PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/51, C12O 1/68

(11) International Publication Number:

WO 92/19743

C12N 15/40, C12Q 1/70 A61K 39/29, C07K 13/00 G01N 33/576

 $\mathbf{A2}$

(43) International Publication Date:

12 November 1992 (12.11.92)

(21) International Application Number:

(22) International Filing Date:

8 May 1992 (08.05.92)

(30) Priority data:

697,326

8 May 1991 (08.05.91)

US

(71) Applicant: CHIRON CORPORATION [US. US]: 4560 Horton Street, Emeryville, CA 94608 (US).

(72) Inventors: CHA, Tai-An; 964 Springview Circle, San Ramon, CA 94583 (US). BEALL, Eileen; 1150 Lincoln Avenue, #5, Walnut Creek, CA 94596 (US). IRVINE, Bruce ; 3401 El Monte Drive, Concord, CA 94519 (US). KOL-BERG, Janice ; 131 Scots Valley, Hercules, CA 94547 (US). URDEA, Michael, S.; 100 Bunce Meadow Road, Alamo, CA 94501 (US).

PCT/US92 04036; (74) Agent: JANIUK, Anthony, J.; Wolf, Greenfield & Sacks, 600 Atlantic Avenue, Boston, MA 02210 (US).

> (81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS. DE (European patent), DK (European patent), ES (European patent), FI. FR (European patent), GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OA-PI patent), MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS

(57) Abstract

The present application features nucleic acid, peptide and antibody compositions relating to genotypes of hepatitis C virus and methods of using such compositions for diagnostic and therapeutic purposes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	ES	Spain	MG	Madagascar
	Australia	FL	Finland	ML.	Mali
AU		FR	1-rance	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso		Gunea	NL	Netherlands
BC	Bulgaria	GN		NO	Norway
ВJ	Benin	GR	Greece	PL	Poland
BR	Brazil	HU	Hungary	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan		
CG	Congo	KP	Democratic People's Republic	SD	Sudan
CH	Switzerland		of Korea	SE	Sweden
CI	Côle d'Ivoire	KR	Republic of Korea	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
	Czechoslovakia	LK	Sri Lanka	TD	Chad
CS		LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	nic	(MOTHER)		

WO 92/19743 PCT/US92/04036

1

HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS

This application is a continuation-in-part of U.S. Serial No. 07/697,326 entitled "Polynucleotide Probes Useful for Screening for Hepatitis C Virus, filed May 8, 1991.

Technical Field

The invention relates to compositions and methods for the detection and treatment of hepatitis C virus, (HCV) infection, formerly referred to as blood-borne non-A, non-B hepatitis virus (NANBV) infection. More specifically, embodiments of the present invention feature compositions and methods for the detection of HCV, and for the development of vaccines for the prophylactic treatment of infections of HCV, and development of antibody products for conveying passive immunity to HCV.

20

25

5

Background of the Invention

The prototype isolate of HCV was characterized in U.S. Patent Application Serial No. 122,714 (See also EPO Publication No. 318,216). As used herein, the term "HCV" includes new isolates of the same viral species. The term "HCV-1" referred to in U.S. Patent Application Serial No. 122,714.

10

15

20

25

HCV is a transmissible disease distinguishable from other forms of viral-associated liver diseases, including that caused by the known hepatitis viruses, i.e., hepatitis A virus (HAV), hepatitis B virus (HBV), and delta hepatitis virus (HDV), as well as the hepatitis induced by cytomegalovirus (CMV) or Epstein-Barr virus (EBV). HCV was first identified in individuals who had received blood transfusions.

The demand for sensitive, specific methods for screening and identifying carriers of HCV and HCV contaminated blood or blood products is significant. Post-transfusion hepatitis (PTH) occurs in approximately 10% of transfused patients, and HCV accounts for up to 90% of these cases. The disease frequently progresses to chronic liver damage (25-55%).

Patient care as well as the prevention of transmission of HCV by blood and blood products or by close personal contact require reliable screening, diagnostic and prognostic tools to detect nucleic acids, antigens and antibodies related to HCV.

Information in this application suggests the HCV has several genotypes. That is, the genetic information of the HCV virus may not be totally identical for all HCV, but encompasses groups with differing genetic information.

Genetic information is stored in thread-like molecules of DNA and RNA. DNA consists of covalently

linked chains of deoxyribonucleotides and RNA consists of covalently linked chains of ribonucleotides. nucleotide is characterized by one of four bases: adenine (A), guanine (G), thymine (T), and cytosine (C). The bases are complementary in the sense that, 5 due to the orientation of functional groups, certain base pairs attract and bond to each other through hydrogen bonding and π -stacking interactions. Adenine in one strand of DNA pairs with thymine in an opposing complementary strand. Guanine in one strand 10 of DNA pairs with cytosine in an opposing complementary In RNA, the thymine base is replaced by uracil (U) which pairs with adenine in an opposing complementary strand. The genetic code of living organism is carried in the sequence of base pairs. 15 Living cells interpret, transcribe and translate the information of nucleic acid to make proteins and peptides.

The HCV genome is comprised of a single positive strand of RNA. The HCV genome possesses a continuous, translational open reading frame (ORF) that encodes a polyprotein of about 3,000 amino acids. In the ORF, the structural protein(s) appear to be encoded in approximately the first quarter of the N-terminus region, with the majority of the polyprotein responsible for non-structural proteins.

20

10

15

20

25

The HCV polyprotein comprises, from the amino terminus to the carboxy terminus, the nucleocapsid protein (C), the envelope protein (E), and the non-structural proteins (NS) 1, 2 (b), 3, 4 (b), and 5.

HCV of differing genotypes may encode for proteins which present an altered response to host immune systems. HCV of differing genotypes may be difficult to detect by immuno diagnostic techniques and nucleic acid probe techniques which are not specifically directed to such genotype.

Definitions for selected terms used in the application are set forth below to facilitate an understanding of the invention. The term "corresponding" means homologous to or complementary to a particular sequence of nucleic acid. As between nucleic acids and peptides, corresponding refers to amino acids of a peptide in an order derived from the sequence of a nucleic acid or its complement.

The term "non-naturally occurring nucleic acid" refers to a portion of genomic nucleic acid, cDNA, semisynthetic nucleic acid, or synthetic origin nucleic acid which, by virtue of its origin or manipulation:

(1) is not associated with all of a nucleic acid with which it is associated in nature, (2) is linked to a nucleic acid or other chemical agent other than that to

which it is linked in nature, or (3) does not occur in nature.

Similarly the term, "a non-naturally occurring peptide" refers to a portion of a large naturally occurring peptide or protein, or semi-synthetic or synthetic peptide, which by virtue of its origin or manipulation (1) is not associated with all of a peptide with which it is associated in nature, (2) is linked to peptides, functional groups or chemical agents other than that to which it is linked in nature, or (3) does not occur in nature.

The term "primer" refers to a nucleic acid which is capable of initiating the synthesis of a larger nucleic acid when placed under appropriate conditions.

The primer will be completely or substantially complementary to a region of the nucleic acid to be copied. Thus, under conditions conducive to hybridization, the primer will anneal to a complementary region of a larger nucleic acid. Upon addition of suitable reactants, the primer is extended by the polymerizing agent to form a copy of the larger nucleic acid.

The term "binding pair" refers to any pair of molecules which exhibit mutual affinity or binding capacity. For the purposes of the present application, the term "ligand" will refer to one molecule of the binding pair, and the term "antiligand" or "receptor"

5

10

10

15

20

25

or "target" will refer to the opposite molecule of the binding pair. For example, with respect to nucleic acids, a binding pair may comprise two complementary nucleic acids. One of the nucleic acids may be designated the ligand and the other strand is designated the antiligand receptor or target. The designation of ligand or antiligand is a matter of arbitrary convenience. Other binding pairs comprise, by way of example, antigens and antibodies, drugs and drug receptor sites and enzymes and enzyme substrates, to name a few.

