Contents

5 S	heaves of Modules	1
5.	.1 \mathcal{O}_X -modules	1
5.	.2 locally free \mathcal{O}_X -modules	2
5.	.3 \mathcal{O}_X -modules on affine schemes	2
5.		3
5.		4
5.	.6 Functoriality	4
5.		5
5.		6
5.		8
5.	.10 Differentials	8
6 C	$\operatorname{Cohomology}$	10
6.	.1 Some (quick) homological algebra	10
6.	.2 Cech cohomology	11
6.	.3 Cohomology of projective space	12
6.	.4 Higher direct images	12
6.	.5 Duality	13
6.		13
	tiemann-Roch and Serre duality	14
7.		14
	.2 Riemann-Roch	14
	.3 Residues	15
7.	· · · · · · · · · · · · · · · · · · ·	15
7.	1	15
7.		16
7.		16
	.8 Coverings	17
Pr	opositions and Theorems	
5	Sheaves of Modules	
J	Sileaves of Modules	
5.1	\mathcal{O}_X -modules	
	. For any \mathcal{O}_X -module \mathcal{F} and any $x \in X$ the stalk $\mathcal{F}_x = \varinjlim \mathcal{F}(U)$ is a mod $\mathcal{O}_{X,x}$	ule
Lemma. For any presheaf of \mathcal{O}_X -modules \mathcal{F} , the sheafification $\tilde{\mathcal{F}}$ is naturally a sheaf of \mathcal{O}_X -modules and it satisfies the analogous universal property: For all sheaves of \mathcal{O}_X -modules \mathcal{G} : $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \cong \operatorname{Hom}_{\mathcal{O}_X}(\tilde{\mathcal{F}},\mathcal{G})$		

Fact. for \mathcal{F}_i \mathcal{O}_X -modules , $\prod \mathcal{F}_i$ is a sheaf (since \prod is a \varprojlim)

Universal Property. $\operatorname{Hom}_{\mathcal{O}_X}(\bigoplus \mathcal{F}_i, \mathcal{G}) \cong \times \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}_i, \mathcal{G})$ for all \mathcal{O}_X -modules \mathcal{G}

Fact. There is a natural homomorphism $\mathcal{F}(U) \otimes \mathcal{G}(U) \to \mathcal{F} \otimes \mathcal{G}(U)$

Prop. Basic Properties:

- 1. $\mathcal{F} \otimes \mathcal{G} \cong \mathcal{G} \otimes \mathcal{F}$
- 2. $(\mathcal{F} \otimes \mathcal{G}) \otimes \mathcal{H} \cong \mathcal{F} \otimes (\mathcal{G} \otimes \mathcal{H})$
- 3. $\mathcal{O}_X \otimes \mathcal{F} \cong \mathcal{F}$
- $4. \ (\bigoplus \mathcal{F}_i) \otimes \mathcal{G} \cong \bigoplus (\mathcal{F}_i \otimes \mathcal{G})$

Prop. for any homomorphism of \mathcal{O}_X -modules $\varphi : \mathcal{F} \to \mathcal{G}$, $ker(\varphi)$, $im(\varphi)$ and $coker(\varphi)$ are \mathcal{O}_X -modules

5.2 locally free \mathcal{O}_X -modules

Prop. \mathcal{F}, \mathcal{G} locally free of rank $r, s \Rightarrow \mathcal{F} \oplus \mathcal{G}$ free of rank r + s and $\mathcal{F} \otimes \mathcal{G}$ free of rank $r \cdot s$

Prop. 1. \mathcal{L} invertible $\Rightarrow \mathcal{L}^{\vee} \otimes \mathcal{L} \cong \mathcal{O}_X$

2. The set of isomorphism classes of invertible sheaves on X form an abelian group Pic(X) called the picard group of X

5.3 \mathcal{O}_X -modules on affine schemes

Take $X = \operatorname{Spec} R$ and M an R-module and $\mathcal{B} = \{D_f | f \in R\}$ the basis of the Zariski topology.

For all
$$f \in R$$
 set $M(D_f) := M_f = M \otimes_R R_f$
and all $f, g \in R$ with $D_g \subset D_f \leadsto R_f \to R_g$
 $\leadsto \tilde{M}(D_f) = R_f \otimes_R M \to R_g \otimes_R M = \tilde{M}(D_g)$
 $\Rightarrow \tilde{M}$ is a presheaf on \mathcal{B}

Prop. \tilde{M} is a sheaf and extends uniquely to a sheaf of abelian groups on X. $R \times M \to M$ induces a scalar $\mathcal{O}_X \times \tilde{M} \to \tilde{M} \Rightarrow \tilde{M}$ is an \mathcal{O}_X -module

Fact.
$$\tilde{M}|_{D_f} \cong \tilde{M}_f$$

 $\forall x \in X : (\tilde{M})_x = \varinjlim \tilde{M}(U) = \varinjlim_{f \in R \setminus f} M_f = M_f$

Functoriality:

Any
$$R$$
-homomorphism $M \xrightarrow{\varphi} N$ induces $id \otimes \varphi : R_f \otimes M \to R_f \otimes N$
 $\leadsto \mathcal{O}_X$ -module homomorphism $\tilde{\varphi} : \tilde{M} \to \tilde{N}$
 \Rightarrow Functor $((R - mod)) \to ((\mathcal{O}_X - mod))$

Lemma. For any \mathcal{O}_X -module \mathcal{G} there is a natural isomorphism:

$$\operatorname{Hom}_{\mathcal{O}_X}(M,\mathcal{G}) \xrightarrow{\sim} \operatorname{Hom}_R(M,\mathcal{G}(X))$$

 $\psi \mapsto (\psi(X) : \tilde{M}(X) = M \to \mathcal{G}(X))$ is an $\mathcal{O}_X(X)$ -module homomorphism i.e. an R-mod hom

Prop. The Functor $M \to \tilde{M}$ is fully faithful

Prop. 1. the functor is exact

- 2. commutes with direct sum
- 3. commutes with tensor product, i.e. $\tilde{M} \otimes_{\mathcal{O}_X} \tilde{N} \cong (M \otimes_R N)^{\sim}$

<u>Important:</u> $\tilde{M}(X) = M$ so the global sections functor is exact on sheaves of the form \tilde{M}

5.4 Quasicoherent \mathcal{O}_X -modules

Let X be an arbitrary scheme.

