ш

(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) No de publication :

2 840 205

(à n'utiliser que pour les commandes de reproduction)

21) No d'enregistrement national :

02 06731

(51) Int CI7: A 61 K 7/075

(2) DEMANDE DE BI	REVET D'INVENTION AT
2 Date de dépôt : 31.05.02. 3 Priorité :	71) Demandeur(s): L'OREAL Société anonyme — FR.
Date de mise à la disposition du public de la demande : 05.12.03 Bulletin 03/49.	72) Inventeur(s): DUBIEF CLAUDE, RESTLE SERGE e GIROUD FRANCK.
 (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule (60) Références à d'autres documents nationaux apparentés : 	73 Titulaire(s):
	Mandataire(s): CASALONGA ET JOSSE.

- SHAMPOOINGS CONTENANT AU MOINS UN COPOLYMERE SEQUENCE AMPHIPHILE ET AU MOINS UN POLYMERE CATIONIQUE OU AMPHOTERE.
- L'invention concerne une composition de lavage des matières kératiniques contenant, dans un milieu aqueux ou hydroalcoolique cosmétiquement acceptable,
- au moins un copolymère linéaire séquencé comprenant au moins un bloc hydrophobe et au moins un bloc hydrophile, à l'exclusion des copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène, des copolymères séquencés à motifs uréthanne et des copolymères séquencés à motifs siloxane,
- a mours siloxane,
 au moins un polymère cationique ou amphotère, et
 au moins un agent tensioactif anionique associé à au
 moins un agent tensioactif non-ionique et/ ou au moins un
 agent tensioactif amphotère, ainsi que l'utilisation d'une telle
 composition pour le lavage des matières kératiniques, en
 particulier des fibres kératiniques.

Shampooings contenant au moins un copolymère séquencé amphiphile et au moins un polymère cationique ou amphotère

La présente invention concerne des compositions moussantes et détergentes, destinées à laver, conditionner et coiffer les cheveux, contenant l'association d'au moins un copolymère séquencé amphiphile et d'au moins un polymère cationique ou amphotère.

Les polymères cationiques sont, de loin, les composés les plus utilisés dans des shampooings pour faciliter le démêlage des cheveux humides et améliorer leur douceur après séchage. Ces polymères présentent toutefois un pouvoir coiffant médiocre et ne permettent pas de donner du corps au cheveux.

L'association de tels polymères cationiques conditionnants à des polymères fixants anioniques aboutit, certes, à une amélioration des performances de coiffage des shampooings (corps et maintien) mais modifie défavorablement le toucher des cheveux en les rendant secs et rêches.

L'utilisation de silicones ou d'un mélange de silicones et de polymères cationiques dans des shampooings coiffants assure un bon démêlage des cheveux, mais leur confère un toucher excessivement soyeux, non recherché pour de tels shampooings coiffants.

Les copolymères séquencés à blocs de silicone, utilisés seuls ou associés à des polymères cationiques, facilitent le démêlage et améliorent le pouvoir coiffant des shampooings, mais donnent également un toucher trop soyeux.

Les polyuréthanes à blocs polyester ou polyéther, éventuellement associés à des polymères cationiques filmogènes, induisent, quant à eux, un toucher cireux parfois collant.

Les copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène sont pratiquement sans action bénéfique sur les cheveux.

La demanderesse a découvert, avec surprise, que l'utilisation d'un polymère cationique en association avec un copolymère séquencé linéaire, amphiphile, dans une base particulière pour shampooings permet d'obtenir des produits qui, à la fois, améliorent le démêlage des cheveux à l'état humide,

10

5

15

20

30

donnent du corps aux cheveux séchés, facilitent la mise en forme de la coiffure et le maintien de celle-ci, sans altérer l'aspect lisse et brillant et le toucher agréable des cheveux traités.

5

La présente invention a par conséquent pour objet une composition de lavage des matières kératiniques, en particulier des fibres kératiniques, contenant, dans un milieu aqueux ou hydroalcoolique cosmétiquement acceptable,

10

15

- au moins un copolymère linéaire séquencé comprenant au moins un bloc hydrophobe et au moins un bloc hydrophile, à l'exclusion des copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène, des copolymères séquencés à motifs uréthanne et des copolymères séquencés à motifs siloxane,
- au moins un polymère cationique ou amphotère, et

• au moins un agent tensioactif anionique associé à au moins un agent tensioactif non-ionique et/ou au moins un agent tensioactif amphotère.

L'invention a en outre pour objet l'utilisation d'une telle composition pour le lavage des matières kératiniques, en particulier des fibres kératiniques.

20

Les copolymères linéaires séquencés utilisables selon la présente invention sont des copolymères dits "amphiphiles", à savoir des copolymères comportant à la fois des blocs hydrophobes et des blocs hydrophiles.

25

On entend par blocs hydrophobes selon la présente invention des blocs comprenant au moins 75 % en moles de monomères insolubles dans l'eau et par blocs hydrophiles des blocs comprenant au moins 75 % en moles de monomères hydrosolubles.

30

Un monomère "hydrosoluble" au sens de la présente invention, est un monomère qui, lorsqu'on l'introduit dans de l'eau à une température de 25 °C et à une concentration en poids égale à 0,5 %, éventuellement neutralisé, permet l'obtention d'une solution macroscopiquement homogène et transparente, c'est-à-dire ayant une valeur de transmittance de la lumière, à une longueur d'onde égale à 500 nm, à travers un échantillon de 1 cm d'épaisseur, d'au moins 70 %, de préférence d'au moins 80 %.

Les monomères hydrosolubles formant le ou les blocs hydrophiles des copolymères séquencés utilisés dans la présente invention peuvent être de nature anionique, non-ionique ou cationique et peuvent être utilisés seuls ou sous forme de mélange contenant deux ou plusieurs monomères différents.

On peut citer à titre d'exemples de monomères hydrosolubles anioniques, les acides carboxyliques à insaturation éthylénique, tels que l'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide fumarique, l'acide crotonique et l'acide maléique, l'acide 2-acrylamido-2-méthylpropane-sulfonique, l'acide styrènesulfonique, l'acide vinylsulfonique et l'acide vinylphosphonique.

Les monomères hydrosolubles non-ioniques englobent, entre autres, l'acrylamide, les acrylamides N-alkylés en C₁₋₆ ou N,N-dialkylés en C₁₋₃, l'acrylate de polyéthylèneglycol, le méthacrylate de polyéthylèneglycol, le N-vinylacétamide, le N-méthyl-N-vinylacétamide, le N-vinylformamide, le N-méthyl-N-vinylformamide, les N-vinyllactames comportant un groupe cyclique de 4 à 9 atomes de carbone, l'alcool vinylique (copolymérisé sous forme d'acétate de vinyle puis hydrolysé), l'oxyde d'éthylène, l'acrylate d'hydroxyéthyle, l'acrylate d'hydroxypropyle, le méthacrylate d'hydroxyéthyle et le méthacrylate d'hydroxypropyle.

Enfin, les monomères hydrosolubles cationiques englobent par exemple le chlorure de diméthyldiallylammonium, le chlorure de méthylvinylimidazolium, la 2-vinylpyridine, la 4-vinylpyridine, la 2-méthyl-5-vinylpyridine, les halogénures de N-(alkyle en C₁₋₄)-4-vinylpyridinium tels que l'iodure de N-méthyl-4-vinylpyridinium, la vinylamine, les monomères de formule

$H_2C=CR_1-CO-X_2$

30

25

5

10

15

20

dans laquelle

R₁ représente un atome d'hydrogène ou un groupe méthyle,

X₂ représente un groupe hydrocarboné linéaire ou ramifié en C₁₋₆ portant au moins une fonction amine primaire, secondaire ou tertiaire ou au moins un

atome d'azote quaternaire, ou un groupe de formule NHR₂ ou de formule NR₂R₃ où R₂ et R₃ représentent indépendamment l'un de l'autre chacun un groupe hydrocarboné en C₁₋₆, linéaire ou ramifié, portant au moins une fonction amine primaire, secondaire ou tertiaire ou au moins un atome d'azote quaternaire.

