

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Videoanalyse

20.01.2022, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021 Einführung 29.10.2021 Menschliche Wahrnehmung – visuell, akustisch, haptisch, 05.11.2021 Informationstheorie, Textcodierung und -komprimierung 12.11.2021 Bildverbesserung 19.11.2021 Bildanalyse 26.11.2021 Grundlagen der Signalverarbeitung
05.11.2021 Informationstheorie, Textcodierung und -komprimierung 12.11.2021 Bildverbesserung 19.11.2021 Bildanalyse
12.11.2021 Bildverbesserung 19.11.2021 Bildanalyse
19.11.2021 Bildanalyse
26.11.2021 Grundlagen der Signalverarbeitung
03.12.2021 Bildkomprimierung
10.12.2021 Videokomprimierung
17.12.2022 Audiokomprimierung
21.01.2022 Videoanalyse & Dynamic Time Warping
28.01.2022 Gestenanalyse
04.02.2022 Tiefendatengenerierung
11.02.2022 FAQ mit den Tutoren
17.02.2022 Klausur, 14-16 Uhr, N10+N11

Schnitterkennung

Schnitt (Cut):

 Plötzlicher Wechsel des Bildinhaltes zwischen zwei kontinuierlichen Aufnahmen

Bild: Stephan Kopf, Videoanalyse

Schnitterkennung:

• Erkennen von Schnitten innerhalb einer Videosequenz

Aufnahmeübergänge: Ein- und Ausblenden

Einblenden (Fade in)

Wechsel eines Bildinhaltes von monochromer Farbe zu Bild

Ausblenden (Fade out)

- Wechsel eines Bildinhaltes von Bild zu monochromer Farbe
 - Beispiel: Überblenden von weiß/schwarz

Aufnahmeübergänge: Überblendung

Überblendung

 Fließender Übergang zwischen zwei Bildinhalten mit Bildüberlagerung

Bild: Stephan Kopf, Videoanalyse

Erkennung von Aufnahmeübergängen

Algorithmen

- Pixelbasierte Verfahren
- Unterschiede von Farbhistogrammen
- Kantenextraktion Edge Change Ratio (ECR)
- Kantenorientierter Kontrast

Pixelbasierte Schnitterkennung

Summe der absoluten Pixeldifferenzen D_{SAD} zweier Bilder I_i, I_{i-1}

$$D_{SAD} = \frac{1}{N_x \cdot N_y} \cdot \sum_{x=1}^{N_x} \sum_{y=1}^{N_y} |I_i(x, y) - I_{i-1}(x, y)|$$

mit N_x = Bildbreite, N_y = Bildhöhe

Falls $D_{SAD} > Threshold T \Rightarrow Harter Schnitt$

Vorteil: geringe Komplexität, robuste Ergebnisse

Nachteil: hohe Fehlerraten bei starker Bewegung (Objekt oder

Kamera)

Histogrammbasierte Schnitterkennung

Schnitt

- Schnitt wird erkannt, wenn Farbhistogramme benachbarter Bilder (i-1) und i sich mehr unterscheiden als Schwelle T
- Berechnung
 - Histogramm $H_i(r, g, b)$ eines Bildes i
 - RGB-Farbtripel (r, g, b)
 - Bilder (i-1) und i

$$\sum_{r,g,b} (|H_i(r,g,b) - H_{i-1}(r,g,b)|) \ge T$$

auch die normierte Histogrammdifferenz verwendbar

Histogramme: Beispiele

Histogramme: Differenzgraph

Histogrammbasierte Schnitterkennung: Probleme

Unterschiedliche Bilder können dieselben Histogramme haben

Einfaches Beispiel

Kompliziertes Beispiel

Histogrammbasierte Schnitterkennung: Probleme (2)

Probleme

- Verschiedene Bilder können ähnliche Histogramme haben
- Farbwerte von aufeinanderfolgenden Bildern können sich stark ändern, ohne dass es zu einem Schnitt kommt
 - Explosionen
 - Wechsel der Szenenbeleuchtung
- Schnelle Bewegung großer Objekte, deformierbare Objekte

