State Synthesis Using PRS.

David Ponarovsky

September 19, 2023

Abstract

We studies the complexity of synthesis quantum states using PRS, our reasch continues the work by [Ira+22], [Ros23], [RY21], [MY23], [Del+23].

1 Pseudorandomness.

Definition 1.1 (Pseudorandom Quantum states). Let \mathcal{H} , \mathcal{K} be the Hilbert and the key spaces, their diminsions depend on a security parameter n. A state famliy $\{|\psi_k\rangle\}_{k\in\mathcal{K}}$ is a pseudiorandom, if the following hold:

- 1. Efficient generation. There is a polynomial-time quantum algorithm G that generates state $|\psi_k\rangle$ on input k.
- 2. Pseudorandomness. Any polynomially many copies of $|\phi_k\rangle$ with the same random $k \in K$ is computationaly indistinguishable from the same number of copies of the Haar random state.

Definition 1.2 (Pseudorandom Unitary Operators). A famliy of unitary operators $\{U_k \in U(\mathcal{H})\}_{k \in \mathcal{K}}$ is pseudorandom, if two conditions hold:

- 1. Efficient computation. There is an efficient quantum algorithm Q, such that for all k and any $|\psi\rangle \in \mathcal{H}\ Q(k,|\psi\rangle) = U_k |\psi\rangle$.
- 2. Pseudorandomness. The uniform random distribution on U_k is computationally in distinguishable from a Haar random unitary operator.

Definition 1.3 (The keeping setting). Let $R^A \otimes R^B$ be a general two registers domain. We define the **keeping setting** to let one construct quntum/classical circuits¹ $G: R^A \otimes R^B \to R^A \otimes R^B$ such that it is gurnted that the register R^B cann't be accessed after the computation.

Claim 1.1. Let G be a PRS generator, than under the keeping setting one can assume that G takes as input two register, the first contains n ancille qubits initiliazied to $|0\rangle$ and the seconed contain a classic string initilized to be the seed k.

Proof. Given a PRS $G: R^A \to R^A$ define $\tilde{G}: R^A \otimes R^B \to R^A \otimes R^B$ as follow, first \tilde{G} copy the calsical state in R^B (the k-length seed) to R^A and then appaly G on R^A , Hence on sampled seed $k \in R^B$ results the output $|\psi_k\rangle \otimes |k\rangle$. Under the keeping setting any polynomial distingushier-canidate D has acsses only for $|\psi_k\rangle$, So if D distinguish between the distrubition generated by \tilde{G} and the Haar measure then it also distingush between G and Haar measure.

Claim 1.2. Let $G: |0\rangle^n \otimes \mathbb{F}_2^k \to \{|\psi_k\rangle\}_{k \in \mathcal{K}}$ be a PRS generator uses n- ancilles and k classic bits. Then for any unitary $V: \mathcal{H}_n \to \mathcal{H}_n$ it holds that $(V \otimes I^{\otimes k})G$ is also a PRS.

Proof.	
	٦

¹On which we think as a canidate for PRS/PRF/PRG generator.

Claim 1.3 (Levis Lemma for PRS). Let $f: \mathcal{H} \to R$ be a **BQP**-computible function on the n-qubits hilbert space, and let $g: (0,1) \to \mathbb{R}$ a function such that:

$$\mathbf{Pr}_{|\psi\rangle\sim U}\left[f\left(|\psi\rangle\right) > \varepsilon\right] < g(\varepsilon)$$

Then, a similar inequality also holds for states sampled by the PRS, when the probability for the measure f-value grater than ε is bounded by $g(2\varepsilon)$. Namely,

$$\mathbf{Pr}_{|\psi\rangle\sim|\psi_k\rangle}\left[f\left(|\psi\rangle\right)>\varepsilon\right]< g(2\varepsilon)$$

In praticular, Levi's lemma has a version that capture consetration of states sampled by PRS generator, states the following: Assume there exsists K such that for any $|\psi\rangle$, $|\phi\rangle \in \mathcal{S}(\mathbb{C}^d)$ $|f(|\psi\rangle) - |f(|\phi\rangle)| < K||\psi\rangle - |\phi\rangle|$. Then there exsists a universal constant C > 0 such:

$$\mathbf{Pr}_{|\psi\rangle\sim|\psi_{k}\rangle}\left[\left|f\left(\left|\psi\right\rangle\right)-\mathbf{E}_{\left|\phi\right\rangle\sim U}\left[f\left(\left|\phi\right\rangle\right)\right]\right|>\varepsilon\right]<\exp\left(-\frac{Cd}{K^{2}}4\varepsilon^{2}\right)$$

Proof.

