第三部分 代数结构

- 主要内容
 - 代数系统----二元运算及其性质、代数系统和子代数
 - 半群与群----半群、独异点、群
 - 环与域----环、整环、域
 - 格与布尔代数----格、布尔代数

第三部分 代数结构

- 引言
- 什么是代数?

-算术(Arithmetic)

从1+1开始,从整数->有理数->实数->复数 研究整数、有理数、实数和复数的加、减、乘、除等具体运算法则和 性质, 称之为一个算术系统;

--代数(Algebra)

到中学,开始接触到解方程,就是一种代数 算术的一般化,允许用字母等符号来代替数进行运算,就是代数 注:从字面理解,代数中的代字指代替的意思是,但运算还是与算术中 的运算时一样的,还是运用相同的算术规律;

第三部分 代数结构

- 引言
- 什么是代数结构?
 - 代数结构(Algebraic Structure)

在一个对象集合上定义若干运算,并设定若干公理描述运算的性质,就可以构成一个代数结构

注:代数结构比代数更一般化,代数代替的数;代数结构可以在任意一个对象集合上定义运算;则在代数结构中参与运算的不必是数,可以是任意对象。举例:

- (1) 以命题为对象,命题联结词作为运算符,就发展出了一个命题演算系统,这是一个代数结构;
- (2)以集合作为对象,定义了集合上的一系列运算,比如交、并、差也形成了一个集合的代数结构;
- (3)以关系为对象,关系的交、并、差、合成等运算,形成了一个关系的代数结构;
- (4)研究等价关系时,等价关系与划分一一对应,我们还可以以划分为对象,定义划分的积划分、和划分,就形成了一个划分的代数结构 3

第九章 代数系统

主要内容

- •二元运算及其性质
 - 一元和二元运算定义及其实例
 - 二元运算的性质
- •代数系统
 - 代数系统定义及其实例
 - 子代数
 - 积代数
- •代数系统的同态与同构

9.1 二元运算及其性质

定义9.1 设S为集合,函数 $f: S \times S \to S$ 称为S上的二元运算,简称为二元运算. S中任何两个元素都可以进行运算,且运算的结果惟一. S中任何两个元素的运算结果都属于S,即S对该运算封闭.

注:运算(operator)的基本性质:普遍性、单值性和封闭性

- 例1 (1) 自然数集合N上的加法和乘法是N上的二元运算,但减法和除法不是.
- (2) 整数集合Z上的加法、减法和乘法都是Z上的二元运算, 而除法不是.
- (3) 非零实数集R*上的乘法和除法都是R*上的二元运算,而 —加法和减法不是.

实例

(4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

则矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

(5) S为任意集合,则 U 、 \cap 、 \neg 、 \oplus 为P(S)上二元运算.

一元运算的定义与实例

定义9.2 设S为集合,函数 $f:S \rightarrow S$ 称为S上的一元运算,简称一元运算.

- 例2 (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上的一元运算
- (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算
- (3) 求共轭复数是复数集合C上的一元运算

一元运算的定义与实例

- (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的一元运算.
- (5) 设S为集合,令A为S上所有双射函数的集合, $A \subseteq S^S$,求一个双射函数的反函数为A上的一元运算.
- (6) 在 $n(n \ge 2)$ 阶实矩阵的集合 $M_n(R)$ 上,求转置矩阵是 $M_n(R)$ 上的一元运算.

二元与一元运算的表示

1. 算符

可以用 \circ ,*,·, Θ , \otimes , Δ 等符号表示二元或一元运算,称为算符.

对二元运算 \circ ,如果x与y运算得到z,记做 $x \circ y = z$ 对一元运算 Δ ,x的运算结果记作 Δx .

2. 表示二元或一元运算的方法:解析公式和运算表公式表示

例 设R为实数集合,如下定义R上的二元运算*: $\forall x, y \in \mathbb{R}, x * y = x$.

