Симплекс-метод

Виктор Васильевич Лепин

Задача линейного программирования состоит в том, что необходимо максимизировать или минимизировать некоторый линейный функционал на многомерном пространстве при заданных линейных ограничениях.

Задача линейного программирования состоит в том, что необходимо максимизировать или минимизировать некоторый линейный функционал на многомерном пространстве при заданных линейных ограничениях.

Сущность метода: построение базисных решений, на которых монотонно убывает линейный функционал, до ситуации, когда выполняются необходимые условия локальной оптимальности.

• Заметим, что каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве.

- Заметим, что каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве.
- В результате все неравенства ограничивают некоторый выпуклый многогранник (возможно, бесконечный).

- Заметим, что каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве.
- В результате все неравенства ограничивают некоторый выпуклый многогранник (возможно, бесконечный).
- Уравнение W(x) = c, где W(x) максимизируемый (или минимизируемый) линейный функционал, порождает гиперплоскость L(c).

- Заметим, что каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве.
- В результате все неравенства ограничивают некоторый выпуклый многогранник (возможно, бесконечный).
- Уравнение W(x) = c, где W(x) максимизируемый (или минимизируемый) линейный функционал, порождает гиперплоскость L(c).
- Зависимость от c порождает семейство параллельных гиперплоскостей.

- Заметим, что каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве.
- В результате все неравенства ограничивают некоторый выпуклый многогранник (возможно, бесконечный).
- Уравнение W(x) = c, где W(x) максимизируемый (или минимизируемый) линейный функционал, порождает гиперплоскость L(c).
- Зависимость от c порождает семейство параллельных гиперплоскостей.
- Тогда экстремальная задача приобретает следующую формулировку требуется найти такое наибольшее c, что гиперплоскость L(c) пересекает многогранник хотя бы в одной точке.

• Заметим, что пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину, причём их будет более одной, если пересечение содержит ребро или k-мерную грань.

- Заметим, что пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину, причём их будет более одной, если пересечение содержит ребро или k-мерную грань.
- Поэтому максимум функционала можно искать в вершинах многогранника.

- Заметим, что пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину, причём их будет более одной, если пересечение содержит ребро или k-мерную грань.
- Поэтому максимум функционала можно искать в вершинах многогранника.
- Принцип симплекс-метода состоит в том, что выбирается одна из вершин многогранника, после чего начинается движение по его рёбрам от вершины к вершине в сторону увеличения значения функционала.

- Заметим, что пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину, причём их будет более одной, если пересечение содержит ребро или k-мерную грань.
- Поэтому максимум функционала можно искать в вершинах многогранника.
- Принцип симплекс-метода состоит в том, что выбирается одна из вершин многогранника, после чего начинается движение по его рёбрам от вершины к вершине в сторону увеличения значения функционала.
- Когда переход по ребру из текущей вершины в другую вершину с более высоким значением функционала невозможен, считается, что оптимальное значение с найдено.

Последовательность вычислений симплекс-методом можно разделить на две основные фазы:

Последовательность вычислений симплекс-методом можно разделить на две основные фазы:

• нахождение исходной вершины множества допустимых решений,

Последовательность вычислений симплекс-методом можно разделить на две основные фазы:

- нахождение исходной вершины множества допустимых решений,
- последовательный переход от одной вершины к другой, ведущий к оптимизации значения целевой функции.
 - При этом в некоторых случаях исходное решение очевидно или его определение не требует сложных вычислений, например, когда все ограничения представлены неравенствами вида «меньше или равно» (тогда нулевой вектор совершенно точно является допустимым решением).
 - В таких задачах первую фазу симплекс-метода можно вообще не проводить.

Канонический вид и крайние точки для линейной задачи

Определение

Линейной задачей в канонической форме (другими словами, канонической линейной задачей) называется задача

$$\begin{cases} c_1 x_1 + \dots + c_n x_n \to \max \text{ (min)}, \\ a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\ \vdots & \vdots & \vdots \\ a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\ x_i \geqslant 0, \quad i = 1, \dots, n. \end{cases}$$

Таким образом, линейной задачей в канонической форме называется задача, в которой все ограничения представлены в виде равенств, а все переменные неотрицательны.

Задача в матричном виде

Введем обозначения $x=(x_1,\ldots,x_n), c=(c_1,\ldots,c_n),$ $b=(b_1,\ldots,b_m), A=(a_{ij})_{i=\overline{1,n};j=\overline{1,m}}.$ Тогда получим эквивалентное определение.

Определение

Линейной задачей в канонической форме называется задача

$$\begin{cases} c \cdot x \to \max(\min), \\ Ax = b, \\ x \ge 0. \end{cases}$$

• Разница между числом переменных и уравнений даёт нам число степеней свободы.

- Разница между числом переменных и уравнений даёт нам число степеней свободы.
- Проще говоря, если мы рассматриваем вершину многогранника, то это число рёбер, по которым мы можем продолжать движение.

- Разница между числом переменных и уравнений даёт нам число степеней свободы.
- Проще говоря, если мы рассматриваем вершину многогранника, то это число рёбер, по которым мы можем продолжать движение.
- Тогда мы можем присвоить этому числу переменных значение 0 и назвать их «небазисными».

- Разница между числом переменных и уравнений даёт нам число степеней свободы.
- Проще говоря, если мы рассматриваем вершину многогранника, то это число рёбер, по которым мы можем продолжать движение.
- Тогда мы можем присвоить этому числу переменных значение 0 и назвать их «небазисными».
- Остальные переменные при этом будут вычисляться однозначно и называться «базисными».

