Technische Universität München

Ferienkurs Mathematik für Physiker 1

(2021/2022)Übungsblatt 2

Yigit Bulutlar

22. März 2022

1 Lineare Gleichungssysteme

1.1

Geben Sie für die folgenden linearen Gleichungssysteme die erweiterte Koeffizientenmatrix an. Bestimmen Sie die Lösungsmenge für jedes Gleichungssystem. $(a \in \mathbb{R})$

(a)
$$2x + y = 3$$
 (b) $4x - 2y + 2z = 8$ (c) $x + y + az = 0$
 $y - 2z = 4$ $2x - y + 4z = 7$ $2x + z = 0$
 $2x + 3y - 4z = 11$ $2x - y + 2z = 5$ $4x - 2y + 2z = 1$

Lösung:

(a)
$$\begin{pmatrix} 2 & 1 & 0 & 3 \\ 0 & 1 & -2 & 4 \\ 2 & 3 & -4 & 11 \end{pmatrix}$$
 \rightarrow $\begin{pmatrix} 2 & 1 & 0 & 3 \\ 0 & 1 & -2 & 4 \\ 0 & 2 & -4 & 8 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 2 & 1 & 0 & 3 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Wir wählen y als freie Variable und schreiben die andere Variablen in Abhängigkeit von y.

$$x = \frac{3}{2} - \frac{y}{2}, \quad z = \frac{y}{2} - 2$$

Es ergibt sich also die Lösungsmenge:

$$L = \left\{ \begin{pmatrix} \frac{3}{2} - \frac{y}{2} \\ y \\ \frac{y}{2} - 2 \end{pmatrix} : y \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} \frac{3}{2} \\ 0 \\ -2 \end{pmatrix} + \begin{pmatrix} -\frac{y}{2} \\ y \\ \frac{y}{2} \end{pmatrix} : y \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} \frac{3}{2} \\ 0 \\ -2 \end{pmatrix} + y \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} : y \in \mathbb{R} \right\}$$

(b)
$$\begin{pmatrix} 4 & -2 & 2 & | & 8 \\ 2 & -1 & 4 & | & 7 \\ 2 & -1 & 2 & | & 5 \end{pmatrix}$$
 $-\frac{1}{2}(I) \rightarrow \begin{pmatrix} 4 & -2 & 2 & | & 8 \\ 0 & 0 & 3 & | & 3 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 4 & -2 & 2 & | & 8 \\ 0 & 0 & 3 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$

Wir können von der zweiten Zeile direkt lesen, dass z=1. Wir setzen das in die erste Zeile und schreiben y in Abhängigkeit von $x. \implies y=2x-3$ Es ergibt sich also die Lösungsmenge:

$$L = \left\{ \begin{pmatrix} x \\ 2x - 3 \\ 1 \end{pmatrix} : x \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} + \begin{pmatrix} x \\ 2x \\ 0 \end{pmatrix} : x \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} + x \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} : x \in \mathbb{R} \right\}$$

(c) Fall 1:
$$a \neq \frac{1}{2}$$

$$\begin{pmatrix} 1 & 1 & a & 0 \\ 2 & 0 & 1 & 0 \\ 4 & -2 & 2 & 1 \end{pmatrix} - 2(I) \rightarrow \begin{pmatrix} 1 & 1 & a & 0 \\ 0 & -2 & 1 - 2a & 0 \\ 0 & -6 & 2 - 4a & 1 \end{pmatrix} - 3(II)$$

$$\rightarrow \begin{pmatrix} 1 & 1 & a & 0 \\ 0 & -2 & 1 - 2a & 0 \\ 0 & 0 & 2a - 1 & 1 \end{pmatrix} + \frac{a}{1-2a}(III) \rightarrow \begin{pmatrix} 1 & 1 & 0 & \frac{a}{1-2a} \\ 0 & 0 & 1 & \frac{1}{2a-1} \end{pmatrix} + \frac{1}{2}(II)$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2-4a} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2a-1} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2-4a} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2a-1} \end{pmatrix}$$

Es ergibt sich also die Lösungsmenge:
$$L = \left\{ \begin{pmatrix} \frac{1}{2-4a} \\ -\frac{1}{2} \\ \frac{1}{2a-1} \end{pmatrix} \right\} = \left\{ \frac{1}{4a-2} \cdot \begin{pmatrix} -1 \\ 1-2a \\ 2 \end{pmatrix} \right\}$$

