Application No. 10/057,629

Amendment dated: November 15, 2005

In Reply to Office Action of: October 20, 2004

Attorney Docket No. CV01382K

REMARKS

Claims 1, 8-11, 13-24, 32-45 and 48-56 are pending in the application.

Claims 2-7, 12, 25-31, 46, 47, 57 and 58 have been withdrawn from consideration by the Examiner as being non-elected. Claims 48-52 have been canceled previously, without prejudice to filing one or more divisional applications directed to the canceled subject matter thereof.

At pages 2-3 of the Office Action, claim 10 has been rejected under 35 U.S.C. § 112, second paragraph for indefiniteness. Applicants have represented the claims of the last amendment as some structures within the claims did not print properly in the last response. Applicants attorney apologizes for this inconvenience and requests that the rejection be reconsidered and withdrawn.

At pages 4-5 of the Office Action, claim 56 has been rejected under 35 U.S.C. §102(b) as anticipated by US 5,767,115 ("115 patent") or US 5,846,966 ("966 Patent"). For brevity, the reasons for rejection are not repeated herein but reference is made to the outstanding Office Action.

Applicants respectfully traverse this rejection and request that the rejection be reconsidered and withdrawn.

Regarding the rejection of claim 56, claim 56 reads as follows:

"A method of reducing plasma or tissue concentration of at least one compound selected from the group consisting of phytosterols, 5α -stanols and mixtures thereof, comprising administering to a mammal in need of such treatment an effective amount of at least one sterol absorption inhibitor or a prodrug or a pharmaceutically acceptable salt thereof and at least one bile acid sequestrant." (emphasis added).

In order to support an anticipation rejection under §102(b), each and every element of the claimed invention or its substantial equivalent must be found within the four corners of a single reference cited by the Examiner to anticipate.

Application No. 10/057,629 Amendment dated: November 15, 2005 In Reply to Office Action of: October 20, 2004 Attorney Docket No. CV01382K

Hybritech Inc. v. Monoclonal Antibodies, Inc., 231 U.S.P.Q. 81, 90 (Fed. Cir. 1986).

Neither the '115 patent nor the '966 patent disclose combinations of a bile acid sequestrant and sterol absorption inhibitor. Also, neither reference discloses reduction of plasma or tissue concentration of phytosterols, 5α -stanols or mixtures thereof. Therefore, Applicants respectfully request that the rejection of claim 56 under 35 U.S.C. §102(b) be reconsidered and withdrawn.

At pages 5-8 of the Office Action, claims 1, 8-11, 13-24, 32-42 and 53-55 have been rejected under 35 U.S.C. §103(a) as obvious over US 5,846,966 ("Rosenblum et al.") in view of Belamarich et al. (Pediatrics, 1990; 86(6):977-81).

For brevity, the reasons for rejection are not repeated herein but reference is made to the outstanding Office Action.

Applicants respectfully traverse this rejection and request that the rejection be reconsidered and withdrawn.

When making a rejection under 35 U.S.C. § 103, the Examiner has the burden of establishing a <u>prima facie</u> case of obviousness. <u>In re Fritch</u>, 23 U.S.P.Q.2d 1780, 1783 (Fed. Cir. 1992). The Examiner can satisfy this burden only by showing an objective teaching in the prior art, or knowledge generally available to one of ordinary skill in the art, which would lead an individual to combine the relevant teachings of the references [and/or the knowledge] in the manner suggested by the Examiner. <u>Id.</u>; <u>In re Fine</u>, 5 U.S.P.Q.2d 1596, 1598 (Fed. Cir. 1988).

The mere fact that the prior art could be modified does not make the modification obvious *unless the prior art suggests the desirability of the modification* (emphasis added). <u>In re Fritch</u>, 23 U.S.P.Q.2d at 1784; <u>In re Laskowski</u>, 10 U.S.P.Q.2d 1397, 1398 (Fed. Cir. 1989); <u>In re Gordon</u>, 221 U.S.P.Q. 1125, 1127 (Fed. Cir. 1984).

"The ultimate determination of patentability must be based on consideration of the entire record, by a preponderance of evidence, with due

Application No. 10/057,629 Amendment dated: November 15, 2005 In Reply to Office Action of: October 20, 2004 Attorney Docket No. CV01382K

consideration to the persuasiveness of any arguments and any secondary evidence." Manual of Patent Examining Procedure, (Rev. 1, Feb. 2003) § 716.01(d) and In re Oetiker, 24 U.S.P.Q.2d 1443, 1444 (Fed. Cir. 1992).

Rejection of Claims 1, 8-11, 13, 14, 34-40 and 53

Claim 1 relates to a method of treating sitosterolemia, comprising administering to a mammal in need of such treatment an effective amount of at least one sterol absorption inhibitor, or pharmaceutically acceptable salt or solvate of the least one sterol absorption inhibitor, or prodrug of the at least one sterol absorption inhibitor or pharmaceutically acceptable salt or solvate of the least one sterol absorption inhibitor, or mixture thereof.

Claim 1 does not require combination with another drug.

Claims 8-11 depend from claim 1 and recite more specific groups of sterol absorption inhibitors. Claims 13 and 14 also depend from claim 1 and recite amounts of sterol absorption inhibitor to be administered.

Claims 34-40 and 53 relate to methods of reducing plasma or tissue concentration of at least one non-cholesterol sterol, $5-\alpha$ stanol, or mixture thereof by administering such compounds, including to sitosterolemics.

Rosenblum et al. disclose that ezetimibe, optionally in combination with an HMG-CoA reductase inhibitor such as simvastatin or lovastatin, is useful for reducing cholesterol and risk of atherosclerosis. Rosenblum et al. do not suggest or disclose use of ezetimibe for treating sitosterolemia.

Belamarich et al. do not disclose that ezetimibe or other sterol absorption inhibitors are useful for treating sitosterolemia. Belamarich et al. do not teach that hypercholesterolemia is "one of the manifestation[s] of sitosterolemia" as alleged in the Office Action, but rather that some sitosterolemics can also have hypercholesterolemia.

Compounds that are used to treat hypercholesterolemia may not be effective in treating sitosterolemia. For example, "[l]ovastatin, a competitive

Application No. 10/057,629

Amendment dated: November 15, 2005

In Reply to Office Action of: October 20, 2004

Attorney Docket No. CV01382K

inhibitor of cholesterol biosynthesis that is widely used in the treatment of hypercholesterolemia has been tried but has not been an effective treatment in sitosterolemia." G. Salen et al., 33 Journal of Lipid Research 945-955, 952 (1992) (a copy of which has been attached as Exhibit A for the Examiner's reference). Therefore, it would not be obvious to one skilled in the art to administer a compound useful for treating hypercholesterolemia to a sitosterolemic patient.

Sitosterolemia or phytosterolemia is an inherited disorder in which there is a hyperabsorption of **phytosterols** (plant sterols such as sitosterol, campesterol, stigmasterol and avenosterol) **and shellfish sterols** resulting in tendon and tuberous xanthomata. Stedman's Medical Dictionary, 27th Ed. (2000) 1381 (a copy of which has been attached as Exhibit B for the Examiner's reference). Sitosterolemia also can result in accelerated atherosclerosis, hemolytic episodes, arthritis and arthralgias. G. Salen et al. at 945.

Plasma cholesterol concentrations can vary considerably in sitosterolemic subjects. <u>Id.</u> at page 946. As shown in Table 1 of the Salen reference, cholesterol levels in sitosterolemics may be low but are usually increased over age matched controls. <u>Id.</u> One homozygous sitosterolemic patient (subject CL) in Table 1 had a cholesterol level of only 134 mg/dl.

There is a long felt unfulfilled need for a treatment for sitosterolemics that inhibits absorption of phytosterols and shellfish sterols without the disadvantages of such treatments as cholestyramine (a bile acid sequestrant) or ileal bypass surgery. Assignee is successfully marketing Zetia® ezetimibe formulation in the United States and Ezetrol® ezetimibe formulation in Germany (which contain a compound of Formula (VIII) according to the presently claimed invention), which is approved for treatment of homozygous sitosterolemia. This treatment avoids the undesirable side effects such as constipation that can occur in sitosterolemic patients taking cholestyramine and avoids the pain and inconvenience of ileal bypass surgery, which are current standard treatments for sitosterolemia.

39

Application No. 10/057,629

Amendment dated: November 15, 2005

In Reply to Office Action of: October 20, 2004

Attorney Docket No. CV01382K

Neither the teachings of Rosenblum et al. nor those of Belamarich et al., taken alone or combined as set forth in the Office Action, suggest or disclose use of a sterol or $5-\alpha$ stanol absorption inhibitor, such as ezetimibe, for treatment of sitosterolemia. As discussed above, not all cholesterol treatments are successful for treating sitosterolemia. Neither Rosenblum et al. nor Belamarich et al. provides any guidance as to factors to predict success of cholesterol treatments for treating sitosterolemia.

Therefore, Applicants respectfully request that the rejection of claims 1, 8-11, 13, 14, 34-40 and 53 under 35 U.S.C. § 103 be reconsidered and withdrawn.

