

Wintersemester 2024/25

Präsenzübungen

Die Menge der komplexen Zahlen $\mathbb C$ stellt eine Erweiterung des Zahlenmaterials dar. Grundlegend neu ist das Element i mit der Eigenschaft $i^2=-1$. Dies kann keine reelle Zahl sein, denn für jede reelle Zahl x gilt stets $x^2 \geq 0$. Unter den 2×2 -Matrizen finden wir jedoch Elemente mit dieser bzw. der entsprechenden¹ Eigenschaft, z.B. $I = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Jede komplexe Zahl $z \in \mathbb{C}$ lässt sich in der Form $z = x \cdot 1 + y \cdot i$ bzw. z = x + y i schreiben. Die entsprechenden 2 imes 2-Matrixdarstellungen haben die Form $[z]=x\cdot E_2+y\cdot I$ mit $E_2=\left[egin{smallmatrix} 1&0\\0&1\end{smallmatrix}
ight]$ und $I = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Also ist

$$[z] = x \cdot E_2 + y \cdot I = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}.$$

Aufgabe P 4. Komplexe Zahlen

Es sei gegeben die komplexe Zahl $z=-3+4\,i\,$ bzw. die entsprechende Matrix

$$[z] = -3E_2 + 4I = \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix}.$$

- (a) Stellen Sie die Zahl z in der sogenannten Gauß'schen Zahlenebene dar. Verwenden Sie $\,1\,$ bzw. E_2 als "Einheitsvektor in horizontaler Richtung" und $\,i\,$ bzw. $\,I\,$ als "Einheitsvektor in vertikaler Richtung" und zeichnen Sie das entsprechende Koordinatensystem.
- (b) Bestimmen Sie den Absolutbetrag |z| von z. Hinweis: Für z=x+y i ist $|z|=\sqrt{x^2+y^2}$. Berechen Sie außerdem den Wert von $z \cdot \bar{z}$ und überzeugen Sie sich davon, dass $z \cdot \bar{z} = |z|^2$
- (c) Berechnen Sie $z^2 = (-3 + 4i) \cdot (-3 + 4i)$. Berechnen Sie ferner das Matrixprodukt

$$[z]^2 = [z] \cdot [z] = \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix} \cdot \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix}.$$

Stellen Sie Ihre Produktmatrix in der Form $xE_2 + yI$ dar und vergleichen Sie.

- (d) Berechnen Sie $i \cdot z = i \cdot (-3 + 4i)$ sowie das Matrixprodukt $I \cdot [z] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix}$. Stellen Sie Ihre Produktmatrix in der Form $x E_2 + y I$ dar und vergleichen Sie.
- (e) Berechnen Sie die Absolutbeträge $|z^2|$ und $|i \cdot z|$. Stellen Sie Zahlen $i \cdot z$ und $\frac{1}{5} \cdot z^2$ in der Gauß'schen Zahlenebene dar. Es ist nützlich, wenn Sie sich daran erinnern, dass $\frac{1}{5}=0,2$ gilt. Warum wurde nicht die (vielleicht) näherliegende Aufgabe gestellt, die Zahl z^2 darzustellen?

Wir wollen nun für eine gegebene komplexe Zahl $\,z = x + y\,i\,$ eine komplexe Zahl $\,\ell = \ell_1 + \ell_2\,i\,$ mit der Eigenschaft bestimmen, dass $z \cdot \ell = 1$ gilt. Eine solche Zahl $\,\ell\,$ heißt **multiplikative Inverse** von z, und wir schreiben daher z^{-1} oder $\frac{1}{z}$ für ℓ .

Zur Berechnung von ℓ verwenden wir die sogenannte **zu** z **komplex konjugierte** Zahl $\bar{z}=x-y\,i.$ Wegen $z\cdot\bar{z}=|z|^2$ folgt $\frac{1}{z}=\frac{\bar{z}}{|z|^2}$, also ist $\ell=\frac{1}{z}=\frac{x}{x^2+y^2}-\frac{y}{x^2+y^2}\,i.$

(f) Berechnen Sie für die Zahl $z=-3+4\,i$ die Inverse ℓ und rechnen Sie nach, dass sich tatsächlich $z \cdot \ell = 1$ ergibt.

 $I^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = -E_2$, d.h. I^2 ist gleich "minus Eins" im Ring der 2×2 -Matrizen.

Aufgabe P 5. Multiplikation komplexer Zahlen

Es sei gegeben die komplexe Zahl $z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$.

