PROCURA HEURÍSTICA CAP 3 (3.5 E 3.6)

Parcialmente adaptado de http://aima.eecs.berkeley.edu

Resumo

- Procura pelo melhor primeiro
- Procura sôfrega
- Procura A*
- Heurísticas e suas propriedades
- Procura informada com memória limitada

Algoritmos de procura cegos

Os algoritmos de procura cegos (ou não informados) recorrem apenas à informação disponibilizada no problema

- Procura em largura primeiro (breadth-first)
- Procura de custo uniforme (uniform-cost)
- Procura bidireccional
- Procura em profundidade primeiro (depth-first)
- Procura em profundidade limitada (depth-limited)
- Procura por aprofundamento progressivo (iterative deepening)

Procura pelo melhor primeiro

- Ideia: aplicar uma função de avaliação f(n) a cada nó
 - Indica-nos se o nó é promissor ou não
 - →expandir o nó que aparenta ser mais promissor
- Implementação:

Ordenar os nós na fronteira por ordem crescente (minimizar) ou decrescente (maximizar) da função de avaliação

- Casos especiais:
 - Procura sôfrega
 - Procura A*
- A maior parte dos algoritmos inclui como componente de f(n) uma função heurística, denotada por h(n)
- h(n) = estimativa do custo do menor caminho para ir do estado do nó n até a um estado objectivo

Procura sôfrega

- Função de avaliação f(n) = h(n)
- Procura sôfrega expande o nó que aparenta estar mais próximo do objectivo
 - $h_{SID}(n)$ = distância em linha recta de n até Bucareste

Roménia com distâncias em linha recta km

traight-line distan	ce
Bucharest	
rad	366
ucharest	0
raiova	160
obreta .	242
forie	161
agaras	176
agaras Jiurgiu	77
lirsova	151
ssi	226
ugoj	244
[ehadia	241
eamt	234
)radea	380
itesti	100
limnicu Vilcea	193
ibiu 'imisoara	253
imisoara	329
rziceni	80
aslui	199
erind	374

Propriedades da procura sôfrega

- Completa? Não pode ficar presa em ciclos, e.g., Ir de lasi para Oradea, temos lasi → Neamt → lasi → Neamt Completa em espaços finitos com verificação de estados repetidos (versão para grafos)
- <u>Tempo?</u> O(b^m), mas uma boa heurística pode ter melhorias espetaculares
- Espaço? O(b^m) mantém todos os nós em memória
- Óptima? Não. E.g. o caminho através de Rimnicu→
 Vilcea → Pitesti é mais curto.

Procura A*

- Ideia: evitar expandir caminhos que já têm elevado custo
- Função de avaliação f(n) = g(n) + h(n)
 - g(n) = custo atual para atingir n
 - h(n) = custo estimado para atingir o objectivo a partir de n
 - f(n) = custo total estimado do caminho até ao objectivo passando por n

Heurísticas admissíveis

- Uma heurística h(n) é admissível se para todo o nó n, h(n) ≤ h*(n), em que h*(n) é o custo real de atingir o objectivo a partir de n.
- Uma heurística admissível nunca sobrestima o custo de alcançar o objectivo, i.e., é optimista.
- Exemplo: $h_{SID}(n)$ (nunca sobrestima a distância por estrada)
- Teorema: Se *h(n)* é admissível, então o algoritmo A* usando TREE-SEARCH é óptimo.

Optimalidade de A* (demonstração)

 Suponha-se que um estado final subóptimo G₂ foi gerado e encontra-se na fronteira. Seja n um nó por expandir na fronteira num caminho mais curto para o objectivo óptimo G.

•
$$g(G) < g(G_2)$$

•
$$f(G_2) = g(G_2)$$

•
$$f(G) = g(G)$$

porque
$$G_2$$
 é subóptimo
pois $h(G_2) = 0$
pois $h(G) = 0$

Optimalidade de A* (redução ao absurdo)

 Suponha-se que um estado final subóptimo G₂ foi gerado e encontra-se na fronteira. Seja n um nó por expandir na fronteira num caminho mais curto para o objectivo óptimo G.

