

Práctica 7

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

Tel/Fax: (++54 +11) 4576-3300 http://www.exactas.uba.ar

${\rm \acute{I}ndice}$

7.	Prá	ictica 7	2
	7.1.	Ejercicio 1	2
	7.2.	Ejercicio 2	2
	7.3.	Ejercicio 3	3
	7.4.	Ejercicio 4	5
	7.5.	Ejercicio 5	6
	7.6.	Ejercicio 6	7
	7.7.	Ejercicio 7	7
	7.8.	Ejercicio 8	8
	7.9.	Ejercicio 9	8
	7.10). Ejercicio 10	8
	7.11	. Ejercicio 11	8
	7.12	2. Ejercicio 12	9
	7.13	8. Ejercicio 13	9
	7.14	. Ejercicio 14	10
	7.15	Eiercicio 15	11

7. Práctica 7

7.1. Ejercicio 1

Rdo. propiedades del producto y suma de polinomios:

- Grado de un producto de polinomios gr(ab) = gr(a) + gr(b)
- Coeficiente principal de un prodeuto de polinomios $cp(ab) = ca(a) \cdot cd(b)$

7.1.A. Pregunta i

- $gr(p) = 77.gr(4x^6 2x^5 + 3x^2 2x + 7) = 77.6 = 462$
- $cp(p) = 4^{77}$

7.1.B. Pregunta ii

Sea
$$p = a^4 - b^7$$
 con $a = -3x^7 + 5x^3 + x^2 - x + 5$ y $b = 6x^4 + 2x^3 + x - 2$
$$gp(p) = max(gr(a^4); gr(b^7)) \iff gr(a^4) \neq gr(b^7) \vee cp(a^4) \neq cp(b^7)$$
$$= max(7.4; 4.7) \iff cp(a^4) \neq cp(b^7)$$
$$= 28 \iff (-3)^4 \neq 6^7$$
$$= 28 \iff 81 \neq 279936$$

- gr(p) = 28
- $cp(p) = 81 6^7$

7.1.C. Pregunta iii

Sea
$$p = a - b + c$$
 con
$$\begin{cases} a = (-3x^5 + x^4 - x + 5)^4 \\ b = 82x^{20} \\ c = 19x^{19} \end{cases}$$

Luego $p = 81x^{20} + (...) - 81x^{20} + 19x^{19} \implies gr(p) = 19$ pues se cancelan los termino con x^{20}

Entonces busco el coeficiente para \boldsymbol{x}^{19}

$$cp(p) = a_{19} + b_{19} + c_{19}$$

$$= (-3. -3. -3.1) + 0 + 19$$

$$= -27 + 0 + 19$$

$$= -8$$

- gr(p) = 19
- -cp(p) = -8

7.2. Ejercicio 2

- 1. a) En $\mathbb{Q}[x] = 2$
 - b) En $\frac{\mathbb{Z}}{2\mathbb{Z}}[x] = 2$

2. Usando bin de Newton, $c(20) = {133 \choose 20}(3i)^{113}$

3. Usando bin de Newton cuatro veces,

$$a_1 = \binom{4}{1}x^1(-1)^3 \cdot \binom{19}{19}x^{19}5^0 = -4x^{20}$$

$$a_2 = \binom{4}{2}x^2(-1)^2 \cdot \binom{19}{18}x^{18}5^1 = 570x^{20}$$

$$a_3 = \binom{4}{3}x^3(-1)^1 \cdot \binom{19}{17}x^{17}5^2 = -17100x^{20}$$

$$a_4 = \binom{4}{4}x^4(-1)^0 \cdot \binom{19}{16}x^{16}5^3 = 121125x^{20}$$

Luego
$$c(20) = a_1 + a_2 + a_3 + a_4 - 5 = -4 + 570 - 17100 + 121125 - 5 = 104586$$

4.
$$c(20) = 21504$$

7.3. Ejercicio 3

7.3.A. Pregunta i

Reescribo el polinomio que me dan,

$$f^{2} = xf + x + 1 \iff f^{2} - xf = x + 1$$
$$\iff f(f - x) = x + 1$$
$$\iff f \neq 0 \land f - x \neq 0$$

Tomo grado a ambos lados,

$$gr(f) + gr(f - x) = gr(x + 1)$$

$$gr(f) + gr(f - x) = 1$$

Luego el grado de f tiene que se menor a 2.

