Cheat Sheet Analysis

Funktionen

Eine Funktion ist eine Vorschrift, die jedem Element x aus eine Menge D genau ein Element u aus einer Menge W zuordnet.

$$f \colon D \to W, \ x \mapsto y.$$

Darstellungen:

- 1. Analytisch (y = f(x) (explizit), F(x; y) = 0 (implizit)),
- 2. Wertetabelle, 3. Graphisch, 4. Parametrisch (x = x(t), y = y(t),Wertetabelle beginnt mit t)

Funktionseigenschaften

Symmetrie

gerade:
$$f(-x) = f(x)$$
 ungerade: $f(-x) = -f(x)$

Monotonie

$$\begin{array}{ll} \text{Monoton wachsend} & f(x_1) \leq f(x_2) \; (x_1 < x_2) \\ \text{Streng monoton wachsend} & f(x_1) < f(x_2) \; (x_1 < x_2) \\ \text{Monoton fallend} & f(x_1) \geq f(x_2) \; (x_1 < x_2) \\ \text{Streng monoton fallend} & f(x_1) > f(x_2) \; (x_1 < x_2) \\ \end{array}$$

Umkehrbarkeit

Umkehrbar: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ (streng monton) Bestimmen der Umkehrfunktion (Spiegelung an y = x): 1. y = f(x) nach x auflösen. Ergebnis: $x = f^{-1}(y)$. 2. Vertauschen von x und y im Ergebnis: $y = f^{-1}(x)$. Definitions- und Wertebereich sind vertauscht.

$$x \underset{f^{-1}}{\overset{f}{\rightleftharpoons}} f(x)$$

Periodizität

Periodisch mit Periode: $p: f(x \pm p) = f(x)$

Stetigkeit

Eine Funktion f(x) heisst an der Stelle x_0 stetig, wenn der Grenzwert vorhanden ist und mit dem Funktionswert übereinstimmt:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Eine Funktion ist an der Stelle x_0 unstetig, wenn:

- 1. f(x) an der Stelle x_0 nicht definiert ist (Definitionslücke).
- 2. An der Stelle x_0 kein Grenzwert vorhanden ist.
- 3. Funktions- und Grenzwert zwar vorhanden, aber verschieden sind.

Grenzwert

Die Funktion f(x) hat an der Stelle x_0 einen Grenzwert q, wenn gilt

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \lim_{x \to x_0} f(x) = g$$

konvergent = hat Grenzwert, divergent hat keinen Grenzwert.

Lösungsschema zur Bestimmung des Grenzwerts $q = \lim_{x \to x_0} f(x)$:

- 1. Grundsätzlich x_0 in f(x) einsetzen. Wenn $f(x_0)$ definiert ist: $g = \lim_{x \to x_0} f(x) = f(x_0).$
- 2. Falls $f(x_0)$ nicht definiert ist, f(x) vereinfachen.
- 3. Falls das nicht geht, den links und rechtsseitigen Grenzwert durch annähern von links und rechts ermitteln.

Polstelle: Der Grenzwert ist $+\infty$ oder $-\infty$.

Rechenregeln

$$\begin{split} \lim_{x \to x_0} \left(k \cdot f(x) \right) &= k (\lim_{x \to x_0} f(x)) \\ \lim_{x \to x_0} \left(f(x) \pm g(x) \right) &= (\lim_{x \to x_0} f(x)) \pm (\lim_{x \to x_0} g(x)) \\ \lim_{x \to x_0} \left(f(x) \cdot g(x) \right) &= (\lim_{x \to x_0} f(x)) \cdot (\lim_{x \to x_0} g(x)) \\ \lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) &= \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \end{split}$$

Polynomfunktionen

Allgemein: $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x^1 + a_0$ Der Grad des Polynoms ist n. Es gibt n Nullstellen.

Nullstellen-Formeln

Linear
$$ax + b = 0$$
 $x = -\frac{b}{a}$ Quadratisch $ax^2 + bx + c = 0$ $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Kubisch $ax^3 + bx^2 + cx = 0$ $x_1 = 0$ Biquadratisch $ax^4 + bx^2 + c = 0$ $x_1 = 0$ $x_2 = 0$ $x_3 = 0$ $x_4 = 0$ x_4

Geraden (erster Grad)

Es sei m die Steigung, a der x- und b der y-Achsenabschnitt.

y-Achse, Steigung u = mx + bAchsenabschnittsform $\frac{x}{a} + \frac{y}{b} = 1$ Potenzen-, Wurzel- und Logarithmus Punkt-Steigung $\frac{y-y_1}{y-x_1} = m$ Durch $P(x_1; y_1)$ Zwei-Punkte-Form $\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$ Durch $P_1(x_1; y_1), P_2(x_2; y_2)$ Terminologie: Basis Exponent $\mathbb{D} := (a, b, u, v \in \mathbb{R})$

Parabeln (zweiter Grad)

Es sei S der Scheitelpunkt.

 $y = ax^2 + bx + c$ $S = (-\frac{b}{2a}; \frac{4ac - b^2}{4a})$ $y = a(x - x_1)(x - x_2)$ x_1, x_2 sind Nullstellen Hauptform Produktform Scheitelpunktsform $y - y_0 = a(x - x_0)^2$ $S = (x_0; y_0)$

Höhere Grade

Besitzt eine Polynomfunktion f(x) vom Grad n an der Stelle x_n eine Nullstelle, so lässt sie sich schreiben als: $f(x) = (x - x_n) \cdot f_1(x)$. $(x-x_n)$ heisst Linearfaktor, $f_1(x)$ heisst reduziertes Polynom vom Grad n-1.

Besitzt eine Polynom vom Grad n genau n Nullstellen, so lässt es sich schreiben als:

$$f(x) = a_n(x - x_1)(x - x_2) \dots (x - x_n)$$

- 1. Das reduzierte Polynom erhält man durch das Horner-Schema.
- 2. Polynome solange reduzieren (raten weiterer Nullstellen) bis man auf eine Polynomfunktion zweiten Grades stösst, deren Nullstellen sich durch lösen der quadratischen Gleichung ergeben.

Horner-Schema

Gegeben: $y = 3x^3 + 18x^2 + 9x - 30 = 3(x^3 + 6x^2 + 3x - 10)$ Durch raten findet man eine Nullstelle bei x = 1 (1 + 6 + 3 - 10 = 0).

	$a_3 = 1$	$a_2 = 6$	$a_1 = 3$	$a_0 = -10$
$x_0 = 1$		$a_3 \cdot x_0 = 1$	$7 \cdot x_0 = 7$	$10 \cdot x_0 = 15$
	$a_3 = 1$	6 + 1 = 7	3 + 7 = 10	-10 + 10 = 0

Umgeformt: $y = 3(x-1)(x^2+7x+10) \Rightarrow y = 3(x-1)(x+2)(x+5)$. Spezialfälle: Logarithmusfunktion $f(x) = \ln x$ $f'(x) = \frac{1}{x}$

Gebrochenrationale Funktionen

Funktionen, die sich als Quotient zweier Polynomfunktionen q(x)und h(x) darstellen lassen heissen gebrochenrationale Funktionen: $f(x) = \frac{g(x)}{h(x)}$ Diese Funktionen sind echt gebrochen, wenn der Grad von q(x) kleiner ist als der Grad von h(x). Sie werden mit Hilfe der Polynom-Division gelöst.

