

SEQUENCE LISTING

<110> Zinselmeier, Chris
 Habben, Jeff
 Tomes, Dwight

<120> Regulated Expression of Genes in Plant
 Seeds

<130> 0803p

<160> 12

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 1608
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1)...(1605)

<400> 1

atg gcg gtg gtt tat tac ctg ctg gcc ggg ctg atc gcc tgc tct
 Met Ala Val Val Tyr Tyr Leu Leu Ala Gly Leu Ile Ala Cys Ser
 1 5 10 15

48

cat gca cta gcg gca ggc acg ctt gcg ctc gga gaa gat cgc ggc cgt
 His Ala Leu Ala Ala Gly Thr Leu Ala Leu Gly Glu Asp Arg Gly Arg
 20 25 30

96

ccc tgg cca gcc ttc ctc gcc gcg ctg gcc ttg gac ggc aag ctc cgg
 Pro Trp Pro Ala Phe Leu Ala Ala Leu Ala Asp Gly Lys Leu Arg
 35 40 45

144

acc gac agc aac gcg acg gcg gcc tcg acg gac ttc ggc aac atc
 Thr Asp Ser Asn Ala Thr Ala Ala Ser Thr Asp Phe Gly Asn Ile
 50 55 60

192

acg tcg gcg ctc ccg gcg gtc cta tac ccg tcg tcc acg ggc gac
 Thr Ser Ala Leu Pro Ala Ala Val Leu Tyr Pro Ser Ser Thr Gly Asp
 65 70 75 80

240

ctg gtg gcg ctg ctg agc gcg gcc aac tcc acc ccg ggg tgg ccc tac
 Leu Val Ala Leu Leu Ser Ala Ala Asn Ser Thr Pro Gly Trp Pro Tyr
 85 90 95

288

acc atc gcg ttc cgc ggc cgc cac tcc ctc atg ggc cag gcc ttc
 Thr Ile Ala Phe Arg Gly Arg His Ser Leu Met Gly Gln Ala Phe
 100 105 110

336

gcc ccc ggc ggg gtg gtc aac atg gcg tcc ctg ggc gac gcc gcc
 Ala Pro Gly Gly Val Val Val Asn Met Ala Ser Leu Gly Asp Ala Ala
 115 120 125

384

gcc gcc gcg ccg cgc gtc aac gtg tcc gcg gac ggc cgc tac gtg
 Ala Ala Ala Pro Pro Arg Val Asn Val Ser Ala Asp Gly Arg Tyr Val
 130 135 140

432

gac gcc ggc ggc gag cag gtg tgg atc gac gtg ctg cgc gcg tct ctg 480
 Asp Ala Gly Gly Glu Gln Val Trp Ile Asp Val Leu Arg Ala Ser Leu
 145 150 155 160

gcg cgc ggc gtg gcg ccg cgc tcc tgg acc gac tac ctc tac ctc acc 528
 Ala Arg Gly Val Ala Pro Arg Ser Trp Thr Asp Tyr Leu Tyr Leu Thr
 165 170 175

gtc ggc ggc acg ctg tcc aac gca ggc atc agc ggc cag gcg ttc cgc 576
 Val Gly Gly Thr Leu Ser Asn Ala Gly Ile Ser Gly Gln Ala Phe Arg
 180 185 190

cac ggc cca cag ata tct aac gtg ctg gag atg gac gtt atc acc ggc 624
 His Gly Pro Gln Ile Ser Asn Val Leu Glu Met Asp Val Ile Thr Gly
 195 200 205

cat ggg gag atg gtg acg tgc tcc aag cag ctg aac gcg gac ctg ttc 672
 His Gly Glu Met Val Thr Cys Ser Lys Gln Leu Asn Ala Asp Leu Phe
 210 215 220

gac gcc gtc ctg ggc ggg ctg ggg cag ttc gga gtg atc acc cgg gcc 720
 Asp Ala Val Leu Gly Gly Leu Gly Gln Phe Gly Val Ile Thr Arg Ala
 225 230 235 240

cgg atc gcg gtg gag ccg gcg ccg gcg ccg gcg tgg gtg cgg ctc 768
 Arg Ile Ala Val Glu Pro Ala Pro Ala Arg Ala Arg Trp Val Arg Leu
 245 250 255

gtg tac acc gac ttc gcg gcg ttc agc gcc gac cag gag cgg ctg acc 816
 Val Tyr Thr Asp Phe Ala Ala Phe Ser Ala Asp Gln Glu Arg Leu Thr
 260 265 270

gcc ccg ccg ccc ggc ggc ggc ggc tcg ttc ggc ccg atg agc tac 864
 Ala Pro Arg Pro Gly Gly Gly Ala Ser Phe Gly Pro Met Ser Tyr
 275 280 285

gtg gaa ggg tcg gtg ttc gtg aac cag agc ctg gcg acc gac ctg gcg 912
 Val Glu Gly Ser Val Phe Val Asn Gln Ser Leu Ala Thr Asp Leu Ala
 290 295 300

aac acg ggg ttc ttc acc gac gcc gac gtc gcc ccg atc gtc gcg ctc 960
 Asn Thr Gly Phe Phe Thr Asp Ala Asp Val Ala Arg Ile Val Ala Leu
 305 310 315 320

