Please amend the claims as follows.

Claims 1-20 (Canceled).

Please add the following new claims:

Claim 21 (New) A comparator cycling between an analog configuration and a digital configuration, said comparator comprising:

at least two transistors; and

a plurality of transmission gates coupled to said transistors,

wherein said comparator is set to have a first trip point associated with a rising edge of an input signal according to a value of a positive external voltage reference, and a second trip point associated with a falling edge of said input signal according to a width-to-length ratio of said transistors,

wherein in said analog configuration one of said transistors is a tail current source transistor, whereby said input signal rises from ground toward a positive power supply voltage, and whereby the rise in said input signal switches said tail current source transistor on,

wherein one of said first or second trip point is set externally from said comparator, and wherein a majority of a cycle time of said comparator is spent in said digital configuration.

04/08/2004 21:42

Claim 22 (New) The comparator of claim 21, wherein said rise in said input signal causes said comparator to appear as a differential pair in an open loop configuration.

Claim 23 (New) The comparator of claim 21, wherein in said digital configuration, said input signal is at an input voltage level greater than a level of said positive external voltage reference.

Claim 24 (New) The comparator of claim 23, wherein said input signal causes said comparator to have characteristics of an asymmetric inverting Schmitt trigger.

Claim 25 (New) The comparator of claim 21, wherein said transistors comprise:

a first transistor of length (L_x) and a width of (W_x) ; and

a second transistor of length (Ly) and a width of (Wy),

wherein said width-to-length ratio equals (Wx Ly)/(Wy Lx), and

wherein as said input signal decreases, a switching threshold becomes dependent on said width-to-length ratio.

Claim 26 (New) The comparator of claim 21, wherein a level of said second trip point decreases by decreasing said width-to-length ratio.

Claim 27 (New) The comparator of claim 21, wherein a level of said second trip point increases by increasing said width-to-length ratio.

Claim 28 (New) The comparator of claim 21, wherein said comparator spends approximately 80% of said cycle time in said digital configuration.

Claim 29 (New) A comparator cycling between an analog configuration and a digital configuration, said comparator comprising:

a plurality of transistors; and

a plurality of transmission gates coupled to set transistors,

wherein said comparator is set to have a first trip point associated with a rising edge of an input signal according to a value of a positive external voltage reference, and a second trip point of a falling edge of the input signal according to a width-to-length ratio of said transistors,

wherein a level of said second trip point is adjustable according to said width-to-length ratio,

wherein in said analog configuration, said device further comprises a tail current source transistor, whereby said input signal rises from ground toward a positive power supply voltage, and whereby said rise in said input signal switches said tail current source transistor on,

wherein one of said first or second trip point is set externally from said comparator, and wherein a majority of a cycle time of said comparator is spent in said digital configuration.

Claim 30 (New) The comparator in claim 29, wherein said transistors comprises:

- a first transistor of length (L_x) and a width of (W_x) ; and
- a second transistor of length (Ly) and a width of (Wy),

09/683.552

wherein said width-to-length ratio equals $(W_x L_y)/(W_y L_x)$, and wherein as said input signal decreases, a switching threshold becomes dependent on said width-to-length ratio.

Claim 31 (New) The comparator of claim 29, wherein the rise in said input signal causes said comparator to appear as a differential pair in an open loop configuration.

Claim 32 (New) The comparator of claim 29, wherein in said digital configuration, said input signal is at an input voltage level greater than a level of said positive external voltage reference.

Claim 33 (New) The comparator of claim 32, wherein said input signal causes said comparator to have characteristics of an asymmetric inverting Schmitt trigger.

Claim 34 (New) The comparator of claim 29, wherein said comparator spends approximately 80% of said cycle time in said digital configuration.

Claim 35 (New) A comparator set to have a pair of trip points corresponding to a rising and falling edge of an input signal, wherein said comparator cycles between an analog configuration and a digital configuration, wherein said comparator controls a delay between rising and falling edge transitions at an output signal of said comparator, wherein said comparator controls a pulse width at said output signal of said comparator, wherein one of said trip points is external to said comparator, and wherein a majority of a cycle time of said comparator is spent in said digital

configuration.

Claim 36 (New) The comparator of claim 35, wherein said analog configuration comprises:

an input signal terminal;

an output signal terminal;

a positive power supply voltage terminal;

a positive external voltage reference terminal;

a tail current source transistor operatively connected to said positive power supply voltage terminal:

a first pair of transistors operatively connected to said tail current source transistor, said input signal terminal, and said positive external voltage reference terminal;

a second pair of transistors operatively connected to said first pair of transistors; and a plurality of invertors operatively connected to said output signal terminal, said first pair of transistors, and said second pair of transistors.

Claim 37 (New) The comparator of claim 35, wherein said digital configuration comprises:

an input signal terminal;

an output signal terminal;

a positive power supply voltage terminal;

a tail current source transistor operatively connected to said positive power supply voltage terminal and said input signal terminal;

a first pair of transistors operatively connected to said tail current source transistor and

said input signal terminal;

a current mirror load transistor operatively connected to said input signal source and said first pair of transistors; and

a plurality of invertors operatively connected to said output signal terminal, said first pair of transistors, and said current mirror load transistor.

Claim 38 (New) The comparator of claim 36, wherein in said analog configuration, said input signal rises from ground toward a positive power supply voltage, wherein said rise in said input signal switches said tail current source transistor on.

Claim 39 (New) The comparator of claim 37, wherein in said digital configuration, said input signal is at an input voltage level greater than a level of said positive external voltage reference.

Claim 40 (New) The comparator of claim 35, wherein said comparator spends approximately 80% of said cycle time in said digital configuration.