7.1 Oblivious Transfer from Private Set Intersection

We can create the following scheme, for the given problem:

With this procedure we get the following truth table:

x_0	x_1	b	$0x_0$	$1x_1$	<i>b</i> 0	<i>b</i> 1	$ax_b := X \cap Y$	x_b
0	0	0	00	10	00	01	00	0
0	0	1	00	10	10	11	10	0
0	1	0	00	11	00	01	00	0
0	1	1	00	11	10	11	11	1
1	0	0	01	10	00	01	01	1
1	0	1	01	10	10	11	10	0
1	1	0	01	11	00	01	01	1
1	1	1	01	11	10	11	11	1

7.2 Private Set Intersection from Additively Homomorphic Encryption

7.2.1 A learns if P(y) = 0

Following the solution for a PSI algorithm for semi-honest adversaries by FREEDMAN, NISSIM and PINKAS, we can create the following protocol (REMIND: $P(y) = \prod_{x \in X} (x - y) = \sum_{i=0}^{n} \alpha_i \cdot y^i$):

7.2.2 A learns if $X \cap Y$

 \mathbb{B} will know execute its part for all $y \in Y$ and send $c_{y_1},...,c_{y_m}$ to \mathbb{A} , for which \mathbb{A} can check whether these are valid encryptions of $x \in X$ and therefore part of the set:

A(X)		B(Y)
Again compute all c_i encryptions of $P(y)$		
For $i = 0$ to n :		
$c_i = \text{AM-ENC}(pk, \alpha_i)$	$\stackrel{c_0,,c_n}{\longrightarrow}$	$r \leftarrow \mathbb{GF}(q)$
η πια Σινο (μι, ωμ)		For $i = 0$ to m :
		c_{y_i} is the encryption of $r \cdot P(y_i) + y_i$ as before
~	$c_{y_i},,c_{y_m}$	y_i 31
$C_{y} = \bigcup c_{y_{i}}$	· · · ·	
$S = \{\}$		
For each $c_v \in C_v$:		
$m = AM-DEC()sk, c_v$		
If $m \in X$:		
$S = S \cup \{m\}$		
Return S		

7.3 Secure 2-way AND using Oblivious Transfer

We can create the following scheme, for the given problem:

In this OTS y will be the index of which x_i , will be returned by the OTS, so if y=0 the value of x_0 will be returned, the sender \mathbb{A} , will input $x_0=0$ and $x_0=x$, where x is the chosen value from \mathbb{A} . This will lead to an output-behaviour of an AND-Operator.

In the end \mathbb{B} sends the returned value from the OTS to \mathbb{A} .