Nullstellen: $x_0: q(x_0) = 0$ und $h(x_0) \neq 0$. Definitionslücke: Alle Stellen wo $h(x_0) = 0$.

Bestimmen der Null- und Polstellen:

- 1. Zähler- und Nennerpolynom in Linearfaktoren zerlegen.
- 2. die Zähler Linearfaktoren sind die Nullstellen,
- 3. die Nenner Linearfaktoren sind die Polstellen.

Kreis und Ellipse

Kreisgleichung (Mittelpunkt $M = (x_0; y_0)$, Radius r): $(x-x_0)^2 + (y-y_0)^2 = r^2$ oder $y = y_0 \pm \sqrt{r^2 - (x-x_0)^2}$ Ellipsengleichung (Mittelunkt $M = (x_0; y_0)$, x-Halbachse a, $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$ oder $y = y_0 \pm \frac{b}{a} \sqrt{a^2 - (x-x_0)^2}$

Potenzen-, Wurzel- und Logarithmusfunktionen

Terminologie, D	ω. – (α	$, o, a, o \subset \mathbb{R}$
Potentenzen	Wurzeln	Logarithmen
$\overline{a^0 = 1 \ (a \neq 0)}$		$\log_0 a; \log_a 0$ sind undefiniert.
$a^{-u} = \frac{1}{a^u}$		$\log_a a = 1$
$a^u \cdot a^v = a^{u+v}$	$\sqrt[u]{a} \cdot \sqrt[v]{a} = \sqrt[uv]{a^{u+v}}$	$\log_a (u \cdot v) = \log_a u + \log_a v$
$\frac{a^u}{a^v} = a^{u-v}$	$\frac{\sqrt[u]{a}}{\sqrt[v]{a}} = \sqrt[uv]{a^{u-v}}$	$\log_a \frac{u}{v} = \log_a u - \log_a v$
$(a^u)^v = a^{uv}$	$\sqrt[u]{\sqrt[v]{a}} = \sqrt[u \cdot v]{a}$	$\log_a u^v = v \cdot log_a u$
	$\sqrt[u]{a} \cdot \sqrt[u]{b} = \sqrt[u]{a \cdot b}$	$\log_a u \cdot \log_b u = \frac{(\log_a u)^2}{\log_a b}$
$\frac{a^u}{b^u} = (\frac{a}{b})^u$	$\frac{\sqrt[u]{a}}{\sqrt[u]{b}} = \sqrt[u]{\frac{a}{b}}$	$\frac{\log_a u}{\log_b u} = \log_a b$

Es gibt keine Logarithmen von negativen Zahlen. Generell löst der Logarithmus folgendes Problem: $a^x = b \rightarrow x = \log_b a$

Basiswechsel: $\log_b x = \frac{\log_a x}{\log_a b}$, es gilt auch: $a^b = e^{b \cdot \ln a}$ (a > 0)

Übersicht Eigenschaften

Angaben für D und W gelten allgemein. Im Einzelfall genauer prüfen.

f(x)	x^n	a^x	
\overline{D}	\mathbb{R}	\mathbb{R}	
W	\mathbb{R}	$(0,\infty)$	
Monotonie		$a < 1 \setminus, a > 1, \nearrow$	
	nx^{n-1}	$(\ln a) \cdot a^x$	
	$\sqrt[n]{x}$	$\log_a x$	
$f^{-1'}(x)$	$\frac{1}{n} \sqrt[n]{x^{1-n}}$	$\frac{1}{(\ln a) \cdot x}$	
Spozialfälle	Exponentialfunktion	$f(x) = e^x$ $f'(x) = e^x$	

Trigonometrie

Winkel in griechischen Buchstaben (α, β, \ldots) werden in \circ Grad, Winkel mit lateinischen Buchstaben (x, y, ...) in Radian ausgedrückt. Für Radian (= Bogenmass) gilt: der Winkel x ist die Länge des Bogens b im Verhältnis zum Radius r. Die Beziehung zwischen Grad und Radian ist:

$$\frac{\alpha}{360^{\circ}} = \frac{x}{2\pi}$$

In einem rechtwinkligem Dreieck mit der Hypotenuse c, der Gegenkathete a und der Ankathete b gilt:

 $\sin \alpha = \frac{a}{c}$

Die weiteren trigonometrischen Funktionen ($\csc \alpha = \frac{1}{\sin \alpha}$, $\sec \alpha = \frac{1}{\cos \alpha}$ und $\cot \alpha = \frac{1}{\tan \alpha}$) werden hier nicht weiter betrachtet.

Einheitskreis

Der Winkel α ist im Beispiel 30°:

$$\sin \alpha = 1/2$$
.

Gemäss Pythagoras:
$$cos^{2}\alpha + \sin^{2}\alpha = 1$$

Also:

$$\cos\alpha = \sqrt{1-\frac{1}{4}} = \frac{1}{2}\sqrt{3} Logarithmisch}$$

Und:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{1}{\sqrt{3}}.$$

Rechenregeln

$$\sin x = \cos x + \frac{\pi}{2}$$

$$\cos x = \sin x - \frac{\pi}{2}$$

 $\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$

 $\cos(\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$

 $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$

Übersicht Eigenschaften

f(x)	$\sin x$	$\cos x$	$\tan x$
\mathbb{D}	\mathbb{R}	\mathbb{R}	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi\}$
W	[-1, +1]	[-1, +1]	$(-\infty, +\infty)$
Peri	2π	2π	π
Symm.	ungerade	gerade	ungerade
Null	$x_k = k \cdot \pi$	$x_k = \frac{\pi}{2} + k \cdot \pi$	$x_k = k \cdot \pi$
f'(x)	$\cos x$	$-\sin x$	$\frac{1}{\cos^2 x}$
$f^{-1}(x)$	$\arcsin x$	$\arccos x$	$\arctan x$
$f^{-1'}(x)$	$\frac{1}{\sqrt{1-x^2}}$	$-\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$

Differentialrechnung

Berechnet die Steigung der Kurventangente an der Stelle x_0 . Voraussetzungen:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

und linksseitiger Grenzwert = rechtsseitiger Grenzwert. Dann:

$$m = \tan \alpha = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\alpha = \arctan m = \arctan \frac{\Delta y}{\Delta x}$$

Eine Funktion ist differenzierbar wenn: Stetigkeit ⇒ diff.-bar, $diff.-bar \Rightarrow Stetigkeit$, unstetig \Rightarrow undiff.-bar

Ableitungsregeln

Ableitungen zusammengesetzter Funktionen, z.B. $y = \sin(2x)$ oder

 $y = x^2 \cdot e^{-x^2}$ auf elementare Ableitungen zurückführen.

