

- 1 -

IAP20 Rec'd PCT/EP 25 MAY 2006

SEQUENCE LISTING

<110> SYNGENTA PARTICIPATIONS AG

<120> INSECT RESISTANT COTTON PLANTS AND METHODS OF DETECTING THE SAME
<130> 70325
<160> 18
<170> PatentIn version 3.1
<210> 1
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 1
aacaacacaca aaatcttttc accagt

26

<210> 2
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 2
ttcccgccctt cagattttct gcaaca

26

<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 3
ggtgtccatc gggttagtcca taa

23

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 4
tctatgttac tagatcggga attg

24

<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 5
gatcggggtc aggaaggtct 20

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 6
cagcatcatg aacgagca 20

<210> 7
<211> 290
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 7
gacaaggaca gcttgagcga ggtgatctac ggcgacatgg acaagctgct gtgtccggac 60
cagagcgagc aaatctacta caccacaac atcgtttcc cgaacgagta cgtgatcacc 120
aagatcgact tcaccaagaa gatgaagacc ctgcgttacg aggtgaccgc caacttctac 180
gacagcagca ccggcgagat cgacctgaac aagaagaagg tggagagcag cgaggccgag 240
taccgcaccc tgagcgcgaa cgacgacggc gtctacatgc cactggcgt 290

<210> 8
<211> 4382
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 8
gatttggagc caagtctcat aaacgccatt gtggaaagaaa gtcttgagtt ggtggtaatg 60
taacagagta gtaagaacag agaagagaga gagtgtgaga tacatgaatt gtcggcaac 120
aaaaatctcg aacatcttat tttagcaaag agaaagagtt ccgagtcgt agcagaagag 180
tgaggagaaa tttaagctct tggacttgcg aattgttccg cctcttgaat acttcttcaa 240
tcctcatata ttcttcttct atgttacctg aaaacccggca tttaatctcg cgggtttatt 300
ccgggttcaac attttttttgc tttaggtta ttatctggc ttaataacgc aggccctgaaa 360
taaattcaag gcccaactgt tttttttttt aagaagttgc tggtaaaaaaaa aaaaaaaagg 420
aattaacaac aacaacaaaa aaagataaaag aaaataataa caattacttt aattgttagac 480
taaaaaaaaaaca tagattttat catgaaaaaa agagaaaaga aataaaaaact tggatcaaaa 540

aaaaacatac agatcttcta attattaact tttcttaaaa attaggtcct tttcccaac	600
aattaggttt agagtttgg aattaaacca aaaagattgt tctaaaaat actcaaattt	660
ggtagataag ttcccttatt ttaattagtc aatggtagat acttttttt ctttcttta	720
tttagagtaga tttagaatctt ttatgccaag tattgataaa ttaaatcaag aagataaaact	780
atcataatca acatgaaatt aaaagaaaaa tctcatatat agtatttagta ttctctatat	840
atattatgat tgcttattct taatgggtt ggttaaccaa gacatagtct taatggaaag	900
aatctttttt gaacttttc cttattgatt aaattcttct atagaaaaga aagaaaattat	960
ttgaggaaaa gtatatacaa aaagaaaaat agaaaaatgt cagtgaagca gatgtaatgg	1020
atgacctaattt ccaaccacca ccataggatg tttctacttg agtcggctt ttaaaaacgc	1080
acgggtggaaa atatgacacg tatcatatga ttcccttcctt tagttcgtg ataataatcc	1140
tcaactgata tcttcctttt tttgtttgg ctaaagatat tttattctca ttaatagaaa	1200
agacggttttt gggcttttgg tttgcgatat aaagaagacc ttctgtgtt agataataat	1260
tcatccttgc gtcctttct gactcttcaa tctctccaa agcctaaagc gatctctgca	1320
aatctctcgatc gactctctct ttcaaggatattttctgat tctttttgtt tttgattcgt	1380
atctgatctc caatttttgc tatgtggatt attgaatctt ttgtataaat tgcttttgac	1440
aatattgttc gtttcgtcaa tccagcttct aaattttgtc ctgattacta agatatcgat	1500
tcgttagtgtt tacatctgtt taatttcttgc ttgttttttttgc ttgtttaggt ttcttatgtt	1560
gatctattca atttttgc ttcttttttttgc ttgttttttttgc ttgtttaggt ttcttatgtt	1620
tagatccgtt tctcttttttgc ttgttttttttgc ttgttttttttgc ttgtttaggt ttgttatatg	1680
ttcgctgatt ggtttctact ttttttttttgc ttgttttttttgc ttgtttaggt ttcttatgtt	1740
gaacaacacc aagctgagca cccgcgcctt gccgagcttc atcgactact tcaacggcat	1800
ctacggcttc gccacccggca tcaaggacat catgaacatg atcttcaaga ccgacacccgg	1860
cggcgacctg accctggacg agatcctgaa gaaccagcag ctgctgaacg acatcagcgg	1920
caagctggac ggcgtgaacg gcagcctgaa cgacctgtatc gcccaggcga acctgaacac	1980
cgagctgagc aaggagatcc ttaagatcgc caacgagcag aaccaggtgc tgaacgacgt	2040
gaacaacaag ctggacgcca tcaacaccat gctgcgcgtt tacctgcgcga agatcaccag	2100
catgctgagc gacgtgatga agcagaacta cgccctgagc ctgcagatcg agtacctgag	2160
caagcagctg caggagatca gcgacaagct ggacatcatc aacgtgaacg tcctgatcaa	2220
cagcaccctg accgagatca cccccggctt ccagcgcattc aagtacgtga acgagaagtt	2280
cgaagagctg accttcgcca ccgagaccag cagcaaggtt aagaaggacg gcagcccgcc	2340

