







Approved by AICTE / UGC, New Delhi, Accredited by NBA, Affiliated to Anna University, Chennai. ISO 9001:2015 Certified Institution. Estd. 2001 OMR, Thalambur, Chennai - 600 130. Phone: @ 044 6740 9441 Mobile: @ 9445024081 www.act.edu.in

## **GE3171**

# PROBLEM SOLVING AND PYTHON PROGRAMMING

# **LABORATORY**

## **RECORD NOTE BOOK**

(2021-2022)

| Regulation | : |
|------------|---|
|------------|---|

**Branch** 

Year/ Sem

| Name   | <b>:</b> |
|--------|----------|
| Reg No | <b>:</b> |

# **BONAFIDE CERTIFICATE**

| Register Number :                                    |                                            |
|------------------------------------------------------|--------------------------------------------|
| Name of the lab : GE3171- Problem Solving and Pyth   | non Programming Laboratory                 |
| Department :                                         |                                            |
|                                                      |                                            |
| Certified that this is a Bonafide                    | e Record of Practical Work done by         |
| Mr./Ms                                               | of                                         |
| Department, First                                    | semester in the Problem Solving and Python |
| Programming Laboratory during the year 2021-22.      |                                            |
|                                                      |                                            |
|                                                      |                                            |
| Signature of Lab-in-Charge                           | Signature of Head of the Department        |
|                                                      |                                            |
| Submitted for the University Practical Examination h | eld on                                     |
|                                                      |                                            |
| INTERNAL EXAMINER                                    | EXTERNAL EXAMINER                          |

#### ANNA UNIVERSITY: CHENNAI

**SYLLABUS (R - 2021)** 

#### GE3171- PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

#### **COURSE OBJECTIVES:**

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

#### **EXPERIMENTS:**

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- **2.** Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- **3.** Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- **4.** Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building -operations of list & tuples)
- **5.** Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- **6.** Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- **8.** Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- **9.** Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- **10.** Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

#### **COURSE OUTCOMES:**

On completion of the course, students will be able to:

**C01:** Develop algorithmic solutions to simple computational problems

**C02:** Develop and execute simple Python programs.

**C03:** Implement programs in Python using conditionals and loops for solving problems. C04: Deploy functions to decompose a Python program.

**C05:** Process compound data using Python data structures.

**C06:** Utilize Python packages in developing software applications.

## **INDEX**

| SL.NO | DATE | NAME OF THE EXPERIMENT                       | PAGE NO | SIGNATURE |
|-------|------|----------------------------------------------|---------|-----------|
| 1     |      | DEVELOPING FLOW CHARTS                       |         |           |
|       |      | A. Electricity Billing                       |         |           |
|       |      | B. Retail Shop Billing                       |         |           |
|       |      | C. Sin Series                                |         |           |
|       |      | D. Weight of a Motorbike                     |         |           |
|       |      | E. Weight of a Steel Bar                     |         |           |
|       |      | F. Compute Electrical Current in Three Phase |         |           |
|       |      | AC Circuit                                   |         |           |
| 2     |      | PROGRAMS USING SIMPLE                        |         |           |
|       |      | STATEMENTS                                   |         |           |
|       |      | A. Exchange the values of two variables      |         |           |
|       |      | B. Circulate the values of n variables       |         |           |
|       |      | C. Distance between two points               |         |           |
| 3     |      | PROGRAMS USING CONDITIONALS                  |         |           |
|       |      | AND ITERATIVE STATEMENTS                     |         |           |
|       |      | A. Number Series                             |         |           |
|       |      | B. Number Patterns                           |         |           |
|       |      | C. Pyramid Pattern                           |         |           |
| 4     |      | OPERATIONS OF LISTS AND TUPLES               |         |           |
|       |      | (ITEMS PRESENT IN A                          |         |           |
|       |      | LIBRARY/COMPONENTS OF A CAR/                 |         |           |
|       |      | MATERIALS REQUIRED FOR                       |         |           |
|       |      |                                              |         |           |

