isolated atoms. Thus empirically the HFS f values may be at least as good as the HF in the majority of the experimentally important cases. There are other inherent limitations and defects in these calculations. For example: (1) they do not make allowances for the dispersion effects which occur when λ is in the vicinity of an X-ray absorption edge, (2) they assume spherical symmetry, (3) the wave functions from which the f values are computed are not corrected for spinorbit effects, and (4) the wave functions are not corrected for relativistic effects.

Conclusions and comments

Despite the intrinsic approximations in these calculations, it is felt that the scattering factors presented here represent a substantial improvement over most values available. They possess the inherent advantages of being relatively complete and of having been obtained in a coherent fashion, the same type of approximation being involved in the calculations for each of the atoms. There are numerous obvious ex-

tensions of these calculations. In preparation at present are the following: (1) the scattering amplitudes for electron scattering both within the first Born approximation and in the case where consideration is taken of the phase change, (2) the inelastic scattering factors, (3) X-ray and electron scattering factors for ions, and (4) analytic approximations to the X-ray and electron scattering factors.

We are indebted to Mr Loyd Dreher and to Mr Robert Pohler, whose assistance has made these computations possible. The computations were carried out on The University of Texas CDC 1604 computer.

References

FREEMAN, A. J. & WOOD, J. H. (1959). Acta Cryst. 12, 271.

HERMAN, F. & SKILLMAN, S. (1962). Bull. Amer. Phys. Soc. 7, 214.

Luke, Y. L. (1954). Proc. Camb. Phil. Soc. **50**, 269. Slater, J. C. (1951). Phys. Rev. **81**, 385.

Acta Cryst. (1964). 17, 1044

Hartree Scattering Factors for Elements 37 through 98*

By Don T. Cromer, Allen C. Larson and James T. Waber University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 26 August 1963)

Hartree scattering factors are given for atoms of atomic number 37 through 98 and for several of their ions. The values are listed in tabular form and as analytic functions. Values are also given for two low-lying excited states of cerium. Differences between the Hartree and Thomas–Fermi–Dirac scattering factors are discussed.

Introduction

Atomic scattering factors obtained from Hartree self-consistent-field (SCF) calculations have been available in the past for only a very few atoms and ions above atomic number 36. Boyd, Larson & Waber (1963) have recently completed Hartree SCF calculations for all atoms of the periodic table, many ions, and many excited states. In this paper we present scattering factors for the ground states of elements of atomic number 37 and higher, for several of their ions, and for two excited states of cerium. (For elements of lower atomic number, scattering factors which have been obtained from more accurate wave functions are already available in standard references.)

We have published in a Los Alamos Scientific Laboratory report (Cromer, Larson & Waber, 1963) a set of Hartree SCF scattering factors for all atoms in the periodic table, in a more detailed form than in the present paper. Although this publication duplicates light element work by others, it has the advantage of presenting in a single unit complete information on Hartree SCF scattering factors.

Calculations

Details of the Hartree SCF calculations will be given elsewhere by Boyd, Larson & Waber (1964). The scattering factors were computed from the total radial density functions by straightforward means (James, 1948). Calculations were performed for the most part with an IBM 7090 computer and, in the

^{*} Work performed under the auspices of the U.S. Atomic Energy Commission.

