Homework 1

Andrew Tindall Topology II

January 17, 2020

1 Problems

Problem 1. Prove that S^n is homeomorphic to the quotient topological space D^n/\sim , where \sim denotes the following equivalence relation on D^n :

$$x \sim y \iff x = y \text{ or } x \text{ and } y \in \partial D^n.$$

Let S^n be the set of unit vectors in \mathbb{R}^{n+1} : $S^n = \{x \in \mathbb{R}^{n+1}; |x| = 1\}$.

Proof. We first construct a map $\varphi: S^n \to D^n/\sim$. Let $x \in S^n = \langle x_1, \dots x_n, x_{n+1} \rangle$. Let $u(x_1, \dots x_n)$ be the function taking a vector to the parallel unit vector:

$$u(\mathbf{x}) = \frac{\mathbf{x}}{|\mathbf{x}|}.$$

Define φ as follows:

$$\varphi(\langle x_1, \dots x_n, x_{n+1} \rangle) = \begin{cases} \frac{1}{2} \langle x_1, \dots x_n \rangle & 1 \le x_{n+1} \le 0 \\ u(x_1, \dots x_n) - \frac{1}{2} \langle x_1, \dots x_n \rangle & 0 < x_{n+1} < 1 \\ [\partial D^n] & x_{n+1} = 1 \end{cases}$$

Where $[\partial D^n]$ is the equivalence class of points in ∂D^n under the relation \sim .

This function is clearly continuous in the regions $1 \le x_{n+1} < 0$ and $0 < x_{n+1} < 1$, as on each region it is defined by a single continuous function.

On the boundary $x_{n+1} = 0$, the two functions $x \mapsto \frac{1}{2}\langle x_1, \dots x_n \rangle$ and $x \mapsto u(x_1, \dots x_n) - \frac{1}{2}\langle x_1, \dots x_n \rangle$ agree, as we can see by computation. Letting $\mathbf{x} = \langle x_1, \dots, x_n \rangle$ and using the fact that $x_{n+1} = 0$ implies $|\langle x_1, \dots x_n \rangle| = 1$:

$$\frac{1}{2}\langle x_1, \dots x_n \rangle = \langle \frac{x_1}{2}, \dots \frac{x_n}{2} \rangle
= \langle \frac{2x_1 - x_1}{2}, \dots, \frac{2x_n - x_n}{2} \rangle
= \langle \frac{x_1}{1}, \dots, \frac{x_n}{1} \rangle - \langle \frac{x_1}{2}, \dots, \frac{x_n}{2} \rangle
= \langle \frac{x_1}{|\mathbf{x}|}, \dots, \frac{x_n}{|\mathbf{x}|} \rangle - \frac{1}{2}\langle x_1, \dots, x_n \rangle
= u(x_1, \dots, x_n) - \frac{1}{2}\langle x_1, \dots x_n \rangle$$

Since the two functions approach the same value at the boundary between the regions, $x_{n+1} = 0$, the function φ is continuous there. We finally see that it is continuous near $x_{n+1} = 1$. We show that, for every convergent sequence of points $\{\mathbf{x}_i\} \in S^n$ which approach $\{0,\ldots,0,1\}$, the images $\varphi(\mathbf{x}_i)$ approach $[\partial D^n]$.

Let $\{\mathbf{x}_i\}$ be a sequence of points in S^n that approach $(0, \ldots, 0, 1)$. We want to show that, for every open neighborhood U of $[\partial D^n]$, there is some $N \in \mathbb{N}$ such that, for all $m \geq N$, the images $\varphi(\mathbf{x}_m)$ all lie in U.

Every open neighborhood U of $[\partial D^n]$ is the image of some open set in D^n which contains the entire preimage of $[\partial D^n]$: that is, it is an open set in D^n which contains the entire boundary ∂D^n . This implies that it contains some open annulus of inner radius $1 - \varepsilon$ and outer radius 1: if it did not, it would contain points arbitrarily close to the boundary ∂D^n which did not lie in U, contradicting openness.

Because the points \mathbf{x}_i approach $\langle 0, \dots, 0, 1 \rangle$, there must be some $N \in \mathbb{N}$ such that, for all $m > \mathbb{N}$, $|\langle 0, \dots, 0, 1 \rangle - \mathbf{x}_m| < 2\varepsilon$. This in turn implies that $|\langle x_{m1}, \dots x_{mn} \rangle| < 2\varepsilon$:

$$\begin{aligned} |\langle x_{m1}, \dots, x_{mn} \rangle| &= |\langle x_{m1}, \dots, x_{mn}, 0 \rangle| \\ &\leq |\langle x_{m1}, \dots, x_{mn}, (1 - x_{m(n+1)}) \rangle| \\ &= |\langle 0, \dots, 0, 1 \rangle - \langle x_{m1}, \dots x_{m(n+1)} \rangle| \\ &= |\langle 0, \dots, 0, 1 \rangle - \mathbf{x_m}| \\ &< 2\varepsilon \end{aligned}$$