Les monomères insolubles dans l'eau formant le ou les blocs hydrophobes des copolymères séquencés sont choisis de préférence parmi les monomères vinylaromatiques tels que le styrène et ses dérivés alkylés comme le 4-butylstyrène, l'α-méthylstyrène et le vinyltoluène, les diènes tels que le butadiène et le 1,3-hexadiène, et les dérivés alkylés des diènes tels que l'isoprène et le diméthylbutadiène, le chloroprène, les acrylates d'alkyle en C₁₋₁₀, d'aryle en C₆₋₁₀ ou d'aralkyle en C₆₋₁₀ et les méthacrylates d'alkyle en C₁₋₁₀, d'aryle en C₆₋₁₀ ou d'aralkyle en C₆₋₁₀, comme par exemple les (meth)acrylates de méthyle, d'éthyle, de n-butyle, de 2-éthylhexyle, de tert-butyle, d'isobornyle, de phényle ou de benzyle, l'acétate de vinyle, les vinyléthers de formule CH₂=CH-O-R et les allyléthers de formule CH₂=CH-CH₂-O-R où R représente un groupe alkyle en C₁₋₆, l'acrylonitrile, le chlorure de vinyle, le chlorure de vinylidène, la caprolactone, l'éthylène, le propylène, les monomères vinyliques fluorés ou à chaîne perfluorée, tels que les acrylates et méthacrylates de fluoroalkyle ou les α-fluoroacrylates d'alkyle.

Comme indiqué ci-dessus à propos de la définition des blocs hydrophobes et hydrophiles des copolymères séquencés, les monomères insolubles dans l'eau et les monomères hydrosolubles représentent au moins 75 % en moles respectivement des blocs hydrophobes et hydrophiles. Autrement dit, chaque bloc hydrophobe peut comprendre jusqu'à 25 % en moles d'un ou de plusieurs monomères hydrosolubles. Cette proportion est de préférence au plus égale 10 % en moles et idéalement inférieure ou égale à 5 % en moles.

De manière analogue, chaque bloc hydrophile peut comprendre jusqu'à 25 % en moles, de préférence jusqu'à 10 % en moles, et idéalement jusqu'à 5 % en moles, d'un ou de plusieurs monomères insolubles dans l'eau.

Les copolymères linéaires séquencés utilisés englobent bien entendu également ceux dans lesquels les blocs hydrophiles et les blocs hydrophobes sont constitués exclusivement respectivement de monomères hydrosolubles et de monomères insolubles dans l'eau. Ces blocs peuvent être des blocs homopolymères ou des blocs copolymères renfermant deux ou plus de deux monomères différents du même type.

La masse moléculaire moyenne en nombre de chaque bloc, qu'il soit hydrophobe ou hydrophile, copolymère ou homopolymère, est de préférence comprise entre 500 et 100 000, en particulier entre 500 et 50 000, avec un indice de polydispersité (M_w/M_n) compris entre 1,01 et 3,0, de préférence entre 1,1 et 2,5.

Les copolymères linéaires séquencés amphiphiles utilisés dans la présente invention peuvent être

· des copolymères diblocs de formule AB,

5

10

15

20

25

30

• des copolymères triblocs de formule ABA ou BAB et

• des copolymères multiblocs comprenant, au moins deux blocs hydrophiles et au moins deux blocs hydrophobes disposés en alternance, chaque A représentant un bloc hydrophile et chaque B représentant un bloc hydrophobe, les blocs A d'un même polymère pouvant être identiques ou différents et les blocs B d'un même polymère pouvant être identiques ou différents.

On préfère en particulier des copolymères diblocs et des copolymères triblocs comportant un bloc central hydrophile et deux blocs latéraux hydrophobes.

Les shampooings de la présente invention contiennent de préférence les copolymères séquencés amphiphiles à l'état dissous ou finement dispersé, autrement dit ces polymères sont de préférence solubles ou finement dispersibles dans milieu cosmétiquement acceptable.

Par "soluble" ou "finement dispersible" dans un milieu donné, on entend dans la présente demande, des polymères qui, introduits dans un tel milieu à une température de 25°C, éventuellement neutralisés, et à une

concentration en poids égale à 0,1%, permettent l'obtention d'une solution ou suspension macroscopiquement homogène et transparente ou translucide, c'est-à-dire ayant une valeur de transmittance de la lumière, à une longueur d'onde égale à 500 nm, à travers un échantillon de 1 cm d'épaisseur, d'au moins 70%, de préférence d'au moins 80%.

Les copolymères linéaires séquencés sont de préférence hydrosolubles, éventuellement sous forme neutralisée.

La concentration des copolymères linéaires séquencés dans les shampooings de la présente invention est de préférence comprise entre 0,01 et 20 %, en particulier entre 0,1 à 5 %, rapportée au poids total de la composition de lavage.

5

15

20

25

30

Les polymères blocs de l'invention peuvent être préparés par les procédés de synthèse classiquement utilisés pour obtenir des polymères blocs. On peut citer par exemple les polymérisations anionique ou cationique, et la polymérisation radicalaire contrôlée (voir "New Method of Polymer Synthesis", Blackie Academic & Professional, Londres, 1995, volume 2, page 1, ou Trends Polym. Sci. 4, page 183 (1996) de C. J. Hawker), qui peut être mise en oeuvre suivant différents procédés comme par exemple la polymérisation radicalaire par transfert d'atomes (Atom Transfert Radical Polymerization ou ATRP) (voir JACS, 117, page 5614 (1995), de Matyjasezwski et al.), la méthode des radicaux tels que les nitroxydes (Georges et al., Macromolecules, 1993, 26, 2987).

On peut aussi utiliser ces procédés pour obtenir un seul des deux types de blocs du polymère de l'invention, l'autre bloc étant introduit dans le polymère final par l'intermédiaire de l'amorceur utilisé ou bien par réaction de couplage entre les blocs hydrophiles et hydrophobes.

Les polymères cationiques ou amphotères utilisés, conformément à l'invention, en association avec les copolymères séquencés amphiphiles décrits ci-dessus peuvent être des polymères synthétiques ou des polymères obtenus par modification chimique de polysaccharides.

Les polymères cationiques sont choisis par exemple parmi ceux décrits dans les demandes de brevet EP 0 337 354, FR 2 270 846, FR 2 383 660, FR 2 598 611, FR 2 470 596 et FR 2 519 863.

Les polymères cationiques préférés sont choisis parmi ceux qui contiennent des motifs comportant des groupements amines primaires, secondaires, tertiaires et/ou quaternaires qui font partie de la chaîne macromoléculaire principale, ou bien sont portés par des groupes latéraux directement reliés à celle-ci.

5

10

15

20

Parmi les polymères cationiques, on peut citer plus particulièrement les polymères du type polyamine, polyaminoamide et polyammonium quaternaire. Il s'agit de produits connus.

Les polymères du type polyamine, polyaminoamide et polyammonium quaternaire, que l'on peut utiliser dans les compositions de la présente invention, sont ceux décrits dans les brevets FR 2 505 348 et FR 2 542 997.

