Mathematics for Computer Science Linear Algebra (Part 2) QR Decomposition

Karl Southern

Durham University

February 17th, 2025

Thanks to Andrei Krokhin and William Moses Jr for use of some slides.

Outline

- Plan for Today
- 2 Orthogonal and Orthonormal Bases in an Inner Product Space
- The Gram-Schmidt Process
- Wrapping Things Up

Roadmap for Lectures 5, 6, & 7

- End Goal: Application linear regression.
- Using: QR decomposition.
- Requires knowledge of Gram-Schmidt Process.
- Requires knowledge of some basics: Inner product spaces.

Roadmap for Lectures 5, 6, & 7

- End Goal: Application linear regression.
- Using: QR decomposition.
- Requires knowledge of Gram-Schmidt Process.
- Requires knowledge of some basics: Inner product spaces.

Now we recap last lecture & look at what we'll cover today.

- An inner product space is a (real) vector space V equipped with an inner product a function that associates to each pair $\mathbf{u}, \mathbf{v} \in V$ a real number denoted $\langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{R}$. This function must satisfy four axioms:
 - Symmetry, additivity, homogeneity, positivity.

- An inner product space is a (real) vector space V equipped with an inner product a function that associates to each pair $\mathbf{u}, \mathbf{v} \in V$ a real number denoted $\langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{R}$. This function must satisfy four axioms:
 - Symmetry, additivity, homogeneity, positivity.
- The norm of a vector is defined as $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

A vector \mathbf{v} with $||\mathbf{v}||=1$ is called a unit vector. Each non-zero vector can be normalised (scaled to become a unit vector): $\mathbf{v}\mapsto \frac{1}{||\mathbf{v}||}\mathbf{v}$.

- An inner product space is a (real) vector space V equipped with an inner product a function that associates to each pair $\mathbf{u}, \mathbf{v} \in V$ a real number denoted $\langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{R}$. This function must satisfy four axioms:
 - Symmetry, additivity, homogeneity, positivity.
- The norm of a vector is defined as $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

A vector \mathbf{v} with $||\mathbf{v}||=1$ is called a unit vector. Each non-zero vector can be normalised (scaled to become a unit vector): $\mathbf{v}\mapsto \frac{1}{||\mathbf{v}||}\mathbf{v}$.

- Vectors **u** and **v** are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- \bullet For a subspace W of an inner product space V, can define the orthogonal complement

$$W^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{u}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{u} \in W \}$$

- An inner product space is a (real) vector space V equipped with an inner product a function that associates to each pair $\mathbf{u}, \mathbf{v} \in V$ a real number denoted $\langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{R}$. This function must satisfy four axioms:
 - Symmetry, additivity, homogeneity, positivity.
- The norm of a vector is defined as $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
 - A vector \mathbf{v} with $||\mathbf{v}||=1$ is called a unit vector. Each non-zero vector can be normalised (scaled to become a unit vector): $\mathbf{v}\mapsto \frac{1}{||\mathbf{v}||}\mathbf{v}$.
- Vectors **u** and **v** are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- \bullet For a subspace W of an inner product space V, can define the orthogonal complement

$$W^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{u}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{u} \in W \}$$

 A vector space can be equipped with different inner products — the notions of norm and orthogonality depend on the choice of inner product.

Today's Lecture

- Orthogonal and orthonormal bases in an inner product space
- Constructing such bases the Gram-Schmidt process

Outline

- Plan for Today
- Orthogonal and Orthonormal Bases in an Inner Product Space
- The Gram-Schmidt Process
- Wrapping Things Up

Orthogonal and Orthonormal Sets of Vectors

Definition

A <u>set</u> of vectors in an inner product space is called <u>orthogonal</u> if all pairs of distinct vectors in it are orthogonal. An orthogonal set consisting of unit vectors is called <u>orthonormal</u>.

