Chapter 6

下推自动机

6.1 介绍

下推自动机是可以看做带有堆栈的 ε-NFA. 工作方式类似 ε-NFA, 有一个有穷控制器, 并能够以非确定的方式进行状态转移, 并读入输入字符; 增加的堆栈, 用来存储无限的信息, 但只能以后进先出的方式使用.

$$\varepsilon$$
-NFA + 栈 = PDA

 ε -NFA: 有限状态, 非确定, ε 转移

栈:后进先出,只用栈顶,长度无限

6.2 下推自动机的定义

6.2.1 形式定义

下推自动机 (Pushdown Automata, PDA) P 的形式定义, 为七元组 $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$:

- (1) Q, 有穷状态集;
- (2) Σ, 有穷输入字母表;
- (3) Γ, 有穷栈字母表, 或栈符号集;
- $(4) \ \delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \mapsto 2^{Q \times \Gamma^*}, \, \texttt{状态转移函数};$
- (5) $q_0 \in Q$, 初始状态;
- (6) $Z_0 \in \Gamma \Sigma$, 初始符号, PDA 开始时, 栈中包含这个符号的一个实例, 用来表示栈底, 栈底符号之下无任何内容;
- (7) $F \subseteq Q$, 接收状态集或终态集.

PDA 的动作

如果 q 和 p_i 是状态 $(1 \le i \le m)$, 输入符号 $a \in \Sigma$, 栈符号 $Z \in \Gamma$, 栈符号串 $\beta_i \in \Gamma^*$, 那么映射

$$\delta(q, a, Z) = \{(p_1, \beta_1), (p_2, \beta_2), \cdots, (p_m, \beta_m)\}\$$

的解释是: 输入符号是 a, 栈顶符号 Z 的情况下, 处于状态 q 的 PDA 能够进入状态 p_i , 且用符号串 β_i 替换栈顶的符号 Z, 这里的 i 是任意的, 然后输入头前进一个符号. (约定 β_i 的最左符号在栈最上.) 但是若 $i \neq j$, 不能同时选择 p_i 和 β_i . 而

$$\delta(q,\varepsilon,Z) = \{(p_1,\beta_1), (p_2,\beta_2), \cdots, (p_m,\beta_m)\}\$$

的解释是:与扫描的输入符号无关,只要 Z 是栈符号,处于状态 q 的 PDA,就可以进行上面的动作,但输入头不向前移动.

PDA 的图形表示

示例

设计识别 $L_{0n1n} = \{0^n1^n \mid n \ge 1\}$ 的 PDA P.

$$0, 0/00, 0, Z_0/0Z_0 \qquad 1, 0/\varepsilon$$

$$1, 0/\varepsilon \qquad \qquad Q_1 \qquad \qquad \varepsilon, Z_0/Z_0 \qquad \qquad Q_2$$

设计识别 $L_{wwr} = \{ww^R \mid w \in (0+1)^*\}$ 的 PDA P.

(1) 初始状态 (q_0, Z_0) 输入 0 或 1, 状态不变, 则直接压栈:

$$\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}, \ \delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\};$$

(2) 继续输入,则对不同的栈顶,仍然压栈:

$$\delta(q_0, 0, 0) = \{(q_0, 00)\}, \ \delta(q_0, 1, 0) = \{(q_0, 10)\},$$

$$\delta(q_0, 0, 1) = \{(q_0, 01)\}, \ \delta(q_0, 1, 1) = \{(q_0, 11)\};$$

(3) 不论栈顶是 Z_0 , 0, 或 1, 开始匹配后半部分, 非确定的转移到弹栈状态:

$$\delta(q_0,\varepsilon,Z_0) = \{(q_1,Z_0)\}, \ \delta(q_0,\varepsilon,0) = \{(q_1,0)\}, \ \delta(q_0,\varepsilon,1) = \{(q_1,1)\};$$

(4) 处于弹栈状态, 弹出的符号必须和输入符号一致:

$$\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}, \ \delta(q_1, 1, 1) = \{(q_1, \varepsilon)\};$$

(5) 只有看到栈底符号了, 才允许非确定的转移到接受状态:

$$\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}.$$

状态转移图

6.2.2 瞬时描述和转移符号

瞬时描述 为了形式描述 PDA 在一个给定瞬间的格局, 定义瞬时描述 (*Instantaneous Description*, ID) 为三元组 (q, w, γ) , 是 $Q \times \Sigma^* \times \Gamma^*$ 中的元素, q 表示状态, w 表示剩余的输入串, γ 表示栈中的符号串.

