Nonparametrics and Local Methods: Semiparametrics

C.Conlon

February 27, 2021

Applied Econometrics

The Seminonparametric Approach

- If we are "pretty sure" that f is almost $f_{m,\sigma}$ for some family of densities indexed by (m,σ) , then we can choose a family of positive functions of increasing complexity $P^1_{\theta}, P^2_{\theta}, \ldots$
- Choose some M that goes to infinity as n does (more slowly), and maximize over (m,σ,θ) the loglikelihood

$$\sum_{i=1}^{n} \log f_{m,\sigma}(y_i) P_{\theta}^{M}(y_i).$$

It works... but it is hard to constrain it to be a density for large ${\cal M}.$

Mixtures of Normals

A special case of seminonparametrics, and usually a very good approach: Let y | x be drawn from

$$N(m_1(x,\theta),\sigma_1^2(x,\theta))$$
 with probability $q_1(x,\theta)$; ... $N(m_K(x,\theta),\sigma_K^2(x,\theta))$ with probability $q_K(x,\theta)$.

where you choose some parameterizations, and the q_k 's are positive and sum to 1.

Can be estimated by maximum-likelihood:

$$\max_{\theta} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \frac{q_k(x_i, \theta)}{\sigma_k(x, \theta)} \phi \left(\frac{y_i - m_k(x_i, \theta)}{\sigma_k(x_i, \theta)} \right) \right).$$

Usually works very well with $K \leq 3$ (perhaps after transforming y to $\log y$, e.g).

Seminonparametric (=Flexible) Regression

Idea: we add regressors when we have more data

- \rightarrow series or sieve estimators: choose a basis of functions $P_k(x_i)$ (x_i^k , or orthogonal polynomials, or sines. . .)
- \rightarrow run linear regression $y_i = \sum_{k=1}^M P_k(x_i)\theta_k + \epsilon_i$
- a reasonable compromise (again, M must go to infinity, more slowly than n).

Still curse of dimensionality, and nonparametric asymptotics.

Splines: trading off fit and smoothness

Choose some $0 < \lambda < \infty$ and

$$\min_{m(.)} \sum_{i} (y_i - m(x_i))^2 + \lambda J(m),$$

Then we "obtain" the natural cubic spline with knots= (x_1, \ldots, x_n) :

- ullet m is a cubic polynomial between consecutive x_i 's
- it is linear out-of-sample
- it is C^2 everywhere.

"Consecutive" implies one-dimensional... harder to generalize to $p_x > 1$.

Orthogonal polynomials: check out Chebyshev, $1, x, 2x^2 - 1, 4x^3 - 3x \dots$ (on [-1, 1] here.)

Additive models

Additive model: $y=\alpha+\sum_{j=1}^p+f_j(X_j)++\epsilon$ Backfitting algorithm: start with $\hat{a}=\overline{y}_n$, and some zero-mean guesses $\hat{f}_j\equiv 0$. Then for $j=1,\ldots,p,\ldots,1,2,\ldots,p,\ldots$,

1. Define

$$f_j \leftarrow S_j[\{y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_{ik})\}_1^N]$$

$$f_j \leftarrow \hat{f}_j - \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij}).$$

- 2. Regress \hat{y} on x_j to get R_j ; then replace \hat{r}_j with $R_j \frac{1}{n} \sum_i \hat{r}_j(x_{ji})$ (where S_j is some cubic smoothing spline).
- 3. Iterate until \hat{f}_j doesn't change.