1. Carothers 10.7 Let (f_n) and (g_n) be real-values functions on a set X, and suppose that (f_n) and (g_n) converge uniformly on X. Show that $(f_n + g_n)$ converges uniformly on X. Give an example showing that (f_ng_n) need not converge uniformly on X.

Proof. Let $\epsilon > 0$. Since (f_n) and (g_n) are real-values functions which converge uniformly on X, there exists an N such that if $n \ge N$ then, for all $x \in X$,

$$|f_n(x) - f(x)| < \epsilon$$
,

$$|g_n(x) - g(x)| < \epsilon$$
.

Then by the triangle inequality it follows that for all $x \in X$,

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| = |(f_n(x) - f(x)) + (g_n(x) - g(x))|,$$

$$\leq |f_n(x) - f(x)| + |g_n(x) - g(x)|,$$

$$< 2\epsilon.$$

Thus $(f_n + g_n)$ converges uniformly on X. For an example where $(f_n g_n)$ do not converge uniformly on X consider $g_n = 1/n$ a sequence of constant functions and $f_n = x^2$ a constant sequence of functions. Note both g_n and f_n are uniformly convergent on all of \mathbb{R} , g_n converges to the zero function and f_n converges to x^2 . However the sequence $(g_n f_n) = (1/n)x^2$ is not uniformly convergent to its point wise limit, the zero function. Let $\epsilon_0 = 1/2$ and note that for each n we can take $x = \sqrt{n}$ and we find that,

$$|f_n(\sqrt{n}) - 0| = \left|\frac{1}{n}\sqrt{n^2}\right| = 1 > \frac{1}{2}$$

- **2. Carothers 10.9** For each of the following sequences, determine the point wise limit on the given interval (if it exists) and the interval on which the convergence is uniform (if any):
 - **a.** $f_n(x) = x^n$ on (-1, 1]:

Solution:

Note for a fixed $x \in (-1, 1)$, we get $f_n(x) \to 0$ and for x = 1 we find that $f_n(1) \to 1$ therefore the point wise limit of f_n on (-1, 1] is,

$$f(x) = \begin{cases} 0, x \neq 1 \\ 1, x = 1 \end{cases}.$$

Let $\delta > 0$ and note that on $[-1 + \delta, 1 - \delta]$, a compact interval we know that f_n decreases point wise to the zero function, hence by Dini's Theorem f_n converges uniformly to $[-1 + \delta, 1 - \delta]$.

b. $f_n(x) = n^2 x (1 - x^2)^n$ on [0, 1]:

Solution:

For a fixed $x \in (0, 1)$ we find that, $0 < (1 - x^2) < 1$ and therefore the sequence $f_n(x) = n^2 x (1 - x^2)^n$ is dominated by the $(1 - x^2)^n$ term and converges to 0. Now when x = 1 or x = 0 we find that $f_n(x) = 0$. Hence f_n converges point wise to the zero function. This sequence is uniformly convergent to the zero function on the interval $[\delta, 1)$ for a $\delta > 0$. To see this note that there exists an N far enough out in the sequence of functions which such that if $n \ge N$ the 'hump' in $f_n(x)$ lies between $[0, \delta)$.

c. $f_n(x) = nx/(1 + nx)$ on $[0, \infty)$:

Solution:

Fix $x \in (0, \infty)$ and note that $f_n(x) = nx/(1 + nx) \to 1$ however clearly if x = 0, we get that $f_n(0) = n(0)/(1 + n(0)) = 0$. So the point wise limit of f_n on $[0, \infty)$ is given by,

$$f(x) = \begin{cases} 0, x = 0 \\ 1, x \neq 0 \end{cases}$$

Again if we let $\delta > 0$ and we consider the interval $[\delta, \infty)$ we have uniform convergence.

d. $f_n(x) = nx/(1 + n^2x^2)$ on $[0, \infty)$:

Solution:

Fix $x \in (0, \infty)$ we find that

$$f_n(x) = \frac{nx}{(1+n^2x^2)} < \frac{nx}{(nx)^2} = \frac{1}{nx} \to 0$$

Clearly when x = 0, $f_n(x) \to 0$ and therefore f_n on $[0, \infty)$ converges point wise to 0. Similarly to part b to get f_n to converge uniformly we must select an interval $[\delta, \infty)$ where $\delta > 0$, so we have the option to find a far enough N which pushes the 'hump' into the interval $[0, \delta)$.

