Eta-function in modern investigations

Galina V. Voskresenskaya

Samara University Samara, Russia

2018

Part 1.

Basic facts

$$H = \{z \in \mathcal{C}, \ Im(z) > 0\}, \ \Gamma = SL_2(\mathcal{Z}), \ \Gamma(N) \subset \tilde{\Gamma} \subset \Gamma, \ s \in \mathcal{Q} \bigcup \infty \ (cusp).$$

$$\Gamma(N) = \{ \left(egin{array}{cc} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{array}
ight) \in \Gamma: a \equiv d \equiv 1(N), b \equiv c \equiv 0(N) \}.$$

"Slash" —operator:

$$egin{aligned} f\mid_k [\gamma] &= (cz+d)^{-k}f(rac{az+b}{cz+d}),\ \gamma &= \left(egin{array}{cc} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{array}
ight) \in SL_2(\mathbf{Z}). \end{aligned}$$

 $\chi(d)$ is **Dirichlet character** modulo N.

Def.

f(z) is called a **modular form** on H if

- $(1) \ f \mid_k [\gamma] = \chi(d) f(z), orall \ \gamma \in ilde{\Gamma};$
- 2)f(z) is holomorphic on H and in cusps.

The condition 2):

$$f(z) = \sum_{n=n_0}^{\infty} a(n)q^n, \ \ q = e^{2\pi i z}, -$$

Fourier series for f(z) in ∞ . (f(z+1)=f(z)).

If $n_0 \geq 0$, then f(z) is holomorphic in ∞ .

 $s \in \mathbb{Q}, s = \alpha(\infty).$

Fourier series for f(z) in s is by the definition

$$(f\mid_k [lpha])(z) = \sum_{n=n_0}^{\infty} a(n)q_N^n, \ \ q_N = e^{rac{2\pi iz}{N}}.$$

$$ord_s(f)=n_0=\{min\ n:a(n)
eq 0\}.$$
 If $s=eta(s_1),\ eta\in\ ilde{\Gamma},$ then $ord_s(f)=ord_{s_1}(f).$

If $n_0 \ge 0$, then f(z) is holomorphic in s.

If $n_0 > 0$ for all cusps then f(z) is called **cusp form**.

$$M_k(\tilde{\Gamma},\chi), S_k(\tilde{\Gamma},\chi).$$

$$\Gamma_0(N) = \left\{ \left(egin{array}{ccc} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{array}
ight) \in \Gamma: c \equiv 0 (mod \ N)
ight\}.$$

Hecke operators:

lf

$$f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k(\Gamma_0(N),\chi),$$

$$\mathrm{f}(\mathrm{z})\mid \mathrm{T}_{\mathrm{p,k},\chi} = \sum_{n=0}^{\infty} (a(pn) + \chi(p)p^{k-1}a(n/p))q^n.$$

$$\text{If }p\nmid n,\ \ a(n/p)=0.$$

$$\mathrm{f}(\mathrm{z})\mid \mathrm{T}_{\mathrm{m,k},\chi} = \sum_{n=0}^{\infty}(\sum_{d|gcd(m,n)}(\chi(d)d^{k-1}a(mn/d^2))q^n.$$

$$\chi(n)=0,$$
 if $\gcd(N,n)
eq 1.$ If $m\geq 2$, then $f(z)\mid T_{m,k,\chi}\in M_k(\Gamma_0(N),\chi).$ If $f(z)\in S_k(\Gamma_0(N),\chi)$, then $f(z)\mid T_{m,k,\chi}\in S_k(\Gamma_0(N),\chi).$ If $f(z)$ is an eigenform for all $T_{m,k,\chi}$, then $a(mn)=a(n)a(m),$ if $\gcd(m,n)=1.$

η – products

Dedekind's η -function:

$$\eta(z)=q^{1/24}\prod_{n=1}^{\infty}(1-q^n),\ q=e^{2\pi iz},\ z\in H.$$

 η -quotient:

$$f(z) = \prod_j \eta^{t_j}(a_j z), \ \ a_j \in \mathrm{N}, \ t_j \in \mathrm{Z}.$$

If $t_i \in \mathbb{N} \ \forall j$, then f(z) is called η -product.

Notations

$$\prod_{j=1}^s a_j^{t_j}$$

means

$$\prod_{j=1}^s \eta(a_j z)^{t_j}$$

Example

 $1 \cdot 3 \cdot 5 \cdot 15$ means $\eta(z) \eta(3z) \eta(5z) \eta(15z)$.

