SISTEMA PARA MEDIÇÃO DE CORES UTILIZANDO O ESPECTROFOTÔMETRO – INDÚSTRIA GRÁFICA

Aluno: Thiago Getnerski

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos
- Especificação
- Ferramentas utilizadas
- Implementação
- Operacionalidade
- Resultados
- Conclusões
- Extensões
- Demonstração

Introdução

- A cor é um dos primeiros elementos que registramos quando vemos algo pela primeira vez. Uma ferramenta que pode ser utilizada para chamar a atenção. Por isso a utilização das cores se tornou um recurso da publicidade e propaganda.
- O fabricante deve identificar as cores de que as pessoas gostam, as tendências, as sensações e emoções que as cores proporcionam e a questão cultural relacionada ao uso destas.
- Coloristas e demais profissionais da área de controle de qualidade avaliam a cor visualmente. Devido as exigências crescentes dos consumidores, a utilização de instrumentos de medição de cor está ganhando espaço e importância nas indústrias.

Objetivos

O objetivo deste trabalho é implementar um sistema de medição de cores que se comunique diretamente com o espectrofotômetro para obter os dados de refletância de uma amostra de cor medida, calculando os valores numéricos da cor.

Os objetivos específicos do trabalho são:

- implementar o protocolo de comunicação com o espectrofotômetro X-Rite i1Pro 2;
- criar uma representação gráfica da cor lida;
- calcular a distância euclidiana utilizando o CIEDE2000;
- desenvolver uma base de dados com as cores e valores medidos.

Fundamentação Teórica

- Colorimetria relações entre as luzes emitidas/refletidas e as quantificações de sua percepção entre os seres humanos.
- Espectrofotometria ciência que estuda a análise quantitativa das radiações com relação à sua composição espectral, baseando-se na relação entre a intensidade de luz sobre uma superfície e sobre a curva espectral resultante da mesma luz refletida de volta ao detector do aparelho de medição utilizado.
- Espectrofotômetro aparelho capaz de medir as cores.
 Equipamento que mede a transmitância e refletância de uma superfície ou amostra em função do comprimento de onda.

Sistemas de Cores LAB, RGB, CMYK E PANTONE

- CIELAB fruto de pesquisas da Commission Internationale L'Eclairage; sistema de cor que chega mais próximo a conseguir reproduzir todas as cores existentes no espectro visível; principal espaço de cor puramente matemático e, portanto, independente de dispositivos.
- RGB sistema de cores usado em objetos que emitem luz: monitores, celulares, televisores e eletrônicos em geral.
- CMYK cor pigmento, escala de cores utilizadas principalmente pela indústria gráfica nos materiais impressos: jornais, revistas, embalagens.
- Pantone um sistema de cor largamente utilizado na indústria gráfica; sistema numérico para identificar as cores com alta regularidade e padrão na produção, pois as cores não ficam sujeitas à subjetividade humana.

Fórmulas CIE76, CIE94 E CIEDE2000

- CIELAB, desenvolvido no ano de 1976 para medir pequenas diferenças de cores e a distância euclidiana entre duas coordenadas neste espaço; padronizada e conhecida com CIE76.
- Nos anos seguintes, novas pesquisas geraram mais dados empíricos que melhor caracterizaram a percepção do olho humano, o que resultou em propostas de ajustes e no padrão CIE94.
- No ano de 1998, a CIE criou um comitê técnico objetivando a criação de uma fórmula de diferença de cores que fosse mais confiável e genérica do que as fórmulas já existentes. Teve como base a consolidação dos diferentes conjuntos de dados de diferenças perceptuais de cores. A fórmula CIEDE2000 foi padronizada pelo o ano de 2002, sendo considerada a fórmula mais avançada para aferição de diferenças de cores.

Trabalhos Correlatos

- Título: Protótipo de visualizador para modelos de cor para medição de objetos em espectrofotômetros por refletância (FERNANDES, 2002).
- Título: Sistema para medição de cores utilizando o espectrofotômetro (BERTOLINI, 2010).
- **Título:** Tucanna Printcontrol Pro (TUCANNA, 2016).

Trabalhos Correlatos

Comparativo entre os trabalhos correlatos acima citados:

Trabalhos	Bertolini (2010)	Fernandes (2002)	Tucanna
Características			
cálculo de diferença de cor utilizado	CIE76	CIE76	CIEDE2000
comunicação com espectrofotômetro	X	X	X
mais opções de observadores	X		X
representação gráfica da cor	X	X	X
permite trabalhar como outros modelos de cor	X	X	X
permite trabalhar com outros iluminantes	X		X
plataforma utilizada	Java	Java	Não informado

Requisitos Funcionais

Requisitos funcionais (RF)	Casos de uso (UC)
RF01: O sistema deve permitir selecionar o dispositivo	UC01
RF02: O sistema deve permitir calibrar o espectrofotômetro	UC02
RF03: O sistema deve permitir que o usuário <u>possa</u> fazer leitura de medição	UC03
RF04: O sistema deve permitir que o usuário <u>possa</u> salvar a comparação de cores na base de dados	UC04
RF05: O sistema deve permitir limpar os dados	UC05
RF06: O sistema deve permitir exibir o histórico	UC06
RF07: O sistema deve permitir cadastrar cores Pantone	UC07

Requisitos Não Funcionais

Requisitos não funcionais (RNF)

RNF01: possuir comunicação serial com o espectrofotômetro X-Rite i1Pro 2

RNF02: ser implementado em C#, utilizando o ambiente de desenvolvimento Visual Studio

Community 2017

RNF03: possuir uma base de dados MySQL

RNF04: sistema operacional Windows 7

Diagrama de Casos de Uso

Diagrama de Atividade

Ferramentas Utilizadas

- IDE Microsoft Visual Studio Community 2017;
- Linguagem de programação C#;
- Banco de dados MySQL, modelado utilizando a ferramenta MySQL Workbench 6.3;
- Comunicação com o espectrofotômetro utilizando o SDK i1Pro_SDK_4.2, biblioteca desenvolvida pela X-Rite Inc, que faz a interface com o i1Pro2.

