

RECEIVED
SEP 22 2005

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> Miao, Carol
Kay, Mark

<120> Liver-Specific Gene Expression Cassettes, and Methods of Use

<130> UOFW-1-17396

<150> US 60/212,902

<151> 2000-06-20

<160> 18

<170> PatentIn version 3.0

<210> 1

<211> 1438

<212> DNA

<213> HomoSapien

<400> 1
gtttgttcc tttttaaaaa tacattgagt atgcttgct ttttagatata gaaatatctg 60
atgctgtctt cttcaactaaa ttttgattac atgatttgac agcaatattg aagagtctaa 120
cagccagcac gcagggttgtt aagtactggc tctttgttag cttaggtttc ttcttcttca 180
tttttaaaac taaatagatc gacaatgctt atgatgcatt tatgtttaat aaacactgtt 240
cagttcatga tttggtcatg taattcctgt tagaaaacat tcatttcctt ggtttaaaaa 300
aattaaaaagt gggaaaacaa agaaaatagca gaatatagtg aaaaaaaaaata accacattat 360
ttttgtttgg acttaccact ttgaaatcaa aatggaaac aaaagcacaa acaatggcct 420
tatttacaca aaaagtctga ttttaagata tatgacattt caagggttca gaagtatgtt 480
atgagggtgtg tctctaattt tttaaattat atatcttcaa tttaaagttt tagttaaaac 540
ataaaagatta acctttcatt agcaagctgt tagttatcac caaagcttt catggattag 600
gaaaaaaaaatca ttttgcctct atgtcaaaca tcttgagtt gatatttgg gaaacacaat 660
actcaggttga gttccctagg ggagaaaagc aagcttaaga attgacataa agagtaggaa 720
gttagctaat gcaacatata tcactttgtt ttttcacaac tacagtgact ttatgtattt 780
cccagaggaa ggcatacagg gaagaaaatta tcccatttgg acaaacagca tgttctcaca 840
ggaagcattt atcacactta ctgtcaact ttctagaatc aaatctagta gctgacagta 900

ccaggatcag	gggtgccaac	cctaagcacc	cccagaaaagc	tgactggccc	tgtggttccc	960
actccagaca	tgatgtcagc	tgtgaaatcg	acgtcgctgg	accataatta	ggcttctgtt	1020
cttcaggaga	catttgtca	aagtcatgg	ggcaaccata	ttctgaaaac	agcccagcca	1080
gggtgatgga	tcactttgca	aagatcctca	atgagctatt	ttcaagtgt	gacaaagtgt	1140
gaagtttaacc	gctcatttga	gaactttctt	tttcatccaa	agtaaattca	aatatgatta	1200
gaaatctgac	cttttattac	tggaattctc	ttgactaaaa	gtaaaattga	attttaattc	1260
ctaaatctcc	atgtgtatac	agtactgtgg	gaacatcaca	gattttggct	ccatgcctta	1320
aagagaaaatt	ggctttcaga	ttatggat	taaaaacaaa	gactttctta	agagatgtaa	1380
aatttcatg	atgttttctt	tttgctaaa	actaaagaat	tatttttta	catttcag	1438

<210> 2
<211> 1413
<212> DNA
<213> HomoSapien

<220>
<221> CDS
<222> (30)..(1412)

<400> 2						
accacttca	caatctgcta	gcaaagggtt	atg cag cgc gtg aac atg atc atg	Met Gln Arg Val Asn Met Ile Met		53
			1	5		
gca gaa tca cca ggc ctc atc acc atc tgc ctt tta gga tat cta ctc						101
Ala Glu Ser Pro Gly Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu						
10	15	20				
agt gct gaa tgt aca gtt ttt ctt gat cat gaa aac gcc aac aaa att						149
Ser Ala Glu Cys Thr Val Phe Leu Asp His Glu Asn Ala Asn Lys Ile						
25	30	35	40			
ctg aat cgg cca aag agg tat aat tca ggt aaa ttg gaa gag ttt gtt						197
Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val						
45	50	55				
caa ggg aac ctt gag aga gaa tgt atg gaa aag tgt agt ttt gaa						245
Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu						
60	65	70				
gaa gca cga gaa gtt ttt gaa aac act gaa aga aca act gaa ttt tgg						293