Cohen-Oesterle formula

Let χ be Dirichlet character, $\chi(-1) = (-1)^k$, f its conducter. If p|N, let r_p denote the maximal power of p dividing N, let s_p denote the maximal power of p dividing f.

$$\lambda(r_p,s_p,p) = \left\{ egin{array}{ll} p^{r'} + p^{r'-1}, & 2s_p \leq r_p = 2r', \ 2p^{r'}, & 2s_p \leq r_p = 2r'+1, \ 2p^{r_p-s_p}, & 2s_p \geq r_p \end{array}
ight. \
onumber \
onum$$

Theorem

If k is an integer, and χ is a Dirichlet modulo N, $\chi(-1)=(-1)^k$, then

$$egin{aligned} dim_{\mathrm{C}}(S_k(\Gamma_0(N),\chi)) - dim_{\mathrm{C}}(M_{2-k}(\Gamma_0(N),\chi)) = \ & rac{(k-1)N}{12} \prod_{p \mid N} (1+p^{-1}) - rac{1}{2} \prod_{p \mid N} \lambda(r_p,s_p,p) + \ &
onumber \ &
u_k \cdot \sum_{x: x^2 + 1 \equiv 0(N)} \chi(x) + \mu_k \cdot \sum_{x: x^2 + x + 1 \equiv 0(N)} \chi(x) \end{aligned}$$

If k>2, then $dim_{\mathbf{C}}(M_{2-k}(\Gamma_0(N),\chi))=0$. The left hand of side of the Theorem 1 reduces to $dim_{\mathbf{C}}(S_k(\Gamma_0(N),\chi))$. If $k\leq 0,\ dim_{\mathbf{C}}(S_k(\Gamma_0(N),\chi))=0$. The left hand of side of the Theorem 1 reduces to $-dim_{\mathbf{C}}(M_{2-k}(\Gamma_0(N),\chi))$.

Multiplicative η — products

f(z)	k	N	$\chi(d)$
		- '	/ • (/
$\eta(23z)\eta(z)$	1	23	$\left(\frac{-23}{d}\right)$
$\eta(22z)\eta(2z)$	1	44	$\left(\frac{-11}{d}\right)$
$\eta(21z)\eta(3z)$	1	63	$\left(\frac{-7}{d}\right)$
$\eta(20z)\eta(4z)$	1	80	$\left(\frac{-5}{d}\right)$
$\eta(18z)\eta(6z)$	1	108	$\left(\frac{-3}{d}\right)$
$\eta(16z)\eta(8z)$	1	128	$\left(\frac{-2}{d}\right)$
$\eta^2(12z)$	1	144	$\left(\frac{-1}{d}\right)$
$\eta^4(6z)$	2	36	1
$\eta^2(8z)\eta^2(4z)$	2	32	1
$\eta^2(10z)\eta^2(2z)$	2	20	1
$\eta(12z)\eta(6z)\eta(4z)\eta(2z)$	2	24	1
$\boxed{\eta(15z)\eta(5z)\eta(3z)\eta(z)}$	2	15	1
$\boxed{\eta(14z)\eta(7z)\eta(2z)\eta(z)}$	2	14	1
$\eta^2(9z)\eta^2(3z)$	2	27	1
$\eta^2(11z)\eta^2(z)$	2	11	1

Multiplicative η — products

f(z)	k	N	$\chi(d)$
$\eta^3(6z)\eta^3(2z)$	3	12	$\left(\frac{-3}{d}\right)$
$\eta^6(4z)$	3	16	$\left(\frac{-1}{d}\right)$
$\eta^2(8z)\eta(4z)\eta(2z)\eta^2(z)$	3	8	$\left(\frac{-2}{d}\right)$
$\eta^3(7z)\eta^3(z)$	3	7	$\left(\frac{-7}{d}\right)$
$\eta^2(6z)\eta^2(3z)\eta^2(2z)\eta^2(z)$	4	6	1
$\eta^4(5z)\eta^4(z)$	4	5	1
$\eta^8(3z)$	4	9	1
$\eta^4(4z)\eta^4(2z)$	4	8	1
$\eta^4(4z)\eta^2(2z)\eta^4(z)$	5	4	$\left(\frac{-1}{d}\right)$
$\eta^6(3z)\eta^6(z)$	6	3	1
$\eta^{12}(2z)$	6	4	1
$\eta^8(2z)\eta^8z)$	8	2	1
$\eta^{24}(z)$	12	1	1
$\eta^3(8z)$	$\frac{\frac{3}{2}}{\frac{1}{2}}$	4	$\left(\frac{-4}{d}\right)$
$\eta(24z)$	$\frac{\overline{1}}{2}$	576	$\left(\frac{12}{d}\right)$

Eta-quotients as modular forms

Let
$$f(z)$$
 is an $\eta-$ quotient of the kind $\prod_j \eta(a_jz)^{t_j},$ $k=rac{1}{2}\sum_j t_j\in {f Z},$ 1)
$$\sum_j a_jt_j\equiv 0 (mod\ 24);$$
 2)
$$\sum_j rac{N}{a_j}t_j\equiv 0 (mod\ 24),$$

then f(z) satisfies the following condition

$$\begin{split} f\left(\frac{az+b}{cz+b}\right) &= \chi(d)(cz+d)^k f(z),\\ \forall \left(\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}\right), \ \chi(d) &= \left(\frac{(-1)^k \ s}{d}\right), \ s = \prod_i a_j^{t_j}. \end{split}$$

Eta-quotients in cusps (A. Biagioli, 1990)

Let $m,\ n,\ N$ be natural numbers, $n|N,\ (m,n)=1.$ If f(z) satisfies the conditions of the previous theorem , then the order of vanishing of f(z) at the cusp $\frac{m}{n}$ is

$$rac{N}{24}\sum_jrac{(n,a_j)^2t_j}{(n,rac{N}{n})na_j}.$$

Multiplicative η — products have in each cusp zero of order 1.

Part 2.

