FIA - WS 2014/15

1 Introduction

1.1 Internet

- loosely hierarchical: tier 1 to tier 3
- communications infrastructure enables distributed applications
- hyper... ⇒ concentration of content (Amazon, Google, ...)

1.2 Protocol Layering

- ISO/OSI
- TCP, UDP, ICMP, UDP Like, SCTP, ...
- DHCP, NAT, ...

1.3 Analogue digital conversion

- Fourier transformation
- sampling theorem + Nyquist
- PCM-transmission
- small amplitudes are being encoded more detailed than large amplitudes

1.4 Color Coding

- monochrome, RGB, YCbCr
- RGB:
 - red, green, blue values between $[0, \{7,31,...,65535\}]$
 - nonlinear encoding of intensities
 - computer graphics
- YCbCr
 - TV and digital video
 - Y more important \Rightarrow encode with more details
 - more efficient than RGB
 - can handle downsampling better
 - YUV is based color model used in analog color TV
 - * YCbCr is scaled and offset version
 - $\ast\,$ YPbPr is the analog version of YCbCr

2 Digital coding of audio and video

2.1 Rate-Distortion Theory

- lossless compression algorithms
 - allow perfect reconstruction
 - low compression ratios
 - frequently encountered data is encoded more efficiently
- lossy compression algorithms
 - result is only a close approximation of original data
 - trade-off: distortion vs. required rate
 - much higher compression rate than lossless compression

//TODO: bild einfuegen

- rate and distortion as measures for efficiency of compression and difference between reconstructed and original data
 - goal is to minimize distortion and rate
 - basic problem:
 - * minimum expected distortion at a given rate?
 - * minimum rate to achieve given distortion?
- distortion measures
 - mean square error $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i y_i)^2$
 - signal to noise ratio $SNR = 10log_{10} \frac{\sigma_x^2}{\sigma_d^2}$
 - peak signal to noise ratio $PSNR = 10log_{10} \frac{x_{peak}^2}{x_d^2}$
- in order to maximize efficient communication maximize mutual information between x and y
- rate distortion function

2.2 digital image

- conversion between RGB and YUV
- downsampling J:a:b
 - $-4:4:4 \stackrel{\frown}{=} \text{no downsampling}$
 - -4:2:2 =
- statistical image modeling
 - all natural images occupy a tiny and unknown sloped space of all images
 - pixel intensities are dependent and correlated to the corresponding image \Rightarrow pixel within images are highly correlated
 - correlation of pixels has high impact on image compression
- image transformations
 - negative transformations

- log transformations
- power-law transformations

• intensity:

- change in brightness \Rightarrow shift of histogram
- change in contrast \Rightarrow stretch/? of histogram
- filters based on convolution of neighbor pixels \Rightarrow enhancement, smoothing, edge, detection, ...
- the hoar transform
 - simplest useful energy compression
 - lossless retransformation is possible
 - transform original image into 4 parts (in 20)
 - 1. top-left: a+b+c+d, 4 point average, very important
 - 2. top-right: a-b+c-d, average horizontal gradient, less important
 - 3. bottom-left: a+b-c-d, average vertical gradient, less important
 - 4. bottom-right: a-b-c+d, diagonal curvature, less important
 - 1 is more expensive while 2-4 is cheaper to encode
 - reordering required to provide "typical" representation
- entropy quantifying the required bitrate
 - entropy H_x represents the mean number of bits per pixel that are required to encode the image
 - $-H_x = \sum_{i=0}^{M-1} p_i \log_2\left(\frac{1}{p_i}\right)$ where $p_i = \frac{\text{pixel in bin i}}{N}$ where N is the number of pixels
 - estimated number of bits needed is $H_x \cdot N$
- the Karkunen-Loeve transform (KLT)
 - is optimal for minimizing bitrate
 - not or seldom used in practice \Rightarrow slow and complex
- the discrete cosine transformation (DCT)
 - seems to put most energy on a small number of values
 - linear transformation
 - each real world image can be represented by a combination of the DCT bases
 - DCT bases fit better to typical images than FFT or DST
 - first coefficient of DCT is mean of values being transformed and represents average tone of the block. subsequent blocks add further detail
 - JPEG: 8×8 DCT (empirically found to be good)

