Suffix Arrays und BWT

Tobias Harrer

19.11.12

Suffix Arrays

Grundlagen

Suffix Arrays aus Suffix Trees

Anwendung von Suffix Arrays

Backward Search

Forward Searching

Burrows-Wheeler Transformation

Suffix Arrays

Definition

- ▶ Sei T ein String der Länge n über Σ und $T_{i,j}$ mit $(0 < i \le j \le n)$ der Substring von i bis einschließlich j, dann ist $T_{i,n}$ ein Suffix von T.
- ▶ Das Suffix Array von T ist die Permutation der Startindizes i der lexikografisch geordneten Suffixes T_{i,n} von T.
- ▶ Anmerkung: jeder String T endet mit \$, s.d für alle $c \in \Sigma$ gilt \$ < c

Suffix Arrays - Beispiel

T = ,,abacabra

i $T_{i,n}$	lexikografisch geordnet	
1	abacabra\$	\$ 9
2	bacabra\$	a\$ 8
3	acabra\$	abacabra\$ 1
4	cabra\$	abra\$ 5
5	abra\$	acabra\$ 3
6	bra\$	bacabra\$ 2
7	ra\$	bra\$ 6
8	a\$	cabra\$ 4
9	\$	ra\$ 7

Das Suffix Array von T lautet:

1 2 3 4 5 6 7 8 9 \rightarrow i 9 8 1 5 3 2 6 4 7 \rightarrow S(i)

Suffix Arrays aus Suffix Trees

- ▶ Sortierung durch z.B. mergeSort in $\mathcal{O}(n \cdot log(n))$
- ► Ein Suffix Array kann aus des Blättern eines Suffix Trees durch Tiefensuche hergeleitet werden: T = "abacabra\$"


```
    Finde Pattern p ("cab") in String T ("abacabra")
    Naiver Ansatz: "schiebe" p über T:
```

abacabra
cab→
...
abacabra

. . cab

▶ Problem: $\mathcal{O}(n \cdot m)$

- Vorteil: alle Suffixes lexikografisch sortiert
- ▶ p "abr"ist Präfix $T_{1,3}$ des Suffix $T_{5,n}$:

A[i]	$T_{A[i],n}$
9	\$
8	a\$
1	abacabra\$
5	abra\$
3	acabra\$
2	bacabra\$
6	bra\$
4	cabra\$
7	ra\$

Beste Suchstrategie in sortiertem Array?

▶ Binäre Suche, Vergleich von "abr"mit TA[i], A[i] + 2:

A[i]	$\mid T_{A[i],n}$
9	\$
8	a\$
1	abacabra\$
5	abra\$
3	<mark>aca</mark> bra\$ "abr"< <mark>"aca</mark> "→obere Hälfte
2	bacabra\$
6	bra\$
4	cabra\$
7	ra\$

▶ Binäre Suche, Vergleich von "abr"mit TA[i], A[i] + 2:

A[i]	$T_{A[i],n}$
9	\$
8	a\$
1	<mark>aba</mark> cabra\$ "abr"> " <mark>aba</mark> "→untere Hälfte
5	abra\$
3	acabra\$
2	bacabra\$
6	bra\$
4	cabra\$
7	ra\$

▶ Binäre Suche, Vergleich von "abr"mit TA[i], A[i] + 2:

A[i]	$\mid T_{A[i],n}$
9	\$
8	a\$
1	abacabra\$
5	abra\$ "abr"== "abr"→Treffer!
3	acabra\$
2	bacabra\$
6	bra\$
4	cabra\$
7	ra\$

- ▶ Suche in $\mathcal{O}(m \cdot log(n))$, aber: Sind wir hier schon fertig?
- ▶ Gibt es weitere Vorkommen von p = "abr"in T?

