

Resolution

Translation
Connectives
Why some smaller/different sets are adequate. Different was at working
Different ways of proving. Proof arguenent valid (truth table. Some i-rule
Proof arguenent valid fronth table.
(-mle i-rale
(analogs in things in the stands
resolution proof.
resolution prov +.
1-10041 (Divingelia a mond dom
T when
Concepes & Disjuncture normal form Tantology

- So resolution is nice, but what is happening when we do it?
- What does a set of clauses mean?
 1 {A, B}
 2 {~A, ~B, C}
 3 {~C, D}
- This set of clauses equivalent to the single WFF (sorry if I get
 () wrong sometimes)
 (((AvB)*(~Av(~BvC))))*(~CvD))

So what happens when we do resolution?

```
1 {A, B}
2 {~A, ~B, C}
3 {~C, D}
4 {~A,~B,D} from 2,3
```

- This set of clauses equivalent to the single WFF ((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))
- So we have just added the new clause to the end of the WFF

 Resolution is built on the rule (not an S/I rules but S/I can prove this) ((PvQ)*(~PvR)) => (QvR)

It is extended to more than one *

```
1 {A, B}2 {~A, ~B, C}3 {~C, D}
```

To

```
1 {A, B}
2 {~A, ~B, C}
3 {~C, D}
4 {~A,~B,D} from 2,3
```


Is the same as saying

```
((((AvB)*(~Av~BvC))*(~CvD)) =>
((((AvB)*(~Av(~BvC))))*(~CvD))*(~Av(~BvD))))
```

- So every step of resolution we add another => and another term to the end
- Can't generate new terms: invalid
- Get the empty clause: valid (negation goes backwards and says we can't assume the conclusion is false so it must be true)

- Why not do 1,2?
 1 {A, B}
 2 {~A, ~B, C}
 3 {~C, D}
 4 {~A,~B,D} from 2,3
 5 {A,~A,C} from 1,2
- This set of clauses equivalent to the single WFF (((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))*((Av~A)vC))

But Pv~P=T TvP=T T*P=P
 so
 (((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))*((Av~A)vC))
 becomes
 (((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))*(TvC))
 (((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))*T)
 ((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))

Which is what we started with, so no information is gained

 Similarly because P*P = P we don't want to generate the same clause more than once (say we did 2,3 again)

```
(((((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD)))*(~Av(~BvD)))*
Is equivalent to what we started with
(((((AvB)*(~Av(~BvC)))*(~CvD))*(~Av(~BvD))))
```


