Durée 2 heures

Tout document interdit

Exercice 1 (2, 3)

 $\beta: (\forall x \ P(x) \to \exists x \ Q(x)) \to \exists x \ \exists y \ (P(x) \to Q(y))$

- 1. Donner une formule que l'on la désignera par β_P sous forme normale prenexe telle que $\beta_{\rm P} \equiv \beta$.
- 2. Montrer que β_P est valide.

Exercice 2 (2, 1, 1, 1, 1, 2)

On considère les formules suivantes :

$$\alpha_1 : \exists x \ \forall y \ (P(x) \land P(y))$$
 $\alpha_2 : \forall x \ \exists y \ (P(x) \rightarrow P(y))$ $\alpha_3 : \forall x (P(x) \rightarrow P(f(x)))$

$$\alpha_2: \forall x \exists y (P(x) \rightarrow P(y))$$

$$x_3 : \forall x (P(x) \rightarrow P(f(x)))$$

- Mettre α₁ sous forme clausale. On désignera par S l'ensemble obtenu.
- Donner le domaine de Herbrand de S.
- Donner l'ensemble des clauses de base de S.
- 4. Vérifier à l'aide d'un arbre sémantique que S est non satisfiable.
- 5. En déduire que α_2 est valide.
- 6. α_3 est-elle valide? Si la réponse est non, donner un modèle de α_3 .

Exercice 3(4, 2)

 $\Gamma_1: \{ P(a), P(a) \vee Q(b), P(a) \vee R(b), S(a) \}$

 Γ_2 : { R(b), S(a)}

 $\Gamma_3: \{ B(a), B(a) \vee S(a), B(a) \vee S(a) \}$

1. Montrer que :

$$P(a)$$
, $P(a) \vee Q(b)$, $P(a) \vee R(b)$, $S(a) \models R(b) \wedge S(a)$

2. En déduire que $\Gamma_1 \cup \Gamma_3$ est non satisfiable.

Exercice 4 (2)

Traduire les énoncés suivants dans le langage des prédicats du premier ordre :

E₁: Etre bon, c'est penser aux autres.

E₂: La langue est la meilleure et la pire des choses.

N. B. Remettre, au plus: une seule double feuille et une seule intercalaire.

Bon courage