```
In [ ]:
        import sys
        !{sys.executable} -m pip install --user scikit-allel
In [1]:
        import numpy as np
        import scipy
        import pandas
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        sns.set_style('white')
        sns.set_style('ticks')
        sns.set_context('notebook')
        import h5py
        import allel; print('scikit-allel', allel.__version__)
       scikit-allel 1.3.8
```

VCF to HDF5

In [2]: allel.vcf_to_hdf5('/users/mcevoysu/scratch/output/Fsylvatica/vcf_filterin

Get data

```
In [3]: callset_var_fn = '/users/mcevoysu/scratch/output/Fsylvatica/scikit-allel/
    callset_var = h5py.File(callset_var_fn, mode='r')

In [4]: calldata_var = callset_var['calldata']
    list(calldata_var)

Out[4]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
    B']

In [5]: list(callset_var['variants'])
```

```
Out[5]:
         ['AC',
          'AF',
          'ALT',
          'AN',
          'BaseQRankSum',
          'CHROM',
          'DP',
          'END',
          'ExcessHet',
           'FILTER_LowQual',
           'FILTER_PASS',
          'FS',
          'ID',
          'InbreedingCoeff',
          'MLEAC',
          'MLEAF',
          'MQ',
           'MQRankSum',
          'POS',
          'QD',
           'QUAL',
          'RAW_MQandDP',
          'REF',
          'ReadPosRankSum',
          'SOR',
          'altlen',
          'is snp',
          'numalt'l
```

Make datasets

```
In [6]: variants = allel.VariantChunkedTable(callset_var['variants'])
variants
```

Out [6]: <VariantChunkedTable shape=(273617,) dtype=[('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')] nbytes=46.7M cbytes=10.3M cratio=4.6 values=h5py._hl.group.Group>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP
0	[52 -1 -1]	[0.069 nan nan]	[b'C' b'' b'']	750	-0.926	b'Bhaga_1'	2153
1	[6 -1 -1]	[0.007916 nan nan]	[b'G' b'' b'']	750	0.798	b'Bhaga_1'	1952
2	[7 -1 -1]	[0.009235 nan nan]	[b'A' b'' b'']	750	-0.362	b'Bhaga_1'	1490
•••							
273614	[21 2 -1]	[0.028 0.002639 nan]	[b'C' b'T' b'']	750	-0.385	b'Bhaga_Unplaced_827'	800
273615	[2 -1 -1]	[0.002639 nan nan]	[b'A' b'' b'']	750	nan	b'Bhaga_Unplaced_827'	791
273616	[1 -1 -1]	[0.001319 nan nan]	[b'A' b'' b'']	750	0.0	b'Bhaga_Unplaced_827'	421

```
In [7]: variants_np = variants[:]
    rawsnps = variants_np.query('(is_snp == True)')
    rawsnps
```

Out [7]: <VariantTable shape=(166080,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP
0	[52 -1 -1]	[0.069 nan nan]	[b'C' b'' b'']	750	-0.926	b'Bhaga_1'	2153
1	[6 -1 -1]	[0.007916 nan nan]	[b'G' b'' b'']	750	0.798	b'Bhaga_1'	1952
2	[7 -1 -1]	[0.009235 nan nan]	[b'A' b'' b'']	750	-0.362	b'Bhaga_1'	1490
•••							
166077	[21 2 -1]	[0.028 0.002639 nan]	[b'C' b'T' b'']	750	-0.385	b'Bhaga_Unplaced_827'	800
166078	[2 -1 -1]	[0.002639 nan nan]	[b'A' b'' b'']	750	nan	b'Bhaga_Unplaced_827'	791
166079	[1 -1 -1]	[0.001319 nan nan]	[b'A' b'' b'']	750	0.0	b'Bhaga_Unplaced_827'	421

In [8]: notsnp = variants_np.query('(is_snp != True)')
 notsnp

Out [8]: <VariantTable shape=(107537,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

