Formale Semantik o3. Mengen und Funktionen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Achtung: Folien in Überarbeitung. Englische Teile sind noch von 2007! Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

1 Mengen und Funktionen

- 2 Funktionen und Relationen
- 3 Mehr über Relationen und Mengen

Eine frei definierbare ungeordnete Sammlung von diskreten Objekten

Zahlen

- Zahlen
- Menschen

- Zahlen
- Menschen
- Schuhe

- Zahlen
- Menschen
- Schuhe
- Wörter

- Zahlen
- Menschen
- Schuhe
- Wörter
- ..

- Zahlen
- Menschen
- Schuhe
- Wörter
- ..
- nicht unbedingt zweckgebunden

- Zahlen
- Menschen
- Schuhe
- Wörter
- ...
- nicht unbedingt zweckgebunden
- jedes Objekt maximal einmal in jeder Menge

Eine frei definierbare ungeordnete Sammlung von diskreten Objekten

- Zahlen
- Menschen
- Schuhe
- Wörter
- •
- nicht unbedingt zweckgebunden
- jedes Objekt maximal einmal in jeder Menge

Das Wesentliche von heute in Partee u. a. (1990: Kapitel 1–4)

Mengendefinition $\{\}$, Elementstatus \in

• $M_1 = \{a, b, c\}$ (Menge von Buchstaben)

- $M_1 = \{a, b, c\}$ (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)

- $M_1 = \{a, b, c\}$ (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)
 - ▶ vs. N₂ = {my book} (einelementige Menge, enthält mein Buch)

- $M_1 = \{a, b, c\}$ (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)
 - vs. N₂ = {my book} (einelementige Menge, enthält mein Buch)
 - vs. N₃ = {'my', 'book'} (Menge von Wörtern)

- $M_1 = \{a, b, c\}$ (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)
 - ▶ vs. N₂ = {my book} (einelementige Menge, enthält mein Buch)
 - ▶ vs. N₃ = {'my', 'book'} (Menge von Wörtern)
- möglich, aber ungewöhnlich: N₄ = {'my', book}

- M₁ = {a, b, c} (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)
 - ▶ vs. N₂ = {my book} (einelementige Menge, enthält mein Buch)
 - vs. N₃ = {'my', 'book'} (Menge von Wörtern)
- möglich, aber ungewöhnlich: N₄ = {'my', book}
- definiert über eine Eigenschaft der Elemente (zwei Notationen):

```
M_2 = \{x: x \text{ is one of the first three letters of the alphabet}\}

M_2 = \{x || x \text{ is one of the first three letters of the alphabet}\}
```

- $M_1 = \{a, b, c\}$ (Menge von Buchstaben)
- N₁ = {'my book'} (einelementige Menge, enthält eine NP)
 - ▶ vs. N₂ = {my book} (einelementige Menge, enthält mein Buch)
 - ▶ vs. N₃ = {'my', 'book'} (Menge von Wörtern)
- möglich, aber ungewöhnlich: N₄ = {'my', book}
- definiert über eine Eigenschaft der Elemente (zwei Notationen):
 M₂ = {x: x is one of the first three letters of the alphabet}
 M₂ = {x|| x is one of the first three letters of the alphabet}
- U: die universelle Menge (alle Objekte)

Zwei Mengen mit exakt den gleichen Elementen sind identisch.

Zwei Mengen mit exakt den gleichen Elementen sind identisch.

• {a, b, c} = {x: x is one of the first tree letter of the alphabet}

Zwei Mengen mit exakt den gleichen Elementen sind identisch.

- {a, b, c} = {x: x is one of the first tree letter of the alphabet}
- {x: x is human} = {x: x is from the Earth, a primate but not an ape}

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

Teilmenge oder Identität ⊆ Obermenge oder Identität ⊇

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

Teilmenge oder Identität \subseteq Obermenge oder Identität \supseteq

• $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- $\{a,b,c\}\subseteq\{a,b,c\}$

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- {a,b,c} ⊆ {a,b,c}
- {a,b,c,d} ⊈ {a,b,c} und {a,b,c} ⊉ {a,b,c,d}

Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist (umg. Obermenge).

- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- $\{a\} \subseteq \{a,b,c\}$ und $\{a,b,c\} \supseteq \{a\}$
- {a,b,c} ⊆ {a,b,c}
- {a,b,c,d} ⊈ {a,b,c} und {a,b,c} ⊉ {a,b,c,d}
- $\{x: x \text{ is human}\} \subseteq \{x: \text{ is an ape}\}$

Echte Teilmengen und Obermengen

Echte Teilmengen und Obermengen

Echte Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist, und die nicht mit M identisch ist.

