

University of Swansea

MASTERS DISSERTATION

BL1: Interfaces in the 2D Potts model

Author:
Robert James

Supervisor: Professor Biagio Lucini

Abstract

Contents

\mathbf{C}	ontents	1
1	Introduction	3
2	Theory	5
3	Code	7
4	Results	9
5	Discussion of Results	11
Bibliography		13

Introduction

In the field of Computational Physics, there is a large interest in lattice simulation. One of the most simple models that still exhibits non trivial behaviour is the q-state Potts Model. By Restricting the Potts model to 2 or 1 dimension(s) and the constraining the number of independent states,q = 2 you can determine the behaviour at high,low and critical temperatures analytically[1] this is known as the Ising Model.

This dissertation will be looking at directly determining the interface free energy as a ratio of the partition functions.

$$F_I(L) = -\log \frac{\tilde{Z}(L)}{Z(L)} + \log(L)$$
(1.1)

From the interface free energy above we can calculate the interface tension σ .

$$\sigma = \lim_{L \to \infty} \frac{F_I(L)}{L^{D-1}} \tag{1.2}$$

Chapter 2 Theory

The Potts Model

 \mathbf{Code}

Results

Discussion of Results

Bibliography

[1] Elliott W. Montroll, Renfrey B. Potts, and John C. Ward. Correlations and spontaneous magnetization of the two dimensional ising model. *Journal of Mathematical Physics*, 4(2):308–322, 1963.