- Разница между числом переменных и уравнений даёт нам число степеней свободы.
- Проще говоря, если мы рассматриваем вершину многогранника, то это число рёбер, по которым мы можем продолжать движение.
- Тогда мы можем присвоить этому числу переменных значение 0 и назвать их «небазисными».
- Остальные переменные при этом будут вычисляться однозначно и называться «базисными».
- Полученная точка будет вершиной в пересечении соответствующих небазисным переменным гиперплоскостей.

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ. БАЗИСНОЕ РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим задачу

$$\begin{cases} cx \to \max, \\ Ax = b, \\ x \ge 0. \end{cases}$$
 (1)

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ. БАЗИСНОЕ РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим задачу

$$\begin{cases} cx \to \max, \\ Ax = b, \\ x \ge 0. \end{cases}$$
 (1)

Будем считать, что СЛУ Ax=b совместна (имеет решение), следовательно выполнено условие:

$$\operatorname{rang}(A) = \operatorname{rang}(A, b)$$

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ. БАЗИСНОЕ РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим задачу $\begin{cases} cx \to \max, \\ Ax = b, \\ x > 0. \end{cases}$ (1)

Будем считать, что СЛУ Ax=b совместна (имеет решение), следовательно выполнено условие:

$$\operatorname{rang}(A) = \operatorname{rang}(A,b)$$

Решения системы $\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ \dots & \text{образуют} \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m, \end{cases}$ множество D допустимых решений задачи (1).

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ. БАЗИСНОЕ РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассмотрим задачу $\begin{cases} cx \to \max, \\ Ax = b, \\ x > 0 \end{cases}$ (1)

Будем считать, что СЛУ Ax = b совместна (имеет решение), следовательно выполнено условие:

$$\operatorname{rang}(A)=\operatorname{rang}(A,b)$$

Решения системы $\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\ \dots & \text{образуют} \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m, \end{cases}$

множество D допустимых решений задачи (1).

- Решение единственно: $\operatorname{rang}(A) = \operatorname{rang}(A, b) = n$.
- Бескон. множество решений: $\operatorname{rang}(A) = \operatorname{rang}(A,b) < n$.

Базисным решением СЛУ, зависящим от множества индексов $S = \{1, \dots, m\}$, будем называть решение СЛУ, которое находится по правилам:

Базисным решением СЛУ, зависящим от множества индексов $S = \{1, \dots, m\}$, будем называть решение СЛУ, которое находится по правилам:

• привести данную систему, используя метод Гаусса, к диагональной форме по переменным x_1, \ldots, x_m (базисные переменные)

$$\begin{cases} x_1 + a'_{1,m+1}x_{m+1} + \dots + a'_{1n}x_n = b'_1, \\ x_2 + a'_{2,m+1}x_{m+1} + \dots + a'_{2n}x_n = b'_2, \\ \dots \\ x_m + a'_{m,m+1}x_{m+1} + \dots + a'_{mn}x_n = b'_m, \end{cases}$$

переменные x_{m+1},\ldots,x_n называются небазисными, возьмем $x_{m+1}=0,\ldots x_n=0$, получим $x_1=b_1',\ x_2=b_2',\ldots,x_m=b_m'.$ Вектор $\mathbf{x}=(b_1',b_2',\ldots,b_m',0,\ldots,0)$ — базисное решение

Замечание 1. Базисное решение не может содержать более чем m отличных от нуля элементов.

Замечание 1. Базисное решение не может содержать более чем m отличных от нуля элементов.

Замечание 2. Если базисное решение содержит ровно m отличных от нуля компонент, то оно называется невырожденным базисным решением. В противном случае — вырожденным базисным решением.

Замечание 1. Базисное решение не может содержать более чем m отличных от нуля элементов.

Замечание 2. Если базисное решение содержит ровно m отличных от нуля компонент, то оно называется невырожденным базисным решением. В противном случае — вырожденным базисным решением.

Замечание 3. Если все компоненты базисного решения неотрицательные, то такое базисное решение называется допустимым базисным решением.

Замечание 1. Базисное решение не может содержать более чем m отличных от нуля элементов.

Замечание 2. Если базисное решение содержит ровно m отличных от нуля компонент, то оно называется невырожденным базисным решением. В противном случае — вырожденным базисным решением.

Замечание 3. Если все компоненты базисного решения неотрицательные, то такое базисное решение называется допустимым базисным решением.

Замечание 4. Количество базисных решений СЛУ не может превышать величину

$$C_n^m = \frac{n!}{m!(n-m)!}.$$

Утверждение 1

Если у системы линейных уравнений существует решение, то существует и базисное решение этой системы ЛУ.

Утверждение 1

Если у системы линейных уравнений существует решение, то существует и базисное решение этой системы ЛУ.

Утверждение 2

Если задача ЛП имеет допустимое решение, то она имеет и допустимое базисное решение.

Утверждение 1

Если у системы линейных уравнений существует решение, то существует и базисное решение этой системы ЛУ.

Утверждение 2

Если задача ЛП имеет допустимое решение, то она имеет и допустимое базисное решение.

Утверждение 3

Если задача $\Pi\Pi$ имеет оптимальное решение, то она имеет и оптимальное базисное решение.

Утверждение 1

Если у системы линейных уравнений существует решение, то существует и базисное решение этой системы ЛУ.

Утверждение 2

Если задача ЛП имеет допустимое решение, то она имеет и допустимое базисное решение.

Утверждение 3

Если задача $\Pi\Pi$ имеет оптимальное решение, то она имеет и оптимальное базисное решение.

Определение

Точка x из замкнутого выпуклого множества D называется крайней, если она не является внутренней ни для одного отрезка, содержащегося в D. Другими словами, для любых $a,b\in D$ если $x\in [a,b]\subset D$, то x=a или x=b.

