Отчет по лабораторной работе №9

Дисциплина: Администрирование локальных сетей

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	18
5	Контрольные вопросы	19
Список литературы		23

Список иллюстраций

3.1	Логическая схема локальной сети с резервным соединением	7
3.2	Активация портов в транковом режиме	8
3.3	Активация портов в транковом режиме	8
3.4	Активация портов в транковом режиме	8
3.5	Пингование	9
3.6	Режим симуляции	9
3.7	Информация, связанная с протоколом STP	10
3.8	Настройка корневого коммутатаора	10
3.9	Режим симуляции	11
3.10	Настройка режима Portfast	11
3.11	Настройка режима Portfast	12
3.12	Пингование	13
3.13	Режим работы по протоколу Rapid PVST+	14
3.14	Режим работы по протоколу Rapid PVST+	14
3.15	Режим работы по протоколу Rapid PVST+	14
3.16	Режим работы по протоколу Rapid PVST+	14
3.17	Режим работы по протоколу Rapid PVST+	14
3.18	Пингование	15
3.19	Логическая схема локальной сети с агрегированным соединением	16
3.20	Настройка агрегирования каналов	17
	Настройка агрегирования каналов	17

Список таблиц

1 Цель работы

Изучение возможностей протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

2 Задание

- 1. Сформируйте резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3.
- 2. Настройте балансировку нагрузки между резервными соединениями.
- 3. Настройте режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы.
- 4. Изучите отказоустойчивость резервного соединения.
- 5. Сформируйте и настройте агрегированное соединение интерфейсов Fa0/20 Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4.
- 6. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

1. Сформировала резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3. Для этого заменила соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-3 (Gig0/2); сделала порт на интерфейсе Gig0/2 коммутатора msk-donskaya-sw-3 транковым; соединение между коммутаторами msk-donskaya-sw-1 и msk-donskayasw-4 сделала через интерфейсы Fa0/23, не забыв активировать их в транковом режиме.

Рис. 3.1: Логическая схема локальной сети с резервным соединением

```
msk-donskaya-pilobanova-sw-3>en
Password:
msk-donskaya-pilobanova-sw-3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-3(config)#int g0/2
msk-donskaya-pilobanova-sw-3(config-if)#switchport mode trunk
msk-donskaya-pilobanova-sw-3(config-if)#exit
```

Рис. 3.2: Активация портов в транковом режиме

```
msk-donskaya-pilobanova-sw-l>en
Password:
msk-donskaya-pilobanova-sw-l‡conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-l(config)#int f0/23
msk-donskaya-pilobanova-sw-l(config-if)#switchport mode trunk
```

Рис. 3.3: Активация портов в транковом режиме

```
msk-donskaya-pilobanova-sw-4>en
Password:
msk-donskaya-pilobanova-sw-4#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-4(config)#int f0/23
msk-donskaya-pilobanova-sw-4(config-if)#swi
msk-donskaya-pilobanova-sw-4(config-if)#switchport mode trunk
```

Рис. 3.4: Активация портов в транковом режиме

2. С оконечного устройства dk-donskaya-1 пропинговала серверы mail и web. В режиме симуляции проследила движение пакетов ICMP. Убедилась, что движение пакетов происходит через коммутатор msk-donskaya-sw-2.

```
C:\>ping www.donskaya.rudn.ru
Pinging 10.128.0.2 with 32 bytes of data:
Reply from 10.128.0.2: bytes=32 time=1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Reply from 10.128.0.2: bytes=32 time=1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Request timed out.
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.4:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Рис. 3.5: Пингование

Рис. 3.6: Режим симуляции

3. На коммутаторе msk-donskaya-sw-2 посмотрела состояние протокола STP

для vlan 3.

Рис. 3.7: Информация, связанная с протоколом STP

4. В качестве корневого коммутатора STP настроила коммутатор mskdonskayasw-1.

```
msk-donskaya-pilobanova-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-l(config)#spanning-tree vlan 3 root primary
msk-donskaya-pilobanova-sw-l(config)#
```

Рис. 3.8: Настройка корневого коммутатаора

5. Используя режим симуляции, убедилась, что пакеты ICMP пойдут от хоста dk-donskaya-1 до mail через коммутаторы msk-donskaya-sw-1 и mskdonskaya-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-2.

Рис. 3.9: Режим симуляции

6. Настроила режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы.

