

SQuIDS: A Tool to Solve Time Evolution in finite dimensional (open) Quantum Systems

An Application to Neutrino Oscillations

arxiv:1412.3832

Dominik Hellmann

TU Dortmund WG Päs

May 3, 2023

Outline:

- 1. Introduction (Quantum Evolution with Density Matrices)
- 2. SQuIDS (Overview and Exercises)
 - 2.1 The Const class (Overview + Exercise)
 - 2.2 The SU_vector class (Overview + Exercise)
 - 2.3 The SQuIDS class (Overview + Exercise)

Motivation

Task: Solve time evolution of finite dimensional quantum (sub-)systems:

- Flavor oscillations
- Quantum computation
- Systems with finitely many energy levels
- Spins

Time evolution of closed quantum system: Schrödinger equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi\rangle = \hat{H}|\psi\rangle \qquad (\hbar = 1)$$
 (1)

Density matrices instead of state vectors

Often: finite dimensional system S coupled to a complicated (but uninteresting) environment E

- → Get rid of Environment (keyword: partial trace)
- → Just consider degrees of freedom of interest

Consequence: Decoherence

- ightharpoonup Subsystem cannot be described by pure state $|\psi\rangle$
- Mixed state: Described by density matrix $\varrho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$

Example: Neutrino oscillations in matter

$\mathcal{S}\simeq\mathbb{C}^3$	E
flavor degrees of freedom	all remaining d.o.f (momenta, spins,)
$ \psi angle = \sum_{lpha=\mathbf{e}}^{ au} \psi_{lpha} u_{lpha} angle$	ightarrow infinite dimensional

- ▶ We are not at all interested in E
- Only the ν flavor composition is interesting to us
- **But**: E significantly influences flavor d.o.f.
- ⇒ Need effective description!

Time evolution of the density matrix

Master equation(s): (multiple density matrices possible)

$$\frac{\mathrm{d}\varrho_j}{\mathrm{d}t} = -i[\hat{H}_j(t), \varrho_j(t)]$$

- ▶ Why multiple ϱ_i ? E.g.: One per energy bin!
- $\hat{H} = \hat{H}_0 + \hat{H}_1(t)$: Unitary evolution

Time evolution of the density matrix

Master equation(s): (multiple density matrices possible)

$$\frac{\mathrm{d}\varrho_j}{\mathrm{d}t} = -i[\hat{H}_j(t), \varrho_j(t)] + \{\Gamma_j(t), \varrho_j(t)\}$$

- ▶ Why multiple ϱ_i ? E.g.: One per energy bin!
- $\hat{H} = \hat{H}_0 + \hat{H}_1(t)$: Unitary evolution
- ► Γ: Decoherence, Attenuation

Time evolution of the density matrix

Master equation(s): (multiple density matrices possible)

$$\frac{\mathrm{d}\varrho_j}{\mathrm{d}t} = -i[\hat{H}_j(t),\varrho_j(t)] + \{\Gamma_j(t),\varrho_j(t)\} + F_j[\{\varrho_k\}_k,t]$$

- ▶ Why multiple ϱ_i ? E.g.: One per energy bin!
- $\hat{H} = \hat{H}_0 + \hat{H}_1(t)$: Unitary evolution
- Γ: Decoherence, Attenuation
- ▶ F: Other non-linear effects (coupling between ϱ_i)

Simple Example: ν Oscillations in Vacuum

Neutrino Experiment:

- Fixed baseline L
- \triangleright *N* energy bins $\{E_j\}_j$
- $\blacktriangleright \hat{H}^j = \hat{H}_0^j = E_j \cdot \mathbb{I} + \frac{1}{2E_i} \mathbb{M}^2$
- Γ ≡ 0
- $F \equiv 0$
- $ightharpoonup arrho_j(t) = \sum_{lpha,eta=e}^{ au} \phi_{lphaeta}^j(t) |
 u_lpha
 angle \langle
 u_eta|$

Simple Example: ν Oscillations in Vacuum

Neutrino Experiment:

- Fixed baseline I
- \triangleright N energy bins $\{E_i\}_i$
- $\hat{\mathcal{H}}^j = \hat{\mathcal{H}}_0^j = E_j \cdot \mathbb{I} + \frac{1}{2E_i} \mathbb{M}^2$
- $\Gamma \equiv 0$
- $F \equiv 0$
- $\triangleright \ \varrho_i(t) = \sum_{\alpha \beta = e}^{\tau} \phi_{\alpha\beta}^j(t) |\nu_{\alpha}\rangle\langle\nu_{\beta}|$

$$egin{aligned} \mathbb{M} &= \sum_{j,k=1}^{3} (\mathbb{M}_0)_{jk} |
u_j
angle \langle
u_k| \ &= \sum_{lpha,eta=e}^{ au} (\mathbb{M}_1)_{lphaeta} |
u_lpha
angle \langle
u_eta| \ &= \sum_{lpha,eta=e}^{ au} (\mathbb{M}_1)_{lphaeta} |
u_lpha
angle \langle
u_eta| \ &= \left(\begin{matrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{matrix}
ight) \ &= U_{\mathrm{PMNS}}^{\dagger} \mathbb{M}_0 U_{\mathrm{PMNS}} \end{aligned}$$

$$\mathbb{M}_1 = U_{\mathrm{PMNS}}^\dagger \mathbb{M}_0 U_{\mathrm{PMNS}}$$

Some Important Considerations

The master equation simplifies to

$$\frac{\mathrm{d}\varrho_j}{\mathrm{d}t} = -i[\hat{H}_0^j,\varrho_j(t)]$$

Further simplifications

- ► Consider in mass basis: \hat{H}_0^j is diagonal
- Depends only on commutator!

$$[A, \mathbb{I}] = 0 \quad \Rightarrow \quad [\hat{H}_0^j, \varrho_j(t)] = [\hat{H}_0^j - \epsilon_j \mathbb{I}, \varrho_j(t)]$$

Some Important Considerations

The master equation simplifies to

$$\frac{\mathrm{d}\varrho_j}{\mathrm{d}t} = -i[\hat{H}_0^j,\varrho_j(t)]$$

Further simplifications

- ► Consider in mass basis: \hat{H}_0^j is diagonal
- ▶ Depends only on commutator!

$$\begin{split} [A,\mathbb{I}] &= 0 \quad \Rightarrow \quad [\hat{H}_0^j,\varrho_j(t)] = [\hat{H}_0^j - \epsilon_j \mathbb{I},\varrho_j(t)] \\ \epsilon_j &:= \langle \nu_1 | \hat{H}_0^j | \nu_1 \rangle = E_j + \frac{m_1^2}{2E_i} \quad \text{(Ground state energy)} \end{split}$$

Some Important Considerations

The master equation simplifies to

$$\frac{\mathrm{d}\varrho_j}{\mathrm{d}t} = -i[\hat{H}_0^j,\varrho_j(t)]$$

Further simplifications

- ightharpoonup Consider in mass basis: \hat{H}_0^j is diagonal
- ▶ Depends only on commutator!

$$egin{aligned} [A,\mathbb{I}] &= 0 &\Rightarrow & [\hat{H}_0^j, arrho_j(t)] = [\hat{H}_0^j - \epsilon_j \mathbb{I}, arrho_j(t)] \ \epsilon_j &:= \langle
u_1 | \hat{H}_0^j |
u_1
angle = E_j + rac{m_1^2}{2E_j} & ext{(Ground state energy)} \ &\Rightarrow \tilde{H}^j = rac{1}{2E_j} egin{pmatrix} 0 & 0 & 0 \ 0 & \Delta m_{21}^2 & 0 \ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} \end{aligned}$$

Some Important Considerations (ctd.)

Can solve H_0 evolution analytically!

► Switch to interaction picture:

$$\begin{split} \tilde{\varrho}(t) &:= \exp(iH_0t)\varrho \exp(-iH_0t) \\ \Rightarrow \dot{\varrho} &= -i[H_0, \rho] + \exp(-iH_0t)\dot{\tilde{\varrho}} \exp(iH_0t) \end{split}$$

- ► Can subtract $-i[H_0, \varrho]$ on both sides of master equation
- Must transform all terms to interaction picture (SQuIDS does that automatically and efficiently)

Some Important Considerations (ctd.)

All matrices in our system are hermitian: $A^{\dagger} = A$

- ▶ Hermitian $n \times n$ matrices form $N = n^2$ dimenional real vector space
- ► Convenient basis: SU(n) generators σ_i (e.g. n=2: Pauli matrices + identity)
- ▶ Decompose: $\varrho = \sum_{i=0}^{n^2-1} \rho_i \cdot \sigma_i$
- ▶ Components ρ_i form n^2 dimensional vector called SU_vector in the following

Summary

What did we learn so far (in general):

- 1. We passed to density matrix formulation (allows for mixed states)
- 2. Formulated master equation
- 3. Can subtract $\epsilon_0 \cdot \mathbb{I}$ from \hat{H} (only energy diff. important)
- 4. Can solve \hat{H}_0 exactly (interaction picture) $\varrho \to e^{i\hat{H}_0t}\varrho e^{-i\hat{H}_0t}$
- 5. Can represent ϱ, H, \ldots as n^2 dimensional, real vector (SU_vector)!
 - → Efficient and preserves hermiticity automatically!

