.0	0.0	2.0	0.0	13.0
four_g	0.0	1.0	1.0	0.0	1.0
int_memory	7.0	53.0	41.0	10.0	44.0
m_dep	0.6	0.7	0.9	8.0	0.6
mobile_wt	188.0	136.0	145.0	131.0	141.0
n_cores	2.0	3.0	5.0	6.0	2.0
рс	2.0	6.0	6.0	9.0	14.0
px_height	20.0	905.0	1263.0	1216.0	1208.0
px_width	756.0	1988.0	1716.0	1786.0	1212.0
ram	2549.0	2631.0	2603.0	2769.0	1411.0
sc_h	9.0	17.0	11.0	16.0	8.0
sc_w	7.0	3.0	2.0	8.0	2.0
talk_time	19.0	7.0	9.0	11.0	15.0
three_g	0.0	1.0	1.0	1.0	1.0
touch_screen	0.0	1.0	1.0	0.0	1.0
wifi	1.0	0.0	0.0	0.0	0.0
price_range	1.0	2.0	2.0	2.0	1.0

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	<pre>mobile_wt</pre>	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	SC_W	2000 non-null	int64
16	talk_time	2000 non-null	int64
17	three_g	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19	wifi	2000 non-null	int64
20	price_range	2000 non-null	int64
dtyp	es: float64(2),	int64(19)	

memory usage: 328.2 KB

INFORMATION ABOUT DATA

=battery_power: Total energy a battery can store in one time measured in mAh.

=blue: Has bluetooth or not.

=clock_speed: speed at which microprocessor executes instructions.

=dual_sim: Has dual sim support or not.

=fc: Front Camera mega pixels.

=four_g: Has 4G or not.

int_memory: Internal Memory in Gigabytes.

m_dep: Mobile Depth in cm.

mobile wt: Weight of mobile phone.

=n_cores: Number of cores of processor.

=pc: Primary Camera mega pixels.

px_height: Pixel Resolution Height.

px_width: Pixel Resolution Width.

01-02-2023, 22:01 3 of 36

```
=ram: Random Access Memory in Mega Byte.
          sc_h: Screen Height of mobile in cm.
          sc w: Screen Width of mobile in cm.
          talk time: longest time that a single battery charge will last when you are.
          =three_g: Has 3G or not.
          =touch screen: Has touch screen or not.
          =wifi: Has wifi or not.
          =price_range: This is the target variable with value of 0(low cost), 1(medium cost), 2(high
          cost) and 3(very high cost)
In [6]: df.duplicated().any()
Out[6]: False
In [7]: df.isnull().sum()
Out[7]: battery_power
                              0
                              0
          blue
          clock_speed
                              0
          dual_sim
                              0
          fc
                              0
          four_g
                              0
          int_memory
                              0
          m_dep
                              0
          mobile_wt
                              0
          n_cores
                              0
                              0
          рс
          px_height
          px_width
                              0
                              0
          ram
                              0
          sc_h
                              0
          SC_W
          talk_time
                              0
          three_g
                              0
          touch_screen
                              0
          wifi
                              0
          price_range
          dtype: int64
In [8]: df_columns = df.columns
          df_columns
Out[8]: Index(['battery_power', 'blue', 'clock_speed', 'dual_sim', 'fc', 'four_g',
                  'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height',
'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time', 'three_g',
                  'touch_screen', 'wifi', 'price_range'],
                 dtype='object')
```

```
In [9]: values = {}
        for i in df_columns:
            values[i] = df[i].nunique()
            print(f"Number of unique values in {values.popitem()}\n")
        Number of unique values in ('battery power', 1094)
        Number of unique values in ('blue', 2)
        Number of unique values in ('clock_speed', 26)
        Number of unique values in ('dual_sim', 2)
        Number of unique values in ('fc', 20)
        Number of unique values in ('four_g', 2)
        Number of unique values in ('int_memory', 63)
        Number of unique values in ('m_dep', 10)
        Number of unique values in ('mobile_wt', 121)
        Number of unique values in ('n_cores', 8)
        Number of unique values in ('pc', 21)
        Number of unique values in ('px_height', 1137)
        Number of unique values in ('px_width', 1109)
        Number of unique values in ('ram', 1562)
        Number of unique values in ('sc_h', 15)
        Number of unique values in ('sc_w', 19)
        Number of unique values in ('talk_time', 19)
        Number of unique values in ('three_g', 2)
        Number of unique values in ('touch screen', 2)
        Number of unique values in ('wifi', 2)
        Number of unique values in ('price_range', 4)
```

