Notebook Setup

```
!which python3
/Library/Frameworks/Python.framework/Versions/3.11/bin/python3
%load ext autoreload
%autoreload 2
%matplotlib inline
# these are just couple extensions to help with certain things
The autoreload extension is already loaded. To reload it, use:
 %reload ext autoreload
# Standard imports
import os
# Third-party imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Local imports
sns.set() # this will make the notebook use seaborn plotting styles
```

Load Data

```
data = pd.read csv('IRIS.csv')
data.columns
Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
        species'],
      dtype='object')
df = data.drop(columns=["species"])
df.head()
   sepal_length sepal_width petal_length petal_width
0
            5.1
                          3.5
                                        1.4
                                                      0.2
1
            4.9
                          3.0
                                        1.4
                                                      0.2
2
            4.7
                          3.2
                                        1.3
                                                      0.2
3
            4.6
                          3.1
                                        1.5
                                                      0.2
4
            5.0
                                                      0.2
                          3.6
                                        1.4
```

df["target"] = pd.Categorical(data["species"]).codes
df["target"] = data["species"].map({"name":0}) # this way will work
too write the name and its relative value you want to use
df

_	sepal_length	sepal_width	petal_length	petal_width	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	Θ
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

[150 rows x 5 columns]

df.describe()

	epal_length	sepal_width	petal_length	petal_width
target				
count	150.000000	150.000000	150.000000	150.000000
150.0000		2 25 4222	2 750667	1 100667
mean	5.843333	3.054000	3.758667	1.198667
1.000000	0.00000	0 422504	1 704420	0.762161
std	0.828066	0.433594	1.764420	0.763161
0.819232	4 200000	2 000000	1 000000	0 100000
min	4.300000	2.000000	1.000000	0.100000
0.000000 25%	5.100000	2.800000	1.600000	0.300000
0.000000	3.100000	2.00000	1.000000	0.30000
50%	5.800000	3.000000	4.350000	1.300000
1.000000	3100000	3100000	11330000	11500000
75%	6.400000	3.300000	5.100000	1.800000
2.000000				
max	7.900000	4.400000	6.900000	2.500000
2.000000				
1650				
dtl"cana	l lanath"l h	1 C + / \		

```
df["sepal_length"].hist()
plt.suptitle("sepal_length")
plt.show()
```

sepal_length

df["sepal_width"].hist()
plt.suptitle("sepal_width")
plt.show()

sepal_width


```
# Assuming df contains your dataset
features = ["sepal_length", "sepal_width", "petal_length",
"petal_width"]

fig, axes = plt.subplots(2, 2, figsize=(10, 8)) # Create a 2x2 grid
fig.suptitle("Histograms of Features") # Set the overall title

# Loop through features and axes
for ax, feature in zip(axes.ravel(), features):
    df[feature].hist(ax=ax) # Plot histogram
    ax.set_title(feature) # Set title for each subplot

plt.show()
```

Histograms of Features


```
df["target"]
        0
0
1
2
3
4
        0
        0
        0
145
       2
146
        2
        2
147
        2
148
        2
149
Name: target, Length: 150, dtype: int8
```

```
# df["sepal_length"].hist()
# plt.suptitle("sepal_length")
# plt.show()
col = "sepal_length"
sns.relplot(x=col, y="target", hue=data["species"], data=df )
plt.suptitle(col, y=1.05)
plt.show()
```

sepal_length


```
col = "sepal_width"
sns.relplot(x=col, y="target", hue=data["species"], data=df )
plt.suptitle(col, y=1.05)
plt.show()
```

sepal_width


```
col = "petal_length"
sns.relplot(x=col, y="target", hue=data["species"], data=df )
plt.suptitle(col, y=1.05)
plt.show()
```

petal_length


```
col = "petal_width"
sns.relplot(x=col, y="target", hue=data["species"], data=df )
plt.suptitle(col, y=1.05)
plt.show()
```


EDA (Pair Plots):

```
df["species"] = data["species"]
sns.pairplot(df, hue="species")
# sns.pairplot(df)
<seaborn.axisgrid.PairGrid at 0x2965c1650>
```


Train test split

You always want to evaluate your final model on a test set that has not been used at all in the training process. So we split off a test set here

(Note: When using cross-validation we could technically use the same data but its best practice it used separate data for testing)

```
from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(df, test_size=0.25)

df_train.shape

(112, 6)
```

```
df_test.shape
(38, 6)
```

Preparing our data for modeling

This involves splitting the data back into plain NumPy arrays

```
X_train = df_train.drop(columns=[ "species", "target"]).to_numpy() #
so we drop these two columns and converts to the numpy array for model
to train on
y_train = df_train["target"].to_numpy()

X_train.shape
(112, 4)
```

Modeling - What is our baseline?

What is the simplest model we can think of?

In this case, if our baseline model is just randomly guesssing the species of flower, or guesssing a single species for every data point, we would expect to have a model accuracy of 0.33 or 33%, since we have 3 different classes which are evenly balanced (50 data points each).

So our models should atleast beat 33% accuracy.