ID 转移符号 ρ 和 ρ 在 PDA ρ 中,如果 $(p,\beta) \in \delta(q,a,Z)$,那么,定义 ID 转移符号 ρ 为

$$(q, aw, Z\alpha) \vdash_{\mathbf{P}} (p, w, \beta\alpha)$$

其中 $w \in \Sigma^*$, $\alpha \in \Gamma^*$. 并递归的定义 * 为

- (1) 对每个 ID I, 有 Il^{*} I;
- (2) 对 ID I, J 和 K, 若 $I \vdash_{\triangleright} J$, $J \vdash_{\triangleright}^* K$, 则 $I \vdash_{\triangleright}^* K$.

若 P 已知,则可以省略,记为 \vdash 和 \vdash .

定理 1. 如果 $(q, x, \alpha) \vdash_{P}^{*} (p, y, \beta)$, 则任意 $w \in \Sigma^{*}$ 和任意 $\gamma \in \Gamma^{*}$, 有

$$(q, xw, \alpha\gamma)\vdash_{P}^{*}(p, yw, \beta\gamma).$$

定理 2. 如果 $(q, xw, \alpha) \vdash_{P} (p, yw, \beta)$, 则 $(q, x, \alpha) \vdash_{P} (p, y, \beta)$.

6.3 PDA 接受的语言

设 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, 则分别定义两种接受方式下的语言如下.

以终态方式接受

P 以终态方式接受的语言 $\mathbf{L}(P)$ 是

$$\mathbf{L}(P) = \{ w \mid (q_0, w, Z_0) | (p, \varepsilon, \gamma), \ p \in F \}.$$

以空栈方式接受

P 以空栈方式接受的语言 N(P) 是

$$\mathbf{N}(P) = \{ w \mid (q_0, w, Z_0) | \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon) \}.$$

示例

识别 L_{wwr} 的 PDA P, 从终态方式接受, 改为 空栈方式接受, 只需用

$$\delta(q_1, \varepsilon, Z_0) = \{(q_1, \varepsilon)\}$$

代替

$$\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$$

即可.

6.3.1 从终态方式到空栈方式

定理 3. 如果以终态方式接受的 PDA P_F 接受的语言 $L = \mathbf{L}(P_F)$, 那么一定存在以空栈方式接受的 PDA P_N 使 $L = \mathbf{N}(P_N)$.

证明. 设 $P_F=(Q,\Sigma,\Gamma,\delta_F,q_0,Z_0,F)$. 构造 P_N , 增加新的初始状态 p_0 和新的状态 p, 使用新的栈底符号 X_0 , 并定义新的转移函数 δ_N , 即

$$P_N = (Q \cup \{p_0, p\}, \ \Sigma, \ \Gamma \cup \{X_0\}, \ \delta_N, \ p_0, \ X_0, \ \emptyset)$$

其中 δ_N 定义如下:

(1) P_N 开始时, 将 P_F 栈底符号压入栈, 并准备开始模拟 P_F :

$$\delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}\$$

(2) P_N 模拟 P_F , 即 $\forall q \in Q$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall Y \in \Gamma$:

$$\delta_N(q,a,Y)$$
 包含 $\delta_F(q,a,Y)$ 的诸元素

(3) 从 $q_f \in F$ 开始弹出栈符号, 即 $\forall q_f \in F, \forall Y \in \Gamma \cup \{X_0\}$:

$$\delta_N(q_f,\varepsilon,Y)$$
 包含 (p,ε)

(4) 在状态 p 时, 弹出全部栈符号, 即 $\forall Y \in \Gamma \cup \{X_0\}$:

$$\delta_N(p,\varepsilon,Y) = \{(p,\varepsilon)\}\$$

需要证明 $w \in \mathbf{L}(P_F) \Leftrightarrow w \in \mathbf{N}(P_N)$.

