WHAT IS CLAIMED IS:

1. A compound having the structure:

$$A^{1}$$
 A^{2}
 A^{2

or an optical isomer, diastereomer, enantiomer, or pharmaceutically-acceptable salt, or amide, ester, or imide susceptible to being cleaved *in vivo* by a mammalian subject to yield the compound, wherein:

(a) A¹ and A² are each, independently, selected from the group consisting of a hydrogen atom and a group having the structure:

$$\begin{cases} \begin{pmatrix} R^1 \\ C \\ R^1 \end{pmatrix} D^1 - D^2 - R^2 \\ X \end{cases}$$

with the proviso that at A¹ and A² are not both hydrogen atoms, and wherein:

- (i) each R^I is independently selected from the group consisting of a hydrogen atom, a hydroxyl group, a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group;
- (ii) x is from 0 to about 10;
- (iii) R² is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group;

- (iv) D^1 and D^2 are each independently selected from the group consisting of -C(O)- and $-NR^3$ -; with the proviso that wherein when D^1 is $-NR^3$ then D^2 is -C(O)-, and wherein when D^2 is $-NR^3$ then D^1 is -C(O)-; and
- (v) R³ is selected from the group consisting of a hydrogen atom and R²; and
- (b) A^3 has the structure:

$$\sum_{\mathbf{k}} \mathbf{D}^4 \begin{pmatrix} \mathbf{R}^1 \\ \mathbf{C} \\ \mathbf{R}^1 \end{pmatrix} \mathbf{D}^5$$

wherein:

- (i) each R¹ is independently selected from the group consisting of a hydrogen atom, a hydroxyl group, a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, a substituted heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group;
- (ii) t is from 0 to about 6;
- (iii) D^4 is selected from the group consisting of -C(O)- and -CH(\mathbb{R}^1)-,
- (iv) D^5 is selected from the group consisting of $-NHR^6$ and $-OR^6$, and
- (v) R⁶ is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, a substituted heterogeneous group, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group, with the proviso that wherein when:
 - (a) A⁴ is a heterocyclic group having 6 member atoms; and
 - (b) A^1 or A^2 is hydrogen; and
 - each R¹ is selected from the group consisting of a hydrogen atom, a hydroxyl group, a hydrocarbon group, a substituted hydrocarbon group, a carbocyclic group, a substituted carbocyclic group, an aromatic group, and a substituted aromatic group; and
 - (d) each R² is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a carbocyclic group, a substituted carbocyclic group, an aromatic group, and a substituted aromatic group;

then R⁶ is not a quinolyl group; and

- (c) A⁴ is a heterocyclic group having from 4 to 9 member atoms.
- 2. The compound according to Claim 1 wherein A⁴ is a heterocyclic group having 5 or 6 member atoms.
- 3. The compound according to Claim 2 wherein x is 0 to about 1.
- 4. The compound according to Claim 3 wherein at least one R¹ is selected from the group consisting of a hydrogen atom and a hydroxyl group.
- 5. The compound according to Claim 4 wherein at least one R^2 is selected from the group consisting of a hydrocarbon group, a substituted hydrocarbon group, a heterogeneous group, an aromatic group, a substituted aromatic group, a heteroaromatic group, and a substituted heteroaromatic group.
- 6. The compound according to Claim 5 wherein each R² is selected from the group consisting of:

wherein:

- (a) a is at least about 2;
- (b) b is at least about 2;
- (c) c is about 1 to about 3;
- (d) d is about 1 to about 3; and

each R^{12} and R^{13} are each independently selected from the group consisting of hydrocarbon groups and substituted hydrocarbon groups.

- 7. The compound according to Claim 5 wherein D^4 is -C(O)- and t is 0.
- 8. The compound according to Claim 5 wherein D^4 is -C(O)- and D^5 is $-O_rR^6$.

- 9. The compound according to Claim 5 wherein D^4 is $-CH(R^1)$ and D^5 is $-O_1R^6$.
- 10. The compound according to Claim 5 wherein D⁴ is -CH(R¹)- and D⁵ is -NHR⁶.
- 11. A composition comprising:
 - (a) the compound according to Claim 1; and
 - (b) a pharmaceutically acceptable carrier.
- 12. The composition according to Claim 11 wherein the compound inhibits transport protein activity.
- 13. A composition comprising:
 - (a) the compound according to Claim 5; and
 - (b) a pharmaceutically acceptable carrier.
- 14. The composition according to Claim 13 wherein the compound inhibits transport protein activity.
- 15. A method selected from the group consisting of treating multidrug resistance, inhibiting transport protein activity; and combinations thereof, comprising administering to a mammal in need of such treatment or inhibition the composition according to Claim 11.
- 16. A method selected from the group consisting of treating multidrug resistance, inhibiting transport protein activity; and combinations thereof, comprising administering to a mammal in need of such treatment or inhibition the composition according to Claim 13.