Orthogonal and Orthonormal Sets of Vectors

Definition

A <u>set</u> of vectors in an inner product space is called <u>orthogonal</u> if all pairs of distinct vectors in it are orthogonal. An orthogonal set consisting of unit vectors is called <u>orthonormal</u>.

Example in \mathbb{R}^3 (with the Euclidean inner product): Let

$$\mathbf{v}_1 = (0, 1, 0), \ \mathbf{v}_2 = (1, 0, 1), \ \mathbf{v}_3 = (1, 0, -1).$$

The set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal, since $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_3 \rangle = \langle \mathbf{v}_2, \mathbf{v}_3 \rangle = 0$.

Orthogonal and Orthonormal Sets of Vectors

Definition

A <u>set</u> of vectors in an inner product space is called <u>orthogonal</u> if all pairs of distinct vectors in it are orthogonal. An orthogonal set consisting of unit vectors is called <u>orthonormal</u>.

Example in \mathbb{R}^3 (with the Euclidean inner product): Let

$$\mathbf{v}_1 = (0, 1, 0), \ \mathbf{v}_2 = (1, 0, 1), \ \mathbf{v}_3 = (1, 0, -1).$$

The set $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is orthogonal, since $\langle \mathbf{v}_1,\mathbf{v}_2\rangle=\langle \mathbf{v}_1,\mathbf{v}_3\rangle=\langle \mathbf{v}_2,\mathbf{v}_3\rangle=0$.

The norms of the vectors are:

$$||\mathbf{v}_1|| = 1, \ ||\mathbf{v}_2|| = \sqrt{2}, \ ||\mathbf{v}_3|| = \sqrt{2}.$$

By normalising (i.e., setting $\mathbf{q}_i = \frac{1}{||\mathbf{v}_i||} \mathbf{v}_i$), we get an orthonormal set $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$.

$$\mathbf{q}_1=(0,1,0), \ \mathbf{q}_2=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), \ \mathbf{q}_3=(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}).$$

Orthogonal Sets are Linearly Independent

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal set of <u>non-zero</u> vectors in an inner product space then S is linearly independent.

Orthogonal Sets are Linearly Independent

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal set of <u>non-zero</u> vectors in an inner product space then S is linearly independent.

Previous example: For dot product, consider $S = \{v_1, v_2, v_3\}$ where $v_1 = (0, 1, 0), v_2 = (1, 0, 1), v_3 = (1, 0, -1).$

Orthogonal and Orthonormal Bases

An orthogonal (resp. orthonormal) basis in an inner product space is a basis, which is an orthogonal (resp. orthonormal) set. For example,

$$\{\mathbf v_1=(0,1,0), \mathbf v_2=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), \mathbf v_3=(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})\}$$
 is an orthonormal basis in $\mathbb R^3$.

Orthogonal and Orthonormal Bases

An orthogonal (resp. orthonormal) basis in an inner product space is a basis, which is an orthogonal (resp. orthonormal) set. For example,

$$\{\mathbf v_1=(0,1,0), \mathbf v_2=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), \mathbf v_3=(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})\}$$
 is an orthonormal basis in $\mathbb R^3.$

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal basis in inner product space V then for any \mathbf{u}

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2 + \ldots + \frac{\langle \mathbf{u}, \mathbf{v}_n \rangle}{||\mathbf{v}_n||^2} \mathbf{v}_n.$$

Moreover, if S is an orthonormal basis in V then

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \ldots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Orthogonal and Orthonormal Bases (contd.)

Theorem

If $S = \{v_1, \dots, v_n\}$ is an orthogonal basis in inner product space V then for any $u \in V$

$$u = \frac{\langle u, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle u, v_2 \rangle}{||v_2||^2} v_2 + \ldots + \frac{\langle u, v_n \rangle}{||v_n||^2} v_n.$$

Moreover, if S is an orthonormal basis in V then

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \ldots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Proof.

