

M2 IDEE, UNIVERSITÉ D'ANGERS PEDROT EMMA, SEZESTRE EMILIEN, LAMON OCÉANE

ENSEIGNANT : M. PHILLIPE COMPAIRE

Table des matières

١.	Introduction	2
II.	Présentation des données	2
III.	Modèle sur données de panel	4
1	L. Estimations	4
2	2. Tests	7
IV.	Prédiction à l'aide d'un algorithme de machine learning	9
V	Annexes	11

I. Introduction

Dans le cadre de la gestion d'une crise telle que l'épidémie de COVID-19, de nombreux facteurs structurels et facteurs conjoncturels sont susceptibles d'entrer en jeu dans les capacités d'un pays à contrôler et endiguer la prolifération de la maladie. En effet, au-delà de l'intervention de l'État en termes de stratégies d'anticipation de crise et de décisions liées à l'évolution de la situation sanitaire, chaque pays est doté de diverses caractéristiques inhérentes à sa population qui, dans leur structure ou leurs comportements, font état d'une plus ou moins forte adhérence aux incitations du gouvernement, et donc d'une plus ou moins grande réussite de ces stratégies. Nous choisissons plus spécifiquement de nous focaliser sur les décès imputés au virus dans différents pays d'Europe, et tenter de voir quelles caractéristiques structurelles ou conjoncturelles exercent une influence significative sur ces derniers.

Les données de panel sont relatives à des mêmes individus et leurs caractéristiques suivis de façon régulière dans le temps. De ce fait, ce type de données possède à la fois une dimension individuelle (transversale) et temporelle (longitudinale). Dans le cadre de cette étude, nous avons choisi de nous intéresser à des caractéristiques relatives à l'épidémie de COVID-19 observées sur une base journalière pour vingt-six pays, dont la variable endogène retenue est le nombre de morts liés au virus pour 1 000 000 de personnes. Notre but est de déterminer si, les caractéristiques intrinsèques au pays et leur évolution dans le temps, telles que la composition de sa population et leur sensibilité aux gestes barrières, sont en mesure d'expliquer le nombre de morts du COVID à un instant t.

De ce fait, après avoir présenté le jeu de données qui constitue le cœur de notre analyse, nous utiliserons dans un premier temps le logiciel Stata pour réaliser notre modèle sur données longitudinales, puis nous recourrons à une méthode de machine learning en langage Python pour l'estimation de notre variable expliquée.

II. Présentation des données

Les données utilisées dans le cadre de cette étude ont été extraites d'un jeu de données rendu disponible sur Github [1] qui recense des données relatives au COVID-19 à travers cas confirmés, décès, hospitalisations et tests, ainsi que d'autres variables d'intérêt potentiel provenant de diverses sources (la principale étant *Our World in Data*).

Les données recueillies comprennent un total de 18201 observations, soit 59 variables mesurées de façon journalière du 01/06/2020 au 01/05/2022 pour 26 pays d'Europe. Les deux tableaux ci-dessous recensent respectivement les sources depuis lesquelles ont été extraites les mesures (variables regroupées par thèmes) de la base, ainsi que les pays concernés par notre analyse. La liste complète des variables utilisées est rendue disponible en annexe.

Table 1 : Origine des différentes variables, par thème

Mesures	Source	Mises à jour	Pays
Vaccinations	Our World in Data	Journalière	218
Tests & positivité	Our World in Data	N'est plus mis à jour (#2667)	193
Hôpitaux & soins intensifs	Our World in Data	Journalière	47
Cas confirmés	JHU CSSE COVID-19 Data	Journalière	219
Morts confirmés	JHU CSSE COVID-19 Data	Journalière	219
Taux de reproduction	Arroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno C	Journalière	196
Réponses politiques	Oxford COVID-19 Government Response Tracker	Journalière	187
Autres variables d'intérêt	Organisations internationales (UN, World Bank, OECD, IHME)	Fixées	241

Table 2 : Pays étudiés, par ordre alphabétique

Continent

Europe Hongrie, Irlande, It	Croatie, Chypre, Danemark, Espagne, Estonie, Finlande, France, alie, Lettonie, Luxembourg, Malte, Norvège, Pays-Bas, Pologne, me-Uni, Serbie, Slovaguie, Slovénie, Suède, Suisse, Tchéquie.

Pays

III. Modèle sur données de panel

1. Estimations

Pour réaliser des estimations sur des données de panel, il faut suivre 4 étapes. Tout d'abord, il faut commencer par réaliser une analyse statistique des variables et de la stationnarité, qui se fait via l'utilisation de 3 tests de spécification, organisés en 3 étapes résumé ici. Le premier test est un test d'homogénéité. Le second test permet de retenir si un modèle de panel est pertinent, c'est-à-dire que si cette hypothèse est refusée, il faudra réaliser des estimations sur l'ensemble des individus, un à un. Pour finir, le troisième test permet de déterminer l'existence ou non d'effet individuel. Ainsi, si l'une de ces hypothèses n'est pas respectée, les résultats que l'on trouve ne seront pas pertinents.

La seconde étape consiste à tester notre modèle pour détecter s'il existe ou non, une multi colinéarité entre les variables, pour cela nous utiliserons le test VIF.

Lors de la troisième étape, nous allons estimer 9 types de modèles : (OLS, within avec effet temporel et individuel, within avec effet temporel, etc...)

Pour finir, nous réalisons des tests pour savoir quels types de modèles nous retenons, ils sont au nombre de 4 et permettent d'estimer quel modèle est le plus pertinent.

