

Auction-based incentives and optimal scheduling mechanism design in P2P VoD streaming

Xuanjia Qiu Sept. 24, 2009

P2P VoD Streaming

Challenges

Incentive

Peers are selfish. They want to download most while upload least.

Scheduling

- How to collaborate: who upload what parts of media data to whom at when?
- Centralized scheduling is impossible.
- Exacerbated by on-demand properties that lower the levels of content overlap among peers

Possible solutions

Incentive

- ◆ Tic for Tac
 - successfully applied in file-sharing application, but poorly in VoD application
- Periodically rebuild the multicast trees
 - increasing the likelihood that a freeloading node's downstream peers will later be upstream of the freeloader and can retaliate by refusing to serve the offender

Scheduling

- Rarest first
 - Successfully applied in file-sharing application, but it does not consider the property of streaming
- Hybrid scheme(place certain weights on rareness and deadline)
 - Can not adapt in a dynamic environment

Our objectives

- Design auction-based mechanism to simultaneously realize two separate goals:
 - Upload incentives
 - Effective block scheduling
- Philosophy:
 - Market can allocate resource optimally
 - Work more, harvest more

Basic concepts

- An auction is a process of buying and selling goods or services by offering them up for bid, taking bids, and then selling the item to the highest bidder (s).
- * Bidding is an offer (often competitive) of setting a price one is willing to pay for something.

P2P VoD Auction Model

- Typical pull-based P2P VoD streaming system
 - Divide each video into many blocks
 - Peers connect to a set of neighbors with similar playback progress
 - Neighbors exchange buffer availability bitmaps (i.e. buffer maps) periodically

- We model media block exchanges among neighboring peers into a collection of decentralized, locally administrated market hosted by each peer.
 - The goods being auctioned and exchanged in the markets are media blocks.
 - In each market, iterated asynchronous auctions take place.
 - In each auction, the host peer plays the role of seller, selling its buffered media blocks to neighbors who bid for the desired ones out of them.
- Idea: modeling media block instead of modeling media flow makes the model more realistic

- Each peer is furnished with a budget (some kind of virtual currencies).
 - Winner peers in the auctions gain the rights to, download the wined blocks while pays prices out of its budget to the sellers.
- Idea: Incentive:
 - upload blocks
 - -> more budget
 - -> more competitive in bidding for blocks
 - -> enjoy better viewing experience

Properties:

- Decentralized
- Dynamic: with continuously changing blocks and possibly bidders
- Iterated: along with the streaming process, auctions execute round by round
- Asynchronous

Example: (bidding)

Example: (allocation)

Mechanism design

- For seller
 - A discriminative second price auction with seller reservation
- For bidder
 - A truthful start with iterative price discovery strategy.

Mechanism at seller

Allocation rule:

Sort received bids by bidding prices, and maximally sell blocks in that order, within the available upload bandwidth. (explain with the example picture)

Mechanism at seller

- Charging scheme
 - Select the highest bid-independent charge for each winning bid (indicated by the allocation rule discussed above) as the bidding price from the immediately lower bid.
- Properties:
 - → Bid-independent
 - Revenue maximization

Mechanism at seller

- Seller reservation
 - When the number of bids is larger than its maximum upload capacity; otherwise
 - Purpose: keep the market competitive (market price above 0) without revenue loss

$$o_i = \begin{cases} O_i, & \text{if } m > O_i, \\ m - 1, & \text{if } m \le O_i \end{cases}$$

Summary of mechanism at seller

Algorithm 1 Protocol at Seller i (in every interval T)

(a) Allocation

```
1: receive bids \mathbf{b_i} from neighbors in \mathcal{D}_i
```

2: order b_i in non-increasing order of bidding prices into list l_s

3: set
$$o_i = O_i$$
 if $m = |\mathbf{b_i}| > O_i$; otherwise set $o_i = m - 1$

4: while $o_i > 0$ do

5: select next bid
$$b_{ij}^{(k)} = (I_{ij}^{(k)}, p_{ij}^{(k)})$$
 in list l_s

6: let charge $c_{ij}^{(k)}$ be $p_{ij'}^{(k')}$, price in the subsequent bid in l_s

7: send charge
$$c_{ij}^{(k)}$$
 to bidder j

8: start transfer of block
$$I_{ij}^{(k)}$$
 to bidder j

9:
$$o_i \leftarrow o_i - 1$$

10: end while

(b) Upon receiving payment from bidder j for block $I_{ij}^{(k)}$

1: update budget, $e_i \leftarrow e_i + c_{ij}^{(k)}$

Mechanism at bidder

- An optimization problem
- Definition
 - Valuation of a block: a function (over [0,1], differentiable, non-decreasing, and quasi-linear) reflects the urgency level of downloading the block (playback deadline) and rareness level of the block (potential competition and higher resale chance and price)
 - Utility of a block: valuation minus charging price (Notice: the factual charging price is only revealed after the auction is completed)
 - Marginal utility: valuation divided by charging price

