Mathematical Foundations: Information Theory

Prof. Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Fall 2021) http://cs182.sist.shanghaitech.edu.cn

Information Content

- Information content (a.k.a. self-information, surprisal, Shannon information) of an event x_i from the random variable X with probability $p(X = x_i)$ follows from some properties:
 - $I(X = x_i)$ is monotonically decreasing in $p(X = x_i)$
 - $-I(X=x_i)\geq 0$
 - when $p(X = x_i) = 1$, $I(X = x_i) = 0$; and when $p(X = x_i) = 0$, $I(X = x_i) = +\infty$
 - $I(X = x_1, X = x_2) = I(X = x_1) + I(X = x_2)$ for independent events x_1 and x_2
- Information content is mathematically chosen as

$$I(X = x_i) = -\log_b p(X = x_i)$$

Entropy: Intuitive Notion

- Measures the impurity, uncertainty, irregularity, surprise
- ► Entropy: the expected (i.e., average) amount of information conveyed by identifying the outcome of a random trial
- ► Suppose we have two discrete classes
 - S: a sample of training examples
 - p_{\oplus} : proportion of positive examples in S
 - p_⊕: proportion of negative examples in S
- ▶ Optimal purity (impurity/uncertainty= 0): either
 - $-p_{\oplus}=1$, $p_{\ominus}=0$
 - $p_{\oplus}=0$, $p_{\ominus}=1$
- ► Least pure (maximum impurity/uncertainty):
 - $p_{\oplus}=0.5$, $p_{\ominus}=0.5$

Entropy: Formal Definition

- ▶ X: discrete random variable with alphabet $\mathcal{X} = \{x_1, \dots, x_n\}$ and probability mass function $p(x) = Pr(X = x), x \in \mathcal{X}$
- entropy (or Shannon entropy)

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_b p(x)$$

- in our previous example: $H(X) = -p_{\oplus} \log_b p_{\oplus} p_{\ominus} \log_b p_{\ominus}$
- convention: $0 \cdot \log_b 0 = 0$

Example

S is a collection of 14 examples, 9 positive and 5 negative

Entropy([9+,5-]) =
$$-\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$$

- all members of S belong to the same class \Rightarrow entropy= 0
- equal number of +ve and -ve examples \Rightarrow entropy= 1
- otherwise, entropy is between 0 and 1
- for continuous X with probability density function p(x), differential entropy:

$$h(X) = -\int_{x \in \mathcal{X}} p(x) \log_b p(x) dx$$

Entropy: Formal Definition...

Question

What units is entropy measured in?

- depends on the base b of the log
 - -b=e: nats, b=2: bits (adopted here)
- entropy can be changed from one base to another

$$- H_b(X) = (\log_b a) H_a(X)$$

Note

two different probability distributions p and q can lead to the same entropy

$$H(p) = H(q)$$

- e.g., $\vec{p} = \{.5, .25, .25\}, q = \{.48, .32, .2\}$
- H(p) = H(q) = 1.5

In general, when X can take n values

- \blacktriangleright $H(X) \le \log n$, with $H(X) = \log n$ if p(x) = 1/n
- ▶ $H(X) \ge 0$, with H(X) = 0 if there is a x_k with $p(x_k) = 1$

Example: Coding

	а	b	С	d
P(X)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	1 8

► Code:

	а	b	С	d
code	00	01	10	11

- Expected length to encode one symbol from *X*: 2 bits
- Consider another code:

	а	b	С	d
code	0	10	110	111

Expected length:

$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = 1.75$$
bits

Relationship with Coding

- ▶ Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p
- **Expected** number of bits to encode \oplus or \ominus of a random member of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus}) = \mathsf{Entropy}(S)$$

- ▶ Entropy(S) = expected number of bits needed to encode class (\oplus or \ominus) of a randomly drawn member of S under the optimal, shortest-length code
- ▶ In the worst case ($p_{\oplus} = 0.5$), requires one bit to encode each example
- ▶ If there is less uncertainty (e.g., $p_{\oplus} = 0.8$), we can use less than 1 bit each

Joint Entropy

- entropy: single random variable
- ▶ joint entropy of a pair of discrete random variables X, Y with a joint distribution p(x,y):

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

▶ if X and Y are two independent sample spaces, then H(X, Y) = H(X) + H(Y)

Conditional Entropy $H(Y \mid X)$

uncertainty we have about Y, given that we know X

$$H(Y \mid X) = \sum_{x \in \mathcal{X}} p(x)H(Y \mid X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y \mid x)$$

- $H(Y \mid X) \neq H(X \mid Y)$ in general
- chain rule: $H(X, Y) = H(X) + H(Y \mid X) = H(Y) + H(X \mid Y)$
 - interpretation: the uncertainty (entropy) about both X and Y is equal to the uncertainty (entropy) we have about X, plus whatever we have about Y, given that we know X
- \blacktriangleright when X and Y are independent, $H(Y \mid X) = H(Y)$
- $H(X_1,\ldots,X_n) = H(X_1) + H(X_2 \mid X_1) + \cdots + H(X_n \mid X_1,\ldots,X_{n-1})$
 - when X_1, \ldots, X_n are i.i.d., $H(X_1, \ldots, X_n) = nH(X_1)$

