NÁHODNÁ ČÍSLA V NUMERICKÝCH VÝPOČTECH

Náhodná čísla

- Proč potřebujeme náhodná čísla?
- Pro vytvoření náhodného stavu nebo náhodné události
 - x náhodné souřadnice molekul
 - × Brownův pohyb, chaos
 - × fyzikální procesy (radioaktivní rozpad, šum, atd.)
 - × pohyb lidí, rozhodovací procesy
 - × náhodný směr výstřelu na videoherní postavu
 - × náhodný videoherní quest
- Nejčastější aplikace
 - × počítačové simulace
 - videohry
- Chceme popsat různé jevy pomocí simulačních modelů
- Generování náhodných čísel

Generátory náhodných čísel

- Generování náhodných čísel
 - x náročný proces
 - x pseudonáhodná čísla
 - John von Neumann, 1946 prvotní metoda pro rychlé získání náhodných číslic
- Nevýhody pseudonáhodných čísel
 - x zkoumáním minulé sekvence lze určit následné číslo
 - stále lepší metody
 - × ale i rozvoj oblasti hlubokého učení
 - schopné rozpoznat následnou sekvenci čísel
- Dělení
 - × Fyzikální generátory
 - × Tabulky náhodných čísel
 - × Lineární kongruenční generátory
- Základní generátory
 - x Randu, ZXSPECTRUM, Marsaglia XorShift, Mersene Twister, Park&Miller,...

Možnosti získání náhodných čísel

- Základ vždy pozorování reálného jevu
 - x co použít při simulacích?
- Přímo hodnoty měření
 - x skutečná náhodnost
 - × malý počet náhodných hodnot
- Odhad pravděpodobnostního rozdělení pozorovaného jevu
 - × a generovat hodnoty z tohoto rozdělení
 - x dostatečný počet "náhodných" hodnot
 - v odhad rozdělení a jeho parametrů

Generování náhodného jevu – posun částice

- Náhodný posun částice v kapalině
- Generování náhodného čísla ξ v intervalu (0,1)
- $lue{}$ Transformace ξ podle odhadnutého rozdělení
- Realizace náhodného jevu (sledovaná veličina)

- extstyle ext
- Nageneruji náhodný směr

$$\underline{\xi} = (\xi_{x\prime}, \xi_{y\prime}, \xi_{z\prime})$$

- Částici posunu na nové (náhodné místo)
- $\mathbf{r}_i^n = \mathbf{r}_i + \underline{\xi} \cdot \mathbf{r}_{max}$

Lze náhodný posun částice generovat i jiným způsobem?

Generování náhodných čísel

- lacksquare Náhodné číslo ξ
 - × Je v intervalu (0,1), (0,1),...
 - × Transformace na jiné rozdělení/interval
 - $\times \zeta^T = \zeta(b-a) + a, \qquad a, b \in \mathbb{R}$
- Základní dělení generátorů
 - Fyzikální generátory
 - Tabulky náhodných čísel
 - × Vypočítaná náhodná čísla

Fyzikální generátory

- Opravdu náhodná čísla
 - x Radioaktivní rozpad (Geiger-Müller)

pokud
$$T_1 > T_2 - z$$
apíši 0 pokud $T_1 < T_2 - z$ apíši 1

- × Šum elektronky/atmosféry
 - Random.org (1997)

Tabulky náhodných čísel

- Opravdu náhodná čísla
 - x z fyzikálních generátorů
 - disk, CD nosič, páska
 - x rozsáhlé soubory dat (tabulky)
 - 1927 Tipper 40 tis náhodných čísel
 - 1955 RandCorp 1 mil. náhodných čísel

Vypočítaná náhodná čísla

- Pseudonáhodná (kvazináhodná)
 - Algoritmus (posloupnost čísel), perioda P
 - × náhodné číslo $\xi_{i+1} = f(\xi_i, \xi_{i-1}, \xi_{i-2}, \dots \xi_{i-n})$
- Von Neumannovy generátory
- Lineární kongruenční generátory
- Generátory s posuvnými registry

- Požadavky
 - × co nejdelší perioda P
 - co největší náhodnost v rámci periody a rovnoměrné pokrytí
 - $^ imes$ co největší rychlost generování čísla ξ_{i+1}