Première étape : Les tests de spécification

Premier test : Test d'indépendance/corrélation entre les individus

	e17	e18	e19	e20	e21	e22	e23	e24	e25	e26
e17	1.0000									
e18	0.0647	1.0000								
e19	-0.2071	0.0512	1.0000							
e20	0.0598	0.1803	-0.0512	1.0000						
e21	-0.1401	0.2185	0.3034	-0.1083	1.0000					
e22	-0.0069	-0.0833	0.3051	0.0673	-0.2081	1.0000				
e23	0.0029	0.0133	0.2627	0.0248	0.1437	0.1319	1.0000			
e24	0.1795	0.3315	0.2660	0.1878	0.1343	0.1435	0.2272	1.0000		
e25	0.2715	-0.0873	0.1594	-0.0555	-0.0916	0.5640	0.0720	0.1185	1.0000	
e26	-0.2409	-0.0376	0.7914	-0.2533	0.2526	0.3700	0.1485	0.1721	0.2342	1.0000

Breusch-Pagan LM test of independence: chi2(325) = 10640.482, Pr = 0.0000 Based on 700 complete observations over panel units

Comme la P-value est inférieur à 5% nous pouvons dire qu'il y a une dépendance en coupe transversale, ainsi, les résidus sont corrélés avec les individus.

Second test : Le test Pasaran : test d'indépendance/corrélation entre les individus

Pesaran's test of cross sectional independence = 52.659, Pr = 0.0000

Comme la p-value est inférieur à 5 %, nous avons la même conclusion que pour le test précédent.

Troisième test : Test d'hétéroscédasticité de Wald

```
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (26) = 4936.30

Prohychi2 = 4,0000
```

Comme la p-value est inférieure à 5 %, nous pouvons dire qu'il y a de l'hétéroscédasticité (les variances des résidus sont différentes)

Seconde étape : Test sur la multi-colinéarité

Nous devons commencer par réaliser le test vif, pour vérifier qu'il n'y a pas de colinéarité dans notre modèle. Après avoir testé de nombreux modèles, celui que nous avons décidé de conserver est le suivant car tous les scores VIF sont inférieur à 10.

Variable	VIF	1/VIF
total_boos~s	4.73	0.211621
total_tests	4.60	0.217340
human_deve~x	4.14	0.241592
gdp_per_ca~a	2.81	0.355776
hospital_b~d	2.44	0.409170
population	2.34	0.427899
female_smo~s	2.16	0.463764
diabetes_p~e	2.13	0.470525
new_cases	1.81	0.552913
median_age	1.54	0.648662
positive_r~e	1.38	0.726567
stringency~x	1.37	0.731184
population~y	1.17	0.851452
tests_per_~e	1.16	0.865168
reproducti~e	1.06	0.944217
Mean VIF	2.32	

Nous avons également réalisé une table des corrélations, disponible ci-dessous pour étudier s'il n'y avait pas de corrélation trop forte entre nos variables.

	new_de,,															
new_deaths,,	1	popula~n														
population	-0,0129	1	positi~e													
positive_r~e	0,3235	-0,0731	. 1	string~x												
stringency~x	0,2616	0,1992	-0,2406	5 1	hospit~d											
hospital_b~d	0,2837	-0,123	0,1088	-0,1181	. 1	reprod~e										
reproducti~e	-0,1728	-0,0117	-0,0615	-0,0867	-0,0124	1	total~ts									
total_tests	-0,0323	0,6202	0,0104	-0,1363	-0,1499	-0,0567		1 popula~y								
population~y	-0,0728	-0,0345	-0,0787	0,0568	-0,0458	-0,0348	0,000	4 1	gdp_pe~a							
gdp_per_ca~a	-0,2169	-0,091	-0,0521	-0,0025	-0,4289	0,0339	-0,028	0,0784	1	tests_~e						
tests_per_~e	-0,2028	-0,0797	-0,3141	0,0402	-0,0424	-0,063	-0,053	0,0182	0,0121	. 1	total~rs					
total_boos~s	-0,044	0,534	0,1555	-0,205	-0,153	-0,0682	0,842	0,0236	-0,0439	-0,0899	1	human_~x				
human_deve^	-0,2659	0,081	-0,0388	0,0285	-0,6449	0,0236	0,097	9 0,0954	0,7305	0,0076	0,0626	1	l new_ca~s			
new_cases	0,0942	0,4067	0,2312	-0,0356	-0,0513	0,0426	0,534	-0,0036	-0,016	-0,1098	0,6226	0,0541	1 1	diabet~e		
diabetes_p~e	0,049	-0,2475	-0,0256	0,0464	0,1202	-0,0138	-0,17	9 0,2073	-0,487	0,0728	-0,1344	-0,5189	-0,1101	. 1	median~e	
median_age	0,1421	0,2484	0,08	0,0525	0,131	-0,0058	0,023	0,0025	-0,4474	-0,1374	0,1397	-0,2933	0,0813	0,1039	1	female_smo*
female_smo~	0,1921	0,0366	0,1756	-0,098	0,6449	-0,0057	-0,055	2 -0,134	-0,4422	-0,1016	-0,0508	-0,5919	0,0321	0,0929	0,1037	1

Nous pouvons constater que la plus forte des corrélations est de 0,84 entre total_tests et total_boosters, ce qui est très élevé, cependant nous décidons tout de même de garder ces 2 variables dans notre modèle, car elles n'ont a priori rien à voir. Il est également intéressant de remarquer que la seconde plus forte corrélation est entre le PIB par habitant et l'IDH, ce qui est « logique ».

Troisième étape : Estimation des 9 modèles

Nous allons désormais passer à la troisième partie qui consiste en l'estimation de 9 modèles, et en la sélection de ces derniers. Tous les résultats de ces régressions seront disponibles en annexe. Nous avons détaillé ci-dessous, le fonctionnement de 3 estimateurs.

