



### 数据结构与算法 (十二)

张铭 主讲

采用教材:张铭,王腾蛟,赵海燕编写 高等教育出版社,2008.6 ("十一五"国家级规划教材)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg





# 第十二章 高级数据结构

- 12.1 多维数组
- 12.2 广义表
- 12.3 存储管理
- 12.4 Trie 树
- 12.5 改进的二叉搜索树





### 12.3 Trie 树

- 理想状况:插入、删除、查找时间代价为 O( logn)
- 输入 9, 4, 2, 6, 7, 15, 12, 21
- 输入 2, 4, 6, 7, 9, 12, 15, 21









### Trie 结构

- 关键码对象空间分解
- "trie"这个词来源于 "retrieval"
- 主要应用
  - 信息检索 (information retrieval)
  - 自然语言大规模的英文词典
- 字符树——26叉Trie
- 二叉Trie树
  - 用每个字母(或数值)的二进制编码来代表
  - 编码只有0和1





# 英文字符树——26叉Trie

"an"子树代表相同前 缀an-具有的关键 码集合{and, ant} 存单词and、ant、bad、bee



• 一棵子树代表具有相同前缀的关键码的集合



### 不等长的字符树,加"\*"标记

存储单词 an、and ant、bad、bee





# 压缩靠近叶结点的单路径

### 存储单词 an、and、ant、bad、bee





### 二叉Trie 结构

元素为2、5、9、17、41、45、63







# PATRICIA 结构图



编码: 2: 000010 5: 000101 9: 001001

17: 010001 41: 101001 45: 101101 63: 111111



### PATRICIA的特点

- 改进后的压缩 PATRICIA 树是满二叉树
  - 每个内部结点都代表一个位的比较
  - 必然产生两个子结点
- 一次检索不超过关键码的位个数

### 12.4 Trie 树



ababc

abc

abc

bc

### **Suffix Trees**



T = ababc



**Suffix Trie** 

**Suffix Tree** 





# 数组(Suffix Array)









| 5 | ALAM\$      |
|---|-------------|
| 1 | ALAYALAM\$  |
| 7 | AM\$        |
| 3 | AYALAM\$    |
| 6 | LAM\$       |
| 2 | LAYALAM\$   |
| 0 | MALAYALAM\$ |
| 8 | M\$         |
| 4 | YALAM\$     |
| 9 | \$          |





### 思考

- •中文是否适合组织字符树?是否适合 PATRICIA Trie 结构?
- 查阅后缀树、后缀数组的文献,思考其应用场景。



### 第十二章 高级数据结构

- 12.1 多维数组
- 12.2 广义表
- 12.3 存储管理
- 12.4 Trie 树
- 12.5 改进的二叉搜索树
  - 12.5.1 平衡的二叉搜索树
  - 12.5.2 伸展树

#### 12.5 改进的二叉搜索树



### 12.5.2 伸展树

- 一种自组织数据结构
  - 数据随检索而调整位置
  - 汉字输入法的词表
- 伸展树不是一个新数据结构,而只是改进 BST 性能的一组规则
  - 保证访问的总代价不高,达到最令人满意的性能
  - 不能保证最终树高平衡





#### 12.5 改进的二叉搜索树

### 12.5.2 伸展树

- 单旋转
  - 结点与它的父结点交换位置,保持 BST 特性







### 12.5.2 伸展树

• LL 和 RR 双旋:保持 BST 的中序性质







# 12.5.2 伸展树

• LR 和 RL 双旋:保持 BST 的中序性质







# 展开 (splaying)

- 访问一次结点 (例如结点 x) , 完成一次称为展开的过程
  - x 被插入、检索时, 把结点 x 移到 BST 的根结点
  - 删除结点 x 时, 把结点 x 的父结点移到根结点
- 像在 AVL 树中一样,结点 x 的一次展开包括一组旋转 (rotation)
  - 调整结点 x、父结点、祖父结点的位置
  - 把 x 移到树结构中的更高层



### 单旋转 (single rotation)

- x 是根结点的直接子结点时
  - 把结点 x 与它的父结点交换位置
  - 保持 BST 特性
- x、y 为内部结点编号,不是值大小
- A、B、C 代表子树,有大小顺序





