Билеты по матану

• • •

11 февраля 2021 г.

Содержание

1.	•••		1
	1.1	Лекция 1	1
	1.2	Лекция 2	3
	1.3	Лекция 3	7
	1.4	Лекция 5	11

1.1. Лекция 1

Определение 1.1.

$$f_1 \in H(\Omega_1)$$
 и $f_2 \in H(\Omega_2)$

 Δ – компонента связности $\Omega_1 \cap \Omega_2 \neq \varnothing$

Если $f_1\Big|_{\Lambda} = f_2\Big|_{\Lambda}$, то f_2 непосредственное аналитическое продолжение f_1 через Δ

Замечание.

При фиксации Δ продолжение единственно

$${\hbox{\it Доказательство}}.$$
 $\widetilde{f}_2\in H(\Omega_2)$ $\widetilde{f}_2\Big|_{\Delta}=f_1\Big|_{\Delta}=f_2\Big|_{\Delta}\Rightarrow \widetilde{f}_2\Big|_{\Delta}=f_2\Big|_{\Delta}\Rightarrow f_2\equiv \widetilde{f}_2$ по единственности.

Замечание.

Продолжения через разные компоненты связности могут быть разными

Определение 1.2. Продолжение по цепочке областей.

$$f \in H(\Omega)$$
 и $\widetilde{f} \in H(\widetilde{\Omega})$

Если существует цеполчка областей

$$\Omega_0 = \Omega, \Omega_1, \Omega_2, \dots, \Omega_n = \widetilde{\Omega}, \quad f_0 = f, \dots, f_n = \widetilde{f}$$

 $f_k \in H(\Omega_k)$ и f_k непосредственно аналитическое продолжение f_{k-1}

Замечания.

- 1. Результат зависит от выбора компонент связности на каждом шаге
- 2. При их фиксации результат единственный
- 3. Можно считать, что все промежуточные области круги

Определение 1.3.

Разобьем множество пар (f,Ω) $f \in H(\Omega)$

на классы эквивалентности отностительно аналитического продолжения по цепочке. (Очевидно, что это отношение эквивалентности \Rightarrow можем разбить на классы)

Класс эквивалентности – полная аналитческая функция F

множество $M := \bigcup_{(f,\Omega) \in F} \Omega$ – область определения F (существования)

Утверждение 1.1.

M – область

TODO: написать доказательство

Определение 1.4.

Значения полной аналитической функции в точке $z \in M$ – множество значений в точке zвсех функций из ее класса эквивалентности.

Глава #1 1 из 13 Автор: ...

Замечание.

Теорема Пуанкаре-Вольтерры. Множество значений F в точке z либо конечно, либо счетно. Более того можно ограничиться лишь нбчс (f,Ω) в классе эквивалентности.

Пример.

$$f(z) = \sum_{n=0}^{\infty} z^n$$
 определена в $|z| < 1$

Можно продолжить до $\frac{1}{1-z}$ в $\mathbb{C}\setminus\{1\}$

ТООО: Написать про то, как надо дополнять, если мы не знаем формулу.

$$\frac{1}{1-z} = \frac{1}{1-a} \cdot \frac{1}{1-\frac{z-a}{1-a}} = \frac{1}{1-a} \cdot \sum_{n=0}^{\infty} \left(\frac{z-a}{1-a}\right)^n = \sum_{n=0}^{\infty} \frac{(z-a)^n}{(1-a)^{n+1}}$$
 сходится при $\left|\frac{z-a}{1-a}\right| < 1 \Leftrightarrow |z-a| < |1-a|$

Определение 1.5.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \quad |z - z_0| < R \quad |z_1 - z_0| \leqslant R$$

 z_1 – правильная точка, если $\exists r>0$ и $g\in H(B_r(r_1)),$ т.ч. $f\equiv g$ в $B_R(z_0)\cap B_r(z_1)$ иначе z_1 – особая точка.

Теорема 1.2.

На границе круга сходимости есть особая точка.

Доказательство.

Пусть все точки правильные.

$$S = \{ |z - z_0| = R \}$$

 $\forall z \in S$ найдется круг $B_{r_z}(z)$, на который есть продолжение

У нас покрытие компакта (окружности) \Rightarrow мы можем выбрать конченое подпокрытие шириками, из которых по лемме Лебега возьмем r>0 чтобы у любой точки окружности был шарик радиуса r

Продолжим f в $\Omega = B_R(z_0) \cap B_{r_1}(z_1) \cap \ldots \cap B_{r_n}(z_n)$

Тогда $f \in H(\Omega)$, но $\Omega \supset B_{R+r}(z_0)$

Разложим f в ряд с центром в z_0 , он сходится в $B_{R+r}(z_0) \Rightarrow B_R(z_0)$ не круг сходимости.

Пример.

1.
$$f(z) = \sum\limits_{n=1}^{\infty} \frac{z^n}{n^2}$$
 сходится во всех точках $|z|=1$

$$(f(z))'=\sum rac{z^{n-1}}{n} \quad (zf'(z))'=\sum z^n=rac{1}{1-z}\Rightarrow$$
 точка $z=1$ особая, хотя интеграл сходится

2. $\sum_{n=1}^{\infty} z^{2^n}$ все точки |z| = 1 особые.