Dedekind eta-function and group representations

Frame-shape correspondence

Let Φ be a representation of a finite group G in a vector space of over $\mathbb C$ such as the characteristic polynomial of an element $g\in G$ has the form

$$P_g(x) = \prod_{j=1}^s (x^{a_j} - 1)^{t_j}, \ a_j \in \mathbb{N}, \ t_j \in \mathbf{Z}.$$

Frame-shape correspondence

$$g o \eta_g(z) = \prod_{j=1}^s \eta(a_j z)^{t_j}$$

The symbol $\prod_{j=1}^r a_j^{t_j}$ is called Frame-shape.

$M\eta P$ -groups: the idea

Basic fact

If g is an element in G such that $\eta_g(z)$ associated with g by a representation is a multiplicative η -product then $\eta_h(z), h=g^k,$ are also multiplicative η -products.

Example

$$G \cong Z_{15} \cong < g > .$$
 If $g \leftrightarrow \eta(15z)\eta(5z)\eta(3z)\eta(z)$, then $g^2, g^4, g^7, g^8, g^{11}, g^{13}, g^{14} \leftrightarrow \eta(15z)\eta(5z)\eta(3z)\eta(z),$ $g^3, g^6, g^9, g^{12} \leftrightarrow \eta^4(5z)\eta^4(z),$ $g^5, g^{10} \leftrightarrow \eta^6(3z)\eta^6(z), e \leftrightarrow \eta^{24}(z).$

$M\eta P$ –groups: the definition

Definition

A group G is called $M\eta P-$ group, if there is a faithful representation Φ such that $\eta_{g,\Phi}(z)$ is a multiplicative $\eta-$ product $\forall g\in G.$

There are $M\eta P$ -subgroups in each group (may be trivial).

Classification problems

- 1)To classify all $M\eta P-$ groups;
- 2)to describe $M\eta P-$ subgroups in various groups and the corresponding representations.

$M\eta P$ - groups: the case of simple groups

Theorem

Finite simple group G is $M\eta P-$ group iff G is a subgroup in M_{24} .

The proof in G.V.,

" Finite simple groups and multiplicative η — products ", Zapiski POMI, 375, 71–91, 2010.

The group $L_2(7)$.

	1A	2A	3A	4A	7A	7B
χ_1	1	1	1	1	1	1
χ_2	3	- 1	0	1	b ₇	$\overline{b_7}$
χ 3	3	- 1	0	1	$\overline{b_7}$	b_7
χ_4	6	2	0	0	- 1	- 1
χ_5	7	- 1	1	- 1	0	0
χ_6	8	0	- 1	0	1	1

$$b_7 = \zeta_7 + \zeta_7^3 + \zeta_7^5.$$

 $\Phi_1=3T_1\oplus 3T_5.$

2A	3A	4A	7A
$\eta^{12}(2z)$	$\eta^6(3z)\eta^6(z)$	$\eta^6(4z)$	$\eta^3(7z)\eta^3(z)$

 $\Phi_2=T_1\oplus T_5\oplus 2T_6.$

2A	3A	4A	7A
$\eta^{12}(2z)$	$\eta^8(3z)$	$\eta^6(4z)$	$\eta^3(7z)\eta^3(z)$

 $\Phi_3=5T_1\oplus 2T_4\oplus T_5.$

2A	3A
$\eta^8(2z)\eta^8(z)$	$\eta^6(3z)\eta^6(z)$

4A	7A
$\overline{\eta^4(4z)\eta^2(2z)\eta^4(z)}$	$\eta^3(7z)\eta^3(z)$

Classes of conjugate elements in M_{24}

element	weight	level	element	weight	level
1^{24}	12	1	12^2	1	144
$1^8 \cdot 2^8$	8	2	$3 \cdot 21$	1	63
$1^6 \cdot 3^6$	6	3	$2^4\cdot 4^4$	4	8
$1^4 \cdot 5^4$	5	4	$2^2 \cdot 10^2$	2	20
$1^3 \cdot 7^3$	3	7	$1 \cdot 2 \cdot 7 \cdot 14$	2	14
$1^2 \cdot 11^2$	2	11	$1 \cdot 3 \cdot 5 \cdot 15$	2	15
$1 \cdot 23$	1	23	$2\cdot 4\cdot 6\cdot 12$	2	24
2^{12}	6	4	$1^2\cdot 2^2\cdot 3^2\cdot 6^2$	4	6
3^8	4	9	$1^4 \cdot 2^2 \cdot 4^4$	5	4
4^6	3	16	$1^2 \cdot 2 \cdot 4 \cdot 8^2$	3	8
6^4	2	36			

$M\eta P$ –groups: results

1

Metacyclic $M\eta P-$ groups of the kind $< a,b:a^m=e,\ b^s=e,b^{-1}ab=a^r>$ where the intersection of the subgroups < a> and < b> is trivial are described.