If $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$ then, since $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0$ for all $j \neq i$, we have that, for each i, $\langle \mathbf{u}, \mathbf{v}_i \rangle = c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = c_i ||\mathbf{v}_i||^2$, so $c_i = \frac{\langle \mathbf{u}, \mathbf{v}_i \rangle}{||\mathbf{v}_i||^2}$, as required.

Outline

Plan for Today

- 2 Orthogonal and Orthonormal Bases in an Inner Product Space
- The Gram-Schmidt Process
- Wrapping Things Up

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_{W} \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

$$\langle \textbf{u},\textbf{v}_i\rangle = \langle \textbf{w}_1 + \textbf{w}_2,\textbf{v}_i\rangle$$

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

$$\langle \mathbf{u}, \mathbf{v}_i \rangle = \langle \mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle + \langle \mathbf{w}_2, \mathbf{v}_i \rangle$$

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_{W} \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

$$\langle \mathbf{u}, \mathbf{v}_i \rangle = \langle \mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle + \langle \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle$$

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_{W} \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

$$\langle \mathbf{u}, \mathbf{v}_i \rangle = \langle \mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle + \langle \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle = c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle$$
 to find the c_i 's:

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

$$\langle \mathbf{u}, \mathbf{v}_i \rangle = \langle \mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle + \langle \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle = c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle \text{ to find the } c_i \text{'s}:$$

$$\operatorname{proj}_{W} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2} + \ldots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{||\mathbf{v}_{r}||^{2}} \mathbf{v}_{r}.$$

Theorem (Projection Theorem)

If W is a subspace in a finite-dimensional inner product space V then every vector $\mathbf{u} \in V$ can be uniquely expressed as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

If \mathbf{u}, \mathbf{w}_1 and \mathbf{w}_2 are as above then \mathbf{w}_1 is the orthogonal projection of \mathbf{u} onto W.

Notation: $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$.

How to compute orthogonal projections? Pretty much the same idea as before.

If $\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}$ is an orthogonal basis for W and $\mathbf{w}_1=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_r\mathbf{v}_r$, use

$$\langle \mathbf{u}, \mathbf{v}_i \rangle = \langle \mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle + \langle \mathbf{w}_2, \mathbf{v}_i \rangle = \langle \mathbf{w}_1, \mathbf{v}_i \rangle = c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle$$
 to find the c_i 's:

$$\operatorname{proj}_{W} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2} + \ldots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{||\mathbf{v}_{r}||^{2}} \mathbf{v}_{r}.$$

Moreover, if $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is an orthonormal basis in W then

$$\operatorname{proj}_{\mathcal{W}} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \ldots + \langle \mathbf{u}, \mathbf{v}_r \rangle \mathbf{v}_r.$$

Example 16.1

Consider \mathbb{R}^3 with the Euclidean inner product. Let W be the subspace formed by $span(\mathbf{v}_1, \mathbf{v}_2)$ where $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-4, 0, 3)$. Express $\mathbf{u} = (1, 1, 1)$ in the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

Step 1.
$$\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2 = \frac{1}{1} (0, 1, 0) + \frac{-1}{25} (-4, 0, 3) = (\frac{4}{25}, 1, \frac{-3}{25})$$

Step 2.
$$\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u} = \mathbf{u} - \mathbf{w}_1 = (1, 1, 1) - (\frac{4}{25}, 1, \frac{-3}{25}) = (\frac{21}{25}, 0, \frac{28}{25})$$

Step 3.
$$\mathbf{u} = (\frac{4}{25}, 1, \frac{-3}{25}) + (\frac{21}{25}, 0, \frac{28}{25})$$

Theorem

Every non-zero finite-dimensional inner product space V has an orthonormal basis.

Theorem

Every non-zero finite-dimensional inner product space V has an orthonormal basis.

• Let W be a subspace of V and let $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ be a basis of W. Consider the subspaces $W_r = span(\mathbf{u}_1,\ldots,\mathbf{u}_r),\ r=1,\ldots,n,$ in W. Note that $W_1\subseteq W_2\subseteq\ldots\subseteq W_n=W$.

