

(原课后答案网)

最专业的课后习题答案分享社区

教材课后答案 | 练习册答案 | 期末考卷答案 | 实验报告答案

P135: 2

2 在例 1 的 K 的解释域 N 中,若等词≈改为解释成"有不同的奇偶性",那么等词公理在 N 中是否都恒真?是否都恒假。

答: 在解释域 N 中,若等词≈改为解释成"有不同的奇偶性",那么(E1)型等词公理在 N 中恒假,而(E2)与(E3)型等词公理在 N 中既不恒真也不恒假。

P138: 1

1 设项 t、u 都对公式 p(x_i)中 x_i 自由,且不含 x_i。求证 E \cup { \exists !x_i p(x_i), p(t)}|- p(u)-> u≈t,这里规定 \exists !x_i p(x_i)= \exists x_i(p(x_i) \land \forall x_i(p(x_i)->x_i≈x_i))其中 x_i不在 p(x_i)中出现。

证明:由于 x_j 不在 $p(x_i)$ 中出现且项t、u都对公式 $p(x_i)$ 中 x_i 自由,所以项t、u都对公式 $p(x_j)$ 中 x_j 自由。 (结论一)

(提示:这里涉及 $p(x_i)$ 之类的表示方法在表示对象变元间替换时的不严谨情况,我会在习题课上具体讲)

以下是 K 中 u≈t 从 E \cup {p(x_i) \wedge \forall x_i(p(x_i)->x_i≈x_i), p(t), p(u)}的一个"证明"。

- $(1) p(x_i) \land \forall x_j (p(x_j) -> x_i \approx x_j)$ 假定
- $(2) (p(x_i) \land \forall x_j (p(x_j) > x_i \approx x_j)) > \forall x_j (p(x_j) > x_i \approx x_j)$ 永真式
- (3) $\forall x_j(p(x_j)->x_i\approx x_j)$ (1), (2), MP
- (4) ∀x_i(p(x_i)->x_i≈x_i)->(p(u)->x_i≈u) (K4) (依据结论一)
- (5) ∀x_j(p(x_j)->x_i≈x_j)->(p(t)->x_i≈t) (K4) (依据结论一)
- (6) $p(u)->x_i\approx u$ (3), (4), MP
- (7) $p(t)->x_i\approx t$ (3), (5), MP
- (8) p(u) 假定
- (9) p(t) 假定
- (10) $x_i \approx u$ (6), (8), MP
- (11) $x_i \approx t$ (7), (9), MP
- $(12) x_i \approx u \rightarrow (x_i \approx t \rightarrow u \approx t)$ (E3)
- (13) x_i ≈t->u≈t (10), (12), MP
- (14) u≈t (11), (13), MP

在以上"证明"中没有使用任何 Gen 变元。所以根据演绎定理,不需任何 Gen 变元就可得 $E \cup \{p(x_i) \land \forall x_i (p(x_i) - > x_i \approx x_i), p(t)\} | - p(u) - > u \approx t$ 。 (结论二)

由于项 t、u 都不含 x_i ,所以 x_i 不在 p(u)-> $u\approx t$ 中自由出现。 (结论三)

由结论二和结论三,根据32规则可得 $E \cup \{\exists x_i(p(x_i) \land \forall x_j(p(x_j) -> x_i \approx x_j)), p(t)\}$]- $p(u)-> u \approx t$ 。由于本题规定 $\exists ! x_i \ p(x_i) = \exists x_i(p(x_i) \land \forall x_j(p(x_j) -> x_i \approx x_j))$,所以有 $E \cup \{\exists ! x_i \ p(x_i), p(t)\}$]- $p(u)-> u \approx t$ 。 证毕

1 求证当 n=2k 时,**N**|-∃x_i(x_i×2≈n)。

证明: 以下是 K_N 中 $\exists x_i(x_i \times \underline{2} \approx \underline{n})$ 从 N 的一个"证明"。

- (1) <u>k</u>×<u>2</u>≈<u>2k</u> 命题 2
- (2) ($\underline{\mathbf{k}} \times \underline{\mathbf{2}} \approx \underline{\mathbf{2}}\underline{\mathbf{k}}$)-> $\exists x_i (x_i \times \underline{\mathbf{2}} \approx \underline{\mathbf{2}}\underline{\mathbf{k}})$ $\exists 1$ 规则(由于 $\underline{\mathbf{k}}$ 对 $\mathbf{x} \times \underline{\mathbf{2}} \approx \underline{\mathbf{2}}\underline{\mathbf{k}}$ 中的 \mathbf{x} 自由)
- (3) $\exists x_i(x_i \times 2 \approx 2k)$ (1), (2), MP

