Drinking Water Surveillance Program

OTTAWA (BRITANNIA) WATER TREATMENT PLANT

Annual Report 1989

OTTAWA (BRITANNIA) WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1989

Cette publication technique n'est disponible qu'en anglais.

December 1990

Copyright: Queen's Printer for Ontario, 1990
This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 1380

MAJORATION AWATED

DEDMAND WATER STREET, AND PRODUCED

MINISTER BEDORT IN

or at parts were an electronical training and the parts of the parts o

files values limbs

Copyright Queen's Printer for Daterio, 1939
Tells of large ten busy to exceedanced for may consider the purposes.

With the continue attribution.

1000 2 2019

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

OTTAWA (BRITANNIA) WATER TREATMENT PLANT 1989 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1989, 65 supplies were being monitored.

The Ottawa (Britannia) Water Treatment Plant is a conventional treatment plant which treats water from the Ottawa River. The process consists of coagulation, flocculation, sedimentation, filtration, disinfection, post pH adjustment and fluoridation. This plant has a design capacity of 247 x 1000 m³/day and in conjunction with the Lemieux Island plant, serves a population of approximately 515,000.

Samples of the raw and treated water from the Ottawa (Britannia) Water Treatment Plant plus water samples from two distribution system sites were taken on a monthly basis and analyzed for approximately 180 parameters. Parameters were divided into the following groups Bacteriological, Inorganic and Physical (Laboratory Chemistry, Field Chemistry and Metals) and Organics (Chloroaromatics, Chlorophenols, Pesticide and PCB, Phenolics, Polynuclear Aromatic Hydrocarbons, Specific Pesticides and Volatiles). Specific Pesticides and Chlorophenols were analysed in November only.

A summary of results is shown in Table A.

Inorganic and Physical parameters (Laboratory Chemistry, Field Chemistry and Metals) were below any applicable health related ODWOs.

Of approximately 110 Organic parameters tested for on a monthly basis, none exceeded health related guidelines.

During 1989 the DWSP sampling results indicated that the Ottawa (Britannia) Water Treatment Plant produced good quality water at the plant and this quality was maintained in the distribution system.

TABLE A

DRINKING WATER SURVEILLANCE PROGRAM

OTTAWA WSS (BRITANNIA)

SUMMARY TABLE BY SCAN

SCAN	TESTS	RAW TESTS POSITIVE XPOSITIVE TESTS	DSITIVE	TESTS	TREATED IS POSITIVE	ATED POSITIVE XPOSITIVE	S	SITE 1 TESTS POSITIVE XPOSITIVE		SI	SITE 2 TESTS POSITIVE XPOSITIVE		SI	SITE 3 TESTS POSITIVE XPOSITIVE	SITIVE
BACTERIOLOGICAL	30	56	88	33	m	6	27	7	22	24	10	1.7	12		80
CHEMISTRY (FLD)	30	30	100	72	72	100	109	106	26	87	82	76	87	77	91
CHEMISTRY (LAB)	200	165	82	240	198	82	322	280	88	280	252	8	140	123	87
METALS	240	129	53	288	121	75	277	201	7,	376	179	27	188	80	27
CHLOROAROMATICS	140	0	0	154	-	0	126	-	0	112	0	0	29	-	1
CHLOROPHENDLS	9	0	0	9	0	0	•	٠	٠	٠	•	•	٠		•
PAH	159	0	0	190	0	0	٠	٠	•	٠	٠	•	٠	٠	٠
PESTICIDES & PCB	340	0	0	374	0	0	254	0	0	259	0	0	25	0	0
PHENOL 1CS	10	٥	8	11	10	8	٠	٠		,		•	٠		٠
SPECIFIC PESTICIOES	37	0	0	&	0	0	٥	0	0	80	0	0	7	0	0
VOLATILES	290	-	0	348	36	10	290	31	10	232	54	10	116	12	10
	1482	360		1745	177		1584	929		1378	242		879	267	

NO KNOWN HEALTH RELATED GUIDELINES WERE EXCEEDED

TOTAL

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A ... INDICATES THAT NO SAMPLE WAS TAKEN

DRINKING WATER SURVEILLANCE PROGRAM

OTTAWA (BRITANNIA) WATER TREATMENT PLANT 1989 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1989, 65 supplies were being monitored.

The DWSP was initiated at the Ottawa (Britannia) Water Treatment Plant in the fall of 1986. Annual reports were published for 1986 (ISBN 0-7729-2550-X), 1987 and 1988(ISSN 0839-9026).

This report contains information and results for 1989.

In order to accommodate the increasing number of plants on the DWSP and to facilitate the timely completion of the 1989 annual reports, plants with two or more years of published data will receive an abbreviated annual report. This report maintains the same general format as in previous years but does not include a comprehensive discussion of results. For more detail on the parameters analysed and discussion of results, consult the 1987 and 1988 reports.

PLANT DESCRIPTION

The Ottawa (Britannia) Water Treatment Plant is a conventional treatment plant which treats water from the Ottawa River. The process consists of coagulation, flocculation, sedimentation, filtration, disinfection, post pH adjustment and fluoridation. Activated silica is added to enhance the coagulation / flocculation process. It has a design capacity of 247.0 x 1000 m³/day and sample day flows ranging from 91 x 1000 m³/day to 281 x 1000 m³/day. This plant, in conjunction with the Lemieux Island plant, serves a population of approximately 515,000.

The plant location is shown in Figure 1. Plant process details, in a block schematic, are shown in Figure 2. General plant information is presented in Table 2.

SAMPLE LOCATIONS

Water samples were obtained from five DWSP approved locations;

- i) Plant Raw The water originated from the intake pipe prior to chlorination and was sampled through a stainless steel line. The sample tap is located in the plant laboratory.
- ii) Plant Treated The water originated from the highlift discharge after addition of all treatment

chemicals and was sampled through a copper sample line. The sample tap is located in the plant laboratory.

- iii) Distribution System Site 1 This house is approximately 3 kilometers from the plant. Water was sampled, through copper plumbing, from the kitchen tap.
 - iv) Distribution System Site 2 This house is approximately 8 kilometers from the plant. Water was sampled, through copper plumbing, from the basement laundry tap. Sampling was discontinued in August.
 - v) Distribution System Site 3 The distance that this house is from the plant is unavailable, as is the type of plumbing and sampling location. Sampling was started in September.

SAMPLING AND ANALYSIS

Plant operating personnel perform analyses on parameters for process control (Table 1).

The Ottawa (Britannia) Water Treatment Plant was sampled for approximately 180 parameters on a monthly basis. The Specific Pesticides and Chlorophenols scans were sampled in November only. Polynuclear Aromatic Hydrocarbons and Phenolics are only analysed in the raw and treated water from the plant. As of August the

DRINKING WATER SURVEILLANCE PROGRAM SITE LOCATION MAP

OTTAWA (BRITANNIA) WATER TREATMENT PLANT

OTTAWA (BRITANNIA) WATER TREATMENT PLANT

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT

IN-PLANT MONITORING OTTAWA (BRITANNIA) WATER TREATMENT PLANT 1989

PARAMETER		LOCATION	FREQUENCY
Chlorine residual-	combined	Mixing chamber Filter effluent Filter influent	daily daily daily
	total	Filter effluent Treated tap Filter influent Plant effluent Mixing chamber	daily continuous daily daily daily
Fluoride		Plant effluent	continuous daily
рН		Plant effluent Filter effluent Raw water tap Mixing chamber Treated tap	daily daily continuous daily continuous
Residual Aluminum		Treated tap	weekly
Silica		Raw water tap Treated tap	weekly weekly
Turbidity		Raw water tap Filter influent Filter effluent Treated tap	daily continuous daily daily daily

TABLE 2

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT GENERAL INFORMATION

OTTAWA (BRITANNIA) WATER TREATMENT PLANT

LOCATION:

CASSELS ROAD OTTAWA, ONTARIO (613-828-2727)

SOURCE:

RAW WATER SOURCE - OTTAWA RIVER

RATED CAPACITY:

247 (1000 M3/DAY)

OPERATION:

MUNICIPAL

PLANT SUPERINTENDENT:

A. HARTRY

MINISTRY REGION:

SOUTHEASTERN

DISTRICT OFFICER:

MR. R.A. DUNN

MUNICIPALITY SERVED	POPULATION ————
CITY OF OTTAWA	304,000
GLOUCESTER	76,589
VANIER	18,877
NEPEAN	85,737
KANATA	20,529
GOULBOURN	9,720

triazine pesticides were only analyzed in the raw and treated water. Laboratory analysis was conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field Chemistry measurements were recorded on the day of sampling and were entered onto the DWSP data base as submitted by plant personnel.

Table 3 contains information on the sample day retention time, flow rate and treatment chemicals used and their associated dosages.

Table 4 is a summary break-down of the number of water samples analysed by parameter and by water type. The number of times that a positive or trace result was detected is also reported. Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment (MOE) laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analysed in the DWSP.

Associated guidelines and detection limits are also supplied on tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

Water quality is judged by comparison with the Ontario Drinking Water Objectives (ODWOS) as defined in the 1984 publication (ISBN 0-7743-8985-0). The Province of Ontario has health related and aesthetic objectives for 49 parameters, these are currently under review. When an ODWO is not available guidelines/limits from other agencies are consulted. The Parameters Listing System (PALIS) recently published (ISBN 0-7729-4461 -X) by the MOE catalogues and keeps current over 1750 guidelines for 650 parameters from agencies throughout the world.

Many of the compounds detected are naturally occuring or are treatment by-products.

IN THIS REPORT, DISCUSSION IS LIMITED TO THE TREATED AND DISTRIBUTED WATER AND ADDRESSES ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES AND ORGANICS WITH DETECTED POSITIVE RESULTS.

Results of treated and distributed water indicate that no applicable health related guidelines were exceeded.

Bacteriology

Standard Plate Count

The ODWO for Standard Plate Count of 500 counts/mL (indicating some deterioration) was exceeded, three times in the Site 2 water, in May, June and July and once in the Site 3 water, in September.

Inorganic and Physical Parameters

Aluminum

The plant operational guideline of 100 $\mu g/L$ as Al in the water leaving the plant was exceeded six times in the treated water.

Organic Parameters

Toluene

Toluene was detected at 1.15 $\mu g/L$ in the October Site 1 water sample. The Aesthetic Objective used by Health and Welfare Canada is 24.0 $\mu g/L$.

Tribalomethanes

Trihalomethanes (THMs) are acknowledged to be produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of Chloroform, Chlorodibromomethane and Dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. All Total THM occurrences, ranging from 41.0 to 243 μ g/L, were well below the ODWO of 350 μ g/L.

CONCLUSIONS

The Ottawa (Britannia) Water Treatment plant for the sample year of 1989 produced good quality water at the plant and this was maintained in the distribution system.

No health related guidelines, for organic or inorganic parameters, were exceeded during 1986, 1987, 1988 or 1989.

TABLE 3

DRINKING MATER SURVEILLANCE PROGRAM OTTAMA MSS (BRITANNIA) SAMPLE DAY CONDITIONS FOR 1989

	SAMPLE DA	SAMPLE DAY CONDITIONS	ss <u>=</u>	TREAT	TREATMENT CHEMICAL DOSAGEB (MG/L)					
			ļ							
			PRE-CHLORINATION	COAGULATION	COMQUEATION A10	FLUCRIDATION	ACTIVATION	POST PH ADJUSTMEN		POST - CHLOR I MA
			CHLORINE	ALUM LIQUID	SCOTUM STLICATE	HYDROFLUDSILICIC ACID	ALUM LIQUID	CALCTUR CARBONATE	CALCTUM COCIDE	CHLORINE
ATE	DELAY * TIME(HRS)	FLOW (1000MS)								9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
AH 25	3.0	164.0	1.20	32.00	1.3	8.	3.50	15.00	•	1.30
	4.7	109.0	1.20	30.00	2.00	1.00	00.4	14.00	٠	1.30
	3.5	141.0	1.20	30.00	2.50	1.00	8.00	14.00		1.30
	3.5	141.0	1.20	36.00	2.25	1.00	4.50	8.60		1.30
AY 26	5.6	186.0	1.20	28.00	1.50	1.00	3.00	9.60		1.30
UM 28	3.5	141.0	1.70	26.00	1.00	1.00	2.00	11.00	b	1.50
UL 26	1.8	247.0	3.20	28.00	1.25	1.00	2.50	9.60	٠	1.50
		141.0	3.20	28.00	1.23	1.00	2.50	8.60		1.50
EP 27	2.6	186.0	3.20	28.00	1.23	1.00	2.50	14.00		1.50
CT 23	5.4	91.0	2.20	30.00	1.03	1.00	2.50		8.60	1.50
	5.1	186.0	2.20	34.00	1.00	1.00	2.00		8.60	1.20
		281.0	1.00	36.00	4.00	٠	8.00		8.60	1.20
					•					

* THE DELAY TIME METHERN THE DAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

			RAW		TRI	TREATED		SITE	-		SITE	2		SITE	2	
SCAN	PARAMETER	TOTAL PO	POSITIVE TRACE	TRACE	TOTAL	TOTAL POSITIVE TRACE	TRACE	TOTAL POSITIVE		TRACE	TOTAL PO	TOTAL POSITIVE TRACE		TOTAL POSITIVE		TRACE
BACTERIOLOGICAL	FECAL COLIFORM MF	9	٥	0	٠		t t	0 0 0 1 1		1	; ; ; ;		: : :	1 1 1 1 1 1 1 1		1 1 1 1 1
	STANDRO PLATE CNT MF	•	٠	•	Ξ	23	0	٥	9	0	80	9	0	7	7	0
	TOTAL COLIFORM MF	10	7	0	=======================================	0	0	6	0	0	80	-	0	7	0	0
	T COLIFORM BCKGRD MF	10	10	0	Ξ	0	0	٥	-	0	80	m	0	7	m	0
*TOTAL SCAN BACTERIOLOGICAL	OGICAL	30	92	0	33	m	0	27	7	0	54	10	0	12	7	0
*TOTAL GROUP BACTERIOLOGICAL	LOGICAL	30	56	0	33	m	0	27	7	0	54	10	0	12	7	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					1	3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 4 8 3 7		1	1				1		8 8
CHEMISTRY (FLD)	FLD CHLORINE (COMB)	•	٠	٠	12	12	0	17	17	0	14	13	0	80	80	0
	FLD CHLORINE FREE	٠	٠	•	12	12	0	17	15	0	=	80	0	80	7	0
	FLO CHLORINE (TOTAL)	•	•	•	12	12	0	18	18	0	14	13	0	80	8	0
	FLO PH	10	10	0	12	12	0	19	19	0	16	16	0	8	8	0
	FLD TEMPERATURE	10	10	0	12	12	0	19	19	0	16	16	0	80	89	0
	FLD TURBIDITY	10	10	0	12	12	0	19	19	0	91	16	0	8	80	0
*TOTAL SCAN CHEMISTRY (FLD)	(FLD)	30	30	0	72	72	0	109	107	0	87	82	0	87	77	0
CHEMISTRY (LAB)	ALKALINITY	10	10	0	12	12	0	18	18	0	16	16	0	80	8	0
	CALCIUM	10	10	0	12	12	0	19	19	0	16	16	0	80	80	0
	CYANIDE	10	0	0	12	0 .	0	6	0	0	80	0	-	7	0	0
	CHLORIDE	10	10	0	12	12	0	18	18	0	16	16	0	8	89	0
	COLOUR	10	10	0	12	12	0	18	17	-	16	16	0	8	8	0
	CONDUCTIVITY	10	10	٥	12	12	0	18	18	0	16	16	0	8	80	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE														
SCAN	PARAMETER	TOTAL	RAW TOTAL POSITIVE	TRACE	TRE TOTAL P	TREATED TOTAL POSITIVE 1	TRACE	SI TOTAL P	SITE 1 TOTAL POSITIVE TRACE	TRACE	SITE 2 TOTAL POSITIVE		TRACE	SITE 3 TOTAL POSITIVE TRACE	VE TR	ACE
CHEMISTRY (LAB)	FLUORIDE	10	м	7	12	10	2	18	16	2	16	16	0	60	œ	0
	HARONESS	10	10	0	12	12	0	19	19	0	16	16	0	œ	80	0
	IONCAL	10	10	0	12	12	0	19	18	0	16	16	0	60	80	0
	LANGELIERS INDEX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MAGNESIUM	10	10	0	12	12	0	19	19	0	16	16	0	00	œ	0
	SOD TUM	10	10	0	12	12	0	19	19	0	16	16	0	80	œ	0
	AMMONIUM TOTAL	10	9	-	12	0	80	18	M	2	16	7	9	80	2	m
	NITRITE	10	9	7	12	2	7	18	9	Ξ	16	2	=	80	-	7
	TOTAL MITRATES	10	10	0	12	12	0	18	16	0	16	16	0	80	œ	0
	NITROGEN TOT KJELD	10	10	0	12	12	0	19	19	0	16	16	0	80	80	0
	Н	10	10	0	12	12	0	18	18	0	16	16	0	60	œ	0
	PHOSPHORUS FIL REACT	10	2	60	12	9	2	٠	•	•	٠	٠	٠	•	٠	
	PHOSPHORUS TOTAL	10	æ	2	12	٥	M	٠	٠	٠	٠	•	٠			٠
	SULPHATE	10	10	0	12	12	0	18	18	0	16	16	0	00	00	0
	TURBIDITY	10	10	0	12	12	0	19	19	0	16	16	0	80	00	0
*TOTAL SCAN CHEMISTRY (LAB)	(LAB)	200	165	22	240	198	52	322	280	9	280	252	18	140	123	10
METALS	SILVER	10	0	2	12	0	-	19	0	9	16	0	9	80	0	-
	ALUMINUM	10	10	0	12	12	0	19	19	0	16	16	0	89	œ	0
	ARSENIC	10	80	2	12	-	=	19	2	17	16	0	16	80	0	60
	BARIUM	10	10	0	12	12	0	19	19	0	16	16	0	89	80	0
	BORON	10	1	0.	12	0	12	19	2	17	16	-	15	89	0	80
	BERYLLIUM	10	0	m	12	0	M	19	0	2	16	0	m	80	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE														
			RAW		TREATED	TEO		SITE 1			SITE 2			SITE 3		
SCAN	PARAMETER	TOTAL	TOTAL POSITIVE	TRACE	TOTAL POSITIVE	SITIVE	TRACE	TOTAL POSITIVE TRACE	IVE TR		TOTAL POSITIVE TRACE	VE TRAC		TOTAL POSITIVE TRACE	E TRA(ų
METALS	CADMIUM	10	0	4	12	0	2	19	0	ဆ	16	-	80	€0	0	. 0
	COBALT	10	2	80	12	2	10	19	0	19	16	0	91	80	0	80
	CHROMIUM	10	9	M	12	4	2	19	٥	80	16	00	7	80	-	7
	COPPER	10	10	0	12	٥	М	19	19	0	16	16	0	80	60	0
	IRON	10	10	0	12	0	12	19	0	19	16		91	80	0	80
	MERCURY	10	7	9	12	4	2	10	-	7	80		0	4	4	0
	MANGANESE	10	10	0	12	12	0	19	19	0	16		0	හ	60	0
	MOLYBDENUM	10	-	٥	12	-	11	19	0	19	16		9	හ	0	80
	NICKEL .	10	2	80	12	-	7	19	-	12	16	2	13	80	0	2
	LEAD	10	٥		12	٣	2	19	19	0	16	15	_	80	9	2
	ANTIMONY	10	٥		12	=	-	19	17	2	16		0	හ	9	2
	SELENIUM	10	0	M	12	0	m	19	0	m	16	0	ıs	80	0	0
	STRONTIUM	10	10		12	12	0	19	19	0	16		0	80	60	0
	TITANIUM	10	10		12	12	0	19	17	2	16	16	0	80	7	_
	THALLIUM	10	0	9	12	0	9	19	0	11	16	0	9	ಐ	0	m
	URANIUM	10	0	10	12	-	9	19	0	80	16	0	Ξ	82	0	-
	VANADIUM	10	7	m	12	12	0	19	19	0	16	16	0	80	80	0
	ZINC	10	10	0	12	12	0	19	19	0	16	16	0	€0	6 0	0
*TOTAL SCAN METALS		240	129	78	288	121	106	277	201	160		179 13	139	188 80		59
*TOTAL GROUP INORGANIC & PHYSICAL	NIC & PHYSICAL	470	324	100	900	391	131	878	588	130	743		157	10		69
CHLOROAROMATICS	HEXACHLOROBUTADIENE	2	0	0	11	0	0	٥	0	0	κο	0	0	7	0	. 0
	123 TRICHLOROBENZENE	10	0	0	11	0	0	6	0	0	80	0	0	7	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE															
			RAW		TR	TREATED		S	SITE 1		(S)	SITE 2		SITE	E 3		
SCAN	PARAMETER	TOTAL	TOTAL POSITIVE	TRACE	TOTAL	TOTAL POSITIVE	TRACE	TOTAL	TOTAL POSITIVE	TRACE	TOTAL	TOTAL POSITIVE	TRACE	TOTAL POSITIVE	SITIVE	TRACE	
CHLOROAROMATICS	1234 T-CHLOROBENZENE	10	0	0	=	0	0	٥	0	0	6 0	0	0	7	0	0	
	1235 T-CHLOROBENZENE	10	0	0	=======================================	0	0	6	0	0	60	0	0	7	0	0	
	124 TRICHLOROBENZENE	10	0	0	=	0	0	6	0	0	80	0	0	7	0	0	
	1245 T-CHLOROBENZENE	10	0	0	Ξ	0	0	6	0	0	80	0	0	7	0	0	
	135 TRICHLOROBENZENE	10	0	0	Ξ	0	0	6	0	0	80	0	0	7	0	0	
	нсв	10	0	0	Ξ	0	0	6	0	0	80	0	0	7	0	0	
	HEXACHLOROETHAME	10	0	0	=======================================	1	0	6	-	0	80	0	0	7	-	0	
	OCTACHLOROSTYRENE	10	0	0	=======================================	0	0	6	0	0	80	0	0	7	0	0	
	PENTACHLOROBENZENE	10	0	0	11	0	0	6	0	0	80	0	0	7	0	0	
	236 TRICHLOROTOLUENE	10	0	0	=======================================	0	0	6	0	0	80	0	0	7	0	0	
	245 TRICHLOROTOLUENE	10	0	0	=======================================	0	0	6	0	0	80	0	0	7	0	0	
	26A TRICHLOROTOLUENE	10	0	0	=	0	0	0	0	0	60	0	0	7	0	0	
*TOTAL SCAN CHLOROAROMATICS	ROMATICS	140	0	0	154	-	0	126	-	0	112	0	0	99	gun	0	
										1							
CHLOROPHENOLS	234 TRICHLOROPHENOL	-	0	0	-	0	0	٠		٠	٠	•	•	•	٠	٠	
	2345 T-CHLOROPHENOL	*	0	0	-	0	0	٠	٠	٠	•	٠	•	٠	٠	٠	
	2356 T-CHLOROPHENOL	-	0	0	-	0	0	٠	٠	•	•	•	٠	٠	٠	٠	
	245-TRICHLOROPHENOL	-	0	0	-	0	0	•	•	٠	٠	٠	•	٠	٠	٠	
	246-TRICHLOROPHENOL	-	0	0	-	0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	PENTACHLOROPHENOL	-	0	0	-		0	٠	٠	٠	٠	•	٠	٠	٠	٠	
*TOTAL SCAN CHLOROPHENOLS	HEMOLS	9	0	0	9	0	0	0	0	0	0	0	0	0	0	0	

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE														
SCAN	PARAMETER	TOTAL	RAW TOTAL POSITIVE TRACE	E TRACE		TREATED TOTAL POSITIVE	E TRACE		SITE 1 TOTAL POSITIVE	E TRACE		SITE 2 TOTAL POSITIVE	TRACE	SITE 3 TOTAL POSITIVE	VE TRACE	ICE
PAK	PHENANTHRENE	10	6 0 0 0	0 0	2 2 2 4	12	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	; •		٠	٠			
	ANTHRACENE	10		0 0	-	2	0 0	٠		•	٠	٠	٠	,		
	FLUORANTHENE	10		0 0	-	2	0 0	•			٠	•	٠			
	PYRENE	10		0 0		2	0 0	•			•	٠	٠			
	BENZO(A)ANTHRACENE	10		0 0		2	0 0	•			•	٠	٠			
	CHRYSENE	10		0 0		2	0 0	•			•	٠	٠			
	DIMETH. BENZ(A)ANTHR	2		0 0	_	2	0 0	•		•	•	•	٠	•		
	BENZO(E) PYRENE	10		0 0	_	12	0 0	٠		•	٠	•	٠	٠		
	BENZO(B) FLUORANTHEN	10		0 0	_	12	0 0	•			•	•	•			
	PERYLENE	10		0 0		12	0 0	•			•	•	٠			
	BENZO(K) FLUORANTHEN	10		0 0		2	0 0	•			•	٠	٠	•		
	BENZO(A) PYRENE	7		0 0	_	2	0 0	•			٠	•	٠			
	BENZO(G, H, I) PERYLEN	10		0 0		12	0 0				٠	٠	٠			
	DIBENZO(A, H) ANTHRAC	10		0 0		12	0 0				•	•	٠	•	,	
	INDENO(1,2,3-C,D) PY	10		0	0	12	0				٠	•	٠			
	BENZO(B) CHRYSENE	10		0 0		12	0			٠	٠	٠	٠	•		
	CORONENE	10		0	0	12	0				•	•	•			٠
*TOTAL SCAN PAH		159		0	0 190	0	0	0		0	0	0	0	0	0	0
PESTICIDES & PCB	ALDRIN	10		0	0		0 0	6		0	60	0	0	7	0	0
	ALDHA BHC	10		0		_	7 0	•		7 0	00	0	2	4	0	2
	BETA BHC	10				=		6		0 0	80	0	0	7	0	0
	LINDANE	10		0	0	-	0 0	6		0 0	80	0	0	4	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE													
SCAN	PARAMETER	TOTAL	RAW TOTAL POSITIVE 1	TRACE	TREATED TOTAL POSITIVE		TRACE T	SITE 1 TOTAL POSITIVE	E TRACE	TOTAL	SITE 2 TOTAL POSITIVE TRACE		SITE 3 TOTAL POSITIVE	TRACE	
PESTICIDES & PCB	ALPHA CHLORDANE	10	0	0	-	0	0	6	0 0	∞	0	0	0 7	0	
	GAMMA CHLORDANE	10	0	0	=	0	0	٥	0 0	80	0	0	0 7		_
	DIELDRIN	10	0	0	=	0	0	٥	0 0	80	0	0	0 7	0	
	METHOXYCHLOR	10	0	0	=	0	0	٥	0 0	80	0	0	0 7	0	_
	ENDOSULFAN 1	10	0	0	11	0	0	٥	0 0	80	0	0	0 7	0	_
	ENDOSULFAN 11	10	0	0	Ξ	0	0	6	0 0	80	0	0	0 7		_
	ENDRIN	10	0	0	=	0	0	٥	0 0	80	0	0	0 7	0	0
	ENDOSULFAN SULPHATE	10	0	0	Ξ	0	0	٥	0 0	80	0	0	0 7	0	_
	HEPTACHLOR EPOXIDE	10	0	0	Ξ	0	0	٥	0 0	89	0	0	0 7		_
	HEPTACHLOR	10	0	0	Ξ	0	0	٥	0 0	89	0	0	0 7	0	_
	MIREX	10	0	0	11	0	0	6	0 0	80	0	0	0 7	0	0
	OXYCHLOROANE	10	0	0	=	0	0	٥	0 0	80	0	0	0 7	0	_
	OPDDI	10	0	0	=======================================	0	0	٥	0 0	80		0	0 7		_
	PCB	10	0	0	Ξ	0	0	٥	0 0	80	0	0	0 7	0	_
	000	10	0	0	11	0	0	٥	0 0	80	0	0	0 7	0	_
	PPODE	10	0	0	=======================================	0	0	٥	0 0	89	0	0	0 7	0	_
	PPODT	10	0	0	Ξ	0	0	٥	0 0	80	0	0	0 7	0	_
	AMETRINE	10	0	0	11	0	0	2	0 0	7	0	0			
	ATRAZINE	10	0	0	Ξ	0	0	2	0 0	7	0	0	•	٠	
	ATRATONE	10	0	0	Ξ	0	0	2	0 0	7	0	0	•		
	CYANAZINE (BLADEX)	10	0	0	Ξ	0	0	2	0 0	7	0	0		٠	
	D-ETHYL ATRAZINE	10	0	0	=	0	0	2	0 0	7	0	0			
	D-ETHYL SIMAZINE	10	0	0	Ξ	0	0	2	0 0	7	0	0		٠	
	PROMETONE	10	0	0	1	0	0	2	0 0	7	0	0		٠	
	PROPAZINE	10	0	0	11	0	0	2	0 0	7	0	0		•	