|    | CONSTRUCTION OF A BUILDING)         |  |
|----|-------------------------------------|--|
| 5  | OPERATIONS OF SETS &                |  |
|    | DICTIONARIES (LANGUAGE,             |  |
|    | COMPONENTS OF AN AUTOMOBILE,        |  |
|    | ELEMENTS OF A CIVIL STRUCTURE,      |  |
|    | ETC)                                |  |
| 6  | PROGRAMS USING FUNCTIONS            |  |
|    | A. Factorial of a Number            |  |
|    | B. Largest Number in a list         |  |
|    | C. Area of Shape                    |  |
| 7  | PROGRAMS USING STRINGS              |  |
|    | A. Reversing a String               |  |
|    | B. Checking Palindrome in a String  |  |
|    | C. Counting Characters in a String  |  |
|    | D. Replacing Characters in a String |  |
| 8  | PROGRAMS USING MODULES AND          |  |
|    | PYTHON STANDARD LIBRARIES           |  |
|    | (PANDAS, NUMPY. MATPLOTLIB,         |  |
|    | SCIPY)                              |  |
| 9  | PROGRAMS USING FILE HANDLING        |  |
|    | A. Copy from one file to another    |  |
|    | B. Word count                       |  |
|    | C. Longest word                     |  |
| 10 | PROGRAMS USING EXCEPTION            |  |
|    | HANDLING                            |  |

| B. Voter's age validity          |                                                                                                                 |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| C. Student mark range validation |                                                                                                                 |
| EXPLORING PYGAME TOOL            |                                                                                                                 |
| DEVELOPING A GAME ACTIVITY       |                                                                                                                 |
| USING PYGAME LIKE BOUNCING       |                                                                                                                 |
| BALL, CAR RACE ETC               |                                                                                                                 |
| -                                | C. Student mark range validation  EXPLORING PYGAME TOOL  DEVELOPING A GAME ACTIVITY  USING PYGAME LIKE BOUNCING |

| <b>Ex. No:</b> 1 A | DEVELOPING FLOWCHARTS ELECTRICITY BILLING |
|--------------------|-------------------------------------------|
| Date:              |                                           |

- For 0 to 100 units the per unit is ₹ 0/-
- For 0 to 200 units, for the first 100 unit the per unit cost is zero and the next 100 units, the consumer shall pay ₹ 1.5 per unit.
- For 0 to 500 units, the consumer shall pay ₹ 0 for the first 100 units, for the next 100 units the consumer shall pay ₹ 2 per unit, for the next 300 units the unit cost is ₹3.00/-
- For above 500 units, the consumer shall pay ₹ 0 for the first 100 units, for
  the next 100 units the consumer shall pay ₹ 3.50 per unit, for the next 300
  units the unit cost is ₹4.60/- and for the remaining units the unit cost is
  ₹6.60/-



| <b>Ex. No:</b> 1 B |                     |
|--------------------|---------------------|
|                    | RETAIL SHOP BILLING |
| Date:              |                     |

To prepare Retail shop billing flowchart.



| <b>Ex. No:</b> 1 C |             |
|--------------------|-------------|
|                    | SINE SERIES |
| Date:              |             |

To evaluate the sine series. The formula used to express the Sin(x) as

$$\sin x = \sum_{x=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$



| <b>Ex. No:</b> 1 D |                       |
|--------------------|-----------------------|
|                    | WEIGHT OF A STEEL BAR |
| Date:              |                       |

To find the weight of a steel bar.



| <b>Ex. No:</b> 1 E |                                              |
|--------------------|----------------------------------------------|
|                    | COMPUTE ELECTRICAL CURRENT IN THREE PHASE AC |
| Date:              | CIRCUIT                                      |

To compute electrical current in three phase AC circuit.



| Ex. No:2 A  Date: | PROGRAMS USING SIMPLE STATEMENTS EXCHANGE THE VALUES OF TWO VARIABLES |
|-------------------|-----------------------------------------------------------------------|
| Aim:              |                                                                       |
| Γο write a pytho  | n program to exchange the values of two variables.                    |
| Algorithm:        |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |
|                   |                                                                       |