(⇒) 如果 $w \in \mathbf{L}(P_F)$, 则有到 $q_f \in F$ 的 ID 序列

$$(q_0, w, Z_0) \stackrel{*}{\vdash_{P_N}} (q_f, \varepsilon, \gamma)$$

这些动作也是 P_F 的合法动作, 因此

$$(q_0, w, Z_0) \stackrel{*}{\vdash_{P_F}} (q_f, \varepsilon, \gamma)$$

又因为, 栈底之下增加符号不会影响这些动作, 因此

$$(q_0, w, Z_0X_0) \stackrel{*}{\vdash_{P_F}} (q_f, \varepsilon, \gamma X_0)$$

以及 P_N 在开始状态的空转移

$$(p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0 X_0)$$

和 $q_f \in F$ 时, 会清空栈

$$(q_f, \varepsilon, \gamma X_0) |_{P_N}^* (p, \varepsilon, \varepsilon)$$

所以

$$(p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon)$$

因此 $w \in \mathbf{N}(P_N)$. (\Leftarrow) 反之, 类似, 略.

6.3.2 从空栈方式到终态方式

定理 4. 如果以空栈方式接受的 PDA P_N 接受的语言 $L = \mathbf{N}(P_N)$, 那么一定存在以终态方式接受的 PDA P_F 使 $L = \mathbf{L}(P_F)$.

证明. 设 $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, \emptyset)$. 构造 P_F , 增加新的初始状态 p_0 和新的终态 p_f , 使用新的栈 底符号 X_0 , 并定义新的转移函数 δ_F , 即

$$P_F = (Q \cup \{p_0, p_f\}, \ \Sigma, \ \Gamma \cup \{X_0\}, \ \delta_F, \ p_0, \ X_0, \ \{p_f\})$$

其中 δ_F 定义如下:

(1) P_F 开始时,将 P_N 栈底符号压入栈,并开始模拟 P_N ,

$$\delta_F(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$$

(2) P_F 模拟 P_N , $\forall q \in Q$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall Y \in \Gamma$:

$$\delta_F(q, a, Y) = \delta_N(q, a, Y)$$

(3) 在任何 $q \in Q$ 时, 看到 P_F 的栈底 X_0 , 就可以转移到新终态 p_f :

$$\delta_F(q,\varepsilon,X_0) = \{(p_f,\varepsilon)\}$$

需要证明 $w \in \mathbf{N}(P_N) \Leftrightarrow w \in \mathbf{L}(P_F)$.

 (\Rightarrow)

$$(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q, \varepsilon, X_0) \vdash_{P_F} (p_f, \varepsilon, \varepsilon)$$

(\leftarrow) 如果 $w \in \mathbf{L}(P_F)$, 由于 (3) 接受 w 的时栈符号只能是 ε , 即 ID 是 $(p_f, \varepsilon, \varepsilon)$; 那么倒数第二个 ID 只能是 (q, ε, X_0) ; 而因为 (1) 开始时的 ID 只能由 (p_0, w, X_0) 得到 (q_0, w, Z_0X_0) ; 所以有

$$(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F}^* (q, \varepsilon, X_0) \vdash_{P_F} (p_f, \varepsilon, \varepsilon)$$

而其中 $(q_0, w, Z_0X_0)^*_{P_F}(q, \varepsilon, X_0)$, 因为 (2) 是 P_F 模拟 P_N 所以与 X_0 无关, 因此

$$(q_0, w, Z_0) \stackrel{*}{\vdash_{P_N}} (q, \varepsilon, \varepsilon)$$

是 P_N 的合法 ID, 因此 $w \in \mathbf{N}(P_N)$.

示例

所有 0 和 1 个数相同的 0 和 1 的串的集合.

以空栈方式接受:

$$0, Z/0Z \ 1, Z/1Z$$

$$0, 0/00 \quad 1, 1/11$$

$$1, 0/\varepsilon \quad 0, 1/\varepsilon$$

$$\text{start} \longrightarrow \bigcirc \quad \varepsilon, Z/\varepsilon$$

接受 $\{0^n 1^m | n \le m \le 2n\}$ 的 PDA.

