Assignment - 2 MCA-563 Abhishek Maiti 2016005

These are some of the plots for the features for different digits.

I used an SVM with an RBF kernel and a LibSVM optimiser. These are the results that I got with and without augmentations. For augmentations, due to less compute power I randomly chose a noise from the 6 available and added that to the sample.

I added the noise to the test set to see how the noise affects the accuracy, due to the huge number of training samples, I couldn't add all noises to all the training samples hence couldn't make the features that robust.

Validation Accuracy:

	Without Augmentation	With Augmentation
MFCC	45%	22%
Spectrogram	63%	32%

Precision-Recall Table MFCC without Augmentation

precision recall f1-score

0	0.85	0.58	0.69
1	0.31	0.71	0.43
2	0.38	0.54	0.45
3	0.47	0.63	0.54
4	0.94	0.11	0.20
5	0.63	0.23	0.33
6	0.83	0.04	0.07
7	0.40	0.75	0.52
8	0.44	0.52	0.48
9	0.55	0.50	0.52

micro avg 0.45 0.45 0.45 macro avg 0.58 0.46 0.42 weighted avg 0.59 0.45 0.42

Precision-Recall Table MFCC tested with Augmentation testing samples

precision recall f1-score

0	0.23	0.29	0.24
1	0.25	0.27	0.26
2	0.19	0.17	0.17
3	0.22	0.29	0.23
4	0.18	0.24	0.32
5	0.27	0.23	0.24

```
6 0.24 0.21 0.22 7 0.29 0.22 0.24
```

8 0.14 0.21 0.17

9 0.25 0.25 0.25

micro avg 0.22 0.26 0.24 macro avg 0.24 0.27 0.25 weighted avg 0.25 0.29 0.26

Precision-Recall Table Spectrogram without Augmentation

2494

precision recall f1-score

0 0.59 0.57 0.58 1 0.48 0.63 0.54 2 0.44 0.53 0.48 3 0.53 0.63 0.57

4 0.78 0.76 0.77

5 0.65 0.56 0.60 **6** 0.79 0.74 0.76

7 0.72 0.55 0.63

8 0.73 0.62 0.67

9 0.60 0.57 0.59

micro avg 0.62 0.62 0.62 macro avg 0.63 0.62 0.62 weighted avg 0.63 0.62 0.62

Precision-Recall Table Spectrogram tested on Augmentated test samples

precision recall f1-score

 0
 0.32
 0.30
 0.31

 1
 0.31
 0.29
 0.29

2 0.32 0.29 0.31 **3** 0.39 0.32 0.34

4 0.20 0.18 0.19

5 0.24 0.24 0.24

6 0.33 0.30 0.31

7 0.23 0.20 0.22 **8** 0.25 0.21 0.23

9 0.30 0.27 0.29

micro avg 0.32 0.34 0.33 macro avg 0.33 0.35 0.33

Result: We can see that, if we add distortion, the classifier isn't able to detect properly hence we see a huge drop of accuracy. We don't see any particular drop for any number and all digits more or less dropped to the same extent. I was expecting something of the sort which is seen on image dataset when the classifier confuses between 3 and 8 but that wasn't the case.