1. Qubits

1-1. Vector Spaces

Complex Numbers

$$z=x+yi, \quad i^2=-1$$

Addition and Multiplicatiom of Complex Number

$$egin{aligned} z_1 + z_2 &= (x_1 + x_2) + (y_1 + y_2)i \ z_1 z_2 &= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i \end{aligned}$$

Conjugate and Size of Complex Number

$$ar{z}=x-yi,\quad |z|=\sqrt{x^2+y^2}$$

Example of Arithmetics on Complex Numbers

Compute $|z_1|$, $z_1 + z_2$, and $z_1 z_2$ for

$$z_1 = 1 + 2i, \quad z_2 = 3 - 4i$$

$$egin{aligned} z_1ar{z}_1&=(1+2i)(1-2i)=1-2i+2i-4i^2=1+4=5\Longrightarrow |z_1|=\sqrt{5}\ z_1+z_2&=1+2i+3-4i=(1+3)+(2i-4i)=4-2i\ z_1z_2&=(1+2i)(3-4i)=3(1+2i)+(-4i)(1+2i)\ &=3+6i-4i-8i^2=3+2i-4i+8=11-2i \end{aligned}$$

Polar Form of Complex Number

$$z = r \exp(\theta i) = r \cos \theta + r \sin \theta i$$

Euler's Formula

$$\exp(\theta i) = \cos(\theta) + \sin(\theta)i$$

Arithmetics of Complex Numbers in Polar Form

$$\exp(z_1+z_2)=\exp(z_1)\exp(z_2)$$

If
$$z_1 = r_1 \exp(heta_1 i)$$
 and $z_2 = r_2 \exp(heta_2 i)$, then

$$z_1\cdot z_2 = r_1r_2\exp((heta_1+ heta_2)i)$$

Complex Vector Space

A set V of objects, called **complex vectors**, is said to be a **complex vector space** if the following conditions are satisfied:

1. Any vectors $u \in V$ can be added to another vector $v \in V$:

$$\circ u + v = v + u$$

$$\circ \ (u+v)+w=u+(v+w)$$

2. The **zero vector 0** exists:

$$\circ u + \mathbf{0} = u$$

$$u + (-u) = 0$$

3. Any complex number k can be multiplied to any vector $u \in V$:

$$\circ k \cdot (u+v) = k \cdot u + k \cdot v$$

$$\circ (kl) \cdot u = k \cdot (l \cdot u)$$

$$0 \cdot u = 0$$

Example: Complex Numbers as Complex Vectors

$$\mathbb{C} = \{z = x + yi \mid x, y \in \mathbb{R}\}$$

- Vector Addition: $z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$
- Scalar Product: $c \cdot z = cx + cyi$
- Zero Vector: 0 = 0 + 0i
- Inverse: -z = -x yi

Example: Two-dimensional Complex Vector Space

$$\mathbb{C}^2=\{(z_1,z_2)\mid z_1,z_2in\mathbb{C}\}$$

- ullet Vector Addition: $(z_1,z_2)+(w_1,w_2)=(z_1+w_1,z_2+w_2)$
- Scalar Product: $c \cdot (z_1, z_2) = (cz_1, cz_2)$
- Zero Vector (0,0)
- Inverse $(-z_1, -z_2)$

Inner Product

A map $\circ: V \times V \to \mathbb{C}$ on a complex vector space V is called an **inner product** if it satisfies the following conditions.

1. Conjugacy:

$$u \circ v = \overline{v \circ u}$$

2. Bilinearilty:

$$(c_1u_1+c_2u_2)\circ v=c_1(u_1\circ v)+c_2(u_2\circ v)\ u\circ (c_1v_1+c_2v_2)=c_1(u\circ v_1)+c_2(u\circ v_2)$$

• Positive Definiteness:

$$u \circ u \geq 0$$

Equality holds only when $u = \mathbf{0}$

Example: Inner Product on $\mathbb C$

$$z \circ w = \bar{z}w$$

Example: Inner Product on \mathbb{C}^2

$$(z_1,z_2)\circ (w_1,w_2)=ar{z}_1w_1+ar{z}_2w_2$$

Linear Combination

$$c_1u_1+c_2u_2+\cdots+c_nu_n$$

Linear Independence

The set of vector $\{u_1, u_2, \dots, u_n\}$ is said to be **linearly independent** if $c_1u_1 + c_2u_2 + \dots + c_nu_n = \mathbf{0}$ if and only if $c_1 = c_2 = \dots = c_n = 0$.

Example

Check if the following sets of vectors are linearly independent. If not, find a non-trivial linear combination that gives the zero vector.

1.
$$u=\left(1-\sqrt{3}i,-i\right),\quad v=\left(2,\sqrt{2}i\right)$$
2. $u=\left(1,\frac{1+\sqrt{2}i}{\sqrt{5}}\right),\quad v=\left(1+\sqrt{2}i,1\right),\quad w=\left(\frac{1}{\sqrt{2}},\frac{i}{\sqrt{2}}\right)$

Basis

A set of vectors $\mathcal{B}=\{u_1,u_2,\cdots,u_n\}$ is called as a **basis** for a vector space V if

- 1. \mathcal{B} is linearly independent;
- 2. every vector $v \in V$ can be expressed as a linear combination of vectors in \mathcal{B} .

Example

Show that the following vectors form a basis for \mathbb{C}^2 .

$$u_1 = (1,1), \quad u_2 = (1,-1)$$

Orthogonality

Two vectors u and v are said to be **orthogonal** if their inner product is zero: $u \circ v = 0$.

Orthonormal Basis

A basis $\{u_1, u_2, \dots, u_n\}$ is called **orthonormal** if they are **orthogonal** and **normalized** (i.e. each is of length 1).

Example

Show that the following vectors form an orthonormal basis for \mathbb{C}^2 .

$$u_1=\left(rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
ight),\quad u_2=\left(rac{1}{\sqrt{2}},-rac{1}{\sqrt{2}}
ight).$$