APMA 2110: Real Analysis

Milan Capoor

Fall 2024

Definitions

Power set: $P(X) = \{E : E \subseteq X\}$

Limsup/Liminf: for $\{E_n\}_{n=1}^{\infty}$

$$\limsup E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$

$$\liminf E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$

Set differences: Let $E, F \subseteq X$. Then,

$$E \setminus F = \{x : x \in E \land x \notin F\} E \triangle F \qquad = (E \setminus F) \cup (F \setminus E) E^c = X \setminus E$$

De Morgan's Laws:

$$\left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}$$
$$\left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}$$

Relation: $R \subseteq X \times Y$ such that

$$xRy \iff (x,y) \in R$$

Equivalence Relation: \sim is a relation in the case X = Y such that

- $\bullet \ x \sim x \quad \forall x \in X$
- $x \sim y \iff y \sim x$
- $x \sim y \land y \sim z \implies x \sim z$

Function: $f: X \to Y$ is a relation such that $\forall x \in X$, there exists a unique $y \in Y$ such that xRy

Images: If $D \subseteq X, E \subseteq Y$, the *image* of D under $f: X \to Y$ is

$$f(D) = \{f(x) : x \in D\}$$
$$f^{-1}(E) = \{x : f(x) \in E\}$$

further, X is the domain of f and Y is the codomain of f. The range of f is f(X).

Inverses:

$$f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = q \bigcup_{\alpha \in A} f^{-1}(E_{\alpha})$$
$$f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f^{-1}(E_{\alpha})$$
$$f^{-1}(E^{c}) = (f^{-1}(E))^{c}$$

Bijectivity:

- $f: X \hookrightarrow Y \text{ iff } f(x_1) = f(x_2) \implies x_1 = x_2$
- $f: X \to Y$ iff $\forall y \in Y, \exists x \in X$ s.t. f(x) = y
- $f: X \hookrightarrow Y$ iff f is both injective and surjective

If $f: X \hookrightarrow Y$, then f^{-1} is a function.

Partial Ordering: a relation R on $X \neq \emptyset$ is a partial ordering if

- $xRy \wedge yRx \implies x = y$
- $xRy \wedge yRz \implies xRz$
- xRx for all x

Total/Linear ordering: an ordering \leq is a total ordering if $\forall x, y \in X$, either $x \leq y$ or $y \leq x$

Extrema: If X is partially ordered by \leq , $x \in X$ s.t. $x \leq y \implies y = x$ is a maximal element of X

Bounds: If $E \subseteq X$, $x \in X$ s.t. $y \le x \quad \forall y \in E$ is an *upper bound*.

Well-ordered: A set is well-ordered if

- 1. It is linearly ordered by \leq
- 2. Every nonempty subset has a minimal element

Zorn's Lemma: If X is partially ordered by \leq and every linearly ordered subset of X has an upperbound, then X has a maximal element.

Proof: Axiomatic

Well ordering principle: Every non-empty set X can be well-ordered

Proof: Let \mathcal{W} be the set of all well-ordered subsets of S. Let \mathcal{S}_{α} be the set of all linear orderings of $E_{\alpha} \subseteq \mathcal{W}$.

Let $E_{\infty} = \bigcup_{\alpha} E_{\alpha}$ be equipped the partial ordering \leq_{∞} such that $\leq_{\infty} \big|_{E_{\alpha}} = \leq_{\alpha}$ for $\alpha \in A$.

By construction, E_{∞} is an upper bound for any sequence of well-ordered sets in \mathcal{W} .

(Subtlety: need to show that E_{∞} is an upper bound by defining a relation R by extension of linear orderings, showing that R is a partial ordering, and then showing that $\leq_{\alpha} R \leq_{\infty}$ is well-defined)

By Zorn's lemma, E_{∞} has a maximal element E_{max} . And we have $E_{\text{max}} = X$ by maximality.

Product map: Let $\prod \alpha \in AX_{\alpha}$ be the set of all functions $f: A \to \bigcup_{\alpha \in A} X_{\alpha}$ such that $f(\alpha) \in X_{\alpha}$.