6.4 PDA 与 CFG 的等价性

6.4.1 由 CFG 到 PDA

示例

识别 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 CFG 和 PDA 有

CFG
$$G, L = \mathbf{L}(G)$$
:
 $S \to AB$ $A \to 0A \mid \varepsilon$ $B \to 0B1 \mid 01$

PDA $P, L = \mathbf{N}(P)$:

$$\begin{array}{ccc} & & & \varepsilon, Z_0/\varepsilon \\ 0, Z_0/0Z_0 & & \varepsilon, 0/\varepsilon \\ 0, 0/00 & & 1, 0/\varepsilon \\ \end{array}$$
 start \xrightarrow{Q} $\begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ \end{array}$

CFG G 有关串 00011 的文法派生过程如下:

$$S \Rightarrow AB \Rightarrow 0AB \Rightarrow 0B \Rightarrow 00B1 \Rightarrow 00011$$

PDA P 识别该串的 ID 转移序列如下:

$$(q,00011, Z_0) \vdash (q,0011, 0Z_0) \vdash (q,011,00Z_0) \vdash (q,11,000Z_0)$$

 $\vdash (p,1,00Z_0) \vdash (p,\varepsilon,0Z_0) \vdash (p,\varepsilon,Z_0) \vdash (p,\varepsilon,\varepsilon)$

想要证明 CFG 和 PDA 的等价性,需要思考如何使用 PDA 模拟文法的推导.对任意属于某 CFL 的串 w,其文法的推导过程,就是使用产生式去匹配 (产生)w,如果 w 放在某 PDA 的输入带上,我们的目的就是通过文法构造动作,让 PDA 能从左到右的扫描输入串,利用栈来模拟文法的派生过程即可.

定理 5. 如果 L 是上下文无关语言, 那么存在 PDA P, 使 $L = \mathbf{N}(P)$.

证明. 构造 PDA: 设 CFG G = (V, T, P', S) 且 L(G) = L, 构造 PDA

$$P = (\{q\}, T, V \cup T, \delta, q, S, \emptyset)$$

其中 δ 定义:

(1) 对每个变元 A:

$$\delta(q, \varepsilon, A) = \{ (q, \beta) \mid A \to \beta \in P' \}$$

(2) 对每个终结符 a:

$$\delta(q, a, a) = \{(q, \varepsilon)\}\$$

那么 P 可以模拟 G 的最左派生,每个动作只根据栈顶的符号:如果是终结符则与输入串匹配,如果是非终结符用产生式来替换.

充分性: 要证明 $S \stackrel{*}{\Rightarrow} w \implies (q, w, S) \vdash^* (q, \varepsilon, \varepsilon)$. 那么任意 $w \in \mathbf{L}(G)$, 则存在最左派生 $S \stackrel{*}{\Longrightarrow} w$, 并且除最后一步派生的 w 外,每次派生的最左句型都有 $xA\alpha$ 的形式,这里 $x \in T^*$, $A \in V$, $\alpha \in (V \cup T)^*$.

$$S = x_1 A_1 \alpha_1 \underset{\text{im}}{\Longrightarrow} \quad x_2 A_2 \alpha_2 \quad \underset{\text{im}}{\Longrightarrow} \quad \cdots \quad \underset{\text{im}}{\Longrightarrow} \quad x_{n-1} A_{n-1} \alpha_{n-1} \quad \underset{\text{im}}{\Longrightarrow} \quad x_n \alpha_n = w$$

$$w = x_1 y_1 = \quad x_2 y_2 \quad = \quad \cdots \quad = \quad x_{n-1} y_{n-1} \quad = \quad x_n y_n = w$$

$$(q, w, S) = (q, y_1, A_1 \alpha_1) \stackrel{*}{\vdash} (q, y_2, A_2 \alpha_2) \stackrel{*}{\vdash} \quad \cdots \quad \stackrel{*}{\vdash} (q, y_{n-1}, A_{n-1} \alpha_{n-1}) \stackrel{*}{\vdash} (q, y_n, \alpha_n) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon)$$

当处于 $S \stackrel{*}{\Longrightarrow} w$ 的第 i 步时, 若 $x_i y_i = w$, 有:

$$x_i A_i \alpha_i \stackrel{*}{\Longrightarrow} x_{i+1} A_{i+1} \alpha_{i+1} \implies (q, y_i, A_i \alpha_i) \vdash^* (q, y_{i+1}, A_{i+1} \alpha_{i+1})$$

