UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Riadkovo-stĺpcové návrhy štatistických experimentov

BAKALÁRSKA PRÁCA

2020 Róbert Druska

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Riadkovo-stĺpcové návrhy štatistických experimentov

BAKALÁRSKA PRÁCA

Študijný program: Matematika

Študijný odbor: 1114 Matematika

Školiace pracovisko: Katedra aplikovanej matematiky a štatistiky

Vedúci práce: doc. Mgr. Radoslav Harman, PhD.

Bratislava 2020 Róbert Druska

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:	Róbert Druska
-----------------------------	---------------

Študijný program: matematika (Jednoodborové štúdium, bakalársky I. st., denná

forma)

Študijný odbor:matematikaTyp záverečnej práce:bakalárskaJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Riadkovo-stĺpcové návrhy štatistických experimentov

Row-column designs of statistical experiments

Anotácia: Prvým cieľom je analyzovať vlastnosti odhadov parameterov regresného

modelu pre takzvaný riadkovo-stĺpcový experimentálny návrh. Druhým cieľom je navrhnúť algoritmus na výpočet optimálneho návrhov tohto typu, v závislosti

na požiadavkách experimentátora.

Vedúci: doc. Mgr. Radoslav Harman, PhD.

Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky

Vedúci katedry: prof. RNDr. Marek Fila, DrSc.

Dátum zadania: 15.10.2019

Dátum schválenia: 18.10.2019 prof. RNDr. Ján Filo, CSc.

garant študijného programu

študent	vedúci práce

Abstrakt

TODO

Kľúčové slová: lineárny regresný model

Abstract

TODO

Keywords: linear regression

Obsah

Ú	Jvod	8
1	Lineárny regresný model	8
	1.1 Metóda najmenších štvorcov	9
2	·	10
Zá	Záver	11
Zo	Zoznam použitej literatúry	12
Ρı	Príloha A	13

Úvod

TODO

1 Lineárny regresný model

Majme n nameraných štatistických jednotiek tvaru $\{y, x_1, \ldots, x_p\}$, ktoré sme dostali ako výsledok experimentu. Lineárny regresný model predpokladá, že medzi jednotlivými prvkami $y, x_1, \ldots x_p$ je lineárny vzťah. Motiváciou za lineárnym regresným modelom je spravidla aproximovať tento lineárny vzťah.

Aproximácia lineárneho vzťahu nám v praxi ponúkne mechanizmus, ktorým možno predikovať neznámu hodnotu y na základe známych hodnôt $y, x_1, ...x_p$, čo v reálnom živote predstavuje často sa vyskytujúci problém.

Označme teda daný lineárny vzťah medzi zložkami nameranej štatistickej jednotky:

$$y_i = b_0 + b_1 x_{i_1} + \dots + b_p x_{i_p} + e_i = b^T x_i + e_i$$

kde $\{y_i, x_i\}$ je i-ta nameraná jednotka, b je vektor lineárneho vzťahu a e_i je chyba merania.

Keď lineárne vzťahy pre každú z n nameraných jednotiek zapíšeme maticovo, dostaneme vzťah

$$y = Xb + e \tag{1}$$

kde $y = (y_1, y_2, \dots, y_n)^T$, $e = (e_1, e_2, \dots, e_3)^T$ a

$$X = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \\ x_{n1} & \dots & x_{np} \end{bmatrix}$$

je matica tvaru $n \times p$. V praxi je b neznámy vektor, ktorý sa snažíme odhadnúť.

Na spočítanie odhadu b sa používajú rôzne metódy, najčastejšie napr. metóda najmenších štvorcov alebo metóda maximálnej vierohodnosti.

1.1 Metóda najmenších štvorcov

Metódou najmenších štvorcov vypočítame odhad \hat{b} parametra b nasledovne:

$$\hat{b} = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} (y - Xb)^T C(y - Xb) = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} ||y - Xb||_{C^{-1}}^2$$

kde C je nejaká kladne definitná matica. Ak C = I, potom minimalizujeme výraz $||y-Xb||_I^2 = ||y-Xb||^2 = \sum_{i=1}^n (y_i-X_i.b)^2$, kde X_i . značí i-ty riadok matice X. V našej práci budeme predpokladať homogenitu chýb, čo v praxi znamená, že skutočne budeme môcť dosadiť C = I. Preto maticu C v ďalšom opise teórie spomínať nebudeme.

