Zhen Zhang

Basic Concepts

Data Preprocessing

40 × 40 × 42 × 42 × 2 × 990

10 + 10 + 12 + 12 + 2 + 900

Data Types

- Data objects : also called samples, examples, instances, data points, objects, tuples, vectors
- Attributes: each row of a table, also called dimensions, features, variables

• Tabular data : matrices, vectors, objects, relations, etc.

- Graphical data : networks, graphs, etc.
- Multi-media data : texts, images, videos, audios, etc.

4 m > 4 m > 4 E > 4 E > E + 4 Q @

Types of Attributes

- Discrete : $\mathbf{x} \in \mathsf{some}$ countable sets, e.g., $\mathbb N$
 - Nominal : Countries={China, US, UK, France, Germany}, Universities={Peking U, Tsinghua U, SUSTech, Shenzhen U, HIT}, not comparable
 - Boolean : 0 or 1, male or female, spam or non-spam, etc.
 - $\bullet \ \, \mathsf{Ordinal} : \mathsf{Heights} {=} \{\mathsf{tall}, \, \mathsf{short}\}, \, \mathsf{Scores} {=} \{\mathsf{A+}, \, \mathsf{A}, \, \mathsf{A-}, \, \mathsf{B+}, \, \mathsf{B}, \,$ B-, C, C-, D, F}, can be compared, but cannot operated arithmetically
- ullet Continuous : ${f x}\in {\sf some \ subset \ in \ } {\mathbb R}^n$
 - Numerical : Income, exact marks, weights, etc., can be operated arithmetically

4 D > 4 B > 4 E > 4 E > E 9 Q G

Basic Statistics

• Mean : $\frac{EX = \min_c E(X - c)^2}{\sum_{i=1}^n x_i} \approx \frac{1}{n} \sum_{i=1}^n x_i$

• Median :

$$\min_{\mathbf{c}} \mathbf{E} |X - \mathbf{c}| = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{if } n \text{ is odd} \\ (x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2} + 1\right)})/2 & \text{otherwise} \end{cases}$$

• Maximum : $\max x_i$; Minimum : $\min x_i$

• Quantile : a generalization of median, k-th q-quantile x_q : $P[X < x_q] \leqslant k/q$; interquartile range $(IQR)=Q_3(75\%)-Q_1(25\%)$

• Variance : $Var(X) = E[X - EX]^2 \approx \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$; Standard deviation : $\sqrt{\operatorname{Var}(X)}$

• Mode: $\min_{c} E|X - c|^{0}$ = the most frequently occurring value (define $0^0 = 0$)

Central Tendency

For one-peak skewed density distribution, empirical formula : $Mean-Mode = 3 \times (Mean-Median)$

Symmetric

Negative skewed

Box Plot

Measure the dispersion of data

4 D > 4 B > 4 E > 4 E > E + 9 Q C

Metrics

- Proximity :
- Proximity: angle is [0,1]• Dissimilarity: range is $[0,\infty]$, sometimes distance
 For nominal data, $d(\mathbf{x}_i,\mathbf{x}_j) = \frac{\sum_k I(x_i,k \neq x_j,k)}{p}$; or one-hot encoding into Boolean data
- For Boolean data, symmetric distance $d(\mathbf{x}_i, \mathbf{x}_j) = \frac{r+s}{q+r+s+t}$ or Rand index $Sim_{Rand}(\mathbf{x}_i, \mathbf{x}_j) = \frac{q+t}{q+r+s+t}$; non-symmetric distance $d(\mathbf{x}_i, \mathbf{x}_j) = \frac{r+s}{q+r+s}$ or Jaccard index $Sim_{Jaccard}(\mathbf{x}_i, \mathbf{x}_j) = \frac{r}{q+r+s}$

		Sa	mple j						
		1	0	sum					
	1	\boldsymbol{q}	r	q + r					
iample i	0	S	t	s + t					
	sum	q + s	r + t	p					
				(□)	18 + 1	E + 43	= >	æ	99

