Natural Deduction Rules for Prop/Pred Logic

$$\frac{t_1=t_2 \quad \phi[t_1/x]}{\phi[t_2/x]}=\mathrm{e}.$$

$$\forall x (Q(x) \to R(x)), \ \exists x (P(x) \land Q(x)) \vdash \ \exists x (P(x) \land R(x))$$

1		$\forall x (Q(x) \to R(x))$	premise
2		$\exists x (P(x) \land Q(x))$	premise
3	x_0	$P(x_0) \wedge Q(x_0)$	assumption
4		$Q(x_0) \to R(x_0)$	$\forall x \in 1$
5		$Q(x_0)$	$\wedge e_2 \ 3$
6		$R(x_0)$	\rightarrow e 4, 5
7		$P(x_0)$	$\wedge e_1 \ 3$
8		$P(x_0) \wedge R(x_0)$	∧i 7, 6
9		$\exists x (P(x) \land R(x))$	$\exists x i 8$
10		$\exists x (P(x) \land R(x))$	$\exists x \in 2, 3{-}9$

$$\forall x \ P(a,x,x), \ \forall x \forall y \forall z \ (P(x,y,z) \rightarrow P(f(x),y,f(z))) \ \vdash \ P(f(a),a,f(a))$$

$$\forall x \ P(a,x,x), \ \forall x \forall y \forall z \ (P(x,y,z) \rightarrow P(f(x),y,f(z))) \ \vdash \ P(f(a),a,f(a))$$

1	$\forall x P(a, x, x)$	prem
2	$\forall x \forall y \forall z (P(x, y, z) \to P(f(x), y, f(z)))$	prem
3	P(a, a, a)	$\forall x \in 1$
4	$\forall y \forall z (P(a, y, z) \rightarrow P(f(a), y, f(z)))$	$\forall x \in 2$
5	$\forall z (P(a,a,z) \to P(f(a),a,f(z)))$	$\forall y \neq 4$
6	$P(a, a, a) \rightarrow P(f(a), a, f(a))$	$\forall z \neq 5$
7	P(f(a), a, f(a))	\rightarrow e 6, 3

$$\frac{\forall x \, \phi}{\phi [t/x]} \, \forall x \, \mathbf{e}$$

$$\forall y \ Q(b, y), \forall x \forall y \ (Q(x, y) \rightarrow Q(s(x), s(y))) \ \vdash \ \exists z \ (Q(b, z) \land Q(z, s(s(b))))$$

$$\forall y \ Q(b, y), \forall x \forall y \ (Q(x, y) \rightarrow Q(s(x), s(y))) \ \vdash \ \exists z \ (Q(b, z) \land Q(z, s(s(b))))$$

$$\frac{\forall x \, \phi}{\phi[t/x]} \, \forall x \, \mathbf{e}. \qquad \frac{\phi[t/x]}{\exists x \, \phi} \, \exists x \, \mathbf{i}$$

The importance of both **proof theory** and **semantics**

proof theory

- useful for establishing assertions like ' $\Gamma \vdash \psi$ is valid,'
 - we provide a proof of ψ from Γ
- not so useful for establishing assertions like ' $\Gamma \vdash \varphi$ is not valid.'
 - how can you show that there is no proof of something?

semantics

- useful for establishing assertions of the form ' $\Gamma \models \psi$ is not valid.'
 - need only talk about one valuation/model
- not so useful for establishing assertions like ' $\Gamma \vDash \psi$ is valid,'
 - need to talk about (infinitely) many models.

Statement		True	False
$\forall x$	P(x)	P(x) is true for every x	There is at least one x for which $P(x)$ is false
$\exists x$	P(x)	There is at least one x for which $P(x)$ is true	P(x) is false for every x

Models

How can we evaluate formulas in predicate logic?

The truth value of a formula in predicate logic depends on, and varies with, the actual choice of values and the meaning of the predicate and function symbols involved.

We require a **model** of all function and predicate symbols involved.

Definition 2.14 Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed number of required arguments. A model \mathcal{M} of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following set of data:

- 1. A non-empty set A, the universe of concrete values
- 2. for each nullary function symbol $f \in \mathcal{F}$, a concrete element $f^{\mathcal{M}}$ of A
- 3. for each $f \in \mathcal{F}$ with arity n > 0, a concrete function $f^{\mathcal{M}} : A^n \to A$ from A^n the set of n-tuples over A, to A; and
- 4. for each $P \in \mathcal{P}$ with arity n > 0, a subset $P^{\mathcal{M}} \subseteq A^n$ of n-tuples over A.

