Algorithm Design and Analysis

Day 8 Dynamic Programming

AUT, 2015

Day 8 Dynamic Programming

Part I: Shortest Path, Revisited

Shortest Path with Potentially Negative Edges

Recap: Being Greedy is Risky

Dijkstra's algorithm does not work for weighted graph where the weights could be negative.

Greedy choice does not work here.

Shortest Path with Potentially Negative Edges

Observation

- If there is a negative cycle (cycle of negative weight), then the problem does not make sense.
- For simplicity let's first assume there is no negative cycle.

Paths with Bounded Length

Notation

Let $d_k(u)$ denote the length of the shortest path from S to u that uses at most k edges.

Example:

$$d_0(A) = \infty$$
, $d_1(A) = 10$, $d_2(A) = 10$, $d_3(A) = 3$
 $d_0(E) = d_1(E) = \infty$, $d_2(E) = 12$, $d_3(E) = 8$, $d_4(E) = 7$

Paths with Bounded Length

Fact

Suppose *G* does not contain a negative cycle. Then the distance from *S* to *u* is $d_{n-1}(u)$ for every $u \in V$.

Why?

Paths with Bounded Length

Fact

Suppose *G* does not contain a negative cycle. Then the distance from *S* to *u* is $d_{n-1}(u)$ for every $u \in V$.

Why? Take a path from s to u of length > n - 1. It must contain > n nodes.

- \Rightarrow Some node has been repeated.
- \Rightarrow There is a cycle in the path.
- \Rightarrow But then we can reduce the length by removing this cycle.

Computing distances is reduced to computing $d_{n-1}(u)$.

		k								
Node	0	1	2	3	4	5	6	7		
S	0	0	0	0	0	0	0	0		
A	∞	10	10	5	5	5	5	5		
В	∞	∞	∞	10	6	5	5	5		
C	∞	∞	∞	∞	11	7	6	6		
D	∞	∞	∞	∞	∞	14	10	9		
E	∞	∞	12	8	7	7	7	7		
F	∞	∞	9	9	9	9	9	9		
G	∞	8	8	8	8	8	8	8		

Computing distances is reduced to computing $d_{n-1}(u)$.

						di	stand	ces		
		k								
Node	0	1	2	3	4	5	6	7		
S	0	0	0	0	0	0	0	0		
A	∞	10	10	5	5	5	5	5		
В	∞	∞	∞	10	6	5	5	5		
C	∞	∞	∞	∞	11	7	6	6		
D	∞	∞	∞	∞	∞	14	10	9		
E	∞	∞	12	8	7	7	7	7		
F	∞	∞	9	9	9	9	9	9		
G	∞	8	8	8	8	8	8	8		

Node	0
S	0
Α	∞
В	∞
\mathbf{C}	∞
\mathbf{D}	∞
\mathbf{E}	∞
\mathbf{F}	∞
\mathbf{G}	∞

Computing $d_0(u)$

- $-d_0(s) = 0$
- $-d_0(u) = \infty$ for every $u \neq s$

S

10 ∞ ∞ ∞

 ∞ ∞ 8

Computing $d_1(u)$

- $-d_1(s) = 0$
- $-d_1(u) = w(s, u)$ for every out-neighbour u of s
- $d_1(u)$ = ∞ for all other nodes

Node	0	1	2
S	0	0	0
Α	∞	10	10
В	∞	∞	∞
\mathbf{C}	∞	∞	∞
\mathbf{D}	∞	∞	∞
\mathbf{E}	∞	∞	12
\mathbf{F}	∞	∞	9
G	∞	8	8

Computing $d_2(u)$

How can we tell that $d_2(E) = 12$? $d_1(A) = 10$ and w(A, E) = 2So $d_2(E) = d_1(A) + w(A, E)$