Modeling - Simple Manual Model

Let's manually look at our data and decide some cutoff points for classification.

```
data["species"].unique()
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'],
dtype=object)

def single_feature_prediction(petal_length):
    """Predicts the Iris species given the petal length."""
    if petal_length < 2.5:
        return 0
    elif petal_length < 4.8:
        return 1
    else:
        return 2</pre>
```

```
# This is kindof very basic view of what decision trees ml model do in
the backend bunch of if else statements
df train.columns
Index(['sepal length', 'sepal_width', 'petal_length', 'petal_width',
'target',
       'species'l,
      dtype='object')
X train[:,2] # ':' is to select all the rows 2 is the 'petal length'
column
array([4.5, 6.4, 5.9, 1.4, 1.4, 4.7, 1.6, 5.3, 4.9, 5.1, 1.7, 6.3,
1.5,
       5.2, 3.5, 1.4, 4.2, 1.5, 3.9, 6., 1.3, 4.2, 4., 5.1, 1.6,
1.4,
       1.3, 3.6, 1.4, 5. , 1.5, 5.5, 4.6, 1.6, 4.5, 4.9, 1.6, 5. ,
4.5,
       1.5, 3.3, 1.2, 1.4, 1.6, 1.4, 1.2, 1.7, 6. , 1.9, 4. , 4.4,
3.8,
       5.7, 3.5, 3.7, 4.3, 4.5, 4.4, 6.1, 1.5, 1.5, 5.6, 3.3, 4.1,
6.1,
       1.3, 4.5, 1.5, 4., 1.4, 1.3, 5.6, 5.7, 3., 6.9, 1.5, 6.6,
5.1,
       4.7, 6.7, 1.4, 1.5, 1.5, 4.8, 5.8, 4.5, 4.8, 5.6, 4. , 4.2,
5.3,
       1.4, 1.5, 5.9, 4.3, 5.1, 4.1, 4.7, 1.3, 1.1, 5., 3.9, 5.6,
4.9,
       5.6, 5.1, 5.8, 4.4, 1.3, 5.7, 5.6, 5. ])
manual y predictions = np.array([single feature prediction(val) for
val in X train[:,2] ])
manual y predictions == y train # this basically is gonna give true
whenever the prediction is correct else false
               True,
                      True,
array([ True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                  True,
       False,
               True,
                      True,
                             True,
                                                   True,
                                                          True,
                                                                  True,
                                     True,
                                            True,
        True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                  True,
        True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True, False, False,
        True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True, True,
                                                                 True,
                      True,
                             True,
                                     True,
                                                          True,
                                                                 True,
        True,
               True,
                                            True,
                                                   True,
        True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                 True,
        True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                  True,
               True,
                     True,
                             True,
                                     True,
                                            True,
                                                          True,
                                                                 True,
        True,
                                                   True,
        True,
               True, False,
                             True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                 True,
        True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                 True,
        True, False,
                      True,
                              True, False,
                                            True,
                                                   True,
                                                          True,
                                                                 True,
                              Truel)
        True, True,
                      True,
```

```
manual_model_accuracy = float(np.mean(manual_y_predictions ==
y_train)) # this way we can find accuracy all true values as 1 and
false as 0 and takes it average

model_accuracies=[]
model_accuracies.append([manual_model_accuracy, "Manual"])

print(f"Manual model accuracy {manual_model_accuracy * 100:.2f}% ")

Manual model accuracy 94.64%
```

Modeling - Logistic Regression

from sklearn.linear_model import LogisticRegression

Using a validation set to evaluate our model

This is different from the original test data which we split we will use that later to test all our models here we split a portion of the training dataset

```
Xt, Xv, yt, yv = train test split(X train, y train, test size=0.25)
# Xt is X train and Xv is X validation
Xt.shape
(84, 4)
Xv.shape
(28, 4)
model = LogisticRegression()
# model.fit(X train, y train)
model.fit(Xt, yt)
LogisticRegression()
y pred = model.predict(Xv)
np.mean(y_pred == yv)
1.0
model.score(Xv,yv)
# both this and above doing the same thing to show that how it
calculates the score
1.0
```

model.score(X_train, y_train) # This right here is wrong as you
never wanna evaluate your model on the same data that was used for
training

Using Cross-Validation to evaluate our model

```
from sklearn.model_selection import cross_val_score, cross_val_predict
model = LogisticRegression(max_iter = 200)
accuracies = cross_val_score(estimator = model , X = X_train, y =
y_train, cv = 5, scoring = "accuracy") # you dont really have to do
estimator = X = y =
# as those 3 its already expecting as the first 3 values
accuracies
array([0.95652174, 0.91304348, 1. , 0.95454545, 0.95454545])
# this gives the scores from all those 5 splits where 1/5 of data is
tested and 4/5 data is used as training
np.mean(accuracies)
0.9557312252964426
```

