Lesson S	5 of 16 2121	2008 Sun	1Ne/	- (-
Quit	rext Phocola	by Monday	iday)	·
	nerts with rule of	O L. God	Statements	on'
29	All men are Socrates is Socrates is	a man mortal		
" If	some propera a domain t particular to	ty is true then it is	true of	ing thin
1 /	for all read = ba	= [[\\\(\)	$I(X_2)$	C/3/.
とフ	ab = ba : By U7	F, 5-4	= 4.5	

Oct 6th 1972 Step 1: last 2 year digits J/ F4 M4 40m2 5 JO#356 stepl: Start a Som! 1 "4 b6 how many 12's in 72? Som = 6 Step 3! how many letter from 72 when I sur false away my 6 12's? Stop 4: how many 4's in that 0? Sum = 6 Som -> 0 Son Stos! add the 6th Som 212 Sum = 13 sum step 6: add October #:1 13 7.7 = 6 Stop 7! med by 7 Sa Sum Twhf 0123456

Universal Moders Perens:

 $\forall x, P(x) \rightarrow Q(x)$ P(a) for a particular elevent, in x $\therefore Q(a) \text{ (is true)}$

If a # is even then its square is even Kis a particular number that is even : K² is even.

Universal Modus Tollers! used in proofs by

Contradiction $\forall x, p(x) \rightarrow Q(x)$ $\sim Q(a)$ for a particular a in xi. by UMT, $\sim P(a)$

All homans are mortal Zeus is not mortal ¿Zeus is not homan

Draw this argument. It it valid.

All humans are Mortal. Zeus is not mortal

: Zeus is not human.

All humans are mortal.

Shaun is mortal.

Thaun is human

All students are lazy
No gods are lazy
i. No students are gods.

Lesson 6 of 16 dtn: Even An integer n is even if and only if n equals two times some integer. n is even == 3 an integer K | n = 2 K My July not! Q] Is 18 even? A) Yes, 7 integer 9 | 18=2.9 Q1 Is 1.8 ev.? Al No not ever a integer A) Yes, I integer of l'o = 2:0 Qs Is o even? Quiz QJ Is -4 even? A) Yes,] integer -2 / -4 = 2.-2 es Is 7 even? Al No, Vinteger K, 2k #7

QI IF x and y are integers, **-7**-Is 10x + 8y +1 even? It has the form of 2 (int) +1 and not ever 2 [int the som of integer is an integer the difference of integer is an integer Der odd: An integer n is odd if and only it n equals two times some integer plus one. N is odd ←> Jan Integer K [N= 2k+1 Qs Is 63 odd? As 3 on integer 31 | 63 = 31+2 +1 Q/ Is 40 odd? some int 40= 24+1 A) If 40 is odd the k= 34 Not an int: 26= 39

dfn: Prime 2, 3, 5, 7, 11, 13, ... A adam no rectangle = prime Rectangle = not prime An integer n is prime if and only its (1) 0 > 1 and (2) for all positive integers or and 5, if n= r·s then r=1 or 5=1 JIS 6 prine? Q) Is Sprine? As No! A) Yes! (1) 671 ¿ prime (1) 5 > 1(2) 5 = 1.5(2) 62 6.1 V 6=1.6 V 6=2.3 X

5=5.1

Quit! Know d'fors. 1 is not prime. (by dfr) din: Composite An integer n is composite if and only if (2) N=r-s for some positive integers
with r+1 and s+1 rands,] positive integers r ands ! n is composite N=r·s and r≠1
and s≠1 OJIS 45 composite? A) Ves 4571 1 9 \$1 and 5 \$1 X4+44+24= W4 No Proof 958004 + 2175/94 + 4/45604-4224814

Heno's paradox

 $A \qquad \frac{1}{2} \qquad \frac{1}{2} \stackrel{!}{=} \stackrel{!}{=} B$

0

-

 $(1 + (1 - 1) + (1 - 1) + (1 - 1) \dots = 1$

Proofs: Jxin D/Q(x) Prove existential statements. 1. Constructive proof:

1. Constructive proof:

2 (that swan is black)

3 - supply an algorithm to find x 2. Non constructive proof: a - show that the existence of x by some Aller Heorem. 6 - show that a contradiction arises if there is no solution. Of two prince. Prove it. A 14= 11+3 and = 7+7

Proving	Universal	Statement 1	-12
Technique	#1: for use	finite-sized. the method o	sets, f exhaustion.
yn € Z then r of t	can be two prines.	even and 4 written as th	< n < 12 }
Proof	1 = 2+2 1 = 3+3 = 3+5 5 = 5+7	M ost	Universal Conditional Statement: the important
1 √,		Statement for mathematics: P(+) -> Q(+)	orn in all

V+ in D, & P(+) -> Q(+)

4 color problem

Consider infinite-sized set:

Quiz covers today's lesson only.

Multiply-quantified statements -13	 -
All regale er or at least one type of music.	
Formi I in Jy in Jype music the enjoys y individual people on type set of music set of music	
Sine people enjoy all types of Mosic.	
Jx in P by in M.	
Everyone hates someone. Someone hates everyone. Symbol Jx EP Vy EP, H(x,y)	Is
[] Jx & P Vy & P, H(x,y)	
- Vx EP, Jy EP WCxig)	
use different variable letter.	le.