Задание №2. Решение систем линейных алгебраических уравнений

Цель задания: практическое освоение точных и итерационных методов решения систем линейных алгебраических уравнений

1. Решить СЛАУ с помощью программной реализации ниже указанных методов:

Точные методы:

- Метод Гаусса (LU разложение)
- Метод Отражений (*QR* разложение (метод Хаусхолдера))

Итерационные методы:

- Метод простой итерации
- Метод Зейделя

Примечание: пользоваться встроенными функциями языка программирования можно только при вычислении абсолютной погрешности решения для заполнения таблиц «Результаты тестирования». Операции с матрицами и векторами необходимо запрограммировать самостоятельно. Для вычисления квадратного корня используйте итерационную формулу Герона.

2. Используя программную реализацию методов из п. 1, заполнить таблицы «*Результаты тестирования*» для тестов №0 – №5.

Примечание: Параметр *N* в тестах №0 – №5 должен совпадать с Вашим номером в списке группы.

Tecm №0.

$$A = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 2 & 4 \\ 4 & 5 & 6 \end{pmatrix} \quad b = \begin{pmatrix} 13 \\ 17 \\ 32 \end{pmatrix}$$

Tecm №1.

$$A = \begin{pmatrix} N+2 & 1 & 1\\ 1 & N+4 & 1\\ 1 & 1 & N+6 \end{pmatrix} \quad b = \begin{pmatrix} N+4\\ N+6\\ N+8 \end{pmatrix}$$

Tecm №2.

$$A = \begin{pmatrix} -(N+2) & 1 & 1\\ 1 & -(N+4) & 1\\ 1 & 1 & -(N+6) \end{pmatrix} \quad b = \begin{pmatrix} -(N+4)\\ -(N+6)\\ -(N+8) \end{pmatrix}$$

Tecm №3.

$$A = \begin{pmatrix} -(N+2) & N+3 & N+4 \\ N+5 & -(N+4) & N+1 \\ N+4 & N+5 & -(N+6) \end{pmatrix} \quad b = \begin{pmatrix} N+4 \\ N+6 \\ N+8 \end{pmatrix}$$

$$A = \begin{pmatrix} N+2 & N+1 & N+1 \\ N+1 & N+4 & N+1 \\ N+1 & N+1 & N+6 \end{pmatrix} \quad b = \begin{pmatrix} N+4 \\ N+6 \\ N+8 \end{pmatrix}$$

Тест №5. Плохо обусловленная СЛАУ

$$A = \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ 0 & 1 & -1 & \dots & -1 \\ 0 & 0 & 1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} + \varepsilon N \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & 1 & -1 & \dots & -1 \\ 1 & 1 & 1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}$$
$$b = (-1, -1, \dots, -1, 1)^{T}.$$

Здесь ε можно брать в широком диапазоне от 10^{-3} до 10^{-6} . Систему следует решать при увеличивающейся размерности $\frac{n}{n}$ матрицы A и вектора b.

Обозначения в таблицах №1, №2:

- х решение, полученное с помощью программной реализации соответствующего метода
- \bar{x} «точное» решение, полученное с помощью встроенных функций (или внешних сервисов)
- е допустимая погрешность решения (требуемая точность решения)
- Δ абсолютная погрешность решения х
- k количество итераций
- <mark>n размерность системы</mark>

Таблица №1. Результаты тестирования N = 0 – N = 0.

№ теста	\bar{x}	e	МПИ			Мето	д Зейде	ля	М-д Гаусса		М-д Хаусхолдера	
			X	Δ	<mark>k</mark>	X	Δ	k	X	Δ	X	Δ
0		10^{-2}										
1		10^{-2}										
		•••										
2		10^{-2}										
		•••										
3		10^{-2}										
		•••							_			
		•••										
4		10^{-2}										

Таблица №2. Результаты тестирования №5.

№ теста	n	ε	\bar{x}	е	МПИ			Метод Зейделя			М-д Гаусса		М-д Хаусхолдера	
					X	Δ	k	X	Δ	<mark>k</mark>	X	Δ	X	Δ
5	4	10 ⁻³		10^{-2}										
		10^{-6}		10^{-2}										
	5	10-3		10^{-2}										
		10^{-6}		10^{-2}										
	:	10^{-3}		10^{-2}										
				•••										
		10^{-6}	10 ⁻⁶	10^{-2}										