TD 6 : Théorie des modèles

Mathilde Noual, Marc Lasson

23 mars 2011

Exercice 1 : Compacité

- 1. Prouver que si un ensemble S de formules axiomatise une classe \mathcal{K} de modèles finiment axiomatisable alors il existe une partie finie de S qui axiomatise \mathcal{K} .
- 2. Montrer que la classe des modèles infinis est axiomatisable mais pas finiment axiomatisable.
- 3. Montrer qu'une classe \mathcal{K} est finiment axiomatisable si et seulement si \mathcal{K} et son complémentaire sont axiomatisables.

Exercice 2 : La caractéristique des corps.

- 1. Montrer que la classe des corps de caractéristique p > 0 est finiment axiomatisable.
- 2. Montrer que la classe des corps de caractéristique 0 est axiomatisable mais pas finiment.
- 3. Montrer qu'on ne peut pas axiomatiser les corps de caractéristique strictement positive.
- 4. Montrer que si un énoncé du premier ordre est satisfait par tous les corps de caractéristique 0, alors il l'est aussi pour tous les corps de caractéristique q > p pour un certain p > 0.

Exercice 3 : Équivalence élémentaire

On fixe un langage L. On dit de deux modèles $\mathcal{M}, \mathcal{M}'$ qu'ils sont élémentairement équivalents s'ils satisfont les même formules. On note $\mathcal{M} \equiv \mathcal{M}'$. Par exemple dans le langage <, \mathbb{R} et \mathbb{Q} sont élémentairement équivalent.

1. Plus généralement, prouvez que n'importe quel couple $\mathcal{M}, \mathcal{M}'$ de modèles d'une théorie complète (rappel : une théorie est complète si pour toute formule F, elle prouve F ou elle prouve $\neg F$) sont élémentairement équivalents.

En particulier, si on admet que la théorie des ordres linéaire denses

$$\forall x \neg (x < x) \quad \forall x y (x = y \lor x < y \lor y < x) \qquad \forall x y z (x < y \land y < x \rightarrow x < z) \\ \forall x y (x < y \rightarrow \exists z (x < z \land z < y)) \qquad \forall x \exists z (z < x), \forall x \exists z (x < z)$$

est complète, alors on obtient que $\mathbb R$ et $\mathbb Q$ sont élémentairement équivalents pour le langage $\{<\}$.

Deux modèles sont dits équivalent s'il existe une bijection ϕ entre les domaines qui préserve l'interprétation des fonctions et des relations :

$$\phi([f]^{\mathcal{M}}(x_1, ..., x_n)) = [f]^{\mathcal{M}'}(\phi(x_1), ..., \phi(x_n))$$
$$[R]^{\mathcal{M}}(x_1, ..., x_n) \Leftrightarrow [R]^{\mathcal{M}'}(\phi(x_1), ..., \phi(x_n))$$

On note $\mathcal{M} \cong \mathcal{M}'$.

- 2. Montrer que $\mathcal{M} \cong \mathcal{M}'$ implique $\mathcal{M} \equiv \mathcal{M}'$.
- 3. Montrer que si \mathcal{M} et \mathcal{M}' sont deux modèles égalitaires de cardinal fini, alors $\mathcal{M} \equiv \mathcal{M}'$ implique $\mathcal{M} \cong \mathcal{M}'$.

- 4. Trouver deux modèles \mathcal{M} et \mathcal{M}' tel que l'on ait $\mathcal{M} \equiv \mathcal{M}'$ et pas $\mathcal{M} \cong \mathcal{M}'$. On dit qu'une théorie T est *catégorique* pour une classe de modèle \mathcal{K} si tous les modèles de \mathcal{K} qui satisfont T sont équivalents.
- 5. Montrer qu'une théorie avec un modèle infini ne peut pas être catégorique pour la classe de tous les modèles.
 - Soit κ est un cardinal. On dit d'une théorie qu'elle est κ -catégorique si elle est catégorique pour la classe des modèles de cardinal κ .
- 6. Soit n un entier. Construire une théorie n-catégorique.
- 7. Construire une théorie κ -catégorique pour tout κ .
- 8. Supposons que le langage est dénombrable. Montrer que les théories ω -catégoriques qui n'ont aucun modèle fini sont complètes. Pourquoi cette dernière condition est nécessaire?

Exercice 5 : Diagramme et extension

Soit \mathcal{M} et \mathcal{M}' deux modèles sur un langage L, on dit que \mathcal{M}' est une extension de \mathcal{M} si le domaine de \mathcal{M} est inclus dans le domaine de \mathcal{M}' et que l'interprétation des relations et des fonctions de L dans \mathcal{M} est la restriction des interprétations des mêmes symboles dans \mathcal{M}' au domaine de \mathcal{M} .

1. Montrer que les formules purement universelles satisfaites par \mathcal{M}' le sont aussi par \mathcal{M} .

Soit L un langage et \mathcal{M} un modèle sur L. On peut compléter L en $L_{\mathcal{M}}$ en rajoutant des symboles de constantes c_a pour chaque élément $a \in \mathcal{M}$ et étendre naturellement \mathcal{M} en un modèle $\hat{\mathcal{M}}$ sur $L_{\mathcal{M}}$ en interprétant c_a par a. On appelle diagramme de \mathcal{M} , l'ensemble $Diag_{\mathcal{M}}$ des formules de $L_{\mathcal{M}}$ constitué de

$$R(c_{a_1}, \dots, c_{a_k}) \qquad \text{pour } R \in L, \ a_1, \dots, a_k \in \mathcal{M} \text{ avec } \hat{\mathcal{M}} \models R(c_{a_1}, \dots, c_{a_k})$$

$$\neg R(c_{a_1}, \dots, c_{a_k}) \qquad \text{pour } R \in L, \ a_1, \dots, a_k \in \mathcal{M} \text{ avec } \hat{\mathcal{M}} \models \neg R(c_{a_1}, \dots, c_{a_k})$$

$$c_a = f(c_{a_1}, \dots, c_{a_k}) \qquad \text{pour } f \in L \ a, a_1, \dots, a_k \in \mathcal{M} \text{ avec } \hat{\mathcal{M}} \models c_a = f(c_{a_1}, \dots, c_{a_k})$$

2. Montrer qu'à isomorphisme près \mathcal{M} est une extension de \mathcal{M}' si et seulement si $\mathcal{M}' \models \text{Diag}_{\mathcal{M}}$.

Exercice 6 : Existence d'une clôture algébrique

Soit K un corps commutatif.

- 1. Axiomatiser les extensions de corps de K.
- 2. Montrer (à l'aide du théorème de compacité) qu'il existe un extension L de K dans lequel tout polynôme à coefficients dans K se décompose en facteurs du premier degré.
- 3. (*) Montrer que le sous-corps de L des éléments algébriques

$$\{x \in L | \exists P \in K[X], P \neq 0 \land P(x) = 0\}$$

est une cloture algébrique de K.