e. $f_n(x) = xe^{-nx}$ on $[0, \infty)$:

Solution:

Fix $x \in (0, \infty)$ then it follows that $f_n(x) = xe^{-nx} \to 0$ and clearly $f_n(0) = 0$ so f_n converges point wise to the zero function. Note f_n is decreases point wise to zero on $[0, \infty)$, so considering a compact sub interval [0, 1] we get by Dini's Theorem that f_n converges uniformly on [0, 1].

f. $f_n(x) = nxe^{-nx}$ on $[0, \infty)$:

Solution:

Fix $x \in (0, \infty)$ then it follows that $f_n(x) = nxe^{-nx} \to 0$ since the sequence is dominated by the exponential decay in the e^{-nx} . It also follows that that $f_n(0) = 0$

and therefore f_n is point wise convergent on $[0, \infty)$: to the zero function. Again similarly to part d and b we select interval $[\delta, \infty)$ where $\delta > 0$, so we have the option to find a far enough N which pushes the 'hump' into the interval $[0, \delta)$.

3. Carothers 10.10 Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous, and define $f_n(x) = f(x + 1/n)$). Show that f_n uniformly converges to f on \mathbb{R} .

Proof. Let $\epsilon > 0$. Since f is uniformly continuous there exists a $\delta > 0$ such that for all $x, y \in \mathbb{R}$ if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. Now choose N such that if $n \ge N$ then $|x - (x + 1/n)| = |1/n| < \delta$, then it follows that for all $x \in \mathbb{R}$

$$|f(x) - f_n(x)| = |f(x) - f(x + 1/n)| < \epsilon.$$

4. Carothers 10.15 Let (X, d) and (Y, ρ) be metric spaces, and let $f, f_n : X \to Y$, with f_n uniformly converging to f on X. If each f_n is continuous at $x \in X$, and if $x_n \to x$ in X, prove that $\lim_{n\to\infty} f_n(x_n) = f(x)$.

Proof. Let $\epsilon > 0$. Since f_n uniformly converges to f we can choose N_1 such that if $n \ge N_1$ then for all $x \in X$ it follows that $\rho(f_n(x), f(x)) < \epsilon$. Since each f_n is continuous at x and $x_n \to x$ then it follows that $f_n(x_n) \to f_n(x)$. Now choose N_2 such that if $i \ge N_2$ then $\rho(f_n(x_i), f_n(x)) < \epsilon$. Let $N = \max\{N_1, N_2\}$ and it follows that for all $n \ge N$,

$$\rho(f_n(x_n), f(x)) \le \rho(f_n(x_n), f(x_n)) + \rho(f(x_n), f(x)),
\le \rho(f_n(x_n), f(x_n)) + \rho(f(x_n), f_n(x_n)) + \rho(f_n(x_n), f_n(x)) + \rho(f_n(x), f(x)),
< 4\epsilon.$$

5. Carothers 10.18 Here is a partial converse to Theorem 10.4, called Dini's Theorem. Let X be a compact metric space, and suppose that the sequence (f_n) in C(X) increases pointwise to a continuous function $f \in C(X)$; that is, $f_n(x) \le f_{n+1}(x)$ for each n and x, and $f_n(x) \to f(x)$ for each x. Prove that the convergence is actually uniform. The same is true if (f_n) decreases pointwise to f.

Proof. First we will reduce this problem to the case where (f_n) decreases pointwise to 0. Without loss of generality suppose (f_n) in C(X) decreases pointwise to a continuous function $f \in C(X)$. Define a new sequence of function (g_n) where $g_n(x) = f_n(x) - f(x)$ and note that since $f_n(x) \to f(x)$ pointwise it follows that $g_n(x) \to 0$ pointwise. Since $f_n(x) \ge f_{n+1}(x)$ for each n and x, it follows by subtracting f(x) to both sides that $g_n(x) \ge g_{n+1}(x)$ for each n and n. Therefore n0 decreases pointwise to n2.

