

Tipos de Analisadores Sintáticos

Métodos Ascendentes (Bottom-up):

- Constroem a árvore sintática de baixo para cima (das folhas para a raiz), ou seja, reduz os símbolo da sentença até alcançar o símbolo inicial da gramática.
 - Analisadores LR
 - Analisadores LALR

A análise sintática ...

- Tarefa: Dada uma gramática livre de contexto G e uma sentença s, o analisador sintático deve verificar se s pertence a linguagem gerada por G.
 - O analisador tenta construir a árvore de derivação para s segundo as regras de produção dadas pela gramática G.
 - Se esta tarefa for possível, o programa é considerado sintaticamente correto.

Análise Ascendente

ANÁLISE LR(1)

Análise Ascendente

- A árvore de derivação correspondente a x é construída de baixo para cima, ou seja, das folhas, onde se encontra x, para a raiz (o símbolo inicial S).
- Nos métodos ascendentes (botton-up), temos de decidir qual a regra A→β a ser aplicada e devemos encontrar nós vizinhos rotulados com os símbolos de β. A redução pela regra A→β consiste em acrescentar à árvore um nó A, cujos filhos são os nós correspondentes aos símbolos de β.

• Suponha a gramática:

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

$$(4) T \rightarrow F$$

$$(5) F \rightarrow (E)$$

(6)
$$F \rightarrow a$$

Podemos obtê-la:

$$E \Rightarrow E+T \Rightarrow E+T*F \Rightarrow E+T*a \Rightarrow$$

 $E+F*a \Rightarrow E+a*a \Rightarrow T+a*a \Rightarrow$
 $F+a*a \Rightarrow a+a*a$

Derivação right-most.

Construindo a árvore de derivação para a cadeia, devemos tomar como base a derivação *right-most* invertida:

$$a+a*a \leftarrow F+a*a \leftarrow T+a*a \leftarrow E+a*a \leftarrow E+F*a \leftarrow E+T*a \leftarrow E+T*F \leftarrow E+T \leftarrow E$$

Análise Ascendente

- A representação do processo será feita através de uma pilha de dados
- Para tal, temos:
 - configurações (a, y),
 - a = o conteúdo da pilha
 - y = o resto da entrada ainda não analisada.
- Existem duas formas de transição:
 - redução pela regra A → β : permite passar da configuração (α β, y) para (α A, y).
 - empilhamento, ou deslocamento de um terminal a: permite passar da configuração (α , ay) para (α a, y).

Pilha	(resto da) entrada	derivação esquerda		
	a+a*a	a+a*a		
а	+a*a			
F	+a*a	← F+a*a		
Т	+a*a	← T+a*a		
E	+a*a	← E+a*a		
E+	a*a			
E+a	* a			
E+F	* a	← E+F*a		
E+T	* a	← E+T*a		
E+T*	а			
E+T*a	3			
E+T*F	3	← E+T*F		
E+T	3	← E+T		
E	3	←E		

Gramática sLR(1)

O nome sLR(1) indica que:

- A variante mais simples dos métodos LR(1)
- A cadeia é lida da esquerda para a direita (L=leftto-right);
- O analisador constroi uma derivação direita (R=rightmost) invertida;
- Apenas 1 símbolo do resto da entrada é examinado.

Gramática Aumentada

- Para simplificar a identificação do término do processo de análise, acrescentamos à gramática uma nova regra inicial S'→S, sendo S o símbolo inicial original. S' é um símbolo novo, que passa a ser o símbolo inicial da gramática aumentada.
 - Essa regra recebe o número 0. Assim, uma redução pela regra 0 indica o fim da análise, já que S' nunca aparece à direita nas regras da gramática.
- A gramática aumentada é usada na construção do analisador sLR(1) da gramática original.

Entendendo a notação ...

- A construção deste analisador se baseia em itens.
 Um item A→α•β indica a possibilidade de que, no ponto atual em que se encontra a análise,
 - a regra $A\rightarrow\alpha\beta$ foi usada na derivação da cadeia de entrada;
 - os símbolos terminais derivados de α já foram encontrados;
 - falta encontrar os símbolos terminais derivados de β .
- Desta forma o ponto (•) indica o progresso da análise.

Entendendo a notação ...

