Глава 1.

Интегральное исчисление функции многих переменных $\S 1.$ Объем (мера) в n-мерном пространстве

Рассмотрим пространство \mathbb{R}^n . Точка в таком пространстве будет характеризоваться набором координат $x=(x_1,x_2,...,x_n)\in\mathbb{R}^n$. Введем понятие n-мерного куба: $Q=\left\{x\in\mathbb{R}^n\left|\left|x_i-x_i^{(0)}\right|\leq a>0; i=1...n\in N\right.\right\}$. Это куб со стороной 2a. Определим его объем как $\mu Q\stackrel{\text{def}}{=} (2a)^n$.

Разобьем \mathbb{R}^n на кубы ранга k: $Q = Q_{m_1,m_2,\dots,m_n} = \left\{x \in \mathbb{R}^n \left| \frac{m_i}{10^k} \le x_i \le \frac{m_i+1}{10^k}; i = 1 \dots n \in \mathbb{N}; m_i \in \mathbb{Z} \right\}$. Множество всех кубов ранга k обозначим как T_k , т.е. $\mathbb{R}^n = \bigcup_{Q \in T_k} Q$. Тогда, объем каждого такого кубика будет равен $\mu Q \stackrel{\text{def}}{=} 10^{-kn}$.

Пусть есть некое тело, состоящее из кубиков ранга k: $S = \bigcup_j Q_j$. Сложив их, получим $\mu S \stackrel{\text{def}}{=} \sum_j \mu Q_j$. Отсюда мера $\mu S < +\infty$, если сумма конечна, и $\mu S = +\infty$, если сумма бесконечна. По определению мера пустого множества равна нулю.

<u>Свойство:</u> Пусть S_1 ⊂ S_2 , тогда $\mu S_1 \leq \mu S_2$.

Пусть X — некое множество $X \subset \mathbb{R}^n$ (на рисунке синим). Обозначим множество всех кубов ранга k, содержащихся в X (на рисунке зеленым), как $s_k(X)$, т.е. $s_k = \bigcup_{\substack{Q \in T_k \\ Q \subset X}} Q$. А множество

всех кубов ранга k, пересекающихся с X (на рисунке сиреневым), обозначим как $S_k(X)$, т.е. $S_k(X)=\bigcup_{\substack{Q\in T_k\\Q\cap X\neq 0}}Q$. При измене-

нии размеров кубов можно заметить следующие закономер-

ности: $s_{k-1}(X) \subset s_k(X)$ и $S_{k-1}(X) \supset S_k(X)$, причем $s_k(X) \subset X \subset S_k(X)$, а ,точнее говоря, $s_0(X) \subset s_1(X) \subset \cdots \subset s_k(X) \subset X \subset S_k(X) \subset \cdots \subset S_1(X) \subset S_0(X)$. Для мер этих кубов можно провести аналогичные рассуждения: $\mu s_0(X) \leq \mu s_1(X) \leq \cdots \leq \mu s_k(X) \leq \mu S_k(X) \leq \mu S_1(X) \leq \mu S_1(X) \leq \mu S_1(X)$. Левая часть последовательности монотонно убывает и ограничена снизу, аналогично правая часть монотонно возрастает и ограничена сверху, а значит существуют пределы $\lim_{k \to +\infty} \mu s_k(X) = \mu_* X$ и $\lim_{k \to +\infty} \mu S_k(x) = \mu^* X$, которые носят названия нижнем и верхней меры соответственно, причем для них будет всегда выполняться неравенство $0 \leq \mu_* X \leq \mu^* X$. Множество X называется измеримым (\mathbb{R}^2 — квадрируемым, \mathbb{R}^3 - кубируемым), если верхняя и нижняя меры в пределе совпадают $\mu_* X = \mu^* X$ и тогда $\mu X \stackrel{\text{def}}{=} \mu_* X = \mu^* X$. Если $\mu X = 0$, то множество X будет являться множеством меры 0.

<u>Замечание:</u> Если $\mu^*X=0$, то и $\mu_*X=0$, и множество X измеримо меры 0.

Замечание: Если множество X ограничено, то $\mu^*X < +\infty$ и $\mu_*X < +\infty$, но при этом множество может быть неизмеримым (они могут не совпадать).

<u>Замечание:</u> Если $X \subset \mathbb{R}^{n-1}$ и функция $y = f(x_1, x_2, ..., x_n)$ непрерывна в X, тогда мера графика $\Gamma_f\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | (x_1, x_2, ..., x_{n-1}) \in X, x_n = f(x_1, x_2, ..., x_{n-1})\}$ равна нулю.

<u>Замечание:</u> Пусть множество X измеримо, а множество $\bar{X} = X \cup \partial X$ будет включать в себя множество X и его границу (являться замкнутым множеством), тогда множество \bar{X} будет также измеримо, и их меры будут совпадать.

