Enroll.	No	
LIII VII.	110.	

[10]

(9)

a)IR

MARWADI UNIVERSITY MU-FOT CE-FOT1 (MU) Semester 4 - Winter

	18-Nov-2021	R ORGANIZA'	TION AND ARC	CHITECTURE (0) ours	1CE0402) Total Marks : 100
2. N	Attempt all question Make suitable assuring to the righ	mptions wherev			
Que.1 (A)	Answer the following	owing objectiv	ves .		
(1)	A require difference B require about C require difference	ent amount of ti the same amount ent amount of ti	me nt of time me with time diffe	erence between any	ce if the tasks being performed in different stages : y two tasks being same sks being different
(2)	With same num a) Sign Magnitu b) Sign 2's Com c) BCD d) Floating poin	de plement	ch data type provi	des largest dynamio	e range?
(3)	What is range o a) -127 to +128 b) - 128 to +127 c) -127 to +127 d) -64 to +64		complement data?	•	
(4)	By default, men	nory will consid	ler address from w	which register?	
(5)	How many num a) 12 bits	bers of bits will b) 13 bits	l be required to sp c) 14 bits	ecify address of 4K d) 15 bits	TB RAM?
(6)	In Arithmetic Pi A. 2 B. 3 C. 4	-	ting point addition	and subtraction is	done in parts.
(7)	What is range o a) -31 to +31 b) -32 to +32 c) -127 to +127 d) -64 to +64	f 6-bit Sign maş	gnitude data?		
(8)	Arithmetic Pipe A. floating poin			ns C. character op	perations D. None of the above

Which register is used to store address of next instruction to be executed?

c) DR

d) PC

b) TR

	a) Direct	b) Indirect	c) Implied	d) None				
Que.1 (B)	Answer the follo	owing questions.			[10]			
(1)	What does this mean: T0: R4 \leftarrow R0?							
(2)	What is an ALU	?						
(3)	Diffrentiate arith	metic and logical	l shift with one ex	ample				
(4)	Explain effective address.							
(5)	What is Data Register							
(6)	What do you und	derstand by Mem	ory Address?					
(7)	What is Program	Counter						
(8)	Define Memory	Write						
(9)	Enlist major com	nponents of CPU						
(10)	Explain Instruction	on Fetch.						
Que.2								
(A)	What is virtual n	nemory? Explain	relation between	address space and memory space in vitual memory system.	[8]			
(B)			ion process using sters that hold sign	Booth algorithm when the following binary numbers ned numbers.				
	II) (+13) X (-13)			OR	[8]			
(B)	What is speedup	? Derive the equa	ntion of speedup f	or k-segment pipeline processing for task.	[8]			
Que.3		. Berrye and equa	mon or speedup r	or it beginent processing for tubic	[~]			
(A)								
		Are all micro-pro		I micro program? Is it possible to design a microprocessor without a ters also microprocessors? Define micro operation, micro-instruction	[8]			
(B)	Explain memory	stack organization	on.		[4]			
(C)	Explain Write-th	rough and Write-	back cache write	method.	[4]			
				OR				
(A)	How addressing addressing mode		nt for referring m	emory? List and explain types of addressing modes by applying various	[8]			
(B)	Explain types of	Asynchronous d	ata transfer in brie	ef.	[4]			
(C)	Explain subtracti	ion operation wit	h signed 2's comp	olement integer data.	[4]			
Que.4								
(A)	Explain data tran	sfer and manipul	ation instructions		[8]			
(B)	Explain Stored P	Program Organiza	ation in detail.		[8]			

Which addressing mode will give allow larger address space to be accessed?

(10)

(A)	Explain shift micro operations and Draw neat and clean diagram for 4-bit combinational circuit shifter.	[8]
(B)	Draw and explain flowchart for interrupt cycle.	[8]
Que.5	5	
(A)	In RISC pipeline, explain delayed load by taking suitable example.	[6]
(B)	Explain addition and subtraction operation using flowchart.	[6]
(C)	Draw the flowchart for Booth multiplication operation.	[4]
	OR	
(A)	Explain I/O interface with details.	[6]
(B)	Differentiate Machine instruction and Microinstruction. Explain mapping of instructions.	
		[6]
(C)	Differentiate Direct and Indirect Addressing modes.	[4]
Que.6		
(A)	Explain Flynn's taxonomy for classifying parallel processors. Explain each class.	[8]
(B)	For the basic computer explain following instructions 1. LDA	[4]
	2. ADD 3. AND	
	4. CLA	
(C)	Define RTL. Explain how register transfer takes place in basic computer system.	[4]
	OR	
(A)	Differentiate SIMD, SISD, MISD and MIMD.	[8]
(B)	Draw the block diagram of common bus system of basic computer.	[4]
(C)	What is Interrupt? How it is useful for a system?	Γ Δ 1

---Best of Luck---

Subject: COMPUTER ORGANIZATION AND ARCHITECTURE (01CE0402)

Date: 18-Nov-2021 Time: 3 Hours Total Marks: 100

Difficulty Level	Weig Recommend	htage led Actual	No of Question	Total Marks	Question List
High	20	18.60	4	32	2(A), 2(B), 3(A), 4(A)
Low	20	5.23	4	9	1(A), 5(B)
Medium	60	76.16	37	131	1(A), 1(B), 2(B), 3(A), 3(B), 3(C), 4(A), 4(B), 5(A), 5(B), 5(C), 6(A), 6(B), 6(C)

Module Name	Weightage RecommendedActual		No of Question	Total Marks	Question List
undamental concepts of Micro programmed Control:	5	8.14	2	14	3(A), 5(B)
Input-Output Organization:	5	5.81	2	10	3(B), 5(A)
Memory Classification and Organization:	5	6.98	2	12	2(A), 3(C)
Computer Data Representation & Register Transfer and Micro-operations:	15	8.72	5	15	1(B), 4(A), 6(C)
Introduction to Pipeline:	15	19.19	7	33	1(A), 2(B), 5(A), 6(A)
Basic of Computer Arithmetic:	15	14.53	7	25	1(A), 2(B), 3(C), 5(B), 5(C)
Introduction to Computer Organization and Design:	20	25.00	17	43	1(A), 1(B), 4(B), 5(C), 6(B), 6(C)
Concepts of Central Processing Unit:	20	11.63	3	20	3(A), 3(B), 4(A)

Blooms Taxonomy	Weig Recommend	htage ed Actual	No of Question	Total Marks	Question List
Remember / Knowledge	20	13.95	10	24	1(A), 1(B), 4(B), 6(A)
Understand	30	52.33	27	90	1(A), 1(B), 2(A), 3(B), 3(C), 4(B), 5(A), 5(B), 5(C), 6(A), 6(B), 6(C)
Apply	25	22.09	5	38	2(B), 3(A), 4(A), 5(A)
Analyze	15	11.63	3	20	2(B), 3(A), 5(C)
Evaluate	10	0.00	0	0	
Higher order Thinking	0	0.00	0	0	