Ш

## **Output:**

Y = 67

Enter value of X: 67
Enter value of Y: 56
Before exchange of x,y
x = 67
Y= 56
After exchange of x,y
x = 56

| Ex. No:2 B            | CIRCULATE THE VALUES OF N VARIABLES          |
|-----------------------|----------------------------------------------|
| Date:                 |                                              |
| Aim:                  |                                              |
| To write a python pro | gram to calculate the values of N variables. |
| Algorithm:            |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |
|                       |                                              |

```
\label{eq:def-circulate-continuous} \begin{split} & \text{def circulate}(A,N): \\ & \text{for i in range}(1,N+1): \\ & B = A[i:] + A[:i] \\ & \text{print}(\text{"Circulation ",i,"=",B}) \text{ return} \\ & A = [91,92,93,94,95] \\ & N = & \text{int}(\text{input}(\text{"Enter n:"})) \\ & \text{circulate}(A,N) \end{split}
```

### **Output:**

```
Enter n:5
Circulation 1 = [92, 93, 94, 95, 91]
Circulation 2 = [93, 94, 95, 91, 92]
Circulation 3 = [94, 95, 91, 92, 93]
Circulation 4 = [95, 91, 92, 93, 94]
Circulation 5 = [91, 92, 93, 94, 95]
```

|                           | DISTANCE BETWEEN TWO VARIABLES           |
|---------------------------|------------------------------------------|
| Date:                     | · · · · · · · · · · · · · · · · · · ·    |
| Aim:                      |                                          |
| Го write a python progran | n to find distance between two variables |
| Algorithm:                |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |
|                           |                                          |

```
import math  x1 = int(input("Enter a x1:"))   y1 = int(input("Enter a y1:"))   x2 = int(input("Enter a x2:"))   y2 = int(input("Enter a y2:"))   distance = math.sqrt(((x2-x1)**2)+((y2-y1)**2)) print("Distance = ",distance)
```

### **Output:**

Enter a x1: 3

Enter a y1: 2

Enter a x2: 7

Enter a y2: 8

Distance = 7.211102550927978

| Ex. No:3 A  Date: | PROGRAMS USING CONDITIONALS AND ITERATIVE LOOPS<br>NUMBER SERIES |
|-------------------|------------------------------------------------------------------|
| Aim:              |                                                                  |
| Γο write a pytho  | n program to evaluate 12+22+32++N2                               |
| Algorithm:        |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |
|                   |                                                                  |

```
\begin{split} n &= int(input('Enter\ a\ number:\ '))\\ sum &= 0\\ i &= 1\\ while\ i &< = n:\\ sum &= sum + i*i\\ i &= 1\\ print('Sum = ',sum) \end{split}
```

## **Output:**

Enter a number: 10

Sum = 385

| Date: Aim: To write a python program to print numb Algorithm: | NUMBER PATTERN  per pattern. |  |
|---------------------------------------------------------------|------------------------------|--|
| To write a python program to print number                     | oer pattern.                 |  |
|                                                               | oer pattern.                 |  |
| Algorithm:                                                    |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |
|                                                               |                              |  |

```
N = 5
for i in range(1,N+1):
    for k in range(N,i, -1):
        print(" ", end =' ')
    for j in range(1,i+1):
        print(j, end =' ')
    for l in range(i-1,0,-1):
        print(l, end =' ')
    print()
```

### **Output:**

```
\begin{array}{c}
1\\
121\\
1232\\
1234321\\
123454321
\end{array}
```

| Ex. No: 3 C                  | PYRAMID PATTERN       |  |
|------------------------------|-----------------------|--|
| Date:                        | TIKAMIDIATIEKN        |  |
| Aim:                         |                       |  |
| Γο write a python program to | print number pattern. |  |
| Algorithm:                   |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |
|                              |                       |  |

```
n = int(input("Enter the number of rows: "))
m = (2 * n) - 2
for i in range(0, n): for j in
  range(0, m):
    print(end=" ")

m = m - 1  # decrementing m after each loop for j
in range(0, i + 1):
    # printing full Triangle pyramid using stars
    print(" ", end=' ')

print(" ")
```

