Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет информационных технологий и программирования Кафедра компьютерных технологий

Рыбак Андрей Викторович

Представление структур данных индуктивными семействами и доказательства их свойств

Научный руководитель: Я. М. Малаховски

 ${
m Caнкт-} \Pi$ етербург 2014

Содержание

Введе	ние		5							
Глава	1. Обз	op	6							
1.1	Функ	циональное программирование	6							
1.2	2 Лямб	да-исчисление	6							
1.3	В Лямб	да-исчисление с простыми типами	7							
1.4	4 Алгеб	браические типы данных и сопоставление с образцом	8							
	1.4.1	Рекурсивные типы данных	9							
	1.4.2	Сопоставление с образцом	9							
1.5	i Teopi	ия типов	10							
	1.5.1	Отношение конвертабельности	10							
	1.5.2	Интуиционистская теория типов	10							
1.6	5 Униф	оикация	11							
1.7	7 Agda		11							
	1.7.1	Сопоставление с образцом по типам с индексами	12							
1.8	В Инду	ктивные семейства	13							
1.9	9 Испо.	льзование индуктивных семейств в структурах дан-								
	ных .		14							
1.1	0 Выво	ды по главе 1	14							
Глава	2. Опи	сание реализованной структуры данных	15							
2.1	Поста	ановка задачи	15							
2.2	2 Стру	руктура данных «двоичная куча»								
2.3	В Вспот	могательные определения	16							
	2.3.1	Общие определения	16							
	2.3.2	Определение отношений и доказательства их								
		свойств	19							
2.4	4 Моду	ль Неар	25							
	2.4.1	Расширение исходного типа	25							
	2.4.2	Тип данных Неар	29							
	2.4.3	Функции вставки в кучу	32							
	2.4.4	Удаление минимума из полной кучи	34							

	2.4.5	Удале:	ние м	ини	иму	ма і	из 1	неп	ОЛІ	ЮЙ	ку	ЧИ			•	•	35
2.5	Вывод	ды по і	лаве	2 .				• •							•	•	47
Заключ	нение							• •					•	 •	•		48
Литера	тура .																49

Введение

Структуры данных используются в программировании повсеместно для абстрагирования обработки данных. Свойства структуры данных происходят из инвариантов, которые эта структура данных соблюдает.

Практика показывает, что тривиальные структуры данных и их инварианты хорошо выражаются в форме индуктивных семейств. Мы хотим узнать насколько хорошо эта практика работает и для более сложных структур.

В данной работе рассматривается представление в форме индуктивных семейств структуры данных приоритетная очередь типа «двоичная куча».

Глава 1. Обзор

В данной главе производится обзор предметной области и даются определения используемых терминов.

1.1. ФУНКЦИОНАЛЬНОЕ ПРОГРАММИРОВАНИЕ

Функциональное программирование — парадигма программирования, являющаяся разновидностью декларативного программирования, в которой программу представляют в виде функций (в математическом смысле этого слова, а не в смысле, используемом в процедурном программировании), а выполнением программы считают вычисление значений применения этих функций к заданным значениям. Большинство функциональных языков программирования используют в своём основании лямбда-исчисление (например, Haskell [1], Curry [2], Agda [3], диалекты LISP [4—6], SML [7], OCaml[8]), но существуют и функциональные языки явно не основанные на этом формализме (например, препроцессор языка С и шаблоны в C++).

1.2. ЛЯМБДА-ИСЧИСЛЕНИЕ

 $\mathit{Лямбда-ucчucлениe}\ (\lambda\text{-calculus})$ --- вычислительный формализм с тремя синтаксическим конструкциями, называемыми $npe\text{-}\mathit{лямбдa-mepMamu}$:

- вхождение переменной: v. При этом $v \in V$, где V --- некоторое множество имён переменных;
- лямбда-абстракция: $\lambda x.A$, где x --- имя переменной, а A --- прелямбда-терм. При этом терм A называют телом абстракции, а x перед точкой --- связыванием.
- лямбда-аппликация: BC;

и одной операцией бета-редукции. При этом говорят, что вхождение переменной является cвободным, если оно не связано какой-либо абстракцией. Множество пре-лямбда-термов обозначают Λ^- . Лямбда-термы --- это пре-лямбда-термы, факторизованные по отношению $aль \phi a$ -эквивалентности. Обозначение: $\Lambda = \Lambda^-/=_{\alpha}$.

Aльфа-эквивалентность (α -equality) отождествляет два прелямбда-терма, если один из них может быть получен из другого путём некоторого корректного переименовывания переменных --- переименования не нарушающего отношение связанности.

Eema-pedyкция (β -reduction) для лямбда-терма A выбирает в нём некоторую лямбда-аппликацию BC, содержащую лямбда-абстракцию в левой части A, и заменяет свободные вхождения переменной, связанной A, в теле самой A на терм C.¹

Два лямбда-терма A и B называются конвертабельными, когда существует две последовательности бета-редукций, приводящих их к общему терму C. Или, эквивалентно, когда термы A и B состоят с друг с другом в рефлексивно-симметрично-транзитивном замыкании отношения бета-редукции, также называемом отношением бета-эквивалентности.

За более подробной информацией об этом формализме следует обращаться к [9] и [10].

1.3. ЛЯМБДА-ИСЧИСЛЕНИЕ С ПРОСТЫМИ ТИПАМИ

Определение 1.1. Пусть U — бесконечное счетное множество, элементы которого мы будем называть *переменными типов*. Множество *простых типов* Π — множество, определенное грамматикой:

$$\Pi ::= U \mid (\Pi \to \Pi)$$

 $^{^1}$ В терминах пре-лямбда-термов это означает замену свободных вхождений в теле A на пре-терм C так, чтобы ни для каких переменных не нарушилось отношение связанности. То есть, в пре-терме A следует корректно переименовать все связанные переменные, имена которых совпадают с именами свободных переменных в C.

Для обозначения элементов множества Π используют буквы греческого алфавита: $\sigma, \tau \dots$

Определение 1.2. Множество контекстов C — это множество всех множеств пар такого вида:

$$\{x_1:\tau_1,\ldots,x_n:\tau_n\}$$

где $\tau_1,\dots,\tau_n\in\Pi,$ а $x_1,\dots,x_n\in V$ (переменные из Λ) и $x_i\neq x_j$ если $i\neq j.$

Определение 1.3. Домен контекста $\Gamma = \{x_1 : \tau_1, \dots, x_n : \tau_n\}$:

$$dom(\Gamma) = \{x_1, \dots, x_n\}$$

и $x_i \neq x_j$ при $i \neq j$.

Определение 1.4. Отношение munusauuu (typability) \vdash на множестве $C \times \Lambda \times \Pi$ определяется следующими правилами:

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma, x : \tau \vdash x : \tau} \quad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x . M : \sigma \to \tau} \quad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$$

В первом и втором правиле мы требуем $x \notin \text{dom}(\Gamma)$.

Определение 1.5. Лямбда-исчисление с простыми типами или λ^{\rightarrow} — это тройка (Λ, Π, \vdash) . Чтобы отличать данное в этой работе определение системы λ^{\rightarrow} от других вариантов, эту систему называют лямбда-исчисление с простыми типами по Kappu.

За более подробной информацией об этом формализме следует обращаться к [11] и [10].

1.4. Алгебраические типы данных и сопоставление с образцом

Алгебраический тип данных — вид составного типа, то есть типа, сформированного комбинированием других типов. Комбинирование осуществляется с помощью алгебраических операций — сложения и умножения.

Cумма типов A и B — дизъюнктное объединение исходных типов. Значения типа-суммы обычно создаются с помощью конструкторов.

 ${\it Произведение}$ типов A и B — прямое произведение исходных типов, кортеж типов.

1.4.1. Рекурсивные типы данных

Pекурсивный тип данных— тип данных, в определении которого содержится определяемый тип данных. Например, список элементов типа A:

$$List\ A = Nil + (A \times List\ A)$$

В теории [12] для введения рекурсивных типов используются μ -типы. Сырые μ -типы вводятся с помощью оператора μ : $\mu X.T$. При этом T может содержать X.

Определение 1.6. Сырой μ -тип T называется contractive, если для любого подвыражения T вида $\mu X.\mu X_1 ... \mu X_n.S$ тело S не равняется X.

Сырой μ -тип называется просто μ -типом (μ -type), если он сократим.

Пример: список элементов типа A: $List\ A = \mu X.Nil + (A \times X)$.

1.4.2. Сопоставление с образцом

Сопоставление с образцом — способ обработки объектов алгебраических типов данных, который идентифицирует значения по конструктору и извлекает данные в соответствии с представленным образцом.

1.5. Теория типов

 $Teopus\ munos\ —$ раздел математики изучающий отношения типизации вида $M\colon \tau$ и их свойства. M называется mepmom или supace-huem, а τ — типом терма M.

Теория типов также изучает правила для nepenucывания термов — замены подтермов в выражениях другими термами. Такие правила также называют правилами pedykuuu или kohepcuu термов. Редукцию терма x в терм y записывают: $x \to y$. Также рассматривают транзитивное замыкание отношения редукции: $\stackrel{*}{\longrightarrow}$. Например, термы 2+1 и 3 — разные термы, но первый редуцируется во второй: $2+1 \stackrel{*}{\longrightarrow} 3$. Если для терма x не существует терма y, для которого $x \to y$, то говорят, что терм x — в hopmanbhoù fopme.

1.5.1. Отношение конвертабельности

Два терма x и y называются конвертабельными, если существует терм z такой, что $x \stackrel{*}{\longrightarrow} z$ и $y \stackrel{*}{\longrightarrow} z$. Обозначают $x \stackrel{*}{\longleftrightarrow} y$. Например, 1+2 и 2+1 — конвертабельны, как и термы x+(1+1) и x+2. Однако, x+1 и 1+x (где x — свободная переменная) — не конвертабельны, так как оба представлены в нормальной форме. Конвертабельность — рефлексивно-транзитивно-симметричное замыкание отношения редукции.

1.5.2. Интуиционистская теория типов

Интуиционистская теория типов (теория типов Мартина-Лёфа) основана на математическом конструктивизме [13].

Операторы для типов в ИТТ:

• П-тип (пи-тип) — зависимое произведение, обобщение типов функций $(X \to Y)$, в которых тип результата зависит от значения аргумента: $\Pi_{x:X}Y(x)$ Например, если $\mathrm{Vec}(A,n)$ — тип кортежей из n элементов типа A, $\mathbb N$ — тип натуральных чисел, то

 $\Pi_{n:\mathbb{N}}\operatorname{Vec}(A,n)$ — тип функции, которая по натуральному числу n возвращает кортеж из n элементов типа A.