所以 $N = \exists x_i (x_i \times 2 \approx \underline{n})$ 。 证毕

4 求证 N|- -(t'1+t2≈t1)。

证明: 以下是 K_N 中 $t'_{2}\approx 0$ 从 $N\cup\{t'_{1}+t_{2}\approx t_{1}\}$ 的一个"证明"。

- $(1) (t_2 \approx 0)$ (N1)
- (2) t'1+t2≈t1 假定
- (3) t'1+t2≈(t1+t2)' 命题 4
- (4) $t_1+t'_2\approx(t_1+t_2)'$ (N4)
- (5) t'1+t2≈ t1+t'2 (3), (4), 等词性质
- (6) t₁+t'₂≈ t'₂+t₁ 加法交换律
- (7) t'1+t2≈ t'2+t1 (5), (6), 等词性质
- (8) t'2+t1≈ t1 (2), (7), 等词性质
- (9) t'2+t1≈ t1-> t'2≈0 加法消去律
- $(10) t'_2 \approx 0$ (8), (9), MP

由(1)(10)可得 $\mathbb{N} \cup \{t'_1+t_2\approx t_1\}$ |- $-(t'_2\approx 0)$ 及 $t'_2\approx 0$ 且"证明"中所涉及的任何 Gen

变元可以避免出现在 t'1+t2≈t1中。所以根据归谬律可得 N|--(t'1+t2≈t1)。 证毕

P22: 2.1, 2.2

2.1 给出(x1->x2)->((-x1->-x2)->(x2->x1))的直接证明 解: (1) (-x1->-x2)->(x2->x1)(L3)(2) ((-x1->-x2)->(x2->x1))->((x1->x2)->((-x1->-x2)->(x2->x1)))(L1)((x1->x2)->((-x1->-x2)->(x2->x1))) (1), (2), MP (3) 2.2 给出((x1->(x2->x3))->(x1->x2))->((x1->(x2-x3))->(x1->x3))的直接证明 解: 将(x1->(x2->x3))->((x1->x2)->(x1->x3))、x1->(x2->x3)、(x1->x2)和 (x1->x3)分别记为公式 p0、p、q和r (1) p0 (L2) (2) p0 - > ((p - > q) - > (p - > r))(L2)(3) (p->q)->(p->r)(1), (2), MPP22: 3.3, 3.4 3.3 证明{p->q, -(q->r)->-p} |- p->r 证明: 以下是 L 中 p->r 从{p->q, -(q->r)->-p}的一个"证明"。 (1) -(q->r)->-p假定 (2) (-(q->r)->-p)->(p->(q->r))(L3)(3) $p \rightarrow (q \rightarrow r)$ (1), (2), MP (4) (p->(q->r))->((p->q)->(p->r)) (L2) (5) (p->q)->(p->r)(3), (4), MP(6) 假定 p->q 证毕 (7) p->r (5), (6), MP 3.4 证明{p->(q->r)} |- q->(p->r) 证明:以下是L中q->(p->r)从 $\{p->(q->r)\}$ 的一个"证明"。 (1) $p \rightarrow (q \rightarrow r)$ 假定 (2) (p->(q->r))->((p->q)->(p->r))(L2)(3) (p->q)->(p->r) (1), (2), MP (4) ((p->q)->(p->r))->(q->((p->q)->(p->r)))(L1)(5) q -> ((p -> q) -> (p -> r))(3), (4), MP(6) (q->((p->q)->(p->r)))->((q->(p->q))->(q->(p->r)))(L2)(7) (5), (6), MP(q->(p->q))->(q->(p->r))(8) $q \rightarrow (p \rightarrow q)$ (L1)

P22: 分别直接和间接证明 2.3、3.1

 $q \rightarrow (p \rightarrow r)$

(7), (8), MP

证毕

(9)

2.3 证明|- x1->(x2->(x1->x2))

证明(直接): 以下是L中x1->(x2->(x1->x2))的一个"证明"。

- (1) x2 (x1 x2) (L1)
- (2) (x2->(x1->x2))->(x1->(x2->(x1->x2))) (L1)
- (3) x1->(x2->(x1->x2)) (1), (2), MP 证毕

