FIRST_k

- FIRST_k: $(N \cup \Sigma)^* \rightarrow Part(\Sigma^*)$
- FIRST_k(α) = {u $\in \Sigma^* \mid (\alpha =^* > ux, |u| = k)$ sau ($\alpha =^* > u, |u| < k$) }

FOLLOW_k

FOLLOW_k: $(N \cup \Sigma)^* \rightarrow Part(\Sigma^*)$ FOLLOW_k $(\alpha) = \{u \in \Sigma^* \mid S=^* > \gamma \alpha \beta, u \in FIRST_k(\beta)\}$

Operatia 🕀 k

```
Fie L1, L2 – 2 limbaje peste \Sigma
L1 \oplus_k L2 = \{w \mid \exists x \in L1, y \in L2 \text{ astfel incat:} \}
                              fie: |w| = k \text{ si } \exists z : xy = wz
                              fie: |w| < k \text{ si} xy = w
Exemplu: L1 = \{a, ab, abb, abbb, ...\}
               L2 = \{c, cc, ccc, cccc, ...\}
                       L1 \oplus_3 L2 = \dots
                       L1 \oplus_1 L2 = \dots
```

Determinarea lui FIRST₁

```
\forall a \in \Sigma : FIRST_1(a) = \{a\}
\forall A \in \mathbb{N}: FIRST<sub>1</sub>(A) se determina pe baza r.p. A \rightarrow ...
• pentru fiecare A \in N:
           F_0(A) = \{a \in \Sigma \mid A \rightarrow a\alpha \in P\} \cup \{\epsilon \mid A \rightarrow \epsilon\}
    sf.pentru
    i = 0
• repeta
           i = i+1
           pentru fiecare A \in N:
                F_i(A) = \{a \in \Sigma \cup \{\epsilon\} | A \longrightarrow X_1 ... X_k, a \in F_{i-1}(X_1) \oplus_1 ... \oplus_1 F_{i-1}(X_k)\}
           sf. pentru
    pana cand F_i = F_{i-1}, \forall A \in N
```

11/16/2020

• $FIRST_1 = F_i$

FOLLOW₁

```
• FOLL(S) = \{\$\}
  FOLL (X) = \Phi (X <> S)
• repeta
       pentru fiecare B: A \rightarrow \alpha B \beta executa
               FOLL (B) = FOLL (B) U (FIRST<sub>1</sub>(\beta) – {\epsilon})
               Daca \varepsilon \in FIRST_1(\beta) atunci
                        FOLL (B) = FOLL (B) U FOLL (A)
               sf. daca
       sf. pentru
```

pana cand FOLL nu se mai modifica

11/16/2020

FOLLOW₁ = FOLL

Exercitii: FIRST₁ si FOLLOW₁

Problema:

• determinati FIRST₁ si FOLLOW₁ pentru toate terminalele si neterminalele gramaticii cu regulile de productie:

$$S \rightarrow BA$$

$$A \rightarrow +BA$$

$$A \rightarrow \epsilon$$

$$B \rightarrow DC$$

$$C \rightarrow *DC$$
 $D \rightarrow (S)$

$$C \rightarrow \varepsilon$$
 $D \rightarrow a$

Gramatici LL(k)

- analizoare LL(k)
 - analiza sintactica descendenta
 - secv. de intrare este citita de la stanga spre dreapta
 - se folosesc derivari de stanga

Gramatici LL(k)

- $G = (N, \Sigma, P, S)$? $w = a_1 a_2 ... a_n \in L(G)$ $S = >_{st} ... = >_{st} a_1 a_2 ... a_i A \alpha$ (derivari de stanga)
- LL(k): alegerea r.p. pentru a-l retranscrie pe A este unic determinata de: a_{i+1}a_{i+2}...a_{i+k}
- terminologie:
 - parte inchisa: $a_1 a_2 \dots a_i$
 - predictia (de lungime k): a_{i+1}a_{i+2}...a_{i+k}
 - simbol de retranscris: A