Node	0	1	2	3
S	0	0	0	0
A	∞	10	10	5
В	∞	∞	∞	10
C	∞	∞	∞	∞
D	∞	∞	∞	∞
\mathbf{E}	∞	∞	12	8
\mathbf{F}	∞	∞	9	9
G	∞	8	8	8

Computing $d_3(u)$

How can we tell that $d_3(A) = 5$? $d_2(F) = 9$ and w(F, A) = -4So $d_3(A) = d_2(F) + w(F, A)$

	k								
Node	0	1	2	3	4	5	6	7	
S	0	0	0	0	0	0	0	0	
A	∞	10	10	5	5	5	5	5	
В	∞	∞	∞	10	6	5	5	5	
C	∞	∞	∞	∞	11	7	6	6	
D	∞	∞	∞	∞	∞	14	10	9	
E	∞	∞	12	8	7	7	7	7	
F	∞	∞	9	9	9	9	9	9	
G	∞	8	8	8	8	8	8	8	

Computing $d_3(u)$

How can we tell that $d_3(B) = 10$? $d_2(E) = 12$ and w(E, B) = -2 So $d_3(B) = d_2(E) + w(E, B)$

				k				
Node	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
A	∞	10	10	5	5	5	5	5
В	∞	∞	∞	10	6	5	5	5
C	∞	∞	∞	∞	11	7	6	6
D	∞	∞	∞	∞	∞	14	10	9
E	∞	∞	12	8	7	7	7	7
F	∞	∞	9	9	9	9	9	9
G	∞	8	8	8	8	8	8	8

Computing $d_3(u)$

How can we tell that $d_3(E) = 8$? $d_2(F) = 9$ and w(F, E) = -1; $d_2(A) = 10$ and w(A, F) = 2 So $d_3(B) = d_2(F) + w(F, E)$

Computing $d_{k+1}(u)$

 $d_{k+1}(u)$ is the smallest among

$$d_k(u), d_k(x) + w(x, u), d_k(y) + w(y, u), d_k(z) + w(z, u)$$

$$\Rightarrow d_{k+1}(u) = \min\{d_k(u), \min\{d_k(v) + w(v, u) \mid (v, u) \in E\}\}\$$

```
Bellman-Ford(G, s)

INPUT: A graph G (without negative cycle) and starting node s

OUTPUT: d(u) for every node u denoting distance from s to u

d(s) \leftarrow 0, d(v) \leftarrow \infty for all other v

for i = 1 to n - 1 do:

for u \in V do

d'(u) \leftarrow d(u)

for (v, u) \in E do

d'(u) \leftarrow \min\{d'(u), d(v) + w(v, u)\}

Replace d by d'
```


T	
Iteration	١.
ittianon	т.

ittiano	11 1.				
и	1	2	3	4	5
d(u)	0	∞	∞	∞	∞
<i>d</i> ′(<i>u</i>)	0	6	∞	7	∞

T	
Iteration	١.
ittianon	т.

ittiation i.										
и	1	2	3	4	5					
d(u)	0	6	∞	7	∞					
d'(u)	0	6	∞	7	∞					

Iteration 2:

110111011 2.										
и	1	2	3	4	5					
d(u)	0	6	∞	7	∞					
<i>d</i> ′(<i>u</i>)	0	6	4	7	2					

Iteration 2:

ittiation 2.					
и	1	2	3	4	5
d(u)	0	6	4	7	2
<i>d</i> ′(<i>u</i>)	0	6	4	7	2

Iteration	3:

ittiation 5.					
и	1	2	3	4	5
d(u)	0	6	4	7	2
d'(u)	0	2	4	7	-2

Iteration 3:

iteration 5.						
и	1	2	3	4	5	
d(u)	0	2	4	7	-2	
<i>d</i> ′(<i>u</i>)	0	2	4	7	-2	

Iteration 4:

ittiation i.					
и	1	2	3	4	5
d(u)	0	2	4	7	-2
<i>d</i> ′(<i>u</i>)	0	2	4	7	-2

Bellman-Ford Algorithm: Correctness

Fact 1.

