模块六 复合函数综合

第1节 复合函数方程问题 (★★★★)

强化训练

1. $(2022 \cdot 郑州期末 \cdot ★★★)$ 设函数 $f(x) = \begin{cases} 2^x, x \le 0 \\ \log_2 x, x > 0 \end{cases}$ 则函数 y = f(f(x)) - 1的零点个数为_____.

答案: 2

解析: 设t = f(x), 则f(f(x)) - 1 = 0即为f(t) - 1 = 0,也即f(t) = 1,

观察解析式可得 f(t)=1 在两段都很好解,所以下面通过讨论求解此方程,

当 $t \le 0$ 时, $f(t) = 2^t = 1 \Rightarrow t = 0$; 当t > 0时, $f(t) = \log_2 t = 1 \Rightarrow t = 2$;

所以方程 f(t)=1 有两个解 t=0 或 2, 故 f(x)=0 或 f(x)=2, 作出 y=f(x) 的大致图象如图,

由图可知直线 y=0 和 y=2 各与 y=f(x) 的图象有 1 个交点,所以 y=f(f(x))-1的零点个数为 2.

2.
$$(2022 \cdot 安徽期中 \cdot * * * * * *)$$
已知函数 $f(x) = \begin{cases} x + \frac{1}{x}, x < 0 \\ \ln x, x > 0 \end{cases}$,则函数 $g(x) = f(f(x) + 2) + 2$ 的零点个数为()

(A) 3

(B) 4

(C) 5

(D) 6

答案: B

解析: $g(x) = 0 \Leftrightarrow f(f(x) + 2) + 2 = 0$, 设 t = f(x) + 2, 则 f(t) + 2 = 0, 所以 f(t) = -2,

此方程可通过讨论 t 代入解析式求解,

当
$$t < 0$$
 时, $f(t) = t + \frac{1}{t}$, 所以 $f(t) = -2$ 即为 $t + \frac{1}{t} = -2$,解得: $t = -1$;

当
$$t > 0$$
 时, $f(t) = \ln t$, 所以 $f(t) = -2$ 即为 $\ln t = -2$,解得: $t = \frac{1}{e^2}$;

将解出的
$$t$$
 代回 $t = f(x) + 2$,有 $f(x) + 2 = -1$ 或 $f(x) + 2 = \frac{1}{e^2}$,故 $f(x) = -3$ 或 $f(x) = \frac{1}{e^2} - 2$,

要研究 g(x) 的零点个数,可画图看直线 y = -3 和 $y = \frac{1}{e^2} - 2$ 与 f(x) 的图象的交点个数,

如图, y=-3 与 f(x) 的图象有 3 个交点, $y=\frac{1}{e^2}-2$ 与 f(x) 的图象有 1 个交点,故 g(x)有 4 个零点.

3. (2022 • 阆中期中 • ★★★) 已知函数 $f(x) = \frac{x}{\ln x}$,若关于 x 的方程 $[f(x)]^2 + af(x) + a - 1 = 0$ 仅有 1 个实数

M解,则实数 M 的取值范围是 ()

$$(A) (-2e, 1-e)$$

(A)
$$(-2e,1-e)$$
 (B) $(1-e,1] \cup \{2\}$ (C) $(1-e,1)$ (D) $(1-e,2e)$

$$(C)$$
 $(1-e,1)$

(D)
$$(1-e, 2e)$$

答案: B

解析:将f(x)看作一个整体,原方程可分解因式,

 $[f(x)]^2 + af(x) + a - 1 = 0 \Leftrightarrow [f(x) + a - 1][f(x) + 1] = 0$, $f(x) = 1 - a \stackrel{?}{=} f(x) = -1$,

原方程仅有 1 个实数解等价于直线 y=1-a 和 y=-1与 f(x) 的图象共有 1 个交点,所以下面作图分析,

由题意,
$$f'(x) = \frac{\ln x - 1}{\ln^2 x}$$
, 所以 $f'(x) > 0 \Leftrightarrow x > e$, $f'(x) < 0 \Leftrightarrow 0 < x < 1$ 或 $1 < x < e$,

故 f(x) 在(0,1)上〉,在(1,e)上〉,在(e,+∞)上∠,

又 $\lim_{x\to 0^+} f(x) = 0$, $\lim_{x\to 1^-} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = +\infty$, f(e) = e, $\lim_{x\to +\infty} f(x) = +\infty$, 所以 f(x) 的大致图象如图,

由图可知直线y=-1与 f(x) 的图象已经有 1 个交点了,

所以 y=1-a 应与 f(x) 的图象无交点或与 y=-1 重合,从而 $0 \le 1-a < e$ 或 1-a=-1,故 $1-e < a \le 1$ 或 a=2.

【反思】本题1-a=-1这种情况容易被忽略,所以若将选项 C 改为(1-e,1],则很容易误选此选项.

a 的取值范围为____.