Glu Ala Arg Glu Val Phe Glu Asn Thr Glu Arg Thr Thr Glu Phe Trp			
75	80	85	
aag cag tat gtt gat gga gat cag tgt gag tcc aat cca tgt tta aat			341
Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn			
90	95	100	
ggc ggc agt tgc aag gat gac att aat tcc tat gaa tgt tgg tgt ccc			389
Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro			
105	110	115	120
ttt gga ttt gaa gga aag aac tgt gaa tta gat gta aca tgt aac att			437
Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile			
125	130	135	
aag aat ggc aga tgc gag cag ttt tgt aaa aat agt gct gat aac aag			485
Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys			
140	145	150	
gtg gtt tgc tcc tgt act gag gga tat cga ctt gca gaa aac cag aag			533
Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys			
155	160	165	
tcc tgt gaa cca gca gtg cca ttt cca tgt gga aga gtt tct gtt tca			581
Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser			
170	175	180	
caa act tct aag ctc acc cgt gct gag gct gtt ttt cct gat gtg gac			629
Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp			
185	190	195	200
tat gta aat tct act gaa gct gaa acc att ttg gat aac atc act caa			677
Tyr Val Asn Ser Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln			
205	210	215	
agc acc caa tca ttt aat gac ttc act cgg gtt ggt gga gaa gat			725
Ser Thr Gln Ser Phe Asn Asp Phe Thr Arg Val Val Gly Glu Asp			
220	225	230	
gcc aaa cca ggt caa ttc cct tgg cag gtt gtt ttg aat ggt aaa gtt			773
Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val			
235	240	245	
gat gca ttc tgt gga ggc tct atc gtt aat gaa aaa tgg att gta act			821
Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr			
250	255	260	
gct gcc cac tgt gtt gaa act ggt gtt aaa att aca gtt gtc gca ggt			869
Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly			
265	270	275	280

gaa cat aat att gag gag aca gaa cat aca gag caa aag cga aat gtg Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val	917
285 290 295	
 att cga att att cct cac cac aac tac aat gca gct att aat aag tac Ile Arg Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr	965
300 305 310	
 aac cat gac att gcc ctt ctg gaa ctg gac gaa ccc tta gtg cta aac Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asn	1013
315 320 325	
 agc tac gtt aca cct att tgc att gct gac aag gaa tac acg aac atc Ser Tyr Val Thr Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile	1061
330 335 340	
 ttc ctc aaa ttt gga tct ggc tat gta agt ggc tgg gga aga gtc ttc Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Gly Arg Val Phe	1109
345 350 355 360	
 cac aaa ggg aga tca gct tta gtt ctt cag tac ctt aga gtt cca ctt His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu	1157
365 370 375	
 gtt gac cga gcc aca tgt ctt cga tct aca aag ttc acc atc tat aac Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe Thr Ile Tyr Asn	1205
380 385 390	
 aac atg ttc tgt gct ggc ttc cat gaa gga ggt aga gat tca tgtcaa Asn Met Phe Cys Ala Gly Phe His Glu Gly Arg Asp Ser Cys Gln	1253
395 400 405	
 gga gat agt ggg gga ccc cat gtt act gaa gtg gaa ggg acc agt ttc Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe	1301
410 415 420	
 tta act gga att att agc tgg ggt gaa gag tgt gca atg aaa ggc aaa Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys	1349
425 430 435 440	
 tat gga ata tat acc aag gta tcc cgg tat gtc aac tgg att aag gaa Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu	1397
445 450 455	
 aaa aca aag ctc act t Lys Thr Lys Leu Thr	1413
460	

<210> 3
<211> 46

<212> PRT

<213> HomoSapien

<400> 3

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr
1 5 10 15

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu
20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn
35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn
65 70 75 80

Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln
85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile
100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys
115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe
130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
180 185 190

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu
195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe
210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp
225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile
245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu
275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn
290 295 300

Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu
305 310 315 320

Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys Ile
325 330 335

Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr
340 345 350

Val Ser Gly Trp Gly Arg Val Phe His Lys Gly Arg Ser Ala Leu Val
355 360 365

Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg
370 375 380

Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His

385

390

395

400

Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val
 405 410 415

Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly
 420 425 430

Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser
 435 440 445

Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr
 450 455 460

<210> 4
<211> 771
<212> DNA
<213> HomoSapien

<400> 4		
caggctcaga ggcacacagg agtttctggg ctcaccctgc ccccttccaa cccctcagtt		60
ccccatcctcc agcagctgtt tgtgtgctgc ctctgaagtc cacactgaac aaacttcagc		120
ctactcatgt ccctaaaatg ggcaaaacatt gcaaggcagca aacagcaaac acacagccct		180
ccctgcctgc tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac		240
ctccaaacatc cactcgaccc cttggaattt cggtggagag gagcagaggt tgcctggcg		300
tggtttaggt agtgtgagag ggtccgggtt caaaaccact tgctgggtgg ggagtgcgtca		360
gtaagtggct atgccccgac cccgaagcct gttccccat ctgtacaatg gaaatgataa		420
agacgcccatt ctgatagggt ttttgtggca aataaacatt tggttttttt gttttgtttt		480
gttttggttt ttgagatgga ggtttgctct gtcgcccagg ctggagtgcgtca gtgacacaat		540
ctcatctcac cacaacccttc ccctgcctca gcctcccaag tagctggat tacaagcatg		600
tgccaccaca cctggctaattttt tagtagagac gggtttctcc atgttggtca		660
gcctcagcct cccaaagtaac tgggattaca ggctgtgcc accacacccg gctaattttt		720
tctatTTTG acagggacgg ggtttcacca tgggttcag gtcctctag a		771

<210> 5
<211> 418
<212> DNA
<213> HomoSapien

<400> 5
ggatcttgct accagtggaa cagccactaa ggattctgca gtgagagcag agggccagct 60
aagtggtaact ctcccagaga ctgtctgact cacgccaccc cctccacacctt ggacacagga 120
cgctgtggtt tctgagccag gtacaatgac tcctttcggt aagtgcagtg gaagctgtac 180
actgcccagg caaagcgtcc gggcagcgtta ggccccgcac tcagatccca gccagtgac 240
tttagcccctg tttgctcctc cgataactgg ggtgaccctt gttaatattc accagcagcc 300
tcccccgttt cccctctgga tccactgctt aaatacggac gaggacaggg ccctgtctcc 360
tcagcttcag gcaccaccac tgacctggaa cagtgaatga tccccctgat ctgcggcc 418

<210> 6
<211> 282
<212> DNA
<213> Bos taurus

<400> 6
cccgaaaaat cagcctcgac tgtgccttct agttgccagc catctgttgt ttgccccctcc 60
cccggtgcctt ccttgaccctt ggaagggtgcc actcccaactg tcctttccta ataaaatgag 120
gaaattgcattt cgcattgtct gagtaggtgt cattctattt tgggggggtgg ggtggggcag 180
gacagcaagg gggaggattt ggaagacaat agcaggcatg ctggggatgc ggtgggctct 240
atggcttctg aggccggaaag aaccagctgg ggctcgagat cc 282

<210> 7
<211> 1707
<212> DNA
<213> HomoSapien

<400> 7
aatgaaaagat ggatttccaa ggtaattca ttgaaattga aaattaacag ggcttcac 60
taactaatca ctttccatc ttttgtttaga tttgaatata tacattctat gatcattgct 120
ttttctcttt acaggggaga atttcatatt ttacctgagc aaattgatta gaaaatggaa 180

