

Everware toolkit

supporting reproducible science and challenge-driven education

Andrey Ustyuzhanin^{1,2}, Tim Head, Igor Babuschkin³,
Alexander Tiunov²

2016-10-11, CHEP

¹Yandex School of Data Analysis, ²Higher School of Economics NRU, ³University of Manchester

Irreproducibility indicators

- 'Which version of my code I used to generate figure 13?'
- 'The new student wants to reuse that model I published three years ago but he can't reproduce the figures'
- 'I thought I've used the same parameters but I'm getting different results...'
- 'On what dataset have I compared algorithms exactly?'
- 'Why did I do that?!'
- 'It worked yesterday!!'

Reproducibility concern: psychology

- 2011
- 250 scientists headed by Brian Nosek(Center of Open Science)
- > 100 papers published in 2008 in three leading psychology journals
- https://osf.io/ezcuj/wiki/home/
- > "only 39 could be reproduced"

Reproducibility concern: biology

> 53 'landmark' papers in drug

> 54 papers in cancer biology

discovery

2010-2012

> 2012 by Amgen (US company)

> 2013

confirmed in only 6 (11%) cases"

US\$1.6 million

results, spreadsheet

https://osf.io/e81xl/wiki/home/

> to be completed by 2017

Nature's Reproducibility Survey

Nature: 1,500 scientists lift the lid on reproducibility by Monya Baker raw survey data (link)

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

Respondents were positive about most proposed improvements but emphasized training in particular.

Rise of challenge-driven education

Learning by solving real-world problems in interdisciplinary & international projects.

```
    Imagine Cup, http://imaginecup.com/
    Hackathons, e.g., http://webfest.web.cern.ch/
    Open data days, http://opendataday.org/
```

Guide to Challenge Driven Education, https://www.kth.se/social/group/guide-to-challenge-d/

Platforms (with plenty of examples):

```
Kaggle, https://www.kaggle.com/
Codalab, https://competitions.codalab.org/
...
```

Rise of challenge-driven education

Learning by solving real-world problems in interdisciplinary & international projects.

```
Imagine Cup, http://imaginecup.com/
```

- Hackathons, e.g., http://webfest.web.cern.ch/
- Open data days, http://opendataday.org/
- Guide to Challenge Driven Education, https://www.kth.se/social/group/guide-to-challenge-d/

Platforms (with plenty of examples):

```
Kaggle, https://www.kaggle.com/Codalab, https://competitions.codalab.org/
```

Complication and boost factors are similar to research reproducibility.

...part of the story

Computational experiment is a significant part of the experiment, that starts as data collected. Reproducibility of that part being just a partial answer can be aided technologically.

Possible effects (see previous slide):

- Practical
 - better mentoring/supervision
 - more within-lab validation
 - > simplified external-lab validation
 - incentive for better practice
 - > robust design
- **Educational**
 - wider access to the best practices
 - better teaching

HEP way

data storage shared storage (XROOTD, AFS, EOS, CERNBOX) standardized environment software: ROOT, minuit, RooFit, experiment-stack, ... computational cluster (e.g. 1xplus) code versioning repository (gitlab) advanced analysis approaches blind analysis reviews, cross-checks within group, inter-group collaboration collaborative culture q&a groups, experts publishing workflow

double experiment-checks

Reproducibility meta-practices

- early planning, pre-registering study
- literate programming
- open research/study

Reproducibility key components

- Basic assumptions (vocabulary)
- Data
- Environment + Resources (CPU/GPU)
- Code/scripts
- Workflow
- Automated intermediate results checks
- Final results (datasets, publications)

Key missing part: environment version control

- language and OS agnostic,
- > capture and restore environment configuration,
- run configurations

Virtual Machines

Containers

would enable:

- workflow automation
- automated results re-validation

Example

Running https://github.com/everware/everware-dimuon-example

Sorry, printed version doesn't support animation. https://github.com/everware/everware-dimuon-example

resources: wherever *everware* is installed (Yandex)

data: CERNBOX

- resources: wherever everware is installed (Yandex)
- data: CERNBOX
- > environment management:
 - > conda or virtualenv
 - docker

- resources: wherever everware is installed (Yandex)
- data: CERNBOX
- **environment** management:
 - > conda or virtualenv
 - docker
-) github: analysis **code** versioning

- resources: wherever everware is installed (Yandex)
- data: CERNBOX
- > environment management:
 - > conda or virtualenv
 - docker
-) github: analysis **code** versioning
- Jupyter(Hub): runs the code interactively (a-la workflow)

- **resources**: wherever everware is installed (Yandex)
- **data:** CERNBOX
- **environment** management:
 - > conda or virtualenv
 - docker
-) github: analysis **code** versioning
- Jupyter(Hub): runs the code interactively (a-la workflow)
- continuous integration: intermediate **results checks** & report

- **resources**: wherever everware is installed (Yandex)
- **data:** CERNBOX
- **environment** management:
 - > conda or virtualenv
 - docker
- github: analysis **code** versioning
- Jupyter(Hub): runs the code interactively (a-la workflow)
- continuous integration: intermediate **results checks** & report
- **everware**: to rule them all (just a bunch of wrappers!)

