

Todos os produtos HIMA mencionados neste manual estão protegidos pela marca registrada da HIMA. A não ser que seja mencionado de outra forma, isso também se aplica aos outros fabricantes e seus produtos mencionados.

Todos os dados e avisos técnicos neste manual foram elaborados com o máximo de cuidado, considerando medidas de controle de garantia de qualidade efetiva. Em caso de dúvidas, dirija-se diretamente à HIMA. A HIMA ficaria grata por quaisquer sugestões, p. ex., informações que ainda devem ser incluídas no manual.

Os dados técnicos estão sujeitos a alterações sem notificação prévia. A HIMA ainda se reserva o direito de modificar o material escrito sem avisar previamente.

Informações mais detalhadas encontram-se na documentação no CD-ROM e na nossa homepage em http://www.hima.com.

© Copyright 2011, HIMA Paul Hildebrandt GmbH

Todos os direitos reservados.

Contato

Endereço da HIMA:

HIMA Paul Hildebrandt GmbH

+49 6202 709-107

Postfach 1261

D-68777 Brühl

Fax:

Tel.: +49 6202 709-0

E-Mail: info@hima.com

Índice	Alterações	Tipo de alteração	
de revisão		técnica	redacional
4.00	Adaptado ao SILworX V4 Edição em português (traduzida)		

Índice

1	Introdução	5
1.1	Estrutura e utilização do manual	5
1.2	Grupo alvo	
1.3	Convenções de representação	
1.3.1	Avisos de segurança	
1.3.2	Avisos de utilização	
2	Segurança	
2.1	Utilização prevista	8
2.1.1	Requisitos de ambiente	
2.1.2	Medidas de proteção contra ESD	
2.2	Perigos residuais	
2.3	Medidas de precaução de segurança	9
2.4	Informações para emergências	9
3	Descrição do produto	10
3.1	Função de segurança	10
3.1.1	Reação em caso de erro	10
3.2	Volume de fornecimento	
3.3	Placa de identificação	11
3.4	Estrutura	11
3.4.1	Diagrama de blocos	12
3.4.2	Indicador	
3.4.3	Indicador de status do módulo	
3.4.4	Indicador de barramento de sistema	
3.4.5	Indicador de E/S	
3.5	Dados do produto	
3.6	Connector Boards	
3.6.1	Codificação mecânica de Connector Boards	
3.6.2	Codificação de Connector Boards X-CB 008	
3.6.3	Atribuição de conexões de Connector Boards com bornes aparafusados	
3.6.4	Atribuição de bornes de Connector Boards com bornes aparafusados	
3.6.5	Atribuição de conexões de Connector Boards com conector de cabo	
3.6.6	Atribuição de conectores de Connector Boards com conector de cabo	
3.6.7 3.6.8	Connector Board redundância via dois suportes básicos de sistema	
3.0.0 3.7	Cabo de sistema	
3.7.1	Cabo de sistema X-CA 005	
3.7.1	Cabo de sistema X-CA 009	
3.7.2 3.7.3	Codificação do conector de cabo	
1	Colocação em funcionamento	30

4.1	Montagem	30
4.1.1	Ligação de entradas não utilizadas	30
4.2	Instalação e desinstalação do módulo	31
4.2.1	Montagem de uma Connector Board	31
4.2.2	Instalação e desinstalação de um módulo	33
4.3	Registro de eventos (SOE)	35
4.4	Configuração do módulo no SILworX	36
4.4.1	Registro Module	37
4.4.2	Registro I/O Submodule Al32_02	
4.4.3	Registro I/O Submodule Al32_02: Channels	
4.4.4	Submodule Status [DWORD]	
4.4.5 4.5	Diagnostic Status [DWORD] Variantes de ligação	
4.5.1	Ligações de entrada	
4.5.2	Ligação de transmitters via Field Termination Assembly	
4.5.3	Ligação redundante mediante dois suportes básicos	
4.5.4	Proteção Ex com barreiras Zener	
4.5.5	Proteção Ex com separador de alimentação	
4.5.6	Comportamento no caso de comunicação HART	49
5	Operação	50
5.1	Operação	
5.2	Diagnóstico	50
6	Manutenção preventiva	51
6.1	Medidas de manutenção preventiva	51
6.1.1	Carregar o sistema operacional	51
6.1.2	Repetição da verificação	51
7	Colocação fora de serviço	52
8	Transporte	53
9	Eliminação	54
9	Eliminação Anexo	
9		55
9	Anexo	55
9	AnexoGlossário	55 55

X-AI 32 02 1 Introdução

1 Introdução

O presente manual descreve as características técnicas do módulo e a sua utilização. O manual contém informações sobre a instalação, a colocação em funcionamento e a configuração do SILworX.

1.1 Estrutura e utilização do manual

O conteúdo deste manual é parte da descrição do hardware do sistema eletrônico programável HIMax.

O manual é dividido nos seguintes capítulos principais:

- Introdução
- Segurança
- Descrição do produto
- Colocação em funcionamento
- Operação
- Manutenção preventiva
- Colocação fora de serviço
- Transporte
- Eliminação

Adicionalmente devem ser observados os seguintes documentos:

Nome	Conteúdo	Nº do documento
Manual de sistema HIMax	Descrição do Hardware do sistema HIMax	HI 801 242 P
Manual de segurança HIMax	Funções de segurança do sistema HIMax	HI 801 241 P
Manual de comunicação HIMax	Descrição da comunicação e dos protocolos	HI 801 240 P
Ajuda Online SILworX (OLH)	Operação do SILworX	-
Primeiros passos	Introdução ao SILworX	HI 801 239 P

Tabela 1: Manuais adicionalmente em vigor

Os manuais atuais encontram-se na homepage da HIMA em www.hima.com. Com ajuda do índice de revisão na linha de rodapé, a atualidade de manuais eventualmente disponíveis pode ser comparada à versão na internet.

1.2 Grupo alvo

Este documento dirige-se a planejadores, projetistas e programadores de sistemas de automação, bem como pessoas autorizadas para colocação em funcionamento, operação e manutenção dos equipamentos e do sistema. Pressupõem-se conhecimentos especializados na área de sistemas de automatização direcionados à segurança.

HI 801 246 P Rev. 4.00 Página 5 de 60

1 Introdução X-AI 32 02

1.3 Convenções de representação

Para a melhor legibilidade e para clarificação, neste documento valem as seguintes convenções:

Negrito Ênfase de partes importantes do texto.

Denominações de botões, itens de menu e registros no SILworX

que podem ser clicados.

Itálico Parâmetros de sistema e variáveis

Courier Introdução de dados tal qual pelo usuário

RUN Denominações de estados operacionais em letras maiúsculas Cap. 1.2.3 Notas remissivas são híperlinks, mesmo quando não são

especialmente destacadas. Ao posicionar o cursor nelas, o mesmo muda sua aparência. Ao clicar, o documento salta

para o respectivo ponto.

Avisos de segurança e utilização são destacados de forma especial.

1.3.1 Avisos de segurança

Os avisos de segurança no documento são representados como descrito a seguir. Para garantir o menor risco possível devem ser observados sem excepção. A estrutura lógica é

- Palavra sinalizadora: Perigo, Atenção, Cuidado, Nota
- Tipo e fonte do perigo
- Consequências do perigo
- Como evitar o perigo

A PALAVRA SINALIZADORA

Tipo e fonte do perigo! Consequências do perigo Como evitar o perigo

O significado das palavras sinalizadoras é

- Perigo: No caso de não-observância resultam lesões corporais graves até a morte
- Atenção: No caso de não-observância há risco de lesões corporais graves até a morte
- Cuidado: No caso de não-observância há risco de lesões corporais leves
- Nota: No caso de não-observância ha risco de danos materiais

NOTA

Tipo e fonte dos danos! Como evitar os danos

Página 6 de 60 HI 801 246 P Rev. 4.00

X-AI 32 02 1 Introdução

1.3.2 Avisos de utilização Informações adicionais são estruturadas de acordo com o seguinte exemplo: Neste ponto está o texto das informações adicionais. Dicas úteis e macetes aparecem no formato: DICA Neste ponto está o texto da dica.

HI 801 246 P Rev. 4.00 Página 7 de 60

2 Segurança X-Al 32 02

2 Segurança

É imprescindível ler informações de segurança, avisos e instruções neste documento. Apenas utilizar o produto observando todos os regulamentos e normas de segurança.

Este produto é operado com SELV ou PELV. Do módulo em si não emana nenhum perigo. Utilização na área Ex é permitida apenas com medidas adicionais.

2.1 Utilização prevista

Componentes HIMax são previstos para a instalação de sistemas de comando direcionados à segurança.

Para a utilização de componentes no sistema HIMax devem ser satisfeitos os seguintes requisitos.

2.1.1 Requisitos de ambiente

Tipo de requisito	Faixa de valores
Classe de proteção	Classe de proteção III conforme IEC/EN 61131-2
Temperatura ambiente	0+60 °C
Temperatura de armazenamento	-40+85 °C
Contaminação	Grau de contaminação II conforme IEC/EN 61131-2
Altura de instalação	< 2000 m
Caixa	Padrão: IP 20
Tensão de alimentação	24 VDC

Tabela 2: Requisitos de ambiente

Condições de ambiente diferentes das indicadas neste manual podem levar a avarias operacionais do sistema HIMax.

2.1.2 Medidas de proteção contra ESD

Apenas pessoal com conhecimentos sobre medidas de proteção contra ESD pode efetuar alterações ou ampliações do sistema ou a substituição de módulos.

NOTA

Danos no equipamento por descarga eletrostática!

