

Universidad Pública de El Alto

CARRERA: INGENIERÍA DE SISTEMAS

GUÍA DE PRACTICAS

INTRODUCCIÓN A LA PROGRAMACIÓN

3^{ra} PRACTICA CONJUNTA – GESTIÓN I-2024

ARRAYS

Realice el Diagrama de Flujo, prueba de Escritorio y código en Python para los siguientes ejercicios propuestos:

- 1. Dado un vector de dimensión N, obtener la suma de sus elementos.
- 2. Obtener la suma de los elementos pares y la suma de los elementos impares de un vector:

spar = 12, simpar = 10

- 3. Dado un vector de dimensión N, mostrar solamente sus elementos pares.
- 4. Dado un vector, reemplazar los valores pares por ceros.
- 5. Dado un vector de dimensión N, obtener la cantidad de números pares e impares.
- 6. Dado un vector de dimensión N, obtener la cantidad de múltiplos de 5.
- 7. Pedir un número entero y positivo que será el tamaño de un vector, llenarlo por teclado asegurándose que solo ingresen números positivos de un solo digito y mostrar por pantalla.
- 8. Realizar un algoritmo que te permita llenar dos vectores diferentes del mismo tamaño y mostrar la multiplicación de posiciones de la vector_1 por el vector_2.
- 9. Dado un vector V[] de dimensión N, (añadir elementos) calcular la dimensión y mostrar por pantalla vector invertido.
- 10. Generar un vector C con los n primeros cuadrados:

Si n=10	1	4	9	16	25	36	49	64	81	100
---------	---	---	---	----	----	----	----	----	----	-----

11. Dado un vector V de n elementos se pide la suma de aquellos elementos que se encuentran en posiciones pares en la variable spar y la suma de los elementos que se encuentran en las posiciones impares simp.

Si n=10

1	4	7	16	5	100	49	1	81	100
									İ

spar=1+7+5+49+81=143 simp=4+16+100+1+100=221

12. Leer un vector de n elementos con cantidad de dígitos >=2 y formar otro vector con los números capicúa.

Si n=10

2	25	11		23		242	12	23	12	21	81	20	444	3993
Re	es[] =	:	11	l	242	12	1	44	4	39	93			_

13. Dado un vector N, intercambiar el segundo elemento con el penúltimo elemento de un vector

V[]=	5	7	9	13	12	8		7[]	5	12	9	13	7	8	=
------	---	---	---	----	----	---	--	-----	---	----	---	----	---	---	---

14. Dado un vectores Si N=5				eleme	entos	ente	ros positivos, invertir el orden de sus elementos sin utilizar
V[] =	5	7	9	13	12	0	

Entonces vector invertido:

15. Llenar un vector V, con la siguiente serie: 2,2²,2³,2⁴,......2^N

- 16. Dado un vector N, almacenar la serie de Fibonacci en un vector y mostrar.
- 17. Llenar un vector D, con los primeros N números impares, en orden descendente. Si n=5

18. Generar y desplegar un vector A de N elementos que tenga la forma siguiente: Sea n=10

V[]= 1 10 3 20 5 30 7 40 9 50

- 19. Crear una matriz con dimensiones iguales o desiguales, que reciba elementos ingresados por teclado y mostrar la matriz.
- 20. Creamos una matriz identidad con ceros y unos.

M[][] =

1	0	0
0	1	0
0	0	1

21. Generar la matriz n*n triangular inferior izquierdo

0	0	0	0
1	0	0	0
1	1	0	0
1	1	1	0

22. Generar y mostrar la siguiente matriz gusanito de tamaño n* m

Si m=4 y n=3

1	2	3
6	5	4
7	8	9
12	11	10

23. Calcular la sumatoria de los elementos de la diagonal principal y secundaria de una matriz de n x n (cuadrada).

5	26	4	1	4
1	2	5	6	1
6	7	6	89	2
4	71	48	0	99
0	3	9	11	3

SDP=5+2+6+0+3=16

SDS=4+6+6+71+0=87

24. Dada una matriz A de n x m, obtener la media aritmética de cada fila de A.

M[][] =

5	26	4	1	4
1	2	5	6	1
6	7	6	89	2
4	71	48	0	99
0	3	9	11	3

Entonces:

$$5 + 26 + 4 + 1 + 4 = 40/5$$

 $1 + 2 + 5 + 6 + 1 = 15/5$
 $6 + 7 + 6 + 89 + 2 = 110/5$
 $4 + 71 + 48 + 0 + 99 = 222/5$

- 25. Ingresar números en una matriz S de dimensión M*N y obtenga la suma total de sus elementos.
- 26. Almacene en una matriz de M*N, con números enteros y obtenga la cantidad de pares e impares.
- 27. Leer una matriz A de orden M x N y un número K. Multiplicar todos los elementos de la matriz por el número K. Mostrar la matriz resultante.
- 28. Generar la siguiente matriz de orden M*N

29. Llenar una matriz NxM y obtener

	1	5	9	13	
	2	6	10	14	
1	3	7	11	15	
17	4	8	12	16	diagonal principal y la diagonal secundaria

multiplicación diagonal primaria=1*3*6 = 18

M[][] =

1	2	3
1	3	5
4	4	6

Multiplicación diagonal secundaria = 3*3*4 = 36

30. Generar la siguiente matriz espejo donde n=m, y n = tamaño impar

Si n=5, m=5

1	2	3	4	5	
2	6	7	8	9	
3	7	10	11	12	
4	8	11	13	14	
5	9	12	14	15	