

PROYECTO

OpenMurVDI: Despliegue de infraestructura de clientes ligeros orientados a Cloud Computing

Cloud Computing

(Computación en la Nube)

Cloud Computing

Justificación del proyecto (I)

- Cambios vertiginosos en diferentes tecnologías Informáticas:
 - Desde:
 - los grandes mainframes de los CPD.
 - Pasando por:
 - Grid Computing.
 - Hasta:
 - Cloud Computing.

Justificación del proyecto (y II)

 La Comisión Europea considera el Cloud Computing una tecnología primordial en el desarrollo inmediato de las TIC.

http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf

http://cordis.europa.eu/fp7/ict/ssai/docs/call8objective1-2-brochure-web.pdf

- Completo liderazgo actual de instituciones y empresas norteamericanas.
- "Las operadoras deben desarrollar estrategias de posicionamiento dentro del mercado de las tecnologías cloud, desarrollando ventajas competitivas en base a sus capacidades de red."

Dosier ONSFA. CENATIC. http://observatorio.cenatic.es

Proyecto previo: objetivos (I)

1.- Implantar la infraestructura de hardware y software de un cloud privado.

- Conocer con detalle las características del hardware necesario para implementar este tipo de infraestructura.
- Instalar y configurar los sistemas operativos sobre los que se sustenta.
- Instalar, configurar y gestionar los sistemas de virtualización sobre los que trabaja el software de la nube (Xen, KVM...).
- Instalar y configurar el software OpenNebula/OpenStack para la gestión del cloud.

2.- Adquirir las capacidades y destrezas necesarias para la administración y gestión del cloud.

Proyecto previo: objetivos (II)

- 3. Instalar, configurar y gestionar servicios que utilicen la potencia de procesamiento del cloud computing y que resulten de utilidad para cualquier miembro de la comunidad educativa.
- 4. Instalar, configurar y gestionar sistemas de monitorización de los recursos hardware del cloud computing, de forma que se establezcan criterios que aseguren el correcto funcionamiento del sistema informático en su conjunto.
 - Recibir por parte del profesorado implicado en el proyecto, la formación necesaria para poder administrar y gestionar adecuadamente el cloud.
 - Compartir experiencias entre los centros implicados en el proyecto.

Proyecto previo: objetivos (III)

5.- Utilización del cloud en la práctica diaria en clase.

- Evaluar las posibilidades educativas del cloud teniendo acceso completo al mismo.
- Identificar los servicios susceptibles de ser instalados en el sistema operativo que se implante en el cloud, atendiendo a criterios de necesidad de potencia de cálculo, memoria RAM y utilización por parte de la comunidad educativa.

Proyecto previo: objetivos (y IV)

6.- Desarrollar materiales curriculares y documentación técnica.

- Elaborar una guía de prácticas para incluir en diferentes módulos profesionales.
- Elaborar documentación técnica específica: manuales de usuario, presentaciones, vídeos demostrativos, . . .
- Utilizar licencias libres en toda la documentación para promover su difusión.
- Utilizar recursos web 2.0 para difundir entre toda la comunidad educativa los materiales curriculares.

Resultados finales del proyecto previo (I)

- Adquisición de una infraestructura para el despliegue de servicios de Cloud Computing.
 - 4 servidores de altas prestaciones.
 - 1 SAN/NAS.
 - Armarios y electrónica de red.
 - Sistemas software basados en una solución software libre.
 - OpenStack, OpenNebula, Eucalyptus, ...
 - Servicios de red y servidores migrados a la nueva arquitectura.
 - Software de monitorización de rendimiento del Cloud.

Resultados finales del proyecto previo (II)

- Formación e intercambio de conocimientos del profesorado y alumnado implicado. En las siguientes áreas:
 - Instalación y puesta en marcha de la infraestructura física.
 - Administración avanzada del SO GNU/Linux.
 - Soluciones de virtualización a nivel de SO: libvirt, KVM, Xen.
 - Diferenciación entre IaaS, PaaS, SaaS.
 - Administración y gestión de OpenStack/OpenNebula.
 - Monitorización de sistemas.
 - Puestas en marcha de servicios de red y sistemas VDI en el Cloud privado.

