CURABLE COMPOS

Número de patente:

JP2214759

Fecha de publicación:

1990-08-27

inventor(es):

YUKIMITSU SHINTAROU; others: 02

Solicitante(s)::

KANEGAFUCHI CHEM IND CO LTD

Número de publicación: 🗆 JP2214759

Número de solicitud:

JP19890036602 19890216

Número(s) de prioridad:

Clasificación CIP:

C08L33/00; C08G59/40; C08L71/00

Clasificación CE:

Equivalentes:

JP2964340B2

Resumen

PURPOSE:To obtain the subject composition giving cured material having improved toughness, adhesive strength or weatherability, etc., containing specific alkyl (meta)acrylate-based polymer, oxyalkylene-based polymer and epoxy resin.

CONSTITUTION:(A) Alkyl (meta)acrylate-based polymer having hydroxyl group or hydrolyzable group and at least one silicon atom-containing group crosslinkable by forming siloxane bonding [preferably copolymer composed of alkyl (meta)acrylate monomer unit having 1-8C alkyl group and alkyl (meta) acrylate monomer unit having >=10C alkyl group] is mixed with (B) oxyalkylene- based polymer having hydroxyl group or hydrolyzable group and silicon atom- containing crosslinkable by forming siloxane bonding and (C) epoxy resin and contained in the aimed composition.

Datos proporcionados por la base de datos de esp@cenet test - 12

⑩ 日本国特許庁(JP)

① 特許出願公開

平2-214759 ⑫ 公 開 特 許 公 報 (A)

®Int. Cl. 3

識別記号

庁内築理番号

@公開 平成2年(1990)8月27日

C 08 L 33/00 C 08 G 59/40

LJE A B LŎĖ

7921-4 J 8416-4 J 8416-4 J 7921 - 4 J

C 08 L 71/00

密査請求 未請求 請求項の数 3 (全15頁)

会発明の名称 硬化性組成物

> 期 平1-36602 201特

願 平1(1989)2月16日 20出

個発 明 者 光 新太郎 兵庫県高砂市高砂町沖浜町2-63

700発明 者 若 林

兵庫県神戸市垂水区舞子台2丁目8番B-102 宏 兵庫県神戸市北区策紫が丘4-8-7 克 彦

⑫発 明 者 Ш 詖

鐘淵化学工業株式会社 勿出 顋 人

大阪府大阪市北区中之島3丁目2番4号

弁理士 三枝 英二 外2名 ②代 理 人

明知審

発明の名称 硬化性組成物

特許額求の範囲

- ①(A) 珪案原子に結合した水酸基又は加水分解性 基を有し、シロキサン結合を形成することに より架橋し得る珪窯原子含有基を少なくとも 1個有する (メタ) アクリル酸アルキルエス テル系重合体、
 - (B) 珪梁原子に結合した水酸基又は加水分解性 基を有し、シロキサン結合を形成することに より架構し得る珪素原子含有益を少なくとも 1個有するオキシアルキレン系置合体、及び
 - (C) エポキシ樹脂

を含有してなる硬化性組成物。

② (A) 成分である (メタ) アクリル酸アルキル エステル系重合体の分子鎖が実質的に (1)炭菜 致1~8のアルキル茲を有する (メタ) アクリ ル酸アルキルエステル単量体単位と (2)炭 案数

10以上のアルキル基を有する (メタ) アクリ ル酸アルキルエステル単量体単位とからなる共 **壐合体である請求項①記號の組成物。**

③ エポキシ基と反応し得る官能基と上記珪索原 子含有基とを分子中に含有するシリコン化合物 が配合された論求項①記載の組成物。

発明の詳細な説明

産業上の利用分野

本発明は、硬化性組成物に関する。更に詳しく は、本発明は、強靭性、強度、耐候性等の改善さ れた硬化物を与え得る硬化性組成物に関する。

従来の技術及びその問題点

エポキシ樹脂は、接着性、耐摩耗性、耐薬品性、 耐湿性等の優れた特性のために、塗料や接着剤を 始め、各種成形材料、合板、積腐品等幅広い用途 に使用されているが、エポキシ樹脂は硬化物が脆 いという欠点を有している。例えばエポキシ樹脂 を接着剤に配合した場合、剥離強度の乏しい接着

剤が得られるに過ぎない。

而して、耐候性に優れ、しかも硬化物により一 層優れた剪断接着強度や剥離接着強度を与え得る 硬化性組成物の開発が望まれているのが現状であ る。

問題点を解決するための手段

本発明の目的は、耐険性に優れ、しかも一段と

て重要な耐候性にも優れたものである。

本発明において、(A) 成分は反応性珪素基を少なくとも1個有する (メタ) アクリル酸アルキルエステル系重合体 (以下「反応性珪素基合有 (メタ) アクリル酸アルキルエステル系重合体」という) である。

反応性珪素基含有(メタ)アクリル酸アルキルエステル系重合体は、分子鎖の50重量%(以上 単に「%」と記す)以上、好ましくは70%以上が(メタ)アクリル酸アルキルエステル単位からなることが好ましく、上記重合体の分子鎖が単一の(メタ)アクリル酸アルキルエステル単位から構成されていてもよく、2種以上の(メタ)アクリル酸アルキルエステル単位から構成されていてもよく、2種以上の分子鎖を使用してもよく、2種以上の分子鎖を使用してもよく、2種以上の分子鎖を併用してもよい。

