Decentralised location verification system

Conor Taylor

B.A.(Mod.) Computer Science Final Year Project, April 2016 Supervisor: Stephen Barrett

A system that allows participants to verify a users claimed location.

A system that allows participants to verify a users claimed location.

A system that allows participants to verify a users claimed location.

Goals:

▶ False location claims must be detectable.

A system that allows participants to verify a users claimed location.

- ▶ False location claims must be detectable.
- Privacy protecting.

A system that allows participants to verify a users claimed location.

- ▶ False location claims must be detectable.
- Privacy protecting.
- Cannot rely on any centralised resources.

A system that allows participants to verify a users claimed location.

- ▶ False location claims must be detectable.
- Privacy protecting.
- Cannot rely on any centralised resources.
- Capable of running in the background on mobile devices.

Background

There are **no** known existing decentralised location proof systems.

Existing centralised solutions: hardware and/or software

3 distinct entities:

- ► Mobile node
- ► Miner node M
- ▶ Verifier node

Mobile node

Mobile node

Mobile nodes

Mobile nodes

Mobile nodes

Design Identities

Used to anonymously identify a node in a transaction.

Balancing goals:

- ▶ False location claims must be detectable.
- Privacy protecting.

Identities: Nonce Lists

Identities: Nonce Lists

Identities: Nonce Lists

Identities: Duplication

Identity duplication is unavoidable in a decentralised system.

Identities: Duplication

Identity duplication is unavoidable in a decentralised system.

ID	Contents
ffa0	
ffa1	
ffa2	T_{A4}
ffa3	
ffa4	T _{B87}

Identities: Duplication

Identity duplication is unavoidable in a decentralised system.

ID	Contents
ffa0	
ffa1	
ffa2	T_{A4} , T_{C102}
ffa3	
ffa4	T _{B87}

Design Transactions

Transactions are created when two mobile nodes physically meet.

▶ Ad-hoc bluetooth connection between the nodes.

Design Transactions II

Node A will create the following transaction after meeting node B:

$$T_{An} = K_A(ts_A|loc_A|ID_{An}|KP_{Bm})$$

Design Transactions II

Node A will create the following transaction after meeting node B:

$$T_{An} = K_A(ts_A|loc_A|ID_{An}|KP_{Bm})$$

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Two main properties:

- Allow a Verifier to build a tree of a mobile node's activity.
- Allow a mobile node to preserve control its own privacy.

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Two main properties:

- Allow a Verifier to build a graph of a mobile node's activity.
- Allow a mobile node to preserve control its own privacy.

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Two main properties:

- Allow a Verifier to build a graph of a mobile node's activity.
- Allow a mobile node to preserve control its own privacy.

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

$$\emptyset \leftarrow L_0 \mid T_0 \leftarrow L_1 \mid T_1 \leftarrow L_2 \mid T_2 \mid$$

Two Key Lists: KL_{AT} and KL_{AL} .

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Two Key Lists: KL_{AT} and KL_{AL} .

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Two Key Lists: KL_{AT} and KL_{AL} .

Design Transactions III

Node A will create the following transaction after meeting node B:

$$T_{An} = \frac{K_A(ts_A|loc_A|ID_{An}|KP_{Bm})}{}$$

Design Transactions III

Node A will create the following transaction after meeting node B:

$$T_{An} = \frac{KL_{AT}[n](ts_A|loc_A|ID_{An}|KP_{Bm})}{t}$$

Design Transactions III

Node A will create the following transaction after meeting node B:

$$T_{An} = KL_{AT}[n](ts_A|loc_A|ID_{An}|KP_{Bm})$$

Node A will then publish the following to the blockchain:

$$P_{An} = ID_{An} | KL_{AL}[n] (ID_{An-1} | ts_A) | T_{An}$$

Design Verification

Mobile node needs to provide Verifier node with:

- ▶ ID of most recent transaction.
- ▶ Key Packet for *n* most recent transactions.
- Nonce list for n most recent IDs.
- Public key.