2019 年第 15 屆泛珠賽 力學基礎試 (2月 15日)

1. 答案

选择题 (20×2分)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	F	Α	F	В	Е	С	Е	C	D	D	Α	В	В	Α	C	D	E	F	С

21. (8分)

(1) 液体浸到圆锥体高度的 1/3 (4分)					(2) 液体浸到圆锥体高度的 2/3 (4分)				
	(a) $\frac{P}{\rho} = \frac{19}{27}$	(b) $M = \frac{19}{3} \rho \pi R^2 H$	(c) $\omega^2 = \frac{12}{19} \frac{g}{H}$	(a) $\frac{P}{\rho}$	$=\frac{26}{27}$	(b) $M = \frac{26}{3} \rho \pi R^2 H$	(c) $\omega^2 = \frac{3}{26} \frac{g}{H}$		

22. (20分)

(1)	(a) 瞬时轴 $x = \frac{2}{3}L$; 细杆转动 $\omega = \frac{12}{k+4} \frac{v_0}{L}$, 细杆质心 $v_C = \frac{2}{k+4} v_0$ 和小球 $v = \frac{4-k}{k+4} v_0$.	5分
	(b) $M=3m$ 时 $\omega=\underline{12}$ rad/s, $v_C=\underline{2}$ m/s 和 $v=\underline{1}$ m/s; $v_A=\underline{-4}$ m/s 和 $v_B=\underline{8}$ m/s.	5分
(2)	(a) 瞬时轴 $x = \frac{2}{3}L$; 系统关于质心 $I_C = \frac{k(k+4)}{12(k+1)} mL^2$, 转动 $\omega = \frac{6}{k+4} \frac{v_0}{L}$ 和质心 $v_C = \frac{1}{k+1} v_0$;	6分
(2)	撞击后 $E = \frac{4}{k+4} E_0$. (b) $M = 3m$ 时 $E = \frac{4}{7} E_0$ 和 $m = 3M$ 时 $E = \frac{12}{13} E_0$.	4分

23. (8分)

(1)	飞船的运行速度 $v^2 = \frac{GM}{r}$, 动能 $E_k = \frac{1}{2} m v^2 = \frac{1}{2} \frac{GMm}{r}$ 和总能量 $E = -E_k$.	3分
(2)	飞船离开地球的最远距离 $r_{\text{max}} = \frac{13}{7}r$.	5分

24. (24分)

(1)	(a)小球 m 摆动到 P 点时切线长度 $t(\varphi) = R\left(\frac{L}{R} - \varphi\right)$;									
	(b)下降高度 $h(\varphi) = R\left(1 - \cos\varphi + \frac{t(\varphi)}{R}\sin\varphi\right) = R\left(\underline{\tan\frac{\varphi}{2} + \frac{L}{R} - \varphi}\right)\sin\varphi;$									
	(c)垂直于 PQ 方向的速度 $v^2(\varphi)=2gh(\varphi)$ 和沿着 PQ 方向的加速度 $a(\varphi)=2g\frac{h(\varphi)}{t(\varphi)}$.									
	$(d) 张力 T(\varphi) = \left[\sin \varphi + 2\frac{h(\varphi)}{t(\varphi)}\right] \vec{\boxtimes} T(\varphi) = \frac{2mgR}{t(\varphi)}(x_1 - x_2)\sin \varphi \cancel{其中} x_1 = \tan \frac{\varphi}{2} \cancel{4\pi} x_2 = \frac{3}{2}(\varphi - \frac{L}{R}).$									
	位置 φ	切线长度 t	下降高度 h	小球速度 v	细绳张力 T					
(2)	$\varphi_{l} = \frac{1}{2}\pi$	$h_{i} = 5.3151 R,$	$h_{i} = 6.3151 R,$	$v_{\rm i} = \underline{3.5540} \sqrt{gR} \;,$	$T_{\rm i} = 3.3763 mg;$	6分				
(3)	$\varphi_{i} = \frac{9}{8}\pi$	$t_{ii} = 3.3516 R,$	$h_{\rm ii} = 0.6413 R,$	$v_{\rm ii} = \underline{1.1325} \sqrt{gR} \;,$	$T_{ii}=\underline{0}$.	6分				
(4)	(a) <u>抛体运动</u> ; (b) h _{iii} = <u>0.0939</u>	R 和 v _{iii} = <u>0.4334</u> ₁	\sqrt{gR} .			5分				

Ⅱ. 题目和解答

1. 自行车加速前进时,设地面作用在后轮上的摩擦力(a)方向向前; (b)方向向后,和地面作用在前轮上的摩擦力(1)方向向前; (2)为零; (3)方向向后,则正确的组合是

A. (a)和(1) B. (a)和(2) C. (a)和(3) D. (b)和(1) E. (b)和(2) F. (b)和(3)

答案: C 解答:

自行车加速前进时,后轮受链条转动力矩的作用,该力矩使后轮与地面相接触的那一点有向后运动 的趋势,所以要使后轮不滑动,地面作用在它上面的静摩擦力的方向是向前的。当后轮的转动加速而使

自行车加速前进时,车身推动前轮的力作用在前轮的轴上,该力使前轮与地面相接触的那一点有向前运 动的趋势,所以要使前轮不滑动,地面作用在它上面的静摩擦力的方向是向后的。

一辆汽车质量为 4,000kg, 在水平路面上匀速行驶。从某个时刻关闭发动机, 经过 10s 滑行 50m 而停止。 车轮与地面间的动摩擦系数*u*=

A. 0.6

B. 0.5

C. 0.4

D. 0.3

E. 0.2

F. 0.1

答案:F **解答:** 己知*M*=4,000kg, *t*=10s, *s*=50m.