Erkennungs-Performanz

- Abhängig vom gewählten Histogramm-Threshold
- Muss auf den Videoinhalt abgestimmt werden für optimale Ergebnisse
- Action-Szenen führen häufig zu falschen Schnitterkennungen

Verbesserungsmöglichkeit:

- Einteilung des Bildes in Regionen (z.B. 16)
- Durchführung der Schnitterkennung nur auf den ähnlichsten Regionen (z.B. 8)

Kantenbasierte Schnitterkennung

Vorgehensweise

- Berechnung der Kantenbilder durch Canny-Algorithmus
 - Bildglättung
 - Anwendung Sobel Filter
 - Berechnung der Kantenstärke
 - Non-maximum-supression
 - Hysterese
- Berechnung der ECR:
 Edge Change Ratio

https://upload.wikimedia.org/wikipedia/commons/c/ca/Canny_Final.JPG

Edge Change Ratio (ECR)

Eigenschaften

- Kantenpixel in Bild i und (i-1): s_i und s_{i-1}
- E_{out} : Pixel in Bild (i-1) ist Kantenpixel, Pixel in Bild i ist kein Kantenpixel
- E_{in} : Pixel in Bild (i-1) ist kein Kantenpixel, Pixel in Bild i ist Kantenpixel
- Kantenunterschiede zwischen Bildern i und (i-1)

$$ECR_{i-1} = \max\left(\frac{E_{in}}{s_{i-1}}, \frac{E_{out}}{s_i}\right)$$

• ECR kann als einfache Eigenschaft zu Verfolgung von Bewegungsintensität verwendet werden

ECR-Schnitterkennung: Prinzipielle Idee

ECR-Schnitterkennung (2)

Schnitt

• Wenn ECR_i Kantenwechselverhältnis zwischen Bildern i und (i-1) ist, wird ein Schnitt erkannt, falls

$$ECR_i \geq T$$

gilt, wobei T eine vorgegebene Schwelle ist.

• Schnelle Objekt- und Kamerabewegungen führen zu höheren

ECR-Werten ohne Schnitte

 Bewegungskompensation zwischen Bildern notwendig

ECR-Schnitterkennung (3)

Überblendungen

- sind schwer zu erkennen
- typische Kurve eines ECR-Graphen

Beispiel: Überblenden

- Ränder der ersten Aufnahme verschwinden linear: $ECR_{i-1}^{out} = E_{out}/s_i$
- Ränder der neuen Aufnahmen erscheinen linear: $ECR_{i-1}^{in} = E_{in}/s_{i-1}$

ECR-Schnitterkennung (4)

Einblenden, Ausblenden

- Ausblenden: Zahl der Kantenpixel ist Null nach der ersten Bildsequenz
- Einblenden: Zahl der Kantenpixel ist Null vor der ersten Bildsequenz

- Erkennung von Überblendung durch Histogramme
 - Unzuverlässig, da Farbübergänge in Aufnahmen häufig vorkommen und daher nicht typisch für Erkennung von Überblendungen sind

ECR-Schnitterkennung (5)

Probleme

- Schnelle Objekte oder Kamerabewegung
- Explosionen
- Überblendungen und Ausblendungen
 - Sanfte Übergängen sind schwer zu erkennen, insbesondere Anfang/Ende eines Übergangs
- Erkennungs-Performanz
 - Harte Schnitte: sehr gut geeignet
 - Ein-/Ausblendungen: sehr hohe Rate falsch erkannter Schnitte → bedingt geeignet
 - Überblendungen: extrem hohe Rate falsch erkannter Schnitte
 → ungeeignet

