Dimensionnement Transformateur 2

Description du modèle :

Le modèle décrit ci-après est tiré de [1] par M. Jean Bigeon, ORCID : 0000-0002-6112-6913 et de [2].

Nomenclature:

- A l'épaisseur de la bobine primaire en m
- A_L l'aire de la section des jambes du transformateur en m^2
- B_T la densité de flux en $T = kg.A^{-1}.s^{-2}$
- D_1 l'espace entre la bobine primaire et la jambe du bâti en m
- D_2 l'espace entre la bobine primaire et la bobine secondaire en m
- D_3 l'espace entre le sommet des bobines et le haut du bâti en m
- D_4 l'espace entre le bas des bobines et la base du bâti en m
- D_5 l'espace entre la bobine secondaire et la limite d'inter-phase m
- D_M le diamètre moyen du transformateur en m
- f la fréquence de fonctionnement du système en $Hz=s^{-1}$
- F_I le facteur de remplissage du fer sans unité.
- F_F le facteur de forme sans unité.
- F₁ le facteur de remplissage de la bobine primaire sans unité
- F₂ le facteur de remplissage de la bobine secondaire sans unité
- G l'épaisseur de la bobine secondaire en m
- h la hauteur de la bobine en m
- J la densité de courant volumique en $A.m^{-2}$
- L_D le diamètre de la jambe en m
- N_1 Nombre de tours dans la bobine primaire sans unité.
- P_c le prix massique du cuivre en $\$.kg^{-1} = kg^{-1}$
- P_i le prix massique du fer en $\$.kg^{-1} = kg^{-1}$
- P_C le prix total de la masse de cuivre en \$
- P_I le prix total de la masse de fer en \$
- PC_C les pertes énergétiques dues au cuivre en W
- PC_I les pertes énergétiques dues au fer en W
- PSPC le coût des pertes dues au cuivre en $\$.W^{-1}$
- PSPI le coût des pertes dues au fer en $\$.W^{-1}$
- S la puissance apparente par jambe en $W = kg.m^2.s^{-3}$
- S_T la puissance totale apparente en $W = kg.m^2.s^{-3}$
- T_C le coût total dû au cuivre en \$
- T_I le coût total dû au fer en \$
- U_1 la tension du système en $V = kg.m^2.s^{-3}.A^{-1}$

```
— V_1 la tension efficace du système en V = kg.m^2.s^{-3}.A^{-1}
```

- V_C le volume de cuivre en m^3
- V_I le volume de cuivre en m^3
- X la réactance en %
- X_2 la réactance en Ω
- ρ la résistivité électrique du cuivre en $\Omega.m$
- ρ_I la masse volumique du fer en $kg.m^{-3}$
- ρ_C la masse volumique du cuivre en $kg.m^{-3}$
- μ_0 la perméabilité du vide en $kg.m.A^{-2}.s^{-2}$

Equations:

$$\begin{split} & \frac{\text{Equations}:}{-S = \frac{S_T}{3}} \\ & - V_1 = \frac{U_1}{\sqrt{3}} \\ & - A = \frac{N_1 S}{V_1 h F_1 J} \\ & - G = \frac{N_1 S}{V_1 h F_2 J} \\ & - F_F = \frac{D_2 + \frac{A + G}{3}}{h} \\ & - L_D = \sqrt{\frac{2\sqrt{2}V_1}{\pi^2 f B_T N_1 F_1}} \\ & - D_M = L_D + 2D_1 + 2A + D_2 \\ & - X_2 = \mu_0 * \pi * D_M * N_I^2 * (2 * \pi * f) * F_F \\ & - X = \frac{X_2 * S_2}{V_1^2} \\ & - A_L = \frac{\pi * L_D^2}{4} \\ & - V_C = 3 * \pi * D_M * h * (A * F_1 + G * F_2) \\ & - V_I = A_L * F_I * (8 * (D_1 + A + D_2 + G + D_5) + 6 * L_D + 3 * (h + D_4 + D_3)) \\ & - P_C = P_c * \rho_C * V_C \\ & - P_I = P_i * \rho_I * V_I \\ & - PC_C = \rho * V_C * J^2 \\ & - PC_I = \rho_I * V_I * (1.996 - 8.125 * B_T + 12.277 * B_T^2 - 7.502 * B_T^3 + 1.702 * B_T^4) \\ & - T_C = PSPC * PC_C \\ & - T_I = PSPI * PC_I \end{split}$$

Cahier des Charges:

Dans cet exemple, on choisit comme variables h et N_1 en fixant le reste des paramètres pour minimiser $P_I + T_I + P_C + T_C$.