Portanto, $f(n) < f(G_2)$, e o A* nunca selecionará G_2 para expansão

Optimalidade de A* (mais útil)

- A* expande nós por ordem crescente de valores da função de avaliação
- Adiciona gradualmente contornos aos nós (c.f. procura em largura adiciona níveis)
- Contorno *i* tem todos os nós $f=f_i$, em que $f_i < f_{i+1}$

Propriedades do A*

- O A* expande todos os nós com f(n) < C*
- O A* expande alguns nós com $f(n) = C^*$
- O A* nunca expande nós com f(n) > C*

O algoritmo A* é optimalmente eficiente para qualquer heurística dada:

 Não há outro algoritmo óptimo que garantidamente expanda um menor número de nós!

Propriedades do A*

- Completo? Sim (a não ser que haja um número infinito de nós com f ≤ f(G))
- Tempo? Exponencial no [erro relativo de h x o tamanho da solução]
 - Se $|h(n) h^*(n)| \le O(\log h^*(n))$ o algoritmo A* tem um comportamento subexponencial.
- Espaço? Mantém todos os nós em memória
- Óptimo? Sim, se a heurística for admissível

Problemas da versão naïve do A* com procura em grafos

explorados

Heurísticas consistentes

A demonstração de optimalidade do A* não se generaliza para o algoritmo de procura em grafos (eliminação de estados já explorados)

 Uma heurística é consistente se para todo o nó n e todo o seu sucessor n', gerado pela ação a,

$$h(n) \le c(n,a,n') + h(n')$$

Se h é consistente, temos

$$f(n')$$
 = $g(n') + h(n')$
= $g(n) + c(n,a,n') + h(n')$
 $\ge g(n) + h(n)$
= $f(n)$

- ou seja, f(n) é não decrescente ao longo de qualquer caminho (é monótona).
- •Teorema: Se h(n) for consistente, então o A* recorrendo à procura GRAPH-SEARCH é óptimo.

Consistência e Admissibilidade

- Toda a heurística consistente é admissível.
- Nem toda a heurística admissível é consistente.

Exemplo:

- É admissível pois $h(A) \le 4$, $h(C) \le 3$ e $h(G) \le 0$.
- Não é consistente pois h(A) > 1 + h(C) (onde 1 é o custo de A→C)

A* (versão optimizada em grafos)

```
function A*( problem ) returns a solution, or failure
  node ← a node with STATE=problem.INITIAL-STATE, PATH-COST = 0
  frontier ← a priority queue ordered by f-value with node as the only element
  explored ← a singleton set with node.STATE
  loop do
  if EMPTY?( frontier ) then return failure
  node ← POP( frontier ) /* chooses the node with lowest f-value in frontier */
  if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
```

add node.STATE to explored

for each action in problem.ACTIONS(node.STATE) do child ← CHILD-NODE(problem , node , action) if child.STATE is not in explored or frontier then do frontier ← INSERT(child , frontier)

else if *child*.STATE is in *frontier* with higher f-value **then** replace that *frontier* node with *child*

Óptimo só para heurísticas consistentes!!!

O que fazer com heurísticas inconsistentes?

Solução simples: o conjunto de explorados mantém nós em vez de estados.

- Seja n um novo nó gerado pelo algoritmo. Se existir um nó m no conjunto de explorados para o mesmo estado de n tal que f(n) < f(m) então retira-se o nó m do conjunto de explorados e coloca-se o novo nó n na fronteira.
- Com esta alteração, a utilização de heurísticas admissíveis garantem novamente a optimalidade da primeira solução encontrada pelo algoritmo de procura em grafos A*.

Procura A* em grafos corrigida

```
function GRAPH-SEARCH( problem, frontier ) returns a solution, or failure
explored ← an empty set of nodes
node ← node with STATE = problem.INITIAL-STATE, PATH-COST = 0
frontier ← INSERT(node, frontier) /* priority queue ordered by f-value */
loop do
if EMPTY?(frontier) return failure
node ← POP( frontier ) /* chooses the node with lowest f-value in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
if node.STATE is not in explored then
add node to explored
frontier ← INSERT-ALL(EXPAND(node,problem),frontier)
else if node.STATE = oldnode.STATE such that oldnode in explored
```

has higher f-value than node then

Garante óptimo para heurísticas admissíveis!!!

endif

replace oldnode by node in explored frontier ← INSERT-ALL(EXPAND(node,problem),frontier)

A* com procura em grafos (corrigido)

... A(98) B(60) D(92) A(98) B(60) C(95) D(92) A(98) B(60) C(95) D(90)

explorados

Estimativa PathMax

Existe uma optimização que tenta manter a heurística consistente (estimativa PathMax) mas mais complexa.

