DiscretMath Assignment1

Ziheng WANG SID:12310401

September 2024

1 Q.1

- a. $r \wedge \neg q$
- b. $r \to p$
- c. $p \wedge \neg q \wedge r$
- d. $(p \land q) \rightarrow r$
- e. $r \leftrightarrow (p \lor q)$

2 Q.2

2. a

they are equivalent

2. b

they are equivalent

2. c

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$ \begin{array}{c c} \neg q \land \neg (p \to q) \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $
0	0	1	1	1	0
0	1	1	0	1	0
1	0	0	1	0	1
1	1	0	0	1	0

they are not equivalent

2. d

$\mid p$	q	r	$p \rightarrow \neg q$	$p \vee \neg q$	$r \to (p \lor \neg q)$	$(p \to \neg q) \leftrightarrow (r \to (p \lor \neg q))$	$ \neg p \wedge \neg r$	$ q \lor (\neg p \land \neg r) $
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	0
0	1	0	1	0	1	1	1	1
0	1	1	1	0	0	0	0	1
1	0	0	1	1	1	1	0	0
1	0	1	1	1	1	1	0	0
1	1	0	0	1	1	0	0	1
1	1	1	0	1	1	0	0	1

they are not equivalent

3 Q.3

a.

$$\begin{split} (p \wedge \neg q) &\to r \equiv \neg (p \vee \neg q) \vee r & \text{Useful} \\ &\equiv (\neg p \vee \neg \neg q) \vee r & \text{De Morgan's} \\ &\equiv (\neg p \vee q) \vee r & \text{Double Negation} \\ &\equiv \neg p \vee (q \vee r) & \text{Associative} \\ &\equiv p \to (q \vee r) & \text{Useful} \end{split}$$

b.

$$((p \to q) \land (q \to r)) \to (p \to r)$$

$$\equiv \neg((\neg p \lor q) \land (\neg q \lor r)) \lor (\neg p \lor r) \qquad \text{Useful}$$

$$\equiv (\neg(\neg p \lor q) \lor \neg(\neg q \lor r)) \lor (\neg p \lor r) \qquad \text{De Morgan's}$$

$$\equiv (\neg \neg p \land \neg q) \lor (\neg \neg q \land \neg r) \lor (\neg p \lor r) \qquad \text{De Morgan's}$$

$$\equiv (p \land \neg q) \lor (q \land \neg r) \lor (\neg p \lor r) \qquad \text{Double Negation}$$

$$\equiv (p \lor (q \land \neg r) \lor (\neg p \lor r)) \land (\neg q \lor (q \land \neg r) \lor (\neg p \lor r)) \qquad \text{Distributive}$$

$$\equiv (p \lor (\neg p \lor r) \lor (q \land \neg r)) \land ((q \land \neg r) \lor \neg q \lor (\neg p \lor r)) \qquad \text{Commutative}$$

$$\equiv ((p \lor \neg p) \lor r \lor (q \land \neg r)) \land ((q \land \neg r) \lor \neg q \lor (\neg p \lor r)) \qquad \text{Associative}$$

$$\equiv ((p \lor \neg p) \lor r \lor (q \land \neg r)) \land ((q \lor \neg q) \lor (\neg p \lor r)) \land ((\neg r \lor \neg q) \lor (\neg p \lor r)) \qquad \text{Distributive}$$

$$\equiv ((p \lor \neg p) \lor r \lor (q \land \neg r)) \land ((q \lor \neg q) \lor (\neg p \lor r)) \land ((\neg r \lor r) \neg q \lor \neg p)) \qquad \text{Associative}$$

$$\equiv (T \lor r \lor (q \land \neg r)) \land (T \lor (\neg p \lor r)) \land (T \lor \neg q \lor \neg p) \qquad \text{Negation}$$

$$\equiv T \land T \land T \qquad \text{Domination}$$

$$\equiv T \qquad \text{Identity}$$

4 Q.4

From the Truth table, we can get $(p \to q) \to r$ and $p \to (q \to r)$ are **not equivalent**.