The term "label" refers to a molecular moiety capable of detection including, by way of example, without limitation, radioactive isotopes, enzymes, luminescent agents, precipitating agents, and dyes.

The term "support" includes conventional supports such as filters and membranes as well as retrievable supports which can be substantially dispersed within a medium and removed or separated from the medium by immobilization, filtering, partitioning, or the like. The term "support means" refers to supports capable of being associated to nucleic acids, peptides or antibodies by binding partners, or covalent or noncovalent linkages.

A number of HCV strains and isolates have been identified. When compared with the sequence of the original isolate derived from the USA ("HCV-1"; see

Q.-L. Choo et al. (1989) Science 244:359-362, Q.-L. Choo et al. (1990) Brit. Med. Bull. 46:423-441, Q.-L. Choo et al., Proc. Natl. Acad. Sci. 88:2451-2455 (1991), and E.P.O. Patent Publication No. 318,216, 5 cited supra), it was found that a Japanese isolate ("HCV J1") differed significantly in both nucleotide and polypeptide sequence within the NS3 and NS4 regions. This conclusion was later extended to the NS5 and envelope (E1/S and E2/NS1) regions (see K. Takeuchi 10 et al., J. Gen. Virol. (1990) 71:3027-3033, Y. Kubo, Nucl. Acids. Res. (1989) 17:10367-10372, and K. Takeuchi et al., Gene (1990) 91:287-291). The former group of isolates, originally identified in the United States, is termed "Genotype I" throughout the present 15 disclosure, while the latter group of isolates, initially identified in Japan, is termed "Genotype II" herein.

Brief Description of the Invention

The present invention features compositions of matter comprising nucleic acids and peptides corresponding to the HCV viral genome which define different genotypes. The present invention also features methods of using the compositions corresponding to sequences of the HCV viral genome which define different genotypes described herein.

15

20

25

A. Nucleic acid compositions

The nucleic acid of the present invention, corresponding to the HCV viral genome which define different genotypes, have utility as probes in nucleic acid hybridization assays, as primers for reactions involving the synthesis of nucleic acid, as binding partners for separating HCV viral nucleic acid from other constituents which may be present, and as anti-sense nucleic acid for preventing the transcription or translation of viral nucleic acid.

One embodiment of the present invention features a composition comprising a non-naturally occurring nucleic acid having a nucleic acid sequence of at least eight nucleotides corresponding to a non-HCV-1 nucleotide sequence of the hepatitis C viral genome. Preferably, the nucleotide sequence is selected from a sequence present in at least one region consisting of the NS5 region, envelope 1 region, 5'UT region, and the core region.

Preferably, with respect to sequences which correspond to the NS5 region, the sequence is selected from a sequence within a sequence numbered 2-22. The sequence numbered 1 corresponds to HCV-1. Sequences numbered 1-22 are defined in the Sequence Listing of the application.

Preferably, with respect to sequences corresponding to the envelope 1 region, the sequence is

selected from a sequence within sequences numbered 24-32. Sequence No. 23 corresponds to HCV-1. Sequences numbered 23-32 are set forth in the Sequence Listing of the application.

Preferably, with respect to the sequences which correspond to the 5'UT regions, the sequence is selected from a sequence within sequences numbered 34-51. Sequence No. 33 corresponds to HCV-1. Sequence No. 33-51 are set forth in the Sequence Listing of this application.

Preferably, with respect to the sequences which correspond to the core region, the sequence is selected from a sequence within the sequences numbered 53-66. Sequence No. 52 corresponds to HCV-1. Sequences 52-66 are set forth in the Sequence Listing of this application.

The compositions of the present invention form hybridization products with nucleic acid corresponding to different genotypes of HCV.

HCV has at least five genotypes, which will be referred to in this application by the designations GI-GV. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV,

5

10

10

15

20

25

is exemplified by sequences numbered 20-22, and 29-31 and 48-49. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

One embodiment of the present invention features compositions comprising a nucleic acid having a sequence corresponding to one or more sequences which exemplify a genotype of HCV.

B. Method of forming a Hybridization Product

Embodiments of the present invention also feature a method of forming a hybridization product with nucleic acid having a sequence corresponding to HCV nucleic acid. One method comprises the steps of placing a non-naturally occurring nucleic acid having a non-HCV-1 sequence corresponding to HCV nucleic acid under conditions in which hybridization may occur. The non-naturally occurring nucleic acid is capable of forming a hybridization product with HCV nucleic acid, under hybridization conditions. The method further comprises the step of imposing hybridization conditions to form a hybridization product in the presence of nucleic acid corresponding to a region of the HCV genome.

The formation of a hybridization product has utility for detecting the presence of one or more genotypes of HCV. Preferably, the non-naturally occurring nucleic acid forms a hybridization product

with nucleic acid of HCV in one or more regions comprising the NS5 region, envelope 1 region, 5'UT region and the core region. To detect the hybridization product, it is useful to associate the non-naturally occurring nucleic acid with a label. The formation of the hybridization product is detected by separating the hybridization product from labeled non-naturally occurring nucleic acid, which has not formed a hybridization product.

The formation of a hybridization product has utility as a means of separating one or more genotypes of HCV nucleic acid from other constituents potentially present. For such applications, it is useful to associate the non-naturally occurring nucleic acid with a support for separating the resultant hybridization product from the the other constituents.

Nucleic acid "sandwich assays" employ one nucleic acid associated with a label and a second nucleic acid associated with a support. An embodiment of the present invention features a sandwich assay comprising two nucleic acids, both have sequences which correspond to HCV nucleic acids; however, at least one non-naturally occurring nucleic acid has a sequence corresponding to non-HCV-1 HCV nucleic acid. At least one nucleic acid is capable of associating with a label, and the other is capable of associating with a support. The support associated non-naturally

10

15

20

10

15

20

25

occurring nucleic acid is used to separate the hybridization products which include an HCV nucleic acid and the non-naturally occurring nucleic acid having a non-HCV-1 sequence.

One embodiment of the present invention features a method of detecting one or more genotypes of HCV. method comprises the steps of placing a non-naturally occurring nucleic acid under conditions which hybridization may occur. The non-naturally occurring nucleic acid is capable of forming a hybridization product with nucleic acid from one or more genotypes of HCV. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV, is exemplified sequences numbered 20-22 and 29-31. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

The hybridization product of HCV nucleic acid with a non-naturally occurring nucleic acid having non-HCV-1 sequence corresponding to sequences within the HCV genome has utility for priming a reaction for the synthesis of nucleic acid.

The hybridization product of HCV nucleic acid with a non-naturally occurring nucleic acid having a

sequence corresponding to a particular genotype of HCV has utility for priming a reaction for the synthesis of nucleic acid of such genotype. In one embodiment, the synthesized nucleic acid is indicative of the presence of one or more genotypes of HCV.

The synthesis of nucleic acid may also facilitate cloning of the nucleic acid into expression vectors which synthesize viral proteins.

Embodiments of the present methods have utility as anti-sense agents for preventing the transcription or translation of viral nucleic acid. The formation of a hybridization product of a non-naturally occurring nucleic acid having sequences which correspond to a particular genotype of HCV genomic sequencing with HCV nucleic acid may block translation or transcription of 15 such genotype. Therapeutic agents can be engineered to include all five genotypes for inclusivity.

C. Peptide and antibody composition

A further embodiment of the present invention 20 features a composition of matter comprising a non-naturally occurring peptide of three or more amino acids corresponding to a nucleic acid having a non-HCV-1 sequence. Preferably, the non-HCV-1 sequence corresponds with a sequence within one or more regions consisting of the NS5 region, the envelope 1 region, 25 the 5'UT region, and the core region.

10

15

20

25

Preferably, with respect to peptides corresponding to a nucleic acid having a non-HCV-1 sequence of the NS5 region, the sequence is within sequences numbered 2-22. The sequence numbered 1 corresponds to HCV-1. Sequences numbered 1-22 are set forth in the Sequence Listing.