Erkennung von Überblendungen mit kantenorientiertem Kontrast

Vorgehensweise

- Kantenstärke ist niedrig zwischen Überblendungen und Auflösungen
- Berechne Kanten und Kantenstärke
- $K_i(x, y)$ bezeichne die **Kantenkarte** eines Bildes i und t_w und t_s der Schwellwert für ein **schwaches** (weak) bzw. ein **starkes** (strong) Kantenpixel
- Vergleiche Beziehung EC(i) von starken zu schwachen Kanten

$$w(i) = \sum_{x,y} K_i(x,y)$$
 falls $t_w \le K_i(x,y) < t_s$
 $s(i) = \sum_{x,y} K_i(x,y)$ falls $K_i(x,y) \ge t_s$
 $EC(i) = 1 + \frac{s(i) - w(i) - 1}{s(i) + w(i) + 1}$; $EC(i) \in [0,2]$

Erkennung von Überblendungen mit kantenorientiertem Kontrast

Vorgehensweise

Niedrige Kantenstärke → Überbelendung

EC(i)	Kanten				
≈ 0	Keine ausgeprägten Kanten				
0 < EC(i) < 1	Schwache Kanten dominieren				
≈ 1	Schwache und starke Kanten				
1 < EC(i) < 2	Starke Kanten dominieren				
≈ 2	Nur starke Kanten				

Schnitterkennungstechniken: Bewertung

Trefferrate (Recall): Verhältnis richtig erkannter zu tatsächlichen Schnitten

$$recall = \frac{TP}{TP + FN}$$

Präzision: Anteil korrekt erkannter Schnitte an erkannten Schnitten

$$precision = \frac{TP}{TP + FP}$$

Schnitterkennungstechniken: Vergleich (Trefferrate)

Trefferrate: Verhältnis richtig erkannter zu tatsächlichen Schnitten

Schnitt- Erkennung	Schnitt-Typ	Generierte Dissolves	Ground- hog Day	Nach- richten	Baywatch	
Histogramme*	Schnitt	59-90 %	18-98 %	40-99 %	50-82 %	
	Ein-/Ausbl.	nicht anwendbar				
	Überbl.	nicht anwendbar				
ECR	Schnitt	90 %	97 %	91 %	69 %	
	Ein-/Ausbl.	0 %	100%	0%	47 %	
	Überbl.	72 %	67 %	0%	66 %	
Kantenkontrast*	Schnitt	nicht anwendbar				
	Ein-/Ausbl.	nicht anwendbar				
	Überbl.	56-82 %	17 %	100 %	55-73 %	

^{*} Ergebnisse sind abhängig vom Threshold

Schnitterkennungstechniken: Vergleich (Fehlerrate)

Fehlerrate: Verhältnis falsch erkannter zu tatsächlichen Schnitten

Schnitt- Erkennung	Schnitt-Typ	Generierte Dissolves	Ground- hog Day	Nach- richten	Baywatch	
Histogramme*	Schnitt	4-44 %	4-82 %	4-61 %	50-82 %	
	Ein-/Ausbl.	nicht anwendbar				
	Überbl.	nicht anwendbar				
ECR	Schnitt	18 %	14 %	13 %	9 %	
	Ein-/Ausbl.	27 %	657 %	100 %	526 %	
	Überbl.	49 %	37100 %	5500 %	708 %	
Kantenkontrast*	Schnitt	nicht anwendbar				
	Ein-/Ausbl.	nicht anwendbar				
	Überbl.	10-35 %	400-8500%	150-1150 %	182-314%	

^{*} Ergebnisse sind abhängig vom Threshold

Schnitterkennungstechniken: Vergleich (2)

Ergebnis

- ECR oder Histogramm-basierte Techniken, um Schnitte zu erkennen
- Kantenorientierter Kontrast, um Überblendungen zu erkennen
- Ausblendung problematisch, evtl. Kombination
 - Aufwändige Analyse, Definitionsfragen (Aus-/Überblendung)

Probleme

- Experimentelle Daten müssen manuell analysiert werden
- Definition von Schwellwerten
- Definition von Überblendung/Ausblendung

Aktionsintensität

- Aktionsintensität: interessantes Merkmal zur Unterscheidung verschiedener Genre
- Methoden zur Bestimmung:
 - Bewegungsvektoren: Verwendung des durchschnittlichen Betrags aller Bewegungsvektoren einer Szene
 - Edge Change Ratio (ECR): hohe Aktivitäten sind durch hohe ECR-Werte charakterisiert

Analyse von Bildsequenzen

Ziele

- Erkennen von Objekten
- Erkennen der Kamerabewegung (Schwenken, Kippen, Zooming ...)

