README.md 2025-04-24

utn-tp-integracion

Proyecto de Integración

Trabajo Integrador: Matemáticas y Programación en Python

Alumnos - Grupo N° 2

- Agustin Emiliano Sotelo Carmelich
- Gabriel Valdez Arce
- Bruno Giuliano Vapore
- Daiana Judith Velasquez Torrez
- Jose Gabriel Torres

Evaluación: Modalidad "Cumple / No Cumple" (La rúbrica se entregará en un documento aparte).

Consultas: Disponibles en ambas materias para resolver dudas.

1. Equipos y Organización

- Equipos de hasta 5 integrantes.
- Todos los miembros deben participar activamente en la explicación del proyecto.

2. Selección y Desarrollo del Proyecto

- Elijan una de las actividades propuestas o propongan una alternativa relacionada a su interés.
- El proyecto debe utilizar únicamente los conceptos de programación ya aprendidos.
- Debe integrar **aspectos matemáticos** como álgebra de Boole, sistema binario, etc., y su **aplicación en Python**.

3. Consultas Sincrónicas

- Pueden participar en sesiones de consultas sincrónicas de matemáticas y programación.
- La asistencia es fundamental para el desarrollo correcto del proyecto.

4. Requerimientos Técnicos

Código en Python

 Crear un programa claro, bien documentado y funcional, que resuelva un problema o simule un fenómeno matemático. README.md 2025-04-24

Video Explicativo

- Grabar un video que muestre el funcionamiento del programa.
- Explicar el proceso de desarrollo.
- Cada integrante debe explicar una parte del proyecto.

Entrega

- Subir el video a YouTube.
- Entregar en la plataforma:
 - o Enlace del video.
 - o Breve descripción del proyecto.
 - o Código fuente en Python.

5. Evaluación

La evaluación será "Cumple / No Cumple" de acuerdo a la rúbrica proporcionada.

Se evaluarán:

- Aplicación correcta de conceptos matemáticos y de programación.
- Calidad del código.
- Claridad del video explicativo.
- Participación activa en las consultas sincrónicas.

6. Uso de Inteligencia Artificial

Integración en el Proceso

• Usar herramientas de IA en todas las fases del proyecto: generación de ideas, análisis, refinamiento.

Iteraciones y Refinamiento

- Aplicar mejoras progresivas a través de iteraciones.
- Documentar cada paso del proceso.

Evidencia y Justificación

- Presentar evidencia del uso de IA (capturas, reportes, registros).
- Justificar cómo contribuyó a optimizar el proyecto.

Objetivo: Aplicar de manera práctica lo aprendido, trabajar en equipo y comunicar ideas de forma clara y precisa.

¡Mucho éxito en el desarrollo del proyecto!

7. Propuestas de Proyectos

A continuación, algunas ideas que pueden elegir o adaptar para desarrollar el proyecto:

README.md 2025-04-24

Simulación de Puertas Lógicas Básicas

- Programa en Python que simule las puertas AND, OR y NOT.
- Solicitar al usuario ingresar valores binarios (0 o 1).
- Mostrar el resultado de cada operación.
- Extensión: Agregar puertas NAND, NOR, XOR si lo desean.

Conversión de Números

- Convertir números decimales a binarios.
- Opcional: también binario a decimal.
- Extensión: Validar entradas y mostrar mensajes de error ante datos incorrectos.

Contador Binario

- Usar un ciclo para contar de 0 a 15.
- Mostrar cada número en su representación binaria.
- Extensión: Simular un circuito usando time.sleep() como retardo.

Generador de Tabla de Verdad

- Crear una tabla de verdad para una expresión booleana como "A AND B".
- Extensión: Permitir al usuario elegir entre distintas operaciones lógicas.

Comparador de Expresiones Booleanas

- Permitir que el usuario ingrese dos expresiones booleanas simples.
- Comparar sus resultados evaluando todas las combinaciones posibles de valores.

Calculadora de Operaciones Bit a Bit

- Recibir dos números y aplicar operaciones bit a bit (AND, OR, XOR).
- Mostrar resultados en formato decimal y binario.

Simulador de Sumador de 1 Bit

- Programar un sumador de 1 bit usando lógica booleana.
- Mostrar el bit de suma y el carry (acarreo).

Juego de Adivinanza en Binario

- Mostrar un número en binario y desafiar al usuario a adivinar su equivalente decimal, o viceversa.
- Refuerza la conversión entre ambos sistemas.

Simulador de Circuito Combinacional Básico

- Combinar varias puertas lógicas para resolver un problema simple.
- Ejemplo: determinar si un número binario es par o impar (basado en el último dígito).