Echte Teilmengen und Obermengen

Echte Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist, und die nicht mit M identisch ist.

Echte Teilmenge ⊂ Echte Obermenge ⊃

Echte Teilmengen und Obermengen

Echte Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist, und die nicht mit M identisch ist.

Echte Teilmenge ⊂ Echte Obermenge ⊃

• $\{a\}\subset\{a,b,c\}$ und $\{a\}\subset\{a,b,c\}$

Echte Teilmengen und Obermengen

Echte Teilmenge | Eine Menge N, die kein Element enthält, das nicht auch in Menge M enthalten ist, und die nicht mit M identisch ist.

Echte Teilmenge ⊂ Echte Obermenge ⊃

- $\{a\}\subset\{a,b,c\}$ und $\{a\}\subset\{a,b,c\}$
- $\{a,b,c\}\not\subset\{a,b,c\}$ aber $\{a,b,c\}\subseteq\{a,b,c\}$

• Achtung bei Mengen von Mengen

- Achtung bei Mengen von Mengen
 - ► {{a}} ⊄ {a,b,c}

- Achtung bei Mengen von Mengen
 - ► {{a}} ⊄ {a,b,c}
 - ► {{a}} ⊈ {a,b,c}

- Achtung bei Mengen von Mengen
 - ► {{a}} ⊄ {a,b,c}
 - ► {{a}} ⊈ {a,b,c}
 - ► {{a}} ∉ {a,b,c}

- Achtung bei Mengen von Mengen
 - ► {{a}} ⊄ {a,b,c}
 - ► {{a}} ⊈ {a,b,c}
 - ► {{a}} ∉ {a,b,c}
- für leere Menge {} oder ∅

- Achtung bei Mengen von Mengen
 - ► {{a}} ⊄ {a,b,c}
 - ► {{a}} ⊈ {a,b,c}
 - ► {{a}} ∉ {a,b,c}
- für leere Menge {} oder ∅
 - $ightharpoonup \{\} \subset \mathsf{jede} \ \mathsf{anderen} \ \mathsf{Menge}$

- Achtung bei Mengen von Mengen
 - ► {{a}} ⊄ {a,b,c}
 - ► {{a}} ⊈ {a,b,c}
 - ► {{a}} ∉ {a,b,c}
- für leere Menge {} oder ∅
 - ▶ {} ⊂ jede anderen Menge
 - **▶** {} ∉ {}

Logik mit Mengen

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth E = {x: x is professors of English Linguistics} H = {x: x is human}

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth E = {x: x is professors of English Linguistics} H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth
 E = {x: x is professors of English Linguistics}
 H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$
- Aber

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth
 E = {x: x is professors of English Linguistics}
 H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$
- Aber
 - Die Anglistikprofessoren sind zahlreich.

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr WebelhuthE = {x: x is professors of English Linguistics}H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$
- Aber
 - Die Anglistikprofessoren sind zahlreich.
 - N = {x: x is a set with many members}

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth
 E = {x: x is professors of English Linguistics}
 H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$
- Aber
 - Die Anglistikprofessoren sind zahlreich.
 - N = {x: x is a set with many members}
 - ▶ Aus $w \in E$ und $E \in N$ folgt nicht $w \in N$

- Logik mit Mengen
 - Alle Anglistikprofessoren sind menschlich.
 Herr Webelhuth ist Anglistikprofessor.
 - w = Herr Webelhuth
 E = {x: x is professors of English Linguistics}
 H = {x: x is human}
 - ▶ Aus $w \in E$ und $E \subset H$ folgt $w \in H$

Aber

- Die Anglistikprofessoren sind zahlreich.
- N = {x: x is a set with many members}
- ▶ Aus $w \in E$ und $E \in N$ folgt nicht $w \in N$
- Vergleiche: *Herr Webelhuth ist zahlreich.

Potenzmenge $\wp(\cdot)$ | Für jede Menge M: $\wp(M) = \{X : X \subseteq M\}$

Beispiel

- Beispiel
 - ► M={a,b,c}

- Beispiel
 - M={a,b,c}
 - $\blacktriangleright \wp(M) = \{\}$

- Beispiel
 - ► M={a,b,c}
 - ▶ $\wp(M) = \{\{a\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?