Claim 1.4. Probablisite counting argument and ε -net over PRS.

Claim 1.5. exsistness of poly(n) gates G_1, G_2 .. such that, any G_i has a polynomial depth, $\langle p(G_i)|\tau\rangle > a$ and $\langle \tau^{\perp}|p(G_i)\rangle \langle p(G_i)|\tau^{\perp}\rangle < b$ for any $i \neq j$.

Claim 1.6. bla bla bla

Definition 1.4. ε -bised test 2-degree for testing RPU/RPS. $f(\langle x_j|G_s|\theta\rangle) = 1$ For example ask if $\langle \psi_{j'}\tau^{\perp}\rangle \langle \tau^{\perp}|\psi_j\rangle$ what I can say about that quantenty as polynomail?

2 What We Need for Synthesis.

Definition 2.1 (Pseudorandom Unitary for Synthesis). A famliy of unitary operators $\{U_k \in U(\mathcal{H})\}_{k \in \mathcal{K}}$ is pseudorandom for synthesis, if two conditions hold:

- 1. Efficient computation. There is an efficient quantum algorithm Q, such that for all k and any $|\psi\rangle \in \mathcal{H}\ Q(k,|\psi\rangle) = U_k |\psi\rangle$.
- 2. Pseudorandomness for synthesis. Given a state $|\tau\rangle$ and polynomial number of samples $U_1, U_2...U_m$. Then:
 - (a) $|\langle \Phi(\tau, U_k)|U_k\tau\rangle|^2 > a$
 - (b) $|\langle \Phi(\tau, U_k) | U_k \tau^{\perp} \rangle \langle \tau^{\perp} U_j^{\dagger} | \Phi(\tau, U_j) \rangle|^2 < b$

The uniform random distribution on U_k is computationally in distinguishable from a Haar random unitary operator.

What about, Assume that U is a quantum circuit such that $\log n$ qubits are intilaized to some to some input and instead anciles, we have noisy ancilea, can we show that circuit is equavilanent to $\log n$ circuit? That will enable us to prove a quantum version for Nisan Wigerzdon PRG (BPP = P).

Problem. Let U be a quntum circuit which get $\log n$ stable qubits and $\operatorname{poly}(n)$ more random qubits obtained from the random Haar masure, can we simulate the circuit in $\log n$ time?

approximate the absoulte value function, For example, you can consider the binomial expansion of $\sqrt{1-y}$ on [0,1]. Namely, setting $y=1-x^2$, we have $|x|=\sqrt{1-y}=\sum_{m=0}^{\infty} \binom{1/2}{m}(-y)^m$, $x\in[-1,1]$. That will allow me to bound the k-design.

Denote by $q_d(x)$ the d-order approximation of |x|, Namely $q_d(x) = \sum_{m=0}^d {1/2 \choose m} (-1)^m (1-x^2)^m$ and as the series is convergres to any $x \in (-1,1)$ we have that $|x| = q_d(x) + O({1/2 \choose d}(1-x^2)^d)$ which by the fact that $1-x^2 \in (-1,1)$ can be simplified to $|x| = q_d(x) + O({1/2 \choose d})$. Now for d even we can even simplify more to have:

$$\binom{1/2}{d} = \frac{\frac{1}{2} - i}{i} = \frac{1}{2} \frac{1 - 2i}{i}$$

$$= -\frac{1}{2} \frac{2i - 1}{i} = -\frac{1}{2} \frac{2i(2i - 1)}{2i \cdot i} = 2^{-2d} \frac{2d!}{d!d!}$$

j++i

References

- [RY21] Gregory Rosenthal and Henry Yuen. Interactive Proofs for Synthesizing Quantum States and Unitaries. 2021. arXiv: 2108.07192 [quant-ph].
- [Ira+22] Sandy Irani et al. "Quantum Search-To-Decision Reductions and the State Synthesis Problem". en. In: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022. DOI: 10. 4230/LIPICS.CCC.2022.5. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16567/.
- [Del+23] Hugo Delavenne et al. Quantum Merlin-Arthur proof systems for synthesizing quantum states. 2023. arXiv: 2303.01877 [quant-ph].
- [MY23] Tony Metger and Henry Yuen. stateQIP = statePSPACE. 2023. arXiv: 2301.07730 [quant-ph].
- [Ros23] Gregory Rosenthal. Efficient Quantum State Synthesis with One Query. 2023. arXiv: 2306.01723 [quant-ph].