Caso gr(f) = 1

Si $gr(f) = 1 \implies gr(f - x) = 0$ para cumplir la igualdad de grados.

Luego f es de la forma f = ax + b con a = 1

Entonces,

$$\begin{split} f(f-x) &= x+1 \iff (x+b)(x+b-x) = x+1 \\ &\iff xb+b^2 = x+1 \\ &\iff \text{Por igualdad de polinomios} \begin{cases} b=1 \\ b^2=1 \end{cases} \iff b=1 \end{split}$$

Así, $f_1 = x + 1$

Caso gr(f) = 0

Que el grado del polinomio sea igual a cero implica que f = c con c una constante.

Entonces,

$$\begin{split} f(f-x) &= x+1 \iff c(c-x) = x+1 \\ &\iff c^2 - cx = x+1 \\ &\iff \text{Por igualdad de polinomios} \begin{cases} -c = 1 \\ c^2 = 1 \end{cases} \implies c = -1 \end{split}$$

Así, $f_2 = -1$

Rta.:
$$f = x + 1 \text{ y } f = -1$$

7.3.B. Pregunta ii

Reescribo el polinomio que me dan,

$$f^2 - xf = x^2 + 1 \iff f(f - x) = -x^2 + 1$$

Tomo grado a ambos lados de la igualdad.

$$gr(f) + gr(f - x) = gr(-x^2 + 1)$$

 $0 + 2 = 2$ No puede ser
 $1 + 1 = 2$
 $2 + 0 = 2$ No puede ser

Así, el único caso posible es que gr(f) = 1 y que gr(f - x) = 1Sea f = ax + b,

$$f(f-x) = -x^2 + 1 \iff (ax+b)(ax+b-x) = -x^2 + 1$$

$$\iff (ax+b)((a-1)x+b) = -x^2 + 1$$

$$\iff a(a-1)x^2 + abx + b(a-1)x + b^2 = -x^2 + 1$$

$$\iff a(a-1)x^2 + (ab+b(a-1))x + b^2 = -x^2 + 1$$

$$\iff \text{Por igualdad de polinomios} \begin{cases} a(a-1) = -1 \\ ab+b(a-1) = 0 \\ b^2 = -1 \end{cases}$$

Busco soluciones para el sistema de tres ecuaciones que resultó.

De la tercera, se que $b = \pm 1$

$$b=1 \implies a+a+1=0 \iff 2a=1 \iff a=\frac{1}{2}$$
 Pero con $a=\frac{1}{2} \land b=1 \implies \frac{1}{2}(\frac{1}{2}-1)=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4}\neq -1$

Luego b = 1 NO sirve.

$$b=-1 \implies -a-a+1=0 \implies -2a=-1 \implies a=\frac{1}{2}$$

Se llega al mismo valor de a que con b=1 y ya se probó que no sirve.

Por lo tanto, $\not\exists f \in \mathbb{C}[x]$ que cumpla lo pedido.

7.3.C. Pregunta iii

Reescribo el polinomio que me dan,

$$(x+1)f^2 = x^6 + xf \iff (x+1)f^2 - xf = x^6$$

 $\iff f((x+1)f - x) = x^6$

Aplico grado a ambos lados de la igualdad.

$$gr(f) + gr((x+1)f - x) = gr(x^{6})$$

$$0 + 6 = 6$$

$$1 + 5 = 6$$

$$2 + 4 = 6$$

$$3 + 3 = 6$$

$$4 + 2 = 6$$

$$5 + 1 = 6$$

$$6 + 0 = 6$$

Luego de dar todos los posibles valores a gr(f), se puede ver que no existe gr((x+1)f-x) que cumpla lo pedido. Por lo tanto, $\exists f \in \mathbb{C}[x]$ que cumpla lo pedido.

7.3.D. Pregunta iv

Dado que por enunciado se que $f \neq 0$, puedo reescribir la igualdad como,

$$f^3 = gr(f) \cdot x^2 f \iff f^2 = gr(f) \cdot x^2$$

Aplico grado a ambos lados de la igualdad.

$$gr(f^{2}) = gr(gr(f) \cdot x^{2})$$

$$gr(f^{2}) = 2$$

$$gr(f \cdot f) = 2$$

$$2gr(f) = 2$$

$$gr(f) = 1$$

Luego, con f = ax + b,

$$\begin{split} f^2 &= gr(f) \cdot x^2 \iff (ax+b)^2 = x^2 \\ &\iff a^2x^2 + 2abx + b^2 = x^2 \\ &\iff \text{Por igualdad de polinomios} \begin{cases} a^2 = 1 \\ 2ab = 0 \\ b = 0 \end{cases} \end{split}$$

Entonces, $a=\pm 1$ y b=0 son las soluciones del sistema.

