SME0827 - Estruturas de Dados

Árvores Binárias de Busca Aula 15

Professor: André C. P. L. F. de Carvalho, ICMC-USP PAE: Moisés Rocha dos Santos Monitora: Marília Costa Rosendo Silva

Xadrez Em 1997, campeão mundial da época, Gary Kasparov, jogou 6 jogos contra deep blue Programa escrito por pesquisadores da IBM Deep Blue venceu 3, perdeu 2, empatou 1 Deep Blue avaliava 126.000.000 tabuleiros por segundo Avaliava 30 bilhões de posições por movimento, atingindo, várias vezes, profundidade 14

© André de Carvalho - ICMC/USP

-

Hoje

- Busca
- Busca binária
- Dicionário
- Dicionários ordenados em árvores binárias
- Operações básicas em árvores binárias
 - Busca
 - Inserção
 - Remoção

© André de Carvalho - ICMC/USP

Dicionários

- Tipo abstrato de dados (TAD) *Dictionary*
 - Cada item tem uma parte chave e uma parte dados
 - Conjunto dinâmico com métodos:
 - Search (D, k): método de consulta que retorna um ponteiro x para um item, onde x.chave = k
 - Insert(D, x): método que adiciona ao dicionário D o item apontado por x
 - Delete (D, x): método que remove do dicionário D o item apontado por x

© André de Carvalho - ICMC/USP

5

Introdução

- Algoritmos de busca são utilizados em vários aplicações
 - Jogos
 - Os melhores jogadores de dama, go e xadrez são algoritmos de busca
 - Encontrar caminho mínimo
 - Caixeiro viajante, Waze
 - Busca na internet
 - Encontrar os sites mais relevantes
 - Buscar contatos em redes sociais

© André de Carvalho - ICMC/USP

Dicionários ordenados

- Além das funções anteriores, também deve permitir operações de fila de prioridades
 - Min(D)
 - Max(D)
- Também seria útil incluir os métodos
 - Antecessor(D, k)
 - Sucessor(D, k)
- Essas operações precisam que as chaves sejam comparáveis

© André de Carvalho - ICMC/USI

6

Dividir para conquistar

- Abordagem natural para algoritmos em árvores
- Exemplo: Encontre a altura da árvore:
 - Se a árvore é NIL, Então altura = -1
 - Senão, altura = altura máxima dos seus filhos + 1

© André de Carvalho - ICMC/USP

Busca de chave em BST

- Para buscar item com chave k, traçar caminho descendente começando na raiz
 - O próximo nó visitado depende da comparação de k com a chave do nó atual
 - Se chegar a uma folha, não encontrou a chave
 - Ex: encontrar item com chave 4:
 - Chamada TreeSearch(4,raiz)
 - Os algoritmos para consultas aos vizinhos mais próximos na sequência são semelhantes
 - Antes ou depois da chave

© André de Carvalho - ICMC/USP

