Energy Equivalents[†]

Relevant unit						
	J	kg	$[m^{-1}]^*$	Hz		
1 J	(1 J) = 1 J	$(1 \text{ J})/c^2 =$ $1.112650056 \times 10^{-17} \text{ kg}$	(1 J)/ $hc = 5.034 116 567 \dots \times 10^{24} \text{m}^{-1}$	$(1 \text{ J})/h = 1.509 190 179 \dots \times 10^{33} \text{Hz}$		
1 kg	$(1 \text{ kg})c^2 = 8.987551787 \times 10^{16} \text{ J}$	$\begin{array}{l} (1 \text{ kg}) = \\ 1 \text{ kg} \end{array}$	$(1 \text{ kg})c/h = 4.524438335 \times 10^{41} \text{ m}^{-1}$	$(1 \text{ kg})c^2/h = 1.356 392 489 \dots \times 10^{50} \text{ Hz}$		
1 [m ⁻¹]*	$(1 \text{ m}^{-1})hc = 1.986445857 \times 10^{-25} \text{ J}$	$(1 \text{ m}^{-1})h/c =$ 2.210 219 094 × 10^{-42} kg	$(1 \text{ m}^{-1}) = 1 \text{ m}^{-1}$	$(1 \text{ m}^{-1})c =$ 299 792 458 Hz		
1 Hz	$(1 \text{ Hz})h = 6.62607015 \times 10^{-34}\text{J}$	$(1 \text{ Hz})h/c^2 = 7.372497323 \times 10^{-51} \text{ kg}$	$(1 \text{ Hz})/c = 3.335 640 951 \dots \times 10^{-9} \text{ m}^{-1}$	(1 Hz) = 1 Hz		
1 K	$(1 \text{ K})k = 1.380 649 \times 10^{-23} \text{J}$	$(1 \text{ K})k/c^2 = 1.536179187 \times 10^{-40} \text{ kg}$	$(1 \text{ K})k/hc = 69.50348004\dots \text{m}^{-1}$	$(1 \text{ K})k/h = 2.083661912 \times 10^{10} \text{ Hz}$		
1 eV	$(1 \text{ eV}) = 1.602176634 \times 10^{-19} \text{ J}$	$(1 \text{ eV})/c^2 = 1.782661921 \times 10^{-36} \text{ kg}$	$(1 \text{ eV})/hc = 8.065543937 \times 10^5 \text{ m}^{-1}$	$(1 \text{ eV})/h = 2.417989242 \times 10^{14} \text{ Hz}$		
1 u	$(1 \text{ u})c^2 = 1.49241808560(45) \times 10^{-10} \text{ J}$	$(1 \text{ u}) =$ $1.66053906660(50) \times 10^{-27} \text{ kg}$	$\begin{array}{l} (1~{\rm u})c/h = \\ 7.5130066104(23)\times 10^{14}{\rm m}^{-1} \end{array}$	$(1 \text{ u})c^2/h =$ 2.252 342 718 71(68) × 10 ²³ Hz		
1 E _h		$(1 E_{\rm h})/c^2 = 4.850 870 209 5432 (94) \times 10^{-35} {\rm kg}$	$(1 E_{\rm h})/hc =$ 2.194 746 313 6320(43) × 10 ⁷ m ⁻¹	$(1 E_{\rm h})/h = 6.579 683 920 502(13) \times 10^{15} {\rm Hz}$		

[†] The values of some energy equivalents derived from the relations $E=mc^2=hc/\lambda=h\nu=kT$, and based on the 2018 CODATA adjustment of the values of the constants; $1~{\rm eV}=(e/{\rm C})~{\rm J}, 1~{\rm u}=m_{\rm u}=\frac{1}{12}m(^{12}{\rm C})$, and $E_{\rm h}=2R_{\infty}hc=\alpha^2m_{\rm e}c^2$ is the Hartree energy (hartree).

^{*} The full description of m⁻¹ is cycles or periods per meter and that of m is meter per cycle (m/cycle). The scientific community is aware of the implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus cycles/s. No solution has been agreed upon.

