

Folha 10 - Primitivas

Exercício 1 Calcule os seguintes integrais indefinidos:

a)
$$\int \sqrt{t}(t^2 - 1) \, dt$$
; h) $\int \frac{e^x}{1 + e^x} \, dx$; o) $\int \sin x \cos^5 x \, dx$;
b) $\int x(2x + 1)^2 \, dx$; i) $\int \left(e^{3x} + \frac{\cos(3x)}{2}\right) \, dx$; p) $\int \frac{\ln^2 x}{x} \, dx$;
c) $\int \left(\frac{1}{3y} - \frac{5}{\sqrt{y}}\right) \, dy$; j) $\int (1 + \sqrt[3]{x})^2 \, dx$; q) $\int \frac{e^x}{\sqrt{1 + e^{2x}}} \, dx$;
d) $\int \frac{1}{y} (y + 1)^2 \, dy$; k) $\int \frac{e^x}{(1 + e^x)^2} \, dx$; r) $\int \cos x \, \sin x \, dx$;
e) $\int x^{-1/2} (x^2 - x) \, dx$; l) $\int x^4 \cos(x^5) \, dx$; s) $\int \tan x \, dx$;
f) $\int \left(2e^u + \frac{6}{u}\right) \, du$; m) $\int (1 + x)^{27} \, dx$; t) $\int \frac{e^x}{\sqrt{1 + e^x}} \, dx$;
g) $\int (e^t + 1)^2 \, dt$ n) $\int \frac{e^x}{1 + e^{2x}} \, dx$; u) $\int \sin x \, e^{\cos x} \, dx$.

Exercício 2 Em cada alínea, determine a única função $f:\mathbb{R}\longrightarrow\mathbb{R}$ que verifica as condições apresentadas.

a)
$$f''(x) = 12x + 2$$
, $f'(0) = 2$, $f(0) = 2$.

b)
$$f''(x) = -\sin(2x) + 2\cos(3x)$$
, $f'(0) = 1$, $f(\pi) = 0$.

c)
$$f''(x) = e^x - e^{-3x} + 1$$
, $f'(0) = \frac{10}{3}$, $f(0) = 0$.

d)
$$f'(x) = sen(x) + 1$$
, $f(\frac{\pi}{2}) = 2$.

Exercício 3 Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:

- a) a função f, definida por $f(x) = \cos x$, $x \in \mathbb{R}$, possui uma primitiva F tal que $F(0) \neq F(2\pi)$;
- b) as funções definidas por $f(x) = \cos x$ e $g(x) = \cos^3 x + \cos x \sec^2 x + 2$ são duas primitivas de uma mesma função em \mathbb{R} .

Exercício 4 A velocidade v(t) = x'(t) no tempo t de um objeto deslocando-se ao longo do eixo dos xx e a sua posição inicial são dadas por

$$x'(t) = -2(3t+1)^{1/2}$$
 e $x(0) = 4$.

Calcule a posição do objeto x(t). Qual a posição do objeto no tempo t=4?

Exercício 5 Usando primitivação por partes calcule:

a)
$$\int \ln x \, dx$$
;

d)
$$\int x^3 e^x dx$$
;

d)
$$\int x^3 e^x dx$$
; g) $\int \operatorname{sh} x e^{2x} dx$;

b)
$$\int \ln^2 x \, dx$$

e)
$$\int x^2 \sin x \, dx$$

b)
$$\int \ln^2 x \, dx$$
; e) $\int x^2 \sin x \, dx$; h) $\int \cosh x \, \sin x \, dx$; c) $\int x \ln x \, dx$; f) $\int x \cos x \, dx$; i) $\int \operatorname{arctg} x \, dx$.

c)
$$\int x \ln x \, dx$$

f)
$$\int x \cos x \, dx$$
;

i)
$$\int \operatorname{arctg} x \, dx$$
.

Calcule os seguintes integrais indefinidos usando a substituição indicada.

a)
$$\int x\sqrt{x-1} \, dx$$
, $x = t^2 + 1$; c) $\int \frac{e^{2x}}{1+e^x} \, dx$, $x = \ln t$;

c)
$$\int \frac{e^{2x}}{1+e^x} dx, \quad x = \ln t$$

b)
$$\int \sqrt{1-x^2} dx$$
, $x = \operatorname{sen} t$; d) $\int \sqrt{1+x^2} dx$, $x = \operatorname{sh} t$.

$$d) \quad \int \sqrt{1+x^2} \ dx, \quad x = \sinh t.$$

Exercício 7 Calcule os seguintes integrais indefinidos:

a)
$$\int \frac{27}{x^4 - 3x^3} dx$$

c)
$$\int \frac{x+1}{x(x-1)^2} dx$$

a)
$$\int \frac{27}{x^4 - 3x^3} dx$$
; c) $\int \frac{x+1}{x(x-1)^2} dx$; e) $\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx$.

b)
$$\int \frac{x^4 - 8}{x^3 - 2x^2} dx$$

b)
$$\int \frac{x^4 - 8}{x^3 - 2x^2} dx$$
; d) $\int \frac{x^2 + x - 1}{x^2(x - 1)} dx$;

Calcule os seguintes integrais indefinidos: Exercício 8

a)
$$\int x \operatorname{sen}(2x) dx$$

g)
$$\int \frac{x-1}{x+1} dx$$
;

a)
$$\int x \operatorname{sen}(2x) dx$$
; g) $\int \frac{x-1}{x+1} dx$; m) $\int \frac{1}{(2+\sqrt{x})^7 \sqrt{x}} dx$;

b)
$$\int x \sqrt[4]{1+x} \ dx$$

b)
$$\int x \sqrt[4]{1+x} dx$$
; h) $\int \frac{1}{x(\ln x)^3} dx$; n) $\int \operatorname{tg}^2 x dx$;

n)
$$\int \mathsf{tg}^2 x \, dx$$
;

c)
$$\int x \sqrt{x+1} dx$$

i)
$$\int \cos(3x) \sin^2(3x) dx;$$

c)
$$\int x \sqrt{x+1} \, dx$$
; i) $\int \cos(3x) \sin^2(3x) \, dx$; o) $\int \frac{x + (\arcsin(3x))^2}{\sqrt{1-9x^2}} \, dx$;

d)
$$\int \frac{x+3}{\sqrt{x^2+6x+4}} dx$$
; j) $\int x(e^x+1) dx$; p) $\int \frac{xe^{\sqrt{1-x^2}}}{\sqrt{1-x^2}} dx$;

j)
$$\int x(e^x+1) dx;$$

p)
$$\int \frac{xe^{\sqrt{1-x^2}}}{\sqrt{1-x^2}} dx$$
;

e)
$$\int x^3 e^{x^4+2} dx$$

$$k) \int \frac{e^{2x}}{e^{2x} + 1} dx;$$

e)
$$\int x^3 e^{x^4 + 2} dx$$
; k) $\int \frac{e^{2x}}{e^{2x} + 1} dx$; q) $\int \frac{1}{\cos^2 x \sin^2 x} dx$;

f)
$$\int (x+1)\cos x \, dx$$
; l) $\int x^2 \sinh x \, dx$; r) $\int \frac{1}{1+e^x} \, dx$.

$$1) \quad \int x^2 \sinh x \ dx;$$

2

$$r) \int \frac{1}{1+e^x} dx$$