ALGEBRA Chapter 1

LEYES DE EXPONENTES
PARA LA POTENCIACIÓN

HELICO MOTIVATING

Reto matemático

¿Puedes operar mentalmente la siguiente expresión y dar la respuesta en menos de 10 segundos?

$$\left(\left(\left((2021)^2\right)^3\right)^4...\right)^{0}\right)^{-1}$$

RPTA: 1

HELICO PRACTICE CHAPTHER I

1. Indique el equivalente de

$$F = x^6 \cdot [x^{-2} \cdot x^4]^5 \cdot x^{-14} ; x \neq 0$$

RESOLUCIÓN

$$F = x^{6} \cdot [x^{-2} \cdot x^{4}]^{5} \cdot x^{-14}$$

$$F = x^{6} \cdot [x^{2}]^{5} \cdot x^{-14}$$

$$F = x^6 \cdot x^{10} \cdot x^{-14}$$

$$F = x^2$$

$$x^n \cdot x^m = x^{n+m}$$

$$(x^n)^m = x^{n.m}$$

2. Reduzca

$$E = \frac{x^3 \cdot x^3 \cdot x^3 \cdot \dots \cdot x^3}{x \cdot x \cdot x \cdot x}; x \neq 0$$

$$(6n - 18) veces$$

RESOLUCIÓN

$$E = \frac{(x^3)^{(2n-5)}}{x^{6n-18}} = \frac{x^{6n-15}}{x^{6n-18}} - \frac{x^{6n-15}}{x^{6n-15}} - \frac{x^{6n$$

$$(x^n)^m = x^{n.m}$$

$$\frac{x^m}{x^n} = x^{m-n}; x \neq 0$$

3. Efectúe

$$P = \frac{\left((7^2)^3 \right)^2 \cdot 7^{-3^2}}{\left(7^4 \right)^{-3} \cdot \left((7^2)^2 \right)^3}$$

RESOLUCIÓN

$$P = \frac{\left((7^2)^3 \right)^2 \cdot 7^{-3^2}}{\left(7^4 \right)^{-3} \cdot \left((7^2)^2 \right)^3} = \frac{7^{2 \times 3 \times 2} \cdot 7^{-9}}{7^{4 \times (-3)} \cdot 7^{2 \times 2 \times 3}}$$

$$(x^n)^m = x^{n.m}$$

$$(x^n)^m \neq x^{n^m}$$

$$x^n \cdot x^m = x^{n+m}$$

$$=\frac{7^3}{7^0}=$$

4. Simplifique

$$T = \frac{8^{2x+3} \cdot 16^{3x+1}}{32^{3x+2} \cdot 8^{x+1}}$$

RESOLUCIÓN
$$T = \frac{(2^3)^{2x+3} \cdot (2^4)^{3x+1}}{(2^5)^{3x+2} \cdot (2^3)^{x+1}}$$

$$T = \frac{2^{6x+9} \cdot 2^{12x+4}}{2^{15x+10} \cdot 2^{3x+3}} = \frac{2^{18x+13}}{2^{18x+13}}$$

$$T = 1$$

RECORDEMOS

Nota:

$$8 = 2^3$$
; $16 = 2^4$
 $32 = 2^5$

$$x^{n+m} = x^n \cdot x^m$$

5. Simplifique

$$Q = \left(\frac{1}{625}\right)^{-4^{-1}} - \left(\frac{1}{27}\right)^{-3^{-1}} - \left(\frac{1}{32}\right)^{-5^{-1}}$$

RESOLUCIÓN

$$Q = \left(\frac{1}{625}\right)^{-\frac{1}{4}} - \left(\frac{1}{27}\right)^{-\frac{1}{3}} - \left(\frac{1}{32}\right)^{-\frac{1}{5}}$$

$$Q = (625)^{\frac{1}{4}} - (27)^{\frac{1}{3}} - (32)^{\frac{1}{5}}$$

$$Q = (5^{4})^{\frac{1}{4}} - (3^{3})^{\frac{1}{3}} - (2^{5})^{\frac{1}{5}} = 5 - 3 - 2$$

$$Q = 0$$

$$\left(\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n\right)$$

$$a \wedge b \neq 0$$

La edad del profesor José está dado

$$G = \frac{(125)^3 \cdot (81)^2}{(27)^2 \cdot (625)^2}$$

¿Cuál es la edad del profesor José?

RESOLUCIÓN

$$G = \frac{(125)^3 \cdot (81)^2}{(27)^2 \cdot (625)^2} = \frac{(5^3)^3 \cdot (3^4)^2}{(3^3)^2 \cdot (5^4)^2}$$

$$G = \frac{(5)^9 \cdot (3)^8}{(3)^6 \cdot (5)^8} = (5)^{9-8} \cdot (3)^{8-6} = (5)^1 \cdot (3)^2$$

$$G = 45$$
La edad de José es 45 años

está dado
$$G = \frac{(125)^3 \cdot (81)^2}{(27)^2 \cdot (625)^2}$$
 RECORDEMOS $\frac{x^m}{x^n} = x^{m-n}; x \neq 0$ esor José?

es 45 años

7. En un salón de clases hay alumnos de una sola edad, si deseas saber que edad tienen éstos alumnos, tienes que hallar el valor de Q:

Siendo $2^x = 3$, evalúe $Q = (2^2)^x$. $(2^{4x})^{\frac{1}{4}}$. ¿Qué edad tienen dichos alumnos?

RESOLUCIÓN $Q = (2^2)^{\chi} \cdot (2^{4\chi})^{\frac{1}{4}}$ $Q = (2^x)^2 \cdot (2)^{\frac{4^x}{4}}$ $Q = (3)^2 \cdot (2)^x$ 0 = 9.3

RECORDEMOS

Nota:
$$(a^n)^m = (a^m)^n$$

RPTA: 27 ALUMNOS