

Benchmarking Methods and Tools for an End-to-end Antibody Design Framework: a Proof-of-concept

Mansoor Ahmed, Spencer VonBank, Belle Divine, and Murray Patterson

Introduction

- Antibodies are essential tools in therapeutics, diagnostics, and biomedical research
- ► The conventional wet-lab-based approaches are costly, time-intensive, and experimentally demanding
- ▶ We aim to benchmark state-of-the-art methods and tools into a unified pipeline that can design antibodies for any given target antigen sequence

Problem Formulation

Given a target antigen sequence $S_{ag} = (a_1, a_2, ..., a_n), a_i \in \{A, R, N, ...\}$, predict the high affinity binder antibody structure $X_{ab} = \{(x_i, y_i, z_i)\}_{i=1}^n \in \mathbb{R}^{3n}$

Antibody Repertoire - Expolaratory Data Analysis

We curate an antigen-antibody repertoire using the AsEP dataset, a high-quality benchmark of 1,723 antibody—antigen complexes from AbDb. Each sample includes:

- ▶ Paired PDB complex structure and torch tensors containing graph and sequence data
- Residue-level masks for CDRs, antigen surface, and epitope sites

Antigen Structure Prediction

We employ **AlphaFold** for antigen structure prediction (a state-of-the-art deep learning model developed by DeepMind). We compute the following metrics to benchmark its performance:

- ► PTM (Predicted TM-score): A confidence metric estimating the overall structural accuracy.
- ▶ PAE (Predicted Aligned Error): Provides residue-level error estimates between different parts of the structure.

Size Range	Runtime	PTM	PAE
50–100 AA	~1min	0.83	0.76
200-300 AA	~2min	0.81	0.79
800–1200 AA	$\sim \! 10 min$	0.74	0.85

Table: Performance metrics across different antigen sizes.

Antibody Repertoire Search via Sequence Alignment

Size Range	Runtime (1 Iteration)
50-100 AA	~2 sec
200-300 AA	~3 sec
200_1200 ΔΔ	\sim 5 sec

Table: PSI-BLAST runtimes across different sequence lengths (using single iteration).

Antibody Binding Site (Paratope) Prediction

We benchmark the following tools for paratope prediction:

- ▶ **ParaGraph** is a graph-based deep learning model that predicts paratopes using antibody 3D structures as input, capturing residue-level spatial features through geometric message passing.
- ▶ **ParaSurf** identifies paratope residues using physicochemical surface properties of the antibody, without requiring the antigen.
- ▶ ParaAntiProt leverages protein language model (PLM) embeddings from AntiBERTy and structural encoders to predict paratopes directly from antibody sequences.

Table: Paratope prediction performance comparison.

Method	AUC ROC	F1	PR ROC	MCC
ParaGraph	0.902	0.632	0.534	0.621
ParaSurf-Paragraph Dataset	0.927	0.654	0.545	0.634
ParaSurf	0.932	0.661	0.555	0.639
ParaAntiProt	0.921	0.622	0.567	0.623

Antigen Binding Site (Epitope) Prediction

We developed a new graph-based method and benchmarked it with the baseline for epitope prediction:

Table: Performance comparison of our approach and baseline epitope prediction methods on a held-out test set. Best values in each column are in bold.

Method	MCC	Prec.	Recall	AUCROC	F1
Ours	0.263	0.281	0.457	0.650	0.348
WALLE	0.210	0.235	0.258	0.635	0.145
EpiPred	0.029	0.122	0.142		0.112
ESMBind	0.016	0.106	0.090	0.506	0.064
MaSIF-site	0.037	0.125	0.114		0.128

Docking

Before performing computational docking, we develop a transformation function to bring the antigen and antibody in close proximity by minimizing the stochasticity in the docking module:

Synthetic Distance Matrix Construction

To pre-position the antibody paratope and antigen epitope to avoid local minima docking positions, we construct a synthetic distance matrix:

$$D = \begin{bmatrix} D_{\mathsf{ab}} & d \cdot \mathbf{1} \\ d \cdot \mathbf{1}^\mathsf{T} & D_{\mathsf{ag}} \end{bmatrix}$$

- D_{ab} : pairwise $C\alpha$ distances within the paratope
- ▶ D_{ag} : pairwise $C\alpha$ distances within the epitope
- ► d: user-defined inter-group distance (e.g., 30 Å)
- ▶ 1: matrix of ones, setting all inter-group distances to d

Multidimensional Scaling (MDS)

We apply classical **Multidimensional Scaling (MDS)** to embed this distance matrix into 3D space:

$$X = MDS(D)$$

This generates a 3D target configuration for both epitope and paratope.

Rigid-Body Superposition via Kabsch Algorithm

To align the original paratope and epitope coordinates to their MDS-embedded targets, we compute the optimal rigid-body transformation using the **Kabsch algorithm**:

$$\min_{R,t} \sum_{i} \|R\mathbf{p}_i + t - \mathbf{q}_i\|^2$$

- \mathbf{p}_i : original $\mathsf{C}\alpha$ coordinates
- \mathbf{q}_i : MDS-embedded coordinates
- ▶ $R \in SO(3)$: optimal rotation matrix
- $t \in \mathbb{R}^3$: optimal translation vector

Antigen-Antibody Positions Pre MDS

Other residues

Paratope

Antigen-Antibody Positions Post MDS

Due to the uncertainty of whether we will have individual residue level epitope to paratope binding information, we propose 2 separate methods to guide docking using Rossetta:

- ▶ Method 1: Involves all epitope values being mapped to all paratope values, and each pair carrying a increase in total docking score if the $C\alpha$ of the 2 is within 4.5A.
- ▶ Method 2: Will incorporate a increase in docking score if the $C\alpha$ are within 4.5 angstroms, but the residue pairs will be only the exact binding combination from previous information.