Основные теоремы, на которых базируется симплекс-метод.

Теорема 1

Если каноническая ЗЛП разрешима, то среди крайних точек допустимого множества D существует такая точка x_0 , в которой достигается экстремум целевой функции z.

Основные теоремы, на которых базируется симплекс-метод.

Теорема 1

Если каноническая ЗЛП разрешима, то среди крайних точек допустимого множества D существует такая точка x_0 , в которой достигается экстремум целевой функции z.

TEOPEMA 2

Если x_0 — крайняя точка допустимого множества канонической ЗЛП, то положительным координатам x_0 отвечают линейно независимые столбцы матрицы A задачи и x_0 — базисное решение.

- Из теоремы 2 вытекают два важных вывода.
 - Число положительных координат у крайней точки допустимого множества D не может превосходить ранга матрицы A.

- Из теоремы 2 вытекают два важных вывода.
 - Число положительных координат у крайней точки допустимого множества D не может превосходить ранга матрицы A.
 - ullet Число крайних точек D всегда конечно.

- Из теоремы 2 вытекают два важных вывода.
 - Число положительных координат у крайней точки допустимого множества D не может превосходить ранга матрицы A.
 - ullet Число крайних точек D всегда конечно.
- А в силу теоремы 1 если у целевой функции есть точки экстремума, то среди крайних точек D обязательно найдутся такие, в которых эти экстремумы достигаются.

- Из теоремы 2 вытекают два важных вывода.
 - Число положительных координат у крайней точки допустимого множества D не может превосходить ранга матрицы A.
 - ullet Число крайних точек D всегда конечно.
- А в силу теоремы 1 если у целевой функции есть точки экстремума, то среди крайних точек D обязательно найдутся такие, в которых эти экстремумы достигаются.
- Поэтому, чтобы решить каноническую ЗЛП, достаточно перебрать все крайние точки допустимого множества, посчитать значения целевой функции в этих точках и найти среди них максимум и минимум.

- Из теоремы 2 вытекают два важных вывода.
 - Число положительных координат у крайней точки допустимого множества D не может превосходить ранга матрицы A.
 - ullet Число крайних точек D всегда конечно.
- А в силу теоремы 1 если у целевой функции есть точки экстремума, то среди крайних точек D обязательно найдутся такие, в которых эти экстремумы достигаются.
- Поэтому, чтобы решить каноническую ЗЛП, достаточно перебрать все крайние точки допустимого множества, посчитать значения целевой функции в этих точках и найти среди них максимум и минимум.
- В симплекс-методе осуществляется направленный перебор крайних точек допустимого множества.

Определение

Каноническая ЗЛП называется невырожденной, если для любой крайней точки x_0 допустимого множества D число ее положительных координат равно рангу матрицы A.

Определение

Каноническая ЗЛП называется невырожденной, если для любой крайней точки x_0 допустимого множества D число ее положительных координат равно рангу матрицы A.

 Почти все задачи линейного программирования являются невырожденными.

Определение

Каноническая ЗЛП называется невырожденной, если для любой крайней точки x_0 допустимого множества D число ее положительных координат равно рангу матрицы A.

- Почти все задачи линейного программирования являются невырожденными.
- Симплекс-метод разработан именно для невырожденных задач.

Определение

Каноническая ЗЛП называется невырожденной, если для любой крайней точки x_0 допустимого множества D число ее положительных координат равно рангу матрицы A.

- Почти все задачи линейного программирования являются невырожденными.
- Симплекс-метод разработан именно для невырожденных задач.
- Всякую вырожденную задачу можно сделать невырожденной при помощи сколь угодно малого изменения ее коэффициентов, и затем считать решение модифицированной невырожденной задачи приближенным решением исходной вырожденной.

Рассмотрим для определенности задачу на минимум

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \min, \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\vdots & \vdots & \vdots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \ge 0, \quad i = 1, \dots, n.
\end{cases} \tag{1}$$

Рассмотрим для определенности задачу на минимум

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \min, \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\vdots & \vdots & \vdots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \geqslant 0, \quad i = 1, \dots, n.
\end{cases}$$
(1)

• Невырожденность задачи означает, что у любой крайней точки x_0 множества D есть ровно m положительных координат (m = rang(A)).

Рассмотрим для определенности задачу на минимум

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \min, \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\vdots & \vdots & \vdots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \geqslant 0, \quad i = 1, \dots, n.
\end{cases}$$
(1)

- Невырожденность задачи означает, что у любой крайней точки x_0 множества D есть ровно m положительных координат (m = rang(A)).
- Назовем эти положительные координаты базисными, а все остальные координаты свободными.

Рассмотрим для определенности задачу на минимум

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \min, \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\vdots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \geqslant 0, \quad i = 1, \dots, n.
\end{cases} \tag{1}$$

- Невырожденность задачи означает, что у любой крайней точки x_0 множества D есть ровно m положительных координат (m = rang(A)).
- Назовем эти положительные координаты базисными, а все остальные координаты свободными.
- Столбцы матрицы A в системе (1), стоящие при базисных координатах, будем называть базисными столбцами.

• Для того, чтобы начать симплекс-метод, нужно заранее найти хоть какую-нибудь одну крайнюю точку (ее называют начальным опорным планом). Как ее находить, объясним позже.

- Для того, чтобы начать симплекс-метод, нужно заранее найти хоть какую-нибудь одну крайнюю точку (ее называют начальным опорным планом). Как ее находить, объясним позже.
- Для удобства записи мы будем считать, что у начальной крайней точки x_0 положительны первые m координат:

$$x_0 = (x_1, \dots, x_m, 0, \dots, 0),$$

то есть базисными переменными являются x_1, \dots, x_m .