ccactagagg aatataatgt gttaggaaat tacagtcatt tctaagggcc cagcccttga 240
caaaaattgtg aagttaaatt ctccactctg tccatcagat actatggtc tccactatgg 300
caactaactc actcaatttt ccctccttag cagcattcca tcttcccgat cttcttgct 360
tctccaacca aaacatcaat gtttattagt tctgtataca gtacaggatc tttggtctac 420
tctatcacaa ggccagtagcc acactcatga agaaagaaca caggagtagc tgagaggcta 480
aaactcatca aaaacactac tcctttcct ctaccctatt cctcaatctt ttacctttc 540
caaatcccaa tccccaaatc agttttctc tttcttactc cctctctccc ttttaccctc 600
catggtcgtt aaaggagaga tggggagcat cattctgtta tacttctgtt cacagttata 660
catgtctatc aaacccagac ttgcttccat agtggagact tgctttcag aacataggga 720
tgaagtaagg tgcctgaaaa gtttggggga aaagtttctt tcagagagtt aagttatTTT 780
atatatataa tatatatataa aaatatataa tatacaatataa aaatatataa ttttgtgtgt 840
tatgcgtgtg tgttagacaca cacgcataca cacatataat ggaagcaata agccattcta 900
agagcttgta tggttatgga ggtctgacta ggcattgattt cacgaaggca agattggcat 960
atcattgtaa ctaaaaaaagc tgacattgac ccagacatataa tgtactctt ctaaaaataa 1020
taataataat gctaacagaa agaagagaac cgttcgTTTg caatctacag ctagtagaga 1080
ctttgaggaa gaattcaaca gtgtgtcttc agcagtgttc agagccaagc aagaagttga 1140
agttgcctag accagaggac ataagtatca tgtctcctt aactagcata ccccgaagtg 1200
gagaagggtg cagcaggctc aaaggcataa gtcattccaa tcagccaaact aagttgcct 1260
tttctggTTT cgtgttccacc atggaacatt ttgattatag ttaatccttc tatcttgaat 1320
cttcttagaga gttgctgacc aactgacgta tgTTTccctt tgtgaattaa taaaactggtg 1380
ttctggttca taccttggct ttttggat tccattgatg tgaatcagtc accctgtatt 1440
tgatgatgca tgggactact gacaaaatca ctctgaccct gccaaagctgc tgccttctcc 1500
tgcccccaacc tcaccccaag ccaggcctca ctctgcttag ttcctttagt tcttttagtc 1560
aatatatttt tgtcttcgca tataagtata aataaacata tttttaaatt tcttggctgg 1620
gcccaaggtaggc tcacgcctat aatcccagca cttctggagg ccaaggtggg cggatcacct 1680
gaggttagga gtttcaggcc aagctta 1707

<210> 8
<211> 154
<212> DNA
<213> HomoSapien

<400> 8
gtttgtgtgc tgccctctgaa gtccacacactg aacaaacttc agcctactca tgtccctaaa 60
atgggcaaac attgcaagca gcaaacagca aacacacagc ctccttgcc tgctgacctt 120
ggagctgggg cagaggtcag agacctctct gggc 154

<210> 9
<211> 328.
<212> DNA
<213> Homo Sapien

<400> 9
caggctcaga ggcacacagg agtttctggg ctcaccctgc ccccttccaa cccctcagtt 60
cccatcctcc agcagctgtt tgtgtgctgc ctctgaagtc cacactgaac aaacttcagc 120
ctactcatgt ccctaaaaatg ggcaaacatt gcaaggcagca aacagcaaac acacagccct 180
ccctgcctgc tgaccttggg gctggggcag aggtcagaga cctctctggg cccatgccac 240
ctccaacatc cactcgaccc cttggaaattt cggtggagag gagcagaggt tgtcctggcg 300
tggtttaggt agtgtgagag ggtccggg 328

<210> 10
<211> 8
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> HNF-1 Hepatic Nuclear Factor Binding Site Consensus Sequence

<400> 10
tgtaacag 8

<210> 11
<211> 22
<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<223> HNF-1 Alternative Hepatic Nuclear Factor Binding Site Consensus Sequence

<400> 11
cacggataaa tatgaacctt gg , 22

<210> 12

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<223> HNF-3alpha Hepatic Nuclear Binding Site Consensus Sequence

<400> 12
tattgayttw g 11

<210> 13

<211> 10

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<223> HNF-3beta Hepatic Nuclear Binding Site Consensus Sequence

<400> 13
atattgattt 10

<210> 14

<211> 10

<212> DNA

<213> Artificial Sequence

<220>

<221> misc_feature

<223> HNF-4 Hepatic Nuclear Binding Site Consensus Sequence

<400> 14

aagycaayha

10

<210> 15
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> HNF-6 Hepatic Nuclear Binding Site Consensus Sequence

<400> 15
aaatcaattt

10

<210> 16
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> HNF-6 Alternative Hepatic Nuclear Binding Site Consensus Sequence

<400> 16
attatttgata aaa

13

<210> 17
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Human Factor IX cDNA Primer Consensus Sequence

<400> 17
gatggagatc agtgtgagtc caatccatgt

30

<210> 18
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<221> misc_feature
<223> Human Factor IX cDNA Primer Consensus Sequence

<400> 18
agccacttac atagccagat ccaaatttga

30