Preferably, with respect to peptides corresponding to a nucleic acid having a non-HCV-1 sequence of the envelope 1 region, the sequence is within sequences numbered 24-32. The sequence numbered 23 corresponds to HCV-1. Sequences numbered 23-32 are set forth in the Sequence Listing.

Preferably, with respect to peptides corresponding to a nucleic acid having a non-HCV-1 sequence directed to the core region, the sequence is within sequences numbered 53-66. Sequence numbered 52 corresponds to HCV-1. Sequences numbered 52-66 are set forth in the Sequence Listing.

The further embodiment of the present invention features peptide compositions corresponding to nucleic acid sequences of a genotype of HCV. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV, is exemplified

10

15

20

25

sequences numbered 20-22, 29-31, 48 and 49. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

The non-naturally occurring peptides of the present invention are useful as a component of a vaccine. The sequence information of the present invention permits the design of vaccines which are inclusive for all or some of the different genotypes of HCV. Directing a vaccine to a particular genotype allows prophylactic treatment to be tailored to maximize the protection to those agents likely to be encountered. Directing a vaccine to more than one genotype allows the vaccine to be more inclusive.

The peptide compositions are also useful for the development of specific antibodies to the HCV proteins. One embodiment of the present invention features as a composition of matter, an antibody to peptides corresponding to a non-HCV-1 sequence of the HCV genome. Preferably, the non-HCV-1 sequence is selected from the sequence within a region consisting of the NS5 region, the envelope 1 region, and the core region. There are no peptides associated with the untranslated 5'UT region.

Preferably, with respect to antibodies directed to peptides of the NS5 region, the peptide corresponds to a sequence within sequences numbered 2-22. Preferably, with respect to antibodies directed to a peptide

corresponding to the envelope 1 region, the peptide corresponds to a sequence within sequences numbered 24-32. Preferably, with respect to the antibodies directed to peptides corresponding to the core region, the peptide corresponds to a sequence within sequences numbered 53-66.

Antibodies directed to peptides which reflect a particular genotype have utility for the detection of such genotypes of HCV and therapeutic agents.

One embodiment of the present invention features an antibody directed to a peptide corresponding to nucleic acid having sequences of a particular genotype. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV, is exemplified sequences numbered 20-22, 29-31, 48 and 49. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

Individuals skilled in the art will readily recognize that the compositions of the present invention can be packaged with instructions for use in the form of a kit for performing nucleic acid hybridizations or immunochemical reactions.

10

15

20

The present invention is further described in the following figures which illustrate sequences demonstrating genotypes of HCV. The sequences are designated by numerals 1-145, which numerals and sequences are consistent with the numerals and sequences set forth in the Sequence Listing. Sequences 146 and 147 facilitate the discussion of an assay which numerals and sequences are consistent with the numerals and sequences set forth in the Sequence Listing.

10

15

20

25

5

Brief Description of the Figures and Sequence Listing

Figure 1 depicts schematically the genetic organization of HCV;

Figure 2 sets forth nucleic acid sequences numbered 1-22 which sequences are derived from the NS5 region of the HCV viral genome;

Figure 3 sets forth nucleic acid sequences numbered 23-32 which sequences are derived from the envelope 1 region of the HCV viral genome;

Figure 4 sets forth nucleic acid sequences numbered 33-51 which sequences are derived from the 5'UT region of the HCV viral genome; and,

Figure 5 sets forth nucleic acid sequences numbered 52-66 which sequences are derived from the core region of the HCV viral genome.

The Sequence Listing sets forth the sequences of sequences numbered 1-147.

15

20

25

Detailed Description of the Invention

The present invention will be described in detail as as nucleic acid having sequences corresponding to the HCV genome and related peptides and binding partners, for diagnostic and therapeutic applications.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See e.g., Maniatis, Fitsch & Sambrook, Molecular Cloning; A Laboratory Manual (1982); DNA Cloning, Volumes I and II (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); the series, Methods in Enzymology (Academic Press, Inc.), particularly Vol. 154 and Vol. 155 (Wu and Grossman, eds.).

The cDNA libraries are derived from nucleic acid sequences present in the plasma of an HCV-infected chimpanzee. The construction of one of these libraries, the "c" library (ATCC No. 40394), is described in PCT Pub. No. WO90/14436. The sequences of the library relevant to the present invention are set forth herein as sequence numbers 1, 23, 33 and 52.

Nucleic acids isolated or synthesized in accordance with features of the present invention are

useful, by way of example without limitation as probes, primers, anti-sense genes and for developing expression systems for the synthesis of peptides corresponding to such sequences.

The nucleic acid sequences described define genotypes of HCV with respect to four regions of the viral genome. Figure 1 depicts schematically the organization of HCV. The four regions of particular interest are the NS5 region, the envelope 1 region, the 5'UT region and the core region.

The sequences set forth in the present application as sequences numbered 1-22 suggest at least five genotypes in the NS5 region. Sequences numbered 1-22 are depicted in Figure 2 as well as the Sequence Listing. Each sequence numbered 1-22 is derived from nucleic acid having 340 nucleotides from the NS5 region.

The five genotypes are defined by groupings of the sequences defined by sequence numbered 1-22. For convenience, in the present application, the different genotypes will be assigned roman numerals and the letter "G".

The first genotype (GI) is exemplified by sequences within sequences numbered 1-6. A second genotype (GII) is exemplified by sequences within sequences numbered 7-12. A third genotype (GIII) is exemplified by the sequences within sequences numbered 13-17. A fourth genotype (GIV) is exemplified by

5

10

15

20

10

15

20

25

sequences within sequences numbered 20-22. A fifth genotype (GV) is exemplified by sequences within sequences numbered 18 and 19.

The sequences set forth in the present application as sequences numbered 23-32 suggest at least four genotypes in the envelope 1 region of HCV. Sequences numbered 23-32 are depicted in Figure 3 as well as in the Sequence Listing. Each sequence numbered 23-32 is derived from nucleic acid having 100 nucleotides from the envelope 1 region.

A first envelope 1 genotype group (GI) is exemplified by the sequences within the sequences numbered 23-25. A second envelope 1 genotype (GII) region is exemplified by sequences within sequences numbered 26-28. A third envelope 1 genotype (GIII) is exemplified by the sequences within sequences numbered 32. A fourth envelope 1 genotype (GIV) is exemplified by the sequences within sequence numbered 29-31.

The sequences set forth in the present application as sequences numbered 33-51 suggest at least three genotypes in the 5'UT region of HCV. Sequences numbered 33-51 are depicted in Figure 4 as well as in the Sequence Listing. Each sequence numbered 33-51 is derived from the nucleic acid having 252 nucleotides from the 5'UT region, although sequences 50 and 51 are somewhat shorter at approximately 180 nucleotides.

15

20

25

The first 5'UT genotype (GI) is exemplified by the sequences within sequences numbered 33-38. A second 5'UT genotype (GII) is exemplified by the sequences within sequences numbered 39-45. A third 5'UT genotype (GIII) is exemplified by the sequences within sequences numbered 46-47. A fourth 5'UT genotype (GIV) is exemplified by sequences within sequences humbered 48 and 49. A fifth 5'UT genotype (GV) is exemplified by sequences within sequences numbered 50 and 51.

The sequences numbered 48-62 suggest at least three genotypes in the core region of HCV. The sequences numbered 52-66 are depicted in Figure 5 as well as in the Sequence Listing.

The first core region genotype (GI) is exemplified by the sequences within sequences numbered 52-57. The second core region genotype (GII) is exemplified by sequences within sequences numbered 58-64. The third core region genotype (GIII) is exemplified by sequences within sequences numbered 65 and 66. Sequences numbered 52-65 are comprised of 549 nucleotides. Sequence numbered 66 is comprised of 510 nucleotides.

