Confidence Estimation for Trustworthy and Efficient Speech Systems - Part II

Interspeech 2025

Nagarathna Ravi, Thishyan Raj T, Vipul Arora

Indian Institute of Technology - Kanpur

August 17, 2025

Evolution of Speech Technology

- Linguistic Rules and Signal Processing
- GMM-HMM
- DNN-HMM

Machine Learning: End-to-End

Image from https://distill.pub/2017/ctc/

Hello, I am giving this talk

Image from https://doi.org/10.1038/s41598-022-12260-y

Automatic Speech Recognition - ASR

ASR Confidence Estimation

Example of ASR with Confidence Estimation

Ground Truth: Cats are cute

ASR Output: Cats are cube

Token-level confidence:

 $_{\text{cats}}$ (0.96), $_{\text{are}}$ (0.94), $_{\text{cu}}$ (0.65), be (0.42)

Word-level confidence:

cats (0.96), are (0.94), cube (0.42)

ASR Model — Dataset and Notations

ullet The speech dataset ${\mathcal D}$ contains speech–transcript pairs:

$$\{(X_i,z_i)\}$$

where:

- X_i representation of a speech audio file
- z_i corresponding ground truth transcription
- Each audio representation:

$$X = [x_1, x_2, \dots, x_T]$$

where:

- $x_t \in \mathbb{R}^D$ *D*-dimensional frame at time $t \in \{1, ..., T\}$
- Each transcription:

$$z = [z_1, z_2, \dots, z_U], \quad z_u \in \mathcal{V}$$

where:

ullet ${\cal V}$ — set of tokens (phonemes, characters, word-pieces, etc.)

ASR Model — Words and Prediction

Tokens can be grouped into words:

$$w = [w_1, w_2, \dots, w_N]$$

Example:

$$[w_1, w_2, \ldots, w_N] = [[z_1, z_2], [z_3, z_4, z_5], \ldots, [z_U]]$$

• ASR model F_{Θ} is trained on $\mathcal{D}' \subset \mathcal{D}$ to predict:

$$\hat{z} = F_{\Theta}(X)$$

where:

$$\hat{z} = [\hat{z}_1, \hat{z}_2, \dots, \hat{z}_{U'}]$$

Predicted tokens can also be grouped into words:

$$\hat{w} = [\hat{w}_1, \hat{w}_2, \dots, \hat{w}_{N'}]$$

ASR Model — CTC

- The ASR model F_{Θ} is trained using the **Connectionist Temporal Classification (CTC)** loss.
- Let $\mathcal{Z}_{\text{align}}^{\text{CTC}}(z)$ be the set of all valid alignments of z (with blanks \varnothing) to a sequence of length T.
- For an alignment $a = [a_1, a_2, \dots, a_T]$ where $a_t \in \mathcal{V} \cup \{\emptyset\}$:

$$P(a \mid X) = \prod_{t=1}^{T} P(a_t \mid x_t; \Theta)$$

• The CTC loss for one (X, z) pair is:

$$\mathcal{L}_{\mathsf{CTC}}(X, z) = -\log \sum_{a \in \mathcal{Z}_{\mathsf{align}}^{\mathsf{CTC}}(z)} P(a \mid X)$$

ASR Model — CTC Decoding

- Greedy decoding: Select $\hat{a}_t = \arg\max_{v \in \mathcal{V} \cup \{\emptyset\}} P(v \mid x_t)$, then remove repeats and blanks.
- **Beam search decoding:** Keep top-*K* candidate sequences.
- Predicted tokens \hat{z} can be grouped into words \hat{w} as described earlier.

ASR Model — CTC Block Diagram

ASR Model — RNN-T

- The ASR model F_Θ is trained using the Recurrent Neural Network Transducer (RNN-T) loss.
- RNN-T jointly models acoustic and linguistic context via:

$$P(\hat{z} \mid X) = \sum_{\pi \in \mathcal{Z}_{\text{align}}^{\text{RNN-T}}(\hat{z})} P(\pi \mid X; \Theta)$$

where $\pi = [\pi_{1,1}, \pi_{1,2}, \dots, \pi_{T,U}]$ is a valid alignment path including blanks \varnothing .