因为, 当最左派生处于左句型 $x_i A_i \alpha_i$ 时, ID 为 $(q, y_i, A_i \alpha_i)$, 如果有 $A_i \rightarrow \beta$ 的产生式, 则

$$x_i A_i \alpha_i \Longrightarrow x_i \beta \alpha_i$$

而 x_i β $α_i$ 也是左句型, 所以最左的变量即为 A_{i+1} , 则 A_{i+1} 之前 x_i 之后的终结符记为 x', A_{i+1} 之后的记为 $α_{i+1}$, 那么就有

$$x_i A_i \alpha_i \Longrightarrow x_i \beta \alpha_i = x_i x' A_{i+1} \alpha_{i+1}$$

那么由 (1) P 模拟 $A_i \rightarrow \beta$ 的动作得到

$$(q, y_i, A_i\alpha_i) \vdash (q, y_i, \beta\alpha_i) = (q, y_i, x'A_{i+1}\alpha_{i+1})$$

而 $w = x_i y_i = x_i x' y_{i+1}$, 所以 $y_i = x' y_{i+1}$, 由 (2) P 会弹出 x', 那么

$$(q, y_i, x'A_{i+1}\alpha_{i+1}) = (q, x'y_{i+1}, x'A_{i+1}\alpha_{i+1})^*(q, y_{i+1}, A_{i+1}\alpha_{i+1})$$

因此当 $S \stackrel{*}{\Longrightarrow} w$ 有 $(q, w, S) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon)$, 即 $\mathbf{L}(G) \subseteq \mathbf{N}(P)$.

必要性: 要证明 $(q, w, S) \vdash^* (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Rightarrow} w$. 我们证明更一般的结论

$$(q, x, A) \vdash^* (q, \varepsilon, \varepsilon) \implies A \stackrel{*}{\Rightarrow} x.$$

通过对 ID 转移的次数进行归纳证明. 归纳基础: 当仅需要 1 次时, 只能是 $x=\varepsilon$ 且 $A\to\varepsilon$ 为产生式. (因为即使 x=a 和产生式 $A\to a$, 也需要 2 步才能清空栈: 替换栈顶 A 为 a, 再弹出 a.) 所以 $A \stackrel{*}{\Rightarrow} \varepsilon$ 成立.

$$(q, x, Y_1Y_2\cdots Y_m)$$
^{*} $(q, \varepsilon, \varepsilon)$

中, 每个 Y_i 不论是变元或终结符, 从栈中被完全弹出时, 都会消耗掉部分的 x, 记为 x_i , 那么显然有 $x = x_1 x_2 \cdots x_m$. 而且为了清空每个 Y_i , 需要的转移次数都不超过 n, 所以对 $i = 1, 2, \cdots, m$ 有

$$(q, x_i, Y_i) \vdash^* (q, \varepsilon, \varepsilon) \Longrightarrow Y_i \stackrel{*}{\Rightarrow} x_i.$$

再由 A 的产生式有

$$A \underset{\overline{\text{lm}}}{\Rightarrow} Y_1 Y_2 \cdots Y_m \underset{\overline{\text{lm}}}{*} x_1 Y_2 \cdots Y_m \underset{\overline{\text{lm}}}{*} x_1 x_2 \cdots Y_m \underset{\overline{\text{lm}}}{*} x_1 x_2 \cdots x_m = x.$$

因此
$$(q, w, S)$$
 $\stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Rightarrow} w$, 即 $\mathbf{N}(G) \subseteq \mathbf{L}(G)$.

示例

为文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 构造 PDA.

构造 PDA
$$P = (\{q\}, \{a, b\}, \{a, b, A, S\}, \delta, q, S, \emptyset)$$
, 其中 δ 为 $\delta(q, \varepsilon, S) = \{(q, aAA)\}$ $\delta(q, a, a) = \{(q, \varepsilon)\}$ $\delta(q, \varepsilon, A) = \{(q, aS), (q, bS), (q, a)\}$ $\delta(q, b, b) = \{(q, \varepsilon)\}$.