2

abelian groups;

3

If G is an $M\eta P-$ group of order $p^k,\ p-$ odd prime, then G is one of the following groups:

$$S(3) \cong Z_3, \ S(3) \cong Z_3 \times Z_3, \ Z_9,$$

$$S(3) \cong \langle a, b, c : a^3 = e, b^3 = e, c^3 = e, ab = bac, ac = ca, bc = cb \rangle$$

$$S(5)\cong Z_5,\ S(7)\cong Z_7,\ S(11)\cong Z_{11},\ S(23)\cong Z_{23}.$$

4

 $\begin{array}{l} M\eta P-\text{ groups of odd order are subgroups in following groups:} \\ G_1\cong < a,b,c:a^3=b^3=c^3=e,\ ab=bac,\ ac=\\ ca,\ bc=cb>,\\ G_2\cong < a,b:a^{21}=b^3=e,\ b^{-1}ab=a^4>,\\ G_3\cong < a,b:a^{23}=b^{11}=e,\ b^{-1}ab=a^{10}>,\\ G_4\cong < a,b:a^{11}=b^5=e,\ b^{-1}ab=a^5>, \end{array}$

5

All groups of order 16 and 24 are $M\eta P$ -groups.

6

 $M\eta P$ -groups in $SL(5, \mathbb{C})$.

 $G_5\cong Z_9,\ G_6\cong Z_{15}.$

$SL(5,{ m C})$ and $\eta-$ products.

Theorem.

Let Ad be the adjoint representation of the group SL(5,C)and $g \in SL(5,C)$, $ord(g) \neq 3,6,9,21$, is such that the characteristic polynomial of the operator Ad(g) is of the form $P_g(x) = \prod_{i=1}^s (x^{a_j} - 1)^{t_j}, \ a_j \in \mathbb{N}, \ t_j \in \mathbb{N}.$ Then $\eta_g(z) = \prod_{j=1}^s \eta^{t_j}(a_j z)$ is a multiplicative η -product of the weight k(g) > 1, and all multiplicative η -products of the weight k(q) > 1 can be obtained by this way. If ord(g) = 3, 6, 9, 21 then by this way we can obtain all multiplicative η -products of the weight k(q) > 1. Moreover in this correspondence there are five modular forms which are not multiplicative η -products:

$$\begin{split} \eta^4(3z)\eta^{12}(z),\; \eta^7(3z)\eta^3(z),\; \eta^2(6z)\eta^6(2z),\\ \eta^2(9z)\eta(3z)\eta^3(z),\; \eta(21z)\eta^3(z). \end{split}$$

$M\eta P-$ groups in SL(5,C).

The maximal finite subgroups of $SL(5,\mathbf{C})$ whose elements g have characteristic polynomials of the form $\prod_{j=1}^s (x^{a_j}-1)^{t_j}$ in adjoint representation and the corresponding cusp forms $\eta_g(z) = \prod_{j=1}^s \eta^{t_j}(a_jz)$ are multiplicative η -products, are the direct products of the group \mathbf{Z}_5 (which is generated by the scalar matrix) and one of the following groups: $S_4,\ A_4 \times \mathbf{Z}_2,\ \mathbf{Q}_8 \times \mathbf{Z}_3,\ D_4 \times \mathbf{Z}_3$, the binary tetrahedral group, the metacyclic group of order 21, D_6 , the metacyclic group of order 12:

$$< S, \ T: S^3 = T^2 = (ST)^2>$$
, all groups of order 16, ${f Z}_3 imes {f Z}_3, \ {f Z}_{15}, \ {f Z}_{14}, \ {f Z}_{11}, \ {f Z}_{10}, \ {f Z}_9$.

Problem .

To investigate $g \in SL(n,\mathbf{C})$ such that $P_g(x) = \prod_{j=1}^r (x^{a_j}-1)^{t_j}, \ a_j \in \mathbf{N}, \ t_j \in \mathbf{N}, \ \Phi = Ad$, and associated functions $\eta_{g,\Phi}(z)$.

Ramanujan characters: motivation

If $f(z) \in S_k(\Gamma_0,\chi)$ is a Hecke eigenform than

$$L_f(s) = \prod_p \left(1 - rac{a(p)}{p^s} + rac{\psi(p)}{p^{2s}}
ight)^{-1}$$

$$\psi(p) = a^2(p) - a(p^2).$$

Ramanudjan characters for M_{24}

G.Mason considers M_{24} in the article

 ${}^{\rm w}M_{24}$ and certain automorphic forms". Contemporary Math., v.45,1985,223-244.

 M_{24} is considered as a permutation group on 24 letters.

$$g=1^{j_1}\cdot 2^{j_2}...r^{j_r}$$
 $k=k(g)=rac{1}{2}\cdot (number\ of\ cycles\ g)$

N=N(g) = product of the longest and the shortest cycle.

$$\chi_p(g) = \left(rac{(-1)^k 1^{j_1} \cdot 2^{j_2} ... r^{j_r}}{p}
ight)$$

Ramanujan character

$$\psi_p(g) = \begin{cases} p^{k(g)-1}\chi_p(g), & (ord(g), p) = 1, \\ 0, & (ord(g), p) = p. \end{cases}$$

Theorem (Mason)

For $M_{24} \ \psi_p^2$ is a character; $\ \psi_p, \ \ p \neq 3,$ is a character.