证明(间接): 根据演绎定理只用证{x1, x2}|- x2

下面是 x2 在 L 中从{x1, x2}的一个"证明"

- (1) x2 假定
- 证毕

3.1 证明{-p}|- p->q

证明 (直接): 以下是 $L + p - q M \{-p\}$ 的一个"证明"。

- (1) -p 假定
- (2) -p > (-q > -p) (L1)
- (3) -q->-p (1), (2), MP
- (4) (-q->-p)->(p->q) (L3)
- (5) p->q (3), (4), MP 证毕

证明(间接): 根据演绎定理只用证{-p, p}|-q 显然地有:

<1> {-p, p, -q}|--p 以及

 $<2> {-p, p, -q}|-p$

由<1>, <2>根据反证律可得{-p, p}|-q 证毕

P25: 分别直接和间接证明 1

1 证明|-(x1->(x1->x2))->(x1->x2)

证明(直接): 以下是L中(x1->(x1->x2))->(x1->x2)的一个"证明"。

- (1) (x1->(x1->x2))->((x1->x1)->(x1->x2) (L2) 将上式记为 p0
- (2) $p0 \rightarrow (((x1-x^2)-x^2)) \rightarrow (x1-x^2)) \rightarrow ((x1-x^2)-x^2)) \rightarrow (x1-x^2)$ (L2)
- (3) ((x1->(x1->x2))->(x1->x1))->((x1->(x1->x2))->(x1->x2)) (1), (2), MP
- (4) $x_1 ((x_1 x_2) x_1)$ (L1)
- (5) (x1->(x1->x2)->x1))->((x1->x2))->(x1->x1)) (L2)
- (6) (x1->(x1->x2))->(x1->x1) (4), (5), MP
- (7) (x1->(x1->x2))->(x1->x2) (3), (6), MP 证毕

证明(间接): 根据演绎定理只用证 $\{x1->(x1->x2), x1\}$ - x2 以下是 L 中 x2 从 $\{x1->(x1->x2), x1\}$ 的一个"证明"。

- (1) x1 假定
- (2) x1->(x1->x2) 假定
- (3) $x_1->x_2$ (1), (2), MP
- (4) x2 (1), (3), MP 证毕

P29: 证明 1.3、1.4、1.5

1.3 证明|--(p->q)->-q

证明: 根据演绎定理只需证{-(p->q)}|--q。

以下是 L 中 p->q 从{-(p->q), q}的一个"证明"。

- (1) -(p->q) 假定
- (2) $q \to (p \to q)$ (L1)
- (3) q 假定
- (4) $p \rightarrow q$ (2), (3), MP

由(1)和(4)可得{-(p->q), q}|--(p->q)以及{-(p->q), q}|- p->q。 根据归谬律可得{-(p->q)}|- -q 证毕

1.4 证明|--(p->q)->p

证明:根据演绎定理只需证{-(p->q)}|-p。

以下是 L 中 p->q 从{-(p->q), -p}的一个"证明"。

- (1) -(p->q) 假定
- (2) -p->(p->q) 否定前件律
- (3) -p 假定
- (4) $p \rightarrow q$ (2), (3), MP

由(1)和(4)可得{-(p->q), -p}|--(p->q)以及{-(p->q), -p}|- p->q。 根据反证律可得{-(p->q)}|- p 证毕

1.5 证明|- (p->q)->((-p->q)->q)

证明: 根据演绎定理只需证{p->q, -p->q}|-q

以下是 L + q 从 $\{p->q, -p->q, -q\}$ 的一个"证明"。

- (1) -q 假定
- (2) -p->q 假定 🔨 •
- (3) (-p->q)->(-q->--p) 换位律
- (4) -q->--p (2), (3), MP
- (5) --p (1), (4), MP
- (6) --p->p 双重否定律
- (7) p (5), (6), MP
- (8) p->q 假定
- (9) q (7), (8), MP

由(1)和(9)可得{ p->q, -p->q, -q }|- -q 且{ p->q, -p->q, -q }|- q。 根据反证律可得{p->q, -p->q}|-q 证毕

P32: 证明命题 1.3、命题 2.2、2.3、2.4

1.3 证明|- (p\q)->(q\p)

