EVALUATION OF FEATURE SELECTION METHODS

DATA EXPLORATION AND VISUALIZATION - EXERCISE 1

Marta Szuwarska

June 2025

GOAL

Evaluation of feature selection methods:

- Mutual Information Importance (with known number of relevant features)
- Boruta Algorithm
- LASSO Regularization

and dimensionality reduction techniques:

- PCA
- Multidimensional scaling
- tSNE

PIPELINE

- 1. Generate dataset configurations -> list of configurations
- 2. For each configuration:
 - I. Generate data -> X, y, list of relevant features, list of all features
 - II. For each feature selection method:
 - Select features -> List of selected features
 - III. Evaluate feature selection methods with metrics
 - IV. For each dimensionality reduction technique:
 - Transform matrix X -> Projected X
 - V. For each classifier (Random Forest or SVM):
 - For each transformation method (no transformation, feature selection, relevant features, dimensionality reduction):
 - Split dataset into train and test datasets -> X_train, X_test, y_train, y_test
 - Train model and predict -> model, predictions
 - Calculate metrics -> accuracy, precision, recall, F1 score
- 3. Collect and aggregate (calculate average) metrics across all runs

DATA GENERATION

INFORMATIVE FEATURES

Generated by make_classification(), directly contribute to determining the class label.

IRRELEVANT FEATURES

Random features sampled independently from normal distribution N(0, 1).

REDUNDANT FEATURES

Generated by make_classification(), linear combinations of informative features.

CORRELATED FEATURES

Manually created features as copies of informative features with added noise $\sim N(0, 0.1)$.

NOISY FEATURES

Manually created features as copies of informative features with added strong noise $\sim N(0, 1)$.

DATASET CONFIGURATION

Dataset configuration consists of the number of samples, number of features and proportions of categories of features that sum up to 1.

Those proportions were drawn from Dirichlet distribution Dir(1, 1, 1, 1, 1), while making sure there are always at least two informative features.

Parameter	Value
n_samples	1000
n_features	20
iInformative_size	0.3
irrelevant_size	0.4
redundant_size	0.1
correlated_size	0.1
noisy_size	0.1

Relevant features:

f0, f1, f2, f3, f4, f5

TESTED CONFIGURATIONS

Number of samples	Number of features	Number of datasets
1000	20	10
1000	50	10
1000	100	10
500	50	10
3000	100	10

AVERAGED RESULTS

AVERAGED RESULTS

AVERAGED RESULTS

EVALUATION OF DATA CLUSTERING ALGORITHMS

DATA EXPLORATION AND VISUALIZATION - EXERCISE 2

Marta Szuwarska

June 2025

GOAL

Evaluation of data clustering algorithms:

- K-means
- Genie (g \in {0.1, 0.3, 0.5, 0.7, 0.9})
- Agglomerative Hierarchical Clustering (with single, average, complete or Ward linkage)
- DBSCAN (ε ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 1.5}, minimum number of samples ∈ {2, 3, 5, 10})

PIPELINE

- 1. Read datasets -> X, y_trues, k_values
- 2. For each dataset:
 - I. For each k (number of clusters):
 - Fit and predict clusters with KMeans -> labels
 - For each gini threshold:
 - Fit and predict clusters with Genie -> labels
 - For each linkage:
 - Fit and predict clusters with Agglomerative Hierarchical Clustering -> labels
 - II. For each ε :
 - For each min_samples value:
 - Fit and predict with DBSCAN -> labels
 - III. Evaluate all predicted labels -> adjusted rand index, normalized mutual information, fowlkes mallows score, adjusted assymetric accuracy, silhouette score
- 3. Collect and aggregate (calculate average) metrics across all runs or selected runs

PARTITION EVALUATION

Different labels handling

Since in true labels 0 is reserved for noise, all predicted labels are shifted to 1 (keeping -1 as noise if it occurs).

Noise handling

For evaluation with metrics, all noise points (y_true == 0 or y_pred == -1) are excluded from calculations.

EXAMPLE DATASET - A1

THANK YOU FOR YOUR ATTENTION