Seien f(x), g(x) und h(x) (im Definitionsbereich) differenzierbare, reelle Funktionen, und a, b reelle Zahlen, dann gelten:

Konstante Funktion (a)' = 0

Faktorregel $(a \cdot f(x))' = a \cdot f'(x)$

Summenregel $(f(x) \pm g(x))' = f'(x) \pm g'(x)$ $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ Produktregel

 $(\frac{f(x)}{g(x)})' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$ $(x^n)' = nx^{n-1}$ Quotientenregel

Potenzregel

 $(f(g(x)))' = (f \circ g)'(x) = f'(g(x)) \cdot g'(x)$ Kettenregel $f'(x) = (g(x)^{h(x)}) = f(x) \cdot (h'(x) \cdot \ln(g(x)) +$

Die Kettenregel ist im wesentlichen äussere Ableitung mal innere Ableitung. Beispiel:

$$f: x \to f(x) = (x^2 + 4)^3$$

$$u: x \to u(x) = x^2 + 4 \to u'(x) = 2x$$

$$v: u \to v(u) = u^3 \to v'(u) = 3u^2$$

$$f(x) = (v \circ u)(x) = v(u(x)) \to f'(x) = 3(x^2 + 4)^2 \cdot 2x$$

Ableitung Umkehrfunktion

- 1. Umkehrfunktion bestimmen: $y = f(x) \Rightarrow x = q(y)$
- 2. $g'(y) = \frac{1}{f'(x)}$
- 3. Mit Hilfe von y = f(x) g'(y) als Funktion von y schreiben
- 4. x und y in g'(y) vertauschhen

Ableitung in Parameterform

$$(x = x(t), y = y(t))' \Rightarrow y' = \frac{y'(t)}{x'(t)} = \frac{\dot{y}}{\dot{x}}$$

Differential

 $dy = df = f'(x_0) \cdot dx$: Zuwachs der Ordinate an der Stelle x_0 bei Änderung von x um dx.

Tangente und Normale

$$y_T = f'(x_0)(x - x_0) + y_0$$
 Tangente

$$y_N = \frac{1}{f'(x)} \cdot (x - x_0) + y_0 \qquad \text{Normale}$$

Linearisierung

In der Umgebung von $P(x_0, y_0)$ gilt $\Delta y = f'(x_0) \Delta x$.

Monotonie

 $y' = f'(x) > 0 \Rightarrow$ streng monoton wachsend $y' = f'(x) < 0 \Rightarrow$ streng monoton fallend

Krümmung

Linkskrümmung: $y'' = f''(x_0) > 0$ Rechtskrümmung: $y'' = f''(x_0) < 0$

Kurvendiskussion

Definitionsbereich und Definitionslücken

Definitionslücken liegen vor bei nicht-definierten Werten: Division durch 0, negative Wurzeln, Logarithmus von 0.

Symmetrie

$$f(x) = f(-x) \Rightarrow$$
 gerade, gespiegelt y-Achse $f(-x) = -f(x) \Rightarrow$ ungerade, gespiegelt 0-Punkt

Nullstellen

$$f(x) = 0$$

Pole

 x_0 sei eine Definitionslücke, dann Pol, wenn $\lim_{x_0\to 0} f(x_0) = \pm \infty$

Ableitungen

f'(x), f''(x), f'''(x) berechnen

Extremwerte

Extremwerte: f'(x) = 0, $f''(x) < 0 \Rightarrow \max_{x \in \mathcal{X}} f''(x) > 0 \Rightarrow \min_{x \in \mathcal{X}} f''(x) > 0$ $f^{(n)}(x_0) \neq 0 \Rightarrow (n = \text{gerade} \Rightarrow \text{Extremwert}) \land (n = \text{ungerade} \Rightarrow$ Sattelpunkt)

Wende- und Sattelpunkte

Wendepunkt: $f''(x) = 0, f'''(x) \neq 0$ Sattelpunkt: $f'(x) = 0, f''(x) = 0, f'''(x) \neq 0$

Asymptoten

 $\lim_{x\to\infty} f(x), \lim_{x\to-\infty} f(x)$

Wertebereich

Entweder aus der Zeichnung oder aus Definitionlücken der Umkehrfunktion.

Allgemein

Die Integration ist die Umkehrung der Ableitung.

$$y = f(x) \xrightarrow{\text{Differentiation}} y' = f'(x) \xrightarrow{\text{Integration}} y = f(x)$$

Stammfunktion

Es sei f(x) eine auf dem Intervall [a,b] definierte Funktion. Eine Funktion F(x) heisst Stammfunktion von f(x) falls für alle $x \in [a,b]$ gilt: F'(x) = f(x). Eigenschaften:

- 1. Hat eine stetige Funktion f(x) mindestens eine Stammfunktion, so hat sie unendliche viele Stammfunktionen.
- 2. Zwei beliebige Stammfunktione $F_1(x)undF_2(x)$ unterscheiden sich durch eine additive Konstante C. $(F_1(x) F_2(x) = \text{konstant}.$
- 3. Ist $F_1(x)$ eine beliebige Stammfunktion von f(x), so ist auch $F_1(x) + C$ eine Stammfunktion von f(x). Die allgemeine Stammfunktion ist: $F(x) = F_1(x) + C$, wobei C eine beliebige reelle Konstante ist.

Flächeninhalt (bestimmtes Integral)

Um die Fläche A unterhalb einer Funktion f(x) zu berechnen gilt folgendes Vorgehen:

- 1. Fläche in n Streifen teilen
- 2. Alle Streifenflächen berechnen
- 3. Flächen aufsummieren

In der Theorie wird eine Fläche in Rechtecke zerlegt, Untersumme (U_n) und Obersumme (O_n) berechnet. Die Fläche liegt zwischen diesen beiden Werten.

$$U_n = \sum_{k=1}^n f(x_{k-1}) \cdot \Delta x_k \qquad O_n = \sum_{k=1}^n f(x_k) \cdot \Delta x_k$$

$$A = \lim_{n \to \infty} U_n = \lim_{n \to \infty} O_n = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \cdot \Delta x_k = \int_a^b f(x) \, \mathrm{d}x = \int_{x=a}^{x=b} \mathrm{d}A$$

Das bestimmte Integral ist eine Zahl, die der Fläche entspricht.

Flächenfunktion (unbestimmtes Integral)

$$I(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

Die obere Intervall Grenze wird offengelassen. Das unbestimmte Integral ist eine Funktion. Eigenschaften:

- 1. Das unbestimmte Integral $I(x) = \int_a^x f(t) \, \mathrm{d}t$ repräsentiert den Flächeninhalt zwischen y = f(t) und der t-Achse im Intervall $a \le t \le x$ in Abhängigkeit von der oberen Grenze x.
- Zu jeder stetigen Funktion f(t) gibt es unendliche viele unbestimmte Integrale, die sich in ihrer unteren Grenze voneinander unterscheiden.
- 3. Die Differenz zweier unbestimmter Integrale $I_1(x)$ und $I_2(x)$ von f(t) ist eine Konstante.