证明:要证|- (pvq)->(qvp),即要证|- (-p->q)->(-q->p) 根据演绎定理只需证{-p->q, -q }|- p

以下是 L 中 q 从{-p->q, -q, -p}的一个"证明"。

- (1) -q 假定
- (2) -p 假定
- (3) -p->q 假定
- (4) q (2), (3), MP

2.2 证明|- (p^q)->q

证明:要证|-(p^q)->q,即要证|--(p->-q)->q 以下是L中-(p->-q)->q的一个"证明"。

- (1) $-q \rightarrow (p \rightarrow -q)$ (L1)
- (2) (-q->(p->-q))->(-(p->-q)->--q) 换位律
- (3) -(p->-q)->--q (1), (2), MP
- (4) --q->q 双否律
- (5) -(p->-q)->q (3), (4), HS 证毕

2.3 证明|- (p^q)->(q^p)

证明:要证|-(p^q)->(q^p),即要证|-(-(p->-q))->(-(q->-p)) 根据演绎定理只用证{-(p->-q)}|--(q->-p)

以下是L中p->-q从{-(p->-q), q->-p}的一个"证明"。

- (1) -(p->-q) 假定
- (2) q->-p 假定
- (3) (q->-p)->(--p->-q) 换位律
- (4) --p->-q (2), (3), MP
- (5) p->--p 第二双否律
- (6) $p \rightarrow q$ (5), (4), HS

由(1), (6)可得{-(p->-q), q->-p }|- -(p->-q)且{-(p->-q), q->-p }|- p->-q 根据归谬律可得{-(p->-q)}|- -(q->-p) 证毕

2.4 证明|- p->(p^p)

证明: 要证|- p->(p^p), 即要证|- p->-(p->-p)

根据演绎定理只用证{p}|--(p->-p)

以下是 L 中-p 从{p, p->-p}的一个"证明"。

- (1) p 假定
- (2) p->-p 假定
- (3) -p (1), (2), MP

由(1), (3)可得{p, p->-p}|-p且{p, p->-p}|--p

根据归谬律可得{p}|--(p->-p) 证毕

1.7 写出(-x1^x2)->(-x2^x3)的真值表

解:

-	X1	٨	X2	->	-	X2	٨	X3
f	t	f	t	t	f	t	f	t
f	t	f	t	t	f	t	f	f
f	t	f	f	t	t	f	t	t
f	t	f	f	t	t	f	f	f
t	f	t	t	f	f	t	f	t
t	f	t	t	f	f	t	f	f
t	f	f	f	t	t	f	t	t
t	f	f	f	t	t	f	f	f

2.3 证明-x1->(x2\/x3)和-x2->(-x3->x1)有相同的真值函数

证明(一): 写出-x1->(x2~x3)和-x2->(-x3->x1)的真值表如下

X1	X2	X3	-x1	-x2	-x3	X2∨x3	-x3->x1	$-x1->(x2\lor x3)$	-x2 -> (-x3 -> x1)
t	t	t	f	f	f	t	t	t	T
t	t	f	f	f	t	t	t	t	Т
t	f	t	f	t	f	t	t	t	T
t	f	f	f	t	t	f		t 💪 .	T
f	t	t	t	f	f	t X	t	4	T
f	t	f	t	f	t	t	f	t	T
f	f	t	t	t	f	T,	t	t	T
f	f	f	t	t	t /	f	f	f	F

有此真值表得出-x1->(x2\vx3)和-x2->(-x3->x1)有相同的真值函数。 证毕

证明(二): 即证|=(-x1->(x2\vx3))<->(-x2->(-x3->x1))

即证 $=((--x1)\lor(x2\lorx3))<->((--x2)\lor((--x3)\lorx1))$

任取一个 L(X) 的赋值 v。

则 $v((--x1)\vee(x2\vee x3))$

 $= (-v(x1)) \lor v(x2) \lor v(x3)$

 $= v(x1) \lor v(x2) \lor v(x3)$

 $= v(-x2) \lor v(-x3) \lor v(x1)$

 $= v((--x2)\vee((--x3)\vee x1))_{\circ}$

所以=(-x1->(x2\vx3))<->(-x2->(-x3->x1)) 证毕

定理 8:1、2、3、4

1 $\Gamma \subseteq \Gamma'$, $\Gamma \mid =p$, 则 $\Gamma' \mid =p$ 证明: 任取一个 L(X) 的赋值 v。由于 $\Gamma \subseteq \Gamma'$,

所以若对任一 $q' \in \Gamma'$ 有 v(q')=1 则对任一 $q \in \Gamma$ 有 v(q)=1 〈1〉由于 $\Gamma \mid =p$, 所以若对任一 $q \in \Gamma$ 有 v(q)=1 则 v(p)=1 〈2〉 结合〈1〉和〈2〉可得: 若对任一 $q' \in \Gamma'$ 有 v(q')=1 则 v(p)=1,既 $\Gamma' \mid =p$ 。 证毕