Теорема 1.3.

 $f \in H(\Omega)$ Ω – односвязная область в $\mathbb C$ и $f \neq 0$ в Ω

Тогда существует $g\in H(\Omega),$ т.ч. $e^{g(z)}=f(z) \forall z\in \Omega$ и g единственна с точностью до $+2\pi i k,$ где $k\in \mathbb{Z}$

Доказательство.

$$\frac{f'}{f} \in H(\Omega) \Rightarrow$$
у нее есть первообразная в Ω

П

зафиксируем $z_0 \in \Omega$ и подбурем константу так, что $e^{g(z_0)} = f(z_0)$

Докажем, что $e^{g(z)} = f(z) \ \forall z \in \Omega$

Рассмотрим $h(z) = e^{-g(z)}f(z)$

 $h(z_0)=1, h'(z)=-g'(z)e^{-g(z)}f(z)+e^{-g(z)}f'(z)=rac{f'(z)}{f(z)}e^{-g(z)}f(z)+e^{-g(z)}f'(z)=0$ значит эту функция константа

Пусть есть g_1 и g_2 , тогда $e^{g_1(z)-g_2(z)}=1\Rightarrow g_1(z)-g_2(z)=2\pi i k(z)$ – непрерывная функция и $k(z)\in\mathbb{Z}\Rightarrow k(z)$ фиксированная функция, тк она не может перескочить с одного дискретного значения на другое (функция непрерывна \Rightarrow теорема Больцана-Коши \Rightarrow есть все значения между, а из нет)

Следствие.

В односвязной области $\Omega\subset\mathbb{C}\setminus\{0\}$ существует $g\in H(\Omega),$ т.ч. $e^{g(z)}=z$ и g единственна с точностью до $+2\pi ik,$ где $k\in\mathbb{Z}$

Доказательство.

Подставим f(z) = z

Замечание.

$$g(z) = \ln|z| + i\arg z$$

Причем $\arg z$ непрерывен в Ω

Определение 1.6.

 Φ ункции g из следствия из одного класса эквивалентности

Получилась полная аналитическая функция Ln логарифм

Ее представители – голоморфные ветви логарифма.

Свойства Іп.

1. Ln
$$z = \{w \in \mathbb{C} : e^w = z\}$$
 $z \neq 0$

2. Ln
$$z = \ln |z| + i \operatorname{Arg} z$$
 $z \neq 0$, где Arg = все аргументы z

3.
$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$$

$$\operatorname{Ln}(z_1 z_2) = \ln|z_1 z_2| + i \operatorname{Arg}(z_1 z_2) = \ln|z_1| + \ln|z_2| + i \operatorname{Arg}(z_1 z_2) = \ln|z_1| + \ln|z_2| + i \operatorname{Arg}(z_1 z_2) = \ln|z_1 z_2| + i \operatorname{Arg}(z_1 z_2) = \ln|z_1| + i \operatorname{Arg}(z_1 z_2) = \lim_{n \to \infty} |z_1| + i \operatorname{Arg}(z_1 z_2) = \lim_{n \to \infty}$$

Замечание. Для голоморфногой ветви логарифма свойства 3 нет

$$\operatorname{Ln} z = \ln|z| + i \operatorname{arg} z - \pi < \operatorname{arg} z < \pi$$

$$\operatorname{Ln} e^{3\pi i/4} = \frac{3\pi i}{4}$$

$$\operatorname{Ln}\left((e^{3\pi i/4})^2\right) = \operatorname{Ln}\left(e^{2\cdot 3\pi i/4}\right) = \operatorname{Ln}\left(e^{3\pi i/2}\right) = -\frac{\pi i}{2} \neq \frac{3\pi i}{4} + \frac{3\pi i}{4}$$

1.2. Лекция 2

Определение 1.7.

$$z^p := e^{p \operatorname{Ln} z}$$

Замечания.

1. Если $p \in \mathbb{Z}$ $e^{p \cdot 2\pi i k} = 1$ и функция однозначна.

2. Если $p=\frac{q}{r},\ q\in\mathbb{Z},\ r\in\mathbb{N}$ $e^{\frac{q}{r}\cdot 2\pi ik}$ принимает r различных значений (зависит от остатка k mod r)

3. Если $p \in \mathbb{C} \setminus \mathbb{Q}$ функция принимает счетное число значений $e^{p \cdot 2\pi i k} \neq 1$

Упражнение.

- 1. Найти i^i
- 2. $(z^p)' = \frac{pz^p}{z}$ при $z \neq 0$
- $3. \ z^p z^q \neq z^{p+q}$

$$(z^p)^q \neq z^{pq}$$

Если рассмотреть конкретную ветвь

Определение 1.8 (Ряд Лорана).

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n$$

$$f_1(z) := \sum_{n=0}^{+\infty} c_n (z-z_0)^n$$
 Правильная (регулярная часть)

$$f_2(z) := \sum_{n=1}^{+\infty} c_{-n} (z-z_0)^{-n}$$
 главная часть

Дальше $z_0 = 0$

Свойства.