那么 3*4 = 3, 0.5*(-3) = 0.5

运算表

运算表:表示有穷集上的一元和二元运算

О	a_1	a_2		a_n
a_1	$a_1 \circ a_1$	a_1 o a_2		$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	a_2 o a_2	•••	$a_2 \circ a_n$
				0
•		• • •		
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

/		o a _i
/	a_{1}	o a 1
	a_1 a_2	oa ₂
	•	
	a_n	$\circ a_n$

二元运算的运算表

一元运算的运算表

运算表的实例

例3 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~ 运算的运算表如下

\oplus	Ø	<i>{a}</i>	{ <i>b</i> }	<i>{a,b}</i>
Ø	Ø	<i>{a}</i>	{ <i>b</i> }	<i>{a,b}</i>
<i>{a}</i>	{a}	Ø	$\{a.b\}$	{ b }
{b}	{ b }	$\{a,b\}$	Ø	{a}
{a,b}	a,b	{b}	<i>{a}</i>	Ø

() x)	~x
Ø	<i>{a,b}</i>
<i>{a}</i>	{a}
{b}	{ b }
{a,b}	Ø

二元运算的性质

定义9.3 设。为S上的二元运算,

- (1) 若对任意 $x,y \in S$ 有 $x \circ y = y \circ x$, 则称运算在S上满足交换律.
- (2) 若对任意 $x,y,z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$, 则称运算在S上满足结合律.
- (3) 若对任意 $x \in S$ 有 $x \circ x = x$, 则称运算在S上满足幂等律.

定义9.4 设 \circ 和* 为S上两个不同的二元运算,

- (1) 若对任意 $x,y,z \in S$ 有 $(x*y) \circ z = (x \circ z)*(y \circ z),$ $z \circ (x*y) = (z \circ x)*(z \circ y),$ 则称 \circ 运算对* 运算满足分配律.
- (2) 若°和* 都可交换,且对任意 $x,y \in S$ 有 $x \circ (x*y) = x$, $x*(x \circ y) = x$, 则称 \circ 和* 运算满足吸收律.
- 注: 并不是任意代数结构上的二元运算都满足这些性质

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	交换律	结合律	幂等律
Z,Q,R	普通加法+ 普通乘法×	有有	有有	无无
$M_n(R)$	矩阵加法+ 矩阵乘法×	有无	有有有	无无
P(B)	并∪ 交∩ 相对补– 对称差⊕	有有无有	有有无有	有有无无无

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实矩阵集合, $n \ge 2$;P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	分配律	吸收律
Z,Q,R	普通加法+与乘法×	×对+可分配 +对×不分配	走
$M_n(R)$	矩阵加法+与乘法×	×对+可分配 +对×不分配	无
P(B)	并∪与交∩	∪对○可分配 ○对∪可分配	有
	交∩与对称差⊕	○对⊕可分配	无

定义9.5 设 \circ 为S上的二元运算,

(1) 如果存在 $e_l(\vec{u}e_r) \in S$,使得对任意 $x \in S$ 都有 $e_l \circ x = x$ (或 $x \circ e_r = x$),

则称 $e_l($ 或 $e_r)$ 是S中关于。运算的左(或右)单位元(又称幺元).

若e∈S关于。运算既是左单位元又是右单位元,则称e为S上关于。运算的单位元.单位元也叫做幺元(Identity element).

注: 幺元即是左幺元又是右幺元

2.幺元的例子:

- (1) <N,+>中的0是幺元;
- (2) <N,*> 中的1是幺元;
- (3) <P(A),∪> 中的Φ是幺元;
- (4) <**P**(A), ∩>中的A是幺元;

3.幺元的性质:

- (1)一般情况下,左右幺元可能存在,也可能是不同的元素,也可能有多个;
- (2)如果存在幺元,那么幺元是唯一的,而且同时是左右幺元(后面证明).

(2) 零元(zero element)定义: 如果存在 θ_l (或 θ_r) $\in S$,使得对任意 $x \in S$ 都有

$$\theta_1 \circ x = \theta_1 \ (\vec{\boxtimes} x \circ \theta_r = \theta_r),$$

则称 $\theta_l($ 或 $\theta_r)$ 是S 中关于。运算的E(或E)零元.