Fundamentalsatz

Jedes unbestimmte Integral $I(x) = \int_{a}^{x} f(x) dx$ der stetigen Funktion f(x) ist eine Stammfunktion von f(x):

$$I(x) = \int_{a}^{x} f(x) dx \Rightarrow I'(x) = f(x)$$

heisst: Die Ableitung jedes unbestimmten Integrals ergibt die Integrandfunktion. Jeds unbestimmte Integral einer Funktion ist die Menge aller Stammfunktionen.

- I(x) ist eine stetig differenzierbare Funktion.
- Jedes unbestimmte Integral lässt sich schreiben als:

$$I(x) = \int_{a}^{x} f(x) dx = F(x) + C$$

• Die Funktionenschar aller unbestimmter Integrale eine Funktion f(x) schreibt man als

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

wobei F(x) eine beliebige Stammfunktion ist.

• Für stetige Funktionen sind die Begriffe "unbestimmtes Integral" und "Stammfunktion" synonym.

Grund- oder Stammintegrale

$$\int 0 \, dx = C$$

$$\int 1 \, dx = x + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int e^x \, dx = e^x + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \frac{1}{\sin^2 x} \, dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} \, dx = \tan x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C_1 = -\arccos x + C_2$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C_1 = -\arccos x + C_2$$

Beweistechniken

Verifizierung: Ableiten der Stammfunktion (I(x) muss den Integrand (f(x)) ergeben. **Beispiel**

Verifizierung.

$$\int \ln x \, dx = x \cdot \ln x - x + C \qquad (C \in \mathbb{R})$$

$$\frac{d}{dx}(x \cdot \ln x - x + C) = 1 \cdot \ln x + x \cdot \frac{1}{x} - 1$$

$$= \ln x + 1 - 1$$

$$= \ln x$$

Berechnen des bestimmten Integrals

- 1. Zunächst eine beliebige Stammfunktion bestimmen
- 2. Mit der Stammfunktion F(b) und F(a) berechnen:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Integrationsregeln

Faktorregel

Ein konstanter Faktor darf vor das Integral gezogen werden.

$$\int_{a}^{b} C \cdot f(x) \, \mathrm{d}x = C \cdot \int_{a}^{b} f(x) \, \mathrm{d}x$$

Summenregel

Eine endliche Summe von Funktionen darf gliedweise integriert werden.

$$\int_{a}^{b} (f_1(x) + \dots + f_n(x)) \, \mathrm{d}x = \int_{a}^{b} f_1(x) \, \mathrm{d}x + \dots + \int_{a}^{b} f_n(x) \, \mathrm{d}x$$

${\bf Vertauschungsregel}$

Vertauschen der Integrationsgrenzen bewirkt einen Vorzeichenwechsel.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Gleiche Intervallgrenzen

Fallen die Integrationsgrenzen zusammen (a=b), so ist der Integralwert gleich Null.

$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0$$

Zerlegen des Integrationsintervalls

Für jede Stelle c aus dem Integrationsinterval $a \le c \le b$ gilt:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Integrationsmethoden

Substitution

$$\int f(x) \, \mathrm{d}x = ?$$

1. Aufstellen der Substitutionsgleichungen:

$$u = g(x) \to \frac{\mathrm{d}u}{\mathrm{d}x} = g'(x) \to \mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$$

2. Durchführen der Integralsubstitution durch Einsetzen der Substitutionsgleichungen in das vorgegebene Integral:

$$\int f(x) \, \mathrm{d}x = \int \varphi(u) \, \mathrm{d}u$$

Das neue Integral enthält nur noch die Hilfsvariable u und deren Differential du. Der Integrand ist nur noch eine von u abhängige Funktion $\varphi(u)$

3. Integration (Berechnung des neuen Integrals)

$$\int \varphi(u) \, \mathrm{d}u = \Phi(u)$$

4. Rücksubsitution (mittels u = g(x))

$$\int f(x) dx = \Phi(u) = \Phi(g(x)) = F(x)$$

- Die Funktion muss stetig differenzier- und umkehrbar sein.
- Die Substitution muss zu einer Vereinfachung führen
- Nach einsetzen der Substitutionsgleichung darf x im Integral nicht mehr vorkommen
- Bei Wurzelausdrücken ist eine Substitutionsgleichung vom Typ x=h(u) günstiger
- Bei bestimmten Integralen kann auf die Rücksubsitution verzichtet werden. Dafür sind die Integrationsgrenzen mit u = g(x) bzw. x = h(u) zu berechnen.

Beispiel mit u = g(x)

$$\int_{0}^{1} x \cdot \sqrt{1 + x^{2}} \, \mathrm{d}x = ?$$

$$u = 1 + x^{2} \to \frac{\mathrm{d}u}{\mathrm{d}x} = 2 \cdot x \to \mathrm{d}x = \frac{\mathrm{d}u}{2 \cdot x}$$
Untergrenze: $x = 0 \Rightarrow u = 1 + (0)^{2} = 1$
Obergrenze: $x = 1 \Rightarrow u = 1 + (1)^{2} = 2$

$$\int_{0}^{1} x \cdot \sqrt{1 + x^{2}} \, \mathrm{d}x = \int_{u=1}^{u=2} x \sqrt{u} \frac{\mathrm{d}u}{2 \cdot x}$$

$$= \frac{1}{2} \cdot \int_{1}^{2} \sqrt{u} \, \mathrm{d}u = \frac{1}{2} \int_{1}^{2} u^{\frac{1}{2}} \, \mathrm{d}u$$

$$= \frac{1}{2} \left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{2} = \frac{1}{3} \left[\sqrt{u^{3}} \right]_{1}^{2}$$

$$= \frac{1}{2} (\sqrt{8} - \sqrt{1}) \approx 0,6095$$

Integralsubstitutionen

Typ A

$$\int f(a \cdot x + b) \, \mathrm{d}x = \frac{1}{a} \int f(u) \, \mathrm{d}u$$

Substitution: $u = a\dot{x} + b \rightarrow dx = \frac{du}{a}$ Beispiel: $\int \sqrt{4x+5} dx$; u = 4x+5

Typ B

$$\int f(x) \cdot f'(x) \, \mathrm{d}x = \frac{1}{2} (f(x))^2 + C$$

Substitution: $u = f(x) \to dx = \frac{du}{f'(x)}$ Beispiel: $\int \sin x \cdot \cos x \, dx$; $u = \sin x$

Typ C

$$\int (f(x))^n \cdot f'(x) \, \mathrm{d}x = \frac{1}{n+1} (f(x))^{n+1} + C$$

Substitution: $u = f(x) \to dx = \frac{du}{f'(x)}$ Beispiel: $\int (\ln x)^2 \cdot \frac{1}{x} dx$; $u = \ln x$

Typ D

$$\int f(g(x)) \cdot g'(x) \, \mathrm{d}x = \int f(u) \, \mathrm{d}u$$

Substitution: $u = g(x) \to dx = \frac{du}{g'(x)}$ Beispiel: $\int x \cdot e^{x^2} dx$; $u = x^2$

Typ E

$$\int \frac{f'(x)}{f(x)} \, \mathrm{d}x = \ln|f(x)| + C$$

Substitution: $u=f(x)\to \mathrm{d} x=\frac{\mathrm{d} u}{f'(x)}$ Beispiel: $\int \frac{2x-3}{x^2-3x+1}\,\mathrm{d} x; u=x^2-3x+1$

Partielle (Produkt-)Integration

$$\int f(x) dx = \int u \cdot v' dx = u \cdot v - \int u' \cdot v dx$$

Eine Funktion muss geschickt nach $u \cdot v'$ zerlegt werden. Die Stammfunktion von v' muss sich ohne Schwierigkeiten ergeben. Häufig muss erneut integriert oder substituiert werden.