1. Существует $r,R\in[0,\infty],$ т.ч. $\forall z\quad r<|z|< R$ ряд абсолютно сходится, $\forall z\quad |z|< r$ и $\forall z\ |z|>R$ ряд расходится.

$$\frac{1}{r}$$
 – радиус сходимости ряда $\sum\limits_{n=1}^{+\infty}c_{-n}z^{n}$

R – радиус сходимости правильной части

- 2. В кольце, лежащем внутри r < |z| < R, сходимость равномерная.
- 3. В кольце сходимости можно почленно дифференцировать.

Теорема 1.4.

Если голоморфная функция раскладывается в кольце r < |z| < R в ряд Лорана, то его коэффициенты определяются однозначно.

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n z^n \Rightarrow a_n = \frac{1}{2\pi i} \int\limits_{|\xi|=\rho} \frac{f(\xi)}{\xi^{n+1}} d\xi$$
, где $r < \rho < R$

Доказательство.

$$f(\rho e^{it}) = \sum_{n=-\infty}^{+\infty} a_n \rho^n e^{int}$$
 равномерно сходится \Rightarrow

$$\int_{|\xi|=\rho} \frac{f(\xi)}{\xi^{n+1}} d\xi = \int_{0}^{2\pi} \frac{f(\rho e^{it})}{\rho^{n+1} e^{i(n+1)t}} \rho e^{it} i dt = i \int_{0}^{2\pi} \sum_{k=-\infty}^{+\infty} a_k \rho^k e^{ikt} \cdot \frac{dt}{\rho^n e^{int}} = i \sum_{k=-\infty}^{+\infty} a_k \int_{0}^{2\pi} \rho^{k-n} e^{i(k-n)t} dt = i a_n \cdot 2\pi$$

$$\int\limits_{0}^{2\pi}\rho^{k-n}e^{i(k-n)t}\,dt=0$$
если $k\neq n$ и = $2\pi,$ если $k=n$

Замечание.

Неравенство Коши $|a_n|\leqslant \frac{M(\rho)}{\rho^n},$ где $M(\rho)=\max_{|z|=\rho}|f(z)|$

Теорема 1.5 (Лорана).

Если f голоморфна в кольце r < |z| < R, то она там раскладывается в ряд Лорана

Доказательство.

 $r < r_1 < r_2 < R_2 < R_1 < R$, тогда f голоморфна в $r_1 \leqslant |z| \leqslant R_1$

Напишем интегральную формулу Коши для этого кольца

$$f(z) = \frac{1}{2\pi i} \int_{|\xi| = R_1} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \int_{|\xi| = r_1} \frac{f(\xi)}{\xi - z} d\xi$$

$$\frac{1}{\xi-z}=\frac{1}{\xi}\cdot\frac{1}{1-z/\xi}=\frac{1}{\xi}\sum_{n=0}^{\infty}\left(\frac{z}{\xi}\right)^n$$
 при $|z|\leqslant R_2$ равномерно сходится.

$$\int\limits_{|\xi|=R_1} \frac{f(\xi)}{\xi-z} \, d\xi = \int\limits_{|\xi|=R_1} f(\xi) \sum_{n=0}^\infty \frac{z^n}{\xi^{n+1}} \, d\xi = \sum_{n=0}^\infty z^n \int\limits_{|\xi|=R_1} \frac{f(\xi)}{\xi^{n+1}} \, d\xi$$
 это дает правильную часть

$$\frac{1}{\xi-z} = -\frac{1}{z} \cdot \frac{1}{1-\xi/z} = -\frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{\xi}{z}\right)^n$$
 при $|z| \geqslant r_2$ равномерно сходится.

$$-\int\limits_{|\xi|=r_1}\frac{f(\xi)}{\xi-z}\,d\xi=\int\limits_{|\xi|=r_1}f(\xi)\sum_{n=0}^{\infty}\frac{\xi^n}{z^{n+1}}\,d\xi=\sum_{n=0}^{\infty}\frac{1}{z^{n+1}}\int\limits_{|\xi|=r_1}f(\xi)\cdot\xi^n\,d\xi$$
 это дает главную часть

По прошлой теореме такое разложение единственно

Теорема 1.6.

f - голоморфна в кольце r < |z| < R

Тогда существует $f_1\in H(R\mathbb{D})$ и $f_2\in H(\mathbb{C}\setminus r\tilde{\mathbb{D}})$, т.ч. $f(z)=f_1(z)+f_2(z)$

Если добавить, что $|f_2(z)| \to 0$ при $|z| \to \infty$, то разложение единственно.

Доказательство.

 f_1 – сумма правильной части, f_2 – сумма главной части

Единственность. Пусть $f(z) = f_1(z) + f_2(z) = g_1(z) + g_2(z)$

$$f_1,g_1\in H(R\mathbb{D})$$
 и $f_2,g_2\in H(\mathbb{C}\setminus r\tilde{\mathbb{D}})$ и $\lim_{|z|\to\infty}f_2(z)=\lim_{|z|\to\infty}g_2(z)=0$

$$h(z) = \begin{cases} f_1(z) - g_1(z), & \text{при } |z| < R \\ f_2(z) - g_2(z), & \text{при } |z| > r \end{cases}$$

$$|h(z)| \leqslant |g_2(z)| + |f_2(z)| \underset{|z| \to \infty}{\longrightarrow} 0 \Rightarrow h$$
 ограничена.

h задана в $\mathbb C$ и голоморфна там \Rightarrow , тк это ограниченная функция, то по теореме Лиувилля $h=\mathrm{const} \Rightarrow h \equiv 0$

Определение 1.9.

f – голоморфна в кольце $0 < |z - z_0| < R$

 z_0 – изолированная особая точка

Если существует конечный предел $\lim_{z\to z_0} f(z)$, то z_0 – устранимая особая точка.