Merkmal Objektbewegung

- weist auf Semantik hin
 - Beispiel: Bewegung vs. Sequenzen ohne Bewegung in Nachrichten
- Erkennung von Bewegung in Verbindung mit Segmentierung
 - menschliche Auge verwendet Bewegungs- und Objektinformation, um Objekte zu erkennen
 - Verfolgen von Objektgrenzen in aufeinanderfolgenden Bildern ergibt höhere Segmentierungsperformanz als Nutzung unbewegter Bilder

Merkmal Kamerabewegung

 Unterschied zur Objektbewegung: alle Bildpixel nehmen an der Bewegung teil

Einfluss des Kamerabetriebs

- Erkennen von Schwenken, Kippen, Zooming
- Bewegung
 - gilt für alle Pixel in einem Bild
 - in einer einheitlichen berechenbaren Weise

Beispiele

- **Schwenk:** alle Pixel werden von einer beliebigen Seiten von Bild i zu Bild (i + 1) bewegt
- **Zooming:** alle Pixel außer denen im Zoom-Zentrum werden in Kreisen in Richtung auf den Rand des Bildes bewegt (i+1).
- Kippen: Pixel werden halbkreisförmig um Kipppunkt bewegt

Einfluss des Kamerabetriebs

- Beispiele der Pixelbewegung von Bild i zu i+1
 - Schwenk (nach links):

- Zooming (in):

- Kippen (nach rechts 90°):

Erkennung des Kamerabetriebs

Algorithmus

- Verwende Bewegungsvektoren zur Kompression von Algorithmen (MPEG oder H.26x) oder berechne optischen Fluss, um Bewegungsvektoren eines Videos zu erhalten
- Teste, ob Bewegungsvektoren vordefinierten Kamerabetriebsmustern im Hinblick auf absolute Länge und Orientierung entsprechen
 - die meisten Vektoren sind mit derselben Ausrichtung parallelgeschaltet → Schwenk
 - konzentrische Vektoren → Zoom
 - in Richtung auf das Zoom-Zentrum: Zoom-in
 - in Richtung auf den Rand eines Bildes: Zoom-out

Beschränkungen

- Algorithmus funktioniert nicht besonders gut, wenn
 - zu analysierende Szene einen signifikanten Anteil von Objektbewegung enthält
 - Objektbewegung stört die Kamerabewegung und verzerrt automatische Erkennung
 - leider ist Störung ziemlich häufig

Zur Erinnerung: Blockbasierte Bewegungsvektoren

 Blockbasierte Bewegungsvektoren mit beschränkter Anwendbarkeit für semantische Analyse

- Vektorfeld zur Beschreibung von Objekt- oder Kamerabewegung zwischen zwei Bildern
- Effiziente Berechnung der Bewegungsvektoren: Verwendung grauwertige Bilder

Optischer Fluss:

- Bewegung von grauwertigen Mustern über Bildfläche
- 1. Schritt: berechnet Bewegungsvektor jedes grauwertige Pixel
- 2. Schritt: berechnet kontinuierliches Vektorfeld (Interpolation)

Vorgehensweise (Beispiele):

- Differentielle Techniken (Ableitungen von Grauwerten)
- Korrelationsbasierte Techniken (Korrelation von Regionen)

Optischer Fluss: Probleme

Korrespondenzproblem

Andere Probleme

Optischer Fluss ist kein verlässliches Merkmal für Inhaltsanalyse!