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE														
	PARAMETER	TOTAL	RAW TOTAL POSITIVE TRACE	TRACE		TREATED TOTAL POSITIVE TRACE	TRACE	S TOTAL P	SITE 1 TOTAL POSITIVE TRACE	TRACE	SITE 2 TOTAL POSITIVE TRACE	IE 2 DSITIVE	TRACE	ST. TOTAL PO	SITE 3 TOTAL POSITIVE T	TRACE
PESTICIDES & PCB	PROMETRYNE	10	0	0		1 0	0	5	0	0	7	0	0	0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	; ; ;
	METRIBUZIN (SENCOR)	10	0	0	-	1 0	0	2	0	0	7	0	0			٠
	SIMAZINE	10	0	0	-	1 0	0	2	0	0	7	0	0	٠	•	٠
	ALACHLOR (LASSO)	10	0	0	=======================================	1 0	0	5	0	0	7	0	0	٠		•
	METOLACHLOR	9	0	0	=	1 0	0	2	0	0	7	0	0	•	5	٠
*TOTAL SCAN PESTICIDES & PCB	ES & PCB	340	0	M	374	0 %	7	254	0	7	259	0	2	*	0	2
PHENOL ICS	PHENOL I CS	10	0	0	11	1 10	-	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0 8 0 8 0 8 0 8 0		1 1 1 1 1 1 1	9 9 9 1 1 1	8 ************************************	0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * *	1 1
*TOTAL SCAN PHENOLICS	8	10	٥	0	1	1 10	-	0	0	0	0	0	0	0	0	0
	2	1	† † † †				1			1	1	1	0 0	0 1 1 0 0		
SPECIFIC PESTICIDES	TOXAPHENE	10	0	0	-	1 0	0	٥	0	0	80	0	0	7	0	0
	2,4,5-T	-	0	9	_	1 0	0	٠		٠	٠	٠	٠			٠
	2,4-0	-	0	0		1 0	0	٠	•	٠	٠	٠	٠	٠	٠	٠
	2,4-08	-	0	0	_	1 0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠
	2,4 D PROPIONIC ACID	-	0	0	_	1 0	0	٠				٠	٠			٠
	DICAMBA	-	0	0		1 0	0	•		٠		٠	٠		•	٠
	PICHLORAM	0	0	0		0 0	0	٠	٠	٠		٠	٠	٠	٠	٠
	SILVEX	-	0	0		1 0	0	٠	٠	٠	٠	٠	٠	٠	٠	٠
	DIAZINON	-	0	0		1 0	0					٠	,		٠	٠
	DICHLOROVOS	-	0	0	_	1 0	0	٠	٠	٠			٠		٠	٠
	CHLORPYRIFOS	-	0	0		1 0	0	٠	٠	٠		•	٠		٠	٠

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

		SITE											
		RAW		TR	TREATED		SITE 1		SITE 2			SITE 3	
SCAN	PARAMETER	TOTAL POSITIVE TRACE	E TRACE	1	TOTAL POSITIVE TRACE	RACE	TOTAL POSITIVE TRACE	TRACE	TOTAL POSITIVE TRACE	VE TRACI		TOTAL POSITIVE TRACE	RACE
SPECIFIC PESTICIDES	ETHION	-	0 0	-	0	0		1 1 1 1 1	1 6 1 1 1 6 7 6 0 8 1 8	! ! ! ! !		r 0 1 1 1 1 1 1 1	
	AZINPHOS-METHYL	0	0 0	0	0	0		٠					·
	MALATHION	-	0 0	-	0	0	٠	٠	٠		٠	٠	
	MEVINPHOS	-	0 0	-	0	0		٠	•			٠	·
	METHYL PARATHION	-	0 0	-	0	0		٠				•	
	METHYLTRITHION	-	0 0	-	0	0		٠				٠	
	PARATHION	-	0 0	-	0	0		٠		٠		٠	
	PHORATE	-	0 0	-	0	0		٠				٠	
	RELDAN	-	0 0	-	0	0	٠	٠			٠	•	
	RONNEL	-	0 0	-	0	0		٠				٠	
	AMINOCARB	0	0 0	0	0	0	•	٠		٠		•	
	BENONYL	-	0 0	0	0	0		٠				•	
	BUX	0	0 0	0	0	0		٠				•	
	CARBOFURAN	-	0 0	0	0	0		٠					
	CICP	-	0 0	0	0	0		٠				٠	
	DIALLATE	-	0 0	0	0	0		٠				٠	
	EPTAM	-	0 0	0	0	0		٠	٠				
	IPC	-	0 0	0	0	0	٠	٠	•		٠		-
	PROPOXUR	-	0 0	0	0	0		٠				٠	
	CARBARYL	-	0 0	0	0	0		٠	٠			٠	
	BUTYLATE	-	0 0	0	0	0		٠	٠			٠	
*TOTAL SCAN SPECIFIC PESTICIDES	PESTICIDES	37	0	59	0	0	6	0	ಐ	0	7 0	0	
			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
VOLATILES	BENZENE	10	0 1	12	0	2	10 0	-	80	0	2 4	0	_

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

VOLATILES

	SITE														
		RAW		TREATED	TEO		SITE	-		SITE	2		SITE 3		
PARAMETER	TOTAL	TOTAL POSITIVE TRACE	TRACE	TOTAL POSITIVE	SITIVE T	TRACE	TOTAL POSITIVE		TRACE	TOTAL POSITIVE		TRACE	TOTAL POSITIVE		TRACE
TOLUENE	10	0	2	12	0	2	10	-	2	80	0	4	4	0	-
ETHYLBENZENE	10	0	2	12	0	9	10	0	2	80	0	7	7	0	0
P-XYLENE	10	0	0	12	0	-	10	0	0	60	0	0	7	0	0
M-XYLENE	10	0	-	12	0	m	10	0	2	80	0	m	7	0	0
O-XYLENE	10	0	-	12	0	٣	10	0	4	∞	0	4	7	0	0
STYRENE	10	0	М	12	0	æ	10	0	æ	œ	0	ထ	7	0	2
1,1 DICHLOROETHYLENE	10	0	0	12	0	0	10	0	0	e 0	0	0	7	0	0
METHYLENE CHLORIDE	10	0	0	12	0	0	10	0	0	∞	0	0	7	0	0
T1, 201CHLOROETHYLENE	10	0	0	12	0	0	10	0	0	∞	0	0	7	0	0
1,1 DICHLOROETHANE	10	0	0	12	0	0	10	0	0	æ	0	0	4	0	0
CHLOROFORM	10	-	80	12	12	0	10	10	0	80	ထ	0	4	7	0
111, TRICHLOROETHANE	10	0	-	12	0	-	10	0	0	80	0	0	4	0	-
1,2 DICHLOROETHANE	10	0	0	12	0	0	0	0	0	œ	0	0	4	0	0
CARBON TETRACHLORIDE	10	0	0	12	0	0	10	0	0	80	0	0	4	0	0
1.2 DICHLOROPROPANE	10	0	0	12	0	0	10	0	0	&	0	0	4	0	0
TRICHLOROETHYLENE	10	0	0	12	0	0	0	0	0	80	0	0	4	0	0
DICHLOROBROMOMETHANE	10	0	0	12	12	0	10	10	0	œ	€0	0	4	7	0
112 TRICHLOROETHANE	10	0	0	12	0	0	10	0	0	80	0	0	7	0	0
CHLORODIBROMOMETHANE	10	0	0	12	0	-	10	0	-	€	0	-	7	0	0
T-CHLOROETHYLENE	10	0	0	12	0	2	10	0	0	∞	0	-	7	0	0
BROMOFORM	10	0	0	12	0	0	10	0	0	6 0	0	0	7	0	0
1122 T-CHLOROETHANE	10	0	0	12	0	0	10	0	0	∞	0	0	7	0	0
CHLOROBENZENE	10	0	0	12	0	0	10	0	0	∞	0	0	7	0	0
1,4 DICHLOROBENZENE	10	0	0	12	0	0	10	0	0	ဆ	0	0	7	0	0
1,3 DICHLOROBENZENE	10	0	0	12	0	0	10	0	0	œ	0	-	4	0	0

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA (BRITANNIA)

SUMMARY TABLE OF RESULTS (1989)

RACE	000	4 0	ĸ
SITE 3 POSITIVE T	0 0 4	12	267
S11 TOTAL PC	444	116 260	187 648
RACE	000	30	1
SITE 2 POSITIVE T	008	24	247
SI TOTAL P	ဆဆဆ	232	1378
RACE	0 - 0	24 28	207
TREATED SITE 1 SITE 2 SITE 3 TOTAL POSITIVE TRACE TOTAL POSITIVE TRACE	0 0 12 0 0 10 0 0 8 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	31	627
S. TOTAL I	01 01	290	168 1584
RACE	000	32	:
TREATED 1L POSITIVE T	0 0 12	36	441
TRE TOTAL P	12 12 12	348	1745
RACE	004	23	126
SITE RAW TOTAL POSITIVE TRACE	000	10	360
SITE TOTAL P	0t 0t	290	1482
PARAMETER	VOLATILES 1,2 DICHLOROBENZENE 10 ETHLYENE DIBROMIDE 10 TOTL TRIHALOMETHANES 10	OLATILES ORGANIC	T0TAL 1482
SCAN	VOLATILES	*TOTAL SCAN VOLATILES *TOTAL GROUP ORGANIC	TOTAL

KEY TO TABLE 5 and 6

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 1*. MAC for Bacteriological Analyses
 Poor water quality is indicated when :
 - total coliform counts > 0 < 5
 - P/A Bottle Test is present after 48 hours
 - Aeromonas organisms are detected in more than 25% of samples in a single submission or in successive submissions from the same sampling site
 - Pseudomonas Aeruginosa, Staphylococcus Aureus and members of the Fecal Streptococcus group should not be detected in any sample
 - Standard Plate Count should not exceed 500 organisms per ml at 35 °C within 48 hours
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Maximum Desirable Concentration (MDC)
 - 4. Aesthetic or Recommended Operational Guideline
 - hardness levels between 80 and 100 mg/L as calcium carbonate are considered to provide an acceptable balance between corrosion and incrustation, water supplies with a hardness >200 mg/L are considered poor and those in excess of 500 mg/L are unacceptable.
- B HEALTH & WELFARE CANADA (H&W)
 - Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO) (for xylenes, a total)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
 - 5. Maximum Contaminant Level Goal (MCLG)
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- H USSR MAXIMUM PERMISSIBLE CONCENTRATION
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

INTERPRETATION OF DATA

The interpretation of analytical results that are obtained from measurements near the limit of detection of the measurement process is subject to greater uncertainty than those at higher concentrations. The principle areas of concern relate to whether the substance has actually been detected, whether it has been properly identified, and whether it is an artifact of the measurement process. In other words, false positives can be caused by the instrumentation or the test procedures used, when in fact these compounds are not present in the sample.

There are several methods to treat data from such measurements: 1. Exclude the low-level data because of this uncertainty factor. However, studies of long-term environmental trends and modelling may be adversely affected by exclusion of such data.

2. Qualify these data so the user is aware of the greater uncertainty associated with their use.

For the Drinking Water Surveillance Program, measurements near the limit of detection of the measurement process are reported qualified by the code "<T". Results quantified by "W" indicate a zero measurement. These results are reported for purposes of modelling and long-term trend analysis and no significance should be attributed to a single determination of a substance below "T" (a single determination may well be a false positive). Repeat analysis or additional data are needed before it can be stated with certainty that the substance in question was truly present. On the other hand, it is less likely that repeated detection of a substance at or near the limit of detection at a specific location is solely due to an artifact in the measurement system, and more likely represents a true positive. However the average of such data is still only an estimate of the amount of substance present subject to the possible biases of the method used.

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BDL	Below Minimum Measurable Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! AW	No Data: Analysis Withdrawn
!CR	No Data: Could Not Confirm By Reanalysis
!cs	No Data: Contamination Suspected
!IL	No Data: Sample Incorrectly Labelled
!IP	No Data: Insufficient Preservative
!IS	No Data: Insufficient Sample

No Data: Laboratory Accident ! LA No Data: Test Queued After Sample Discarded !LD No Data: No Authorization To Perform Reanalysis ! NA No Data: No Procedure !NP No Data: Sample Not Received !NR No Data: Obscured Plate !OP No Data: Quality Control Unacceptable ! QU No Data: Procedural Error - Sample Discarded !PE No Data: Sample pH Outside Valid Range !PH No Data: Received Empty !RE No Data: See Attached Report (no numeric results) ! RO No Data: Sample Missing ! SM No Data: Send Separate Sample Properly Preserved !SS No Data: Indeterminant Interference !UI !TX No Data: Time Expired Approximate, Total Count Exceeded 300 Colonies A3C Additional Peak, Large, Not Priority Pollutant APL Additional Peak, Less Than, Not Priority Pollutant APS Possible Contamination, Improper Cap CIC Calculated Result Only CRO Test Performed On Preserved Sample PPS P and M-Xylene Not Separated RMP Rerun Verification RRV RVU Reported Value Unusual Several Peaks, Small, Not Priority Pollutant SPS UCR Unreliable: Could Not Confirm By Reanalysis Unreliable: Contamination Suspected UCS Unreliable: Indeterminant Interference UIN Positive After X Number of Hours XP

T# (T06) Result Taken After # Hours

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		h 1 1 1 1 1 0								0				5 5 5 5 6 8									700	80	29	4 4 7
	FREE FLOW	5 5 5 5 6 6 6 7 7 8												0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
SITE 3	STANDING				٠	•	٠	٠	•	•	•	•	•	1	•			٠		•		•	•		•	
	FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (A1)	٠	٠									GUIDELINE = 500/ML (A1)	<=> *7	1 <=>	190 148	19	2140	2900	059	16	•	٠	٠	
SITE 2	STANDING	8 5 9 8 8 8 9 9 9 8 8 8 8	GUIDELINE = 0 (A1)		٠	٠	•	٠		٠	٠		•	GUIDELINE =	٠								•	•		
	FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0	0 = 11	٠				٠		٠	٠	•		0 # 1	<=> 0		41 148	10	٠	٠	310	67	21	14	\ => \ \	
SITE 1	STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DET'N LIMIT = 0		٠		٠	٠						DET*N LIMIT		٠		٠	٠	٠				٠	٠	
TREATED		OGICAL	_		٠			•			•				(=> 0	<=> 0	2 <=>		143		<=> 0	21	+=>	250	<=> 0	
RAW		8ACTERIOLOGICAL	FECAL COLIFORM MF (CT/100ML)	4 148	19 148	12	16	8DL	14	117	118 A3C	112	æ	TE CNT MF (
		0 5 1 0 1 2 2 0 0 0 0	FECAL COLIF	JAN	FEB	MAR	APR	NOL	JUL	AUG	SEP	OCT	DEC	STANDRD PLATE CNT MF	JAN	FE8	MAR	APR	MAY	NOC	JUL	AUG	SEP	OCT	NOV	

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW			•	٠			•	•		0 A3C	0	0 (0			٠	•				٠	• •	< 0072	85	17	0
DISTRIBUTION SYSTEM	SITE 3	STANDING		. 90	. 54		•			3c	•	٠	•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 90.		. 87.	٠	•	٠		•		•		•
DIST		FREE FLOW	GUIDELINE = 5/100ML(A1)	0 106	0 154	0 1	0	0	0	1 A3C	0	•	•	•		= N/A	0 T24											
	SITE 2	STANDING	GUIDELINE	0 124	•	0 148	•	•	•	٠	•	•	•	•	•	GUIDELINE	. 124	368 T48 0 T48										
WATER TREATMENT PLANT		FREE FLOW	DET'N LIMIT = 0	0	•	0	0	•	•	0	0	0	0	0	0	DET'N LIMIT = 0	0											
WATER	SITE 1	STANDING	DET 'N			•	•	•	٠	•	•	•	•	•	•	DET'N	. 87	. 87	•	•	3040 A3C 0 0	·						
	TREATED		00ML)	0 148	0 148	0	0	0	٠	0	0	0	0	0	0	r/100ML)	1 0	1 0	48000 > 0 . 2 148 . 3040 A3C 0 . 0 . 8600 19909 > 0 . . . 40000 > 0 . . . 40000 > 0 . . . 260 0 . . . 260 0 . . .									
	SITE	TYPE	TOTAL COLIFORM MF (CT/100ML)	188 A3C	120 148	1060 A3C	84 A3C		BOL	818 <=>	530 A3C	1000 A3C	1000 A3C		<=> 07	RH BCKGRO MF (C	3880 A3C	308 148	48000 >	3040 A3C		8600	19909	24000 >	, , , , , , , , , , , , , , , , , , ,	260		
	•		TOTAL CO	JAN	FEB	MAR	APR	MAY	NOC	חחר	AUG	SEP	100	NON	DEC	T COLIFO	JAK	FEB	MAR	APR	MAY	NOC	JUL	AUG		DEC		

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

			1 1 1														1 1 1											
		FREE FLOW	1		•	٠	٠	٠	•	•	٠	•	.010	.100	.100	.050	0	٠	۰	٠	•	٠		٠	•	000	.050	.050
DISTRIBUTION SYSTEM	SITE 3	STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•	•	٠	٠	•	٠		.010	050.	050°	.100	8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	٠	٠	٠		٠		٠		000.	000.	.050
OISTRI		FREE FLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A	050.	050°	. 100	050	050	050.	.050	.100	•	•	٠	٠	N/A	.250	050.	050°	.100	050°	000°	050	.010		•	
	SITE 2	STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE = N/	050.		.050	050.	•	050.	.050	000.	٠		٠		GUIDELINE = N/			٠		٠	000.	.050	000.		٠	٠
WATER TREATMENT PLANT		FREE FLOW	1 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IIT = N/A	.100	•	٠	.100		٠	.100	050°	.150	.100	.150	050°	IIT = N/A	.250	٠	.200	.150	•		.100	.100	.150	.100	.300
WATER TRE	SITE 1	STANDING	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	DET'N LIMIT = N/A	090.			050.		050°	.050	.010	.100	050°	.050	050.	OET'N LIMIT	.100		٠		٠	.100	050.	000°	000.	050°	050°
	TREATED		CHEMISTRY (FLO)	^	.350	.300	006.	.100	.100	.200	.100	.300	.200	.200	.050	020.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	006.	1.400	007	1.300	1.300	1.400	1.300	1.500	1.700	1.500	1.200
	RAW		CHEMIS) (BHO))			•		٠			٠	•	•		•	FREE (•		•	٠		٠		•			
	SITE		8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	FLD CHLORINE (COMB) (JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	0CT	MOV	DEC	FLO CHLORINE FREE	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	100	NON

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

																	1 6									
		FREE FLOW	050.			•	•	٠	٠		•	•	.010	.150	.150	.100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	•	•	٠	•	•	٠	•	006.9
DISTRIBUTION SYSTEM	SITE 3	STANDING	000.		٠	٠	٠	•	•	•	•	•	.010	.050	.100	. 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	•	٠	٠		•			7.900
01STR		FREE FLOW		N/A	.300	.100	.150	.150	.100	050.	.100	.110	•	٠	•	•	= 6.5-8.5(A4)	7.700	7.900	7.500	7.600	7.700	7.700	7.300	8.100	•
	SITE 2	STANDING		GUIDELINE =	.050	•	050	.050	٠	050.	.100	000.	•	٠	•	•	GUIOELINE =	7.600	7.500	7.500	7.500	2.400	7.500	7.100	8.100	
WATER TREATMENT PLANT		FREE FLOW	.050	MIT = N/A	.350	•	.200	.250	•		.200	.150	300	.200	057	.100	MIT = N/A	7.900		7.500	7.500	•	•	7.300	8.100	7.600
WATER TR	SITE 1	STANDING	050.	DET'N LIMIT	.150	•	•	050.	•	.150	.100	.010	.100	.100	.100	.100	DET'N LIMIT	7.800	•	7.500	7.500	•	7.500	7.300	2.900	7.700
	TREATED		1.000	^	1.250	1.700	1.300	1.400	1.400	1.600	1.400	1.800	1.900	1.700	1.300	1.070	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.900	8.200	7.900	7.900	8.100	7.700	6.800	8.100	7.500
	SITE	TYPE	•	FLO CHLORINE (TOTAL) (•	•	•	•	•	٠	MNSLESS)	7.100	9.900	9.900	7.300		7.200	7.300	7.300	7.400
	S i		OEC	FLO CHLOR	NAL	FE8	MAR	APR	MAY	NOC	JUL	AUG	SEP	000	NOV	OEC	FLO PH (OMNSLESS	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FLOW	7.700	8,300	7.500	0 0 0 0 0 0 0 0							٠		18.000	14.000	10.000	9.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			٠				
ON SYSTEM	SITE 3	STANDING FREE	7.500	8,100	7.500					۰	•			٠		22.000	22.000	22.000	0						•	
DISTRIBUTION SYSTEM		FREE FLOW S		٠		(A1)	9.000	5.000	2.000	7.000	11.000	15.000	19.000	20.000	٠	٠			= 1.0 (A1)	.260	.320	.350	.340	.300	700	
	SITE 2	STANDING		٠	•	GUIOELINE = 15 (A1)	23.000	14.000	22.000	24.000	21,000	23.000	20.000	24.000	•			٠	GUIDELINE = 1.0	. 460	089.	077	.360	.390	1,100	
WATER TREATMENT PLANT		FREE FLOW	7.700	8,300	7.500	IT = N/A	7.000		7.000	7.000	٠	٠	19.000	19.000	18.000	16.000	13.000	11.000	17 ± N/A	. 220	•	.270	.480	•		•
WATER TRE/	SITE 1	STANDING	7.500	8.100	7,300	DET'N LIMIT = N/A	26.000	•	25.000	24.000	٠	15.500	27.000	2.400	25.000	24.000	26.000	28.000	OET'N LIMIT = N/A	.280	•	.360	.310	٠	010	2010
	TREATED		8.400	8.600	9.200		1.800	1.000	1.500	4.500	14.500	19.900	25.500	22.000	17.500	10.000	3.000	3.000	(007	.510	.360	.340	.300	U£7	
	SITE	1 4 P E	7.200	•	7.200	O TEMPERATURE (DEG.C	3.000	2.500	3.000	6.500		21.000	27.000	23.000	19.000	12.200		3.200	D TURBIOITY (FTU	3.800	4.800	5.800	3.800	٠	2 500	2000
			00.1	NOV	0EC) TEMP	JAN	FEB	MAR	APR	MAY	NON	Ŋ	AUG	SEP	0CT	NOV	0EC	TURB	NAL	FEB	MAR	APR	MAY	N	200

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW	8 9 9 9 8 8 8 8 8 8 8 8		120	18	941	510
DISTRIBUTION SYSTEM	SITE 3	STANDING		٠	027	380	230	027
DISTRI		FREE FLOW		.220	•	•		• (
	SITE 2	STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.330	٠	٠	٠	•
WATER TREATMENT PLANT		FREE FLOW	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	007.	.220	.140	.200	.300
WATER TRE	SITE 1	STANDING	1	.680	.200	.130	.120	. 400
	TREATED		P P P P P P P P P P P P P P P P P P P	.340	.390	077	.450	.540
	E RAW	ш	8 6 6 6 6 7 8	1.400	2.800	2.400	•	2.600
	SITE	TYPE	0 0 0 0 0 0	AUG	SEP	OCT	NOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

																	•											
		FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		٠						28.000	29.700	36.200	29.100	. 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	٠	٠	٠	٠	9	٠	٠	20.200	18.400	25.000
DISTRIBUTION SYSTEM	SITE 3	STANDING	8 8 8 8 8 8 8 8 8 8 8 8 8				٠				٠	٠	28.700	30.300	36.100	29.600	9	٠		٠	٠		٠	•	•	20.800	18.600	25.800
DISTRIB		FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-500 (A4)	28.200	28.300	27.600	25.900	26.200	24,000	26.200	27.200	٠	٠	٠	•	= 100 (F2)	18.200	19.400	19.400	18.800	18.400	17.800	18.000	19.200	٠	•	
	SITE 2	STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE = 30-500 (A4)	29.200	29.200	28.200	28.000	26.600	24.300	26.300	27.800	٠	٠		•	GUIDELINE = 10	18.800	19.800	20,000	19.400	18.800	18.000	18.000	20.200			٠
WATER TREATMENT PLANT		FREE FLOW	4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	T = .200	26.900		27.100	22.900	٠	٠	24.400	26.000	25.400	28.600	115	28.000	1 = .100	18.200	٠	18.600	17.600	•		18.400	18.800	19.600	18.200	23.800
WATER TREA	SITE 1	STANDING	8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0ET'N LIMIT = .200	28.600		27.900	24.600	•	26.000	27.100	26.100	26.600	28.600	34.500	29.000	DET'N LIMIT	18.200		19.400	18.200	٠	18.200	18.200	18.600	20.000	18.600	24.000
	TREATEO		CHEMISTRY (LAB)		29.100	27.900	29.000	23.600	22.600	22.000	6.500	25.300	23.100	31.400	33.600	31.900	, 1 1 2 2 1 3 4 5 6 6 7 7 7 8 8 8 8 8 8 8 8 9 8 8 9 8 8 9 8 8 8 8	19.200	19.000	19.000	18,000	17.200	16.200	10.000	17.000	18.800	19.600	24.000
	SITE RAW	ı	CHEMIST	(NG/L)	22.500	21.800	21.900	20.300		18.800	21.900	21.700	22.700	26.700	•	25.300	(C/L)	8.600	8.600	9.200	8.400		7.800	7.600	8.800	009.6	007.6	٠
	S A	-	0 1 1 1 1 1 1 1	ALKALINITY (MG/L	NAL	FEB	MAR	APR	MAY	NOF	JUL	AUG	SEP	0CT	NON	DEC	CALCIUM (MG/L	JAN	FEB	MAR	APR	MAY	NOF	JUL	AUG	SEP	000	NON

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		;														,										
		FREE FLOW	19.900		٠	•	•		•	٠	•	•	80f	108	BOL	108			4	•	•					7.000
DISTRIBUTION SYSTEM	SITE 3	STANDING	20.200		٠	٠	٠		•	٠	•	٠	٠	•	•			٠	•	6		٠	•	6	•	7.100
DISTRI		FREE FLOW		.200 (A1)	BOL	BOL	.002 <t< th=""><th>108</th><th>108</th><th>108</th><th>108</th><th>108</th><th>•</th><th>•</th><th>٠</th><th></th><th>= 250 (A3)</th><th>4.200</th><th>2.000</th><th>5.700</th><th>4.700</th><th>2.400</th><th>2.000</th><th>6.300</th><th>9.700</th><th>•</th></t<>	108	108	108	108	108	•	•	٠		= 250 (A3)	4.200	2.000	5.700	4.700	2.400	2.000	6.300	9.700	•
	SITE 2	STANDING	8 8 9 9 9 9 9 9 9 9	GUIDELINE = .	٠	٠	•		•	٠	٠	٠		•	٠	٠	GUIDELINE = 2	4.300	2.000	006.9	2.000	5.500	7.900	6.300	6.700	•
WATER TREATMENT PLANT		FREE FLOW	20.020	DET'N LIMIT = 0.001	BOL		BDL	BOL	٠	•	108	108	108	BOL	IIP	108	117 = .200	7.000	•	2.900	4.700	•	•	9.400	009.9	7.100
WATER TRE	SITE 1	STANDING	20.300	DET*N LIM	٠	٠	•	٠	•	BOL	•	•	•	•	٠		DET'N LIMIT	4.300	٠	6.100	009.4	٠	5.100	6.500	009.9	7.100
	TREATED		21.800		BOL	108	108	BOL	BOL	BOL	108	BOL	BDL	BOL	108	BOL	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.800	5.200	6.100	7.400	7.900	4.800	9.400	6.500	006.9
	SITE RAW	IAPE	10.160	4G/L)	B0L	B01	BOL	BOL	٠	BOL	BOL	BOL	BOL	BOL	٠	BOL	(MG/L)	1.800	5.000	4.000	2.400	٠	1.800	2.300	2.400	2.600
	i i	-	DEC	CYANIDE (MG/L	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	00.1	NON	DEC	CHLORIDE (MG/L	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

