
§2.3 牛顿 (Newton) 法

第1节 牛顿法的基本思想

第2节 牛顿法的收敛速度

第3节 牛顿下山法

第4节 算例分析

§ 2.3 Newton 迭代法—基本思想

1. 原理:将非线性方程

$$f(x) = 0$$

逐步线性化而形成迭代公式.

取 $x_0 \approx x^*$, 将 f(x) 在 x_0 做一阶 Taylor 展开:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2$$
, $\xi \in \mathbb{Z}$ \mathbb{Z}

将 $(x^*-x_0)^2$ 看成高阶小量,则有:

$$0 = f(x^*) \approx f(x_0) + f'(x_0)(x^* - x_0) \qquad x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$$

$$\Rightarrow x^* \approx x_0 - \frac{f(x_0)}{f'(x_0)}$$

2. 牛顿法_{k+1} =
$$x_k - \frac{f(x_k)}{f'(x_k)}$$
 几何意义

只要 $f \in C^1$,每一步迭代都有 $f'(x_k) \neq 0$, $\lim_{k \to \infty} x_k$ 而且 , 则 x^* 就是 f 的根。

3. 牛顿法的算法构造

$$x_{i+1} = x_i - \frac{f(x_i)}{f(x_i)}$$

[牛顿迭代法]

1: 初始化 $.x_0, M, \delta, \varepsilon$, 置 i:=0

2: 如果 $|f(x_i)| \leq \delta$,则停止.

3: 计算 $x_{i+1} := x_i - f(x_i) / f'(x_i)$

4: 如果 $|x_{i+1}-x_i| < \varepsilon$ or $|f(x_i)| \le \delta$, 则停止.

5: *i:=i*+1, 转**至** 3.

例1:利用牛顿迭代法求解

 $f(x)=e^{x}-1.5-tan^{-1}x$ 的零点。初始点 $x_0=-$

例1:利用牛顿迭代法求解

解: f(x) = 6x - 125 - 104 小的零点。初始点 $x_0 = -6x - 125 - 104$,

7.0

计算迭代格式:
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$$
计算结果如下表: $(\mathbf{p}|f(x)| <= 10^{-1})$

10)

k	X	f(x)
0	-7.0000	-0.0701888
1	-10.6771	-0.0225666
2	-13.2792	-0.00436602
3	-14.0537	-0.00023902
4	-14.1011	-7.99585e-007
5	-14.1013	-9.00833e-012

NewtonMethod_PPT4

算法说明:

注: Newton's Method 收敛性依赖于x₀ 的选取。

Newton' Method 收敛的充分条件

设 $f \in C^2[a,b]$, 若

有根

根唯一

- f(a) f(b) < 0;
- (2) 在整个 [a,b] 上 f"不变号且 f' $(x) \neq 0$;
- (3) 选取 $x_0 \in [a,b]$ 使得 $f(x_0)f''(x_0) > 0$;

则 Newton's Method 产生 均序列 $\{x_k\}$ 收敛到 f

(x) 在 [a,b] 的唯一根。

产生的序列单调有界,保证收敛。

Newton' Method 局部收敛性

定理

设 $f \in C^2[a,b]$, 若 x^* 为 f(x) 在 [a,b] 上

,则存在 \mathbb{R}^{kx} 的邻域

,使得任取*)

初值

, Newton's Method 产生的序列 $\{x_k\}$

收敛到
$$x^*$$
, 真满 $\frac{x^*-x_{k+1}}{(x^*-x_k)^2} = -\frac{f^{\intercal}(x^*)}{2f^{\intercal}(x^*)}$

证明: Newton's Method 事实上是一种特殊的不动点迭

代

其中
$$g(x) = x - \frac{f(x)}{f'(x)}$$

 $|g'(x^*)| = \left| \frac{f''(x^*)f(x^*)}{f'^2(x^*)} \right| = 0 < 1 \implies 收敛 \checkmark$

由 Taylor 展开

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2!}(x^* - x_k)^2$$

$$\Rightarrow x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2!f'(x_k)}(x^* - x_k)^2$$

$$x_{k+1}$$

$$\Rightarrow \frac{x^*-x_{k+1}}{(x^*-x_k)^2} = -\frac{f''(\xi_k)}{2f'(x_k)}$$
 只要 $f'(x^*) \neq 0$,则 **令** $\to \infty$ 可得结论。

10

▶ 割线法

Newton's Method 一步要计算 f 和 f, 相当于 2 个函数 值, 比较费时。现用 f 的值近似 f, 可少算一个函数

切线斜率
$$\approx$$
 割线斜率 \Rightarrow $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$

$$\Rightarrow x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
 需要 2 个初值 x_0 和 x_1 。

▶ 下山法 — Newton's Method 局部微调

原理:若由 x_k 得到的 x_{k+1} 不能使 |f| 减小,则在 x_k 和 x_{k+1} 之间找一个更好的点 ,使得 (x_{k+1}) |f|

$$\overline{x_{k+1}} = \lambda \left[x_k - \frac{f(x_k)}{f'(x_k)} \right] + (1 - \lambda) x_k$$

$$= x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

注: $\lambda = 1$ 时就是 Newton's Method 公式。

当 $\lambda = 1$ 代入效果不好时,将 λ 减半计算。