Fall 2:
$$a = \frac{1}{2}$$

$$\begin{pmatrix}
1 & 1 & \frac{1}{2} & 0 \\
2 & 0 & 1 & 0 \\
4 & -2 & 2 & 1
\end{pmatrix}
 -2(I)$$

$$\rightarrow
\begin{pmatrix}
1 & 1 & \frac{1}{2} & 0 \\
0 & -2 & 0 & 0 \\
0 & -6 & 0 & 1
\end{pmatrix}$$

Wenn wir die erhaltene Gleichungen lesen, kriegen wir von der zweiten Zeile y=0 und von der dritten Zeile $y=-\frac{1}{6}$. y kann nicht gleichzeitig 2 verschiedene Werte haben, deshalb ist das Gleichungssytem für $a=\frac{1}{2}$ nicht lösbar.

1.2

Prüfen Sie nach, für welche $a \in \mathbb{C}$ die folgende Vektoren linear unabhängig sind.

$$b_1 = \begin{pmatrix} 1 \\ 1+i \\ 1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} i \\ i \\ a+i \end{pmatrix}, \quad b_3 = \begin{pmatrix} -i \\ -a+1-i \\ 1-i \end{pmatrix}$$

Lösung:

Die Vektoren b_1 , b_2 , b_3 sind genau dann linear unabhängig, wenn das LGS

$$\alpha \begin{pmatrix} 1 \\ 1+i \\ 1 \end{pmatrix} + \beta \begin{pmatrix} i \\ i \\ a+i \end{pmatrix} + \gamma \begin{pmatrix} -i \\ -a+1-i \\ 1-i \end{pmatrix} = 0$$

eine eindeutige Lösung hat. Wir wenden das Gauß-Verfahren auf die Koeffizientenmatrix B, deren Spalten genau diese Vektoren sind, an. Das LGS ist lösbar genau dann wenn B vollen Rang hat.

$$\begin{pmatrix} 1 & i & -i \\ 1+i & i & -a+1-i \\ 1 & a+i & 1-i \end{pmatrix} -(1+i)(I) \rightarrow \begin{pmatrix} 1 & i & -i \\ 0 & 1 & -a \\ 0 & a & 1 \end{pmatrix} -a(II) \rightarrow \begin{pmatrix} 1 & i & -i \\ 0 & 1 & a \\ 0 & 0 & 1+a^2 \end{pmatrix}$$

Offenbar hat diese Matrix Rang 3 genau dann wenn $1 + a^2 \neq 0$. Wir haben also gezeigt: b_1, b_2, b_3 sind linear unabhängig genau dann wenn $a \neq \pm i$.

2 Matrizen als Lineare Abbildungen

2.1

Betrachten Sie die Abbildung $f_A: \mathbb{R}^4 \to \mathbb{R}^4, v \longmapsto A \cdot v$ gegeben durch die Matrix

$$A = \begin{pmatrix} 1 & 3 & 0 & 7 \\ 2 & 7 & 3 & 12 \\ -3 & -6 & 9 & -27 \\ 2 & 2 & -12 & 22 \end{pmatrix}$$

3

- (a) Zeigen Sie, dass f_A eine lineare Abbildung ist.
- (b) Bestimmen Sie eine Basis B von $Kern(f_A)$
- (c) Bestimmen Sie eine Basis C von $Bild(f_A)$
- (d) Ist f_A surjektiv bzw. injektiv?

Lösung:

(a)
$$1.f_A(v+w) = A \cdot (v+w) = A \cdot v + A \cdot w = f_A(v) + f_A(w)$$

 $2.f_A(av) = A \cdot (av) = a(A \cdot v) = af_A(v)$

(b) Für Kern (f_A) ist das durch A gegebene homogene LGS zu lösen.

$$\begin{pmatrix} 1 & 3 & 0 & 7 \\ 2 & 7 & 3 & 12 \\ -3 & -6 & 9 & -27 \\ 2 & 2 & -12 & 22 \end{pmatrix} \xrightarrow{-2(I)} \rightarrow \begin{pmatrix} 1 & 3 & 0 & 7 \\ 0 & 1 & 3 & -2 \\ 0 & 3 & 9 & -6 \\ 0 & -4 & -12 & 8 \end{pmatrix} \xrightarrow{-3(II)} \xrightarrow{-3(II)}$$

$$\Rightarrow \begin{cases}
1 & 0 & -9 & 13 \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}
\Rightarrow Kern(f_A) = \begin{cases}
9x_3 - 13x_4 \\
-3x_3 + 2x_4 \\
x_3 \\
x_4
\end{cases} | x_3, x_4 \in \mathbb{R} = \begin{cases}
9 \\
-3 \\
1 \\
0
\end{cases}, \begin{pmatrix}
-13 \\
2 \\
0 \\
1
\end{pmatrix}$$

$$\Rightarrow B = \begin{cases}
9 \\
-3 \\
1 \\
0
\end{cases}, \begin{pmatrix}
-13 \\
2 \\
0 \\
1
\end{cases}$$

