Rvan Beethe

Matching Cost

Filtering

Bilateral

Filtering

Bilateral and Trilateral Adaptive Support Weights in Stereo Vision

Ryan Beethe

Student, Colorado School of Mines

rheethe@mines edu

April 7, 2016

Rvan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Filtering

Trilateral Explanation Trilateral-based ASW

ASW In Practice GPU ASW Asw

Comparison

Overview

- 1 Stereo Matching Image Example Block Matching Matching Cost
- 2 Bilateral Filtering Bilateral Explanation Adaptive Support Weight
- 3 Trilateral Filtering
 Trilateral Explanation
 Trilateral-based ASW
- 4 ASW In Practice
 GPU ASW
 ASW Alternatives
 Timing Comparison

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering Bilateral

Explanation Adaptive Support Weigh

Trilateral Filtering

Trilateral Explanation Trilateral-based

ASW In Practice

GPU ASW ASW

Alternative

Comparisor

Conclusion

Stereo Matching

Ryan Beethe

Image Example Matching Cost

Filtering

Filtering

ASW In

Stereo Image Example [3]

We are going to use corresponding regions of these three images to show how a disparity image is generated.

Ryan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive

Support Weigl

Filtering

Trilateral Explanation Trilateral-based

ASW In Practice GPU ASV

ASW Alternative

Conclusio

Stereo Image Example How Disparity Image is Generated

The shift between red dots is greater than the shift between blue dots, so the disparity image is brighter under the red dot.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering Bilateral

Explanation Adaptive Support Weigh

Trilateral
Filtering
Trilateral
Explanation

Trilateral-bas ASW

ASW In Practice GPU ASW

Alternative

Pixel Matching

Ambiguity issues

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive

Trilateral Filtering Trilateral

Explanation Trilateral-base ASW

ASW In Practice GPU ASW ASW Alternative

Conclusion

Block Matching Blocks of Pixels Reduce Ambiguity

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral

Filtering
Trilateral
Explanation

Trilateral-base ASW In

Practice GPU ASV ASW Alternativ

Compariso

Block Matching

Left Image

Disparity Image

Raw block matching is very noisy.

Rvan Beethe

Stereo

Block Matchin

Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigl

Trilatera Filtering

Trilateral Explanation Trilateral-based

ASW In Practice

ASW Alternative

Conclusion

Matching Cost, Cost Aggregation

A common "matching cost function" is the absolute difference between corresponding pixels. A simple "cost aggregation" is the sum of absolute differences (SAD) between two windows.

Rvan Beethe

Stereo

Block Matchin Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral Filtering

Trilateral Explanation Trilateral-based ASW

ASW In Practice GPU ASW ASW Alternative Timing

Conclusio

SAD Limitation

What is wrong with using SAD on this reference window?

There are more background pixels in the window than cone pixels. As a result, SAD will yield a lower aggregate matching cost at the background disparity than at the (correct) cone disparity.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral Filtering

Trilateral Explanation Trilateral-based

ASW In Practice

ASW Alternative

Comparise

Conclusion

Bilateral Filtering

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation

Adaptive Support Weigh

Trilateral

Filtering Trilateral

Explanation Trilateral-base ASW

ASW In Practice

ASW Alternativ

Timing

Conclusio

Bilateral Explanation

Edge-Preserving Version on Gaussian

Gaussian kernel (regardless of pixel values)

Bilateral "kernel" at a noisy step [4]

Figure 1: (a) A 100-gray-level step perturbed by Gaussian noise with $\sigma=10$ gray levels. (b) Combined similarity weights $c(\xi, x)s(f(\xi), f(x))$ for a 23×23 neighborhood centered two pixels to the right of the step in (a). The range component effectively suppresses the pixels on the dark side. (c) The step in (a) after bilateral filtering with $\sigma_{\tau}=50$ gray levels and $\sigma_{\tau}=5$ pixels.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilate

Filtering

Explanation Adaptive

Support Weig

Trilatera Filtering

Trilateral Explanation Trilateral-base

ASW In Practice GPU ASW ASW Alternative Timing

Conclusio

Bilateral Example

Original Image

Bilaterally Smoothed Image

Notice that the image textures have been blurred, but the edges remain sharp. The bilateral filter does not smooth across sharp edges.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weight

Trilateral Filtering Trilateral

Explanation
Trilateral-based
ASW

Practice GPU ASW ASW Alternative:

Conclusion

Adaptive Support Weight

Introduction

Adaptive support weight uses a bilateral "kernel" as the weighting function in the cost aggregation calculation.