In [10]: df.describe().T

Out[10]:

	count	mean	std	min	25%	50%	75%	max
battery_power	2000.0	1238.51850	439.418206	501.0	851.75	1226.0	1615.25	1998.0
blue	2000.0	0.49500	0.500100	0.0	0.00	0.0	1.00	1.0
clock_speed	2000.0	1.52225	0.816004	0.5	0.70	1.5	2.20	3.0
dual_sim	2000.0	0.50950	0.500035	0.0	0.00	1.0	1.00	1.0
fc	2000.0	4.30950	4.341444	0.0	1.00	3.0	7.00	19.0
four_g	2000.0	0.52150	0.499662	0.0	0.00	1.0	1.00	1.0
int_memory	2000.0	32.04650	18.145715	2.0	16.00	32.0	48.00	64.0
m_dep	2000.0	0.50175	0.288416	0.1	0.20	0.5	0.80	1.0
mobile_wt	2000.0	140.24900	35.399655	80.0	109.00	141.0	170.00	200.0
n_cores	2000.0	4.52050	2.287837	1.0	3.00	4.0	7.00	8.0
рс	2000.0	9.91650	6.064315	0.0	5.00	10.0	15.00	20.0
px_height	2000.0	645.10800	443.780811	0.0	282.75	564.0	947.25	1960.0
px_width	2000.0	1251.51550	432.199447	500.0	874.75	1247.0	1633.00	1998.0
ram	2000.0	2124.21300	1084.732044	256.0	1207.50	2146.5	3064.50	3998.0
sc_h	2000.0	12.30650	4.213245	5.0	9.00	12.0	16.00	19.0
sc_w	2000.0	5.76700	4.356398	0.0	2.00	5.0	9.00	18.0
talk_time	2000.0	11.01100	5.463955	2.0	6.00	11.0	16.00	20.0
three_g	2000.0	0.76150	0.426273	0.0	1.00	1.0	1.00	1.0
touch_screen	2000.0	0.50300	0.500116	0.0	0.00	1.0	1.00	1.0
wifi	2000.0	0.50700	0.500076	0.0	0.00	1.0	1.00	1.0
price_range	2000.0	1.50000	1.118314	0.0	0.75	1.5	2.25	3.0

```
In [11]: columns = df.iloc[:,:-1].columns
columns
for index,col in enumerate(columns):
    plt.figure(figsize = (5,5))
    sns.boxplot(x=df["price_range"],y = df[col])
    plt.title(col, size = 20)
    plt.show()
```



```
In [ ]:
```



```
Out[13]: 0.5
                  413
                    85
          2.8
          2.3
                    78
          2.1
                    76
          1.6
                    76
          2.5
                    74
          0.6
                    74
          1.4
                    70
          1.3
                    68
          1.5
                    67
          2.0
                    67
          1.9
                    65
          0.7
                    64
          2.9
                    62
          1.8
                    62
          1.0
                    61
          1.7
                    60
          2.2
                    59
          0.9
                    58
                    58
          2.4
          0.8
                    58
          1.2
                    56
          2.6
                    55
          2.7
                    55
          1.1
                    51
          3.0
                    28
```

Name: clock_speed, dtype: int64

The clock speed determines how many instruction the processor can execute per second. A processor with a 1 GHz clock speed can process 1 billion instructions per second The general rule is that higher clock speed make for faster phones.


```
Out[14]: 4
                274
          7
                259
          8
                256
          2
                247
          3
               246
          5
                246
          1
                242
          6
          Name: n_cores, dtype: int64
```

