Лекция 4

линейное подпространство. примеры

Пример. Пусть M — множество многочленов степени ≤ 4 , которые делятся на $t^2 + t + 1$. Доказать, что M — линейное подпространство в линейном пространстве P_4 . Найти базис и размерность пространства M. Дополнить базис пространства M до базиса пространства P_4 .

Решение.

1) Докажем, что M – линейное подпространство в линейном пространстве P_4 .

$$M = \{p(t) = (at^2 + bt + c)(t^2 + t + 1); a, b, c \in \mathbb{R} \}$$
 $p(t) = (at^2 + bt + c)(t^2 + t + 1) =$
 $= a(t^4 + t^3 + t^2) + b(t^3 + t^2 + t) + c(t^2 + t + 1)$
Пусть
$$p_1(t) = a_1(t^4 + t^3 + t^2) + b_1(t^3 + t^2 + t) + c_1(t^2 + t + 1)$$

$$+c_1(t^2 + t + 1)$$

$$p_2(t) = a_2(t^4 + t^3 + t^2) + b_2(t^3 + t^2 + t) + c_2(t^2 + t + 1)$$

$$\alpha p_{1}(t) + \beta p_{2}(t) = \alpha a_{1}(t^{4} + t^{3} + t^{2}) + \alpha b_{1}(t^{3} + t^{2} + t) + + \alpha c_{1}(t^{2} + t + 1) + \beta a_{2}(t^{4} + t^{3} + t^{2}) + \beta b_{2}(t^{3} + t^{2} + t) + + \beta c_{2}(t^{2} + t + 1) = (\alpha a_{1} + \beta a_{2})(t^{4} + t^{3} + t^{2}) + + (\alpha b_{1} + \beta b_{2})(t^{3} + t^{2} + t) + (\alpha c_{1} + \beta c_{2})(t^{2} + t + 1) = = \begin{bmatrix} \alpha a_{1} + \beta a_{2} = a \\ \alpha b_{1} + \beta b_{2} = b \\ \alpha c_{1} + \beta c_{2} = c \end{bmatrix} = a(t^{4} + t^{3} + t^{2}) + b(t^{3} + t^{2} + t) + c(t^{2} + t + 1) \Rightarrow \alpha p_{1}(t) + \beta p_{2}(t) \in M$$

 $\Rightarrow \alpha p_1(t) + \beta p_2(t) \in M$

 $\forall p_1(t), p_2(t) \in M$ и $\forall \alpha, \beta \in \mathbb{R}$

- $\Rightarrow M$ линейное подпространство в линейном пространстве P_4
 - 2) Найдем базис и размерность M.

$$p(t) = (at^2 + bt + c)(t^2 + t + 1) =$$

$$= a(t^4 + t^3 + t^2) + b(t^3 + t^2 + t) + c(t^2 + t + 1)$$

Рассмотрим векторы (многочлены):

$$\bar{e}_1 = (t^4 + t^3 + t^2); \bar{e}_2 = t^3 + t^2 + t; \bar{e}_3 = t^2 + t + 1$$

Пусть $\mathcal{B}'=\{t^4;t^3;t^2;t;1\}$. Найдем координаты векторов $\bar{e}_1,\bar{e}_2,\bar{e}_3$ в базисе \mathcal{B}' .

$$\bar{e}_1 = \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}; \ \bar{e}_2 = \begin{pmatrix} 0\\1\\1\\1\\0 \end{pmatrix}; \ \bar{e}_3 = \begin{pmatrix} 0\\0\\1\\1\\1 \end{pmatrix}$$

Рассмотрим матрицу $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$; rang A = 3

 $\Rightarrow \bar{e}_1$, \bar{e}_2 , \bar{e}_3 — линейно независимы.

2)
$$\forall p(t) \in M \Rightarrow p(t) = a\bar{e}_1 + b\bar{e}_2 + c\bar{e}_3$$

 $\Rightarrow \mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} =$
 $= \{t^4 + t^3 + t^2; t^3 + t^2 + t; t^2 + t + 1\} - \text{базис в } M$
 $\Rightarrow \dim M = 3$

Дополним базис пространства M до базиса пространства P_4 .

Т.к. $\dim P_4 = 5 \Rightarrow$ базис пространства P_4 состоит из пяти элементов. Базис пространства M состоит из трех многочленов. Поэтому нужно добавить к базису пространства M еще два элемента и проверить, что векторы линейно независимы.