Parmi les polymères cationiques synthétiques, on peut citer en particulier les familles suivantes :

(1) les homopolymères ou copolymères d'esters ou d'amides acryliques ou méthacryliques à fonctions amine, comportant des motifs de formules suivantes:

dans lesquelles:

5

10

15

20

25

 R_3 , identiques ou différents, désignent un atome d'hydrogène ou un groupe CH_3 ;

A, identiques ou différents, représentent un groupe alkyle, linéaire ou ramifié, comportant de 1 à 6 atomes de carbone, de préférence 2 ou 3 atomes de carbone, ou un groupe hydroxyalkyle comportant de 1 à 4 atomes de carbone;

R₄, R₅, R₆, identiques ou différents, représentent un groupe alkyle ayant de 1 à 18 atomes de carbone ou un groupe benzyle, et de préférence un groupe alkyle ayant de 1 à 6 atomes de carbone;

R₁ et R₂, identiques ou différents, représentent un atome d'hydrogène ou un groupe alkyle ayant de 1 à 6 atomes de carbone, et de préférence un groupe méthyle ou éthyle;

X désigne un anion dérivé d'un acide minéral ou organique tel qu'un anion méthosulfate ou un halogénure comme le chlorure ou le bromure.

Les copolymères de la famille (1) peuvent contenir en outre un ou plusieurs motifs dérivant de comonomères choisis dans la famille des acrylamides, méthacrylamides, diacétone-acrylamides, acrylamides et méthacrylamides substitués sur l'atome d'azote par des groupes alkyle inférieur en C_{1-4} , des groupes dérivés des acides acryliques ou méthacryliques ou de leurs esters, de vinyllactames tels que la vinylpyrrolidone ou le vinylcaprolactame, d'esters vinyliques.

Parmi ces copolymères de la famille (1), on peut citer en particulier :

- les copolymères d'acrylamide et de méthacrylate de diméthylaminoéthyle quaternisé au sulfate de diméthyle ou avec un halogénure de diméthyle, tels que celui vendu sous la dénomination HERCOFLOC[®] par la société HERCULES,
- les copolymères d'acrylamide et de chlorure de méthacryloyloxyéthyltriméthylammonium décrits, par exemple, dans la demande de brevet EP-A-080976 et vendus sous la dénomination BINAQUAT® P 100 par la société CIBA GEIGY,

5

10

15

20

25

- le copolymère d'acrylamide et de méthosulfate de méthacryloyloxyéthyltriméthylammonium vendu sous la dénomination RETEN® par la société HERCULES,
- les copolymères vinylpyrrolidone/acrylate ou méthacrylate de dialkylaminoalkyle quaternisés ou non, tels que les produits vendus sous la dénomination GAFQUAT® par la société ISP comme, par exemple, GAFQUAT® 734 ou GAFQUAT® 755, ou bien les produits dénommés COPOLYMER 845, 958 et 937. Ces polymères sont décrits en détail dans les brevets FR 2 077 143 et FR 2 393 573,
- les terpolymères méthacrylate de diméthylaminoéthyle/ vinylcaprolactame/vinylpyrrolidone tels que le produit vendu sous la dénomination GAFFIX® VC 713 par la société ISP,
- les copolymères vinylpyrrolidone/méthacrylamidopropyl-diméthylamine commercialisés notamment sous la dénomination STYLEZE® CC 10 par ISP, et
- les copolymères vinylpyrrolidone/méthacrylamide de diméthylaminopropyle quaternisé, tels que le produit vendu sous la dénomination GAFQUAT® HS 100 par la société ISP.
- (2) Les polymères formés de motifs pipérazinyle et de groupes alkylène ou hydroxyalkylène à chaîne droite ou ramifiée, éventuellement interrompue par des atomes d'oxygène, de soufre, d'azote ou par des cycles aromatiques ou hétérocycliques, ainsi que les produits d'oxydation et/ou de quaternisation de ces polymères. De tels polymères sont notamment décrits dans les brevets FR 2 162 025 et FR 2 280 361.

(3) Les polyaminoamides solubles dans l'eau, préparés en particulier par polycondensation d'un composé acide avec une polyamine. Ces polyaminoamides peuvent être réticulés par une épihalohydrine, un diépoxyde, un dianhydride, un dianhydride non saturé, un dérivé bis-insaturé, une bis-halohydrine, un bis-azétidinium, une bis-haloacyldiamine, un bis-halogénure d'alkyle ou encore par un oligomère résultant de la réaction d'un composé bifonctionnel réactif vis-à-vis d'une bis-halohydrine, d'un bis-azétidinium, d'une bis-haloacyldiamine, d'un bis-halogénure d'alkyle, d'une épihalohydrine, d'un diépoxyde ou d'un dérivé bis-insaturé, l'agent réticulant étant utilisé dans des proportions allant de 0,025 à 0,35 mole par groupement amine du polyaminoamide. Ces polyaminoamides peuvent être alkylés ou, s'ils comportent une ou plusieurs fonctions amines tertiaires, quaternisées. De tels polymères sont notamment décrits dans les brevets FR 2 252 840 et FR 2 368 508.

(4) Les dérivés de polyaminoamides résultant de la condensation de polyalkylènes-polyamines avec des acides polycarboxyliques, suivie d'une alkylation par des agents bifonctionnels. On peut citer, par exemple, les polymères acide adipique/diakylaminohydroxyalkyl-dialkylènetriamine dans lesquels le groupe alkyle comporte de 1 à 4 atomes de carbone et désigne de préférence un groupe méthyle, éthyle ou propyle, et le groupe alkylène comporte de 1 à 4 atomes de carbone, et désigne de préférence le groupe éthylène. De tels polymères sont notamment décrits dans le brevet FR 1 583 363.

Parmi ces dérivés, on peut citer plus particulièrement les polymères acide adipique/diméthylaminohydroxypropyl-diéthylène-triamine vendus sous la dénomination Cartaretine[®] F, F4 ou F8 par la société Sandoz.

(5) Les polymères obtenus par réaction d'une polyalkylène-polyamine comportant deux groupements amine primaire et au moins un groupement amine secondaire, avec un acide dicarboxylique choisi parmi l'acide diglycolique et les acides dicarboxyliques aliphatiques saturés ayant de 3 à 8 atomes de carbone, le rapport molaire de la polyalkylène-polylamine à l'acide dicarboxylique étant compris entre 0,8:1 et 1,4:1. Le polyaminoamide résultant

de cette réaction est ensuite amené à réagir avec l'épichlorhydrine dans un rapport molaire d'épichlorhydrine par rapport au groupement amine secondaire du polyaminoamide compris entre 0,5:1 et 1,8:1. De tels polymères sont notamment décrits dans les brevets US 3 227 615 et US 2 961 347.

5

Des polymères de ce type sont en particulier commercialisés sous la dénomination Hercosett[®] 57 par la société Hercules Inc. ou bien sous la dénomination de PD 170 ou Delsette[®] 101 par la société Hercules dans le cas du copolymère d'acide adipique/époxypropyl-diéthylène-triamine.