 $2 \Gamma |= p$, $\Gamma |= p->q$, 则 $\Gamma |= q$ 证明: 任取一个使 Γ 中成员的真值都为 1 的赋值 v。由于 $\Gamma |= p$ 且 $\Gamma |= p->q$,

所以 v(p)=1 且 v(p->q)=1

所以必有 v(q)=1, 既 $\Gamma \mid =q$ 。 证毕

 $3 \Gamma \cup \{p\} \mid =q \Leftrightarrow \Gamma \mid =p->q$

证明: 任取一个使 Γ 中成员的真值都为1的赋值v。

先证充分性(⇒)

设Γ∪{p} =q。

若 v(p)=1 则根据 Γ ∪ {p} |=q 可得 v(q)=1,此时 v(p→>q)=1→1=1;

若 v(p)=0 则 v(p->q)=0->v(q)=1。

所以必有 $v(p\rightarrow q)=1$, 既 $\Gamma \mid =p\rightarrow q$ 。

再证必要性(⇐)

设Γ |=p->q。

因此 v(p->q)=1。

因此若 v(p)=1 则必有 v(q)=1。

 $4 \varnothing | =p \Leftrightarrow | =p$

证明: 先证充分性(⇒)

设∅|=p。

任取一个L(X)的赋值 v。

显然地,对任一 $q \in \emptyset$ 有v(q)=1。

根据 \varnothing |=p 可得 v(p)=1。

所以 =p。

再证必要性(⇐)

设|=p。

任取一个使Ø中成员的真值都为1的赋值 v。

由于|=p,

所以 v(p)=1。

所以∅ =p。

证毕

P55: 1.1

1.1 证明 p->q 和-q->-p 是等值的

证明(一): 列真值表法,略。

证明(二): 即证|=(p->q)<->(-q->-p), 即证|=(-p\/q)<->((--q)\/-p)

任取一个L(X)的赋值v。

则 $v((--q)\lor-p)=(--v(q))\lor-v(p)=(-v(p))\lor v(q)=v(-p\lor q)$ 。

所以=(-p\/q)<->((--q)\/-p) 证毕

P60: 1.3

1.2 求(x1^x2) > (-x2<->x3)的等值主析取范式

解: 原公式的成真指派是(0,0,1), (0,1,0), (1,0,1), (1,1,0), (1,1,1) 所以原公式的等值主析取范式是:

 $(-x1^{-}x2^{x}3) \lor (-x1^{x}2^{-}x3) \lor (x1^{-}x2^{x}3) \lor (x1^{x}2^{-}x3) \lor (x1^{x}2^{x}3)$

White danily and com

证明判定函数 v 的性质 (v 是在证明 L 的完备性时而构造出来的) 证明略,详细可见书

P81: 1, 2, 3

- 1 下面哪些符号串是谓词演算的公式? 有没有闭式?
 - (1) $R_1^2(f_1^1(x_1), x_1)$,
 - $(2) f_1^3 (x_1, x_3, x_4),$
 - (3) $R_1^1(x_2) \rightarrow R_1^3(x_3, c_1)$,
 - $(4) \forall x_2 R_1^2(x_1, x_2),$
 - (5) $\forall x_2 R_1^1(x_1) \rightarrow R_1^1(x_2)$,
 - (6) $R_1^3(f_2^3(x_1, c_2, x_2)),$
 - $(7) R_1^1(x_1) > R_1^1(x_2),$
 - (8) $\forall x_1 R_1^3(c_1, c_2, f_1^1(c_3))$