OLS : Pour commencer notre étude nous allons réaliser une estimation par les moindres carrées ordinaires. Cette méthode est importante pour réaliser des comparaisons avec les autres estimations. En effet, les autres estimateurs que nous allons utiliser s'interprètent comme des moindres carrées ordinaires mais appliqués à une transformation des données de départ (estimateur within, between, etc...). Pour réaliser ces comparaisons, nous devons retirer le « terme constant » du modèle, nous allons centrer les données (retirer l'effet temps et l'effet individuel).

Estimateur Within: L'estimateur intra-individuelle ou « within » permet d'étudier les écarts aux moyennes individuelles, c'est-à-dire leurs variations de comportement dans le temps. Ainsi avec ce modèle, on retire l'effet individuel résiduel.

Estimateur between : L'estimateur inter-individuelle ou « between » se focalise sur les différences entre les individus. Pour ce faire, la méthode consiste à calculer les moyennes (ici du nombre de morts par jours) pour chaque individu (ici les pays sélectionnées) et d'effectuer une régression par moindres carrés ordinaires. Ainsi avec ce modèle, on retire l'effet temporel résiduel.

La régression par OLS nous donne le résultat suivant :

Source SS	df	MS	Number of o		18,200	
			F(15, 18184	,	720.79	
Model 158880.763		.0592 .0509	Prob > F	=	0.0000	
Residual 267213.638	18,184 1	.4.6949867	R-squared	=	0.3729	
			Adj R-squar	red =	0.3724	
Total 426094.401	18,199 2	3 .4130667	Root MSE	=	3.8334	
new_deaths_per_million	Coefficien	nt Std. err	. t	P> t	[95% conf	. interval]
		ie otar eri		17 51	[55% 65///	
population	-3.58e-08	2.10e-09	-17.06	0.000	-3.99e-08	-3.17e-08
positive_rate	14.02982	. 2763321	50.77	0.000	13.48819	14.57146
stringency_index	.1131215	.001996	56.68	0.000	.1092092	.1170338
hospital_beds_per_thousand	.64998	.0296332	21.93	0.000	.591896	.7080639
reproduction_rate	-2.098343	.1028442	-20.40	0.000	-2.299927	-1.896758
total_tests	2.03e-08	1.06e-09	19.08	0.000	1.82e-08	2.24e-08
population density	0005328	.0001113	-4.79	0.000	0007509	0003146
gdp per capita	0000149	2.83e-06	-5.27	0.000	0000205	-9.37e-06
tests per case	0034304	.0001978	-17.34	0.000	0038181	0030427
total boosters	-1.60e-07	1.05e-08	-15.15	0.000	-1.80e-07	-1.39e-07
human development index	-22.96263	1.404757	-16.35	0.000	-25.71608	-20.20917
new cases	.0000174	1.66e-06	10.46	0.000	.0000141	.0000206
diabetes prevalence	2829445	.0230236	-12.29	0.000	3280729	237816
median_age	.0969443	.015524		0.000	.0665157	.1273729
female smokers	0979802			0.000	1139041	0820563
_cons	17.37236			0.000	14.09501	20.64971

Ainsi, l'ensemble de nos variables sont significatives, nous obtenons un R² de 0,3729, ce qui signifie que l'on explique 37,29 % de la variance avec notre modèle.

Pour comparer nos modèles, nous avons réalisé le tableau récapitulatif ci-dessous :

MODELE	OLS	Within2	WithinT	WithinP	Aleatoire2	AléatoireP	AléatoireT	BetweenP	BetweenT
N	18200	18200	18200	18200	18200	18200	18200	18200	18200
R ²	0,3729	0,6492							
R ² ajusté	0,3724	0,6345							
rho			0,2197	0,21144	0,0368				
Corr			-0,0517	-0,1247	0				
Sd(residual)						3,831719	3,592		
Within								0,0025	0,025
Between								0,9324	0,9324
Overall								0,0052	0,052

2. Tests

Ensuite nous devrons réaliser un test de Fischer, qui nous permettra de déterminer si les OLS donnent ou non un résultat significatif. Si H1 est accepté, alors il faudra alors cela voudra dire qu'il y a soit un effet individuel, soit un effet temporel, non mesurable avec une régression par OLS classique.

Pour finir, nous devrons réaliser le test d'Hausman, qui permet de tester s' il existe une présence éventuelle d'une corrélation entre les effets individuels et les variables explicatives. Si l'on accepte H0, le modèle devra être spécifié avec des effets individuels aléatoires, nous estimons alors par les GLS. Si l'on accepte H1, on spécifie avec des effets individuels fixes, par l'estimateur « within ».

Premier test : test de Breusch-Pagan (OLS vs effets aléatoires individuels)

La probabilité de la statistique de test est inférieure à 0.05, alors l'on choisit le modèle à effets aléatoires.

Premier test (bis): test de Breusch-Pagan (OLS vs effets aléatoires fixes)

De la même façon, la probabilité de la statistique de test étant inférieure à 0.05, l'on choisit une fois de plus le modèle à effets aléatoires plutôt que les OLS.

Second test : test d'Hausman (effet aléatoire contre effet fixe)

Après avoir éliminé les OLS, il est nécessaire de choisir entre un modèle à effets aléatoires (H0) et un modèle à effets fixes (H1). C'est le principe du test d'Hausman. On a prob>chi2 < 5%, donc on rejette l'hypothèse nulle et on choisit donc un modèle à effets fixes.