Por exemplo:

 $A \rightarrow \bullet \gamma$ indica o início da busca por (uma cadeia derivada de) um γ , enquanto

 $A \rightarrow \gamma \bullet$ indica o fim da busca por um γ , ou seja, o momento em que a redução de γ para A pode ser executada.

O estado do processo de análise

 Num dado momento, várias possibilidades precisam ser consideradas, e, por essa razão, representamos um estado do processo de análise por um conjunto de itens.

 O estado inicial do processo de análise tem um item inicial S'→•S, proveniente da regra inicial, e pode ser entendido como "só falta encontrar (uma cadeia derivada de) um S".

O estado do processo de análise

- De acordo com as regras da gramática, é necessário acrescentar a cada estado as possibilidades correspondentes.
- Assim, quando um estado contém um item A→α•Bβ, itens correspondentes às regras de B devem ser acrescentados, para dirigir a busca por B. Esses são os itens da forma B→•γ, para todas as regras B→γ de B. Esse processo, repetido enquanto for necessário, é denominado o *fechamento* do estado. Assim, o estado inicial é o fechamento de { S'→•S }.

- (0) S' \rightarrow E
- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- $(4) T \rightarrow F$
- $(5) F \rightarrow (E)$
- (6) $F \rightarrow a$

 Os itens da gramática aumentada para esse exemplo, serão 20:

$$S' \rightarrow \bullet E, S' \rightarrow E \bullet$$

$$E \rightarrow \bullet E + T$$
, $E \rightarrow E \bullet + T$, $E \rightarrow E + \bullet T$,

• • •

- (0) S' \rightarrow E
- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- $(4) T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow a$

- O estado inicial é o fechamento de {
 S'→•E }.
- Como há um ponto antes de E, devemos acrescentar os itens
 E→•E+T e E→•T.
- ... e por causa do ponto antes de T,
 acrescentamos T→•T*F e T→•F.
- ... e por causa do ponto antes de F, acrescentamos $F \rightarrow \bullet(E)$ e $F \rightarrow \bullet a$.

$$(0)$$
 S' \rightarrow E

(1)
$$E \rightarrow E + T$$

$$(2) E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

$$(4) T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow a$$

Assim, o estado inicial (estado
0) é composto pelos itens:

$$S' \rightarrow \bullet E$$

 $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$
 $T \rightarrow \bullet T^*F$ $T \rightarrow \bullet F$
 $F \rightarrow \bullet (E)$ $F \rightarrow \bullet a$

À medida que a análise prossegue, o ponto deve caminhar para a direita nos diversos itens do estado.

Encontrado os estados

- Encontrado um símbolo X, passamos de um item $A \rightarrow \alpha \bullet X\beta$ para um item $A \rightarrow \alpha X \bullet \beta$.
 - Os símbolos terminais são encontrados na entrada; enquanto os símbolos não terminais são encontrados como produto de reduções.
- Se estamos em um estado p que tem itens com o ponto antes de um símbolo X, a transição com o símbolo X nos leva a outro estado q que tem um item com o ponto depois da ocorrência de X para cada item no estado p com o ponto antes de X. Os outros itens de q são itens obtidos por seu fechamento.
- A tabela de transições do analisador representa a função de transição δ , escrevemos $\mathbf{q} = \delta(\mathbf{p})$.

Encontrado os estados

- Para gerar todos os estados do analisador, geramos todos os estados possíveis a partir do estado inicial e de outros estados gerados a partir dele.
 - Cada vez que um estado é obtido, verificamos se já ocorreu anteriormente.

 O número de estados (conjuntos de itens) é finito, uma vez que o número de itens é finito.

Estado 0:

$$S' \rightarrow \bullet E$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet a$$

Estado 0:
$$S' \rightarrow E \bullet$$

$$S' \rightarrow \bullet E$$
 $E \rightarrow E \bullet + T$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet a$$

Estado 6:

Estado 6:

Estado 6:

Tabela de transições

	Е	Т	F	(а	+	*)	\$
0	1	2	3	4	5	-	-	-	-
1	-	-	-	-	-	6	-	-	-
2	-	-	-	-	-	-	7	-	-
3	-	-	-	-	-	-	-	-	-
4	8	2	3	4	5	-	-	-	-
5	-	-	-	-	-	-	-	-	-
6	-	9	3	4	5	-	-	-	-
7	-	-	10	4	5	-	-	-	-
8	-	-	-	-	-	6	-	11	-
9	-	-	-	-	-	-	7	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-

Note que ...

