

Funções com Ranges

Funções e Sub-Rotinas

Variant é o padrão quando não declaramos o tipo explicitamente. Integer Double String Boolean Range ... End Sub

```
FUNÇÃO: ByRef (padrão) / ByVal
```

```
Function <nome>(<p1> As <t1>, <p2> As <t2>, . . .) As <t> <comandos> <comandos> Função tem imagem, sub-rotina não.
```

DIMENSIONAMENTO DE VARIÁVEIS NO CORPO:

```
Dim <v1> As <t1>, <v2> As <t2>, ...
```

INDEXAÇÃO DE VARIÁVEIS NO CORPO:

```
Dim/ReDim < v > (<i1> To <f1>, <i2> To <f2>, ...) As <t>
```


Fórmulas de Matriz (Range)

4 1,0 2,0 -1,0 0,0 5 3,0 4,0 + 5,0 -8,0 = 5,0 6,0 2,0 -3,0 = 1 1) Insira a fórmula de matriz em um "Range": 1) Insira a fórmula na primeira célula; 2) marque o "Range";	8,	0,0 • 8,0 7,0	2,0 -4,0 3,0	
6 5,0 6,0 2,0 -3,0 Colagem de fórmula de matriz em um "Range": 1) Insira a fórmula na primeira célula;	- 	· ·		
Colagem de fórmula de matriz em um "Range": 1) Insira a fórmula na primeira célula;	7,	7,0	3,0	
1) Insira a fórmula na primeira célula;				
3) toque na tecla F2 para edição; 4) segurando as teclas Ctrl e Shift(⑴), toque na tecla Enter(♂); 5) observe que nas células do "Range" os			=B4:C5+E4 range ra	ange

1,0	2,0		-1,0	0,0		-1,0	0,0
3,0	4,0	*	5,0	-8,0	=	15,0	-32,0
5,0	6,0		2,0	-3,0		10,0	-18,0

Fórmulas de Matriz (Range)

	1,0	2,0		-1,0	0,0		2,0	2,0		1,5	2,0
7	3,0	4,0	-	5,0	-8,0	/	2,0	2,0	=	0,5	8,0
	5,0	6,0		2,0	-3,0		2,0	2,0		4,0	7,5

		1,0	2,0		4,0	8,0
4,0	*	3,0	4,0	=	12,0	16,0
		5,0	6,0		20,0	24,0

1,0	2,0				6,0	7,0
3,0	4,0	+	5,0	=	8,0	9,0
5,0	6,0				10,0	11,0

1,0	2,0				1,0	4,0
3,0	4,0	٨	2,0	=	9,0	16,0
5,0	6,0				25,0	36,0

	1,0	2,0		0,5	-0,4
COS(3,0	4,0) =	-1,0	-0,7
	5,0	6,0		0,3	1,0

Elabore uma função em *VBA* para calcular um determinante 2 × 2.

$$det2x2(A) = \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = A_{11} \cdot A_{22} - A_{21} \cdot A_{12}$$

Teste Exercício 01						
Δ	det2x2(A)					
1,0	2,0	1.0				
3,0	5,0	-1,0				
3,0	2,0	17.0				
-1,0	5,0	17,0				
2,0	2,0	0.0				
3,0	3,0	0,0				
-4,0	5,0	2.0				
-5,0	7,0	-3,0				
1,0	3,0	2.0				
2,0	4,0	-2,0				

Function det2x2(A)

' Exercício 01: determinante 2 x 2 det2x2 = A(1, 1) * A(2, 2) -A(2, 1) * A(1, 2)

End Function

$$a b b = \frac{1}{\sqrt{2}} \cdot a$$

Elabore uma função em *VBA* para calcular a solução de um sistema de equações lineares 2 × 2 usando a regra de Cramer.

$$A \cdot x = b \Longrightarrow \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = \begin{bmatrix} D_1/D \\ D_2/D \end{bmatrix}$$

$$A \cdot x = b \Longrightarrow \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = \begin{bmatrix} D_1/D \\ D_2/D \end{bmatrix} \qquad \begin{cases} D = det2x2(A) \\ D_1 = b_{11} \cdot A_{22} - b_{21} \cdot A_{12} \\ D_2 = A_{11} \cdot b_{21} - A_{21} \cdot b_{11} \end{cases}$$

Function Sol2x2(A, b)

- ' Exercício 02: sistema linear 2 x 2, "Ranges" em
- ' forma de matrizes com linhas e colunas iniciadas
- ' no indice 1.

D = Det2x2(A) ' Chamada da função anterior

D1 = b(1, 1) * A(2, 2) - b(2, 1) * A(1, 2)

D2 = A(1, 1) * b(2, 1) - A(2, 1) * b(1, 1)

' Arranjo de "Variants" 2 linhas x 1 coluna

Dim x (1 To 2, 1 To 1)

x(1, 1) = D1 / D

x(2, 1) = D2 / D

Sol2x2 = x

End Function

Teste Exercício 02						
-	4	b	x (A·x=b)			
1,0	2,0	3,0	-3,0 €			
3,0	5,0	6,0	3,0			
3,0	2,0	3,0	0,2			
-1,0	5,0	6,0	1,2			
2,0	2,0	3,0	#VALOR!			
3,0	3,0	6,0	#VALOR!			
-4,0	5,0	3,0	3,0			
-5,0	7,0	6,0	3,0			
1,0	3,0	3,0	3,0			
2,0	4,0	6,0	0,0			

Colagem de fórmula de matriz em um "Range":

- 1) Insira a fórmula na primeira célula;
- 2) marque o "Range";
- 3) toque na tecla F2 para edição;
- 4) segurando as teclas Ctrl e Shift(①), toque na tecla Enter(\diamondsuit);
- 5) observe que nas células do "Range" os conteúdos ficam entre chaves {...} após a colagem.

