Wealth, Uninsurable Idiosyncratic Risk and International Risk-Sharing

Ekaterina Shabalina

Goethe University

October 21, 2022

Introduction

Motivation

Traditional approach:

Representative household smoothes consumption via current account

Research question:

How wealth and idiosyncratic risk affect international capital flows?

Key mechanism:

Mainly, through savings

- extensive margin: the share of consumption smoothers
- intensive margin: amount of precautionary savings
- distribution is endogeneous

Share of constrained households rises with TFP in Russia, but not in the US

Figure: Share of borrowing-constrained households along business cycle

Liquid assets positions by country

Research Design

- ► Two countries: US and Russia
- Empirically: quantify savings responses of the households to TFP shocks using household-level data and local projections
- Model: analyze dynamics of the capital flows in a general equilibrium heterogeneous agent model, produce counterfactuals

Key Results

- 1. Counter- (pro-) cyclical share of borrowing-constraint households in Russia (US)
 - idiosyncratic risk is more important than wealth
- 2. Current Account is more countercyclical in HANK than in RANK
- 3. In expansions US is long in illiquid and short in liquid assets, Russia holds the opposite position
 - both wealth levels and idiosyncratic risk shape countries' portfolios

Literature Review

- Open Economy HANK
 - CA: Ferra, Mitman, and Romei, 2021 and 2020, Zhou, 2022, Hottman and Monarch, 2021, Hillrichs and Vannoorenberghe, 2021
 - ExRate: Auclert, Rognlie, et al., 2021, Guo, Ottonello, and Perez, 2020
- Intertemporal Approach to Current Account
 Obstfeld and Rogoff, 1996, Mendoza, Quadrini, and Rios-Rull, 2009, Angeletos and
 Panousi, 2011
- Demand for Liquid/Safe Assets
 Kekre and Lenel, 2021, Chien and Naknoi, 2015, Gourinchas and Rey, 2007
- ► HANK/TANK/RANK Comparison
 Kaplan, Moll, and G. L. Violante, 2018, Bayer, Born, and Luetticke, 2020

Outline

- 1. Data Description
- 2. Empirical Impulse Responses to TFP shocks
- 3. Model Description
- 4. Model Impulse Responses to TFP Shocks
- 5. Decomposition of Capital Flows

Data and Empirical IRFs

Data

- Household-level panels: PSID from 1999-2019, RLMS from 2000-2020
- Identification of TFP shocks: Penn World Table 10.0 and series constructed by J. Fernald
- Identification of borrowing-constrained households:
 - ▶ US: Kaplan, G. Violante, and Weidner (2014)
 - Russia: Imagine an unpleasant situation in which all members of your family lost their sources of income. How long do you think your family would be able to live at your present level - in other words, without decreasing your expenditures - without any income? Consider only your savings, not selling any of your possessions.

Empirical Specification

Local projections methodology (Jordà, 2005)

$$z_{i,t} = \mu_i + D^j(L)g_t + H^j(L)g_t \cdot X_{i,t} + \beta_1^j X_{i,t} + \eta_{i,t}$$
 (1)

$$y_{i,t} = v_i + B^j(L)y_{i,t-1} + C^j(L)\hat{z}_{i,t} + \beta_2^j X_{i,t} + \varepsilon_{i,t}$$
 (2)

where j = 1, 2, 3, 4 (income and wealth percentiles), $y_{i,t}$ dummy for being borrowing-constrained, $z_{i,t}$ is income, g_t are TFP shocks, and $X_{i,t}$ are controls

Empirical Impulse Responses

Figure: Responses of probabilities of being borrowing-constrained to income shocks.

Quantitative Model

Households

Labor income

$$\xi_t = (1 - \tau_t) e_t w_t n_t \tag{3}$$

Bellman equation

$$V(e_t, a_{t-1}, b_{t-1}) = \max_{c_t, a_t, b_t} u(c_t, n_t) + \beta E_e V(e_{t+1}, a_t, b_t)$$
s.t. $c_t + a_t + b_t = \xi_t + (1 + r_t^a) a_{t-1} + (1 + r_t^b) b_{t-1} - \Phi(a_t, a_{t-1})$ (4)
$$a_t \ge 0, \quad b_t \ge \underline{b}$$

Portfolio adjustment costs

$$\Phi(a_t, a_{t-1}) = \frac{\chi_1}{\chi_2} \left| \frac{a_t - (1 + r_t^a) a_{t-1}}{(1 + r_t^a) a_{t-1} + \chi_0} \right|^{\chi_2} \left[(1 + r_t^a) a_{t-1} + \chi_0 \right]$$
 (5)