Theorem

Every non-zero finite-dimensional inner product space V has an orthonormal basis.

- Let W be a subspace of V and let $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ be a basis of W. Consider the subspaces $W_r = span(\mathbf{u}_1,\ldots,\mathbf{u}_r), \ r=1,\ldots,n$, in W. Note that $W_1 \subseteq W_2 \subseteq \ldots \subseteq W_n = W$.
- The Gram-Schmidt process inductively constructs orthogonal bases for the subspaces W_i , eventually constructing an orthogonal basis for $W_n = W$.
 - Once we have an orthogonal basis for W, we can normalise all vectors in it.

Theorem

Every non-zero finite-dimensional inner product space V has an orthonormal basis.

- Let W be a subspace of V and let $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ be a basis of W. Consider the subspaces $W_r = span(\mathbf{u}_1,\ldots,\mathbf{u}_r),\ r=1,\ldots,n$, in W. Note that $W_1 \subseteq W_2 \subseteq \ldots \subseteq W_n = W$.
- The Gram-Schmidt process inductively constructs orthogonal bases for the subspaces W_i , eventually constructing an orthogonal basis for $W_n = W$.
 - Once we have an orthogonal basis for W, we can normalise all vectors in it.

The Gram-Schmidt process:

Step 1. Let $\mathbf{v}_1 = \mathbf{u}_1$. Clearly, $\{\mathbf{v}_1\}$ is an orthogonal basis for $W_1 = span(\mathbf{u}_1)$.

Step r ($2 \le r \le n$). Assuming that we have an orthogonal basis { $\mathbf{v}_1, \ldots, \mathbf{v}_{r-1}$ } for W_{r-1} , add a vector \mathbf{v}_r to it to get an orthogonal basis for W_r .

Step r: If $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}\}$ is an orthogonal basis for $W_{r-1} = span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1})$, find a vector \mathbf{v}_r such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r\}$ is an orthogonal basis for W_r .

Step r: If $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}\}$ is an orthogonal basis for $W_{r-1} = span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1})$, find a vector \mathbf{v}_r such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r\}$ is an orthogonal basis for W_r .

Apply the Projection theorem to $\mathbf{u}_r \in W_r$ and W_{r-1} (as a subspace of W_r):

$$\mathbf{u}_r = \operatorname{proj}_{W_{r-1}} \mathbf{u}_r + \operatorname{proj}_{W_{r-1}^{\perp}} \mathbf{u}_r.$$

(Note that the orthogonal complement W_{r-1}^{\perp} here is taken in W_r).

Step r: If $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}\}$ is an orthogonal basis for $W_{r-1} = span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1})$, find a vector \mathbf{v}_r such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r\}$ is an orthogonal basis for W_r .

Apply the Projection theorem to $\mathbf{u}_r \in W_r$ and W_{r-1} (as a subspace of W_r):

$$\mathbf{u}_r = \operatorname{proj}_{W_{r-1}} \mathbf{u}_r + \operatorname{proj}_{W_{r-1}^{\perp}} \mathbf{u}_r.$$

(Note that the orthogonal complement W_{r-1}^{\perp} here is taken in W_r).

Recall that, since $\{\mathbf{v}_1,\ldots,\mathbf{v}_{r-1}\}$ is an orthogonal basis for W_{r-1} , we have

$$\mathrm{proj}_{\mathcal{W}_{r-1}} u_r = \frac{\langle u_r, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle u_r, v_2 \rangle}{||v_2||^2} v_2 + \ldots + \frac{\langle u_r, v_{r-1} \rangle}{||v_{r-1}||^2} v_{r-1}.$$

The Gram-Schmidt (Orthogonalisation) Process

Step r: If $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}\}$ is an orthogonal basis for $W_{r-1} = span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1})$, find a vector \mathbf{v}_r such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r\}$ is an orthogonal basis for W_r .