- Σ -тип зависимая пара $\Sigma_{x:A}B(x)$. Второй элемент в зависимой паре зависит от первого. Например, тип $\Sigma_{n:\mathbb{N}}\operatorname{Vec}(A,n)$ тип пары из числа n и кортежа из n элементов типа A.
- Пусть A множество конструкторов, B селектор на A. Элементы множества A представляют разные способы сформировать элемент в $W_{a:A}B(a)$, а B(a) представляют части дерева, сформированные с помощью a. $W_{a:A}B(a)$ рекурсивный тип, построенный с помощью конструкторов B(a), который можно представить в виде ϕ ундированных деревьев (well-founded trees) [14].

Базовые типы в ИТТ: \bot или 0 — пустой тип, не содержащий ни одного элемента; \top или 1 — единичный тип, содержащий единственный элемент.

1.6. Унификация

 $\mathit{Унификатор}$ для термов A и B — подстановка S, действующая на их свободные переменные, такая что $S(A) \equiv S(B).$

Унификация — процесс поиска унификатора.

1.7. AGDA

Agda [3] --- чистый функциональный язык программирования с зависимыми типами. В Agda есть поддержка модулей:

module AgdaDescription where

В коде на Agda широко используются символы Unicode. Тип натуральных чисел — N.

data N : Set where

zero:N

 $succ: N \rightarrow N$

В Agda функции можно определять как mixfix операторы. Пример — сложение натуральных чисел:

$$_+$$
: N \rightarrow N \rightarrow N
zero + $b = b$
succ $a + b = \text{succ } (a + b)$

Символы подчеркивания обозначают места для аргументов.

Зависимые типы позволяют определять типы, 3aвисящие (индексированные) значений других типов. Пример список, индексированный своей длиной:

```
data Vec (A : Set) : N \to Set where

nil : Vec A zero

cons : \boxtimes \{n\} \to A \to Vec A n \to Vec A (succ n)
```

В фигурные скобки заключаются неявные аргументы.

1.7.1. Сопоставление с образцом по типам с индексами

Такое определение Vec позволяет нам описать функцию head для такого списка, которая не может бросить исключение:

$$\mathrm{head}: \boxtimes \ \{A\} \ \{n\} \, \to \, \mathrm{Vec} \ A \ (\mathrm{succ} \ n) \, \to \, A$$

У аргумента функции head тип $\operatorname{Vec} A$ (succ n), то есть вектор, в котором есть хотя бы один элемент. Это позволяет произвести сопоставление с образцом только по конструктору cons:

head (cons
$$a$$
 as) = a

Перепишем тип данных Vec в немного другом виде — заменим индекс на параметр:

```
data Vec-ni (A: Set) (n: N): Set where nil: (n \boxtimes zero) \to Vec-ni \ A \ ncons: \boxtimes \{k\} \to (n \boxtimes succ \ k) \to A \to Vec-ni \ A \ k \to Vec-ni \ A \ n
```

Теперь конструкторы nil и cons явно требуют доказательства о длине вектора n. Agda при сопоставлении с образцом на индексированных типах генерирует эти доказательства с помощью унификации [15, 16]. В определении функции head тип аргумента унифицируется с типами конструкторов типа данных Vec и, так как не существует k такого, что zero \equiv succ k, сопоставление производится только по конструктору cons.

1.8. Индуктивные семейства

Определение 1.7. *Индуктивное семейство* [17, 18] — это индуктивный тип данных, который может зависеть от других типов и значений.

Тип или значение, от которого зависит зависимый тип, называют *индексом*.

Одной из областей применения индуктивных семейств являются системы интерактивного доказательства теорем.

Индуктивные семейства позволяют формализовать математические структуры, кодируя утверждения о структурах в них самих, тем самым перенося сложность из доказательств в определения.

1.9. Использование индуктивных семейств в структурах данных

В работах [19, 20] приведены различные подходы в использовании индуктивных семейств в реализации структур данных и доказательств их свойств.

Пример задания структуры данных и инвариантов — тип данных AVL-дерева и тип данных для хранения баланса в AVL-дереве [21].

Если $m \sim n$, то разница между m и n не больше чем один:

$$egin{aligned} \operatorname{data} & oxtimes & - : \mathbb{N} \to \mathbb{N} \to \operatorname{Set} \ \operatorname{where} \ & \boxtimes + : \boxtimes \{n\} \to & n \boxtimes 1 + n \ & \boxtimes 0 : \boxtimes \{n\} \to & n \boxtimes n \ & \boxtimes - : \boxtimes \{n\} \to 1 + n \boxtimes n \end{aligned}$$

В работе [20] представлен способ обобщения упорядоченных структур данных (таких как отсортированные списки и деревья поиска) и использование этого метода для реализации 2-3 деревьев.

1.10. Выводы по главе 1

Рассмотрены некоторые существующие подходы к построению структур данных с использованием индуктивных семейств. Кратко описаны особенности языка программирования Agda.

Глава 2. Описание реализованной структуры данных

В данной главе описывается разработанная функциональная структура данных приоритетная очередь типа «двоичная куча».

2.1. ПОСТАНОВКА ЗАДАЧИ

Целью данной работы является разработка типов данных для представления структуры данных и инвариантов, а также доказательство этих инвариантов.

Требования к данной работе:

- Разработать типы данных для представления структуры данных
- Реализовать функции по работе со структурой данных
- Используя разработанные типы данных доказать выполнение инвариантов.

2.2. Структура данных «двоичная куча»

Определение 2.1. Двоичная куча или пирамида [22] — такое двоичное подвешенное дерево, для которого выполнены следующие три условия:

- Значение в любой вершине не больше (если куча для минимума), чем значения её потомков.
- На i-ом слое 2^i вершин, кроме последнего. Слои нумеруются с нуля.
- Последний слой заполнен слева направо
 На рисунке 2.1 изображен пример кучи.

Рис. 2.1. Пример заполненной кучи для минимума

2.3. Вспомогательные определения

2.3.1. Общие определения

Некоторые общеизвестные определения заимствованы из стандартной библиотеки Agda [23].

module HeapModule where

Тип данных для пустого типа. У этого типа нет конструкторов, и, как следствие, нет термов, населяющих этот тип.

```
data \boxtimes : Set where
```

```
module Level where postulate Level : Set postulate lzero : Level postulate lsucc : Level \rightarrow Level postulate _{\square} : Level \rightarrow Level \rightarrow Level infixl 6 _{\square} [-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-}
```

```
{-# BUILTIN LEVELSUC lsucc #-} 
{-# BUILTIN LEVELMAX _⊠_ #-} 
open Level
```

module Function where

Композиция функций.

Из элемента пустого типа следует что-угодно.

```
\boxtimes-elim : \boxtimes { a} { Whatever : Set a} \rightarrow \boxtimes \rightarrow Whatever \boxtimes-elim ()
```

Логическое отрицание.

$$\neg : \boxtimes \{a\} \to \operatorname{Set} a \to \operatorname{Set} a$$
$$\neg P = P \to \boxtimes$$

private

```
module DummyAB \{a \ b\} \ \{A : \text{Set } a\} \ \{B : \text{Set } b\} where
```

Контрадикция, противоречие: из A и $\neg A$ можно получить любое B.

```
contradiction : A \rightarrow \neg A \rightarrow B
contradiction a \neg a = \boxtimes-elim (\neg a \ a)
```

Контрапозиция

```
 \begin{array}{l} \text{contraposition}: (A \to B) \to (\neg \ B \to \neg \ A) \\ \text{contraposition} = \text{flip} \ \_ \boxtimes \_ \\ \text{open DummyAB public} \\ \text{open Logic public} \\ \end{array}
```

Определения интуционистской теории типов.

```
module MLTT where
```

Пропозициональное равенство из интуционистской теории типов [13].

Тип-сумма — зависимая пара.

```
record \Sigma \{a\ b\} (A: \operatorname{Set}\ a) (B:A\to\operatorname{Set}\ b): \operatorname{Set}\ (a\boxtimes b) where constructor __,__ field \operatorname{fst}:A:\operatorname{Snd}:B\operatorname{fst} open \Sigma public
```

Декартово произведение — частный случай зависимой пары, Второй индекс игнорирует передаваемое ему значение.

Конгруэнтность

пропозиционального

равенства.

```
\operatorname{cong}: oxtimes (f\colon A \to B) \ \{x\ y\} \to x oxtimes y \to f \, x oxtimes f \, y \operatorname{cong} f \operatorname{refl} = \operatorname{refl} \operatorname{open} \operatorname{DummyA} \operatorname{public} \operatorname{open} oxtimes \operatorname{Prop} \operatorname{public} \operatorname{open} \operatorname{MLTT} \operatorname{public}
```

2.3.2. Определение отношений и доказательства их свойств

Чтобы задать порядок элементов в куче, нужно уметь сравнивать элементы. Зададим отношения на этих элементах.

Rel2 : Set
$$\rightarrow$$
 Set1
Rel2 $A = A \rightarrow A \rightarrow$ Set

Трихотомичность отношений меньше, равно и больше: одновременно два элемента могут принадлежать только одному отношению из трех.

$$\begin{array}{l} \textbf{data Tri } \{A: \textbf{Set}\} \; (_<__ = =__>_: \textbf{Rel2 } A) \; (a \; b: A): \textbf{Set where} \\ \textbf{tri}<: \; (a < b) \to \neg \; (a == b) \to \neg \; (a > b) \to \textbf{Tri } _<__ = =__>_ \; a \; b \\ \textbf{tri}=: \neg \; (a < b) \to \; (a == b) \to \neg \; (a > b) \to \textbf{Tri } _<__ = =__>_ \; a \; b \\ \textbf{tri}>: \neg \; (a < b) \to \neg \; (a == b) \to \neg \; (a > b) \to \textbf{Tri } _<__ = =__>_ \; a \; b \\ \end{array}$$

Введем упрощенный предикат, использующий только равенство. Отношение больше кинэшон меньше И замепереставленными няется отношением меньше \mathbf{c} аргументами.

$$\begin{array}{l} \text{flip1}: \boxtimes \{A \ B: \operatorname{Set}\} \ \{C: \operatorname{Set1}\} \to (A \to B \to C) \to B \to A \to C \\ \text{flip1} \ f \ a \ b = f \ b \ a \end{array}$$

$$\begin{array}{l} \text{Cmp}: \{A: \text{Set}\} \rightarrow \text{Rel2} \ A \rightarrow \text{Rel2} \ A \rightarrow \text{Set} \\ \text{Cmp} \ \{A\} \ _<_ \ _==_ \ = \boxtimes \ (x \ y: A) \rightarrow \text{Tri} \ (_<_) \ (_==_) \ (\text{flip1} \ _<_) \ x \ y \end{array}$$

Задавать высоту кучи будем натуральными числами.