上記重合体の分子鎖の50%以上が(メタ)ア

優れた強靭性、各種接着強度等を備えた硬化物を 与え得る、エポキシ樹脂と反応性珪素基を有する オキシアルキレン系重合体を含有する硬化性組成 物を提供することにある。

本発明の上記目的は、エポキシ樹脂及び反応性 珪素基を有するオキシアルキレン系重合体に下記 (A) 成分である特定の(メタ)アクリル酸アルキ ルエステル系重合体を配合することにより達成さ れる。

即ち、本発明は、

- (A) 反応性珪素基を少なくとも1個有する (メタ) アクリル酸アルキルエステル系重合体、
- (B) 反応性珪素基を少なくとも1個有するオキシアルキレン系重合体、及び
- (C) エポキシ樹脂

を含有してなる硬化性組成物に係る。

本発明の硬化性組成物から得られる硬化物は、 優れた接着性を有する他、土木用接着剤等におい

クリル酸アルキルエステル単位から構成されていない場合には、(B) 成分として用いられるオキシアルキレン系重合体に対する相溶性が乏しくなり、 実用上問題を生じ易くなる。

上記 (メタ) アクリル酸アルキルエステル単位を構成するアルキル甚は、好ましくは炭素数 1 ~30のアルキル基であり、直鎖状のアルキル基であっても、分枝鎖状のアルキル基であっても、分枝鎖状のアルキル基であっては、例えばメチル基、エチル基、ロープロビル基、ロープロビル基、1 ーメチルペンチル基、2 ーメチルペンチル基、2 ーメチルペンチル基、1 ーエチルプチル基、3 ーメチルペンチル基、1 ーエチルプチル基、2 ーエチルプチル基、5 ートリメチルペキシル基、2 ーエチルペキシル基、カウリル基、ドコサニル基、ベヘニル基等を挙げることができる。

上記分子鎖の中では、一般式 (1)

(式中R¹ は炭索数1~8のアルキル基、R² は水索原子又はメチル基を示す。)

で表わされる炭索数1~8のアルキル基を有する アクリル系単量体単位と、一般式 (2)

〔式中R²は前記に同じ。R³は炭素数10以上のアルキル基を示す。〕

で表わされる炭素数10以上のアルキル基を有するアクリル系単量体単位とを含有する分子鎖が、(B) 成分であるオキシアルキレン系質合体との相溶性をより一層向上させ得るので、好ましい。

上記一般式(1)の単盘体単位と一般式(2)

い。

上記反応性珪朶基含有(メタ)アクリル酸アル キルエステル系壐合体に含有されていてもよい式 (1)及び(2)以外の単量体単位としては、例 えばアクリル酸、メタクリル酸等のアクリル酸; ジ(メタ)アクリル酸エチレングリコール、ジ (メタ) アクリル酸トリエチレングリコール、ジ (メタ) アクリル酸テトラエチレングリコール、 ジ (メタ) アクリル酸-1, 3-プチレングリコ ール、トリ(メタ)アクリル酸トリメチロールブ ロパン等の多官能性(メタ)アクリル酸エステル; アクリルアミド、メタクリルアミド、N-メチロ ールアクリルアミド、N-メチロールメタクリル アミド等のアミド化合物、グリシジルアクリレー ト、グリシジルメタクリレート等のエポキシ基含 有単数体、ジエチルアミノエチルアクリレート、 ジエチルアミノエチルメタクリレート、アミノエ チルピニルエーテル等のアミノ化合物;その他ア

の単量体単位との割合は、重量比で前者:後者= 95:5~40:60が好ましく、前者:後者= 90:10~60:40がより好ましい。

上記一般式 (1) において、R ! としては、例えばメチル基、エチル基、n - プロピル基、n - プチル基、t - プチル基、2 - エチルヘキシル基等の炭素数1~8、好ましくは1~4、更に好ましくは1~2のアルキル基が挙げられる。尚、R ! のアルキル基は、単独でもよく、2種以上混合していてもよい。

上記一般式(2)において、R³としては、例えばラウリル基、トリデシル基、セチル基、ステアリル基、ドコサニル基、ベヘニル基等の炭 菜 10以上、 通常は10~30、 好ましくは10~20の長鎖アルキル基が挙げられる。尚、 R³のアルキル基は、R¹のアルキル基の場合と同様、単独でもよく、例えば炭素数12と13との混合物のように、2種以上混合したものであってもよ

クリロニトリル、スチレン、αーメチルスチレン、 アルキルビニルエーテル、塩化ビニル、酢酸ビニ ル、プロピオン酸ビニル、エチレン等に基因する 単母体単位等を挙げることができる。

上記(メタ)アクリル酸アルキルエステル系質合体中に含有される反応性珪余基としては、特に限定されるものではないが、代表的なものを示す。と、例えば一般式 (3)

$$\begin{pmatrix}
R & 4 \\
| & 2-b \\
S & i & -0 \\
X & b
\end{pmatrix}
\begin{pmatrix}
R & 5 \\
| & 3-a \\
S & i & -X \\
a
\end{pmatrix}$$
(3)

【式中、R*及びR*は、いずれも炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基又は(R') **SiO-(R'は炭素数1~20の1価の炭化水案基であり、3個のR'は同一であってもよく、異なっていてもよい)で表わさ