• Each probability is factorized using:

$$P(k \mid t, u) = \operatorname{Softmax}(\mathbf{W} h_{t,u} + \mathbf{b})$$

where:

- t acoustic time step, u output token index
- $h_{t,u}$ joint network output from encoder and prediction network
- The RNN-T loss is:

$$\mathcal{L}_{\mathsf{RNNT}}(X, z) = -\log P(z \mid X)$$

ASR Model — RNN-T Decoding

- At inference, decoding proceeds step-by-step:
 - 1. Encoder processes $X = [x_1, \dots, x_T]$ into hidden states.
 - 2. Prediction network takes previous output token to produce linguistic state.
 - 3. Joint network combines both to output a distribution over $\mathcal{V} \cup \{\varnothing\}$.
- **Greedy decoding:** At each (t, u), pick the highest-probability symbol; if blank, advance t; otherwise, emit token and advance u.
- **Beam search decoding:** Maintain top-*K* partial hypotheses for better accuracy.
- Final output sequence \hat{z} is obtained, and can be grouped into predicted words \hat{w} .

RNN-T

ASR Model — RNN-T Block Diagram

ASR Model — Encoder–Decoder Formulation

• The encoder–decoder model directly estimates:

$$P(z \mid X) = \prod_{u=1}^{U} P(z_u \mid z_{1:u-1}, X)$$

where:

- $X = [x_1, x_2, \dots, x_T]$ acoustic feature sequence
- $z = [z_1, z_2, \dots, z_U]$ token sequence, $z_u \in \mathcal{V}$
- Encoder:

$$h_t^{\mathrm{enc}} = f_{\mathrm{enc}}(x_t; \Theta_{\mathrm{enc}})$$

produces high-level acoustic representations.

Decoder:

$$h_u^{\mathrm{dec}} = f_{\mathrm{dec}}(z_{1:u-1}, c_u; \Theta_{\mathrm{dec}})$$

where c_u is the attention context vector.

ASR Model — Encoder–Decoder Formulation

• Final token distribution:

$$P(z_u \mid z_{1:u-1}, X) = \operatorname{Softmax}(W_o g(h_u^{\text{dec}}, c_u) + b_o)$$

Levenshtein Alignment — Example

- Reference: the cat jumped here and there
- Hypothesis: the kat jumbled hair the ear

Ref	Нур	Ор
the	the	correct
cat	kat	substitution
jumped	jumbled	substitution
here	hair	substitution
and	and	correct
there	the	substitution
	ear	insertion

Uncertainty Estimation Metrics (1/2)

- Mean Absolute Error (MAE): Average absolute difference between c and \hat{c} .
- Kullback-Leibler Divergence (KLD): Measures how much the estimated confidence distribution differs from the true one.
- Jensen-Shannon Divergence (JSD): Symmetric, smoothed version of KLD; bounded between 0 and 1.
- Normalized Cross Entropy (NCE): Cross entropy between c and \hat{c} , normalized by the entropy of c.

Uncertainty Estimation Metrics (2/2)

- **Expected Calibration Error (ECE):** Weighted average of |accuracy confidence| over bins of \hat{c} .
- Maximum Calibration Error (MCE): Maximum calibration gap across all bins.
- RMSE Word Correctness Ratio: Root mean square error between estimated confidence and actual word correctness ratio.

Heuristic Interpretation — Token-level Confidence

- Idea: Use the model's own output probabilities as a proxy for confidence.
- For each predicted token $\hat{z}_u \in \mathcal{V}$, the ASR model produces a probability distribution:

$$p(\hat{z}_u = v \mid X), \quad v \in \mathcal{V}$$

• The **confidence score** for the predicted token is taken as:

$$c_u = \max_{v \in \mathcal{V}} p(\hat{z}_u = v \mid X)$$

Heuristic Interpretation — Word-level Confidence

• For a predicted word $\hat{w}_n = [\hat{z}_{u_1}, \dots, \hat{z}_{u_k}]$, aggregate token confidences, e.g.,

$$c_{\hat{w}_n} = \frac{1}{k} \sum_{j=1}^k c_{u_j}$$

Softmax probabilities can be over-confident and poorly calibrated.

