Работа 3.6.1

Спектральный анализ электрических сигналов

Шелихов Дмитрий Группа Б01-305

4 октября 2024 г.

Цель работы: изучить спектральный состав периодических электрических сигналов. В работе используются: анализатор спектра (аналоговый или цифровой), генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

Теоретическая справка

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций - ряда Фурье:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega_0 t}$$

 $\omega_0 = 2\pi/T$,где T - период функции f(t). Коэффициенты c_n могут быть найдены по формуле:

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-inw_0 t} dt.$$

Простейший спектральный анализатор - высокодобротный колебательный контур с подстраиваемой ёмкостью или индуктивностью.

Рис. 1. Колебательный контур как узкополосный фильтр

Такой контур усиливает гармоники входного сигнала f(t), частота которых близка к резонансной $\nu_0=\frac{1}{2\pi\sqrt{LC}}$, и практически не реагирует на частоты, далёкие от ν_0 . Таким образом, с точки зрения преобразования сигналов, такой контур является является

узкополосным фильтром с шириной полосы пропускания порядка $\Delta \nu \approx \nu_0/Q$, где $Q=\frac{1}{R}\sqrt{\frac{L}{C}} \gg 1$ - его добротность.

При этом амплитуда колебаний в контуре пропорциональна амплитуде $|c(\nu_0)|$ гармоники в спектре функции f(t), частота которой совпадает с ν_0 . Таким образом, меняя резонансную частоту контура, можно просканировать весь спектр входного сигнала. Экспериментальная установка Рассмотрим следующую схему: Исследуемый сигнал f(t) и синусоидальный сигнал от вспомогательного генератора, называемого в таких системах гетеродином, подаются на вход смесителя. Смеситель преобразует колебания с частотами ν_1 и ν_2 в колебания на комбинированных частотах: $\nu 1 + \nu 2$ и $\nu 1 - \nu 2$. Сигнал смесителя поступает на фильтр, настроенный на фиксированную резонансную частоту ν_0 . То есть, если f(t) содержит гармонику $\nu = \nu - \nu_0$, она будет усилена, а отклик будет пропорционален её амплитуде.

Рис. 2. Структурная схема анализатора спектра

На экране анализатора возникает график, изображающий зависимость амплитуды гармоник исходного сигнала от частоты, т.е. его спектр.

Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов

Исследуем зависимость ширины спектра $\Delta \nu$ периодической последовательности прямоугольных импульсов от длительности отдельного импульса τ .

1) Ознакомимся с устройством приборов: генератор прямоугольных импульсов, осциллограф, анализатор спектра и подготовим их к работе, следуя техническим описаниям.

Рис. 3. Периодическая последовательность импульсов

Рис. 4. Спектр последовательности импульсов (расчёт для $\tau = T/7$)

- 2) Подключим генератор прямоугольных импульсов через разветвитель к осциллографу и анализатору спектра.
- 3) На генераторе зададим частоту повторения импульсов $\nu_{\text{повт}} = 1$ к Γ ц (период T = 1мс), длительность импульса $\tau = 50$ мкс. Получим устойчивую картину сигнала на осциллографе.
 - 4) Предварительно оценим характерную ширину спектра из соотношения неопределённостей $\Delta \nu \approx 1/\tau = 20$ к Γ ц.
 - 5) Получим спектр сигнала на анализаторе спектра. Предварительно подберём начало отсчёта и диапазон измерения по частоте, так чтобы на экране помещалась большая часть спектра.
 - 6) Изменяя параметры сигнала ($\nu_{\text{повт}}, \, au$), пронаблюдаем как изменяется его спектр.

Рис. 1: $\nu_{\text{повт}} = 1$ к Γ ц, $\tau = 50$ мкс а) Картинка для сравнения

Рис. 2: $\nu_{\text{повт}} = 2 \text{к} \Gamma \text{ц}, \ \tau = 50 \text{мкc}$

б) При увеличении $\nu_{\text{повт}}$ амплитуды гармоник увеличиваются, ширина спектра не меняется.

Масштаб частот по оси X на всех изображениях один и тот же.

7) Проведём измерения зависимости ширины спектра от длительности импульса $\Delta \nu(\tau)$ при изменении τ от 25 до 200 мкс при $\nu_{\text{повт}}=1$ к Γ ц. Ширину определяем по положению первой гармоники с нулевой амплитудой.

τ , MKC	$\Delta \nu$, к Γ ц	$ u_{\text{повт}}, \ \kappa \Gamma$ ц
30	27.8 ± 1.4	
45	19.9 ± 1.0	
67,5	13.8 ± 0.7	1
100	10.0 ± 0.5	1
140	6.0 ± 0.3	
200	5.0 ± 0.1	

Рис. 3: $\nu_{\text{повт}}=2$ к Γ ц, au=25мкс

в) При уменьшении au амплитуды уменьшаются, ширина спектра увеличивается.

