The data PROC TTEST PROC CORR Output Delivery System

PROC TTEST, PROC CORR, Output Delivery System

Shannon Pileggi

STAT 330

 The data
 PROC TTEST
 PROC CORR
 Output Delivery System

 000
 00000000
 00000
 000000

OUTLINE

Data

PROC TTEST

PROC CORR

Output Delivery System

 The data
 PROC TTEST
 PROC CORR
 Output Delivery System

 ●00
 00000000
 00000
 00000

Beat the Blues data

STAT 330: Lecture 11

STAT 330: Lecture 11

- enrolled patients with depression/anxiety
- ► randomly assigned them to Treatment as Usual (TAU) or BtheB, a new treatment delivery therapy via computers
- ▶ measured depression via Beck Depression Inventory (BDI) at baseline (pre-treatment), and 2, 4, 6, and 8 month follow up
- ▶ BDI scores range from 0 to 63 with higher scores indicating more severe depression

 The data
 PROC TTEST
 PROC CORR
 Output Delivery System

 ○●○
 ○○○○○○○
 ○○○○○
 ○○○○○

First 6 observations

SAS output Obs drug length treatment bdi_pre bdi_2m bdi_4m bdi_6m bdi_8m No >6m TAU 29 2 2 Yes >6m BtheB 32 16 17 20 3 Yes <6m TAU 25 20 4 21 17 9 BtheB 16 10 No >6m 5 BtheB 26 Yes >6m 6 <6m BtheB 0 0 0 Yes SAS output

STAT 330: Lecture 11 4 / 25

《□》《圖》《意》《意》 意

200

Overview of PROC TTEST

- ▶ One sample t-test
- ▶ Paired t-test (use PAIRED statement)
- ► Two sample t-test (use CLASS statement)
- Options include
 - ► HO = null value
 - ► ALPHA = significance level
 - ► SIDES = U (upper) L (lower) 2 (two-sided)

 The data
 PROC TTEST
 PROC CORR
 Output Delivery System

 000
 00●00000
 00000
 00000

One sample t-test

Does the population average baseline depression score differ from 20, at $\alpha = 0.05$? Test H_0 : $\mu = 20$ vs H_A : $\mu \neq 20$

```
PROC TTEST DATA = flash.BtheB HO = 20 ALPHA = 0.05 SIDES = 2;

VAR bdi_pre ;

RUN ;

SAS Code ______
```

Default settings are $\boxed{\text{ALPHA} = 0.05}$ and $\boxed{\text{SIDES} = 2}$, so the only thing you must specify for this test is the null value of 20.

□ → < □ → < □ → < □ → < □ →
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○ </li

STAT 330: Lecture 11

The data PROC TTEST PROC CORR Output Delivery System

OO 00000 0000 0000 00000 00000

One sample t-test output

The TTEST Procedure Variable: bdi pre

N	Mean	Std Dev	Std Err	Minimum	Maximum
100	23.3300	10.8405	1.0840	2.0000	49.0000

					5%
Mean	95% CI	_ Mean	Std Dev	CL St	d Dev
23.3300	21.1790	25.4810	10.8405	9.5180	12.5931

DF	t Value	Pr > t
99	3.07	0.0027

We (do/do not) have evidence that the (population/sample) mean baseline BDI score differs from 20.

- 1. do; population
- 2. do; sample
- 3. do not; population
- 4. do not; sample

←□ → ←□ → ←□ → □ → □
 ←○ ←○
 9 / 25

STAT 330: Lecture 11

PROC TTEST 00000●000 PROC CORR

Output Delivery System

Two sample t-test output

The TTEST Procedure Variable: bdi pre

drug	N	Mean	Std Dev	Std Err	Minimum	Maximum
No	56	21.5536	8.9745	1.1993	7.0000	40.0000
Yes	44	25.5909	12.5778	1.8962	2.0000	49.0000
Diff (1-2)		-4.0373	10.7059	2.1568		

drug	Method	Mean	95% CI	_ Mean	Std Dev	95% CL	Std Dev
No		21.5536	19.1502	23.9570	8.9745	7.5662	11.0320
Yes		25.5909	21.7669	29.4149	12.5778	10.3921	15.9364
Diff (1-2)	Pooled	-4.0373	-8.3174	0.2427	10.7059	9.3941	12.4470
Diff (1-2)	Satterthwaite	-4.0373	-8.5069	0.4322			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-1.87	0.0642
Satterthwaite	Unequal	74.911	-1.80	0.0760

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	43	55	1.96	0.0185	

We (do/do not) have evidence that the population mean baseline BDI differs among the two groups.

