

$$\mathbf{c}^{\mathrm{old}} = (a_{\mathrm{pk}}^{\mathrm{old}}, v^{\mathrm{old}}, \rho^{\mathrm{old}}, r^{\mathrm{old}}, s^{\mathrm{old}}, \mathrm{cm}^{\mathrm{old}})$$

This yields the coins $\mathbf{c}_1^{\mathrm{new}} := (a_{\mathrm{pk},1}^{\mathrm{new}}, v_1^{\mathrm{new}}, \rho_1^{\mathrm{new}}, r_1^{\mathrm{new}}, s_1^{\mathrm{new}}, \mathsf{cm}_1^{\mathrm{new}})$ and $\mathbf{c}_2^{\mathrm{new}} := (a_{\mathrm{pk},2}^{\mathrm{new}}, v_2^{\mathrm{new}}, \rho_2^{\mathrm{new}}, r_2^{\mathrm{new}}, s_2^{\mathrm{new}}, \mathsf{cm}_2^{\mathrm{new}}).$ Next, u produces a zk-SNARK proof π_{POUR} for the following NP statement, which we call POUR:

"Given the Merkle-tree root rt, serial number $\operatorname{sn}^{\operatorname{old}}$, and coin commitments $\operatorname{cm}_1^{\operatorname{new}}, \operatorname{cm}_2^{\operatorname{new}}, I$ know coins $\operatorname{c}^{\operatorname{old}}, \operatorname{c}_1^{\operatorname{new}}, \operatorname{c}_2^{\operatorname{new}}$, and address secret key $a_{\operatorname{sk}}^{\operatorname{old}}$ such that:

- The coins are well-formed: for \mathbf{c}^{old} it holds that $k^{\text{old}} = \text{COMM}_{r^{\text{old}}}(a_{\text{pk}}^{\text{old}} \| \rho^{\text{old}})$ and $\text{cm}^{\text{old}} = \text{COMM}_{s^{\text{old}}}(v^{\text{old}} \| k^{\text{old}})$; and similarly for $\mathbf{c}_1^{\text{new}}$ and $\mathbf{c}_2^{\text{new}}$.
- The address secret key matches the public key: $a_{pk}^{old} = PRF_{a_0^{old}}^{addr}(0)$.
- The serial number is computed correctly: $\operatorname{sn}^{\operatorname{old}} := \operatorname{PRF}^{\operatorname{sn}}_{a^{\operatorname{old}}}(\rho^{\operatorname{old}}).$
- The coin commitment cm^{old} appears as a leaf of a Merkletree with root rt.
- The values add up: $v_1^{\text{new}} + v_2^{\text{new}} = v^{\text{old}}$."

