PUM raport 2 - Główne składowe odzieży

Piotr Zawiślan

10 Kwiecień 2022

1 Wykorzystane technologie

Kod pisałem w języku Python. Do wczytania i wstępnej obróbki obrazów użyłem biblioteki Pillow. Następnie do operowania na macierzach i przeprowadzenia PCA użyłem biblioteki Numpy oraz Scikit-Learn.

2 Dane do wykorzystania

2.1 Pozyskanie danych

W sieci znalazłem odpowiedni zbiór danych - jest to zbiór 60 zdjęć butów trzech rodzajów:

- 20 mokasynów
- 20 tenisówek
- 20 koturnów

Dane pochodzą ze strony polskiego sklepu Tommiego Hilfigera - zapisywałem je własnoręcznie, ponieważ nie było potrzeby pozyskiwać ich automatycznie przy tak małym zbiorze danych.

Rysunek 1: Przykładowe zdjęcia każdego rodzaju butów w zbiorze danych.

3 Wstępna obróbka

3.1 Konwersja obrazów

Każdy obraz zmniejszyłem do rozmiaru 85×113 i przekonwertowałem do skali szarości.

Rysunek 2: Przykładowy but po wstępnej obróbce.

3.2 Konwersja na wektor

Każdy obraz następnie zamieniłem na wektor cech (pixeli) o długości 9605.

4 No dobra, pora się wreszcie pobawić PCA

4.1 Jak wyglądała dla tego zbioru macierz kowariancji przed transformacją PCA? Jak po jej wykonaniu?

Macierz kowariancji oryginalnego zbioru

Transformed data covariance

Macierz kowariancji zbioru zredukowanego do 60 wymiarów

Rysunek 3: Macierze kowariancji przed i po pełnej transformacji PCA.

4.2 Jak rozkładały się wariancje poszczególnych cech przed transformacją PCA? A jak po jej użyciu?

Rozkład wariancji oryginalnego zbioru.

Rozkład wariancji zbioru zredukowanego do 60 wymiarów.

Rysunek 4: Rozkłady wariancji przed i po pełnej transformacji PCA.

4.3 Jak wyglądało średnie zdjęcie?

Rysunek 5: Średni but

Rysunek 6: Średnie zdjęcia poszczególnych rodzajów butów.

4.4 Jak wyglądają znalezione nowe wektory bazowe (główne składowe)?

Rysunek 7: Pierwszych 9 głównych składowych.

4.5 Zredukujmy wymiarowość naszych obserwacji do odpowiednio 3, 9 i 27 najważniejszych cech. Jak wyglądają tak 'odchudzone' z wymiarów fotografie?

Rysunek 8: Przykładowe buty w oryginalnej przestrzeni.

Rysunek 9: Przykładowe buty w przestrzeni zredukowanej do 3 wymiarów.

Tenisówki

Koturny

Mokasyny

Mokasyny Tenisówki Koturny

Rysunek 10: Przykładowe buty w przestrzeni zredukowanej do 9 wymiarów.

Mokasyny Tenisówki Koturny

Rysunek 11: Przykładowe buty w przestrzeni zredukowanej do 27 wymiarów.

Niestety nie udało się uzyskać kompresji (używając max. 27 głównych składowych), która by pozwalała na poznanie oryginalnych butów.

4.6 Użyjmy PCA do zrzutowania naszego zbioru na płaszczyznę 2D.

Rysunek 12: Zbiór danych zrzutowany na płaszczyznę 2D. Ciemnoniebieskie - mokasyny, jasnoniebieskie - tenisówki, ciemnoczerwone - koturny.

Rysunek 13: Zbiór danych zrzutowany na płaszczyznę 2D - z wszystkimi miniaturkami.

Rysunek 14: Zbiór danych zrzutowany na płaszczyznę 2D - z wybranymi miniaturkami.

Z wizualizacji zbioru na płaszczyźnie dwuwymiarowej można wyciągnąć wniosek, że na podstawie porównywania odpowiednich pikseli łatwiej odróżnić koturny od reszty butów niż mokasyny od tenisówek.