自抗扰控制算法在发动机加力过渡态控制中的应用

张海波, 孙健国

(南京航空航天大学 能源与动力学院, 江苏 南京 210016)

摘 要:主要研究了航空发动机加力过渡态控制的新方法。在不改变原有发动机控制结构的基础上,提出了一种增广 LQR法(Ausmented Linear Quadratic regulator ALQR)综合 ADRC(Active Disturbance Rejection Control)干扰补偿控制的算法(简称 ALQR+ADRC)。该算法除了有原 ALQR控制所具备的强的消除静差能力之外,还兼具 ADRC优良的干扰补偿能力。通过模拟快速进入 /退出发动机加力过渡态过程,验证了该算法具有理想的控制效果,能够较好地协调加力燃油供给和喷口开张,在整个过渡态过程中对核心机工作有较小的影响。

关键词: 航空发动机; 加力状态; 过渡态控制; 自抗扰控制

中图分类号: V233.7 文献标识码: A 文章编号: 1001-4055(2010)02-0219-07

Application of active disturbance rejection controlmethod in aeroengines afterburning transition state control

ZHANG Haibo SUN Janguo

(Coll of Energy and power, Nan jing Univ of Aeronautics and Astronautics, Nan jing 210016 China)

Abstract A new method for Aero engines afterburning transition state control problem is studied. A new hybrid control structure which is an Augmented Linear Quadratic regulator combined with ADRC is proposed keeping the formal control structure for the engine unchanged. The new control system not only has the excellent static error elimination ability but also the ADRC strong disturbance compensation ability. The better transition state control effect is verified by the engine transition state simulation of entering into and withdrawing from the afterburning state, and the core engine work is slightly influenced due to the afterburner fuel and nozzle throat area coordinate operation in the process.

Keywords Aero engines Afterbuming state Transition state control Active disturbance rejection control

1 引 言

自抗扰控制(Active Disturbance Rejection Control, 以下简称 ADRC)是近年来兴起的一种新颖控制算法,它是由韩京清研究员首先提出并逐步推广应用^[12],其主旨思想是:通过微分跟踪器消除微分对高频干扰的放大作用,重新安排过渡过程,充分利用微分前馈的作用;通过扩张观测器,无需依赖模型,在线估计未知干扰和系统动态大小,从而可以实时地进行干扰和未知动态补偿,最大限度消除扰动和未知动态对指令跟踪的影响。自抗扰控制自出现以来,在工程实践上正在得到大量的应用^[3~6],同时在理论方

面,如在确定性系统渐进稳定性证明与不确定性系统的跟踪误差范围计算上也得到了较好的结果[7~9]。

航空发动机根据飞机任务要求工作在宽泛的包线区间内,同时工作状态也依据飞行员指令随时发生变化,如中间状态一加力一慢车状态的反复切换等,因此导致航空发动机强的非线性且始终承受复杂的外界扰动,因而其控制难度大。航空发动机闭环控制算法从采用常规 PD控制 [10 1] 开始,直至现今流行的自适应控制、鲁棒控制、智能控制(神经网络控制,模糊控制等)等先进控制算法,这些控制算法在航空发动机数字仿真 / 半物理仿真中的均有一定程度的应用 [12~15],后者进一步将发动机多回路耦合性及复杂

^{*} 收稿日期: 2009-03-06, 修订日期: 2009-07-20. 基金项目: 国家自然科学基金资助项目 (50576033)。

⁽C) 作为绝元(1976—). 男. 博士后。副教授Pu研究领域为航空发动机控制。 E-mail zh zhhia 163 com (C) 作为绝元(1976—). Hubishing House: Allrights reserved. —http://www.cnki.net

