Model checking - overview

- Sensibility with respect to additional information not used in modeling
 - e.g., if posterior would claim that hazardous chemical decreases probability of death

Model checking – overview

- Sensibility with respect to additional information not used in modeling
 - e.g., if posterior would claim that hazardous chemical decreases probability of death
- External validation
 - compare predictions to completely new observations
 - cf. relativity theory predictions

Model checking – overview

- Sensibility with respect to additional information not used in modeling
 - e.g., if posterior would claim that hazardous chemical decreases probability of death
- External validation
 - compare predictions to completely new observations
 - cf. relativity theory predictions
- Internal validation
 - posterior predictive checking
 - cross-validation predictive checking

Chapter 6

- 6.1 The place of model checking in applied Bayesian statistics
- 6.2 Do the inferences from the model make sense?
- 6.3 Posterior predictive checking
- 6.4 Graphical posterior predictive checks
 - this can be skimmed, see instead the paper Gabry et al. (2019). Visualization in Bayesian workflow https://doi.org/10.1111/rssa.12378
- 6.5 Model checking for the educational testing example

Model checking

- demo6_1: Posterior predictive checking light speed
- demo6_2: Posterior predictive checking sequential dependence
- demo6_3: Posterior predictive checking poor test statistic
- https://avehtari.github.io/BDA_R_demos/demos_rstan/brms_demo.html

Simon Newcomb's light of speed experiment in 1882

Newcomb measured (n = 66) the time required for light to travel from his laboratory on the Potomac River to a mirror at the base of the Washington Monument and back, a total distance of 7422 meters.

- Newcomb's speed of light measurements
 - model $y \sim \text{normal}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$

- Newcomb's speed of light measurements
 - model $y \sim \text{normal}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}

- Newcomb's speed of light measurements
 - model $y \sim \text{normal}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$

- Newcomb's speed of light measurements
 - model $y \sim \text{normal}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$
 - draw $y^{\text{rep}(s)}$ from $\text{normal}(\mu^{(s)}, \sigma^{(s)})$

- Newcomb's speed of light measurements
 - model $y \sim \text{normal}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma | y)$
 - draw $y^{\text{rep}(s)}$ from $\text{normal}(\mu^{(s)}, \sigma^{(s)})$
 - repeat *n* times to get y^{rep} with *n* replicates

- Newcomb's speed of light measurements
 - model $y \sim \text{normal}(\mu, \sigma)$ with prior $(\mu, \log \sigma) \propto 1$
- Posterior predictive replicate y^{rep}
 - draw $\mu^{(s)}, \sigma^{(s)}$ from the posterior $p(\mu, \sigma|y)$
 - draw $y^{\text{rep}(s)}$ from $\text{normal}(\mu^{(s)}, \sigma^{(s)})$
 - repeat n times to get y^{rep} with n replicates

Replicates vs. future observation

Predictive ỹ is the next not yet observed possible observation.
 y^{rep} refers to replicating the whole experiment (potentially with same values of x) and obtaining as many replicated observations as in the original data.

Generate several replicated datasets y^{rep}

- Generate several replicated datasets y^{rep}
- Compare to the original dataset

- Generate several replicated datasets y^{rep}
- Compare to the original dataset

Posterior predictive checking – bayesplot ppc_hist(y, yrep[1:8,])

ppc_dens_overlay(y, yrep[1:100,])

ppc_ecdf_overlay(y, yrep[1:100,])

ppc_scatter(y, yrep[1:4,]) + geom_abline()

Posterior predictive checking with test statistic

- Replicated data sets y^{rep}
- Test quantity (or discrepancy measure) $T(y, \theta)$
 - summary quantity for the observed data $T(y, \theta)$
 - summary quantity for a replicated data $T(y^{rep}, \theta)$
 - can be easier to compare summary quantities than data sets

• Compute test statistic for data $T(y, \theta) = \min(y)$

- Compute test statistic for data $T(y, \theta) = \min(y)$
- Compute test statistic min(y^{rep}) for many replicated datasets

- Compute test statistic for data $T(y, \theta) = \min(y)$
- Compute test statistic min(y^{rep}) for many replicated datasets

- Good test statistic is (almost) ancillary (fi: aputunnusluku)
 - ancillary if it depends only on observed data and if its distribution is independent of the parameters of the model

- Good test statistic is (almost) ancillary (fi: aputunnusluku)
 - ancillary if it depends only on observed data and if its distribution is independent of the parameters of the model
- Bad test statistic is highly dependent of the parameters
 - e.g. variance for normal model

