Základné pojmy

- Simplex
- Duplex
 - Halfduplex
 - Fullduplex

Čo o ňom vieme povedať?

Koľko má konektorov?

USB A vs. USB B

vysokorýchlostné prepojenie 2 PC - treba špeciálny SW

Pin	Signal	Color	Description
1	VCC		+5V
2	D-		Data -
3	D+		Data +
4	GND		Ground

Micro-USB pinout

Micro-USB is a standard USB connector for a wide range of portable devices, including cell phones and smartphones pinoutsguide.com/PortableDevices/micro_usb_pinout.shtml

Figure 1: Parallel Pair, the interference causes higher pickup-voltages in red (closer) than blue wire.

Figure 2: Twisted Pair, the interference alternatively produces high and low pickup-voltages in both wires.

www.sajidrehman.tk

Apple Lightning Connector

Lightning Receptacle View

Lightning používa USB 2.0 štandard - 480Mbps USB-C používa USB 3.0 (USB 3.1 Gen 1) – 5Gbps (pri USB 3.1 gen 2 až 10Gbps)

Pin	Name	Description		
1	GND	Ground		
2	L0p	Line 0 positive		
3	L0n	Line 0 negative		
4	ID0	Identification/Control 0		
5	PWR	Power		
6	L1n	Lane 1 negative		
7	L1p	Lane 1 positive		
8	ID1	Identification/Control 1		

http://computer.howstuffworks.com/usb3.htm

USB hub

- s napájaním (self-powered)
- bez napájania (bus-powered)

USB štandard podporuje až 127 zariadení (až v 7 úrovniach USB hubov) napájanie z USB:

- USB 2.0 max 500 mA, 5V
- USB 3.0 900mA

Round-Trip Time

- maximálna dĺžka USB 2.0 kábla pri rýchlosti 480Mbps je X m.
- Koľko je X?
 - Remember? s = v.t:)
 - maximálne dovolené oneskorenie (round-trip-time delay) je pre USB 2.0 zadefinovné 1.5 µs
 - > odpoveď na príkaz musí prísť do 1.5 µs od odoslania príkazu
 - inak sa príkaz považuje za stratený
 - to dĺžku stále nedefinuje lebo...
 - ak uvažujeme o oneskoreniach spôsobených spracovaním príkazu na strane príjemcu a rozbočovačmi, maximálne oneskorenie spôsobené káblom jedným smerom musí byť < 26ns
 - ak je max rýchlosť prenosu v medenom kábli 192 000 km/s, aký dlhý teoreticky môže byť teda USB 2.0 kábel?
 - s = 192 000 000m/s * 26 *10^-9 s = 4.992 m

USB proces

- 1. štart USB hostiteľa (host)
- zistenie pripojených USB zariadení. AKO?
 (15kOhm rezistory ďalší slide)
- 3. priradenie adries pripojeným zariadeniam enumeration
- 4. zistenie typov data transferov
- Control (konfigurácia zariadenia po jeho pripojení)
- Interrupt (malé objemy údajov s dôrazom na skoré doručenie -myš, klávesnica...)
- Bulk (hromadný max rýchlosť, s detekciou chýb prenosu USB kľúč, ZIP mechanika, tlačiareň...)
- Isochronous (dáta citlivé na zachovanie časovania reatime video z kamery apod.)
- 5. zistenie požiadaviek na šírku prenosového pásma od pripojených zariadní
- 6. pri požiadavkách nad 90% pásma odmietanie obslúženia ďalších zariadení

high speed – host vyskúša a ak odpovie, pokračuje

USB 3.0 = USB 3.1 gen 1

From Computer Desktop Encyclopedia Reproduced with permission. © 2009 Intel Corporation

http://www.tomshardware.com/reviews/usb-3.0-superspeed-external-enclosure,2597-2.html

- väčšia šírka pásma USB 3.0 používa naviac dve jednosmerné cesty príjem a vysielanie zvlášť
- lepšie využitie zbernice pakety NRDY a ERDY umožňujú zariadeniu asynchrónne informovať počítač o svojej (ne)pripravenosti komunikovať
- rýchlosť prenosu: USB 2.0 480 Mbps

USB 3.0 - 5 Gbps = $\sim 10x$ vyššia rýchlosť

prenos: tok 8bitov zakódovaných v 10b – takže koľko reálne prenesieme Gbps? => surové dáta teda prechádzajú teoretickou max rýchlosťou 4Gbps, prakticky 3.2Gbps

- USB 3.0 nedefinuje max dĺžku kábla, iba to, aby kábel spĺňal určitú elektrickú špecifikáciu (prakticky je dĺžka max 3m)

USB 3.1 gen2

- Označenie aj SuperSpeed USB 10Gbps alebo SuperSpeed +
- júl 2013
- Teoretická rýchlosť 10Gbit/s
- Efektívnejšie kódovanie 128b/132b iba 1.5% redundancie
 - Realita testov 7.2Gbit/s
- Napájanie až 2 A pri 5 V, prípadne až 5 A pri 12 V alebo 20 V