Metrics: Distance

- Example : Let H = F = 1 and L = S = 0, $d(LandRover, Jeep) = \frac{1+0}{4+1+0} =$ 0.20, $d(LandRover, TOYOTA) = \frac{3+1}{1+3+1} = 0.80$, $d(Jeep, TOYOTA) = \frac{3+2}{1+3+2} = 0.83$
- Minkowski distance : $d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt[h]{\sum_{k=1}^p |x_{ik} x_{jk}|^h}$ is L_h -norm
 - Positive definiteness $d(\mathbf{x}_i, \mathbf{x}_j) \geqslant 0$ and "=" if and only if i = j; Symmetry $d(\mathbf{x}_i, \mathbf{x}_j) = d(\mathbf{x}_j, \mathbf{x}_i)$; Triangle inequality $d(\mathbf{x}_i, \mathbf{x}_j) \leqslant d(\mathbf{x}_i, \mathbf{x}_k) + d(\mathbf{x}_k, \mathbf{x}_j)$

	Weight	Price	Acceleration	MPG	Quality	Sales Volume			Jeep	
Land Rover	н	Н	E	н	н	- 1			- 1	0
Jeep	H	H		н	H	L	Land Rover	1	q - 4	r-1
TOYOTA	L	L	F	L	H	Н		0	s = 0	t = 1

Metrics: Distance (Cont')

- Manhattan distance: h = 1,
- $d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^{p} |x_{ik} x_{jk}|$ • Euclidean distance : h = 2,
- $\mathsf{an}\underline{\mathsf{d}}\ d(\mathbf{x}_i,\mathbf{x}_j) =$ $\sqrt{\sum_{k=1}^{p}|x_{ik}-x_{jk}|^2}$
- Supremum distance : $h=\infty$, and $d(\mathbf{x}_i, \mathbf{x}_j) = \max_{k=1}^p |x_{ik} - x_{jk}|$

					٠	1	Ι.	ι.	1
Γ	Point	Attr 1	Attr 2	4			x2		X4
Г	x_1	1	2	1					
	x_2	3	5	2					
	x_3	2	0	~		x1			
	x_4	4	5				x3		١.

L ₁	x1	x2	x3	x4
x_1	0			
x_2	5	0		
x2	3	6	0	
x_4	6	1	7	0

(a) Manhattan

L ₂	x ₁	x2	x ₃	x4
x1	0			
x2	3.61	0		
x2	2.24	5.1	0	
X.	4.24	1	5.39	0

(b) Euclidean

L.	x1	x2	x ₃	x_4
x_1	0			
x_2	3	0		
x ₂ x ₃	2	5	0	
x_4	3	1	5	0

(c) Supremum

Metrics: Cosine Similarity

• Definition : $cos(\mathbf{x}_i, \mathbf{x}_j) =$ $\frac{\sum_{k=1}^{p} x_{ik} x_{jk}}{\sqrt{\sum_{k=1}^{p} x_{ik}^2} \sqrt{\sum_{k=1}^{p} x_{jk}^2}}$ $\frac{\mathbf{x}_i \cdot \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$

• Example : $cos(\mathbf{x}_1, \mathbf{x}_2) = 0.94$

Instance	Team	Coach	Hockey	Baseball	Soccer	penalty	Score	Win	Loss	Season
Instance 1	5	0	3	0	2	0	0	2	0	0
Instance 2	3	0	2	0	1	1	0	1	0	1

Euclidean vs. Cosine :

- Euclidean : measures the distance in absolute value, many applications
- · Cosine : insensitive to absolute value, e.g., analyze users' interests based on movie ratings

Metrics: Other Distances

- For ordinal data, mapping the data to numerical data : $X = \{x_{(1)}, x_{(2)}, \dots, x_{(n)}\}, x_{(i)} \mapsto \frac{i-1}{n-1} \in [0, 1]$
- For mixed type, use weighted distance with prescribed weights:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \frac{\sum_{g=1}^G w_{ij}^{(g)} d_{ij}^{(g)}}{\sum_{g=1}^G w_{ij}^{(g)}}$$

Put the attributes of the same type into groups, for each data type g, use the corresponding distance $d_{ij}^{(g)}$

Outlines

Basic Concepts

Data Preprocessing

Why Data Preprocessing?