的未知动态和干扰纳入考虑,是极具优势和潜力的控 制手段,但在控制算法实现上要比 PID算法复杂许 多, 迄今仍少见其在航空发动机控制工程领域的实际 应用。 IQR控制是多变量鲁棒控制算法中的一种基 本的实用算法,设计简单而可靠,相比其它多变量控 制算法更易于实现,且具有良好的大包线 变状态鲁 棒性, 文献 [15] 基于发动机控制中遇到的实际问题 对基本 LQR方法做了改进,得到一种鲁棒性好兼具 强的静差消除能力的增广 LQR法, 且经过了大量数 字与半物理仿真的验证, 但由于该算法没有状态微分 的反馈信息,因此其超前抗干扰能力有限,尤其是在 发动机过渡态控制中(如进出加力/快推油门等)显 得控制能力不足。本文针对上述问题,提出了一种新 的控制策略 ALQR+ADRC方法. 即在 ALQR算法的 基础上,充分利用 ADRC的干扰超前补偿作用,同时 又不抛弃原有算法的控制品质,以此来解决发动机过 渡态控制问题。最后,针对发动机加力过渡态控制进 行了数字仿真,利用该算法实现了良好的发动机加 力过渡态控制: 即在增加加力燃油大幅增大推力或快 速退出加力的同时,保持对核心机的影响最小。

2 ALQR+ADRC控制算法

2 1 ADRC控制算法^[1]

2 1.1 概述

对于 ADRC控制,由可参阅的文献中得到,其算法基本由微分跟踪器(Tracking Differentiator ID)、扩张状态观测器(Extended State Observer ESO)、非线性状态误差组合(Nonlinear State Error Feedback-NLSEF组成。由 ADRC控制器构成的闭环系统如图 1所示:不失一般性,本文中均以二阶 SISO对象的ADRC控制器设计为例(高阶系统的结论可容易类推得到)。

Fg 1 Structure of ADRC

2 1.2 ADRC控制器设计 对于如下的被控对象

$$\begin{cases} \ddot{Y} = \ddot{Y} \\ \ddot{Y} = \dot{Y}, \ \ddot{Y}, \ \dot{Y}, \ \omega \ (\dot{Y}, \ \dot{Y}) + bu \end{cases}$$

$$\begin{cases} \ddot{Y} = \dot{Y} \\ \dot{Y} = \dot{Y} \end{cases}$$

$$(1)$$

对于式(1)可采用以下步骤获得 ADRC控制器,算法如下

StePl. 利用微分跟踪器 (TD), 安排过渡过程

$$\begin{cases} \frac{\mathbf{r}}{1} = \frac{\mathbf{r}}{2} \\ \frac{\mathbf{r}}{2} = \text{ than}(\mathbf{r} - \mathbf{r}, \mathbf{r}, \sigma_0, \mathbf{h}) \end{cases}$$
 (2)

SteI2,利用扩张状态观测器 (ESO),估计干扰和系统未知动态

$$\begin{cases}
e = y - y \\
y = y - k & \text{fal} & e m_0, & \text{h} \\
y = y - k & \text{fal} & e m_0, & \text{h} + k & \text{u} \\
y = -k & \text{fal} & e m_0, & \text{h}
\end{cases}$$
(3)

Stel³. 采用有效非线性组合(NLSEF), 形成最后的控制量

$$\begin{cases} e = f - y, & e = f - y, & e = f \text{ of } dt \\ u = (\sum_{i=1}^{3} f_{i} f_{i}$$

式中函数 $f_{\text{han}(\cdot)}$ 与 $f_{\text{al}(\cdot)}$ 分别为最速综合函数及组合非线性函数,函数具体表达式可详见文献[1]。

2.1.3 ADRC算法分析

(1) ADRC算法中的动态及干扰估计 将系统(1)增广为如下的形式

$$\begin{cases}
\overset{x}{1} = \overset{x}{2} \\
\overset{x}{2} = \overset{x}{3} + bu \\
\overset{x}{3} = \overset{x}{1}(\overset{x}{3}, \overset{x}{3}) \omega(\overset{x}{3}, \overset{x}{3}) \\
y = \overset{x}{1}
\end{cases}$$
(5)