### **Output:**

Enter the number of rows: 9

| Ex. No: 4A                 |                     |  |
|----------------------------|---------------------|--|
| Date:                      | OPERATIONS OF LISTS |  |
| Aim:                       |                     |  |
| Γο implement operations in | a library list.     |  |
| Algorithm:                 |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |

```
Program Code:
# declaring a list of items in a Library
library = ['Books', 'Periodicals', 'Newspaper', 'Manuscripts', 'Maps', 'Prints', 'Documents',
'Ebooks']
# printing the complete list print('Library: ',library)
# printing first element print('first element: ',library[0])
# printing fourth element print('fourth element: ',library[3])
# printing list elements from 0th index to 4th index print('Items
in Library from 0 to 4 index: ',library[0: 5])
# printing list -7th or 3rd element from the list
print('3rd or -7th element: ',library[-7])
# appending an element to the list library.append('Audiobooks')
print('Library list after append(): ',library)
# finding index of a specified element
 print('index of \'Newspaper\': ',library.index('Newspaper'))
# sorting the elements of iLIst
 library.sort()
print('after sorting: ', library);
# popping an element
print('Popped elements is: ',library.pop()) print('after
pop(): ', library);
# removing specified element library.remove('Maps')
 print('after removing \'Maps\': ',library)
# inserting an element at specified index
```

# inserting 100 at 2nd index

insert: ', library)

library.insert(2, 'CDs') print('after

# Number of Ekements in Library list

```
print(' Number of Elements in Library list : ',library.count('Ebooks'))
```

#### **Output:**

Library: ['Books', 'Periodicals', 'Newspaper', 'Manuscripts', 'Maps', 'Prints',

'Documents', 'Ebooks']

first element: Books

fourth element: Manuscripts

Items in Library from 0 to 4 index: ['Books', 'Periodicals', 'Newspaper', 'Manuscripts', 'Maps']

3rd or -7th element: Periodicals

Library list after append(): ['Books', 'Periodicals', 'Newspaper', 'Manuscripts', 'Maps',

'Prints', 'Documents', 'Ebooks', 'Audiobooks']

index of 'Newspaper': 2

after sorting: ['Audiobooks', 'Books', 'Documents', 'Ebooks', 'Manuscripts', 'Maps',

'Newspaper', 'Periodicals', 'Prints']

Popped elements is: Prints

after pop(): ['Audiobooks', 'Books', 'Documents', 'Ebooks', 'Manuscripts', 'Maps', 'Newspaper',

'Periodicals']

after removing 'Maps': ['Audiobooks', 'Books', 'Documents', 'Ebooks', 'Manuscripts',

'Newspaper', 'Periodicals']

after insert: ['Audiobooks', 'Books', 'CDs', 'Documents', 'Ebooks', 'Manuscripts',

'Newspaper', 'Periodicals']

Number of Elements in Library list: 1

| Ex. No: 4B                 |                     |  |
|----------------------------|---------------------|--|
| Date:                      | OPERATIONS OF TUPLE |  |
|                            |                     |  |
| Aim:                       |                     |  |
| Γo implement operations in | a Car Tuple.        |  |
| Algorithm:                 |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |
|                            |                     |  |

```
# Python code for various Tuple operation
# declaring a tuple of Components of a car
car = ('Engine', 'Battery', 'Alternator', 'Radiator', 'Steering', 'Break', 'Seat Belt')
# printing the complete tuple print('Components of a car: ',car)
# printing first element print('first element: ',car[0])
# printing fourth element print('fourth element: ',car[3])
# printing tuple elements from 0th index to 4th index print('Components of a car from 0 to 4 index: ',car[0: 5])
# printing tuple -7th or 3rd element from the list print('3rd or -7th element: ',car[-7])
# finding index of a specified element
print('index of \'Alternator\': ',car.index('Alternator'))
# Number of Elements in car tuple
print(' Number of Elements in Car Tuple: ',car.count('Seat Belt'))
#Length of car tuple
print(' Length of Elements in Car Tuple: ',len(car))
```