Тип данных для отношения меньше или равно на натуральных числах.

$$\frac{\text{data } _\text{N}\boxtimes_ : \text{Rel2 N where}}{\text{z}\boxtimes\text{n} : \boxtimes\{n\} \to \text{zero N}\boxtimes n}$$

```
s\boxtimes s: \boxtimes \{n\ m\} \to n\ N\boxtimes m \to succ\ n\ N\boxtimes succ\ m
```

Все остальные отношения определяются через №

```
_{N} = N \boxtimes _{N} : Rel2 N
n \le m = succ n N \boxtimes m
n \ge m = m \le n
n \ge m = m \ge n
```

В качестве примера компаратора — доказательство трихотомичности для отношения меньше для натуральных чисел.

lemma-succ- $\boxtimes : \boxtimes \{n\} \{m\} \to \operatorname{succ} n \boxtimes \operatorname{succ} m \to n \boxtimes m$

```
lemma-succ-\boxtimes refl = refl lemma-succ-\boxtimes : \boxtimes {n} {m} \to succ (succ n) \mathbb{N}\boxtimes succ m \to succ n \mathbb{N}\boxtimes m lemma-succ-\boxtimes (s\boxtimess r) = r cmpN : Cmp {\mathbb{N}} _\mathbb{N}<_ \_\boxtimes _\mathbb{Z} cmpN zero (zero) = tri= (\lambda ()) refl (\lambda ()) cmpN zero (succ y) = tri< (s\boxtimess \mathbb{Z}\boxtimesn) (\lambda ()) (\lambda ()) (s\boxtimess \mathbb{Z}\boxtimesn) cmpN (succ x) zero = tri> (\lambda ()) (\lambda ()) (s\boxtimess \mathbb{Z}\boxtimesn) cmpN (succ x) (succ y) with cmpN x y ... | tri< a \neg b \neg c = tri< (s\boxtimess a) (contraposition lemma-succ-\boxtimes \neg c) (contraposition lemma-succ-\boxtimes \neg c) ... | tri> \neg a \neg b \quad c = tri> (contraposition lemma-succ-\boxtimes \neg a) (contraposition lemma-succ-\boxtimes \neg b) (s\boxtimess c) ... | tri= \neg a \quad b \quad \neg c = tri= (contraposition lemma-succ-\boxtimes \neg a)
```

(cong succ b) (contraposition lemma-succ- $\boxtimes \neg c$)

Транзитивность отношения.

$$\begin{array}{l} \text{Trans}: \{A: \operatorname{Set}\} \to \operatorname{Rel2} A \to \operatorname{Set} \\ \text{Trans}\ \{A\} \ _\mathit{rel}_ = \{a\ b\ c: A\} \to (a\ \mathit{rel}\ b) \to (b\ \mathit{rel}\ c) \to (a\ \mathit{rel}\ c) \end{array}$$

Симметричность отношения.

$$\begin{array}{l} \text{Symmetric} : \boxtimes \{A : \operatorname{Set}\} \to \operatorname{Rel2} A \to \operatorname{Set} \\ \\ \text{Symmetric} \ _\mathit{rel}_ \ = \boxtimes \{a\ b\} \to a\ \mathit{rel}\ b \to b\ \mathit{rel}\ a \end{array}$$

Предикат P учитывает (соблюдает) отношение $_{
m rel}_$

Отношение P соблюдает отношение $_{rel}_$

Тип данных для обобщенного отношения меньше или равно.

data _<=_ {
$$A$$
 : Set} {_<_ : Rel2 A } {_==_ : Rel2 A } : Rel2 A where le : \boxtimes { x y } \rightarrow x < y \rightarrow x <= y eq : \boxtimes { x y } \rightarrow x == y \rightarrow x <= y

Обобщенные функции минимум и максимум.

$$\begin{array}{l} \min \ \max : \{A : \mathsf{Set}\} \ \{_<_ : \mathsf{Rel2} \ A\} \ \{_==_ : \mathsf{Rel2} \ A\} \\ \to (\mathit{cmp} : \mathsf{Cmp} \ _<_ \ _==_) \to A \to A \to A \end{array}$$

```
egin{aligned} \min & cmp \ x \ y \ & \dots \mid \mathrm{tri} < \_ \ \_ \ = x \ & \dots \mid \_ = y \ & \max & cmp \ x \ y \ & \text{with} \ cmp \ x \ y \ & \dots \mid \mathrm{tri} > \_ \ \_ \ = x \ & \dots \mid \_ = y \end{aligned}
```

Лемма: элемент меньше или равный двух других элементов меньше или равен минимума из них.

$$\begin{split} & \text{lemma-} <= \min : \{A : \text{Set}\} \ \{_<_ : \text{Rel2 } A\} \ \{_==_ : \text{Rel2 } A\} \\ & \{cmp : \text{Cmp} \ _<_ \ ==_\} \ \{a \ b \ c : A\} \\ & \to (_<=_ \{_<_ = _<_\} \ \{_==_\} \ a \ b) \\ & \to (_<=_ \{_<_ = _<_\} \ \{_==_\} \ a \ c) \\ & \to (_<=_ \{_<_ = _<_\} \ \{_==_\} \ a \ (\min \ cmp \ b \ c)) \end{split}$$

$$\begin{array}{l} {\rm lemma-}{<}{=}{\rm min} \ \{{\rm cmp} = cmp\} \ \{_\} \ \{b\} \ \{c\} \ ab \ ac \ {\rm with} \ cmp \ b \ c \\ ... \ | \ {\rm tri}{<} \ _ \ _ \ = ab \\ ... \ | \ {\rm tri}{>} \ _ \ _ \ = ac \\ ... \ | \ {\rm tri}{>} \ _ \ _ \ = ac \end{array}$$

Функция — минимум из трех элементов.

```
\begin{array}{l} \operatorname{min3}: \{A:\operatorname{Set}\}\ \{\_<\_:\operatorname{Rel2}\ A\}\ \{\_==\_:\operatorname{Rel2}\ A\}\\ &\to (\operatorname{cmp}:\operatorname{Cmp}\ \_<\_==\_)\to A\to A\to A\to A\\ \operatorname{min3}\ \operatorname{cmp}\ x\ y\ z\ \text{with}\ \operatorname{cmp}\ x\ y\\ \dots\mid \operatorname{tri}<\_\ \_=\min\ \operatorname{cmp}\ x\ z\\ \dots\mid \_=\min\ \operatorname{cmp}\ y\ z \end{array}
```

Аналогичная предыдущей лемма для минимума из трех элементов.

Леммы lemma-<=min и lemma-<=min3 понадобятся при доказательстве соотношений между элементами, из которорых составляются новые кучи при их обработке.

Отношение _<=_ соблюдает отношение равенства _==_, с помощью которого оно определено.

```
\begin{split} \operatorname{resp} <&= : \{A : \operatorname{Set}\} \ \{\_<\_ : \operatorname{Rel2} \ A\} \ \{\_==\_ : \operatorname{Rel2} \ A\} \\ &\to (\operatorname{resp} : \_<\_ \operatorname{Respects2} \ \_==\_) \to (\operatorname{trans} == : \operatorname{Trans} \ \_==\_) \\ &\to (\operatorname{sym} == : \operatorname{Symmetric} \ \_==\_) \\ &\to (\_<=\_ \{A\}\{\_<\_\}\{\_==\_\}) \ \operatorname{Respects2} \ \_==\_ \\ \operatorname{resp} <&= \{A\}\{\_<\_\}\{\_==\_\} \ \operatorname{resp} \ \operatorname{trans} \ \operatorname{sym} = \operatorname{left} \ , \operatorname{right} \ \text{where} \\ \operatorname{left} : \boxtimes \{a \ b \ c : A\} \to b == c \to a <= b \to a <= c \\ \operatorname{left} \ b = c \ (\operatorname{le} \ a < b) = \operatorname{le} \ (\operatorname{fst} \ \operatorname{resp} \ b = c \ a < b) \\ \operatorname{left} \ b = c \ (\operatorname{eq} \ a = b) = \operatorname{eq} \ (\operatorname{trans} \ a = b \ b = c) \\ \operatorname{right} : \boxtimes \{a \ b \ c : A\} \to b == c \to b <= a \to c <= a \\ \operatorname{right} \ b = c \ (\operatorname{le} \ a < b) = \operatorname{le} \ (\operatorname{snd} \ \operatorname{resp} \ b = c \ a < b) \\ \operatorname{right} \ b = c \ (\operatorname{eq} \ a = b) = \operatorname{eq} \ (\operatorname{trans} \ (\operatorname{sym} \ b = c) \ a = b) \end{split}
```

Транзитивность отношения _<=_.

```
\begin{array}{l} {\rm trans}<=:\{A:{\rm Set}\}\ \{\_<\_:{\rm Rel2}\ A\}\ \{\_==\_:{\rm Rel2}\ A\}\\ \to \_<\_\ {\rm Respects2}\ \_==\_\\ \to {\rm Symmetric}\ \_==\_\to {\rm Trans}\ \_==\_\to {\rm Trans}\ \_<\_\\ \to {\rm Trans}\ (\_<=\_\ \{A\}\{\_<\_\}\{\_==\_\})\\ {\rm trans}<=\ r\ s\ t==\ t<\ ({\rm le}\ a< b)\ ({\rm le}\ b< c)={\rm le}\ (t<\ a< b\ b< c)\\ {\rm trans}<=\ r\ s\ t==\ t<\ ({\rm le}\ a< b)\ ({\rm eq}\ b=c)={\rm le}\ ({\rm fst}\ r\ b=c\ a< b)\\ {\rm trans}<=\ r\ s\ t==\ t<\ ({\rm eq}\ a=b)\ ({\rm le}\ b< c)={\rm le}\ ({\rm snd}\ r\ (s\ a=b)\ b< c)\\ {\rm trans}<=\ r\ s\ t==\ t<\ ({\rm eq}\ a=b)\ ({\rm eq}\ b=c)={\rm eq}\ (t==\ a=b\ b=c)\\ \end{array}
```

2.4. Модуль Неар

Модуль, в котором мы определим структуру данных куча, параметризован исходным типом, двумя отношениями, определенными для этого типа, _<_ и _==_. Также требуется симметричность и транзитивность _==_, транзитивность _<_, соблюдение отношением _<_ отношения _==_ и

2.4.1. Расширение исходного типа

Будем индексировать кучу минимальным элементом в ней, для того, чтобы можно было строить инварианты порядка на куче исходя из этих индексов. Так как в пустой куче нет элементов, то мы не можем выбрать элемент, который нужно указать в индексе. Чтобы решить эту проблему, расширим исходный тип данных, добавив элемент, больший всех остальных. Тип данных для расширения исходного типа.

```
data expanded (A: Set): Set where \#: A \to \text{ expanded } A \dashrightarrow \text{ элемент исходного типа} top: expanded A \dashrightarrow \text{ элемент расширениe}
```

Теперь нам нужно аналогичным образом расширить отношения заданные на множестве исходного типа. Тип данных для расширения отношения меньше.

```
data _<E_ : Rel2 (expanded A) where base : \boxtimes \{x \ y : A\} \rightarrow x < y \rightarrow (\# \ x) < E \ (\# \ y) ext : \boxtimes \{x : A\} \rightarrow (\# \ x) < E top
```

Вспомогательная лемма, извлекающая доказательство для отношения элементов исходного типа из отношения для элементов расширенного типа.

```
lemma-<E : \boxtimes {x} {y} \rightarrow (# x) <E (# y) \rightarrow x < y lemma-<E (base r) = r
```

Расширенное отношение меньше — транзитивно.