Table 1. Hartree scattering factors for elements 37 through 98

								•	•							
s_x	RB	RB+1	SR	SR+2	Y	Y+3	ZR	ZR+4	NB	MO	TC	RU	RH	PD	PD+2	AG
0.	37.00	36.00	38.00	36.00	39.00	36.00	40.00	36.00	41.00	42.00	43.00	44.00	45.00	46.00	44.00	47.00
0.05	35.77	35.35	36.62	35.46	37.58	35.54	38.63	35.60	39.71	40.76	41.75	42.85	43.88	45.02	43.36	45.95
0.10 0.15	33.57 31.23	33.60 31.27	34.11 31.77	33.98 31.89	34.88 32.39	34.25 32.39	35.85 33.17	34.47 32.79	36.98 34.17	38.05 35.14	38.97 35.99	40.20 37.18	41.28 38.24	42.55 39.46	41.60 39.10	43.43
0.20	28.83	28.83	29.53	29.58	30.14	30.23	30.80	30.80	31.61	32.44	33.24	34.27	35.24	36.31	36.27	37.28
0.25	26.60	26.59	27.35	27.35	28.00	28.06	28.63	28.71	29.28	30.00	30.75	31.59	32.46	33.37	33.45	34.31
0.30	24.67	24.66	25.37	25.34	26.02	26.03	26.62	26.70	27.19	27.82	28.51	29.20	29.96	30.73	30.83	31.60
0.35	23.01	23.01	23.63	23.61	24.24	24.23	24.81	24.87	25.33	25:89	26.52	27.10	27.76	28.42	28.50	29.19
0.40	21.57	21.57	22.11	22.10	22.67	22.67	23.21	23.25	23.70	24.22	24.78	25.28	25.85	26.43	26.48	27.09
0.50	19.06	19.06	19.57	19.57	20.07	20.06	20.56	20.56	21.03	21.48	21.94	22.36	22.81	23.26	23.27	23.75
0.60	16.81	16.81	17.36	17.36	17.88	17.88	18.38	18.37	18.86	19.30	19.72	20.13	20.52	20.90	20.90	21.29
0.70	14.73	14.73	15.34	15.34	15.90	15.90	16.44	16.42	16.95	17.42	17.85 16.16	18.27 16.62	18.66 17.03	19.04	19.03	19.39 17.79
0.80 0.90	12.87 11.27	12.87	13.49 11.85	13.49 11.85	14.07 12.42	14.07 12.42	14.64 12.99	14.63 12.98	15.18 13.54	15.69 14.07	14.58	15.06	15.52	17.43 15.95	17.42 15.94	16.34
1.00	9.94	9.94	10.45	10.45	10.98	10.98	11.52	11.51	12.05	12.58	13.10	13.60	14.08	14.54	14.54	14.97
1.10	8.88	8.88	9.31	9.31	9.77	9.77	10.25	10.24	10.74	11.24	11.74	12.24	12.73	13.20	13.20	13.65
1.20	8.03	8.03	8.39	8.39	8.77	8.77	9.18	9.18	9.62	10.07	10.54	11.01	11.48	11.95	11.95	12.41
1.30	7.38	7.38	7.66	7.66	7.97	7.97	8.32	8.32	8.69	9.08	9.50	9.93	10.37	10.81	10.81	11.26
1.40	6.87	6.87	7.09	7.09	7.34	7.34	7.62	7.62	7.93	8.26	8.62	9.00	9.39	9.80	9.81	10.23
1.50	6.46	6.46	6.64	6.64	6.84	6.84	7.07	7.07	7.32	7.59	7.89	8.22	8.56	8.93	8.93	9.31
1.60	6.12	6.12	6.27	6.27	6.44	6.44	6.62	6.62	6.82	7.05	7.30	7.57	7.87	8.19	8.19	8.52
1.70	5.83	5.83	5.97	5.97	6.11	6.11	6.26	6.26	6.43	6.61 6.25	6.82	7.04	7.29	7.56 7.05	7.56	7.85
1.80	5.58 5.34	5.58 5.34	5.70 5.46	5.70 5.46	5.83 5.58	5.83 5.58	5.96 5.70	5.96 5.70	6.10 5.82	5.96	6.42 6.10	6.61 6.26	6.82 6.43	6.62	7.05 6.62	7.29 6.83
1.99	5.13	5.13	5.26	5.26	5.38	5.38	5.49	5.49	5.61	5.72	5.85	5.99	6.13	6.30	6.30	6.47
••••	,,,,	2003	,,,,	,,,,	,.,,	3.30	2	,,,,	,,,,	,,,,	,,,,			5131	0.50	
s_x	AG+1	CD	CD+2	1 N	SN	SB	TE	I	ΧE	CS	BA	LA	L A+3	CE	CE+3	CE+4
•					50 00		co 00	F3 00	E/ 00	c c . 0.0	E (00	67.00	E4 00	58.00		£ / 00
0. 0.05	46.00 45.25	48.00 46.91	46.00 45.38	49.00 47.73	50.00 48.69	51.00 49.68	52.00 50.68	53.00 51.69	54.00 52.71	55.00 53.27	56.00 54.07	57.00 55.05	54.00 53.20	56.13	55.00 54.21	54.00 53.29
0.10	43.22	44.31	43.66	45.00	45.80	46.67	47.60	48.56	49.55	50.12	50.63	51.40	51.02	52.67	52.04	51.32
0.15	40.43	41.22	41.17	41.97	42.65	43.37	44.14	44.95	45.82	46.63	47.26	47.89	47.97	49.21	48.99	48.49
0.20	37.36	38.14	38.29	38.94	39.64	40.30	40.95	41.62	42.33	43.14	43.90	44.54	44.63	45.77	45.62	45.29
0.25	34.37	35.19	35.34	36.04	36.79	37.46	38.09	38.70	39.31	40.00	40.73	41.39	41.42	42.47	42.35	42.12
0.30	31.62	32.46	32.55	33.31	34.10	34.82	35.48	36.09	36.67	37.27	37.91	38.54	38.55	39.50	39.40	39.21
0.35	29.19	29.99	30.02	30.80	31.60	32.36	33.05	33.70	34.29	34.86	35.44	36.03	36.03	36.89	36.80	36.63
0.40	27.08	27.81	27.80	28.56	29.33	30.08	30.80	31.47	32.10	32.68	33.24	33.81	33.80	34.58	34.51	34.36
0.50	23.74	24.29	24.27	24.88	25.50	26.16	26.84	27.51	28.17	28.80	29.38	29.96	29.95	30.59	30.56	30.49