Theorem. TFAE:

- 1. For all open affine $U = \operatorname{Spec} R \subset X$ there exists an R-module M such that $\mathcal{F}|_U \cong \tilde{M}$
- 2. There exists an open affine covering of such U
- 3. \mathcal{F} is quasicoherent
- 4. for all open affine $U = \operatorname{Spec} R \subset X$ and all $f \in R$ the homomorphism $R_f \otimes_r \mathcal{F}(U) \xrightarrow{res, mult} \mathcal{F}(D_f^U)$ is an isomorphism

Theorem. 1. For all homomorphisms of quasicoherent \mathcal{O}_X -modules, ker, im, coker are quasicoherent

- 2. Direct sum of quasicoherent \mathcal{O}_X -modules are quasicoherent.
- 3. Let \mathcal{F}_i be quasicoherent submodules of a quasicoherent \mathcal{O}_X -module \mathcal{F} then $\sum \mathcal{F}_i, \bigcap \mathcal{F}_i$ are quasicoherent.
- 4. if \mathcal{F}, \mathcal{G} are quasicoherent then $\mathcal{F} \otimes \mathcal{G}$ is quasicoherent and for all open affine $U: \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U) \xrightarrow{\sim} (\mathcal{F} \otimes \mathcal{G})(U)$ is an iso

Corollary. The closed subschemes of X correspond to the quasicoherent ideal sheaves of \mathcal{O}_X

Theorem. For $X = \operatorname{Spec} R$ we have an equivalence of categories

$$((R-mod)) \rightleftarrows ((quasicoherent \mathcal{O}_X - modules))$$

$$M \longmapsto \tilde{M}$$

$$\mathcal{F}(x) \longleftarrow \mathcal{F}$$

and both functors are exact

5.5 Coherent sheaves

Prop. For any quasicoherent \mathcal{O}_X -module we have the following implications:

1. \mathcal{F} is coherent

 \Downarrow

2. \mathcal{F} is finitely generated

 \updownarrow

3. $\forall U \subset X$ open affine $\mathcal{F}(U)$ is a finitely generated $\mathcal{O}_X(U)$ -module

If X is locally neotherian all are equivalent.

Prop. Assume X is locally noetherian. Then for all coherent sheaves \mathcal{F}, \mathcal{G} : $\mathcal{F} \oplus \mathcal{G}$, $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$, $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ as well as ker, im and coker of any homomorphism are coherent.

5.6 Functoriality

Consider a morphism $f: X \longrightarrow Y$ and sheaves \mathcal{F}, \mathcal{G} on X and Y respectively.

Prop. If f is affine ¹ and \mathcal{F} is quasicoherent then $f_*\mathcal{F}$ is quasicoherent.

Prop. If f is finite, X,Y are locally noetherian and \mathcal{F} is coherent then $f_*\mathcal{F}$ is coherent.

Prop. f_* naturally extends to a functor which commutes with products and is left exact.

Prop. There exists a natural isomorphism $(f^*\mathcal{G})_x \cong \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{Y,f(x)}} \mathcal{G}_{f(x)}$

Prop. f^* naturally extends to a functor which commutes with \oplus and is right exact and satisfies:

$$f^*(\mathcal{G} \otimes_{\mathcal{O}_Y} \mathcal{H}) \cong (f^*\mathcal{G}) \otimes_{\mathcal{O}_X} (f^*\mathcal{H})$$

Prop. If $X = \operatorname{Spec} R$ and $Y = \operatorname{Spec} S$ and $\mathcal{G} = \tilde{N}$ on Y then $f^*\mathcal{G} \cong (R \otimes_S N)^{\sim}$

Prop. If G is

- quasicoherent
- finitely generated
- free
- locally free
- coherent (if X, Y are locally noetherian)

then so is $f^*\mathcal{G}$

Prop. Adjunction:

$$\operatorname{Hom}_{\mathcal{O}_{Y}}(f^{*}\mathcal{G}, \mathcal{F}) \cong \operatorname{Hom}_{\mathcal{O}_{Y}}(\mathcal{G}, f_{*}\mathcal{F})$$

this is functorial in \mathcal{F} and \mathcal{G} .

¹f is affine if the inverse image of every open affine is open affine

5.7 \mathcal{O}_X -modules on a projective scheme

Take $X = \operatorname{Proj} R$ for a graded ring $R = \bigoplus_{d \geq 0} R_d$

Prop. There exists a functor

$$((graded R - mod)) \longrightarrow ((quasicoherent \mathcal{O}_X - module))$$

$$M \longrightarrow \tilde{M}$$

this functor is exact and commutes with \bigoplus and \bigotimes

Prop. 1. $\mathcal{O}_X(n)$ is an invertible sheaf

2.
$$\tilde{M}(n) \cong \tilde{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$$

Corollary.
$$\forall m, n \in \mathbb{Z} : \mathcal{O}_X(m+n) \cong \mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$$

 $\Rightarrow \mathcal{O}_X(n) \cong \mathcal{O}_X(1)^{\otimes n} \text{ for all } n \geqslant 1$
 $\mathcal{O}_X(-1) \cong \mathcal{O}_X(1)^{\vee}$

Lemma. Let \mathcal{F} be a quasicoherent \mathcal{O}_X -module and $f \in \mathcal{F}(X)$

- 1. If X is quasicompact and $f|_{D_f} = 0$ there exists an $n \ge 0$ such that $f \otimes s^n = 0$ in $(\mathcal{F} \otimes \mathcal{L}^{\otimes n})(X)$
- 2. If X is quasicompact and separated for any $g \in \mathcal{F}(D_s)$ there exists n_0 such that $\forall n \geq n_0$ $g \otimes s^n|_{D_s} \in (\mathcal{F} \otimes \mathcal{L}^n)(D_s)$ extends to an element of $(\mathcal{F} \otimes \mathcal{L}^n)(X)$

