华中科技大学 2021~2022 学年度第 1 学期

大学物理(二)课程考试卷(A)参考答案

考试日期: 2022.01.04

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	D	D	В	В	В	В	A	С	C	В

二、填空题

- 1、 氩(Ar) 氦(He)
- 2, 1.35×10^{5} , 7.50×10^{-21} , 362
- 3, 2.7×10^{-3} , 0.09 , $2.65\,\times10^{-4}$
- $4, \frac{\pi}{2}$
- 5, 3.3
- 6, 3
- 7, 11.8
- 8. 7.86×10^{-12}
- 9、 光学谐振腔
- 10、画出了类似高斯分布的曲线,或者柱状图都给3分

三、计算题

1、解: (1) 由理想气体状态方程
$$T = \frac{PV}{\nu R}$$
 得: $T_A = T_B$

图中 AB 直线方程为:
$$p = -\frac{P_0}{V_0}V + 4P_0$$
 或 $\frac{P}{P_0} + \frac{V}{V_0} = 4$

代入 T 的表达式:
$$T = \frac{1}{R} \left(-\frac{P_0}{V_0} V^2 + 4 P_0 V \right) \dots (1)$$
 3 分

(2)
$$\Rightarrow \frac{dP}{dV} = 0$$
, $\text{M}: \frac{2P_0}{V_0}V - 4P_0 = 0$

可知 $V=2V_0$ 处温度最高,代入T式得最高温度:

$$T_{\text{max}} = \frac{1}{R} \left(-\frac{4P_0}{V_0} V_0^2 + 8P_0 V_0 \right) = \frac{4}{3} T_A$$

(3) 由热力学第一定律: dQ = dE + dW

内能是温度的函数:
$$dE = vc_v dT = \frac{3R}{2} dT$$
(2)

由(1)式有:
$$dT = \frac{1}{R} \left(-\frac{2P_0}{V_0} V + 4P_0 \right) dV$$
(3)

将 (3) 代入 (2) 得:
$$dE = \frac{3}{2}(4P_0 - \frac{2P_0}{V_0}V)dV$$

微分元功:
$$dW = pdV = (-\frac{P_0}{V_0}V + 4P_0)dV$$

微分元吸热为:

$$dQ = \left[\frac{3}{2}\left(-\frac{2P_0}{V_0}V + 4P_0\right) + \left(-\frac{2P_0}{V_0}V + 4P_0\right)\right]dV$$
$$= \left(-\frac{4P_0}{V_0}V + 10P_0\right)dV = 2P_0\left(5 - \frac{2V}{V_0}\right)dV$$

4 分

可见:
$$V = \frac{5V_0}{2}$$
 是分界点, $V < \frac{5V_0}{2}$ 吸热, $V > \frac{5V_0}{2}$ 放热

2、解: (1) ω = 2πν = 200 rad/s ,由已知条件可得两波源振动方程: $y_A = 0.01 \cos 200 πt$ (m) , $y_B = 0.01 \cos (200 πt + π)$ (m)

4 分

(2) 波长 $\lambda = uT = \lambda/v = 8 \,\mathrm{m}$,在 AB 连线上可以分三部分讨论: (a) 位于 A 点左侧部分

$$\Delta \varphi = (\varphi_{\rm B} - \varphi_{\rm A}) - \frac{2\pi}{\lambda} (r_{\rm B} - r_{\rm A}) = \pi - 5\pi = -4\pi$$

由于该区域内两波列各点都同相位叠加,所以没有静止点。 (b) 位于 B 点右侧部分

$$\Delta \varphi = (\varphi_{\rm B} - \varphi_{\rm A}) - \frac{2\pi}{\lambda} (r_{\rm B} - r_{\rm A}) = \pi + 5\pi = 6\pi$$

由于该区域内两波列各点都同相位叠加,所以没有静止点。 (c)位于 AB 连线中间部分,设任意一点到到 A 的距离为 x,

则到 B 的距离为 20-x。两波列的相位差为:

$$\Delta \varphi = (\varphi_{\rm B} - \varphi_{\rm A}) - \frac{2\pi}{\lambda} (r_{\rm B} - r_{\rm A}) = \pi - \frac{2\pi}{8} (20 - 2x) = \pi (-4 + \frac{x}{2})$$

干涉静止点满足

$$\Delta \varphi = \pi (-4 + \frac{x}{2}) = \pm (2k+1)\pi, \quad k=0,1,2,3...$$

可得因干涉而静止的各点的位置分别为 x = 2,6,10,14,18 (m)

3、解: (1) 由分析知 $\delta = 2n_2d$

3 分

油膜周边处 d=0, 即 $\delta=0$, 满足干涉加强条件, 出现明环。

(2) 油膜上任一暗环处满足: $2n_2d = (2k+1)\frac{\lambda}{2}$, k = 0,1,2,...

令 $d = d_m$,解得 k = 3.9,取整后 $k_m = 3$,可知油膜上暗环的最高级次为 3,也就是题中所述离油膜中心最近处,半径 r = 0.3 cm的那个暗环,故油膜上出现的完整暗环共有 4 个。 k = 0, 1, 2, 3

(3) 如图所示, R, r, d 和 d_m 之间的几何关系:

4 分

$$r^2 = R^2 - [R - (d_m - d)]^2 \approx 2R(d_m - d)$$

联立暗环条件: $2n_2d = (2k+1)\frac{\lambda}{2}$, k = 0,1,2,...

可得:
$$R = \frac{2n_2r^2}{4n_2d_m - (2k+1)\lambda}$$

3 分

代入: k=3, r=0.3 cm 以及 λ 和 d_m 值,可得R=20 m

4、解: (1) 由概率密度表达式

$$\rho = |\psi(x)|^2 = \frac{2}{a} \sin^2(\frac{2\pi}{a}x), \ (0 < x < a)$$

当
$$\sin^2(\frac{2\pi}{a}x) = 1$$
, x 为概率密度最大处的坐标, 可得 $x = \frac{a}{4}, \frac{3a}{4}$ 3 分

当
$$\sin^2(\frac{2\pi}{a}x) = 0$$
, x 为概率密度最小处的坐标, 可得 $x = \frac{a}{2}$

(2)
$$P = \int_0^{a/3} |\psi(x)|^2 dx = \frac{2}{a} \int_0^{a/3} \sin^2(\frac{2\pi}{a}x) dx = \frac{1}{3} - \frac{1}{4\pi} \sin\frac{4\pi}{3} \approx 0.4$$