Тип данных расширенного отношения равенства.

```
data = E : Rel2 (expanded A) where
```

```
base : \boxtimes \{x \ y\} \rightarrow x == y \rightarrow (\# x) = \to (\# y)
ext : top =E top
```

Расширенное отношение равенства — симметрично и транзитивно.

```
sym=E : Symmetric = E
  sym=E (base a=b) = base (sym==a=b)
  sym = E ext = ext
  trans=E: Trans = E
  trans=E (base a=b) (base b=c) = base (trans==a=b b=c)
  trans=E ext ext = ext
Отношение
              <Е соблюдает отношение
                                                                        =\!\mathrm{E} .
  respE: <E Respects2 =E
  respE = left, right where
    \mathsf{left} : \boxtimes \{ a \ b \ c : \mathsf{expanded} \ A \} \to b = \mathsf{E} \ c \to a < \mathsf{E} \ b \to a < \mathsf{E} \ c
    left {# _} {# _} {# _} (base r1) (base r2) = base (fst resp\ r1\ r2)
    left \{\# \} \{\text{top}\} \{\text{top}\} ext ext = ext
    left { } {# } {top} ()
    left { _} {top} {# __} () __
    left {top} { } { } ()
    \text{right}: \boxtimes \{a\ b\ c: \text{expanded}\ A\} \to b = \to c \to b < \to a \to c < \to a
    right \{\# \} \{\# \} \{\# \} (base r1) (base r2) = base (snd resp \ r1 \ r2)
     right \{top\} \{\#\} \{\#\} ext = ext
    right {_} {# _} {top} () _
```

right {_} {top} {_} ()

Отношение меньше-равно для расширенного типа.

Транзитивность меньше-равно следует из свойств отношений $_=$ $E__$ и < $E__$:

Вспомогательная лемма, извлекающая доказательство равенства элементов исходного типа из равенства элементов расширенного типа.

```
lemma-=E : \boxtimes {x} {y} \rightarrow (# x) =E (# y) \rightarrow x == y lemma-=E (base r) = r
```

```
Трихотомичность для \_<Е\_ и \_=Е\_. cmpE : Cmp {expanded A} \_<Е\_ \_=Е\_ cmpE (\# x) (\# y) with cmp x y cmpE (\# x) (\# y) | tri< a b c = tri< (base a) (contraposition lemma-=E b) (contraposition lemma-<E c) cmpE (\# x) (\# y) | tri= a b c = tri= (contraposition lemma-<E a) (base b) (contraposition lemma-<E c) cmpE (\# x) (\# y) | tri> a b c = tri> (contraposition lemma-<E a) (contraposition lemma-=E b) (base c) cmpE (\# x) top = tri< ext (\lambda ()) (\lambda ()) ext
```

cmpE top top = tri=
$$(\lambda ())$$
 ext $(\lambda ())$

Функция — минимум для расширенного типа.

```
minE : (x \ y : expanded \ A) \rightarrow expanded \ A

minE = min \ cmpE
```

Функция — минимум из трех элементов расширенного типа — частный случай ранее определенной общей функции.

```
\mbox{min3E}: (\mbox{expanded}\ A) \to (\mbox{expanded}\ A) \to (\mbox{expanded}\ A) \to (\mbox{expanded}\ A) \mbox{min3E}\ x\ y\ z = \mbox{min3}\ \mbox{cmpE}\ x\ y\ z
```

Леммы для сравнения с минимумами для элементов расширенного типа.

```
\begin{array}{l} \operatorname{lemma-}{<=}\operatorname{minE}:\boxtimes\{a\ b\ c\}\to a\boxtimes b\to a\boxtimes c\to a\boxtimes (\operatorname{minE}\ b\ c)\\ \operatorname{lemma-}{<=}\operatorname{minE}=\operatorname{lemma-}{<=}\operatorname{min}\{\operatorname{expanded}\ A\}\{\_{<}\operatorname{E}_{\_}\}\{\_{=}\operatorname{E}_{\_}\}\{\operatorname{cmpE}\}\\ \operatorname{lemma-}{<=}\operatorname{min3E}:\boxtimes\{x\ a\ b\ c\}\to x\boxtimes a\to x\boxtimes b\to x\boxtimes c\\ \to x\boxtimes (\operatorname{min3E}\ a\ b\ c)\\ \operatorname{lemma-}{<=}\operatorname{min3E}=\operatorname{lemma-}{<=}\operatorname{min3}\{\operatorname{expanded}\ A\}\{\_{<}\operatorname{E}_{\_}\}\{\_{=}\operatorname{E}_{\_}\}\{\operatorname{cmpE}\}\\ \end{array}
```

2.4.2. Тип данных Неар

Вспомогательный тип данных для индексации кучи — куча полная или почти заполненная.

```
data HeapState : Set where
full almost : HeapState
```

Тип данных для кучи, проиндексированный минимальным элементом кучи, высотой и заполненностью.

```
data Heap: (expanded A) \rightarrow (h: N) \rightarrow HeapState \rightarrow Set where
```

У пустой кучи минимальный элемент — top, высота — ноль. Пустая куча — полная.

eh: Heap top zero full

Мы хотим в непустых кучах задавать порядок на элементах — элемент в узле меньше либо равен элементов в поддеревьях. Мы можем упростить этот инвариант, сравнивая элемент в узле только с корнями поддеревьев. Порядок кучи задается с помощью двух элементов отношения $_{\square}: i$ и j, которые говорят от том, что значение в корне меньше-равно значений в корнях левого и правого поддеревьев соответственно. На рисунке 2.2 схематично изображены конструкторы типа данных $_{\square}$

Полная куча высотой n+1 состоит из корня и двух куч высотой n.

```
  \text{nf}: \boxtimes \{n\} \ \{x \ y\} \to (p : A) \to (i : (\# \ p) \boxtimes x) \to (j : (\# \ p) \boxtimes y) \\
  \to (a : \text{Heap} \ x \ n \text{ full}) \\
  \to (b : \text{Heap} \ y \ n \text{ full}) \\
  \to \text{Heap} \ (\# \ p) \ (\text{succ} \ n) \text{ full}
```

Куча высотой n+2, у которой нижний ряд заполнен до середины, состоит из корня и двух полных куч: левая высотой n+1 и правая высотой n.

```
nd : \boxtimes \{n\} \{x \ y\} \rightarrow (p : A) \rightarrow (i : (\# p) \boxtimes x) \rightarrow (j : (\# p) \boxtimes y)
 \rightarrow (a : \text{Heap } x \text{ (succ } n) \text{ full)}
 \rightarrow (b : \text{Heap } y \ n \text{ full)}
 \rightarrow \text{Heap } (\# p) \text{ (succ (succ } n)) \text{ almost}
```

Куча высотой n+2, у которой нижний ряд заполнен мень-

середины, корня ше, чем ДО состоит ИЗ двух куч: леn + 1высотой И правая полная высотой вая неполная n.

nl :
$$\boxtimes \{n\} \{x \ y\} \rightarrow (p : A) \rightarrow (i : (\# p) \boxtimes x) \rightarrow (j : (\# p) \boxtimes y)$$

 $\rightarrow (a : \text{Heap } x \text{ (succ } n) \text{ almost)}$
 $\rightarrow (b : \text{Heap } y \text{ n full)}$
 $\rightarrow \text{Heap } (\# p) \text{ (succ (succ } n)) \text{ almost}$

Неполная куча высотой n+2, у которой нижний ряд заполнен больше, чем до середины, состоит из корня и двух куч: левая полная высотой n+1 и правая неполная высотой n+1.

$$\operatorname{nr}: \boxtimes \{n\} \ \{x \ y\} \to (p : A) \to (i : (\# p) \boxtimes x) \to (j : (\# p) \boxtimes y)$$
 $\to (a : \operatorname{Heap} x (\operatorname{succ} n) \operatorname{full})$
 $\to (b : \operatorname{Heap} y (\operatorname{succ} n) \operatorname{almost})$
 $\to \operatorname{Heap} (\# p) (\operatorname{succ} (\operatorname{succ} n)) \operatorname{almost}$

Замечание: высота любой неполной кучи больше нуля.

lemma-almost-height : \boxtimes { m h } \rightarrow Heap m h almost \rightarrow h N> 0

lemma-almost-height (nd _ _ _ _ _) = s
$$\boxtimes$$
s z \boxtimes n lemma-almost-height (nl _ _ _ _ _) = s \boxtimes s z \boxtimes n lemma-almost-height (nr _ _ _ _ _) = s \boxtimes s z \boxtimes n

Рис. 2.2. Конструкторы типа данных Неар

Функция — просмотр минимума в куче. $\begin{aligned} &\text{peekMin}: \boxtimes \{m\ h\ s\} \to \text{Heap}\ m\ h\ s \to (\text{expanded}\ A) \\ &\text{peekMin}\ \text{eh} = \text{top} \\ &\text{peekMin}\ (\text{nd}\ p\ _\ _\ _) = \#\ p \\ &\text{peekMin}\ (\text{nf}\ p\ _\ _\ _) = \#\ p \\ &\text{peekMin}\ (\text{nl}\ p\ _\ _\ _) = \#\ p \end{aligned}$

2.4.3. Функции вставки в кучу

Функция вставки элемента в полную кучу.