```
msk-donskaya-pilobanova-sw-2 (config-if) #spa
msk-donskaya-pilobanova-sw-2 (config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION

%Portfast has been configured on FastEthernet0/1 but will only
have effect when the interface is in a non-trunking mode.
msk-donskaya-pilobanova-sw-2 (config-if) #int f0/2
msk-donskaya-pilobanova-sw-2 (config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
```

msk-donskaya-pilobanova-sw-2(config)#int f0/1

Рис. 3.10: Настройка режима Portfast

```
msk-donskaya-pilobanova-sw-3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-3(config) #int f0/1
msk-donskaya-pilobanova-sw-3(config-if) #sp
msk-donskaya-pilobanova-sw-3(config-if) #spa
msk-donskaya-pilobanova-sw-3(config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
%Portfast has been configured on FastEthernet0/1 but will only
have effect when the interface is in a non-trunking mode.
msk-donskaya-pilobanova-sw-3(config-if) #int f0/2
msk-donskaya-pilobanova-sw-3(config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
```

Рис. 3.11: Настройка режима Portfast

7. Изучила отказоустойчивость протокола STP и время восстановления соединения при переключении на резервное соединение. Для этого использовала команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1, а разрыв соединения обеспечила переводом соответствующего интерфейса коммутатора в состояние shutdown.

```
C:\>ping -n 1000 mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Request timed out.
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 3.12: Пингование

8. Переключила коммутаторы режим работы по протоколу Rapid PVST+.

```
msk-donskaya-pilobanova-sw-l‡conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-l(config) #spanning-tree mode ra
msk-donskaya-pilobanova-sw-l(config) #spanning-tree mode rapid-pvst
msk-donskaya-pilobanova-sw-l(config) #
```

Рис. 3.13: Режим работы по протоколу Rapid PVST+

```
msk-donskaya-pilobanova-sw-2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-2(config)#spanning-tree mode ra
msk-donskaya-pilobanova-sw-2(config)#spanning-tree mode rapid-pvst
msk-donskaya-pilobanova-sw-2(config)#^Z
msk-donskaya-pilobanova-sw-2#
```

Рис. 3.14: Режим работы по протоколу Rapid PVST+

```
msk-donskaya-pilobanova-sw-3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-3(config) #spannong-tree mode pa
msk-donskaya-pilobanova-sw-3(config) #spannong-tree mode rap
msk-donskaya-pilobanova-sw-3(config) #spanning-tree mode ra
msk-donskaya-pilobanova-sw-3(config) #spanning-tree mode rapid-pvst
msk-donskaya-pilobanova-sw-3(config) #7Z
```

Рис. 3.15: Режим работы по протоколу Rapid PVST+

```
msk-donskaya-pilobanova-sw-4#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-pilobanova-sw-4(config)#spanning-tree mode ra
msk-donskaya-pilobanova-sw-4(config)#spanning-tree mode rapid-pvst
msk-donskaya-pilobanova-sw-4(config)#^Z
msk-donskaya-pilobanova-sw-4#
%SYS-5-CONFIG_I: Configured from console by console
```

Рис. 3.16: Режим работы по протоколу Rapid PVST+

```
msk-pavlovskaya-pilobanova-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-pavlovskaya-pilobanova-sw-l(config) #spanning-tree mode rap
msk-pavlovskaya-pilobanova-sw-l(config) #spanning-tree mode rapid-pvst
msk-pavlovskaya-pilobanova-sw-l(config) #^Z
msk-pavlovskaya-pilobanova-sw-l#
```

Рис. 3.17: Режим работы по протоколу Rapid PVST+

9. Изучила отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение.

```
C:\>ping -n 1000 mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<lms TTL=127
Reply from 10.128.0.4: bytes=32 time=3ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=6ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<lms TTL=127
Request timed out.
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<lms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 3.18: Пингование

10. Сформировала агрегированное соединение интерфейсов Fa0/20 – Fa0/23

между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4.

Рис. 3.19: Логическая схема локальной сети с агрегированным соединением

11. Настроила агрегирование каналов (режим EtherChannel).