Vypočítaná náhodná čísla

- Von Neumannovy generátory (1946)
- "Každý, kdo se zabývá aritmetickými metodami vytváření náhodných čísel, se nepochybně dopouští hříchu"
- První známý generátor pseudonáhodných čísel
 - × krátká perioda opakování náhodných čísel
 - řešil problém pomalého čtení náhodných čísel z děrných štítků pro počítač ENIAC
- Metoda prostředku čtverce (Middle-square)
 - (prostředních řádů druhé mocniny)
 - \times Zvolím počáteční číslo x_0 o 2k číslicích
 - × Číslo se umocní
 - × Z druhé mocniny se vybere prostředních 2k číslic
 - Získané číslo je dalším prvkem posloupnosti

Vypočítaná náhodná čísla

Von Neumannovy generátory (1946)

x_0	x_0^2
1236	01527696

x_1	x_{1}^{2}
5276	27836176

x_2	x_{2}^{2}
8361	69906321

x_3	x_{3}^{2}
9063	81237969

- Krátká perioda P
- Malá náhodnost v rámci periody
- Pomalý proces generování

Lineární kongruenční generátory

- Historicky jeden z nejdůležitějších generátorů pseudonáhodných čísel
 - používán v mnoha implementacích novějších generátorů
 - např.: Park-Miller z C++11 standardní knihovny

Princip:

- \times 1. zvolíme parametr M (modulus)
 - prvočíslo nebo jeho mocninu
- \times 2. zvolíme parametr C (inkrement)
 - pro C = 0 se nazývá generátor Lehmerův
- \times 3. zvolíme parametr a (násobek)
- imes 4. algoritmus vyžaduje semínko seed, které představuje první ξ_i
- × 5. další náhodné číslo ze vzorce: $\xi_{i+1} = (\boldsymbol{a} * \xi_i + \boldsymbol{C}) \mod \boldsymbol{M}$

Lineární kongruenční generátory

D. H. Lehmer (1948)

$$\xi_{i+1} = (a_0 \xi_i + a_1 \xi_{i-1} + \dots + a_n \xi_{i-k} + b) \pmod{M}$$

- Konstanty: a_j , b, M
 - × vhodnou volbou konstant určujeme vlastnosti generátoru
 - \times $k > 0, \xi_i < M$
- Semínko (násada)
 - $\times \ \xi_0, ..., \xi_{-k} \ (i = 0)$
 - $\xi_1 = (a_0 \xi_0 + a_1 \xi_{-1} + \dots + a_n \xi_{-k} + b) \pmod{M}$
- Stejná násada = stejná posloupnost čísel

$$\xi_i = 0, 1, 2, ..., M-1,$$
 $\xi_i = \frac{\xi_i}{M} \rightarrow \xi_i \in (0,1)$

- Dělení
 - × Multiplikativní generátory
 - Aditivní generátory
 - × Smíšené generátory

Multiplikativní LKG

- Multiplikativní generátory
 - × velmi rychlé generování

D. H. Lehmer

$$\xi_{i+1} = a_0 \xi_i \pmod{M}$$

- □ IBM 360: $\xi_{i+1} = 7^5 \xi_i \pmod{2^{31} 1}$
- Fortran: $\xi_{i+1} = 13^{13} \xi_i \pmod{2^{59}}$
- \square ZX SPECTRUM: $\xi_{i+1} = 75\xi_i$ (mod 65537)
- RANDU: $\xi_{i+1} = a_0 \xi_i \pmod{2^{31}}, \ a_0 = 1$
- jazyk BASIC (nevhodná volba konstant)

Aditivní LKG

Aditivní generátory

$$\times \quad \xi_{i+1} = (\xi_{i-m} + \xi_{i-n}) \pmod{M}$$

- \Box Vzniklé číslo ξ_{i+1} se otestuje
 - \times $\xi_{i+1} > M$: M odečteme
 - \times $\xi_{i+1} < M$: nic s číslem neděláme
- Fibonacciho generátor
 - × využívá Fibonacciho posloupnost
 - předposlední a poslední hodnotu
 - $\times \xi_{i+1} = (\xi_i + \xi_{i-1}) \pmod{M}$
- Opožděný Fibonacciho generátor (Mitchell, Moore, 1958)
 - × využívá obecné hodnoty opožděnosti
 - nepoužívá se, ale jednoduchý
 - $\times \quad \xi_{i+1} = (\xi_{i-j} + \xi_{i-k}) \pmod{M}$
 - × místo "+" může být jiná operace
 - + * / ap.

