Complexity of Graph Isomorphism for Restricted Graph Classes

Johannes Köbler
Humboldt University Berlin

CiE 2006, Swansea

Interdisciplinary Character of Graph Isomorphism

- Combinatorial techniques
- Algebraic techniques, group theory
- Descriptive complexity, logic
- Counting classes
- Lowness
- Arthur-Merlin games
- Derandomization techniques
- Interactive proofs, zero knowledge

• :

Graphs and Hypergraphs

Let
$$V = \{1, ..., n\}$$
.

- G = (V, E) is a graph, if $E \subseteq \binom{V}{2}$.
- G = (V, E) is a hypergraph, if $E \subseteq \mathcal{P}(V)$.

$$G_1 = (V, E_1), V = \{1, \dots, 5\}$$

$$E_1: \{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{1,5\}$$

$$E_2: \{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{1,2,5\}, \{1,2,3,4\}.$$

Isomorphisms and Automorphisms

For a permutation f on V and a hyperedge $e = \{v_1, \dots, v_k\} \subseteq V$ let

$$f(e) = \{f(v_1), \dots, f(v_k)\}.$$

Let G = (V, E) and H = (V, E') be hypergraphs.

ullet f is an **isomorphism** between G and H, if

$$\forall e \subseteq V : e \in E \Leftrightarrow f(e) \in E'$$
.

 \bullet f is an **automorphism** of G, if

$$\forall e \in E : f(e) \in E$$
.

An Isomorphism Between Graphs

$$G = (V, E)$$

$$f(G) = (V, \underbrace{\{f(e) \mid e \in E\}})$$

$$f(E)$$

An Isomorphism Between Hypergraphs

$$E : \{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{1, 2, 5\}, \{1, 2, 3, 4\}$$

$$f(E): \{1,3\}, \{3,5\}, \{2,5\}, \{2,4\}, \{1,3,4\}, \{1,2,3,5\}$$

Complexity of GI for Restricted Graph Classes

Deciding graph isomorphism (GI) is in P for restricted graph classes as, e.g.

trees and planar graphs

[Hopcroft, Tarjan 71]

graphs of bounded genus

[Miller 80]

graphs of bounded degree

[Luks 82]

graphs of bounded eigenvalue multiplicity

[Babai, Grigoryev, Mount 82]

However, the restriction to

regular or bipartite graphs

does not decrease the complexity of GI.

Complexity Classes

$$AM = BP \cdot NP$$

 NC^i : uniform $\{\land, \lor, \neg\}$ -circuits of polynomial size and depth $O(\log^i n)$,

TCⁱ: like NCⁱ but additionally with threshold gates,

ACⁱ: like NCⁱ but with unbounded fanin gates,

$$\mathsf{NC} = \bigcup_{i \geq 0} \mathsf{NC}^i$$
,

 $DET = NC^{1}(INT-DETERMINANT),$

 $L = DSPACE(\log n)$, (L = SL [Reingold 04])

$$NL = NSPACE(\log n),$$

 $\operatorname{\mathsf{Mod}}_k\mathsf{L}$ contains all sets A s.t. there is a nondet. logspace machine M with

$$A = \{x \mid \# \text{accepting paths of } M(x) \equiv 1 \pmod{k} \}$$

Complexity of GI

- GI ∈ co-AM [Goldwasser, Sipser 87]
- GI ∈ SPP [Arvind, Kurur 02]
- GI is hard for DET [Torán 00]
- GI \in NPC \Rightarrow PH = Σ_2^p [Boppana, Hastad, Zachos 87]
- GI \in DTIME $(exp(O(\sqrt{n \log n})))$ [Luks, Zemlyachenko 83]

Problems Related to GI

GA: Does G have a non-trivial automorphism?

UGI: Is there a unique isomorphism between G and H?

#GI: Determine the number of isomorphisms between G and H.

AUT: Compute a generating set for the automorphism group of G.

ORB: Determine the orbits of the automorphism group of G.

CINV: Compute a complete invariant f for G, i.e.,

for all graphs G and H, $G \cong H \Leftrightarrow f(G) = f(H)$.

CAN: Compute a canonization g for G, i.e.,

for all graphs G and H, $G \cong g(G) \land [G \cong H \Rightarrow g(G) = g(H)]$.

Relative Complexity of Problems Related to GI

Relative Complexity of GI and HGI

HGI: Are hypergraphs G and H isomorphic?

