Given a parallelogram PQRS in space, how could you find a vector normal to its plane and with length equal to its area?

Parallelogram PQST and cross product

The area of parallelogram is

$$\vec{u} \times \vec{v} = |\vec{u}||\vec{v}|\sin\alpha$$

The direction of cross product is the right-hand rule

The magnitude of cross product of two vectors is the parallelogram

The dot product of two vectors

$$\vec{u} \circ \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha$$

Theorem 1. Let \mathbb{V} be vector space, and let $S_1 \subseteq S_2 \subseteq \mathbb{V}$. If S_1 is linearly dependent then S_2 is linearly dependent.

Proof. Let the basis of S_1 is $\mathcal{U} = \{u_1, u_2, \dots u_m\}$ $\therefore S_1$ is linearly dependent. $\exists w \in S_1 \mid w = a_1\vec{u_1} + a_2\vec{u_2} + \dots + a_m\vec{u_m} \quad a_1, a_2, \dots, a_m$ are not all zero

Assume the basis of S_2 is $\mathcal{V} = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\} :: S_1 \subseteq S_2 :: \exists$ a subset \mathcal{U}' of $\mathcal{V} \mid \mathcal{U}'$ spans S_1 . In other words, w can be written linearly combination of the subset of \mathcal{V} . Not all coefficients are zero. $\Longrightarrow S_2$ is linearly dependent.

 $S_1 \in S_2$

 $w = a_1 \vec{u_1} + a_2 \vec{u_2} + \dots + a_m \vec{u_m}$ not all a_1, \dots, a_m are zero

The basis of $\mathcal{V} = \{v_1, \dots, \vec{v_n}\} \implies \vec{u_1}, \vec{u_2}, \dots, \vec{u_m}$ can be written linearly combination of $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ $\implies w = c_1\vec{v_1} + c_2\vec{v_2} + \dots$

Collorary 1. Let \mathbb{V} be a vector space, and let $S_1 \subseteq S_2 \subseteq \mathbb{V}$, if S_2 is linearly independent then S_1 is linearly independent.

Proof. Assume S_1 is linearly dependent, then S_2 is linearly dependent. \therefore theorem 1 That contracts our assumption S_2 is linearly independent.

Theorem 2. Let S be a linearly independent subset of a vector space \mathbb{V} , and let \vec{u} be a vector in \mathbb{V} that is not in S. Then $S \cup \{\vec{u}\}$ is linearly dependent if and only if $\vec{u} \in span\{S\}$

Proof. Prove Theorem 2

Proof: $S \cup \{\vec{u}\}$ is linearly dependent $\Rightarrow \vec{u} \in \text{span}\{S\}$

 $\vec{u} \notin S$ and $S \cup \vec{u}$ is linearly dependent $\implies \vec{u}$ can be written linearly combination of the basis of $S \implies \vec{u} \in span\{S\}$

Proof: $\vec{u} \in \text{span}\{S\} \implies S \cup \{\vec{u}\}\$ is linearly dependent

 $\vec{u} \notin S$ and $\vec{u} \in \text{span}\{S\} \implies \vec{u}$ can be written linearly combination of the basis of $S \implies S \cup \{\vec{u}\}$ is linearly independent.

1 Chinsse math problem

Theorem 3. Given $x^x \div x = x^2$ find x $x \neq 0 \implies x^2 \neq 0$ then $x^x = x^3$

$$x \neq 0 \implies x^2 \neq 0 \text{ then } x^x = x^3$$

case 1: x = 3

case 2: x = 1

case 3: x = -1

Example 1. If $a^n = 1$ then $a \neq 0, n = 0$ or a = 1, n can be any number

$$a \neq 0, n = 0$$

$$\begin{cases} a \neq 0, n = 0 \\ a = 1, n \text{ can be any number} \\ a = -1, n = 2k \quad k \in \mathbb{N} \end{cases}$$

$$a = -1, n = 2k \quad k \in \mathbb{N}$$

2 Interview question

Find all Integer a, b satisfy the equation $\sqrt{a} + \sqrt{b} = \sqrt{2023}$ First attempt:

$$\sqrt{a} + \sqrt{b} = \sqrt{2023}$$

$$(\sqrt{a} + \sqrt{b})^2 = \sqrt{2023}^2$$

$$a + b + 2\sqrt{ab} = 2023$$

$$\sqrt{ab} = \frac{2023 - (a+b)}{2}$$

$$ab = \left(\frac{2023 - (a+b)}{2}\right)^2$$

$$ab = \frac{2023^2 + (a+b)^2 - 2 \times 2023(a+b)}{4}$$

$$4ab = 2023^2 + (a+b)^2 - 2 \times 2023(a+b)$$

$$4ab = 2023^2 + a^2 + b^2 + 2ab - 2 \times 2023(a+b)$$

$$0 = 2023^2 + (a-b)^2 - 2 \times 2023(a+b)$$

Second attempt:

$$\sqrt{a} + \sqrt{b} = 17\sqrt{7}$$
$$\sqrt{a} = 17\sqrt{7} - \sqrt{b}$$

Square both sizes

$$a = 2023 + b - 2 \times 17\sqrt{7b}$$
$$a = 2023 + b - 34\sqrt{7b}$$

3 Cambridge Math Interview Question

Graphic the equation $y^2 - y = x^2 - x$

$$y^{2} - y = x^{2} - x$$

$$y^{2} - x^{2} = y - x$$

$$(y+x)(y-x) = y - x$$
There two cases: (1)

$$y = x$$
$$y + x = 1 \quad \text{if } y \neq x$$

4 World cup quarter-final

Croatia	Argentina	Tue, Dec 13, 11:00am
Morocco	Frence	Wed, Dec 14, 11:00am

Croatia	Brazil	Fri, Dec 9, 7:00am
Netherland	Argentina	Fri, Dec 9, 11:00am
Morocco	Portual	Sat, Dec 10, 7:00am
England	Frence	Sat, Dec 10, 11:00am

5 Addition table

6 Multiplication table

	$3, 9 \leftarrow 35 + 4 \mod 10$	$4, 5 \leftarrow 40 + 5 \mod 10$	$4, 5 \leftarrow 45 \mod 10$	
		$3, 1 \leftarrow 28 + 3 \mod 10$	$3, 5 \leftarrow 32 + 3 \mod 10$	$1, 6 \leftarrow 36 \mod 10$
		7	8	9
			5	4
	3	1	5	6
3	9	5	5	
4	2	7	0	6

7 Partition an array with a pivot

Example 2. Given an array $\{2, 3, 9, 1, \frac{4}{4}\}$ and choose $\frac{4}{4}$ as a pivot

left: 2, 3, 1 right: 9

{ left pivot right }

new array: {2, 3, 1, 4, 9}

8 Multiply all numbers but the current one

1	2	3	4	5		
	2	3	4	5		
	2	3	4	5		
	2	3	4	5	1	

Problem 1. Prove there is infinite many prime

Proof. Assume there are finite many primes such as

 p_1, p_2, \dots, p_n where p_n is the maximum prime

Let $m = p_1 \times p_2 \dots p_n$

Then
$$p_1 \times p_2 \times \cdots \times p_n + 1$$
 must be composite number.

$$\implies \frac{p_1 \times p_2 \times \cdots \times p_n + 1}{p_k} = \frac{p_1 \times p_2 \times \cdots \times p_n}{p_k} + \frac{1}{p_k} \in \mathbb{N}$$
Put $\frac{1}{p_k}$ are not be \mathbb{N}

But $\frac{1}{p_k}$ can not be \mathbb{N} \implies our assumption must be false.

9 Haskell format string libraries

9.1 text-format and text-format-simple

There are text-format and text-format-simple

```
import Text.Format
let str = format "str={0} number={1}" ["dog", show 100]
```

9.2 Text.Printf

Text.Printf is similar to C printf, but I can not figure out how to convert it to String.

```
import Text.Printf
printf "str=%s number=%d" "dog" 100
```