Data Management & Analysis Final Project

Replication and Extention for Acemoglu, Naidu, Restrepo and Robinson (2019)

(Name:) (University ID:) (Name:) (University ID:)

(Submission Due:) 2025/02/06

Contents

	0.1	Setup		2
1	Abo	out thi	s Report	2
	1.1	Projec	et Type	2
	1.2	Summ	hary of the Paper	2
		1.2.1	What the problem is	2
		1.2.2	Why it is important	2
		1.2.3	How you solve the problem	2
		1.2.4	What we find	2
	1.3	Data		2
	1.4 Empirical Methods		rical Methods	3
		1.4.1	Event Study (Figure.1)	3
		1.4.2	Dynamic Panel Data Model (Table.2)	3
2	Rep	olicatio	on	3
	2.1	Figure	2.1	3
		2.1.1	Preprocessing	3
		2.1.2	Estimation	4
		2.1.3	Plot	5
	2.2	Table.	1	6
	2.3	Table.	2	8
	2.4	Figure	2.2	8
	2.5	Table.	3	8
	2.6	Table.	4	8
	2.7		5	8

0.1 Setup

```
pacman::p_load(
 rmdformats,
 knitr,
 tinytex,
 haven,
 tidyverse,
 kableExtra
## Global options
options(max.print="75")
opts_chunk$set(fig.align="center",
               echo=TRUE,
               cache=TRUE,
               prompt=FALSE,
               tidy=FALSE,
               comment=NA,
               message=FALSE,
               warning=FALSE)
opts_knit$set(width=75)
```

1 About this Report

- 1.1 Project Type
- 1.2 Summary of the Paper
- 1.2.1 What the problem is
- 1.2.2 Why it is important
- 1.2.3 How you solve the problem
- 1.2.4 What we find
- 1.3 Data

```
data <- read_dta("data/raw/DDCGdata_final.dta")

# Define the function to summarize the data
summarize_data <- function(data, n = 10) {
   cat("Sample size (number of rows):", nrow(data), "\n")
   cat("Number of variables (columns):", ncol(data), "\n")
   cat("Variable names (first", n, "names):\n")
   print(head(colnames(data), n))
}

summarize_data(data)</pre>
```

```
Sample size (number of rows): 9384

Number of variables (columns): 1177

Variable names (first 10 names):

[1] "country_name" "wbcode"

[3] "year" "gdppercapitaconstant2000us"

[5] "lp_bl" "ls_bl"

[7] "lh_bl" "taxratio"

[9] "region" "wbcode2"
```

1.4 Empirical Methods

- 1.4.1 Event Study (Figure.1)
- 1.4.2 Dynamic Panel Data Model (Table.2)

