

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 4 EYP2805 - Métodos Bayesianos 5 de Septiembre

1. Sea $y_i|\theta \sim N_p(\mu, \Sigma)$ una observación con distribución Normal Multivariada de dimensión p, que tiene como pdf

$$p(\boldsymbol{y}_i|\boldsymbol{\theta},\boldsymbol{\Sigma}) = (2\pi)^{-p/2}|\boldsymbol{\Sigma}|^{-1/2}\exp\left\{-\frac{1}{2}(\boldsymbol{y}_i-\boldsymbol{\theta})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}_i-\boldsymbol{\theta})\right\}$$

Proponga una distribución a priori conjugada para θ y calcule su distribución a posteriori para una muestra i = 1, ..., n.

- 2. Sea X una variable aleatoria con distribución $Poisson(\theta)$, con $\Theta = (0, \infty)$ y $\mathcal{A} = [0, \infty)$, función de pérdida $L(\theta, a) = (\theta a)^2$ y reglas de decisión de la forma $\delta_c(x) = cx$. Asuma que $\pi(\theta) = e^{-\theta}$.
 - a) Calcule $\rho(\pi, a)$ y encuentre la acción de Bayes.
 - b) Encuentre $R(\theta, \delta_c)$.
 - c) Muestre que δ_c es inadmisible para c > 1.
 - d) Encuentre $r(\pi, \delta_c)$.
 - e) Encuentre el valor de c que minimiza $r(\pi, \delta_c)$.
- 3. Suponga que la distribución a posteriori de θ , $p(\theta|x)$ es discreta con soporte $\theta_1, \theta_2, \dots$ Muestre que la regla de Bayes bajo función de pérdida 0-1 es la moda a posteriori.
- 4. Considere el modelo Bayesiano con verosimilitud $p(y|\theta)$ y distribución a priori $p(\theta)$, para $\theta \in \Theta$. Se propone estimar θ mediante a con una función de pérdida $L(\theta, a) = b(\theta)(\theta a)^2$, con $b(\theta)$ no negativa. Encuentre el estimador Bayesiano para la función de pérdida descrita. ¿Qué condiciones debe cumplir para la existencia de dicho estimador?