- Usar para os trabalhos um posto de trabalho protegido contra descarga eletrostática e usar uma fita de aterramento.
- Guardar o aparelho protegido contra descarga eletrostática, p. ex., na embalagem.

Página 8 de 60 HI 801 246 P Rev. 4.00

X-Al 32 02 2 Segurança

2.2 Perigos residuais

Do módulo HIMax em si não emana nenhum perigo.

Perigos residuais podem ser causados por:

- Erros do projeto
- Erros no programa de aplicação
- Erros na fiação

2.3 Medidas de precaução de segurança

Observar as normas de segurança em vigor no local de utilização e usar o equipamento de proteção prescrito.

2.4 Informações para emergências

Um sistema de comando HIMax é parte da tecnologia de segurança de uma instalação. A falha do sistema de comando coloca a instalação no estado seguro.

Em casos de emergência é proibida qualquer intervenção que impeça a função de segurança dos sistemas HIMax.

HI 801 246 P Rev. 4.00 Página 9 de 60

3 Descrição do produto

O módulo de entrada analógico X-Al 32 02 destina-se à utilização no sistema eletrônico programável (PES) HIMax.

O módulo pode ser utilizado em todos os slots do suporte básico, exceto nos slots para os módulos de barramento de sistema, maiores detalhes no Manual de sistema HI 801 242 P.

O módulo serve para a avaliação de até 32 sinais de entrada analógicos.

O módulo é adequado para o registro de eventos SOE (Sequence of Events Recording). O registro de eventos ocorre num ciclo de 2 ms do módulo, Informações mais detalhadas, veja Cap. 4.3.

O módulo foi certificado pela TÜV para aplicações direcionadas à segurança até SIL 3 (IEC 61508, IEC 61511 e IEC 62061), Cat. 4 (EN 954-1) e PL e (EN ISO 13849-1).

As normas pelas quais os módulos e o sistema HIMax são verificados e certificados podem ser consultados no Manual de segurança HIMax HI 801 241 P.

3.1 Função de segurança

O módulo mede a corrente de equipamentos conectados com precisão relacionada à segurança disponibilizando alimentação do transmitter com tensão mínima garantida.

A função de segurança está implementada conforme SIL 3.

3.1.1 Reação em caso de erro

No caso de erros, o módulo assume o estado seguro e as variáveis de entrada atribuídas fornecem o valor inicial ao programa de aplicação.

Para que as variáveis de entrada forneçam o valor 0 ao programa de aplicação no caso de falhas, os valores iniciais devem ser ajustados para 0. Se no lugar do valor de processo for avaliado o valor cru, o usuário deve programar a supervisão e o valor em caso de falhas no programa de aplicação.

O módulo ativa o LED Error na placa frontal.

3.2 Volume de fornecimento

O módulo precisa para a operação de uma Connector Board compatível. Ao usar um FTA, um cabo de sistema é necessário para conectar a Connector Board com o FTA. As Connector Boards, o cabo de sistema e os FTAs não fazem parte do volume de fornecimento do módulo.

A descrição das Connector Boards ocorre no Capítulo 3.6, a dos cabos de sistema no Capítulo 3.7. Os FTAs são descritos em manuais separados.

Página 10 de 60 HI 801 246 P Rev. 4.00

3.3 Placa de identificação

A placa de identificação contém os seguintes dados importantes:

- Nome do produto
- Marca de certificação
- Código de barras (código 2D ou traços)
- Número de peça (Part-No.)
- Índice de revisões do hardware (HW-Rev.)
- Índice de revisões do software (SW-Rev.)
- Tensão de operação (Power)
- Dados Ex (se cabível)
- Ano de fabricação (Prod-Year:)

Figura 1: Placa de identificação, como exemplo

3.4 Estrutura

O módulo é equipado com 32 entradas analógicas de corrente (0/4...20 mA) que são medidas cada uma por dois dispositivos internos de medição e verificados funcionalmente. A cada uma destas entradas é atribuída uma alimentação do transmitter à prova de curto circuito.

Pelas 32 entradas analógicas, é possível avaliar os valores de medição de transmitters, transmitters de segurança ou contatos ligados. É possível ligar no módulo de entrada transmitters de 2 condutores e de 3 condutores com uma corrente de alimentação de no máx. 30 mA.

Para a medição sem retroalimentação dos sinais de entrada analógicos, as unidades funcionais do módulo possuem separação galvânica.

O sistema de processadores 1002 do módulo de E/S direcionado à segurança comanda e supervisiona o nível de E/S. Os dados e estados do módulo de E/S são transmitidos aos módulos de processador mediante o barramento de sistema redundante. O barramento de sistema é configurado como redundante por motivos da disponibilidade. A redundância apenas está garantida se ambos os módulos do barramento de sistema foram encaixados no suporte básico e configurados no SILworX.

LEDs indicam o status das entradas digitais no indicador, veja Capítulo 3.4.2.

HI 801 246 P Rev. 4.00 Página 11 de 60

3.4.1 Diagrama de blocos

O seguinte diagrama de blocos mostra a estrutura do módulo:

Figura 2: Diagrama de blocos

Página 12 de 60 HI 801 246 P Rev. 4.00

3.4.2 Indicador

A figura a seguir reproduz o indicador do módulo:

Figura 3: Indicador

Os diodos luminosos indicam o estado operacional do módulo.

HI 801 246 P Rev. 4.00 Página 13 de 60

Os diodos luminosos do módulo são divididos em três categorias:

- Indicador de status do módulo (Run, Error, Stop, Init)
- Indicador de barramento de sistema (A, B)
- Indicador E/S (Al 1...32, Field)

Ao ligar a tensão de alimentação sempre ocorre um teste dos diodos luminosos no qual por um breve momento todos os diodos luminosos acendem.

Definição das frequências de piscar:

Na tabela a seguir são definidas as frequências de piscar dos LEDs:

Nome	Frequência de piscar
Piscar1	liga longo (aprox. 600 ms), desliga longo (aprox. 600 ms)
Piscar2	liga curto (aprox. 200 ms), desliga curto (aprox. 200 ms), liga curto (aprox. 200 ms), desliga longo (aprox. 600 ms)
Piscar x	Comunicação Ethernet: Piscando no ritmo da transmissão de dados

Tabela 3: Frequências de piscar dos diodos luminosos

3.4.3 Indicador de status do módulo

Estes diodos luminosos estão montados na parte superior da placa frontal.

LED	Cor	Status	Significado
Run	Verde	Liga	Módulo no estado RUN, operação normal
		Piscar1	Módulo no estado
			STOP/OS_DOWNLOAD ou
			RUN/UP STOP (só para módulos de processador)
		Desliga	Módulo não no estado RUN,
			observar os demais LEDs de status
Error	Vermelho	Liga/Piscar1	A falha interna do módulo detectada mediante
			auto-teste, p. ex., falha de hardware,
			software ou falhas da alimentação com tensão.
		- ··	Falhas ao carregar o sistema operacional
		Desliga	Operação normal
Stop	<u>Amarelo</u>	Liga	Módulo no estado STOP/VALID CONFIGURATION
		Piscar1	Módulo no estado
			STOP/INVALID CONFIGURATION ou
			STOP/OS_DOWNLOAD
		Desliga	Módulo não está no estado STOP,
			observar os demais LEDs de status
Init	Amarelo	Liga	Módulo no estado INIT
		Piscar1	Módulo no estado LOCKED
		Desliga	O módulo não está no estado INIT nem em
			LOCKED, observar os demais LEDs de status

Tabela 4: Indicador de status do módulo

Página 14 de 60 HI 801 246 P Rev. 4.00

3.4.4 Indicador de barramento de sistema

Os diodos luminosos para o indicador de barramento de sistema possuem a inscrição Sys Bus.

LED	Cor	Status	Significado
А	Verde	Liga	Conexão lógica e física ao módulo de barramento de sistema no slot 1
		Piscar1	Sem conexão ao módulo de barramento de sistema no slot 1
	Amarelo	Piscar1	Conexão física ao módulo de barramento de sistema no slot 1 estabelecida
			Sem conexão a um módulo processador (redundante) na operação de sistema
В	Verde	Liga	Conexão lógica e física ao módulo de barramento de sistema no slot 2
		Piscar1	Sem conexão ao módulo de barramento de sistema no slot 2
	Amarelo	Piscar1	Conexão física ao módulo de barramento de sistema no slot 2 estabelecida
			Sem conexão a um módulo processador (redundante) na operação de sistema
A+B	Desliga	Desliga	Sem conexão lógica e física aos módulo de barramento de sistema nos slots 1 e 2.

