Chap.10 : Équations différentielles scalaires

Table des matières

1	Généralités sur les équations différentielles linéaires			2
2	Équations différentielles linéaires du premier ordre			3
	2.1		tion	3
	2.2 Résolution de l'équation homogène		ntion de l'équation homogène	4
		2.2.1	Lorsque a est une fonction constante	4
		2.2.2	Cas général	5
	2.3 Résolution de l'équation complète		ıtion de l'équation complète	5
2.4 Recherche de solutions particulières		rche de solutions particulières	7	
		2.4.1	Coefficient constant et second membre constant	7
		2.4.2	Second membre de la forme $b(t) = e^{\alpha t}, \alpha \in \mathbb{K} \dots$	8
		2.4.3	Méthode de variation de la constante	9
		2.4.4	Principe de superposition des solutions	10
3 E.D. scalaires linéaires d		. scala	ires linéaires d'ordre 2	11
	3.1	La the	éorie	11
		3.1.1	Problème de Cauchy	11
		3.1.2	Structure de l'ensemble des solutions	11
	3.2	E.D. 1	inéaires d'ordre 2 à coefficients constants	12
	3.3	E.D.linéaires d'ordre 2 à coefficients non constants		14
		3.3.1	Méthode de Lagrange (ou d'abaissement d'ordre)	14
		3.3.2	Changement de variable	16

1 Généralités sur les équations différentielles linéaires

Dans tout ce chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I désigne un intervalle de \mathbb{R} non vide et non réduit à un point.

Définition 1.1. Équation différentielle linéaire d'ordre nSoit $n \in \mathbb{N}^*$. Une équation différentielle linéaire d'ordre n est une équation de la forme

(E):
$$a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)y'(t) + a_0(t)y(t) = b(t)$$

 $o\dot{u}$:

- les $a_i: I \to \mathbb{K}$ sont des fonctions continues, appelées les coefficients de (E)
- $b: I \to \mathbb{K}$ est continue, et est appelée le second membre de (E)
- l'inconnue est une fonction $y: I \to \mathbb{K}n$ -fois dérivable

On appelle **équation homogène associée à (E)** l'équation différentielle linéaire :

(H):
$$a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)y'(t) + a_0(t)y(t) = 0$$

Remarque 1.2. • En général, une équation différentielle linéaire se note de manière abrégée :

$$a_n(t)y^{(n)} + a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y = b(t)$$

(on ne rappelle pas la dépendance de y en t).

• La notation "y(t)" pour l'inconnue n'est pas figée (même si traditionnellement t désigne ´ le temps »). On peut par exemple noter :

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x),$$

où dans ce cas, l'inconnue y dépend (implicitement) de la variable x.

• Le cas n = 1 a été étudié en $TSI\ 1$: ce sont les équations du premier ordre, de la forme :

$$a_1(t)y' + a_0(t)y = b(t).$$

Exemple 1.3. 1. L'équation $ty'' + t^2y' - 6\ln(t)y = \cos(t)$ est une équation différentielle linéaire d'ordre 2. Ici, les coefficients sont :

$$a_0(t) = -6\ln(t), a_1(t) = t^2 \text{ et } a_2(t) = t$$

Le second membre est $b(t) = \cos(t)$, et ce sont des fonctions continues $I \to \mathbb{R}$, avec $I =]0, +\infty[$

2. L'équation $y'''(t) + y(t) = e^{it}$ est une équation différentielle linéaire d'ordre 3 . Ici, les coefficients sont constants, et le second membre est à valeurs complexes :

$$a_0(t) = a_3(t) = 1$$
, $a_1(t) = a_2(t) = 0$, $b(t) = e^{it}$

- 3. L'équation $y^{(3)} + y^2 = t$ est une équation différentielle non linéaire (d'ordre 3). La non-linéarité vient du y^2 (qui est un produit, et non pas une dérivée seconde!).
- 4. L'équation $y \times y'' = t$ est une équation différentielle non linéaire (d'ordre 2). La non-linéarité vient du produit $y \times y''$.

Définition 1.4. On appelle **solution** sur I de l'équation (E) toute fonction φ , n fois dérivable sur I telle que pour tout $t \in I$:

$$a_n(t)\varphi^{(n)}(t) + a_{n-1}(t)\varphi^{(n-1)}(t) + \ldots + a_1(t)\varphi'(t) + a_0(t)\varphi(t) = b(t)$$

Remarque 1.5. On peut aussi parler de solution de l'équation (E) sur un sous-intervalle $J \subset I$.