2018 CODATA adjustment From: http://physics.nist.gov/constants

Energy Equivalents[†]

Relevant unit						
K		eV	u	$E_{ m h}$		
1 J	$(1 \text{ J})/k = 7.242970516\dots \times 10^{22} \text{ K}$	$(1 \text{ J}) =$ $6.241509074 \times 10^{18} \text{ eV}$	$(1 \text{ J})/c^2 =$ $6.700 535 2565(20) \times 10^9 \text{ u}$	(1 J) = $2.2937122783963(45) \times 10^{17} E_h$		
1 kg	$(1 \text{ kg})c^2/k = 6.509 657 260 \dots \times 10^{39} \text{ K}$	$(1 \text{ kg})c^2 = 5.609588603 \times 10^{35} \text{ eV}$	$(1 \text{ kg}) = 6.0221407621(18) \times 10^{26} \text{ u}$	$(1 \text{ kg})c^2 = 2.0614857887409(40) \times 10^{34} E_h$		
1 [m ⁻¹]*	$(1 \text{ m}^{-1})hc/k = 1.438776877 \times 10^{-2} \text{ K}$	$(1 \text{ m}^{-1})hc = 1.239841984 \times 10^{-6} \text{ eV}$	$(1 \text{ m}^{-1})h/c$ = $1.33102505010(40) \times 10^{-15} \text{ u}$	$\begin{array}{l} (1~{\rm m}^{-1})hc = \\ 4.5563352529120(88)\times 10^{-8}E_{\rm h} \end{array}$		
1 Hz	$(1 \text{ Hz})h/k = 4.799 243 073 \dots \times 10^{-11} \text{ K}$	$(1 \text{ Hz})h = 4.135 667 696 \dots \times 10^{-15} \text{ eV}$	$(1 \text{ Hz})h/c^2 = 4.4398216652(13) \times 10^{-24} \text{ u}$	$(1 \text{ Hz})h = 1.5198298460570(29) \times 10^{-16} E_{\text{h}}$		
1 K	(1 K) = 1 K	$(1 \text{ K})k = 8.617333262 \times 10^{-5} \text{ eV}$	$(1 \text{ K})k/c^2 =$ 9.251 087 3014(28) × 10 ⁻¹⁴ u	$(1 \text{ K})k = 3.1668115634556(61) \times 10^{-6}E_{\text{h}}$		
1 eV	$(1 \text{ eV})/k = 1.160 451 812 \dots \times 10^4 \text{ K}$	$\begin{array}{l} (1~\text{eV}) = \\ 1~\text{eV} \end{array}$	$(1 \text{ eV})/c^2 = 1.07354410233(32) \times 10^{-9} \text{ u}$	$(1 \text{ eV}) = 3.6749322175655(71) \times 10^{-2}E_{\text{h}}$		
1 u	$\begin{array}{l} (1~{\rm u})c^2/k = \\ 1.08095401916(33)\times 10^{13}~{\rm K} \end{array}$	$(1 \text{ u})c^2 =$ 9.314 941 0242(28) × 10 ⁸ eV	(1 u) = 1 u	$(1 \text{ u})c^2 =$ $3.4231776874(10) \times 10^7 E_{\text{h}}$		
$1E_{ m h}$	$(1 E_{\rm h})/k = 3.1577502480407(61) \times 10^5 \text{ K}$	$(1 E_{\rm h}) =$ 27.211 386 245 988(53) eV	` ''	$(1 E_{\rm h}) = 1 E_{\rm h}$		

[†] The values of some energy equivalents derived from the relations $E=mc^2=hc/\lambda=h\nu=kT$, and based on the 2018 CODATA adjustment of the values of the constants; 1 eV = (e/C) J, 1 u = $m_{\rm u}=\frac{1}{12}m(^{12}C)$, and $E_{\rm h}=2R_{\infty}hc=\alpha^2m_{\rm e}c^2$ is the Hartree energy (hartree).

* The full description of m⁻¹ is cycles or periods per meter and that of m is meter per cycle (m/cycle). The scientific community is aware of the implied use of these

units. It traces back to the conventions for phase and angle and the use of unit Hz versus cycles/s. No solution has been agreed upon.