- O analisador sLR(1) é um analisador ascendente. Em vez de símbolos, a pilha do analisador contém os estados correspondentes aos símbolos.
- Primeiro, observamos que a cada estado q, com exceção do estado inicial, corresponde exatamente um símbolo X, que é o único símbolo que ocorre depois do ponto, nos itens do estado q.
- Todas as transições para q são feitas com o símbolo X, podendo ocorrer, entretanto, que dois ou mais estados sejam acessíveis pelo mesmo símbolo X. Neste caso, os estados se distinguem por conter informação adicional sobre a posição em que o símbolo X ocorre na cadeia de entrada.

Ações do analisador sLR(1)

- Um empilhamento (shift) pode ocorrer quando existe uma transição com um terminal a partir do estado corrente (o estado do topo da pilha).
- Quando existe um item completo B→γ•, no estado corrente, pode ser feita uma redução pela regra B→γ. Em um analisador sLR(1), a regra é: "reduza pela regra B→γ se o símbolo da entrada pertencer ao Follow(B)."
- Esse primeiro símbolo (do resto) da entrada é conhecido como o símbolo de *lookahead*.

Ações do analisador sLR(1)

Assim, a tabela do analisador sLR(1) pode conter as seguintes ações (em função do estado q do topo da pilha e do símbolo s de lookahead):

- Empilhamento, o empilhamento do estado p (que representa s) deve ser empilhado, e o analisador léxico deve ser acionado para obter outro símbolo da entrada.
- **Redução,** se T[q, s] = $reduce B \rightarrow \gamma$, os $|\gamma|$ estados correspondentes a γ devem ser retirados da pilha, e o estado $\delta(q,B)$ deve ser empilhado, representando B.
- Aceitação, se T[q, s] = reduce S'→S, o processo se encerra com sucesso.

Tabela do analisador sLR(1)

	E	T	F	(а	+	*)	\$
0	1	2	3	4	5	-	-	-	-
1	-	-	-	-	-	6	-	-	RO
2	-	-	-	-	-	R2	7	R2	R2
3	-	-	-	-	-	R4	R4	R4	R4
4	8	2	3	4	5	-	-	-	-
5	-	-	-	-	-	R6	R6	R6	R6
6	-	9	3	4	5	-	-	-	-
7	-	-	10	4	5	-	-	-	-
8	-	-	-	-	-	6	-	11	-
9	-	-	-	-	-	R1	7	R1	R1
10	-	-	-	-	-	R3	R3	R3	R3
11	-	-	-	-	-	R5	R5	R5	R5

- Notação utilizada no exemplo:
 - shift q (ação de empilhamento): número do estado q
 - reduce B→ γ (ação de redução), representada por ri, onde i é o número da regra;
 - ação de parada será indicada como r0.

• Cadeia: (a+a) *a

Exemplo: (a+a) *a

Pilha	(resto da) entrada	Ação		
0	(a+a)*a	Empilhar: 4		
0 (4	a+a)*a	Empilhar: 5		
0 (4 a 5	+a)*a	Reduzir: 6		
0 (4 F 3	+a)*a	Reduzir: 4		
0 (4 T 2	+a)*a	Reduzir: 2		
0 (4 E 8	+a)*a	Empilhar: 6		
0 (4 E 8 + 6	a)*a	Empilhar: 5		
0 (4 E 8 + 6 a 5)*a	Reduzir: 6		
0 (4 E 8 + 6 F 3)*a	Reduzir: 4		
0 (4 E 8 + 6 T 9)*a	Reduzir: 1		
0 (4 E 8) * a	Empilhar: 11		
0 (4 E 8) 11	* a	Reduzir: 5		
0 F 3	* a	Reduzir: 4		
0 т 2	* a	Empilhar: 7		

Exemplo: (a+a) *a

Pilha	(resto da) entrada	Ação		
0 т 2	* a	Empilhar: 7		
0 T 2 * 7	a	Empilhar: 5		
0 T 2 * 7 a 5	a	Reduzir: 6		
0 T 2 * 7 F 10	3	Reduzir: 3		
0 т 2	3	Reduzir: 2		
0 E 1	3	Reduzir: 0 (aceitar)		