### 双旋转 (double rotation)

- 双旋转涉及到
  - 结点 x
  - 结点 x 的父结点 (称为 y)
  - 结点 x 的祖父结点 (称为 z)
- 把结点 x 在树结构中向上移两层
- 一字形旋转(zigzig rotation)
  - 也称为同构调整 (homogeneous configuration)
- 之字形旋转(zigzag rotation)
  - 也称为异构调整 (heterogeneous configuration)





### 一字形旋转图示



结点 x 是 y 的左子结点 结点 y 是 z 的左子结点

### 12.5 改进的二叉搜索树



# 一字形旋转图示



### 12.5 改进的二叉搜索树



# 之字形旋转图示



结点 x 是 y 的右子结点 结点 y 是 z 的左子结点



# 之字形旋转图示



### 12.5 改进的二叉搜索树



# 之字形旋转图示





### 两种旋转的不同作用

- •之字形旋转
  - 把新访问的记录向根结点移动
  - 使子树结构的高度减 1
  - 趋向于使树结构更加平衡
- •一字形提升
  - 一般不会降低树结构的高度
  - 只是把新访问的记录向根结点移动



- 一系列双旋转
  - 直到结点 x 到达根结点或者根结点的子结点
- 如果结点x到达根结点的子结点
  - 进行一次单旋转使结点 x 成为根结点
- 这个过程趋向于使树结构重新平衡
  - 使访问最频繁的结点靠近树结构的根层
  - 从而减少访问代价



















### 12.5 改进的二叉搜索树





### 12.5 改进的二叉搜索树







# Splay 树的操作

```
struct TreeNode
   int key;
   ELEM value;
   TreeNode *father, * left, *right;
};
Splay(TreeNode *x, TreeNode *f); // 把 x 旋转到祖先 f 下面
                               //把×旋转为根
Splay(x, NULL);
                                       // 查询 k
Find(int k);
                                       // 插入值 >
Insert(int k);
                               // 删除 x 结点
Delete(TreeNode *x);
                               //删除×子树
DeleteTree(TreeNode *x);
```





```
void Splay (TreeNode *x, TreeNode *f) {
    while (x->parent != f) {
        TreeNode *y = x-> parent, *z = y-> parent;
        if (z != NULL) {
                                            // 祖父不空
            if (z-> lchild == y) {
                  if (y-> lchild == x)
                  { Zig(y); Zig(x); } // 一字型双右旋
                else { Zag(x); Zig(x); } // x左旋上来,接着右旋
            } else {
                 if (y-> lchild == x)
                 { Zig(x); Zag(x); } // x右旋上来,接着左旋
                 else { Zag(y); Zag(x); } // 一字型双左旋
        } else {
            if (y->lchild == x) Zig(x); // 右单
            else Zag(x); } // 左单旋
    if (x->parent == NULL) Root = x;
```



### 删除大于 u 小于 v 的所有结点

- 把 u 结点旋转到根
- 把 v 旋转为 u 的右儿子
- •删除 > 结点的左子树

```
void DeleteUV(TreeNode* rt, TreeNode* u, TreeNode* v)
{
    Splay(u, NULL);
    Splay(v, u);
    DeleteTree(v->lchild);
    v->lchild = NULL;
}
```





## 伸展树的效率

- n 个结点的伸展树
- ・进行一组 m 次操作(插入、删除、查找操作), 当 m≥n 时,总代价是 O(m logn)
  - 伸展树不能保证每一个单个操作是有效率的
  - ·即每次访问操作的平均代价为 O(log n)
- 不要求掌握证明方法

高级数据结构

### 12.5 改进的二叉搜索树



# 思考: 半伸展树





# 思考

- •请调研 Splay 树的各种应用
- •红黑树、AVL 树和 Splay 树的比较
  - •它们与访问频率的关系?
  - 树形结构与输入数据的顺序关系?
  - 统计意义上哪种数据结构的性能更好?
  - 哪种数据结构最容易编写?





