Linguagens Formais e Autômatos

Aula 01 - Introdução

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 1 Seções 1.1 e 1.5
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 0 Seção 0.1

Introdução

Autômatos

Quais são as capacidades e limitações fundamentais dos computadores?

Computabilidade

Complexidade

Introdução

- Década de 1930
- Matemáticos
- Antes da existência dos computadores

Teoria da complexidade

- Alguns problemas são simples
 - Ordenação
- Outros são complexos
 - Escalonamento de aulas em uma universidade
 - 1000 aulas: o tempo para achar o melhor escalonamento pode levar séculos
 - Número com 500 dígitos: fatorar leva todo o tempo de vida do universo

O que torna alguns problemas computacionalmente difíceis e outros fáceis?

Teoria da complexidade

- Não sabemos a resposta!
- Mas temos um esquema para classificar problemas conforme sua dificuldade
- Várias opções...
 - Alterar o problema (ou aquele aspecto)
 - Contentar-se com uma solução menos do que perfeita
 - Alguns problemas só são difíceis no pior caso
- Ex: criptografia

Teoria da computabilidade

- Alguns problemas n\u00e3o podem ser resolvidos por computadores
 - Ex: um enunciado matemático é verdadeiro ou falso?
- Problemas solúveis vs insolúveis

Teoria dos autômatos

- Definições e propriedades de modelos matemáticos de computação
- Autômatos são abstrações matemáticas que ajudam a entender este modelo
 - Tem implicações e aplicações práticas

- Conceitos centrais
- Alfabeto: conjunto finito, não vazio, de símbolos
 - Símbolos = membros de um alfabeto
- Σ (sigma) ou Γ (gamma)
 - \circ Ex: $\Sigma = \{0,1\}$
 - \circ $\Sigma = \{a,b,c,...,z\}$
 - \circ Σ = conjunto de caracteres ASCII

- Cadeia/string sobre um alfabeto
 - Sequência finita de símbolos daquele alfabeto
 - Geralmente escritos um seguido do outro e não separados por vírgulas
- Ex: 01001, if, then, while
- Se w é uma cadeia sobre Σ, o comprimento de uma cadeia |w| é o número de símbolos que ela contém
 - Estritamente, é o número de posições que conta
- Cadeia de comprimento zero
 - ε (epsilon minúsculo)

- Se w tem comprimento n
 - $w = w_1 w_2 ... w_n$, onde cada $w_i \in \Sigma$
- Reverso de w = w^R
 - Cadeia obtida escrevendo-se w na ordem inversa
 - \circ $W_nW_{n-1}...W_1$
- z é uma subcadeia/substring de w se z aparece consecutivamente dentro de w
 - cad é uma subcadeia de abracadabra

- Cadeia x de comprimento m
- Cadeia y de comprimento n
- Concatenação de x e y, escrito xy é:
 - \circ $X_1X_2...X_mY_1Y_2...Y_n$
 - |xy|=m+n
 - \circ $xx...x = x^k$
 - ∨=w3=3w

- Potências de um alfabeto
- \bullet Σ^k
 - Conjunto de cadeias de comprimento k, e o símbolo de cada um deles está em Σ
- Σ⁰={ε} (independente do alfabeto)
- Se $\Sigma = \{0,1\}$
 - $\circ \Sigma^1 = \{0,1\}$
 - \circ $\Sigma^2 = \{00,01,10,11\}$
 - \circ $\Sigma^3 = \{000,001,010,011,100,101,110,111\}$
 - Σ*=conjunto de todas as cadeias sobre um alfabeto
 - $\circ \quad \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$
 - \circ $\Sigma^+=\Sigma^1$ \cup Σ^2 \cup ...
 - $\circ \quad \Sigma^* = \Sigma^+ \cup \{\epsilon\}$

Linguagens

- Um conjunto de cadeias escolhidas de um alfabeto
 - Se Σ é um alfabeto
 - \circ L \subseteq Σ^*
 - L é uma linguagem sobre Σ
 - E sobre qualquer alfabeto que contenha Σ
- Outras conclusões
 - Σ* é uma linguagem para qualquer alfabeto Σ
 - Ø (linguagem vazia) é uma linguagem sobre qualquer alfabeto
 - (ε) é uma linguagem sobre qualquer alfabeto

Linguagens e Problemas

- O termo "linguagem" pode parecer estranho
 - Mas linguagens comuns podem ser vistas como um conjunto de cadeias
 - Ex: português/alfabeto latino, grego/alfabeto grego
 - Ex: C/ASCII
- Exemplos mais abstratos
 - Ex: Linguagens de todas as cadeias que consistem de n 0's seguidos por n 1's
 - Ex: Conjunto de cadeias com número igual de 0's e 1's

Linguagens

- Linguagens podem possuir infinitas palavras, mas alfabetos são finitos
- Problemas: na teoria dos autômatos, um problema é a decisão sobre se uma dada cadeia/palavra é parte de uma linguagem particular
 - Se Σ é um alfabeto, e L é uma linguagem sobre Σ, então um problema (formal) é:
 - Dada uma string w em Σ*, decidir se w pertence ou não a L
- Também enquadra a noção coloquial de problema

Linguagens e Problemas

- Linguagens podem descrever situações reais
 - Ex: uma linguagem que descreve os caminhos entre minha casa e o trabalho:
 - DDEEFFDED (a cada esquina)
 - Há vários caminhos (cadeias)
 - Problema: encontrar o caminho mais curto
 - Ou: dado um caminho, é o mais curto?
 - Ou: encontre todos os caminhos até a minha casa
- Em termos da teoria da computação, são a mesma coisa
 - A dificuldade em essência é a mesma

Linguagens e Problemas

- Porém em alguns casos problemas são mais do que linguagens
- Ex: Dada uma string ASCII
 - Decidir se é ou não um elemento de Lc (conjunto de programas válidos em C)
- Mas por trás:
 - Compilador precisa fazer uma tarefa complexa
 - Produz uma árvore de análise sintática
 - Entradas em uma tabela de símbolos
 - Transformar um programa C em código-objeto
 - Outras tarefas de compiladores
 - Vai além de responder "sim" ou "não" sobre a validade de um programa

Linguagens e problemas

- Problemas são úteis à teoria da complexidade
 - Técnicas podem provar que alguns problemas não podem ser resolvidos facilmente
- O termo preferido depende do ponto de vista
 - Se estamos interessados nas palavras em si: linguagem
 - Se estamos mais interessados nas coisas que representam – semântica: problema
- Para a teoria computacional, estamos interessados em saber os limites de complexidade
 - Encontrar uma solução para a versão linguagem (sim/não) é tão difícil quanto a versão "resolva isso"
- É muito útil pensar em linguagens
 - Ao estudar teoria da computação

Linguagens e problemas

- Definindo linguagens
- Formador de conjuntos
 - o {w | algo sobre w}
- Exs:
 - {w | w consiste em um número igual de 0's e 1's}
 - {w | w é um número inteiro binário primo}
 - {w | w é um programa em C sintaticamente correto}
 - $0^{i}1^{j} \mid 0 \le i \le j$

Fim

Aula 01 - Introdução