0.60	21.28	21.70	21.68	22.14	22.62	23.13	23.68	24.26	24.86 22.22	25.47 22.73	26.06 23.27	26.64 23.80	26.63 23.80	27.17 24.25	27.18	27.19 24.34
0.70 0.80	19.39 17.79	19.74 18.13	19.73 18.13	20.09 18.45	20.46 18.77	20.85 19.10	21.27 19.43	19.79	20.17	20.58	21.02	21.47	21.47	21.86	21.89	21.95
0.90	16.34	16.70	16.71	17.04	17.36	17.67	17.96	18.26	18.57	18.90	19.25	19.62	19.62	19.95	19.97	20.01
1.00	14.97	15.37	15.37	15.74	16.08	16.40	16.70	16.99	17.27	17.55	17.84	18.14	18.14	18.43	18.44	18.46
1.10	13.65	14.08	14.09	14.49	14.86	15.21	15.54	15.84	16.12	16.40	16.66	16.93	16.93	17.19	17.20	17.21
1.20	12.41	12.86	12.86	13.28	13.69	14.07	14.42	14.75	15.06	15.35	15.62	15.88	15.88	16.13	16.13	16.14
1.30	11.26	11.71	11.71	12.14	12.56	12.96	13.34	13.70	14.03	14.35	14.64	14.91	14.91	15.17	15.17	15.17
1.40	10.23	10.65	10.65	11.08	11.49	11.90	12.30	12.68	13.03	13.37	13.69	13.99	13.99	14.26	14.26	14.26
1.50	9.31	9.71	9.71	10.11	10.51	10.91	11.31	11.69	12.07	12.42	12.76	13.08	13.08	13.37 12.50	13.37	13.38
1.60 1.70	8.52 7.85	8.88 8.17	8.88 8.17	9.25 8.49	9.62 8.84	10.01 9.19	10.39 9.55	10.77 9.92	11.15 10.28	11.51 10.65	11.86	11.35	11.35	11.65	11.66	12.52
1.80	7.29	7.56	7.56	7.85	8.15	8.47	8.81	9.15	9.49	9.84	10.19	10.53	10.53	10.85	10.85	10.87
1.90	6.83	7.05	7.05	7.30	7.57	7.85	8.15	8.46	8.78	9.11	9.44	9.77	9.77	10.08	10.09	10.11
1.99	6.47	6.67	6.67	6.88	7.12	7.37	7.63	7.91	8.21	8.51	8.82	9.14	9.14	9.44	9.45	9.46
_												F			TВ	T8+3
s_x	PR	PR+3	PR+4	NĐ	ND+3	PM	PM+3	SM	SM+3	EU	EU+2	EU+3	GD	GD+3	10	1073
•	E0 00	56.00	55.00	60.00	57.00	61.00	58.00	62.00	59.00	63.00	61.00	60.00	64.00	61.00	65.00	62.00
0. 0.05	59.00 57.17	55.22	54.30	58.20	56.23	59.23	57.24	60.26	58.25	61.29	60.17	59.26	62.26	60.27	63.34	61.28
0.10	53.74	53.07	52.34	54.80	54.10	55.86	55.14	56.92	56.17	57.97	57.88	57.21	58.78	58.24	60.09	59.28
0.15	50.27	50.03	49.52	51.33	51.08	52.39	52.13	53.46	53.18	54.52	54.65	54.23	55.25	55.29	56.66	56.34
0.20	46.79	46.64	46.31	47.82	47.67	48.87	48.71	49.92	49.76	50.98	51.04	50.81	51.76	51.87	53.11	52.93
0.25	43.43	43.31	43.09	44.42	44.30	45.42	45.30	46.44	46.32			47.34	48.32	48.38	49.55	49.42
0.30	40.39	40.29	40.11	41.31		42.25		43.21	43.11		44.16		45.05		46.17 43.09	46.08 43.01
0.35		37.61		38.54	38.45	39.41	39.33	40.30	40.22	91.22	38.57	30 50	39.36	39.37	40.32	40.25
0.40		35.25	35.11	36.09	36.02			37.72		34.02	34.03	33.98	34.73	34.73	35.54	35.50
0.50	31.23	31.20	31.12	31.89	31.86	32.58 28.92	32.54 28.93		33.25 29.54	30.18	30.19	30.18	30.83	30.83	31.51	31.51
0.60	27.74 24.75	27.75 24.79	27.74 24.83	28.32 25.27	25.30	25.79	25.82		26.36	26.89		26.91	27.49	27.49	28.05	28.07
0.70	22.28	22.32	22.37	22.72	22.76	23.17	23.20	23.64	23.67	24.11	24.11	24.15	24.64	24.64	25.11	25.15
0.90	20.30	20.33	20.37	20.67	20.69	21.04	21.07		21.46	21.83	21.83	21.86	22.28	22.28	22.68	22.71
1.00	18.73	18.74	18.77	19.03	19.05	19.35	19.36	19.67	19.69	20.00			20.37	20.37	20.70	20.72
1.10	17.45	17.46	17.47	17.72	17.72	17.98	17.99	18.26	18.26			18.54	18.84	18.83	19.12	19.13
1.20	16.38	16.38	16.38	16.62	16.62	16.86	16.86	17.10	17.10	17.34		17.34	17.59	17.59	17.84 16.78	17.84 16.78
1.30	15.41	15.42	15.42	15.65	15.65	15.88	15.88	16.11	16.11 15.22	16.33 15.44	16.33	16.33 15.44	16.56 15.65	16.56 15.65	15.86	15.86
1.40	14.51	14.52	14.52	14.76	14.76 13.91	14.99 14.15	14.99 14.15	15.22 14.39	14.39			14.61	14.83	14.83	15.04	15.03
1.50	13.64	13.65	13.65 12.81	13.90		13.33			13.58	13.82	13.81	13.82	14.04	14.04	14.26	14.26
1.60	11.96	11.97	11.98	12.25	12.26	12.53	12.53				13.04	13.04	13.28	13.28	13.51	13.51
1.80	11.15	11.16	11.18	11.45	11.46	11.74		12.02	12.02	12.28	12.28	12.28	12.54	12.53	12.77	12.77
1.90	10.39		10.41	10.69	10.70	10.98	10.99	11.26	11.27	11.54	11.54	11.54	11.81	11.80	12.05	12.05
1.99	9.74	9.75	9.76	10.04	10.05	10.33	10.34	10.61	10.62	10.89	10.89	10.90	11.16	11.16	11.41	11.42