gcc ggg gag cgg aac gcc acc acc gtg tac agc atc gag gcc acg ctc 1008
 Ala Gly Glu Arg Asn Ala Thr Thr Val Tyr Ser Ile Glu Ala Thr Leu
 325 330 335

aac tac gac aac gcc acg gcg gcg gcg gtg gac gag gag ctc gcg 1056
 Asn Tyr Asp Asn Ala Thr Ala Ala Val Asp Gln Glu Leu Ala
 340 345 350

tcc gtg ctg ggc acg ctg agc tac gtg gaa ggg ttc gcg ttc cag cgc 1104
 Ser Val Leu Gly Thr Leu Ser Tyr Val Glu Gly Phe Ala Phe Gln Arg
 355 360 365

gac gtg tcc tac acg gcg ttc ctt gac cgg gtg cac ggc gag gag gtg 1152
 Asp Val Ser Tyr Thr Ala Phe Leu Asp Arg Val His Gly Glu Glu Val
 370 375 380

gcg ctc aac aag ctg ggg ctg tgg cgg gtg ccg cac ccg tgg ctc aac 1200

Ala Leu Asn Lys Leu Gly Leu Trp Arg Val Pro His Pro Trp Leu Asn			
385	390	395	400
atg ttc gtg ccg cgc tcg cgc atc gcc gac ttc gac cgc ggc gtc ttc			1248
Met Phe Val Pro Arg Ser Arg Ile Ala Asp Phe Asp Arg Gly Val Phe			
405	410	415	
aag ggc atc ttg cag ggc acc gac atc gtc ggc ccg ctc atc gtc tac			1296
Lys Gly Ile Leu Gln Gly Thr Asp Ile Val Gly Pro Leu Ile Val Tyr			
420	425	430	
ccc ctc aac aaa tcc atg tgg gac gac ggc atg tcg gcg gcg acg ccg			1344
Pro Leu Asn Lys Ser Met Trp Asp Asp Gly Met Ser Ala Ala Thr Pro			
435	440	445	
tcg gag gac gtg ttc tac gcg gtg tcg ctc ttc tcg tcg gtg gcg			1392
Ser Glu Asp Val Phe Tyr Ala Val Ser Leu Leu Phe Ser Ser Val Ala			
450	455	460	
ccc aac gac ctg gcg agg ctg cag gag cag aac agg agg atc ctg cgc			1440
Pro Asn Asp Leu Ala Arg Leu Gln Glu Gln Asn Arg Arg Ile Leu Arg			
465	470	475	480
ttc tgc gac ctc gcc ggg atc cag tac aag acc tac ctg gcg cgg cac			1488
Phe Cys Asp Leu Ala Gly Ile Gln Tyr Lys Thr Tyr Leu Ala Arg His			
485	490	495	
acg gac cgc agt gac tgg gtc cgc cac ttc ggc gcc gcc gag tgg aat			1536
Thr Asp Arg Ser Asp Trp Val Arg His Phe Gly Ala Ala Glu Trp Asn			
500	505	510	
cgc ttc gtg gag atg aag aac aag tac gac ccc aag agg ctg ctc tcc			1584
Arg Phe Val Glu Met Lys Asn Lys Tyr Asp Pro Lys Arg Leu Leu Ser			
515	520	525	
ccc ggc cag gac atc ttc aac tga			1608
Pro Gly Gln Asp Ile Phe Asn			
530	535		
<210> 2			
<211> 535			
<212> PRT			
<213> Zea mays			
<400> 2			
Met Ala Val Val Tyr Tyr Leu Leu Leu Ala Gly Leu Ile Ala Cys Ser			
1	5	10	15
His Ala Leu Ala Ala Gly Thr Leu Ala Leu Gly Glu Asp Arg Gly Arg			
20	25	30	
Pro Trp Pro Ala Phe Leu Ala Ala Leu Ala Leu Asp Gly Lys Leu Arg			
35	40	45	
Thr Asp Ser Asn Ala Thr Ala Ala Ala Ser Thr Asp Phe Gly Asn Ile			
50	55	60	
Thr Ser Ala Leu Pro Ala Ala Val Leu Tyr Pro Ser Ser Thr Gly Asp			
65	70	75	80
Leu Val Ala Leu Leu Ser Ala Ala Asn Ser Thr Pro Gly Trp Pro Tyr			
85	90	95	
Thr Ile Ala Phe Arg Gly Arg Gly His Ser Leu Met Gly Gln Ala Phe			
100	105	110	
Ala Pro Gly Gly Val Val Val Asn Met Ala Ser Leu Gly Asp Ala Ala			
115	120	125	