SQuIDS

Clone the Repo!

Git Repository includes all needed files (slides, code templates)

Instructions

cd to the location where you want to place the repo
git clone https://github.com/BObsen/sm_to_bsm_neutrino.git
cd sm_to_bsm_neutrino

Overview

SQuIDS mainly consists out of 3 interconnected classes:

- 1. squids::Const
 - ► Implements all sorts of constants of nature
 - ► Conversion between natural units and other unit systems
 - ▶ Stores system parameters (mixing angles, energy differences, ...)

Overview

SQuIDS mainly consists out of 3 interconnected classes:

- 1. squids::Const
 - ► Implements all sorts of constants of nature
 - ► Conversion between natural units and other unit systems
 - ► Stores system parameters (mixing angles, energy differences, ...)
- 2. squids::SU_vector
 - Represents hermitian matrices efficiently
 - ► Implements all sorts of operations on them (Unitary transformations, trace, commutator, . . .)

Overview

SQuIDS mainly consists out of 3 interconnected classes:

- 1. squids::Const
 - ► Implements all sorts of constants of nature
 - Conversion between natural units and other unit systems
 - ► Stores system parameters (mixing angles, energy differences, ...)
- 2. squids::SU_vector
 - Represents hermitian matrices efficiently
 - ► Implements all sorts of operations on them (Unitary transformations, trace, commutator, ...)
- 3. squids::SQuIDS
 - ► Abstract base class, uses squids::Const and squids::SU_vector
 - ▶ Implements time evolution of the system of density matrices
 - ▶ Includes methods for taking expectation values etc

SQuIDS - The Const Class

Const - Construction of objects

Can only be default constructed:

```
squids::Const units;
```

- Constructs squids::Const object called units
- ► This object contains
 - ▶ Different physical constants $(G_F, N_A, G, m_p, ...)$
 - ► Values of km, s, J, kg, etc. in natural units
 - Yet unspecified values for:
 - \blacktriangleright basis change from B_0 to B_1 (e.g. mass and flavor basis)
 - energy differences which can be used for the hamiltonian \hat{H}_0

Const - Unit conversion

Easily convert between SI and natural units:

```
squids::Const units; double L = 10 * units.cm; \\ 506773 eV^{-1} double T = 1 * units.year; \\ 4.79116e+22 eV^{-1} double GF = units.GF * (units.GeV * units.GeV); \\ 1.16638e-05 \text{ GeV}^{-2}
```

```
The units are to be read as [unit we want] / [eV^{\alpha}], e.g.: km / [eV^{-1}]: [Value in eV^{-1}] = [Value in km] \cdot km / [eV^{-1}] [Value in km] = L / km
```


Const - Setting / Getting Mixing Angles

Furthermore you can store system parameters:

- ► Substitute Set for Get: returns corresponding value
- ▶ Energy differences: Only convenience parameters simplifying definition of \hat{H}_0

SQuIDS - The Const Class: Exercise

Const class exercise

- 1. Declare a default constructed const class object
- 2. Answer the following questions:
 - 2.1 How many eV^{-1} correspond to 300 km
 - 2.2 How many radians correspond to 25°
 - 2.3 If you are 24 years old, how many eV^{-1} are you old?
- 3. Set the mixing parameters for three neutrino generations to:
 - $\theta_{12} = 33.48^{\circ}$
 - $\theta_{13} = 8.55^{\circ}$
 - $\theta_{23} = 42.3^{\circ}$
- 4. Set the energy differences to:
 - $\Delta m_{21}^2 = 7.5 \cdot 10^{-5} \,\mathrm{eV}^2$
 - $\Delta m_{31}^{21} = 2.45 \cdot 10^{-3} \, \text{eV}^2$

SQuIDS - The $SU_vector\ Class$

From SM to BSM - 2023

SU Vector - Contructors

Construct a SU Vector:

► Default: No entries, no size

```
squids::SU_vector rho;
```

▶ Defined Dimension: entries are zero, size is $dim(\mathcal{H}) > 0$

And more: construct from array, gsl_matrix_complex, std::vector

. . .