Suppose *G* has no negative cycle. After running Bellman-Ford(G, s), d(u) is the distance from s to u for every $u \in V$.

Bellman-Ford Algorithm: Correctness

Fact 1.

Suppose *G* has no negative cycle. After running Bellman-Ford(G, s), d(u) is the distance from s to u for every $u \in V$.

Proof. We prove the following loop invariant by induction on *i*:

After *i* rounds of the outmost for-loop, $d(u) = d_i(u)$.

Base case: i = 0. Before the loop, the statement is clear.

Inductive step: Suppose after *i* rounds, $d(u) = d_i(u)$ for every $u \in V$.

Note $d_{i+1}(u) = \min\{d_i(u), \min\{d_i(v) + w(v, u) \mid (v, u) \in E\}\}.$

Therefore after the (i + 1)th round, $d(u) = d_{i+1}(u)$.

П

Bellman-Ford Algorithm: Complexity

Fact 2.

Suppose G has no negative cycle. Bellman-Ford(G, s) computes the shortest distance from s to all other nodes in the graph G in time $\Theta(mn)$.

Proof.

- There are n-1 iterations
- At each iteration, we process every incoming edge for every node
 - \Rightarrow We examine every edge in the graph (exactly once).

Therefore the total running time is $(n-1) \times m$.

All-Pair Shortest Path

Dijkstra's and Bell-Ford algorithm both solves Single-Source Shortest Path Problem.

All-Pair Shortest Path Problem

Compute the shortest distance between any pair of nodes in *G*.

All-Pair Shortest Path

Dijkstra's and Bell-Ford algorithm both solves Single-Source Shortest Path Problem.

All-Pair Shortest Path Problem

Compute the shortest distance between any pair of nodes in *G*.

Solution: Run the single-source algorithm *n* times, each time from a different node!

 $\Rightarrow O(n^2m)$ time

All-Pair Shortest Path

Dijkstra's and Bell-Ford algorithm both solves Single-Source Shortest Path Problem.

All-Pair Shortest Path Problem

Compute the shortest distance between any pair of nodes in *G*.

Solution: Run the single-source algorithm *n* times, each time from a different node!

 $\Rightarrow O(n^2m)$ time

Note:

- m could be as large as $\Theta(n^2)$.
- So Bellman-Ford algorithm would runs in $O(n^4)$.
- We would like a faster algorithm for this problem.

Floyd-Warshall algorithm

Floyd-Warshall algorithm

• Label all nodes using v_1, v_2, \ldots, v_n .

Floyd-Warshall algorithm

- Label all nodes using v_1, v_2, \ldots, v_n .
- Define $f_k(i, j)$ as the length of the shortest path between v_i, v_j that uses only v_1, \ldots, v_k as intermediate nodes.

Floyd-Warshall algorithm

- Label all nodes using v_1, v_2, \ldots, v_n .
- Define $f_k(i, j)$ as the length of the shortest path between v_i, v_j that uses only v_1, \ldots, v_k as intermediate nodes.
- **Fact**: $f_n(i, j)$ is the distance from v_i to v_j .

Floyd-Warshall algorithm

- Label all nodes using v_1, v_2, \ldots, v_n .
- Define $f_k(i, j)$ as the length of the shortest path between v_i, v_j that uses only v_1, \ldots, v_k as intermediate nodes.
- **Fact**: $f_n(i, j)$ is the distance from v_i to v_j .

Example: Going from 1 to 5:

Able to pass through v_1, v_2 : $f_2(1, 5) = 13$

Able to pass through v_1, v_2, v_3 : $f_3(1, 5) = 10$

Able to pass through v_1, v_2, v_3, v_4 : $f_4(1, 5) = 9$

Suppose *G* does not contain a negative cycle.

Computing $f_0(i, j)$

$$f_0(i,j) = w(v_i,v_j)$$

Suppose *G* does not contain a negative cycle.

