SMAI Assignment 3 Report 201401074

Problem 1

```
Non-Unear (Fornelized) version of Fisher's Linear Distriminant
Audyris
LDA can be extended to non-linear mappings. The data
 grain on the a point of som he interpret to a most destroye
 space F, via some function of. In the new fecture space, the
 function that made to be morninged to !
        J(W) WT Spt w/ wT Sw W
     where
              Sat = (m2-mit) (mit-mit) "
              Sw = & & ( p(x/w) - m; *) ( p(x) - m; *)"
              color mit + 1 2 pai).
              148 F
              W= $ 4 $(4)
        w" m = + 2 2 4 K(N, N) -2"M
        (M)) = + 2 K(x, x)
  Manager of The
        NT Spar wit ( my & _m, s) (my & -m, s) Tw
                 A VINA
         ME (Mar H) (M2-M) 7
   Similarly the discoverator to 1-
            ON TSURES AT NO.
```

· M· 置 在(1-19) 股 onthe some component of six defined on rian, I'm) I = idually matrix Is; - Make with entries again to 1/6 w= 5, 2 w (2 x 4 (x)) (2 2 (0 (x, 1) - m; 1) (0 (x, 1) - m; 1) (2 de 6 (*e)) · 2 2 2 2 10 + (m) 4 0x1 - m) (d. + (x. + i)) - 1 2" J.K. N., NV) = E (2 2 2 (4.4 × (4.4 range sys) - didie 2 2 x(8,4) xxx, 89 ENSNER > The street of beginning to seen [25 HZ]MY - (XINK) MK Since carry me director of we maken a name developing a matter. He often can be solved for it we U- M'CM-M) Alifer To prosters of its engales & house a multiple of while a while to it I wo want Grillen the setator for a the projection of the new water poly is given by your for going the war and

