العا	/ 1 \$11 - 1 10 T 1 A11 11-
مجزأة	عناصر الإجابة (الموضوع الأول)
	الجزء الأول(13 نقطة)
	التمرين الأول: (04 نقاط)
0,25	x' ا – تمثیل القوی:
	ب عبارة ١٤٠٥
	ℓ والقوى المطبقة هي: الجسم (S) والقوى المطبقة هي
0,25	$ec{T}_0$ قوة ثقل الجسم $ec{P}$ ، قوة توتر النابض $ec{T}_0$.
	(S) $\sum \vec{F}_{ext} = \vec{0} \Leftrightarrow \vec{P} + \vec{T}_0 = \vec{0}$
0,25	$P - T_0 = 0 \rightarrow mg - kx_0 = 0 \rightarrow x_0 = \frac{m \cdot g}{k}$
·	$x \lor k$
	2) أ- المعادلة التفاضلية: بتطبيق القانون الثاني لنيوتن على الجملة جسم (S) في المرجع السطحي
	الأرضى المعتبر غاليليا
	$\Sigma \vec{F} = m \cdot \vec{a}$
	$\vec{P} + \vec{T} = m \cdot \vec{a} \Rightarrow p - T = m \cdot a$
0,25	$mg - k(x + x_0) = m \cdot a \Rightarrow mg - x_0 - kx = m \cdot a$
0,25	$mg - x_0 = 0 \rightarrow -k \cdot x = m \cdot a \Rightarrow \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$
0.07	$\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0 \cdot \dots \cdot (1)$
0,25	
	$x(t) = X_m \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$ ب- إثبات أن العبارة $x(t) = X_m \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$ هي حل للمعادلة التفاضلية:
	$a = \ddot{x} = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -x_m \left(\sqrt{\frac{k}{m}}\right)^2 \cos\left(\sqrt{\frac{k}{m}}t + \varphi\right) \dots (4)$
0,25	()
0.25	وبالتعويض في عبارة المعادلة التفاضلية(1) نجد:
0,25	$-X_{m} \cdot \left(\sqrt{\frac{k}{m}}\right)^{2} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right) + \frac{k}{m} \cdot X_{m} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right) = 0$
	مجزأة 0,25 0,25 0,25 0,25

العلامة		/ 1 St 10 T 1 Att 1:-
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		3) أ- برهنة عبارة الطاقة الحركية الأعظمية:
		$E_c = \frac{1}{2}m \cdot v^2, \qquad v = -X_m \cdot \omega_0 \cdot \sin(\omega_0 t + \varphi)$
	0,25	$v_m = \pm X_m \cdot \omega_0 \Longrightarrow (E_c)_{\text{max}} = \frac{1}{2} m \cdot \omega_0^2 \cdot X_m^2$
		ب- تحديد قيم الثوابت:
1 7	0,25	من البيان نجد: $X_m = 4cm$ المطال الأعظمي:
1,5	0,25	$\left(E_{c} ight)_{ m max}=0,008J$: الطاقة الحركية العظمى $-$
	0,25	$\left(E_{c}\right)_{\max} = 0,008J \Rightarrow \omega_{0} = \sqrt{\frac{2\times\left(E_{c}\right)_{\max}}{m\cdot X_{m}^{2}}} = \sqrt{\frac{8\times10^{-3}\times2}{0,1\times16\times10^{-4}}} = 10rd/s: \omega_{0}$ نبض الحركة - ω_{0}
	0,25	$T_{0}=rac{2\pi}{\omega_{0}}=rac{2\pi}{10}=0,628s$: T_{0} قيمة الدور الذاتي $-$
	0,25	$\omega_0 = \sqrt{\frac{k}{m}} \rightarrow k = m \cdot \omega_0^2 = 0.1 \times 100 = 10 N/m$ قيمة ثابت المرونة k من العبارة –
		4) المعادلة الزمنية للحركة:
0,5	0.25	$X_m = 4cm$ ، $\omega_0 = 10rd/s$: الدينا
0,0	0,25	$x\left(t\right)=0.04\cos\left(10t\right)$ ومنه: $t=0,x=X_{m}\Rightarrow\cosarphi=1\Rightarrowarphi=0$ الشروط الابتدائية $t=0,x=X_{m}\Rightarrow\cosarphi=1$
	· · · · · · · · · · · · · · · · · · ·	(1-12: 04) · 31th ·
		Y_1 u_R M R u_R M $U, r \approx 0)$ M
		ربط جهاز راسم الاهتزاز: لاحظ الشكل +
0,25	0,25	$C = u_C$ ملاحظة: تقلب إشارة المدخل Y_2 ملاحظة.
		$u_{\scriptscriptstyle C}(t)$ المنحنى $u_{\scriptscriptstyle C}(a)$ يوافق تطور التوتر (2)
	0,25	$u_{_R}(0)\!=\!E$ محيث $t=0$ التعليل: في اللحظة المحلة والمحلة التعليل: التعليل المحلة
0,50	0,23	$u_{C}\left(0 ight)=0$ یکون: $E=u_{R}+u_{C}$ یکون
	0.25	المنحنى (b) يوافق تطور التوتر $u_R(t)$ المنحنى التوتر التوتر (۵) التوتر (
	0,25	$u_R(0) = (u_R)_{\max} = E$ فإن $u_R(t) = R \cdot i(t)$ و حسب العلاقة $i(0) = I_0 : t = 0$ فإن $u_R(0) = u_R(0) = u_R$
		(تقبل كل الإجابات الصحيحة الأخرى).