Computing $f_0(i, j)$

$$f_0(i,j) = w(v_i, v_j)$$

Computing $f_{k+1}(i, j)$

- Optimal Substructure: Suppose $u \leadsto v_{k+1} \leadsto v$ is a shortest path from u, v that only uses v_1, \ldots, v_{k+1} as intermediate nodes, then $u \leadsto v_{k+1}$ and $v_{k+1} \leadsto v$ are shortest paths from u to v_{k+1} and from v_{k+1} to v using only v_1, \ldots, v_k as intermediate nodes.
- Therefore we have

$$f_{k+1}(i, j) = \min\{f_k(i, j), f_k(i, k+1) + f_k(k+1, v)\}$$

Floyd-Warshall(*G*)

```
INPUT: A graph G (without negative cycle)

OUTPUT: f(i,j) for any i,j denoting distance from v_i to v_j

Create 2-dim arrays f, f'
f(i,j) \leftarrow w(v_i,v_j) for all i,j

for k=1..n do

for i=1 to n do

for j=1 to n do

f'(i,j) \leftarrow \min\{f(i,j), f(i,k) + f(k,j)\}

Replace f by f'
```


Initial Stage

$$f = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Day 8 Dynamic Programming

Floyd-Warshall(*G*)

```
INPUT: A graph G (without negative cycle)

OUTPUT: f(i,j) for any i,j denoting distance from v_i to v_j

Create 2-dim arrays f, f'
f(i,j) \leftarrow w(v_i,v_j) for all i,j

for k=1..n do

for i=1 to n do

for j=1 to n do

f'(i,j) \leftarrow \min\{f(i,j), f(i,k) + f(k,j)\}

Replace f by f'
```


Stage 1

$$f = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Floyd-Warshall(*G*)

```
INPUT: A graph G (without negative cycle)

OUTPUT: f(i,j) for any i,j denoting distance from v_i to v_j

Create 2-dim arrays f, f'
f(i,j) \leftarrow w(v_i,v_j) for all i,j

for k=1..n do

for i=1 to n do

for j=1 to n do

f'(i,j) \leftarrow \min\{f(i,j), f(i,k) + f(k,j)\}

Replace f by f'
```


Stage 2

$$f = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Day 8 Dynamic Programming

Floyd-Warshall(*G*)

```
INPUT: A graph G (without negative cycle)

OUTPUT: f(i,j) for any i,j denoting distance from v_i to v_j

Create 2-dim arrays f, f'
f(i,j) \leftarrow w(v_i,v_j) for all i,j

for k=1..n do

for i=1 to n do

for j=1 to n do

f'(i,j) \leftarrow \min\{f(i,j), f(i,k) + f(k,j)\}

Replace f by f'
```


Stage 3

$$f = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Floyd-Warshall(*G*)

```
INPUT: A graph G (without negative cycle)

OUTPUT: f(i,j) for any i,j denoting distance from v_i to v_j

Create 2-dim arrays f, f'
f(i,j) \leftarrow w(v_i,v_j) for all i,j

for k=1..n do

for i=1 to n do

for j=1 to n do

f'(i,j) \leftarrow \min\{f(i,j), f(i,k) + f(k,j)\}

Replace f by f'
```


Stage 4

$$f = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Floyd-Warshall(*G*)

```
INPUT: A graph G (without negative cycle)

OUTPUT: f(i,j) for any i,j denoting distance from v_i to v_j

Create 2-dim arrays f, f'
f(i,j) \leftarrow w(v_i,v_j) for all i,j

for k=1..n do

for i=1 to n do

for j=1 to n do

f'(i,j) \leftarrow \min\{f(i,j), f(i,k) + f(k,j)\}

Replace f by f'
```


Stage 5

$$f = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Day 8 Dynamic Programming

Time Complexity : $O(n^3)$

Time Complexity : $O(n^3)$

Further Questions

- How can we modify Floyd-Warshall Algorithm to give us the shortest paths, rather than the distances?
- What if the graph has a negative cycle? Can Floyd-Warshall Algorithm detect it?