Tabela 5: Indicador de barramento de sistema

3.4.5 Indicador de E/S

LED	Cor	Status	Significado
Channel Amarelo I		Liga	A corrente de entrada é > 4 mA ou maior do que o valor parametrizado no SILworX valor de comutação HIGH (dig).
		Piscar2	Erro de canal (erro de campo ou erro de hardware do módulo). Corrente de entrada > 20 mA
		Desliga	A corrente de entrada é < 4 mA ou menor do que o valor parametrizado no SILworX valor de comutação LOW (dig).
Field	Vermelho	Piscar2	Erro de campo em no mínimo um canal ou alimentação (quebra de condutor, curto-circuito, sobrecorrente, etc.) depende dos limiares de corrente parametrizados.
		Desliga	Lado de campo sem erros

Tabela 6: Indicador de E/S

HI 801 246 P Rev. 4.00 Página 15 de 60

3.5 Dados do produto

Informações gerais			
Tensão de alimentação	24 VDC, -15%+20%, w _s ≤ 5%, SELV, PELV		
Consumo de corrente	mín. 500 mA (sem canais/alimentações de transmitter) máx. 1,5 A (no caso de curto circuito de alimentações de transmitter)		
Consumo de corrente por canal	mín. 0 mA (sem alimentação do transmitter) máx. 30 mA (com alimentação do transmitter)		
Temperatura de operação	0 °C+60 °C		
Temperatura de armazenamento	-40 °C+85 °C		
Umidade	máx. de 95% de umidade relativa, sem condensação		
Grau de proteção	IP 20		
Dimensões (H x L x P) em mm	310 x 29,2 x 230		
Massa	aprox. 1,4 kg		

Tabela 7: Dados do produto

Figura 4: Vistas

Página 16 de 60 HI 801 246 P Rev. 4.00

Entradas analógicas		
Quantidade de entradas (número de canais)	32 com potencial de referência conjunto Al- (separação galvânica do barramento de sistema e da tensão de alimentação 24 VDC).	
Faixa nominal	0/420 mA	
Faixa de uso	022,5 mA	
Resolução digital	12 Bit	
Shunt para medição de corrente	200 Ω 1)	
Corrente máx. admissível via Shunt	50 mA	
Resistência a tensão da entrada	≤ 10 VDC	
Supressão de tensão parasita	> 60 dB (modo comum 50/60 Hz)	
Renovação de valores de medição (no programa de aplicação)	Tempo de ciclo do programa de aplicação	
Tempo de amostragem	2 ms	
Ciclo registro de eventos (SOE)	2 ms	
Precisão técnica de medição		
Precisão técnica de medição na faixa de temperatura total (-10 °C70 °C)	$\pm0,15\%$ do valor final	
Tempo de resposta até 99% do valor de processo na mudança de sinal de entrada	15 ms	
1) Para medições de alta precisão, veja Tabela 11		

Tabela 8: Dados técnicos das entradas analógicas

Alimentação do transmitter	Alimentação do transmitter		
Quantidade de alimentações de transmitter	32		
Tensão de saída alimentação do transmitter	26,5 VDC +0/-15%		
Corrente de saída alimentação do transmitter	máx. 30 mA		
Supervisão da alimentação	Subtensão: 22,5 VDC		
do transmitter	Sobretensão: 30 VDC		
Quantidade máx. de alimentações de transmitter que podem estar em curto ao mesmo tempo no caso de um erro	A alimentação de transmitter inteira é desligada se mais do que 12 alimentações estiverem em curto por mais de 3 s. Se a sobrecarga for retirada, a alimentação de transmitter automaticamente liga de novo dentro de 30 segundos.		
Máxima carga de resistência que pode ser ligada (Transmitter + condutor)	≤ 750 Ω com 22,5 mA		

Tabela 9: Dados técnicos da alimentação do transmitter

HI 801 246 P Rev. 4.00 Página 17 de 60

3.6 Connector Boards

Uma Connector Board conecta o módulo ao nível de campo. O módulo e a Connector Board em conjunto formam uma unidade funcional. Antes da instalação do módulo, montar a Connector Board no slot previsto.

As seguintes Connector Boards estão disponíveis para o módulo:

Connector Board	Descrição
X-CB 008 01	Connector Board com bornes aparafusados
X-CB 008 02	Connector Board redundante com bornes aparafusados
X-CB 008 03	Connector Board com conector de cabo
X-CB 008 04	Connector Board redundante com conector de cabo
X-CB 008 05	Connector Board com conector de cabo, Field Termination Assembly redundante
X-CB 008 06	Connector Board com tríplice redundância com bornes aparafusados
X-CB 008 07	Connector Board com tríplice redundância com conector de cabo

Tabela 10: Connector Boards disponíveis

Para medições de alta precisão devem ser utilizadas as seguintes Connector Boards:

Connector Board	Descrição
X-CB 019 01	Connector Board com bornes aparafusados
X-CB 019 02	Connector Board redundante com bornes aparafusados
X-CB 019 03	Connector Board com conector de cabo
X-CB 019 04	Connector Board redundante com conector de cabo

Tabela 11: Connector Boards para medições de alta precisão

3.6.1 Codificação mecânica de Connector Boards

Módulos de E/S e Connector Boards são codificados mecanicamente a partir da Revisão AS10 do hardware para impedir o equipamento com módulos de E/S incompatíveis. Pela codificação é excluído o equipamento incorreto e assim, eliminam-se as consequências para módulos redundantes e para o campo. Além disso, o equipamento com módulos incorretos não influencia o sistema HIMax, pois apenas módulos corretamente configurados no SILworX entram no modo RUN.

Módulos de E/S e as Connector Board correspondentes são equipados com uma codificação mecânica em forma de cunhas. As cunhas de codificação no conector F da Connector Board entram nos recessos do conector M do módulo de E/S, veia Figura 5.

Módulos de E/S codificados apenas podem ser inseridos nas Connector Boards correspondentes.

Página 18 de 60 HI 801 246 P Rev. 4.00

Figura 5: Exemplo de uma codificação

Módulos de E/S codificados apenas podem ser colocados em Connector Board não codificadas. Módulos de E/S não codificados não podem ser colocados em Connector Boards codificadas.

3.6.2 Codificação de Connector Boards X-CB 008

a7	a13	a20	a26	с7	c13	c20	c26
		Χ		Χ		Х	

Tabela 12: Posição das cunhas de codificação

HI 801 246 P Rev. 4.00 Página 19 de 60

3.6.3 Atribuição de conexões de Connector Boards com bornes aparafusados

Figura 6: Connector Boards com bornes aparafusados

Página 20 de 60 HI 801 246 P Rev. 4.00

3.6.4 Atribuição de bornes de Connector Boards com bornes aparafusados

-				•	
Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	01a	S1+	1	02a	S2+
2	01b	Al1+	2	02b	Al2+
3	01c	Al1-	3	02c	Al2-
4	03a	S3+	4	04a	S4+
5	03b	Al3+	5	04b	Al4+
6	03c	Al3-	6	04c	Al4-
7	05a	S5+	7	06a	S6+
8	05b	Al5+	8	06b	Al6+
9	05c	Al5-	9	06c	Al6-
10	07a	S7+	10	08a	S8+
11	07b	AI7+	11	08b	Al8+
12	07c	AI7-	12	08c	Al8-
Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	09a	S9+	1	10a	S10+
2	09b	Al9+	2	10b	AI10+
3	09c	Al9-	3	10c	AI10-
4	11a	S11+	4	12a	S12+
5	11b	Al11+	5	12b	Al12+
6	11c	AI11-	6	12c	AI12-
7	13a	S13+	7	14a	S14+
8	13b	Al13+	8	14b	AI14+
9	13c	AI13-	9	14c	AI14-
10	15a	S15+	10	16a	S16+
11	15b	Al15+	11	16b	AI16+
12	15c	Al15-	12	16c	AI16-
Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	17a	S17+	1	18a	S18+
2	17b	AI17+	2	18b	AI18+
3	17c	AI17-	3	18c	AI18-
4	19a	S19+	4	20a	S20+
5	19b	Al19+	5	20b	Al20+
6	19c	Al19-	6	20c	Al20-
7	21a	S21+	7	22a	S22+
8	21b	Al21+	8	22b	Al22+
9	21c	Al21-	9	22c	Al22-
10	23a	S23+	10	24a	S24+
11	23b	Al23+	11	24b	Al24+
12	23c	Al23-	12	24c	Al24-

HI 801 246 P Rev. 4.00 Página 21 de 60

Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	25a	S25+	1	26a	S26+
2	25b	Al25+	2	26b	Al26+
3	25c	Al25-	3	26c	Al26-
4	27a	S27+	4	28a	S28+
5	27b	Al27+	5	28b	Al28+
6	27c	Al27-	6	28c	Al28-
7	29a	S29+	7	30a	S30+
8	29b	Al29+	8	30b	Al30+
9	29c	Al29-	9	30c	Al30-
10	31a	S31+	10	32a	S32+
11	31b	Al31+	11	32b	Al32+
12	31c	Al31-	12	32c	Al32-

Tabela 13: Atribuição de bornes de Connector Boards com bornes aparafusados

A ligação do lado de campo ocorre com conectores de bornes que são encaixados nas réguas de pinos da Connector Board.

Os conectores de bornes possuem as seguintes características:

Ligação lado de campo					
Conector de bornes	8 un., 12 pinos				
Seção transversal do condutor	0,21,5 mm ² (unifilar) 0,21,5 mm ² (fio fino) 0,21,5 mm ² (com terminal tubular)				
Comprimento de decapagem	6 mm				
Chave de fenda	Fenda 0,4 x 2,5 mm				
Binário de aperto	0,20,25 Nm				

Tabela 14: Características dos conectores de bornes

Página 22 de 60 HI 801 246 P Rev. 4.00

3.6.5 Atribuição de conexões de Connector Boards com conector de cabo

Figura 7: Connector Boards com conector de cabo

HI 801 246 P Rev. 4.00 Página 23 de 60

1

3.6.6 Atribuição de conectores de Connector Boards com conector de cabo Para estas Connector Boards, a HIMA disponibiliza cabos de sistema pré-confeccionados, veja Capítulo 3.7. Os conectores de cabo e as Connector Boards são codificados.

Atribuição de conectores!

A seguinte tabela descreve a atribuição de conectores dos conectores de cabo do cabo de sistema.