汽车的受力和运动图,如图所示:

汽车关闭发动机后滑行的加速度 $a=2s/t^2=1$ m/s²;

 $\Sigma F_{\nu}=N-Mg=0 \Rightarrow N=Mg; \Sigma F_{\nu}=ma, f=Ma \Rightarrow \mu N=\mu Mg=Ma \Rightarrow$ 动摩擦系数 $\mu=a/g=0.1.$

3. $\angle ABC$ 、 $\angle ACD$ 和 $\angle ABD$ 均为直角,并且角 θ , φ 和 α 分别是它们所在三角形直角边和斜边的夹角,则 $\sin \alpha$ = B. $\sin\theta\sin\phi$ C. $\cos\theta\cos\phi$ D. $\cos\theta\sin\phi$ E. $\sin\theta/\cos\phi$ F. $\sin\theta/\sin\phi$

4. (续前)地球绕太阳公转,由夏至6月21日至教师节9月10日在公转轨道平面上转过的角度 φ≈

A. 55^{0} D. 70^{0} E. 75⁰ F. 80⁰

5. 地球赤道面与其绕太阳公转轨道平面的交角 θ =23.5 0 ,则在教师节日阳光相对于赤道面,照射的角度 α ≈

C. 6^{0} E. 10^{0} F. 12⁰

(续前)北京位于北纬 $\beta=40^{\circ}$,在夏至那天白昼的时间为

(续前)北京在教师节那天白昼时间为 (单位:小时)

B. 11.25 A. 10.05

C. 12.45

D. 13.65

E. 14.85

F. 16.05

答案: AFBEC

- (1) $AB=AC \sin\theta = AD \sin\alpha$ 和 $AC=AD \cos\varphi \Rightarrow \sin\alpha = \sin\theta \cos\varphi$.
- (2) 由 6 月 21 日夏至到 9 月 10 日教师节,地球在绕太阳的轨道平面上旋转 9+31+31+10=81 天 转过角度φ=(81/365)×360⁰≈79.89⁰.
- (3) $\sin \alpha = \sin \theta \cos \varphi = \sin 23.5^{\circ} \cos 79.89^{\circ} = 0.069242 \Rightarrow \alpha \approx 3.97^{\circ}$.
- 北纬 β 横切面上 $\cos \gamma = \frac{QS}{OT} = \frac{R\sin\beta\tan\alpha}{R\cos\beta} = \tan\beta\tan\alpha$. (4) 设地球半径为 R, $PQ=R\cos\beta$, $QS=R\sin\beta\tan\alpha$.

夏至日 $\alpha=\theta=23.5^{\circ}$, $\cos \gamma=\tan 40^{\circ}\tan 23.5^{\circ}=0.36485 \Rightarrow \gamma=68.60^{\circ}$. 白昼时间 $\frac{180-\gamma}{180}$ ×24=14.853 小时.

教师节当天 α =3.97⁰, $\cos \gamma$ =tan40⁰ tan3.97⁰=0.058234 $\Rightarrow \gamma$ =86.66⁰. 白昼时间 $\frac{180-\gamma}{180}$ ×24=12.445 小时.

日期	夏至6月21日	教师节9月10日	秋分9月21日	国庆节10月1日	
地球公转天数 d=	91	81	92	102	
转过角度 <i>φ</i> =(d/365)×360 ⁰ =	89.753425	79.890411	90.739726	100.60274	
$\sin \alpha = \sin \theta \cos \varphi =$	0.001716	0.069993	-0.005147	-0.073369	
太阳对于赤道面照射角度 α=	23.5^{0}	4.0136^{0}	0.2949^{0}	-4.2075^{0}	
cos <i>γ</i> =tanβ tanα=	0.36485	0.05888	0.00432	0.03173	
北纬 β 横切面上 / =	68.6016 ⁰	86.6247 ⁰	89.7525 ⁰	93.5391 ⁰	
白昼时间(1-γ/180)×24 小时=	14.85	12.45	12.033	11.53	

8. AB 为一光滑水平直轨道,BC 是半径 R=8m 的半圆形光滑轨道,水平直轨道与半圆轨道连接在一起。在水平轨道上有两个球,大球的质量 M 为小球质量 m 的 2 倍即 M=2m,大球以速度 v_0 与撞击静止的小球,碰撞后大球速度减少为 $v_0/3$ 并且使小球升到轨道最高点 C,则 v_0 的最小值应为

- A. 11m/s
- B. 12m/s
- C. 13m/s
- D. 14m/s
- E. 15m/s
- F. 16m/s

答案: E 解答: (圆周运动、动量守恒定律和机械能守恒定律)

设小球 m 通过最高点 C 时轨道的支持力为 N,由牛顿定律 $N+mg=m\frac{{v_c}^2}{R} \Rightarrow N=m\frac{{v_c}^2}{R}-mg\geq 0 \Rightarrow {v_c}^2\geq gR$.

机械能守恒 $\frac{1}{2}mv_B^2 = mg(2R) + \frac{1}{2}mv_B^2 \Rightarrow v_B^2 = 4gR + v_C^2 \ge 5gR \Rightarrow v_B \ge \sqrt{5gR}$.

动量守恒 $Mv_0 = \frac{Mv_0}{3} + mv_B \implies \frac{2Mv_0}{3} = mv_B \implies \frac{4v_0}{3} = v_B \Rightarrow v_0 = \frac{3}{4}v_B \ge \frac{3}{4}\sqrt{5gR} = \frac{3}{4}\sqrt{5\times10\times8} = 15 \text{m/s}.$

- :. 大球以 vo 碰撞小球的最小值应为 15m/s.
- **9.** 空手道运动员挥动质量 m_1 =700g 的拳头,向下以速度 v 击断一块弯曲弹性常数 k=41kN/m 和质量 m_2 =140g 的 木板;折断偏转距离 d=16mm。在折断前木板所储存的能量 E≈
- A. 0.525 J
- B. 1.05 J
- C. 5.25 J
- D. 10.5 J
- E. 52.5 J
- F. 105.