Given:

$$\mathcal{F} \stackrel{\text{def}}{=} \{s(\bullet), p(\bullet), \oplus, zero\}$$
 $\mathcal{P} \stackrel{\text{def}}{=} \{=, >, Even\}$

The model M called Int:

domain:

$$\mathsf{A} \stackrel{\mathsf{def}}{=} \mathbb{Z}$$
,

concrete functions:

zero is the number 0, s is the successor fn, p the predecessor fn

⊕ is integer addition

concrete predicates:

=, >, Even are the usual predicates for integers

A sentence in the model M:

$$\exists x (x > zero)$$
 "there is an integer greater than 0"

$$\forall y \neg (y = zero) \rightarrow \exists x (x > y)$$
 "for any integer not equal to 0, there exists an integer greater than it"

Given:

$$\mathcal{F} \stackrel{\text{def}}{=} \{s(\bullet), p(\bullet), \oplus, zero\}$$
 $\mathcal{P} \stackrel{\text{def}}{=} \{=, >, Even\}$
a 'signature', two sets of symbols

The model M called Nat3:

domain:

 $A \stackrel{\text{def}}{=} \mathbb{N}$ modulo 3,

concrete functions:

zero is the number 0, s is the successor modulo 3, p the predecessor modulo 3, ⊕ is addition modulo 3

concrete predicates:

=, >, Even are the usual predicates for natural numbers

A sentence in the model M:

 $\exists x (x > zero)$ "there is a natural number modulo 3 greater than 0"

 $\forall y \neg (y = zero) \rightarrow \exists x (x > y)$ "for any nn mod 3 not equal to 0, there exists a nn mod 3 greater than it"

Given:

$$\mathcal{P} \stackrel{\text{def}}{=} \{s(\bullet), p(\bullet), \oplus, zero\}$$
 $p \stackrel{\text{def}}{=} \{=, >, Even\}$
a 'signature', two sets of symbols

The model M called Pres5:

domain:

A ^{def} the last 5 US presidents = {Biden, Trump, Obama, Bush, Clinton} concrete functions:

zero ^{def} Biden, s is the successor, p the predecessor, ⊕ is the president who took office latest

concrete predicates:

= is identity, > is 'took office later than', Even is true for presidents who held office for an even number of years

A sentence in the model M:

 $\exists x (x > zero)$ "there is a president who took office later than Biden"

$$\forall y \neg (y = zero) \rightarrow \exists x (x > y)$$
 "for any president not Biden, there exists a president who took office later"

Let $\mathcal{F} \stackrel{\text{def}}{=} \{+, *, -\}$ and $\mathcal{P} \stackrel{\text{def}}{=} \{=, \leq, <, \text{zero}\}$, where +, *, - take 2 arguments, and where $=, \leq, <$ are predicates with 2 arguments, and zero is a predicate with 1 argument.

The model \mathcal{M} :

- 1. The non-empty set A is the set of real numbers.
- 2. The function $+^{\mathcal{M}}$, $*^{\mathcal{M}}$, and $-^{\mathcal{M}}$ take two real numbers as arguments and return their sum, product, and difference, respectively.
- 3. The predicates $=^{\mathcal{M}}$, $\leq^{\mathcal{M}}$, and $<^{\mathcal{M}}$ model the relations equal to, less than, and strictly less than, respectively. The predicate $\mathtt{zero}^{\mathcal{M}}$ holds for r iff r equals to 0.

Example formula:

$$\forall x \forall y (\mathtt{zero}(y) \to x * y = y)$$

Let $\mathcal{F} \stackrel{\text{\tiny def}}{=} \{e, \cdot\}$, and $\mathcal{P} \stackrel{\text{\tiny def}}{=} \{\leq\}$, where e is a constant, \cdot is a function of 2 arguments and \leq is a predicate with 2 arguments.

