TRABALHO FINAL DE CIRCUITOS ELETRÔNICOS

Mateus Carvalho Gonçalves MATR 201810245 Otávio de Lima Soares MATR 201811022

Turma 10B

Professor Leonardo Maia

SUMÁRIO

- 1. Introdução (página 3);
- 2. Desenvolvimento:
 - 2.1. Tabela de preços e especificações (página 4);
 - 2.2. Descrição dos componentes do circuito:
 - 2.2.1. Resistor (página 4);
 - 2.2.2. AMPOP (página 4):
 - 2.2.2.1. Caso geral;
 - 2.2.2.2. No circuito em questão;
 - 2.2.3. LED (página 4);
 - 2.2.4. Potenciômetro (página 5):
 - 2.2.4.1. Caso geral;
 - 2.2.4.2. No circuito em questão;
 - 2.2.5. LDR (página 5);
 - 2.2.6. Ponte de Wheatstone (página 5):
 - 2.2.6.1. Caso geral;
 - 2.2.6.2. No circuito em questão;
 - 2.3. Circuito no simulador (Multisim) (página 6);
 - 2.4. Tabela de medições (página 6);
- 3. Conclusão (página 7);
- 4. Referências (página 8);

1. INTRODUÇÃO

Com esse trabalho, objetiva-se colocar em prática os conhecimentos adquiridos na disciplina de Circuitos Eletrônicos durante todo o período. Tendo como base competências em corrente, tensão, resistência e amplificador operacional pretende-se construir um circuito que depende da iluminação do ambiente para seu funcionamento.

Além dos conhecimentos básicos, é necessário o estudo do princípio de funcionamento da Ponte de Wheatstone para que o trabalho possa ser executado com maior propriedade.

Objetiva-se, acima de tudo, capacitar e ambientar os alunos a projetos práticos em que se tenha uma visão mais clara de aplicação dos conteúdos estudados, formando um profissional melhor.

2. DESENVOLVIMENTO:

2.1 - TABELA DE PREÇOS E ESPECIFICAÇÕES

COMPONENTE	QTD	PREÇO UNITÁRIO	PREÇO TOTAL (R\$)
(ESPECIFICAÇÕES)		(R\$)	
Amplificador Operacional	1	3,00	3,00
UA741CN			
Resistor de metal filme de $10k\Omega$	2	0,60	1,20
Fotocélula LDR 5mm	1	3,00	3,00
Potenciômetro linear estriado 16mm	1	5,00	5,00
de $20k\Omega$			
Resistor de carvão de $1k\Omega$	1	0,60	0,60
LED vermelho 5mm	1	2,00	2,00
Placa de fenolite com furação 10x10	1	12,00	12,00
Conector Borne azul KRE 2 vias	1	2,00	2,00
Knob estriado mesa som verde	1	3,00	3,00
			TOTAL: 31,80

2.2 - DESCRIÇÕES DOS COMPONENTES DO CIRCUITO

2.2.1 - RESISTOR

Resistores são componentes de circuitos elétricos que possuem a função de limitar os valores da corrente elétrica de acordo com necessidades específicas. A sua função é resistir à passagem da corrente elétrica, por isso, a maior parte deles é feita com carvão em pasta, componente que é isolante elétrico.

2.2.2 - AMPOP

- 2.2.2.1 Caso geral: um amplificador operacional é um circuito integrado amplificador, com um ganho elevado, seu diferencial é que ele tem duas entradas, uma inversora negativa e outra não inversora positiva, a tensão de sua única saída é o resultado da diferença entre as entradas inversora e não inversora multiplicado pelo ganho.
- 2.2.2.2 Modo de operação neste circuito: o amplificador está operando no modo sem realimentação, o qual o amplificador realiza um ganho na diferença entre as tensões de suas entradas e sua saída não alimenta novamente nenhuma das entradas do AMPOP.

2.2.3 - LED

Light Emitting Diode (diodo emissor de luz) é um componente eletrônico semicondutor, responsável pela transformação de energia elétrica em luz. Tem

dois terminais (componente bipolar), que se chamam anodo e catodo. Conforme ocorre a polarização, permite ou não o trânsito da corrente elétrica e na sequência a incidência ou não de luz (polarização direta acende e o contrário para polarização reversa, correndo risco de estourar).

2.2.4 - POTENCIÔMETRO

- 2.2.4.1 Caso geral: são resistores cujo valor da resistência é ajustável girando-se um eixo que movimenta um contato móvel.
- 2.2.4.2 Utilidade no circuito em questão: neste circuito, o potenciômetro de controle de setpoint ajusta e tensão no trecho R1-R2 (tópico 2.3) definindo a impedância que o LDR deve possuir para que a tensão da porta não inversora do AMPOP seja maior que da porta inversora, gerando uma tensão de saída positiva permitindo o funcionamento do circuito.