 $\begin{array}{l} \text{finsert}: \boxtimes \{h\ m\} \to (z:A) \to \text{Heap}\ m\ h\ \text{full} \\ \to \Sigma\ \text{HeapState}\ (\text{Heap}\ (\text{minE}\ m\ (\#\ z))\ (\text{succ}\ h)) \\ \text{finsert}\ \{0\}\ z\ \text{eh}\ =\ \text{full}\ ,\ \text{nf}\ z\ (\text{le\ ext})\ (\text{le\ ext})\ \text{eh\ eh} \\ \text{finsert}\ \{1\}\ z\ (\text{nf}\ p\ i\ j\ \text{eh\ eh})\ \text{with}\ cmp\ p\ z \end{array}$

peekMin (nr p _ _ _ _ _) = # p

```
... | tri,
  nd p (le (base p < z)) j (nf z (le ext) (le ext) eh eh) eh
... | tri= _p=z_{_}= almost,
  nd z (eq (base (sym{=}=p{=}z))) (le ext) (nf p\ i\ jeh eh) eh
... | tri> _ _ z<p = almost ,
  nd z \; (\text{le (base } z \! < \! p)) \; (\text{le ext)} \; (\text{nf } p \; i \; j \; \text{eh eh}) \; \text{eh}
finsert z (nf p i j (nf x i1 j1 a b) c) with cmp p z
finsert z (nf p i j (nf x i1 j1 a b) c) | tri< p<z _ _
  with finsert z (nf x i1 j1 a b)
  \mid lemma-<=minE \{\#\ p\}\ \{\#\ x\}\ \{\#\ z\}\ i (le (base p< z))
... | full , newleft \mid l1 = almost , nd p \mid l1 \mid j \mid newleft \mid c
... | almost , newleft \mid l1 = almost , nl p l1 j newleft c
\mathbf{finsert}\ z\ (\mathrm{nf}\ p\ i\ j\ (\mathrm{nf}\ x\ i1\ j1\ a\ b)\ c)\ |\ \mathrm{trie}=\ \_\ p{=}z\ \_
  with finsert p (nf x i1 j1 a b)
  | lemma-<=minE \{\#\ z\}\ \{\#\ x\}\ \{\#\ p\}
     (\text{snd resp}\boxtimes (\text{base } p=z) \ i) \ (\text{eq (base } (sym==p=z)))
  | snd resp\boxtimes (base p=z) j
... | full \,, \, newleft | l1 \mid l2 = \text{almost} , nd z \; l1 \; l2 \; newleft c
... | almost , newleft \mid l1 \mid l2 = almost , nl z l1 l2 newleft c
```

TODO из-за непонятного бага в LaTeX некоторые строки на Agda не отрендерены

```
... | almost , newleft \mid l1 = almost , 
nl z \mid l1 \text{ (trans} \boxtimes \text{ (le (base } z < p)) } j) newleft c
```

Вставка элемента в неполную кучу.

```
ainsert : \boxtimes \{h \ m\} \to (z : A) \to \text{Heap } m \ h \text{ almost}
\to \Sigma \text{ HeapState (Heap (minE } m \ (\# \ z)) \ h)
ainsert z \ (\text{nd} \ p \ i \ j \ a \ b) with cmp \ p \ z
```

```
ainsert z (nd p i j a b) | tri< p < z _ _ _ with finsert z b | lemma-<=minE j (le (base p < z)) ... | full _ , nb | l1 = full _ , nf p i l1 a nb ... | almost _ , nb | l1 = almost _ , nr p i l1 a nb
```

2.4.4. Удаление минимума из полной кучи

Вспомогательный тип данных.

```
data OR (A \ B : \mathbf{Set}) : \mathbf{Set} where \mathbf{orA} : A \to \mathbf{OR} \ A \ B \mathbf{orB} : B \to \mathbf{OR} \ A \ B
```

Слияние двух полных куч одной высоты.

```
fmerge : \boxtimes \{x\ y\ h\} \to \operatorname{Heap}\ x\ h\ \operatorname{full} \to \operatorname{Heap}\ y\ h\ \operatorname{full} \to \operatorname{OR}\ (\operatorname{Heap}\ x\ \operatorname{zero}\ \operatorname{full}\times (x\boxtimes y)\times (h\boxtimes \operatorname{zero})) (Heap (minE x\ y) (succ h) almost) fmerge eh eh = orA (eh , refl , refl) fmerge (nf x\ i1\ j1\ a\ b) (nf y\ i2\ j2\ c\ d) with cmp\ x\ y fmerge (nf x\ i1\ j1\ a\ b) (nf y\ i2\ j2\ c\ d) | tri< x<y__ with fmerge a\ b ... | orA (eh , refl , refl) = orB (nd x\ (\operatorname{le}\ (\operatorname{base}\ x< y))\ j1\ (\operatorname{nf}\ y\ i2\ j2\ c\ d) eh) ... | orB ab = orB (nr x\ (\operatorname{le}\ (\operatorname{base}\ x< y))\ (\operatorname{lemma-<=minE}\ i1\ j1)\ (\operatorname{nf}\ y\ i2\ j2\ c\ d)\ ab)
```

```
fmerge (nf x i1 j1 a b) (nf y i2 j2 c d) | tri> _ _ _ y < x with fmerge c d ... | orA (eh , refl , refl) = orB (nd y (le (base y < x)) j2 (nf x i1 j1 a b) eh) ... | orB cd = orB (nr y (le (base y < x)) (lemma-<=minE i2 j2) (nf x i1 j1 a b) cd)
```

Извлечение минимума из полной кучи.

fpop :
$$\boxtimes \{m \ h\} \to \text{Heap} \ m \ (\text{succ} \ h) \ \text{full} \to \text{OR}$$

$$(\Sigma \ (\text{expanded} \ A) \ (\lambda \ x \to (\text{Heap} \ x \ (\text{succ} \ h) \ \text{almost}) \times (m \boxtimes x)))$$
(Heap top h full)

2.4.5. Удаление минимума из неполной кучи

Составление полной кучи высотой h+1 из двух куч высотой h и одного элемента.

$$\begin{array}{l} \operatorname{makeH}: \boxtimes \{x\ y\ h\} \to (p:A) \to \operatorname{Heap}\ x\ h\ \operatorname{full} \to \operatorname{Heap}\ y\ h\ \operatorname{full} \\ \to \operatorname{Heap}\ (\operatorname{min3E}\ x\ y\ (\#\ p))\ (\operatorname{succ}\ h)\ \operatorname{full} \end{array}$$

Вспомогательные леммы, использующие lemma-<=minE.

```
lemma-resp : \boxtimes \{x \ y \ a \ b\} \rightarrow x == y \rightarrow (\# \ x) \boxtimes a \rightarrow (\# \ x) \boxtimes b \rightarrow (\# \ y) \boxtimes \min E \ a \ b lemma-resp x=y \ i \ j = \text{lemma-}<=\min E \ (\text{snd resp}\boxtimes (\text{base } x=y) \ i) (snd resp\boxtimes (\text{base } x=y) \ j) lemma-trans : \boxtimes \{x \ y \ a \ b\} \rightarrow y < x \rightarrow (\# \ x) \boxtimes a \rightarrow (\# \ x) \boxtimes b \rightarrow (\# \ y) \boxtimes \min E \ a \ b lemma-trans y < x \ i \ j = \text{lemma-}<=\min E \ (\text{trans}\boxtimes (\text{le } (\text{base } y < x)) \ i) (trans\boxtimes (\text{le } (\text{base } y < x)) \ j)
```

Слияние поддеревьев из кучи, у которой последний ряд заполнен до середины, определенной конструктором nd.

 $ndmerge: \boxtimes \{x\ y\ h\} \to Heap\ x\ (succ\ (succ\ h))\ full \to Heap\ y\ (succ\ h)\ full$

```
\rightarrow Heap (minE x y) (succ (succ (succ h))) almost
ndmerge (nf x i j a b) (nf y i1 j1 c d) with cmp x y
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri< x < y \_ with fmerge a b
ndmerge (nf x i j a b) (nf y i1 j1 c d) | tri< x<y _ _ _ | orB x1 =
 nl x (lemma-\leq=minE i j) (le (base x \leq y)) x1 (nf y i1 j1 c d)
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri= \_x=y \_ with fmerge c d
with fmerge a b
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri= x=y | orA (eh, refl, refl)
 | orA (eh , refl , ())
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri= x=y | orA (eh, refl, refl)
 | \text{ orB } ab = \text{nl } y \text{ (lemma-resp } x=y \text{ } ij \text{) (eq (base } (sym==x=y)))
   ab (nf x (le ext) (le ext) eh eh)
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri= x=y | orB cd with fmerge a
ndmerge (nf x i j a b) (nf y i1 j1 c d) | tri= \_x=y \_ | orB cd | orA (\_, \_,
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri= x=y | orB cd | orB ab =
 nl y (lemma-resp x=y i j) (lemma-<=min3E i1 j1 (eq (base (sym==x=y))
   ab \pmod{x c d}
ndmerge (nf x i j a b) (nf y i1 j1 c d) | tri> _ _ y<x with fmerge a b
ndmerge (nf x i j a b) (nf y i 1 j 1 c d) | tri> y < x | or B ab = 0
 nl y (lemma-trans y < x i j) (lemma-\leq = \min 3E i 1 j 1 (le (base y < x)))
   ab \pmod{x c d}
```

