MOE H3 Math Numbers and Proofs

Lecture 5

- Well Ordering Principle
- More on Number Theory
- Miscellaneous

PMI with Domain Q⁺

$$(\forall q \in \mathbf{Q}^+) P(q)$$
 $q = \frac{m}{n}$ where $m, n \in \mathbf{Z}^+$

- 1. P(1) is true
- 2. For all $k \in \mathbb{Z}^+$, if P(k) is true, then P(k+1) is true

Then P(n) is true for all $n \in \mathbb{Z}^+$

Fix $m \in \mathbb{Z}^+$

- 3.P(m/1) is true (from 1 and 2 above)
- 4. For all $k \in \mathbb{Z}^+$, if P(m/k) is true, then P(m/(k+1)) is true

Then P(m/n) is true for all $m/n \in \mathbb{Q}^+$

PMI with Domain Q⁺

$$(\forall q \in \mathbf{Q}^+) P(q)$$
 $q = \frac{m}{n}$ where m, $n \in \mathbf{Z}^+$

$$P(m/k)$$

 $\rightarrow P(m/(k+1))$ $P(\frac{1}{3})$ $P(\frac{2}{3})$ $P(\frac{3}{3})$

By (1) and (2)
$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow ... \rightarrow P(m) ...$$
By (3) and (4)
$$P(\frac{1}{2}) \qquad P(\frac{2}{2}) \qquad P(\frac{3}{2}) \qquad P(\frac{m}{2})$$

$$P(m/1) \text{ is true} \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
P(\frac{1}{n}) \qquad P(\frac{2}{n}) \qquad P(\frac{3}{n}) \qquad \qquad P(\frac{m}{n}) \\
\downarrow \qquad \qquad \downarrow \text{ecture 5} \qquad \downarrow \qquad \qquad \downarrow$$

 $P(\frac{m}{3})$

Well Ordering Principle

Well-Ordering Principle for integers

If S is a non-empty subset of Z such that all its elements are greater than some fixed number, then S has a smallest element.

Well-ordering principle does not hold for rational numbers and real numbers

Example

The set Q^+ of positive rational numbers.

All the elements in Q⁺ are greater than 0, but Q⁺ does not have a smallest element.

Well Ordering Principle

Well-Ordering Principle for integers

If S is a non-empty subset of Z such that all its elements are greater than some fixed number, then S has a smallest element.

Example

```
T = \{x \in Z \mid x = 15 - 12k \text{ for some } k \in Z\}
= \{..., -21, -9, 3, 15, 27, ...\}
S = \{x \in Z \mid x \ge 0 \text{ and } x = 15 - 12k \text{ for some } k \in Z\}
= \{3, 15, 27, ...\}
```

Quotient Remainder Theorem

Theorem

For all integers n and d with d > 0, there exist unique integers q and r such that

$$n = dq + r \qquad 0 \le r < d$$

Idea of proof (Existence part)

Consider

 $S = \{x \in \mathbb{Z} \mid x \ge 0 \text{ and } x = n - dk \text{ for some } k \in \mathbb{Z}\}$ Show that S is non-empty.

By well-ordering principle, S has a smallest element r. Then $r \ge 0$, and is of the form n - dk for some k, say k = q.

i.e. r = n - dq which gives n = dq + r.

H3 Math

Quotient Remainder Theorem

Theorem

For all integers n and d with d > 0, there exist unique integers q and r such that

$$n = dq + r \qquad 0 \le r < d$$

Idea of proof (Existence part)

It remains to prove r < d (by contradiction):

Suppose $r \ge d$.

Then r = d + r' for some 0 < r' < r.

$$r' = r - d = (n - dq) - d = n - d(q+1).$$

So there is a smaller element $r' \in S$ than r.

This contradicts that r is the smallest element in S.

Linear combination

```
Theorem (from lecture 1)
Let a and b be integers, not both 0.
(i) gcd(a, b) = ax<sub>0</sub>+by<sub>0</sub> for some integers x<sub>0</sub> and y<sub>0</sub>.
(ii) If a and b are relatively prime, then 1 = ax<sub>0</sub>+by<sub>0</sub> for some integers x<sub>0</sub> and y<sub>0</sub>.
```

```
Proof of (ii) follow from (i)
Proof of (i) – Well Ordering Principle
```

Inverse modulo n

Theorem

For all integers a and n such that gcd(a, n) = 1, there exists an integer b such that $ab \equiv 1 \mod n$.

