Лабораторная работа № 3.10: Изучение свободных затухающих электромагнитных колебаний

Исхаков Камиль Фархатович

12 декабря 2024 г.

1 Основные формулы

- *λ* логарифмический декремент затухания;
- U_i амплитуда напряжения на конденсаторе в момент времени i;
- U_{i+n} амплитуда напряжения на конденсаторе в момент времени i+n;
- n число полных периодов, между моментами времени i и i+n;
- β коэффициент затухания;
- T период колебаний;
- R полное сопротивление контура;
- L индуктивность катушки;
- C емкость конденсатора;
- Q добротность контура;
- R_M добавочное сопротивление магазина;
- R_0 собственное сопротивление контура;
- $R_{\text{крит}}$ критическое сопротивление контура.

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}}$$

$$\lambda = \beta T = \frac{R}{L} \frac{\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

$$R = R_M + R_0$$

$$R_0 = -R_M|_{\lambda=0}$$

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

$$R_{\text{крит}} = 2\sqrt{\frac{L}{C}}$$

$$T = 2\pi\sqrt{LC}$$

Рис. 1: Принципиальная электрическая схема установки

R_M , OM	T_M , MC	$2U_i$, дел	$2U_{i+n}$, дел	n	λ	Q	R	L
0.00	86.00	6.08	2.28	3	0.33	13.09	77.54	12.21
20.00	86.00	5.36	1.52	3	0.42	11.05	97.54	11.71
40.00	86.00	4.92	1.08	3	0.51	9.88	117.54	11.74
60.00	86.00	4.40	0.72	3	0.60	8.97	137.54	11.28
80.00	86.00	3.84	0.52	3	0.67	8.53	157.54	12.13
100.00	86.00	3.52	0.36	3	0.76	8.04	177.54	11.85
300.00	86.00	1.32	0.12	2	1.20	6.91	377.54	_

Таблица 1: Измерения 1

Результаты эксперимента

Среднее значение индуктивности: 11.82 мГн

Погрешность среднего значения индуктивности: $0.16~\mathrm{m}\Gamma\mathrm{h}$

Для
$$R=77.54$$
 посчитаем добротность $Q=\frac{1}{R}\cdot\sqrt{\frac{L}{C}}=13.18$ Критическое сопротивление $R=1087$ Ом

 $R_0 = 77.54 \text{ Om}$

Теоретическое значение критического сопротивления R при $L=11~{\rm m\Gamma}$ н: 1414.21 Ом

Эксперементальное значение сдвига фаз: $\delta_{\text{эксп}}=1.64$

Теоретическое значение сдвига фаз: $\delta_{\text{теор}} = 1.60$

C , мк Φ	$T_{\text{эксп}}$, мс	T_{reop} , MC	$\delta T, \%$	$T_{\text{томп}}$, мс	$T_{\rm reop}/T_{ m skcn}$
0.022	86.00	101.47	15.24	101.32	1.18
0.033	110.00	124.36	11.54	124.10	1.13
0.047	132.00	148.54	11.14	148.10	1.13
0.47	418.00	482.98	13.45	468.33	1.16

Таблица 2: Измерения 2

Рис. 2: График зависимости Q от R

Рис. 3: График зависимости λ от R

Рис. 4: График зависимости T от C

3 Выводы

Расчеты показали, что полученные экспериментальные значения периода, логарифмического декремента затухания, добротности контура и фазового сдвига согласуются с теоретическими предсказаниями, хотя наблюдаются некоторые расхождения, которые могут быть обусловлены неидеальностями экспериментальной установки.

Рис. 5: График зависимости T^2 от C

Рис. 6: Фазовая кривая I(U)