Álgebra lineal

Trabajo práctico N°1 - 2022

Repaso

Espacios vectoriales, independencia lineal, bases

- 1. Analizar si los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} (\mathbb{R} -EV) con las operaciones + y \cdot usuales.
 - a) Los puntos de un recta de \mathbb{R}^2 que pasa por el origen de coordenadas.
 - b) Las funciones lineales cuya gráfica pertenece a \mathbb{R}^2 y contiene al origen de coordenadas.
 - c) Los polinomios de grado menor o igual a 3, que tienen el mismo término independiente.
 - d) Las matrices de $\mathbb{R}^{2\times 2}$ cuya diagonal principal es nula.
 - e) Las matrices de $\mathbb{R}^{3\times3}$ inversibles.
- 2. Sea $GL(3,\mathbb{C}) := \{A \in \mathbb{C}^{3\times 3} : A \text{ es inversible}\}$. ¿Es $GL(3,\mathbb{C})$ un \mathbb{C} -EV con la suma dada por A + B = AB y el producto por un escalar usual?
- 3. Determinar si existe $t \in \mathbb{R}$ tal que los vectores (t-1, 0, 1), (t, 1, 2) y (-1, 1, -1) sean linealmente independientes.
- 4. Demostrar que en un espacio vectorial de dimensión n, todo conjunto de n+1 vectores es linealmente dependiente.
- 5. Sea S el subespacio de \mathbb{R}^4 generado por $B = \{(-1,0,-1,1); (0,1,0,-1); (-1,1,-1,0)\}$. ¿Es B una base de S? Hallar una base de S y extenderla a una de \mathbb{R}^4 .
- 6. Probar que $B = \{(1, -1, -1, -1); (0, 1, 1, 0); (1, 2, 0, 0); (0, 1, 2, -1)\}$ es una base de \mathbb{C}^4 (como \mathbb{C} -EV).
- 7. Hallar una base para $\mathbb{C}^{2\times 2}$ como \mathbb{R} -EV y como \mathbb{C} -EV. ¿Qué dimensión tiene $\mathbb{C}^{2\times 2}$ como \mathbb{R} -EV? ¿y como \mathbb{C} -EV?
- 8. Analizar en cada caso si el conjunto es linealmente independiente y hallar el subespacio generado por cada uno ellos. Decir además qué dimensión tiene cada subespacio.
 - a) $B = \{(2,0,1); (3,1,2), (1,1,1), (7,3,5)\} \subset \mathbb{R}^3.$
 - $b) \ B = \left\{ \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}; \begin{pmatrix} 3 & -1 \\ 0 & 0 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}.$

- c) $B = \{1 x, 2 x^2, x + x^2\} \subset \mathbb{R}_2[x]$ (el conjunto de polinomios de grado menor o igual a 2 con coeficientes en \mathbb{R}).
- 9. Sea $B = \{x^k : k \in \mathbb{N}\} \subset \mathbb{C}[x]$.
 - a) Probar que todo subconjunto finito de B es linealmente independiente.
 - b) ¿Es B una base de $\mathbb{C}[x]$ como \mathbb{C} -EV?
 - c) ¿Cuál es la dimensión de $\mathbb{C}[x]$ como \mathbb{C} -EV?
- 10. Sea V un \mathbb{K} -EV de dimensión finita y U un subespacio de V. Probar que, si la dimensión de U coincide con la de V entonces U = V.
- 11. Sean W_1 y W_2 subespacios de un espacio vectorial V; Son $W_1 \cap W_2$ y $W_1 \cup W_2$ subespacios de V? Justificar.
- 12. Probar que $W_1 + W_2 = \overline{W_1 \cup W_2}$ y, por lo tanto, $W_1 + W_2$ es un subespacio de V.
- 13. Sean $V_1 = \{ A \in \mathbb{C}^{2 \times 2} : a_{11} + a_{12} = 0 \}$ y $V_2 = \{ A \in \mathbb{C}^{2 \times 2} : a_{11} + a_{21} = 0 \}$.
 - a) Probar que V_1 y V_2 son subespacios de $\mathbb{C}^{2\times 2}$ (como \mathbb{C} -EV).
 - b) Hallar $V_1 \cap V_2 \setminus V_1 + V_2$.
 - c) Hallar las dimensiones de V_1 , V_2 , $V_1 \cap V_2$ y $V_1 + V_2$.
- 14. Sea $S = \{(x, y, z) : x y + z = 0\}.$
 - a) Probar que S es un subespacio de \mathbb{R}^3 y hallar una base para S.
 - b) Hallar un subespacio T de \mathbb{R}^3 tal que $S+T=\mathbb{R}^3$ ¿Es único?
- 15. Hallar una base de $V_1 + V_2 + V_3$ para los siguientes subespacios de \mathbb{R}^5 .
 - a) $V_1 = \overline{(1, 1, 2, 0, 1); (2, 0, 3, 0, 1)}, V_2 = \overline{(-1, 1, -2, 1, 1)}$ y $V_3 = \overline{(0, 1, 0, 1, 1)}.$
 - b) $V_1 = \overline{(1,1,2,0,1); (2,0,3,0,1)}, V_2 = \overline{(1,0,-2,1,1)} \text{ y } V_3 = \overline{(1,1,1,2,2)}.$
- 16. Sea $C(\mathbb{R})$ el \mathbb{R} -EV de las funciones continuas de \mathbb{R} en \mathbb{R} , con las operaciones usuales. Si $V \subset C(\mathbb{R})$ es el conjunto de funciones pares y $W \subset C(\mathbb{R})$ el de las impares, probar que:
 - a) V y W son subespacios de $C(\mathbb{R})$.
 - b) $V \cap W = \{0\}.$
 - c) $V + W = C(\mathbb{R})$.
- 17. Sean W_1 y W_2 subespacios de un espacio vectorial V tales que, $W_1 \cap W_2 = \{0\}$ y $V = W_1 + W_2$. Probar que, dado $v \in V$, existen únicos $w_1 \in W_1$ y $w_2 \in W_2$ tales que $v = w_1 + w_2$.