(c) Das Bild von f_A wird von den Spalten von A aufgespannt, d.h.

$$Bild(f_A) = \left\langle \begin{pmatrix} 1\\2\\-3\\2 \end{pmatrix}, \begin{pmatrix} 3\\7\\-6\\2 \end{pmatrix}, \begin{pmatrix} 0\\3\\9\\-12 \end{pmatrix}, \begin{pmatrix} 7\\12\\-27\\22 \end{pmatrix} \right\rangle$$

Um eine Basis zu bestimmen, bilden wir eine Matrix in der wir die Elemente von obigem Erzeugendensystem als Spaltenvektoren schreiben d.h. wir transponieren A und bringen diese in Zeilenstufenform.

$$\begin{pmatrix} 1 & 2 & -3 & 2 \\ 3 & 7 & -6 & 2 \\ 0 & 3 & 9 & -12 \\ 7 & 12 & -27 & 22 \end{pmatrix} -3(I) \rightarrow \begin{pmatrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 3 & 9 & -12 \\ 0 & -2 & -6 & 8 \end{pmatrix} -3(II) \rightarrow \begin{pmatrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\implies C = \left\{ \begin{pmatrix} 1 \\ 2 \\ -3 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \\ -4 \end{pmatrix} \right\}$$

(d) $\dim(\text{Bild}(f_A)) = 2 \neq 4 = \dim(\mathbb{R}^3) \implies f_A \text{ ist nicht surjektiv.}$ $\operatorname{Kern}(f_A) \neq 0 \implies f_A \text{ ist nicht injektiv.}$

2.2

Betrachten Sie die lineare Abbildung $\psi: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 2}[x], f \longmapsto f' - f(7)$ wobei f' die Ableitung von f ist. Bestimmen Sie eine Basis B von $\operatorname{Kern}(\psi)$ und eine Basis C von $\operatorname{Bild}(\psi)$.

Lösung:

Sei $ax^2 + bx + c \in \text{Kern}(\psi)$. Dann ist $\psi(ax^2 + bx + c) = 2ax + b - 49a - 7b - c = 0$. Daraus folgt a = 0 und b - 7b - c = 0, d.h. c = -6b. Damit hat jedes Polynom im Kern von ψ die Form bx - 6b für ein $b \in \mathbb{R}$. Es folgt:

$$\operatorname{Kern}(\psi) = \langle x - 6 \rangle \implies B = \{x - 6\}$$

Insbesondere, $\dim(\operatorname{Kern}(\psi))=1$ und mit der Dimensionsformel folgt $\dim(\operatorname{Bild}(\psi))=\dim(\mathbb{R}_{\leq 2}[x])-\dim(\operatorname{Kern}(\psi))=3-1=2$. Nun raten wir zwei linear unabhängige Elemente im Bild von ψ . z.B. sind $\psi(x^2)=2x-49$ und $\psi(-1)=1$ linear unabhängig und liegen im Bild von ψ . Wegen $\dim(\operatorname{Bild}(\psi))=2$, bilden sie damit schon eine Basis von $\operatorname{Bild}(\psi)$.

$$\implies C = \{2x - 49, 1\}$$

2.3

Bestimmen Sie eine lineare Abbildung $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ mit $\operatorname{Kern}(\phi) = \langle \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \rangle$.

Hinweis: Betrachten Sie ϕ als eine Matrix.

Lösung:

Wir definieren $\phi(v) = A_{\phi} \cdot v$ mit $v \in \mathbb{R}^3$ und $A_{\phi} \in \mathbb{R}^{2 \times 3}$

Definition von Kern sagt: $\ker(\phi) = \ker(A_{\phi}) \to LGS$ in Form $(A_{\phi}|0)$

Bisher haben wir immer Lösungsräume der LGS gefunden. Jetzt ist uns ein Lösungsraum gegeben und wir suchen eine passende LGS. Gegebene Lösungraum ist:

$$L = \langle \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \rangle = \left\{ x_3 \cdot \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \right\}$$

Für eine beliebige $v=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}\in L$ können wir die folgende Lineare Gleichungsystem bilden:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \cdot \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 2x_3 \\ 4x_3 \\ x_3 \end{pmatrix} \quad \begin{array}{c} x_1 = 2x_3 \\ x_2 = 4x_3 \\ x_3 \end{array} \quad \begin{array}{c} x_1 - 2x_3 = 0 \\ x_2 - 4x_3 = 0 \end{array}$$

Wenn wir diese LGS als Koeffizientenmatrix schreiben, können wir die gesuchte Matrix A_{ϕ} finden.