Consider the image windows below, one Reference window and two possible matching target windows:

Reference Window

Ryan Beethe

Matching Cost

Filtering

Bilateral

Adaptive Support Weight

Filtering

ASW In

Adaptive Support Weight

Individual Support Weights

Individual Window Support Weights

Rvan Beethe

Matching Cost

Filtering

Adaptive

Support Weight

Filtering

Adaptive Support Weight

Combined Support Weights

Reference Window

Reference Window **Support Weight**

Weight

Combined Support

Target Window 1

Target Window 1 **Support Weight**

Support weight is given to the area of the green cone, an area which will match well.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation

Adaptive Support Weight

Filtering
Trilateral
Explanation
Trilateral-base

ASW In Practice GPU ASW ASW Alternatives Timing

Conclusion

Adaptive Support Weight

Combined Support Weights, cont.

Reference Window

Target Window 2

Reference Window Support Weight

Target Window 2 Support Weight

Combined Support Weight

Support weight is given to areas which are green in Reference but red in Target, which will match poorly.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation

Adaptive Support Weight

Filtering
Trilateral
Explanation
Trilateral-base

ASW In Practice GPU ASV ASW Alternativ

Comparison

Adaptive Support Weight

Improved Stereo Output

ASW is a huge improvement. There is far less noise. Notice that the tips of the cones in particular are much sharper.

Raw BM Output

ASW Output[5]

Rvan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive

Support Weight

Filtering
Trilateral
Explanation
Trilateral-based

Trilateral-base ASW ASW In Practice

GPU ASW ASW Alternatives Timing Comparison

Conclusion

Other ASW Methods

Many alternative methods for adaptive support weight have been proposed based on the original bilateral-based ASW implementation. Modifications include:

- Removing spacial component of bilateral filter
- Replacing bilateral with guided filter
- Replacing bilateral filter with some other filter
- Approximating the bilateral filter
- Calculating support weight for only the reference image

For more discussion, see [2].

Rvan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive

Adaptive Support Weight

Filtering
Trilateral
Explanation

ASW In Practice GPU ASW ASW Alternatives

Conclusio

Bilateral ASW Limitations

Should the lower red area really be weighted so high? It's not clear that those two objects should be at the same depth.

The bilateral filter implicitly assumes similarly colored, disconnected-but-nearby objects are the same object.

Image from [5].

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering Bilateral

Explanation Adaptive Support Weigh

Trilateral Filtering

Trilateral Explanation Trilateral-based

ASW In

GPU ASW ASW

Timing

Conclusion

Trilateral Filtering

Rvan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilatera

Filtering
Bilateral
Explanation
Adaptive

Trilatera

Filtering

Explanation Trilateral-base

ASW

ASW In Practice GPU ASW ASW Alternatives Timing

Conclusion

Trilateral Explanation

Trilateral filter, in terms of Bilateral

The bilateral filter smooths an image, according to regions of similar color. It settles into a piecewise-flat solution, with steps approximately equal to the color σ .

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilatera Filtering

Trilateral Explanation

Trilateral-base

ASW In Practice GPU ASW ASW

Timing Compariso

Conclusion

Trilateral Explanation

Trilateral filter, in terms of Bilateral, cont.

The trilateral filter applies a bilateral filter to an image gradient. The result is a piecewise-flat gradient, and therefore a piecewise smooth image.

Rvan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral Filtering

Trilateral Explanation

Trilateral-base

ASW In Practice GPU ASW ASW Alternative Timing

Conclusion

Trilateral Explanation

Cut-off Term

In order to not smooth across boundaries, the trilateral filter only smooths across a connected-component region of similar gradient. The connected-component region of similar gradient is called a "neighborhood" function, but it is really just a binary mask.

Rvan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive

Support Weig Trilateral

Filtering Trilateral

Trilateral-based

ASW In

Practice GPU ASW

Alternative

Conclusion

Trilateral-based ASW

Trilateral-based ASW improves the original ASW by introducing an additional step to reduce support weights of pixels across color boundaries [1].

Bilateral support weight

Combined support weight

Ryan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilatera

Filtering
Bilateral
Explanation

Adaptive Support Weigh

Filtering Trilateral

Trilateral-based

ASW In

GPU ASW ASW Alternative

Timing Comparis

Conclusion

Trilateral-based ASW

ground truth

trilateral filter (test 4)

bilateral filter (test 5)

Notice the trilateral-based ASW (left) outpreforms bilateral-based ASW (right) near edges:

Images adapted from [1]

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral Filtering Trilateral

Trilateral-based ASW

ASW In Practice GPU ASW ASW

Conclusio

Trilateral Performance

Image	Algorithm nonoco		all	disc
	Semi-Global BM	3.26	3.96	12.8
Tsukuba	Trilateral ASW	1.65	1.96	5.90
	Bilateral ASW	1.38	1.85	6.90
	Semi-Global BM	1.00	1.57	11.3
Venus	Trilateral ASW	0.14	0.31	1.51
	Bilateral ASW	0.71	1.19	6.13
	Semi-Global BM	6.02	12.2	16.3
Teddy	Trilateral ASW	6.25	11.8	15.1
	Bilateral ASW	7.88	13.3	18.6
	Semi-Global BM	3.06	9.75	8.90
Cones	Trilateral ASW	2.49	8.32	7.02
	Bilateral ASW	3.97	9.79	8.26

The trilateral filter does especially well near discontinuities in the disparity image, abbreviated as "disc".

