Informatica e Tecnologie della Comunicazione Digitale

Docente:

Miguel Ceriani (ceriani@di.uniroma1.it)

Lezioni:

Mercoledì/Giovedì/Venerdì 9-11

Ricevimento (su appuntamento):

Mercoledì 14-16 a viale Regina Elena 295, palazzina F, 1º piano

Lezione 3: Bit, Combinazioni, Testo

Nelle puntate precedenti...

Computer:

Sistema di Elaborazione Dati Programmabile Universale

Programma:

Sequenza Finita di Istruzioni Elementari

- 1. ripeti finché non hai la mozzarella
 - 1. trova una charcuterie
 - 2. fatti dare una mozzarella di Aversa
 - 3. premi la mozzarella con due dita
 - 4. cola il latte?
 - se sì, comprane mezzo chilo
- 2. torna a casa

bit

quantità più piccola di informazione che posso considerare (2 possibilità, 0 o 1)

Sistema di Numerazione Binario

x8	x4	x2	x1
1	1	0	1

$$1101_{(2)} = 13_{(10)}$$

bit

usandone tanti insieme posso rappresentare "qualunque" cosa:

- numeri
- testi
- immagini
- video
- programmi

•

bit: bi.....it

Combinazioni con i Bit

num. di bit	combinazioni
0	1
1	2
2	4
3	8
n	2 ⁿ

Combinazioni di *n* bit

- dico che per n bit le combinazioni possibili sono 2ⁿ
- ma come dimostrarlo per ogni possibile n (infiniti)???

Dimostrazione per Induzione

n: numero di bit c_n: numero di combinazioni

vogliamo dimostrare che $c_n = 2^n$, sempre

- caso base, dimostriamo che $c_1 = 2^1$
 - con 1 bit le possibili combinazioni sono 2, quindi $c_1 = 2 = 2^1$.
- induzione, dimostriamo che se $c_n = 2^n$ allora $c_{n+1} = 2^{n+1}$
 - aggiungendo un bit, che può assumere due valori (0 o 1) il numero di combinazioni raddoppiano, quindi $c_{n+1} = 2 \times c_n$
 - ma $c_n = 2^n$, quindi $c_{n+1} = 2 \times 2^n = 2^{n+1}$.

Gruppi (Multipli) di Bit

byte	8 bit	8 bit
kilobyte (KB, K)	1.000 byte	1.024 (2 ¹⁰) byte

megabyte (MB, M)

1.000.000

1.048.576 (2²⁰)

byte

byte

gigabyte (GB, G)

1.000.000.000

1.073.741.824 (2³⁰)

byte

byte

terabyte (TB, T)

1.000.000.000.000

1.099.511.627.776 (2⁴⁰)

byte

Testo?

Rappresentazione del Testo

```
Ciao Mondo!
0100001101101001 ...
```

ASCII Code: Character to Binary

0	0011	0000	0	0100	1111	m	0110	1101
1	0011	0001	P	0101	0000	n	0110	1110
2	0011	0010	Q	0101	0001	0	0110	1111
3	0011	0011	R	0101	0010	P	0111	0000
4	0011	0100	S	0101	0011	q	0111	0001
5	0011	0101	T	0101	0100	r	0111	0010
6	0011	0110	σ	0101	0101	s	0111	0011
7	0011	0111	v	0101	0110	t	0111	0100
8	0011	1000	W	0101	0111	u	0111	0101
9	0011	1001	x	0101	1000	v	0111	0110
A	0100	0001	Y	0101	1001	W	0111	0111
В	0100	0010	z	0101	1010	×	0111	1000
C	0100	0011	a	0110	0001	У	0111	1001
D	0100	0100	b	0110	0010	z	0111	1010
E	0100	0101	c	0110	0011	*	0010	1110
F	0100	0110	đ	0110	0100	,	0010	0111
G	0100	0111	е	0110	0101	:	0011	1010
H	0100	1000	£	0110	0110	,	0011	1011
I	0100	1001	g	0110	0111	?	0011	1111
J	0100	1010	h	0110	1000	1	0010	0001
K	0100	1011	I	0110	1001	31	0010	1100
L	0100	1100	j	0110	1010	"	0010	0010
M	0100	1101	k	0110	1011	(0010	1000
N	0100	1110	1	0110	1100)	0010	1001
						space	0010	0000

Quanti caratteri?

- ASCII (esteso), è uno standard USA, usa 8 bit, quindi può rappresentare 256 caratteri: sufficienti per una lingua come Inglese o Italiano ma pochissimi per tutte le lingue del mondo!!!
- UNICODE è uno standard internazionale, usa da 8 a 24 bit e mappa al momento ~130.000 caratteri di lingue di tutto il mondo