

Dynamic Programming

Algorithms: Design and Analysis, Part II

Sequence Alignment Optimal Substructure

Problem Definition

Recall: Sequence alignment. [Needleman-Wunsch score = Similarity measure between strings]

Input: Strings $X = x_1 \dots x_m$, $Y = y_1 \dots y_n$ over some alphabet Σ (like $\{A,C,G,T\}$)

- Penalty $\alpha_{\rm gap}$ for inserting a gap, α_{ab} for matching a & b [presumably $\alpha_{ab} = 0$ of a = b]

Feasible solutions: Alignments - i.e., insert gaps to equalize lengths of the string

Goal: Alignment with minimum possible total penalty

A Dynamic Programming Approach

Key step: Identify subproblems. As usual, will look at structure of an optimal solution for clues.

[i.e., develop a recurrence + then reverse engineer the subproblems]

Structure of optimal solution: Consider an optimal alignment of X, Y and its final position:

Question: How many <u>relevant</u> possibilities are there for the contents of the final position?

- A) 2 C) 4
- B) 3 D) mn

Case 1: x_m , y_n matched, case 2: x_m matched with a gap, case 3: y_n matched with a gap [Pointless to have 2 gaps]

Optimal Substructure

Point: Narrow optimal solution down to 3 candidates.

Optimal substructure: Let
$$X' = X - x_m$$
, $Y' = Y - y_n$.

If case (1) holds, then induced alignment of X' & Y' is optimal. If case (2) holds, then induced alignment of X' & Y is optimal. If case (3) holds, then induced alignment of X & Y' is optimal.

Optimal Substructure (Proof)

Proof: [of Case 1, other cases are similar]

By contradiction. Suppose induced alignment of X', Y' has penalty P while some other one has penalty $P^* < P$.

 $\Rightarrow \text{Appending} \quad \frac{x_m}{y_n} \quad \text{to the latter, get an alignment of X and Y}$ with penalty $P^* / + \alpha_{x_m y_n} < P + \alpha_{x_m y_n}$

Contents of final position Penalty of original alignment

 \Rightarrow Contradicts optimality of original alignment of X & Y. QED!

Dynamic Programming

Algorithms: Design and Analysis, Part II

An Algorithm for Sequence Alignment

The Subproblems

Optimal substructure: Let
$$X' = X - x_m$$
, $Y' = Y - y_n$.

If case (1) holds, then induced alignment of X' & Y' is optimal. If case (2) holds, then induced alignment of X' & Y is optimal. If case (3) holds, then induced alignment of X & Y' is optimal.

Relevant subproblems: Have the form (X_i, Y_i) where

 $X_i = 1$ st i letters of X

 $Y_j = 1$ st j letters of Y

[Since only peel off letters from the right ends of the strings]

The Recurrence

Notation: P_{ij} = penalty of optimal alignment of $X_i \& Y_j$.

Recurrence: For all i = 1, ..., m and j = 1, ..., n:

$$P_{ij} = \min \left\{ \begin{array}{l} (1) & \alpha_{x_i y_j} + P_{i-1, j-1} \\ (2) & \alpha_{\text{gap}} + P_{i-1, j} \\ (3) & \alpha_{\text{gap}} + P_{i, j-1} \end{array} \right\}$$

Correctness: Optimal solution is one of these 3 candidates, and recurrence selects the best of these.

Base Cases

Question: What is the value of $P_{i,0}$ and $P_{0,i}$?

- A) 0
- B) $i \cdot \alpha_{\text{gap}}$
- C) $+\infty$
- D) Undefined

The Algorithm

$$\begin{aligned} &A = \text{2-D array.} \\ &A[i,0] = A[0,i] = i \cdot \alpha_{\text{gap}}, \forall i \geq 0 \\ &\text{For } i = 1 \text{ to } m \\ &\text{For } j = 1 \text{ to } n \end{aligned}$$

$$&A[i,j] = \min \left\{ \begin{array}{l} (1) & \text{A[i-1,j-1]} + \alpha_{x_iy_j} \\ (2) & \text{A[i-1,j]} + \alpha_{\text{gap}} \\ (3) & \text{A[i,j-1]} + \alpha_{\text{gap}} \end{array} \right\}$$

All available for O(1)-time lookup!

Correctness: [i.e., $A[i,j] = P_{ij}, \forall i,j \geq 0$] Follows from induction + correctness of recurrence.

Running time: O(mn) [$\Theta(1)$ work for each of $\Theta(mn)$ subproblems]

Reconstructing a Solution

- Trace back through filled-in table A, starting A[m, n]
- When you reach subproblem A[i, j]:
 - If A[i,j] filled using case (1), match $x_i \ \& \ y_j$ and go to A[i-1,j-1]
 - If A[i,j] filled using case (2), match x_i with a gap and go to A[i-1,j]
 - If A[i,j] filled using case (3), match y_j with a gap and go to A[i,j-1]

[If i = 0 or j = 0, match remaining substring with gaps]

Running time is only O(m+n)!