```
Treść zadań
a, b to liczby 2 bitowe
```

Zadanie 1

ojihulo.comkr.Eshinikkolsh.Shishinoldaniahuc ojihulo.comkr.Eshinikkolsh.Shishinoldaniahuc

Zadanie 1

В А	0	1	3	2
0	0	1	3	2
1	1	2	4	3
3	3	4	6	5
2	2	3	5	4

C

b_1b_0 a_1a_0	00	01	11	10
00	0	0	1	1
01	0	1	1	1
11	1	1	1	0
10	1	1	0	1

7

$$Z = \underline{a_1}\overline{b_1} + \underline{a_0}b_0 + \overline{a_1}b_1 + \underline{\overline{a_0}b_1}\overline{b_0} = \underline{a_1}\overline{b_1} + \underline{a_0}b_0 + \overline{a_1}b_1 + \overline{a_0}b_1\overline{b_0}1$$

$$= \overline{a_1}\overline{b_1} + \overline{a_0}\overline{b_0} + \overline{a_1}\overline{b_1} + \overline{\overline{a_0}b_1}\overline{b_0}1 = \overline{a_1} + b_1 + \overline{a_0} + \overline{b_0} + \overline{a_1} + \overline{b_1} + \overline{\overline{a_0}b_1} + \overline{\overline{b_0}1}$$

$$= \overline{a_1} + b_1 + \overline{a_0} + \overline{b_0} + \overline{a_1} + \overline{b_1} + \overline{\overline{a_0}b_1} + \overline{b_0}1$$

$$= \overline{a_1} + b_1 + \overline{a_0} + \overline{b_0} + \overline{a_1} + \overline{b_1} + \overline{\overline{a_0}b_1} + \overline{b_0}1$$

In the state of th

Schemat układu:

Zadanie 2

В А	0	1	3	2
0	0	0	0	0
1	0	1	3	2
3	0	3	9	6
2	0	2	6	4

 \mathbf{C}

b_1b_0 a_1a_0	00	01	11	10
00	1	1	1	1
01	1	0	1	0
11	1	1	1	1
10	1	0	1	0

Schemat układu:

				Kod					
Су	fra dzi	esiętna	a	Graya+3			Wattsa		
	0			0010			0000		
	1			0110			0001		
	2			0111			0011		
	3			0101			0010		
	4			0100					0110
	5			1100			1110		
	6			1101			1010		
	7			1111			1011		
	8			1110			1001		
	9			1010			1000		
Х3	X ₂	X ₁	x ₀	Z ₃	Z ₂	Z ₁	Z ₀		
0	0	1	0	0	0	0	0		
_									

X 3	X ₂	X ₁	X ₀	Z ₃	Z ₂	Z ₁	z _o
0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1
0	1	1	1	0	0	1	1
0	1	0	1	0	0	1	0
0	1	0	0	0	1	1	0
1	1	0	0	1	1	1	0
1	1	0	1	1	0	1	0
1	51	1	1	1	0	1	1
1	1	1	0	1	0	0	1
1	0	1	0	1	0	0	0

x_1x_0 x_3x_2	00	01	11	10			
00				0000			
01	0110	0010	0011	0001			
11	1110	1010	1011	1001			
10				1000			
				Z_3Z_4	$Z_2Z_1Z_0$		
$Z_3 = x_3$	3						
$Z_2 = \overline{x_1}$	$\overline{x_0} = \overline{\overline{x_1}}$	$\overline{\overline{x_0}} = \overline{x_1}$	$+x_0$				
$Z_1 = \overline{x_1}$	$x_0 = x_0 = x_0$	$\overline{\overline{x_1} + x_0}$	$=\overline{x_1}\overline{\overline{x_0}}$		1,54		
$Z_0 = x_2$	$x_1 = \overline{\overline{x_2}}$	$\overline{\overline{x_1}} = \overline{\overline{x_2}}$	$\overline{\vdash \overline{x_1}}$				
Schemat układu:							
X_3 Z_3 Z_4							

 $Z_3Z_2Z_1Z_0$

$$Z_3 = x_3$$

$$Z_2 = \overline{x_1} \, \overline{x_0} = \overline{\overline{\overline{x_1}} \, \overline{x_0}} = \overline{x_1 + x_0}$$

$$Z_1 = \overline{x_1} + x_0 = \overline{\overline{\overline{x_1}} + x_0} = \overline{x_1} \overline{x_0}$$

$$Z_0 = x_2 x_1 = \overline{x_2} \overline{x_1} = \overline{x_2} + \overline{x_1}$$

Schemat układu:

Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy wszystkie układy. Działały poprawnie. Układy kombinacyjne mają zastosowanie w sytuacjach, w których stan wejść determinuje stan wyjść. Są proste w projektowaniu i realizacji. Sprzęt dostępny w laboratorium jest odpowiedni do realizacji zadanych układów. Można korzystać z bramek NOR oraz NAND. Nie jest narzucone używanie

