Exploratory Data Analysis & Feature Definition

Hourly-level household power-consumption data (UCI dataset). Goal: extract insights that directly motivate useful predictive features.

1. Project Setup

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from IPython.display import Markdown, display
import seaborn as sns
import sys
sys.path.append('../')
from src.data_preparation import download_and_extract_data, aggregate_data
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.graphics.tsaplots import plot acf, plot pacf
plt.style.use('seaborn-v0_8-whitegrid')
pd.set option('display.max columns', 50)
```

2. Raw Data Inspection and handling nulls

```
raw_path = r'C:\Users\AliRashaideh\OneDrive - Seagulls\Desktop\energy_forecasting_project\data\raw\household_power_consumption.csv'
DATA_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00235/household_power_consumption.zip"
RAW DIR = './data/raw'
raw_file_path = download_and_extract_data(DATA_URL, RAW_DIR)
Downloading dataset from <a href="https://archive.ics.uci.edu/ml/machine-learning-databases/00235/household_power_consumption.zip...">https://archive.ics.uci.edu/ml/machine-learning-databases/00235/household_power_consumption.zip...</a>
     Downloading: 19.7MB [00:04, 4.65MB/s]
     Extracting dataset...
print("Loading data...")
df_without_na = pd.read_csv(raw_file_path, sep=';')
print("Loading data...")
df = pd.read_csv(raw_file_path, sep=';', na_values=['?', 'nan'], parse_dates={'datetime': ['Date', 'Time']})
df.set_index('datetime', inplace=True)

→ Loading data...
     C:\Users\AliRashaideh\AppData\Local\Temp\ipykernel_18184\2964537705.py:2: DtypeWarning: Columns (2,3,4,5,6,7) have mixed types. Specify
       df_without_na = pd.read_csv(raw_file_path, sep=';')
     C:\Users\AliRashaideh\AppData\Local\Temp\ipykernel_18184\2964537705.py:4: FutureWarning: Support for nested sequences for 'parse_dates'
       df = pd.read_csv(raw_file_path, sep=';', na_values=['?', 'nan'], parse_dates={'datetime': ['Date', 'Time']})
     Loading data...
     C:\Users\AliRashaideh\AppData\Local\Temp\ipykernel_18184\2964537705.py:4: UserWarning: Parsing dates in %d/%m/%Y %H:%M:%S format when da
       df = pd.read_csv(raw_file_path, sep=';', na_values=['?', 'nan'], parse_dates={'datetime': ['Date', 'Time']})
print("Data without NA:")
print(df_without_na.info())
print(df_without_na.describe().T)
print(df_without_na.isnull().sum())
→ Data without NA:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 2075259 entries, 0 to 2075258
     Data columns (total 9 columns):
      # Column
                                  Dtvpe
      0 Date
                                   object
          Time
                                   object
```

object

object

object

object

object

float64

Global_active_power

Global_intensity

Sub_metering_1

Sub_metering_2

Sub metering 3

dtypes: float64(1), object(8)

4 Voltage

3 Global_reactive_power object

```
memory usage: 142.5+ MB
     None
                         count
                                    mean
                                               std min 25% 50%
     Sub_metering_3 2049280.0
                                6.458447 8.437154 0.0 0.0 1.0 17.0
     Date
                                  0
     Time
     Global active power
                                  0
     Global_reactive_power
                                  0
     Voltage
                                  0
     Global_intensity
                                  0
     Sub_metering_1
                                  0
     Sub_metering_2
                                  a
     Sub_metering_3
                              25979
     dtype: int64
print("Data with NA detection:")
print(df.info())
print(df.describe().T)
print(df.isnull().sum())
→ Data with NA detection:
     <class 'pandas.core.frame.DataFrame'>
     DatetimeIndex: 2075259 entries, 2006-12-16 17:24:00 to 2010-11-26 21:02:00
     Data columns (total 7 columns):
     # Column
                                 Dtvpe
     ---
     0
         Global_active_power
                                 float64
          Global_reactive_power
                                 float64
                                 float64
          Voltage
      3
         Global_intensity
                                 float64
          Sub_metering_1
                                 float64
          Sub_metering_2
                                 float64
                                 float64
         Sub_metering_3
     dtypes: float64(7)
     memory usage: 126.7 MB
     None
                                count
                                             mean
                                                        std
                                                                 min
                                                                           25% \
     Global_active_power
                            2049280.0
                                         1.091615 1.057294
                                                               0.076
                                                                         0.308
     Global_reactive_power 2049280.0
                                         0.123714 0.112722
                                                               0.000
                                                                        0.048
     Voltage
                            2049280.0 240.839858 3.239987
                                                             223.200
                                                                      238.990
     Global_intensity
                            2049280.0
                                         4.627759 4.444396
                                                               0.200
                                                                        1.400
     Sub_metering_1
                            2049280.0
                                         1.121923 6.153031
                                                               0.000
                                                                        0.000
     Sub_metering_2
                            2049280.0
                                         1.298520 5.822026
                                                               0.000
                                                                        0.000
     Sub_metering_3
                            2049280.0
                                         6.458447 8.437154
                                                               0.000
                                                                        0.000
                                50%
                                         75%
                                                  max
     Global_active_power
                              0.602
                                       1.528
                                               11.122
     Global_reactive_power
                              0.100
                                       0.194
                                                1.390
     Voltage
                            241.010
                                     242.890
                                              254.150
     Global_intensity
                              2,600
                                       6,400
                                               48,400
     Sub_metering_1
                              0.000
                                       0.000
                                               88.000
                              0.000
                                       1.000
                                               80.000
     Sub_metering_2
                                      17.000
     Sub_metering_3
                              1.000
                                               31.000
                              25979
     Global_active_power
     Global_reactive_power
                              25979
     Voltage
                              25979
     Global_intensity
                              25979
     Sub_metering_1
                              25979
     Sub_metering_2
                              25979
     Sub_metering_3
                              25979
     dtype: int64
df.fillna(method='ffill', inplace=True)
df.drop_duplicates(inplace=True)
print("\nMissing values after imputation:")
print(df.isnull().sum())
🚁 C:\Users\AliRashaideh\AppData\Local\Temp\ipykernel_18184\1624033518.py:1: FutureWarning: DataFrame.fillna with 'method' is deprecated an
       df.fillna(method='ffill', inplace=True)
     Missing values after imputation:
     Global_active_power
     Global_reactive_power
                              0
     Voltage
                              0
     Global_intensity
                              0
     Sub_metering_1
                              0
     Sub_metering_2
                              a
     Sub_metering_3
                              0
     dtype: int64
```