Table 1 (cont.)

s_x	TB+4	DY	DY+3	но	H0+3	ER	ER+3	TM	TM+3	YB	YB+2	YB+3	LU	LU+3	HF .	TA
0. 0.05 0.10	58.52	66.00 64.37 61.14	62.29	62.19	63.30 61.34	66.42 63.24	65.00 64.31 62.38	67.44 64.29	65.32 63.41	68.46 65.34	67.25 65.16	67.00 66.33 64.44	66.11	67.34 65.47	70.42 67.05	71.45 68.03
0.15	55.80 52.57	57.72 54.18	57.40 53.99	55.25	55.06	56.32	59.51	57.39	57.19	58.46	58.54	61.62 58.26	62.67 59.22	59.33	63.47 59.96	60.73
0.30	49.20	50.60 47.19		51.66 48.21	48.11	49.23	52.58 49.14	53.78	50.17	51.31	51.30	54.71	55.70 52.24	52.26	53.04	53.79
0.35	42.89	44.05	43.97	42.13	42.07	43.07	45.93 43.00	47.00 44.01	43.95	44.96	44.95	47.93 44.90	48.93 45.87	45.87	46.70	47.48
0.50	35.43	36.33	36.29 32.20	37.13 32.91 29.28	32.90		37.92 33.63		34.37	35.14	35.14	39.61 35.12	40.47 35.89	35.89	36.64	37.38
0.70 0.80 0.90	28.09 25.18 22.75	28.66 25.64 23.12		26.18	26.21	26.73	29.93	27.30	27.33	27.89	27.89	31.25 27.92		28.52	29.16	29.81
1.00	20.76	21.07	21.10	21.46	21.48	21.86	24.09 21.88 20.09	22.27	22.29	22.69	22.69	25.08 22.72 20.79	25.60	23.16		24.17
1.20	17.86 16.78	18.10	18.10	18.36	18.37	18.64	18.65 17.47	18.93	18.93	19.22	19.22		21.16 19.54 18.22	19.54	19.88	20.24
1.40	15.86 15.04	16.07 15.24			16.28	16.49	16.49	16.70	16.70	16.92	16.92	16.92 16.03	17.14	17.14	17.37	17.61
1.60	14.26 13.51	14.46	14.46 13.72	14.67	14.66	14.86	14.86	15.05	15.05	15.24	15.24	15.24	15.42	15.42	15.61	15.79
1.80	12.78 12.06	13.00	13.00	13.22	13.22	13.43	13.43	13.63	13.63	13.82	13.82		14.01	14.01	14.19	14.37
1.99	11.43		11.67				12.13					12.56	12.76			
s_x	W	RE	os	IR	PT '	AU	AU+1	HG	HG+2	TL	TL+1	PB	81	BI+3	PO	AT
0.05	74.00 72.47		76.00 74.52	77.00 75.55	78.00 76.64	79.00 77.66	78.00 76.98	80.00 78.62	78.00 77.12	81.00 79.42	80.00 78.86	82.00 80.37	83.00 81.34	80.00 79.12	84.00 82.34	85.00 83.34
0.10	69.04 65.24	70.06 66.18	71.09 67.15	72.13 68.13	73.36 69.33	74.41 70.37	74.22 70.42	75.27 71.19	74.69 71.19	75.96 71.93	75.90 72.00	76.72 72.61	77.56 73.30	76.71 73.28	78.45 74.02	79.37 74.78
0.20	61.53 57.96	62.37 58.72	63.25 59.51	64.15 60.32	65.19 61.19	66.16 62.07	66.25 62.12	66.99 62.91	67.16 63.05	67.79 63.73	67.83 63.75	68.50 64.50	69.15 65.19	69.36 65.34	69.79 65.83	70.43 66.44
0.30	54.52 51.26	55.24	55.97 52.66	56.71 53.35	57.45 54.01	58.23 54.72	58.25 54.71	59.05 55.48	59.12 55.49	59.87 56.27	59.86 56.26	60.66 57.05	61.40 57.81	61.46 57.81	62.09 58.54	62 .73 59 . 22
0.40	48.21	48.91	49.59	50.25	50.87 45.39	51.52 45.99	51.51 45.97	52.23 46.61	52.21 46.57	52.96 47.23	52.96 47.23	53.71 47.88	54.46 48.55	54.43 48.52	55.20 49.24	55.91 49.73
0.60		38.80	39.48	40.13	40.75 36.70	41.34	41.34	41.93	41.91	42.50 38.46	42.50 38.46	43.07	43.65 39.55	43.65	44.25 40.09	44.86 40.63
0.80 0.90 1.00	30.48 27.37	31.14	31.80	32.45	33.09	33.72	33.72	34.31	34.32 31.08	34.89 31.66	34.89 31.66	35.44 32.23	35.98 32.78	35.99 32.78	36.50 33.31	37.01 33.82
1.10	24.71 22.47 20.62	25.26 22.94 21.02	25.82 23.44 21.44	26.40 23.95 21.88	26.99 24.48 22.34	27.57	27.58	28.16	28.16 25.57	28.74	28.74	29.31 26.67	29.87 27.22	29.87 27.22	30.41 27.76	30.93 28.28
1.30	19.11	19.44	19.79	20.16	20.54	22.81 20.95 19.39	22.81 20.95 19.39	23.31 21.38 19.76	23.31 21.38 19.75	23.81	23.81	24.32	24.84	24.84	23.23	25.87 23.71
1.50	16.85	17.07	17.31	17.56 16.59	17.83	18.11	18.11	18.41	18.41	20.14 18.73 17.56	20.14 18.73 17.56	20.53 19.06 17.84	20.95	20.94	21.38	21.81
1.70	15.23	15.40 14.71	15.58	15.77 15.05	15.96 15.22	16.15	16.15	16.36 15.57	16.36 15.57	16.58	16.58	16.82	18.13 17.06 16.16	18.13 17.06 16.16	18.45 17.32 16.38	18.77
1.90	13.90	14.07 13.51	14.23	14.40	14.56	14.72	14.72	14.89	14.88	15.05	15.05	15.22	15.43	15.40	15.59	16.61 15.78
																15.13
s_x	RN 86.00	FR 87.00	RA '	AC 89.00	TH 90.00	TH+4 86.00	PA 91.00	U 92.00	U+4 88.00	NP	PU O/ OO	PU+4	AM or or	CM	BK	CF
0.05	84.35	84.89 80.92	85.66 81.42	86.61 82.14	87.57 82.86	85.00 82.24	88.68 84.18	89.71 85.23	87.00 84.24	93.00 90.74 86.27	94.00 91.83 87.56	90.00	95.00 92.86	96.00	97.00 94.85	98.00 95.88
0.15	75.58 71.09	76.39 71.85	77.05	77.65 73.24	78.24 73.84	78.34 74.00	79.57	80.57 75.93	80.29 75.84	81.59	82.93 78.10	86.27 82.31 77.78	88.62 83.98	89.43	90.48 85.77	91.53
0.25	67.03	67.68	68.39	69.03 65.17	69.66 65.80	69.74	70.60 66.57	71.46	71.41	72.35	73.38	73.21	79.12	79.91	80.94 76.14	81.98
0.35	59.87		61.06	61.66	62.27	62.25	62.93	63.62	63.58	64.33		65.04	69.88 65.87 62.27	70.70	67.46 63.71	72.53
0.50	50.62	51.29 46.13	51.94 46.76	52.58 47.39	53.20 48.02		53.72	54.28 49.07	54.30 49.11	54.85 49.60	55.40	55.43	55.99	62.97 56.61 51.19	57.22	64.47 57.85 52.27
0.70 0.80	41.18 37.52	41.74 38.03	42.32	42.90 39.07	43.49	43.49 39.60	43.99	44.52	44.55 40.63	45.03 41.10		45.57	46.00	46.53	51.73 47.02 42.99	47.51 43.44
0.90	34.33 31.44	34.81	35.30 32.42	35.79 32.89	36.27 33.35	36.27 33.35	36.77 33.85	37.26 34.33	37.25 34.31	37.73 34.79	38.20	38.20	38.65 35.71	39.10	39.54	39.97
1.10	28.80 26.39	29.30	29.79 27.38	30.27	30.73	30.73	31.23	31.70	31.68	32.17	32.64	32.61	33.09	36.14	36.57	36.99 34.36
1.30	24.20	24.69	25.17	25.65	26.12		26.60 24.55	27.07 25.01	27.06 25.01		30.24 28.01 25.94	30.21 27.99 25.92	30.69 28.47 26.39	31.13	31.56 29.35 21.28	31.99 29.79
	20.57	20.98	21.40	21.83	22.26	22.26	22.69	23.13	23.13	23.57	24.02	24.01	24.46	26.84 24.90 23.11	25.34 23.54	21.72 25.78 23.97
1.70		18.20	18.52	18.86	19.21		19.56	19.93	19.93	20.31		20.69	21.08	21.48	21.89	22.29
1.90	15.99 15.32	16.21	16.44	16.68	16.94 16.14	16.94	17.21	17.49	17.49	17.78	18.08	18.09	18.40	18.73		19.41

Table 2. Coefficients for the five-parameter analytic fit of Hartree scattering factors in the range $0 \le s_x \le 0.64$ Å-1

