Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 10

Stanislau Stankevich, Rafał Bednarz, Ostrysz Jakub

Spis treści

1.	Sprawdzenie punktu pracy	2
2.	Odpowiedzi skokowe poszczególnych torów	4
3.	Regulatory	5
	3.1. PID	5
4.	Eksperymentalne wyznaczenie nastaw	6
	4.1. PID	
	4.1.1. $u_1 - y_2; u_2 - y_3; u_3 = const = 0; u_4 - y_1 \dots \dots \dots \dots \dots \dots \dots$	
	4.1.2. $u_1 = const = 0; u_2 - y_3; u_3 - y_1; u_4 - y_2 \dots \dots$	10
	4.2. DMC	13
	4.3. DMC oszczędny	18

1. Sprawdzenie punktu pracy

Podając za wejścia same zera, po 300 iteracjach dostajemy następujący przebieg wyjść:

Rys. 1.1. Przebieg wyjść obiektu przy stałyćh wejściach: $u_1=0, u_2=0, u_3=0$

Każde wyjście ustabilizowało się na wartości0, więc podany w zadaniu punkt pracy jest zgodny z rzeczywistością.

2. Odpowiedzi skokowe poszczególnych torów

Rys. 2.1. Odpwiedzi poszczególnych torów dla skoku0 - $1\,$

3. Regulatory

3.1. PID

Ponieważ regulator PID to jest regulator o jednym wejściu i jednym wyjściu, w danym przypadku możemy użyć maksymalnie trzech regulatorów PID, jako że liczba wyjść procesu jest równa 3. Patrząc na odpowiedzi skokowe możemy ocenić które wejście ma największy wpływ na które wyjście i dla takich par u-y nastroić regulatory PID. Na jedno wejście procesu w takim podejściu ustawiamy stałą.

4. Eksperymentalne wyznaczenie nastaw

4.1. PID

W przedstawionych poniżej eksperymentach została przyjęcta następująca konwencja nazewnictwa:

 PID_1 - pid, kontrolujący wyjście numer 1.

 PID_2 - pid, kontrolujący wyjście numer 2.

 PID_3 - pid, kontrolujący wyjście numer 3.

 K^i, T^i_i, T^i_d - parametry pida i.

Patrząc na wykresy z poprzedniego zadania można zobaczyć że wejście 3 ma największy wpływ zarówno na wyjścia 1 i 3. Biorąc to pod uwage najpierw spróbowaliśmy ustawić stałą (zero) na to wejście i nie podłączać do niego regulatora, żeby nie regulować jednym wejściem dwóch wyjść jednocześnie.

4.1.1. $u_1 - y_2; u_2 - y_3; u_3 = const = 0; u_4 - y_1$

Rys. 4.1. $u_3 = 0$; $K_1 = 0, 1$; $Ti_1 = 0, 1$; $Td_1 = 0, 1$; $K_2 = 0, 01$; $Ti_2 = 0, 1$, $Td_2 = 0, 1$; $K_3 = 0, 1$; $Ti_3 = 0, 1$;

$$E = 370,8381 \tag{4.1}$$

Rys. 4.2. $u_3=0,00; K_1=0,5; Ti_1=2; Td_1=0,2; K_2=4; Ti_2=1,5; Td_2=0,2; K_3=1; Ti_3=1; Td_3=1.$

4.1.2. $u_1 = const = 0; u_2 - y_3; u_3 - y_1; u_4 - y_2$

$$E = 48,2639 \tag{4.3}$$

Rys. 4.4. $u_1 = 0,00; K_1 = 0,1; Ti_1 = 0,3; Td_1 = 0; K_2 = 0,1; Ti_2 = 0,2; Td_2 = 1; K_3 = 0,1; Ti_3 = 0,04; Td_3 = 10.$

4.2. DMC

$$E = 14,071 (4.5)$$

$$E = 14,0854 \tag{4.6}$$

$$E = 14,1638 \tag{4.7}$$

4.3. DMC oszczędny

E = 14,071 (4.10)

$$E = 14,0725 \tag{4.11}$$

 $E = 14,0854 \tag{4.12}$

E = 8,43 (4.13)