Resultados finales del proyecto previo (III)

- Realización de materiales curriculares y recursos didácticos de Cloud Computing para los alumnos del CFGS de ASIR (Administración de Sistemas Informáticos en Red).
 - Unidades didácticas.
 - Recursos didácticos.
- Transferencia tecnológica al resto de centros educativos y al sistema productivo.
 - Relación de buenas prácticas.
 - Relación de problemas y soluciones.
 - Guías de instalación, configuración y explotación.

Resultados finales del proyecto previo (y IV)

- Extracción de información sobre la propia gestión del proyecto.
 - Herramientas utilizadas.
 - Desviaciones sufridas.
 - Grado de intercomunicación entre los diferentes participantes.
 - Evaluación global.

Hardware: servidores

(ver presupuesto)

- SIE Ladón Opteron doble Twin 9172 (4 nodos).
 - 96 cores.
 - 8 Procesadores Opteron Interlagos doce Cores 6238.
 - 4 Placas base Dual H8DGT-HLF 12 SATA Hot Swap.
 - Total 256 GB de memoria DDR3/1600.
 - 2 discos por nodo.
 - Total 8 Discos duros 450 GB Cheetah SAS Seagate de 15000 rpm.
 - 4 tarjetas de Red 4 puertos Gigabit.

Hardware: SAN/NAS QNAP: http://www.qnap.es/

- TS-879U-RP

8-bay SATA HDD TurboStation NAS, RAID 0,1,5,6/JBOD. 6xUSB, 2xGbE, Intel Core i3-2120 3.30GHz (Dual-Core), 2GByte DDR3. Rack 2U type with LCD Display. Redundant Power Supply. Support 8x3.5 ′ or 8x2.5 ′ SATA Hard Disk, the Hard Disk is not included. Precio: 2400 €

TS-EC879U-RP

8-bay SATA HDD TurboStation NAS, RAID 0,1,5,6/JBOD. 6xUSB, 4xGbE, Intel Xeon E3-1225 3.1GHz (Quad-Core), 4GByte DDR3. Rack 2U type with LCD Display. Redundant Power Supply. Support 8x3.5 ′ or 8x2.5 ′ SATA Hard Disk, the Hard Disk is not included. Precio: 4200 €

- TS-EC1279U-RP

 12-bay SATA HDD TurboStation NAS, RAID 0,1,5,6/JBOD. 6xUSB, 4xGbE, Intel Xeon E3-1225 3.1GHz (Quad-Core), 4GByte DDR3. Rack 2U type. Redundant Power Supply. Support 12x3.5 ´´ or 12x2.5 ´´ SATA Hard Disk, the Hard Disk is not included.

Uso exclusivo de Software Libre

- Para la realización e implantación del proyecto unos de los objetivos principales es usar exclusivamente Software Libre.
- Muchísimas ventajas:
 - Completa libertad a la hora de probar, instalar, evaluar software.
 - Adaptación y personalización completa del software.
 - Posibilidad de realizar modificaciones sobre el código.
 - Interoperabilidad.
 - Abundante documentación y de gran calidad.
 - Reducción de costes por adquisición de licencias.
 - Reducción de costes por actualizaciones de software.
 - Amplio abanico en la posibilidad de contratar/colaborar con empresas expertas en el ámbito.

¿Qué es el Software Libre?

(http://www.gnu.org/home.es.html)

El software libre es una cuestión de libertad de los usuarios para ejecutar, copiar, distribuir, estudiar, cambiar y modificar el software. Más concretamente se refiere a los cuatro tipos de libertades para los usuarios de software:

- La libertad de **usar el programa**, con cualquier propósito (libertad 0).
- La libertad de estudiar el funcionamiento del programa, y adaptarlo a las necesidades (libertad 1). El acceso al código fuente es una condición previa para esto.
- La libertad de distribuir copias, con lo que puede ayudar a otros (libertad 2).
- La libertad de mejorar el programa y hacer públicas las mejoras,
 de modo que toda la comunidad se beneficie (libertad 3). De igual
 forma que la libertad 1 el acceso al código fuente es un requisito previo.

iiSe requiere el acceso al código fuente!!

Objetivos del proyecto OpenMurVDI (y II)

- Análisis exhaustivo y formación para profesores y alumnos en tecnologías de virtualización de escritorios y sus peculiaridades.
- Convertir, a través de configuraciones y conectores existentes, una plataforma ya existente de"Cloud Computing" basada en IaaS en una plataforma DaaS orientada a virtualización de escritorios VDI.
- Desarrollar y/o implantar un componente libre que sirva de punto de integración y que actúe de "broker" central como eje para las conexiones multiprotocolo de los clientes.
 - Este componente será el que permita facilitar tanto a los administradores para la gestión, como a los usuarios para la utilización de la infraestructura basada en "Cloud" para VDI.