Rejection of claims 15-24, 33, 41, 42, 43, 54 and 55

Generally, claims 15-24, 33, 41, 42, 43, 54 and 55 depend from claims 1 and 39 and further require the presence of at least one lipid lowering agent, such as an HMG-CoA reductase inhibitor (for example simvastatin or lovastatin) with the at least one sterol absorption inhibitor.

As discussed above, Rosenblum et al. disclose that ezetimibe, optionally in combination with an HMG-CoA reductase inhibitor such as simvastatin or lovastatin, is useful for reducing cholesterol and risk of atherosclerosis.

Rosenblum et al. do not suggest or disclose use of ezetimibe or HMG-CoA reductase inhibitor for treating sitosterolemia.

Belamarich et al. do not disclose that ezetimibe or other sterol absorption inhibitors are useful for treating sitosterolemia. Belamarich et al. teach away from using an HMG-CoA reductase inhibitor for treating sitosterolemia by noting '[I]t has recently been hypothesized that the hyperabsorption of plant sterols and cholesterol observed in sitosterolemia is a compensatory response to a deficiency of the rate-limiting enzyme of cholesterol biosynthesis, hydroxymethylglutaryl-Co A reductase". One skilled in the art would not be motivated by this disclosure in Belamarich et al. to administer an HMG-Co A reductase inhibitor to a sitosterolemic patient.

Therefore, it would not be obvious to one skilled in the art to administer a compound useful for treating hypercholesterolemia to a sitosterolemic patient.

Neither the teachings of Rosenblum et al. nor those of Belamarich et al., taken alone or combined as set forth in the Office Action, suggest or disclose use of a sterol or $5-\alpha$ stanol absorption inhibitor, such as ezetimibe, in combination with an HMG-Co A reductase inhibitor for treatment of sitosterolemia. As discussed above, not all cholesterol treatments are successful for treating sitosterolemia.

Therefore, Applicants respectfully request that the rejection of claims 15-24, 32, 33, 41, 42, 54 and 55 under 35 U.S.C. § 103 be reconsidered and withdrawn.

Rejection of claims 32 and 43-45

Generally, claims 32 and 43-45 relate to methods of treating sitosterolemia using at least one bile acid sequestrant with at least one sterol absorption inhibitor.

As discussed above, Rosenblum et al. disclose that ezetimibe, optionally in combination with an HMG-CoA reductase inhibitor such as simvastatin or lovastatin, is useful for reducing cholesterol and risk of atherosclerosis.

Rosenblum et al. do not suggest or disclose use of ezetimibe or HMG-CoA reductase inhibitor for treating sitosterolemia. Rosenblum et al. do not suggest or disclose use of bile acid sequestrants at all.

Belamarich et al. do not disclose that ezetimibe or other sterol absorption inhibitors are useful for treating sitosterolemia. Therefore, it would not be obvious to one skilled in the art to administer a sterol absorption inhibitor compound useful for treating hypercholesterolemia to a sitosterolemic patient.

Neither the teachings of Rosenblum et al. nor those of Belamarich et al., taken alone or combined as set forth in the Office Action, suggest or disclose use of a sterol or $5-\alpha$ stanol absorption inhibitor, such as ezetimibe, in combination

Application No. 10/057,629

Amendment dated: November 15, 2005

In Reply to Office Action of: October 20, 2004

Attorney Docket No. CV01382K

with a bile acid sequestrant for treatment of sitosterolemia. As discussed above, not all cholesterol treatments are successful for treating sitosterolemia.

Therefore, Applicants respectfully request that the rejection of claims 32 and 43-45 under 35 U.S.C. § 103 be reconsidered and withdrawn.

In view of the foregoing remarks, it is respectfully submitted that all of the pending claims in the present application comply with the requirements of 35 U.S.C. § 112 and are distinguishable from the cited prior art. Accordingly, reconsideration and withdrawal of the rejection and an early Notice of Allowance are respectfully requested.

Respectfully submitted,

ANN MARIE CANNONI Registration No. 35,972 Attorney for Applicant

Date: November 15, 2004

Webb Ziesenheim Logsdon Orkin &

Hanson, P.C.

700 Koppers Building Pittsburgh, PA 15219

Phone: (412) 471-8815 Fax: (412) 471-4094

E-mail: acannoni@webblaw.com

ExhibitA

minireview

Sitosterolemia

Gerald Salen, Sarah Shefer, Lien Nguyen, Genc C. Ness, G. S. Tint, and Virgie Shore

Department of Medicine, UMD-New Jersey Medical School, Newark, NJ 07103 and VA Medical Center, East Orange, NJ 07019; Department of Biochemical and Molecular Biology, College of Medicine, University of South Florida, Tampa, FL 33612; and Lawrence Livermore National Laboratory, Livermore, CA 94550

It is almost 18 years since the first reports on sitosterolemia appeared (1). Two sisters with tendon xanthomas and normal plasma cholesterol levels were found to have elevated plant sterol concentrations in the plasma. A high percentage of dietary situsterol was absorbed from the intestine, as measured by the sterol balance rechnique, and was believed to account for the plant sterol accumulation. Since the original report, 27 patients from 16 families have been detected (1-14). The clinical presentation includes tendon xanthomas, accelerated atherosclerosis particularly affecting males at a young age, hemolytic episodes, and arthritis and arthralgias. The risk of premature atherosclerosis was observed in several young male subjects who died because of acute myocardial infarctions associated with extensive coronary and aortic arteriosclerosis. The youngest was a 13-year-old Amish male who had four other homozygous siblings (3). In addition, a 17-year-old male, personally followed by the authors, developed angina pectoris, showed an abnormal cardiac stress test with decreased coronary artery perfusion, and died suddenly of an acute myocardial infarction while exercising (15). Examination of his coronary arteries at post mortem revealed 60% occlusion of the left anterior descending coronary artery (Fig. 1). However, multiple microinfarctions were noted in the myocardium which suggested that the atherosclerotic process had begun carlier and was chronic and progressive.

Sitosterolemia is inherited as a recessive trait (14). Heterozygotes are clinically and biochemically normal, although plasma situaterol levels of some heterozygous subjects may be alightly but significantly increased over controls. These values still differ quantitatively from homozygotes by 10- to 20-fold (9, 12). Of interest is the high degree of inheritance of the homozygous state. In two unrelated families, homozygous sitosterolemia was present in 4/4 and 2/4 siblings respectively, from each family.

Biochemical features

The ballmark biochemical feature of the disease is the demonstration of elevated concentrations of situsterol

(24-ethyl cholesterol) in the plasma (1, 16). Actually all dietary sterols are found in plasma (17), but since sitosterol is usually the most abundant in the diet, proportionately greater quantities are present in plasma and tissues (Fig. 2). For this reason, the condition has been named sitosterolemia (17). In addition, the respective 5adihydro derivative of cholesterol (cholestanol) and the 5cedihydro plant sterol derivatives, 5\a-campestanol and 5\asitostanol, are present in increased amounts in plasma and tissues (Fig. 3) (18, 19). As diets contain only small amounts of cholestanol, 5\alpha-campestanol, and 5\alphasitostanol, the 5a-dihydro derivatives probably are produced endogenously in larger amounts (19).

The diagnosis of sitosterolemia is established by demonstrating increased amounts of plant sterols (campesterol, sitosterol, stigmasterol, and avenosterol) and 5astanols in plaama and tissues (1, 15, 19). The usual colorimetric assay that depends on a double bond between carbons 5 and 6, or enzymetic method that detects the 38hydroxy group do not distinguish sitosterol from cholesterol. Therefore, to find plant sterols and 50-stanols and establish the diagnosis, gas-liquid chromatography using a capillary column is necessary (Fig. 4), although high performance liquid chromatography can also be applied (12). In one family with four homozygous siblings, the unsaturated sterols represented about 16% of the total plasma sterols with cholestanol and 5a-dihydro plant stanols making up about 4% (2, 8). In other families, plant sterols and 50-stanols may account for as little as 11% to as much as 25% of the plasma sterols (2, 3, 19). Thus, cholesterol represents only about 80% of the total plasma sterols in sitosterolemic homozygotes. The concentration and distribution of sterols and stanols from a number of sitosterolemic homozygotes from five families and their heterozygous relations are presented in Table 1.

Journal of Lipid Research Volume 33, 1992

Abbreviations: VLDL, very low density lipoprotein; LDL, low denaity lipoprotein; IDL, intermediate density lipoprotein; HDL, high density lipoprotein; CTX, cerebrotendinous xanthomacosis; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A.

Fig. 1. Section of coronary artery from a 17-year-old sitosterolemic male who died of an acute myocardial inforction. Sixty percent occulsion of the vessel lumen by atherosclerotic thickening of the vessel wall.

for controls, values from 20 healthy subjects are given; they show that cholesterol normally represents 99.6% of the total sterols with about 0.2% cholestanol and 0.2% plant sterols. In some heterozygotes, cholestanol and sitosterol levels are similar to controls (20-22). However, in several obligate heterozygotes, cholestanol and sitosterol levels were slightly but significantly higher than the control means, but still substantially less than those found in their homozygous offsprings (9, 12). Plasma cholesterol concentrations may also vary considerably in homo-

zygotes. As illustrated in Table 1, cholesterol levels may be low but are usually increased over age matched controls. However, some subjects (LBU) show extremely high cholesterol concentrations that resemble the levels found in LDL receptor-deficient hypercholesterolemic subjects.