Richard Bellman "Dynamic Programming" 1957

Robert Floyd
"Assigning Meaning to Programs"
1967

Shortest Paths, A Summary

- Single-Source Positive Weights: Dijkstra's algorithm
 - Complexity: Depends on the priority queue implementation
 - List $O(n^2)$
 - Binary /Binomial Heap $O((n + m) \log n)$
 - Fibonacci Heap $O(m + n \log n)$
- Single-Source Positive/Negative Weights: Bellman-Ford algorithm
 - Complexity: O(nm)
- All-Pair: Floyd-Warshall algorithm
 - Complexity: $O(n^3)$

Day 8 Dynamic Programming

Part II: Dynamic Programming as an Algorithm

Optimization

Recall

An optimization problem contains a solution set where each solution has a value. The problem asks to find the solution with the maximal/minimal value (The optimal solution).

Examples of Optimization Problem

- Shortest Path
- Minimum Spanning Tree
- Knapsack Problem
- Sorting

Optimization

Recall

An optimization problem contains a solution set where each solution has a value. The problem asks to find the solution with the maximal/minimal value (The optimal solution).

Examples of Optimization Problem

- Shortest Path
- Minimum Spanning Tree
- Knapsack Problem
- Sorting (Reformulated): Arrange a collection of *n* numbers into a sequence

$$a_1, a_2, \ldots, a_n$$

where the length of the longest increasing subsequence is maximized.

Sorting VS Shortest Path

Sorting VS Shortest Path

- Similarity: [Optimal Substructure]
 - Sorting: In a sorted array, any subarray is also sorted
 - SP: In a shortest path, any segment is also a shortest path

Sorting VS Shortest Path

- Similarity: [Optimal Substructure]
 - Sorting: In a sorted array, any subarray is also sorted
 - SP: In a shortest path, any segment is also a shortest path
 - ⇒ both problems can be solved by "division".

Sorting VS Shortest Path

- Similarity: [Optimal Substructure]
 - Sorting: In a sorted array, any subarray is also sorted
 - SP: In a shortest path, any segment is also a shortest path
 - \Rightarrow both problems can be solved by "division".
- Difference: Suppose we divide the problem into subproblems
 - Sorting: The subproblems are completely independent.

Hence a top-down algorithm is suitable

- ⇒ Divide and Conquer
- SP: The subproblems overlap.

Hence a bottom-up algorithm is suitable

⇒ Dynamic Programming

Dynamic Programming

Dynamic Programming

- Dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems.
- It is applicable to problems exhibiting the properties of overlapping subproblems and optimal substructure.
- Dynamic programming solves the subproblems from small to large to avoid duplication

Bellman-Ford algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

Bellman-Ford algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

① Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $d_0, d_1, d_2, \dots, d_{n-1}$

Parameter: Number of edges used in the shortest path.

Bellman-Ford algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $d_0, d_1, d_2, \dots, d_{n-1}$ Parameter: Number of edges used in the shortest path.

2 Handle the base case

$$d_0(u) = 0$$
 if $u = s$; $d_0(u) = \infty$ if $u \neq s$.

Bellman-Ford algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $d_0, d_1, d_2, \dots, d_{n-1}$ Parameter: Number of edges used in the shortest path.

2 Handle the base case

$$d_0(u) = 0$$
 if $u = s$; $d_0(u) = \infty$ if $u \neq s$.

3 Write a recurrence for larger subproblems

$$d_{k+1}(u) = \min\{d_k(u), \min\{d_k(v) + w(v, u) \mid (v, u) \in E\}\}\$$

Bellman-Ford algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $d_0, d_1, d_2, \dots, d_{n-1}$ Parameter: Number of edges used in the shortest path.