Axiom of Choice: If $\{X_{\alpha}\}_{{\alpha}\in A}\neq\emptyset$, then $\prod_{{\alpha}\in A}X_{\alpha}\neq\emptyset$ (i.e. there exists a choice function)

Proof: Let $X = \bigcup_{\alpha \in A} X_{\alpha}$. Pick a well ordering on X and $\alpha \in A$. Let $f(\alpha)$ be the minimal element of X_{α} . Then

$$f \in \prod_{\alpha \in A} X_{\alpha}$$

Cardinality:

- card $X \leq \text{card } Y \iff \exists f: X \hookrightarrow Y$
- card $X = \text{card } Y \iff \exists f : X \hookrightarrow Y$
- $\bullet \ \mathrm{card} \ X \geq \mathrm{card} \ Y \iff \exists f: X \twoheadrightarrow Y$

Property: card $X \leq \text{card } Y \iff \text{card } Y \geq \text{card } X$

Proof: card $X \leq \text{card } Y \implies \exists f: X \hookrightarrow Y$. Choose $x_0 \in X$ and define $g: Y \to X$ by

$$g(y) = \begin{cases} f^{-1}(y) & y \in f(X) \\ x_0 & y \notin f(X) \end{cases}$$

Conversely, if $\exists g: Y \to X$, consider $g^{-1}(x)$ for $x \in X$. Then $f \in \prod_{x \in X} g^{-1}(x)$ is an injection from X to Y.

Property: Either card $X \leq \text{card } Y$ or card $Y \leq \text{card } X$

Proof: Let J be the set of all injections $f_E: E \to Y$ for $E \subseteq X$.

Repeating the argument from the Well-ordering principle, we can find an upper bound E_{max} for J. Then by Zorn's lemma, there exists a maximal element $f_{E_{\text{max}}}$ (with respect to the extension partial ordering).

Case 1: $E_{\text{max}} = X$. Then $f_{E_{\text{max}}} : X \hookrightarrow Y$ and card $X \leq \text{card } Y$.

Case 2: $E_{\text{max}} \subseteq X$. Then $X \setminus E_{\text{max}} \neq \emptyset$ so $f(E_{\text{max}}) = Y$ (or else $y_0 \in Y, y_0 \notin f(E_{\text{max}})$ and $f_{E_{\text{max}}} \cup \{(x_0, y_0)\}$ is a larger injection). Then $f_{E_{\text{max}}}^{-1} : Y \hookrightarrow X$ and we are done.

Schröder-Bernstein Theorem: If $f: X \hookrightarrow Y$ and $g: Y \hookrightarrow X$, then $\exists h: X \hookrightarrow Y$

Proof: If f(X) = Y, then we are done.

Otherwise, consider $Y_1 = Y \setminus f(X)$. Then $f(Y_1) \subseteq X$ so let $X_1 = f(Y_1)$. Now we have a bijection $X_1 \to Y_1$.

Assume we have X_1, \ldots, X_n and Y_1, \ldots, Y_n with bijections $X_n \to Y_n$.

Since $f(X_i) \subseteq Y_{i+1}$, define

$$Y_{n+1} = \left(Y \setminus \bigcup_{i=1}^{n} Y_i\right) \setminus f\left(X \setminus \bigcup_{i=1}^{n} X_i\right)$$

So inductively, we have a bijection on the full sets.

Corollary: If card $X \leq \text{card } Y$ and card $Y \leq \text{card } X$, then card X = card Y

Proposition: card X < card P(X)

Proof: Clearly, $f: X \hookrightarrow P(x)$ by $f(x) = \{x\}$.

We claim $\not\exists g: X \to P(X)$. Suppose there is such a g. Then define

$$Y = \{ x \in X \text{ s.t. } x \notin g(x) \}$$

We claim $Y \notin g(X)$ so g not surjective. If not, $\exists x_0 \in X \text{ s.t. } g(x_0) = Y$.

Case 1: $x_0 \in Y \implies x_0 \notin g(x_0) = Y$. Contradiction.

Case 2: $x_0 \notin Y \implies x_0 \in g(x_0) = Y$. Contradiction.

Proposition:

- 1. X, Y countable $\implies X \times Y$ countable
- 2. A countable and X_{α} countable for $\alpha \in A$ implies $\bigcup_{\alpha \in A} X_{\alpha}$ countable

Proof: 1. card $X = \text{card } Y \leq \text{card } \mathbb{N}$ so it suffices to show card $\mathbb{N} \times \mathbb{N} = \text{card } \mathbb{N}$.