れるトリオルガノシロキシ基を示し、R 4 又はR 5 が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。 X は水酸 基又は加水分解性基を示し、 X が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。 a は 0 、 1 、 2 又は 3 を、 b は 0 、 1 又は 2 をそれぞれ示す。また m 個の

におけるりは同一である必要はない。 m は 0 又 は 1 ~ 1 9 の整数を示す。但し、 a + (b の和) ≥ 1 を満足するものとする。) で表わされる基 が挙げられる。

上記Xで示される加水分解性基としては、特に限定されず、従来公知の加水分解性基が包含され、 具体的には、例えば水素原子、ハロゲン原子、ア

20個程度まであってもよい。特に一般式(4)

〔式中、R5 、X及びaは前記と同じ。〕 で表わされる反応性珪素基が入手容易性の点から 好ましい。

また、上記一般式(3)におけるR 4 及びR 5 の具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R'がメチル基、フェニル基等である(R') 2 SiO-で示されるトリオルガノシロキシ基等が挙げられる。これらの中でR4、R5 としてはメチル基が特に好ましい。

反応性珪素基は(メタ)アクリル酸アルキルエステル系重合体1分子中に少なくとも1個、好ま

ルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらのうちでは、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノオ、アミド基、アミノオキシ基、メルカプト基及びアルケニルオキシ基が好ましく、加水分解性がマイルドで取扱い易いという観点から、アルコキシ基が特に好ましい。

鉄加水分解性基や水酸基は1個の珪素原子に1~3個の範囲で結合することができ、(a+bの和)は1~5の範囲が好ましい。加水分解性基や水酸基が反応性珪素基中に2個以上結合する場合には、それらは同一であってもよく、異なっていてもよい。

前記反応性珪素基を形成する珪素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結された珪素原子の場合には、

しくは1.1~20個存在するのがよい。分子中に含まれる反応性珪素基の数が1個未満になると、得られる硬化物の強度が低下する傾向となり、好ましくない。

反応性珪素基は(メタ)アクリル酸アルキルエステル系重合体分子鎖の末端に存在してもよく、内部に存在してもよく、或いは両方に存在してもよい。特に反応性珪素基が分子鎖末端に存在する.場合には、最終的に形成される硬化物に含まれる(メタ)アクリル酸アルキルエステル系重合体成分の有効網目鎖量が多くなるため、高強度で高伸びのゴム状硬化物が得られ易くなる等の点から好ましい。

上記(メタ)アクリル酸アルキルエステル系重合体は、ピニル重合、例えばラジカル反応によるピニル重合により、式(1)及び(2)の単量体単位を与え得る単量体や、必要に応じこれらの単 世体と共近合可能な単量体を、例えば重合性不飽

和結合と反応性珪素基とを有する化合物と共に重 合させる通常の溶液重合法や塊重合法等により得 ることができる。この重合反応は、上記単量体及 び要すればラジカル開始剤等を、好ましくは所望 の数平均分子量の該重合体を得るために必要に応 じて連鎖移動剤を加えて50~150℃程度で行 なわれる。連鎖移動剤としては、特に制限はない が、連鎖移動効率や価格等の点からメルカプタン が好ましい。使用し得るメルカプタンとしては、 特に限定されず、例えばn-ドデシルメルカプタ ン、t-ドデシルメルカプタン、ベンジルメルカ プタン、オレフィン基や反応性珪素基等の官能基 を有するメルカプタン(例えばメルカプトシラン 等)等を挙げることができる。溶剤は、使用して も、使用しなくてもよいが、溶剤を用いる場合に は、エーテル類、炭化水素類、酢酸エステル類等 の非反応性溶剤が望ましい。

上記重合性不飽和結合と反応性珪素基とを有す

- CH₂ OCOC₆ H₄ COO (CH₂)₃ - 等の2価の有機基又は直接結合を示す。R²、 X及びaは前記に同じ。)

で表わされる化合物である。

上記一般式 (6) の化合物を具体的に示せば、 下記の通りである。

る化合物としては、例えば一般式 (5)

$$R^{8} = \begin{pmatrix} R^{\frac{4}{2}-b} \\ S & i - O \\ I \\ X_{b} \end{pmatrix} \begin{pmatrix} R^{\frac{5}{3}-a} \\ S & i - X_{a} \end{pmatrix}$$
 (5)

【式中、R⁵ は重合性不飽和結合を有する有機残 基を示す。R⁴、R⁵、X、a、b及びmは前 記に同じ。】

で表わされる化合物を挙げることができる。上記 一般式(5)で表わされる化合物の中でも、特に 好ましい化合物は一般式(6)

$$C H_{2} = C - A - S i - X_{a}$$

$$(C H_{3})_{3-a}$$
(6)

【式中、Aは-COOR 7 (R^7 は-CH₂ -、-CH₂ CH₂ -等の炭素数1~6の2価のアルキレン基)、-CH₂ C₆ H₄ CH₂ CH₂、

$$CH_{2} = CH - CH_{2} \text{ OC} \xrightarrow{0} CO (CH_{2})_{3} - \\ - Si(OCH_{3})_{3}.$$