Если
$$\lim_{z \to z_0} f(z) = \infty$$
, то z_0 – полюс

 Γ лава #1 5 из 13 Автор: ...

Если $\lim_{z\to z_0}f(z)$ не существует (даже ∞), то z_0 – существенная особая точка.

Пример.

$$\frac{\sin z}{z}, \frac{1-e^z}{z} = 0$$
 — устранимая точка $\frac{1}{\sin z}, \frac{1}{z} = 0$ — полюс

$$e^{1/z} = 0$$
 — существенная особая точка.

Как понять, что нет предела? Взять несколько подпоследовательностей, которые сходятся к разным значениям.

$$z_n = \frac{1}{n}$$
 $\lim = \infty$ $z_n = \frac{1}{2\pi i n}$ $\lim = 1$

Теорема 1.7 (харакатеристика устранимой особой точки).

$$f \in H(0 < |z - z_0| < R)$$
 Тогда равносильны

- 1. z_0 устранимая особая точка
- 2. f ограничена в некоторой окрестности точки z_0
- 3. Существует функция $g \in H(|z-z_0| < R)$, совпадающая с f при $0 < |z-z_0| < R$
- 4. В главное части ряда Лорана все коэффициенты равны нулю.

Доказательство.

$$f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$$
 в качестве g берем сумму этого ряда

$$g(z) = \begin{cases} f(z), & \text{при } z \neq z_0 \\ a_0, & \text{при } z = z_0 \end{cases}$$

3)
$$\Rightarrow$$
1) g голоморфна $\Rightarrow \lim_{z \to z_0} f(z) = \lim_{z \to z_0} g(z) = g(z_0)$

- $1) \Rightarrow 2)$ очевидно
- $(2) \Rightarrow 4)$ Выберем $0 < \tilde{R} < R$

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$
, где $a_n = \frac{1}{2\pi i} \int\limits_{|\xi|=r} \frac{f(\xi)}{\xi^{n+1}}$

Из неравенства Коши мы можем ограничить коэффициенты

$$|a_n| \leqslant \frac{M(r)}{r^n} \leqslant \frac{M}{r^n} \underset{r \to 0}{\longrightarrow} 0$$
, tk $n < 0$

Теорема 1.8 (харакатеристика полюсов).

$$f \in H(0 < |z - z_0| < R)$$
 Тогда равносильны

- 1. z_0 полюс
- 2. Существует $m \in N$ и функция $g \in H(|z-z_0| < R)$, т.к. $g(z_0) = 0$ и $f(z) = \frac{g(z)}{(z-z_0)^m}$ при $z \neq z_0$
- 3. В главной части ряда Лорана лишь конечное число ненулевых коэффициентов (но они есть).

Доказательство.

 $3){\Rightarrow}1)$ Пусть N – наибольший номер такого ненулевого коэффициента

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=-N}^{-1} a_n (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{\sum_{n=0}^{N+1} a_{N-n} (z - z_0)^{N-n}}{(z - z_0)^N} \xrightarrow[z \to z_0]{} \infty$$

2)
$$\Rightarrow$$
3) $g(z)=\sum\limits_{n=0}^{\infty}b_n(z-z_0)^n\Rightarrow f(z)=\sum\limits_{n=0}^{\infty}b_n(z-z_0^{n-m})$ – ряд орана

1)
$$\Rightarrow$$
2) $\lim_{z\to z_0}f(z)=\infty\Rightarrow$ есть круг $|z-z_0|\leqslant r$, т.ч. $|f(z)|>1$ в этом круге

$$h(z)=rac{1}{f(z)}$$
 в этом круге, тогда $h\in H(0<|z-z_0|< r)$ и $\lim_{z o z_0}h(z)=0$ Доопределим $h(z_0)=0.$

А для этой функции у нас есть характеристика нуля $\Rightarrow h(z) = (z-z_0)^m \tilde{h}(z)$, где $\tilde{h}(z_0) \neq 0$ Давайте перевернем все обратно. Мы можем это делать, тк $\tilde{h}(z_0) \neq 0$, значит и в окрестности не ноль.

$$f(z)=rac{1/ ilde{h}(z)}{(z-z_0)^m}\Rightarrow rac{1}{ ilde{h}}$$
 голоморфна в окрестности z_0

Во всех точках круга, кроме точки z_0 , мы определим $g(z)=(z-z_0)^m f(z),$ а в точке z_0 доопределим $\frac{1}{\tilde{b}}$

TODO: что-то более формальное написать почему тут все хорошо и почему есть непрерывность

Замечание.