Clearly, $\forall n \in \mathbb{N}, f(n) \hookrightarrow (n, 1) \in \mathbb{N} \times \mathbb{N}.$

Now consider $g(m,n) \to 2^m 3^n \in \mathbb{N}$. By unique prime factorization of integers, $2^m 3^n = 2^{m'} 3^{n'} \implies m = m', n = n'$ so injective.

We have a bijection by Schroder-Bernstein.

2. A countable $\Longrightarrow \exists f_{\alpha} : \mathbb{N} \to X_{\alpha}$. Define $F : \mathbb{N} \times A \to \bigcup_{\alpha \in A} X_{\alpha}$ by $F(n, \alpha) = f_{\alpha}(n)$ which is surjective because f_{α} is surjective.

By the previous part, card $\mathbb{N} \times A = \operatorname{card} \mathbb{N}$ so card $\bigcup_{\alpha \in A} X_{\alpha} \leq \operatorname{card} \mathbb{N}$. Hence, it is countable.

Corollary: \mathbb{Z} and \mathbb{Q} are countable.

Proof:

- 1. $\mathbb{Z} = \mathbb{N} \cup \{-\mathbb{N}\} \cup \{0\}$
- 2. $f: \mathbb{Z}^2 \to \mathbb{Q}$ by

$$f(m,n) = \begin{cases} m/n & n \neq 0 \\ 0 & n = 0 \end{cases}$$

Proposition: Every open set in \mathbb{R} is a countable disjoint union of open intervals

Proof: For all $x \in U$, $\exists (a,b) \subseteq U$ such that $x \in (a,b)$. By def of inf and sup, $x \in I_x := (\inf a, \sup b) \subseteq U$.

We claim that $\forall x, y \in U$, $I_x = I_y$ or $I_x \cap I_y = \emptyset$.

Suppose $I_x \cap I_y \neq \emptyset$. Then $x \in I_x \cup I_y$ but I_x is maximal so $I_x = I_x \cup I_y \implies I_x = I_y$.

Now $U = \bigcup_{x \in U} I_x$ which is countable by $f : U \hookrightarrow \mathbb{Q}$ by choosing a rational in each interval (by density of \mathbb{Q})

Metric Space: a set X with a distance function $\rho: X \times X \to [0, \infty]$ such that

- 1. $\rho(x,y) = 0 \iff x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$

Open Set: E open $\iff \forall x \in E, \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(x) \subseteq E$

Closed set: E closed $\iff E^c$ open

Properties:

• \emptyset is open

• U_x open $\Longrightarrow \bigcup_{x \in A} U_x$ open

• F_x closed $\Longrightarrow \bigcap_{x \in A} F_x$ closed

Interior: $E \subseteq X$, the interior of E (the largest open set in E) is

$$\overset{\circ}{E} = \bigcup_{O \subseteq E} O$$

Closure:

$$\overline{E} = \bigcap_{F\supset E} F$$

(the smallest closed set containing E)

Proposition: Let (X, ρ) be a metric space with $E \subseteq X$ and $x \in X$. The following are equivalent:

1. $x \in \overline{E}$

2. $B(x,r) \cap E \neq \emptyset$ for all r > 0

3. $\exists \{x_n\} \subseteq E \text{ s.t. } x_n \to x$

Proof:

 $(1 \to 2)$ Suppose $\exists r > 0$ such that $B(x,r) \cap E = \emptyset$. Then $E \subseteq (B(x,r))^c$ but $(B(x,r))^c$ is closed so $\overline{E} \subseteq (B(x,r))^c$ so $x \in B(x,r) \subseteq (\overline{E})^c$, contradiction.

 $(2 \to 3)$ Let r = 1/n. By (1), $\exists x_n \in B(x, \frac{1}{n}) \cap E$. By construction, $\rho(x_n, x) < \frac{1}{n} \to 0 \implies x_n \to x$

 $(3 \to 1)$ $x \notin \overline{E} \implies x \in (\overline{E})^c$. But $(\overline{E})^c$ closed so $\exists r > 0$ s.t. $B(x,r) \subseteq (\overline{E})^c \subseteq E^c$ so there cannot exist any sequence in E, a contradiction.