Households

Consumption, Export, Import

$$C_{H,t} = (1 - \gamma) \left(\frac{p_{H,t}}{p_t}\right)^{-\eta} C_t \tag{6}$$

$$C_{F,t} = \gamma \left(\frac{p_{F,t}}{p_t}\right)^{-\eta} C_t \tag{7}$$

$$C_{H,t}^* = \left(\frac{p_{H,t}}{p_{F,t}}\right)^{-\eta_f} Y_{F,t}^*$$
 (8)

Labor Hours' Supply

$$\varphi n_t^{\rho} = \int u_c(e_t, a_{t-1}, b_{t-1}) \frac{\partial \xi_t}{\partial n_t} dD(e_t, a_{t-1}, b_{t-1})$$
(9)

Firm's Problem

$$J_{s,t}(k_{s,t-1}) = \max_{p_{s,t},k_{s,t},I_{s,t},N_{s,t}} \left\{ \frac{p_{s,t}}{p_t} y_{s,t} - w_t N_{s,t} - I_{s,t} - \frac{\eta}{2\kappa} \ln(1 + \pi_{s,t})^2 Y_t + \frac{J_{t+1}(k_{s,t})}{1 + r_{t+1}} \right\}$$
(10)

s.t.
$$k_{s,t} = (1 - \delta) k_{s,t-1} + I_{s,t} - \frac{1}{2\delta \varepsilon_I} \left(\frac{k_{s,t} - k_{s,t-1}}{k_{s,t-1}} \right)^2 k_{s,t-1}$$
(11)
$$p_{s,t} = \left(\frac{Y_t}{y_{s,t}} \right)^{\frac{1}{\eta}} p_{H,t}$$
(12)
$$y_{s,t} = z_{s,t} k_{s,t-1}^{\gamma} N_{s,t}^{1-\gamma}$$
(13)

Rates

Uncovered Interest Rate Parity

$$1 + i_{t} = (1 + r_{t}^{*}) \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - \phi(\exp(-NFA_{t}) - 1)$$
(14)

No arbitrage condition and Fisher equation

$$v_t = \frac{d_{t+1} + v_{t+1}}{1 + r_{t+1}}, \quad 1 + r_t = \frac{1 + i_t}{1 + \pi_t}$$
 (15)

Financial Intermediary and Policy

Financial Intermediary

$$(1+r_t^b) = \left(\frac{B_t^g}{\mathcal{B}_t}\right)(1+r_t-\omega) + \left(1-\frac{B_t^g}{\mathcal{B}_t}\right)(1+r_t^*-\omega)\frac{q_t}{q_{t-1}}$$
(16)

$$(1 + r_t^a) = \left(\frac{v_t}{A_t}\right) \frac{d_t + v_t}{v_{t-1}} + \left(1 - \frac{v_t}{A_t}\right) (1 + r_t^*) \frac{q_t}{q_{t-1}}$$
(17)

Fiscal Policy

$$\tau_t w_t N_t = r_t B^g + G_t, \tag{18}$$

Monetary Policy

$$i_t = \overline{r} + \phi_\pi \pi_{H,t} \tag{19}$$

Assets and Market Clearing

Dynamics of Net Foreign Assets

$$NX_{t} = \frac{p_{H,t}}{p_{t}} C_{H,t}^{*} - \frac{p_{F,t}}{p_{t}} C_{F,t}$$
 (20)

$$NFA_t = (1 + \widetilde{r_t})NFA_{t-1} + NX_t$$
 (21)

$$CA_t = NX_t + r_t NFA_{t-1} (22)$$

Market clearing conditions

$$Y_t - \omega \mathcal{B}_t - \Phi_t = \mathcal{C}_t + G_t + I_t + NX_t, \tag{23}$$

$$A_t + B_t = v_t + B^g + NFA_t, \tag{24}$$

Calibration

Table: Parameter Values, Description and Source

Parameter	Description	Value and source, US	Value and source, Russia	
Wealth Targets				
χ1	Portfolio adj. cost scale	10.11, target $\mathcal{B}_h = 1.04 Y$	0.55, target $\mathcal{B}_h = 1.64 Y$	
Χ2	Portfolio adj. cost curvature	1.985, target $htm = 0.38$	2.4, target htm=0.33	
p/Y	Steady state price of equity	11.2, target $p + Bg = 14Y$	5.04 target $p + Bg = 5.32Y$	
B ^g	Bond supply	2.8, Auclert, Bardóczy, et al., 2019	0.28, calculated from total government bonds supply	
Income Process				
ρ_z	Autocorrelation of earnings	0.966, Auclert, Bardóczy, et al., 2019	0.579, estimated with RLMS	
σ_z	Cross-sectional std of log earnings	0.92, Auclert, Bardóczy, et al., 2019	2.09, estimated with RLMS	
Firms				
δ	Depreciation rate	0.02, Auclert, Bardóczy, et al., 2019	0.025, Semko, 2013	
٤١	Capital adj. costs parameter	4, Auclert, Bardóczy, et al., 2019	12.05, Malakhovskaya and Minabutdinov, 2014	