Мы доказали равносильность

- 1. z_0 полюс порядка m функции f (это то m, которое в пункте 2) теоремы)
- 2. z_0 ноль кратности m функции 1/f
- 3. $f(z) = \sum_{n=-m}^{\infty} a_n (z-z_0)^n$, $a_{-m} \neq 0$ в проколотой окрестности точки z_0

1.3. Лекция 3

Определение 1.10.

Функция, не имеющая в Ω никаких особых точек за исключением полюсов, называется мероморфной в Ω

 $f \in H(\Omega \setminus E)$ и в точках из E у нее полюсы

Замечание.

E не имеет предельных точек в Ω

Если у нас есть предельная точка в Ω , то есть последовательность полюсов т.ч. в пределе ∞ , но тогда значение в этой точке $\infty \Rightarrow$ это полюс, а в окрестности полюса есть шарик, в котором функция голоморфна.

Пример.

$$f(z) = \frac{1}{\sin \frac{1}{2}} \quad z = \frac{1}{\pi k}$$

fмероморфна в $\mathbb{C}\setminus\{0\},$ но не мероморфна в \mathbb{C}

Свойство.

Если f и g мероморфны в Ω , то $f \pm g$, fg, f/g (если $g \not\equiv 0$) и f' мероморны в Ω

Доказательство.

TODO: написать про $f \pm q$

$$fg$$
 и f/g $f(z) = (z-z_0)^m \varphi(z)$ $g(z) = ()z-z_0)^n \psi(z)$ $\varphi(z_0) \neq 0$ $\psi(z_0) \neq 0$ $f(z)g(z) = (z-z_0)^{m+n} \varphi(z)\psi(z)$ $f(z)/g(z) = (z-z_0)^{m-n} \frac{\varphi(z)}{\psi(z)}$

ТООО: написать про голоморфность

 $f'(z)=(z-z_0)^m \varphi'(z)+m(z-z_0)^{m-1} \varphi(z)=(z-z_0)^{m-1}(m \varphi(z)+(z-z_0) \varphi'(z))$ в скобках голоморфная функция

Теорема 1.9 (характеристика существенных особых точек).

$$f \in H(0 < |z - z_0| < R)$$
, тогда равносильны

Тогда равносильны

- 1. z_0 существенная особая точка
- 2. В главной части ряда Лорана лишь бесконечное число ненулевых слагаемых

Пример.

$$e^{1/z} = 1 + \frac{1}{z} + \frac{1}{z^2} \cdot \frac{1}{2!} + \frac{1}{z^3} \cdot \frac{1}{3!} + \dots$$

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$

$$\sin 1/z = \frac{1}{z} - \frac{1}{z^3} \cdot \frac{1}{3!} + \frac{1}{z^5} \cdot \frac{1}{5!} + \dots$$

Замечание.

В окрестности $0 e^{1/z}$ принимает все значение, кроме 0.

Теорема 1.10 (Пикара).

a — существенная особая точка $f \Rightarrow$ в проколотой окрестности точки a f принимает все значения, кроме возможно одного.

Теорема 1.11 (Сохоцкого).

a – существенная особая точка f

Тогда $\forall \varepsilon>0$ $f(0<|z-a|<\varepsilon)=\mathbb{C}$ Более того $\forall A\in\mathbb{C}$ или $A=\infty$ найдется последовательность $z_n\to a$, т.ч. $f(z_n)\to A$

Доказательство.

Поймем, что из "более того" следует $\forall \varepsilon > 0$ $f(0 < |z - a| < \varepsilon) = \mathbb{C}$.

Возьмем число a возьмем последовательность $z_n \to a$, т.ч. $f(z_n) \to A$ начиная с какого-то момента $z_n \in 0 < |z-a| < \varepsilon \Rightarrow$ предел образа лежит в замыкании

Поймем, что существует последовательность z_n , которая стремится к a, а значения функции к бесконечности.

Иначе f ограничена в окрестности точки a и тогда a – устранимая особая точка.

Пусть $A \in \mathbb{C}$. Если $\forall \varepsilon > 0$ $A \in f(0 < |z - a| < \varepsilon)$, то найдутся $|z_n - a| < \frac{1}{n}$, т.ч. $f(z_n) = A$ и это нужная последовательность.

Можно считать, что $f(z) \neq A$ при $0 < |z - a| < \varepsilon$.

Глава #1 8 из 13 Aвтор: ...

Рассмотрим $g(z) = \frac{1}{f(z) - A}$ голоморфна в $0 < |z - a| < \varepsilon$

$$f(z) = A + \frac{1}{g(z)}$$

aне может быть ни устранимой точкой, ни полюсом g. Если a – полюс для g, то a – устранимая особая точка f, а если a – устанимая особая точка g, то a – устанимая особая точка или полюс f

 $\Rightarrow a$ – существенная особая точка $g \Rightarrow \exists z_n \to a,$ т.ч. $g(z_n) \to \infty \Rightarrow f(z_n) = A + \frac{1}{g(z_n)} \to A$

Обозначения 1.1.

$$\bar{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

$$f(\infty) = \dots$$

Непрерывность в ∞ $f(\infty) = \lim_{z \to \infty} f(z)$

$$\forall z_n \to \infty \Rightarrow f(z_n) \to f(\infty)$$

Определение 1.11.

