汇编程序设计

李卓 pb19000064

实验目标

熟悉 RISC-V 汇编指令的格式

熟悉 CPU 仿真软件 Ripes,理解汇编指令执行的基本原理(数据通路和控制器的协调工作过程)

熟悉汇编程序的基本结构,掌握简单汇编程序的设计

掌握汇编仿真软件 RARS(RISC-V Assembler & Runtime Simulator)的使用方法,用该软件进行汇编程序的仿真、调试以及生成 CPU 测试需要的指令和数据文件(COE)

理解 CPU 调试模块 PDU 的使用方法

实验内容:

1.理解并仿真 RIPES 示例汇编程序

加载 Ripes 示例汇编程序 (Console Printing)→选择单周期 CPU 数据通路→单步执行程序→观察数据通路控制信号和寄存器内容的变化

2.设计汇编程序,验证6条指令功能

Rars 软件设计汇编程序→单步运行程序→人工检查→生成 COE 文件

sw, lw add, addi

beq, jal

备注:通过查看数据存储器和 32 个通用寄存器来实现人工检查

实验过程:

生成斐波那契数列

```
.data
array: .word 1,2
.text
la t0 array
lw a0 0(t0)
lw a1 4(t0)

loop:
addi t0 t0 4
addi t1 a0 0
addi a0 a1 0
add a1 a1 t1
sw a0 0(t0)
jal x0 loop
```

运行结果:

生成的 coe 文件

■ fls.txt - 记事本

文件(F) 编辑(E) 格式(O) 查看(

00000001

00000002

0000003

00000005

80000008

D000000d

00000015

00000022 00000037

00000059

000000033

00000090 000000e9

00000179

00000262

000003db

0000063d

00000a18

00001055

00001a6d

00001aca

0000452f

00006ff1

0000b520

00012511

0001da31

00010031

0002ff42

0004d973

0007d8b5

000cb228 00148add

00012405

00213d05

0035c7e2

005704e7

008cccc9

测试指令:

```
1 .data
2 out: .word 0xff #led, ♦♦'Ö♦♦
3 in: .word 0
                   #switch
5 .text
6 loop:
7 la a0, out #�����Ç
8 sw x0, 0(a0)
                   #test sw: ö��led
9 addi t0, x0, 0xff #test addi: ö��led
10 sw t0, 0(a0)
11 lw t0, 4(a0)
                   #test lw: ��switch����led
12 sw t0, 0(a0)
13 addi t0 x0 0x01
14 add t0 t0 t0
15 beq x0 t0 loop
16 jal loop
17
```

测试结果

register

Name	Alias	Value	^
x0	zero	0x00000000	
x1	ra	0x0000002c	
x2	sp	0x7ffffff0	
х3	gp	0x10000000	
x4	tp	0x00000000	
x 5	t0	0x00000002	
х6	t1	0x00000000	
x7	t2	0x00000000	
x 8	s0	0x00000000	
x 9	s1	0x00000000	

数据段

ldre	Word	Byte 0	Byte 1	Byte 2	Byte 3
0x0	0x00000000	0x00	0x00	0x00	0x00
0x0	0xfd9ff0ef	0xef	0xf0	0x9f	0xfd
0x0	0xfc500ee3	0xe3	0x0e	0x50	0xfc
0x0	0x005282b3	0xb3	0x82	0x52	0x00
0x0	0x00100293	0x93	0x02	0x10	0x00
0x0	0x00552023	0x23	0x20	0x55	0x00
0x0	0x00452283	0x83	0x22	0x45	0x00
0x0	0x00552023	0x23	0x20	0x55	0x00
0x0	0x0ff00293	0x93	0x02	0xf0	0x0f
0x0	0x00052023	0x23	0x20	0x05	0x00
0x0	0x00050513	0x13	0x05	0x05	0x00
0x0	0x10000517	0x17	0x05	0x00	0x10
-	_	-	-	-	-
-	-	-	-	-	-
-	_	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	_	_	-	_	-