D. S. Park *et al.*, "Improved noisy student training for automatic speech recognition," *Interspeech*, 2020. Y. Chen *et al.*, "Semi-supervised ASR by end-to-end self-training," *Interspeech*, 2020.

Post-hoc Calibration

- C_{Φ} post-hoc calibration function, can be **trainable** or **non-trainable**.
- **H** combination of one or more intermediate representations from F_{Θ} .
- c token-level or word-level confidence scores.

Temperature Scaling — Non-trainable Calibration (1/2)

Class probabilities from F_{Θ} :

$$\mathbf{H} = [p_v]_{v \in \mathcal{V}}, \quad p_v = P(\hat{z}_u = v \mid X).$$

Tsallis entropy (parameter $\alpha \in (0,1)$):

$$H_{\mathrm{ts}}(\mathbf{H}; lpha) = rac{1}{lpha - 1} \left(1 - \sum_{\mathbf{v} \in \mathcal{V}} p_{\mathbf{v}}^{lpha}
ight).$$

Example: $V = \{a, c, k, t\}$

$$\mathbf{H} = [0.1, \, 0.8, \, 0.05, \, 0.05], \quad \alpha = 0.5$$

Step 1: Compute p_v^{α}

$$[0.3162,\, 0.8944,\, 0.2236,\, 0.2236]$$

Step 2: Sum:

$$\Sigma=1.6578\,$$

 $H_{\rm ts} = \frac{1 - 1.6578}{2.5} \approx 1.3156$

Step 3: Tsallis entropy:

$$H_{\mathrm{ts}}^{\mathrm{max}}(\alpha, |\mathcal{V}|) = \frac{1}{\alpha - 1} \left(1 - |\mathcal{V}|^{1 - \alpha} \right) = \frac{|\mathcal{V}|^{1 - \alpha} - 1}{1 - \alpha}$$
. Step 4: Max Tsallis entropy:

$$H_{\mathrm{ts}}^{\mathrm{max}} pprox rac{4^{0.5}-1}{0.5} pprox 2$$

Temperature Scaling — Non-trainable Calibration (2/2)

Normalized confidence (calibrator C_{Φ}):

$$egin{align} c_u &= \mathit{C}_{\Phi}(lpha, \mathbf{H}) = 1 - rac{\mathit{H}_{\mathrm{ts}}(\mathbf{H}; lpha)}{\mathit{H}_{\mathrm{ts}}^{\mathsf{max}}(lpha, |\mathcal{V}|)} \ & c \in [0, 1] \ \end{matrix}$$

Example (continued): $V = \{a, c, k, t\}$ From before:

$$H_{\mathrm{ts}} = 1.3156, \quad H_{\mathrm{ts}}^{\mathsf{max}} \approx 2$$

$$c = 1 - \frac{1.3156}{2} \approx 0.3422$$

→ Confidence of prediction: 0.3422

A. Laptev and B. Ginsburg, "Fast Entropy-Based Methods of Word-Level Confidence Estimation for End-to-End Automatic Speech Recognition," IEEE SLT, 2022.

- Word-level confidence by aggregating framewise confidence: min, max, mean aggregation
- Tsallis entropy with $\alpha = \frac{1}{4}$, and min aggregation

Temperature Scaling — Trainable Calibration (1/2)

- C_{Φ} uses a **trainable** neural network to predict a token-dependent temperature.
- Input features are extracted from intermediate representations of F_{Θ} :

$$\mathbf{H}_u = [\mathbf{v}_u, \mathbf{q}_u]$$

where:

- **v**_u context vector for token u
- \mathbf{q}_u decoder state for token u
- The inverse temperature for token *u* is:

$$T_u^{-1}(\mathbf{H}_u) = \max(0, \mathrm{DNN}(\mathbf{H}_u))$$

Temperature Scaling — Trainable Calibration (2/2)

DNN is trained with:

$$\mathcal{L}_{\mathsf{NLL}} = -\sum_{u=1}^{|\hat{z}|} \mathsf{log}\left(\mathsf{softmax}\left(\textbf{I}_u \cdot \mathcal{T}_u^{-1}(\textbf{H}_u) \right) [z_u] \right)$$

where:

- I_u logits for token u
- z_u ground truth token
- Calibrated confidence scores:

$$c_u = C_{\Phi}(T_u^{-1}(\mathbf{H}_u)) = \text{entropy}\left(\text{softmax}\left(\mathbf{I}_u \cdot T_u^{-1}(\mathbf{H}_u)\right)\right)$$

To train DNN:

- Align the ground truth and predicted tokens
- Assign closest correct token for insertions

Woodward, A. et al., "Confidence Measures in Encoder-Decoder Models for Speech Recognition",. Proc. Interspeech 2020.

Auxiliary Model - Binary Target Score (1/3)

Li, Qiujia, et al. "Confidence estimation for attention-based sequence-to-sequence models for speech recognition." ICASSP 2021

• For an input utterance:

$$X = [x_1, x_2, \ldots, x_T]$$

the encoder produces:

$$\mathbf{e}_{1:T} = \text{ENCODER}(X)$$

• At decoding step *u*:

$$\begin{aligned} & \mathbf{a}_u = \operatorname{ATTENTION}(\mathbf{a}_{u-1}, \mathbf{d}_{u-1}, \mathbf{e}_{1:T}) \\ & \mathbf{d}_u = \operatorname{DECODER}(\mathbf{a}_u, \mathbf{d}_{u-1}, \operatorname{EMB}(\hat{z}_{u-1})) \\ & \rho(\hat{z}_u \mid \hat{z}_{1:u-1}, X) = \operatorname{SOFTMAX}(\mathbf{d}_u) \end{aligned}$$

Confidence Estimation Module (CEM) — Prediction (2/3)

• Intermediate representation for token *u*:

$$\mathbf{H}_u = (\mathbf{a}_u, \mathbf{d}_u, \mathrm{EMB}(\hat{z}_u))$$

Predicted confidence:

$$\hat{c}_u = C_{\Phi}(\mathbf{H}_u) = \sigma(\mathrm{FC}(\mathbf{H}_u))$$

where:

• $\hat{c}_u \in [0,1]$ — estimated confidence for token \hat{z}_u

Confidence Estimation Module (CEM) — Training (3/3)

• Training objective — Binary Cross-Entropy:

$$\mathcal{L}(c,\hat{c}) = -rac{1}{U}\sum_{u=1}^{U}\left[c_u\log\hat{c}_u + (1-c_u)\log(1-\hat{c}_u)
ight]$$

where:

- c_u target confidence label
- \hat{c}_u predicted confidence score
- Example target confidence generation align:

Reference: "A B C D"

Hypothesis: "A C C D"

$$\Rightarrow c = [1, 0, 1, 1]$$

Residual Energy-Based Model (R-EBM) (1/1)

- The R-EBM takes an acoustic sequence $X = [x_1, \dots, x_T]$ and a hypothesis token sequence $\hat{z} = [\hat{z}_1, \dots, \hat{z}_U]$ to produce a scalar energy value $-E_{\theta}(X, \hat{z})$.
- The loss function is:

$$egin{aligned} \mathcal{L} &pprox rac{1}{|\mathcal{Y}^{+}|} \sum_{\hat{z} \in \mathcal{Y}^{+}} \log rac{1}{1 + \exp ig(E_{ heta}(X, \hat{z})ig)} \ &+ rac{1}{|\mathcal{Y}^{-}|} \sum_{\hat{z} \in \mathcal{Y}^{-}} \log rac{1}{1 + \exp ig(-E_{ heta}(X, \hat{z})ig)} \end{aligned}$$

where:

$$\mathcal{Y}^+ \cup \mathcal{Y}^- = \{z, \operatorname{BEAMSEARCH}(X, n)\}$$

Li, Q., et al., "Residual Energy-Based Models for End-to-End Speech Recognition.". Interspeech 2021.

OOD Data (1/1)

Li, Qiujia, et al. "Improving confidence estimation on out-of-domain data for end-to-end speech recognition." ICASSP 2022.

