Universität Osnabrück / FB6 / Theoretische Informatik

Prof. Dr. M. Chimani

Informatik D: Einführung in die Theoretische Informatik Klausur — SoSe 2014 — 30. Juli 2014

Haupttermin, Prüfungsnr. 1007049 Gruppe: Reis (Risotto, Nasi-Goreng)

Unbedingt ausfüllen					
Matrikelnummer	Studiengang/Abse	chluss		Fachsemester	
Nachname		Vorname			
Unterschrift		Identifikator	(Beliebiges Wort zu im anonymen	ur Identifikation Notenaushang)	

Grundregeln

- Die Bearbeitungszeit der Klausur beträgt 120 Minuten.
- Sie schreiben diese Klausur vorbehaltlich der Erfüllung der Zulassungsvoraussetzung. Das heißt: Wir werden Ihre Zulassung vor Korrektur prüfen; die Tatsache, dass Sie die Klausur mitschreiben, bedeutet keine implizite Zulassung.
- Es sind keine Unterlagen und auch keine anderen Hilfsmittel erlaubt.
- Benutzen sie nur dokumentenechten (blauen oder zur Not schwarzen) **Kugelschreiber!** Bleistiftlösungen werden nicht gewertet!
- Es zählt die Antwort, die sich im dafür vorgesehenen Kästchen befindet! Soll eine andere Antwort gewertet werden, so ist diese **eindeutig** zu kennzeichnen! Falsche Kreuzchen können zu Punkteabzug innerhalb der Teilaufgabe führen.
- Jegliches Schummeln, und auch der Versuch desselben, führt zum Ausschluss von der Klausur und einer Bewertung mit 5,0.

Klausur und einer Bewertung mit 5,0.														
Wird vom Korrektor/Prüfer ausgefüllt														
A	ufgabe		1	2	3	4	5	6	7	8	9	10	\sum	
Р	unkte (r	max)	12	12	16	12	10	12	12	12	20	12	130	
	unkte erreicht)													
Punkte	e 064	6572	7379	8084	85	89 90	95	96100	101.	.105	10611	0 111	117 11	8130
Note	5,0	4,0	3,7	3,3	3,0) 2	2,7	2,3	2,	,0	1,7	1	1,3	1,0
				Note:										

(a) Hierarchie und Automaten

(10 Punkte)

Zu jeder Sprache gibt es entsprechende Automaten. Vervollständigen Sie die folgende Tabelle:

Chomsky-Typ	Name der Sprachfamilie	Automaten
0		
		NLBA
	regulär	

(b) Grammatik definition

(2 Punkte)

Definieren Sie kontextfreie Grammatiken (für Sprachen L mit $\varepsilon \notin L$).

Alle Regeln haben die Form		
	$\land \to (\land \cap \Sigma) +$	

Aufgabe 2: Sprachen

(12 Punkte)

Welche Aussagen stimmen?

 $(Achtung: Pro\ Frage\ gibt\ es\ +2/0/-2\ Punkte\ bei\ einer\ richtigen/keinen/falschen\ Antwort!\ Sie\ erhalten\ jedoch\ nat\"{u}rlich\ mindestens\ 0\ Punkte\ f\"{u}r\ die\ gesamte\ Aufgabe.)$

korrekt	falsch	
		Die Sprache $\{0^k1^\ell2^k22^\ell k,\ell\geq 0\}$ ist kontextfrei.
		Nicht-deterministische Kellerautomaten, die maximal ein Symbol im Keller speichern können, sind nur so mächtig wie deterministische endliche Automaten.
	•	Man kann jeden deterministischen Kellerautomat in einen nicht- deterministischen Kellerautomaten umformen, dessen Keller immer ma- ximal 2 Elemente enthält.
		Es gibt endliche Mengen die nicht das Alphabet einer Sprache sein können.
		Das Alphabet einer Sprache kann unendlich groß sein.
		Σ^* ist die Potenzmenge von Σ .

Aufg	gabe 3: Pumping Lemma	(16 Punkte)
(a)	Definition Wie lautet das Pumping Lemma für reguläre Sprachen?	(4 Punkte)
(b)	Anwendung Beweisen Sie, dass $\{c^ja^ica^{3i}c\mid i,j\geq 0\}$ keine reguläre Sprache ist.	(12 Punkte)

Aufgabe	4:	RegEx	vs.	DEA
Luisasc			* 0.	

(12 Punkte)

Geben Sie einen	${\rm deterministischen}$	end lichen	Automaten	an, c	der dem	folgenden	regulären	Aus-
druck entspricht:	:							

druck entspricht: $ (\varnothing^* 23^*2 2^*)1 $
(Es gibt genug Platz, damit Sie Zwischenschritte aufschreiben können. Markieren Sie Ihr Endergebnis bitte entsprechend.)

Aufgabe 5: Kellerautom	nat	(10 Punkte)
	$\{a^jcb^{j-i}cd^i\mid j\geq i\geq 0\}$ einen Kellerau	
Kener akzeptiert.		
Aufgabe 6: Rechnende ' Gegeben eine binär kodierte		(12 Punkte) e an, die die folgende Funktion
	Turingmaschine e Zahl α . Geben Sie eine Turingmachin $f(\alpha) := \begin{cases} \text{undef} & \alpha \in \mathbb{N}_g \cup \{0\} \\ \alpha - 1 & \text{sonst} \end{cases}$	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	
Gegeben eine binär kodierte	e Zahl α . Geben Sie eine Turingmachin	

(a) LOOP-Programm

(8 Punkte)

Geben Sie ein LOOP-Programm an (eingeschränkte Definition, d.h. keine Addition von Variablen oder höhere Rechenoperationen), dass der folgenden Codezeile entspricht:

$$x_4 := 3 \cdot x_1 \cdot x_2$$

(b) Turing-vollständig

(4 Punkte)

Begründen Sie, warum LOOP-Programme nicht so mächtig wie Turingmaschinen sind.

