

Predicting Daily Mean Temperature

Final Project Milestone MSCA 31006 4 Time Series Analysis

> Antonia Sanhueza, Earnest Salgado, Guillermo Trefogli

Outline

- 1. Business case and problem statement
- 2. Modeling hypothesis and assumptions
- 3. Data description
- 4. EDA and Feature Engineering
- 5. Proposed modeling approaches
- 6. Selected model results with justifications and tradeoffs
- 7. Insights/Recommendations & Future work

1. Business case and problem statement

- Changes in global temperature are becoming more abrupt and common every day (<u>UN-IPPC</u>).
- Predicting temperature is relevant for decision making in several business problems (i.e. Governmental investments for adaptation actions towards climate change)
- We make an attempt to predict the daily temperature based on past climate information.

2. Modeling hypothesis and assumptions

- We hypothesized that it is possible to fit a model using historical temperature levels to predict future mean temperature.
- We think that the other variables in the dataset will make our predictions more robust.

3. Data description

- Daily Climate time Series Data (source: Kaggle)
- Daily climate data for Delhi, India
- Period: 2013 to 2017
- Interest: Temperature

	meantemp	humidity	wind_speed	meanpressure
min	6.000000	13.428571	0.000000	-3.041667
max	38.714286	100.000000	42.220000	7679.333333
median	27.714286	62.625000	6.221667	1008.563492
mean	25.495521	60.771702	6.802209	1011.104548
std	7.348103	16.769652	4.561602	180.231668

4. Exploratory Data Analysis (EDA) and Feature Engineering

✓ No missing values

```
df.isnull().sum()

date 0
meantemp 0
humidity 0
wind_speed 0
meanpressure 0
dtype: int64
```

✓ Seasonality in the time series (peaks in summer, lows in winters)

- Non-stationarity based on ADF and KPSS tests, but difference stationarity
- ✓ ADF test: p-value 0.19 (False)"Non-stationarity cannot be rejected"
- KPSS test: p-value 0.1 (True)
 "Stationarity cannot be rejected"

✓ Time series turns stationary after differentiating both by seasonal (m=12) and nonseasonal (P=1) patterns

Non-seasonal component:

- ✓ ADF test: p-value 1.39702e-26 (True)
- ✓ KPSS test: p-value 0.1 (True)

Seasonal component:

- ✓ ADF test: p-value 4.49425e-08 (True) "Non-stationarity can be rejected"
- ✓ KPSS test: p-value 0.1 (True) "Stationarity cannot be rejected"

5. Proposed modelling approaches

We started exploring different models from more simple, to more complex. We developed 4 models:

- 1) Seasonal ARIMA/ AutoARIMA
- 2) Granger Causality and VAR/VARMA
- 3) Prophet
- 4) Random Forest Regression

Evaluation metric: Root Mean Squared Error

6. Selected model results with justifications and tradeoffs

6. 1 Seasonal ARIMA/ AutoARIMA

ARIMA:

- Model order: (1,0,0) (2, 1, 1, 12)
- AIC $\sim 4,503$
- Ljung-Box Test: fail to reject autocorrelation of residuals

Auto ARIMA:

- Model order (2, 0, 1)(3, 1, 0, 12)
- AIC $\sim 4,542$
- Ljung-Box Test: no autocorrelation of residuals
- RMSE: 12

6. 1 Seasonal ARIMA/ AutoARIMA

Seasonal ARIMA predictions

6. 1 Seasonal ARIMA/ AutoARIMA

Seasonal ARIMA predictions

6. 2 Granger Causality and VAR/VARMA

Significant lags for humidity and wind speed

- Model order (3, 0)

- AIC: 7.37

- RMSE: 2.7

VAR predictions

6. 3 Prophet

6. 3 Prophet

Prophet predictions

6. 3 Prophet

6. 4 Random Forest Regression - Sklearn

Random Forest predictions

6. 4 Random Forest Regression - Sklearn

6. 5 Random Forest Regression - Sktime

Random Forest predictions

True valuesPredicted values

Model parameters:

num_estimators: 1000

- min_interval: 3

RMSE: 1.77e-13

7. Insights/Recommendations & Future work

- From these can conclude Model choice is dependent on purpose
 - In classroom/theoretical settings, may choose ARIMA/Prophet for deeper understanding of measurements (e.g., p, q, # of lags)
 - In professional settings, it may be most efficient to opt for Machine Learning techniques
- RMSE is a robust comparison metric when observing performance across all models (SARIMA, AutoARIMA, Prophet, Granger, VAR, ML)
- In future works, it is insightful to apply these modeling approaches on other locations on Earth!