2.2.5 - LDR

Light Dependent Resistors, são componentes sensíveis à luz, ou seja, dispositivos eletrônicos que podem agir sobre um circuito em função da luz incidente numa superfície sensível dos mesmos. Seu princípio de funcionamento acontece da seguinte maneira:

A superfície sensível deste componente é formada por uma substância denominada Arsenieto de Gálio (GaAs) a qual apresenta a propriedade de alterar a sua resistência em função da luz incidente

O que ocorre é que os fótons ("partículas" de luz) incidentes no material conseguem liberar elétrons do material aumentando ou diminuindo sua resistividade. Com maior quantidade de elétrons livres o material apresentará menor resistência e vice-versa.

A variação da resistência obtida com diferentes graus de iluminação e a corrente máxima que pode suportar o componente depende da superfície de contato com os eletrodos do material, e também da área exposta do mesmo à luz.

Assim, na construção de um LDR o que se faz é utilizar dois eletrodos em forma de "pente" que se interpenetram obtendo-se com isso uma grande superfície de contato com o material fotossensível.

2.2.6 - PONTE DE WHEATSTONE

- 2.2.6.1 Caso geral: consiste basicamente num circuito com 4 braços, arranjados de tal forma que podemos aplicar uma tensão e detectar seu equilíbrio, o que ocorre quando os valores dos componentes dos braços estiverem com uma certa relação de valores. Quando está em equilíbrio, ou seja, R1/R2 = R3/R4 (tópico 2.3), tem na saída corrente nula, isto é, zero.
- 2.2.6.2 No circuito em questão: o sensor LDR ajusta sua impedância de acordo com a presença ou não de luz com a finalidade de proporcionar o balanceamento necessário nas tensões da ponte de Wheatstone para que ela permita ou não o funcionamento do circuito.

2.3 - CIRCUITO NO SIMULADOR (MULTISIM)

Sendo R1: Sensor LDR;

R2: Potenciômetro;

R3 e R4: resistores de $10k\Omega$;

2.4 - TABELA DE MEDIÇÕES

TRECHO	MEDIÇÃO NO MULTISIM	MEDIÇÃO NO PROTOBOARD
Tensão na porta positiva do AMPOP	5,9992 V	5,91 V
Tensão na porta negativa do AMPOP	4,85111 V	4,3 V
Tensão entre as portas do AMPOP	1,1481 V	1,53 V
Corrente de saída do AMPOP	9,2924 mA	8,35 mA

3. CONCLUSÃO

Os dois resistores de $10k\Omega$ em série geram uma tensão de 6V na entrada positiva do AMPOP, sendo assim, na entrada negativa (onde se encontram o sensor LDR e o potenciômetro, em série) os componentes devem ser configurados de forma que a tensão nesse trecho seja menor que 6V para que haja saída de corrente no AMPOP quando necessário.

O sensor LDR apresenta baixa resistência em presença de luz, o que faz com que o LED não funcione nesses momentos, já quando não há uma quantidade suficiente de luz, a resistência do sensor diminui até que a saída de corrente no AMPOP seja positiva e o LED acenda.

O potenciômetro funciona como uma espécie de chave que controla a quantidade de luz máxima que o sensor tolera para que o LED permaneça apagado.

Conclui-se com esse trabalho, portanto, que o circuito apresentado funciona como uma espécie de fornecedor de luminosidade com base na claridade do ambiente, ou seja, o circuito capta a quantidade de luz do ambiente e retorna ou não luminosidade por meio do LED. Uma aplicação disso, por exemplo, são postes de iluminação pública automatizados.

4. REFERÊNCIAS

https://mundoeducacao.bol.uol.com.br/fisica/resistores.htm. Acesso em: 13/06/2018 https://www.eletronicaprogressiva.net/2013/07/O-que-e-um-resistor-para-que-serve-as sociacao-em-serie-e-paralelo.html>. Acesso em: 13/06/2018 http://blog.novaeletronica.com.br/o-que-e-um-amplificador-operacional/. Acesso em: 13/06/2018 http://www.newtoncbraga.com.br/index.php/almanaque-tecnologico/201-l/7547-ldr-al m332>. Acesso em: 13/06/2018 http://www.comofazerascoisas.com.br/potenciometro-o-que-e-para-que-serve-e-comofunciona.html>. Acesso em: 13/06/2018 http://blog.borealled.com.br/o-que-e-led/. Acesso em: 13/06/2018 http://eletronicaemcasa.blogspot.com/2013/05/como-funciona-um-potenciometro.html >. Acesso em: 13/06/2018 http://www.newtoncbraga.com.br/index.php/como-funciona/8858-como-funciona-a-po nte-de-wheatstone-ins529>. Acesso em: 13/06/2018 http://engenheirocaicara.com/ponte-de-wheatstone-e-amplificador-operacional/. Acesso em: 13/06/2018