(if
$$X = \operatorname{Spec} R \mathcal{L} = \mathcal{O}_X, \ \mathcal{F} = \tilde{M}$$
)

- 1. $f = m \in M$ if $\frac{m}{1} = 0$ in M_s then $\exists n \ m \cdot s^n = 0 \in M$
- 2. Take $n \in M_s$ write $n = \frac{m}{s^{n_0}}$

Theorem. For any finitely generated quasicoherent sheaf \mathcal{F} on X:

- 1. $\exists n_0 \ \forall n \geqslant n_0 \quad \mathcal{F}(n)$ is generated by global sections.
- 2. $\exists m \ \exists r \geqslant 0 \ \exists \ surjective \ homomorphism \ \mathcal{O}_X(m)^{\oplus r} \twoheadrightarrow \mathcal{F}$

Construction:

- 1. for a graded R-module M and $n \in \mathbb{Z}$ there exists a natural map $M_n \longrightarrow \tilde{M}(n)(X) = \widetilde{M(n)}(X)$ this map is R_0 -linear
- 2. this is multiplicative
- 3. Set $R' = \bigoplus_{d \geq 0} \mathcal{O}_X(d)(X)$. it is a graded ring with a graded ring homomorphism $R \to R'$ and a graded R-module homomorphism $M \to M' = \bigoplus_{n \in \mathbb{Z}} \widetilde{M}(n)(X)$

4. for any \mathcal{O}_X -module \mathcal{F} and any $n_0 \in \mathbb{Z} \cup \{-\infty\}$

set:
$$M' := \bigoplus_{n \ge n_0} \mathcal{F}(n)(X)$$

This is naturally a graded R'-module; hence a graded R-module

Theorem. For any quasicoherent \mathcal{O}_X -module \mathcal{F} there is a natural isomorphism

$$\widetilde{M}' \longrightarrow \mathcal{F}$$
 for M' as in (4.)

If $\mathcal{F} = \widetilde{M}$ this is the inverse to the homomorphism $\widetilde{M} \longrightarrow \widetilde{M}'$ induced by (3.)

$$\widetilde{M} \longrightarrow \widetilde{M'}$$
 induced by (3.)

Corollary. Every quasicoherent \mathcal{O}_X -module on $\operatorname{Proj} R$ is isomorphic to \widetilde{M} for some graded R-module M

5.8 Morphisms to projective spaces

Prop. For all schemes and all $n \ge 0$ there is a natural bijection:

$$\operatorname{Mor}(X, \mathbb{P}^n) \cong \{(\mathcal{L}, l_0, \dots, l_n) | \mathcal{L} \text{invertible sheaf on } X. \ l_0, \dots, l_n \in \mathcal{L}(X) \text{ generate } \mathcal{L}\}$$

$$\cong$$
 isos of $\mathcal{L} \xrightarrow{\sim} \mathcal{L}'$ mapping $l_i \mapsto l_i'$

Prop. Let $(\mathcal{L}, l_0, \ldots, l_n)$ be as above and let $l_{n+1}, \ldots l_m \in \mathcal{L}(X)$ then we have the following commutative diagram:

$$X \xrightarrow{(\mathcal{L}l_0...l_n)} \mathbb{P}^n$$

$$\downarrow proj$$

$$\downarrow i=0 \ \overline{D}_{X_i}^{p^m} \subset \mathbb{P}^m$$

Now let X be a scheme over Spec R

Prop. For X noetherian we have for all very ample sheaves \mathcal{L} and all invertible sheaves \mathcal{L}' on X that is generated by global sections: $\mathcal{L} \otimes \mathcal{L}'$ is very ample.

Note. very ample \Rightarrow generated by global sections

Corollary. For $\mathcal{L}, \mathcal{L}'$ very ample $\Rightarrow \mathcal{L} \otimes \mathcal{L}'$ and $\mathcal{L}^{\otimes n} \quad \forall n \geq 1$ are very ample

Prop. *TFAE*:

1. \mathcal{L} ample

2. $\forall m \geqslant 1 : \mathcal{L}^{\otimes m} \ ample$

3. $\exists m \geqslant 1 : \mathcal{L}^{\otimes m} \ ample$

Prop. $very \ ample \Rightarrow ample$

Theorem. If X is separated of finite type over Spec R then:

 $\mathcal{L} \ ample \Rightarrow \exists m \geqslant 1 : \mathcal{L}^{\otimes m} \ very \ ample$

Corollary. $same assumptions \Rightarrow TFAE$:

- 1. \mathcal{L} ample
- 2. $\exists m \geqslant 1 : \mathcal{L}^{\otimes m} \text{ very ample}$
- 3. $\exists m_0 \ \forall m \geqslant m_0 : \mathcal{L}^{\otimes m} \ very \ ample$

Note. very ample is a relative notion for X over Spec R. Ample is an absolute notion

want: true relative notions for X over arbitrary scheme S

Prop. If $X \to Y$ is separated of finite type with Y noetherian, TFAE:

- 1. \mathcal{L} is relatively ample over Y
- 2. $\exists m \geqslant 1 : \mathcal{L}^{\otimes m}$ is relatively ample over Y
- 3. $\exists m_0 : \forall m \geqslant m_0 : \mathcal{L}^{\otimes m}$ is relatively very ample over Y

Prop. let the following diagram be cartesian:

$$X' \xrightarrow{f'} Y'$$

$$g' \downarrow \qquad \qquad \downarrow g$$

$$X \xrightarrow{f} Y$$

with all schemes noetherian and f separated of finite type \mathcal{L} invertible on X which is relatively $\{ample/very\ ample\}\ over\ Y$ then $g'^*\mathcal{L}$ is as well over Y'

Lemma. Take morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z = \operatorname{Spec} R$ which are separated of finite type with R noetherian. Let \mathcal{L} be an invertible sheaf on X which is relatively very ample over Y and let \mathcal{M} be an invertible sheaf on Y which is very ample.