Gramatici LL(k)

Definitie:

$$G = (N, \Sigma, P, S)$$
 este $LL(K)$:

• Daca:

$$-S = *>_{st} wA\alpha =>_{st} w\beta\alpha = *> wx$$

$$-S = *>_{st} wA\alpha =>_{st} w \gamma \alpha = *> wy$$

$$-FIRST_k(x) = FIRST_k(y)$$

• atunci:

$$\beta = \gamma$$

•

Gramatici LL(1)

•
$$? w=a_1a_2...a_ia_{i+1}...a_n \in L(G)$$

 $S =>_{st}...=>_{st}a_1a_2...a_i A \alpha$

• LL(1): rescrierea lui A este unic determin. de $\mathbf{a_{i+1}}$

De exemplu:

Aleg: atunci cand: $A \rightarrow \gamma$ $a_{i+1} \in FIRST_1(\gamma)$ $A \rightarrow \varepsilon$ $a_{i+1} \in FOLLOW_1(A)$ $A = *> \varepsilon$ $a_{i+1} \in FOLLOW_1(A)$

Gramatici LL(1)

Teorema:

```
G – este de tip LL(1) ddaca:
```

```
\forall A \in \mathbb{N}
A \rightarrow \alpha_1 |\alpha_2| \alpha_3 | \dots |\alpha_m|
```

- FIRST₁(α_i) \cap FIRST₁(α_j) = Φ , i<>j
- daca \exists i a.i. $\alpha_i =^* > \epsilon$ atunci: $\epsilon \in FIRST_1(\alpha_i)$ $FIRST_1(\alpha_i) \cap FOLLOW_1(A) = \Phi$

Analiza sintactica LL(1)

- analizorul sintactic LL(1)
 - ~ modelare ca un automat
- se construieste tabelul de analiza LL(1)
 - alegerea lui $A \rightarrow \alpha_i$ este indicata in tabel

Conventie:

\$: la orice cuvant din limbaj se adauga \$: marcator de sfarsit de cuvant

Tabelul de analiza LL(1)

indica actiunea posibila la un moment dat

- coloane: Σ U {\$}
- linii: $N \cup \Sigma \cup \{\$\}$
- celula => (membrul drept al reg.prod, nr. reg.prod.)

Tabelul de analiza LL(1)

```
M(X,a) =
    -(\alpha,i) daca X \to \alpha \in P, a \in FIRST_1(\alpha)
                 X \rightarrow \alpha - a i-a regula de productie
    -(\alpha,i) daca \epsilon \in FIRST_1(\alpha), \alpha \in FOLLOW_1(X)
                 X \rightarrow \alpha - a i-a regula de productie
                X = a
    – pop
           X = \$, a = \$
    - acc
                in toate celelalte cazuri
    - err
```

Analizorul LL(1)

- Automat: (α, β, Π)
 - banda de intrare: α (stiva de intrare)
 - stiva β (stiva de lucru)
 - banda de iesire $\Pi =>$ sirul regulilor de productie
- config. initiala: $(w\$, S\$, \epsilon)$
- config. finala: $(\$, \$, \Pi)$
- tranzitii
 - push $(\mathbf{a}\mathbf{x}\$, \mathbf{A}\boldsymbol{\beta}, \boldsymbol{\Pi})$ $(\mathbf{a}\mathbf{x}\$, \alpha\boldsymbol{\beta}, \boldsymbol{\Pi}\mathbf{i})$ dc.: $\mathbf{M}(\mathbf{A}, \mathbf{a}) = (\alpha, \mathbf{i})$
 - pop $(\mathbf{a}\mathbf{x}\$, \mathbf{a}\beta, \Pi)$ $-(\mathbf{x}\$, \beta, \Pi)$
 - $acc (\$, \$, \Pi) \vdash acc$
 - err in celelalte cazuri

Transformari echivalente

- => gram. LL(1) echiv. ?
- factorizare la stanga

. . .