Weaknesses of Genomic LLMs

Deep Learning in Genomics Journal Club

Mahler Revsine

8 April 2025

nature genetics

Letter

https://doi.org/10.1038/s41588-023-01524-6

Benchmarking of deep neural networks for predicting personal gene expression from DNA sequence highlights shortcomings

Received: 13 March 2023

Accepted: 8 September 2023

Published online: 30 November 2023

Alexander Sasse^{1,7}, Bernard Ng [©] ^{2,7}, Anna E. Spiro^{1,7}, Shinya Tasaki [©] ², David A. Bennett², Christopher Gaiteri^{2,3}, Philip L. De Jager [©] ⁴,

Maria Chikina ® 5 ≥ & Sara Mostafavi ® 1,6 ≥

nature genetics

Brief Communication

https://doi.org/10.1038/s41588-023-01574-w

Personal transcriptome variation is poorly explained by current genomic deep learning models

Received: 22 April 2023

Accepted: 18 October 2023

Connie Huang^{1,4}, Richard W. Shuai^{1,4}, Parth Baokar^{1,4}, Ryan Chung², Ruchir Rastogi¹, Pooja Kathail² & Nilah M. Ioannidis **©** ^{1,2,3}

The main goal of genomic LLMs

- Sequence to function modelling
- Predict gene expression from corresponding DNA sequence
 - Or ATAC-seq, 3D structure, etc.
- Only possible at scale through deep learning
- Is this goal being fulfilled?

Enformer can predict average gene expression

- Example for Enformer
- 18k genes, avg. expression across 839 ROSMAP patients
- Pass in DNA sequences centered at gene TSS (transcription start site)
- Fit ElasticNet to outputs of all tracks to predict each gene
- Train on reference genome → predict population-average value

Enformer can sometimes predict eQTLs

- Observed vs. predicted gene expression across individuals
 - Each data point = 1 individual from ROSMAP (n=839)
 - Again fine-tuning with Elastic Net
- In this example gene, predictions capture individual-level variation
- DDX11 is a protein-coding gene encoding a DEAD box protein

Interpretation of predictions

- Enformer finds the single causal SNV for DDX11
- In theory, these models can overcome linkage disequilibrium

Similar pattern across other deep models

- Left: correlation between model prediction when trained on reference genome and population-average gene expression across Geuvadis (n=421)
- Right: correlation between model prediction when trained on individual genome and that individual's gene expression
- All four deep models can do these

So can deep learning models predict gene expression from sequence?

Well....

Models cannot predict individual variation

- Right: correlation between model outputs and gene expression across individuals
 - No correlation
- PrediXcan, a supervised linear model, is a lower bound for theoretical performance
 - Lots of signal is not being captured by deep learning models

Can cherry-pick negative examples too

Enformer's best example is an outlier

Enformer predictions are poor overall

- Enformer predicting 6,825
 brain cortex expressed genes
- Use output of Enformer's most relevant CAGE track
- Vertical red bar = FDR of 0.05
- R values average to 0.01
- 403 significant positive corr.s
- 195 significant negative corr.s
 - Predictions are often anticorrelated with ground truth

Linear model greatly outperforms Enformer

- PrediXcan, linear elastic net model, here trained on GTEx cerebral cortex data
 - No issue with anti-correlation
 - Finds 921 significant genes vs.
 162 by Enformer
- All significant genes found by PrediXcan should have at least 1 causal variant in the input
 - Indicates loci that Enformer missed

Deep models don't agree on predictions

- Example gene SNHG5
- Enformer, Basenji2, and ExPecto are wrong, while Xpresso is right
- Suggests that certain genes are not inherently harder, since the models don't get the same ones wrong

Models agree on magnitude of effect, not direction

- Models don't agree on direction of effect
- However, they do generally agree on magnitude
 - X shape instead of circle
- Can tell when a variant is causal, but not the type of causality

Enformer SNVs are not supported by eQTLs

d

- All SNVs (n=706) within 197kb window of example *GSTM3* gene
- x axis = ISM score (importance to Enformer predictions)
- y axis = eQTL effect size (R value between genotype and expression count)
- Two biggest ISM scores are unsupported
- Generally, no agreement

Performance depends on finding the right SNVs

- Genes where Enformer does poorly (purple) have a low fraction of supported SNVs
 - Supported by eQTL analysis
- Genes where Enformer does well have supported SNVs
- Predicting gene expression depends on correctly identifying driver variants

Enformer doesn't use its full context window

- Most drivers it finds are very **near** the **TSS**
- Model is most accurate on variants near TSS

Hard to tell why models fail

- Cross-individual correctness does not correlate with eQTL p value, distance to TSS, or other features
- It might just be noise

Conclusions

- Deep learning models do not understand whether a variant will make gene expression go up or down
- Can learn patterns across a population but not in individuals
- Models have "blurry vision"
- Understand whole motifs, not individual bases

Future work

- Sasse et al.:
 - Train on diverse genomes and their corresponding gene expression
 - Figure out how to model additional data such as post-transcriptional RNA processing that impacts gene expression
 - Assess models on direction of effect of SNVs in individuals
- Huang et al.:
 - Determine if models can predict direction of effect of SNVs on other data modalities such as chromatin accessibility
 - If not, then they struggle to understand regulatory grammar
 - Incorporate hierarchical models of gene expression
 - If so, then they need to learn local effects
 - Train on more diverse genomes

Next meeting

• Date and Time: Tuesday, April 22nd, 12 - 1pm

• Location: Malone 228 and Zoom

• Presenter: Kuan-Hao Chao

Sign up to present this semester!!! →
We are on the second pass now