Rta.: $f_1 = x$ y $f_2 = -x$ son los únicos polinomios que cumplen lo pedido.

7.4. Ejercicio 4

En estos ejercicios hay que hacer la división con la caja. Yo voy a dejar los resultados de cada paso de la división.

7.4.A. Pregunta i

1.
$$C = 5x^2$$
; $R = 2x^3 - 10x^2 - x + 4$

2.
$$C = 2x$$
; $R = -10x^2 - 5x + 4$

3.
$$C = -10$$
; $R = -5x - 16$

Rta:

$$C = 5x^2 + 2x - 10$$

$$R = -5x - 16$$

7.4.B. Pregunta ii

1.
$$C = 2x^2$$
; $R = x^3 - 2x^2 - 4$

2.
$$C = \frac{1}{2}x$$
; $R = -2x^2 - \frac{1}{2}x - 4$

3.
$$C = -1$$
; $R = -\frac{1}{2}x - 3$

Rta:

$$C = 2x^2 + \frac{1}{2}x - 1$$

$$R = -\frac{1}{2}x - 3$$

7.4.C. Pregunta iii

1.
$$C = x^{n-1}$$
; $R = x^{n-1} - 1$

2.
$$C = x^{n-2}$$
; $R = x^{n-2} - 1$

3.
$$C = ...; R = ...$$

4.
$$C = 1$$
; $R = 0$

Rta:

$$C = \sum_{i=1}^{n} x^{n-i}(x-1)$$

$$R = 0$$

7.5. Ejercicio 5

7.5.A. Pregunta i

Haciendo $x^3 + 2x^2 + 2x + 1$ dividido $x^2 + ax + 1$ llego a:

$$x^{3} + 2x^{2} + 2x + 1 = (x^{2} + ax + 1)(x + 2 - a) + (1 - 2a + a^{2})x - 1 + a$$

Luego busco que el resto $(1-2a+a^2)x-1+a$ sea igual a cero, por igualdad de polinomios,

$$(1 - 2a + a^{2})x - 1 + a = 0 \iff \begin{cases} 1 - 2a + a^{2} = 0 \\ -1 + a = 0 \end{cases}$$

De la segunda ecuación se que $-1 + a = 0 \iff a = 1$.

Reemplazando en la primera y verifico que a=1 cumple lo pedido, $1-2a+a^2=1-2+1=0$

Rta.: a = 1

7.5.B. Pregunta ii

Haciendo $x^4 - ax^3 + 2x^2 + x + 1$ dividido $x^2 + x + 1$ llego a:

$$x^4 - ax^3 + 2x^2 + x + 1 = (x^2 + x + 1)(x^2 + (-a - 1)x + 2 + a) + 1 - 2 - a$$

Luego busco que el resto 1-2-a sea igual a cero, por igualdad de polinomios,

$$1 - 2 - a = 0 \iff \begin{cases} 1 - 2 - a = 0 \end{cases}$$

Por lo tanto a = -1 es el único que lo cumple.

7.5.C. Pregunta iii

(Esta división es larga y pesada) Haciendo $x^5 - 3x^3 - x^2 - 2x + 1$ dividido $x^2 + ax + 1$ llego a:

$$x^{5} - 3x^{3} - x^{2} - 2x + 1 = (x^{2} + ax + 1)(x^{3} - ax^{2} + (-4a^{2})x + (-1 + 5a - a^{3})) + [(2 - a^{2} + a - 5a^{2} + a^{4})x + (2 - 5a + a^{3})]$$

Luego busco que el resto sea igual a -8x + 4,

$$[(2-a^2+a-5a^2+a^4)x+(2-5a+a^3)] = -8x+4 \iff \begin{cases} a^4-6a^2+a+2=-8\\ a^3-5a+2=4 \end{cases}$$