Where are we misclassifying points?

```
y_pred = cross_val_predict(model, X_train, y_train, cv = 5)
predicted_correctly_mask = y_pred == y_train # basically like above
y_pred == y_train will give us boolean array of where data was right
and wrong

# this is using cross validation so basically training on 4/5 and
testing on 1/5 data and each of this y_pred the value is when it was
not tested on that

# like example it will for first 1/5 data check on portion when other
4/5 was used to train and so on

# so basically it meshes together the different predictions for
different parts

X_train[predicted_correctly_mask] # see here we see the data points
where predictions were correct
X_train[~predicted_correctly_mask] # see here we see the data points
where predictions were incorrect
```

```
array([[6. , 2.7, 5.1, 1.6],
       [6., 2.2, 5., 1.5],
       [4.9, 2.5, 4.5, 1.7],
       [6., 3., 4.8, 1.8],
       [6.7, 3., 5., 1.7]
df predictions = df_train.copy()
df predictions["correct prediction"] = predicted correctly mask
df predictions["prediction"] = y pred
df predictions["prediction label"] =
df predictions["prediction"].map({0:"Iris-setosa", 1:"Iris-
versicolor", 2:"Iris-virginica"})
df predictions.head()
     sepal length
                   sepal width
                                petal length
                                              petal width target \
55
              5.7
                           2.8
                                         4.5
                                                       1.3
                                                                 1
                                                       2.0
                                                                 2
131
              7.9
                           3.8
                                         6.4
                                                                 2
143
              6.8
                           3.2
                                         5.9
                                                       2.3
                                                                 0
49
              5.0
                           3.3
                                                       0.2
                                         1.4
                           3.5
                                                                 0
17
              5.1
                                         1.4
                                                       0.3
             species correct prediction prediction prediction label
55
     Iris-versicolor
                                    True
                                                    1 Iris-versicolor
131
      Iris-virginica
                                    True
                                                    2
                                                        Iris-virginica
143
                                    True
                                                    2
      Iris-virginica
                                                        Iris-virginica
49
         Iris-setosa
                                    True
                                                           Iris-setosa
         Iris-setosa
                                    True
                                                    0
                                                           Iris-setosa
17
sns.scatterplot(x="petal_length", y="petal_width",
hue="prediction_label", data=df_predictions)
<Axes: xlabel='petal_length', ylabel='petal width'>
```


 $sns.scatterplot(x="petal_length", y="petal_width", hue="species", \\ data=df_predictions)$

<Axes: xlabel='petal_length', ylabel='petal_width'>


```
def plot_incorrect_predictions(df_predictions, x_axis_feature,
y_axis_feature):
    fig, axs = plt.subplots(2, 2, figsize=(10,10))
    axs = axs.flatten()
    sns.scatterplot(x=x_axis_feature, y=y_axis_feature,
hue="prediction_label", data=df_predictions, ax=axs[0])
    sns.scatterplot(x=x_axis_feature, y=y_axis_feature, hue="species",
data=df_predictions, ax=axs[1])
    sns.scatterplot(x=x_axis_feature, y=y_axis_feature,
hue="correct_prediction", data=df_predictions, ax=axs[2])
    axs[3].set_visible(False)
    plt.show()

plot_incorrect_predictions(df_predictions, "petal_length",
    "petal_width")
```


Model Tuning

What is model tuning?

Model tuning is trying to determine the parameters of your model (these are also known as "hyperparameters") that maximize the model performance.

```
for reg_para in (0.1,0.2,0.3,0.9,1,1.3,1.9,2,5):
    print(reg_para)
```

```
# model = LogisticRegression(max iter=200, C =1)
    model = LogisticRegression(max iter=200, C = reg para)
    # less C is more restricted model do does not go after patterns
too much and more C is less restrictive going towards overfitting
    # if we don't want our model to like memorize some data patterns
too much put less C else put more C
    # If your model is overfitting with high C, try lowering it. If
it's underfitting, increasing C might help.
    accuracies = cross val score(model, X train, y train, cv = 5,
scoring = "accuracy")
    print(f"Accuracy: {np.mean(accuracies) * 100:.2f}%")
    # change and see at which C the accuracy is the best
# we see which is best then lets say 1 is best then you could start
from one and add higher or end at 1 and go lower
# we did for bunch of values in a for look we can do one value as well
we can also use gridsearchev to do this
0.1
Accuracy: 93.75%
0.2
Accuracy: 94.66%
0.3
Accuracy: 95.57%
0.9
Accuracy: 95.57%
Accuracy: 95.57%
1.3
Accuracy: 95.57%
1.9
Accuracy: 96.48%
Accuracy: 96.48%
Accuracy: 97.39%
```

Final Model

model = LogisticRegression(max_iter=200, C=1.9) # choose whichever you
think is best as use that as the final model here

How well does our model do on the Test Set?