Portfolios in other countries

Model Fit

Table: Income and Asset Distributions, and Asset Elasticities.

Statistics	Data, US	Model, US	Data, Russia	Model, Russia
Wealth distribution				
Mean Liquid Assets/GDP	0.26	0.26	0.41	0.41
Mean Illiquid/GDP	2.92	2.99	0.92	0.92
Share of borrowing-constrained hhs	0.38	0.38	0.33	0.33
Gini coefficients				
Income	0.52	0.41	0.58	0.63
Liquid assets	0.98	0.75	-	0.64
Illiquid assets	0.81	0.52	0.67	0.43
Elasticities ¹				
Share of borrowing-constrained to income	[0.41, 0.02]	[0.02, 0.02]	[-0.10, -0.04]	[-0.03, -0.05]
Corr(Bonds / GDP, GDP)	-0.08	-0.02	0.21	0.52
Corr(Equities / GDP, GDP)	0.06	0.30	0.21	0.52

Model Impulse Responses

Productivity Shock: the Mechanism

Productivity Shock: HANK vs RANK

Scatter plot: inequality and countercyclicality

Productivity Shock: Country Comparison

Productivity Shock: Counterfactual Analysis

Productivity Shock: Counterfactual Analysis

Productivity Shock: Counterfactual Analysis

Decomposition of Capital Flows

Productivity Shock: Decomposition of Capital Flows

Productivity Shock: Decomposition of Capital Flows

Table: Decomposition of Cumulative Responses to a Productivity Shock.

Country	Current Account		NFA, illiquid		NFA, liquid	
	aggregate	idiosyncratic	aggregate	idiosyncratic	aggregate	idiosyncratic
US	70%	30%	96%	4%	128%	-28%
Russia	48%	52%	57%	43%	57%	43%

Conclusions

Wealth distribution and idiosyncratic risk affect current account through

- the share of consumption smoothers
- amount of precautionary savings
- evolution of the distribution

Implications:

- procyclical share of borrowing-constraint households
- procyclical demand for illiquid and countercyclical for liquid assets vis-a-vis the rest of the world

when levels of wealth are high and idiosyncratic risk is low

Thank you!

Appendix

Inequality Comparison

Households in EMEs hold more liquid assets

Figure: Household portfolios. Developed and emerging countries.

Household demand translates into cross-country flows

Figure: Cyclicality of equity and debt. Russia and US.

EMEs are more unequal and more countercyclical CA

The X-axis shows income Gini. Y-axis shows a correlation of nx/y and y.

Firm's first-order conditions

Investment, Labor and Capital

$$q_{s,t} = 1 + \frac{1}{\delta \varepsilon_{I}} \left(\frac{k_{s,t} - k_{s,t-1}}{k_{s,t-1}} \right), \quad w_{t} = (1 - \nu) \frac{y_{s,t}}{N_{s,t}} m c_{s,t}$$

$$(1 + r_{t+1}) q_{s,t} = \nu z_{t+1} \left(\frac{N_{s,t+1}}{k_{s,t}} \right)^{1-\nu} m c_{s,t+1} -$$

$$- \left[\frac{k_{s,t+1}}{k_{s,t}} - (1 - \delta) + \frac{1}{2\delta \varepsilon_{I}} \left(\frac{k_{s,t+1} - k_{s,t}}{k_{s,t}} \right)^{2} \right] + \frac{k_{s,t+1}}{k_{s,t}} q_{s,t+1}$$

$$(25)$$

Phillips curve

$$\log(1+\pi_{s,t}) = \kappa(mc_{s,t} - \frac{1}{\mu_D} \frac{p_{s,t}}{p_t}) + \frac{Y_{t+1}}{Y_t} \log(1+\pi_{s,t+1}) \frac{1}{1+r_{t+1}}$$
(27)