利用 GNF 的构造方法

将文法转换为 GNF 格式的 CFG G = (V, T, P', S), 那么 PDA P 的另一种构造方式为:

$$P = (\{q\}, V, T, \delta, q, S, \emptyset)$$

为每个产生式, 定义 δ :

$$\delta(q, a, A) = \{(q, \beta) \mid A \to a\beta \in P'\}.$$

示例

上例中的文法是 GNF, 构造 PDA $P' = (\{q\}, \{a,b\}, \{S,A\}, \delta, q, S,\emptyset)$, 其中 δ 为 $\delta(q,a,S) = \{(q,AA)\}$ $\delta(q,a,A) = \{(q,S), (q,\varepsilon)\}$ $\delta(q,b,A) = \{(q,S)\}.$

6.4.2 由 PDA 到 CFG

定理 6. 如果 PDA P, 有 L = N(P), 那么 L 是上下文无关语言.

证明. 文法构造: 设 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$. 那么构造 CFG G = (V, T, P, S), 其中 V 是形如 [qXp] 的对象和符号 S 的集合, 其中 $p, q \in Q, X \in \Gamma$, 产生式集合 P 包括:

(1) 为 Q 中的每个 p, 构造一个产生式:

$$S \to [q_0 Z_0 p]$$

(2) 如果 $\delta(q, a, X)$ 包括 $(p, Y_1 Y_2 \cdots Y_n)$, 构造一组产生式:

$$[qXr_n] \to a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n]$$

这里 $a \in \Sigma \cup \{\varepsilon\}$; $X, Y_i \in \Gamma$; $p, q \in Q$; 而 $r_1, r_2, \dots r_n$ 是 Q 中各种可能的 n 个状态; 若 i = 0 则构造产生式 $[qXp] \to a$.

那么

$$(q, w, X) \vdash^* (p, \varepsilon, \varepsilon) \iff [qXp] \stackrel{*}{\Rightarrow} w.$$

充分性: ID 序列 (q, w, X) $(p, \varepsilon, \varepsilon)$ 表示栈弹出 X 而消耗了串 w (状态从 q 到了 p); 而 $[qXp] \Rightarrow w$ 表示在 P 中经过栈符号 X 可以产生出 w (状态从 q 到了 p); 设 $w = ax, a \in \Sigma \cup \{\varepsilon\}$.

(1) 我们要证明

$$(q, w, X) \vdash^* (p, \varepsilon, \varepsilon) \implies [qXp] \stackrel{*}{\Rightarrow} w$$

- (2) 左边部分 ID 变化如果需多步完成, 那么第 1 步时, 一定有 $\delta(q,a,X)$ 包含 $(p,Y_1Y_2\cdots Y_n)$,
 - (i) 则第 1 步为

$$(q, ax, X) \vdash (p, x, Y_1Y_2 \cdots Y_n)$$

而其余步骤中, 为弹出 Y_i 会消耗 x 中的一部分 x_i , 显然 $w = ax = ax_1x_2\cdots x_n$;

(ii) 设弹出 Y_i 之前和之后 (弹出 Y_{i+1} 之前) 的状态分别是 r_{i-1} 和 r_i , 消耗的串是 x_i , 这里 $i = 1, 2, \dots n$ 且 $r_0 = p$, 那么其他步骤就是

$$(r_{i-1}, x_i, Y_i)$$
^{*} $(r_i, \varepsilon, \varepsilon)$

(iii) 而根据文法的构造规则, 有

$$[qXp] \Rightarrow a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n]$$

(iv) 因此, 只要 $i = 1, 2, \dots, n$ 有

$$(r_{i-1}, x_i, Y_i) \vdash^* (r_i, \varepsilon, \varepsilon) \implies [r_{i-1}Y_ir_i] \stackrel{*}{\Rightarrow} x_i$$

成立,就有

$$[qXp] \Rightarrow a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n] \stackrel{*}{\Rightarrow} ax_1x_2\cdots x_n = w$$

成立.

