Probability distributions

Kevin Murphy Ch. 2

CS 6140 Machine Learning Professor Olga Vitek

January 12, 2017

Random sampling

Probabilistic statements

$$p(y \le a|\mathbf{x})$$

$$p(\bar{y} \le a|\mathbf{x})$$

Model-based summaries

$$\hat{y} = \hat{f}(\mathbf{x})$$

$$p(y|\mathbf{x},\mathcal{D})$$

Probability: frequentist interpretation

- A thought experiment
- Probability of an outcome
 - Defined in the context of chance operation
 - Quantifies the chance of occurrence of the event
- Probability calculations
 - The proportion of times that the outcome will occur in an infinite sequence of observations

$$P\{E\} = \frac{\text{\# favorable outcomes}}{\text{\# possible outcomes}}$$

- Describes what the outcomes would be
 - If the population parameters were known
 - If we could measure the population

Probability: Bayesian interpretation

- Uncertainty in in event
 - Including events that do not have long-term frequencies (e.g., ice cap melts)
 - Relates to information instead of repeated trials
- Can express our subjective uncertainty
- Describes what the outcomes would be
 - If the population parameters were known
 - If we could measure the population

Properties

- Axioms of probabilities
 - Probability of empty set $P\{No \text{ event}\} = 0$
 - Probability of any event $P\{Any event\} = 1$
 - Probability of union of two events $P\{E_1 \cup E_2\} = P\{E_1\} + P\{E_2\} P\{E_1 \cap E_2\}$
- Consequences

$$- 0 \le P\{E\} \le 1$$

$$-P\{\bar{E}\}=1-P\{E\}$$

- Monotonicity If $E_1 \in E_2$, then $P\{E_1\} \leq P\{E_2\}$
- If $E_1 \cup E_2 \le P\{E_1\} + P\{E_2\}$
- If $E_1 \cap E_2 = \emptyset$, then $P\{E_1 \cup E_2\} = P\{E_1\} + P\{E_2\}$

Categorical random variables Probability distribution

- A table
 - Or a formula describing the table
- Frequencies of events in the population

- Coin toss
$$P\{Tail\} = \frac{\# Tail}{\# Tail} + Head$$

- Lottery win
$$P\{\text{Win}\} = \frac{\# \text{ Winning tickets}}{\# \text{ All tickets}}$$

• Bayesian: confidence in the event

K. Murphy, Fig 2.1

• Bernoulli (π) - parameter π $P\{Y=y\} = \left\{ \begin{array}{ll} \pi, & \text{if } y=1 \\ 1-\pi, & \text{if } y=0 \end{array} \right.$

• Binomial (n, π) - parameters (n, π)

$$P{Y = y} = \binom{n}{y} \pi^y (1 - \pi)^{n-y}, \ y = 0, \dots n$$

Poisson(λ)

$$P\{Y=y\} = \frac{e^{-\lambda}\lambda^y}{y!}, \ y=0,\dots$$

$$\lambda = 0.5 \qquad \lambda = 1 \qquad \lambda = 3$$

$$0009 \quad 0009 \quad 0000 \quad$$

Probability distribution: two categorical random variables

- Joint outcome of two events
 - Tossing two coins

	Head	Tail
Head	$\frac{1}{4}$	$\frac{1}{4}$
Tail	$\frac{1}{4}$	$\frac{1}{4}$

-
$$P\{Coin_1 = Head and Coin_2 = Tail\} = \frac{1}{4}$$

 Can think of this as a single event with a bivariate pattern

Head, Head, Tail, Tail, Head Tail, Tail
$$\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

 More useful to think of this as two distinct events, and study their joint properties

