Vegetation data access and taxonomic harmonization version 0.5.97

Florian Jansen

December 11, 2012

Abstract

An example session to show functionality and usage of R library ${\tt vegdata}$. After installation of ${\tt vegdata}$ you can invoke this PDF with

> vignette('vegdata')

1 Preliminary notes

Some vegdata functions expect an installation, or more precisely the main directory structure, of the vegetation database program Turboveg for Windows (see 'http://www.synbiosys.alterra.nl/turboveg/' and Hennekens & Schaminée (2001). If the package can not find a Turboveg installation it will use the directory within the package installation path. If you want to use function taxval for taxonomic harmonization you will need to have GermanSL or an equally structured reference list. If you do not specify any, the most recent version of GermanSL will be used and if it can not be found within the specified path, it will be downloaded from http://geobot.botanik.uni-greifswald.de/reflist.

Turboveg uses dBase database format for storage. The package tries to deal with the limitations of that format but it is essential, that you use "Database -> Reindex" in Turboveg every time you delete something in your Turboveg database. Otherwise it will not be deleted immediately in the dBase file, instead it is only marked for deletion, i.e. it is still there when you access this file with R and will not be recognized as deleted until you reindex your Turboveg database.

2 Provided functionality

2.1 Database access

At the moment vegdata provides direct access to two different vegetation database formats:

Turboveg is a desktop program, written in VisualBasic. It provides basic functions to enter, import, maintain and export vegetation data. From the 2 000 000 vegetation plot registered in http://www.GIVD.info approximately 1.5 million are stored in Turboveg databases format.

VegetWeb is the German national vegetation database. VegetWeb is developed as a MySQL-Server database at the Federal Agency for Nature Conservation (BfN) and can used via a PHP framework at http://www.floraweb.de/vegetation/vegetweb/RechercheView.php.

2.2 Taxonomic harmonisation

One of the most important steps in using vegetation data (from different sources) for statistical analysis is to take care about the taxonomic content of the names existing in the database. That is, to make sure, that exactly one (correct and valid) name defines one biological entity. Most researchers remember to convert synonyms to valid names but in many cases the care about e.g. monotypic subspecies or ambiguous taxonomic

levels is lacking (Jansen & Dengler, 2010). The package offers the function taxval with different options for the adjustment of synonyms, monotypic taxa, taxonomic levels, members of aggregates and undetermined species.

2.3 Cover standardization

Turboveg provides different abundance codes and all kinds of user defined cover codes can easily be added. For vegetation analysis a unique species performance platform is needed which will in most cases be the percentage cover of the observed plot area. Therefore, for every abundance code class the mean cover percentage is defined in Turboveg. Since different scales can occur in a database and the storage format of the code table in Turboveg is somewhat strange, the function tv.coverperc provides automatic conversion for convenience.

2.4 Layer aggregation

The most frequently used sample unit in vegetation science is a plot based vegetation relevé (Dengler et al., 2011). A Braun-Blanquet relevé is a sample of names and coverage (abundance) of species in a specified area (usually between 1 and 1000 m^2) at a specific time. It contains (at least is intended to contain) a complete list of photo-autotrophic plants (or a defined subset) in that plot. This information can be stored in a three-column list of relevé ID, Taxon ID and performance measure (e.g. cover code).

Often additional information about the kind of occurrence is wanted. In Turboveg one additional column for the most widespread attribute is included by default: growth height classes. E.g. in a forest it is of interest, if a woody species reaches full height (tree layer) or occurs only as a small individual (herb layer). Other attributes like micro location (hummock or depression, rock or dead wood), development stage (juvenile or not, flowering status etc.) or the month of survey in a multi-seasonal survey could also be of interest and can be added in Turboveg. For analysis you may want to differentiate species with different species-plot attributes (e.g. growing in different layers). Function tv.veg provides possibilities for species-plot attribute handling.

2.5 Vegetation matrix

Turboveg stores relevés as a dataframe of occurrences (s. below) but almost all functions and programs for vegetation analyses use plot-species cross-tables with a 0 value for non-occurrence = observed absence. Function tv.veg inflates the Turboveg list to matrix format with plots in rows and species in columns. Column names can be either species numbers, species letter-codes (default) or full names (with underscores instead of blanks to match the R naming conevntions).

3 Preparations

The best way to introduce the functionalities of the package is a session with example code. We load the library as usual into our R environment.

> library(vegdata)

> tv.home()

Many functions use the directory structure of Turboveg. The first time such a function is called, the internal function tv.home tries to find your Turboveg installation path. Depending on whether you have Turboveg installed on your computer or not, it will give you a message about the Turboveg installation path or the path to the Turboveg directory structure of package vegdata.

If you want to change this, declare manually by setting option "tv_home":

> options(tv_home="path_to_your_Turboveg_root_directory")

4 Service functions

> tv.db()

[1] "elbaue" "taxatest"

will give you a list of possible database names (directories within the Turboveg Data directory).

> tv.refl()

[1] "GermanSL 1.2"

GermanSL is the default Taxonomic reference list in package vegdata. Whenever you use a Turboveg database name in a function, the Reference list will be read from the database configuration file "tvwin.set", if possible.

Package vegdata contains several service functions to query the taxonomic information contained in the reference list.

> tax('Achillea millefolium')

Taxonomic evaluation list (species.dbf) of version GermanSL 1.2 not available. I will try to download the reference now.