Then: $\exists l_0 \ \forall l \geqslant l_0$:

- 1. $\mathcal{L} \otimes f^* \mathcal{M}^{\otimes l} \cong \varepsilon^* \mathrm{pr}_1^* \mathcal{O}(1)$ for some locally closed embedding $\varepsilon : X \hookrightarrow \mathbb{P}^N \times Y$
- 2. $\mathcal{L} \otimes f^* \mathcal{M}^{\otimes (l+1)}$ is very ample for X over S.

Prop. Let $f: X \to Y$ be a quasicompact morphism and \mathcal{L} an invertible sheaf on X Let f be separated of finite type with Y noetherian then relatively $\{ample / very ample\}$ is equivalent to saying for all open coverings fulfill the respective ampleness property.

Prop. Take $X \xrightarrow{f} Y \xrightarrow{g} Z$ separated of finite type with Z noetherian, \mathcal{L} an invertible sheaf on X relatively $\{ample / very ample\}$ over Y and \mathcal{M} ditto over Z Then $\exists l_0 \ \forall l > l_0 : \mathcal{L} \otimes f^* \mathcal{M}^{\otimes l}$ is ditto over Z

Prop. $X \xrightarrow{f} Y \xrightarrow{g} Z$ both {projective/ quasiprojective} with Z noetherian. Then $g \circ f$ ditto.

5.9 Divisors

Prop. $\mathcal{O}_X(D)$ is an invertible sheaf and every invertible sheaf, which is a subsheaf of \mathcal{K}_X , arises like this from a unique cartier divisor.

Prop. 1.
$$\forall D, D' : \mathcal{O}_X(D+D') \cong \mathcal{O}_X(D) \otimes \mathcal{O}_X(D')$$

2.
$$\forall D : \mathcal{O}_X(-D) \cong \mathcal{O}_X(D)^{\vee}$$

Theorem. The map $D \longmapsto \mathcal{O}_X(S)$ induces an isomorphism

$$Div Cl(X) \longrightarrow Pic(X)$$

Prop. X regular \Longrightarrow locally factorial

Now assume X is noetherian integral and locally factorial

Prop. For any Cartier divisor
$$D = ([f_x])_{x \in X}$$
 on X the sum $cyc(D) := \sum_{\substack{y \in X \\ \dim \mathcal{O}_{X,y} = 1}} \operatorname{ord}_y(f_y)$.

$$\overline{\{y\}}^{red}$$
 is finite, so is $Z^1(X)$.

Theorem. there is a group isomorphism $Div(X) \to Z^1(X)$ $D \mapsto cyc(D)$

Prop. For any field k,
$$Cl(\mathbb{A}^n_k) = 0 \implies Pic(\mathbb{A}^n_k) = 0 \ \forall n \ge 0$$

Theorem. For any field k and any $n \ge 1$

$$Cl(\mathbb{P}^n_k) \cong Pic(\mathbb{P}^n_k) \cong \mathbb{Z}$$

generated by $[H] \longleftrightarrow [\mathcal{O}_X(1)]$

Prop. D is equivalent to an effective divisor iff $\Gamma(X, \mathcal{O}_X(D)) \neq 0$

Prop. If X possesses a very ample divisor, every divisor is a difference of very ample divisors.

Prop.
$$\varphi^* : Div(Y) \to Div(X) \quad ([f_y])_y \mapsto ([\varphi^{\flat} f_{\varphi(x)}])_{x \in X}$$
 is a well defined homomorphism and $\varphi^* \mathcal{O}_Y(D) \cong \mathcal{O}_X(\varphi^* D)$

Prop. If D is the effective divisor corresponding to the locally principal closed subscheme $T \subset Y$ then φ^*D corresponds to $\varphi^{-1}(T) := X \times_Y T$

5.10 Differentials

Fact. $Der_A(B, M)$ is a B-module by the action of B on M.

Fact. Any B-module homomorphism $f: M \to N$ induces a B-module homomorphism $\operatorname{Der}_A(B,M) \to \operatorname{Der}_A(B,N)$ $d \mapsto f \circ d$.

Fact. There is a natural bijection

$$\operatorname{Der}_A(B,M) \cong \{\varphi : B \to B \ltimes M \text{ A-algebra homos with } \pi \circ \varphi = \operatorname{id}_B\} \quad d \leftrightarrow (\operatorname{id},d)$$

Prop. $(\Omega_{B/A}, d)$ is unique up to unique isomorphism.

Prop. I/I^2 with d is a module of differentials of B over A.

Prop. $\Omega_{A[X_1,\ldots,X_n]/A}$ is a free $A[X_1,\ldots,X_n]$ module with basis dX_1,\ldots,dX_n

Fact. $\Omega_{A/A} = 0$

Prop. If $B' = B \otimes_A A'$ then $B' \otimes_B \Omega_{B/A} \xrightarrow{\sim} \Omega_{B'/A'}$

Prop. For any multiplicative system $S \subset B : S^{-1}\Omega_{B/A} \cong \Omega_{S^{-1}B/A}$.

Prop. For any ring homomorphisms $A \to B \to C$ there exists a natural exact sequence $C \otimes_B \Omega_{B/A} \to \Omega_{C/A} \to \Omega_{C/B} \to 0$

Prop. For all ideals $J \subset B$ set $C := B/J \Rightarrow$ there is a natural exact sequence $J/J^2 \to C \otimes_B \Omega_{B/A} \to \Omega_{C/A} \to 0$

Corollary. If B is a finitely generated A-algebra, then $\Omega_{B/A}$ is a finitely generated B-module.

Prop. L/K finite field extension $\Omega_{L/K} = 0 \Leftrightarrow separable$.