Joint outcome of two events

Probability tree

Venn diagram

Possible events

Outcomes of two events

- Outcome of two events
 - $P\{E_1, E_2\} = P\{(\text{Head, Head})\} = 1/4$
 - $P\{E_1, E_2\} = P\{(\text{Head, Tail})\} = 1/4$
 - $P\{E_1, E_2\} = P\{(Tail, Head)\} = 1/4$
- Outcome of any of the two events
 - $P{E_1 \text{ OR } E_2} = P{E_1 \cup E_2} =$ $P{E_1} + P{E_2} - P{E_1 \cap E_2}$
 - $P\{\text{Coin 1 Head OR Coin 2 Head}\} = 2/4 + 2/4 1/4 = 3/4$
 - $P{At least 1 Head} = 2/4 + 2/4 1/4 = 3/4$
 - $P\{(\text{Head, Tail}), \text{ any order}\} = P\{(\text{Head, Tail}) + P\{(\text{Tail, Head})\} 0 = 1/4 + 1/4$

Conditional probability and Bayes rule

Conditional probability

$$- P\{E_2|E_1\} = \frac{P\{E_1 \cap E_2\}}{P\{E_1\}}$$

- Example:

$$P\{\text{Coin 2 Head} \mid \text{Coin 1 Head}\} = \frac{P\{\text{Coin 2 Head} \cap \text{Coin 1 Head}\}}{P\{\text{Coin 1 Head}\}} = \frac{1/4}{1/2} = 1/2$$

- Consequence
 - $P\{E_1 \cap E_2\} = P\{E_1\} \cdot P\{E_2|E_1\}$
 - Used to draw probability trees
- Bayes rule $P\{E_2|E_1\} = \frac{P\{E_1 \cap E_2\}}{P\{E_1\}} = \frac{P\{E_2\} \cdot P\{E_1|E_2\}}{P\{E_1\}}$ $= \frac{P\{E_2\} \cdot P\{E_1|E_2\}}{\sum_{e_2} P\{e_2\} \cdot P\{E_1|e_2\}}$

- HIV testing
 - The prevalence of HIV in a population is 2%
 - Test for HIV has sensitivity 99.7%
 - The test is negative in 98.5% of healthy people
- What is the probability that the person with a positive test has HIV?

Generalization

- Goal: classify $y \in \{1, \dots, C\}$
 - Bayes rule:

$$p(y = c|\mathbf{x}) = \frac{p(y = c) \cdot p(\mathbf{x}|y = c)}{\sum_{c'} p(y = c') \cdot p(\mathbf{x}|y = c')}$$

- Generative classifiers
 - Specify prior probability of p(y=c)
 - Assume class-conditional distribution $p(\mathbf{x}|y=c)$
 - Use Bayes rule to derive the posterior $p(y = c|\mathbf{x})$
 - Example: Linear discriminant analysis
- Discriminative classifiers
 - Estimate the posterior the posterior $p(y = c|\mathbf{x})$
 - Do not assume the distribution on x
 - Example: Logistic regression

Independence

- Independence
 - Two events are independent if $P\{E_2|E_1\} = P\{E_2\}$
 - Example:

 $P\{\text{Coin 2 Head} \mid \text{Coin 1 Head}\} = P\{\text{Coin 2 Head}\}\$ Therefore two coins are independent

- Consequence: for independent events $P\{E_1 \cap E_2\} = P\{E_1\} \cdot P\{E_2 | E_1\} = P\{E_1\} \cdot P\{E_2\}$

- Example: hair versus eye color
 - Assume that we have measurements on the entire population of individuals

Eye	На			
color	Brown	Black	Red	Total
Brown	400	300	20	720
Blue	800	200	50	1050
Total	1200	500	70	1770

– Are hair and eye colors independent?