Word-level Confidence Estimation for RNN-T Models (1/2)

- Word-level confidence estimation for RNN-T models
- Form a 2k + 1 vector of encoder outputs from the left and right context of a subword emission as the acoustic feature
- CEM input Feature formation methods:
 - Attention-based
 - Direct concatenation

Wang, Mingqiu, et al. "Word-level confidence estimation for RNN transducers." 2021 ASRU.

Word-level Confidence Estimation for RNN-T Models (2/2)

- Targets are mapped at both token and word levels.
- Start of words are denoted by special symbols (e.g., ⟨₋⟩).

Hypothesis Reference	_lov _lo	- ve	ely ly	_son	g	
Corresponding targets for confidence model						
Morpheme	False	False	False	True	False	
Word	-	-	True	-	False	
Word (ours)	True	True	True	False	False	

Word-level Confidence Estimation for CTC Model (1/3)

• Let a word w_i be composed of predicted tokens $\hat{z}_{u:u+m}$ from the CTC model:

$$w_i = [\hat{z}_u, \hat{z}_{u+1}, \dots, \hat{z}_{u+m}]$$

• Define the combined feature vector H for the word w_i as:

$$H = [\text{logits}(\hat{z}_{u:u+m}); \quad \text{softmax}(\hat{z}_{u:u+m}); \quad \rho(w_i); \quad \eta(w_i)]$$

where:

- $logits(\hat{z}_{u:u+m})$ logits of the predicted tokens in w_i
- softmax($\hat{z}_{u:u+m}$) softmax probabilities of logits
- $\rho(w_i)$ summation of one-hot vectors representing each token in w_i
- $\eta(w_i)$ number of tokens in the word w_i

Word-level Confidence Estimation for CTC Model (2/3)

• The post-hoc CEM model C_{Φ} takes H as input:

$$\hat{c}_{w_i} = C_{\Phi}(H)$$

where:

- \hat{c}_{w_i} predicted word-level confidence score
- C_{Φ} is either MLP or transformer encoder (takes whole sentence as context)
- Binary Cross-Entropy loss for training
- Example target confidence generation:

Reference: "How are you"

Hypothesis: "How are ou"

$$\Rightarrow$$
 $c = [1, 1, 0]$

Naowarat, Burin et al., "Word-level confidence estimation for CTC models," Interspeech, 2023.

Word-level Confidence Estimation for CTC Model (3/3)

ASR Uncertainty Estimation

TeLeS: Temporal Lexeme Similarity Score (1/6)

N. Ravi, Thishyan Raj T and V. Arora, "TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in End-to-End ASR," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024.

The binary target score does not consider the temporal alignment

Ref.: (/the/ /quick/ /brown/ /fox/) Hyp.: (/the/ /quik/ /bright/ /focks/)

Target Scores: [1, 0, 0, 0]

The second word suffers from a character deletion (quik), the auxiliary CEM with binary target score attempts to penalize the estimation and push the score towards zero.

TeLeS: Temporal Lexeme Similarity Score (2/6)

• perform word level alignment between the reference and the hypothesis

$$G = ALIGEN(\mathbf{w}, \hat{\mathbf{w}})$$

where $G = [g_1, g_2, \dots g_P]$ with $g_p \in \{C, S, I, D\}$, which denotes correct, substitution, insertion and deletion respectively.

• the temporal agreement score c^{T} as

$$c^{ extsf{T}} = egin{cases} \max\left(0, 1 - rac{|w_i^{ST} - \hat{w}_j^{ST}| + |w_i^{ET} - \hat{w}_j^{ET}|}{|w_i^{ET} - w_j^{ST}|}
ight) & ext{if } g_p = C, S \ 0 & ext{if } g_p = I, D \end{cases}$$

Where ST denotes start time of the word and ET denotes end time of the word computed using forced alignment.

