Aprendizado de Máquina

Sistemas de Informação Inteligente Prof. Leandro C. Fernandes

> Autores do material: Thiago A. S. Pardo Solange O. Rezende

Inteligência vs Aprendizado

- Aprendizado é a chave da superioridade da Inteligência Humana.
- Para que uma máquina tenha Comportamento Inteligente, deve-se aumentar a sua Capacidade de Aprendizado.

Inteligência vs Aprendizado

- O ser humano está pré-programado para o aprendizado; aprende ampliando o alcance do conhecimento que já possui, através de reordenações sucessivas.
 - O computador não possui o programa inicial para procurar por informações e realizar aprendizado em geral.
- Paradigmas e técnicas de AM possuem um alvo bem mais limitado do que o aprendizado humano

Aprendizado de Máquina (AM)

• **Definição:** é uma subárea de IA que pesquisa métodos computacionais relacionados à aquisição de novos conhecimentos, novas habilidades e novas formas de organizar o conhecimento já existente

Qual a relação com Mineração de Dados?

- A mineração de dados é o processo de extração automática de conhecimento a partir de grandes bases de dados.
- Algoritmos de aprendizado automático podem ser vistos como algoritmos que extraem um padrão de comportamento a partir de dados (exemplos).
 - Logo, podem ser utilizados como algoritmos de mineração de dados.
- Porém, algoritmos de aprendizado nem sempre utilizam bases de dados.
 - Podem aprender diretamente a partir da interação com o ambiente ou com um simulador.
- Ambas as áreas "emprestam" muitos métodos da área de estatística.

Objetivos de AM

- Proporcionar um melhor entendimento dos mecanismos de aprendizado humano.
- Aquisição do conhecimento de modo automatizado.
- AM tem caráter multidisciplinar:
 - Ciências cognitivas
 - Ciência da Computação
 - Reconhecimento de Padrões
 - Estatística

O que é Aprendizado de Máquina?

- Herbert Simon: "Aprendizado é qualquer processo no qual um sistema melhora seu desempenho através da experiência."
- Qual é a tarefa?
 - Classificação
 - Resolução de problemas / planejamento / controle

Classificação

- Atribuir um objeto/evento a uma categoria, pertencente a um conjunto finito de categorias)
 - Diagnóstico médico
 - Detecção de fraude em cartões de crédito
 - Detecção de vírus em redes de computadores
 - Filtragem de spam em e-mails
 - Recomendação de produtos em e-commerce
 - Investimentos financeiros
 - Bioinformática (sequências de DNA)
 - Reconhecimento de voz
 - Reconhecimento de caracteres
 - Reconhecimento de imagens

Resolução de problemas / planejamento / controle

- Executar ações em um ambiente para atingir um determinado objetivo.
 - Resolver problemas de matemática
 - Jogar xadrez, damas ou gamão
 - Dirigir um carro
 - Pilotar um avião, helicóptero ou foguete
 - Controlar um elevador
 - Controlar um personagem em um jogo
 - Controlar um robô móvel

Aprendizado: modelos

- Paradigmas para Aprendizado de Máquina:
 - Simbólico
 - Baseado em Exemplos
 - Estatístico
 - Conexionista
 - Evolutivo

Paradigmas de AM – Simbólico

- Característica: Explora representações de estruturas gráficas ou lógicas, no lugar de métodos estatísticos ou numéricos.
- Descrições simbólicas representam um conhecimento de alto nível.
- As representações simbólicas estão tipicamente na forma de alguma expressão lógica, árvore de decisão, regras de produção ou rede semântica.

Paradigmas de AM – Baseado em Exemplos

- Característica: O conhecimento é extraído a partir de exemplos de treinamento, cujas características são armazenadas e utilizadas posteriormente.
- Casos nunca vistos são classificados através de casos similares conhecidos durante o treinamento.
- Classificação de um caso é lembrar de um caso similar cuja classe é conhecida e assumir que o novo caso terá a mesma classe

Paradigmas de AM – Estatístico

- Característica: Decisões tomadas através de raciocínio sobre probabilidades dos dados.
- Como regra geral, técnicas estatísticas tendem a focar tarefas em que todos os atributos têm valores contínuos ou ordinais.
- Muitas técnicas são paramétricas, assumindo alguma forma de modelo, e então encontrando valores apropriados para os parâmetros do modelo a partir de dados.

Paradigmas de AM – Conexionista

- Característica: Inspirado nos sistemas biológicos.
- Estudo de Redes Neurais Artificiais foi inspirado em parte na observação de que sistemas de aprendizado biológico são compostos de redes muito complexas de neurônios interconectados.
- Redes Neurais Artificiais são redes construídas a partir de conjuntos de unidades simples altamente interconectadas, daí o nome conexionismo.