Ala Ala Ala Pro Pro Arg Val Asn Val Ser Ala Asp Gly Arg Tyr Val
 130 135 140
 Asp Ala Gly Gly Glu Gln Val Trp Ile Asp Val Leu Arg Ala Ser Leu
 145 150 155 160
 Ala Arg Gly Val Ala Pro Arg Ser Trp Thr Asp Tyr Leu Tyr Leu Thr
 165 170 175
 Val Gly Gly Thr Leu Ser Asn Ala Gly Ile Ser Gly Gln Ala Phe Arg
 180 185 190
 His Gly Pro Gln Ile Ser Asn Val Leu Glu Met Asp Val Ile Thr Gly
 195 200 205
 His Gly Glu Met Val Thr Cys Ser Lys Gln Leu Asn Ala Asp Leu Phe
 210 215 220
 Asp Ala Val Leu Gly Gly Leu Gly Gln Phe Gly Val Ile Thr Arg Ala
 225 230 235 240
 Arg Ile Ala Val Glu Pro Ala Pro Ala Arg Ala Arg Trp Val Arg Leu
 245 250 255
 Val Tyr Thr Asp Phe Ala Ala Phe Ser Ala Asp Gln Glu Arg Leu Thr
 260 265 270
 Ala Pro Arg Pro Gly Gly Gly Ala Ser Phe Gly Pro Met Ser Tyr
 275 280 285
 Val Glu Gly Ser Val Phe Val Asn Gln Ser Leu Ala Thr Asp Leu Ala
 290 295 300
 Asn Thr Gly Phe Phe Thr Asp Ala Asp Val Ala Arg Ile Val Ala Leu
 305 310 315 320
 Ala Gly Glu Arg Asn Ala Thr Thr Val Tyr Ser Ile Glu Ala Thr Leu
 325 330 335
 Asn Tyr Asp Asn Ala Thr Ala Ala Ala Val Asp Gln Glu Leu Ala
 340 345 350
 Ser Val Leu Gly Thr Leu Ser Tyr Val Glu Gly Phe Ala Phe Gln Arg
 355 360 365
 Asp Val Ser Tyr Thr Ala Phe Leu Asp Arg Val His Gly Glu Glu Val
 370 375 380
 Ala Leu Asn Lys Leu Gly Leu Trp Arg Val Pro His Pro Trp Leu Asn
 385 390 395 400
 Met Phe Val Pro Arg Ser Arg Ile Ala Asp Phe Asp Arg Gly Val Phe
 405 410 415
 Lys Gly Ile Leu Gln Gly Thr Asp Ile Val Gly Pro Leu Ile Val Tyr
 420 425 430
 Pro Leu Asn Lys Ser Met Trp Asp Asp Gly Met Ser Ala Ala Thr Pro
 435 440 445
 Ser Glu Asp Val Phe Tyr Ala Val Ser Leu Leu Phe Ser Ser Val Ala
 450 455 460
 Pro Asn Asp Leu Ala Arg Leu Gln Glu Gln Asn Arg Arg Ile Leu Arg
 465 470 475 480
 Phe Cys Asp Leu Ala Gly Ile Gln Tyr Lys Thr Tyr Leu Ala Arg His
 485 490 495
 Thr Asp Arg Ser Asp Trp Val Arg His Phe Gly Ala Ala Glu Trp Asn
 500 505 510
 Arg Phe Val Glu Met Lys Asn Lys Tyr Asp Pro Lys Arg Leu Leu Ser
 515 520 525
 Pro Gly Gln Asp Ile Phe Asn
 530 535

<210> 3

<211> 51

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthesized based on sequence from Agrobacterium tumefaciens

<400> 3	
caucaucauc auggatccac caatggatct acgtctaatt ttccggccaa c	51
<210> 4	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthesized based on sequence from Agrobacterium tumefaciens	
<400> 4	
cuacuacuac uagttaactc acattcgaaa tggtggtcct tc	42
<210> 5	
<211> 29	
<212> DNA	
<213> Zea mays	
<400> 5	
catgccccatgg cggtgggttta ttacacct	29
<210> 6	
<211> 31	
<212> DNA	
<213> Zea mays	
<400> 6	
cgggatcctc atcatcagtt gaagatgtcc t	31
<210> 7	
<211> 5622	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Promoter and terminator from Zea mays as found in Genbank Accession #S78780; gene from Agrobacterium tumefaciens as found in Molecular and General Genetics 216:388-394 (1989).	
<400> 7	
gctcttagatt atataattta taagctaaac aaccggcccc taaaggacta tcgtatcacc	60
tatctaaata agtcacggga gtttgcacg tccacttcgt cgacggaaat tgcatgtttc	120
tttgttggaaag catattcacg caatctccac acataaagggt ttatgtataa acttacattt	180
agctcgttt aattacagtc ttatggat gcatatgtat ggttctcaat ccatataagt	240
tagagtaaaa aataagttta aattttatct taattcactc caacatataat ggatctacaa	300
tactcatgtg catccaaaca aactacttat attgaggtga atttggtaga aattaaacta	360
acttacacac taagccaatc ttactatata taaagccacca gtttcaacgaa tcgtcccgcg	420
tcaatattat taaaaaaactc ctacatttct ttataatcaa cccgcactct tataatctct	480
tctctactac tataataaga gagtttatgt aaaaaataag gtgaaattat ctataagtgt	540
tctggatatt ggttggc tcccatatc acacaaccta atcaatagaa aacatatgtt	600
ttataaaaac aaaatttatac atatatcata tatataatata tatcatatata atatataaac	660
cgttagcaatg cacgggcata taactagtgc aacttaatac atgtgtgtat taagatgaat	720
aagagggtat ccaaataaaa aacttggatgc ttacgtatgg atcggaaagg gttggaaacg	780
attaaacgtat taaatctctt cctagtcaaa attgaataga aggagattt atatatccca	840
atccccctcg atcatccagg tgcacccgtt taagtctaa atgggtgagg aacacgaaag	900
aaccatgcatttggcatgttta agtccaaga atttggatgttgc tccttaaccaa ctcacagaac	960
atcaaccaaa attgcacgtc aagggtattt ggttggaaac aatcaaacaa atccctcttg	1020
tgtgcaaaaga aacacgggttga gtcacccgtt gatcataactc atctgtatata catgcttaca	1080
gctcacaaga cattacaaac aactcatatt gcattacaaa gatcgtttca tgaaaaataaa	1140

