Part III Algebraic Geometry

Based on lectures by Dr C. Birkar

Michaelmas 2016 University of Cambridge

Contents

1 Sheaves 1

1 Sheaves

Definition (Presheaf). Let X be a topological space. A **presheaf** \mathcal{F} consists of a collection of abelian groups, $\mathcal{F}(U)$, where $U \subseteq X$ are the open subsets of X s.t. $\mathcal{F}(\emptyset) = 0$.

 \exists a homomorphism $\mathcal{F}(U) \to \mathcal{F}(V)$, $s \mapsto s|_V$ for each inclusion $V \subseteq U$ of open sets. $\mathcal{F}(U) \to \mathcal{F}(U)$ is the identity map. If $W \subseteq V \subseteq U$ are open sets then $\forall s \in \mathcal{F}(U)$, $(s|_V)|_W = s|_W$.

Definition (Sheaf). A sheaf \mathcal{F} is a presheaf s.t. if $U = \bigcup U_i$, U, U_i open and if $s_i \in \mathcal{F}(U_i)$ s.t. $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \ \forall i, j \ then \ \exists ! s \in \mathcal{F}(U) \ s.t. \ s|_{U_i} = s_i \ \forall i.$

Definition (Stalk). Let X be a topological space, \mathcal{F} a presheaf, $x \in X$. Define the **stalk** of \mathcal{F} at x by $\mathcal{F}_x = \lim_{U \ni x} \mathcal{F}(U)$.

More explicitly, each element of \mathcal{F}_x is given by a pair (U,s) where $x \in U$ open, $s \in \mathcal{F}(U)$ subject to the condition

$$(U,s)=(V,t)$$
 if $\exists x \in W \subseteq U \cap V$ s.t. $s|_W=t|_W$

Definition (Morphism). Let X be a topological space, \mathcal{F} , \mathcal{G} presheaves. A **morphism** $\varphi : \mathcal{F} \to \mathcal{G}$ is given by a collection of homomorphisms $\mathcal{F}(U) \stackrel{\varphi(U)}{\to} \mathcal{G}$ s.t. if $V \subseteq U$, the diagram

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}(V) \xrightarrow{\varphi_V} \mathcal{G}(V)$$

commutes. We say φ is an **isomorphism** if it has an inverse.

Definition. Let X be a topological space, \mathcal{F} a presheaf. Then \exists a sheaf \mathcal{F}^+ and a morphism $\alpha: \mathcal{F} \to \mathcal{F}^+$ s.t. if $\varphi: \mathcal{F} \to \mathcal{G}$ is a morphism into a sheaf \mathcal{G} , then φ factors uniquely

$$\mathcal{F} \stackrel{\alpha}{\overset{\varphi}{\downarrow}} \stackrel{\mathcal{F}^+}{\overset{\varphi}{\downarrow}}$$

for some morphism $\mathcal{F}^+ \to \mathcal{G}$. We call \mathcal{F}^+ the sheaf **associated** to \mathcal{F} . \mathcal{F}^+ is constructed as follows:

$$\mathcal{F}^{+}(U) := \left\{ functions \ s : U \to \bigsqcup_{x \in U} \mathcal{F}_{x} \ \middle| \ \ \forall x \in U, \ s(x) \in \mathcal{F}_{x}, \ \exists x \in W \subseteq V \ and \\ t \in \mathcal{F}(W) \ s.t. \ s(y) = (V, t) \in \mathcal{F}_{y} \ \forall y \in W \ \right\}$$

Definition (Kernel and Image). Let X be a topological space, $\mathcal{F} \stackrel{\varphi}{\to} \mathcal{G}$ a morphism of presheaves. The **kernel** of φ , denoted Ker φ , is defined by

$$(\operatorname{Ker}\varphi)(U) = \operatorname{Ker}(\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U))$$

The **presheaf image** of φ , denoted $\operatorname{Im}(\varphi^{pre})$ is defined by

$$(\operatorname{Im}\varphi^{pre})(U) = \operatorname{Im}(\varphi_U)$$

Now assume \mathcal{F} and \mathcal{G} are sheaves. Define the kernel of $\varphi = \operatorname{Ker} \varphi$ as above, which is a sheaf. Define the image of φ by $\operatorname{Im}(\varphi^{pre})^+$, denoted $\operatorname{Im} \varphi$.

Theorem 1. Suppose $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves on a topological space X. Then

i. φ is injective $\iff \varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is injective $\forall x \in X$

ii. φ is surjective $\iff \varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is surjective $\forall x \in X$

iii. φ is an isomorphism $\iff \varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is an isomorphism $\forall x \in X$

Definition. Let X be a topological space. A complex of sheaves is a sequence

$$\cdots \to \mathcal{F}_{-2} \stackrel{\varphi_{-2}}{\to} \mathcal{F}_{-1} \stackrel{\varphi_{-1}}{\to} \mathcal{F}_0 \stackrel{\varphi_0}{\to} \mathcal{F}_1 \stackrel{\varphi_1}{\to} \mathcal{F}_2 \stackrel{\varphi_2}{\to} \ldots$$

of sheaves s.t. $\operatorname{Im} \varphi_i \subseteq \operatorname{Ker} \varphi_{i+1} \ \forall i$. We say it is an **exact sequence** if $\operatorname{Im} \varphi_i = \operatorname{Ker} \varphi_{i+1} \ \forall i$. An exact sequence

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

is called a **short exact sequence**.

Definition (Constant sheaf). Let X be a topological space and A an abelian group. Define a presheaf \mathcal{F} by $\mathcal{F}(U) = A \forall$ open $U \neq \emptyset$. We call \mathcal{F}^+ the **constant sheaf** associated to A.

Definition (Direct image). Let $f: X \to Y$ be a continuous map of topological spaces, and let \mathcal{F} be a presheaf on X. The **direct image** $f_*\mathcal{F}$ is defined by

$$(f_*\mathcal{F})(V) = \mathcal{F}(f^{-1}V)$$

Definition (Skyscraper sheaf). Let X be a topological space, $x \in X$, A an abelian group. Define \mathcal{F} by

$$\mathcal{F} = \left\{ \begin{array}{c} A \text{ if } x \in U \\ 0 \text{ if } x \notin U \end{array} \right.$$

We call \mathcal{F} the **skyscraper sheaf** associated to A at x.