Jorge Gómez Galván Juan Diego Sierra Fernández

Ejercicio 1. Calcule las pérdidas de difracción del enlace que se muestra.

Ejercicio 2. Obtenga SNR en función de la distancia entre la estación base y el usuario. Calcule el radio de trabajo.

radio1 =3,2896 [Km]

Calcule el radio de trabajo del sistema con margen con: Multitrayecto para 95% de tiempo

Waterday ecto para 5570 de tierrip

Calidad de cobertura: 99%

radio2=2,4762 [Km]

Código generado en el ejercicio 1:

```
clear all;
close all;
clc;
% Práctica 6
% Ejercicio 1
f=2.4*10^9; % Hz
c=3*10^8;
lambda=c/f;
ht=800; % m
h=975; % m
d1=sqrt((5000.^2)+((h-ht).^2)); % Hipotenusa
for i=1:100
    for j=1:60
        x(i,j)=i*250; % d=[100:100:25000]
        y(i,j)=j*25; % h=[50:25:1500]
        d2(i,j) = sqrt(x(i,j).^2 + (h-y(i,j)).^2);
        hp=ht+((y(i,j)-ht)/(5000+x(i,j)))*d1;
        heff=975-hp; % Altura eficaz
        v(i,j) = heff.*((2/lambda)*((1/5000)+(1/d2(i,j))))^0.5;
        % Pérdidas por difracción
        if v(i,j) > -0.7
            L difrac(i,j)=6.9+20*log10(sqrt(((v(i,j)-
0.1)^2 + 1 + v(\bar{i}, j) - 0.1;
        else
            L difrac(i,j)=0;
        end
    end
end
contourf(x,y,L difrac,30),colorbar,title('Pérdidas por difracción
[dB]')
```

Código generado en el ejercicio 2:

```
clear all;
close all;
clc;
% Práctica 6
% Ejercicio 2
B=25*10^{-3}; % MHz
NF=5; % dB
SNRmin=16; % dB
p1=0.94; % 94% tiempo -> Ray
p2=0.97; % 97% ubicaciones -> Shad
sigma=8; % dB
ptx=10; % W
Ptx=10*log10(ptx*1000); % dBm
Gtx=11; % dBi
Grx=1.5; % dB
Pn=-114+10*log10(B)+NF;
Mray1=10*log10(0.8/(log(1/p1)));
X1=qfuncinv(1-p2);
Mshadowing1=X1*sigma;
SNR aux=Ptx+Gtx+Grx-Pn-Mray1-Mshadowing1;
figure
hold on;
for d1=-15:0.5:15
    for d2=-15:0.5:15
        d = sqrt((d1^2) + (d2^2));
        SNR=SNR \ aux-(117+35.5*log10(d));
        if SNR>SNRmin
            plot(d1,d2,'g*');
        else
            plot(d1,d2,'rx');
        end
    end
end
xlabel('Eje X [Km]')
ylabel('Eje Y [Km]')
title ('SNR en función de la distancia entre la estación base y el
usuario')
hold off;
% Radio de trabajo
Prx=SNRmin+Pn;
Prxn1=Prx+Mray1+Mshadowing1;
Lp1=Ptx+Grx+Gtx-Prxn1;
radio1=10^{((Lp1-117)/35.5)} % Km
```