Numerische Mathematik SS 2019

Dozent: Prof. Dr. Andreas Fischer

1. April 2019

In halts verzeichnis

Ι	Das	gewöhnliche Interationsverfahren	3
	1	Fixpunkte	3
	2	Der Fixpunktsatz von Banach	3
	3	Gewöhnliches Iterationsverfahren	4

Vorwort

Literatur

- Bollhöfer/Mehrmann: Numerische Mathematik, Vieweg 2004
- Deuflhard/Hohmann: Numerische Mathematik1, de Gruyter 2008
- Deuflhard/Bornemann: Numerische Mathematik, de Gruyter 2008
- Deuflhard/Weiser: Numerische Mathematik 3, de Gruyter 2011
- Freund/Hoppe: Stoer/Bulirsch: Numerische Mathematik 1, Springer 2007
- Hämmerlin/Hoffmann: Numerische Mathematik, Springer 2013
- Knorrenschild, M: Numerische Mathematik, Fachbuchverlag 2005
- Plato, R: Numerische Mathematik kompakt, Vieweg 2009
- Preuß/Wenisch: Lehr- und Übungsbuch Numerische Mathematik, Fachbuchverlag 2001
- Quarteroni/Sacco/Saleri: Numerische Mathematik 1+2, Springer 2002
- Roos/Schwetlick: Numerische Mathematik, Teubner 1999
- Schaback/Wendland: Numerische Mathematik, Springer 2004
- Stoer/Bulirsch: Numerische Mathematik II, Springer 2005

Kapitel I

$Das\ gew\"{o}hnliche\ Interationsverfahren$

1. Fixpunkte

Seien ein Vektorraum V, eine Menge $U\subseteq V$ und eine Abbildung $\Phi:U\to V$ gegeben. Dann heißt $x^*\in U$ Fixpunkt der Abbildung Φ , falls $\Phi(x^*)=x^*$ gilt. Die Aufgabe

$$\Phi(x) = x$$

eigentlich die Aufgabe, diese Gleichung zu lösen) wird als <u>Fixpunktaufgabe</u> bezeichnet. Die Abbildung Φ heißt Fixpunktabbildung. Im Unterschied zur Fixpunktaufgabe heißt

$$F(x) = 0$$

Nullstellenaufgabe. Zu jeder Nullstellenaufgabe gibt es eine äquivalente Fixpunktaufgabe (z.B. $F(x) = 0 \Leftrightarrow \Phi(x) = x \text{ mit } \Phi(x) := F(x) + x$) und umgekehrt (z.B. $\Phi(x) = x \Leftrightarrow F(x) = 0 \text{ mit } F(x) := \Phi(x) - x$).

2. Der Fixpunktsatz von Banach

Der folgende Satz gibt (unter gewissen Bedingungen) eine konstruktive Möglichkeit an, einen Fixpunkt näherungsweise zu ermitteln.

Satz 2.1 (Banach)

Seien $(V, \|\cdot\|)$ ein Banach-Raum, $U \subseteq V$ eine abgeschlossene Menge und $\Phi: U \to V$ eine Abbildung. Die Abbildung Φ sei selbstabbildend, d.h. es gilt

$$\Phi(U) \subseteq U$$
.

Außerdem sei Φ kontraktiv, d.h. es gibt $\lambda \in [0,1)$, so dass

$$\|\Phi(x) - \Phi(y)\| \le \lambda \|x - y\|$$
, für alle $x, y \in U$.

Dann besitzt Φ genau einen Fixpunkt $x^* \in U$. Weiterhin konvergiert die durch

$$x^{k+1} := \Phi(x^k) \tag{1}$$

erzeugte Folge $\{x^k\}$ für jeden Startwert $x^0 \in U$ gegen x^* und es gilt für alle $k \in \mathbb{N}$

$$||x^{k+1} - x^*|| \le \frac{\lambda}{1-\lambda} ||x^{k+1} - x^k||$$
 a posteriori Fehlerabschätzung, (2)

$$||x^{k+1} - x^*|| \le \frac{\lambda^{k+1}}{1-\lambda} ||x^1 - x^0||$$
 a priori Fehlerabschätzung, (3)

$$||x^{k+1} - x^*|| \le \frac{\lambda}{1-\lambda} ||x^k - x^*||$$
 Q-lineare Konvergenz mit Ordnung λ . (4)

Beweis. Verlsesung zur Analysis.

Die in 2.1 vorkommende Zahl $\lambda \in [0,1)$ wird Kontraktionskonstante genannt.

3. Gewöhnliches Iterationsverfahren

Durch 1 erklärte Verfahren heißt gewöhnliches Interationsverfahren oder <u>Fixpunktiteration</u>. Kritisch ist dabei, ob die Vorraussetzungen (Φ ist selbstabbildend und kontraktiv) erfüllt werden können. Dies wird in diesem Abschnitt im Fall $V = \mathbb{R}^n$ mit einer beliebigen aber festen Vektornorm $\|\cdot\|$ untersucht. Die zugeordnete Matrixnorm wurde mit $\|\cdot\|_*$ bezeichnet.

Lemma 3.1

Sei $S \subseteq \mathbb{R}^n$ offen und konvex und $\Phi: D \to \mathbb{R}^n$ stetig differenzierbar. Falls L > 0 existiert mit

$$\|\Phi'(x)\|_* \le L \text{ für alle } x \in D,$$
(1)

dann ist Φ Lipschitz-stetig in D mit der Lipschitz-Konstante L, d.h. es gilt

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\| \text{ für alle } x \in D.$$

Die Umkehrung dieser Aussage ist ebenfalls richtig.

 $Beweis. \hspace{0.5cm} 1. \hspace{0.1cm} Sei \hspace{0.1cm} 1$ erfüllt. Mit Satz 5.1 aus der Vorlesung ENM folgt

$$\|\Phi(x) - \Phi(y)\|_* \tag{3}$$

