Template 6: Course Learning Syllabus

Course Learning Syllabus (//includes Learning Outcomes & Learning Plan & Assessment Plan)

0001	-		S ~ J ~		0 000 (11 111	ioiaaoo Eoaiiiii	ig Gattoniio	0 4 -0	<i>-</i>	9	, ,a,	ω,	.0000	,0,,,,		· u · · /											
Course		MAB101 T	Cours		CALC	CULUS AI	VD LIN	EAR	6	ALC	9EE	BR/	9		Coul	rse jory		35	Bas	sic S	Sciei	nces		3			C 4
Pre requis	;- site	Nil				Co- requisite Courses	NII								F	Prog	ress	/	Vil								
Course Depart		•	N	Nati	hematics			Data Code:				ds			n	il											
Course Ration		•	The	-	urpose of	learning this	course is		Le	arn	ing				F	Prog	ram	Le	arnin	ng C	Outc	ome	:s (PLC	ツ		
CLR-1	App			ices	in probi	lems of Sc.	ience		1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	To a minii prob	apply the sima, composited	concept osite fi cience a	unct and	tion and Enginee	series, Maxi Jacobian i ring ential Equal	in																				
: CLR-4	prob. To a	lems of Si	cience d	and ts d	' Engineer of radius	•	re,		om)	(%)	(%)				-15	arch			Sustainability		rk		9				
: CLR-5	Engil Appl	neering lication of	Sequei	nces	s and Sei	ries in all pi			I hinking (6100m,	Proficiency (Attainment		Knowledge	Analysis	Development	Design, Research	Tool Usage	Culture	જ		Team Work	sion	t. & Finance	Learning			
: Course Outcom	Lear	•	At	the		chis course, l	learners wil	.,,	Level of In	Expected Pi	Expected A		Engineering Knowledge	Problem An	Design & Do	Analysis, De	Modern Too	Society & C	Environment	Ethics	Individual &	Communication	Project Mgt.	6	P50 - 1	P50 - 2	8 - 050
CLO-1	Appl Eigen	ly the Kno	Reduce	e to	Quadrat	s, Eigenvalu tics form in				85			L	4	L			0,	7	F	M	0	4	Н	4	4	7
CLO-2 :	Mini	ima, Jacob	bian, an	nd i	Taylor sei	of Maxima ries and app nd Engineeri	ply them	tn ²		85	80		L			М	М										
CLO-3 :		•				ifferential l g problems	Equations	2		85	80			M							M			Н			
CLO- 4 :	and		of curve	atu	re and ap	. Centre, el oply them l ngineering	-	2		85	80		L	M		M					M			Н			
CLO-5	Gain serie	the know s using di	vledge d Fferent	of c	onvergent st and ap	ce and dive oply sequent Science and	ces and	2		85	80			M	L						M			Н			

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
	ation our)	12	12	12	12	12
(nc		Characteristic equation	Function of two variables - Partial derivatives	Linear equations of second order with constant coefficients when	Radius of Curvature - Cartesian coordinates	Series of Five terms - Test of
5-1	<i>SLO-</i> 2	Eigen values of a real matrix	Total differential	PI=O or exponential Linear equations of second order with constant coefficients when PI=sinax or cosax	Radius of Curvature - Cartesian coordinates	Convergence- Comparison test - Integral test-
	SLO- 1	Eigen vectors of a Total differential		Linear equations of second order with constant coefficients when PI=polynomial	Radius of Curvature - Polar coordinates	·
5-2	<i>5L0-</i>	Eigen vectors of a real matrix	Taylor's expansion with two variables up to second order terms	Linear equations of second order with constant coefficients when PI=exponential with sinax or Cosax	Radius of Curvature - Polar coordinates	· .
<i>5-3</i>	SLO- Properties of Eigen 1 values		,	Linear equations of second order with constant coefficients when PI= exponential with polynomial	Circle of curvature	D'Alemberts Ratio test,
3-3	<i>SLO-</i> 2	Cayley - Hamilton theorem	Maxima and Minima	Linear equations of second order with constant coefficients when PI=polynomial with sinhax or coshax	Circle of curvature	D'Alemberts Ratio test,
	Problem solving Problem solving using tutorial sheet using tutorial sheet 4		Problem solving using tutorial sheet	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14	
5-4	SLO- 2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet	Problem solving using tutorial sheet 6	Applications of Radius of curvature in engineering	Problem solving using tutorial sheet 14
<i>5-5</i>	SLO-	Finding A inverse	Maxima and Minima	Linear equations of	Centre of curvature	Raabe's root test.

