Кодирование внутренних состояний для модели Мили на D-триггерах.

Для 9 состояний (а0-а8) минимально необходимо 4 ЭП.

Коды состояний для модели Мили на D-триггерах.

Состояние перехода	a0	a1	a2	a3	a4	a5	a6	a7	a8
Исходное состояние	a0 a3 a4 a7 a8 b	a0	a1 a2	a2	a3	a4 a6	a5	а6	a3 a4 a6 (3) a7 (2) a8
Число переходов	6	1	2	1	1	2	1	1	8
Код состояния	0001	1000	0010	0011	0101	0100	1001	1010	0000

Прямая структурная таблица переходов и выходов автомата модели Мили на D-триггерах.

Исходное	Код ат	Состояние	Код as	Входной сигнал	Выходные	Функция
состояние		перехода а _s		$X(a_m, a_s)$	сигналы Y(a _m , a _s)	возбуждения
a0	0001	a0	0001	¬X0	-	D0
		a1	1000	X0	y0, y1, y2	D3
a1	1000	a2	0010	1	y3, y4	D1
a2	0010	a2	0010	¬X0	-	D1
		a3	0011	X0	y1	D1D0
a3	0011	a0	0001	X1	y12	D0
		a4	0101	¬X1¬X2	y4, y5	D2D0
		a8	0000	¬X1X2	y2, y9	-
a4	0101	a0	0001	X3	y11	D0
		a5	0100	¬X3¬X4	y3	D2
		a8	0000	¬X3X4	y2, y9	-
a5	0100	a6	1001	1	y7	D3D0
a6	1001	a5	0100	¬X5	y3	D2
		a8	0000	X5¬X6¬X7X8	y6	-
		a8	0000	X5¬X6¬X7¬X8	-	-
		a8	0000	X5¬X6X7	y2, y9	-
		a7	1010	X5X6	y8	D3D1
a7	1010	a0	0001	X3	y11	D0
		a8	0000	¬X3X8	y6	-
		a8	0000	¬X3¬X8	-	-
a8	0000	a0	0001	X9	y10	D0
		a8	0000	¬X9	-	-

Логические выражения для каждой функции возбуждения D-триггера

D0 = a0 - X0 v a2X0 v a3X1 v a3 - X1 - X2 v a4X3 v a5 v a7X3 v a8X9

D1 = a1 v a2 v a6X5X6

D2 = a3 - X1 - X2 v a4 - X3 - X4 v a6 - X5

D3 = a0X0 v a5 v a6X5X6

Аналогично составляются логические выражения для функций выходов:

```
y0 = a0X0

y1 = a0X0 v a2X0

y2 = a0X0 v a3¬X1X2 v a4¬X3X4 v a6X5¬X6X7

y3 = a1 v a4¬X3¬X4 v a6¬X5

y4 = a1 v a3¬X1¬X2

y5 = a3¬X1¬X2

y6 = a6X5¬X6¬X7X8 v a7¬X3X8

y7 = a5

y8 = a6X5X6

y9 = a3¬X1X2 v a4¬X3X4 v a6X5¬X6X7

y10 = a8X9

y11 = a4X3 v a7X3

y12 = a3X1
```

После выделения общих частей в логических выражениях и некоторого их упрощения получаем логические уравнения для построения функциональной схемы управляющего автомата:

```
e0 = a0X0(2)
e1 = a2X0(2)
e2 = a3X1(2)
e3 = a3 \neg X1 \neg X2 (3)
e4 = a4X3(2)
e5 = a3 - X1X2(3)
e6 = a4 \neg X3X4(3)
e7 = a6X5 \neg X6 (3)
e8 = a4 \neg X3 \neg X4 (3)
e9 = a6 - X5(2)
e10 = a6X5X6(3)
e11 = a7X3(2)
e12 = a8X9(2)
e13 = a0 \neg X0 (2)
e14 = a7 \neg X3X8 (3)
p0 = e5 v e6 v e7X7 (5)
p1 = e8 \text{ v } e9 (2)
p2 = e4 \text{ v e} 11 (2)
p3 = e7 - X7X8(3)
D0 = e13 \text{ v } e1 \text{ v } e2 \text{ v } e3 \text{ v } p2 \text{ v } a5 \text{ v } e12 \text{ (7)}
D1 = a1 v a2 v e10 (3)
```

Инверторы: $\neg X0$, $\neg X1$, $\neg X2$, $\neg X3$, $\neg X4$, $\neg X5$, $\neg X6$, $\neg X7$ (8)

Цена по Квайну:

$$\sum$$
 = KC + MHB + $\Im\Pi$ + HY + DC = $74 + 8 + 16 + 0 + 4 = 102$

Схема формирования начальной установки на D-триггерах.