10

(6) Les cyclopolymères d'alkyldiallylamine ou de dialkyldiallylammonium tels que les homopolymères ou copolymères comportant, comme constituant principal de la chaîne, des motifs répondant aux formules (Va) ou (Vb):

$$(CH_{2})k$$
 $-(CH_{2})t-CR_{12}$
 $C(R_{12})-CH_{2}$
 $H_{2}C$
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{3}
 CH_{4}
 CH_{2}
 CH_{4}
 CH_{5}
 CH_{5}

15

-(CH₂)t-
$$\frac{(CH_2)k}{C(R_{12})-CH_2}$$
- $\frac{(CH_2)k}{C(R_{12})-CH_2}$ - $\frac{(CH_2)k}{C(R_12)-CH_2}$ - $\frac{(CH_2$

dans lesquelles

20

k et t sont égaux à 0 ou 1, la somme k + t étant égale à 1 ; R_{12} désigne un atome d'hydrogène ou un groupe méthyle ;

 R_{10} et R_{11} , indépendamment l'un de l'autre, désignent un groupement alkyle ayant de 1 à 6 atomes de carbone, un groupement hydroxyalkyle en C_{1-5} , un groupement amidoalkyle inférieur en C_{1} - C_{4} , ou bien R_{10} et R_{11} peuvent

désigner conjointement avec l'atome d'azote auquel ils sont rattachés, des groupements hétérocycliques, tels que pipéridinyle ou morpholinyle;

Y est un anion tel que bromure, chlorure, acétate, borate, citrate, tartrate, bisulfate, bisulfate, phosphate.

Ces polymères sont notamment décrits dans le brevet FR 2 080 759 et dans son certificat d'addition 2 190 406.

Parmi les polymères définis ci-dessus, on peut citer plus particulièrement l'homopolymère de chlorure de diméthyldiallyl-ammonium vendu sous la dénomination MERQUAT® 100 par la société CALGON (et ses homologues de faibles masses moléculaires moyenne en poids) et les copolymères de chlorure de diallyldiméthylammonium et d'acrylamide commercialisés sous la dénomination MERQUAT® 550.

(7) Les polymères de diammonium quaternaire contenant des motifs récurrents répondant à la formule (VI) :

dans laquelle:

5

10

15

20

25

30

R₁₃, R₁₄, R₁₅ et R₁₆, identiques ou différents, représentent des groupes aliphatiques, alicycliques ou arylaliphatiques contenant de 1 à 20 atomes de carbone ou des groupes hydroxyalkyle aliphatiques inférieurs, ou bien R₁₃, R₁₄, R₁₅ et R₁₆, ensemble ou séparément, forment avec les atomes d'azote auxquels ils sont rattachés des hétérocycles contenant éventuellement un second hétéroatome autre que l'azote, ou bien R₁₃, R₁₄, R₁₅ et R₁₆ représentent un groupe alkyle en C₁₋₆, linéaire ou ramifié, substitué par un groupement nitrile, ester, acyle, amide ou -CO-O-R₁₇-D ou -CO-NH-R₁₇-D où R₁₇ est un groupe alkylène et D un groupement ammonium quaternaire;

A₁ et B₁ représentent des groupements polyméthyléniques contenant de 2 à 20 atomes de carbone, pouvant être linéaires ou ramifiés, saturés ou insaturés, et

pouvant contenir, liés à ou intercalés dans la chaîne principale, un ou plusieurs cycles aromatiques, ou un ou plusieurs atomes d'oxygène, de soufre ou des groupements sulfoxyde, sulfone, disulfure, amino, alkylamino, hydroxyle, ammonium quaternaire, uréido, amide ou ester, et

5 X désigne un anion dérivé d'un acide minéral ou organique;

 A_1 , R_{13} et R_{15} peuvent former avec les deux atomes d'azote auxquels ils sont rattachés un cycle pipérazinique ; en outre, si A_1 désigne un groupe alkylène ou hydroxyalkylène linéaire ou ramifié, saturé ou insaturé, B_1 peut également désigner un groupement :

- $(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ dans lequel D désigne :

a) un reste de glycol de formule -O-Z-O-, où Z désigne un groupe hydrocarboné linéaire ou ramifié, ou un groupement répondant à l'une des formules suivantes :

-(CH₂-CH₂-O)_x-CH₂-CH₂--[CH₂-CH(CH₃)-O]_y-CH₂-CH(CH₃)-

où x et y désignent un nombre entier de 1 à 4, représentant un degré de polymérisation défini et unique ou un nombre quelconque de 1 à 4 représentant un degré de polymérisation moyen;

b) un reste de diamine bis-secondaire tel qu'un dérivé de pipérazine ;

c) un reste de diamine bis-primaire de formule -NH-Y-NH-, où Y désigne un groupe hydrocarboné linéaire ou ramifié, ou bien le groupe divalent -CH₂-CH₂-S-S-CH₂-CH₂-;

d) un groupement uréylène de formule -NH-CO-NH-.

De préférence, X est un anion tel que le chlorure ou le bromure.

Ces polymères ont une masse moléculaire moyenne en nombre généralement comprise entre 1000 et 100000.

Des polymères de ce type sont notamment décrits dans les brevets FR 2 320 330, FR 2 270 846, FR 2 316 271, FR 2 336 434 et FR 2 413 907 et les brevets US 2 273 780, US 2 375 853, US 2 388 614, US 2 454 547, US 3 206 462, US 2 261 002, US 2 271 378, US 3 874 870, US 4 001 432, US 3 929 990, US 3 966 904, US 4 005 193, US 4 025 617, US 4 025 627, US 4 025 653, US 4 026 945 et US 4 027 020.

10

15

20

25

On peut utiliser plus particulièrement les polymères qui sont constitués de motifs récurrents répondant à la formule :

dans laquelle R₁, R₂, R₃ et R₄, identiques ou différents, désignent un groupe alkyle ou hydroxyalkyle ayant de 1 à 4 atomes de carbone environ, n et p sont des nombres entiers variant de 2 à 20 environ et, X est un anion dérivé d'un acide minéral ou organique.

Un composé de formule (VII) particulièrement préféré est celui pour lequel R₁, R₂, R₃ et R₄ représentent un groupe méthyle et n=3, p=6 et X=Cl, dénommé chlorure d'hexadiméthrine (CTFA).

(8) Les polymères de polyammonium quaternaire, constitués de motifs de formule (VIII) :

15

20

$$\begin{array}{c} \begin{matrix} R_{18} \\ -N+-(CH_2)_r - NH-CO-(CH_2)_q - CO-NH-(CH_2)_s - N+-A-- \\ R_{19} \end{matrix}$$
 (VIII)

dans laquelle:

 R_{18} , R_{19} , R_{20} et R_{21} , identiques ou différents, représentent un atome d'hydrogène ou un groupe méthyle, éthyle, propyle, β-hydroxyéthyle, β-hydroxypropyle ou -CH₂CH₂(OCH₂CH₂)_pOH, où p est égal à 0 ou à un nombre entier compris entre 1 et 6, sous réserve que R_{18} , R_{19} , R_{20} et R_{21} ne représentent pas simultanément un atome d'hydrogène,

r et s, identiques ou différents, sont des nombres entiers compris entre 25 1 et 6,

q est égal à 0 ou à un nombre entier compris entre 1 et 34, X désigne un anion tel qu'un halogénure,

A désigne un radical d'un dihalogénure ou représente de préférence -CH₂-CH₂-O-CH₂-CH₂-.

De tels composés sont notamment décrits dans la demande de brevet EP-A-122 324.

On peut citer parmi ceux-ci, par exemple, les produits Mirapol[®] A 15, Mirapol[®] AD1, Mirapol[®] AZ1 et Mirapol[®] 175 vendus par la société Miranol.

