CSC265 Fall 2020 Homework Assignment 4

The list of people with whom I discussed this homework assignment: Kunal Chawla

In the solutions to problem 1 and 2, we use the following basic facts from algebra and linear algebra¹:

- \mathcal{B} is a field with the usual integer addition and multiplication mod 2. It is also a vector space of dimension 1.
- \mathcal{B}_n is a vector space of dimension n over the field \mathcal{B} with the usual operations mod 2 with the standard basis e_1, \ldots, e_n , where $e_i \in \mathcal{B}_n$ has 1 in the *i*th index and 0 everywhere else.
- the kernel of a linear transformation $L: V \to W$ is the set $\ker L = \{v \in V : L(v) = 0\}$ and the range of L is the set range $L = \{w \in W : \exists v \in V, L(v) = w\}$ and $\ker L$ is a subspace of V, range L is a subspace of W.
- Matrix multiplication is a linear transformation.
- Rank-nullity holds for linear transformations between finite dimensional vector spaces: for a linear transformation $L: \mathcal{B}_n \to \mathcal{B}_m$, $n = \dim \ker L + \dim \operatorname{range} L$.
- A k dimensional subspace of \mathcal{B}_n has 2^k elements (this is not in the reference, but the justification is that if a subspace $V \subseteq \mathcal{B}_n$ is spanned by linearly independent vectors v_1, \ldots, v_k , then V is the set of linear combinations of v_1, \ldots, v_k , of which there are 2^k).
- 1. **Solution:** Since $a \neq b$, we know that there exists a nonzero entry in a b. We also have that aX = bX iff aX bX = 0 iff (a b)X = 0 (by linearity of the inner product, we can combine a and b and write a b). Notice that we can view (a b) as a 1 by n boolean matrix and now (a b)X becomes a multiplication of a matrix and vector.

Now, we can view multiplication by (a - b) as a linear transformation from \mathcal{B}_n to \mathcal{B} . Our problem reduces to finding the size of (a - b)'s kernel. Since (a - b) has a nonzero entry (suppose that is the jth entry), we know that if we take $X = (0, \ldots, 1, \ldots, 0) = e_j$ (all entries are 0 except for the jth), we have (a - b)X = 1. Also, if we take $X = (0, \ldots, 0)$, the product is 0. Thus, we have shown that range $(a - b) = \mathcal{B}$, which has dimension 1. By rank-nullity, we know dim $\ker(a - b) = n - 1$. By the last fact listed above, we know $|\ker(a - b)| = 2^{n-1}$.

Thus, exactly half the vectors in \mathcal{B}_n satisfy aX = bX as X. And since the probability distribution is uniform, we have

$$\underset{X \in \mathcal{B}_n}{\text{Prob}} \ [aX = bX] = (1/2^n) \sum_{X \in \mathcal{B}_n} \mathbb{I}_{\ker(a-b)}[X] = (1/2^n) 2^{n-1} = 1/2,$$

where $\mathbb{I}_{\ker(a-b)}$ is the indicator function for $\ker(a-b)$.

2. **Solution:** Since C, D are distinct, we know that C - D has a nonzero entry, say, at index (i, j). Thus, if we take $X \in \mathcal{B}_n$ to be e_j (the vector with 1 in the jth index and 0 everywhere else), then we would have $(C - D)X \neq (0, \ldots, 0)$ since the ith index of (C - D)X is $\sum_{k=1}^{n} (C - D)X = 0$.

¹As prof. Ellen requested, the reference for the following facts is Michael Artin's Algebra, pages 81 (for fields), 84-91 (for vector spaces and dimension), and 103 (for rank-nullity).

