

The question

Is the activity of TBFp in DLPFC relevant in the discrimination between Motor Imagery and Motor Execution?

Introduction

*Miller, Kai J., Gerwin Schalk, Eberhard E. Fetz, Marcel Den Nijs, Jeffrey G. Ojemann, and Rajesh PN Rao. "Cortical activity during motor execution, motor imagery, and imagery-based online feedback." Proceedings of the National Academy of Sciences (2010): 200913697. doi: 10.1073/pnas.0913697107

Introduction

Connectivity studies:

Significant role for DLPFC in motor imagery*

Significant role for Theta band in particular

*Lee, M., Yoon, J. G., & Lee, S. W. (2020). Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling. Frontiers in human neuroscience, 14, 321. https://doi.org/10.3389/fnhum.2020.00321

The hypothesis

DLPFC activity during Motor Imagery is different from its activity during Motor Execution

These conditions can be differentiated by the TFBp activity in **DLPFC** (Brodmann areas - 9, 46)

The data

Miller ECoG data of motor imagery*

Continuous ECoG time series from left frontal and parietal lobes:

- ➤ 46 electrodes
- > 1000 Hz
- ➤ 30 trials per condition (hand/tongue, MI/ME)
- > 376 seconds

Miller et al. 2010

*Originally described in this paper - Miller, Kai J., Gerwin Schalk, Eberhard E. Fetz, Marcel Den Nijs, Jeffrey G. Ojemann, and Rajesh PN Rao. "Cortical activity during motor execution, motor imagery, and imagery-based online feedback." Proceedings of the National Academy of Sciences (2010): 200913697. doi: 10.1073/pnas.0913697107

Model specifics

Objective:

distinguish MI and ME, in hand and tongue movements separately

Model:

A logistic regression classifier with:

- ➤ 8 fold cross-validation
- ➤ L2 penalty

Features:

- BA9: Theta band(4-8Hz) power in Brodmann Area 9, in time domain
- ➤ BA46: Theta band(4-8Hz) power in Brodmann Area 46, in time domain
- ➤ HFBp: High (70-100Hz) frequency band power in Motor areas, in time domain
- ► LFBp: Low (8-32Hz) frequency band power in Motor

areas, in time domain

Additional considerations:

to ensure appropriate proportions in the design matrix, the power data in each trial were averaged over 5 consecutive windows, reducing the total number of features.

Features

Frequency band powers in time domain, electrodes of interest

Results

Conclusions

Even though the connectivity between DLPFC and motor areas has been shown to have a major and even causal role in Motor Imagery, our results show that the isolated theta band power activity of DLPFC is not a good feature to use to distinguish ME from MI.

Limitation:

small sample size (30 trials per condition)

Suggestion for further research:

Focus on the connectivity between DLPFC and motor areas, for example through Granger Causality, instead of the mere activity power of DLPFC.

References

- Miller, Kai J., Gerwin Schalk, Eberhard E. Fetz, Marcel Den Nijs, Jeffrey G. Ojemann, and Rajesh PN Rao. "Cortical activity during motor execution, motor imagery, and imagery-based online feedback." Proceedings of the National Academy of Sciences (2010): 200913697. doi: 10.1073/pnas.0913697107
- Lee, M., Yoon, J. G., & Lee, S. W. (2020). Predicting Motor Imagery Performance From Resting-State EEG Using
 Dynamic Causal Modeling. Frontiers in human neuroscience, 14, 321. https://doi.org/10.3389/fnhum.2020.00321