Aufgabe 8: Entscheidbarkeit

(12 Punkte)

Wir definieren das Ergebnis des Klebeoperators o als die Zahl, die durch das Hintereinanderschreiben der Dezimaldarstellungen ihrer einzelnen Argumente repräsentiert wird. Wir können mehrere Klebeoperationen gesammelt schreiben, z.B.

$$\bigcirc_{i=1}^{4} i^2 = 1 \circ 4 \circ 9 \circ 16 = 14916.$$

Betrachten Sie das folgende Problem:

Gegeben: Drei jeweils m-elementige Mengen $\mathcal{A}:=\{a_i\}_{1\leq i\leq k},\;\mathcal{B}:=\{b_i\}_{1\leq i\leq k},\;\mathcal{C}:=\{a_i\}_{1\leq i\leq k$ $\{c_i\}_{1\leq i\leq k}$ mit Elementen aus N.

Frage: Gibt es eine Sequenz $s(1), s(2), \ldots, s(n)$ mit $n \ge 1$ und $s(i) \in \{1, \ldots, k\}$ für alle $1 \le i \le n$, so dass

$$\bigcap_{i=1}^{n} a_{s(i)} - \bigcap_{i=1}^{n} b_{s(i)} = \bigcap_{i=1}^{n} c_{s(i)}.$$
 ("Gleichung")

	$ \bigcap_{i=1} a_{s(i)} - \bigcap_{i=1} b_{s(i)} = $	$= \bigcap_{i=1} c_{s(i)}. \qquad (,,Gleichung")$
(a)	Beispiele Geben Sie jeweils ein Beispiel einer Ja- und ein	(4 Punkte) ner Nein-Instanz für dieses Problem an:
	Ja-Instanz	Nein-Instanz
(b)	Semi-Entscheidbarkeit	(4 Punkte)
	Zeigen Sie, dass das Problem semi-entscheidba	ur ist:

(c)	Unentscheidbarkeit						(4 Punkte)		
	Beschreiben Sie kurz die notwendige Reduktion warum das Problem nicht entscheidbar ist:	(von?	nach?	wie?)	um	zu	begründen,		
Aufg	Aufgabe 9: P vs. NP			(20 Punkte)					
(a)	Definition	(4 Punkte)							
	Definieren Sie die Komplexitätsklasse P .								

(b) Basiszusammenhänge

(10 Punkte)

Welche Aussagen stimmen?

(Achtung: Pro Frage gibt es +2/0/-2 Punkte bei einer richtigen/keinen/falschen Antwort! Sie erhalten jedoch natürlich mindestens 0 Punkte für die gesamte Aufgabe.)

korrekt	falsch				
		Das Problem "Finde das kleinste Element aus n gegebenen Zahlen" liegt in NP .			
		Das Problem "Gegeben ein gewichteter Graph und eine Zahl W . Kann man einen aufspannenden Baum finden, dessen Gesamtgewicht maximal W ist?" liegt in ${\bf \it P}$.			
		Das Problem "Gegeben ein Graph auf $n \geq 8$ Knoten. Kann man einen Hamiltonkreis finden, der maximal $n-3$ Kanten enthält?" ist $\it NP$ -vollständig.			
		Wenn ein stark NP -vollständiges Problem einen pseudopolynomiellen Algorithmus erlaubt, gilt $P=NP$.			
•		Sei $\mathcal A$ das zu einem Optimierungsproblem $\mathcal B$ zugehörige Entscheidungsproblem. Wenn $\mathcal A\in \mathcal P$, gibt es einen deterministischen polynomiellen Algorithmus für $\mathcal B$.			
Zeuge		(6 Punkte)			
Was verst	eht mar	n, wenn man über P und NP spricht, unter einem Zeugen?			
(Vollstän	odige!) L	Definition:			

Warum kann ein Zeuge nur polynomiell groß sein?

Eine det. TM kann in polynomieller Zeit nur polynomiell viele "Elemente" eines Zeugen betrachten. Ist dieser superpolynomiell groß, kann er nicht in polynomieller Zeit komplett betrachtet und daher auch nicht verifiziert werden.

(c)

Aufgabe 10: **NP**-vollständig

(12 Punkte)

Sie kennen das Problem Sat, in dem eine Formel in konjunktiver Normalform gegeben ist, und jede Klausel *mindestens* ein Literal enthält. Sie kennen auch den Spezialfall des 3-Sat, in dem jede Klausel *maximal* drei Literale enthält. Wir definieren nun das folgende Problem:

Problem: Exakt-5-SAT
Gegeben: Eine aussagenlogische Formel F in konjunktiver Normalform mit $genau$ fünf Literalen pro Klausel.
Frage: Ist F erfüllbar?
Um zu zeigen, dass Exakt-5-SAT NP -vollständig ist, zeigt man im Normalfall, dass
Punkt 1 ist trivial, daher beschränken wir uns auf Punkt 2. Dazu benötigen wir eine Reduktion \square über das \square von dem \square zu dem Problem \square 3-SAT \square SAT \square PARTITION .
Geben Sie die notwendige Reduktion an, begründen Sie ihre notwendigen Eigenschaften und beweisen Sie, dass der korrekte <i>Punkt 2</i> gilt.