

IMD0033 - Probabilidade Aula 11 - Análise Exploratória de Dados III

Ivanovitch Silva Abril, 2019

Agenda

- Estudo de caso: analisando filmes
- Motivação: enviesamento de dados
- Histograma e gráfico de caixa
- Interface entre Pandas & Matplotlib
- ?????????

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1

Ou

git pull

Estudo de caso: avaliando filmes

IMDB

Rotten Tomatoes

Fandango

Enviesamento de dados

Conjunto de dados

	FILM	RT_user_norm	Metacritic_user_nom	IMDB_norm	Fandango_Ratingvalue	Fandango_Stars
0	Avengers: Age of Ultron (2015)	4.3	3.55	3.90	4.5	5.0
1	Cinderella (2015)	4.0	3.75	3.55	4.5	5.0
2	Ant-Man (2015)	4.5	4.05	3.90	4.5	5.0
3	Do You Believe? (2015)	4.2	2.35	2.70	4.5	5.0
4	Hot Tub Time Machine 2 (2015)	1.4	1.70	2.55	3.0	3.5

https://github.com/fivethirtyeight/data/tree/master/fandango

Como comparar as diferentes avaliações?

Distribuição de frequências

Frequency Distribution (sorted by **frequency** in **descending** order) Frequency Distribution (sorted by **unique value** in **ascending** order)

Value	Frequency		
4.1	16		
4.2	12		
3.9	12		
4.3	11		
3.7	9		
3.5	9		
4.5	9		
3.4	9		
3.6	8		
4.4	7		
4.0	7		
3.2	5		
2.9	5		
3.8	5		
3.3	4		
4.6	4		
3.0	4		
4.8	3		
3.1	3		
2.8	2		
2.7	2		

Series.value_counts()

Value	Frequency
2.7	2
2.8	2
2.9	5
3.0	4
3.1	3
3.2	5
3.3	4
3.4	9
3.5	9
3.6	8
3.7	9
3.8	5
3.9	12
4.0	7
4.1	16
4.2	12
4.3	11
4.4	7
4.5	9
4.6	4
4.8	3

Series.sort_index()

Name: Fandango_Ratingvalue, dtype: int64

Name: Fandango_Ratingvalue, dtype: int64

Intervalos de agrupamento

Histograma no Matplotlib

ax.hist(norm_reviews['Fandango_Ratingvalue'], range=(0, 5))

90% das avaliações

estão entre 2 e 4

Comparando histogramas

50% das avaliações

estão entre 2 e 4

75% das avaliações

estão entre 2 e 4

50% das avaliações

estão entre 2 e 4

Quartil e gráfico de caixa

Múltiplos gráficos de caixa

Lesson 11 - Histogram and Boxplot.ipynb

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

matpletlib


```
# Enable matplotlib plot inline
%matplotlib inline
norm_reviews.Fandango_Ratingvalue.hist(bins=20, range=(0,5))
```

other way to do the same thing
norm_reviews.Fandango_Ratingvalue.plot(kind='hist', bins=20, range=(0,5));

norm_reviews.plot(kind='hist', bins=20, range=(0,5), alpha=0.3);

norm_reviews.plot(kind='hist', bins=20, range=(0,5), stacked=True);

norm_reviews.Fandango_Ratingvalue.plot(kind='box')
norm_reviews.plot(kind='box',rot=90)

norm_reviews.plot(kind='scatter',x='RT_user_norm', y='Fandango_Ratingvalue')

