

Compléments sur les polynômes

ours		
1	PGC	D de deux polynômes
	1.1	Définition du PGCD par les idéaux
	1.2	Algorithme d'Euclide
	1.3	Polynômes premiers entre eux
2	Un pe	eu d'arithmétique des polynômes
3	Polynômes irréductibles, décomposition en facteurs irréductibles	
	3.1	Définition
	3.2	Propriétés
	3.3	Exemples
	3.4	Décomposition en facteurs irréductibles
	3.5	Utilisation de la décomposition en facteurs irréductibles pour le calcul du PGCD
4	Annexes	
	4.1	PPCM de deux polynômes
	4.2	PGCD de plus de deux éléments
	4.3	Annexe : méthode de Horner pour l'évaluation polynomiale
	4.4	Rappel: interpolation de Lagrange
	4.5	Rappel: polynômes scindé
	4.6	Rappel: relations coefficients-racines
kercic		
Exe		et résultats classiques à connaître
		ions coefficients-racines
		ur des racines n -ièmes de l'unité
Exe	rcices o	łu CCINP
Exe	rcices	
Pot	ite prob	plàmes d'antrainement

Je me souviens

- 1. Que sont les polynômes?
- 2. Quelles sont les opérations sur les polynômes?
- 3. Que désigne $\mathbb{K}_n[X]$?
- 4. Énoncer le théorème de la division euclidienne dans $\mathbb{K}[X]$.
- 5. Qu'est-ce que la fonction polynomiale associée à P?
- 6. Parlons de racines d'un polynôme.
- 7. Qu'est-ce qu'un polynôme scindé?
- 8. Relations coefficients-racines.
- 9. Quels sont les idéaux de $\mathbb{K}[X]$?

Le programme se limite au cas où le corps de base \mathbb{K} est un sous-corps de \mathbb{C} . Typiquement \mathbb{R} , \mathbb{C} ou \mathbb{Q} .

1 PGCD de deux polynômes

1.1 Définition du PGCD par les idéaux

Lemme. Soit $A, B \in \mathbb{K}[X]$. Alors :

$$(A) + (B) = A\mathbb{K}[X] + B\mathbb{K}[X] = \{AU + BV, \ U, V \in \mathbb{K}[X]\}$$

est un idéal de $\mathbb{K}[X]$.

Définition. Soit $A, B \in \mathbb{K}[X]$ non tous les deux nuls. Alors il existe un unique polynôme unitaire D, appelé **PGCD** de A et B, tel que :

$$(A) + (B) = (D)$$
 i.e. $AK[X] + BK[X] = DK[X]$

Notation.

- On note $A \wedge B$ le PGCD de A et B.
- La relation $AU + BV = A \wedge B$ s'appelle **relation de Bézout**.

Proposition. Soit A, B deux polynômes non nuls. Les diviseurs communs à A et B sont les diviseurs de $A \wedge B$.

Remarque. On retrouve la définition de première année : $A \wedge B$ est le polynôme unitaire, de plus grand degré, qui divise à la fois A et B.

1.2 Algorithme d'Euclide

<u>Proposition.</u> Soit $A, B \in \mathbb{K}[X]$, supposés non nuls. En notant R le reste de la division euclidienne de A par B, on a :

$$A \wedge B = B \wedge R$$

Corollaire. L'analyse de l'algorithme d'Euclide permet de construire un couple (U, V) de polynômes satisfaisant la relation de Bézout.

1.3 Polynômes premiers entre eux

Définition. On dit que A et B sont premiers entre eux lorsque $A \wedge B = 1$.

Remarque. Deux polynômes sont premiers entre eux lorsque les seuls diviseurs communs sont les polynômes constants.

Théorème de Bézout.

Deux polynômes A et B sont premiers entre eux si et seulement s'il existe des polynômes U et V tels que :

$$AU + BV = 1$$

Proposition. Soit A, B deux polynômes non nuls, D un polynôme unitaire.

$$D = A \wedge B \iff \exists A_1, B_1 \in \mathbb{K}[X], \begin{cases} A = A_1D \text{ et } B = B_1D \\ A_1 \text{ et } B_1 \text{ sont premiers entre eux} \end{cases}$$

2 Un peu d'arithmétique des polynômes

Lemme de Gauss.