10. (续前)假设(i)拳头对木板的撞击可视为完全非弹性碰撞、(ii)木板在弯曲时机械能守恒和(iii)当折断时拳头及木板的速度为零,则拳头对木板的撞击速度 $v\approx$

- A. 1.11m/s
- B. 1.34m/s
- C. 1.90m/s
- D. 4.24m/s
- E. 6.00m/s
- F. 13.41m/s

答案: CD

解答: (弹性势能、动量守恒定律和机械能守恒定律)

- (1) 在折断前木板所储存的弹性势能 $E_p = \frac{1}{2}kd^2 = \frac{1}{2} \times 41 \times 10^3 \times (16 \times 10^{-3})^2 = \underline{5.248 \text{ J}}.$
- (2) 设V为拳头以速度v完全非弹性碰撞地撞击木板后的速度,则

机械能守恒, 撞击木板后的动能 $E_k = \frac{1}{2}(m_1 + m_2)V^2 = E_p = E = 5.248J \Rightarrow V = \sqrt{\frac{2E}{m_1 + m_2}}$.

起初拳头向板进行完全非弹性碰撞, 动量守恒 $m_1v = (m_1 + m_2)V$

$$\Rightarrow v = \frac{m_1 + m_2}{m_1} V = \frac{m_1 + m_2}{m_1} \sqrt{\frac{2E}{m_1 + m_2}} = \frac{\sqrt{2E(m_1 + m_2)}}{m_1} = \frac{\sqrt{2 \times 5.248 \times (0.7 + 0.14)}}{0.7} \approx \frac{4.242 \text{ m/s}}{1}$$

11. 质量 m=0.2kg 的物块 A 放置在一个弹簧刚度 k=50N/m 和质量 M=1kg 的振子 B 上,它们一起在光滑水平面上 作简谐振动, $A \times B$ 之间的静摩擦系数 μ =0.2。若要使物块 A 在振子 B 表面上不滑动,系统简谐振动的最大位移为 (单位: mm)

- C. 42
- E. 54
- F. 60

12. (续前)系统简谐振动的固有频率是 (单位: rad/s)

- B. 6.95
- C. 7.45
- D. 7.95
- E. 8.45
- F. 8.95

13. (续前)如果弹簧被压缩至 100mm 并且系统最初处于静止状态,物块 A 在振子 B 上滑动的时间约为 B. 0.167s A. 0.017s C. 0.517s D. 0.777s E. 1.00s

答案: DAB

考虑系统 A+B 简谐振动 $(M+m)a+kx=0 \Rightarrow a=\frac{kx}{M+m}$ 以及物块 A 不在振子 B 上滑动

则静摩擦力 $\mu mg \ge f = ma = \frac{mkx}{m+M} \Rightarrow \mu g \ge \frac{kx}{m+M} \Rightarrow x \le \mu \frac{m+M}{k} g = 0.2 \times \frac{1.2}{50} \times 10 = 0.048 \text{m}.$

- 物块 A 不在振子 B 上滑动振动的最大位移 x_{max} =48mm.
- 简谐振动位移 $x(t)=x_0\cos(\omega t)$ 其中 $\omega=\sqrt{\frac{k}{m+M}}=\underline{6.455}$ rad/s.
- (3) 若 x_0 =100mm, 则 x(t)=100cos(6.455t) mm.

当静摩擦力 $f = \mu mg = ma = \frac{mkx(t)}{m+M}$ 时物块A 在振子B上滑动 \Rightarrow 位移x(t) = 48mm= $100\cos(6.455t)$ mm

- \Rightarrow cos(6.455t)=0.48 \Rightarrow (6.455rad/s) t=61.31⁰=1.0701rad \Rightarrow 物块 A 在振子 B 上滑动的时间 t=0.167s.
- **14.** 一个质量为 4M 及半径为 R 的均匀等厚度圆板,在等边 ΔPAB 的角点 A 和 B 上各贴有一个质量为 M 的质点。 设 C 为系统的质量中心,则 d_{PC} =kR,其中 k=
- B. 7/6
- C. 6/5
- E. 4/3
- F. 3/2

- **15.** (续前)系统关于 P 点的转动惯量 $I_P = k_P M R^2$,其中 $k_P =$

- F. 7
- C. 10 **16.** (续前)系统关于质量中心 C 的转动惯量 $I_C=k_CMR^2$, 其中 $k_C=k_CMR^2$
- B. 23/8
 - C. 23/6
- D. 19/8
- E. 19/6
- **17.** (续上题)将 P 端悬挂于天花板上,构成一个复合摆。系统简谐振动的频率 $\omega^2 = k_{\alpha}(g/R)$,其中 $k_{\alpha} = 0$
- B. 1/4
- C. 5/12
- D. 7/12
- E. 21/23

F. 19/4

答案: BACD

			• •	
	m	y _P	d_P	$I_P = I_O + md_P^2$
均匀等厚度圆板 PABCQ	4 <i>M</i>	R	R	$= (4M)R^2/2 + (4M)R^2 = 6MR^2$
质点 A	М	3 <i>R/</i> 2	$\sqrt{3} R$	$= M(\sqrt{3}R)^2 = 3MR^2$
质点 B	M	3 <i>R/</i> 2	$\sqrt{3} R$	$= M(\sqrt{3}R)^2 = 3MR^2$
圆板+质点 A 和 B	6 <i>M</i>		d_{PC}	(2) $6MR^2 + 3MR^2 + 3MR^2 = \frac{12MR^2}{1}$

