

MGE-MSR-01 - Sensors and State Estimation

Introduction to Exercise 1 WS 2020/2021

Tomislav Medic, David Schunk

Institut für Geodäsie und Geoinformation Universität Bonn

Learning objectives

Learning objectives:

- Inertial sensors (+, -, errors)
- Inertial Navigation (Strapdown Integration)

Literature:

Medic

- Lectures: Sensors, Inertial navigation
- Groves, P. D.: Navigation Using Inertial Sensors, University College London, UK, IEEE A&E Systems magazine, February 2015, Part II of II.

18/11/2020

Exercise Description

Measurements acquisition

 Estimating trajectory - self-implemented Strapdown (Python or Matlab)

Analysis of the results & comparison to the reference solution

Description of the MSS (multi sensor system)

Kinematic MSS

Components:

Kinematic MSS

(laser scanning in motion)

(sending observations to MSS → RTK-GNSS)

Kinematic MSS

Components:

Inertial navigation system

Components:

- GNSS receiver
- Gyroscopes
- Accelerometers
- Processing unit

SSE: Introduction to Exercise 1

Inertial navigation system

Inertial navigation system (GNSS/IMU unit)

- iMAR iNAV-FJI-LSURV (navigation-grade INS)
- multi-frequency GNSS, three fiber-optic gyroscopes and servo accelerometers (see documentation)
- trajectory determination ($\sigma_{Position} = \sim cm$, $\sigma_{Attitude} < 0.025$ °)

Kinematic MSS

Inertial navigation system

Initial values:

- Position?
- Velocity?
- Attitude?

Processing unit

Reference values?

Inertial navigation system

Initial values:

- Position?
- Velocity?
- Attitude?

Processing unit

Reference values

- GNSS trajectory
- On-board navigation solution
- Reference Strapdown code

2D laser scanner

2D laser scanner

- Z+F Profiler 9012 A (phase-based distance measurement)
- measurement of 2D scan profiles with intensity (see documentation)
- single point accuracy ~ mm

Kinematic laser scanning

Generating 3D point clouds in motion

SSE - E1 (WS 2017/2018)

Strapdown integration (simplified)

NED – Local Navigation Frame

- Describe
- Implement
- Use on data
- Compare
 - Reference
 - Grooves (more complex eq.)
- Supplementary

Strapdown integration (simplified)

Input: MSS measurements (accelerometers, gyros)

Output: navigation (motion or trajectory profile)

- 1. Time stamp
- 2. Position (lat, long, h)
- 3. Velocity (N, E, down)
- 4. Attitude (N, E, down)

 10 values for every time increment

Analysing trajectory in 2D (position)

Analysing height

Analysing velocity

Roll, pitch, yaw (heading)

Thank you for your attention Questions or comments?