Tarea 3

Métodos Numéricos para la Ciencia e Ingeniería FI3104

Jorge Gacitúa Gutiérrez

08 de Octubre 2015

Problema 1

EL oscilador de van der Pool describe la dinámica de algunos circuitos eléctricos y su ecuación corresponde a:

$$\frac{d^2x}{dt^2} = -kx - \mu(x^2 - a^2)\frac{dx}{dt} \tag{1}$$

haciendo el cambio de variable $t = \frac{s}{sqrtk}$ y x = ay

$$\frac{d}{dt}\left(a\frac{dy}{dt}\right) = -aky - a^2\mu(y^2 - 1)a\frac{dy}{dt}$$

$$\frac{d}{ds}\frac{ds}{dt}\left(\frac{dy}{ds}\frac{ds}{dt}\right) = -ky - a^2\mu(y^2 - 1)\frac{dy}{ds}\frac{ds}{dt}$$

$$k\frac{d^2y}{ds^2} = -ky - \sqrt{k}a^2\mu(y^2 - 1)\frac{dy}{ds}$$

$$\frac{d^2y}{ds^2} = -y - \mu^*(y^2 - 1)\frac{dy}{ds}$$
(2)

Donde $\mu^* = \frac{a^2}{\sqrt{k}}\mu$

Para resolver la ecuación (2) se utilizó el método Runge-Kutta de orden 3, el cual se implementó mediante 4 funciones que contenían todas la variables del problema:

- get_k1(f,h,g,g_prima)
- get_k2(f,h,g,g_prima)
- get_k3(f,h,g,g_prima)
- $rk3(f,h,g,g_prima)$

Figure 1: Caption

f correspondía a la función del lado derecho de la edo de orden uno, h corresponde al paso variable, g es la función original del problema y g_prima la derivada de la misma.

Como el problema correspondía a una edo de segundo orden y se necesita de una deo de primer onden, se procedió a separar el problema en dos ecuaciones diferenciales:

$$\frac{d}{ds} \begin{pmatrix} y \\ \frac{dy}{ds} \end{pmatrix} = \begin{pmatrix} \frac{\frac{dy}{ds}}{-y - \mu^* (y^2 - 1) \frac{dy}{ds}} \end{pmatrix}$$
(3)

Es decir:

- \bullet g = y
- g_prima = $\frac{dy}{ds}$
- $\bullet \ f = -y \mu^*(y^2 1) \frac{dy}{ds}$

En la solución del problema se utilizó $\mu^*=1.560$ y se integro durante un tiempo de $20\pi.$

Con las condiciones iniciales y=0.1 y $\frac{dy}{ds}=0$, tal como se observa en la imagen 1, al inicio al sistema se le inyecta energía y luego alcanza un estado estacionario.

Con la condiciones iniciales y=4.0 y $\frac{dy}{ds}=0$, se observa que al sistema se le quita energía hasta que alcance nuevamente el estado estacionario.

Figure 2: Caption

Figure 3: Caption

Figure 4: Caption

Problema 2

El atractor de Lorenz es un caso particular del sistema de Lorenz donde $\sigma=10,$ $\beta=8/3$ y $\rho=28$

$$\frac{dy}{ds} = \sigma(y - x)$$
$$\frac{dy}{ds} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

Para resolver este sistema se utilizo el método Runge $_kutta de orden 4$

Al graficar los resultados en 3D se observa que las soluciones oscilan entorno a 2 núcleos (figura 8). Esto se puede ver mas claramente en las figuras 5,6 y 7 donde graficaron los planos 2D

Figure 5: Caption

Figure 6: Caption

Figure 7: Caption

Figure 8: Caption