等を挙げることができる。これらの中でも、特に

$$CH_{2} = C$$
 $CO (CH_{2})_{3} Si(OCH_{3})_{3}$

が好ましい。

本発明で用いられる上記反応性珪素基含有(メ

Y 基としてピニル基を有し、更に重合性不飽和 結合を有する化合物としては、例えばアクリルマウリル、ジアリルフタクリル酸アリル、ジアリレート、オペンチルグリコールジオクリレート、1.6ーペンタンジオールジアクリレート、1.6ーペキンジオールジアクリレート、ポリエチレンカールジオールジアクリレート、ポリエチンカールジアクリレート、ポリロピレングリコールジアクリレート、ポリロピレングリコールジアクリレート、ジピニルペンゼン、ブタジェン等を挙げることができる。

Y 基として水索化珪素基を有し、更に反応性 珪素基を有する化合物としては、例えば一般式 (7) タ)アクリル酸アルキルエステル系重合体は、反応性珪素基を有さない重合体を製造した後、反応性珪素基を導入する方法によっても製造され得る。斯かる方法としては、例えば、重合性不飽和結合及び反応性官能基(以下「Y基」という)を、上記式(1)及び(2)で表わされる単位を与え得る単曲体に添加して共重合させ、次いで生成した共重合体を反応性珪素基及びY基と反応し得る官能基(以下「Y」官能基」という)を有する化合物(例えばイソシアネート基と一Si(〇CH3)。基を有する化合物)と反応させる方法を挙げることができる。

上記Y基及びY、基の例としては、種々の基の 組合せがあるが、一例としてY基としてビニル基、 Y、基として水素化珪素基(H-Si)を挙げる ことができる。Y基とY、基とはヒドロシリル化 反応により結合し得る。

$$H = \begin{pmatrix} R_{1}^{4} \\ i \\ S_{1}^{2} - b \\ S_{1}^{i} - O \end{pmatrix} \begin{pmatrix} R_{3}^{5} \\ i \\ 3 - a \\ S_{1}^{i} - X_{a} \end{pmatrix}$$
 (7)

【式中、R⁴ 、R⁵ 、X、a、b及びmは前記に 同じ。】

で表わされるヒドロシラン化合物を挙げることができる。

上記一般式 (7) のヒドロシラン化合物の具体 例としては、例えばトリクロロシラン、メチルジ クロロシラン、ジメチルジクロロシラン、トリメ チルシロキシジクロロシラン等のハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、 メチルジメトキシシラン、フェニルジメトキシシ ラン、1.3.3.5.5.7.7ーペプタメチルー1.1ージメトキシテトラシロキサン等のアルコキシシラン類;メチルジアセトキシシラン等のトリメチルシロキシメチルアセトキシシラン等の アシロキシシラン類; ピス (ジメチルケトキシメート) メチルシラン、ピス (シクロヘキシルケトキシメート) メチルシラン、ピス (ジエチルケトキシメート) トリメチルシロキシシラン等のケトキシメートシラン類; ジメチルシラン、トリメチルシロキシメチルシラン、1, 1 - ジメチルー2, 2 - ジメチルジシロキサン等のハイドロシラン類; メチルジ (イソプロペニルオキシ) シラン等のアルケニルオキシシラン類等が挙げられるが、本発明ではこれらに限定されるものではない。

上記ヒドロシラン化合物としてハロゲン化シラン類を用いる場合には、ハロゲン原子が導入されるが、このハロゲン原子は常法に従い他の加水分解性基、例えばアルコキシ基、アミノキシ基、アミノ基、チオアルコキシ基等に変換され得る。

上記反応性珪索基含有 (メタ) アクリル酸アルキルエステル系重合体は、数平均分子量で500~10000程度のものが取扱いの容易さの点

から好ましく、1000~75000程度のものが更に好ましい。本発明では、斯かる重合体を、 1種単独で使用してもよいし、2種以上併用して もよい。

本発明において(B) 成分は、反応性珪素基を少なくとも1個有するオキシアルキレン系重合体 (以下「反応性珪素基含有オキシアルキレン系重 合体」という)である。

反応性珪素基含有オキシアルキレン系重合体の 分子領は、本質的に一般式:

〔式中、 R^7 は 2 価の有機基を示す。〕 で表わされる繰返し単位を有するものが好ましい。 R^7 の具体例としては、

- C H₂ C H₂ C H₂ C H₂ - 等が挙げられる。 上記オキシアルキレン系電合体の分子鎖は1種だ けの繰返し単位からなっていてもよいし、2種以 上の繰返し単位よりなっていてもよい。 R⁷ とし

- R⁷ - O - で表わされる繰返し単位は上記オキシアルキレン系重合体中に50%以上、更には70%以上、特には80%以上含まれることが好ましい。

上記オキシアルキレン系重合体中の反応性珪素 基は、上記(メタ)アクリル酸アルキルエステル 系重合体中の反応性珪素基と同じものである。

上記オキシアルキレン系重合体中の反応性珪素 基の個数は、充分な硬化性を得るという点からす ると、平均で1個以上5個以下、更には1.1個以上、特に1.5~4個が好ましい。また反応性 建業基は、オキシアルキレン系重合体分子鎖の末端に存在してもよいし、両端に存在してもよいが、 分子鎖末端に存在するのが好ましい。

上記オキシアルキレン系重合体の数平均分子量は500~3000程度のものが好ましく、3000~15000程度のものが更に好ましい。本発明では、斯かる重合体を、1種単独で使用してもよいし、2種以上併用してもよい。