Train our final model using our full Training Dataset

```
model.fit(X_train, y_train)
# print(model.get_params())
LogisticRegression(C=1.9, max iter=200)
y test pred = model.predict(X test)
test set correctly classified = y test pred == y test
test_set_accuracy = np.mean(test_set_correctly_classified)
# test set accuracy = model.score(X test,y test) # this line is also
doing the same thing which we did manually
# we are doing manually as we want to generate the graph so it is
giving use predictions which we can put in the dataframe and generated
graphs
model_accuracies.append([test_set_accuracy, "Logistic Regression"])
print(f"Test set accuracy: {test set accuracy * 100:.2f}%")
# if our training dataset was higher score than the test dataset
meaning we are like overfitting
Test set accuracy: 97.37%
```

Final model with Cross validation

```
final model = LogisticRegression(max iter=200, C=1.9)
cv accuracies = cross val score(final model, X train, y train, cv=5,
scoring="accuracy")
print(f"Cross-validation Accuracy: {np.mean(cv accuracies) * 100:.2f}
%")
Cross-validation Accuracy: 96.48%
test set correctly classified
array([ True,
               True,
                      True,
                             True,
                                    True,
                                            True,
                                                   True,
                                                          True,
                                                                 True.
               True.
                      True.
                             True.
                                    True.
                                            True,
                                                   True.
                                                          True.
                                                                 True,
        True.
        True,
               True,
                      True,
                             True.
                                    True,
                                            True.
                                                   True.
                                                          True.
                                                                 True,
               True,
                      True,
                             True,
                                    True,
                                            True,
                                                   True,
                                                          True, False,
        True.
        True, True])
df predictions test = df test.copy()
df predictions test["correct prediction"] =
test_set_correctly_classified
df_predictions_test["prediction"] = y_test_pred
df_predictions_test["prediction label"] =
df_predictions_test["prediction"].map({0:"Iris-setosa", 1:"Iris-
versicolor", 2:"Iris-virginica"})
df predictions test.head()
     sepal length
                   sepal width
                                petal_length
                                               petal width
                                                           target \
121
                           2.8
                                          4.9
                                                       2.0
              5.6
                                                                 2
              4.5
                           2.3
                                          1.3
                                                       0.3
                                                                 0
41
76
              6.8
                           2.8
                                          4.8
                                                       1.4
                                                                 1
25
              5.0
                           3.0
                                                       0.2
                                                                 0
                                          1.6
                                                                 2
130
              7.4
                           2.8
                                          6.1
                                                       1.9
             species correct prediction prediction prediction label
121
      Iris-virginica
                                     True
                                                    2
                                                        Iris-virginica
41
                                     True
         Iris-setosa
                                                           Iris-setosa
76
     Iris-versicolor
                                     True
                                                       Iris-versicolor
25
         Iris-setosa
                                     True
                                                           Iris-setosa
                                     True
130
      Iris-virginica
                                                        Iris-virginica
# plot_incorrect_predictions(df predictions test,
x_axis_feature="petal_length", y_axis_feature="petal_width") # we
created this function earlier
```

plot_incorrect_predictions(df_predictions_test, "petal_length",
 "petal width")

Modeling - Random Forest Regression

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()

we use classifier instead of regressor as we need to find a categorical data and not finding a value like we did in house prediction

```
Xt, Xv, yt, yv = train_test_split(X_train, y_train, test_size=0.25)
# we split the training dataset as we will test on testing dataset
towards the end till then we use this split to test the dataset

model.fit(Xt,yt)
RandomForestClassifier()
y_pred = model.predict(Xv)
np.mean(y_pred == yv)
1.0
model.score(Xv, yv)
1.0
```

Scaling our data

Basically we find out that in this case scaling the data did not really imporve the result just usually we should scale the data

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

Xts = scaler.fit_transform(Xt) # this first fits so scaler knows how
to transform the data then scales Xt
Xvs = scaler.transform(Xv) # this is scaling Xv for basically the
texting data

model = RandomForestClassifier()

model.fit(Xts, yt)
model.score(Xvs, yv)
# about the same accuracy as we got without scaling the data

1.0
```

Using Cross-Validation to evaluate our Model

```
from sklearn.model_selection import cross_val_score, cross_val_predict
model = RandomForestClassifier()
accuracies = cross_val_score(estimator = model , X = X_train, y =
y_train, cv = 5, scoring = "accuracy")
```

```
# here we just put the training data and it splits it here cv = 5 so
1/5 to test 4/5 to train and it does on all different data using each
portion to test

accuracies
array([0.95652174, 0.91304348, 1. , 0.95454545, 0.90909091])

np.mean(accuracies)
0.9466403162055336
```

What are the misclassifying points in the Random Forest model?

```
y pred = cross val predict(model, X train, y train, cv = 5) # its
already expecting those values as initial so don't really need to
specify
y_pred
array([1, 2, 2, 0, 0, 1, 0, 2, 2, 2, 0, 2, 0, 2, 1, 0, 1, 0, 1, 2, 0,
       1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 0,
0,
       0, 0, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 0, 2, 1, 1, 2,
0,
       1, 0, 1, 0, 0, 2, 2, 1, 2, 0, 2, 2, 1, 2, 0, 0, 0, 2, 1, 1, 2,
2,
       1, 1, 2, 0, 0, 2, 1, 2, 1, 1, 0, 0, 2, 1, 1, 1, 2, 2, 2, 1, 0,
2,
       2, 2], dtype=int8)
predicted correctly mask = y pred==y train
predicted_correctly_mask
               True,
                                            True,
array([ True,
                      True.
                              True,
                                     True,
                                                    True.
                                                           True,
                                                                  True,
       False.
               True,
                      True,
                              True.
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                    True.
                                                           True,
        True.
                                                                  True.
        True,
               True, False,
                              True,
                                     True,
                                            True,
                                                    True, False,
                                                                  True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
        True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
        True,
        True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
        True,
               True,
                      True,
                              True,
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
        True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
        True,
               True, False, False,
                                     True,
                                            True,
                                                    True,
                                                           True,
                                                                  True,
               True,
                      True,
                                                                  True,
        True.
                              True.
                                     True,
                                            True,
                                                    True,
                                                           True,
        True, False,
                      True, False,
                                     True,
                                            True,
                                                    True,
                                                           True.
                                                                  True,
        True, True, True, True])
```