Hi-Speed USB 2.0 A plug pinout SuperSpeed standard A plug pinout

SuperSpeed standard B plug pinout

BY: AIR T

USB 2.0 A plug pinout

USB 3.0 A plug pinout

USB 3.0 micro-B plug pinout

USB 3.0 B plug pinout

USB C

- Reverzibilita pripojenia
- Obojsmerné napájanie
- V kombinácii s USB Power Delivery až 20V pri 5A
- Oproti USB 2.0 pridané 2 Tx a 2Rx jednosmerné cesty

Version	Speed	Data transfer at a time	Power	Encoding	Backward compatibility	Max cable length	Release
USB 0.8	1.5 Mbit/s	One side	5V, 1.5 A	Unicode	Yes	3 Meter (9'10")	December 1994
USB 1.0	Low speed: 1.5 Mbit/s, Full speed: 12 Mbit/s	One side	5V, 1.5 A	Unicode	Yes	3 Meter (9'10")	January 1996
USB 1.1	12 Mbit/s	One side	5V, 1.5 A	Unicode	Yes	3 Meter (9'10")	August 1998
USB 2.0	480 Mbit/s	One side	5V, 1.8A	Unicode	Yes	5 Meter (16'5)	April 2000
USB 3.0	5 Gbit/s	Both side	5V, 1.8A	8b/10b	Yes	3 Meter (9'10")	November 2008
USB 3.1	10 Gbit/s	Both side	20V, 5A	8b/10b	Yes	3 Meter (9'10")	July 2013
USB Type-C	10 Gbit/s	Both side	5V, 3 A	8b/10b	Need connecter	3 Meter (9'10")	August 2014

Spätná kompatibilita?

Peripheral Component Interconnect – PCI zbernica

- zdieľaná zbernica
- **šírka zbernice 32 bitov** (alebo 64b)
 - 32-bit PCI slot má 62 pinov, 64-bit PCI slot má 94 pinov
- prístup na PCI zbernicu je riadený tzv. master-om v danom čase. Master pristupuje k
 zbernici iba jednosmerne (umožňuje zariadeniu pripojenému k zbernici iniciovať
 transakcie) toto je tzv. "first-party DMA"
 - existujú aj tzv. "third-party DMA" zbernice kedy prístup na ňu riadi špecializovaný DMA controller
 - (prístup "first-party DMA" nie je vhodný pre real-time OS, kt. potrebujú riadiť zbernicu pomocou "schedulera" a nevedia zabezpečiť vopred definovateľné oneskorenie)
- frekvencia PCI zbernice sa prispôsobuje najpomalšiemu zariadeniu pripojenému na túto zdieľanú zbernicu zbernicu (bežne 33,3 MHz)
- podporuje funkcie procesorovej zbernice v štandardizovanom formáte
 t i boz závielesti na typo procesoro
 - t.j. bez závislosti na type procesora
 - pripája sa k zbernici čipsetu základnej dosky
- rýchlosť pri 32-bitovej šírke zbernice:
 - 33.33 MHz × 32 bits / 8 bits/Byte = 133 MB/s

Accelerated Graphics Port

- pripojenie grafickej karty do PC
 - prečo nový štandard? a zrovna na gr.karty?
 - 3D grafika vysoké dátové toky kedy PCI nestačí
- gr.karta v AGP nezdieľa pripojenie k procesoru s inými zariadeniami
- adresovacia a dátová časť zbernice sú oddelené
- pri textúrach ich musí PCI gr.karta skopírovať z RAM do svojej pamäte a až potom používať.
 AGP karta vie tieto textúry čítať priamo z RAM
- OS jej môže dynamicky vyhradzovať časť RAM
- Intel vydal AGP špeciikáciu 1.0 v r. 1997 (obsahovala AGP 1× aj 2×). Špecifickácia 2.0 dokumentovala AGP 4× a v 3.0 bola vydaná AGP 8×

AGP and PCI: 32-bit buses operating at 66 and 33 MHz respectively

Specification	Speed	Pumping	Rate (MB/s)	Frequency (MHz)	Voltage (V)
PCI	-	single	133	33	3.3/5
AGP 1.0	1×	single	256	66	3.3
AGP 1.0	2×	double	533	66	3.3
AGP 2.0	4×	quad	1066	66	1.5
AGP 3.0	8×	octuple	2133	66	0.8

- AGP Pro viac el.energie
- pre náročnejšie aplikácie grafického dizajnu
 - architektúra, strojníctvo, simulácie a pod.

