

UNIVERSIDAD PANAMERICANA

APRENDIZAJE DE MÁQUINA

COM194

Enrique González N.

Profesor

COM194-AM-SM1-24

MATERIAL DE CONSULTA

Introduction to Time Series Analysis and Forecasting with applications and SAS and SPSS
Robert Yaffee
Academic Press

Introduction to Machine Learning with Python Andreas C. Müller & Sarah Guido O'Reilly

Handbook of Statistical Analysis and Data Mining Applications Robert Nisbet, Gary Miner & Ken Yale Academic Press

NEURAL NETWORKS (NN)

- Neural networks (NN), are mathematical structures or computational models inspired by the way biological neural networks in the human brain process information.
- NN are composed of a hierarchical structure of layers:
 - Nodes as neurons with activation functions.
 - o Edges or connections with parameters (weights and biases) between the nodes.
 - o The flow of the structure goes from input to output.

6 b

- NN are a spezialed type of graph known as DAG (Directed Acylic Grapht):
 - They have one-way direct connections, the information flows in one direction.
 - o No path returns to a previously visited node, so the edges are acylic.
 - The representation of nodes (neurons) and weighted edges (connections) aligns with the fundamental concept of graphs.
- Is mostly used for pattern recognition, data classification, regressions, and predictions, amongst other tasks.

REPRESENTATION

The architecture or hierarchical structure of NN is an arrangement composed by:

- Neurons (Nodes):
 - o AKA nodes or units.
 - These are the basic units of NN.
 - Each neuron receives input from the previous layer, processes them, and passes the result to the next layer.
- Layers:
 - o Input Layer:
 - The first layer that receives the raw input data.
 - Each neuron in this layer represents a feature of the input data.
 - Hidden Layers:
 - Intermediate layers where computations are performed to transform the input data.
 - At least one hidden layer.
 - There can be multiple hidden layers.
 - Each layer consists of multiple neurons that apply transformations to the input data.
 - Output Layer:

- Is the last layer.
- It produces the final output of the network.
- The number of neurons in this layer depends on the tasks (e.g. number of output variables).

Weights and Biases:

- o Each edge (connection) between neurons has associated parameter values:
 - Weights: determine (represent) the strength of the connection between neurons.
 - Biases: help adjust the output along with the weighted sum of inputs.
- These parameter estimates are analogous to the slope and intercept values that we solve when we fit a straight line to data.
- A NN starts with unknown (random) parameter values:
 - The parameters are learned during the training process.
 - The parameters are estimated when the NN is fitted to the data set.

• Activation Functions:

- Functions applied to the output of each neuron (in the hidden and output layer)
 to introduce non-linearity:
 - They bent or curved the lines.
- Functions allow the network to learn and model complex patterns and relationships:
 - Work as a "building block" for fitting a squiggle to data.
- Common activation functions include:
 - softplus
 - sigmoid
 - ReLU (Rectified Linear Unit)
 - tanh

TRAINING PROCESS

- NN learns from data by adjusting their parameters (weights and biases) through training.
- The training process has two major steps:
 - Feedforward Propagation:
 - The process where input data is passed through the network layer by layer to generate an output.
 - Backpropagation:
 - The learning process in which the parameters are updated to minimize the error.
- Feedforward Propagation:
 - o The data is fed into the input layer.
 - The data is passed through each hidden where:
 - The weights are applied-
 - The inputs and bias terms are added.
 - Each neuron (in the hidden and output layer) applies its activation function to produce the output.
 - The transformed data is passed to the output layer to generate the final prediction.

- (a) Three-layer feedforward neural network
- (b) Node of the network

• Backpropagation:

- The learning process in which the network adjusts its weights and biases based on the error of the output compared to the desired result.
- The process is done by calculating the gradient of the function being optimized with respect to each parameter.
- o Learning Rate:
 - Is a hyperparameter that controls the step size along the training.
 - It affects the speed and convergence of the training process.
- o Epochs:
 - One complete pass through the entire training process (FF and BP).
 - Multiple epochs are used to iteratively improve the model.

Backpropagation

COM194-AM-SM1-24 5 PRINCIPALES ALGORITMOS DE MINERÍA DE DATOS

