МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

T.C 1	U	_					
Kamenna	математической	KMUE	nuetuvu	TΤ	KOMILIOTEI	1 ULIV	Hame
тафедра	Matchathackon	KHOC	PHCIMKI	Y1	KOMITBIOTO	JIIDIA	mayn

ОТЧЕТ ПО ПРАКТИКЕ WORK10

ОТЧЕТ

Студента 3 курса 311 группы	
направления 02.03.02 — Фундаментальная информатика и и	нформационные
технологии	
факультета КНиИТ	
Забоева Максима Владиславовича	
Проверил	
Старший преподаватель	М. С. Портенко

СОДЕРЖАНИЕ

1	Усло	овие задачи	3
2	Прав	ктическая часть	4
	2.1	Метод прямоугольников	4
	2.2	Формула Симпсона	5
3	Резу	льтаты работы	6
	3.1	Характеристики компьютера	6
	3.2	Фото результатов	6

1 Условие задачи

Аналогично работе с ОМР выполните следующее задание через МРІ.

Реализуйте параллельные алгоритмы, использующие метод прямоугольников и формулу Симпсона для подсчета интегралов. Точные значения интегралов указаны для проверки численных вычислений. В случае, если в верхнем пределе интегрирования указан знак бесконечности, то в расчете необходимо заменить его на $10^6\,$

Вариант 6

2 Практическая часть

2.1 Метод прямоугольников

Код программы:

```
#include <iostream>
#include <mpi.h>
#include <time.h>
#include <cmath>
using namespace std;
double f(double x) {
       return ((1.0) / (x * x + 4 * x + 5));
double integral(const double a, const double b, const double h) {
        int i, n;
        double sum, res = 0; // локальная переменная для подсчета интеграла
        double x; // координата точки сетки
        n = (int)((b - a) / h); // количество точек сетки интегрирования
        sum = 0.0;
        int commsize;
        int rank;
        double Result;
        MPI_Init(NULL, NULL);
        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
        MPI_Comm_size(MPI_COMM_WORLD, &commsize);
        MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
        for (i = 0; i < n; i++)
                x = a + i * h + h / 2.0;
                sum += f(x) * h;
        // (in, out, count, type, op, номер главного процесса, коммуникатор)
        MPI_Reduce(&sum, &Result, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
        MPI_Finalize();
        return Result;
}
int main()
        double min_time; // минимальное время работы
        // реализации алгоритма
        double max_time; // максимальное время работы
        // реализации алгоритма
        double avg_time; // среднее время работы
        double res;
        double a = -1.0;
        double b = 1000000;
        double h = 0.1;
        int n = 6;
        min_time = clock();
        res = integral(a, b, h);
        max_time = clock();
        avg_time = (max_time - min_time) / CLOCKS_PER_SEC;
        cout << "execution time : " << avg_time << endl;</pre>
        cout.precision(8);
        cout << "integral value : " << res << endl;</pre>
        return 0;
}
```

2.2 Формула Симпсона

Код программы:

```
#include <iostream>
#include <mpi.h>
#include <time.h>
#include <cmath>
using namespace std;
double f(double x) {
        return ((1.0) / (x * x + 4 * x + 5));
double integral(const double a, const double b, const double h) {
        int k, n;
        double sum;
        double sum1 = 0.0;
        double sum2 = 0.0;
        n = (int)((b - a) / h);
        sum = 0.0;
        int commsize;
        int rank;
        double Result1, Result2;
        MPI_Init(NULL, NULL);
        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
        MPI_Comm_size(MPI_COMM_WORLD, &commsize);
        MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
        for (k = 1; k \le n; k++) {
                double sum_f_1 = a + ((2 * k - 1) * h);
                double sum_f_2 = a + (2 * k * h);
                sum1 += f(sum_f_1);
                if (k < n)
                        sum2 += f(sum_f_2);
        MPI_Reduce(&sum1, &Result1, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
        MPI_Reduce(&sum2, &Result2, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
        MPI_Finalize();
        sum = (h / 3.0) * ((f(a) + f(b) + (4.0) * sum1 + (2.0) * sum2));
        return sum;
}
int main()
        double min_time; // минимальное время работы
        // реализации алгоритма
        double max_time; // максимальное время работы
        // реализации алгоритма
        double avg_time; // среднее время работы
        double res;
        double a = -1.0;
        double b = 1000000;
        double h = 0.1;
        int n = 6;
        min_time = clock();
        res = integral(a, b, h);
        max_time = clock();
        avg_time = (max_time - min_time) / CLOCKS_PER_SEC;
        cout << "execution time : " << avg_time << endl;</pre>
        cout.precision(8);
        cout << "integral value : " << res << endl;</pre>
        return 0;
}
```

3 Результаты работы

3.1 Характеристики компьютера

Процессор — 12th Gen Intel Core i5-12600KF, Базовая скорость $3,70\Gamma\Gamma$ ц, Кол-во ядер 10, Кол-во процессоров 16 (включая 4 энергоэффективных ядра). 16гб Оперативной памяти, скорость $3200M\Gamma$ ц

3.2 Фото результатов