Пусть \mathcal{B}'' — базис пространства P_4 .

Тогда, например $\mathcal{B}''=\{t^4+t^3+t^2;t^3+t^2+t;t^2+t+1;t;1\}$, т.к. многочлены $t^4+t^3+t^2;t^3+t^2+t;t^2+t+1;t;1$ линейно независимы. Доказательство их линейной независимости аналогично тому, как мы это делали для векторов $\bar{e}_1,\bar{e}_2,\bar{e}_3$.

Для этого рассматриваем канонический базис пространства P_4 : $\{t^4; t^3; t^2; t; 1\}$ и в этом базисе представляем многочлены в виде столбцов координат:

$$t^{4} + t^{3} + t^{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}; t^{3} + t^{2} + t = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}; t^{2} + t + 1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix};$$

$$t = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}; 1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Далее рассматриваем матрицу

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}; rangB = 5, \text{ T.K. } |B| = 1 \neq 0.$$

 \Rightarrow многочлены $t^4 + t^3 + t^2$; $t^3 + t^2 + t$; $t^2 + t + 1$; t; 1 линейно независимы.

Пример. Пусть M — множество симметричных матриц размера 2×2 . Доказать, что M — линейное подпространство в линейном пространстве $\mathbb{R}^{2 \times 2}$. Найти базис и размерность пространства M.

Решение.

1) Докажем, что M — линейное подпространство в линейном пространстве $\mathbb{R}^{2\times 2}$.

$$M = \left\{ X = \begin{pmatrix} a & c \\ c & b \end{pmatrix}; a, b, c \in \mathbb{R} \right\}$$
Пусть $A = \begin{pmatrix} a_1 & c_1 \\ c_1 & b_1 \end{pmatrix}; B = \begin{pmatrix} a_2 & c_2 \\ c_2 & b_2 \end{pmatrix}$

$$\alpha A + \beta B = \begin{pmatrix} \alpha a_1 & \alpha c_1 \\ \alpha c_1 & \alpha b_1 \end{pmatrix} + \begin{pmatrix} \beta a_2 & \beta c_2 \\ \beta c_2 & \beta b_2 \end{pmatrix} =$$

$$= \begin{pmatrix} \alpha a_1 + \beta a_2 & \alpha c_1 + \beta c_2 \\ \alpha c_1 + \beta c_2 & \alpha b_1 + \beta b_2 \end{pmatrix}$$

$$\Rightarrow \alpha A + \beta B \in M \qquad \forall A, B \in M \quad \text{и} \quad \forall \alpha, \beta \in \mathbb{R}$$

$$\Rightarrow M - \text{линейное подпространство в линейном пространстве } \mathbb{R}^{2 \times 2}.$$

2) Найдем базис и размерность *М*.

$$X = \begin{pmatrix} a & c \\ c & b \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

а) Рассмотрим векторы (матрицы):

$$\begin{split} \bar{e}_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \bar{e}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \bar{e}_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ & \lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 + \lambda_3 \bar{e}_3 = \\ &= \lambda_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \end{split}$$

$$= \begin{pmatrix} \lambda_1 & \lambda_3 \\ \lambda_3 & \lambda_2 \end{pmatrix} = 0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$$
 $\Rightarrow \bar{e}_1, \bar{e}_2, \bar{e}_3$ — линейно независимы $6) \ \forall \ X \in M \Rightarrow X = a\bar{e}_1 + b\bar{e}_2 + c\bar{e}_3$ $\Rightarrow \mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} =$ $= \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\} - \text{базис в } M$ $\Rightarrow \dim M = 3$

ОТОБРАЖЕНИЕ МНОЖЕСТВ

Определение. Отображением f множества X во множество Y называется закон, посредством которого произвольному элементу $x \in X$ ставится в соответствие однозначно определенный элемент $y \in Y$.

Обозначение. $f: X \to Y$.

Определение. Элемент y называется образом элемента x, а x – npoofpasom элемента y.

Замечание. Запись y = f(x) или $x \xrightarrow{f} y$ означает, что элемент x при отображении f переходит в элемент y.