- Missing values
- · Noisy with outliers
- Inconsistent representations
- Redundancy
- Errors may come during data input, data gathering, and data transferring
- Errors occur in about 5% of the data

Four Types of Data Preprocessing

(a) Data cleaning (b) Data integration (c) Data conversion (d) Data reduction

oncepts

Data Preprocessing

Data Scaling

- Why scaling :
 - For better performance : e.g., RBF in SVM and penalty in Lasso/ridge regression assume the zero mean and unit variance
 - Normalize different dimensions: many algorithms are sensitive to the variables with large variances, e.g., height (1.75m) and weight (70kg) in distance calculation
- Z-score scaling : $x_i^* = \frac{x_i \hat{\mu}}{\hat{\sigma}}$, $\hat{\mu}$: sample mean, $\hat{\sigma}$: sample variance, applicable if max and min are unknown and the data distributes well

Data Scaling (Cont')

- 0-1 scaling : $x_i^* = \frac{x_i \min_k x_k}{\max_k x_k \min_k x_k} \in [0, 1]$, applicable for bounded data sets, need to recompute the max and min when new data arrive
- Decimal scaling : $x_i^* = \frac{x_i}{10^k}$, applicable for data varying across many magnitudes
- Logistic scaling : sigmoid transform $x_i^*=\frac{1}{1+e^{-x_i}}$, applicable for data concentrating nearby origin

Data Discretization

- Why discretization :
 - Improve the robustness : removing the outliers by putting them into certain intervals
 - For better interpretation
 - Reduce the storage and computational power
- Unsupervised discretization : equal-distance discretization, equal-frequency discretization, clustering-based discretization, 3σ -based discretization
- • Supervised discretization : information gain based discretization, $\chi^2\text{-}\text{based}$ discretization

Unsupervised Discretization

- ullet Equal-distance discretization : split the range to n intervals (bins) with the same length, group the data into each bin, sensitive to outliers
- Equal-frenquency discretization : group the data into n subset so that each subset has the same number of points, tend to separate samples with similar values and produce uniform
- · Clustering-based discretization : do hierarchical clustering and form a hierarchical structure (e.g., using K-Means), and put the samples in the same branch into the same interval (a natural example is family tree)
- 3σ -based discretization : put the samples into 8 intervals, need to take logarithm first

Supervised Discretization - Information Gain

- · Top-down splitting, similar to create a decision tree
- Do a decision tree classification using information gain, find a proper splitting point for each continuous variable such that the information gain increases the most
- The final leaf nodes summarize the discrete intervals

ChiMerge: Iris Data Example

10 + 48 + 42 + 42 + 2 + 90 P

Supervised Discretization - ChiMerge

- Bottom-up : similar to hierarchical clustering
- $\hat{\chi}^2$ statistics proposed by Karl Pearson, is used to test whether the observations dramatically deviate from theoretical distribution : $\hat{\chi}^2 = \sum_{i=1}^k \frac{(A_i - \mathbb{E} A_i)^2}{\mathbb{E} A_i} = \sum_{i=1}^k \frac{(A_i - np_i)^2}{np_i}$, where n_i is the number of samples in the i-th interval $A_i = [a_{i-1}, a_i]$ (frequency of observations), $\bigcup_{i=1}^k A_i$ covers the range of the variable, and $\mathbb{E}A_i = p_i$ is its expectation computed from the theoretical distribution; it can be shown that $\hat{\chi}^2 o \chi^2_{k-1}$
- ChiMerge: Given a threshold level t,
 - 1. Treat each value of the continuous variable as an interval and sort them in increasing order;
 - 2. For each pair of adjacent intervals, compute its $\hat{\chi}^2$ statistics, if $\hat{\chi}^2 < t$, merge them into a new interval;
 - 3. Repeat the above steps until no adjacent intervals can be merged.
- Two shortcomings: t is hard to set appropriately: too long loop for large sample set, computationally intensive

• $\hat{\chi}^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{(A_{ij} - E_{ij})^2}{E_{ii}}$, where m = 2 (two adjacent intervals) k is the number of classes A_{ij} is the number of samples in A_{ij} is the number of samples in i-th interval and in class k $R_i = \sum_{j=1}^k A_{ij}$ is the total number of samples in i-th interval $C_j = \sum_{i=1}^m A_{ij}$ is the total number of samples in class j $N = \sum_{i=1}^m \sum_{k=1}^k A_{ij}$ is the total number of samples of samples number of samples $E_{ij} = R_i \cdot \frac{c_j}{N}$