2 Équations différentielles linéaires du premier ordre

2.1 Définition

Définition 2.1. • On appelle équation différentielle linéaire du premier ordre, une équation de la forme :

$$(E): y' + a(t)y(t) = b(t)$$

où a et b sont des fonctions continues de I dans \mathbb{K} et l'inconnue y une fonction dérivable de I dans \mathbb{K} .

• Une fonction f est dite solution de (E) lorsque f est dérivable sur I et si :

$$\forall t \in I, f'(t) + a(t)f(t) = b(t)$$

- **Remarque 2.2.** 1. une équation différentielle peut admettre une infinité de solutions sur un intervalle. Par exemple, les solutions de l'équation différentielle y'=t sont toutes les fonctions $t\mapsto \frac{1}{2}t^2+k$ avec $k\in\mathbb{R}$.
 - 2. Dans la pratique, on peut rencontrer une équation du type :

$$a(t)y' + b(t)y = c(t)$$

On se ramène aux conditions de la définition en résolvant l'équation différentielle sur un intervalle I sur lequel $a(t) \neq 0$. En effet, l'équation peut s'y écrire : $y' + \frac{b(t)}{a(t)} = \frac{c(t)}{a(t)}$

Définition 2.3. On appelle **équation homogène associée** à l'équation (E) l'équation :

$$(H): y' + a(t)y = 0$$

Application 2.4. Démontrer que si f et g sont deux solutions de (H) et si λ et μ sont deux réels, alors la fonction $\lambda f + \mu g$ est solution de (H). C'est pour cette raison que l'on dit qualifie ces équations de linéaires.

2.2 Résolution de l'équation homogène

2.2.1 Lorsque a est une fonction constante

Proposition 2.5. Si $a \in \mathbb{K}$ alors les solutions de l'équation différentielle linéaire homogène

$$y' + ay = 0$$

sont les fonctions $y(t) = ce^{-at}$ avec $c \in \mathbb{K}$.

Preuve:

Application 2.6. Résoudre sur \mathbb{R} les équations différentielles suivantes :

- 1. $(E_1): y' + 3y = 0$
- 3. $(E_3): 2y' 3y = 0$
- 2. $(E_2): y'-4y=0$
- 4. $(E_4): 3y' = -4y$

2.2.2 Cas général

Proposition 2.7. Les solutions de (H): y' + a(t)y = 0 sont les fonctions y définies sur I par :

$$y: t \mapsto ce^{-A(t)}$$

 $où c \in \mathbb{K}$ et A est une primitive de a sur I.

Application 2.8. Déterminer les solutions sur \mathbb{R} de l'équation différentielle : $(H): y' - \frac{t}{1+t^2}y = 0$

Application 2.9. 1. Déterminer deux réels a et b tels que :

$$\forall x \in]-1; +\infty[, \frac{x}{x+1} = a + \frac{b}{x+1}]$$

En déduire une primitive de $x \mapsto \frac{x}{x+1} \ sur \]-1;+\infty[.$

2. Résoudre l'équation différentielle : $(H): y' = \frac{-x}{x+1}y$

2.3 Résolution de l'équation complète

Proposition 2.10. Si y_P est une solution particulière de

$$(E); y' + a(t)y = b(t)$$

alors toutes mes solutions de (E) sont de la forme :

$$y = y_P + y_H$$

où y_H est une solution de l'équation homogène associée (H).

Méthode 2.11. Pour résoudre une équation différentielle (E) linéaire d'ordre 1 sur un intervalle I:

- 1. on écrit (H) l'équation homogène associée à (E) et on la résout sur I en explicitant les solutions;
- 2. on cherche une solution particulière y_P de (E) sur I;
- 3. on met en forme les solutions de (E) sur I.

Application 2.12. 1. Vérifier que la fonction $f: x \mapsto 1+x^2$ est solution sur \mathbb{R} de l'équation différentielle

$$(E): y' - \frac{x}{1+x^2}y = x$$

2. En déduire les solutions de (E) sur \mathbb{R} .

Application 2.13. *Soit* $(E): y' + xy = x^2e^{-x}$.

