3.14. Show that a function $h(\omega)$ is \mathcal{F}_t -measurable if and only if h is a pointwise limit (for a.a. ω) of sums of functions of the form

$$g_1(B_{t_1}) \cdot g_2(B_{t_2}) \cdots g_k(B_{t_k})$$

where g_1, \ldots, g_k are bounded continuous functions and $t_j \leq t$ for $j \leq k$,

Hint: Complete the following steps:

- a) We may assume that h is bounded.
- b) For n = 1, 2, ... and j = 1, 2, ... put $t_i = t_i^{(n)} = j \cdot 2^{-n}$. For fixed n let \mathcal{H}_n be the σ -algebra generated by $\{B_{t_i}^j(\cdot)\}_{t_i < t}$. Then by

$$h = E[h|\mathcal{F}_t] = \lim_{n \to \infty} E[h|\mathcal{H}_n]$$
 (pointwise a.e. limit)

c) Define $h_n := E[h|\mathcal{H}_n]$. Then by the Doob-Dynkin lemma (Lemma 2.1.2) we have

$$h_n(\omega) = G_n(B_{t_1}(\omega), \dots, B_{t_k}(\omega))$$

for some Borel function $G_n: \mathbf{R}^k \to \mathbf{R}$, where $k = \max\{j; j \cdot 2^{-n} \le t\}$. Now use that any Borel function $G: \mathbf{R}^k \to \mathbf{R}$ can be approximated pointwise a.e. by a continuous function $F: \mathbf{R}^k \to \mathbf{R}$ and complete the proof by applying the Stone-Weierstrass theorem.

Assume that h is bounded and put ti=ti=j.2", n=1,2,..., j=1,2... For a fixed n, let Iln be the T-algebra generated by BH(1+1. Then, since Iln is an increasing gamily of T-algebras, and I+ is the T-algebra generated by Illn(1-1)

· The oralgebra generated by I flore is contained in JI, by the definition of this Let 5xt and r-20. By the continuity of B.M., Br -> Bo E I Hot, by definition of Aln. Since Bo = limoup Br, we know that Imap Br Elflay. Now, by definition of Ft (V-algebra generated Boisst), we have that Fiel thought.

by the Corollary C.a.,

for some Borel function Gn, and where K=max) j; j:2-n <+ >.

Since every Borel function $G: \mathbb{R}^K \to \mathbb{R}$ can be approximated pointwise a.e. by a continuous function $F: \mathbb{R}^K \to \mathbb{R}$, by the Stone-Weierstrass theorem applied on $[H_1, H_K]$, F can be approximated by a polynomial function g_n , completing the proof.

Corollary C.9. Let $X \in L^1(P)$, let $\{\mathcal{N}_k\}_{k=1}^{\infty}$ be an increasing family of σ -algebras, $\mathcal{N}_k \subset \mathcal{F}$ and define \mathcal{N}_{∞} to be the σ -algebra generated by $\{\mathcal{N}_k\}_{k=1}^{\infty}$. Then

$$E[X|\mathcal{N}_k] \to E[X|\mathcal{N}_\infty]$$
 as $k \to \infty$,

a.e. P and in $L^1(P)$.

Lemma 2.1.2. If $X, Y: \Omega \to \mathbf{R}^n$ are two given functions, then Y is \mathcal{H}_X -measurable if and only if there exists a Borel measurable function $g: \mathbf{R}^n \to \mathbf{R}^n$ such that

$$Y = g(X) .$$