$12n_{0198} \ (K12n_{0198})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{21} - u^{20} + \dots + b - u, -u^{21} - u^{20} + \dots - 3u^3 + a, u^{23} + 2u^{22} + \dots + 2u + 1 \rangle$$

$$I_2^u = \langle b + 1, -u^3 + u^2 + a, u^4 + u^2 + u + 1 \rangle$$

$$I_3^u = \langle b + 1, -u^3 + a - u + 1, u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{21} - u^{20} + \dots + b - u, -u^{21} - u^{20} + \dots - 3u^3 + a, u^{23} + 2u^{22} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{21} + u^{20} + \dots + u^{4} + 3u^{3} \\ u^{21} + u^{20} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{21} + 2u^{20} + \dots + u^{2} + u \\ u^{21} + u^{20} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{19} + 4u^{17} + 8u^{15} + 8u^{13} + 3u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ -u^{21} - 5u^{19} + \dots - u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 3u^{21} + 3u^{20} + \dots + 3u + 1 \\ u^{21} + u^{20} + \dots + u^{2} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{13} + 3u^{11} + 5u^{9} + 4u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=4u^{22}+12u^{21}+34u^{20}+68u^{19}+118u^{18}+192u^{17}+251u^{16}+335u^{15}+353u^{14}+392u^{13}+355u^{12}+316u^{11}+243u^{10}+163u^{9}+106u^{8}+46u^{7}+14u^{6}+11u^{5}+15u^{4}+30u^{3}+15u^{2}+13u+6u^{2}+13u^{2}+1$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{23} + 47u^{22} + \dots - 11u + 1$
c_2, c_4	$u^{23} - 11u^{22} + \dots - 9u + 1$
c_{3}, c_{7}	$u^{23} - u^{22} + \dots + 2048u + 1024$
c_5,c_{10}	$u^{23} - 2u^{22} + \dots + 2u - 1$
<i>c</i> ₆	$u^{23} - 10u^{22} + \dots + 120u - 31$
c_8,c_{12}	$u^{23} + 24u^{21} + \dots + 2u + 1$
<i>c</i> ₉	$u^{23} + 2u^{22} + \dots - 15u^2 - 8$
c_{11}	$u^{23} + 12u^{22} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{23} - 211y^{22} + \dots - 215y - 1$
c_2, c_4	$y^{23} - 47y^{22} + \dots - 11y - 1$
c_3, c_7	$y^{23} + 63y^{22} + \dots + 8912896y - 1048576$
c_5,c_{10}	$y^{23} + 12y^{22} + \dots - 2y - 1$
<i>C</i> ₆	$y^{23} - 12y^{22} + \dots - 6122y - 961$
c_8, c_{12}	$y^{23} + 48y^{22} + \dots - 2y - 1$
<i>C</i> 9	$y^{23} - 12y^{22} + \dots - 240y - 64$
c_{11}	$y^{23} + 24y^{21} + \dots + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.695674 + 0.794301I		
a = -0.38303 + 1.50526I	-15.4705 + 2.6332I	-1.74115 - 2.82837I
b = 2.14604 - 0.04602I		
u = 0.695674 - 0.794301I		
a = -0.38303 - 1.50526I	-15.4705 - 2.6332I	-1.74115 + 2.82837I
b = 2.14604 + 0.04602I		
u = -0.851428 + 0.257921I		
a = 0.102425 + 0.901741I	-18.5278 + 5.0308I	-2.42173 - 1.77619I
b = 2.23097 - 0.23648I		
u = -0.851428 - 0.257921I		
a = 0.102425 - 0.901741I	-18.5278 - 5.0308I	-2.42173 + 1.77619I
b = 2.23097 + 0.23648I		
u = -0.483954 + 1.020520I		
a = 0.825387 - 0.274069I	-0.56646 - 3.01940I	3.36749 + 3.11832I
b = 0.223453 + 0.115878I		
u = -0.483954 - 1.020520I		
a = 0.825387 + 0.274069I	-0.56646 + 3.01940I	3.36749 - 3.11832I
b = 0.223453 - 0.115878I		
u = 0.364715 + 1.105530I		
a = 0.392472 - 0.466255I	-3.74014 + 1.10612I	-5.73854 - 0.32981I
b = -0.334457 - 0.705017I		
u = 0.364715 - 1.105530I		
a = 0.392472 + 0.466255I	-3.74014 - 1.10612I	-5.73854 + 0.32981I
b = -0.334457 + 0.705017I		
u = 0.518947 + 1.123690I		
a = -0.425430 + 0.139303I	-2.62716 + 6.50806I	-2.44317 - 6.43144I