Name: n_cores, acype: inco-


```
Out[15]: 0
                 474
          1
                 245
          2
                 189
          3
                 170
          5
                 139
          4
                 133
          6
                 112
          7
                 100
          9
                  78
          8
                  77
                  62
          10
          11
                  51
          12
                  45
          13
                  40
          16
                  24
          15
                  23
          14
                  20
          18
                  11
          17
                   6
          19
                   1
          Name: fc, dtype: int64
```

```
In [16]: colors='#FF34B3'
          sns.catplot(x="pc",
                      kind="count",
                      data=df,
                      legend=True,
                      hue="price_range",
                      height=8,
                      aspect=3.0,
                      color=colors)
          plt.xlabel(" Primary Camera mega pixels", size=14)
         plt.ylabel("Count", size=14)
         plt.tight_layout()
          plt.show()
          df["pc"].value_counts(sort=True)
Out[16]: 10
                122
          7
                119
          9
                112
          20
                110
                104
          1
          14
                104
          0
                101
          2
                 99
                 99
          17
                 95
          6
                 95
          4
          3
                 93
                 92
          15
          12
                 90
                 89
          8
                 88
          16
          13
                 85
          19
                 83
          18
                 82
                 79
          11
                 59
          Name: pc, dtype: int64
In [17]: df["price_range"][(df["pc"]==0) & (df["fc"]==0)].value_counts()
Out[17]: 0
               33
               27
          1
          3
               21
```

Name: price_range, dtype: int64

Pyecharts: Nightingale Rose Pie Chart

```
In [19]: d = df['blue'].value_counts()
    c= ["bluetooth supported","bluetooth Not supported"]
    color_series = ["2C6BA0","#FF4500"]
    rosechart = Pie(init_opts=opts.InitOpts(width = "1050px", height = "250px")
    rosechart.set_colors(color_series)
    rosechart.add("Bluetooth", [list(z) for z in zip(c,d)], radius = ["35%","95%
    rosechart.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position=
    rosechart.render_notebook()
```

Out[19]:

```
In [20]: d = df['dual_sim'].value_counts()
    c= ["Dual sim supported","Dual sim Not supported"]
    color_series = ["#DE1A82","#C2A7B5"]
    rosechart = Pie(init_opts=opts.InitOpts(width = "1050px", height = "250px")
    rosechart.set_colors(color_series)
    rosechart.add("Dual Sim", [list(z) for z in zip(c,d)], radius = ["45%","95%
    rosechart.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position=
    rosechart.render_notebook()
```

Out[20]:

```
In [21]: d = df['touch_screen'].value_counts()
    c= ["Touch screen supported","Touch_screen Not supported"]
    color_series = ["#BC8F8F","#FFC1C1 "]
    rosechart = Pie(init_opts=opts.InitOpts(width = "1050px", height = "250px")
    rosechart.set_colors(color_series)
    rosechart.add("Touch Screen", [list(z) for z in zip(c,d)], radius = ["45%",
    rosechart.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position=
    rosechart.render_notebook()
```

Out[21]:

Subplot Donut Pie Chart

```
In [23]: fig = make_subplots(rows=1, cols=2, specs=[[{'type' : 'domain'},{'type' : 'domain'},{'type' : 'domain'},{'type' : 'domain'},{'type' : 'domain'},{'type' : 'domain'},{'type' : 'domain'}, values= {
    fig.add_trace(go.Pie(labels = ["3G supported","3G Not supported"], values= {
    fig.add_trace(go.Pie(labels = ["4G supported","4G Not supported"], values= {
    fig.update_traces(hole = .5, hoverinfo = "label+percent+name",marker = dict {
    fig.update_layout(annotations =[dict(text = "3G", x = 0.20, y = 0.5, font_s: fig.show()
```



```
In [24]: sns.lineplot(data = df, x = "price_range", y = "ram" )
```

Out[24]: <AxesSubplot:xlabel='price_range', ylabel='ram'>

In [25]: df.groupby(['blue','three_g','four_g','wifi'])['price_range'].count()

Out[25]:	blue	three_g	four_g	wifi	
	0	0	0	0	101
				1	127
		1	0	0	123
				1	139
			1	0	263
				1	257
	1	0	0	0	136
				1	113
		1	0	0	103
				1	115
			1	0	260
				1	263

Name: price_range, dtype: int64

```
In [26]: cor = df.corr()
  plt.figure(figsize = (30,30))
  sns.heatmap(cor,annot=True,cmap="Blues",cbar = False,linewidths = 5)
```