- (1) $4M \times R + 2M \times \frac{3}{2}R = 6M \times d_{PC} \Rightarrow d_{PC} = \frac{7}{6}R$.
- (3) $I_P = I_C + m(d_{PC})^2$, $12MR^2 = I_C + 6M(\frac{7}{6}R)^2 \Rightarrow I_C = \frac{23}{6}MR^2$.
- (4) $\omega^2 = \frac{mgl}{I} = \frac{(6M)g(7R/6)}{12MR^2} = \frac{7}{12}\frac{g}{R}$

18. 质量为 1kg 的木块 A 放在液体中时,浮在液面上的部份刚好是整个体积的 2/3。 把体积与 A 相同的重物 B 放在木块上面,A 和 B 全部没入液体中,则重物 B 的最小质量为

A. 1kg

B. 2kg

C. 3kg

D. 4kg

E. 5kg

F. 6kg

答案: E 解答: (液体的浮力)

设液体、木块 A 和物体 B 的密度分别为 ρ , ρ_1 和 ρ_2 .

又设木块 A 和物体 B 的体积为 V, 则质量分别为 $m_1 = \rho_1 V$ 和 $m_2 = \rho_2 V$. 液体的浮力等于

木块 A 排开液体的重量 $\rho(1-\frac{2}{3})Vg = \rho_1Vg \Rightarrow \rho=3\rho_1$ 和木块 A 和物体 B 排开液体的重量

 $\rho(2V)g = (\rho_1 + \rho_2)Vg \Rightarrow (3\rho_1)(2V) = \rho_1V + \rho_2V \Rightarrow 6m_1 = m_1 + m_2 \Rightarrow m_2 = 5m_1 = 5kg.$

19. 横截面均匀的 U 形管装有总长为 3L 的液体,开始时阀门闭合,左右支管内液面高度差为 L。 打开阀门后,若左右液面高度相同时液体的流动速度为 v(管内部摩擦阻力忽略不计)并且 $v^2 = gL/k$,则 k = 1

20. (续前)左右液面高度相同之后,液体高度开始振荡。设固有频率为 ω 并且 $\omega^2 = k(g/L)$,则 k = A. 4/3 B. 1 C.2/3 D. 1/2 E. 1/3 F. 1/6

答案: FC

解答

(1) 整个液体柱机械能守恒: 左管长度为 L/2 及质量为 m 液体柱的重力势能转变为整体长度 3L 及质量 6m 液体柱的流动动能,即 $mg\frac{L}{2} = \frac{1}{2}(6m)v^2 \Rightarrow v = \sqrt{\frac{gL}{6}}$.

(2) 静止 U 型管内液体受到微小干扰 x 后振荡的回复力 $F=-\rho g(2x)A=ma$

⇒
$$-\rho g(2x)A = \rho A(3L)a$$
 ⇒ $3La+2gx=0$ ⇒ $\beta = \frac{2g}{3L}$.

21. (8分)

在密度为 ρ 的液体中,静止地浸有密度为P及质量为M的底面半径为3R和高度为3H的圆锥体,液体分别浸到它的1/3和2/3高度处。试分别求出这二种情况下圆锥体(a)与液体的密度之比 B/ρ ,(b)质量M和(c)受到微小干扰后的振荡频率 ω 。

解处.

圆锥体积 $V_0 = \frac{\pi}{3}(3R)^2(3H) = 9\pi R^2 H$,则圆锥体质量 $M = PV_0 = P(9\pi R^2 H)$ 和重量 $G = Mg = PV_0 g$.

液体对物体的浮力 $f = \rho Vg$ 其中 V 为浸在液体内体积.

由阿基米得定理 f=G 即 $\rho_g V=PV_{0g} \Rightarrow PV_{0}=\rho V \Rightarrow$ 密度之比 $\frac{\mathbf{P}}{\rho}=\frac{V}{V_0}$.

	液体浸到圆锥高度的	1/3	2/3
	浸在液体内体积 V=	$(9 - \frac{8}{3}) \pi R^2 H = \frac{19}{3} \pi R^2 H$	$(9 - \frac{1}{3}) \pi R^2 H = \frac{26}{3} \pi R^2 H$
平衡时	密度比 $\frac{P}{\rho} = \frac{V}{V_0} =$	19 27	$\frac{26}{27}$
	质量 M=PV ₀ =ρV=	$\frac{19}{3}\rho\pi R^2H$	$\frac{26}{3}\rho\pi R^2H$

	47	浸在液体内体积变化ΔV=	$\pi(2R)^2x=4\pi R^2x$	$\pi R^2 x$
	向下 微小	合力ΣF=-(ρΔV)g=Ma	$-\rho(4\pi R^2 x)g = (\frac{19}{3}\rho\pi R^2 H)a$	$-\rho(\pi R^2 x)g = (\frac{26}{3}\rho\pi R^2 H)a$
1	立移 <i>x</i> 后	$a+\omega^2x=0$,其中振荡频率 $\omega^2=$	$a + \frac{12g}{19H}x = 0$, $\sharp + \omega^2 = \frac{12g}{19H}$	$a + \frac{3g}{26H}x = 0$, $\sharp + \omega^2 = \frac{3g}{26H}$

22. (20分)

(1)

质量为 M 和长度为 L 的均匀细杆 AB 静止在光滑水平面上,质量为 m 的小球以初速度 v_0 垂直地撞击右端点 B。设 (i)参数 k 为质量比即 M=km; (ii)瞬时转动轴(即静止点)P 到 B 端的距离为 x。

