Práctica: Cuantificación

Introducción

Un cuantificador mapea una variable u es otra variable discreta q(u) que solamente toma valores en un conjunto finito $\{r_1, r_2, ..., r_L\}$. En general se utiliza una función en escalera como la mostrada en la figura ??. En este caso la regla de cuantificación consiste en asignar el valor r_k a aquellos valores de u en el intervalo $[t_k, t_{k+1})$.

Figure 1: Respuesta de un cuantificador genérico

En el cuantificador óptimo MSE (o cuantificador de Lloyd-Max) se utilizan

$$t_k = \frac{r_k + r_{k-1}}{2} \tag{1}$$

$$r_k = \frac{\int_{t_k}^{t_{k+1}} u \ p_u(u) du}{\int_{t_k}^{t_{k+1}} p_u(u) du}$$
 (2)

donde $p_u(u)$ es la función de densidad de probabilidad continua de u que, en el caso de imágenes, se aproxima por el histograma de la misma. Si u tiene una distribución uniforme, podemos escribir $t_k = t_{k-1} + q$ y $r_k = t_k + q/2$ donde $q = t_k - t_{k-1} = t_{k+1} - t_k = (t_{L+1} - t_1)/L$ es el intervalo de cuantificación.

Por ejemplo, si queremos cuantificar las muestras $\{-1.4, -1.2, -1.15, -0.1, 0.21, 0.36, 0.97, 1.041.56, 1.71\}$ mediante un cuantificador de L=3 niveles. El cuantificador uniforme tiene un intervalo de cuantificación q=(1.71-(-1.4))/3=1.0367 que corresponde a $r_k=[-0.8817, 0.1550, 1.1917]$. Por otro lado, a partir de los valores r_k mostrados en la segunda fila de la tabla \ref{table} , el cuantificador óptimo proporciona en una iteración los niveles mostrados en la en segunda fila. La tabla \ref{table} ? muestra el resultado de la cuantificación. Para estos valores, la distorsión del cuantificador óptimo es 0.5557 mientras que la del uniforme es 1.0286.

	r_1	r_2	r_3	
Inicial	-1.4	1.550	1.71	
Final	-1.25	0.1567	1.32	

Table 1: Ejemplo del cuantificador óptimo

Original	-1.4	-1.2	-1.15	-0.1	0.21	0.36	0.97	1.04	1.56	1.71
Óptimo	-1.25	-1.25	-1.25	0.1567	0.1567	0.1567	1.32	1.32	1.32	1.32
Uniforme	-0.8817	-0.8817	-0.8817	0.155	0.155	0.155	1.1917	1.1917	1.1917	1.1917

Table 2: Comparación del cuantificador uniforme y el óptimo

Práctica

Se pide:

- 1. Programe el cuantificador uniforme.
 - Para el ejemplo anterior, obtenga los niveles r_k y t_k y realice la cuantificación de las muestras. Calcule el MSE (Mean Square Error).
- 2. Utilizando la función lloyds de MATLAB, obtenga los niveles óptimos r_k y t_k , y realice la cuantificación para el ejemplo anterior. Calcule el MSE y comparelo con el obtenido anteriormente.
- 3. Utilizando el cuantificador uniforme y el de Lloyd-Max realice la cuantificación de varias imágenes. Compare los resultados en términos de MSE para distintos niveles del cuantificador L.