			6.400 7.000 5.200			٠		٠		٠	٠		3.000	3.500	3.000	4.500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					٠	٠	٠
		FREE FLOW	6.4 7.0 5.3										3.0	3.	3.	. 7	! ! ! ! !							
DISTRIBUTION SYSTEM	SITE 3	STANDING	6.400 7.100 5.500			•	٠	٠	٠	٠	٠		3.500	3.500	3.000	000.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	•	٠	٠	٠	٠	٠
DISTR		FREE FLOW		= 5.0 (A3)	3.000	3.500	3.500	2,500	000.4	4.500	3.000	3.500	٠	٠		٠	= 400 (F2)	138	138	143	141	132	121	137
	SITE 2	STANDING		GUIDELINE =	3.000	3.500	3.500	2.500	4.500	4.500	3.500	3.000	٠	٠	٠	٠	GUIDELINE ≖	140	140	150	148	133	122	137
WATER TREATMENT PLANT		FREE FLOW	6.700 11R 5.300	5. = 11	2.500	٠	000.4	1.500 <t< td=""><td>٠</td><td>•</td><td>3.000</td><td>3.500</td><td>3.000</td><td>3.500</td><td>115</td><td>7.500</td><td>H</td><td>135</td><td>٠</td><td>142</td><td>137</td><td>•</td><td>٠</td><td>135</td></t<>	٠	•	3.000	3.500	3.000	3.500	115	7.500	H	135	٠	142	137	•	٠	135
WATER TRE	SITE 1	STANDING	6.600 6.900 5.200	DET'N LIMIT	3.000	•	4.500	3.000	٠	000.7	000.4	3.500	3.000	7.000	3.000	4.500	DET'N LIMIT	139	٠	145	139	٠	120	139
	TREATED		6.600 7.300 5.000		3.000	2.500	3.500	2.500	7.000	4.500	3.500	3.500	2.500	3.500	3.000	4.500		138	138	141	136	123	118	102
	re RAW		3.300	((34.000	36.000	35.500	38,000	•	39.000	36.500	31.500	30.000	33.500		43.500	CONDUCTIVITY (UMHO/CM	92	77	78	ĸ	٠	29	7.4
	SITE		OCT NOV DEC	COLOUR (HZU	JAN	FEB	MAR	APR	MAY	NOS	JUL	AUG	SEP	OCT	NON	DEC	CONDUCTIVI	JAN	FEB	MAR	APR	MAY	NOL	ากเ

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

				2	νς.	0.	0	1									0	0	0	0	0 0 0 0					
		FREE FLOW		143	146	169	150))))) () () ()									1.080	1.020	.980	.500	5 1 1 1 2 2 2 1 1 1 1 1 1					
DISTRIBUTION SYSTEM	SITE 3	STANDING	٠	143	145	169	151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	•	•		•	٠	•	1.080	1.020	1.000	.500	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	٠	٠		
DISTRI		FREE FLOW	138	•	٠	•	•	.400 (A1)	.980	076	.920	0%6.	006.	076.	1.100	1.100	٠	•		٠	0-100 (A4)	55.000	57.000	58.000	55.000	53.000
	SITE 2	STANDING	138	•		٠	•	GUIDELINE = 2.400 (A1)	096.	.920	.920	096"	.920	.920	1.080	1.100	٠	٠		٠	GUIDELINE = 80-100 (A4)	26.000	58.000	000.09	57.000	54.000
HENT PLANT		FREE FLOW	131	139	145	118	146	10. 4	.980	•	0%6	096.	•	•	1.140	.140 RRV	1.080	1.060	115	T> 040.	200	55.000	•	56.000	52.000	•
WATER TREATMENT PLANT	SITE 1	STANDING	131	141	145	162	148	OET'N LIMIT =	1.000		0%6	096.	٠	0%6	1.200	.240 RRV	1.060	1.060	1.020	. 040 <t< td=""><td>DET'N LIMIT</td><td>55.000</td><td>•</td><td>58.000</td><td>54.000</td><td>٠</td></t<>	DET'N LIMIT	55.000	•	58.000	54.000	٠
	TREATED	0	128	134	149	164	152	1	. 980	. 920	.920	096.	.920	.880	1.040	T> 040.	1.120	1.020	1.080	1> 070.	v h o o h o o o o o o o o o o o o o o o	58.000	56.000	58.000	53.000	50.000
	TE RAW DE		ĸ	78	88		87	MG/L)	090.	T> 040.	.040 <t< td=""><td>090.</td><td></td><td>.040 <t< td=""><td>090.</td><td>.040 <t< td=""><td>.040 <t< td=""><td>.040 <t< td=""><td></td><td>.040 cT</td><td>MG/L)</td><td>31.000</td><td>31.000</td><td>33.000</td><td>29.000</td><td>۰</td></t<></td></t<></td></t<></td></t<></td></t<>	090.		.040 <t< td=""><td>090.</td><td>.040 <t< td=""><td>.040 <t< td=""><td>.040 <t< td=""><td></td><td>.040 cT</td><td>MG/L)</td><td>31.000</td><td>31.000</td><td>33.000</td><td>29.000</td><td>۰</td></t<></td></t<></td></t<></td></t<>	090.	.040 <t< td=""><td>.040 <t< td=""><td>.040 <t< td=""><td></td><td>.040 cT</td><td>MG/L)</td><td>31.000</td><td>31.000</td><td>33.000</td><td>29.000</td><td>۰</td></t<></td></t<></td></t<>	.040 <t< td=""><td>.040 <t< td=""><td></td><td>.040 cT</td><td>MG/L)</td><td>31.000</td><td>31.000</td><td>33.000</td><td>29.000</td><td>۰</td></t<></td></t<>	.040 <t< td=""><td></td><td>.040 cT</td><td>MG/L)</td><td>31.000</td><td>31.000</td><td>33.000</td><td>29.000</td><td>۰</td></t<>		.040 cT	MG/L)	31.000	31.000	33.000	29.000	۰
	SITE	- 1	AUG	SEP	130	MOV	DEC	FLUORIDE (MG/L	JAN	FE8	MAR	APR	MAY	NOS	JUL	AUG	SEP	DCT	MOV	DEC	HARDNESS (MG/L	JAN	FEB	MAR	APR	MAY

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		3	0 0 0 0 7 1 1 0			000.09	57.000	74.000	60.100	 					,		•	٠	6.751	.126	6.245	806.7	8 8 8 8 8 8			
		FREE FLOW	6 6 6 6 6 7			3	57.	74.	.09										.9	•	.9	4.	8 8 9 9 9 8 8			
DISTRIBUTION SYSTEM	SITE 3	STANDING	v P B B B B B B B B B B B B B B B B B B	•	•	61.000	57.000	76.000	006.09	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	•	٠		•	•	٠	8.937	.673	8.486	5.423			٠	
DISTR		FREE FLOW	52.000	53.000	57.000	٠	٠	•	•	٧/	067	9.675	10.530	2.602	262.	9.527	1.324	2.589	•	•	•		N/A	784	805	-1.008
	SITE 2	STANDING	53.000	54.000	59.000			٠	•	GUIDELINE = N/A	1.891	9.297	8.536	.825	.028	6.497	2.090	5.890	•	•	•	٠	GUIDELINE = N	836	814	···
WATER TREATMENT PLANT		FREE FLOW	•	55.000	26.000	59.000	26.000	71.000	905.09	IT = N/A	3.517		8.641	2.171	٠	٠	7.369	2.961	10.490	.667	.000 NAF	2.793	IT = N/A	953	۰	-1.064
WATER TRE	SITE 1	STANDING	54.000	55.000	26.000	000.09	58,000	72.000	61.500	DET'N LIMIT = N/A	.235	•	8.374	2.133	٠	8.684	2.990	2.761	9.891	2.635	7.686	3.538	DET'N LIMIT	849	٠	934
	TREATED		000.67	34.000	52,000	26.000	000.09	73.000	64.800	P P P P P P P P P P P P P P P P P P P	3.992	7.833	8.960	2.835	1.322	5.232	4.011	.901	10.380	2.622	8.769	2.423	ss)	257	092	955
	SITE RAW		28.000	28.000	31,000	33.000	34.000	٠	35.800	IONCAL (DMNSLESS)	8.088	2.607	0.670	7.066		9.00%	.531	3.539	9.375	992.	•	1.715	LANGELIERS INDEX (DMNSLESS	-1.720	-1.494	-1.546
			NUL	JUL	AUG	SEP	100	MOV	DEC	IONCAL (JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0CT	NOV	DEC	LANGELIE	JAN	FEB	MAR

TABLE 5

			FREE FLOW			٠		٠	864	851	631	767		٠	٠	•			٠	٠	٠	2.200	2.600	2.900	2.550	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0
DISTRIBUTION SYSTEM	SITE 3		STANDING				٠	٠	841	867	639	834	6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠			•	•	•		٠	2.300	2.400	2.900	2.500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
DISTRIBUT			FREE FLOW	899	-1.019	-1.176	901	337	٠	•		•	(F2)	2.400	2.200	2.300	1.900	1.800	1.800	2.000	2.200				•	200 (C3)	3.000
	SITE 2		STANDING	814	-1.013	-1.187	- 899	525	•	٠		٠	GUIDELINE = 30 (F2)	2.300	2.200	2.300	2.100	1.900	1.900	2.100	2.200	•	٠	•	٠	GUIDELINE = 200	2.800
MENT PLANT			FREE FLOW	-1.049			961	492	938	911	•	840		2.400	٠	2.400	2.000	٠	٠	2.200	2.200	2.400	2.700	2.900	2.550	.200	2.600
WATER TREATMENT PLANT	SITE 1		STANDING	786	٠	-1.471	832	625	920	902	707	819	DET'N LIMIT	2.200	•	2.300	2.000	•	2.000	2.400	2.300	2.400	2.700	2.900	2.600	DET'N LIMIT	2.800
	TREATED		8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-1.026	-1.118	-1.544	-2.625	727	-1.145	770	709	659	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.400	2.100	2.500	2.000	1.800	2.000	2.300	2.400	2.200	2.700	3.100	2.550		2.800
	SITE	TYPE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1.524	•	-1.846	-1.514	-1.584	-1.419	-1.302		-1.252	(MG/L)	2.300	2.200	2.300	2.000	•	2.000	2.200	2.200	2,300	2.600	•	2.500	3/1 >	2.400
	S	ŢŢ	3	APR	MAY	NOC	JUL	AUG	SEP	OCT	NON	DEC	MAGNESIUM (MG/L	NAL	FEB	MAR	APR	MAY	NOL	JUL	AUG	SEP	000	MOV	DEC	SODIUM (MG/L	JAN

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

TREATED SITE	SITE				WATER TRE.	WATER TREATMENT PLANT		DISTRI	DISTRIBUTION SYSTEM	
3.400 3.600 3.600 3.600 3.200 3.200 3.200 3.200 3.200 3.600 3.600 3.600 3.20	3.400 3.600 3.600 3.200 3.200 3.200 3.200 3.200 3.60	SITE	RAW	TREATED	SITE 1				SITE 3	
3.400 3.400	3.400 3.400 3.600 3.600 3.600 3.600 2.200 2.200 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 3.000 3.000 3.000 2.400 2.400 2.400 3.000		6 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
3.800 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.000	3.800 3.600 3.600 3.600 3.600 3.600 3.000 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 3.000	FEB	3,000	3.400			3.200	3.200	٠	
2.800	2.800 3.000 2.800 3.200 3.000	MAR	3.200	3.800	3.600	3.600	3.600	3.600	٠	
2.200 2.400 2.600 2.600 2.700	2.200	APR	2.400	2.800	3.000	2.800	3.200	3.000	٠	٠
2.000 2.800	2.000 2.800 2.000 2.200	HAY		2.200	٠	•	2.400	2.600		
2.400 2.400	2.400 2.400 2.400 2.400 2.200 2.600 3.400 3.	JUN	2.200	2.000	2.800	٠	2.000	2.200		٠
2.600 2.400 2.400 2.400 3.000	2.600 2.400 2.400 2.400 2.400 3.000	JUL	2.200	2.400	2.400	2.400	2.400	2.200		•
3.000 3.000	3.000 3.200 3.200	AUG	2.200	2.600	2.400	2.400	2.400	2.400	٠	
3.600 3.600 <td< td=""><td>3.600 3.600 3.600 3.600 3.200 3.200 3.200 3.200 3.400 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.400 3.200 3.200 3.200 3.200 3.400 3.200 3.200 3.200 3.200 3.400 3.200</td><td>SEP</td><td>2.600</td><td>3.000</td><td>3.000</td><td>3.000</td><td>•</td><td></td><td>3.000</td><td>3.000</td></td<>	3.600 3.600 3.600 3.600 3.200 3.200 3.200 3.200 3.400 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.400 3.200 3.200 3.200 3.200 3.400 3.200 3.200 3.200 3.200 3.400 3.200	SEP	2.600	3.000	3.000	3.000	•		3.000	3.000
3.200 3.200 3.200 3.200 3.200 3.200 3.200 3.200 2.100 <td< td=""><td>3,400 3,200 2.000</td><td>OCT</td><td>3.400</td><td>3.600</td><td>3.600</td><td>3.600</td><td>•</td><td></td><td>3.600</td><td>3.600</td></td<>	3,400 3,200 2.000	OCT	3.400	3.600	3.600	3.600	•		3.600	3.600
3.200	3.200 2.000 2.000	NOV	٠	3.400	3.200	3.200	•		3.200	3.400
) DET'IN LIMIT = 0.002 GUIDELINE = .05 (F2) .004 <t .004="" .006="" .<="" <t="" td=""><td> 1004 <</td><td>DEC</td><td>2.200</td><td>3.200</td><td>2.000</td><td>2.000</td><td>٠</td><td>٠</td><td>2.100</td><td>2.100</td></t>	1004 <	DEC	2.200	3.200	2.000	2.000	٠	٠	2.100	2.100
.038 .004 <t< td=""> .004 <t< td=""> .004 <t< td=""> .006 <t< td=""></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<>	.038 .004 <t< th=""> .004 <t< th=""> .004 <t< th=""> .004 <t< th=""> .006 <t< th=""> . .054 .008 <t< td=""> .008 <t< td=""> .006 <t< td=""> .006 <t< td=""> . . .040 .008 <t< td=""> .0014 040 .002 <t< td=""> .004 <t< td=""> 041 .002 <t< td=""> .</t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<>	ONIUM TOTA) 		DET'N LIM	17 = 0.002	Н	05 (F2)		
.054 .008 <t< td=""> .004 <t< td=""> .006 <t< td=""> .006 <t< td=""> .004 .002 <t< td=""> .004 .002 <t< td=""> .004 .004 .002 <t< td=""> .004 .004 .002 .004 .004 .002 .004 .004 .002 .004 .006</t<></t<></t<></t<></t<></t<></t<>	.054 .008 <t< td=""> .006 <t< td=""> .006 <t< td=""> .006 <t< td=""> .004 .005 <t< td=""> .004 .004 .004 .004 .004 .004 .004 .005 .006<!--</td--><td>JAN</td><td>.038</td><td></td><td>T> 400.</td><td>.004 <1</td><td>.010</td><td>T> 400.</td><td>٠</td><td>٠</td></t<></t<></t<></t<></t<>	JAN	.038		T> 400.	.004 <1	.010	T> 400.	٠	٠
.090 .008 <t< th=""> BDL .002 <t< th=""> .004</t<></t<>	.090 .008 <t< td=""> 80L .002 <t< td=""> .004 <t< td=""> .004 .004 <t< td=""> .004 .005 .006</t<></t<></t<></t<>	FEB	.054			٠		T> 900.	•	٠
.040 .002 <t< th=""> .004 <t< th=""> .004 <t< th=""> .002 <t< th=""> .016 . <t< td=""><td>.040 .002 <t< th=""> .004 <t< th=""> .002 <t< th=""> .005 .006</t<></t<></t<></td><td>MAR</td><td>060.</td><td></td><td>BOL</td><td>108</td><td></td><td>.014</td><td>٠</td><td>٠</td></t<></t<></t<></t<></t<>	.040 .002 <t< th=""> .004 <t< th=""> .002 <t< th=""> .005 .006</t<></t<></t<>	MAR	060.		BOL	108		.014	٠	٠
. BDL	. BDL	APR	070		108	108		108	٠	٠
.022 .004 <t< td=""> .024 .022 .034 . .048 .008 <t< td=""> .014 .010 .026 .036 . BDL .002 <t< td=""> BDL .002 <t< td=""> BDL .004 <t< td=""> . BDL .004 <t< td=""> BDL . .004 <t< td=""> . BDL .002 <t< td=""> . . .010 .010 .002 <t< td=""> BDL </t<></t<></t<></t<></t<></t<></t<></t<></t<>	.022 .034 . .022 .034 . .048 .008 <t< td=""> .010 .026 .036 . . .048 .002 <t< td=""> .010 .026 .036 002 .002 <t< td=""> .002 002 .004 .<!--</td--><td>MAY</td><td>٠</td><td>BOL</td><td></td><td>٠</td><td>.002 <t< td=""><td>.016</td><td>٠</td><td>•</td></t<></td></t<></t<></t<>	MAY	٠	BOL		٠	.002 <t< td=""><td>.016</td><td>٠</td><td>•</td></t<>	.016	٠	•
.048 .008 <t< td=""> .014 .010 .026 .036 . BDL .002 <t< td=""> BDL .002 <t< td=""> BDL . BDL .002 <t< td=""> BDL . .004 <t< td=""> .004 BDL .002 <t< td=""> BDL </t<></t<></t<></t<></t<></t<>	.048 .008 <t< td=""> .014 .010 .026 .036 . BDL .002 <t< td=""> BDL .002 <t< td=""> BDL . BDL BDL .004 <t< td=""> BDL . . BDL .004 <t< td=""> BDL BDL .002 <t< td=""> </t<></t<></t<></t<></t<></t<>	JUN	.022	.004 <t< td=""><td>,024</td><td>٠</td><td>.022</td><td>.034</td><td>•</td><td></td></t<>	,024	٠	.022	.034	•	
BDL .002 <t< th=""> BDL .002 <t< th=""> BDL .004 <t< th=""> .004 <t< t<="" td=""><td> BDL .002 <t .004="" <t="" bdl="" td="" ="" <=""><td>JUL</td><td>.048</td><td>.008 <t< td=""><td>.014</td><td>.010</td><td>.026</td><td>.036</td><td>٠</td><td>٠</td></t<></td></t></td></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<>	BDL .002 <t .004="" <t="" bdl="" td="" ="" <=""><td>JUL</td><td>.048</td><td>.008 <t< td=""><td>.014</td><td>.010</td><td>.026</td><td>.036</td><td>٠</td><td>٠</td></t<></td></t>	JUL	.048	.008 <t< td=""><td>.014</td><td>.010</td><td>.026</td><td>.036</td><td>٠</td><td>٠</td></t<>	.014	.010	.026	.036	٠	٠
BDL BDL BDL . </td <td> BDL BDL</td> <td>AUG</td> <td>B0L</td> <td></td> <td>108</td> <td>.002 <⊺</td> <td>BOL</td> <td>B01</td> <td></td> <td></td>	BDL	AUG	B0L		108	.002 <⊺	BOL	B01		
80L .004 <7 .004 <7 BDL	BDL .004 <t .004="" <t="" bdl="" td="" ="" <=""><td>SEP</td><td>BOL</td><td>108</td><td>B0L</td><td>B0L</td><td>٠</td><td>٠</td><td>.004 <t< td=""><td>1> 700.</td></t<></td></t>	SEP	BOL	108	B0L	B0L	٠	٠	.004 <t< td=""><td>1> 700.</td></t<>	1> 700.
. 80L .002 <t 11s<="" td=""><td>. 60L</td><td>000</td><td>B01</td><td></td><td></td><td>BOL</td><td>٠</td><td>٠</td><td>BDL</td><td>B0L</td></t>	. 60L	000	B01			BOL	٠	٠	BDL	B0L
.002 <t 80l="" 80l<="" td=""><td></td><td>NOV</td><td></td><td>BOL</td><td></td><td>118</td><td>٠</td><td>•</td><td>.010</td><td>.016</td></t>		NOV		BOL		118	٠	•	.010	.016
	SHETTER OF THE PROPERTY OF THE	DEC	.002 <t< td=""><td>B0L</td><td>108</td><td>80F</td><td>٠</td><td>•</td><td>BOL</td><td>> 900"</td></t<>	B0L	108	80F	٠	•	BOL	> 900"

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

			WALEN TREATMENT TEAM		THE STATE OF THE S	DISTRIBUTION STSTEM	
	i i i						
	IREATED	SITE 1		SITE 2		SITE 3	
	0 0 0 0 0 0 0 0 0 0	STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
	T> £00.	. 00% <1	.002 <1	.002 <	.000		٠
	.001 <t< td=""><td></td><td>•</td><td>.002 <t< td=""><td>.001 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<>		•	.002 <t< td=""><td>.001 <t< td=""><td>•</td><td>•</td></t<></td></t<>	.001 <t< td=""><td>•</td><td>•</td></t<>	•	•
	200.	900.	.005	200.	.005		,
	500.	500°	900.	500.	.004 <t< td=""><td></td><td>•</td></t<>		•
	.001 <t< td=""><td>•</td><td>٠</td><td>.002 <t< td=""><td>.001 <t< td=""><td></td><td>٠</td></t<></td></t<></td></t<>	•	٠	.002 <t< td=""><td>.001 <t< td=""><td></td><td>٠</td></t<></td></t<>	.001 <t< td=""><td></td><td>٠</td></t<>		٠
↓	200.	BOL	•	.004 <t< td=""><td>.003 <t< td=""><td></td><td>٠</td></t<></td></t<>	.003 <t< td=""><td></td><td>٠</td></t<>		٠
	.005	.010	200.	600.	600°	•	٠
ţ	.001 <t< td=""><td>.001 <t< td=""><td>. 001 <t< td=""><td>.003 <t< td=""><td>.001 <t< td=""><td>•</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<>	.001 <t< td=""><td>. 001 <t< td=""><td>.003 <t< td=""><td>.001 <t< td=""><td>•</td><td>٠</td></t<></td></t<></td></t<></td></t<>	. 001 <t< td=""><td>.003 <t< td=""><td>.001 <t< td=""><td>•</td><td>٠</td></t<></td></t<></td></t<>	.003 <t< td=""><td>.001 <t< td=""><td>•</td><td>٠</td></t<></td></t<>	.001 <t< td=""><td>•</td><td>٠</td></t<>	•	٠
<t <<="" td=""><td>.002 <t< td=""><td>.002 <t< td=""><td>.002 <t< td=""><td>•</td><td>•</td><td>.002 <t< td=""><td>.011</td></t<></td></t<></td></t<></td></t<></td></t>	.002 <t< td=""><td>.002 <t< td=""><td>.002 <t< td=""><td>•</td><td>•</td><td>.002 <t< td=""><td>.011</td></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>.002 <t< td=""><td>•</td><td>•</td><td>.002 <t< td=""><td>.011</td></t<></td></t<></td></t<>	.002 <t< td=""><td>•</td><td>•</td><td>.002 <t< td=""><td>.011</td></t<></td></t<>	•	•	.002 <t< td=""><td>.011</td></t<>	.011
	900.	.002 <t< td=""><td>.002 <t< td=""><td>•</td><td>•</td><td>.003 <t< td=""><td>.003 <t< td=""></t<></td></t<></td></t<></td></t<>	.002 <t< td=""><td>•</td><td>•</td><td>.003 <t< td=""><td>.003 <t< td=""></t<></td></t<></td></t<>	•	•	.003 <t< td=""><td>.003 <t< td=""></t<></td></t<>	.003 <t< td=""></t<>
	.001 <t< td=""><td>.003 <t< td=""><td>118</td><td>٠</td><td>•</td><td>.003 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<></td></t<>	.003 <t< td=""><td>118</td><td>٠</td><td>•</td><td>.003 <t< td=""><td>.002 <t< td=""></t<></td></t<></td></t<>	118	٠	•	.003 <t< td=""><td>.002 <t< td=""></t<></td></t<>	.002 <t< td=""></t<>
-	.002 <t< td=""><td>.003 <t< td=""><td>.003 <t< td=""><td></td><td>٠</td><td>.002 <t< td=""><td>.001 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.003 <t< td=""><td>.003 <t< td=""><td></td><td>٠</td><td>.002 <t< td=""><td>.001 <t< td=""></t<></td></t<></td></t<></td></t<>	.003 <t< td=""><td></td><td>٠</td><td>.002 <t< td=""><td>.001 <t< td=""></t<></td></t<></td></t<>		٠	.002 <t< td=""><td>.001 <t< td=""></t<></td></t<>	.001 <t< td=""></t<>
^		DET'N LIMIT	11 = .020	GUIDELINE = 10.000 (A1)	0.000 (A1)	5 1 3 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 9 0 0 0 0 0 1 1 1 1 0 0
	.210	BDL	BOL	.215	.200		٠
	.210	٠	•	.220	.210	•	٠
	.275	.270	.270	.275	.265		•
	.180	.180	.180	. 205	. 195	٠	
	.170	•	٠	51.	.170		٠
	.180	. 145	٠	. 165	. 150		
	.120	. 105	. 110	.140	. 130	•	
	.100	.105	.115	.125	. 130	٠	
	.155	.155	.155			.155	.145
	.215	.235	.210	٠	•	.190	.210
	.275	.250	115	•	•	.240	.255
	.345	.345	.325	٠	٠	.310	120