- 1. do
- 2. do not

The data PROC TTEST PROC CORR Output Delivery System

Two sample t-test

Does the population average baseline depression score differ among patients who were and were not on antidepressants (drug), at $\alpha = 0.05$? Test H_0 : $\mu_1 = \mu_2$ vs H_A : $\mu_1 \neq \mu_2$

```
SAS Code

PROC TTEST DATA = flash.BtheB ALPHA = 0.05 SIDES = 2;

VAR bdi_pre;

CLASS drug;

RUN;

SAS Code
```

Default settings are H_0 : $\mu_1=\mu_2$, ALPHA = 0.05, and SIDES = 2, .

PROC TTEST

000000000

Output Delivery System

STAT 330: Lecture 11

Paired t-test

Does the population average baseline depression score change between baseline and two month follow-up, at $\alpha=0.05$? Let $\mu_d=\mu_{pre}-\mu_{2m}$; test H_0 : $\mu_d=0$ vs H_A : $\mu_d\neq0$

```
PROC TTEST DATA = flash.BtheB HO = 0 ALPHA = 0.05 SIDES = 2;
PAIRED bdi_pre*bdi_2m;
RUN;
SAS Code
```

Default settings are $\boxed{\text{H0=0}}$, $\boxed{\text{ALPHA} = 0.05}$, and $\boxed{\text{SIDES} = 2}$, so these options do not need to be specified.

For the paired t-test, you cannot use CLASS or VAR statements.

/ 25 | STAT 330: Lecture 11

STAT 330: Lecture 11

The TTEST Procedure Difference: bdi_pre - bdi_2m N Mean Std Dev Std Err Minimum Maximum 9.4745 | 0.9620 | -17.0000 41.0000 97 6.2371

Mean	95% CL Mean		Std Dev	_	5% td Dev
6.2371	4.3276	8.1466	9.4745	8.3030	11.0339
6.2371	4.3276	8.1466	9.4745	8.3030	11.033

DF t Value Pr > |t| 6.48 < .0001

evidence that the population mean BDI changes between baseline and 2 month follow up. Furthermore, we have evidence that μ_{pre} is (greater/less) than μ_{2m} .

- 1. do; greater
- 2. do: less

PROC CORR

•0000

do not; greater

◆□▶◆御▶◆恵▶◆恵▶○恵

4. do not: less

STAT 330: Lecture 11 PROC TTEST

Output Delivery System

13 / 25

The data

PROC CORR

PROC TTEST PROC CORR Output Delivery System The data 00000000

Checking conditions

In general, conditions required for a t-test include:

- 1. Independent observations
- 2. Normal underlying distribution $OR \ n > 30$ (in each group for the two sample case)

On your own: How would you go about checking these conditions in SAS? What procedures/options would you use?

> <ロ > (回) (回) (\square) (14 / 25

STAT 330: Lecture 11

The data

PROC TTEST

PROC CORR 00000

Output Delivery System

Overview of PROC CORR

- ▶ PROC CORR calculates Pearson's correlation coefficient by default
 - measures the strength of the linear relationship between two quantitative variables
- ▶ To obtain Spearman's Rank Correlation use PROC CORR SPEARMAN
 - measures monotonic relationships between two variables (does not require linear relationship)
- ▶ Use the VAR and WITH statements to specify the variables for computing the correlation matrix:
 - VAR variables are listed across columns
 - ▶ WITH variables are listed along rows
 - ▶ If WITH variables are omitted, then VAR variables are listed on both columns and rows - produces redundant information.

