

Project VIBRO CONTROL BOARD

Title FUNCTIONAL HARDWARE SPECIFICATION

Doc. Id. ASMR&D039

Revision 02

Issue date 18 March 2020

Author Maurizio Bonesi, Marco Toschi

Approver Marco Toschi

The documentation is © Sesotec ASM S.r.l., which holds all the rights of reproduction, disclosure and any other rights identified by current legislation on copyright. Assigned, copied, distributed or reproduced, nor quoted, summarized, or modified, even separated, without the explicit consent of Sesotec ASM S.r.l.

REVISION HISTORY

Date	Paragraph	Description
31 January 2020		First issue
18 February 2020		"Release" column has been removed from every table
	§4.2.2	Updated
	§6.1	F23, F24 updated
	31 January 2020	31 January 2020 18 February 2020 §4.2.2

INDEX

1	IN	TRODUCTION	4
	1.1	Reference Documents	4
	1.2	Reference Standards	4
2	OV	/ERVIEW	5
	2.1	Scope and Key Objectives	5
	2.2	Functional Block Diagram	6
3	FU	NCTIONS	7
	3.1	Working Mode	7
	3.2	BIST	8
	3.3	Alarms	8
4	IN	TERFACES	9
	4.1	Interface with Other Systems	9
	4.2	Interface Protocol	9
	4.2	2.1 Holding Registers	10
	4.2	2.2 Input Registers	10
5	NC	DN-FUNCTIONAL ATTRIBUTES	11
	5.1	Availability	11
6	EN	VIRONMENT	12
	6.1	Environmental and Utilities Specifications	12
	6.2	Installation	12
7	GL	OSSARY	13

1 INTRODUCTION

This document was generated under the authority of the Sesotec ASM S.r.l. company, for the purpose of developing the Vibro Control Board.

1.1 Reference Documents

Document Code	Document Title

1.2 Reference Standards

Document Code	Document Title		
IEC 60529-2004	Degrees of Protection Provided by Enclosures (IP Code)		
Directive 2004/108/EC	Electromagnetic compatibility		
IEC 61000-6-3:2006	Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments		

2 OVERVIEW

The system consists on an electronic board that will be used to drive an external vibrating device.

2.1 Scope and Key Objectives

The system will provide proper current amplitude values to achieve a desired product flow rate on the tray connected to the vibrating device.

2.2 Functional Block Diagram

3 FUNCTIONS

Code	Function					
	Product Flow Adjustment					
	The system will regulate the product flow out of the tray of n. 1 vibrator with the following specifications:					
F01	 Voltage 115/230 V AC; Current up to 1 A; Frequency: from 50/60 Hz. 					
	Amplitude of system voltage output will be according to grid input voltage: no hardware power conversion stage is needed.					

3.1 Working Mode

Code	Function					
F26	Frequency Control The system will allow the user to set the frequency between: • a minimum value of 40 Hz • a maximum value of 240 Hz.					
F05	Flow Control The system will allow the user to set the flow between: a minimum value of 0 (no product flows out); a maximum value of 255 (product flows out at full speed).					

3.2 BIST

Cod	Function
F12	Automated Testing The system will have a BIST system to improve reliability and fault recovery, that will be executed: • During runtime.

3.3 Alarms

Code	Function						
	Alarms The system will manage the following alarms via an internal management system and reporting strategy:						
F13	 Power fault; Feeder accelerometer error; Faulty feeder; Level probes fault: odd configurations of three-probes setups will be detected (e.g.: if the rightmost signal is the machine infeed one, configurations like 101, 100, 110 will be treated as probes system failures). 						

4 INTERFACES

4.1 Interface with Other Systems

Code	Function					
F14	Serial Port The system will be equipped with n. 2 RS485 terminal blocks for daisy-chain connections and configuration for termination resistor on one port.					
F27	Accelerometer The system will allow connection for n. 1 accelerometer with the following interfaces: • 4-20mA with terminal blocks; • RS485 port with terminal blocks and termination resistor. The interface ports are mutually exclusive.					
F15	Level Probes The system will be equipped with a terminal block to connect with n. 3 sensors: • L1, L2, L3; via dry contact interface.					

4.2 Interface Protocol

Code	Function			
F17	Modbus RTU			
117	Communication protocol will be based on Modbus RTU, configured as slave.			
-10	Address			
F18	The system will be equipped with hardware dip switches to set the node address.			

4.2.1 Holding Registers

Register	Address (hex)	Register Type	Description Vibration setpoint from 40 to 240.	
Frequency	0x1000	1 word		
Amplitude	0x1001	1 word	Vibration setpoint from 0 to 255.	

4.2.2 Input Registers

Register	Address (hex)	Register Type	Description	
RMS Accelerometer Status	0x4000	1 word	RMS value of current acceleration	
Vibration Amplitude Status	0x4001	1 word	Current amplitude setpoint of vibration	
Probes Status	0x4002	1 word	Probes bit mask	
	0x4003	1 word	0	No Alarm
			1	Power section fault
Alarms ¹			2	Accelerometer fault
			4	Feeder fault
			8	Level Probes Fault

¹ The alarm signal can be OR'ed to indicate the presence of multiple failure.

5 NON-FUNCTIONAL ATTRIBUTES

5.1 Availability

Code	Function
F19	Reliability The system will be a highly reliable in order to guarantee 24/7 operation with minimal downtime and service requirements.
F20	Uptime The system will grant a minimum uptime of 99,9% if regular maintenance is granted according to manual instructions.

6 ENVIRONMENT

6.1 Environmental and Utilities Specifications

Code	Function	
F21	Voltage for control stage: 24 VDC; Voltage for power driver stage: 115/230 VAC; Frequency: 50/60 Hz.	
F22	Temperature • Storage range from -20°C to + 70°C; • Operating range from 0°C to + 60°C.	
F23	EU Certifications Design compliance with: • CE; • LVD; • ROHS.	
F24	US Certifications Design compliance with: • UL; • CSA.	

6.2 Installation

Code	Function
F25	Туре
	The board will be installed on a DIN rail.

7 GLOSSARY

Term	Description
FSM	Finite State Machine
BIST	Built-In Self-Test
L1, L2, L3	Level Probes