Out[26]: <AxesSubplot:>

In [27]: x = df.iloc[:, :-1]
x.head().T

Out[27]:

0	1	2	3	4
842.0	1021.0	563.0	615.0	1821.0
0.0	1.0	1.0	1.0	1.0
2.2	0.5	0.5	2.5	1.2
0.0	1.0	1.0	0.0	0.0
1.0	0.0	2.0	0.0	13.0
0.0	1.0	1.0	0.0	1.0
7.0	53.0	41.0	10.0	44.0
0.6	0.7	0.9	8.0	0.6
188.0	136.0	145.0	131.0	141.0
2.0	3.0	5.0	6.0	2.0
2.0	6.0	6.0	9.0	14.0
20.0	905.0	1263.0	1216.0	1208.0
756.0	1988.0	1716.0	1786.0	1212.0
2549.0	2631.0	2603.0	2769.0	1411.0
9.0	17.0	11.0	16.0	8.0
7.0	3.0	2.0	8.0	2.0
19.0	7.0	9.0	11.0	15.0
0.0	1.0	1.0	1.0	1.0
0.0	1.0	1.0	0.0	1.0
1.0	0.0	0.0	0.0	0.0
	842.0 0.0 2.2 0.0 1.0 0.0 7.0 0.6 188.0 2.0 20.0 756.0 2549.0 9.0 7.0 19.0 0.0	842.0 1021.0 0.0 1.0 2.2 0.5 0.0 1.0 1.0 0.0 0.0 1.0 7.0 53.0 0.6 0.7 188.0 136.0 2.0 3.0 2.0 6.0 20.0 905.0 756.0 1988.0 2549.0 2631.0 9.0 17.0 7.0 3.0 19.0 7.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0	842.0 1021.0 563.0 0.0 1.0 1.0 2.2 0.5 0.5 0.0 1.0 1.0 1.0 0.0 2.0 0.0 1.0 1.0 7.0 53.0 41.0 0.6 0.7 0.9 188.0 136.0 145.0 2.0 3.0 5.0 2.0 6.0 6.0 20.0 905.0 1263.0 756.0 1988.0 1716.0 2549.0 2631.0 2603.0 9.0 17.0 11.0 7.0 3.0 2.0 19.0 7.0 9.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0	842.0 1021.0 563.0 615.0 0.0 1.0 1.0 1.0 2.2 0.5 0.5 2.5 0.0 1.0 1.0 0.0 1.0 0.0 2.0 0.0 0.0 1.0 1.0 0.0 7.0 53.0 41.0 10.0 0.6 0.7 0.9 0.8 188.0 136.0 145.0 131.0 2.0 3.0 5.0 6.0 2.0 6.0 6.0 9.0 20.0 905.0 1263.0 1216.0 756.0 1988.0 1716.0 1786.0 2549.0 2631.0 2603.0 2769.0 9.0 17.0 11.0 16.0 7.0 3.0 2.0 8.0 19.0 7.0 9.0 11.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 19.0 1.0 1.0

```
In [28]: y = df.iloc[:, -1]
y.head().T
```