Calibration Tables

Table: US: Parameter Values, Description and Source

Parameter	Description	Value and source	
Households			
β	Time discount factor	0.977, target interest rate	
χ0	Portfolio adj. cost pivot	0.25, Straub	
σ	EIS	0.5, Straub	
ρ	Inverse Frisch elasticity	1, Straub	
φ	Disutility parameter	1.78 (target ${\it N}=1$)	
Open economy			
γ	Home-bias	0.4, Ottonello2020	
$\eta = \eta_f$	Elasticity of substitution for home vs. foreign goods	1.5, Ottonello2020	

Table: US: Parameter Values, Description and Source

Parameter	Description	Value and source	
Asset Markets			
r	Real interest rate	0.0125, Straub	
ψ	Liquidity premium	0.005, Straub	
Production			
μ_w	Wage markup	1.1, Straub	
K/Y	Steady state capital-output ratio	10, Straub	
К	Slope of the Phillips curve	0.1, Straub	
Monetary and Fiscal Policy			
ф	Coefficient on inflation in Taylor rule	1.5, Straub	
Φ_y	Coefficient on output gap in Taylor rule	0, Straub	
τ	Tax rate	0.36, , target $G/Y=0.2$	

Table: Russia: Parameter Values, Description and Source

Parameter	Description	Value and source	
Households			
β	Time discount factor	0.935, target interest rate	
χ0	Portfolio adj. cost pivot	0.25, Straub	
σ	EIS	0.5, Semko2013	
ρ	Inverse Frisch elasticity	1, Semko2013	
φ	Dis-utility parameter	1.33 (target $\mathit{N}=1$)	
Open economy			
γ	Home-bias	0.26, Malakhovskaya2014	
$\eta = \eta_f$	Elasticity of substitution for home vs. foreign goods	0.67, Semko2013	

Table: Russia: Parameter Values, Description and Source

Parameter	Description	Value and source	
Asset Markets			
r	Real interest rate	0.0125, Straub	
ψ	Liquidity premium	0.005, Straub	
Production			
μ_{w}	Wage markup	1.2, Semko2013	
K/Y	Steady state capital-output ratio	9.26, target $lpha = 0.33$ Malakhovskaya2014	
К	Slope of the Phillips curve	0.38, Malakhovskaya2014	
Monetary and Fiscal Policy			
ф	Coefficient on inflation in Taylor rule	1.5, Straub	
Φ_{y}	Coefficient on output gap in Taylor rule	0, Straub	
τ	Tax rate	0.29, target $G/Y = 0.2$	

Steady State and Data Moments

Table: Income and Asset Distributions

Statistics	Data, US	Model, US	Data, Russia	Model, Russia
Wealth distribution				
Mean Liquid Assets/GDP	0.26	0.26	0.41	0.41
Mean Illiquid/GDP	2.92	2.99	0.92	0.92
Hand-to-mouth share	0.38	0.38	0.33	0.33
Gini coefficients				
Income	0.52	0.41	0.58	0.63
Liquid assets	0.98	0.75	-	0.64
Illiquid assets	0.81	0.52	0.67	0.43

Earning Process Estimation Fit, Russia

Table: Moments from the data and from the estimated process

Moment	Data	Model
Variance: annual log earnings	5.41	4.29
Variance: 1-year change	6.38	6.38
Variance: 5-year change	7.55	8.58
Frac. 1-year change $< 10\%$	0.20	0.03
Frac. 1-year change $< 20\%$	0.35	0.06
Frac. 1-year change $< 50\%$	0.60	0.16

Estimation Income Process, Russia

Table: Alternative Targets and Weighting Matrices.

Parameter	Target Only Variances, $W = I$	Target Variances, $W = I$	Target Std, $W = I$	Target Variances, W rescaled by means	Target Variances, two-step GMM
Persistence	0.542	0.54	0.579	0.678	0.9
Standard deviation	2.14	2.15	2.09	1.78	2.0

Additional Model Graphs

Steady State Distributions

Figure: Distribution of Assets in the HANK models calibrated to the US and Russian Economies.

Productivity Shock: The Role of Income Distribution, US

Productivity Shock: The Role of Income Distribution, Russia

Decomposition with Return Risk, US

DCP

Foreign Monetary Policy Shock: Russia

Productivity Shock: Financial Intermediary

Figure: Impulse Responses to a TFP Shock with a Different Specification of Financial Intermediary.