Apply the Projection theorem to $\mathbf{u}_r \in W_r$ and W_{r-1} (as a subspace of W_r):

$$\mathbf{u}_r = \operatorname{proj}_{W_{r-1}} \mathbf{u}_r + \operatorname{proj}_{W_{r-1}^{\perp}} \mathbf{u}_r.$$

(Note that the orthogonal complement W_{r-1}^{\perp} here is taken in W_r).

Recall that, since $\{\mathbf{v}_1,\ldots,\mathbf{v}_{r-1}\}$ is an orthogonal basis for W_{r-1} , we have

$$\operatorname{proj}_{\mathcal{W}_{r-1}} u_r = \frac{\langle u_r, v_1 \rangle}{||v_1||^2} v_1 + \frac{\langle u_r, v_2 \rangle}{||v_2||^2} v_2 + \ldots + \frac{\langle u_r, v_{r-1} \rangle}{||v_{r-1}||^2} v_{r-1}.$$

Set

$$\mathbf{v}_r = \mathrm{proj}_{W_{r-1}^{\perp}} \mathbf{u}_r = \mathbf{u}_r - \frac{\langle \mathbf{u}_r, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_r, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2 - \ldots - \frac{\langle \mathbf{u}_r, \mathbf{v}_{r-1} \rangle}{||\mathbf{v}_{r-1}||^2} \mathbf{v}_{r-1}.$$

The Gram-Schmidt (Orthogonalisation) Process

Step r: If $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}\}$ is an orthogonal basis for $W_{r-1} = span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1})$, find a vector \mathbf{v}_r such that $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r\}$ is an orthogonal basis for W_r .

Apply the Projection theorem to $\mathbf{u}_r \in W_r$ and W_{r-1} (as a subspace of W_r):

$$\mathbf{u}_r = \operatorname{proj}_{W_{r-1}} \mathbf{u}_r + \operatorname{proj}_{W_{r-1}^{\perp}} \mathbf{u}_r.$$

(Note that the orthogonal complement W_{r-1}^{\perp} here is taken in W_r).

Recall that, since $\{\mathbf{v}_1,\ldots,\mathbf{v}_{r-1}\}$ is an orthogonal basis for W_{r-1} , we have

$$\operatorname{proj}_{W_{r-1}} \mathbf{u}_r = \frac{\langle \mathbf{u}_r, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}_r, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2 + \ldots + \frac{\langle \mathbf{u}_r, \mathbf{v}_{r-1} \rangle}{||\mathbf{v}_{r-1}||^2} \mathbf{v}_{r-1}.$$

Set

$$\mathbf{v}_r = \operatorname{proj}_{W_{r-1}^{\perp}} \mathbf{u}_r = \mathbf{u}_r - \frac{\langle \mathbf{u}_r, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_r, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2 - \ldots - \frac{\langle \mathbf{u}_r, \mathbf{v}_{r-1} \rangle}{||\mathbf{v}_{r-1}||^2} \mathbf{v}_{r-1}.$$

Since $\mathbf{v}_r \in W_{r-1}^{\perp}$, the set $\{\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r\}$ is orthogonal (and so linearly independent)

$$W_r = \operatorname{span}(\mathbf{u}_1, \dots, \mathbf{u}_{r-1}, \mathbf{u}_r) = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{u}_r) = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{r-1}, \mathbf{v}_r).$$

The Gram-Schmidt Process: Summary

To convert a (linearly independent) set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ into an orthogonal basis for span(S), do the following:

Step 1.
$$\mathbf{v}_1 = \mathbf{u}_1$$
.

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \mathrm{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1$$
.

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \mathrm{proj}_{\mathcal{W}_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2$$

Step 4.
$$\mathbf{v}_4 = \mathbf{u}_4 - \mathrm{proj}_{\mathcal{W}_3} \mathbf{u}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{||\mathbf{v}_3||^2} \mathbf{v}_3$$

:

(continue for n steps)

Optional step. Normalise all vectors \mathbf{v}_i if an orthonormal basis is needed.

