Algorithm 1 Modified Dijkstra's Algorith

```
Input: A graph G(V, E), weights w: E \to \mathbb{R}_{>0}, source vertex s,
         time threshold t and i denotes the index of the service type
Output Assign v.r[i] = 1 for vertices that can reach to s within threshold t
  Q \leftarrow \emptyset
  INSERT(Q, s)
  while Q \neq \emptyset do
      v \leftarrow \text{EXTRACT-MIN}(Q)
      if v.d > t then
          Q \leftarrow \emptyset
      else
          v.r[i] \leftarrow 1
          for each vertex u \in Adj[v] do
              if u \notin Q then
                  u.d \leftarrow v.d + w(u,v)
                  INSERT(Q, u)
              else if u.d > v.d + w(u, v) then
                  u.d \leftarrow v.d + w(u, v)
                  DECREASE-KEY(Q, u, u.d)
              end if
          end for
      end if
  end while
```

Algorithm 2 15-Minute City Algorithm

```
Input: A graph G(V, E), weights w: E \to \mathbb{R}_{>0}, a time threshold t
         and a list S of service vertices of p types
Output Set R \subseteq V representing the t-Minute City
  for all vertex v \in V do
      v.r \leftarrow \{\mathbf{0}\}^p
      v.l \leftarrow \{\mathbf{0}\}^p
  end for
  for all service v \in S do
      v.l[i] \leftarrow 1 for each service type i which belongs to vertex v
  end for
  for each service type i \in \{1, ..., p\} do
      Create a new vertex s
      Add edges from s to all vertices v where v.l[i] = 1 and w(s, v) \leftarrow 0
      Modified_Dijkstra(G, w, s, t, i)
      Remove s and all edges connected to it
  end for
  R \leftarrow \emptyset
  for each vertex v \in V do
      if v.r = 1 then
          R \leftarrow R \cup \{v\}
      end if
  end for
```