上記オキシアルキレン系重合体は、例えば上記 一般式 (7) で表わされるヒドロシラン化合物と 一般式 (8)

$$\begin{array}{c|c}
R^{8} \\
C H_{2} = C - R^{9} - (0)_{c} -
\end{array} \tag{8}$$

【式中、R⁸ は水素原子又は炭素数1~20の1 価の有機基、R⁹ は炭素数1~20の2価の有 機基、cは0又は1を示す。】 で表わされるオレフィン基を有するオキシアルキレン系量合体とを白金化合物等の70族型移金属化合物等を触媒として付加反応させる等の方法により毀造される。

上記以外のオキシアルキレン系質合体を製造する方法としては、

① 水酸基末端オキシアルキレン系重合体にトルエンジイソシアネート等のポリイソシアネート 化合物を反応させてイソシアネート基末端アルキレンオキシド系重合体とし、その後該イソシアネート基に一般式(9)

$$\begin{array}{c}
 R & 5 \\
 i & 3-a \\
 W - R^{9} - S & i - (X)_{a}
\end{array}$$
(9)

【式中、Wは水酸基、カルボキシル基、メルカプト基及びアミノ基(1級又は2級)から選ばれた活性水素含有基を示す。 R⁵ 、 R⁹ 、 X及びaは前記に同じ。)

で表わされるシリコン化合物のW基を反応させ

全部の X 基を更に他の加水分解性基又は水酸基に変換してもよい。例えば X 基がハロゲン原子又は水素原子の場合には、これらをアルコキシ基、アシルオキシ基、アミノオキシ基、アルケニルオキシ基、水酸基等に変換して使用するのが好ましい。一般式(8)において、R 8 は水素原子又は炭ネカるが、水素原子又は炭化水素基であるのが好ましく、特に水素原子であるのが好ましい。 R 9 は炭余数 1~20の2 価の有機基であるが、

-R10-,-R100R10-

O || -R¹ ° -C - (R¹ ° は炭索数1~10の2価 の炭化水泵基)であるのが好ましく、特にメチレ ン基であるのが好ましい。

一般式(8)で表わされるオレフィン基を有す

る方法、

- ② 上記一般式(8)で表わされるオレフィン基を有するオキシアルキレン系重合体のオレフィン基に、Wがメルカプト基である一般式(9)で表わされるシリコン化合物のメルカプト基を付加反応させる方法、及び
- ③ 水酸基末端オキシアルキレン系重合体の水酸 基に、一般式 (10)

$$\begin{array}{c}
R & 5 \\
1 & 3-a \\
O & C & N - R^{g} - S & i - (X)
\end{array}$$

〔式中、R⁵、R⁹、X及びaは前記に同じ。〕 で表わされる化合物を反応させる方法

等が具体的に挙げられるが、本発明ではこれらの 方法に限定されるものではない。

前記一般式 (7) で表わされるヒドロシリル化合物と一般式 (8) で表わされるオレフィン基を有するオキシアルキレン系重合体とを反応させる方法において、それらを反応させた後、一部又は

るオキシアルキレン系重合体の具体的製造法としては、例えば特開昭54-6097号公報に開示されている方法、或いはエチレンオキシド、プロピレンオキシド等のエポキシ化合物を重合する際に、アリルグリシジルエーテル等のオレフィン基含有エポキシ化合物を添加して共重合させることにより側鎖にオレフィン基を導入する方法等が挙げられる。

斯かる飯合体は、例えば特公昭45-36319号、同46-12154号、同49-32673号、特開昭50-156599号、同51-73561号、同54-6096号、同55-82123号、同55-123620号、同55-125121号、同55-131022号、同55-135135号、同55-131022号、同55-135135号、同55-137129号の各公報等に開示されている。本発明では、斯かる飯合体を、1種単独で使用してもよいし、2種以上併用してもよい。

本発明に用いられる(C) 成分であるエポキシ樹 脂としては、従来公知のものを広く使用でき、例 えばエピクロルヒドリンーピスフェノールA型エ ポキシ樹脂、エピクロルヒドリンーピスフェノー ルト型エポキシ樹脂、テトラプロモビスフェノー ルAのグリシジルエーテル等の難燃型エポキシ樹 脂、ノポラック型エポキシ樹脂、水蒸ピスフェノ ールA型エポキシ樹脂、ピスフェノールAプロピ レンオキシド付加物のグリシジルエーテル型エポ キシ樹脂、pーオキシ安息香酸グリシジルエーテ ルエステル型エポキシ樹脂、m-アミノフェノー ル系エポキシ樹脂、ジアミノジフェニルメタン系 エポキシ樹脂、ウレタン変性エポキシ樹脂、各種 脂環式エポキシ樹脂、N、N-ジグリシジルアニ リン、N、Nージグリシジルーoートルイジン、 トリグリシジルイソシアヌレート、ポリアルキレ ングリコールジグリシジルエーテル、グリセリン 等の多価アルコールのグリシジルエーテル、ヒダ

また、(C) 成分の配合量としても特に限定がなく、目的とする用途、性能に応じて適宜選択することができる。本発明では、(A) 成分と(B) 成分の合計量を100部とした場合、0.1~1000部程度の範囲で特性改善の効果が顕著であるので好ましく、0.5~2000部程度の