- 1. Résoudre sur \mathbb{R} l'équation homogène (H) associée.
- 2. Déterminer deux réels a et b tels que la fonction

$$h: x \mapsto (ax+b)e^{-x}$$

soit une solution particulière de (E) sur \mathbb{R} .

3. En déduire les solutions de (E) sur \mathbb{R} .

Proposition 2.14. Soit $t_0 \in I$, si on fixe une condition $y(t_0) = y_0$, alors il existe une unique fonction solution du système :

$$\begin{cases} y' + a(t)y = b(t) \\ y(t_0) = y_0 \end{cases}$$

C'est le "problème de Cauchy".

Application 2.15. Déterminer la solution de (E): $y' + xy = x^2e^{-x}$ sur \mathbb{R} qui vérifie f(0) = -1.

2.4 Recherche de solutions particulières

Lorsqu'aucune solution particulière n'est évidente, on dispose de plusieurs méthodes de recherche.

2.4.1 Coefficient constant et second membre constant

Proposition 2.16. Soit $(a,b) \in \mathbb{K}^2$, alors l'équation (E): y' + ay = b admet :

• $si\ a \neq 0$: $y_P(t) = \frac{b}{a}$ comme solution particulière. Les solutions de (E) sont alors les fonctions:

$$y(t) = ce^{-at} + \frac{b}{a} \ avec \ c \in \mathbb{K}$$

• $si\ a = 0$, $y_P(t) = bt$ comme solution particulière. Les solutions de (E) sont alors les fonctions y(t) = bt + c avec $c \in \mathbb{K}$

Application 2.17. Résoudre sur \mathbb{R} l'équation différentielle

$$(E): 2y' = 4y - 7$$

puis déterminer la fonction f solution de (E) qui vérifie f(0) = 1.

Exemple 2.18. Bobine soumise à une tension constante.

La tension U aux bornes de la bobine et l'intensité i du courant qui la traverse sont reliées par l'équation différentielle :

$$L\frac{di}{dt} + Ri = U$$

où L est l'inductance de la bobine et R sa résistance supposée ici non nulle. L'équation différentielle avec les notations de ce chapitre devient :

$$(E): Ly' + Ry = U$$
 avec L, R et U des constantes réelles.

L'inductance étant non nulle :

$$(E): y' + \frac{R}{L}y = \frac{U}{L}$$

Par ailleurs, l'intensité à l'instant initial t=0 est nulle car l'énergie emmagasinée dans la bobine doit être continue. Déterminer la solution i(t).

2.4.2 Second membre de la forme $b(t) = e^{\alpha t}, \alpha \in \mathbb{K}$

Proposition 2.19. Une solution particulière de (E): $y' + ay = P(t)e^{\alpha t}$ où a et α sont des constantes et P un polynôme de degré n est de la forme :

$$y_P(t) = Q(t)e^{\alpha t}$$

avec:

- $si \ \alpha \neq -a : deg(Q) = deg(P) = n ;$
- $si \ \alpha = -a : deg(Q) = deg(P) + 1 = n + 1$

Application 2.20. Résoudre sur \mathbb{R} les équations différentielles suivantes :

Page 8/17

1.
$$(E_1): y' + 2y = (t^2 + 1)e^{-t}$$

2.
$$(E_2): y' + 2y = (t^2 - 1)e^{-2t}$$

2.4.3 Méthode de variation de la constante

Nous savons que la solution générale de l'équation homogène (H) est de la forme $y(t) = \lambda e^{-A(t)}$ où A désigne une primitive de la fonction $t \mapsto a(t)$. L'idée est de recherche une solution particulière y_P de

$$(E): y' + a(t)y = b(t)$$

sous la forme:

$$y_p(t) = \lambda(t)e^{-A(t)}$$

Il s'agit de la méthode de la variation de la constante.

Par substitution de la fonction proposée pour y_P dans (E), on obtient :

$$\begin{aligned} y_P' + a(t)y_P &= \lambda'(t)e^{-A(t)} - a(t)\lambda(t)e^{-A(t)} + a(t)\lambda(t)e^{-A(t)} \\ \Leftrightarrow y_P' + a(t)y_P &= \lambda'(t)e^{-A(t)} = b(t) \\ \lambda'(t) &= b(t)e^{A(t)} \end{aligned}$$

Méthode 2.21. On cherchera une solution particulière y_P de (E) sur I sous la forme $y_p(t) = \lambda(t)e^{-A(t)}$ où λ est une fonction inconnue que l'on déterminera. Ainsi :

- 1. on calculera $y_p'(t)$ pour tout $t \in I$;
- 2. on reportera dans (E): y + a(t)y = b(t) l'expression de y_P et de y'_p et on obtiendra une relation donnant une expression de $\lambda'(t)$;
- 3. on essaie alors d'expliciter $\lambda(t)$ en recherchant une primitive de $t \mapsto b(t)e^{A(t)}$ que l'on reporte ensuite dans l'expression de y_P .

