
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2008; month=10; day=23; hr=13; min=30; sec=27; ms=168;

Validated By CRFValidator v 1.0.3

Application No: 10599505 Version No: 1.0

Input Set:

Output Set:

Started: 2008-09-22 19:24:33.518

Finished: 2008-09-22 19:24:33.607

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 89 ms

Total Warnings: 0

Total Errors: 0

No. of SeqIDs Defined: 3

Actual SeqID Count: 3

SEQUENCE LISTING

<110> Sekiguchi, Yoshinori Kanuma, Kosuke Omodera, Kasunori Tran, Thuy-Anh Semple, Graeme Kramer, Bryan <120> PYRIMIDINE DERIVATIVES AND METHODS OF TREATMENT RELATED TO THE USE THEREOF <130> Q80753 <140> 10599505 <141> 2008-09-22 <150> PCT/JP05/006582 <151> 2005-03-29 <150> US 60/557,406 <151> 2004-03-30 <160> 3 <170> PatentIn version 3.5 <210> 1 <211> 422 <212> PRT <213> Homo sapiens <400> 1 Met Ser Val Gly Ala Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu 5 10 15 Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asn 20 25 30 Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro 35 40 Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala 50 55 60 Thr Gly Thr Gly Trp Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly 65 70 75

Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala 85 90 95

Gly	Ser	Pro	Pro	Arg	Thr	Gly	Ser	Ile	Ser	Tyr	Ile	Asn	Ile	Ile	Met
			100					105					110		
Pro	Ser	Val 115	Phe	Gly	Thr	Ile	Cys 120	Leu	Leu	Gly	Ile	Ile 125	Gly	Asn	Ser
Thr	Val 130	Ile	Phe	Ala	Val	Val 135	Lys	Lys	Ser	Lys	Leu 140	His	Trp	Суз	Asn
Asn 145	Val	Pro	Asp	Ile	Phe 150	Ile	Ile	Asn	Leu	Ser 155	Val	Val	Asp	Leu	Leu 160
Phe	Leu	Leu	Gly	Met 165	Pro	Phe	Met	Ile	His 170	Gln	Leu	Met	Gly	Asn 175	Gly
Val	Trp	His	Phe 180	Gly	Glu	Thr	Met	Суs 185	Thr	Leu	Ile	Thr	Ala 190	Met	Asp
Ala	Asn	Ser 195	Gln	Phe	Thr	Ser	Thr 200	Tyr	Ile	Leu	Thr	Ala 205	Met	Ala	Ile
Asp	Arg 210	Tyr	Leu	Ala	Thr	Val 215	His	Pro	Ile	Ser	Ser 220	Thr	Lys	Phe	Arg
Lys 225	Pro	Ser	Val	Ala	Thr 230	Leu	Val	Ile	Cys	Leu 235	Leu	Trp	Ala	Leu	Ser 240
Phe	Ile	Ser	Ile	Thr 245	Pro	Val	Trp	Leu	Tyr 250	Ala	Arg	Leu	Ile	Pro 255	Phe
Pro	Gly	Gly	Ala 260	Val	Gly	Cys	Gly	Ile 265	Arg	Leu	Pro	Asn	Pro 270	Asp	Thr
Asp	Leu	Tyr 275	Trp	Phe	Thr	Leu	Tyr 280	Gln	Phe	Phe	Leu	Ala 285	Phe	Ala	Leu
Pro	Phe 290	Val	Val	Ile	Thr	Ala 295	Ala	Tyr	Val	Arg	Ile 300	Leu	Gln	Arg	Met
Thr	Ser	Ser	Val	Ala	Pro	Ala	Ser	Gln	Arg	Ser	Ile	Arg	Leu	Arg	Thr