Troisième test : test d'Hausman (effet fixe contre between)

Quatrième test : test pour effets temporels présents ou non dans le modèle within

sigma_u sigma_e rho	1.6860394 3.5899521 .18071463	(fraction of variance due to u_i)
F test that all u_i=0: F(699	, 17485) = 4	.65 Prob > F = 0.0000

On a Prob>F < .05 donc aucun effet fixe temporel n'est nécessaire dans le modèle.

IV. Prédiction à l'aide d'un algorithme de machine learning

Cette seconde partie aura vocation à prédire notre variable expliquée, soit le nombre total de morts pour un million de personnes, à l'aide d'un algorithme de machine learning. Pour ce faire, nous avons utilisé le package *sklearn* sous Python. Le script utilisé est rendu disponible en annexe.

L'algorithme utilisé a été construit de sorte à répartir les différentes observations en deux groupes : celles à prédire (groupe test), et celles sur lequel l'algorithme va s'entraîner pour prédire leur valeur au mieux, compte tenu de celles des variables explicatives. Nous avons choisi de composer nos deux groupes train et test à hauteur respective de 80% (14500 observatiobs) et 20% (3640 observations) de notre échantillon total, les observations étant réparties de façon purement aléatoire (une variable ID a été créé de sorte à affecter un identifiant unique pour le croisement d'une date et d'un pays en particulier).

Les variables ont également été réparties dans deux groupes distincts, le groupe Y contenant la variable à prédire et le groupe X contenant toutes les variables utilisées pour comprendre la variation de Y. Les variables peuvent alors être affectées dans quatre catégories :

- x_train : utilisées par l'algorithme dans sa phase d'entraînement, pour comprendre le fonctionnement et l'impact des variables
- x_test : utilisées pour tester le fonctionnement de l'algorithme à l'issue de son entraînement
- y_train : valeurs empiriques utilisées pour l'entraînement de l'algorithme
- y_test : permet de valider ou non les résultats
- y_pred : résultats de la prévision

A l'issue de la mise en fonctionnement de l'algorithme, nous obtenons des valeurs prédites particulièrement fiables avec entre autres un R² d'une valeur de 0.954. Les résultats obtenus peuvent être appréciés par le biais du graphique ci-dessous. Nous constatons aisément que le tracé de la courbe des valeurs prédites (ligne pointillée rouge) est très fidèle à celui des valeurs observées (ligne pleine verte). Les prédictions des quarante premières observations sont également répertoriées dans le tableau ci-dessous.

ID	total_deaths_per_million	y_pred
1	813,835	1038,98
2	821,9	1049,19
3	824,13	1043,23
4	826,704	1045,03
5	830,736	1054,01
6	831,852	1019,42
7	837,428	1059,71
8	838,286	1062,53
9	839,23	1042,96
10	840,774	1013,94
11	841,461	1020,08
12	842,576	1016,35
13	844,635	941,669
14	845,836	917,421
15	846,951	907,204
16	849,354	797,78
17	853,128	938,442
18	856,903	935,745
19	849,182	974,13
20	850,126	983,432

ID	total_deaths_per_million	y_pred
21	851,327	983,512
22	851,67	952,571
23	852,356	955,467
24	853,472	947,794
25	855,273	966,465
26	859,306	980,557
27	865,826	970,628
28	888,733	955,326
29	893,366	950,892
30	921,163	898,924
31	1040,329	925,732
32	1074,132	957,004
33	1090,261	970,989
34	1133,844	1105,22
35	1227,101	1164,76
36	1303,715	1299,48
37	1412,243	1421,74
38	1461,317	1509,35
39	1501,983	1546,4
40	1540,075	1555,17

V. Annexes

- [1] Source des données : « Covid-19-Data/Public/Data at Master · Owid/Covid-19-Data ». *GitHub*, https://github.com/owid/covid-19-data.
- [2] Liste des variables : « Data on COVID-19 (coronavirus) by Our World in Data ». *Github*, https://github.com/owid/covid-19-data/tree/master/public/data.

[3] Test de spécification

[4] Estimation 1 : Modèle OLS

Source	SS	df	MS	Number of obs	=	18,200
				F(15, 18184)	=	720.79
Model	158880.763	15	10592.0509	Prob > F	=	0.0000
Residual	267213.638	18,184	14.6949867	R-squared	=	0.3729
				Adj R-squared	=	0.3724
Total	426094.401	18,199	23.4130667	Root MSE	=	3.8334

new_deaths_per_million	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]
population	-3.58e-08	2.10e-09	-17.06	0.000	-3.99e-08	-3.17e-08
positive_rate	14.02982	.2763321	50.77	0.000	13.48819	14.57146
stringency_index	.1131215	.001996	56.68	0.000	.1092092	.1170338
hospital_beds_per_thousand	.64998	.0296332	21.93	0.000	.591896	.7080639
reproduction_rate	-2.098343	.1028442	-20.40	0.000	-2.299927	-1.896758
total_tests	2.03e-08	1.06e-09	19.08	0.000	1.82e-08	2.24e-08
population_density	0005328	.0001113	-4.79	0.000	0007509	0003146
gdp_per_capita	0000149	2.83e-06	-5.27	0.000	0000205	-9.37e-06
tests_per_case	0034304	.0001978	-17.34	0.000	0038181	0030427
total_boosters	-1.60e-07	1.05e-08	-15.15	0.000	-1.80e-07	-1.39e-07
human_development_index	-22.96263	1.404757	-16.35	0.000	-25.71608	-20.20917
new_cases	.0000174	1.66e-06	10.46	0.000	.0000141	.0000206
diabetes_prevalence	2829445	.0230236	-12.29	0.000	3280729	237816
median age	.0969443	.015524	6.24	0.000	.0665157	.1273729
female_smokers	0979802	.008124	-12.06	0.000	1139041	0820563
cons	17.37236	1.672036	10.39	0.000	14.09501	20.64971