aataggccgg acaggacaaa aatccttgac gtgtaaagta aatttacaac aaaaaaaaaaag 1200
 ccatatgtca agctaaatct aattcgaaaa acgtagatca acaacctgta gaaggcaaca 1260
 aaactgagcc acgcagaagt acagaatgat tccagatgaa ccatcgacgt gctacgtaaa 1320
 gagagtgacg agtcatatac atttggcaag aaaccatgaa gtcgcctaca gccgtatcgg 1380
 tggcataaga acacaagaaa ttgtgttaat taatcaaagc tataaataac gctcgcatgc 1440
 ctgtgcacctt ctccatcacc accactgggt cttcagacca tttagtttat ctactccaga 1500
 gcgcaagaaga acccgatcga caccatggat ctacgtctaa ttttcgggcc aactgcaca 1560
 ggaaagacat cgactgcgt agctcttgcc cagcagactg gcctcccagt cctctcgctc 1620
 gatcgcgtcc aatgctgtcc tcaactatca accggaagcg ggcgaccaac agtggaaagaa 1680
 ctgaaaggaa cgactcgct gtaccttgat gatcgccctt tggtaaaggg tattcattaca 1740
 gccaagcaag ctcatgaacg gtcattgcg gaggtgcaca atcagcggc caaaggcggg 1800
 cttattctt agggaggatc tatctcggtt ctcaggtgc tggcgcacaa tcgttattgg 1860
 aacgcggatt ttcgttggca tattattcgc aacgagttag cagacgagga gagottcatg 1920
 agcgtggcca agaccaggt taagcagatg ttacgccccct ctgcaggtct ttcttattatc 1980
 caagagttgg ttcaactttt gaggggagcct cggctgaggc ccatactgaa agggatcgat 2040
 gnatatcgat atgcctcgctt atttgcgtacc cagaaccaga tcacgccccga tatgttattt 2100
 cagctcgacg cagatatgga gaataaattt attcacggta tcgctcagga gtttctaattc 2160
 catgcgcgtc gacaggaaca gaaattccctt ttgggtggcg cgacagctgt cgaagcgttt 2220
 gaaggaccac catttgcgat gtgagttgtat ccccgccgt gtcccccactt gaagaaaacta 2280
 tgtgtgttag tatagccgct ggctagctag ctatgttgcgat catttagccg cgatgattga 2340
 gtaataatgt gtcacgcac accatgcgtat ggtggcagtc tcagttgtgcgat caatgaccc 2400
 aatgaacaaat taaaaatgaaa agaaaaaaagt attgttccaa attaaacgtt ttaacctttt 2460
 aataaggatata tacaataattt gatatatgtt ttctgtatattt gtctaatttgc ttatcatcca 2520
 ttttagatata gacaaaaaaa aatctaagaa ctaaaacaaa tgctaatttgc aaatgaaggg 2580
 agtatatattt gggataatgt cgatgagatc cctcgtaata tcaccgacat cacacgtgtc 2640
 cagtaatgtt atcagtgtata cgtgttatttgc catttgcgat gcgttaggcgtt acccaacaaat 2700
 tttgtatcgat tatcagaaaaag tcaacggaaag cgagtcgacc tcgagggggg gccccgttacc 2760
 aagatatcaa ccgcggaaag atctaagcat gcaaggcccc aagtgcaccc gcagaagctt 2820
 gcatgcgtcc agtgcagcgt gacccggctcg tgccctctc tagagataat gaggattgc 2880
 tgtctaagttt ataaaaaaattt accacatattt tttttgtca cacttgcgtt aagtgcgtt 2940
 tatctatctt tatacatata tttaaactttt actctacgaa taatataatc tatagtacta 3000
 caataatatc agtgttttag agaatcatat aatgaacacg ttagacatgg tctaaaggac 3060
 aatttaggtat ttgtacaaca ggactctaca gttttatctt tttagtgcgat atgtttctc 3120
 cttttttttt gcaaatagct tcacctatattt aatacttcat ccattttattt agtacatcca 3180
 ttttagggttt agggtaatg gttttatag actaattttt ttagtacatc tattttatttgc 3240
 tatttttagcc tctaaattttt gaaaactaaa actctatattt agtttttttgc tttaataattt 3300
 tagatataaa atagaataaa ataaaatgtac taaaattaa acaaataaccc tttaagaaat 3360
 taaaaaaact aaggaaacat tttcttgcgtt tcgagttatgcgat aatgccagcc tggtaaacgc 3420
 cgtcgatcga cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcggccaa 3480
 gcgaagcaga cggcacggca tctctgtcgc tgcctctgaa cccctctcgaa gagttccgct 3540
 ccaccgttgg acttgcctcg ctgtcggtat ccagaatttgc cgtggcggag cggcagacgt 3600
 gagccggcac ggcaggccgc ctccctctcc tctcacggca cggcagctac ggggattcc 3660
 tttcccaccc ctccttcgtt ttcccttcctt cggccggctt aataaaataga caccggcc 3720
 acacccttcc tcccccaaccc cgtgttgcgtt ggagcgcaca cacacacaac cagatctccc 3780
 ccaaataccac cggtcggcac ctccgcttca aggtacgccc ctcgtctcc cccccccccc 3840
 ctctctaccc tctctagatc ggcgttccgg tccatgttca gggccggta gttctacttc 3900
 tgttcatgtt tgggttagat ccgtgtttgtt gtttagatccg tgctgttagc gttcgatcac 3960
 ggatgcgacc tgcgtcgatc acacgttctg attgctactc tgccagtttgc ttctttttggg 4020
 gaattctggg atggctctag ccgttccggca gacgggatcg atttcatgtat ttttttttttgc 4080
 tcgttgcata ggggttgcgtt tgcccttttgc ttttatttca atatatgcgc tgacttgcgtt 4140
 tgcgggtca tcttttcatg ctttttttttgc tcttgcgtt gatgtatgtgg tcttgcgtt 4200
 cggtcgttct agatcgaggt agaattctgt ttcaactac ctgggtggatttattaattttt 4260
 ggatctgtat tgggtgtccatc tacatattca tagttacgaa ttgaagatga tggatggaaa 4320
 tattcgatcta ggtatggat acatgttgcgtt ggggggttttgcgtatgcata tacagagatg 4380
 ctttttgcgtt gcttgcgtt gatgtatgtgg tgggttggcc cgtcgatcgc ttcgttctcg 4440
 atcggagtag aatactgtttt caaactaccc ggtgttatttgc ttatattttgc aactgtatgt 4500
 gtgtgtcata catcttcata gttacgagtttgcgtt taagatggat gggaaatatcg atctaggata 4560
 ggtatatacg tttactgtatgcgtt gcatatacat gatggcatat gcagcatctca 4620
 ttcatcatgtt ctaaccttgcgtt gatgtatgtttgc ttatataataa acaagatgtatgt 4680
 ttttgcgtt gatataacttgcgtt gatgtatgtgg tgcgtatgcgtt gtttgcgtt 4740
 ccctgccttc atacgttcatg tatttgcgtt gttactgttgc ttttgcgtt gtcacccctg 4800
 ttgtttgggtt tttacttgcgtt ggtcgaccgc cggggatcc acacgacacc atgtcccccc 4860