Continuous random variables Probability density function

- Probability density function (pdf)
 - An idealized histogram of Y
 - Continuum paradox: for any a, $P\{Y = a\} = 0$
- Cumulative distribution function (cdf)
 - $F(a) = P\{y \le a\}$
 - Probability that Y is between a and b $P\{ a \le Y \le b \} = F(b) - F(a)$
 - $F(a) = P\{y \le a\} = P\{y < a\}$
- Numbers such as a and b are called quantiles of the probability density
 - E.g., a is the 25th quantile, if $P\{Y \le a\} = 0.25$

• The Uniform distribution $\mathcal{U}(a,b)$

$$f(Y) = \begin{cases} \frac{1}{b-a}, & \text{if } Y \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$

ullet The general Normal distribution $\mathcal{N}(\mu, \sigma)$

$$f(Y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{Y-\mu}{\sigma})^2}$$

- μ and σ are parameters
- ullet The Standard Normal distribution $\mathcal{N}(0,1)$

$$f(Y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}Y^2}$$

- A lpha quantile of $Z\sim\mathcal{N}(0,1)$ is z_{lpha} , such that $P\{Z\leq z_{lpha}\}=lpha$

Areas under $\mathcal{N}(0,1)$ Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559

> qnorm(0.025)

[1] -1.959964

> pnorm(1.96)

[1] 0.9750021

The Student t distribution

$$f(Y) \propto \left[+\frac{1}{\nu} \left(\frac{Y-\mu}{\sigma} \right)^2 \right]^{-\frac{\nu+1}{2}}$$

• The Laplace distribution

$$f(Y) = \frac{1}{2b} \exp\left(-\frac{|Y-\mu|}{b}\right)$$

K. Murphy, Fig 2.7

More on cumulative distribution function (CDF)

- $\bullet \ F_Y(y) = P\{Y \le y\}$
 - Ordered categor. variables: $F_Y(y) = P\{Y \le y\}$
 - Continuous variables: $F_Y(y) = \int_{-\inf}^x f_Y(y) dx$

Properties

- $F_Y(y)$ is non-decreasing and right-continuous
- $\lim_{y\to -\inf} F_Y(y) = 0$ and $\lim_{y\to \inf} F_Y(y) = 1$
- y is the $F_Y(y)$ th quantile of Y

$$- P\{a \le X \le b\} = F_Y(b) - F_Y(a)$$

$$- \bar{F}_Y(y) = P\{Y > y\} = 1 - F_Y(y)$$

Probability density function: definition

$$- f_Y(y) = \frac{\partial F_Y(y)}{\partial y}$$

https://en.wikipedia.org

Expected value

- Expected value = population mean
- Denoted $E\{Y\} = \mu_Y$
- Ordered categorical variables

$$- E\{Y\} = \mu_Y = \sum_i y_i P\{Y = y_i\}$$

- The sum is over all possible values
- Continuous variables

$$- E\{Y\} = \mu_Y = \int_{-\inf}^{\inf} y f(y) dy$$

ullet If $X\ \&\ Y$ have expected values μ_X and μ_Y :

$$-\mu_{aX+b} = a\mu + b$$

$$-\mu_{X+Y} = \mu_X + \mu_Y$$
 and $\mu_{X-Y} = \mu_X - \mu_Y$

$$-\mu_{X/Y} \neq \mu_X/\mu_Y$$

Variance

- Denoted $Var\{Y\} = \sigma^2\{Y\}$
- $\sigma_Y^2 = E\{(Y E\{Y\})^2\}$
- Ordered categorical variables

$$- \sigma_Y^2 = \sum_i (y_i - \mu_y)^2 P\{Y = y_i\}$$

- The sum is over all possible values
- Continuous variables

$$- \sigma_Y^2 = \mu_Y = \int_{-\inf}^{\inf} (y - E\{Y\})^2 f(y) dy$$

• If X & Y have expected values μ_X and μ_Y :

$$- \sigma_Y^2 a X + b = a^2 \mu$$

- If X and Y are independent random variables $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$ and $\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$
- $-\mu_{X/Y} \neq \mu_X/\mu_Y$