- Beispiel
 - M={a,b,c}
 - $\wp(M) = \{\{a\}, \{b\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

- Beispiel
 - M={a,b,c}
 - $\wp(M) = \{ \{ \overline{a} \}, \{ b \}, \{ c \} \}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

- Beispiel
 - ► M={a,b,c}
 - $\wp(M) = \{\{a\}, \{b\}, \{c\}, \{a, b\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

- Beispiel
 - M={a,b,c}
 - $\triangleright \ \wp(M) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

- Beispiel
 - ► M={a,b,c}
 - $\triangleright \wp(M) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

- Beispiel
 - ► M={a,b,c}
 - $\triangleright \wp(M) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

- Beispiel
 - M={a,b,c}
 - $\triangleright \wp(M) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{\}\}\}$
- Warum ist die leere Menge in der Potenzmenge jeder Menge?
- Warum ist die leere Menge eine echte Teilmenge jeder Menge?

Union \cup and intersection \cap

• For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$

Union ∪ and intersection ∩

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$

Union ∪ and intersection ∩

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | x \in M \text{ and } x \in N\}$

Union ∪ and intersection ∩

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | x \in M \text{ and } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b\}$ then $M \cap N = \{a, b\}$

Union \cup and intersection \cap

- For any sets M and N: $M \cup N = \{x | x \in M \text{ or } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b, d\}$ then $M \cup N = \{a, b, c, d\}$
- For any sets M and N: $M \cap N = \{x | | x \in M \text{ and } x \in N\}$
- if $M = \{a, b, c\}$ and $N = \{a, b\}$ then $M \cap N = \{a, b\}$
- as a general principle (Consitency): $M \subseteq N$ iff $M \cup N = N$ and $M \subseteq N$ iff $M \cap N = M$

• $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}$ then $\bigcup M = \{a, b, c\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a,b\}$, $M_3 = \{a,b,c\}$, $I = \{1,2,3\}$; $\bigcup_{i \in I} M = \{a,b,c\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}$ then $\bigcap M = \{a\}$

- $\bigcup M = \{x | x \in Y \text{ for some } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcup M = \{a, b, c\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcup_{i \in I} M = \{a, b, c\}$
- $\bigcap M = \{x | x \in Y \text{ for every } Y \in M\}$
- (a) if $M = \{\{a\}, \{a, b\}, \{a, b, c\}\}\$ then $\bigcap M = \{a\}$
- (b) $M_1 = \{a\}$, $M_2 = \{a, b\}$, $M_3 = \{a, b, c\}$, $I = \{1, 2, 3\}$; $\bigcap_{i \in I} M = \{a\}$

• For any two sets M and N: $M - N = \{x | | x \in M \text{ and } x \notin N \}$

- For any two sets M and N: $M N = \{x | x \in M \text{ and } x \notin N\}$
- $M = \{a, b, c\}$, $N = \{a\}$, $M N = \{b, c\}$

- For any two sets M and N: $M N = \{x | | x \in M \text{ and } x \notin N \}$
- $M = \{a, b, c\}, N = \{a\}, M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | x \in N \text{ and } x \notin M\}$

- For any two sets M and N: $M N = \{x | | x \in M \text{ and } x \notin N \}$
- $M = \{a, b, c\}, N = \{a\}, M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | x \in N \text{ and } x \notin M\}$
- $O = \{a, b, c, k\} M \setminus O = \{k\}$

- For any two sets M and N: $M N = \{x | x \in M \text{ and } x \notin N \}$
- $M = \{a, b, c\}$, $N = \{a\}$, $M N = \{b, c\}$
- For any two sets M and N: $M \setminus N = \{x | | x \in N \text{ and } x \notin M\}$
- $O = \{a, b, c, k\} M \setminus O = \{k\}$
- the universal complement: $M' = \{x | x \in U \text{ and } x \notin M\}$ (U the universal set)

• Idempotency: $M \cup M = M$, $M \cap M = M$

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...
- Distributivity for \cup and \cap : $M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$...