```
msk-donskaya-pilobanova-sw-l(config) #interface range f0/20 - 23
msk-donskaya-pilobanova-sw-1(config-if-range)#channel-group 1 mode on msk-donskaya-pilobanova-sw-1(config-if-range)#
#EC-5-CANNOT BUNDLE2: Fa0/20 is not compatible with Fa0/23 and will be suspended (dtp mode of Fa0/20 is off, Fa0/23is on)
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/20, changed state to down
%EC-5-CANNOT_BUNDLE2: Fa0/21 is not compatible with Fa0/23 and will be suspended (dtp mode of Fa0/21 is off, Fa0/23is on)
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/21, changed state to down
%EC-5-CANNOT BUNDLE2: Fa0/22 is not compatible with Fa0/23 and will be suspended (dtp mode of
Fa0/22 is off, Fa0/23is on)
%EC-5-CANNOT_BUNDLE2: Fa0/20 is not compatible with Fa0/23 and will be suspended (dtp mode of Fa0/20 is off, Fa0/23is on)
%EC-5-CANNOT_BUNDLE2: Fa0/21 is not compatible with Fa0/23 and will be suspended (dtp mode of
%EC-5-CANNOT BUNDLE2: Fa0/23 is not compatible with Fa0/20 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/20is off )
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/21 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/2lis off )
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/22 and will be suspended (dtp mode of Fa0/23 is on, Fa0/22is off )
%LINK-3-UPDOWN: Interface Port-channell, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channell, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/22, changed state to down
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/20 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/20is off )
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/21 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/21 off )
%EC-5-CANNOT BUNDLE2: Fa0/23 is not compatible with Fa0/22 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/22is off )
msk-donskaya-pilobanova-sw-l(config-if-range) #exit
msk-donskaya-pilobanova-sw-l(config) #interface port-channel 1
msk-donskaya-pilobanova-sw-l(config-if) #switchport mode trunk
msk-donskaya-pilobanova-sw-l(config-if) #
```

Рис. 3.20: Настройка агрегирования каналов