agcggccgccc	cgtcgagatc	cgcggggcca	ccgcccggga	catggccgcc	gtgtgcgaca	4920
tcgtgaacca	ctacatcgag	acctccaccc	tgaacttccg	caccgagccg	cagacccccgc	4980
aggagtggat	cgacgacctg	gagcgcctcc	aggaccgcta	cccgtggctc	gtggccgagg	5040
tggagggcgt	ggtggccggc	atcgccctacg	ccggcccggt	gaaggcccgc	aacgcctacg	5100
actggaccgt	ggagtccacc	gtgtacgtgt	cccaccgcca	ccagcgcctc	ggcctcggct	5160
ccaccctcta	caccacccctc	ctcaagagca	tggagggcca	gggcttcaag	tccgtggtg	5220
ccgtgatcg	cctcccgaaac	gaccgggtccg	tgcgcttcca	cgaggccctc	ggctacaccg	5280
cccgccggcac	cctcccgcc	gccggctaca	agcacggcgg	ctggcacgac	gtcggcttct	5340
ggcagcgcga	cttcgagctg	ccggcccccgc	cgcgcgggt	gcccgggtg	acgcagatct	5400
gagtcgaccc	gcaggcatgc	cgcgtaaaatc	accagtctct	ctctacaaat	ctatctctct	5460
ctataataat	gtgtgagtag	ttcccgagata	agggattag	ggttcttata	gggtttcgct	5520
catgtgtga	gcatataaga	aacccttagt	atgtatttgt	atttgtaaaa	tacttctatc	5580
aataaaattt	ctaattccta	aaaccaaaat	ccagtggcga	gc		5622

<210> 8

<211> 2722

<212> DNA

<213> Artificial Sequence

<220>

<223> Promoter from *Hordeum vulgare*, Plant Journal 6:849-860 (1994); gene from *Agrobacterium tumefaciens*, Molecular and General Genetics 216:388-394 (1989); terminator from *Zea mays*, Genbank Accession #S78780.