	TaxonUsageID	LETTERCODE			TaxonName
18	27	ACHI#MI		Achille	ea millefolium agg.
20	31	ACHIMIL		Ac	chillea millefolium
21	32	ACHIM-M	Achillea mill	efolium	subsp. millefolium
22	33	ACHIM-S	Achillea m	illefoli	um subsp. sudetica
8680	20096	ACHICOL	Achillea	millefol	lium subsp. collina
8681	20097	ACHIPAN	Achillea mi	llefoli	m subsp. pannonica
8682	20098	ACHIPAN	Achill	ea mille	efolium var. lanata
13221	26082	ACHIMIL	Achil	lea mill	lefolium var. firma
26249	90019	ACHI*AB	Achillea	millefol	lium agg. x nobilis
26250	90020	ACHIM*P	Achill	ea mille	efolium x pannonica
			vernacular	SYNONYM	TaxonConceptID
18	Arteng	gruppe Wiese	en-Schafgarbe	FALSE	27
20	Gewöhr	nliche Wiese	en-Schafgarbe	FALSE	31
21	Gewöhnliche N	Wiesen-Schaf	fgarbe i.e.S.	FALSE	32
22	\$	Sudeten-Wies	senschafgarbe	FALSE	33
8680			<na></na>	TRUE	29
8681			<na></na>	TRUE	34
8682			<na></na>	TRUE	34
13221			<na></na>	TRUE	31
26249)		<na></na>	TRUE	90028
26250)		<na></na>	FALSE	90020

"GermanSL 1.2" is not included in vegdata to keep the R package small. Instead the reference list will be automatically downloaded into the tv_home directory (see tv.home()), if it is not installed but needed. If you want to use a different list, specify refl=<Name of your list> according to the directory name in the Turboveg directory Species. Function tax will use the given character string, or 7 letter abbreviation or TaxonUsageID (called SPECIES_NR in Turboveg) to look for all (partially) matching species names within the reference list

> tax('Achillea millefolium', strict=TRUE, verbose=TRUE)

Additional to the Turboveg standard fields comprehensive information for every taxon is stored in an extra file (tax.dbf) which can be used with option verbose = TRUE.

tax will give you all matching names by default. If you set option strict=TRUE, only the species with exact match to the given character string will be returned.

syn will give you all taxon names within the swarm of synonyms. The valid name is markes in colum SYNONYM with FALSE.

> tax('Elytrigia repens')\$TaxonName

```
[1] "Elytrigia repens subsp. arenosa" "Elytrigia repens"
[3] "Elytrigia repens var. caesia" "Elytrigia repens var. littoralis"
[5] "Elytrigia repens var. repens"
```

> syn('Elytrigia repens')

Name swarm of Elytrigia repens :

	TaxonUsageID	TaxonName	SYNONYM	EDITSTATUS
4078	6541	Agropyron repens subsp. caesium	TRUE	BfN
4081	6544	Elymus repens subsp. repens s. 1.	TRUE	Korrektur
4791	10260	Elymus repens subsp. caesium	TRUE	BfN
8714	20143	Agropyron caesium	TRUE	BfN
8732	20167	Agropyron repens subsp. repens	TRUE	BfN
9890	21639	Elytrigia repens	TRUE	BfN
12065	24393	Triticum repens	TRUE	BfN
13915	27778	Elymus repens	FALSE	BfN
14007	27914	Agropyron repens	TRUE	BfN

The reference list contains information about the taxonomic hierarchy which can be used with childs or parents.

> childs(27, quiet=TRUE)\$TaxonName

```
[1] "Achillea collina" "Achillea millefolium"
[3] "Achillea pannonica" "Achillea roseoalba"
[5] "Achillea setacea" "Achillea pratensis"
[7] "Achillea lanulosa" "Achillea collina x millefolium"
[9] "Achillea collina x pannonica" "Achillea collina x pratensis"
[11] "Achillea collina x roseoalba" "Achillea collina x setacea"
[13] "Achillea millefolium x pannonica" "Achillea pratensis x roseoalba"
[15] "Achillea millefolium subsp. millefolium" "Achillea millefolium subsp. sudetica"
```

> parents('ACHIMIL')

	TaxonUsageID	LETTERCODE		Ta	xonName			AUTHOR S	SYNONYM Taxo	nConcept	ID
18	27	ACHI#MI	Achillea mi	illefoli	um agg.			<na></na>	FALSE		27
20643	60728	ACHI-SP	Ac	chillea	species			L.	FALSE	607	'28
20473	60463	ASTE-SP	Aste	eraceae	species		Dı	mort.	FALSE	604	63
20447	60415	ASTR-SP	Ast	cerales	species		L:	indley	FALSE	604	15
20326	60079	ASTI-SP	Ast	ceridae	species			Γakht.	FALSE	600	79
20320	60071	MAGL-SP	Magnoli	iopsida	species			Dc.	FALSE	600	71
20311	60049	MAGO-SP	Magnolio	hytina	species	A. Br	aun &	Doell	FALSE	600	49
20285	60000	SPEA-SP	Spermat	tophyta	species			<na></na>	FALSE	600	000
29377	94419	"GEF-SP	"Gefaesspi	flanze"	species			_	FALSE	944	19
10	0	"GRUETW	"Grue	enliches	etwas"			_	FALSE		0
		TaxonConcep	ot		vern	acular	RANG	GRUPPE	FAMILIE	AGG	
18	Achillea mil	lefolium agg	. Artengrup	pe Wies	en-Scha	fgarbe	AGG	S	Asteraceae	60728	
20643	Ach	illea specie	S		Scha	fgarbe	GAT	S	Asteraceae	60463	
20473	Astera	aceae specie	S			<na></na>	FAM	S	<na></na>	60415	
20447	Aste	rales specie	S			<na></na>	ORD	S	<na></na>	60079	
20326	Aste	ridae specie	S			<na></na>	UKL	S	<na></na>	60071	
20320	Magnolio	psida specie	S			<na></na>	KLA	S	<na></na>	60049	
20311		ytina specie				<na></na>	UAB	S	<na></na>	60000	
20285	Spermato	phyta specie	S			<na></na>	ABT	S	<na></na>	94419	
29377	"Gefaesspfla	anze" specie	S			<na></na>	AG2	G	<na></na>	0	
10	"Gruen	liches etwas	in .			<na></na>	ROOT	<na></na>	<na></na>	0	
	Iso	${\tt ChildTaxonOf}$:			NACHW	EIS		publis	shedInCit	ation
18	Achi	llea species	BfN(Wisski	irchen u	ı. Haeup	ler 19	98) B:	fN(Wissl	kirchen u. I	Haeupler	1998)
20643	Astera	ceae species	BfN(Wisski	irchen u	ı. Haeup	ler 19	98) B:	fN(Wissl	kirchen u. I	Haeupler	1998)
20473	Astera	ales species	Wissl	kirchen	u. Haeu	pler 1	998	Wis	skirchen u.	Haeupler	1998
20447	Aster	idae species	Wissl	kirchen	u. Haeu	pler 1	998	Wis	skirchen u.	Haeupler	1998
20326	Magnoliop	sida species	Wissl	kirchen	u. Haeu	pler 1	998	Wis	skirchen u.	Haeupler	1998
20320	Magnoliophy	tina species	Wissl	kirchen	u. Haeu	pler 1	998	Wis	skirchen u.	Haeupler	1998
20311	Spermatopl	hyta species	Wissl	kirchen	u. Haeu	pler 1	998		skirchen u.	-	
20285	"Gefaesspflam	nze" species	Wissl	kirchen	u. Haeu	pler 1	998	Wis	skirchen u.	Haeupler	1998
29377	"Gruenl:	iches etwas"					-		-hoc-Taxon :		
10	"Gruenl:	iches etwas"					-	[ad-	-hoc-Taxon	$ ilde{\mathtt{A}}_{4}^{1}$ r Germ	anSL]
	HYBRID		BEGRUEND	EDITSTA	TUS GEN	ERATIO	N				
18	<na></na>		<na></na>		BfN		1				
20643	<na></na>		<na></na>		BfN		2				
20473		chung zur Dr	ruckversion	Korrek	tur		3				
20447	0		<na></na>		BfN		4				
20326	0		<na></na>		BfN		5				
20320	O Abwei	chung zur Dr	uckversion	Korrek	tur		6				
20311	O Abwei	chung zur Dr	ruckversion	Korrek	tur		7				
20285	O Abwei	chung zur Dr	ruckversion	Korrek	tur		8				
29377	0		<na></na>	Ergaenz	ung		9				
10	0		<na></na>	Ergaenz	ung	1	0				

