

 1.Giriş Diyabete bağlı retina bozuklukları kişilerde körlüğe sebep olan ve Diyabetik Retinopati (DR) olarak adlandırılan en önemli hastalıklardan biridir. Bu hastalığın erken teşhis edilmesi, kişilerde görme yetisinin kaybolmaması açısından önemlidir. DR hastalığının erken ve doğru teşhis edilmesi için retina damarlarının doğru bir şekilde bölütlenmesi gerekir. Retina görüntülerinin tespit edilmesi için bilgisayar destekli sistemler geliştirilmiştir. Bu sistemler yenilikçi yöntemler kullanarak sürekli geliştirilmektedir. Literatürde retina damar bölütleme işlemi işin geleneksel yöntemler ve son zamanlarda popüler hale gelen derin öğrenme yöntemleri önerilmiştir. Derin öğrenme yöntemleri ile retina damar bölütleme sistemlerinin geliştirilmesi daha sağlam sonuçlar verir ancak donanım bağlılığı gerektirir. Ancak geleneksel yöntemler olarak adlandırılan denetimli/denetimsiz öğrenme yöntemleri [1-9], morfolojik yöntemler [10-12], uyum süzgeci [13] gibi yöntemler daha hızlı ve daha anlaşılabilir yöntemlerdir. Bu makalede geleneksel bir yöntem olan morfolojik tabanlı bir yöntem kullanılmış olup literatürde önerilen diğer yöntemler şöyledir: Soares vd. [2] tarafından retina görüntülerinin piksel parlaklık değerleri üzerinde faklı ölçeklerde Gabor Dalgacık dönüşümü uygulanmıştır. Elde edilen farklı ölçekteki Gabor Dalgacık dönüşüm çıktıları özellik olarak kullanılmıştır. Daha sonra tüm görüntüye Bayes Sınıflandırıcı uygulanarak fundus görüntüleri damar ya da damar olmayan bölgelere ayrılmıştır. Niemeijer vd. [5], piksel sınıflandırma yöntemini önermişlerdir. Önerdikleri bu sistemde Matematiksel Morfoloji, Bölge Büyütme, Eşleştirilmiş Filtre ve Doğrulama Tabanlı Yerel Eşik yaklaşımı karşılaştırılmıştır. Makalenin organizasyonu şöyledir. İkinci bölümde Materyal ve Metot anlatılmaktadır. Üçüncü bölümde Kullanılan Yöntemden bahsedilir. Dördüncü bölümde Bulgular ve Tartışmadan bahsedilir. Son bölümde ise Sonuçlar bölümü bulunmaktadır.

2.2.2 Maksimum entropi tabanlı eşikleme; Entropi yöntemlerine bağlı eşikleme işlemi araştırmacılar tarafından tercih edilen bir yöntemdir [19]. Otsunun eşikleme algoritmasından farklı olarak sınıflar arasındaki varyansı maksimize etmek ya da sınıf içi varyansı minimize etmek yerine sınıflar arası entropi maksimize edilir. Bu yönteme göre, bir görüntüdeki yoğunluk değerlerinin olasılık dağılımına katkı veren ön ve arka plan görüntüsüne ait entropi değerleri ayrı ayrı hesaplanır ve toplamları maksimize edilir. Ardından, entropinin toplamını maksimize eden bir optimum esik değeri hesaplanır [20]. Arka ve ön plan görüntüsüne ait entropi değeri Denklem (4) ve Denklem (5)'de verilmiştir. Denklem (6) arka ve ön plan görüntüsüne ait entropi değerlerinin maksimize

$$H_b(t) = -\sum_{i=0}^{t} \frac{P_i}{P_i} \log_v(\frac{P_i}{P_i})$$
 (4)

edilmiş halidir

$$H_b(t) = -\sum_{i=0}^{t} \frac{P_i}{P_i} \log_v(\frac{P_i}{P_i})$$

$$H_w(t) = -\sum_{i=t+1}^{t-1} \frac{P_i}{1 - P_i} \log_v(\frac{P_i}{1 - P_i})$$
(5)

$$t^* = \underset{t \in G}{\operatorname{ArgMax}} \{ H_b(t) + H_w(t) \}$$
(6)

Burada, t eşik değerini temsil eder, P_t parametresi $P_i = \sum_{i=1}^{n} P_i$ olarak hesaplanır. P_i parametresi görüntüdeki igri düzeyinin olasılığıdır.