TeLeS: Temporal Lexeme Similarity Score (3/6)

• When the words are substituted, the words are not necessarily entirely wrong but they may be wrong due to spelling mistakes. Compute the lexical similarity score, c^{L} ,

$$c^{\mathrm{L}} = egin{cases} rac{\left|w_i \cap \hat{w}_j
ight|}{\left|w_i \cup \hat{w}_j
ight|} & ext{if } g_p = C, S \ 0 & ext{if } g_p = I, D \end{cases}$$

The TeLeS target score is as follows.

$$c = egin{cases} lpha imes c^{ extsf{L}} + (1-lpha) imes c^{ extsf{T}} & ext{if } g_p = C \ eta imes c^{ extsf{L}} + (1-eta) imes c^{ extsf{T}} & ext{if } g_p = S \ 0 & ext{if } g_p = I, D \end{cases}$$

where, $\alpha \in [0,1]$ and $\beta \in [0,1]$ are weights for temporal and lexeme similarity scores and they are tunable hyper-parameters.

TeLeS: Temporal Lexeme Similarity Score (4/6)

Using $\hat{\mathbf{z}}$, for each word \hat{w}_n , we find start and end indices of \hat{w}_n , $(b_{\hat{w}_n}, l_{\hat{w}_n})$, where $b_{\hat{w}_n}$ is the start index and $l_{\hat{w}_n}$ is the end index. For each \hat{w}_n , we can now compute,

$$egin{aligned} \mathbf{ar{a}}_{\hat{w}_n} &= \mathsf{mean}(\mathbf{a}_{b_{\hat{w}_n}}, \dots, \mathbf{a}_{l_{\hat{w}_n}}) \ \mathbf{ar{h}}_{\hat{w}_n} &= \mathsf{mean}(\mathbf{h}_{b_{\hat{w}_n}}, \dots, \mathbf{h}_{l_{\hat{w}_n}}) \ \mathbf{ar{s}}_{\hat{w}_n} &= \mathsf{mean}(\mathbf{s}_{b_{\hat{w}_n}}, \dots, \mathbf{s}_{l_{\hat{w}_n}}) \end{aligned}$$

The input to the CEM model is as follows.

$$H = [\mathbf{\bar{a}}_{\hat{w}_n}, \mathbf{\bar{h}}_{\hat{w}_n}, \mathbf{\bar{s}}_{\hat{w}_n}]$$

CEM model is as follows.

$$\hat{c} = C_{\phi}(H, c)$$

TeLeS: Temporal Lexeme Similarity Score (5/6)

Trained using shrinkage loss,

$$\mathcal{L} = \left[rac{rac{1}{N'}\sum_{\hat{w}_n \in \hat{\mathbf{w}}}\left(\hat{c}_{\hat{w}_n} - c_{\hat{w}_n}
ight)^2 \cdot \mathrm{e}^{\hat{c}_{\hat{w}_n}}}{1 + \mathrm{e}^{\gamma \cdot \left(\kappa - rac{1}{N'}\sum_{\hat{w}_n \in \hat{\mathbf{w}}}\left|\hat{c}_{\hat{w}_n} - c_{\hat{w}_n}
ight|
ight)}
ight]$$

 γ and κ are hyper-parameters.

Challenge:

- In ASR confidence estimation, most words are correct.
- Severe class imbalance ⇒ standard MSE focuses on easy cases and ignores rare errors (substitutions / insertions).

Effect on Imbalance:

- Down-weights/shrinks loss from frequent correct predictions.
- Amplifies loss for rare incorrect predictions.

TeLeS: Temporal Lexeme Similarity Score (6/6)

Effect on Imbalance:

• Down-weights/shrinks loss from frequent correct predictions.

2020

• Amplifies loss for rare incorrect predictions.

Lu, Xiankai, et al.
"Deep object tracking with shrinkage loss."
IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Metr	ics	Class-Prob	Entropy	Binary	TeLeS
MAE		0.5026	0.3998	0.2650	0.1817
KLD		0.7912	0.6333	1.1799	0.1785
JSD		0.2313	0.1818	0.1920	0.0467
RMSE	E-WCR ↓	0.2883	0.2684	0.2593	0.1457
NCE	↑	-0.2641	-0.0100	-0.0055	0.1363
ECE		0.2472	0.2253	0.2627	0.0260
MCE	1	0.3904	0.3663	0.4294	0.1011

TruCLeS: True Class Lexical Similarity Score (1/5)

N. Ravi, Thishyan Raj T, Chaganti Ravi Teja and V. Arora, "ASR Confidence Estimation using True Class Lexical Similarity Score," in Interspeech, 2025.