Out[28]: 0 1 1 2 2 2 3 2

Name: price_range, dtype: int64

```
In [29]: ss = StandardScaler()
x = ss.fit_transform(x)
```

```
In [30]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.30, r
```

```
In [31]: x_test[0:5]
Out[31]: array([[-0.46554659, -0.9900495 , 1.32109556,
                                                       0.98117712, -0.53209893,
                  0.95788598, 0.71403853, -0.69968647, 1.40576067, -0.66476784,
                 -0.97586945, -1.04381219, 0.09600863, -1.0652418, 0.63945335,
                 -1.0945264 , -0.73426721, 0.55964063, -1.00601811, -1.01409939],
                [-0.53838837, 1.0100505, 0.34046327, -1.01918398, -0.76249466,
                 -1.04396559, 0.71403853, 0.68754816, 1.12320139, 1.08404594,
                 -0.48104847, 0.68269683, -0.5658884, -0.82088073, 1.58907778,
                  1.660732 , 1.27942995, 0.55964063, 0.99401789, -1.01409939],
                [-1.43297644, 1.0100505 , -1.2530642 , -1.01918398, -0.07130748,
                  0.95788598, -1.2152739 , -1.39330378, -1.67413547,
                                                                     0.6468425 ,
                                          0.63061776, -0.20214008,
                 -0.64598879, -1.19933324,
                                                                     0.87685946,
                 -0.63531667, 1.27942995, 0.55964063, 0.99401789,
                                                                     0.98609664],
                [ 0.61797484, -0.9900495 , -1.13048516, 0.98117712, -0.76249466,
                 -1.04396559, -0.00256323, 0.68754816, -0.14831537, -0.66476784,
                 -0.31610814, 0.71650575, 0.62136046, -1.17128528, -1.0223894 ,
                 -0.86492153, -0.18507707, 0.55964063, -1.00601811, 0.98609664],
                [-0.98682056, 1.0100505, 0.21788424, 0.98117712, -0.99289039,
                  0.95788598, 1.43064028,
                                           1.38116548, 0.78413025, -0.66476784,
                  0.01377252, -1.27145894, 0.67690426,
                                                       1.17365881, -1.25979551,
                  0.05349793, -1.6495841, 0.55964063, -1.00601811, -1.01409939]])
In [32]: y_test[0:5]
Out[32]: 674
         1699
                 a
         1282
                 1
         1315
                 1
         1210
         Name: price_range, dtype: int64
```