• need for wavelets

- signals are available in time-domain but processing frequency information is much more easy
- transformations (e.g. FFT) translate time-domain signals into frequency domains
 - * useful for stationary signals where all frequencies are present at all times
 - * not useful for instationary signals: both information required
 - * solution: short term transformation—transformation of small fixed timewindows (similar to blocks of images)
- wavelet analysis uses different sized windows
 - * high frequency parts \Rightarrow small windows \Rightarrow good time resolution
 - * low frequency parts \Rightarrow big windows \Rightarrow good frequency resolution

2.3 JPEG compression

• joint photographic experts groups

2.4 digital video

- high corellation between successive frames
- interframe differential pulse code modulation (⇒ vgl. skript skizze)
- frame replenishment ⇒ pixels are only transmitted if a specified threshold is exceeded, otherwise nothing is transmitted
- change detection
 - pixel wise change detector
 - block wise change detector
 - comparison between current and previous frame
 - * substract previous frame from current one
 - * convert to absolute value
 - * generate 3×3 averages
 - * check for threshold
- motion compensated coding
 - changes between frames due to moving objects \Rightarrow estimation of motion vectors
 - prediction and original frame may differ significantly
 - * solution: compute and transmit prediction error additionally
 - * higher coding efficiency but also higher computational complexity
 - three-stage-coding:

Motion Analysis \Rightarrow Prediction and differentiation \Rightarrow Encoding

• block matching

- partitioning of frame into nonoverlapping equally spaced and fixed size rectangular blocks
- smaller block size ⇒ better approximation but higher computational complexity
- -16×16 blocks used in MPEG-1 and -2
- calculate best displacement vector for each block
- search strategies:
 - * full search
 - * 2D logarithmic search
 - * diamond search
- grouping of elements
 - sequence \rightarrow frame \rightarrow slice \rightarrow macroblock \rightarrow block \rightarrow pixel
- different frame types
 - I-frame: intra-coded-frame: independent of other frames
 - P-frame: predictively coded frame: depends on previous frame
 - B-frame: bidirectionally predicted frame: depends on previous and subsequent frames
- scalable video encoding H.264/SVC
 - different frame rates
 - different resolutions
 - variable image quality
 - layered video codec (LVC)
 - * base layer is encoded in H.264/SVC
 - * enhancement layers allow refinement of base quality
 - * different combinations of temporal, spatial and quality refinement is possible TODO: Bild einfuegen
 - * refinement is represented by 3D cube of cubes
 - temporal scalability: adding B-frames to the base layer
 - spatial scalability: 3 mechanisms
 - * interlayer prediction
 - * residual prediction
 - * motion prediction
 - quality scalability
 - * interlayer prediction (like in spatial scaling)
 - * up sampling
 - * different quantization parameters
 - idea is to adept the video quality to the available bandwidth by removing or adding enhancement layers
- network abstraction layer (NAL)
 - frames are packaged in NAL units
 - * payload of 1 package is one layer of one frame
 - * layers are separated into different streams
 - * MANE (media aware network element)
 - \cdot decides package forwarding
 - · separate layers on separate flows (???) allow adapted forwarding
- use of LVC and NAL
 - $-\,$ adaption in case of device or network limitations

- reduce storage size by removing enhancement layers
- video broadcasting: base layer free + payed enhancement
- multi description coding
 - n frames/s using 1 description
 - 2n frames/s using 2 description
 - 2 alternatives
 - 1. independent description: robust + inefficient
 - $2. \rightarrow less robust + more efficient$
 - robust against package loss
- comparison of different video codings
 - layered > MDC2 > MDC1
 - non variable coding is most efficient but not adaptive to changes in network limit or device limitations

