

Operating Systems (INFR10079) 2020/2021 Semester 2

Introduction (Operating Systems and Hardware)

abarbala@inf.ed.ac.uk

Computing Systems are Everywhere

Modern Computer System

Modern Computer System – PC Motherboard

What is an Operating System?

- A program that manages a computer's hardware
- A program that acts as an intermediary between the user of a computer and computer hardware
- A big program
 - "The Linux Kernel Enters 2020 At 27.8 Million Lines In Git But
 With Less Developers For 2019", 1 January 2020 at 09:14 AM EST
 - https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019

Operating Systems

Some Goals of Operating Systems

- Simplify the execution of user programs and make solving user problems easier
- Use computer hardware efficiently
 - Allow sharing of hardware and software resources
- Make application software portable and versatile
- Provide isolation, security and protection among user programs
- Improve overall system reliability
 - error confinement, fault tolerance, reconfiguration

The Traditional Picture

- "The OS is everything you don't need to write in order to run your application"
- Think OS as a library
 - In some ways, it is
 - all operations on I/O devices require OS calls (syscalls)
 - In other ways, it isn't
 - you use the CPU/memory without OS calls
 - it intervenes without having been explicitly called

https://en.wikipedia.org/wiki/File:Operating _system_placement.svg

What is OS? #1

NOTE there exist OSes that do not use modes, there is hardware that doesn't support modes

The OS and Hardware

- An OS mediates programs' access to hardware resources (sharing and protection)
 - computation (CPU)
 - volatile storage (memory) and persistent storage (disk, etc.)
 - network communications (TCP/IP stacks, Ethernet cards, etc.)
 - input/output devices (keyboard, display, sound card, etc.)
- The OS abstracts hardware into logical resources and welldefined interfaces to those resources (ease of use)
 - processes (CPU, memory)
 - files (disk)
 - sockets (network)

Why Bother with an OS?

Application benefits

- programming simplicity
 - see high-level abstractions (files) instead of low-level hardware details (device registers)
 - abstractions are reusable across many programs
- portability (across machine configurations or architectures)
 - device independence: 3com card or Intel card?

User benefits

- safety
 - program "sees" its own (virtual) machine, thinks it "owns" the computer
 - OS protects programs from each other
 - OS fairly multiplexes resources across programs
- efficiency (cost and speed)
 - share one computer across many users
 - concurrent execution of multiple programs

Hardware Recap: Devices

- To interact with the external world (e.g., with the user)
- Every device has a device controller, which
 - May move data to main memory, like the CPU(s)
 - Run in parallel to the CPU
 - Have buffers for data (thus, local memory)
- Operating Systems have device drivers per device controller

Hardware Recap: Interrupts

Hardware Recap: DMA

Hardware Recap: Storage Structure

Hardware Recap: Memory and CPU

Single-core

Multiprocessor

Multicore