- Для того, чтобы начать симплекс-метод, нужно заранее найти хоть какую-нибудь одну крайнюю точку (ее называют начальным опорным планом). Как ее находить, объясним позже.
- Для удобства записи мы будем считать, что у начальной крайней точки x_0 положительны первые m координат:

$$x_0 = (x_1, \dots, x_m, 0, \dots, 0),$$

то есть базисными переменными являются x_1, \ldots, x_m .

 Если нужно, этого всегда можно добиться изменением нумерации координат.

1) Введем новую переменную

$$z = c_1 x_1 + \dots + c_n x_n$$

и перепишем исходную задачу в следующем виде:

$$\begin{cases}
 z \to \min, \\
 a_{11}x_1 + \dots + a_{1n}x_n = b_1, \\
 \dots \\
 a_{m1}x_1 + \dots + a_{mn}x_n = b_m, \\
 z - c_1x_1 - \dots - c_nx_n = 0, \\
 x_i \ge 0, \quad i = 1, \dots, n.
\end{cases}$$
(2)

2) В этой системе сделаем следующие преобразования: при помощи метода Гаусса выделим единичную матрицу в базисных столбцах, а затем исключим базисные переменные из уравнения, содержащего z. В результате получится система вида

$$\begin{cases}
z \to \min, \\
x_1 + 0 + \dots + 0 + \alpha_{1,m+1} x_{m+1} + \dots + \alpha_{1n} x_n = \beta_1, \\
x_2 + \dots + 0 + \alpha_{2,m+1} x_{m+1} + \dots + \alpha_{2n} x_n = \beta_2, \\
\dots \\
x_m + \alpha_{m,m+1} x_{m+1} + \dots + \alpha_{mn} x_n = \beta_m, \\
z + \delta_{m+1} x_{m+1} + \dots + \delta_n x_n = \gamma, \\
x_i \ge 0, \quad i = 1, \dots, n.
\end{cases}$$
(3)

Из этой системы следует, что

$$x_0 = (\beta_1, \dots, \beta_m, 0, \dots, 0),$$

где все

$$\beta_i > 0$$
 и $z(x_0) = \gamma$.

3) Предположим, что $\delta_i \leq 0$ при всех $i=m+1,\ldots,n$. Тогда из последнего уравнения системы (3) следует, что значение функции z невозможно уменьшить, не нарушая условий $x_i \geq 0$. В данном случае минимальное значение функции z уже найдено; при этом $z_{\min} = \gamma$, и точкой минимума является x_0 .

3) Предположим, что $\delta_i \leq 0$ при всех $i=m+1,\ldots,n$. Тогда из последнего уравнения системы (3) следует, что значение функции z невозможно уменьшить, не нарушая условий $x_i \geq 0$. В данном случае минимальное значение функции z уже найдено; при этом $z_{\min} = \gamma$, и точкой минимума является x_0 .

Предположим теперь, что есть такой номер $j_0 \in \{m+1,\dots,n\}$, при котором $\delta_{j_0}>0$. Рассмотрим тогда семейство точек

$$x(t) = (x_1(t), \dots, x_m(t), 0, \dots, 0, t, 0, \dots, 0), \qquad t \ge 0,$$

где параметр t стоит на месте j_0 , а $x_i(t)$ находятся из системы (3):

$$x_i(t) = \beta_i - \alpha_{ij_0}t, \quad i = 1, \dots, m.$$

Очевидно, $x_i(t) \geq 0$ при всех достаточно малых t, и, следовательно, $x(t) \in D$. Значение целевой функции в этой точке будет равно

$$z(x(t)) = \gamma - \delta_{j_0} t < z(x_0)$$
 при $t > 0$.

Чем больше параметр t, тем меньше значение функции в точке x(t).

Очевидно, $x_i(t) \geq 0$ при всех достаточно малых t, и, следовательно, $x(t) \in D$. Значение целевой функции в этой точке будет равно

$$z(x(t)) = \gamma - \delta_{j_0} t < z(x_0)$$
 при $t > 0$.

Чем больше параметр t, тем меньше значение функции в точке x(t).

Если $\alpha_{ij_0} \leq 0$ при всех $i=1,\ldots,m$, то $x_i(t) \geq 0$ для любого t>0. В этом случае целевая функция не ограничена снизу на множестве D, и исходная задача не имеет решения (минимума у целевой функции на множестве D нет).

Если найдутся $\alpha_{ij_0} > 0$ при некоторых $i \in \{1, \dots, m\}$, то мы можем увеличивать t только до тех пор, пока выполняются условия

$$x_i(t) = \beta_i - \alpha_{ij_0} t \ge 0, \quad i = 1, \dots, m,$$

то есть вплоть до значения

$$t_0 = \min_{\alpha_{ij_0} > 0} \left\{ \frac{\beta_i}{\alpha_{ij_0}} \right\},\,$$

где минимум берется по всем $i \in \{1, \dots, m\}$, для которых $\alpha_{ij_0} > 0$.

Если найдутся $\alpha_{ij_0} > 0$ при некоторых $i \in \{1, \dots, m\}$, то мы можем увеличивать t только до тех пор, пока выполняются условия

$$x_i(t) = \beta_i - \alpha_{ij_0} t \ge 0, \quad i = 1, \dots, m,$$

то есть вплоть до значения

$$t_0 = \min_{\alpha_{ij_0} > 0} \left\{ \frac{\beta_i}{\alpha_{ij_0}} \right\},\,$$

где минимум берется по всем $i \in \{1, \dots, m\}$, для которых $\alpha_{ij_0} > 0$.