2.2.3 Bulanık mantık tabanlı esikleme; Bulanık kümeleme bir yumusak kümeleme tekniğidir. Bu kümeleme yöntemi, nesnelerin kümelere olan aitliğini ifade etmek için bir derece kavramıkullanır [21]. Her nesne için, toplam derece 1'dir. Denklem (7) her pikselin üyelik değerini hesaplamak için kullanılır.

$$u_{i,j} = \frac{1}{\sum_{k=1}^{c} \left[\frac{\|x_i - c_j\|}{\|x_i - c_k\|} \right]^{\frac{2}{m-1}}}$$
(7)

Burada, u_{ii} parametresi üyelik fonksiyonunu, x_i parametresi bireysel piksel değerini, c, ve ck parametreleri küme merkezini ve m parametresi 1'den fazla gerçek değeri temsil etmektedir.

Bölütleme görüntülerini ikili görüntülere dönüştürmek için kullanılacak eşik hesaplaması Denklem (8) ve Denklem (9) da verildiği gibidir.

Seviye
$$0 = \frac{\max(I(c1 == 1)) + \min(I(c2 == 2))}{2}$$
 (8)

Seviye
$$0 = \frac{\max(I(c1 == 1)) + \min(I(c2 == 2))}{2}$$
 (8)
Seviye $1 = \frac{\max(I(c2 == 1)) + \min(I(c3 == 3))}{2}$ (9)

Burada, c parametresi sınıfı, I parametresi görüntüyü ve Sevive parametresi denklemden gelen eşik değeridir.

3.Kullanılan yöntem; Önerilen yöntemde, veri setinde bulunan fundus görüntülerine ait damarların bölütlenmesi sağlanmıştır. Öncelikle, veri setinde bulunan görüntüler RGB renk uzayından gri ölçekli görüntülere dönüştürülür. Gri ölçekli görüntülerin tersi üzerinde önerilen sistem uygulanır. Şekil 1'de veri setine ait bir görüntü ve bu görüntüye ait gri ölçekli görüntü ile gri ölçekli görüntünün tersi verilmiştir. Önerilen sistemin genel yapısı ise Şekil 2'de verildiği gibidir.

Şekil 1. Örnek veri seti görüntüsü, Sırasıyla, orijinal RGB görüntü, Gri-Ölçekli görüntü, Gri-Ölçekli görüntünün tersi

3.1 Veri seti; Önerilen yöntem diğer yöntemlerle kıyaslanabilir olması açısından halka açık olarak sunulan DRIVE veri seti üzerinde test edilmiştir. DRIVE veri setindeki görüntüler 45° görüş alanında Canon 3CCD ile çekilmiştir. Görüntülerin her biri 565 x 584 piksel boyutunda 20 eğitim ve 20 test görüntüsünden oluşmaktadır. Veri setindeki damar pikselleri, deneyimli bir göz doktoru tarafından eğitilmiş üç gözlemci tarafından manuel olarak bölümlere ayrılmıştır. Test seti iki farklı gözlemci tarafından iki kez bölümlendirilmiş görüntülerden oluşur 3.2 Morfolojik işlemler Retina kan damarları, retina arka planına göre daha koyu görünürler. Ancak, bazı durumlarda kan damarlarının merkez çizgisi bölgesinde parlaklık görünür. Bu görünüm yansımalardan kaynaklanmaktadır. Bu durumu ortadan kaldırmak için ilk önce morfolojik açma işlemi uygulanır. Morfolojik açma işlemi için yarıçapı 21 olan bir disk oluşturulur. Oluşturulan bu disk gri ölçekli görüntünün tersine uygulanarak morfolojik açma işlemi yapılmış olur. Daha sonra uzunluğu 21 olan bir çizgisel yapı elemanı olusturulur. Olusturulan bu çizgisel yapı elemanı gri ölçekli görüntünün tersine uygulanarak üst-şapka ve alt-şapka dönüşümleri tamamlanmış olur. Şekil 3'de bu aşamaya kadar anlatılan işlemler görsel olarak ifade edilmiştir

