# LED ĐƠN – LED 7 ĐOẠN

GV: LÂM QUANG THÁI

BỘ MÔN: ĐIỆN – ĐIỆN TỬ

# CHỦ ĐỀ 1 HIỆU ƯNG CHO LED ĐƠN



- 1. Xây dựng chương trình tạo hiệu ứng cho các LED đơn với các yệu cầu sau: (với các led được chia thành 2 cụm trên board)
- Hiệu ứng 1: Cụm 1 và 2 sáng tắt với chu kì là 1s trong 5 lần.
- Hiệu ứng 2: Cụm 1 sáng dần từ led đỏ, cụm 2 sáng dần từ led xanh.
- Hiệu ứng 3: Cụm 1 sáng dần từ led xanh, cụm 2 sáng dần từ led đỏ.

int pinArray[] =  $\{4, 5, 6, 7, 8, 9\}$ ; // Do1/V1/X1 - X2/V2/D2

### **M**ŲC ĐÍCH

• Giúp sinh viên (SV) biết cách sử dụng đèn LED với Arduino và cách sử dụng các vòng lặp cơ bản.

# **CHUẨN B**Ị

- 1. Arduino Uno Board
- 2. 6 LEDs
- 3.  $10 \times 200\Omega$  resistors or  $220\Omega$  resistors
- 4. Breadboard



# TÍNH TRỞ CHO LED



$$R = \frac{(V_s - V_{LED})}{I_{LED}}$$

Ví dụ: Vs = 5V Vled = 2,2V Iled = 10mA $\rightarrow R = 280 (Ohm)$ 

- $V_S$  is the source voltage, measured in volts (V),
- V<sub>LED</sub> is the voltage drop across the LED, measured in volts (V),
- ILED is the current through the LED\*, measured in Amperes (Amps/A), and
- $\bullet$  R is the resistance, measured in Ohms  $(\Omega)$ .

# HÀM VÀ THỦ TỤC Nhập xuất Digital

**pinMode():** Cấu hình 1 pin quy định hoạt động như là một đầu vào (INPUT) hoặc đầu ra (OUTPUT).

- *Cú pháp* pinMode(pin, mode)
- Thông số

pin: Số của chân digital mà bạn muốn thiết đặt mode: INPUT, INPUT PULLUP hoặc OUTPUT

digitalWrite(): Xuất tín hiệu ra các chân digital, có 2 giá trị là HIGH hoặc là LOW.

- Cú pháp digitalWrite(pin,value)
- Thông số

pin: Số của chân digital mà bạn muốn thiết đặt value: HIGH hoặc LOW

# HÀM VÀ THỦ TỤC Hàm thời gian

delay(): dừng chương trình trong thời gian mili giây. Và 1000 mili giây = 1 giây.

```
• Cú pháp
delay(ms)
```

Thông số

ms: thời gian ở mức mili giây.

#### Cấu trúc điều khiển

```
If ... else ...
```

```
    Cú pháp:
        if ([biểu thức 1] [toán tử so sánh] [biểu thức 2]) {
            //biểu thức điều kiện
            [câu lệnh 1]
        } else {
        [câu lệnh 2]
```

• Nếu biểu thức điều kiện trả về giá trị TRUE, [câu lệnh 1] sẽ được thực hiện, ngược

### HÀM VÀ THỦ TỤC Cấu trúc điều khiển

Serial.println(i);

```
Hàm for: có chức năng làm một vòng lặp - làm đi làm lại một công việc có một tính chất chung.
for (<bién chạy> = <start>;<điều kiện>;<buớc>) {
//lệnh
Ví dụ:
for (i = 1;i<=10;i=i+1) {</p>
```

# HÀM VÀ THỦ TỤC Cấu trúc điều khiển

Array là mảng (tập hợp các giá trị có liên quan và được đánh dấu bằng những chỉ số)

#### Cách khởi tạo một mảng:

int myInts[6]; // tạo mảng myInts chứa tối đa 6 phần tử (được đánh dấu từ 0-5), các phần tử này đều có kiểu là int => khai báo này chiếm 2\*6 = 12 byte bộ nhớ int myPins[] =  $\{2, 4, 8, 3, 6\}$ ; // tạo mảng myPins chứa 5 phần tử (lần lượt là 2, 4, 8, 3, 6). Mảng này không giới hạn số lượng phần tử vì có khai báo là "[]" int mySensVals[6] =  $\{2, 4, -8, 3, 2\}$ ; // tạo mảng mySensVals chứa tối đa 6 phần tử, trong đó 5 phần tử đầu tiên có giá trị lần lượt là 2, 4, -8, 3, 2 char message[6] = "hello"; // tạo mảng ký tự (dạng chuỗi) có tối đa 6 ký tự!

