CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, New York, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

1. Draw the StateGraph

1. Describe the graph pictured above, using the formal graph notation.

V(StateGraph) = { Alaska, California, Hawaii, New York, Oregon, Texas, Vermon + 3 E(StateGraph) = { (Alasila, Oregon), (Hawaii, Alaska), (Hawaii, New York), (Hawaii, Texas), (Texas, Hawaii), (Texas, Vermont), (Hawaii, California), (Vermont, California), (Vermont, Alaska) }

- 2. a. Is there a path from Oregon to any other state in the graph? \bigvee_{i}
 - b. Is there a path from Hawaii to every other state in the graph?
 - c. From which state(s) in the graph is there a path to Hawaii?

Texas

3. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

States	uhoy (asxo)	A	С	Н	7	0	1/200	\vee
Alaska	Α		0	0	0	1	0	
California	C	0	0	0	0	0	0	0
Hawaii	H	1	1	0	1	0	1	O
NewYork	2	0	0	0	0	0	0	0
Oregon	0	\bigcirc	\bigcirc	0	0	0	0	0
Texas	T	0	0	1	0	0	0	1
Vermont	\vee	1	1	0	0	0	0	0

3. b. Show the adjacency lists that would describe the edges in the graph

Alaska	-> Oregon
California	2.
Hawaii	-> Alaska California NewYork Texas
NewYork	
Oregon	
Texas	-> Hawaii Vermont
Vermont	-> Alaska California

- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
- A) E, G, F, C, D, B, A
- **B)** G, A, E, C, B, F, D
- C) E, G, A, D, F, C, B
- Đ) E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
 - A) F, C, D, A, B, E, G
 - B) F, D, C, A, B, C, G
 - C) F, C, D, B, G, A, E
 - D) a, b, and c are all breadth first traversals

5. Find the shortest distance from Atlanta to every other city

Houston: 800

. Washington: 600

Denver: ,2,680

Washington -> Dallas -> Denver

Dallas: 1,900

Washington -> Dallas

Chicago: 2,800

Washington -> Dallas -> Chicago

Austin: 2,100

Washington -> Dallas -> Austin

Find the minimal spanning tree using Prim's algorithm. Use
 0 as the source vertex. Show the steps.

MST = 80, 2, 5, 1, 4,33 bile ledio il zingiew oni will

1) Place O as source vertex into MST

2) Consider edges not in tree

7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.

8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex

235]Minn/St.P-D.M. 1	[80] Mad-Milw	5	MST	M/5.1	P. DM SL C Ma MID
[326] D.M SI.L	[95] Ch: -Milw	ſ	Mim/SI.Paul	0	100100
		à e	Des Moines	/ 1	000000
[070] St. L - Chi	[150] Ch: - Mad	X	St. Louis	0	001000
[280] Ch: - Det	[235] Minn/St.P-D.M	J	Chicago	0	010011
	[226] (1) (1)		Madison	Agenta	000010
		1	Milwaukee	0	001100
[150] Ch: - Mad	[270] Mad - Minn St. P	J	Deliait	0	001000
[80] Mad - Milw	[290] Chi - Det	\int	Detroit L		
[270] Mad-Minn 15+.P	[320] D.MSt.L				

9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue

3 - Remove 7 from queue, add to toporder, decrement successors

4- Remove 1 add to top Order, decrement successors Add 2,5,6

9 - Remove 8

Add 9

6 - Remove 5 ...

10 - Remove 3

7 - Remove G...

11 - Remove 9

Add 8

8-Premove 4 Add 3

10. List the nodes of the graph in a breadth first topological ordering.

PC P 10 20 to to to to to other to othe

Start -> Discrete Math -> Programming 1-> Programming 2 -> Computer Organization

-> Algorithms -> High-Level Languages -> Operating Systems

-> Theory of Computation -> Compilers -> Senior Seminar

- TEVID