

Machine Learning

Lab 1

In-class Lab

Goal

- Build classifier models on the same dataset
 - Choose one of two given datasets car acceptability, heart disease
 - Build three models random forest, logistic regression, SVM
- Compare accuracy of the models
 - Compute the scores for various parameter values for each model
 - Compare the maximum scores of each model

Datasets (1/3)

- Dataset: car acceptability
 - 1728 records in car.csv
 - https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
 - https://www.kaggle.com/elikplim/car-evaluation-data-set
 - Variables
 - Set car = 'acc' for rows with car != 'unacc'
 - You need to use a label encoder for categorical attributes

Variable	Description
buying	buying price
maint	price of maintenance
doors	number of doors
persons	capacity in terms of persons to carry
lug_boot	the size of luggage boot (trunk)
safety	estimated safety of the car
car	car acceptability (target variable)

Datasets (2/3)

- Dataset: heart disease
 - 303 records in heart.csv
 - https://www.kaggle.com/ronitf/heart-disease-uci
 - Variables
 - 14 predictor variables: age, sex, cp (chest pain), chol (serum cholesterol), etc.
 - Response variable: target (1 or 0)

Datasets (3/3)

- Preprocessing
 - Use sklearn.preprocessing
 - Encoding
 - Categorical values need to be converted to numeric ones
 - LabelEncoder, OrdinalEncoder, OneHotEncoder, etc.
 - Scaling
 - Numeric values may need to be scaled into a given range
 - MinMaxScaler, Normalizer, StandardScaler, etc.
 - Data cleansing
 - Missing data, wrong data, outliers, etc.
 - Two given datasets have little need for cleansing
 - **TIP:** Concentrate on building classifiers in this class, although preprocessing is essential for efficient classifiers.

What to Do (1/2)

- Build three classifier models
 - Random forest, logistic regression, and SVM models
 - (each as a binary classifier)
- For each model,
 - Do k-fold cross validation (k = 10)
 - For each fold, split the dataset, fit & test the model, and compute the score using Scikit-learn as studied in class
 - Compute the average score

Wha

What to Do (2/2)

- Try various parameter values
 - For each combination of parameter values,
 - Print a confusion matrix using Seaborn (with margins)
 - Display the accuracy score in the form of 3D bar chart
 - ex) "Title": RandomForest(gini), "X": n_estimators, "Y": max_depth, "Z": accuracy
 - Find the maximum score and the corresponding parameter values for each classifier (see example below)

Classifier	Parameters
Random forest	<pre>criterion="gini"(gini index), "entropy"(information gain); n_estimators=1, 10, 100; max_depth=1, 10, 100</pre>
Logistic regression	C=0.1, 1.0, 10.0; solver="liblinear", "lbfgs", "sag"; max_iter=50, 100, 200
SVM	C=0.1, 1.0, 10.0; kernel="linear", "poly", "rbf", "sigmoid"; gamma=0.01, 0.1, 1.0, 10.0

4

Programming Homework

- Goal: Ensemble Learning
 - In our class:
 - Improve classification accuracy by using three classifiers
 - random forest, logistic regression, and SVM models
- Dataset: MNIST original
 - 70,000 images of hand-written digits (0 ~ 9) → requires *multinomial* classifier
 - Widely used as a basic dataset for studying and training classifiers
 - https://www.kaggle.com/avnishnish/mnist-original

What to Code (1/2)

- Split the dataset into two sub-datasets
 - D1 (train & test), D2 (ensemble-test)
- Build three classifier models using D1
 - In the same manner as done in the Lab (page 7)
 - random forest: {criterion: "gini", "entropy"}
 - logistic regression
 - SVM_linear
 - For each model, find the parameter combination with the highest score

What to Code (2/2)

- Test the ensemble classifier model using D2
 - For an image in D2, the classification result is decided as the digit that the majority of three classifiers predicted
 - If all classifiers have different predictions, choose the one returned by the classifier with the highest score
 - Display a confusion matrix using Seaborn (with margins), and compare with those obtained using each of the three classifiers

Note:

- You may use only a portion of original data for D1 and D2 (e.g., 10%)
- Try two approaches with and without <u>sklearn.ensemble.VotingClassifier</u>

End of lab