

CENTRO DE CIÊNCIA E TECNOLOGIA LABORATÓRIO DE CIÊNCIAS MATEMÁTICAS UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE

Curso: Ciência da Computação Disciplina: Estatística e Probabilidade

Data: 19./.06./2024

Teste de Hipótese

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \{ \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2} / n \}$$

Para nível de confiança $(1 - \alpha)$ e nível de significância α .

 z_{α} : Valor crítico para a distribuição normal padrão com área superior α ;

 $z_{\alpha/2}$: Valor crítico para a distribuição normal padrão com área superior $\alpha/2$;

Valor crítico para a distribuição t-student com área superior α ;

 $t_{\alpha/2}$: Valor crítico para a distribuição t-student com área superior $\alpha/2$;

Testes da Média de uma População

População Normal com desvio padrão conhecido σ :

Hipótese nula: H_0 : $\mu = u_0$

• Valor da estatística de teste: $z = \frac{\bar{x} - u_0}{\sigma / \sqrt{n}}$

• Hipótese alternativa: Região de rejeição para o teste nível α :

 H_a : $\mu > u_0$ $z \ge z_{\alpha}$ (teste de cauda superior) H_a : $\mu < u_0$ $z \le -z_{\alpha}$ (teste de cauda inferior) H_a : $\mu \neq u_0$ tanto $z \ge z_{\alpha/2}$ ou $z \le -z_{\alpha/2}$ (teste bicaudal)

População qualquer, com desvio padrão desconhecido, amostra grande:

• Valor da estatística de teste: $z = \frac{\bar{x} - u_0}{s/\sqrt{n}}$

População Normal, com desvio padrão desconhecido, amostra pequena:

Hipótese nula: H_0 : $\mu = u_0$

• Valor da estatística de teste: $t = \frac{\bar{x} - u_0}{\sigma / \sqrt{n}}$

• Hipótese alternativa: Região de rejeição para o teste nível α :

• $H_a: \mu > u_0$ $t \ge t_{\alpha,n-1}$ (teste de cauda superior)

• H_a : $\mu < u_0$ $t \leq -t_{\alpha,n-1}$ (teste de cauda inferior)

• H_a : $\mu < u_0$ $t \le -t_{\alpha,n-1}$ (teste de cauda inferior) • H_a : $\mu \ne u_0$ tanto $t \ge t_{\alpha/2,n-1}$ ou $t \le -t_{\alpha/2,n-1}$ (teste bicaudal)

Testes da Proporção de uma População

$$\hat{p} = \frac{x}{n}$$
 Proporção amostral

B(c; n; p) Binomial cumulativa até c sucessos, para n repetições, taxa sucesso p

- 4. Amostra grande, $np_0 \ge 10, nq_0 \ge 10$
 - Hipótese nula: H_0 : $p = p_0$
 - Valor da estatística de teste: $z = \frac{\hat{p} p_0}{\sqrt{p_0 q_0/n}}$ onde $q_0 = 1 p_0$
 - Hipótese alternativa: Região de rejeição para o teste nível α :

$$\begin{array}{ll} H_a\colon p>p_0 & z\geq z_\alpha \quad \text{(teste de cauda superior)} \\ H_a\colon p< p_0 & z\leq -z_\alpha \, \text{(teste de cauda inferior)} \\ H_a\colon p\neq p_0 & \text{tanto } z\geq z_{\alpha/2} \, \text{ou } z\leq -z_{\alpha/2} \, \text{(teste bicaudal)} \end{array}$$

- 5. Amostra pequena, $np_0 < 10, nq_0 < 10$
 - Hipótese nula: H_0 : $p = p_0$
 - Valor da estatística de teste: *X* observado na amostra
 - Hipótese alternativa: Região de rejeição para o teste nível α :

$$H_a: p > p_0$$
 $x \ge c \text{ se } B(c; n; p) \ge 1 - \alpha$ (cauda superior)
 $H_a: p < p_0$ $x \le c \text{ se } B(c; n; p) \le \alpha$ (cauda inferior)