- A ideia consiste em utilizar como valor da função heurística
 h^(m) = max {(h(n)-c(n,a,m)) ; h(m)}
- em que m é sucessor de n. O valor de h^{n} é obtido em tempo de execução e depende do caminho seguido para atingir m.
- Poderá ser necessário remover na mesma nós do conjunto de explorados.

Implementação dos algoritmos

Obviamente, deve-se ter algum cuidado na seleção das estruturas de dados para implementar a fronteira e o conjunto de estados explorados. Habitualmente o conjunto de estados explorados é implementado com uma tabela de dispersão (hash table).

Quanto à fronteira, normalmente opta-se por:

- Fila de prioridade (priority queue) quando o grafo de estados é esparso: número reduzido de nós sucessores limitados por uma constante pequena. Complexidade temporal $O(N * log_2 N + L * log_2 N)$, em que N o número de estados e L o número de arcos. Esta é a situação habitual:
 - No pior caso têm de se retirar N nós da fila de prioridade, cada uma destas operações da ordem de log₂ N
 - São necessárias no pior caso L inserções na fila de prioridade, cada uma com custo log₂ N.
- Quando o grafo é denso, então deve-se utilizar uma lista ou tabela de dispersão. Complexidade temporal da ordem de $O(N^2 + L)$
 - Retirar o nó com menor custo é operação O(N), no máximo N vezes.
 - A inserção de um nó sucessor na fronteira pode ser feita com uma operação de O(1)

Comparação implementações

N	Densidade	L	N*log N + L * log N	N*N+L	Rácio
10	1%	1	37	101	0,36
10	10%	10	66	110	0,60
10	50%	50	199	150	1,33
10	90%	90	332	190	1,75
10	100%	100	365	200	1,83
100	1%	100	1329	10100	0,13
100	10%	1000	7308	11000	0,66
100	50%	5000	33884	15000	2,26
100	90%	9000	60459	19000	3,18
100	100%	10000	67103	20000	3,36
1000	1%	10000	109624	1010000	0,11
1000	10%	100000	1006544	1100000	0,92
1000	50%	500000	4992858	1500000	3,33
1000	90%	900000	8979172	1900000	4,73
1000	100%	1000000	9975750	2000000	4,99
10000	1%	1000000	13420590	101000000	0,13
10000	10%	10000000	133010001	110000000	1,21
10000	50%	50000000	664518496	15000000	4,43
10000	90%	90000000	1196026991	19000000	6,29
10000	100%	100000000	1328904115	20000000	6,64
100000	1%	100000000	1662625011	10100000000	0,16
100000	10%	1000000000	16611301438	1100000000	1,51
100000	50%	5000000000	83049863336	1500000000	5,54
100000	90%	900000000	149488425234	1900000000	7,87
100000	100%	10000000000	166098065708	2000000000	8,30

Heurísticas admissíveis

Para a charada-8 uma procura exaustiva explora em média 3,1x10¹⁰ nós. Mas existem apenas 181440 estados (charada-15 são 10¹³). É fundamental a utilização de heurísticas

- $h_1(n)$ = número de peças colocadas erradamente
 - $h_1(S) = 8$
- $h_2(n)$ = soma das distâncias de Manhattan

•
$$h_2(S) = 3+1+2+2+3+2+2+3=18$$

Dominância

- Se $h_2(n) \ge h_1(n)$ para todo o n (ambas admissíveis) então h_2 domina h_1 , sendo h_2 melhor na procura
- Custos típicos de procura para charada-8 (número médio de nós expandidos):

```
• d=12

IDS = 3.644.035 nós

A'(h<sub>1</sub>) = 227 nós

A'(h<sub>2</sub>) = 73 nós

• d=24

IDS \approx 54.000.000.000 nós

A'(h<sub>1</sub>) = 39.135 nós

A'(h<sub>2</sub>) = 1.641 nós

(b* = 2,78)

(b* = 1,42)

(b* = 1,24)
```

- Caso $h_2(n)$ não domine $h_1(n)$, e vice-versa, pode-se sempre combinar as heurísticas com a expressão max $\{h_1(n), h_2(n)\}$
- O factor de ramificação efetivo b* caracteriza a qualidade da heurística utilizada. O valor b* é obtido resolvendo a equação N + 1 = 1 + b* + (b*)²+...+ (b*)¹, em que N é o número de nós gerados pelo A* e d a profundidade da solução obtida.

