# CSC 555 and DSC 333 Mining Big Data Lecture 9

Alexander Rasin

College of CDM, DePaul University

November 9<sup>th</sup>, 2021

# Tonight

- Clustering
- Document matching
- Map-side join

- Running Spark
- Recommender systems

# Canopy (Pre-)Clustering

Used for pre-processing

 Initialize centroids Points at a distance < T2 cannot Repeat be canopy centers themselves and belong to the canopy centered at Point P Pick random center Points at a distance > T1 are considered too far away do not Build canopy belong to the canopy Remove points Points at a distance > T2 but less than T2 from the center point are a part of the canopy but can also be canopy centers themselves Center of the Canopy(P)

# K-Means Clustering with Mahout

- Create a simple input file (12 points)
- \$MAHOUT\_HOME/bin/mahout org.apache.mahout.clustering.syntheticcontrol.kmea ns.Job --maxIter 8 --numClusters 3 --t1 5 -t2 3 input testdata --output kmeansRes



# Similarity of Sets

How do you compare two sets?



- Items represented by sets
  - Documents
  - Homeworks
  - Fingerprints
  - SQL Queries



Overlap = "Similarity"

# Jaccard Similarity Measure

- Clustering/recommender engines
- Find buyers with similar taste
  - Collaborative/content filtering
- Find movie-renters with similar taste
  - Netflix, Blockbuster
  - Ratings are 1-5, not boolean
    - Bag distance (minimum for intersection, sum for union)
    - $\{a,a,a,b\} <> \{a,a,b,b,c\} = 1/3$

# Shingling

- A mechanism to represent documents
- Pick value k
- Generate k-shingles to represent the document
  - Document = abcdabd
  - -2-shingles = {ab, bc cd, da, bd}
- Compute similarity
- White space? (' ', '\n', ...)

# Shingle Size

- What if we pick k=1?
- K large enough to keep shingle appearance probability low
- How many characters do you expect?
  - $-30^2 = 900$
  - $-30^3 = 27K$
  - $-30^4 = 810K$
  - $-30^5 = ^24M$  combinations

## Letter Distribution

- Letter distribution is not uniform
  - Scrabble values
- 810K combinations
- ZQZP
- Common 4-letter combinations are a much smaller subset
  - Others are unusual or impossible

# String Overhead

- Comparing strings is expensive
  - For k=9, abcdefghi and abcdefghz
- One of the many uses of hashing
  - Similar to compression (lossy)
  - Represent each shingle by a code (hash)
- How much space does the hash require?
  - k=9, 30^9 different potential shingles
- k=9 hashed to 4 bytes better than k=4
  - Effective space is much smaller



# Shingle Cost

- k=9 -> 9X document size
  - Hash to 4 bytes, still 4X
  - Does not fit in memory
- Create signatures
  - Again, hashing
  - Lossy compression
  - Similarity-preserving



# **Matrix Representation**

- Each document = binary vector
  - # elements
  - # of documents
- Jaccard measure
- Sparse matrix





Figure 3.2: A matrix representing four sets

# Minhashing

- Select a permutation of the matrix rows
- The first occurrence of 1 in the vector

$$-h(S_1) = a$$
 $-h(S_2) = c$ 
 $-h(S_3) = b$ 
 $-h(S_4) = a$ 

| Element | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|---------|-------|-------|-------|-------|
| b       | 0     | 0     | 1     | 0     |
| e       | 0     | 0     | 1     | ٥     |
| a       | (1)   | 0     | 0     | (1)   |
| d       | 1     | 0     | 1     | 1     |
| c       | 0     |       | 0     | 1     |

Figure 3.3: A permutation of the rows of Fig. 3.2

Similar to the Jaccard measure



# Minhash Signatures



- Permute and build a Minhash signature several times
- No need to build the permutation

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x + 1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|-----------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1               |
| 1   | 0     | 0     | 1     | 0     | 2            | 4               |
| 2   | 0     | 1     | 0     | 1     | 3            | 2               |
| 3   | 1     | 0     | 1     | 1     | 4            | 0               |
| 4   | 0     | 0     | 1     | 0     | 0            | 3               |

Figure 3.4: Hash functions computed for the matrix of Fig. 3.2

# **Comparing Document Pairs**

- The curse of the N<sup>2</sup>
  - 100,000 documents
  - Enough memory to store hash/signatures
  - ~100,000 x 100,000 pairs = ~10,000,000,000 comparisons
- This can take a long time
  - 1000 comparisons/second
  - 115 days
- (embarassingly) Parallelizable

# Locality-Sensitive Hashing

- Assign documents into "buckets"
- 100K => 50 buckets
  - -50 \* (2,000 \* 2,000 = 200,000K)
  - (vs 10,000,000K)
  - 115 days => 2.3 days