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering Bilateral

Explanation Adaptive Support Weigh

Trilateral Filtering

Trilateral Explanation Trilateral-based

ASW In Practice

GPU ASV

Alternative

Comparis

Conclusion

ASW in Practice

Ryan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weig

Trilatera Filtering

Trilateral Explanation Trilateral-base

Trilateral-bas ASW ASW In

Practice GPILASW

ASW Alternative

Conclusio

GPU Adaptive Support Weight

Preliminary GPU ASW
Runs as fast as 94 ms
(Quadro K6000)

ASW (from paper)[5] Takes almost 60 seconds (CPU-only).

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral Filtering Trilateral

Trilateral Explanation Trilateral-base ASW

ASW In Practice GPU ASW

Alternatives

OpenCV Options

Block Matching Has speckle filter, uniqueness checks Gray-scale only Has GPU version

Matching
Global Reasoning
Smoother Output
No OpenCV GPU
version

Semi-Global Block

Disparity Bilateral Filter

Post-processing for disparity images, only implemented on GPU

Belief Propagation and Constant-Space Belief Propagation not shown

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilatera

Filtering
Bilateral
Explanation
Adaptive

Support Weig

Filtering

Trilateral Explanation Trilateral-base ASW

ASW In Practice GPU ASV

Alternatives

Companison

Nvidia VisionWorks

Block Matching No Speckle Filter No uniqueness checks Similar to OpenCV GPUBM, but faster and cleaner

Semi-Global Block Matching Slightly less accurate Very Fast Includes post-processing

Ryan Beethe

Stereo

Image Example Block Matching Matching Cost

Bilatera

Filtering
Bilateral
Explanation

Adaptive Support Weigh Trilateral

Filtering
Trilateral

Explanation Trilateral-based ASW

ASW In Practice GPU ASW ASW

Timing Comparison

Conclusion

Timing Comparison

Tests ran on 450x375 "cones" images

Algorithm	Jetson TK1	Jetson TX1	i7 + Quadro K6000
CPU BM	29ms	29ms	12ms
GPU BM	18ms	9.5ms	2.2ms
GPU DBF	64ms	21ms	10ms
CV SGBM	870ms	990ms	99ms
VX BM	13ms	5.7ms	2.3ms
VX SGBM	65ms	42ms	5.1ms
GPU ASW	8,900ms	6,800ms	94ms
CPU ASW	190,000ms	200,000ms	73,000ms

Source code for test programs can be found at: https://github.com/rdbeethe/gtc_tests

Matching Cost

Filtering

Filtering

ASW In

Conclusion

Conclusion

ASW Pros:

- Excellent edge accuracy
- High disparity detail
- Less noise
- Parallelizes well

ASW Cons.

- Much higher computational complexity
- No completed open-source GPU version

My GPU-accelerated ASW implementation can be found at: https://github.com/rdbeethe/asw

Rvan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Trilateral
Filtering
Trilateral
Explanation
Trilateral-based

ASW In Practice GPU ASW ASW Alternative Timing

Conclusion

References I

IEEE Transactions on Circuits and Systems for Video Technology, 25:730–743, 2014.

Computer Vision and Image Understanding, 117:620–632, 2013.

Daniel Scharstein and Richard Szeliski.

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.

International Journal of Computer Vision, 2002.

Rvan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering

Bilateral Explanation Adaptive Support Weigh

Filtering
Trilateral
Explanation
Trilateral-base

Explanation
Trilateral-based
ASW
ASW In

GPU ASW ASW Alternative

Conclusion

References II

C. Tomasi and R. Manduchi.
Bilateral filtering for gray and color images.

IEEE International Conference on Computer Vision, 1998.

Kuk-Jin Yoon and In So Kweon.

Adaptive support-weight approach for correspondence search.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:650–656, 2006.

Ryan Beethe

Stereo Matching

Image Example Block Matching Matching Cost

Bilateral Filtering Bilateral Explanation Adaptive Support Weight

Trilateral
Filtering
Trilateral
Explanation
Trilateral-based

ASW In Practice GPU ASW ASW Alternatives

Conclusion

Questions?