Vereinfachendes Beispiel:

Reales Beispiel: Schnelle Fahrt auf markierten Punkt (rot)

https://de.wikipedia.org/wiki/Optischer_Fluss

- Verschiedene Algorithmen zur Berechnung
 - Horn-Schunck-Methode
 - Lucas-Kanade-Methode
 - → verschiedene Algorithmen bereits in OpenCV enthalten
- Weitere Anwendungsgebiete:
 - Objekttracking im Bereich Autonomes Fahren/Robotik
 - Bildsegmentierung
 - Bewegungserfassung für Mimik-/Gestenerkennung

Szenenanalyse

Schlüsselbilder (Key-Frames)

- repräsentieren Inhalt einer Szene in komprimierter Form
- informieren auf klare Weise den Benutzer über die wichtigsten Aspekte einer Szene
- enthalten Information über ein Objekt, das Teil einer Szene ist
- reduzieren die Bandbreite, die nötig ist, um den Inhalt einer Szene wiederzugewinnen
- benötigen semantisches Verständnis einer Szene, um ausgewählt werden zu können
 - semantisches Verständnis: Gesichtserkennung
- kann in der Videokamera berechnet werden, indem Eigenschaften einer niedrigen Ebene, wie z.B. Farbe und Textur, verwendet werden

Videoähnlichkeit

Prämissen

- Existierendes Material kann in anderen Kontexten wiederverwendet werden
 - **Beispiel:** verwende Fassungen von Reportagen in Nachrichtensendungen (zusammen mit einer neuen Aufnahmesequentialisierung)

Vergleichskriterien

- Korrespondenz:
 - Entsprechung zweier Videosequenzen
 - Evtl. zeitliche Anpassung (temporal alignment) erforderlich
- Resequentialisierung:
 - Wechsel der Szenenreihenfolge in einem Video

Genre-Erkennung

Ziel

- Zuweisung eines Genres (Musikvideo, Nachrichten, Sportübertragung, Spielfilm, Werbeclip, ...)

Technologie

- Kombination vieler physikalischer und Bild-Parameter um charakteristische Signatur zu berechnen

Erkennung von Werbeblöcken (ohne Datenbasis)

Struktur eines Werbeblocks

intro to commercial block

commercial 1

commercial 2

previews of other transmissions

intro to current movie

movie

- Lokalisierung von Werbeblöcken in einem Videostrom
 - Vorselektion
 - Lokalisiere dunkle monochrome Frames
 - Finde viele harte Schnitte
 - Finde Pegel mit hoher Aktion
 (hoher ECR, große Bewegungsvektoren)

Erkennen des Videogenres

Ziel

Erkennen eines Genres (Nachrichtensendung, Werbung, Musikclip)

Technik

- Verbindung syntaktischer und semantischer Merkmale mit charakteristischem Fingerabdruck
- Erstelle Datenbasis mit Fingerabdrücken

Beispiel

Erkennen einer Nachrichtensendung/Werbeblöcken

- Springe zum nächsten harten Schnitt
- Berechne den Fingerabdruck der nächsten *L* Sekunden
- Vergleiche Fingerabdruck mit Datenbasis

Erkennen einer Nachrichtensendung/Werbeblöcken

Experimente

- 140 Clips von 7 Genres: Nachrichtensendung, Fußball, Situationskomödie, Musikclip, Zeichentrickfilm, Werbung
- Klassifikation zwischen 87% (Werbung) und 99% (Nachrichtensendung) korrekt

Literatur

K. D. Tönnies:

Grundlagen der Bildverarbeitung,

Pearson Studium, 2005.

B. Jähne:

Digitale Bildverarbeitung,

Springer-Verlag, 6. Auflage 2005.

R. Steinmetz:

Multimedia-Technologie,

Springer-Verlag, 3. Auflage, 2000.

Quellenangabe: Bilder und Folienmaterial sind auszugsweise aus den Lehrbüchern und Materialien von Tönnies, Burger, Burge, Steinmetz und Jähne entnommen.