NW^{2nd}-3.1: Program the steepest descent and Newton algorithms using the backtracking line search. Use them to minimize the Rosenbrock function

$$f(\bar{\mathbf{x}}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Set the initial step length $\alpha_0=1$ and report the step length used by each method at each iteration. First try the initial point $\mathbf{\bar{x}}_0^T=[1.2,\ 1.2]$ and then the more difficult point $\mathbf{\bar{x}}_0^T=[-1.2,\ 1]$.

Suggested values: $\overline{\alpha}=1$, $\rho=\frac{1}{2}$, $c=10^{-4}$. Stop when: $|f(\vec{x_k})|<10^{-8}$, or $\|\nabla f(\vec{x_k})\|<10^{-8}$.