Soit $A, B, C \in \mathbb{K}[X]$. Si $A \mid BC$ et $A \land B = 1$, alors $A \mid C$.

Corollaire. Si $A \mid C$, $B \mid C$ et $A \land B = 1$, alors $AB \mid C$.

Si $A \wedge C = 1$ et $B \wedge C = 1$, alors $AB \wedge C = 1$. Corollaire.

3 Polynômes irréductibles, décomposition en facteurs irréductibles

3.1 **Définition**

Définition. Un polynôme P est dit irréductible s'il est non constant, et que ses seuls diviseurs sont les polynômes constants et les polynômes associés à P, i.e. les λP où $\lambda \neq 0$.

Analogie. Les polynômes irréductibles sont aux polynômes ce que les nombre premiers sont aux entiers.

3.2 **Propriétés**

Proposition. Un polynôme P est irréductible si et seulement s'il n'existe pas de factorisation P = AB où $0 < \deg(A) < \deg(P)$.

Proposition. Soit P irréductible, et Q quelconque. Alors soit $P \wedge Q = 1$, soit $P \mid Q$.

3.3 **Exemples**

Remarque. L'étude générale des polynômes irréductibles n'est pas au probramme. Seuls la description des irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$ est à connaître.

La description des irréductibles de $\mathbb{Q}[X]$ est, par exemple, très délicate.

Proposition.

- Dans $\mathbb{C}[X]$, les polynômes irréductibles sont les polynômes de degré 1.
- Dans $\mathbb{R}[X]$, les polynômes irréductibles sont les polynômes de degré 1, et ceux de degré 2 à discriminant < 0.

Remarque. $X^4 + 1$ n'a pas de racine réelle, mais ce n'est pas un irréductible de $\mathbb{R}[X]$.

3.4 Décomposition en facteurs irréductibles

Théorème.

Tout polynôme P non constant se décompose de façon unique (à l'ordre des facteurs près) sous la forme :

$$P = \lambda \prod_{i=1}^{k} P_i^{m_i}$$

où les P_i sont irréductibles unitaires, les m_i dans \mathbb{N}^* et λ le coefficient dominant de P.

Remarque. Cette décomposition s'écrit :

•
$$\operatorname{sur} \mathbb{C}[X] : P = \lambda \prod_{i=1}^{k} (X - a_i)^{m_i}$$

•
$$\operatorname{sur} \mathbb{C}[X] : P = \lambda \prod_{i=1}^{k} (X - a_i)^{m_i}$$

• $\operatorname{sur} \mathbb{R}[X] : P = \lambda \prod_{i=1}^{k} (X - a_i)^{m_i} \prod_{j=1}^{\ell} (X^2 + b_j X + c_j)^{n_j} \text{ où } b_j^2 - 4c_j < 0.$

3.5 Utilisation de la décomposition en facteurs irréductibles pour le calcul du PGCD

Proposition. Soit P,Q deux polynômes non nuls, que l'on décompose en facteurs irréductibles :

$$P = \lambda \prod_{i=1}^{k} P_i^{m_i} \text{ et } Q = \mu \prod_{i=1}^{k} P_i^{n_i}$$

Les P_i sont supposés irréductibles, unitaires, deux à deux distincts et les m_i, n_i sont des entiers éventuellement nuls. Alors :

$$\operatorname{pgcd}(P,Q) = \prod_{i=1}^{k} P_i^{\operatorname{Min}(m_i,n_i)}$$

<u>Proposition.</u> Soit P, Q deux polynômes non nuls, que l'on décompose en facteurs irréductibles. Alors P et Q sont premiers entre eux si et seulement s'il n'ont aucun facteur irréductible commun.

4 Annexes

4.1 PPCM de deux polynômes

Remarque. La notion de PPCM est beaucoup moins utilisée que celle de PGCD.