Objetivos del proyecto OpenMurVDI (y II)

- Provisión de métodos para que los clientes tengan facilidades de protocolos de acceso a sus escritorios virtualizados.
- Utilización con los alumnos de la infraestructura DaaS obtenida a través del "broker" implantado.
- Experiencia de prueba de uso de conexión al "broker" implantado o desarrollado.
- Realización de experiencia de conectividad con clientes ligeros tanto software como hardware (ejemplos: dispositivos móviles, tablets, clientes ligeros tipo Rasberry Pi).
- Análisis de ROI (Retorno de la inversión) en comparación con renovación de infraestructuras de TIC's con PC's de escritorios completos físicos.

¿Qué es el Cloud Computing?

- El término Cloud Computing representa una arquitectura donde se integran un conjunto de tecnologías...
 - ...software como servicio (software as a service o SaaS),
 - ...plataforma como servicio (platform as a service o PaaS),
 - ...infraestructura como servicio (infrastructure as a service o IaaS), o
 - almacenamiento como servicio (storage as a service o SaaS).

Definición de Cloud Computing

- Cloud Computing denomina el suministro bajo demanda y en modo servicio, de recursos computacionales, hardware, software y datos, a través de Internet.
 - Servicio "bajo demanda" entendido de manera similar al acceso al suministro de luz, agua, gas, etc.
 - El servicio debe tener las siguientes características:
 - Facilidad de uso.
 - · Auto-provisión.
 - Ubicuidad.
 - Complejidad opaca para el usuario.
 - Provisión escalable y elástica en función de la demanda.
 - Pago por uso.
 - Fiabilidad en el suministro.
 - Seguridad.

VDI: Virtual Desktop Infrastructure

- Virtualización de escritorios.
 - Consecuencia natural de las tecnologías Cloud.
- Consiste en hospedar los sistemas operativos de escritorio en máquinas virtuales que se ejecutan de forma centralizada en servidores remotos. Los usuarios pueden acceder a sus escritorios a través de la red.

VDI: ventajas

- Despliegue instantáneo de nuevos escritorios y aplicaciones.
- Ubicuidad en el acceso al escritorio.
- Aumento de la seguridad en los sistemas de escritorio.
- Disminución costes de soporte.
- Reducción costes de hardware.
- Alternativa ecológica.
- Mejora en la seguridad de los datos.

Mapa sobre el paradigma Cloud

(c) Dossier ONSFA. CENATIC. http://www.cenatic.es

Cloud Computing. Clasificación

- El cloud computing abarca muchos aspectos diferentes, por lo que pueden realizarse distintas clasificaciones dependiendo de la característica que se considere.
- Inicialmente se pueden señalar los siguientes tipos de clouds:
 - Software as a Service (SaaS).
 - Platform as a Service (PaaS).
 - Infrastructure as a Service (**IaaS**).

SaaS/PaaS/laaS(I)

- Software as a Service (SaaS).
 - Las aplicaciones de software se encuentran en la nube y el usuario suele acceder a ellas mediante un simple navegador web.
 - Hay un enorme número de aplicaciones en la nube: aplicaciones web generales como redes sociales, correo web, aplicaciones ofimáticas online, blogs, ERPs, CRMs, LMSs,...
- Platform as a Service (PaaS).
 - Un nuevo enfoque para el desarrollo de software, esta tecnología ofrece la posibilidad de acceder a todas las herramientas de desarrollo de aplicaciones sin instalar nada en el equipo propio.
 - Las principales compañías de software han desarrollado sus propios PaaS, entre las que cabe mencionar Google App Engine, Microsoft Windows Azure y Oracle Cloud.

SaaS/PaaS/laaS (y II)

- Infrastructure as a Service (IaaS).
 - La evolución de la infraestructura clásica de servidores físicos en las empresas, sustituyéndolos por servidores virtuales con ubicación en la propia empresa o Internet.
 - Destaca en este ámbito la implementación comercial Amazon EC2 (Elastic Compute Cloud) y las implementaciones de software libre como OpenStack, OpenNebula, o Eucalyptus, que son compatibles con el API de Amazon EC2, pero que permiten un control total sobre la tecnología.