Plasma lipoproteins have been measured in homozy-gous sitosterolemic subjects and the increased amounts of unsaturated plant sterols and saturated 5\(\tau\)-stanols are distributed in about the same proportion among the various lipoprotein fractions (HDL, LDL, IDL and VLDL)

46 Journal of Lipid Research Volume 93, 1992

Fig. 2. Structure of plant sterols found in plasma of situsterolemic subjects. These sterols have the same ring nucleus as cholesterol, but differ by the addition of substituents on the side chain at carbon 24, the presence of a double bond at carbon 22 in stigmasterol, and a double bond between carbons 24 and 28 ir. avenosterol.

(1, 6, 23). However, low density lipoprotein (LDL) concentrations tend to be elevated, reflecting higher total
sterol concentrations as compared to age- and sexmatched controls. Despite the incorporation of increased
amounts of plant sterols and 5α-saturated stanols,
preparative density gradients for each lipoprotein class
were similar to that of controls (23). The major proportion of the total low density lipoproteins was isolated in
the subfraction of d 1.034 g/ml. The mean particle diameter, 25.7 ± 2.8 nm, for sitosterolemic LDL was not
unusual as determined by electron microscopy, and the
sitosterolemic LDL was not distinguishable morphologi-

R-CH₃ 24-methyl Cholestonoi

R-C2H5 24-ethyl Cholasianol

Fig. 3. Structures of 50-saturated stands found in plasma of sitosterolemic subjects. Cholestand is the 50x-dihydro derivative of cholesterol; 50x-campestand and 50x-sitostand are the 50x-dihydro derivatives of campesterol and sitosterol, respectively.

cally from normal LDL. High density lipoprotein (HDL) concentrations tended to be normal or low in the homozygous sitosterolemic subjects (23). Electron microscopy of HDL from a male sitosterolemic subject with severe symptomatic atherosclerosis showed that the particles were round with a mean diameter of 8.5 x 1.7 nm. consistent with the predominance of small, dense HDL (23).

Plasma concentrations of apolipoprotein B are usually increased and apolipoprotein A-l decreased for sitosterolemic homozygotes (23). However, normal plasma apoB and A-l levels were present in heterozygotes (20, 24). Thus, apolipoprotein values reflect the increased LDL and usually low HDL concentrations detected in these patients as determined by analytical and preparative ultracentrifugation (23).

Tissue sterol concentrations were measured in a 17-year-old sitosterolemic homozygote male who died unexpectedly of an acute myocardial infarction, and showed about 16% plant sterols and 5α-stanols in plasma (15). The total sterol concentrations in red blood cells, liver, lung, and heart were not different from control, but the cholesterol concentrations in these tissues were reduced and offset by the increased amounts of plant sterols and 5α-saturated stanols. Of importance, the individual plant sterols and 5α-saturated stanols were deposited in the tissues in about the same proportion that they were present in LDL. This suggested that the tissue sterols originated

Fig. 4. Capillary gas-liquid chromatogram of plasma sterols and 5a-stanols from a homozygous electerolemic subject. In normal plasma only cholesterol and trace amounts (< 1%) of cholestanol and sitosterol are detected. 5a-Cholestane is added as an internal standard. Separation was performed on Chrompack CRWax-57CB capillary column.

Salen et al. Sitosterolemia

TABLE 1. Plasma sterols and stanols

			TABLE 1. Plas	ma sterols and ste	211018		
			Situateral	Campesterol	Sa-Cholestanol	5a-Sitostanol	50-Campesiano
Patients	Age	Cholestoral	Januara		mg/dl		
Homozygous, KCN (10) TC (10) TC (10) CB (10) CL JBR' LBU	29 23 27 18 28 42 14 24	184 ± 25 202 ± 25 233 ± 12 249 ± 39 292 ± 8 .134. 256 482	15 ± 2 14 ± 4.1 21 ± 8.3 20 ± 5.5 13 ± 0.9 27 30 56	7.5 ± 1.1 B ± 3.1 10 ± 0.5 13 ± 1.5 B ± 0.2 13 14.5 24.0	2.1 ± 1.0 4.7 ± 1.0 3.8 ± 1.4 7.5 ± 2.4 1.8 ± 0.1 1.6 4.0 31.0 0.65 ± 0.21	2.9 ± 1.0 2.2 ± 1 5.4 ± 1.2 3.9 ± 1.0 1.9 ± 1.0 9.0 2.7 6.0	1.J = 0.9 1.4 ± 0.2 1.9 ± 1.0 2.6 ± 0.4 2.5 4.0 ND
Hererozygotes AC' (5) VC' (5) DB' (8) RBR' Controls, n = 20	50 56 25 48 17-62	210 ± 26 194 ± 14 204 ± 27 254 180 ± 5	0.95 ± 0.17 0.36 ± 0.09 0.65 ± 0.05 0.8 0.22 ± 0.20	ND ND ND	0.34 ± 0.19 0.34 ± 0.13 1.2 0.20 ± 0.20	ир Ои Ои	ND ND ND

^{&#}x27;C family, includes heterosygous parents.

from plasma. In contrast, brain sterols in the sitosterolemic subject were composed almost entirely of cholesterol (15). Thus, despite the presence of large amounts of plant sterols and 5\arriverstanols, the blood-brain barrier in sitosterolemia remains intact and is not permeable to circulating LDL. This is in contradistinction to cerebrotendinous xanthomatosis (CTX), a lipid storage disease, where increased amounts of cholestanol deposit in the brain and suggests that the blood brain-barrier is damaged and more permeable to circulating LDL (2, 15). Interestingly, atheromas in the aorta of this sitosterolemic subject contained increased amounts of esterified sterols, about 50% of the cholesterol and situsterol were esterified as compared with only 10% esterified sterols in visceral organs (15).

Sterol composition in bile is different from controls in sitosterolemia. Not only is less cholesterol secreted into the bile, but sitosterol appears in the same or lower proportion relative to cholesterol in bile as compared in plasma (1, 2, 5, 6, 25). Normally the liver preferentially secretes sitosterol into bile so there is a 3-fold enrichment of sitosterol relative to cholesterol as compared to blood in control subjects (26). Biliary bile acids include cholic acid, deoxycholic acid, and lesser amounts of chenodeoxycholic acid and are secreted into bile in amounts adequate to prevent steatorrhea (1, 2, 4, 5, 27). No unusual biliary bile acids were detected, although it has not been established whether sitosterol and other plant sterols can be converted to primary bile acids in homozygotes. Recently, Bhattacharyya et al. (25) reported radioactive bile acids derived from [14C]sitosterol in the feces of three sitosterolemic subjects, but the precise indentification of these

compounds was not carried out (28, 29). However, it was noted that the large quantities of situsterol and cholestanol in sitosterolemic liver competitively inhibited cholesterol 7a-hydroxylase, the rate-determining enzyme for bile acid synthesis, which may eventually lead to decreased bile acid production and deficient pool size (27). Thus, sitosterolemic liver has lost both the capacity to recognize sitosterol and the ability to preferentially secrete the 24-ethyl sterol into the bile. In addition, cholesterol secretion into bile is markedly diminished. Also, since biliary cholesterol secretion (lithogenicity) relative to bile acids and phospholipids is decreased (4), gallstones have not been detected in sitosterolemic subjects. (G. Salen, unpublished observation).

Monocyte (mononuclear leukocytes) sterol composition has been measured in four sitosterolemic homozygotes (30). The sterols and stanols are similar in composition (sitosterol, campesterol, cholestanol, 5a-campestanol, and 5a-sitostanol) as found in LDL indicating that the plant sterols and stanols originate from plasma. However, total sterol concentrations in monocytes from the sitosterolemic homozygotes were 2 to 3-times larger than in control monocytes. Thus, monocytes, which are precursors to foam cells, contain increased quantities of cholesterol, plant sterols, and 50-stanols that may contribute to the accelerated atherosclerotic process in this disease.

Sitosterol metabolism

It has long been known that sitosterol is poorly absorbed from the intestine (26, 31). The low plasma concentrations found in animals and humans fed large amounts of dietary plant sterols attest to restricted intesti-

·:

Number of samples analyzed in parentheses.

^{&#}x27;B samily, includes heterozygous sister. R family, includes beterozygous mother.

