计算机网络课程设计实验

2018秋《计算机网络与应用》

实验题目 (可选)

□ 题目一:

基于中央定位服务器的P2P网络聊天系统设计

□ 题目二:

Duckietown智能小车协调控制

实验概述及要求

- □ 实验目的
 - 考核学生对于计算机网络课程内容的掌握
 - 锻炼将所学知识应用于实际中的能力
- □ 实验要求
 - 根据题目编写程序,实现相应功能
 - 撰写实验设计报告
- □ 提交文件
 - 源程序、可执行程序、设计报告、Readme

实验概述及要求 (续)

□ 说明

- 独立完成,严禁抄袭
- 语言和开发环境不限
- 本次大作业在总成绩中占10分
- 报告提交截止时间: 2019年1月6日
- 提交的任何一项文件严禁抄袭,否则直接0分
 - □ 会抽查部分同学,现场修改代码

题目一: 基于中央定位服务器的P2P网络聊天系统设计

□ 服务器端由助教维护,不需同学完成

题目一: 基于中央定位服务器的P2P网络聊天系统设计

□ C-S通信

服务器地址: 166.111.140.14 端口: 8000			
通信类型	客户端发送指令	服务器返还指令	
登录	用户名:本人学号,密 码:net2018 例 : "2016011000_net2018"	"lol"	
查 询 好 友 状态	"q+好友学号" 例:"q2016011001"	IP 地 址 (在 线)/"n"(不在线)	
下线	"logout+本人学号" 例:"logout2016011000"	"loo"	

题目一: 基于中央定位服务器的P2P网络聊天系统设计

	功能	分值
必做内容	账号登陆上线/下线	2
	通讯录(查询好友是否在线)	1
	P2P通信	2
	文件传输(10MB以上)	1
	友好的用户界面	1
选做内容	群聊功能 (一对多通信)	1
	聊天记录查询	1
	语音发送/动态表情	1
	其他创新性的功能	1
其他	有明显bug	-1
	能否绿色运行	0.5

题目一:基于中央定位服务器的P2P网络聊天系统设计

- □ 实验注意
- 1. 设计文档
 - 需求分析、总体设计、详细设计、结果分析、总结、参考文献
 - 标明所做的选做内容
 - 报告中不要贴代码,画出流程图或状态机
- 2. Readme内容
 - 介绍提交的大作业中每个文件的作用
 - 提供可执行程序运行所需要的必要组件

题目一:基于中央定位服务器的P2P网络聊天系统设计

- □ 实验建议
- 1. 自行设计通信数据报格式(大文件发送)
- 2. 良好的程序架构
 - 与服务器交互模块、好友之间的客户端交互模块
 - 分开调试!
 - 服务器交互模块:编写一个简单的客户端程序,完成基本的与服务器连接功能,测试模块功能是否正常,然后再加入其它功能,比如登录界面等
 - 客户端交互模块:假设已知好友IP,测试模块功能是否正常

题目二: Duckietown智能小车协调控制

背景介绍:

在2016年春季,麻省理工学院(MIT)在研究生阶段开设了一个关于自主科学的新课程。这是一个专注于智能小车和高层自治的动手项目课程。其中所使用的智能小车平台便是Duckietown。目前,这一平台已经被全球四大洲的10余所高校引入,清华大学便是其中一所。

Duckietown网站: http://duckietown.mit.edu/

Duckiebot

题目二: Duckietown智能小车协调控制

- 1.实现单台小车的远程控制(14周末之前)
 - 通过远程通讯,远程实现小车的前后移动及转弯。
- 2.车辆跟随 (14-16周)
 - 图像的实时识别。
 - 根据目标小车上二维码的位置信息,实现实时的车辆跟随。
- 3.两套选择
 - 基于ROS平台编程实现
 - 提供封装好的小车系统,通过TCP/IP进 行通讯编程

Duckiebot

题目二: Duckietown智能小车协调控制

- □ 实验基础
 - 1. 提供Duckietown小车
 - 小车可借(需要登记,损坏照价赔偿)
 - 调试需要接入HDMI显示屏
 - 2. 调试场地
 - 预约调试时间(不少于20课时)
 - 地点:中央主楼501/李兆基地下二层

实验注意

- □ ROS参考文档: http://wiki.ros.org/
- □ 撰写设计文档
 - 需求分析、总体设计、详细设计、结果分析、总结、参考文献
 - 报告中不要粘贴大量代码,写出关键(伪)代码即可
- □ Readme内容
 - 介绍提交的大作业中每个文件的作用
 - 说明可执行程序运行所需要的必要组件,鼓励发布所需组件简单的可执行程序

祝大家实验顺利!

Q&A

助教 姜兆宇: zy-jiang14@mails.tsinghua.edu.cn

助教 韩广泓: hangh17@mails.tsinghua.edu.cn