Définition. Soit A, B deux polynômes non nuls. Alors $I = (A) \cap (B)$ est un idéal de $\mathbb{K}[X]$, donc il existe un unique $M \in \mathbb{K}[X]$ unitaire tel que :

$$(A) \cap (B) = (M)$$

On l'appelle **PPCM de** A **et** B, et on le note $A \vee B$.

Proposition. Avec les mêmes notations, en notant $D = A \wedge B$, les deux polynômes AB et MD sont associés, c'est-à-dire égaux à un coefficient multiplicatif non nul près.

Proposition. Soit P,Q deux polynômes non nuls, que l'on décompose en facteurs irréductibles :

$$P = \lambda \prod_{i=1}^{k} P_i^{m_i} \text{ et } Q = \mu \prod_{i=1}^{k} P_i^{n_i}$$

Les P_i sont supposés irréductibles, unitaires, deux à deux distincts et les m_i, n_i sont des entiers éventuellement nuls. Alors :

$$ppcm(P,Q) = \prod_{i=1}^{k} P_i^{\text{Max}(m_i,n_i)}$$

4.2 PGCD de plus de deux éléments

<u>Définition</u>. Soit $A_1, \ldots, A_p \in \mathbb{K}[X]$ des polynômes non nuls. Considérons :

$$I = (A_1) + (A_2) + \dots + (A_p)$$

= $\{A_1U_1 + A_2U_2 + \dots + A_pU_p, U_1, \dots, U_p \in \mathbb{K}[X]\}$

Alors I est un idéal non nul de A, donc il existe un unique polynôme unitaire D tel que I = (D). On l'appelle le **PGCD** de (A_1, \ldots, A_n) .

Proposition. Les diviseurs communs à tous les A_i sont les diviseurs de D:

$$(\forall i, P \mid A_i) \iff D \mid \operatorname{pgcd}(A_1, \dots, A_p)$$

Associativité.

$$\operatorname{pgcd}(A_1, \dots, A_p, A_{p+1})$$

$$= \operatorname{pgcd}(\operatorname{pgcd}(A_1, \dots, A_p), A_{p+1})$$

 $\frac{ \mbox{\bf D\'efinition.}}{\mbox{\bf miers entre eux}} \mbox{ Les polyn\^omes } A_1, \dots, A_p \mbox{ sont pre-} \\ \mbox{\bf perce} (\mbox{dans leur ensemble}) \mbox{ lorsque} \\ \mbox{\bf pgcd}(A_1, \dots, A_p) = 1.$

Théorème de Bézout.

 A_1, \ldots, A_p sont **premiers entre eux** si et seulement s'il existe U_1, \ldots, U_p tels que :

$$A_1U_1 + \dots + A_pU_p = 1$$

Remarque. Attention, des polynômes peuvent être premiers entre eux dans leur ensemble, sans être premiers entre eux deux à deux.

Exemple. Donner le PGCD de (X - 2)(X - 3), (X - 2)(X - 5) et (X - 3)(X - 5).

4.3 Annexe : méthode de Horner pour l'évaluation polynomiale

```
# -*- coding:utf-8 -*-
from numpy.polynomial import Polynomial
X = Polynomial([0, 1])
P = 3*X**6 + 2*X**5 - 8*X**3 + X**2 + 30*X + 11
a = P.coef
print(a)
# [11. 30. 1. -8. 0. 2. 3.]
print(P(-2))
# 147.0
def evalue(a, t):
    """renvoie la valeur P(t) où P est le polynôme
       dont les coefficients sont dans a"""
   n = len(a)-1
   puiss = 1
   s = a[0]
   for k in range(0,n):
        \# en entrée de boucle, puiss est t^k,
        puiss *= t
        s += a[k+1] * puiss
   return s
```

```
print(evalue(a,-2))
# 147.0
def evalue2(a, t):
    """renvoie la valeur P(t) où P est le polynôme
       dont les coefficients sont dans a
       par la méthode de Horner """
    n = len(a)-1
    s = a[n]
    for k in range(0,n):
        # en entrée de boucle, s est
        # a_n t^k + a_{n-1} t^{k-1} + \dots + a_{n-k+1} t + a_{n-k}
        # c'est-à-dire \sum\limits_{i=1}^k a_{n-i}t^{k-i}
        s += a[n-k-1]
    return s
print(evalue2(a,-2))
# 147.0
# avec cette seconde fonction,
# le nombre de multiplications a été divisé par
2.
```

4.4 Rappel: interpolation de Lagrange

Théorème.