العلامة		() \$ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		t_2 و t_1 : (3)
		$u_{C}\left(t ight)=E\cdot\left(1-e^{-rac{t}{ au}} ight)$: (a) من معادلة البيان
		$t_1 = -\tau \cdot \ln 0, 6$. و منه $t_1 \longrightarrow u_C(t_1) = E \cdot (1 - e^{-\frac{t_1}{\tau}}) = 0,40E$
	0,25	$t_2 = -\tau \cdot \ln 0.1$. و منه $t_2 \longrightarrow u_C(t_1) = E \cdot (1 - e^{-\frac{t_2}{\tau}}) = 0.90E$
1	0.25	R التحقق من أن $\Delta t = t_2 - t_1 pprox 1,79 $ وحساب قيمة $ au$ واستنتاج قيمة $ au$
	0,25	$\Delta t = au(\ln 0,6 - \ln 0,1) = 1,79 au$ من عبارتي t_1 و t_2 السابقتين نجد
		$t_{2}=23ms$ من البيان $t_{1}=5ms$ و $t_{1}=5ms$
	0,25	و منه: $ au=10ms$ (تقبل الإجابة بتوظيف العبارة Δt فقط).
	0,25	$R=10{ imes}10^3\Omega=10k\Omega$ و منه: $R=rac{ au}{C}$ و منه: $R=10{ imes}10^3\Omega=10k\Omega$
	,	
		التجربة الثانية:
	0,25	1) نمط الاهتزازات في كل حالة:
		* المنحنى $(lpha)$: اهتزازات حرة غير متخامدة (نظام دوري).
0,75	0,25	التعليل: سعة الاهتزاز ثابتة (لا يوجد ضياع في طاقة الجملة).
	0,25	$*$ المنحنى (β) : اهتزازات حرة متخامدة (نظام شبه دوري).
	0,23	التعليل: سعة الاهتزاز تتناقص خلال الزمن (يوجد ضياع في طاقة الجملة في مقاومة الدارة بمفعول جول).
		* المنحنى (1/): نظام لا دوري حرج. التعليل: لا توجد اهتزازات . (2) البيان الموافق لكل مقاومة: اعتمادا على ما سبق يوافق:
		ر المنحنى $(lpha)$: المقاومة $R'=0$. المنحنى $(lpha)$: المقاومة $R'=0$
0,25	0,25	R'=100المقاومة $R'=100$ المقاومة $R'=100$
		R'=5000 المقاومة: $R'=5000$
		: $R'=0$ من أجل $u_{\scriptscriptstyle C}(t)$ من التوتر $u_{\scriptscriptstyle C}(t)$ من أجل (3
		$u_{_C}(t) + u_{_L}(t) = 0 \ : (LC)$ بتطبيق قانون تجميع التوترات في الدارة المهتزة
		$u_L(t) = L \cdot \frac{di(t)}{dt} = L \cdot \frac{d^2q(t)}{dt^2} = LC \cdot \frac{d^2u_C(t)}{dt^2}$ الكن:
		$\frac{d^2 u_C(t)}{dt^2} + \frac{1}{LC} \cdot u_C(t) = 0$ و منه: $u_C(t) + LC \cdot \frac{d^2 u_C(t)}{dt^2} = 0$
01,25	0,25	$\frac{-dt^2}{dt^2} + \frac{u_C(t) - 0}{LC} \frac{g_1 u_C(t) + LC}{dt^2} = 0$

العلامة		(1 Št. c. in att) ži da St. v. atia
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		ب- عبارتي الثابتين A و B بدلالة مميزات الدارة (LC) :
		$rac{d^2u_C(t)}{dt^2}$ = $-A\cdot B^2\cdot \cos Bt$ ، و منه $u_C(t)=A\cdot \cos Bt$ على م. ت. السابقة
		$A \cdot \left(rac{1}{LC} - B^2 ight) \cos Bt = 0$ بالتعویض نجد:
	0,25	$B=rac{1}{\sqrt{LC}}$ و منه: $rac{1}{LC}-B^2=0$ و منه:
	0,25	و منه: $u_{C}(0)=A\cdot\cos(B imes0)=E$ في اللحظة $t=0$ و منه: $t=0$
		ج- قيمتي الدور الذاتي T_0 للاهتزازات و الذاتية L للوشيعة:
	0,25	$T_0 = 1,25 \times 10^{-3} s$ و منه: $2T_0 = 2,5ms$ نقرأ: α
	0.25	بالتعريف: $T_0 = 2\pi \cdot \sqrt{LC}$ و منه:
	0,25	$L = \frac{T_0^2}{4\pi^2 \cdot C} = 0,04H = 40mH$
	0,25	التمرين الثالث: (06 نقاط)
0,5	0,25	$\overrightarrow{F}_{T/S} = G \cdot \frac{m_S \cdot M_T}{(R_T + h)^2} \cdot \overrightarrow{n}$ العبارة الشعاعية لقوة الجذب: (3)
		$F_{T/S} = G \cdot \frac{1}{(R_T + h)^2} \cdot n$ العبارة الشعاعية لعوة الجلب: $R_T + h$: (S)
