

16x2 LCD Module on DE2-115

數位電路實驗

Author: Trumen

Features

- Display Type:
 - Character Type
- Display's logical dimensions:
 - 16 columns by 02 lines
- View direction:
 - 6 o'clock

Schematic Diagram

*(1): Note the current LCD modules used on DE2-115 boards do not have backlight. Therefore the LCD_BLON signals should not be used in user's design project.

LCD Module Pin Assignments

Signal Name	FPGA Pin No.	Description
LCD_DATA[0]~[7]	PIN_L3~M5	LCD Data[0]~[7]
LCD_EN	PIN_L4	LCD Enable level sensitive: 1 edge sensitive: 1→0
LCD_RW	PIN_M1	LCD Read/Write Select 0:write 1:read
LCD_RS	PIN_M2	LCD Command Select 0:command 1:data
LCD_ON	PIN_L5	Power ON/OFF
LCD_BLON	PIN_L6	LCD Back Light ON/OFF

LCD Block Diagram

Function Description (1/2)

- The LCD display Module is built in a LSI controller.
 - The controller has two 8-bit registers, an instruction register (IR) and a data register (DR).
 - The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM).
 - The DR temporarily stores data to be written or read from DDRAM or CGRAM.

Function Description (2/2)

ommand ata	0:write 1:read	
RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB6)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)

- When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted.
- When RS=0 and R/W=1, the busy flag is output to DB7.
- The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

 The address counter (AC) assigns addresses to both DDRAM and CGRAM.

Display Data RAM (DDRAM)

- This DDRAM is used to store the display data represented in 8-bit character codes.
 - Its extended capacity is 80×8 bits or 80 characters.
 - Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Character Generator ROM (CGROM)

 The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes.

Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LННН	HLLL	HLLH	HLHL	нгнн	HHLL	ннгн	нннг	нннн
LLLL	CG RAM (1)					 :	•						•:::	 .	:::::	
LLLH	(2)		i	1			-:::	-:::			:::	····	:::	: <u>.</u>	-:::	•:::
LLHL	(3)		::				<u></u>	! -			! "	· ‡ · ·	•	.::: [:]		1:::1
LLHH	(4)			- ::		::	: <u></u> .	-:::-				====	- <u>:</u> ::	====	:::: -	::-:=
LHLL	(5)			:::[.				·i			٠.		!			====
			:: <u>.</u> .	::::	<u> </u>	: :								:		

Instruction Table (1/2)

To store the re				In	struct	ion Co	de			Description	F (1 (1 (6 2 7 017))	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Execution time (fosc=270Khz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	1 I/D	O SH	Assign cursor moving direction and enable the shift of entire display.	$39\mu\mathrm{s}$
Display ON/OFF Control	0	0	0	0	0	0	1	1 D	O	О В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39μ s
Function Set	0	0	0	0	1	1 DL	1 N	O F			Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5 × 11 dots/5×8 dots)	39 μ s

Instruction Table (2/2)

Instruction				Ins	structi	ion Co	ode			Description	Evacution time (fasc=270Khz)		
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	_	Execution time (fosc=270Khz)	
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 μ s	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μ s	

Write Operation (1/2)

Write Operation (2/2)

Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	t _{eyeE}	500	_		ns
Enable pulse width (high level)	PW_{EH}	230	_	_	ns
Enable rise/fall time	$t_{\rm Er}, t_{\rm Ef}$	_	_	20	ns
Address set-up time (RS, R/W to E)	t_{AS}	40	_	_	ns
Address hold time	t _{AH}	10	_	_	ns
Data set-up time	$t_{ m DSW}$	80	_	_	ns
Data hold time	t _H	10	_	_	ns

Read Operation (1/2)

Read Operation (2/2)

ITEM	Symbol	Min	Тур	Max	Unit
Enable cycle time	$t_{\rm cycE}$	500	_	_	ns
Enable pulse width (high level)	PW_{EH}	230	_	_	ns
Enable rise/fall time	$t_{\rm Er}, t_{\rm Ef}$	_	_	20	ns
Address set-up time (RS, R/W to E)	$t_{ m AS}$	40	_	_	ns
Address hold time	t _{AH}	10	_	_	ns
Data delay time	t _{DDR}	_	_	160	ns
Data hold time	t_{DHR}	5	_	_	ns

Initializing of LCM (1/2)

Initializing of LCM (2/2)

Reference

- 1. "DE2-115 User Manual" by Terasic.
- 2. "DE2-115_MB.pdf" by Terasic.
- 3. "CFAH1602BTMCJP.pdf" by Crystalfontz America, Inc..