[5] Estimation 2 : Modèle whitin avec effet temporel et individuel

	Source	SS	df	MS	Number of obs	=	
-					F(732, 17468)	=	
	Model	391575.964	732	534.939842	Prob > F	=	
	Residual	211622.175	468,17	12.1148486	R-squared	=	
-					Adj R-squared	=	
	Total	603198.139	18,200	33.1427549	Root MSE	=	

new_deaths_per_million	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]
population	1.86e-08	4.48e-09	4.16	0.000	9.87e-09	2.74e-08
positive_rate	12.16973	.3589713	33.90	0.000	11.46611	12.87335
stringency_index	.0801044	.0031805	25.19	0.000	.0738703	.0863385
hospital_beds_per_thousand	.2904679	.0600837	4.83	0.000	.1726979	.408238
reproduction_rate	-2.764855	.1161675	-23.80	0.000	-2.992555	-2.537155
total_tests	-2.34e-10	1.19e-09	-0.20	0.844	-2.56e-09	2.09e-09
population_density	0001852	.0001226	-1.51	0.131	0004255	.000055
gdp_per_capita	7.57e-06	4.02e-06	1.88	0.060	-3.09e-07	.0000155
tests_per_case	0016632	.0002052	-8.11	0.000	0020653	001261
total_boosters	-1.63e-08	1.11e-08	-1.47	0.142	-3.81e-08	5.48e-09
human_development_index	0	(omitted)				
new_cases	.0000146	1.64e-06	8.87	0.000	.0000113	.0000178
diabetes_prevalence	.1382279	.0494714	2.79	0.005	.0412591	.2351967
median_age	0959958	.0205884	-4.66	0.000	1363512	0556404
female_smokers	0396052	.0111362	-3.56	0.000	0614332	0177772
_Idate_22068	.4886722	.9653796	0.51	0.613	-1.403568	2.380913
_Idate_22069	.5105854	.9653856	0.53	0.597	-1.381667	2.402838
_Idate_22070	.3732249	.9654145	0.39	0.699	-1.519084	2.265534
_I date_22071	.8090639	.9655426	0.84	0.402	-1.083496	2.701624
_Idate_22072	.6345835	.9655497	0.66	0.511	-1.25799	2.527157
_Idate_22073	.5624707	.9655609	0.58	0.560	-1.330125	2.455066
_Idate_22074	.9377115	.9656388	0.97	0.332	9550369	2.83046
_Idate_22075	.9724484	.9656739	1.01	0.314	9203689	2.865266

[6] Estimation 3 : Modèle whitin avec effet temporel

Fixed-effects (within) regression Group variable: code	Number of obs = Number of groups =	18,200 26
R-squared:	Obs per group:	
Within = 0.4264	min =	700
Between = 0.0155	avg =	700.0
Overall = 0.3636	max =	700
	F(706,17468) =	18.39
corr(u_i, Xb) = -0.0517	Prob > F =	0.0000

interval]	[95% conf.	P> t	t	Std. err.	Coefficient	new_deaths_per_million
				(omitted)	0	population
12.87335	11.46611	0.000	33.90	.3589713	12.16973	positive_rate
.0863385	.0738703	0.000	25.19	.0031805	.0801044	stringency_index
				(omitted)	0	hospital_beds_per_thousand
-2.537155	-2.992555	0.000	-23.80	.1161675	-2.764855	reproduction_rate
2.09e-09	-2.56e-09	0.844	-0.20	1.19e-09	-2.34e-10	total_tests
				(omitted)	0	population_density
				(omitted)	0	gdp_per_capita
001261	0020653	0.000	-8.11	.0002052	0016632	tests_per_case
5.48e-09	-3.81e-08	0.142	-1.47	1.11e-08	-1.63e-08	total_boosters
				(omitted)	9	human_development_index
.0000178	.0000113	0.000	8.87	1.64e-06	.0000146	new_cases
				(omitted)	9	diabetes_prevalence
				(omitted)	9	median_age
				(omitted)	9	female_smokers
						date
2.380913	-1.403568	0.613	0.51	.9653796	.4886722	22068

sigma_u sigma_e rho	1.8469109 3.4806391 .21970215	(fraction	of varia	nce due t	o u_i)	
_cons	-1.789114	.7221495	-2.48	0.013	-3.204599	373629
22766	1.015619	.9803162	1.04	0.300	9058989	2.937136
22765	1.137156	.9800639	1.16	0.246	7838676	3.058179
22764	1.630217	.9802801	1.66	0.096	2912295	3.551664
22763	4.469808	.9800052	4.56	0.000	2.5489	6.390716
22762	2.557663	.9803713	2.61	0.009	.6360373	4.479288
22761	2.13976	.9801991	2.18	0.029	.218472	4.061048

