HOMEWORK 5

Production Planning Algorithms

SHUBHAM LOHIYA 18D100020

(Individual Submission)

13th November 2020

_

CS 218

_

Prof. Abhiram Ranade

Performance comparison of ILP vs DP for the production planning algorithm

Note1: DP.cpp was compiled using these settings: g++ -pipe -02 -std=c++14 DP.cpp -lm

Note 2: Test cases were generated manually using given test cases as a baseline

The time taken by the Integer Linear Programming algorithm (ILP) depends on the number of variables and constraints to the algorithm. The time taken by the Dynamic Programming algorithm (DP) depends on the size of the cost table constructed. This table dimensions are (M+1) * (emax+1) * (inventory max+1).

1. Preliminary analysis on given test cases:

Test Case 1:	Test Case 2:
2	3
5 4	50 40 70
1 32 40	5 32 40
200 2	200 8
1 180	3 35
6	6
Cost: 1052	Cost: 4272
Time (LP): 0.0313	Time (LP): 0.0312
Time (DP): 3.6e-05	Time (DP): 0.048668

Observations: LP seems more robust to different kinds of test cases.

2. Varying M (number of months)

Test Case 1:	Test Case 2:	Test Case 3:	Test Case 4:	Test Case 5:
2	6	12	15	20
5 4	5 4 5 5 4 4	5 4 5 4 5 4 5 4	5 4 5 4 5 4 5 4	5 4 5 4 5 4 5 4
1 32 40	1 32 40	5 4 5 4	5 4 5 4 5 4 5	5 4 5 4 5 4 5 4
200 2	200 2	1 32 40	1 32 40	5 4 5 4
1 180	1 180	200 2	200 2	1 32 40
6	6	1 180	1 180	200 2
		6	6	1 180
Cost: 1052	Cost: 2930			6
TLP: 0.0313	TLP: 0.1094	Cost: 5688	Cost: 7136	
TDP: 3.6e-05	TDP: 0.00845	TLP: 0.1874	TLP: 0.1875	Cost: 9420
		TDP: 0.05606	TDP: 0.20086	TLP: 0.3278
				TDP: 0.75835

Observations:

- DP is faster than ILP when number of months is lower
- ILP is faster than DP when the number of months is large

3. Varying Demand

Test Case 1:	Test Case 2:	Test Case 3:	Test Case 4:	Test Case 5:
2	2	2	2	2
5 4	25 20	50 40	75 60	100 80
1 32 40	1 32 40	1 32 40	1 32 40	1 32 40
200 2	200 2	200 2	200 2	200 2
1 180	1 180	1 180	1 180	1 180
6	6	6	6	6
Cost: 1052	Cost: 5372	Cost: 10728	Cost: 16172	Cost: 21528
TLP: 0.0313	TLP: 0.0313	TLP: 0.0312	TLP: 0.0312	TLP: 0.0312
TDP: 3.6e-05	TDP: 0.00983	TDP: 0.04548	TDP: 0.20769	TDP: 0.63653

Observations:

- DP performs better when demand is lower whereas ILP is way better at higher demand
- ILP performance is consistent and doesn't change with demand. This is expected as the number of constraints remain the same. DP performance becomes slower as the size of the memorization table increases along 2 dimensions (2nd and 3rd)

4. Varying only starting number of employees

Test Case 1:	Test Case 2:	Test Case 3:	Test Case 4:	Test Case 5:
2	2	2	2	2
50 40	50 40	50 40	50 40	50 40
1 32 40	5 32 40	10 32 40	20 32 40	40 32 40
200 2	200 2	200 2	200 2	200 2
1 180	1 180	1 180	1 180	1 180
6	6	6	6	6
Cost: 10728	Cost: 10440	Cost: 10080	Cost: 9360	Cost: 10440
TLP: 0.0312				
TDP: 0.04756	TDP: 0.04282	TDP: 0.0468	TDP: 0.04706	TDP: 0.04590

Observations:

• No major variation for either ILP or DP. This is expected because for ILP, the number of constraints remains the same. For DP, the size of the table doesn't change so the time is expected to remain the same

5. Varying number of carpets produced by an employee per month (C)

· • • • • • • • • • • • • • • • • • • •	1 1	<u> </u>	v 1	()
Test Case 1:	Test Case 2:	Test Case 3:	Test Case 4:	Test Case 5:
2	2	2	2	2
50 40	50 40	50 40	50 40	50 40
1 32 40	1 32 40	1 32 40	1 32 40	1 32 40
200 2	200 6	200 12	200 15	200 20
1 180	1 180	1 180	1 180	1 180
6	6	6	6	6
Cost: 10728	Cost: 3600	Cost: 1948	Cost: 1476	Cost: 1204
TLP: 0.0312	TLP: 0.0312	TLP: 0.0312	TLP: 0.0312	TLP: 0.0313
TDP: 0.04756	TDP: 0.00411	TDP: 0.00289	TDP: 0.00255	TDP: 0.00118

Observations:

- ILP shows no time variation. This is expected due to no change in number of constraints
- DP running time decreases as C increases. This is expected as size of the memorization table decreases in the 2nd and 3rd dimension

6. Varying overtime carpet production limit (OTC)

Test Case 1:	Test Case 2:	Test Case 3:	Test Case 4:	Test Case 5:
2	2	2	2	2
50 40	50 40	50 40	50 40	50 40
1 32 40	1 32 40	1 32 40	1 32 40	1 32 40
200 2	200 2	200 2	200 2	200 2
1 180	10 180	20 180	40 180	80 180
6	6	6	6	6
Cost: 10728				
TLP: 0.0312	TLP: 0.0312	TLP: 0.0330	TLP: 0.0312	TLP: 0.0340
TDP: 0.04756	TDP: 2.43847	TDP: 2.45483	TDP: 8.86327	TDP: 34.7744

Observations:

- ILP shows negligible running time variation as number of constraints remains same
- DP shows an increase in running time as the OTC increases. This is because the size of the table along the 2nd dimension is directly proportional to this parameter

7. Varying Salary/Hcost/Fcost/OTPrice/W

This will not lead to any significant variation in either algorithm as no. of constraints remain same for ILP and also the table size doesn't change in DP. Hence these parameters do not have any significant effect on runtimes as compared to variation over other parameters (just how no of start employees didn't affect running times much)

Final Inferences:

• ILP is a much more stable and robust algorithm and is not affected much by variation in task parameters. DP is highly sensitive to parameters that cause a change in its memorization table size and hence shows a lot of variation over these parameters. Hence for most real-world applications and for flexibility, ILP would be a better choice. However, if we need very short-term projections, DP can give us faster results without taking too much space

Final Note: Better time estimates can be obtained by explicitly taking average over multiple runs but for the purposes of our comparison, this suffices