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	•	•	٠		•	•	٠	.160	.150	.190	.210		٠	•		۰	٠	•	٠		7.760	7.790	7.800	7.820
DISTRIBUTION SYSTEM	SITE 3	STANDING	4 4 4 4 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8	٠	•	•				٠	٠	.190	.170	.200	.220	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•	٠	٠	•				7.760	7.760	7.780	7.770
DISTRI		FREE FLOW	N/A	.140	.190	.220	.180	.210	.190	.160	. 140	٠				6.5-8.5(A4)	7.880	7.830	7.640	7.790	7.670	7.560	7.800	8.320		•	•	٠
	SITE 2	STANDING	GUIDELINE = N	.150	.200	.240	.210	.200	.190	.160	.170	٠	٠	٠	٠	GUIOELINE = 6	7.800	7.800	7.630	7.830	7.660	7.540	7.800	8.100	٠		٠	
WATER TREATMENT PLANT		FREE FLOW	1 = .020	.170	٠	.220	.210	٠	•	.170	.150	.170	.200	.190	.200	A/K # T	7.730	٠	7.610	7.720	•	٠	7.760	8.190	7.740	7.750	115	7.790
WATER TREA	SITE 1	STANDING	DET'N LIMIT	.210	٠	.280	.190		.190	.170	.150	.170	.170	. 200	.220	DET'N LIMIT	7.810	٠	7.710	7.740		7.220	7.850	8.060	7.730	7.750	7.760	7.790
	TREATED		^	.150	.180	.220	0.11.	.180	.210	.150	.150	.160	.160	.180	.200	4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.370	7.890	7.680	7.720	7.660	7.270	6.920	8.010	7.590	7.820	7.770	7.880
	TE RAW	4	NITROGEN TOT KJELD (MG/L	.320	.390	.500	007		.370	.310	.310	.350	.320		.390	(SS	7.340	7.580	7.500	7.590		7.330	7.610	7.480	7.590	7.650		7.690
	SITE		NITROGEN TO	NAL	FEB	MAR	APR	MAY	NOL	JUL	AUG	SEP	OCT	NOV	DEC	PH (DMNSLESS	NAL	FEB	MAR	APR	MAY	NOL	JUL	AUG	SEP	100	NOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		3		•			•				٠	•			•		•	•	•	•	٠	•						
		FREE FLOW														0 0 0 0 1 0 0 0												
DISTRIBUTION SYSTEM	SITE 3	STANDING			•	•	•	٠	•	•	•	•	•	٠	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	•	•	٠	•	٠	•	٠	٠		•	٠
DISTR		FREE FLOW	= N/A	٠	٠	٠	•		•	•	•	•	٠	•		.40 (F2)	٠	•		•	٠	٠		٠		•		
	SITE 2	STANDING	GUIDELINE =	•		٠	•	•	•	•	٠	•	•	٠	•	GUIDELINE = .40 (F2)	•	٠	•		•	•	•	٠	•	٠	•	٠
WATER TREATMENT PLANT		FREE FLOW	DET'N LIMIT = .0005	٠		•	•	•	•	•	•	•	•	•	•	LIMIT = .002	•	•	•	•	•	•	•	•	•		•	
WATER	SITE 1	STANDING	DET'N I	٠	٠	٠	٠	•	•	٠	•	٠	•	•	•	OET'N LIMIT	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	٠
	TREATED			. 001 <⊺	• 000	.003	.001 <t< th=""><th>.002</th><th>.001 <t< th=""><th>T> 000.</th><th>.003</th><th>BDL</th><th>*00*</th><th>.001 <t< th=""><th>*00.</th><th>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</th><th>.014</th><th>.012</th><th>.008 <t< th=""><th>.013</th><th>.010</th><th>.015</th><th>.004 <t< th=""><th>.011</th><th>.012</th><th>T> 800.</th><th>.013</th><th>.014</th></t<></th></t<></th></t<></th></t<></th></t<>	.002	.001 <t< th=""><th>T> 000.</th><th>.003</th><th>BDL</th><th>*00*</th><th>.001 <t< th=""><th>*00.</th><th>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</th><th>.014</th><th>.012</th><th>.008 <t< th=""><th>.013</th><th>.010</th><th>.015</th><th>.004 <t< th=""><th>.011</th><th>.012</th><th>T> 800.</th><th>.013</th><th>.014</th></t<></th></t<></th></t<></th></t<>	T> 000.	.003	BDL	*00 *	.001 <t< th=""><th>*00.</th><th>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</th><th>.014</th><th>.012</th><th>.008 <t< th=""><th>.013</th><th>.010</th><th>.015</th><th>.004 <t< th=""><th>.011</th><th>.012</th><th>T> 800.</th><th>.013</th><th>.014</th></t<></th></t<></th></t<>	* 00.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.014	.012	.008 <t< th=""><th>.013</th><th>.010</th><th>.015</th><th>.004 <t< th=""><th>.011</th><th>.012</th><th>T> 800.</th><th>.013</th><th>.014</th></t<></th></t<>	.013	.010	.015	.004 <t< th=""><th>.011</th><th>.012</th><th>T> 800.</th><th>.013</th><th>.014</th></t<>	.011	.012	T> 800.	.013	.014
	RAH		PHOSPHORUS FIL REACT (MG/L	.002 <₹	.002	.005	.001 <t< td=""><td></td><td>.001 <t< td=""><td>T> 000.</td><td>.000 <t< td=""><td>. 000 ×T</td><td>.001 <t< td=""><td>•</td><td>.001 <t< td=""><td>TAL (MG/L)</td><td>.011</td><td>.014</td><td>.022</td><td>.014</td><td>•</td><td>.007 <t< td=""><td>T> 600°</td><td>.012</td><td>.014</td><td>.013</td><td></td><td>.012</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.001 <t< td=""><td>T> 000.</td><td>.000 <t< td=""><td>. 000 ×T</td><td>.001 <t< td=""><td>•</td><td>.001 <t< td=""><td>TAL (MG/L)</td><td>.011</td><td>.014</td><td>.022</td><td>.014</td><td>•</td><td>.007 <t< td=""><td>T> 600°</td><td>.012</td><td>.014</td><td>.013</td><td></td><td>.012</td></t<></td></t<></td></t<></td></t<></td></t<>	T> 000.	.000 <t< td=""><td>. 000 ×T</td><td>.001 <t< td=""><td>•</td><td>.001 <t< td=""><td>TAL (MG/L)</td><td>.011</td><td>.014</td><td>.022</td><td>.014</td><td>•</td><td>.007 <t< td=""><td>T> 600°</td><td>.012</td><td>.014</td><td>.013</td><td></td><td>.012</td></t<></td></t<></td></t<></td></t<>	. 000 ×T	.001 <t< td=""><td>•</td><td>.001 <t< td=""><td>TAL (MG/L)</td><td>.011</td><td>.014</td><td>.022</td><td>.014</td><td>•</td><td>.007 <t< td=""><td>T> 600°</td><td>.012</td><td>.014</td><td>.013</td><td></td><td>.012</td></t<></td></t<></td></t<>	•	.001 <t< td=""><td>TAL (MG/L)</td><td>.011</td><td>.014</td><td>.022</td><td>.014</td><td>•</td><td>.007 <t< td=""><td>T> 600°</td><td>.012</td><td>.014</td><td>.013</td><td></td><td>.012</td></t<></td></t<>	TAL (MG/L)	.011	.014	.022	.014	•	.007 <t< td=""><td>T> 600°</td><td>.012</td><td>.014</td><td>.013</td><td></td><td>.012</td></t<>	T> 600°	.012	.014	.013		.012
	SITE	IAPE	PHOSPHORUS FI	JAN	FE8	MAR	APR	MAY	NOF	JUL	AUG	SEP	000	NOV	DEC	PHOSPHORUS TOTAL (MG/L	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	DCT	NOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٠	۰	٠	٠				22.500	24.050	28.790	29.130	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠			٠	٠	٠			1.260	.350	.590	.640
DISTRIBUTION SYSTEM	SITE 3	STANDING	8 1 1 8 1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8		٠			٠	٠	٠		22.150	23.570	28.640	29.130	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0				٠		٠	٠		1.160	.450	.610	.810
DISTRIBU		FREE FLOW	≠ 500. (A3)	25.620	21.750	22.000	25.420	23.800	19,410	20.880	22.490	٠	٠			00 (A1)	007.	.370	.390	097.	.340	.450	. 880	.420		•		۰
	SITE 2	STANDING	GUIDELINE ≈ 50	26.550	21.920	22.100	26.610	23.970	19.600	21.100	22.420		٠	٠	٠	GUIDELINE = 1.00 (A1)	077	.390	077	.530	.560	.820	.750	.620	٠	٠	•	•
WATER TREATMENT PLANT		FREE FLOW	11 = .200	25.300	٠	21.740	25.760		٠	21.380	22.720	22.220	24.130	511	28.780	11 = .02	.450		.370	097		•	.930	.630	1.420	079.	.520	067.
WATER TREA	SITE 1	STANDING	DET'N LIMIT	25.010		22.240	26.100		20.500	21.270	22.700	22.250	23.950	26.930	29.250	DET'N LIMIT	.470	٠	.330	.770		.510	006.	097.	1,470	.530	077	.510
	TREATED		• 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25.100	21.960	21.110	26.080	23.310	20.150	21.310	22.690	22.310	23.670	27.570	28.770	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	097.	.590	097.	0.470	099.	.530	.570	0.470	1.150	.450	007	.410
	SITE RAW	<u>.</u>	(MG/L)	7.460	9.400	7.360	7.560	٠	7.590	7.240	8.790	8.370	9.360		9.830	(FTU)	3.500	7.300	5.500	4.100		1.870	1.800	1.760	3.500	4.700		1.800
	S	-	SULPHATE (MG/L	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	00.1	MOV	DEC	TURBIDITY (FTU	NAL	FE8	MAR	APR	MAY	NOC	JUL	AUG	SEP	100	MOV	DEC

TABLE 5

4 .00		

6 0 0		
	5	

YSTEM
NOI S
RIBUT
DIST

;														!											
FREE FLOW			•	٠	٠		•	•		BOL	108	BOL	BOL	, , , , , , , , , , , , , , , , , , ,	٠		•	٠	٠	•	٠	•	76.000	61.000	000°66
SITE 3 STANDING			٠	•	•				٠	T> 0%0.	108	108	108		•	٠	٠	٠	٠	٠		٠	76.000	95.000	29.000
FREE FLOW	(A1)	BOL	.040 <t< th=""><th>BDL</th><th>.050 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th>BOL</th><th>•</th><th>•</th><th>•</th><th></th><th>0. (A4)</th><th>127.600</th><th>114.840</th><th>116.000</th><th>139.200</th><th>85.000</th><th>130.000</th><th>110.000</th><th>29.000</th><th>٠</th><th>•</th><th>•</th></t<></th></t<>	BDL	.050 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th>BOL</th><th>•</th><th>•</th><th>•</th><th></th><th>0. (A4)</th><th>127.600</th><th>114.840</th><th>116.000</th><th>139.200</th><th>85.000</th><th>130.000</th><th>110.000</th><th>29.000</th><th>٠</th><th>•</th><th>•</th></t<>	BOL	108	BOL	BOL	•	•	•		0. (A4)	127.600	114.840	116.000	139.200	85.000	130.000	110.000	29.000	٠	•	•
SITE 2 STANDING	DET*N LIMIT = .020 GUIDELINE = 50. (A1)	BOL	.030 <t< td=""><td>108</td><td>T> 050.</td><td>T> 030.</td><td>T> 040.</td><td>108</td><td>BOL</td><td></td><td>٠</td><td>٠</td><td>٠</td><td>0 GUIDELINE = 100.(A4)</td><td>139.200</td><td>150.800</td><td>150.800</td><td>174.000</td><td>110.000</td><td>170.000</td><td>110.000</td><td>88.000</td><td>•</td><td>•</td><td></td></t<>	108	T> 050.	T> 030.	T> 040.	108	BOL		٠	٠	٠	0 GUIDELINE = 100.(A4)	139.200	150.800	150.800	174.000	110.000	170.000	110.000	88.000	•	•	
FREE FLOW	DET*N LIMIT = .020	B01	٠	108	.030 <t< th=""><th>•</th><th>٠</th><th>.030 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th>B0L</th><th>108</th><th>DET'N LINIT = .050</th><th>127.600</th><th>•</th><th>116.000</th><th>174.000</th><th>•</th><th>•</th><th>110.000</th><th>78.000</th><th>99.000</th><th>64.000</th><th>000.09</th></t<></th></t<>	•	٠	.030 <t< th=""><th>BOL</th><th>108</th><th>BOL</th><th>B0L</th><th>108</th><th>DET'N LINIT = .050</th><th>127.600</th><th>•</th><th>116.000</th><th>174.000</th><th>•</th><th>•</th><th>110.000</th><th>78.000</th><th>99.000</th><th>64.000</th><th>000.09</th></t<>	BOL	108	BOL	B0L	108	DET'N LINIT = .050	127.600	•	116.000	174.000	•	•	110.000	78.000	99.000	64.000	000.09
SITE 1 STANDING	J	108	٠	.040 <t< th=""><th>1> 090.</th><th>٠</th><th>BDL</th><th>T> 040.</th><th>BOL</th><th>.030 <t< th=""><th>BOL</th><th>BOL</th><th>B01</th><th>E</th><th>150.800</th><th>•</th><th>127.600</th><th>150.800</th><th>٠</th><th>100.000</th><th>100.000</th><th>81.000</th><th>86.000</th><th>99.000</th><th>78.000</th></t<></th></t<>	1> 090.	٠	BDL	T> 040.	BOL	.030 <t< th=""><th>BOL</th><th>BOL</th><th>B01</th><th>E</th><th>150.800</th><th>•</th><th>127.600</th><th>150.800</th><th>٠</th><th>100.000</th><th>100.000</th><th>81.000</th><th>86.000</th><th>99.000</th><th>78.000</th></t<>	BOL	BOL	B01	E	150.800	•	127.600	150.800	٠	100.000	100.000	81.000	86.000	99.000	78.000
TREATEO		BOL	108	.050 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BDL</th><th>BOL</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>162.400</th><th>139.200</th><th>116.000</th><th>232.000</th><th>79.000</th><th>110.000</th><th>80.000</th><th>72.000</th><th>76.000</th><th>69.000</th><th>65.000</th></t<>	BOL	BOL	BOL	BOL	BOL	BOL	BDL	BOL	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	162.400	139.200	116.000	232.000	79.000	110.000	80.000	72.000	76.000	69.000	65.000
RAN	METALS	BOL	T> 0%0.	BOL	.030 <t< th=""><th>•</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>•</th><th>BOL</th><th>g/r)</th><th>162.400</th><th>301.600</th><th>255.200</th><th>185.600</th><th>•</th><th>120.000</th><th>130.000</th><th>180.000</th><th>110.000</th><th>150.000</th><th>٠</th></t<>	•	BOL	BOL	BOL	BOL	BOL	•	BOL	g/r)	162.400	301.600	255.200	185.600	•	120.000	130.000	180.000	110.000	150.000	٠
	SILVER (UG/L	NAL	FEB	MAR	APR	MAY	NOF	זחר	AUG	SEP	0CT	N 0	OEC	ALUMINUM (UG/L	ЛАН	FEB	MAR	APR	MAY	NOP	JUL	AUG	SEP	000	NO _N

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW	180.000						٠	٠	٠	٠	T> 089.	1> 009.	.620 <₹	T> 004.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			٠		٠	٠	٠		16.000
	SITE 3	STANDING	160.000				٠	٠	٠	٠	٠	٠	. 700 <t< th=""><th>.330 <t< th=""><th>.520 <t< th=""><th>.370 <t< th=""><th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>٠</th><th>٠</th><th>٠</th><th></th><th>•</th><th>٠</th><th>•</th><th></th><th>17.000</th></t<></th></t<></th></t<></th></t<>	.330 <t< th=""><th>.520 <t< th=""><th>.370 <t< th=""><th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>٠</th><th>٠</th><th>٠</th><th></th><th>•</th><th>٠</th><th>•</th><th></th><th>17.000</th></t<></th></t<></th></t<>	.520 <t< th=""><th>.370 <t< th=""><th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>٠</th><th>٠</th><th>٠</th><th></th><th>•</th><th>٠</th><th>•</th><th></th><th>17.000</th></t<></th></t<>	.370 <t< th=""><th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>٠</th><th>٠</th><th>٠</th><th></th><th>•</th><th>٠</th><th>•</th><th></th><th>17.000</th></t<>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	٠	٠	٠		•	٠	•		17.000
DISTRIBUTION SYSTEM		FREE FLOW	٠	0 (A1)	.200 <t< th=""><th>T> 050.</th><th>1.000 <t< th=""><th>. 900 <t< th=""><th>.510 <t< th=""><th>1.000 <t< th=""><th>T> 0%6.</th><th>.910 <t< th=""><th>•</th><th>•</th><th>٠</th><th>٠</th><th>0. (A1)</th><th>17.000</th><th>15.000</th><th>17.000</th><th>14.000</th><th>18.000</th><th>18.000</th><th>19.000</th><th>15.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	T> 050.	1.000 <t< th=""><th>. 900 <t< th=""><th>.510 <t< th=""><th>1.000 <t< th=""><th>T> 0%6.</th><th>.910 <t< th=""><th>•</th><th>•</th><th>٠</th><th>٠</th><th>0. (A1)</th><th>17.000</th><th>15.000</th><th>17.000</th><th>14.000</th><th>18.000</th><th>18.000</th><th>19.000</th><th>15.000</th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	. 900 <t< th=""><th>.510 <t< th=""><th>1.000 <t< th=""><th>T> 0%6.</th><th>.910 <t< th=""><th>•</th><th>•</th><th>٠</th><th>٠</th><th>0. (A1)</th><th>17.000</th><th>15.000</th><th>17.000</th><th>14.000</th><th>18.000</th><th>18.000</th><th>19.000</th><th>15.000</th><th></th></t<></th></t<></th></t<></th></t<>	.510 <t< th=""><th>1.000 <t< th=""><th>T> 0%6.</th><th>.910 <t< th=""><th>•</th><th>•</th><th>٠</th><th>٠</th><th>0. (A1)</th><th>17.000</th><th>15.000</th><th>17.000</th><th>14.000</th><th>18.000</th><th>18.000</th><th>19.000</th><th>15.000</th><th></th></t<></th></t<></th></t<>	1.000 <t< th=""><th>T> 0%6.</th><th>.910 <t< th=""><th>•</th><th>•</th><th>٠</th><th>٠</th><th>0. (A1)</th><th>17.000</th><th>15.000</th><th>17.000</th><th>14.000</th><th>18.000</th><th>18.000</th><th>19.000</th><th>15.000</th><th></th></t<></th></t<>	T> 0%6.	.910 <t< th=""><th>•</th><th>•</th><th>٠</th><th>٠</th><th>0. (A1)</th><th>17.000</th><th>15.000</th><th>17.000</th><th>14.000</th><th>18.000</th><th>18.000</th><th>19.000</th><th>15.000</th><th></th></t<>	•	•	٠	٠	0. (A1)	17.000	15.000	17.000	14.000	18.000	18.000	19.000	15.000	
DISTRIE	SITE 2	STANDING	٠	DET'N LIMIT = 0.050 GUIDELIME = 50.0 (A1)	.290 <t< td=""><td>.730 <t< td=""><td>1.000 <t< td=""><td>.630 <t< td=""><td>T> 089.</td><td>1.000 <t< td=""><td>. 930 <t< td=""><td>1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.730 <t< td=""><td>1.000 <t< td=""><td>.630 <t< td=""><td>T> 089.</td><td>1.000 <t< td=""><td>. 930 <t< td=""><td>1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.000 <t< td=""><td>.630 <t< td=""><td>T> 089.</td><td>1.000 <t< td=""><td>. 930 <t< td=""><td>1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.630 <t< td=""><td>T> 089.</td><td>1.000 <t< td=""><td>. 930 <t< td=""><td>1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<></td></t<></td></t<></td></t<>	T> 089.	1.000 <t< td=""><td>. 930 <t< td=""><td>1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<></td></t<></td></t<>	. 930 <t< td=""><td>1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<></td></t<>	1.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>•</td><td>DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)</td><td>22.000</td><td>21.000</td><td>23.000</td><td>20.000</td><td>21.000</td><td>20.000</td><td>19.000</td><td>16.000</td><td></td></t<>	٠	٠		•	DET'N LIMIT = 0.020 GUIDELIME = 1000. (A1)	22.000	21.000	23.000	20.000	21.000	20.000	19.000	16.000	
		FREE FLOW	130.000	ET'N LIMIT = 0.05	.290 <t< th=""><th></th><th>1.200</th><th>T> 010.</th><th>٠</th><th>٠</th><th>1.000 <t< th=""><th>.850 <t< th=""><th>T> 079.</th><th>T> 014.</th><th>.370 <t< th=""><th>.240 <t< th=""><th>ET'N LIMIT = 0.02</th><th>17.000</th><th>•</th><th>18,000</th><th>16.000</th><th></th><th></th><th>20.000</th><th>14.000</th><th>17.000</th></t<></th></t<></th></t<></th></t<></th></t<>		1.200	T> 010.	٠	٠	1.000 <t< th=""><th>.850 <t< th=""><th>T> 079.</th><th>T> 014.</th><th>.370 <t< th=""><th>.240 <t< th=""><th>ET'N LIMIT = 0.02</th><th>17.000</th><th>•</th><th>18,000</th><th>16.000</th><th></th><th></th><th>20.000</th><th>14.000</th><th>17.000</th></t<></th></t<></th></t<></th></t<>	.850 <t< th=""><th>T> 079.</th><th>T> 014.</th><th>.370 <t< th=""><th>.240 <t< th=""><th>ET'N LIMIT = 0.02</th><th>17.000</th><th>•</th><th>18,000</th><th>16.000</th><th></th><th></th><th>20.000</th><th>14.000</th><th>17.000</th></t<></th></t<></th></t<>	T> 079.	T> 014.	.370 <t< th=""><th>.240 <t< th=""><th>ET'N LIMIT = 0.02</th><th>17.000</th><th>•</th><th>18,000</th><th>16.000</th><th></th><th></th><th>20.000</th><th>14.000</th><th>17.000</th></t<></th></t<>	.240 <t< th=""><th>ET'N LIMIT = 0.02</th><th>17.000</th><th>•</th><th>18,000</th><th>16.000</th><th></th><th></th><th>20.000</th><th>14.000</th><th>17.000</th></t<>	ET'N LIMIT = 0.02	17.000	•	18,000	16.000			20.000	14.000	17.000
WATER TREATMENT PLANT	SITE 1	STANDING	130.000	Q	.330 <t< th=""><th></th><th>.910 <t< th=""><th>.590 <1</th><th>٠</th><th>T> 080.</th><th>1.200</th><th>.880 <t< th=""><th>.630 <t< th=""><th>.390 <t< th=""><th>1> 009.</th><th>.360 <1</th><th>0</th><th>21.000</th><th>۰</th><th>23.000</th><th>17.000</th><th></th><th>19.000</th><th>27.000</th><th>15.000</th><th>18.000</th></t<></th></t<></th></t<></th></t<></th></t<>		.910 <t< th=""><th>.590 <1</th><th>٠</th><th>T> 080.</th><th>1.200</th><th>.880 <t< th=""><th>.630 <t< th=""><th>.390 <t< th=""><th>1> 009.</th><th>.360 <1</th><th>0</th><th>21.000</th><th>۰</th><th>23.000</th><th>17.000</th><th></th><th>19.000</th><th>27.000</th><th>15.000</th><th>18.000</th></t<></th></t<></th></t<></th></t<>	.590 <1	٠	T> 080.	1.200	.880 <t< th=""><th>.630 <t< th=""><th>.390 <t< th=""><th>1> 009.</th><th>.360 <1</th><th>0</th><th>21.000</th><th>۰</th><th>23.000</th><th>17.000</th><th></th><th>19.000</th><th>27.000</th><th>15.000</th><th>18.000</th></t<></th></t<></th></t<>	.630 <t< th=""><th>.390 <t< th=""><th>1> 009.</th><th>.360 <1</th><th>0</th><th>21.000</th><th>۰</th><th>23.000</th><th>17.000</th><th></th><th>19.000</th><th>27.000</th><th>15.000</th><th>18.000</th></t<></th></t<>	.390 <t< th=""><th>1> 009.</th><th>.360 <1</th><th>0</th><th>21.000</th><th>۰</th><th>23.000</th><th>17.000</th><th></th><th>19.000</th><th>27.000</th><th>15.000</th><th>18.000</th></t<>	1> 009.	.360 <1	0	21.000	۰	23.000	17.000		19.000	27.000	15.000	18.000
WATE	TREATED		140.000		.290 <1	T> 059.	.740 <t< th=""><th>.820 <t< th=""><th>T> 059.</th><th>1.100</th><th>. 790 <t< th=""><th>.650 <t< th=""><th>.620 <t< th=""><th>.290 <t< th=""><th>.700 <1</th><th>.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.820 <t< th=""><th>T> 059.</th><th>1.100</th><th>. 790 <t< th=""><th>.650 <t< th=""><th>.620 <t< th=""><th>.290 <t< th=""><th>.700 <1</th><th>.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	T> 059.	1.100	. 790 <t< th=""><th>.650 <t< th=""><th>.620 <t< th=""><th>.290 <t< th=""><th>.700 <1</th><th>.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<></th></t<></th></t<></th></t<></th></t<>	.650 <t< th=""><th>.620 <t< th=""><th>.290 <t< th=""><th>.700 <1</th><th>.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<></th></t<></th></t<></th></t<>	.620 <t< th=""><th>.290 <t< th=""><th>.700 <1</th><th>.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<></th></t<></th></t<>	.290 <t< th=""><th>.700 <1</th><th>.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<></th></t<>	.700 <1	.240 <t< th=""><th>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>17.000</th><th>15.000</th><th>18.000</th><th>15.000</th><th>18.000</th><th>18.000</th><th>27.000</th><th>13.000</th><th>17,000</th></t<>	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17.000	15.000	18.000	15.000	18.000	18.000	27.000	13.000	17,000
	SITE RAW	IYPE	89.000	KG/L)	1.200	1.500	1.600	1.200		1.600	1.400	1.100	1.200	T> 098.		1.000 <t< th=""><th>()</th><th>18.000</th><th>18.000</th><th>19.000</th><th>16.000</th><th></th><th>19.000</th><th>18.000</th><th>14.000</th><th>17.000</th></t<>	()	18.000	18.000	19.000	16.000		19.000	18.000	14.000	17.000
	S		DEC	ARSENIC (UG/L	JAN	FEB	MAR	APR	MAY	NOF	חחר	AUG	SEP	OCT	MON	DEC	BARIUM (UG/L	JAN	FEB	MAR	APR	MAY	JUN	٦٥٢	AUG	SEP

TABLE 5

WATER TREATMENT PLANT

SITE	ш							
TYDE	RAU	TREATED	SITE · 1		SITE 2		SITE 3	
			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
		;						
OCT	18.000	16.000	20.000	17.000	•	•	17.000	16.000
NOV	•	17.000	20.000	16.000	٠	•	18.000	18.000
DEC	18.000	16.000	20.000	17.000	•		18.000	16.000
BORON (UG/L	^		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.	DET'N LIMIT = 0.200 GUIDELINE = 5000. (A1)	000. (A1)	8 8 9 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
JAN	9.400 <t< td=""><td>6.300 <t< td=""><td>5.700 <t< td=""><td>4.000 <1</td><td>11.000 <1</td><td>8.600 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<>	6.300 <t< td=""><td>5.700 <t< td=""><td>4.000 <1</td><td>11.000 <1</td><td>8.600 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<>	5.700 <t< td=""><td>4.000 <1</td><td>11.000 <1</td><td>8.600 <t< td=""><td>•</td><td>•</td></t<></td></t<>	4.000 <1	11.000 <1	8.600 <t< td=""><td>•</td><td>•</td></t<>	•	•
FEB	15.000 <7	12.000 <t< td=""><td>٠</td><td>•</td><td>12.000 <t< td=""><td>12.000 <t< td=""><td>• •</td><td>•</td></t<></td></t<></td></t<>	٠	•	12.000 <t< td=""><td>12.000 <t< td=""><td>• •</td><td>•</td></t<></td></t<>	12.000 <t< td=""><td>• •</td><td>•</td></t<>	• •	•
MAR	41.000	8.300 <t< td=""><td>36.000</td><td>24.000</td><td>10.000 <t< td=""><td>76.000</td><td>•</td><td>•</td></t<></td></t<>	36.000	24.000	10.000 <t< td=""><td>76.000</td><td>•</td><td>•</td></t<>	76.000	•	•
APR	7.900 <₹	6.700 <t< td=""><td>11.000 <t< td=""><td>16.000 <t< td=""><td>6.600 <t< td=""><td>14.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	11.000 <t< td=""><td>16.000 <t< td=""><td>6.600 <t< td=""><td>14.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<>	16.000 <t< td=""><td>6.600 <t< td=""><td>14.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<>	6.600 <t< td=""><td>14.000 <t< td=""><td>•</td><td>•</td></t<></td></t<>	14.000 <t< td=""><td>•</td><td>•</td></t<>	•	•
MAY	•	6.800 <t< td=""><td>٠</td><td>•</td><td>4.300 <t< td=""><td>6.100 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<>	٠	•	4.300 <t< td=""><td>6.100 <t< td=""><td>•</td><td>•</td></t<></td></t<>	6.100 <t< td=""><td>•</td><td>•</td></t<>	•	•
NOC	8.200 <t< td=""><td>7.100 <t< td=""><td>7.300 <t< td=""><td>•</td><td>5.700 <t< td=""><td>6.700 <t< td=""><td>•</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<>	7.100 <t< td=""><td>7.300 <t< td=""><td>•</td><td>5.700 <t< td=""><td>6.700 <t< td=""><td>•</td><td>٠</td></t<></td></t<></td></t<></td></t<>	7.300 <t< td=""><td>•</td><td>5.700 <t< td=""><td>6.700 <t< td=""><td>•</td><td>٠</td></t<></td></t<></td></t<>	•	5.700 <t< td=""><td>6.700 <t< td=""><td>•</td><td>٠</td></t<></td></t<>	6.700 <t< td=""><td>•</td><td>٠</td></t<>	•	٠
JUL	9.900 <t< td=""><td>10.000 <t< td=""><td>14.000 <t< td=""><td>8.700 <t< td=""><td>8.800 <t< td=""><td>8.100 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	10.000 <t< td=""><td>14.000 <t< td=""><td>8.700 <t< td=""><td>8.800 <t< td=""><td>8.100 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	14.000 <t< td=""><td>8.700 <t< td=""><td>8.800 <t< td=""><td>8.100 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<>	8.700 <t< td=""><td>8.800 <t< td=""><td>8.100 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<>	8.800 <t< td=""><td>8.100 <t< td=""><td>•</td><td>•</td></t<></td></t<>	8.100 <t< td=""><td>•</td><td>•</td></t<>	•	•
AUG	10.000 <t< td=""><td>11.000 <t< td=""><td>12.000 <t< td=""><td>11.000 <t< td=""><td>12.000 <t< td=""><td>10.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	11.000 <t< td=""><td>12.000 <t< td=""><td>11.000 <t< td=""><td>12.000 <t< td=""><td>10.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	12.000 <t< td=""><td>11.000 <t< td=""><td>12.000 <t< td=""><td>10.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<></td></t<>	11.000 <t< td=""><td>12.000 <t< td=""><td>10.000 <t< td=""><td>•</td><td>•</td></t<></td></t<></td></t<>	12.000 <t< td=""><td>10.000 <t< td=""><td>•</td><td>•</td></t<></td></t<>	10.000 <t< td=""><td>•</td><td>•</td></t<>	•	•
SEP	7.700 <t< td=""><td>7.600 <t< td=""><td>11.000 <t< td=""><td>9.600 <t< td=""><td>٠</td><td>•</td><td>7.400 <t< td=""><td>9.000 <1</td></t<></td></t<></td></t<></td></t<></td></t<>	7.600 <t< td=""><td>11.000 <t< td=""><td>9.600 <t< td=""><td>٠</td><td>•</td><td>7.400 <t< td=""><td>9.000 <1</td></t<></td></t<></td></t<></td></t<>	11.000 <t< td=""><td>9.600 <t< td=""><td>٠</td><td>•</td><td>7.400 <t< td=""><td>9.000 <1</td></t<></td></t<></td></t<>	9.600 <t< td=""><td>٠</td><td>•</td><td>7.400 <t< td=""><td>9.000 <1</td></t<></td></t<>	٠	•	7.400 <t< td=""><td>9.000 <1</td></t<>	9.000 <1
OCT	7.700 <t< td=""><td>6.700 <t< td=""><td>9.800 <t< td=""><td>7.300 <t< td=""><td>٠</td><td>•</td><td>8.500 <t< td=""><td>7.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	6.700 <t< td=""><td>9.800 <t< td=""><td>7.300 <t< td=""><td>٠</td><td>•</td><td>8.500 <t< td=""><td>7.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	9.800 <t< td=""><td>7.300 <t< td=""><td>٠</td><td>•</td><td>8.500 <t< td=""><td>7.300 <t< td=""></t<></td></t<></td></t<></td></t<>	7.300 <t< td=""><td>٠</td><td>•</td><td>8.500 <t< td=""><td>7.300 <t< td=""></t<></td></t<></td></t<>	٠	•	8.500 <t< td=""><td>7.300 <t< td=""></t<></td></t<>	7.300 <t< td=""></t<>
NOV		6.800 <t< td=""><td>8.900 <1</td><td>8.300 <t< td=""><td>•</td><td>•</td><td>7.500 <t< td=""><td>6.400 <t< td=""></t<></td></t<></td></t<></td></t<>	8.900 <1	8.300 <t< td=""><td>•</td><td>•</td><td>7.500 <t< td=""><td>6.400 <t< td=""></t<></td></t<></td></t<>	•	•	7.500 <t< td=""><td>6.400 <t< td=""></t<></td></t<>	6.400 <t< td=""></t<>
DEC	5.400 <t< td=""><td>5.000 <t< td=""><td>7.800 <1</td><td>5.000 <1</td><td>•</td><td>•</td><td>6.500 <t< td=""><td>5.200 <t< td=""></t<></td></t<></td></t<></td></t<>	5.000 <t< td=""><td>7.800 <1</td><td>5.000 <1</td><td>•</td><td>•</td><td>6.500 <t< td=""><td>5.200 <t< td=""></t<></td></t<></td></t<>	7.800 <1	5.000 <1	•	•	6.500 <t< td=""><td>5.200 <t< td=""></t<></td></t<>	5.200 <t< td=""></t<>
BERYLLIUM (UG/L	/2/r)			DET'N LIMIT = 0.010 GUIDELINE	010 GUIDELINE = N/A	V	8 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 1 1 1 1 9 1 3 0 0
JAN	.030 <t< td=""><td>.030 <1</td><td>BOL</td><td>. 108</td><td>BOL</td><td>BOL</td><td>٠</td><td>•</td></t<>	.030 <1	BOL	. 108	BOL	BOL	٠	•
FEB	BOL	108	٠	•	BOL	.020 <	•	٠
MAR	BOL	108	108	108	BOL	BOL	•	٠
APR	.070 <t< td=""><td>T> 050.</td><td>T> 011.</td><td>108</td><td>BOL</td><td>T> 0%0.</td><td>•</td><td>٠</td></t<>	T> 050.	T> 011.	108	BOL	T> 0%0.	•	٠
MAY	•	108	•	٠	BOL	BOL	•	•
NOR	BOL	BOL	108	•	BOL	BOL	٠	•
JUL	BOL	. 020 <t< td=""><td>BOL</td><td>BOL</td><td>.040 <t< td=""><td>108</td><td>•</td><td>٠</td></t<></td></t<>	BOL	BOL	.040 <t< td=""><td>108</td><td>•</td><td>٠</td></t<>	108	•	٠