HGA: Does hypergraph G have a non-trivial automorphism?

$$G = (V, E)$$

$$G' = (V \cup E, \{\{v, e\} \mid v \in e\})$$

Then we have:

 $GI \equiv HGI$ and $GA \equiv HGA$.

Representing Trees

We consider two different representations of trees:

- by a string of nested parentheses,
- by a pointer list, i.e., a sequence of edges (ordered pairs).

string representation:

pointer list:

Complexity of Tree Isomorphism

By restricting GI to trees in the string or pointer list representation we obtain the problems STRING-TI and POINTER-TI.

- POINTER-TI ∈ LINTIME [Aho, Hopcroft, Ullman 74]
- POINTER-TI ∈ NC [Miller, Reif 91]
- POINTER-TI ∈ L [Lindell 92] (even canonization)
- String-TI \in NC¹ [Buss 97] (even canonization)
- BOUNDED-TREEWIDTH-GI ∈ TC¹ [Grohe, Verbitsky 06] (even CINV)
- POINTER-TI and STRING-TI are also hard for L and NC¹, respectively
 [Jenner, K, McKenzie, Torán 03]

GI for Colored Graphs

Color-GI is the problem GI applied to graphs with node colors c(v), which have to be preserved by the isomorphism f,

$$c(f(v)) = c(v).$$

v	12345
f(v)	53421

Complexity of GI for Bounded Color Classes

By restricting Color-GI to graphs having at most k nodes of the same color we obtain the problem Color $_k$ -GI.

- $COLOR_{O(1)}$ -GI \in RP [Babai 79]
- $COLOR_{O(1)}$ -GI \in P [Furst, Hopcroft, Luks 80]
- $COLOR_{O(1)}$ - $GI \in NC^4$ [Luks 86]
- COLOR $_{O(1)}$ -GI \in NC 2 [Arvind, Kurur, Vijayaraghavan 05]

Complexity of Color $_k$ -GI for Small k

Known Upper and Lower Bounds

Problem	hard for	inside	
STRING-TA, STRING-CAN	NC^1	NC^1	
POINTER-TA, POINTER-CAN	L	L	
Color ₂ -GA, Color ₃ -CAN	L	L	
COLOR ₄ -GA, COLOR ₅ -GI	$\oplus L$	$\oplus L$	
Color ₂ -HGA, Color ₂ -HGI	$\oplus L$	$\oplus L$	
$Color_p\text{-HGA},Color_p\text{-HGI},pprime$	$Mod_{p!}L$	Р	
GA, GI	DET	NP ∩ co-AM	

Warm-Up: $COLOR_2$ - $GA \in L$

The 1-Bit Representation for Color Classes of Size 2

a	b	x
a	b	0
b	a	1

Warm-Up: Color $_2$ -GA \in L

Transform graph G with color classes of size 2 into a system S of equations of the form $x_i = x_j$ and $x_i = 0$:

Edges in G between C_i and C_j				
_	-			
Equations in S				

Then G has a non-trivial automorphism iff S has a non-zero solution.

Warm-Up: $Color_2$ -GA \in L

$$x_1 = x_2$$

$$x_2 = x_3$$

$$x_3 = x_4$$

$$x_5 = x_6 = 0$$

$$x_7 = 0$$

$Color_4$ - $GA \in \oplus L$

Also Color₄-GA can be reduced to solving a system S of equations (this time over \mathbb{F}_2 :

The 3-Bit Representation for Halved Color Classes

A color class of size 4 is called **halved**, if it contains two disjoint edges.

a	b	c	d	x	y	z
a	b	c	d	0	0	0
a	b	d	c	0	0	1
b	a	c	d	0	1	0
b	a	d	c	0	1	1
c	d	a	b	1	0	0
d	c	a	b	1	0	1
c	d	b	a	1	1	0
d	c	b	a	1	1	1

$\mathsf{Color}_2\text{-}\mathsf{HGA} \in \oplus \mathbf{L}$

 $x \in Aut(G) \Leftrightarrow \forall e \in E : x \oplus e \in E$

Open Problems

- Is GI for graphs of bounded treewidth decidable in L?
- Do these graphs admit an NC (or even TC¹) canonization?
- Can we close the gap between the upper and lower complexity bounds for $COLOR_k$ -GI, $k \ge 6$, and for $COLOR_k$ -HGI, $k \ge 3$?
- In particular, are Color_k-HGA and Color_k-HGI in NC?
- Can Gurevich's reduction of canonization to computing a complete invariant be implemented in NC? (At least for special graph classes?)

THANK YOU