The integer b is called the inverse of a modulo n.

```
Proof
Since gcd(a, n) = 1
we have ab + nm = 1 for some b, m \in \mathbb{Z}
So ab + nm \equiv 1 \mod n
Since nm \equiv 0 \mod n,
we get ab \equiv 1 \mod n.
```

Reversing Euclidean Algorithm

Example a = 42 and b = 234 gcd(234, 42) = 6Find integers x, y such that 6 = 234x + 42y

Euclidean Algorithm

$$234 = 42 \times 5 + 24$$
 (i)

$$42 = 24 \times 1 + 18$$
 (ii)

$$24 = 18 \times 1 + 6$$
 (iii)

$$18 = 6 \times 3 + 0$$

From (iii):

$$6 = 24 + 18 \times (-1)$$

From (ii):

$$18 = 42 + 24 \times (-1)$$

$$6 = 24 + (42 + 24 \times (-1)) \times (-1)$$

$$6 = 42 \times (-1) + 24 \times (2)$$

From (i):

$$24 = 234 + 42 \times (-5)$$

$$6 = 42 \times (-1) + (234 + 42 \times (-5)) \times (2)$$

$$6 = 234 \times (2) + 42 \times (-11)$$

Finding inverse modulo n

```
Example
Since gcd(17, 11) = 1
we have 17b + 11m = 1 for some b, m \in \mathbb{Z}
 By reversing Euclidean Algorithm, we get
 17(2) + 11(-3) = 1
 Taking modulo 11, we get
 17(2) \equiv 1 \mod 11
 So 2 is the inverse of 17 modulo 11
 Taking modulo 17, we get
 11(-3) \equiv 1 \mod 17
 So -3 (or 14) is the inverse of 11 modulo 17
```

H3 Math Lecture 5

Cancellation Theorem

Theorem

```
Let a, b, c, n be any integers with n > 1.

If gcd(c, n) = 1 and ac \equiv bc \mod n,

then a \equiv b \mod n.
```

Proof

```
ac \equiv bc mod n \Rightarrow n | (ac - bc)

\Rightarrow n | c(a - b)

gcd(c, n) = 1 \Rightarrow n | (a - b) by Euclid's Lemma

\Rightarrow a \equiv b mod n
```

Theorem

Let p be a prime and a any integer not divisible by p. Then $a^{p-1} \equiv 1 \mod p$.

```
Example p = 23, a = 6
So 6^{22} \equiv 1 \mod 23
```

The converse of FLT is not true

Example
$$p = 341$$
, $a = 2$
 $2^{340} \equiv 1 \mod 341$ but 341 is not a prime

Example

Find the remainder when 7^{62} is divided by 31.

Observe that 31 is a prime and 31 ∤ 7

So $7^{30} \equiv 1 \mod 31$

$$7^{62} = 7^{(30\times2)+2}$$

```
Idea of Proof
                          mod p
\{0, 1, 2, 3, \dots, p-1\} \equiv \{0a, 1a, 2a, 3a, \dots, (p-1)a\}
                                     rearrangement
 We just need to show the elements in the right
 hand side are all different mod p:
 For k_1 \equiv k_2 \mod p (from the left hand side)
 we shall show: k_1a \not\equiv k_2a \mod p
 Suppose k_1a \equiv k_2a \mod p
 Since gcd(a, p) = 1
                                  Cancellation
              k_1 \equiv k_2 \mod p
                                    Theorem
```

H3 Math Lecture 5

```
Idea of Proof
                              mod p
\{0, 1, 2, 3, \dots, p-1\} \equiv \{0a, 1a, 2a, 3a, \dots, (p-1)a\}
         1\times2\times3\times...\times(p-1)\equiv1a\times2a\times3a\times...\times(p-1)a mod p
                        (p-1)! \equiv a^{p-1} (p-1)! \mod p
            Since gcd (p, (p-1)!) = 1
Cancellation Theorem a^{p-1} \equiv 1 \mod p
```

```
Fibonacci sequence: F_1, F_2, F_3, ..., F_n, ...

1, 1, 2, 3, 5, 8, 13, 21, ...
```

Modulo 2: 1, 1, 0, 1, 1, 0, 1, 1, ... Periodic with period 3

- i. Find the periods of Fibonacci sequences modulo3 and 4
- ii. For any positive integer m, show that we can find two pairs (F_j, F_{j+1}) and (F_k, F_{k+1}) which are the same modulo m with $1 \le j < k \le m^2 + 1$
- iii. For m, j and k as in (ii), explain why the Fibonacci sequence modulo m is periodic with period dividing k – j.

i. Find the periods of Fibonacci sequences modulo3 and 4

Modulo 3: 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, ...

Modulo 4: 1, 1, 2, 3, 1, 0, 1, 1, ...

ii. For any positive integer m, show that we can find two pairs (F_j, F_{j+1}) and (F_k, F_{k+1}) which are the same modulo m with $1 \le j < k \le m^2 + 1$

Use Pigeonhole principle

Modulo m, there are m possible values 0, 1, 2, ..., m-1. So there are exactly m² possible distinct pairs (a, b).