Let $\epsilon > 0$. Consider the open sets $U_n = \{x \in X : g_n(x) < \epsilon\}$, we will show that U_n covers X. Let $x \in X$, and note that since $g_n(x) \to 0$ pointwise there must exists an N such that $|g_N(x)| < \epsilon$, and therefore $x \in U_N$. Now since X is compact and the set of all U_n form an open cover, we know that there exists a finite subcover $\{U_i\}_{i \in I}$, for some finite index set I. Now let $x \in U_n$, then by definition $g_n(x) < \epsilon$ but clearly $g_{n+1}(x) \le g_n(x) < \epsilon$, so it follows $x \in U_{n+1}$, and therefore $U_n \subseteq U_{n+1}$.

Now, since the set I is finite there exists a $U_M = \max_{n \in I} U_i$, and since $U_n \subseteq U_{n+1}$ and $\{U_i\}_{i \in I}$ is a cover of X, U_M covers X. Thus for all $n \ge M$ it follows that for all $x \in X$ (since U_M covers X) we have,

$$|g_n(x)| < \epsilon$$
.

6. Carothers 10.19 Suppose (f_n) is a sequence of functions in C[0, 1] and that f_n converges uniformly to f on [0, 1]. True or false $\int_0^{1-(1/n)} f_n \to \int_0^1 f$.

Proof. Note that since $(f_n) \subseteq C(0,1)$ and f_n converges uniformly to f, we know that $f \in C[0,1]$ and is therefore Riemann integrable. Let $\epsilon > 0$ and choose N to be the max of either $1/N < \epsilon$ or $||f - f_n||_{\infty} < \epsilon$ then if $n \ge N$,

$$\left| \int_{0}^{1} f(x)dx - \int_{0}^{1-(1/n)} f_{n}(x)dx \right| = \left| \int_{1-(1/n)}^{1} f(x)dx + \int_{0}^{1-(1/n)} f(x)dx - \int_{0}^{1-(1/n)} f_{n}(x)dx \right|$$

$$\leq \left| \int_{1-(1/n)}^{1} f(x)dx \right| + \left| \int_{0}^{1-(1/n)} f(x)dx - \int_{0}^{1-(1/n)} f_{n}(x)dx \right|$$

$$= \left| \int_{1-(1/n)}^{1} f(x)dx \right| + \left| \int_{0}^{1-(1/n)} f(x) - f_{n}(x)dx \right|$$

$$\leq \int_{1-(1/n)}^{1} |f(x)| dx + \int_{0}^{1-(1/n)} |f(x) - f_{n}(x)| dx$$

$$\leq (1/n) ||f||_{\infty} + (1 - (1/n)) ||f - f_{n}||_{\infty}$$

$$< \epsilon ||f||_{\infty} + (1 - \epsilon)\epsilon$$

7. Carothers 10.25 Show that B[0, 1] is not separable.

Proof. Consider the set of function $\delta_{\nu}(x):[0,1]\to\mathbb{R}$ defined by,

$$\delta_{y}(x) = \begin{cases} 0, x \neq y \\ 1, x = y \end{cases}$$

Note that $\{\delta_y(x)\}_{y\in[0,1]}\subseteq B[0,1]$ since each $\delta_y(x)$ is bounded above by 1 and below by 0. Now consider the collection of sets $\{B_{1/2}(\delta_y(x))\}_{y\in[0,1]}\subseteq B[0,1]$. This collection is

uncountable, and each set is disjoint, since if we fix $a \in [0, 1]$ and let $b \in [0, 1]$ such that $b \neq a$ we find that $\|\delta_a(x) - \delta_b(x)\|_{\infty} = 1 < 1/2$ since $\delta_a(x) - \delta_b(x)$ takes on a value of 1 at a, -1 at b and 0 elsewhere. Hence any countable dense subset would have to have a single element in each set of $\{B_{1/2}(\delta_y(x))\}_{y \in [0,1]}$ which is impossible since there are an uncountable number of them.

8. Carothers 10.26 If $\sum_{n=1}^{\infty} |a_n| < \infty$, prove that $\sum_{n=1}^{\infty} a_n \sin(nx)$ and $\sum_{n=1}^{\infty} a_n \cos(nx)$ are uniformly convergent in \mathbb{R} .