b = 0.028115 + 0.688429I		
u = 0.518947 - 1.123690I		
a = -0.425430 - 0.139303I	-2.62716 - 6.50806I	-2.44317 + 6.43144I
b = 0.028115 - 0.688429I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.213623 + 0.731187I		
a = -0.66221 - 1.37892I	-2.09274 + 1.02920I	-5.56905 - 0.54720I
b = -0.994946 + 0.319082I		
u = 0.213623 - 0.731187I		
a = -0.66221 + 1.37892I	-2.09274 - 1.02920I	-5.56905 + 0.54720I
b = -0.994946 - 0.319082I		
u = -0.449726 + 1.155180I		
a = -2.55174 + 1.46474I	-6.16024 - 4.07736I	-6.51340 + 3.55333I
b = -1.68340 - 0.16500I		
u = -0.449726 - 1.155180I		
a = -2.55174 - 1.46474I	-6.16024 + 4.07736I	-6.51340 - 3.55333I
b = -1.68340 + 0.16500I		
u = -0.490965 + 0.550455I		
a = 0.503661 + 0.280792I	0.861404 - 1.022110I	5.67905 + 4.33251I
b = 0.106838 - 0.230098I		
u = -0.490965 - 0.550455I		
a = 0.503661 - 0.280792I	0.861404 + 1.022110I	5.67905 - 4.33251I
b = 0.106838 + 0.230098I		
u = -0.276568 + 1.232250I		
a = 2.87251 - 0.51904I	16.1704 + 1.4493I	-7.34390 + 0.38241I
b = 2.32781 - 0.18898I		
u = -0.276568 - 1.232250I		
a = 2.87251 + 0.51904I	16.1704 - 1.4493I	-7.34390 - 0.38241I
b = 2.32781 + 0.18898I		
u = 0.653892 + 0.258897I		
a = 0.330772 + 0.501247I	-0.16241 - 1.94681I	1.33418 + 3.65595I
b = -0.038798 - 0.528699I		
u = 0.653892 - 0.258897I		
a = 0.330772 - 0.501247I	-0.16241 + 1.94681I	1.33418 - 3.65595I
b = -0.038798 + 0.528699I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.568317 + 1.180040I		
a = 2.01303 - 2.60561I	18.1942 - 10.2590I	-5.29878 + 5.24355I
b = 2.23769 + 0.30194I		
u = -0.568317 - 1.180040I		
a = 2.01303 + 2.60561I	18.1942 + 10.2590I	-5.29878 - 5.24355I
b = 2.23769 - 0.30194I		
u = -0.651787		
a = -1.03569	-3.01079	-2.62200
b = -1.49862		

II.
$$I_2^u = \langle b+1, -u^3+u^2+a, u^4+u^2+u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - u^{2} \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - u^{2} - 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - u^{2} \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - u^{2} \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + u^{2} + u + 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + u^{2} + u + 1 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^3 4u^2 u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
c_4	$(u+1)^4$
c_5, c_8	$u^4 + u^2 + u + 1$
<i>c</i> ₆	$u^4 - 2u^3 + 3u^2 - u + 1$
<i>C</i> 9	$u^4 - 3u^3 + 4u^2 - 3u + 2$
c_{10}, c_{12}	$u^4 + u^2 - u + 1$
c_{11}	$u^4 + 2u^3 + 3u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5, c_8, c_{10} c_{12}	$y^4 + 2y^3 + 3y^2 + y + 1$
c_6, c_{11}	$y^4 + 2y^3 + 7y^2 + 5y + 1$
<i>c</i> ₉	$y^4 - y^3 + 2y^2 + 7y + 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.547424 + 0.585652I		
a = 0.442547 + 0.966840I	-0.66484 - 1.39709I	-0.08162 + 2.95607I
b = -1.00000		
u = -0.547424 - 0.585652I		
a = 0.442547 - 0.966840I	-0.66484 + 1.39709I	-0.08162 - 2.95607I
b = -1.00000		
u = 0.547424 + 1.120870I		
a = -0.94255 - 1.62772I	-4.26996 + 7.64338I	-4.41838 - 7.23121I
b = -1.00000		
u = 0.547424 - 1.120870I		
a = -0.94255 + 1.62772I	-4.26996 - 7.64338I	-4.41838 + 7.23121I
b = -1.00000		