```
X_train[predicted_correctly mask][:5] # here displaying first 5 rows
of dataset where its doing correct prediction
array([[5.7, 2.8, 4.5, 1.3],
       [7.9, 3.8, 6.4, 2.],
       [6.8, 3.2, 5.9, 2.3],
       [5. , 3.3, 1.4, 0.2],
       [5.1, 3.5, 1.4, 0.3]
df predictions = df train.copy() # so we don't make changes to the
df train dataset
df predictions['correct prediction'] = predicted correctly mask
df predictions['prediction'] = y pred
df_predictions['prediction_label'] =
df predictions['prediction'].map({0:"Iris-setosa", 1:"Iris-
versicolor", 2:"Iris-virginica"})
df predictions.head()
                   sepal width
     sepal length
                                petal length
                                              petal width target \
55
                                         4.5
              5.7
                           2.8
                                                       1.3
                                                                 1
              7.9
                           3.8
                                                       2.0
                                                                 2
131
                                         6.4
143
              6.8
                           3.2
                                         5.9
                                                       2.3
                                                                 2
49
              5.0
                           3.3
                                         1.4
                                                       0.2
                                                                 0
17
                           3.5
                                                       0.3
                                                                 0
              5.1
                                         1.4
             species correct prediction prediction prediction label
55
     Iris-versicolor
                                                    1 Iris-versicolor
                                    True
131
      Iris-virginica
                                    True
                                                    2
                                                        Iris-virginica
143
      Iris-virginica
                                    True
                                                    2
                                                        Iris-virginica
49
         Iris-setosa
                                    True
                                                           Iris-setosa
17
         Iris-setosa
                                    True
                                                           Iris-setosa
sns.scatterplot(x="petal_length", y="petal_width",
hue="prediction_label", data=df_predictions)
<Axes: xlabel='petal length', ylabel='petal width'>
```


 $sns.scatterplot(x="petal_length", y="petal_width", hue="species", \\ data=df_predictions)$

<Axes: xlabel='petal_length', ylabel='petal_width'>

plot_incorrect_predictions(df_predictions, "petal_length",
 "petal_width")
These plots are good for visualizing the data

Hyperparameter tuning

```
from sklearn.model_selection import GridSearchCV

forest = RandomForestClassifier() # this is to get a fresh untrained model again

param_grid = {
    "n_estimators": [40, 50, 100], # No need for very high values
    "min_samples_split": [2, 3], # Small dataset, so minor tuning
    "max_depth": [2, 3, 4] # Best for avoiding overfitting
}
```

```
# putting too much values will case it slower as it checks each
combination
grid search = GridSearchCV(forest, param grid, cv= 5, scoring =
"accuracy", return train score=True)
# we did neg-mse as the bigger the values the better mse will be the
lower the better
grid search.fit(Xts, yt)
GridSearchCV(cv=5, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [2, 3, 4], 'min_samples_split':
[2, 3],
                         'n estimators': [40, 50, 100]},
             return train score=True, scoring='accuracy')
best forest = grid search.best estimator # we save the best
parameters
print(best forest)
# the things its not showing meaning best values for them is the
default
RandomForestClassifier(max depth=2, min samples split=3,
n estimators=50)
print(f"Accuracy: {best forest.score(Xvs, yv) * 100:.2f}%")
Accuracy: 100.00%
```

In this case hyperparameter tuning did not really improve the accuracy but it still good practice to test

Final Model

```
model = RandomForestClassifier(n_estimators=50, max_depth=2) # Using
the best values obtained from GridSearchCV rest values are the
defaults
model.get_params()

{'bootstrap': True,
   'ccp_alpha': 0.0,
   'class_weight': None,
   'criterion': 'gini',
   'max_depth': 2,
   'max_features': 'sqrt',
   'max_leaf_nodes': None,
   'max_samples': None,
   'min_impurity_decrease': 0.0,
   'min_samples_leaf': 1,
```

```
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'monotonic_cst': None,
'n_estimators': 50,
'n_jobs': None,
'oob_score': False,
'random_state': None,
'verbose': 0,
'warm_start': False}
```

Train our final model using our full Training Dataset

```
model.fit(X_train, y_train)
RandomForestClassifier(max_depth=2, n_estimators=50)

y_test_pred = model.predict(X_test)

test_set_correctly_classified = y_test_pred == y_test
test_set_accuracy = np.mean(test_set_correctly_classified)
print(f"Test_set_accuracy: {test_set_accuracy * 100:.2f}%")