Identificação de fios em semelhança à DIN 47100:

Linha		С	b		а			
Lillia	Sinal	Cor	Sinal	Cor	Sinal	Cor		
1	S32+	rosa-marrom 1)	Al32+	branco-rosa 1)	Reservado	amarelo-azul 1)		
2	S31+	cinza-marrom 1)	Al31+	branco-cinza 1)	Reservado	verde-azul ¹⁾		
3	S30+	amarelo-marrom 1)	Al30+	branco-amarelo 1)	Reservado	amarelo-rosa 1)		
4	S29+	marrom-verde 1)	Al29+	branco-verde 1)	Reservado	rosa-verde 1)		
5	S28+	vermelho-azul 1)	Al28+	cinza-rosa 1)				
6	S27+	violeta 1)	Al27+	preto 1)				
7	S26+	vermelho 1)	Al26+	azul 1)				
8	S25+	rosa 1)	Al25+	cinza 1)				
9	S24+	amarelo 1)	Al24+	verde 1)				
10	S23+	marrom 1)	Al23+	branco 1)				
11	S22+	vermelho-preto	Al22+	azul-preto				
12	S21+	rosa-preto	Al21+	cinza-preto				
13	S20+	rosa-vermelho	Al20+	cinza-vermelho				
14	S19+	rosa-azul	AI19+	cinza-azul				
15	S18+	amarelo-preto	AI18+	verde-preto				
16	S17+	amarelo-vermelho	AI17+	verde-vermelho				
17	S16+	amarelo-azul	AI16+	verde-azul				
18	S15+	amarelo-rosa	AI15+	rosa-verde				
19	S14+	amarelo-cinza	AI14+	cinza-verde				
20	S13+	marrom-preto	AI13+	branco-preto				
21	S12+	marrom-vermelho	AI12+	branco-vermelho				
22	S11+	marrom-azul	AI11+	branco-azul				
23	S10+	rosa-marrom	AI10+	branco-rosa				
24	S9+	cinza-marrom	AI9+	branco-cinza				
25	S8+	amarelo-marrom	Al8+	branco-amarelo	Al-	amarelo-cinza 1)		
26	S7+	marrom-verde	AI7+	branco-verde	Al-	cinza-verde 1)		
27	S6+	vermelho-azul	Al6+	cinza-rosa	Al-	marrom-preto 1)		
28	S5+	violeta	AI5+	preto	Al-	branco-preto 1)		
29	S4+	vermelho	Al4+	azul	Al-	marrom- vermelho 1)		
30	S3+	rosa	Al3+	cinza	AI-	branco- vermelho 1)		
31	S2+	amarelo	Al2+	verde	Al-	marrom-azul 1)		
32	S1+	marrom	Al1+	branco	Al-	branco-azul 1)		
1) Anel								

Tabela 15: Atribuição de conectores dos conectores de cabo do cabo de sistema

Página 24 de 60 HI 801 246 P Rev. 4.00

3.6.7 Connector Board redundância via dois suportes básicos de sistema

- 1 Conectores de módulos de E/S
- Ligação lado de campo (conector de cabo linha 1)
- Ligação lado de campo (conector de cabo linha 32)
- 4 Codificação para conectores de cabo

Figura 8: Connector Board com conector de cabo variante X-CB 008 05

HI 801 246 P Rev. 4.00 Página 25 de 60

3.6.8 Atribuição de conectores X-CB 008 05

Para esta Connector Board, a HIMA disponibiliza cabos de sistema pré-confeccionados, veja Capítulo 3.7. Os conectores de cabo e a Connector Board são codificados.

Atribuição de conectores!

A seguinte tabela descreve a atribuição de conectores dos conectores de cabo do cabo de sistema.

Identificação de fios em semelhança à DIN 47100:

Linha		е	d			С		b		а	
Linha	Sinal	Cor	Sinal	Cor	Sinal	Cor	Sinal	Cor	Sinal	Cor	
1	S32+	vermelho 2)	AI_R32+	rosa- marrom ¹⁾	Al32+	branco- rosa ¹⁾			reserv.	amarelo- cinza ²⁾	
2	S31+	azul ²⁾	AI_R31+	cinza- marrom ¹⁾	Al31+	branco- cinza ¹⁾			reserv.	cinza- verde ²⁾	
3	S30+	rosa ²⁾	AI_R30+	amarelo- marrom 1)	Al30+	branco- amarelo 1)			reserv.	marrom- preto ²⁾	
4	S29+	cinza ²⁾	AI_R29+	marrom- verde ¹⁾	Al29+	branco- verde ¹⁾			reserv.	branco- preto ²⁾	
5	S28+	amarelo 2)	AI_R28+	vermelho- azul 1)	Al28+	cinza- rosa ¹⁾					
6	S27+	verde ²⁾	AI_R27+	violeta 1)	Al27+	preto 1)					
7	S26+	marrom ²⁾	AI_R26+	vermelho 1)	Al26+	azul 1)					
8	S25+	branco 2)	AI_R25+	rosa 1)	Al25+	cinza 1)					
9	S24+	vermelho- preto 1)	AI_R24+	amarelo 1)	Al24+	verde 1)					
10	S23+	azul- preto ¹⁾	AI_R23+	marrom 1)	Al23+	branco 1)					
11	S22+	rosa- preto ¹⁾	AI_R22+	vermelho- preto	Al22+	azul-preto					
12	S21+	cinza- preto ¹⁾	Al_R21+	rosa-preto	Al21+	cinza-preto					
13	S20+	rosa- vermelho ¹⁾	AI_R20+	rosa- vermelho	AI20+	cinza- vermelho					
14	S19+	cinza- vermelho ¹⁾	AI_R19+	rosa-azul	AI19+	cinza-azul					
15	S18+	rosa- azul ¹⁾	AI_R18+	amarelo- preto	AI18+	verde-preto					
16	S17+	cinza- azul ¹⁾	AI_R17+	amarelo- vermelho	AI17+	verde- vermelho					
17	S16+	amarelo- preto ¹⁾	AI_R16+	amarelo- azul	AI16+	verde-azul	S-	marrom- vermelho ²⁾			
18	S15+	verde- preto ¹⁾	AI_R15+	amarelo- rosa	AI15+	rosa-verde	S-	branco- vermelho ²⁾			
19	S14+	amarelo- vermelho 1)	AI_R14+	amarelo- cinza	Al14+	cinza-verde	S-	marrom- azul ²⁾			
20	S13+	verde- vermelho 1)	AI_R13+	marrom- preto	AI13+	branco- preto	S-	branco- azul ²⁾			
21	S12+	amarelo- azul ¹⁾	AI_R12+	marrom- vermelho	Al12+	branco- vermelho	S-	rosa- marrom ²⁾			
22	S11+	verde- azul ¹⁾	AI_R11+	marrom- azul	Al11+	branco-azul	S-	branco- rosa ²⁾			
23	S10+	amarelo- rosa ¹⁾	AI_R10+	rosa- marrom	AI10+	branco- rosa	S-	cinza- marrom ²⁾			
24	S9+	rosa- verde ¹⁾	AI_R9+	cinza- marrom	Al9+	branco- cinza	S-	branco- cinza ²⁾			
25	S8+	amarelo- cinza ¹⁾	AI_R8+	amarelo- marrom	Al8+	branco- amarelo	Al-	amarelo- marrom ²⁾			

Página 26 de 60 HI 801 246 P Rev. 4.00

26	S7+	cinza- verde ¹⁾	AI_R7+	marrom- verde	AI7+	branco- verde	Al-	branco- amarelo ²⁾	
27	S6+	marrom- preto ¹⁾	AI_R6+	vermelho- azul	Al6+	cinza-rosa	Al-	marrom- verde ²⁾	
28	S5+	branco- preto 1)	AI_R5+	violeta	Al5+	preto	Al-	branco- verde ²⁾	
29	S4+	marrom- vermelho ¹)	AI_R4+	vermelho	Al4+	azul	AI-	vermelho- azul ²⁾	
30	S3+	branco- vermelho 1)	AI_R3+	rosa	Al3+	cinza	AI-	cinza- rosa ²⁾	
31	S2+	marrom- azul ¹⁾	AI_R2+	amarelo	Al2+	verde	Al-	violeta 2)	
32	S1+	branco- azul ¹⁾	AI_R1+	marrom	Al1+	branco	Al-	preto ²⁾	

¹⁾ Anel cor de laranja adicional na primeira repetição de cores da identificação de fios.

Tabela 16: Atribuição de conectores dos conectores de cabo do cabo de sistema

HI 801 246 P Rev. 4.00 Página 27 de 60

²⁾ Anel cor viol<u>eta adicional na segunda repetição de cores da identificação de fios.</u>

3.7 Cabo de sistema

Os cabos de sistema conectam as Connector Boards com os Field Termination Assemblies.

1 Conectores de cabo idênticos

Figura 9: Cabo de sistema

Dependendo do tipo de Connector Board, há dois tipos de cabo de sistema disponíveis.

3.7.1 Cabo de sistema X-CA 005

O cabo de sistema X-CA 005 conecta as Connector Boards X-CB 008 03/04/07 e X-CB 019 03/04 com o nível de campo via Field Termination Assemblies ou réguas de bornes.

Informações gerais	
Cabo	LIYCY-TP 38 x 2 x 0,25 mm ²
Condutor	Fio fino
Diâmetro externo médio (d)	aprox. 16,8 mm
Raio mínimo de dobradura instalação fixa móvel	5 x d 10 x d
Comportamento de combustão	resistente a chamas e auto-extintor conf. IEC 60332-1-22-2
Comprimento	830 m
Codificação de cores	Orientado na DIN 47100, veja Tabela 15.