2.5 Estimating quality of media applications

- what is QoE?
 - the overall acceptability of an application or service as perceived subjectively by the end user
 - definition is still evolving
 - closely related to QoS
 - QoE is usually a subjective value
 - assessed by asking or observing users
 - related values:
 - * quality of presentation, quality of delivery
 - * hourglass model matches QoX with layers of the ISO/OSI model
 - $* QoS \rightarrow QoD \rightarrow QoP \rightarrow QoE$
 - often characterized with MOS (mean opinion score)
- QoE assessment methods and tools
 - subjective QoE
 - * ask or observe the user (use questionaires, rating scales, annotations)
 - mean opinion score
 - * widely used (politics, marketing, ...)
 - * the likely level of satisfaction of a service or product as appreciated by an average user
 - * average might be resulting by two extremes
 - * use discrete scales and an odd number of steps
- subjective tests are often expensive and time consuming
 - objective algorithms are desired (MOS predictors)
 - * MSE (bad) \Rightarrow doesn't care about reordering
 - * PSNR \Rightarrow correlation of c.a. 80 % to subjective studies (but sometimes much worse)
 - * maximum pixel deviation
 - * multiscale structural similarity (MSSIM) \Rightarrow very good
- region of interest \Rightarrow salient vs. non-salient regions (e.g. football)

3 data communication and transport protocol

- connection-oriented:
 - setting up a call and release the call afterwards (TCP)
- connection-less:
 - packet switching without call establishment

3.1 single path transport protocol

- UDP and UDP-lite
 - SRC part | DST part | length | checksum | data
 - * suiteable for real-time applications (nondelayed transmission)
 - * works well for broadcasting (e.g. service discovery, video broadcast)
 - UDP-like replaces length with checksum coverage
 - UDP-like headers must be protected by the checksum
- TCP basics
 - SYN and ACK flags
 - sequence numbers: number of packet ascending
 - acknowledgement number: if ACK is set, this is the next sequence the reciever expects
 - connection establishment (3-way-handshake)
 - * client sends SYN with random sequence number A
 - * server responds ACK with acknowledgement number A+1 and random sequence number B
 - * client sends ACK with acknowledgement number B+1 and sequence number A+1
 - * result: full duplex connection
 - key features of TCP
 - * orders data transfer
 - * retransmission
 - * error free data transfer
 - * flow control
 - * congestion control
 - TCP measures round-trip-time (RTT) and calculates expected RTT for future packets
- compound TCP
 - combines delay-based and loss-based congestion control
 - higher throughput than normal TCP at high RTT
- cubic TCP

- fair for low RTT, very aggressive for high RTT
- RED random early detection
 - schedulers for congestion avoidance
 - idea: monitor average queue size and drop packets based on statistical probabilities
 - problems: has strong impact on TCP (retransmission)
- ECN explicit congestion notification
 - allows end-to-end notifications of network congestion without dropping packets
 - ECN-routers may set a mark in the TCP headers to signal impending congestion to the reciever. the reciever echos a signal to the sender which then can reduce transmission rates
 - can reduce the number of dropped packets
 - may reduce performance on highly congested networks
- DCCP congestion control without reliability
 - TCP: long living flows to guarantee fairness
 - UDP: short living flows and multicast applications
 - problem: UDP is used for long-living flows with live constraints: streaming, VoIP, online-gaming ⇒ no congestion controll using UDP may result in congestion collapse of the internet
 - requirements:
 - * choice of congestion controll mechanisms
 - * low per-packet overhead
 - * ECN support
 - * middlebox traversal (NAT/Firewall)
 - congestion controll mechanisms
 - * TCP-like: congestion controll
 - * TCP-friendly: congestion controll
 - SCTP stream controll transmission protocol
 - * properties:
 - · security: 4-way-handshake
 - · resilience: multi-homing, crc32-checksum
 - · practical features:
 - · IPv4 and IPv6 simultaneously
 - · multi-streaming
 - \cdot message-oriental
 - \cdot support extensions
 - * multi-homing
 - · SCTP associates two nodes (connection)
 - · if primary path between nodes breaks connection switches to another path
 - * multi-streaming (vgl. script 3.49)

3.2 multi-path transport protocols

- multi-path TCP: split data transmission via multiple paths
 - * enhances reliability and flexibility
 - * allows balancing of data transmission via links with different limitations
 - * common problem: out-of-order arrival