Слияние неполной кучи высотой h+2 и полной кучи высотой h+1 или h+2.

```
afmerge : \boxtimes \{h \ x \ y\} \to \text{Heap} \ x \text{ (succ (succ } h)) \text{ almost}
  \rightarrow OR (Heap y (succ h) full) (Heap y (succ (succ h)) full)
  \rightarrow OR (Heap (minE x y) (succ (succ h)) full)
     (Heap (minE x y) (succ (succ (succ h))) almost)
afmerge (nd x i j (nf p i 1 j 1 eh eh) eh) (or A (nf y i 2 j 2 eh eh)) with cmp x y
... | tri< x<y _ _ = orA (nf x i (le (base x<y))
  (\text{nf } p \ i1 \ j1 \ \text{eh eh}) \ (\text{nf } y \ i2 \ j2 \ \text{eh eh}))
... | tri= x=y = orA (nf y (eq (base (sym==x=y)))
  (\text{snd resp}\boxtimes (\text{base } x=y) \ i) \ (\text{nf } x \ (\text{le ext}) \ (\text{le ext}) \ \text{eh eh}) \ (\text{nf } p \ i1 \ j1 \ \text{eh eh}))
... | tri> _ _ y<x= or
A (nf<br/> y (le (base y<x))
  (\text{trans}\boxtimes (\text{le }(\text{base }y < x)) i) (\text{nf }x j j \text{ eh eh}) (\text{nf }p j1 j1 \text{ eh eh}))
afmerge (nd x i j (nf p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (orA (nf y i3 j3 c d)
  with cmp \ x \ y \mid ndmerge (nf p1 \ i1 \ j1 \ a1 \ b1) (nf p2 \ i2 \ j2 \ a2 \ b2)
... | tri< x<y _ _ | ab=orB (n<br/>lx (lemma-<=min
E i<br/>j) (le (base x\!<\!y))
  ab \text{ (nf } y \text{ } i3 \text{ } j3 \text{ } c \text{ } d))
... | tri= x=y | ab = orB (nl y (lemma-resp x=y i j)
  (lemma-<=min3E \ i3 \ j3 \ (eq \ (base \ (sym==x=y)))) \ ab \ (makeH \ x \ c \ d))
... | tri> _ _ y < x \mid ab = \text{orB (nl } y \text{ (lemma-trans } y < x i j)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
afmerge (nl x i j (nd p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (or A (nf y i3 j3 c d)
  with cmp \ x \ y \mid afmerge \ (nd \ p1 \ i1 \ j1 \ a1 \ b1) \ (or A \ (nf \ p2 \ i2 \ j2 \ a2 \ b2))
... | tri< x < y _ _ | orA ab =
  orA (nf x (lemma-\leq=minE i j) (le (base x \leq y)) ab (nf y i3 j3 c d))
... | tri< x < y _ _ | orB ab =
  orB (nl x (lemma-\leq=minE i j) (le (base x < y)) ab (nf y i3 j3 c d))
... | tri= x=y | orA ab = orA
  (nf y (lemma-resp x=y i j) (lemma-<=min3E i3 j3 (eq (base (sym==x=y))
     ab \text{ (makeH } x c d)
```

```
... | tri= x=y | orB ab = orB
  (nl y (lemma-resp x=y i j) (lemma-<=min3E i3 j3 (eq (base (sym==x=y)
    ab \text{ (makeH } x c d))
... | tri> _ _ y < x | orA ab = orA
  (nf y (lemma-trans y < x i j) (lemma-<=min3E i3 j3 (le (base y < x)))
    ab \text{ (makeH } x c d))
... | \text{tri} >  _ _ y < x | \text{orB } ab = \text{orB}
  (nl y (lemma-trans y < x \ i \ j) (lemma-<=min3E i \ 3 \ j \ 3 (le (base y < x)))
    ab \text{ (makeH } x c d))
afmerge (nl x i j (nl p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (or A (nf y i3 j3 c d))
  with cmp \ x \ y \mid affinerge (nl p1 \ i1 \ j1 \ a1 \ b1) (or A (nf p2 \ i2 \ j2 \ a2 \ b2))
... | tri< x < y | orA ab =
  orA (nf x (lemma-<=minE i j) (le (base x < y)) ab (nf y i3 j3 c d))
... | tri< x < y _ _ | orB ab =
  orB (nl x (lemma-\leq=minE i j) (le (base x < y)) ab (nf y i3 j3 c d))
... | tri= _ x=y _ | or
A ab=or
A (nf<br/> y (lemma-resp x{=}y\ i\ j)
  (lemma-<=min3E \ i3 \ j3 \ (eq \ (base \ (sym==x=y)))) \ ab \ (makeH \ x \ c \ d))
... | tri= x=y | orB ab = orB (nl y (lemma-resp x=y i j)
  (lemma-<=min3E \ i3 \ j3 \ (eq \ (base \ (sym==x=y)))) \ ab \ (makeH \ x \ c \ d))
... |\text{tri}\rangle _ _ y < x | \text{ or A } ab = \text{or A (nf } y \text{ (lemma-trans } y < x i j))}
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
... | tri> _ _ y < x | orB ab = orB (nl y (lemma-trans y < x i j)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
afmerge (nl x i j (nr p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (or A (nf y i3 j3 c d))
  with cmp \ x \ y \mid afmerge \ (nr \ p1 \ i1 \ j1 \ a1 \ b1) \ (or A \ (nf \ p2 \ i2 \ j2 \ a2 \ b2))
... | tri< x < y _ _ | orA ab =
  orA (nf x (lemma-\leq=minE i j) (le (base x \leq y)) ab (nf y i3 j3 c d))
... | tri< x < y _ _ | orB ab =
```

```
orB (nl x (lemma-\leq=minE i j) (le (base x \leq y)) ab (nf y i3 j3 c d))
... | tri= x=y | orA ab = orA (nf y (lemma-resp x=y i j)
  (lemma-<=min3E i3\ j3\ (\mathrm{eq}\ (\mathrm{base}\ (sym==\ x=y))))\ ab\ (\mathrm{makeH}\ x\ c\ d))
... | tri= x=y | orB ab = \text{orB} (nl y (lemma-resp x=y i j)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{eq (base } (sym = = x = y)))) \ ab \ (\text{makeH} \ x \ c \ d))
... | tri> y < x \mid \text{ or A } ab = \text{ or A } (\text{nf } y \text{ (lemma-trans } y < x i j))
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
... | tri> _ _ y < x | orB ab = orB (nl y (lemma-trans y < x i j)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
afmerge (nr x i j (nf p1 i1 j1 a1 b1) (nd p2 i2 j2 a2 b2)) (or A (nf y i3 j3 c d)
  with cmp \ x \ y \mid affinerge (nd p2 \ i2 \ j2 \ a2 \ b2) (orB (nf p1 \ i1 \ j1 \ a1 \ b1))
... | tri< x < y | (orA ab) =
  orA (nf x (le (base x < y)) (lemma-<=minE j i) (nf y i3 j3 c d) ab)
... | tri< x<y _ _ | (or<br/>Bab)= \displaystyle
  orB (nl x (lemma-\leq=minE j i) (le (base x \leq y)) ab (nf y i3 j3 c d))
... | tri= x=y | (orA ab) = orA (nf y (lemma-resp x=y j i)
  (lemma-<=min3E \ i3 \ j3 \ (eq \ (base \ (sym==x=y)))) \ ab \ (makeH \ x \ c \ d))
... | \text{trie} \underline{\hspace{0.2cm}} x=y \underline{\hspace{0.2cm}} | \text{(orB } ab) = \text{orB (nl } y \text{ (lemma-resp } x=y j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{eq (base } (sym = = x = y)))) \ ab \ (\text{makeH} \ x \ c \ d))
... |\text{tri}\rangle _ _ y < x | (\text{orA } ab) = \text{orA } (\text{nf } y (\text{lemma-trans } y < x j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
... | \text{tri} >  _ _ y < x | \text{(orB } ab) = \text{orB (nl } y \text{(lemma-trans } y < x j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
afmerge (nr x i j (nf p1 i1 j1 a1 b1) (nl p2 i2 j2 a2 b2)) (or A (nf y i3 j3 c d))
  with cmp \ x \ y \mid affinerge (nl p2 \ i2 \ j2 \ a2 \ b2) (orB (nf p1 \ i1 \ j1 \ a1 \ b1))
... | tri< x < y _ _ | (orA ab) =
  orA (nf x (le (base x < y)) (lemma-<=minE j i) (nf y i3 j3 c d) ab)
... | tri< x < y _ _ | (orB ab) =
```

```
orB (nl x (lemma-\leq=minE j i) (le (base x \leq y)) ab (nf y i3 j3 c d))
... | \text{tri} = \underline{x} = y \underline{\ } | \text{(orA } ab) = \text{orA (nf } y \text{ (lemma-resp } x = y \text{ } j \text{ } i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{eq (base } (sym = = x = y)))) \ ab \ (\text{makeH} \ x \ c \ d))
... | tri= x=y | (orB ab) = orB (nl y (lemma-resp x=y j i)
  (lemma-<=min3E i3 j3 (eq (base <math>(sym==x=y)))) ab (makeH x c d))
... | tri> y < x \mid (\text{orA } ab) = \text{orA } (\text{nf } y \text{ (lemma-trans } y < x j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
... | tri> y < x \mid (\text{orB } ab) = \text{orB } (\text{nl } y \text{ (lemma-trans } y < x j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
afmerge (nr x i j (nf p1 i1 j1 a1 b1) (nr p2 i2 j2 a2 b2)) (or A (nf y i3 j3 c d)
  with cmp \ x \ y \mid affinerge (nr p2 \ i2 \ j2 \ a2 \ b2) (orB (nf p1 \ i1 \ j1 \ a1 \ b1))
... | tri< x < y | (orA ab) =
  orA (nf x (le (base x < y)) (lemma-<=minE j i) (nf y i3 j3 c d) ab)
... | tri< x<y _ _ | (or<br/>Bab)= \displaystyle
  orB (nl x (lemma-\leq=minE j i) (le (base x \leq y)) ab (nf y i3 j3 c d))
... | tri= x=y | (orA ab) = orA (nf y (lemma-resp x=y j i)
  (lemma-<=min3E \ i3 \ j3 \ (eq \ (base \ (sym==x=y)))) \ ab \ (makeH \ x \ c \ d))
... | tri= x=y | (orB ab) = orB (nl y (lemma-resp x=y j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{eq (base } (sym = = x = y)))) \ ab \ (\text{makeH} \ x \ c \ d))
... |\text{tri}\rangle  _ _ y < x | (\text{orA } ab) = \text{orA } (\text{nf } y (\text{lemma-trans } y < x j i))
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
... | \text{tri} >  _ _ y < x | \text{(orB } ab) = \text{orB (nl } y \text{(lemma-trans } y < x j i)
  (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ ab \ (\text{makeH} \ x \ c \ d))
afmerge (nd x i j (nf p i1 j1 eh eh) eh) (orB (nf y i2 j2 c d)) with cmp x y
\dots \mid \text{tri} < x < y \_ \_ =
  orB (nd x (le (base x < y)) i (nf y i2 j2 c d) (nf p i1 j1 eh eh))
... | tri= \_x=y \_ = orB (nd y
(\text{lemma-} < = \min 3E \ i2 \ j2 \ (\text{eq (base } (sym = = x = y)))) \ (\text{snd resp} \boxtimes (\text{base } x = y) \ i)
```

```
(\text{makeH } x \ c \ d) \ (\text{nf } p \ i1 \ j1 \ \text{eh eh}))
... | tri> _ _ y < x = \text{orB (nd } y \text{ (lemma-} < = \text{min3E } i2 j2 \text{ (le (base } y < x)))}
  (\text{trans}\boxtimes (\text{le }(\text{base }y < x)) i) (\text{makeH } x \ c \ d) (\text{nf } p \ i1 \ j1 \ \text{eh eh}))
      \mathbf{afmerge} \ (\mathrm{nd}\ x\ i\ j\ (\mathrm{nf}\ p1\ i1\ j1\ a1\ b1)\ (\mathrm{nf}\ p2\ i2\ j2\ a2\ b2))\ (\mathrm{orB}\ (\mathrm{nf}\ y\ i3\ j3\ c\ d)) 
  with cmp \ x \ y \mid ndmerge (nf p1 \ i1 \ j1 \ a1 \ b1) (nf p2 \ i2 \ j2 \ a2 \ b2)
... \mid tri< x < y _ _ \mid ab =
  orB (nr x (le (base x < y)) (lemma-<=minE i j) (nf y i3 j3 c d) ab)
... | tri= x=y _{-} | ab = orB (nr y)
   (lemma-<=min3E i \Im j \Im (eq (base (sym==x=y))))
   (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri> y < x \mid ab = \text{orB (nr } y
   (\text{lemma-} < = \text{min3E } i3 j3 (\text{le } (\text{base } y < x)))
   (\text{lemma-trans } y {<} x \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
afmerge (nl x i j (nd p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (orB (nf y i3 j3 c d)
  with cmp \ x \ y \mid affinerge (nd p1 \ i1 \ j1 \ a1 \ b1) (or A (nf p2 \ i2 \ j2 \ a2 \ b2))
... | tri< x < y _ _ | (orA ab) = orB (nd x (le (base x < y))
  (lemma-<=minE \ i \ j) \ (nf \ y \ i3 \ j3 \ c \ d) \ ab)
... |\operatorname{tri} \langle x \langle y \_ \_ | (\operatorname{orB} ab) = \operatorname{orB} (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x \langle y)))
   (\text{lemma-} < = \min E \ i \ j) \ (\text{nf} \ y \ i3 \ j3 \ c \ d) \ ab)
... | tri= x=y | (orA ab) = orB (nd y
  (lemma-<=min3E i \ 3 \ j \ 3 (eq (base (sym==x=y)))) (lemma-resp x=y \ i \ j)
      (\text{makeH } x \ c \ d) \ ab)
... | \text{tri} = \underline{x} = y \underline{\ } | \text{(orB } ab) = \text{orB (nr } y
  (\text{lemma-} < = \text{min3E } i3 j3 (\text{eq } (\text{base } (sym = = x = y)))) (\text{lemma-resp } x = y i j)
      (makeH x c d) ab<math>)
... | \text{tri} >  _ _ y < x | (\text{orA } ab) = \text{orB } (\text{nd } y)
   (\text{lemma-} < = \min 3E \ i3 \ j3 \ (\text{le (base } y < x))) \ (\text{lemma-trans } y < x \ i \ j) \ (\text{makeH} \ x \ o)
... | tri> _ _ y<x | (or<br/>Bab)=or<br/>B (nry
```

```
(\text{lemma-} < = \min 3 \text{E } i3 j3 (\text{le } (\text{base } y < x))) (\text{lemma-trans } y < x i j) (\text{makeH } x \in x)
afmerge (nl x i j (nl p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (orB (nf y i3 j3 c d))
  with cmp \ x \ y \mid \text{afmerge} \ (\text{nl} \ p1 \ i1 \ j1 \ a1 \ b1) \ (\text{orA} \ (\text{nf} \ p2 \ i2 \ j2 \ a2 \ b2))
... | tri< x < y _ _ | (orA ab) = orB (nd x (le (base x < y))
  (lemma-<=minE \ i \ j) \ (nf \ y \ i3 \ j3 \ c \ d) \ ab)
... | tri< x < y _ _ | (orB ab) = orB (nr x (le (base x < y))
   (lemma-<=minE \ i \ j) \ (nf \ y \ i3 \ j3 \ c \ d) \ ab)
... | tri= \_x=y \_ | (orA ab) = orB
  (nd y (lemma-\leq=min3E i3 j3 (eq (base (sym==x=y))))
  (\text{lemma-resp } x{=}y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri= x=y | (orB ab) = orB
  (\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (eq (base } (sym = = x = y))))}
  (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri> y < x \mid (\text{orA } ab) = \text{orB}
   (nd y (lemma-\leq=min3E i3 j3 (le (base y < x)))
  (lemma-trans y < x \ i \ j) (makeH x \ c \ d) ab)
... | tri> _ _ y<x | (or<br/>Bab)={\rm or}{\rm B}
  (\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (le (base } y < x))))
  (lemma-trans y < x \ i \ j) (makeH x \ c \ d) ab)
afmerge (nl x i j (nr p1 i1 j1 a1 b1) (nf p2 i2 j2 a2 b2)) (orB (nf y i3 j3 c d))
  with cmp \ x \ y \mid affinerge (nr p1 \ i1 \ j1 \ a1 \ b1) (or A (nf p2 \ i2 \ j2 \ a2 \ b2))
... | tri< x<y _ _ | (or<br/>Aab)={\rm orB}
  (\text{nd } x (\text{le } (\text{base } x < y)) (\text{lemma-} < = \min E \ i \ j) (\text{nf } y \ i3 \ j3 \ c \ d) \ ab)
... | tri< x < y _ _ | (orB ab) = orB
  (\text{nr } x \text{ (le (base } x < y)) \text{ (lemma-} < = \min E i j) \text{ (nf } y \text{ } i3 \text{ } j3 \text{ } c \text{ } d) \text{ } ab)
... | tri= _ x=y _ | (or
A ab) = or
B
   (\text{nd } y \text{ (lemma-} < = \text{min} 3E \text{ } i3 \text{ } j3 \text{ (eq (base } (sym = = x = y))))}
  (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri= _ x=y _ | (orB ab) = orB
```

```
(\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (eq (base } (sym = = x = y))))}
  (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri> y < x \mid (\text{orA } ab) = \text{orB}
  (nd y (lemma-\leq=min3E i3 j3 (le (base y \leq x)))
   (lemma-trans y < x \ i \ j) (makeH x \ c \ d) ab)
... | tri> _ _ y < x | (orB ab) = orB
  (\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (le (base } y < x))))
   (lemma-trans y < x \ i \ j) (makeH x \ c \ d) ab)
afmerge (nr x i j (nf p1 i1 j1 a1 b1) (nd p2 i2 j2 a2 b2)) (orB (nf y i3 j3 c d)
  with cmp \ x \ y \mid \text{afmerge} \ (\text{nd} \ p2 \ i2 \ j2 \ a2 \ b2) \ (\text{orB} \ (\text{nf} \ p1 \ i1 \ j1 \ a1 \ b1))
... \mid \text{tri} < x < y \_ \_ \mid (\text{orA } ab) = \text{orB}
  (\text{nd } x (\text{le } (\text{base } x < y)) (\text{lemma-} < = \min E j i) (\text{nf } y i 3 j 3 c d) ab)
... | tri< x<y _ _ | (or<br/>Bab)={\rm or}{\rm B}
  (\text{nr } x \text{ (le (base } x < y)) \text{ (lemma-} < = \min E j i) (\text{nf } y \text{ } i3 \text{ } j3 \text{ } c \text{ } d) \text{ } ab)
... | tri= _ x=y _ | (orA ab) = orB
  (nd y (lemma-\leq=min3E i3 j3 (eq (base (sym==x=y))))
  (\text{lemma-resp } x = y \ j \ i) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri= x=y | (orB ab) = orB
  (\text{nr } y \text{ (lemma-} < = \text{min} 3E \ i3 \ j3 \ (\text{eq (base } (sym = = x = y))))
  (\text{lemma-resp } x=y \ j \ i) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri> y < x \mid (\text{orA } ab) = \text{orB}
  (nd y (lemma-\leq=min3E i3 j3 (le (base y\leqx))) (lemma-trans y\leqx j i)
     (\text{makeH } x \ c \ d) \ ab)
... | \text{tri} > __ y < x | (\text{orB } ab) = \text{orB}
   (\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (le (base } y < x))) \text{ (lemma-trans } y < x j i)
     (\text{makeH } x \ c \ d) \ ab)
afmerge (nr x i j (nf p1 i1 j1 a1 b1) (nl p2 i2 j2 a2 b2)) (orB (nf y i3 j3 c d))
  with cmp \ x \ y \mid affinerge (nl p2 \ i2 \ j2 \ a2 \ b2) (orB (nf p1 \ i1 \ j1 \ a1 \ b1))
... | tri< x < y _ _ | (orA ab) = orB
```

```
(\text{nd } x \text{ (le (base } x < y)) \text{ (lemma-} < = \min E j i) \text{ (nf } y \text{ } i3 \text{ } j3 \text{ } c \text{ } d) \text{ } ab)
... | tri< x < y _ _ | (orB ab) = orB
   (\text{nr } x \text{ (le (base } x < y)) \text{ (lemma-} < = \min E j i) \text{ (nf } y \text{ } i3 \text{ } j3 \text{ } c \text{ } d) \text{ } ab)
... | tri= _ x=y _ | (or<br/>Aab)={\rm orB}
   (nd y (lemma-\leq=min3E i3 j3 (eq (base (sym==x=y)))) (lemma-resp <math>x=y
      (makeH x c d) ab<math>)
... | \text{tri} = \underline{x} = y \underline{\ } | (\text{orB } ab) = \text{orB}
   (\text{nr } y \text{ (lemma-} < = \text{min} 3E \text{ } i3 \text{ } j3 \text{ (eq (base } (sym = = x = y)))) \text{ (lemma-resp } x = y)))
      (makeH x c d) ab<math>)
... | tri> y < x \mid (\text{orA } ab) = \text{orB}
   (\text{nd } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (le (base } y < x))) \text{ (lemma-trans } y < x j i)
      (makeH x c d) ab<math>)
... | tri> y < x \mid (\text{orB } ab) = \text{orB}
   (\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (le (base } y < x))) \text{ (lemma-trans } y < x j i)
      (makeH x c d) ab<math>)
afmerge (nr x i j (nf p1 i1 j1 a1 b1) (nr p2 i2 j2 a2 b2)) (orB (nf y i3 j3 c d))
   with cmp \ x \ y \mid afmerge (nr p2 \ i2 \ j2 \ a2 \ b2) (orB (nf p1 \ i1 \ j1 \ a1 \ b1))
... | tri< x < y _ _ | (orA ab) = orB
   (\text{nd } x (\text{le } (\text{base } x < y)) (\text{lemma-} < = \min E j i) (\text{nf } y i 3 j 3 c d) ab)
... | tri< x<y _ _ | (or<br/>Bab) = \mathrm{or} \mathrm{B}
   (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x < y)) (\operatorname{lemma-} < = \min E j i) (\operatorname{nf} y i 3 j 3 c d) ab)
... | \text{tri} = \underline{x} = y \underline{\ } | (\text{orA } ab) = \text{orB}
   (nd y (lemma-\leq=min3E i3 j3 (eq (base (sym==x=y))))
   (\text{lemma-resp } x = y \ j \ i) \ (\text{makeH} \ x \ c \ d) \ ab)
... | \text{tri} = \underline{x} = y \underline{\ } | (\text{orB } ab) = \text{orB}
   (\text{nr } y \text{ (lemma-} < = \text{min3E } i3 j3 \text{ (eq (base } (sym = = x = y))))}
   (\text{lemma-resp } x = y \ j \ i) \ (\text{makeH} \ x \ c \ d) \ ab)
... | \text{tri} > __ y < x | (\text{orA } ab) = \text{orB}
   (nd y (lemma-\leq=min3E i3 j3 (le (base y < x)))
   (lemma-trans y < x j i) (makeH x c d) ab)
```

```
... | tri> _ _ y < x | (orB ab) = orB
(nr y (lemma-<=min3E i3 j3 (le (base y < x)))
(lemma-trans y < x j i) (makeH x c d) ab)
```

