Problem

Recall that string x is a *prefix* of string y if a string z exists where xz = y, and that x is a *proper prefix* of y if in addition $x \neq y$. In each of the following parts, we define an operation on a language A. Show that the class of regular languages is closed under that operation.

- ^Aa. $NOPREFIX(A) = \{w \in A | \text{ no proper prefix of } w \text{ is a member of } A\}.$
- **b.** $NOEXTEND(A) = \{ w \in A | w \text{ is not the proper prefix of any string in } A \}.$

Step-by-step solution

Step 1 of 3

Consider the following information:

- String x is a prefix of string y if a string z exists such that xz=y.
- String x is a proper prefix of y if xz=y and $x \neq y$.
- The language A is regular language. Assume $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A.

Comment

Step 2 of 3

a.

 $NOPREFIX(A) = \{ w \in A \mid no \ proper \ prefix \ of \ w \ is \ a \ member \ of \ A \}$

- 1. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A.
- 2. Initially, find all words that have a proper prefix in A. The language L is represented as $L = \{w \in \sum^* : x \in A \text{ and } z \in \sum^* \text{ such that } xz = y\}$.
- 3. Now, construct the NFA $M^1 = (Q^1, \sum, \delta^1, q_0^1, F^1)$ for all its components such that:
- $Q^1 = Q \cup \{q_f\}$ and $q_f \notin Q$
- For $q \in Q^1$ and $a \in \Sigma$ define $\delta^1(q,a) = \begin{cases} \delta(r,a) & \text{if } r \notin F \\ \phi & \text{if } r \in F \end{cases}$
- q₀¹ = q₀
- F¹ = q_f

Proof:

- If w is a string in Language L, there is a string y in A. Here, x is a proper prefix of y such that xz=y and x is non-empty.
- If w is taken as input of M^1 , the computation on x ends at an accepting state in M and some computation on z ends at state q_f .
- \cdot So w is accepted by M^{\parallel} , which means that there is a computation that ends at q_f .
- From the construction of M^1 , the computation arrives at one of the accepting states in M before it reaches q_f .
- If we conclude that String x is a proper prefix of y, M on input x ends in one of its accepting states. So, w is a member of L, and x is in A.
- As, NOPREFIX(A) is defined as $A \cap \overline{L}$ and class of regular languages are closed under intersection and complement, NOPREFIX(A) is also regular.

Comments (2)

Step 3 of 3

b.

 $NOEXTEND(A) = \{ w \in A \mid w \text{ is not proper prefix of any string in } A \}$

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A.
- Assume that the DFA for language M accepts that only the strings reaching the final state but not those strings that are added to reach a final state again.
- So, the strings exactly ending in final states are accepted.
- For a state $q \in F$, check whether there is a path from $q \in Q$ to any state in F (or a cycle involving q) using Depth First Search.
- Let $F^1 \subseteq F$ be the set of all the states from which there is no such path.
- Now, changing the set of final states F to F^1 gives a DFA for NOEXTEND (A).
- Thus, NOEXTEND(A) is also regular.

Comment