Application 2.22. À l'aide de la méthode de la variation de la constante, déterminer une solution particulière des équations différentielles :

- 1. $(E_1): y' + y = \cos(3t)e^{-t} \operatorname{sur} \mathbb{R}$
- 2. $(E_2): y'-2y=\frac{1}{x}e^{2x} sur \mathbb{R}_+^*$

2.4.4 Principe de superposition des solutions

Proposition 2.23. Si:

- y_1 est une solution particulière de $(E_1): y' + a(t)y = b_1(t)$
- y_2 est une solution particulière de $(E_2): y' + a(t)y = b_2(t)$

alors $y_1 + y_2$ est une solution de $(E): y' + a(t)y = b_1(t) + b_2(t)$

Preuve:

Application 2.24. Résoudre à l'aide du principe de superposition des solutions les équations différentielles suivantes :

- 1. $(E_1): y'-y=x+e^{-x} \ sur \ \mathbb{R}$
- 2. $(E_2): y'-y=2te^{2t}+\frac{e^t}{\sqrt{1-t^2}} sur]-1;1[$

3 E.D. scalaires linéaires d'ordre 2

Dans cette partie on s'intéresse à l'équation différentielle linéaire d'ordre 2 suivante :

$$y'' + a(t)y' + b(t)y = c(t)$$
 (E)

où a,b et c désignent trois fonctions continues de I dans $\mathbb K$ et à son équation homogène associée :

$$y'' + a(t)y' + b(t)y = 0$$
 (H)

3.1 La théorie

3.1.1 Problème de Cauchy

Théorème 3.1. Soient $(y_0, z_0) \in \mathbb{K}^2$ et $t_0 \in I$ fixés.

 $Le\ problème\ de\ Cauchy\ suivant:$

$$\begin{cases} y'' + a(t)y' + b(t)y = c(t) \\ y(t_0) = y_0 \\ y'(t_0) = z_0 \end{cases}$$

 $admet\ une\ unique\ solution\ sur\ I.$

Les égalités $y(t_0) = y_0$ et $y'(t_0) = z_0$ s'appellent les **conditions initiales**.

3.1.2 Structure de l'ensemble des solutions

Théorème 3.2. L'ensemble \mathcal{S}_H des solutions de l'équation (H) est un sousespace vectoriel de l'ensemble des fonctions deux fois dérivables sur I de dimension 2 (plan vectoriel).

Remarque 3.3. Ce théorème signifie que pour trouver toutes les solutions de l'équation homogène, il suffit de trouver deux solutions qui forment une famille libre.

Toutes les autres solutions sont une combinaison linéaire de ces deux solutions particulières.

Théorème 3.4. Principe de superposition

Si y_1 est une solution sur I de l'équation $y'' + a(t)y' + b(t)y = c_1(t)$ et y_2 est une solution sur I de l'équation $y'' + a(t)y' + b(t)y = c_2(t)$, alors $y_1 + y_2$ est une solution sur I de l'équation :

$$y'' + a(t)y' + b(t)y = c_1(t) + c_2(t)$$

Théorème 3.5. L'ensemble \mathscr{S}_E des solutions de l'équation (E) est un sousespace affine de l'ensemble des fonctions deux fois dérivables sur I. De plus \mathscr{S}_E est un plan affine de direction \mathscr{S}_H c'est-à-dire :

$$\mathscr{S}_E = \varphi_p + \mathscr{S}_H$$

 $où \varphi_p$ désigne une solution particulière de (E) sur I.

