Spark Project Readiness Preparation Plan

Phase 1: Foundations (1–2 weeks)

Objective: Build strong basics in Python, distributed computing, and Spark fundamentals.

- Python Prep (Data Engineering Focus):
 - o Data structures (lists, dicts, sets, tuples).
 - File handling (CSV, JSON, Parquet).
 - Functions, OOP basics, error handling.
 - Libraries: pandas, os, logging.
- Distributed Systems Intro:
 - O Why Spark vs. Hadoop?
 - MapReduce concept.
 - Spark vs. Pandas.
- Spark Fundamentals:
 - o RDD vs DataFrame vs Dataset.
 - Lazy evaluation, DAG, Transformations & Actions.
 - Spark Shell, SparkContext, SparkSession.

Practice Programs:

Phase 2: Core Spark (2-3 weeks)

Objective: Ability to code transformations, actions, and data pipelines.

- Spark SQL & DataFrames:
 - Loading data from CSV, JSON, Parquet.
 - Select, filter, groupBy, agg.
 - Joins, Window functions, UDFs.

• Spark Architecture:

- o Driver, Executors, Cluster Manager.
- Jobs, Stages, Tasks.

• Coding Best Practices:

- Partitioning, caching, shuffling.
- Narrow vs wide transformations.

Practice Programs:

- Load Sales CSV → clean nulls → calculate revenue by region.
- Join Customer & Orders datasets → get top 5 customers by spend.
- Implement custom UDF (e.g., categorize age groups).

Phase 3: Advanced Spark (2-3 weeks)

Objective: Efficient pipelines, optimization, debugging, troubleshooting.

Performance:

- Spark UI reading jobs/stages.
- o Tungsten, Catalyst Optimizer.
- Partition tuning, broadcast joins.

Advanced APIs:

- Window functions (ROW_NUMBER, RANK).
- Explode, Structs, Nested JSON parsing.

• Streaming:

- Structured Streaming basics.
- Kafka integration.

Practice Programs:

- Write batch ETL: Read logs, parse JSON, aggregate metrics, write Parquet.
- Implement Spark Streaming job with Kafka.
- Optimize join with broadcast hint.

Phase 4: Deployment Readiness (2–3 weeks)

Objective: End-to-end pipeline, troubleshooting, project simulation.

Project Simulation:

- Ingest → Transform → Aggregate → Store in warehouse (e.g., PostgreSQL/S3).
- o Add checkpoints, logging, error handling.
- Troubleshooting Skills:

- o Debug Spark job failures (out of memory, skew, stage retries).
- Monitor Spark UI metrics.
- Team Readiness:
 - Code reviews (efficiency, readability).
 - Unit testing with pytest + chispa.

Practice Project Idea:

- Retail ETL Project:
 - Source: sales transactions (CSV/JSON).
 - o Tasks: clean, transform, aggregate, load.
 - Tech: PySpark + SparkSQL + S3/Postgres.
 - Deliverables: pipeline code, test cases, README, troubleshooting notes.

Materials & References

- Books:
 - Learning Spark, 2nd Edition (O'Reilly).
- Docs:
 - PySpark API Docs
- GitHub Repos:
 - o <u>awesome-spark</u>
 - o databricks spark-examples
- Practice Data:
 - Kaggle: Retail, E-commerce, MovieLens datasets.

Metrics for Evaluation

Can write RDD, DataFrame, SQL pipelines.
Understand Spark architecture (driver, executors).
Handle joins, windowing, aggregations.
Debug & optimize Spark jobs.
Build an end-to-end ETL pipeline.