由上可对式 (5)所表示的系统进行观测器的设计,其中待观测量为 ¾, ¾, ¾, 估计值为 ¼, ¾, ¾

$$\begin{cases}
e = y - y \\
y = y - k e \\
y = y - k e + bu \\
y = - k e
\end{cases}$$
(6)

引理 1^[8 9]: 对于式 (5), 若 ESO观测器为式 (6) 所表达的形式, 那么有如下结论

(a)若(ξ、ξω(t))精确可知,那么 ESO渐 (C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 进稳定,即有 ♀→ f(ト, ト, ω(ウ, ウ。

(b)若 $\{x, x, \omega(0, 0)\}$ 有界,那么系统估计误 差有界,且随着 4, 以 18值增加而减小。

(2) ADRC控制的动态及干扰补偿

引理 1的补充说明: 上面提及的式 (3)为式 (6)的 非线性变形,更宜于在强非线性与未知动态的情况下, 进行干扰的观测估计。

引理 2^[89]: 对于式 (1)所表示的系统, 若 ADRC 所得的控制输入 \有式(4)所表达的形式,那么对于 (1)、(3)、(4)组成的闭环系统有如下结论

(a)若 〔x, x, ω(t), t)精确可知, 那么系统渐 进稳定。

(b)若 f(x, x, ω(t), t)有界, 那么系统跟踪误 差有界,且随着 4, 以 18值增加而减小。

(3)上述算法的抗扰机理的简单分析

将式(4)中 叶人式(1)可得到

$$\S = \{ \S, \S, \omega(\S, \S) + b((\sum_{i=1}^{3} | fa|(\S, m, h) - \S)/\S)$$
 适当调节 $\S,$ 可使得 $\S \approx \S$ 综合引理 1 可以得到

$$\frac{x}{2} = (f(x, x, \omega(x, y - y) + \sum_{i=1}^{3} fai(x, m, h))$$

即闭环系统可近似等价为如下的闭环系统

$$\begin{cases} \overset{\star}{i} = u \\ u = \sum_{i=1}^{3} i \text{ fals } (e, m_{e_i}, h) \end{cases}$$
 (7)

显然,式(7)所表示的闭环系统,相当于仅对一个 开环系统为 辛二 进行控制, 因此控制输入 「可以方 便地调节实现,本文采用文献[1]中的非线性组合形式

$$u = \sum_{i=1}^{3} 1 \text{ fals } (e_i m_{e_i} h)$$

2 2 增广 LQR方法 (ALQR)^[15]

LQR方法的优势在于设计简单, 控制器阶次低 易干工程实现,且经过适当的增广处理(如本文采用 的 ALQR方法)可以消除稳态误差, 经过大量的数 字、半物理仿真验证、均证明其在航空发动机控制规 律设计中的有效性。以下为其简要设计过程。

设发动机基于某工作点的小偏差线性化模型 (含有执行机构模型)为

$$\begin{cases} x = Ax + Bu \\ y = Cx \end{cases}$$
 (8)

式中 x y u分别为 n m m维状态、输入及输出向量, A B C为话维矩阵。

那么对于系统(7),若采用如下的 ALQR算法

$$u = K_{\!\scriptscriptstyle K} \circ x + \frac{K_{\!\scriptscriptstyle e} \circ e}{s} \tag{9}$$

式中 K, K,可参照文献 [15]将式 (7)增广后,求解 相应的 Ricardo方程获得。

则式(8)、(9)组成的闭环系统渐进稳定,即系统 偏差 $\stackrel{c}{\longrightarrow} 0$ 。基于 ALQR方法设计的闭环系统框图 如图 2所示。

Fg 2 C bsed bop system designed by ALQR method

2 3 ALQR+ADRC算法

Stelly, ADRC算法参数设定: 微分跟踪器相关参 数 σ_0 , h 扩张滤波器增益 k i=1,2,3及非线性函 数曲线方次因子 m_s i=1,23,非线性组合函数中 方次因子 $m_i = 1, 2, 3$, 控制器增益 $\downarrow i = 1, 2, 3$, 控制输入线性增益估计与等参数的初步调试确定。