- Diesmal Suche von "ab"
- ▶ Binäre Suche, Vergleich von "ab"mit TA[i], A[i] + 1:

A[i]	$\mid T_{A[i],n} \mid$
9	\$
8	a\$
1	abacabra\$
5	abra
3	acabra\$ "ab"< "ac"→obere Hälfte
2	bacabra\$
6	bra\$
4	cabra\$
7	ra\$

▶ Binäre Suche, Vergleich von "ab"mit TA[i], A[i] + 1:

A[i]	$T_{A[i],n}$
9	\$
8	a\$
1	ab acabra\$ "ab"== "ab" \rightarrow Treffer!
5	abra
3	acabra
2	bacabra\$
6	bra\$
4	cabra\$
7	ra\$

- ▶ Treffer $T_{1,2}$ erkannt
- ▶ Auffinden aller k weiterer Treffer $(T_{5,6})$ im Such Intervall nur sequenziell möglich $\rightarrow \mathcal{O}(m \cdot k + m \cdot log(n))$

Cluster Eigenschaft in Suffix Trees

- ▶ Wie kann sequenzielle Suche effiezienter werden?
- ▶ Rückblick auf die Suffix Trees: Cluster Property

Kind-Suffixes haben Pfad von der Wurzel als LCP

Cluster Eigenschaft und Longest Common Prefix

- ► Such Intervall entpsricht Teilbaum
- ► Im Such Intervall *kann* es also LCPs geben: rosa: "ab", mit lila :"a", mit grün: kein LCP

Suffix Array und Longest Common Prefix

- ▶ Sei S ein Such Intervall [O,U], $M = \lfloor \frac{O+U}{2} \rfloor = \text{Treffer}$
- ▶ Wir definieren zwei LCPs: oben = $LCP(T_{A[O],n}, T_{A[M],n})$ und unten = $LCP(T_{A[M],n}, T_{A[U],n})$)
- ▶ Bei sequenzieller Suche nur Vergleich von $T_{A[i]+|oben|,A[i]+m}$ nötig

Bsp. p = "anna" in $T = "annanas_anna$"$

```
A[i]
      T_{A[i],n}
13
8
      anna$
12
      a$
      anas_anna$
4
9
      anna$
      annanas_anna$
6
      as_a_nna$ "anna" < "as_a_"→ obere Hälfte
11
      na$
3
      nanas_anna$
5
      nasanna$
10
      nna$
      nnanas anna$
      s anna$
```

Bsp. p = "anna" in $T = "annanas_anna$"$

```
A[i]
      T_{A[i],n}
13
8
      anna$
12
      a$
      anas_anna$ "anna" > "anas" → untere Hälfte
4
9
      anna$
      annanas_anna$
6
      as_anna$
11
      na$
3
      nanas_anna$
5
      nasanna$
10
      nna$
      nnanas anna$
      s anna$
```

Bsp. p = "anna" in $T = "annanas_anna$"$

A[i]	$\mid T_{A[i],n}$
13	\$
8	_anna\$
12	a\$
4	anas_anna\$
9	anna\$
1	annanas_anna\$ "anna" == "anna"→ Treffer!
6	as_anna\$
11	na\$
3	nanas_anna\$
5	nasanna\$
10	nna\$
2	nnanas_anna\$
7	s_anna\$

- oben = LCP("anna\$", "anas_anna\$") = "an"
- ▶ unten = LCP("anna\$", "as_anna\$") = "a"

Sequenzielle Suche mit LCP

- ▶ nach unten, normal: "anna" ≠ "as_a", 4 Zeichenvergleiche
- ▶ nach unten, mit LCP: "anna" ≠ "as_a", 3 Zeichenvergleiche
- ▶ nach oben, normal: "anna" == "anna", 4 Zeichenvergleiche
- ▶ nach oben, mit LCP: "anna" == "anna", 2 Zeichenvergleiche
- ▶ nach oben, normal: "anna" \neq "anas", 4 Zeichenvergleiche
- ▶ nach oben, mit LCP: "anna" ≠ "anas", 2 Zeichenvergleiche

Zwischen-Resultat

- ► Such Intervalle können längste gemeinsame Präfixe besitzen
- ightharpoonup Im schlechtesrn Fall kein LCP ightarrow keine Laufzeitverbesserung
- ▶ In der Praxis aber schneller als nur binäre Suche.

