Part III-B: Probability Theory and Mathematical Statistics

Lecture by 李漫漫 Note by THF

2024年11月5日

目录

1	数理	统计基本概念	2
	1.1	经验分布函数	3
	1.2	密度函数	3
	1.3	统计量	4
	1.4	样本均值的分布	5
		1.4.1 三大抽样分布	6

Lecture 13

Notation. 偏度 r_1 : 三阶标准化随机变量的矩,用于描述对称性

峰度 r_2 : 四阶标准化随机变量的矩,一般使正态分布的峰度 $r_2=0$,描述分布的陡峭程度

表 1: 常见分布的数字特征

分布	EX	DX	r_1	r_2			
B(1,p)	p	p(1-p)	$\frac{1-2p}{\sqrt{p(1-p)}}$	$\frac{1}{p(1-p)-6}$			
$B\left(n,p\right)$	np	np(1-p)	$\frac{1-2p}{\sqrt{np(1-p)}}$	$\frac{1-6p(1-p)}{np(1-p)}$			
$P(\lambda)$	λ	λ	$\frac{1}{\sqrt{\lambda}}$	$\frac{1}{\lambda}$			
$G\left(p\right)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{2-p}{\sqrt{1-p}}$	$6 + \frac{p^2}{1-p}$			
U[a,b]	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	0	$\frac{9}{5} - 3$			
$\Gamma\left(1,\lambda\right)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	2	6			
$N\left(\mu,\sigma^2\right)$	μ	σ^2	0	0			

1 数理统计基本概念

随机变量引入: 使样本空间映射到实数轴上

分布函数: 任意随机变量的概率

大数定律和中心极限定理: 由概率论过渡到数理统计

【描述统计学:过去的实验数据/相关分析图 推断统计学:根据现有的实验数据决策 【假设检验:第八章 回归分析:第九章

Definition. 总体:全部研究对象,可以用分布描述(随机变量组)

Definition. 个体:组成总体的成员,符合总体分布(每一个个体都是一个随机变量)

Example. 从总体中抽取 n 个样本

对数据记录: x_1, x_2, \ldots, x_n 称为 n 维随机变量 X_1, X_2, \ldots, X_n 对应的观测值, X_1, X_2, \ldots, X_n 为来自总体 X 的一个样本

Notation. 简单样本: $X_1, X_2, ..., X_n$ *i.i.d*, 且与总体分布相符

特点:

- 。 独立性
- 。 代表性

Definition. 样本空间: $\Omega = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R}, i = 1, 2, ..., n\}$

Notation. 样本联合分布和总体分布的关系 (i.i.d):

$$F(x_1, x_2, ..., x_n) = P\{X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n\}$$

$$= \prod_{i=1}^n P\{X_i \le x_i\}$$

$$= \prod_{i=1}^n F(x_i).$$

扩展: X 为连续型, 密度函数的关系:

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$
$$= \prod_{i=1}^n f(x_i) \quad x_i \in \mathbb{R}, i = 1, 2, \dots, n.$$

1.1 经验分布函数

经验分布函数: $F_n(x)$

将样本观测值 $x_1, x_2, ..., x_n$ 按大小分类为 $x_{(1)}, x_{(2)}, ..., x_{(n)}$

$$F_n(x) = f_n \left\{ X \le x \right\}$$

$$= \begin{cases} 0, & x < x_{(1)} \\ \frac{k}{n}, & x \in [x_{(k)}, x_{(k+1)}) \\ 1, & x \ge x_{(n)} \end{cases}$$

$$\approx F(X).$$

Corollary. 格利文科定理:

$$P\left\{ \lim \sup_{n \to \infty, x \in \mathbb{R}} |F(x) - F_n(x)| = 0 \right\} = 1.$$

根据格利文科定理: 可以使用经验分布函数来估计理论分布函数

Lecture 14

11.05

1.2 密度函数

Notation. 密度函数和分布函数的关系:

$$F_X(x) = \int_{-\infty}^{+\infty} f_X(x) dx$$
$$f_X(x) = \frac{dF_X(x)}{dx}.$$

对于直方图: 将中点光滑连接 = 密度函数

或:核密度

直方图

Notation. 直方图的面积代表频率:

直方图的高度代表密度,直方图的横坐标的取值范围为观测值的取值范围,直方图分块的区间来源一般为经验公式: $m\approx 1.87\left(n-1\right)^{0.4}$,其中 m 为区间分组数量

计算直方图频率:

Lecture 14

1.3 统计量

统计量 (statistic), 统计学 (statistics)

Definition. 统计量:关于样本的函数,不含任何未知参数 完整定义:

Example. X_1, X_2 来自正态总体 $N(\mu, \sigma^2)$ 的样本(这两个任意抽出一个都属于一个样本),其 中 μ , σ 均未知,以下表达式:

- $\frac{1}{4}(X_1+X_2)-\mu$

均不是统计量(使用了未知的数),以下表达式都是统计量

- 3X₁
- $X_1 8$
- $X_1^2 + X_2^2$

提出统计量的目的:通过样本估计或检测未知量,因此统计量不能含未知量 常见统计量:

- 样本均值(算术平均数): $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i \bar{X} \right)^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 n\bar{X}^2 \right)$ 样本标准差: $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i \bar{X} \right)^2}$
- 样本阶原点矩
- 样本阶中心距

Notation. 样本均值: 若 $X_1, X_2, \dots X_n$ i.i.d: 根据辛钦大数定律: $\bar{X} \xrightarrow[n \to +\infty]{P} E\bar{X} = EX$

Notation. 样本阶中心矩:

$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k \xrightarrow[n \to \infty]{P} DX.$$

或:
$$S^2 = B_2 \times \frac{n}{n-1} \Rightarrow E(S^2) = DX$$

证明.

$$\begin{split} S^2 &= \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \bar{X}^2 \right) \\ &= \frac{1}{n-1} \sum_{i=1}^n \left(X_i^2 - 2 X_i \bar{X} + \bar{X}^2 \right) \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 \right) - \sum_{i=1}^n \bar{X}^2 \\ ES^2 &= E \left[\frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \bar{X}^2 \right) \right] \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n EX_i^2 - n E \bar{X}^2 \right) \\ &= \frac{1}{n-1} \left[\sum_{i=1}^n \left(DX_i + (EX_i)^2 \right) - n \left(D\bar{X} + (E\bar{X})^2 \right) \right] \\ &= \frac{1}{n} \left[\sum_{i=1}^n \left(DX + (EX)^2 \right) - n \left(\frac{DX}{n} + (EX)^2 \right) \right] \\ &= \frac{1}{n-1} \left[nDX + n \left(EX \right)^2 - DX - n \left(EX \right)^2 \right] = \frac{1}{n-1} \left(n-1 \right) DX = DX. \end{split}$$

 $\mathbb{E}\mathbb{P}: EB_2 = E\left(\frac{n-1}{n}S^2\right) = \frac{n-1}{n}DX$

用样本均值估计总体均值:

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 \le \sum_{i=1}^{n} (X_i - x)^2.$$

顺序统计量

令 $X_{(1)} = \min \{X_1, X_2, \dots, X_n\}$ 为最小顺序统计量,最大同理要求第几小的顺序统计量: R 成为样本极差, \widetilde{X} 称为样本中位数

1.4 样本均值的分布

Theorem. X_1, X_2, \ldots, X_n 来自 $N(\mu, \sigma^2)$, 则

$$\frac{\bar{X} - \mu}{\sigma} \sqrt{n} \sim N\left(0, 1\right).$$

定义 \bar{X} 为 X_1, X_2, \dots, X_n 的线性函数, $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, 计算期望和方差, 将 \bar{X} 标准化

Theorem. 标准化后的线性函数 $\frac{\bar{X}-\mu}{\sigma}\sqrt{n}$:

$$\frac{\bar{X} - \mu}{\sigma} \sqrt{n} \xrightarrow[n \to \infty]{L} N(0, 1).$$

Example. 总体: $X \sim N(20,9)$,求样本容量 n 多大时使样本均值与总体均值的绝对值之差 ≤ 0.3 的概率 > 95%

1.4.1 三大抽样分布

卡方分布: χ²(n)

Notation. 卡方分布实际上为 $\alpha = \frac{1}{2}, \lambda = \frac{n}{2}$ 的 Gamma 分布

当 n=2 时为参数为 $\frac{1}{2}$ 的指数分布

一般称
$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$$
 为伽马分布族

Definition. 设 $X_1,X_2,\ldots,X_n\sim N\left(0,1\right)$ i.i.d , 令 $\chi^2=\sum_{i=1}^nX_i^2$, 称 χ^2 为自由度为 n 的卡方分布

Notation. 卡方分布具有可加性:

$$Y_1 \sim \chi^2(m), Y_2 \sim \chi^2(n) : Y_1 + Y_2 \sim \chi^2(m+n).$$

从 n=3 开始,卡方分布出现最大值,且 n 越大卡方分布的方差越大卡方分布的性质:

- $E(\chi^2) = n, D(\chi^2) = 2n$
- 可加性
- 分位点:

对性质 1:

证明.

$$E\left(\sum_{i=1}^{n} X_i^2\right) = \sum_{i=1}^{n} E(X_i^2) = nEX^2$$
$$= n\left(DX + (EX)^2\right)$$
$$D\left(\sum_{i=1}^{n} X_i^2\right) = nDX^2 = n\left(E\left(X^2\right)^2 - \left(EX^2\right)^2\right)$$
$$= n\left(EX^4 - 1\right).$$