Technische Universität Berlin Fakultät II – Institut für Mathematik Bärwolff, Böse, Kato, Penn-Karras

SS 2010 07.10.2010

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vo	Vorname:					
MatrNr.:	St	udienga	ng:				
Neben einem handbeschriebenen Azugelassen.	A4 Blat	tt mit I	Notizen	sind k	eine Hi	lfsmittel	
Die Lösungen sind in Reinschrif geschriebene Klausuren können ni				zugebe	n. Mit	Bleistift	
Dieser Teil der Klausur umfasst die Rechenaufwand mit den Kenntniss wenn nichts anderes gesagt ist, imm	en aus	der Vor	lesung	lösbar s	sein. Ge	_	
Die Bearbeitungszeit beträgt 60 ${ m M}$	Iinute	n.					
Die Gesamtklausur ist mit 40 von beiden Teile der Klausur mindester				,			
Korrektur							
	1	2	3	4	5	Σ	
L					l		

1. Aufgabe 8 Punkte

Geben Sie für jede der folgenden Mengen explizit an, welche der Eigenschaften

konvex, offen, abgeschlossen, beschränkt

die Menge hat und welche der Eigenschaften sie nicht hat. Eine Begründung ist nicht erforderlich.

$$\begin{array}{lcl} A & = & \{(x,y,z) \in \mathbb{R}^3 \,|\, 0 < x^2 + y^2 \leq 1\}, & B & = & \{(x,y,z) \in \mathbb{R}^3 \,|\, x^2 + y^2 = z^2\} \\ C & = & \mathbb{R}^2 \,\backslash\, \{(x,y) \in \mathbb{R}^2 \,|\, x = y\}, & D & = & \{(x,y) \in \mathbb{R}^2 \,|\, |x| \leq y < 1\} \end{array}$$

2. Aufgabe 11 Punkte

a) Untersuchen Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 1 & \text{für } (x,y) = (0,0). \end{cases}$$

auf Stetigkeit und partielle Differenzierbarkeit in (0,0). Geben Sie die partiellen Ableitungen $\frac{\partial f}{\partial x}(0,0)$ und $\frac{\partial f}{\partial y}(0,0)$ an, falls diese existieren.

b) Nun sei für $a \in \mathbb{R}$ die Funktion $g \colon \mathbb{R}^2 \to \mathbb{R}$

$$g(x,y) = \begin{cases} \frac{|x|^a}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

gegeben. Untersuchen Sie für die Fälle

i)
$$a > 2$$
 und ii) $0 < a < 2$,

ob g auf ganz \mathbb{R}^2 stetig ist.

3. Aufgabe 8 Punkte

Geben Sie (mit Begründung) Vektorfelder $\vec{v}_i : \mathbb{R}^3 \to \mathbb{R}^3$, $i = 1, \dots, 4$ mit folgenden Eigenschaften an:

- a) Es existiert kein Potential für \vec{v}_1 .
- b) $\operatorname{div}(\operatorname{rot}(\vec{v}_2)) = 0$.
- c) \vec{v}_3 ist stetig, aber nicht differenzierbar.
- d) \vec{v}_4 ist ein Potentialfeld.

4. Aufgabe 7 Punkte

Gegeben seien die Vektorfelder $\vec{v}, \vec{w} \colon \mathbb{R}^3 \to \mathbb{R}^3$,

$$\vec{v}(x, y, z) = (3x, 0, 0)^T, \quad \vec{w}(x, y, z) = (x, y, z)^T.$$

Weiterhin sei

$$K = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 1\}$$

die Einheitskugel im \mathbb{R}^3 mit Rand

$$S = \partial K = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}.$$

Zeigen Sie mit Hilfe eines geeigneten Integralsatzes:

$$\iint\limits_{S} \vec{v} \cdot d\vec{O} = \iint\limits_{S} \vec{w} \cdot d\vec{O}.$$

5. Aufgabe 6 Punkte

Parametrisieren Sie die Rotationsfläche, die im \mathbb{R}^3 entsteht, wenn die Kurve

$$\vec{c}: [0,1] \to \mathbb{R}^3, \quad \vec{c}(t) = (t,0,t^3)^T$$

um die z-Achse rotiert.