Содержание

1	Глава 1		2
	1.1	Случайные события, классификация событий, операции над ними.	2
	1.2	Определения: кольцо, алгебра, σ -алгебра, минимальная σ -алгеб-	
		ра над классом K . Борелевская σ -алгебра	2
	1.3	Теорема Каратеодори	3
	1.4	Определения: мера, конечно-аддитивная, счётно-аддитивная мера	4
	1.5	Построение меры Лебега. Верхняя мера Лебега, нижняя мера	
		Лебега, мера Лебега. Измеримое по Лебегу множество	4
	1.6	Вероятностная мера, её свойства, непрерывность вероятностной	
		меры	7
	1.7	Классическое вероятностное пространство. Классическое опре-	
		деление вероятности.	9
	1.8	Дискретное вероятностное пространство	9
	1.9	Условная вероятность. Теорема умножения вероятностей	10
	1.10	Формулы полной вероятности и Байеса	10
	1.11	Независимость событий. Независимость в совокупности	11
	1.12	Теорема о независимости противоположных событий. Критерий	
		независимости случайных событий.	11

1 Глава 1

1.1 Случайные события, классификация событий, операции над ними.

Определение случайного события:

Пусть Ω — множество элементарных исходов эксперимента. Случайным событием называется любое подмножество множества Ω .

Определение достоверного события:

Достоверным событием называется событие Ω , которому благоприятствует каждый исход эксперимента.

Определение невозможного события:

Невозможным событием называется пустое множество, которому не благоприятствует ни один исход эксперимента.

Определение суммы событий:

Суммой событий A и B называется событие $C = A \cup B$, которому благоприятствуют исходы, принадлежащие хоть одному из событий A или B.

Определение произведения событий:

Произведением событий A и B называется событие $C = A \cap B$, которому благоприятствуют исходы и события A, и события B.

Определение несовместных событий:

Случайные события A и B называются несовместными, если $A \cap B = \emptyset$.

Определение противоположного события:

Событием, противоположным событию A называется событие \overline{A} , которое состоит из исходов, не благоприятствующих A.

1.2 Определения: кольцо, алгебра, σ -алгебра, минимальная σ -алгебра над классом K. Борелевская σ -алгебра.

Определение кольца:

Кольцом ${f R}$ называется непустой класс множества замкнутый относительно операций сложения и взятия разности.

Определение алгебры:

Алгеброй ${\cal A}$ называется непустой класс множества замкнутый относительно сложения и отрицания.

Определение σ -алгебры:

 σ -алгебра ${\cal F}$ — это непустой класс множества замкнутый относительно счётного количества сумм и отрицаний:

- 1. Если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$;
- 3. Если $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение σ -алгебры событий:

Сигма алгеброй событий называется множество \mathcal{F} подмножеств $A\subset\Omega,$ удовлетворяющее условиям:

- 1. если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$:
- 3. если $\{A\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение минмальной σ -алгебры над классом K:

Пусть K — некоторый класс подмножеств из Ω . σ -алгебра $\sigma(K)$ называется наименьшей σ -алгеброй, содержащей класс K, если $K \in \sigma(K)$; любая σ -алгебра \mathcal{F} , которая содержит K ($K \subset \mathcal{F}$), содержит и $\sigma(K) \subset \mathcal{F}$.

Определение Борелевской σ -алгебры:

Борелевской σ -алгеброй β называется минимальная σ -алгебра над классом полуинтервалов $K = \{[a,b]\}$ из R, то есть:

$$\Omega = (-\infty, \infty) = R$$
 $K = \{[a, b), [a, +\infty), (a, +\infty), (-\infty, b), (-\infty, b], (a, b]\}.$

1.3 Теорема Каратеодори.

Пусть Q(A) — счётно аддитивная вероятностная мера на алгебре \mathcal{A} . Тогда существует единственная счётно аддитивная вероятностная мера P(A), заданная на минимальной σ -алгебре \mathcal{F} и являющаяся её продолжением, то есть $\forall A \in \mathcal{A} \ P(A) = Q(A)$.

