- 3. Give regular expressions that generate each of the following languages. In all cases, the alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{ w \in \Sigma * | |w| \text{ is odd } \}$.
 - (b) The language $\{ w \in \Sigma * \mid w \text{ has an odd number of 1's } \}$.
 - (c) The language { w | w contains at least two 0's, or exactly two 1's }.
 - (d) The language $\{ w \in \Sigma * \mid w \text{ ends in a double digit } \}$.
 - (e) The language $\{ w \in \Sigma * \mid w \text{ does not end in a double digit } \}$.
- **4.** a) Write regular expressions for the following language over the alphabet $\Sigma = \{0, 1\}$:
 - i)All strings that do not end with 11. [3]
 - b) Convert the following NFA to DFA. $\Sigma = \{a, b\}$ [7]

MIDTERM EXAMINATION Fall 2017

CSE 331: Automata and Computability

Total Marks: 30 Time Allowed: 1 Hour

[Answer Any 3]

Student ID:

Name:

Section:

NB: To understand the question is a part of the exam. Write your Instructor's Initial on top of your answer script.

1. a) Consider the following non-deterministic finite automaton (NFA) over $\Sigma = \{0, 1\}$.

Give a one-sentence description of the language recognized by the NFA. Generate regular expression from this NFA by state elimination [1+5]

b) Design NFA for this regular expression: ab*+b*(a*ba)*+(a*b*)* [2]

c) Design NFA for this language: Σ = {a, b}
 L =all strings that contain even number a's or at most 2 b's.

2.a) Design a DFA for $\Sigma = \{a, b, c\}$ that accepts any string that contains only one occurrence of the substring "abc". Verify that your DFA works by finding out extended transition function, $\hat{\delta}$ $(q_0]$ abcaab), where assume q_0 is the start state. [5+1]

b) Write down the transition table for following DFA, $\sum =\{a,b\}$? Also write the language represented by this DFA. [2+2]

