Clustering Association Rules Mining Problem: a Symbolic Approach

Pietro Sala
Department of Computer Science
University of Verona, Italy
pietro.sala@univr.it

Data Mining & Knowledge Discovery Academic Year 2022/2023 Exam Assignment 1

Given a universe of item It, a <u>linear transaction</u> is a function ltr: It $\to \mathbb{N}$. The the set of all possible transactions is $\mathbb{LTr} = \mathbb{N}^{|\text{It}|}$. A <u>Linear Transaction Dataset</u> (LTD) is a **finite** a multiset LTd: $\mathbb{LTr} \to \mathbb{N}$, moreover let $|\text{LTd}| = \sum_{\text{ltr} \in \mathbb{LTr}} \text{LTd(ltr)}$.

Let $\mathbb{I}_{\mathbb{N}}$ the set $\mathbb{I}_{\mathbb{N}} = \{[n, n'] \in \mathbb{N}^2 : n \leq n'\}$ the set of all the possible intervals on \mathbb{N} , and let \sqsubseteq the relation on $\mathbb{I}^2_{\mathbb{N}}$ such that $[n, n'] \sqsubseteq [\overline{n}, \overline{n}']$ if and only if $n \leq \overline{n} \leq \overline{n}' \leq n'$. Moreover, given $\overline{n} \in \mathbb{N}$ we say that $\overline{n} \in [n, n']$ if and only if $n \leq \overline{n} \leq n'$.

A <u>Clustering Itemset</u> is a function $X_{\mathcal{C}}: \mathtt{It} \to \mathbb{I}_{\mathbb{N}} \cup \{[0,+\infty)\}$, moreover for each $\mathtt{it} \in \mathtt{It}$, moreover given a $X_{\mathcal{C}}$ and an item $\mathtt{it} \in \mathtt{It}$ we say that \mathtt{it} is <u>unconstrained</u> by $X_{\mathcal{C}}$ if and only if $X_{\mathcal{C}}(\mathtt{it}) = [0,+\infty)$ (if $X_{\mathcal{C}}(\mathtt{it}) \neq = [0,+\infty)$) we will say that \mathtt{it} is unconstrained).

Given an LTD LTd and a $X_{\mathcal{C}}$ we define the support (on LTd) of $X_{\mathcal{C}}$ as:

$$\mathcal{S}up(\texttt{X}_{\mathcal{C}}) = \frac{\sum\limits_{\substack{\texttt{ltr} \in \texttt{LTr} \text{ such that:} \\ \text{for each } \texttt{it} \in \texttt{It} \\ \texttt{ltr}(\texttt{it}) \in \texttt{X}_{\mathcal{C}}(\texttt{it})}}{\left|\texttt{LTd}\right|}$$

Let us notice that all the concepts of <u>frequent itemsets</u> as well as any measures like <u>confidence</u> may be rephrased in terms of the newly defined support for clustering items.

A Clustering Association Rule is a rule of the form:

$$\mathtt{X}_{\mathcal{C}} \ \longrightarrow \ \mathtt{Y}_{\mathcal{C}}$$

where:

- there exist it, it' \in It such that $X_{\mathcal{C}}(it) \neq [0, +\infty)$ and $Y_{\mathcal{C}}(it') \neq [0, +\infty)$;
- for each it \in It we have that $X_{\mathcal{C}}(\mathtt{it}) \neq [0, +\infty)$ implies $Y_{\mathcal{C}}(\mathtt{it}) = [0, +\infty)$, and $Y_{\mathcal{C}}(\mathtt{it}) \neq [0, +\infty)$ implies $X_{\mathcal{C}}(\mathtt{it}) = [0, +\infty)$.

Analogously of what has been done for standard association rules we can define the set of frequent clustering itemsets $\mathbb{Fl}_{\mathcal{C}}$ according to a given threshold $0 \le \epsilon \le 1$.

The <u>Clustering Association Rules Mining Problem</u> (CARM) consists of determining, given an LTD LTd and two thresholds $0 \le \epsilon, \delta \le 1$, the set of all and only the rules $X_{\mathcal{C}} \longrightarrow Y_{\mathcal{C}}$ such that $Sup((X \cup Y)_{\mathcal{C}}) \ge \epsilon$ and $Conf(X_{\mathcal{C}} \longrightarrow Y_{\mathcal{C}}) \ge \delta$.

Assignment:

Implement an algorithm that solves the CARM problem, i.e., given support/confidence thresholds $0 \le \epsilon, \delta \le 1$ and a dataset D (inputs) enumerates a complete set of Clustering Association Rules on D which holds with support at least ϵ and confidence at least δ . Test the resulting implementation by extracting the rules on a dataset of your choice such as AirQuality on the UCI machine learning dataset repository.