Also die lineare Abbildung
$$\phi : \mathbb{R}^3 \to \mathbb{R}^2$$
, $\phi(v) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -4 \end{pmatrix} \cdot v$ hat den Kern $\ker(\phi) = \langle \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \rangle$.

Achtung! Die oben gegebene ϕ ist nicht die einzige mögliche lineare Abbildung. Jede Matrix, deren Zeilen aus eine Linearkombination von den Zeilen von A_{ϕ} entsteht hat die selbe Eigenschaft.

2.4

Seien K ein Körper, V, W zwei endlich dimensionale K-VR. Weiter sei Z ein Untervektorraum von W. Sei $f: V \to W$ eine lineare Abbildung. Zeigen Sie, dass $f^{-1}(Z)$ ein Untervektorraum von V ist.

Lösung:

Da Z ein Untervektorraum ist, so gilt $0 \in Z$. Da f linear ist, so gilt $f(0) = 0 \in Z$, also $0 \in f^{-1}(Z)$.

Seien nu $x, y \in f^{-1}(Z)$ und $\lambda \in K$. Da f linear ist , so gilt $f(x + y) = f(x) + f(y) \in Z$ und $f(\lambda x) = \lambda f(x) \in Z$. Somit also $x + y, \lambda x \in f^{-1}(Z)$. Damit sind alle Bedingungen für Unterräume erfüllt.

3 Determinante

3.1

Betrachten Sie die Matrizen $A, B \in \mathbb{R}^{4 \times 4}$ und die Permutationen $\sigma, \tau \in S_4$

$$A = \begin{pmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ -4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

- (a) Berechnen Sie $C = A \cdot B$
- (b) Berechnen Sie die Anzahl der Fehlstände $w(\sigma)$ bzw. $w(\tau)$.
- (c) Berechnen Sie das Signum $sgn(\sigma)$ bzw. $sgn(\tau)$
- (d) Berechnen Sie die Determinante von C nach der Leibniz-Formel.

Lösung:

(a)
$$C = \begin{pmatrix} 0 & 0 & 8 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 6 \\ -12 & 0 & 0 & 0 \end{pmatrix}$$

(b)
$$\sigma$$
: Fehlstände = $\{(1,4), (2,4), (3,4)\} \implies w(\sigma) = 3$
 τ : Fehlstände = $\{(1,2), (1,4), (3,4)\} \implies w(\tau) = 3$

(c)
$$\operatorname{sgn}(\sigma) = (-1)^{w(\sigma)} = -1$$
, $\operatorname{sgn}(\tau) = (-1)^{w(\tau)} = -1$

(d)
$$\det(C) = \det(A) \cdot \det(B) = (\sum_{\pi \in S_4} (\operatorname{sgn}(\pi) \prod_{i=1}^n a_{i,\pi(i)})) \cdot (\sum_{\pi \in S_4} (\operatorname{sgn}(\pi) \prod_{i=1}^n b_{i,\pi(i)}))$$

= $(\operatorname{sgn}(\sigma) \cdot 1 \cdot 2 \cdot 3 \cdot 4) \cdot (\operatorname{sgn}(\tau) \cdot (-4) \cdot (-1) \cdot 2 \cdot 3) = (-24) \cdot (-24) = 576$

3.2

Bestimmen Sie die Determinante folgenden Matrizen. Versuchen Sie bei jede Teilaufgabe möglichst verschiedene Berechnungsverfahren zu verwenden.

(a)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 3 & -1 & 1 \end{pmatrix}, \qquad (b) \\ B = \begin{pmatrix} 1 & -1 & 0 & 2 \\ 3 & 1 & 4 & 1 \\ 0 & 0 & 0 & -3 \\ 1 & -2 & 0 & 4 \end{pmatrix},$$
(c)
$$C = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 1 & -1 & 1 & 3 \\ -2 & 1 & 3 & 14 \\ 0 & 0 & 5 & 7 \end{pmatrix}, \qquad (d) \\ D = \begin{pmatrix} 4 & -4 & 2 & -15 \\ -2 & -10 & 3 & -21 \\ -1 & -4 & 1 & -9 \\ -13 & 2 & -2 & 21 \end{pmatrix}$$

Lösung:

(a) A ist eine 3×3 Matrix mit relativ kleine Koeffizienten, deshalb macht es Sinn als Berechnungsverfahren die Sarrusregel zu verwenden.