The various genotypes described with respect to each region are consistent. That is, HCV having features of the first genotype with respect to the NS5 region will substantially conform to features of the first genotype of the envelope 1 region, the 5'UT region and the core region.

Nucleic acid isolated or synthesized in accordance with the sequences set forth in sequence numbers 1-66 are useful as probes, primers, capture ligands and anti-sense agents. As probes, primers, capture ligands and anti-sense agents, the nucleic acid wil normally comprise approximately eight or more nucleotides for specificity as well as the ability to form stable hybridization products.

10 Probes

15

20

A nucleic acid isolated or synthesized in accordance with a sequence defining a particular genotype of a region of the HCV genome can be used as a probe to detect such genotype or used in combination with other nucleic acid probes to detect substantially all genotypes of HCV.

With the sequence information set forth in the present application, sequences of eight or more nucleotides are identified which provide the desired inclusivity and exclusivity with respect to various genotypes within HCV, and extraneous nucleic acid sequences likely to be encountered during hybridization conditions.

Individuals skilled in the art will readily
25 recognize that the nucleic acid sequences, for use as probes, can be provided with a label to facilitate detection of a hybridization product.

Capture Ligand

For use as a capture ligand, the nucleic acid selected in the manner described above with respect to probes, can be readily associated with supports. The manner in which nucleic acid is associated with supports is well known. Nucleic acid having sequences corresponding to a sequence within sequences numbered 1-66 have utility to separate viral nucleic acid of one genotype from the nucleic acid of HCV of a different genotype. Nucleic acid isolated or synthesized in accordance with sequences within sequences numbered 1-66, used in combinations, have utility to capture substantially all nucleic acid of all HCV genotypes.

15 Primers

5

10

20

25

Nucleic acid isolated or synthesized in accordance with the sequences described herein have utility as primers for the amplification of HCV sequences. With respect to polymerase chain reaction (PCR) techniques, nucleic acid sequences of eight or more nucleotides corresponding to one or more sequences of sequences numbered 1-66 have utility in conjunction with suitable enzymes and reagents to create copies of the viral nucleic acid. A plurality of primers having different sequences corresponding to more than one genotype can be used to create copies of viral nucleic acid for such genotypes.

10

20

The copies can be used in diagnostic assays to detect HCV virus. The copies can also be incorporated into cloning and expression vectors to generate polypeptides corresponding to the nucleic acid synthesized by PCR, as will be described in greater detail below.

Anti-sense

Nucleic acid isolated or synthesized in accordance with the sequences described herein have utility as anti-sense genes to prevent the expression of HCV.

Nucleic acid corresponding to a genotype of HCV is loaded into a suitable carrier such as a liposome for introduction into a cell infected with HCV. A nucleic 15 acid having eight or more nucleotides is capable of binding to viral nucleic acid or viral messenger RNA. Preferably, the anti-sense nucleic acid is comprised of 30 or more nucleotides to provide necessary stability of a hybridization product of viral nucleic acid or viral messenger RNA. Methods for loading anti-sense nucleic acid is known in the art as exemplified by U.S. Patent 4,241,046 issued December 23, 1980 to Papahadjopoulos et al.

25 Peptide Synthesis

Nucleic acid isolated or synthesized in accordance with the sequences described herein have utility to

WO 92/19743 PCT/US92/04036

- 25 -

generate peptides. The sequences exemplified by sequences numbered 1-32 and 52-66 can be cloned into suitable vectors or used to isolate nucleic acid. The isolated nucleic acid is combined with suitable DNA linkers and cloned into a suitable vector. The vector can be used to transform a suitable host organism such as <u>E. coli</u> and the peptide encoded by the sequences isolated.

Molecular cloning techniques are described in the text Molecular Cloning: A Laboratory Manual, Maniatis et al., Coldspring Harbor Laboratory (1982).

The isolated peptide has utility as an antigenic substance for the development of vaccines and antibodies directed to the particular genotype of HCV.

15

5

Vaccines and Antibodies

The peptide materials of the present invention have utility for the development of antibodies and vaccines.

The availability of cDNA sequences, or nucleotide sequences derived therefrom (including segments and modifications of the sequence), permits the construction of expression vectors encoding antigenically active regions of the peptide encoded in either strand. The antigenically active regions may be derived from the NS5 region, envelope 1 regions, and the core region.

10

15

20

Fragments encoding the desired peptides are derived from the cDNA clones using conventional restriction digestion or by synthetic methods, and are ligated into vectors which may, for example, contain portions of fusion sequences such as beta galactosidase or superoxide dismutase (SOD), preferably SOD. Methods and vectors which are useful for the production of polypeptides which contain fusion sequences of SOD are described in European Patent Office Publication number 0196056, published October 1, 1986.

Any desired portion of the HCV cDNA containing an open reading frame, in either sense strand, can be obtained as a recombinant peptide, such as a mature or fusion protein; alternatively, a peptide encoded in the cDNA can be provided by chemical synthesis.

The DNA encoding the desired peptide, whether in fused or mature form, and whether or not containing a signal sequence to permit secretion, may be ligated into expression vectors suitable for any convenient host. Both eukaryotic and prokaryotic host systems are presently used in forming recombinant peptides. The peptide is then isolated from lysed cells or from the culture medium and purified to the extent needed for its intended use. Purification may be by techniques known in the art, for example, differential extraction, salt fractionation, chromatography on ion exchange resins, affinity chromatography, centrifugation, and

the like. See, for example, Methods in Enzymology for a variety of methods for purifying proteins. Such peptides can be used as diagnostics, or those which give rise to neutralizing antibodies may be formulated into vaccines. Antibodies raised against these peptides can also be used as diagnostics, or for passive immunotherapy or for isolating and identifying HCV.

An antigenic region of a peptide is generally relatively small--typically 8 to 10 amino acids or less 10 in length. Fragments of as few as 5 amino acids may characterize an antigenic region. These segments may correspond to NS5 region, envelope 1 region, and the core region of the HCV genome. The 5'UT region is not known to be translated. Accordingly, using the cDNAs 15 of such regions, DNAs encoding short segments of HCV peptides corresponding to such regions can be expressed recombinantly either as fusion proteins, or as isolated peptides. In addition, short amino acid sequences can be conveniently obtained by chemical synthesis. 20 instances wherein the synthesized peptide is correctly configured so as to provide the correct epitope, but is too small to be immunogenic, the peptide may be linked to a suitable carrier.

A number of techniques for obtaining such linkage are known in the art, including the formation of disulfide linkages using N-succinimidyl-3-(2-

pyridylthio)propionate (SPDP) and succinimidyl 4-(N-maleimido-methyl)cyclohexane-l-carboxylate (SMCC) obtained from Pierce Company, Rockford, Illinois, (if the peptide lacks a sulfhydryl group, this can be provided by addition of a cysteine residue). reagents create a disulfide linkage between themselves and peptide cysteine residues on one protein and an amide linkage through the epsilon-amino on a lysine, or other free amino group in the other. A variety of such disulfide/amide-forming agents are known. See, for 10 example, Immun Rev (1982) 62:185. Other bifunctional coupling agents form a thioether rather than a disulfide linkage. Many of these thio-ether-forming agents are commercially available and include reactive esters of 6-maleimidocaprioc acid, 2-bromoacetic acid, 15 2-iodoacetic acid, 4-N-maleimido-methyl)cyclohexane-lcarboxylic acid, and the like. The carboxyl groups can be activated by combining them with succinimide or 1-hydroxyl-2 nitro-4-sulfonic acid, sodium salt. Additional methods of coupling antigens employs the 20 rotavirus/"binding peptide" system described in EPO Pub. No. 259,149, the disclosure of which is incorporated herein by reference. The foregoing list is not meant to be exhaustive, and modifications of the

Any carrier may be used which does not itself induce the production of antibodies harmful to the

named compounds can clearly be used.

