$12n_{0234} \ (K12n_{0234})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{23} + 16u^{21} + \dots + b - 1, -u^{22} + 15u^{20} + \dots + a + 1, u^{24} - 2u^{23} + \dots + u - 1 \rangle$$

 $I_2^u = \langle u^2 + b - 1, a + 1, u^3 + u^2 - 2u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -u^{23} + 16u^{21} + \dots + b - 1, \ -u^{22} + 15u^{20} + \dots + a + 1, \ u^{24} - 2u^{23} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{22} - 15u^{20} + \dots - 6u - 1 \\ u^{23} - 16u^{21} + \dots + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{23} + 2u^{22} + \dots - 6u - 2 \\ -3u^{23} + u^{22} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{23} + u^{22} + \dots - 5u - 1 \\ -u^{23} + 15u^{21} + \dots + 8u^{2} + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 4u^{2} + 1 \\ u^{10} - 6u^{8} + 11u^{6} - 6u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$u^{23} - 4u^{22} - 16u^{21} + 62u^{20} + 110u^{19} - 405u^{18} - 420u^{17} + 1453u^{16} + 940u^{15} - 3134u^{14} - 1118u^{13} + 4197u^{12} + 260u^{11} - 3495u^{10} + 1034u^{9} + 1741u^{8} - 1269u^{7} - 400u^{6} + 550u^{5} - 66u^{4} - 92u^{3} + 43u^{2} + 22u - 5$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{24} + 8u^{23} + \dots + 34u + 1$
c_2, c_4	$u^{24} - 4u^{23} + \dots + 6u - 1$
c_3, c_8	$u^{24} + u^{23} + \dots + 36u + 8$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$u^{24} - 2u^{23} + \dots + u - 1$
<i>c</i> 9	$u^{24} + 2u^{23} + \dots + 7u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} + 20y^{23} + \dots - 534y + 1$
c_{2}, c_{4}	$y^{24} - 8y^{23} + \dots - 34y + 1$
c_3, c_8	$y^{24} - 21y^{23} + \dots - 1040y + 64$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$y^{24} - 34y^{23} + \dots - 21y + 1$
<i>c</i> ₉	$y^{24} + 26y^{23} + \dots - 21y + 1$

(vi) Complex Volumes and Cusp Shapes

• • • • • • • • • • • • • • • • • • • •	Cusp shape
-4.78298 - 2.15986I	-14.8245 + 3.7042I
-4.78298 + 2.15986I	-14.8245 - 3.7042I
0.73559 + 1.57187I	-10.92931 - 1.48898I
0.73559 - 1.57187I	-10.92931 + 1.48898I
-6.35267	-13.5900
-0.44591 + 7.86280I	-12.55352 - 5.99165I
-0.44591 - 7.86280I	-12.55352 + 5.99165I
-7.12889	-9.59420
4.52862 - 4.98340I	-8.25902 + 6.13145I
4.52862 + 4.98340I	-8.25902 - 6.13145I
	-4.78298 + 2.15986I $0.73559 + 1.57187I$ $0.73559 - 1.57187I$ -6.35267 $-0.44591 + 7.86280I$ $-0.44591 - 7.86280I$ -7.12889 $4.52862 - 4.98340I$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.292302 + 0.564711I		
a = 0.90790 - 1.36582I	4.89005 + 1.34187I	-6.87930 + 0.47018I
b = 0.567413 + 0.008562I		
u = 0.292302 - 0.564711I		
a = 0.90790 + 1.36582I	4.89005 - 1.34187I	-6.87930 - 0.47018I
b = 0.567413 - 0.008562I		
u = -0.544664		
a = 0.533142	-0.910827	-10.5330
b = 0.444791		
u = -0.260496 + 0.277785I		
a = 1.25655 - 0.85026I	-0.635329 + 0.918549I	-9.38568 - 7.31949I
b = -0.092184 - 0.632306I		
u = -0.260496 - 0.277785I		
a = 1.25655 + 0.85026I	-0.635329 - 0.918549I	-9.38568 + 7.31949I
b = -0.092184 + 0.632306I		
u = 0.266177		
a = -2.54350	-2.02344	2.35380
b = 0.862360		
u = 1.73483 + 0.06615I		
a = -1.05402 + 1.43450I	-9.17857 - 2.99479I	-11.67464 + 0.80624I
b = -1.58632 + 2.38877I		
u = 1.73483 - 0.06615I	0.45055	44.0=404
a = -1.05402 - 1.43450I	-9.17857 + 2.99479I	-11.67464 - 0.80624I
b = -1.58632 - 2.38877I		
u = -1.74821 + 0.02394I	14.0501 . 0.05025	14 5005 0 40505
a = -0.42595 + 2.65836I	-14.9721 + 2.6782I	-14.7087 - 2.4859I
b = -0.53152 + 4.79437I		
u = -1.74821 - 0.02394I	14.0701 0.07007	14 7007 + 0 40707
a = -0.42595 - 2.65836I	-14.9721 - 2.6782I	-14.7087 + 2.4859I
b = -0.53152 - 4.79437I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.75360		
a = -0.586507	-16.6700	-14.3680
b = -1.87176		
u = 1.76989 + 0.07670I		
a = 1.04117 - 2.39816I	-11.0119 - 9.4629I	-13.6249 + 4.9785I
b = 2.07334 - 4.41830I		
u = 1.76989 - 0.07670I		
a = 1.04117 + 2.39816I	-11.0119 + 9.4629I	-13.6249 - 4.9785I
b = 2.07334 + 4.41830I		
u = -1.81183		
a = -1.26255	-18.6696	-7.58970
b = -2.55776		

II.
$$I_2^u = \langle u^2 + b - 1, a + 1, u^3 + u^2 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - 1 \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} \\ -2u^{2} + u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 + u 23$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_8	u^3
c_4	$(u+1)^3$
c_5, c_6, c_7 c_9	$u^3 - u^2 - 2u + 1$
c_{10}, c_{11}, c_{12}	$u^3 + u^2 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_8	y^3
$c_5, c_6, c_7 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = -1.00000	-7.98968	-20.1980
b = -0.554958		
u = -0.445042		
a = -1.00000	-2.34991	-23.2470
b = 0.801938		
u = -1.80194		
a = -1.00000	-19.2692	-21.5550
b = -2.24698		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{24} + 8u^{23} + \dots + 34u + 1)$
c_2	$((u-1)^3)(u^{24} - 4u^{23} + \dots + 6u - 1)$
c_3, c_8	$u^3(u^{24} + u^{23} + \dots + 36u + 8)$
c_4	$((u+1)^3)(u^{24} - 4u^{23} + \dots + 6u - 1)$
c_5, c_6, c_7	$(u^3 - u^2 - 2u + 1)(u^{24} - 2u^{23} + \dots + u - 1)$
<i>c</i> 9	$(u^3 - u^2 - 2u + 1)(u^{24} + 2u^{23} + \dots + 7u + 1)$
c_{10}, c_{11}, c_{12}	$(u^3 + u^2 - 2u - 1)(u^{24} - 2u^{23} + \dots + u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{24} + 20y^{23} + \dots - 534y + 1)$
c_2, c_4	$((y-1)^3)(y^{24} - 8y^{23} + \dots - 34y + 1)$
c_3, c_8	$y^3(y^{24} - 21y^{23} + \dots - 1040y + 64)$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{24} - 34y^{23} + \dots - 21y + 1)$
c_9	$(y^3 - 5y^2 + 6y - 1)(y^{24} + 26y^{23} + \dots - 21y + 1)$