Извлечение минимума из неполной кучи.

```
apop : \boxtimes \{m \ h\} \to Heap \ m \ (succ \ h) \ almost
  \rightarrow OR (\Sigma (expanded A) (\lambda x \rightarrow (Heap x (succ h) almost) \times (m \boxtimes x)))
    (\Sigma \text{ (expanded } A) \text{ } (\lambda x \rightarrow \text{(Heap } x \text{ } h \text{ full}) \times (m \boxtimes x)))
apop (nd \{x = x\} p i j a eh) = orB (x, a, i)
apop (nd \_ij (nf xi1j1ab) (nf yi2j2cd))
  with cmp \ x \ y \mid ndmerge (nf x \ i1 \ j1 \ a \ b) (nf y \ i2 \ j2 \ c \ d)
... | tri< _ _ _ | res = orA (\# x, res, i)
... | tri= \_ \_ | res = orA (# y, res, j)
... | tri> | res = orA (\# y, res, j)
apop (nl \_ i j (nd x i1 j1 (nf y \_ \_ eh eh) eh) (nf z \_ \_ eh eh))
  with cmp \ x \ z
... | tri< x < z _ _ = orB (# x, nf x i1 (le (base x < z))
  (\text{nf } y \text{ (le ext) (le ext) eh eh) (nf } z \text{ (le ext) (le ext) eh eh) }, i)
... | tri= x=z = orB (# z,
  nf z (eq (base (sym == x = z))) (snd resp\boxtimes (base x = z) i1)
    (\text{nf } x \text{ (le ext) (le ext) eh eh) (nf } y \text{ (le ext) (le ext) eh eh) }, j)
... | tri> _ _ z<x = orB (# z, nf z
  (le (base z < x)) (trans (le (base z < x)) i1)
  (\text{nf } x \text{ (le ext) (le ext) eh eh) (nf } y \text{ (le ext) (le ext) eh eh) }, j)
with cmp \ x \ t \mid ndmerge (nf y \ i2 \ j2 \ a2 \ b2) (nf z \ i3 \ j3 \ a3 \ b3)
... | tri< x < t _ _ | res = \text{orA} (\# x, \text{nl } x)
  (\text{lemma-} < = \min E \ i1 \ j1) \ (\text{le (base } x < t))
```

```
res (nf t i \cancel{4} j \cancel{4} c d), i)
... | tri= x=t | res = orA (\# t, nl t)
   (\text{snd resp} \boxtimes (\text{base } x=t) (\text{lemma-} < = \min E \ i1 \ j1))
   (\text{lemma-} < = \min 3E \ i \neq j \neq (\text{eq (base } (sym = = x = t)))) \ res (\text{makeH } x \ c \ d), j)
... | tri> \underline{\phantom{a}} t < x \mid res = \text{orA} (\# t, \text{nl } t)
   (\text{lemma-trans } t < x \ i1 \ j1)
   (lemma-\leq=min3E i \neq j \neq (le (base t \leq x))) res (makeH x \in d), j)
apop (nl i j (nl x i1 j1 a b) (nf y i2 j2 c d))
   with cmp \ x \ y \mid afmerge (nl x \ i1 \ j1 \ a \ b) (or A (nf y \ i2 \ j2 \ c \ d))
... | tri< _ _ _ | or
A \mathit{res} = \mathrm{orB} \ (\# \ x \ , \ \mathit{res} \ , \ \mathit{i})
... | tri= _ _ _ | or
A \mathit{res} = or
B (# y , \mathit{res} , \mathit{j}
... | tri> _ _ _ | or
A \mathit{res} = or
B (# y , \mathit{res} , \mathit{j}
... | tri< _ _ _ | or<br/>B\mathit{res} = \mathrm{orA}~(\#~x~,~\mathit{res}~,~i)
... | tri= | orB res = orA (\# y, res, j)
... | tri> _ _ | orB \mathit{res} = \mathrm{orA} \; (\# \; y \;, \; \mathit{res} \;, \; j)
apop (nl \underline{\phantom{a}} i j (nr x i 1 j 1 a b) (nf y i 2 j 2 c d))
  with cmp \ x \ y \mid afmerge (nr x \ i1 \ j1 \ a \ b) (or A (nf y \ i2 \ j2 \ c \ d))
... | tri< _ _ | orA res = orB (# x, res, i)
... | tri= _ _ _ | or
A \mathit{res} = or
B (# y , \mathit{res} , \mathit{j}
... | tri> _ _ _ | or
A \mathit{res} = or
B (# y , \mathit{res} , \mathit{j}
... | tri< _ _ _ | or<br/>B\mathit{res} =or
A (#x\;,\;\mathit{res}\;,\;\mathit{i})
... | tri= _ _ _ | or
B\mathit{res} = or
A (#\mathit{y} , \mathit{res} , \mathit{j}
... | tri> _ _ _ | or<br/>B\mathit{res} =or
A (#y , \mathit{res} ,<br/> j
apop (nr \underline{\phantom{a}} i j (nf x i 1 j 1 a b) (nd y i 2 j 2 c d))
   with cmp \ y \ x \mid afmerge \ (nd \ y \ i2 \ j2 \ c \ d) \ (orB \ (nf \ x \ i1 \ j1 \ a \ b))
... | tri< _ _ _ | or
A \mathit{res} = or
B (# y , \mathit{res} , \mathit{j}
... | tri= _ _ _ | or
A \mathit{res} = or
B (# x , \mathit{res} , \mathit{i}
... | tri> _ _ _ | orA \mathit{res} = \mathrm{orB} \; (\# \; x \;, \; \mathit{res} \;, \; i)
... | tri< _ _ _ | or<br/>B\mathit{res} = \mathrm{orA}~(\#~y~,~\mathit{res}~,~j)
```

```
... | tri= | orB res = orA (\# x, res, i)
... | tri> _ _ _ | orB \mathit{res} = \mathrm{orA} \; (\# \; x \;, \; \mathit{res} \;, \; i)
apop (nr i j (nf x i1 j1 a b) (nl y i2 j2 c d))
  with cmp \ y \ x \mid afmerge \ (nl \ y \ i2 \ j2 \ c \ d) \ (orB \ (nf \ x \ i1 \ j1 \ a \ b))
... | tri< _ _ _ | or
A \mathit{res} = or
B (# y , \mathit{res} , \mathit{j}
... | tri= _ _ _ | or
A \mathit{res} = or
B (# x , \mathit{res} , \mathit{i}
... | tri> _ _ _ | orA \mathit{res} = \mathrm{orB} \; (\# \; x \;, \; \mathit{res} \;, \; i)
... | tri< _ _ _ | or<br/>B\mathit{res} = \mathrm{orA}~(\#~y~,~\mathit{res}~,~j)
... | tri= \_ \_ | orB res = orA (# x, res, i)
... | tri> _ _ _ | orB \mathit{res} = \mathrm{orA} \; (\# \; x \;, \; \mathit{res} \;, \; i)
apop (nr i j (nf x i1 j1 a b) (nr y i2 j2 c d))
  with cmp \ y \ x \mid afmerge (nr \ y \ i2 \ j2 \ c \ d) (or B (nf \ x \ i1 \ j1 \ a \ b))
... | tri< _ _ _ | orA \mathit{res} = \mathrm{orB} \; (\# \; y \;, \; \mathit{res} \;, \; \mathit{j})
... | tri= _ _ _ | or
A \mathit{res} = or
B (# x , \mathit{res} , \mathit{i}
... | tri> _ _ _ | or
A \mathit{res} = \mathrm{orB} \ (\# \ x \ , \ \mathit{res} \ , \ \mathit{i})
... | tri< _ _ _ | orB \mathit{res} = \mathrm{orA} \; (\# \; y \;, \; \mathit{res} \;, \; j)
... | tri= _ _ _ | orB \mathit{res} = \mathrm{orA} \; (\# \; x \;, \; \mathit{res} \;, \; i)
... | tri> _ _ _ | orB \mathit{res} = \mathrm{orA} \ (\# \ x \ , \ \mathit{res} \ , \ \mathit{i})
```