# Những board mạch Arduino trên thị trường



Cho phép mức 0

# SƠ ĐỒ MẠCH KẾT NỐI LED



#### CHƯƠNG TRÌNH ĐIỀU KHIỂN

```
// Khai báo biến
int pinArray[] = {4, 5, 6, 7, 8, 9}; // Do1/V1/X1 - X2/V2/D2
int count = 0;
int timer = 200;
//Khởi tạo
void setup(){
  for (count=0;count<=5;count++) {</pre>
    pinMode(pinArray[count], OUTPUT);
//Vòng lặp
void loop() {
  for (byte i=0;i<=5;i++){hieuUng1();}
  for (byte i=0;i<=5;i++){hieuUng2();}
  for (byte i=0;i<=5;i++){hieuUng3();}
```

#### CHƯƠNG TRÌNH ĐIỀU KHIỂN

```
void hieuUng1()
 // Nhom 1: Sáng - Tắt
 for (count=0;count<=2;count++) {
    digitalWrite(pinArray[count], LOW);
 delay(timer);
 for (count=0;count<=2;count++) {
    digitalWrite(pinArray[count], HIGH);
 delay(timer);
 // Nhom 2: Sáng - Tắt
 for (count=3;count<=5;count++) {</pre>
    digitalWrite(pinArray[count], LOW);
 delay(timer);
 for (count=3;count<=5;count++) {
    digitalWrite(pinArray[count], HIGH);
 delay(timer);
```

```
void hieuUng2()
 for (count=0;count<=2;count++) {
  digitalWrite(pinArray[count], LOW);
  digitalWrite(pinArray[count+3], LOW);
  delay(timer);
 for (count=0;count<=2;count++) {
  digitalWrite(pinArray[count], HIGH);
  digitalWrite(pinArray[count+3], HIGH);
  delay(timer);
```

#### CHƯƠNG TRÌNH ĐIỀU KHIỂN

```
void hieuUng3()
 for (count=2;count>=0;count--) {
  digitalWrite(pinArray[count], LOW);
  digitalWrite(pinArray[count+3], LOW);
  delay(timer);
 for (count=2;count>=0;count--) {
  digitalWrite(pinArray[count], HIGH);
  digitalWrite(pinArray[count+3], HIGH);
  delay(timer);
```

# HÀM VÀ THỦ TỤC

#### Nhập xuất Digital

**pinMode():** Cấu hình 1 pin quy định hoạt động như là một đầu vào (INPUT) hoặc đầu ra (OUTPUT).

digitalWrite(): Xuất tín hiệu ra các chân digital, có 2 giá trị là HIGH hoặc là LOW.

delay(): dừng chương trình trong thời gian mili giây. Và 1000 mili giây = 1 giây.

# CHỦ ĐỀ 2 ĐÈN GIAO THÔNG



# VÍ DỤ 1: Xây dựng đèn giao thông - Phần 1

Lập chương trình điều khiển cho đèn giao thông với chế độ sau:





```
//Khai báo
#define L2Red 11
#define L2Yellow 12
#define L2Green 13
//Cấu hình
void setup() {
 for (byte i = 11; i < 14; i++)
  pinMode(i, OUTPUT);
 for (byte i = 11; i < 14; i++)
  digitalWrite(i, OUTPUT);
```

```
//---Hàm Tắt led
void Led_Off()
 for (byte i = 11; i < 14; i++)
  digitalWrite(i, HIGH);
```

```
//Vòng lặp
void loop()
//1
 digitalWrite(L2Green, LOW);
 delay(5000); Led Off();
 //2
 digitalWrite(L2Yellow,LOW);
 delay(1000); Led Off();
 //3
 digitalWrite(L2Red, LOW);
 delay(5000); Led Off();
 //4
 digitalWrite(L2Red, LOW);
 delay(1000);Led Off();
```

```
//5
 digitalWrite(L2Green,LOW);
 delay(5000);Led Off();
 //6
 digitalWrite(L2Yellow, LOW);
 delay(1000);Led Off();
 //7
 digitalWrite(L2Red, LOW);
 delay(5000); Led Off();
 //8
 digitalWrite(L2Red, LOW);
 delay(1000);Led Off();
```

