# Problem Solving: Homework 3.6

Name: Chen Shaoyuan Student ID: 161240004

October 10, 2017

### 1 [GC] Problem 8.1

#### (a) G:



#### (b) Yes. A perfect matching is



This means that there exists a permutation  $\pi$  of  $\{0,1,2,3,4,5,6\}$ , such that  $w_{\pi(i)}$  is a correct response to  $u_i$ , for  $0 \le i \le 6$ .

# **2** [GC] Problem 8.3

For graph  $G_1$ , U can be matched to W. One possible matching is  $\{(a,x),(b,w),(c,v),(d,z),(e,y)\}$ .

For graph  $G_2$ , U can't be matched to W. Consider vertex set  $\{b,d,e\}$ , the cardinality of its neighborhood is only 2, which violates Hall's condition.

# **3** [GC] Problem **8.4**

For all subset U' of U, since every two vertices in U' have distinct degrees, the maximum degree of all vertices of U' is at least |U'|, and thus the cardinality of the neighborhood of U' is at least |U'|. Therefore, the graph G satisfies Hall's condition, which means G contains a perfect matching.

#### 4 [GC] Problem 9.6

- (a) True. It is obvious that if a graph does not contain a subdivision of  $K_5$  or  $K_{3,3}$ , neither does its subgraph. Therefore, by Kuratowski's Theorem, every subgraph of a planar graph is planar.
- (b) False. For any nonplanar graph, if we take one of its vertices as a trivial subgraph, then it is obviously a planar subgraph.
- (c) False. Consider  $K_5$ , removing any of its edges or vertices will make the resulting graph not contain a subdivision of  $K_5$  or  $K_{3,3}$ , so  $K_5$  is a counterexample to this statement.
- (d) False. If we insert an vertex to any edge of  $K_5$ , the resulting graph does not contain  $K_5$  or  $K_{3,3}$  as a subgraph, however, it is still nonplanar.
- (e) False. Consider the union of  $K_5$  and  $C_3$ , with order n = 8 and size m = 13, which satisfies  $m \le 3n 6$ . However, one of its components is nonplanar, and thus the graph is nonplanar.
- (f) False. Consider the union of  $K_{3,3}$  and  $C_3$ , it has a triangle and contains no subdivision of  $K_5$  as a subgraph, however, it is nonplanar.

### **5** [GC] Problem **9.13**

- (a) Since G contains no triangle, the boundary of every region has at least 4 edges. Because every edge belongs to at most two of the boundaries, we have  $2m \ge 4r$ , i.e.  $2r \le m$ . By Euler's Identity, we have r = 2 + m n. Hence,  $4 + 2m 2n \le m$ , i.e.  $m \le 2n 4$ .
- (b) For  $K_{3,3}$ , n = 6, m = 9, m > 2n 4. Note that  $K_{3,3}$  contains no triangle, so  $K_{3,3}$  is nonplanar.
- (c) This is true. First, G contains no triangle because it is bipartite. Suppose that every vertex has degree 4 or more, then  $2m \ge 4n$ , i.e.  $m \ge 2n$ , which violates the inequality we proved in (a). Therefore, G has a vertex of degree 3 or less.

## **6** [GC] Problem 9.14

- (a) Since the length of a smallest cycle in G is 5, the boundary of every region has at least 5 edges. Because every edge belongs to at most two of the boundaries, we have  $2m \ge 5r$ . By Euler's Identity, we have r = 2 + m n. Hence  $2 + m n \le \frac{2}{5}m$ , i.e.  $m \le \frac{5}{3}(n-2)$ .
- (b) Petersen graph has 15 edges and 10 vertices, so  $m > \frac{5}{3}(n-2)$ . Since the length of a smallest cycle in Petersen graph is 5, it is nonplanar.
- (c) Removing any vertex of the Petersen graph yields a subdivision of  $K_{3,3}$ , so the Peterson graph is nonplanar.



(d) Suppose, to the contrary that every vertex of G has a degree of 3 or more, then  $2m \ge 3n$ . Therefore,  $\frac{3}{2}n \le m \le \frac{5}{3}(n-2)$ . After some algebra we get  $n \ge 20$ , which leads to contradiction.