UVOD V GEOMETRIJSKO TOPOLOGIJO: 1. TEST 30. 3. 2012

1. NALOGA (5 točk)

- a. Naj bo X metrični prostor in naj bo K kompaktna podmnožica v X. Dokaži, da je preslikava $C(X,\mathbb{R}) \to \mathbb{R}$, ki vsaki funkciji f priredi $\max_K f = \max(f(K))$, zvezna. Prostor $C(X,\mathbb{R})$ je opremljen s topologijo enakomerne konvergence na kompaktih.
- b. Naj bosta X in Y topološka prostora in naj bo $\varphi \colon Y \to \mathbb{R}$ zvezna funkcija. Dokaži, da je preslikava $\varphi_* \colon C(X,Y) \to C(X,\mathbb{R})$, definirana s predpisom $\varphi_*(f) = \varphi \circ f$, zvezna. Prostora C(X,Y) in $C(X,\mathbb{R})$ sta opremljena s kompaktno odprto topologijo.
- c. Privzemi, da ima topološki prostor Y tole lastnost: za vsako kompaktno množico L in vsako odprto okolico V množice L obstaja taka zvezna funkcija $\varphi \colon Y \to [0,1]$, za katero je $\varphi|_L \equiv 0$ in $\varphi|_{Y-V} \equiv 1$. Dokaži, da za vsako "točko" $f \in C(X,Y)$ in za vsako odprto okolico U za f obstaja taka zvezna funkcija $\Phi \colon C(X,Y) \to [0,1]$ za katero je $\Phi(f) = 0$ in $\Phi|_{C(X,Y)-U} \equiv 1$.

Rešitve oziroma odgovore utemelji.

2. NALOGA (5 točk)

- a. Naj bo topološki prostor X unija zaprtih podprostorov A in B z nepraznim presekom. Dokaži, da inkluzija $B \hookrightarrow A \cup B$ inducira homeomorfizem $B/A \cap B \to A \cup B/A$.
- b. Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientu S^2/S^2_- , kjer je S^2 enotska sfera v \mathbb{R}^3 in $S^2_- = S^2 \cap \mathbb{R}^2 \times (-\infty, 0]$.

Rešitve oziroma odgovore utemelji.

TEORETIČNA NALOGA (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (\mathbf{P}) oziroma napačna (\mathbf{N}) .

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Podbazna množica $G(K,V)$ (= $\langle K,V \rangle$) vsebuje natanko tiste funkcije $f\colon X\to Y$, za katere velja $f(x)\in V\iff x\in K.$
Kvocientni prostor $[0,1]/\{0,1\}$ je homeomorfen premici $\mathbb R$ (z običajno topologijo).
Topologija enakomerne konvergence na kompaktih in kompakt no odprta topologija na $C(X,Y)$ se ujemata, če je Y metrični prostor.
Prostor $C(X,\mathbb{R})$ s topologijo enakomerne konvergence na kompaktih je topološka algebra, če je X metrični prostor.
Vsaka podalgebra $\mathcal{A} \subset C(\mathbb{R}, \mathbb{R})$, ki vsebuje vse konstantne funkcije, loči točke na \mathbb{R} .
Za vsako zvezno funkcijo $f\colon\mathbb{R}\to\mathbb{R}$ obstaja tak polinom $p\colon\mathbb{R}\to\mathbb{R},$ da za $ x-1 \leqslant\sqrt{3}$ velja $ f(x)-p(x) <0,0001.$
Naj bo $f\colon X\to Y$ zvezna preslikava iz kompaktnega v Hausdorffov prostor. Tedaj je Y homeomorfen kvocientnemu prostoru prostora X po primerni relaciji.
Vsaka kvocientna projekcija je odprta ali pa zaprta preslikava.
Kvocientni prostor povezanega prostora je povezan prostor.
Naj bo $q: X \to X/\sim$ kvocientna projekcija. Vsaka zvezna preslikava $f: X \to Y$ inducira neko zvezno preslikavo $\bar{f}: X/\sim \to Y$ za katero velia $\bar{f} \circ g = f$ vendar \bar{f} v splošnem ni enolično določena