Study of Jet Substructure Variables with the SiFCC Detector

at 100 TeV

*Chih-Hsiang Yeh¹,Shin-Shan Eiko Yu¹,Ashutosh Kotwal², Sergei Chekanov⁴,Nhan Viet Tran³

Abstract:

We study the performance of jet substructure variables with a detector designed for very high energy proton collisions, the SiFCC detector. The two-prong jets from Z'->WW and three-prong jets from Z'->ttbar are compared with the background from light quark jets at the same energy. The calorimeter geometry is benchmarked in various configurations in order to understand the impact of granularity on variables such as groomed jet mass, Njettiness and energy correlations within the jets. We present results on signal efficiency and background rejection using full GEANT simulations.

GEANT 4 Simulation of Future Detector

Barrel	Technology	pitch/cell	radii (cm)	z size (cm)
Vertex detector	silicon pixels/5 layers	$25~\mu\mathrm{m}$	1.3 - 6.3	38
Outer tracker	silicon strips/5 layers	$50~\mu\mathrm{m}$	39 - 209	921
ECAL	silicon pixels+W	$2 \times 2 \text{ cm}$	210 - 230	976
HCAL	scintillator+steel	$5{\times}5~\mathrm{cm}$	230 - 470	980
Solenoid	5 T (inner), -0.6 T (outer)	-	480 - 560	976
Muon detector	RPC+steel	$3\times3~\mathrm{cm}$	570 - 903	1400

Basic Jet Reconstruction Algorithm

$$egin{aligned} \mathbf{d_{ij}} &= \min(\mathbf{k_{ti}^{2p}}, \mathbf{k_{tj}^{2p}})^{\frac{\Delta_{ij}^z}{R^2}} \ \mathbf{d_{ib}} &= \mathbf{k_{ti}^{2p}} \end{aligned}$$

$$\Delta_{ij}^2 = (y_i - y_j)^2 + (\emptyset_i - \emptyset_j)^2$$

(1)i, j: the i and j particle

(2) k_{ti} , k_{tj} : the particle i and j transverse momenta

If d_{ij} < d_{ib} ,i and j particle will be merged into one particle

1.p=0 : Cambridge/Aachen algorithm

2.p=1 : kt algorithm

3.p=-1: anti-kt algorithm

Jet Substructure Variables

1.N-subjetness[2]:

$$\tau_{N} = \frac{1}{d_0} \sum_{k} P_{t,k} \min\{\Delta R_{1,k}, \Delta R_{2,k} \dots \Delta R_{N,k}\}$$

$$d_0 = \sum_{k} P_{t,k} R_0$$

 $\Delta R_{i,k}$: The distance between constuient in the eta — phi plane R_0 : The cone size we want to cluster $au_{21} = \frac{\tau_2}{\tau_1}$, $au_{32} = \frac{\tau_3}{\tau_2}$

2.Energy correlation function[3]:

$$C_{N}^{P_{T1}} = \sum_{i_{1} < i_{2} < ... < i_{N} \in J} (\prod_{a=1}^{N} PT_{ia}) (\prod_{b=1}^{N-1} \prod_{c=b+1}^{N} \Delta R_{ibic})^{\beta}$$

$$C_{N}^{(\beta)} \equiv \frac{ECF(N+1,\beta)ECF(N-1,\beta)}{ECF(N,\beta)^{2}}$$

3.Soft drop[4]:

$$P_{T1}$$

$$\Delta R_{12} P_{T2}$$

$$\frac{min(P_{T1}, P_{T2})}{P_{T1} + P_{T2}} < Z_{cut}(\frac{\Delta R_{12}}{R_0})^{\beta}$$

 $\beta > 0$: Remove both (soft)and (wide angle)

 $\beta = 0$: Depend on the cut to select the asymmetry

β < 0: Remove both (soft)and (collinear)

Signal and Background Process

Results: Soft drop mass at $\beta = 0$

Conclusion

 $\mathbf{Z'}(10\mathrm{TeV}) \rightarrow \mathbf{W'W'} \rightarrow 2 \mathrm{iets}$

20×20 cm HCAL

--- 5×5 cm HCAL

Improvements in signal identification using small cell sizes

	$\sqrt{s} = 5TeV$	$\sqrt{s} = 10 TeV$	$\sqrt{s} = 20 TeV$	$\sqrt{s} = 40Te$
Signal=WW				X
Signal=tt	X			X

Results: C and Tau variables

 C_2^1

MannWhitneyUtest:

 τ_{21}

 $Z'(20TeV) \rightarrow t\bar{t} \rightarrow 3 \text{ jets}$

20×20 cm HCAI

5×5 cm HCAL

Conclusion

5x5(cm)

Overall, the best separation power is observed in the 5x5 cm cell size

Reference

[1]Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider, JINST 12 (2017) P06009

[2]Identifyling Booseted Objects with N-subjettiness, JHEP03(2011)015

signal efficiency

[3]Energy correlation Functions for Jet Substrcture, JHEP06(2013)108 [4]Soft drop, JHEP05(2014)146

[5]Recursive soft drop, arxiv:1804.03657