Dense:

• E is dense in X if $\overline{E} = X$

• E is nowhere dense if $(\overline{E})^{\circ} = \emptyset$

Separable: there exists a countable dense subset $E \subseteq X$

Continuity: Let $(X_1, \rho_1), (X_2, \rho_2)$. $f: X_1 \to X_2$ is continuous at $x \in X_1$ if $\forall \varepsilon > 0, \exists \delta > 0$ s.t.

$$\rho_1(x,y) < \delta_x \implies \rho_2(f(x),f(y)) < \varepsilon$$

Uniform Continuity: f uniformly continuous if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that

$$\rho_1(x,y) < \delta_x \implies \rho_2(f(x),f(y)) < \varepsilon$$

for all $x \in X_1$.

Proposition: $f: X_1 \to X_2$ is continuous iff $f^{-1}(U) \subseteq X_1$ is open for all open $U \subseteq X_2$

Proof: $f^{-1}(U) = \emptyset$ is open so take $x \in f^{-1}(U)$ so $f(x) = y \in U$.

Since U is open, take $B_2(y, \varepsilon_y) = B_2(f(x), \varepsilon_y) \subseteq U$. By continuity,

$$z \in B_1(x, \delta_2) \implies f(z) \in B_2(y, \varepsilon_y) \implies z \in f^{-1}(U)$$

so $f^{-1}(U)$ is open.

Conversely, take $y = f(x) \in X_2$. $B_2(y, \varepsilon)$ is open so $f^{-1}(B_2(y, \varepsilon))$ is open by assumption. Now

$$B_1(x, \delta_x) \subseteq f^{-1}(B_2(y, \varepsilon)) \implies f(B_1(x, \delta_x)) \subseteq B_2(y, \varepsilon)$$

which is the definition of continuity

Cauchy Sequence: $\{x_n\} \in (X, \rho)$ is Cauchy if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\forall m, n \geq N, \rho(x_m, x_n) < \varepsilon$

Complete: $E \subseteq X$ is complete if every Cauchy sequence $x_n \in E$ has a limit $x \in E$

Set Distance:

• Let $x \in X$ and $E \subseteq X$.

$$\rho(x, E) = \inf\{\rho(x, y) : y \in E\}$$

• Let $E, F \subseteq X$

$$\rho(E, F) = \inf \{ \rho(x, y) : x \in E, y \in F \}$$

Diameter: diam $E = \sup \{ \rho(x, y) : x, y \in E \}$

Bounded: E bounded \iff diam $E < \infty$

Totally bounded: $\forall \varepsilon > 0$, E can be covered by finitely many ε -balls

Characterization of compactness: The following are equivalent definitions of compactness:

- $1 ext{ } E ext{ is complete and totally bounded}$
- 2. Every sequence in E has a convergent subsequence with its limit in E
- 3. Every open cover has a finite subcover

Proof:

 $(1 \to 2)$ Let x_n be a sequence in E. Inductively define a sequence of open balls B_k of radius $1/2^k$ that each contain infinitely many points of x_n (guaranteed by completeness).

For each ball, define an index set $N_k = \{n \in \mathbb{N} : x_n : B_k\}$. Using the AC, pick $n_1 \in N_1, n_2 \in N_2, \ldots$ such that $n_1 < n_2 < \ldots$.

By construction, $\{x_{n_k}\}$ is a Cauchy sequence $(\rho(x_{n_k}, x_{n_j}) < \frac{1}{2^{1-k}}$ for j > k). Since E is complete, $\{x_{n_k}\}$ converges to $x \in E$.

 $(2 \rightarrow 3)$

Product metric: For (X, ρ_1) and (Y, ρ_2) metric spaces, the product metric on $(X_1 \times X_2, \rho_1 \times \rho_2)$ is

$$\rho_1 \times \rho_2 = \sqrt{\rho_1^2(x_1, y_1) + \rho_2^2(x_2, \rho_2)}$$

Property: $\rho_1 \times \rho_2 \to 0 \iff \rho_1 \to 0 \land \rho_2 \to 0$

Proof: $\rho_1^2, \rho_2^2 > 0$ so

$$\sqrt{\rho_1^2(x_1, y_1) + \rho_2^2(x_2, y_2)} = 0 \implies \rho_1^2(x_1, y_1) = -\rho_2^2(x_2, y_2) \implies \rho_1, \rho_2 = 0$$

Other direction, clear.