Step1. 根据式 (8)、(9)设计 AIQR控制器,并得到

$$u_{\!_{AIQR}} = \, K_{\!\scriptscriptstyle k} \circ \, x_{\! +} \frac{K_{\!\scriptscriptstyle k} \circ \, e}{s}$$

Step2 根据需要,为每个控制回路或其中部分回 路设计 ADRC补偿控制器 YDRC。

Stel3; 式(8)最终的控制器为

$$u = u_{ADR} + u_{ADRC}$$

Stelle. 根据仿真试验结果,重新调整 ADRC相关 参数。

AIQR+ADRC算法分析:

由式(9)可知,由于 AIQR方法得到的控制输入 没有含有状态的微分信息, 因此该算法本身决定了其 超前控制能力较弱,恰恰在这方面 ADRC的效果较 好,两者互为补充。

另一方面,ADRC通过扩张观测器 (ESO)实现了 对动态及干扰的估计,在 AIQR+ ADRC控制器中利 用这个估计进行了补偿设计,这显然是单纯的 ALQR 控制所不具备的。

ALQR+ADRC算法在发动机加力过渡态 控制中的数字仿真

、5C万直维矩阵。 (C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

发动机加力是借助发动机加力燃烧室中余气的 二次燃烧来获得额外推力的气动热力学过程,加力状态对于扩展飞机的飞行包线和机动能力具有重要意义。但加力过程若控制不当,可能会严重影响发动机核心机正常工作,尤其是进入、退出加力以及加力过程中的油门杆的迅速大幅度操作等过渡态控制中,若加力燃油供给与喉道面积控制配合不协调,很可能会

造成转速及落压比大幅波动等非正常情况的出现,甚至造成压缩部件喘振等严重后果。因此发动机加力状态控制在发动机调节控制中一直是重要研究内容。以下主要针对上述加力过程控制问题,采用本文提出的 AIQR+ADRC控制策略来实现良好的发动机加力过渡态控制,图 3 为某型发动机加力状态控制框图。

Fg 3 Cbsed pop engine system designed by ALQR + ADRC method

其中 WFB为主供油量, β 为尾喷口喉道面积, WFA为加力供油量, β 为然动机转速, π 为落压比, PIA 为油门杆角度, β 为燃烧室进口总压, β 为低压涡轮 出口总压, Γ 为风扇进口总温,下标 代表涡轮,下标 C 代表压气机,下标 代表风扇,下标 代表控制指令。

3 2 ALQR + ADRC控制器实现

3.2.1 ALQR + ADRC控制器结构确定

由于在加力过程中, 涡轮落压比的稳定很大程度上决定了核心机的工作稳定程度, 鉴于涡轮落压比与喷管喉道面积的调节相关性最大, 因此在不改变原有AIQR双回路(转速环与压比环, 控制结构的基础上, 采用此压比回路进行 ADRC补偿控制的结构设计方案, 如图 3所示。

3.2.2 ALQR控制器的设计

经过大量数字仿真验证。由于 AIQR方法在航空 发动机控制规律设计中具备良好的大包线范围 变状态鲁棒适应能力[15],因此可以直接在某个典型工作点进行控制器的设计而用于非线性部件级发动机模型全飞行包线的工作。这里采用了发动机设计点的小偏差状态变量模型的信息,以下是详细设计步骤

在 H=0 km Ma=0 中间状态,

 $\Rightarrow x = [\Delta \eta, \Delta \eta, \Delta WFB \Delta A]^{T},$

依据控制计划

 $u = \int \Delta WFB_r \Delta A_r \int_r^T$, (C)1994-2019 China Academic Journal Electronic Publishing