^{&#}x27;ND, not detected.

nal absorption (26). However, early sitosterol balance studies, where fecal outputs were measured and subtracted from dietary inputs, gave confusing high values (between 30 to 50% of intake) for absorption (26). To overcome potential errors in the balance technique, sitosterol absorption has been measured by two independent isotopic methods. The isotope kinetic method estimates absorption by mathematical analysis of specific activity decay curves after intravenous pulse-labeling with a tracer dose of radioactive sitesterol (26, 32-34). In normal and hyperlipidemic subjects, the plasma specific activity decay of sitosterol is much more rapid than the specific activity decay of cholesterol when both isotopic sterols were injected intravenously (Fig. 5) (5, 23-26). These decay curves can be divided into two exponentials and analyzed mathematically according to the two-pool model. Table 2 lists values for controls and three homozygous sitosterolemic subjects from two unrelated families. Since sitosterol is not synthesized endogenously in normal humans and sitosterolemic subjects (5, 26), the production rate is equivalent to absorption and in the control subjects amounted less than 10 mg per day or about 5% of daily intake. Mean total sitosterol body pool size was also calculated and amounted to about 130 mg in controls. In contrast, sitosterol turnover in the three homozygous sitosterolemic subjects was much slower as compared to controls. Sitosterol production rates were 5 to 10 times larger than the control mean, confirming the enhanced absorption found in homozygotes with this disease. Total body pools were also tremendously enlarged and ranged from 3500 to 9500 mg. Although absorption was in-

--- Sitosterol — Cholesterol

Fig. 5. The normalized specific activity versus time curves for cholesterol and situaterol are illustrated for a control and homozygous situsterolemic subjects. In the control subject, situsterol decays more rapidly than cholesterol as contrasted with slower decay of situsterol than cholesterol in the homozygote.

TABLE 2. Sitosterol turnovet

		Sitomerolemie Homozygotes		
r	Con(Fols	CL	KCN	KEC
INA (days) INA (days) INB (days) KA (day-1) MA (mg) MB (mg) MA + MB (mg) PRA (mg/day)	9.8 ± 0.2 13.8 ± 2.4 0.17 ± 0.04 80 ± 36 46 ± 22 126 ± 32 7.9 ± 2.3	7.0 91 0.015 5100 4400 9500 80	2.7 23 0.067 2400 2400 4800 162	11 112 0.014 1700 1800 3500 52

Results from references 5, 23, 26.

creased in these subjects, the extraordinary body pool size did not relate linearly to absorption (23, 24). The discrepancy could be explained by the fact that the elimination contant from pool A (KA) was 2 to 10 times more rapid in control subjects than in sitosterolemic homozygotes. Thus, sitosterolemic homozygotes hyperabsorb situsterol from the intestine but also retain the plant sterol in body tissues (5, 23, 24). This finding of very slow sitosterol turnover associated with increased absorption and very delayed removal has recently been noted in three additional sitosterolemic subjects from two unrelated families (25) who received radioactive sitosterol intravenously. Body pool sizes were extraordinarily expanded as noted previously. Sitosterol turnover has also been studied in two sitosterolemic heterozygotes (parents of homozygotes). The results show that sitosterol absorption was increased 2 to 3 times over controls but body pool sizes were not increased because sitosterol removal was rapid (24). Thus, hererozygotes still retain the ability to excrete sitosterol normally.

Enhanced sitosterol absorption in homozygotes and heterozygotes has been confirmed independently by absorption measurements obtained by adapting the plasma dual-isotope ratio method used to study cholesterol absorption (Table 3) (23, 24). In this technique, [14C]sitosterol is fed and [3H]sitosterol is administered intravenously at the same time. The 3H/1+C ratio is then determined in plasma sitosterol and compared to the ideal

TABLE 3. Situsterol and cholesterol absorption

TABLE 3. Cite	Con	rol»	Sitoaterolemic Homosygotes	
	1	2	KCN	KEC
		Ъ		%
Situaterol absorption	4 44	5 48	63 49	28 69
Cholesterol Bhaorption				

^{*}Plasma dual-isotope ratio method, data from reference 23

Salen et al. Sitosterolemia

Patients KCN and KEC are sisters and unrelated to CL.

ratio which is calculated by dividing the total oral dose by total injected dose and is equivalent to 100% absorption (23). In two homozygotes, 28% and 63% of dietary sitosterol were absorbed which is in good agreement with the absorption values calculated by the independent isotope kinetic method (Table 2). Two healthy control subjects who consumed the same diet absorbed 4% and 5% of dietary sitosterol, respectively, while two obligate heterozygotes absorbed 15% and 17% of dietary sitosterol, respectively. Thus, sitosterol absorption is enhanced in homozygotes.

Cholesterol absorption and turnover

Cholesterol absorption as measured by the plasma dual-isotope ratio method tended to be at the high end of the normal range (49% and 69% of intake) in sitosterolemic homozygotes as reported in Table 3 (23). Thus, increased sitosterol absorption does not interfere with cholesterol absorption in sitosterolemic homozygotes although it is believed that situsterol and cholesterol share the same intestinal absorption pathway. Also, it is important to realize that cholesterol is absorbed about 10 times more efficiently than sitosterol in healthy control subjects, but that percent situaterol absorption approaches cholesterol absorption in some sitosterolemic homozygotes (Table 3) (23). There was no difference in cholesterol absorption between controls and heterozygotes (24). Although it has been suggested that the limited absorption of sitosterol compared to cholesterol in normal subjects may relate to greater affinity of sitosterol for intestinal bile acid micelles (35), diminished intestinal sitosterol esterification (36), and reduced sitosterol enterocyte transport (37), the upregulation of these mechanisms seems unlikely to explain the increased absorption of sitosterol in sitosterolemic homozygates.

An important, new biochemical finding observed in the sitosterolemic subjects is reduced cholesterol turnover (Table 4) (4, 5, 23). Not only is the plasma specific ac-

TABLE 4. Chalesterol turnover

		Sitoscorol	emic Home	zygotes
	Controls (n - 4)	KL	KCN	KEC
MA. S MB. E MA. TMB. R PRA. mg/day Synthesis, mg/kg/day	6.7 ± 0.6 53 ± 6 0.045 ± 0.006 29 ± 8 48 ± 16 77 ± 9 1450 ± 560 14.6 ± 6.0°	8.6 91 0.023 31 34 65 670	2.4 24 0.077 11 13 24 860 9.5	5.0 74 0.024 21 41 65 710 5.9

Data from references 4, 5, 23.

tivity decay of cholesteral much slower in homozygotes than control subjects, but turnover (PRA = synthesis plus absorbed cholesterol) is markedly reduced. Calculations of cholesterol turnover by the isotope kinetic method revealed values 50-70% smaller in homozygotes than similarly fed controls (5, 23-25). Moreover, since cholesterol absorption tended to be large in sitosterolemic subjects, the diminished daily production must result from decreased cholesterol synthesis. When turnover values were corrected by subtracting absorbed cholesterol, average cholesterol synthesis was about 50% lower in sitosterolemic homozygotes than in healthy controls (23-25). In support, Miettinen (4) found cholesterol synthesis as measured by the sterol balance technique 50% and 80% lower in a homozygous sitosterolemic subject than in similarly fed control subjects when studied on two occasions 4 years apart. In contrast, cholesterol turnover and synthesis in sitosterolemic heterozygotes resembled control subjects and was not decreased (24).

Mechanism of reduced cholesterol synthesis

A major discovery from balance and isotopic turnover studies was that cholesterol synthesis in sitosterolemic homozygotes was extremely low (Table 4) (4, 5, 23, 25). In order to better understand this observation, HMG-CoA reductase, the rate-controlling enzyme for cholesterol biosynthesis, was measured in liver microsomes from two sitosterolemic homozygotes (38). For comparison, liver specimens were obtained from 11 liver transplant donors whose livers became available when appropriate recipients could not be located. In the control livers (Table 5). mean HMG-CoA reductase activity was 5.3 and 8.2 times greater, respectively, than the values from the two sitosterolemic liver specimens. About 72% of the HMG-CoA reductase was expressed (active) in the sitosterolemic livers compared to 49% in the controls.

HMG-CoA reductase protein concentrations were determined in these same microsomal specimens by immunoblotting and densitometric scanning (Table 5). In the control liver microsomes, the mean relative mass of HMG-CoA reductase per mg of microsomal protein was 6.8 and 8.9 times larger, respectively, than the values for the two sitosterolemic livers. Thus, markedly reduced HMG-CoA reductase activity and enzyme protein characterize sitosterolemic liver. However, when the catalytic efficiency of HMG-CoA reductase (activity per unit protein) was calculated by dividing the enzyme specific activity by the enzyme mass, no difference was detected between control and sitosterolemic livers. This suggests that although reduced quantities of HMG-CoA reductase are produced by the sitosterolemic livers, catalytic function of the enzyme is normal. To further explore the severe deficiency of HMG-CoA reductase, poly A-RNA was isolated from liver specimens obtained from two control and one homozygous sitosterolemic subjects and hybridized

Journal of Lipid Research Volume 33, 1992

^{&#}x27;Synthesis estimated by subtracting absorbed cholesterol (Table 3) from turnover (PRA).