于运算○的零元.

2.零元的例子:

- (1) <N,+> 中没有零元;
- (2) <N,*>中的0是零元;
- (3) <P(A),∪> 中的A是零元;
- (4) <**P**(**A**),○>中的Φ是零元;

3.零元的性质:

- (1) 左右零元可能存在,也可能不存在,左右零元可能是不同的元素,也可能有多个;
- (2)如果存在零元,那么零元是唯一的,而且同时是左右零元(后面证明).

注:对于一个二元运算而言,可能同时有零元和幺元;也可能只有零元或幺元:也可能既没有零元,也没有幺元.

可逆元素和逆元

(3) 设 \circ 为S上的二元运算, $\diamond e$ 为S中关于运算 \circ 的单位元(幺元). 对于x∈S,如果存在 y_l (或 y_r)∈S使得

$$y_l \circ x = e \quad (\overrightarrow{y}_r \circ y_r = e)$$

则称 $y_l(\mathbf{g} y_r)$ 是x的左逆元(或右逆元).

关于。运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 y为 x的逆元(Inverse element). 如果 x 的逆元存在,就称 x 是可逆的.

注: 逆元在代数结构中,与零元和幺元的意义不同,零元、幺元通常指某一个或左右零元、左右幺元,它是某几个特殊的元素;而逆元,体现了运算对象之间的一种关系.

可逆元素和逆元

2.逆元的例子:

- (1) < I, +> 中的0是幺元,每个整数X都有加法逆元(-X);
- (2) <I,*> 中的1是幺元,只有1,-1有乘法逆元;
- (3) <Q,+> 每个有理数X都有加法逆元(-X);
- (4) <Q,*>除0以外,每个有理数都有乘法逆元(1/x);

3.逆元的性质:

- (1) 多于1个元素的集合上,零元没有逆元;
- (2) 逆元唯一.

实例

集合	运算	单位元	零元	逆元
Z,Q,R	普通加法+ 普通乘法×	0 1	无 0	x逆元-x x逆元x-1 (x-1∈给定集合)
$M_n(R)$	矩阵加法+ 矩阵乘法×	n阶全0矩阵 n阶单位矩阵	无 n阶全0 矩阵	X逆元-X X的逆元X-1 (X可逆)
P(B)	并∪ 交∩ 对称差⊕	Ø B Ø	B Ø 无	Ø的逆元为Ø <i>B</i> 的逆元为 <i>B</i> <i>X</i> 的逆元为 <i>X</i>

惟一性定理

定理9.1 设。为S上的二元运算, e_l 和 e_r 分别为S中关于运算的左和右单位元,则 $e_l = e_r = e$ 为S上关于。运算的惟一的单位元.

证:

$$e_l = e_l \circ e_r$$
 (e_r 为右单位元)

$$e_l \circ e_r = e_r$$
 (e_l 为左单位元)

所以 $e_l = e_r$,将这个单位元记作e.

假设e'也是S中的单位元,则有 $e'=e \circ e'=e$.惟一性得证. 类似地可以证明关于零元的惟一性定理.

注意: 当 $|S| \ge 2$,单位元与零元是不同的; 当 |S| = 1时,这个元素既是单位元也是零元.

惟一性定理

定理9.2 设。为S上可结合的二元运算, e为该运算的单位元, 对于 $x \in S$ 如果存在左逆元 y_l 和右逆元 y_r , 则有 $y_l = y_r = y$, 且 y是 x 的惟一的逆元.

证: 由 $y_l \circ x = e$ 和 $x \circ y_r = e$ 得

$$y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$$

 $\phi y_l = y_r = y$, 则 $y \in x$ 的逆元.

假若 $y' \in S$ 也是 x 的逆元,则

$$y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$$

所以y是x惟一的逆元.

说明:对于可结合的二元运算,可逆元素 x 只有惟一的逆元,记作 x^{-1}

课后习题

P191:

4(1~5); 6(1~5)

5(1~5);