Example 16.2 Using the Gram-Schmidt process in \mathbb{R}^3

Task: Consider \mathbb{R}^3 with the Euclidean inner product. Find an orthonormal basis of $W = span(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ where $\mathbf{u}_1 = (1, 1, 1), \mathbf{u}_2 = (0, 1, 1), \mathbf{u}_3 = (0, 0, 1).$

Step 1.
$$\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$$
.

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \operatorname{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 = (0, 1, 1) - \frac{2}{2}(1, 1, 1) = (-\frac{2}{3}, \frac{1}{2}, \frac{1}{2}).$$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \operatorname{proj}_{\mathcal{W}_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{||\mathbf{u}_3||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{||\mathbf{u}_3||^2} \mathbf{v}_2 =$$

$$(0,0,1) - \frac{1}{3}(1,1,1) - \frac{1/3}{2/3}(-\frac{2}{3},\frac{1}{3},\frac{1}{3}) = (0,-\frac{1}{2},\frac{1}{2}).$$

$$\{\mathbf{v}_1=(1,1,1),\ \mathbf{v}_2=(-\frac{2}{3},\frac{1}{3},\frac{1}{3}),\ \mathbf{v}_3=(0,-\frac{1}{2},\frac{1}{2})\}$$
 is an orthogonal basis for W .

Since
$$||\mathbf{v}_1|| = \sqrt{3}$$
, $||\mathbf{v}_2|| = \frac{\sqrt{6}}{3}$, $||\mathbf{v}_3|| = \frac{1}{\sqrt{2}}$, we have an orthonormal basis for W :

$$\{\mathbf{q}_1 = \frac{1}{||\mathbf{y}_1||} \mathbf{v}_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \ \mathbf{q}_2 = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}), \ \mathbf{q}_3 = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}$$

Example 16.3 Using the Gram-Schmidt process in C[-1,1]

Task: Consider the space C[-1,1]. Find an orthogonal basis of $W = span(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ where $\mathbf{u}_1 = 1, \mathbf{u}_2 = x, \mathbf{u}_3 = x^2$.

Step 1. $v_1 = u_1 = 1$.

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \text{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1$$
. We have $\langle \mathbf{u}_2, \mathbf{v}_1 \rangle = \int_{-1}^1 x \, dx = 0$ and $||\mathbf{v}_1||^2 = \langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \int_{-1}^1 1 \, dx = 2$, so $\mathbf{v}_2 = \mathbf{u}_2 - 0 \mathbf{v}_1 = x$.

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \operatorname{proj}_{W_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{||\mathbf{v}_1||^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{||\mathbf{v}_2||^2} \mathbf{v}_2$$
. We have

$$\langle \mathbf{u}_3, \mathbf{v}_1 \rangle = \int_{-1}^1 x^2 \, dx = \frac{2}{3} \quad \text{and} \quad \langle \mathbf{u}_3, \mathbf{v}_2 \rangle = \int_{-1}^1 x^3 \, dx = 0.$$

Hence,
$$\mathbf{v}_3 = x^2 - \frac{2/3}{2}\mathbf{v}_1 - 0\mathbf{v}_2 = x^2 - \frac{1}{3}$$
.

So, $\{\mathbf{v}_1=1,\ \mathbf{v}_2=x,\ \mathbf{v}_3=x^2-\frac{1}{3}\}$ is an orthogonal basis for W.

Extending an Orthogonal Set to an Orthogonal Basis

Theorem

If V is a finite-dimensional inner product space then

- Any orthogonal set of vectors in V can be extended to an orthogonal basis.
- 2 Any orthonormal set of vectors in V can be extended to an orthonormal basis.

Proof.

Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ be an orthogonal set in V and $\{\mathbf{u}_{k+1},\ldots,\mathbf{u}_{k+n}\}$ some basis in V.