2 Replication

2.1 Figure.1

2.1.1 Preprocessing

```
# Rename '_ID' to 'id', sort by year within each id, then ungroup
data_f1 <- data %>%
 rename(id = "_ID") %>%
  group_by(id) %>%
  arrange(year) %>%
  ungroup()
# For each id, create a lagged democracy indicator and define the transition:
# - Transition = 1 if it goes from 0 to 1 (non-democracy to democracy)
# - Transition = 0 if it remains at 0 (non-democracy)
# - Otherwise, transition is set to NA
data_f1 <- data_f1 %>%
 group_by(id) %>%
 arrange(year) %>%
  mutate(prev_dem = lag(dem, 1)) %>%
 ungroup() %>%
 mutate(transition = case_when(
   dem == 1 & prev_dem == 0 ~ 1,
   dem == 0 & prev_dem == 0 ~ 0,
   TRUE ~ NA_real_
  ))
# Compute lags for 'y' (lags 1 through 4) within each id and filter out rows
# with any missing lag values
data_f1 <- data_f1 %>%
 group_by(id) %>%
  arrange(year) %>%
 mutate(
   lag1 = lag(y, 1),
   lag2 = lag(y, 2),
```

```
lag3 = lag(y, 3),
   lag4 = lag(y, 4)
  ) %>%
  ungroup() %>%
  filter(!is.na(lag1) & !is.na(lag2) & !is.na(lag3) & !is.na(lag4))
# Calculate GDP differences for past periods:
# For t from -15 to -2, create columns 'gdpDiff_m[abs(t)]' as the difference
# between the lagged 'y' (by abs(t)) and lag1
for (t in -15:-2) {
 col_name <- paste0("gdpDiff_m", abs(t))</pre>
 data_f1 <- data_f1 %>%
   group_by(id) %>%
   arrange(year) %>%
   mutate(!!col_name := lag(y, abs(t)) - lag1) %>%
   ungroup()
}
# Set the GDP difference for the immediate past period (m1) to 0
data_f1 <- data_f1 %>%
 mutate(gdpDiff_m1 = 0)
# Compute the GDP difference for the current period (0)
# as the difference between 'y' and lag1
data_f1 <- data_f1 %>%
 group_by(id) %>%
 arrange(year) %>%
 mutate(gdpDiff_0 = y - lag1) %>%
 ungroup()
# Calculate GDP differences for future periods:
# For t from 1 to 30, create columns 'qdpDiff_p[t]'
# as the difference between the lead of 'y' (by t) and lag1
for (t in 1:30) {
  col_name <- paste0("gdpDiff_p", t)</pre>
 data_f1 <- data_f1 %>%
   group_by(id) %>%
   arrange(year) %>%
   mutate(!!col_name := lead(y, t) - lag1) %>%
   ungroup()
}
# Keep only rows where the transition value is not missing
data_f1 <- data_f1 %>% filter(!is.na(transition))
```

2.1.2 Estimation

```
# Define a function to estimate the Average Treatment Effect on the Treated (ATET)
estimateATET <- function(outcome_col) {
    # Filter out rows with missing outcome or transition values
    sub_data <- data_f1 %>% filter(!is.na(.data[[outcome_col]]), !is.na(transition))
    if(nrow(sub_data) == 0) return(NA)
```

```
# Create a factor for 'year' with sorted levels
  year_levels <- sort(unique(sub_data$year))</pre>
  sub_data <- sub_data %>% mutate(year_factor = factor(year, levels = year_levels))
  # Split the data into control (transition == 0) and treated (transition == 1) groups
  control_data <- sub_data %>% filter(transition == 0)
  treated_data <- sub_data %>% filter(transition == 1)
  # Return NA if the control group lacks sufficient observations or year variation
  if(nrow(control_data) < 2 || length(unique(control_data$year)) < 2) return(NA)
  # Fit a linear model on the control group with year dummies (without intercept)
  model_formula <- as.formula(paste(outcome_col, "~ year_factor - 1"))</pre>
  control_model <- tryCatch(lm(model_formula, data = control_data),</pre>
                             error = function(e) NULL)
  if(is.null(control_model)) return(NA)
  # Predict outcomes for the treated group using the control model
  predicted_outcomes <- tryCatch(predict(control_model, newdata = treated_data),</pre>
                                  error = function(e) rep(NA, nrow(treated_data)))
  # Compute treatment effects as the difference between actual and predicted outcomes
  treatment_effects <- treated_data[[outcome_col]] - predicted_outcomes</pre>
  # Return the mean treatment effect on the treated (ATET)
 mean(treatment_effects, na.rm = TRUE)
\# Define relative time periods: pre-treatment (-15 to -1) and post-treatment (0 to 30)
relative_times \leftarrow c(seq(-15, -1), seq(0, 30))
atets <- numeric(length(relative_times))</pre>
# Loop over each relative time period to estimate ATET for the corresponding outcome column
for(i in seq_along(relative_times)) {
 t_val <- relative_times[i]</pre>
  # Set the column name based on whether the period is before (m), during (0),
  # or after (p) treatment
  if(t val < 0) {
    col_name <- paste0("gdpDiff_m", abs(t_val))</pre>
  } else {
    col_name <- if(t_val == 0) "gdpDiff_0" else paste0("gdpDiff_p", t_val)</pre>
 atets[i] <- estimateATET(col_name)</pre>
# Create a data frame with the relative time periods and their corresponding ATET estimates
results_df <- data.frame(RelativeTime = relative_times, ATET = atets)</pre>
```