5

10

15

20

25

- (9) Les polymères quaternaires de vinylpyrrolidone et de vinylimidazole tels que, par exemple, les produits commercialisés sous les dénominations Luviquat[®] FC 905, FC 550 et FC 370 par la société B.A.S.F. On peut citer notamment les copolymères de vinylpyrrolidone et de chlorure de méthylvinylimidazolium.
- (10) Les polyamines comme le Polyquart[®] H vendu par HENKEL, référencées sous le nom de POLYETHYLENEGLYCOL (15) TALLOW POLYAMINE dans le dictionnaire CTFA.
 - (11) Les polymères réticulés ou non réticulés de sels de méthacryloyloxyalkyl(C₁₋₄) trialkyl(C₁₋₄)ammonium, tels que les polymères obtenus par homopolymérisation du méthacrylate de diméthylaminoéthyle quaternisé par le chlorure de méthyle, ou par copolymérisation de l'acrylamide et de méthacrylate de diméthylaminoéthyle quaternisé par le chlorure de méthyle, l'homopolymérisation ou la copolymérisation étant suivie d'une réticulation par un composé à insaturation oléfinique, en particulier le méthylène-bisacrylamide. On peut plus particulièrement utiliser un copolymère réticulé acrylamide/chlorure de méthacryloyloxy-éthyltriméthylammonium (20/80 en poids) sous forme de dispersion contenant 50 % en poids dudit copolymère dans de l'huile minérale. Cette dispersion est commercialisée sous le nom de SALCARE® SC 92 par la Société ALLIED COLLOIDS. On peut également utiliser un homopolymère réticulé du chlorure de méthacryloyloxyéthyl-triméthylammonium contenant environ 50 % en poids de l'homopolymère dans de l'huile minérale ou dans un ester liquide. Ces dispersions sont commercialisées sous les noms de SALCARE® SC 95 et SALCARE® SC 96 par la Société ALLIED COLLOIDS.

Les polymères cationiques polysaccharidiques englobent par exemple les familles suivantes :

5

(1) Les dérivés d'éthers de cellulose comportant des groupements ammonium quaternaires décrits dans le brevet FR 1 492 597, et en particulier les polymères commercialisés sous les dénominations "JR" (JR 400, JR 125, JR 30M) ou "LR" (LR 400, LR 30M) par la Société Union Carbide Corporation. Ces polymères sont également définis dans le dictionnaire CTFA comme des ammoniums quaternaires d'hydroxyéthylcellulose ayant réagi avec un époxyde substitué par un groupement triméthylammonium.

10

15

(2) Les dérivés cationiques de la cellulose tels que les copolymères de cellulose ou les dérivés de cellulose greffés avec un monomère hydrosoluble d'ammonium quaternaire, et décrits notamment dans le brevet US 4 131 576, tels que les hydroxyalkylcelluloses, comme les hydroxyméthyl-, hydroxyéthylou hydroxypropylcelluloses greffées notamment avec un sel de méthacryloyléthyl-triméthylammonium, de méthacrylamidopropyltriméthylammonium, de diméthyldiallylammonium.

20

Les produits commercialisés répondant à cette définition sont plus particulièrement les produits vendus sous la dénomination Celquat[®] L 200 et Celquat[®] H 100 par la Société National Starch.

25

(3) Les polysaccharides cationiques décrits plus particulièrement dans les brevets US 3 589 578 et US 4 031 307, tels que les gommes de guar contenant des groupements cationiques trialkylammonium. On utilise, par exemple, des gommes de guar modifiées par un sel, par exemple le chlorure, de 2,3-époxypropyltriméthylammonium.

30

De tels produits sont commercialisés notamment sous les dénominations commerciales de JAGUAR® C13 S, JAGUAR® C 15, JAGUAR® C 17 ou JAGUAR® C162 par la société MEYHALL.

30

(4) les chitosanes et leurs sels tels que l'acétate, le lactate, le glutamate, le gluconate ou le pyrrolidone-carboxylate de chitosane.

Parmi ces composés, on peut citer le chitosane ayant un taux de désacétylation de 90,5 % en poids commercialisé sous la dénomination KYTAN BRUT STANDARD par la société ABER TECHNOLOGIES, le pyrrolidone-carboxylate de chitosane vendu sous la dénomination KYTAMER® PC par la société AMERCHOL.

5

10

15

20

25

30

Les polymères amphotères synthétiques englobent notamment :

- (1) les copolymères de chlorure de diméthyldiallylammonium et d'acide acrylique, commercialisés par exemple sous les dénominations Merquat[®] 280 et Merquat[®] 295 par la société Calgon;
- (2) les terpolymères de chlorure de diméthyldiallylammonium, d'acrylamide et d'acide acrylique, commercialisés par exemple sous la dénomination Merquat[®] Plus 3330 par la société Calgon;
- (3) les terpolymères de chlorure d'acrylamidopropyltriméthylammonium, d'acrylamide et d'acide 2-amidopropanesulfonique, commercialisés par exemple sous la dénomination Bozequat[®] 4000 par la société Hoechst, et
- (4) les terpolymères de chlorure de méthacrylamidopropyltriméthylammonium, d'acrylate de méthyle et d'acide acrylique, commercialisés par exemple sous la dénomination Merquat[®] 2001 par la société Calgon.

Les polymères amphotères dérivés de polysaccharides englobent par exemple les familles suivantes :

- (1) les gommes de guar portant à la fois des groupes cationiques tels que amine primaire, secondaire ou tertiaire, ammonium, sulfonium ou phosphonium, et des groupes anioniques tels que carboxyle, sulfonate, sulfate, phosphate ou phosphonate, préparées conformément au procédé décrit dans la demande de brevet EP 0 943 627;
 - (2) les dérivés amphotères d'éthers de cellulose, décrits dans la demande internationale WO 90/03779, comprenant en moyenne, par motif de glucose, au moins 0,1 groupe à fonction amine ou ammonium de formule (I)

ci-dessous, et au moins 0,1 groupe à fonction carboxyle de formule (II) ci-dessous :

(I)
$$-[(CH_2)_m-N^+R^1R^2]_x-R^3$$
 (II) $-C_nH_{2n}-COO^-$

dans lesquelles m = 2 - 4, n = 1 - 3, x = 0 - 3, R^1 et R^2 représentent chacun un groupe alkyle en C_{1-4} , R^3 représente un groupe $-(CH_2)_m$ - NR^1R^2 ou $-(CH_2)_m$ - $N^{\dagger}R^1R^2R^4$ où R^4 représente un groupe alkyle en C_{1-4} ou un groupe $-C_nH_{2n}$ - COO^{-} ;

10 (3) les polymères dérivés du chitosane comportant des motifs répondant aux formules suivantes :

le motif (A) étant présent dans des proportions comprises entre 0 et 30%, le motif (B) dans des proportions comprises entre 5 et 50% et le motif (C) dans des proportions comprises entre 30 et 90%, étant entendu que dans ce motif (C), R₁₆ représente un groupe de formule :

5

20

25

dans laquelle si q=0, R_{17} , R_{18} et R_{19} , identiques ou différents, représentent chacun un atome d'hydrogène, un reste méthyle, hydroxyle, acétoxy ou amino, un reste monoalcoylamine ou un reste dialcoylamine éventuellement interrompus par un ou plusieurs atomes d'azote et/ou éventuellement substitués

par un ou plusieurs groupes amine, hydroxyle, carboxyle, alcoylthio, sulfonique, un reste alcoylthio dont le groupe alcoyle porte un reste amino, l'un au moins des groupes R_{17} , R_{18} et R_{19} étant dans ce cas un atome d'hydrogène;

ou si q = 1, R_{17} , R_{18} et R_{19} représentent chacun un atome d'hydrogène, ainsi que les sels formés par ces composés avec des bases ou des acides ;

(4) Les polymères obtenus par N-carboxylation du chitosane tels que le N-carboxyméthylchitosane ou le N-carboxybutylchitosane vendu sous la dénomination EVALSAN® par la société JAN DEKKER.

10

15

20

25

30

5

Les polymères cationiques ou amphotères de l'invention sont de préférence filmogènes.

Les polymères cationiques ou amphotères sont généralement présents dans les shampooings de la présente invention en une concentration allant de 0,01 % à 20 % en poids, de préférence de 0,1 à 5 % en poids, rapportée au poids total de la composition.