Target column is

KNN Model

```
In [33]: knn = KNeighborsClassifier(n_neighbors=3)
         knn.fit(x_train, y_train)
         y_pred = knn.predict(x_test)
         AttributeError
                                                    Traceback (most recent call las
         t)
         Input In [33], in <cell line: 3>()
               1 knn = KNeighborsClassifier(n_neighbors=3)
               2 knn.fit(x_train, y_train)
         ----> 3 y_pred = knn.predict(x_test)
         File ~\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:23
         4, in KNeighborsClassifier.predict(self, X)
             218 """Predict the class labels for the provided data.
             219
             220 Parameters
            (\ldots)
             229
                     Class labels for each data sample.
             230 """
             231 if self.weights == "uniform":
                     # In that case, we do not need the distances to perform
             233
                     # the weighting so we do not compute them.
         --> 234
                     neigh_ind = self.kneighbors(X, return_distance=False)
             235
                     neigh dist = None
             236 else:
         File ~\anaconda3\lib\site-packages\sklearn\neighbors\_base.py:824, in KNei
         ghborsMixin.kneighbors(self, X, n_neighbors, return_distance)
             817 use_pairwise_distances_reductions = (
                     self._fit_method == "brute"
             818
             819
                     and ArgKmin.is_usable_for(
                         X if X is not None else self._fit_X, self._fit_X, self.eff
             820
         ective_metric_
             821
                     )
             822 )
             823 if use_pairwise_distances_reductions:
         --> 824
                     results = ArgKmin.compute(
             825
                         X=X,
             826
                         Y=self._fit_X,
             827
                         k=n_neighbors,
             828
                         metric=self.effective_metric_,
             829
                         metric kwargs=self.effective metric params ,
             830
                         strategy="auto",
             831
                         return_distance=return_distance,
             832
                     )
             834 elif (
                     self._fit_method == "brute" and self.metric == "precomputed" a
             835
         nd issparse(X)
             836 ):
                     results = _kneighbors_from_graph(
             837
                         X, n_neighbors=n_neighbors, return_distance=return_distanc
             838
         е
                     )
             839
         File ~\anaconda3\lib\site-packages\sklearn\metrics\ pairwise distances red
         uction\_dispatcher.py:277, in ArgKmin.compute(cls, X, Y, k, metric, chunk_
         size, metric_kwargs, strategy, return_distance)
```

```
196 """Compute the argkmin reduction.
    197
    198 Parameters
   (\ldots)
    274 returns.
    275 """
    276 if X.dtype == Y.dtype == np.float64:
--> 277
            return ArgKmin64.compute(
    278
                X=X,
    279
                Y=Y,
    280
                k=k,
    281
                metric=metric,
                chunk_size=chunk_size,
    282
    283
                metric_kwargs=metric_kwargs,
                strategy=strategy,
    284
    285
                return_distance=return_distance,
    286
    288 if X.dtype == Y.dtype == np.float32:
    289
            return ArgKmin32.compute(
    290
                X=X,
                Y=Y,
    291
   (\ldots)
    297
                return_distance=return_distance,
    298
            )
File sklearn\metrics\ pairwise distances reduction\ argkmin.pyx:95, in skl
earn.metrics._pairwise_distances_reduction._argkmin.ArgKmin64.compute()
File ~\anaconda3\lib\site-packages\sklearn\utils\fixes.py:139, in threadpo
ol limits(limits, user api)
            return controller.limit(limits=limits, user api=user api)
    137
    138 else:
--> 139
            return threadpoolctl.threadpool_limits(limits=limits, user_api
=user_api)
File ~\anaconda3\lib\site-packages\threadpoolctl.py:171, in threadpool lim
its. init (self, limits, user api)
    167 def __init__(self, limits=None, user_api=None):
    168
            self._limits, self._user_api, self._prefixes = \
    169
                self._check_params(limits, user_api)
--> 171
            self. original info = self. set threadpool limits()
File ~\anaconda3\lib\site-packages\threadpoolctl.py:268, in threadpool lim
its._set_threadpool_limits(self)
    265 if self._limits is None:
    266
            return None
--> 268 modules = ThreadpoolInfo(prefixes=self. prefixes,
    269
                                   user api=self. user api)
    270 for module in modules:
            # self._limits is a dict {key: num_threads} where key is eithe
    271
r
    272
            # a prefix or a user api. If a module matches both, the limit
    273
            # corresponding to the prefix is chosed.
    274
            if module.prefix in self._limits:
File ~\anaconda3\lib\site-packages\threadpoolctl.py:340, in _ThreadpoolInf
o.__init__(self, user_api, prefixes, modules)
    337
            self.user_api = [] if user_api is None else user_api
            self.modules = []
    339
--> 340
            self._load_modules()
```

```
self._warn_if_incompatible_openmp()
            341
            342 else:
        File ~\anaconda3\lib\site-packages\threadpoolctl.py:373, in _ThreadpoolInf
        o._load_modules(self)
                    self. find modules with dyld()
            371
            372 elif sys.platform == "win32":
                    self._find_modules_with_enum_process_module_ex()
            374 else:
            375
                    self._find_modules_with_dl_iterate_phdr()
        File ~\anaconda3\lib\site-packages\threadpoolctl.py:485, in ThreadpoolInf
        o._find_modules_with_enum_process_module_ex(self)
                        filepath = buf.value
            482
            484
                        # Store the module if it is supported and selected
        --> 485
                        self._make_module_from_path(filepath)
            486 finally:
                    kernel 32.CloseHandle(h process)
            487
        File ~\anaconda3\lib\site-packages\threadpoolctl.py:515, in _ThreadpoolInf
        o._make_module_from_path(self, filepath)
            513 if prefix in self.prefixes or user_api in self.user_api:
                    module class = globals()[module class]
                    module = module class(filepath, prefix, user api, internal ap
        --> 515
        i)
                    self.modules.append(module)
            516
        File ~\anaconda3\lib\site-packages\threadpoolctl.py:606, in _Module.__init
        __(self, filepath, prefix, user_api, internal_api)
            604 self.internal api = internal api
            605 self._dynlib = ctypes.CDLL(filepath, mode=_RTLD_NOLOAD)
        --> 606 self.version = self.get_version()
            607 self.num_threads = self.get_num_threads()
            608 self._get_extra_info()
        File ~\anaconda3\lib\site-packages\threadpoolctl.py:646, in OpenBLASModul
        e.get version(self)
            643 get_config = getattr(self._dynlib, "openblas_get_config",
                                     lambda: None)
            645 get_config.restype = ctypes.c_char_p
        --> 646 config = get config().split()
            647 if config[0] == b"OpenBLAS":
                    return config[1].decode("utf-8")
        AttributeError: 'NoneType' object has no attribute 'split'
In [ ]: accuracy_score(y_test, y_pred)
In [ ]: m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
In [ ]: print(classification_report(y_test, y_pred))
```

```
In [ ]: ac_list = []
        for i in range(1,30):
            knn = KNeighborsClassifier(n_neighbors=i)
            knn.fit(x_train, y_train)
            y_pred = knn.predict(x_test)
            ac = accuracy_score(y_test, y_pred)
            ac_list.append(ac)
        ac_list
In [ ]: plt.plot(range(1,30), ac_list,':ok' )
        plt.show()
In [ ]: knn = KNeighborsClassifier(n_neighbors=25)
        knn.fit(x_train, y_train)
        y_pred = knn.predict(x_test)
In [ ]: |accuracy_score(y_test, y_pred)
In [ ]: print(classification_report(y_test,y_pred))
In [ ]: m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        Logistic Regression Model
In [ ]: logreg = LogisticRegression()
        logreg.fit(x_train,y_train)
        y_pred = logreg.predict(x_test)
        print(accuracy_score(y_test, y_pred))
In [ ]: |print(classification_report(y_test,y_pred))
```