cgacatcctg gacgagctga ccgagctgac cgagctggcg aagagcgtga ccaagaacga 2400
cgtggacggc ttcgagttct acctgaacac cttccacgac gtgatggtgg gcaacaacct 2460
gttcggccgc agcgccctga agaccgccag cgagctgatc accaaggaga acgtgaagac 2520
cagcggcagc gaggtgggca acgtgtacaa cttcctgatc gtgctgaccg ccctgcaggc 2580
ccaggccttc ctgaccctga ccacctgtcg caagctgctg ggcctggccg acatcgacta 2640
caccagcatc atgaacgagc acttgaacaa ggagaaggag gagttccgcg tgaacatcct 2700
gccgaccctg agcaacaccc tcagcaaccc gaactacgac aaggtgaagg gcagcgacga 2760
ggacgccaag atgatcgtgg aggctaagcc gggccacgcg ttgatcgct tcgagatcag 2820
caacgacagc atcaccgtgc tgaaggtgta cgaggccaag ctgaagcaga actaccaggt 2880
ggacaaggac agcttgagcg aggtgatcta cggcgacatg gacaagctgc tgtgtccgga 2940
ccagagcgag caaatctact acaccaacaa catcggttc ccgaacgagt acgtgatcac 3000
caagatcgac ttcaccaaga agatgaagac cctgcgctac gaggtgaccg ccaacttcta 3060
cgacagcagc accggcgaga tcgacctgaa caagaagaag gtggagagca gcgaggccga 3120
gtaccgcacc ctgagcgcgca acgacgacgg cgtctacatg ccactggcg tgatcagcga 3180
gaccttcctg accccogatca acggctttgg cctgcaggcc gacqqaaca gccgcctgat 3240
caccctgacc tgtaagagct acctgcgcga gctgctgcta gccaccgacc tgagcaacaa 3300
ggagaccaag ctgatcgtgc caccgagcgg cttcatcage aacatcgtgg agaacggcag 3360
catcgaggag gacaacctgg agccgtggaa ggccaacaac aagaacgcct acgtggacca 3420
caccggcggc gtgaacggca ccaaggccct gtacgtgcac aaggacggcg gcatcagcca 3480
gttcatcgac gacaagctga agccgaagac cgagtacgtg atccagtaca ccgtgaaggg 3540
caagccatcg attcacctga aggacgagaa caccggctac atccactacg aggacaccaa 3600
caacaacctg gaggaatacc agaccatcaa caagcgcttc accaccggca ccgacctgaa 3660
ggcgctgtac ctgatcctga agagccagaa cggcgacgag gcctgggccc acaacttcat 3720
catcctggag atcagccccga gcgagaagct gctgagcccg gagctgatca acaccaacaa 3780
ctggaccagc accggcagca ccaacatcg cggcaacacc ctgaccctgt accagggcgg 3840
ccgcggcata ctgaaggcaga acctgcagct ggacagcttc agcacctacc gcgtgtactt 3900
cagcgtgagc ggcgacgcca acgtgcgcata ccgcaactcc cgcgagggtgc tgttcgagaa 3960
gaggtacatg agcggcgcca aggacgtgag cgagatgttc accaccaagt tcgagaagga 4020
caacttctac atcgagctga gccaggccaa caacctgtac ggcggcccgta tcgtgcactt 4080
ctacgacgtg agcatcaagt aggagctcta gatccccgga atttccccga tcgttcaaacc 4140