- (a) Bestimmen Sie den Absolutbetrag |z| von z. Hinweis: Für z=x+y i ist $|z|=\sqrt{x^2+y^2}$.
- (b) Stellen Sie die Zahl z als "Zeiger" (Ortsvektor) in der Gauß'schen Zahlenebene dar.
- (c) Schreiben Sie die Zahl z in Exponentialdarstellung: $z = r \cdot e^{i\varphi}$.
- (d) Berechnen Sie z^2 einmal unter Verwendung der angegebenen kartesische Darstellung und einmal mithilfe der Exponentialdarstellung.
- (e) Berechnen Sie weitere Potenzen z^3 , z^4 , z^5 , ... und stellen Sie auch diese in der Gauß'schen Zahlenebene dar.
- (f) Beschreiben Sie Ihre Befunde geometrisch. Was macht die Abbildung $w\mapsto z\cdot w$? Schreiben Sie zur Diskussion w in Exponentialdarstellung: $w=|w|\cdot e^{i\,\alpha}$.
- (g) Bestimmen Sie die multiplikative Inverse von z, also diejenige komplexe Zahl $\ell=\ell_1+\ell_2\,i$ mit der Eigenschaft, dass $\ell\cdot z=1$ gilt.

Für Schnelle sogleich - für alle anderen zuhause

Aufgabe P 6. Allgemeinerer Blickwinkel und Weiterführung

Es seien die komplexen Zahlen $u=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ und v=1-i gegeben.

- (a) Stellen Sie die Zahlen u und v als "Zeiger" (Ortsvektoren) in der Gauß'schen Zahlenebene dar.
- (b) Bestimmen Sie zu den Zeigern u und v jeweils die Polarkoordinaten (r, φ) .

Wir werden nun auch die folgende Sprechweise verwenden: Die komplexen Zahlen u und v haben die Absolutbeträge $|u|=r_u$ und $|v|=r_v$ sowie die Polarwinkel φ_u und φ_v .

(c) Schreiben Sie die Zahlen u und v in Exponentialdarstellung:

$$u = |u| \cdot e^{i\varphi_u}, \qquad v = |v| \cdot e^{i\varphi_v}$$

und verwenden Sie diese zur Berechnung der Produkte $u \cdot u$, $u \cdot v$ und $v \cdot v$ sowie des Quotienten $\frac{v}{u}$.

(d) Berechnen Sie das Produkt $u \cdot v$ und den Quotienten $\frac{v}{u}$ noch einmal unter Verwendung der (oben gegebenen) kartesischen Darstellungen und vergleichen Sie mit der vorigen Teilaufgabe.

Hausübungen

Aufgabe H 6. Komplexen Zahlen – Ergänzung und Vertiefung

- (a) Prüfen Sie nach, dass für das Produkt zweier komplexer Zahlen $z_1=x_1+y_1\,i$ und $z_2=x_2+y_2\,i$ die Gleichung $z_1\cdot z_2=(x_1\,x_2-y_1\,y_2)\,+\,(x_1\,y_2+x_2\,y_1)\,i$ gilt.
 - Berechnen Sie hierzu (auch) das Matrixprodukt $\begin{bmatrix} x_1 & -y_1 \\ y_1 & x_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 & -y_2 \\ y_2 & x_2 \end{bmatrix}$ und stellen Sie es in der Form $aE_2 + bI$ dar.
- (b) Wir haben zuvor eine Formel für die **multiplikative Inverse** ℓ einer komplexen Zahl z, angegeben. Wir wollen zur Bestimmung von ℓ nun den Umweg über die Matrixdarstellung [z] von z wählen und eine Matrix $[\ell]$ mit der Eigenschaft $[z] \cdot [\ell] = E_2$ suchen.
 - Rufen Sie sich die für invertierbare 2×2 -Matrizen gültige Formel $\begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1} = \frac{1}{a \, d b \, c} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ in Erinnerung und berechnen Sie hiermit die Matrix $[\ell]$.
 - Stellen Sie $[\ell]$ in der Form $\ell_1 E_2 + \ell_2 I$ dar und bestimmen Sie hieraus die Zahl $\ell = \ell_1 + \ell_2 i$. Führen Sie am Ende eine Probe durch: Gilt tatsächlich $z \cdot \ell = 1$?
- (c) Es sei z eine komplexe Zahl mit Matrixdarstellung $[z] = x \cdot E_2 + y \cdot I = \left[\begin{smallmatrix} x & -y \\ y & x \end{smallmatrix} \right]$ und es sei \bar{z} die zu z komplex konjugierte Zahl mit Matrixdarstellung $[\bar{z}] = x \cdot E_2 y \cdot I = \left[\begin{smallmatrix} x & y \\ -y & x \end{smallmatrix} \right]$. Berechnen Sie das Produkt $[z] \cdot [\bar{z}]$ und stellen Sie es in kartesischer Form dar.
- (d) Leiten Sie aus Ihren Beobachtungen ein allgemeines Gesetz zur Berechnung von $z^{-1} = \frac{1}{z}$ für gegebene komplexe Zahlen z = x + yi ab.