Beispiel

$$\int \dot{x} \cdot e^{x} dx = ?$$

$$u = x \to u' = 1$$

$$v' = e^{x} \to v = e^{x}$$

$$\int x \cdot e^{x} dx = x \cdot e^{x} - \int 1 \cdot e^{x} dx$$

$$= x \cdot e^{x} - e^{x} + C = (x - 1) \cdot e^{x} + C$$

Flächeninhalt

Die Fläche ist immer ein positiver Wert \rightarrow mit Beträgen arbeiten.

Allgemeiner Fall

Flächen, die teils oberhalb, teils unterhalb der x-Achse verlaufen, müssen in Teilflächen zerlegt werden, die entweder oberhalb oder unterhalb der x-Achse verlaufen:

- 1. Nullstellen im Interval $a \le x \le b$ bestimmen
- 2. Teilflächen aufsummieren (ggf. Skizze erstellen)

Fläche zw. zwei Kurven (ohne Schnittpunkte)

Gegeben seien zwei Kurven $f_1(x)$ und $f_2(x)$

$$A = \left| \int_a^b (f_1(x) - f_2(x)) \, \mathrm{d}x \right|$$

Fläche zw. zwei Kurven (mit Schnittpunkten)

Erst die Schnittpunkte berechnen, dann wie ohne Schnittpunkt bis zum Schnittpunkt berechnen und aufsummieren.

Rotationskörper

x-Achse

$$V_x = \pi \cdot \int_a^b y^2 \, \mathrm{d}x = \pi \cdot \int_a^b (f(x))^2 \, \mathrm{d}x$$

y-Achse

y=f(x) in x=g(y) umrechnen und Intervallgrenzen berechnen (c=f(a),d=f(b))

$$V_y = \pi \cdot \int_c^d x^2 \, \mathrm{d}y = \pi \cdot \int_c^d (g(x))^2 \, \mathrm{d}y$$

Anwendungen

Ort:
$$s(t) = \int v(t) dt = \int \int a(t) dt$$

Geschwindigkeit: $v(t) = \frac{d}{dt}s(t) = \dot{s} = \int a(t) dt$
Beschleunigung: $a(t) = \frac{d}{dt}v(t) = \dot{v} = \ddot{s}$

Folgen

Folge Sei $\mathbb N$ die Menge der natürlichen Zahlen und A eine nicht leere Menge. Ein Folge entsteht, indem man jedem Element $n \in \mathbb N$ ein Element a von A zuordnet; man schreibt dann für diese Zuordnung:

$$n \mapsto a$$

Die entstande Folge wird selbst mit

 $\{a_n\}_{n\in\mathbb{N}}$ oder einfach mit $\{a_n\}$ bezeichnet

Obere Schranke Gibt es eine reele Zahl K_O so, dass

$$a_n \leq K_O$$
 für alle $n \in \mathbb{N}$

gilt, so ist die Folge $\{a_n\}$ nach oben beschränkt. Man nennt K_O die obere Schranke der Folge.

Untere Schranke Gibt es eine reele Zahl K_U so, dass

$$a_n \geq K_U$$
 für alle $n \in \mathbb{N}$

gilt, so ist die Folge $\{a_n\}$ nach unten beschränkt. Man nennt K_U die untere Schranke der Folge.

Beschränkt falls eine Folge sowohl nach oben, wie auch nach unten beschränkt ist.

Monotonie

Monoton steigend $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ Streng monoton steigend $a_n < a_{n+1}$ für alle $n \in \mathbb{N}$ Monoton fallend $a_n > a_{n+1}$ für alle $n \in \mathbb{N}$ $a_n > a_{n+1}$ für alle $n \in \mathbb{N}$ Streng monoton fallend

Eine monoton steigende Folge mit der Indexmenge N ist immer nach unten beschränkt. Die untere Schranke ist a_1 .

Eine monoton fallende Folge mit der Indexmenge N ist immer nach oben beschränkt. Die obere Schranke ist a_1

Konvergenz

Es sei $\{a_n\}_{n\in\mathbb{N}}$ eine reelle Folge und a eine reelle Zahl. Man sagt, die Folge konvergiert gegen den Grenzwert a, wenn für jede beliebige reelle Zahl $\epsilon > 0$ ein Index n_0 existiert, so dass gilt:

$$|a_n - a| < \epsilon$$
 für alle $n > n_0$

Man schreibt dann

$$a = \lim_{n \to \infty} a_n$$

oder auch

$$a_n \to a$$
 für $n \to \infty$

Rechenregeln

Es seien $\{a_n\}$ eine konvergierende Folge mit dem Grenzwert a und $\{b_n\}$ eine konvergierende Folge mit dem Grenzwert b. Dann gilt:

Die Folge $\{a_n + b_n\}$ konvergiert gegen a + bAddition Die Folge $\{a_n - b_n\}$ konvergiert gegen a - bSubtraktion Multiplikation Die Folge $\{a_n \cdot b_n\}$ konvergiert gegen $a \cdot b$

Die Folge $\{\frac{a_n}{b}\}$ konvergiert gegen $\frac{a}{b}$

Nach oben beschränkte, monoton steigende Folgen konvergieren. Nach unten beschränkte, monoton fallende Folgen konvergieren. Jede konvergente Folge ist beschränkt.

Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt: Jede Folge hat höchstens einen Grenzwert.

Reihen

Informell: Eine Reihe ist eine Folge, die dadurch entsteht, dass man die Glieder einer anderen Folge aufsummiert und die entstanden Partialsummen als neue Folge interpretiert.

Sei $\{a_i\}$ ein Folge von Zahlen und p eine natürliche Zahl. Dann betrachtet man die Summe $\sum_{i=1}^{p} a_i$ der ersten p Zahlen einer Folge. Gibt es eine Zahl S, so dass

$$\lim_{p \to \infty} \sum_{i=1}^{p} a_i = S$$

ist, konvergiert also die bis ins unendliche fortgesetzte Summation der Folgeglieder a_i gegen einen festen Wert, so sagt man, die Reihe konvergiert gegen S und schreibt in symbolischer Notation

$$\sum_{i=1}^{\infty} a_i = S$$

Die Zahl S bezeichnet den Summenwert der Reihe (oder auch den Reihenwert). Liegt keine konvergenz vor, so sagt man, die Reihe divergiert.