Soit $\alpha_0, \ldots, \alpha_n \in \mathbb{K}$ supposés deux à deux distincts, et $y_0, \ldots, y_n \in \mathbb{K}$. Il existe un unique polynôme $P \in \mathbb{K}_n[X]$ tel que :

$$\forall i \in \{0,\ldots,n\}, \ P(\alpha_i) = y_i$$

Preuve. On introduit:

$$\varphi: \mathbb{K}_n[X] \to \mathbb{K}^{n+1}$$

$$P \mapsto (P(\alpha_0), \dots, P(\alpha_n))$$

- L'évaluation en α_i est linéaire, donc φ est une application linéaire.
- Si P ∈ Ker φ, alors P ∈ K_n[X] et s'annule en (n + 1) points distincts, donc P = 0. On a montré que φ est injective.
- Comme $\dim \mathbb{K}_n[X] = n+1 = \dim \mathbb{K}^{n+1}$, on en déduit que φ est bijective.

Exercice. Soit $\alpha_0, \ldots, \alpha_n \in \mathbb{K}$ deux à deux distincts.

1. Pour $i \in \{0, ..., n\}$, déterminer l'unique polynôme $L_i \in \mathbb{K}_n[X]$ tel que :

$$L_i(\alpha_i) = 1$$
 et $L_i(\alpha_i) = 0$ pour $j \neq i$

2. Montrer que la famille (L_0, \ldots, L_n) est une base de $\mathbb{K}_n[X]$.

- 3. Donner les coordonnées d'un polynôme $P \in \mathbb{K}_n[X]$, dans cette base.
- 4. En déduire une autre démonstration du théorème précédent.

Solution.

1. Il y a une ambiguité dans la formulation de la question. Est-ce qu'il faut justifier cette unicité ?

Posons
$$L_i(X) = \frac{\prod\limits_{\substack{k=1 \ k\neq i}}^n (X - \alpha_k)}{\prod\limits_{\substack{k=1 \ k\neq i}}^n (\alpha_i - \alpha_k)}.$$

On remarque que les L_i conviennent.

Analyse. Supposons que L_i convienne. On sait que les $(\alpha_k)_{\substack{0 \leqslant k \leqslant n \\ k \neq i}}$ sont n racines distinctes de L_i de degré $\leqslant n$, donc il existe $\lambda \in \mathbb{K}$ tel que :

$$L_i(X) = \lambda \prod_{\substack{k=1\\k\neq i}}^n (X - \alpha_k)$$

Et comme $L_i(\alpha_i) = 1$, c'est que :

$$\lambda = \frac{1}{\prod\limits_{\substack{k=1\\k\neq i}}^{n}(\alpha_i-\alpha_k)}$$

Cela justifie l'unicité sous réserve d'existence, et donne l'expression (potentielle) de $L_i(X)$.

6/11 http://mpi.lamartin.fr 2024-2025

Synthèse. Posons
$$L_i(X) = \frac{\prod\limits_{k=1}^n (X - \alpha_k)}{\prod\limits_{\substack{k=1\\k \neq i}}^n (\alpha_i - \alpha_k)}$$
. Ils sont bien de degré $\leqslant n$, et satisfont la

2. • Montrons que (L_0, \ldots, L_n) est libre. Soit $\lambda_0, \ldots, \lambda_n \in \mathbb{K}$ tels que :

$$\underbrace{\lambda_0 L_0 + \dots + \lambda_n L_n}_{\sum_{i=0}^n \lambda_i L_i} = 0$$

En évaluant ce polynôme en α_j , on obtient :

$$0 = \sum_{i=0}^{n} \lambda_i L_i(\alpha_j)$$
$$= \sum_{i=0}^{n} \lambda_i \delta_{ij}$$
$$= \lambda_j$$

ce qui est vrai pour tout j, ce qui montre la liberté.