Test_set_accuracy: 100.00%
```

Final model with Cross validation

```
final model = RandomForestClassifier(n estimators=50, max_depth=2)
cv_accuracies = cross_val_score(final_model, X_train, y_train, cv=5,
scoring="accuracy")
model accuracies.append([np.mean(cv accuracies), "Random Forest"])
print(f"Cross-validation Accuracy: {np.mean(cv accuracies) * 100:.2f}
%")
Cross-validation Accuracy: 93.79%
test_set_correctly_classified
                                   True,
array([ True,
              True, True, True,
                                          True, True, True,
                                                              True,
                    True,
                                                True,
       True,
              True,
                           True,
                                   True,
                                         True,
                                                       True,
                                                              True,
                                                True, True, True,
       True,
              True,
                    True, True,
                                   True,
                                          True,
              True,
                     True, True,
                                   True,
                                         True,
                                                True,
                                                       True, True,
       True,
       True, True])
df predictions test = df test.copy()
df predictions test["correct prediction"] =
```

```
test set correctly classified
df predictions test["prediction"] = y test pred
df_predictions_test["prediction_label"] =
df predictions test["prediction"].map({0:"Iris-setosa", 1:"Iris-
versicolor", 2:"Iris-virginica"})
df predictions_test.head()
     sepal length
                   sepal width
                                petal length
                                               petal width target \
121
              5.6
                           2.8
                                          4.9
                                                       2.0
              4.5
                           2.3
                                          1.3
                                                       0.3
                                                                 0
41
76
              6.8
                           2.8
                                          4.8
                                                       1.4
                                                                 1
                                                                 0
25
              5.0
                           3.0
                                          1.6
                                                       0.2
                                                                 2
                                                       1.9
130
              7.4
                           2.8
                                          6.1
             species correct prediction prediction prediction label
121
      Iris-virginica
                                    True
                                                    2
                                                        Iris-virginica
41
         Iris-setosa
                                    True
                                                    0
                                                           Iris-setosa
76
     Iris-versicolor
                                    True
                                                       Iris-versicolor
25
         Iris-setosa
                                    True
                                                           Iris-setosa
                                    True
                                                    2
                                                        Iris-virginica
130
      Iris-virginica
# plot incorrect predictions(df predictions test,
x_axis_feature="petal_length", y_axis_feature="petal_width") # we
created this function earlier
plot_incorrect_predictions(df_predictions_test, "petal_length",
"petal width")
```


Scaling our Test and Train dataset for the models below

```
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

Modeling - Support Vector Machine

```
from sklearn.svm import SVC
def check(para):
    svm model = SVC(kernel='rbf', C=para, gamma='scale')
    svm model.fit(Xv, yv)
    accuracy = svm model.score(Xt,yt)
    print(f"SVM Model Accuracy (C={para:.1f}): {accuracy:.2f}")
\# \ values = [i \ for \ i \ in \ frange(0.1, \ 2.1, \ 0.1)]
for i in np.arange(0.1, 2.1, 0.1): # as range does not work with
floating points either use this or make a list comprehension then
iterate on that list
    check(i)
SVM Model Accuracy (C=0.1): 0.29
SVM Model Accuracy (C=0.2): 0.42
SVM Model Accuracy (C=0.3): 0.89
SVM Model Accuracy (C=0.4): 0.89
SVM Model Accuracy (C=0.5): 0.90
SVM Model Accuracy (C=0.6): 0.90
SVM Model Accuracy (C=0.7): 0.90
SVM Model Accuracy (C=0.8): 0.90
SVM Model Accuracy (C=0.9): 0.90
SVM Model Accuracy (C=1.0): 0.90
SVM Model Accuracy (C=1.1): 0.90
SVM Model Accuracy (C=1.2): 0.90
SVM Model Accuracy (C=1.3): 0.90
SVM Model Accuracy (C=1.4): 0.90
SVM Model Accuracy (C=1.5): 0.90
SVM Model Accuracy (C=1.6): 0.90
SVM Model Accuracy (C=1.7): 0.90
SVM Model Accuracy (C=1.8): 0.90
SVM Model Accuracy (C=1.9): 0.90
SVM Model Accuracy (C=2.0): 0.90
```

Cross Validating the SVM model

```
def check2(para):
    svm_model = SVC(kernel='rbf',C=para) # gamma='scale' is default so
we don't need to specify that
    accuracy = cross_val_score(svm_model,X=Xt, y=yt, cv=5,
scoring="accuracy")
    print(f"SVM Model Accuracy (C={para:.1f}):
{np.mean(accuracy):.2f}")
```

```
for i in np.arange(0.1, 2.5, 0.1):
    check2(i)
SVM Model Accuracy (C=0.1): 0.71
SVM Model Accuracy (C=0.2): 0.87
SVM Model Accuracy (C=0.3): 0.91
SVM Model Accuracy (C=0.4): 0.95
SVM Model Accuracy (C=0.5): 0.93
SVM Model Accuracy (C=0.6): 0.94
SVM Model Accuracy (C=0.7): 0.94
SVM Model Accuracy (C=0.8): 0.95
SVM Model Accuracy (C=0.9): 0.96
SVM Model Accuracy (C=1.0): 0.96
SVM Model Accuracy (C=1.1): 0.96
SVM Model Accuracy (C=1.2): 0.96
SVM Model Accuracy (C=1.3): 0.96
SVM Model Accuracy (C=1.4): 0.96
SVM Model Accuracy (C=1.5): 0.96
SVM Model Accuracy (C=1.6): 0.96
SVM Model Accuracy (C=1.7): 0.96
SVM Model Accuracy (C=1.8): 0.96
SVM Model Accuracy (C=1.9): 0.96
SVM Model Accuracy (C=2.0): 0.96
SVM Model Accuracy (C=2.1): 0.96
SVM Model Accuracy (C=2.2): 0.96
SVM Model Accuracy (C=2.3): 0.96
SVM Model Accuracy (C=2.4): 0.96
```