Aditivní LKG

Millerův-Prenticův generátor

$$\xi_{i+1} = (\xi_{i-1} + \xi_{i-2n}) \pmod{3137}$$
 $(P = 9.8 \cdot 10^6)$

Další aditivní generátory

$$\times \xi_{i+1} = (\xi_{i-5} + \xi_{i-17}) \pmod{M}$$

Volba M ovlivňuje periodu generátoru

$$\times$$
 $M = 2^6 \rightarrow P = 1.6 \cdot 10^7$

$$M = 2^{16} \rightarrow P = 4.3 \cdot 10^9$$

$$M = 2^{32} \rightarrow P = 2.8 \cdot 10^{14}$$

Smíšené LKG

- Smíšené generátory
 - × kombinují vlastnosti multiplikativního a aditivního
 - tak, aby došlo ke zlepšení vlastností

$$\xi_{i+1} = (69069\xi_i + 1) \pmod{2^{32}}$$

Minimal Standard

- Série pravidel (parametrů)
 - x generátor má plnou periodu (rovnoměrné pokrytí)
 - vybraná subsekvence čísel je nerozeznatelná od celé, generované sekvence
 - × generátor projde testy spolehlivosti
 - × lze jej **efektivně** implementovat pomocí 32-bitové architektury
- Lewsi, Goodman, Miller (1969)
 - $\times \xi_{i+1} = a_0 \xi_i \pmod{M}, \qquad a_0 = 16807, \quad M = 2^{31} 1$
 - x snadná implementace do vysokoúrovňových jazyků
 - × seed generátor: $\xi_0 \in (1, 2^{31} 1)$, jsou rovnocenné

Generátory pseudonáhodných bitů

- Posuvné registry
 - x k ukládání a posouvání jednotlivých bitů
 - o jeden nebo více míst
 - vpravo nebo vlevo (shift right, shift left)
 - realizace pomocí kombinační logiky nebo speciálních posuvných instrukcí procesoru
 - × jeden nebo více registrů
 - každý uchovává určitý počet bitů
- pro výpočet následujícího čísla se používá kombinace bitů z několika registrů
 - × některé bity se mohou použít jako zpětná vazba do registru
- počáteční stav registrů = semínko
 - × ovlivňuje celou posloupnost čísel
 - x pokud se použije stejné, bude posloupnost stejná
- Vlastnosti
 - × konečná perioda
 - × jednoduchost
 - x malá paměťová náročnost
 - x rychlost

Lineární buněčné automaty

- Buněčný (celulární) automat
 - x pravidelná struktura buněk v n-rozměrném prostoru
 - × diskrétní v hodnotách, prostoru i čase
 - každá buňka může nabývat určitého počtu možných stavů (často jen 2)
 - y její stav se mění v čase na základě pravidel
 - v závislosti na stavech sousedních buněk
- Lineární buněčný automat
 - × buňky uspořádané do řetězce
 - každá buňka může nabývat pouze dvou stavů 0 nebo 1
 - x realizace pomocí posuvných registrů
 - umožňuje posouvat bity z jedné buňky na druhou (cyklicky)
 - × nový stav kombinuje bity ze sousedních buněk a z posuvného registru
 - obv. pomocí logických operací (XOR, AND, OR)

Pravidlo 30

- Stephen Wolfram (1983)
 - × název podle decimální reprezentace schémata binárních operací
- Pravidlo 30
 - × jedno z nejzajímavějších výpočetních schémat základních automatů
 - pro aktualizaci stavu buněk v 1D buněčném automatu
 - × vytváří automat, obsahující pseudonáhodné sekvence (aperiodické chaotické sekvence bitů).
- Vlastnosti
 - × jednoduchá definice
 - × přesto velmi komplexní a chaotické vzorce
 - použijeme jako náhodnou posloupnost

Pravidlo 30

Princip

- × pro každou buňku vypočítá nový stav na základě stavů tří sousedících buněk v předchozí řadě
 - kombinace stavů buněk v aktuální a předchozí řadě
 - např. pokud má buňka sousedy 1, 0 a 0, její nový stav bude 1

111	\rightarrow	0
110	\rightarrow	0
101	\rightarrow	0
100	\rightarrow	1
011	\rightarrow	1
010		
001	\rightarrow	1
000	\rightarrow	0

