Capítulo 1

Teorema de Fatou y Teorema de Carathéodory

Teorema 1.0.1 (Teorema de Fatou). Para toda función f holomorfa y acotada, existe una función $f^* \in L^{\infty}(T)$ definida en casi todo punto tal que

$$f^*(e^{it}) = \lim_{r \to 1} f(re^{it}) \tag{1.1}$$

Se tiene la igualdad $\|f\|_{\infty} = \|f^*\|_{\infty}$. Para todo $z \in U$, la fórmula integral de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(\xi)}{\xi - z} d\xi \tag{1.2}$$

se satisface, donde γ es el círculo unidad positivamente orientado: $\gamma(t)=e^{it}, 0\leq t\leq 1$ 2π .

Las funciones $f^* \in L^{\infty}(T)$ que se obtienen mediante este procedimiento son precisamente aquellas que cumplen la siguiente relación

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} f^*(e^{it}) e^{-int} dt = 0, n = -1, -2, \dots$$
(1.3)

Demostración. La existencia de f^* se sigue del Corolario del Teorema 11.19 (??). Por 1.1, tenemos que $||f^*||_{\infty} \le ||f||_{\infty}$. Si $z \in U$ y |z| < r < 1, tomemos $\gamma_r(t) = re^{it}$, $0 \le t \le 2\pi$. Entonces,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)}{\xi - z} d\xi = \frac{r}{2\pi} \int_{-\pi}^{\pi} \frac{f(re^{it})}{re^{it} - z} dt$$

Sea $\{r_n\}$ una sucesión tal que $r_n \to 1$. Por el teorema de la convergencia dominada de Lebesgue tenemos

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f^*(e^{it})}{1 - ze^{it}} dt \tag{1.4}$$

Por lo que ya hemos probado 1.2. Por el teorema de Cauchy, se sigue que

$$\int_{\gamma_r} f(\xi)\xi^n d\xi = 0, n = 0, 1, \dots$$

Pasando al límite tenemos que f^* cumple 1.3. Además, podemos convertir 1.4 en una integral de Poisson, si $z = re^{i\theta}$,

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=0}^{\infty} r^n e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=-\infty}^{\infty} r^{|n|} e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta-t) f^*(e^{it}) dt$$

De esto concluimos que $||f||_{\infty} \leq ||f^*||_{\infty}$, así que ambas normas coinciden.

Teorema 1.0.2 (Teorema de Carathéodory). Sea φ una aplicación conforme del disco unidad D(0,1) en un dominio de Jordan Ω . Entonces φ tiene una extensión continua al disco cerrado $\overline{D}(0,1)$, y la extensión es inyectiva de $\overline{D}(0,1)$ en Ω .

Demostración. Vamos a suponer que Ω está acotado. Fijemos $\zeta \in \partial D(0,1)$. Primero vamos a probar que φ tiene una extensión continua en ζ . Sea $0 < \delta < 1$,

$$B(\zeta, \delta) = \{z : |z - \zeta| < \delta\}$$

y tomemos $\gamma_{\delta} = D(0,1) \cap \partial B(\zeta,\delta)$. Entonces $\varphi(\gamma_{\delta})$ es una curva de Jordan de longitud

$$L(\delta) = \int_{\gamma_{\delta}} |\varphi'(z)| \, ds$$

Por la desigualdad de Cauchy-Schwartz, tenemos

$$L^2(\delta) \le \pi \delta \int_{\gamma_\delta} |\varphi'(z)|^2 ds$$

entonces para $\rho < 1$

$$\int_0^\rho \frac{L^2(\delta)}{\delta} d\delta \le \pi \int \int_{D(0,1)\cap B(\zeta,\rho)} |\varphi'(z)|^2 dx dy = \pi \operatorname{Area}(\varphi(D(0,1)\cap B(\zeta,\rho))) < \infty$$