SaaS vs PaaS vs laaS

Tipos de cloud computing

¿Qué?

¿Quién?

Software as a Service

Acceso disponible a cualquier aplicación Usuario final

(no se preocupa por hw o sw)

Platform as a Service

Infrastructure as a Service

Physical Infrastructure

Plataforma para desarrollar y desplegar aplicaciones web

Desarrollador

(no gestiona las capas inferiores de hw y sw)

Ofrece una infraestructura informática cruda Administrador de sistemas

(gestión completa de la infraestrutura)

Otra clasificación

 Atendiendo al modo de funcionamiento, podemos clasificar los clouds en:

- Públicos.

 Cuando los servicios ofrecidos por la nube son ofrecidos por empresas externas.

Privados.

 Cuando los servicios ofrecidos por la nube son ofrecidos por una infraestructura propia de la empresa/organización.

Híbridos.

Solución que combina las dos anteriores.

Ventajas

- Estructura de costes óptima.
- Capacidad elástica de escalar.
- Gran capacidad de despliegue.
- Eficiencia energética.
- Administración simplificada para el "usuario" del Cloud.
- Pago por uso.
- Apoyo de la Administraciones Públicas.
- Ubicuidad en el acceso.

Desventajas

- Tecnología relativamente nueva en algunos aspectos.
- Fuerte dependencia del proveedor elegido.
- Expatriación de datos.
 - En caso de Clouds Públicos los datos no se encuentran en la empresa/organización.
 - Problemas legales y estratégicos.
- Migraciones inviables en algunos casos.
- Mucho trabajo de estandarización por hacer.
- Fuerte dependencia de la red (Internet).

¿Qué es OpenStack?

- OpenStack es un proyecto open source para construir clouds públicas y privadas.
- Openstack es tanto un proyecto de softwarte open source como una comunidad para ayudar a cualquier organización construir y ejecutar sus propios clouds para computacion o almacenamiento virtual.
 - Tanto IaaS (Infrastructure as a Service) como SaaS (Storage as a Service).
- Proyecto iniciado originalmente por NASA y RackSpace.

La comunidad

- La comunidad de OpenStack está formada actualmente (abril de 2012) por:
 - 2685 desarrolladores.
 - 166 compañias.
 - NASA, RackSpace, Dell, Puppet Labs, AMD, Intel, Canonical, Cisco, HP, NEC, Akamai, SUSE, AT&T, Nexenta, Yahoo, y un largo etcétera.

Componentes de OpenStack

- Openstack está formado por un conjunto de proyectos Open Source mantenidos por la comunidad, incluyendo:
 - OpenStack Compute (Nova).
 - Permite gestionar las máquinas virtuales y la red virtual.
 - OpenStack Object Storage (Swift).
 - Permite proporcionar almacenamiento tanto para máquinas virtuales como directamente a los usuarios.
 - OpenStack Image Service (Glance).
 - Permite la búsqueda y recuperación de imágenes para las máquinas virtuales.
 - OpenStack Dashboard (Horizon).
 - Interfaz web para todos los servicios de OpenStack.
 - OpenStack Identity Service (Keystone).
 - Proporciona servicios de autenticación.

Componentes

(c) OpenStack Project. http://docs.openstack.org/

Arquitectura conceptual

(c) OpenStack Project. http://docs.openstack.org/

Arquitect. lógica

(c) OpenStack Project. http://docs.openstack.org/

Dashboard

Para saber más

- Cenatic. Observatorio Nacional del Software de fuentes abiertas. http://www.cenatic.es/
 - Dossier ONSFA: Cloud Computing y Software de Fuentes Abiertas.
 http://observatorio.cenatic.es/index.php?option=com_content&view=article&id=713:cloud-computing-y-software-de-fuentes-abiertas-dossier-onsfa&catid=94:tecnologia&Itemid=137
- El sistema operativo GNU. http://www.gnu.org/
- **IBM open virtualization with KVM.** http://www-03.ibm.com/systems/virtualization/infrastructure/open/
- Main Page KVM. http://www.linux-kvm.org/
- OpenStack Open Source Cloud Computing Software.
 http://www.openstack.org/
- OpenNebula: The Open Source Solution for Data Center Virtualization. http://opennebula.org/
- Welcome to xen.org, home of the Xen® hypervisor, the powerful open source industry standard for virtualization. http://www.xen.org/