NYU, Tandon School of Engineering Extended Bridge to CS – Winter 2022 Homework #6

Rozalin Mohanty rm6102@nyu.edu

Question 5

Use the definition of Θ in order to show the following:

a.
$$5n^3 + 2n^2 + 3n = \theta(n^3)$$

Step 1

- T(N) = O(f(n)) if and only if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.
- In this case, $5n^3 + 2n^2 + 3n \le 6n^3$ for $N \ge 3$. Thus, $5n^3 + 2n^2 + 3 = O(n^3)$.

Step 2

- $T(N) = \Omega$ (g(n)) if and only if there are positive constants c and n_0 such that $T(N) \ge cg(N)$ when $N \ge n_0$.
- In this case, $5n^3 + 2n^2 + 3n \ge 5n^3$ for $N \ge 0$. Thus, $5n^3 + 2n^2 + 3 = \overline{\Omega}(n^3)$.

Step 3

- $T(N) = \Theta(h(n))$ if and only if T(N) = O(h(N)) and $T(N) = \Omega(N)$.
- Since $5n^3 + 2n^2 + 3 = O(n^3)$ and $5n^3 + 2n^2 + 3 = \Omega(n^3)$, in this case, we can conclude that $5n^3 + 2n^2 + 3 = \Theta(n^3)$.

b.
$$\sqrt{(7n^2 + 2n - 8)} = \theta(n)$$

Step 1

- T(N) = O(f(n)) if and only if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.
- In this case, $\sqrt{(7n^2 + 2n 8)} \le 3n \text{ for } N \ge 0.936 \text{ (3d.p.)}$
- Thus, $\sqrt{(7n^2 + 2n 8)} = O(n)$.

Step 2

- $T(N) = \Omega$ (g(n)) if and only if there are positive constants c and n_0 such that $T(N) \ge cg(N)$ when $N \ge n_0$.
- In this case, $\sqrt{(7n^2 + 2n 8)} \ge 2n \text{ for } N \ge 1.333 \ (3 \text{ d.p.})$
- Thus, $\sqrt{(7n^2 + 2n 8)} = \Omega(n)$.

Step 3

- $T(N) = \Theta(h(n))$ if and only if T(N) = O(h(N)) and $T(N) = \Omega(N)$.
- Since $\sqrt{(7n^2+2n-8)}=O(n)$ and $\sqrt{(7n^2+2n-8)}=\Omega(n)$, in this case, we can conclude that $\sqrt{(7n^2+2n-8)}=\Theta(n)$.

1