(Internet of things)

IOT = The Internet of things (IOT) is a network of physical (things) embedded with sensors, software and technology that connect and exchange data with other devices and systems over the internet.

Real life example: - A smart fridge can send a message to your phone when the milk is finished or even order groceries by itself.

* Microcontroller vs Microprocessor (MCU) (MPU)

Microcontroller	Microprocessor
i) Mini computer	i) sig compuler
2) cheap	2) (05+14
3) Slower than microprocessor	3) fast
4) Ardunio (ESP32) RPi	4) Intelis, i7, Ryzen7, Ryzen 5
5) CPU+ RAM + ROM + memory + I/O PORTS	5) only contains CPU
6) Not extendable ; built in	6) can extend memory
1) Specific Task	1) Mutitasking.

IOT (Internet of things)

Network of physical devices connected to the internet

Devices - sensors, actuators, embedded systems

-0

0

Tech used - Wiff, bluetooth

Machine-to-machine (M2M)

ex. smart fridge, smart agriculture system, industrial robots

Automation and data exchange between machines

IOH (Internet of Humon)

Network that connects humans directly to the Internet

Smartphones, voice assist, smart wearables.

vosce, video, biometric sensors

Human-to-Machine (H2M)

ex. voice colls, 200m, Alexa, Wearable fitness trackers

enhancing human connection and interaction.

Microcontroller

F

6

-

6

3

K

10

· Brands of Microcontrollers.

1) Arduino: - A beginner-friendly micro controller Edeal for basic electronic and automotion projects ex. Arduino uno, RI, R4, Mega Ardunio uno - widely used in hobby projects and educational settings.

2) ESP32 - built in wifi and bluetooth, suitable for IOT applications.

ex. Esp32 wroom, Node MCU, AI thinker commonly used in smart home devices and wireless

3) Raspherry Pi - A single-board computer that runs a full as like Linux, ideal for complex tasks.

ex. Raspberry Pi 1,213,4,4+,413 Raspberry Pi 4 - Used in robotics, media centers, and even desktops.

4) teston Nano - Designed by NVIDIA, it is used for AI ex. Jetson Nano , Jetson Lite, Jetson Quaker and ML applications.

used in computer vision and edge AI prosects.

12C-Inter-Integrated circuit

· A sexial communication protocol used to connect multiple devices using just 2 wires.

-SDA (sevial nata): carries the actual patq

- -SCL (sexial clock): sends the clock signal to sync data transfer.
- · Used for : LCDs, sensors
- · supports multiple devices on the same bus.

Sensor Vs Actuator

J'o'lo Actuator Sensor 1) produces outputs to affect the environments. 1) Take input from the 2) converts electrical signals environen t to physical action 2) (onverts physical signals to 3) example: motor, LED, electrical signals 3) example: Temperature Buzzer 4) Takes digital output sensor, LDR from microcontroller 4) provide analog or digital input to microcontroller 5) used for controlling 5) used for monitoring *UPRT- Universal Asynchronous Receiver Transmitter-· A serial communication protocal used for asynchronous data transfer. - Tx (transmit) -) sends data. - RX (Receive) -> Receive data. 1 used for: communication bett microcontrollers, computer Crps modules Bluetooth No clock wite needed; devices must agree on band rate. Arduino programmable boards ESP embedded c RPi

Micro Python

* GPIO-General purpose Input/output

- used to connect sensors / actuators
 - = can be set as input or output.