Zusammenfassung: Binäre Suche in Suffix Arrays

- Finden der n Suffixes in T: $\mathcal{O}(n)$
- Lexikografisches Sortieren des Suffix Arrays: $\mathcal{O}(n \cdot log(n))$
- ▶ Binäre Suche eines Patterns in T: O(log(n))
- ▶ Insgesamt $\mathcal{O}(n \cdot log(n))$ (oder $m \cdot log(n)$?)

Backward Search

- Grundlage: Suffix Array
- Neu: keine binäre Suche, finden von zB "b"mit Array C["b"]
 = 5
- ▶ Vorheriger Buchstabe $T_{A[i]-1}$ des Suffix $T_{A[i],n}$

Bsp.: Suche von p = "abra"

 $\mathsf{T}=\text{,,abacabra}\``

i	A[i]	$T_{A[i]-1}$	$T_{A[i],n}$
1	9	a	\$
2	8	r	a\$
3	1	\$	abacabra\$
4	5	С	abra\$
5	3	b	acabra\$
6	2	a	bacabra\$
7	6	a	bra\$
8	4	a	cabra\$
9	7	b	ra\$

▶ "abra"von hinten: alle a, von C["a"]+1 bis C["b"]

Bsp.: Suche von p = "abra"(Schritt 1)

Darunter alle "a"mit Vorgänger "r"

i	A[i]	$T_{A[i]-1}$	$T_{A[i],n}$
2	8	r	a\$
3	1	\$	abacabra\$
4	5	С	abra\$
5	3	b	acabra\$

• Weiter zu i = C[,r]+1 = 9

Bsp.: Suche von p = "abra"(Schritt 2)

Suche "abra"in r mit Vorgänger b

i	A[i]	$T_{A[i]-1}$	$T_{A[i],n}$
5	3	b	acabra\$
9	7	b	ra\$

▶ b ist bei i = 5 bereits *einmal* in $T_{A[i]-1}$ vorgekommen \rightarrow suche von C[,b'']+1+1 bis C[,c''], d.h. bei i = 7

Bsp.: Suche von p = "abra"(Schritt 3)

► Finde alle "abra"in b mit Vorgänger "a":

i	A[i]	$T_{A[i]-1}$	$T_{A[i],n}$
1	9	а	\$
6	2	а	bacabra\$
7	6	a	bra\$

▶ Da bei i = 1 und 6 a bereits *zweimal* in $T_{A[i]-1}$ vorkam \rightarrow suche von C["a"]+1+2 bis C["b"], d.h. bei i = 4

Bsp.: Suche von p = "abra"(Schritt 4)

- Nach 4 Schritten (= Länge m von p) ist das Pattern gefunden $\rightarrow \mathcal{O}(m)$
- ▶ Problem: z.B. wie oft ist "b"in Spalte $T_{A[i]-1}$ vor i=5 erfordert lineares Durchsuchen von $T_{A[i]-1} \rightarrow \mathcal{O}(m \cdot n)$.
- Effizientes Vorgehen nötig, sonst Laufzeit wie bei naiver Suche!

Lösung: Funktion Occ(c,i)

- ▶ Die Spalte des Vorgänger-Buchstaben $T_{A[i]-1}$ nennen wir ab jetzt $L_{1,n}$
- ▶ Für alle c aus Σ sei B^c ein Bit-Vektor mit $B^c[i] = 1$ falls $L_i = c$
- ▶ Eine weitere Funktion $rank_b(B, i)$ liefert die Anzahl von zB b=1 in B vor i, s.d $rank_1(B^c, i) = Occ(c, i)$.
- ▶ Dies benötigt linear mehr Speicher, doch der Zugriff durch rank ist konstant, s.d. $\mathcal{O}(m)$ insgesamt garantiert ist.
- Wavelet Trees?

