Package 'tspmeta'

October 14, 2022

	Seature Calculation and Evolutionary Instance in for the Traveling Salesman Problem
for the trainstances	stance feature calculation and evolutionary instance generation weling salesman problem. Also contains code to ``morph" two TSP into each other. And the possibility to conveniently run a couple on TSP instances.
Jakob Bos	Bischl <bernd_bischl@gmx.net>, sek <jakob.bossek@tu-dortmund.de>, mann <olafm@p-value.net></olafm@p-value.net></jakob.bossek@tu-dortmund.de></bernd_bischl@gmx.net>
Maintainer Be	rnd Bischl <bernd_bischl@gmx.net></bernd_bischl@gmx.net>
URL https://	github.com/berndbischl/tspmeta
BugReports ht	tps://github.com/berndbischl/tspmeta/issues
License BSD_3	_clause + file LICENSE
Depends ggplo	t2, TSP, MASS
Imports BBmis	sc, checkmate (>= 1.5), fpc, vegan, stringr, splancs
Suggests testtha	ut
LazyData yes	
ByteCompile y	es
Version 1.2	
NeedsCompilat	ion yes
Repository CR	AN
Date/Publicatio	n 2015-07-08 11:38:24
R topics do	ocumented:
autoplo center_ fast_tw	ot.tsp_instanceof_massvo_opt

2 as_TSP

as_T	SP Convert to TSP instance object of package TSP.	
Index		22
	tsp_instance	20
	1-6 -	19
		18
	-	18
		17
	rescale_instance	17
		16
		16
	- I -	15
		14
		14
	<u> </u>	13
		13
		12
	-	12
		11
	· r = ···· · · · · · · · · · · · · · · ·	11
	instance_dim	10
	greedy_point_matching	10
	get_solvers	9
	feature_nnds	9
	feature_mst	8
	feature_modes	8
	feature_distance	7
	feature_cluster	7
	feature_chull	6
	feature_centroid	6
	feature_bounding_box	5
	feature_angle)

Description

Convert to TSP instance object of package TSP.

Usage

as_TSP(x)

Arguments

x [tsp_instance] TSP instance.

autoplot.tsp_instance 3

Value

TSP .

```
autoplot.tsp_instance Plot TSP instance.
```

Description

Plot TSP instance.

Usage

```
## S3 method for class 'tsp_instance'
autoplot(object, opt_tour, ...)
```

Arguments

object [tsp_instance]

TSP instance.

opt_tour [TOUR]

TOUR object from package TSP, containing order of cities, tour length and

method name that generated this solution.

... [any]

Not used.

Value

ggplot .

center_of_mass

Return the center of all cities of a TSP instance.

Description

Return the center of all cities of a TSP instance.

Usage

```
center_of_mass(instance)
```

Arguments

instance [tsp_instance] TSP instance.

Value

numeric(2) Center of all cities of the TSP instance.

4 features

fast_two_opt

Runs 2-Opt local search on TSP instance.

Description

Runs 2-Opt local search on TSP instance.

Usage

```
fast_two_opt(x, initial_tour)
```

Arguments

x [tsp_instance] TSP instance. initial_tour [numeric]

Initial tour.

Value

TOUR TOUR object from package TSP, containing order of cities, tour length and method name that generated this solution.

features

Calculates list of all TSP features for an instance.

Description

Calculates list of all TSP features for an instance.

Usage

```
features(x, rescale = TRUE)
```

Arguments

x [tsp_instance]
TSP instance
rescale [logical(1)]

Rescale x to $[0,1]^2$ before calculation of features? Default is TRUE.

Value

list .

feature_angle 5

See Also

feature_angle, feature_centroid, feature_cluster, feature_bounding_box, feature_chull,
feature_distance, feature_modes, feature_mst, feature_nnds

Examples

```
x = random_instance(10)
print(features(x))
```

feature_angle

Angle features.

Description

Statistics of the distribution of the angle between a node and its 2 next neighbors.

Usage

```
feature_angle(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

list .

feature_bounding_box Bounding box features.

Description

Determines the ratio of cities which lie within a certain distance to the bounding box.

Usage

```
feature_bounding_box(x, distance_fraction = 0.1)
```

Arguments

```
x [tsp_instance]
    TSP instance.
distance_fraction
    [numeric(1)]
    Distance ratio to bounding box.
```

6 feature_chull

Value

list .

feature_centroid Centro

Centroid features.

Description

Includes the coordinates of the mean coordinates of the point cloud and the statistics of the distances of all cities from it.

Usage

```
feature_centroid(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

list .

feature_chull

Convex hull features.