L'association des deux types de polymères essentiels pour la présente invention décrits ci-dessus (copolymère séquencé + polymère cationique ou amphotère), se trouve dans une base pour shampooings spécifique contenant l'association d'au moins un agent tensioactif anionique et d'au moins un agent tensioactif non-ionique et/ou d'au moins un agent tensioactif amphotère.

Les agents tensioactifs anioniques, non-ioniques et amphotères utilisables dans les compositions de lavage de la présente invention sont connus et couramment utilisés dans le domaine cosmétique.

Comme agents tensioactifs anioniques utilisables dans la présente invention, on peut notamment mentionner les sels, en particulier les sels de métaux alcalins tels que les sels de sodium, les sels d'ammonium, les sels d'amines, les sels d'aminoalcools ou les sels de métaux alcalino-terreux, par exemple, de magnésium, des types suivants : les alkylsulfates, les alkylamidoéthersulfates, les alkylamidoéthersulfates, les alkylamidoéthersulfates,

les monoglycéride-sulfates; les alkylsulfonates, les alkylamidesulfonates, les alkylarylsulfonates, les α-oléfine-sulfonates, les paraffine-sulfonates, les alkylsulfosuccinates, les alkylsulfosuccinates, les alkylsulfo-acétates, les acylsarcosinates et les acylglutamates, les groupes alkyle et acyle de tous ces composés comportant de 6 à 24 atomes de carbone et le groupe aryle désignant de préférence un groupe phényle ou benzyle.

5

10

15

20

25

30

On peut également utiliser les monoesters d'alkyle en C_{6-24} et d'acides polyglycoside-dicarboxyliques tels que les glucoside-citrates d'alkyle, les polyglycoside-tartrates d'alkyle et les polyglycoside-sulfosuccinates d'alkyle, les alkylsulfosuccinamates, les acyliséthionates et les N-acyltaurates, le groupe alkyle ou acyle de tous ces composés comportant de 12 à 20 atomes de carbone.

Un autre groupe d'agents tensioactifs anioniques utilisables dans les compositions de la présente invention est celui des acyl-lactylates dont le groupe acyle comporte de 8 à 20 atomes de carbone.

En outre, on peut encore citer les acides alkyl-D-galactoside-uroniques et leurs sels ainsi que les acides alkyl(C_{6-24})éther-carboxyliques polyoxyalkylénés, les acides alkyl(C_{6-24})aryl(C_{6-24})éther-carboxyliques polyoxyalkylénés, les acides alkyl(C_{6-24})amidoéther-carboxyliques polyoxyalkylénés et leurs sels, en particulier ceux comportant de 2 à 50 motifs oxyde d'éthylène, et leurs mélanges.

On utilise de préférence les alkylsulfates, les alkyléthersulfates et les alkyléthercarboxylates, et leurs mélanges, en particulier sous forme de sels de métaux alcalins ou alcalino-terreux, d'ammonium, d'amine ou d'aminoalcool.

Les agents tensioactifs amphotères, utilisables dans la présente invention, peuvent être notamment des dérivés d'amines aliphatiques secondaires ou tertiaires, dans lesquels le groupe aliphatique est une chaîne linéaire ou ramifiée comportant de 8 à 22 atomes de carbone et contenant au moins un groupe anionique tel que, par exemple, un groupe carboxylate, sulfonate, sulfate, phosphate ou phosphonate. On peut citer en particulier les

alkyl (C_{8-20}) bétaïnes, les sulfobétaïnes, les alkyl (C_{8-20}) amidoalkyl (C_{6-8}) -bétaïnes ou les alkyl (C_{8-20}) amidoalkyl (C_{6-8}) sulfobétaïnes.

Parmi les dérivés d'amines, on peut citer les produits commercialisés sous la dénomination MIRANOL®, tels que décrits dans les brevets US 2 528 378 et US 2 781 354 et classés dans le dictionnaire CTFA, 3^{ème} édition, 1982, sous les dénominations Amphocarboxy-glycinate et Amphocarboxypropionate de structures respectives (1) et (2):

 R_a -CONHCH₂CH₂-N(R_b)(R_c)(CH₂COO⁻) (1) dans laquelle :

R_a représente un groupe alkyle dérivé d'un acide R_a-COOH présent dans l'huile de coprah hydrolysée, un groupe heptyle, nonyle ou undécyle,

 R_{b} représente un groupe bêta-hydroxyéthyle, et R_{c} représente un groupe carboxyméthyle ; et

ъ,

5

10

15

20

25

30

 R_a '-CONHCH₂CH₂-N(B)(C) (2)

dans laquelle:

B représente -CH2CH2OX',

C représente - $(CH_2)_z$ -Y', avec z = 1 ou 2,

X' représente le groupe -CH2CH2-COOH ou un atome d'hydrogène,

Y' représente -COOH ou le groupe -CH2-CHOH-SO3H,

 R_a ' représente un groupe alkyle d'un acide R_a '-COOH présent dans l'huile de coprah ou dans l'huile de lin hydrolysée, un groupe alkyle, notamment en C_{17} et sa forme iso, un groupe en C_{17} insaturé.

Ces composés sont classés dans le dictionnaire CTFA, 5^{ème} édition, 1993, sous les dénominations cocoamphodiacétate de disodium, lauroamphodiacétate de disodium, caprylamphodiacétate de disodium, caprylamphodiacétate de disodium, lauroamphodipropionate de disodium, caprylamphodipropionate de disodium, caprylamphodipropionate de disodium, caprylamphodipropionate de disodium, acide lauroamphodipropionique, acide cocoamphodipropionique.

A titre d'exemple, on peut citer le cocoamphodiacétate commercialisé par la société RHODIA sous la dénomination commerciale MIRANOL® C2M concentré.

Parmi les tensioactifs amphotères, on utilise de préférence les (alkyle en C_{8-20})-bétaïnes, les (alkyle en C_{8-20})-amido(alkyle en C_{6-8})bétaïnes, les alkylamphodiacétates et leurs mélanges.

5

Les tensioactifs non-ioniques utilisables dans les compositions de la présente invention sont des composés bien connus en soi (voir notamment à cet égard "Handbook of Surfactants" par M.R. PORTER, éditions Blackie & Son (Glasgow and London), 1991, pp 116-178). Ils sont choisis notamment parmi les alcools, les alpha-diols, les alkyl(C₁₋₂₀)phénols ou les acides gras polyéthoxylés, polypropoxylés ou polyglycérolés, ayant une chaîne grasse comportant, par exemple, de 8 à 18 atomes de carbone, le nombre de groupements oxyde d'éthylène ou oxyde de propylène pouvant aller notamment de 2 à 50 et le nombre de groupements glycérol pouvant aller notamment de 2 à 30.

15

10

On peut également citer les condensats d'oxyde d'éthylène et d'oxyde de propylène sur des alcools gras; les amides gras polyéthoxylés ayant de préférence de 2 à 30 motifs d'oxyde d'éthylène, les amides gras polyglycérolés comportant en moyenne de 1 à 5 groupements glycérol et en particulier de 1,5 à 4, les esters d'acides gras du sorbitane éthoxylés ayant de 2 à 30 motifs d'oxyde d'éthylène, les esters d'acides gras du saccharose, les esters d'acides gras du polyéthylèneglycol, les (alkyle en C₆₋₂₄)polyglycosides, les dérivés de N-(alkyle en C₆₋₂₄)glucamine, les oxydes d'amines tels que les oxydes d'(alkyle en C₁₀₋₁₄)amines ou les oxydes de N-(acyle en C₁₀₋₁₄)-aminopropylmorpholine.

