Date: 19/12/2019

Durée: 01H30.

Contrôle continu : Algèbre 1

Les calculatrices et téléphones portables sont strictement interdits.

Exercice 1: (08 points)

1ère Année LMD MI

Notons E l'ensemble des étudiants de La Rocade, et S l'ensemble des jours de la semaine. Pour l'étudiant $x \in E$, on note $h_j(x)$ son heure de réveil le jour $j \in S$. Ecrivez avec des quantificateurs les propositions suivantes et donner ensuite leurs négations :

- 1. Tout étudiant se réveille au moins un jour de la semaine avant 8h.
- 2. Il y a au moins un jour dans lequel tout les étudiants se réveillent avant 8h.
- 3. Il y a au moins un jour dans lequel un étudiant ne se réveille pas avant 8h.
- 4. Il y a au moins un étudiant qui se réveille pas au moins un jour de la semaine avant 8h.
- 5. Tout les jours de la semaine chaque étudiant se réveille avant 8h.

Exercice 2: (06 points)

- 1. Donnez la définition de deux ensembles disjoints.
- 2. Soient E un ensemble, A et B deux parties de E. On suppose que

$$A \cap B \neq \emptyset$$
 et $A \cup B \neq E$.

On pose : $A_1 = A \cap B$ et $A_2 = C_E(A \cup B)$.

- 1. Montrer que A_1 et A_2 sont disjoints.
- 2. Montrer que si $A \subset B$ alors $C_E(B) \subset C_E(A)$.

Exercice 3: (06 points)

- 1. Pour chaque $y \in \mathbb{R}$, résoudre dans \mathbb{R} l'équation $x^2 x 1 y = 0$.
- 2. Etudier l'injectivité et la surjectivité de $f:\mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = x^2 - x - 1.$$

3. Soit $g: \left[\frac{1}{2}; +\infty\right[\to \left[-\frac{5}{4}; +\infty\right[$ définie par g(x)=f(x). Montrer que g est bijective.

Année Universitaire 2019-2020

Date: 19/12/2019

Durée: 01H30.

1ère Année LMD MI

Corrigé du Contrôle continu : Algèbre 1

Les calculatrices et téléphones portables sont strictement interdits.

Exercice 1: (08 points)

Notons E l'ensemble des étudiants de La Rocade, et S l'ensemble des jours de la semaine. Pour l'étudiant $x \in E$, on note $h_j(x)$ son heure de réveil le jour $j \in S$. Ecrivez avec des quantificateurs les propositions suivantes et donner ensuite leurs négations :

- 1. Tout étudiant se réveille au moins un jour de la semaine avant 8h.
- 2. Il y a au moins un jour dans lequel tout les étudiants se réveillent avant 8h.
- 3. Il y a au moins un jour dans lequel un étudiant ne se réveille pas avant 8h.
- 4. Il y a au moins un étudiant qui se réveille pas au moins un jour de la semaine avant 8h.
- 5. Tout les jours de la semaine chaque étudiant se réveille avant 8h.

Solution:

1.

$$\forall x \in E[0,25pt], \exists j \in S[0,25pt] : h_j(x) < 8.[0,25pt]$$

Sa négation est : $\exists x \in E[0,25pt], \forall j \in S[0,25pt] : h_j(x) \ge 8.[0,25pt]$

2.

$$\exists j \in S[0,25pt], \forall x \in E[0,25pt]: h_j(x) < 8.[0,25pt]$$

Sa négation est : $\forall j \in S[0,25pt], \exists x \in E[0,25pt] : h_j(x) \geqslant 8.0,25pt$ 3.

$$\exists j \in S[0,25pt], \exists !x_0 \in E[0,5pt] : h_j(x_0) \geqslant 8.[0,25pt]$$

Sa négation est :

$$\forall j \in S[0,25\text{pt}], (\nexists x \in E) \lor (\forall x \neq x_0 \in E)[0,5\text{pt}] : h_j(x) < 8.[0,25\text{pt}]$$

4.

$$\exists x \in E[0,25\text{pt}], \exists j \in S[0,25\text{pt}] : h_j(x) \geqslant 8.0,25\text{pt}$$

Sa négation est : $\forall x \in E[0,25pt], \forall j \in S[0,25pt] : h_j(x) < 8.[0,25pt]$ 5.

$$\forall j \in S[0,25\text{pt}], \forall x \in E[0,25\text{pt}] : h_j(x) < 8.[0,25\text{pt}]$$

Sa négation est : $\exists j \in S[0,25pt], \exists x \in E[0,25pt] : h_j(x) \ge 8.0,25pt$

Exercice 2: (06 points)

- 1. Donnez la définition de deux ensembles disjoints.
- 2. Soient E un ensemble, A et B deux parties de E. On suppose que

$$A \cap B \neq \emptyset$$
 et $A \cup B \neq E$.

On pose : $A_1 = A \cap B$ et $A_2 = C_E(A \cup B)$.