<400> 8

cggccgctct	agaacttagtg	gatctcgatg	tgttagtctac	gagaagggtt	aaccgtctct	60
tcgtgagaat	aaccgtggcc	taaaaataag	ccgatgagga	taaataaaat	gtggtggatc	120
agtacttcaa	gaggttact	catcaagagg	atgccttcc	gatgagctct	agtagtacat	180
cgAACCTCAC	atacctccat	tgtggtaaaa	tattttgtgc	tcatttagtgc	atgggtaaat	240
tttggttatg	tcactctagg	tttgacatt	tcagtttgc	cactctttagg	ttttgacaaa	300
taatttccat	tccggggcaa	aagcaaaaca	attttatttt	acttttacca	ctcttagctt	360
tcacaatgt	tcacaaatgc	cactctagaa	attctgttta	tgccacagaa	tgtaaaaaaaaa	420
aacactca	tatttgaagc	caagggtttc	atggcatgga	aatgtgacat	aaagtaacgt	480
tcgtgtataa	gaaaaaattt	tactcctcg	aacaagagac	ggaaacatca	tgagacaatc	540
gcgtttggaa	ggctttgcat	caccttgg	tgatgcgc	aatggagtc	gtctgcttgc	600
tagcttcgc	ctaccggcca	ctgagtccgg	gcggcaacta	ccatggcga	acgaccccagc	660
tgacctctac	cgaccggact	tgaatgcgc	accttcgtca	gchgacgttgg	ccgcgtacgc	720
tggcgacgtg	ccccggcatg	catggggca	catggcgagc	tcagaccgtg	cgtggctggc	780
tacaaatacg	tacccgtga	gtgccctagc	tagaaactta	cacctgcaac	tgcgagagcg	840
agcgtgtgag	tgttagccgag	tagatcccc	gggctgcagc	ttatttttac	aacaattacc	900
aacaacaaca	aacaacaac	aacattacaa	ttactattta	caattacagt	cgacggatca	960
agtgc当地	tccgc当地	ttctccctcg	tctcttgc	tgactaatct	tggtttatga	1020
ttcgtttagt	aattttgggg	aaagcttctg	ccacagttt	ttttcgatg	aacagtggccg	1080
cagtggcgct	gatcttgc	gtatccctgc	aatctgggt	aacttatgtc	tttttatatcc	1140
ttcaactacca	tgaaaagact	agtaatctt	ctcgatgtaa	catcgcc	cactgctatt	1200
accgtgtgg	ccatccgaca	gtctggctga	acacatcata	cgatatttgg	caaagatcga	1260
tctatcttcc	ctgttctta	atgaaagacg	tcattttcat	cagtatgatc	taagaatgtt	1320
gcaacttgca	aggaggcg	tctttcttgc	aatttaacta	actcggttgc	tggccctgtt	1380
tctcgacgt	aaggccttgc	ctgctccaca	catgtccatt	cgaattttac	cgtgttttagc	1440
aaggcgaaa	agtttgc	ttgatgattt	agcttgacta	tgcgatttgc	ttcttggacc	1500
cgtgcagctg	cggacgatc	caccatggat	ctacgtctaa	ttttcggtcc	aacttgcaca	1560
gaaaagacat	cgactgc	agctttgc	cagcagactg	gcctccca	cttcgc	1620
gatcgctcc	aatgctgtcc	tcaactatca	accggaaagcg	ggcgaccaac	agtggaaagaa	1680
ctgaaaggaa	cgactcg	gtaccttgc	gatcgcc	tggtaaagg	tatcattaca	1740
gccaagcaag	ctcatgaac	gctcatttgc	gaggtgcaca	atcacgggc	caaaggcggg	1800
cttattcttgc	agggagatc	tatctcg	ctcagggtgc	tggcgcaaa	tcgttattgg	1860
aacgcggatt	ttcg	tattattcgc	aacgagtttgc	cagacggag	gagcttcatc	1920
agcgtggcc	agaccagat	taagcagat	ttacggcc	ctgcagg	gtcttattatc	1980
caagagttgg	ttcaacttgc	gagggagcc	cggctggc	ccatactgg	aggatcgat	2040

ggatatcgat atgccctgct	atttgctacc cagaaccaga	tcacgcccga	tatgctattg	2100
cagctcgacg	cagatatgga	gaataaaatg	attcacggta	2160
catgcgcgtc	gacaggaaca	gaaattccct	ttggggcg	2220
gaaggaccac	catttcaat	gtgagttat	ccccggcg	2280
tgtgctgttag	tatagccgt	ggctagctag	ctagttgagt	2340
gtaataatgt	gtcacgcac	accatgcatg	ggtggcagtc	2400
aatgaacaat	tgaaatgaaa	agaaaaaaat	attttccaa	2460
aatagggtta	tacaataatt	gatatatgtt	ttctgttat	2520
tttagatata	gacaaaaaaa	aatctaagaa	ctaaaacaaa	2580
agtatataatt	gggataatgt	cgatgagatc	cctcgtata	2640
cagttaatgt	atcagtgata	cgtgtattca	catttgc	2700
tttgatcgac	tatcagaaaag	tc	cgtaggcgt	2722

<210> 9

<211> 2722

<212> DNA

<213> Artificial Sequence

<220>

<223> Promoter from Zea mays, U.S. patent application 09/377,648;
gene from Agrobacterium tumefaciens, Molecular and General
Genetics 216:388-394 (1989); terminator from Solanum
tuberosum, Plant Cell 1(1):115-122 (1989).