		2) أ- العبارة الحرفية للسرعة المدارية:
		بتطبيق القانون الثاني لنيوتن على الجملة (قمر اصطناعي) في المرجع المختار:
		$\sum \vec{F}_{ext} = m \cdot \vec{a}_n = \vec{F}_{T/S}$
	0,25	$a_n = \frac{G \cdot M_T}{(R_T + h)^2}$ وبالإسقاط على المحور الموجه نجد: (1) وبالإسقاط على المحور $m_S \cdot \vec{a}_n = G \cdot \frac{m_S \cdot M_T}{(R_T + h)^2} \cdot \vec{n}$
		$r=R_T+h$ من جهة أخرى نعلم أن $a_n=rac{v^2}{r}$ (2) من جهة أخرى نعلم
1,5	0,25	$v_S = \sqrt{\frac{G \cdot M_T}{(R_T + h)}}$ عن (1) و (2) نجد: $v_S^2 = \frac{G \cdot M_T}{(R_T + h)}$
	0,25	$v_S = \sqrt{\frac{6,67 \times 10^{-11} \times 5,972 \times 10^{24}}{(23616 + 6371) \times 10^3}} = 3644,65 m/s$: Equation $v_S = \sqrt{\frac{6,67 \times 10^{-11} \times 5,972 \times 10^{24}}{(23616 + 6371) \times 10^3}} = 3644,65 m/s$
	0,25	$T = rac{2\pi \cdot (R_T + h)}{v}$: عبارة الدور T و حساب قيمته
	0,25	$T = \frac{2\pi \times 29987000}{3644,65} \approx 51670s \approx 14,35h$:
	0,25	$T=14,35h \neq 24h$ ج- $T=14,35h \neq 24h$ القمر الاصطناعي المستعمل في التموقع ليس جيومستقرًا.
0,25	0,25	$^{238}_{94}Pu \longrightarrow ^{234}_{92}U + ^{4}_{2}He$ المعادلة المنمذجة لتحول البلوتونيوم: $(1-II)$

العلامة		/ + £ + +
مجموع	عناصر الإجابة (الموضوع الأول) مجزأة مجموع	
		N_d المعادلة التفاضلية بعدد الأنوية المتفككة N_d :
0,5	0,25	$N\left(t ight)=N_{0}-N_{d}\left(t ight)$ من قانون التناقص: $A\left(t ight)=-rac{dN\left(t ight)}{dt}=-\lambda\cdot N\left(t ight)$ من قانون التناقص:
0,5		وبالتعويض في العبارة السابقة نجد:
	0,25	$\frac{d\left(N_{0}-N_{d}(t)\right)}{dt}+\lambda\cdot\left(N_{0}-N_{d}(t)\right)=0\rightarrow\frac{dN_{d}\left(t\right)}{dt}+\lambda\cdot N_{d}\left(t\right)=\lambda\cdot N_{0}$
		B ایجاد عبارة الثوابت α ، α و A :
0,75	0,25 0,25	وبالتعويض في المعادلة التفاضلية نجد: $rac{dN_d(t)}{dt} = -lpha\cdot A\cdot e^{-lpha t}$ و $N_d(t) = A\cdot e^{-lpha t} + B$
	0,25	$-\alpha \cdot A \cdot e^{-\alpha t} + \lambda \left(A \cdot e^{-\alpha t} + B \right) = \lambda \cdot N_0 \implies A \cdot e^{-\alpha t} \left(\lambda - \alpha \right) + \lambda \left(B - N_0 \right) = 0$
	,	ومنه: $lpha=\lambda$ (ثابت النشاط الإشعاعي) ؛ $B=-A=N_0$ (عدد الأنوية الابتدائية)
	0,25	$\frac{dN_d(t)}{dt} = a \cdot N_d + b \cdot \cdots \cdot \cdot \cdot \cdot (1)$ أ- المعادلة البيانية: (4
	0,25	$\frac{dN_d\left(t\right)}{dt} = -\lambda \cdot N_d + \lambda N_0 \cdot \cdot$
	0,25	$a = -\lambda = \tan \alpha = \frac{-6 \times 10^{10}}{2.4 \times 10^{20}} = -2.5 \times 10^{-10} \text{s}^{-1} \longrightarrow \lambda = 2.5 \times 10^{-10} \text{s}^{-1}$
1,5	0,25	$\langle b = \lambda \cdot N_0 = 6 \times 10^{10} \Rightarrow N_0 = \frac{b}{\lambda} = \frac{6 \times 10^{10}}{2.5 \times 10^{-10}} = 2.4 \times 10^{20} $ noyaux \rangle نجد:
		$:t_{1/2}$ ب $-$ زمن نصف العمر $:t_{1/2}$
	0,25	التعريف: المدة الزمنية اللازمة لتفكك نصف عدد الأنوية الابتدائية المشعة.