If you want to learn more about the taxonomic reference list GermanSL for Germany, please look at Jansen & Dengler (2008). You can download the list manually from 'http://geobot.botanik.uni-greifswald.de/portal/reflist'.

5 Taxonomic harmonisation

Care about the taxonomic content of the datasets is crucial for every analysis. Some of these steps can be automated with an appropriate taxonomic reference. For background and details see (Jansen & Dengler, 2010).

```
> db <- 'taxatest'
```

Defines the vegetation database name according to the name of the Turboveg database directory name

> tv.metainfo(db)

Metainformation, i.e. information about the kind of available information should always be given for every database. Since Turboveg does not ask and provide such information, write a simple text file called metainfo.txt and save it within the database folder. Turboveg does not provide any metadata handling. Database taxatest is an artificial dataset to show functionalities and necessary steps for taxonomic harmonization

Let's have a look at the Turboveg data structure.

```
> obs.tax <- tv.obs(db)
reading observations ...
> # Adding species names
> species <- tax('all')
> obs.tax$TaxonName <- species$TaxonName[match(obs.tax$TaxonUsageID, species$TaxonUsageID)]
> head(obs.tax[,c('RELEVE_NR','TaxonUsageID','COVER_CODE','LAYER','TaxonName')])
  RELEVE_NR TaxonUsageID COVER_CODE LAYER
                                                                       TaxonName
1
          2
                      27
                                  2b
                                        0
                                                      Achillea millefolium agg.
2
          2
                     4685
                                   4
                                          1
                                                                   Quercus robur
3
          2
                                          2
                     4685
                                   1
                                                                   Quercus robur
4
          2
                     4685
                                          6
                                                                   Quercus robur
                                   1
5
                       31
                                   3
                                          6
                                                            Achillea millefolium
          1
                    20096
                                          6 Achillea millefolium subsp. collina
```

This condensed format shows only presences of species observations. Every species observation is stored in one row and the membership to a specific vegetation plot is given in column *RELEVE_NR*.

5.1 Function taxval

We are using the taxonomic reference list GermanSL (Jansen & Dengler, 2008) which contains not only information about synonymy of species names, but also about the taxonomic hierarchy. This enables several semi-automatic enhancements of the taxonomic information stored in your vegetation database. If your database is not referenced to GermanSL (and can not be converted), you have to dismiss function taxval (option tax=FALSE in tv.veg) and do the taxonomic harmonization by hand (function comb.species).

```
> obs.taxval <- taxval(obs.tax, db=db, mono='lower')</pre>
```

```
Original number of names: 25
 5 Synonyms found in dataset, adapted
                                            TaxonName Freq.1 TaxonConceptID
TaxonUsageID
       20010
                 Cardamine pratensis subsp. pratensis
                                                           1
                                                                       15133
       20096
                  Achillea millefolium subsp. collina
                                                           1
                                                                          29
       20583 Armeria maritima subsp. bottendorfensis
                                                           1
                                                                       20585
       25203
                                                           2
                                                                        4269
                                      Abies alpestris
       27309
                                                                       20585
                              Armeria bottendorfensis
                                                           1
                    TaxonConcept Freq.2
             Cardamine pratensis
                                      0
               Achillea collina
                                      0
Armeria maritima subsp. halleri
                                      0
                                      0
                     Picea abies
Armeria maritima subsp. halleri
                                      0
 1 monotypic taxa found in dataset, set to lower rank.
          IsChildTaxonOf AGG_RANG MEMBER_NR
                                                 MEMB_NAME MEMB_RANG
```


1. Field interpretation

- document your source(s) of taxonomic interpretation (Flora)
- specify determination certainty
- collect herbarium specimen

2. Database entry

- document field records / original literature
- reference as conservative as possible to a taxonomic reference list with all relevant taxa (synonyms, field aggregates, horticultural plants, ...)
- ullet document your interpretations

3. Preparation for analyses

- \bullet convert synonyms
- ullet summarize monotypic taxa
- clean up nested taxa
- clean up taxonomic ranks
- •

Three steps of taxonomic interpretation

- need of appropriate tools (software, reference lists)
- standards
- threefold attention