TABLE 5. Hepatic microsomal HMG-CoA reductase activity and mass

TABLE 3. I		HMG-CoA Reductase	
	Activity	Man	Catalytic Efficiency
Subjecu	pmaVmg/min	peak area/mg	pmovmin/peak area
	. 98.1 ± 28.8	1.4 ± 0.14	68.6
Controls (n = 11) Sitosterolemic homozygotes KCN	11.9 18.4	0.16 0.23	74.3 76.2
TC			

From reference 38.

with pRED 227 and pHRED 102, which are full-length sequence cDNA probes for hamster and human HMG-CoA reductase, respectively, and pCAT 10, a probe for human catalase mRNA. The Northern blots (Fig. 6, A and B) showed virtually no signals for sitosterolemic HMG-CoA reductase mRNA, as contrasted with signals from the HMG-CoA reductase mRNA from the control specimens. Both control and sitosterolemic specimens gave signals for catalase in RNA that indicated that the RNA isolated from control and sitosterolemic livers was intact. Thus, the deficiency of microsomal HMG-CoA reductase in sitosterolomic livers can be attributed to the very low levels of HMG-CoA reductase mRNA that are available for enzyme translation (38).

LDL receptor binding was also measured in twelve control and two sitosterolemic liver membrane preparations. Total binding (assayed in the absence of unlabeled LDL) was 54% and 80% higher, respectively, in the two sitosterolemic liver membrane preparations than the mean for the control measurements (Table 6). Similarly, high affinity, receptor mediated LDL binding recorded as the difference between total binding and nonspecific binding (assayed in the presence of abundant unlabeled LDL) was 2.2 and 3.3 times greater, respectively, in the sitosterolemic than in the control livers. Therefore, sitostero-- Lemic livers express incressed numbers of LDL receptors, so that a much higher proportion of LDL was receptorbound and more circulating LDL was taken up than by control liver membranes (38).

In a separate experiment, Biel et al. (39) measured in vivo LDL turnover and found greater production associated with rapid catabolism consistent with the expression of more LDL receptors in a sitosterolemia subject as compared with three matched controls.

In two sitosterolemic liver specimens, lipofuscin-like pigment was distributed in the liver cytosol (38). The nature of this pigment has not been determined at this time (Fig. 7).

Treatment

Bile acid malabsorption produced by either binding resins (cholestyramine or colestipol) or ileal bypass surgery is an effective treatment of sitosterolemia (2, 4, 7, 11, 19). Plasma cholesterol concentrations decline dramati-

cally (decrease 25% to 50%) and the percent reduction in plasma sterol concentrations obtained with these drugs or surgery is greater than similarly treated hypercholesterolemic subjects. In most sitosterolemic patients, plant sterols usually decrease proportionally to cholesterol, and

Fig. 6. Northern blot analysis of sitosterolemic hepatic mRNA. Northern blots of liver poly A* RNA from a aitosterolemic homotygote (TC) and two control subjects that were probed with pRED 227 (A) and PHRED 102 for HMG-CoA reductage mRNA and pCAT 10 for catalage mRNA (B). Virtually no signal from sitosterolemic HMG-CoA reductase mRNA was detected (58).

Sitosterolemia

951

TABLE 6. Hepatic LDL receptor binding

TABLE 6. Hep	BUE DOZ TOOK		
Subjects	Total	Receptor-Mediated	
300,000	ne/mg proton		
Control, n = 12	204.0 ± 10.0	95 ± 8.2	
TC	315.3 336.8	193.2 312.8	
KCN			

From reference 98.

cholestanol and 5\alpha-saturated stanols were virtually eliminated from the blood (19). However, it is important to realize that not all patients respond similarly, and cholestyramine treatment produced less reduction of plasma plant sterols than cholesterol in a Japanese sitosterolemic family (12). Of note, clinical improvement including disappearance of xanthomas, elimination of aortic stenosis murmur, and decreased frequency in angina pectoris and arthritic attacks have been noted in several subjects treated with either cholestyramine or iteal bypass surgery (7, 11, 20).

Lovastatin, a competitive inhibitor of cholesterol biosynthesis that is widely used in the treatment of hypercholesterolemia has been tried but has not been an effective treatment in sitosterolemia. Plasma cholesterol, plant sterols, or 5\alpha-saturated stanols were not reduced in two homozygous sitosterolemic subjects (20, 22).

The effect of the various treatments can be explained by examining cholesterol biosynthesis and LDL receptor function in freshly isolated peripheral mononuclear leukocytes (monocytes). These cells synthesize cholesterol and express HMG-CoA reductase activity and LDL receptors in parallel to the liver. In five homozygous sitosterolemic subjects from three unrelated families. mononuclear leukocyte cholesterol synthesis as measured by the conversion of acetate to cholesterol was 30-70% below the mean value from 16 healthy control subjects (20. 22). Subnormal monocyte cholesterol synthesis in the sitosterolemic subjects was supported by measurements of HMG-CoA reductase activity which were 50-70% lower in the homozygotes than the control mean. In contrast, LDL receptor function in monocytes from four of the five homozygous patients was increased 60% over the control mean. Thus, sitosterolemic mononuclear leukocytes manifest the same defect in cholesterol biosynthesis as the liver and compensate by the increased expression of LDL receptors.

Fig. 7. Light microscopy of liver from sitesterolemic homozygore that shows lipofuscin-like granules deposited randomly in cytosol of hepatocyte. Hemotoxylin and cosin x 250 (38).

352 Journal of Lipid Research Volume 33, 1992

When the enterohepatic circulation of bile acids is interrupted, reducing the hepatic bile acid flux, HMG-CoA reductase activity increased 13% and LDL receptor function rose 40% in freshly isolated monocytes from healthy control subjects (20). In contrast, monocytes from four nomozygous situsterolemic subjects (from three unrelated families) failed to up-regulate either cholesterol synthesis (conversion of acetate to cholesterol) or HMG-CoA reductase activity when treated similarly (20, 22). In fact, HMG-CoA reductase activity paradoxically declined. Monocyte LDL receptor function responded normally to bile acid malabsorption by increasing between 20% and 30% in the sitosterolemic mononuclear cells (20, 22, 40, 41).

Lovastatin treatment produced no change in plasma sterol concentrations in two unrelated sitosterolemic homozygous subjects and caused only a small risc in monocyte HMG-CoA reductase activity compared with a 28% reduction in plasma sterol concentrations and a 38% increase in monocyte HMG-CoA reductase activity in control and hypercholesterolemic heterozygous subjects (20, 22). Although lovastatin competitively inhibits mevalonic acid synthesis, HMG-CoA reductase activity normally increases. Apparently, the block in cholesterol production produces gene expression for the synthesis of HMG-CoA reductase. LDL receptor function also did not change in the homozygous sitosterolemic monocytes as compared to a 41% increase in receptor-mediated LDL binding in control cells from subjects treated with lova-

These results indicate a major abnormality in cholesstatin (20, 22). terol homeostasis in sitosterolemic subjects. Depressed cholesterol biosynthesis is due to a pronounced deficiency of the rate-controlling enzyme, HMG-CoA reductase, caused by virtual absence of HMG-CoA reductase mRNA. Interruption of the enterohepatic circulation of bile acids reduces the hepatic bile acid flux and, normally stimulates bile acid synthesis (42), but fails to increase cholesterol production in sitosterolemic homozygotes. Cholesterol 7α-hydroxylase activity (rate-controlling for bile acid synthesis) rises in response to bile acid malabsorption (27) so that more bile acids are formed (4). Cholesterol biosynthesis (HMG-CoA reductase activity) should increase and more LDL receptors expressed to provide additional cholesterol as substrate for bile acid synthesis. In normal subjects, the decrease in plasma cholesterol reflects the balance between input of new cholesterol (synthesis) and the removal and catabolism of LDL. Because sitosterolemic subjects cannot up-regulate HMG-CoA reductase, the demand for more substrate for bile acid synthesis can only be met by the catabolium of LDL. Thus, there is a greater than expected fall in plasma sterol concentrations (cholesterol and plant sterols) in sitosterolemic subjects.

Lovastatin, which normally lowers plasma cholesterol by competitively inhibiting HMG-CoA reductase activity and in turn stimulates expression of LDL receptors, was

ineffective treatment for sitosterolemia (20, 22). Apparently, sitosterolemic cholesterol synthesis is so low that further inhibition of HMG-CoA reductase does not increase LDL receptor function. With this in mind, hypercholesterolemic patients who do not respond to therapeutic doses of lovastatin should have their plasma sterols tested by gas-liquid chromatography as the failure to respond to lovastatin may indicate sitosterolemia (20, 22).