	0,25	$t_{\frac{1}{2}} = \frac{Ln2}{\lambda} = \frac{0.69}{2,5 \times 10^{-10}} = 2,76 \times 10^{9} s = 87,52 ans : t_{\frac{1}{2}}$
		m أ- حساب الطاقة الكلية الناتجة عن التفكك الكلي للكتلة m :
		$E_0 = (m(Pu) - m(U) - m(He))C^2$ الطاقة المحررة من تفكك نواة واحدة:
	0,25	$E_0 = 4.87 MeV = 7.8 \times 10^{-13} J$
	0,25	$E_T = N_0 \cdot E_0 = \frac{m \cdot N_A}{M} \cdot E_0 = \frac{1,2 \times 10^3 \times 6,023 \times 10^{23}}{238} \times 7,8 \times 10^{-13} = 2,37 \times 10^{12} J$ الدينا:
01		ب- تحديد مدة اشتغال البطارية:
	0,25	$r=rac{P_e}{P_T}=0.6$ من عبارة الاستطاعة $P_T=rac{P_e}{r}=rac{888}{0.6}=1480$
		$egin{align} P_T = rac{E_T}{\Delta t} \Rightarrow \Delta t = rac{E_T}{P_T} \ \Delta t = rac{2,37 imes10^{12}}{1480} = 1,6 imes10^9 \ s = 50,7 \ ans \ \end{pmatrix}$ من عبارة المردود
	0,25	$\Delta t = \frac{2,37 \times 10}{1480} = 1,6 \times 10^9 s = 50,7 ans$

العلامة		/ 1 Ev						
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)						
	0.25	التمرين التجريبي: (06 نقاط)						
	0,25	$CH_3CO_2H(\ell) + H_2O(\ell) = CH_3CO_2^-(aq) + H_3O^+(aq)$: أ- معادلة التفاعل (1 (I						
0,75	0,25	- التفاعل السابق تم بين: حمض ثنائية وأساس ثنائية أخرى.						
	0,25	c التركيز المولي c للمحلول (c):						
	0,23	$c = \frac{n_0}{V} = \frac{m}{M \cdot V} = 10^{-2} mo \ell \cdot L^{-1}$ بالتعریف:						
		2) أ- جدول تقدم التفاعل:						
		م. التفاعل $CH_3CO_2H(aq) + H_2O(\ell) = CH_3CO_2^-(aq) + H_3O^+(aq)$						
		كميات المادة $n(mo\ell)$ التقدم المادة						
	0,25	n_0 الابتدائية n_0						
		بوفرة x n_0-x x x الانتقالية n_0-x n_0-x النهائية n_0-x n_0-x						
		x_f النهائية x_f x_f x_f النهائية ا $\lambda_{cH_3CO_2^-}$ و $\lambda_{H_3O^+}$ و $\lambda_{cH_3CO_2^-}$ النهائية σ و $\lambda_{H_3O^+}$ و $\lambda_{cH_3CO_3^-}$						
1,25	0,25	$\sigma = \sum \lambda_{X_i} \cdot ig[X_i ig] = \lambda_{H_3O^+} \cdot ig[H_3O^+ ig]_f + \lambda_{CH_3CO_2^-} \cdot ig[CH_3CO_2^- ig]_f$ بالتعریف:						
	0,25	$\left[H_3O^+\right]_f = \frac{\sigma}{\lambda_{H_3O^+} + \lambda_{CH_3CO_2^-}}$ من الجدول: $\frac{x_f}{V} = \left[H_3O^+\right]_f = \left[CH_3CO_2^-\right]_f$ من الجدول:						
	0,25	(S) للمحلول الحمضي (PH) :						
		$pH=-Log\left[H_3O^+ ight]=-Log\left(rac{\sigma}{\lambda_{H_3O^+}+\lambda_{CH_3CO_2^-}} ight)$: بالتعریف:						
	0,25	$pH = -Log\left(\frac{1,64 \times 10^{-2}}{(35,0+4,1) \times 10^{-3} \times 10^{3}}\right) = 3,4$						
		(S) أ- عبارة كسر التفاعل النهائي $Q_{r,f}$ للتفاعل الحادث في المحلول (S) :						
	0,25	$Q_{rf} = rac{\left[H_3O^+ ight]_f \cdot \left[CH_3CO_2^- ight]_f}{\left[CH_3CO_2H ight]_f}$:بالتعریف:						
		$Q_{r,f} = \frac{10^{-2pH}}{C - 10^{-pH}}$: إثبات أن:						
	0,25	$C_{r,f} = C_{r,f} - C_{r,f}$ $C_{r,f} = C_{$						
1,25								
	0,25	$Q_{r,f} = rac{\left \lfloor H_3 O^+ ight floor_f}{C - \left \lceil H_3 O^+ ight ceil_f} = rac{10^{-2pH}}{C - 10^{-pH}}$ و منه:						
	0,25	$K=Q_{r,f}=rac{10^{-2pH}}{C-10^{-pH}}$:ب- ثابت التوازن K للتفاعل: بالتعريف						
	0,25	. $(K < 10^4)$ و منه: $K = \frac{10^{-2 \times 3,4}}{10^{-2} - 10^{-3,4}} = 1,65 \times 10^{-5}$ و منه: $K = \frac{10^{-2 \times 3,4}}{10^{-2} - 10^{-3,4}} = 1,65 \times 10^{-5}$						

العلا	/ + 5		.		