1.4 Определения: мера, конечно-аддитивная, счётно-аддитивная мера

Пусть Ω — множество элементарных исходов эксперимента. Некоторое его подмножество $A\subset \Omega$ называется случайным событием.

Определение конечно аддитивной вероятностной меры

Конечно аддитивной вероятностной мерой Q(A) называется функция множества $Q:\mathcal{A}\to [0;1]$, такая, что:

- 1. $\forall A \in \mathcal{A} \quad Q(A) \ge 0;$
- 2. $Q(\Omega) = 1$;

3.
$$\forall A, B \in \mathcal{A} : A \cap B = \varnothing \quad Q(A \cup B) = Q(A) + Q(B) \quad Q\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} Q(A_i).$$

Определение счётно аддитивной вероятностной меры:

Счётно аддитивно вероятностной мерой P(A) называется функция множества $P:\mathcal{F} \to [0;1]$, такая, что:

- 1. $\forall A \in \mathcal{F} \ P(A) \ge 0$;
- 2. $P(\Omega) = 1$;

3.
$$\forall \{A_i\}_{i=1}^{\infty} \in \mathcal{F}: \forall i \neq j \ A_i \cap A_j = \varnothing \ P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

1.5 Построение меры Лебега. Верхняя мера Лебега, нижняя мера Лебега, мера Лебега. Измеримое по Лебегу множество.

Пусть
$$P = \langle a, b \rangle \times \langle c, d \rangle$$
. $P \subset R^2$ — прямоугольник.

Мерой прямоугольника назовём
$$m(P)$$
, где $m(P) = (b-a)(d-c)$

Множество A назовём эелментарным, если оно представимо в виде суммы прямоугольников хотя бы 1 способом:

$$A = \bigcup P_k,$$

где $\{P_k\}$ — покрытие.

Мерой элементарного сножества A называется

$$m'(A) = \sum m(P_k),$$

где $\{P_k\}$ — разбиение A, то есть $\forall j \neq k \quad P_k \cap P_j = \varnothing$.

Рассмотрим множество $E = [0;1] \times [0;1]$

Определение верхней меры Лебега:

Пусть A — некоторое множество. Рассмотрим $\{P_k\}$, такое, что:

$$A \subset P_k$$

Верхней мерой Лебега называется

$$\mu^*(A) = \inf_{\{P_k\}} \sum m(P_k)$$

Определение нижней меры Лебега:

Рассмотрим множество $E \setminus A.(m(E) = 1)$

Нижней мерой Лебега называется:

$$\mu_*(A) = 1 - \mu^*(E \backslash A)$$

Определение меры Лебега и измеримого по Лебегу множества:

Говорят, что множество A измеримо по Лебегу, если $\mu^*(A)=\mu_*(A)=\mu(A)$. Величина $\mu(A)$ — называется мерой Лебега множества A.

1.6 Вероятностная мера, её свойства, непрерывность вероятностной меры.

Определение вероятностной меры:

Вероятностной мерой называется функция $P:\mathcal{F} \to [0,1]$, удовлетворяющая условиям:

- 1. $P(\Omega) = 1$;
- 2. $\forall A \in \mathcal{F} \ P(A) \ge 0$;
- 3. $\forall \{A_i\}_{i=1}^\infty \in \mathcal{F}$, такой, что $\forall i \neq j \quad A_i \cap A_j = \varnothing, P\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P(A_i).$

Свойства вероятностной меры:

$$P(\bar{A}) = 1 - P(A)$$

$$\text{Dor - bo:}$$

$$u. \ co\overline{o}: \quad \Omega = A \cup \bar{A}; \quad A \cap \bar{A} = \emptyset$$

$$\text{Toiga} \quad 1 \stackrel{(P_1)}{=} P(\Omega) = P(A \cup \bar{A}) \stackrel{(P_3)}{=} P(A) + P(\bar{A})$$

$$\Rightarrow P(\bar{A}) = 1 - P(A)$$

$$\text{augastue:} \quad P(\emptyset) = 1 - P(\Omega) = 1 - 1 = 0$$

1.

