

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta009

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Mil$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $(2+3i)^2$.
- (4p) b) Să se calculeze distanța de la punctul E(1, 2) la dreapta x + y + 5 = 0.
- (4p) c) Să se determine ecuația tangentei la hiperbola $x^2 2y^2 = 2$ în punctul P(2,1).
- (4p) d) Să se arate că punctele L(-1,2,1), M(-2,3,1) și N(-3,4,1) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, 2, 2), B(2, 2, 1), C(2, 1, 2) și D(1, 2, 3).
- (2p) f) Să se determine $a, b \in \mathbf{R}$, astfel încât să avem egalitatea de numere complexe $(3+2i)^3 = a+bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze expresia $C_5^0 C_5^1 + C_5^2 + C_5^3$.
- (3p) b) Să se calculeze probabilitatea ca un element $x \in \{1, 2, 3, 4, 5\}$ să verifice relația $x^2 x = 6$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^3 + 1$, are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(2) + g(1) + g(0).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = 12$.
- (3p) e) Să se calculeze suma pătratelor rădăcinilor polinomului $f = X^3 X^2 X 1$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, f(x) = x + arctg x.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se determine ecuația asimptotei către ∞ la graficul funcției f.
- (3p) c) Să se arate că funcția f este strict crescătoare pe ${\bf R}$.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}.$
- (3p) e) Să se calculeze $\int_{0}^{1} f(x) dx$.

1

SUBIECTUL III (20p)

Se consideră mulțimea $M_2(\mathbf{Z_2})$, submulțimea $H = \{X \in M_2(\mathbf{Z_2}) | X^2 = X\}$ și matricele

$$O_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, \quad B = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix} \quad \text{si} \quad I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}.$$

- (4p) a) Să se verifice că $O_2 \in H$ și $I_2 \in H$.
- (4p) b) Să se verifice că $B \notin H$.
- (4p) c) Să se găsească două matrice $P,Q \in H$, cu proprietatea $P+Q \notin H$.
- (2p) d) Să se arate că, dacă $U \in H$ este o matrice inversabilă, atunci $U = I_2$.
- (2p) | e) Să se determine numărul de elemente din mulțimea $M_2(\mathbf{Z}_2)$.
- (2p) | f) Să se determine numărul de elemente din mulțimea H.
- (2p) g) Să se arate că orice matrice din mulțimea $M_2(\mathbf{Z_2})$ se scrie ca o sumă finită de elemente din mulțimea H.

SUBIECTUL IV (20p)

Se consideră $n \in \mathbb{N}$, $n \ge 2$, funcțiile $f_k : [0, \infty) \to \mathbb{R}$, $\forall k \in \mathbb{N}$ și $g : [0, \infty) \to \mathbb{R}$,

definite prin
$$g(x) = (1+x)^{\frac{1}{2}}$$
 și $f_0(x) = \frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) ... \left(\frac{1}{2} - n\right) (1+x)^{\frac{1}{2}-n-1}$,

$$\forall x \in [0, \infty)$$
 și $f_{k+1}(x) = \int_{0}^{x} f_{k}(t)dt$, $\forall x \in [0, \infty)$, $\forall k \in \mathbb{N}$.

Notăm prin $g^{(k)}(x)$, derivata de ordinul k a funcției g calculată în punctul x.

- (4p) a) Să se calculeze $g'(x), x \in [0, \infty)$.
- (2p) b) Utilizând metoda inducției matematice, să se arate că,

$$g^{(k)}(x) = \frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \dots \left(\frac{1}{2} - k + 1\right) (1 + x)^{\frac{1}{2} - k}, \quad \forall \ k \in \mathbf{N}^*, \quad \forall \ x \in [0, \infty).$$

- (4p) c) Să se verifice că $g^{(n+1)}(t) = f_0(t), \forall t \in [0, \infty).$
- (4p) d) Integrând relația de la punctul c), să se arate că $f_1(x) = g^{(n)}(x) g^{(n)}(0)$, $\forall x \in [0, \infty)$.
- (2p) e) Să se demonstreze că $\forall x \in [0, \infty)$ avem egalitatea

$$f_{n+1}(x) = g(x) - \left(g(0) + \frac{x}{1!}g^{(1)}(0) + \frac{x^2}{2!}g^{(2)}(0) + \dots + \frac{x^n}{n!}g^{(n)}(0)\right).$$

- (2p) Să se arate că $0 \le |f_k(x)| \le \frac{x^k}{k!} \left| \frac{1}{2} \left(\frac{1}{2} 1 \right) \left(\frac{1}{2} 2 \right) ... \left(\frac{1}{2} n \right) \right|, \ \forall \ k \in \mathbb{N}, \ \forall \ x \in (0, 1].$
- (2p) g) Să se arate că $\lim_{n \to \infty} \left(g(0) + \frac{x}{1!} g^{(1)}(0) + \frac{x^2}{2!} g^{(2)}(0) + \dots + \frac{x^n}{n!} g^{(n)}(0) \right) = g(x), \ \forall \ x \in [0, 1].$

2