式中 △表示与基准值的偏差, 图 3中各参量用绝对量表示, 是与基准值叠加后得到的。

发动机小偏差线性模型为

A =

$$\begin{bmatrix} -0.8656 & 2.1790 & 0.1155 & 0.6258 \\ -0.0159 & -3.2800 & 0.5547 & 0.0916 \\ 0 & 0 & -10.0000 & 0 \\ 0 & 0 & 0 & -3.3339 \end{bmatrix}$$

$$\mathbf{B}_{\!\scriptscriptstyle{8}} = \!\! \left[egin{array}{ccc} 0 & 0 \ 0 & 0 \ 10 & 00 & 0 \ 0 & 3 & 333 \end{array}
ight.$$

或

$$C_s = \begin{bmatrix} 0 & 1.0000 & 0 & 0 \\ 0.0336 & 0.4418 & 0.0481 & 0.4365 \end{bmatrix}$$

根据 ALQR方法,当控制指令为 $\left[\begin{array}{c} n_{i_{j}} \pi \ \imath \cdot j \end{array} \right]^{T}$ 时可以得到

$$K_{x} = \begin{bmatrix} -4.7827 & -2.1531 & -0.1839 & -0.2927 \\ -1.6207 & -1.2450 & -0.0976 & -0.8559 \end{bmatrix}$$

$$K_{x} = \begin{bmatrix} 6.7102 & -3.473 \\ 3.4731 & 6.7102 \end{bmatrix}$$

或控制指令为 [η, π η] TH

$$K_x =$$

$$\begin{bmatrix} -0.0502 & -2.1952 & -0.1617 & -0.1480 \\ -0.1523 & -0.4055 & -0.0493 & -0.7618 \end{bmatrix}$$

$$K_{e} = \begin{bmatrix} 7.4485 & 1.2684 \\ -1.2684 & 7.4485 \end{bmatrix}$$

3.23 压比回路 ADRC补偿控制的设计

根据 1.1节中的设计步骤, 取 ADRC的参考输入 r= 0, 即期望在过渡态中落压比稳定, ADRC的输入 为 $y = \Delta \pi_t$,输出为 $u = \Delta A_r$.

根据文献 [1]的 ADRC控制器参数调整原则,得到 以下的压比回路 ADRC补偿控制器的相关参数设置:

C─1微分观测器 (TD)相关参数: 过程响应快速 性因子 $\sigma_0 = 5$, 仿真步长参数 h = 0.02.

C-2扩张状态观测器 (ESO)相关参数. 滤波器 增益. k = k = k = 1.0:

非线性 自(*)的曲线方次因子 $m_{q} = m_{q} = 0.25 m_{q} = 0.5$ C-3非线性组合(NLSEF)相关参数 控制器增益: $\frac{1}{3} = \frac{1}{3} = 0.1$, $\frac{1}{2} = 0.2$ 非线性 自(*)的曲线方次因子 $m_q = 0.6, m_2 = 1.2, m_3 = -0.5$

控制输入线性增益估计因子 b = 1.0

Set of PLA in the process of afterburning transition state

Fig 7 Change of fan speed in the process of afterburning transition state control with and without ADRC)

Fig. 5 Change of afterburner fuel in the process of a fterburning transition state control(with and without ADRC)

process of afterburning transition state

为了验证上面提出的控制器在发动机加力状态 控制中的效果,设计了加力过渡态控制的验证过程, 并有如下的结论 (不妨碍问题的论述,图中物理量均 采用了归一化量,即与设计点对应物理量的比值)。