Prop. For any local k- algebra B with $B/\mathfrak{T} \cong k$ there exists a natural isomorphism $\mathfrak{T}/\mathfrak{T}^2 \to (B/\mathfrak{T}) \otimes_B \Omega_{B/k}$

Theorem. Let $B = k \oplus \mathfrak{m}$ local ring, k perfect, B is a localization of a finitely generated k-algebra.

Then $\Omega_{B/k}$ is a free B-module of finite rank dim(B) iff B is a regular local ring.

Prop. $Y \to X$ locally of finite type $\Rightarrow \Omega_{Y/X}$ finitely generated.

$$\begin{array}{cccc} Y & \longrightarrow X \\ & & & \cup \\ & & & \cup \\ V & \longrightarrow U \end{array} \quad open \Rightarrow \ \Omega_{V/U} = \Omega_{Y/X}|_{V}$$

$$\begin{array}{ccc} Y \overset{f}{\longrightarrow} X \\ \mathbf{Prop.} & \uparrow_{g'} & \bigcap & \uparrow & \Rightarrow \Omega_{Y'/X'} \cong g'^*\Omega_{Y/X} \\ Y' & \longrightarrow & X' \end{array}$$

Prop. $Z \xrightarrow{g} Y \xrightarrow{f} X \Rightarrow exact sequence: <math>g^*\Omega_{Y/X} \to \Omega_{Z/X} \to \Omega_{Z/Y} \to 0$

Prop. If $Z \stackrel{i}{\hookrightarrow} Y$ is a closed embedding with sheaf of ideals $J \Rightarrow$ exact sequence $J/J^2 \rightarrow i^*\Omega_{Y/X} \rightarrow \Omega_{Z/X} \rightarrow 0$

Prop. $Y = Y_1 \times_X Y_2 \Rightarrow \Omega_{Y/X} \cong \operatorname{pr}_1^* \Omega_{Y_1/X} \oplus \operatorname{pr}_2^* \Omega_{Y_2/X}$

Theorem. There is a natural short exact sequence for $X := \mathbb{P}_Y^n$:

$$0 \to \Omega_{X/Y} \to \mathcal{O}_X(-1)^{n+1} \to \mathcal{O}_X \to 0$$

Theorem. Any localization of a regular local ring at a prime ideal is regular.

Theorem. Let X be connected of finite type over an algebraically closed field k. Then X is regular iff $\Omega_{X/k}$ is locally free of rank dim(X)

Corollary. X reduced of finite type over k algebraically closed \Rightarrow there is an open dense subscheme $U \subset X$ which is regular

Theorem. Let X be regular of finite type over k algebraically closed. Let $Y \subset X$ be the closed subscheme associated to $J \subset \mathcal{O}_X$

Then Y is regular iff $\Omega_{Y/k}$ is locally free and the second sequence

$$0 \to J/J^2 \to i^* \mathcal{O}_{X/k} \to \Omega_{Y/k} \to 0$$

is also leftexact.

Then J is locally generated by codim(Y) =: r elements and J/J^2 is locally free of rank r

Prop. $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ short exact sequence of locally free sheaves of rank n', n, n''.

There is a natural isomorphism $\bigwedge^n \mathcal{F} \cong \bigwedge^{n'} \mathcal{F}' \cong \bigwedge^{n''} \mathcal{F}$

Lemma. $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ short exact sequence of locally free sheaves \Rightarrow There is a natural isomorphism $\bigwedge^{top} \mathcal{F} \cong \bigwedge^{top} \mathcal{F}' \otimes \bigwedge^{top} \mathcal{F}''$

Corollary. $i^*\omega_{X/Y} \cong i^* \bigwedge^{top}(J/J^2) \otimes \omega_{Y/k}$

Prop. For any nonsingular closed hypersurface $Y \subset \mathbb{P}^n_k$ for k algebraically closed of degree d i.e. Y = V(f) for $f \neq 0$ homogeneous of degree d Then $\omega_{Y/k} \cong i^*\mathcal{O}(-n-1+d)$

Corollary. $\omega_{Y/k} \cong \mathcal{O}_Y$ iff d = n + 1

Prop. Let $Y \subset \mathbb{P}^2_k$ be a nonsingular closed curve of degree d with k algebraically closed. Then:

- 1. $\deg \omega_{Y/k} = d(d-3)$
- 2. $\omega_{Y/k}$ is ample iff $d \ge 4$
- 3. $Y \cong \mathbb{P}^1_k$ iff $d \leq 2$

6 Cohomology

6.1 Some (quick) homological algebra

Fact. Any homomorphism $f: X \to Y$ induces a homomorphism in homology: $H^n(f): H^n(X) \to H^n(Y)$

Prop. $0 \to X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \to 0$ short exact sequence of complexes \Rightarrow exists natural homomorphisms δ_n yielding a long exact sequence in cohomology:

$$\dots \xrightarrow{\delta_{n-1}} H^n X \xrightarrow{H^n f} H^n Y \xrightarrow{H^n g} H^n Z \xrightarrow{\delta_n} H^{n+1} X \to \dots$$

Prop. $f, g \ homotopic \implies \forall n : H^n f = H^n g$

6.2 Cech cohomology

Prop. The projection $C_{alt}^{\bullet}(\mathcal{U}, \mathcal{F}) \to C_{ord}^{\bullet}(\mathcal{U}, \mathcal{F})$ is an isomorphism of complexes.

Prop. The inclusion $C^{\bullet}_{alt}(\mathcal{U}, \mathcal{F}) \stackrel{\varepsilon}{\hookrightarrow} C^{\bullet}(\mathcal{U}, \mathcal{F})$ is a quasiisomorphism.

Corollary.

$$H^n(\mathcal{U},\mathcal{F}) \xleftarrow{\sim}_{H^n \varepsilon} H^n(C^{\bullet}_{alt}(\mathcal{U},\mathcal{F})) \xrightarrow{\sim}_{H^n \pi} H^n(C^{\bullet}_{ord}(\mathcal{U},\mathcal{F}))$$

Prop. $H^n(\sigma^*)$ is independent of σ^*

Prop. If \mathcal{U} and \mathcal{V} are refinements of each other then $H^n(\sigma^*)$ is an isomorphism.