		•	-	_	•		•			0 0			~ _	0 02 22
ATOM	A(1)	B(1)	A(2)	B(2)	С	€.		ATOM	A(1)	B(1)	A(2)	B(2)	С	E
Ra	16.5333	2 0750	7 2524	24 0201	12.8639									-
	17.0149			36.0201	12.8639	0.321		18+4	28.9643	2.5569	12.1364	15.4637	19.8912	0.008
SR	17.0896			23.1250	10.4753	0.051		DY	31.6701	4.7330	7.4692	44.5656	26.4728	0.265
	16.8228			20.3172	14.9150	0.406		DY+3	30.1455	2.7399	11.9205	16.9169	20.9216	0.013
Y	17.4464			20.0379	10.4040	0.027		HU	32.3624	4.6967	7.2851	44.7812	26.9751	0.257
	16.6524			66.6780	15.6319	0.347		HO+3	30.8564	2.7121	11.8875	16.5394	21.2440	0.012
ZR				16.4670	10.3255	0.015		ER	33.0370	4.6567	7.1066	45.0403	27-4890	0.250
	17.5948			62.3425	16.0655	0.293		ER+3	31.5735	2.6827	11.8479	16.1841	21.5668	0.012
	16.4874				10.2655			IM	33.6996	4.6143	6.9349	45.3208	28.0079	0.242
NB	17.6565			52.1553	16.4722	0.262		TM+3	32.2908	2.6547	11.7932	15.8574	21.9047	0.011
MO	17.9633			47.8551	16.8927	0.233		YB	34.3459	4.5688	6.7729	45.6107	28.5333	0.235
TC	18.6250			49.9512	17.3497	0.217		YB+2	33.3530	2.8655	11.3993	17.8694	23.2277	0.019
RU	18.9913		7.1817	41.8513	17.6727	0.192		YB+3	33.0087	2.6263	11.7312	15.5500	22.2492	0.011
RH PD	19.7051		7.1316	39.8075	18.0159	0.176		LU	34.8547	4.6251	6.5320	56.1354	29.3382	0.220
	20.0027				18.1133			LU+3	33.7321	2.5946	11.6741	15.2513	22.5830	0.010
	18.2359			20.1813	17.1380	0.040		HF	35.0288	4.4811	7.0486	54.8053	29.6916	0.194
AG	21.4452	5.7610	6.8141	36.9677	18.6050	0.151		TΑ	35.1026		7.5990	51.4121	30.0821	0.176
	19.8766		8.1985	24.0012	17.8845	0.058		W	35.1202			47.8895		0.165
CD	22.6820		6.2562	42.5278	18.9385	0.151		RE	35.1186			44.7416	31 1167	0.157
	19.7388		8.5801	18.4994	17.6624	0.029		OS	35.1293		8.9299	42.0246	31 7346	0.150
IN	23.7881			51.7357	19.2639	0.179		IR	35.1819		9.2170	39.7756	32 3070	
SN	24.3943			55.9134	19.3529	0.158		PT	35.0496		9.9935	33.7924	22 7442	0.145
SB	24.7214		6.8531	54.0641	19.3118	0.131		AU			10.1868	32.1853	32 4134	0.127
TE	24.9089		7.7619	49.8839	19.2316	0.110		AU+1	34.6042	3-5668	11.5912	23.6873	21 7202	0.121
I	24.9994		8.7482	45.3012	19.1647	0.097		HG	35.8174	4.3428	9 5646	35.1501	31.1383	0.054
	25.0082		9.7690	41.0062	19.1415	0.088		HG+2	34.3561	3.2398	12 4275	19.0264	31 1014	0.131
	24.9633		9.6892	40.4741	19.9520	0.231		TL	36.5754	4.5741	2 6470	40 4731	31.1014	0.029
BA	25.1350	4.7150	8.8835	47.6319	21.4966	0.342			36.0217		9 6436	40.6731	32.4608	0.160
LA	25.2977	4.9555	8.8401	52.7840	22.4435	0.341		РВ	37.2236		9.6400	29.4016	34.2289	0.083
LA+3	24.7310	2.9399	11.2094	22.2741	18.0449	0.018		BI	37.6775		0 0 1 7 0	46.4014	36.0897	0.156
CE	26.0655	4.8170	8.8664	46.2950	22.6077	0.330			36.5195		0.0119	48.6453	36.3122	0.137
CE+3	25.1585	2.9115	11.4725	21.3889	18.3546	0.018		PO			9.5008	22.1225	33.8522	0.036
CE+4	24.6439	2.6640	11.6186	19-0921	17.7282	0.011		AT	38 2552	4.3419	9.0162	47.9631	36.3187	0.115
PR	26.7024	4.8264	8.7660	45.3141	23.0767	0.321			38 4303	3 0054	10.3919	45.7646	36.2174	0.098
PR+3	25.6538	2.8919	11.6529	20.6155	18-6784	0.018		FR	30 4372	3.0447	11.5/07	42.9587	36.0719	0.084
PR+4	25.1529	2.6492	11.8038	18.3999	18-0341	0.011			30 9044	4 0400	11.5458	41.7445	36.5842	0.162
ND	27.3846	4.8353	8.6138	44.7743	23.5558	0.011		AC	30 2400	4.0098	11.1797	45.2636	37.9482	0.241
ND+3	26.2086	2.8704	11.7876	19.9157	18.9891	0.017		TH	30 2017	4.1910	11.2328	48.8186	38.9837	0.253
PM	28.0905	4.8354	8.4393	44.4364	24.0330	0.011		THEA	30 0571	2 7217	11.3396	52.7127	39.9792	0.255
PM+3	26.8016	2.8519	11.8733	19-2942	19.3136	0.000		PA	39.0371	2.7317	13.5315	22.0728	33.3944	0.013
SM	28.8108	4.8289	8.2478	44.2862	24.5130	0.017		ับ	30.3321	4.2080	11.6431	45.3758	40.2732	0.247
SM+3	27.4297	2.8322	11.9260	18.7335	19.6302	0.016		11+4	30 1101	7.030	11.0005	44.2456	40.9334	0.244
ΕU	29.5335	4.8144	8.0515	44.2451	24.9972	0.010		NP	30 3312	4.6930	14.6122	20.3739	34.2522	0.012
EU+2	28.4660	3.0727	11.7534	20.8289	20.7554	0.027		PU	30 0731	4.3992	11.5864	43.4582	41.5702	0.241
£U+3	28.0815	2.8126	11.9488	18.2262	19.9561	0.021		DILLA.	20 2071	4.2912	11.9458	37.9977	41.6298	C.226
GO	30.1636	4.9709	7.6514	52.4089	25.8435	0.013		AM	27.2016	4.7025	10.3433	18.9922	35.2521	0.012
GD+3	28.7569	2.7882	11.9605	17.7494	20 2603	0.211		CM	41 103	4.3498	11.7823	37.4681	42.1900	0.223
TB	30.9679	4.7659	7.6590	44.3971	25.9752	C 273		BK .	41.1934	4.5778	11.0092	42.5817	43.3005	0.229
TB+3	29.4474	2.7635	11.9513	17.3147	20.5885	0.014		C.F	41.47010	4.6209	10.7471	42.6494	43.8149	0.224
	•				20.000	0.017		UF	74.1743	4.6529	10.4717	42.8391	44.2982	0.220

later stages of the work, with an IBM 7094. Scattering factors were computed at 200 points in the range $s_x = \sin \theta/\lambda$ from 0 to 1.99 Å⁻¹ at intervals of 0.01 Å⁻¹. This large number of points was used to facilitate fitting the curves to analytic functions. The calculations for the 200 points required about 20 seconds per atom when using the 7094 computer.

