

ADTViewer: un'interfaccia utente per l'analisi delle intrusioni informatiche

Relatore

Prof. Stefano lannucci

Correlatore

Dott. Tommaso Caiazzi

Introduzione

- Crescente rilevanza della cybersecurity nel contesto della digitalizzazione globale
- Espansione delle superfici di attacco a causa della crescente complessità dei sistemi informatici
- Necessità di sistemi avanzati per l'analisi e risposta tempestiva agli attacchi informatici

Introduzione

- Intrusion response: rilevare, mitigare e prevenire gli attacchi
 - Attack Trees e Attack Defense Trees
- Limitazioni degli strumenti esistenti (ADTool, PRISM-Games): staticità e complessità
- Necessità di una GUI per analizzare dinamicamente gli attacchi e le difese

Obiettivi della tesi

- Realizzazione di una GUI intuitiva per analisi dinamica degli Attack Defense Tree (ADT)
- Integrazione diretta con:
 - Framework PANACEA (analisi tramite PRISM-Games)
 - Soluzioni SIEM (es. Wazuh/OpenSearch)
- Sviluppo di un'architettura modulare e user-friendly per supportare esperti nella gestione interattiva delle minacce informatiche

Attack Trees e Attack Defense Trees

- Attack Trees (AT)
 - Rappresentazione gerarchica delle strategie di attacco
 - Identificazione di percorsi e vulnerabilità
- Struttura degli Attack Trees:
 - Nodo Radice: obiettivo dell'attaccante
 - Nodi Intermedi: condizioni intermedie
 - Nodi Foglia: azioni elementari

Attack Trees e Attack Defense Trees

- Attack Defense Trees (ADT)
 - Estensione degli AT con contromisure difensive
 - Rappresentazione dinamiche di attacco-difesa per analisi di strategie ottimali

ADTViewer: panoramica e caratteristiche

- ADTViewer è un plugin per OpenSearch Dashboards sviluppato per:
 - Visualizzare dinamicamente ADT
 - Analizzare strategie ottimali calcolate da PANACEA
 - Integrarsi facilmente con sistemi SIEM come Wazuh/OpenSearch
 - Architettura user-friendly e modulare

Tecnologie e architettura del sistema

- Frontend
 - React (Interattività e modularità)
 - D3 (Visualizzazione interattiva degli ADT)

- OpenSearch (Integrazione SIEM e log management)
- PostgreSQL (Gestione strutturata di alberi e policy)
- Containerizzazione
 - Docker (Deployment e orchestrazione servizi)

Workflow: caricamento e visualizzazione ADT

- Caricamento semplice e immediato di ADT da file XML
- Visualizzazione interattiva e dinamica degli ADT
- Calcolo automatico delle policy ottimali tramite PANACEA (PRISM-Games)

Workflow: caricamento e visualizzazione ADT

Workflow: gestione e ricalcolo policy

- Visualizzazione dettagliata e navigabile delle policy generate da PANACEA
- Possibilità di escludere azioni di attacco e ricalcolare automaticamente nuove policy
- Aggiornamento interattivo e visivo degli alberi e delle policy dopo modifiche

Workflow: gestione e ricalcolo policy

Workflow: Analisi costi e confronto policy

- Grafici cumulativi costi (Attaccante vs Difensore) per ogni policy
- Confronto diretto di più policy per analisi strategica delle contromisure

Workflow: Analisi costi e confronto policy

- Grafici cumulativi costi (Attaccante vs Difensore) per ogni policy
- Confronto diretto di più policy per analisi strategica delle contromisure

Workflow: Analisi costi e confronto policy

- Grafici cumulativi costi (Attaccante vs Difensore) per ogni policy
- Confronto diretto di più policy per analisi strategica delle contromisure

Case study 1: scenario non mitigato

 Descrizione scenario: percorso di attacco senza restrizioni

Case study 1: scenario non mitigato

- Descrizione scenario: percorso di attacco senza restrizioni
- Sequenza ottimale generata da PANACEA

Case study 2: scenario mitigato

- Azione mitigante: esclusione "pathTraversal"
- Esclusione del sottoalbero radicato all'azione mitigante
- Nuova sequenza ottimale e analisi costi aggiornati

Confronto tra i due scenari

Conclusioni

- Risultati raggiunti:
 - Sviluppo di una GUI efficace per analisi interattiva
 - Miglioramento significativo nella comprensione e gestione dinamica delle minacce informatiche
- Suggerimenti per sviluppi futuri:
 - Integrazione Machine Learning
 - Ottimizzazione prestazioni (alberi molto grandi, PANACEA)

Grazie per l'attenzione!