10

host. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins; polysaccharides, such as latex functionalized Sepharose, agarose, cellulose, cellulose beads and the like; polymeric amino acids, such as polyglutamic acid, polylysine, and the like; amino acid copolymers; and inactive virus particles. Especially useful protein substrates are serum albumins, keyhole limpet hemocyanin, immunoglobulin molecules, thyroglobulin, ovalbumin, tetanus toxoid, and other proteins well known to those skilled in the art.

Peptides comprising HCV amino acid sequences encoding at least one viral epitope derived from the NS5, envelope 1, and core region are useful immunological reagents. The 5'UT region is not known 15 to be translated. For example, peptides comprising such truncated sequences can be used as reagents in an immunoassay. These peptides also are candidate subunit antigens in compositions for antiserum production or vaccines. While the truncated sequences can be 20 produced by various known treatments of native viral protein, it is generally preferred to make synthetic or recombinant peptides comprising HCV sequence. Peptides comprising these truncated HCV sequences can be made up entirely of HCV sequences (one or more epitopes, either 25 contiguous or noncontiguous), or HCV sequences and heterologous sequences in a fusion protein. Useful

25

heterologous sequences include sequences that provide for secretion from a recombinant host, enhance the immunological reactivity of the HCV epitope(s), or facilitate the coupling of the polypeptide to an immunoassay support or a vaccine carrier. See, E.G., EPO Pub. No. 116,201; U.S. Pat. No. 4,722,840; EPO Pub. No. 259,149; U.S. Pat. No. 4,629,783.

The size of peptides comprising the truncated HCV sequences can vary widely, the minimum size being a sequence of sufficient size to provide an HCV epitope, 10 while the maximum size is not critical. convenience, the maximum size usually is not substantially greater than that required to provide the desired HCV epitopes and function(s) of the heterologous sequence, if any. Typically, the 15 truncated HCV amino acid sequence will range from about 5 to about 100 amino acids in length. More typically, however, the HCV sequence will be a maximum of about 50 amino acids in length, preferably a maximum of about 30 amino acids. It is usually desirable to select HCV 20 sequences of at least about 10, 12 or 15 amino acids, up to a maximum of about 20 or 25 amino acids.

HCV amino acid sequences comprising epitopes can be identified in a number of ways. For example, the entire protein sequence corresponding to each of the NS5, envelope 1, and core regions can be screened by preparing a series of short peptides that together span

the entire protein sequence of such regions. By starting with, for example, peptides of approximately 100 amino acids, it would be routine to test each peptide for the presence of epitope(s) showing a desired reactivity, and then testing progressively smaller and overlapping fragments from an identified peptides of 100 amino acids to map the epitope of interest. Screening such peptides in an immunoassay is within the skill of the art. It is also known to carry out a computer analysis of a protein sequence to identify potential epitopes, and then prepare peptides comprising the identified regions for screening.

The immunogenicity of the epitopes of HCV may also be enhanced by preparing them in mammalian or yeast 15 systems fused with or assembled with particle-forming proteins such as, for example, that associated with hepatitis B surface antigen. See, e.g., US 4,722,840. Constructs wherein the HCV epitope is linked directly to the particle-forming protein coding sequences 20 produce hybrids which are immunogenic with respect to the HCV epitope. In addition, all of the vectors prepared include epitopes specific to HBV, having various degrees of immunogenicity, such as, for example, the pre-S peptide. Thus, particles 25 constructed from particle forming protein which include HCV sequences are immunogenic with respect to HCV and HBV.

5

10

15

20

Hepatitis surface antigen (HBSAg) has been shown to be formed and assembled into particles in S. cerevisiae (P. Valenzuela et al. (1982)), as well as in, for example, mammalian cells (P. Valenzuela et al. 1984)). The formation of such particles has been shown to enhance the immunogenicity of the monomer subunit. The constructs may also include the immunodominant epitope of HBSAg, comprising the 55 amino acids of the presurface (pre-S) region. Neurath et al. (1984). Constructs of the pre-S-HBSAg particle expressible in yeast are disclosed in EPO 174,444, published March 19, 1986; hybrids including heterologous viral sequences for yeast expression are disclosed in EPO 175,261, published March 26, 1966. These constructs may also be expressed in mammalian cells such as Chinese hamster ovary (CHO) cells using an SV40-dihydrofolate reductase vector (Michelle et al. (1984)).

In addition, portions of the particle-forming protein coding sequence may be replaced with codons encoding an HCV epitope. In this replacement, regions which are not required to mediate the aggregation of the units to form immunogenic particles in yeast of mammals can be deleted, thus eliminating additional HBV antigenic sites from competition with the HCV epitope.

25

Vaccines

Vaccines may be prepared from one or more

WO 92/19743 PCT/US92/04036

- 33 -

immunogenic peptides derived from HCV. The observed homology between HCV and Flaviviruses provides information concerning the peptides which are likely to be most effective as vaccines, as well as the regions of the genome in which they are encoded.

Multivalent vaccines against HCV may be comprised of one or more epitopes from one or more proteins derived from the NS5, envelope 1, and core regions. In particular, vaccines are contemplated comprising one or more HCV proteins or subunit antigens derived from the NS5, envelope 1, and core regions. The 5'UT region is not known to be translated.

The preparation of vaccines which contain an immunogenic peptide as an active ingredient, is known to one skilled in the art. Typically, such vaccines 15 are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified, or the protein encapsulated in liposomes. 20 immunogenic ingredients are often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, 25 ethanol, or the like and combinations thereof. addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or

5

10

15

20

25

emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the vaccine. Examples of adjuvants which may be effective include but are not limited to: aluminum hydroxide, N-acetyl-muramyl-L-theronyl-D- isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L-alanyl- D-isoglutamine (CGP 11637, referred to as nor-MDP), N- acetylmuramyl-Lalanyl-D-isoglutaminyl-L-alanine-2-(1- 2-dipalmitoyl -sn-glycero-3-hydroxyphosphoryloxy)- ethylamine (CGP 19835A, referred to as MTP-PE), and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 emulsion. The effectiveness of an adjuvant may be determined by measuring the amount of antibodies directed against an immunogenic peptide containing an HCV antigenic sequence resulting from administration of this peptide in vaccines which are also comprised of the various adjuvants.

The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such

suppositories may be formed from mixtures containing the active ingredient in the range of 0/5% to 10%, preferably 1%-2%. Oral formulations include such normally employed excipients as, for example,

pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.

The examples below are provided for illustrative purposes and are not intended to limit the scope of the present invention.

I. Detection of HCV RNA from Serum

RNA was extracted from serum using guanidinium salt, phenol and chloroform according to the

instructions of the kit manufacturer (RNAzol B kit, Cinna/Biotecx). Extracted RNA was precipitated with isopropanol and washed with ethanol. A total of 25 µl serum was processed for RNA isolation, and the purified RNA was resuspended in 5 µl diethyl

pyrocarbonate treated water for subsequent cDNA synthesis.