2.1.3 Plot

Figure 1: Event Study

2.2 Table.1

```
# Define variable names and display labels
var_info <- tibble(</pre>
  var = c("gdppercapitaconstant2000us", # data column name
          "ginv",
          "tradewb",
          "prienr",
          "secenr",
          "taxratio",
          "mortnew",
          "unrestn",
          "marketref"),
 label = c("GDP per capita",
                                         # table label
            "Investment share of GDP",
            "Trade share of GDP",
            "Primary-school enrollment rate",
            "Secondary-school enrollment rate",
            "Tax revenue share of GDP",
```

```
"Child mortality per 1,000 births",
            "Unrest rate",
            "Market reforms index (0-100)")
)
# Calculate descriptive statistics
calc_summary <- function(df, var, group_var) {</pre>
  df %>%
   filter(!is.na(.data[[var]])) %>%
                                           # remove NAs
    group_by({{ group_var }}) %>%
    summarise(
      Observations = n(),
                                           # count
                 = mean(.data[[var]], na.rm = TRUE),
      Mean
                  = sd(.data[[var]], na.rm = TRUE),
                 = "drop"
      .groups
   ) %>%
   mutate(Variable = var)
                                          # record variable name
}
# List of variables to summarize
var_list <- var_info$var</pre>
# Summarize variables, reshape by democracy status, and add labels
summary_table <- lapply(var_list, function(x) calc_summary(data, x, dem)) %>%
  bind_rows() %>%
 pivot_wider(
   names_from = dem,
   values_from = c(Observations, Mean, SD),
   names_glue = "{.value}_dem{dem}"
  ) %>%
  # Rename columns for clarity
  rename(
   Observations_Nondem = Observations_dem0,
                       = Mean_dem0,
   Mean_Nondem
   SD Nondem
                        = SD dem0,
   Observations_Dem
                       = Observations_dem1,
   Mean Dem
                        = Mean_dem1,
   SD Dem
                        = SD dem1
  ) %>%
  # Join with var_info to add labels
  left_join(var_info, by = c("Variable" = "var")) %>%
  # Rearrange columns and use label as Variable
  select(label,
         Observations_Nondem, Mean_Nondem, SD_Nondem,
         Observations_Dem,
                              Mean_Dem,
                                           SD_Dem
  ) %>%
  rename(Variable = label)
# Format table for PDF output with a multi-column header
colnames(summary_table) <- c("Variable",</pre>
                             "Observations", "Mean", "SD",
                             "Observations", "Mean", "SD")
```

```
latex_table <- summary_table %>%
kbl(
    caption = "Summary Statistics by Democracy Status",
    format = "latex",
    booktabs = TRUE,
    digits = 2
) %>%
    add_header_above(c(" " = 1, "Nondemocracies" = 3, "Democracies" = 3)) %>%
    kable_styling(latex_options = c("HOLD_position", "striped"))

# Save the table as a TeX file
save_kable(latex_table, file = "output/table_1.tex")
```

Table 1: Summary Statistics by Democracy Status

	Nondemocracies			Democracies		
Variable	Observations	Mean	SD	Observations	Mean	SD
GDP per capita	3376	2074.46	3838.65	3558	8149.97	9334.83
Investment share of GDP	3225	21.82	10.23	3340	23.28	7.41
Trade share of GDP	3175	71.63	51.06	3485	77.15	41.04
Primary-school enrollment rate	2861	90.29	29.51	2823	101.60	15.86
Secondary-school enrollment rate	2424	45.76	31.77	2538	75.40	29.78
Tax revenue share of GDP	3122	0.16	0.09	2564	0.21	0.10
Child mortality per 1,000 births	4142	77.29	49.64	3615	33.26	32.65
Unrest rate	3739	28.70	45.24	3610	21.91	41.37
Market reforms index (0–100)	3476	21.89	23.26	2829	52.11	24.75

- 2.3 Table.2
- 2.4 Figure.2
- 2.5 Table.3
- 2.6 Table.4
- 2.7 Table.5
- 3 Extention