

Reporte Técnico de Actividades Práctico-Experimentales Nro. 002

1. Datos de Identificación del Estudiante y la Práctica

Nombre del estudiante(s)	Irvin Alexey Armijos Guerra	
Asignatura	Teoría de la programación	
Ciclo	1 A	
Unidad	1	
Resultado de aprendizaje de la unidad	Identifica los conceptos fundamentales de la teoría de la programación, bajo los principios de solidaridad, transparencia, responsabilidad y honestidad.	
Práctica Nro.	002	
Tipo	Individual	
Título de la Práctica	Del diseño del algoritmo con estructuras secuenciales a la construcción del programa.	
Nombre del Docente	Lissette Geoconda López Faicán	
Fecha	28/10/2025	
Horario	10h30 – 13h30	
Lugar	Aula física asignada al paralelo	
Tiempo planificado en el Sílabo	6 horas	

Objetivo(s) de la Práctica

- -Desarrollar la capacidad de transformar un problema en una solución computacional.
- -Aplicar estructuras secuenciales en el diseño del algoritmo.
- -Validar la lógica del algoritmo mediante pruebas de escritorio.
- -Implementar y ejecutar la solución en un lenguaje de programación.

Materiales, Reactivos, Equipos y Herramientas

-Herramienta de pseudocódigo y diagramación de algoritmos: PSeInt.

- -IDE de programación: Visual Studio Code u otro entorno compatible.
- -Lenguaje de programación: C (según los contenidos de la unidad)...

Procedimiento / Metodología Ejecutada

Metodología de aprendizaje: aprendizaje basado en problemas. **Inicio**

- Presentación del objetivo de la práctica: explicación de los propósitos formativos de la actividad y la relevancia de aplicar estructuras secuenciales en el diseño de algoritmos.
- Contextualización del problema a resolver: explicación del enunciado que plantea la situación práctica.

Problema

Un estudiante necesita saber qué calificación debe obtener en el tercer certamen (C3) para aprobar la asignatura con una nota final de 60/100 puntos.

Para calcular la nota final se utilizan las siguientes fórmulas:

1. Promedio de certámenes (NC):

$$NC = \frac{C1 + C2 + C3}{3}$$

2. Nota final del ciclo (NF):

$$NF = (NC \cdot 0.7) + (NL \cdot 0.3)$$

Donde:

- C1 y C2 son las notas de los dos primeros certámenes.
- C3 es la nota del tercer certamen (la que se debe calcular).
- NL es la nota de laboratorio.
- NF es la nota final de la asignatura, mínima para pasar es 60/100.

El programa debe permitir ingresar las notas de C1, C2 y NL; calcular automáticamente la nota mínima necesaria en C3 para que el estudiante apruebe la asignatura.

Nota: Si el resultado es negativo, significa que ya aprueba con las notas actuales.

Análisis del problema

-Datos de entrada

C1 → Nota del primer certamen

C2 → Nota del segundo certamen

NL → Nota de laboratorio

-Proceso

Aplicar la fórmula despejada para encontrar C3:

1.Remplazamos NC en la segunda formula:

$$NC = \frac{C1 + C2 + C3}{3}$$

$$NF = (NC \cdot 0.7) + (NL \cdot 0.3)$$

$$NF = \left(rac{C1+C2+C3}{3} imes 0.7
ight) + (NL imes 0.3)$$

2.Despejamos para encontrar C3, donde NF es 60.

$$C3 = (((60 - (NL * 0.3))/0.7) * 3) - (C1 + C2)$$

-Datos de salida

El programa muestra la nota C3 para comprobar si pasa o no la asignatura.

2. Diseño del algoritmo

-Elaborar pseudocódigo en PSeInt con comentarios explicativos.

Algoritmo c3

Definir c1,c2,certamen3,nl,nf Como Real

```
//Datos de entrada
Escribir "Ingrese la nota C1:";
Leer c1;
Escribir "Ingrese la nota C2:";
Leer c2;
Escribir "Ingrese la nota NL; ";
Leer nl;

//Proceso
nf = 60;
certamen3 = (((nf-(nl*0.3))/0.7)*3)-(c1+c2);

//Datos de salida
```

Escribir "la nota mínima que necesitas de c3 que necesitas para aprobar es: ", certamen3;

FinAlgoritmo

-Diseñar el diagrama de flujo en una herramienta digital.

-Definir pruebas de escritorio con al menos 3 casos y su validación con la ejecución del algoritmo.