Problemas relaxados

- Um problema com menos restrições nas acções é designado por problema relaxado.
- O custo exato de uma solução óptima para o problema relaxado é uma heurística admissível para o problema original!

Considere-se a charada-n novamente

- Se as regras da charada-n forem relaxadas de maneira a que uma peça se possa movimentar para qualquer posição, então $h_1(n)$ dá-nos a melhor solução.
- Se as regras da charada-n forem relaxadas de maneira a que uma peça se possa movimentar para qualquer posição adjacente, então $h_2(n)$ dá-nos a melhor solução.

Problema do caixeiro viajante

- Encontrar o circuito mais curto que visita todas as cidades exatamente uma vez.
- Árvore de cobertura mínima pode ser obtida em $O(n^2)$ e é um limite inferior ao menor circuito (aberto)

Caixeiro viajante dependente do tempo

Pretende-se partir de uma cidade, entregando produtos em cada uma das cidades, voltando ao início. O tempo de entrega nas cidades depende da hora de chegada. A viatura parte às 8 horas da manhã.

Heurística admissível?

Procura informada com memória limitada

- Procura informada com memória limitada
 - Algoritmo IDA*
 - Algoritmo recursivo de procura pelo melhor primeiro (RBFS)
 - Algoritmo A* de memória limitada simplificado

IDA* - A* por aprofundamento progressivo

- Reduzir requesitos de memória do A*, adaptando os conceitos do aprofundamento progressivo.
 - Resulta no algoritmo IDA*
- Em vez de usar a profundidade, usa-se o custo f, (g+h), sendo o valor do corte o menor valor de f de um nó que excede o valor de corte da iteração anterior.

A* por aprofundamento progressivo

```
function IDA*( problem) returns a solution sequence inputs: problem, a problem local variables: f-limit, the current f- Cost limit root, a node root \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) f-limit \leftarrow f- Cost[root] loop do solution, f\text{-limit} \leftarrow \text{DFS-Contour}(root, f\text{-limit}) if solution is non-null then return solution if f\text{-limit} = \infty then return failure; end
```

A* por aprofundamento progressivo

```
function DFS-Contour(node, f-limit) returns a solution
sequence and a new f- Cost limit
  inputs: node, a node
           f-limit, the current f- Cost limit
  local variables: next-f, the f- Cost limit for the next contour, initially \infty
  if f- Cost[node] > f-limit then return null, f- Cost[node]
  if Goal-Test[problem](State[node]) then return node, f-limit
  for each node s in Successors(node) do
       solution, new-f \leftarrow DFS-Contour(s, f-limit)
       if solution is non-null then return solution, f-limit
       next-f \leftarrow Min(next-f, new-f); end
  return null, next-f
```

Propriedades do IDA*

- Completo? Sim, se h for admissível, b for finito e custo das acções >0
- Óptimo? Sim, se h for admissível, b for finito e custo das acções >0
- Espaço? O(bm)
- <u>Tempo?</u> O(b^m), mas uma boa heurística pode ter melhorias espetaculares
- Prático se os custos do passos forem unitários
- Dificuldade em lidar com custos reais, podendo acarretar grande tempo de processamento motivado por regenerações sucessivas de nós.

RBFS - Recursive Best-First Search

- Semelhante à procura em profundidade primeiro recursiva.
- Em vez de continuar indefinidamente por um caminho, usa uma variável (f_limit) como registo da melhor alternativa a partir de um qualquer antecessor do nó corrente.
- Se chegar a um nó com um valor f superior a f_limit, retrocede até à alternativa, substituindo, à medida que a recursão retrocede, o valor f de cada nó com o melhor valor de f de cada um dos seus filhos, memorizando assim o melhor valor da sub-árvore abandonada.