Damit können wir die Determinante Rechnen als:

$$\det(A) = 1 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 3 + 1 \cdot 2 \cdot (-1) - 2 \cdot 2 \cdot 1 - 1 \cdot 1 \cdot (-1) - 1 \cdot 1 \cdot 3 = 1 + 6 - 2 - 4 + 1 - 3 = -1$$

(b) B ist eine 4×4 Matrix mit drei Koeffizienten gleich 0 jeweils in die dritte Zeile und die dritte Spalte. Deshalb macht es hier am meisten Sinn die Laplace-Entwicklung zu verwenden.

$$\det(B) = \det\begin{pmatrix} 1 & -1 & 0 & 2 \\ 3 & 1 & 4 & 1 \\ 0 & 0 & 0 & -3 \\ 1 & -2 & 0 & 4 \end{pmatrix}) = (-1)^{(3+4)} \cdot (-3) \cdot \det\begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & 4 \\ 1 & -2 & 0 \end{pmatrix})$$
$$= 3 \cdot (-1)^{(2+3)} \cdot 4 \cdot \det\begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix}) = 3 \cdot (-1) \cdot 4 \cdot (-2+1) = 12$$

(c) Wenn wir die erste und die dritte Zeile von C vertauschen erhalten wir eine Blockmatrix. Dann können wir die Formel für Blockmatrizen verwenden um die Determinante von C rechnen.

$$\det\left(\left(\begin{array}{c|c}A & B\\\hline 0 & C\end{array}\right) = \det(A) \cdot \det(C)$$

Damit folgt:

$$\det(C) = \det\begin{pmatrix} 0 & 0 & 1 & 2 \\ 1 & -1 & 1 & 3 \\ -2 & 1 & 3 & 14 \\ 0 & 0 & 5 & 7 \end{pmatrix} (III) = (-1) \cdot \det\begin{pmatrix} -2 & 1 & 3 & 14 \\ 1 & -1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 5 & 7 \end{pmatrix})$$

$$= (-1) \cdot \det\begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}) \cdot \det\begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix}) = (-1) \cdot (2 - 1) \cdot (7 - 10) = 3$$

(d) Es gibt keine einfache Methode für die Determinante von D. Deshalb verwenden wir ganz allgemein die Gauß-Algorithmus:

$$\det(D) = \det\begin{pmatrix} 4 & -4 & 2 & -15 \\ -2 & -10 & 3 & -21 \\ -1 & -4 & 1 & -9 \\ -13 & 2 & -2 & 21 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ -2 & -10 & 3 & -21 \\ 4 & -4 & 2 & -15 \\ -13 & 2 & -2 & 21 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ 0 & -2 & 1 & -3 \\ 0 & -20 & 6 & -51 \\ 0 & 54 & -15 & 138 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ 0 & -2 & 1 & -3 \\ 0 & 0 & -4 & -21 \\ 0 & 0 & 0 & -6 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ 0 & -2 & 1 & -3 \\ 0 & 0 & -4 & -21 \\ 0 & 0 & 0 & -6 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ 0 & -2 & 1 & -3 \\ 0 & 0 & -4 & -21 \\ 0 & 0 & 0 & -6 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ 0 & -2 & 1 & -3 \\ 0 & 0 & -4 & -21 \\ 0 & 0 & 0 & -6 \end{pmatrix}$$

$$= (-1) \cdot \det\begin{pmatrix} -1 & -4 & 1 & -9 \\ 0 & -2 & 1 & -3 \\ 0 & 0 & -4 & -21 \\ 0 & 0 & 0 & -6 \end{pmatrix}$$

3.3

Beweisen Sie die folgende Aussage für $A \in \mathbb{R}^{n \times n}$:

A ist nicht invertierbar $\implies AB$ ist nicht invertierbar für $\forall B \in \mathbb{R}^{n \times n}$

Lösung:

Wir wissen, dass A ist nicht invertierbar $\iff \det(A) = 0$. Also $\det(AB) = \det(A) \cdot \det(B) = 0 \cdot \det(B) = 0 \implies AB$ ist nicht invertierbar.