Figure 1: Steps of taxonomic interpretation

```
GAT
 66142 Acoraceae species
                              FAM
                                      61329 Acorus species
 1 monotypic taxa found in dataset, set to lower rank.
AGG_NR IsChildTaxonOf AGG_RANG MEMBER_NR
                                              MEMB_NAME MEMB_RANG
 61329 Acorus species
                           GAT
                                      69 Acorus calamus
No taxa higher than ROOT found.
 8 child taxa found in dataset, adapted
                                                                          IsChildTaxonOf Freq.2
TaxonUsageID
                                        TaxonName Freq.1
                                                           AGG
          29
                                 Achillea collina
                                                   NΑ
                                                            27 Achillea millefolium agg.
                                                                                              1
          31
                             Achillea millefolium
                                                      1
                                                            27 Achillea millefolium agg.
          33 Achillea millefolium subsp. sudetica
                                                      1
                                                            31
                                                                    Achillea millefolium
                        Achillea millefolium agg.
                                                     1 60728
                                                                        Achillea species
        2923
                                                       1 12273 Hieracium subg. Pilosella
                              Hieracium pilosella
        15133
                              Cardamine pratensis
                                                       1 1105 Cardamine pratensis agg.
       20945
                                Cardamine dentata
                                                       1 1105 Cardamine pratensis agg.
                                                                                              1
        1105
                         Cardamine pratensis agg.
                                                       1 60845
                                                                       Cardamine species
                                                                                              1
 3 child taxa found in dataset, adapted
TaxonUsageID
                             TaxonName Freq.1
                                               AGG
                                                               IsChildTaxonOf Freq.2
                  Achillea millefolium
                                          1 27 Achillea millefolium agg.
          31
                                                                                   1
          27 Achillea millefolium agg.
                                            1 60728
                                                             Achillea species
                                                                                   1
        1105 Cardamine pratensis agg.
                                            1 60845
                                                            Cardamine species
 1 child taxa found in dataset, adapted
                             TaxonName Freq.1
                                               AGG
                                                      IsChildTaxonOf Freq.2
          27 Achillea millefolium agg.
                                            1 60728 Achillea species
Number of taxa after validation: 13
Warning: Critical Pseudonym(s) in dataset, please check
                               check against TaxonUsageID
                                                                        publishedInCitation
      to_check check_No
                                                    27395 BfN(Wisskirchen u. Haeupler 1998)
Galium mollugo
                   2555 Galium mollugo auct.
Warning: Critical species in dataset, please check
                                       check against TaxonUsageID
          to_check check_No
Dactylis glomerata
                       1843 Dactylis glomerata s. 1.
    Galium mollugo
                       2555
                                Galium mollugo s. 1.
                                                            26777
              publishedInCitation
BfN(Wisskirchen u. Haeupler 1998)
BfN(Wisskirchen u. Haeupler 1998)
```

The database contains 25 different names in the beginning.

Synonyms 5 of the species names are synonyms and are therefore transferred to legal taxon names, respectively numbers (see option syn='adapt'). If you want to preserve synonyms, choose option syn='conflict' or 'preserve'.

Monotypic species within the area Monotypic taxa are valid taxa which are the only child of their next higher taxonomic rank within the survey area. By default they will be converted by taxval to the higher rank. For instance *Poa trivialis* is in Germany only represented by *Poa trivialis subspecies trivialis*. Both taxa are valid, but for most analysis only one name for these identical entities must be used. By default a list of monotypic taxa within the GermanSL (whole Germany) is considered (see tv.mono('GermanSL 1.2')). The default is to set all monotypic species to the higher rank (because many monotypic subspecies can occur in vegetation databases).

If necessary, the procedure has to be repeated through the taxonomic

Trimming the hierarchy If your database contains the taxon *Asteraceae spec.*, the taxval code explained in the next chapter will aggregate occurrences of all your *Asteracea* to the family level. To prevent this you can delete all observations above a certain taxonomic level. The default is not to trim the hierarchy (ROOT = "Greenish something" is the toplevel).

Solving the nestedness If your database contains Achillea millefolium but also Achillea millefolium agg. for most analysis it will be necessary to coarsen the first (option ag='conflict') because A. millefolium agg. will probably include further occurrences of Achillea millefolium.

The procedure has to be repeated until all occurring taxonomical levels are considered.

Especially with aggregates and their members the coarsening to the higher level can be a sad fate. If you have 100 occurrences of *Achillea millefolium* but a single one with *A. mill. agg.* you might want to clean your observational dataframe beforehand or do the aggregation afterwards manually with tv.veg(db, ag='preserve') and a manual correction with function comb.species (see below).

I confess that it is a strange and complete artificial example. Starting with 25 names in the beginning only 13 taxa survived the valuation. All others had to be converted.

> obs.taxval\$TaxonName <- species\$TaxonName[match(obs.taxval\$TaxonUsageID, species\$TaxonUsageID)]
> obs.taxval[,c('RELEVE_NR', 'COVER_CODE', 'TaxonName')]

	RELEVE_NR	COVER_CODE	TaxonName
1	2	2b	Achillea species
2	2	4	Quercus robur
3	2	1	Quercus robur
4	2	1	Quercus robur
5	1	3	Achillea species
6	1	+	Achillea species
7	1	1	Achillea species
8	1	1	Acer pseudoplatanus
9	1	2	Acer pseudoplatanus
10	1	1	Picea abies
11	1	1	Achillea species
12	3	1	Armeria maritima subsp. halleri
13	3	1	Armeria maritima subsp. elongata
14	3	1	Armeria maritima subsp. halleri
15	1	1	Picea abies
16	3	1	Acorus calamus
17	1	1	Galium mollugo
18	1	1	Dactylis glomerata
19	1	1	Adonis aestivalis
20	1	1	Agrostis stolonifera var. palustris
21	2	1	Hieracium subg. Pilosella
22	2	3	Armeria maritima subsp. halleri
23	3	1	Hieracium subg. Pilosella
24	2	1	Picea abies
25	3	1	Cardamine species
26	3	1	Cardamine species
27	3	1	Cardamine species
28	3	1	Cardamine species
29	3	1	Cardamine species

Critical Pseudonyms Taxon misapplication is maybe the greatest danger in using survey data. Known misapplications of names (.auct) are embedded within GermanSL. Please pay attention, if these might also be relevant for your dataset.