Model Experiments

Countercyclical liquidity premium

$$\psi_t = \overline{\psi} - \gamma_{\psi}(Y - \overline{Y}) \tag{28}$$

Productivity Shock: Countercyclical Liquidity Premium, Russia

Productivity Shock: Countercyclical Liquidity Premium, US

Additional Data Graphs and Tables

Household Asset Portfolios

Figure: Household Portfolios.

Income and Consumption Inequality

Borrowing-constrained Households, Russia

EMEs are more unequal and have more countercyclical CA

The X-axis shows Top10/Bottom50 ratio. Y-axis shows a correlation of nx/y and y. Standard deviation is shown in logs.

Sample Statistics, US

Table: Sample Statistics Across Income and Wealth Percentiles, US.

Variables	bottom 50% income, bottom 50% wealth	top 50% income, bottom 50% wealth	bottom 50% income, top 50% wealth	top 50% income, top 50% wealth
htm	0.66	0.51	0.24	0.20
poor htm	0.47	0.19	0.0	0.0
wealthy htm	0.19	0.32	0.24	0.20
income	0.26	0.75	0.31	1.05
labor income	0.26	0.73	0.30	1.00
asset income	0.001	0.01	0.007	0.05
wealth	-0.08	-0.09	3.69	2.09
liquid wealth	-0.08	-0.10	1.89	0.72
non-liquid wealth	0.004	0.009	1.80	1.37

Sample Statistics, Russia

Table: Sample Statistics Across Income and Wealth Percentiles, Russia.

Variables	bottom 50% income, bottom 50% wealth	top 50% income, bottom 50% wealth	bottom 50% income, top 50% wealth	top 50% income, top 50% wealth
htm	0.42	0.33	0.34	0.28
poor htm	0.32	0.27	0.0	0.0
wealthy htm	0.10	0.06	0.34	0.28
income	0.58	1.95	0.63	1.96
non-liquid wealth	-0.004	-0.026	0.52	0.80

Aggregate vs Survey Data, US

Aggregate vs Survey Data, Russia

Net Liquid Positions

Gini Coefficients

Distributional Moments

Table: Income distributions.

	Russia	US
mean	0.63	0.63
std	0.52	0.59
skewness	3.1	10.0
kurtosis	22.2	279.6
1%	0.06	0.07
5%	0.13	0.13
10%	0.18	0.18
25%	0.29	0.30
50%	0.50	0.51
75%	0.80	0.80
90%	1.20	1.16
95%	1.53	1.47
99%	2.53	2.44

Additional Empirical Results

Cumulative Responses

Table: Cumulative is calculated by summing up responses for four years after the shock.

Variable, Country	Cumulative IRFs with 90% CI				
	Income Poor, Wealth Poor	Income Rich, Wealth Poor	Income Poor, Wealth Rich	Income Rich, Wealth Rich	
		Hand-to	-Mouth		
htm, US	0.16	-0.27	-0.23	0.58	
	(-0.23 0.56)	(-0.88 0.34)	(-0.84 0.38)	(0.03 1.13)	
htm, Russia	0.08	-0.24	-0.01	-0.26	
	(-0.23 0.39)	(-0.51 0.03)	(-0.29 0.27)	(-0.41 -0.10)	
	Other Variables				
liquid, US	-0.23	-0.42	1.98	-1.80	
	(-2.82 2.36)	(-3.25 2.41)	(-1.03 4.98)	(-4.90 1.30)	
non-liquid, US	-0.60	5.14	-0.29	-1.78	
	(-1.86 0.65)	(0.46 9.83)	(-3.14 2.56)	(-5.14 1.60)	
consumption, Russia	-0.17	0.52	0.53	0.92	
	(-0.73 0.39)	(0.18 0.86)	(-0.09 1.15)	(0.63 1.22)	
	First Stage				
income, US	-0.01	0.09	-0.06	0.05	
	(-0.03 0.02)	(0.06 0.11)	(-0.10 -0.02)	(0.03 0.07)	
income, Russia	-0.01	0.02	-0.01	0.02	
	(-0.03 0.02)	(-0.003 0.03)	(-0.03 0.01)	(0.01 0.04)	

Empirical Impulse Responses, US

Figure: Impulse Responses of Liquid Assets to Income Shocks.

Empirical Impulse Responses, US

Figure: Impulse Responses of Non-liquid Assets to Income Shocks.

Empirical Impulse Responses, Russia

Figure: Impulse Responses of Consumption to Income Shocks.

Empirical Impulse Responses, US

Figure: Impulse Responses of Hand-to-mouth to Income Shocks, One Stage.

Empirical Impulse Responses, Russia

Figure: Impulse Responses of Hand-to-mouth to Income Shocks, One Stage.