Assignment 3, Statistical Modelling III

Andrew Martin

May 4, 2018

1. Solution

$$\lim_{\lambda \to 0} \frac{y^{\lambda} - 1}{\lambda} \to \frac{1 - 1}{0} = \frac{0}{0}$$
using l'hôpital's rule:
$$= \lim_{\lambda \to 0} \frac{\frac{d}{d\lambda} (y^{\lambda} - 1)}{\frac{d\lambda}{d\lambda}}$$

$$= \lim_{\lambda \to 0} \frac{d}{d\lambda} (y^{\lambda}) / 1$$

$$= \lim_{\lambda \to 0} \frac{d}{d\lambda} (e^{\log y^{\lambda}})$$

$$= \lim_{\lambda \to 0} \frac{d}{d\lambda} (e^{\lambda \log y})$$

$$= \lim_{\lambda \to 0} \log(y) e^{\lambda \log y}$$

$$= \log(y) e^{0}$$

$$= \log(y)$$

As Required

2. Suppose

$$\mathbf{Y} = \eta + \mathcal{E}$$

Where $\mathcal{E} \sim N(0, \sigma^2) \ \forall i$, independently. And let X be an $n \times p$ matrix with linearly independent columns. Show that:

$$E\left(||\mathbf{Y} - X\hat{\boldsymbol{\beta}}||^2\right) = (n-p)\sigma^2 + ||(I-P)\eta||^2$$

where

$$P = X(X^T X)^{-1} X^T.$$

Under what condition is

$$E(||\mathbf{Y} - X\hat{\beta}||^2) = (n-p)\sigma^2$$

Solution This is a two part question. First:

$$E\left(||\mathbf{Y} - X\hat{\beta}||^{2}\right) = E\left((\mathbf{Y} - X\hat{\beta})^{T}(\mathbf{Y} - X\hat{\beta})\right)$$

$$= E\left((\mathbf{Y} - P\mathbf{Y})^{T}(\mathbf{Y} - P\mathbf{Y})\right)$$

$$= E\left((\mathbf{Y}^{T} - \mathbf{Y}^{T}P^{T})(\mathbf{Y} - P\mathbf{Y})\right)$$

$$= E\left(\mathbf{Y}^{T}\mathbf{Y} - \mathbf{Y}^{T}P^{T}\mathbf{Y} - \mathbf{Y}^{T}P\mathbf{Y} + \mathbf{Y}^{T}P^{T}P\mathbf{Y}\right)$$

$$= E\left(\mathbf{Y}^{T}\mathbf{Y} - \mathbf{Y}^{T}P\mathbf{Y} - \mathbf{Y}^{T}P\mathbf{Y} + \mathbf{Y}^{T}P\mathbf{Y}\right)$$

$$= E\left(\mathbf{Y}^{T}\mathbf{Y} - \mathbf{Y}^{T}P\mathbf{Y}\right)$$

$$= E\left(\mathbf{Y}^{T}(I - P)\mathbf{Y}\right)$$

$$= tr((I - P)\sigma^{2}) + \mu^{T}(I - P)\mu \text{ using an identity obtained in the previous assignment}$$

$$= \sigma^{2}(tr(I) - tr(P)) + ||(I - P)\eta||^{2}$$

Note that in his case the I is $n \times n$, i.e. $tr(I) = \sum_{i=1}^{n} 1 = n$ and $tr(P) = tr(X(X^TX)^{-1}X^T) = tr((X^TX)^{-1}X^TX) = tr(I_{p \times p}) = p$ Which gives:

$$E(||\mathbf{Y} - X\hat{\beta}||^2) = \sigma^2(n-p) + ||(I - P\eta)||^2$$

The equality is true if $||(I - P)\eta||^2 = 0$

This condition will hold true for a 'correct' model. As Required

3. Use the result of 2 to justify that Mallow's C_p will satisfy

$$C_p \approx p$$

for a correct model

Solution Recall $E(RSS_p) \ge (n-p)\sigma^2$, with equality if the model is the 'correct' model. So for a correct model:

$$C_p = \frac{RSS_p}{\hat{\sigma}^2} - (n - 2p)$$

$$E(C_p) = E(\frac{RSS_p}{\hat{\sigma}^2} - (n - 2p))$$

$$= \frac{E(RSS_p)}{\hat{\sigma}^2} - (n - 2p)$$

$$\approx \frac{(n - p)\sigma^2}{\hat{\sigma}^2} - (n - 2p)$$

$$= n - p - (n - 2p) = p$$

As Required

- 4. (a) Read the data
 - i. Plot pairwise scatterplot matrix

Solution This is the figure shown in the appendices.