Postup

- × 1. Nastav prvotní řádek buněčného automatu na binární 0, prostředek na binární 1
- × 2. Proved vývoj buněčného automatu do zvolené generace pomocí pravidla 30
- × 3. Vyber prostřední sloupec, přeskoč N bitů (semínko) a získej 8 binárních číslic
- × 4. Vytvoř z M binárních číslic poseudonáhodné číslo

Generátory s posuvnými registry

- S posuvnými registry s lineární zpětnou vazbou
 - y posuvný registr délky L
 - L = $\{R_0, R_1, \dots, R_{L-1}\}$ vnitřních registrů
 - časový signál
 - charakteristický mnohočlen C(x)
- Princip
 - × v každém časovém okamžiku se:
 - obsah R_i přesune do R_{i-1} , R_0 se předá na výstup
 - do registru R_{L-1} se uloží (výpočtem) nový obsah
 - \times R_i uchovává jednu jednotku informace
 - Jeden bit (0,1), 2^n bitů (velikost slova / jednotka času)
 - \times vnitřní stav generátoru $S = \{S_0, \dots, S_{L-1}\}$
 - × charakteristický mnohočlen

$$C(x) = 1 + c_1 x + c_2 x^2 + \dots + c_L x^L$$

- × koeficienty: zbytek po dělení modulo
 - 1 − liché, 0 − sudé

Iniciace generátoru

Pozor na zakázané stavy logické funkce Zacyklení generátoru

Iniciace pomocí LKG (Lehmer,...)

Marsaglia XORshift

- George Marsaglia (2003)
 - × na základě von Neumannova generátoru
- Užití operace XOR a bitového posunu
 - × XOR (exkluzivní disjunkce)
 - logická operace, výstupem pravda, pokud vstupy unikátní
 - $A = (0,1,0,1), B = (0,0,1,1), A \oplus B = (0,1,1,0)$
 - × logické shift (bitový posun)
 - levý posun: $0010101111 \rightarrow 0101011110$
 - pravý posun: 001010111 → **0**00101011
- Postup
 - × bitové posuny (různé podle implementace)
 - např. Xorshift128
 o 23, 17, 26 a 11 míst vlevo
 - × posunuté bity se použijí pro XOR s jinými bity v registru
 - aby se vytvořil nový stav generátoru
 - aplikujeme XOR na vektor eta (binární) s posunutou verzí sebe sama
 - $\beta >> a$ bitový posuv doprava o a pozic
 - lacksquare a je parametr generátoru
 - $eta \oplus (eta >> a)$ XORshift vektoru eta o a pozic doprava

Marsaglia XORshift

Produkuje sekvenci:

- $\times 2^{32}-1$ x celých čísel
- \times 2⁶⁴ 1 x, y dvojic
- $\times 2^{96} 1$ x, y, z trojic
- George Marsaglia (1924 2011)
 - × americký matematik (statistik)
 - × algoritmy: XORshift, Ziggurat, ...
 - x "Random numbers fall mainly in the planes."
 - multiplikativní generátory: "Crystalline" nature

Mersenne Twister

- Makoto Mastumoto, Takuji Nishimura, 1998
 - Mersenneho prvočíslo
 - prvočíslo o jedničku menší než mocnina 2, $M=2^n-1$.
 - $2^3 1 = 7$ (je prvočíslo), $M = 2^4 1 = 15$ (není prvočíslo)
 - × www.mersenne.org
 - největší ověřené Mersenneho prvočíslo (r. 2021) 57 885 161 (48. Mersenneho prvočíslo),
 - r. 2006 32 582 657 (44.)
- Použití
 - × dnes jeden z nejpoužívanějších
 - různé verze MT
 - nejvyužívanější verze (nastavení parametrů) MT19937
 - × používá Python v modulu Random
 - × dále R, Ruby, Free Pascal, PHP, Maple, MATLAB, GAUSS, Julia, Microsoft Visual C++,...
 - numpy jiný (PCG64 z roku 2014)

Mersenne Twister

- Založen na generátoru s posuvnými registry
 - \times polynom C(x) s řádem P, stavový vektor x o velikosti w bitů
- Generuje stavový vektor x

$$x_{k+n} = x_{k+m} \oplus (x_k^u \mid x_{k+1}^l) A$$

- $imes x_n$ je stavový vektor v kroku n
- \mathbf{x}_{k}^{u} je subvektor složený z w-r levých bitů vektoru \mathbf{x}
- \mathbf{x}_{k+1}^l je subvektor složený z w-r pravých bitů vektoru \mathbf{x}
- × | představuje operaci zřetězení
 - "Hello" | "world" → "hello world"
- × A je transformační matice
- × (H) XOR
- Vlastnosti
 - × velice dlouhá perioda
 - $až P = 2^{19937} 1$
 - × TinyMT (2012)
 - $P = 2^{512}$, ale méně zatěžuje procesor