0 [22 -1 -1] [0.029 nan nan] [b**] b**] b**] 750 nan b'Bhaga_1' 284 1 [16 -1 -1] [0.021 nan nan] [b**] b**] b**] 748 nan nan b'Bhaga_1' 68 2 [4 -1 -1] [0.005277 nan nan] [b**] b**] b**] 750 nan nan -0.918 b**] b**] b**] b**] b**] b'Bhaga_1' 6154 107534 [3 nan nan] nan nan] [b**] b**] b**] 750 nan nan b**] b**] b**] b**] b**] 750 nan nan nan b**] b**] b**] b**] b**] 750 nan nan nan b**] b**] b**] b**] b**] b**] b**] b**		AC	AF	ALT	AN	BaseQRankSum	CHROM	DP
1	0	-1		b''	750	nan	b'Bhaga_1'	284
2	1	-1	_	b''	748	nan	b'Bhaga_1'	68
107534 [3 -1 -1] [0.003958 b'' b''	2	-1		b''	750	-0.918	b'Bhaga_1'	6154
107534 -1	•••							
107535	107534	-1		b''	750	nan	b'Bhaga_Unplaced_827'	776
107536 3 0.003958 b'A' 750 0.967 b'Bhaga_Unplaced_827' 787	107535	-1		b''	750	nan	b'Bhaga_Unplaced_827'	778
	107536	3	0.003958	b'A'	750	0.967	b'Bhaga_Unplaced_827'	787

Plot function

```
In [9]:
        def plot_hist(f, dsubset='', bins=30, ):
            if dsubset == 'var':
                 x = variants[f][:]
                 l = 'Variant'
            elif dsubset == 'snp':
                 x = rawsnps[f][:]
                 l = 'Raw SNP'
            elif dsubset == 'notsnp':
                 x = notsnp[f][:]
                 l = 'Raw Not SNP'
            elif dsubset == 'biallelic':
                 x = biallelic np[f][:]
                 l = 'Biallelic SNP'
            elif dsubset == 'varsel':
                 x = var_selection[f][:]
                 l = 'Filtered Variants'
            elif dsubset == 'snpsel':
                 x = snp_selection[f][:]
                 l = 'Filtered SNP'
```

```
else:
    x = bi_selection[f][:]
    l = 'Biallelic SNP'
fig, ax = plt.subplots(figsize=(10, 5))
sns.despine(ax=ax, offset=10)
ax.hist(x, bins=bins)
ax.set_xlabel(f)
ax.set_ylabel('No. variants')
ax.set_title('%s %s distribution' % (l, f))
```

Find Biallelic SNPS

Out[13]: <VariantTable shape=(161207,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP
0	[52 -1 -1]	[0.069 nan nan]	[b'C' b'' b'']	750	-0.926	b'Bhaga_1'	2153
1	[6 -1 -1]	[0.007916 nan nan]	[b'G' b'' b'']	750	0.798	b'Bhaga_1'	1952
2	[7 -1 -1]	[0.009235 nan nan]	[b'A' b'' b'']	750	-0.362	b'Bhaga_1'	1490
•••							
161204	[3 -1 -1]	[0.003958 nan nan]	[b'T' b'' b'']	750	-0.524	b'Bhaga_Unplaced_827'	805
161205	[2 -1 -1]	[0.002639 nan nan]	[b'A' b'' b'']	750	nan	b'Bhaga_Unplaced_827'	791
161206	[1 -1 -1]	[0.001319 nan nan]	[b'A' b'' b'']	750	0.0	b'Bhaga_Unplaced_827'	421

MQ - RMS mapping quality

In [14]: plot_hist('MQ','var') # RMS mapping quality

In [15]: plot_hist('MQ','biallelic') # RMS mapping quality


```
In [16]: filter_expression = '(MQ < 55)'
bi_selection = biallelic_np.query(filter_expression)[:]
#np.count_nonzero(var_selection)</pre>
```

In [17]: plot_hist('MQ')


```
In [18]: filter_expression = '(MQ < 40)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```


In [20]: plot_hist('MQ','notsnp')

QD - Variant Confidence/Quality by Depth

plot_hist('QD','biallelic') # Variant Confidence/Quality by Depth


```
In [23]: filter_expression = '(QD < 2)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```


In [25]: plot_hist('QD', 'notsnp') # Variant Confidence/Quality by Depth

SOR - Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

In [27]: plot_hist('SOR','biallelic') # Symmetric Odds Ratio of 2x2 contingency ta

In [30]: plot_hist('SOR', 'notsnp') # Symmetric Odds Ratio of 2x2 contingency table

MQRankSum - Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities

In [32]: plot_hist('MQRankSum','biallelic') # Z-score From Wilcoxon rank sum test