II. <u>cDNA Synthesis and Polymerase Chain Reaction (PCR)</u> Amplification

Table 1 lists the sequence and position (with reference to HCV1) of all the PCR primers and probes used in these examples. Letter designations for

nucleotides are consistent with 37 C.F.R. §§1.821—1.825. Thus, the letters A, C, G, T, and U are used in the ordinary sense of adenine, cytosine, guanine, thymine, and uracil. The letter M means A or C; R means A or G; W means A or T/U; S means C or G; Y means C or T/U; K means G or T/U; V means A or C or G, not T/U; H means A or C or T/U, not G; D means A or G or T/U, not C; B means C or G or T/U, not A; N means (A or C or G or T/U) or (unknown or other). Table 1 is set forth below:

Table 1 Nucleotide Position Seq. No. Sequence (5'-3') 374-402 CAAACGTAACACCAACCGRCGCCCACAGG 67 1192-1169 68 ACAGAYCCGCAKAGRTCCCCCACG 15 509-538 GCAACCTCGAGGTAGACGTCAGCCTATCCC 69 509-538 GCAACCTCGTGGAAGGCGACAACCTATCCC 70 948-977 GTCACCAATGATTGCCCTAACTCGAGTATT 71 948-973 GTCACGAACGACTGCTCCAACTCAAG 72 1375-1402 TGGACATGATCGCTGGWGCYCACTGGGG 73 20 1375-1402 TGGAYATGGTGGYGGGGGCYCACTGGGG 74 1308-1327 ATGATGAACTGGTCVCCYAC 75 1453-1428 ACCTTVGCCCAGTTSCCCRCCATGGA 76 205-226 AACCCACTCTATGYCCGGYCAT 77 171-188 GAATCGCTGGGGTGACCG 78 25 30-57 CCATGAATCACTCCCCTGTGAGGAACTA 79 244-227 TTGCGGGGGCACGCCCAA 80

For cDNA synthesis and PCR amplification, a protocol developed by Perkin-Elmer/Cetus (GeneAmp® RNA PCR kit) was used. Both random hexamer and primers with specific complementary sequences to HCV were employed to prime the reverse transcription (RT) reaction. All processes, except for adding and mixing reaction components, were performed in a thermal cycler (MJ Research, Inc.). The first strand cDNA synthesis reaction was inactivated at 99°C for 5 min, and then cooled at 50°C for 5 min before adding reaction components for subsequent amplification. After an initial 5 cycles of 97°C for 1 min, 50°C for 2 min, and 72°C for 3 min, 30 cycles of 94°C for 1 min, 55°C for 2 min, and 72°C for 3 min followed, and then a final 7 min of elongation at 72°C.

10

15

20

25

For the genotyping analysis, sequences 67 and 68 were used as primers in the PCR reaction. These primers amplify a segment corresponding to the core and envelope regions. After amplification, the reaction products were separated on an agarose gel and then transferred to a nylon membrane. The immobilized reaction products were allowed to hybridize with a 32p-labelled nucleic acid corresponding to either Genotype I (core or envelope 1) or Genotype II (core or envelope 1). Nucleic acid corresponding to Genotype 1 comprised sequences numbered 69 (core), 71 (envelope), and 73 (envelope). Nucleic acid corresponding to

10

15

Genotype II comprised sequences numbered 70 (core), 72 (envelope), and 74 (envelope).

The Genotype I probes only hybridized to the product amplified from isolates which had Genotype I sequence. Similarly, Genotype II probes only hybridized to the product amplified from isolates which had Genotype II sequence.

In another experiment, PCR products were generated using sequences 79 and 80. The products were analyzed as described above except Sequence No. 73 was used to detect Genotype I, Sequence No. 74 was used to detect Genotype II, Sequence No. 77 (5'UT) was used to detect Genotype III, and Sequence No. 78 (5'UT) was used to detect Genotype IV. Each sequence hybridized in a genotype specific manner.

III. <u>Detection of HCV GI-GIV using a sandwich</u> hybridization assay for HCV RNA

An amplified solution phase nucleic acid sandwich
hybridization assay format is described in this
example. The assay format employs several nucleic acid
probes to effect capture and detection. A capture
probe nucleic acid is capable of associating a
complementary probe bound to a solid support and HCV
nucleic acid to effect capture. A detection probe
nucleic acid has a first segment (A) that binds to HCV
nucleic acid and a second segment (B) that hybridizes
to a second amplifier nucleic acid.

The amplifier nucleic acid has a first segment (B*) that hybridizes to segment (B) of the probe nucleic acid and also comprises fifteen iterations of a segment (C). Segment C of the amplifier nucleic acid is capable of hybridizing to three labeled nucleic acids.

Nucleic acid sequences which correspond to nucleotide sequences of the envelope 1 gene of Group I HCV isolates are set forth in sequences numbered 81-99. Table 2 sets forth the area of the HCV genome to which the nucleic acid sequences correspond and a preferred use of the sequences.

Table 2 Complement of Probe Type Sequence No. Nucleotide Numbers 15 879-911 81 Label 912-944 Label 82 945-977 83 Capture 978-1010 Label 84 20 1011-1043 Label 85 1044-1076 Label 86 1077-1109 Label 87 1110-1142 Capture 88 1143-1175 25 Label 89

5

10

- 40 -

Table 2 continued

	Probe Type	Sequence No.	Complement of Nucleotide Numbers
5		:======================================	
	Label	90	1176-1208
	Label	91	1209-1241
	Label	92	1242=1274
	Capture	93	1275-1307
10	Label	94	1308-1340
10	Label	95	1341-1373
	. Label	96	1374-1406
	Label	97	1407-1439
		98	1440-1472
15	Capture Label	99	1473-1505

Nucleic acid sequences which correspond to nucleotide sequences of the envelope 1 gene of Group II HCV isolates are set forth in sequences 100-118. Table 3 sets forth the area of the HCV genome to which the nucleic acid corresponds and the preferred use of the sequences.

20

- 41 -

Table 3

	Probe Type	Sequence No.	Complement of Nucleotide Numbers
5			
	Label	100	879-911
	Label	101	912-944
	Capture	102	945-977
	Label	103	978-1010
10	Label	104	1011-1043
	Label	105	1044-1076
	Label	106	1077-1109
	Capture	107	1110-1142
	Label	108	1143-1175
15	Label	109	1176-1208
	Label	110	1209-1241
	Label	111	1242=1274
	Capture	112	1275-1307
	Label	113	1308-1340
20	Label	114	1341-1373
	Label	115	1374-1406
	Label	116	1407-1439
	Capture	117	1440-1472
	Label	118	1473-1505
25			

Nucleic acid sequences which correspond to nucleotide sequences in the C gene and the 5'UT region

are set forth in sequences 119-145. Table 4 identifies the sequence with a preferred use.

Table 4

5		
	_	Sequence No.
	Capture	119
	Label	120
10	Label	121
	Label	122
	Capture	123
	Label	124
	Label	125
15	Label	126
	Capture	127
	Label	128
	Label	129
	Label	130
20	Capture	131
	Label	132
	Label	133
	Label	134
	Label	135
25	Capture	136
	Label	137
	Label	138

SUBSTITUTE SHEET

- 43 -

Table 4 continued

	Probe Type	Sequence No.
	######################################	
5	Label	139
	Capture	140
	Label	141
	Label	142
	Label	143
10	Capture	144
	Label	145

The detection and capture probe HCV-specific segments, and their respective names as used in this assay were as follows.

Capture sequences are sequences numbered 119-122 and 141-144.

Detection sequences are sequences numbered 119-140.

the sequences substantially complementary to the HCV sequences, a 5' extension (B) which extension (B) is complementary to a segment of the second amplifier nucleic acid. The extension (B) sequence is identified in the Sequence Listing as Sequence No. 146, and is reproduced below.

AGGCATAGGACCCGTGTCTT

Each capture sequence contained, in addition to the sequences substantially complementary to HCV sequences, a sequence complementary to DNA bound to a solid phase. The sequence complementary to DNA bound to a solid support was carried downstream from the capture sequence. The sequence complementary to the DNA bound to the support is set forth as Sequence No. 147 and is reproduced below.

CTTCTTTGGAGAAAGTGGTG

Microtiter plates were prepared as follows. White Microlite 1 Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from Dynatech Inc.