Особая точка $z = \infty$ $f \in H(|z| > R)$

 ∞ – устранимая особая точка f,если \exists конечный $\lim_{z\to\infty}f(z)$

 ∞ – полюс f, если $\lim_{z \to \infty} f(z) = \infty$

 ∞ — существенная особая точка f, если $\lim_{z\to\infty}f(z)$ не существует.

Замечание.

$$f \in H(|z| > R) \Leftrightarrow g(z) = f(1/z) \in H(0 < |z| < \frac{1}{R})$$

1/z – голоморфная функция, композиция голоморфных функций – голоморфная функция $\Rightarrow g$ – голоморфная функция

$$\lim_{z\to\infty}f(z)=\lim_{z\to0}g(z)$$

Утверждение 1.12.

 ∞ — устанимая особая точка $\Leftrightarrow f$ ограничена в окрестности $\infty \Leftrightarrow$ в ряде Лорана fнет положительных степеней

 ∞ — устанимая особая точка $f\Leftrightarrow 0$ — устранимая особая точка $g=f(1/z)\Leftrightarrow g$ ограничена в окрестности $0\Leftrightarrow f$ ограничена в окрестности ∞

 \Leftrightarrow в главной части ряда Лорана (по степеням z) все слагаемые нулевые для q

 \Leftrightarrow в ряде Лорана (по степеням z) нет положительных степеней для g

Определение 1.12.

f голоморфна в ∞ если там устранимая особая точка

Утверждение 1.13.

 ∞ —полюс $f \Leftrightarrow$ в ряде Лорана f для f ненулевое конечное множество положительных степеней

 ∞ – полюс $f \Leftrightarrow 0$ – полюс $g = f(1/z) \Leftrightarrow$ в главной части ненеулвое коенчное число слагаемых для $g \Leftrightarrow$ в ряде Лорана f для f ненулевое конечное множество положительных степеней

Определение 1.13 (Сфера Римана).

торо: рисунок

Короче это шарик на плоскости и каждую точку можно получить так проекцию точки окруж-

Глава #1 9 из 13 Aвтор: ...

ности из северного полюса.

Следствие.

1. Расстояние между образами точек z и z_1 равно $\frac{|z-z_1|}{\sqrt{1+|z|^2}\sqrt{1+|z_1|^2}}$. Расстояние между образами z и ∞ равно $\frac{1}{\sqrt{1+|z|^2}}$

Доказательство

$$u+iv, \ w \ {z\over 1+|z|^2}$$
 и ${|z|^2\over 1+|z|^2}$

$$\begin{split} \rho &= \left| \frac{z}{1+|z|^2} - \frac{z_1}{1+|z_1|^2} \right| + \left(\frac{|z|^2}{1+|z|^2} - \frac{|z_1|^2}{1+|z_1|^2} \right)^2 = \\ &= \frac{z\bar{z}}{(1+|z|^2)^2} + \frac{z_1\bar{z_1}}{(1+|z_1|^2)^2} - \frac{z\bar{z_1} + \bar{z}z_1}{(1+|z|^2)(1+|z_1|)^2} + \frac{(|z|^2 - |z_1|^2)^2}{(1+|z|^2)^2(1+|z_1|^2)^2} = \\ &= \frac{|z|^2}{(1+|z|^2)^2} + \frac{|z_1|^2}{(1+|z_1|^2)^2} - \frac{2\operatorname{Re} z\bar{z_1}}{(1+|z|^2)(1+|z_1|)^2} + \frac{(|z|^2 - |z_1|^2)^2}{(1+|z|^2)^2(1+|z_1|^2)^2} \\ &= \frac{|z-z_1|^2}{(1+|z|^2)(1+|z_1|^2)} = \frac{|z|^2 + |z_1|^2 - 2\operatorname{Re} z\bar{z_1}}{(1+|z|^2)(1+|z_1|^2)} \end{split}$$

ТООО: досчитать

 Π ля z и ∞

$$\rho = \left| \frac{z}{1+|z|^2} \right|^2 + \left(1 - \frac{|z|^2}{1+|z|^2} \right)^2 = \frac{|z|^2}{(1+|z|^2)^2} + \frac{1}{(1+|z|^2)^2} = \frac{1}{1+|z|^2}$$

2. Сходимость в $\bar{\mathbb{C}}$ равносильна сходимости на сфере Римана.

Доказательство.
$$\frac{|z-z_1|}{\sqrt{1+|z|^2}\sqrt{1+|z_1|^2}} \quad \frac{1}{\sqrt{1+|z|^2}}$$

$$z_n \to z \Rightarrow |z_n - z| \to 0 \Rightarrow \frac{|z-z_n|}{\sqrt{1+|z|^2}\sqrt{1+|z_1|^2}} \to 0$$

$$\frac{|z-z_n|}{\sqrt{1+|z|^2}\sqrt{1+|z_1|^2}} \to 0 \Rightarrow |z-z_n| \to 0$$

3. С − компакт

Теорема 1.14 (Лиувилля).

$$f \in H(\bar{\mathbb{C}}) \Rightarrow f \equiv \text{const}$$

Доказательство.