Определение. Отображение f называется взаимно однозначным (или биективным), если уравнение y = f(x) (5.1) при $\forall y$ имеет единственное решение, т.е. если $x_1 \neq x_2$, то $f(x_1) \neq f(x_2)$.

Определение. Отображение f называется *отображением* на (или *сюръективным*), если уравнение (5.1) при $\forall y$ имеет хотя бы одно решение.

Определение. Два отображения $f: X \to Y$ и $g: X \to Y$ называются равными, если f(x) = g(x), $\forall x \in X$.

Определение. Тождественным (единичным) отображением на множестве X называется отображение $e_x \colon X \to X$, которое переводит каждый элемент $x \in X$ в себя.

Композиция отображений и ее свойства

Определение. Композицией (т.е. произведением) отображений $g: X \to Y$ и $f: Y \to Z$ называется отображение $f \cdot g: X \to Z$, определенное правилом

$$(f \cdot g)(x) = f(g(x)), \ \forall x \in X.$$

Замечание. Композиция отображений не коммутативна.

Свойства композиции отображений

1)
$$f \cdot e_x = f$$
; $e_y \cdot f = f$ для $\forall f : X \to Y$.

2) Композиция отображений ассоциативна, т.е. если $h: X \to Y; \ g: Y \to Z;$ $f: Z \to U,$ то f(gh) = (fg)h.

Доказательство.

В соответствии с определением равенства отображений нужно просто сравнить значения отображений $f(gh): X \to U$ и $(fg)h: X \to U$ в произвольной точке $x \in X$.

Согласно определению композиции отображений имеем:

$$(f(gh))(x) = f((gh)(x)) = f(g(h(x))) = (fg)(h(x)) = ((fg)h)(x)$$

$$y.m.\partial.$$

3) Композиция биективных (или сюръективных) отображений биективна (соответственно сюръективна).

Обратное отображение

Определение. Пусть $f: X \to Y$. Отображение $f^{-1}: Y \to X$ называется ображным к отображению f, если

$$f^{-1} \cdot f = e_x$$
; $f \cdot f^{-1} = e_y$

Определение. Отображение, для которого существует обратное отображение, называется *обратимым*.

Теорема. (Критерий обратимости).

Отображение обратимо тогда и только тогда, когда оно биективно.

Доказательство.

1) <u>Необходимость</u>. Пусть $f: X \to Y$ обратимо.

$$\Rightarrow$$
 $\exists f^{-1}: Y \to X$ такое, что $f^{-1} \cdot f = e_x$ и $f \cdot f^{-1} = e_y$.

Пусть f не биективно $\Rightarrow \exists x_1$ и $x_2 \in X : x_1 \neq x_2$, а $f(x_1) = f(x_2)$.

$$x_1 = e_x(x_1) = (f^{-1} \cdot f)(x_1) = f^{-1}(f(x_1)) = f^{-1}(f(x_2)) = (f^{-1} \cdot f)(x_2) = e_x(x_2) = x_2$$
 \Rightarrow противоречие.

2) Достаточность. Пусть f – биективно; $f: X \to Y$, т.е. y = f(x). Тогда для $\forall y \in Y$ существует единственный прообраз $x \in X$.

Построим отображение $g: Y \to X$, положив g(y) = x. Тогда для $\forall y \in Y$ имеем: $(f \cdot g)(y) = f(g(y)) = f(x) = y$, т.е. $f \cdot g = e_y$.

Для $\forall x \in X$ имеем: $(g \cdot f)(x) = g(f(x)) = g(y) = x$, т.е. $g \cdot f = e_x$. $\Rightarrow g = f^{-1}$ и f обратимо.

ч.т.д.

Свойства обратимых отображений

- 1) Обратное отображение единственно.
- 2) Композиция обратимых отображений обратима, при этом

$$(f \cdot g)^{-1} = g^{-1} \cdot f^{-1}$$

Доказательство. Композиция $f \cdot g$ обратима, как композиция биективных отображений, при этом, если $g: X \to Y$ и $f: Y \to Z$, то

$$(f \cdot g)(g^{-1} \cdot f^{-1}) = f(gg^{-1})f^{-1} = fe_y f^{-1} = ff^{-1} = e_z$$
$$(g^{-1} \cdot f^{-1})(f \cdot g) = g^{-1}(f^{-1} \cdot f)g = g^{-1}e_y g = g^{-1}g = e_x$$

ч.т.д.