23

WE CLAIM:

	\cdot
1	1. A method of machining a hollow metal workpiece
2	having a plurality of small-diameter throughgoing holes and at
3	least one large-diameter hole, the method comprising the steps
4	of:
5	picking up from a transfer station by a grab a hollow
6	workpiece and displacing the workpiece from the transfer station
7	to a machining station;
8	thereafter, while holding the workpiece in the grab,
9	a) engaging a tool from outside with a first
.0	exterior surface of the workpiece and thereby
.1	finishing the first exterior surface;
.2	b) reorienting the workpiece by the grab and
L3 .	engaging a tool with a second exterior
L 4	surface of the workpiece offset from the
L5	first exterior surface and thereby finishing
16	the second exterior surface;
17	c) fitting another tool through the large-diameter
18	hole of the workpiece and positioning the
19	other tool inside the workpiece adjacent one
20	of the small-diameter holes;
21	d) coupling a drive spindle through the one small-
22	diameter hole of the workpiece with the other

tool and machining an inner surface of the

24	workpiece adjacent the one small-diameter
25	hole with the other tool; and
26	e) repeating steps b), c), and d) to finish
27	another interior surface of the workpiece
28	adjacent another of the small-diameter holes
29	and
30	displacing the workpiece from the machining station
31	back to the transfer station and releasing it from the grab.

- 2. The machining method defined in claim 1 wherein the exterior surfaces are surfaces of the small-diameter holes.
- 3. The machining method defined in claim 2 wherein the surfaces of the small-diameter holes are generally cylindrical.
- 4. The machining method defined in claim 1 wherein in step b) the workpiece is rotated about an axis through about 90°.
- 5. The machining method defined in claim 1, further comprising the step during step d) of

- engaging a tailstock through another of the small-
- diameter holes with the other tool after coupling of the other
- tool to the drive spindle to brace the other tool.
- 6. An apparatus for machining a hollow metal workpiece
- having a plurality of small-diameter throughgoing holes and at
- least one large-diameter hole to produce a part having a
- 4 plurality of finished exterior and interior surfaces, the
- 5 apparatus comprising:
- means including a grab for picking up from a transfer
- station the hollow workpiece and displacing the workpiece from
- the transfer station to a machining station;
- means including a tool engageable with a first exterior
- surface of the workpiece in the grab for finishing the first
- 11 exterior surface;
- drive means connected to the grab and for reorienting
- the workpiece and engaging the tool with a second exterior
- surface of the workpiece offset from the first exterior surface
- and thereby finishing the second exterior surface;
- means including for fitting another tool through the
- large-diameter hole of the workpiece and positioning the other
- tool inside the workpiece adjacent one of the small-diameter
- 19 holes;
- means including a drive spindle engageable through the
- one small-diameter hole of the workpiece for coupling the spindle

to the other tool and machining an inner surface of the workpiece adjacent the one small-diameter hole with the other tool; and

means for displacing the workpiece from the machining
station back to the transfer station and releasing it from the
grab.

- 7. The machining apparatus defined in claim 6, further comprising
- a tailstock engageable through another of the smalldiameter holes with the other tool after coupling of the other
 tool to the drive spindle to brace the other tool.
- 8. The machining apparatus defined in claim 7 wherein the tailstock is displaceable parallel to a rotation axis of the spindle.
- 9. The machining apparatus defined in claim 6 wherein
 the tools are all rotatable about parallel axes, the means
 including the grab further including:
- a main slide displaceable perpendicular to the rotation axes; and
- a carriage displaceable on the main slide parallel to the rotation axes and carrying the grab.