2.

Eam
$$A \subseteq B$$
, TO $P(A) = P(B)$

U $P(B \setminus A) = P(B) - P(A)$

Por-60:

B

Registration coolernii $B = A \cup (B \setminus A) = P(A) = P(A) = P(A) = P(A) = P(A)$

T. R. no arcuave $P(A) = P(A) = P(A) = P(A) = P(A) = P(A) = P(A) = P(A)$

Метрерывность вероятностной меры:

Пусть $\{A_i\}_{i=1}^{\infty}$ — моноложной клаес событий, т.е. $\mathbb{D}[A_i] \subset A_{i+1}$ ши $\mathbb{D}[A_i] \supset A_{i+1}$ раширанощаяся / сумсанощаяся вороняя событий A_i A_i Тогда $P(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} (A_n)$

4. POR-BO:

[MyONS Ai CAi+1. Torga $A = \bigcup_{i=1}^{N} A_i \quad \text{in magabeun } A = \lim_{i \to \infty} A_i$ To arrange $P(A) = P(\bigcup_{i=1}^{N} A_i) = P(\bigcup_{i=1}^{N} B_i) = \begin{vmatrix} B_1 = A_1 \\ B_i = A_i \setminus A_{i-1} \end{vmatrix} = \frac{(P_3)}{i^{2}} \approx P(B_i) = \lim_{i \to \infty} P(\bigcup_{j=1}^{N} B_j) = \lim_{i \to \infty} P(A_i)$ [Myons Ai DAi+1. Torga $P(A) = P(\lim_{i \to \infty} A_i) = P(\bigcap_{i=1}^{N} A_i) = 1 - P(\bigcap_{i=1}^{N} A_i) = 1 -$

1.7 Классическое вероятностное пространство. Классическое определение вероятности.

Вероятностной моделью стохастического эксперимента называется тройка (Ω, \mathcal{F}, P) , где Ω — множество элементарных исходов экмперимента, \mathcal{F} — алгебра событий, P — вероятностная мера.

 (Ω, \mathcal{F}, P) — вероятностное пространство.

Определение классического вероятностного пространства:

Классическим вероятностым пространством, называется вероятностное пространство (Ω, \mathcal{F}, P) , в конечном множестве элементарных исходов которого все элементарные исходы равновозможны.

Построим вероятностную меру:

Пусть $\Omega = \{w1, \dots, w_n\}$. Рассмотрим $\{A_i\}_{i=1}^n$, где $A_i = \{w_i\}$. Тогда

$$A_i \cap A_j = \varnothing \quad \bigcup_{i=1}^n A_i = \Omega.$$

$$1 = P(\Omega) = P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) = |P(A_i)| = P(w_i) = p| = \sum_{i=1}^{n} p \Rightarrow$$
$$\Rightarrow p = \frac{1}{n} \Rightarrow \forall w_i \quad P(w_i) = \frac{1}{n}$$

Пусть $A = \{w_{i_1}, \dots, w_{i_k}\}\ 0 \le k \le n.$ Тогда вероятностная мера в классическом вероятностном пространстве имеет вид

$$P(A) = P\left(\bigsqcup_{j=1}^{k} w_{ij}\right) = \sum_{j=1}^{k} P(w_{ij}) = \sum_{j=1}^{k} \frac{1}{n} = \frac{k}{n},$$

 $P(A) = \frac{k}{n}$ — называется классической вероятностью,

где k — количество благоприятных A элементарных исходов, n — количество элементарных исходов эксперимента.

1.8 Дискретное вероятностное пространство.