3.2 E.D. linéaires d'ordre 2 à coefficients constants

Dans cette partie, déjà étudiée en TSI1, on s'intéresse à l'équation différentielle linéaire d'ordre 2 à coefficients constant suivante :

$$y'' + ay' + by = f(t)$$

où a et b sont deux réels et f désigne une fonction continue de I (intervalle de \mathbb{R}) dans \mathbb{R} ou \mathbb{C} et à son équation homogène associée :

$$y'' + ay' + by = 0$$

- **Méthode 3.6.** 1. On cherche TOUTES les solutions réelles de l'équation homogène (H) On cherche y_H sous la forme e^{rt} avec $r \in \mathbb{C}$ solution de l'équation caractéristique : $r^2 + ar + b = 0$.
 - Si l'équation caractéristique admet deux solutions réelles distinctes r_1 et r_2 alors les solutions réelles de l'équation (H) sont de la forme :

$$y_H(t) = Ae^{r_1t} + Be^{r_2t}$$

• Si l'équation admet une seule solution réelle $r = -\frac{b}{2a}$ alors les solutions réelles de l'équation (H) sont de la forme :

$$y_H(t) = (A + Bt)e^{rt}$$

Si l'équation caractéristique admet deux solutions complexes (conjuguées) r₁ = α + iβ et r₂ = α - iβ alors les solutions réelles de l'équation (H) sont de la forme :

$$y_H(t) = e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t))$$

- 2. On cherche UNE solution particulière de l'équation complète (E) :
 - ullet Si la fonction f est constante alors une solution particulière est :

$$y_p(t) = \frac{f}{b}$$
.

- Si la fonction f est de la forme $Ke^{\gamma t}(K$ et $\gamma \in \mathbb{R}$ ou $\mathbb{C})$ on cherche la solution particulière sous la forme :
 - $y_p(t) = \lambda e^{\gamma t}$ si γ n'est pas une solution de l'équation caractéristique.
 - $y_p(t) = t \times \lambda e^{\gamma t}$ si γ est une solution simple de l'équation caractéristique.
 - $y_p(t) = t^2 \times \lambda e^{\gamma t}$ si γ est une solution double de l'équation caractéristique.
- Pour une fonction f exprimée à l'aide de fonctions cos ou sin on passera dans C.

- Pour une fonction f qui est un polynôme on pourra chercher la solution particulière sous forme d'un polynôme aussi.
- 3. Ensemble des solutions Les solutions réelles de l'équation sont toutes les fonctions de la forme $y(t) = y_H(t) + y_p(t)$.
- 4. Valeur de A et B A l'aide des conditions initiales on trouve les valeurs des constantes A et B qui apparaissent dans y_H .

Cas particulier à connaître par cœur :

- 1. Les solutions réelles de l'équation $y'' + \omega^2 y = 0$ avec ω constante réelle sont les fonctions de la forme $y(t) = A\cos(\omega t) + B\sin(\omega t)$.
- 2. Les solutions réelles de l'équation $y'' \omega^2 y = 0$ avec ω constante réelle sont les fonctions de la forme $y(t) = Ae^{\omega t} + Be^{-\omega t}$.

Application 3.7. Résoudre sur \mathbb{R} l'équation différentielle suivante :

$$y'' + 2y' + 2y = 3e^{-x}$$

Proposition 3.8. Second membre de la forme "polynôme-exponentielle".

Soit l'équation différentielle $(E): ay'' + by' + cy = P(t)e^{mt}$ où $(a,b,c) \in \mathbb{K}^3, a \neq 0, P \in \mathbb{K}[t]$ (une fonction polynomiale) et $m \in \mathbb{C}$. Alors, (E) possède une solution de la forme $y_p(t) = Q(t)e^{mt}$, où Q est un polynôme à coefficients dans \mathbb{K} tel que $\deg(Q) \geq \deg(P)$. De plus:

- $\deg(Q) = \deg(P)$ lorsque m n'est pas racine de l'équation caractéristique.
- deg(Q) = deg(P) + 1 lorsque m est racine simple de l'équation caractéristique.
- $\deg(Q) = \deg(P) + 2$ lorsque m est racine double de l'équation caractéristique.

Application 3.9. 1. Déterminer les solutions $y : \mathbb{R} \to \mathbb{C}$ de l'équation $(E_1) : y'' + y = e^{it}$.