مجزأة	عقاصر الإجابة (الموضوع الاول)				
0,25					(II)
0,25				- "	
		ي ، بطيء.	كوس) ، لا حراري	: غير تام (محدود أو ع	خصائصه
0.25				•	2) معادلة التف
0,23	$CH_3CO_2H(\ell)+C_3I$				
		i			
0.25	= -				
- , -	$n(mo\ell)$ (ح. التوازن) ممية المادة	·	·		
0,25		$r = \frac{r}{r}$	$n_f (CH_3CO_2C)$	$(\frac{1}{3}H_7) \times 100 = 60\%$	ب- المردود:
0.25					
-					
,	إيكانواك 1 مينين الإينين.	CO ₂ CII (CII ₃	\int_2^{∞}	صف المساورة للمرجب ال	ج الصيعة ته
				لور الجملة:	4) أ- جهة تد
	$C = \begin{bmatrix} CH_3CO_2 \end{bmatrix}$	$_{2}CH\left(CH_{3}\right) _{2}$	$[H_2O]_i$	1.11 · . 0.1ma	ا د اد افتار
0,25	$\mathcal{Q}_{r,i} - \frac{1}{[CH_3CO_2]}$	H _i $\cdot [(CH_3)_2]$	$CHOH \Big]_i$	0,1m0 من الماء يصبح	بغد أصمه ٧٠
,		7,0		$Q_{\perp} = \frac{0,12 \times 0,2}{0}$	$\frac{2}{2} = 4.125$
				0,001.0,0	O .
0,25		غير المباشر.			. ,-
		0.10	`		<i>'</i>
0,25	$K = 2,25 = \frac{(0,12-x_f)\times(0,22-x_f)}{(0,08+x_f)^2}$ = $\frac{(0,12-x_f)\times(0,22-x_f)}{(0,08+x_f)^2}$				
	$1,23x_f - 0,7x_f - 0,012 - 0 \rightarrow x_f - 0,0100m0 i \approx 0,017m0 i$				
					إذن:
	النوع الكيميائي	CH ₃ CO ₂ H	C_3H_7OH	$CH_3CO_2C_3H_7$	H_2O
0,25			0,097	0,103	0,203
					<u></u>
	مجزاة 0,25 0,25 0,25 0,25 0,25 0,25 0,25	0,25 $0,25$	ابية (الموضوع الأول) 0,25 0,25 0,25 $CH_{3}CO_{2}H(\ell) + C_{3}H_{7}OH(\ell) = C$ 0,25 $CH_{3}CO_{2}H(\ell) + C_{3}H_{7}OH(\ell) = C$ 2, النوع الكيميائي	ر باتجاه التفاعل غير المياشر $(V_{2}, V_{1}, V_{2}, V_{2})$ (الموضوع الأولى) مجزأة (الموضوع الأولى) 0,25 (استرة $(V_{3}, V_{2}, V_{1}, V_{2})$ (النوع الكيميائي $(V_{3}, V_{2}, V_{1}, V_{2})$ (النوع الكيميائي $(V_{3}, V_{2}, V_{2}, V_{2}, V_{2})$ (النوع الكيميائي $(V_{3}, V_{2}, V_{2}, V_{2}, V_{2}, V_{2}, V_{2})$ (1,25 V_{1} (1,20 V_{2} (1,25 V_{1} (1,20 V_{2} (1,25 V_{1} (1,20 V_{2} (1,25 V_{1} (1,20 V_{2} (1,25 V_{2	(الموضوع الأول) المرتبع: تحول أسترة. (الموضوع الأول) (الموضوع الأول) ميلة أيت المرتبع: تحول أسترة. (الموضوع الأول) مع المرتبع: تحول أسترة. (المولى المرتبع: تحول أسترة. (المولى المنتبع المنتبع المنتبع المنتبع المنتبع المرتبع أي حالة التوازن الكيميائي (المولى المرتبع أي حالة التوازن الكيميائي (المولى المرتبع أي حالة التوازن الكيميائي (المرتبع أي حالة (المرت

العلامة		/ *15t1 ~ * * *1\ ** 1 bb1
مجزأة مجموع		عناصر الإجابة (الموضوع الثاني)
		الجزء الأول (14 نقطة):
	0.25	التمرين الأول (04 نقاط):
0,75	0,25	1-أ- α :نواة الهيليوم و -β: الكترون. ب- ايجاد العددين a و d :
	0,25	
	0,25	$\left\{egin{align*} \sum A_i &= \sum A_f \ \sum Z_i &= \sum Z_f \end{array} ight. \Rightarrow \left\{egin{align*} 238 &= 4a + 206 \ 92 &= 2a - b + 82 \end{array} ight. \Rightarrow \left\{egin{align*} a &= 8 \ b &= 6 \end{array} ight.$ حسب قانوني صودي:
		2- أثبات العلاقة :.