- (1) C为杆的中心点,球对杆的撞击是「完全弹性碰撞」。试求撞击后瞬时
- (a)瞬时轴位置 x; (b)细杆的转动角速度 ω 质心速度 v_c 和小球的速度 v;
- (c)当杆长 L=1m、球初速度 $v_0=7$ m/s 和质量 M=3m 时,计算杆的角速度 ω 、质心速度 v_C 和小球的速度 v。
- (2) 0为杆的中心点,球对杆的撞击是「完全非弹性碰撞」。试求撞击后瞬时
- (a) 瞬时轴位置 x; (b) 系统关于质心 C 的转动惯量 I_C 、转动角速度 ω 质心速度 v_C 和动能 E;
- (c) 计算当质量 m=3M 时,系统在撞击后的能量 E 与撞击前的能量 $E_0=\frac{1}{2}m{v_0}^2$ 的比值。

解答:

(a) 以瞬时轴
$$P$$
为参考点 平行轴定理 $I_P = I_C + M(x - \frac{L}{2})^2 = \frac{ML^2}{12} + M(x - \frac{L}{2})^2$. (i)

小球撞击细杆前和后动量守恒 $mv_0=mv+M\omega(x-\frac{L}{2})$

和角动量守恒
$$(mv_0)x=(mv)x+I_P\omega \Rightarrow M\omega(x-\frac{L}{2})x=I_P\omega$$
 (ii)

式(i)代入(ii)有 $M(x-\frac{L}{2})x=I_P=\frac{ML^2}{12}+M(x-\frac{L}{2})^2$,解得 $x=\frac{2}{3}L$.

(b)
$$x = \frac{2}{3}L \text{ (i)} \text{ fi} I_P = \frac{ML^2}{12} + M(\frac{2}{3} - \frac{1}{2})L^2 = \frac{ML^2}{12} + M[(\frac{2}{3} - \frac{1}{2})L]^2 = \frac{ML^2}{9} \text{ fiv}_C = \omega(x - \frac{L}{2}) = \frac{L\omega}{6}$$
. (iii)

 $x=\frac{2}{3}L$ 代入动量守恒式并且M=km有 $v_0=v+k\frac{L\omega}{6}=v+kv_C$.

小球撞击细杆前和后能量守恒
$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{1}{2}I_P\omega^2 \Rightarrow v_0^2 = v^2 + k\frac{(L\omega)^2}{9}$$
 (iv)

式(iii)代入(iv)得到
$$\omega = \frac{12}{k+4} \cdot \frac{v_0}{L}$$
 (v)

式(v)代入(iii)得到 $v_C = \frac{1}{6}L\omega = \frac{2}{k+4}v_0$ 和 $v=v_0-kv_C = \frac{4-k}{k+4}v_0$.

(c) L=1m, $v_0=7$ m/s和k=3

角速度 $\omega = \frac{12}{3+4} \cdot \frac{7}{1} = 12 \text{rad/s}$,质心速度 $v_C = \frac{2}{3+4} \times 7 = 2 \text{m/s}$ 和小球速度 $v = \frac{4-3}{3+4} \times 7 = 1 \text{m/s}$.

$$v_B = v_C + \omega \frac{L}{2} = 2 + 12 \times 0.5 = 8 \text{m/s}$$
 $\notin V_A = v_C - \omega \frac{L}{2} = 2 - 12 \times 0.5 = -4 \text{m/s}.$

撞击后\质量 $k=\frac{M}{m}=$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	4	5
杆角速度 $\frac{\omega}{v_0/L} = \frac{12}{k+4} =$	$\frac{36}{13}$	$\frac{24}{9}$	$\frac{12}{5}$	2	$\frac{12}{7}$	$\frac{3}{2}$	$\frac{4}{3}$
杆质心速度 $\frac{v_c}{v_0} = \frac{2}{k+4} =$	<u>6</u> 13	$\frac{4}{9}$	$\frac{2}{5}$	$\frac{1}{3}$	$\frac{2}{7}$	$\frac{1}{4}$	$\frac{2}{9}$
小球速度 $\frac{v}{v_0} = \frac{4-k}{k+4} =$	$\frac{7}{13}$	$\frac{5}{9}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{5}{7}$	$\frac{3}{4}$	$\frac{7}{9}$

(2)

(a) 以杆中心轴O为参考点: 小球撞击细杆前和后的

动量守恒
$$mv_0 = m(\omega x) + M\omega(x - \frac{L}{2})$$
和角动量守恒 $(mv_0)\frac{L}{2} = m(\omega x)\frac{L}{2} + I_0\omega$,其中 $I_0 = \frac{ML^2}{12}$.

以上二式联立,解得
$$x = \frac{2}{3}L$$
和 $\omega = \frac{6}{k+4}\frac{v_0}{L}$.

设小球撞击细杆后系统的质量中心为
$$C$$
,则 $l_{OC} = \frac{m}{M+m} \cdot \frac{L}{2} = \frac{1}{k+1} \cdot \frac{L}{2}$ 和 $l_{CB} = \frac{M}{M+m} \cdot \frac{L}{2} = \frac{k}{k+1} \cdot \frac{L}{2}$.

系统关于质心
$$C$$
的转动惯量 $I_C = I_O + M(l_{OC})^2 + m(l_{CB})^2 = \frac{ML^2}{12} + M(\frac{1}{k+1} \cdot \frac{L}{2})^2 + m(\frac{k}{k+1} \cdot \frac{L}{2})^2 = \frac{k(k+4)}{12(k+1)} mL^2$.

撞击前和撞击后的动量守恒
$$mv_0=(M+m)v_C \Rightarrow v_0=(k+1)v_C \Rightarrow v_C = \frac{v_0}{k+1}$$
.

关于质心
$$C$$
的角动量守恒 $(mv_0)l_{CB} = I_C \omega$ 即 $(mv_0)\frac{k}{k+1} \cdot \frac{L}{2} = [\frac{k(k+4)}{12(k+1)}mL^2]\omega \Rightarrow \omega = \frac{6}{k+4}\frac{v_0}{L}$.