- Comme (L_0,\dots,L_n) est une famille libre à n+1 éléments dans $\mathbb{K}_n[X]$ de dimension n+1, c'est une
- 3. Soit $P \in \mathbb{K}_n[X]$. On cherche $\lambda_0, \ldots, \lambda_n \in \mathbb{K}$ tels que :

$$P = \sum_{i=0}^{n} \lambda_i L_i$$

En évaluant ce polynôme en α_j , on obtient :

$$P(\alpha_j) = \lambda_j$$

de sorte que :

$$P = \sum_{i=0}^{n} P(\alpha_i) L_i$$

Remarque. On a en particulier:

$$1 = \sum_{i=0}^{n} L_i$$

4. On sait que l'application qui, à un vecteur d'un e.v. de dimension finie, associé ses coordonnées dans une base fixée, est un isomorphisme.

4.5 Rappel: polynômes scindé

Définition. Un polynôme P est dit **scindé** lorsque tous les polynômes irréductibles qui figurent dans sa décomposition sont de degré 1 :

$$P = \lambda \prod_{i=1}^{k} (X - a_i)^{m_i}$$

Proposition. P est scindé si et seulement si le nombre de ses racines, comptées avec multiplicité, est égal à $\deg(P)$.

Théorème de d'Alembert-Gauss.

Tout polynôme de $\mathbb{C}[X]$ est scindé.

Proposition. Dans $\mathbb{C}[X]$, $A \mid B$ si et seulement si, pour tout racine a de A de multiplicité m, a est racine de B avec un multiplicité $\geqslant m$.

Proposition. Soit $P \in \mathbb{R}[X]$ et $z \in \mathbb{C} \setminus \mathbb{R}$ une racine de P de multiplicité m. Alors \overline{z} est racine de Pde multiplicté m.

4.6 Rappel: relations coefficients-racines

Proposition. Soit

$$P = aX^{2} + bX + c = a(X - x_{1})(X - x_{2})$$

un polynôme scindé de degré 2, $a \neq 0$. Alors :

$$x_1 + x_2 = -\frac{b}{a}$$
 et $x_1 x_2 = \frac{c}{a}$

Proposition. Si x_1, x_2 satisfont $\begin{cases} x_1 + x_2 = s \\ x_1 x_2 = p \end{cases}$ alors ce sont les racines du polynôme $X^2 - sX + n$

<u>Définition.</u> Soit $P = \sum_{i=0}^{n} a_i X^i$ un polynôme scindé, x_1, \ldots, x_n ses racines (répétées si elles sont multiples). On appelle fonctions symétriques élémentaires de x_1, \ldots, x_n les quantités :

$$\sigma_{1} = x_{1} + \dots + x_{n}$$

$$\sigma_{2} = x_{1}x_{2} + \dots + x_{1}x_{n} + x_{2}x_{3} + \dots + x_{n-1}x_{n}$$

$$\vdots$$

$$\sigma_{n-1} = x_{1} \dots x_{n-1} + x_{1} \dots x_{n-2}x_{n} + \dots + x_{2} \dots x_{n-1}$$

$$\sigma_{n} = x_{1} \dots x_{n}$$

c'est-à-dire:

$$\sigma_k = \sum_{\substack{i_1, \dots, i_k \in \{1, \dots, n\} \\ i_1 < i_2 < \dots < i_k}} x_{i_1} x_{i_2} \dots x_{i_n}$$

Remarque. Ce sont des fonctions symétriques : si on $\underline{\text{m\'elange les } x_i, \text{ on ne change pas les } \sigma_k.}$

Remarque. σ_k est la somme de tous les produits de ktermes pris parmi x_1, \ldots, x_n .