Description

Determines the area of the convex hull and the ratio of the cities which lie on the convex hull in the euklidean space.

Usage

```
feature_chull(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

list .

feature_cluster 7

feature_cluster

Cluster features.

Description

Determines the number of clusters and the mean distances from all cities in a cluster to its centroid.

Usage

```
feature_cluster(x, epsilon)
```

Arguments

x [tsp_instance] TSP instance.

epsilon [numeric(1)]

Probability in [0,1]. Used to compute the reachability distance for the underly-

ing dbscan clustering algorithm.

Value

list .

feature_distance

Distance features.

Description

Computes different statistics describing the distribution of pairwise distances between cities.

Usage

```
feature_distance(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

list List of statistics describing the distribution of distances.

8 feature_mst

feature_modes

Modes of edge cost distribution feature.

Description

Includes the number of modes of the edge cost distribution.

Usage

```
feature_modes(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

list List containing (estimated) number of modes.

feature_mst

MST features.

Description

Construct minimun spanning tree, then calculate the statistics of a) the distances in the MST, b) the depths of all nodes in the MST.

Usage

```
feature_mst(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

list .

feature_nnds 9

feature_nnds

Nearest neighbor features.

Description

Statistics describing the distribution of distances of each city to its nearest neighbor.

Usage

```
feature_nnds(x)
```

Arguments

Х

[tsp_instance] TSP instance.

Value

list .

get_solvers

Returns integrated solver names.

Description

Returns integrated solver names.

Usage

```
get_solvers()
```

Value

character .

10 instance_dim

```
greedy_point_matching Greedy point matching
```

Description

Pairs of cities are matched in a greedy fashion for morphing, first the closest pair w.r.t. euclidean distance, then the clostest pair of the remaining cities, and so on.

Usage

```
greedy_point_matching(x, y)
```

Arguments

```
x [tsp_instance]
First TSP instance.

y [tsp_instance]
Second TSP instance.
```

Value

matrix Numeric matrix of point indices with shortest distance.

instance_dim

Get instance dimensionality (space where coords live).

Description

Get instance dimensionality (space where coords live).

Usage

```
instance_dim(x)
```

Arguments

x [tsp_instance] TSP instance.

Value

```
integer(1).
```

morph_instances 11

pha.	morph_instances	Morphing (convex-combination) of two instances with parameter alpha.
------	-----------------	--

Description

Pairs of cities are matched in a greedy fashion, see greedy_point_matching.

Usage

```
morph_instances(x, y, alpha)
```

Arguments

```
x     [tsp_instance]

y     [tsp_instance]

alpha     [numeric(1)]
     Coefficient alpha for convex combination.
```

Value

tsp_instance Morphed TSP instance.

Examples

```
x = random_instance(10)
y = random_instance(10)
z = morph_instances(x, y, 0.5)
autoplot(x)
autoplot(y)
autoplot(z)
```

normalization_angle

Calculate rotation angle such that the main axis through the cities is aligned with the X axis.

Description

Calculate rotation angle such that the main axis through the cities is aligned with the X axis.

Usage

```
normalization_angle(instance)
```

number_of_cities

Arguments

instance [tsp_instance]

TSP instance.

Value

numeric(1)

normalize_rotation

Normalize an instance w.r.t. its rotation.

Description

Normalization is performed by aligning the main axis of the cities with the X axis.

Usage

```
normalize_rotation(instance)
```

Arguments

instance [tsp_instance]

Value

A rotated tsp_instance.

See Also

normalization_angle

number_of_cities

Get number of cities in tsp instance.

Description

Get number of cities in tsp instance.

Usage

```
number_of_cities(x)
```

Arguments

x [tsp_instance]

TSP instance.

Value

integer(1).

```
numvec_feature_statistics
```

Computes statistics from a vector of of values.

Description

E.g. computes features from distribution of distances. Computed statistics: min, median, mean, max, sd, span, coeff_of_var.

Usage

```
numvec_feature_statistics(x, name, na.rm = TRUE)
```

Arguments

x [numeric]

Numeric vector.

name [numeric]

Prefix name for elements in result list.

na.rm [logical(1)]

Should NAs in x be removed? Default is TRUE.

