

LABORATORY WORK SHEET

Name of the Student : Hodel Basett Khan								
Class 1st y	on local	Roll Number						
Course Code :	AEE DC	DE L RO	E Caboratory	239514	966	01		
Name of the C	ourse Faculty	DE. L RO	jashekhar (NucledFaculty I	D IARE	11067		
Exercise Numl	ber :	ZWeek I	Number : 0.8	Date :	7/01	120.24		
	EVALUATION							
	Aim /	Algorithm / Procedure	Source Code	Program Execution	Viva -			
Marks Preparal	Preparation	Performance in the Lab	Calculations and Graphs	Results and Error Analysis	Voce	Total		
Max. Marks	4	4	4	4	4	20		
Obtained	4	4	4	3	4	19		

Signature of Faculty

START WRITING FROM HERE:

Swinburnes Test:

Pre-determine the efficiency and constant Losses of a DC Shunt machine by Swinburnes Method.

Apparatus:

S. No	Name of the Equipment	Type	Range	Quantity
1.	Ammeter	MC	0-20 A	11/11/11
.5	Voltmeter	MC	0-300 V	
3.	Ammeter	MC	0-2 A	
4.	Rheostat	Wire wound	370 A/1.7.	1
5.	Connecting Wires	_	V-21- 17	13.13
	\circ	1/4		_

1. Choose the proper ranges of meters after noting the name plate details of the given machine and make the connections as per the circuit Diagram.

2. Keep the motor field rheastat (RR) in the minimum start the motor by choosing the switch and greating the starter Lowly.

3. Run the motor at rated speed by adjusting the motor field rheastat.

4. Note down the voltages no load current and field current calculation for Swinburnes test:

from the no load test results

supply voltages = VL Volts

No load line current = Ir Angers field arrent = If Animpers

Therefore No Coad armature current = IaO = Ir-If Amperes 8 mature Resistance = Ra: Ra = 1.25 ohms

No load Copper Losses are = Ta2 Ra No load power input = VIII

Constant Cosses = (No Coad power input - No Load Copper Cosses)

Tabular Column:

S. No.	V (Volt)	Ico (Amp)	I, (A)	Speed (xpm)	P=1.251
	230	1.4	0.7	1500	

As a motor Rated Voltage V1 = 229

(300)

jalan Tan		Volt S.No. (V)	Tı (A)	١	Pe Digut Power (VL-IL) (Watt)	/ DIEL	Copper Losses Wc4= Ial Pa (W)	Total Louis (W const + Was) (W)	O/P Power= (i/P-Total loves) (W)	I-In Pa
	1.	STA	1.4	F.0	322	321.4	0.61	322	braw Hr	0
	2.	239	2	F.0	460	321.4	8.11	323.51	136.49	29.67
	3.	2.34	4	0.7	1920	821.4	13.61	335.61	584.39	63.8
	4.	239	.5	0.7	1150	321.4	23.11	344.51	805.49	70.04
peres	5.	239	7	0.7	9610	321.4	49.61	37.01	1238.5	76.92

As a Generator Roted Voltage Vi= 239

	Volt s.M (V)			Output Power (VL.IL)		losses	Total Cours (Want + Wan	Input power (output power cases)	a.n
1	234	1.4	0.7	322	321.4	5.51	826.91	6.48.91	349.6
2.	239	2	0.7	460	321.4	9.11	330.51	790.51	58.19
3.	239	40	0.7	920	321.4	27.61	349.01	10.9351	72.49
4.	239		6,0		321.4	40.61	862.01	1512.01	76.05
	2.19	7	0.7	1616	321.4	74.11	395.51	2005.51	80.3

LABORATORY WORK SHEET

Name of the Student : Abdul Basith Khan	
Class 1- Year (CSM-A) Semester Ist	Roll Number
Class 2 - IRUC (CS/9-71) Semester 1	2205116601
Course Code: AEEDOL	
Name of the Course Faculty. Dr. L. Rajashekhar y	roud Faculty ID: 1ARE1106.7
Exercise Number: 08 Week Number: 08	Date: 17/01/2024

DAY TO DAY EVALUATION:

Marks	Aim /	Algorithm / Procedure	Source Code	Program Execution Viva -		
	Preparation	Performance in the Lab	Calculations and Graphs	Results and Error Analysis	Voce	Total
Max. Marks	4	4	4	4	4	20
Obtained		* %				

Signature of Faculty

START WRITING FROM HERE!

wency as Motor: Efficiency = output /input = (input - total losses)/input Where total Louis = constant losses + Variable losses Constant loves are known value from the equation (1) Variable loss = Ia2 Ra where Ia = Ii-If Input = V. I. V. is rated voltage of the machine, Assume line currents (II) as 2,4,6,-... 2011 and find corresponding efficiency Efficiency as Generator: Efficiency output / input = output / (autput + total Cosses) where losses = constant Coses + variable Cosses. Constant losses are same for both motor and generator Armature current, Ia = Ic + Is Variable loss = Ta2 Rq Output power = Vi Ii. Vi is rated voltage of the machine Assume load current (IL) as 2,4,6, 20A and find corresponding effeciencies.

Calculations:

$$V_{IN} = 230$$
, $I_{L0} = 1.4$, $I_{f} = 0.7$
 $Speed = 1500 rpm$
 $No-load$ $Input = V_{in} I_{L0}$
 $= 230 \times 1.4$
 $= 322 \omega$
 $I_{a} = I_{L} - I_{f} = 1.4 - 0.7 = 0.7$

No load input = Constant losses + Variable losses (Cu) Wc = VIN . ILO - Ia Ra Wc = 322-0.6

Rated current = 11A
Assuming
$$P_L = 1.4$$
 $V = 230$ $T_L = 10A$

$$\eta = \frac{\text{output}}{\text{Input}} = \frac{\text{Input} - \text{losses}}{\text{Input}} = \frac{\text{VI}_{L} - [\text{Wc} + \text{Ia}^{L} \text{Ra}]}{\text{VI}_{L}}$$

$$= \frac{322 - 322}{322} = 0 \cdot \text{/.}$$

1. Run the motor at Eated speed and rated Voltage 2. Avoid Core Connections and Parallel errors.

Result:

Hence Verified the efficiency and constant cooses at DC Shunt machine by Swinburnes test.