

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И	И СИСТЕМЫ УПРАВЛ	<u> РИНЭІ</u>	
КАФЕДРА	КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)			
НАПРАВЛЕНИЕ	ПОДГОТОВКИ 09.03.01 И н	нформатика и вычис	лительная техника	
	0 -			
	O 1	тчет		
по лабораторной работе № 1				
Название: <u>Разработка СнК на ПЛИС Altera</u>				
Дисциплина:	Архитектура ЭВМ			
<u> </u>	npaniekiypa 3Divi			
Студент гр. <u>ИУ7-52Б</u>			С.С. Беляк	
		(Подпись, дата)	(И.О. Фамилия)	
Па	To Honomowy		A IO Подор	
Tipei	подаватель	(Подпись, дата)	<u>А.Ю. Попов</u> (И.О. Фамилия)	
		((11.0. Familian)	

2024 год

Цель работы — Изучение основ построения микропроцессорных систем на ПЛИС. Ознакомление с принципами построения систем на кристалле (СНК) на основе ПЛИС, получение навыков проектирования СНК в САПР Altera Quartus II, выполнение проектирование и верификации системы с использованием отладочного комплекта Altera DE1Board.

Создаем новый проект в САПР Quartus II 11.0 Web Edition:

Создаем новый модуль системы на кристалле QSYS.

Для этого устанавливаем частоту внешнего сигнала синхронизации 50 000 000 Гц.

Сохраняем модуль Qsys в файл по пути: c:\user\sopc01\nios.qsys. и добавляем в проект модуль синтезируемого микропроцессорного ядра Nios II. В открывшемся диалоге настройки компонента выбираю тип ядра: Nios II/e.

Настраиваем параметры компонента Nios:

Добавляем в проект модуль ОЗУ программ и данных:

Добавляем компонент Avalon System ID аппаратного идентификатора версии 5203:

Выполняем настройку таблицы прерываний процессора Nios II/e:

При завершении настройки окна модуля Qsys после назначения базовых адресов программа выглядит следующим образом:

Окно модуля Qsys после назначения базовых адресов.

Сохраняем изменения в модуле Qsys. Добавляем модуль $c:\$ с:\user\sopc01\nios.qsys в проект sopc01.

Назначаем модуль nios.qsys в качестве модуля верхнего уровня. Для этого в окне Project Navigator выбираю вкладку File, выбираю модуль nios.qsys и нажимаю Ctrl-Shift-J. Выполняем синтез проекта. Для этого в меню Processing выбираю Start compilation.

Модуль Pin Planner:

Назначаем контакты в соответствии с таблицей 1:

Таблица 1. Назначение контактов микросхемы портам проекта

Сигнал	Контакт	
clk	L1	
reset	R22	
uart0_rxd	F14	
uart0_txd	G12	

Выполняем синтез проекта и получаем сообщение об успехе.

Создаем программный проект Nios 2. Запускаем Nios II Software Build Tools for Eclipse. Создаем шаблон проекта "Hello world".

Добавляем в код файла hello_world_small.c код эхо-программы приема-передачи по интерфейсу RS232. Создаем образ ОС HAL с драйверами устройств, используемых в аппаратном проекте. Выполняем сборку программного проекта.

8

Окно модуля программирования ПЛИС.

EP2C20F484

Дорабатываем код программного проекта: добавляем строки, передающие по UART значение SystemID в виде четырех байт символов в ASCII формате.

Выполняем верификацию проекта с использованием программы терминала. Получаем верные значения.

Мы изучили основы построения микропроцессорных систем на ПЛИС. Ознакомились с принципами построения систем на кристалле (СНК) на основе ПЛИС, получили навыки проектирования СНК в САПР Altera Quartus II, выполнили проектирование и верификацию системы с использованием отлалочного комплекта Altera DE1Board.