Az informatika számítástudományi alapjai 9. előadás

Vaszil György

vaszil.gyorgy@inf.unideb.hu

I. emelet 110-es szoba

Múltkor

- Turing gépek, sztringek elfogadása Turing géppel, elfogadott nyelv
- Több szalagos Turing gépek, nemdeterminisztikus Turing gépek
- Rekurzív és rekurzívan felsorolható nyelvek
- Általános (szabály-)alakú grammatikák és Turing gépek

Miről szól ez az egész?

A számítógépek képességeiről és a képeségek elvi korlátairól.

- A számítógépek modellezése, a számítási folyamat "hardverfüggetlen") leírása (automaták)
- A számítógéppel elvileg is megoldhatatlan feladatokról (kiszámíthatóság)
 - Mikor megoldható egy feladat?
- A számítógéppel elvileg megoldható feladatok gyakorlati megoldhatósága (számítási bonyolultság)
 - Mitől egyszerű és mitől nehéz egy feladat megoldása?

Múltkor

- Turing gépek, sztringek elfogadása Turing géppel, elfogadott nyelv
- Több szalagos Turing gépek, nemdeterminisztikus Turing gépek
- Rekurzív és rekurzívan felsorolható nyelvek
- Általános (szabály-)alakú grammatikák és Turing gépek

turning giper

- 1. A gip i strat si alvestrat i a nalagroil
 2. Az i no-alvesi sej julitra si luelsa i uneroghet
 3. A mala e meistelle
- 3. A nalag negselle 4. specialis ållepot: elfogades

Peldaul: Turing gep 0"1" dari navar felinenise il

Tehát: A T Turing gép által elfogadott nyelv L(T).

- Ha w ∈ L(T), akkor w bemenetre T elfogadó állapotban áll meg,
- Ha w ∉ L(T), akkor w bemenetre T nemelfogadó állapotban áll meg, vagy egyáltalán nem áll meg.

Múltkor

- Turing gépek, sztringek elfogadása Turing géppel, elfogadott nyelv
- Több szalagos Turing gépek, nemdeterminisztikus Turing gépek
- Rekurzív és rekurzívan felsorolható nyelvek
- Általános (szabály-)alakú grammatikák és Turing gépek

Variaivir Tung gipe

· Eg nalug helett k nalug, an input an ero naluga var.

S: Qxpk-DQxpkx {LiR, 3k

Knalager i Inalager Tuning gefort

Tetel: hinder knalager To Tuning gejoher

Tetel: hinder knalager To Tuning gejoher

leterier olga I nalager To Tuning gip;

less L(To) = L(To)

Variación Tung gipne

Nemde terministrius Tung sép $\sigma: Q \times \Gamma \rightarrow 2^{Q \times \Gamma} \times \{L_i R_i\}$

Addudeter minstim Tuning jep nimlælhate deten minstim Tuning gejgd.

Azaz: Minden nemdeterminisztikus Turing gép átalakítható determinisztikussá úgy, hogy ne változzon meg a nyelv amit elfogad.

Múltkor

- Turing gépek, sztringek elfogadása Turing géppel, elfogadott nyelv
- Több szalagos Turing gépek, nemdeterminisztikus Turing gépek
- Rekurzív és rekurzívan felsorolható nyelvek
- Általános (szabály-)alakú grammatikák és Turing gépek

Retursivan felsorollheite es

Egy Lught returniven felsosolhaté, ha wen alzan turing gép, ami minden wel né bemeneten elfosodé állapothon áll meg. A w & L szanatra vagy nem elfogadó állapothon áll meg, veen egsáltalán nen áll meg azaz, ha L=L(T) egy T Turing gépre, vagyis ha T elfogadja L-et.

· (og 2 ugelt <u>setursi</u>t, ha ven olgan Turning gip duni minden hemenesen megalel, a wel szavatron elfosoló állapothen áll meg, a w & L szavatron hen elfogodó állapothem áll meg.

Ha van ilyen T Turing gép, akkor T eldönti L-et.