As Required

ii. Create a correlation matrix of all the predictor variables

Solution The response given in R was:

	lcavol	lweight	age	lbph	lcp	pgg45	psa
lcavol	1.0000000	0.2805214	0.2249999	0.027349703	0.675310484	0.43365225	0.4965149
lweight	0.2805214	1.0000000	0.3479691	0.442264399	0.164537142	0.10735379	0.1899156
age	0.2249999	0.3479691	1.0000000	0.350185896	0.127667752	0.27611245	0.0165038
lbph	0.0273497	0.4422644	0.3501859	1.000000000	-0.006999431	0.07846002	0.0248382
lcp	0.6753105	0.1645371	0.1276678	-0.006999431	1.000000000	0.63152825	0.4596901
pgg45	0.4336522	0.1073538	0.2761124	0.078460018	0.631528246	1.00000000	0.2325796
psa	0.4965149	0.1899156	0.0165038	0.024838204	0.459690118	0.23257964	1.0000000

As Required

iii. Comment on any observed relationships between psa and the predictor variables

Solution psa seems to have relationships with lcavol, a slight relationship with svi, and a relationship with lcp

psa seems to increase when lcavol increases

psa increases when lweight increases

psa increases when svi increases

When lcp increases it appears to increase. As Required

iv. Comment on any observed relationships amongst the predictor variables

Solution

Using the pairwise plot matrix (in appendices) and the correlation matrix: we can see that:

The variables with any notable relationship are:

lcavol with lcp - when lcavol increases, lcp seems tot increase.

lweight with age - when lweight increases, age appears to increase a little bit

lweight with lbph - when lweight increases, lbph appears to increase

lweight with lcp - when lweight increases there is a very slight increase in lcp

age with lbph - when age increases, lbph increases

pgg45 with lcavol - The data seems to increase and variance decreases for larger lcavols

pgg45 with lweight - the variance pgg45 decreases as lweight increases

As Required

(b) Use the box-cox method the find a suitable transformation of the response variable psa in the context of the given model. State (with justification), the chosen λ .

Solution The λ value is approximately 0 - as shown in the figure. Since it is so close to 0, we can simply round it to zero, as it will still approximate the transformation very closely. **As Required**

(c) Re-fit (b) using the transformed response

Solution This is shown in the code. The summary of the lm is given:

Call:

```
lm(formula = log(psa) ~ lcavol + lweight + age + lbph + svi +
lcp + gleason + pgg45, data = prostate)
```


Residuals:

Min 1Q Median 3Q Max -1.77956 -0.31691 -0.04774 0.44278 1.52832

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.486274	0.885929	0.549	0.58451	
lcavol	0.549532	0.090087	6.100	2.94e-08	***
lweight	0.623816	0.200463	3.112	0.00252	**
age	-0.023103	0.011282	-2.048	0.04364	*
lbph	0.091523	0.058454	1.566	0.12108	
svi1	0.744537	0.244602	3.044	0.00310	**
lcp	-0.124612	0.094565	-1.318	0.19109	
gleason7	0.253874	0.216141	1.175	0.24341	
gleason8	0.480520	0.760895	0.632	0.52938	
gleason9	-0.036003	0.494866	-0.073	0.94217	
pgg45	0.004902	0.004622	1.061	0.29184	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6973 on 86 degrees of freedom Multiple R-squared: 0.6731, Adjusted R-squared: 0.6351 F-statistic: 17.71 on 10 and 86 DF, p-value: < 2.2e-16

As Required

(d) Use Mallows' C_p and stepwise model selection to obtain the most appropriate reduced model for the transformed data

Solution Once again this is shown in the appendix. The reduced model summary is:

Call:

```
lm(formula = log(psa) ~ lcavol + lweight + age + lbph + svi,
    data = prostate)
```

Residuals:

Min 1Q Median 3Q Max -1.86717 -0.37725 0.01257 0.40252 1.44544

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.49473 0.87652 0.564 0.57385
lcavol 0.54400 0.07463 7.289 1.11e-10 ***
```

lweight	0.58821	0.19790	2.972	0.00378	**
age	-0.01644	0.01068	-1.540	0.12692	
lbph	0.10122	0.05759	1.758	0.08215	
svi1	0.71490	0.20653	3.461	0.00082	***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Residual standard error: 0.6988 on 91 degrees of freedom Multiple R-squared: 0.6526, Adjusted R-squared: 0.6335 F-statistic: 34.19 on 5 and 91 DF, p-value: < 2.2e-16

And note $C_p = 6.4 \approx 6$ which is what we expected for a correct model **As Required**

(e) Obtain appropriate diagnostic plots for the selected model, and present them neatly. Comment on whether the model is appropriate for the transformed data

Solution

Figure 2: Diagnostic plots: Studentised residuals

Figure 3: Diagnostic plots

Figure 2 shows the studentised residuals, and Figure 3 shows the regular diagnostic plots for the model.

Assumptions:

- e_i have zero mean: Observing the studentised residual plots the points appear to average to a mean of 0, however the lbph residual plot indicates a decreasing mean towards the right of the plot. This is a fairly negligible effect however. (so this holds)
- e_i have equal variance: The spread of the e_i in the studentised residual plots appears equal throughout. The Scale location indicates a dip in the centre indicating a decrease in variance nearing the centre.
- e_i are normally distributed: observing the normal q-q plot shows this, however for ends of the plot, there seems to be some departure from normality.
- Observing the residuals vs leverage plot indicates that there are no points of high leverage or influence (no points outside the Cook's distance contours).
- e_i are independent: No direct information is given on this, so assume independence holds as it is a design assumption, and there are no clear indicators in the construction of the problem. i.e. we assume the e_i are independent.

Conclusion: Apart from a few small deviations from the assumptions, the regression model appears reasonable. **As Required**

(f) Obtain a scatter plot of psa verses lcavol showing the back-transformed 95% prediction bands. Comment on whether or not they appear appropriate.

Solution As Required

Figure 4: Scatter plot with prediction bands

Since most of the data (excluding a few outliers) fits nicely within the prediction bands, it is clear that they appear appropriate

Appendix

```
The code used is below:
###Question 4 A3
library(MASS)
setwd("~/Uni/2018/Statistical Modelling")
pdf(file="PairsPlotA3.pdf")
##a --
#read in the data
prostate = read.csv("prostate-a3.csv",header=T)
#convert to factors
prostate$svi = as.factor(prostate$svi)
prostate$gleason=as.factor(prostate$gleason)
#remove lpsa and train as they aren't defined for the given model
prostate$lpsa = NULL
prostate$train = NULL
##i
#plot pairwise scatterplots
pairs(prostate)
##ii
#correlation matrix
cor(prostate[sapply(prostate,is.numeric)])
##iii
#no code
##iv
#no code
##b --
#Use boxcox to find lambda
basemodel = lm(psa~lcavol+lweight+age+lbph+svi+lcp+gleason+pgg45,data=prostate)
boxcox(basemodel)
#Lambda contains 0, and 0 is the easiest - effectively take the log transform
##c --
#Refit the model, using transformed variables
transmodel= lm(log(psa)~lcavol+lweight+age+lbph+svi+lcp+gleason+pgg45,data=prostate)
##d --
#use stepwise model selection
#minimising AIC is the same as minimising the Cp, so just doing step is good
s2=sum((transmodel$residuals)^2)/transmodel$df
newnewmodel= step(object = transmodel,scale= s2)
#note aic approx Cp
##e --
#Obtain diagnostic plots
tmp = par(mfrow=c(2,2))
plot(newnewmodel)
par(tmp)
#residual plots
tmp = par(mfrow=c(2,2))
plot(prostate$lcavol,rstudent(transmodel))
plot(prostate$lweight,rstudent(transmodel))
plot(prostate$age,rstudent(transmodel))
plot(prostate$lbph,rstudent(transmodel))
plot(prostate$svi,rstudent(transmodel))
par(tmp)
##f --
#Obtain a scatter of psa vs lcavol showing 95% prediction bounds
plot(y=prostate$psa,x=prostate$lcavol)
pred= predict(newnewmodel, interval="prediction")
lines(lowess(prostate$lcavol,exp(pred[,3])),col="blue")
lines(lowess(prostate$lcavol,exp(pred[,2])),col="blue")
dev.off()
```

Figure 5: Appendix: Pairs plots