Mechanism at bidder

- Pricing mechanism: truthful start with iterative price discovery
 - First round of bidding at neighbor I, bidding price = true block valuation
 - Subsequent rounds of bidding, estimate the market price according to the results of last round of bidding, bidding price = min (market price estimate, true block valuation).
 - How to estimate market price:
 - ❖ If there are successful bids in the last round
 - ❖ If all bids fail

Mechanism at bidder

- Bidding strategy:
 - 1. Decide bidding price according to the "Truthful start with iterative price discovery" strategy
 - 2. Resolve an integer program which maximization the overall utility gained under the constraints:
 - ♦ (1) budget constraint
 - (2) for an identical block, only request from a neighbor at a round

Mechanism at bidder

Maximize
$$\sum_{i \in \mathcal{D}_j} \sum_{k \in \mathcal{K}_{ij}} (v_{ij}^{(k)}(x_{ij}^{(k)}) - p_{ij}^{(k)}x_{ij}^{(k)})$$
 (5)

Subject to:

$$\begin{cases}
\sum_{i \in \mathcal{D}_j} \sum_{k \in \mathcal{K}_{ij}} p_{ij}^{(k)} x_{ij}^{(k)} \leq e_j & (6) \\
\sum_{i \in \mathcal{D}_j} x_{ij}^{(k)} = z_j^k & \forall k \in \mathcal{K}_{ij} & (7) \\
x_{ij}^{(k)}, z_j^k \in \{0, 1\} & \forall i \in \mathcal{D}_j, \forall k \in \mathcal{K}_{ij} & (8)
\end{cases}$$

Mechanism at bidder

Simplification:

- Compute the price the bidder is willing to pay for each block
- Select blocks with the highest marginal utilities to bid for

Summary of mechanism at bidder

Algorithm 2

Initialization

1: set \ddot{q}_{ij} to a MAX value, $\forall i \in \mathcal{D}_j$

Every Interval T

(a) Bidding

```
1: for each neighbor i \in \mathcal{D}_j do
```

2: exchange buffer map with i and derive K_{ij}

3: set
$$p_{ij}^{(k)} = \min(v_{ij}^{(k)}, \ddot{q}_{ij}), \forall k \in \mathcal{K}_{ij}$$

4: end for

5: order blocks in $\cup_{i \in \mathcal{D}_j} \mathcal{K}_{ij}$ in non-increasing order of marginal utility $v_{ij}^{(k)}/p_{ij}^{(k)}$ into list $\mathbf{l_b}$ (excluding duplicates)

6: $p_{ij}^{(k)} \leftarrow$ price of the first block in list l_b

7: while $e_j \geq p_{ij}^{(k)}$ do

8: send bid $(I_{ij}^{(k)}, p_{ij}^{(k)})$ to the corresponding seller i

9: $p_{ij}^{(k)} \leftarrow \text{price of the next block in list } \mathbf{l_b}$

10: end while

Summary of mechanism at bidder

```
(b) After Bidding
1: p<sub>i</sub><sup>max</sup> ← highest bidding price sent to neighbor i, ∀i ∈ D<sub>j</sub>
2: set the lowest charge at i, c<sub>i</sub><sup>min</sup> = p<sub>i</sub><sup>max</sup>, ∀i ∈ D<sub>j</sub>
3: for each charge c<sub>ij</sub><sup>(k)</sup> received from i, ∀i ∈ D<sub>j</sub>, do
4: deduct e<sub>j</sub> by c<sub>ij</sub><sup>(k)</sup> received
5: pay c<sub>ij</sub><sup>(k)</sup> to i
6: c<sub>i</sub><sup>min</sup> ← min(c<sub>i</sub><sup>min</sup>, c<sub>ij</sub><sup>(k)</sup>)
7: end for
8: for each neighbor i ∈ D<sub>j</sub> do
9: if no bid was successful (no charge received from i) then
10: q<sub>ij</sub> = p<sub>i</sub><sup>max</sup> + δ
11: else q<sub>ij</sub> = c<sub>i</sub><sup>min</sup> − δ end if
12: end for
```


Analysis

- Incentive compatibility
 - In mechanism design, a process is said to be incentive compatible if all of the participants fare best when they truthfully reveal any private information asked for by the mechanism
 - Seller incentive compatibility & bidder incentive compatibility

Seller incentive compatibility

Theorem 1. The discriminative second price auction with seller reservation in Algorithm 1 is a revenue-maximizing equilibrium mechanism for a VoD seller

- ❖ The discriminative second price auction that we design is bid-independent →
- ❖ Truthful auction →
- ♦ (according to revelation principle) →
- ❖ Seller reservation has no effects →
- Incentive compatibility

Buyer incentive compatibility

Theorem 2. In the auction at seller i described in Algorithm l, for each block $k \in \mathcal{K}_{ij}$, bidding a price equal to the minimum between the block valuation and the market price at i, i.e., $\min(v_{ij}^{(k)}, \tilde{p}_i)$, is a dominant strategy for bidder j.