Tabela 17: Dados de cabo X-CA 005

Página 28 de 60 HI 801 246 P Rev. 4.00

O cabo de sistema está disponível nas seguintes variantes padrão:

Cabo de sistema	Descrição	Comprimento
X-CA 005 01 8	Conectores de cabos de ambos os lados.	8 m
X-CA 005 01 15		15 m
X-CA 005 01 30		30 m

Tabela 18: Cabos de sistema disponíveis X-CA 005

3.7.2 Cabo de sistema X-CA 009

O cabo de sistema X-CA 009 conecta a Connector Board X-CB 008 05 com os Field Termination Assemblies.

Informações gerais	
Cabo	LIYCY-TP 58 x 2 x 0,14 mm ²
Condutor	Fio fino
Diâmetro externo médio (d)	aprox. 18,3 mm
Raio mínimo de dobradura	
instalação fixa	5 x d
móvel	10 x d
Comportamento de combustão	resistente a chamas e auto-extintor conf. IEC 60332-1-22-2
Comprimento	830 m
Codificação de cores	Orientado na DIN 47100, veja Tabela 16

Tabela 19: Dados de cabo X-CA 009

O cabo de sistema está disponível nas seguintes variantes padrão:

Cabo de sistema	Descrição	Comprimento
X-CA 009 01 8	Conectores de cabos de ambos os lados.	8 m
X-CA 009 01 15		15 m
X-CA 009 01 30		30 m

Tabela 20: Cabos de sistema disponíveis X-CA 009

3.7.3 Codificação do conector de cabo

Os conectores de cabo são equipados com três pinos de codificação. Desta forma, os conectores de cabos apenas podem ser inseridos em Connector Boards e FTAs com a respectiva codificação, veja Figura 7.

HI 801 246 P Rev. 4.00 Página 29 de 60

4 Colocação em funcionamento

Este capítulo descreve a instalação e configuração do módulo e suas variantes de ligação. Para informações mais detalhadas, veja o Manual de segurança HIMax HI 801 241 P.

A aplicação direcionada à segurança (SIL 3 conf. IEC 61508) das entradas deve corresponder aos requisitos de segurança inclusive os sensores conectados. Informações mais detalhadas no Manual de segurança HIMax.

4.1 Montagem

Observar os seguintes pontos durante a montagem:

- Somente operar com os componentes de ventilação correspondentes, veja Manual de sistema HI 801 242 P.
- Somente operar com a Connector Board correspondente, veja Capítulo 3.6.
- O módulo inclusive suas peças de conexão deve ser configurado para alcançar no mínimo o grau de proteção IP 20 conf. EN 60529: 1991 + A1:2000.

NOTA

Danos por ligação incorreta!

Não-observância pode resultar em danos nos componentes eletrônicos. Os seguintes pontos devem ser observados.

- Conectores e bornes do lado de campo
 - Na ligação dos conectores e bornes ao lado de campo, observar medidas adequadas de aterramento.
 - Utilizar para cada entrada de medição um cabo blindado com pares de fios trançados (twisted pair).
 - Colocar a blindagem do lado do módulo no trilho de blindagem de cabos (usar borne de conexão de blindagem SK 20 ou equivalente).
 - No caso de condutores multifilares, a HIMA recomenda colocar terminais tubulares nas extremidades dos condutores. Os bornes de ligação devem ser adequados para a conexão das bitolas dos condutores utilizados.
- Ao utilizar a alimentação de transmitter, usar a alimentação do transmitter correspondente para a respectiva entrada (p. ex., S1+ com Al1+).
- A HIMA recomenda usar a alimentação do transmitter do módulo. Falhas de função de uma unidade de alimentação ou medição podem causar a sobrecarga e danos da respectiva entrada de medição do módulo. No caso de alimentação externa, verificar após sobrecarga não-transiente o valor zero e o valor final!
- Uma ligação redundante das entradas deve ser realizada mediante as respectivas Connector Boards, veja Capítulo 3.6.

4.1.1 Ligação de entradas não utilizadas

Entradas ão utilizadas podem permanecer abertas e não precisam ser terminadas. Para evitar curtos, porém, não é permitido conectar condutores com pontas abertas do lado de campo às Connector Boards.

Página 30 de 60 HI 801 246 P Rev. 4.00

4.2 Instalação e desinstalação do módulo

Este capítulo descreve a substituição de um módulo existente ou a inserção de um módulo novo.

Ao desmontar um módulo, a Connector Board permanece no suporte básico HIMax. Isso evita fiação dispendiosa adicional nos bornes de ligação, pois todas as ligações de campo são ligadas através da Connector Board do módulo.

4.2.1 Montagem de uma Connector Board

Ferramentas e meios auxiliares

- Chave de fenda, fenda 0.8 x 4.0 mm
- Connector Board compatível

Montar a Connector Board:

- 1. Inserir a Connector Board com a ranhura para cima no trilho guia (veja a este respeito o desenho na continuação). Engatar a ranhura no pino do trilho guia.
- 2. Apoiar a Connector Board sobre o trilho de blindagem de cabo.
- 3. Aparafusar ao suporte básico mediante os dois parafusos a prova de perda. Primeiramente inserir o parafuso inferior, depois o superior.

Desmontar a Connector Board:

- 1. Desparafusar do suporte básico os dois parafusos a prova de perda.
- 2. Levantar a Connector Board do trilho de blindagem de cabo na parte inferior.
- 3. Puxar a Connector Board para fora do trilho guia.

Figura 10: Inserir a Connector Board

HI 801 246 P Rev. 4.00 Página 31 de 60

Figura 11: Aparafusar a Connector Board

Página 32 de 60 HI 801 246 P Rev. 4.00

4.2.2 Instalação e desinstalação de um módulo

Este capítulo descreve a instalação e desinstalação de um módulo HIMax. Um módulo pode ser instalado e desinstalado enquanto o sistema HIMax está em operação.

NOTA

Danos nos conectores de encaixe por emperramento! Não-observância pode resultar em danos no sistema de comando. Sempre inserir o módulo no suporte básico de forma cautelosa.

Ferramentas

- Chave de fenda, fenda 0,8 x 4,0 mm
- Chave de fenda, fenda 1,2 x 8,0 mm

Instalação

- 1. Abrir a chapa de cobertura do inserto do ventilador:
 - ☑ Colocar as travas para a posição open aberta
 - ☑ Dobrar a chapa de cobertura para cima e inserir no inserto do ventilador
- 2. Inserir o módulo na parte superior no perfil de encaixe, veja 1.
- 3. Girar o módulo do lado inferior para dentro do suporte básico e engatar com leve pressão, veja 2.
- 4. Aparafusar o módulo, veja 3.
- 5. Puxar a chapa de cobertura do ventilador para fora e dobrar para baixo.
- 6. Travar a chapa de cobertura.

Desinstalação

- 1. Abrir a chapa de cobertura do inserto do ventilador:
 - ☑ Colocar as travas na posição open aberta
 - ☑ Dobrar a chapa de cobertura para cima e inserir no inserto do ventilador
- 2. Soltar o parafuso, veja 3.
- 3. Girar o módulo do lado inferior para fora do suporte básico e empurrar com leve pressão para cima, veja 2 e 1.
- 4. Puxar a chapa de cobertura do ventilador para fora e dobrar para baixo.
- 5. Travar a chapa de cobertura.

HI 801 246 P Rev. 4.00 Página 33 de 60

Figura 12: Instalar e desinstalar módulo

Abrir a chapa de cobertura do inserto do ventilador apenas brevemente durante a operação do sistema HIMax (< 10 min), pois isso prejudica a convecção forçada de ar.

Página 34 de 60 HI 801 246 P Rev. 4.00

4.3 Registro de eventos (SOE)

O registro de eventos é possível para todas as entradas analógicas do módulo. Entradas a serem monitoradas são configuradas com ajuda da ferramenta de programação SILworX, veja Ajuda Online e Manual de comunicação HI 801 240 P.

O módulo de E/S lê em cada um dos seus ciclos (2 ms) os valores de medição das entradas analógicas e forma eventos que são armazenados na memória tampão volátil de eventos de E/S.

O evento consiste em:

Evento	Descrição
ID do evento	O ID do evento é atribuído pelo PADT.
Carimbo de hora	Data (p. ex: 21.11.2008)
	Hora (p. ex.: 9:31:57.531)
Estado de evento	LL, L, N, H ou HH
Qualidade	Quality good/
de evento	Quality bad, veja www.opcfoundation.org

Tabela 21: Descrição do evento

O módulo processador lê os eventos ciclicamente da memória tampão de eventos e os armazena na sua memória não-volátil. Eventos lidos pelo módulo processador podem ser sobrescritos na memória tampão de eventos por novos eventos.

No caso da memória tampão de eventos cheia, o módulo de E/S gera uma mensagem de evento Overflow System na memória não-volátil do módulo processador. Depois, não são mais gerados eventos novos até haver espaço na memória tampão.

HI 801 246 P Rev. 4.00 Página 35 de 60

4.4 Configuração do módulo no SILworX

O módulo é configurado no Hardware Editor da ferramenta de programação SILworX. Observar os seguintes pontos durante a configuração:

- Para o diagnóstico do módulo e dos canais, é possível avaliar adicionalmente ao valor de medição todos os parâmetros de sistema no programa de aplicação.
 Informações mais detalhadas encontram-se nas tabelas a partir do Capítulo 4.4.1.
- Se o valor 0 estiver na área de medição válida, no programa de aplicação deve ser avaliado além do -> Raw Value o status -> Channel OK.
 A utilização deste status bem como de outros status de diagnóstico (p. ex., curto de linha e quebra de fio) oferece opções adicionais para diagnosticar a ligação externa e para configurar reações de erro no programa de aplicação.
- Para o diagnóstico de condutores, o módulo detecta dois limiares que podem ser parametrizados no SILworX. Os limiares são ajustados por padrão para os valores para LB/LS conforme NAMUR recomendação NE 43.
- Ao utilizar a alimentação do transmitter do módulo (parâmetro Supply ON), então, deve ser ativado também o parâmetro Sup. used para o respectivo canal. Para o diagnóstico da alimentação de transmitter usada, pode ser avaliado o status -> Supply OK no programa de aplicação. Informações mais detalhadas sobre estes parâmetros de sistema podem ser encontradas na Tabela 23 e Tabela 24.
- Se um grupo de redundância for criado, a configuração do grupo de redundância ocorre nos seus registros. Os registros do grupo de redundância divergem dos registros dos módulos individuais, veja as seguintes tabelas.