	0,25	$N_{Pb}(t) = N_U'(t) = N_U(0) - N_U(0) \cdot e^{-\lambda t} = N_U(0)(1 - e^{-\lambda t})$
0,75	0,25	$\frac{m_{Pb}\left(t\right)\cdot N_{A}}{M_{Pb}} = \frac{m_{U}\left(0\right)\cdot N_{A}}{M_{U}}\left(1 - e^{-\lambda t}\right)$
0,73		
	0,25	$m_{Pb}(t) = \frac{M_{Pb}}{M_U} m_U(0) (1 - e^{-\lambda t}) = 0.866 \cdot m_U(0) (1 - e^{-\lambda t})$
		$m_f(Pb) = 9.7g$ في العينة : من البيان نجد $N_U(0) = 0.7g$
	0,25	$N_0(U) = N_f(Pb) = \frac{m_f(Pb) \cdot N_A}{M_{Pb}} = \frac{9.7 \times 6.02 \times 10^{23}}{206} = 2.83 \times 10^{22} Noy$ ومنه
	0,25	الم العمر: لدينا بينا بينا بينا بينا بينا بينا بينا ب
	0,25	$N_{U}\left(t_{\frac{1}{2}}\right) = \frac{N_{U}\left(0\right)}{2} \Rightarrow N_{Pb}\left(t_{\frac{1}{2}}\right) = \frac{N_{f}\left(Pb\right)}{2} \Rightarrow m_{Pb}\left(t_{\frac{1}{2}}\right) = \frac{m_{f}\left(Pb\right)}{2} = 4,85g$
	0,20	
	0,25	$t_{\frac{1}{2}}(U) = 4,5 \times 10^9 ans$: بالاسقاط نجد
2,25	0,23	ج- عمر العينة الصخرية : مدر العينة الصخرية :
	0,25	$m_{Pb}(t) = 0.103 m_U(0) = 0.103 \frac{N_U(0) \cdot M_U}{N_A} = \frac{0.31 \times 2.83 \times 10^{22} \times 238}{6.02 \times 10^{23}} = 3.5g$
	0,25 0,25	$t = 3 \times 10^9 ans$: بالاسقاط نجد
		$m_{p_b}(t)=m_f\left(_{p_b} ight) \left(1-e^{-\lambda t} ight) \Rightarrow t=rac{-t_{1/2}}{Ln2}\cdot Ln \left(1-rac{m_{p_b}(t)}{m_f\left(_{p_b} ight)} ight)$: تحقق حسابیا من النتیجة
	0,25	$m_{p_b}(t) - m_f(p_b)(1-e^{-t}) \rightarrow t - \frac{1}{Ln2} Ln\left(1 - \frac{1}{m_f(p_b)}\right)$
	0,25	$\Rightarrow t = \frac{-4.5 \times 10^9}{Ln^2} \cdot Ln \left(1 - \frac{3.5}{9.7} \right) = 3 \times 10^9 ans$
		$Ln2 \qquad (9,1)$
		4- تفسير تواجد اليورانيوم U^{238}_{92} في القشرة الأرضية الى يومنا هدا:
	0,25	وبالتالي انوية اليورانيوم 238 لم تتفكك كليا بعد $rac{t}{t_{_{1/2}}} = rac{3 imes 10^9}{4.5 imes 10^9} = 0,66 \Rightarrow t = 0,66 \cdot t_{_{1/2}} < 7,2t_{_{1/2}}$
0,25	0,23	$t_{1/2} = 4.5 imes 10^\circ$
		الهود د يران موجود في المسرد الدرسيد .

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,5	0,25	التمرين الثاني (04 نقاط): u_c التمرين الثاني تحدث في المكثفة هي ظاهرة الشحن . u_c اتجاه التيار المار في الدارة ، واتجاه التوترين u_C و u_R المرا المار في الدارة ، واتجاه التوترين u_R المرا المار في المرا المار في المرا المار في المدارة ، واتجاه التوترين والمرا المار في الدارة ، واتجاه التوترين والمرا المار في الدارة ، واتجاه التوترين والمرا المار في الدارة ، واتجاه التوترين والمرا المرا الم
	0,25	$u_{C}\left(t ight)$ يجاد المعادلة التفاضلية التي يحققها $u_{C}\left(t ight)$ يجاد المعادلة التفاضلية التي يحققها $u_{C}+u_{R}=E$ $u_{C}+RC\frac{du_{C}}{dt}=E$ $u_{C}+RC\frac{du_{C}}{dt}=E$ $\frac{du_{C}}{dt}+\frac{1}{RC}u_{C}=\frac{E}{RC}$ \vdots ي بدلالة المقادير المميزة للدارة $u_{C}\left(t\right)=A+Be^{-\alphat}\Rightarrow \frac{du_{C}}{dt}=-B\alpha e^{-\alphat}$ $-B\alpha e^{-\alphat}+\frac{1}{RC}\left(A+Be^{-\alphat}\right)=\frac{E}{RC}$ \vdots بالتعويض في المعادلة التفاضلية نجد $\frac{du_{C}}{dt}=-\frac{E}{RC}$
1,25	0,25 0,25 0,25	$Be^{-\alpha t}\left(-\alpha + \frac{1}{RC}\right) + \left(\frac{A}{RC} - \frac{E}{RC}\right) = 0$ $\begin{cases} \left(-\alpha + \frac{1}{RC}\right) = 0 \Rightarrow \alpha = \frac{1}{RC} \\ \frac{A}{RC} - \frac{E}{RC} = 0 \Rightarrow A = E \end{cases}$ $u_{C}\left(0\right) = 0$ يكون $t = 0$ يكون $t = 0$ يكون $u_{C}\left(0\right) = A + B = 0$
2	0,25	$u_{C}\left(t\right)=E\left(1-e^{-\frac{1}{RC}t}\right) \qquad : عنو منه $: عنو منه α المقدار α في جود د α المقدار α في جود د $\alpha=\frac{1}{RC}$: لدينا $\alpha=\frac{1}{RC}=\frac{1}$

العلامة						
مجموع	مجزأة	عناصر الإجابـة (الموضوع الثاني)				
	0,25	: $ au$ ایجاد ثابت الزمن $ au$: $ au$ الزمن $ au$: $ au$ عند : $ au$ $= E_{c}(au) = \frac{1}{2}CE^2(1-e^{-7/\tau})^2 = E_{cmax} \times (0.63)^2 = 7.9 \times 10^{-4} J$: عند				
