Departamento de Matemáticas

Prof. Luis J. Alías

Tarea 2: 4 de marzo de 2021 Fecha tope de entrega: 7 de marzo de 2021, a las 23:55

Importante: Justifica detalladamente todas tus respuestas.

Considera la superficie de revolución S generada al girar la curva parametrizada regular (f(u), 0, g(u)) alrededor del eje OZ, dada por la parametrización

$$X(u,v) = (f(u)\cos v, f(u)\sin v, g(u)),$$

con
$$f(u) > 0$$
 y $(f'(u))^2 + (g'(u))^2 > 0$.

Sea $\alpha(s) = X(u(s), v(s))$ un geodésica de S parametrizada por el arco y definida en un cierto intervalo $I \subset \mathbb{R}$, $\alpha: I \to S$. Demuestra que la función $f(u(s)) \operatorname{sen} \varphi(s)$ es una constante c, donde $\varphi(s)$ es el ángulo que forman los vectores $\frac{\partial X}{\partial u}(u(s), v(s))$ y $\alpha'(s)$.

Indicación: Si denotamos por $\phi(s)$ el ángulo que forman los vectores $\frac{\partial X}{\partial v}(u(s),v(s))$ y $\alpha'(s)$, comprueba primero que sen $\varphi(s)=\cos\phi(s)=f(u(s))v'(s)$. La ecuación intrínseca de las geodésicas en la parametrización X(u,v) también puede ayudar. ¡Y recuerda en todo momento que α está parametrizada por el arco!

$$\begin{split} & \left(\int \left(u | S_1 \right) \right) \times u_1 \times \left(S_2 \right) \right)' = \int \left(u | S_1 \right) u' | S_1 \times u_1 \times \left(S_1 \right) + \int \left(u | S_1 \right) \left(u_1 \times S_2 \right) \right) \\ & \left(u_1 \times u_2 \right) = \int \left(u_1 \times u_3 \right) \left(u_1 \times u_4 \right) + \int \left(u_1 \times u_3 \right) \left(u_1 \times u_4 \right) \right) \\ & \left(u_1 \times u_2 \right) + \left(u_2 \times u_3 \right) + \left(u_3 \times u_4 \right) + \left(u_4 \times u_4 \right) + \left(u_1 \times u_3 \right) + \left(u_1 \times u_4 \right)$$