Рис. 4: $\nu_{\text{повт}} = 0.5$ к Γ ц, $\tau = 200$ мкс

- г) Амплитуды возросли, ширина спектра уменьшилась. (в результате суперпозиции пунктов б и в)
- 8) Построим график зависимости ширины спектра от обратного времени импульса $\Delta \nu (1/ au).$

Получили $k\approx 0.82\pm 0.05$. По соотношению неопределённостей $k\approx \Delta\nu\cdot \tau\approx 1$. Таким образом соотношение соблюдается, поскольку получена величина по порядку совпадающая с единицей.

9) Для сигнала из первого изображения ($u_{\text{повт}} = 1$ к Γ ц, au = 50мкс) рассчитаем

теоретические значения амплитуд спектральных компонент по формуле:

$$|c_n| = \frac{|\sin\frac{\pi n\tau}{T}|}{\pi n}$$

n гармоники	1	2	3	4	5	6
$\nu_n^{{}_{\rm 9KCII}},\ {}_{\rm K}\Gamma$ Ц	1,014	2,031	3,007	4,024	5,041	6,017
$ u_n^{\mathrm{reop}}, \mathrm{K}\Gamma$ ц	1	2	3	4	5	6
$ c_n^{\text{эксп}} , \text{ MB}$	$279,1 \pm 0,1$	$275,8 \pm 0,1$	$270,9 \pm 0,1$	$262,7 \pm 0,1$	$252,9 \pm 0,1$	$241,4 \pm$
$ c_n/c_1 ^{\mathfrak{S}KC\Pi}$	1	$0,988 \pm 0,001$	0.967 ± 0.001	0.939 ± 0.001	0.904 ± 0.001	0.862 ± 0
$ c_n/c_1 ^{\text{Teop}}$	1	0,988	0,971	0,941	0,906	0,865

Сравним измеренные значения с теоретическими, изобразив их на одном графике.

Б. Исследование спектра периодической последовательности цугов гармонических колебаний

Исследуем зависимость расстояния между ближайшими спектральными компонентами от частоты повторения цугов.

- 10) По техническому описанию к работе соберем схему, используемую для генерации последовательности синусоидальных цугов.
 - 11) Установим несущую частоту $\nu_0=25$ к Γ ц и получим на экране осциллографа устойчивую картину цугов.
 - 12) Получим спектр сигнала. Пронаблюдаем, как изменяется вид спектра: Число N отвечает за число волн спектра, которое равно 2N-1. Масштаб частот по оси X на всех изображениях один и тот же.

Рис. 5. Периодическая последовательность цугов

Рис. 6. Спектр последовательности

Рис. 5: $u_0 = 50$ к Γ ц, T = 1мс, N = 5 а) Картинка для сравнения

Рис. 6: $\nu_0 = 70$ к Γ ц, T = 1мс, N = 5

б) При увеличении ν_0 амплитуды гармоник уменьшаются, ширина спектра увеличивается.

Рис. 7: $\nu_0=50$ к
Гц, Т = 2мс, N = 5

в) При увеличении Т амплитуды уменьшаются, ширина спектра не меняется.

Рис. 8: $\nu_0=50$ к Γ ц, T=1мс, N=6 г) При увеличении N амплитуда растёт, ширина спектра уменьшается.

13) При фиксированной длительности импульсов $\tau=100$ мкс исследуем зависимость расстояния $\delta \nu$ между соседними спектральными компонентами периода повторения импульсов $T=1/nu_{\text{повт}}$ (в диапазоне частот 1-8 к Γ ц)

	_	_		
Т, мкс	δu_m , к Γ ц	δu , к Γ ц	$ u_{\text{повт}}, \text{к}\Gamma$ ц	т, шт
200	$19,98 \pm 0,02$	$4,995 \pm 0,005$	5,00	4
300	$19,98 \pm 0,02$	$3,330 \pm 0,003$	3,33	6
500	$20,00 \pm 0,02$	$2,000 \pm 0,002$	2,00	10
800	$12,52 \pm 0.02$	$1,252 \pm 0,002$	1,25	10
1100	$9,10 \pm 0,02$	0.910 ± 0.002	0,91	10
1500	$6,66 \pm 0,02$	$0,666 \pm 0,002$	0,67	10
2000	$5,06 \pm 0,02$	$0,506 \pm 0,002$	0,50	10
2500	$4,00 \pm 0,02$	$0,400 \pm 0,002$	0,40	10
3000	$3,34 \pm 0.02$	0.334 ± 0.002	0,33	10
3500	$2,86 \pm 0,02$	0.286 ± 0.002	0,29	10
4000	$2,50 \pm 0,02$	$0,250 \pm 0,002$	$0,\!25$	10
4500	$2,22 \pm 0,02$	$0,222 \pm 0,002$	0,22	10
5000	$2,00 \pm 0,02$	$0,200 \pm 0,002$	0,20	10

14) Построим график $\delta \nu (1/T)$ и определим его наклон.

