Large Signal Network Analyzer

An affordable PXI-based microwave non-linear characterization platform

Tibault Reveyrand¹, Scott Schafer¹, John Boudreaux¹, Takao Inoue², Zoya Popović¹ ¹ University of Colorado at Boulder ²National Instruments

Introduction

- The goal of this research is to integrate microwave-frequency Large Signal Network Analysis capabilities with commercially available National Instruments' PXI modular instrumentation and LabVIEW environment.
- The Microwave Research Group at the University of Colorado has decades of experience in UHF through millimeter-wave transmitters, including recent X-band (10-GHz) MMIC implementations in GaN. Our aim is to extend the frequency range and capabilities of available commercial instrumentation provided by NI.
- The proposed instrumentation development will enable new types of measurements such as those required for harmonically-terminated PAs, various transmitter architectures (Doherty, outphasing and supply modulated PAs), as well as microwave transistor rectifiers. The time-domain characterization is expected to provide dramatic improvement in RF circuit design capabilities.

Calibration

LSNA calibration algorithm consists of 3 steps at each RF frequency:

1. A relative VNA calibration creates an error-term matrix related to ports 1 and

$$\begin{pmatrix} a_1 \\ b_1 \\ a_2 \\ b_2 \end{pmatrix} = K \begin{bmatrix} 1 & \beta_1 & 0 & 0 \\ \gamma_1 & \delta_1 & 0 & 0 \\ 0 & 0 & \alpha_2 & \beta_2 \\ 0 & 0 & \gamma_2 & \delta_2 \end{bmatrix} \cdot \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix}$$

- 2. The power calibration gives |K|
- 3. The phase calibration yields $arg\{K\}$

Power and phase calibration are performed at an auxiliary reference plane (P_{aux}) after its own 1-port SOL coaxial calibration:

$$\begin{pmatrix} a_{aux} \\ b_{aux} \end{pmatrix} = K_{aux} \begin{bmatrix} 1 & \beta_{aux} \\ \gamma_{aux} & \delta_{aux} \end{bmatrix} \cdot \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

CALIBRATION.pdf

 \Rightarrow **Power** calibration at P_{aux} reference plane requires the connection of a power sensor. According to the measured value, in dBm, we can calculate $|K_{aux}|$ such as:

$$|K_{aux}| = \left| \frac{10^{(Power-10)/20}}{r_1 + \beta_{aux} \cdot r_2} \right|$$

 \Rightarrow **Phase** calibration at P_{aux} is performed by connecting a direct receiver (e.g. r_3) at P_{aux} :

$$\arg\{K_{aux}\} = \arg\left\{\frac{r_3}{r_1 + \beta_{aux}.r_2}\right\}$$

 \Rightarrow **Reciprocity** transfers the absolute calibration from P_{aux} to ports 1 and 2 (P1 and P2):

$$K = \pm \sqrt{1/Det\{[M]\}}$$

with

$$M = \begin{bmatrix} 1 & \beta_1 \\ \gamma_1 & \delta_1 \end{bmatrix} \cdot \begin{bmatrix} K_{aux} \cdot \begin{bmatrix} 1 & \beta_{aux} \\ \gamma_{aux} & \delta_{aux} \end{bmatrix} \end{bmatrix}^{-1}$$

Time-domain instrumentation for non-linear devices

Name	Manufacturer	Receivers	Availability
MTA (requires two synchronized)	HP	Sampler	Discontinued
LSNA	Agilent	Sampler	Discontinued
PNA-X + Nonlinear option	Agilent	Mixer	\$\$
ZVA + Nonlinear option	Rohde and Schwarz	Mixer	\$\$
SWAP X-402	VTD	Sampler	Discontinued

Receiver: Mixer vs. Sampler

RECEIVER.pdf

Measurement Setup for Envelope Tracking Application

The setup includes two LSNAs simultaneously. One is dedicated to RF (sampler based downconversion), the other one samples directly the LF stimulus. The purpose is to investigate lowfrequencies S_{22} of the DUT under RF large signal conditions.