Definition: Multi-index

For $\alpha_1,...,\alpha_n\geq 0$ we call $\alpha=(\alpha_1,...,\alpha_n)$ a multi-index. One then defines the following:

- 1. $\alpha! = \alpha_1! \cdots \alpha_n!$;
- 2. for $x \in \mathbb{R}^n$ one defines $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ if $x_i \neq 0$ for all i, otherwise $x^{\alpha} = 0$ if there exists a j such that $x_i = 0$;
- 3. let $|\alpha| = \alpha_1 + \dots + \alpha_n$ be the order of α ; 4. let $D^{\alpha}f(x) = \frac{\partial^{|\alpha|}f(x)}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$.

Theorem: Taylor's Formula over \mathbb{R}^n

Let $E \subseteq \mathbb{R}^n$ be open and let $\overline{B_r(a)} \subseteq E$. Assume $f \in \mathcal{C}^k(E)$ then

$$f(x) = \sum_{|\alpha| \leq k} \frac{D^{\alpha} f(a)}{\alpha!} (x-a)^{\alpha} + \sum_{|\alpha| = k} h_{\alpha}(x) (x-a)^{\alpha}$$

for any $x \in B_r(a)$ where α is a multi-index and $h_\alpha: B_r(a) \to \mathbb{R}$ such that $h_\alpha(x) \to 0$ when $x \to a$ for all $|\alpha| = k$.

Proof:

Remark

Note

$$|(x-a)^\alpha| = \left|\prod_{i=1}^n \left(x_i - a_i\right)_i^\alpha\right| = \prod_{i=1}^n |x_i - a_i|_i^\alpha \leq |x-a|^{|\alpha|}.$$

Therefore we have that

$$\left| \sum_{|\alpha|=k} h_{\alpha}(x)(x-a)^{\alpha} \right| \leq |x-a|^k \sum_{|\alpha|=k} |h_{\alpha}(x)|$$

such that $\sum_{|\alpha|=k} h_{\alpha}(x)(x-a)^{\alpha} = o(|x-a|^k)$.

Let $x \in B_r(a)$ and define $[a,x] = \{\varphi(t) \mid t \in [0,1]\}$ where $\varphi: [-1,1] \to \mathbb{R}^n$ is defined by $\varphi(t) = a + a$ t(x-a). Then let $g(t)=f(\varphi(t))$ such that g(0)=f(a) and g(1)=f(x). Then note $g\in\mathcal{C}^k([-1,1])$ such that

$$g(1) = g(0) + \frac{1}{1!}g'(0) + \dots + \frac{1}{(k-1)!}g^{(k-1)}(0) + \frac{1}{k!}g^{(k)}(c)$$

for some $c \in [0, 1]$. As shown previously we have

$$g^{(m)}(t) = \sum_{|\alpha| = m} D^{\alpha} f(\varphi(t)) \cdot (x - a)^{\alpha}$$

for m = 1, ..., k by mixed derivative theorem. Therefore

$$f(x) = \sum_{|\alpha| \le k-1} \frac{D^{\alpha} f(a)}{\alpha!} (x-a)^{\alpha} + \sum_{|\alpha| = k} \frac{D^{\alpha} f(y)}{\alpha!} (x-a)^{\alpha}$$

for some $y\in [a,x]$. Now note that $D^{\alpha}f(y)=D^{\alpha}f(a)+(D^{\alpha}(y)-D^{\alpha}f(a))$ where $D^{\alpha}f(y)-D^{\alpha}f(a)\to 0$ as $y\to a$. Then define $h_{\alpha}(x)=\frac{D^{\alpha}f(y)-D^{\alpha}f(a)}{\alpha!}\to 0$ as $x\to a$ where y is a function of x.