2 Handle the base case

$$d_0(u)=0 \text{ if } u=s; d_0(u)=\infty \text{ if } u\neq s.$$

Write a recurrence for larger subproblems

$$d_{k+1}(u) = \min\{d_k(u), \min\{d_k(v) + w(v, u) \mid (v, u) \in E\}\}\$$

- Fill the table of partial solutions in a bottom-up way
 - Start from d_0 , then compute $d_1, d_2, \ldots, d_{n-1}$

Floyd-Warshall algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

Floyd-Warshall algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

① Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $f_k(i, j)$ for all $1 \le k \le n$.

Parameter: Indices of nodes used as intermediate nodes.

Floyd-Warshall algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

1 Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $f_k(i, j)$ for all $1 \le k \le n$. Parameter: Indices of nodes used as intermediate nodes.

② Handle the base case

$$f_0(i,j) = w(v_i,v_j).$$

Floyd-Warshall algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

① Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $f_k(i, j)$ for all $1 \le k \le n$. Parameter: Indices of nodes used as intermediate nodes.

2 Handle the base case

$$f_0(i,j) = w(v_i,v_j).$$

Write a recurrence for larger subproblems

$$f_{k+1}(i, j) = \min\{f_k(i, j), f_k(i, k+1) + f_k(k+1, j)\}\$$

Floyd-Warshall algorithm is an example of a dynamic program.

Four Steps of Dynamic Programming

1 Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

To compute distance, we compute $f_k(i, j)$ for all $1 \le k \le n$. Parameter: Indices of nodes used as intermediate nodes.

- 2 Handle the base case $f_0(i, j) = w(v_i, v_i)$.
- Write a recurrence for larger subproblems

$$f_{k+1}(i, j) = \min\{f_k(i, j), f_k(i, k+1) + f_k(k+1, j)\}$$

4 Fill the table of partial solutions in a bottom-up way

Start from f_1 , then compute $f_2, f_3, \ldots, f_{n-1}$

Increasing Subsequences

Let a[1..n] be an array of numbers. A subsequence of a is a sequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where $1 \le i_1 < i_2 < ... < i_k \le n$.

An increasing subsequence is a subsequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where
$$a[i_1] < a[i_2] < ... < a[i_k]$$

example

A sequence:

Increasing Subsequences

Let a[1..n] be an array of numbers. A subsequence of a is a sequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where $1 \le i_1 < i_2 < \ldots < i_k \le n$.

An increasing subsequence is a subsequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where
$$a[i_1] < a[i_2] < \ldots < a[i_k]$$

example

A subsequence:

Increasing Subsequences

Let a[1..n] be an array of numbers. A subsequence of a is a sequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where $1 \le i_1 < i_2 < ... < i_k \le n$.

An increasing subsequence is a subsequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where
$$a[i_1] < a[i_2] < \ldots < a[i_k]$$

example

An increasing subsequence:

Increasing Subsequences

Let a[1..n] be an array of numbers. A subsequence of a is a sequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where $1 \le i_1 < i_2 < ... < i_k \le n$.

An increasing subsequence is a subsequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where
$$a[i_1] < a[i_2] < ... < a[i_k]$$

example

A longest increasing subsequence:

Increasing Subsequences

Let a[1..n] be an array of numbers. A subsequence of a is a sequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where $1 \le i_1 < i_2 < ... < i_k \le n$.

An increasing subsequence is a subsequence

$$a[i_1], a[i_2], \ldots, a[i_k]$$

where
$$a[i_1] < a[i_2] < ... < a[i_k]$$

example

Another longest increasing subsequence:

Question

Given a sequence a[1..n] of numbers, compute a longest increasing subsequence.

Question

Given a sequence a[1..n] of numbers, compute a longest increasing subsequence.

Reformulate as a Graph Question

 $5 \quad 2 \quad 8 \quad 6 \quad 3 \quad 6 \quad 9$

Question

Given a sequence a[1..n] of numbers, compute a longest increasing subsequence.