A alimentação do transmitter é monitorada.

No caso de um erro da alimentação do transmitter, o módulo comunica erro de canal e ajusta o valor de processo para o valor inicial das variáveis globais conectadas.

Para a avaliação dos parâmetros de sistema no programa de aplicação, devem ser atribuídas variáveis globais aos parâmetros de sistema. Executar este passo no Hardware Editor, na visualização de detalhe do módulo.

As seguintes tabelas contêm os parâmetros de sistema do módulo na mesma ordem como no Hardware Editor.

DICA

Para a conversão dos valores hexadecimais em sequências de Bits é útil, p. ex., a calculadora do Windows[®], na visão **científico**.

Página 36 de 60 HI 801 246 P Rev. 4.00

4.4.1 Registro Module

O registro **Module** contém os seguintes parâmetros de sistema do módulo:

	R/W	Descrição	
etros são ir	ntroduzio	dos diretamente no Hardware Editor.	
	W	Nome do módulo	
Name Spare Module		Ativado: Módulo do grupo de redundância ausente no suporte básico não é avaliado como erro. Desativado: Módulo do grupo de redundância ausente no suporte básico é avaliado como erro. Ajuste padrão: Desativado Apenas é exibido no registro do grupo de redundância!	
Noise Blanking		Permitir supressão de avarias pelo módulo processador (Ativado/Desativado). Ajuste padrão: Ativado. O módulo processador retarda a reação de erro após uma avaria transiente até o tempo de segurança. O último valor	
		de processo válido permanece para o programa de aplicação.	
	R/W	Descrição	
	e noder	l n ser atribuídos a variáveis globais e usados no programa	
, parament	o pouel	n ser autoutuos a variaveis giobais e usados no programa	
BOOL	к	TRUE: Operação Mono: sem erros de módulo. Operação de redundância: no mínimo um dos módulos redundantes não está com erro de módulo (lógica OU). FALSE: Erro de módulo Erro de canal de um canal (sem erros externos). Módulo não está colocado. Observar o parâmetro <i>Module Status</i> !	
DWORD	R	Status do módulo	
		Codificação Descrição	
		0x0000001 Erro do módulo 1) 0x00000002 Limiar de temperatura 1 ultrapassado 0x00000004 Limiar de temperatura 2 ultrapassado 0x00000008 Valor de temperatura com erro 0x00000010 Tensão L1+ com erro 0x00000020 Tensão L2+ com erro 0x00000040 Tensões internas com erro 0x80000000 Sem conexão ao módulo 1) 1) Estes erros possuem efeito sobre o status Module OK e não precisam ser avaliados especificamente no programa de aplicação.	
DWORD	R	Fração de microssegundos do carimbo de tempo. Momento da medição das entradas analógicas	
DWORD	R	Fração de segundos do carimbo de tempo. Momento da medição das entradas analógicas.	
	Tipo de dados e parâmetro BOOL DWORD	etros são introduzione W W W Tipo de dados e parâmetros poder BOOL R DWORD R	

Tabela 22: Registro Module no Hardware Editor

HI 801 246 P Rev. 4.00 Página 37 de 60

4.4.2 Registro I/O Submodule Al32_02

O registro **I/O Submodule Al32 02** contém os seguintes status e parâmetros:

Nome		R/W	Descrição
Estes status e par	âmetros são	introdu	zidos diretamente no Hardware Editor.
Name		R	Nome do módulo
Supply ON		W	Usar a alimentação do transmitter do módulo. Ativado: As alimentações de transmitter canal 1 a 32 estão ativadas. Desativado: As alimentações de transmitter canal 1 a 32 estão desativadas. Ajuste padrão: Ativado
Show Signal Overflow		W	Indicar transbordamento do sinal de medição com o LED Field. Ativado: Transbordamento do sinal de medição está ativado. Desativado: Transbordamento do sinal de medição está desativado. Ajuste padrão: Ativado
Show Supply Overcurrent		W	Indicar sobrecorrente da alimentação com LED Field. Ativado: Indicar sobrecorrente da alimentação está ativado. Desativado: Indicar sobrecorrente da alimentação está desativado. Ajuste padrão: Ativado
Nome	Tipo de dados	R/W	Descrição
Os seguintes statu de aplicação.	is e parâme	tros pod	em ser atribuídos a variáveis globais e usados no programa
Diagnostic Request	DINT	W	Para solicitar um valor diagnóstico, deve ser transmitida ao módulo a respectiva ID (codificação veja Capítulo 4.4.5) pelo parâmetro <i>Diagnostic Request</i> .
Diagnostic Response	DINT	R	Logo que a <i>Diagnostic Response</i> retornar a ID da <i>Diagnostic Request</i> (codificação veja Capítulo 4.4.5), o <i>Diagnostic Status</i> exibirá o valor de diagnóstico solicitado.
Diagnostic Status	DWORD	R	O valor de diagnóstico solicitado conforme <i>Diagnostic Response</i> . No programa de aplicação é possível avaliar as IDs das <i>Diagnostic Request</i> e das <i>Diagnostic Response</i> . Só quando ambas tiverem a mesma ID, o <i>Diagnostic Status</i> irá conter o valor de diagnóstico indicado.
Background Test Error	BOOL	R	TRUE: Teste de fundo com erro FALSE: Teste de fundo sem erro
Restart on Error	BOOL	W	Cada módulo de E/S que estiver permanentemente desligado devido a erros, pode ser reconduzido ao estado RUN com ajuda do parâmetro Restart on Error. Para este fim, colocar o parâmetro Restart on Error de FALSE para TRUE. O módulo de E/S executa um auto-teste completo e apenas assume o estado RUN se nenhum erro foi detectado. Ajuste padrão: FALSE
Submodule OK	BOOL	R	TRUE: sem erros de sub-módulo Sem erros de canal FALSE: erros de sub-módulo erros de canal de um canal (também erros externos)
Submodule Status	DWORD	R	Status do sub-módulo codificado por Bits (codificação veja Capítulo 4.4.4)

Tabela 23: Registro I/O Submodule Al32_02 no Hardware Editor

Página 38 de 60 HI 801 246 P Rev. 4.00

4.4.3 Registro I/O Submodule Al32_02: Channels

O registro **I/O Submodule Al32_02:Channels** contém os seguintes parâmetros de sistema para cada entrada analógica. É possível atribuir variáveis globais aos parâmetros de sistema com -> e, assim,

É possível atribuir variáveis globais aos parâmetros de sistema com -> e, assim, usar as mesmas no programa de aplicação. Os valores sem -> devem ser introduzidos diretamente.

Nome	Tipo de dados	R/W	Descrição
Channel no.		R	Número de canal, definição fixa
-> Process Value [REAL]	REAL	R	Valor de processo que é determinado com ajuda dos pontos de apoio 4 mA e 20 mA.
4 mA	REAL	W	Ponto de apoio para o cálculo do valor de processo no valor final de escala inferior (4 mA) do canal. Ajuste padrão: 4.0
20 mA	REAL	W	Ponto de apoio para o cálculo do valor de processo no valor final de escala superior (20 mA) do canal. Ajuste padrão: 20.0
-> Raw Value [DINT]	DINT	R	Valor de medição não processado do canal: 0200 000 (020 mA) Se no lugar do valor de processo for avaliado o valor cru, o usuário deve programar a supervisão e o valor em caso de falhas no programa de aplicação.
-> Channel OK	BOOL	R	TRUE: canal sem erros. O valor de entrada é válido. FALSE: canal com erros. O valor de entrada é colocado em 0.
Sup. used	BOOL	W	Ativado: No caso de um erro da alimentação do transmitter, o módulo comunica erro de canal e ajusta o valor de entrada para 0. Desativado: No caso de um erro da alimentação do transmitter, o módulo não comunica erro de canal e o valor de entrada está indefinido. Ajuste padrão: Ativado
-> Sup. OK	BOOL	R	TRUE: A alimentação do transmitter está sem erros. FALSE: A alimentação do transmitter está com erros.
OC Limit	DINT	W	Valor limite em mA para a detecção de quebra de fio. Se o valor de medição analógico cair abaixo de <i>OC Limit</i> , o módulo detecta uma quebra de fio e desliga o LED <i>Channel</i> para este canal. Ajuste padrão: 36 000 (3,6 mA)
-> OC	BOOL	R	TRUE: Há uma quebra de fio. FALSE: Não há quebra de fio. Definido através de <i>OC Limit</i> .
SC Limit	DINT	W	Valor limite em mA para a detecção de curto de linha. Se o valor de medição analógico ultrapassar <i>SC Limit</i> , o módulo detecta um curto de linha e ajusta o LED <i>Channel</i> para este canal em Piscar2. Ajuste padrão: 213 000 (21,3 mA)
-> SC	BOOL	R	TRUE: Há um curto de linha. FALSE: Não há curto de linha. Definido através de <i>SC Limit</i> .
SP LOW	DINT	W	Limite superior do nível Low O SP LOW (valor de comutação LOW) define o limite a partir do qual o módulo detecta LOW e desliga o LED Channel. Restrição: SP LOW ≤ SP HIGH Ajuste padrão: 39 500 (3,95 mA)