	0,25	من البيان (4) نجد: $ au=0.5s$ ب- إيجاد القوة المحركة الكهربائية للمولد:				
1.25	0,25	$u_R(0) = u_{R \text{ max}} = E = 9V$ عند اللحظة $t=0$ يكون $t=0$				
	0,25	$E_{C ext{max}}=rac{1}{2}CE^2\Rightarrow C=rac{2E_{C ext{max}}}{E^2}=49,4\mu F$: ج- إيجاد سعة المكثفة				
	0,25	$R = \frac{\tau}{C} = \frac{0.5}{49.4 \times 10^{-6}} = 10.1 \times 10^{3} \Omega$: $R = \frac{\tau}{C} = \frac{0.5}{49.4 \times 10^{-6}} = 10.1 \times 10^{3} \Omega$				
		$u_{c}\left(t ight)$ المعادلة النفاضلية لتطور التوتر $u_{c}\left(t ight)$				
		$u_{C}(t)+u_{L}(t)=0:(LC)$ بتطبيق قانون تجميع التوترات في الدارة المهتزة				
		$u_{L}(t) = L \cdot \frac{di(t)}{dt} = L \cdot \frac{d^{2}q(t)}{dt^{2}} = LC \cdot \frac{d^{2}u_{C}(t)}{dt^{2}} : $				
	0,25	$\frac{d^{2}u_{C}(t)}{dt^{2}} + \frac{1}{LC} \cdot u_{C}(t) = 0$ و منه: $u_{C}(t) + LC \cdot \frac{d^{2}u_{C}(t)}{dt^{2}} = 0$				
01		ب) تبیان حل المعادلة التفاضلية: $ \frac{d^2u_C(t)}{dt^2} = -A \cdot (\frac{1}{\sqrt{LC}})^2 \cdot \cos \frac{1}{\sqrt{LC}}t \text{e. a. i.} u_C(t) = A \cdot \cos \frac{1}{\sqrt{LC}}t $ حل م. ت. السابقة t				
	0,25	ومنه نجد: $u_C(t) = -\frac{1}{LC} \cdot u_C(t)$ وهو المطلوب.				
		$T_0=2\pi\sqrt{LC}$ عبارة الدور الذاتي: $T_0=rac{2\pi}{\omega_0}$ حيث $T_0=rac{2\pi}{\omega_0}$ ومنه				
	0,25	$u_{C}(0)=A=E$ $t=0$ S عبارة A عبارة $T_{0}=4\times0,5=2$ s عبارة $T_{0}=4\times0,5=2$ s عبارة $T_{0}=4\times0,5=2$				
	0,25	$L=rac{T_0^2}{4\pi^2C}=rac{(\ 2 imes 10^{-3}\)^2}{4 imes \pi^2 imes 50 imes 10^{-6}}=2 imes 10^{-3}H=2mH$. قيمة ذاتية الوشيعة				
		التمرين الثالث (06 نقاط):				
0,75		I -I جدول تقدم التفاعل :				
	0,5	$CO(NH_2)_2(aq) = NH_4^+(aq) + CNO^-(aq)$ المعادلة				
	0,5	كميات المادة (mol) التقدم $n_0 = CV$ 0 ح ابتدائية 0				
		x $n_0 - x$ x x				
		ے نھائیہ کے x_{max} $n_0 - x_{max}$ x_{max} x_{max}				
	0,25	$x_{max}=n_0=CV=2 imes10^{-3}\ mol\ /\ L$ تحديد التقدم الأعظمي $x_{max}: X_{max}: X_{max}$				

العلامة		مناه ما الأحادية (المحددة الثانية)	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
		: σ عبارة تركيز $^+$ NH4 بدلاله -2	
0,5	0,25	$\sigma = \lambda_{NH_4^+} \cdot \left[NH_4^+ \right] + \lambda_{CNO^-} \cdot \left[CNO^- \right] = \left[NH_4^+ \right] \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right)$	
0,3	0,25	$\Rightarrow \left[NH_4^+\right] = \frac{\sigma}{\lambda_{NH_4^+} + \lambda_{CNO^-}}$	
0,25	0,25	$\left[NH_4^+\right] = \frac{x}{V}$ العلاقة بين $\left[NH_4^+\right]$ و x و V: لدينا -3	
	0,25	$\sigma = \left[NH_4^+\right] \left(\lambda_{NH_4^+} + \lambda_{CNO^-}\right) \Rightarrow \sigma = \frac{x}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-}\right) : \mathbf{X}$ العلاقة σ و	
0,75	0,25 0,25	$\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) = \frac{2 \times 10^{-3} \times \left(9,69 + 11,02 \right) \times 10^{-3}}{0.1 \times 10^{-3}} = 0,41 S.m^{-1}$: σ_{max} قيمة عيمة $\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) = \frac{2 \times 10^{-3} \times \left(9,69 + 11,02 \right) \times 10^{-3}}{0.1 \times 10^{-3}} = 0,41 S.m^{-1}$:	
		5- إثبات العلاقة:	
0,5	0,25	$\begin{cases} \sigma(t) = \frac{x(t)}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) \Rightarrow \frac{\sigma(t)}{\sigma_{max}} = \frac{x(t)}{x_{max}} \Rightarrow x(t) = x_{max} \frac{\sigma(t)}{\sigma_{max}} \\ \sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) \Rightarrow \frac{\sigma(t)}{\sigma_{max}} = \frac{x(t)}{x_{max}} \Rightarrow x(t) = x_{max} \frac{\sigma(t)}{\sigma_{max}} \end{cases}$	
	0,25	$\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) \qquad \sigma_{max} \qquad x_{max} \qquad \sigma_{max}$	
	0,25	6-أ- تعريف السرعة الحجمية للتفاعل: هي مشتق تقدم التفاعل في وحدة الحجوم.	