Hash each band



# Combining the Techniques

- Construct set of k-shingles (for some k)
  - Optionally hash shingles to n-bit values
- Arrange the documents by shingle value
- Pick a length for the minhash signatures
- Select a threshold t (false neg. vs speed)
- Construct candidate pairs by applying LSH
- Find the candidate matches
  - Optionally, look at the actual matched documents

## **Bloom Filter**

- Simple hashed approximation
- Find match (with false positives)
- Example
  - **10M URLs**
  - 8bits/URL (~10MB)
    - ~2% false positive rate
  - 10bits/URL (~12.5MB)
    - ~0.8% false positive





# A Break



# Map-join implementation

```
SELECT lo_quantity, AVG(lo_revenue)

FROM lineorder, dwdate

WHERE lo_orderdate = d_datekey AND d_year = 1994

AND lo_discount BETWEEN 6 AND 8

GROUP BY lo_quantity;
```



# Spark Principles | The = 8 blacks | 128 MB | 12

Distributed datasets



- data = (1, (2, 3, 4, 5))
- distData = sc.parallelize(data)
- distData.reduce(lambda a, b: a + b)
- distFile = sc.textFile("data.txt")
  - hdfs://... , s3n://
  - lengths = distFile.map(lambda s: len(s))
  - totalLength = lengths.reduce(lambda a, b: a + b)

# Spark Storage

- As close to data as possible (HDFS nodes?)
- Uses local disk to store data
  - Recommended 4-8 disks per node w/out RAID
- Recommend allocating up to 75% of RAM
- When data in RAM, performance networkbound

## **RDD** Persistence

- MEMORY\_ONLY
  - MEMORY\_ONLY\_2
- MEMORY\_AND\_DISK
  - MEMORY\_AND\_DISK\_2
- DISK ONLY
- Unpersist





# Spark Example

```
# Read file from HDFS
text_file = sc.textFile("hdfs://<sub>ip-172-31-29-219.us-west-</sub>
1.compute.internal/data/README.md")
lengths = text_file.map(lambda s: len(s))
print text file.take(100)
lengths.foreach(myprint)
print lengths.take(100)
totalLength = lengths.reduce(lambda a, b: a + b)
```

# Spark Example

```
# Read file from HDFS
text_file = sc.textFile("hdfs://ec2-54-67-64-123.us-west-
1.compute.amazonaws.com/data.txt")
counts = text_file.flatMap
       (lambda line: (ine.split(" ")).map(
        lambda word (word, 1)
        reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://ip-172-31-29-219.us-west-
1.compute.internal/data/output")
```

# Spark Example

## Recommender Systems

- Recommend
  - Movies/Purchases/News
- Content-based systems
  - Analyze user history
  - Find similar items
- Collaborative filtering
  - Similarity between users
  - Users like you also liked...





#### Coyote Urine Lure 16 oz.

Deerbusters

No customer reviews yet. Be the first.

List Price: \$19.95

Price: \$15.95

You Save: \$4.00 (20%)

#### In Stock.

Ships from and sold by MasterGardening.

### **Customers Who Bought This Item Also Bought**



Shake Away 9002020 20oz Cat Repellent Coyote / Fox Urine

**自由**的公司 (14)

\$14.99



Coyote Urine Lure-32 oz

南南南南南(4)

\$29.95



Guilty: Liberal "Victims" and Their Assault on Ame... by Ann Coulter

\$10.88





Hello. Sign in to get personalized recommendations. New customer? Start here.

Your Amazon.com Today's Deals Gifts & Wish Lists Gift Cards



#### Large Crowbar

Other products by Emergency Disaster Systems, Inc. No customer reviews yet. Be the first. | More about this product

Price: \$12.00

#### In Stock.

Ships from and sold by Emergency Disaster Systems, Inc..



Up to 70% Savings on Thousands of Products

Find great bargains on thousands of products in Sports & Outdoors orders. Shop now.

Exercise & Fitness

See larger image

Share your own customer images

#### Frequently Bought Together

Customers buy this item with The Zombie Survival Guide: Complete Protection from the Living Dead by Max Brooks





Price For Both: \$22.04



Add both to Wish List

These items are shipped from and sold by different sellers. Show details

# **Utility Matrix**

- Users/ratings
- Very sparse

|                | HP1 | HP2 | HP3 | $\overline{\text{TW}}$ | SW1 | SW2 | SW3 |
|----------------|-----|-----|-----|------------------------|-----|-----|-----|
| $\overline{A}$ | 4   |     |     | (5)                    | (1) |     |     |
| B              | 5   | 5   | 4   |                        |     |     |     |
| C              |     |     |     | 2                      | 4   | 5   |     |
| D              |     | 3   |     |                        |     |     | 3   |

# Populating the Utility Matrix

- Determine the (relevant) features
- Populate the values
  - User purchase
  - User like/dislike
  - User rating

