Title

D. Zack Garza

Contents

Contents

1	Basi	ics	3
	1.1	Useful Techniques	3
	1.2	Definitions	4
	1.3	Theorems	6
		1.3.1 Topology / Sets	6
		1.3.2 Functions	7
	1.4	Uniform Convergence	
		1.4.1 Series	0
	1.5	Commuting Limiting Operations	1
	1.6	Slightly Advanced Stuff	2
	1.7	Examples	2

Contents 2

Basics

Notation:

• $||f||_{\infty} \coloneqq \sup_{x \in \text{dom}(f)} |f(x)|$

•
$$||f||_{L^{\infty}} := \inf \left\{ M \ge 0 \mid |f(x)| \le M \text{ for a.e. } x \right\}.$$

1.1 Useful Techniques

- General advice: try swapping the orders of limits, sums, integrals, etc.
- Limits:
 - Take the lim sup or lim inf, which always exist, and aim for an inequality like

$$c \le \liminf a_n \le \limsup a_n \le c$$
.

 $-\lim f_n = \lim \sup f_n = \lim \inf f_n$ iff the limit exists, so to show some g is a limit, show

$$\limsup f_n \le g \le \liminf f_n \qquad (\implies g = \lim f).$$

- A limit does *not* exist if $\liminf a_n > \limsup a_n$.
- Sequences and Series
 - If f_n has a global maximum (computed using f'_n and the first derivative test) $M_n \to 0$,
 - then $f_n \to 0$ uniformly. For a fixed x, if $f = \sum f_n$ converges uniformly on some $B_r(x)$ and each f_n is continuous at x, then f is also continuous at x.
- Equalities
 - Split into upper and lower bounds:

$$a = b \iff a \le b \text{ and } a \ge b.$$

- Use an epsilon of room:

$$a < b + \varepsilon \, \forall \varepsilon \implies a < b.$$

- Showing something is zero:

$$|a| \le \varepsilon \, \forall \varepsilon \implies a = 0.$$

- Simplifications:
 - To show something for a measurable set, show it for bounded/compact/elementary sets/

Basics 3

- To show something for a function, show it for continuous, bounded, compactly supported, simple, indicator functions, L^1 , etc
- Replace a continuous sequence $(\varepsilon \to 0)$ with an arbitrary countable sequence $(x_n \to 0)$
- Intersect with a ball $B_r(\mathbf{0}) \subset \mathbb{R}^n$.
- Integrals
 - Break up $\mathbb{R}^n = \{|x| \le 1\} \prod \{|x| > 1\}.$
 - Break up into $\{f > g\} \coprod \overline{\{f = g\}} \coprod \{f < g\}.$
 - Tail estimates!
- Continuity / differentiability: show it holds on [-M, M] for all M to get it to hold on \mathbb{R} .

1.2 Definitions

Definition 1.2.1 (Uniform Continuity)

f is uniformly continuous iff

$$\forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

$$\iff \forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |y| < \delta \implies |f(x - y) - f(y)| < \varepsilon.$$

Definition 1.2.2 (Nowhere Dense Sets)

A set S is **nowhere dense** iff the closure of S has empty interior iff every interval contains a subinterval that does not intersect S.

Proposition 1.2.1 (Meager Sets).

A set is **meager** if it is a *countable* union of nowhere dense sets.

Definition 1.2.3 (F_{σ} and G_{δ} Sets)

An F_{σ} set is a union of closed sets, and a G_{δ} set is an intersection of opens. ^a

^aMnemonic: "F" stands for *ferme*, which is "closed" in French, and σ corresponds to a "sum", i.e. a union.

Theorem 1.2.1 (Heine-Cantor).

Every continuous function on a compact space is uniformly continuous.

Definition 1.2.4 (Limsup/Liminf)

1.2 Definitions 4

$$\limsup_{n} a_n = \lim_{n \to \infty} \sup_{j \ge n} a_j = \inf_{n \ge 0} \sup_{j \ge n} a_j$$
$$\liminf_{n} a_n = \lim_{n \to \infty} \inf_{j \ge n} a_j = \sup_{n \ge 0} \inf_{j \ge n} a_j.$$

Definition 1.2.5 (Topological Notions)

Let X be a metric space and A a subset. Let A' denote the limit points of A, and $\overline{A} := A \cup A'$ to be its closure.