## 第十二章 高级数据结构

- 12.1 多维数组
- 12.2 广义表
- 12.3 存储管理
- 12.4 Trie 树
- 12.5 改进的二叉搜索树
  - 12.5.1 平衡的二叉搜索树
    - AVL 树的概念和插入操作
    - AVL 树的删除操作和性能分析
  - 12.5.2 伸展树





# 12.5.1 平衡的二叉搜索树 (AVL)

- BST受输入顺序影响
  - 最好O (log n)
  - 最坏O (n)
- Adelson-Velskii 和 Landis
  - AVL 树,平衡的二叉搜索树
  - 始终保持O (log n) 量级







# 12.5.1 平衡的二叉搜索树 (AVL)

- ・单旋转
  - 结点与它的父结点交换位置,保持 BST 特性







## 12.5.1 平衡的二叉搜索树 (AVL)

• 单旋和双旋:保持 BST 的中序性质





## 12.5.1 平衡的二叉搜索树 (AVL)

• 等价的旋转:保持 BST 的中序性质



#### 高级数据结构



#### 12.5.1 平衡的二叉搜索树 (AVL)

# AVL 树的性质

- •可以为空
- 具有 n 个结点的 AVL 树 , 高度为 O (log n)
- 如果 T 是一棵 AVL 树
  - 那么它的左右子树  $T_{r}$ 、  $T_{r}$  也是 AVL 树
  - 并且 | h<sub>L</sub>-h<sub>R</sub>|≤1
    - $h_L$ 、 $h_R$  是它的左右子树的高度

#### 高级数据结构

### 12.5 改进的二叉搜索树



# AVL 树举例







## 平衡因子

- 平衡因子, bf (x):
  - $Bf(\mathbf{x}) = height(x_{lchild}) height(x_{rchild})$
- 结点平衡因子可能取值为 0,1 和-1







### AVL 树结点的插入

- 插入与 BST 一样:新结点作叶结点
- 调整后的状态
  - 结点原来是平衡的,现在成为左重或右重的
    - 修改相应前驱结点的平衡因子
  - 结点原来是某一边重的,而现在成为平衡的了
    - 树的高度未变,不修改
  - 结点原来就是左重或右重的,又加到重的一边
    - 不平衡
    - "危急结点"

高级数据结构

### 12.5 改进的二叉搜索树



### 恢复平衡



插入17后导致不平衡

重新调整为平衡结构





- 不平衡情况发生在插入新结点后
- BST 把新结点插入到叶结点
- 假设 a 是离插入结点最近,且平衡因子绝对值不等于0 的结点
  - 新插入的关键码为 key 的结点 s 要么在它的左子树中, 要么在其右子树中
  - 假设插入在右边,原平衡因子
    - (1)  $a \rightarrow bf = -1$
    - (2)  $a \rightarrow bf = 0$
    - (3) a bf = +1





- 假设 a 离新结点 s 最近,且平衡因子绝对值不等于0
  - s (关键码为key) 要么在 a 的左子树, 要么在其右子树中
- 假设在右边, 因为从 s 到 a 的路径上(除 s 和 a 以外) 结点都要从原 bf=0 变为 |bf|=+1, 对于结点 a
  - 1. a->bf = -1,则 a->bf = 0, a 子树高度不变
  - 2. a->bf = 0 , 则 a->bf = +1 , a 子树树高改变
    - 由a的定义 (a->bf ≠ 0) , 可知 a 是根
  - 3. a->bf = +1,则 a->bf = +2,需要调整





### 不平衡的情况

- AVL 树任意结点 a 的平衡因子只能是 0,1,-1
- a 本来左重 , a.bf==-1 , 插入一个结点导致 a.bf 变为-2
  - LL 型:插入到 a 的左子树的左子树
    - •左重 + 左重 , a.bf 变为-2
  - LR 型: 插入到 a 的左子树的右子树
    - •左重 + 右重 , a.bf 变为-2
- 类似地 , a.bf==1 , 插入新结点使得 a.bf 变为2
  - RR型:导致不平衡的结点为 a 的右子树的右结点
  - RL 型:导致不平衡的结点为 a 的右子树的左结点

高级数据结构

### 12.5 改进的二叉搜索树



# 不平衡的图示







RR型



### 不平衡情况总结

- LL 型和 RR 型是对称的, LR 型和 RL 型是对称的
- 不平衡的结点一定在根结点与新加入结点之间的路径上
- 它的平衡因子只能是 2 或者 -2
  - 如果是 2, 它在插入前的平衡因子是1
  - 如果是 -2, 它在插入前的平衡因子是 -1



