

Universidad Nacional Autónoma de México Facultad de Ciencias, Ciudad Universitaria Fundamentos de Bases de Datos 7063

Normalización de Base de Datos Transpórtate

Diego Alfredo Villalpando Velázquez

13 de diciembre de 2019

Objetivo: Se describe a continuación el proceso de normalización a tercera forma normal de la base de datos con estructura descrita anteriormente en el pdf anexo "disenio.pdf"sobre la empresa ficticia Transpórtate.

Índice

1.	Introducción
2.	Nuevo Modelo Normalizado en 3NF
	2.1. Diagrama Relacional
	2.2. Justificación
	2.3. Procedimiento
	2.3.1. Chofer
	2.3.2. Automóvil
	2.3.3. Servicio
	2.3.4. Cliente, Correo-E, Teléfono, Tarjeta, e Historial
	2.4. Dependencias Funcionales
	2.5. Llaves Primarias
	2.6. Llaves Secundarias
	2.7 Llaves Candidatas

1. Introducción

La empresa Transportate es una empresa de transporte particular con 150 automóviles propios para transporte de usuarios ajenos a la empresa y de forma individual. La empresa desea crear una base de datos que permita realizar estadísticas de los viajes e implementar un nuevo sistema de recompensas para sus clientes frecuentes. Se enumeran las reglas de negocio a continuación:

2. Nuevo Modelo Normalizado en 3NF

2.1. Diagrama Relacional

Diagrama 1: Modelo Relacional normalizado del caso.

2.2. Justificación

2.3. Procedimiento

2.3.1. Chofer

Con las dependencias funcionales:

- RFC \rightarrow (CURP, Régimen Fiscal)
- \blacksquare CURP \rightarrow (Nombres, Apellidos, Fecha Nacimiento)
- Calle → (Delegación, Estado)

No se encuentra en 3NF, procedemos a normalizar:

- 1. El alcance mínimo de los atributos en dependencias funcionales son:
 - $\bullet \ \mathrm{RFC} \to \mathrm{R\acute{e}gimen}$ Fiscal
 - \blacksquare RFC \rightarrow CURP
 - \blacksquare CURP \to Nombres
 - $lue{}$ CURP ightarrow Apellidos

- \blacksquare CURP \to Fecha de Nacimiento
- lacksquare Calle ightarrow Delegación
- $lue{}$ Calle ightarrow Estado
- 2. Observemos que tenemos dos conjuntos disjuntos de atributos en la relación, sus alcances máximos son:
 - \blacksquare RFC \to (Régimen Fiscal, CURP \to (Nombres, Apellidos, Fecha de Nacimiento))
 - lacktriangle Calle ightarrow (Delegación, Estado)

Por lo tanto, sus llaves candidatas son RFC y Calle.

Normalizamos a 2NF:

- 1. Creamos una tabla (C1) con atributos RFC y Calle, las cuales son el 'puente' no existente en la tabla original; sin dependencias funcionales.
- 2. Creamos las 2 tablas pertenecientes a ambos conjuntos disjuntos de la tabla original:
 - (C2) Atributos: RFC, CURP, Régimen Fiscal, Nombres, Apellidos, Fecha Nacimiento. Dependencias Funcionales: RFC \rightarrow (CURP, Régimen Fiscal) y CURP \rightarrow (Nombres, Apellidos, Fecha de Nacimiento)
 - \blacksquare (C3) Atributos: Calle, Delegación, Estado. Dependencias Funcionales: Calle \to (Delegación, Estado)
- 3. Eliminamos la tabla original.

Observemos que las tablas C1 y C3 ya se encuentran en 3NF, pero la tabla C2 no porque no tiene una superllave, entonces procedemos a normalizar C2 a 3NF:

- 1. Creamos la tabla C2.1 con atributos CURP, Nombres, Apellidos, Fecha de Nacimiento. Dependencias Funcionales: $CURP \rightarrow (Nombres, Apellidos, Fecha de Nacimiento)$
- 2. Creamos la tabla C2.2 con atributos RFC, Régimen Fiscal, CURP. Dependencias Funcionales: RFC \rightarrow (Régimen Fidcal, CURP)
- 3. Eliminamos la tabla C2.

Hemos terminado de normalizar Choferes a 3NF, creando las tablas C1, C2.1, C2.2, y C3 en su lugar.

2.3.2. Automóvil

Con las dependencias funcionales:

■ Placas \rightarrow (RFC, Modelo, Marca, Año, Color) ■ (Placas, Modelo, Año) \rightarrow Valor

No se encuentra en 3NF, procedemos a normalizar:

- 1. El alcance mínimo de los atributos en dependencias funcionales son:
 - \blacksquare Placas \rightarrow Modelo

 \blacksquare Placas \rightarrow Marca

■ Placas → Año

 \blacksquare Placas \to RFC

■ Placas \rightarrow Color

- Modelo A $ilde{n}$ o o Valor
- 2. Observemos que tenemos un conjunto de atributos relacionados, su alcance máximo es:

$$Placas \rightarrow (Marca, Color, RFC, ((Modelo, Año) \rightarrow Valor))$$

- 3. Observemos que Automóviles se encuentra en 2NF, pero viola 3NF por no tener superllave.
- 4. Normalizamos a 3NF:
 - a) Creamos una tabla (A1) con atributos Placas, RFC, Modelo, Marca, Año, Color. Con dependencia funcional: Placas \rightarrow (RFC, Año, Modelo, Marca, Color)
 - b) Creamos otra tabla (A2) con atributos Modelo, Año, Valor. Con dependencia funcional: (Placas, Modelo, Año) \to Valor
 - c) Eliminamos la tabla original.
- 5. Observemos que las tablas A1 y A2 ya se encuentran en 3NF

Hemos terminado de normalizar Automóviles a 3NF, creando las tablas A1 y A2 en su lugar.

