When viewing the output, please note the Q and R matrices for both gs and mgs differ after $\varepsilon < 10^{-4}$. Despite this, if you multiply Q and R together, they are very close to accurate approximations of A, given the ε value. Both algorithms work successfully, but they just produce slightly different matrices with small ε . For every value of ε , the Q, R, and E matrices are supplied for both gs and mgs, but please take note of the parentheses next to each matrix indicating which algorithm output that matrix. At the end of the file, you can find the three code files used to compute the below results.

	$\varepsilon = 10^{-2}$			$\varepsilon = 10^{-4}$	
Q (gs) =			Q (gs) =		
0.5774	0.8165	0.0000	0.5774	0.8165	0.0000
0.5774	-0.4082	0.7071	0.5774	-0.4082	0.7071
0.5774	-0.4082	-0.7071	0.5774	-0.4082	-0.7071
R (gs) =			R (gs) =		
1.7321	1.7378	1.7494	1.7321	1.7321	1.7322
0	0.0082	0.0122	0	0.0001	0.0001
0	0	0.0071	0	0	0.0001
E (gs) =			E (gs) =		
1.0e-10 *	r		1.0e-06	*	
0.0000	-0.0006	0.0005	0.0000	-0.0000	0.0000
-0.0006	-0.0000	0.1554	-0.0000	-0.0000	0.1154
0.0005	0.1554	0	0.0000	0.1154	0
Q (mgs) =			Q (mgs) =		
0.5774	0.8165	0.0000	0.5774	0.8165	0.0000
0.5774	-0.4082	0.7071	0.5774	-0.4082	0.7071
0.5774	-0.4082	-0.7071	0.5774	-0.4082	-0.7071
R (mgs) =			R (mgs) =		
1.7321	1.7378	1.7494	1.7321	1.7321	1.7322
0	0.0082	0.0122	0	0.0001	0.0001
0	0	0.0071	0	0	0.0001
E (mgs) =			E (mgs) =		
1.0e-13 *	r		1.0e-11	*	
0.0022	-0.6279	0.5435	0.0000	-0.4710	0.2720
-0.6279	-0.0011	0.0034	-0.4710	-0.0000	-0.0000
0.5435	0.0034	0	0.2720	-0.0000	0.0000

	$\varepsilon = 10^{-6}$		ε = 1	0-8
Q (gs) =			Q (gs) =	
0.5774	0.8165	0.0013	0.5774 0.8	0.8148
0.5774	-0.4082	0.7065	0.5774 -0.4	1082 -0.3615
0.5774	-0.4082	-0.7077	0.5774 -0.4	1082 -0.4533
R (gs) =			R (gs) =	
1.7321	1 7221	1.7321		7321 1.7321
				0000 -0.0000
0		0.0000		0 0.0000
0	0	0.0000	0	0 0.0000
E (gs) =			E (gs) =	
0.0000	-0.0000	0.0000	0.0000 -0.0	0000 -0.0000
-0.0000	-0.0000	0.0015	-0.0000 -0.0	0.9979
0.0000	0.0015	0.0000	-0.0000 0.9	9979 0
Q (mgs) =			Q (mgs) =	
	0.8165	0.0000		3165 0.0000
0.5774				1082 0.7071
	-0.4082		0.5774 -0.4	1082 -0.7071
D ()			D (mgg) =	
R (mgs) =	1 7221	1 7001	R (mgs) = 1.7321 1.7	7321 1.7321
1.7321	0.0000	1.7321		0000 0.0000
0		0.0000		0 0.0000
0	0	0.0000	0	0.0000
E (mgs) =			E (mgs) =	
1.0e-09	*		1.0e-07 *	
0.0000	-0.6280	0.7252	0.0000 -0.6	5280 0.1813
	-0.0000		-0.6280 -0.0	
0.7252	0.0000	0		0000 0

```
\varepsilon = 10^{-10}
Q (gs) =
   0.5774 0.8165 0.8165
   0.5774 -0.4083 -0.4082
   0.5774 -0.4083 -0.4083
R (gs) =
   1.7321 1.7321 1.7321
      0 0.0000 -0.0000
       0
            0.0000
E (gs) =
  0.0000 -0.0000 -0.0000
  -0.0000 0.0000 1.0000
  -0.0000 1.0000 -0.0000
Q (mgs) =
  0.5774 0.8165 0.0000
   0.5774 -0.4083 0.7071
   0.5774 -0.4083 -0.7071
R (mgs) =
   1.7321 1.7321 1.7321
      0 0.0000 0.0000
           0 0.0000
E (mgs) =
  1.0e-05 *
  0.0000 -0.4710 0.2719
  -0.4710 0.0000 -0.0000
  0.2719 -0.0000 0.0000
```

driver.m – this program is used to run the other two algorithms and test their results

```
gs.m
           driver.m 💥
                       mgs.m X
        power = -2;
 2 -
        eps = 10^(power);
 3 -
        n = 3;
        A = [1 + eps + 2*eps ; 1 + 1 + eps ; 1 + 1];
 5
 6 -
        [Q1, R1] = gs(A);
 7 -
        [Q2, R2] = mgs(A);
 8
 9 -
        E1 = Q1' * Q1 - eye(n);
10 -
        E2 = Q2' * Q2 - eye(n);
11
12 -
        disp("Q (gs) = ");
13 -
        disp(Q1);
14 -
        disp("R (gs) = ");
15 -
        disp(R1);
        disp("E (gs) = ");
16 -
17 -
        disp(El);
18 -
        disp("Q (mgs) = ");
19 -
        disp(Q2);
20 -
        disp("R (mgs) = ");
21 -
        disp(R2);
22 -
        disp("E (mgs) = ");
23 -
        disp(E2);
```

gs.m – this file implements classical Gram-Schmidt Orthogonalization for QR factorization

```
gs.m 🗶
           driver.m X
                      mgs.m 💢
                                +
      function [Q, R] = gs(A)
 1
 2 -
            [m, n] = size(A);
 3 -
            V = A;
 4 -
            Q = zeros(m, n);
 5 -
            R = zeros(n, n);
 6 -
            for j = 1:n
 7 -
                for i = 1:(j-1)
 8 -
                    R(i, j) = dot(Q(:, i), A(:, j));
9 -
                    V(:, j) = V(:, j) - R(i, j) * Q(:, i);
10 -
                end
11 -
                R(j, j) = norm(V(:, j));
12 -
                Q(:, j) = V(:, j) / R(j, j);
13 -
            end
14 -
        end
15
```

msg.m - this file implements modern Gram-Schmidt Orthogonalization for QR factorization