Exemplo RBFS (1)

Exemplo RBFS (2)

Exemplo RBFS (3)

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure RBFS(problem,MAKE-NODE(INITIAL-STATE[problem]), ∞)

function RBFS(problem, node, f-limit) **returns** a solution, or failure and a new f-cost limit

if Goal-Test[problem](State[node]) then return node $successors \leftarrow \text{EXPAND}(node, problem)$

if successors is empty then return $failure, \infty$

for each s in successors do

$$f[s] \leftarrow MAX(g(s)+h(s), f[node])$$

repeat

 $best \leftarrow \text{the lowest } f\text{-value node in } successors$

if f[best] > f-limit then return failure, f[best]

 $alternative \leftarrow \text{the second lowest } f\text{-value node among } successors \\ result, f[best] \leftarrow \text{RBFS}(problem, best, \min(f\text{-}limit, \text{alternative}))$

if result≠failure then return result

Propriedades do RBFS

- Completo? Sim, se h for admissível
- Espaço? O(bm)
- Óptimo? Sim, se h for admissível
- Melhor que o IDA* em termos de complexidade temporal, mas difícil de caracterizar pois depende da qualidade da heurística
- Continua a ter problemas com regenerações sucessivas de nós: utiliza pouca memória...

SMA* - Simplified Memory-bounded A*

 Tal como no A*, expande-se a melhor folha até ficar com a memória cheia

- Quando a memória fica toda ocupada, esquece a folha mais antiga com o pior valor, e guarda no pai o seu valor, para possível regeneração
- Um nó só é regenerado quando todos os outros caminhos se mostrarem piores do que aqueles do nó esquecido

```
function SMA*(problem) returns a solution sequence
inputs: problem, a problem
local variables: Queue, a queue of nodes ordered by f-cost
Queue \leftarrow Make-Queue(Make-Node(Initial-State[problem]))
loop do
     if Queue is empty then return failure
     n \leftarrow \text{deepest least-f-cost node in } Queue
     if Goal-Test(n) then return success
     s \leftarrow \text{Next-Successor}(n)
     if s is not a goal and is at maximum depth then f(s) \leftarrow \infty
     else f(s) \leftarrow Max(f(n), g(s)+h(s))
     if all of n's successors have been generated then
          update n's f-cost and those of its ancestors if necessary
     if Successors (n) all in memory then remove n from Queue
     if memory is full then
          delete shallowest, highest-f-cost node in Queue
          remove it from its parent's successor list
          insert its parent on Queue if necessary
     insert s on Queue
end
```

Propriedades do SMA*

- O SMA* utiliza toda a memória disponível para levar a cabo a procura
- O SMA* é completo se existir uma solução alcançável (cujo caminho caiba em memória)
- Óptimo se existir uma solução óptima alcançável, caso contrário devolve a melhor solução cujo caminho cabe em memória
- Retira da fronteira nós superficiais com valores elevados da função de avaliação. Um nó retirado da fronteira só é regenerado se todos os irmãos forem piores do que ele.
- SMA* é o melhor algoritmo para procurar soluções óptimas, nomeadamente quando o espaço de estados é um grafo, os custos não são uniformes e a geração de nós é mais dispendiosa do que manter listas de nós abertos e fechados.
- Mas as limitações de memória podem tornar um problema intratável...

Outros cenários de procura

- Podem-se resolver problemas de procura "online" com ações deterministas em que se sabem as ações possíveis em cada estado, mas desconhece-se o seu efeito antes das executar.
 - Algoritmo cego: Online-DFS (assume ações reversíveis)
 - Algoritmo informado: LRTA*
- Existem ainda outros algoritmos que permitem a alteração dos custos dos arcos em runtime (exemplo navegação robótica):
 - Dynamic A* (D*) e D* Lite
- Outros algoritmos são incrementais e permitem ir melhorando a solução obtida, caso o tempo o permita:
 - ARA * (Anytime repairing A*)
 - AD* (Anytime dynamic A*) = ARA* + D*

Bibliografia

Capítulos 4.1 e 4.2 (4.5 versões online)