Konvergenzkriterien

Damit eine Reihe $\sum_{i=1}^{\infty} a_i$ konvergieren kann ist es notwendig, dass

$$\lim_{i \to \infty} a_i = 0$$

Quotientenkriterium

Es sei eine Reihe $\sum_{i=1}^{\infty} a_i$ vorgelegt. Existiert ein Grenzwert

$$q = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$$

und ist q < 1, so konvergiert die Reihe. Ist q > 1, so divergiert die Reihe. Ist q = 1 kann keine Aussage gemacht werden.

Wurzelkriterium

Es sei eine Reihe $\sum_{i=1}^{\infty} a_i$

$$q = \lim_{i \to \infty} \sqrt[i]{|a_i|}$$

und ist q < 1, so konvergiert die Reihe. Ist q > 1, so divergiert die Reihe. Ist q = 1 kann keine Aussage gemacht werden.

Leibniz-Kriterium

Sei $\{u_i\}$ eine Folge von Zahlen, die entweder alle positiv oder negativ sind, dann nennt man die Reihe

$$\sum_{i=1}^{\infty} (-1)^i u_i$$

ein alternierende Reihe.

Für alternierende Reihen gilt das Leibniz-Kriterium: Konvergiert die Folge $\{u_i\}$ streng monoton gegen 0, so konvergiert die Reihe $(u_1 > u_2 > \cdots > u_i)$

Wichtige Reihen

$$\sum_{i=1}^{\infty} \frac{1}{i} = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{i} \text{ (harmonische Reihe, divergiert)}$$

$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{1}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{i} = \ln 2$$

$$\sum_{i=1}^{\infty} aq^{i-1} = a + aq + aq^2 + \dots + aq^i \text{ geometrische Reihe} (q > 1) \textbf{Taylorsche Reihe}$$

$$\sum_{i=1}^{\infty} aq^{i-1} = a + aq + aq^2 + \dots + aq^i = \frac{a}{1-q} \text{ für } (|q| < 1)$$

$$\sum_{i=0}^{\infty} \frac{1}{i!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{i!} = e$$

$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{1}{2i-1} = 1 - \frac{1}{3} + \frac{1}{5} + \dots = \frac{\pi}{4}$$

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

$$\sum_{i=1}^{\infty} (-1)^{i-1} \frac{1}{i^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$

$$\sum_{i=1}^{\infty} \frac{1}{i \cdot (i+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots = 1$$

Für die Eulersche Zahl gilt, das 0! = 1

Potenzreihen

Unter einer Potenzreihe versteht man eine unendliche Reihe vom

$$P(x) = \sum_{n=0}^{\infty} a_n \cdot (x - x_0)^n = a_0 + a_1 \cdot (x - x_0)^1 + a_2 \cdot (x - x_0)^2 + \dots + a_n \cdot (x - x_0)^n$$

Die Stelle x_0 heisst Entwicklungspunkt oder auch Entwicklungszentrum. Die reellen Zahlen a_0, a_1, a_2, \ldots heissen Koeffizienten der Potenzreihe.

Konvergenzbereich

Die Menge aller x-Werte, für eine Potenzreihe konvergiert heisst Konvergenzbereich.

Zu jeder Potenzreihe gibt es ene positive Zahl r, Konvergenzradius genannt, mit folgenden Eigenschaften:

- 1. Die Potenzreihe konvergiert überall im Intervall |x| < r
- 2. Die Potenzreihe divergiert dagegen für |x| > r.
- 3. Über das Verhalten in |x|=r lassen sich keine allgemeinen Aussagen machen ⇒ explizit betrachten.

Falls für alle Koeffizienten gilt $a_n \neq 0$ und der ein Grenzwert für a_n vorhanden ist, lässt sich der Konvergenzradius r wie folgt berechnen:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

- Für x = 0 konvergiert jede Potenzreihe und besitzt dort den Summenwert $P(0) = a_0$
- Es gibt Potenzreihen, die nur für x=0 konvergieren
- Es gibt Potenzreihen, die für jedes $x \in \mathbb{R}$ konvergieren
- Allgemein konvergiert eine Potenzreihe in einem zum Nullpunkt symmetrischen Intervall r

Potenzreihenentwicklung

Die Taylorsche Reihe ist hilfreich um komplexe Funktionen in Polynome zu verwandeln. Je höher der Grad des Polynoms, desto stärker wird die Funktion angenähert.

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!} (x - x_0)^1 + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Wobei x_0 als Entwicklungspunkt bzw. als Entwicklungszentrum betrachtet wird.

Mac Laurinsche Reihe

Die Mac Laurinsche Reihe ist ein Spezialfall der Taylor Reihe im Entwicklungspunkt $x_0 = 0$:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Grenzwertregel Bernoulli/de L'Hospital

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- Voraussetzung: f(x) und g(x) sind in der Umgebung von x_0 stetig differenzierbar
- $\bullet\,$ Gilt auch für Grenzübergänge $x\to\pm\infty$
- Manchmal muss die Regel mehrfach angewendet werden
- Es gibt Fälle, in denen die Regel versagt

Umformungen

Typ A:
$$u(x) \cdot v(x)$$
 für $0 \cdot \infty$

$$u(x) \cdot v(x) = \frac{u(x)}{\frac{1}{v(x)}} \qquad \qquad u(x) \cdot v(x) = \frac{v(x)}{\frac{1}{u(x)}}$$

Typ B:
$$u(x) - v(x)$$
 für $\infty - \infty$

$$u(x) - v(x) = \frac{\frac{1}{v(x)} - \frac{1}{u(x)}}{\frac{1}{u(x) \cdot v(x)}}$$

Typ C:
$$u(x)^{v(x)}$$
 für $0^0, \infty^0, 1^\infty$
$$u(x)^{v(x)} = \mathrm{e}^{v(x) \cdot \ln u(x)}$$

Komplexe Zahlen \mathbb{C}

Eine komplexen Zahl z ist ein geordnetes Paar (x;y) aus zwei reellen Zahlen x und y: $z=x+\mathrm{j} y$. x ist der Realteil von z, y heisst Imaginärteil von z. Die imaginäre Einheit heisst j. Es gilt:

$$j^2 = -1$$

Darstellungsformen

Umrechnungen

$\mathbf{Trigonometrisch}/\mathbf{Exponential}\ \mathbf{Form}\ \rightarrow\ \mathbf{Normalform}$

$$x = r \cdot \cos \varphi$$
$$y = r \cdot \sin \varphi$$

$Normal form \rightarrow Trigonometrisch/Exponential form$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\varphi = \arctan\left(\frac{y}{x}\right) + \omega$$

Dabei heissen r der Betrag und φ Argument/Winkel/Phase von z. ω ist abhängig vom Quadranten.