VÍ DỤ 2: Lập chương trình điều khiển đèn ngã tư giao thông:

<u>Luồng 1:</u>



VÍ DỤ 2: Lập chương trình điều khiển đèn ngã tư giao thông:



```
#define L1Red
#define L1Yellow 9
#define L1Green 10
#define L2Red
                 11
#define L2Yellow 12
#define L2Green 13
void setup() {
 for (int i = 7; i < 14; i++)
  pinMode(i, OUTPUT);
 for (int i = 8; i < 14; i++)
  digitalWrite(i, HIGH);
```

```
void loop()
 Mode1();
//---Hàm Tắt led
void Led_Off()
 for (int i = 8; i < 14; i++)
  digitalWrite(i, HIGH);
```

```
void Mode1()
 //1
 digitalWrite(L1Red, LOW);
 digitalWrite(L2Green, LOW);
 delay(5000);Led Off();
 //2
 digitalWrite(L1Red,LOW);
 digitalWrite(L2Yellow,LOW);
 delay(1000);Led Off();
 //3
 digitalWrite(L1Green,LOW);
 digitalWrite(L2Red, LOW);
 delay(5000);Led Off();
 //4
 digitalWrite(L1Yellow, LOW);
 digitalWrite(L2Red, LOW);
 delay(1000);Led Off();}
```

```
#define L1Red
#define L1Yellow 9
#define L1Green 10
#define L2Red
                11
#define L2Yellow 12
#define L2Green 13
//Khai báo biến đếm
byte dem;
void Mode2()
 digitalWrite(L1Yellow,LOW);
 digitalWrite(L2Yellow,LOW);
 delay(1000); Led Off();
```

```
void setup() {
 for (int i = 7; i < 14; i++)
  pinMode(i, OUTPUT);
 for (int i = 8; i < 14; i++)
  digitalWrite(i, HIGH);
 pinMode(2, INPUT_PULLUP); // Khai báo chân cho nút nhấn
  attachInterrupt(0, quetNutNhan1, LOW);
  attachInterrupt(1, quetNutNhan2, LOW);
```

```
void loop() {
 switch (dem){
  case 0:
  for (byte i=0; i<=5; i++){
    Mode1();
  break;
  case 1:
  for (byte i=0; i<=5; i++){
    Mode2();
  break;
  default:
  dem = 2;
```

```
void quetNutNhan1()
 dem = 0;
void quetNutNhan2()
 dem = 1;
```

# BÀI LUYỆN TẬP 1

1. Viết chương trình tạo hiệu ứng cho led với yêu cầu như sau:

| Thứ tự | Led Đỏ 1 | Led Vàng 1 | Led Xanh 1 |
|--------|----------|------------|------------|
| 1      | 0        | 0          | 0          |
| 2      | 0        | 0          | 1          |
| 3      | 0        | 1          | 0          |
| 4      | 0        | 1          | 1          |
| 5      | 1        | 0          | 0          |
| 6      | 1        | 0          | 1          |
| 7      | 1        | 1          | 0          |
| 8      | 1        | 1          | 1          |

#### Trong đó:

• Mức 0: Led tắt

• Mức 1: Led sáng

 Thời gian cho mỗi lần chuyển trạng thái là 1s

2. Viết chương trình điều khiển cho đèn giao thông với chế độ sau:

Luồng 1: đèn xanh (1) sáng 3s, đèn vàng (1) sáng 1s, đèn đỏ (1) sáng 4s.