	1	using Cayley -		second order		
		Hamilton theorem		variable coefficients		
	<i>5L0-</i> 2	Finging higher powers of A using Cayley - Hamilton theorem	Maxima and Minima	Linear equations of second order variable coefficients	Centre of curvature	Raabe's root test·
	SLO- 1	orthogonal reduction of a symmetric matrix to diagonal form	Maxima and Minima	Homogeneous equation of Euler type	Centre of curvature	Covergent of Exponential Series
<i>5</i> -6	_		Constrained Maxima and Minima by Lagrangian Multiplier method	Homogeneous equation of Legendre's Type	Evolute of a parabola	Cauchy's Root test
<i>5-</i> 7		_	Constrained Maxima and Minima by Lagrangian Multiplier method	Homogeneous equation of Legendre's Type	Evolute of an ellipse	Log test
<i>3</i> -7			Constrained Maxima and Minima by Lagrangian Multiplier method	Equations reducible to homogeneous form	Envelope of standard curves	Log test
	SLO- 1	Problem solving using tutorial sheet 2	_	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
<i>5-</i> 8	<i>5L0-</i>	_	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Applications of Curvature in engineering	Problem solving using tutorial sheet 15
	SLO- 1	Reduction of Quadratic form to canonical	Jacobians of two Variables	Equations reducible to homogeneous form	Beta Gamma Functions	Alternating Series: Leibnitz test
<i>5</i> -9	<i>SLO-</i> 2	Quadratic form to canonical form by orthogonal transformations	Jacobians of Three variables	Variation of parameters	Beta Gamma Functions and Their Properties	Alternating Series: Leibnitz test
<i>5-10</i>	SLO- 1	Quadratic form to canonical form by orthogonal transformations	Jacobians problems	Variation of parameters	Sequences - Definition and Examples	Series of positive and Negative terms
	<i>5L0-</i>	Orthogonal matrices	Jacobians Problems	Simultaneous first order with constant co-efficient:	Series - Types of Convergence	Series of positive and Negative terms
<i>5-11</i>	SL0-	Reduction of quadratic form to	Properties of Jacobians and	Simultaneous first order with constant	Series of Five terms - Test of	Absolute Convergence

		canonical form	Problems	co-efficient·	Convergence-	
	<i>5L0-</i>	Reduction of quadratic form to canonical form	Properties of Jacobians and problems	Simultaneous first order with constant co-efficient.	Comparison test - Integral test-	Conditional Convergence
	SLO- 1	Problem solving using tutorial sheet	Application of Taylor's series Maxima Minima Jacobians in Engineering	Problem solving using tutorial sheet 10	1	Problem solving using tutorial sheet 13
<i>5-12</i>	<i>SLO-</i> 2	Applications of Matrices in Engineering	Application of Taylor's series Maxima Minima Jacobians in Engineering	Applications of Differential Equation in engineering	Problem solving using tutorial sheet 13	Applications Convergence of series in engineering

Learning Resources

- 7. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010
- 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

	Level of		Fig. 1 Fig. 11 (1001)				
	Thinking	CA - 1 (20%)	CA - 2 (20%)	CA - 3 (20%) #	Final Examination (40%)		
Level	Remember	40.04	20.04				
7	Understand	40 %	30 %	30 %	30 %		
Level	Apply	40.04	40.04	40.04	40.04		
2	Analyze	40 %	40 %	40 %	40 %		
Level	Evaluate						
3	Create	20 %	30 %	30 %	30 %		

CA - 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf· Paper etc·,

SLO - Session Learning Outcome

Co	Course Designers										
(a) Experts from Industry											
7	Mr·V·Maheshwaran	CTC Channai	maheshwaran								
_	irir v Irianeshwaran	CTS, Chennai	v@yahoo·com								
(Ł	(b) Experts from Higher Technical Institutions										
2	Dr·K·C·Sivakumar	IIT, Madras	kcskumar@iit	,,	Dr·Nanjundan	Bangalore	nanzundan@gmail				
3	Dr.K.C.SIVakumar	III, Maaras	m·ac·in	7	Dr·Nanjunaan	University	·com				
(E	(b) Internal Experts										
_		CD 44/C=	givindarajan·a		.	CD 44/CT	srinivasan·va@sr				
5	Dr·A·Govindarajan	SRMIST	@ktr·srmuniv ·ac·in	/ 6	Dr•Srinivasan	SRMIST	muniv-ac-in				

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.

ATTRACT AND BUILD PEOPLE in a rewarding and inspiring environment by fostering freedom, empowerment, creativity and innovation \cdot