Dr. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

End Semester Examination: May 2018

Branch: B.Tech (Common to all)

Subject with code: Engineering Mathematics-II (MATH 201)

Marks: 60

Date: 14/05/2018

Time: 03 Hrs.

INSTRUCTION: Attempt any FIVE of the following questions. All questions carry equal marks.

Q.1 Solve any three

(a) If
$$arg(z+1) = \frac{\pi}{6}$$
 and $arg(z-1) = \frac{2\pi}{3}$, find z. [4 Marks]

(b) Solve:
$$x^7 + x^4 + x^3 + 1 = 0$$
. [4 Marks]

(c) If
$$\cos(\theta + i\phi) = \operatorname{Re}^{i\alpha}$$
, show that $\phi = \frac{1}{2} \log_e \left(\frac{\sin(\theta - \alpha)}{\sin(\theta + \alpha)} \right)$. [4 Marks]

(d) Prove that
$$\tan \left\{ i \log \left(\frac{a - ib}{a + ib} \right) \right\} = \frac{2ab}{a^2 - b^2}$$
. [4 Marks]

Q.2 Solve any three.

(a) Solve
$$(4x-6y-1)dx+(3y-2x-2)dy=0$$
. [4 Marks]

(b) Solve
$$\frac{dy}{dx} = \frac{y+1}{(y+2)e^y - x}$$
. [4 Marks]

(c) Solve
$$(1+y^2) + (x-e^{\tan^{-1}y})\frac{dy}{dx} = 0$$
. [4 Marks]

(d) Determine the charge and current at any time 't' in a series R-C circuit with $R = 10\Omega$, $C = 2 \times 10^{-4}$ F and E = 100V, given that q(0) = 0. [4 Marks]

Q.3. Solve any three.

(a) Solve
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 5^x - \log 2$$
. [4 Marks]

(b) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 25x^2$$
. [4 Marks]

(c) Solve
$$(D^2 + 2D + 1)y = e^{-x} \log x$$
 by method of variation of parameters. [4 Marks]

(d) Solve
$$x^2y'' - 3xy' + 5y = x^2 \sin(\log x)$$
. [4 Marks]

Q.4. (a) Obtain the Fourier series expansion of $\sqrt{1-\cos x}$ in the interval $0 \le x \le 2\pi$. [6 Marks]

(b) Find the Half-range co-sine series for
$$f(x) = \begin{cases} \frac{1}{4} - x & 0 < x < \frac{1}{2} \\ x - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$$
 [6 Marks]

- Q.5. (a) If a particle describes the curve $r = 2a\cos\theta$ with constant angular speed ω , find the [4 Marks] radial and transverse components of velocity and acceleration.
 - (b) For the curve $x = t^3 + 1$, $y = t^2$, z = t, find the magnitude of tangential and normal components of acceleration at t = 1.
 - (c) If the particle describes the cardioid $r = a(1 \cos \theta)$ under a force to the pole, show that the force is proportional to the inverse of the 4th power of the distance. [4 Marks]
- Q.6. (a) Find the directional derivative of $\phi = 5x^2y 5y^2z + 2.5z^2x$ at the point p(1,1,1) in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = z$. [4 Marks]
 - (b) If $\vec{F} = (ax+3y+4z)\hat{i} + (x-2y+3z)\hat{j} + (3x+2y-z)\hat{k}$ is solenoidal, [4 Marks] find the value of 'a'.
 - (c) Find the total work done in moving a particle in the force field,

given by
$$\vec{F} = 3xy \hat{i} - 5z \hat{j} + 10x \hat{k}$$
 along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from [4 Marks] $t = 1$ to $t = 2$.