SU Vector - Special Matrices

Construct a SU Vector to Standard Form:

• Identity: Corresponding matrix is the identity $(Id)_{ij} = \delta_{ij}$

```
squids::SU_vector Id
= squids::SU_vector::Identity(dim);
```

▶ Projector on state k_0 : only the (k_0, k_0) element is 1, i.e.

$$(\mathbb{P}_{k_0})_{ij} = \delta_{ik_0}\delta_{jk_0}$$

```
squids::SU_vector P_k0
= squids::SU_vector::Projector(dim, k0);
```

And more: See documentation (also in the repo)

SU Vector - Functions

Manipulate a SU Vector:

▶ Rotate from one basis to another $(B_0 \leftrightarrow B_1)$: (using angles specfied in params)

```
rho.RotateToB1(params); \\B0 to B1
rho.RotateToB0(params); \\B1 to B0
```

► Return dim of Hilbert space, Size of vector:

```
rho.Dim(); \\returns dim(H)
rho.Size(); \\returns number of elements
```

Furthermore: You can add, subtract multiply (also with scalars), assign, access elements via rho[] etc.

SQuIDS - The SU_vector Class: Exercise

SU vector exercise

- 1. Declare an empty SU vector corresponding to a 3D Hilbert space
- 2. Initialize an array of projectors for the three mass eigenstates (B_0)
- 3. Rotate them to the flavor basis (B_1)
- 4. Initialize a SU vector corresponding to the matrix (B_0)

$$\Delta \mathbb{M}^2 := egin{pmatrix} 0 & 0 & 0 \ 0 & \Delta m_{21}^2 & 0 \ 0 & 0 & m_{31}^2 \end{pmatrix}$$
 (2)

SQuIDS - The SQuIDS Class

SQuIDS - General Overview pt. I

squids::SQuIDS is a so called base class:

- ► You derive your own class from it
- ▶ It provides fundamental functionality through member functions
 - ► Integration of the master equation
 - ▶ Efficient memory management and storage of density matrices
- ► Already includes several members storing basic data of your system
- Virtual member functions:
 - ➤ Some you have to define for the class to work (HO, constructors, init, ...)
 - ► Some you can ignore if your system doesn't need them

SQuIDS - General Overview pt. II

Distribution of density matrices across the nodes [arxiv:1412.3832]:

- \triangleright n nodes x_i (energy bins, angles, whatever feature of your system)
- At each node:
 - nrho density matrices
 - ns scalars (not important for us)
- → Specify initial data, HO, HI, GammaRho, etc.
- \Rightarrow SQuIDS evolves the whole system (+ can take expectation values of observables)

SQuIDS - Constructors

Constructors / Initializors: (Set bkg. params and allocate memory)

```
SQuDIS(); \\ default
SQuDIS(uint nx, uint dim, unit nrho, uint nscalar,
double ti = 0);
void ini(uint nx, uint dim, unit nrho, uint nscalar,
double ti = 0);
```

- ▶ nx: Number of x nodes x_i
- dim: Dimensions of Hilbert space
- nrho / nscalar: # density matrices / scalars per node
- ti: initial time, defaults to zero

Call them in your own constructor with the system parameters you need!

SQuIDS - Member variables

SQuIDS is set up to include the following member variables:

- ▶ std::vector<double> x: x range
- ▶ uint nsun: Dim. of Hilbertspace
- Const params: squids::Const object containing system parameters
- And many more!

You can (and should) access these from within your own member functions!


```
int Set_xrange(double xini, double xend, std::string
scale); \\ Sets x = {xini, ..., xend} with lin or log
scale
```



```
int Set_xrange(double xini, double xend, std::string
scale); \\ Sets x = {xini, ..., xend} with lin or log
scale
double Get_x(uint i) const; \\ Returns x[i]
```



```
int Set_xrange(double xini, double xend, std::string
scale); \\ Sets x = {xini, ..., xend} with lin or log
scale
double Get_x(uint i) const; \\ Returns x[i]
const * Const Get_params() const; \\ Returns Const member
```



```
int Set_xrange(double xini, double xend, std::string
scale); \\ Sets x = {xini, ..., xend} with lin or log
scale
double Get_x(uint i) const; \\ Returns x[i]
const * Const Get_params() const; \\ Returns Const member
int Evolve(double dt); \\ Evolves System by dt
```



```
int Set_xrange(double xini, double xend, std::string
scale); \\ Sets x = {xini, ..., xend} with lin or log
scale
double Get_x(uint i) const; \\ Returns x[i]
const * Const Get_params() const; \\ Returns Const member
int Evolve(double dt); \\ Evolves System by dt
double GetExpectationValue(SU_vector op, uint irho, uint
ix) const; \\ Calculates exp. val. of op at node ix with
density matrix irho at current time
```


Some very useful predefined member functions are:

```
int Set_xrange(double xini, double xend, std::string
scale); \\ Sets x = {xini, ..., xend} with lin or log
scale
double Get_x(uint i) const; \\ Returns x[i]
const * Const Get_params() const; \\ Returns Const member
int Evolve(double dt); \\ Evolves System by dt
double GetExpectationValue(SU_vector op, uint irho, uint
ix) const; \\ Calculates exp. val. of op at node ix with
density matrix irho at current time
```

Of course there are more but these are most important for us!