The model \mathcal{M} :

- A is the set of binary strings over the alphabet {0,1}, including the empty string ε.
- 2. The interpretation of $\cdot^{\mathcal{M}}$ is the concatenation of strings.
- 3. $\leq^{\mathcal{M}}$ is the prefix ordering of strings, that is the set $\{(s_1, s_2) | s_1 \text{ is a prefix of } s_2\}$.

$$\forall x ((x \le x \cdot e) \land (x \cdot e \le x))$$

Every word is a prefix of itself concatenated with the empty word

$$\exists y \forall x (y \leq x)$$

There exists a word s that is the prefix of every word (in fact it is ε).

$$\forall x \exists y (y \leq x)$$

Every word has a prefix.

$$\forall x \forall y \forall z ((x \le y) \to (x \cdot z \le y \cdot z))$$

If s_1 is a prefix of s_2 , then s_1s_2 is a prefix of s_1s_3 (doesn't hold).

$$\neg \exists x \forall y ((x \le y) \to (y \le x))$$

There is no word s such that whenever s is a prefix of some other word s_1 , it is the case that s_1 is a prefix of s as well.

Given a formula $\forall x \Phi$, or $\exists x \Phi$, we intend to check whether Φ holds for all, respectively some, value a in our model. We have no way of expressing this in our syntax.

We are forced to interpret formulas relative to an *environ-ment* (*look-up table*), that is, a mapping from variable symbols to concrete values.

$$l: \mathbf{var} \mapsto A$$

Definition (Updated Look-Up Tables): Let l be a look-up table $l : \mathbf{var} \mapsto A$, and let $a \in A$. We denote by $l[x \mapsto a]$ the look-up table which maps x to a and any other variable y to l(y).

Definition 2.18 Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$ and given an environment l, we define the <u>satisfaction relation</u> $\mathcal{M} \vDash_l \phi$ for each logical formula ϕ over the pair $(\mathcal{F}, \mathcal{P})$ and look-up table l by structural induction on ϕ . If $\mathcal{M} \vDash_l \phi$ holds, we say that ϕ computes to T in the model \mathcal{M} with respect to the environment l.

P: If ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, then we interpret the terms t_1, t_2, \ldots, t_n in our set A by replacing all variables with their values according to l. In this way we compute concrete values a_1, a_2, \ldots, a_n of A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \vDash_l P(t_1, t_2, \ldots, t_n)$ holds iff (a_1, a_2, \ldots, a_n) is in the set $P^{\mathcal{M}}$.

 $\forall x$: The relation $\mathcal{M} \vDash_l \forall x \, \psi$ holds iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for all $a \in A$.

 $\exists x$: Dually, $\mathcal{M} \vDash_l \exists x \ \psi$ holds iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for some $a \in A$.

 \neg : The relation $\mathcal{M} \vDash_l \neg \psi$ holds iff it is not the case that $\mathcal{M} \vDash_l \psi$ holds.

 \vee : The relation $\mathcal{M} \vDash_l \psi_1 \lor \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_1$ or $\mathcal{M} \vDash_l \psi_2$ holds.

 \wedge : The relation $\mathcal{M} \vDash_l \psi_1 \wedge \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_1$ and $\mathcal{M} \vDash_l \psi_2$ hold.

 \rightarrow : The relation $\mathcal{M} \vDash_l \psi_1 \to \psi_2$ holds iff $\mathcal{M} \vDash_l \psi_2$ holds whenever $\mathcal{M} \vDash_l \psi_1$ holds.

We sometimes write $\mathcal{M} \not\models_l \phi$ to denote that $\mathcal{M} \models_l \phi$ does not hold.

```
\mathcal{P} \stackrel{\text{def}}{=} \{alma\} alma is a constant \mathcal{P} \stackrel{\text{def}}{=} \{loves\} loves is a predicate with two arguments
```

The model M:

$$A \stackrel{\text{def}}{=} \{a, b, c\},$$
 $alma^{M} \stackrel{\text{def}}{=} a$
 $a constant function$
 $loves^{M} \stackrel{\text{def}}{=} \{(a,a), (b,a), (c,a)\}$
 $a predicate$

We want to check whether the model *⋈* satisfies:

None of Alma's lovers' lovers love her.

- 1. $\forall x \forall y (loves(x, alma) \land loves(y, x) \rightarrow \neg loves(y, alma))$
- 2. We choose a for x and b for y. Since (a,a) is in the set loves^M and (b,a) is in the set loves^M, we would need that the latter does not hold since it is the interpretation of loves(y, alma); this cannot be. The sentence does not hold in the model.

```
What if loves<sup>M</sup> \stackrel{\text{def}}{=} {(b, a), (c, b)} ?
```