HI 801 246 P Rev. 4.00 Página 39 de 60

Nome	Tipo de dados	R/W	Descrição
SP HIGH	DINT	W	Limite inferior do nível High O SP HIGH (valor de comutação HIGH) define o limite a partir do qual o módulo detecta HIGH e liga o LED Channel. Restrição: SP LOW ≤ SP HIGH Ajuste padrão: 40 500 (4,05 mA)
-> Ch. value [BOOL]	BOOL	R	Valor Booleano do canal de acordo com os limites SP LOW e SP HIGH
Ton [µs]	UDINT	W	Retardo de ligação O módulo indica a mudança de nível de LOW para HIGH somente depois que o nível High estiver ativo mais tempo do que o tempo parametrizado t_{on} . Atenção: O tempo máximo de reação T_R (worst case) aumenta para este canal pelo retardo ajustado, pois uma mudança de nível somente é detectada como tal depois de esgotar o tempo de retardo. Faixa de valores: $0(2^{32} - 1)$ Ajuste padrão: 0
Toff [µs]	UDINT	W	Retardo de desligamento O módulo indica a mudança de nível de HIGH para LOW somente depois que o nível Low estiver ativo mais tempo do que o tempo parametrizado t _{off} . Atenção: O tempo máximo de reação T _R (worst case) aumenta para este canal pelo retardo ajustado, pois uma mudança de nível somente é detectada como tal depois de esgotar o tempo de retardo. Faixa de valores: 0(2 ³² - 1) Ajuste padrão: 0
-> State LL	BOOL	R	TRUE: Valor no estado de evento LL FALSE: Valor fora do estado de evento LL
-> State L	BOOL	R	TRUE: Valor no estado de evento L FALSE: Valor fora do estado de evento L
-> State N	BOOL	R	TRUE: Valor no estado de evento N (Normal) FALSE: Valor fora do estado de evento N (Normal)
-> State H	BOOL	R	TRUE: Valor no estado de evento H FALSE: Valor fora do estado de evento H
-> State HH	BOOL	R	TRUE: Valor no estado de evento HH FALSE: Valor fora do estado de evento HH
redund.	BOOL	W	Requisito: Um módulo redundante deve ter sido criado. Ativado: Ativar a redundância de canal para este canal Desativado: Desativar a redundância de canal para este canal Ajuste padrão: Desativado.
Redundancy value	BYTE	W	Ajuste como o valor de redundância é formado. Min Max Average (Média) Ajuste padrão: Max Apenas é exibido no registro do grupo de redundância!

Tabela 24: Registro I/O Submodule Cl32_02: Channels no Hardware Editor

Página 40 de 60 HI 801 246 P Rev. 4.00

4.4.4 Submodule Status [DWORD]

Codificação do Submodule Status.

Codificação	Descrição
0x0000001	Erros da unidade de hardware (sub-módulo)
0x00000002	Reset de um barramento de E/S
0x00000004	Erro durante a configuração do hardware
0x00000008	Erro durante a verificação dos coeficientes
0x10000000	Erro durante a conversão AD (final da conversão)
0x20000000	Tensões de operação com erro
0x40000000	Erro durante a conversão AD (início da conversão)
0x80000000	Função teste supervisão de transmitter sobretensão

Tabela 25: Status de submódulo [DWORD]

HI 801 246 P Rev. 4.00 Página 41 de 60

4.4.5 Diagnostic Status [DWORD] Codificação Diagnostic Status:

ID	Descrição			
0	Valores de dia	ngnóstico (1002032) são exibidos sequencialmente.		
100		nperatura codificado por Bit		
	0 = normal			
		ar de temperatura 1 ultrapassado		
		ar de temperatura 2 ultrapassado		
101	Bit2 = 1 : Medição de temperatura com erro Temperatura medida (10 000 Digit/°C)			
101		· · · · · · · · · · · · · · · · · · ·		
200		são codificado por Bit		
	0 = normal	(04) () 2244 2272 2772		
		(24 V) está com erro (24 V) está com erro		
201	Não usado!	(24 V) esta com eno		
202	Nao usauo:			
202	-			
300	Subtenção co	m 24 V (BOOL)		
10011032		al dos canais 132		
10011032	Codificação	Descrição		
	0x0001	Ocorreram erros da unidade de hardware (sub-módulo)		
	0x0001	Erro de canal devido a erro interno		
	0x0400			
	000400	Valores limite LS-/LB ultrapassados/não alcançados ou erro de canal/módulo		
	0x0800	Valores de medição não válidos		
		(talvez defeito no sistema de medição)		
	0x1000	Valores de medição não dentro da precisão relacionada à segurança		
	0x2000	Valor de medição com transbordo negativo/transbordo		
	0x4000	Canal não parametrizado		
	0x8000	Medição independente dos dois sistemas de medição com avaria		
20012032	Status de erro	das fontes de alimentação 132		
	Codificação	Descrição		
	0x1000	Subtensão da supervisão de transmitter		
	0x2000	Subtensão de > 12 alimentações de transmitter.		
	0x4000	Subtensão da alimentação de transmitter		
	0x8000	Sobretensão da alimentação de transmitter		

Tabela 26: Diagnostic Information [DWORD]

Página 42 de 60 HI 801 246 P Rev. 4.00

4.5 Variantes de ligação

Este capítulo descreve a ligação correta do módulo relacionada à segurança. As seguintes variantes de ligação são permitidas.

4.5.1 Ligações de entrada

A ligação das entradas ocorre via Connector Boards. Para a ligação redundante, há Connector Boards especiais à disposição.

As alimentações de transmitter são desacopladas por diodos, assim, no caso de redundância, é possível que as alimentações de transmitter de dois módulos possam alimentar um transmitter.

No caso das ligações conf. Figura 13 e Figura 14, é possível utilizar as Connector Boards X-CB 008 01 e X-CB 019 01 (com bornes aparafusados) ou X-CB 008 03 e X-CB 019 03 (com conector de cabo).

Figura 13: Ligação mono-canal de um transmitter passivo de 2 fios

Figura 14: Ligação mono-canal de um transmitter ativo de 2 fios

HI 801 246 P Rev. 4.00 Página 43 de 60

No caso da ligação redundante conf. Figura 15 e Figura 16, os módulos são colocados de forma adjacente no suporte básico numa Connector Board conjunta. É possível utilizar as Connector Boards X-CB 008 02 e X-CB 019 02 (com bornes aparafusados) ou X-CB 008 04 e X-CB 019 04 (com conector de cabo).

Figura 15: Ligação redundante de um transmitter passivo de 2 fios

Página 44 de 60 HI 801 246 P Rev. 4.00

- 2 Alimentação do transmitter

Figura 16: Ligação redundante de um transmitter ativo de 2 fios

HI 801 246 P Rev. 4.00 Página 45 de 60

4.5.2 Ligação de transmitters via Field Termination Assembly

A ligação de transmitters passivos e ativos de 2 fios via Field Termination Assembly X-FTA 002 01 ocorre como representado em Figura 17. Para informações mais detalhadas, veja o Manual HI 801 275 P do X-FTA 002 01.

- 2 Alimentação do transmitter
- 3 Entrada analógica

- 6 Alimentação externa do transmitter

Ligação via Field Termination Assembly Figura 17:

HI 801 246 P Rev. 4.00 Página 46 de 60

4.5.3 Ligação redundante mediante dois suportes básicos

A figura mostra a ligação de um transmitter se os módulos redundantes estão em suportes básicos diferentes ou não estão adjacentes no Rack.

Os shunts de medição são posicionados no Field Termination Assembly.

Figura 18: Ligação redundante mediante dois suportes básicos

HI 801 246 P Rev. 4.00 Página 47 de 60

4.5.4 Proteção Ex com barreiras Zener

Para a proteção Ex podem ser utilizadas barreiras Zener, p. ex., barreiras da MTL, Tipo 7787+ ou Pepperl+Fuchs tipo Z787.

Figura 19: Ligação mono-canal de transmitter com barreira

4.5.5 Proteção Ex com separador de alimentação

Para a proteção Ex também podem ser usados separadores de alimentação, p. ex., o separador analógico de alimentação H 6200A da HIMA. Na ligação de um separador analógico de alimentação, a alimentação do transmitter do módulo não é usada.

Figura 20: Ligação mono-canal de um separador analógico de alimentação

Página 48 de 60 HI 801 246 P Rev. 4.00

4.5.6 Comportamento no caso de comunicação HART

Para a comunicação HART pode ser ligado um HART-Handheld em paralelo ao transmitter. As oscilações de corrente causadas pela comunicação HART são filtradas por filtros na entrada analógica, assim que o erro residual da medição analógica seja de 1%.

Erro residual maior no caso de comunicação HART. Retirar o terminal Hart imediatamente após o diagnóstico!

Figura 21: HART-Handheld em paralelo ao transmitter e ao módulo de entrada

HI 801 246 P Rev. 4.00 Página 49 de 60

5 Operação X-AI 32 02

5 Operação

O módulo é operado num suporte básico HIMax e dispensa supervisão especial.

5.1 Operação

A operação no módulo em si não está prevista.

Qualquer operação, p. ex., Forcing das entradas analógicas, ocorre pelo PADT. Detalhes sobre isso encontram-se na documentação do SILworX.

5.2 Diagnóstico

O estado do módulo é indicado pelos LEDs do lado frontal do módulo, veja Capítulo 3.4.2.