In [35]: plot_hist('MQRankSum', 'notsnp') # Z-score From Wilcoxon rank sum test of

ReadPosRankSum - Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias

In [37]: plot_hist('ReadPosRankSum','biallelic') # Z-score from Wilcoxon rank sum

In [38]: plot_hist('ReadPosRankSum', 'notsnp') # Z-score from Wilcoxon rank sum tes

DP - Approximate read depth

In [39]: plot_hist('DP','var')


```
In [41]: filter_expression = '(DP > 20000) & (DP < 40000)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```

In [42]: plot_hist('DP')

AN - Total number of alleles in called genotypes

In [44]: plot_hist('AN','var') # Total number of alleles in called genotypes

In [45]: plot_hist('AN','biallelic') # Total number of alleles in called genotypes

In [46]: plot_hist('AN', 'notsnp') # Total number of alleles in called genotypes

Selected filter

```
In [47]: # QD: Variant Confidence/Quality by Depth
# AN: Total number of alleles in called genotypes
filter_expression = '(QD >= 2) & (MQ >= 40) & (MQRankSum >= -12.5) & (is_
variant_selection = variants_np.eval(filter_expression)[:]
np.count_nonzero(variant_selection)
```

Out[47]: 137114

Genotype

```
In [48]: calldata_var = callset_var['calldata']
list(calldata_var)

Out[48]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
B']

In [49]: genotypes_var = allel.GenotypeChunkedArray(calldata_var['GT'])
genotypes_var
```

Out [49]: <GenotypeChunkedArray shape=(273617, 375, 2) dtype=int8 chunks=(65536, 64, 2) nbytes=195.7M cbytes=9.9M cratio=19.8 compression=gzip compression_opts=1 values=h5py._hl.dataset.Dataset>

										373	
0	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0 0/0 0/0	0/0
1	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
•••											
273614	0/0	1/1	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
273615	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
273616	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0

```
In [50]: # using the selected filters set above
gt_filtered_snps = genotypes_var.subset(variant_selection)
gt_filtered_snps
```

Out[50]: <GenotypeChunkedArray shape=(137114, 375, 2) dtype=int8 chunks=(1072, 375, 2)
 nbytes=98.1M cbytes=10.2M cratio=9.6 compression=blosc compression_opts=
 {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

							370				
0 1 2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••											
137111 137112 137113	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
137112	0/0	1/1	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
137113	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0

```
In [51]: # grab the allele counts for the populations
ac = gt_filtered_snps.count_alleles()
ac
```

	0	1	2	3
0	698	52	0	0
1	744	6	0	0
2	743	7	0	0
•••		•••		
137111	747	3	0	0
137112	727	21	2	0
137113	749	1	0	0

```
In [52]: ac[:]
```

Out [52]: <AlleleCountsArray shape=(137114, 4) dtype=int32>

	0	1	2	3
0	698	52	0	0
1	744	6	0	0
2	743	7	0	0
•••		•••		
137111	747	3	0	0
137112	727	21	2	0
137113	749	1	0	0

```
In [53]: # Which ones are biallelic?
  is_biallelic_01 = ac.is_biallelic_01()[:]
  ac1 = ac.compress(is_biallelic_01, axis=0)[:, :2]
  ac1
  ##this part of the code is only for graphing the SFS, is not useful for f
```

```
In [54]: # plot the sfs of the derived allele
s = allel.sfs_folded(ac1)
allel.plot_sfs(s, yscale="linear", n=ac1.sum(axis=1).max())
```

Out[54]: <Axes: xlabel='derived allele frequency', ylabel='site frequency'>


```
In [55]: biallelic = (ac.max_allele() == 1)
###This is the filter expression for biallelic sites
biallelic
```

```
In [56]: # select only the biallelic variants
   gt_biallelic = gt_filtered_snps.compress(biallelic)
   gt_biallelic
```

out[56]: <GenotypeChunkedArray shape=(132498, 375, 2) dtype=int8 chunks=(1036, 375, 2)
 nbytes=94.8M cbytes=9.6M cratio=9.9 compression=blosc compression_opts=
 {'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1	2	3	4	•••	370	371	372	373	374
0	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••											
132495	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
132496	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
132497	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0

```
In [57]: n_variants = len(gt_biallelic)
n_variants

Out[57]: 132498

In [58]: pc_missing = gt_biallelic.count_missing(axis=0)[:] * 100 / n_variants
    pc_het = gt_biallelic.count_het(axis=0)[:] * 100 / n_variants
```

Samples