Ramanujan character defined by a representation

Let Φ be a representation of a finite group G in a vector space of an even dimension over $\mathbb C$ such as the characteristic polynomial of an element $g\in G$ has the form

$$P_g(x) = \prod_{j=1}^s (x^{a_j} - 1)^{t_j}, \ a_j \in \mathbb{N}, \ t_j \in \mathbf{Z}.$$

Frame-shape correspondence

$$g o \eta_g(z) = \prod_{j=1}^s \eta(a_jz)^{t_j}$$

Ramanujan character

$$\psi_p(g) = \left\{ \begin{array}{ll} p^{k(g)-1}\chi_p(g), & (ord(g),p) = 1, \\ 0, & (ord(g),p) = p. \end{array} \right.$$

Eta-products for M_{24} .

All $\eta-$ products associated with elements of M_{24} are Hecke eigenforms and ψ_p appears in Euler product.

If we consider $\Phi=T_1\oplus T_{23}$, then $\eta_{g,\Phi}(z)$ are as above.

	1 0 20)
class	modular form
2A	$\eta^8(2z)\eta^8(z)$
2B	$\eta^{12}(2z)$
3A	$\eta^6(3z)\eta^6(z)$
3B	$\eta^8(3z)$
4 <i>A</i>	$\eta^4(4z)\eta^4(2z)$
4B	$\eta^4(4z)\eta^2(2z)\eta^4(z)$
4C	$\eta^6(4z)$
5A	$\eta^4(5z)\eta^4(z)$
6 <i>A</i>	$\eta^2(6z)\eta^2(3z)\eta^2(2z)\eta^2(z)$
6B	$\eta^4(6z)$

7A	$\eta^3(7z)\eta^3(z)$
8 <i>A</i>	$=\eta^2(8z)\eta(4z)\eta(2z)\eta^2(z)$
10A	$\eta^2(10z)\eta^2(2z)$
11 <i>A</i>	$\eta^2(11z)\eta^2(z)$
12A	$\eta(12z)\eta(6z)\eta(4z)\eta(2z)$
12B	$\eta^2(12z)$
14 <i>A</i>	$\eta(14z)\eta(7z)\eta(2z)\eta(z)$
15A	$\eta(15z)\eta(5z)\eta(3z)\eta(z)$
21 <i>A</i>	$\eta(21z)\eta(3z)$
23A	$\eta(23z)\eta(z)$

Ramanujan characters and Weyl characters

Let us consider a simple Lie group G_0 of an even rang r. Let G be a finite subgroup in G_0 such that the characteristic polynomial of Ad(g) has the form $P_g(x) = \prod_{j=1}^s (x^{a_j} - 1.)^{t_j}$, $ch_{(p-1)\rho}$ is Weyl character of the irreducible representation of G_0 with the leading weight $(p-1)\rho$, where ρ is a half-sum of positive roots of $Lie(G_0)$. $\forall g \in G$ and prime p that is coprime with the ord(g) we have

$$\psi_p(g) = \left(rac{-1}{p}
ight)^{rac{dim G_0}{2}} p^{rac{r}{2}-1} ch_{(p-1)
ho}.$$

Sets of η -functions which define groups.

 (G,Φ) —**set** of η —functions:

$$S = \{\eta_{g,\Phi}(z)\}_{\{g \in G\}};$$

Reduced (G, Φ) —**set** of η —functions is obtained by omitting in S the same forms.

Example.

$$\begin{split} (S_3,4T_{reg}) &= \\ \{\eta_e(z),\; \eta_a(z),\; \eta_{a^2}(z),\; \eta_b(z),\; \eta_{ab}(z),\; \eta_{a^2b}(z)\} &= \\ \{\eta^{24}(z),\; \eta^8(3z),\; \eta^8(3z),\; \eta^{12}(2z),\; \eta^{12}(2z),\; \eta^{12}(2z).\} \\ (S_3,4T_{reg})_{red} &= \{\eta^{24}(z),\; \eta^8(3z),\; \eta^{12}(2z).\} \end{split}$$

Def.

```
\eta—products f_1,...,f_t are called G—connected if \{f_1,...,f_t\} is (G,\Phi)_{red}-set; \eta—products f_1,...,f_t are called G—dependent if \{f_1,...,f_t\}\subset S,\quad S\ is\ a\ (G,\Phi)_{red}-set.
```

Def.

Let S_1 be a reduced (G_1, Φ_1) – set,

 S_2 - reduced (G_2, Φ_2) - set,

the intersection of S_1 and S_2 is a maximal set S, with the following properties:

- 1) each reduced (H_j, Ψ_j) set V_j , which is included in S_1 and in S_2 , contains S_j ;
- 2) S is a reduced (H, Ψ) —set for a group H and a faithful representation Ψ .

Def.

Let $S_1=\{f_1,...,f_s\}$ — be a reduced (G_1,Φ_1) —set, $S_2=\{g_1,...,g_t\}$ —reduced (G_2,Φ_2) —set, set, **the union** of the sets S_1 and S_2 is a set U, which we obtain from $S=\{f_ig_j\},\ i=\overline{1,s},\ j=\overline{1,t},$ by deleting the same forms.

U is a $(G_1 imes G_2, T)_{red}-$ set, the representation T is defined by the formula :

$$T(g) = \Phi_1(g_1) \oplus \Phi_2(g_2),$$

$$g=g_1g_2,\ g_1\in G_1,\ g_2\in G_2.$$

Example.