Proof. First let $M_n = |a_n|$ and note that for a fixed n since $|\sin(x)| \le 1$ and $|\cos(x)| \le 1$ we find that for all $x \in \mathbb{R}$,

$$|a_n \sin(nx)| = |a_n||\sin(nx)| \le |a_n| = M_n,$$

$$|a_n \cos(nx)| = |a_n| |\cos(nx)| \le |a_n| = M_n.$$

By the Weirstrass M-test it follows that since $\sum_{n=1}^{\infty} M_n$ converges then $\sum_{n=1}^{\infty} a_n \sin(nx)$ and $\sum_{n=1}^{\infty} a_n \cos(nx)$ are uniformly convergent in \mathbb{R} .

9. Carothers 10.27 Show that $\sum_{n=1}^{\infty} x^2/(1+x^2)^n$ converges for all $|x| \le 1$, but that convergence is not uniform.

Proof. First note that for all $0 < |x| \le 1$, we get the following pointwise convergence,

$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n} = x^2 \sum_{n=1}^{\infty} \left(\frac{1}{1+x^2}\right)^n = \frac{x^2 \left(\frac{1}{1+x^2}\right)}{1 - \frac{1}{1+x^2}} = \frac{\left(\frac{x^2}{1+x^2}\right)}{\frac{x^2}{1+x^2}} = 1.$$

However clearly if x = 0 we get,

$$\sum_{n=1}^{\infty} \frac{(0)^2}{(1+(0)^2)^n} = 0$$

Therefore $\sum_{n=1}^{\infty} x^2/(1+x^2)^n$ on $|x| \le 1$ converges pointwise to f where,

$$f(x) = \begin{cases} 1, x \neq 0 \\ 0, x = 0 \end{cases}$$

Note that f is discontinuous on $|x| \le 1$ and therefore $\sum_{n=1}^{\infty} x^2/(1+x^2)^n$ a series of continuous function, cannot converge uniformly.

Q ... 10.00

10. Carothers 10.32

(a) if $\sum_{n=1}^{\infty} |a_n| < \infty$, show that $\sum_{n=1}^{\infty} a_n e^{-nx}$ is uniformly convergent on $[0, \infty)$.

Proof. Let $M_n = |a_n|$ and note that for all $x \in [0, \infty)$ and n, we know that $e^{-nx} \le 1$. Therefore it follows that for all $x \in [0, \infty)$,

$$|a_n e^{-nx}| = |a_n| e^{-nx} \le |a_n| = M_n$$

Since $\sum_{n=1}^{\infty} M_n < \infty$ by the Weirstrass *M*-test it follows that $\sum_{n=1}^{\infty} a_n e^{-nx}$ is uniformly convergent on $[0,\infty)$

(b) If we assume only that (a_n) is bounded, show that $\sum_{n=1}^{\infty} a_n e^{-nx}$ is uniformly convergent on $[\delta, \infty)$ for every $\delta > 0$.

Proof. Suppose (a_n) is bounded, and therefore there exists an $A \in \mathbb{R}$ such that $|a_n| \le A$, for all n. Let $\delta > 0$, define $M_n = Ae^{-n\delta}$ and note that $M_n \ge 0$. Now note that for all $x \in [\delta, \infty)$ it follows that,

$$|a_n e^{-nx}| = |a_n| e^{-nx} \le A e^{-nx} = M_n.$$

Now to apply the Weirstrass M-test we must show that, $\sum_{n=1}^{\infty} M_n < \infty$. Consider the following,

$$\sum_{n=1}^{\infty} A e^{-n\delta} = A \sum_{n=1}^{\infty} e^{-n\delta} = A \sum_{n=1}^{\infty} \left(\frac{1}{e^{\delta}}\right)^{n}.$$

Therefore $\sum_{n=1}^{\infty} M_n$ is a convergent geometric series since $\delta > 0$ forces $|1/e^{\delta}| < 1$. Thus by the Weirstrass M-test, $\sum_{n=1}^{\infty} a_n e^{-nx}$ is uniformly convergent on $[\delta, \infty)$ for every $\delta > 0$.