Final Model:

```
svm model = SVC(kernel='rbf', C=2.0) # Choosing the best C from the
give options
svm model.get params()
{'C': 2.0,
 'break ties': False,
 'cache size': 200,
 'class weight': None,
 'coef0': 0.0,
 'decision function shape': 'ovr',
 'degree': 3,
 'gamma': 'scale',
 'kernel': 'rbf',
 'max iter': -1,
 'probability': False,
 'random state': None,
 'shrinking': True,
```

```
'tol': 0.001,
'verbose': False}
```

Train our final model using our full Training Dataset

```
svm_model.fit(X_train, y_train)
y_pred = svm_model.predict(X_test)

test_set_correctly_classified = y_pred == y_test
test_set_accuracy = np.mean(test_set_correctly_classified)
print(f"Test_set_accuracy: {test_set_accuracy * 100:.2f}%")

Test_set_accuracy: 97.37%
```

Final model with Cross validation

```
svm model = SVC(kernel='rbf', C=2.0)
accuracies = cross_val_score(svm_model, X train, y train, cv = 5,
scoring="accuracy")
model accuracies.append([np.mean(cv accuracies), "Support Vector
Machine"1)
print(f"Cross-validation Accuracy: {np.mean(cv accuracies) * 100:.2f}
Cross-validation Accuracy: 93.79%
test set correctly classified
array([ True,
              True,
                    True,
                            True,
                                   True,
                                          True,
                                                 True,
                                                        True,
                                                               True,
              True,
                    True,
                                          True,
                                                 True,
                                                        True,
                                                               True,
        True,
                            True,
                                   True,
        True,
              True,
                    True,
                            True,
                                   True,
                                          True,
                                                 True, True,
                                                              True,
        True,
              True, True, True, True, True, True, False,
        True, Truel)
df predictions test = df test.copy()
df predictions test['correct prediction'] =
test set correctly classified
df predictions test['prediction'] = y pred
df predictions test['prediction label'] =
df predictions test['prediction'].map({0:"Iris-setosa", 1:"Iris-
versicolor", 2:"Iris-virginica"})
df predictions test.head()
```

```
sepal length
                   sepal width
                                 petal length
                                               petal width target \
121
              5.6
                                          4.9
                            2.8
                                                       2.0
                                                                  2
                                                       0.3
41
              4.5
                            2.3
                                          1.3
                                                                  0
                                                                  1
76
              6.8
                            2.8
                                          4.8
                                                       1.4
                                                                  0
25
              5.0
                            3.0
                                          1.6
                                                       0.2
                           2.8
                                                       1.9
                                                                  2
130
              7.4
                                          6.1
             species correct prediction prediction prediction label
121
      Iris-virginica
                                     True
                                                    2
                                                        Iris-virginica
41
                                                    0
         Iris-setosa
                                     True
                                                           Iris-setosa
76
     Iris-versicolor
                                     True
                                                       Iris-versicolor
25
                                     True
         Iris-setosa
                                                           Iris-setosa
130
      Iris-virginica
                                     True
                                                    2
                                                        Iris-virginica
# plot_incorrect_predictions(df_predictions_test,
x_axis_feature="petal_length", y_axis_feature="petal_width") # we
created this function earlier
plot_incorrect_predictions(df_predictions_test, "petal_length",
"petal width")
```


K - Nearest Neighbors

```
from sklearn.neighbors import KNeighborsClassifier as knn

model_knn = knn(n_neighbors=5)
# model_knn.fit(Xv,yv)
model_knn.fit(Xts, yt)

# accuracy = model_knn.score(Xt,yt)
accuracy = model_knn.score(Xvs, yv)
accuracy
# we are getting better accuracy when scaling the dataset
```

Hypertuning the model

```
values = [i for i in range(1,21)]
model = knn()
para grid={
    'n neighbors' : values,
    'weights' : ['uniform', 'distance'],
'metric' : ['euclidean', 'manhattan']
}
grid search = GridSearchCV(model, para grid, cv=5, scoring='accuracy')
grid search.fit(Xts, yt)
GridSearchCV(cv=5, estimator=KNeighborsClassifier(),
              param_grid={'metric': ['euclidean', 'manhattan'],
                           'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12,
                                            13, 14, 15, 16, 17, 18, 19,
201,
                           'weights': ['uniform', 'distance']},
              scoring='accuracy')
grid search.best estimator
KNeighborsClassifier(metric='manhattan', n neighbors=9)
```