If we consider $m^2 + 1$ pairs of (F_i, F_{i+1}) modulo m where $1 \le i \le m^2 + 1$, we can find two pairs (F_j, F_{j+1}) and (F_k, F_{k+1}) which are the same modulo m.

iii. For m, j and k as in (ii), explain why the Fibonacci sequence modulo m is periodic with period dividing k - j.

This is the same as to show there exists j < k such that $F_{j+n} \equiv F_{k+n} \mod m$ for all non negative integer n.

Use PMI

```
Basis step: P(0) and P(1)

F_j \equiv F_k \mod m F_{j+1} \equiv F_{k+1} \mod m

Inductive step:
```

 $[P(q-1) \text{ and } P(q)] \rightarrow P(q+1) \text{ for all } q \geq 1$

Given $F_{j+q-1} \equiv F_{k+q-1} \mod m$ and $F_{j+q} \equiv F_{k+q} \mod m$

Then $F_{j+q+1} = F_{j+q-1} + F_{j+q} \equiv F_{k+q-1} + F_{k+q} = F_{k+q+1} \mod m$

So the sequence repeats itself after k – j terms

H3 Math Lecture 5 20

iv. For any positive integer m, prove that there is a Fibonacci number which is a multiple of m.

For any positive m, by part (iii), the Fibonacci sequence modulo m is periodic.

So there is a pair (F_i, F_{i+1}) with i > 1 such that

$$F_i \equiv F_1 \equiv 1 \mod m$$
 $F_{i+1} \equiv F_2 \equiv 1 \mod m$

Then
$$F_{i-1} = F_{i+1} - F_i \equiv 1 - 1 \equiv 0 \mod m$$

This means m | F_{i-1}

We have proven that there is a Finonacci number which is a multiple of m.

 5×6 chessboard a unit square (x, y) is shaded if and only if $x \equiv y \pmod{3}$

22

A tessellation of the chessboard by 3×2 tiles

A 5 \times 6 chessboard can be tessellated with 3 \times 2 tiles

To consider whether a $p \times q$ chessboard can be tessellated with $a \times b$ tiles.

A unit square (x, y) is shaded if and only if $x \equiv y$ (mod a)

- Explain why the following are necessary conditions for such a tessellation
 - a) ab is a factor of pq
 - b) p and q can be written in the form ma + nb where m and n are non-negative integers
 - c) The $p \times q$ chessboard has $\frac{pq}{a}$ shaded squares
 - a) ab is a factor of pq
 - A p × q chessboard has pq squares
 - A a × b tile has ab squares
 - Suppose k tiles are used to tessellate the board
 - Then pq = kab.
 - So ab | pq.

- Explain why the following are necessary conditions for such a tessellation
 - b) p and q can be written in the form ma + nb where m and n are non-negative integers
 - p and q are the height and base of the $p \times q$ chessboard.
- a and b are the height and base of each a x b tile.
- Each tile can be places horizontally a or vertically b in the tessellation.
- If we tessellate the board at the bottom from left to right with m vertical and n horizontal tiles, there will be ma + nb squares at the bottom row of the board.
- Each row of the board is made up of q squares.
 So we get q = ma + nb.
- Similarly, if we tessellate the board on the left from bottom to top, we will get p = sa + tb (with s horizontal and t vertical tiles).

- Explain why the following are necessary conditions for such a tessellation
 - c) The $p \times q$ rectangle has $\frac{pq}{a}$ shaded squares
 - In each a x b tile b , along each row there is only one shaded square.
- Since there are b rows, there are exactly b shaded squares in each tile.
- If we use k tiles in the tessellation, there will be kb shaded squares in the board.
- Since pq = kab (from part (a)), $\frac{pq}{a} = kb = number of shaded squares in the board.$

ii. Let t be the smaller of r and s such that

```
p \equiv r \pmod{a} 0 \le r < a

q \equiv s \pmod{a} 0 \le s < a
```

- a) Explain why the number of shaded squares in the $p \times q$ chessboard is $\frac{pq rs}{a} + t$.
- b) Hence prove that for a tessellation, either a | p or a | q.

H3 Math

ii. Let t be the smaller of r and s such that

$$p \equiv r \pmod{a}$$
 $0 \le r < a$
 $q \equiv s \pmod{a}$ $0 \le s < a$

b) Hence prove that for a tessellation, either a | p or a | q.

From (a): # shaded squares in $p \times q$ board is $\frac{pq - rs}{a} + t$.

From i(c): # shaded squares in tessellated p \times q board is $\frac{pq}{a}$.

$$\frac{pq - rs}{a} + t = \frac{pq}{a} \implies t = \frac{rs}{a} \implies at = rs$$

Two cases:

(i) t = r \Rightarrow ar = rs If $r \neq 0$, then a = s contradiction So r = 0, and $p \equiv 0 \pmod{a} \Rightarrow a \mid p$

(ii)
$$t = s \Rightarrow a \mid q$$