De la segunda ecuación,

$$a^{3} - 5a + 2 = 4 \iff a^{3} - 5a - 2 = 0$$

 $\iff a(a^{2} - 5) - 2 = 0$

A simple vista veo que a = -2 es solución, luego usando Ruffini,

$$a^3 - 5a - 2 = (a^2 - 2a - 1)(a + 2)$$

Por lo tanto busco soluciones para $a^2-2a-1=0 \iff a=\frac{2\pm\sqrt{8}}{2}$

Queda ver cuales de estos valores de a hallados cumple la primer ecuación.

$$a = -2 \implies a^4 - 6a^2 + a + 2 = 16 - 24 - 2 + 2 = -8$$

$$a = \frac{2+\sqrt{8}}{2} \implies a^4 - 6a^2 + a + 2 \neq -8 \text{ (Wolfram)}$$

•
$$a = \frac{2-\sqrt{8}}{2} \implies a^4 - 6a^2 + a + 2 \neq -8$$
 (Wolfram)

7.6. Ejercicio 6

TODO

7.7. Ejercicio 7

7.7.A. Pregunta i

Por definición de congruencias se que $x^{31}-2\equiv 0(x^{31}-2) \implies x^{31}\equiv 2(x^{31}-2)$ Luego,

$$x^{353} - x - 1 \equiv (x^{31})^{1} \cdot x^{12} - x - 1(x^{31} - 2)$$
$$\equiv 2^{1} \cdot x^{12} - x - 1(x^{31} - 2)$$
$$\equiv 2048x^{12} - x - 1(x^{31} - 2)$$

Rta.:
$$r_{x^{31}-2}(x^{353}-x-1)=2048x^{12}-x-1$$

7.7.B. Pregunta ii

Se que $x^6 + 1|x^6 + 1 \iff x^6 + 1 \equiv 0(x^6 + 1) \iff x^6 \equiv -1(x^6 + 1)$ Luego,

$$\begin{split} x^{1000} + x^{40} + x^{20} + 1 &\equiv (x^6)^{166} \cdot x^4 + (x^6)^6 \cdot x^4 + (x^6)^3 \cdot x^2 + 1 \\ &\equiv (-1)^{166} \cdot x^4 + (-1)^6 \cdot x^4 + (-1)^3 \cdot x^2 + 1 \\ &\equiv x^4 + x^4 - x^2 + 1 \\ &\equiv 2x^4 - x^2 + 1 \end{split}$$

Rta.: $r_{x^6+1}(x^{1000} + x^{40} + x^{20} + 1) = 2x^4 - x^2 + 1$

7.7.C. Pregunta ii

Se que $x^{100} - x + 1 \equiv 0(x^{100} - x + 1) \iff x^{100} \equiv x - 1(x^{100} - x + 1)$ Luego,

$$x^{200} - 3x^{101} + 2 \equiv (x^{100})^2 - 3(x^{100})x + 2$$
$$\equiv (x - 1)^2 - 3(x - 1)x + 2$$
$$\equiv x^2 - 2x + 1 - 3x^2 + 3x + 2$$
$$\equiv -2x^2 + x + 3(x^{100} - x + 1)$$

Rta.:
$$r_{x^{100}-x+1}(x^{200}-3x^{101}+2)=-2x^2+x+3$$

7.8. Ejercicio 8

TODO

7.9. Ejercicio 9

Se resuelve con el algoritmo de Euclides en polinomios. Calculadora de MCD de polinomios https://planetcalc.com/7760/

- 1. \bullet MCD = -x + 1
- 2. $MCD = x^2 + 1$
 - $x^2 + 1 = f + (-x^3)g$
- 3. $\blacksquare MCD = 3$
 - $3 = (-x+2)f + (1+2x^2-4x)g$

7.10. Ejercicio 10

Se que el resto tiene que tener grado menor al divisor, luego $gr(r) \leq 2$

Por algoritmo de división de polinomios existen q cociente y r resto tales que:

$$f = q(x^3 - 2x^2 - x + 2) + r$$

El enunciado me da las evaluaciones de f en 1; 2; -1, luego

$$f(1) = q(1)(1 - 2 - 1 + 2) + r(1) \implies f(1) = r(1) = -2$$

$$f(2) = q(1)(8 - 8 - 2 + 2) + r(2) \implies f(2) = r(2) = 1$$

$$f(-1) = q(1)(-1 - 2 + 1 + 2) + r(-1) \implies f(-1) = r(-1) = 0$$

Por lo tanto se que r es de la forma $ax^2 + bx + c$, con $a; b; c \in \mathbb{Q}$, luego

$$\begin{cases} r(1) = a + b + c = -2\\ r(2) = 4a + 2b + c = 1\\ r(-1) = a - b + c = 0 \end{cases}$$

