The "something something" video database for learning and evaluating visual common sense

https://arxiv.org/pdf/1706.04261

0. Introduction

- 기존의 이미지 분류 데이터셋(ImageNet 등)은 객체 인식에 초점을 맞추었으나 인간의 시각적 상식(visual common sense)을 반영한 동작 인식에는 한계가 있음
- 일상적인 동작을 이해하기 위해서는 무엇을 하는지에 대한 정교한 이해가 필요하며 이는 단순한 객체 분류로는 포착하기 어려움

1. Overview

- 시각적 상식(visual common sense)을 학습하고 평가하기 위한 새로운 비디오 데이터셋과 접근 방법 제안
- 비디오를 캡션 템플릿과 결합하여 "무엇을 하는지"에 대한 정교한 의미를 학습
- 174개의 동작 클래스 정의를 통해 다양한 행동 패턴 포착
- 캡션 템플릿 예시: "Picking [something] up", "Throwing [something] away"

2. Challenges

- 데이터 특성:
 - 。 무엇을 하는지에 대한 정교한 이해는 단순한 객체 분류로는 포착하기 어려움
- 크라우드소싱의 한계:
 - 크라우드워커들이 캡션을 작성할 때의 일관성 부족

- 。 다양한 해석이 가능하여 데이터 품질 관리 어려움
- 모델 학습의 어려움:
 - 。 동작 인식 모델이 시각적 상식을 학습하기 위해서는 정교한 구조와 학습 전략 필요

3. Method

Dataset Specifications					
Number of videos	108,499				
Number of class labels	174				
Average duration of videos (in seconds)	4.03				
Average number of videos per class	620				

- 데이터 수집:
 - 크라우드소싱 플랫폼을 통해 다양한 사람들이 일상적인 동작을 촬영한 비디오 수집
 - 각 비디오는 특정 동작을 설명하는 캡션 템플릿으로 라벨링됨
- 데이터 전처리:
 - 비디오의 해상도와 프레임 속도를 통일하여 모델 학습에 적합하게 변환
- 모델 학습:
 - 다양한 딥러닝 모델을 사용하여 동작 인식 성능 평가
 - 시각적 상식을 학습하기 위해 특별한 구조와 학습 전략 채택

4. Experiments

- 모델 비교:
 - 기존 동작 인식 모델들과 본 데이터셋 사용 성능 비교
 - 。 다양한 모델이 시각적 상식을 학습하는 능력 평가
- 성능 평가:
 - 。 정확도, 정밀도, 재현율 등의 지표 사용
 - 모델이 시각적 상식을 얼마나 잘 학습했는지 측정

5. Results

Dataset	Domain	# Videos	Avg. duration	Remarks
Physics 101 [38]	intuitive physics	17.408		101 objects with 4 different
Thysics for [50]	intuitive physics	17,400		scenarios (ramp, spring, fall, liquid)
MPII cooking [26]	action (cooking)	44	600s	-
TACoS [23]	action (cooking)	127	360s	-
Charades [29]	action (human)	10,000	30s	-
KITTI [6]	action (driving)	21	30s	-
Something-Something (ours)	human-object interaction	108,499	4.03s	174 fine-grained categories of
				human-object interaction scenarios

	Error rate (%)							
Method	10 classes		40 classes		174 classes			
	top-1	top-2	top-1	top-2	top-1	top-2	top-5	
2D CNN + Avg	76.5	58.9	88.0	78.5	-	-	-	
Pre-2D CNN + Avg	54.7	39.0	79.2	70.0	-	-	-	
Pre-2D CNN + LSTM	52.3	34.1	77.8	68.0	-	-	-	
3D CNN + Stack	58.1	38.7	70.3	57.3	-	-	-	
Pre-3D CNN + Avg	47.5	29.2	66.2	52.7	88.5	81.5	70.0	
2D+3D-CNN	44.9	27.1	63.8	50.7	-	-	-	

Table 4: Error rates on different subsets of the data.

- 본 데이터셋을 사용한 모델들이 기존 모델들보다 우수한 성능을 보임
- 특히 시각적 상식을 잘 학습한 모델들이 높은 정확도를 기록
- 다양한 모델들이 본 데이터셋에서 테스트되었으며 성능 차이 비교
- 일부 모델은 시각적 상식을 잘 학습하여 높은 성능 보임
- 본 데이터셋이 모델의 시각적 상식 학습에 중요한 역할
- 데이터셋의 다양성과 품질이 모델 성능에 큰 영향

6. Insight

- 동작 인식 모델이 인간처럼 동작을 이해하기 위해서는 시각적 상식 필수
- 데이터셋은 이러한 시각적 상식을 학습하는 중요한 자원
- 캡션 템플릿 사용으로 "무엇을 하는지" 명확하게 정의하여 모델이 시각적 상식을 학습 하도록 유도