問題 $\boxed{1}$ $\boxed{3}$ は解答用紙の表に、問題 $\boxed{2}$ $\boxed{4}$ はその裏に解答すること。

- ① 2点間の確率的移動について考える。点 1 にいたものが点 2 に移動する確率を 0 < a < 1、点 2 にいたものが点 1 に移動する確率を 0 < b < 1 とする。ある時点での点 1 , 点 2 における存在確率をそれぞれ p_0 、 q_0 $(p_0+q_0=1)$ とし、上記の移動操作を n 回繰り返した後の確率分布を p_n , q_n で表す。
 - ${\rm (i)}\ \begin{pmatrix} p_n\\q_n \end{pmatrix} = A \begin{pmatrix} p_{n-1}\\q_{n-1} \end{pmatrix}\ (n\geq 1)\ {\bf を満たす}\ n\ {\rm Cよらない2\,次正方行列}\ A\ {\bf を求めよ}.$
 - (ii) A の固有値と固有ベクトルを求めよ。
 - (iii) 極限 $\lim_{n\to\infty}A^n$ を求めよ。

$$\begin{bmatrix}2\end{bmatrix}$$
ベクトルの列 $\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$, $\begin{pmatrix}1\\-1\\1\\-1\end{pmatrix}$, $\begin{pmatrix}2\\0\\1\\8\end{pmatrix}$ を Gram-Schmidt の方法で正規直交化せよ。

 $\lceil 3 \rceil$ エルミート行列 $\sigma_1 \cos \theta + \sigma_2 \sin \theta \; (\theta \in \mathbb{R})$ をユニタリー行列により対角化せよ。

 $\boxed{4}$

- (i) \mathbb{R}^n の部分空間の定義を述べよ。
- (ii) 部分空間の基底と次元について説明せよ。