Regionally Additive Models: Explainable-by-design models minimizing feature interactions

Vasilis Gkolemis^{1,2} Anargyros Tzerefos¹ Theodore Dalamagas¹ Eirini Ntoutsi³ Christos Diou²

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

³Universitat der Bundeswehr Munchen

September 2023, Turin, Italy

Generalized Additive Models

Wikipedia says:

Wikipedia says:

Wikipedia says:

Wikipedia says:

$$y = \cdot + \ldots + \cdot$$

Wikipedia says:

$$y = f_1(x_1) + \ldots + f_D(x_D)$$

GAMs are called explainable-by-design, why?

Output/target variable:

y_{bike-rentals} the expected number of bike rentals

Input/covariates:

- X_{temperature}
- Xhumidity
- Xis_weekday

What if:

• temperature has different effect on week-days vs weekends

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: $f(x_{temperature}, x_{is_weekday})$

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: $f(x_{temperature}, x_{is_weekday})$
- Solution 2: $f(x_{temperature}|weekday)$ vs $f(x_{temperature}|weekend)$

What if:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: $f(x_{temperature}, x_{is_weekday})$
- Solution 2: $f(x_{temperature}|weekday)$ vs $f(x_{temperature}|weekend)$

• Solution 1: GA²M

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: $f(x_{temperature}, x_{is_weekday})$
- Solution 2: $f(x_{temperature}|weekday)$ vs $f(x_{temperature}|weekend)$

- Solution 1: GA²M
- Solution 2: RAM

What if:

• Have you ever rided a bike with cold and humidity?

What if:

- Have you ever rided a bike with cold and humidity?
- If it is weekend, cool! Netflix is here!

What if:

- Have you ever rided a bike with cold and humidity?
- If it is weekend, cool! Netflix is here!
- But what to do if the only option to go to work?

What if:

- Have you ever rided a bike with cold and humidity?
- If it is weekend, cool! Netflix is here!
- But what to do if the only option to go to work?

Solutions:

• $f(x_{\text{temperature}}, x_{\text{humidity}} | x_{\text{is_weekday}}) RA^2M$

What if:

- Have you ever rided a bike with cold and humidity?
- If it is weekend, cool! Netflix is here!
- But what to do if the only option to go to work?

- $f(x_{\text{temperature}}, x_{\text{humidity}} | x_{\text{is_weekday}}) RA^2M$
- $f(x_{temperature}|x_{humidity} = \{high, low\}, x_{is_weekday})$ RAM with two conditions

RAM on toy example

$$f(\mathbf{x}) = 8x_2 \mathbb{1}_{x_1 > 0} \mathbb{1}_{x_3 = 0}$$

$$x_1, x_2 \sim \mathcal{U}(-1, 1), x_3 \sim Bernoulli(0, 1)$$

Figure: (Left) GAM, (Middle and Right) RAM

How RAM works (1)

3-step approach:

- Fit a Black-box model to capture all complex structures
 - it should be differentiable
 - neural network
- Use a Regional Effect method to find important interactions
 - RHALE Gkolemis et. al
 - ► Feature Interactions Herbinger et. al
- Fit a univariate function on each detected subregion

Step 1

- Fit a Black-box model to capture all complex structures
 - it should be differentiable
 - A neural network is a good option

13 / 19

Step 2

- Use a Regional Effect method to find important interactions
 - ► RHALE Gkolemis et. al
 - ► Feature Interactions Herbinger et. al

Step 3

• Fit a univariate function on each detected subregion

15 / 19

Bike Sharing dataset

Predict bike-rentals (on daily basis) given some features of the day

- (b) $f(X_{\text{hour}}) \mathbb{1}_{X_{\text{workingday}} \neq 1}$
- (c) $f(X_{\text{hour}}) \mathbb{1}_{X_{\text{workingday}}=1}$

Experimental Results

	Black-box	x-by-design			
	all orders	1 st order		2 nd order	
	DNN	GAM	RAM	GA^2M	RA ² M
Bike (MAE)	0.254	0.549	0.430	0.298	0.278
Bike (RMSE)	0.389	0.734	0.563	0.438	0.412
Housing (MAE)	0.373	0.600	0.553	0.554	0.533
Housing (RMSE)	0.533	0.819	0.754	0.774	0.739

What next?

A lot has to be done!

- Results are only preliminary
 - Experiment with more datasets
 - Sometimes wide bins are needed
- Can we learn uncertain RAMs?
 - How do we model uncertainty?

Thank you for the attention

- For more discussion or future ideas on RAM, contact me:
 - vgkolemis@athenarc.gr
 - gkolemis@hua.gr
- Questions?

19 / 19