答: (1), (4), (5), (7), (8)是公式, 其中(8)是闭式。

提示: (2)是项, (3)和(6)中有谓词元数与其参数个数不匹配的情况。

- 2 在以下公式中,哪些 x_1 的出现是自由的?哪些 x_1 的出现是约束的?项 $f_1^2(x_1, x_3)$ 对该公式中 x_2 是不是自由的?
 - (1) $\forall x_2 (R_1^2(x_1, x_2) -> R_2^2(x_2, c_1)),$
 - (2) $R_1^1(x_3) \rightarrow \forall x_1 \forall x_2 R_1^3(x_1, x_2, c_1)$,
 - (3) $\forall x_1 R_1^1(x_1) \rightarrow \forall x_2 R_1^2(x_1, x_2)$,
 - (4) $\forall x_2 R_1^2(f_1^2(x_1, x_2), x_1) \rightarrow \forall x_1 R_2^2(x_3, f_2^2(x_1, x_2))$
- 答: (1)中 x_1 自由出现一次, x_1 没有约束出现,项 f_1^2 (x_1, x_3) 对 x_2 是自由的。
 - (2)中 x_1 没有自由出现, x_1 约束出现两次,项 $f_1^2(x_1, x_3)$ 对 x_2 是自由的。
 - (3)中 x_1 自由出现一次, x_1 约束出现两次,项 $f_1^2(x_1, x_3)$ 对 x_2 是自由的。
 - (4)中 x_1 自由出现两次, x_1 约束出现两次,项 $f_1^2(x_1, x_3)$ 对 x_2 是不自由的。
- 3 设 t 是项 $f_1^2(x_1, x_3)$ 。 $p(x_1)$ 是下面的公式。确定 t 对 $p(x_1)$ 中的 x_1 是否自由;如果是自由的,写出 p(t)。
 - (1) $\forall x_1 R_1^2(x_2, f_1^2(x_1, x_2)) \rightarrow R_1^1(x_1)$,
 - (2) $\forall x_1 \forall x_3 (R_1^1(x_3) -> R_1^1(x_1)),$
 - (3) $\forall x_2 R_1^1(f_1^1(x_2)) \rightarrow \forall x_3 R_1^3(x_1, x_2, x_3),$
 - (4) $\forall x_2 R_1^3(x_1, f_1^1(x_1), x_2) \rightarrow \forall x_3 R_1^1(f_1^2(x_1, x_3))$.
- 答: t 对(1)中 x_1 是自由的。 $p(t)=\forall x_1 R_1^2(x_2,f_1^2(x_1,x_2)) \rightarrow R_1^1(f_1^2(x_1,x_3))$ 。
 - t 对(2)中 x_1 是自由的。 $p(t)=p(x_1)$ 。
 - t 对(3)中 x_1 是不自由的。
 - t 对(4)中 x₁ 是不自由的。

P88: 2, 3.2; P89: 4.1

2 试证对任意公式 p 与 q, 有|- $\forall x_i (p->q)->(\forall x_i p->\forall x_i q)$ 。 证明: 以下是 K 中 $\forall x_i q$ 从{ $\forall x_i (p->q), \forall x_i p$ }的一个"证明"。

- 假定 (1) $\forall x_i (p -> q)$
- (2) $\forall x_i (p->q)->(p->q)$ (K4)
- (3) (1), (2), MP $p \rightarrow q$
- (4) 假定 $\forall x_i p$
- (5) $\forall x_i p -> p$ (K4)
- (6) (4), (5), MPp
- (7) (3), (6), MPq
- (8) $\forall x_i q$ (7), Gen

在以上过程中,除 x_i 外没有使用别的Gen变元。 x_i 不在 $\forall x_i$ (p-> q)和 $\forall x_i$ p中 自由出现。所以根据演绎定理可得 $|-\forall x_i (p->q)->(\forall x_i p->\forall x_i q)$ 。

3.2 $\Re \mathbb{I} \{ \forall x_1 \forall x_2 R_1^2(x_1, x_2) \} | - \forall x_2 \forall x_3 R_1^2(x_2, x_3) \}$

证明: 以下是 $K 中 \forall x_2 \forall x_3 R_1^2(x_2, x_3) \mathcal{M} \{ \forall x_1 \forall x_2 R_1^2(x_1, x_2) \}$ 的

- (1) $\forall x_1 \forall x_2 R_1^2(x_1, x_2)$ 假定
- (2) $\forall x_1 \forall x_2 R_1^2(x_1, x_2) -> \forall x_2 R_1^2(x_1, x_2)$
- $\forall x_2 R_1^2(x_1, x_2)$ (3)
- (4) $\forall x_2 R_1^2(x_1, x_2) -> R_1^2(x_1, x_3)$
- (5) $R_1^2(x_1, x_3)$
- (3), (4), MP

(1), (2), MP

- (6) $\forall x_1 R_1^2(x_1, x_3)$
- (5), Gen (7) $\forall x_1 R_1^2(x_1, x_3) -> R_1^2(x_2, x_3)$
- $R_1^2(x_2, x_3)$ (8)
 - (6), (7), MP
- $\forall x_3 R_1^2(x_2, x_3)$ (9)
- (8), Gen
- $\forall x_2 \forall x_3 R_1^2(x_2, x_3)$ (10)
- 证毕 (9), Gen

