CSCI E-124 Data Structures and Algorithms — Spring 2018

PROBLEM SET 1

Due: 11:59pm, Monday, February 5th

See homework submission instructions at http://sites.fas.harvard.edu/~cs124/e124/problem_sets.html

Problem 5 is worth 40% of this problem set, and problems 1-4 constitute the remaining 60%.

1 Problem 1

Indicate for each pair of expressions (A, B) in the table below the relationship between A and B. Your answer should be in the form of a table with a "yes" or "no" written in each box. For example, if A is O(B), then you should put a "yes" in the first box. If the base of a logarithm is not specified, you should assume it is base-2.

A	B	O	o	Ω	ω	Θ
$\log_2 n$	$\log_3 n$					
$\log \log n$	$\sqrt{\log n}$					
$2^{((\log n)^7)}$	n^7					
n!	n^n					
$\log(n!)$	$\log(n^n)$					

2 Problem 2

For all of the problems below, when asked to give an example, you should give a function mapping positive integers to positive integers. (No cheating with 0's!)

- Show that if f is o(q), then $f \cdot h$ is $o(q \cdot h)$ for any positive function h.
- Give a proof or a counterexample: if f is not O(g), then f is $\Omega(g)$.
- Find (with proof) a function f such that f(2n) is O(f(n)).
- Find (with proof) a function f such that f(n) is o(f(2n)).
- Show that for all $\epsilon > 0$, $\log n$ is $o(n^{\epsilon})$.

3 Problem 3

QuickSort is a simple sorting algorithm that works as follows on input $A[0], \ldots, A[n-1]$:

```
QuickSort(A):
n = length(A)
if n <= 1:
  return A
else:
  mid = floor(n/2)
  smaller <-- number of elements of A less than A[mid]
  larger <-- number of elments of A larger than A[mid]</pre>
  // put all elements of A into either B or C, based on whether they're
  // smaller or bigger than A[mid], respectively
  B <-- empty array of length smaller
  C <-- empty array of length larger
  writtenB <-- 0
  writtenC <-- 0
  for i = 1 to n:
    if A[i] < A[mid]:
      B[writtenB] <-- A[i]
      writtenB <-- writtenB + 1
    else if A[i] > A[mid]:
      C[writtenC] <-- A[i]
      writtenC <-- writtenC + 1
  B <-- QuickSort(B)</pre>
  C <-- QuickSort(C)</pre>
  // "+" denotes array concatenation
  return the array B + [A[mid]] + C
```

Assume the elements of A are distinct, and that the values smaller and larger are each calculated in time $\Theta(n)$.

- (a) (5 points) Construct an infinite sequence of inputs $\{A_k\}_{k=1}^{\infty}$ such that (1) A_k is an array of length n_k with $\lim_{k\to\infty} n_k = \infty$, and (2) if f(k) denotes the running time of QuickSort on A_k , then $f(k) = \Theta(n_k \log n_k)$.
- (b) (5 points) Do exactly the same as part (a), except this time construct a sequence yielding $f(k) = \Theta(n_k^2)$.
- (c) (2 points, **bonus**) Suppose a function T = T(n) is given satisfying $T(n) = \Omega(n \log n)$ and $T(n) = O(n^2)$. Then do the same as in parts (a) and (b), except this time construct a sequence yielding $f(k) = \Theta(T(n_k))$.

4 Problem 4

Give asymptotic bounds for T(n) in each of the following recurrences. Hint: You may have to change variables somehow in the last one.

- $T(n) = 2T(n/2) + n^2$.
- T(n) = 7T(n/3) + n.
- $T(n) = 16T(n/4) + n^2$.
- $T(n) = T(\sqrt[3]{n}) + 1.$

5 Programming Problem

Solve GOBOSORT on the programming server (https://cs124.seas.harvard.edu). **Hint:** Try to first solve the case m=1 (it is helpful to model your solution after MergeSort), then build from that solution for larger m.