Assignment 2

Due: Thursday, October 26 at 4:00pm

- 1. This first problem consists of two separate questions about the fidelity function.
 - (a) This one is inspired by a question asked in the lecture (for which I did not know an answer on the spot). Give an example of two states $\rho, \sigma \in D(\mathcal{X})$, for your choice of a complex Euclidean space \mathcal{X} , such that

$$1 - \frac{1}{2} \|\rho - \sigma\|_1 = F(\rho, \sigma) < \sqrt{1 - \frac{1}{4} \|\rho - \sigma\|_1^2}.$$

Such an example shows that the first of the Fuchs–van de Graaf inequalities is tight, and not just in the trivial case when ρ and σ are either equal or orthogonal (where all three expressions are all equal, either to 1 or to 0, respectively).

Hint: consider the proof of the first Fuchs–van de Graaf inequality, and think about what is needed to force the inequality to be an equality.

(b) Let \mathcal{X} be a complex Euclidean space, and define the *fidelity distance* between any two states $\rho, \sigma \in D(\mathcal{X})$ as

$$d_F(\rho,\sigma) = \min\{\|u - v\| : u, v \in \mathcal{X} \otimes \mathcal{Y}, \operatorname{Tr}_{\mathcal{Y}}(uu^*) = \rho, \operatorname{Tr}_{\mathcal{Y}}(vv^*) = \sigma\}.$$

Here, you should assume that \mathcal{Y} is a complex Euclidean space with $\dim(\mathcal{Y}) = \dim(\mathcal{X})$ (although the dimension of \mathcal{Y} does not actually matter, so long as it is large enough to allow for the existence of purifications of ρ and σ). Prove that

$$d_F(\rho,\sigma) = \sqrt{2-2F(\rho,\sigma)}.$$

Also prove that the fidelity distance obeys the triangle inequality:

$$d_F(\rho,\sigma) \leq d_F(\rho,\xi) + d_F(\xi,\sigma)$$

for all ρ , σ , $\xi \in D(\mathcal{X})$.

2. This problem is concerned with an extension of Theorem 3.9 in the text. A formal statement of the problem is as follows.

Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces, let $H \in \operatorname{Herm}(\mathcal{Y} \otimes \mathcal{X})$ be a Hermitian operator, and let $\Phi \in C(\mathcal{X}, \mathcal{Y})$ be a channel. Prove that these two statements are equivalent:

Statement 1. It holds that

$$\langle H, J(\Phi) \rangle = \max_{\Psi \in C(\mathcal{X}, \mathcal{Y})} \langle H, J(\Psi) \rangle.$$

Statement 2. The operator $\text{Tr}_{\mathcal{Y}}(HJ(\Phi))$ is Hermitian and satisfies

$$\mathbb{1}_{\mathcal{V}} \otimes \operatorname{Tr}_{\mathcal{V}}(HI(\Phi)) > H.$$

The short discussion that follows is not needed to solve the problem, but is only intended to motivate it. Suppose that $\psi: C(\mathcal{X}, \mathcal{Y}) \to \mathbb{R}$ is an arbitrary linear function from the set of channels $C(\mathcal{X}, \mathcal{Y})$ to the real numbers. It can be proved, for any such choice of a function ψ , that there must exist a Hermitian operator $H \in \operatorname{Herm}(\mathcal{Y} \otimes \mathcal{X})$ such that $\psi(\Phi) = \langle H, J(\Phi) \rangle$ for all $\Phi \in C(\mathcal{X}, \mathcal{Y})$. The aim of the problem above is therefore to prove that there is a simple criterion (represented by statement 2) that allows one to easily check, for a given channel Φ , whether or not Φ is an optimal channel for maximizing the function ψ , meaning that

$$\psi(\Phi) = \max_{\Psi \in C(\mathcal{X}, \mathcal{Y})} \psi(\Psi),$$

which is equivalent to statement 1.

3. Suppose \mathcal{X} and \mathcal{Y} are complex Euclidean spaces, $P,Q \in Pos(\mathcal{X})$ are positive semidefinite operators, and $\Phi \in T(\mathcal{X},\mathcal{Y})$ is a trace-preserving and positive (but not necessarily completely positive) map. Prove that

$$F(P,Q) \le F(\Phi(P),\Phi(Q)).$$

We already know that the inequality holds for Φ being a channel, but the proof we discussed in lecture relies on Φ being completely positive, so that proof will not work here. However, if you use the right characterization of the fidelity, the required inequality can be proved in a different way that only requires Φ to be positive and trace preserving.

- 4. Let X, Y, and Z be registers.
 - (a) Prove that, for every state $\rho \in D(\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{Z})$ of these registers, it holds that

$$I(\mathsf{X},\mathsf{Y}:\mathsf{Z}) \leq I(\mathsf{Y}:\mathsf{X},\mathsf{Z}) + 2\,H(\mathsf{X}).$$

Hint: you do not need strong subadditivity to prove this inequality.

(b) Give an example of a state ρ for which the inequality in part (a) is an equality. In order to disqualify trivial examples, be sure that your example is such that H(X) is nonzero.

Hint: thinking about dense coding may help you to find a simple example!