[7] Estimation 4 : Modèle within avec effet individuel

Fixed-effects (within) regression Group variable: code	s = 18,200 oups = 26
R-squared:) :
Within = 0.3143	min = 700
Between = 0.0134	avg = 700.0
Overall = 0.2554	max = 700
	= 1189.70
corr(u_i, Xb) = -0.1247	= 0.0000
new_deaths_per_million Coer	P> t [95% co

interval	[95% conf.	P> t	t	Std. err.	Coefficient	new_deaths_per_million
				(omitted)	Ð	population
15.23679	14.15219	0.000	53.11	. 2766591	14.69447	positive_rate
. 1171332	.1091066	0.000	55.25	. 0020475	.1131199	stringency_index
				(omitted)	9	hospital_beds_per_thousand
-2.058798	-2.45438	0.000	-22.36	.1009093	-2. 256588	reproduction_rate
1.44e-08	9.73e-09	0.000	10.06	1.20e-09	1.21e-08	total_tests
				(omitted)	9	population_density
				(omitted)	9	gdp_per_capita
0036346	0044116	0.000	-20.30	.0001982	0040231	tests_per_case
-1.03e-0	-1.46e-07	0.000	-11.24	1.11e-08	-1.25e-07	total_boosters
				(omitted)	9	human_development_index
. 0000228	.0000162	0.000	11.71	1.67e-06	.0000195	new_cases
				(omitted)	9	diabetes_prevalence
				(omitted)	9	median_age
				(omitted)	9	female_smokers
9566996	-1.647385	0.000	-7.39	.1761867	-1.302042	_cons
					1.9322264	sigma u
					3.7314638	sigma_e
	ou_i}	nce due t	of varia	(fraction	. 21144198	rho

[8] Estimation 5 : Modèle effets aléatoires produit

Random-effects GLS regressi	on	Numb	er of obs	s =	18,200	
Group variable: code		Numb	er of gro	oups =	26	
R-squared:		0bs	per group	o :		
Within = 0.3143				min =	700	
Between = 0.7378				avg =	700.0	
Overall = 0.3702				max =	700	
		Walo	chi2(15)) =	8424.51	
corr(u_i, X) = 0 (assumed)		Prob	> chi2	=	9.0000	
new deaths per million	Coefficient	Std. err.	z	P> z	[95% conf	
	COETTICIENC	Jea. err.		17 -1	[55% 65/11	
population	-2.75e- 0 8	8.07e-09	-3.41	0.001	-4.33e-08	-1.17e-08
positive_rate	14.66748	. 2765413	53.04	0.000	14.12547	15.20949
stringency_index	.1131302	. 0020447	55.33	0.000	.1091226	.1171378
hospital_beds_per_thousand	. 6439466	.1499256	4.30	0.000	. 3500979	.9377953
reproduction_rate	-2.259794	. 100944	-22.30	0.000	-2.44855	-2.052857
total_tests	1.25e-08	1.19e-09	10.47	9.999	1.02e-08	1.48e-98
population_density	0004943	. 0005665	-0.87	0.383	0016046	. 0006159
gdp_per_capita	0000178	. 9999144	-1.24	0.217	000046	. 0000104
tests_per_case	0039969	.0001981	-20.17	0.000	0043852	0036086
total_boosters	-1.27e-07	1.11e-08	-11.45	0.000	-1.48e-07	-1.05e-07
human_development_index	-23.77122	7.106284	-3.35	0.001	-37.69928	-9.843156
new cases	. 0000194	1.67e-06	11.67	0.000	.0000162	.0000227
diabetes prevalence	2959946	.1174341	-2.52	0.012	5261612	065828
median_age	. 0518704	. 0754416	0.69	0.492	0959924	.1997332
female smokers	1108807	. 0406183	-2.73	0.006	1904912	0312703
_cons	29.64182	8.298106	2.49	0.013	4.377833	36.90581
sigma_u	.72947772					
sigma_e	3.7316693					
rho	. 03680705	(fraction	of variar	nce due t	o u_i)	

[9] Estimation 6 : Modèle two-way effet aleatoire

Mixed-effects ML regression Number of obs = 18,200 Wald chi2(15) = 10821.42 Log likelihood = -50272.986 Prob > chi2 = 0.0000

new_deaths_per_million	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
population	-3.58e-08	2.10e-09	-17.07	0.000	-3.99e-08	-3.17e-08
positive_rate	14.02982	.2762106	50.79	0.000	13.48846	14.57119
stringency_index	.1131215	.0019951	56.70	0.000	.1092112	.1170318
hospital_beds_per_thousand	. 64998	.0296202	21.94	0.000	.5919254	.7080345
reproduction_rate	-2.098343	.102799	-20.41	0.000	-2.299825	-1.89686
total_tests	2.03e-08	1.06e-09	19.09	0.000	1.82e-08	2.24e-08
population_density	0005328	.0001112	-4.79	0.000	0007508	0003147
gdp_per_capita	0000149	2.83e-06	-5.27	0.000	0000205	-9.37e-06
tests_per_case	0034304	.0001977	-17.35	0.000	0038179	0030428
total boosters	-1.60e-07	1.05e-08	-15.16	0.000	-1.80e-07	-1.39e-07
human_development_index	-22.96263	1.40414	-16.35	0.000	-25.71469	-20.21056
new cases	.0000174	1.66e-06	10.47	0.000	.0000141	.0000206
diabetes_prevalence	2829445	.0230135	-12.29	0.000	32805	2378389
median_age	. 0969443	.0155172	6.25	0.000	.0665311	.1273575
female_smokers	0979802	.0081205	-12.07	0.000	113896	0820644
_cons	17.37236	1.671301	10.39	0.000	14.09667	20.64805

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
sd(Residual)	3.831719	.0200837	3.792557	3.871285

