Math 527 - Homotopy Theory Spring 2013 Homework 3 Solutions

Problem 1. An **H-space** (named after Hopf) is a pointed space (X, e) equipped with a "multiplication" map $\mu: X \times X \to X$ such that the basepoint e is a two-sided unit up to pointed homotopy. In other words, both maps

$$\mu(e,-): X \to X$$

$$\mu(-,e)\colon X\to X$$

and pointed-homotopic to the identity map id_X . Note that μ is not assumed to be associative, not even up to homotopy.

Show that the fundamental group $\pi_1(X, e)$ of an H-space is abelian.

Solution. Let us show a stronger result: The $\pi_1(X, e)$ -action on $\pi_n(X, e)$ is trivial for all n > 1.

Let $[\gamma] \in \pi_1(X, e)$ and $[\theta] \in \pi_n(X, e)$ be represented by pointed maps $\gamma \colon S^1 \to X$ and $\theta \colon S^n \to X$ (by abuse of notation), or equivalently, maps of pairs $\gamma \colon (I, \partial I) \to (X, e)$ and $\theta \colon (D^n, \partial D^n) \to (X, e)$.

Consider the continuous map $H: D^n \times I \to X$ defined by

$$H(z, s) = \mu (\theta(z), \gamma(s)).$$

Then H restricted to the bottom face is

$$H|_{D^n \times \{0\}} = \theta e$$

whereas H restricted to the remaining faces is

$$H|_{\partial D^n \times I \cup D^n \times \{1\}} = (e\gamma) \cdot (\theta e)$$

so that H provides a pointed homotopy between θe and $(e\gamma) \cdot (\theta e)$.

Because right multiplication by e is pointed-homotopic to the identity of X, the composite

$$S^n \xrightarrow{\theta} X \xrightarrow{\mu(-,e)} X$$

is pointed-homotopic to θ , yielding the equality $[\theta e] = [\theta]$ in $\pi_n(X, e)$. Likewise, the equality $[e\gamma] = [\gamma]$ holds in $\pi_1(X, e)$. We obtain the equality

$$[\gamma] \cdot [\theta] = [e\gamma] \cdot [\theta e]$$
$$= [\theta e]$$
$$= [\theta]$$

in
$$\pi_n(X,e)$$
.

Problem 2. Let $f: X \to Y$ be a map of spaces, and $x \in X$ any basepoint. Show that the induced map

$$\pi_n f \colon \pi_n(X, x) \to \pi_n(Y, f(x))$$

for $n \ge 1$ is a map of π_1 -modules, in the sense that it is $\pi_1 f$ -equivariant. More precisely, for any $\gamma \in \pi_1(X, x)$ and $\theta \in \pi_n(X, x)$ the equation

$$(\pi_n f)(\gamma \cdot \theta) = (\pi_1 f)(\gamma) \cdot (\pi_n f)(\theta)$$

holds in $\pi_n(Y, f(x))$.

Solution. The equation to be proved can be written as the commutative diagram

$$\pi_{1}(X,x) \times \pi_{n}(X,x) \xrightarrow{\bullet} \pi_{n}(X,x)$$

$$\uparrow \qquad \qquad \qquad \downarrow \pi_{n}f$$

$$\pi_{1}(Y,f(x)) \times \pi_{n}(Y,f(x)) \xrightarrow{\bullet} \pi_{n}(Y,f(x))$$

$$(1)$$

Recall that the action map $\pi_1(X,x) \times \pi_n(X,x) \xrightarrow{\bullet} \pi_n(X,x)$ is obtained by applying the functor $[-,X]_* \colon \mathbf{Top}^{\mathrm{op}}_* \to \mathbf{Set}_*$ to the coaction map $c \colon S^n \to S^1 \vee S^n$.

The map $f:(X,x) \to (Y,f(x))$ in \mathbf{Top}_* yields the postcomposition natural transformation $f_*:[-,X]_* \to [-,Y]_*$. Applying f_* to the coaction map c yields the commutative right-hand square of the diagram

$$[S^{1},(X,x)]_{*} \times [S^{n},(X,x)]_{*} \stackrel{\cong}{\longleftarrow} [S^{1} \vee S^{n},(X,x)]_{*} \stackrel{c^{*}}{\longrightarrow} [S^{n},(X,x)]_{*}$$

$$\downarrow f_{*} \vee f_{*} \qquad \qquad \downarrow [S^{1},(Y,f(x))]_{*} \times [S^{n},(Y,f(x))]_{*} \stackrel{\cong}{\longleftarrow} [S^{1} \vee S^{n},(Y,f(x))]_{*} \stackrel{c^{*}}{\longrightarrow} [S^{n},(Y,f(x))]_{*} \qquad (2)$$

where the left-hand square also commutes, since the wedge is the coproduct in \mathbf{Top}_* and in $\mathrm{Ho}(\mathbf{Top}_*)$. But the outer diagram in (2) is precisely the diagram (1).

Problem 3. Let X be the topologist's sine curve:

$$X = \{0\} \times [-1, 1] \cup \{(x, \sin \frac{1}{x}) \mid 0 < x \le 1\}.$$

Consider the map $f: S^0 \to X$ which picks out the points (0,1) and $(1,\sin 1)$. Show that this map f is a weak homotopy equivalence but not a homotopy equivalence.

Solution. Write $A = \{0\} \times [-1, 1]$ and $B = \{(x, \sin \frac{1}{x}) \mid 0 < x \le 1\}$ with $X = A \cup B$ where the union is disjoint. Recall that X is connected (being the closure of the connected subset $B \subset \mathbb{R}^2$), but not path-connected. The two path components of X are A and B.

f is a weak homotopy equivalence. Write $a := (0,1) \in A$ and $b := (1,\sin 1) \in B$, and $S^0 = \{*_a,*_b\}$, with $f(*_a) = a$ and $f(*_b) = b$. The map $f : S^0 \to X$ induces a bijection on the sets of path components $\pi_0 f : \pi_0(S^0) \xrightarrow{\simeq} \pi_0(X) = \{[a],[b]\}$.

Since S^n is path-connected for all $n \geq 1$, any pointed map $\alpha \colon S^n \to (X, a)$ lands inside the path component $A \subseteq X$. But A is contractible, so that $\pi_n(A, a) = 0$ and $\alpha \colon S^n \to (A, a)$ is pointed-null-homotopic. This proves $\pi_n(X, a) = 0$. Therefore $\pi_n f \colon \pi_n(S^0, *_a) \xrightarrow{\simeq} \pi_n(X, a)$ is an isomorphism (between trivial groups!) for all $n \geq 1$.

Likewise, B is contractible, so that $\pi_n f \colon \pi_n(S^0, *_b) \xrightarrow{\simeq} \pi_n(X, b)$ is also an isomorphism (between trivial groups) for all $n \geq 1$.

f is not a homotopy equivalence. Let $g: X \to S^0$ be any continuous map. Since X is connected, the image g(X) is connected and is therefore a singleton $\{*_a\}$ or $\{*_b\}$. Hence g cannot induce a bijection on π_0 , and thus f has no homotopy inverse.