2. En déduire les solutions $y : \mathbb{R} \to \mathbb{R}$ de l'équation $(E_2) : y'' + y = \cos(t)$.

3.3 E.D.linéaires d'ordre 2 à coefficients non constants.

On revient dans cette partie à l'équation différentielle linéaire d'ordre 2 suivante :

$$y'' + a(t)y' + b(t)y = c(t)$$
 (E)

où a,b et c désignent trois fonctions continues de I dans $\mathbb K$ et à son équation homogène associée :

$$y'' + a(t)y' + b(t)y = 0(H)$$

Il n'existe pas dans ce cas de méthode générale de résolution mais plusieurs méthodes adaptées à des situations différentes.

3.3.1 Méthode de Lagrange (ou d'abaissement d'ordre)

Application 3.10. On souhaite résoudre, sur $I =]0; +\infty[$, l'équation différentielle suivante :

$$t^2y'' - ty' + y = 1 - \ln(t) \ (E)$$

L'équation homogène associée est :

$$t^2y'' - ty' + y = 0 \ (H)$$

1. Sous quelle forme est-il astucieux de chercher une solution particulière de l'équation (H)?

Déterminer alors une telle solution. On appellera φ cette solution particulière.

- 2. On considère une fonction u deux fois dérivable sur I et on pose, pour tout $t \in I$, $y(t) = u(t) \times \varphi(t)$.

 Justifier que y est deux fois dérivable sur I et exprimer, pour tout
 - Tastifier que y est deux jois derivable sur l'et exprimer, pour tout $t \in I, y'(t)$ et y''(t) en fonction de u'(t) et u''(t).
- 3. Montrer que la fonction y définie dans la question précédente est solution de l'équation (E)si, et seulement si, la fonction u' est solution d'une équation différentielle d'ordre 1 que l'on écrira sous la forme :

$$(E_1): z'(t) + a(t)z(t) = b(t).$$

(Les fonctions a et b sont à déterminer.)

- 4. Résoudre l'équation (E_1) .
- 5. Donner enfin l'ensemble des solutions de (E).

Conditions pour appliquer la méthode de Lagrange

On suppose ici que l'on connait une solution φ de l'équation homogène (H) sur I qui ne s'annule pas sur I.

Pour trouver la solution φ il existe plusieurs techniques :

- chercher la solution sous une forme particulière (polynôme, polynôme × exponentielle,...)
- se laisser guider par l'énoncé
- chercher des solutions développables en série entière (cf. chapitre sur les séries entières)

Méthode 3.11. Principe de la méthode de Lagrange :

- 1. On cherche les solutions de l'équation (E) sous la forme $y(t) = u(t)\varphi(t)$ où u est une fonction deux fois dérivable sur I.
- 2. Il faut alors calculer y'(t) et y''(t) puis remplacer dans l'équation (E).

- 3. On remarque alors que u'est solution d'une équation différentielle d'ordre 1 . On résout cette équation sur I.
- 4. Grâce au point précédent on a trouvé u' (qui dépend d'une constante). On intègre afin de trouver u (cela fait apparaître une nouvelle constante)
- 5. En conclusion, on multiplie u par la solution particulière φ et on a l'ensemble des solutions de (E).

Application 3.12. Résolution sur $I =]0, +\infty[$ de l'équation différentielle $(E): t^2y'' - 2y = 3t^2.$

3.3.2 Changement de variable

Méthode 3.13. On veut effectuer le changement de variable $t = \psi(x)$ sur l'équation (E).

1. On pose $z(x) = y(\psi(x))$ et on calcule z'(x) et z''(x) :

$$z(x) = y(\psi(x))$$

$$z'(x) = \psi'(x)y'(\psi(x))$$

$$z''(x) = \psi''(x)y'(\psi(x)) + (\psi'(x))^{2}y''(\psi(x))$$

2. On réécrit l'équation (E) sous la forme :

$$y''(\psi(x)) + a(\psi(x))y'(\psi(x)) + b(\psi(x))y(\psi(x)) = c(\psi(x))$$

Lorsque le changement de variable est bien choisi on doit voir apparaitre une équation différentielle sur z plus simple que celle de y.

3. On détermine la solution générale de l'équation sur z puis on revient à la variable t (on remplace x par $\psi^{-1}(t)$) pour obtenir les solutions de l'équation (E).

 $\textbf{Application 3.14.} \ \textit{R\'esoudre, sur} \]-1;1[\textit{, l'\'equation diff\'erentielle suivante}:$

$$(1 - t^2)y'' - ty' + y = 0.$$

On effectuera le changement de variable $t = \cos(x), x \in]0; \pi[.$

17