运算放大器设计

电子科学与工程学院 刘时宜 201180078

实验日期: 2022年11月30日

至 2022年12月26日

指导老师: 张丽敏

点击目录、书签栏、以及行文中的图表标号的均可跳转至相应页面

目录

1	基本	以设计要求	1
2	三极	设管基本参数测定及计 算	2
	2.1	NMOS 管	
	2.2	PMOS 管	2
3	设计	一参数的确定	4
	3.1	理论计算	4
		3.1.1 运算放大器主体	4
		3.1.2 偏置电流源	5
	3.2	参数调整	6
		3.2.1 仿真中遇到的问题	6
		3.2.2 整体调整思路	
	3.3	参数确定	6
4	运算	草放大器仿真及性能测试	7
	4.1	瞬态响应	7
	4.2	传输特性曲线电压输出范围	
	4.3	频率响应	9
	4.4	共模抑制比 CMRR	10
		4.4.1 闭环测试方案	

1 基本设计要求

本次设计的参数要求如表1.0.1所示:

$V_{dd} = 3.3 \mathrm{V}$	$V_{ss} = 0 \mathrm{V}$	$GB = 3 \mathrm{MHz}$	$SR = 3 \mathrm{V} \mathrm{\mu s}^{-1}$
$\varphi_m = 45^{\circ}$	$0.4 \mathrm{V} < V_{out} < 2.6 \mathrm{V}$	$P_{diss} \le 5 \mathrm{mW}$	$A_v > 5000$
	$ICMR = 1.25 \mathrm{V}$ to $2.5 \mathrm{V}$	$C_l = 10 \mathrm{pF}$	

表 1.0.1: 设计指标要求

2 三极管基本参数测定及计算

2.1 NMOS 管

NMOS 参数测定电路图如图2.1.1所示。使用直流分析后打印模型参数(Results - Print - Model Parameters)以及直流工作点(Results - Print - DC Operating Points)即可得 NMOS 管的 T_{oxe} 、 μ_n 、 V_{th0} 、 g_{ds} ,利用公式

$$C_{oxe} = \frac{\epsilon_{ox}}{T_{oxe}}$$

$$K_{n}^{'} = \mu_{n} \cdot C_{oxe}$$

$$g_{d}s = \lambda \cdot I_{d}$$

可得 C_{oxe} 、 K_n' 、 g_{ds} 三参数。以上测量以及计算所得的参数列在表2.1.1中。

图 2.1.1: NMOS 管参数测量电路

2.2 PMOS 管

与 NMOS 管同理, 测量电路图如2.2.1所示, 测量以及计算所得的 PMOS 管关键参数列在表2.2.1中。

T_{oxe}	6.65 nm
μ_n	$350\mathrm{cm^2/V\cdot s}$
V_{th0}	$695\mathrm{mV}$
g_{ds}	$336.983\mathrm{nS}$
C_{ox}	$5.19268{\rm mF/m^2}$
$K_{n}^{'}$	$181.744\mathrm{mA/V^2}$
λ	0.05778

表 2.1.1: NMOS 管关键性能参数

图 2.2.1: PMOS 管参数测量电路

T_{oxe}	$6.62\mathrm{nm}$
μ_n	$92.5\mathrm{cm^2/V\cdot s}$
V_{th0}	$-672\mathrm{mV}$
g_{ds}	$230.227\mathrm{nS}$
C_{ox}	$5.21621{\rm mF/m^2}$
$K_{n}^{'}$	$48.2499{\rm mA/V^2}$
λ	0.05676

表 2.2.1: PMOS 管关键性能参数

3 设计参数的确定

3.1 理论计算

3.1.1 运算放大器主体

由于本次时间较为紧张,选用相对来讲更为简明的不带输出缓冲 (unbuffered) 的双级运算放大器结构。运算放大器整体结构如图3.1.1所示。

图 3.1.1: 选用的运算放大器整体结构

按顺序计算各参数如下:

- a. 选取沟道长度为1 µm
- b. 由60°的相位裕量条件,要求 $C_c > 0.22~C_l$,此处取 $C_c = 3.3~\mathrm{pF}$
- с. 由压摆率限制,得最小的 $I_5 = SR \cdot C_c = 9$ μ A。此处取 $I_5 = 10$ μ A

- d. 要求的输入最高共模电压2.5 V,取 $V_{inc,max}=3$ V,由 $\frac{2I_3}{K_p'[V_{dd}-V_{inc,max}-V_{tp}+V_{th}]^2}=0.3$ V 可得 $S_3=S_4=2.138$
- e. 由 $g_{m1}=GB\cdot C_c$,可得在单位增益带宽限制下,最小的 $g_{m1}=56.55\,\mu\mathrm{S}$ 。取 $g_{m1}=g_{m2}=80\,\mu\mathrm{S}$ 。则可得 $S_1=S_2=\frac{g_{m2}^2}{K_n'I_5}=3.52$ 。
- f. 在输入最小共模电压约束下, $V_{dsat5,max} = V_{inc,min} V_{ss} \sqrt{\frac{I_5}{K_N'S_1}} V_{thn} = 0.43 \,\text{V}$ 。取 $V_{dsat5} = 0.3 \,\text{V}$,则有 $S_5 = \frac{2I_5}{K_N'V_{dsat5}} = 1.22$ 。
- g. 由相位裕量条件, $g_{m6}>2.2g_{m2}\frac{C_L}{C_c}$,此处取 $g_{m6}=0.15\,\mathrm{mS}$,由偏置的平衡条件,有 $V_{gs4}=V_{gs6}$,则 $S_6=S_4\frac{g_{m6}}{g_{m4}}=7.99$
- h. $I_6 = \frac{g_{m6}^2}{2K_p'S_6} = 29.182\,\mu\text{A}$,由镜像电流源电流关系, $S_7 = S_5\frac{I_6}{I_5} = 3.56$
- i. 验证输出级的饱和压降满足输出范围要求
- j. 验证 $A_v = \frac{2g_{m2}g_{m6}}{I_5I_6(\lambda_p + \lambda_n)^2} = 6269.19$ 、 $P_{diss} = (I_5 + I_6)V_{dd} = 129.29$ μ W均满足设计要求