Completely independent from the questions of correct taxonomic naming of a specific specimen, the boundary of a taxon interpretation can differ much Jansen & Dengler (see 2010). This should be adequately solved during data entry. Nevertheless these warnings gives you a last chance to rethink the correctness of your taxon assignments.

Coarsening to a specific taxonomic level If you want only taxa of e.g. level "species" in your analyses but no other taxonomic level, use taxval(obs, ag='adapt', rank='SPE'). All hierarchical levels below the species level (including the above specified monotypic subspecies) are set to species level in this case.

```
> tmp <- taxval(obs.tax, refl='GermanSL 1.2', ag='adapt', rank='FAM')
> tmp$oldTaxon <- tax(obs.tax$TaxonUsageID, refl='GermanSL 1.2')$TaxonName
> tmp$newTaxon <- tax(tmp$TaxonUsageID, refl='GermanSL 1.2')$TaxonName
> head(tmp[,c('oldTaxon','newTaxon')], 10)
                              oldTaxon
                                                 newTaxon
1
             Achillea millefolium agg. Asteraceae species
2
                         Quercus robur Fagaceae species
3
                                        Fagaceae species
                         Quercus robur
                         Quercus robur Fagaceae species
4
5
                  Achillea millefolium Asteraceae species
   Achillea millefolium subsp. collina Asteraceae species
6
7
                      Achillea species Asteraceae species
8
                   Acer pseudoplatanus Aceraceae species
9
                   Acer pseudoplatanus Aceraceae species
10
                       Abies alpestris
                                         Pinaceae species
```

Check ?taxval and args(taxval) for more options.

5.2 Implementing other taxon views

If you wish to use another taxonomic concept (see Berendsohn (1995)) than the default, you can use a conversion table to change synonymy etc. to catch your needs.

```
> newconcept <- taxval(obs, db=db, concept='korneck1996')
```

6 Vegetation matrices

At the moment there exists no formal class for vegetation data in R. But most functions in vegan, ade4 or other packages expect vegetation data to be stored in a matrix with species in columns and plots in rows. Therefore, we need to inflate the Turboveg format (where zero occurrences are missing) to such a matrix.

tv.veg is a wrapper for the above mentioned functions and produces a vegetation matrix with releves as rows and species as columns. Additionally care about species-plot attribute differentiation and combination, and the handling of species codes is provided.

6.1 Performance measures

At least in Europe most vegetation plots have information about the performance of a species within the survey area, often given in some kind of alphanumeric code for cover percentage within the survey plot. Different code systems are combined by using the mean cover percentage per cover code class. Function tv.coverperc will do this job according to the definitions in Turboveg/Popup/tvscale.dbf and the entries in the header data column COVERSCALE.

```
> obs <- tv.obs(db)
reading observations ...
> obs <- tv.coverperc(db, obs)</pre>
```

```
Cover code used:
                      Braun/Blanquet (old)
code
                                                          3
                                    1
                                                   13
                                                               38
                                                                           68
                                                                                       88
perc
 Cover code used:
                      Braun/Blanquet (new)
                                               2m
                                                           2a
                                                                       2<sub>b</sub>
                                                                                                         5
code
                                        3
                                                                           18
                                                                                       38
                                                                                                   68
                                                                                                               88
               1
perc
```

> head(obs)

	RELEVE_NR	${\tt TaxonUsageID}$	COVER_CODE	LAYER	DET_CERT	SEASON	MICROREL	FLOWER	COVERSCALE	COVER_PERC
1	2	27	2b	0	0	0	Schlenke	0	02	18
2	2	4685	4	1	0	0	Schlenke	0	02	68
3	2	4685	1	2	1	0	Schlenke	0	02	3
4	2	4685	1	6	0	0	<na></na>	10	02	3
5	1	31	3	6	0	0	<na></na>	0	01	38
6	1	20096	+	6	0	0	Schlenke	1	01	2

A few simple possibilities for percentage cover transformations are directly included in the tv.veg code, e.g. to use only presence-absence information you can choose option cover.transform = 'pa'.

6.2 Pseudospecies

How to account for different vegetation layers or other kinds of species differentiation?

The next step is the separation of pseudo-species. "Pseudo-species" are all kind of taxa split according to species-plot information beyond the performance measure which will be used within the matrix. At this point you have to decide which information should be preserved and which should be aggregated. For instance layer separation must be defined at this step. The default is to differentiate tree, shrub and herb layers but to combine finer layer specifications within them.

If we have more than one occurrence of the same species in a plot, e.g. because tree species growing as young stands and adult specimens were differentiated according to growth height classes, we have to create either pseudo-species which differentiate the occurrences in the resulting vegetation matrix or to combine species occurrences from different layers. For the latter we can use different calculations e.g. to sum up all cover percentages of different layers 1c='sum' or the maximum value (1c='max'), mean value (1c='mean'). If we assume an independent occurrence of a species in different vertical layers, we can do the calculations with option lc = 'layer' (the default). This results in a probability sum: A species covering 50% in tree layer 1 and 50% in herb layer will get a combined cover of 75% because both layers will overlap 50% (1 - 0.5*0.5).

If you want to specify pseudo-species by other species-plot differentiation you can define a combination dataframe. Two example dataframes are included in the package (1c.0 and 1c.1). Option comb has to be given as a list with first element naming the column name holding the grouping variable and as second element the name of the combination dataframe. Try

```
> data(1c.0)
> tv.veg(db, pseudo = list(1c.0, c("LAYER")), 1c = "layer")
and check the column names:
reading observations ...
Taxonomic reference list: GermanSL 1.2
converting cover code ...
creating pseudo-species ...
combining occurrences using type LAYER and creating vegetation matrix ...
replacing species numbers with short names ...
```

```
[1] "AGRTS;P.6" "CARD#PR.6" "HIERSUG.6" "CARDPRA.6" "ACERPSE.5" "ACERPSE.6" "DACYGLO.6" "CARDPRA.6" [9] "ACHICOL.6" "ARMEM-H" "ARMEM-E" "ARMEM-H" "CARDDEN.6" "PICEABI.2" "PICEABI.3" "GALUMOL.6" [17] "ACHI#MI" "ARMEM-H.6" "HIERPIO" "ACHIMIL.6" "ACHIM-S.6" "PICEABI.1" "QUERROB.1" "QUERROB.2" [25] "QUERROB.6" "ACHI-SP.6" "CARD-SP.6" "ACOR-SP.6" "ADONAES.6"
```

Separated by dots and layer numbers you can see the preserved layers. For meaning of layer numbers see Turboveg help.

