BANK CHECK PROCESSING AUTOMATION

BY ANNY CARELLA IRUMVA

CONTENT

01

BUSINESS PROBLEM

02

DATA UNDERSTANDING

03

DATA PREPARATION

04

MODELING AND EVALUATION

05

CONCLUSION

BUSINESS UNDERSTANDING

Bank employees process numerous checks daily by carefully reading and manually entering handwritten amounts into the banking system

- Human Errors
- Time-Consuming
- Operational Inefficiencies

Automate the check processing system using machine learning models

DATA UNDERSTANDING

I used MNIST dataset:

- 70,000 grayscale images of handwritten digits (0-9)
- Training set: 60,000 images, Test set: 10,000 images
- Each image is 28x28 pixels, with pixel values ranging from O (black) to 255 (white)

The dataset is generally balanced across digit classes

DATA PREPARATION

Step n° 1

Checked for missing or invalid values and none were found

Step n° 2

Checked for duplicates and none were found

Step n° 3

Scaled pixel values to a [O, 1] range by dividing by 255

MODELING AND EVALUATION

I used 3 models:

- Naive Bayes
- Gaussian Bayes
- KNN (k= 10)

Naive Bayes Gaussian Bayes KNN

0.77

0.91

0.96

Accuracy

CONCLUSION

- The objective was to automate the recognition and digitization of handwritten check amounts using machine learning
- Utilized the MNIST dataset with 70,000 images of handwritten digits (0-9)
- Used 3 models
- KNN model achieved the highest accuracy, making it the best choice for digit recognition in this context
- The system will reduce manual processing, increase accuracy, and improve operational efficiency in bank check processing

THANK YOU

Any Questions?