§2. Кратные интегралы

Пусть множество $X \subset \mathbb{R}^n$ измеримо. Введем конечную систему $\tau = \{X_i\}_{i=1}^{\tau}$ непустых измеримых множеств X_i . Тогда τ будет называться разбиением множества X, если:

- 1) Мера пересечения двух любых таких множеств $\mu(X_i \cap X_j) = 0$.
- 2) $\bigcup_{i=1}^{i_{\tau}} X_i = X.$

Диаметром некоторого множества называется наибольшее расстояние между двумя точками данного множества $diam\ X = \sup \rho(x,y),\ x,y \in X.$ Мелкостью разбиения $\tau = \{X_j\}_{j=1}^{j_\tau}$ называют число $|\tau| \stackrel{\mathrm{def}}{=} \max_i diam\ X_j$.

Давайте построим кратный интеграл. Внутри каждого разбиения возьмем точку $\xi^{(j)} \in X_j$, вычислим в ней значение функции f (заданной на X), умножим на меру этого множества и просуммируем: $\sigma_{\tau} = \sigma_{\tau} \big(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_{\tau})} \big) \stackrel{\text{def}}{=} \sum_{j=1}^{j_{\tau}} f \big(\xi^{(j)} \big) \mu X_j.$ Эта сумма называется суммой Римана функции f, соответствующей разбиению τ .

Интеграл обозначается как $\int_X f dx = \int_X f(x_1,x_2,...,x_n) dx_1 dx_2 ... dx_n$. По определению кратный интеграл есть предел $\int_X f dx \stackrel{\text{def}}{=} \lim_{|\tau| \to 0} \sigma_\tau \left(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)} \right)$. Запишем то же самое определение другим образом. Если для любого сколь угодно малого числа $\varepsilon > 0$ существует $\delta > 0$ такая, что для любого разбиения τ множества X мелкость $|\tau| < \delta$ и при любом выборе $\xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)}$ предел (интеграл) отличается от суммы Римана по модулю меньше, чем на ε : $\left| \int_X f dx - \sigma_\tau \left(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)} \right) \right| < \varepsilon$.

§3. Двойной интеграл П.1. Определения

Пусть есть область $D \in \mathbb{R}^2$ и пусть в этой области определены непрерывная

функция $f(x,y) \geq 0$ и разбиение $\tau = \{X_j\}_{j=1}^{j_\tau}$. Тогда существует двойной интеграл $\iint_D f(x,y) dx dy = \lim_{|\tau| \to 0} \sigma_{\tau} \left(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)}\right)$. Величина $\sigma_{\tau} = \sum_{j=1}^{j_\tau} f\left(\xi^{(j)}\right) \mu X_j$ будет являться объемом ступенчатого тела, μX_j — площадью основной ступени, а $f\left(\xi^{(j)}\right)$ — высотой ступени. Тогда величина $V = \lim_{|\tau| \to 0} \sigma_{\tau} \left(f, \xi^{(1)}, \xi^{(2)}, ..., \xi^{(j_\tau)}\right) = \iint_D f(x,y) dx dy = \iint_D f(x,y) d\mu$ буде являться объемом тела, ограниченной

П.2. Свойства двойного интеграла

функцией f над множеством D.

1) $\iint_D (f(x,y) + g(x,y)) d\mu = \iint_D f(x,y) d\mu + \iint_D g(x,y) d\mu$ (f и g – непрерывны на D).

- 2) $\iint_D cf(x,y)d\mu = c\iint_D f(x,y)d\mu.$
- 3) Если $f \geq 0$ на D, то $\iint_D f(x,y) d\mu \geq 0$.
- 4) Пусть множество D есть объединение двух измеримых областей, мера пересечения которых равна нулю $D=X_1\cup X_2, \mu(X_1\cap X_2)=0$, тогда $\iint_D f(x,y)d\mu=\iint_{X_1} f(x,y)d\mu+\iint_{X_2} f(x,y)d\mu.$
- 5) Теорема 1 (об оценке интеграла). Пусть S площадь компактной области D и пусть функция f задана (и непрерывна) на D. Тогда на этой области функция достигает своего минимума и максимума: $m = \min_{(x,y) \in D} f(x,y)$, $M = \max_{(x,y) \in D} f(x,y)$ и выполняется неравенство $mS \leq \iint_D f(x,y) d\mu \leq MS$.

Доказательство. Рассмотрим $M-f(x,y)\geq 0$ на D. Тогда $\iint_D \big(M-f(x,y)\big)d\mu\geq 0$, а, значит, по первому свойству, $\iint_S Md\mu\geq \iint_D f(x,y)d\mu$. По определению левая часть равна MS, откуда получаем $\iint_D f(x,y)d\mu\leq MS$. Аналогичные рассуждения можно провести и для левой части исходного неравенства. Доказано.

<u>Замечание.</u> Если выполняется неравенство $h(x,y) \leq f(x,y) \leq g(x,y)$ для непрерывных функций в D, то $\iint_D \ h(x,y) d\mu \leq \iint_D \ g(x,y) d\mu$.