Elabore uma função em *VBA* para calcular a média entre todos os componentes de um "Range".

$$x = \frac{3}{n}$$
 $s = \sum_{i=1}^{n} x_i = x_1 + x_2 + ... + x_n$

Function MedRange(x)

- ' Exercício 03: média
- ' dos valores de um ú-
- ' nico "Range"
- ' Primeira forma: per-
- ' curso de todos os
- ' componentes com o uso
- ' do "For/Each/In".
- s = 0 ' Acumuladora
- n = 0 ' Contadora

For Each c In x

$$s = s + c$$

$$n = n + 1$$

Next

MedRange = s / n

End Function

	Teste Exercício 03							
	Х		MedRange(x)					
1,0	2,0	3,0						
4,0	5,0	6,0	6.50					
7,0	8,0	9,0	6,50					
10,0	11,0	12,0						
1,0	2,0	3,0	2,00					
1,0								
2,0			2.50					
3,0			2,50					
4,0								
1,0	2,0	3,0	2.50					
4,0	5,0	6,0	3,50					

Indexação e Contagem das Células de um Range

1,0	2,0	3,0
4,0	5,0	6,0
7,0	8,0	9,0
10,0	11,0	12,0

\vdash			
	x(1)	x(2)	x (3)
	x(4)	x(5)	x(6)
	x(7)	x(8)	x(9)
	x(10)	x(11)	x(12)
1			

	1	2	<mark>3</mark>
1	x(1,1)	x(1,2)	x(1,3)
2	x(2,1)	x(2,2)	x(2,3)
3	x(3,1)	x(3,2)	x(3,3)
4	x(4,1)	x(4,2)	x(4,3)

índice simples

índice duplo

- x.Count retorna o valor 12
- x.Rows.Count retorna o valor 4
- x.Columns.Count retorna o valor 3

1,0	2,0	3,0

x(1) x(2) x(3)

 $1 \times (1,1) \times (1,2) \times (1,3)$

índice simples

índice duplo

- x.Count retorna o valor 3
- x.Rows.Count retorna o valor 1
- x.Columns.Count retorna o valor 3

9

Indexação e Contagem das Células de um Range

- x.Count retorna o valor 4
- x.Rows.Count retorna o valor 4
- x.Columns.Count retorna o valor 1

	1,0	2,0	3,0				
	4,0	5,0	6,0				
+							
	x(1)	x(2)	x(3)				
	x(4)	x(5)	x(6)				
▼	índica simples						

maice simples

- x.Count retorna o valor 6
- x.Rows.Count retorna o valor 2
- x.Columns.Count retorna o valor 3

outras formas

```
Function MedRange(x)
```

- ' Segunda forma: percurso de todos os componentes
- ' pelo índice a partir do 1, da esquerda para a
- ' direita e de cima para baixo.

$$s = 0$$

For i = 1 To x.Counts s = s + x(i)

Next

MedRange = s / x.Count

End Function

x.Count retorna a quantidade de células

x (i) é a i-ésima célula da esquerda para a direita e de cima para baixo

outras formas

```
Function MedRange(x)
```

- ' Terceira forma: percurso pelos índices das linhas
 - ' e das colunas da esquerda para a direita e de cima
 - ' para baixo. As linhas e colunas tem como índice
 - ' inicial o valor 1.

$$s = 0$$

For i = 1 To x.Rows.Count
For j = 1 To x.Columns.Count

$$s = s + \frac{x(i, j)}{x}$$

Next

Next

MedRange = s / x.Count

End Function

x.Count retorna a quantidade de células

retorna a quantidade de linhas

x.Rows.Count

x.Columns.Count retorna a quantidade de colunas

x(i, j) é a célula da i-ésima linha e da j-ésima coluna

12

outras formas

```
Function MedRange(x)
     ' Terceira forma: percurso
     ' pelos índices das linhas
                                        LBound é
     ' e das colunas com o uso
                                       limite inferior
      das funções "LBound" e
                                                         UBound é o
                                       1 é a primeira
     ' "Ubound".
                                       faixa de índices
                                                         limite superior
    s = 0
    n = 0
    For i = LBound(x.Value, 1) To UBound(x.Value, 1)
         For j = LBound(x.Value, 2) To UBound(x.Value, 2)
              s = s + x(i, j)
                                              2 é a segunda
             n = n + 1
                                              faixa de índices
         Next
    Next
                         x(i, j) é a célula
    MedRange = s / n
                         da i-ésima linha e da
End Function
                           j-ésima coluna
```


Obrigado, terminamos aqui!