Value

list Elements are named <name_statistic>.

Description

Print TSP instance

Usage

```
## S3 method for class 'tsp_instance'
print(x, ...)
```

Arguments

x [tsp_instance]

TSP instance.

... [any]

Not used.

14 read_tsplib_instance

hypercube.	random_instance	Generates a random TSP instance by scattering random points in a hypercube.
------------	-----------------	---

Description

Generates a random TSP instance by scattering random points in a hypercube.

Usage

```
random_instance(size, d = 2, lower = 0, upper = 1)
```

Arguments

size	<pre>[integer(1)] Number of cities.</pre>
d	[integer(1)] Space dimensionality, e.g. 2D. Default is 2D.
lower	[numeric(1)] Lower box constraint for hypercube. Default is 0.
upper	[numeric(1)] upper box constraint for hypercube. Default is 1.

Value

tsp_instance .

read_tsplib_instance Read in a TSPLIB style Traveling Salesman Problem from a file.

Description

The current state of the parser does not understand all variants of the TSPLIB format. Much effort has been spent making the parser as robust as possible. It will stop as soon as it sees input it cannot handle.

Usage

```
read_tsplib_instance(path)
```

Arguments

path [character(1)]

Character string containing path to file in TSPLIB format.

read_tsplib_instances 15

Value

tsp_instance .

read_tsplib_instances Read in multiple TSPLIB style Traveling Salesman Problems from a directory.

Description

Read in multiple TSPLIB style Traveling Salesman Problems from a directory.

Usage

```
read_tsplib_instances(path, pattern = "*.tsp", max_size = 1000,
  use_names = TRUE, on_no_coords = "stop")
```

Arguments

Character string containing path to file in TSPLIB format.

pattern [character(1)]

Pattern of files under path that are considered as instances.

max_size [numeric(1)]

Upper bound for instance size (i.e. number of cities). Only applicable, if in-

stance size is contained in file name. Default value ist 1000.

use_names [logical(1)]

Use base names of files as names of instances in returned list.

on_no_coords [character(1)]

How to handle instances which do not have any coordinates. Possible values

are, "stop" and "warn" which either stop or raise a warning respectivly.

Value

A list List of tsp_instance objects.

read_tsplib_tour

Read in a TSPLIB style Traveling Salesman Problem tour from a file

Description

Read in a TSPLIB style Traveling Salesman Problem tour from a file

Usage

```
read_tsplib_tour(path)
```

Arguments

path

[character(1)]

Filename of file containing a TSP tour.

Value

TOUR TOUR object from package TSP, containing order of cities, tour length and method name that generated this solution.

remove_zero_distances Remove any duplicate cities in a tsp instance.

Description

Remove any duplicate cities in a tsp instance.

Usage

```
remove_zero_distances(instance)
```

Arguments

instance

[tsp_instance]
TSP instance object.

Value

New TSP instance in which all duplicate cities have been removed.

rescale_instance 17

rescale_instance Rescale coords of TSP instance to $[0,1]^2$.

Description

Rescale coords of TSP instance to $[0, 1]^2$.

Usage

```
rescale_instance(x)
rescale_coords(coords)
```

Arguments

x [tsp_instance] TSP instance.

coords [matrix]

Numeric matrix of city coordinates, rows denote cities.

Value

matrix for rescale_coords and tsp_instance for rescale_instance. Numeric matrix of scaled city coordinates.

rotate_coordinates Rotate a matrix of 2D coordinates

Description

Rotate a matrix of 2D coordinates

Usage

```
rotate_coordinates(coords, angle, center)
```

Arguments

coords [matrix]

Numeric matrix of 2D coordinates to rotate

angle [numeric(1)]

Angle by which to rotate the coordinates. In radians.

center [matrix]

Center around which to rotate the coordinates.

run_solver

Value

A matrix of rotated coordinates.

rotate_instance

Rotate the cities of a TSP instance around a point.

Description

Rotate the cities of a TSP instance around a point.

Usage

```
rotate_instance(instance, angle, center)
```

Arguments

instance [tsp_instance]

TSP instance.

angle [numeric(1)]

Angle by which to rotate the coordinates. In radians.

center [numeric]

Point around which to rotate the cities. If missing, defaults to the center of mass

of the cities.