TABLE 5

DISTRIBUTION SYSTEM

2	
Ų.	
9	
_	
_	
_	
Ψ,	
-	
-	
=	
•	
Ψ,	
_	
-	
ü	
-	
X.	
_	
CCH VM	
^	
~	
e	
3	
•	
7	
=	
4	
_	
_	
\neg	
_	
_	
٠,	
⋖	
ź	
₹	
ĸ	
J	
×	
2	
_	
ų	
ے	
22	
7	
٦.	
-	
_	
-	
_	
7	
VE	
KVE	
UKVE I	
SUK VE	
SUKVE	
SUKVEI	
X SUKVEI	
EK SUKVEI	
IEK SUKVEI	
TIEK SUKVEI	
AIEK SUKVEI	
MAILE SUKVEI	
MAIEK SUKVEI	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
ING MAIEK SUKVEI	
INC WAL	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
INC WAL	

WATER TREATMENT PLANT

		1																								
	FREE FLOW	6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	BOL	108	BOL	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	٠		•	•	•	٠	٠	108	BOL	TON	TOM				•	٠	٠
SITE 3	STANDING		٠	BOL	BOL	BOL	BOL	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•	٠	•	•	•	•	٠	BOL	Jon	BOL	TON		٠	•	٠	٠	•
	FREE FLOW		BOL	•		٠	٠	00 (A1)	BOL	T> 070.	T> 070.	.060 <t< td=""><td>BOL</td><td>TOU</td><td>BOL</td><td>BOL</td><td>٠</td><td>٠</td><td>•</td><td>•</td><td></td><td>. 100 <t< td=""><td>T> 011.</td><td>.140 <t< td=""><td>.150 <1</td><td>. 150 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL	TOU	BOL	BOL	٠	٠	•	•		. 100 <t< td=""><td>T> 011.</td><td>.140 <t< td=""><td>.150 <1</td><td>. 150 <t< td=""></t<></td></t<></td></t<>	T> 011.	.140 <t< td=""><td>.150 <1</td><td>. 150 <t< td=""></t<></td></t<>	.150 <1	. 150 <t< td=""></t<>
SITE 2		0 0 0 0 0 0 0 0 0 0 0	BOL	٠			٠	CUIDELINE = 5.06	T> 080.	.290 <1	BOL	T> 011.	.170 <⊺	.730	. 100 <t< td=""><td>BOL</td><td></td><td>٠</td><td>•</td><td>•</td><td>O GUIDELINE = N/A</td><td>T> 041.</td><td>T> 011.</td><td>.120 <t< td=""><td>.160 <t< td=""><td>.280 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL		٠	•	•	O GUIDELINE = N/A	T> 041.	T> 011.	.120 <t< td=""><td>.160 <t< td=""><td>.280 <t< td=""></t<></td></t<></td></t<>	.160 <t< td=""><td>.280 <t< td=""></t<></td></t<>	.280 <t< td=""></t<>
	FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	108	.030 <t< td=""><td>BOL</td><td>BOL</td><td>DET'N LIMIT = 0.050 GUIDELINE = 5.000 (A1)</td><td>BOL</td><td>٠</td><td>.240 <t< td=""><td>T> 070.</td><td>•</td><td>•</td><td>.070 <t< td=""><td>T> 070.</td><td>Bol</td><td>BOL</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.020 GUIDELINE = N/A</td><td>T> 041.</td><td>٠</td><td>150 <t< td=""><td>. 130 <t< td=""><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	BOL	DET'N LIMIT = 0.050 GUIDELINE = 5.000 (A1)	BOL	٠	.240 <t< td=""><td>T> 070.</td><td>•</td><td>•</td><td>.070 <t< td=""><td>T> 070.</td><td>Bol</td><td>BOL</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.020 GUIDELINE = N/A</td><td>T> 041.</td><td>٠</td><td>150 <t< td=""><td>. 130 <t< td=""><td>•</td></t<></td></t<></td></t<></td></t<>	T> 070.	•	•	.070 <t< td=""><td>T> 070.</td><td>Bol</td><td>BOL</td><td>108</td><td>108</td><td>DET'N LIMIT = 0.020 GUIDELINE = N/A</td><td>T> 041.</td><td>٠</td><td>150 <t< td=""><td>. 130 <t< td=""><td>•</td></t<></td></t<></td></t<>	T> 070.	Bol	BOL	108	108	DET'N LIMIT = 0.020 GUIDELINE = N/A	T> 041.	٠	150 <t< td=""><td>. 130 <t< td=""><td>•</td></t<></td></t<>	. 130 <t< td=""><td>•</td></t<>	•
SITE 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	BOL	BOL	BOL	BOL	30	BOL	٠	BOL	T> 090.	•	T> 090.	.260 <t< td=""><td>T> 070.</td><td>TOB</td><td>TOB</td><td>HOL</td><td>108</td><td></td><td>T> 090.</td><td>•</td><td>. 140 <7</td><td>1.0 1.0</td><td></td></t<>	T> 070.	TOB	TOB	HOL	108		T> 090.	•	. 140 <7	1.0 1.0	
TREATED			BOL	BOL	HOI	BOL	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	BOL	.180 <⊤	T> 090.	.070 <t< td=""><td>.160 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0</td><td>T> 011.</td><td>.130 <t< td=""><td>1.800</td><td>.310 <t< td=""><td>4.500</td></t<></td></t<></td></t<></td></t<></td></t<>	.160 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0</td><td>T> 011.</td><td>.130 <t< td=""><td>1.800</td><td>.310 <t< td=""><td>4.500</td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0</td><td>T> 011.</td><td>.130 <t< td=""><td>1.800</td><td>.310 <t< td=""><td>4.500</td></t<></td></t<></td></t<>	BOL	BOL	BOL	BOL	BOL	0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0	T> 011.	.130 <t< td=""><td>1.800</td><td>.310 <t< td=""><td>4.500</td></t<></td></t<>	1.800	.310 <t< td=""><td>4.500</td></t<>	4.500
NA S			BOL	BOL	.020 <t< td=""><td>٠</td><td>BOL</td><td>:</td><td>BOL</td><td>.070 <t< td=""><td>.130 <t< td=""><td>BOL</td><td></td><td>.080 <t< td=""><td>T> 070.</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>BOL</td><td></td><td>.160 <t< td=""><td>.210 <t< td=""><td>2.200</td><td>.200 <t< td=""><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	٠	BOL	:	BOL	.070 <t< td=""><td>.130 <t< td=""><td>BOL</td><td></td><td>.080 <t< td=""><td>T> 070.</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>BOL</td><td></td><td>.160 <t< td=""><td>.210 <t< td=""><td>2.200</td><td>.200 <t< td=""><td>•</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.130 <t< td=""><td>BOL</td><td></td><td>.080 <t< td=""><td>T> 070.</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>BOL</td><td></td><td>.160 <t< td=""><td>.210 <t< td=""><td>2.200</td><td>.200 <t< td=""><td>•</td></t<></td></t<></td></t<></td></t<></td></t<>	BOL		.080 <t< td=""><td>T> 070.</td><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>BOL</td><td></td><td>.160 <t< td=""><td>.210 <t< td=""><td>2.200</td><td>.200 <t< td=""><td>•</td></t<></td></t<></td></t<></td></t<>	T> 070.	BOL	BOL	BOL		BOL		.160 <t< td=""><td>.210 <t< td=""><td>2.200</td><td>.200 <t< td=""><td>•</td></t<></td></t<></td></t<>	.210 <t< td=""><td>2.200</td><td>.200 <t< td=""><td>•</td></t<></td></t<>	2.200	.200 <t< td=""><td>•</td></t<>	•
SITE	TYPE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AUG	SEP	00.1	MOV	DEC	CADMIUM (UG/L	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	700	MOV	DEC	COBALT (UG/L	NAL	FEB	MAR	APR	MAY

TABLE 5

1989	
DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA)	SYSTEM
AM OTTAWA WS	DISTRIBUTION SYSTEM
E PROGR	
SURVEILLANC	
WATER	
DRINKING	PLANT
	ATER TREATMENT PLANT
	WATER

SITE 2 SITE 3	.OW STANDING FREE FLOW STANDING FREE FLOW			. 150 <1 . 120 <1	120 <1		1,040.	1> 0.41.	. 090	. 130 <t< th=""><th>DET'N LIMIT = 0.100 GUIDELINE = 50. (A1)</th><th>80L .670 <t .390="" .<="" <t="" th=""><th>. 1.100 1.200 .</th><th>.270 <t .980="" .<="" 80l="" <t="" th=""><th>1 1 > 0 > 1 .</th><th></th><th></th><th></th><th>1.300 1.400 1.200</th><th>1.700</th><th>1,300 <t< th=""><th>.340 <t bol="" bol<="" th=""><th>BOL '</th><th>DET'N LIMIT = .100 GUIDELINE = 1000 (A3)</th><th>3.100 46.000 1.900</th><th>000 / 1</th></t></th></t<></th></t></th></t></th></t<>	DET'N LIMIT = 0.100 GUIDELINE = 50. (A1)	80L .670 <t .390="" .<="" <t="" th=""><th>. 1.100 1.200 .</th><th>.270 <t .980="" .<="" 80l="" <t="" th=""><th>1 1 > 0 > 1 .</th><th></th><th></th><th></th><th>1.300 1.400 1.200</th><th>1.700</th><th>1,300 <t< th=""><th>.340 <t bol="" bol<="" th=""><th>BOL '</th><th>DET'N LIMIT = .100 GUIDELINE = 1000 (A3)</th><th>3.100 46.000 1.900</th><th>000 / 1</th></t></th></t<></th></t></th></t>	. 1.100 1.200 .	.270 <t .980="" .<="" 80l="" <t="" th=""><th>1 1 > 0 > 1 .</th><th></th><th></th><th></th><th>1.300 1.400 1.200</th><th>1.700</th><th>1,300 <t< th=""><th>.340 <t bol="" bol<="" th=""><th>BOL '</th><th>DET'N LIMIT = .100 GUIDELINE = 1000 (A3)</th><th>3.100 46.000 1.900</th><th>000 / 1</th></t></th></t<></th></t>	1 1 > 0 > 1 .				1.300 1.400 1.200	1.700	1,300 <t< th=""><th>.340 <t bol="" bol<="" th=""><th>BOL '</th><th>DET'N LIMIT = .100 GUIDELINE = 1000 (A3)</th><th>3.100 46.000 1.900</th><th>000 / 1</th></t></th></t<>	.340 <t bol="" bol<="" th=""><th>BOL '</th><th>DET'N LIMIT = .100 GUIDELINE = 1000 (A3)</th><th>3.100 46.000 1.900</th><th>000 / 1</th></t>	BOL '	DET'N LIMIT = .100 GUIDELINE = 1000 (A3)	3.100 46.000 1.900	000 / 1
S17E 1	STANDING FREE FLOW		T> 0<0.	.200 <t< td=""><td>. 120 <t< td=""><td>T> 050</td><td>1. 0CO.</td><td>1> 0/1.</td><td>.090 ×T</td><td>T> 090.</td><td>0ET*</td><td>.280 <7</td><td>•</td><td>T> 079.</td><td>T> 019.</td><td>•</td><td>1.000 <t< td=""><td>1.600</td><td>1.400</td><td>1.600</td><td>1.100</td><td>.320 <t< td=""><td>.780 <1</td><td>DET 1</td><td>25.000</td><td></td></t<></td></t<></td></t<></td></t<>	. 120 <t< td=""><td>T> 050</td><td>1. 0CO.</td><td>1> 0/1.</td><td>.090 ×T</td><td>T> 090.</td><td>0ET*</td><td>.280 <7</td><td>•</td><td>T> 079.</td><td>T> 019.</td><td>•</td><td>1.000 <t< td=""><td>1.600</td><td>1.400</td><td>1.600</td><td>1.100</td><td>.320 <t< td=""><td>.780 <1</td><td>DET 1</td><td>25.000</td><td></td></t<></td></t<></td></t<>	T> 050	1. 0CO.	1> 0/1.	.090 ×T	T> 090.	0ET*	.280 <7	•	T> 079.	T> 019.	•	1.000 <t< td=""><td>1.600</td><td>1.400</td><td>1.600</td><td>1.100</td><td>.320 <t< td=""><td>.780 <1</td><td>DET 1</td><td>25.000</td><td></td></t<></td></t<>	1.600	1.400	1.600	1.100	.320 <t< td=""><td>.780 <1</td><td>DET 1</td><td>25.000</td><td></td></t<>	.780 <1	DET 1	25.000	
TREATED			 1> 021.	T> 012.	110 <t< td=""><td>D80 <1</td><td>, 000°</td><td>≥</td><td>.090 ×T</td><td>T> 090.</td><td></td><td>. 290 <t< td=""><td>26.000</td><td>801</td><td>.300 <t< td=""><td>2.100</td><td>T> 079.</td><td>1.200</td><td>1.200</td><td>.900 <t< td=""><td>.850 <t< td=""><td>80F</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.830 <t< td=""><td>010 ×1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	D80 <1	, 000°	≥	.090 ×T	T> 090.		. 290 <t< td=""><td>26.000</td><td>801</td><td>.300 <t< td=""><td>2.100</td><td>T> 079.</td><td>1.200</td><td>1.200</td><td>.900 <t< td=""><td>.850 <t< td=""><td>80F</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.830 <t< td=""><td>010 ×1</td></t<></td></t<></td></t<></td></t<></td></t<>	26.000	801	.300 <t< td=""><td>2.100</td><td>T> 079.</td><td>1.200</td><td>1.200</td><td>.900 <t< td=""><td>.850 <t< td=""><td>80F</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.830 <t< td=""><td>010 ×1</td></t<></td></t<></td></t<></td></t<>	2.100	T> 079.	1.200	1.200	.900 <t< td=""><td>.850 <t< td=""><td>80F</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.830 <t< td=""><td>010 ×1</td></t<></td></t<></td></t<>	.850 <t< td=""><td>80F</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>.830 <t< td=""><td>010 ×1</td></t<></td></t<>	80F	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.830 <t< td=""><td>010 ×1</td></t<>	010 ×1
TE RAU			1> 0%Z.	4.200	140 <t< td=""><td>150 cT</td><td>, to</td><td>- DKI.</td><td>•</td><td>. 120 <t< td=""><td>16/L)</td><td>.730 <t< td=""><td>2.000</td><td>1.500</td><td>7> 097.</td><td>•</td><td>1.300</td><td>1.200</td><td>1.300</td><td>1.000 <t< td=""><td>1.300</td><td>•</td><td>BOL</td><td>/L)</td><td>19.000</td><td>20 000</td></t<></td></t<></td></t<></td></t<>	150 cT	, to	- DKI.	•	. 120 <t< td=""><td>16/L)</td><td>.730 <t< td=""><td>2.000</td><td>1.500</td><td>7> 097.</td><td>•</td><td>1.300</td><td>1.200</td><td>1.300</td><td>1.000 <t< td=""><td>1.300</td><td>•</td><td>BOL</td><td>/L)</td><td>19.000</td><td>20 000</td></t<></td></t<></td></t<>	16/L)	.730 <t< td=""><td>2.000</td><td>1.500</td><td>7> 097.</td><td>•</td><td>1.300</td><td>1.200</td><td>1.300</td><td>1.000 <t< td=""><td>1.300</td><td>•</td><td>BOL</td><td>/L)</td><td>19.000</td><td>20 000</td></t<></td></t<>	2.000	1.500	7> 097.	•	1.300	1.200	1.300	1.000 <t< td=""><td>1.300</td><td>•</td><td>BOL</td><td>/L)</td><td>19.000</td><td>20 000</td></t<>	1.300	•	BOL	/L)	19.000	20 000
SITE			5	חר	ALIG	SED .	367	3	MOV	DEC	CHROMIUM (UG/L	NAL	FEB	MAR	APR	MAY	NOF	JUL	AUG	SEP	OCT	MOV	DEC	COPPER (UG/L	NAL	811

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

DISTRIBUTION SYSTEM

3	
Ş	
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
Ę	
ILLARUE	
בור בור	
SA ME	
MAICH	
S	
2	
20146142	
5	

WATER TREATMENT PLANT

21.000 1.100 31.000 3.300 25.000 34.000 64.000 1.100 3.500 3.500 31.000 35.000 35.000 31.000 35.000 31.000 35.000 31.000 35.000 4.000 4.000 17	SITE	TE RAW	TREATED	SITE 1		SITE 2		SITE 3	
21.000 1.100 31.000 3.300 25.000 34.000 1.100 31.000 3.300 25.000 1.100 3.500 1.100 3.500 1.2.000 31.000 4.200 31.000 4.200 31.000 4.200 31.000 1.2.000 20.000 4.200 19.000 1.500 27.000 19.000 1.500 27.000 19.000 17.000				STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
56,000 1,700 3,500 7,300 3,900 5,1000 1,700 1,700 3,000 7,300 3,900 5,1000 1,7	0	21		900	002 2	100			
64,000	N.A.	000.12	2	000.15	2.300	25.000	1.600		•
64.000 1.700 3.500 . 51.000 93.000 460.000 43.000 7.300 31.000 80.000 12.000 22.000 44.200 51.000 91.000 3.300 41.000 19.000 91.000 3.300 41.000 17.000 91.000 37.000 47 57.000 17.00	ά¥	٠	1.100	•	٠	34.000	1.900	٠	۰
93.000	NON	000.79	1.700	3.500	•	51,000	3.800	٠	٠
80.000 12.000 20.000 4.200 51.000 59.000 19.000 4.200 71.000 71.500 20.000 4.200 71.000 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.500 71.50	JUL	93.000	000.094	43.000	7.300	31.000	8.000		•
59.000 39.000 4.200 19.000 1.200 19.000 1.200 19.000 1.200 3.300 1.500 27.000 3.800 1.200 1.500 1.500 1.500 1.7000	AUG	80.000	12.000	20.000	3.900	51.000	5.000		
91.000 1.500 27.000 3.800 3.800 1.900 1.900 1.900 1.900 27.000 27.000 27.000 1.900 1	SEP	59.000	39.000	20.000	4.200	٠	٠	190,000	42.000
32.000 1.900 <t 10.000="" 177.000="" 21.000="" 21.<="" 37.000="" 39.000="" 40.000="" 57.000="" <t="" td=""><td>CT</td><td>91.000</td><td>3.300</td><td>41.000</td><td>19.000</td><td>٠</td><td></td><td>240.000</td><td>34.000</td></t>	CT	91.000	3.300	41.000	19.000	٠		240.000	34.000
32.000 1.900 <t 10.000="" 17.000="" 21.000="" 21.0<="" 37.000="" 40.000="" 57.000="" <t="" td=""><td>404</td><td>•</td><td>1.500</td><td>27.000</td><td>3.800</td><td>٠</td><td>٠</td><td>120.000</td><td>14.000</td></t>	404	•	1.500	27.000	3.800	٠	٠	120.000	14.000
10.000 37.000 <t< td=""><td>DEC</td><td>32.000</td><td>1.900 <7</td><td>57.000</td><td>17.000</td><td>٠</td><td></td><td>190.000</td><td>18.000</td></t<>	DEC	32.000	1.900 <7	57.000	17.000	٠		190.000	18.000
20.000	NAU	210.000	37.000 <1	40.000 <7	40.000 <t< th=""><th>39.000 <t< th=""><th>33.000 <t< th=""><th>٠</th><th>•</th></t<></th></t<></th></t<>	39.000 <t< th=""><th>33.000 <t< th=""><th>٠</th><th>•</th></t<></th></t<>	33.000 <t< th=""><th>٠</th><th>•</th></t<>	٠	•
40.000 27.000 <t 14.000="" 27.000="" 34.000="" <t="" <t<="" td=""><td>FEB</td><td>220.000</td><td>22.000 <t< td=""><td>٠</td><td>٠</td><td>21.000 <t< td=""><td>17.000 <t< td=""><td>٠</td><td></td></t<></td></t<></td></t<></td></t>	FEB	220.000	22.000 <t< td=""><td>٠</td><td>٠</td><td>21.000 <t< td=""><td>17.000 <t< td=""><td>٠</td><td></td></t<></td></t<></td></t<>	٠	٠	21.000 <t< td=""><td>17.000 <t< td=""><td>٠</td><td></td></t<></td></t<>	17.000 <t< td=""><td>٠</td><td></td></t<>	٠	
20.000 23.000 <t 13.000="" 19.000="" 23.000="" <t="" <t<="" td=""><td>KR.</td><td>240.000</td><td>27.000 <1</td><td>34.000 <t< td=""><td>27.000 <t< td=""><td></td><td>12.000 <t< td=""><td>٠</td><td></td></t<></td></t<></td></t<></td></t>	KR.	240.000	27.000 <1	34.000 <t< td=""><td>27.000 <t< td=""><td></td><td>12.000 <t< td=""><td>٠</td><td></td></t<></td></t<></td></t<>	27.000 <t< td=""><td></td><td>12.000 <t< td=""><td>٠</td><td></td></t<></td></t<>		12.000 <t< td=""><td>٠</td><td></td></t<>	٠	
. 21.000 <t< td=""><td>APR</td><td>220.000</td><td>23.000 <t< td=""><td>19.000 <1</td><td></td><td></td><td>15.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>	APR	220.000	23.000 <t< td=""><td>19.000 <1</td><td></td><td></td><td>15.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	19.000 <1			15.000 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
70.000 32.000 <t 13.000="" <t<="" td=""><td>4X</td><td>•</td><td>21.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>6.900 <t< td=""><td>٠</td><td>•</td></t<></td></t<></td></t>	4X	•	21.000 <t< td=""><td>٠</td><td>٠</td><td></td><td>6.900 <t< td=""><td>٠</td><td>•</td></t<></td></t<>	٠	٠		6.900 <t< td=""><td>٠</td><td>•</td></t<>	٠	•
30.000	NO.	170.000	32.000 <t< td=""><td>13.000 <t< td=""><td>•</td><td></td><td>22.000 <t< td=""><td>٠</td><td>•</td></t<></td></t<></td></t<>	13.000 <t< td=""><td>•</td><td></td><td>22.000 <t< td=""><td>٠</td><td>•</td></t<></td></t<>	•		22.000 <t< td=""><td>٠</td><td>•</td></t<>	٠	•
00.000	JUL	130.000	23.000 <t< td=""><td>40.000 <t< td=""><td>30.000 <t< td=""><td></td><td>15.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<>	40.000 <t< td=""><td>30.000 <t< td=""><td></td><td>15.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>	30.000 <t< td=""><td></td><td>15.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>		15.000 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
40.000 13.000 <t (a1)<="" .="" 00.000="" 13.000="" 16.000="" 18.000="" 19.000="" 20.000="" 30.000="" 7.100="" 8.000="" 8.800="" 80.000="" <t="" det'n="" guideline="1.000" limit="0.010" td=""><td>MG</td><td>100.000</td><td>22.000 <t< td=""><td>13.000 <t< td=""><td></td><td>13.000 <t< td=""><td>12.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t>	MG	100.000	22.000 <t< td=""><td>13.000 <t< td=""><td></td><td>13.000 <t< td=""><td>12.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<>	13.000 <t< td=""><td></td><td>13.000 <t< td=""><td>12.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>		13.000 <t< td=""><td>12.000 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	12.000 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
00.000 30.000 <t (a1)<="" .="" 13.000="" 16.000="" 18.000="" 19.000="" 20.000="" 8.800="" 80.000="" <t="" det'n="" guideline="1.000" limit="0.010" td=""><td>SEP.</td><td>140.000</td><td>13.000 <t< td=""><td>7.100 <t< td=""><td></td><td>٠</td><td>٠</td><td>7.500 <t< td=""><td>7.400 <t< td=""></t<></td></t<></td></t<></td></t<></td></t>	SEP.	140.000	13.000 <t< td=""><td>7.100 <t< td=""><td></td><td>٠</td><td>٠</td><td>7.500 <t< td=""><td>7.400 <t< td=""></t<></td></t<></td></t<></td></t<>	7.100 <t< td=""><td></td><td>٠</td><td>٠</td><td>7.500 <t< td=""><td>7.400 <t< td=""></t<></td></t<></td></t<>		٠	٠	7.500 <t< td=""><td>7.400 <t< td=""></t<></td></t<>	7.400 <t< td=""></t<>
80.000	CT	200.000	30.000 <t< td=""><td>20.000 <t< td=""><td></td><td>٠</td><td>٠</td><td>12.000 <t< td=""><td>17.000 <t< td=""></t<></td></t<></td></t<></td></t<>	20.000 <t< td=""><td></td><td>٠</td><td>٠</td><td>12.000 <t< td=""><td>17.000 <t< td=""></t<></td></t<></td></t<>		٠	٠	12.000 <t< td=""><td>17.000 <t< td=""></t<></td></t<>	17.000 <t< td=""></t<>
80.000 20.000 <t (a1<="")="" 16.000="" <t="" det'n="" guideline="1.000" limit="0.010" td=""><td>404</td><td></td><td>18.000 <t< td=""><td>8.800 <t< td=""><td></td><td>٠</td><td>٠</td><td>11.000 <t< td=""><td>7.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t>	404		18.000 <t< td=""><td>8.800 <t< td=""><td></td><td>٠</td><td>٠</td><td>11.000 <t< td=""><td>7.600 <t< td=""></t<></td></t<></td></t<></td></t<>	8.800 <t< td=""><td></td><td>٠</td><td>٠</td><td>11.000 <t< td=""><td>7.600 <t< td=""></t<></td></t<></td></t<>		٠	٠	11.000 <t< td=""><td>7.600 <t< td=""></t<></td></t<>	7.600 <t< td=""></t<>
) DET'N LIMIT = 0.010 GUIDELINE = 1.000 (A1	EC	180.000				•	٠	17.000 <t< td=""><td>16.000 <t< td=""></t<></td></t<>	16.000 <t< td=""></t<>
	JURY CUC	()	0 0 0 1 1 1 4 6 6 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.0	010 GUIDELINE =	:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	JAN	.020 <t< td=""><td>.020 <t< td=""><td>٠</td><td>.030 <t< td=""><td>٠</td><td>.130</td><td></td><td>٠</td></t<></td></t<></td></t<>	.020 <t< td=""><td>٠</td><td>.030 <t< td=""><td>٠</td><td>.130</td><td></td><td>٠</td></t<></td></t<>	٠	.030 <t< td=""><td>٠</td><td>.130</td><td></td><td>٠</td></t<>	٠	.130		٠