(K4)

- 4.1 设 x_1 不在 p 中自由出现。求证|- $(p->\forall x_1q)-> \forall x_1(p->q)$ 。 证明:以下是K中 $\forall x_1(p->q)$ 从 $\{p->\forall x_1q\}$ 的一个"证明"。
 - 假定 (1) $p \rightarrow \forall x_1 q$
 - (2) $\forall x_1 q \rightarrow q$ (K4)
 - (3) $p \rightarrow q$
- (1), (2), HS
- (3), Gen (4) $\forall x_1(p->q)$

以上"证明"中只使用了 x_1 这一个Gen变元。由于 x_1 不在p中自由出现, 所以 x₁ 不在 p->∀x₁q 中自由出现。因此根据演绎定理,不增加新的 Gen 变元就 可得|- (p-> $\forall x_1q$)-> $\forall x_1(p->q)$ 。 证毕

P95: 2.1

2.1 设 x_i 不在 q 中自由出现。求证|- ($\exists x_i p -> q$)-> $\forall x_i (p -> q)$ 。

证明: 以下是 $K 中 \forall x_i (p -> q) \text{从} \{\exists x_i p -> q\}$ 的一个"证明"。

- 31规则 (书中关于31规则的证明里不用 Gen 规则) (1) $p \rightarrow \exists x_i p$
- (2) $\exists x_i p -> q$ 假定
- p -> q (1), (2), HS (3)
- (4) $\forall x_i (p -> q)$ (3), Gen

以上"证明"中只使用了 x_i 这一个Gen变元。由于 x_i 不在q中自由出现, 所以 x_i 不在∃x_i p->q 中自由出现。因此根据演绎定理,不增加新的 Gen 变元就可 得|- ($\exists x_i p -> q$)-> $\forall x_i (p -> q)$ 。 证毕

P100: 1.4

1.4 找出与 $\exists x_1 R_1^2(x_1, x_2) \rightarrow (R_1^1(x_1) \rightarrow \exists x_3 R_1^2(x_1, x_3))$ 等价的前東范式。 解: $\Diamond q_1 = \exists x_1 R_1^2(x_1, x_2) - > (R_1^1(x_1) - > \exists x_3 R_1^2(x_1, x_3))$ 。由 q_1 出发,可得以下等价 公式 q2—q6:

(由命题 2.3) $q_2 = \exists x_1 R_1^2(x_1, x_2) - > (R_1^1(x_1) - > \forall x_3 - R_1^2(x_1, x_3))$ $q_3=\exists x_1 R_1^2(x_1, x_2)-> \forall x_3 (R_1^1(x_1)->-R_1^2(x_1, nm x_3))$ (由命题 2.2) .3))) (X1, X3))) $q_4 = \forall x_3 (\exists x_1 R_1^2(x_1, x_2) -> (R_1^1(x_1) -> -R_1^2(x_1, x_3)))$ (由命题 2.2) $q_5 = \forall x_3 (\exists x_4 R_1^2(x_4, x_2) -> (R_1^1(x_1) -> -R_1^2(x_1, x_3)))$ (由命题 2.1) $q_6 = \forall x_3 \forall x_4 (R_1^2(x_4, x_2) -> (R_1^1(x_1) -> -R_1^2(x_1, x_3)))$ (由命题 2.2)

q₆即为所求。

P165: 2

1.1 证明 K_N 中的同一公式不能用来表示两个不同的关系。 证明: 假设存在着含有 k 个自由变元的公式 $p(x_1,...,x_k)$,它可以表示两个不同的 N 上的 k 元关系 R_1 与 R_2 。又假设 $|R_1| \ge |R_2|$ 。

所以必然存在 $n_1,...,n_k \in \mathbb{N}$, 使得

- (1) $(n_1,...,n_k) \in R_1$, \square
- (2) $(n_1,...,n_k) \notin R_{2\circ}$

由于 R_1 与 R_2 用公式 $p(x_1,...,x_k)$ 在 K_N 中可表示, 所以根据(1)和(2)可得:

- (3) $\mathbb{N} \mid -p(\underline{n_1},...,\underline{n_k}), \quad \square$
- $(4) \ N \mid \text{--p}(\underline{n_1,\ldots,\underline{n_k}})_{\circ}$
- (3)和(4)的同时成立与 N 的无矛盾性相矛盾。所以不存在这样的公式。