5 Q.5

$$(q \to (r \lor p)) \to ((\neg r \lor s) \land \neg s)$$

$$\equiv \neg(\neg q \lor (r \lor p)) \lor ((\neg r \lor s) \land \neg s) \qquad \text{Useful}$$

$$\equiv (q \land \neg (r \lor p)) \lor ((\neg r \lor s) \land \neg s) \qquad \text{De Morgan's}$$

$$\equiv (q \land \neg r \land \neg p) \lor ((\neg r \lor s) \land \neg s) \qquad \text{De Morgan's}$$

$$\equiv (q \land \neg r \land \neg p) \lor (\neg r \land \neg s) \lor (s \land \neg s) \qquad \text{Distributive}$$

$$\equiv (q \land \neg r \land \neg p) \lor (\neg r \land \neg s) \lor F \qquad \text{Negation}$$

$$\equiv (q \land \neg r \land \neg p) \lor (\neg r \land \neg s) \qquad \text{Identity}$$

$$\equiv \neg r \land ((q \land \neg p) \lor \neg s) \qquad \text{Distributive}$$

$$\Rightarrow \neg r \qquad \text{Simplication Inference}$$

6 Q.6

- a. $\forall x \exists y L(x, y)$
- b. $\exists y \forall x L(x,y)$
- c. $\neg \exists x \forall y L(x,y)$
- d. $\exists y \forall x \neg L(x,y)$
- e. $\exists y \forall x (L(x,y) \land \forall z (L(x,z) \rightarrow y = z))$
- f. $\exists y_1 \exists y_2 (y_1 \neq y_2 \land L(lynn, y_1) \land L(lynn, y_2) \land \forall z (L(lynn, z) \rightarrow (z = y_1 \lor z = y_2)))$
- g. $\exists x (L(x, x) \land \forall y (L(x, y) \rightarrow x = y))$

$7 \quad Q.7$

- 1. $\forall x(I(x) \to E(x))$
- 2. $\forall x \forall y (L(x,y) \rightarrow \neg Q(x,y))$
- 3. $\neg \exists y \forall x L(x,y)$

8 Q.8

- 1. Domain of the x, y are both $\mathbb{N}, P(x, y) = (x \ge y)$. Thus $\exists x \forall y P(x, y)$ is **false** but $\forall y \exists x P(x, y)$ is **true**
- 2. NO, as the example in 1.

9 Q.9

- 1. not equivalent. When P(x) is $x \ge 0$ and Q(x) is x < 0 . Then i is **false** but ii is **true**
- 2. equivalent
- 3. equivalent
- 4. equivalent

10 Q.10

a. Replace $n^3 + 6n + 5$ is odd with P(n) and n is even with Q(n). Thus

$$\neg \forall n \in \mathbb{N}(P(n) \to Q(n)) \equiv \exists n \in \mathbb{N} \neg (P(n) \to Q(n))$$

$$\equiv \exists n \in \mathbb{N} \neg (\neg P(n) \lor Q(n))$$

$$\equiv \exists n \in \mathbb{N}(\neg \neg P(n) \land \neg Q(n))$$

$$\equiv \exists n \in \mathbb{N}(P(n) \land \neg Q(n))$$

Replace the Predict backward, the negation is:

$$\exists n \in \mathbb{N}(n^3 + 6n + 5 \text{ is odd} \land n \text{ is odd})$$

b. Assume the negation is true. Then we can get $\exists n \in \mathbb{N}n \text{ is odd.}$ Thus $n^3 + 6n + 5$ is even, which lead to the negation false. Because of the contradiction, negation is false. So the original statement is true.

11 Q.11

a. using truth table
$$\begin{vmatrix} p & q & (q \lor \neg p) & \neg (p \leftrightarrow (q \lor \neg p)) & \neg p \lor \neg q \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{vmatrix}$$

b. Regardless how long P is and logical connectives P uses, the truth table of P have only $2^2 = 4$ rows. It implies that P have totally $2^{2^2} = 16$ truth tables.

Meanwhile, for the situation in the question, it have $4 \times 3 \times 4$ collections. Because the connection $\land, \lor, \leftrightarrow$ are all symmetric, we can remove half of them for equivalence by the **Commutative laws**, getting $4 \times 3 \times 4/2 = 24$. Despite the Commutative laws. Think other situations that $A \square B$ can

produce equivalence. For the reason that $A \square B$ is the simplest form of

binary connections, $\land, \lor, \leftrightarrow$ can't be equivalent in this form **unless** they are **tautology** or **contradiction**.

Enumerate all the situation that are **tautology** or **contradiction**:

 $\begin{array}{c|c} \text{Tautology} & \text{Contradiction} \\ p \lor \neg p & p \land \neg p \\ q \lor \neg q & q \land \neg q \\ p \leftrightarrow p & p \leftrightarrow \neg p \\ q \leftrightarrow q & q \leftrightarrow \neg q \\ \hline \neg p \leftrightarrow \neg p \\ \neg q \leftrightarrow \neg q & \end{array}$

Just remain one tautology and one contradiction, we can get the **distinct** truth table $A \square B$ can produce: 24 - 5 - 3 = 16. Match the number of P's truth tables.

