Sodium:

- It is the most abundant element in I-A group.
- Sea water contains 2.0 to 2.9% of NaCl. It occurs only in the combined state.
- The important minerals of sodium are

1. Rock salt: NaCl,

2. Chilesalt petre: NaNO₃

3. Saji Mitti : Na₂CO₃,

4. Mirabilite: Na₂SO₄,

5. Borax : Na₂B₄O₇.10H₂O known as tincal in India

6. Cryolite: Na₃AlF₆

Extraction of the sodium:

- Alkali metals cannot be prepared by the thermal reduction of the oxides as they are thermally stable. Electrolysis of the aqueous solutions of their salts will not give alkali metal.
- Chemical reduction methods are not suitable, as they themselves are strong reducing agents.
- They are obtained by the electrolytic reduction of their fused halides or hydroxides.

Castner's process:

- Anhydrous fused NaOH is electrolyte. Cell is cylindrical iron tank.
- Iron rod is cathode.
- A hollow nickel cylindrical anode surrounds the cathode.
- The two electrodes are separated by a wire gauze.
- The temperature should be maintained about 330°C to prevent the mixing of Na with fused NaOH.
- During electrolysis sodium is liberated at the cathode and oxygen is liberated at anode. Na is collected on the surface of electrolyte.
- Very little H₂ may be released at anode due to the reaction of Na with H₂O.

Down's process:

- Manufacture of Na by Castner's process is costly as NaOH required for this process is first prepared from NaCl.
- Now a days sodium is prepared by the electrolysis of fused NaCl by Down's process.
- The addition of little CaCl₂ or KCl and KF, to the fused NaCl has the following advantages.
- The melting point of NaCl is decreased from 803°C to 600°Cand the fuel wastage is prevented.

- At low temperature the vapourisation of Na is less, so the possibillity of burning of Na in air is minimised.
- At lower temperature dissolution of Na in fused NaCl is prevented
- The electrolytic process is smooth and the yield is good.
- In Down's process the electrolysis is carried in an iron or steel tank.
- A graphite rod acts as anode.
- The anode is surrounded by a ring shaped iron cathode.
- A wire gauze separates the anode from the cathode.
- The wire gauze prevents the passage of Na liberated at cathode to anode and reaction with Cl₂.

Physical properties of Na:

- Sodium is silvery white soft metal.
- When placed in air it is tarnished.
- It is stored in inert solvents like kerosene.
- It gives the characteristic D₁ (5890 A°) and ②
 D₂ ②(5896 A°) lines (②yellow lines) in the visible region of the spectrum.
- Na forms amalgam with mercury.
 - Ex: NaHg, Na₂Hg, Na₃Hg or Na_x Hg
- Sodium in liquid NH_3 is i) good conductor ii) stronger reducing agent iii) blue colored. The above properties of Na in liquid NH_3 are due to solvated electron.
- The presence of impurities or catalysts like Fe it reacts with NH₃ to liberate H₂ and forms sodamide (NaNH₂).
- Na loses its metallic luster when exposed to moist air due to the formation of oxide, hydroxide and finally to carbonate.
- When heated in limited amount of air or oxygen Na₂O is formed.
- With excess of air or oxygen at 300°C it gives Na₂O₂.
- Na vigorously reacts with water liberating H₂ and forming NaOH.
- When heated with H₂, Cl₂, S, P it forms NaH, NaCl, Na₂S, Na₃P respectively.
- Sodium is a powerful reducing agent.
- It reduces CO₂to carbon.

$$4Na + 3CO_2 \rightarrow 2Na_2CO_3 + C$$

It reduces SiO₂ to Si

$$SiO_2+4Na\rightarrow 2Na_2O+Si$$

• It reduces BeCl₂ and Al₂O₃ to the corresponding metals.

- $Al_2O_3+6Na\rightarrow 2Al+3Na_2O$
- It liberates hydrogen from compounds containing active hydrogen like H₂O, C₂H₅OH, NH₃,
 HC ≡ CH and acids.

Uses of sodium:

- It is used in the preparation of compounds like Na₂O₂, NaNH₂, NaCN etc.
- Na-Pb alloy is used in the preparation of tetraethyl lead (TEL) which is used as antiknock agent in petrol.
- It is used as a catalyst in the manufacture of rubber.
- It is used in sodium vapour lamps.
- It is used in the detection of elements in organic compounds by Lassaigne's test.
- It is used as a reducing agent.

Sodium hydroxide or caustic soda:

- It is manufactured by
 - 1. Causticising process 2. Electrolytic process
- **1. Causticising process:** It is also known as Gossage process.
- In this process milk of lime is added to 10% Na₂CO₃ solution and heated to 80 to 85⁰C.
 Na₂CO₃ + Ca(OH)₂ → CaCO₃ ↓ + 2NaOH
- NaOH produced in this process is about 98% pure.
- It contains NaCl, Na₂SO₄ and Na₂CO₃ as impurities.