Proposition: There is no measure μ which satisfies Countable Additivity, Translation invariance, and Faithfulness on all subsets of [0,1)

Proof:

Define $x \sim y \iff x - y \in \mathbb{Q} \cap [0, 1)$. Clearly

$$[0,1) = \bigcup_{x \in [0,1)} \{ y \in [0,1) : y \sim x \}$$

Using AC, select a unique element e_x in each equivalence class and take $N = \{e_x : x \in [0,1)\}$. By construction, $e_x - e_y \notin \mathbb{Q} \cap [0,1)$

Pick $r \in \mathbb{Q} \cap [0,1)$ and define

$$N_r = \{e_x + r : e_x \in N \cap [0, 1 - r)\} \cup \{e_x + (r - 1) : e_x \in N \cap [1 - r, 1]\}$$

(the points that don't leave the interval under translation and those that do)

First notice, $N_r \cap N_s = \emptyset$ (or else contradiction by difference being rational)

Then $[0,1) = \bigcup N_r$ because $\forall y \in [0,1), \exists e_x \in N$ such that $y - e_x \in \mathbb{Q} \cap [0,1)$

Now because they are disjoint,

$$\mu(N_r) = \mu(N_r \cap [0, 1 - r)) + \mu(N_r \cap [1 - r, 1))$$

= $\mu(N)$

By by countable additivity,

$$1 = \mu([0, 1)) = \sum_{r \in \mathbb{Q} \cap [0, 1)}^{\infty} \mu(N_r) = \begin{cases} 0 \\ \infty \end{cases}$$

which is a contradiction

Algebra: $A \subseteq P(X)$ such that for $E_1, \ldots, E_n \subseteq A$,

- 1. $\bigcup_{i=1}^n E_i \in \mathcal{A}$
- $2. E \in \mathcal{A} \implies E^c \in \mathcal{A}$

Sigma Algebra:

- 1. $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A} \text{ for } E_i \in \mathcal{A}$
- $2. E \in \mathcal{A} \implies E^c \in \mathcal{A}$

Generated σ -algebra: The smallest σ -algebra containing $\mathcal{E} \subseteq P(X)$ is the σ -algebra generated by \mathcal{E} ,

$$M(\mathcal{E}) = \bigcap_{\mathcal{E} \subseteq \mathcal{A}} \mathcal{A}$$

Lemma: $\mathcal{E} \subseteq M(\mathcal{F}) \implies M(\mathcal{E}) \subseteq M(\mathcal{F})$

Borel Algebra: \mathcal{B}_X , the σ -algebra generated by the open sets of X

Proposition: $\mathcal{B}_{\mathbb{R}}$ is generated by

1. $\{(a,b)\}$

2. $\{[a,b]\}$

3. $\{(a,b]\}$ and $\{[a,b)\}$

4. $\{(a, \infty)\}\$ and $\{(-\infty, a)\}\$

Proof: Follows from

$$(a,b)=\bigcup_{n=1}^{\infty}[a+\frac{1}{n},b-\frac{1}{n}]$$

$$[a,b] = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b + \frac{1}{n})$$

Proposition: $\mathcal{B}_{\mathbb{R}^n}$ is the Borel set generated by $\otimes_{i=1}^n \mathcal{B}_{\mathbb{R}}$

Proof:

Let

$$\bigoplus_{i=1}^{n} O_i = O_1 \times O_2 \times \dots \times O_n$$

for O_i open sets in X_i . It is not hard to show that $\bigoplus_{i=1}^n O_i$ is open in the $X_1 \times X_2 \times \cdots \times X_n$ topology.

Let $\bigotimes_{i=1}^n \mathcal{B}_{x_i}$ be the Borel set generated by $\bigoplus_{i=1}^n O_i$.

Lemma: If X_i is separable, then

$$\bigoplus_{i=1}^{n} \mathcal{B}_{X_i} = \mathcal{B}_{X_1 \times X_2 \times \dots \times X_n}$$

Proof: It suffices to show that for all $\mathbf{x} \in \bigoplus_{i=1}^n O_i$ and $\forall \varepsilon > 0$,

$$B_{\varepsilon}(\mathbf{x}) \subseteq \bigotimes_{i=1}^{\mathbf{n}}$$

Since $\mathbb{Q} \subseteq \mathbb{R}$ and \mathbb{Q} is dense, \mathbb{R} is separable. Hence, by the Lemma,

$$igotimes_{i=1}^n \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^n}$$

Let $C_i \subseteq X_i$ be a countable subset such that $\overline{C_i} = X_i$.