305 310 315 320

Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val
325 330 335

Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser 340 345 350

Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu 355 360 365

Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys 370 375 380

Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln 385 390 395 400

Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg
405 410 415

Thr Glu Ser Lys Gly Thr 420

<210> 2

<211> 2423

<212> DNA

<213> Homo sapiens

<400> 2

gggaggcagc ctgtgtgctt tgtccgtttg cctttgcaga gacctcgatc ttcacgcaag gcaagcagca gcccctgtaa gcacacgaga caatcccaag tgtcagtggg aaggagatcc 120 ctttcctgat ggggctgcct gtgtccagtc cctcccagct tccccagggc cctggggctc 180 tgcaggcatt cagaagtgga agccagccac agcctgggac tgaagaggtt aatgtgcatc 240 300 tgcctccgaa tgttaatgtg tctaggtgat gtcagtggga gccatgaaga agggagtggg gagggcagtt gggcttggag gcggcagcgg ctgccaggct acggaggaag acccccttcc caactgcggg gcttgcgctc cgggacaagg tggcaggcgc tggaggctgc cgcagcctgc 420 gtgggtggag gggagctcag ctcggttgtg ggagcaggcg accggcactg gctggatgga 480 cctqqaaqcc tcqctqctqc ccactqqtcc caacqccaqc aacacctctq atqqccccqa taacctcact teggeaggat caecteeteg caeggggage atetectaca teaacateat 600 660 catgccttcg gtgttcggca ccatctgcct cctgggcatc atcgggaact ccacggtcat

cttcgcggtc	gtgaagaagt	ccaagctgca	ctggtgcaac	aacgtccccg	acatcttcat	720
catcaacctc	tcggtagtag	atctcctctt	tctcctgggc	atgcccttca	tgatccacca	780
gctcatgggc	aatggggtgt	ggcactttgg	ggagaccatg	tgcaccctca	tcacggccat	840
ggatgccaat	agtcagttca	ccagcaccta	catectgace	gccatggcca	ttgaccgcta	900
cctggccact	gtccacccca	tctcttccac	gaagttccgg	aagccctctg	tggccaccct	960
ggtgatctgc	ctcctgtggg	ccctctcctt	catcagcatc	acccctgtgt	ggctgtatgc	1020
cagactcatc	cccttcccag	gaggtgcagt	gggctgcggc	atacgcctgc	ccaacccaga	1080
cactgacctc	tactggttca	ccctgtacca	gtttttcctg	gcctttgccc	tgccttttgt	1140
ggtcatcaca	gccgcatacg	tgaggatcct	gcagcgcatg	acgtcctcag	tggcccccgc	1200
ctcccagcgc	agcateegge	tgcggacaaa	gagggtgacc	cgcacagcca	tegecatetg	1260
tctggtcttc	tttgtgtgct	gggcacccta	ctatgtgcta	cagctgaccc	agttgtccat	1320
cagccgcccg	accctcacct	ttgtctactt	atacaatgcg	gccatcagct	tgggctatgc	1380
caacagctgc	ctcaacccct	ttgtgtacat	cgtgctctgt	gagacgttcc	gcaaacgctt	1440
ggtcctgtcg	gtgaagcctg	cageceaggg	gcagcttcgc	gctgtcagca	acgctcagac	1500
ggctgacgag	gagaggacag	aaagcaaagg	cacctgatac	ttcccctgcc	accctgcaca	1560
cctccaagtc	agggcaccac	aacacgccac	cgggagagat	gctgagaaaa	acccaagacc	1620
gctcgggaaa	tgcaggaagg	ccgggttgtg	aggggttgtt	gcaatgaaat	aaatacattc	1680
catggggctc	acacgttgct	ggggaggcct	ggagtcaggt	ttggggtttt	cagatatcag	1740
aaatcccctt	gggggagcag	gatgagacct	ttggatagaa	cagaagctga	gcaagagaac	1800
atgttggttt	ggataaccgg	ttgcactata	tctgtgagct	ctcaaatgtc	ttcttcccaa	1860
ggcaagaggt	ggaagggtac	tgactgggtt	tgtttaaagt	caggcagggc	tggagtgagc	1920
agccagggcc	atgttgcaca	aggcctgaga	gacgggaaag	ggcccgatcg	ctctttcccg	1980
cctctcactg	gtgcgatgga	aggtggcctt	tctcccaagc	tggtggataa	tgaaaaataa	2040
agcatcccat	ctctcggcgt	tccagcatcc	tgtcaatttc	ccttttgctc	tagaggatgc	2100
atgtttattt	gaggggatgt	ggcactgagc	ccacaggagt	aaaagcccag	tttgctagga	2160
ggtctgctta	ctgaaaacaa	ggagacctgg	ggtgggtgtg	gttgggggtc	ttaaaactaa	2220
taaaagctgg	ggtcggggg	cttttgcagc	tctggtgaca	ttctctccac	ggggcacatt	2280
tgctcagtca	ctaatccagc	ttgagtgtcc	gtgtgttctg	catgtgcagg	ggtcattcta	2340
gtgcccggtg	tgttggcatc	atctttttgc	tctagccctt	cctctccaaa	ataaaatcaa	2400

<210> 3 <211> 19 <212> PRT <213> Homo sapiens

<400> 3

Asp Phe Asp Met Leu Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Cys 1 5 10 15

Trp Gln Val