25

20

Parmi les tensioactifs non-ioniques cités ci-dessus, on utilise de préférence les (alkyle en C₆₋₂₄)polyglycosides.

La quantité d'agents tensioactifs anioniques est de préférence comprise entre 3 % et 35 % en poids, en particulier entre 5 % et 25 % en poids, rapportée au poids total de la composition cosmétique.

30

La quantité totale d'agents tensioactifs amphotères et/ou non ioniques, est de préférence comprise entre 0,5 et 30 %, et en particulier entre 1 et 20 % rapportée au poids total de la composition.

Le pH des compositions de lavage de la présente invention est de préférence compris entre 2 et 11, et en particulier entre 3 et 10.

Le milieu liquide des compositions de l'invention est aqueux ou hydroalcoolique, c'est-à-dire que, dans ce dernier cas, les compositions contiennent en plus d'une phase aqueuse, un ou plusieurs solvants choisis parmi les alcools inférieurs tels que l'éthanol ou l'isopropanol, et les polyols tels que le glycérol, le propylèneglycol et les polyéthylèneglycols.

Les compositions selon l'invention peuvent également contenir des principes actifs cosmétiques ou des additifs de formulation tels que des épaississants polymériques naturels ou synthétiques, anioniques, amphotères, zwittérioniques, non ioniques ou cationiques, associatifs ou non, des épaississants non polymériques comme des acides ou des électrolytes, des agents tensioactifs cationiques, des agents nacrants, des agents opacifiants, des colorants ou pigments, des parfums, des huiles minérales, végétales et/ou synthétiques, des cires dont les céramides, des vitamines, des filtres UV, des agents anti-radicalaires, des agents plastifiants, des agents conservateurs ou des agents de stabilisation du pH.

L'homme de métier veillera à choisir les éventuels additifs et leur quantité de manière à ce qu'ils ne nuisent pas aux propriétés intéressantes des compositions de lavage des fibres kératiniques de la présente invention.

Les compositions de l'invention peuvent éventuellement se présenter sous forme aérosol.

25

5

10

15

20

L'invention est illustrée à l'aide de l'exemple suivant.

Exemple

On prépare les deux shampooings A et B suivants :

		ı	

15.

	Shampooing A	Shampooing B
lauryléthersulfate de sodium (20E)	17 % m.a.	17 % m.a.
cocobétaïne	2,5 % m.a.	2,5 % m.a.
JR 400 ^{a)}	0,25 %	0,5 %
copolymère séquencé cationique ^{b)}	0,25 %	-
eau	q.s.p. 100 %	q.s.p. 100 %

a) éther de cellulose à groupes ammonium quaternaire commercialisé par la société Union Carbide Corporation), ou

10 m.a. = matière active

On lave des mèches de cheveux naturels avec chacun des shampooings ci-dessus et on les soumet, après séchage, à une évaluation par dix experts. Neuf experts sur dix trouvent que la mèche lavée avec le shampooing A, selon l'invention, a un toucher plus lisse et présente plus de corps que la mèche lavée avec le shampooing B selon l'état de la technique.

b) copolymère séquencé cationique formé d'un bloc polystyrène et d'un bloc de poly(iodure de N-méthyl-4-vinylpyridinium).

REVENDICATIONS

- 1. Composition de lavage des matières kératiniques, de préférence des fibres kératiniques contenant, dans un milieu aqueux ou hydroalcoolique cosmétiquement acceptable,
- au moins un copolymère linéaire séquencé comprenant au moins un bloc hydrophobe et au moins un bloc hydrophile, à l'exclusion des copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène, des copolymères séquencés à motifs uréthanne et des copolymères séquencés à motifs siloxane,
- au moins un polymère, cationique ou amphotère, et

5

10

15

. 20

25

- au moins un agent tensioactif anionique associé à au moins un agent tensioactif non-ionique et/ou au moins un agent tensioactif amphotère.
 - 2. Composition de lavage selon la revendication 1, caractérisée par le fait que le copolymère linéaire séquencé, éventuellement neutralisé, est dissous ou finement dispersé dans le milieu aqueux ou hydroalcoolique.
 - 3. Composition de lavage selon la revendication 2, caractérisée par le fait que le copolymère linéaire séquencé, éventuellement neutralisé, est soluble dans l'eau.
 - 4. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les blocs hydrophiles du copolymère linéaire séquencé sont formés de monomères hydrosolubles choisis parmi les monomères hydrosolubles anioniques, les monomères hydrosolubles cationiques ou un mélange de ceux-ci.
 - 5. Composition de lavage selon la revendication 4, caractérisée par le fait que les monomères hydrosolubles anioniques sont choisis parmi les acides carboxyliques à insaturation éthylénique, l'acide 2-acrylamido-2-méthylpropanesulfonique, l'acide styrènesulfonique, l'acide vinylsulfonique et l'acide vinylphosphonique.
 - 6. Composition de lavage selon la revendication 4, caractérisée par le fait que les monomères hydrosolubles non-ioniques sont choisis parmi l'acrylamide, les acrylamides N-alkylés en C₁₋₆ ou N,N-dialkylés en C₁₋₃, l'acrylate de polyéthylèneglycol, le méthacrylate de polyéthylèneglycol, le N-vinylacétamide, le N-méthyl-N-vinylacétamide, le N-vinylformamide, le N-

méthyl-N-vinylformamide, les N-vinyllactames comportant un groupe cyclique de 4 à 9 atomes de carbone, l'alcool vinylique, l'oxyde d'éthylène, l'acrylate d'hydroxyéthyle, l'acrylate d'hydroxypropyle, le méthacrylate d'hydroxypropyle.

5

10

7. Composition de lavage selon la revendication 4, caractérisée par le fait que les monomères hydrosolubles cationiques sont choisis parmi le chlorure de diméthyldiallylammonium, le chlorure de méthylvinylimidazolium, la 2-vinylpyridine, la 4-vinylpyridine, la 2-méthyl-5-vinylpyridine, les halogénures de N-(alkyle en C_{1-4})-4-vinylpyridinium, la vinylamine, les monomères de formule

 $H_2C=CR_1-CO-X_2$

dans laquelle

R₁ représente un atome d'hydrogène ou un groupe méthyle,

15

 X_2 représente un groupe hydrocarboné linéaire ou ramifié en C_{1-6} portant au moins une fonction amine primaire, secondaire, tertiaire ou au moins un atome d'azote quaternaire, ou un groupe de formule NHR $_2$ ou de formule NR $_2$ R $_3$ où R $_2$ et R $_3$ représentent indépendamment l'un de l'autre chacun un groupe hydrocarboné en C_{1-6} , linéaire ou ramifié, portant au moins une fonction amine primaire, secondaire, tertiaire ou au moins un atome d'azote quaternaire.

20

25

8. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le bloc hydrophobe est formé de monomères insolubles dans l'eau, choisis parmi les monomères vinylaromatiques, les diènes et les dérivés alkylés des diènes, le chloroprène, les acrylates d'alkyle en C₁₋₁₀, d'aryle en C₆₋₁₀ ou d'aralkyle en C₁₋₁₀, les méthacrylates d'alkyle en C₁₋₁₀, d'aryle en C₆₋₁₀ ou d'aralkyle en C₁₋₁₀, l'acétate de vinyle, les vinyléthers de formule CH₂=CH-O-R et les allyléthers de formule CH₂=CH-CH₂-O-R où R représente un groupe alkyle en C₁₋₆, l'acrylonitrile, le chlorure de vinyle, le chlorure de vinylidène, la caprolactone, l'éthylène, le propylène et les monomères vinyliques fluorés ou à chaîne perfluorée.