#### **Output:**

Components of a car: ('Engine', 'Battery', 'Alternator', 'Radiator', 'Steering', 'Break', 'Seat

Belt')

first element : Engine

fourth element: Radiator

Components of a car from 0 to 4 index: ('Engine', 'Battery', 'Alternator', 'Radiator', 'Steering')

3rd or -7th element: Engine index of 'Alternator':

Number of Elements in Car Tuple: 1 Length of Elements in Car Tuple: 7

| Ex. No: 5A                 | ODED ATIONS OF SETS                              |  |
|----------------------------|--------------------------------------------------|--|
| Date:                      | OPERATIONS OF SETS                               |  |
| Aim:                       |                                                  |  |
| Γο implement operations in | a set using Components of a Language as example. |  |
| Algorithm:                 |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |
|                            |                                                  |  |

```
L1 = {'Pitch', 'Syllabus', 'Script', 'Grammar', 'Sentences'};
L2 = {'Grammar', 'Syllabus', 'Context', 'Words', 'Phonetics'};
# set union
print("Union of L1 and L2 is ",L1 | L2)
# set intersection
print("Intersection of L1 and L2 is ",L1 & L2)
# set difference
print("Difference of L1 and L2 is ",L1 - L2)
# set symmetric difference
print("Symmetric difference of L1 and L2 is ",L1 ^ L2)
```

#### **Output:**

```
Union of L1 and L2 is {'Words', 'Pitch', 'Sentences', 'Phonetics', 'Script', 'Grammar', 'Syllabus', 'Context'}
Intersection of L1 and L2 is {'Grammar', 'Syllabus'} Difference of L1 and L2 is {'Script', 'Pitch', 'Sentences'}
Symmetric difference of L1 and L2 is {'Words', 'Context', 'Script', 'Pitch', 'Sentences', 'Phonetics'}
```

| Ex. No: 6A  Date:    | FACTORIAL OF A NUMBER USING FUNCTION                     |
|----------------------|----------------------------------------------------------|
| im:                  |                                                          |
| o write a python pro | ogram to find the factorial of a number using functions. |
| Algorithm:           |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |
|                      |                                                          |

```
def fact(n):
    if n = = 1:
        return n else:
        return n*fact(n-1)
num = int(input("Enter a number: "))
print("The factorial of",num,"is",fact(num))
```

# **Output:**

Enter a number: 5

The factorial of 5 is 120

| Ex. No: 6B            | FINDING LARGEST NUMBER IN A LIST USING FUNCTION            |
|-----------------------|------------------------------------------------------------|
| Date:                 |                                                            |
| im:                   |                                                            |
| o write a python prog | gram to find the largest number in a list using functions. |
| lgorithm:             |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |

```
def myMax(list1):
    print("Largest element is:", max(list1))

list1 = []
num = int(input("Enter number of elements in list: ")) for i
in range(1, num + 1):
    ele = int(input("Enter elements: "))
    list1.append(ele)
print("Largest element is:", myMax(list1))
```

#### **Output:**

Enter number of elements in list: 6

Enter elements: 58

Enter elements: 69

Enter elements: 25

Enter elements: 37

Enter elements: 28

Enter elements: 49 Largest element is: 69

| Ex. No: 6 C           |                                                     |
|-----------------------|-----------------------------------------------------|
| Date:                 | FINDING AREA OF A CIRCLE USING FUNCTION             |
| Aim:                  |                                                     |
| To write a python pro | ogram to find the area of a circle using functions. |
| Algorithm:            |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |
|                       |                                                     |

### **Program Code:**

```
def findArea(r):
    PI = 3.142
    return PI * (r*r);

num=float(input("Enter r value:"))
print("Area is %.6f" % findArea(num));
```