Anmerkungen

- $\mathbb{C} = \{z | z = x + jy \text{ mit } x, y \in \mathbb{R}\}\$
- $z_1 = x_1 + jy_1 = z_2 = x_2 + jy_2 \Rightarrow (x_1 = x_2) \land (y_1 = y_2)$
- Die konjugiert komplexe Zahl $z^* = (x + jy)^* = x jy$.
- $e^{j\pi} = -1$

Komplexe Rechnung

- Addition und Subtraktion nur in Normalform möglich.
- Ungleichungen machen für komplexe Zahlen keinen Sinn.

Addition/Subtraktion

$$z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$$

Multiplikation

Normalform

Das Produkt $z_1 \cdot z_2 = (x_1 + jy_1) \cdot (x_2 + jy_2)$ wird im Reellen durch Ausmultiplizieren der Klammern unter Beachtung der Beziehung $j^2 = -1$ berechnet.

Polarform

Zwei komplexe Zahlen werden multipliziert, indem man ihre Beträge multipliziert und die Argumente addiert.

$$z_1 \cdot z_2 = r_1 \cdot e^{j\varphi_1} \cdot r_2 \cdot e^{j\varphi_2} = r_1 \cdot r_2 \cdot e^{j\varphi_1 + \varphi_2}$$

Division

Normalform

Der Quotient $\frac{z_1}{z_2}$ in der Normalform lässt sich wie folgt berechnen:

1. Der Bruch wird mit z_2^* , dem konjugiert komplexen Nenner erweitert:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot z_2^*}{z_2 \cdot z_2^*} = \frac{(x_1 + jy_1) \cdot (x_2 - jy_2)}{(x_2 + jy_2) \cdot (x_2 - jy_2)}$$

- 2. Zähler und Nenner werden unter Berücksichtigung von $j^2=-1$ ausmultipliziert (\rightarrow der Nenner wird reell)
- 3. Die im Zähler stehende komplexe Zahl wird gliedweise durch den Nenner dividiert.

Die Division durch Null bleibt verboten.

Polarform

Zwei komplexe Zahlen werden dividiert, indem man ihre Beträge dividiert und die Argumente subtrahiert.

$$\frac{z_1}{z_2} = \frac{r_1 \cdot e^{j\varphi_1}}{r_2 \cdot e^{j\varphi_2}} = \frac{r_1}{r_2} \cdot e^{j(\varphi_1 - \varphi_2)}$$

Multiplikation und Division können als Drehstreckung bzw. Drehstauchung geometrisch interpretiert werden.

Potenzieren

Geht am einfachsten in der Polarform:

$$z^{n} = \left(r \cdot e^{j\varphi}\right)^{n} = r^{n} \cdot e^{jn \cdot \varphi}$$
$$z^{n} = \left(r \cdot \cos \varphi + j \sin \varphi\right)^{n} = r^{n} \cdot \left(\cos n \cdot \varphi + j \sin n \cdot \varphi\right)$$

Radizieren

Geht am einfachsten in der Polarform:

$$\sqrt[n]{z} = \sqrt[n]{r \cdot e^{j\varphi}} = \sqrt[n]{r} \cdot e^{j\frac{\varphi + k \cdot 2\pi}{n}}$$
$$\sqrt[n]{z} = \sqrt[n]{r \cdot \cos \varphi + j \sin \varphi} = \sqrt[n]{r} \cdot (\cos \frac{\varphi + k \cdot 2\pi}{n} + j \sin \frac{\varphi + k \cdot 2\pi}{n})$$

Mit $k = 0, 1, 2, \dots, n - 1 \rightarrow$ eine nte Wurzel hat n Lösungen.

Eigenschaften der Grundrechenarten

- Addition und Multiplikation sind kommutativ: $z_1 + z_2 = z_2 + z_1$
- Addition und Multiplikation sind assoziativ: $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$
- Addition und Multiplikation sind über das Distributivgesetz verbunden: $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$

Differential mit mehreren Variablen

Eine Funktion von n unabhängigen Variablen ist eine Vorschrift, die jedem geordneten Zahlenpaar $(x_1; x_2; \ldots; x_n)$ aus einer Definitionsmenge D genau ein Element y aus einem Wertebereich W zuordnet: $y = f(x_1; x_2; \ldots; x_n)$.

Darstellungen

Explizit $y = f(x_1; x_2; ...; x_n)$ Implizit $F(x_1; x_2; ...; x_n; y) = 0$

Funktionstabelle: Bei zwei unabhängigen gibt es eine Matrix $(x_1$ -Werte in den Zeilen, x_2 -Werte in den Spalten). Mit mehreren unabhängigen kommen weiteren Tabellen für x_3 usw. dazu.

Graphisch • Fläche (3d) Geht nur mit zwei unabhängigen Variablen.

• Schnittkurvendiagramm (2d) (mit zwei unabhängigen Variablen): $f(x_1; x_2) = \text{Konstant}$

Grenzwert

Eine Funktion zweier Variablen hat an der Stelle (x_0,y_0) den Grenzwert g, wenn sich die Funktionswerte von f(x,y) beim Grenzübergang $(x,y) \to (x_0,y_0)$ unabhängig vom Weg dem Grenzwert g beliebig annähern.

$$g = \lim_{(x,y)\to(x_0,y_0)} f(x,y)$$

Lösungswege: Man nähere sich (x_0,y_0) entlang einer geraden y=mx. So kann man in die Funktionsgleichung für jedes y den Wert mx einsetzen. Ergibt sich dann ein konstanter Wert, hat die Funktion einen Grenzwert. Falls das Ergebnis noch von m abhängt, hat sie keinen Grenzwert.

Stetigkeit

Eine Funktion ist an einer Stelle stetig, wenn der Grenzwert vorhanden ist und mit dem Funktionswert übereinstimmt. Funktionen, die an jeder Stelle des Definitionsbereich stetig sind, heissen stetige Funktionen.

Partielle Ableitungen

Eine Funktion mit mehreren Variablen wird nach nur einer der Variablen abgeleitet. Die übrigen werden als Konstant angenommen.

$$\frac{\partial f}{\partial x}(x;y) = f_x(x;y) = m_x = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

(Analog für alle weiteren). f_x entspricht dem Anstieg der Flächentangente in positiver x-Richtung im Punkt (x, y). Oft ist es nützlich eine oder mehrere Hilfsvariablen einzuführen:

$$z = f(x;0) = xy^{2} \cdot (\sin x + \sin y)$$

$$u = xy^{2} \rightarrow u_{x} = y^{2}, u_{y} = 2xy$$

$$v = \sin x + \sin y \rightarrow v_{x} = \cos x, v_{y} = \cos y$$

$$z = u \cdot v$$

$$z_{x} = u_{x}v + uv_{x} = y^{2}(\sin x + \sin y) + xy^{2}\cos x$$

$$z_{y} = u_{y}v + uv_{y} = 2xy(\sin x + \sin y) + xy^{2}\cos y$$

Partielle Ableitungen höherer Ordnung

Die partiellen Ableitungen erster Ordnung werden erneut abgeleitet. Es ergeben sich dann $f_{xx}, f_{xy}, f_{yx}, f_{yy}$ usw. Wobei die Reihenfolge des Ableitens keine Rolle spielt: $f_{xy} = f_{yx}$, wenn die partiellen Ableitungen stetige Funktionen sind.