3.1.2 偏置电流源

由于本次时间较为紧张,且对于不含折叠共源共栅结构的运算放大器结构来说,单级镜像电流源已经能够满足性能需求,故采用如图3.1.2的电路结构。

图 3.1.2: 偏置电流源结构

通过 I_5 , S_5 可以反推出 $V_{gs5} = 0.995 \,\mathrm{V}$ 。由

$$\begin{cases}
I_d = \frac{1}{2}K_N' \cdot 1 \cdot (V_{gs} - V_{th})^2 \\
V_{gs} = V_{dd} - I_d \cdot R
\end{cases}$$
(3.1.1)

可以解得 $I_d = 8.18 \,\mu\text{A}$, $R = 281.8 \,\text{k}\Omega$

3.2 参数调整

3.2.1 仿真中遇到的问题

在 Cadence 中搭建电路并仿真后, 主要遇到了以下问题:

- a. 推测可能是由于电路中存在其他寄生电容的原因,仿真时按照如上过程选取的一组参数无法达到45°相位裕量的要求。
- b. 可能是由于存在细微误差的原因,输出级未能处于正常偏置状态。

3.2.2 整体调整思路

针对以上问题,对电路参数做了以下调整:

- a. 增大 C_c , 保证充足的相位裕量。
- b. 增大 I_5 , 保证有足够的压摆率。
- c. 增大 S_1 , S_2 , 抵消掉 I_5 增大带来的增益下降,同时保证有足够的单位增益带宽 GB。
- d. 调整 S_3 , S_4 , 使得差分级处于正常的偏置状态。
- e. 调整 S₆, S₇, 增大增益并使输出级正常偏置。

3.3 参数确定

经过一系列结合仿真结果的调整后,最终确定设计如3.3.1所示,其中的各参数整理在表3.3.1中。

 S_1 8 S_2 8 S_3 4 S_4 4 S_5 4 S_6 40 S_7 19.63 S_8 19.63 C_c 6 pF R_0 169 k Ω

表 3.3.1: 设计参数

图 3.3.1: 运算放大器电路

4 运算放大器仿真及性能测试

4.1 瞬态响应

仿真电路、仿真设定与仿真结果均展示在图4.1.1中。可以看到,输出电压振荡中心大约在 $1.65\,\mathrm{V}$ 处,且正弦波形无明显失真,说明运算放大器整体工作正常,能够起到放大作用。由输入电压振幅 $10\,\mathrm{\mu V}$,输出电压振幅 $0.53\,\mathrm{V}$,可以得到准静态状态下的 $A_v=50344$,远高于设计要求。

(a) 仿真电路

(b) 仿真设定

(c) 仿真结果

图 4.1.1: 仿真: 瞬态响应

4.2 传输特性曲线电压输出范围

仿真电路及仿真结果展示在图4.2.1中。仿真结果中同时选取了电路中一些关键节点进行画图。可以 看到,运算放大器正常工作时,所有 MOS 均正常偏置,工作在饱和区。

同时,对于要求的输出范围:

- a. 当 $V_{out} = 0.4 \,\mathrm{V}$ 时, $V_{g7} = V_{bias} = 1.1073 \,\mathrm{V}$, $V_{s7} = 0 \,\mathrm{V}$, $V_{d7} = V_{out} = 0.4 \,\mathrm{V}$, $V_{th} = 695 \,\mathrm{mV}$ 。关系 $V_{ds} > V_{gs} V_{th}$ 成立,工作在饱和区。
- b. 当 $V_{out}=2.6\,\mathrm{V}$ 时, $V_{g6}=2.0828\,\mathrm{V}$, $V_{s6}=3.3\,\mathrm{V}$, $V_{d6}=V_{out}=2.6\,\mathrm{V}$, $V_{th}=672\,\mathrm{mV}$ 。关系 $|V_{ds}|>|V_{gs}|-|V_{th}|$ 成立,工作在饱和区。

(a) 仿真电路

4.3 频率响应

仿真电路及仿真结果展示在图4.3.1中。可以看到,静态时增益 $95.207\,\mathrm{dB}=57590$,远超设计标准。相位裕量 $\varphi_m=47.01^\circ$,满足设计标准。单位增益带宽 $GB=5.316\,57\,\mathrm{MHz}$,远超设计标准。

图 4.2.1: 仿真: 瞬态响应

(a) 仿真电路

(b) 相位裕量计算结果

(c) 仿真结果 - Av0

(d) 仿真结果 - φ_m

图 4.3.1: 仿真: 频率响应

4.4 共模抑制比 CMRR

4.4.1 闭环测试方案

仿真电路及仿真结果展示在图4.3.1中。由电路连接方式,则有关系

$$\frac{V_{cm}}{V_{out}} = \pm \frac{1 + A_v \mp \frac{A_c}{2}}{A_c} \simeq \frac{A_v}{|A_c|} = CMRR$$

图 4.4.1: 仿真: 共模抑制比闭环测法