Из невырожденности задачи вытекает, что этот минимум достигается лишь при единственном значении индекса $i=i_0$. При этом, очевидно, $x_{i_0}(t_0)=0$. Отсюда вытекает, что точка $x(t_0)$ имеет ровно $m=\mathrm{rank}A$ положительных координат, и, значит, она является крайней точкой множества D.

• По построению значение целевой функции в новой крайней точке $x(t_0)$ стого меньше, чем в точке x_0 , а координаты $x(t_0)$ удовлетворяют равенствам $x_{i_0}(t_0) = 0$ и $x_{i_0}(t_0) = t_0$.

- По построению значение целевой функции в новой крайней точке $x(t_0)$ стого меньше, чем в точке x_0 , а координаты $x(t_0)$ удовлетворяют равенствам $x_{i_0}(t_0) = 0$ и $x_{j_0}(t_0) = t_0$.
- Значит, базисными переменными для новой крайней точки будут все базисные переменные точки x_0 , кроме x_{i_0} , и еще одна переменная x_{j_0} .

- По построению значение целевой функции в новой крайней точке $x(t_0)$ стого меньше, чем в точке x_0 , а координаты $x(t_0)$ удовлетворяют равенствам $x_{i_0}(t_0) = 0$ и $x_{j_0}(t_0) = t_0$.
- Значит, базисными переменными для новой крайней точки будут все базисные переменные точки x_0 , кроме x_{i_0} , и еще одна переменная x_{j_0} .
- Для новой крайней точки переход от старой системы (3) к новой системе такого же вида выполняется следующим образом.

- По построению значение целевой функции в новой крайней точке $x(t_0)$ стого меньше, чем в точке x_0 , а координаты $x(t_0)$ удовлетворяют равенствам $x_{i_0}(t_0) = 0$ и $x_{j_0}(t_0) = t_0$.
- Значит, базисными переменными для новой крайней точки будут все базисные переменные точки x_0 , кроме x_{i_0} , и еще одна переменная x_{j_0} .
- Для новой крайней точки переход от старой системы (3) к новой системе такого же вида выполняется следующим образом.
- В исходной системе (3) посредством элементарных преобразований строк нужно сделать элемент i_0j_0 равным единице, а остальные элементы столбца с номером j_0 сделать нулевыми.

- По построению значение целевой функции в новой крайней точке $x(t_0)$ стого меньше, чем в точке x_0 , а координаты $x(t_0)$ удовлетворяют равенствам $x_{i_0}(t_0) = 0$ и $x_{j_0}(t_0) = t_0$.
- Значит, базисными переменными для новой крайней точки будут все базисные переменные точки x_0 , кроме x_{i_0} , и еще одна переменная x_{j_0} .
- Для новой крайней точки переход от старой системы (3) к новой системе такого же вида выполняется следующим образом.
- В исходной системе (3) посредством элементарных преобразований строк нужно сделать элемент i_0j_0 равным единице, а остальные элементы столбца с номером j_0 сделать нулевыми.
- После этого система будет иметь по отношению к новым базисным переменным тот же вид, что и (3).

4) Повторяем шаг 2) и шаг 3) до тех пор, пока не найдем точку минимума вместе с минимальным значением целевой функции, либо пока не обнаружим, что целевая функция неограничена снизу на D.

Симплекс-метод в табличной форме

Решить задачу

$$5x_1 + 2x_2 + 3x_3 \rightarrow \max,
2x_1 + 3x_2 + x_3 + x_4 = 10,
4x_1 + 2x_2 + 2x_3 + x_5 = 12,
2x_1 + x_2 + 2x_3 + x_6 = 8,
x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

Симплекс-метод в табличной форме

Решить задачу

$$\begin{array}{lll} 5x_1 + 2x_2 + 3x_3 & \to \max, \\ 2x_1 + 3x_2 + x_3 + x_4 & = 10, \\ 4x_1 + 2x_2 + 2x_3 & + x_5 & = 12, \\ 2x_1 + x_2 + 2x_3 & + x_6 = 8, \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0. \end{array}$$

Запишем систему в табличной форме:

x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	b
5	2	3	0	0	0	0
2	3	1	1	0	0	10
4	2	2	0	1	0	12
2	1	2	0	0	1	8

Симплекс-таблица

x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6	b
5	2	3	0	0	0	0
2	3	1	1	0	0	10
4	2	2	0	1	0	12
2	1	2	0	0	1	8

- ullet Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5	<i>x</i> ₆
0	5	2	3	0	0	0
10	2	3	1	1	0	0
12	4	2	2	0	1	0
8	2	1	2	0	0	1

- ullet Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов:
 - х₄ строка базисной переменной х₄;
 - x_5 строка базисной переменной x_5 :
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

b	x_1	x_2	х3	x_4	Х5	x_6
0	5	2	3	0	0	0
10	2	3	1	1	0	0
12	4	2	2	0	1	0
8	2	1	2	0	0	1

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	Х5	<i>x</i> ₆
-z	0	5	2	3	0	0	0
	10	2	3	1	1	0	0
	12	4	2	2	0	1	0
	8	2	1	2	0	0	1

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	Х5	x_6
-z	0	5	2	3	0	0	0
Х4	10	2	3	1	1	0	0
	12	4	2	2	0	1	0
	8	2	1	2	0	0	1

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

	b	x_1	x_2	х3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-z	0	5	2	3	0	0	0
Х4	10	2	3	1	1	0	0
<i>X</i> 5	12	4	2	2	0	1	0
	8	2	1	2	0	0	1