 $f\in H(ar{\mathbb{C}})\Rightarrow f\in C(ar{\mathbb{C}})\Rightarrow f$ ограничена по теореме Вейерштрасса \Rightarrow по теореме Лиувилля это константа

Замечание Лектописца.

Теорема 1.15 (Лиувилля).

f – целая и ограниченная функция $\Rightarrow f$ – константа

1.4. Лекция 5

Лемма (Жордана).

$$C_{R_n}:=\{z\in\mathbb{C}:|z|=R_n,\operatorname{Im} z>0\}$$
 $R_n\to+\infty$ $m_n=\sup_{z\in C_{R_n}}|g(z)|\to0$ Тогда $\forall \lambda>0$ $\int\limits_{C_{R_n}}g(z)e^{i\lambda z}\,dz \underset{n\to+\infty}{\to}0$

Доказательство

$$z = R_n e^{e\varphi} \quad |e^{i\lambda z}| = |e^{i\lambda R_n(\cos\varphi + i\sin\varphi)}| = e^{-\lambda R_n\sin\varphi} \leqslant e^{-2\lambda R^n/\pi}$$

$$\sin\varphi \geqslant \frac{2\varphi}{\pi} \text{ при } \varphi \in [0, \frac{\pi}{2}]$$

$$\int_{C_{R_n}} g(z)e^{i\lambda z} dz = |\int_0^{\pi} g(R_n e^{i\varphi})e^{i\lambda R_n e^{i\varphi}} R_n e^{i\varphi} i d\varphi| \leqslant \int_0^{\varphi} M_n R_n e^{-\lambda R_n\sin\varphi} d\varphi = 2M_n R_n \int_0^{\pi/2} e^{-\lambda R_n\sin\varphi} d\varphi \leqslant 2M_n r_n \int_0^{\pi/2} e^{-2\lambda R_n\varphi/\pi} d\varphi = 2M_n R_n \frac{-e^{-2\lambda R_n\varphi/\pi}}{2\lambda R_n/\pi} \Big|_0^{\pi/2} \leqslant \frac{\pi M_n}{\lambda} \to 0$$

 Π ример.

$$\int_{0}^{+\infty} \frac{\cos \lambda x}{1+x^2} dx = I = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos \lambda x}{1+x^2} dx = \frac{1}{2} \operatorname{Re} \int_{-\infty}^{+\infty} \frac{e^{i\lambda x}}{1+x^2} dx$$

$$f(z) = \frac{e^{i\lambda z}}{1+z^2}$$

$$\int_{\Gamma_R} f(z) dz = 2\pi i \sum res = 2\pi i res_{z=i} \frac{e^{i\lambda z}}{1+z^2} = 2\pi i \frac{e^{i\lambda z}}{(1+z^2)'} \Big|_{z=i} = 2\pi i \frac{e^{-\lambda}}{2i} = \frac{\pi}{e^{\lambda}}$$

$$\int_{\Gamma_R} f(z) dz = \int_{-R}^{R} + \int_{-R} \to \int_{-\infty}^{+\infty} +0$$

торо: Приделать рисунок

Лемма (о полувычете).

$$a$$
 – полюс первого порядка функции f
$$C_{\varepsilon}:=\{z\in\mathbb{C}:|z-a|=\varepsilon,\alpha\leqslant\arg(z-a)\leqslant\beta\}$$
 Тогда $\int\limits_{C_{\varepsilon}}f(z)\,dz\underset{\varepsilon\to0+}{\to}(\beta-\alpha)ires_{z=a}f(z)$

Доказательство.

$$f(z) = \frac{c}{z-a} + g(z), \text{ где } g \text{ голоморфна в окрестности точки } a$$

$$\int\limits_{C_\varepsilon} f(z) \, dz z = \int\limits_{C_\varepsilon} \frac{c}{z-a} \, dz + \int\limits_{C_\varepsilon} g(z) \, dz$$

$$\left| \int\limits_{C_\varepsilon} g(z) \, dz \right| \leqslant 2\pi\varepsilon \max |g(z)| \leqslant 2\pi\varepsilon M \to 0$$

$$\int\limits_{C_\varepsilon} \frac{c}{z-a} \, dz = \int\limits_{\alpha}^{\beta} \frac{c}{\varepsilon e^{i\varphi}} = \varepsilon e^{i\varphi} i \, d\varphi = ci(\beta-\alpha) = i(\beta-\alpha)res_{z=a} f(z)$$

$$a + \varepsilon e^{i\varphi} = z$$

Билеты по матану

Отступление

Определение 1.14 (Главное значение интеграла).

 $x_0 \in (a,b)$ особая точка функции f

$$v.p. \int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0+} \int_{a}^{x_0 - \varepsilon} + \int_{x_0}^{b} f(x) dx$$

Замечание.

Если $\int_{z}^{z} f(z) dx$ сходится, то

$$v.p. \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Пример.
$$v.p.\int\limits_{-1}^{1}\frac{dx}{x}=\lim_{\varepsilon\to 0+}\int\limits_{-1}^{-\varepsilon}+\int\limits_{\varepsilon}^{1}\frac{dx}{x}$$

TODO: не успел дописать(

Если особых точек несколько, то можем выкинуть интервалы около каждой точки и устремить размер каждого интервала к 0.