2.3.3. Servicio

Con las dependencias funcionales:

- IDS \rightarrow CURP, RFC, Placas, #Pasajeros, Clase, Método, Latitud Origen, Latitud Destino, Longitud Origen, Longitud Destino, Tiempo, Distancia)
- ullet (Distancia, Tiempo, Clase) o (Cantidad, Puntos Generados)

No se encuentra en 3NF, procedemos a normalizar:

- 1. El alcance mínimo de los atributos en dependencias funcionales son:
 - $\quad \blacksquare \ \mathrm{IDS} \to \mathrm{CURP}$
 - $IDS \rightarrow RFC$
 - $IDS \rightarrow Placas$
 - IDS \rightarrow #Pasajeros
 - IDS \rightarrow Clase
 - IDS → Método
 - IDS \rightarrow Latitud Origen

- $IDS \rightarrow Latitud Destino$
- \blacksquare IDS \rightarrow Longitud Origen
- $IDS \rightarrow Longitud Destino$
- $lue{}$ IDS ightarrow Tiempo
- $IDS \rightarrow Distancia$
- ullet Distancia Tiempo Clase o Cantidad
- \blacksquare Distancia Tiempo Clase \to Puntos Generados
- 2. Observemos que tenemos un conjunto relacionado de atributos, su alcance máximo es:

 $IDS \rightarrow (CURP, RFC, Placas, \#Pasajeros, Método, Latitud Origen, Latitud Destino, Longitud Origen, Longitud Destino, ((Distancia, Tiempo, Clase) <math>\rightarrow$ (Cantidad, Puntos Generados))).

- 3. Observemos que Servicio se encuentra en 2NF, pero viola 3NF por no tener una superllave.
- 4. Normalizamos a 3NF:
 - a) Creamos una tabla (S1) con atributos IDS, CURP, RFC, Placas, #Pasajeros, Método, Latitud Origen, Latitud Destino, Longitud Origen, Longitud Destino, Clase, Tiempo, Distancia. Con dependencia funcional IDS → (CURP, RFC, Placas, #Pasajeros, Método, Latitud Origen, Latitud Destino, Longitud Origen, Longitud Destino, Distancia, Tiempo, Clase)
 - b) Creamos una tabla (S2) con atributos Distancia, Tiempo, Clase, Puntos Generados, Cantidad. Con dependencia funcional (Clase, Distancia, Tiempo) \rightarrow (Puntos Generados, Cantidad)
 - c) Eliminamos la tabla original.
- 5. Observemos que las tablas S1 y S2 ya se encuentran en 3NF, pero no hace sentido tener las tablas S1 y S2 por separado, ya que (Clase, Distancia, Tiempo) no forman una llave foránea adecuada y lógica, ya que existe la posibilidad de que en un futuro se generen dos combinaciones exactas, rompiendo la unicidad de las llaves, además de no ser intuitivo.
- 6. Procedemos a unir S1 y S2, y llamaremos la tabla Servicios para no generar confusión. En esta tabla IDS será nuestra superllave con la siguiente dependencia funcional única en la tabla:

 $IDS \rightarrow (CURP, RFC, Placas, \#Pasajeros, Método, Latitud Origen, Latitud Destino, Longitud Origen, Longitud Destino, Distancia, Tiempo, Clase, Puntos Generados, Cantidad)$

Hemos terminado de normalizar Servicios a 3NF, modificando las dependencias funcionales según la lógica del caso y evitando conflictos de no-unicidad.

2.3.4. Cliente, Correo-E, Teléfono, Tarjeta, e Historial

Con las dependencias funcionales:

- \blacksquare Cliente (CURP \rightarrow Nombres, Apellidos, Fecha Nacimiento)
- Correo-E (CURP → Dirección-E)
- lacktriangle Teléfono (CURP ightarrow Número)
- Tarjeta ($CURP \rightarrow Distancia, Puntos, #Viajes$)
- Historial ($CURP \rightarrow IDS$)

Ya se encuentran en 3NF, porque en dichas tablas el atributo CURP es una superllave.

2.4. Dependencias Funcionales

- \blacksquare C2.1: CURP \to (Nombres, Apellidos, Fecha Nacimiento)
- C2.2: RFC \rightarrow (CURP, Régimen Fiscal)
- C3: Calle \rightarrow (Delegación, Estado)
- A1: Placas → (RFC, Modelo, Marca, Año, Color)
- A2: (Modelo, Año) \rightarrow Valor
- Servicio: IDS \rightarrow (CURP, RFC, Placas, #Pasajeros, Método, Latitud Origen, Latitud Destino, Longitud Origen, Longitud Destino, Distancia, Tiempo, Clase, Puntos Generados, Cantidad)
- ullet Cliente: CURP o Nombres, Apellidos, Fecha Nacimiento)
- Correo-E: CURP → Dirección-E)
- Teléfono: $CURP \rightarrow Número$)
- \blacksquare Tarjeta: CURP \rightarrow Distancia, Puntos, #Viajes)
- Historial: $CURP \rightarrow IDS$)

2.5. Llaves Primarias

■ C2.1: CURP.

■ C2.2: RFC

- A1: Placas.
- Servicio: IDS.
- 2.6. Llaves Secundarias
 - C1: RFC.

■ A2: Placas.

■ Tarjeta: CURP.

■ Cliente: CURP.

- C2.2: CURP.
- Correo-E: CURP.

■ C3: Calle

- Teléfono: CURP.
- Historial: CURP.

2.7. Llaves Candidatas

• C1: Calle.