TABLE 5

WATER TREATMENT PLANT

	STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
23	•	•	•	.120	•	
.020 <t< td=""><td>•</td><td>090.</td><td>•</td><td>.100</td><td></td><td>•</td></t<>	•	090.	•	.100		•
108	٠	108	•	.140	٠	٠
.040 <t< td=""><td>•</td><td>•</td><td>٠</td><td>.130</td><td>•</td><td>•</td></t<>	•	•	٠	.130	•	•
.020 <t< td=""><td>BOL</td><td>•</td><td>•</td><td>.130</td><td>•</td><td>•</td></t<>	BOL	•	•	.130	•	•
090.		.020 <⊤	•	.130	•	•
.100	•	.030 <t< td=""><td>•</td><td>.130</td><td>٠</td><td>•</td></t<>	•	.130	٠	•
.130	•	.030 <t< td=""><td>٠</td><td>٠</td><td>٠</td><td>.130</td></t<>	٠	٠	٠	.130
.140	•	.020 <t< td=""><td>٠</td><td>•</td><td></td><td>.130</td></t<>	٠	•		.130
BOL	•	.020 <t< td=""><td>٠</td><td>•</td><td>٠</td><td>0.170</td></t<>	٠	•	٠	0.170
.020 <t< td=""><td>٠</td><td>.030 <t< td=""><td>٠</td><td>٠</td><td>٠</td><td>.180</td></t<></td></t<>	٠	.030 <t< td=""><td>٠</td><td>٠</td><td>٠</td><td>.180</td></t<>	٠	٠	٠	.180
		DET'N LIMIT = .050	50 GUIDELINE = 50.0 (A3)	50.0 (A3)		
9.500	7.600	9.000	7.100	9.900		٠
8.500	•	٠	8.100	7.000	•	٠
12.000	10.000	11.000	8.300	8.500	٠	٠
10.000	7.200	7.200	8.300	8.400	•	٠
12.000	•	•	2.400	099.	•	٠
16.000	7.900		9.300	7.100	٠	٠
29.000	20.000	16.000	7.400	5.500		٠
6.200	3.200	4.300	2.000	7.600	•	•
9.600	3.400	3.900	•		007.7	4.700
9.600	5.800	3.800	٠	•	6.100	5.900
8.700	2.800	2.400	٠	٠	4.500	4.300
9.100	5.100	4.500	٠	•	. 005.9	2.400

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

DISTRIBUTION SYSTEM	
MATER TREATMENT PLANT	

40.		IKEAIEU	SITE		SITE 2		SITE 3	
N -			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
2	180 <t< td=""><td>120 <1</td><td>130 <t< td=""><td>1> 021</td><td>T> 041</td><td>130 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	120 <1	130 <t< td=""><td>1> 021</td><td>T> 041</td><td>130 <t< td=""><td></td><td></td></t<></td></t<>	1> 021	T> 041	130 <t< td=""><td></td><td></td></t<>		
2 00	200 <1	T> 050			7> 072.	.310 <t< td=""><td></td><td></td></t<>		
~	.520	.390 <t< td=""><td>T> 09E.</td><td>T> 057.</td><td>.310 <t< td=""><td>.410 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>	T> 09E.	T> 057.	.310 <t< td=""><td>.410 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	.410 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
8	.250 <t< td=""><td>.230 <1</td><td>.260 <1</td><td>.240 <7</td><td>.240 <t< td=""><td>.230 <t< td=""><td>٠</td><td>•</td></t<></td></t<></td></t<>	.230 <1	.260 <1	.240 <7	.240 <t< td=""><td>.230 <t< td=""><td>٠</td><td>•</td></t<></td></t<>	.230 <t< td=""><td>٠</td><td>•</td></t<>	٠	•
AY	•	.560	٠	•	.360 <t< td=""><td>.450 <t< td=""><td>۰</td><td>٠</td></t<></td></t<>	.450 <t< td=""><td>۰</td><td>٠</td></t<>	۰	٠
N	.320 <t< td=""><td>.310 <t< td=""><td>.260 <t< td=""><td>•</td><td>.410 <t< td=""><td>.370 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<>	.310 <t< td=""><td>.260 <t< td=""><td>•</td><td>.410 <t< td=""><td>.370 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<>	.260 <t< td=""><td>•</td><td>.410 <t< td=""><td>.370 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>	•	.410 <t< td=""><td>.370 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	.370 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
JUL	.320 <t< td=""><td>1> 097.</td><td>.240 <t< td=""><td>.340 <t< td=""><td>.330 <t< td=""><td>.330 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<>	1> 097.	.240 <t< td=""><td>.340 <t< td=""><td>.330 <t< td=""><td>.330 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<>	.340 <t< td=""><td>.330 <t< td=""><td>.330 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>	.330 <t< td=""><td>.330 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	.330 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
90	.330 <t< td=""><td>.280 <t< td=""><td>.270 <t< td=""><td>.310 <t< td=""><td>.250 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.280 <t< td=""><td>.270 <t< td=""><td>.310 <t< td=""><td>.250 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<></td></t<>	.270 <t< td=""><td>.310 <t< td=""><td>.250 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<></td></t<>	.310 <t< td=""><td>.250 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td></t<></td></t<></td></t<>	.250 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	.270 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
SEP	.180 <t< td=""><td>.200 <t< td=""><td>180 <t< td=""><td>1> 0¢1.</td><td>٠</td><td>٠</td><td>.160 <t< td=""><td>. 160 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>180 <t< td=""><td>1> 0¢1.</td><td>٠</td><td>٠</td><td>.160 <t< td=""><td>. 160 <t< td=""></t<></td></t<></td></t<></td></t<>	180 <t< td=""><td>1> 0¢1.</td><td>٠</td><td>٠</td><td>.160 <t< td=""><td>. 160 <t< td=""></t<></td></t<></td></t<>	1> 0¢1.	٠	٠	.160 <t< td=""><td>. 160 <t< td=""></t<></td></t<>	. 160 <t< td=""></t<>
000	.230 <t< td=""><td>.210 <t< td=""><td>190 <1</td><td>1> 0€1.</td><td>٠</td><td>•</td><td>.230 <t< td=""><td>. 190 <t< td=""></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td>190 <1</td><td>1> 0€1.</td><td>٠</td><td>•</td><td>.230 <t< td=""><td>. 190 <t< td=""></t<></td></t<></td></t<>	190 <1	1> 0€1.	٠	•	.230 <t< td=""><td>. 190 <t< td=""></t<></td></t<>	. 190 <t< td=""></t<>
3	•	.210 <t< td=""><td>.180 <t< td=""><td>1> 0¢1.</td><td>٠</td><td></td><td>.160 <₹</td><td>.160 <t< td=""></t<></td></t<></td></t<>	.180 <t< td=""><td>1> 0¢1.</td><td>٠</td><td></td><td>.160 <₹</td><td>.160 <t< td=""></t<></td></t<>	1> 0¢1.	٠		.160 <₹	.160 <t< td=""></t<>
DEC	.270 <1	.190 <t< td=""><td>12 01.</td><td>. 190 <t< td=""><td>٠</td><td>٠</td><td>.170 <t< td=""><td>.180 <t< td=""></t<></td></t<></td></t<></td></t<>	12 01.	. 190 <t< td=""><td>٠</td><td>٠</td><td>.170 <t< td=""><td>.180 <t< td=""></t<></td></t<></td></t<>	٠	٠	.170 <t< td=""><td>.180 <t< td=""></t<></td></t<>	.180 <t< td=""></t<>
NICKEL (UG/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.100 GUIDELINE = 50. (F3)	OO GUIDELINE = SC). (F3)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	T> 066.	108	.290 <1	.320 <1	1.300 <t< td=""><td>108</td><td>٠</td><td>٠</td></t<>	108	٠	٠
89	1.100 <t< td=""><td>.550 <t< td=""><td>٠</td><td>٠</td><td>2.000 <t< td=""><td>T> 074.</td><td>٠</td><td>٠</td></t<></td></t<></td></t<>	.550 <t< td=""><td>٠</td><td>٠</td><td>2.000 <t< td=""><td>T> 074.</td><td>٠</td><td>٠</td></t<></td></t<>	٠	٠	2.000 <t< td=""><td>T> 074.</td><td>٠</td><td>٠</td></t<>	T> 074.	٠	٠
AR	1.200 <t< td=""><td>.580 <t< td=""><td>T> 044.</td><td>T> 087.</td><td>T> 053.</td><td>T> 046.</td><td>٠</td><td>٠</td></t<></td></t<>	.580 <t< td=""><td>T> 044.</td><td>T> 087.</td><td>T> 053.</td><td>T> 046.</td><td>٠</td><td>٠</td></t<>	T> 044.	T> 087.	T> 053.	T> 046.	٠	٠
APR	1.100 <t< td=""><td>T> 007.</td><td>7> 070.</td><td>.500 <t< td=""><td>1.400 <t< td=""><td>T> 046.</td><td></td><td>٠</td></t<></td></t<></td></t<>	T> 007.	7> 070.	.500 <t< td=""><td>1.400 <t< td=""><td>T> 046.</td><td></td><td>٠</td></t<></td></t<>	1.400 <t< td=""><td>T> 046.</td><td></td><td>٠</td></t<>	T> 046.		٠
AY	•	T> 018.	٠	٠	1.500 <t< td=""><td>1> 080 .</td><td>•</td><td>٠</td></t<>	1> 080 .	•	٠
NO.	2.900	108	108	•	007.9	4.300	•	٠
71	3.500	9.000	6.300	T> 053.	T> 0%.	.510 <t< td=""><td>•</td><td>٠</td></t<>	•	٠
20	T> 086.	T> 094.	.300 <t< td=""><td>T> 007.</td><td>1.300 <t< td=""><td>.280 <7</td><td></td><td>•</td></t<></td></t<>	T> 007.	1.300 <t< td=""><td>.280 <7</td><td></td><td>•</td></t<>	.280 <7		•
EP	.890 <t< td=""><td>.340 <1</td><td>108</td><td>.340 <1</td><td>٠</td><td>٠</td><td>.390 <t< td=""><td>.300 <t< td=""></t<></td></t<></td></t<>	.340 <1	108	.340 <1	٠	٠	.390 <t< td=""><td>.300 <t< td=""></t<></td></t<>	.300 <t< td=""></t<>
000	.610 <t< td=""><td>.380 <t< td=""><td>.520 <t< td=""><td>108</td><td>٠</td><td>٠</td><td>.310 <t< td=""><td>. 750 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.380 <t< td=""><td>.520 <t< td=""><td>108</td><td>٠</td><td>٠</td><td>.310 <t< td=""><td>. 750 <t< td=""></t<></td></t<></td></t<></td></t<>	.520 <t< td=""><td>108</td><td>٠</td><td>٠</td><td>.310 <t< td=""><td>. 750 <t< td=""></t<></td></t<></td></t<>	108	٠	٠	.310 <t< td=""><td>. 750 <t< td=""></t<></td></t<>	. 750 <t< td=""></t<>
MOV	•	BOL	108	BOL	٠	٠	108	.240 <t< td=""></t<>

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

1		
1		
-		
•	1	

		FREE FLOW		ā					•	•	•	1.200	.330	. 160 <t< th=""><th>.390 <t< th=""><th>3 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th><th>٠</th><th>•</th><th>•</th><th>•</th><th>٠</th><th>٠</th><th>•</th><th>•</th><th>.510</th><th>.560</th><th>.580</th><th>T> 094.</th></t<></th></t<>	.390 <t< th=""><th>3 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th><th>٠</th><th>•</th><th>•</th><th>•</th><th>٠</th><th>٠</th><th>•</th><th>•</th><th>.510</th><th>.560</th><th>.580</th><th>T> 094.</th></t<>	3 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	٠	•	•	•	٠	٠	•	•	.510	.560	.580	T> 094.
	SITE 3	STANDING	1	•	• •	•	•	•		٠	•	3.400	4.100	4.300	23.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	٠	•		•	٠	•	•	0.470	084.	.410	T> 084.
		FREE FLOW	(A1)	.530	.750	.700	.410	.090 <1	006.	.810	069.	•	•	•	•	5. (04)	.510	099.	.710	.520	.510	.970	.610	.580		•	•	
	SITE 2	STANDING	50 GUIDELINE = 50.	14.000	37.000	9.000	9.000	6.100	20.000	5.500	5.900	•	•	•	٠	0 GUIDELINE = 146. (04)	.420	.700	.810	.520	.750	06Z.	0.29	079.	٠	٠	٠	
		FREE FLOW	DET'N LIMIT = 0.050 GUIDELINE	.570	٠	086.	.580	٠	٠	1.100	.870	089*	026.	. 097	.730	DET*N LIMIT = .050	.410	•	089.	.500	•	•	.630	.560	.410	.530	.380	.340 <t< th=""></t<>
	SITE 1	STANDING		6.700	٠	7.200	7.100	•	096.	14.000	4.900	3.900	13.000	3.600	10.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.450	٠	.850	.530	٠	52.	009.	.500	.500	.540	.350	T> 044.
	TREATED			TON	.200 <t< th=""><th>.060 <t< th=""><th>.120 <1</th><th>BOL</th><th>0.24</th><th>.430</th><th>BOL</th><th>. 100 <t< th=""><th>.240</th><th>.060 ×T</th><th>BOL</th><th>1 1 0 0 0 0 5 1 1 1 0 0 0 0 0 0 0 0 0 0</th><th>.300</th><th>.630</th><th>4.300</th><th>049.</th><th>9.500</th><th>.540</th><th>.620</th><th>.560</th><th>.450</th><th>.320</th><th>077</th><th>.370 <1</th></t<></th></t<></th></t<>	.060 <t< th=""><th>.120 <1</th><th>BOL</th><th>0.24</th><th>.430</th><th>BOL</th><th>. 100 <t< th=""><th>.240</th><th>.060 ×T</th><th>BOL</th><th>1 1 0 0 0 0 5 1 1 1 0 0 0 0 0 0 0 0 0 0</th><th>.300</th><th>.630</th><th>4.300</th><th>049.</th><th>9.500</th><th>.540</th><th>.620</th><th>.560</th><th>.450</th><th>.320</th><th>077</th><th>.370 <1</th></t<></th></t<>	.120 <1	BOL	0.24	.430	BOL	. 100 <t< th=""><th>.240</th><th>.060 ×T</th><th>BOL</th><th>1 1 0 0 0 0 5 1 1 1 0 0 0 0 0 0 0 0 0 0</th><th>.300</th><th>.630</th><th>4.300</th><th>049.</th><th>9.500</th><th>.540</th><th>.620</th><th>.560</th><th>.450</th><th>.320</th><th>077</th><th>.370 <1</th></t<>	.240	.060 ×T	BOL	1 1 0 0 0 0 5 1 1 1 0 0 0 0 0 0 0 0 0 0	.300	.630	4.300	049.	9.500	.540	.620	.560	.450	.320	077	.370 <1
SITE	RAW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^	.330	.550	.630	24.	•	.850	1.100	.370	.430	.580	•	.250 <t< th=""><th>N6/L)</th><th>.310</th><th>.560</th><th>3.700</th><th>.520</th><th>٠</th><th>.720</th><th>7.100</th><th>009.</th><th>.500</th><th>.320</th><th>•</th><th>.290 <t< th=""></t<></th></t<>	N6/L)	.310	.560	3.700	.520	٠	.720	7.100	009.	.500	.320	•	.290 <t< th=""></t<>
. 81	71		LEAD (UG/L	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	001	MOV	0EC	ANTIMONY (UG/L	JAN	FEB	MAR	APR	MAY	NOF	JUL	AUG	SEP	DCT	MOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

WATER TREATMENT PLANT

SITE 2 SITE 3	STANDING FREE FLOW STANDING FREE FLOW	= 0.200 GUIDELINE = 10. (A1)	Bol Bol .	1,400 <t .="" 630="" <t<="" th=""><th>BOL</th><th>.450 <1</th><th>.860 <f .<="" b0l="" th=""><th></th><th></th><th><t 801="" 801<="" th=""><th>108</th><th>108</th><th>108</th><th>108</th><th>= .050 GUIOELINE = N/A</th><th>\$5,000</th><th>58.000</th><th>000.09</th><th>61.000</th><th>58.000 58.000</th><th></th><th>000.09</th><th>58.000</th><th>. 63.000 64.000</th><th></th><th></th><th></th></t></th></f></th></t>	BOL	.450 <1	.860 <f .<="" b0l="" th=""><th></th><th></th><th><t 801="" 801<="" th=""><th>108</th><th>108</th><th>108</th><th>108</th><th>= .050 GUIOELINE = N/A</th><th>\$5,000</th><th>58.000</th><th>000.09</th><th>61.000</th><th>58.000 58.000</th><th></th><th>000.09</th><th>58.000</th><th>. 63.000 64.000</th><th></th><th></th><th></th></t></th></f>			<t 801="" 801<="" th=""><th>108</th><th>108</th><th>108</th><th>108</th><th>= .050 GUIOELINE = N/A</th><th>\$5,000</th><th>58.000</th><th>000.09</th><th>61.000</th><th>58.000 58.000</th><th></th><th>000.09</th><th>58.000</th><th>. 63.000 64.000</th><th></th><th></th><th></th></t>	108	108	108	108	= .050 GUIOELINE = N/A	\$5,000	58.000	000.09	61.000	58.000 58.000		000.09	58.000	. 63.000 64.000			
* 0.200 GUIOELINE * 10. * 0.400 <t *="" 0.200="" bdl<="" td=""><th>:</th><th></th><td></td><td></td><td></td><td>BOL .450 <t< td=""><td>860 <t< td=""><td>108</td><td>108</td><td>2.300 <t< td=""><td>BOL .</td><td>BOL</td><td>. BOL .</td><td>. 108</td><td>DET'N LIMIT = .050 GUIDELINE = N/A</td><td>55.000 65.000</td><td></td><td>57.000 60.000</td><td></td><td>. 58.000</td><td>. 61.000</td><td>58.000 60.000</td><td></td><td>. 61.000</td><td></td><td>. 000.69</td><td></td></t<></td></t<></td></t<></td></t>	:					BOL .450 <t< td=""><td>860 <t< td=""><td>108</td><td>108</td><td>2.300 <t< td=""><td>BOL .</td><td>BOL</td><td>. BOL .</td><td>. 108</td><td>DET'N LIMIT = .050 GUIDELINE = N/A</td><td>55.000 65.000</td><td></td><td>57.000 60.000</td><td></td><td>. 58.000</td><td>. 61.000</td><td>58.000 60.000</td><td></td><td>. 61.000</td><td></td><td>. 000.69</td><td></td></t<></td></t<></td></t<>	860 <t< td=""><td>108</td><td>108</td><td>2.300 <t< td=""><td>BOL .</td><td>BOL</td><td>. BOL .</td><td>. 108</td><td>DET'N LIMIT = .050 GUIDELINE = N/A</td><td>55.000 65.000</td><td></td><td>57.000 60.000</td><td></td><td>. 58.000</td><td>. 61.000</td><td>58.000 60.000</td><td></td><td>. 61.000</td><td></td><td>. 000.69</td><td></td></t<></td></t<>	108	108	2.300 <t< td=""><td>BOL .</td><td>BOL</td><td>. BOL .</td><td>. 108</td><td>DET'N LIMIT = .050 GUIDELINE = N/A</td><td>55.000 65.000</td><td></td><td>57.000 60.000</td><td></td><td>. 58.000</td><td>. 61.000</td><td>58.000 60.000</td><td></td><td>. 61.000</td><td></td><td>. 000.69</td><td></td></t<>	BOL .	BOL	. BOL .	. 108	DET'N LIMIT = .050 GUIDELINE = N/A	55.000 65.000		57.000 60.000		. 58.000	. 61.000	58.000 60.000		. 61.000		. 000.69	
STANDING BDL BDL BDL				108	BOL		•	BOL	1,700 <t< td=""><td>1.800 <t< td=""><td>BOL</td><td>108</td><td>BOL</td><td>BOL</td><td>8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>59.000</td><td>٠</td><td>62.000</td><td>24.000</td><td>•</td><td>55.000</td><td>900.000</td><td>20.000</td><td>62.000</td><td>92.000</td><td>70.000</td><td>000 27</td></t<></td></t<>	1.800 <t< td=""><td>BOL</td><td>108</td><td>BOL</td><td>BOL</td><td>8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>59.000</td><td>٠</td><td>62.000</td><td>24.000</td><td>•</td><td>55.000</td><td>900.000</td><td>20.000</td><td>62.000</td><td>92.000</td><td>70.000</td><td>000 27</td></t<>	BOL	108	BOL	BOL	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	59.000	٠	62.000	24.000	•	55.000	900.000	20.000	62.000	92.000	70.000	000 27
0 6 1 1 9 9 9 9 9 1 1 2 5 5 5 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			BOL	1.300 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>2.300 <t< td=""><td>1.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>TO8</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>58.000</td><td>51.000</td><td>58.000</td><td>52.000</td><td>24.000</td><td>53.000</td><td>48.000</td><td>52.000</td><td>29.000</td><td>95.000</td><td>22.000</td><td>000</td></t<></td></t<></td></t<>	BOL	BOL	BOL	BOL	2.300 <t< td=""><td>1.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>TO8</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>58.000</td><td>51.000</td><td>58.000</td><td>52.000</td><td>24.000</td><td>53.000</td><td>48.000</td><td>52.000</td><td>29.000</td><td>95.000</td><td>22.000</td><td>000</td></t<></td></t<>	1.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>TO8</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>58.000</td><td>51.000</td><td>58.000</td><td>52.000</td><td>24.000</td><td>53.000</td><td>48.000</td><td>52.000</td><td>29.000</td><td>95.000</td><td>22.000</td><td>000</td></t<>	BOL	BOL	BOL	TO8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58.000	51.000	58.000	52.000	24.000	53.000	48.000	52.000	29.000	95.000	22.000	000
		(ng/r)	108	1.300 <t< td=""><td>BOL</td><td>BOL</td><td>٠</td><td>BOL</td><td>1.400 <1</td><td>2.800 <1</td><td>BOL</td><td>BOL</td><td>٠</td><td>BOL</td><td>(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>41.000</td><td>37.000</td><td>45.000</td><td>38.000</td><td>٠</td><td>41.000</td><td>40.000</td><td>35.000</td><td>45.000</td><td>47.000</td><td>٠</td><td>000 27</td></t<>	BOL	BOL	٠	BOL	1.400 <1	2.800 <1	BOL	BOL	٠	BOL	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	41.000	37.000	45.000	38.000	٠	41.000	40.000	35.000	45.000	47.000	٠	000 27
		SELENIUM (UG/L	NAL	FEB	MAR	APR	MAY	NO	JOL	AUG	SEP	100	MOV	OEC	STRONTIUM (UG/L	JAN	FEB	MAR	APR	MAY	NOP	JUL	AUG	SEP	OCT	MOV	010