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - х₄ строка базисной переменной х₄;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-z	0	5	2	3	0	0	0
<i>X</i> 4	10	2	3	1	1	0	0
Х5	12	4	2	2	0	1	0
x_6	8	2	1	2	0	0	1

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - x_6 строка базисной переменной x_6 .
- Столбец для записи отношений.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	x_5	x_6	Отно- шения
x_4	10	2	3	1	1	0	0	
<i>X</i> 5	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переместим столбец b в начало таблицы.
- Пометим строки таблицы символами:
 - -z строка целевых коэффициентов;
 - x_4 строка базисной переменной x_4 ;
 - x_5 строка базисной переменной x_5 ;
 - х₆ строка базисной переменной х₆.
- Столбец для записи отношений.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	<i>x</i> ₃ 3	x_4	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
Х5	12	4	2	2	0	1	0	
x_6	8	2	1	2	0	0	1	

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	x_4	x_5	<i>x</i> ₆ 0	Отно- шения
x_4	10	2	3	1	1	0	0	
<i>X</i> 5	12	4	2	2	0	1	0	
x_6	8	2	1	2	0	0	1	

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку x_5 ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	<i>x</i> ₃ 3	x_4	x_5 0	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>X</i> 5	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- \bullet Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	$\begin{array}{c} b \\ 0 \end{array}$	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	x_4	x_5	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>X</i> 5	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	$\begin{array}{c} b \\ 0 \end{array}$	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	x_4	x_5	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>X</i> 5	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	<i>x</i> ₃	$x_4 \\ 0$	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	$\begin{array}{c} b \\ 0 \end{array}$	<i>x</i> ₁ 5	x_2	<i>x</i> ₃	x_4	x_5	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>X</i> 5	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
x_6	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	$x_4 \\ 0$	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
<i>x</i> ₅	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
<i>x</i> ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x_1 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	$b \\ 0$	<i>x</i> ₁ 5	x_2	<i>x</i> ₃	<i>x</i> ₄ 0	<i>x</i> ₅	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	$\frac{10}{2} = 5$
Х5	12	4	2	2	0	1	0	$\frac{12}{4} = 3$
х ₆	8	2	1	2	0	0	1	$\frac{8}{2} = 4$

- Наибольший коэффициент в строке -z имеет переменная x_1 .
- Объявляем столбец x₁ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_1 .
- Наименьшее отношение находится в строке x_5 .
- Объявляем строку х₅ ведущей.

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
Х5	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	x_3	x_4	$x_5 \\ 0$	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
Х5	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

• Переменная х₅ должна покинуть базис,

- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	$x_4 \\ 0$	$x_5 \\ 0$	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	x_4	<i>x</i> ₅ 0	$x_6 \\ 0$	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	12	4	2	2	0	1	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная *x*₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим

-z	$b \\ 0$	<i>x</i> ₁ 5	x_2	$\frac{x_3}{3}$	x_4	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
<i>x</i> ₁	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим

-z	$\begin{array}{c} b \\ 0 \end{array}$	<i>x</i> ₁ 5	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - на 2 и отнимем от строки х₄
 - 3 на 2 и отнимем от строки x_6 .

-z	<i>b</i> 0	<i>x</i> ₁ 5	x_2	<i>x</i> ₃ 3	x_4	<i>x</i> ₅ 0	<i>x</i> ₆ 0	Отно- шения
<i>x</i> ₄	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4 ,
 - \bigcirc на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1	x_2 $-\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	<i>x</i> ₆ 0	Отно- шения
<i>X</i> 4	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
Х6	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - **1** Ha 5 и отнимет от строки -z,
 - \bigcirc на 2 и отнимем от строки x_4
 - @ на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1	x_2 $-\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
Х4	10	2	3	1	1	0	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - на 5 и отнимет от строки -z,
 - **2** Ha 2 II OTHUMEM OT CTPOKU x_4 ,
 - \bigcirc на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1 0	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
Х4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
х ₆	8	2	1	2	0	0	1	

- Переменная x₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - \bullet на 5 и отнимет от строки -z,
 - 2 на 2 и отнимем от строки x_4 ,
 - \bigcirc на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1 0	x_2 $-\frac{1}{2}$	$\frac{x_3}{\frac{1}{2}}$	$x_4 = 0$	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
Х4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
х ₆	8	2	1	2	0	0	1	

- Переменная х₅ должна покинуть базис,
- а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - \bullet на 5 и отнимет от строки -z,
 - 2 на 2 и отнимем от строки x_4 ,
 - \bullet на 2 и отнимем от строки x_6 .

-z	<i>b</i> -15	x_1	$-\frac{x_2}{2}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$\begin{array}{c} \chi_5 \\ -\frac{5}{4} \end{array}$	x_6	Отно- шения
Х4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная х₅ должна покинуть базис,
- ullet а ее место должна занять переменная x_1 .
- Делим ведущую строку на 4,
- а затем результат умножим
 - \bullet на 5 и отнимет от строки -z,
 - 2 на 2 и отнимем от строки x_4 ,
 - \bullet на 2 и отнимем от строки x_6 .

-z	b -15	x_1	x_2 $-\frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$x_2 - \frac{1}{2}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Наибольший коэффициент в строке z имеет переменная *x*₃.
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- ullet Объявляем столбец x_3 ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$x_2 - \frac{1}{2}$	$\begin{array}{c} \chi_3 \\ \frac{1}{2} \end{array}$	x_4	$x_5 - \frac{5}{4}$	$x_6 \\ 0$	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке z имеет переменная x₃.
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$x_2 - \frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку х₆ ведущей.