Aufgabe H 7. Multiplikation mit komplexen Zahlen – geometrische Deutung

- (a) Geben Sie die Exponentialform der komplexen Zahl $i = 0 + 1 \cdot i$ an.
- (b) Welcher geometrischen Operation entspricht die Multiplikation einer beliebigen komplexen Zahl z mit i, also die Abbildung $z \mapsto i \cdot z$?
- (c) Welcher geometrischen Operation entspricht die Abbildung $z\mapsto \frac{z}{i}=\frac{1}{i}\cdot z$?
- (d) Welcher geometrischen Operation entspricht die Abbildung $z\mapsto i\cdot \overline{z}$?

 Hinweis: Für diese Abbildung ist die kartesische Darstellung von Vorteil.
- (e) Es sei $u = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$. Welcher geometrischen Operation entspricht die Multiplikation einer beliebigen komplexen Zahl z mit u, also die Abbildung $z \longmapsto u \cdot z$?
 - Es sei w eine komplexe Zahl auf dem Einheitskreis, d.h. |w|=1. Dann gilt $w=e^{i\,\alpha}$ mit einem Polarwinkel α .
- (f) Welcher geometrischen Operation entspricht die Abbildung $z \mapsto w \cdot z$?
- (g) Welcher geometrischen Operation entspricht die Abbildung $z \mapsto \frac{z}{w} = \frac{1}{w} \cdot z$?

Tutoriumsübungen

Aufgabe T 5. Elementares Rechnen mit komplexen Zahlen

Es sei gegeben die komplexe Zahl w = 12 + 5i.

- (a) Bilden Sie die komplex Konjugierte \overline{w} von w und berechnen Sie das Produkt $w\cdot\overline{w}$.
- (b) Berechnen Sie den Absolutbetrag |w| von w und den Absolutbetrag $|\overline{w}|$ von \overline{w} .
- (c) Stellen Sie die komplexe Zahl $\frac{1}{w}$ in der Form x + yi dar (kartesische Darstellung).
- (d) Bestimmen Sie die kartesische Darstellung der komplexen Zahl $\frac{\overline{w}}{m}$.

Aufgabe T 6. Darstellung komplexer Zahlen als Matrizen

Man kann den Körper der komplexen Zahlen als Menge von 2×2 -Matrizen der Form $x\cdot E_2+y\cdot I$ mit $E_2=\left[\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right]$ und $I=\left[\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\right]$ darstellen. Natürlich ist $x\cdot E_2+y\cdot I=\left[\begin{smallmatrix}x&-y\\y&x\end{smallmatrix}\right]$.

Betrachten Sie im Folgenden zwei komplexe Zahlen $z_1 = x_1 \cdot E_2 \, + \, y_1 \cdot I \,$ und $x_2 \cdot E_2 \, + \, y_2 \cdot I \,$

- (a) Berechnen Sie die (Matrix-)Summe $z_1 + z_2$.
- (b) Berechnen Sie das (Matrix-)Produkt $z_1 \cdot z_2$.
- (c) Es sei $w=12\cdot E_2+5\cdot I$. Berechnen Sie die zu w inverse Matrix und vergleichen Sie Ihr Resultat mit dem von Aufgabe T 5 (c).

Aufgabe T 7. Multiplikation komplexer Zahlen, vgl. die Aufgaben P 5 und P 6

Es sei gegeben die komplexe Zahl $z=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i.$

- (a) Bestimmen Sie den Absolutbetrag |z| von z. Hinweis: Für z = x + yi ist $|z| = \sqrt{x^2 + y^2}$.
- (b) Berechnen Sie z^2 , z^3 , z^4 , z^5 und stellen Sie diese Zahlen sowie z in der Gauß'schen Zahlenebene dar.
- (c) Beschreiben Sie Ihre Befunde geometrisch.
- (d) Bestimmen Sie die multiplikative Inverse von z, also die komplexe Zahl $k=k_1+k_2\,i$ mit der Eigenschaft, dass $k\cdot z=1$ gilt.

Es seien die komplexen Zahlen $u = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ und v = 1 - i gegeben.

- (e) Stellen Sie die Zahlen u und v als Punkte U bzw. V in der Gauß'schen Zahlenebene dar.
- (f) Bestimmen Sie zu den Punkten U und V jeweils die Polarkoordinaten (r,φ) .

Wir werden nun auch die folgende Sprechweise verwenden: Die komplexen Zahlen u und |v| haben die Absolutbeträge $|u| = r_u$ und $|v| = r_v$ sowie die Polarwinkel φ_u und φ_v .

(g) Schreiben Sie die Zahlen u und v in Exponentialdarstellung:

$$u = |u| \cdot e^{i\varphi_u}, \qquad v = |v| \cdot e^{i\varphi_v}$$

und verwenden Sie diese zur Berechnung der Produkte $u \cdot u$, $u \cdot v$ und $v \cdot v$.

(h) Berechnen Sie das Produkt $u \cdot v$ noch einmal unter Verwendung der (oben gegebenen) kartesischen Darstellungen und vergleichen Sie mit der vorigen Teilaufgabe.