[10] Estimation 7 : Modèle effets aléatoires temporels

Mixed-effects ML regression Group variable: date	Number of obs = Number of groups = Obs per group:	18,2 99 7 99
	min =	26
	avg =	26.0
	max =	26
	Wald chi2(15) =	7285.05
Log likelihood = -49669.148	Prob > chi2 =	9,9999

new_deaths_per_million	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
population	-2.89e-08	2.02e-09	-14.29	9.999	-3.28e-08	-2.49e-08
positive_rate	11.95298	.3127613	38.22	0.000	11.33998	12.56598
stringency_index	.0944473	.0025304	37.32	9.999	.0894878	. 0994069
nospital_beds_per_thousand	.6582866	. 027813	23.67	0.000	.6037743	.712799
reproduction_rate	-2.388315	.1124521	-21.24	9.999	-2.608717	-2.167913
total_tests	1.28e-08	1.03e-09	12.41	0.000	1.08e-08	1.48e-08
population_density	0005957	.0001045	-5.70	9.999	0008005	0003909
gdp per capita	0000147	2.66e- 9 6	-5.55	0.000	00002	-9.54e-06
tests_per_case	0017538	.0001984	-8.84	9.999	0021426	0013649
total boosters	-8.93e-08	1.04e-08	-8.62	0.000	-1.10e-07	-6.90e-08
human_development_index	-21.32683	1.321514	-16.14	9.999	-23.91695	-18.73671
new cases	.0000135	1.62e-86	8.30	9.999	.0000103	. 9999166
diabetes prevalence	2693782	. 021654	-12.44	9.999	3118191	2269372
median_age	.0995836	.0146351	6.80	9.999	.0708993	.1282678
female_smokers	0858784	.0077071	-11.14	9.999	1009841	0707728
cons	16.63673	1.581509	10,52	9,999	13.53703	19.73643

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
date: Identity sd(_cons)	1.42503	.0499138	1.330484	1.526296
sd(Residual)	3.592462	. 0192431	3.554943	3.630376

LR test vs. linear model: chibar2(01) = 1207.68 Prob >= chibar2 = 0.0000

[11] Estimation 8 : Modèle between sur les individus

Between regression (regression on group means) Group variable: code	Number of obs = 18,200 Number of groups = 26	
R-squared:	Obs per group:	
Within = 0.0025	min = 700	,
Between = 0.9324	avg = 700.0	į
Overall = 0.0052	max = 700)
	F(15,10) = 9.20	,
sd(u_i + avg(e_i.)) = .742988	Prob > F = 0.0006	,

new_deaths_per_million	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
population	1.24e-08	4.63e-08	0.27	0.794	-9.08e-08	1.16e-07
positive_rate	4.099495	7.375831	0.56	0.591	-12.33488	20.53387
stringency_index	.1096456	.0430726	2.55	0.029	.0136739	.2056172
hospital_beds_per_thousand	.6126222	.2101142	2.92	0.015	.1444585	1.080786
reproduction_rate	12.02084	5.464793	2.20	0.052	1554811	24.19716
total_tests	5.44e-08	1.86e-08	2.93	0.015	1.30e-08	9.58e-08
population_density	0000168	.0007837	-0.02	0.983	0017629	.0017294
gdp_per_capita	0000143	.0000159	-0.90	0.389	0000498	.0000211
tests_per_case	0016143	.0052342	-0.31	0.764	0132767	.0100482
total_boosters	-4.52e-07	3.75e-07	-1.21	0.255	-1.29e-06	3.83e-07
human_development_index	-16.18861	9.469941	-1.71	0.118	-37.28895	4.911736
new_cases	0001375	.000062	-2.22	0.051	0002756	6.21e-07
diabetes_prevalence	2755939	.1454192	-1.90	0.087	599608	.0484203
median_age	.2876649	.1022718	2.81	0.018	.0597891	.5155407
female_smokers	.0059088	.0556597	0.11	0.918	1181088	.1299264
_cons	-13.23662	11.1829	-1.18	0.264	-38.15368	11.68043

[12] Estimation 9 : Modèle between sur le temps

Between regression (regression on group means)			ber of ob		18,200	
Group variable: code	Num	ber of gr	oups =	26		
R-squared:		0bs	per grou	p:		
Within = 0.0025			,	min =	700	
Between = 0.9324				avg =	700.0	
Overall = 0.0052				max =	700	
		F(1	5,10)	=	9.20	
$sd(u_i + avg(e_i.)) = .74299$	38	Pro	b > F	=	0.0006	
new_deaths_per_million	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
population	1.24e-08	4.63e-08	0.27	0.794	-9.08e-08	1.16e-07
positive_rate	4.099495	7.375831	0.56	0.591	-12.33488	20.53387
stringency_index	.1096456	.0430726	2.55	0.029	.0136739	.2056172
hospital_beds_per_thousand	.6126222	.2101142	2.92	0.015	.1444585	1.080786
reproduction_rate	12.02084	5.464793	2.20	0.052	1554811	24.19716
total_tests	5.44e-08	1.86e-08	2.93	0.015	1.30e-08	9.58e-08
population_density	0000168	.0007837	-0.02	0.983	0017629	.0017294
gdp_per_capita	0000143	.0000159	-0.90	0.389	0000498	.0000211
tests_per_case	0016143	.0052342	-0.31	0.764	0132767	.0100482
total_boosters	-4.52e-07	3.75e-07	-1.21	0.255	-1.29e-06	3.83e-07
human_development_index	-16.18861	9.469941	-1.71	0.118	-37.28895	4.911736
new_cases	0001375	.000062	-2.22	0.051	0002756	6.21e-07
diabetes_prevalence	2755939	.1454192	-1.90	0.087	599608	.0484203
median_age	.2876649	.1022718	2.81	0.018	. 0597891	.5155407
female_smokers	.0059088	.0556597	0.11	0.918	1181088	.1299264
date						
22068	e	(omitted)				
22069	0	(omitted)				
		,,				
22761	9	(omitted)				
22762	0	(omitted)				
22763	0	(omitted)				
22764	0	(omitted)				
22765	9	(omitted)				
22766	0	(omitted)				