- A **neighborhood** of p is an open set U_p containing p.
- An ε -neighborhood of p is an open ball $B_r(p) := \{q \mid d(p,q) < r\}$ for some r > 0.
- A point $p \in X$ is an **accumulation point** of A iff every neighborhood U_p of p contains a point $q \in Q$
- A point $p \in X$ is a **limit point** of A iff every punctured neighborhood $U_p \setminus \{p\}$ contains a point $q \in A$.
- If $p \in A$ and p is not a limit point of A, then p is an **isolated point** of A.
- A is **closed** iff $A' \subset A$, so A contains all of its limit points.
- A point $p \in A$ is **interior** iff there is a neighborhood $U_p \subset A$ that is strictly contained in A.
- A is **open** iff every point of A is interior.
- A is **perfect** iff A is closed and $A \subset A'$, so every point of A is a limit point of A.
- A is **bounded** iff there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in A$.
- A is **dense** in X iff every point $x \in X$ is either a point of A, so $x \in A$, or a limit point of A, so $x \in A'$. I.e., $X \subset A \cup A'$.
 - Alternatively, $\overline{A} = X$, so the closure of A is X.

1.2 Definitions 5

1.3.1 Topology / Sets

Lemma 1.1(?).

Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a convergent subsequence).

Proposition 1.3.1(?).

The unit ball in C([0,1]) with the sup norm is not compact.

Proof (?).

Take $f_k(x) = x^n$, which converges to $\chi(x = 1)$. The limit is not continuous, so no subsequence can converge.

Proposition 1.3.2(?).

A finite union of nowhere dense is again nowhere dense.

Proposition 1.3.3 (Convergent Sums Have Small Tails).

$$\sum a_n < \infty \implies a_n \to 0 \text{ and } \sum_{k=N}^{\infty} a_n \stackrel{N \to \infty}{\to} 0$$

Theorem 1.3.1 (Heine-Borel).

 $X \subseteq \mathbb{R}^n$ is compact $\iff X$ is closed and bounded.

Proposition 1.3.4 (Geometric Series).

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \iff |x| < 1.$$

Corollary 1.3.1(?).

$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1.$$

1.3 Theorems 6

Lemma 1.2(?).

The Cantor set is closed with empty interior.

Proof(?).

Its complement is a union of open intervals, and can't contain an interval since intervals have positive measure and $m(C_n)$ tends to zero.

Corollary 1.3.2(?).

The Cantor set is nowhere dense.

Lemma 1.3(?).

Singleton sets in \mathbb{R} are closed, and thus \mathbb{Q} is an F_{σ} set.

Theorem 1.3.2(Baire).

 \mathbb{R} is a **Baire space** (countable intersections of open, dense sets are still dense). Thus \mathbb{R} can not be written as a countable union of nowhere dense sets.

Lemma 1.4(?).

Any nonempty set which is bounded from above (resp. below) has a well-defined supremum (resp. infimum).

1.3.2 Functions

Proposition 1.3.5 (Existence of Smooth Compactly Supported Functions).

There exist smooth compactly supported functions, e.g. take

$$f(x) = e^{-\frac{1}{x^2}} \chi_{(0,\infty)}(x).$$

Lemma 1.5(?).

There is a function discontinuous precisely on \mathbb{Q} .

Proof (?).

 $f(x) = \frac{1}{n}$ if $x = r_n \in \mathbb{Q}$ is an enumeration of the rationals, and zero otherwise. The limit at every point is 0.

1.3 Theorems

Proposition 1.3.6(?).

There do not exist functions that are discontinuous precisely on $\mathbb{R} \setminus \mathbb{Q}$.

Proof (?).

 D_f is always an F_σ set, which follows by considering the oscillation ω_f . $\omega_f(x) = 0 \iff f$ is continuous at x, and $D_f = \bigcup_n A_{\frac{1}{n}}$ where $A_\varepsilon = \{\omega_f \ge \varepsilon\}$ is closed.