Classe i1SharpModel

Construtor da classe i1SharpModel

```
public I1SharpModel ()
{
    Devices = new ObservableCollection<I1Pro> ();
    I1Pro.DeviceConnected += I1Pro64_DeviceConnected;
    I1Pro.DeviceDisconnected += I1Pro64_DeviceDisconnected;
}
```


Classe I1Pro

Método de calibração

Classe I1Pro

Método de leitura

```
public float [] GetSample (int index = 0)
{
    float[] color = new float[SpectrumSize];
    Result result2 = I1_GetTriStimulus(Handle, color, 0);
    HandleResult(result2);
    return color;
}
```


Operacionalidade do Software

Operacionalidade do Software

Resultados e Discussões

Comparativo com o artigo de Sharma, Wu e Dalal (2004):

Amo	ostras	Coordenas do espaço Lab		Resultados		
					CIEDE2000	
Par		L	a	ъ	Sharma, Wu	Software
					e Dalal	
					(2004)	
1	1	50.0000	2.6772	-79.7751	2.0425	2.0425
	2	50.0000	0.0000	-82.7485		
2	1	50.0000	-1.3802	-84.2814	1.0000	1.0000
	2	50.0000	0.0000	-82.7485		
3	1	50.0000	2.5000	0.0000	27.1492	27.1496
	2	73.0000	25.0000	-18.0000		
4	1	60.2574	-34.0099	36.2677	1.2644	1.2644
	2	60.4626	-34.1751	39.4387		
5	1	2.0776	0.0795	-1.1350	0.9082	0.9082
	2	0.9033	-0.0636	-0.5514		

Resultados e Discussões

Comparativo com os correlatos:

Trabalhos	Bertolini (2010)	Fernandes (2002)	Tucanna (2016)	Este Software
Características				
cálculo de diferença de cor utilizado	CIE76	CIE76	CIEDE2000	CIEDE2000, CIE94 e CIE76
comunicação com espectrofotômetro	X	X	X	X
mais opções de observadores	X		X	
representação gráfica da cor	X	X	X	X
permite trabalhar com outros modelos de cor	X	X	X	X
permite trabalhar com outros iluminantes	X		X	
plataforma utilizada	Java	Java	Não informado	C#

Resultados e Discussões

- Teste de usabilidade foi realizado com 3 usuários, todos com experiência na área, colaboradores da empresa Clicheria Blumenau Ltda.
- Composto por:
 - Questionário de perfil do usuário;
 - Lista de tarefas;
 - Questionário de avaliação do software.

Teste de Usabilidade – Perfil dos Usuários

Sexo	66,7% masculino
	33,3% feminino
	23
Idade	24
	29
	Técnico em informática
Profissão	Gerenciamento de cores
	Editora gráfica
77 0	100% Sim
Você possui experiência na área?	0% Não

Teste de Usabilidade – Tarefas

Conectar o espectrofotômetro. A tarefa foi executada?	100% Sim
Seleção do dispositivo. A tarefa foi executada?	100% Sim
Calibração do dispositivo. A tarefa foi executada?	100% Sim
Fazer a primeira leitura. A tarefa foi executada?	100% Sim
Visualizar os valores da leitura. A tarefa foi executada?	100% Sim
Fazer a segunda leitura. A tarefa foi executada?	100% Sim
Salvar comparação. A tarefa foi executada?	100% Sim
Salvar cor. A tarefa foi executada?	100% Sim
Limpar dados. A tarefa foi executada?	100% Sim
Se você encontrou alguma dificuldade nos passos	Não, bem simplificado.
anteriores, descreva aqui.	Não encontrada.

Teste de Usabilidade – Avaliação do Software

A interface do software é agradável? Nota de	33,3% votaram 4
1 a 5	66,7% votaram 5
O software atende as exigências do mercado? Nota de 1 a 5	100% votaram 5
Você utilizaria este software?	100% Sim 0% Não
Você recomendaria este software para outras	100% Sim
pessoas?	0% Não
Você encontrou dificuldades na utilização do	0% Sim
software?	100% Não

Conclusões

 O software desenvolvido apresentou o resultado desejado, com a comunicação com o espectrofotômetro, representação gráfica da cor, bem como as conversões entre modelos de cor e os cálculos euclidianos que foram iguais ou muito próximos a sistemas comerciais. O software se mostrou prático, fácil e rápido, assim facilitando o processo de controle de qualidade da cor tornando-o preciso.

Extensões

- Tornar o software compatível com outros modelos de espectrofotômetros;
- Incluir outros iluminantes, observadores e permitir a conversão para outros modelos de cores, permitindo assim a expansão do software para outros ramos além da indústria gráfica;
- Ampliar o software para o modelo web.

Demonstração

Espectrofotômetro I1Pro2		
Preço (https://www.coraparencia.com.br/produto/i1basic-pro-2/)	R\$ 10.712,00	
lluminante	D50	
Observador	2°	
Faixa do espectro	380 730nm	

- 1. Abertura de medição
- 2. Botão de medição
- 3. Indicador de estado
- 4. Conector USB