Restando la tercera a la primera, $2b = -2 \iff b = -1$

Rearmando el sistema con lo hallado,

$$\begin{cases} a+c = -1\\ 4a+c = 3\\ a+c = -1 \end{cases}$$

La tercera es igual a la primera así que la puedo eliminar y restando la primera a la segunda:

$$3a = 4 \iff a = \frac{4}{3}$$
Luego $a + c = -1 \iff \frac{4}{3} + c = -1 \iff c = -\frac{7}{3}$
Así, $r_{x^3 - 2x^2 - x + 2}(f) = \frac{4}{3}x^2 - x - \frac{7}{3}$

7.11. Ejercicio 11

Sea
$$f=x^{2n}+3x^{n+1}+3x^n-5x^2+2x+1$$

Sea $g=x^3-x$
Se que $f=q.g+r$ con $gr(r)\leq 2\implies r=ax^2+bx+c$

Busco raíces de g,

$$x^{3} - x = 0 \iff x(x^{2} - 1) = 0$$
$$\iff x \in \{-1, 0, 1\}$$

Evalúo f para las raíces halladas,

$$f(0) = q(0)g(0) + r(0) \implies r(0) = 1$$

$$f(1) = q(1)g(1) + r(1) \implies r(1) = 1 + 3 + 3 - 5 + 2 + 1 = 5$$

$$f(-1) = q(-1)q(-1) + r(-1) \implies r(-1) = 1 + 3(-1)^{n+1} + 3(-1)^n - 5 - 2 - 1 = -5$$

Por lo tanto, sabiendo que
$$r(x) = ax^2 + bx + c$$

$$\begin{cases} r(0) = 1 = c \\ r(1) = 5 = a + b + c \\ r(-1) = -5 = 25a - 5b + c \end{cases}$$

Sabiendo
$$c=1 \implies \begin{cases} a+b=4 \implies a=4-b \\ 25a-5b=-6 \end{cases}$$

Sabiendo $a = 4 - b \implies$

$$25(4-b) - 5b = -6$$
$$100 - 25b - 5b = -6$$
$$-30b = -106$$
$$b = \frac{53}{15}$$

Luego
$$a = 4 - b \implies a = 4 - \frac{53}{15} = \frac{7}{15}$$

Así, $r_f(g) = \frac{7}{15}x^2 + \frac{53}{15}x + 1$

7.12. Ejercicio 12

Sea $w = x^3$ Sea $q = w^2 + w - 2$

Busco raíces de g

$$g(w) = 0 \iff w = \frac{-1 \pm \sqrt{1 - 4.1. - 2}}{2} \iff \begin{cases} w_1 = 1 \\ w_2 = -2 \end{cases}$$

Por lo tanto, recordando que $w = x^3$,

$$w_1 = x^3 = 1 \iff \begin{cases} x_1 = 1 \\ x_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \\ x_3 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \end{cases}$$

Y,

$$w_2 = x^3 = -2 \iff \begin{cases} x_4 = -\sqrt[3]{2} \\ x_5 = \frac{\sqrt[3]{2}}{2} + \sqrt[3]{2} \cdot \frac{\sqrt{3}}{2}i \\ x_6 = \frac{\sqrt[3]{2}}{2} - \sqrt[3]{2} \cdot \frac{\sqrt{3}}{2}i \end{cases}$$

7.13. Ejercicio 13

Por definición de raíz, $w+w^2+w^4$ es raíz de f $\iff f(w+w^2+w^4)=0$ Luego se que,

$$w = e^{\frac{2}{7}\pi i}$$

$$w^2 = e^{\frac{4}{7}\pi i}$$

$$w^4 = e^{\frac{8}{7}\pi i}$$

Luego defino,

•
$$r = Re(w + w^2 + w^4) = \cos\frac{2}{7}\pi + \cos\frac{4}{7}\pi + \cos\frac{8}{7}\pi = -\frac{1}{2}$$

$$m = Im(w + w^2 + w^4) = \sin\frac{2}{7}\pi + \sin\frac{4}{7}\pi + \sin\frac{8}{7}\pi = \frac{\sqrt{7}}{2}$$