-z	b -15	x_1	$x_2 \\ -\frac{1}{2}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$x_5 - \frac{5}{4}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

Итерация 2: выбор переменных для ввода в базис и вывода из базиса

-z	b -15	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	∞
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	6
х ₆	2	0	0	1	0	$-\frac{1}{2}$	1	2

- Наибольший коэффициент в строке -z имеет переменная x_3 .
- Объявляем столбец х₃ ведущим.
- Вычисляем отношения элементов столбца b к элементам столбца x_3 .
- Наименьшее отношение находится в строке x_6 .
- Объявляем строку x_6 ведущей.

-z	b -15	x_1	$x_2 - \frac{1}{2}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$\begin{array}{c} x_5 \\ -\frac{5}{4} \end{array}$	x_6	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим

-z	b -15	x_1	$x_2 - \frac{1}{2}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$\begin{array}{c} \chi_5 \\ -\frac{5}{4} \end{array}$	x_6	Отно- шения
χ_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₆	2	0	0	1	0	$-\frac{1}{2}$	1	

- \bullet Переменная x_6 должна покинуть базис,
- \bullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим

-z	b -15	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$\begin{array}{c} \chi_5 \\ -\frac{5}{4} \end{array}$	x_6	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим

-z	b -15	x_1	$x_2 - \frac{1}{2}$	x_3 $\frac{1}{2}$	x_4	$\frac{x_5}{-\frac{5}{4}}$	x_6	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** Ha 1/2 и отнимет от строки -z,

-z	b -15	x_1	$x_2 - \frac{1}{2}$	$\frac{x_3}{\frac{1}{2}}$	x_4	$\begin{array}{c} \chi_5 \\ -\frac{5}{4} \end{array}$	<i>x</i> ₆ 0	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** на 1/2 и отнимет от строки -z,

-z	b -16	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3	x_4	<i>x</i> ₅ -1	$\frac{x_6}{-\frac{1}{2}}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
Х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** на 1/2 и отнимет от строки -z,
 - @ на 1/2 и отнимем от строки x_1 ,

-z	b -16	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	<i>x</i> ₃ 0	x_4	<i>x</i> ₅ -1	$\frac{x_6}{-\frac{1}{2}}$	Отно- шения
x_4	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	3	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	
Х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **①** на 1/2 и отнимет от строки -z,

-z	b -16	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	<i>x</i> ₃ 0	x_4	<i>x</i> ₅ -1	$x_6 - \frac{1}{2}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Переменная x_6 должна покинуть базис,
- ullet а ее место должна занять переменная x_3 .
- Ведущую строку умножим
 - **1** Ha 1/2 и отнимет от строки -z,
 - 2 на 1/2 и отнимем от строки x_1 ,

-z	<i>b</i> -16	x_1	$\frac{x_2}{-\frac{1}{2}}$	x_3	$x_4 \\ 0$	<i>x</i> ₅ -1	$\frac{x_6}{-\frac{1}{2}}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
Х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является *оптимальной*.
- В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.

-z	<i>b</i> -16	x_1	$\begin{array}{c} x_2 \\ -\frac{1}{2} \end{array}$	x_3	$x_4 \\ 0$	<i>x</i> ₅ -1	$\frac{x_6}{-\frac{1}{2}}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке -z все коэффициенты неположительны, то эта таблица является *оптимальной*.
- В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.

-z	<i>b</i> -16	x_1	$\frac{x_2}{-\frac{1}{2}}$	x_3	$x_4 \\ 0$	<i>x</i> ₅ -1	$\frac{x_6}{-\frac{1}{2}}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
х3	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке z все коэффициенты неположительны, то эта таблица является оптимальной.
- В столбце *b* записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.

-z	<i>b</i> -16	x_1	$\frac{x_2}{-\frac{1}{2}}$	x_3 0	$x_4 \\ 0$	<i>x</i> ₅ -1	$\frac{x_6}{-\frac{1}{2}}$	Отно- шения
<i>x</i> ₄	4	0	2	0	1	$-\frac{1}{2}$	0	
x_1	2	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₃	2	0	0	1	0	$-\frac{1}{2}$	1	

- Поскольку в строке z все коэффициенты неположительны, то эта таблица является оптимальной.
- В столбце b записаны ненулевые компоненты оптимального базисного решения.
- Поэтому $x^* = (2,0,2)^T$ опт. решение задачи.

Пусть дана каноническая задача ЛП

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \text{extr,} \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\dots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \ge 0, \quad i = 1, \dots, n.
\end{cases}$$
(4)

где $b_i > 0, \quad i = 1, \dots, m.$

Пусть дана каноническая задача ЛП

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \text{extr,} \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\dots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \ge 0, \quad i = 1, \dots, n.
\end{cases} \tag{4}$$

где $b_i > 0, \quad i = 1, \dots, m.$

• Алгоритм симплекс-метода начинает свою работу, когда известна хотя бы одна крайняя точка допустимого множества (начальный опорный план).

Пусть дана каноническая задача ЛП

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \text{extr,} \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\dots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \ge 0, \quad i = 1, \dots, n.
\end{cases} \tag{4}$$

где $b_i > 0, \quad i = 1, \dots, m.$

- Алгоритм симплекс-метода начинает свою работу, когда известна хотя бы одна крайняя точка допустимого множества (начальный опорный план).
- Для нахождения этой точки используется специальный метод искусственного базиса.

Пусть дана каноническая задача ЛП

$$\begin{cases}
z = c_1 x_1 + \dots + c_n x_n \to \text{extr,} \\
a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\
\dots \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\
x_i \ge 0, \quad i = 1, \dots, n.
\end{cases} \tag{4}$$

где $b_i > 0, \quad i = 1, \dots, m.$

- Алгоритм симплекс-метода начинает свою работу, когда известна хотя бы одна крайняя точка допустимого множества (начальный опорный план).
- Для нахождения этой точки используется специальный метод искусственного базиса.
- Он позволяет найти начальную крайнюю точку исходной задачи с помощью симплекс-метода, но уже для другой линейной задачи, которая получается из исходной путем введения искусственных переменных.

