Table of Contents

1.	Sequence. Convergence of sequences.		2
----	-------------------------------------	--	---

1. Sequence. Convergence of sequences.

Let $x : \mathbb{N} \to \mathbb{R}$. Then we can say that sequence was defined and there is a valid notation: $x(n) = x_n$.

Definition

Let $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$ some sequence, we can say that it converge to $l \in \mathbb{R}$ (or $l = \lim_{n \to \infty} x$), iff:

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n > N) |x_n - l| < \varepsilon$$

Example 1:

$$\lim_{n \to \infty} \frac{1}{n} = 0 \iff$$

$$\Leftrightarrow (\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n > N) : \left| \frac{1}{n} \right| < \varepsilon \iff$$

$$\Leftrightarrow n > \frac{1}{\varepsilon}, \ N = \left[\frac{1}{\varepsilon} \right] + 1.$$

$$(\forall \varepsilon > 0) \left(N = \left[\frac{1}{\varepsilon} \right] + 1 \in \mathbb{N} \right) (\forall n > N) n > N \implies$$

$$\to n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n} < \varepsilon.$$

Theorem

Numeric sequence can't have more than one limit.

Theorem: Properties of limit of consequence

Let $\{x_n\}_{n=1}^{\infty}$ some sequence. We can define some properties of it:

- if $\{x_n\}_{n=1}^{\infty}$ converges then $\{x_n\}_{n=1}^{\infty}$ is bounded;
- if $\lim_{n\to\infty} x_n = l \neq 0$, then $(\exists N \in \mathbb{N})(\forall n > N)$ $(\operatorname{sgn}(x_n) = \operatorname{sgn}(l)) \wedge |x_n| > \frac{|l|}{2};$
- if $\lim_{n\to\infty} x_n = l_1$, $\lim_{n\to\infty} y_n = l_2$: $(\forall n \in \mathbb{N}) \ x_n \le y_n \Rightarrow l_1 \le l_2$
- if $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = l$: $(\forall n \in \mathbb{N}) x_n \le y_n \le z_n$

then
$$\lim_{n\to\infty}y_n=1$$
.

Theorem: Arithmetic operations with limits

If $\lim_{n\to\infty} x_n = l_1$, $\lim_{n\to\infty} y_n = l_2$, then:

- $x_n \pm y_n$ converges to $l_1 \pm l_2$;
- $x_n \cdot y_n$ converges to $l_1 \cdot l_2$;
- if in addition $y_n \neq 0$, then $(\forall n \in \mathbb{N})$, $l_2 \neq 0$, then $\frac{x_n}{y_n}$ converges to $\frac{l_1}{l_2}$.

Definition: Infinitesimal

Infinitesimal sequence is called sequence converged to zero.

Theorem

Product of an infinitesimal sequence and bounded one is infinitesimal.

Definition: I

finitely large sequence is called a sequence with infinite limit.

Theorem

 $\{x_n\}_{n=1}^{\infty} \quad \subset \quad \mathbb{R}\backslash\{0\} \quad \text{infinitesimal} \quad \text{iff} \quad \left\{\frac{1}{x_n}\right\}_{n=1}^{\infty}$ infinitely large.