3) Generalized Method of Moments (GMM)

Vitor Kamada

August 2019

Reference

Wooldridge (2010). **Econometric Analysis of Cross Section and Panel Data.** Ch 8

https://ebookcentral.proquest.com/lib/wayne/detail.action?docID = 33391968 and the state of th

Method of Moments

$$E[y - \mu] = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu) = 0$$

$$\hat{\mu}_{MM} = \frac{1}{N} \sum_{i=1}^{N} y_i = \overline{y}$$

$$E[u|\mathbf{x}] \to E[\mathbf{x}u] = 0$$
 $E[\mathbf{x}(y - \mathbf{x}'\beta)] = \frac{1}{N} \sum_{i=1}^{N} x_i (y_i - x_i'\beta) = 0$
 $\hat{\beta}_{MM} = (\Sigma_i x_i x_i')^{-1} (\Sigma_i x_i y_i) = 0$

Generalized Method of Moments (GMM)

$$Q_N(\beta) = \left\{ \frac{1}{N} (y - X\beta)' Z \right\} W_N \left\{ \frac{1}{N} Z' (y - X\beta) \right\}$$
$$\frac{\partial Q_n(\beta)}{\partial \beta} = -2 \left[\frac{1}{N} X' Z \right] W_N \left[\frac{1}{N} Z' (y - X\beta) \right] = 0$$

$$\hat{\beta}_{GMM} = (X'ZW_NZ'X)^{-1}X'ZW_NZ'y$$

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'y$$

$$\hat{\beta}_{2SLS} = \{X'Z(Z'Z)^{-1}Z'X\}^{-1}X'Z(Z'Z)^{-1}Z'y$$

Vitor Kamada ECO 7110 Econometrics II August 2019

4/19

Optimal GMM

$$\hat{\beta}_{OGMM} = (X'Z\hat{S}^{-1}Z'X)^{-1}X'Z\hat{S}^{-1}Z'y$$

$$\hat{S} = \frac{1}{N} \sum_{i=1}^{N} \hat{u}^2 z_i z_i' = \frac{Z'DZ}{N}$$

If
$$E[u_i^2|z_i] = \sigma^2$$
, then $\hat{S} = \frac{s^2Z'Z}{N}$

5/19

Vitor Kamada ECO 7110 Econometrics II August 2019

Medical Expenditure Panel Survey (MEPS): Individuals over the age of 65 years

Idrugexp: the log of total out-of-pocket expenditures on prescribed medications

hi_empunion: indicator for whether the individual holds either employer or union-sponsored health insurance

totchr: # of chronic conditions

sociodemographic variables: age, female, blhisp, and linc

ssiratio: ratio of an individual's social security income to the individual's income from all sources

multic: if the firm is a large operator with multiple locations

6/19

Vitor Kamada ECO 7110 Econometrics II August 2019

pip install linearmodels

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from linearmodels import IV2SLS, IVLIML, IVGMM
```

file="https://github.com/VitorKamada/ECO7110/raw/master/Data/mus06data.dta"
data = pd.read_stata(file)
data.head()

	ssiratio	age	educyr	drugexp	private	female	hisp
0	0.149877	74	16	595	1	1	0
1	0.395856	73	8	1783	1	0	0
2	1.000000	80	12	176	0	1	0
3	0.206639	70	17	2437	1	0	0
4	0.537192	91	16	330	0	0	0

Summary Statistics

```
ldrugexp
                       hi empunion
                                            linc
                                                         blhisp
                      10391.000000 10089.000000
count
       10391,000000
                                                  10391,000000
           6.479664
                          0.379655
mean
                                        2.743271
                                                       0.170340
std
           1,363393
                          0.485324
                                        0.913144
                                                       0.375956
min
           0.000000
                          0.000000
                                       -6.907755
                                                       0.000000
50%
           6.677083
                          0.000000
                                        2.743160
                                                       0.000000
          10,180172
                          1,000000
max
                                        5.744476
                                                       1,000000
```

```
ssiratio
                         lowincome
                                           multlc
                                                          firmsz
count
       10391,000000
                      10391,000000
                                     10391,000000
                                                    10391.000000
           0.520628
                          0.185641
                                         0.060341
                                                        0.136501
mean
std
           0.374589
                          0.388836
                                         0.238128
                                                        2.138914
min
          -2,100647
                          0.000000
                                         0.000000
                                                        0.000000
50%
           0.490139
                          0.000000
                                         0.000000
                                                        0.000000
           9.250620
                          1,000000
                                         1,000000
                                                       50,000000
max
```

data[['hi_empunion'] + instruments].corr()

	hi_empunion	ssiratio	lowincome	multlc	firmsz
hi_empunion	1.000000	-0.196284	-0.114425	0.119054	0.037173
ssiratio	-0.196284	1.000000	0.249820	-0.174394	-0.040481
lowincome	-0.114425	0.249820	1.000000	-0.060701	-0.007802
multlc	0.119054	-0.174394	-0.060701	1.000000	0.187394
firmsz	0.037173	-0.040481	-0.007802	0.187394	1.000000

Vitor Kamada ECO 7110 Econometrics II August 2019

9/19

```
from statsmodels.api import OLS, add_constant
data['const'] = 1
controls = ['const'] + controls
```

	Parameter	Std. Err.	T-stat	P-value
hi empunion	0.0739	0.0260	2.8441	0.0045
const	5.8611	0.1570	37.320	0.0043
totchr	0.4404	0.0094	47.049	0.0000
female	0.0578	0.0254	2.2797	0.0226
age	-0.0035	0.0019	-1.8228	0.0683
linc	0.0105	0.0137	0.7646	0.4445
blhisp	-0.1513	0.0341	-4.4353	0.0000

Vitor Kamada ECO 7110 Econometrics II August 2019 10 / 19

2SLS