Luồng 2: đèn đỏ (2) sáng 4s, đèn xanh (2) sáng 3s, đèn vàng (2) sáng 1s.

```
// Khai báo biến
#define L1Red
#define L1Yellow 9
#define L1Green 10
//---Hàm Tắt led
void Led_Off()
 for (byte i =8; i <= 10; i++)
  digitalWrite(i, HIGH);
```

```
//Cài đặt
void setup() {
 for (int i = 8; i < 10; i++) {pinMode(i, OUTPUT);}
 for (int i = 8; i < 10; i++) {digitalWrite(i, HIGH);}
```

```
//---Hàm Loop
void loop()
for (byte i = 0; i < =7; i++)
   digitalWrite(L1Red, HIGH);digitalWrite(L1Yellow, HIGH); digitalWrite(L1Green, HIGH);
   delay(1000); Led Off(); //000
   digitalWrite(L1Red, HIGH); digitalWrite(L1Yellow, HIGH); digitalWrite(L1Green, LOW);
   delay(1000); Led Off();//001
   digitalWrite(L1Red, HIGH);digitalWrite(L1Yellow, LOW); digitalWrite(L1Green, HIGH);
   delay(1000); Led Off();//010
   digitalWrite(L1Red, HIGH);digitalWrite(L1Yellow, LOW); digitalWrite(L1Green, LOW);
   delay(1000); LedOff();//011
```

```
#define L1Red 8
#define L1Yellow 9
#define L1Green 10

#define L2Red 11
#define L2Yellow 12
#define L2Green 13
//Khai báo biến đếm
byte dem;
```

```
//---Hàm Tắt led
void Led_Off()
 for (byte i = 11; i < 14; i++)
  digitalWrite(i, HIGH);
void setup() {
 for (int i = 7; i < 14; i++)
  pinMode(i, OUTPUT);
 for (int i = 8; i < 14; i++)
  digitalWrite(i, HIGH);
```

```
void Mode1()
 //1
 digitalWrite(L1Red, LOW);
 digitalWrite(L2Green, LOW);
 delay(3000);Led Off();
 //2
 digitalWrite(L1Red,LOW);
 digitalWrite(L2Yellow,LOW);
 delay(1000);Led Off();
 //3
 digitalWrite(L1Green,LOW);
 digitalWrite(L2Red, LOW);
 delay(3000);Led Off();
 //4
 digitalWrite(L1Yellow, LOW);
 digitalWrite(L2Red, LOW);
 delay(1000);Led Off(); }
```

#### HÀM NGẮT

Ngắt (interrupt) là những lời gọi hàm tự động khi hệ thống sinh ra một sự kiện. attachInterrupt()

#### Cú pháp

attachInterrupt(interrupt, ISR, mode);

# Thông số

interrupt: Số thứ tự của ngắt. Trên Arduino Uno, bạn có 2 ngắt với số thứ tự là 0 và 1. Ngắt số 0 nối với chân digital số 2 và ngắt số 1 nối với chân digital số 3. Muốn dùng ngắt phải gắn nút nhấn hoặc cảm biến vào đúng các chân này thì mới sinh ra sự kiện ngắt.

ISR: tên hàm sẽ gọi khi có sự kiện ngắt được sinh ra.

mode: kiểu kích hoạt ngắt, bao gồm:

- LOW: kích hoạt liên tục khi trạng thái chân digital có mức thấp
- HIGH: kích hoạt liên tục khi trạng thái chân digital có mức cao.
- *RISING*: kích hoạt khi trạng thái của chân digital chuyển từ mức điện áp thấp sang mức điện áp cao.
- FALLING: kích hoạt khi trạng thái của chân digital chuyển từ mức điện áp cao sang mức điện áp thấp.

#### HÀM NGẮT

```
int ledPin = 13;
void tatled()
  digitalWrite(ledPin, LOW); // tắt đèn led
void setup()
 pinMode(ledPin, OUTPUT);
 pinMode(2, INPUT_PULLUP); // sử dụng điện trở kéo lên cho chân số 2, ngắt 0
 attachInterrupt(0, tatled, LOW); // gọi hàm tatled liên tục khi còn nhấn nút
void loop()
 digitalWrite(ledPin, HIGH); // bật đèn led
```