Explanation of the tables

The results are given in three different forms. Table 1 lists the values of f as a function of s_x at the intervals used in *International Tables for X-ray Crystallography* (1962). Tables 2 and 3 give the coefficients a_i , b_i and c which fit the function

$$f(s_x) = \sum_{i=1}^{n} a_i \exp(-b_i s_x^2) + c.$$
 (1)

In Table 2, n=2 in equation (1) and the coefficients fit the curves in the range $s_x=0$ to $s_x=0.64$, the practical limit when using $Cu K\alpha$ radiation. In

Table 3, n=4 and the entire curve from $s_x=0$ to $s_x=1.99$ is fitted. The scheme used was that of Forsyth & Wells (1959), in which the points are weighted by the factor $w=\exp\{-(s_x-0.5)^2\}$ so that the curve is fitted best near $s_x=0.5$ and $\left(\sum_{i=1}^n a_i+c\right)$ is not required to equal f(0). In Tables 2 and 3, following Forsyth & Wells, the quantity

$$E = rac{100}{f(0)} \left(rac{\Sigma w_j \delta_j^2}{\Sigma w_j}
ight)^{rac{1}{2}}$$
 ,

the error of the fit as a percentage of the scattering factor at $s_x = 0$, is also given.

In general, the nine-parameter fit of the entire curve is very good. Except for values of $s_x > 1.90$ for elements 77 through 86 the magnitude of the difference between the true curve and the analytic expression is <0.1 electron at all points. The five-parameter fit is not as good but is certainly adequate for most work. It happens that for each element the magnitude of E is equal, within a factor of about 2,

Table 3. Coefficients for the nine-parameter analytic fit of Hartree scattering factors in the range $0 \le s_x \le 1.99$ Å⁻¹

ATOM	A(1)	B(1)	A(2)	B(2)	A(3)	8(3)	A(4)	8(4)	С	E
R3	16.5142	2.0124	9.3358	20.1847	5.5015	0.4031	1.5961	197.5854	4.0558	0.040
	17.3342			16.4621	5.6220	0.2208	3.1319	37.3740	2.7876	
SR.	17.2535			16.2184	5.1740	0.2455		160.5856	3.2961	
	17.7192			14.6977	6.9256	0.1201	2.3613	30.5154	0.9256	
Y	17.6338			14.0658	5.4951	0.1599		127.3560	2.4227	
	18.1839			13.0441	1.6377	26.3317-			20.5960	
ZR			10.4321		4.8685	0.1747		103.6089	2.9910	
	18.1821			11.8785		27.7977-		-0.0050		
NB	15.7473			12.6192	5.1880	0.4507	4.1132	86.8618	4.6961	
MD	16.0315			12.2235	4.5749	2.0642	4.2377	77.4332	5.2900	0.049
TO	19.2788			9.0096		27.9883		104.0926	5.4762	0.029
RU	19.3706			8.8756		28.6028		107.2206	5.4296	0.018
RH	19.3996			8.5500		28.3901		108.4500	5.3625	
PD	19.4218			8.1549		26.5853	1.5231	84.7432	5.2835	0.010
	19.3998			8.1389		24.2898	0.1589	76.7400	5.2767	0.011
AG	19.4063			7.7399		26.0246	1.5496	107.4603	5.1842	0.014
	19.4119			7.7414		24.3718	0.6205	66.5566	5.1830	0.014
CD	19.3721			7.2446		24.8556	2.1200	96.8479	5.0620	
	19.3883			7.2913		21.9446	0.0864	86.9545	5.0637	
IN	19.3439			6.8188		27.6025		129.8031	4.9352	0.021
SN	19.3014			6.2897		27.7752		110.3681	4.7678	0.020
SB	19.2753			0.4924		29.0928	3.1664	96.0526	4.5675	0.019
TE	19.7565		19.2411	0.4491		30.3364	3.2205	87.0985	4.3187	0.018
Ī	20.0896			0.4072		30.4497	3.0490	80.9784	4.0067	0.017
ΧĒ			19.3104	0.3663		29.4767	2.8053	76.2643	3.6078	0.017
CS			19.4002		10.2541		1.5535	268.7687	3.2197	
ВА			19.7214	0.2879	10.5693	23.7801	2.6838	212.6900	2.4436	0.018
LA			20.1376	0.2521	10.9920	21.3700	3.4251	167.2029	1.6519	0.020
LA+3	20.7479			0.2505	11.2606	21.3634	0.2274	73.1375	1.5852	0.019
CE			20.0793		11.6905		2.8792	184.4509	1.7689	0.015
	21.3257			0.2305	11.6024	19.8448	0.4493	54.9910	1.1795	0.015
	20.9812			2.8873	11.7235	18.7112	0.0755	94.0054	0.3488	0.019
PR	22.1949	2.9915	20.1377	0.2310	12.1342	19.6858	2.8784	178.0122	1.6365	0.015
PR+3	21.9393			0.2130	11.7571	18.4000	0.8067	43.9672	0.7883	0.012
PR+4	21.5331	2.7679	21.3081	0.1965	12.0743	17.6263	0.1692	62.9981	-0.0833	0.015
ND	22.8448	2.8737	20.1050	0.2206	12.5154	18.7051	2.8901	171.8270	1.6248	0.016
ND+3	22.5774	2.7609	20.9568	0.1978	11.7455	17.0565	1.2900	37.0673	0.4312	0.009
PM	23.5072	2.7687	19.9531	0.2138	12.8518	17.8342	2.9026	166.1495	1.7627	0.018
PM+3	23.2299	2.6451	21.1856	0.1845	11.5999	15.7978	1.8830	32.4657	0.1021	0.007
SM	24.1752	2.6741	19.6771	0.2101	13.1515	17.0537	2.9160	160.9784	2.0557	0.020
SM+3	23.8893	2.5381	21.3819	0.1730	11.3730	14.6350	2.5391	29.2025	-0.1834	0.005
ΕU	24.8393	2.5887	19.2688	0.2100	13.4207	16.3526	2.9286	156.1363	2.5161	0.022
EU+2	24.7469	2.4972	20.8995	0.1749	10.8265	13.7528	4.1079	30.2277	0.4163	0.003
EU+3	24.5558	2.4381	21.5415	0.1629	11.1384	13.5842	3.1882	26.8253	-0.4244	0.003
GD	25.3127	2.4346	19.4286	0.1930	13.4300	14.9463	3.6693	131.5278	2.1290	0.021
GD+3	25.2239	2.3460	21.6119	0.1548	10.9406	12.6563	3.7821	25.0111	-0.5597	0.002
TВ	26.1346	2.4409	18.1660	0.2196	13.8860	15.1471	2.9472	147.8025	3.8363	0.026
TB+3	25.8913	2.2598	21.6016	0.1482	10.7728	11.8211	4.3358	23.5336	-0.6031	0.002