Proposition 1.3.7(?).

A function $f:(a,b)\to\mathbb{R}$ is Lipschitz $\iff f$ is differentiable and f' is bounded. In this case, $|f'(x)|\leq C$, the Lipschitz constant.

1.4 Uniform Convergence

Definition 1.4.1 (Uniform Convergence)

$$(\forall \varepsilon > 0) (\exists n_0 = n_0(\varepsilon)) (\forall x \in S) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$

Negated:^a

$$(\exists \varepsilon > 0) (\forall n_0 = n_0(\varepsilon)) (\exists x = x(n_0) \in S) (\exists n > n_0) (|f_n(x) - f(x)| \ge \varepsilon).$$

Compare this to the definition of pointwise convergence:

Definition 1.4.2 (Pointwise Convergence)

$$(\forall \varepsilon > 0)(\forall x \in S) (\exists n_0 = n_0(x, \varepsilon)) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$

Proposition 1.4.1 (Testing Uniform Convergence: The Sup Norm).

 $f_n \to f$ uniformly iff there exists an M_n such that $||f_n - f||_{\infty} \leq M_n \to 0$.

Negating: find an x which depends on n for which $||f_n||_{\infty} > \varepsilon$ (negating small tails) or $||f_n - f_m|| > \varepsilon$ (negating the Cauchy criterion).

1.4 Uniform Convergence

^aSlogan: to negate, find a bad x depending on n_0 that are larger than some ε .

Proposition 1.4.2(?).

The space X = C([0,1]), continuous functions $f:[0,1] \to \mathbb{R}$, equipped with the norm

$$||f||_{\infty} \coloneqq \sup_{x \in [0,1]} |f(x)|$$

is a **complete** metric space.

Proof.

1. Let $\{f_k\}$ be Cauchy in X.

2. Define a candidate limit using pointwise convergence:

Fix an x; since

$$|f_k(x) - f_i(x)| \le ||f_k - f_k|| \to 0$$

the sequence $\{f_k(x)\}\$ is Cauchy in \mathbb{R} . So define $f(x) := \lim_k f_k(x)$.

3. Show that $||f_k - f|| \to 0$:

$$|f_k(x) - f_j(x)| < \varepsilon \ \forall x \implies \lim_j |f_k(x) - f_j(x)| < \varepsilon \ \forall x$$

Alternatively, $||f_k - f|| \le ||f_k - f_N|| + ||f_N - f_j||$, where N, j can be chosen large enough to bound each term by $\varepsilon/2$.

4. Show that $f \in X$:

The uniform limit of continuous functions is continuous.

Note: in other cases, you may need to show the limit is bounded, or has bounded derivative, or whatever other conditions define X.

Theorem 1.4.1 (Uniform Limit Theorem).

If $f_n \to f$ pointwise and uniformly with each f_n continuous, then f is continuous. a

^aSlogan: a uniform limit of continuous functions is continuous.

Proof . • Follows from an $\varepsilon/3$ argument:

$$|F(x) - F(y)| \le |F(x) - F_N(x)| + |F_N(x) - F_N(y)| + |F_N(y) - F(y)| \le \varepsilon \to 0.$$

- The first and last $\varepsilon/3$ come from uniform convergence of $F_N \to F$.
- The middle $\varepsilon/3$ comes from continuity of each F_N .
- So just need to choose N large enough and δ small enough to make all 3 ε bounds hold.

1.4 Uniform Convergence

9

Proposition 1.4.3 (Uniform Limits Commute with Integrals).

If $f_n \to f$ uniformly, then $\int f_n = \int f$.

1.4.1 Series

Proposition 1.4.4(p-tests).

Let *n* be a fixed dimension and set $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$.

$$\sum_{n} \frac{1}{n^{p}} < \infty \iff p > 1$$

$$\int_{\varepsilon}^{\infty} \frac{1}{x^{p}} < \infty \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^{p}} < \infty \iff p < 1$$

$$\int_{B} \frac{1}{|x|^{p}} < \infty \iff p < n$$

$$\int_{B^{c}} \frac{1}{|x|^{p}} < \infty \iff p > n$$

Proposition 1.4.5 (Comparison Test).

