ASGN 1

Bailey Wickham

Abstract

Hey! This is my first time using latex, so it probably won't look great. I also don't really know how to use latex, as you can see from this being in the abstract.

- 1. Determine if the following are fields.
 - (a) \mathbb{Q} is a field.
 - (b) \mathbb{Z} is not a field.
 - 7. $\forall x \in \mathbb{Z}$ does not have an inverse. For example $x = 7: x^{-1} = \frac{1}{7} \notin \mathbb{Z}$
 - (c) $\{a \in \mathbb{R} : 0 \le a\}$
 - 1. Fails multiplication. -1*-1=1>0
 - 5. There is no element 1 in the set.
 - 6. There is no multiplictive inverse.
 - (d) $\{a \in \mathbb{R} : -1 \le a \le 1\}$
 - 1. 1+1>1
 - (e) $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$
 - 1. Any nonzero value for b produces an irrational number.
 - (f) $\{0,1\}$ with 0+0=0, 1+0=0+1=1, and 1+1=0: Field. I think this is actually a field.
 - (g) $\{0,1,2\}$ with operations defined in the instructions. I think this is a Galois field?
 - (h) $\{0, 1, 2, 3\}$ Field!
 - (i) the set of 2x2 matrices with entries in \mathbb{C} is the same as \mathbb{C}^2 , and after reading the textbook and the listening to the lecture in class, F^n is a field. Thus C^2 is a field.
- 2. let $a \neq 0$ be an element of a field \mathbb{F} Prove that the element a^{-1} in 7 is unique. Prove that $(a^{-1})^{-1} = a$.
 - (a) let $a, b, c \in \mathbb{F}$ such that $a \cdot b = a \cdot c = 1$

$$1 = a \cdot b$$

$$1 = 1 \cdot a \cdot b$$

$$1 = 1 \cdot a \cdot b$$

$$1 = a \cdot c \cdot a \cdot b$$

$$1 = a \cdot c \cdot 1$$

$$1 = a \cdot c$$

(b) let
$$(a^{-1})^{-1} = b$$

$$(a^{-1})^{-1} = b$$

$$1 \cdot (a^{-1})^{-1} = b$$

$$a \cdot a^{-1} (a^{-1})^{-1} = b$$

$$a \cdot 1 = b$$

$$a = b$$