撞击前的能量
$$E_0 = \frac{1}{2} m v_0^2$$
 和撞击后的能量 $E = \frac{1}{2} (M + m) v_c^2 + \frac{1}{2} I_c \omega^2$

$$=\frac{1}{2}(k+1)m(\frac{v_0}{k+1})^2+\frac{1}{2}(\frac{k(k+4)}{12(k+1)}mL^2)(\frac{6v_0}{(k+4)L})^2=(\frac{1}{k+1}+\frac{k}{k+1}\frac{3}{k+4})E_0=\frac{4}{k+4}E_0.$$

(b) M=3m, $E=4/7E_0\approx 0.57E_0$. $\not= 12/13E_0\approx 0.92E_0$.

附表2

质量比 $k=\frac{M}{m}=$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	4	5
系统质心 C : $l_{OC} = \frac{1}{k+1} \cdot \frac{L}{2} =$	$\frac{3}{8}L$	$\frac{1}{3}L$	$\frac{1}{4}L$	$\frac{1}{6}L$	$\frac{1}{8}L$	$\frac{1}{10}L$	$\frac{1}{12}L$
至右端 $l_{CB} = \frac{k}{k+1} \cdot \frac{L}{2} =$	$\frac{1}{8}L$	$\frac{1}{6}L$	$\frac{1}{4}L$	$\frac{1}{3}L$	$\frac{3}{8}L$	$\frac{2}{5}L$	$\frac{5}{12}L$
至左端 $l_{AC} = \frac{k+2}{k+1} \cdot \frac{L}{2} =$	$\frac{7}{8}L$	$\frac{5}{6}L$	$\frac{3}{4}L$	$\frac{2}{3}L$	$\frac{5}{8}L$	$\frac{3}{5}L$	$\frac{7}{12}L$
转动惯量 $\frac{I_C}{mL^2} = \frac{k(k+4)}{12(k+1)} =$	$\frac{13}{144}$ = 0.09	$\frac{1}{8}$ =0.125	$\frac{5}{24}$ =0.21	$\frac{1}{3}$ = 0.33		13	$\frac{15}{24} = 0.625$
系统角速度 $\frac{\omega}{v_0/L} = \frac{6}{k+4} =$	$\frac{18}{13}$ =1.38	$\frac{4}{3}$ = 1.33	$\frac{6}{5}$ =1.20	1.00	$\frac{6}{7}$ =0.86	$\frac{3}{4}$ =0.75	$\frac{2}{3}$ =0.67
系统质心速度 $\frac{v_c}{v_0} = \frac{1}{k+1} =$	$\frac{3}{4}$ =0.75	$\frac{2}{3}$ =0.67	$\frac{1}{2}$ =0.50	$\frac{1}{3}$ =0.33	$\frac{1}{4}$ =0.25	$\frac{1}{5}$ =0.20	$\frac{1}{6}$ =0.17
撞击后的能量 $\frac{E}{E_0} = \frac{4}{k+4} =$	$\frac{12}{13}$ =0.92	$\frac{8}{9}$ = 0.89	$\frac{4}{5}$ =0.80	$\frac{2}{3}$ =0.67	$\frac{4}{7}$ =0.57	$\frac{1}{2}$ =0.5	$\frac{4}{9}$ =0.44

23. (8分)

- (1) 飞船围绕地球运行,圆形轨道半径为r、地球质量为M和飞船为m,试求飞船圆周运动的动能 E_k 和总能量E。
- (2) 将飞船点火加速,瞬间将其动能增加为 $1.3E_k$ 。试求飞船离开地球的最远距离 r_{max} 。

解答:

(1) 牛顿定律
$$\frac{GMm}{r^2} = \frac{mv^2}{r}$$
 \Rightarrow 飞船的运行 $v^2 = \frac{GM}{r}$ 和动能 $E_k = \frac{1}{2}mv^2 = \frac{1}{2}\frac{GMm}{r}$.

飞船的的总能量
$$E=E_k+E_p=\frac{1}{2}\frac{GMm}{r}-\frac{GMm}{r}=-\frac{1}{2}\frac{GMm}{r}=-E_k$$
.

(2) (解法1)

飞船点火后在瞬间其动能增加为 $1.3E_k = \frac{13}{20} \frac{GMm}{r} \Rightarrow 点火后速度\sqrt{1.3} v$.

飞船的的总能量
$$\frac{13}{20} \frac{GMm}{r} - \frac{GMm}{r_0} = -\frac{7}{20} \frac{GMm}{r_0}$$
.

角动量守恒 $(mv)r=(mv_x)r_x \Rightarrow (\sqrt{1.3} v)r=v_xr_x \Rightarrow$ 飞船在椭圆轨道上运行时的速度 $v_x=(\sqrt{1.3} \frac{r}{r_x})v$.

能量
$$E_x = \frac{1}{2}mv_x^2 - \frac{GMm}{r_x} = \frac{1}{2}m[v^2 \cdot 1.3(\frac{r}{r_x})^2] - \frac{GMm}{r_x} = \frac{1}{2}\frac{GMm}{r}[1.3(\frac{r}{r_x})^2] - \frac{GMm}{r_x} = \frac{13}{20}\frac{GMm}{r}(\frac{r}{r_x})^2 - \frac{GMm}{r_x}$$
.

能量守恒
$$E=E_x$$
 即 $-\frac{7}{20}\frac{GMm}{r} = \frac{13}{20}\frac{GMm}{r}(\frac{r}{r_v})^2 - \frac{GMm}{r_v} \Rightarrow \frac{13}{20}\frac{GMm}{r}(\frac{r}{r_v})^2 - \frac{GMm}{r_v} + \frac{7}{20}\frac{GMm}{r} = 0$

$$\Rightarrow 7r_x^2 - 20r_x r + 13r^2 = 0.$$
 解 r_x 关于 r 的二次方程 $r_x = \frac{20r \pm \sqrt{(20r)^2 - 4 \times 7 \times 13r^2}}{2 \times 7} = r$ 或 $\frac{13}{7}r$.