Tangentialebene

Die Tangentialebene z = t(x, y) besitzt im Punkt $P = (x_0, y_0, z_0)$ die gleiche Steigung (aka gleiche partielle Ableitungen) wie die gegebene Funktion z = f(x, y) $(z_0 = f(x_0, y_0))$.

$$z = f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0) + z_0$$

Beispiel:

$$z = f(x; y) = x^{2} + y^{2}, P = (1; 2; 5)$$

$$f_{x}(x; y) = 2x \Rightarrow f_{x}(1, 2) = 2$$

$$f_{y}(x; y) = 2y \Rightarrow f_{y}(1, 2) = 4$$

$$z - 5 = 2(x - 1) + 4(y - 2)$$

$$z = 2x + 4y - 5$$

Das totale Differential

Unter dem totalen (vollständigen) Differential einer Funktion z=f(x;y) von zwei unabhängigen Variablen wird der linerare Ausdruck

$$dz = f_x dx + f_y dy = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

verstanden. Es beschreibt die Änderung der Höhenkoordinate auf der im Berührungspunkt $P(x_0, y_0, z_0)$ errichteten Tangentialebene. $\mathrm{d}x$, $\mathrm{d}y$ und $\mathrm{d}z$ sind dann Koordinaten auf der Tangentialebene bezogen auf P.

Mit weiteren unabhängigen Variablen würden diese einfach linear hinzugefügt:

$$dy = f_{x_1} dx_1 + f_{x_2} dx_2 + \dots + f_{x_n} dx_n$$

Anwendungen

Implizite Differentiation

Der Anstieg der implizit dargestellten Funktion F(x; y) = 0 im Punkt P = (x; y) lässt sich wie folgt bestimmen:

$$y'(x;y) = -\frac{F_x(x;y)}{F_y(x;y)}$$

Erst ableiten, dann einsetzen!

Linearisierung

In der Umgebung eines Flächenpunktes $P=(x_0;y_0;z_0)$ kann die nichtlineare Funktion z=f(x;y) näherungsweise durch die Tangentialebene ersetzt werden:

$$\Delta z = f_x(x_0; y_0) \, \Delta x + f_y(x_0, y_0) \, \Delta y$$

Extremwerte

Eine Funktion z = f(x; y) besitzt an der Stelle $(x_0; y_0)$ einen Extremwert, wenn gilt:

$$f_x(x_0; y_0) = 0$$

$$\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - f_{xy}^2(x_0; y_0) > 0$$

$$f_y(x_0; y_0) = 0$$

 $f_xx(x_0;y_0)>0\Rightarrow$ Minimum, $f_xx(x_0;y_0)<0\Rightarrow$ Maximum. Falls $\Delta=0$ ist keine Aussage möglich. Falls $\Delta<0$ handelt es sich um einen Sattelpunkt. Δ wird auch als Diskriminante bezeichnet.

Doppelintegrale

Der Grenzwert $\lim_{n\to\infty, \Delta A_k\to 0} \sum_{k=1}^n f(x_k; y_k) \Delta A_k$ wird (falls vorhanden) als Doppelintegral bezeichnet und als $\iint_A f(x;y) dA$ geschrieben. Dabei ist $dA = dx \cdot dy$.

Berechnung

x konstant, y zwischen Funktionen

$$\iint_A f(x;y) dA = \int_{x=a}^b \int_{y=f_u(x)}^{f_o(x)} f(x;y) dy dx$$

Dabei sind $f_u(x)$ und $f_o(x)$ die untere bzw. die obere einschliessende Funktion.

- 1. Innere Integration nach y
- 2. Äussere Integration nach x

y konstant, x zwischen Funktionen

$$\iint_A f(x;y) dA = \int_{y=a}^b \int_{x=g_l(y)}^{g_r(y)}$$

Dabei sind $g_l(y)$ und $g_r(y)$ die linke bzw. rechte einschliessende Funktion.

- 1. Innere Integration nach x
- 2. Äussere Integration nach y

Doppelintegral in Polarkoordinaten

 $(x=r\cos\varphi,y=r\sin\varphi,\mathrm{d}A=r\mathrm{d}r\mathrm{d}\varphi)$ Transformation Doppelintegral:

$$\iint_A f(x;y) dA = \int_{\varphi=\varphi_1}^{\varphi} \int_{r=r_i(\varphi)}^{r_a(\varphi)} f(r \cdot \cos \varphi; r \cdot \sin \varphi) \cdot r dr d\varphi$$

Flächenberechnungen

Das Doppelintegral lässt beliebige Flächen berechnen. Dabei wird die Funktionsgleichung f(x;y) = 1 gesetzt:

$$A = \iint_{a} dA$$

$$A = \int_{x=a}^{b} \int_{y=f_{u}(x)}^{f_{o}(x)} dy dx$$

$$A = \int_{\varphi=\varphi_{1}}^{\varphi_{2}} \int_{r=r_{i}(\varphi)}^{r_{a}(\varphi)} r dr d\varphi$$

Beispiel:

$$\begin{split} r(\varphi) &= 1 + \cos \varphi \text{ im Intervall } 0 \leq \varphi < 2\pi \\ A &= \int_{\varphi=0}^{2\pi} \int_{r=0}^{1 + \cos \varphi} \\ &= \int_{\varphi=0}^{2\pi} \left[\frac{1}{2}r^2\right]_0^{1 + \cos \varphi} \mathrm{d}\varphi \\ &= \int_{\varphi=0}^{2\pi} \frac{(1 + \cos \varphi)^2}{2} \mathrm{d}\varphi \\ &= \frac{1}{2} \int_{\varphi=0}^{2\pi} (1 + 2 \cdot \cos \varphi + \cos^2 \varphi) \, \mathrm{d}\varphi \\ &= \frac{1}{2} \left[\varphi + 2 \cdot \sin \varphi + \frac{1}{2}\varphi + \frac{1}{4}\sin 2\varphi\right]_0^{2\pi} = \frac{3}{2}\pi \end{split}$$

Häufige Werte

Winkelmasse

	\mathbf{Rad}	Grad	sin	cos	tan	
_	0	0°	0	1	0	
	$\pi/12$	15°	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$2-\sqrt{3}$	
	$\pi/6$	30°	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	
	$\pi/4$	45°	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	
	$\pi/3$	60°	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	
	$\pi/2$	90°	1	Ō	$\pm \infty$	

Pascalsches Dreieck

n=0:						1					
n=1:					1		1				
n=2:				1		2		1			
n = 3:			1		3		3		1		
n=4:		1		4		6		4		1	
n=5:	1		5		10		10		5		1

Copyright © 2013 Constantin Lazari Revision: 1.0, Datum: 9. Juni 2013