In []: from tabulate import tabulate

```
params = [ ['lbfgs','12'],['lbfgs','none'],
                   ['liblinear','l1'],['liblinear','l2'],
                   ['newton-cg','12'],['newton-cg','none'],
                   ['sag','12'],['sag','none'],
                   ['saga','l1'],['saga','l2'],['saga','none'] ]
        all_combinations = []
        for i in params:
            from sklearn.linear_model import LogisticRegression
            lr = LogisticRegression(solver=i[0] , penalty=i[1])
            lr.fit(x_train,y_train)
            y pred = lr.predict(x test)
            from sklearn.metrics import accuracy_score
            acc = accuracy_score(y_test,y_pred)
            all_combinations.append([i[0],i[1],acc])
        head = ['Solver', 'Penalty', 'Accuracy' ]
        print(tabulate(all_combinations, headers=head, tablefmt="grid"))
In [ ]: logreg = LogisticRegression(solver="lbfgs", penalty ="none")
        logreg.fit(x_train,y_train)
        y_pred = logreg.predict(x_test)
        print(accuracy_score(y_test, y_pred))
In [ ]: m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
In [ ]: print(classification_report(y_test,y_pred))
        Decision Tree Model
In [ ]: | dt = DecisionTreeClassifier()
        dt.fit(x_train, y_train)
        y_pred = dt.predict(x_test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test,y_pred))
In [ ]: dt_grid = {"min_samples_split" : range(2,50),
                        "max_depth": range(1,20),
                        "criterion" : ["gini", "entropy"]}
```

```
In [ ]: grid = GridSearchCV(dt, dt_grid, verbose=3)
        grid.fit(x_train, y_train)
In [ ]: grid.best_params_
In [ ]: | dt = DecisionTreeClassifier(max_depth = 6, min_samples_split = 30, criterio)
        dt.fit(x_train, y_train)
        y_pred = dt.predict(x_test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test,y_pred))
In [ ]: | m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        SVM model
In [ ]: svm = SVC()
        svm.fit(x_train, y_train)
        y_pred = svm.predict(x_test)
        print(classification_report(y_test, y_pred))
In [ ]: svm_param = {"kernel" : ['linear', 'rbf', 'sigmoid'],
                          "gamma": [0.001, 0.01, 0.1, 1],
                          "C": [0.1, 1,10,100]}
In [ ]: | grid = GridSearchCV(svm, svm_param, verbose=3)
        grid.fit(x_train, y_train)
In [ ]: grid.best_params_
In [ ]: | svm = SVC( C=100, kernel='linear', gamma=0.001)
        svm.fit(x_train, y_train)
        y_pred = svm.predict(x_test)
        print(accuracy_score(y_test, y_pred))
In [ ]: from sklearn.metrics import classification report
        print(classification_report(y_test, y_pred))
In [ ]: | m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
```

Ensemble Learning

- 1. Bgging
- 1. Boosting

1. Voting

Bagging

knn

```
In [ ]: bg = BaggingClassifier(KNeighborsClassifier(n_neighbors=25))
    bg.fit(x_train,y_train)
    y_pred = bg.predict(x_test)
    print(accuracy_score(y_test, y_pred))

print(classification_report(y_test, y_pred))
```

```
In [ ]: m = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (5,5))
    sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
```

