

CHAPTER 5

Amplitude Modulation

(Part 4 of 4)

- AM signal consists of a carrier component and two sidebands.
- A large portion of total transmitted power lies in the carrier component.

e.g. Single-tone AM signal:

Carrier power > 67% of total power

Sideband power < 17% of total power

 The carrier component power is a waste.

- The modified AM process that contains no carrier component but only two sidebands is known as Double SideBand Suppressed Carrier (DSBSC) modulation.
 - In DSBSC, the carrier is suppressed, leaving only the two sidebands to be transmitted.

- The information contained in the lower-sideband is identical to the information contained in the upper-sideband.
- The modified AM process that transmits one sideband only is known as Single Sideband (SSB) modulation.

In SSB, either the USB or LSB can be transmitted.

Time domain representation of DSBSC signal

$$v_{DSBSC}(t) = v_{s}(t)\cos 2\pi f_{c}t$$

The DSBSC Modulator

Balanced Modulator

The DSBSC waveform for a sinusoidal modulating signal

The DSBSC waveform for a sinusoidal modulating signal

The envelope is not a faithful representation of the modulating signal.

Demodulation of DSBSC signal requires a complex demodulator.

Frequency domain representation of DSBSC signals

Standard equation for DSBSC signals

$$v_{AM}(t) = v_{s}(t) \times cos2\pi f_{c}t$$

$$V_{AM}(f) = \frac{1}{2} [V_{S}(f + f_{c}) + V_{s}(f - f_{c})]$$
Shift $V_{s}(f)$ left by f_{c} Shift $V_{s}(f)$ right by f_{c}

Frequency domain representation of DSBSC signals

Spectrum of DSBSC signal

Multi-tone modulating signals

Shift V_s(f) left by f_c

Shift V_s(f) right by f_c

Frequency domain representation of DSBSC signals

Example 5.5

The modulating signal in a DSBSC modulator is $v_s(t) = 4\cos 2000\pi t + 6\cos 8000\pi t$. The carrier signal is $v_c(t) = \cos(8\times10^5\pi t)$. Plot the double-sided spectrum of the modulated signal.

Spectrum of modulating signal

$$v_s(t) = 6\cos 2000\pi t$$
 $v_s(t) \longrightarrow v_{DSBSC}(t) = v_s(t) \times \cos 2\pi (4 \times 10^5) t$ $\cos 2\pi (4 \times 10^5) t$ $\cos 2\pi (4 \times 10^5) t$

Standard equation for DSBSC signals

$$v_{AM}(t) = v_{s}(t) \times cos2\pi f_{c}t$$

$$V_{AM}(f) = \frac{1}{2} [V_s(f + f_c) + V_s(f - f_c)]$$
Shift $V_s(f)$ left by f_c Shift $V_s(f)$ right to f_c

Single-Sideband (SSB) modulation

- There are three methods to produce SSB signals:
 - 1. Filter method
 - Generate DSBSC signal
 - Extract one sideband
 - 2. Phase shift method (not in syllabus)
 - Generate DSBSC signal
 - Attenuate unwanted sideband by cancelling
 - 3. Weaver or third method (not in syllabus)
 - Generate DSBSC signal
 - filtering and cancellation

Single-Sideband (SSB) modulation

Generating SSB Signals using Filter Method

Single-Sideband (SSB) modulation

SSB signal

spectrum

Example 5.6

The frequency response of a BPF is shown below.

- (a) Sketch the double-sided magnitude spectrum at point A and B.
- (b) What is the function of the block diagram?

(a)
$$v_A(t) = v_S(t) \times \cos 2\pi (500 \times 10^3)t$$
 $\stackrel{FT}{\longleftarrow}$ $V_A(f) = \frac{1}{2} [V_S(f + f_c) + V_S(f - f_c)]$

(a) Spectrum at A

Spectrum at B

(b) SSB modulator

DSBSC and BSS demodulators

Circuit also known as Synchronous Detector

DSBSC and BSS demodulators

DSBSC and BSS demodulators

DSBSC and BSS demodulators

V_{DSBSC}(f)

$$|V_{DSBSC}(f)|$$

$$-\begin{bmatrix}f_c\\+\\f_H\end{bmatrix}-\begin{bmatrix}f_c\\-\\f_L\end{bmatrix}-\begin{bmatrix}f_c\\-\\f_H\end{bmatrix}-\begin{bmatrix}f_c\\-\\f_H\end{bmatrix} - \begin{bmatrix}f_c\\-\\f_H\end{bmatrix} - \begin{bmatrix}f$$

$$\frac{1}{2}[V_{DSBSC}(\mathbf{f} - \mathbf{f_c})]$$

Shift V_{DSBSC} (f) right by f_c

$$\frac{1}{2}$$
[V_{DSBSC}(f + f_c)]

Shift V_{DSBSC} (f) left by f_c

DSBSC and BSS demodulators

$$V_{X}(f) = \frac{1}{2} \left[V_{DSBSC}(f + f_c) + V_{DSBSC}(f - f_c) \right]$$
Spectrum of the signal $v_{X}(t)$

$$|V_{X}(f)|$$

$$|V_{X}$$

DSBSC and BSS demodulators

$$V_X(f) = \frac{1}{2} [V_{DSBSC}(f + f_c) + V_{DSBSC}(f - f_c)]$$

Frequency response of LPF

Advantages and Disadvantages of DSBSC and SSB

Advantages of DSBSC and SSB compared with AM:

Power Saving

DSBSC: total power saving > 67%.

SSB: total power saving > 84% (67% + 17%)

Carrier component takes up > 67% of total transmission power.

SSB power is half that of DSBSC.

Each sideband takes up < 17% of total transmission power.

Advantages and Disadvantages of DSBSC and SSB

Advantages of SSB

Bandwidth Saving

SSB: bandwidth reduction = 50%

Bandwidth of SSB signal < that of AM and DSBSC.

Bandwidth of DSBSC signal same as AM.

Advantages and Disadvantages of DSBSC and SSB

Disadvantages of DSBSC and SSB

More sophisticated demodulators used

AM demodulator Envelope Detector

DSBSC/SSB demodulator Synchronous Detector

Applications of AM, DSBSC and SSB

Application of AM

Type of Modulation	Advantage	Application
AM	Cheap demodulator	Radio broadcasting

Applications of AM, DSBSC and SSB

Applications of SSB

Type of Modulation	Advantages	Applications
SSB	Lowest bandwidth	FDM in Telephone system
	Lowest power wastage	Battery powered transmitters

Applications of AM, DSBSC and SSB

Only 2 telephone calls are shown for illustration but in practice, there are thousands of calls.

All the telephone calls from Exchange A are combined into one signal and carried over one cable.

The telephone calls are separated out at Exchange B.

Applications of AM, DSBSC and SSB

Applications of AM, DSBSC and SSB

Type of Modulation	Advantages	Applications
DSBSC	Simpler to generate than SSB	Combine L + R audio channels in FM Stereo
	Lower power wastage than AM	Combine R + G + B colour channels in TV broadcasting

Applications of AM, DSBSC and SSB

Combining L + R audio channels in FM Stereo

End

CHAPTER 5

(Part 4 of 4)