2. Electrolytic process:

- In this process NaOH is produced by the electrolysis of aqueous NaCl solution or brine
- H₂ and Cl₂ are the bi products at cathode and anode respectively.

i. Nelson's process:

- The electrolysis is carried out in a U shaped perforated steel vessel which acts as cathode
- It is lined inside with asbestos which separates the electrodes and prevents loss of heat.
- Brine solution is the electrolyte.
- Graphite rod dipped in the electrolyte acts as anode.
- During the electrolysis H₂ is liberated at the cathode and Cl₂ is liberated at the anode.
- NaOH is collected at the bottom.
- Approximately 50% of NaCl is converted into NaOH.
- The resulting solution contains about 11% NaOH and 16% NaCl.
- The solution is further concentrated on steam evaporators to get 50% NaOH solution with 1% NaCl and 1% NaClO₃
- Reactions during electrolysis:

Ionisation: NaCk Na⁺ + Cl

At cathode: $2H_2O + 2e^- \rightarrow 2OH^- + H_2$

At anode: $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2e^-$

 $4 \text{ OH}^- \rightarrow 2 \text{H}_2 \text{O} + \text{O}_2 + 4 \text{e}^-$ (This occurs to very small extent)

 $Na^+ + OH^- \rightarrow NaOH$

Other possible reactions which may take place when products come in contact with each other:

 $NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$

 $6NaOH + 3Cl_2 \rightarrow 5NaCl + NaClO_3 + 3H_2O$

The possible impurities are NaCl, NaClO₃, NaOCl.

ii. Castner-Kellner process or Mercury cathode process:

- NaOH is obtained by the electrolysis of brine solution.
- A rectangular iron tank, divided into three compartments by slate partitions is the electrolytic cell.
- The bottom of the tank is covered with mercury and partitions do not touch the bottom.
- NaCl solution is taken in the outer compartments and dil. NaOH is taken in the central compartment.
- Two graphite electrodes are placed in the outer compartments.
- Hg acts as cathode in the outer compartments and anode in the central compartment. Thus Hg is the intermediate electrode.
- A series of iron rods suspended in the central compartment acts as cathode.
- In the outer compartments Cl⁻ ions are oxidised and Cl₂ is liberated at the graphite electrodes.
- Na⁺ ions gain the electrons at the Hg cathode to form Na metal and forms a malgam with Hg.
- After reaching the central compartment sodium amaglam reacts with H₂O to produce NaOH and H₂ which is liberated at Fe cathode.
- 20% NaOH is formed in the central compartment.

Reactions during electrolysis:

Ionisaton of brine: NaCl → Na⁺ + Cl

At graphite anode: $2Cl^{-} \rightarrow Cl_2 \uparrow + 2e^{-}$

At Hg cathode: Na⁺ + e^{-2} + Hg \rightarrow Na - Hg

At Hg anode: Na - Hg \rightarrow Na⁺ + e⁻ + Hg

At Fe cathode: $2Na^+ + 2e^- + 2H_2O \rightarrow 2NaOH + H_2$

Instead of H₂ gas, sodium is formed in the outer compartments because the discharge potential of sodium is lowered in presence of Hg cathode.

- iii. Castner-Solvay cell: It is modified form of caster kellner cell.
- There are no compartments in the cell.
- The principle and the reactions are similar to those of castner kellner cell.
- Mercury flows at the bottom of the tank acts as cathode.
- 50% NaOH is produced along with H₂.
- About 20-150 graphite rods act as anode.
- Now a days platinum or titanium coated steel rods are used as anode.

Properties of NaOH:

- It is white crystalline solid with soapy touch.
- It is highly deliquiscent.
- It dissolves in water with the liberation of heat due to the formation of hydrates. $NaOH.nH_2O$ (n = 1, 2 or 7)
- It decomposes the body proteins and makes a paste. Hence it is called caustic soda.

Chemical properties:

- It is a strong monoacidic base and forms salts with acids.
- Amphoteric metals like Be, Al, Zn, Sn and Pb liberate H₂. On reaction with NaOH.
- $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$
- With conc.NaOH solution Al gives sodium aluminate.
- $2AI + 6NaOH \rightarrow 2Na_3AIO_3 + 3H_2$
- With dil. NaOH solution Al gives sodium meta aluminate.
- $2AI + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$
- With dil. NaOH solution Sn gives sodium stannate.
- Sn + 2NaOH + $H_2O \rightarrow Na_2SnO_3 + 2H_2$

Reactions with non metals:

- Si when heated with conc. NaOH liberates H₂
- Si + 2NaOH + $H_2O \rightarrow Na_2SiO_3 + H_2$
- Carbon reduces fused NaOH to Na.
- 6NaOH + C \rightarrow 2Na + 2Na₂CO₃ + 3H₂
- White P when heated with NaOH solution liberates PH₃.