 $D)_{i,k}X_k = (C-D)_{i,j}X_j = 1$. From this, we can conclude that the range of (C-D) has dimension at least 1 (a 0 dimension subspace contains only the zero vector, since range(C-D) includes $(C-D)X \neq (0,\ldots,0)$ and is a subspace, we must have $\dim \operatorname{range}(C-D) \geq 1$). By rank-nullity applied to $(C-D): \mathcal{B}_n \to \mathcal{B}_n$, we get $n = \dim \ker(C-D) + \dim \operatorname{range}(C-D)$. Thus, we get $\dim \ker(C-D) \leq n-1$, which means (by the last fact listed at the beginning) $|\ker(C-D)| \leq 2^{n-1}$. Hence,

$$\Pr_{X \in \mathcal{B}_n} [CX = DX] = (1/2^n) \sum_{X \in \mathcal{B}_n} \mathbb{I}_{\ker(C - D)}[X] \le (1/2^n) 2^{n-1} = 1/2,$$

where $\mathbb{I}_{\ker(C-D)}$ is the indicator function for $\ker(C-D)$

3. Solution: Let RANDOM $(a,b)^2$ be a random number generator giving a random number between a and b, inclusive, with uniform distribution. We also reference MATRIX-MULTIPLY $(A,B)^3$, a subprogram that multiplies a $p \times q$ matrix A and a $q \times r$ matrix B in O(pqr) time (the sizes of A and B can be incompatible, in which case the program throws an error). To use this, we modify MATRIX-MULTIPLY slightly: on line 8, instead of $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$, we have $c_{ij} = (c_{ij} + a_{ik} \cdot b_{kj}) \mod 2$. Note that this change does nothing to the running time of MATRIX-MULTIPLY because mod 2 takes constant time.

Now, we are ready to state our randomized matrix verification algorithm. In the following pseudocode, X_j means the jth entry of vector X.

```
RANDOM-CHECK(P, Q, R)
```

```
let X be a new n \times 1 column vector
    for i = 1 to k
3
         for j = 1 to n
             X_j = \text{RANDOM}(0,1)
4
5
         PQX = MATRIX-MULTIPLY(P, MATRIX-MULTIPLY(Q, X))
6
         RX = MATRIX-MULTIPLY(R, X)
7
         for j = 1 to n
8
             if PQX_i \neq RX_i
9
                  return FALSE
10
    return TRUE
```

To see this algorithm is correct, there are two parts:

- (a) If PQ = R, MATRIX-MULTIPLY returns TRUE: this is evident from the fact that MATRIX-MULTIPLY returns true by "default". The only times the algorithm returns FALSE are when $PQX_j \neq RX_j$ on line 8, which only happens when $PQ \neq R$.
- (b) If $PQ \neq R$, MATRIX-MULTIPLY return FALSE with a probability at least $1-2^{-k}$. To show this, it is enough to show that TRUE is returned (i.e line 10 executes) with probability at most 2^{-k} .

We know that line 10 executes only when for all k iterations of the for loop on lines 2 to 9, PQX = RX (this is what the for loop on lines 7 to 9 is checking). However, we know

²CLRS page 117.

³CLRS page 371

from the for loop on lines 3 to 4, X is randomly generated with uniform distribution: the probability of X being equal to any specific n-bit vector J is $1/2^n$ since $X_i = J_i$ with probability 1/2.

From Q2, we know that the probability that an *n*-bit vector gives equal results when PQ and R are applied is at most 1/2. Since at the beginning of each iteration (lines 2 to 9), X is generated with uniform distribution, we can conclude PQX = RX with probability at most 1/2. Hence, we obtain that PQX = RX on all of the k iterations occurs with probability at most $(1/2)^k = 1/2^{-k}$. The algorithm returns TRUE exactly when this happens, so the algorithm returns false with probability at least $1 - 1/2^{-k}$.

Now for the time complexity. This algorithm runs in $O(kn^2)$ (consider integer arithmetic and comparison and random number generation as complexity measure). First, generating vector X takes n steps, one for each entry on lines 3 to 4. Also, checking if PQX = RX takes n steps, one for each entry on lines 7 to 9. In between, we consider the number of steps for performing matrix multiplication. On line 5, we first multiply Q with X, taking $O(n \cdot n \cdot 1) = O(n^2)$ steps, then multiply P with QX, again taking $O(n^2)$ steps⁴. On line 6, we multiply P with P0 with P1 steps. Therefore, each iteration of the main for loop takes P2 steps. Since the loop runs for P3 iterations, we obtain that RANDOM-CHECK runs in P3 time.

⁴the time complexity of matrix multiplication is given above in the first paragraph