Théorème.

$$\sigma_1 = -\frac{a_{n-1}}{a_n}$$
 et $\sigma_n = (-1)^n \frac{a_0}{a_n}$

Remarque. Il faut savoir retrouver :

$$\sigma_k = (-1)^k \frac{a_{n-k}}{a_n}$$

Exercices et résultats classiques à connaître

Relations coefficients-racines

13.1

Soit $n \in \mathbb{N}^*$ et $P = (X+1)^n - (X-1)^n$.

- (a) Déterminer le coefficient dominant et le degré de P.
- (b) Montrer que les racines complexes de P sont des racines simples.
- (c) Préciser le produit et la somme des racines de P.
- (d) Déterminer explicitement les racines de P.

Autour des racines n-ièmes de l'unité

13.2

Soit $n \in \mathbb{N}^*$.

- (a) Décomposer $X^n 1$ en facteurs irréductibles dans $\mathbb{C}[X]$.
- (b) Décomposer $X^n 1$ en facteurs irréductibles dans $\mathbb{R}[X]$.

Exercices du CCINP

13.3

- 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - (a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $(1, X a, (X a)^2, \dots, (X a)^n)$.
 - (b) Soit $r \in \mathbb{N}^*$. En déduire que : a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in \llbracket 0, r-1 \rrbracket$, $P^{(k)}(a) = 0$.
- 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.

13.4

Soient a_0, a_1, \dots, a_n , n+1 réels deux à deux distincts.

1. Montrer que si b_0, b_1, \dots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

$$\deg P \leqslant n \text{ et } \forall i \in [0, n], P(a_i) = b_i.$$

2. Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k , lorsque :

$$\forall i \in [0, n], \quad b_i = \left\{ \begin{array}{ll} 0 & \text{si} & i \neq k \\ 1 & \text{si} & i = k \end{array} \right.$$

3. Prouver que $\forall p \in \llbracket 0, n \rrbracket$, $\sum_{k=0}^{n} a_k^p L_k = X^p$.

13.5

 \mathbb{K} désigne le corps des réels ou celui des complexes. Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ est un isomorphisme d'espaces vectoriels.
- 2. On note (e_1,e_2,e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1,2,3\}, L_k = \Phi^{-1}(e_k)$.
 - (a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. **Application** : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Exercices

13.6

- (a) Montrer que $X^2 + X + 1$ divise $X^{10} + X^5 + 1$.
- (b) Montrer que $X^3 X^2 + 1$ et $X^2 2X + 2$ sont premiers entre eux.

13.7

Soit λ, μ deux éléments distincts de \mathbb{K} , et $P \in \mathbb{K}[X]$.

- (a) Exprimer en fonction de P le reste de la division de P par $(X-\lambda)(X-\mu)$.
- (b) Exprimer en fonction de P le reste de la division de P par $(X \lambda)^2$.

13.8

Soit $n \in \mathbb{N}^*$.

- (a) Décomposer X^n-1 en facteurs irréductibles dans $\mathbb{C}[X]$.
- (b) Décomposer $X^n 1$ en facteurs irréductibles dans $\mathbb{R}[X]$.

13.9

Déterminer les polynômes P vérifiant :

$$P(X+1) = P(X)$$

13.10

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ un polynôme à coefficients entiers, tel que $a_n \neq 0$ et $a_0 \neq 0$.

- (a) On suppose que P admet une racine rationnelle $r = \frac{p}{q}$ exprimée sous forme irréductible. Montrer que $p \mid a_0$ et $q \mid a_n$.
- (b) Factoriser dans $\mathbb{R}[X]$:

$$P = 2X^3 - X^2 - X - 3$$

Petits problèmes d'entrainement

13.11

Soit $n \in \mathbb{N}$.

- (a) Déterminer le PGCD des polynômes $(X^n 1)$ et $(X 1)^n$.
- (b) Montrer l'existence de U, V polynômes tels que :

$$(X^3 - 1)U + (X - 1)^3V = (X - 1)$$

et déterminer explicitement de tels polynômes.