Let

$$egin{aligned} S_1 &= \{\eta^{24}(z),\; \eta^8(3z),\; \eta^{12}(2z)\} - \ & ext{a } (S_3,\Phi_1)_{red} - ext{ set, } \Phi_1 = 4T_{reg}; \ S_2 &= \{\eta^{24}(z),\; \eta^6(4z),\; \eta^{12}(2z)\} - \ &(D_4,\Phi_2)_{red} - ext{ set, } \Phi_2 = 3T_{reg}. \end{aligned}$$

$$egin{aligned} S &= \{\eta^{24}(z), \; \eta^{12}(2z)\}, \ U &= \{\eta^{48}(z), \; \eta^6(4z)\eta^{24}(z), \; \eta^{12}(2z)\eta^{24}(z), \ \eta^8(3z)\eta^{24}(z), \; \eta^6(4z)\eta^{12}(2z), \ \eta^6(4z)\eta^8(3z), \; \eta^8(3z)\eta^{12}(2z), \; \eta^{24}(2z)\}. \end{aligned}$$

Problem.

To investigate this notions to give an example of G-independent $\eta-$ products.

Problem.

To investigate the following phenomenon: the sets $S_1,...,S_t$ can be considered as $(G,\Phi_1)_{red}-,...,(G,\Phi_t)_{red}-$ sets only for the unique group G.

Theorem.

Let p be odd prime, $p \neq 3, 7$.

Then D_p is defined by the the set

$$\{\eta^{24p}(z), \ \eta^{24}(pz), \ \eta^{12p}(2z)\}.$$

The groups D_3 and D_7 are defined by the following sets:

$$D_{3} \cong S_{3} : \{\eta^{24}(z), \, \eta^{8}(3z), \, \eta^{12}(2z)\} \land \{\eta^{24}(z), \, \eta^{3}(6z)\eta^{6}(z), \, \eta^{11}(2z)\eta^{2}(z)\}; \\ D_{7} : \{\eta^{168}(z), \, \eta^{24}(7z), \, \eta^{84}(2z)\} \land \{\eta^{24}(z), \, \eta^{3}(7z)\eta^{3}(z), \, \eta^{10}(2z)\eta^{4}(z)\}$$

Part 3.

Structure theorems

The idea of cutting

Let $f(z) \in S_l(\Gamma_0(N)), l, k,$ —natural even numbers, k > l, then

$$S_k(\Gamma_0(N)) \cong f(z) \cdot M_{k-l}(\Gamma_0(N)) \oplus V,$$

 $dim\ V$ depends on N, l and sometimes on k modulo 12.

Classical fact

$$\Delta(z) = \eta^{24}(z) = \frac{E_4(z)^3 - E_6(z)^2}{1728}.$$

$$S_k(\Gamma) = \Delta(z) \cdot M_{k-12}(\Gamma).$$

Analogous theorems can be proved for all levels corresponding to multiplicative eta-functions .

The structure theorems: model example

Theorem .

Let $N \equiv 5 \pmod{12}$. Then

$$S_k(\Gamma_0(N)) = V_1 \oplus V_2 \oplus V_3,$$

where

$$egin{aligned} V_1 &= \eta^4(Nz)\eta^4(z) \cdot M_{k-4}(\Gamma_0(N)), \ V_2 &= < \eta^4(Nz)\eta^4(z) >^\perp \cdot G(z), \ V_3 &= S_2(\Gamma_0(N)) \cdot H(z), \end{aligned}$$

$$G(z)=E_4^{rac{k-4}{4}}(z), H(z)=E_6^{rac{k-2}{6}}(z), ext{if } k\equiv 0\pmod 4, \ G(z)=E_6^{rac{k-4}{6}}(z), H(z)=E_4^{rac{k-4}{4}}(z), ext{if } k\equiv 2\pmod 4.$$

The exact cutting: even weight

Theorem .

Let k, l — even numbers, k > l. Then

$$S_k(\Gamma_0(N)) \cong f(z) \cdot M_{k-l}(\Gamma_0(N)) \Leftrightarrow$$

1)f(z) — multiplicative η — product,

or

2)
$$N = 17, k \equiv 2 \pmod{4}, k \geq 6, l = 2;$$

$$N=19, k\equiv 2 \pmod 6, k\geq 8, l=2.$$

The exact cutting: common case

Theorem.

Let $N \neq 3, 17, 19$.

Let χ be a quadratic character modulo N such that $\chi(-1)=-1, k, l$ are positive integers. Then

$$S_k(\Gamma_0(N), \chi^k) = f(z) \cdot M_{k-l}(\Gamma_0(N), \chi^{k-l}),$$

where $f(z) \in S_l(\Gamma_0(N), \chi^l)$ iff f(z) is a multiplicative eta-product.

Here χ^l is trivial if l is even.

Modular forms as η — polynomials

Classical fact

Each element $f(z) \in M_k(\Gamma)$ is a polynomial of $E_4(z)$ and $E_6(z)$.

$$E_4(z) = rac{\eta^{16}(z)}{\eta^8(2z)} + 2^8 \cdot rac{\eta^{16}(2z)}{\eta^8(z)} \; ,$$

$$E_6(z) = rac{\eta^{24}(z)}{\eta^{12}(2z)} - 2^5 \cdot 3 \cdot 5 \cdot \eta^{12}(2z) \ - 2^9 \cdot 3 \cdot 11 \cdot rac{\eta^{12}(2z)\eta^8(4z)}{\eta^8(z)} \ + 2^{13} \cdot rac{\eta^{24}(4z)}{\eta^{12}(2z)}.$$

Modular forms as eta-polynomials.