Paradigmas de AM – Evolutivo

- Característica: possui uma analogia direta com a teoria de Darwin, onde sobrevivem os mais bem adaptados ao ambiente.
- Um classificador evolutivo consiste em uma população de elementos de classificação que competem para fazer a predição; elementos que possuem uma performance fraca são descartados, enquanto os elementos mais fortes proliferam, produzindo variações de si mesmos.

Qual o paradigma?

Dia	Tempo	Temperatura	Umidade	Vento	Jogou tênis?
1	Sol	Quente	Alta	Fraco	Não
2	Sol	Quente	Alta	Forte	Não
3	Nublado	Quente	Alta	Fraco	Sim
4	Chuva	Mediana	Alta	Fraco	Sim
5	Chuva	Frio	Normal	Fraco	Sim
6	Chuva	Frio	Normal	Forte	Não
7	Nublado	Frio	Normal	Forte	Sim
8	Sol	Mediana	Alta	Fraco	Não
9	Sol	Frio	Normal	Fraco	Sim
10	Chuva	Mediana	Normal	Fraco	Sim
11	Sol	Mediana	Normal	Forte	Sim
12	Nublado	Mediana	Alta	Forte	Sim
13	Nublado	Quente	Normal	Fraco	Sim
14	Chuva	Mediana	Alta	Forte	Não

Estratégias de AM

- Aprendizado por Hábito
- Aprendizado por Instrução
- Aprendizado por Dedução
- Aprendizado por Analogia
- Aprendizado por Indução

Aprendizado por Indução

- Inferência Indutiva é um dos principais meios para a aquisição de novos conhecimentos e previsão de eventos futuros
- Observações permitem descobrir regras e procedimentos
- Deve-se ter cuidado com o número de observações e a relevância dos dados

Argumentos Dedutivos vs. Indutivos

- Argumento dedutivo:
 - Nenhum dos alunos gosta de Inteligência Artificial
 - Francisco é um aluno
 - Francisco não gosta de Inteligência Artificial
- Argumento indutivo:
 - Nenhum dos alunos que foram entrevistados gosta de Inteligência Artificial
 - Nenhum aluno gosta de Inteligência Artificial

Argumentos Dedutivos vs. Indutivos

Argumentos Dedutivos

- Se todas as premissas são verdadeiras, a conclusão é verdadeira
- Toda a informação do conteúdo fatual da conclusão já está, pelo menos implicitamente, nas premissas.

Argumentos Indutivos

- Se todas as premissas são verdadeiras, a conclusão é provavelmente verdadeira, mas não necessariamente verdadeira (à exceção dos argumentos matemáticos indutivos).
- A conclusão contém informação que não está nem implicitamente nas premissas.

Argumentos indutivos preservam falsidade

Relação entre Dedução e Indução

Dedução ou Indução?

Aprendizado por Indução

- Dependendo dos fatos necessários para realizar o aprendizado fornecidos por uma fonte externa ou observados pelo sistema aprendiz, pode-se distinguir dois tipos diferentes de estratégias de aprendizado
 - Aprendizado por observação e descoberta
 - Aprendizado por exemplos

Aprendizado por Indução (Cont)

- Aprendizado por observação e descoberta
 - Não existe o professor
 - O aprendiz analisa entidades fornecidas ou observadas e tenta determinar se alguns subconjuntos dessas entidades podem ser agrupados em certas classes de maneira útil

Aprendizado Não-Supervisionado

Como agrupar estes objetos?

Como agrupar estes objetos? Mulheres Homens

Como agrupar estes objetos?

Como agrupar estes objetos?

O que é similaridade?

Similaridade é difícil de definir, mas... reconhecemos quando a vemos!

Como medir similaridade?

Função de distância ou similaridade

Características = cor da pele, altura Distância = 0.2

Distância = 0.4

Aprendizado por Indução (Cont)

- Aprendizado por exemplos
 - Existe um professor que já tem conhecimento do conceito e que ajuda na escolha dos exemplos.
 - O aprendiz induz a descrição de um conceito, formulando uma regra geral a partir de exemplos e contra-exemplos
 - TAREFA: determinar a descrição geral de um conceito
 - Aprendizado Supervisionado

Aprendizado por Exemplos

Características do Aprendizado Indutivo

- Dois tipos de aprendizado
 - Aprendizado Incremental
 - Em geral, no aprendizado incremental, o processo de aprendizado procede através de uma sequência de hipóteses, H1, H2, ... etc., sobre o conceito que está sendo aprendido. Quando um exemplo é processado, a hipótese corrente é atualizada, se necessário, resultando na próxima hipótese.
 - Aprendizado Não Incremental
 - Necessita de que todos os exemplos de treinamento, simultaneamente, estejam disponíveis para que seja induzido um conceito.
 - É vantajoso usar esses algoritmos para problemas de aprendizado onde todos os exemplos estão disponíveis e, provavelmente, não irão ocorrer mudanças.