• Прежде всего следует привести исходную задачу к каноническому виду, в котором все правые части b_i неотрицательны.

- Прежде всего следует привести исходную задачу к каноническому виду, в котором все правые части b_i неотрицательны.
- Этого можно добиться при помощи изменения знака у тех уравнений, в которых $b_i < 0$.

- Прежде всего следует привести исходную задачу к каноническому виду, в котором все правые части b_i неотрицательны.
- Этого можно добиться при помощи изменения знака у тех уравнений, в которых $b_i < 0$.
- Затем к каждому из уравнений задачи (4) добавим новую «искусственную» неотрицательную переменную, а в качестве целевой функции возьмем новую функцию w, равную сумме этих «искусственных» переменных:

$$\begin{cases} w = x_{n+1} + \dots + x_{n+m} \to \min, \\ a_{11}x_1 + \dots + a_{1n}x_n + x_{n+1} = b_1, \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n + x_{n+m} = b_m, \\ x_i \ge 0, \quad i = 1, \dots, n+m. \end{cases}$$
 (5)

• Полученная задача называется w-задачей.

- Полученная задача называется *w*-задачей.
- Для w-задачи сразу виден начальный опорный план: $x_0 = (0, \dots, 0, b_1, b_2, \dots, b_m).$

- Полученная задача называется w-задачей.
- Для w-задачи сразу виден начальный опорный план: $x_0 = (0, \dots, 0, b_1, b_2, \dots, b_m).$
- Для всех x из области определения w-задачи выполняется неравенство $w(x) \ge 0$.

- Полученная задача называется *w*-задачей.
- Для w-задачи сразу виден начальный опорный план: $x_0 = (0, \dots, 0, b_1, b_2, \dots, b_m).$
- Для всех x из области определения w-задачи выполняется неравенство $w(x) \ge 0$.
- Если допустимое множество D исходной задачи (4) непусто, то для всех точек $x \in D$ соответствующие искусственные переменные в (5) обращаются в нуль.

- Полученная задача называется *w*-задачей.
- Для w-задачи сразу виден начальный опорный план: $x_0 = (0, \dots, 0, b_1, b_2, \dots, b_m).$
- Для всех x из области определения w-задачи выполняется неравенство $w(x) \ge 0$.
- Если допустимое множество D исходной задачи (4) непусто, то для всех точек $x \in D$ соответствующие искусственные переменные в (5) обращаются в нуль.
- Значит, на этих точках целевая функция w тоже будет принимать нулевое значение.

- Полученная задача называется w-задачей.
- Для w-задачи сразу виден начальный опорный план: $x_0 = (0, \dots, 0, b_1, b_2, \dots, b_m).$
- Для всех x из области определения w-задачи выполняется неравенство $w(x) \ge 0$.
- Если допустимое множество D исходной задачи (4) непусто, то для всех точек $x \in D$ соответствующие искусственные переменные в (5) обращаются в нуль.
- Значит, на этих точках целевая функция w тоже будет принимать нулевое значение.
- Таким образом, чтобы получить начальный опорный план для исходной задачи (4), достаточно найти крайнюю точку для *w*-задачи (5), в которой целевая функция *w* достигает минимума, равного нулю.

Фаза 1.

• Решаем w-задачу симплекс-методом

Фаза 1.

- Решаем w-задачу симплекс-методом
- Если окажется, что в этой задаче $w_{\min} = 0$, то в точке минимума

$$x'_0 = (x'_1, \dots, x'_n, x'_{n+1}, \dots, x'_{n+m})$$

все координаты x'_{n+i} будут нулевыми.

Фаза 1.

- Решаем w-задачу симплекс-методом
- Если окажется, что в этой задаче $w_{\min} = 0$, то в точке минимума

$$x'_0 = (x'_1, \dots, x'_n, x'_{n+1}, \dots, x'_{n+m})$$

все координаты x'_{n+i} будут нулевыми.

В этом случае точка (x_1',\ldots,x_n') будет крайней для допустимого множества D исходной задачи.

Фаза 1.

- Решаем w-задачу симплекс-методом
- Если окажется, что в этой задаче $w_{\min} = 0$, то в точке минимума

$$x'_0 = (x'_1, \dots, x'_n, x'_{n+1}, \dots, x'_{n+m})$$

все координаты x'_{n+i} будут нулевыми. В этом случае точка (x'_1,\ldots,x'_n) будет крайней для допустимого множества D исходной задачи.

• Если же выяснится, что $w_{\min} > 0$, то из приведенного выше рассуждения следует, что $D = \emptyset$, то есть исходная задача не имеет решений. Фазу 2 ненужно выполнять.

Фаза 1.

- Решаем w-задачу симплекс-методом
- Если окажется, что в этой задаче $w_{\min} = 0$, то в точке минимума

$$x'_0 = (x'_1, \dots, x'_n, x'_{n+1}, \dots, x'_{n+m})$$

все координаты x'_{n+i} будут нулевыми. В этом случае точка (x'_1,\ldots,x'_n) будет крайней для допустимого множества D исходной задачи.

• Если же выяснится, что $w_{\min} > 0$, то из приведенного выше рассуждения следует, что $D = \emptyset$, то есть исходная задача не имеет решений. Фазу 2 ненужно выполнять.

Фаза 2.

• Решаем исходную задачу (4), используя начальное базисное решение (x'_1, \ldots, x'_n) .