4 Bulgular v e tartışma 4.1 Bölütleme sonuçları Üç farklı eşikleme algoritması iyileştirilmiş fundus görüntüleri üzerinde uygulanarak damar piksellerinin bölütlenmesi sağlanmıştır. İyileştirilmiş görüntüler eşikleme işlemine tabi tutulduktan sonra çıktı görüntüleri üzerinde performans iyileştirilmesi yapılmıştır. Performans iyileştirme yönteminde damara ait olmayan damar benzeri görüntüler morfolojik işlemler kullanılarak yok edilmiştir. Bu aşama bağlı bileşen analizi kullanılarak önce küçük nesneler silinmiş daha sonrada damardan kopuk küçük bosluklar doldurulmuştur. Şekil 6'da esikleme algoritmalarının performans iyilestirme sonucları görsel olarak sunulmuştur. Şekil 6'da ilk sütunda orijinal görüntüler, ikinci sütunda Bulanık Mantık Tabanlı Eşikleme yöntem sonuçları, üçüncü sütunda Maksimum Entropi Tabanlı Eşikleme yöntem sonuçları, son sütunda Coklu Eşikleme yöntem sonuçları gösterilmiştir.

Şekil 6. Performans İyileştirme Sonuçları. Birinci satırlar eşikleme sonuçlarını, ikinci satırlar iyileştirme sonuçlarını göstermektedir. Orijinal görüntünün altındaki görüntüler 1.manuel bölütlenmiş gerçek zemin görüntüleridir.

Uygulanan yöntemin başarı ölçütünü hesaplamak için Doğruluk Oranı ölçüsü kullanılmıştır. Denklem (12)'de Doğruluk Oranı ölçütünün matematiksel ifadesi verilmiştir.

$$ACC = \frac{TP + TN}{TP + FP + TN + FN} \tag{12}$$

Burada, TP parametresi doğru pozitif, FP parametresi yanlış pozitif, TN parametresi doğru negatif v e FN parametresi yanlış negatif pikselleri temsil eder. ACC parametresi doğruluk oranını temsil eder. Hem bölütlenmiş görüntüde hem de gerçek zemin görüntüsünde aynı piksele ait v e piksel değerleri "1" olan piksellerin toplamı TP parametresinin değerini oluşturur. Hem bölütlenmiş görüntüde hem de gerçek zemin görüntüsünde aynı piksele ait v e piksel değerleri "0" olan piksellerin toplamı TN parametresinin değerini oluşturur. Hem bölütlenmiş görüntüde hem de gerçek zemin görüntüsünde aynı piksele ait v e piksel değerleri bölütlenmiş görüntü için "0", gerçek zemin görüntüsü için "1" olan piksellerin toplamı FN parametresinin değerini oluşturur. Hem bölütlenmiş görüntüde hem de gerçek zemin görüntüsünde aynı piksele ait v e piksel değerleri bölütlenmiş görüntü için "1", gerçek zemin görüntüsü için "0" olan piksellerin toplamı FP parametresinin değerini oluşturur

Tablo 1'de
uygulanan yöntem
de kullanılan üç
eşikleme
yönteminden elde
edilen sonuçlar
gösterilmiştir.
Uygulanan yöntem,
DRIVE v eri seti
üzerinde hem test
hem eğitim v eri
kümesi üzerinde
denenmiş olup
toplamda 40 görüntü
üzerinde çalıştırılmıştır.