# LL单旋转



#### 高级数据结构

#### 12.5 改进的二叉搜索树



### 旋转运算的实质

- 以RR型图示为例,总共有7个部分
  - 三个结点: a、b、c
  - 四棵子树  $T_0$ 、 $T_1$ 、 $T_2$ 、 $T_3$ 
    - 加重 c 为根的子树,但是其结构其实没有变化
    - $T_2$ 、c、 $T_3$ 可以整体地看作 b 的右子树
- •目的:重新组成一个新的 AVL 结构
  - 平衡
  - 保留了中序周游的性质
    - $T_0$  a  $T_1$  b  $T_2$  c  $T_3$



### 双旋转

- RL 或者 LR 需要进行双旋转
  - 这两种情况是对称的
- 我们只讨论 RL 的情况
  - LR 是一样的



# RL型双旋转第一步







# RL型双旋转第二步







### 旋转运算的实质 (续)

- 把树做任何一种旋转 (RR、RL、LL、LR)
- 新树保持了原来的中序周游顺序
- 旋转处理中仅需改变少数指针
- 而且新的子树高度为 h+2,保持插入前子树的高度不变
- 原来二叉树在 a 结点上面的其余部分 (若还有的话) 总是保持平衡的



插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树



插入 copy 后不平衡 LR 双旋转



插入单词: cup, cop, copy, hit, hi, his和 hia 后得到的 AVL 树







插入单词: cup, cop, copy, hit, hi, his和 hia 后得到的 AVL 树

RL双旋转





插入单词: cup, cop, copy, hit, hi, his和 hia 后得到的 AVL 树







### 插入单词: cup, cop, copy, hit, hi, his和 hia 后得到的 AVL 树

RR单旋转







插入单词: cup, cop, copy, hit, hi, his和 hia 后得到的 AVL 树







插入单词: cup, cop, copy, hit, hi, his 和 hia 后得到的 AVL 树

LL单旋转







### 思考

- 是否可以修改 AVL 树平衡因子的定义,例如允许高度差为 2?
- 将关键码1, 2, 3, ..., 2<sup>k</sup>-1依次插入到一棵初始为空的AVL树中, 试证明结果是一棵高度为k的完全满二叉树。





## 第十二章 高级数据结构

- 12.1 多维数组
- 12.2 广义表
- 12.3 存储管理
- 12.4 Trie 树
- 12.5 改进的二叉搜索树
  - 12.5.1 平衡的二叉搜索树
    - AVL 树的概念和插入操作
    - AVL 树的删除操作和性能分析
  - 12.5.2 伸展树



### AVL 树结点的删除

- ·删除是插入的逆操作。从删除结点的意义上来说, AVL 树的删除操作与 BST 一样
- AVL 树的删除是比较复杂过程,下面具体讨论一下删除的过程



### AVL结点删除后的调整

- AVL 树调整的需要
  - 删除结点后可能导致子树的高度以及平衡因子的变化
  - 沿着被删除结点到根结点的路径来调整这种变化
- 需要改动平衡因子
  - •则修改之
- 如果发现不需要修改则不必继续向上回溯
  - 布尔变量 modified 来标记, 其初值为 TRUE
  - 当 modified = FALSE 时,回溯停止

### 有以下三种情况



# AVL 树结点的删除情况1

- 当前结点 a 平衡因子为 0
  - 其左或右子树被缩短,则平衡因子该为1或者-1
  - modified = FALSE
  - 变化不会影响到上面的结点,调整可以结束





# AVL 树结点的删除情况 2

- 当前结点 a 平衡因子不为 0, 而较高的子树被缩短
  - 则其平衡因子修改为 0
  - modified = TRUE
  - 需要继续向上修改





### AVL 树结点的删除情况 3.1

- 当前结点 a 平衡因子不为 0,且它的较矮的子树被缩短, 结点 a 必然不再平衡
- 假设其较高子树的根结点为 b , 出现下面三种情况
  - 情况 3.1: b 的平衡因子为 0