FIGURE: Sepal lengths of 3 types of iris

ChiMerge Results

Left : significance level is 0.5 and the threshold for χ^2 is 1.4; Right : significance level is 0.9 and the threshold for χ^2 is 4.6; The final results keep the intervals with χ^2 larger than the thresholds

D + + (4) + + (3) + (3) + (3) + (4)

Data Redundancy

- · When strong correlations exist among different attributes, then we say that the some attributes can be derived from the others (Recall linear dependency for vectors)
- E.g., two attributes "Age" and "Birthday", then "Age" can be calculated from "Birthday"
- Determine the data redundancy by correlation analysis
- For continuous variables A and B, compute the correlation $\begin{array}{l} \text{coefficient } \rho_{A,B} = \frac{\sum_{i=1}^k (a_i - \bar{A})(b_i - \bar{B})}{k \hat{\sigma}_A \hat{\sigma}_B} \in [-1,1] : \\ 1. \ \ \text{If } r > 0, \ A \ \text{and } B \ \text{are positively correlated}; \end{array}$

 - 2. If r < 0, A and B are negatively correlated;
 - 3. If r = 0, A and B are uncorrelated.

Note that the correlation between A and B does not imply the causal inference.

• For discrete variables A and B, compute the χ^2 statistics : large $\hat{\chi}^2$ value implies small correlation

Missing Data

- Where missing data come from?
 - Missing Completely At Random (MCAR): the occurrence of missing data is a random event
 - Missing At Random (MAR): depending on some control variables, e.g., the age > 20 is not acceptable in an investigation for teenager and thus is replaced by MAR
 - investigation for teenager and thus is replaced by MAR

 Missing Not At Random (MNAR): missing data for bad performed employees after they are fired

Simple Methods

- Deleting samples : for small size of samples with missing values
- Deleting variables : for series missing values in variables

gradyear	gender	age	friends
2006	M	18.98	7
2006	F	18.801	0
2006	M	18.335	69
2006	F	18.875	0
2006	NA	18.995	10
2006	F		142
2006	F	18.93	72
2006	M	18.322	17
2006	F	19.055	52
2006	F	18.708	39
2006	F	18.543	8
2006	F	19.463	21
2006	F	18.097	87
2006	NA		0
2006	F	18.398	0
2006	NA		0
2006	NA		135
2006	F	18.987	26
2006	F	17.158	27
2006	F	18.497	123
2006	F	18.738	35

Basic Concents

Filling Methods

- Filling with zero
- Filling with means for numerical type, and with modes for non-numerical type, applicable for MCAR; drawback: concentrating in the mean and underestimating the variance; solution: filling in different groups
- Filling with similar variables : auto-correlation is introduced
- Filling with past data
- Filling by K-Means: Compute the pairwise distances of the data using good variables (no missing values), then fill the missing values with the mean of the first K most similar good data, auto-correlation is introduced
- Filling with Expectation-Maximization (EM): introduce hidden variables and use MLE to estimate the parameters (missing values)

Basic Concepts

Filling Methods (Cont')

Data Preprocessing

- Random filling :
 - Bayesian Bootstrap : for discrete data with range $\{x_i\}_{i=1}^k$, randomly sample k-1 numbers from U(0,1) as $\{a_{(i)}\}_{i=0}^k$ with $a_{(0)}=0$ and $a_{(k)}=1$; then randomly sample from $\{x_i\}_{i=1}^k$ with probability distribution $\{a_{(i)}-a_{(i-1)}\}_{i=1}^k$ accordingly to fill in the missing values
 - Approximate Bayesian Bootstrap: Sample with replacement from $\{x_i\}_{i=1}^k$ to form new data set $X^* = \{x_i^*\}_{i=1}^k$; then randomly sample n values from X^* to fill in the missing values, allowing for repeatedly filling missing values
- Model based methods: treat missing variable as y, other variables as x; take the data without missing values as our training set to train a classification or regression model; take the data with missing values as our test set to predict the miss values

Filling by Interpolation

- For the data of numeric type, each attribute (column vector) can be viewed as the function values $z_i = f(x_i)$ at the points x_i , where x_i is a reference attribute (the reference attribute usually has no missing values, it can be chosen as the index)
- We can interpolate a function f using the existing values (x_i, z_i) , and then fill in the missing values z_k with $f(x_k)$
- Linear interpolation : treat z=f(x) as linear function between the neighboring points x_{k-1} and x_{k+1} of x_k
- Lagrange interpolation : interpolate the m+1 existing values $\{(x_i,z_i)\}_{i=1}^{m+1}$ by a degree m polynomial $L_m(x)$