Final Model

```
best_knn = grid_search.best_estimator_
# print(best_knn)
best_knn.get_params()

{'algorithm': 'auto',
   'leaf_size': 30,
   'metric': 'manhattan',
   'metric_params': None,
   'n_jobs': None,
   'n_neighbors': 9,
   'p': 2,
   'weights': 'uniform'}

print(f"Accuracy: {best_knn.score(Xvs, yv) * 100:.2f}%")
```

Accuracy: 96.43%

Train our final model using our full Training Dataset

```
best_knn.fit(X_train, y_train)
y_pred = best_knn.predict(X_test)

test_set_correctly_classified = y_pred == y_test
test_set_accuracy = np.mean(test_set_correctly_classified)
print(f"Test_set_accuracy: {test_set_accuracy * 100:.2f}%")

Test_set_accuracy: 97.37%
```

Final model with Cross validation

```
best knn = grid search.best estimator
accuracies = cross val score(best knn, X train, y train, cv = 5,
scoring="accuracy")
model accuracies.append([np.mean(cv accuracies), "K-Nearest
Neighbors"])
print(f"Cross-validation Accuracy: {np.mean(cv accuracies) * 100:.2f}
%")
Cross-validation Accuracy: 93.79%
test set correctly classified
array([ True,
              True,
                     True,
                            True,
                                          True,
                                   True,
                                                 True,
                                                        True,
                                                               True,
        True,
              True,
                    True,
                            True,
                                   True,
                                          True,
                                                 True,
                                                        True,
                                                              True,
                    True,
              True,
                           True,
                                   True,
                                          True,
                                                 True,
                                                        True,
        True,
                                                              True,
        True,
              True,
                    True, True, True, True, True, False,
        True, Truel)
df predictions test = df test.copy()
df predictions test['correct prediction'] =
test set correctly classified
df predictions test['prediction'] = y pred
df predictions test['prediction label'] =
df predictions test['prediction'].map({0:"Iris-setosa", 1:"Iris-
versicolor", 2:"Iris-virginica"})
df predictions test.head()
```

```
sepal length
                   sepal width
                                 petal length
                                               petal width target \
121
              5.6
                                          4.9
                            2.8
                                                       2.0
                                                                  2
                                                       0.3
41
              4.5
                            2.3
                                          1.3
                                                                  0
                                                                  1
76
              6.8
                            2.8
                                          4.8
                                                       1.4
                                                                  0
25
              5.0
                            3.0
                                          1.6
                                                       0.2
                           2.8
                                                       1.9
                                                                  2
130
              7.4
                                          6.1
             species correct prediction prediction prediction label
121
      Iris-virginica
                                     True
                                                    2
                                                        Iris-virginica
41
                                                    0
         Iris-setosa
                                     True
                                                           Iris-setosa
76
     Iris-versicolor
                                     True
                                                       Iris-versicolor
25
                                     True
         Iris-setosa
                                                           Iris-setosa
130
      Iris-virginica
                                     True
                                                    2
                                                        Iris-virginica
# plot_incorrect_predictions(df_predictions_test,
x_axis_feature="petal_length", y_axis_feature="petal_width") # we
created this function earlier
plot_incorrect_predictions(df_predictions_test, "petal_length",
"petal width")
```


Accuracy of all the models

Conclusion:

Logistic Regression Model:

We achieve a 97% accuracy on the test dataset using a Logistic Regression model with these model parameters:

```
{'C': 1.9, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 200, 'multi_class': 'deprecated', 'n_jobs': None, 'penalty': 'l2', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}
```

Random Forest Model:

We achieve a 94% accuracy on the test dataset using a Random Forest model with these model parameters:

```
{'bootstrap': True,'ccp_alpha': 0.0,'class_weight': None,'criterion': 'gini','max_depth': 2,'max_features': 'sqrt','max_leaf_nodes': None,'max_samples': None,'min_impurity_decrease': 0.0,'min_samples_leaf': 1,'min_samples_split': 2,'min_weight_fraction_leaf': 0.0,'monotonic_cst': None,'n_estimators': 50,'n_jobs': None,'oob_score': False,'random_state': None,'verbose': 0,'warm_start': False}
```

Support Vector Machines:

We achieve a 95% accuracy on the test dataset using Support Vector Machines model with these parameters:

```
{'C': 2.0,'break_ties': False,'cache_size': 200,'class_weight': None,'coef0':
0.0,'decision_function_shape': 'ovr','degree': 3,'gamma': 'scale','kernel': 'rbf','max_iter': -
1,'probability': False,'random_state': None,'shrinking': True,'tol': 0.001,'verbose': False}
```

K - Nearest Neighbours:

We achieve a 96% accuracy on the test dataset using Support Vector Machines model with these parameters:

{'algorithm': 'auto', 'leaf_size': 30, 'metric': 'manhattan', 'metric_params': None, 'n_jobs': None, 'n_neighbors': 13, 'p': 2, 'weights': 'distance'}

Observation:

The Logistic Regression model outperforms the other models in this case, achieving a higher accuracy. However, Random Forest might, Support Vector Machines and K - Nearest Neighbours still be useful in handling more complex patterns or larger datasets. Further tuning or feature selection could improve performance.