- 1) Each element f(z) from $M_{4l}(\Gamma_0(2))$ is a homogeneous polynomial of functions $\eta^{-8}(z)\eta^{16}(2z)$ and $\eta^{16}(z)\eta^{-8}(2z)$. If f(z) is a cusp form, then f(z) is divided by $\eta^8(z)\eta^8(2z)$.
- 2) Each element f(z) from $M_{3l}\left(\Gamma_0(3), \left(\frac{-3}{d}\right)^l\right)$ is a homogeneous polynomial of functions $\eta^{-3}(z)\eta^9(3z)$ $\eta^9(z)\eta^{-3}(3z)$. If f(z) is a cusp form, f(z) is divided by $\eta^6(z)\eta^6(3z)$.
- 3) Each element f(z) from $M_l\left(\Gamma_0(4),\ \left(\frac{-1}{d}\right)^l\right)$ is a homogeneous polynomial of functions $\eta^{-4}(z)\eta^{10}(2z)\eta^{-4}(4z);\ \eta^{-4}(2z)\eta^8(4z).$ If f(z) is a cusp form, then f(z) is divided by $\eta^4(z)\eta^2(2z)\eta^4(4z)$ and its weight more than 4; if f(z) is a cusp form of the weight more than 5, then it is also divided by $\eta^{12}(2z)$.

Modular forms as eta-polynomials.

Each modular form $f(z) \in M_k(\Gamma_0(N), \chi^k)$ is a homogeneous polynomial of functions $f_1(z), ..., f_s(z)$; if f(z) is a cusp form then it is divided by g(z). The values $N, \chi, f_1(z), ..., f_s(z), g(z)$ are given in the following table.

Table.

N	χ	$f_1(z),,f_s(z)$	g(z)
		$3^{-1} \cdot 9^3$; $4^3 \cdot 12^{-1}$; $6^{-1} \cdot 18^3$; $12^{-1} \cdot 36^3$;	
36	$\left(\frac{-3}{d}\right)$	$6^{-2} \cdot 12 \cdot 18^{6} \cdot 36^{-3}; 1^{-2} \cdot 2 \cdot 3^{6} \cdot 6^{-3}$	6^4
32	$\left(\frac{-1}{d}\right)$	$4^{-2} \cdot 8^4; 4^4 \cdot 8^{-2}; 2^4 \cdot 4^{-2}; 1^{-1} \cdot 2^{10} \cdot 4^{-4}$	$4^2 \cdot 8^2$
27	$\left(\frac{-3}{d}\right)$	$3^3 \cdot 9^{-1}; 1^3 \cdot 3^{-1}; 3^{-1} \cdot 9^3$	$3^2 \cdot 9^2$
		$1 \cdot 3^{-1} \cdot 4 \cdot 6 \cdot 8^{-1} \cdot 24;$	
		$1^{-1} \cdot 2 \cdot 3 \cdot 8 \cdot 12 \cdot 24^{-1}; \ 2^{-4} \cdot 4^{8};$	
24	$\left(\frac{-6}{d}\right)$	$6^{-4} \cdot 12^{8}; \ 12^{-4} \cdot 24^{8}; \ 4^{-2} \cdot 8^{4} \cdot 12^{-2} \cdot 24^{4}; \ 4^{-4} \cdot 8^{8}$	$2\cdot 4\cdot 6\cdot 12$
		$1 \cdot 2 \cdot 4^{-1} \cdot 5^{-1} \cdot 10 \cdot 20;$	
		$1^{-1} \cdot 2 \cdot 4 \cdot 5 \cdot 10 \cdot 20^{-1}; \ 2^{-4} \cdot 4^{8};$	
20	$\left(\frac{-5}{d}\right)$	$10^{-4} \cdot 20^8$; $2^{-2} \cdot 4^4 \cdot 10^{-2} \cdot 20^4$	$2^2 \cdot 10^2$
15	$\left(\frac{-15}{d}\right)$	$1^2 \cdot 3^{-1} \cdot 5^{-1} \cdot 15^2; 1^{-1} \cdot 3^2 \cdot 5^2 \cdot 15^{-1};$	
	, ,	$1^3 \cdot 3^{-1} \cdot 5^3 \cdot 15^{-1}$	$1 \cdot 3 \cdot 5 \cdot 15$
14	$\left(\frac{-7}{d}\right)$	$1^2 \cdot 2^{-1} \cdot 7^2 \cdot 14^{-1}; \ 1^{-1} \cdot 2^2 \cdot 7^{-1} \cdot 14^2;$	
	(-)	$1^5 \cdot 2^{-3} \cdot 7^{-3} \cdot 14^5$	$1 \cdot 2 \cdot 7 \cdot 14$

Part 4.

Arithmetic results

Complex multiplication and analogous formulas.