Inherited abnormality

At the present time, the principal inherited defect has not been established with certainty. However, three abnormal mechanisms, hyperabsorption of sitosterol, decreased atosterol climination, and reduced cholesterol synthesis, have been linked to the pathogenesis of sitosterolemia and predisposition to atherosclerosis. The hyperabsorption of sitosterol and other dietary sterols from the intestine is well documented, but by itself will not cause the enormous sitosterol pools in this disease. Sitosterolemic heterozygotes also hyperabsorb sitosterol but do not accumulate the plant sterol (24). Not until the intestinal pathway for cholesterol absorption is elucidated will the mechanism for sitosterol hyperabsorption be

To date, all sitosterolemic homozygotes show diminunderstood. ished hepatic secretion of sitosterol and cholesterol. Bile contains reduced amounts of both sitosterol and cholesterol, and biliary sterol excretion is further decreased when dietary intake is restricted (25). Clearly, the combination of decreased removal with increased absorption accounts for the gigantic situsterol and other plant sterol

A third key feature of the disease is abnormal regulation of cholesterol biosynthesis. We have demonstrated that reduced cholesterol synthesis results from a deficiency of HMG-CoA reductase in the liver and mononuclear cells of sitosterolemic subjects (38, 43), and that HMG-CoA reductase mRNA is barely detected in the liver. LDL receptor function is enhanced in most sitosterolemic homoyzgotes to provide cellular sterols. Attempts to stimulate cholesterol synthesis (HMG-CoA reductase) by inducing bile acid malabsorption (cholestyramine or ileal bypass surgery) or a low sterol diet did not increase HMG-CoA reductase activity in freshly isolated mononuclear cells (20, 22). Thus, the up-regulation of cholesterol synthesis is prevented in sitosterolemia.

Moreover, it is important to emphasize that HMG-CoA reductase activity and the expression of LDL receptors are normally regulated in the same direction. In other words, factors stimulating HMG-CoA reductase increase the number of LDL receptors (41, 43). In contrast, situsterolemic mononuclear cells and liver show diminished HMG-CoA reductase activity and enzyme mass in combination with increased LDL receptor expression (20, 22, 38, 43). These observations lead us to believe that the

Salen et al Sicasterolemia

inherited defect in sitosterolemia involves an abnormality of the HMG-CoA reductase gene.

However, at this time it is still not possible to establish which mechanism is primary. It still is possible that enhanced sitosterol absorption and accumulation are primary events. Therefore, low cholesterol synthesis and enhanced receptor function may conceivably relate to the accumulated sterols and stanols and/or an oxygenated derivative. However, Boberg, Akerlund, and Björkhem (44) have reported that sitosterol is not an effective feedback inhibitor of HMG-CoA reductase, and Shefer et al. (45) noted that cholestanol feeding actually increases HMG-CoA reductase activity in rat liver. Thus, neither cholestanol nor sitosterol are down-regulators of cholesterol biosynthesis.

Summary

Sitosterolemia is a rare inherited lipid storage disease characterized chemically by the accumulation of plant sterols and 5\alpha-saturated scanols in plasma and tissues. Very low cholesterol synthesis due to a deficiency of HMG-CoA reductase associated with increased intestinal plant sterol absorption and slow hepatic sterol removal are major biochemical features. Because cholesterol synthesis cannot up-regulate, bile acid malabsorption mobilizes body sterols for bile acid synthesis and dramatically lowers plasma and monocyte sterol concentrations and may halt the progression of the atherosclerotic process.

Supported by Research Service, Department of Veterans Affairs and U.S. Public Health Service grants HL-17818, DK-18707,

Manuscript received 14 January 1993 and in revised form 24 March 1992.

REFERENCES

- 1. Bhattacharyya, A., and W. E. Connor. 1974. β-Sitosterolemia and xanthotnatosis. A newly described lipid storage disease in two sisters. J. Clin. Invest. 53: 1033-1043.
- 2. Salen, G., S. Shefer, and V. Berginer. 1983. Familial diseases with storage of sterols other than cholesterol, In The Metabolic Basis of Inherited Disease. 5th ed. J. B. Stanbury, J. B. Wyngsarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, editors. McGraw-Hill Book Co., New
- 3. Kwiterovich, P. O., Jr., H. H. Smith, W. E. Connor, P. S. Bachorik, V. A. McKusick, B. Teng, and A. Sniderman. 1970. Hyperapobetailipoproteinemia in two families with xanthomatosis and phytosterolemia. Lancet 1: 466-469. 4. Miettinen, T. A. 1980. Phytosterolemia, xanthomatosis and
- premature atheroclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur. J. Clin. Invest. 10: 27-35.
 5. Lin, H. J., C. Wang, G. Salen, K. C. Lam, and T. K.
- Chan. 1983. Sitosterol and cholesterol metabolism in a patient with sitosterolemin and xanthomatosis. Metabolim. 32:
- 6. Shulman, R. S., A. K. Bhattacharyya, W. E. Connor, and

- D. S. Fredrickson, 1976, B-Sitosterolemia and xanthomatosis. N. Engl. J. Med 294: 472-483.
- Whitington, G. L., J. B. Ragland, S. M. Sabesin, and L. B. Kuiken, 1980. Neuralsterolemia and xanthomas. Circulation 59: 11-33 (abstract).
- 8. Khachadurian, A. K., and G. Salen. 1980. Familial phytosterolemia: cholestanolemia and abnormal bile salt composition. Clin. Res. 28: 397A.
- 9. Wang, G., H. J. Lin, T. K. Chan, G. Salen, W. C. Chan, and T. F. Tse. 1981. A unique patient with coexisting cerebrotendinous xanthomatosis and \$-sitosterolemja. Am. J.
- 10. Skrede, B., I. Björkhem, O. Bergesen, H. Kayden, and S. Skrede. 1985. The presence of 5\alpha saturated situation in the serom of a patient with phytosterolemia, and its biosynthesis from plant sterols in rats with bile fistula. Biochim. Biophys. Acta. 836: 368-375.
- Belamarich P. F., R. J. Deckelbaum, T. Starc, B. E. Dobrin. G. S. Tint, and G. Salen. 1990. Response to diet and cholestyramine in a patient with sitosterolemia. Padiatries. 86:
- 12. Hidaka H. T., T. Nakamura, T. Aoki, H. Kojima, Y. Nakajima, K. Kosugi, I. Hatanaka, M. Harada, M. Kobayashi, A. Tamura, T. Fujii, and Y. Shigeta. 1990. Increased plasma plant sterol levels in heterozygotes with sitosterolemia and xanthomatosis. J. Lipid Ra. 31: 881-888.
- 13. Björkhem, I., and S. Skrede. 1989. Familial diseases with storage of sterols other than cholesterol: cerebrotendinous xanthomatosis and phytosterolemia. In The Metabolic Basis of Inherited Disease. 6th ed. C. R. Seriver, A. L. Beaudet, W. S. Sty, and D. Valle, editors. McGraw-Hill Book Ca., New York. 1293-1302.
- Beary, T. J., P. O. Kwiterovich, Jr., M. J. Khoury, S. White. P. S. Bachorik, H. H. Smith, B. Teng, and A. Sniderman. 1986. Genetic analysis of plasma situateral, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia. Am. J. Hum. Genet. 38: 492-504.
- Salen, C., I. Horak, M. Rothkopf, J. L. Cohen, J. Speck, G. S. Tint, V. Shore, B. Dayal, T. Chen, and S. Shefer. 1985. Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J. Lipid Res. 26: 1126-1133.
- 16. Rao, M. K. G., E. G. Perkins, W. E. Connor, and A. K. Bhattachuryya. 1975. Identification of \$-sitosterol, campesterol, and stigmasterol in human serum. Lipids. 10:
- 17. Gregg, R. E., W. E. Connor, D. S. Lin, and H. B. Brewer, Jr. 1986. Abnormal metabolism of shellfish sterols in 2 patient with aitosterolemia and xanthomatosis. J. Clin. Invest.
- 18. Dayal, B., G. S. Tint, A. K. Batta, J. Speck, A. K. Khachadurian, S. Sheler, and G. Salen. 1982. Identification of 5a-stanols in patients with sitosterolemia and xanthomatosis: stereochemistry of the protonolysis of steroidal organoboranes. Steroids. 40: 233-243.
- 19. Salen, G., P. O. Kwiterovich, Jr., S. Shefer, G. S. Tint, I. Horak, V. Shore, B. Dayal, and E. Horak. 1985. Increased plasma cholestanol and 50 saturated plant sterol derivatives in subjects with sitosterolemia and aanthomatosin. J. Lipid Res. 26: 203-209.
- 20. Nguyen, L., G. Salen, S. Shefer, V. Shore, G. S. Tint, and G. Ness. 1990. Unexpected failure of bile acid malabsorption to stimulate cholesterol synthesis in sitosterolemia with xanthomatosis: comparison with lovastatin. Arterioscleroni.
- 21. Nye, E. R., W. H. F. Sutherland, J. G. Mortimer, and

