P₁ P₃ P₄ P₅ P₆ P₇

H₁ H₂ H₃ H₄ H₅

P (nobody H₁ or H₂) = 3⁷

total # of cloices

$$P = \begin{pmatrix} 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 1 & 0 \\ 0.5 & 0.25 & 0 & 0.25 \\ 0.75 & 0.25 & 0 & 0 \end{pmatrix}$$

$$N = \begin{bmatrix} 2.4 \\ 0 \\ 2.9 \\ 2.8 \end{bmatrix}$$

$$f_{x}(x) = \frac{1}{2}$$
; $z = x - y$ $x \le y$

$$= \int_{-\infty}^{\infty} P(z \leq 0 | \gamma = y) f_{\gamma}(y) dy$$

$$= \int_{-\infty}^{\infty} P(x-y \leq 0 \mid y=y) f_{y}(y) dy$$

$$=\frac{y^3}{3}\Big|_0^2=\frac{8}{3}\Big|$$

(3)

consider the time when "C" finds free ATM.

At this point, A or B would have left the ATM and one would still be in service.

Memory less) amount if time other customer (Aor B)

property of Spends in ATM is exponentially exponential distributed with meen 3 minutes.

i. This is similar to Starting the service again

P(C Completes before A) = [2]

$$E\left(|x_n|\right] \leq \frac{1}{n}$$

$$P\left(x_{n\geq n}\right) \leq P\left(|X_{n}| \geq n\right)$$

$$\leq \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} P(x_n \ge n) \le \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{T^2}{6} < \infty$$

$$\Rightarrow P(x_n \ge n \text{ i.o.}) = 0$$

$$p_{ii}(n) = p(x_{n}=i|x_{o}=i) \ge \frac{1}{n+7}$$

$$\sum_{i=1}^{\infty} P_{ii}(n) \ge \frac{1}{8} + \frac{1}{9} + \cdots$$

$$\ge -\sum_{i=1}^{\infty} \frac{1}{2} - \sum_{i=1}^{\infty} \frac{1}{2}$$
Hav moric Series

$$E[N_3|N_2=k] = \frac{\left(1+\frac{1}{p(1-p)}\right) \times P + (1-p)}{p}$$

$$=\sum_{k=2}^{p} \left(\frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{p}} \times P(N_z = k)$$