III. $I_3^u = \langle b+1, \ -u^3+a-u+1, \ u^6-u^5+2u^4-2u^3+2u^2-2u+1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u - 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u - 2 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{3} + u - 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + u - 1 \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} + u^{2} - u + 1 \\ u^{5} + 2u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} - u + 1 \\ u^{5} + 2u^{3} - u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^4 + 3u^3 + u^2 + 4u 5$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_{3}, c_{7}	u^6
c_4	$(u+1)^6$
c_5, c_8	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
<i>C</i> ₆	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
<i>c</i> 9	$(u^3 + u^2 - 1)^2$
c_{10}, c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_{3}, c_{7}	y^6
c_5, c_8, c_{10} c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_6, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
<i>c</i> ₉	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = -0.122561 + 0.744862I	-1.91067 - 2.82812I	-4.05004 + 3.74291I
b = -1.00000		
u = -0.498832 - 1.001300I		
a = -0.122561 - 0.744862I	-1.91067 + 2.82812I	-4.05004 - 3.74291I
b = -1.00000		
u = 0.284920 + 1.115140I		
a = -1.75488	-6.04826	-7.19479 + 0.27335I
b = -1.00000		
u = 0.284920 - 1.115140I		
a = -1.75488	-6.04826	-7.19479 - 0.27335I
b = -1.00000		
u = 0.713912 + 0.305839I		
a = -0.122561 + 0.744862I	-1.91067 - 2.82812I	-1.25517 + 3.34054I
b = -1.00000		
u = 0.713912 - 0.305839I		
a = -0.122561 - 0.744862I	-1.91067 + 2.82812I	-1.25517 - 3.34054I
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^{10})(u^{23}+47u^{22}+\cdots-11u+1)$
c_2	$((u-1)^{10})(u^{23}-11u^{22}+\cdots-9u+1)$
c_3, c_7	$u^{10}(u^{23} - u^{22} + \dots + 2048u + 1024)$
C_4	$((u+1)^{10})(u^{23}-11u^{22}+\cdots-9u+1)$
c_5	$(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{23} - 2u^{22} + \dots + 2u - 1)$
c_6	$(u^4 - 2u^3 + 3u^2 - u + 1)(u^6 - 3u^5 + 4u^4 - 2u^3 + 1)$ $\cdot (u^{23} - 10u^{22} + \dots + 120u - 31)$
c_8	$(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{23} + 24u^{21} + \dots + 2u + 1)$
<i>c</i> ₉	$((u^3 + u^2 - 1)^2)(u^4 - 3u^3 + \dots - 3u + 2)(u^{23} + 2u^{22} + \dots - 15u^2 - 8)$
c_{10}	$(u^4 + u^2 - u + 1)(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)$ $\cdot (u^{23} - 2u^{22} + \dots + 2u - 1)$
c_{11}	$(u^4 + 2u^3 + 3u^2 + u + 1)(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)$ $\cdot (u^{23} + 12u^{22} + \dots - 2u - 1)$
c_{12}	$(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{23} + 24u^{21} + \dots + 2u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^{10})(y^{23}-211y^{22}+\cdots-215y-1)$
c_2, c_4	$((y-1)^{10})(y^{23}-47y^{22}+\cdots-11y-1)$
c_{3}, c_{7}	$y^{10}(y^{23} + 63y^{22} + \dots + 8912896y - 1048576)$
c_5, c_{10}	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{23} + 12y^{22} + \dots - 2y - 1)$
c_6	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot (y^{23} - 12y^{22} + \dots - 6122y - 961)$
c_8, c_{12}	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{23} + 48y^{22} + \dots - 2y - 1)$
<i>c</i> 9	$(y^3 - y^2 + 2y - 1)^2(y^4 - y^3 + 2y^2 + 7y + 4)$ $\cdot (y^{23} - 12y^{22} + \dots - 240y - 64)$
c_{11}	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot (y^{23} + 24y^{21} + \dots + 2y - 1)$