. If either input to a NOR is 1, the output must be 0, so if S=R=1, $Q=\overline{Q}=0$. olf S=1, then Q=0, and if R=0, $\overline{Q}=1$. · If R=1, then Q=0, and if S=0, Q=1. of S=R=0, there are two stable outputs: Q=1 and $\bar{Q}=0$, or Q=0 and $\bar{Q}=1$. . This is different from the book's result because they reverse the positions of Sand R (which is the standard NOR latch-but that's not Obvious from the problem statement) Current 7.3, next a, d = 90091 State state 81 80 d0 = g0 ald0a 0 = 91 next Current DD=91990 State State g1 g0 6-01 00.

I		1
/	ť	0

93	g 2_	81	40
1	0	0	0
ſ	- (0	0
(1	0
		1	1
0	{	ĺ	(
()	0	(1
0	0	0	(
D	0	0	0

D3=Q0, D2=q3, D1=g2, D0=g1

8.2. so: defected nothing correct

51: detected

s2: defected 10

53: defected 101

54: defected 1010

Moore:

Mealy:

8,5 SD: detected nothing correct st: defected 1 S2: defeated 11 53: detected llo 54: detected 1101 SS: defected 11011