The group G is isomorphic to the group labelled by [16, 8] in the Small Groups library. Ordinary character table of $G \cong \mathrm{QD}16$:

	1a	2a	2b	4a	4b	8a	8b
χ_1	1	1	-1	1	-1	1	1
χ_2	1	1	-1	1	1	-1	-1
χ_3	1	1	1	1	-1	-1	-1
χ_4	1	1	1	1	1	1	1
χ_5	2	-2	0	0	0	$E(8) + E(8)^3$	$-E(8) - E(8)^3$
χ_6	2	-2	0	0	0	$-E(8) - E(8)^3$	
χ_7	2	2	0	-2	0	0	0

Trivial source character table of $G \cong QD16$ at p = 2:

 $P_2 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2$

 $P_1 = Group([()]) \cong 1$

•										
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
Representatives $n_j \in N_i$	1a	1 <i>a</i>								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 2 \cdot \chi_6 + 2 \cdot \chi_7$	16	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7$	8	8	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	8	0	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	0	4	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	4	4	2	0	2	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	4	4	0	0	0	2	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	2	2	0	2	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	0	2	0	2	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	0	2	0	0	0	0	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	1	1

```
P_3 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong \mathbb{C}_2
P_4 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong C4
P_6 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong C4
P_7 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong D8
P_8 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong Q8
P_9 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,12,11,6,5,16,4,13)(2,15,14,10,8,9,7,3)]) \cong C8
P_{10} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong QD16
N_1 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong QD16
N_2 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong QD16
N_3 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2 \times C2
N_4 = Group([(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong QD16
N_5 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong D8
N_6 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong \mathbb{Q}8
N_7 = Group([(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong QD16
N_8 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14)]) \cong QD16
```

 $N_9 = Group([(1,12,11,6,5,16,4,13)(2,15,14,10,8,9,7,3),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong QD16$ $N_{10} = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3)(2,6)(4,15)(5,10)(7,16)(8,13)(9,11)(12,14),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong QD16$