

Detail Course 2.0 on Integral Calculus - IIT JAM' 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT JAM

~ Unlock Code: GPSIR ~ PhD, CSIR NET (Maths) | Youtuber (1000k+230K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

77M Wotch mins

4M Watch mins (last 30 days)

54K Followers

3K Dedications

GET 10% OFF

FOR CSIR-NET & IIT JAM

1M SUBSCRIBERS ON YOUTUBE

AUTHOR OF BEST SELLER BOOK OF CSIR-NET & IIT JAM

DETAILED COURSE ON THEORY OF ESTIMATION FOR CSIR-NET 2023

Gajendra Purohit

22 November

Enroll Now

DETAILED COURSE 2.0 ON INTEGRAL CALCULUS FOR IIT-JAM 2023

1 December

9:00 AM

Gajendra Purohit

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Definite integral

Definition: If $\frac{d}{dx}[f(x)] = \phi(x)$ and a & b are constant, then

$$\int_{a}^{b} \phi(x) dx = [f(x)]_{a}^{b} = f(b) - f(a)$$

is called definite integration of $\phi(x)$ within limit a & b.

Note: This is also called fundamental theorem of calculus.

Basic properties of definite integrals.

(1)
$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx$$

(2)
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

(3)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

For any $c \in (a, b)$

(4)
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$

(5)
$$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx & \text{if } f(x) \text{ is even} \\ 0 & \text{if } f(x) \text{ is odd} \end{cases}$$

(6)
$$\int_{0}^{2a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx, & \text{if } f(2a-x) = f(x) \\ 0, & \text{if } f(2a-x) = -f(x) \end{cases}$$

Definite integral as the limit of a sum:

$$\int_{0}^{1} f(x)dx = \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{n} f\left(\frac{r}{n}\right)$$

Where f(x) is continuous function on closed interval [0, 1]

Leibnitz's Rule:

If g is continuous on [a, b] and $f_1(x) & f_2(x)$ are differentiable function whose value lies in [a, b] then $\frac{d}{dx} \int_{f_1(x)}^{f_2(x)} g(t) dt = g[f_2(x)]f_2(x) - g(f_1(x))f_1(x)$

General form: If g is continuous on [a, b] and $f_1(x)$ & $f_2(x)$ are differentiable function whose value lies in [a, b] then

$$\frac{d}{dx} \int_{f_1(x)}^{f_2(x)} g(x,t) dt = \int_{f_1(x)}^{f_2(x)} \frac{\partial}{\partial x} g(x,t) dt + g[x, f_2(x)] f_2`(x) - g(x, f_1(x)) f_1`(x)$$

Gamma Function:

If m and n are non-negative integers, then

$$\int_0^{\pi/2} \sin^m x \cos^n x dx = \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{m+n+2}{2}\right)}$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

where $\Gamma(n)$ is called gamma function which satisfied the following properties

$$\Gamma(n+1) = n\Gamma(n) = n!$$
 i.e. $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$

In place of gamma function, we can also use the following formula:

$$\int_0^{\pi/2} \sin^m x \cos^n x dx = \frac{(m-1)(m-3)....(2 \text{ or } 1)(n-1)(n-3)....(2 \text{ or } 1)}{(m+n)(m+n-2)....(2 \text{ or } 1)}$$

It is important to note that we multiply by $(\pi/2)$; when both m and n are even.

Q1.

The value of $\int_0^{\pi/2} \sin^4 x \cos^6 x dx$

(a) $3\pi/312$

(b) $5\pi/512$

(c) $3\pi/512$

(d) $5\pi/312$

Reduction formulae Definite Integration

$$(1) \int_0^\infty e^{-ax} \sin bx dx = \frac{b}{a^2 + b^2}$$

(2)
$$\int_0^\infty e^{-ax} \cos bx dx = \frac{a}{a^2 + b^2}$$

$$(3) \int_0^\infty e^{-ax} x^n dx = \frac{n!}{a^n + 1}$$

Q2.