Now, if $|\langle x_{m1}, \ldots, x_{mn} \rangle| < 2\varepsilon$, and $x_{m(n+1)}$ is close to 1 (and therefore greater than 0) then its image under φ must lie either in the annulus $1 - \varepsilon < |x| < 1$, or at the point $[\partial D^n]$. If $x_{m(n+1)} < 1$:

$$|\varphi(\mathbf{x}_m)| = \left| u(\langle x_{m1}, \dots, x_{mn} \rangle) - \frac{1}{2} \langle x_{m1}, \dots, x_{mn} \rangle \right|$$

$$= 1 - \frac{1}{2} |x_{m1}, \dots, x_{mn}|$$

$$> 1 - \frac{1}{2} (2\varepsilon)$$

$$> 1 - \varepsilon$$

And, if $x_{m+1} = 1$, the image of $\varphi(\mathbf{x}_m)$ is $[\partial D^n]$ by definition. Therefore, for m > N, the image of $\varphi(\mathbf{x}_m)$ lies in the union of $[\partial D^n]$ with the open annulus $1 - \varepsilon < |x| < 1$, which lies in U. So, the map φ is continuous at $x_{n+1} = 1$.

We now construct a continuous map $\psi: D^n/\sim \to S^n$. Let $\mathbf{x} \in D^n$, and define $\psi(\mathbf{x})$ as follows:

$$\psi(\mathbf{x}) = \begin{cases} \langle 2x_1, \dots, 2x_n, -(1 - |2\mathbf{x}|^2)^{1/2} \rangle & |\mathbf{x}| \leq \frac{1}{2} \\ \langle (\frac{1}{2} - \frac{1}{2} |\mathbf{x}|) x_1, \dots, (\frac{1}{2} - \frac{1}{2} |\mathbf{x}|) x_n, (1 - |(\frac{1}{2} - \frac{1}{2} |\mathbf{x}|) \mathbf{x}|^2)^{1/2} \rangle & \frac{1}{2} < |\mathbf{x}| < 1 \\ \langle 0, \dots, 0, 1 \rangle & \mathbf{x} = [\partial D^n] \end{cases}$$

First, we see that this is indeed a two-sided inverse to φ : on the three domains in D^n/\sim . If

 $|\mathbf{x}| \le \frac{1}{2}$, then $-(1 - |2\mathbf{x}|^2)^{1/2} \le 0$:

$$\varphi(\psi((x))) = \varphi(\langle 2x_1, \dots, 2x_n, -(1 - |2\mathbf{x}|^2)^{1/2} \rangle)$$

$$= \frac{1}{2} \langle 2x_1, \dots, 2x_n \rangle$$

$$= \mathbf{x}$$

If $\frac{1}{2} < |\mathbf{x}| < 1$, then $(1 - \left| \left(\frac{1}{2} - \frac{1}{2} |\mathbf{x}| \right) \mathbf{x} \right|^2)^{1/2} > 0$:

$$\varphi(\psi(x)) = \varphi(\langle (\frac{1}{2} - \frac{1}{2} | \mathbf{x} |) x_1, \dots, (\frac{1}{2} - \frac{1}{2} | \mathbf{x} |) x_n, (1 - \left| (\frac{1}{2} - \frac{1}{2} | \mathbf{x} |) \mathbf{x} \right|^2)^{1/2} \rangle)$$

$$= \frac{\mathbf{x}}{|\mathbf{x}|} - 2 \left\langle \left(\frac{1}{2} - \frac{1}{2} \mathbf{x} \right) x_1, \dots, \left(\frac{1}{2} - \frac{1}{2} | \mathbf{x} | \right) x_n \right\rangle$$

$$= \mathbf{x}$$

And, finally, ψ and φ map the singletons $\langle 0, \dots, 0, 1 \rangle$ and $[\partial D^n]$ to each other. ψ is continuous as well; a full proof of this would also need to analyze the behavior of the function at the circle $|x| = \frac{1}{2}$, and at the boundary point $[\partial D^n]$.

Problem 2. Write down an example of a topological space X and an equivalence relation \sim on X such that the standard map to the quotient topological space $X \to X/\sim$ is not an open map.

Proof. The following example was found on math.stackexchange: Let $X = \mathbb{R}$, the set of real numbers with its standard topology, and let \sim be the equivalence relation

$$x \sim y \iff x = y \text{ or } (x \in \mathbb{Z} \text{ and } y \in \mathbb{Z}).$$

Then the preimage of the image of any open set containing an integer, say $(-\varepsilon, \varepsilon)$, contains all of \mathbb{Z} :

$$\pi^{-1}(\pi((-\varepsilon,\varepsilon))) = (-\varepsilon,\varepsilon) \cup \mathbb{Z},$$

which is not in general open in \mathbb{R} . Thus the set $\pi((-\varepsilon,\varepsilon))$ is not open in the quotient topology.