```
ivmod = IV2SLS(data.ldrugexp, data[controls],
  data.hi_empunion, data[['ssiratio','multlc']])
res_2sls = ivmod.fit()
print(res_2sls.summary)
```

	Parameter	Std. Err.	T-stat	P-value
const	6.8752	0.2579	26.660	0.0000
totchr	0.4512	0.0103	43.769	0.0000
female	-0.0278	0.0322	-0.8653	0.3869
age	-0.0141	0.0029	-4.8753	0.0000
linc	0.0943	0.0219	4.3079	0.0000
blhisp	-0.2237	0.0396	-5.6514	0.0000
hi_empunion	-0.9899	0.2046	-4.8386	0.0000

OGMM

```
ivmod = IVGMM(data.ldrugexp, data[controls],
   data.hi_empunion, data[['ssiratio','multlc']])
res_gmm = ivmod.fit()
print(res_gmm)
```

	Parameter	Std. Err.	T-stat	P-value
const	6.8778	0.2580	26.658	0.0000
totchr	0.4510	0.0103	43.738	0.0000
female	-0.0282	0.0322	-0.8752	0.3815
age	-0.0142	0.0029	-4.8773	0.0000
linc	0.0945	0.0219	4.3142	0.0000
blhisp	-0.2231	0.0396	-5.6344	0.0000
hi_empunion	-0.9933	0.2047	-4.8530	0.0000

print(res_gmm.first_stage)

```
const
                                   0.9834
                                 (16.780)
totchr
                                   0.0133
                                 (3.6234)
female
                                  -0.0727
                                (-7.5644)
                                  -0.0081
age
                                (-11.311)
linc
                                   0.0444
                                 (6.7838)
blhisp
                                  -0.0679
                                (-5.5484)
ssiratio
                                  -0.1823
                                (-7.8326)
multlc
                                   0.1209
                                 (5.8212)
```

	2SLS	GMM	LIML
const	6.8752	6.8778	6.8807
	(26.660)	(26.658)	(26.577)
totchr	0.4512	0.4510	0.4513
	(43.769)	(43.738)	(43.730)
female	-0.0278	-0.0282	-0.0283
	(-0.8653)	(-0.8752)	(-0.8776)
age	-0.0141	-0.0142	-0.0142
	(-4.8753)	(-4.8773)	(-4.8781)
linc	0.0943	0.0945	0.0947
	(4.3079)	(4.3142)	(4.3114)
blhisp	-0.2237	-0.2231	-0.2241
	(-5.6514)	(-5.6344)	(-5.6531)
hi_empunion	-0.9899	-0.9933	-0.9957
	(-4.8386)	(-4.8530)	(-4.8361)

Overidentified Test (OID), Hansen's Test, and Sargan's Test

$$Q(\hat{eta}) = \{ \frac{1}{N} (y - X\hat{eta})'Z \} \hat{S}^{-1} \{ \frac{1}{N} Z'(y - X\hat{eta}) \}$$
 $Z'(y - X\hat{eta}) \simeq 0$, so $Q(\hat{eta}) \simeq 0$
 $Q(\hat{eta}) \stackrel{a}{\sim} \chi_r^2$,

r is the # of overidentifying restrictions

$$H_0: E\{Z'(y-X\beta)\} = 0$$

Rejection means that at least one of the instruments is not valid

Vitor Kamada ECO 7110 Econometrics II August 2019 15 / 19

Test of Overidentifying Restrictions

```
res_gmm.j_stat
```

 H_0 : Overidentifying Restriction is Valid

```
H0: Expected moment conditions are equal to 0
```

Statistic: 1.0475

P-value: 0.3061

Distributed: chi2(1)

WaldTestStatistic, id: 0x7f1d6b251160

Four Available Instruments

```
ivmod = IVGMM(data.ldrugexp, data[controls],
        data.hi empunion, data[instruments])
res gmm all = ivmod.fit()
res gmm all.j stat
HO: Expected moment conditions are equal to 0
Statistic: 11,5903
P-value: 0.0089
Distributed: chi2(3)
WaldTestStatistic, id: 0x7f1d6af14710
```

print(res_gmm_all)

	Parameter	Std. Err.	T-stat	P-value
const	6.7126	0.2426	27.670	0.0000
totchr	0.4495	0.0100	44.738	0.0000
female	-0.0105	0.0307	-0.3406	0.7334
age	-0.0125	0.0027	-4.5364	0.0000
linc	0.0797	0.0203	3.9162	0.0001
blhisp	-0.2061	0.0383	-5.3828	0.0000
hi_empunion	-0.8124	0.1846	-4.3999	0.0000

Vitor Kamada ECO 7110 Econometrics II August 2019

print(res_gmm_all.first_stage)

```
totchr
                                   0.0133
                                 (3.6494)
female
                                  -0.0724
                                (-7.5497)
                                  -0.0080
age
                                (-11.206)
linc
                                   0.0410
                                 (6.3552)
blhisp
                                  -0.0676
                                (-5.5369)
ssiratio
                                  -0.1690
                                (-7.3289)
lowincome
                                  -0.0637
                                (-5.1947)
multlc
                                   0.1151
                                 (5.4799)
firmsz
                                   0.0037
                                 (1.9286)
```

Vitor Kamada ECO 7110 Econometrics II August 2019 19 / 19