```
In [60]: samples_var = callset_var['samples']
    samples_var = list(samples_var)
    samples_var
```

```
[b'AUT00207-001',
Out[60]:
           b'AUT00207-002',
           b'AUT00207-003'
           b'AUT00207-004'
           b'AUT00207-005',
           b'AUT00207-006',
           b'AUT00207-007'
           b'AUT00207-008',
           b'AUT00207-009',
           b'AUT00207-010'
           b'AUT00207-011'
           b'AUT00207-012',
           b'AUT00207-013',
           b'AUT00207-014'
           b'AUT00207-015'
           b'AUT00207-016',
           b'AUT00207-017'
           b'AUT00207-018'
           b'AUT00207-019',
           b'AUT00207-020',
           b'AUT00207-021'
           b'AUT00207-022'
           b'AUT00207-023',
           b'AUT00207-024'.
           b'AUT00207-025'
           b'DEU00071-001'
           b'DEU00071-002',
           b'DEU00071-003'.
           b'DEU00071-004'
           b'DEU00071-005',
           b'DEU00071-006',
           b'DEU00071-007'
           b'DEU00071-008'
           b'DEU00071-009',
           b'DEU00071-010',
           b'DEU00071-011'
           b'DEU00071-012'
           b'DEU00071-013',
           b'DEU00071-014'
           b'DEU00071-015'
           b'DEU00071-016',
           b'DEU00071-017',
           b'DEU00071-018'
           b'DEU00071-019',
           b'DEU00071-020',
           b'DEU00071-021'
           b'DEU00071-022'
           b'DEU00071-023'
           b'DEU00071-024',
           b'DEU00071-025'
           b'ESP00179-001'
           b'ESP00179-002'
           b'ESP00179-003'
           b'ESP00179-004'
           b'ESP00179-005'
           b'ESP00179-006',
           b'ESP00179-007',
           b'ESP00179-008'
           b'ESP00179-009'
           b'ESP00179-010',
```

b'ESP00179-011'. b'ESP00179-012' b'ESP00179-013' b'ESP00179-014', b'ESP00179-015', b'ESP00179-016' b'ESP00179-017' b'ESP00179-018', b'ESP00179-019', b'ESP00179-020', b'ESP00179-021', b'ESP00179-022'. b'ESP00179-023' b'ESP00179-024' b'ESP00179-025', b'ESP00225-001', b'ESP00225-002' b'ESP00225-003' b'ESP00225-004', b'ESP00225-005' b'ESP00225-006' b'ESP00225-007' b'ESP00225-008', b'ESP00225-009', b'ESP00225-010'. b'ESP00225-011', b'ESP00225-012'. b'ESP00225-013' b'ESP00225-014' b'ESP00225-015', b'ESP00225-016', b'ESP00225-017' b'ESP00225-018', b'ESP00225-019', b'ESP00225-020' b'ESP00225-021' b'ESP00225-022', b'ESP00225-023' b'ESP00225-024' b'ESP00225-025' b'ESP00263-001', b'ESP00263-002' b'ESP00263-003' b'ESP00263-004', b'ESP00263-005', b'ESP00263-006' b'ESP00263-007' b'ESP00263-008', b'ESP00263-009' b'ESP00263-010' b'ESP00263-011' b'ESP00263-012', b'ESP00263-013' b'ESP00263-014' b'ESP00263-015', b'ESP00263-016', b'ESP00263-017' b'ESP00263-018' b'ESP00263-019', b'ESP00263-020',