We claim

$$B_{\varepsilon}(\mathbf{x}) \subseteq \bigcup_{r_i \in \mathbb{Q}} \bigcup_{c_i \in \mathcal{C}_i} \bigotimes_{i=1}^n B_{r_i}(c_i) \subseteq \bigotimes_{i=1}^n \mathcal{B}_{x_i}$$

for
$$\sqrt{r_1^2 + r_2^2 + \dots + r_n^2} < \varepsilon$$
.

Further, this has cardinality \mathbb{N}^{2n} so is countable.

Pick a $\mathbf{y} \in B_{\varepsilon}(\mathbf{x})$ so

$$\sigma(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} \rho_i^2(y_i, x_i)} < \varepsilon$$

but each $\rho_i^2(y_i, x_i)$ is fixed so for $c_i \in \mathcal{C}$, $r_i \in \mathbb{Q}$,

$$\rho_i(y_i, c_i) < r_i = \rho_i(y_i, x_i) - [\rho(y_i, x_i) - \rho(y_i, c_i)]$$

by density.

Measure: For a measure space (X, \mathcal{M}) , we define $\mu : \mathcal{M} \to [0, \infty]$ such that

- 1. $\mu(\emptyset) = 0$
- 2. If $\{E_j\}_1^{\infty} \in \mathcal{M}$ pairwise disjoint,

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$$

σ-finite: If $\mu(X) = \infty$ but $X = \bigcup_{i=1}^{\infty} X_i$ and $\mu(X_i) < \infty$ for all i, then X is σ-finite

Properties of Measures: Let (X, \mathcal{M}, μ) be a measure space. Then

- 1. $E, F \in \mathcal{M} \land E \subseteq F \implies \mu(E) \leq \mu(F)$
- 2. $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} \mu(E_j)$
- 3. If $E_1 \subseteq E_2 \subseteq \ldots$, then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \lim_{j \to \infty} \mu(E_j)$$

4. If $E_1 \supseteq E_2 \supseteq \dots$ and $\mu(E_1) < \infty$, then

$$\mu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$$

Proof: todo

Outer Measure: Let $\mu^*: P(X) \to [0, \infty]$ be an outer measure if

- 1. $\mu^*(\emptyset) = 0$
- 2. $\mu^*(A) \leq \mu^*(B)$ for $A \subseteq B$
- 3. $\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^* (A_j)$

Carathéodory Criterion (μ^* -measurable): $\mathcal{M} \subseteq P(X)$ is μ^* -measurable if, given $A \in \mathcal{M}$, for all $E \subseteq P(X)$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

(by subadditivity, it suffices to show \geq)

Proof:

Carathéodory Extension: Let \mathcal{M} be the μ^* -measurable sets. Then $\mu : \mathcal{M} \to [0, \infty]$ defined by $\mu(E) = \mu^*(E)|_{\mathcal{M}}$ is a measure

Proof: TODO

Completeness: (X, \mathcal{M}, μ) is complete if $\forall A \in \mathcal{M}$ with $\mu(A) = 0, B \subseteq A$ implies $B \in \mathcal{M}$

Lebesgue measure: On (\mathbb{R}, ρ) with $\rho(a, b) = b - a$,

$$\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \rho(a_i, b_i) \mid A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i) \right\}$$

which gives the Lebesgue measure on $(\mathbb{R}, \mathcal{M}, \mu)$ via the Carathéodory process.

Faithfulness of the Lebesgue measure: For $I \subseteq \mathbb{R}$ an interval, $\mu(I) = \rho(I)$.

Proof:

STEP 1. Suppose I = [a, b]. Then

$$\mu^*(I) \le \rho((a-\varepsilon, b+\varepsilon)) = b-a+2\varepsilon \to b-a$$

Now take $I \subseteq \bigcup_{i=1}^{N} (a_i, b_i)$ (finite by Heine Borel).