飞船离开地球的最远距离 $r_{\text{max}} = \frac{13}{7}r$.

(解法2)

飞船加速前在椭圆轨道的总能量
$$E=E_k+E_p=-E_k=-\frac{GMm}{2r}$$
; (i)

点火后瞬时在椭圆轨道的总能量
$$E=1.3E_k+E_p=-\frac{GMm}{2x}$$
. (ii)

式(ii)-(i) 有
$$\frac{3}{10}E_k = E_k - \frac{GMm}{2x}$$
 $\Rightarrow \frac{7}{10}E_k = \frac{GMm}{2x}$ $\Rightarrow \frac{7}{10}\frac{GMm}{2r} = \frac{GMm}{2x}$ \Rightarrow 半长轴 $x = \frac{10}{7}r$.

椭圆长轴
$$2x=\frac{20}{7}r=r_{\min}+r_{\max}=r+r_{\max}\Rightarrow r_{\max}=\frac{13}{7}r$$
.

24. (24分)

长度为L的水平细绳(不计质量和不可伸长),右端有一个质量为m的小球,左端系在半径为R和圆心为O的固定

在國任序列端的 A 点上。 (1) 静止的小球 m 被释放后,绕圆柱体摆动到 P 点时摆线与圆柱体在 Q 点相切,设切线 PQ 长度为 t 和圆心角 AOQ 为 φ (0 $\leq \varphi \leq \varphi_{ii}$)。试(a) 以变量 φ ,表示切线长度 $t(\varphi)$; (b) 以变量 $t(\varphi)$,表示摆球在竖直方向的位移(下降高度) $h(\varphi)$; (c) 以变量 $h(\varphi)$,表示摆球在垂直于 PQ 方向的速度 $v(\varphi)$ 和沿着 PQ 方向的加速度 $a(\varphi)$ 。(d) 以正弦函数 $\sin \varphi$ 、变量 $t(\varphi)$ 和 $h(\varphi)$,表示小球摆动到 P 点时细绳的张力 T。

以下设
$$\frac{L}{R} = \theta - \frac{2}{3} \tan \frac{\theta}{2}$$
其中 $\theta = \frac{9\pi}{8} \approx 3.5343$,则 $\frac{L}{R} \approx 3.5343 - \frac{2}{3} \times (-5.0273) = 6.8858$ 。

- 试计算小球摆动到最低点时的位置 q_i ,及其切线长度 t_i 、下降高度 h_i 、速度 v_i 和细绳张力 T_i 。
- 试求小球摆动到圆柱体左侧当切线长度 $t(\varphi)$ 最短时的位置 φ_i ,及其下降高度 h_{ii} 、速度 v_{ii} 和细绳张力 T_{ii} 。 试确定从球摆动到圆柱体左侧当直线段 PQ 即切线 $t(\varphi)$ 长度最短时的位置 φ_{ii} ,及其切线长度 t_{iii} 、下降高度 h_{iii} 、 速度 viii 和细绳张力 Tiii。
- (4) 试确定小球 m 在题(3)位置 φ_i 之后继续运动的
- (a)运动类型(直线运动/圆周运动/抛体运动/简谐振动);(b)运动到最高点时的下降高度 h_{iv} 和瞬时速度 v_{iv} 。

若有需要,可以(i)使用半角公式 $\tan \frac{x}{2} = \frac{1-\cos x}{\sin x}$; (ii)参考图形:

- (1) 若小球摆动时细绳一直被拉紧,摆球动到P点时
- L=MA=直线 PQ+弧线 $QA=t+R\varphi \Rightarrow t$ 和 φ 的关系 $t(\varphi)=L-R\varphi=R(\frac{L}{R}-\varphi);$
- (b) 下降高度

$$h(\varphi) = R(1 - \cos \varphi) + t(\varphi)\sin \varphi = R[(1 - \cos \varphi) + \frac{t(\varphi)}{R}\sin \varphi] = R[\tan \frac{\varphi}{2} + \frac{t(\varphi)}{R}]\sin \varphi = R(\frac{L}{R} + \tan \frac{\varphi}{2} - \varphi)\sin \varphi;$$

- 机械能守恒 $mgh(\varphi) = \frac{1}{2} mv^2(\varphi)$
- 垂直于 PQ 方向的速度 $v^2(\varphi)=2gh(\varphi)$ 和沿着 PQ 方向的加速度 $a(\varphi)=2g\frac{h(\varphi)}{t(\varphi)}$.
- 牛顿定律 $\Sigma F = ma \Rightarrow T mg\sin\varphi = ma(\varphi) \Rightarrow$ 细绳的张力 $T(\varphi) = m[g\sin\varphi + a(\varphi)] = mg[\sin\varphi + \frac{2h(\varphi)}{t(\varphi)}];$

或者
$$T(\varphi)=mg[1+\frac{2R}{t(\varphi)}(\tan\frac{\varphi}{2}+\frac{t(\varphi)}{R})]\sin\varphi=mg[3+\frac{2R}{t(\varphi)}\tan\frac{\varphi}{2}]\sin\varphi=\frac{2mgR}{t(\varphi)}(x_1-x_2)\sin\varphi$$

其中
$$x_1 = \tan \frac{\varphi}{2}$$
和 $x_2 = \frac{3}{2} (\varphi - \frac{L}{R})$.