<400> 9

cgccgcgtct	agaacttagtg	gatctcgatg	tgttgtctac	gagaagggtt	aaccgtctct	60
tcgtgagaat	aaccgtggcc	taaaaataag	ccgatgagga	taaataaaat	gtgggtggta	120
agtacttcaa	gaggttact	catcaagagg	atgccttcc	gatgagctct	agttagtacat	180
cggacctcac	atacctccat	tgtgtgaaa	tattttgtgc	tcatttagtg	atgggtaaat	240
tttggttatg	tcactctagg	tttgacatt	tcagtttgc	cactctttagg	ttttgacaaa	300
taatttccat	tcccgccaa	aagcaaaaca	atttatTTT	acttttacca	ctcttagctt	360
tcacaatgt	tcacaaatgc	cactctagaa	attctgttta	tgccacagaa	tgtaaaaaaa	420
aacactca	tatttgaagc	caaggtgttc	atggcatgga	aatgtgacat	aaagtaacgt	480
tcgtgtataa	gaaaaaattt	tactcctcgt	aacaagagac	ggaaacatca	tgagacaatc	540
gcgtttggaa	ggcttgcat	caccttgg	tgtgcgc	aatggagtc	gtctgcttgc	600
tagccttcgc	ctaccggcca	ctgagtccgg	gcggcaacta	ccatcgccga	acgacccagc	660
tgacctctac	cgaccggact	tgaatgcgt	accttcgtca	gcgacgttgg	cccggtacgc	720
tggcgacgtg	ccccggcatg	catggcggca	catggcgagc	tcagaccgtg	cgtggcttgc	780
tacaaataacg	tacccctgt	gtgccctagc	tagaaactt	cacctgcac	tgcgagagcg	840
agcgtgtgag	tgtagccgag	tagatcccc	gggctgcagc	ttatttttac	aacaattacc	900
aacaacaaca	aacaacaac	aacattacaa	ttactattt	caattacagt	cgacggatca	960
agtcggaaagg	tccgccttgc	ttctccctct	tctcttgc	tgactaatct	tggttatga	1020
ttcggtttagt	aattttgggg	aaagcttcgt	ccacagttt	ttttcgatg	aacagtgcgg	1080
cagtggcgct	gatcttgc	gctatcc	aatcggttg	aacttatgtc	ttttatatcc	1140
ttaactacca	tgaaaagact	agtaatctt	ctcgatgtaa	catcgccag	cactgttatt	1200
accgtgttgt	ccatccgaca	gtctggctga	acacatcata	cgatatttgc	caaagatcga	1260
tctatcttcc	ctgttcttta	atgaaagacg	tcattttcat	cgtatgtac	taagaatgtt	1320
gcaacttgca	aggaggcg	tctttcttgc	aattttacta	actcggttg	tggccctgtt	1380
tctcggttgt	aaggcccttgc	ctgctccaca	catgtccatt	cgaattttac	cgtgttttagc	1440
aaggcgaaa	agtttgcac	ttgatgatt	agcttgacta	tgcgattgt	ttcttggacc	1500
cgtgcagctg	cggacggatc	caccatggat	ctacgtctaa	ttttcggtcc	aacttgcaca	1560
ggaaagacat	cgactgcgt	agctcttgc	cagcagactg	gcctccca	cctctcgctc	1620
gatcgctcc	aatgcgtgtcc	tcaactatca	accggaaagcg	ggcgaccaac	agtggaaagaa	1680
ctgaaaggaa	cgactcgat	gtaccttgc	gatgcgcctt	ttggtaaagg	tatcattaca	1740
gccaaagcaag	ctcatgaac	gtcattgc	gaggtgcaca	atcacgaggc	caaaggcg	1800
cttattcttgc	agggaggatc	tatctcg	ctcagggtgc	tggcgaaag	tcgttatttg	1860
aacgcggatt	ttcggttgt	tattattcgc	aacgagttag	cagacgagga	gagcttcatg	1920
agcgtggcca	agaccagat	taagcagat	ttacgccc	ctgcagg	ttcttattatc	1980
caagagttgg	ttcaacttgc	gagggaggct	cggctgaggc	ccatactgga	aggatcgat	2040
ggatatcgat	atgccctgct	atttgc	cagaaccaga	tcacgcccga	tatgctatttgc	2100
cagctcgac	cagatatgga	gaataaaatttgc	attcacggta	tcgctcagga	gtttcta	2160
catgcgcgtc	gacaggaaca	gaaattccct	ttggggcg	cgacagctgt	cgaagcg	2220

gaaggaccac catttcaat gtgagttgat ccccgccgt gtcggccact gaagaaacta	2280
tgtgctgtat tatagccgct ggctagctag ctatgtgat catttagcgg cgatgattga	2340
gtaataatgt gtcacgcac accatgcgt ggtggcgtc tcagtgtgag caatgacctg	2400
aatgaacaat tgaaatgaaa agaaaaaaat attgttccaa attaacgtt ttaaccttt	2460
aataggtttatacataatt gatatatgt ttctgtatgt gtctaatttg ttatcatcca	2520
tttagatata gacgaaaaaa aatctaagaa ctaaaacaaa tgctaatttg aaatgaaggg	2580
agtatataattt gggataatgt cgatgagatc cctcgtaata tcaccgacat cacacgtgtc	2640
cagttaatgt atcagtgata cgtgttattca catttggatc gcgtaggcgt acccaacaat	2700
tttgatcgac tatcagaaag tc	2722

<210> 10

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthesized based on sequence from Agrobacterium tumefaciens

<400> 10

gcgtccaaatg ctgtccctcaa cta

23

<210> 11

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthesized based on sequence from Agrobacterium tumefaciens

<400> 11

gctctccctcg tctgctaact cgt

23

<210> 12

<211> 3017

<212> DNA

<213> Artificial Sequence

<220>

<223> Promoter from Zea mays, Genbank Accession #L22344;
Gene from Agrobacterium tumefaciens, Molecular and
General Genetics 216:388-394 (1989); terminator from
Zea mays, Genbank Accession #L22345.