Take $a \in (a_1, b_1)$ with $b_1 \leq b$. Inductively define $\{(a_i, b_i)\}_1^N$ by $b_n \in (a_{n+1}, b_{n+1})$. Eventually $b_N > b$ so

$$\sum_{i=1}^{N} \rho(a_i, b_i) = b_N - a_N + b_{N_1} - a_{N-1} + \dots + b_1 - a_1$$

$$= b_N + (-a_N + b_{N_1}) + (-a_{N-1} + b_{N-2}) + \dots + (-a_2 + b_1) - a_1$$

$$= \underbrace{b_N}_{>b} + \underbrace{(-a_N + b_{N_1})}_{>0} + \underbrace{(-a_{N-1} + b_{N-2})}_{>0} + \dots + \underbrace{(-a_2 + b_1)}_{>0} - \underbrace{a_1}_{

$$\geq b - a$$$$

STEP 2. Now suppose I is any interval in \mathbb{R} .

$$[a+\varepsilon,b-\varepsilon]\subseteq I\subseteq (a-\varepsilon,b+\varepsilon)$$

so by Step 1,

$$b - a - 2\varepsilon \le \mu^*(I) \le b - a + 2\varepsilon \implies \mu^*(I) = b - a$$

Lemma: If $A \subseteq \mathbb{R}$ with card $A \leq \text{card } \mathbb{N}, \, \mu^*(A) = 0$

Proof:

$$\mu^*(A) \le \sum_{i=1}^{\infty} \mu^*(\{a_n\}) \le \sum_{i=1}^{\infty} \mu^*(\{a_n - \varepsilon, a_n + \varepsilon\}) \le \sum_{i=1}^{\infty} 2\varepsilon = 0$$

Corollary: $\mu^*([0,1]) = 1 \neq 0$ so [0,1] is not countable.

Proposition: $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}$

Proof: It suffices to show that $(a, \infty) \in \mathcal{M}$ by the characterization of $\mathcal{B}_{\mathbb{R}}$.

For all $E \in P(\mathbb{R})$,

$$\mu^*(E \cap (a, \infty)) + \mu^*(E \cap (-\infty, a]) \le \sum_{n=1}^{\infty} \mu^*(I_n \cap (a, \infty)) + \mu^*(I_n \cap (-\infty, a])$$
$$= \sum_{n=1}^{\infty} \mu^*(I_n)$$
$$\le \mu^*(E)$$

for $E \subseteq \bigcup_{i=1}^{\infty} I_n$ with $\sum_{n=1}^{I_n} \mu^*(I_n) < \mu^*(E) + \varepsilon$

Lemma: for the Lebesgue outer measure,

1.
$$\mu^*(E+a) = \mu^*(E)$$

2.
$$\mu^*(rE) = |r| \, \mu^*(E)$$

Proof:

If $E \subseteq \bigcup_{n=1}^{\infty} I_n$,

$$E + a \subseteq \bigcup_{n=1}^{\infty} \{I_n + a\}$$
$$rE \subseteq \bigcup_{n=1}^{\infty} \{|r| I_n\}$$

so

$$\sum_{n=1}^{\infty} \rho(I_n) = \sum_{n=1}^{\infty} \rho(I_n + a) \ge \mu^*(E + a) \implies \mu^*(E) \ge \mu^*(E + a)$$
$$\sum_{n=1}^{\infty} \rho(I_n) = \sum_{n=1}^{\infty} \frac{1}{|r|} \rho(rI_n) \ge \mu^*(rE) \implies \mu^*(E) \ge \mu^*(rE)$$

The other direction is the same.

Approximation of Measurable Sets:

1. $\forall E \subseteq P(X)$ and $\forall \varepsilon > 0$, $\exists O$ open such that $E \subseteq O$ and

$$\mu(O) \ge \mu(E) \ge \mu(O) - \varepsilon$$

2. $\forall E \subseteq \mathcal{M}$ and $\forall E > 0$, $\exists K$ closed such that

$$\mu(K) \le \mu(E) \le \mu(K) + \varepsilon$$

Proof:

1. For $E \subseteq O = \bigcup_{n=1}^{\infty} I_n$,

$$\mu(O) - \varepsilon \le \sum_{n=1}^{\infty} \rho(I_n) - \varepsilon \le \mu(E)$$

2. By part 1, $E \subseteq [a,b] \implies \exists O \supseteq E^c \cap [a,b]$ such that

$$\mu(E^c \cap [a,b]) \ge \mu(O) - \varepsilon \implies |b-a| - \mu(E^c) \le |b-a| - \mu(O) + \varepsilon$$

so by measurability,

$$\mu(E) = \mu([a,b] \cap O^c) + \varepsilon$$

Now suppose $E \notin [a, b]$.