「本発明の組成物には、エポキジ基と反応しうる 官能基と上記反応性珪素基とを分子中に含有する シリコン化合物を配合することができる。

範囲がより好ましい。

上記シリコン化合物におけるエボキシ基と反応しうる官能基としては、具体的には1級、2級、3級のアミノ基:メルカプト基;エボキシ基;カルボキシル基等が挙げられる。また、反応性珪素基としては、前記(A) 成分において使用されたのと同様の加水分解性珪素基又はシラノール基が任意に使用されうるが、特に取扱いの容易さ等の点からアルコキシシリル基が好ましい。

ントイン型エポキシ樹脂、石油樹脂等の不飽和重合体のエポキシ化物等が挙げられる。これらの中では、特に式-CH-CH2で示されるエポキシ

基を少なくとも分子中に2個含有するものが、硬化に際し反応性が高く、また硬化物が3次元的網目を作り易い等の観点から、好適である。本発明では、ピスフェノールA型エポキシ樹脂及びノポラック型エポキシ樹脂が最も好適である。本発明では、斯かるエポキシ樹脂は、1種単独で、又は2種以上混合して用いられる。

本発明において、(A) 成分と(B) 成分との配合 割合としては、特に制限がなく、目的とする用途、性能等において適宜選択すればよいが、(A) 成分の量が(B) 成分100重量部(以下単に「部」と記す)に対して5~5000部程度の範囲が特性改善の効果が顕著であるので好ましく、5~2000部程度の範囲がより好ましい。

このようなシリコン化合物の具体例としては、 例えばァーアミノプロピルトリメトキシシラン、 τーアミノプロピルトリエトキシシラン、τーア ミノプロピルメチルジメトキシシラン、ャー (2 ーアミノエチル) アミノプロピルトリメトキシシ ラン、τー(2ーアミノエチル)アミノプロピル メチルジメトキシシラン、γ- (2-アミノエチ ル) アミノプロピルトリエトキシシラン、ァーウ レイドプロピルトリエトキシシラン、Ν-β-(N-ピニルベンジルアミノエチル) - ₇ - アミ ノプロピルトリメトキシシラン、ァーアニリノブ ロビルトリメトキシシラン等のアミノ基含有シラ ン類: ァーメルカプトプロピルトリメトキシシラ ン、ャーメルカプトプロピルトリエトキシシラン、 アーメルカプトプロピルメチルジメトキシシラン、 7 - メルカプトプロピルメチルジェトキシシラン 等のメルカプト基含有シラン類;ァーグリシドキ シプロピルトリメトキシシラン、ァーグリシドキ

シプロビルメチルジメトキシシラン、ァーグリシドキシプロビルトリエトキシシラン、βー (3,4-エポキシシクロヘキシル)エチルトリメトキシシラン類;βーカルボキシルエチルトリエトキシシラン、βーカルボキシルエチルフェニルピス (2-メトキシルメチルフェニルピス (2-メトキシルメチルンラン、N-βー (N-カルポキシルメチルンラン、N-βー (N-カルポキシルメチルンラン等のカルボキシシラン類等が挙げられる。本発明では、これらシリコン化合物を単独で使用してもよいし、2種以上併用してもよい。

斯かるシリコン化合物は、(A) 成分、(B) 成分及び(C) 成分の合計量を100部とした場合、通常0.1~20程度の範囲、好ましくは0.2~10程度の範囲で配合されるのがよい。

本発明の硬化性組成物には、該組成物の硬化性 を向上させるため、シラノール縮合触媒、エポキ シ樹脂硬化剤等を必要に応じて配合してもよい。 シラノール縮合触媒としては、例えば有機スズ 化合物、酸性リン酸エステル、酸性リン酸エステ ルとアミンとの反応物、飽和若しくは不飽和の多 価カルボン酸又はその酸無水物、有機チタネート 化合物等が挙げられる。

前記有機スズ化合物の具体例としては、ジプチルスズジラウレート、ジオクチルスズジマレート、ジプチルスズフタレート、オクチル酸スズ、ジプチルスズメトキシド等が挙げられる。

前記酸性リン酸エステルとは、

あり、下記に示すような酸性リン酸エステルが包含される。有機酸性リン酸エステルとしては例えば一般式

O \parallel $(R^{11}-O)_d-P-(OH)_{\$-d}$ $(式中、dは1又は2、<math>R^{11}$ は有機残基を示す。 $\}$ で表わされるリン酸エステルを挙げることができ、

[(CH2 OH)(CHOH) O]P(OH) 2 \

[(CH2 OH)(CHOH) C 4 H 4 OJ2 POH

[(CH2 OH)(CHOH) C 4 H 4 O]P(OH) 2 等を例示できる。

酸性リン酸エステルと反応させ得るアミンとしては、特に制限はなく、例えばメチルアミン、エチルアミン、ヘキシルアミン、ラウリルアミン、ヘキサメチレンジアミン、

 $H_2 N C H_2 \longrightarrow C H_2 N H_2$, $H_2 N C H_2 \longrightarrow C H_2 N H_2$,

モノエタノールアミン、アニリン等の第1級アミン;ジエチルアミン、ジプチルアミン、ピペリジン、ジエタノールアミン等の第2級アミン;トリエチルアミン、トリプチルアミン、N, Nージェチルペキシルアミン、N, Nージメチルデシルア