<400> 12

ttgccggatgt ccacatccctgg acactcgata aagtatattt tattttttt attttgccaa	60
ccaaactttt tgtggatgt tcctacacta tggatctat catgtaccat tttggcacaa	120
ttacatattt acaaaaatgt tttctataaa tatttagattt agttcgat tttgaatttc	180
ttccggaaaaat tcacattaa actgcaagtc actcgaaaca tggaaaaacgg tgcattgaaa	240
ataaatgata tgcatttat ctgcacaaatg ttacgaccga tttcagaagc agaccagaat	300
cttcaagcac catgctcact aaacatgacc gtgaacctgt tatctagttt tttaaaaatt	360
gtataaaaaca caaataaaatgt cagaaattaa tgaaacctgt ccacatgtca tgatatcata	420
tatagaggtt gtgataaaaa ttgtataatg ttgcgtaaa gttgtgacgt actatgtgt	480
gaaacctaag tgacctacac ataaaaatcat agagttcaa tggatgttac tcgacaaaga	540
ctttgtcaag tggatgttcaaa aaagtactcg acaaagaagc cggtgtcgat gtactgttgc	600
tcgagatctc tttgtcgatgt gtcacactag gcaaagtctt tacggaggtt ttttcaggct	660
ttgacactcg gcaaagcgct cgattccagt agtgacagta atttgcatca aaaatagctg	720
agagatttag gccccgttcc aatctcacgg gataaaatgtt agcttccctgc taaacttttag	780
ctatataatgt tgaagtgtca aagtttagtt tcaattacca ccattagctc tcctgttttag	840
attacaatgt gctaaaatgt gctaaaatgtt agctgttcaaa gtttatctcg cgagattgaa	900
acagggcctt aaaatgatgtc aactaataga ccaactaattt attagctatt agtcgttgc	960

Sub A

ttctttaatc taagctaaaa ccaactaata gcttatttgt tgaattacaa tttagctcaac 1020
gaaattctct gttttctaa aaaaaaactg cccctctttt acagcaaatt gtccgctgcc 1080
cgtcgtccag atacaatgaa cgtagtactt aggaactt acacacacc actgtggAAC acgacaaagt ctgctcagAG 1140
cgccggatGG agtccccggA acacgacacc actgtggAAC acgacaaagt ctgctcagAG 1200
gcggccacat cctggcgtgc accgagccgg agccggata agcacggtaa ggagagtacG 1260
gcgggacgtg gcgacccgtg tgcgtctgc cacgcggct tcctccacgt agccgcgcgg 1320
cccgccacg taccaggggcc cggcgtggt ataaatgcgc gccaccccg ctttagttct 1380
gcatacagcc aaccgaaggA tccaacaatg gatctacgtc taatttcgg tccaacttgc 1440
acaggaaaga catcgactgc gatacgctt gcccagcaga ctggcctccc agtcctctcg 1500
ctcgatcgcg tccaatgtg tcctcaacta tcaaccggAA gcgggcgacc aacagtggaa 1560
gaactgaaag gaacgactcg tctgtacctt gatgatcgcc ctgggtaaa ggttatcatt 1620
acagccaagc aagctcatga acggctcatt gcggaggtgc acaatcacga ggc当地aggc 1680
gggcttattc ttgagggagg atatatctcg ttgctcaggT gcatggcgcA aagtgcgttat 1740
tggAACCGGGG attttcgtt gcatattatt cgcaacgagt tagcagacga ggagagcttc 1800
atgagcgtgg ccaagaccag agttaaAGCAG atgttacgCC cctctgcagg tctttctatt 1860
atccaagagt tggttcaact ttggaggggAG cctcggctga gcccataact ggaaggggatC 1920
gatggatatc gatatgcct gctatttgc ACCAGAACC agatcaacgc CGATATGCTA 1980
ttgcagctcg acgcagatAT ggagaataaaa ttgattcACG gtatcgctca ggagtttcta 2040
atccatgcgc gtcgacacAGA acagaaattc ccttggtgg ggc当地ggcA gtcgaaggc 2100
tttgaaggac caccattcg aatgtgagtt aactatgtac gtaaggggca ggc当地gtcaa 2160
taagtgtggc tctgtatgtat gtacgtgcgg gtacgtgtct gtaagctact gaggcaagtc 2220
cataaataaaa taatgacacg tgcgtgttct ataatcttt cgcttcttca ttgtccccct 2280
tgcggagttt ggcatccatt gatgccgttA cgctggAGAC agacacagca gacgaaacca 2340
aagtgagttc ttgtatgaaa ctatgaccct tcatacgctag gctcaaacAG caccggtag 2400
gaacacagca aattagtcat ctaactattt gcccctacat gtttcagacg atacataaaat 2460
atagcccattt ctttagcaattt agctatttgc cctggccatC ccaagcaatg atctcgaagt 2520
attttaataa tatagtattt ttaatatgtA gttttaaa tttagaagata attttgagac 2580
aaaaatctcc aagtattttt ttgggtatTT ttactgcct ccgttttct ttatttctcg 2640
tcaccttagtt taattttgtg ctaatcggtt ataaacgaaa cagagagaae agtactcta 2700
aaagcaactc caacagatta gatataaattc ttatatcctg ccttagagctg ttaaaaagat 2760
agacaactt agtgaggattAG ttgtatgcAAC aaactctcca aatttaagta tcccaactac 2820
ccaaacgcata tcgttccctt ttcattggcg cacgaacttt cacctgctat agccgacgtA 2880
catgttcgtt ttgttgggc ggc当地ttact ttcttccccct ttcgttctca gcatcgcaac 2940
tcaatttggt atggcggaga agcccttgcA tcccaggtag taatgcacag atatgcattA 3000
ttattattca taaaaga 3017