答案: $(2\sqrt{2},3)$

解析: 由题意, 方程 $2f^2(x)+1=af(x)$ 有 8 个实根, $2f^2(x)+1=af(x) \Leftrightarrow 2f^2(x)-af(x)+1=0$ ①,

所以问题等价于关于x的方程①有8个实数解,

因为含x的部分是f(x)的整体形式,所以将f(x)换元,

设t = f(x),则方程①即为 $2t^2 - at + 1 = 0$,作出t = f(x)的图象如图 1,

由图可知一条水平的直线和该图象的交点个数可能为1,2,3,4,

怎样能使方程①有 8 个解? 只能是方程 $2t^2-at+1=0$ 有 2 根 t_1 、 t_2 ,且 $t_1=f(x)$ 和 $t_2=f(x)$ 都有 4 个解,

所以 t_1 , t_2 都位于(0,1)上, 故二次函数 $\varphi(t) = 2t^2 - at + 1$ 的图象应如图 2 所示,

所以
$$\begin{cases} \Delta = a^2 - 8 > 0 \\ 0 < \frac{a}{4} < 1 \\ \varphi(1) = 3 - a > 0 \\ \varphi(0) = 1 > 0 \end{cases}$$
 解得: $2\sqrt{2} < a < 3$.

答案: (0,+∞)

解析:设 t = f(x),则 f(f(x)) + 1 = 0 即为 f(t) = -1,可由直线 y = -1 与 y = f(t) 的图象交点的横坐标来看此 方程的解的情况,所以画图,需讨论 a 的正负,

当
$$a \le 0$$
时,如图 1, $f(t) = -1 \Leftrightarrow \log_2 t = -1 \Leftrightarrow t = \frac{1}{2}$,所以 $f(x) = \frac{1}{2}$,

如图 2, 直线 $y = \frac{1}{2}$ 与 y = f(x) 的图象只有 1 个交点,从而 y = f(f(x)) + 1 仅有 1 个零点,不合题意;

当 a>0 时,如图 3,直线 y=-1 与 y=f(t) 的图象有 2 个交点,其横坐标分别为 $t_0(t_0<0)$ 和 $\frac{1}{2}$,

如图 4, $y = \frac{1}{2}$ 与 y = f(x) 的图象有 2 个交点, $y = t_0$ 与 y = f(x) 的图象也有 2 个交点,

所以方程 $f(x) = t_0$ 和 $f(x) = \frac{1}{2}$ 共有 4 个实数解,满足题意;

综上所述,实数 a 的取值范围是 $(0,+\infty)$.

6. (★★★★) 若关于
$$x$$
 的方程 $2e^{2x} = \frac{a}{x^2} - \frac{e^x}{x} (a \in \mathbf{R})$ 有 4 个不同的实根,则 a 的取值范围为_____.

答案: $\left(-\frac{1}{8}, \frac{2-e}{e^2}\right)$

解析:所给方程看上去不是复合结构,但只要两端同乘以 x^2 就可以化为复合结构,

$$2e^{2x} = \frac{a}{x^2} - \frac{e^x}{x} \Leftrightarrow 2x^2e^{2x} = a - xe^x(x \neq 0) \Leftrightarrow 2(xe^x)^2 + xe^x - a = 0(x \neq 0),$$

此时发现含x的部分都是 xe^x 这一整体结构,所以将 xe^x 换元,

设 $t = xe^x$,则 $2t^2 + t - a = 0$,等会儿要把解得的t用来和函数 $y = xe^x$ 的图象看交点,故先研究这个函数,

设
$$f(x) = xe^x (x \in \mathbb{R})$$
,则 $f'(x) = (x+1)e^x$,所以 $f'(x) > 0 \Leftrightarrow x > -1$, $f'(x) < 0 \Leftrightarrow x < -1$,

从而
$$f(x)$$
 在 $(-\infty,-1)$ 上〉,在 $(-1,+\infty)$ 上之,且 $\lim_{x\to+\infty} f(x) = +\infty$, $\lim_{x\to-\infty} f(x) = 0$, $f(-1) = -\frac{1}{e}$,

所以 f(x) 的大致图象如图 1,由图可知一条水平直线与 f(x) 的图象可能有 0,1,2 个交点,

故要使原方程有 4 个实根,方程 $2t^2+t-a=0$ 应有 2 根 t_1 , t_2 ,

且 $t_1 = f(x)$ 和 $t_2 = f(x)$ 都有两根,所以 t_1 , t_2 都在 $(-\frac{1}{e}, 0)$ 上,

从而二次函数
$$\varphi(t) = 2t^2 + t - a$$
 的大致图象如图 2,故
$$\begin{cases} \Delta = 1 + 8a > 0 \\ \varphi(-\frac{1}{e}) = \frac{2}{e^2} - \frac{1}{e} - a > 0 \end{cases}$$
 解得: $-\frac{1}{8} < a < \frac{2 - e}{e^2}$. $\varphi(0) = -a > 0$

【反思】本题难度颇高,其复合结构是隐藏的. 所以对于复杂的形式,我们要注意观察各部分的结构联系,找到变形的思路.