证毕

P170: 4

4 二元关系"〉"可以用 K_N 中的什么公式表示?答: 可以用公式来 $\forall x_3$ -(x_3 + x_1 * x_2)表示。

P117: 1.1、3.4

1.1 证明|= $\exists x_1 \forall x_2 R_1^2(x_1, x_2) -> \forall x_2 \exists x_1 R_1^2(x_1, x_2)$

证明: 取任意一个 K 的解释域 M, 以及任意一个项解释 $\phi \in \Phi_M$ 。记 $p=\exists x_1 \forall x_2 R_1^2(x_1, x_2) -> \forall x_2 \exists x_1 R_1^2(x_1, x_2)$ 、 $p'=\exists x_1 \forall x_2 R_1^2(x_1, x_2)$ 、 $p''=\forall x_2 \exists x_1 R_1^2(x_1, x_2)$ 。

- (1) 若 $|p'|(\phi)=0$,则 $|p|(\phi)=|p'|(\phi)->|p''|(\phi)=0->|p''|(\phi)=1$ 。
- (2) 若 $|p'|(\phi)=1$,则存在 ϕ 的 x_1 变通 ϕ' 使得 $|\forall x_2R_1^2(x_1,x_2)|(\phi')=1$ 。因此对 ϕ' 的任意 x_2 变通 ϕ_2 有 $|R_1^2(x_1,x_2)|(\phi_2)=1$ 。
- (3) 设|p'|(ϕ)=1。取 ϕ 的任意一个 x_2 变通 ϕ ",作 ϕ "的 x_1 变通 ϕ_1 使 $\phi_1(x_1)$ = $\phi'(x_1)$ 。此 时 ϕ_1 是 ϕ' 的一个 x_2 变通。根据(2)有| $R_1^2(x_1,x_2)$ |(ϕ_1)=1。而 ϕ_1 是 ϕ "的一个 x_1 变通,因此有| $\exists x_1 R_1^2(x_1,x_2)$ |(ϕ'')=1。又由于 ϕ'' 是 ϕ 的任意一个 x_2 变通,因此有|p''|(ϕ)=1。所以|p|(ϕ)=|p'|(ϕ)->|p''|(ϕ)=1->1=1。

由(1)和(3)可知,对任意的解释域 M 以及任意的项解释 $\varphi \in \Phi_M$,总有 $|p|(\varphi)=1$ 。所以有|=p。 证毕

3.4 证明 $\forall x_1R_1^2(x_1,x_1)$ -> $\exists x_2 \forall x_1R_1^2(x_1,x_2)$ 不是有效式

证明:取 K 的一个解释域 M=N,且 R_1^2 解释为≤。则有 $|\forall x_1R_1^2(x_1,x_1)|_{M}=1$ 且 $|\exists x_2\forall x_1R_1^2(x_1,x_2)|_{M}=0$ 。因此 $|\forall x_1R_1^2(x_1,x_1)->\exists x_2\forall x_1R_1^2(x_1,x_2)|_{M}=1->0=0$ 。所以 $\forall x_1R_1^2(x_1,x_1)->\exists x_2\forall x_1R_1^2(x_1,x_2)$ 不是有效式。 证毕

额外习题

任给一个 K 的解释域 M, 求证以下命题:

- 1. $|p|_M=1 \Leftrightarrow |\forall x \ p|_M=1 \Leftrightarrow |\forall p|_M=1$;
- 2. 若 $|p|_{M}=1$ 且 $|p->q|_{M}=1$,则 $|q|_{M}=1$;
- 3. 若Γ⊂Γ′且Γ|=p,则Γ′|=p。

证明: 1. (课本上有具体证明,在此略)

- 2. (课本上有具体证明,在此略)
- 3. 任取一个 Γ '的模型 M。由于 $\Gamma \subseteq \Gamma$ ',所以 M 是 Γ 的一个模型。又由于 $\Gamma \models p$,所以有 $p \mid M=1$ 。因此(由 M 的任意性可得) $\Gamma' \models p$ 。 证毕

求证对 $K^+(Y)$ 中所有闭式 q 有 $\Gamma^* \mid -\kappa + q \Leftrightarrow |q|_{M} = 1$ (其中 $K^+(Y)$ 、 Γ^* 和 M 的定义间书中"K 的可靠性"一节)。

证明: (具体证明可参考课本,在此略)