### **Output:**

Enter r value: 8

Area is 201.088000

| Ex. No: 7A                  | REVERSING A STRING  |  |
|-----------------------------|---------------------|--|
| Date:                       | REVERSING A STRING  |  |
| Aim:                        |                     |  |
| Го write a python program t | o reverse a string. |  |
| Algorithm:                  |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |
|                             |                     |  |

```
def reverse(string):
    string = "".join(reversed(string))
    return string

s = input("Enter any string: ")
print ("The original string is : ",end="")
print (s)

print ("The reversed string(using reversed) is : ",end="")
print (reverse(s))
```

### **Output:**

Enter any string: Python

The original string is: Python

The reversed string(using reversed) is: nohtyP

| Ex. No: 7B            | CHECKING PALINDROME IN A STRING      |
|-----------------------|--------------------------------------|
| Date:                 | CHECKING PALINDROME IN A STRING      |
| im:                   |                                      |
| o write a python prog | ram to check palindrome in a string. |
| lgorithm:             |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |
|                       |                                      |

```
string = input("Enter string: ")
string = string.casefold()
rev_string = reversed(string)
if list(string) = = list(rev_string):
    print("It is palindrome")
else:
    print("It is not palindrome")
```

### **Output:**

Enter string: Python It is not palindrome

Enter string: madam It is palindrome

| Ex. No: 7C             | COUNTING CHARACTERS IN A STRING                |
|------------------------|------------------------------------------------|
| Date:                  |                                                |
| Aim:                   |                                                |
| Γο write a python prog | ram to count number of characters in a string. |
| Algorithm:             |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |
|                        |                                                |

```
string = input("Enter any string: ")
char = input("Enter a character to count: ")
val = string.count(char)
print(val,"\n")
```

## **Output:**

Enter any string: python programming Enter

a character to count: n

2

| Ex. No: 7 D              | REPLACE CHARACTERS IN A STRING        |
|--------------------------|---------------------------------------|
| Date:                    |                                       |
| Aim:                     |                                       |
| To write a python progra | am to replace characters in a string. |
| Algorithm:               |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |
|                          |                                       |

Ш

```
string = input("Enter any string: ")
str1 = input("Enter old string: ")
str2 = input("Enter new string: ")
print(string.replace(str1, str2))
```

### **Output:**

Enter any string: problem solving python programming

Enter old string: python

Enter new string: C

problem solving C programming

**Ex. No:** 8

# INSTALLING AND EXECUTION PYTHON PROGRAM IN ANACONDA NAVIGATOR

Date:

(To run pandas, numpy, matplotlib, scipy

#### **Step 1:** Install anaconda individual edition for windows

**Step 2:** Open Anaconda navigator



Step 3: launch jupyter note book





#### Step 4:

Click new → Python3



**Step 5:** Write or paste the python code



Step 6: click run



In [ ]:

| <b>Ex. No:</b> 8A |        |
|-------------------|--------|
|                   | PANDAS |
| Date:             |        |

#### Aim:

To write a python program to compare the elements of the two Pandas Series using Pandas library.

Sample Series: [2, 4, 6, 8, 10], [1, 3, 5, 7, 10]

```
import pandas as pd

ds1 = pd.Series([2, 4, 6, 8, 10])

ds2 = pd.Series([1, 3, 5, 7, 10])

print("Series1:")

print(ds1)

print("Series2:")

print(ds2)

print("Compare the elements of the said Series:")

print("Equals:")

print(ds1 == ds2) print("Greater than:")

print(ds1 > ds2) print("Less than:")

print(ds1 < ds2)</pre>
```

#### **Output:** Series1: 2 0 4 1 2 6 3 8 10 dtype: int64 Series2: 0 1 3 1 5 2 7 3 4 10 dtype: int64 Compare the elements of the said Series: Equals: 0 False False 2 False 3 False True dtype: bool Greater than: 0 True True 1 2 True 3 True 4 False dtype: bool Less than: 0 False

False

False

2 False

4 False

dtype: bool

1

3

| Ex. No: 8B |       |
|------------|-------|
|            | NUMPY |
| Date:      |       |