Görüntü ismi	Bulanık Mantık Tabanlı Esikleme	Maksimum Entropi Tabanlı Esikleme	Çoklu Eşikleme Yöntemi
01_test	0.9610	0.95864	0.9550
02_test	0.9511	0.95653	0.9579
03_test	0.9522	0.93426	0.9301
04_test	0.9491	0.95705	0.9570
05_test	0.9526	0.94855	0.9450
06_test	0.9485	0.94221	0.9136
07_test	0.9505	0.94895	0.9444
08_test	0.9510	0.94043	0.9148
09_test	0.9530	0.94627	0.9345
10_test	0.9586	0.95376	0.9518
11_test	0.9494	0.94976	0.9479
12_test	0.9550	0.95244	0.9072
13_test	0.9500	0.94601	0.9460
14_test	0.9617	0.95821	0.9344
15_test	0.9636	0.96398	0.9493
16_test	0.9562	0.95520	0.9536
17_test	0.9574	0.95023	0.9290
18_test	0.9569	0.95723	0.9454
19_test	0.9713	0.96701	0.9561
20_test	0.9582	0.95505	0.9110
21_training	0.9582	0.95968	0.9630
22_training	0.9533	0.95464	0.9524
23_training	0.9173	0.95349	0.8338
24_training	0.9382	0.94285	0.9435
25 training	0.9459	0.92455	0.9161
26_training	0.9545	0.94524	0.8448
27_training	0.9479	0.95131	0.9504
28_training	0.9493	0.95311	0.9523
29_training	0.9589	0.95624	0.9478
30_training	0.9447	0.93437	0.5305
31_training	0.9464	0.94877	0.9505
32 training	0.9609	0.95895	0.9602
33_training	0.9588	0.95740	0.9563
34_training	0.9213	0.92242	0.8836
35 training	0.9574	0.95969	0.9567
36 training	0.9400	0.93858	0.9420
37_training	0.9542	0.95534	0.9527
38_training	0.9524	0.94959	0.9481
39 training	0.9507	0.94576	0.9114

Tablo 1'de verilen sonuçların alandaki birkaç yaygın yöntemden daha iyi performans gösterdiği görülebilir. DRIVEveri setindeki 40 görüntüye ait üç eşikleme yönteminin eşik değeri Tablo 2'de gösterilmiştir. Yapılan çalışmanın diğer geleneksel yöntemlerle karşılaştırılması Tablo 3'de v erilmiştir

Görüntü ismi	Bulanık Mantık Tabanlı Esikleme	Maksimum Entropi Tabanlı Esikleme	Çoklu Eşikleme Yöntemi
01 test	78	84	81
02 test	96	81	96
03 test	61	90	64
04 test	103	74	102
05 test	66	80	72
06 test	60	84	64
07 test	78	84	84
08 test	56	83	64
09 test	60	85	65
10 test	69	85	75
11 test	101	79	101
12 test	61	86	67
13 test	76	85	80
14 test	69	87	73
15 test	81	86	87
16 test	83	84	87
17 test	65	87	68
18 test	74	84	79
19 test	71	83	75
20 test	57	88	62
21 training	90	84	93
22 training	86	80	88
23 training	67	104	71
24 training	92	82	93
25 training	48	91	62
26 training	52	88	59
27 training	91	81	94
28 training	94	81	95
29 training	68	79	75
0 training	39	98	44
11 training	114	71	112
32 training	75	80	80
33 training	82	85	86
34 training	85	86	88
35 training	92	82	94
6 training	84	86	87
37 training	96	80	98
88 training	74	83	79
39 training	61	91	64

63

40 training

67

• 5.Sonuçlar Bu makalede, paylaşıma açık olarak sunulan DRIVE veri seti üzerinde morfolojik işlemlere dayalı bir damar iyileştirme yöntemi kullanılmıştır. Damar iyileştirme aşamasından sonra Çoklu Eşikleme, Bulanık Mantık Tabanlı Eşikleme ve Maksimum Eşikleme yöntemleri kullanılarak damar bölütlemesi yapılmıştır. Bu yöntem temelde morfolojik işlemlere dayanmış olsa da asıl amaç eşikleme algoritmalarının yöntem üzerindeki performanslarının karşılaştırılmasıdır. Eşikleme yöntemleri, doğası ne olursa olsun tüm veriler üzerinde kullanılabilir. Ancak, farklı eşikleme yöntemlerinin aynı iyileştirilmiş görüntü üzerinde farklı sonuçlar verdiği gözlemlenmiştir. Bu makalede, Bulanık Mantık Tabanlı Eşikleme yönteminin ortalama doğruluk oranı 0.952 olarak hesaplanmış ve diğer iki eşikleme yönteminden daha yüksek bir değere sahip olmuştur. Bu makalede elde edilen deneysel sonuçlar tatmin edici bir seviyededir. Önerilen yöntem geliştirilmeye açıktır. Halka açık bir veri seti kullanıldığı için karşılaştırması ve doğruluğu test edilebilir durumdadır. İleriki çalışmalarımızda, bu makalede elde ettiğimiz eşikleme yöntemleri tecrübelerimizi kullanarak popüler algoritmalar ile görüntü eşikleme üzerinde calısmayı hedeflemekteyiz