Everware is ...

... about re-useable science, it allows people to jump right in to your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware
- https://everware.rep.school.yandex.net (Yandex instance)

Examples:

- algorithm meta-analysis, https://github.com/openml/study_example
- gravitational waves, https://github.com/anaderi/GW150914
- COMET, https://github.com/yandexdataschool/comet-example-ci

Everware is ...

... about re-useable science, it allows people to jump right in to your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware
- https://everware.rep.school.yandex.net (Yandex instance)

Examples:

- algorithm meta-analysis, https://github.com/openml/study_example
- gravitational waves, https://github.com/anaderi/GW150914
- COMET, https://github.com/yandexdataschool/comet-example-ci

Think of transition from procedural coding approach to object-oriented.

Everware toolkit

- > set of command-line tools for basic environment hacking (docker)
- > extension for *JupyterHub*:
 - > spawner for building and running custom *docker* images
- integrated with:
 - dockerhub
 - github (for authentication and repository interaction)
- similar to *mybinder.org* but with focus on scientific research
- guidelines

Pros & cons

Pros

- easier supervision/mentoring
- easier within-lab validation
- wider access to the best practices
- > simplified cross-lab validation
- good incentive for formal reproduction
- good thing for industry career track development
- access to wider set of practices

Cons

- learning a bit of (open-sourced) technology
- re-organize internal research process
- inner barrier for openness
- higher incentive for mindless borrowing
- divergence/potential learning curves

Research workflow with everware

- User creates a git repository for his project
- User creates some code, notebooks, figures out what libraries he needs
- User creates Dockerfile where he writes all the dependencies for his code (use everware-cli)
- User creates Makefile that simplifies start one of the targets in Makefile passes through all the essential steps of analysis
- (optional) User tests that his analysis is runnable by one of the CI systems (e.g. on travis, adding, .travis.yml)
- User tests that analysis is also runnable by everware
- User completes his research and checks that he/she can reproduce all the figures/tables supporting his hypothesis by running corresponding notebooks (or automates cascade of notebooks execution by single Makefile target)
- User publishes paper, filling-in special form link to his git repository and to everware that any member of the researcher community can pick-up from to improve his research

Education workflow with everware

Tested on (some examples):

- Python course at YSDA 2015
- HEP Machine Learning summer school 2015-2016
- YSDA course on Machine learning at Imperial College London, 2016
- Kaggle competitions, 2016
- Machine learning course at University of Eindhoven
- LHCb open data masterclass

Roadmap

- Integrate with data sharing resources (zotero, figshare, etc)
- Automatic capture of environment (integrate with repro-zip)
- Integration with publishing resources (gitxiv, re-science, openml)
- Not only jupyter-based computations
- Bring your own resources computational model

Conclusion

Reproducibility is not easy; ...but is not that scary, ...with a bit of openness, and technology; everware works for research and education (no people were harmed during testing); easy to try; WIP, https://github.com/everware (open-source, care to join?); See talk on LHCb open data masterclass for an extensive example.

Thank you!

Andrey Ustyuzhanin, anaderiru @ twitter

Backup slides

Yandex School of Data Analysis is

- non commercial private university https://yandexdataschool.com (separate from Yandex)
- > 450+ students graduated since 2007
- > Graduate students receive strong education in Data & Computer Science (main supply of Yandex employees)
- Interest in interdisciplinary research Data Science methods to Information Retrieval and Fundamental Sciences
- organizes bi-yearly international Machine Learning Conference, YAC https://yandexdataschool.com/conference/
- > 25% of our students have background in Physics
- full member of LHCb since 2015, associate member during 2014-2015

References

```
http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-
1.19970
https://rescience.github.io/read/
http://push.cwcon.org/
https://openml.org
https://figshare.com/
https://gitlab.cern.ch/lhcb-bandq-exotics/Lb2LcD0K
https://osf.io/ezcuj/wiki/home/
https://osf.io/e81xl/wiki/home/
Center for open science, https://cos.io/
IPFS, https://github.com/ipfs/
Nature, keyword: reproducibility,
http://www.nature.com/news/reproducibility-1.17552
```

Dealing with cognitive bias

http://go.nature.com/nqyohl