<u>Špatný Seed:</u>

trvá dlouho, než začne generovat náhodnou sekvenci

Testy generátorů náhodných čísel

- ullet Mějme uspořádanou k-tici náhodných celých čísel n(k)
- Testy náhodnosti
 - × Statistické testy (chí kvadrát test)
 - x Transformace (Hadamard, Marsaglia)
 - × Komplexita (složitost)
 - Kolmogorovova komplexita: měří složitost k-tice podle počtu znaků, délky programu, který takovou k-tici vyprodukuje
- DIEHARD testy
- TESTU01

Testy generátorů náhodných čísel

DIEHARD testy (Marsaglia 1995)

sada několika testů, např.

× Birthday spacings

 Vyberte náhodně dva body na generovaném intervalu, vzdálenost mezi těmito body podléhá exponenciálnímu rozdělení

× Minimum distance test

Náhodně umístěte n=8 000 bodů do oblasti o velikosti 10 000 x 10 000 bodů, změřte vzdálenosti d mezi všemi $\frac{n(n-1)}{2}$ páry. Hledáme minimální vzdálenost. Veličina d^2 bude podléhat exponenciálnímu rozdělení se střední hodnotou 0.995

× Runs test

Generujte reálná náhodná čísla na intervalu (0,1); počítejte kdy dojde k růstu čísla a kdy k poklesu, tyto počty splňují určité rozdělení

× Parking lot test

Náhodně umístěte jednotkovou kružnici do čtverce o hraně 100 bodů; pokud se kružnice překrývají, zkuste to znovu; po 12,000 pokusech by počet úspěšně umístěných kružnic měl splňovat normální rozdělení

× Count-the-1's test on a stream of bytes

- Uvažuje řetězec bajtů. Každý bajt může obsahovat 0 až 8 jedniček s pravděpodobností 1/256, 8/256, 28/256, 56/256, 70/256, 56/256, 28/256, 8/256, 1/256.
- Nyní nechme vytvořit řetězec překrývajících se 5-písmenných slov. Každé písmeno nabývá hodnot A, B, C, D, a E. Písmena jsou určována počtem jedniček v bajtu: 0, 1 nebo 2 znamená A, 3 B, 4 C, 5 D a 6, 7 nebo 8 E. Takže je tu 55 možných 5-písmenných slov a v řetězce 256 000 (překrývajících se) 5-písmenných slov se spočítají výskyty jednotlivých slov

Testy generátorů náhodných čísel

- TestU01 (L'Ecuyer, Simard)
 - × Knihovna v ANSI C.
 - × Nástupce DIEHARD testů
 - x Testy rozděleny na moduly
 - Implementace generátorů (předprogramované)
 - Implementace statistických testů
 - Implementace známých sad testů
 - Aplikace testů na generátor
 - SmallCrush, Crush, BigCrush: sady testů
 - x Implementované generátory: http://simul.iro.umontreal.ca/indexe.html

Minimum distance test

Skutečná náhodná čísla

- Pseudonáhodná čísla
 - x nemají zcela náhodnou distribuci
 - často lze odhadnout následné sekvence (např. neuronovou sítí)
 - × problém (šifrovací aplikace, hry)
- Zařízení, která poskytují skutečně náhodná čísla
 - × může být zpřístupněno webovými službami
- Generátory skutečně náhodných čísel
 - využívají nějaký fyzický nebo fyzikální fenomén
- Generátory založené na fyzických jevech
 - např. generování čísla ze sekvence pohybu myší nebo úhozů do klávesnice (či prodlevě mezi úhozy)
 - x problémy
 - člověk může využívat podobný vzor pohybů a úhozů
 - komunikace s OS pomocí bufferů, které mohou náhodnost vyrušit