- $Y \sim \text{Bernolli}(\pi)$ - $E\{Y\} = \pi$, $Var\{Y\} = \pi(1 - \pi)$
- $Y \sim \text{Binomial}(n, \pi)$ - $E\{Y\} = n\pi$, $Var\{Y\} = n\pi(1 - \pi)$
- $Y \sim \mathsf{Poisson}(\lambda)$ - $E\{Y\} = \lambda$, $Var\{Y\} = \lambda$
- $Y \sim \mathcal{U}(a,b)$ - $E\{Y\} = \frac{a+b}{2}$, $Var\{Y\} = \frac{1}{12}(b-a)^2$
- $Y \sim \mathcal{N}(\mu, \sigma)$ - $E\{Y\} = \mu, Var\{Y\} = \sigma^2$
- $Y \sim Student(\mu, \sigma, \nu)$ - $E\{Y\} = \mu, Var\{Y\} = \frac{\nu\sigma^2}{(\nu-2)}$

ullet In a population of fish, the distribution of the number of tail vertebrate Y is

- What is the population mean and variance of the distribution?
- For a random variable $Y \sim \mathcal{N}(\mu, \sigma)$:

$$P\{Y \le y\} = P\left\{\frac{Y - \mu}{\sigma} \le \frac{y - \mu}{\sigma}\right\}$$
$$= P\left\{Z \le \frac{y - \mu}{\sigma}\right\}$$

Use a table lookup (or R) for the standard Normal distribution

Joint probability distribution of two continuous variables

- Bivariate Normal distribution of (Y_1, Y_2)
- Requires five parameters
 - μ_1 and σ_1 are the mean and std dev of Y_1
 - μ_2 and σ_2 are the mean and std dev of Y_2
 - ρ_{12} is the coefficient of correlation

$$\rho_{12} = \frac{Cov(Y_1, Y_2)}{\sigma_1 \sigma_2} = \frac{E\{(Y_1 - \mu_1)(Y_2 - \mu_2)\}}{\sigma_1 \sigma_2}$$
$$= \frac{E\{Y_1 Y_2\} - E\{Y_1\}E\{Y_2\}}{\sigma_1 \sigma_2}$$

Bivariate normal density

$$f(Y_1, Y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho_{12}^2}} \exp\left\{-\frac{1}{2(1-\rho_{12}^2)} \left[\left(\frac{Y_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho_{12} \left(\frac{Y_1 - \mu_1}{\sigma_1}\right) \left(\frac{Y_2 - \mu_2}{\sigma_2}\right) + \left(\frac{Y_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$

https://en.wikipedia.org

Covariance and correlation

- Covariance: extent of linear relationship Correlation: normalized to [-1, 1]
- For two random variables X_1 and X_2 $Cov(X_1, X_2) = E\{X_1 E\{X_1\}\} \cdot E\{X_2 E\{X_2\}\}$ $Cor(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1) \cdot Var(X_2)}}$
- For *D*-dimensional vectors

$$Cov(\mathbf{x}) = E\left[(\mathbf{x} - E\{\mathbf{x}\})(\mathbf{x} - E\{\mathbf{x}\})' \right] =$$

$$= \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & \cdots & Cov(X_1, X_D) \\ Cov(X_2, X_1) & Var(X_2) & \cdots & Cov(X_2, X_D) \\ & & & \cdots \\ Cov(X_d, X_1) & Cov(X_d, X_2) & \cdots & Var(X_D) \end{pmatrix}$$

• Joint D-dimensional distribution $\mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma})$ $f(\mathbf{x}) = \frac{1}{(2\pi)^{D/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)'\mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right]$

- Uncorrelated r.v. \neq independent r.v.!
 - Independent random variables are uncorrelated
 - Uncorrelated random variables may be dependent
 - Exception: Normal distribution is uncorrelated iff independent
- Examples of correlation

