Examen de Programmation Linéaire

ISIMA 1^{ère} année, juin 2013, durée 2h documents de cours autorisés

Rendre chaque exercice sur une feuille séparée (ne pas oublier de mettre le nom!)

Exercice n° 1. Dans le jeu online "War of War", il existe plusieurs unités de combat, les Aaa (A), les Bbb (B) et les Ccc (C). Chaque unité a un potentiel de combat à distance (A_d) , à moyenne portée (A_m) , au corps-à-corps (A_c) et un coût unitaire d'achat :

unité	A_d	A_m	A_c	coût
A	100	30	10	150
В	30	80	50	200
C	0	0	100	100

1.1. L'infâme Bubule a une troupe de 400 Aaa, 25 Bbb et 80 Ccc. Modéliser le problème consistant à construire au coût minimal une armée au moins équivalente à celle de Bubule sur chacun des trois potentiels de combat.

On suppose que créer une unité de chaque type consomme des cercles (R_1) , carrés (R_2) et croix (R_3) . Les ressources R_1 et R_2 sont consommées à la création alors R_3 est consommée à chaque tour de jeu (ressource d'entretien). On dispose d'un stock initial pour chaque ressource et d'une capacité de production par tour. On peut aussi acheter des ressources sur le marché :

ressource	A	В	C	stock	prod/tour	prix d'achat unitaire
R_1	60	80	10	15000	100	3
R_2	40	100	150	7000	250	5
R_3	5	7	10	1800	600	1

- 1.2. Modéliser le problème consistant à créer l'armée de Bubule en 2 tours de jeu au coût le plus faible possible. On décrira chaque type de variables ainsi que les contraintes (entre autre sur la taille de l'armée, sur l'évolution des stocks).
- 1.3. En s'inspirant de la première question, déterminer une armée au moins équivalente à celle de Bubule et qui minimise sa consommation d'entretien (en R_3).

Exercice n° 2. Considérons le programme linéaire suivant

$$(P) \begin{cases} \text{maximiser} & -x_1 + 2x_2 \\ \text{s.t.} & -x_1 - x_2 \le -2 \\ & x_1 - x_2 \le -1 \\ & x_2 \le 3 \\ & x_1, x_2 \ge 0 \end{cases}$$

L'objectif de cet exercice est de trouver une solution optimale pour (P), s'il en existe une.

Première partie : phase I de la méthode du simplexe avec dictionnaires

- 2.1. Donner le programme linéaire auxiliaire (PA) qui doit être résolu lors de cette phase.
- **2.2.** Donner le dictionnaire réalisable initial associé à (PA).
- **2.3.** Expliquer pourquoi il est préférable de choisir x_2 comme variable entrante.
- 2.4. Trouver un dictionnaire optimal associé à (PA).
- 2.5. Que peut-on conclure?

Deuxième partie : phase II de la méthode révisée du simplexe révisé

- 2.6. Donner l'ensemble des matrices et vecteurs utilisés pour décrire le programme linéaire (P).
- 2.7. Donner la base optimale trouvée à la question (d), la matrice de base et le vecteur des valeurs des variables de base associés.
- 2.8. Résoudre le programme linéaire (P) avec la méthode révisée du simplexe.
- **2.9.** Quelle est la solution optimale de (P). Est-elle unique?
- **2.10.** Soit P_{Δ} le programme linéaire obtenu à partir de (P) en ajoutant la valeur réelle $\Delta \geq -3$ au membre de droite de la troisième contrainte (i.e., 3). Pour quelles valeurs de Δ la base optimale trouvé à la question (h) reste
 - 1. réalisable?
 - 2. optimale?

Exercice n° 3. Le domaine \mathbb{D} est défini par les contraintes :

$$\begin{cases} 3x_1 + x_2 \ge 6, \\ -x_1 + 5x_2 \le 40, \\ 2x_1 - x_2 \le 10, \\ x_1 - x_2 \le 3, \\ x_1, x_2 \ge 0. \end{cases}$$

- **3.1.** Tracer un graphique soigné du domaine \mathbb{D} .
- **3.2.** Résoudre le problème $\mathcal{D}_{5,-3}$ défini par

$$z_{5,-3} = 5x_1 - 3x_2 \pmod{x_1, x_2} \in \mathbb{D}.$$

Plus généralement, le problème $\mathcal{D}_{\alpha,\beta}$ est défini par

$$z_{\alpha,\beta} = \alpha x_1 + \beta x_2 \pmod{x_1, x_2} \in \mathbb{D}.$$

- **3.3.** Écrire le dual $\mathcal{P}_{\alpha,\beta}$ de $\mathcal{D}_{\alpha,\beta}$.
- **3.4.** À quelle(s) condition(s) sur les nombres α et β le point $\hat{x} = (0, 8)$ peut-il être une solution optimale de $\mathcal{D}_{\alpha,\beta}$? Que peut-on conclure pour $\alpha = -2$ et $\beta = 5$?