or less, to the magnitude of the maximum deviation of the analytic curve from the true curve.

Effect of configuration

Scattering factors were also computed from the wave functions of atoms in several excited states. Changes in the configurations of outer electrons can produce differences as great as 0.7 electron. An example of this effect for cerium is shown in Table 4. Below $s_x=0.5$, the more stable states have larger scattering factors. For $s_x>0.5$ the scattering factors are essentially the same.

Comparison of Thomas-Fermi-Dirac and Hartree scattering factors

The differences, at $s_x = 0.05 \text{ Å}^{-1}$, between the Thomas-Fermi-Dirac (TFD) and Hartree (H) scattering factors

Fig. 1. Plot of $f_{\rm TFD}-f_{\rm H}$ versus Z at $s_x=0.05$, and plot of δ , the number of electrons in the Hartree density function outside 4.675 Bohr radii, versus Z.

- Electrons outside TFD discontinuity. $x f_{\text{TFD}} f_{\text{H}}$ at $s_x = 0.05$.
- are plotted against Z, the atomic number, in Fig. 1. Note that at this small value of s_x , the difference is always positive. At small s_x values the difference between two scattering curves reflects the difference between the respective radial density functions at

Table 3 (cont.)

ATOM	A(1)	B(1)	A(2)	8(2)	A(3)	B(3)	A(4)	B(4)	С	E
F 8+4	25.6590	2.1986	22.6978	0.1340	11.5775	11.8625	3.0041	22.2210	-1.9390	0.002
DY	26.7543				14.0805		2.9545	144.0925	4.6461	
DY+3	26.5627	2.1801	21.4745	0.1434	10.7287	11.1224	4.7442	22.4382	-0.5121	0.002
HD	27.3401			0.2427	14.2638	14.1502	2.9622	140.5160	5.4854	0.029
HD+3	27.2309	2.1055	21.2387	0.1401	10.7124	10.4939	5.1149	21.4753	-3.2994	0.002
ER	27.8965	2.2682	16.3492	0.2594	14.4143	13.7220	2.9656	137.4589	6.3405	0.030
ER+3	27.8971	2.0363	20.8519	0.1387	10.7618	9.9551	5.4012	20.6752	0.0850	0.002
TM	28.4033	2.2223	15.8754	0.2792	14.5534	13.3267	2.9670	134.5847	7.1657	0.031
TM+3	28.5595	1.9721	20.3541	0.1389	10.8491	9.4812	5.6337	19.9825	0.6003	
YB.	28.8530	2.1819	15.5181	0.3023	14.6735	12.9635	2.9681	131.8887	7.9514	
Y8+2	29.3481	1.9637	18.4873	0.1629	11.5681	9.5586	5.7304	22.9149	2.8596	0.005
YB+3	29.2165	1.9126	19.7203	0.1411	10.9900	9.0767	5.7924	19.4015	1.2772	0.003
LU	29.2842	2.0645	15.2765	0.2925	14.6089	11.8505	3.7588	115.5326	8.0298	
LU+3	29.8657	1.8563	19.0669	0.1443	11.1270	8.6996	5.9490	18.8440	1.9874	
HF	29.5377	1.9836	14.9772	0.3032	14.5507	11.2965	4.3739	96.7527	8.5161	
TΑ	29.5857	1.9213	14.7541		14.5902		4.8215	84.7554	9.1965	
W	29.3788	1.8703	14.7860	10.8776		0.3632	5.1297	76.5858	9.9018	
KE			15.1645		15.0335	0.4038	5.3231		10.5438	
0\$	27.9724				15.7093		5.4197		11.1205	
IR			16.9913		16.3881		5.4363		11.6428	
PT			18.3297		17.2974		5.3354		11.9990	
ΑU			21.0803		18.1701		5.2590		12.3991	
	31.0910				12.7498	0.2981	6.4650		10.1503	
HG			18.7561		16.5302	2.0187	5.1493		12.8658	
	33.4136				13.0979	0.1532	5.6894	24.6522	6.9228	
TL			16.7874	11.6599	_	3.5233	4.3857		13.4505	
_	21.7465				19.7267	8.8670	5.5358		12.5162	
PB			13.7530		13.7165		4.7855		13.5724	
BI			17.4494	5.2824		13.9966	5.4009		13.5950	
	29.9892				11.6322	0.3476	5.8041		11.4825	
PD.			20.9040	5.6479		18.1007	5.7292		13.5683	
AT.			22.5060	5.5777		23.6453	5.4736		13.4832	
RN			23.1931	5.3025		27.7083	4.7153		13.3570	
FR			23.6784		11.0892			280.9454		
RA			23.6303		11.4606			233.0863		
AC			23.8438		11.8162			186.2107		
TH			24.0510		12.0856			154.3940 128.5321		
	36.7349				12.7150			170.6033		
PA			24.3770		13.3409			164.9693		
U			24.7273		13.9892		3.0294		12.3296	
NP	36.9548				14.0530 14.5642			159.9586		
			25.1400		15.3933			179.9459		
PU	37.6021 37.2009		25.7684		14.9558		0.5718		12.0321	
AM	37.7195		26.3530		15.8209			175.8520		
	37.6825		26.7809		15.9136			147.8731		
CM BK			27.4536		16.2534			144.5725		
CF			28.1851		16.5505			141.5922		
CF	21.0731	U. 4310	50.1031	3.7004	.0.,,,,,	1007174	301	- 111 - 122		