```
msk-donskaya-pilobanova-sw-4>en
msk-donskava-pilobanova-sw-4#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskava-pilobanova-sw-4(config) #int range f0/20 - 23
msk-donskaya-pilobanova-sw-4(config-if-range)#no switchport access vlan 104 msk-donskaya-pilobanova-sw-4(config-if-range)#exit
msk-donskava-pilobanova-sw-4(config)#
msk-donskaya-pilobanova-sw-4(config)#int range f0/20 - 23
msk-donskaya-pilobanova-sw-4(config-if-range)#channel-group 1 mode on
msk-donskaya-pilobanova-sw-4(config-if-range)#
Creating a port-channel interface Port-channel 1
%LINK-5-CHANGED: Interface Port-channell, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channell, changed state to up
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/20 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/20is off )
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/21 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/2lis off )
%EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/22 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/22is off )
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/23, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan2, changed state to down
msk-donskaya-pilobanova-sw-4(config-if-range) #exit
msk-donskava-pilobanova-sw-4(config)#interface port-channel 1
msk-donskaya-pilobanova-sw-4(config-if) #switchport mode trunk
```

Рис. 3.21: Настройка агрегирования каналов

4 Выводы

Я изучила возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

5 Контрольные вопросы

1. Какую информацию можно получить, воспользовавшись командой определения состояния протокола STP для VLAN (на корневом и не на корневом устройстве)? Приведите примеры вывода подобной информации на устройствах.

Команда для получения информации о состоянии STP зависит от используемого вендора оборудования. Наиболее распространенные команды:

Cisco IOS: show spanning-tree vlan <vlan_id> или show spanning-tree detail (для всей сети).

Вывод команды show spanning-tree vlan <vlan_id> покажет информацию o:

Root Bridge: MAC-адрес корневого моста для данной VLAN. Root Path Cost: Стоимость пути до корневого моста. Bridge ID: ID моста (MAC-адрес + приоритет) данного устройства. Порты: Состояние портов (Forwarding, Blocking, Listening, Learning) для данной VLAN на этом устройстве. Role: Роль порта (RootPort, Designated Port, Alternate Port, Backup Port).

2. При помощи какой команды можно узнать, в каком режиме, STP или Rapid PVST+, работает устройство? Приведите примеры вывода подобной информации на устройствах.

Для определения режима STP (STP или Rapid PVST+) на Cisco IOS используется команда:

show spanning-tree

В выводе этой команды будет указан используемый протокол STP (например, "Rapid PVST+").

Пример вывода (Cisco IOS):

Spanning tree information:

Protocol : Rapid-PVST+

Name : vlan10

Version : IEEE 802.1D-2004

3. Для чего и в каких случаях нужно настраивать режим Portfast?

Режим Portfast используется для ускорения сходимости STP на портах, которые напрямую подключены к конечным устройствам (рабочие станции, серверы), а не к другим коммутаторам. Это позволяет избежать состояния "blocking" для порта, сокращая время ожидания и повышая доступность.

Необходимо настраивать Portfast в случаях:

Подключение к конечным устройствам (PC, серверы, принтеры) Подключение к устройствам доступа (IP-телефоны, точки доступа) Когда требуется быстрая доступность порта.

Настройка (Cisco IOS):

interface <interface> spanning-tree portfast

4. В чем состоит принцип работы агрегированного интерфейса? Для чего он используется?

Агрегированный интерфейс (EtherChannel) объединяет несколько физических портов в один логический канал с более высокой пропускной способностью и избыточностью. Если один из физических портов выходит из строя, трафик автоматически перенаправляется по оставшимся портам.

Использование:

Увеличение пропускной способности между устройствами. Обеспечение избыточности и отказоустойчивости. Упрощение управления сетью за счет объединения нескольких физических портов в один логический.

5. В чём принципиальные отличия при использовании протоколов LACP (Link Aggregation Control Protocol), PAgP (Port Aggregation Protocol) и статического агрегирования без использования протоколов?

Все три метода – LACP, PAgP и статическое агрегирование – используются для объединения нескольких физических портов в один логический канал (EtherChannel), увеличивая пропускную способность и отказоустойчивость. Однако, они отличаются по способу настройки и управления этим каналом:

Статическое агрегирование: Администратор вручную настраивает агрегированный канал на обоих коммутаторах, указав, какие порты должны быть объединены. Это самый простой метод, но и наименее гибкий. Если один из портов в канале выходит из строя, администратор должен вручную восстановить конфигурацию. Нет автоматического обнаружения и согласования параметров канала между устройствами. Требуется идеальное соответствие конфигурации на обоих концах канала.

PAgP (Port Aggregation Protocol): Это протокол Cisco, который автоматически обнаруживает и согласовывает параметры агрегированного канала между двумя коммутаторами. Коммутаторы обмениваются сообщениями, чтобы определить, какие порты должны быть объединены и на каких условиях. PAgP предлагает лучшую гибкость и отказоустойчивость, чем статическое агрегирование, так как автоматически восстанавливает канал после сбоев. Однако, он работает только между устройствами Cisco, или устройствами, поддерживающими этот протокол.

LACP (Link Aggregation Control Protocol): Это стандартный протокол IEEE 802.3ad, который обеспечивает автоматическое обнаружение и согласование параметров агрегированного канала между коммутаторами разных производителей. Он более универсален, чем PAgP, так как совместим с большинством современных сетевых устройств. LACP также обеспечивает более продвинутые функции управления каналом, такие как балансировка нагрузки и отказоустойчивость. Он предоставляет больше возможностей для управления агрегированием, например, позволяет указывать, сколько портов использовать в канале.

6. При помощи каких команд можно узнать состояние агрегированного канала EtherChannel?

Команды для проверки состояния агрегированного канала EtherChannel зависят от используемой операционной системы сетевого оборудования. В качестве примера, рассмотрим команды для Cisco IOS:

show etherchannel summary: Эта команда предоставляет краткий обзор всех агрегированных каналов на коммутаторе, включая их состояние, активные порты, скорость и тип. Она показывает общий статус канала.

show etherchannel port-channel <номер_канала>: Эта команда отображает подробную информацию о конкретном агрегированном канале, указанном его номером. Показывает информацию о портах, включенных в канал, их состояние, скорость и протокол агрегации.

show etherchannel statistics < номер_канала>: Эта команда выводит статистическую информацию о конкретном канале, такую как количество переданных и принятых пакетов, ошибок и т.д. Помогает в диагностике проблем.

show interfaces status: Показывает состояние всех интерфейсов, включая порты, входящие в состав EtherChannel. Можно увидеть, к какому каналу принадлежит порт и его статус.

show interfaces <номер_порта>: Показывает подробную информацию о конкретном порте, в том числе информацию о его принадлежности к EtherChannel.

Список литературы