Lecture 20: Summary

https://web3.princeton.edu/principles-of-blockchains/

Professor Pramod Viswanath Princeton University

This lecture:

Design principles of blockchains Introduction to COS/ECE 473: Elements of Tokenized Finance

Principles of Blockchains

- This course presented the design space of blockchains
 - Principles of good blockchain design choices
 - Full-stack view

- Pre-requisite: maturity with nearly all aspects of computer science
- Concretely: basic background in algorithms, probability, systems programming

Course begins with Bitcoin

- We started with an in-depth view of the Bitcoin design
 - The focus allows us to see the interacting components of the blockchain
 - Highlight the design constraints across the layers

- Bitcoin design is very simple and yet
 - remarkably secure, elegant in an engineering sense
 - performance guarantees backed by sophisticated mathematics
 - Outstanding case study for a deep understanding of blockchains

Module 1. Bitcoin Blockchain

 Next four lectures: Cryptographic data structures, Consensus, Peer to Peer Networking, Transaction structure, Ledger state management

Two lectures: mathematical security guarantees of Bitcoin

 Implementation-intensive: students implement a full-stack Bitcoin client

Module 2. Scaling Blockchain

Adapting the Bitcoin design to scale its performance

Scaling:

- Throughput
- Latency
- Computation, Storage
- Energy
- Layer 2 scaling

The resulting blockchain designs are at the heart of many popular cryptocurrency platforms: Avalanche, Cardano, Solana, Polygon

Module 3. Beyond Bitcoin

Incorporating features absent in the Bitcoin design

1. Finality

2. Privacy

3. Connecting blockchains: Bridges

4. Importing data into blockchains: Oracles

The resulting blockchain

designs are at the heart

of many popular

cryptocurrency

platforms: Zcash,

ChainLink

From Lecture 1: A Decentralized Platform?

- A decentralized Dropbox, eBay, Instagram?
- Incentives aligned with consumers and resource providers?
- No need for a trusted middle party?

Such is the siren song of blockchains.

The Siren Song of Blockchains

- Web2 performance
 - Storage (dropbox-style), Compute (AWS or Azure-style)
- Run 2023 applications
 - **GPT4**

- But decentralized trust and security
 - Natively coupled incentives for participants

Where we are

- Ethereum is a 1990 computer
 - The upgrade from PoW to PoS only got from 1987 computer to 1990
- But decentralized trust and security
 - Natively coupled incentives for participants

- Starting a new L1 involves building community
 - Hard work, not incentive-compatible with existing blockchain platforms
 - Unclear if that is

The Best Design Today

- Ethereum is a 1990 computer
 - But energetic, active community
- Outsource storage
 - Data availability oracles (Lecture 14)
- Outsource computation
 - Rollups (Lecture 17)
- Restake ETH to secure applications
 - · Cryptoeconomic security, programmable, on-demand
 - Eigenlayer

Technical Components

- Decentralized Computer
 - Cryptographic data structures
 - Disk I/O and Database management
 - Memory management
 - Operating systems
 - Peer to peer networking
 - Consensus and distributed algorithms
- Virtual Machine
 - Reduced instruction set, incentives
 - General purpose programming language

Smart Contract Prog. Language

Virtual Machine

Decentralized Consensus

Nearly all aspects of Computer Science

Introduction to COS/ECE 473: Elements of DeFi

https://web3.princeton.edu/elements-of-defi/

Professor Pramod Viswanath

Princeton University

Lecture 1. What is DeFi?

DeFi is tokenized finance on decentralized platforms

Tokenization

- Converting a tangible/intangible asset into a digital format
- Can be fungible ("currency") or not ("an image or a video clip")
- Awfully similar to securitization
 - Key is the missing trusted middle party

Tokenized Finance

- Commerce buying, selling
- Market places exchanges
- Options, derivatives financial instruments
- Borrowing, lending banks

How is this any different from traditional finance?

