Algoritmo GWO [1]:

- 1. Inicializar la población de lobos x_i ($i = 1, 2, ..., N_p$) en ubicaciones aleatorias.
- 2. Inicializar a, A y C.
- 3. Calcular el fitness de cada lobo y determinar su jerarquía.

 $(x_{\alpha}$ es la mejor solución, x_{β} es la segunda mejor solución, x_{δ} es la tercera mejor solución).

- 4. Repetir mientras (t < MaxIt)
 - a. Para cada lobo i:

Actualizar su posición x_i .

Fin del ciclo

- b. Actualizar a, A y C.
- c. Calcular el fitness de cada lobo y actualizar las jerarquías.

Fin del ciclo principal

Figura 1 Izquierda: El lobo se puede mover a alguna de las posiciones sombreadas alrededor del alfa. Derecha: el lobo se mueve a una posición alrededor de la presa debido a las posiciones del alfa, beta y delta

Ejemplo

Se optimiza la función Eggholder

$$f(x,y) = -(y+47)\sin\sqrt{\left|rac{x}{2} + (y+47)
ight|} - x\sin\sqrt{|x-(y+47)|}$$

El mínimo se encuentra en

$$f(512, 404.2319) = -959.6407$$

$$-512 \leq x,y \leq 512$$

Resultados

Encontró el mínimo [512, 404.236] en 4 de 5 corridas

Corrida	x1	x2	costo
1	512	404.234	-959.641
2	482.312	432.837	-956.918
3	512	404.227	-959.641
4	512	404.236	-959.641
5	512	404.245	-959.64

Referencias

[1] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," *Advances in Engineering Software*, vol. 69, pp. 46-61, DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007, 2014.