30

9. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le bloc hydrophile contient jusqu'à 25 % en moles, de préférence jusqu'à 10 % en moles, et idéalement jusqu'à

5 % en moles, d'un ou de plusieurs monomères insolubles dans l'eau selon la revendication 8.

10. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le bloc hydrophobe contient jusqu'à 25 % en moles, de préférence jusqu'à 10 % en moles, et idéalement jusqu'à 5 % en moles, d'un ou de plusieurs monomères hydrosolubles selon l'une quelconque des revendications 4 à 7.

5

10

15

20

25

- 11. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le copolymère séquencé est présent en une concentration allant de 0,01 à 20 %, de préférence de 0,1 à 5 %, rapportée au poids total de la composition de lavage.
- 12. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le polymère cationique ou amphotère est un polymère synthétique ou un polymère obtenu par modification chimique de polysaccharides.
- 13. Composition de lavage selon la revendication 12, caractérisée par le fait que le polymère cationique est choisi parmi les homopolymères ou copolymères d'esters ou d'amides acryliques ou méthacryliques à fonction aminée, les polymères à motifs pipérazinyle et à motifs alkylène ou hydroxyalkylène, les polyaminoamides solubles dans l'eau, les cyclopolymères d'alkyldiallylamine ou de dialkyldiallylammonium, les polymères de diammonium quaternaire, les polymères de polyammonium quaternaire, les polymères quaternaires de vinylpyrrolidone et de vinylimidazole, les polyamines, les polymères réticulés ou non-réticulés de sels de méthacryloyloxyalkyl(C₁₋₄)trialkyl(C₁₋₄)ammonium, les dérivés d'éther de cellulose comportant des groupements ammonium quaternaire, les dérivés cationiques de cellulose, les gommes de guar à groupes trialkylammonium et les chitosanes.
- 14. Composition de lavage selon la revendication 12, caractérisée par le fait que le polymère amphotère est choisi parmi les copolymères de chlorure de diméthyldiallylammonium et d'acide acrylique, les terpolymères de chlorure de diméthyldiallylammonium, d'acrylamide et d'acide acrylique, les terpolymères de chlorure d'acrylamidopropyltriméthylammonium, d'acrylamide et d'acide 2-amidopropanesulfonique, les terpolymères de

chlorure de méthacrylamidopropyltriméthylammonium, d'acrylate de méthyle et d'acide acrylique, les gommes de guar portant à la fois des groupes cationiques tels qu'amine primaire, secondaire ou tertiaire, ammonium, sulfonium ou phosphonium, et des groupes anioniques tels que carboxyle, sulfonate, sulfate, phosphate ou phosphonate, les dérivés amphotères d'éthers de cellulose et des chitosanes à groupes carboxyle.

15. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que les polymères cationiques ou amphotères sont des polymères filmogènes.

16. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le polymère cationique ou amphotère est présent en une concentration allant de 0,01 % à 20 % en poids, de préférence de 0,1 à 5 % en poids, rapportée au poids total de la composition de lavage.

17. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les agents tensioactifs anioniques sont choisis parmi les alkylsulfates, les alkyléthersulfates et les alkyléthercarboxylates, et leurs mélanges, en particulier sous forme de sels de métaux alcalins ou alcalino-terreux, d'ammonium, d'amine ou d'aminoalcool.

18. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que la concentration d'agents tensioactifs anioniques est comprise entre 3 et 35 % en poids, de préférence entre 5 et 25 % en poids, rapportée au poids total de la composition.

19. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'agent tensioactif non-ionique est un (alkyle en C₆₋₂₄)-polyglycoside.

20. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'agent tensioactif amphotère est choisi parmi les (alkyle en C₈₋₂₀)-bétaïnes, les (alkyle en C₈₋₂₀)-amido(alkyle en C₆₋₈)bétaïnes, les alkylamphodiacétates et leurs mélanges.

21. Composition de lavage selon l'une quelconque des revendications précédentes, caractérisée par le fait que la quantité totale d'agents tensioactifs amphotères et/ou non ioniques est comprise entre 0,5 et 30 %, et en particulier entre 1 et 20 %, rapportée au poids total de la composition.

10

5

15

20

25

22. Utilisation d'une composition selon l'une quelconque des revendications précédentes pour le lavage des matières kératiniques, de préférence des fibres kératiniques.

RAPPORT DE RECHERCHE **PRÉLIMINAIRE**

N° d'enregistrement national

FA 619255 FR 0206731

établi sur la base des dernières revendications déposées avant le commencement de la recherche

	A PROPRIETE GEPOSEES AVAILE NDUSTRIELLE	0 0011111111111111111111111111111111111		
DOCL	IMENTS CONSIDÉRÉS COMME PE	ERTINENTS	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
atégorie	Citation du document avec Indication, en cas de b des parties pertinentes	esoin,		
ľ	WO 01 96429 A (NOVEON IP HOLD 20 décembre 2001 (2001-12-20) * page 57, ligne 10 - page 58 * * page 5, ligne 15 - page 6,	; tableau 11	1-22	A61K7/075
1	FR 2 709 954 A (OREAL) 24 mars 1995 (1995-03-24) * page 2, ligne 10 - ligne 33	3 *	1-22	
4	US 3 907 984 A (CALVERT ANTHO 23 septembre 1975 (1975-09-23 * colonne 1, ligne 64 - color 31 *	3)	1-22	
A	EP 0 494 022 A (OREAL) 8 juillet 1992 (1992-07-08) * le document en entier *		1-22	
Α	EP 1 092 420 A (OREAL) 18 avril 2001 (2001-04-18) * le document en entier *		1-22	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
	·			
	Puta Path	rèvement de la recherche	ــــــــــــــــــــــــــــــــــــــ	Examinateur
		février 2003	Ron	nano-Götsch, R
X:pa Y:pa au	CATÉGORIE DES DOCUMENTS CITÉS inticulièrement pertinent à lui seul rticulièrement pertinent en combinaison avec un tre document de la même catégorie rêre-plan technologique	T : théorie ou princi E : document de br à la date de dép de dépôt ou qu' D : cité dans la den L : cité pour d'autre	ipe à la base de levet bénéficiant o ôt et qui n'a été p à une date posténande es raisons	'invention d'une date antérieure publié qu'à cette date teure.
O : di	vulgation non-écrite cument intercalaire	& : membre de la m	nême famille, doc	ument correspondant

- P: document intercalaire

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0206731 FA 619255

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus. Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d21-02-2003 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet au rapport de rech		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 0196429	A	20-12-2001	US	6410005 B1	25-06-2002
0150.25	• •		AU	5632000 A	24-12-2001
			WO	0196429 A1	20-12-2001
FR 2709954	А	24-03-1995	FR	2709954 A1	24-03-1995
US 3907984	A	23-09-1975	GB	1425228 A	18-02-1976
			CA	1044599 A1	19-12-1978
			DE	2406794 A1	29-08-1974
			FR	2216988 A1	06-09-1974
		. •	ZA	7400797 A	24-12-1974
FP 0494022	Α	08-07-1992	FR	2671088 A1	03-07-1992
			AT	159036 T	15-10-1997
			CA	2058543 A1	28-06-1992
			DE	69127886 D1	13-11-1997
			DE	69127886 T2	05-03-1998
			EP	0494022 A1	08-07-1992
			ES	2109261 T3	16-01-1998
			JР	3207228 B2	10-09-2001
			JP	5093018 A	16-04-1993
		•	US:	5324765 A	28-06-1994
EP 1092420	Α	18-04-2001	FR	2798853 A1	30-03-2001
			EP	1092420 A1	18-04-2001
••			JP	2001233745 A	28-08-2001
			US	6403542 B1	11-06-2002