Proof of scheduling optimization

- First show that a Nash Equilibrium exists at the stable state of VoD streaming.
- Then show that the optimal solution to the distributed local optimization problem carried out through block auctions in Algorithm 1 and 2 can be combined to construct an optimal solution to the global optimization problem.

Proof of scheduling optimization

Theorem 3. Without peer joins/departures and VCR operations, the following is a Nash equilibrium in the auction defined by Algorithm 1 at seller i: each participating bidder j with $v_{ij}^{(k)} \geq \tilde{p_i}$ bids and pays $\tilde{p_i}$, all other participating bidders bid their true valuations and lose the auction.

Proof:

√1. Assume

$$v_{ij}^{(k)} \ge \tilde{p_i}$$

 \sim 2. Assume $v_{ij}^{(k)} < \tilde{p}_i$

$$v_{ij}^{(k)} < \tilde{p_i}$$

Proof of optimality

Theorem 4. Algorithms 1 and 2 solve (10), i.e., achieves social welfare maximization, in a stable P2P VoD overlay.

Define the global optimization problem:

Maximize $\sum_{j \in \mathcal{N}} \sum_{i \in \mathcal{D}_j} \sum_{k \in \mathcal{K}_{ij}} v_{ij}^{(k)}(a_{ij}^{(k)})$ (10)

Subject to:

$$\mathcal{P}_{global} \begin{cases} \sum_{i \in \mathcal{D}_{j}} \sum_{k \in \mathcal{K}_{ij}} p_{ij}^{(k)} a_{ij}^{(k)} \leq \hat{e}_{j} & \forall j \in \mathcal{N} \\ \sum_{j \in \mathcal{D}_{i}} \sum_{k \in \mathcal{K}_{ij}} a_{ij}^{(k)} \leq o_{i} & \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{D}_{j}} a_{ij}^{(k)} = z_{j}^{k} & \forall j \in \mathcal{N}, \forall k \in \mathcal{K}_{ij} \end{cases}$$

$$a_{ij}^{(k)}, z_{j}^{k} \in \{0, 1\}, \forall j \in \mathcal{N}, \forall i \in \mathcal{D}_{j}, \forall k \in \mathcal{K}_{ij}$$

Proof procedure

- (1) Prove the relaxation form of (5) always hat an integral optimal solution, i.e., the integrality gap of (5) is non-existent
- (2) the KKT conditions of the relaxation of (5), aggregated across all peers, are equivalent to the KKT conditions of the relaxation of (10)

Evaluation

- Multi-thread P2P network simulator in Java
- Supports peer dynamics (VCR operations, peer joins and departures)

Evaluation

Configuration:

- 80 minute video is streamed
- Playback bitrate 450 Kbps
- Server upload capacity = 10 Mbps
- Peer upload capacity distribution = Pareto distribution with range=[250 Kbps, 10 Mbps] and k=2 or 3 (default)
- See Peer lifetime = 30 minutes
- Average duration of VCR operations = 5 minutes
- → Buffer on each peer = 20-minute playback
- → Buffer maps exchange period = 5 sec.

Evaluation

Stable charging price

Evaluation

Stable charging price (cont.)

 Evolution of budget at peers with different upload capacities

Incentive

Performance compared with other mechanisms

Evolution of the playback deadline satisfaction

 Performance compared with other mechanisms

Evolution of the average block distribution index

Summary

Design auction-based mechanism

to incentive peers to contribute its maximal upload capacity and achieve optimal scheduling of block exchanges among peers

Analysis proves

- the incentive compatibility of the scheme
- the existence of Nash equilibrium under certain conditions

Evaluation shows

that the scheme exhibits good performance in realistic senarios

Summary

- Chuan Wu, Zongpeng Li, Xuanjia Qiu, Francis C.M. Lau, "Auction-based P2P VoD Streaming: Incentives and Optimal Scheduling", submitted to INFOCOM 2010
- Future work:
 - Cross-overlay help
 - Research on evolution of budget distribution
 - Wealth condensation? Taxation?
 - **S** Emulation