- H. C. W. Stringer. 1988. Sitosterolemia and heterozygous familial hypercholesterolemia in a three-year-old girl: case report. N. Z. Med. J. 101: 418-419.
- Nguyen, L. B., M. Cobb, S. Shefer, G. Salen, G. C. Ness, and G. S. Tint. 1991. Regulation of cholesterol biosynthesis in sitosterolemia: effects of lowastatin, cholestyramine, and dietary sterol restriction. J. Lipid Res. 32: 1941-1948.
- dietary sterol restriction. J. Lipid Res. 32; 1941-1948.
 23. Salen, G., V. Shore, G. S. Tint, T. Forte, S. Shefer, I. Horak, E. Horak, B. Dayal, L. Nguyen, A. K. Batta, F. T. Lindgren, and P. O. Kwiterovich, Jr. 1989. Increased situation absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J. Lipid Res. 30: 1319-1330.
- Salen, G., G. S. Tint, S. Shefer, V. Shore, and L. Nguyen. 1992. Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia. Atherascle. Thromb. 12: 563-568.
- 25. Bhauacharyya, A. K., W. E. Connor, D. S. Lin, M. M. M. McMurry, and R. S. Shulman. 1991. Sluggish sitosterol turnover and hepatic failure to excrete sitosterol into bile cause expansion of body prool of sitosterol in patients with sitosterolemia and xanthornatosis. Athenucla. Thomb. 11: 1287-1294.
- Salen, G., S. M. Grundy, and E. H. Ahrens, Jr. 1970. The metabolism of β-sitosterol in man. J. Clin. Invest. 49: 952-967.
- Shefer, S., G. Salen, L. Nguyen, A. K. Batta, V. Packin, G. S. Tint, and S. Hauser. 1988. Competitive inhibition of bile acid synthesis by endogenous cholestanol and sitosterol in sitosterolemia with xanthomatosis. J. Clin. Invest. 82: 1833-1839.
- Boberg, K. M., E. Lund, J. Olund, and I. Björkhem. 1990.
 Formation of C₂₁ bile acids from plant sterols in the rat. J. Biol. Chem. 265: 7967-7975.
- Lund E., K. M. Boberg, S. Bystrom, J. Oland, K. Carlstrom, and I. Björkhem. 1991. Formation of novel C2, bile acids from cholesterol in the rat: structure identification of the major di- and trihydroxylated species. J. Biol. Chem. 266: 4929-4937.
- Nguyen, L., S. Shefer, G. Salen, I. Horak, G. S. Tint, and D. J. McNamara. 1988. The effect of abnormal plasma sterol composition on cellular sterol content and composition and low density lipoprotein uptake and degradation by monocytes and lymphocytes in sitosterolemia with xanthomatosis. Metab. Clin. Exp. 37: 346-351.
- Gould, R. G., R. J. Jones, G. V. LeRoy, R. W. Wissler, and G. B. Taylor. 1969. Absorbability of β-sitosterol in humans. Machines 18: 652-662
- Metabotism. 18: 652-662.
 32. Goodman, D. S., and R. P. Noble. 1968. Turnover of plasma cholesterol in man. J. Clin. Invest. 47: 231-241.

- Goodman, D. S., R. P. Noble, and R. B. Dell. 1973. Three-pool model of the long-term turnover of plasma cholesterol in man. J. Lipid Res. 14: 178-188.
- 34. Grundy, S. M., and E. H. Ahrens, Jr. 1969. Measurements of cholesterol turnover, synthesis, and absorption in man, carried out by isotope kinetic and sterol balance methods.

 1. Lind Res. 10: 91-107.
- J. Lipid Res. 10: 91-101.
 Tilvis, R. S., and T. A. Miettinen. 1986. Serum plant sterols and their relation to cholesterol absorption. Am. J. Clin. Nutr. 43: 92-97.
- Kuksis, A., and T. C. Huang. 1962. Differential absorption of plant sterols in the dog. Can. J. Biochem. 40: 1493-1150.
- Sylvén, C., and B. Borgström. 1969. Absorption and lymphatic transport of cholesterol and sitosterol in the rat. J. Lipid Res. 10: 179-182.
- Nguyen, L., S. Sheler, G. Salen, G. Ness, G. S. Tint. F. G. Zaki, and I. Rani. 1990. Molecular defect in cholesterol synthesis in sitosterolemia with xanthomatosis. J. Clin. Invest. 86: 926-931.
- 39. Beil, F. U., G. L. Vega, P. A. Ma. A. Gary, and S. M. Grundy. 1988. Lipoprotein kinetics in beta sitosterolemia. Atherusclemin. B: 5807.
- McNamara, D. J., N. O. Davidson, and S. Fernandez. 1980. In vitro cholesterol synthesis in freshly isolated mononuclear cells of human blood: effect of in vivo administration of clofibrate and/or cholestyramine. J. Lipid Res. 21: 65-71.
- 41. Shepherd, J., C. J. Packard, S. Bicker, T. D. V. Lauric and H. G. Morgan. 1980. Cholesytramine promotes receptor-mediated low-density lipoprotein catabolism. N. Engl. J. 202, 1219-1222
- 42. Grandy, S. M., E. H. Ahrens, Jr., and G. Salen. 1971. Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and iteal exculsion on cholesterol metabolism. J. Lab. Clin. Med. 78: 04-121
- 49. Nguyen, L., G. Salen, S. Shefer, G. S. Tint, V. Shore, and G. Ness. 1990. Decreased cholesterol biosynthesis in sito-sterolemia with xanthomatosis: diminished mononuclear leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and enzyme protein associated with increased low-density lipoprotein receptor function. Metab. Clin. Exp. 226, 426,443
- 44. Boberg, K. M., J.E. Akerlund, and I. Björkhem. 1989. Effect of sitosterol on the rate-limiting enzymes in cholesterol biosynthesis and degradation. Lipids. 24: 9-12.
- Shefer, S., S. Hauser, G. Salen, F. G. Zaki, J. Bullock, E. Salgado, and J. Shevitz. 1984. Comparative effects of cholestanol and cholesterol on hepatic sterol and bile acid metabolism in the rat. J. Clin. Invest. 74: 1773-1781.

pia

Exhibit B

1381

hysocephalus sa

. 1. The physical appar dus. especially regardion of one's characteristics and other external judge]

Diagnosis of disease se or bodily habitus.

al (fiz-ē-ō-loj ik -loj ik aal. as opposed to pur ss. 3. Denoting something its rather than from its 4. Denoting a dose or the gent that either is or man ther naturally occurring trations or potencies that itrations or potencies that : (2). pharmacologic (2),

(fiz'ē-ō-loj'i-kō-an-ă-wa anatomy.

A specialist in physiology. he science concerned with and vegetable organisms, function in the living organ acture, their biochemical so by drugs or disease. [L a.l. + logos. study)

erned with the differences in s of organisms, particularly was rocesses to the specific needs volutionary relationships and ig other interspecific generalization

nctions or vital processes.com

i. whether animal or plant
to particular types of animals of
p. to applied sciences such

clucidation of the normal feed

ience of disease concerned with red from anatomical lesions. Im

th-0-loj'ik). Relating to patho-

thol'o-je). SYN pathologic photo

Pertaining to both mind and

('sē-ā). Fever produced by exis, feverishness) -thur-a-pu'tik). Pertaining to

'ă-pisti. A physical therapis.

-pē). SYN physical theraps (the

h. interdental stimulator. floss, ive aid to maintain oral health. al type; the physical or hedily

es used in referring to the epi-

inflate. 2. Relation to gir of eac

sumscribed swelling due to the listended with gas. Iphyso . G.

fi so-sefa-lus sek's lu'ius des (family Spirundes) found in is, rabbits, and hares; worldwide

phalus sexalatus

mion, and especially prevalent in hogs. [G. physa, belaphale, head]

Shaly (fi-so-set 3-le). Swelling of the head resulting physicion of air into the subcutaneous rissues. [physo-+ time head]

THE (15-50-mē'trā). Distention of the uterine cavity of grs. SYN uterine tympanites. [physo- + G. mētra.

is (5-sop'sis). A subgenus of the genus Bulinus, most of which transmit the human blood fluke, Schironana and some animal schiroland schiroland. of will and some animal schistosomes in Africa south of (G. physis, growth, + opsis, aspect appearance)

pro-sal-pinx (f. 50-pi-o-sal pingks). Pyosalpinx accom-by a formation of gas in a uterine tube. [physo-+G. pyon,

sigma (fi-so-stig ma). The dried seed of Physostigma (family Leguminosae), a vine of western Africa; it (ramuy Leguminosae), a vine of western Africa; it me alkaloids physosugmine (eserine), eseramine, eseramine, eseramine, eseramine, and physovenine; in toxic doses it causes vomitof salivation, diarrhea, convulsions, sweating, dyspnea, role, sauvauvii, claritica, convaisions, sweating, dyspnes, and extreme prostration. syn Calabar bean, in the same of the street of the street

postig mine (fi-so-stig men, -min). An alkaloid of physo-met it is a reversible inhibitor of the chaling at it is a reversible inhibitor of the cholinesterases, and description of acetylcholine: used as a cholinergic agent, dependentally to enhance the action of acctylcholine at any a size of liberation, syn exerine.

and the used by conjunctival instillation to reduce tension in noma in the treatment of postoperative intestinal arony and by remaion, in the management of myasthemia gravis, and to menet excessive doses of subocurarine; also available as p. the with the same uses. SYN eserine salicylate.