- Idempotency: $M \cup M = M$, $M \cap M = M$
- Commutativity for \cup and \cap : $M \cup N = N \cup M$...
- Associativiy for \cup and \cap : $(M \cup N) \cup O = M \cup (N \cup O)$...
- Distributivity for \cup and \cap : $M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$...
- Identity: $M \cup \emptyset = X$, $M \cup U = U$...what about \cap

More interesting equalities

• Complement laws: $M \cup \emptyset = M$, M'' = M, $M \cap M' = \emptyset$, $X \cap U = U$

More interesting equalities

- Complement laws: $M \cup \emptyset = M$, M'' = M, $M \cap M' = \emptyset$, $X \cap U = U$
- DeMorgan: $(M \cup N)' = M' \cap X' \dots$

• ...without introducing ordered tuples as a new primitive

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a,b}}

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{ \{a\}, \{a, b\} \}$

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{ \{a\}, \{a, b\} \}$
- orderend n-tuples defined recursively

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{ \{a\}, \{a, b\} \}$
- orderend n-tuples defined recursively
- $\langle a, b \rangle \neq \langle b, a \rangle$

- ...without introducing ordered tuples as a new primitive
- take S={{a}, {a, b}}
- we write: $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$
- orderend n-tuples defined recursively
- $\langle a, b \rangle \neq \langle b, a \rangle$
- first and second coordinate of the tuple

sets of ordered pairs

- sets of ordered pairs
- tupling each member of the first argument with each of the second

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | x \in S_1 \text{ and } y \in S_2 \}$

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | | x \in S_1 \text{ and } y \in S_2 \}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | x \in S_1 \text{ and } y \in S_2\}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$
- $\langle x_1, x_2, \dots, x_n \rangle$ abbreviated \vec{x}

- sets of ordered pairs
- tupling each member of the first argument with each of the second
- $S_1 \times S_2 = \{\langle x, y \rangle | x \in S_1 \text{ and } y \in S_2\}$
- for an arbitrary number of sets: $S_1 \times \cdots \times S_n = \{\langle x_1, x_2, \dots, x_n \rangle | | x_i \in S_i \}$
- $\langle x_1, x_2, \dots, x_n \rangle$ abbreviated \vec{x}
- for $S \times S \times \cdots$: n-fold products $S^n = \{\vec{s} | | s_i \in S \text{ for } 1 \le i \le n\}$

Defintion of relations

• hold between (sets of) objects

Defintion of relations

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...

Defintion of relations

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb

Defintion of relations

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb
- a ∈ A and b ∈ B: R ⊆ A × B,
 R is from A (domain) to B (range)

Defintion of relations

- hold between (sets of) objects
- x kicks y, x lives on the same floor as y, ...
- formalization: Rab, aRb
- a ∈ A and b ∈ B: R ⊆ A × B,
 R is from A (domain) to B (range)
- R from A to A is in A

• complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - ▶ R = the relation of teacherhood between a and b (the **arguments**)

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ▶ R' = all pairs $\langle b, a \rangle$ s.t. it is false that the first member is the teacher of the second member

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ▶ R' = all pairs $\langle b, a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ightharpoonup R' = all pairs $\langle b,a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b: Herr Webelhuth is the teacher of Herr Schäfer.

- complement $R' = \{\langle a, b \rangle \notin R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b (the arguments)
 - ▶ R' = all pairs $\langle b, a \rangle$ s.t. it is false that the first member is the teacher of the second member
- inverse: $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ for $R \subseteq A \times B$
 - R = the relation of teacherhood between a and b: Herr Webelhuth is the teacher of Herr Schäfer.
 - ▶ R^{-1} = all pairs $\langle b, a \rangle$ where a is the teacher of b: Herr Schäfer is the inverse-teacher of Herr Webelhuth.

Functions

A function F from A to B is a relation s.t. for every a ∈ A there is exactly on tuple
 ⟨a, b⟩ ∈ A × B s.t. a is the first coordinate.

Functions

- A function F from A to B is a relation s.t. for every $a \in A$ there is exactly on tuple $\langle a,b\rangle \in A \times B$ s.t. a is the first coordinate.
- partial function from A to B: for some $a \in A$ there is no tuple $\langle a, b \rangle \in A \times B$, F is not defined for some a

• B the range of F, F is **into** B

- B the range of F, F is **into** B
- F from A to B is onto (a surjection) B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$

- B the range of F, F is into B
- F from A to B is onto (a surjection) B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$
- F from A to B is one-to-one (an injection) iff there are no two pairs s.t. $\langle a_i, b_j \rangle \in F$ and $\langle a_k, b_j \rangle \in F$

- B the range of F, F is into B
- F from A to B is onto (a surjection) B iff there is no $b_i \in B$ s.t. there is no $\langle a, b_i \rangle \in F$
- F from A to B is one-to-one (an injection) iff there are no two pairs s.t. $\langle a_i, b_j \rangle \in F$ and $\langle a_k, b_j \rangle \in F$
- one-to-one, onto, and total function: correspondence (bijection)

Composition

• One can take the range of a function and make it the domain of another function.