Geometricky metódu najmenších štvorcov možno interpretovať ako projekciu vektora y na stĺpcový priestor matice X. Hľadáme teda taký vektor \hat{b} , pre ktorý platí $X\hat{b}=Py$, kde P je matica ortogonálnej projekcie na stĺpcový priestor X. Z teórie lineárnej algebry vieme, že $P=X(X^TX)^-X^T$, kde znamienko – označuje g-inverziu. (g-inverziou matice A je taká matica A^- , pre ktorú platí $AA^-A=A$).

Odhad \hat{b} parametra b je teda riešením rovnice

$$Xb = X(X^T X)^- X^T y (2)$$

Toto riešenie spočítame ako:

$$\hat{b} = (X^T X)^- X^T y$$

kde použitá g-inverzia je ľubovoľná.

Z uvedeného vyplýva, že v prípade regulárnosti X je odhad \hat{b} jednoznačný. V našej práci budeme skúmať matice (modely) X, ktoré nie sú regulárne, takže jednoznačný odhad \hat{b} nebudeme schopní nájsť (čo v konečnom dôsledku ani nie je naším záujmom). Budeme odhadovať lineárnu funkciu zložiek vektora b, konkrétne $h^Tb = h_1b_1 + \ldots + h_pb_p$, ktorá býva odhadnuteľná aj v prípade singularity X, ak vektor h spĺňa určité podmienky. Je niekoľko ekvivalentných podmienok, ktoré stačia na to, aby h^Tb bolo odhadnuteľné. Z nich spomenieme jednu v nasledovnej vete, ktorú použijeme neskôr v našej práci.

Veta 1.1. h^Tb je odhadnuteľné, ak plati nasledovné ekvivaltentné podmienky:

1. pre l'ubovol'né riešenia b^* a b^{**} rovnice (2) platí $h^Tb^* = h^Tb^{**}$

2.
$$h \in \mathcal{M}(X^T)$$

3.
$$h \in \mathcal{M}(X^TX)$$
,

 $kde\ \mathcal{M}\ označuje\ stlpcový\ priestor\ matice.$

Ak h patrí do riadkového priestoru matice X, potom existuje také u, že $h=F^Tu$. Potom pre jednoznačný odhad $h^T\hat{b}$ vektora h^Tb platí:

$$h^T \hat{b} = u^T X \hat{b} = u^T P y = u^T X (X^T X)^{-} X^T y$$

Výsledok predchádzajúcej vety je dôležitý pre našu prácu, pretože nebudeme skúmať odhady b, ale odhady niektorých lineárnych kombinácií zložiek vektora b, konkrétne napr. rozdiely medzi parametrami.

Odhad \hat{b} parametra b, ako aj odhad $h^T\hat{b}$ parametra h^Tb , sú lineárne nevychýlené odhady, ktorým prislúcha disperzia (TODO: popremýšľaj, či treba bližšie opísať lineárny nevychýlený odhad). Neskôr v našej práci budeme hľadať také modely X, pri ktorých je disperzia odhadov b či h^Tb najmenšia možná, čo nám dá najlepší lineárny nevychýlený odhad. Ak nami navrhované modely X budú opisovať ten istý experiment, ten model X, pre ktorý disperzia odhadu h^Tb bude najmenšia, bude svojím spôsobom optimálny.

K nájdeniu optimálneho modelu X nám poslúži Gaussova-Markovova veta, ktorá určuje minimálnu možnú disperziu odhadu h^Tb .

Veta 1.2. (Gaussova-Markovova) Nech h je z riadkového priestoru X. Potom minimálna možná disperzia lineárneho nevychýleného odhadu h^Tb je

$$m = \operatorname{Var}[h^T b] = h^T M^- h$$

 $kde\ M = X^TX\ je\ informačná\ matica\ parametra\ b\ a\ M^-\ je\ jej\ ľubovoľná\ g-inverzia.$

2 ...

Záver

TODO

Zoznam použitej literatúry

[1] Pázman, A., Lacko, V.: *Prednášky z regresných modelov*, Vydavateľstvo UK, Bratislava, 2012, 2015

Príloha A