Thus, we have proven that whatever P's truth table is, we can select one $A \square B$ that satisfy the situation.

12 Q.12

"All movies produced by John Sayles are wonderful. John Sayles produced a movie about coal miners. (This movie about coal miners is wonderful)"

\rightarrow Hypothetical syllogism

"(This movie about coal miners is wonderful) Therefore, there is a wonderful movie about coal miners." \rightarrow Existential Generalization(EG)

13 Q.13

1. counterexample1: $a=\sqrt{2}^{\sqrt{2}}$, $b=\sqrt{2}, a^b=2$ If a is irrational number, then we have proved it. If a is rational number, then we have the $b^b=a$ implies irrational number $\sqrt{2}$ power irrational number $\sqrt{2}$ is rational number $\sqrt{2}^{\sqrt{2}}$

counterexample2: $a = e, b = ln2, a^b = 2$

- 2. counterexample: $a = -\sqrt{2}$, $\sqrt{a} \notin \mathbb{R}$, it's not an irrational number.
 - ullet I guess there miss a condition that a>0. In this condition, proof:

Suppose a is an irrational number but \sqrt{a} is rational ,Then there exist two integers m and n such that gcd(m,n)=1, and $\sqrt{a}=\frac{m}{n}$. We have then $a=\frac{m^2}{n^2}$. It then shows a is a rational number, which contradicts to the assumption. Thus prove the proposition.

3. For example: $x = 2, y = \frac{1}{\ln 2}$

proof: $2^{\frac{1}{\ln 2}} = e$ is an irrational number.

Because $e^{\ln 2} = 2$, thus $2^{\frac{1}{\ln 2}} = e$, which is obviously an irrational number.

14Q.14

Suppose $r = \sqrt{2} + \sqrt{3}$ is rational, then $r^2 = 5 + 2\sqrt{6}$ should be rational. It follows that $\frac{r^2-5}{2}=\sqrt{6}$ should be rational. From the theorem we can get that $\sqrt{6}$ is an irrational number, which contradicts to the assumption. Thus $\sqrt{2} + \sqrt{3}$ is irrational.

15 Q.15

Suppose we have rational number x and irrational number y, we can select an irrational number $z = \frac{x+y}{2}$. Then we just need to proof z is irrational number. proof: Suppose $z = \frac{x+y}{2}$ is rational, then y = 2z - x should be rational, which contradicts to the assumption. Then $z = \frac{x+y}{2}$ is an irrational number.

Hense between every rational number and every irrational number there is an irrational number.

16 Q.16

Suppose $a^2 + b^2 = 2n$, then $a^2 - b^2 = 2n - 2b^2$. It follows that (a + b)(a - b) is even. Thus a + b or a - b is even. Meanwhile, a + b = a - b + 2b, which implies a+b and a-b are both even or both odd. Combine the two condition, a+b is even.

Q.1717

Assume one real root r of f(x) = 0 is neither integral or irrational, which means

r can be expressed by
$$r = \frac{m}{q}$$
 and $m, q \in \mathbb{Z}$ and $\gcd(m, q) = 1$.
Get $f(r) = f(\frac{m}{q}) = a_0 + a_1(\frac{m}{q}) + a_2(\frac{m}{q})^2 + \dots + a_{n-1}(\frac{m}{q})^{n-1} + (\frac{m}{q})^n = 0$

$$\to a_0 q^n + a_1 m q^{n-1} + a_2 m^2 q^{n-2} + \dots + a_{n-1} m^{n-1} q + m^n = 0$$

$$\to a_0 q^n + a_1 m q^{n-1} + a_2 m^2 q^{n-2} + \dots + a_{n-1} m^{n-1} q = -m^n$$

$$\to (a_0 q^{n-1} + a_1 m q^{n-2} + a_2 m^2 q^{n-3} + \dots + a_{n-1} m^{n-1}) q = -m^n$$
Because q is factor of $(a_0 q^{n-1} + a_1 m q^{n-2} + a_2 m^2 q^{n-3} + \dots + a_{n-1} m^{n-1}) q$

$$\to q \text{ is factor of } m^n$$

With the result in the question $\rightarrow q$ is factor of m

Denote that gcd(m,q) = 1

- $\rightarrow q$ is factor of 1
- $\rightarrow q = 1$
- $\rightarrow r = m \ (is \ an \ integer)$

Which is contradicts to the assumption. Thus the real root is either integral or irrational.