If
$$I_n = \int_0^\infty e^{-x} x^{n-1} dx$$
, then $\int_0^\infty e^{-\lambda x} x^{n-1} dx$ is equal to

(a) λI_n

(b) $\frac{1}{\lambda}I_n$

(c) $\frac{I_n}{x^n}$

(d) $\lambda^n I_n$

$$\int_{0}^{\pi/2} \sin^{7} x dx$$
 has value

(a)
$$\frac{37}{184}$$

(b)
$$\frac{17}{45}$$

(c)
$$\frac{16}{35}$$

(d)
$$\frac{16}{45}$$

Q.4.

Let a,b be positive real numbers such that a < b Given that

$$\lim_{n \to \infty} \int_0^n e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \text{ Then value of } \lim_{n \to \infty} \int_0^n \frac{1}{t^2} \left(e^{-at^2} - e^{-bt^2} \right) dt \text{ is }$$

IIT JAM 2022

(a)
$$\sqrt{\pi} \left(\sqrt{b} - \sqrt{a} \right)$$

(b)
$$\sqrt{\pi} \left(\sqrt{b} + \sqrt{a} \right)$$

(c)
$$-\sqrt{\pi}\left(\sqrt{b}-\sqrt{a}\right)$$
 (d) $\sqrt{\pi}\left(-\sqrt{b}+\sqrt{a}\right)$

(d)
$$\sqrt{\pi} \left(-\sqrt{b} + \sqrt{a} \right)$$

Q.6. If
$$g(x) = \int_{x(x-2)}^{4x-5} f(t)dt$$
, where $f(x) = \sqrt{1+3x^4}$ for $x \in \mathbb{R}$, then $g'(1)$ is **JAM-2019**

(a) 6

(c) 8

Q.7. Let $f: [0, 1] \to [0, \infty)$ be continuous function such that $(f(t))^2 < 1 + 2 \int_0^t f(s) ds$, $\forall t \in [0, 1]$

IIT JAM 2021

(a)
$$f(t) < 1 + t ; \forall t \in [0,1]$$

(b)
$$f(t) > 1 + t$$
; $\forall t \in [0,1]$

(c)
$$f(t) = 1 + t$$
; $\forall t \in [0,1]$

$$(d)f(t) < 1 + t/2 ; \forall t \in [0,1]$$

The value of the integral $\int |x| \cos nx \, dx$, $n \ge 1$ is Q.8.

JAM - 2016

- (a) 0, when n is even
- (b) 0, when n is odd
- (c) $-\frac{4}{n^2}$, when n is even (d) $-\frac{4}{n^2}$, when n is odd

Q.9. Let
$$f(x) = \int_{\sin x}^{\cos x} e^{-t^2} dt$$
, then $f\left(\frac{\pi}{4}\right)$ equals

ПТ ЈАМ 2006

(a)
$$\sqrt{\frac{1}{e}}$$
 (b) $-\sqrt{\frac{2}{e}}$

(c)
$$\sqrt{\frac{2}{e}}$$
 (d) $-\sqrt{\frac{1}{e}}$

Q.10. Let $f : R \rightarrow R$ be continuous function if

 $\int_{0}^{x} f(2t)dt = \frac{x}{\pi}\sin(\pi x) \text{ for all } x \in \mathbb{R}, \text{ then } f(2) \text{ is equal}$

to **JAM 2007**

(a) -1

(b) 0

(c) 1

(d) 2

Q.11. Let $f(x) = \int_{0}^{x} (x^2 + t^2)g(t)dt$, where g is a real valued continuous function on R, then f'(x) is equal to

JAM - 2008

(b)
$$x^3g(x)$$

(c)
$$\int_{0}^{x} g(t)dt$$

(d)
$$2x \int_{0}^{x} g(t)dt$$

Q.12. Let a be a non-zero real number, then

$$\lim_{x \to a} \frac{1}{x^2 - a^2} \int_{a}^{x} \sin(t^2) dt \text{ equals JAM} - 2009$$

(a)
$$\frac{\sin(a^2)}{2a}$$

(b)
$$\frac{\cos(a^2)}{2a}$$

$$(c) - \frac{\sin(a^2)}{2a}$$

$$(d) - \frac{\cos(a^2)}{2a}$$

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

DETAILED COURSE ON THEORY OF ESTIMATION FOR CSIR-NET 2023

Gajendra Purohit

22 November

Enroll Now

DETAILED COURSE 2.0 ON INTEGRAL CALCULUS FOR IIT-JAM 2023

1 December

9:00 AM

Gajendra Purohit

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR