Working in R

- Be able to use R to perform mathematical calculations.
- Understand the different data types used by R.
- Know how to work with vectors (creating, indexing)
- Be able to use R to perform element-wise calculations to vectors/columns, (e.g. adding columns together, averaging columns, scaling columns).
- Be able to write a for loop in R e.g. to print a simple sequence 2,4,6,8 or perform a certain task 100 times and store the results in a data frame or vector.
- Understand how to use tests > < == != and combine them using & | to test for a
 given condition on a value or column of values
- Be able to use the ifelse function in R on a column to generate a new column based on the column values.
- Be able to write simple R functions that take some input arguments and return a calculated result.
- Be able to generate random number sets e.g. from a uniform or normal distribution,
 and set a random seed appropriately.

```
set.seed(100)
a <- runif(10)
b <- rnorm(20)</pre>
```

Working with datasets in R

Be able to load data in R using a variety of formats (csv, xls, stata, Rdata, Rdat)
 library(readr)

```
world data raw <- read csv("QoG2012.csv")
```

make selections of rows/columns

```
student_grades <- select(student_data, read, write, math, science)</pre>
```

delete rows /columns

```
student data2 <- select(student data, -read, -write)</pre>
```

• filter rows based on conditions (and sets of conditions)

```
high_reading <- filter(student_data, read>50)
```

 use column data to create new columns e.g. based on a transformation of units or a formula involving other columns

```
student_data <- mutate(student_data, lang = (read+write)/2, overall = (read
+ write + math + science + socst)/5 )
```

• convert columns between types (e.g. between character/numerical/factor)

```
group_info_df$Gender <- as.factor(group_info_df$Gender)
group_info_df$Age <- as.integer(group_info_df$Age)
group_info_df$Height <- as.numeric(group_info_df$Height)
group_info_df$Been_before <- as.logical(group_info_df$Been_before)</pre>
```

• be able to use cut to convert a numerical column into a factor column

```
transport <- cut(boston_housing$rad, breaks = c(0,15,30),
labels=c("low","high")))</pre>
```

be able to rename rows and columns

be able to change the level labels for factor columns

```
student_data$racial_group <- factor(student_data$race, labels = c("Black", "Asian", "Hispanic", "White"))
```

• Be able to sort a dataframe by column values

```
# ascending order
student_data_sorted <- arrange(student_data,read)
# descending order
student_data_sorted <- arrange(student_data,desc(read))</pre>
```

Be able to randomly sample a dataframe (e.g. to create training and test subsets,

bootstrapped datasets, or to randomise row order)

```
set.seed(1)
n <- nrow(housing_data)
random_row_ids <- sample(1:n,size=n,replace=TRUE)
housing data rs <- housing_data[random_row_ids,]</pre>
```

Be able to normalise columns (by shifting and scaling) e.g. so that it has mean = 0
 and standard deviation = 1.

```
normalise <- function(x) {
norm_x <- (x-min(x)) / (max(x)-min(x))
return(norm x)</pre>
```

}

be able to use the dplyr group_by and summarise commands

```
student_data$racial_group <- factor(student_data$race, labels = c("Black",
"Asian", "Hispanic", "White"))
student_data_by_racial_group <- group_by(student_data, racial_group)
summarise(student_data_by_racial_group, n_students = n())
summarise(student_data_by_racial_group, mean_read = mean(read), max_read =
max(read), min read = min(read), sd read = sd(read))</pre>
```

be able to use apply to apply a function to the rows or columns of a dataframe

```
col.sums <- apply(x, 2, sum)
row.sums <- apply(x, 1, sum)</pre>
```

• be able to build a dataframes (e.g by joining columns, adding columns to an existing dataframe, or by adding new rows to an existing dataframe)

```
math_seq <- seq(from=0, to=100, by=1) student_data_for_fit <-
data.frame(math=math_seq)
fit_poly3 <- predict(polymodel3, newdata = student_data_for_fit )
student data for fit$fit poly3 <- fit poly3</pre>
```

Exploring datasets in R

column

• Be able to find and interpret mean, median of a column

```
mean(student_data$science)
median(student_data$science)
```

 Be able to find and interpret standard deviation and variance of a column var(student data\$science)

```
sd(student data$science)
```

• Be able to find and interpret range and quantiles (e.g. e.g. to find 95% interval) of a

```
range(birth_weights)
quantile(birth_weights,c(0.025,0.975,NaN))
```

- Be able to inspect for outliers visually and find them in the dataset and take appropriate action.
- Be able to find the correlation between data columns

```
library(corrplot)
corrplot(cor(boston housing))
```

- Be able to make and interpret scatter plots
 plot
- Be able to make and interpret histograms (with defined cut/bin positions)
- Be able to make and interpret boxplots boxplot
- Be able to style plots: set x and y axis limits, set x and y axis labels, set title, set point
 marker types, set line styles, and set point colour based on a criteria or factor class.
 plot(medv ~ lstat,data = boston_housing,

```
xlim(15, 20)
col = chas,
pch = 16,
cex = 1,
bty = "n",
main = "Relation between median value and lower status by Charles River dummy
variable",
xlab = "Lower status",
ylab = "Median value"
lty = "dashed", lwd = 1.5)
```

• Be able to style plots: set x and y axis labels, set title

```
xlab = "Lower status",
ylab = "Median value"
```

Be able to style plots: set point marker types and set line styles,
 pch= option to specify symbols

```
Ity line type. see the chart below.Iwd line width relative to the default (default=1). 2 is twice as wide.
```

• Be able to style plots: set point colour based on a criteria or factor class.

```
col = chas,
```

Be able to use the table command to build a frequency table.
 table(student_data\$socioeconomic_status,student_data\$racial_group)

- Be able to add annotations to plots: add text to a plot
- Be able to add annotations to plots: add vertical / horizontal lines at given values
- Be able to view a smoothed trend line onto scatter plot using scatter.smooth
 scatter.smooth(speed, dist, lpars =

```
list(col = "red", lwd = 3, lty = 3))
```

Be able to takes appropriate steps to identify where columns have missing (NA)
 values, and take appropriate measures (removal or exclusion from an analysis).

```
library(Amelia)
missmap(BostonHousing,col=c('yellow','black'),legend=TRUE)
drop na(credit data)
```

Hypothesis testing in R

Understand the assumptions made in performing a t-test, how to carry it out in R
 and interpret and explain the results (t-value, p-value, confidence interval).

```
gdp_mean <- mean(world_data$gdp, na.rm = TRUE)
n <- length(world_data$gdp[!is.na(world_data$gdp)])
se <- sd(world_data$gdp, na.rm = TRUE) / sqrt(n)
# lower bound
lb <- gdp_mean - 1.96 * se
# upper bound
ub <- gdp_mean + 1.96 * se
t.value <- (gdp_mean - 10000) / se
# p-value calculation
2* ( 1 - pt(t.value, df = (n-1) ))</pre>
```

• Be able to carry out a t-test on two groups of values to find evidence for a difference in the means, or test a hypothesis that one mean is greater/less than the other.

```
t.test(gdp ~ judiciary, mu = 0, alt = "two.sided", conf = 0.95,
data=world_data)
```

 Be able to carry out a t-test on two columns to find evidence to test the hypothesis that the columns are correlated.

```
cor.test(~ hdi+ gdp, data=world_data, )
```

Bivariate Regression in R

- Understand and be able to explain the principle of least-squares regression.
- Be able to carry out simple linear regression in R to make a linear model that
 predicts a response based on a single independent variable, and plot the line of best
 fit onto a scatter plot of the data.

```
plot(medv ~ lstat,data = boston_housing,
    frame.plot = FALSE,
    pch = 16,
    col = rgb(red = 110, green = 200, blue = 110, alpha = 80, maxColorValue = 255))
abline(modelm_l, lwd = 3,
    col = rgb(red = 230, green = 150, blue = 0, alpha = 255, maxColorValue = 255))
```

• Be able to display and understand the results of the fit, and the associated measures returned.

summary

- Be able to recall and explain the assumptions of linear regression, use R to explore if
 these assumptions are met, and carry out suggested steps to identify and manage
 these issues (e.g. to perform a suggested transformation, or remove outliers).
 gvlma(lm.selected)
- Be able to explore how simple variable transformations improve/do not improve linear fitting.
- Be able to make predictions using the fit (both for the training data, or a new dataset)
- Be able to access the residuals, and calculate values of RSS, MSE, and RMSE.

```
RSS
sum(residuals(lm.1)^2)
MSE
mean(residuals(lm.1)^2)
RMSE
sqrt(mean(residuals(lm.1)^2))
```

Multivariate Regression in R

- Understand how to perform a multivariate fit in R.
 Im(~+)
- Understand how to interpret the fit coefficients in a multivariate fit, and their associated p-values.

summary

ylab = "Median value")

- Understand how to interpret the f-test value returned from a multivariate fit.
 Anova()
- Understand how multivariate fits can include categorical variables, the use of dummy variables, and the interpretation of the resulting fit coefficients and their associated p-values.

```
model1 <- lm(science ~ math+gender,data=student_data)
summary</pre>
```

 Be able to include interaction terms in a multivariate fit, interpret the resulting coefficients, and test for their significance.

```
model1 <- lm(science ~ math+gender,data=student_data) model2 <-
lm(science ~ math*gender,data=student_data)
screenreg(list(model1,model2),digits=4)</pre>
```

 Be able to plot the result of multivariate fits appropriately (e.g. plots of the fit for simple models: 1 numerical predictor and 1 factor predictor (with/without interaction); plot of actual vs predicted values for more complex models; plot residuals vs fitted values)

```
plot(medv ~ lstat,data = boston_housing,

col = chas,

pch = 16,

cex = 1,

bty = "n",

main = "Relation between median value and lower status by Charles River dummy variable",

xlab = "Lower status",
```

```
abline( a=40.9 , b= -0.9972 , col = 2)
abline( a=34.9 , b= -0.9972 , col = 1)
legend(

"topright", # position fo legend
legend = levels(boston_housing$chas), # what to seperate by
col = c(1,2), # colors of legend labels
pch = 16, # dot type
lwd = 2, # line width in legend
bty = "n" # no box around the legend
)

Residual vs fitted
plot(lm.selected)

actual vs predicted
plot (house data$logSalePrice~lm.selected$fitted.values)
```

 Understand the problem arising with highly correlated predictors, and be able to detect and suggest suitable steps to deal with these issues.

Model selection

 Be able to interpret fit results to evaluate the significance of the different predictors used, and suggest potential model improvements.

```
screenreg(list(model1, model2), digits=4)
```

Understand how to perform an ANOVA test on a multivariate model to compare the
performance to a model containing only a subset of the predictors, and interpret the
result.

anova

Be able to use the stepAIC function to perform stepwise model selection to optimise
a model, understanding the arguments that can be used.

```
lm.min <- lm(medv ~ 1, data=boston housing)</pre>
```

 Be able to use the leaps function to test all possible predictor subsets and interpret the results and plots produced.

```
regsubsets.out <- regsubsets( medv ~ .,

data = boston_housing,

nbest = 1,

nvmax = NULL,

force.in = NULL, force.out = NULL,

method = 'exhaustive')

summary(regsubsets.out)

as.data.frame(summary(regsubsets.out)$outmat)

plot(regsubsets.out, scale='adjr2', main='Adjusted Rsq')
```

 Be able to use and optimise multivariate fits. using Ridge Regression and Lasso methods to constrain fit coefficients.

```
# glmnet can do ridge regression alpha=0
            or lasso regression alpha=1
\# we can also use values between 0 and 1
# which uses a hybrid of the two penalty types
# (called elastic net)
fit lasso <- glmnet(housing data.x, housing data.y,</pre>
               alpha = 1, lambda = 1)
fit_ridge <- glmnet(housing_data.x, housing_data.y,</pre>
               alpha = 0, lambda = 1)
# view fit coefficients
coef(fit lasso)
# to predict new points based on model
pred <- predict(fit lasso,newx=housing data.x)</pre>
# if we do not specify lambda glmnet will test out
# a range of penalties and we can view how coefficents
# behave by plotting the result
fit lasso <- glmnet (housing data.x, housing data.y,
               alpha = 1)
plot(fit lasso, xvar = "lambda") # lambda is on log-scale
```

Cross Validation

- Understand why the performance of a model on its training data may differ significantly in comparison to a test / validation / new data.
- Be able to describe the approaches of validation set (aka hold out) and be able to carry it out in R.

```
# valdiation set method
n = nrow(house_data_num)
n_training = n%/%2
# using %/% means integer division
# e.g. 3%/%2 = 1 not 1.5
# this is useful when we need whole numbers

# simple way to split (better to randomise...)
house_data_num.training <- house_data_num[1:n_training,]
house_data_num.test <- house_data_num[n_training:n,]
lm.selected.training <- lm(logSalePrice~OverallQual + OverallCond +
GrLivArea + YearBuilt, data=house_data_num.training)

pred <- predict(lm.selected.training, newdata=house_data_num.test)
residuals <- house_data_num.test$logSalePrice - pred
RMSE <- sqrt(sum((residuals)^2)/length(residuals))
RMSE</pre>
```

- Be able to describe the approaches of LOOCV and be able to carry it out in R using suitable functions
- install.packages("cvTools")
- library(cvTools)
- n = nrow(house data num)
- ovFit(lm.selected, data = house_data_num, y = house data num\$logSalePrice, K = n)
- RMSE = sqrt(sum((lm.selected\$residuals)^2)/nrow(house_data_num))
- RMSE
- Be able to describe the approaches of k-fold validation and be able to carry it out in R using suitable functions.
- # K-fold cross validation (10 folds) repeated with 100 random fold sets

```
    cv_result = cvFit(lm.selected, data = house_data_num, y = house_data_num$logSalePrice, K = 10, R=100)
    cv_result$cv
    cv_result$se
    cv result$reps
```

- Understand how to interpret the results of validation testing to select optimum models.
- Be able to describe the relative advantages/disadvantages of validation set (aka hold out), LOOCV, k-fold validation methods.
- Understand and be able to carry out the method of resampling to generate
 bootstrapped datasets that can be used when evaluating model performance.

```
set.seed(101)
# Let's create a population with some
# variable of interest Y. We have an
# input variable X that has mean 800, stdev 10
# and 10000 members
N <- 10000
X <- rnorm(N, mean=800, sd=10)</pre>
# Let's make the true relationship that
# Y and X are positively correlated.
# with population regression relationship
# Y = 0.5*X + e
# where e is the variance in Y that is not explained
# by the variation in X
# assume this is fairly large
\# e.g. mean = 0 but sd = 20
e <- rnorm(N, mean=0, sd=20)</pre>
# now we can calculate Y
Y = 0.5*X + e
# Store into data.frame
data.pop = data.frame(Y, X, e)
# Suppose a data scientist wants to explore the
# relationship between Y and X. However they don't have
\# access to the full population sample, and need
# to infer it from a random sample of 200 points
n < -200
sampled rows <- sample(1:N,n)</pre>
data.sample <- data.pop[sampled rows,]</pre>
# in bootstrapping we resample this many times
# on each resampled set we calculate and store
\# the fit parameter of interest
# here let's store the fitted slope value
# and mean squared sum of residuals MSE
coef out <- rep(NA,R)</pre>
```

```
MSE_out <- rep(NA,R)
for (i in 1:R) {
   resampled_rows <- sample(1:n,n,replace=TRUE)
   data.resampled <- data.sample[resampled_rows,]
   model <- lm(Y~X,data=data.resampled)
   coef_out[i] <- coef(model)[[2]]
   MSE_out[i] <- mean(resid(model)^2)
}</pre>
```

 Understand how the process of bootstrapping can be used to investigate the distribution of fit parameter results.

```
# examining the histograms of the variables of interest
# let's us estimate the possible distribution
# when testing new data
hist(coef_out)
hist(MSE_out)
mean(coef_out)
mean(MSE_out)
```

 Be able to carry out a bootstrap analysis to investigate e.g. fit performance or fit coefficients

```
# compare to fit to original sample
model <- lm(Y~X,data=data.sample)
coef_sample <- coef(model)[[2]]
MSE_sample <- mean(resid(model)^2)

coef_sample
MSE_sample
# note this doesn't improve the fit, it justs gives us
# infomation on the distributions of the parameter
# estimates</pre>
```

• Be able to use a for loop to carry out an optimisation analysis using a cross validation method, plot the results.

```
cv_result = cvFit(fit_spline, data = housing_data, y = housing_data$logSalePrice, K =
10, R = 10)
result$rmse[i] <- cv_result$cv
result$df[i] <- df_i
result$se[i] <- cv_result$se
}
head(result)
plot(result$rmse~result$df, pch=1,ylim=c(39.8,40.2)
points(result$df, result$rmse + 1.96*result$se,pch=2)
points(result$df, result$rmse - 1.96*result$se,pch=2)</pre>
```

Classification

- Be able to use R to calculate simple probabilities associated with sampling a dataset.
- Understand how the logistic function can be fitted to data to predict the
 probabilities associated with a binomial (0 or 1) variable in relation to the values of a
 set of predictors. Know why it is used in preference to a linear function.

table(predicted=logistic.model.prediction,actual=iris simple\$Species)

Be able to carry out a logistic regression fit in R and interpret the results.

```
gender_height.glm=glm(gender~height,data=mf_training,family=binomial)
```

 Understand how to display the results of a classification model using table to display the confusion matrix comparing predictions to true values.

```
table(predicted=logistic.model.prediction,actual=iris simple$Species)
```

• Be able to use the results of a classification model to make predictions, and measure the performance according to the misclassification rate.

```
load("mf_test.Rda")
mf_test$mod1_value <- predict(gender_height.glm,newdata=mf_test)
mf_test$mod1_prediction <- rep(0,nrow(mf_test))
mf_test[which(mf_test$mod1_value > 0.5),]$mod1_prediction <- 1
total <- nrow(mf_test)
misclassified <- length(which(mf_test$mod1_prediction != mf_test$gender))
rate <- misclassified/total
rate</pre>
```

Be able to describe the assumptions which Linear Discriminant Analysis (LDA) and
 Quadratic Discriminant Analysis (QDA) make to build a classification model.

LDA assumes normal distributed data and a class-specific mean vector.

LDA assumes a common covariance matrix. So, a covariance matrix that is common to all classes in a data set.

Observation of each class are drawn from a normal distribution (same as LDA).

QDA assumes that each class has its own covariance matrix (different from LDA).

• Be able to use R to perform a LDA (Linear Discriminant Analysis) fit for classification.

```
Ida.model = Ida(Species ~ Sepal.Length+Sepal.Width, data = iris)
Ida.model.prediction <- predict(Ida.model)$class
table(predicted=Ida.model.prediction,actual=iris$Species)
correct = sum(Ida.model.prediction == iris$Species)
incorrect = sum(Ida.model.prediction != iris$Species)</pre>
```

 Be able to use R to perform a QDA (Quadratic Discriminant Analysis) fit for classification.

```
qda.model = qda(Species ~ ., data = iris)
qda.model.prediction <- predict(qda.model)$class
table(predicted=qda.model.prediction,actual=iris$Species)
correct = sum(qda.model.prediction == iris$Species)
incorrect = sum(qda.model.prediction != iris$Species)
```

 Be able to apply a suitable methods of cross validation to measure performance of different classification methods and optimise models (e.g. to compare different fitting models).

```
Ida.model = Ida(Species ~ ., data = iris, CV=TRUE)
Ida.model.prediction <-Ida.model$class
table(predicted=Ida.model.prediction,actual=iris$Species)
correct = sum(Ida.model.prediction == iris$Species)
incorrect = sum(Ida.model.prediction != iris$Species)
```

K- Nearest Neighbours algorithm

 Be able to describe the principle of the K-nearest neighbours algorithm for classification and regression problems.

```
library(dplyr)
iris.X <- mutate(iris, pl=normalise(Petal.Length), pw=normalise(Petal.Width))</pre>
set.seed(1)
library(dplyr)
train.X = iris.X[,c(6,7)]
train.Y = iris.X[,5]
test.X = train.X
knn.pred=knn(train.X,test.X,train.Y,k=10)
table(predicted=knn.pred,actual=train.Y)
x1 \text{ seq} = \text{seq}(0,1,0.01)
x2 \text{ seq} = \text{seq}(0,1,0.01)
gridpoints <- NULL
for (i in x1 seq){
 for (j in x2 seq){
  gridpoints<-rbind(gridpoints,c(i,j))
 }
}
gridpoints=data.frame(gridpoints)
colnames(gridpoints) <- c("pl", "pw")
knn grid.pred=knn(train.X,gridpoints,train.Y,k=10)
```

```
gridpoints$Species<-as.character(knn_grid.pred)
plot(pw~pl,col= Species,pch=20, data=iris.X)
points(pw~pl,pch='.',col= unclass(knn_grid.pred), data=gridpoints)</pre>
```

• Understand KNN requires consideration of the scale of each variable used as a predictor, and how to apply normalisation when appropriate.

```
rescale_x <- function(x) {
    x <- x-min(x)
    x <- x/max(x)
    return(x)
}</pre>
```

• Be able to explore how the performance of the KNN method varies with K for a particular dataset and select an optimal K value using a cross validation method.

```
# testing different k values
k_vals = 1:95
n = length(k_vals)
results <- data.frame(k_val=rep(0,n), mcr=rep(0,n))
for (i in 1:n){

   knn_test$pred <- knn(knn_train_x, knn_test_x, knn_train_y, k = k_vals[i] )

   table(predicted =knn_test$pred, actual = knn_test$Y)
   results$mcr[i] <- sum(knn_test$pred!=knn_test$Y)/nrow(knn_test)
   results$k_val[i] <- k_vals[i]
}
plot(mcr~k_val,data=results)</pre>
```

Comparisons of Fitting methods

- Understand that models can be used for both inference and prediction.
- Be able to carry out suitable cross validation testing to measure the performance of different fit methods and evaluate the results.
- Be able to describe the different fitting methods considered in terms of their assumptions, and relative usefulness for making predictions/inferences.

Working with R code files and notebooks

- Be able to create and run code in R scriptfiles (.R extension)
- Be able to write a report in R Markdown as a notebook, that consists of code sections and appropriately styled text (headers, inline code, font styles).

- Know how to work with code that is contained in an R Notebook in RStudio.
- Be able to knit the notebook into HTML formatted report.