SmoothLife 補足

総合演習 B 神戸大学 陰山

式の修正

▶ "SmoothLife"のオリジナル論文の式に修正がある https://arxiv.org/pdf/1111.1567.pdf

$$\sigma_1(x, a, \frac{\alpha}{\alpha}) \tag{4}$$

$$\sigma_2(x, a, b, \alpha) \tag{5}$$

$$\sigma_m(x, y, m) = x (1 - \sigma_1(m, 0.5, \alpha_m)) + y \sigma_1(m, 0.5, \alpha_m)$$
(6)

$$s(n,m) = \sigma_2(n,\sigma_m(b_1,d_1,m),\sigma_m(b_2,d_2,m),\alpha_n)$$
(7)

MとNの計算について

$$m = \frac{1}{M} \int_{|\vec{u}| < r_i} d\vec{u} f(\vec{x} + \vec{u}, t)$$

式(1)のMは右図のピンク色の面積である。Mは数値的に求める必要はない。円の面積の公式を使えばよい。

式(2)のNについても同様(こちらは円 環部分の面積)

(1)

初期条件について

- \blacktriangleright 初期条件で乱数を使うのはいいが、すべての格子点で乱数を割り当てると半径 r_a や r_b の面積分で均されてしまう (nやmの値が常に約0.5になってしまう)
- ightharpoonup 一辺の長さが r_a や r_b 程度の四角形領域で一定となるように 乱数の振り方を工夫するとよい

境界条件について

▶ 周期境界条件を実現するには各辺の上で格子点を少なく ともr_a個だけは重複させる必要がある

▶ 下の図は $r_a = 5$ の場合