La'tur, laihi fegnis

reguláris, környezetfüggetlen, rekurzív (Turing géppel eldönthető), rekurzívan felsorolható (Turing géppel elfogadható) nyelvek

Múltkor

- Turing gépek, sztringek elfogadása Turing géppel, elfogadott nyelv
- Több szalagos Turing gépek, nemdeterminisztikus Turing gépek
- Rekurzív és rekurzívan felsorolható nyelvek
- Általános (szabály-)alakú grammatikák és Turing gépek

A'étalais alalin gremen'cor

G=(V, S,S,P) alral P Tralialyan

alarina, $x, B \in (V \cup \Sigma)^{\dagger}$, & tarbaluna cum tesui nalist tear:

Ar altheiren alabi gelvsane Whal generalhate gelver megezseserer a Tuning geppel elfosadhet a' gelverbel

> L nyelv "<mark>elfogadása</mark>" T-vel: ha w szó L-beli, akkor T elfogadó állapotban áll meg wkülönben: T nem-elfogadó állapotban áll meg, vagy T egyáltalán nem áll meg

Gluerainen februalhet!

geluer

keruminen kloralhete'

greumasi rän

Múltkor

- Turing gépek, sztringek elfogadása Turing géppel, elfogadott nyelv
- Több szalagos Turing gépek, nemdeterminisztikus Turing gépek
- Rekurzív és rekurzívan felsorolható nyelvek
- Általános (szabály-)alakú grammatikák és Turing gépek

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megfogalmazása, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv

Mi az algoritmus fogalmának "nem matematikai" megfogalmazása?

Këryretji 350 ujelver

6=(V,2,S,P) ringressingson, ra P Salvingai

 $\alpha \rightarrow \beta$, alrel $|\alpha| \leq |\beta|$ alarial.

L'appretfizsé', he genereiste Vingsettissé' gramasihe

(Ha λ benne van egy környezetfüggő L-ben, akkor egyetlen törlő szabály, S→ λ megengedett.)

Mit tudunk a nyelvek hierarchiájáról:

- Miért teljesül a tartalmazás reláció?
- "Szigorú"-e a tartalmazás?

Jelölések:

- reguláris REG
- környezetfüggetlen CF (context-free)
- környezetfüggő CS (context-sensitive)
- rekurzívan felsorolható RE (recursively enumerable)

L(CF) € L(CS)

Pl. G=({S,B,C}, {a,b,c}, S, P), ahol

 $P=\{S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, B \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc \}$

Mit tudunk a nyelvek hierarchiájáról:

környezetfüggetlen nyelvekre

héten láttuk)

A Chomsky file hierar Chia

REC & RA a lebelse's purpalance lemana regularin getwere: purpalini lema {abbju>1}eCF ∉ REG Wingretjiggette Saubucu | n>1/ € CS Jelölés:

REC - rekurzív

A Chrones Euz file linerarchia

PEGC CFCCS CREC CREC a lebehige

The general formation of the contract of the

Hamarosan látni fogjuk

reguláris, környezetfüggetlen, környezetfüggő, rekurzív, rekurzívan felsorolható

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megfogalmazása, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv

Mi az algoritmus fogalmának "nem matematikai" megfogalmazása?

Uni venailei Turne gep

Egg livager Tu Tuning gep, anelyir fethelegs warite Tuning gep unitide ett minutailui Indja. e(t) eve) Judja.

de erë nalegsa Thidja't (e(T)) e u rodait (e(w)) ine, Tu minnlasse Turitideiet w-n.

(T és w kódját néha <T> és <w> is fogja jelölni)

Han wir het his kon

$$s(\Delta)=0$$
 $s(a_i)=0^{i+1}$ (for each $a_i \in S$) szalag ábécé
 $s(h_a)=0$
 $s(h_r)=00$
 $s(q_i)=0^{i+2}$ (for each $q_i \in Q$) vezérlő-állapotok
 $s(S)=0$
 $s(S)=0$
 $s(L)=00$
 $s(R)=000$ fejmozgás irányok

Each move m of a TM, described by the formula

$$\delta(p, a) = (q, b, D)$$

is encoded by the string

$$e(m) = s(p)1s(a)1s(q)1s(b)1s(D)1$$

and for any TM T, with initial state q, T is encoded by the string

$$e(T) = s(q)1e(m_1)1e(m_2)1\cdots e(m_k)1$$

where m_1, m_2, \dots, m_k are the distinct moves of T, arranged in some arbitrary order. Finally, any string $z = z_1 z_2 \cdots z_k$, where each $z_i \in S$, is encoded by

$$e(z) = 1s(z_1)1s(z_2)1\cdots s(z_k)1$$

Re'ldairl

Tu mi ho de le em)

[The tilletter ...

The tilletter ...

- 1. Ta a husi alsa e (w)-t a 2. nalessa, Trendérailleprtait predig a 3. nalegre
- 2. A 2. nalegreil Tyle olvena av alchaili hehit, a 3. nalegreil av arhrålin aillysetet.
- 3. Ener alegosie ucogreser a 1. melegon az ehle lastré ucogres a'llapet a'tmenetet
- 4. Glebell a center a in a'llapoasat es art, hom mit hell a 2. nolleign in conti

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megfogalmazása, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv

Mi az algoritmus fogalmának "nem matematikai" megfogalmazása?