Определение дискретного вероятностного пространства:

Дискретным вероятностным пространством называется вероятностное пространство (Ω, \mathcal{F}, P) , такое, что Ω — конечное или счётное множество неравновозможных исходов.

Вероятностную меру зададим числами $p_i = P(w_i) > 0$, такими, что $\sum_{i=1}^{\infty} p_i = 1$. Тогда $\forall A \in \mathcal{F}$ веротность вычисляется как $P(A) = P(\bigcup_{w_i \in A} w_i) = \sum_{w_i \in A} P(w_i)$.

1.9 Условная вероятность. Теорема умножения вероятностей.

Определение условной вероятности:

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и $A, B \in \mathcal{F}; \quad P(B) > 0.$ Условной вероятностью события A при условии, что наступило событие B называется число:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Теорема умножения вероятностей:

Пусть A и B — случайные события и P(B) > 0. Тогда

$$P(A \cap B) = P(B) \cdot P(A|B)$$

Пусть A_1,A_2,A_3 — случайные события и $P(A_1)>0$ и $P(A_1\cap A_2)>0$. Тогда

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2)$$

1.10 Формулы полной вероятности и Байеса.

Теорема (формула полной вероятности):

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$ — полная группа попарно несовместных событий; $P(A_i) \geq 0$. Пусть $A \in \mathcal{F}$ — неполное событие $P(A|A_i) \geq 0$. Тогда $P(A) = \sum_{i=1}^{\infty} P(A_i) \cdot P(A|A_i)$.

Доказательство:

$$P(A) = P(A \cap \Omega) = P(A \cap (\sqcup_{i=1}^{\infty} A_i)) = P(\sqcup_{i=1}^{\infty} (A \cap A_i)) \Rightarrow$$
$$\Rightarrow \sum_{i=1}^{\infty} P(A \cap A_i) = \sum_{i=1}^{\infty} P(A_i) P(A|A_i)$$

Теорема (формула Байеса):

Пусть $\{A_i\}_{i=1}^\infty\in\mathcal{F}$ — полная группа попарно несовместных событий и пусть для некоторого P(A)>0. Тогда

$$\forall i = \overline{1, \infty} \quad P(A_i|A) = \frac{P(A_i)P(A|A_i)}{P(A)}$$

Доказательство:

$$P(A_i|A) = \frac{P(A \cap A_i)}{P(A)} = \frac{P(A_i) \cdot P(A|A_i)}{P(A)}$$

1.11 Независимость событий. Независимость в совокупности.

Определение независимости событий:

Случайные события A и B называются независимыми, если:

$$P(A \cap B) = P(A) \cdot P(B)$$

Определение независимости в совокупности:

 $\{A_i\}_{i=1}^n$ — называются независимыми в совокупности, если

$$\forall 2 \le k \le n \quad P(\bigcap_{j=1}^{k} A_{ij}) = \prod_{j=1}^{k} P(A_{ij})$$

1.12 Теорема о независимости противоположных событий. Критерий независимости случайных событий.

Теорема о независимости противоположных событий:

Пусть A и B — независимы. Тогда события A и \overline{B} , \overline{A} и B. \overline{A} и \overline{B} — попарно независимы.

Доказательство:

Рассмотрим A и \overline{B} . Тогда $P(A\cap \overline{B})$. Можем заметить, что $P(A\cap \overline{B})=P(A\backslash (A\cap B))=P(A)-P(A\cap B)=P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(\overline{B})$.

Остальные случаи аналогичны.

Критерий независимости случайных событий:

Пусть A и B такие, что P(B)>0. Тогда Случайные события A и B независимы, тогда и только тогда, когда:

$$P(A|B) = P(A)$$

Доказательство:

Необходимость:

Пусть A и B независимы:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

Достаточность:

Пусть выполняется: P(A|B) = P(A). Тогда из определения условной вероятности следует, что $P(A\cap B) = P(A|B)\cdot P(A) = P(A)\cdot P(B)$, то есть выполняется определение.