Let $\mathbf{K}=\mathbf{Q}(\sqrt{-\mathbf{D}})$ be an imaginary quadratic field with discriminant -D, and let O_K be its ring of algebraic integers. Let M be a nontrivial ideal in O_K and let I(M) denote the group of fractional ideals prime to M. A Hecke Grossencharacter ϕ of weight $k\geq 2$ with modulus M is a homomorphism

$$\phi: I(M) \to \mathbf{C}^*$$

such that for each $\alpha \in K^*, \ \alpha \equiv 1 (mod M)$ we have

$$\phi(\alpha O_K) = \alpha^{k-1}.$$

Let

$$\omega_\phi(n) = rac{\phi((n))}{n^{k-1}}$$

for every integer n coprime to M.

$$\Psi(z) = \sum_{\mathfrak{a}} \phi(\mathfrak{a}) q^{N(\mathfrak{a})},$$

where the sum is over the integral ideals \mathfrak{a} that are prime to M.

Dummit, Kisilevsky and McKay have found for 16 of 28 multiplicative η -products of the integer weight L- functions with grossen-characters of imaginary quadratic fields which are equal to the Mellin transformations of this forms. They have proved that for other 12 multiplicative η -products of the integer weight this correspondence is impossible.

Example.

$$\Psi(z) = \eta^6(4z), \quad K = Q(\sqrt{-1}), \quad M = (2), \\ \Psi(z) \in S_3(\Gamma_0(16)), (\frac{-4}{\cdot}).$$

We present the analogous formulas where instead of the ring of integers of an imaginary quadratic field we consider orders in the algebra of quaternions and the Cayley algebra.

Let **H** be the algebra of quaternions over ${\bf Q}$ and Γ_4 is the lattice of the Hurwitz quaternions :

$$\alpha = \frac{a+bi+cj+dk}{2},$$

$$a \equiv b \equiv c \equiv d \pmod{2}, a, b, c, d \in \mathbf{Z}.$$

Then

$$\frac{1}{12} \sum_{\alpha \in \Gamma_4 \subset \mathcal{H}} \alpha^6 e^{2\pi i z N(\alpha)} = \eta^8(z) \eta^8(2z).$$

Furthermore

$$\frac{1}{8} \sum_{\substack{\alpha \in \mathbf{H}, \\ a+b+c+d \equiv 1 \pmod{2}}} \alpha^4 e^{2\pi i z N(\alpha)}$$

$$= \eta^{12}(2z),$$

1090

Theorem. Let Ca be the Cayley algebra. Then we can construct in Ca the order on which the bilinear form

$$<\alpha,\beta>=\alpha \bar{\beta}+\beta \bar{\alpha}$$

defines the structure of the even unimodular lattice of the type Γ_8 where the root system E_8 is closed under the multiplication in Cayley algebra.

Then the sum

$$rac{1}{12}\sum_{lpha\in\Gamma_8\subset Ca}lpha^8e^{2\pi izNlpha}$$

over all elements of this order is equal to the cusp form $\eta^{24}(z)$.

Shimura sums.

Let a(n) be an arithmetic function and c a positive integer (a(x) = 0, if x is not integer).

Then for m > 1 the Shimura sum :

$$Sh(m,a,c) = \sum_{j=1}^{m-1} a\left(rac{m^2-j^2}{c}
ight).$$

Shimura sums

$$Let \ f(z) \ be \ \ \eta(18z)\eta(6z) = \sum_{n=1}^{\infty} a(n)q^n \in S_1(108,\chi).$$

- 1) If p is inert in $K = \mathbb{Q}(\sqrt{-3})$, then $p = -2Sh(p^2, a, 1) 1.$
- $2) \ If \ p \ splits \ in \ K = \mathrm{Q}(\sqrt{-3}), \ then$ $p = (2Sh(p,a,1) + a^2(p))^2 2Sh(p^2,a,1)$ $-a^2(p^2) 2Sh(p,a,1).$

 $In\ particular,\ if\ |a(p)|=1,\ then$

$$p = 4Sh^{2}(p, a, 1) - 2Sh(p^{2}, a, 1) + 2Sh(p, a, 1) + 1;$$

$$if |a(p)| = 2, then$$

$$p = 4Sh^{2}(p, a, 1) - 2Sh(p^{2}, a, 1) + 14Sh(p, a, 1) - 5.$$

Shimura sums

Let
$$f(z)$$
 be $\eta^2(12z) = \sum_{n=1}^{\infty} a(n)q^n \in S_1(144,\chi).$

1) If p is inert in $K = Q(\sqrt{-3})$, then

$$p = -2Sh(p^2, a, 1) - 1.$$

2) If p splits in $K = \mathbb{Q}(\sqrt{-3})$, then $p = l^2 + 3m^2$, where $(\frac{l}{3})$ l = Sh(p, a, 1) + 2.

$$p = (2Sh(p, a, 1) + a^{2}(p))^{2} - 2Sh(p^{2}, a, 1) -$$

$$a^{2}(p^{2}) - 2Sh(p, a, 1).$$

Open problems

To classify all $M\eta P$ — groups.

Investigate the structure of $S_k(\Gamma_0,\chi)$.

Ken Ono' problem: describe the spaces generated by eta-polynomials.

Describe the spaces with bases formed by eta-quotients .

Investigate Shimura sums.

G.V., Dedekind eta-functions in modern investigations// VINITI, 136, p. 103–137, 2017.