- 1. Montrer que A_1 et A_2 sont disjoints.
- 2. Montrer que si $A \subset B$ alors $C_E(B) \subset C_E(A)$.

Solution:

- 1. On dit que deux ensembles A et B sont disjoints si $A \cap B = \emptyset$. 1pt
- 2. Montrons que A_1 et A_2 sont disjoints. Il suffit de vérifier que $A_1 \cap A_2 = \emptyset$.

$$A_1 \cap A_2 = (A \cap B) \cap C_E(A \cup B).$$
$$= (A \cap B) \cap (C_E(A) \cap C_E(B)). 0.5 \text{pt}$$

$$= A \cap B \cap C_E(A) \cap C_E(B).$$

$$= A \cap (B \cap C_E(B)) \cap C_E(A). 0.5 \text{pt}$$

Puisque $B \cap C_E(B) = \emptyset$ 0.5pt et $A \cap C_E(A) = \emptyset$ 0.5pt , on obtient

$$A_1 \cap A_2 = \emptyset$$
. 0.5pt

3. Montrons que si $A \subset B$ alors $C_E(B) \subset C_E(A)$.

Soit $x \in C_E(B)$ 0.5pt . Ceci implique que $x \notin B$ 0.5pt Par conséquent $x \notin A$ car $A \subset B$ 0.5pt . Donc $x \in C_E(A)$ 0.5pt .

Conclusion : $C_E(B) \subset C_E(A)$. 0.5pt

Exercice 3: (06 points)

- 1. Pour chaque $y \in \mathbb{R}$, résoudre dans \mathbb{R} l'équation $x^2 x 1 y = 0$.
- 2. Etudier l'injectivité et la surjectivité de $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = x^2 - x - 1.$$

3. Soit $g: \left[\frac{1}{2}; +\infty\right[\to \left[-\frac{5}{4}; +\infty\right[$ définie par g(x)=f(x). Montrer que g est bijective.

Solution:

1. $x^2 - x - 1 - y = 0$: une équation du second ordre. Calculons son discréminant : $\Delta = 1 - 4(-1 - y) = 5 + 4y$. 0.5pt

- Si
$$y < -\frac{5}{4}$$
, $\Delta < 0$ donc y'a pas de solutions dans $\mathbb{R} \Rightarrow S = \emptyset$. 0.5pt

– Si
$$y = -\frac{5}{4}$$
, $\Delta = 0$ donc racine double $x = \frac{1}{2} \Rightarrow S = \{\frac{1}{2}\}$. 0.5pt

- Si $y > -\frac{5}{4}$, $\Delta > 0$ donc deux racines distinctes

$$x_1 = \frac{1 + \sqrt{5 + 4y}}{2} \lor x_2 = \frac{1 - \sqrt{5 + 4y}}{2}.$$

$$\Rightarrow S = \left\{ \frac{1 + \sqrt{5 + 4y}}{2}, \frac{1 - \sqrt{5 + 4y}}{2} \right\}. \boxed{0.5pt}$$

2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 - x - 1$.

Concernant la surjectivité, et d'après la question 1, on peut voir que pour $y < -\frac{5}{4}$ 0.5pt l'équation y = f(x) n'admet pas de solutions i.e pour un tel

y il n'y a pas d'antécédents donc f n'est pas surjective. 0.5pt

Pour l'injectivité, et si on cherche les racines de l'équation f(x) = 0 (en

prend y = 0 dans la question 1) on trouve $z_1 = \frac{1+\sqrt{5}}{2}$ et $z_2 = \frac{1-\sqrt{5}}{2}$, i.e

 $f(z_1) = f(z_2)$ mais $z_1 \neq z_2$ donc f n'est pas injective. 0.5pt

3. Soit $g: \left[\frac{1}{2}; +\infty\right] \to \left[-\frac{5}{4}; +\infty\right]$ définie par g(x) = f(x).

D'après la question 1, l'equation y = f(x) admet au moins une solution si $y \ge -\frac{5}{4}$. 0.5pt

Pour que g soit bijective, il faut une et une seule solution 0.5pt de l'équation y = g(x) puisque g(x) = f(x).

Les solutions sont

$$x_1 = \frac{1 - \sqrt{5 + 4y}}{2}, x_2 = \frac{1 + \sqrt{5 + 4y}}{2}.$$

On peut vérifier que $x_2 - \frac{1}{2} = \frac{\sqrt{5+4y}}{2} \geqslant 0 \Rightarrow x_2 \geqslant \frac{1}{2}, \boxed{0.5pt}$ et que

$$x_1 - \frac{1}{2} = \frac{-\sqrt{5+4y}}{2} \leqslant 0 \Rightarrow x_1 \leqslant \frac{1}{2} \boxed{0.5 \text{pt}}$$
. Ce dernier est exclu $\boxed{0.5 \text{pt}}$ car

il n'est pas dans $\left[\frac{1}{2}; +\infty\right]$. Donc g est bijective.