Special Values and Dummy Variables

- In Python, "np.nan" means missing values (Not a Number, missing float value)
- "None" is a Python object, used to represent missing values of the object type
- Dummy variables: e.g., missing values in gender ("Male" or "Female"), then define a third value "unknown" for the missing values

```
Import pandes as pd
import manys as p

teenager_mss = pd.read_cev('teenager_ms.cev')

print teenager_mss 'quedet', value_counts()

print teenager_ms ('quedet') = teenager_mss ('quedet').replace(np.HaN, 'unknown')

print 'readet', 'quedet', 'value_counts()

print 'readet', 'quedet', 'value_counts()

# 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/# # 2025/#
```

Outliers

- Outliers: the data points seem to come from different distribution, or noisy data
- Outlier detection: unsupervised, e.g., Credit cheating detection, medical analysis, and information security, etc.

Outliers Detection - Statistics Based Methods

- The samples outside the upper and lower α -quantile for some small α (usually 1%)
- Observe from box plot
- 3σ -rule in 1D : the sample x with $x^*_{Z-score} > 3$ is an outlier

Basic Concepts

Outliers Detection - Distance Based Methods

- K-means : run K-means clustering first, and then select the farthest m points from their centers as outliers
- KNN: run KNN first, and then select the points that are far from their K nearest neighbors (distance > C) as outliers

Outliers Detection - Local Outlier Factor

Local Outlier Factor (LOF) is a density based method :

- 1. We could compute the density at each position \mathbf{x} , e.g., $p(\mathbf{x})$ (how to define the density if we only have data samples);
- We could compare the density of each point x with the density of its neighbors, i.e., compare p(x) with p(xk) where xk is close to x (in a neighborhood of x, but how to define the neighborhood)

Computing Density by Distance

Some definitions :

- d(A, B) : distance between A and B;
- d_k(A): k-distance of A, or the distance between A and the k-th nearest point from A
 N_k(A): k-distance neighborhood

of A, or the points within $d_k(A)$

from A; • $rd_k(B, A)$: k-reach-distance from A to B, the repulsive distance from A to B as if A has a hard-core with radius $d_k(A)$, $rd_k(B, A) =$

 $\max\{d_k(A), d(A,B)\}\$; note that $rd_k(A,B) \neq rd_k(B,A)$, which implies that k-reach-distance is not symmetric.

FIGURE: $rd_5(B, A) = d_5(A)$ and $rd_5(B, C) = d(B, C)$

4 D > 4 B > 4 B > 4 B > 4 B > 4 B O 9 C C

Local Outlier Factor

Some definitions :

- $Ird_k(A)$: local reachability density is inversely proportional to the average distancep, $Ird_k(A) = 1/\left(\frac{\sum_{Q \in N_k(A)} rd_k(A,Q)}{|N_k(A)|}\right)$; intuitively, if for most $O \in N_k(A)$, more than k points are closer to O than A is, then the denominator is much larger than $d_k(A)$ and $Ird_k(A)$ is small; e.g.,
- $LOF_k(A)$: local outlier factor, $LOF_k(A) = \frac{\sum_{O \in N_k(A)} \frac{lrd_k(O)}{lrd_k(A)}}{|N_k(A)|}$;

k = 3 in the figure

LOF_k(A) ≪ 1, the density of A is locally higher, dense point;
 LOF_k(A) ≫ 1, the density of A is locally lower, probably outlier

Further topics

- Other methods for outlier detection:

 Isolation Forest: small path length (normally distributed) in a random forest (sklearn.ensemble.Isolation)
 One-class support vector machine: classification as 1 (normal) vs. -1 (outlier) (sklearn.svm.OneClassSVM)
 Robust covariance: based on Gaussian assumption, 3σ rule in high dimensions (sklearn.covariance.EllipticEnvelope)

 Outlier processing:
- Outlier processing:

 Delete outliers (treat them as missing values)

 Robust regression: e.g., Theil-Sen regression, select the median of all possible slopes in two-point linear regression