K. Murphy, Fig 2.12

Conditional Distribution

- ullet Consider the distribution of Y_1 given Y_2
- Can show that $Y_1|Y_2$ is Normally distributed
- The mean can be expressed

$$E\{Y_1|Y_2\} = \left(\mu_1 - \mu_2 \rho_{12} \frac{\sigma_1}{\sigma_2}\right) + \rho_{12} \frac{\sigma_1}{\sigma_2} Y_2 = \alpha_{1|2} + \beta_{12} Y_2$$

$$\rightarrow$$
 Therefore $\beta_{1|2} = \rho_{12} \frac{\sigma_1}{\sigma_2}$

With constant variance

$$Var\{Y_1|Y_2\} = \sigma_1^2 \left(1 - \rho_{12}^2\right)$$

Information theory

- ullet Entropy of a r.v. y with distribution p
 - Measure of its uncertainty
 - For a discrete variable with C states

$$H(y) = -\sum_{c=1}^{C} p(y = c) \cdot log_2 p(y = c)$$

- Kullback-Leibler divergence (= rel. entropy)
 - Dissimilarity of two prob. distributions p and q
 - For discrete probability distributions with C states

$$KL(p,q) = \sum_{c=1}^{C} p_c \cdot \log_2 \frac{p_c}{q_c} = \sum_{c=1}^{C} p_c \log_2 p_c - \sum_{c=1}^{C} p_c \log_2 q_c$$
$$= -H(p) + H(p,q) = -\text{entropy} + \text{cross-entropy}$$

- Mutual information
 - General approach: associations between two r.v.
 - KL dissimilarity between joint distribution and product of marginal distributions
 - MI=0 iff the variables are independent

$$I(x,y) = \sum_{x} \sum_{y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

Sampling distribution

- Sampling variability
 - Variability of random samples from the population
- Sampling distribution
 - Variability of summaries of random samples from the population
 - Sampling distribution of the sample mean, sample variance, etc
- ullet E.g.: sampling distribution of $ar{Y}$
 - 1 Collect values y_1, y_2, \ldots, y_n from the population
 - 2 Calculate the mean \bar{y}
 - 3 Repeat [1-2] a very large number of times, say 1,000,000
 - 4 The histogram of 1,000,000 values of \bar{y} approximates the sampling distribution of \bar{Y}

The Central Limit Theorem

- The Central Limit Theorem
 - If y_1,y_2,\ldots,y_n follow an arbitrary probability distribution with expected value μ and standard deviation σ , and n is large
 - then $ar{Y} \overset{approximately}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- ullet Special case: $y_i \sim$ Normal distribution

If
$$y_1, y_2, \dots, y_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma) \rightarrow \bar{Y} \stackrel{exactly}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

ullet Special case: $y_i \sim$ Bernoulli distribution

If
$$y_1, y_2, \ldots, y_n \stackrel{iid}{\sim} \text{Bernoulli}(\pi) \to \sum_{i=1}^n y_i \sim \text{Binomial}(n, \pi)$$

$$\to E\{\sum_{i=1}^n y_i\} = n\pi, \ Var\{\sum_{i=1}^n y_i\} = n\pi(1-\pi)$$

$$\to p = \bar{Y} \stackrel{approximately}{\sim} \mathcal{N}\left(\pi, \sqrt{\frac{\pi(1-\pi)}{n}}\right)$$

Vocabulary

- The estimate of variation of the sampling distribution is called standard error
 - If Y is continuous, and $\bar{Y} \overset{approximately}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$, then $\frac{\sigma}{\sqrt{n}}$ is the standard error of the mean
 - If Y is binary, and $\bar{Y} \stackrel{approximately}{\sim} \mathcal{N}\left(\pi, \sqrt{\frac{\pi(1-\pi)}{n}}\right)$, then $\sqrt{\frac{\pi(1-\pi)}{n}}$ is the standard error of the sample proportion

Nature Methods, 'Points of Significance' series

Nature Methods, 'Points of Significance' series