#### Aim:

To write a program to test whether none of the elements of a given array is zerousing NumPy library.

```
import numpy as np
x = np.array([1, 2, 3, 4])
print("Original array:")
print("Test if none of the elements of the said array is zero:")
print(np.all(x))
x = np.array([0, 1, 2, 3])
print("Original array:")
print("Test if none of the elements of the said array is zero:")
print("Test if none of the elements of the said array is zero:")
print(np.all(x))
```

#### **Output:**

Original array: [1 2 3 4]

Test if none of the elements of the said array is zero: True

Original array: [0 1 2 3]

Test if none of the elements of the said array is zero: False

| Ex. No: 8C                     | MA MIDL OWN ID                         |  |
|--------------------------------|----------------------------------------|--|
| Date:                          | MATPLOTLIB                             |  |
| Aim:                           |                                        |  |
| To write a python program to p | olot a graph using matplotlib library. |  |
| Algorithm:                     |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |
|                                |                                        |  |

import matplotlib.pyplot as plt import numpy as np

xpoints = np.array([0, 6]) ypoints = np.array([0, 250])

plt.plot(xpoints, ypoints)
plt.show()

### **Output:**



| <b>Ex. No:</b> 8 D |       |
|--------------------|-------|
|                    | SCIPY |
| Date:              |       |

#### Aim:

To write a python program to return the specified unit in seconds (e.g. hour returns 3600.0) using scipy library.

from scipy import constants

print(constants.minute)

print(constants.hour)

print(constants.day)

print(constants.week)

print(constants.year)

print(constants.Julian\_year)

### **Output:**

60.0

3600.0

86400.0

604800.0

31536000.0

31557600.

31557600.0

| Ex. No: 9 A              | CODY EDOM ONE BY E TO ANOTHER        |  |
|--------------------------|--------------------------------------|--|
| Date:                    | COPY FROM ONE FILE TO ANOTHER        |  |
| Aim:                     |                                      |  |
| Го write a python progra | am to copy from one file to another. |  |
| Algorithm:               |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |
|                          |                                      |  |

```
from shutil import copyfile
sourcefile = input("Enter source file name: ")
destinationfile = input("Enter destination file name: ")
copyfile(sourcefile, destinationfile)
print("File copied successfully!")
c = open(destinationfile, "r") print(c.read())
c.close()
print()
print()
```

#### **Output:**

Enter source file name: file1.txt

Enter destination file name: file2.txt

File copied successfully!

Sunflower

Jasmine

Roses

| <b>Ex. No:</b> 9 B | WORD COUNT FROM A FILE |
|--------------------|------------------------|
| Date:              |                        |

#### Aim:

To write a python program to count number of words in a file.

#### Data.txt

A file is a collection of data stored on a secondary storage device like hard disk. They can be easily retrieved when required. Python supports two types of files. They are Text files & Binary files.



```
file = open("F:\Data.txt", "rt")
data = file.read()
words = data.split()
print('Number of words in text file :', len(words))
```

### **Output:**

Number of words in text file: 36

| <b>Ex. No:</b> 9 C | FINDING LONGEST WORD IN A FILE |
|--------------------|--------------------------------|
| Date:              |                                |

#### Aim:

To write a python program to find longest word in a file

#### Data.txt

A file is a collection of data stored on a secondary storage device like hard disk. They can be easily retrieved when required. Python supports two types of files. They are Text files & Binary files.

```
def longest_word(filename):
    with open(filename, 'r') as infile:
        words = infile.read().split()
    max_len = len(max(words, key=len))
    return [word for word in words if len(word) == max_len]
print(longest_word('F:\Data.txt'))
```

### **Output:**

['collection']

| <b>Ex. No:</b> 10 A |                                               |
|---------------------|-----------------------------------------------|
|                     | DIVIDE BY ZERO ERROR USING EXCEPTION HANDLING |
| Date:               |                                               |
| Aim:                |                                               |

To write a python program to handle divide by zero error using exception handling.

```
n=int(input("Enter the value of n:")) d=int(input("Enter the value of d:")) c=int(input("Enter the value of c:")) try: q=n/(d-c) print("Quotient:",q) except ZeroDivisionError: print("Division by Zero!")
```