Each well was filled with 200 μl 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200 μl 1 N NaOH and incubated at room temperature for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has an average length of 309 amino acids and contains 155 amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/lX PBS to a final concentration of

25

0.1 mg/ml (pH 6.0). A volume of 200 µl of this solution was added to each well. The plate was wrapped in plastic to prevent drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

5 The following procedure was used to couple the nucleic acid, a complementary sequence to Sequence No. 147, to the plates, hereinafter referred to as immobilized nucleic acid. Synthesis of immobilized 10 nucleic acid having a sequence complementary to Sequence No. 133 was described in EPA 883096976. A quantity of 20 mg disuccinimidyl suberate was dissolved in 300 μ l dimethyl formamide (DMF). A quantity of 26 OD₂₆₀ units of immobilized nucleic acid was added to 100 μ l coupling buffer (50 mM sodium phosphate, pH 15 7.8). The coupling mixture was then added to the DSS-DMF solution and stirred with a magnetic stirrer for 30 min. An NAP-25 column was equilibrated with 10 mM sodium phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium 20 phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the equilibrated NAP-25 column. DSS-activated immobilized nucleic acid DNA was eluted from the column with 3.5 ml 10 mM sodium phosphate, pH 25 6.5. A quantity of 5.6 OD units of eluted DSS-activated immobilized nucleic acid DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. A volume of 50

10

15

20

25

μl of this solution was added to each well and the plates were incubated overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. A volume of 200 μl of 0.2N NaOH containing 0.5% (w/v) SDS was added to each well. The plate was wrapped in plastic and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

Serum samples to be assayed were analyzed using PCR followed by sequence analysis to determine the genotype.

Sample preparation consisted of delivering 50 µl of the serum sample and 150 µl P-K Buffer (2 mg/ml proteinase K in 53 mM Tris-HCl, pH 8.0/0.6 M NaCl/0.06 M sodium citrate/8 mM EDTA, pH 8.0/1.3%SDS/16µg/ml sonicated salmon sperm DNA/7% formamide/50 fmoles capture probes/160 fmoles detection probes) to each well. Plates were agitated to mix the contents in the well, covered and incubated for 16 hr at 62°C.

After a further 10 minute period at room temperature, the contents of each well were aspirated to remove all fluid, and the wells washed 2X with washing buffer (0.1% SDS/0.015 M NaCl/ 0.0015 M sodium citrate). The amplifier nucleic acid was then added to

each well (50 μ l of 0.7 fmole/ μ l solution in 0..48 M NaCl/0.048 M sodium citrate/0.1% SDS/0.5% "blocking reagent" (Boehringer Mannheim, catalog No. 1096 176)). After covering the plates and agitating to mix the contents in the wells, the plates were incubated for 30 min. at 52°C.

After a further 10 min period at room temperature, the wells were washed as described above.

Alkaline phosphatase label nucleic acid, disclosed in EP 883096976, was then added to each well (50 µl/well of 2.66 fmoles/µl). After incubation at 52°C for 15 min., and 10 min. at room temperature, the wells were washed twice as above and then 3X with 0.015 M NaCl/0.0015 M sodium citrate.

An enzyme-triggered dioxetane (Schaap et al., Tet. Lett. (1987) 28:1159-1162 and EPA Pub. No. 0254051), obtained from Lumigen, Inc., was employed. A quantity of 50 µl Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and incubated at 37°C for 20-40 min.

Plates were then read on a Dynatech ML 1000 luminometer. Output was given as the full integral of the light produced during the reaction.

The assay positively detected each of the serum samples, regardless of genotype.

15

20

25

IV. Expression of the Polypeptide Encoded in Sequences Defined by Differing Genotypes

HCV polypeptides encoded by a sequence within sequences 1-66 are expressed as a fusion polypeptide with superoxide dismutase (SOD). A cDNA carrying such sequences is subcloned into the expression vector pSODcfl (Steimer et al. 1986)).

First, DNA isolated from pSODcfl is treated with BamHI and EcoRI, and the following linker was ligated into the linear DNA created by the restriction enzymes:

GAT CCT GGA ATT CTG ATA AGA

CCT TAA GAC TAT TTT AA After cloning, the plasmid containing the insert is isolated.

Plasmid containing the insert is restricted with 15 The HCV cDNA is ligated into this EcoRI linearized plasmid DNA. The DNA mixture is used to transform E. coli strain D1210 (Sadler et al. (1980)). Polypeptides are isolated on gels.

20

25

10

Antiqenicity of Polypeptides V.

The antigenicity of polypeptides formed in Section IV is evaluated in the following manner. Polyethylene pins arranged on a block in an 8 12 array (Coselco Mimetopes, Victoria, Australia) are prepared by placing the pins in a bath (20% v/v piperidine in dimethylformamide (DMF)) for 30 minutes at room

10

20

25

AMSOUTH TO LATE GREATARARS

temperature. The pins are removed, washed in DMF for 5 minutes, then washed in methanol four times (2 min/wash). The pins are allowed to air dry for at least 10 minutes, then washed a final time in DMF (5Min). 1-Hydroxybenzotriazole (HOBt, 367 mg) is dissolved in DMF (80 μL) for use in coupling Fmoc-protected polypeptides prepared in Section IV.

The protected amino acids are placed in micro-titer plate wells with HOBt, and the pin block placed over the plate, immersing the pins in the wells. The assembly is then sealed in a plastic bag and allowed to react at 25°C for 18 hours to couple the first amino acids to the pins. The block is then removed, and the pins washed with DMF (2 min.), MeOH (4 x, 2 min.), and again with DMF (2 min.) to clean and 15 deprotect the bound amino acids. The procedure is repeated for each additional amino acid coupled, until all octamers are prepared.

The free N-termini are then acetylated to compensate for the free amide, as most of the epitopes are not found at the N-terminus and thus would not have the associated positive charge. Acetylation is accomplished by filling the wells of a microtiter plate with DMF/acetic anhydride/triethylamine (5:2:1 v/v/v) and allowing the pins to react in the wells for 90 minutes at 20°C. The pins are then washed with DMF (2

10

15

20

min.) and MeOH (4 \times , 2 min.), and air dried for at least 10 minutes.

The side chain protecting groups are removed by treating the pins with trifluoroacetic acid/phenol/ dithioethane (95:2.5:1.5, v/v/v) in polypropylene bags for 4 hours at room temperature. The pins are then washed in dichloromethane (2 x, 2 min.), 5% di-isopropylethylamine/dichloromethane (2 x, 5 min.), dichloromethane (5 min.), and air-dried for at least 10 minutes. The pins are then washed in water (2 min.), MeOH (18 hours), dried in vacuo, and stored in sealed plastic bags over silica gel. IV.B.15.b Assay of Peptides.

Octamer-bearing pins are treated by sonicating for 30 minutes in a disruption buffer (1% sodium dodecylsulfate, 0.1% 2-mercaptoethanol, 0.1 M NaH2PO4) at 60°C. The pins are then immersed several times in water (60°C), followed by boiling MeOH (2 min.), and allowed to air dry.

The pins are then precoated for 1 hour at 25°C in microtiter wells containing 200 μL blocking buffer (1% ovalbumin, 1% BSA, 0.1% Tween, and 0.05% NaN3 in PBS), with agitation. The pins are then immersed in microtiter wells containing 175 μL antisera obtained 25 from human patients diagnosed as having HCV and allowed to incubate at 4°C overnight. The formation of a complex between polyclonal antibodies of the serum and

the polypeptide initiates that the peptides give rise to an immune response in vivo. Such peptides are candidates for the development of vaccines.

Thus, this invention has been described and

illustrated. It will be apparent to those skilled in
the art that many variations and modifications can be
made without departing from the purview of the appended
claims and without departing from the teaching and
scope of the present invention.