Peripheral Component Interconnect eXtended - PCI-X

- použitie: serverové a na šírku pásma náročné aplikácie
- väčšia dĺžka oproti PCI
- 4x rýchlejšia (až do 1Gb/s)
- dokáže pracovať aj s PCI kartami3,3Voltovými

- kratšia karta môže fungovať v dlhšom slote

- aj opačne, dlhšia môže byť vsadená do kratšieho slotu, avšak tento musí mať otvorený koniec

PCIe - PCI Express - Peripheral Component Interconnect Express

- nezdieľaná
- sériová zbernica
 - 4 piny ("drôtiky") pre 1 signálovú linku (lane)
 - full duplex
 - point-to-point spojenie paketového charakteru
- nahrádza PCI, AGP, PCI-X
 - dôvod?
 - prirodzene, požiadavky na vyššie dátové priepustnosti
- škálovateľnosť pomocou použitia väčšieho počtu liniek (lanes)
 - X1, X2, X4, X8, X16, X32
- nižší počet I/O pinov -> menší základný konektor (18 82 pinov X1 X16)
- detailnejší mechanizmus detekcie a hlásenia chýb
- hot-plug funkcionalita
- najnovšie revízie PCle štandardu podporujú HW I/O virtualizáciu

hlavné rozdiely oproti PCI:

- PCI = zdieľaná paralelná zbernica (zdieľanie spoločnej množiny adresných, dátových a kontrolných vodičov)
- PCle = point-to-point topológia oddelené linky pripájajú zariadenia k hosťovaciemu systému základnej doske
- prístup na PCI zbernicu je riadený tzv. master-om v danom čase. Master naviac pristupuje k zbernici iba jednosmerne. Frekvencia PCI zbernice sa prispôsobuje najpomalšiemu zariadeniu pripojenému na zbernicu.
- PCle podporuje full-duplex komunikáciu nedzi dvomi koncovými bodmi (point) bez závislosti na zariadeniach pripojených do iných PCle slotov.
- PCI slot a PCIe slot nie sú kompatibilné !!

https://computer.howstuffworks.com/pci-express2.htm

generácie a X1, X2, X4, X8, X16, X32

http://www.youtube.com/watch?v=LSS HuMHbCWo

PCle – vývoj, rýchlosti, rozšírenia

- (2003) PCle 1.0a, prenosová rýchlosť **na linku** (x1) transfer rate 2.5 gigatransfers per second (GT/s) (transfer rate zahŕňa okrem prenosu užitočných informácií aj signály zabezpečujúce spoľahlivosť prenosu napr. kódovanie proti chybám pri prenose)
 - PCIe 1.x používa 8b/10b kódovanie -> 20% je nadbytočná informácia (pri frekvencii hodín 2.5 GHz a kódovaní 8/10, maximálna užitočná prenosová rýchlosť je:....
 - 2 500 000 000 * 8/10 = 2 000 000 000 bitov za sekundu = 250 000 000 B/s = 250 MB/s)
- (2007) PCI Express Base 2.0 špecifikácia
 - dvojnásobná prenosová rýchlosť = 5 GT/s na jednu prenosovú linku -> 500 MB/s.
 - => 32-linkový konektor PCle (×32) zvládne až 32x500MB/s = 16 GB/s
- (november 2010) PCIe 3.0
 - zmena kódovania z 8/10 na 128/130 -> zníženie nadbytočnosti z 20% na 1.5% (ako sa počíta táto nadbytočnosť?)
 - použitie techniky "scrambling" kedy sa na odosielané dáta aplikuje známy polynóm. V prípade chyby je táto odhalená a opravená tým, že na prijatú postupnosť je aplikovaný inverzný-opačný polynóm.
 - rýchlosť 8 GT/s
- PCle 4.0 s rýchlosťou 16 GT/s, 128/130. Špecifikácia v r. 2017
- PCIe 5.0 32GT/s, 128/130, 2019 (pri x16 = 63.015GB/s)
- PCle 6.0 64 GT/s, 128/130, plánovaná na 2021 (pri x17 = 126.031 GB/s)

PCle – vývoj, rýchlosti, rozšírenia

ROZŠÍRENIA

- Scalable Link Interface (SLI) NVIDIA multi-GPU riešenie na prepojenie viacerých grafických kariet na 1 výstup s vysokým výkonom
 - cieľom je zvýšenie výkonu
 - paralelný procesing (master a slave)
 - split frame rendering
 - alternate frame rendering
 - SLI antialiasing
 - aj bez mostíka
- AMD CrossFireX podobné ako SLI. Umožuje prepojiť až 4 GPU

PCle – vývoj, rýchlosti, rozšírenia

ROZŠÍRENIA

- PCle je možné použiť aj na pripájanie rôznych externých zariadení k PC či notebookom
 - externé grafické karty k notebooku IBM pridala PCIe do svojho dokovacieho konektora
 - externá pamäť, napr. typu flash dosahujú sa tak veľmi vysoké prenosové rýchlosti – cez 1 GB/s

audio konektory v PC

3.5 mm jack

farbičky

konektory pre klávesnicu a myš

https://www.keelog.com/ hardware_keyboard_logger2.html

http://www.tomshardware.co.uk/forum/id-1697057/connect-wires-color-usb.html