### **Output:**

Enter the value of n:10

Enter the value of d:5

Enter the value of c:5

Division by Zero!

| Ex. No: 10 B                 | VOTERS AGE VALIDITY          |  |
|------------------------------|------------------------------|--|
| Date:                        |                              |  |
| Aim:                         |                              |  |
| Γο write a python program to | o check voters age validity. |  |
| Algorithm:                   |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |
|                              |                              |  |

```
import datetime
Year_of_birth = int(input("In which year you took birth:- "))
current_year = datetime.datetime.now().year
Current_age = current_year - Year_of_birth
print("Your current age is ",Current_age)

if(Current_age<=18):
    print("You are not eligible to vote")
else:
    print("You are eligible to vote")</pre>
```

#### **Output:**

In which year you took birth:- 1981 Your current age is 40
You are eligible to vote

In which year you took birth:- 2011 Your current age is 10
You are not eligible to vote

| Ex. No: 10 C  Date:     | STUDENT MARK RANGE VALIDATION               |  |
|-------------------------|---------------------------------------------|--|
| Aim:                    |                                             |  |
| Γο write a python progr | am to perform student mark range validation |  |
| Algorithm:              |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |
|                         |                                             |  |

```
Mark = int(input("Enter the Mark: ")) if \\ Mark < 0 \text{ or Mark} > 100: \\ print("The value is out of range, try again.") else: \\ print("The Mark is in the range")
```

### **Output:**

Enter the Mark: 150

The value is out of range, try again.

Enter the Mark: 98

The Mark is in the range

**Ex. No:** 11

Date:

#### **EXPLORING PYGAME**

# PYGAME INSTALLATION

#### **To Install Pygame Module Steps**

- 1. Install python 3.6.2 into C:\
- 2. Go to this link to install pygame www.pygame.org/download.shtml



#### 3. Click

pygame-1.9.3.tar.gz ~ 2M and download zar file

- 4. Extract the zar file into C:\Python36-32\Scripts folder
- 5. Open command prompt
- 6. Type the following command

C:\>py -m pip install pygame --user Collecting pygame

Downloading pygame-1.9.3-cp36-cp36m-win32.whl (4.0MB)

100% | 4.0MB

#### 171kB/s

Installing collected packages: pygame Successfully installed pygame-1.9.3

- 7. Now, pygame installed successfully
- 8. To see if it works, run one of the included examples in pygame-1.9.3
  - Open command prompt
  - Type the following

C:\>cd Python36-32\Scripts\pygame-1.9.3

C:\Python36-32\Scripts\pygame-1.9.3>cd examples

C:\Python36-32\Scripts\pygame-1.9.3\examples>aliens.py

C:\Python36-32\Scripts\pygame-1.9.3\examples>

| Ex. No: 12  Date:    | SIMULATE BOUNCING BALL USING PYGAME |  |
|----------------------|-------------------------------------|--|
| Aim:                 |                                     |  |
| Γο write a Python pr | ogram to bouncing ball in Pygame.   |  |
| Algorithm:           |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |
|                      |                                     |  |

```
import pygame pygame.init()
  window_w = 800
  window_h = 600
  white = (255, 255, 255)
  black = (0, 0, 0)
  FPS = 120
  window = pygame.display.set_mode((window_w, window_h))
  pygame.display.set_caption("Game: ")
  clock = pygame.time.Clock()
  def game_loop():
      block\_size = 20
      velocity = [1, 1]
      pos_x = window_w/2
      pos_y = window_h/2
      running = True
      while running:
         for event in pygame.event.get():
           if event.type == pygame.QUIT:
               pygame.quit()
               quit()
        pos_x += velocity[0]
        pos_y += velocity[1]
      if pos_x + block_size > window_w or pos_x < 0:
        velocity[0] = -velocity[0]
      if pos_y + block_size > window_h or pos_y < 0:
        velocity[1] = -velocity[1]
  # DRAW
  window.fill(white)
  pygame.draw.rect(window, black, [pos_x, pos_y, block_size, block_size])
  pygame.display.update()
  clock.tick(FPS)
game_loop()
```