SQuIDS - Evolution functions

Last but not least: The time independent Hamiltonian HO

```
SU_vector HO(double x, uint irho) const;
```

- ► Returns \hat{H}_0 as SU_vector object
- Assumes that \hat{H}_0 diagonal (i.e. given in mass basis B0 for ν oscillations)
- Cannot modify but can read member variables (const)
- ▶ irho: HO for density matrix at node x_i

SQuIDS - The SQuIDS Class: Exercise

SQuIDS application: Neutrino oscillations in vacuum

General set up: Vacuum Oscillations Experiment with . . .

- ▶ Fixed baseline L ($\hat{=}$ time variable)
- ▶ n logarithmic energy bins: $E \in [10 \,\mathrm{MeV}, 10 \,\mathrm{GeV}]$
- ► All neutrinos are produced as electron neutrinos

Use: x nodes as energy nodes, one density matrix per node, no scalar functions, only H0 non-zero

SQuIDS application: Neutrino oscillations in vacuum

- 1. Declare vacuum class publically derived from squids::SQuIDS class in vac/src/vacuum.hpp with methods
 - Default constructor
 - ► Initializing constructor
 - ► HO
 - ► GetProbabilities
 - Destructor if needed
- Define the corresponding member functions in vac/src/vacuum.cpp
 - ▶ nbins *x*-nodes corresponding to number of *E* bins (log scaled)
 - ▶ One density function per node, no scalar functions
 - nflavor neutrino flavors
 - ▶ Initial condition $\rho_i(t=0) = \mathbb{P}_e$ for all $i \in \{1, ..., nbins\}$
 - ► Work in mass basis!!!

SQuIDS

SQuIDS application: Neutrino oscillations in vacuum

- 3. Initialize an object from your class in vac/src/main.cpp (nbins = 1000, nflavor = 3, $E \in [10 \,\mathrm{MeV}, 10 \,\mathrm{GeV}]$)
- 4. Evolve the system for $L=300~\mathrm{km}$
- 5. Save the oscillation probabilities $P_{e\alpha}(E_i, L)$ to file(s) $\alpha = e, \mu, \tau$
- 6. Plot them against the energy

Outlook

- ▶ So far we only scratched the surface of SQuIDS' abilities
- ▶ Setting $\hat{H}_1(t, \varrho)$, $\Gamma(t, \varrho)$, $F(t, \varrho) \neq 0$ opens up possibilities to include decoherence, interactions, etc.
- ► These extra terms are solved numerically (using GSL)
- Examples for neutrinos:
 - ► Wave packet decoherence
 - ► Neutrino propagation through the sun / earth
 - ► Collective neutrino oscillations (early universe, supernovae, ...)
 - ► Active sterile oscillations by using more than three generations

BACK UP

Installation

What do we need for this tutorial?

- ► A unix-like (sub-)system
 - ► Linux
 - ► Mac (+ Xcode developer tools!)
 - On Windows: WSL
- ► A C++ compiler
- ► Make, wget, Git

Use scripts install_gsl.sh and install_SQuIDS.sh from the repo!

Installation (GSL)

```
cd $HOME
mkdir -p smToBsmLibs/gs1
wget ftp://ftp.gnu.org/gnu/gsl/gsl-latest.tar.gz
tar -zxvf gsl-latest.tar.gz
rm gsl-latest.tar.gz
cd $(find gsl-* | head -n 1)
./configure --prefix=$HOME/smToBsmLibs/gsl
make
make check
make install
LD_LIBRARY_PATH=$HOME/smToBsmLibs/gsl/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
cd $HOME
rm -rf $(find gsl-* | head -n 1)
```


Installation (SQuIDS)

```
cd $HOME
mkdir -p smToBsmLibs/SQuIDS
git clone https://github.com/jsalvado/SQuIDS.git
cd $(find SQuIDS* | head -n 1)
./configure --with-gsl-incdir=$HOME/smToBsmLibs/gsl/include \
--with-gsl-libdir=$HOME/smToBsmLibs/gsl/lib \
--prefix=$HOME/smToBsmLibs/SQuIDS
make
make test
make install
LD_LIBRARY_PATH=$HOME/smToBsmLibs/SQuIDS/lib:$LD_LIBRARY_PATH # linux only
export LD_LIBRARY_PATH # linux only
cd $HOME
rm -rf $(find SQuIDS* | head -n 1)
```