Exercises

Prove De Morgan's Laws

Proof:

Prove that

$$f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(E_{\alpha})$$
$$f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f^{-1}(E_{\alpha})$$
$$f^{-1}(E^{c}) = (f^{-1}(E))^{c}$$

Note: In general, f also commutes with unions but not intersections. Why?

Proof:

Define the relation R such that $\leq_1 R \leq_2$ for linear orderings \leq_1, \leq_2 if

- 1. $E_1 \subseteq E_2 \land \leq_2 \big|_{E_1} = \leq_1 \text{ (i.e. } \leq_2 \text{ extends } \leq_1 \text{)}$
- 2. $x \notin E_1 \land x \in E_2 \implies y \leq_2 x$ for all $y \in E_1$ (i.e. E_2 is an upper bound for E_1)

Show that R is a partial ordering.

Proof:

Verify that

$$g: \bigcup_{i=1}^{\infty} Y_i \to \bigcup_{i=1}^{\infty} X_i$$

is a bijection. Further, show that

$$f: \left(X \setminus \bigcup_{i=1}^{\infty} X_i\right) \to \left(Y \setminus \bigcup_{i=1}^{\infty} Y_i\right)$$

is a bijection.

Proof:

Show that the following are metric spaces:

- (\mathbb{R}^n, ρ_1) where $\rho_1(x, y) = |x y|$
- $(C^1[0,1], \rho_2)$ where $C^1[0,1]$ is the space of continuous functions on [0,1] and $\rho_2(f,g) = \int_0^1 |f(x) g(x)| dx$
- $(C^1[0,1], \rho_{\infty})$ where $\rho_2(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$

Proof:

Prove that B(x,r) is open

Proof:

Prove that $(\mathcal{C}, \rho_{\infty})$ is complete for

$$\rho_{\infty}(x,y) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

Proof:

Prove that a closed subset (X, ρ) of a complete metric space is complete and complete subsets of a metric space must be closed

Proof:

Prove that for $\mathcal{A}_1, \mathcal{A}_2$ σ -algebras on $X, \mathcal{A}_1 \cap \mathcal{A}_2$ is a σ -algebra

Proof: Certainly, any $\forall E \in \mathcal{A}_1 \cap \mathcal{A}_2$, $E^c \in \mathcal{A}_1 \cap \mathcal{A}_2$ because $E^c \in \mathcal{A}_1$ and $E^c \in \mathcal{A}_2$ as they are σ -algebras.

Now take any E_1, E_2, \ldots in $A_1 \cap A_2$. Since A_1 is a σ -algebra,

For $f: X \to [0, \infty]$, show that

$$\mu(E) = \sum_{x \in E} f(x) = \sup\{\sum_{x \in F} f(x) : F \subseteq E \land F \text{ finite}\}$$

is a measure on P(X)

Proof:

Let X be uncountable. Let $\mathcal{M} = \{E \text{ is finite or } E^c \text{ is finite}\}$. Define

$$\mu(E) = \begin{cases} 0 & E \text{ is countable} \\ 1 & E^c \text{ is countable} \end{cases}$$

Check that \mathcal{M} is a σ -algebra and that μ is a measure

Proof:

1. Let $E \in \mathcal{M}$. Then, by definition E finite or E^c finite.

If E finite, then $(E^c)^c = E$ is finite so $E^c \in \mathcal{M}$. If E^c finite, then $E^c \in \mathcal{M}$. So \mathcal{M} is closed under complements.

Take $E_1, E_2 \in \mathcal{M}$.

Case 1: Both finite. Then clearly, $E_1 \cup E_2$ is finite, so $E_1 \cup E_2 \in \mathcal{M}$.

Case 2: One finite (WLOG E_1). Then $E_1 \cup E_2^c$ is finite so $E_1 \cup E_2 \in \mathcal{M}$.

Case 3: Both infinite. Then E_1^c and E_2^c are finite so $(E_1 \cup E_2)^c$ is finite so $E_1 \cup E_2 \in \mathcal{M}$.