

Máquina de Vetores de Suporte

Teoria e Prática

Prof. Dr. Diego Bruno

Education Tech Lead na DIO Doutor em Robótica e *Machine Learning* pelo ICMC-USP

Máquina de Vetores de Suporte (SVM)

O que são SVMs?

Máquina de Vetores de Suporte

Tipos de aprendizado

Não supervisionado

Tipos de aprendizado

Supervisionado

Tipos de aprendizado

Supervisionado

Os algoritmos de aprendizagem supervisionada relacionam uma saída com uma entrada com base em dados rotulados. Neste caso, o usuário alimenta ao algoritmo pares de entradas e saídas conhecidos.

Diferenças entre RNA e SVM?

Supervisionado

Na prática não há muita diferença... O principal fator é o modo de estabelecer o hiperplano.

SVM buscando a otimização das margens e a **RNA** buscando o mínimo global

SVM RNA

Resultado esperado de uma SVM

	Modelo discriminativo
Objetivo	Estimar diretamente $P(y ert x)$
O que é aprendido	Fronteira de decisão
Ilustração	
Exemplos	Regressões, SVMs

SVM buscando a otimização das margens e a **RNA** buscando o mínimo global

Por que "Máquina de Vetores"?

Os "**Vetores de suporte**" são simplesmente as coordenadas da observação individual. Uma **SVM** é uma fronteira que melhor realiza as duas classes (hiperplano / linha).

https://www.inf.ufpr.br/dagoncalves/IA07.pdf

Desenvolvendo a hipótese

Desenvolvendo a hipótese: Aqui, temos três hiperplanos (A, B e C). Mas qual o hiperplano certo para classificar estrela e círculo?

Desenvolvendo a hipótese

Aqui, temos três **hiperplanos (A, B e C)** e todos estão dividindo bem as classes. Agora, como podemos identificar o hiperplano certo?

https://www.inf.ufpr.br/dagoncalves/IA07.pdf

Desenvolvendo a hipótese

Maximizar as distâncias entre o ponto de dados mais próximo (de qualquer classe) e o hiperplano nos ajudará a decidir o hiperplano correto

https://www.inf.ufpr.br/dagoncalves/IA07.pdf

Implementação

Prof. Dr. Diego Bruno

Obrigado!

Prof. Dr. Diego Bruno