13.12

Montrer que, pour tout $a, b \in \mathbb{N}^*$:

$$b \mid a \iff X^b - 1 \mid X^a - 1$$

13.13

Soit P un polynôme réel non constant.

- (a) On suppose que P est scindé à racines simples. Montrer que P' est aussi scindé.
- (b) Montrer que le résultat perdure même si les racines de P ne sont pas simples.
- (c) Le polynôme $X^6 X + 1$ est-il scindé sur \mathbb{R} ?

13.14

Soit $n \in \mathbb{N}$ et $f_n : [-1,1] \to \mathbb{R}$ définie par :

$$f_n(x) = \cos(n \operatorname{Arccos} x)$$

- (a) Soit $x \in [-1, 1]$. Simplifier les expressions $f_0(x)$, $f_1(x)$, $f_2(x)$. Exprimer $f_{n+1}(x) + f_{n-1}(x)$ en fonction de $f_n(x)$, et donner $f_3(x)$.
- (b) Montrer qu'il existe un unique polynôme $T_n \in \mathbb{R}[X]$ dont la fonction polynomiale associée coïncide avec f_n sur [-1,1].
- (c) Donner le degré de T_n ainsi que son coefficient dominant.
- (d) Montrer que T_n possède n racines distinctes, toutes dans]-1,1[.

13.15

Pour $n \in \mathbb{N}$, on pose :

$$L_n = \frac{n!}{(2n)!} \frac{d^n}{dX^n} ((X^2 - 1)^n)$$

- (a) Montrer que L_n est un polynôme unitaire, de degré n.
- (b) Vérifier que, pour tout $Q \in \mathbb{R}_{n-1}[X]$:

$$\int_{-1}^{1} L_n(t)Q(t) \, \mathrm{d}t = 0$$

(c) En déduire que L_n possède n racines simples, toutes dans l'intervalle]-1,1[.

13.16

Soit $a \in \mathbb{R}$, $n \in \mathbb{N}^*$ et $P = (X+1)^n - e^{2ina}$.

- (a) Déterminer les racines du polynôme P_n , ainsi que leurs multiplicités.
- (b) En déduire la valeur de :

$$\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$$

13.17

Soit $P \in \mathbb{K}[X]$. Montrer que :

$$P(X) - X \mid P(P(X)) - X$$

13.18

Soit $a \in]0, \pi[$ et $n \in \mathbb{N}^*$. Décomposer en facteurs irréductibles de $\mathbb{R}[X]$:

$$X^{2n} - 2\cos(a)X^n + 1$$

13.19

On veut montrer que π est irrationel. On raisonne par l'absurde en supposant que $\pi = \frac{a}{b}$ avec $a, b \in \mathbb{N}^*$. Pour $n \in \mathbb{N}$, on définit :

$$P_n = \frac{1}{n!} X^n (bX - a)^n \text{ et } I_n = \int_0^{\pi} P_n(t) \sin t \, dt$$

- (a) Montrer que P_n et ses dérivées successives prennent des valeurs entières en 0.
- (b) Établir la même propriété en $\pi = \frac{a}{b}$.

- (c) Montrer que la suite $(I_n)_n$ tend vers 0.
- (d) Conclure en observant que I_n est un entier.

13.20

Soit $n \in \mathbb{N}$. En étudiant la dérivée n-ème de X^{2n} , établir :

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

13.21

On considère la suite de polynômes $(F_n)_{n\in\mathbb{N}}$ définie par :

$$F_0 = 0, F_1 = 1 \text{ et } \forall n \in \mathbb{N}, F_{n+2} = XF_{n+1} + F_n$$

- (a) Vérifier que, pour tout n, F_n et F_{n+1} sont premiers entre eux.
- (b) Soit $k \in \mathbb{N}^*$. Montrer que:

$$\forall n \in \mathbb{N}, \ F_{k+n} = F_k F_{n+1} + F_{k-1} F_n$$

On fixe $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

(c) Montrer que :

$$F_{a+b} \wedge F_b = F_a \wedge F_b$$

(d) Conclure:

$$F_a \wedge F_b = F_{a \wedge b}$$