A Tunieg opép mint unami søgep medell" - sreimitei i medell

- 1. A Tuing gejo altaluar célu mainiteric modell
- 2. Raiadai ul pregramer hat d'
- 3. Maseus havileg preciz
- => Albalumannar hituit a "nainitan"

 (noi neinel ar «algorithus" fegaluaitat

 formali zailei ara

Arra

A Tuines gip abbul mes en intricher algoritures - fogalom formali zai lesara.

pecies nelailed alegorés, une chailma vergethete eljáres, am neigh sor leipeile eredne yse veset.

Elwich - Turing Leis

Alansollurch lægi run, masendi r Alan Tung matemasi run, XX. nertæd elre Jele, Görepe

« A Tuning gep mindet hed ", and, he wer con proble hiera « une cha cui run eljá ressal " negs sor le poi ben megalden (algori brus), arra en Tuning gép is meg brolzi alden.

Ha en prablé moit Tunion gépossel un lehet megoldeni, alcha mis « me cham sur eljiress" with algorithms sem. (azaz nem lehet rá programot írni)

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megfogalmazása, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv

Mi köze a Turing gépeknek a problémamegoldáshoz?

« Eldintii mahlinar. Amise iger-ven rålom adheto. Pl.: Eg alje thun hene han-e en adett herhærshen. MCKI (N, M) $M \subseteq K$ (N, M) vagy (Σ^*, L) Kanonéta pl: Benevet: Criment: 4ES, ha n + M No, he n &M

Re'ldai unl

PRIM = \{ \frac{1}{2}, \frac{1}{3}, \frac{5}{1}, \frac{1}{1}, \frac{11}{3} \displays \frac{1}{2} \left(\text{IN, PRIM) felendat ant view i do what el em adet beneno a maimail, and form-e.

Ha var algendrum, am megoldje (W,M)-et, arra (W,M) wegoldhate' - algorituri lusa - eldöntheté (N, Npain) eldintheté' (N, PRIM) eldintheté'

A Turing gép jutésa ueu bi ets, Lin luefeze réidié

El nent:

an Turing gép elfogada M halmort, har.

- . n E M levertre elfogadó állapotban áll meg
- . n ≠ M luema he nem-elfogadó állapotban áll meg

van verteen i'deig' dagozia

Retursivan felsorollheite es

Egs Luglir returniven felsosolhaté, ha wen alzan turing gép, auni minden wel né bemeneten elfosodé állapothon áll mes. A w & L szanatra vagy nem elfogadó állapothon áll meg, veen egsáltalán nen áll meg azaz, ha L=L(T) egy T Turing gépre, vagyis ha T elfogadja L-et.

· (eg 2 ugelt <u>setursi</u>t, ha ven olgan Turning gep duni minden hemenesen megalel, a wel szavatron elfosoló állapothen áll meg, a w & L szavatron hen elfogodó állapothem áll meg.

Ha van ilyen T Turing gép, akkor **T eldönti** L-et.

Tehát:

Egy probléma algoritmikusan megoldható, ha van olyan Turing, ami **eldönti** a hozzá tartozó nyelvet (<u>mindig megáll és IGEN-t és NEM-et válaszol a megfelelő módon</u>).

Tehát:

Egy probléma algoritmikusan megoldható, ha van olyan Turing, ami **eldönti** a hozzá tartozó nyelvet (mindig megáll és IGEN-t és NEM-et válaszol a megfelelő módon).

Azaz:

Egy probléma algoritmikusan megoldható, ha a hozzá tartozó nyelv **rekurzív**.

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megjelenése, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv

Még egy
példa: Itilbert 10. problèmique
Léberin -e desjarais ani eldouti, hars
en segir egni bletes plinamal non-e
egn goine.

Pl. Gx3yz2+3xy2-x3-10

egin gjire: X=51 y=3, 2=0

Hilbert problémája mint formális nyelv, a polinomok mint sztringek

- a számok 10-es számrendszerben
- a változók: x₁, x₂,
- a műveleti jelek: +, -, *

Pl.:

$$6x^2yz^2 + 3xy^2 - x^3 - 10 \iff 6x_1^2x_2x_3^2 + 3x_1x_2^2 - x_1^3 - 10$$

A polinomot leíró sztring:

$$6*x1*x1*x2*x3*x3 + 3*x1*x2*x2 - x1*x1*x1 - 10$$

Hilbert Wide's e teluit :

Lo= {P/p polinamal na egest græte }

Loverir? prij fratijarevis over

molendi en mulattaner

2970- Ben, hees Lp nen

vernir.