### AVL 树结点的删除过程 3.2

- 情况3.2:b 的平衡因子与 a 的平衡因子相同
  - 单旋转
  - 结点 a、b 平衡因子都变为0
  - modified =TRUE





h-1

### AVL 树结点的删除情况 3.3

- 情况3.3: b 和 a 的平衡因子相反
  - 双旋转, 先围绕 b 旋转, 再围绕 a 旋转
  - 新的根结点平衡因为为 0
  - 其他结点应做相应的处理
  - 并且 modified = TRUE



#### 高级数据结构

#### 12.5 改进的二叉搜索树



# 删除后的连续调整

- 连续调整
  - 调整可能导致祖先结点发生新的不平衡
  - 这样的调整操作要一直进行下去,可能传递到根结点为止
- 从被删除的结点向上查找到其祖父结点
  - 然后开始单旋转或者双旋转操作
  - 旋转次数为 O (log n)



# AVL 树删除的例子



(a) 删除结点 m,则需要使用其中序前驱l代替(情况1)



# AVL 树删除的例子



(b) 删除结点 n (情况 3.2)

(c) 需要以 l 为根进行 LL 单旋转 (情况 3.2)



# AVL 树删除的例子



(d) LL 单旋转完毕,回溯调整父节点i,需要以i为根的 LR 双旋转(情况3.3)



(e) 调整完毕, AVL 树重新平衡





## AVL 树的高度

- 具有 n 个结点的 AVL 树高度一定是 O ( $\log n$ )
- n 个结点的 AVL 树的最大高度不超过  $Klog_2 n$ 
  - 这里 K 是一个小的常数
- 最接近于不平衡的 AVL 树
  - 构造一系列 AVL 树 T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>, ...。

#### 高级数据结构

### 12.5 改进的二叉搜索树





### Ti 的高度是 i

每棵具有高度 i 的其它 AVL 树都比  $T_i$  的结点个数多



或者说,T<sub>i</sub> 是具有同样的结点数目的所有AVL 树中最接近不平衡状态的,删除一个结点都会不平衡





# 高度的证明 (推理)

• 可看出有下列关系成立:

$$t(1) = 2$$
  
 $t(2) = 4$   
 $t(i) = t(i-1) + t(i-2) + 1$ 

•对于 i>2 此关系很类似于定义 Fibonacci 数的关系:

$$F(0) = 0$$
 $F(1) = 1$ 
 $F(i) = F(i-1) + F(i-2)$ 





## 高度的证明 (推理续)

• 对于 i>l 仅检查序列的前几项就可有

$$t(i) = F(i+3) - 1$$

• Fibonacci 数满足渐近公式

$$F(i) = \frac{1}{\sqrt{5}} \phi^{i}, \dot{\mathbf{x}} = \frac{1 + \sqrt{5}}{2}$$

• 由此可得近似公式

$$t(i) \approx \frac{1}{\sqrt{5}} \phi^{i+3} - 1$$





# 高度的证明 (结果)

• 解出高度 i 与结点个数 t (i) 的关系

$$\phi^{i+3} \approx \sqrt{5}(t(i)+1)$$

$$i+3 \approx \log_{\phi} \sqrt{5} + \log_{\phi}(t(i)+1)$$

- 由换底公式  $\log_{\varphi} X = \log_2 X / \log_2 \varphi$  和  $\log_2 \varphi \approx 0.694$  ,求出近似上限
  - t(i) = n

$$i < \frac{3}{-\log_2(n+1)} - 1$$
• 所以 n 个结点的 AVL 树的高度—定是 O (log  $n$ )





### AVL 树的效率

- 检索、插入和删除效率都是 O(1og<sub>2</sub> n)
  - 具有 n 个结点的 AVL 树的高度一定是 O(log n)
- AVL 树适用于组织较小的、内存中的目录
- 存放在外存储器上的较大的文件
  - B 树/ B+ 树, 尤其是 B+ 树

#### 高级数据结构

### 12.5 改进的二叉搜索树



# 思考

- 对比红黑树、AVL 树的平衡策略,哪个更好?
  - 最差情况下的树高
  - 统计意义下的操作效率
  - 代码的易写、易维护





### 数据结构与算法

#### 谢谢聆听

国家精品课"数据结构与算法" http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

> 张铭,王腾蛟,赵海燕 高等教育出版社,2008.6。"十一五"国家级规划教材