(3) 而左边部分 ID 动作变化如果仅需 1 步完成 (或者说 i=0 时), 由于 $(q,a,X) \vdash (p,\varepsilon,\varepsilon)$, P 只能消耗不超过一个的字符, 即 w=a $(a \in \Sigma \cup \{\varepsilon\})$, 且 (p,ε) 在 $\delta(q,a,X)$, 所以, 由文法构造规则 $[qXp] \rightarrow a$, 即

$$(q, a, X) \vdash (p, \varepsilon, \varepsilon) \Longrightarrow [qXp] \Rightarrow a$$

因此 (q, w, X)^{*} $(p, \varepsilon, \varepsilon) \Longrightarrow [qXp] \stackrel{*}{\Rightarrow} w.$

必要性: 略. □

示例

将 PDA $P = (\{p,q\}, (0,1), \{X,Z\}, \delta, q, Z)$ 转为 CFG, 其中 δ 如下:

- $(1) \ \delta(q, 1, Z) = \{(q, XZ)\}\$
- (4) $\delta(q, \varepsilon, Z) = \{(q, \varepsilon)\}$
- (2) $\delta(q, 1, X) = \{(q, XX)\}$
- (5) $\delta(p, 1, X) = \{(p, \varepsilon)\}\$
- (3) $\delta(q, 0, X) = \{(p, X)\}$
- (6) $\delta(p, 0, Z) = \{(q, Z)\}$

0	$S \to [qZq]$	
	$S \to [qZp]$	消掉 $[qZp]$, 因与自己循环
1	$ [qZq] \to 1[qXq][qZq]$	
	$ [qZq] \to 1[qXp][pZq]$	
	$[qZp] \to 1[qXq][qZp]$	
	$ [qZp] \to 1[qXp][pZp]$	因生成 step 2 中的 $[qZp]$
• • •		

6.5 确定型下推自动机 (DPDA)

PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ 是确定型下推自动机 (DPDA), 当且仅当:

- (1) $\delta(q, a, X)$ 至多有一个动作, 这里 $a \in \Sigma \cup \{\varepsilon\}$;
- (2) $\forall a \in \Sigma$, 如果 $\delta(q, a, X) \neq \emptyset$, 那么 $\delta(q, \varepsilon, X) = \emptyset$.

即 $\forall (q, a, Z) \in Q \times \Sigma \times \Gamma$, $|\delta(q, a, Z)| + |\delta(q, \varepsilon, Z)| \le 1$. 下面给出关于这种装置的一些事实.

在任何情况下都不需要去选择可能的移动就是 DPDA, 以终态方式接受的语言也称为 DCFL. 虽然与 PDA 不等价, 但也有意义, 例如语法分析器通常都是 DPDA, DPDA 接受的语言是非固有歧义语言的真子集, Knuth 提出 LR(k) 文法的语言也恰好是 DPDA 接受语言的一个子集, 解析的时间复杂度为 O(n), LR(k) 文法也是 YACC 的基础.

任何 DPDA 都无法接受 L_{wwr} , 但是可以接受 $L_{wcwr} = \{wcw^R \mid w \in (0+1)^*\}$.

6.5.1 RL 与 DPDA

定理 7. 如果语言 L 是正则的, 那么有 DPDA P 以终态方式接受 L, 即 $L = \mathbf{L}(P)$.

DPDA P 可以不使用栈, 而仅模拟 DFA 即可. 又因为 L_{wcwr} 显然是 CFL 不是正则语言, 所以 $\mathbf{L}(P)$ 语言类真包含正则语言.

定理 8. DPDA P 且 $L = \mathbf{N}(P)$, 当且仅当 L 有前缀性质, 且存在 DPDA P' 使 $L = \mathbf{L}(P')$.

DPDA P 若以空栈方式接受, 能够接受的语言更有限, 仅能接受具有前缀性质的语言. 前缀性质是指, 这个语言中不存在不同的串 x 和 y 使 x 是 y 的前缀. 即使正则语言 0^* 也无法接受, 因为其任何两个串中都有一个是前缀. 但以空栈方式接受的语言, 却可以被另一个 DPDA 以终态方式接受.

6.5.2 DPDA 与 CFL

DPDA P 无法识别 L_{wwr} . 所以 L(P) 语言类真包含于上下文无关语言.

6.5.3 DPDA 与歧义文法

定理 9. 如果有 DPDA P, 语言 L = L(P), 那么 L 有无歧义的 CFG.

定理 10. 如果有 DPDA P, 语言 L = N(P), 那么 L 有无歧义的 CFG.

证明略. DPDA 也因此在语法分析中占重要地位. 但是并非所有非固有歧义 CFL 都会被 DPDA 识别. 例如 L_{wwr} 有无歧义文法 $S \to 0S0 \mid 1S1 \mid \varepsilon$.

6.5.4 语言间的关系