Kullback-Leibler Divergence (or Relative Entropy)

Motivation:

- suppose there is a r.v. X with true distribution p
- recall we can represent the r.v. with a code that has average length H(X)/H(p)
- \triangleright however, we do not know p; instead we assume the distribution of the r.v. is q
- ▶ then the code would need more bits to represent the r.v., and the difference in the number of bits is denoted as $KL(p \parallel q)$

KL-divergence from p(x) to q(x):

$$KL(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

▶ convention: $0 \cdot \log \frac{0}{q} = 0$ and $p \cdot \log \frac{p}{0} = \infty$

Cross entropy: the average coding length under the wrong distribution assumption q

$$CE(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x)$$

$$\blacktriangleright$$
 $KL(p \parallel q) = CE(p,q) - H(X)$

KL-Divergence...

Example

$$\mathcal{X} = \{0, 1\}, p(0) = 1 - r, p(1) = r, q(0) = 1 - s, q(1) = s$$

$$KL(p \parallel q) = (1 - r) \log \frac{1 - r}{1 - s} + r \log \frac{r}{s}$$

Information inequality

- ▶ $KL(p \parallel q) \ge 0$, with equality if and only if $p(x) = q(x) \quad \forall x$
- ▶ in the example above: if r = s, then $KL(p \parallel q) = KL(q \parallel p) = 0$

Proof:

$$\begin{aligned} \mathsf{KL}(p \parallel q) &= \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = -\sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)} \\ &\geq -\log(\sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)}) = -\log(\sum_{x \in \mathcal{X}} q(x)) = -\log(1) = 0 \end{aligned}$$

The equality is attained when p(x) = cq(x). Since $\sum_{x \in \mathcal{X}} p(x) = \sum_{x \in \mathcal{X}} q(x) = 1$, we have c = 1.

KL-Divergence...

Often used as a "distance" measure between distributions, but

- not symmetric
 - $KL(p \parallel q) \neq KL(q \parallel p)$ in general
 - in the example above, $KL(q \parallel p) = (1-s) \log \frac{1-s}{1-r} + r \log \frac{s}{r}$
 - may use the symmetric KL-divergence instead

$$KL(p \parallel q) + KL(q \parallel p)$$

- does not satisfy the triangle inequality
 - $\mathit{KL}(p \parallel q) \leq \mathit{KL}(p \parallel r) + \mathit{KL}(r \parallel q)$ does not hold in general
- not a distance between distributions
 - may use the Jensen-Shannon divergence (JSD) instead
 - JSD $(p,q) = \frac{1}{2}KL(p \parallel r) + \frac{1}{2}KL(r \parallel q)$, where r = (p+q)/2
 - $-\sqrt{\mathsf{JSD}}$ is a metric!

Mutual Information

Question

How much information does one random variable (Y) tell about another one (X)?

- piven: two random variables X and Y with a joint probability mass function p(x, y) and marginal probability mass functions p(x) and p(y)
- ightharpoonup mutual information I(X; Y):
 - KL-divergence between the joint distribution p(x,y) and the product distribution p(x)p(y)

$$I(X;Y) = KL(p(x,y) \parallel p(x)p(y)) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Mutual Information...

$$I(X; Y) = \sum_{x,y} p(x,y) \log \left(\frac{1}{p(x)} \cdot \frac{p(x,y)}{p(y)} \right)$$

$$= \sum_{x,y} p(x,y) \log \frac{p(x \mid y)}{p(x)}$$

$$= -\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x \mid y)$$

$$= -\sum_{x} p(x) \log p(x) - \left(-\sum_{x,y} p(x,y) \log p(x \mid y) \right)$$

$$= H(X) - H(X \mid Y)$$

- ▶ interpretation: mutual information is the reduction in the uncertainty of X due to the knowledge of Y
- when X, Y are independent, p(x, y) = p(x)p(y), so I(X; Y) = 0
 - if they are independent, Y can tell us nothing about X

Mutual Information...

- chain rule: $I(X; Y) = H(X) H(X \mid Y) = H(Y) H(Y \mid X)$
 - by symmetry I(X; Y) = I(Y; X)
 - X says as much about Y as Y says about X
- ▶ as H(X, Y) = H(X) + H(Y | X), so

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

- information that X tells about Y = uncertainty in X + uncertainty about Y uncertainty in both X and Y
- $I(X; X) = H(X) + H(X) H(X \mid X) = H(X)$
 - mutual information of a r.v. with itself is the entropy of the r.v.
- ▶ $I(X; Y) = KL(p(x, y) \parallel p(x)p(y))$, so by the information inequality, $I(X; Y) \ge 0$ with equality if and only if X and Y are independent
 - in other words, $H(X, Y) \leq H(X) + H(Y)$

Entropy and Mutual Information