(1)在 H=0 km, M=0条件下, 模拟一个迅速进 入加力→小加力→全加力→小加力→迅速退出加力 的过渡态过程:即由中间状态迅速推油门杆到全加力 状态,稳定一段时间后,由全加力状态迅速拉油门杆 到中间状态,该过程的 PIA指令设置见图 4所示。 图 5~图 9为仿真后所得到的相关物理量的变化情 况,其中图 5为加力燃油变化,图 6为涡轮落压比的 变化,图 7 图 8依次为风扇转速与压气机转速的过 程变化,图 9给出了过程中主燃烧室燃油供给与尾喷 口喉道面积开张情况。从以上的仿真结果明显可以 看出,在采用 ADRC补偿控制后,相比未采用(No ADRC)时,加力过渡态对核心机工作的不良影响有 了明显的改善,参见图 6 图 7以及图 9 而且由图 9 还可以看到,由于 ADRC的控制补偿作用,使得 A 的 动作与加力燃油供给(图 5)十分协调,充分说明了采 用本文提出的 ALQR+ADRC控制规律的有效性。

Fig 6 Change of turb in e pressure ratio in the process of afterburning transition state control with and without ADRC)

Fig. 8 Change of compressor speed in the Fig. 9 Change of WFB/A, in the process of a fterburning transition state control with and without ADRC)

control (with and without ADRC)

(C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(2)为了验证该控制策略在发动机其它工作状 态下的控制效果,在其它的包线点也进行了足够的、

大量的仿真验证。这里仅补充列出了在 H=10 km, Ma=0.8条件下的仿真结果,参见图 10~图 15.

Set of PLA in the process of afterburning transition state

Fig 11 Change of afterburner fuel in the process of afterburning transition state control(with and without ADRC)

Fig 12 Change of turb ine pressure ratio in the process of a fterburning transition state control with and without ADRC)

of afterburning transition state con tro (with and without ADRC)

process of afterburning transition state control(with and without ADRC)

Fig. 13 Change of fan speed in the process Fig. 14 Change of compressor speed in the Fig. 15 Change of WFB/A, in the process of a fterbuming transition state control (with and without ADRC)

结 论

通过上述研究,可以得出以下结论.

- (1)本文针对发动机加力状态过渡态控制问题, 提出了一种 ALQR+ ADRC的控制策略, 其优点是在 不改变原有发动机控制结构的基础上,加入压比回路 的 ADRC控制, 利用其优良的动态及干扰补偿能力 弥补 AIQR对干扰超前控制的不足。
- (2)数字仿真结果表明,所设计的 ALQR+ AD-RC控制策略在大的包线范围内均有良好效果,相比 单纯的 ALQR控制 在发动机过渡态控制品质方面有 了明显的改善,保证了发动机整个加力过渡态对核心 机工作影响最小。
- (3) ADRC参数的调整有一定的经验性, 有待于 依靠进一步研究,来设计一些可操作的数学计算算法, 针对对象模型动态与干扰大小确定参数调整范围。

参考文献:

 $24 \sim 31$.

- 韩京清. 自抗扰控制器及其应用[〕. 控制与决策, [2] 1998 13(1): 19~23
- Zhe Zuo Ya ping Dại Dong hai Li et al Active dis [3] turbance rejection control of toggle-motor coupling servo mechanism system 2008 WCICA 2008 Changains 7 th World Congress on Intelligent Control and Automation $2008 3429 \sim 3433$
- Qing Zheng Lili Dong A disturbance rejection based [4] control system design for Z-axis vibratory rate gyroscopes ICCA 2007 [C]. Guang thou EEE International Confer ence on Control and Automation, 2007, 2105 ~ 2110
- [5] 邵立伟, 廖晓钟, 张宇河, 基于时间尺度的感应电机自 抗扰控制器的参数整定[]. 控制理论与应用,2008 25(2): $205 \sim 209$.
- Bosheng Sun Zhiqiang Gao A DSP-based active disturb-[6] ance rejection control design for a 1-kW H-bridge DC-DC power converter []. IEEE Transactions on Industrial E $ectronics 2005 52(5) 1271 \sim 1277$
- ZhiqiangGao Active disturbance rejection control a par

- adism shift in feedback control system design G. Minneapolis American Control Conference 2006
- [8] Goforth F. J. Zhalang Gao. An active disturbance rejection control solution for hysteresis compensation [C].

