

NCERT solutions for class 9 Maths Triangles Ex 7.3

Q1. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See figure). If AD is extended to intersect BC at P, show that:

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects \angle A as well as \angle D.
- (iv) AP is the perpendicular bisector of BC.

Ans. (i) \triangle ABC is an isosceles triangle.

AB = AC

 Δ DBC is an isosceles triangle.

BD = CD

Now in \triangle ABD and \triangle ACD,

AB = AC [Given]

BD = CD [Given]

AD = AD [Common]

 $\triangle ABD \cong \triangle ACD$ [By SSS congruency]

 \Rightarrow \angle BAD = \angle CAD [By C.P.C.T.](i)

(ii) Now in \triangle ABP and \triangle ACP,

AB = AC [Given]

 \angle BAD = \angle CAD [From eq. (i)]

AP = AP

$$\triangle ABP \cong \triangle ACP [By SAS congruency]$$
(iii) Since $\triangle ABP \cong \triangle ACP [From part (ii)]$

$$\Rightarrow \angle BAP = \angle CAP [By C.P.C.T.]$$

$$\Rightarrow AP \text{ bisects } \angle A.$$
Since $\triangle ABD \cong \triangle ACD [From part (i)]$

$$\Rightarrow \angle ADB = \angle ADC [By C.P.C.T.] \dots (ii)$$
Now $\angle ADB + \angle BDP = 180^{\circ} [Linear pair] \dots (iii)$
And $\angle ADC + \angle CDP = 180^{\circ} [Linear pair] \dots (iv)$
From eq. (iii) and (iv),
$$\angle ADB + \angle BDP = \angle ADC + \angle CDP$$

$$\Rightarrow \angle ADB + \angle BDP = \angle ADB + \angle CDP [Using (ii)]$$

$$\Rightarrow \angle ADB + \angle BDP = \angle ADB + \angle CDP [Using (ii)]$$

$$\Rightarrow \triangle BDP = \triangle CDP$$

$$\Rightarrow DP \text{ bisects } \triangle D \text{ or } AP \text{ bisects } \triangle D.$$
(iv) Since $\triangle ABP \cong \triangle ACP [From part (ii)]$

$$\therefore BP = PC [By C.P.C.T.] \dots (v)$$
And $\triangle APB = \triangle APC [By C.P.C.T.] \dots (vi)$
Now $\triangle APB + \triangle APC = 180^{\circ} [Linear pair]$

$$\Rightarrow \angle APB + \triangle APC = 180^{\circ} [Using eq. (vi)]$$

$$\Rightarrow 2\triangle APB = 180^{\circ}$$

 $\Rightarrow \angle APB = 90^{\circ}$

 \Rightarrow AP \perp BC(vii)

From eq. (v), we have BP PC and from (vii), we have proved AP \perp B. So, collectively AP is perpendicular bisector of BC.

Q2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that:

- (i) AD bisects BC.
- (ii) AD bisects ∠A.

Ans. In \triangle ABD and \triangle ACD,

AB = AC [Given]

$$\angle ADB = \angle ADC = 90^{\circ} [AD \perp BC]$$

AD = AD [Common]

 $\triangle ABD \cong \triangle ACD$ [RHS rule of congruency]

- \Rightarrow BD = DC [By C.P.C.T.]
- ⇒AD bisects BC

Also \angle BAD = \angle CAD [By C.P.C.T.]

 \Rightarrow AD bisects \angle A.

Q3. Two sides AB and BC and median AM of the triangle ABC are respectively equal to side PQ and QR and median PN of \triangle PQR (See figure). Show that:

- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$

Ans. AM is the median of \triangle ABC.

: BM = MC =
$$\frac{1}{2}$$
 BC(i)

PN is the median of \triangle PQR.

$$\therefore$$
 QN = NR = $\frac{1}{2}$ QR(ii)

Now BC = QR [Given]
$$\Rightarrow \frac{1}{2}$$
 BC = $\frac{1}{2}$ QR

(i) Now in \triangle ABM and \triangle PQN,

AB = PQ [Given]

AM = PN [Given]

BM = QN [From eq. (iii)]

 $\triangle ABM \cong \triangle PQN$ [By SSS congruency]

$$\Rightarrow \angle B = \angle Q [By C.P.C.T.]....(iv)$$

(ii) In \triangle ABC and \triangle PQR,

AB = PQ [Given]

 \angle B = \angle Q [Prove above]

BC = QR [Given]

 \triangle ABC \cong \triangle PQR [By SAS congruency]

Q4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Ans. In \triangle BEC and \triangle CFB,

 \angle BEC = \angle CFB [Each 90°]

BC = BC [Common]

BE = CF [Given]

 \triangle BEC $\cong \triangle$ CFB [RHS congruency]

 \Rightarrow EC = FB [By C.P.C.T.](i)

Now In \triangle AEB and \triangle AFC

 \angle AEB = \angle AFC [Each 90°]

 $\angle A = \angle A$ [Common]

BE = CF [Given]

 $\triangle AEB \cong \triangle AFC [ASA congruency]$

 \Rightarrow AE = AF [By C.P.C.T.](ii)

Adding eq. (i) and (ii), we get,

EC + AE = FB + AF

 \Rightarrow AB = AC

⇒ ABC is an isosceles triangle.

Q5. ABC is an isosceles triangles with AB = AC. Draw AP \perp BC and show that \angle B = \angle C.

Ans. Given: ABC is an isosceles triangle in which AB = AC

To prove: $\angle B = \angle C$

Construction: Draw $AP \perp BC$

Proof: In \triangle ABP and \triangle ACP

 $\angle APB = \angle APC = 90^{\circ}$ [By construction]

AB = AC [Given]

AP = AP [Common]

 $\triangle ABP \cong \triangle ACP [RHS congruency]$

 $\Rightarrow \angle B = \angle C$ [By C.P.C.T.]

******* END *******