TradFi vs DeFi

DeFi is Non-custodial

Users control ownership of their assets

Flow of assets in control of the institution

Flow of assets in control of the owner

DeFi is Openly-auditable

 Transparent execution logic of financial instruments and marketplaces

Database and its execution in a closed database, secured by regulation and audits

Anyone can check if the contract is programmed as expected and behaves as promised

DeFi is Permissionless

- Anyone can participate and interact with contracts
 - Wallets hold tokens and allow interaction with the blockchain
- Smart contract "regulates" that assets are managed as promised

Only trusted entities can participate

Anyone can participate, smart contracts provide trust

DeFi is Composable

Interoperability across financial instruments

Siloed databases restricts interoperability

Contracts share state and can call each other while executing a transaction

DeFi is Atomic

 Option to add - all or none logic of execution for transactions interacting with multiple instruments

One operation might suceed and the other might fail

Perform action only if both operations succeed; else revert

Use case: Flash loan arbitrage

- Two exchanges have a difference in price:
 - TradFi: Need to be a capital rich institution to extract arbitrage value
 - DeFi: Anyone can take a very large capital loan (with no collateral), perform arbitrage, earn money and return capital, in a single transaction

Use case: Market for low volume assets

- Need to set up a market for a low volume fungible asset:
 - TradFi: Centralized order-book exchanges don't work due to lack of market making
 - DeFi: Anyone can create liquidity pool for the low volume asset and ensure availability of market

Nine elements of DeFi

- 1. Token transfers: native blockchain transactions
- 2. Market making via smart contracts
- 3. Oracles: importing external data
- 4. Borrow/Lending: banking functionality
- 5. Cross border finance: bridges, wrapped tokens
- 6. Stable coins: tying tokens to fiat
- 7. Synthetics and Perpetuals: self-adapting financial instruments
- 8. NFT: digital collectibles
- 9. DAO: tokenized governance

DeFi elements are smart contracts

Each element implemented via smart contracts

- Smart contracts "manage" the input/output of the tokens
- Smart contracts "regulate" the logic of the DeFi element

The underlying blockchain ledger maintains the time sequence ordered contract operations

Element 1: Native Blockchain Transactions

Token transfer

- No intermediaries, direct access via the blockchain
- Sending and receiving

Element 2: Market Making

- Swapping Tokens
 - Market making via smart contracts
 - Liquidity providers and traders interact via the contract
- Peer-to-pool-to-peer Mechanism

Element 3: Oracles

- A set of nodes import off-chain data into the blockchain
- Robust statistics ensure accuracy of data

Oracle node operators

Element 4: Borrowing and Lending

- Deposit asset into the pool to earn interest
- Borrow assets collateralized by the deposited asset and pay interest

Element 5: Cross Border Transactions

 Token transfers on blockchains have the same security properties across different countries

Element 6: Stable Coins

 Token's value can be pegged to the value of a fiat currency through a variety of reserve mechanisms

Element 7: Synthetics and Perpetuals

- Generate tokens whose value
 - Tracks value of another token
 - Tracks a value "derived" from another token

Element 8: Non-Fungible Tokens (NFT)

- Representation of unique asset on-chain
- Supports variety of functions on that asset
 - Asset transfers
 - Asset splits, sale commissions, sale tracking

Element 9: Decentralized Governance (DAO)

- Contracts and protocols can be managed by a decentralized organization
- Protocol updates can be voted on by organization members
- Anyone can join the organization in a sybil resistant way

Structure of the Course

Each class meeting is divided into two components:

- Lecture
 - Slides, oral presentation of the material
 - Outcome: a conceptual and theoretical understanding of the material
- Lab
 - In-class, hands-on activity
 - Largely on public blockchains
 - Outcome: hands-on, practical experience on major blockchain platforms

Attendance: NFT Drop

https://poap.website/be-resource-commercial

- Mint token to Metamask.
- Submit tx hash for attendance claim