TABLE 5

⊨
PLAN
۵
HENI
H
REAT
7
WATER
3

STEM
SYS
8
E
STRI
٥

		2								,		4.900	6.300	3.300	5.200					•						BOL	BOL	BOL	BOL
		FREE FLOW	1 1 1 1 1 1 1 1 1 1									4.	.9	3.	5.														
	SITE 3	STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		•	•				•	5.300	5.800	3.300	4.600 <t< th=""><th>1</th><th></th><th></th><th></th><th>•</th><th></th><th>٠</th><th></th><th></th><th></th><th>.020 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>BDL</th></t<></th></t<></th></t<></th></t<>	1				•		٠				.020 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>BDL</th></t<></th></t<></th></t<>	.030 <t< th=""><th>.020 <t< th=""><th>BDL</th></t<></th></t<>	.020 <t< th=""><th>BDL</th></t<>	BDL
		FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.400	3.400	5.000	2.900	8.600	11.000	3.200	5.000	٠			٠		(64)	BOL	BOL	BOL	BOL	BOL	.020 <₹	108	.070 <t< th=""><th>٠</th><th>٠</th><th>٠</th><th></th></t<>	٠	٠	٠	
	SITE 2	STANDING	GUIDELINE = N/	4.300	3.500	2.600	3.800	8.800	13.000	3.400	5.500		đ	•	•		GOIDELINE # 15. (D4)	.020 <t< th=""><th>.020 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>.020 <t< th=""><th>BOL</th><th>T> 070.</th><th>•</th><th></th><th>•</th><th>٠</th></t<></th></t<></th></t<>	.020 <t< th=""><th>BOL</th><th>BOL</th><th>BOL</th><th>.020 <t< th=""><th>BOL</th><th>T> 070.</th><th>•</th><th></th><th>•</th><th>٠</th></t<></th></t<>	BOL	BOL	BOL	.020 <t< th=""><th>BOL</th><th>T> 070.</th><th>•</th><th></th><th>•</th><th>٠</th></t<>	BOL	T> 070.	•		•	٠
		FREE FLOW	DET'N LIMIT = .050 GUIDELINE = N/A	4.400	•	2.400	3.200	•	•	4.000	4.800	5.100	6.100	3.900	4.300 <t< th=""><th>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</th><th>010. * 11817 * 12</th><th>.020 <t< th=""><th></th><th>. 108</th><th>108</th><th>•</th><th></th><th>.030 <t< th=""><th>1> 0%0°</th><th>.020 <7</th><th>108</th><th>.020 <7</th><th>BOL</th></t<></th></t<></th></t<>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	010. * 11817 * 12	.020 <t< th=""><th></th><th>. 108</th><th>108</th><th>•</th><th></th><th>.030 <t< th=""><th>1> 0%0°</th><th>.020 <7</th><th>108</th><th>.020 <7</th><th>BOL</th></t<></th></t<>		. 108	108	•		.030 <t< th=""><th>1> 0%0°</th><th>.020 <7</th><th>108</th><th>.020 <7</th><th>BOL</th></t<>	1> 0%0°	.020 <7	108	.020 <7	BOL
	SITE 1	STANDING	٥	5.000	•	5.800	3.500	•	9.800	9.700	5.100	7.900	6.200	3.600	4.300 <t< th=""><th></th><th>5</th><th>B0L</th><th>٠</th><th>. 190 <t< th=""><th>.030 <t< th=""><th>•</th><th>.020 <t< th=""><th>BOL</th><th>.020 <t< th=""><th>.020 <t< th=""><th>BOL</th><th>T> 040.</th><th>108</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>		5	B0L	٠	. 190 <t< th=""><th>.030 <t< th=""><th>•</th><th>.020 <t< th=""><th>BOL</th><th>.020 <t< th=""><th>.020 <t< th=""><th>BOL</th><th>T> 040.</th><th>108</th></t<></th></t<></th></t<></th></t<></th></t<>	.030 <t< th=""><th>•</th><th>.020 <t< th=""><th>BOL</th><th>.020 <t< th=""><th>.020 <t< th=""><th>BOL</th><th>T> 040.</th><th>108</th></t<></th></t<></th></t<></th></t<>	•	.020 <t< th=""><th>BOL</th><th>.020 <t< th=""><th>.020 <t< th=""><th>BOL</th><th>T> 040.</th><th>108</th></t<></th></t<></th></t<>	BOL	.020 <t< th=""><th>.020 <t< th=""><th>BOL</th><th>T> 040.</th><th>108</th></t<></th></t<>	.020 <t< th=""><th>BOL</th><th>T> 040.</th><th>108</th></t<>	BOL	T> 040.	108
	TREATED			5.700	3.700	6.100	3.600	9.100	11.000	2.900	5,100	5.000	6.100	5.500	5.700	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		108	BOL	T> 090.	.020 <t< th=""><th>BOL</th><th>1> 080.</th><th>108</th><th>108</th><th>.030 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""><th>BOL</th></t<></th></t<></th></t<></th></t<>	BOL	1> 080.	108	108	.030 <t< th=""><th>.020 <t< th=""><th>.020 <t< th=""><th>BOL</th></t<></th></t<></th></t<>	.020 <t< th=""><th>.020 <t< th=""><th>BOL</th></t<></th></t<>	.020 <t< th=""><th>BOL</th></t<>	BOL
SITE	RAW		נחפ/ר)	8.100	9.200	13.000	8.600		12.000	7.200	2.400	8.100	11.000	•	9.800	7 7 91	1 7/80	BOL	.030 <1	.020 <t< th=""><th>BOL</th><th>•</th><th>.020 <t< th=""><th>BOL</th><th>.020 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>٠</th><th>BOL</th></t<></th></t<></th></t<></th></t<></th></t<>	BOL	•	.020 <t< th=""><th>BOL</th><th>.020 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>٠</th><th>BOL</th></t<></th></t<></th></t<></th></t<>	BOL	.020 <t< th=""><th>.030 <t< th=""><th>.020 <t< th=""><th>٠</th><th>BOL</th></t<></th></t<></th></t<>	.030 <t< th=""><th>.020 <t< th=""><th>٠</th><th>BOL</th></t<></th></t<>	.020 <t< th=""><th>٠</th><th>BOL</th></t<>	٠	BOL
S	7		TITANIUM (UG/L	NAC	FEB	MAR	APR	MAY	MOF	JUL	AUG	SEP	OCT	NON	DEC	1/ Old Mile 1471	ועשררומע	JAN	FEB	MAR	APR	MAY	NOF	JUL	AUG	SEP	100	MOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•		٠	•	٠		٠	BOL	3	1,050 <₹	MOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	٠		٠	•	٠	٠	٠	1.000	.820	.820	1.100
	SITE	STANDING	9 0 6 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	٠			•	٠	•	•	٠	108	TOB	TON	108		٠	٠	•	•	•	٠	٠	٠	1.100	.910	1.100	1.000
DISTRIBUTION SYSTEM		FREE FLOW	(81)	80F	.100 <t< th=""><th>801</th><th>80 L</th><th>B01</th><th>.030 <t< th=""><th>.040 <t< th=""><th>T> 090.</th><th></th><th></th><th>٠</th><th>٠</th><th>1</th><th>.820</th><th>.820</th><th>.950</th><th>.820</th><th>026.</th><th>1.200</th><th>1.200</th><th>1.100</th><th>٠</th><th>٠</th><th>٠</th><th>•</th></t<></th></t<></th></t<>	8 01	8 0 L	B01	.030 <t< th=""><th>.040 <t< th=""><th>T> 090.</th><th></th><th></th><th>٠</th><th>٠</th><th>1</th><th>.820</th><th>.820</th><th>.950</th><th>.820</th><th>026.</th><th>1.200</th><th>1.200</th><th>1.100</th><th>٠</th><th>٠</th><th>٠</th><th>•</th></t<></th></t<>	.040 <t< th=""><th>T> 090.</th><th></th><th></th><th>٠</th><th>٠</th><th>1</th><th>.820</th><th>.820</th><th>.950</th><th>.820</th><th>026.</th><th>1.200</th><th>1.200</th><th>1.100</th><th>٠</th><th>٠</th><th>٠</th><th>•</th></t<>	T> 090.			٠	٠	1	.820	.820	.950	.820	026.	1.200	1.200	1.100	٠	٠	٠	•
DISTRIE	SITE 2	STANDING	GUIDELINE = 100.(81)	.030 <1	.030 <t< td=""><td>300</td><td>.050 <t< td=""><td>T> 040.</td><td>.050 <t< td=""><td>T> 040.</td><td>T> OFO.</td><td>٠</td><td>٠</td><td>•</td><td>٠</td><td>GUIDELINE = N/A</td><td>1.100</td><td>1.100</td><td>1.100</td><td>.930</td><td>1.100</td><td>1.200</td><td>1.100</td><td>1.100</td><td>٠</td><td></td><td></td><td>٠</td></t<></td></t<></td></t<>	300	.050 <t< td=""><td>T> 040.</td><td>.050 <t< td=""><td>T> 040.</td><td>T> OFO.</td><td>٠</td><td>٠</td><td>•</td><td>٠</td><td>GUIDELINE = N/A</td><td>1.100</td><td>1.100</td><td>1.100</td><td>.930</td><td>1.100</td><td>1.200</td><td>1.100</td><td>1.100</td><td>٠</td><td></td><td></td><td>٠</td></t<></td></t<>	T> 040.	.050 <t< td=""><td>T> 040.</td><td>T> OFO.</td><td>٠</td><td>٠</td><td>•</td><td>٠</td><td>GUIDELINE = N/A</td><td>1.100</td><td>1.100</td><td>1.100</td><td>.930</td><td>1.100</td><td>1.200</td><td>1.100</td><td>1.100</td><td>٠</td><td></td><td></td><td>٠</td></t<>	T> 040.	T> OFO.	٠	٠	•	٠	GUIDELINE = N/A	1.100	1.100	1.100	.930	1.100	1.200	1.100	1.100	٠			٠
		FREE FLOW	DET'N LIMIT = .020	108	•	T> 040.	.030 <t< td=""><td>٠</td><td>•</td><td>.080 <t< td=""><td>JOB BOL</td><td>108</td><td>108</td><td>108</td><td>BOL</td><td>DET'N LIMIT = .050</td><td>.750</td><td>•</td><td>.950</td><td>.620</td><td>•</td><td>•</td><td>1.100</td><td>1.200</td><td>.710</td><td>.860</td><td>.810</td><td>1.100</td></t<></td></t<>	٠	•	.080 <t< td=""><td>JOB BOL</td><td>108</td><td>108</td><td>108</td><td>BOL</td><td>DET'N LIMIT = .050</td><td>.750</td><td>•</td><td>.950</td><td>.620</td><td>•</td><td>•</td><td>1.100</td><td>1.200</td><td>.710</td><td>.860</td><td>.810</td><td>1.100</td></t<>	JOB BOL	108	108	108	BOL	DET'N LIMIT = .050	.750	•	.950	.620	•	•	1.100	1.200	.710	.860	.810	1.100
WATER TREATMENT PLANT	SITE 1	STANDING	30	TOR	•	.030 <t< th=""><th>. 070 <t< th=""><th></th><th>T> 090.</th><th>.080 <t< th=""><th>T> 090.</th><th>108</th><th>108</th><th>300</th><th>108</th><th>90</th><th>1.000</th><th>٠</th><th>1.100</th><th>.740</th><th>٠</th><th>.870</th><th>026.</th><th>0%.</th><th>096.</th><th>077.</th><th>1.000</th><th>1.100</th></t<></th></t<></th></t<>	. 070 <t< th=""><th></th><th>T> 090.</th><th>.080 <t< th=""><th>T> 090.</th><th>108</th><th>108</th><th>300</th><th>108</th><th>90</th><th>1.000</th><th>٠</th><th>1.100</th><th>.740</th><th>٠</th><th>.870</th><th>026.</th><th>0%.</th><th>096.</th><th>077.</th><th>1.000</th><th>1.100</th></t<></th></t<>		T> 090.	.080 <t< th=""><th>T> 090.</th><th>108</th><th>108</th><th>300</th><th>108</th><th>90</th><th>1.000</th><th>٠</th><th>1.100</th><th>.740</th><th>٠</th><th>.870</th><th>026.</th><th>0%.</th><th>096.</th><th>077.</th><th>1.000</th><th>1.100</th></t<>	T> 090.	108	108	30 0	108	90	1.000	٠	1.100	.740	٠	.870	026.	0%.	096.	077.	1.000	1.100
WATER	TREATED			.030 <t< th=""><th>.050 <t< th=""><th>T> 0%0.</th><th>T> 0%0.</th><th>30F</th><th>.230</th><th>1> 0%0</th><th>TOS</th><th>T> 040.</th><th>80F</th><th>30F</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>.880</th><th>069.</th><th>0%6</th><th>.700</th><th>096.</th><th>0%.</th><th>1.000</th><th>1.100</th><th>.840</th><th>1.000</th><th>.870</th><th>1.300</th></t<></th></t<>	.050 <t< th=""><th>T> 0%0.</th><th>T> 0%0.</th><th>30F</th><th>.230</th><th>1> 0%0</th><th>TOS</th><th>T> 040.</th><th>80F</th><th>30F</th><th>BOL</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>.880</th><th>069.</th><th>0%6</th><th>.700</th><th>096.</th><th>0%.</th><th>1.000</th><th>1.100</th><th>.840</th><th>1.000</th><th>.870</th><th>1.300</th></t<>	T> 0%0.	T> 0%0.	30 F	.230	1> 0%0	TOS	T> 040.	80F	30 F	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.880	069.	0%6	.700	096.	0%.	1.000	1.100	.840	1.000	.870	1.300
	RAN		'L)	.070 <t< th=""><th>1> 071.</th><th>.120 <t< th=""><th>1× 0>1.</th><th>•</th><th>.110 <t< th=""><th>.110 <t< th=""><th>170 cT.</th><th>.070 <t< th=""><th>.070 <t< th=""><th>•</th><th>.060 <1</th><th>(//)</th><th>T> 094.</th><th>.590</th><th>.710</th><th>.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	1> 071.	.120 <t< th=""><th>1× 0>1.</th><th>•</th><th>.110 <t< th=""><th>.110 <t< th=""><th>170 cT.</th><th>.070 <t< th=""><th>.070 <t< th=""><th>•</th><th>.060 <1</th><th>(//)</th><th>T> 094.</th><th>.590</th><th>.710</th><th>.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	1× 0>1.	•	.110 <t< th=""><th>.110 <t< th=""><th>170 cT.</th><th>.070 <t< th=""><th>.070 <t< th=""><th>•</th><th>.060 <1</th><th>(//)</th><th>T> 094.</th><th>.590</th><th>.710</th><th>.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.110 <t< th=""><th>170 cT.</th><th>.070 <t< th=""><th>.070 <t< th=""><th>•</th><th>.060 <1</th><th>(//)</th><th>T> 094.</th><th>.590</th><th>.710</th><th>.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	170 cT.	.070 <t< th=""><th>.070 <t< th=""><th>•</th><th>.060 <1</th><th>(//)</th><th>T> 094.</th><th>.590</th><th>.710</th><th>.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<></th></t<></th></t<>	.070 <t< th=""><th>•</th><th>.060 <1</th><th>(//)</th><th>T> 094.</th><th>.590</th><th>.710</th><th>.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<></th></t<>	•	.060 <1	(//)	T> 094.	.590	.710	.470 <t< th=""><th>•</th><th>.510</th><th>.550</th><th>.620</th><th>.520</th><th>029</th><th>•</th><th>.420 <t< th=""></t<></th></t<>	•	.510	.550	.620	.520	029	•	.420 <t< th=""></t<>
	SITE		URANIUM (UG/L	JAN	FEB	MAR	APR	MAY	MUL	JUL	AUG	SEP	0CT	MOV	DEC	VANADIUM (UG/L	JAN	FES	MAR	APR	MAY	MOR	JUL	AUG	SEP	OCT	NOV	DEC

TABLE 5

WATER TREATMENT PLANT

	FREE FLOW			•	٠	٠	٠	٠	•	•	2.200	3.200	1.800	3.200
SITE 3	STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•	•	•		٠	٠	٠	12.000	15.000	14.000	37.000
	FREE FLOW	5000. (A3)	2.300	2.600	3.500	2.800	2.900	3.500	1.800	1.800	•	٠	•	•
SITE 2	STANDING	GUIDELINE =	14.000	19.000	15.000	10.000	11.000	25.000	7.900	11.000	•	٠	٠	٠
	FREE FLOW	DET'N LIMIT = .001	2.500	•	007.7	3.700	٠	٠	3.600	3.000	2.500	3.900	2.100	3.300
SITE 1	STAND ING		11.000	•	19.000	17.000	•	000.4	25.000	16.000	10.000	000.49	8.000	26.000
TREATED			2.200	2.200	3.500	3.100	3.700	4.500	12.000	1.900	2,100	2.400	1.900	2.200
A A A		^	3.500	7.000	2.400	4.200	•	6.100	4.100	3.000	4.700	2.800	•	2.700
SITE		ZINC (UG/L	JAN	FEB	MAR	APR	MAY	MOR	JUL	AUG	SEP	OCT	MOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

WATER TREATMENT PLANT

FREE FLOW		٠	9	D	•		•	•	•	BOL	BOL	1.000 <t< th=""><th>1.000 <t< th=""></t<></th></t<>	1.000 <t< th=""></t<>
SITE 3		•	•	•	٠	٠	•	•	۰	•	•	•	
FREE FLOW	700 (G)	BOL	B0L	1.000 <t< td=""><td>1.000 <t< td=""><td>BOL</td><td>108</td><td>108</td><td>108</td><td>•</td><td></td><td></td><td></td></t<></td></t<>	1.000 <t< td=""><td>BOL</td><td>108</td><td>108</td><td>108</td><td>•</td><td></td><td></td><td></td></t<>	BOL	108	108	108	•			
SITE 2 STANDING	GUIDELINE = 700 (G)	٠	٠	•	٠	٠	•	٠				٠	•
FREE FLOW	DET'N LIMIT = 1.000	2.000 <t< th=""><th>٠</th><th>1,000 <t< th=""><th>1.000 <t< th=""><th>٠</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>1.000 <t< th=""><th>BDL</th></t<></th></t<></th></t<></th></t<>	٠	1,000 <t< th=""><th>1.000 <t< th=""><th>٠</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>1.000 <t< th=""><th>BDL</th></t<></th></t<></th></t<>	1.000 <t< th=""><th>٠</th><th></th><th>BOL</th><th>BOL</th><th>BOL</th><th>BOL</th><th>1.000 <t< th=""><th>BDL</th></t<></th></t<>	٠		BOL	BOL	BOL	BOL	1.000 <t< th=""><th>BDL</th></t<>	BDL
SITE 1 STANDING	DET'N LIN	٠					IRE	٠	٠	•			٠
TREATED		2.000 <t< td=""><td>BOL</td><td>1.000 <t< td=""><td>BOL</td><td>BOL</td><td>IRE</td><td>B01</td><td>108</td><td>B01</td><td>BDL</td><td>1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<></td></t<></td></t<>	BOL	1.000 <t< td=""><td>BOL</td><td>BOL</td><td>IRE</td><td>B01</td><td>108</td><td>B01</td><td>BDL</td><td>1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<></td></t<>	BOL	BOL	IRE	B01	108	B01	BDL	1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<>	1.000 <t< td=""></t<>
E RAW	PESTICIDES & PCB	1.000 <t< th=""><th>BOL</th><th>1.000 <t< th=""><th>BOL</th><th>•</th><th>BDL</th><th>BDL</th><th>108</th><th>BOL</th><th>1.000 <t< th=""><th>•</th><th>801</th></t<></th></t<></th></t<>	BOL	1.000 <t< th=""><th>BOL</th><th>•</th><th>BDL</th><th>BDL</th><th>108</th><th>BOL</th><th>1.000 <t< th=""><th>•</th><th>801</th></t<></th></t<>	BOL	•	BDL	BDL	108	BOL	1.000 <t< th=""><th>•</th><th>801</th></t<>	•	801
SITE	ALPHA BHC (NG/L	JAN	FEB	MAR	APR	MAY	NOS	JUL	AUG	SEP	DCT	MOV	DEC

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

		FREE FLOW			•		• •	•			•		•	•	٠	
DISTRIBUTION SYSTEM	SITE 3	STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		٠	•	•	•	•	•		٠		•	٠	•
DISTRI		FREE FLOW	8	2.00 (A3)	٠	•	•	•		٠		•	•	٠	•	•
	SITE 2	STANDING	7 6 6 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE = 2.00 (A3)	٠	٠	٠	•	•	٠	•	•	٠	٠	٠	٠
WATER TREATMENT PLANT		FREE FLOW	0 P P P P P P P P P P P P P P P P P P P	DET'N LIMIT = 0.2	•	•	٠	٠	٠	٠	٠	•	•	٠	٠	٠
WATER TR	SITE 1	STANDING	8 8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DET'N LI	•	•	•	•	•	•		•	•	٠	٠	•
	TREATED		LICS		2.800	2.200	2.600	2.800	1.000	- N	3.200	1.800	2.200	1.800	7.600	T> 007.
	SITE	TYPE	PHENOLICS	(1/90)	3.000	9.000	2.600	3.600	٠	1.800	3.600	1.200	9.400	2.400		BOL
	S	Ţ		PHENOLICS (UG/L	NAL	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	DCT	NOV	DEC

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1959	DISTRIBUTION SYSTEM		SITE 3	FREE FLOW STANDING FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: = 5.0 (81)		. 108			. BOL .			. 801	100	108	108 ·	109	GUIDELINE = 24.0 (84)			. 100 <1					. BOL .	108
VEILLANCE PROGRA	Q		SITE 2	STANDING	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = .050 GUIDELINE = 5.0 (81)	•	٠	•	•	•	•	•	•	•	•	•	٠	.050 GUIDELINE	٠	•		•	٠	•		•	•
NKING WATER SURV	I			FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = .	BOL	٠	BOL	BOL	٠	٠	108	BOL	BOL	108	BOL	HOL	DET'N LIMIT = .	BOL	٠	1> 001.	108	٠	٠	. 100 <t< td=""><td>108</td><td> JOH</td></t<>	108	 JOH
DRI	WATER TREATMENT PLANT		SITE 1	STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1		•	٠	•	٠	•	T> 050.	•	•	•	٠	•	٠	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		٠		٠	٠	T> 050.	٠	•	
	WATE		TREATED		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BOL	108	BOL	108	BOL	.050 <t< td=""><td>T> 050.</td><td>BOL</td><td>108</td><td>108</td><td>BOL</td><td>108</td><td>o 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>108</td><td>108</td><td>BOL</td><td>108</td><td>.100 <t< td=""><td>.200 <t< td=""><td>.200 <t< td=""><td>T> 050.</td><td>108</td></t<></td></t<></td></t<></td></t<>	T> 050.	BOL	108	108	BOL	108	o 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	108	108	BOL	108	.100 <t< td=""><td>.200 <t< td=""><td>.200 <t< td=""><td>T> 050.</td><td>108</td></t<></td></t<></td></t<>	.200 <t< td=""><td>.200 <t< td=""><td>T> 050.</td><td>108</td></t<></td></t<>	.200 <t< td=""><td>T> 050.</td><td>108</td></t<>	T> 050.	108
			RAU		VOLATILES	۲)	801	BOL	BOL	BOL	•	BOL	T> 001.	BOL	BOL	BOL	•	BOL	· · · · · · · · · · · · · · · · · · ·	BOL	BOL	BOL	BOL	•	BOL	. 150 <t< td=""><td>108</td><td>T> 050.</td></t<>	108	T> 050.
		SITE	HOYT		1 6 6 6 7 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BENZENE (UG/L	NAL	FEB	MAR	APR	MAY	MOL	JUL	AUG	SEP	OCT	NON	DEC	TOLUENE (UG/L	JAN	FEB	MAR	APR	MAY	MOL	JUL	AUG	SEP

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

9		
BIVE A PROPERTY		
4		
-		

TYPE ANY TREATED SITE			WATE	WATER TREATMENT PLANT	ANT	910	DISTRIBUTION SYSTEM		
100 < T	SITE		TREATED	SITE 1		SITE 2		SITE 3	
) DET'N LINIT = .050 GUIDELINE = 2.4 (64)) <t .050="" .100="" .801="" <<="" <t="" th=""><th></th><th></th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>STANDING</th><th>FREE FLOW</th><th>STANDING</th><th>FREE FLOW</th><th>STANDING</th><th>FREE FLOW</th></t>			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
) 7	DEC	108	1> 001.	٠	T> 050.				1> 050.
SECT 100 < T 100 < T 100 < T 100 < T 150 < T	ETHYLBENZENE	(1/9n)		1	DET'N LIMIT = .0	•	2.4 (84)	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BDL .150 <t< th=""> .1</t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<></t<>	JAN	.050 <t< td=""><td>.100 <t< td=""><td></td><td>108</td><td>•</td><td>108</td><td>٠</td><td></td></t<></td></t<>	.100 <t< td=""><td></td><td>108</td><td>•</td><td>108</td><td>٠</td><td></td></t<>		108	•	108	٠	
100 <t 100="" 150="" 160="" 1<="" <t="" td="" =""><td>FEB</td><td>108</td><td>T> 050.</td><td></td><td></td><td>٠</td><td>ROL</td><td>٠</td><td></td></t>	FEB	108	T> 050.			٠	ROL	٠	
BDL BDL <td>MAR</td> <td>. 100 <t< td=""><td>. 100 <t< td=""><td>٠</td><td>. 150 <t< td=""><td>٠</td><td>T> 001.</td><td>•</td><td>•</td></t<></td></t<></td></t<></td>	MAR	. 100 <t< td=""><td>. 100 <t< td=""><td>٠</td><td>. 150 <t< td=""><td>٠</td><td>T> 001.</td><td>•</td><td>•</td></t<></td></t<></td></t<>	. 100 <t< td=""><td>٠</td><td>. 150 <t< td=""><td>٠</td><td>T> 001.</td><td>•</td><td>•</td></t<></td></t<>	٠	. 150 <t< td=""><td>٠</td><td>T> 001.</td><td>•</td><td>•</td></t<>	٠	T> 001.	•	•
1.050 < T 1.05	APR	BOL	BDL		108	•	. 150 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
BDL 100 <t< th=""> BDL . 500 BDL </t<>	HAY	•	T> 050.	٠	٠	•	. u5u.	•	•
80L .050 <t< th=""> .100 <t< th=""> .050 80L .00L .00L .00L 80L .00L .00L .00L .00L .00L .00L .00L .00L .00L .00L .00L .00L<!--</td--><td>NOF</td><td>BOL</td><td>.100 <t< td=""><td>108</td><td>•</td><td>•</td><td>BOL</td><td>•</td><td></td></t<></td></t<></t<>	NOF	BOL	.100 <t< td=""><td>108</td><td>•</td><td>•</td><td>BOL</td><td>•</td><td></td></t<>	108	•	•	BOL	•	
SCT SOL	JUL	B0L	.050 <t< td=""><td>٠</td><td>. 100 <t< td=""><td>•</td><td>7> 050.</td><td>•</td><td></td></t<></td></t<>	٠	. 100 <t< td=""><td>•</td><td>7> 050.</td><td>•</td><td></td></t<>	•	7> 050.	•	
801 801 801 . 801 . . 801 . <th< td=""><td>AUG</td><td>1::2</td><td>108</td><td>٠</td><td>BOL</td><td></td><td>BOL</td><td>•</td><td></td></th<>	AUG	1::2	108	٠	BOL		BOL	•	
801 801 . 801 . . 801 . 801 <td< td=""><td>SEP</td><td>108</td><td>108</td><td></td><td>BOL</td><td>•</td><td>•</td><td>•</td><td>BOL</td></td<>	SEP	108	108		BOL	•	•	•	BOL
BOL	DCT	108	108		BOL	•		•	108
80L BDL DET*N LINIT = .100 GJIDELINE = 300 (84) 80L BDL BDL BDL	NOV	•	108	•	108	٠	٠	٠	108
) BDL BDL .	DEC	BOL	HOL	•	108		•	•	BOL
80L 80L . 80L 80L . .	-XYLENE (UG	()/(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 6 8 8 4 0 8 8 8 8 8 8	DET*N LIMIT = .1	:	300 (84)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
801 801 902 903 9	JAN	BOL	BOL	•	108	•	BOL	٠	•
801 801 . 801 . 801 801 . . . 801 801 801 801 801 801 	FEB	BOL	109	٠	٠	٠	108		٠
80L 80L . <td>MAR</td> <td>BOL</td> <td>BOL</td> <td></td> <td>108</td> <td>٠</td> <td>108</td> <td>•</td> <td>٠</td>	MAR	BOL	BOL		108	٠	108	•	٠
80L	APR	108	BOL		108	٠	108		٠
BDL .200 <t< td=""> BDL . <td< td=""><td>HAY</td><td>٠</td><td>BOL</td><td></td><td>•</td><td>•</td><td>BOL</td><td>•</td><td></td></td<></t<>	HAY	٠	BOL		•	•	BOL	•	
. 108 . 108 108 .	NOC	B0L	.200 <t< td=""><td>BOL</td><td></td><td>•</td><td>108</td><td>•</td><td>•</td></t<>	BOL		•	108	•	•
. 108 . 108 108 . 108	JUL	BOL	BOL	•	108	•	108		•
. 108 108	AUG	BOL	BOL	•	B0L	•	108		•
	SEP	BOL	BOL		BOL	•	•		108

TABLE 5

			FREE FLOW	108	BOL	108		٠	•	٠	٠	٠	٠	٠	٠	108	108	B01	BOL		٠	٠	٠		••	•	٠
11A) 1989		SITE 3	STANDING		•	b	, , , , , , , , , , , , , , , , , , ,	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•		•	٠	•	٠	٠	•	•
TAWA WSS (BRITANN	DISTRIBUTION SYSTEM		FREE FLOW			٠	0 (84)	BOL	BOL	.100 <t< td=""><td>.500 <t< td=""><td>. 100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>٠</td><td>•</td><td>•</td><td>0 (84)</td><td>108</td><td>108</td><td>T> 050.</td><td>. 200 <t< td=""><td>T> 050.</td><td>BOL</td><td>.100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.500 <t< td=""><td>. 100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>٠</td><td>•</td><td>•</td><td>0 (84)</td><td>108</td><td>108</td><td>T> 050.</td><td>. 200 <t< td=""><td>T> 050.</td><td>BOL</td><td>.100 <t< td=""></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td></td><td>٠</td><td>•</td><td>•</td><td>0 (84)</td><td>108</td><td>108</td><td>T> 050.</td><td>. 200 <t< td=""><td>T> 050.</td><td>BOL</td><td>.100 <t< td=""></t<></td></t<></td></t<>	BOL	BOL	BOL		٠	•	•	0 (84)	108	108	T> 050.	. 200 <t< td=""><td>T> 050.</td><td>BOL</td><td>.100 <t< td=""></t<></td></t<>	T> 050.	BOL	.100 <t< td=""></t<>
LANCE PROGRAM OTI	DISTRI	SITE 2	STANDING		•	٠	GUIDELINE = 300 (84)		٠		٠	•	•	٠	٠		٠	٠	٠	GUIDELINE = 300 (84)			٠	٠	•	٠	
DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989			FREE FLOW	BOL	BOL	108	DET'N LIMIT = .100	BOL	٠	. 200 <t< td=""><td>BOL</td><td></td><td>•</td><td>. 100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>108</td><td>108</td><td>DET'N LIMIT = .050</td><td>B01 .</td><td></td><td>.100 <t< td=""><td>.050 <t< td=""><td>•</td><td>٠</td><td>T> 001.</td></t<></td></t<></td></t<></td></t<>	BOL		•	. 100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>108</td><td>108</td><td>DET'N LIMIT = .050</td><td>B01 .</td><td></td><td>.100 <t< td=""><td>.050 <t< td=""><td>•</td><td>٠</td><td>T> 001.</td></t<></td></t<></td></t<>	BOL	BOL	BOL	108	108	DET'N LIMIT = .050	B01 .		.100 <t< td=""><td>.050 <t< td=""><td>•</td><td>٠</td><td>T> 001.</td></t<></td></t<>	.050 <t< td=""><td>•</td><td>٠</td><td>T> 001.</td></t<>	•	٠	T> 001.
ORINKI	WATER TREATMENT PLANT	SITE 1	STANDING		•	٠	30	•	٠	٠	٠		BOL	•	٠			•		90		•	٠		٠	T> 050.	•
	MATER	TREATED		108	80F	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	BOL	.200 <1	.) 00 <t< td=""><td>.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>801</td><td>301</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>108</td><td>BOL</td><td>.100 <₹</td><td>BOL</td><td>BOL</td><td>.050 <t< td=""><td>.050 <t< td=""></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>BOL</td><td>BOL</td><td>BOL</td><td>B0L</td><td>801</td><td>301</td><td>108</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>108</td><td>BOL</td><td>.100 <₹</td><td>BOL</td><td>BOL</td><td>.050 <t< td=""><td>.050 <t< td=""></t<></td></t<></td></t<>	BOL	BOL	BOL	B0L	801	301	108	0 0 0 0 0 0 0 0 0 0 0 0 0	108	BOL	.100 <₹	BOL	BOL	.050 <t< td=""><td>.050 <t< td=""></t<></td></t<>	.050 <t< td=""></t<>
		RAU	w	108		TOT	G/L)	B0.t	DOL	.200 <t< td=""><td>BOL</td><td></td><td>BOL</td><td>108</td><td>BOL</td><td>BOL</td><td>BOL</td><td>٠</td><td>BOL</td><td>G/L)</td><td>BOL</td><td>BDL</td><td>T> 050.</td><td>BOL</td><td></td><td>BOL</td><td>BDL</td></t<>	BOL		BOL	108	BOL	BOL	BOL	٠	BOL	G/L)	BOL	BDL	T> 050.	BOL		BOL	BDL
		SITE	TYPE	100	NON	DEC	M-XYLENE (UG/L	JAK	FEB	MAR	APR	MAY	NOL	JUL	AUG	SEP	100	NOV	DEC	O-XYLENE (UG/L	JAN	FEB	MAR	APR	MAY	MOL	JUL