```
b'ESP00263-021'.
b'ESP00263-022'
b'ESP00263-023'
b'ESP00263-024',
b'ESP00263-025',
b'FRA00029-001'
b'FRA00029-002'
b'FRA00029-003',
b'FRA00029-004',
b'FRA00029-005'
b'FRA00029-006',
b'FRA00029-007'
b'FRA00029-008'
b'FRA00029-009'
b'FRA00029-010',
b'FRA00029-011',
b'FRA00029-012'
b'FRA00029-013'
b'FRA00029-014',
b'FRA00029-015'
b'FRA00029-016'
b'FRA00029-017'
b'FRA00029-018',
b'FRA00029-019'
b'FRA00029-020'.
b'FRA00029-021',
b'FRA00029-022'.
b'FRA00029-023'
b'FRA00029-024'
b'FRA00029-025',
b'FRA00042-001'
b'FRA00042-002'
b'FRA00042-003',
b'FRA00042-004',
b'FRA00042-005'
b'FRA00042-006'
b'FRA00042-007'
b'FRA00042-008'
b'FRA00042-009'
b'FRA00042-010',
b'FRA00042-011',
b'FRA00042-012'
b'FRA00042-013'
b'FRA00042-014',
b'FRA00042-015',
b'FRA00042-016'
b'FRA00042-017'
b'FRA00042-018',
b'FRA00042-019'
b'FRA00042-020'
b'FRA00042-021'
b'FRA00042-022'
b'FRA00042-023'
b'FRA00042-024'
b'FRA00042-025'
b'FRA00045-004',
b'FRA00045-039'
b'FRA00045-040'
b'FRA00045-088',
b'FRA00045-122',
```

```
b'FRA00045-173'.
b'FRA00045-187'
b'FRA00045-195',
b'FRA00045-207',
b'FRA00045-218',
b'FRA00045-231'
b'FRA00045-278'
b'FRA00045-295',
b'FRA00045-318'
b'FRA00045-323'
b'FRA00045-330',
b'FRA00045-339'.
b'FRA00045-352'
b'FRA00045-369'
b'FRA00045-384',
b'FRA00045-393',
b'FRA00045-399'
b'FRA00045-416',
b'FRA00045-442',
b'FRA00045-450'
b'FRA00046-001'
b'FRA00046-002',
b'FRA00046-003',
b'FRA00046-004'
b'FRA00046-005'
b'FRA00046-006',
b'FRA00046-007'.
b'FRA00046-008'
b'FRA00046-009'
b'FRA00046-010',
b'FRA00046-011'
b'FRA00046-012'
b'FRA00046-013',
b'FRA00046-014',
b'FRA00046-015'
b'FRA00046-016'
b'FRA00046-017'
b'FRA00046-018'
b'FRA00046-019'
b'FRA00046-020',
b'FRA00046-021',
b'FRA00046-022'
b'FRA00046-023'
b'FRA00046-024',
b'FRA00046-025',
b'ITA00178-001'
b'ITA00178-002'
b'ITA00178-003',
b'ITA00178-004'
b'ITA00178-005'
b'ITA00178-006'
b'ITA00178-007'
b'ITA00178-008'
b'ITA00178-009',
b'ITA00178-010',
b'ITA00178-011',
b'ITA00178-012'
b'ITA00178-013'
b'ITA00178-014',
b'ITA00178-015',
```

```
b'ITA00178-016'.
b'ITA00178-017'
b'ITA00178-018'
b'ITA00178-019',
b'ITA00178-020',
b'ITA00178-021'
b'ITA00178-022'
b'ITA00178-023',
b'ITA00178-024'
b'ITA00178-025'
b'NOR00005-001',
b'NOR00005-002'.
b'N0R00005-003'
b'N0R00005-006'
b'NOR00005-008',
b'NOR00005-009',
b'NOR00005-010'
b'NOR00005-011'
b'NOR00005-012',
b'N0R00005-013'
b'NOR00005-014'
b'NOR00005-015',
b'NOR00005-018',
b'NOR00005-019'
b'NOR00005-020'
b'NOR00005-021',
b'NOR00005-022'.
b'N0R00005-024'
b'N0R00005-025'
b'NOR00005-026',
b'NOR00005-027'
b'N0R00005-028'
b'N0R00005-029'
b'NOR00005-030',
b'N0R00005-031'
b'R0U00077-001'
b'R0U00077-002'
b'R0U00077-003'
b'R0U00077-004'
b'R0U00077-005'
b'R0U00077-006'
b'R0U00077-007'
b'R0U00077-008'
b'R0U00077-009'
b'R0U00077-010',
b'R0U00077-011'
b'R0U00077-012'
b'R0U00077-013',
b'R0U00077-014'
b'R0U00077-015'
b'R0U00077-016'
b'R0U00077-017'
b'R0U00077-018'
b'R0U00077-019'
b'R0U00077-020',
b'R0U00077-021',
b'R0U00077-022'
b'R0U00077-023'
b'R0U00077-024',
b'R0U00077-025',
```

```
b'R0U00467-001'.
b'R0U00467-002'
b'R0U00467-003'
b'R0U00467-005',
b'R0U00467-007'
b'R0U00467-008'
b'R0U00467-009'
b'R0U00467-010',
b'R0U00467-011'
b'R0U00467-012'
b'R0U00467-013',
b'R0U00467-014'.
b'R0U00467-015'
b'R0U00467-016'
b'R0U00467-017',
b'R0U00467-018',
b'R0U00467-019'
b'R0U00467-020',
b'R0U00467-021',
b'R0U00467-022'
b'R0U00467-023'
b'R0U00467-024',
b'R0U00467-025',
b'R0U00467-027'
b'R0U00467-028'
b'SVN00047-002',
b'SVN00047-023'.
b'SVN00047-032'
b'SVN00047-050'
b'SVN00047-068',
b'SVN00047-074'.
b'SVN00047-080'
b'SVN00047-127'
b'SVN00047-155',
b'SVN00047-169'
b'SVN00047-184'
b'SVN00047-200',
b'SVN00047-222'
b'SVN00047-235'
b'SVN00047-245'
b'SVN00047-316',
b'SVN00047-341'
b'SVN00047-362'
b'SVN00047-372'
b'SVN00047-381',
b'SVN00047-393'
b'SVN00047-464'
b'SVN00047-476',
b'SVN00047-491'
b'SVN00047-498'
b'TUR00264-001'
b'TUR00264-002'
b'TUR00264-003'
b'TUR00264-004'
b'TUR00264-005'
b'TUR00264-006',
b'TUR00264-007'
b'TUR00264-008'
b'TUR00264-009',
b'TUR00264-010',
```

```
Fsylvatica_random_SPET_explore_hdf5-standardtest
           b'TUR00264-011'.
           b'TUR00264-012'
           b'TUR00264-013',
           b'TUR00264-014',
           b'TUR00264-015',
           b'TUR00264-016'
           b'TUR00264-017'
           b'TUR00264-018',
           b'TUR00264-019',
           b'TUR00264-020',
           b'TUR00264-021',
           b'TUR00264-022'.
           b'TUR00264-023',
           b'TUR00264-024'.
           b'TUR00264-025']
          samples_fn = '~/scratch/data/Fsylvatica/Fagus_sylvatica_sample_list_sciki
In [61]:
          samples = pandas.read_csv(samples_fn, sep='\t')
          samples
Out[61]:
                          ID Population
               AUT00207-001
                               AUT00207
               AUT00207-002
                               AUT00207
            2 AUT00207-003
                              AUT00207
               AUT00207-004
                               AUT00207
               AUT00207-005
                               AUT00207
                                      ...
          370
               TUR00264-021
                              TUR00264
          371
              TUR00264-022
                              TUR00264
```

374 TUR00264-025 375 rows × 2 columns

372 TUR00264-023

373 TUR00264-024

```
In [62]: samples.Population.value_counts()
```

TUR00264

TUR00264

TUR00264

```
Out[62]:
          Population
          AUT00207
                      25
                      25
          DEU00071
                      25
          ESP00179
                      25
          ESP00225
          ESP00263
                      25
          FRA00029
                      25
          FRA00042
                      25
          FRA00045
                      25
          FRA00046
                      25
          ITA00178
                      25
          NOR00005
                      25
                      25
          R0U00077
                      25
          R0U00467
          SVN00047
                      25
                      25
          TUR00264
          Name: count, dtype: int64
In [63]:
         populations = samples.Population.unique()
         populations
         ###This identifiers come from the metadata file
Out[63]: array(['AUT00207', 'DEU00071', 'ESP00179', 'ESP00225', 'ESP00263',
                 'FRA00029', 'FRA00042', 'FRA00045', 'FRA00046', 'ITA00178',
                 'NOR00005', 'ROU00077', 'ROU00467', 'SVN00047', 'TUR00264'],
                dtype=object)
```

Gt frequency function

