

소프트웨어응용학부 201704060 안장훈 컴퓨터그래픽스기초

R R



#### 기존 매체에서의 번개 구현







물리 기반 번개 경로 시뮬레이션!

$$\Delta u(x,y) = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} = 0$$



$$p(i,j) = rac{\Phi_{i,j}^{\eta}}{\Phi_{total}}.$$
 where  $\Phi_{total} = \sum_{i \in x} \Phi_i^{\eta}, \; x \colon 모든 후보 격자$ 

<라플라스 방정식>

<번개 경로의 확률>

$$p(i,j) = rac{\Phi_{i,j}^{\,\eta}}{\Phi_{total}}.$$
 where  $\Phi_{total} = \sum_{i \in x} \Phi_i^{\eta}, \; x \colon 모든 후보 격자$ 



| 0.01 | 0    | 0.04 |
|------|------|------|
| 0.02 | 0    | 0.09 |
| 0.06 | 0.12 | 0.18 |

<후보 격자>

```
phi =0.0138411
phi =0.00721489
   =0.0142537
phi =0.0275673
phi
   =0
   =0.0282494
   =0.0558974
   =0.049185
    = 0.0564863
    = 0.109247
    = 0
    = 0.11195
    = 0.221517
    = 0.194917
    = 0.222439
```

```
phi =0.000191575
phi =5.20546e-05
phi =0.000203168
      =0.000759959
      =0
phi =0.000798031
      =0.00312452
화를 = 0.00313039
확률 = 0.0179058
확률 = 0.0048653
확률 = 0.0710304
확률 = 0
확률 = 0.292036
확률 = 0.292036
확률 = 0.294474
        = 0.0189893
        = 0.0710304
        = 0.0745888
```

```
lphi =7.34275e-07
   =8.55377e-08
   =8.09022e-07
   =7.13351e-06
   =0
   =7.73273e-06
   =7.35177e-05
  = 0.0335307
    = 0
    = 0.0363473
    = 0.345566
    = 0.226562
    = 0.350338
             III C
```

$$< \eta = 3.3 >$$



<Lattice>
0.01 0.01 0.04 0.06 0.06 0.06 0.04 0.02
0.02 0.00 0.09 0.13 0.14 0.13 0.09 0.05
0.06 0.12 0.18 0.22 0.23 0.20 0.15 0.08
0.12 0.21 0.29 0.33 0.33 0.30 0.23 0.12
0.18 0.32 0.41 0.46 0.46 0.42 0.33 0.19
0.29 0.47 0.57 0.61 0.61 0.57 0.47 0.29
0.49 0.68 0.76 0.79 0.79 0.76 0.68 0.49
1.00 1.00 1.00 1.00 1.00 1.00 1.00

<Lattice>
0.01 0.01 0.03 0.05 0.05 0.05 0.04 0.02
0.01 0.00 0.07 0.10 0.11 0.10 0.08 0.04
0.05 0.10 0.00 0.18 0.19 0.17 0.13 0.07
0.10 0.18 0.25 0.28 0.28 0.26 0.20 0.11
0.17 0.29 0.37 0.41 0.41 0.37 0.30 0.17
0.27 0.44 0.53 0.57 0.57 0.53 0.44 0.28
0.49 0.67 0.74 0.77 0.77 0.74 0.67 0.49
1.00 1.00 1.00 1.00 1.00 1.00 1.00

<Lattice>
0.00 0.00 0.01 0.03 0.04 0.04 0.03 0.02
0.01 0.00 0.02 0.06 0.08 0.08 0.07 0.04
0.03 0.04 0.00 0.11 0.14 0.14 0.11 0.06
0.08 0.14 0.17 0.22 0.25 0.23 0.18 0.10
0.15 0.26 0.33 0.37 0.38 0.36 0.28 0.16
0.26 0.42 0.51 0.55 0.55 0.52 0.44 0.27
0.48 0.66 0.73 0.76 0.76 0.74 0.66 0.48
1.00 1.00 1.00 1.00 1.00 1.00 1.00

<격자의 전위값 계산>

<다음 경로 선택>

<격자의 전위값 계산>



laplace = MainChanel(laplace, lattice, mainChanelPos);

다음 경로 선택!



Positive 전위



Negative 전위



Positive 전위



Negative 전위





### THUNDER SIMULATION OBSTACLE

장애물 LIL



### THUNDER SIMULATION OBSTACLE





### THUNDER SIMULATION LIGHTNING ROD





# THUNDER SIMULATION LIGHTNING ROD





## THUNDER SIMULATION JITTERING





## THUNDER SIMULATION JITTERING



JITTERING SAMPLING



## THUNDER SIMULATION JITTERING





#### **VIDEO**



#### 아쉬운점

```
void printProgramInfoLog(GLuint obj);
void printShaderInfoLog(GLuint obj);
int printOglError(char *file, int line);
void setShaders();
void initGLEW();
void initGL();
int textFileWrite(const char *fn, const char *s);
char *textFileRead(const char *fn);
```

Shader 효과!

서브 격자 생성

# THANK YOU!