Check (data(lc.1)) for the default layer combination.

Beside layers you can use any kind of species-plot attributes to distinguish between occurrences, for instance in a multi-temporal survey.

```
> comb <- list(data.frame(SEASON=0:4, COMB=c(0,'Spring','Summer','Autumn','Winter')),'SEASON')
> names(tv.veg(db, tax=FALSE, pseudo=comb, quiet=TRUE))
reading observations ...
Taxonomic reference list: GermanSL 1.2
converting cover code ...
creating pseudo-species ...
combining occurrences using type LAYER and creating vegetation matrix ...
replacing species numbers with short names ...
                                                      "CARDPRA"
 [1] "AGRTS;P"
                     "CARD#PR"
                                      "HIERSUG"
                                                                      "ACERPSE.Spring"
 [6] "ACERPSE.Summer" "DACYGLO"
                                                      "ACHICOL"
                                                                      "ARMEM-H"
                                     "CARDPRA"
[11] "ARMEM-E"
                    "ARMEM-H"
                                     "CARDDEN"
                                                      "PICEABI"
                                                                      "GALUMOL"
[16] "ACHI#MI"
                     "ARMEM-H"
                                     "HIERPIO"
                                                      "ACHIMIL"
                                                                      "ACHIM-S"
[21] "PICEABI"
                     "QUERROB"
                                     "ACHI-SP"
                                                      "CARD-SP"
                                                                      "ACOR-SP"
[26] "ADONAES"
> data(lc.1)
> veg <- tv.veg(db, lc = "sum", pseudo = list(lc.1, 'LAYER'), dec = 1, quiet=TRUE)
> veg[,1:10]
  AGRTS; P HIERSUG ACERPSE ACERPSE.Shrub DACYGLO ARMEM-E ARMEM-H GALUMOL PICEABI.Tree QUERROB
1
       3
             0 3 13
                                          3 0 0
                                                                  3
                                                                               6
                                                                                        0
2
       0
               3
                       0
                                    0
                                            0
                                                    0
                                                           38
                                                                   0
                                                                                3
                                                                                        3
3
       0
               3
                       0
                                    0
                                            0
                                                   3
                                                           6
                                                                   0
                                                                                0
                                                                                        0
```

6.3 Combine species manually

Beside semi-automatic taxon harmonization with function taxval there are two possibilities to change Taxonomy manually. If you decide to interpret a certain species name in your database different than stored in the standard view of the taxonomic reference you can replace species numbers within the observational dataframe and run taxval later on.

```
> obs.tax$TaxonUsageID[obs.tax$TaxonUsageID == 27] <- 31</pre>
```

will replace all occurrences of *Achillea millefolium agg*. with *Achillea millefolium* which might be adequate for your survey and will prevent a too coarse taxon grouping. For a longer list of replacements you can use a dataframe.

```
> taxon.repl <- data.frame(old=c(27), new=c(31))
> obs.tax$TaxonUsageID <- replace(obs.tax$TaxonUsageID, match(taxon.repl$old, obs.tax$TaxonUsageID), taxon.repl$</pre>
```

The second possibility is to use function comb.species on vegetation matrices.

```
> veg <- tv.veg('taxatest', quiet=TRUE)</pre>
```

```
reading observations ...
Taxonomic reference list: GermanSL 1.2
Original number of names: 25
           5 Synonyms found in dataset, adapted
      No taxa higher than ROOT found.
          8 child taxa found in dataset, adapted
           3 child taxa found in dataset, adapted
           1 child taxa found in dataset, adapted
Number of taxa after validation: 13
Warning: Critical Pseudonym(s) in dataset, please check
Warning: Critical species in dataset, please check
converting cover code ...
creating pseudo-species ...
combining occurrences using type LAYER and creating vegetation matrix ...
replacing species numbers with % \left( 1\right) =\left( 1\right) +\left( 
> comb.species(veg, sel=c('QUERROB','QUERROB.Tree'))
The following names are combined to the new name: QUERROB
                                                                                                          "QUERROB.Tree"
 [1] "QUERROB"
           AGRTS; P HIERSUG ACERPSE ACERPSE.Shrub DACYGLO ARMEM-E ARMEM-H GALUMOL PICEABI.Tree ACHI-SP
                                            3
                                                                                        0
                                                                                                                                     3
                                                                                                                                                                                                               13
                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                                                                                                                                                                                      3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        43
1
2
                                            0
                                                                                         3
                                                                                                                                     0
                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                                                                                     38
                                                                                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        18
3
                                            0
                                                                                        3
                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                0
                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                                         6
                                                                                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0
                                                                                                                                     0
           CARD-SP ACOR-SP ADONAES QUERROB
1
                                           0
                                                                                        0
                                                                                                                                     3
                                                                                                                                                                                 0
2
                                            0
                                                                                         0
                                                                                                                                     0
                                                                                                                                                                              72
3
                                       14
                                                                                         3
                                                                                                                                     0
                                                                                                                                                                                  0
```

will use the first name ('QUERROB') for the replacement column with the sum of the selected columns.

7 Site data

tv.site will load the site (header) data and does some basic corrections caused by Turboveg dBase format.

```
> site <- tv.site(db)
```

```
The following columns contain no data and are omitted
[1] REFERENCE TABLE_NR
                         NR_IN_TAB PROJECT
                                                                     UTM
                                                                                ALTITUDE
                                               AUTHOR.
                                                          SYNTAXON
[9] EXPOSITION MOSS_IDENT LICH_IDENT
The following numeric columns contain only 0 values and are omitted
[1] COV_TOTAL COV_TREES
                         COV_SHRUBS COV_HERBS COV_MOSSES COV_LICHEN COV_ALGAE
[9] COV_WATER COV_ROCK
                          TREE_HIGH TREE_LOW
                                               SHRUB_HIGH SHRUB_LOW HERB_HIGH HERB_LOW
[17] HERB_MAX
               CRYPT_HIGH
```

The function is quite straightforward. After loading the file tvhabita.dbf from the specified database folder, warnings are given for plots without specified relevé area or date and fields are checked if they are empty (a lot of predefined header fields in Turboveg are often unused) or contain probably mistakable 0 values in numerical fields, due to dBase deficiencies (dBase can not handle NA = not available values reliably). It is stated in the output, if you have to check and possibly correct 0 values.

