769

APPENDIX B | TABLE OF DERIVATIVES

General Formulas

$$1. \ \frac{d}{dx}(c) = 0$$

2.
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

3.
$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

4.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
, for real numbers n

5.
$$\frac{d}{dx}(cf(x)) = cf'(x)$$

6.
$$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$$

7.
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

8.
$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Trigonometric Functions

9.
$$\frac{d}{dx}(\sin x) = \cos x$$

10.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

11.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

12.
$$\frac{d}{dx}(\cos x) = -\sin x$$

13.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

14.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Inverse Trigonometric Functions

15.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

16.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

17.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

770 Appendix B

18.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

19.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

20.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

Exponential and Logarithmic Functions

21.
$$\frac{d}{dx}(e^x) = e^x$$

$$22. \ \frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

23.
$$\frac{d}{dx}(b^x) = b^x \ln b$$

$$24. \ \frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$$

Hyperbolic Functions

25.
$$\frac{d}{dx}(\sinh x) = \cosh x$$

26.
$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$

27.
$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

28.
$$\frac{d}{dx}(\cosh x) = \sinh x$$

29.
$$\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x$$

30.
$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

Inverse Hyperbolic Functions

31.
$$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{x^2 + 1}}$$

32.
$$\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1 - x^2} (|x| < 1)$$

33.
$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}} \quad (0 < x < 1)$$

34.
$$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$$
 (x > 1)

35.
$$\frac{d}{dx} \left(\coth^{-1} x \right) = \frac{1}{1 - x^2} \quad (|x| > 1)$$

36.
$$\frac{d}{dx}(\operatorname{csch}^{-1} x) = -\frac{1}{|x|\sqrt{1+x^2}}(x \neq 0)$$

APPENDIX C | REVIEW OF PRE-CALCULUS

Formulas from Geometry

A = area, V = Volume, and S = lateral surface area

Parallelogram

Cylinder

 $V = \frac{1}{3}\pi r^2 h$ $S = \pi r I$

 $V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$

Formulas from Algebra **Laws of Exponents**

$$x^m x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n} \quad (x^m)^n = x^{mn}$$

$$(x^m)^n = x^{mn}$$

$$x^{-n} = \frac{1}{x^n}$$

$$(xy)^n = x^n y^n$$

$$x^{-n} = \frac{1}{x^n} \qquad (xy)^n = x^n y^n \qquad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$x^{1/n} = \sqrt[n]{x}$$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}$$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}$$
 $\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$

$$x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$$

Special Factorizations

$$x^2 - y^2 = (x + y)(x - y)$$

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ca}}{2a}$.

Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n-1}ab^{n-1} + b^n,$$

where
$$\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots 3\cdot 2\cdot 1} = \frac{n!}{k!(n-k)!}$$

Formulas from Trigonometry Right-Angle Trigonometry

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \qquad \csc \theta = \frac{\text{hyp}}{\text{opp}}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} \quad \sec \theta = \frac{\text{hyp}}{\text{adj}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$
 $\cot \theta = \frac{\text{adj}}{\text{opp}}$

Trigonometric Functions of Important Angles

θ	Radians	$\sin \theta$	$\cos \theta$	an heta
0°	0	0	1	0
30°	π/6	1/2	$\sqrt{3}/2$	√3/3
45°	π/4	√2/2	√2/2	1
60°	π/3	√3/2	1/2	$\sqrt{3}$
90°	π/2	1	0	_

Fundamental Identities

$$\sin^{2}\theta + \cos^{2}\theta = 1 \qquad \sin(-\theta) = -\sin\theta$$

$$1 + \tan^{2}\theta = \sec^{2}\theta \qquad \cos(-\theta) = \cos\theta$$

$$1 + \cot^{2}\theta = \csc^{2}\theta \qquad \tan(-\theta) = -\tan\theta$$

$$\sin(\frac{\pi}{2} - \theta) = \cos\theta \qquad \sin(\theta + 2\pi) = \sin\theta$$

$$\cos(\frac{\pi}{2} - \theta) = \sin\theta \qquad \cos(\theta + 2\pi) = \cos\theta$$

$$\tan(\frac{\pi}{2} - \theta) = \cot\theta \qquad \tan(\theta + \pi) = \tan\theta$$

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos B$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C$

Addition and Subtraction Formulas

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double-Angle Formulas

$$\sin 2x = 2\sin x \cos x$$

 $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$
 $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$

Half-Angle Formulas

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$