Campo Elétrico

A ideia de um corpo exercer força sobre outro sem que haja um contato físico entre eles é dificil de entender. De acordo com o cientista inglês Michael Faraday, no caso das forças entre cargas elétricas em repouso, um campo elétrico se estende por todo o espaço que envolve uma carga elétrica.

Michael Faraday (1791-1867)

Assim, esse campo passa a ser o meio de interação das duas cargas.

Uma força de campo pode ser do tipo:

- gravitacional → campo gravitacional
- elétrica → campo elétrico
- magnética → campo magnético

Uma carga elétrica é capaz de interagir com outra carga elétrica por meio do campo elétrico.

A força $ec{F}_{el}$ que atua em q deve-se ao campo elétrico criado por Q.

A força $ec{F}_{el}$ que atua em $\it Q$ deve-se ao campo elétrico criado por $\it q$.

DILSON SECCO

O campo elétrico é o transmissor das interações elétricas. Se houver um campo elétrico gerado por uma carga elétrica em determinada região, outra carga elétrica colocada nessa região ficará sujeita à ação de uma força elétrica. Essa carga, usada para testar a existência do campo elétrico nessa região, é denominada carga de prova.

No ponto P é constante a razão $\dfrac{F_{el}}{q}$

Por definição, o vetor campo elétrico $ec{E}$, no ponto P, é dado por:

newton por coulomb
$$\left(rac{ extstyle ar{N}}{ extstyle C}
ight)$$
 $ec{E} = rac{ec{F}_{el}}{q}$ newton (N) coulomb (C)

A partir da definição do vetor campo elétrico, temos: $\vec{F}_{\rm el} = q \cdot \vec{E}$ ou, em módulo, $F_{\rm el} = |\vec{q}| \cdot E$.

Se q > 0 (carga de prova positiva), então \vec{F}_{el} e \vec{E} terão mesma direção e mesmo sentido;

Se q < 0 (carga de prova negativa), então \vec{F}_{el} e \vec{E} terão mesma direção e sentidos opostos.

Linhas de força

A **linha de força** é uma linha imaginária que indica a direção e o sentido do vetor campo elétrico \vec{E} em cada ponto do espaço. Em cada ponto do espaço, o vetor campo elétrico \vec{E} é sempre tangente à linha de força e tem o mesmo sentido que ela.

Linhas de força

As linhas de força tornam-se mais próximas em regiões onde o campo elétrico é mais intenso e mais afastadas em regiões onde o campo elétrico é menos intenso.

Linhas de força

Em um **campo elétrico uniforme**, no qual o vetor campo elétrico \vec{E} é constante, as linhas de força são retas paralelas e igualmente espaçadas.

É importante destacar que **as linhas de força nunca se cruzam**.

Consideremos a carga Q, geradora de um campo elétrico, e a carga q, uma carga de prova.

Sabemos que a força elétrica \vec{F}_{el} que age em q deve-se ao campo elétrico \vec{E} criado pela carga Q.

Sabemos, também, que:

$$F_{\rm el} = |q| \cdot E(I)$$

Pela lei de Coulomb:

$$F_{\rm el} = k \cdot \frac{|Q| \cdot |q|}{d^2}$$
(II)

Comparando as equações (I) e (II)

$$|q| \cdot E = \underbrace{k \cdot |Q| \cdot |q|}_{d^2} \Rightarrow E = \underbrace{k \cdot |Q|}_{d^2}$$

Carga positiva gera campo elétrico de afastamento e carga negativa gera campo elétrico de aproximação:

Linhas de força do campo elétrico de uma carga puntiforme:

Campo elétrico uniforme

Um campo elétrico uniforme pode ser gerado, por exemplo, na região entre duas placas planas, paralelas e eletrizadas com cargas de mesmo módulo, mas de sinais contrários.

Campo elétrico uniforme

Como na região de um campo elétrico uniforme o vetor campo elétrico \vec{E} é constante, podemos concluir que uma carga de prova q colocada nessa região ficará sujeita a uma força elétrica $\vec{F}_{\rm el}$ constante (em módulo, direção e sentido). E, pela segunda lei de Newton, a aceleração \vec{a} da carga também será constante (em módulo, direção e sentido).

Campo elétrico criado por um sistema de cargas elétricas puntiformes

O vetor campo elétrico resultante $\vec{E_R}$ para um sistema de cargas elétricas puntiformes, Q_1 , Q_2 , Q_3 , ..., Q_n , em determinado ponto do espaço, é dado pela soma vetorial dos campos elétricos $\vec{E_1}$, $\vec{E_2}$, $\vec{E_3}$,... $\vec{E_n}$. Portanto, em um sistema de cargas puntiformes:

$$\vec{E}_{R} = \vec{E}_{1} + \vec{E}_{2} + \vec{E}_{3} + \dots + \vec{E}_{n}$$

A soma desses vetores pode ser feita por qualquer dos métodos já estudados (regra do polígono, regra do paralelogramo, etc.).

Campo elétrico criado por um sistema de cargas elétricas puntiformes

Consideremos, como exemplo, o sistema de cargas pontuais $Q_1,\ Q_2$ e Q_3 mostrado abaixo. Vamos calcular o campo elétrico resultante no ponto P.

Pela regra do polígono, temos:

Fonte: Editora Moderna - Vereda Digital