Composition

- One can take the range of a function and make it the domain of another function.
- A function $F_1:A\to B$ and a function $F_2:B\to C$ can be composed as B(A(a)), short $B\circ A$

Composition

- One can take the range of a function and make it the domain of another function.
- A function $F_1:A\to B$ and a function $F_2:B\to C$ can be composed as B(A(a)), short $B\circ A$
- the compound function can be empty, it will be total if both A and B are bijections.

Reflexivity

	if	(ex.)
reflexive	for every $a \in A$: $\langle a, a \rangle \in R$	is as heavy as
irreflexive non-reflexive	for every $a \in A$: $\langle a, a \rangle \notin R$ for some $a \in A$: $\langle a, a \rangle \notin R$	A: physical objects is the father of has hurt

Symmetry

	if	(ex.)
symmetric	for every $\langle a,b \rangle \in R$:	has the same car as
	$\langle b,a angle \in R$	
asymmetric	for every $\langle a,b angle \in R$:	has a different car than
	$\langle b,a\rangle ot\in R$	
non-symmetric	for some $\langle a,b \rangle \in R$:	is the sister of
	$\langle b,a\rangle \not\in R$	
anti-symmetric	for every $\langle a,b\rangle\in R$: $a=b$	beats oneself
		not every human does

Transitivity

	if	(ex.)
transitive	if $\langle a,b \rangle \in R$ and $\langle b,c \rangle \in R$	is to the left of
	then $\langle a,c \rangle \in R$	
intransitive	the above is never the case	is the father of
non-transitive	the above is sometimes not the case	likes

Connectedness

	if	(ex.)
connected	for every $a, b \in A$, $a \neq b$:	>
	either $\langle a,b\rangle\in R$ or $\langle b,a\rangle\in R$	(A: the natural numbers)
non-connected	for some $a, b \in A$ the above is not the case	likes

• reflexive $(\langle a, a \rangle \in R \text{ for every } a)$

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$
- is as stupid as

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \ \& \ \langle b,c\rangle \in R \ \rightarrow \langle a,c\rangle \in R)$
- is as stupid as
- partition the range into equivalence classes:

```
A = \{a, b, c, d\}, for example P_{A_1} = \{\{a, b\}, \{c\}, \{d\}\}
```

- reflexive $(\langle a, a \rangle \in R \text{ for every } a)$
- symmetric $(\langle b, a \rangle \in R \text{ for every } \langle a, b \rangle)$
- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R)$
- is as stupid as
- partition the range into equivalence classes:
 - $A = \{a, b, c, d\}$, for example $P_{A_1} = \{\{a, b\}, \{c\}, \{d\}\}$
- not {{a}, {b, c}} or {{a, b}, {b, c}, {d}}

An ordering relation R in A is ...

• transitive ($\langle a,b\rangle\in R\ \&\ \langle b,c\rangle\in R \to \langle a,c\rangle\in R$) ...plus ...

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: strict order

- transitive ($\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R$) ...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$

- transitive ($\langle a,b\rangle \in R \& \langle b,c\rangle \in R \to \langle a,c\rangle \in R$) ...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$
- reflexive and anti-symmetric: weak order

- transitive $(\langle a,b\rangle \in R \& \langle b,c\rangle \in R \rightarrow \langle a,c\rangle \in R)$...plus ...
- irreflexive and asymmetric: strict order
- $A = \{a, b, c, d\}$, $R_1 = \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle\}$
- reflexive and anti-symmetric: weak order
- $\bullet \ \ A = \{a,b,c,d\}, R_1 = \{\langle a,a\rangle, \langle b,b\rangle, \langle c,c\rangle, \langle a,b\rangle, \langle b,c\rangle, \langle a,c\rangle\}$

Orders: an example

ullet a strict order: greater than (>) in ${\mathbb N}$

Orders: an example

- a strict order: greater than (>) in $\mathbb N$
- what is the corresponding weak order

Orders: an example

- a strict order: greater than (>) in $\mathbb N$
- what is the corresponding weak order
- ≥

• minimal: x is not preceded

- minimal: x is not preceded
- least: x precedes every other lement

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded
- greatest: x succeeds every other element

- minimal: x is not preceded
- least: x precedes every other lement
- maximal: x is not succeeded
- greatest: x succeeds every other element
- well-ordering: total order, every subset has a least element

Literatur I

Partee, Barbara, Alice ter Meulen & Robert E. Wall. 1990. Mathematical methods in linguistics. Dordrecht: Kluwer.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.