- Perform Levenshtein Alignment between:
 - Predicted word sequence: ŵ
 - Reference word sequence: w
- Obtain alignment mapping $g_{n'}$, where n' corresponds to indices in $\hat{\mathbf{w}}$ excluding deletions (words not predicted)
- Interpretation of $g_{n'}$: **C**: Correct match; **S**: Substitution error; **I**: Insertion error

w: cat likes to play $\hat{\mathbf{w}}$: kat likes to ply $\mathbf{g}_{n'}$: S C C S

53 / 66

TruCLeS: True Class Lexical Similarity Score (2/5)

- Repeat Levenshtein Alignment at the token level, mapping $\hat{w}_{n'}$ to the reference w_n , where n is obtained from $g_{n'}$
- Denote token-level alignment as $k_{n'j'}$, where:
 - j' indexes tokens of $\hat{w}_{n'}$ (ignores deletions)
 - $k_{n'j'} \in \{C, S, I\}$:
 - C: Correct match
 - **S**: Substitution error
 - I: Insertion error
- Define the token-level score $\eta_{n'j'}$:

$$\eta_{n'j'} = \begin{cases} p_{nj}, & \text{if } k_{n'j'} \in \{\mathsf{C},\mathsf{S}\}\\ 0, & \text{if } k_{n'j'} = I \end{cases}$$

• Here, p_{nj} is the true class probability of the *j*th token (from the ASR model) aligned with the *j*'th token in word $w_{n'}$.

 $\Leftarrow p_{n1}$

54 / 66

TruCLeS: True Class Lexical Similarity Score (3/5)

Word-level target TruCLeS score, $c_{n'}$ for output words $\hat{w}_{n'}$

$$c_{n'} = \begin{cases} \frac{\sum_{j'} \eta_{n'j'}}{\sum_{j'} 1} \times \delta(\hat{w}_{n'}, w_n) & \text{if } g_{n'} \in \{C, S\} \\ 0 & \text{if } g_{n'} = I \end{cases}$$

where, $\delta(\hat{w}_{n'}, w_n)$ - lexical similarity between $\hat{w}_{n'}$ and w_n

TruCLeS: True Class Lexical Similarity Score (4/5)

Using $\hat{\mathbf{z}}$, for each word \hat{w}_n , we find start and end indices of \hat{w}_n , $(b_{\hat{w}_n}, l_{\hat{w}_n})$, where $b_{\hat{w}_n}$ is the start index and $l_{\hat{w}_n}$ is the end index. For each \hat{w}_n , we can now compute,

$$egin{aligned} \mathbf{ar{a}}_{\hat{w}_n} &= \mathsf{mean}(\mathbf{a}_{b_{\hat{w}_n}}, \dots, \mathbf{a}_{l_{\hat{w}_n}}) \ \mathbf{ar{h}}_{\hat{w}_n} &= \mathsf{mean}(\mathbf{h}_{b_{\hat{w}_n}}, \dots, \mathbf{h}_{l_{\hat{w}_n}}) \ \mathbf{ar{s}}_{\hat{w}_n} &= \mathsf{mean}(\mathbf{s}_{b_{\hat{w}_n}}, \dots, \mathbf{s}_{l_{\hat{w}_n}}) \end{aligned}$$

The input to the CEM model is as follows.

$$H = [\mathbf{\bar{a}}_{\hat{w}_n}, \mathbf{\bar{h}}_{\hat{w}_n}, \mathbf{\bar{s}}_{\hat{w}_n}]$$

TruCLeS: True Class Lexical Similarity Score (5/5)

CEM model is as follows.

$$\hat{c} = C_{\phi}(H, c)$$

Trained using shrinkage loss,

$$\mathcal{L} = \left[rac{rac{1}{N'}\sum_{\hat{w}_n \in \hat{\mathbf{w}}}\left(\hat{c}_{\hat{w}_n} - c_{\hat{w}_n}
ight)^2 \cdot \mathrm{e}^{\hat{c}_{\hat{w}_n}}}{1 + \mathrm{e}^{\gamma \cdot \left(\kappa - rac{1}{N'}\sum_{\hat{w}_n \in \hat{\mathbf{w}}}|\hat{c}_{\hat{w}_n} - c_{\hat{w}_n}|
ight)}
ight]$$

 γ and κ are hyper-parameters.