If $0 \le a_n \le b_n$, then

•
$$\sum b_n < \infty \implies \sum a_n < \infty$$
, and
• $\sum a_n = \infty \implies \sum b_n = \infty$.

•
$$\sum a_n = \infty \implies \sum b_n = \infty$$

Proposition 1.4.6 (Small Tails for Series of Functions).

If $\sum f_n$ converges then $f_n \to 0$ uniformly.

Corollary 1.4.1 (Term by Term Continuity Theorem).

If f_n are continuous and $\sum f_n \to f$ converges uniformly, then f is continuous.

Proposition 1.4.7 (Weak M-Test). If $f_n(x) \leq M_n$ for a fixed x where $\sum M_n < \infty$, then the series $f(x) = \sum f_n(x)$ converges.

^aNote that this is only pointwise convergence of f, whereas the full M-test gives uniform convergence.

Proposition 1.4.8 (The Weierstrass M-Test).

If $\sup_{x\in A} |f_n(x)| \leq M_n$ for each n where $\sum M_n < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly and absolutely on A. a Conversely, if $\sum f_n$ converges uniformly on A then $\sup_{x\in A} |f_n(x)| \to 0$.

Proposition 1.4.9 (Cauchy criterion for sums).

 f_n are uniformly Cauchy (so $||f_n - f_m||_{\infty} < \varepsilon$) iff f_n is uniformly convergent.

Derivatives

Theorem 1.4.2 (Term by Term Differentiability Theorem).

If f_n are differentiable, $\sum f'_n \to g$ uniformly, and there exists one point a x_0 such that $\sum f_n(x)$ converges, then there exist an f such that $\sum f_n \to f$ uniformly and f' = g.

1.5 Commuting Limiting Operations

$$\lim_{n \to \infty} \sup_{x \in X} |f_n(x)| \neq \sup_{x \in X} \left| \lim_{n \to \infty} f_n(x) \right|.$$

Proposition 1.5.2 (Limits of continuous functions need not be continuous).

$$\lim_{k \to \infty} \lim_{n \to \infty} f_n(x_k) \neq \lim_{n \to \infty} \lim_{k \to \infty} f_n(x_k).$$

Proposition 1.5.3 (Limits of differentiable functions need not be differentiable).

$$\lim_{n \to \infty} \frac{\partial}{\partial x} f_n \neq \frac{\partial}{\partial n} \left(\lim_{n \to \infty} f_n \right).$$

^aIt suffices to show $|f_n(x)| \leq M_n$ for some M_n not depending on x.

^aSo this implicitly holds if f is the pointwise limit of f_n .

^bSee Abbott theorem 6.4.3, pp 168.

Proposition 1.5.4(?).

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx \neq \int_a^b \lim_{n \to \infty} \left(f_n(x) \right) \, dx.$$

1.6 Slightly Advanced Stuff

Theorem 1.6.1 (Weierstrass Approximation).

If $[a,b] \subset \mathbb{R}$ is a closed interval and f is continuous, then for every $\varepsilon > 0$ there exists a polynomial p_{ε} such that $||f - p_{\varepsilon}||_{L^{\infty}([a,b])} \stackrel{\varepsilon \to 0}{\to} 0$.

Equivalently, polynomials are dense in the Banach space $C([0,1], \|\cdot\|_{\infty})$.

Theorem 1.6.2 (Egorov).

Let $E \subseteq \mathbb{R}^n$ be measurable with m(E) > 0 and $\{f_k : E \to \mathbb{R}\}$ be measurable functions such

$$f(x) := \lim_{k \to \infty} f_k(x) < \infty$$

exists almost everywhere.

Then $f_k \to f$ almost uniformly, i.e.

 $\forall \varepsilon > 0, \ \exists F \subseteq E \text{ closed such that } m(E \setminus F) < \varepsilon \text{ and } f_k \to f \text{ uniformly on } F.$

1.7 Examples

Example 1.7.1(?): A series of continuous functions that does not converge uniformly but is still continuous:

$$g(x) := \sum \frac{1}{1 + n^2 x}.$$

Take $x = 1/n^2$.