Value

tsp_instance New TSP instance.

run_solver

Runs a solver on a TSP instance.

Description

Currently the following solvers are supported: nearest_insertion: See solve_TSP. farthest_insertion: See solve_TSP. cheapest_insertion: See solve_TSP. arbitrary_insertion: See solve_TSP. nn: See solve_TSP. repetitive_nn: See solve_TSP. concorde: See solve_TSP.

Usage

```
run_solver(x, method, ...)
```

tsp_generation_ea 19

Arguments

```
x [tsp_instance]
TSP instance.

method [character(1)]
Solver to use on TSP instance. To use concorde and/or linkern it is necessary to specify the path to the concorde/linkern executable with concorde_path.

... [any]
Control parameters for solver.
```

Value

TOUR TOUR object from package TSP, containing order of cities, tour length and method name that generated this solution.

Examples

```
x = random_instance(10)
tours = sapply(c("nn", "cheapest_insertion", "arbitrary_insertion"), function(solver) {
    list(solver = run_solver(x, method = solver))
})
## Not run:
    concorde_path(path = "/absolute/path/to/concorde/executable")
    concorde_tour = run_solver(x, method = "concorde")
    concorde_tour = run_solver(x, method = "linkern")
## End(Not run)
```

tsp_generation_ea

TSP generating EA.

Description

TSP generating EA.

Usage

```
tsp_generation_ea(fitness_function, pop_size = 30L, inst_size = 50L,
   generations = 100L, time_limit = 30L, uniform_mutation_rate,
   normal_mutation_rate, normal_mutation_sd, cells_round = 100L, rnd = TRUE,
   ...)
```

Arguments

```
fitness_function [function(x, ...)]
```

Fitness function used to judge the fitness of a TSP instance. x is a numeric matrix with 2 columns, containing the coordinates of a TSP instance.

20 tsp_instance

pop_size [integer(1)]

Number of TSP instances maintained in each population. Default is 30.

inst_size [integer(1)]

Number of cities of each TSP instance. Default is 50.

generations [integer(1)]

Number of generations. Default is 100L.

time_limit [integer(1)]

Time limit in seconds. Default is 30.

uniform_mutation_rate

[numeric(1)]

Mutation probability in uniform mutation (in [0,1]).

normal_mutation_rate

[numeric(1)]

Mutation probability in normal mutation (in [0,1])

normal_mutation_sd

[numeric(1)]

Standard deviation of normal noise in normal mutation

cells_round [numeric(1)]

Grid resolution for rounding Default is 100.

rnd [logical(1)]

Round the coordinates before normal mutation. Default is TRUE.

.. [any] Not used.

Value

list List containing best individual form the last population, its fitness value, the genrational fitness and the last population. Default is 50.

tsp_instance

Generates a TSP instance S3 object either from city coordinates.

Description

Generates a TSP instance S3 object either from city coordinates.

Usage

tsp_instance(coords, dists)

Arguments

coords [matrix]

Numeric matrix of city coordinates, rows denote cities.

dists [dist]

Optional distance matrix containing the inter-city distances. If not provided, the

(euclidean) distances are computed from the coordinates.

tsp_instance 21

Value

tsp_instance .

Index

```
as_TSP, 2
autoplot.tsp_instance, 3
center_of_mass, 3
concorde_path, 19
dbscan, 7
fast_two_opt, 4
feature_angle, 5, 5
feature_bounding_box, 5, 5
feature_centroid, 5, 6
feature_chull, 5, 6
feature_cluster, 5, 7
feature_distance, 5, 7
feature_modes, 5, 8
feature_mst, 5, 8
feature_nnds, 5, 9
features, 4
get_solvers, 9
ggplot, 3
greedy_point_matching, 10, 11
instance_dim, 10
morph_instances, 11
normalization_angle, 11, 12
normalize_rotation, 12
number_of_cities, 12
numvec_feature_statistics, 13
print.tsp_instance, 13
random_instance, 14
read_tsplib_instance, 14
read_tsplib_instances, 15
read_tsplib_tour, 16
remove_zero_distances, 16
rescale_coords (rescale_instance), 17
```

```
rescale_instance, 17
rotate_coordinates, 17
rotate_instance, 18
run_solver, 18
solve_TSP, 18
TOUR, 3, 4, 16, 19
TSP, 3
tsp_generation_ea, 19
tsp_instance, 2-15, 17-19, 20, 21
```