ASR Uncertainty Estimation

Language Modeling based Calibration: Electra (1/2)

```
      y:
      .i .don't .believe .ann .knew .any .magic .or .she'd .have .worked .it .before

      y masked:
      .i .don't .believe [MASK] [MASK] .any .magic .or .she'd .have [MASK] .it .before

      y corrupt in P-ELECTRA:
      .i .don't .believe .there .is .any .magic .or .she'd .have .worked .it .before

      y corrupt in P-ELECTRA:
      .i .don't .believe .and .you .any .magic .or .she'd .have .worked .it .before
```


(a) Pre-training of ELECTRA

Language Modeling based Calibration: Electra (2/2)

(b) Pre-training of Phone-attentive ELECTRA (P-ELECTRA)

• Token-level confidence:

$$c = 1 - D(y)$$

where D(y) is the discriminator output for token y.

 Word-level confidence: Minimum confidence among tokens forming the word:

$$c_{\mathsf{word}} = \min_{y \in \mathsf{token}} c(y)$$

Futami, Hayato, et al. "Asr rescoring and confidence estimation with electra." 2021 ASRU. 60/66

Downstream Application - Uncertainty Estimation

Active Learning using Confidence Scores (1/3)

N. Ravi, Thishyan Raj T and V. Arora, "TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in End-to-End ASR," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024.

$$\hat{\mathbf{w}} = \mathcal{F}_{\theta}(X_i) \tag{1}$$

$$\hat{c}_{\hat{w}_n} = \mathcal{C}_{\phi}(H)$$
 (2)

$$A_{\mathsf{X}_i} = \frac{\sum_{n=1}^{|\hat{\mathbf{w}}|} \hat{c}_{\hat{\mathbf{w}}_n}}{|\hat{\mathbf{w}}|} \tag{3}$$

$$\hat{X} = sort([A_{X_i}]_{i=1}^N)$$
(4)

The top samples from \hat{X} within the labelling budget are annotated and added to the train set. The audio-pseudo-label pairs of the samples with $A_{X_i} \geq \delta$ (δ is predefined threshold) are added to the train set.

Active Learning using Confidence scores (2/3)

- Active Learning
- 10x faster annotation workflows

Active Learning using Confidence Scores (3/3)

Hindi

Acquired Data Pro-	Random (WER/CER	Path Prob. (WER/CER	SMCA (WER/CER	LMC (WER/CER	TeLeS (WER/CER
portion	↓)	1)	↓)	1)	1)
1/10	38.83/13.84	43.53/15.22	59.97/23.01	92.55/53.16	32.96/11.09
1/7	33.97/12.97	31.71/10.59	33.09/11.00	36.93/12.42	28.78/9.51

Tamil

Acquired Data Pro-	Random (WER/CER	Path Prob. (WER/CER	SMCA (WER/CER	LMC (WER/CER	TeLeS (WER/CER
portion	↓)	1)	↓)	1)	1)
1/10	52.92/12.98	50.05/10.52	49.63/10.43	50.64/10.71	47.38/9.83
1/7	49.90/10.43	45.62/9.28	45.11/9.13	45.49/9.19	44.35/8.87

Kannada

Acquired Data Pro-	Random (WER/CER	Path Prob. (WER/CER	SMCA (WER/CER	LMC (WER/CER	TeLeS (WER/CER
portion	1)	1)	1)	1)	1)
1/10	58.74/13.56		99.97/85.58		
1/7	49.84/11.62	43.75/9.57	60.87/13.67	74.47/17.69	41.91/9.15

- Random: Selects random audio samples.
- Length-normalized path probability
- SMCA: Based on different models with dropout.
- LMC: Based on 3-gram LM.

Mvaak demo

- Demo video URL Mvaak tool
- For further details visit Link

Thank you