Linguagens de Descrição

- Qualquer que seja o tipo de aprendizado, é necessário uma linguagem para descrever objetos (ou possíveis eventos) e uma linguagem para descrever conceitos
- Em geral, é possível distinguir dois tipos de descrições para objetos: estrutural e atributos

Linguagens de Descrição

- LD de instâncias L_ε (Exemplos/Objetos)
- LD de conceitos L_H (Hipóteses)
- LD da teoria do domínio L_K (conhecimento de
- fundo)

Linguagens de Descrição

- LD de instâncias L_E (Exemplos/Objetos)
- LD de conceitos L_H (Hipóteses)
- LD da teoria do domínio L_k (conhecimento de
- fundo)

Linguagens de Descrição de Instâncias

 Descrições estruturais: um objeto é descrito em termos de seus componentes e a relação entre eles

Linguagens de Descrição de Instâncias

 Descrições de atributos: um objeto é descrito em termos de suas características globais como um vetor de valores de atributos

Figura: Cubo

Número de faces: 6

Polígono da face: quadrado

Figura: Firâmide

Número de faces: 5

Polígono da face: triângulo

Exemplo, Atributo e Classe

- Exemplo: um caso ou registro
 - É um conjunto fixo de atributos
- Atributo: um campo ou feature
 - Uma única característica de um exemplo
- Classe: categoria
 - Atributo especial que descreve o fenômeno de interesse

Conjunto de Dados

 Coleção de exemplos rotulados segundo sua classe

Exemplo de um Conjunto de Dados

Dia	Tempo	Temperatura	Umidade	Vento	Jogou tênis?
1	Sol	Quente	Alta	Fraco	Não
2	Sol	Quente	Alta	Forte	Não
3	Nublado	Quente	Alta	Fraco	Sim
4	Chuva	Mediana	Alta	Fraco	Sim
5	Chuva	Frio	Normal	Fraco	Sim
6	Chuva	Frio	Normal	Forte	Não
7	Nublado	Frio	Normal	Forte	Sim
8	Sol	Mediana	Alta	Fraco	Não
9	Sol	Frio	Normal	Fraco	Sim
10	Chuva	Mediana	Normal	Fraco	Sim
11	Sol	Mediana	Normal	Forte	Sim
12	Nublado	Mediana	Alta	Forte	Sim
13	Nublado	Quente	Normal	Fraco	Sim
14	Chuva	Mediana	Alta	Forte	Não

Linguagens de Descrição

- LD de instâncias L_ε (Exemplos/Objetos)
- LD de conceitos L_H (Hipóteses)
- LD da teoria do domínio L_K (conhecimento de
- fundo)

- Formalismos frequentemente usados:
 - Regras se-então (if-then) para representar conceitos
 - Árvores de decisão para representar conceitos
 - Lógica de predicados
 - Redes semânticas

- Formalismos f Se Nublado ou Chovendo

 Rogras so ont então Levar_Guarda-Chuva
 - Regras se-entconceitos
 - Árvores de decisão para representar conceitos
 - Lógica de predicados
 - Redes semânticas

- Formalismos frequentemente usados:
 - Regras se-então (if-then) para representar conceitos
 - Árvores de decisão para representar conceitos

- Formalismos frequentemente usados:
 - Regras se-ent filha(X,Y) <-- mulher(X), pais(Y,X).</p>
 - Árvores de decisa para representar conceitos
 - Lógica de predicados
 - Redes semânticas

Linguagens de Descrição

- LD de instâncias L_ε (Exemplos/Objetos)
- LD de conceitos L_H (Hipóteses)
- LD da teoria do domínio L_K (conhecimento de
- fundo)

Conhecimento de Fundo

- Constituído por algum conhecimento relevante do domínio do problema
- Exemplo do viajante na Itália:
 - A generalização de que todos os italianos falam italiano é sustentada pela regularidade mais geral de que em um dado país a maioria da população fala a mesma língua; por outro lado, não é assumido que todos os italianos são chamados de Giuseppe devido à regularidade mais geral de que a maioria dos grupos sociais utilizam nomes diversos para diferentes indivíduos

Aprendizado Indutivo de Conceitos AIC

Dados:

 $\varepsilon = \varepsilon^+ \cup \varepsilon^-$: conjunto de exemplos de treinamento de um conceito C

Objetivo:

Encontrar uma hipótese H, expressa em uma linguagem de descrição L tal que:

- cada exemplo $e \in \varepsilon^+$ é coberto por H; e
- nenhum exemplo negativo $e \in \varepsilon^{-}$ é coberto por H

Ou seja:

```
cobre(H,e) = \{e \in \varepsilon^+ \mid cobre(H,e) = true\} - instância positiva cobre(H,e) = \{e \in \varepsilon^- \mid cobre(H,e) = false\} - instância negativa
```