 Washington American Control Conference 2008 2202 ~
 2208.
- [9] Dong Sun Comments on active disturbance rejection control [J]. EEE Transactions on Industrial Electionics 2007 54(6).
- [10] 樊思齐,徐芸华. 航空推进系统控制 [^M]. 西安: 西北 工业大学出版社, 1995
- [11] Sun Jianguọ Vasi [Vev V I [Vasov B Advanced multivariable control system of aeroengines D]. 北京: 北京航空航天大学出版社. 2005

- [12] Ching Fang Jianhua Ge H_{∞} control for turbofan engines [R]. AIA 98-4296
- [13] Kumar K Krishna Nilesh Kulkam i Inverse adaptive neuron control of a turbofan engine Ri. AIAA 99-3994
- [14] 王 曦,韩乃湘,李喜发,等.航空发动机鲁棒 H∞/PI 状态反馈控制[J]. 推进技术, 2003 24(4). (WANG Xi HAN Nai-xang LIXi fa et al Robust H∞/PI state feedback control for aeroenging J. Journal of Propulsion Technology 2003 24(4).)
- [15] 杨 刚,孙健国,李秋红.航空发动机控制系统中的增广 LQR方法[小,航空动力学报,2004 19(1):153~158

(编辑:张荣莉)

(上接第 209页)

4 结 论

通过本文的研究,可以得出以下结论:

- (1)零二次流引射器存在启动和不启动两种工作状态: 启动时, 引射喷管内气流完全膨胀, 扩压器管道内充满超声速气流, 真空舱压力不受引射器出口背压影响; 不启动时, 真空舱压力接近引射器出口背压, 引射喷管内产生斜激波, 气流不能完全膨胀。介于启动和不启动状态之间存在一个临界状态, 其对应的喷管入口气流总压 P_{+} 与引射器出口背压 P_{+} 之比被称为临界启动压比(P_{+} / P_{+})。。若引射器的 P_{+} / P_{+} 大于(P_{+} / P_{+})。,则引射器处于启动状态,否则处于不启动状态。
- (2)在引射喷管的结构参数和入口状态参数给定的情况下,扩压器入口面积与引射喷管喉部面积之比 A_{t}/A_{t} 是影响引射器性能的首要因素: A_{t}/A_{t} 起大,扩压器入口斜激波越强,总压损失越大,临界启动压比越大,越难以启动; A_{t}/A_{t} 越小(大于其临界收缩比),临界启动压比越小,越易于启动。 其次第二喉道长径比 I_{tt}/D_{t} 和第二喉道入口的位置 I_{tt}/D_{tt} I_{tt}/D_{tt} 必须满足管道内波系结构的长度要求,但过大也会带来不必要的摩擦损失; I_{tt}/D_{tt} D_{tt} D_{tt

和亚声速扩压段扩张角 β 对引射器性能的影响相对较小。

参考文献:

- [1] 李 纲. 固冲发动机高空模拟引射器设计与试验研究 [1]. 南京理工大学学报(自然科学版), 2008 32
- [2] Wang J J Chen F On the start condition of a second-throat ejector diffuser [J]. Aeronautica | Journa, 1996 100 (998).
- [3] Desevaux P. Lanzetta F. Computational fluid dynamic modeling of pseudo. shock inside a zero secondary flow e jector [J. AIAA Journal 2004 42(7).
- [4] Desevaux P. Marynowski T. Khan M. CFD prediction of supersonic ejectors performance [J]. International Journal of Turbo & Jet Engines 2006 23(3).
- [5] Ginoux J J Supersonic ejector [R]. AGARD-AG-163
- [6] Falin Chen, Liu C F, Yang J Y, Superson ic flow in the second. throat ejector diffuser system [J]. Journal of Spacecraft and Rockets 1994 31(1).
- [7] Hiroshi Miyajma Kazuo Kusaka Yukio Kuroda et al Effects of subsonic diffuser and nozzle contour on the per formance of zero_secondary_flow ejector R. NAL TR-493 1977.

(编辑:姚懿巧)