Reformulate as a Graph Question

Create an edge (a[i], a[j]) if i < j and a[i] < a[j]. Compute the longest path in this graph.

Divide into Subproblems

Divide into Subproblems

Let L(i) denote the length of the longest path that ends at a[i].

Divide into Subproblems

Let L(i) denote the length of the longest path that ends at a[i].

Then the length of the longest increasing subsequence is:

$$\max\{L(i) \mid 1 \le i \le n\}$$

Base Case: The Smallest Subproblem

Recurrence for Larger Subproblems

Base Case: The Smallest Subproblem

$$L(1) = 1$$

Recurrence for Larger Subproblems

Base Case: The Smallest Subproblem

$$L(1) = 1$$

Recurrence for Larger Subproblems

$$L(i + 1) = 1$$
 if indegree($a[i + 1]$) = 0
 $L(i + 1) = 1 + \max\{L(j) \mid j < i + 1, (a[j], a[i + 1]) \in E\}$ otherwise


```
LIS(a[1..n])

INPUT: An integer array a of length n

OUTPUT: The length of the longest increasing subsequence in a

Create an integer array L[1..n]

Set every L[i] to 1

for i = 2..n do

for j = 1..i - 1 do

if a[j] < a[i] then

L[i] \leftarrow \max\{L[i], a[j] + 1\}

Return \max\{L[i] \mid 1 \le i \le n\}
```

Note: Can you extend this algorithm so that it also finds the longest increasing subsequence?

Summary

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute $L(1), L(2), \ldots, L(n)$

Parameter: The last node in the increasing subsequence

Summary

① Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute $L(1), L(2), \ldots, L(n)$

Parameter: The last node in the increasing subsequence

② Handle the base case

$$L(1) = 1$$

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute
$$L(1), L(2), \ldots, L(n)$$

Parameter: The last node in the increasing subsequence

② Handle the base case

$$L(1) = 1$$

Write a recurrence for larger subproblems

$$L(i + 1) = 1$$
 if indegree($a[i + 1]$) = 0
 $L(i + 1) = 1 + \max\{L(j) \mid j < i + 1, (a[j], a[i + 1]) \in E\}$ otherwise

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

```
We compute L(1), L(2), \ldots, L(n)
```

Parameter: The last node in the increasing subsequence

② Handle the base case

$$L(1) = 1$$

Write a recurrence for larger subproblems

$$L(i + 1) = 1$$
 if indegree($a[i + 1]$) = 0
 $L(i + 1) = 1 + \max\{L(j) \mid j < i + 1, (a[j], a[i + 1]) \in E\}$ otherwise

Fill the table of partial solutions in a bottom-up way

Start from L(1), then compute $L(2), \ldots, L(n)$

Day 8 Dynamic Programming

Part III: Edit Distance

Motivation

There are words that look similar and words that look different:

Whangarei Wanganui Auckland

Can we formalize this notion of similarity and disimilarity? Can we define a distance measure on words?

Edit Distance

The edit distance of two words is the smallest number of edits, that are insertion, deletion, and replacement of letters, needed to transform from one word to another.

A u c k l a n d W a n g a n u i

edit distance = 7

Applications

Spell Check:

Sequence Alignment:

Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA-TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Edit Distance Problem

Given two words a[1..m] and b[1..n], compute the edit distance of them.

Note:

- Different ways of aligning the words result in different number of edits
- The edit distance problem asks for the best way to align the words.

```
- S N O W - Y
S U N - - N Y
edit distance:5
```

Observation

Suppose we would like to find the best alignment for the following:

Observation

Suppose we would like to find the best alignment for the following: There are 3 cases:

Observation

Suppose we would like to find the best alignment for the following: There are 3 cases:

Case 1: The last letter of *x* aligns with a blank.

$$y = \frac{\text{Whangare}}{\text{Wanganui}} \quad \underline{i}$$

We need to then align Whangare and Wanganui

Observation

Suppose we would like to find the best alignment for the following: There are 3 cases:

Case 2: The last letter of *x* aligns with the last letter of *y*

$$y = \frac{Whangare}{Wanganu} \quad \frac{i}{i}$$

We need to then align Whangare and Wanganu

Observation

Suppose we would like to find the best alignment for the following: There are 3 cases:

Case 3: The last letter of *y* aligns with a blank.