2.5. Выводы по главе 2

Разработаны типы данных для представления структуры данных двоичная куча. Реализованы функции для обработки кучи. Доказано сохранение инвариантов порядка на элементах и сбалансированности.

Заключение

Представленный в данной работе подход к представлению инвариантов — по одному конструктору на каждый случай инварианта — приводит к неприятному разрастанию функций по обработке структуры данных. Но данный подход позволил написать простые доказательства с помощью интерактивного редактора, использующего систему типов для указания типа требуемого терма. Хотелось бы уметь обобщать такие представления инвариантов для упрощения доказательств и уменьшения объема кода.

Литература

- 1. The Haskell Programming Language. http://www.haskell.org/haskellwiki/Haskell.
- 2. A Truly Integrated Functional Logic Language. http://www-ps.informatik.uni-kiel.de/currywiki/.
- 3. Agda language. http://wiki.portal.chalmers.se/agda/pmwiki.php.
- 4. *IEEE*. IEEE Std 1178-1990, IEEE Standard for the Scheme Programming Language. IEEE, 1991. ISBN: 1-55937-125-0. http://standards.ieee.org/reading/ieee/std_public/description/busarch/1178-1990 desc.html.
- 5. Hickey~R. The Clojure programming language / DLS. Под ред. Johan Brichau. ACM, 2008. C. 1. ISBN: 978-1-60558-270-2.
- 6. Abelson H., Sussman G. J. Structure and Interpretation of Computer Programs. MIT Press, 1985. ISBN: 0-262-51036-7.
- 7. Milner R., Tofte M., Macqueen D. The Definition of Standard ML. Cambridge, MA, USA: MIT Press, 1997. ISBN: 0262631814.
- 8. OCaml. http://ocaml.org/.
- 9. Thompson S. Type theory and functional programming. International computer science series. Addison-Wesley, 1991. C. I—XV, 1—372. ISBN: 978-0-201-41667-1.
- 10. Sørensen M. H. B., Urzyczyn P. Lectures on the Curry-Howard Isomorphism. 1998.
- 11. Church A. A Formulation of the Simple Theory of Types // J. Symb. Log. 1940. №2. C. 56—68.
- 12. Pierce B. C. Types and Programming Languages. Cambridge, MA, USA: MIT Press, 2002. ISBN: 0-262-16209-1.
- 13. Martin-Löf P. Intuitionistic Type Theory. Bibliopolis, 1984. ISBN: 88-7088-105-9.
- 14. Abbott M., Altenkirch T., Ghani N. Representing Nested Inductive Types Using W-Types / ICALP. Под ред. Josep Díaz, Juhani Karhumäki, Arto Lepistö и Donald Sannella. T. 3142. Lecture Notes in Computer Science. Springer, 2004. C. 59—71. ISBN: 3-540-22849-7.
- 15. McBride C., McKinna J. The view from the left // J. Funct. Program. 2004. №1. C. 69—111.
- 16. Pfenning F. Unification and Anti-Unification in the Calculus of Constructions / In Sixth Annual IEEE Symposium on Logic in Computer Science. 1991. C. 74—85.
- 17. $Dybjer\ P.$ Inductive Families // Formal Asp. Comput. 1994. \mathbb{N}_24 . C. 440—465.
- 18. Atkey R., Johann P., Ghani N. Refining Inductive Types // Logical Methods in Computer Science. 2012. №2.
- 19. Xi H., Pfenning F. Dependent Types in Practical Programming / POPL. Под ред. Andrew W. Appel и Alex Aiken. ACM, 1999. C. 214—227. ISBN: 1-58113-095-3.
- Appel и Alex Aiken. ACM, 1999. C. 214—227. ISBN: 1-58113-095-3.
 20. McBride C. How to Keep Your Neighbours in Order. https://personal.cis.strath.ac.uk/conor.mcbride/Pivotal
- 21. McBride C., Norell U., Danielsson N. A. The Agda standard library AVL trees. http://agda.github.io/agda-stdlib/html/Data.AVL.html.
- 22. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to Algorithms, Second Edition. The MIT Press и McGraw-Hill Book Company, 2001. ISBN: 0-262-03293-7, 0-07-013151-1.
- 23. The Agda standard library. http://agda.github.io/agda-stdlib/html/README.html.