Groups and Rings - SF2729

Homework 2 (Rings)

Jim Holmström - 890503-7571

April 15, 2012

Exercise 1. Let $\sigma_m : \mathbb{Z} \to \mathbb{Z}_m$ be the natural homomorphism given by $\sigma_m(a) = a \pmod{m}$.

a. Show that $\overline{\sigma_m}: \mathbb{Z}[x] \to \mathbb{Z}_m[x]$ given by

$$\overline{\sigma_m}(a_0 + a_1 x + \dots + a_n x^n) = \sigma_m(a_0) + \sigma_m(a_1) x + \dots + \sigma_m(a_n) x^n$$
 (1)

is an homomorphism of $\mathbb{Z}\left[x\right]$ onto $\mathbb{Z}_{m}\left[x\right]$.

- b. Show that $degree(f(x) \in \mathbb{Z}[x]) = degree(\overline{\sigma_m}(f(x))) = n \bigwedge \overline{\sigma_m(f(x))}$ has no nontrivial factors in $\mathbb{Z}_m[x] \Rightarrow f(x)$ is irreducible in $\mathbb{Q}[x]$.
- c. Show that $x^3 + 17x + 36$ is irreducible in $\mathbb{Q}[x]$
- Solution. a. $\overline{\sigma_m}(f(x)+g(x)) = \overline{\sigma_m} \sum (f_i + g_i) x^i = \sum \overline{\sigma_m}(f_i + g_i) x^i = \sum (\overline{\sigma_m}(f_i) + \overline{\sigma_m}(g_i)) x^i = \overline{\sigma_m}(f(x)) + \overline{\sigma_m}(g(x))$ and $\overline{\sigma_m}(f(x)g(x)) = \overline{\sigma_m} (\sum (\sum f_i g_{n-i}) x^n) = \sum \overline{\sigma_m} (\sum f_i g_{n-i}) x^n = \sum (\sum \overline{\sigma_m}(f_i g_{n-i})) x^n = \sum (\sum \overline{\sigma_m}(f_i) \overline{\sigma_m}(g_{n-i})) x^n = \overline{\sigma_m}(f(x)) \overline{\sigma_m}(g(x))$ Which shows that $\overline{\sigma_m}$ is an homomorphism. $g(x) \in \mathbb{Z}_m[x] \text{ and } h(x) \in \mathbb{Z}[x] \text{ having the same coeffs but seen as in } \mathbb{Z} \text{instead of } x^n = x^n =$
 - $a(x) \in \mathbb{Z}_m[x]$ and $b(x) \in \mathbb{Z}[x]$ having the same coeffs but seen as in Zinstead of \mathbb{Z}_m with this we see that $\overline{\sigma_m}(a(x)) = b(x)$, so it is onto. \square
 - b. f = gh for $g, h \in \mathbb{Z}[x]$ where $degree(f) > degree(g) \land degree(f) > degree(h)$ Applying $\overline{\sigma_m}$ on $f : \overline{\sigma_m}(f) = \overline{\sigma_m}(g)\overline{\sigma_m}(h)$ is a factorization of $\overline{\sigma_m}$ into polynoms with a degree less then n of $\overline{\sigma_m}(f)$ which is a contradiction
 - $\Rightarrow f(x)$ is irreducible in $\mathbb{Z}[x]$
 - \Rightarrow (by Theorem 23.11) f(x) is irreducible in $\mathbb{Q}[x]$
 - c. Magically choosing m = 5 $\overline{\sigma_5}(x^3 + 17x + 36) = x^3 + 2x + 1$

By hand it's simple to show that:

$$(x^3 + 2x + 1)(\{-2, -1, 0, 1, 2\}) \neq 0$$
(2)

and by Theorem 23.10 irreducible over \mathbb{Z}_5 and by the findings in (b) we also have that $x^3 + 17x + 36$ is irreducible over \mathbb{Q}

Exercise 2. Let $f(X) = X^4 - X^2 + 1$. Prove that f(X) is irreducible in $\mathbb{Z}[X]$ and show that f(X) is reducible in $\mathbb{Z}_m[X]$ for $m = \{2, 3, 5\}$ by determining the factorization into a product of irreducible polynomials.

Solution.