Luego evalúo f en k = r + m.i

$$\begin{split} f(k) &= (r+m.i)^2 + (r+m.i) + 2 \\ &= (-\frac{1}{2} + \frac{\sqrt{7}}{2}.i)^2 + (-\frac{1}{2} + \frac{\sqrt{7}}{2}.i) + 2 \\ &= \frac{1}{4} - \frac{\sqrt{7}}{2}.i - \left(\frac{\sqrt{7}}{2}\right)^2 - \frac{1}{2} + \frac{\sqrt{7}}{2}.i + 2 \\ &= 0 \end{split}$$

7.14. Ejercicio 14

7.14.A. Pregunta i

Me piden probar que $(w + w^{-1})$ y $(w^2 + w^{-2})$ son raíces de f.

$$w + w^{-1} = e^{\frac{2}{5}\pi i} + e^{-\frac{2}{5}\pi i}$$

$$= \cos\frac{2}{5}\pi + \cos-\frac{2}{5}\pi + i\left(\sin\frac{2}{5}\pi + \sin-\frac{2}{5}\pi\right)$$

$$= \cos\left(\frac{2}{5}\pi\right) + \cos\left(-\frac{2}{5}\pi\right)$$

Luego sea $A = \cos(\frac{2}{5}\pi) + \cos(-\frac{2}{5}\pi) \implies f(A) = A^2 + A - 1 = 0$ Así, $(w + w^{-1})$ es raíz de f.

$$\begin{split} w^2 + w^{-2} &= e^{\frac{4}{5}\pi i} + e^{-\frac{4}{5}\pi i} \\ &= \cos\frac{4}{5}\pi + \cos-\frac{4}{5}\pi + i\left(\sin\frac{4}{5}\pi + \sin-\frac{4}{5}\pi\right) \\ &= \cos\left(\frac{4}{5}\pi\right) + \cos\left(-\frac{4}{5}\pi\right) \end{split}$$

Luego sea $B=\cos\left(\frac{4}{5}\pi\right)+\cos\left(-\frac{4}{5}\pi\right)\implies f(B)=B^2+B-1=0$ Así, (w^2+w^{-2}) es raíz de f.

7.14.B. Pregunta ii

TODO

7.15. Ejercicio 15

7.15.A. Pregunta i

$$a$$
 es raíz de $f \iff (x-a)|f \iff f = n(x-a)$
 a es raíz de $g \iff (x-a)|g \iff f = m(x-a)$

Por propiedades del MCD se que existen s, t tales que,

$$(f:g) = sf + tg \iff (f:g) = sn(x-a) + tm(x-a)$$
$$\iff (f:g) = (x-a) \cdot (sn + tm)$$
$$\iff (x-a)|(f:g)$$

Luego $(x-a)|(f:g)\iff (x-a)$ es raíz de (f:g) como se quería probar.

7.15.B. Pregunta ii

Primero busco el MCD entre $x^4 + 3x - 2$ y $x^4 + 3x^3 - 3x + 1$

(Acá van las cuentas del algo de Euclides)

Luego $MCD = x^2 + x - 1$

Busco raíces del MCD,

$$x^{2} + x - 1 = 0 \iff x = \frac{-1 \pm \sqrt{1 - 4 \cdot 1 \cdot 1 - 1}}{2}$$
$$\iff x = \frac{-1 \pm \sqrt{5}}{2}$$

Luego que f
 teng auna raíz común con g $\implies (f:g)|f$

$$x^{2} + x - 1|x^{4} + 3x^{3} - 3x + 1 \iff x^{4} + 3x^{3} - 3x + 1 = q(x^{2} + x - 1)$$

(Acá va la división)

Obtengo que, $x^4 + 3x^3 - 3x + 1 = (x^2 - x + 2)(x^2 + x - 1)$

Ahora busco raíces de $x^2 - x + 2$

$$x^{2} - x + 2 = 0 \iff x = \frac{1 \pm \sqrt{-7}}{2}$$
$$\iff x = \frac{1 \pm \sqrt{7}i}{2}$$

Luego las raíces de f son:

$$x_1 = \frac{-1+\sqrt{5}}{2}$$

$$x_2 = \frac{-1-\sqrt{5}}{2}$$

$$x_3 = \frac{1+\sqrt{7}i}{2}$$

$$x_4 = \frac{1-\sqrt{7}i}{2}$$