Logistic Regression

```
In [ ]: bg = BaggingClassifier(LogisticRegression(solver="lbfgs", penalty ="none"))
    bg.fit(x_train,y_train)
    y_pred = bg.predict(x_test)
    print(accuracy_score(y_test, y_pred))
    print(classification_report(y_test, y_pred))
```

```
In [ ]: m = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (5,5))
    sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
```

Decision Tree

```
In [ ]: m = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (5,5))
    sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
```

SVM

```
In [ ]: bg=BaggingClassifier(SVC( C=100, kernel='linear', gamma=0.001))
        bg.fit(x_train,y_train)
        y_pred=bg.predict(x_test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test,y_pred))
In [ ]: | m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        Ramdom Forest
In [ ]: rf = RandomForestClassifier()
        rf.fit(x_train, y_train)
        y_pred = rf.predict(x_test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test, y_pred))
In [ ]: | m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        Voting Classifier
In [ ]: models = [('logistic regression', LogisticRegression(solver="lbfgs", penalty
         ('Decision Tree', DecisionTreeClassifier(max_depth = 6, min_samples_split
In [ ]: |vc = VotingClassifier(estimators=models)
        vc.fit(x_train, y_train)
        y pred = vc.predict(x test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test, y_pred))
In [ ]: m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        Ada Boost
In [ ]: | adb = AdaBoostClassifier()
```

```
In [ ]: adb = AdaBoostClassifier()
    adb.fit(x_train, y_train)
    y_pred = adb.predict(x_test)
    print(accuracy_score(y_test, y_pred))

print(classification_report(y_test, y_pred))

In [ ]: m = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (5,5))
    sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
```

Gradient Boosting

```
In [ ]: gbc = GradientBoostingClassifier()
        gbc.fit(x_train, y_train)
        y pred = gbc.predict(x test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test, y_pred))
In [ ]: | m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        xgboost
In [ ]: xgb = XGBClassifier()
        xgb.fit(x_train, y_train)
        y_pred = xgb.predict(x_test)
        print(accuracy_score(y_test, y_pred))
        print(classification_report(y_test, y_pred))
In [ ]: m = confusion_matrix(y_test, y_pred)
        plt.figure(figsize = (5,5))
        sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
        Best Model for prediction: Logistic Regression
        logreg.fit(x_train,y_train)
        y_pred = logreg.predict(x_test)
        print(accuracy_score(y_test, y_pred))
```

```
In [ ]: logreg = LogisticRegression(solver="lbfgs", penalty ="none", multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_class="multi_cla
                                              print(classification_report(y_test,y_pred))
In [ ]: m = confusion_matrix(y_test, y_pred)
                                              plt.figure(figsize = (5,5))
                                              sns.heatmap(m,annot=True,cmap="binary",cbar = False,linewidths = 5)
In [ ]: |ypredprob = logreg.predict_proba(x_test)
                                              ypredprob.shape
In [ ]: | from sklearn.multiclass import OneVsRestClassifier
                                              from sklearn.metrics import roc curve, auc
```

```
In [ ]: from sklearn.preprocessing import label_binarize
        classes=df['price_range'].unique()
        y_tesr_bin = label_binarize(y_test, classes=classes)
        fpr = {}
        tpr ={}
        thresh = {}
        roc_auc = dict()
        n_class = classes.shape[0]
        for i in range(n_class):
            fpr[i],tpr[i],thresh[i] = roc_curve(y_tesr_bin[:,1],ypredprob[:,i])
            roc_auc[i] = auc(fpr[i], tpr[i])
            plt.plot(fpr[i], tpr[i], linestyle = "--", label = "%s vs Rest (AUC=%0.)
        plt.plot([0,1], [0,1], 'b--', color='#FFFF00')
        plt.xlim([0,1])
        plt.ylim([0,1.05])
        plt.title("Multiclass Roc Curve")
        plt.xlabel("False Positive Rate")
        plt.ylabel("True Positive Rate")
        plt.legend(loc = "lower right")
In [ ]:
In [ ]:
In [ ]:
```