(B) 成分との合計量100部に対して、0.1~20部が好ましく、0.5~10部がより好ましい。

ミン、N, N-ジメチルドデシルアミン、N, N ージメチルペンジルアミン、N, N, N', N' ーテトラメチルー1, 6-ヘキサンジアミン、ト リエチレンジアミン、トリエタノールアミン、ピ リジン等の第3級アミン:ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタ ミン等の第1級、第2級アミンとエポキシ化合物 とのアダクト等が挙げられる。

上記酸性リン酸エステルとアミンとの反応物は、 上記酸性リン酸エステル (イ) と上記アミン (ロ) とを、当量比 (ロ) / (イ) で 0. 05~20、 纤ましくは 0. 1~10の範囲で混合することに より得られる。

有機チタネート化合物としては、例えばテトラ ブチルチタネート、テトライソプロピルチタネート、トリエタノールアミンチタネート等のチタン 酸エステルが挙げられる。

シラノール縮合触媒の使用量は、(A) 成分と

ロレン酸等の無水カルボン酸類; アルコール類; フェノール類; カルボン酸類等を例示できる。本発明においては、斯かる硬化剤は、1種単独で、又は2種以上混合して使用される。

上記エポキシ樹脂硬化剤を配合する場合、その配合量はエポキシ樹脂及び該硬化剤の種類により異なり一概には含えないが、(C) 成分100部当り、上記硬化剤を0.1~300部程度の範囲で配合すればよい。

本発明の硬化性組成物を調製するに際しては、特に限定はなく、例えば(A) 成分、(B) 成分、(C) 成分等を配合し、ミキサー、ロール、ニーダー等を用いて常温又は加熱下で混練したり、適当な溶剤を少量使用して上記成分を溶解させ、混合したりする等の通常の方法が採用され得る。また、これら成分を適当に組合せることにより、1 液型や2 液型の配合物を作成し、使用することもでき

3.

本発明の組成物には、更に種々の充填剤、可塑 剤、添加剤等を添加してもよい。

充填剤としては、例えば重質炭酸カルシウム、 軽質炭酸カルシウム、膠質炭酸カルシウム、カオ リン、タルク、シリカ、酸化チタン、珪酸アルミ ニウム、酸化マグネシウム、酸化亜鉛、カーポン プラック等が挙げられる。

可塑剤としては、例えばジオクチルフタレート、 プチルベンジルフタレート、塩窯化パラフィン、 エポキシ化大豆油等が挙げられる。

添加剤としては、例えば水添ヒマシ油、有機ベントナイト等のタレ防止剤、碧色剤、老化防止剤 等が挙げられる。

本発明の硬化性組成物は、接着剤、粘着剤、整料、塗胶防水剤、シーリング材、型取り用材料、 注型ゴム材料、発泡材料等として好適に使用する ことができる。例えば、接着剤やシーリング材と して使用した場合、各種基材への接着性や強靭性

重合体800gを撹拌機付耐圧反応容器に入れ、 メチルジメトキシシラン19gを加えた。次いで 塩化白金酸触媒溶液(H2PtCls・6H2Oの8.9gをイソプロビルアルコール18配及び テトラヒドロフラン180回に溶解させた溶液) 0.34配を加えた後80℃で6時間反応させた。

反応溶液中の残存水梁化珪索基の量をIRスペクトル分析法により定量したところ、殆んど残存していながった。またNMR法により珪宗基の定 畳をしたところ、分子末端に

СН₃

(CH₃ 0)₂ SICH₂ CH₂ CH₂ 0 - 基を 1 分子当り約 1. 7 個有するポリオキシプロピレン系 低合体が 得られた。

合成例2

105℃に加熱したトルエン570.0gにメ タクリル酸メチル947.9g、アクリル酸プチ ル84.7g、メタクリル酸ステアリル に優れると共に、優れた耐候性を有する案材として、高強度シーラントや構造用接着剤への応用が可能である。また塗料、塗膜防水剤として使用した場合、優れた塗料密着性、弾性性能、耐候性等が要求される建築用高弾性塗料、コンクリート構造物のプライマー、防水剤として優れた特性を現し得る。

発明の効果

本発明の硬化性組成物より作製された硬化物は、 強靭性、各種接着強度等の物性に優れると同時に、 耐候性にも優れ、従来のエポキシ樹脂等の欠点を 解消し得るものである。

爽 施 例

次に本発明の硬化性組成物を実施例に基づき説 明する。

合成例1

アリルエーテル基を全末端の97%に導入した 平均分子量約8000のポリオキシブロビレン系

189.2g、ャーメタクリロキシプロビルメチルジメトキシシラン79.2gからなるモノマー混合液に、賃合開始剤としてアゾビスイソプチロニトリル32.5g、連鎖移動剤としてャーメルカプトプロビルメチルジメトキシシラン

104.0gを溶かした溶液を5時間かけて滴下したところ、無色斑明の液体を得た。この液体の樹脂固形分裂度を120℃で加熱して求めたところ、70.0%であった。また致平均分子量をスチレンを復品としたGPCより求めたところ2500であった。