Problem 2

```
import numpy as np
from numpy import linalg as LA
from scipy.spatial.distance import pdist, squareform
from sklearn import svm, preprocessing
from sklearn.model selection import cross val score
def linearKernel(data1, data2):
     kernel = np.dot(np.transpose(data1), data2)
     return kernel
def polynomialKernel(data1, data2, p):
     mat = np.dot(np.transpose(data1), data2)
     mat = np.add(1, mat)
     kernel = np.power(mat, p)
     return kernel
def gaussianKernel(data1, data2, sigma):
     pairwise_dists = np.zeros((data1.shape[1], data2.shape[1]))
     for i in range(data1.shape[1]):
     for j in range(data2.shape[1]):
           pairwise dists[i,j] = (LA.norm(data1[:,i]-data2[:,j]))**2
     # pairwise dists = squareform(pdist(np.transpose(data),
'euclidean'))
     mat = np.divide(pairwise dists, -2*sigma*sigma)
     kernel = np.exp(mat)
     return kernel
def kernelPCA(data, kerneltype = 'linear', p = 2, sigma = 0.5, numeig
= 1):
     ''' compute n x n Gram Matrix K using a kernel function '''
     if kerneltype == 'linear':
     kernel = linearKernel(data, data)
     elif kerneltype == 'polynomial':
     kernel = polynomialKernel(data, data, p)
```

```
elif kerneltype == 'gaussian':
     kernel = gaussianKernel(data, data, sigma)
     else:
     print "Wrong kernel type"
     raise
     ''' normalise kernel matrix '''
     N = data.shape[1]
     oneN = np.divide(np.ones((N, N)), N)
     kernel = kernel - np.dot(oneN, kernel) - np.dot(kernel, oneN) +
np.dot(np.dot(oneN, kernel), oneN)
     ''' compute eigen-(values/vectors) of K '''
     eigenValues,eigenVectors = LA.eig(kernel)
     ''' sort eigen vectors according to corresponding eigen values
100
     idx = eigenValues.argsort()[::-1]
     idx = idx[:numeig]
     eigenValues = eigenValues[idx]
     eigenVectors = eigenVectors[:, idx]
     ''' normalise the eigen vectors '''
     eigenVectors = np.divide(eigenVectors, eigenValues[None, :])
     ''' project data points into lower dimensional space '''
     projectedData = np.dot(np.transpose(eigenVectors), kernel)
     return [projectedData, eigenVectors]
def kernelLDA(data, labels, kerneltype = 'linear', p = 2, sigma =
0.5):
     ''' compute n x n Gram Matrix K using a kernel function '''
     if kerneltype == 'linear':
     kernel = linearKernel(data, data)
     elif kerneltype == 'polynomial':
     kernel = polynomialKernel(data, data, p)
     elif kerneltype == 'gaussian':
```

```
kernel = gaussianKernel(data, data, sigma)
     else:
     print "Wrong kernel type"
     raise
     ''' compute number of elements in each class '''
     idx1 = np.argwhere(labels == 1)
     idx2 = np.argwhere(labels == -1)
     11 = np.prod(idx1.shape)
     12 = np.prod(idx2.shape)
     ''' seperate kernels of 2 classes '''
     K1 = kernel[:, idx1]
     K2 = kernel[:, idx2]
     K1 = K1[:,:,0]
     K2 = K2[:,:,0]
     ''' compute Mi's '''
     M1 = np.divide(K1.sum(axis=1), 11)
     M2 = np.divide(K2.sum(axis=1), 12)
     ''' compute N matrix '''
     I1 = np.subtract(np.identity(l1), np.divide(np.ones((l1, l1)),
11))
     I2 = np.subtract(np.identity(12), np.divide(np.ones((12, 12)),
12))
     N = np.add(np.dot(np.dot(K1, I1),
np.transpose(K1)),np.dot(np.dot(K2, I2), np.transpose(K2)))
     ''' check if N is invertible '''
     if N.shape[0] != LA.matrix rank(N):
     #print LA.matrix rank(N)
     eps = 0.000000001 * np.amin(N)
     N = np.add(N,np.dot(eps,np.identity(N.shape[0])))
     ''' compute alpha vector '''
     alpha = np.dot(LA.inv(N), np.subtract(M1, M2))
     ''' project data to one dimensional space '''
```

```
#projectedData = np.transpose(np.dot(kernel, alpha))
     projectedData = np.dot(np.transpose(alpha), kernel)
     return [projectedData, alpha]
def train(data, labels, vdata, vlabels):
     #classifier = svm.SVC()
     classifier = svm.LinearSVC()
     #scores = cross val score(classifier, data, labels, cv=10)
     #print "Accuracy: %0.9f (+/- %0.9f)" % (scores.mean(),
scores.std() * 2)
     classifier.fit(preprocessing.scale(data), labels)
     pvlabels = classifier.predict(preprocessing.scale(vdata))
     error = np.mean( vlabels != pvlabels )
     print "Accuracy: %0.9f" % (1-error)
def main():
     # data = np.loadtxt('data/madelon train.data')
     # labels = np.loadtxt('data/madelon train.labels')
     # vdata = np.loadtxt('data/madelon valid.data')
     # vlabels = np.loadtxt('data/madelon valid.labels')
     data = np.loadtxt('data/arcene train.data')
     labels = np.loadtxt('data/arcene train.labels')
     vdata = np.loadtxt('data/arcene valid.data')
     vlabels = np.loadtxt('data/arcene valid.labels')
     data = np.transpose(data)
     vdata = np.transpose(vdata)
     #for kk in range(43, 44):
     #
          print kk,
     [PCAdata, eigenVectors] = kernelPCA(data, 'gaussian',
sigma=10000, numeig = 43)
     [LDAdata, alpha] = kernelLDA(data, labels, 'gaussian',
sigma=10000)
     ''' create kernel for validation data and then normalise it '''
```

```
N1 = data.shape[1]
     N2 = vdata.shape[1]
     kernel = gaussianKernel(vdata, data, 10000)
     kernelt = gaussianKernel(data, data, 10000)
     oneN2 = np.divide(np.ones((N1, N1)), N1)
     kernelt = kernelt - np.dot(oneN2, kernelt) - np.dot(kernelt,
oneN2) + np.dot(np.dot(oneN2, kernelt), oneN2)
     oneN = np.divide(np.ones((N2, N1)), N1)
     oneN1 = np.divide(np.ones((N1, N1)), N1)
     print kernel.shape, oneN.shape, oneN1.shape, kernelt.shape
     kernel1 = kernel - np.dot(oneN, kernelt) - np.dot(kernel, oneN1)
+ np.dot(np.dot(oneN, kernelt), oneN1)
     PCAvdata = np.dot(np.transpose(eigenVectors),
np.transpose(kernel))
     LDAvdata = np.dot(np.transpose(alpha), np.transpose(kernel))
     train(np.transpose(data), labels, np.transpose(vdata), vlabels)
     train(np.transpose(PCAdata), labels, np.transpose(PCAvdata),
vlabels)
     train(np.transpose(LDAdata).reshape(-1,1), labels,
np.transpose(LDAvdata).reshape(-1,1), vlabels)
if __name__ == '__main__':
     main()
```

UCI Arcene Dataset (p = 3, sigma = 10000)

Linear SVM PCA

К	Linear	Polynomial	Gaussian
10	79	78	73
20	82	80	83
30	83	81	80
40	84	82	81
50	86	83	74
60	87	86	78
70	82	86	77
80	81	86	86
90	82	85	83
100	79	81	85

RBF SVM LDA

К	Linear	Polynomial	Gaussian
10	74	74	77
20	73	76	82
30	83	79	79
40	79	77	84
50	78	76	85
60	80	74	85
70	82	82	83
80	80	80	81
90	85	81	81
100	86	82	83

Linear SVM LDA

Linear	Polynomial	Gaussian
84	86	86

RBF SVM LDA

Linear	Polynomial	Gaussian
84	86	86

UCI Madelon Dataset (p = 3, sigma = 1000000)

Linear SVM PCA

К	Linear	Polynomial	Gaussian
20	70.83	70.83	71
80	70.83	71.16	70.66

RBF SVM PCA

K	Linear	Polynomial	Gaussian
20	71.66	72.16	71.9
80	72.83	72.60	72

Linear SVM LDA

Linear	Polynomial	Gaussian
53	53	67

RBF SVM LDA

Linear	Polynomial	Gaussian
53	53	67