O histórico de diagnóstico do módulo pode ser lido adicionalmente com a ferramenta de programação SILworX. Nos Capítulos 4.4.4 e 4.4.5 são descritos os status de diagnóstico mais importantes.

Se um módulo é colocado em um suporte básico, o mesmo gera durante a inicialização mensagens diagnósticas que indicam disfunções ou valores de tensão incorretos.

Estas mensagens apenas indicam uma falha do módulo se ocorrerem após a transição para a operação de sistema.

Página 50 de 60 HI 801 246 P Rev. 4.00

6 Manutenção preventiva

Módulos defeituosos devem ser substituídos por módulos intactos do mesmo tipo ou de um tipo de substituição autorizado.

A reparação do módulo apenas pode ser efetuada pelo fabricante.

Para substituir módulos devem ser observados os requisitos do Manual do sistema HI 801 242 P e do Manual de segurança HI 801 241 P.

6.1 Medidas de manutenção preventiva

6.1.1 Carregar o sistema operacional

No contexto da melhora de produtos, a HIMA continua desenvolvendo o sistema operacional do módulo. A HIMA recomenda aproveitar paradas planejadas do sistema para carregar a versão atualizada do sistema operacional para os módulos.

O carregamento do sistema operacional é descrito no Manual de sistema ou na ajuda Online. Para carregar o sistema operacional, o módulo precisa estar no estado parado STOP.

A versão atual do do módulo encontra-se no Control Panel do SILworX. A placa de identificação mostra a versão no momento do fornecimento, veja Capítulo 3.3.

6.1.2 Repetição da verificação

Módulos HIMax devem ser submetidos a uma repetição da verificação em intervalos de 10 anos. Para informações mais detalhadas, veja o Manual de segurança HI 801 241 P.

HI 801 246 P Rev. 4.00 Página 51 de 60

7 Colocação fora de serviço

Puxar o módulo para fora do suporte básico para colocar fora de serviço. Detalhes sobre isso no Capítulo *Instalação e desinstalação do módulo*.

Página 52 de 60 HI 801 246 P Rev. 4.00

X-AI 32 02 8 Transporte

8 Transporte

Para a proteção contra danos mecânicos, os componentes HIMax devem ser transportados nas embalagens.

Sempre armazenar componentes HIMax nas embalagens originais dos produtos. As mesmas servem ao mesmo tempo à proteção contra ESD. A embalagem do produto sozinha não é suficiente para o transporte.

HI 801 246 P Rev. 4.00 Página 53 de 60

9 Eliminação X-AI 32 02

9 Eliminação

Clientes industriais assumem a responsabilidade pelo hardware HIMax colocado fora de funcionamento. Sob solicitação é possível firmar um acordo de descarte com a HIMA.

Encaminhar todos os materiais a uma eliminação correta em relação ao meio-ambiente.

Página 54 de 60 HI 801 246 P Rev. 4.00

X-AI 32 02 Anexo

Anexo

Glossário

Conceito	Descrição
ARP	Address Resolution Protocol: Protocolo de rede para a atribuição de endereços
	de rede a endereços de hardware
Al	Analog Input: Entrada analógica
Connector Board	Placa de conexão para o módulo HIMax
COM	Módulo de comunicação
CRC	Cyclic Redundancy Check: Soma de verificação
DI	Digital Input: Entrada digital
DO	Digital Output: Saída digital
CEM	Compatibilidade eletromagnética
EN	Normas européias
ESD	ElectroStatic Discharge: descarga eletrostática
FB	Fieldbus: barramento de campo
FBS	Funktionsbausteinsprache: linguagem de bloco funcional
FTT	Fault tolerance time: tempo de tolerância de falhas
ICMP	Internet Control Message Protocol: Protocolo de rede para mensagens
	de status e de falhas
IEC	Normas internacionais para eletrotécnica
Endereço MAC	Endereço de hardware de uma conexão de rede (Media Access Control)
PADT	Programming and Debugging Tool (conforme IEC 61131-3), PC com SILworX
PE	Terra de proteção
PELV	Protective Extra Low Voltage: Extra baixa tensão funcional com separação segura
PES	Programable Electronic System: Sistema eletrônico programável
PFD	Probability of Failure on Demand: Probabilidade de uma falha ao demandar
	uma função de segurança
PFH	Probability of Failure per Hour: Probabilidade de uma falha perigosa por hora
R	Read: Ler
Rack-ID	Identificação de um suporte básico (número)
Livre de efeitos	Dois circuitos de entrada estão ligados à mesma fonte (p. ex., transmissor).
de retro-	Uma ligação de entrada é chamada de "livre de efeitos de retroalimentação"
alimentação	se ela não interferir com os sinais de uma outra ligação de entrada.
R/W	Read/Write: Ler/Escrever
SB	Systembus: (módulo do) barramento de sistema
SELV	Safety Extra Low Voltage: Tensão extra baixa de proteção
SFF	Safe Failure Fraction: Fração de falhas que podem ser controladas com segurança
SIL	Safety Integrity Level (conf. IEC 61508)
SILworX	Ferramenta de programação para HIMax
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot Endereçamento de um módulo
SW	Software
TMO	Timeout
TMR	Triple Module Redundancy: módulos com tríplice redundância
W	Write
W _S	Valor limite do componente total de corrente alternada
Watchdog (WD)	Supervisão de tempo para módulos ou programas. O ultrapassar o tempo do Watchdog, o módulo ou programa entre em parada por erro.
WDZ	Tempo de Watchdog
V V D Z	Trempo de Wateridog

HI 801 246 P Rev. 4.00 Página 55 de 60

Anexo X-Al 32 02

Lista de f	iguras	
Figura 1:	Placa de identificação, como exemplo	11
Figura 2:	Diagrama de blocos	12
Figura 3:	Indicador	13
Figura 4:	Vistas	16
Figura 5:	Exemplo de uma codificação	19
Figura 6:	Connector Boards com bornes aparafusados	20
Figura 7:	Connector Boards com conector de cabo	23
Figura 8:	Connector Board com conector de cabo variante X-CB 008 05	25
Figura 9:	Cabo de sistema	28
Figura 10:	Inserir a Connector Board	31
Figura 11:	Aparafusar a Connector Board	32
Figura 12:	Instalar e desinstalar módulo	34
Figura 13:	Ligação mono-canal de um transmitter passivo de 2 fios	43
Figura 14:	Ligação mono-canal de um transmitter ativo de 2 fios	43
Figura 15:	Ligação redundante de um transmitter passivo de 2 fios	44
Figura 16:	Ligação redundante de um transmitter ativo de 2 fios	45
Figura 17:	Ligação via Field Termination Assembly	46
Figura 18:	Ligação redundante mediante dois suportes básicos	47
Figura 19:	Ligação mono-canal de transmitter com barreira	48
Figura 20:	Ligação mono-canal de um separador analógico de alimentação	48
Figura 21:	HART-Handheld em paralelo ao transmitter e ao módulo de entrada	49

Página 56 de 60 HI 801 246 P Rev. 4.00

X-AI 32 02 Anexo

Lista de t	abelas	
Tabela 1:	Manuais adicionalmente em vigor	5
Tabela 2:	Requisitos de ambiente	8
Tabela 3:	Frequências de piscar dos diodos luminosos	14
Tabela 4:	Indicador de status do módulo	14
Tabela 5:	Indicador de barramento de sistema	15
Tabela 6:	Indicador de E/S	15
Tabela 7:	Dados do produto	16
Tabela 8:	Dados técnicos das entradas analógicas	17
Tabela 9:	Dados técnicos da alimentação do transmitter	17
Tabela 10:	Connector Boards disponíveis	18
Tabela 11:	Connector Boards para medições de alta precisão	18
Tabela 12:	Posição das cunhas de codificação	19
Tabela 13:	Atribuição de bornes de Connector Boards com bornes aparafusados	22
Tabela 14:	Características dos conectores de bornes	22
Tabela 15:	Atribuição de conectores dos conectores de cabo do cabo de sistema	24
Tabela 16:	Atribuição de conectores dos conectores de cabo do cabo de sistema	27
Tabela 17:	Dados de cabo X-CA 005	28
Tabela 18:	Cabos de sistema disponíveis X-CA 005	29
Tabela 19:	Dados de cabo X-CA 009	29
Tabela 20:	Cabos de sistema disponíveis X-CA 009	29
Tabela 21:	Descrição do evento	35
Tabela 22:	Registro Module no Hardware Editor	37
Tabela 23:	Registro I/O Submodule Al32_02 no Hardware Editor	38
Tabela 24:	Registro I/O Submodule Cl32_02: Channels no Hardware Editor	40
Tabela 25:	Status de submódulo [DWORD]	41
Tabela 26:	Diagnostic Information [DWORD]	42

HI 801 246 P Rev. 4.00 Página 57 de 60

Anexo X-Al 32 02

Índice remissivo

Comunicação HART	49
Connector Board	
Com bornes aparafusados	20
Com conector de cabo	23
Dados técnicos	
Alimentação do transmitter	17
Entradas	17
Módulo	16

Diagnostico	Dι
Indicador de barramento de sistema	15
Indicador de E/S	15
Diagrama de blocos	12
Função de segurança	10
Indicador de status do módulo	

Página 58 de 60 HI 801 246 P Rev. 4.00

X-AI 32 02 Anexo

HI 801 246 P Rev. 4.00 Página 59 de 60

HI 801 246 P © 2011 HIMA Paul Hildebrandt GmbH HIMax e SILworX são marcas registradas da: HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Alemanha Tel. +49 6202 709-0 Fax +49 6202 709-107 HIMax-info@hima.com www.hima.com

