SEIRD (deterministic) vs SEIRD (stochastic)

Team 3-Elderberries: Sparsh Gupta & Sohum Kothavade

What are the key differences between the SEIRD model with deterministic parameters observed during COVID-19 and the SEIRD model with stochastic parameters, particularly in how they differ in the peak number of infections throughout the simulation?

SEIRD Model

 $S_{n+1} = S_n - \beta IS + \sigma R$ $E_{n+1} = E_n - \alpha E + \beta IS$ $I_{n+1} = I_n - \gamma I - \delta I + \alpha E$ $R_{n+1} = R_n - \sigma R + \gamma I$

 $D_{n+1} = D_n + \delta I$

<u>Update state Equations</u>

 α : Incubation time S: Susceptible β : Infectivity E: Exposed I: Infectious γ : Recovery R: Recovered δ : Death D: Dead

 σ : Re-susceptibility

Results

100

Results - SEIRD (deterministic) vs SEIRD (stochastic)

Interpretation

Results

- Randomizing infectivity & recovery rate in the stochastic model results in different behavior in the simulation of the maximum number of infections in the model.
 - Distinct susceptibility, infection and exposed curves between the two models

<u>Limitations:</u>

- Mean infection curve
- Stochastic Beta distribution (infectivity and recovery)

Future Work:

- Randomizing other parameters
- Testing different cases of "takeoff" simulations
- Simulating both models for longer periods of time