8 VegetWeb, the National German vegetation plot repository

To prevent incompatibilities with Windows users who want to use Turboveg data but do not want to use VegetWeb data or are not able to install R package RMySQL, I excluded the VegetWeb functions from package vegdata. They can still be downloaded from the following website

```
> source('http://geobot.botanik.uni-greifswald.de/download/r_package/vegetweb.r')
```

9 ESVeg, a XML exchange format for vegetation data

First preliminary functions to load vegetation data from ESVeg formatted XML files are now implemented. As soon as there is a software to use Veg-X, the international TDWG exchange standard for vegetation data, I will implement functions for this.

```
> download.file('http://geobot.botanik.uni-greifswald.de/download/data/T302.xml', "T302.xml")
> T302.site <- ESveg.site('T302.xml')

User defined plot attributes: BEOBACHTUN PLOTCODE PROJEKT NUTZUNG ERHEBER USER MODIFIED PLOT_ID PLOTCODE_1 PROJECT P
```

10 Additional functions

Use help(package='vegdata') for a complete list of available functions and data sets in vegdata.

10.1 Combine different taxonomic reference lists

If you have to combine different taxonomic reference lists, functions tv.compRef1 might be a starting point, comparing species numbers and/or species names of both lists.

```
> tv.compRefl('taxref1', 'taxref2')
```

10.2 Frequency tables

syntab produces a relative or absolute frequency table of a classified vegetation table with the possibility to filter according to threshold values. To exemplify the function we use the second dataset implemented in the package. It is the demonstration dataset from Leyer & Wesche (2007), a selection of grassland relevés from the floodplains of the river Elbe.

We can e.g. look at the relative frequency of all species with more than 40% at least in one column, according to the height of the groundwater table (low or high) and the amplitude of the groundwater table fluctuations (high or low deviations from the mean). Additionally we can use the affiliation of species to abiotic clusters with the help of package indicspecies, which calculates species indicator values for one or several cluster (De Cáceres et al., 2010) to order the syntaxonical table.

> syntab(elbaue, clust, mupa=TRUE, fullnames=TRUE)

Number of clusters: 4 Cluster frequency 7 10 5 11

Cluster frequency 7 10 5 11							
	dry.ld	dry.hd	wet.hd	wet.ld	index	cl	p.value
Cirsium arvense	43			•	1	0.64	0.015
Cnidium dubium	14				1	0.38	0.365
Deschampsia cespitosa	57				1	0.72	0.010
Euphorbia esula	43				1	0.65	0.005
Galium verum agg.	71				1	0.83	0.005
Lathyrus pratensis	43				1	0.59	0.040
Vicia tetrasperma	57				1	0.71	0.005
Carex vulpina		40			2	0.52	0.320
Poa palustris		60			2	0.72	0.160
Potentilla reptans		30			2	0.55	0.080
Vicia lathyroides		10			2	0.32	0.705
Glyceria fluitans			20		3	0.43	0.600
Alopecurus geniculatus			60		3	0.65	0.025
Rorippa amphibia			60		3	0.77	0.010
Caltha palustris				36	4	0.60	0.030
Stellaria palustris				64	4	0.63	0.065
Carex disticha				18	4	0.43	0.315
Agrostis canina				36	4	0.60	0.020
Carex vesicaria				55	4	0.74	0.010
Cirsium vulgare				9	4	0.30	1.000
Carex gracilis				82	4	0.87	0.005
Juncus effusus				45	4	0.60	0.125
Ranunculus flammula				55	4	0.74	0.005
Erophila verna agg.	29	20			5	0.49	0.270
Carex praecox agg.	43	70			5	0.77	0.010
Agrostis tenuis	57	30			5	0.64	0.105
Agropyron repens subsp. caesium	57	90			5	0.87	0.005
Achillea millefolium	29	30			5	0.54	0.100
Alopecurus pratensis	71	90			5	0.88	0.005
Poa pratensis agg.	57	60			5	0.71	0.200
Rumex thyrsiflorus	43	60			5	0.73	0.010
Vicia cracca	43	10			5	0.48	0.700
Taraxacum officinale agg.	57	60			5	0.72	0.035
Cardamine nemorosa	43			55	7	0.69	0.035
Festuca pratensis	14			18	7	0.41	0.435
Holcus lanatus	43			36	7	0.62	0.090
Potentilla anserina	29			27	7	0.53	
Rumex acetosa	43			27	7	0.58	0.060
Agrostis stolonifera		40	40		8	0.63	0.105
Plantago major subsp. intermedia		40	20		8	0.58	0.055
Rorippa sylvestris		40	40			0.62	0.110
Eleocharis uniglumis		20		18		0.44	
Galium palustre agg.			60	64		0.70	0.240
Symphytum officinale agg.			20	9		0.35	0.535
Glyceria maxima			80	45		0.75	0.025
Sium latifolium			40	45		0.66	0.025
Anthoxanthum odoratum	43	10		27		0.50	0.750
		0	•				

Figure 2: Spatial distribution of vegetation plots from a VegetWeb project. The map is interactive and scalable.

Trifolium repens	14	10		36	12 0.46	0.725
Lychnis flos-cuculi	14		20	27	13 0.47	0.355
Poa trivialis agg.		30	20	45	14 0.56	0.630
Phalaris arundinacea		40	80	64	14 0.76	0.150
Ranunculus repens		60	40	73	14 0.75	0.295
Lotus corniculatus	14	10	20	18	15 0.39	NA

11 Vegetation analyses

The package *vegdata* serves mostly as a helper for the analysis of vegetation data. Several powerful R packages like *vegan* and others exist, to provide a very broad range of possibilities.