Regnerier lei mir vinet i heer Ly verussian selsoralhet De eggir gjørri pali hanar helve serum ve plonalbuto

Adett con poolina k wilterinal. Vegni's of This gepet, on acyrigmen an iss son eggiz nein k-ason, ei u préhalje, han gjøre-e p-ner. Han ige ille He Lacail i get, elfogadja P-t.

(Glutaritari ven fogså terdei) Herces

Eddig láttuk – Az algoritmikus kiszámíthatóság/megoldhatóság határai

- Church tézis Az algoritmikusan megoldható feladatok pontosan azok, amelyek Turing gépekkel eldönthetők.
- "eldönthető": a hozzá tartozó nyelv rekurzív

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megjelenése, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv

Regoldhatallan/eldöutheteller problé mair

En prablé malier: Ellerési rheté-e a pregnanor responège? Van-e agen algri hur/program an tetnølegs mari & prægramail megmendje, hom hefrer un'tidit-e? (Nines) Söt Juegaille adott Lemeneten?

A megallasi problème

Ath = { (M, w) | M elfogodsi w-t}

- 1. Am Tuig-felis workete / returni war felsosalhare:
 - · Universitis Tuning gép: (M, w) hemenete mindeign M mi rödes et ou-n.
 - megallhat wEL(M), w&L(M)
 - végleler cirlyle Garillet x \$ L[M) 4

Atm = { (M, w) | M ellogadin w-t} Tegnia Jel, lean ATH returniv. -> Literiz H, man H((M,w)) = { elfoyad, he Melfoyadg elwlorit, ha M whowarm her fogadja el ku-t

Az "<, >" zárójelek a kódolásra utalnak: ha X egy objektum, akkor <X> jelöli az objektumot kódoló sztringet

Kanhua ljunt an D Furing gejset, an ellenter repp vizeltedir Dibenerete (M): 1. Sriculais & H-t/M(M) benerete 2. Elfezedja (M)-et, ha H nen fogalljå el (M, (M)) - et 3. Eduteritier (M)-et, ha H # elforadio (M, (M)) -et.

Keiden: Mi va, la D- t (0) bemenettel imdit-D((M))={
electritais, in the effogods 2 (M) et

elestratais, in the effogods 2 (M) et

elestratais, in the Menen sonodia el (M) et b((0)) = { eletaritais, ha Delfosolja (D) -t elfosodos, ha Dnem Sodja el (D)-t Dara Duen léterhet, ana Huen

Az "<, >" zárójelek a kódolásra utalnak: ha X egy objektum, akkor <X> jelöli az objektumot kódoló sztringet

Hal itt a diagonaili

Ha ATM rekurzív volna, ki lehetne tölteni egy ilyen táblázatot:

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$	
M_1	accept	reject	\overline{accept}	reject	
M_2	accept	accept	accept	accept	
M_3	reject	\overline{reject}	reject	reject	• • •
M_4	accept	accept	\overline{reject}	\underline{reject}	
:		;	:		٠.

Ebben az összes Turing gép, és az összes Turing gép leírás (kód) szerepel, azaz D is.

Hal itt a di agrailis wiedner?

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$		$\langle D angle$	
M_1	accept	reject	\overline{accept}	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	• • •
M_4	accept	accept	\overline{reject}	reject		accept	
:	:				٠		
D	reject	reject	accept	accept		?	
:		:	•				·

ATM hen return's yell de Hur. Con verlar vem returiva Arnolliet geliet i, un tomir een (Set! (de rerum'un phraelhato')

A'lli kin: Ha L es I is reteen un febroralhate, alter L retrussion. L'hanglementore

Miert um a in?

Am veressinen Celroralhate, de hen returniv => Am hem returniva Celroralhato

Az algoritmikus kiszámíthatóság/megoldhatóság

• Láttunk rekurzívan felsorolható de nem rekurzív nyelvet - pl. A_{TM} ilyen

Ma

- Környezetfüggő grammatikák, a Chomsky féle nyelv-hierarchia
- Az univerzális Turing gép
- A Turing gép mint az algoritmus fogalmának matematikai megjelenése, a Church tézis
- Problémák mint formális nyelvek, algoritmikusan megoldható problémák és rekurzív nyelvek
- Algoritmikusan megoldhatatlan problémák, a megállási probléma eldönthetetlensége, egy konkrét nem rekurzívan felsorolható nyelv