# Collaborative Filtering

Jaccard measure loses information



- A<->B
  - Jaccard similarity of 1/5 (distance of 4/5)
  - Yet they agree on HP1 (the only common movie)
- A<->C
  - Jaccard distance of 1/2

# Rounding the Data

## Replace

$$-1$$
, 2 => No rating

|                | HP1 | HP2 | HP3 | TW | SW1 | SW2 | SW3 |
|----------------|-----|-----|-----|----|-----|-----|-----|
| $\overline{A}$ | 1   |     |     | 1  |     |     |     |
| B              |     | 1   | 1   |    |     |     |     |
| C              |     |     |     |    | 1   | 1   |     |
| D              |     | 1   |     |    |     |     | 1   |

### Jaccard

- A to B distance => 3/4
- A to C distance => 1

# Normalizing Ratings

- Subtract the average from each value
  - How "different" is the rating

| 4213           | HP1           | HP2                                                                | HP3                                                                               | TW                                                                                                            | SW1                                                    | SW2                                                    | SW3                                                    |
|----------------|---------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| $\overline{A}$ | 2/3           |                                                                    |                                                                                   | 5/3                                                                                                           | -7/3                                                   |                                                        |                                                        |
| B              | 1/3           | 1/3                                                                | (-2/3)                                                                            |                                                                                                               |                                                        |                                                        |                                                        |
| C              |               |                                                                    |                                                                                   | -5/3                                                                                                          | 1/3                                                    | 4/3                                                    |                                                        |
| D              |               | (0)                                                                | )                                                                                 |                                                                                                               |                                                        |                                                        | $\left(0\right)$                                       |
|                | A $B$ $C$ $D$ | $ \begin{array}{c c}  & \text{HP1} \\ \hline A & 2/3 \end{array} $ | $\begin{array}{c cccc} & \text{HP1} & \text{HP2} \\ \hline A & 2/3 & \end{array}$ | $\begin{array}{c ccccc} & \text{HP1} & \text{HP2} & \text{HP3} \\ \hline A & 2/3 & & & \\ \hline \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

# Clustering Users/Items

- Utility matrix is very sparse
  - Unlikely to find many matches
  - Cluster to unite attributes

|   | HEI | HP2 | HP3 | T VV | SWI        | SW2            | SW3  |    |                    |
|---|-----|-----|-----|------|------------|----------------|------|----|--------------------|
| A | (4) |     |     | 5    | 1          |                |      |    |                    |
| B | 5   | 5   | 4   |      |            |                |      |    |                    |
| C |     |     |     | 2    | $\sqrt{4}$ | 5              |      |    |                    |
| D |     | 3   |     |      |            |                | 3    |    |                    |
|   |     |     |     |      |            |                | HP   | TW | SW                 |
|   |     |     |     |      |            | $\overline{A}$ | 4    | 5  | 1                  |
|   |     |     |     |      |            | B              | 4.67 | )  |                    |
|   |     |     |     |      |            | C              |      | 2  | $\left(4.5\right)$ |
|   |     |     |     |      |            | D              | 3    |    | 3                  |

# Clustering Users/Items

- Hierarchical clustering
- Revised matrix is denser
- Can also cluster users in the same manner
- Can repeat the process

|   | HP   | TW | SW  |
|---|------|----|-----|
| A | 4    | 5  | 1   |
| B | 4.67 |    |     |
| C |      | 2  | 4.5 |
| D | 3    |    | 3   |

# Collaborative Filtering

- MovieLens data
  - (User, Movie, Rating, Date)
  - Predict/recommend movies
- Netflix challenge
  - 480,000 users
  - 18,000 movies
  - 100M ratings
  - Minimize RMSE (2.8M testing set)
    - Netflix's CineMatch scored 0.9514

# Netflix Challenge

- Data had been removed
- Removing user info does not "anonymize"
  - Can reverse-engineer users
  - With 8 movie ratings and a up to 14 day error dates => 99% can be identified
  - Two ratings with 3 day error => 68% identified
  - 6 movies outside of top 500 (without dates) => 84% accuracy
- Can mine IMDB for data

## Matrix Decomposition Example



# Root Mean Squared Error

Evaluate error between estimator and actual values

- Vectors: 
$$\theta_1 = \begin{bmatrix} x_{1,1} \\ x_{1,2} \\ \vdots \\ x_{1,n} \end{bmatrix} \quad \text{and} \quad \theta_2 = \begin{bmatrix} x_{2,1} \\ x_{2,2} \\ \vdots \\ x_{2,n} \end{bmatrix}.$$

$$\sqrt{\frac{\sum_{i=1}^{n} (x_{1,i} - (x_{2,i})^2)}{n}}$$



## **Next Time:**

- Larger Hadoop Ecosystem Overview
- Web advertising
- Mining Social Graphs