```
In [64]: def plot_genotype_frequency(pc, title):
             fig, ax = plt.subplots(figsize=(24, 5))
             sns.despine(ax=ax, offset=24)
             left = np.arange(len(pc))
             palette = sns.color_palette("hls", 15)
             pop2color = {'AUT00207': palette[0],
                           'DEU00071': palette[8],
                           'ESP00179': palette[1],
                           'ESP00225': palette[9],
                           'ESP00263': palette[2],
                           'FRA00029': palette[10],
                           'FRA00042': palette[3],
                           'FRA00045': palette[11],
                           'FRA00046': palette[4],
                           'ITA00178': palette[12],
                           'NOR00005': palette[5],
                           'R0U00077': palette[13],
                           'R0U00467': palette[6],
                           'SVN00047': palette[14],
                           'TUR00264': palette[7]}
             colors = [pop2color[p] for p in samples.Population]
             ax.bar(left, pc, color=colors)
             ax.set_xlim(0, len(pc))
             ax.set_xlabel('Sample index')
             ax.set_ylabel('Percent calls')
             ax.set title(title)
             handles = [mpl.patches.Patch(color=palette[0]),
                         mpl.patches.Patch(color=palette[8]),
                         mpl.patches.Patch(color=palette[1]),
```

```
mpl.patches.Patch(color=palette[9]),
    mpl.patches.Patch(color=palette[2]),
    mpl.patches.Patch(color=palette[10]),
    mpl.patches.Patch(color=palette[3]),
    mpl.patches.Patch(color=palette[11]),
    mpl.patches.Patch(color=palette[4]),
    mpl.patches.Patch(color=palette[4]),
    mpl.patches.Patch(color=palette[5]),
    mpl.patches.Patch(color=palette[5]),
    mpl.patches.Patch(color=palette[6]),
    mpl.patches.Patch(color=palette[14]),
    mpl.patches.Patch(color=palette[7])]
ax.legend(handles=handles, labels=['AUT00207', 'DEU00071', 'ESP00179'
    'FRA00029', 'FRA00042', 'FRA00045', 'FRA00046', 'ITA00178',
    'NOR00005', 'ROU00077', 'ROU00467', 'SVN00047', 'TUR00264'], title
    bbox_to_anchor=(1, 1), loc='upper left')
```

Plot missing

Plot heterozygosity

PCA

```
'FRA00046': palette[4],
'ITA00178': palette[12],
'NOR00005': palette[5],
'ROU00077': palette[13],
'ROU00467': palette[6],
'SVN00047': palette[14],
'TUR00264': palette[7]
}
```

```
In [68]: def plot_pca_coords(coords, model, pc1, pc2, ax, sample_population):
             sns.despine(ax=ax, offset=5)
             x = coords[:, pc1]
             y = coords[:, pc2]
             for pop in populations:
                 flt = (sample_population == pop)
                 ax.plot(x[flt], y[flt], marker='o', linestyle=' ', color=pop_colo
                         label=pop, markersize=6, mec='k', mew=.5)
             ax.set_xlabel('PC%s (%.1f%%)' % (pc1+1, model.explained_variance_rati
             ax.set_ylabel('PC%s (%.1f%%)' % (pc2+1, model.explained_variance_rati
         def fig pca(coords, model, title, sample population=None):
             if sample_population is None:
                 sample_population = samples.Population
             # plot coords for PCs 1 vs 2, 3 vs 4
             fig = plt.figure(figsize=(10, 5))
             ax = fig.add_subplot(1, 2, 1)
             plot_pca_coords(coords, model, 0, 1, ax, sample_population)
             ax = fig.add_subplot(1, 2, 2)
             plot_pca_coords(coords, model, 2, 3, ax, sample_population)
             ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
             fig.suptitle(title, y=1.02)
             fig.tight_layout()
```

```
In [69]: ac2 = gt_biallelic.count_alleles()
ac2
```

out[69]: <AlleleCountsChunkedArray shape=(132498, 2) dtype=int32 chunks=(33125, 2)
nbytes=1.0M cbytes=273.4K cratio=3.8 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

0 698 521 744 62 743 7
2 743 7
132495 749 1
132496 747 3
132497 749 1

```
In [70]: flt = (ac2[:, :2].min(axis=1) > 1)
  gf = gt_biallelic.compress(flt, axis=0)
```

```
gn = gf.to_n_alt()
gn
```

```
In [71]: coords1, model1 = allel.pca(gn, n_components=10, scaler='patterson')
```

In [72]: fig_pca(coords1, model1, 'Figure 1. Conventional PCA.')

Figure 1. Conventional PCA.

In [73]: outliers = coords1[:,3]<-200
samples[outliers]</pre>

 373
 TUR00264-024
 TUR00264

 374
 TUR00264-025
 TUR00264