The or phyto. wan ate (fi can-at). The anion of phytanic acid.
conidese, an enzyme that oxidizes phytanic acid. removing transcript group.

ranic acid (fi-tan'ik). A branched-chain fatty acid that mmulates in the serum and tissues in Refsum disease and minuted to the hereditary absence of phytanate a-oxidase; arises tem physol and acts as an inhibitor of the ex-exidation of palmitic tradecanoic) acid: it also accumulates in a number of other

inders notably peroxisomal disorders. dy lase (1712s). Phytate 6-phosphate: an enzyme-hydrolyzing this mid, removing the 6-phosphoric group, thus producing supplosphate and 11-myo-1,2,3,4,5-pentakisphosphate.

trute (lital). A salt or ester of phytic acid.

noc acid (fitik). The hexakisphosphoric ester of myo-inosithe mixed salt with magnesium and calcium is phytin.

win (fitin). The calcium magnesium salt of phytic acid; a fury supplement used to provide calcium, organic phosphorus, a myo inositol.

Mo, phyt-. Plants. [G. phyton, a plant]

wag glu ti nin (fi to a gloo u nin). A lectin that causes atmonation of erythrocytes or of leukocytes.

Nobe zoar (fi-tő-be zor). A gastric concretion formed of stable fibers, with the seeds and skins of fruits, and sometimes granules and fat globules. SYN food ball. [phyto- + bezoar] Nochem is try (fi-to-kem'is-no). The biochemical study of tous concerned with the identification, biosynthesis, and metabwa of chemical constituents of plants; especially used in regard

Toder ma ti-tis (fi to-der-ma-ti us). Dermatius caused by now mechanisms, including mechanical and chemical injury. or photosensitization (phytophotodermatitis) at skin sites

viously exposed to plants. lo la gel la ta (li to-flaj č-la ta). A subclass of Phytomasti-Phores, the members of which have yellow or green chromato-

5. (phyto- + L. flagellum a whip) to bem ag glu ti nin (PHA) (li to-hēm-i-gloo'ti-nin). Monitogen from plants that agglutinates red blood cells. The

term is commonly used specifically to refer to the lectin obtained from the red kidney bean (Phaseolus vulgaris), which is also a mitogen that sumulates T lymphocytes more vigorously than B lymphocytes. SYN phytolectin.

phy-toid (fi toyd). Resembling a plant: denoting an animal having many of the biologic characteristics of a vegetable. [G. phytodes.

fr. phyton, plane + eidos, resemblance] phy-tol (ff tol). An unsaturated primary alcohol derived from the hydrolysis of chlorophyll; a constituent of vitamins E and K1. SYN

phy-to-lec-tin (fi-to-lek'on). syn phytohemagelutinin. phytyl alcohol.

Phy to mas ti gi na (fi to-mas-ti-) nii). Former term for plantlike flagellates, originally classified as a suborder or order, raised to the class Phytomastigophorea (Phytomastigophorasida) in recent classifications. [phyto + G. mastix whip]

Phy to-mas ti-go pho ras i da (fi tō-mas b-go-fō-ras i-da). SYN

Phy to mas ti goph o rea (fi to mas ti-gol-o-re'a). A class of the subphylum Mastigophora (flagellates) within the phylum Sarcomasugophora (flagellate and ameboid protozoans), consisting mostly of free-living plantlike flagellates with or without chloro-plasts, and usually with one or two flagella. Cf. Zoomasagophorea. SYN Phytomastigophorasida. [phyto- + G. mastix whip. +

phy to men a di one (fi to-men-a-di on). syn phylloquinone.

phy-to-mi-to-gen (fi-to-mi-to-jen). A mitogenic lectin causing lymphocyte transformation accompanied by mitotic proliferation of the resulting blast cells identical to that produced by antigenic stimulation; e.g., phytohemagglutinin, concanavalin A.

phy to na di one (fi to-na-di on). syn phylloquinone. phy toph a gous (fi-tof 3-gus). Plant-eaung, vegetarian (phyto-. _-

phy to pho to der ma ti tis (file-fo'to-der-mi-fits). Phytoder-

matitis resulting from photosensitization.

phy to pneu mo co ni o sis (fi to noo mo ko ne o sis). A chronic fibrous reaction in the lungs due to the inhalation of particles of vegetable origin [phyto-+ pneumoconiosis]

phy to por phy rin (fi-to-por fi-rin). 1. A porphyrin similar to the pheophorbide of the chlorophylls but with the vinyl group replaced by an ethyl group, with no methoxycarbonyl group, and minus two hydrogen atoms, producing one more double bond in ring D. 2. Any plant porphyrin.

phy-to-sis (fi-to-sis). A disease process caused by infection with a vegetable organism, such as a fungus.

phy to sphin go sine (fi-to-sling go-sen, -sin). A sphingosine derivative isolated from various plants, phy to ste rol (fi-to-ster'ol). Generic term for the sterols of

phy to ste ro lem ia (lī-tō-stēr'ol-ē-mē-ā). An inherited disorder in which there is a hyperabsorption of phytosterols and shellfish sterols resulting in tendon and tuberous xanthomats. SYN sitoster-

phy to toxic (iì-tō-tok'sik). 1. Poisonous to plant life. 2. Permin-

phy to tox in (fi-to-tok'sin). A roxic substance of plant origin. SYN plant toxin. [phyto- + G. toxikon. poison]

phy to trich o be zoar (fi to-aik 6-be zor). SYN trichophywbe-

phy tyl (fful). The radical found in phylloquinone (vitamin K1); a tetraprenyl radical, reduced in 3 of the 4 prenyl groups.

phy-tyl al-co-hol. syn phytol.

PI Abbreviation for Periodonul Index.

Pi Abbreviation for inorganic phosphare.

pl The pH value for the isoelectric point of a given substance.

pi (π, Π) (pi). 1. The 16th letter of the Greek alphabet. 2. (Π). Symbol for osmotic pressure: in mathematics, symbol for the product of a series. 3. (n). Symbol for the ratio of the circumference of a circle to its diameter (approximately 3.14159). 4. Sym-

pia (pī 1 pē's). syn pia mater. [L. fem. of pius. tender]

STEDMAN'S Medical Dictionary

27th Edition

Illustrated in Color

Philadelphia • Baltimore • New York • London Buenos Aires • Hong Kong • Sydney • Tokyo Senior Managing Editor: Maureen Barlow Pugh

Managing Editor: Barbara Werner

New Terms Editor: Thomas W. Filardo, MD Copy Editors: Peter W. Binns, Linda G. Francis, Raymond Lukens, Bonnic Montgomery

Chief On-Line Editor: Barbara L. Ferretti

On-Line Editors: Kathryn J. Cadle, Dana Workman

Proofreaders: Peter W. Binns; David A. Bloom, MD; Alfred J. Bollet, MD; Ted Burk; Regina Lavette Davis; John A. Day, Jr., MD, FCCP; Richard Diamanti; John H. Dirckx, MD; Thomas W. Filardo, MD; Linda G. Francis; John M. Last, MD, FRACP, FRCPC; Raymond

Lukens; Kate Mason, CMT; Joan Sarchese

Database Programmers: Dave Marcus, Lexi-Comp Inc., Hudson, OH

Art Director: Jonathan Dimes

Additional artwork by: Mary Anna Barratt-Dimes, Kathryn Born, Rob Duckwall, Timothy Hengst,

Mikki Senkarik, Michael Schenk, Larry Ward

Graphic preparation assistance: Susan Caldwell, Jennifer Clements, Thomas Dolan, Christina Nihira

Design: Dan Pfisterer

Copyright © 2000 Lippincott Williams & Wilkins 351 West Camden Street Baltimore, Maryland 21201-2436 USA

Copyright © by William Wood and Company: 1911, 1st ed.; 1912, 2nd ed.; 1914, 3rd ed.; 1916, 4th ed.; 1918, 5th ed.; 1920, 6th ed.; 1922, 7th ed.; 1924, 8th ed.; 1926, 9th ed.; 1928, 10th ed.; 1930, 11th ed.

Copyright © by Williams & Wilkins: 1933, 12th ed.; 1935, 13th ed.; 1939, 14th ed.; 1942, 15th ed.; 1946, 16th ed.; 1949, 17th ed.; 1953, 18th ed.; 1957, 19th ed.; 1961, 20th ed.; 1966, 21st ed.; 1972, 22nd ed.; 1976, 23rd ed.; 1982, 24th ed.; 1990, 25th ed.; 1995, 26th ed.

All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying, or utilized by any information storage and retrieval system without written permission from the copyright owner.

Stedman's is a registered trademark of Lippincon Williams & Wilkins.

The publisher is not responsible (as a matter of product liability, negligence or otherwise) for any injury resulting from any material contained herein. This publication contains information relating to general principles of medical care which should not be construed as specific instructions for individual patients. Manufacturers' product information and package inserts should be reviewed for current information, including contraindications, dosages and precautions.

Database design by Lexi-Comp Inc., Hudson, OH Printed in the United States of America by World Color, Inc.

Library of Congress Cataloging-in-Publication Data

Stedman, Thomas Lathrop, 1853-1938.

Stedman's medical dictionary.-27th ed.

ISBN 0-683-40007-X (regular)—ISBN 0-683-40008-8 (deluxe)

1. Medicine—Dictionaries. I. Title: Medical dictionary. II. Title. [DNLM: 1. Medicine—Dictionary—English. W 13 S812m 1999]

R121 .S8 1999

610'.3-dc21

99-056094

00 01 02 03 04 05 12345

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.