$$P_4+3NaOH+3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

sodium hypophosphite

• When heated with sulphur NaOH gives Na₂S₂O₃ and Na₂S or Na₂S₅.

$$6NaOH+4S \rightarrow 2Na_2S + Na_2S_2O_3 + 3H_2O$$
 or $6NaOH+12S \rightarrow 2Na_2S_5 + Na_2S_2O_3 + 3H_2O$

• Cl₂ reacts with cold and dilute NaOH solution to give NaCl & NaClO. (Na hypochlorite)

$$Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$$

- Cl₂ reacts with hot and concentrated NaOH solution to give NaCl & NaClO₃. (Na Chlorate)
- $3Cl_2+6NaOH \rightarrow 5NaCl+NaClO_3 + 3H_2O$
- Ammonium salts when heated with NaOH solution liberate NH₃.
- NH₄Cl + NaOH → NaCl + H₂O + NH₃
- With CuSO₄ solution NaOH gives blue precipitate of Cu(OH)₂.
- With FeSO₄ solution it gives light green precipitate of Fe(OH)₂.
- With FeCl₃ solution it gives red brown precipitate of Fe(OH)₃.
- Silver and mercuric salts give their oxides.

AgNO₃ + NaOH
$$\rightarrow$$
NaNO₃ + AgOH
2AgOH \rightarrow Ag₂O(brown) + H₂O
Hg (OH)₂ \rightarrow HgO(red) + H₂O

• The salts of Zn, Al and Sn give white gelatinous precipitates but these precipitates dissolve in excess of NaOH solution.

i)
$$ZnSO_4 + 2NaOH \rightarrow Zn(OH)_2 \downarrow + Na_2SO_4$$

 $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$

Sodium zincate

ii) AlCl₃ + 3NaOH
$$\rightarrow$$
 Al(OH)₃ \downarrow + 3NaCl
Al(OH)₃ + NaOH \rightarrow NaAlO₂ + 2H₂O

sod. meta aluminate

Acidic oxides like CO₂ and SO₂ are absorbed by NaOH solution and form salts.

$$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$$

 $SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$

- Industrially KOH is used in place of NaOH as the potassium salts are more soluble in water.
- Alkalies are not stored in porcelain or glass containers as they slowly form silicates.

$$SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$$

Uses of NaOH:

- It is used in soap, paper and textile industries
- used in the preparation of NaClO, NaClO₃, Na₂CO₃ etc.

- It is used in the petroleum refining.
- It used for mercerising of cotton.
- It is used in the preparation of alumina, phosphates and silicate glass etc.
- It is used to absorb SO₂ from atmosphere near power generators.
- It is used in cleaning glassware in the laboratory.

Sodium carbonate:

- Decahydrated sodium carbonate (Na₂CO₃.10H₂O) is called washing soda or salt soda.
- Anhydrous sodium carbonate is called soda ash or soda.
- It is prepared by
 - 1. Le.Blanc process,
 - 2. Solvay or ammonia soda process,
 - 3. Electrolytic process
- **Le-Blanc process:** The raw materials used in this process are Brine, sulphuric acid limestone and coke. The following reactions occur in the Le-Blanc process.

$$2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + HCl$$

$$salt \ cake$$

$$Na_2SO_4 + 4C \rightarrow Na_2S + 4CO$$

$$Na_2S + CaCO_3 \rightarrow Na_2CO_3 + CaS$$

black ash

• CaS is the by product. The mixture of Na₂CO₃ and CaS is called black ash.

Solvay process or Ammonia soda process:

Raw materials : Brine, limestone, little NH₃

By - product : CaCl₂

Intermediate product :NaHCO₃

Recycled products: NH₃ and CO₂

Impurities in Brine

solution: Calcium & Magnesium salts.

These are removed in the form of carbonate precipitates.

Precipitation of NaHCO₃ in Carbonation tower

is due to Common ion effect.

Solution from carbonation tower.

consists of : NaHCO₃ and NH₄Cl.

Recoveryof NH₃:Ca(OH)₂+NH₄Cl \rightarrow CaCl₂+H₂O+NH₃

Reactions: $NH_3 + CO_2 + H_2O \rightarrow NH_4HCO_3$ $NH_4HCO_3 + NaCl \rightarrow NaHCO_3 + NH_4Cl$ $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$

- It is suitable method to prepare Na₂CO₃ because of low solubility of NaHCO₃.
- K₂CO₃ can not be manufactured by Solvay's process because KHCO₃ is more soluble in water.

Electrolytic process:

- CO₂ and steam at high pressures are passed through NaOH solution which is obtained by the electrolysis of brine solution.
- Pure Na₂CO₃ is obtained by this process.

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

Properties of Na₂CO₃:

• It is a white crystalline solid.