切线长度 $t(\varphi)=R(6.88585-\varphi)$ 和下降高度 $h(\varphi)=R(1-\cos\varphi)+t(\varphi)\sin\varphi=R(6.88585+\tan\frac{\varphi}{2}-\varphi)\sin\varphi$.

$$\varphi_{i} = \frac{\pi}{2}$$
: 摆线长度 $t_{i} = t(\frac{\pi}{2}) \approx 5.315R$,下降高度 $h_{i} = h(\frac{\pi}{2}) = R(6.88585 + \tan\frac{\pi}{4} - \frac{\pi}{2}) \sin\frac{\pi}{2} \approx \underline{6.315}R$,

$$v_i^2 = v^2 (\frac{\pi}{2}) = 2gh_i = 12.630gR \Rightarrow 最大速度=3.554\sqrt{gR}$$
和

细绳张力
$$T_i=T(\frac{\pi}{2})=mg[\sin\frac{\pi}{2}+\frac{2h_i}{t_i}]=mg(1+\frac{2\times6.315}{5.315})=\underline{3.3763}mg.$$

 φ_{i} = π : 摆线长度 t_{i} = $t(\pi)\approx 3.744R$,下降高度 h_{i} = $h(\pi)$ = $R(1-\cos\pi)+t_{i}\sin\pi=2R$,

 $v_{ii}^2 = v^2(\pi) = 2gh_{ii} = 4gR$ ⇒ 小球速度 $v_{ii} = 2\sqrt{gR}$ 和细绳张力 $T_i = T(\pi) = mg[\sin \pi + \frac{2h_i}{t}] = mg(\frac{2\times 2}{3.744}) = \underline{1.0684}mg$.

(3) 小球摆动到圆柱体左侧当直线段 PQ 长度最短瞬时细绳张力 $T_{iii}=0$

$$\exists x_1 = x_2 \Rightarrow \tan \frac{\varphi_{\text{iii}}}{2} = \frac{3}{2} (\varphi_{\text{iii}} - \frac{L}{R}) \Rightarrow \varphi_{\text{iii}} = \theta = \frac{9\pi}{8}.$$

此时
$$t_{\text{iii}} = R(\frac{L}{R} - \theta) = R(\theta - \frac{2}{3}\tan\frac{\theta}{2} - \theta) = (-\frac{2}{3}\tan\frac{\theta}{2})R = -\frac{2}{3} \times (-5.02734)R = \underline{3.3516}R,$$

下降高度
$$h_{\text{iii}} = h(\theta) = R(\frac{L}{R} + \tan\frac{\theta}{2} - \theta)\sin\theta = R(\theta - \frac{2}{3}\tan\frac{\theta}{2} + \tan\frac{\theta}{2} - \theta)(2\sin\frac{\theta}{2}\cos\frac{\theta}{2}) = R(\frac{2}{3}\sin^2\frac{\theta}{2})$$

$$=R(\frac{2}{3}\sin^2\frac{9\pi}{16})=\underline{0.6413}R \approx v_{iii}^2=2gh_{iii}=1.2826gR.$$

小球摆动到圆柱体右侧当直线段 QP 长度最短时刻的瞬时速度 $v_{iii} \approx 1.1325 \sqrt{gR}$.

(4) 小球在 P 点以速度 v_c =1.1325 \sqrt{gR} 和倾角 ϕ = $\frac{3\pi}{2}$ $-\theta$ = $\frac{3\pi}{8}$ =67.5° 的斜抛运动.

小球在圆柱体左侧最高点时刻的瞬时速度 $v_{iv} = v_{iii} \cos \phi = 0.4334 \sqrt{gR}$.

水平射程
$$X = \frac{{v_{\text{iii}}}^2}{g} \sin 2\phi = \frac{(1.1325\sqrt{gR})^2}{g} \sin 2(67.5^0) = 0.9069R;$$

竖直射高 $Y = \frac{(v_{\text{iii}}\sin\phi)^2}{2g} = \frac{(1.1325\sqrt{gR}\sin67.5^0)^2}{2g} = 0.5474R.$

竖直射高
$$Y = \frac{(v_{\text{iii}} \sin \phi)^2}{2g} = \frac{(1.1325\sqrt{gR} \sin 67.5^0)^2}{2g} = 0.5474R.$$

下降高度 h_{iv}= h_{iii}-Y=(0.6413-0.5474)R =<u>0.0939</u>R.

或
$$mgh_{iv} = \frac{1}{2}mv_{iv}^2 \Rightarrow h_{iv} = \frac{v_{iv}^2}{2g} = \frac{(0.4334\sqrt{gR})^2}{2g} = \frac{0.0939R}{2}.$$

 $M录: 水平位移 x(\phi) 和下降高度 h(\phi)、小球速度 v 和细绳的张力 T.$

$N \mathcal{N} \cdot N + \mathbb{Z}^{1/2} \mathcal{N}(\varphi) = \mathbb{Z}^{1/2} \mathbb{Z}^{1/2} \mathcal{N}(\varphi) \times \mathbb{Z}^{1/2} \mathbb{Z}^{1/2$					
	切线长度 $\frac{t(\varphi)}{R}$ = $\frac{L}{R} - \varphi = 6.8859 - \varphi$	Λ		$v^2(\varphi)=2gh(\varphi)$ 小球速度 $\frac{v^2(\varphi)}{gR}=$	细绳的张力 $\frac{T(\varphi)}{mg}$ = $3\sin\varphi + 4\frac{R}{t}\sin^2\frac{\varphi}{2}$
0	=6.8859	=6.8859	=0	=0	=0
$\frac{\pi}{2}$ =1.5708	=5.3151	=1	$=1+\frac{t}{R}=6.3151$	=12.6302	=3.3763
π=3.1416	=3.7443	$-\frac{t}{R} = -3.7443$	=1-(-1)=2	=4	=1.0683
$\theta = \frac{9\pi}{8} = 202.5^{\circ}$ =3.5343	0.000	=-3.4819	=0.6413	=1.2826	=0