- Apply Gram-Schmidt to the set $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_{k+n}\}$.
- Since $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal set, we will have $\mathbf{v}_i = \mathbf{u}_i$ for $1 \le i \le k$.
- If $\mathbf{v}_r = \mathbf{0}$ at any Step r (with r > k), do not add it to the output set.

```
(This happens iff \mathbf{u}_r \in span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1}), i.e. if W_{r-1} = W_r.)
```


Extending an Orthogonal Set to an Orthogonal Basis (contd.)

Theorem

If V is a finite-dimensional inner product space then

- Any orthogonal set of vectors in V can be extended to an orthogonal basis.
- 2 Any orthonormal set of vectors in V can be extended to an orthonormal basis.

Proof.

• If $\mathbf{v}_r = \mathbf{0}$ at any Step r (with r > k), do not add it to the output set.

(This happens iff $\mathbf{u}_r \in span(\mathbf{u}_1, \dots, \mathbf{u}_{r-1})$, i.e. if $W_{r-1} = W_r$.)

The final set will extend $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$, it will be orthogonal (and hence linearly independent), and its span will be $span(\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{u}_{k+1},\ldots,\mathbf{u}_{k+n})=V$.

For item (2), normalise all vectors in the final set.

Outline

- Plan for Today
- 2 Orthogonal and Orthonormal Bases in an Inner Product Space
- The Gram-Schmidt Process
- Wrapping Things Up

Example exam question

(a) Give the definition of an orthonormal set of vectors.

[2 Marks]

(b) Let S be the set of vectors $\left\{ \begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\9\\9 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}$.

Use the Gram-Schmidt process to construct an orthonormal basis of span(S).

[6 Marks]

Figure

Wrapping Things Up

What we learnt today:

- Orthogonal and orthonormal bases in an inner product space
- Constructing such bases the Gram-Schmidt process

Next time:

QR decomposition and Least squares - solving inconsistent linear systems

The End

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal set of <u>non-zero</u> vectors in an inner product space then S is linearly independent.

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal set of <u>non-zero</u> vectors in an inner product space then S is linearly independent.

Proof.

Proof idea: If S was linearly dependent, then sum of products of scalars and vectors = $\mathbf{0}$. Show that this is the case only when all scalars are zero. So vectors are linearly independent.

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal set of non-zero vectors in an inner product space then S is linearly independent.

Proof.

Proof idea: If S was linearly dependent, then sum of products of scalars and vectors $= \mathbf{0}$. Show that this is the case only when all scalars are zero. So vectors are linearly independent.

Assume that $k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n = \mathbf{0}$ and prove that $k_1 = \ldots = k_n = 0$.

$$\langle k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0$$

$$\langle k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0$$

Pick any \mathbf{v}_i and take the product of both sides of the above equation with this \mathbf{v}_i :

Theorem

If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal set of <u>non-zero</u> vectors in an inner product space then S is linearly independent.

Proof.

Proof idea: If S was linearly dependent, then sum of products of scalars and vectors $= \mathbf{0}$.

Show that this is the case only when all scalars are zero. So vectors are linearly independent. Assume that $k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n = \mathbf{0}$ and prove that $k_1 = \ldots = k_n = 0$.

Pick any \mathbf{v}_i and take the product of both sides of the above equation with this \mathbf{v}_i :

$$\langle k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0$$

By using the linearity (i.e. additivity + homogeneity) of the inner product, as well as orthogonality of S (i.e. $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0$ for $j \neq i$), we get

$$\langle k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n, \mathbf{v}_i \rangle = k_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + \ldots + k_n \langle \mathbf{v}_n, \mathbf{v}_i \rangle = k_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle.$$

Thus, $k_i \langle \mathbf{v_i}, \mathbf{v}_i \rangle = 0$, and, since \mathbf{v}_i is non-zero, it follows that $k_i = 0$.