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

SITE Aut TREATED SITE SITE				5	VIRKING WAIER SURVE	SILLARUE PROURAM	PRIMAIRE MAIER SCRYEILLARCE PROGRAM CITAMA MOS (BRITANRIA) IVOY	N N N N N N N N N N	
STIFE NAM			WAT	ER TREATMENT PI	ANT.	018	TRIBUTION SYSTEM		
NAM TREATED STITE 1 STITE 2 STITE 2 STITE 2 STITE 2 STITE 3	SITE	ш							
BDL BDL			TREATED	SITE 1		SITE 2		SITE 3	
STAMPING FREE FLOAT STAMPING FREE FLOAT STAMPING FREE FLOAT	TYPE	ш							
BDL BDL				STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
BOL BOL	;	i			į		į		
BDL	AUG	BOL	BOL	•	108	•	108	•	
BDL BDL	SEP	BOL	108	٠	BOL	•	٠	٠	108
BOL BOL	100	BOL	BOL	•	108	•	٠	•	JOB BOL
BOL	MOV	٠	BOL	•	108	•		•	TOM
1.550 < 1.550 < 1.550 < 1.550 < 1.550 < 1.550 <	DEC	BOL	108	٠	BOL	•	•	٠	log
150 < T 150	TYRENE (UG)	(7/	• • • • • • • • • • • • • • • • • • • •	* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0ET'N LIMIT = .0	•	46.5 (02)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,400 < 1,40	JAN	.250 <1	T> 004.	•	.200 <t< td=""><td>•</td><td>7> 050.</td><td>•</td><td>٠</td></t<>	•	7> 050.	•	٠
100 ct 1,450 ct 1,900 ct 1,500 ct 1,000 ct	FEB	80L	T> 004.	٠	•	•	150 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
100 100	MAR	T> 007.	T> 054.	٠	7> 000.	•	.250 <t< td=""><td>٠</td><td></td></t<>	٠	
1350 < f 1350 < f	APR	BOL	BOL	•	T> 050.	•	1> 001.	٠	•
100 1350 1 100 1 100 1 100 1 100 1 1	MAY		.350 <t< td=""><td>•</td><td>•</td><td>•</td><td>1> 001.</td><td>٠</td><td>٠</td></t<>	•	•	•	1> 001.	٠	٠
100 < T 100 < T .350 < T	NOP	B01	.350 <t< td=""><td>BOL</td><td>•</td><td>•</td><td>. 150 <t< td=""><td>٠</td><td>٠</td></t<></td></t<>	BOL	•	•	. 150 <t< td=""><td>٠</td><td>٠</td></t<>	٠	٠
Del Bol	JUL	T> 050.	.100 <t< td=""><td>•</td><td>.350 <t< td=""><td>•</td><td>.200 <t< td=""><td>٠</td><td>•</td></t<></td></t<></td></t<>	•	.350 <t< td=""><td>•</td><td>.200 <t< td=""><td>٠</td><td>•</td></t<></td></t<>	•	.200 <t< td=""><td>٠</td><td>•</td></t<>	٠	•
BDL BDL	AUG	BOL	BOL	•	1> 050.	•	. 150 <t< td=""><td>•</td><td>٠</td></t<>	•	٠
150 < T 150	SEP	BOL	BOL	•	T> 050.	•	٠	•	108
250 <t150 (a1+)="" 100="" 65.700<="" <t="" <t100="" <t150="" det'n="" guideline="350" linit=".100" td=""><td>100</td><td>BOL</td><td>BOL</td><td>•</td><td>T> 021.</td><td>•</td><td>٠</td><td>•</td><td>T> 050.</td></t150>	100	BOL	BOL	•	T> 021.	•	٠	•	T> 050.
150 <t (a1+)="" 100="" 150="" <t="" guideline="350" td="" ="" <=""><td>MOV</td><td>•</td><td>T> 052.</td><td>•</td><td>T> 021.</td><td></td><td>•</td><td>•</td><td>1> 001.</td></t>	MOV	•	T> 052.	•	T> 021.		•	•	1> 001.
) DET'N LIMIT = :100 GUIDELINE = 350 (A14 300 <t< td=""><td>DEC</td><td>BOL</td><td>. 150 <t< td=""><td>٠</td><td>BoL</td><td>•</td><td>•</td><td>٠</td><td>BOL</td></t<></td></t<>	DEC	BOL	. 150 <t< td=""><td>٠</td><td>BoL</td><td>•</td><td>•</td><td>٠</td><td>BOL</td></t<>	٠	BoL	•	•	٠	BOL
.300 <t .="" 66.500<="" 85.600="" td=""><td>HLOROFORM</td><td></td><td>• • • • • • • • • • • • • • • • • • •</td><td>- 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>DET*N LIMIT = 1</td><td>*</td><td>350 (A1+)</td><td>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t>	HLOROFORM		• • • • • • • • • • • • • • • • • • •	- 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DET*N LIMIT = 1	*	350 (A1+)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.700 <t 65.700<="" td=""><td>JAN</td><td>.300 <t< td=""><td>85.600</td><td>•</td><td>99.500</td><td>٠</td><td>000.99</td><td>•</td><td></td></t<></td></t>	JAN	.300 <t< td=""><td>85.600</td><td>•</td><td>99.500</td><td>٠</td><td>000.99</td><td>•</td><td></td></t<>	85.600	•	99.500	٠	000.99	•	
.500 <t .="" 40.000="" 40.000<="" td=""><td>FEB</td><td>.700 <t< td=""><td>65.700</td><td>٠</td><td>٠</td><td>•</td><td>90.700</td><td></td><td>•</td></t<></td></t>	FEB	.700 <t< td=""><td>65.700</td><td>٠</td><td>٠</td><td>•</td><td>90.700</td><td></td><td>•</td></t<>	65.700	٠	٠	•	90.700		•
.200 <t .="" 71.300<="" 81.800="" td=""><td>MAR</td><td>.500 <t< td=""><td>40.000</td><td>•</td><td>000.04</td><td>٠</td><td>51.400</td><td>٠</td><td>٠</td></t<></td></t>	MAR	.500 <t< td=""><td>40.000</td><td>•</td><td>000.04</td><td>٠</td><td>51.400</td><td>٠</td><td>٠</td></t<>	40.000	•	000.04	٠	51.400	٠	٠
	APR	.200 <t< td=""><td>81.800</td><td>•</td><td>71.300</td><td>•</td><td>72.700</td><td></td><td>•</td></t<>	81.800	•	71.300	•	72.700		•
	MAY	•	009.66	•	٠	٠	97.700	٠	٠

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

177PE STAMOTING FREE FLOW STAMOTING FREE FLOW STAMOTING STAMOTIN		3	WATER TREATMENT PLANT		10	DISTRIBUTION SYSTEM		
TREATED SITE 1 STANDING FREE FLOW STANDING FACO 143.000 175.00000 175.00000 175.00000 175.00000 175.00000 175.000000 175.000000 175.0000000 175.000000000000000000000000000000000000								
122.000 126.000 125.000 143.000 143.000 143.000 175.	3	TREATED	SITE 1		SITE 2		SITE 3	
122.000 126.000	0 0 0 0 0		STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
195.000 175.000 177.00	₽ ₩	122.000	126.000	٠	٠	143.000	٠	
165.000 177.00	00 <t< td=""><td>109.000</td><td>٠</td><td>221.000</td><td>•</td><td>240.000</td><td>٠</td><td>•</td></t<>	109.000	٠	221.000	•	240.000	٠	•
175.000 167.000 167.000 113.200 113.200 113.200 114.000 113.200 114.000 113.200 114.00	00.	185.000		175.000	•	175.000	٠	٠
147.000 113.000 113.000 113.200 113.000 113.000 113.000 113.000 104.600 BDL	DL	174.000	٠	172.000	٠	٠	٠	180.000
119.000 . 113.000	T> 00°	167.000	٠	141.000	٠	•	٠	149.600
113.200 . 104.600	•	119,000	٠	113.000	٠	•	•	113.700
DET'N LIMIT = .020 GUIDELINE = 200 (01) BDL BDL BDL BDL BDL BDL BDL BDL BDL BD	.00 <t< td=""><td>113.200</td><td>•</td><td>104.600</td><td>٠</td><td>v</td><td>•</td><td>101.400</td></t<>	113.200	•	104.600	٠	v	•	101.400
#01	HANE (UG/L	^		DET'N LIMIT = .(200 (01)		
#DL	BOL	TOB	•	TOB	٠	BOL		٠
#DL	BOL	HOP		٠	•	108		٠
#01	BOL	TON	•	108	٠	BOL	٠	٠
#DL	BOL.	TOB		10 8	•	BOL	٠	
#DL		BOL		٠	٠	BOL	٠	٠
#DL	30 L	BOL	80L	•	٠	BOL	٠	٠
BDL	301	BOL	٠	108	٠	BOL	٠	•
BOL	301	BOL	٠	108		BOL	٠	٠
BOL . BDL	320 <t< td=""><td>BOL</td><td>٠</td><td>108</td><td>٠</td><td>٠</td><td>4</td><td>BOL</td></t<>	BOL	٠	108	٠	٠	4	BOL
BDL	301	BOL		108			•	TON
		BOL	•	108			٠	TON
) DET'N LIMIT = .050 GUIDELINE = 350 (A1+) 1.550 . 1.400	30L		•	108	٠	q		.020 <t< td=""></t<>
1.550 . 1.400 . 1.300	IANE (UG/L		, 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT # .(350 (A1+)	. d d d d d d d d d d d d d d d d d d d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.300	JOL	1.550	٠	1.400		2.250	٠	
1.000	90 F	1.300	•		٠	1.200	٠	٠
	חמו	1.000	٠	.950		1.200	٠	٠

TABLE 5

DRINKING MATER SURVEILLANCE PROGRAM OTTAWA USS (BRITANNIA) 1989

		WAT	WATER TREATMENT PLANT	LANT	015	DISTRIBUTION SYSTEM		
SITE	بيو							
TYDE	RAW	TREATED	SITE 1		SITE 2		SITE 3	
			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
APR	BOL	1.500		1.450	٠	1.400		٠
MAY		1.400			•	1.450	•	•
NOC	BOL	1.750	1.700	•	•	1.950		٠
JUL	BOL	2.350	٠	3.250	•	3.450	•	•
AUG	BOL	3.200	•	2.950		3.000		•
SEP	BOL	3.250	•	2.850			٠	2.850
DCT	BOL	2.700	٠	2.500		•	٠	2.700
NOV		2.500	•	2.250	•		•	2.350
DEC	B01	1.450	•	1.550	٠		•	1.600
HLOROD I BRON	CHLORODIBROMOMETHANE (UG/L	^		DET'N LIMIT = .100	100 GUIDELINE = 350 (A1+)	350 (A1+)		
JAN	BOL	BOL	٠	300	•	BOL		٠
FEB	BOL	B 01		٠	٠	BOL	•	٠
MAR	BOL	108	٠	108		BOL	•	•
APR	BOL	108	•	BOL		BOL	•	•
MAY	•	BOL	٠	٠	•	BOL	•	•
JUN	108	BOL	108		•	BOL	•	•
JUL	B0L	.100 <t< td=""><td>٠</td><td>T> 001.</td><td></td><td>T> 001.</td><td>•</td><td>•</td></t<>	٠	T> 001.		T> 001.	•	•
AUG	BOL	BOL	٠	BOL	•	BOL	•	٠
SEP	BOL	BOL	•	BOL	•		٠	108
OCT	BOL	TOR	•	108	٠	•	٠	108
MOV		BOL	•	BOL	•		•	BOL
DEC	BOL	BOL	٠	BOL	•	•	•	108
T-CHLOROETHYLENE (UG/L			5 5 5 5 5 8 8 1 1	DET'N LIMIT = .050	050 GUIDELINE = 10.0 (C2)	10.0 (C2)	1 1 1 1 1 1 1 1 1	
NAC	BOL	BOL		BOL	٠	108	•	٠

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

SITE			à à					
TYPE	KAV	IREALED	SIIE 1		SITE 2		SITE 3	
	0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8	STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
FEB	108	BOL	•	•		B0L	٠	
MAR	BOL	BOL	٠	BOL		BOL	٠	
APR	BOL	BOL	٠	BOL	•	BOL	٠	
MAY		BOL	٠	٠	٠	BOL	٠	
JUN	BOL	BOL	108	٠	٠	BOL	٠	
JUL	BOL	T> 050.		108	•	BOL	٠	
AUG	BOL	BOL	٠	BOL	٠	T> 050.	٠	
SEP	BOL	BOL	•	BOL		٠	٠	108
000	BOL	108	٠	108		•	٠	HOL
NOV	•	BOL	•	BOL		•	٠	108
DEC	BOL	. 100 <t< td=""><td>٠</td><td>BOL</td><td>٠</td><td>•</td><td>•</td><td>BOL</td></t<>	٠	BOL	٠	•	•	BOL
DICHLORG	1,3 DICHLOROBENZENE (UG/L		- 6 9 8 8 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 9 8 8 9 9 9 9 8 9	DET'N LIMIT = .1	DET'N LIMIT = .100 GUIDELINE = 130 (G)	130 (G)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
JAH	BOL	BOL	٠	BOL	٠	RAIL	٠	
FEB	BOL	BOL		٠		BOL	٠	
MAR	BOL	30F	•	108		BOL	٠	
APR	BOL	HOL	•	BOL		BOL	•	
MAY	٠	BOL	•	•		108	٠	
MOR	BOL	BOL	BOL	٠		108	4	
JUL	BOL	BOL	٠	BOL	٠	. 100 <t< td=""><td></td><td></td></t<>		
AUG	BOL	BOL	٠	HOL		108		
SEP	BOL	BOL		BOL		•	•	108
OCT	BOL	BOL		108	٠			BOL
NOV		BOL		108	٠		٠	BOL
DEC	BOL	108		BOL	•	٠	•	108

TABLE 5

WATER TREATMENT PLANT

RAU		TREATED	SITE 1		SITE 2		SITE 3	
			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
9 8 9 1 1 1 1 5 5 8 8	0 0 0 0 0 0 0 0 0 0		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	a 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BOL		B 0		BOL		BOL	٠	٠
BOL		BOL		•	٠	BOL		٠
BOL		BOL		BOL	٠	BDL.	٠	•
BOL		BOL	٠	BOL	٠	BOL	٠	•
٠		BOL	٠		٠	BDL	•	•
108		BOL	BOL	٠	٠	BDL	٠	•
BDL		BOL		108		BDL	٠	٠
BDL		BOL	٠	BOL		BOL	٠	٠
BOL		BOL	•	BOL		٠	٠	108
BOL		BOL		150 <₹	٠	٠	٠	108
٠		BOL		BDL	•	٠	•	108
BOL		BOL	•	BOL	٠			108
TOTL TRIHALOMETHANES (UG/L	s (UG/L)			DET'N LIMIT = .500	500 GUIDELINE = 350 (A1)	350 (A1)		
108		87.150	٠	67.900	٠	68.250	٠	٠
700 <1		.000	•		•	61.900	•	•
.500		000		40.950	٠	52.600	•	٠
BOL		300		72.750		74.100	•	•
•	101	000	•	٠	•	99.150		٠
T> 009.		123.750	127.700			144.950	•	•
BDL		.450		224.350	٠	243.550	٠	٠
4.700		188.200		177.950		185.000	٠	•
BOL		177.250	•	174.850		٠	•	182.850
BDL		169.700	•	143.500		٠	•	152.300
•		121.500	6	115.250	•	٠	٠	116.050
4								

TABLE 5

DRINKING WATER SURVEILLANCE PROGRAM OTTAWA WSS (BRITANNIA) 1989

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		FREE FLOW
SITE 3		STANDING FREE FLOW STANDING FREE FLOW
		FREE FLOW
SITE 2		STANDING
		FREE FLOW
SITE 1		STANDING
TREATED		
RAU		
SITE	TYPE	

TRACE LEVELS OF TOLUENE ARE LABORATORY ARTIFACTS DERIVED FROM THE ANALYTICAL METHODOLOGY.

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS.

Table 6

	5		Α.Υ	
		ETECTION	GUIDEL	TNE
SCAN/PARAMETER	UNIT	LIMIT	GOIDEL	INE
BACTERIOLOGICAL				
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0	(A1)
STANDARD PLATE COUNT MEMBRANE	CT/ML	0	500/MI	(A1)
FILTRATION				
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100mL	(A1)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A	
CHLOROAROMATICS				
WELL COLORS DE LEVE	NG/L	1 000	450.	(D4)
HEXACHLOROBUTADIENE	NG/L		10000	(I)
1,2,3-TRICHLOROBENZENE 1,2,3,4-TETRACHLOROBENZENE	NG/L		10000	(I)
1,2,3,4-TETRACHLOROBENZENE	NG/L		10000	(I)
1,2,4-TRICHLOROBENZENE	NG/L		10000	(I)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.000	38000	(D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.000	10000	(D4)
HEXACHLOROBENZENE	NG/L	1.0	10.	(C1)
HEXACHLOROETHANE	NG/L	1.000	1900.	(D4)
OCTACHLOROSTYRENE	NG/L	1.000	N/A	
PENTACHLOROBENZENE	NG/L	1.000	74000	(D4)
2,3,6-TRICHLOROTOLUENE	NG/L	5.000	•	
2,4,5-TRICHLOROTOLUENE	NG/L		N/A	
2,6,A-TRICHLOROTOLUENE	NG/L	5.000	N/A	
CHLOROPHENOLS				
	22 / T	. 50	NI / B	
2,3,4-TRICHLOROPHENOL	NG/L	50. 50.	N/A N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L NG/L	50.	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L NG/L		600000	(D4)
2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL	NG/L	50.	2000.	(B4)
PENTACHLOROPHENOL	NG/L		30000.	(B4)
PENTACHBOROFILENOD	, _			•
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	N/A	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	N/A	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	N/A	N/A	
FIELD PH	DMSNLESS	N/A	6.5-8.	
FIELD TEMPERATURE	ಆ	N/A	<15 °C	
FIELD TURBIDITY	FTU	N/A	1.0	(A1)
CHEMISTRY (LAB)				
		000	30.50	0 (3 4)
ALKALINITY	MG/L	.200		
CALCIUM	MG/L	.100		(F2) O(A1)
CYANIDE	MG/L	.200		
CHLORIDE	MG/L TCU	.5		(A3)
COLOUR	UMHO/CM	1.	400.	
CONDUCTIVITY FLUORIDE	MG/L	.01		(A1)
HARDNESS	MG/L	.50		0 (A4)
MAGNESIUM	MG/L	.05		
	/-			-

	D	ETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDE	LINE
NITRITE	MG/L	.001	1.0	(A1)
TOTAL NITRATES	MG/L	.02	10.	(A1)
NITROGEN TOTAL KJELDAHL	MG/L	.02	N/A	(/
PH	DMSNLESS		6.5-8.	5/841
PHOSPHORUS FIL REACT	MG/L	.000		J (114)
PHOSPHORUS TOTAL	MG/L	.002		O(F2)
TOTAL SOLIDS	MG/L	1.		(A3)
TURBIDITY	FTU	.02		(A1)
TORBIDITI	F10	.02	1.0	(VT)
METALS				
ALUMINUM	UG/L	.050		(A4)
ANTIMONY	UG/L	.050	10.	(F3)
ARSENIC	UG/L	.050	50.	(A1)
BARIUM	UG/L	.020	1000.	(A1)
BORON	UG/L	.200	5000.	(A1)
BERYLLIUM	UG/L	.010	0.2	O (H)
CADMIUM	UG/L	.050	5.0	(A1)
COBALT	UG/L	.020	1000.	(H)
CHROMIUM	UG/L	.100	50.	(A1)
COPPER	UG/L		1000.	(A3)
IRON	UG/L	5.0	300.	(A3)
MERCURY	UG/L	.01	1.0	
MANGANESE	UG/L	.050		(A3)
MOLYBDENUM	UG/L	.020		(H)
NICKEL	UG/L	.100		(F3)
LEAD	UG/L	.020		(A1)
SELENIUM	UG/L	.200	10.	(A1)
SILVER	UG/L	.020	50.	(A1)
STRONTIUM	UG/L		2000.	(H)
THALLIUM	UG/L	.010		(D4)
TITANIUM	UG/L	.100		(54)
URANIUM	UG/L	.020	20.	(A2)
VANADIUM	UG/L	.020		(H)
ZINC	UG/L		5000.	
PHENOLICS	00,2	, 020		(,
PHENOLICS (UNFILTERED REACTIVE)	UG/L	.2	2.0	(A3)
PESTICIDES & PCB				
ALDDIN	NO /*	1.0	700	(3.1)
ALDRIN	NG/L	1.0	700.	(A1)
AMETRINE	NG/L		00000.	(D3)
ATRAZINE	NG/L		50000.	(B3)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700.	(G)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300.	(G)
GAMMA HEXACHLOROCYCLOHEXANE(LINDANE)			4000.	(A1)
ALPHA CHLORDANE	NG/L	2.0	7000.	(Al)
GAMMA CHLORDANE	NG/L	2.0	7000.	(A1)
BLADEX	NG/L		10000.	(B3)
DIELDRIN	NG/L	2.0	700.	(A1)
METHOXYCHLOR	NG/L		00000.	(B1)
ENDOSULFAN 1 (THIODAN I)	NG/L		74000.	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L		74000.	(D4)
ENDRIN	NG/L	4.0	200.	(A1)
ENDOSULFAN SULPHATE (THIODAN SULPHATE		4.0	N/A	
HEPTACHLOR EPOXIDE	NG/L	1.0	3000.	(A1)

		ETECTION		
SCAN/PARAMETER	UNIT	LIMIT	GUIDEI	LINE
HEPTACHLOR	NG/L	1.0	3000.	(A1)
METOLACHLOR	NG/L	500.	50000.	(B3)
MIREX	NG/L	5.0	N/A	
OXYCHLORDANE	NG/L	2.0	N/A	
O,P-DDT	NG/L	5.0	30000.	(A1)
PCB	NG/L	20.0	3000.	(A2)
O,P-DDD	NG/L	5.0	N/A	(3.1.)
PPDDE	NG/L	1.0	30000.	(A1)
PPDDT	NG/L	5.0	30000.	(A1)
ATRATONE	NG/L	50. 500.	N/A 35000.	(D2)
ALACHLOR	NG/L NG/L	50.	52500.	(D2)
PROMETONE	NG/L NG/L	50.	16000.	(D2)
PROPAZINE	NG/L	50.	1000.	(B3)
PROMETRYNE	NG/L NG/L	100.	80000.	(B2)
SENCOR (METRIBUZIN)	NG/L NG/L	50.	10000.	(B3)
SIMAZINE	NG/ L	50.	20000	(,
POLYAROMATIC HYDRCCARBONS				
PHENANTHRENE	NG/L	10.0	N/A	
ANTHRACENE	NG/L	1.0	N/A	
FLUORANTHENE	NG/L	20.0	42000.	(D4)
PYRENE	NG/L	20.0	N/A	
BENZO(A)ANTHRACENE	NG/L	20.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
DIMETHYL BENZO(A)ANTHRACENE	NG/L	5.0	N/A	
BENZO (E) PYRENE	NG/L	50.0	N/A	
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
PERYLENE	NG/L	10.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10.	(B1)
BENZO(G,H,I)PERYLENE	NG/L	20.0	N/A	
DIBENZO(A,H)ANTHRACENE	NG/L	10.0	N/A	
INDENO(1,2,3-C,D)PYRENE	NG/L	20.0	N/A	
BENZO(B)CHRYSENE	NG/L	2.0	N/A	
CORONENE	NG/L	10.0	N/A	
SPECIFIC PESTICIDES ·				
TOXAPHENE	NG/L	N/A	5000.	(A1)
2,4,5-TRICHLOROBUTYRIC ACID	NG/L	50.	200000.	(B4)
(2,4,5-T)	•			
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000.	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID	NG/L	200.	18000.	(B3)
2,4-D PROPIONIC ACID	NG/L	100.	N/A	
DICAMBA	NG/L	100.	120000.	
PICLORAM	NG/L	100.	190000.	(B3)
SILVEX (2,4,5-TP)	NG/L	50.	10000.	(A1)
DIAZINON	NG/L	20.	20000.	(B1)
DICHLOROVOS	NG/L	20.	N/A	
DURSBAN	NG/L	20.	N/A	
ETHION	NG/L	20.	35000.	(G)
GUTHION (AZINPHOSMETHYL)	NG/L	N/A	20000.	(B1)
MALATHION	NG/L	20.	190000.	(B1)
MEVINPHOS	NG/L	20.	N/A	
METHYL PARATHION	NG/L	50.	7000.	(A1)
METHYLTRITHION	NG/L	20.	N/A	, = -
PARATHION	NG/L	20.	50000.	(B1)

	DETECTION					
SCAN/PARAMETER	UNIT	LIMIT	GUIDE	LINE		
PHORATE (THIMET)	NG/L	20.	2000.	(B3)		
RELDAN	NG/L	20.	N/A			
RONNEL	NG/L	20.	N/A			
AMINOCARB	NG/L	N/A	N/A			
BENONYL	NG/L	N/A	N/A			
BUX (METALKAMATE)	NG/L	2000.	N/A			
CARBOFURAN	NG/L	2000.	90000.	(B1)		
CICP (CHLORPROPHAM)	NG/L	2000.	350000.	(G)		
DIALLATE	NG/L	2000.	30000.	(H)		
EPTAM	NG/L	2000.	N/A			
IPC	NG/L	2000.	N/A			
PROPOXUR (BAYGON)	NG/L	2000.	90000.	(G)		
SEVIN (CARBARYL)	NG/L	200.	90000.	(B1)		
SUTAN (BUTYLATE)	NG/L	2000.	245000.	(D3)		
VOLATILES						

UG/L	.050	5.0 (B1)
UG/L	.050	24.0 (B4)
UG/L	.050	2.4 (B4)
UG/L	.100	300. (B4)
UG/L	.100	300. (B4)
UG/L	.050	300. (B4)
UG/L	.100	7.0 (D1)
UG/L	.05	.05 G)
UG/L	.500	50. (B1)
UG/L	.100	70. (D5)
UG/L	.100	N/A
UG/L	.100	350. (Al+)
UG/L	.020	200. (D1)
UG/L	.050	5.0 (D1)
UG/L	.200	5.0 (B1)
UG/L	.050	6.0 (D5)
UG/L	.100	50. (B1)
UG/L	.050	350. (Al+)
UG/L	.050	.60(D4)
UG/L	.100	350. (Al+)
UG/L	.050	10.0 (C2)
UG/L	.200	350. (Al+)
UG/L	.050	0.17(D4)
UG/L	.100	60. (D5)
UG/L	.100	1.0 (B4)
UG/L	.100	130. (G)
UG/L	.050	3.0 (B4)
UG/L	.100	N/A
UG/L	.500	350. (A1)
UG/L	.05	140. (D5)
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L .050 UG/L .100 UG/L .100 UG/L .100 UG/L .050 UG/L .050 UG/L .050 UG/L .500 UG/L .500 UG/L .100 UG/L .100 UG/L .100 UG/L .100 UG/L .050 UG/L .100 UG/L .050 UG/L .100 UG/L .050 UG/L .100