Forward Searching

- ▶ Vorherige Position: $LF(i) = C[L_i] + Occ(L_i, i)$
- Während beim Backward Searching ein Suffix auf das vorhergehende abgebildet wird, ist es hier umgekehrt
- ▶ Inverse Funktion $\Psi(i) = i'$, s.d. $A[i'] = (A[i] \mod n) + 1$ bildet die Pos. eines Suffix auf die seines Nachfolgers ab

Bsp.: Ψ zu T = "abacabra"

i	A[i]	Ψ	newF	$T_{A[i],n}$
1	9	3	1	\$
2	8	1	1	a\$
3	1	6	0	abacabra\$
4	5	7	0	abra\$
5	3	8	0	acabra\$
6	2	5	1	bacabra\$
7	6	9	0	bra\$
8	4	4	1	cabra\$
9	7	2	1	ra\$

Suche von p in T

- ► Falls $\forall c : c \in \Sigma \Rightarrow c \in T$ ex. σ aufsteigende Zahlenfolgen in Ψ : 3; 1,6,7,8; 5,9; 4; 2;
- ▶ Diese zeigen an, wo sich der erste Buchstabe des Suffix ändert. Als Bitvektor newF = 110001011
- ▶ Die Suche von p erfolgt binär, wobei p ein Prefix des jew. Suffix ist, welches durch rekursives Folgen von $\Psi(i)$ ohne das Suffix Array gefunden werden kann
- ▶ Der jew. erste Buchstabe $T_{A[i]}$ des Suffixes $T_{A[i],n}$ wird durch rank(newF, i) ermittelt. Falls zB rank(newF, i) = 2 ist c = "a".

Fazit Forward Searching

- Ψ ersetzt A[i].
- Weder A[i] noch T sind zur Suche von p in T nötig
- Ψ kann durch gap-encoding weiter komprimiert werden.

Burrows-Wheeler Transformation

▶ Die BWT ist eine Permutation von T, s.d. an jeder Stelle des Suffix Arrays der vorherige Buchstabe angehängt wird:

Definition

Sei $T_{1,n}$ ein String und A[1,n] sein Suffix Array. Dann ist die BWT $T_{1,n}^{bwt}$ von T:

$$T_i^{bwt} = T_{A[i]-1} \ \forall 1 \le i \le n \text{ ausser A}[i] = 1 \Rightarrow T_i^{bwt} = T_n =$$
\$

Anschauliches Beispiel, T = "abacabra"

Permutationen	alph. geordnet	$F \dots L = T^{bwt}$
abacabra\$	\$abacabra	\$a
bacabra\$a	a\$abacabr	ar
acabra\$ab	abacabra\$	a\$
cabra\$aba	abra\$abac	ac
abra\$abac	acabra\$ab	ab
bra\$abaca	bacabra\$a	ba
ra\$abacab	bra\$abaca	ba
a\$abacabr	cabra\$aba	ca
\$abacabra	ra\$abacab	rb

- $T^{bwt} = ar\$cbaaab$
- ▶ BWT Permutation besser für weitere Komprimierung von T als T selbst

BWT Rücktransformation

▶ Da L_i F_i voransteht, kann T aus T^{bwt} wie folgt wiederhergestellt werden:

FL	nach links	sortiert	L links angehängt
\$a	a\$	\$a	a\$a
ar	ra	a\$	ra\$
a\$	\$a	ab	\$ab
ac	ca	ab	cab
a…b	ba	ac	bac
ba	ab	ba	aba
ba	ab	br	abr
ca	ac	ca	aca
rb	br	ra	bra

- ▶ Reihe L = T^{bwt} bekannt, F wird aus L alph. sortiert
- Verschieben "nach links", sortieren
- $ightharpoonup L = T^{bwt}$ links "anhängen, sortieren...

BWT Rücktransformation

Nach n Durchgängen ist die Matrix wiederhergestellt:

\$abacabra a\$abacabra abra\$abac acabra\$a bacabra\$a bra\$abaca cabra\$aba ra\$abacab

T ist derjenige String, der mit "\$"endet.

Zusammenfassung