Prop. Any homomorphism of sheaves of abelian groups $\varphi : \mathcal{F} \to \mathcal{G}$ induces a natural homomorphism in cohomology $H^n\varphi : H^n(X,\mathcal{F}) \to H^n(X,\mathcal{G})$

Now let \mathcal{F} be a quasicoherent sheaf on a scheme X

Theorem. For X affine $\Rightarrow H^n(X, \mathcal{F}) = 0$ for all n > 0

Prop. For any closed embedding $i: Y \hookrightarrow X$ and any \mathcal{O}_X -module \mathcal{F} and any $p: H^p(Y, \mathcal{F}) \cong H^p(X, i_*\mathcal{F})$

Theorem. X projective over Spec A with A noetherian, \mathcal{L} very ample invertible sheaf on X, \mathcal{F} coherent sheaf on X

- 1. \forall : $H^p(X, \mathcal{F})$ is a finitely generated A-module
- 2. $\exists m_0 \ \forall m \geqslant m_0 \ \forall p > 0 : H^p(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}) = 0$

Theorem. Let \mathcal{F} be a quasicoherent sheaf on a separated scheme X. Then for any affine open covering \mathcal{U} of X:

$$H^p(\mathcal{U},\mathcal{F}) \xrightarrow{\sim} H^p(X,\mathcal{F})$$

Theorem. Let X be separated which possesses an open covering by d+1 open affines. Then $\forall p > d \ \forall \mathcal{F}$ quasicoherent on $X : H^p(X, \mathcal{F}) = 0$

Prop. X quasiprojective of dimension d over $k \Rightarrow X$ can be covered by d+1 open affines.

Corollary. X quasiprojective over k, \mathcal{F} quasicoherent $\Rightarrow \forall p > \dim(X) : H^p(X, \mathcal{F}) = 0$

Prop. X separated $0 \to \mathcal{F}' \xrightarrow{\varepsilon} \mathcal{F} \xrightarrow{\pi} \mathcal{F}'' \to 0$ short exact sequence of quasicoherent sheaves $\Rightarrow \exists$ natural long exact sequence in cohomology

$$0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X) \to H^1(X, \mathcal{F}') \to \dots$$
$$\cdots \to H^p(X, \mathcal{F}') \xrightarrow{H^p \varepsilon} H^p(X, \mathcal{F}) \xrightarrow{H^p \pi} H^p(X, \mathcal{F}'') \to H^{p+1}(X, \mathcal{F}')$$

Theorem. For X separated and quasicoherent: TFAE:

- 1. X is affine
- 2. $\forall \mathcal{F} \ quasicoherent \ on \ X : \forall p > 0 : H^p(X, \mathcal{F}) = 0$
- 3. dito for p = 1

6.3 Cohomology of projective space

Theorem.

$$H^{p}(\mathbb{P}_{A}^{n}, \mathcal{O}_{\mathbb{P}_{A}^{n}}(m)) = \begin{cases} \bigoplus_{\substack{\underline{d} \in \mathbb{Z}^{n+1} \\ \text{all } d_{i} \geqslant 0}} A \cdot \underline{X}^{\underline{d}} = A[\underline{X}]_{m} & \text{if } p = 0 \\ \bigoplus_{\substack{\underline{d} \in \mathbb{Z}^{d+1} \\ \sum d_{i} = m \\ \text{all } d_{i} < 0}} A \cdot \underline{X}^{\underline{d}} & \text{if } p = n \end{cases}$$

Theorem. Let X be proper over Spec A for A noetherian and \mathcal{L} an invertible sheaf on X. Then

TFAE:

- 1. \mathcal{L} is ample
- 2. $\forall coherent \ \mathcal{F} \exists m_0 \ \forall m \geqslant m_0 \ \forall p \geqslant 1 : H^p(X, \mathcal{F}\mathcal{L}^m) = 0$
- 3. \forall coherent sheaves of ideals $J \subset \mathcal{O}_X \exists m_0 \ \forall m \geqslant m_0 : H^1(X, J(m)) = 0$

6.4 Higher direct images

Take $f: X \to Y$ and sheaves of modules \mathcal{F} on X and \mathcal{G} on Y

Fact. 1. There is a natural homo: $H^p(Y, f_*\mathcal{F}) \to H^p(X, \mathcal{F})$

2. There is a natural homo

$$H^{p}(Y,\mathcal{G}) \xrightarrow{H^{p}(adj)} H^{p}(X,f^{*}\mathcal{G})$$

$$H^{p}(Y,f_{*}f^{*}\mathcal{G})$$

3. Both are compatible with composition and functorial in \mathcal{F}, \mathcal{G}

Prop. f separated, quasicompact, \mathcal{F} quasicoherent \Rightarrow each \mathbb{R}^p $f_*\mathcal{F}$ is quasicoherent and for all open affine $V \subset Y$:

$$(R^p f_* \mathcal{F})(V) = H^p(f^{-1}(V), \mathcal{F}|_{f^{-1}(V)})$$

Theorem (Direct Image Theorem). Let f separated, Y locally noetherian, \mathcal{F} coherent $\Rightarrow \forall p : \mathbb{R}^p f_* \mathcal{F}$ is coherent.

Fact. f affine, \mathcal{F} quasicoherent $\Rightarrow \forall p > 0 : \mathbb{R}^p f_* \mathcal{F} = 0$

Prop. For $X \xrightarrow{f} Y \xrightarrow{g} Z$ there is a relation between $\mathbb{R}^p g_* \mathbb{R}^p f_* \mathcal{F}$ and $\mathbb{R}^r (g \circ f)_* \mathcal{F}$ (spectral sequences)

6.5 Duality

Prop. For $X = \mathbb{P}^n_A$ and all $m \in \mathbb{Z}$ the map

$$H^0(X; \mathcal{O}_X(m)) \otimes H^n(X, \mathcal{O}_X(-n-1-m)) \longrightarrow H^n(X, \mathcal{O}_X(-n-1)) \cong A$$

is a perfect pairing.