-13.23662 11.1829 -1.18 0.264 -38.15368 11.68043

[13] Test d'Hausman Estimation 2 – Estimation 3

	Coeffi	cients ——				
	(b) whithin2	(B) whithin⊤	(b-B) Difference	<pre>sqrt(diag(V_b-V_B)) Std. err.</pre>		
positive_r~e	12.16973	12.16973	1.32e-11			
stringency~x	.0801044	.0801044	-1.57e-13			
reproducti~e	-2.764855	-2.764855	-4.29e-12			
total_tests	-2.34e-10	-2.34e-10	-1.92e-20	1.73e-15		
tests_per_~e	0016632	0016632	-1.37e-15			
total_boos~s	-1.63e-08	-1.63e-08	-4.84e-21	9.55e-15		
new_cases	.0000146	.0000146	-5.00e-18	2.23e-13		

 $b = \hbox{Consistent under H0 and Ha; obtained from regress.} \\ B = \hbox{Inconsistent under Ha, efficient under H0; obtained from x treg.}$

B = Inconsistent under ma, erriclent under ma, obtained from x

Test of H θ : Difference in coefficients not systematic

_cons

chi2(3) = $(b-B)'[(V_b-V_B)^{-1}](b-B)$ = -0.00

[14] Script Python

-*- coding: utf-8 -*-

""

Created on Wed Jan 18 15:54:06 2023

@author: EMMA

....

----- IMPORTATION DONNEES & PACKAGES ---

```
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.model selection import GroupKFold
import statsmodels.api as sm
from statsmodels.stats.outliers influence import variance inflation factor
import numpy as np
# importation des données
data = pd.read excel("D:/M2 IDEE/S3/Données de Panel/plop.xlsx")
# ------ TEST VIF ------
 ______ #
#connaitre le nom des variables du dataframe pour les utiliser dans le test VIF
data.columns
#selection des variables pour le test
X = data[['total cases',
       'new_cases', 'new_cases_smoothed', 'total_deaths', 'new_deaths',
       'new deaths smoothed', 'total cases per million',
       'new_cases_per_million', 'new_cases_smoothed_per_million',
       'new_deaths_per_million',
       'new_deaths_smoothed_per_million', 'reproduction_rate', 'hosp_patients',
       'hosp_patients_per_million', 'total_tests', 'new_tests',
       'total tests per thousand', 'new tests per thousand',
       'new tests smoothed', 'new tests smoothed per thousand',
       'positive rate', 'tests per case', 'total vaccinations',
       'people vaccinated', 'people fully vaccinated', 'total boosters',
       'new vaccinations', 'new vaccinations smoothed',
       'total_vaccinations_per_hundred', 'people_vaccinated_per_hundred',
       'people_fully_vaccinated_per_hundred', 'total_boosters_per_hundred',
       'new vaccinations smoothed per million',
       'new_people_vaccinated_smoothed',
       'new_people_vaccinated_smoothed_per_hundred', 'stringency_index',
       'population_density', 'median_age', 'aged_65_older', 'aged_70_older', 'gdp_per_capita', 'extreme_poverty', 'cardiovasc_death_rate',
       'diabetes_prevalence', 'female_smokers', 'male_smokers',
       'hospital_beds_per_thousand', 'life_expectancy',
       'human_development_index', 'population',
       'excess_mortality_cumulative_absolute', 'excess_mortality_cumulative',
       'excess mortality', 'excess mortality cumulative per million']]
#création d'un dataframe pour contenir les valeurs du VIF
vif = pd.DataFrame()
vif["VIF Factor"]
                        [variance inflation factor(X.values, i) for i in
range(X.shape[1])]
vif["features"] = X.columns
print(vif)
# ----- SELECTION DES VARIABLES ---
-----#
#Selon les résulats du test VIF, nous allons conserver les variables ayant eu une
valeur inférieure à 11
#On compte le nb de variable ayant un VIF < 11
selection = vif["VIF Factor"]<11</pre>
selection = pd.DataFrame(selection)
selection["VIF Factor"].value_counts() #on remarque ici, que nous avons 12 variables
avec un VIF inférieur à 11
#on regroupe le dataframe des résultats vif avec celui qui nous indique les variables
```

a conserver

```
d = selection.merge(vif, how='inner', left index=True, right index=True)
#on récupère l'intitulé des variables a conserver
selected rows = d[d['VIF Factor y'] < 11]</pre>
print(selected rows)
liste_des_variables = selected_rows["features"].to list()
liste des variables
#on peut copier le résultat de 'liste_des_variables' pour intégrer les valeurs dans
l'algorithme de machine learning
# ----- MACHINE LEARNING ------
----- #
re model = LinearRegression(fit intercept=False)
#définition du groupe de panel
group = data["id"]
#définition de la variable a prédire et des variables explicarives
X = data[['new cases',
 'new_cases_per_million',
 'new_deaths_per_million',
 'total_tests_per_thousand',
 'positive rate',
 'tests per case',
 'new vaccinations',
 'new vaccinations smoothed per million',
 'new people vaccinated smoothed',
 'new people vaccinated smoothed per hundred',
 'population_density',
 'excess_mortality']]
y = data["total_deaths_per_million"]
# Create an instance of the GroupKFold splitter
gkf = GroupKFold(n splits=5)
# Iterate over the splits
for train_index, test_index in gkf.split(X, y, group):
    # Get the training and testing data
   X_train, X_test = X.iloc[train_index], X.iloc[test index]
   y train, y test = y.iloc[train index], y.iloc[test index]
   group train, group test = group.iloc[train index], group.iloc[test index]
    # Fit the model on the training data
   re_model.fit(X_train, y_train)
    # Make predictions on the testing data
   y_pred = re_model.predict(X_test)
```