- Good test statistic is (almost) ancillary (fi: aputunnusluku)
 - ancillary if it depends only on observed data and if its distribution is independent of the parameters of the model
- Bad test statistic is highly dependent of the parameters
 - e.g. variance for normal model

Posterior predictive checking

Posterior predictive p-value

$$p = \Pr(T(y^{\text{rep}}, \theta) \ge T(y, \theta)|y)$$
$$= \int \int I_{T(y^{\text{rep}}, \theta) \ge T(y, \theta)} p(y^{\text{rep}}|\theta) p(\theta|y) dy^{\text{rep}} d\theta$$

where I is an indicator function

• having $(y^{\text{rep }(s)}, \theta^{(s)})$ from the posterior predictive distribution, easy to compute

$$T(y^{\text{rep}(s)}, \theta^{(s)}) \ge T(y, \theta^{(s)}), \quad s = 1, \dots, S$$

- Posterior predictive p-value (ppp-value) estimates whether difference between the model and data could arise by chance
- Not commonly used, as
 - not calibrated in case of non-ancillary statistic
 - the distribution of test statistic has more information

ppc_stat(y, yrep), the default statistic "mean" is usually bad

ppc_stat(y, yrep, stat="min")

ppc_stat(y, yrep, stat="max")

 $T(y_{rep})$

T(y)

ppc_stat2d(y, yrep, stat=c("min", "max"))

 $T = (\min, \max)$

 $T(y_{\text{rep}})$

Posterior predictive checking - Stan code

demo demos_rstan/ppc/poisson-ppc.Rmd

```
data {
  int<lower=1> N;
  int<lower=0> y[N];
parameters {
  real<lower=0> lambda;
model {
  lambda ~ exponential(0.2);
  v ~ poisson(lambda);
generated quantities {
  real log_lik[N];
  int y_rep[N];
  for (n in 1:N) {
    y_rep[n] = poisson_rng(lambda);
    log_lik[n] = poisson_lpmf(y[n] | lambda);
```

PPC for count data - Poisson model

ppc_dens_overlay(y, yrep[1:50,])

PPC for count data - Poisson model

ppc_rootogram(y, yrep)

PPC for count data - Poisson model

```
prop_zero <- function(x) mean(x == 0)
ppc_stat(y, yrep, stat = "prop_zero")</pre>
```


PPC for count data - hurdle truncated Poisson model

ppc_rootogram(y, yrep2)

PPC for count data - hurdle truncated Poisson model

```
prop_zero <- function(x) mean(x == 0)
ppc_stat(y, yrep2, stat = "prop_zero")</pre>
```


- Example from Jonah Gabry, Daniel Simpson, Aki Vehtari,
 Michael Betancourt, and Andrew Gelman (2019). Visualization in Bayesian workflow. https://doi.org/10.1111/rssa.12378
- Estimation of human exposure to air pollution from particulate matter measuring less than 2.5 microns in diameter (PM_{2.5})
 - Exposure to PM_{2.5} is linked to a number of poor health outcomes and a recent report estimated that PM_{2.5} is responsible for three million deaths worldwide each year (Shaddick et al., 2017)
 - In order to estimate the public health effect of ambient PM_{2.5}, we need a good estimate of the PM_{2.5} concentration at the same spatial resolution as our population estimates.

- Direct measurements of PM 2.5 from ground monitors at 2980 locations
- High-resolution satellite data of aerosol optical depth

- Direct measurements of PM 2.5 from ground monitors at 2980 locations
- High-resolution satellite data of aerosol optical depth

- Direct measurements of PM 2.5 from ground monitors at 2980 locations
- · High-resolution satellite data of aerosol optical depth

Prior predictive checking

Prior predictive checking

Prior predictive distribution with vague prior

Prior predictive checking

Prior predictive distribution with weakly informative

Marginal predictive distributions

Test statistic (skewness)

Test statistic (median for groups)

Posterior predictive checking: Mesquite bushes

Positive target: normal vs log-normal model

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 11.