- 5 -

atttggcaat aaagtttctt aagattgaat cctgttgcgg gtcttgcgat gattatcata 4200
taatttctgt tgaattacgt taagcatgta ataattaaca tgtaatgcac gacgttattt 4260
atgagatggg ttttatgtat tagagtcccg caattataca tttaatacgc gatagaaaac 4320
aaaatatagc gcgc当地acta ggataaaatta tcgc当地cgg tgtcatctat gttactagat 4380
cg 4382

<210> 9
<211> 789
<212> PRT
<213> Artificial Sequence
<220>
<223> VIP3A protein motif

<400> 9

Met Asn Lys Asn Asn Thr Lys Leu Ser Thr Arg Ala Leu Pro Ser Phe
1 5 10 15

Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp
20 25 30

Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu
35 40 45

Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Asp Ile Ser Gly Lys
50 55 60

Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn
65 70 75 80

Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln
85 90 95

Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr
100 105 110

Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val
115 120 125

Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys
130 135 140

Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val
145 150 155 160

Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
165 170 175

Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
180 185 190

Ser Ser Lys Val Lys Lys Asp Gly Ser Pro Ala Asp Ile Leu Asp Glu
195 200 205

Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val
 210 215 220

 Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
 225 230 235 240

 Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
 245 250 255

 Thr Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
 260 265 270

 Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Gln Ala Phe Leu Thr
 275 280 285

 Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
 290 295 300

 Ser Ile Met Asn Glu His Leu Asn Lys Glu Lys Glu Glu Phe Arg Val
 305 310 315 320

 Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
 325 330 335

 Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys
 340 345 350

 Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser Ile Thr
 355 360 365

 Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp
 370 375 380

 Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu
 385 390 395 400

 Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe
 405 410 415

 Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
 420 425 430

 Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser Thr Gly
 435 440 445

 Glu Ile Asp Leu Asn Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr
 450 455 460

 Arg Thr Leu Ser Ala Asn Asp Asp Gly Val Tyr Met Pro Leu Gly Val
 465 470 475 480

 Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala
 485 490 495

 Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg
 500 505 510

 Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile
 515 520 525

- 7 -

Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Ser Ile
 530 535 540

Glu Glu Asp Asn Leu Glu Pro Trp Lys Ala Asn Asn Lys Asn Ala Tyr
 545 550 555 560

Val Asp His Thr Gly Gly Val Asn Gly Thr Lys Ala Leu Tyr Val His
 565 570 575

Lys Asp Gly Gly Ile Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys
 580 585 590

Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His
 595 600 605

Leu Lys Asp Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr Asn Asn
 610 615 620

Asn Leu Glu Asp Tyr Gln Thr Ile Asn Lys Arg Phe Thr Thr Gly Thr
 625 630 635 640

Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu
 645 650 655

Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ile Ser Pro Ser Glu Lys
 660 665 670

Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Asn Trp Thr Ser Thr Gly
 675 680 685

Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Arg
 690 695 700

Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg
 705 710 715 720

Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val Arg Ile Arg Asn Ser
 725 730 735

Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val
 740 745 750

Ser Glu Met Phe Thr Thr Lys Phe Glu Lys Asp Asn Phe Tyr Ile Glu
 755 760 765

Leu Ser Gln Gly Asn Asn Leu Tyr Gly Gly Pro Ile Val His Phe Tyr
 770 775 780

Asp Val Ser Ile Lys
 785

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

- 8 -

<400> 10
ggtccctgga tacggtgtca

20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 11
ttgagggttg gatccttgc

20

<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<220>
<221> modified_base
<222> (1)..(1)
<223> VIC label at 5' end

<220>
<221> modified_base
<222> (26)..(26)
<223> TAMRA label at 3' end

<400> 12
caccaacatc atcaatggtg gcatcg

26

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 13
ggaatgtggc gaatggtgat

20

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 14
tgtcggttcc cgccttca

18

<210> 15
<211> 29

- 9 -

<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<220>
<221> modified_base
<222> (1)..(1)
<223> FAM label at 5' end

<220>
<221> modified_base
<222> (29)..(29)
<223> TAMRA label at 3' end

<400> 15
caaattgcccattcattca tccaaaagc

29

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 16
ggtgtccatc gggtagtcca taa

23

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 17
tgagtaggag atgttaagttg gcgc

24

<210> 18
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> COT202 nucleotide motif

<400> 18
tctatgttac tagatcgaaa attg

24