```
df.shape

(1906698, 7)

there is differnce when we dropped dublicate as we can see: data shape before: (2075259, 7)

data shape after: (1906698, 7)
```

✓ EDA

```
numeric_cols = df.select_dtypes(include=np.number).columns
rows = (len(numeric_cols) + 1) // 2
fig, axes = plt.subplots(rows, 2, figsize=(12, 3 * rows))
axes = axes.flatten()
for i, col in enumerate(numeric_cols):
    sns.histplot(df[col].dropna(), kde=True, ax=axes[i])
    axes[i].set_title(col)
plt.tight_layout()
plt.show()
```


1. histograms Active, reactive power & intensity Most readings are small; a few hours shoot up to very high values. Those tall spikes at the far right are the "outliers."

Voltage Looks like a neat bell curve centred around ~241 V. No obvious outliers.

Sub-metering 1 & 2 Almost always zero; they only spike when the specific appliance is on.

Sub-metering 3 Has three clear levels: off, medium (15 Wh) and high (30 Wh). The rare points above 30 Wh are the only extreme values worth flagging.

```
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, fmt='.2f', cmap='coolwarm')
```

plt.title('Feature Correlation Matrix')
plt.show()

2. Correlation heat-map

Active power \leftrightarrow Intensity: basically the same thing (correlation \approx 1).

Active power ↔ Sub-metering 3: strong link—channel 3 drives big loads.

 $Voltage \leftrightarrow Load: light negative link-voltage dips slightly when load rises. \\$

Sub-metering 1 & 2: almost independent of total load.

Sub-metering 3 and voltage are useful extra predictors; sub-metering 1/2 add little.

```
plt.figure(figsize=(15, 5))
df['Global_active_power'].plot(alpha=0.4)
df['Global_active_power'].rolling(24).mean().plot(linewidth=2)
plt.title('Global Active Power with 24-Hour Rolling Mean')
plt.ylabel('kW')
plt.show()
```


3. Active power with 24 h rolling mean

Clear winter peaks and summer dips \rightarrow yearly seasonality.

A long flat strip around mid-2008 is missing data.

Isolated spikes above the orange 24-h average confirm the outliers seen earlier.

```
df['hour'] = df.index.hour
df['dayofweek'] = df.index.dayofweek
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
sns.boxenplot(x='hour', y='Global_active_power', data=df, ax=axes[0])
axes[0].set_title('Hourly Distribution of Active Power')
sns.boxenplot(x='dayofweek', y='Global_active_power', data=df, ax=axes[1])
axes[1].set_title('Weekday Distribution of Active Power')
plt.tight_layout()
plt.show()
```


4. Hour-of-day & Day-of-week box-plots

Hourly: load climbs from sunrise, peaks at 17-22 h, drops overnight.

Weekdays vs. weekends: weekends are a touch higher and more spread out.

Dots above whiskers are the same high-load outliers.

```
sorted_load = df['Global_active_power'].sort_values(ascending=False).reset_index(drop=True)
plt.figure(figsize=(12, 5))
plt.plot(sorted_load.values)
plt.title('Load Duration Curve')
plt.xlabel('Hour Rank')
plt.ylabel('Active Power (kW)')
plt.show()
```


5. Load-duration curve

95 % of the time the house uses < 2 kW.

The top 1 % of hours jump to > 10 kW—rare but real heavy-use periods.

No sudden cliff, so extreme points look genuine.

```
res = seasonal_decompose(df['Global_active_power'], model='additive', period=168)
res.plot()
plt.show()
```