		$V_{\text{vol}}(t) = \frac{1}{V} \cdot \frac{dx}{dt}$: أو	
1,25	0,25	السرعة تتناقص مع مرور الزمن لان ميل المماس للمنحنى يتناقص مع مرور الزمن .	
	0,25	ب-تعريف $t_{1/2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الاعظمي.	
	0,25 0,25	$x(t_{\frac{1}{2}}) = \frac{x_{max}}{2} = 10^{-3} \ mol \Rightarrow t_{\frac{1}{2}} = 70 \ min$ تحدیده بیانیا:	
0,25	0,25	$\left[NH_4^+\right]_f = \frac{x_{max}}{V} = 2 \times 10^{-2} \ mol \ / \ L : \left[NH_4^+\right]_f $	
		اا- 1-البرتوكول التجريبي:	
		ا المزيج بواسطة ماصة عيارية حجما $V=10m$. الصودا $V=10m$	
	0,75	- نضيف للبيشر قطرات من كاشف ملون مناسب.	
0,75		 نقوم بإضافة الصودا من السحاحة الى غاية تغير اللون. 	
		- نسجل حجم التكافؤ.	
		الرسم:	
L	L	·	

العلامة		/ ·1÷1 · · · · 1\		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)		
0,25	0,25	$NH_4^+(aq) + OH^-(aq) = NH_3(aq) + H_2O(l)$: معادلة التقاعل -2		
0,5	0,25 0,25	: عند التكافؤ يكون $C' = \left[NH_4^+ \right]$ عند التكافؤ يكون $\left[NH_4^+ \right] = -3$ حساب $C'V = C_b V_{be} \Rightarrow C' = \frac{C_b V_{be}}{V} = \frac{20 \times 10^{-2}}{10} = 2 \times 10^{-2} mol. L^{-1}$		
0,25	0,25	4- المقارنة: القيمة نفسها.		
1,25	0,25	x' الجزء الثانى (06 نقاط): x' التمرين التجريبى (06 نقاط): x .I x : a عبارة التسارع a : a عبارة التسارع a الجسم a : a عبارة الثاني لثيوتن على الجسم a المرجع السطحي الأرضي والذي نعتبره غاليليا . $\sum \overrightarrow{F}_{ext} = m.\overrightarrow{a} \Rightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m.\overrightarrow{a}$		
	0,5 0,5	$a=-rac{f}{m}+g\sinlpha$ بالإسقاط على محور الحركة: المحركة:		
0,5	0,5	$a(m/s^2)$ $f(N)$ $a(f)$ $a($		
01	0,25 0,25 0,25 0,25	: mg α تحديد α mg α : mg α المبدأ معادلته من الشكل : $a=k.f+b(2)$ $k=-\frac{1}{m}=-2\Rightarrow m=0,5Kg$: بمطابقة (1) و(2) نجد : $b=g\sin\alpha=4,9\Rightarrow \alpha=30^\circ$		
0,5	0,5	$\underbrace{\frac{1}{W(P)}}_{E_{cA}}\underbrace{\left(\frac{1}{E_{cB}}\right)}_{W(f)}$		

العلامة		/ *****
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		5- تطبيق مبدأ انحفاظ الطاقة على الجملة (جسم (s)) أ أ- عبارة قوة الاحتكاك:
1,25	0,25 0,25 0,25	$E_{CA} + w(\overrightarrow{P}) - \left W(\overrightarrow{f}) \right = E_{CB} \Rightarrow m.g.AB.\sin\alpha - f.AB = \frac{1}{2}mv_B^2$ $f = m(g\sin\alpha - \frac{v_B^2}{2AB}) = 1,25N$
	0,25 0,25	$v_B^2 - v_A^2 = 2aAB \Rightarrow a = rac{v_B^2}{2.AB} = 2,4m/s^2$ الدينا $f = 1,25N$: من البيان وبالإسقاط نجد
0,5	0,25 0,25	II-اعتمادا على البيانين : $\frac{1}{1}$ - طبيعة الحركة : $\frac{1}{1}$ - طبيعة الحركة مستقيم أفقي، الحركة مستقيمة منتظمة على المحور $v_x(t)$: البيان $v_x(t)$ عبارة عن خط مستقيم مائل لا يمر من المبدأ ، الحركة مستقيمة على المحور $v_y(t)$: البيان $v_y(t)$ عبارة عن خط مستقيم مائل لا يمر من المبدأ ، الحركة مستقيمة متغيرة بانتظام .
0,5	0,25 0,25	x_D <u>والمدى h والمدى h والمدى h . -2 من البيان -2 . $h=\frac{1}{2}.(1,1+6).0,5=1,78m:-2$ من البيان -3 من البيان $x=1,9.0,5=0,95m:-3$</u>
0,5	0,25 0,25	$v_D = \sqrt{v_{Dx}^2 + v_{Dy}^2} = \sqrt{1,9^2 + 6^2} = 6,29m/s$: v_D