IOT Architecture

IoT architecture defines how Jot systems are Structured to collect i process and use data efficiently

- -edge (Rpi)

10

0

10

()

0

3. Cloud / edge layer & pata processing & - (loud (AWS, Google) decision - making

G3. Application layer

- Web APP interface
- Sends chests/ controls

mobile app / dashboard for User

2. Network layer

- Wifi, Bluesoth
- Matr, HTTP

E Transfers data

1. Devices / sensors

- Actuators (Motor, Pump)

- moisture itempsensor collects data from envisoment

* Smart Agriculture"- IOT Architecture

HAPPlication layer

- . farmer's mobile app
 - · Web dashboard showing farm status
 - · view soil moisture itemp

3. cloud ledge layer

- AWS, Azure cloud
- Raspberry Pi
- · stores & analyzes sensor data
- · pecides when to turn on water pump

1

2. Network layer

KO

13

0

1

1

1

1

6

0

- · LORA (longrange, low power)
- · sends data from farm to cloud
- · Receives commands

7

- 1. sensors layer
 - · Soil moisture sensor
 - " Temp gensor
 - · Light sensor
 - · water pump
 - · monitors field condith
 - · waters plants when needed

Data flow in IOT

IOT Use Cases

19

7

A

6

19

0

0

1

0

10

-

- 1. Smart city
 smart lighting itraffic monitoring waste mangement
- 2. smart Home voice assistants, smart TVs, door locks
- 3- Smart Health care
 patient monitoring medicine tracking
- 4. ADAS (Advanced Driver Assistance system)
 smart mirrors, priomity sensors
- 5. Remote monitoring
 Data logging via cloud (ESP32 -> bluetooth -> APP)

Automation

(predefined step)

Automation is a to Run predefined step in order to replace manual process of execute tasks without human interventions.

ex. - Smart lights turning on when someone enters

- smart locks automatically securing doors when you leave home.

benefits:

-Save energy and time

- Reduces human effort

- Increases accuracy and safety

Type of Automation:

1- Home Automotion

- control lighting heating cooling and security using 10T

- example: smart theomostats, Alexa - controlled light

2. Industrial Automation

- use Ist sensors and machines in factories for production and monitoring example: predictive maintanance.

8-Agricultural Automation

Iot in farming for irrigation, soil monitoring. ex-smart irrigation system.

predictive maintenance.

Predictive maintenance uses for sensor (vibrath, temp, pressur)
to monitor machine and predict failutes before they
happen.

Sensors collect dota -> Data analyzed in seal time ->
System predict When a machine will fail -> maintenance
is done only when needed.

ex. car companies use IOT to deat drivers when part need

IOT Applications

- 1. Home Automation: smart thermostats, lights and locks controlled via upps improve comfort is equity. and energy saving
- 2- Smart Cities: Traffic sensors, smart streetlights, Save energy and improve services.
- 3- Healthrate: Wearable (fitbit, Apple watch)
 - 4. Agriculture: Smart irrigation and precision framing optimize water use , reduce costs and increases productivity
 - 5- Industrial 10T: Predictive maintainance , smart factories,

· Type of IOT Network

- 1) Ad-hoc Network

 - internet modern - Temporary hub.
 - Used in disaster monitofing.
- 2) star Network
 - central hub connects all devices.

3) mesh network - interconnect; datacan hop bein them

- used in smart cities.

Wireless

computer

WHYOU

IOT NOWORK.

In the lot, devices need to talk to each other or to each all to each other or to a central system like a cloud or server - For this they needs network - the roads on which the data tracels.

				example use
TYPE	Range	speed	power	case
PAN (personal Axed Network)	few meter	Low	10m	smartwatches, fitness trackers.
(12)21/14	1000	medium	Medium	smart homes, factories.
Azed Network WAN (wide	many	medsum) high	nigh	city-wide sensors, vehicles.
LPWAN (LOW) POWER WAN			very low	Agriculture, remote monitoring.
LOWER MAIN)			

communication protocols define how the data is transferred # communication protocols between 107 devices. Jule of conversation bet machines

1. Zigbee - A low-power, short-range protocol used in smart lighting and home automation. ex: Philips Hue smart boubs use zigbee for witeless

2- Lorg (longrage) - A long-range, low-power protocol used in precision agriculture and remote monitoring. ex: smart insignation systems use long to send soil moisture data from fields to farmers.

3. Bluetooth Low energy (BLE) - A short range, energy efficient protocol used in fitness trackers and wearables. ex. fifhit and Apple watch use BLE to sync health data