Если особая точка бесконечность, то надо смотреть на $\int_{-\infty}^{R} f(x) dx \to v.p. \int_{-\infty}^{+\infty} f(x) dx \Rightarrow v.p. \int_{-\infty}^{\infty} x dx =$ 0

$$\int_{0}^{+\infty} \frac{\sin \lambda x}{x} \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} = \frac{\sin \lambda x}{x} \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\operatorname{Im} e^{i\lambda x}}{x} \, dx = \frac{1}{2} \operatorname{Im} v.p. \int_{-\infty}^{+\infty} \frac{e^{i\lambda x}}{x} \, dx$$

Надо найти v.p. $\int_{-\infty}^{+\infty} \frac{e^{i\lambda x}}{x} dx =: I$

$$f(z) = \frac{e^{i\lambda z}}{z}$$

ТООО: рисунок

 $\int\limits_{\Gamma_{R,arepsilon}}f(z)\,dz=0,$ тк в область не попали особые точки

$$\int_{\Gamma_{R,\varepsilon}} f(z) dz = \int_{-R}^{-\varepsilon} + \int_{\varepsilon}^{R} + \int_{C_{\varepsilon}} + \int_{C_{R}} = I + \int_{C_{\varepsilon}} + 0$$

$$\int_{C_{\varepsilon}} \frac{e^{i\lambda z}}{z} dz \to -\pi i res_{z=0} f(z) = -\pi i \frac{e^{i\lambda z}}{z'} \Big|_{z=0} = -\pi i$$

$$I - \pi i = 0 \Rightarrow I = \pi i$$

$$\int_{0}^{+\infty} \frac{\sin \lambda x}{x} dx = \frac{\pi}{2}$$

Пример

$$\int\limits_0^{+\infty} \int\limits_{1+x}^{x^{p-1}} dx = \frac{\pi}{\sin\frac{\pi}{p}} \quad p \in (0,1)$$

$$f(z) = \frac{e^{(p-1)\ln z}}{1+z} \quad \operatorname{Ln} z = \ln z \text{ если } z > 0$$

$$\int\limits_{\Gamma_{R,\varepsilon}} f(z) \, dz = 2\pi i \sum res = 2\pi i res_{z=-1} = 2\pi i e^{(p-1)\ln(-1)} = 2\pi i e^{(p-1)\pi i}$$

$$\begin{split} &\int\limits_{\Gamma_{R,\varepsilon}} f(z)\,dz = \int\limits_{C_\varepsilon} + \int\limits_{C_R} + \int\limits_{\varepsilon}^R + \int\limits_{Re^{2\pi i}}^{\varepsilon e^{2\pi i}} \\ &\left|\int\limits_{C_R} f(z)\,dz\right| \leqslant 2\pi R \max|f(z)| \leqslant 2\pi R \frac{R^{p-1}}{R-1} \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{Re^{2\pi i}} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \max|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \min|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \min|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \min|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \min|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \min|f(z)| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|\int\limits_{C_\varepsilon} f(z)\,dz\right| \leqslant 2\pi \varepsilon \frac{\varepsilon^{p-1}}{\varepsilon-1} \to 0 \\ &\left|$$

Теорема 1.16.

f — мороморфна в \mathbb{C} , имеет полюсы a_1,a_2,\ldots,a_n и в ∞ устранимая особая точка или полюс. Тогда

 $f(z) = C + G(z) + \sum_{k=1}^{n} G_k(z)$, где G_k – главная часть ряда Лорана в a_k , G – правильная часть ряда Лорана в ∞

В частности f – дробно рациональная функция

Доказательство.

$$\varphi(z) = f(z) - G(z) - \sum_{k=1}^{n} G_k(z)$$

Для φ точки a_k – устранимые особые точки $\Rightarrow \varphi \in (\mathbb{C}), G_k \in H(\mathbb{C} \setminus \{a_k\})$

Точка ∞ – устранимая особая точка для $\varphi\Rightarrow\varphi\in H(\bar{\mathbb{C}})\Rightarrow\varphi\equiv\mathrm{const}$

Теорема 1.17.

f мероморфна в \mathbb{C} , a_k – ее полюсы

Если существует такая последовательность R_n , что $\max_{|z|=R_n} |f(z)| =: M_{R_n} \to 0$,

Тогда
$$f(z) = \lim_{n \to \infty} \sum_{|a_k| < R_n} G_k(z)$$

Доказательство.

$$I_n(z):=rac{1}{2\pi i}\int\limits_{|\xi|=R_n}rac{f(\xi)}{\xi-z}\,d\xi$$
 при $|z|< R_n$

$$|I_n(z)| \leqslant \frac{2\pi R_n}{2\pi} \frac{M_{R_n}}{R_n - |z|} \to 0$$

$$I_n(z) = res_{\xi=z} \frac{f(\xi)}{\xi-z} + \sum_{|a_k| < R_n} res_{\xi=a_k} \frac{f(\xi)}{\xi-z} = res_{\xi=a_k} \frac{G_k(\xi)}{\xi-z}$$

Глава #1 13 из 13 Автор: ...