Student retention

Latent hierarchical linear + spline

```
nstudents | trials(nstudents1) ~
  s(assignment, k=4) + (assignment | year),
  family=binomial()
```

Latent functions + posterior uncertainty

Student retention

Latent hierarchical linear + spline

```
nstudents | trials(nstudents1) ~
  s(assignment, k=4) + (assignment | year),
  family=binomial()
```

Latent functions + posterior uncertainty

Student retention

1. Latent hierarchical linear model

```
nstudents | trials(nstudents1) ~
  (assignment | year),
  family=binomial()
```

2. Latent spline + hierarchical linear model

```
nstudents | trials(nstudents1) ~
  s(assignment, k=4) + (assignment | year),
  family=binomial()
```

Student retention – Posterior predictive distributions

with tidybayes

Latent hierarchical linear model

Student retention – Marginal PPC (brms)

pp_check(fit, ndraws=100)

Latent hierarchical linear model

Student retention – Posterior predictive intervals (brms)

pp_check(fit, type = "intervals_grouped", group="year")

Latent hierarchical linear model

Student retention – Posterior predictive ribbon (brms)

pp_check(fit, type = "ribbon_grouped", group="year")

Latent hierarchical linear model

PPC for binary target – Helicopters (brms)

```
stable_flight ~ s(wing_length) + s(wing_length, by = nclips),
family = bernoulli()
```


PPC for binary target - Helicopters (brms) stable_flight ~ s(wing_length) + s(wing_length, by = nclips),

```
stable_flight ~ s(wing_length) + s(wing_length, by = nclips);
family = bernoulli()
```


PPC for binary target - Helicopters (brms) stable_flight ~ s(wing_length) + s(wing_length, by = nclips),

```
stable_flight ~ s(wing_length) + s(wing_length, by = nclips),
family = bernoulli()
```


PPC for binary target - Helicopters (brms) stable_flight ~ s(wing_length) + s(wing_length, by = nclips), family = bernoulli() Probability of stable flight .00 0.75 0.50 0.25 10 10 5 10 Wing length (cm) pp_check(fit, type="bars_grouped") 0 60 Count y_{rep} 40 20

0.0 0.5 1.0

-0.5

1.5 -0.5

0.0 0.5 1.0

1.5 -0.5

0.5 1.0

0.0

PPC for binary target - Helicopters (brms) stable_flight ~ s(wing_length) + s(wing_length, by = nclips),

```
stable_flight ~ s(wing_length) + s(wing_length, by = nclips),
family = bernoulli()
```


PPC for binary target - Helicopters (brms) stable_flight ~ s(wing_length) + s(wing_length, by = nclips),

```
stable_flight ~ s(wing_length) + s(wing_length, by = nclips),
family = bernoulli()
```


Further reading and examples

- Gabry, Simpson, Vehtari, Betancourt, and Gelman (2019).
 Visualization in Bayesian workflow.
 https://doi.org/10.1111/rssa.12378.
- Graphical posterior predictive checks using the bayesplot package http://mc-stan.org/bayesplot/articles/graphical-ppcs.html
- brms demos https://avehtari.github.io/BDA_R_demos/demos_ rstan/brms_demo.html

 How much different choices in model structure and priors affect the results

- How much different choices in model structure and priors affect the results
 - test different models and priors
 priorsense and adjustr packages use importance sampling
 for faster prior sensitivity analysis

- How much different choices in model structure and priors affect the results
 - test different models and priors
 priorsense and adjustr packages use importance sampling
 for faster prior sensitivity analysis
 - alternatively combine different models to one model
 - e.g. hierarchical model instead of separate and pooled
 - e.g. *t* distribution contains Gaussian as a special case
 - robust models are good for testing sensitivity to "outliers"
 - e.g. t instead of Gaussian

- How much different choices in model structure and priors affect the results
 - test different models and priors
 priorsense and adjustr packages use importance sampling
 for faster prior sensitivity analysis
 - alternatively combine different models to one model
 - e.g. hierarchical model instead of separate and pooled
 - e.g. *t* distribution contains Gaussian as a special case
 - robust models are good for testing sensitivity to "outliers"
 - e.g. t instead of Gaussian
- Compare sensitivity of essential inference quantities
 - extreme quantiles are more sensitive than means and medians
 - extrapolation is more sensitive than interpolation

priorsense — prior and likelihood sensitivity analysis

- Power-scale prior and likelihood separately as $p(\theta)^{\alpha}$ and $p(y|\theta)^{\alpha}$
- Beta blockers randomized control-treatment experiment
 - no prior sensitivity
 - likelihood is informative

priorsense — prior and likelihood sensitivity analysis

- Power-scale prior and likelihood separately as $p(\theta)^{\alpha}$ and $p(y|\theta)^{\alpha}$
- Sorafenib Toxicity Binomial model meta analysis
 - prior-data conflict

priorsense — prior and likelihood sensitivity analysis

- Power-scale prior and likelihood separately as $p(\theta)^{\alpha}$ and $p(y|\theta)^{\alpha}$
- Sorafenib Toxicity Binomial model meta analysis
 - prior-data conflict
 - due to accidentally too narrow prior

