John C. Faver, PhD

352.327.8314 <u>jfaver@posteo.net</u> http://johncfaver.com

EXPERIENCE

Relay Therapeutics Cambridge, MA

Principal Scientist, Computation

2021-2025

- Built informatics platform (database, web applications, analytical tools) to enable hit finding with DNA-Encoded Chemical Libraries and Machine Learning (DEL+ML)
- Developed software infrastructure for analyzing NGS data from RNA-Display screening
- Automated ETL pipelines to link data sources, build ML data sets, generate project dashboards, and build structure-activity models to drive drug discovery projects
- Designed compound screening libraries to sample unexplored 3D pharmacophore spaces

ZebiAl Therapeutics (acquired by Relay Therapeutics)

Waltham, MA

Principal Scientist, Scientific Computing and Informatics

2020-2021

- Designed high fidelity DEL encoding/decoding strategy with built-in error correction
- Built informatics platform for DEL+ML hit finding and project management and reporting

Baylor College of Medicine Center for Drug Discovery

Houston, TX

Assistant Professor and Cheminformatics Leader

2015-2020

- Developed informatics infrastructure for DEL screening platform
- Led analysis and hypothesis generation from DEL screening data
- Taught graduate courses in computational methods for biomedical research

Yale University Department of Chemistry

New Haven, CT

Postdoctoral Associate with William Jorgensen

2012-2015

- Guided compound design for 2 medicinal chemistry projects (virtual screening, molecular docking, FEP)
- Developed database and web application for tracking medchem projects

University of Florida Quantum Theory Project

Gainesville, FL

Graduate Research Assistant with Kenneth M. Merz

2007-2012

• Developed methods for statistical error estimation in biomolecular modeling and quantum chemistry

EDUCATION

Yale University

Postdoctoral Associate Chemistry – Computer-aided drug design

New Haven, CT
2012-2015

University of Florida Gainesville, FL

PhD Computational Chemistry – Statistical models for biomolecular simulation 2012

University of Arkansas Fayetteville, AR

BS Chemistry – Synthesis of natural product analogs 2007

TECHNICAL SKILLS

Software Development: Experienced in developing scientific, statistical, data science, and web applications using

Python (and common libraries including Django, pandas, scikit-learn, numpy/scipy, matplotlib, etc.), SQL, JavaScript, versioning (git), testing (pytest), workflow orchestration (prefect), infrastructure as code (pulumi), and deploying applications in cloud environments (AWS).

Chemistry-related: Experienced in developing and using cheminformatics methods including chemical fingerprints

(2D/3D), virtual library enumeration and molecular diversity/property analysis, structure-based drug design, free energy calculations, quantum chemistry, Gaussian, Schrödinger, OpenEye,

RDKit, Dotmatics/Vortex, Spotfire

CONTRIBUTIONS

Co-organized symposium at the American Chemical Society National Meeting

Developed the Biomolecular Fragment Database web application for benchmarking molecular models

Reviewer for scientific journals

2013

2012

2012

HONORS

Crow Award for excellence in scientific publication Chemical Computing Group Research Excellence Award 2012, 2011 2011

HIGHLIGHTED TALKS AND PRESENTATIONS

- 1. "Drug Discovery with DNA-Encoded Chemical Libraries" Invited talk at SLAS2020 conference, San Diego, CA 2020.
- 2. "Quantitative Comparisons of Enrichment from DNA-Encoded Library Selections" Poster presentation, 9th International Symposium on DNA-Encoded Chemical Libraries. Zurich, Switzerland 2019.
- "Development of a Cheminformatics Platform for DNA-Encoded Library Screening" Poster presentation. NICHD Contraceptive Development Meeting. Minneapolis, MN 2018.
- 4. "Dotmatics and DNA-Encoded Chemical Libraries" Invited talk at Dotmatics User Group Meeting. Boston, MA 2017

HIGHLIGHTED PUBLICATIONS

ORCiD: https://orcid.org/0000-0002-0181-9283

Google Scholar: https://scholar.google.com/citations?user=ngoqSMgAAAAJ

- Faver, J. C., Sundersingh, F., Viarengo-Baker, L. A., Chen, Ying-Chu, Billings, K., Riley, P., Tsai, C., Kollmann, C. S., DNA-Encoded Chemical Library Screening with Target Titration Analysis: DELTA. Preprint online at ChemRxiv. 2025; doi:10.26434/chemrxiv-2025-tqmnj
- 2. Yu, Z., Ku, A.F., Anglin, J.L., Sharma, R., Ucisik, M.N., **Faver, J. C.**, et al. Discovery and characterization of bromodomain 2–specific inhibitors of BRDT. *Proceedings of the National Academy of Sciences*. 2021 118(9), e2021102118.
- 3. Dawadi, S., Simmons, N., Miklossy, G., Bohren, K.M., **Faver, J. C.,** et al. Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. *Proceedings of the National Academy of Sciences*. 2020 117(29) 16782-16789.
- 4. Taylor, D.M., Anglin, J., Park, S., Ucisik, M.N., **Faver, J. C.,** *et al.* Identifying OXA-48 Carbapenemase Inhibitors using DNA-Encoded Chemical Libraries. *ACS Infectious Diseases*. 2020. 6(5) 1214-1227.
- Newton, A. S., Faver, J. C., et al. Structure-Guided Identification of DNMT3B Inhibitors. ACS Medicinal Chemistry Letters 2020 11(5) 971-976.
- Faver, J. C., Riehle, K., Lancia, D. R., Milbank, J. B. J., Kollmann, C. S., Simmons, N., Yu, Z., Matzuk, M. M. Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections, ACS Combinatorial Science 2019. 21(2) 75-82.
- Burns, L., Faver, J. C., Zheng, Z., Marshall, M., Smith, D., Vanommeslaeghe, K., MacKerrell, A., Merz, K. M., Sherrill, C. D. The BioFragment Database (BFDb): An Open-Data Platform for Computational Chemistry Analysis of Noncovalent Interactions. *Journal of Chemical Physics* 2017. 147, 161727.
- 8. Cole, D. J., Janecek, M., Stokes, J. E., Rossmann, M., **Faver, J. C.**, McKenzie, G. J., Venkitaraman, A. R., Hyvonen, M., Spring, D. R., Huggins, D. G., Jorgensen, W. L. Computationally-guided optimization of small-molecule inhibitors of the Aurora A kinase–TPX2 protein–protein interaction. *Chemical Communications* 2017. 53, 9372-9375.
- 9. **Faver, J. C.**, Yang, W., Merz, K. M. The Effects of Computational Modeling Errors on the Estimation of Statistical Mechanical Variables. *Journal of Chemical Theory and Computation* 2012. 8(10), 3769–3776.
- 10. **Faver, J. C.**, Zheng, Z., Merz, K. M. Statistics-based Model for Basis Set Superposition Error Correction in Large Biomolecules. *Physical Chemistry Chemical Physics* 2012. 14, 7795-7799.
- 11. **Faver, J. C.** *et al.* Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes. *Journal of Chemical Theory and Computation* 2011. 7(3), 790-797.