Modéliser le comportement statique des systèmes mécaniques

- Concours Centrale Supelec PSI 2018

l'Ingénieur

1 Contexte et étude préliminaire

Objectif Valider la pertinence de l'utilisation d'une machine spéciale appelée tour en fosse pour le reprofilage des roues ferroviaires.

Ouestion 1

- Pour la méthode a, $t_{i1} = t_3 + t_4 = 14 \text{ h} = 840 \text{ min}$.
- Pour la méthode *b*, $t_{i2} = (6 \times 3 \times 2) t_5 + t_6 = 545 \text{ min.}$

Le gain de temps $\Delta t_i = t_{i1} - t_{i2} = 295$ min soit 4 h et 55 min. C'est autant de temps gagner sur l'exploitation de la rame.

2 Analyse de l'entrainement en rotation d'une roue

- 2.1 Description fonctionnelle et structurelle du tour en fosse
- 2.2 Modélisation du dispositif de mise en rotation d'une roue

Objectif Vérifier que la modélisation et les hypothèses retenues permettent de déterminer toutes les actions mécaniques nécessaires pour dimensionner les actionneurs des chaines d'énergie.

1

Question 2 À partir des informations données, on peut réaliser le graphe de structure suivant.

Méthode cinématique

- Nombre cyclomatique $\gamma = L S + 1$ avec L = 9 liaisons et S = 7 solides, on a donc $\gamma = 9 7 + 1 = 3$.
- Nombre d'inconnues cinématiques :
 - 2 liaisons sphériques : $3 \times 2 = 6$ inconnues;
- 4 liaisons pivot : $1 \times 4 = 4$ inconnues;
- 1 liaison pivot glissant : 2 inconnues;
- 2 liaisons sphère-plan : $5 \times 2 = 10$ inconnues;
- au total: 22 inconnues cinématiques.

Méthode statique