Fact. The isomorphism $H^n(\mathbb{P}^n_A, \mathcal{O}(-n-1)) \cong A$ is not canonical but after $\mathcal{O}(-n-1) \cong \omega_{\mathbb{P}^n_A/A}$ the isomorphism

$$H^n(\mathbb{P}^n_A, \omega_{\mathbb{P}^n_A/A}) \cong A$$

is

Prop. If an r-dualizing sheaf $(\omega_f, \operatorname{tr}_f)$ exists it is unique up to unique isomorphism.

Theorem. Y locally noetherian \implies $(\omega_{\mathbb{P}^n_Y/Y,\operatorname{tr}_f})$ is an n-dualizing sheaf for $f: \mathbb{P}^n_Y \longrightarrow Y$

Theorem. For any projective morphism $f: X \to Y$ with Y locally noetherian and all fibers of dim $\leq r$ the r-dualizing sheaf for f exists.

Theorem. $f: X \to Y$ projective smooth of relative dimension r, Y locally noetherian $\implies \omega_f := \omega_{X/Y} := \Lambda^r \Omega_{X/Y}$ together with some tr_f is an r-dualizing sheaf.

6.6 Flat base change

Prop. \widetilde{M} on Spec A is flat iff M is flat over A.

Prop. 1. \mathcal{F} locally free $\Rightarrow \mathcal{F}$ flat

2. \mathcal{F} finitely generated , X locally noetherian

Prop. $f: \operatorname{Spec} B \to \operatorname{Spec} A$ is flat iff B is a flat A-module.

Prop. $X' \xrightarrow{g'} X$ $\downarrow_{f'} \square \downarrow_{f}$ For a cartesian diagram with f separated and quasicompact $Y' \xrightarrow{g} Y$

and \mathcal{F} quasicoherent and g flat then base change is an isomorphism.

Prop. $f: X \to Y$ projective all fibers of dimension $\leq d$; \mathcal{F} quasicoherent \Rightarrow

1. $\forall p > d : \mathbf{R}^p f_* \mathcal{F} = 0$

2. $R^d f_*$ is rightexact and commutes with base change

7 Riemann-Roch and Serre duality

7.1 Divisors on curves

Let X be regular integral projective scheme of dim 1 over a field k

Prop. If D is the effective divisor associated to a finite closed subscheme

1.
$$T \subset X$$
 then $D = \sum_{P \in T} length(\mathcal{O}_{T,P}) \cdot P$

2.
$$\deg_k(D) = \sum_{P \in T} length(\mathcal{O}_{T,P}) \cdot [k(P)/k] = \dim_k \Gamma(T, \mathcal{O}_T) =: \deg T$$

Prop. If k is a finite extension of $k' \Rightarrow \deg_{k'}(D) = \deg_k(D) \cdot [k/k']$

Prop. For any field extension k'/k. Let $X' := X_{k'} = X \times_{\operatorname{Spec} k} \operatorname{Spec} k' \xrightarrow{\pi} X$. Assume X' integral then

$$\deg_{k'}(\pi^*D) = \deg_k(D)$$

Lemma. For all $P, Q \in |X| \exists R \in |X| : P + Q + R \sim 3P_0$

Theorem. The map $|X| \to Cl^0(X)$ $P \mapsto [P - P_0]$ is bijective.

7.2 Riemann-Roch

Prop. For any short exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ of coherent sheaves

$$\chi(X, \mathcal{F}) = \chi(X, \mathcal{F}') + \chi(X, \mathcal{F}'')$$

Lemma. For any exact sequence of finite dimensional k-vector spaces V^i for $i \in \mathbb{Z}$ and almost all zero:

$$\sum_{i} (-1)^i \dim_k V^i = 0$$

Fact. $\forall L/k \text{ field extension: } X_L \xrightarrow{\pi} X \leadsto \chi(X, \mathcal{F}) = \chi(X_L, \pi^* \mathcal{F})$

Theorem (Riemann-Roch Version 1). For any invertible sheaf \mathcal{L} on X:

$$\chi(X, \mathcal{L}) = 1 - g + \deg(\mathcal{L})$$

Theorem (Serre Duality). The sheaf $\Omega_{X/k}$ is a dualizing sheaf for X over k i.e. there exists a natural $\operatorname{tr}: H^1(X,\Omega_{X/k}) \to k$ such that for all quasicoherent \mathcal{F} we have perfect duality

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \Omega_{X/k}) \times H^1(X, \mathcal{F}) \longrightarrow H^1(X, \Omega_{X/k}) \xrightarrow{\operatorname{tr}} k$$

Theorem (Riemann-Roch Version 2). \mathcal{L} invertible sheaf on $X \implies$

$$h^0(X, \mathcal{L}) - h^0(X, \mathcal{L}^{\vee} \otimes \Omega_{X/k}) = 1 - g + \deg(\mathcal{L})$$

7.3 Residues

Prop. $\forall \omega \in \widehat{\Omega}_{\mathcal{F}/k} : \operatorname{res}_t(\omega) = \operatorname{res}_t(\omega \circ \varphi)$

Prop. $\forall \omega \in \widehat{\Omega}_{\mathcal{E}/k} : \operatorname{res}_u(\omega) = \operatorname{res}_t(\operatorname{tr}_{\mathcal{E}/\mathcal{F}}\omega)$

Prop. The composite map $\Omega_{K/k} \hookrightarrow \widehat{\Omega}_{\mathcal{F}/k} \xrightarrow{\mathrm{res}_t} k$ is independent of t

Prop. Let $\varphi: X \to Y$ be a finite separated morphism of such curves corresponding to the finite separated extension of function fields K/L.

$$Define \ \mathrm{tr}_{K/L} : \underbrace{ \begin{array}{c} \Omega_{K/k} \longrightarrow \Omega_{L/K} \\ \cong \\ K \otimes_L \Omega_{K/L} \end{array}}_{}$$