Entonces, existe una sucesión $\{\delta_n\} \downarrow 0$ tal que $L(\delta_n) \to 0$. Cuando $L(\delta_n) < \infty$, la curva $\varphi(\gamma_{\delta_n})$ tiene extremos $\alpha_n, \beta_n \in \overline{\Omega}$ y ambos puntos deben estar en $\Gamma = \partial \Omega$. De hecho, si $\alpha_n \in \Omega$, entonces algún punto cerca de α_n tiene dos preimágenes distintas en D(0,1) y esto es imposible pues φ es inyectiva. Además,

$$|\alpha_n - \beta_n| \le L(\delta_n) \to 0 \tag{1.5}$$

Sea α_n el subarco cerrado de Γ que tiene extremos α_n y β_n y con un diámetro menor. Entonces 1.5 implica que diam $(\alpha_n) \to 0$ porque Γ es homeomorfa al círculo. Por el teorema de la curva de Jordan, $\alpha_n \cup \varphi(\gamma_{\delta_n})$ divide al plano en dos regiones, y una de ellas, llamémosla U_n es acotada. Entonces $U_n \subset \Omega$ ya que $\mathbb{C}^* \setminus \overline{\Omega}$ es conexo por arcos. Como

$$\operatorname{diam}(\partial U_n) = \operatorname{diam}(\alpha_n \cup \varphi(\gamma_{\delta_n})) \to 0$$
, concluimos que $\operatorname{diam}(U_n) \to 0$. (1.6)

Tomamos $D_n = D(0,1) \cup \{z : |z - \zeta| < \delta_n\}$. Sabemos que para n suficientemente grande, $\varphi(D_n) = U_n$. Si no, por conexión tendríamos que $\varphi(D(0,1) \setminus \overline{D_n}) = U_n$ y

$$\operatorname{diam}(U_n) \ge \operatorname{diam}(\varphi(B(0,1/2))) > 0$$

que contracide con 1.6. Entonces $\operatorname{diam}(\varphi(D_n)) \to 0$ y $\bigcap \overline{\varphi(D_n)}$ es un solo punto pues $\varphi(D_{n+1}) \subset \varphi(D_n)$. Esto significa que φ tiene una extensión continua en $D(0,1) \cap \{\zeta\}$. La unión de todas las extensiones sobre cada punto de Γ define una aplicación continua en $\overline{D(0,1)}$.

Denotemos ahora por φ a la extensión $\varphi: \overline{D(0,1)} \to \overline{\Omega}$. Como $\varphi(D(0,1)) = \Omega$, φ lleva $\overline{D(0,1)}$ en $\overline{\Omega}$. Para probar que φ es inyectiva, supongamos que $\varphi(\zeta_1) = \varphi(\zeta_2), \zeta_1 \neq \zeta_2$. El argumento utilizado para mostrar que $\alpha_n \in \Gamma$, también prueba que $\varphi(\partial D(0,1)) = \Gamma$, así que podemos suponer que $\zeta_j \in \partial D(0,1), j = 1, 2$. La curva de Jordan

$$\{\varphi(r\zeta_1): 0 \le r \le 1\} \cup \{\varphi(r\zeta_2): 0 \le r \le 1\}$$

acota al dominio $W \subset \Omega$, luego $\varphi^{-1}(W)$ es una de las dos componentes de

$$D(0,1) \setminus (\{r\zeta_1 : 0 \le r \le 1\} \cup \{r\zeta_2 : 0 \le r \le 1\})$$

Pero como $\varphi(\partial D(0,1)) \subset \Gamma$,

$$\varphi(\partial D(0,1) \cap \partial \varphi^{-1}(W)) \subset \partial W \cap \partial \Omega = \{\varphi(\zeta_1)\}\$$

y φ es constante en un arco de $\partial D(0,1)$, se tiene que φ es constante y esta contradicción prueba que $\varphi(\zeta_1) \neq \varphi(\zeta_2)$.