MEP: Demonstration Project Y9B, Unit 13

UNIT 13 Graphs, Equations and Inequalities

Activities

Activities

- 13.1 Maximum Volume of Cuboid
- 13.2 Posting Parcels
- 13.3 Maximum Volume of Open-Topped Box Notes and Solutions (2 pages)

ACTIVITY 13.1

Maximum Volume of Cuboid

This cuboid has a square end and a volume of 100 cm³.

1. Show that the surface area of the cuboid is given by

$$A = 2x^2 + \frac{400}{x}$$

- 2. Use a graph to determine the values of x and y for which the surface area is a minimum.
- 3. What shape would this give?

ACTIVITY 13.2

Posting Parcels

The Royal Mail, Data Post International parcel service accepts parcels up to a maximum size as given in the following rules:

- 1. Length + height + widthmust not exceed 900 mm.
- 2. None of the length, height, width must exceed 600 mm.

1. Which of the following parcels would be accepted for this service:

(a)
$$l = 620 \text{ mm}$$
,

$$h = 120 \text{ mm},$$

$$w = 150 \text{ mm}$$

(b)
$$l = 500 \text{ mm},$$

$$h = 350 \text{ mm},$$

$$w = 150 \text{ mm}$$

(c)
$$l = 550 \text{ mm},$$

$$h = 100 \text{ mm},$$

$$w = 150 \text{ mm}$$

180 mm

A picture with frame, 610 mm by 180 mm, is to be placed diagonally in a rectangular box as shown.

Find suitable dimensions for the box so that it would be accepted for the Data Post service.

3. A long, thin tube is to be sent by Data Post.

What is the largest possible length that can be sent?

Extension

What are the dimensions of the rectangular box of maximum volume that can be sent through the Data Post service?

ACTIVITY 13.3

Maximum Volume of Open-Topped Box

We want to make cardboard trays for displaying home-made goods at a local bazaar.

The sheets of card available are of size

$$10 \text{ cm} \times 12 \text{ cm}$$

If we cut out a one cm² square from each corner and fold the sides up, we have a tray of volume

$$8 \times 10 \times 1 = 80 \text{ cm}^3$$

Can you form a tray with a larger volume?

1. Construct trays by cutting out squares of side 2 cm, 3 cm, etc. For each tray, determine the volume. Which tray has *maximum* volume?

We can find an even larger volume by considering cutting a square of side x cm from the card, as shown opposite.

2. What is the length and breadth of the base of the tray?

Show that the volume is given by

$$V = 4x^3 - 44x^2 + 120x$$

3. Draw a graph of V against x, plotting V for x = 0, 0.5, 1, 1.5, ..., 5

Estimate the value of x which gives the maximum value.

We can generalise these results further by considering the same problem of finding the tray of maximum volume that can be cut from a square of side a cm.

4. Show that the volume of the tray is given by

$$V = 4x^3 - 4ax^2 + a^2x$$

We can non-dimensionalise the problem by taking a = 1.

5. With a = 1, plot a graph of V against x for

$$x = 0, 0.1, 0.2, ..., 0.5$$

What value of x gives a maximum value for V?