We need to then align Whangarei and Wanganu

Divide into Subproblems

Suppose we want to compute the edit distance of two words

$$x[1..m]$$
 and $y[1..n]$

Let E(i, j) be the edit distance of

$$x[1..i]$$
 and $y[1..j]$

We would like to find E(m, n)

Base Case: The Smallest Subproblem

$$i = 0 \text{ or } j = 0$$

Base Case: The Smallest Subproblem

$$i = 0 \text{ or } j = 0$$

Recurrence for Larger Subproblem

Recurrence for Larger Subproblem

Recurrence for Larger Subproblem

$$E(i+1, j+1) = \min\{E(i, j+1) + 1, E[i+1, j] + 1, E[i, j] + k\}$$

where $k = 1$ if $a[i+1] \neq b[j+1], k = 0$ if $a[i+1] = b[j+1]$.

		0	1	2	3	4	5	6	7	8
Ε	N		W	а	n	g	а	n	u	i
0		0	1	2	3	4	5	6	7	8
1	W	1	0	1	2	3	4	5	6	7
2	h	2	1	1	2	3	4	5	6	7
3	а	3	2	1	2	3	3	4	5	6
4	n	4	3	2	1	2	3	3	4	5
5	g	5	4	3	2	1	2	3	4	5
6	а	6	5	4	3	2	1	2	3	4
7	r	7	6	5	4	3	2	2	3	4
8	е	8	7	6	5	4	3	3	3	4
9	i	9	8	7	6	5	4	4	4	3


```
EditDistance(a[1..m], b[1..n])
INPUT: Two words represented by two char arrays a, b
OUTPUT: The edit distance between a and b
Create an empty 2-dim array E[1..m][1..n]
for i = 0..m do
    E[i][0] \leftarrow i
for j = 0..n do
    E[0][i] \leftarrow i
for i = 1..m do
     for i = 1..n do
          k \leftarrow (a[i] \neq b[i])
          E[i][j] \leftarrow \min\{E[i-1][j]+1, E[i][j-1]+1, E[i-1][j-1]+k\}
return E[m][n]
```

Summary

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute E(i, j) for i = 0..m, j = 0..n

Parameters: The lengths of subwords

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute E(i, j) for i = 0..m, j = 0..n

Parameters: The lengths of subwords

2 Handle the base case

$$E(i,0)=i, E(0,j)=j$$

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute E(i, j) for i = 0..m, j = 0..mParameters: The lengths of subwords

2 Handle the base case

$$E(i,0) = i, E(0, j) = j$$

3 Write a recurrence for larger subproblems

$$E(i+1, j+1) = \max\{E(i+1, j) + 1, E(i, j+1) + 1, E(i, j) + k\}$$

where $k = 0$ if $a[i+1] = b[j+1]$ and $k = 1$ otherwise.

Summary

Parametrize the problem: Divide the problem into subproblems indexed by a parameter:

We compute E(i, j) for i = 0..m, j = 0..mParameters: The lengths of subwords

2 Handle the base case

$$E(i,0) = i, E(0,j) = j$$

Write a recurrence for larger subproblems

$$E(i+1, j+1) = \max\{E(i+1, j) + 1, E(i, j+1) + 1, E(i, j) + k\}$$

where $k = 0$ if $a[i+1] = b[j+1]$ and $k = 1$ otherwise.

4 Fill the table of partial solutions in a bottom-up way

Start from E(0, j), then compute E(1, j), E(2, j), ..., E(m, j)