Datos o	de entra	da	Proceso	Salida
C1	C2	NL	Formula	Nota que necesita
				sacar en c3 para pasar
40	55	70	(((60 - (70×0.3))/0.7)×3) -	C3 = 72.14
			(40+55) = 72.14	
80	90	85	(((60 - (85×0.3))/0.7)×3) -	C3 = -22.14(si C3 es
			(80+90) = -22.14	negativo aprueba con
				las notas actuales)
10	20	40	(((60 - (40×0.3))/0.7)×3) -	C3 = 175.71(aunque
			(10+20) = 150.71	saque 100 no aprueba)

3. Codificación: trasladar la solución a un lenguaje de programación C.

```
#include <stdio.h>
int main(){
  float c1, c2, c3, n1;
  float nf = 60;
  //Datos de entrada
  printf("Ingrese la nota del certamen 1:\n ");
  scanf("%f", &c1);
  printf("Ingrese la nota del certamen 2: n");
  scanf("%f", &c2);
  printf("Ingrese la nota de laboratirio: \n");
  scanf("%f", &nl);
 //Proceso
  c3 = (((nf-(nl*0.3))/0.7)*3)-(c1+c2);
  //Datos de salida
  printf("la nota que necesitas sacar para aprobar en el certamen 3 es: %f",
c3);
  return 0;
```


Resultados

Incluya evidencias del trabajo realizado (tablas, gráficos, capturas de pantalla, registros de ejecución, modelos, programas, informes, etc.).

Pruebas: compilar y ejecutar el programa en el IDE; verificar que los resultados sean correctos con los mismos casos definidos en las pruebas de escritorio

Prueba 1

```
PS C:\Users\Daniel Armijos\Downloads> gcc calcularC3.c -o calcularC3

PS C:\Users\Daniel Armijos\Downloads> .\calcularC3.exe
Ingrese la nota del certamen 1:
40
Ingrese la nota del certamen 2:
55
Ingrese la nota de laboratirio:
70
la nota que necesitas sacar para aprobar en el certamen 3 es:
72.142860
```

Prueba 2.

```
PROBLEMAS TERMINAL ... \( \sum \) powershell \( + \sum \) \( \overline{\text{\text{\text{TEMINAL}}}} \) ... \( \sum \) \(
```


Prueba 3.

```
PS C:\Users\Daniel Armijos\Downloads> .\calcularC3.exe Ingrese la nota del certamen 1:
    10
    Ingrese la nota del certamen 2:
    20
    Ingrese la nota de laboratirio:
    40
    la nota que necesitas sacar para aprobar en el certamen 3 es:
    175.714279
```

Preguntas de Control

Responda a las preguntas del docente.

¿Qué elementos deben identificarse en el análisis de un problema computacional?

En el análisis de un problema computacional se deben identificar:

- Entradas (Inputs): Los datos que el programa recibirá.
- Salidas (Outputs): Los resultados que el programa debe producir.
- Procesamiento: Las operaciones y transformaciones necesarias para convertir las entradas en salidas.

¿Por qué es importante validar un algoritmo mediante pruebas de escritorio?

Las pruebas de escritorio (o "pruebas de escritorio") son importantes porque:

- Detectan errores lógicos antes de implementar el código
- Verifican el flujo del algoritmo paso a paso
- Validan los cálculos intermedios y finales
- Ahorran tiempo de depuración posterior
- Documentan el comportamiento esperado del algoritmo
- Permiten entender mejor el problema y su solución

•¿Cómo se traslada un algoritmo en pseudocódigo a un lenguaje de programación?

El proceso implica:

- 1. Estructurar el pseudocódigo en componentes del lenguaje
- 2. Definir variables con tipos de datos apropiados
- 3. Traducir estructuras de control (si→if, mientras→while, etc.)
- 4. Implementar operaciones matemáticas y lógicas
- 5. Agregar entrada/salida de datos

6. Probar y depurar la implementación

Conclusiones

La práctica permitió **cumplir el objetivo principal**: desarrollar un algoritmo que calcule automáticamente la nota necesaria en el tercer certamen para aprobar una asignatura. Se concluye que:

- El **análisis matemático previo** es esencial: sin despejar correctamente la fórmula $C3 = \frac{180 0.9 \times NL}{0.7} C1 C2$, no se podría automatizar el cálculo.
- Las pruebas de escritorio verificaron que el algoritmo maneja correctamente tres escenarios:
 - √ Caso normal (necesita nota positiva posible)
 - √ Caso favorable (ya aprueba, resultado negativo)
 - √ Caso imposible (nota requerida > 100)
- La **traducción a código** demostró que un algoritmo bien diseñado en pseudocódigo se implementa directamente en cualquier lenguaje de programación.
- El **pensamiento computacional** aplicado (descomposición, patrones, abstracción) fue clave para resolver el problema sistemáticamente.

Recomendaciones

Para mejorar la práctica o su aplicación en casos reales, se sugiere:

- **1.** Ampliar validaciones en el código: verificar que las notas ingresadas estén en el rango 0-100.
- **2.**Incorporar interfaz gráfica para hacer la herramienta más accesible a usuarios no técnicos.
- **3.**Generalizar la solución: permitir al usuario definir los porcentajes (70%-30%) y la nota final deseada.
- **4.**Agregar funcionalidades adicionales: calcular proyecciones de nota final con diferentes valores de C3.
- 5. Implementar manejo de errores para entradas no numéricas.
- **6.**Documentar el código con comentarios que expliquen la fórmula matemática utilizada.

Anexos

Recursos de apoyo para cada una de las secciones anteriores.