Skutečná náhodná čísla

- Generátory založené na fyzikálních jevech
 - lepší, ale finančně náročnější
- Nejčastější jevy
 - × radioaktivní rozpad nuklidů
 - × atmosférický šum
 - elektromagnetické vlnění v daném prostoru a čase
 - lze získat citlivou anténou
 - x akustický tlak v místnosti (šum z hluku)
 - slabší generátory
 - problém s prediktivními jevy jako hluk z otáček větráku
- Využití externích webových služeb přes jejich rozhraní REST
 - × levné, spolehlivé
 - x např. random.org
 - data pro vygenerování náhodných číslic z atmosférického šumu
 - potřebujete získat API klíč
 - uvádíte v požadavku ve formátu JSON pomocí metody POST z HTTP protokolu
 - klíč můžete vygenerovat po registraci na stránce: https://accounts.random.org/create
 - při volbě developer licence je registrace zdarma, ale denní limit vygenerovaných čísel 1000

GENEROVÁNÍ JINÝCH ROZDĚLENÍ

Rozehrání náhodné veličiny

- Generování a transformace náhodné veličiny (rozehrání NV)
- Co umíme
 - × generace náhodných čísel z rovnoměrného rozdělení
- Co potřebujeme
 - \times náhodnou veličinu X s jiným typem rozdělení
 - × se zadanou hustotou pravděpodobnosti $f_X(x)$ či distribuční funkcí $F_X(x)$
- Metody
 - × pro diskrétní NV
 - × pro spojité NV
 - metoda inverzní funkce
 - metoda výběru
 - metoda superpozice

Rozehrání diskrétní náhodné veličiny

 $lue{}$ Náhodná veličina (NV) X

$$X = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} \qquad p_i = P(X = x_i)$$

Vytvoření vektoru (o n složkách)

$$(p_1, p_1 + p_2, p_1 + p_2 + p_3, ..., 1)$$

- Vygenerujeme číslo y z rovnoměrného rozdělení R(0,1)
- $lue{}$ Určíme, do kterého intervalu padne interval a jemu odpovídající NV X
 - imes podle podmínky $y < \sum_{i=1}^{j} p_i$
 - imes První interval j, pro který bude tato podmínka splněna, určí příslušnou hodnotu $X = x_i$

Rozehrání spojité náhodné veličiny

Metoda inverzní funkce

- × hledáme NV X, hustota pravděpodobnosti p(x), distr. funkce F(x)
- × náhodné číslo $y \in (0,1)$ (z NV Y s rovnoměrným rozdělením R(0,1))
- \times potom náhodná veličina $X = F^{-1}(Y)$ má rozdělení s distribuční funkcí F(x)

$$y = F(x) \implies x = F^{-1}(y)$$

 $\int_{a}^{x} p(x)dx = y$

řešíme tuto rovnici, analytické řešení nemusí existovat výsledkem transformační vztah x = g(y)

- × např.
- $\times F(x) = \frac{x-a}{b-a} \Longrightarrow x = y(b-a) + a$
- × $F(x) = 1 e^{-\lambda x} \implies x = -\frac{1}{\lambda} \ln y$

Rozehrání spojité náhodné veličiny

- Metoda výběru (von Neumannova)
 - vhodná, když nelze analyticky vyjádřit inverzní funkci
 - imes p(x) veličiny X je omezená na intervalu $\langle a,b
 angle$
 - × volíme $M \ge \sup(p(x))$
 - \times generujeme dvě náhodná čísla veličiny Y: y_1 , y_2 (rovnoměrné rozdělení)

 - imes pokud bod (z_1,z_2) leží pod křivkou p(x), volíme $x=z_1$, jinak opakujeme

Rozehrání spojité náhodné veličiny

- Metoda superpozice (kompoziční)
 - × hledáme NV X s distribuční funkcí F(x) (složitou)
 - × rozložíme F(x) do tvaru

$$F(x) = \sum_{i=1}^{m} p_i F_i(x)$$

- $F_i(x)$ jsou distribuční funkce, p_i pravděpodobnosti
- $p_1 + \dots + p_m = 1, \quad p_i > 0$
- × Zavedeme diskrétní NV Z s rozdělením

$$Z = \begin{pmatrix} 1 & 2 & \dots & m \\ p_1 & p_2 & \dots & p_m \end{pmatrix}$$

- \times generujeme dvě nezávislé hodnoty y_1 a y_2 veličiny Y
- rozehrajeme číslem y_1 hodnotu Z = k; k = 1, ..., m
 - rozehrání diskrétní NV
- × z rovnice $F_k(x) = y_2$ určíme x
 - distribuční funkce veličiny X je rovna F(x)

(rovnoměrné rozdělení)

(číslo intervalu)