実験方法

接着物性は、引張剪斯接着強さと180°剥離 接着強さにより示した。

引張剪断接着強さは、JIS H 4000の アルミニウム板A-1050P(100×25× 20m)の試験片の表面をアセトンでよく洗浄した 後、下記に示す各種硬化性組成物をヘラで塗付し、 手で圧着した試験サンプルをJIS K 6850に基づき測定した。剥離接着強さは、剛性材料としてJIS A 5403の石綿スレート板(100×25×300)の試験片を、旋み性材料としてJIS H 4000のアルミニウム板A1050P(200×50×0・100)の試験片の表面をアセトンでよく洗浄したものを用いて、上記組成物をヘラで約0・500の厚さに塗布して貼り合わせ、5kgのハンドローラーを用いて、長さ方向に往復しないように5回圧着し、

180° 剥離接着強さを測定した。これらの接着 試験サンプルは23℃で1日、更に50℃で7日 間硬化整生した後、引張試験を行った。但し、引 張速度は、引張剪斯接着試験の場合は5mm/分、 180° 剥離接着試験の場合は200mm/分に設 定した。

耐候性については、よく混合した根成物を遠心 分離機により脱泡した後、ポリエチレン製型枠に

旋し込み、23℃で7日間、50℃で7日間硬化 させて得られた厚さ約3mmのシート状硬化物にサ ンシャインウェザーメータにて500時間及び 1000時間紫外線を照射した時の表面状態の変 化により示した。

実施例1~8及び比較例1~5

(B) 成分である合成例1で得られたポリマーと(A) 成分である合成例2で得られたポリマー及び(C) 成分としてエピコート828 (油化シェルエポキシ辨製、ピスフェノールA型エポキシ樹脂)とを固型分比が下記第1表で示した割合とな合まれるに配合し、よく混合した後、合成例2に含まれるの分を放去するため110℃で3時間ない。無色~波黄色透明の粘性を持つ液状組成物を得るための組成物に更に、そこに含まれる合成例1で得られたポリマーと合成例2で得られたポリマーとのを優100部に対して、エポキシ基と反応しる

	逐	.[~	10))	0) 	'	-	;	4	
	25	6	1		ŀ		9	2	· ·	-	;
	¥	-	100	}	,		1	7 011 7 61		0,	
		9	۳))	4.0	•	9	98	:	0.7	
拟	整	2	9) }.	4 0	,	200	_		5.0	
H	落	4	9	1	40 40 40 40 40		5 0 100 200	89.1 104.2		7.6	
织	**	3	09		40					80	
	鉄	7	09		40		25	8.8		8.7	
	Ψħ	1	09		4 0		2	78.0		8.0	
			合成例1の	ポリマー (部)	合成例2の	ポリマー (師)	エピコート828(部)	引强判断接着独占	(kgf/cm 2)	180。 剝雕接语強さ	(kgf/25mm)

2 ហ ö ı 0 **6** 光 0 £ 0 ∞ EK ∞ 8 鍋

(金)

ピコート828

ボンケー

ポリャー **合気室2の**

張剌斯接着強さ

到解接着強

衷

N

Œ

の粘性を持つ液状組成物を得た。この組成物に更 に、そこに含まれる合成例1で得られたポリマー と合成例2で得られたポリマーの総量100部に 対して、N- (B-アミノエチル) - y - アミノ プロピルトリメトキシシラン1部、紫外線吸収剤 としてチヌピン327 (日本チバガイギー開製、 紫外線吸収剤) O. 1部、ノクラックSP1部、 #918 1部及び水0. 4部を、また、エピコ ート828 100部に対して、DMP-10部 をそれぞれ添加混合し、上記の方法で耐候性を評 価し、その結果を第3表に併せて示した。

第1表及び第1図の結果より、本発明の組成物 は、従来のエポキシ樹脂(比較例2)に比べ、+ 分に高い剥離接着強さを持ち、また、(B) 成分で ある合成例1のみからなる硬化物(比較例1)や (A) 成分と(B) 成分のみからなる硬化物 (比較例 3) に比べて、高い剪断接着強さを接着物性のパ ランスを有することが判った。

また第2表及び第2図の結果より、本発明の組 成物は、(A) 成分と(C) 成分のみからなる硬化物 (比較例4) や(B) 成分と(C) 成分のみからなる 硬化物(比較例5)に比べて、高い接着物性のバ ランスを有することが判った。

実施例9及び比較例6

(B) 成分である合成例1で得られたポリマーと (A) 成分である合成例2で得られたポリマー及び (C) 成分としてエピコート828とを固型分比が 下記第3表で示した割合となるように、よく混合 した後、実施例1~8と同様にして、淡黄色透明

第 3 表

		実施例9	比較例6		
合成例1のポリ	マー (部)	60	100		
合成例2のポリ	マー (部)	40	- :		
エピコート82	28 (錦)	10	10		
サンシャイン	500時間	異常なし	表面クラック		
照射	1000時間	異常なし	崩壊		

固型分换算盘

第3妻の結果より、本発明の組成物は、従来の エポキシ樹脂とオキシアルキレン重合体からなる 組成物 (比較例6) に比べて、耐候性が著しく向 上したことが判った。

図面の簡単な説明

第1図は、合成例1で得られたポリマー60部 及び合成例2で得られたポリマー40部当りのエ ピコート828の部数と接着強さとの関係を示す グラフである。第2図は、エピコート828

100部当りの合成例1で得られたポリマーと合成例2で得られたポリマーの部数比と接着強さとの関係を示すグラフである。

(以 上)

代理人 弁理士 三 枝 英 二