Variables de Décision								
Paramètre	Valeur min	Unité						
B_T		T						
D_1		m						
D_2		m						
D_3		m						
D_4		m						
D_5		m						
f	50			Hz				
F_I	0.8			(/)				
F_1	0.7			(/)				
F_2	0.7			(/)				
h	0.4	50.2	100	m				
J	$4.5 * 10^6$			$A.m^{-2}$				
N_1	100	350	600	(/)				
P_c	25			$\$.kg^{-1}$				
P_i	12			$\$.kg^{-1}$				
PSPC	5			\$.W				
PSPI	25			\$.W				
S_T	$4*10^{7}$			W				
U_1	$6*10^4$			V				
ρ	$2.6 * 10^{-8}$			$\Omega.m$				
ρ_C	8900			$kg.m^{-3}$ $kg.m^{-3}$				
ρ_I	$7800 \\ 4\pi * 10^{-7}$			$kg.m^{-3}$				
μ_0		$kg.m.A^{-2}.s^{-2}$						

Sorties							
Paramètre	Туре	Valeur	Unité				
A	Libre	_	m				
A_L	Libre	_	m^2				
D_M	Libre		m				
F_F	Libre	_	(/)				
G	Libre	_	m				
L_D	Libre	_	m				
P_C	Libre	_	\$				
P_I	Libre	_	\$				
PC_C	Libre	_	W				
PC_I	Libre	_	W				
PSPC	Libre	_	$\$.W^{-1}$				
PSPI	Libre	_	$\$.W^{-1}$				
T_C	Libre	_	\$				
T_I	Libre	_	\$				
V_C	Libre	_	m^3				
V_I	Libre	_	m^3				
X	Libre	_	%				
X_2	Libre	_	Ω				

Fonction Objectif:

$$f_{obj}(V) = P_I + T_I + P_C + T_C$$

<u>Test de Fiabilité :</u>

Afin de vérifier la validité du modèle proposé, il convient de tester ce dernier avec plusieurs sets de valeurs. Vous trouverez ci-après un ensemble de valeurs d'entrée et les résultats attendus sur la base des valeurs de [2].

Numéro du set	Set 1	Set 2	Set 3	Set 4
h	0.727	0.4	0.4	100
N_1	290	100	600	600
S	$\frac{4*10^7}{3}$	$\frac{4*10^7}{3}$	$\frac{4*10^7}{3}$	$\frac{4*10^7}{3}$
V_1	$3.464 * 10^4$	$3.464*10^4$	$3.464 * 10^4$	$3.464*10^4$
A	0.04876	0.3055	0.1833	0.0007331
G	0.04876	0.3055	0.1833	0.0007331
F_F	0.1135	0.1759	0.4305	0.0005049
L_D	0.7095	1.208	0.4933	0.4933
D_M	0.9570	1.419	1.010	0.6447
X_2	11.33	3.097	194.1	0.1453
X	0.1259	0.03441	2.157	0.001615
A_L	0.3954	1.147	0.1911	0.1911
V_C	0.4475	0.2288	0.9769	0.6237
V_I	2.757	9.575	1.314	46.55
P_C	$9.956 * 10^4$	$5.092 * 10^4$	$2.174 * 10^5$	$1.388 * 10^5$
P_{I}	$2.581 * 10^5$	$8.962 * 10^5$	$1.230*10^{5}$	$4.357 * 10^6$
PC_C	$2.356 * 10^5$	$1.205 * 10^5$	$5.143 * 10^5$	$3.284 * 10^5$
PC_I	$2.198 * 10^4$	$7.632 * 10^4$	$1.047 * 10^4$	$3.711 * 10^5$
T_C	$1.178 * 10^6$	$6.024 * 10^5$	$2.572 * 10^6$	$1.642 * 10^6$
T_{I}	$5.495 * 10^5$	$1.908 * 10^6$	$2.618 * 10^5$	$9.276 * 10^6$
f_{obj}	$2.085 * 10^6$	$3.458 * 10^6$	$3.174 * 10^6$	$15.41 * 10^6$

Références

- [1] J. Bigeon, "Modèle du transformateur." https://gitlab.univ-nantes.fr/chenouard-r/optimizationbenchmarklibrary/-/blob/main/Mod%C3%A8les/Transfo2/Refs/Mod%C3%A8le%20du%20transformateur.docx.
- [2] M. Poloujadoff and R. D. Findlay, "A procedure for illustrating the effect of variation of parameters on optimal transformer design." ttps://gitlab.univ-nantes.fr/chenouard-r/optimizationbenchmarklibrary/-/blob/main/ModÃíles/Transfo2/Refs/Poloujadoff.pdf, November 1986.