Table 4. Effect of configuration on scattering factor of Ce

s_x	$f_{\mathrm{Ce}}(4f^26s^2)^*$	$f_{\mathrm{Ce}}(4f^15d^16s^2)$	$f_{\rm Ce}(5d^26s^2)$
0.00	58.00	58.00	58.00
0.05	$56 \cdot 13$	56.08	56.07
0.10	$52 \cdot 67$	$52 \cdot 45$	$52 \cdot 29$
0.15	$49 \cdot 21$	48.91	48.60
0.20	45.77	45.53	45.18
0.25	$42 \cdot 47$	42.31	42.00
0.30	39.50	39.38	$39 \cdot 13$
0.35	36.89	$36 \cdot 80$	36.60
0.40	34.58	34.51	$34 \cdot 37$
0.45	32.50	$32 \cdot 45$	$32 \cdot 36$
0.50	30.59	30.57	$30 \cdot 52$
0.55	28.81	28.82	28.81
0.60	$27 \cdot 17$	$27 \cdot 19$	$27 \cdot 21$
0.65	$25 \cdot 65$	25.68	25.72
0.70	$24 \!\cdot\! 25$	$24 \cdot 29$	$24 \cdot 34$
0.75	$\boldsymbol{22 \!\cdot\! 99}$	$23 \cdot 03$	23.09
0.80	21.86	21.89	21.95
0.85	20.85 .	20.88	20.92
0.90	19.95	19.97	20.01
0.95	$19 \cdot 15$	19-16	19.19
1.00	18.43	18.44	18.46

^{*} Presumed ground state.

large radii. The TFD radial density is required to drop abruptly to zero at a certain radius, r_D , in order to provide the proper number of electrons, Z, in the radial domain. This radius, r_D , varies in a nearly linear manner from about 4.54 Bohr units at Z=37 to about 4.82 Bohr units at Z=94.

In Fig. 1 the number of electrons, δ , outside 4.765 Bohr units (which is the nearest value to r_D at which the quantities were computed) is also plotted against Z. The two curves in Fig. 1 are seen to be very similar in shape.

For $s_x = 0.05$ Å⁻¹, the ratio $R = (\sin 4\pi rs)/(4\pi rs)$ decreases from unity as r increases and becomes zero the first time at $r \approx 9.45$ Bohr units, well outside r_D . All of the electrons in a TFD atom thus scatter with phases of the same sign; this is not true for the Hartree atoms because there is a non-vanishing probability of finding electrons at large radial distances. In the range 0 to r_D , R is a slowly decreasing function of r and is always larger than

$$R_0 = (\sin 4\pi r_D 0.05)/(4\pi r_D 0.05) = 0.63$$
.

Beyond r_D the ratio R is always smaller than R_0 and eventually its sign alternates.

The integral of U, the charge density, can be broken into two parts, one for the range zero to r_D and the second for r_D to infinity. In the Hartree model, there are a small number of electrons δ which lie outside r_D . Because both the TFD and H densities are normalized to Z, the number of electrons in the atom or ion, one can write

$$\int_{0}^{\infty} \Delta U dr = \int_{0}^{r_{D}} (U_{\text{TFD}} - U_{\text{H}}) dr + \int_{r_{D}}^{\infty} (U_{\text{TFD}} - U_{\text{H}}) dr$$
$$= [Z - (Z - \delta)] + [0 - \delta] = 0.$$
 (2)

The difference between scattering factors can be written in a similar fashion, i.e.

$$\Delta f = \int_0^{r_D} R \Delta U dr + \int_{r_D}^{\infty} R \Delta U dr . \tag{3}$$

Canfield & Waber (1963) show that $U_{\rm TFD}$ and $U_{\rm H}$ are quite similar in magnitude for radii in the range $0 < \varepsilon \le r \le r_D$. Thus the first integral of (3) is always larger than δR_0 . Because of the alternating sign of R, the second integral of (3) will be less than δR_0 by some factor γ which is small. Thus

$$\Delta f \ge \delta R_0 - \gamma \, \delta R_0 \,, \tag{4}$$

and for small s_x , Δf should have a strong dependence on the variation of δ with Z. An inference from this argument is that when relativistic-exchange charge densities become available for calculating scattering factors, the quantity $(f_{\text{TFD}} - f_{\text{RE}})$ will be positive for small s_x and behave similarly with Z.

At $s_x=0.1$ Å⁻¹, the ratio R first becomes negative at $r\approx 4.72$ Bohr units, and this radius is approximately r_D . Thus f_{TFD} must be greater than f_{H} for s_x less than about 0.1 Å⁻¹, but for s greater than about 0.1 Å⁻¹ this need not be true. The differences become complicated owing to the presence of several maxima in the Hartree density (which arise from the shell structure) while the TFD density has a single maximum. The differences for $s_x=0.25$, 0.5 and 1.0 Å⁻¹ are plotted in Fig. 2.

Fig. 2. Plot of $f_{\text{TFD}} - f_{\text{H}}$ versus Z at $s_x = 0.25$, 0.50 and 1.00 Å⁻¹.

• $s_x = 0.25$.

• $s_x = 0.50$.

 $\times s_x = 1.00$.

The minima in the curves of Fig. 1 occur at atoms with filled outer shells, for these atoms have very low electron densities outside r_D . It is of interest to note some of the discontinuities in the curves of Fig. 1. These are caused by changes in configuration. For example in La, Z=57, there is one 5d electron whereas there are none at Z=56 or 58. A similar situation occurs at Gd, Z=64. At Yb, Z=70, the 4f shell has just been filled and at Z=71 the 5d shell starts to fill. Another case is at Z=43 where there are two 5s electrons in Tc and only one in Mo and Ru. Also, one notes the effect of the contraction of the atoms as the 4d or 4f shells are filled. Some of the configurational discontinuities are still apparent in the $s_x = 0.25$ Å⁻¹ curve of Fig. 2 but at higher s_x these discontinuities are smoothed out.

References

BOYD, R. G., LARSON, A. C. & WABER, J. T. (1964). To be published.

Canfield, J. M. & Waber, J. T. (1963). Submitted to *Phys. Rev.*

CROMER, D. T., LARSON, A. C. & WABER, J. T. (1963). Los Alamos Scientific Laboratory Report LA-2987.

FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412. International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

James, R. W. (1948). The Optical Principles of the Diffraction of X-rays. Chap. III. London: Bell.