Then $\forall \omega \in \Omega_{K/k} \ \forall Q \in |Y|$

$$\sum_{P \in \varphi^{-1}(Q)} \operatorname{res}_P(\omega) = \operatorname{res}_Q(\operatorname{tr}_{K/L}\omega)$$

Theorem (Residue Theorem).

$$\forall \omega \in \Omega_{K/k} : \sum_{P \in |X|} \operatorname{res}_P \omega = 0$$

7.4 Serre duality

Theorem (Serre Duality). The sheaf $\Omega_{X/k}$ is a dualizing sheaf for X over k i.e. there exists a natural $\operatorname{tr}: H^1(X,\Omega_{X/k}) \to k$ such that for all quasicoherent \mathcal{F} we have perfect duality

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \Omega_{X/k}) \times H^1(X, \mathcal{F}) \longrightarrow H^1(X, \Omega_{X/k}) \xrightarrow{\operatorname{tr}} k$$

7.5 Some concequences of Riemann-Roch

Now always: X smooth connected projective curve over k algebraically closed field. Abbreviate: $h^i(\mathcal{L}) := h^i(X, \mathcal{L}) \Omega_X := \Omega_{X/k}$

Prop. $deg(\Omega_X) = 2g - 2$

Prop. Any smooth closed curve of degree d in \mathbb{P}^2_k has $g = \frac{(d-1)(d-2)}{2}$

Prop. TFAE:

1.
$$X \cong \mathbb{P}^1_k$$

2.
$$g = 0$$

$$3. \deg \Omega_X < 0$$

4. $\forall \mathcal{L} \text{ of degree 1: } h^0(\mathcal{L}) > 1$

5. $\exists \mathcal{L} \text{ of degree 1: } h^0(\mathcal{L}) > 1$

Prop. 1. $\forall P \in |X| \exists f \in K(X) \ f \ has a pole at P \ and no ther pole$

- 2. $\forall P \in |X| : X \setminus \{P\} \text{ is affine }$
- 3. \exists finite morphism $X \to \mathbb{P}^1_k$ of degree $\leq g+1$

Prop. Any locally free coherent sheaf on $X = \mathbb{P}^1_k$ is isomorphic to $\bigoplus_{i=1}^r \mathcal{O}_X(n_i)$ for unique $n_1 \ge \cdots \ge n_r$

7.6 Embeddings in projective space

Let \mathcal{L} be an invertible sheaf on X.

Prop. 1. \mathcal{L} is generated by global sections iff $\forall P \in |X| : h^0(\mathcal{L}(-P)) = h^0(\mathcal{L}) - 1$

2. \mathcal{L} is very ample iff: $\forall P, Q \in |X|$: $h^0(\mathcal{L}(-P-Q)) = h^0(\mathcal{L}) - 2$

Fact. $\forall \mathcal{L}$:

$$deg(\mathcal{L}) < 0 \Rightarrow h^0(\mathcal{L}) = 0$$

$$deg(\mathcal{L}) > 2g - 2 \Rightarrow h^1(\mathcal{L}) = h^0(\mathcal{L}^{\vee} \otimes \Omega_X) = 0$$

Prop. $\forall \mathcal{L}$:

- 1. $deg(\mathcal{L}) \geqslant 2g \Rightarrow \mathcal{L}$ is generated by global sections.
- 2. $\deg(\mathcal{L}) \geqslant 2g + 1 \implies \mathcal{L}$ is very ample.

Corollary. \mathcal{L} is ample iff $\deg(\mathcal{L}) > 0$

Prop. $\forall g \geqslant 1 : \Omega_X \text{ is generated by global sections.}$

Corollary. $g \ge 1 \Rightarrow get \ the \ canonical \ morphism \ X \to \mathbb{P}_k^{g-1} \ (unique \ up \ to \ PGl_g(k))$ If $g \ge 2$ this is non constant and hence finite

Prop. X is hyperelliptic iff $\exists \mathcal{L}$ with $h^0(\mathcal{L}) = \deg(\mathcal{L}) = 2$

Prop. For $g \ge 2$ the canonical morphism $X \to \mathbb{P}_k^{g-1}$ is a closed embedding iff X is not hyperelliptic

7.7 Hyperelliptic curves

Prop.
$$\Omega_{X/k} = f^* \mathcal{O}_{\mathbb{P}^1_k}((g-1)\infty) \cdot \omega$$
 and $H^0(X, \Omega_{X/k}) = H^0(\mathbb{P}^1_k, \mathcal{O}_{\mathbb{P}^1_k}((g-1)\infty)) \cdot \omega$ for $\omega := \frac{dx}{2y-a(x)} \in \Omega_{K/k}$ for $K = k(X)$

Corollary. The canonical morphism factors as (g-1)-uple embedding if $g \geqslant 2$

Prop. $chark \neq 2$:

- 1. for any separated $c \in k[X]$ of degree $\{2g+1, 2g+2\}$ the equation $y^2 = c(x)$ defines a hyperelliptic curve of genus g.
- 2. in particular there exists a hyperelliptic curve of any genus ≥ 1

7.8 Coverings

Let $f:X\to Y$ be a finite separated morphism of smooth irreducible projective curves over k algebraically closed

Prop.
$$\forall Q \in |Y|$$
 : $\sum_{P \in f^{-1}(Q)} e_p = \deg(f)$

Prop. exact sequence

$$0 \to f^*\Omega_{Y/k} \to \Omega_{X/k} \to \Omega_{X/Y} \to 0$$

Prop. $\forall P \in |X|$:

$$length(\Omega_{X/Y,P}) = \begin{cases} e_p - 1 & if \ char(k) \nmid e_p \\ \geqslant e_p & if \ char(k) | e_p \end{cases}$$

Theorem (Hurwitz).

$$2g(X) - 2 = \deg(f) \cdot (2g(Y) - 2) + \deg(\text{Ram}_f)$$

Prop. $Aut_k(X)$ is finite.