STAT 330: Lecture 11 15 / 25

STAT 330: Lecture 11

16 / 25

The data PROC TTEST PROC CORR Output Delivery System 00000

Correlation

STAT 330: Lecture 11

What is the strength of the linear relationship between baseline BDI and the follow-up BDI measurements?

```
_ SAS Code ___
PROC CORR DATA = flash.BtheB ;
   VAR bdi_pre ;
   WITH bdi_2m bdi_4m bdi_6m bdi_8m;
RUN ;
                       _ SAS Code _
```

4回 > 4回 > 4 直 > 4 直 > 1 更 のQで STAT 330: Lecture 11

```
The data
                         PROC TTEST
                                                        PROC CORR
                                                                                     Output Delivery System
                                                        00000
```

Correlation select output

Prob > |r| under H0: Rho=0 **Number of Observations** bdi_2m 0.61422 <.0001 bdi_4m 0.56912 <.0001 73 0.50773 bdi_6m <.0001 0.38351 bdi_8m 0.0050

Pearson Correlation Coefficients

The p-value tests H_0 : $\rho = 0$ vs H_A : $\rho \neq 0$.

On your own:

- 1. How important do you think the p-value is here?
- 2. Is the correlation between baseline BDI and follow-up measurements increasing or decreasing over time?
- 3. Why does *n* change?

Output Delivery System PROC CORR 00000

Producing plots with PROC CORR

How do you determine if Pearson's correlation is appropriate?

17 / 25

STAT 330: Lecture 11

Output Delivery System

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

STAT 330: Lecture 11

PROC TTEST PROC CORR Output Delivery System The data 00000

Where graphs go

- ▶ By default our graphs so far have gone to the output window, or the results viewer
- ▶ The png's automatically get saved as well to find the location look for the path located in the lower right hand corner of your SAS window
- ▶ Really, the Output Delivery System (ODS) determines where graphs go and what they look like

イロトイプトイミトイミト ミーガスで 21 / 25

PROC TTEST PROC CORR Output Delivery System The data 000000

Output Delivery System

The SAS Output Delivery System (ODS) can produce output in different destinations. The following work with ODS graphics:

- 1. ODS LISTING
- 2. ODS HTML
- 3. ODS PDF
- 4. ODF RTF

Styles can be applied to the destinations to alter the general appearance. To view available styles:

イロト (部) (注) (注) (注) (2) (2)

PROC TTEST PROC CORR Output Delivery System 000.00

Location of saved files

STAT 330: Lecture 11

To change the location of your saved png's, use GPATH.

```
SAS Code -
ODS HTML GPATH = "&dir" :
ODS GRAPHICS ON / IMAGENAME = "L11_scatter" RESET = INDEX ;
PROC CORR DATA = flash.BtheB PLOTS = matrix ;
  VAR bdi_pre ;
  WITH bdi_2m bdi_4m bdi_6m bdi_8m;
RUN ;
                 _____ SAS Code ____
```

PROC TTEST Output Delivery System 000000

Default Destination

STAT 330: Lecture 11

The default destination for graphics output is the HTML destination, which is displayed in the Results Viewer window. You can also specify the destination for your output.

```
_____ SAS Code _____
ODS destination FILE = "filename.ext" STYLE=stylename;
 SAS/GRAPH (and/or other procedure) code to create a report
ODS destination CLOSE;
                    __ SAS Code ___
```

STAT 330: Lecture 11

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣魚@

STAT 330: Lecture 11

 The data
 PROC TTEST
 PROC CORR
 Output Delivery System

 000
 00000000
 00000
 00000●

Example: change destination

```
ODS PDF FILE = "&dir.L11_correlation.pdf" STYLE = HTMLBlue;
OPTIONS NODATE NONUMBER;
PROC CORR DATA = flash.BtheB PLOTS = matrix;
VAR bdi_pre;
WITH bdi_2m bdi_4m bdi_6m bdi_8m;
RUN;
ODS PDF CLOSE;

SAS Code
```

 ★ロトオラトオラトオラト ラ 少Qで

 STAT 330: Lecture 11
 25 / 25