Method	Epi P	Epi R	Para P	Para R
Method 1	0.41	0.42	0.45	0.67
Method 2	0.40	0.49	0.42	0.71

Binding Affinity Prediction

We employ CSM-Ab, which is a graph-based deep learning model to predict the binding free energy of a docked complex.

The binding free energy (ΔG) is directly related to binding affinity K_d via the equation:

$$\Delta G = -RT \ln(K_d)$$

where R is the gas constant and T is the absolute temperature. This relationship allows predicted free energy values to be interpreted in terms of binding strength.

Binding free energy of the best docked native complexes ranges anywhere from -5kcal/mol to -15 kcal/mol

Size Range	Estimated G(kcal/mol)
50-100 AA	11.42
200–300 AA	10.58
800–1200 AA	12.31

Table: PSI-BLAST runtimes across different sequence lengths (using single iteration)

CDR Region Prediction

CDR boundaries are defined based on a fixed antibody numbering scheme (e.g., Kabat, Chothia, or IMGT).

Free Energy Estimation & Minimization

- We employ a molecular dynamics mechanics tool (OpenMM) using the Amber relax from AlphaFold2 to estimate the free energy ΔG of the antibody
- If $\Delta G > \epsilon_2$, we perform free energy perturbation in the antibody by running Monte-Carlo simulations to bring the antibody to its lowest energy state

Indels (Substitutions, Deletions, Insertions) in Antibody Sequence

- When the antibody has an acceptable free energy $\Delta G < \epsilon_1$ and low binding affinity $K_d < \epsilon_2$, we perform sequence mutations to optimize the antibody to be a suitable binder for the given antigen
- We employ IPRO +/- (iterative protein redesign and optimization procedure) to perform amino acid substitutions, insertions, and deletions in the sequence
- ▶ The resultant antibody with $\Delta G < \epsilon_1$ and $K_d < \epsilon_2$ is a potential binder antibody for the target antigen
- $\,\blacktriangleright\,$ This process is repeated for all k candidate antibodies and produces the refined antibodies as output

References

- [1] Stephen F. Altschul et al. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". In: Nucleic Acids Research 25.17 (Sept. 1997), pp. 3389-3402. ISSN: 0305-1048. DOI: 10.1093/nar/25.17.3389. eprint: https://academic.oup.com/nar/article-pdf/25/17/3389/3639509/25-17-3389.pdf. URL: https://doi.org/10.1093/nar/25.17.3389.
- [2] Sidhartha Chaudhury, Sergey Lyskov, and Jeffrey J. Gray. "PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta". In: *Bioinformatics* 26.5 (Jan. 2010), pp. 689–691. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btq007. eprint: https://academic.oup.com/bioinformatics/article-pdf/26/5/689/48860623/bioinformatics_26_5_689.pdf. URL: https://doi.org/10.1093/bioinformatics/btq007.
- [3] Lewis Chinery et al. "Paragraph—antibody paratope prediction using graph neural networks with minimal feature vectors". In: Bioinformatics 39.1 (Nov. 2022), btac732. ISSN: 1367-4811. DOI: 10.1093/bioinformatics/btac732. eprint: https://academic.oup.com/bioinformatics/article-pdf/39/1/btac732/48448850/btac732.pdf. URL: https://doi.
- org/10.1093/bioinformatics/btac732.

 [4] Mahmood Kalemati et al. "ParaAntiProt provides paratope prediction using antibody and protein language models". In:
- [5] Chunan Liu et al. AsEP: Benchmarking Deep Learning Methods for Antibody-specific Epitope Prediction. 2024. arXiv: 2407. 18184 [cs.LG]. URL: https://arxiv.org/abs/2407.18184.

Scientific Reports 14 (Nov. 2024). DOI: 10.1038/s41598-024-80940-y.

- Yoochan Myung, Douglas E V Pires, and David B Ascher. "CSM-AB: graph-based antibody—antigen binding affinity prediction and docking scoring function". In: *Bioinformatics* 38.4 (Nov. 2021), pp. 1141—1143. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btab762.eprint: https://academic.oup.com/bioinformatics/article-pdf/38/4/1141/49007587/btab762.pdf. URL: https://doi.org/10.1093/bioinformatics/btab762.
- [7] Angelos-Michael Papadopoulos et al. "ParaSurf: a surface-based deep learning approach for paratope—antigen interaction prediction". In: Bioinformatics 41.2 (Feb. 2025), btaf062. ISSN: 1367-4811. DOI: 10.1093/bioinformatics/btaf062. eprint: https://academic.oup.com/bioinformatics/article-pdf/41/2/btaf062/61813119/btaf062.pdf. URL: https://doi.org/10.1093/bioinformatics/btaf062.