Network Centrality as Statistical Inference in Large Networks

Chee Wei Tan

City University of Hong Kong

June 18, 2018

Averting Cascading Failures in Networked Infrastructures: Poset-constrained Graph Algorithms, IEEE Journal of Selected Topics in Signal Processing, 2018 [1]

The Model and Assumptions

The Model and Assumptions

In the extended SI model, we have three types of nodes described as following:

- Susceptible node: Nodes that are susceptible to failure.
- Infected node: Nodes that are under the effect of failure.
- Protected node: Nodes that are protected and can not spread the failure further.
- Every vertex is equally like to be the source
- Assume that in each time period, one vertex is uniformly chosen from the neighbors of those infected vertices to be infected.

The Protection Node Placement Problem

Example: $|V_P| = 1$

$$\mathbf{E}(|G_n|) = \frac{1}{13} \cdot [(3+3+3) + (3+3+3) + (5+5+5+5+5)]$$
$$= \frac{1}{13} \cdot [3^2 + 3^2 + 5^2]$$

The Protection Node Placement Problem

minimize
$$(C_1^{\{V_P\}})^2 + (C_2^{\{V_P\}})^2 + ... + (C_m^{\{V_P\}})^2$$
 subject to $|V_P| = k$, (2)

where $C_1^{\{V_P\}}, C_2^{\{V_P\}}, ...,$ and $C_m^{\{V_P\}}$ are the connected components after removing vertices in V_P from G_N .

Posets and Linear Extensions

Definition

A non-strict partial order is a relation \leq_S over a set S satisfying the following rules, for all $v_1, v_2, v_3 \in S$:

- $v_1 \leq_S v_1$ (reflexivity)
- if $v_1 \leq_S v_2$ and $v_2 \leq_S v_1$, then $v_1 = v_2$ (antisymmetry)
- if $v_1 \leq_S v_2$ and $v_2 \leq_S v_3$, then $v_1 \leq_S v_3$ (transitivity)

A **total order** has one more rule that every two elements in the set must be assigned a relation.

A **linear extension** \leq_S^* of a partial order \leq_S is a total order which preserve the relation in \leq_S , i.e., for all $v_1 \leq_S^* v_2$ whenever $v_1 \leq_S v_2$.

Posets and Rooted Trees

There is no relation between v_1 , v_3 and v_4 , hence this order is a **partial** order.

Linear Extensions and Cascading Failure

Consider a cascading failure on this graph with a specific order, for example $v_2 \rightarrow v_1 \rightarrow v_3 \rightarrow v_4$, then there is relation between any two vertices in this set, i.e., this specific order is a linear extensions on this posets (rooted tree). Intuitively, choosing the vertex with the maximum number of linear extensions to be protected is a good choice! [2]

Network Centrality to Determine Maximum Number of Linear Extensions of a Poset

Definition

Let G_n be a tree with n vertices, for any $u, v \in G_n$, let t_v^u be the subtree rooted at v by removing the edge (u, v) from G_n and slightly abusing the notation of the subtree size t_v^u as t_v^u .

For example, $t_{v_1}^{v_2} = 7$ and $t_{v_2}^{v_1} = 3$.

Definition

Define the branch weight of a vertex v in G_n by

$$\mathsf{weight}(v) = \max_{c \in \mathsf{child}(v)} t_c^v.$$

The vertex of G_n with the *minimum weight* is called the *centroid* of G_n [3]. For example, v_1 has the minimum weight, hence v_1 is the centroid.

Theorem

Let G_N be a general tree graph. Then, the rooted tree with the maximum number of linear extensions is rooted at v^* if and only if v^* is a centroid of G_N (proved in [4]).

Message Passing Algorithm to compute the Centroid of a Graph

Let $M^{i \to j}$ denote the message from vertex i to vertex j. Let $\mathsf{Diff}(i,j)$ be defined by $\mathsf{Diff}(i,j) = |M^{i \to j} - M^{j \to i}|$.

Theorem

Given a tree G_n with n vertices.

 $v_c \in G_n$ is the centroid if and only if $\forall v$ adjacent to v_c and $v_i, v_j \in V(G_n)$, $min_{(v,v_c)\in E(G_n)}\{ \text{Diff}(v_c,v)\} \leq \{ \text{Diff}(v_i,v_j)\}$. Moreover, for any $u \in G_n$, on the path from v_c to u say $(v_1,v_2,...,v_D)$, where $v_1 = v_c$ and $v_D = u$. The sequence of $\text{Diff}(v_i,v_{i+1})$ for i=1,2...D is increasing.

Message Passing Algorithm to compute the Centroid of a Graph

Assume G_N is a tree:

- When $|V_p|=1$, we choose the centroid to be the solution.
- When $|V_p| > 1$, we use the centroid decomposition to select the protection set.

This may not be the optimal solution, but the performance can be bounded above.

$\mathsf{Theorem}$

Let $f(\{V_p\})$ denote the objective function in (2) and let V_p^* denote the optimal solution of (2). The centroid decomposition approach guarantees that

$$1 \leq \frac{f(\{V_p\})}{f(\{V_p^*\})} \leq c \frac{N}{k+1},$$

where k is the size of the protection set V_p and c is a small constant.

Centroid Decomposition

Experimental Results: N = 4941

A simulation result when G_N is a random tree. The *y*-axis represents the number of vertices in percentage and the *x*-axis represents each trial with different size of k.

Experimental Results: N = 4941

A simulation result when G_N is a real world network: Western United State Power Grid Network. The y-axis represents the number of vertices and the x-axis represents each trial with different size of k.

Network Centrality as Statistical Inference

In the reverse engineering perspective, we ask:

- Given a network centrality, what are the statistical inference optimization problems that it implicitly solves?
- Distance centrality and branch weight centrality solve the rumor source detection problem for degree-regular tree graphs.
- Betweenness centrality solves the protection node placement problem for a single node special case.
- Network centrality provides guiding principle on algorithm design and can compute exact or approximate solutions.

Network Centrality as Statistical Inference

In the reverse engineering perspective, we ask:

- Given a stochastic optimization formulation over a network, how to transform it or to decompose it to one whose subproblems are graph-theoretic and can utilize network centrality, then solve or approximate the whole problem?
- Rumor source detection as a maximum-likelihood estimation problem solved by rumor centrality.
- Expected cascade size minimization problem solved by vaccine centrality.
- New algorithms can be designed based on message-passing (belief propagation) graph analysis
- Deep connections between network centrality on induced abstract data types with probability on trees and graphs.

Thank You!

http://www.cs.cityu.edu.hk/ \sim cheewtan

Email: cheewtan@cityu.edu.hk

- P. D. Yu, C. W. Tan, and H. L. Fu, "Averting cascading failures in networked infrastructures: Poset-constrained graph algorithms," , *IEEE Journal of Selected Topics in Signal Processing*, p. forthcoming, 2018.
- D. Shah and T. Zaman, "Rumors in a network: Whos's the culprit?" *IEEE Trans. Information Theory*, vol. 57, no. 8, pp. 5163–5181, 2011.
- B. Zelinka, "Medians and peripherians of trees," *Arch. Math.*, vol. 4, no. 2, pp. 87–95, 1968.
- C. W. Tan, P. D. Yu, C. K. Lai, W. Zhang, and H. L. Fu, "Optimal detection of influential spreaders in online social networks," *Proc. of Conference on Information Systems and Sciences*, pp. 145–150, 2016.