Calculus II

Homework on Lecture 1

1. Let $x \in (0,1)$. Express the following using x and $\sqrt{1-x^2}$.

(a) $\sin(\arcsin(x))$.

(b) $\sin(2\arcsin(x))$.

(c) $\sin(3\arcsin(x))$.

(d) $\sin(\arccos(x))$.

(e) $\sin(2\arccos(x))$.

(f) $\sin(3\arccos(x))$.

(g) $\cos(2\arcsin(x))$.

(h) $\cos(3\arccos(x))$.

2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a) $\cos^2(\arctan x)$.

(c) $\frac{1}{\cos(\arcsin x)}$.

(b) $-\sin^2(\operatorname{arccot} x)$.

(d) $-\frac{1}{\sin(\arccos x)}$.

3. Rewrite as a rational function of t. This problem will be later used to derive the Euler substitutions (an important technique for integrating).

(a) $\cos(2 \arctan t)$.

(b) $\sin(2 \arctan t)$.

(c) $\tan (2 \arctan t)$.

(d) $\cot (2 \arctan t)$.

(e) $\csc(2 \arctan t)$.

(f) $\sec (2 \arctan t)$.

(g) $\cos(2\operatorname{arccot} t)$.

(h) $\sin(2\operatorname{arccot} t)$.

(i) $\tan (2 \operatorname{arccot} t)$.

(j) $\cot (2 \operatorname{arccot} t)$.

(k) $\csc(2\operatorname{arccot} t)$.

(1) $\sec (2 \operatorname{arccot} t)$.

4. Compute the derivative (derive the formula).

(a) $(\arctan x)'$.

(b) $(\operatorname{arccot} x)'$.

(c) $(\arcsin x)'$.

(d) $(\arccos x)'$.

- (e) Let arcsec denote the inverse of the secant function. Compute $(\operatorname{arcsec} x)'$.
- 5. (a) Let $a+b \neq k\pi$, $a \neq k\pi + \frac{\pi}{2}$ and $b \neq k\pi + \frac{\pi}{2}$ for any $k \in \mathbb{Z}$ (integers). Prove that

$$\frac{\tan a + \tan b}{1 - \tan a \tan b} = \tan(a + b) \quad .$$

(b) Let x and y be real. Prove that, for $xy \neq 1$, we have

$$\arctan x + \arctan y = \arctan\left(\frac{x+y}{1-xy}\right)$$

1

if the left hand side lies between $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.