11.1 Plot coordinates of vegetation relevés into an interactive Google Map

We will use data from VegetWeb (Schmitt, Fartmann, Hoelzel 2010 Phytosociology and ecology of *Gladiolus palustris* in southern Bavaria, Tuexenia 30, p. 105-128.) to make an interactive map of plot locations. The data has already been loaded through the ESVeg functionality 9.

A database with 140 plots with plot locations.

If you do not have geodesic coordinates as used in Google Earth (EPSG-Code 4326), you could convert coordinates with R packages rgdal.

```
> library(rgdal)
> library(googleVis)
> coord <- data.frame(lat=T302.site$LATITUDE, long=T302.site$LONGITUDE)
> coordinates(coord) <- c("long", "lat")
> proj4string(coord) <- CRSargs(CRS("+init=epsg:31468")) # GK, 4. Stripe
> coord <- spTransform(coord, CRS("+init=epsg:4326")) # WGS 84, geographical coordinates, decimal degrees
> T302.site$long <- coordinates(coord)[,1]
> T302.site$lat <- coordinates(coord)[,2]</pre>
```

To give some information in the interactive map, we will Provide Hyperlink Tips:

```
> T302.site$loc <- paste(T302.site$LATITUDE, T302.site$LONGITUDE, sep=':')
> T302.site$tip <- paste(paste('Releve_NR:', T302.site$plotCode), paste('Table:', T302.site$referenceTable), paste
and the produced map will open in your web browser.</pre>
```

```
> places <- gvisMap(T302.site[,c('loc','tip')], 'loc', 'tip', options=list(showTip=TRUE, showLine=FALSE, enableScro > plot(places)
```

11.2 Multivariate Ordinations

With the functions shown above we are now ready to do some example analyses in the wide area of vegetation analyses.

We can do, for instance, a "Nonmetric Multidimensional Scaling with Stable Solution from Random Starts Axis Scaling and Species Scores" which is a wrapper for Kruskal's Non-metric Multidimensional Scaling (Cox & Cox, 1994, 2001) from Jari Oksanen (Oksanen et al., 2008).

```
> ## Data analyses
> library(vegan)
> veg.nmds <- metaMDS(elbaue, distance = "bray", trymax = 5, autotransform =FALSE, noshare = 1, expand = TRUE, t
> # plot(veg.nmds)
> source('~/workspace/vegdata/R/tv.traits.r')
> mT.F <- meanTraits('OEK_F', elbaue)
> mT.N <- meanTraits('OEK_N', elbaue)
> env <- envfit(veg.nmds, data.frame(mT.F,mT.N))</pre>
```

To show the result in comparison with environmental measurements in a nice graphic we do some plotting magic.

```
> library(labdsv)
> library(akima)
> color = function(x)rev(topo.colors(x))
> nmds.plot <- function(ordi, site, var1, var2, disp, plottitle = 'NMDS', env = NULL, ...) {
  lplot <- nrow(ordi$points); lspc <- nrow(ordi$species)</pre>
  filled.contour(interp(ordi$points[, 1], ordi$points[, 2], site[, var1]),
                  ylim = c(-1, 1.1), xlim = c(-1.4, 1.4),
     color.palette = color, xlab = var1, ylab = var2, main = plottitle,
      key.title = title(main = var1, cex.main = 0.8, line = 1, xpd = NA),
      plot.axes = { axis(1); axis(2)
        points(ordi$points[, 1], ordi$points[, 2], xlab = "", ylab = "", cex= .5, col = 2, pch = '+')
        points(ordi$species[, 1], ordi$species[, 2], xlab = "", ylab = "", cex=.2, pch = 19)
        ordisurf(ordi, site[, var2], col = 'black', choices = c(1, 2), add = TRUE)
        orditorp(ordi, display = disp, pch = " ")
        legend("topright", paste("GAM of ", var2), col = 'black', lty = 1)
        if(!is.null(env)) plot(env, col='red')
     }
```

The first axis of our NMDS plot show the influence of mean groundwater level on the patterns of the dataset. Glyceria maxima is marking the wet side of the gradient, whereas Cnidium dubium Agrostis capillaris or Galium verum agg, occur only at low mean groundwater level. The second axis can be assigned to the fluctuation of water levels measured as standard deviation of mean groundwater level. Species indicating high water fluctuation are Agrostis stolonifera or Alopecurus geniculatus whereas Carex vesicaria occurs only at more balanced situations.

References

Berendsohn, W.G. (1995). The concept of "potential taxa" in databases. Taxon, 44, 207–212.

Cox, T.F. & Cox, M.A.A. (1994, 2001). Multidimensional Scaling. Chapman & Hall.

De Cáceres, M., Legendre, P. & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. *Oikos*, 119, 1674–1684.

Dengler, J., Jansen, F., Glöckler, F., Peet, R., De Cáceres, M., Chytrý, M., Ewald, J., Oldeland, J., Lopez-Gonzalez, G., Finckh, M. & Others (2011). The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. *Journal of Vegetation Science*, 22, 582–597.

Figure 3: Non-metric multidimensional scaling of the elbaue vegetation data with an overlay of mean ground-water table (colors) and standard deviation of groundwater level fluctuations (lines). Arrows show direction of increasing mean Ellenberg F resp. N

- Hennekens, S.M. & Schaminée, J.H.J. (2001). Turboveg, a comprehensive data base management system for vegetation datasoftware package for input, processing, and presentation of phytosociological data. *Journal of Vegetation Science*, 12, 589–591.
- Jansen, F. & Dengler, J. (2008). Germansl eine universelle taxonomische referenzliste für vegetationsdatenbanken. *Tuexenia*, 28, 239–253.
- Jansen, F. & Dengler, J. (2010). Plant names in vegetation databases a neglected source of bias. *Journal of Vegetation Science*, 21, 1179–1186.
- Leyer, I. & Wesche, K. (2007). Multivariate Statistik in der Ökologie. Springer, Berlin.
- Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L. & Stevens, M.H.H. (2008). vegan: Community Ecology Package.