Esame di Laurea in Informatica

Implementazione di modelli di programmazione matematica per problemi di bin packing

Daniel Rossi 18 Dicembre 2018

Introduzione

SOFTWARE SUPPORTO DECISIONALE

- agevolazione degli operatori;
- operatori meno esperti;
- aumento della produttività;
- informazioni sullo stato dei trasporti;
- stima di costi e profitti.

Introduzione

L'azienda ha sviluppato un'euristica per l'ottimizzazione dello spazio occupato dalle merci nel container del camion.

Proposta di stage

Scopo

Lo scopo dello stage è quello di realizzare dei modelli di programmazione lineare per la risoluzione dello **Strip Packing Problem** da usare per valutare l'euristica aziendale

- 2D: versione 2D;
- 2DR: versione 2D con rotazione;
- 2DRS: versione 2D con rotazione e sequenza di scarico;
- **3D**: versione 3D con rotazione e sovrapposizione.

Packing Problem

Insieme $I = \{1, ..., n\}$ di oggetti aventi dimensioni w_i , d_i e h_i . Insieme $J = \{1, ..., m\}$ di contenitori di dimensione W, D e H. Per ipotesi $w_i \leq W$, $d_i \leq D$ e $h_i \leq H$.

Obiettivo Bin Packing

Minimizzare il numero di contenitori *J* che riescano a contenere tutti gli oggetti dell'insieme *I*.

Obiettivo Strip Packing

Minimizzare i metri lineari occupati dagli oggetti dell'insieme *I* rispetto la profondità del contenitore.

Modello matematico

Tratto dall'articolo: Solving the 2D bin packing problem by means of a hybrid evolutionary algorithm

min D

s.t.

$$\begin{aligned} l_{ij} + l_{ji} + b_{ij} + b_{ji} &\geq 1 & i < j & i, j \in I \\ y_i - y_j + M_d b_{ij} &\leq M_d - d_i & i, j \in I \\ x_i - x_j + M_w l_{ij} &\leq M_w - w_i & i, j \in I \\ x_i + w_i &\leq W & i \in I \\ y_i + d_i &\leq D & i \in I \\ b_{ij}, l_{ij} &\in \{0, 1\} & i \neq j & i, j \in I \\ x_i, y_i, w_i, d_i &\in \mathbb{R}^+ & i \in I \end{aligned}$$

Tecnologie

Durante lo stage sono state usate le seguenti tecnologie:

Google

Optimization

Tools

Modello 2D e 2DR

Modello 2D:

Limiti delle soluzioni

Modello 2DR: Ottimalità della soluzione

Modello 2DRS

Vie di scarico:

Deve essere presente almeno una via di scarico per ciascun pacco

Stabilità generale:

Le soluzione del modello non implementano la stabilità generale

Modello 3D

Stabilità degli oggetti:

Garantita sovrapponendo solo un oggetto

Oggetti stackable:

In generale nei test non tutti gli oggetti erano sovrapponibili

Test computazionale

Istanza:

insieme formato dai pacchi da disporre nel contenitore.

Gruppo di istanze:

insieme di istanze accomunate tra loro dal numero di pacchi o dalle loro dimensioni.

#	Wa	w_b	d_a	d_b
0	0.5	2.45	0.5	2.45
1	0.5	1.50	0.5	4.00
2	1.5	2.45	0.5	4.00
3	0.5	1.50	3.0	4.00
4	1.5	2.45	3.0	4.00
5	0.1	1.00	0.1	1.00
6	0.1	1.00	3.0	4.00
7	2.0	2.45	3.0	4.00
8	2.0	2.45	2.0	2.45
9	0.1	1.00	0.1	4.00

Errori e criticità

Errori:

- \bullet $\epsilon_a = Obj_h Obj_m$
- \bullet $\epsilon_r = \frac{\epsilon_a}{Obi_m} \cdot 100$

Criticità:

- 2DRS: stabilità generale;
- **3D**: stabilità sovrapposizione.

ciucia

	#is	st		ϵ_r		ϵ_a	Time
0	64.	0	3	.89	0.2	23	40.95
1	73.	73.0		11.90		31	31.51
2	76.	76.0		0.94		LO	19.76
3	84.	0	12	.29	1.2	26	19.79
4	75.	0	0	.00	0.0	00	27.69
5	73.	0	14	.17	0.3	L1	12.58
6	78.	0	6	.60	0.4	17	20.95
7	76.	0	0	.00	0.0	00	36.62
8	81.	0	0	.00	0.0	00	23.70
9	81.	0	10	.34	0.4	15	10.60
		#	ist		ϵ_r		ϵ_a
	0	36	6.0	7	.35	0.	59
	1	27	.0	15	.98	1.	48
	2	24	1.0	0	.91	0.	17
	3	16	0.0	17	.26	2.	62

25.0

0.00

0.00