SEQUENCE LISTING

(1) GENERAL I	[NFORMATIO]	Ν:
---------------	-------------	----

- 5 (i) APPLICANT: Tai-An Cha
 - (ii) TITLE OF INVENTION: HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS
- 10 (iii) NUMBER OF SEQUENCES: 147
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Wolf, Greenfield & Sacks, P.C.
 - (B) STREET: 600 Atlantic Avenue
- 15 (C) CITY: Boston
 - (D) STATE: Massachusetts
 - (E) COUNTRY: USA
 - (F) ZIP: 02210
- 20 (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch
 - (B) COMPUTER: IBM compatible
 - (C) OPERATING SYSTEM: MS-DOS Version 3.3
 - (D) SOFTWARE: WordPerfect 5.1

		(vi)	CURRENT APPLICATION DATA:
			(A) APPLICATION NUMBER: Not Available
			(B) FILING DATE: Not Available
			(C) CLASSIFICATION: Not Available
5			
		(vii)	PRIOR APPLICATION DATA:
			(A) APPLICATION NUMBER: 07/697,326
			(B) FILING DATE: 8 May 1991
10		(viii)	ATTORNEY/AGENT INFORMATION:
			(A) NAME: Janiuk, Anthony J.
			(B) REGISTRATION NUMBER: 29,809
			(C) REFERENCE/DOCKET NUMBER: C0772/7000
15		(ix)	TELECOMMUNICATION INFORMATION:
			(A) TELEPHONE: (617) 720-3500
		•	(B) TELEFAX: (617) 720-2441
			(C) TELEX: EZEKIEL
20	(2)	T. T. O. D. V.	
20	(2)	INFORM	ATION FOR SEQ ID NO: 1:
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 340 nucleotides
			(B) TYPE: nucleic acid
25			(C) STRANDEDNESS: single
			(D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: DNA	
	(vi) ORIGINAL SOURCE: (ATCC # 40394) (C) INDIVIDUAL ISOLATE: ns5hcvl	
5	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 1 CTCCACAGTC ACTGAGAGCG ACATCCGTAC GGAGGAGGC ATCTACCAAT GTTGTGACCT CGACCCCCAA GCCCGCGTG CCATCAAGTC CCTCACCGAG AGGCTTTATG TTGGGGGCC TCTTACCAAT TCAAGGGGGG AGAACTGCGG CTATCGCAG TGCCGCGCGA GCGGCGTACT GACAACTAGC TGTGGTAAC CCCTCACTTG CTACATCAAG GCCCGGGCAG CCTGTCGAG CGCAGGGCTC CAGGACTGCA CCATGCTCGT GTGTGGCGA GACTTAGTCG TTATCTGTGA AAGCGCGGGG GTCCAGGAG ACGCGGCGAG CCTGAGAGCC	CC 120 GG 160 CA 200 GC 240 AC 280
15	(2) INFORMATION FOR SEQ ID NO: 2:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA	

- 55 -

		(vi)	ORIG	INAL	SOURCE	Ξ:						
			(C)	IND	IVIDU	AL	ISOL	ATE:	ns	5 i2 :	L	
		(xi)	SEQU	ENCE	DESCR:	IPT	ION:	SEQ	ID :	NO:	2	
5		CTCCAC						_				4 (
		ATTTAC										
		CCATCA										
		TCTTAC								_		
		TGCCGC										
10		CCCTCA							_			
		CGCAGG										
		GACTTA				-	_	_			_	
		ACGCGG	•	_		423	0100.	3000	010		noo	340
		ACCCCC	CORO	JC T ON	OROCC							010
15	(2)	INFORM	MOITA	FOR :	SEQ II) N	O: 3	:				
		(i)	SEQUI	ENCE (CHARAC	TE	RIST	cs:				
			(A)	LEN	GTH:	34(o nuc	cleot	ides	5		
			(B)	TYP	E: nu	cle	eic a	acid				
20			(C)	STR	ANDEDN	ŒS!	S: s	singl	.e			
			(D)	TOP	OLOGY:	3	linea	ar				
		(ii)	MOLEC	TULE :	TYPE:	Dì	AN					
25		(vi)	ORIGI	NAL S	SOURCE	: :						
			(C)	ind	ividua	1 5	isola	ite:	ns5	pt1		

		(xi)	SEQUENCE	DESCRI	PTION:	SEQ	ID NO:	3	
			GTC ACTGA						40
		ATCTACC	AAT GTTGI	GATCT	GGACCCC	CAA	GCCCGCG	TGG	80
			STC CCTCA						120
5			AAT TCAAG						160
_			CGA GCGGC						200
			TTG CTACA						240
			CTC CGGGA						280
			CG TTATC						320
10			GAG CCTGA						340
	(2)	INFORMA	TION FOR	SEQ ID	NO: 4				
	•								
		(i) S	SEQUENCE	CHARAC	TERISTI	CS:			
15			(A) LEN	GTH:	340 nuc	leot	ides		
		((B) TYP	E: nu	cleic a	cid			
		((C) STR	ANDEDN	ESS: s	ingl	9		
		((D) TOP	OLOGY:	linea	ır			
20		(ii) N	MOLECULE	TYPE:	DNA				
		(vi) (ORIGINAL	SOURCE	•				
		((C) IND	IVIDUA	L ISOLA	TE:	ns5gm2		
25		(xi) S	SEQUENCE	DESCRI	PTION:	SEQ :	ID NO:	4	
		CTCTACAC	STC ACTGA	GAACG	ACATCCG	TAC (GGAGGAG	GCA	40
		ATTTACCA	AAT GTTGT	GACCT	GGACCCC	CAA	GCCGCG	TGG	80

		CCATCAAGTC CCTCACTGAG AGGCTTTATG TTGGGGGCCC	120
		CCTTACCAAT TCAAGGGGGG AAAACTGCGG CTATCGCAGG	160
		TGCCGCGCGA GCGGCGTACT GACAACTAGC TGTGGTAACA	200
		CCCTCACTTG CTACATTAAG GCCCGGGCAG CCTGTCGAGC	240
5		CGCAGGGCTC CAGGACTGCA CCATGCTCGT GTGTGGCGAC	280
5		GACTTAGTCG TTATCTGTGA GAGTGCGGGA GTCCAGGAGG	320
		ACGCGGCGAA CTTGAGAGCC	340
		ACGCGGCGAA CIIOMOO	
	(2)	INFORMATION FOR SEQ ID NO: 5	
10	(4)		
10		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
15		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
20		(C) INDIVIDUAL ISOLATE: ns5us17	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5	4.
		CTCCACAGTC ACTGAGAGCG ATATCCGTAC GGAGGAGGCA	4(
		ATCTACCAGT GTTGTGACCT GGACCCCCAA GCCCGCGTGG	80
25		CCATCAAGTC CCTCACCGAG AGGCTTTATG TCGGGGGCCC	120
		TCTTACCAAT TCAAGGGGGG AAAACTGCGG CTATCGCAGG	160
		TGCCGCGCAA GCGGCGTACT GACAACTAGC TGTGGTAACA	20

- 58 -

		CCCTCACTTG TTACATCAAG GCCCAAGCAG CCTGTCGAGC	240
		CGCAGGGCTC CGGGACTGCA CCATGCTCGT GTGTGGCGAC	280
		GACTTAGTCG TTATCTGTGA AAGTCAGGGA GTCCAGGAGG	320
		ATGCAGCGAA CCTGAGAGCC	340
5			
J	(2)	INFORMATION FOR SEQ ID NO: 6	
		(i) SEQUENCE CHARACTERISTICS:	
:	٠	(A) LENGTH: 340 nucleotides	
10		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
7 =		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5sp2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6	
20		CTCTACAGTC ACTGAGAGCG ATATCCGTAC GGAGGAGGCA	40
20		ATCTACCAAT GTTGTGACCT GGACCCCGAA GCCCGTGTGG	80
		CCATCAAGTC CCTCACTGAG AGGCTTTATG TTGGGGGCCC	120
		TCTTACCAAT TCAAGGGGGG AGAACTGCGG CTACCGCAGG	160
		TGCCGCGCAA GCGGCGTACT GACGACTAGC TGTGGTAATA	200
			240
25		CCCTCACTTG TTACATCAAG GCCCGGGCAG CCTGTCGAGC	280
		CGCAGGGCTC CAGGACTGCA CCATGCTCGT GTGTGGCGAC	200

- 59 -

		GACCTA	STCG	TTAT	CTGCGA	AAGTG	CGGGG	GTCCAGGAG	320
		ACGCGG	CGAG	CCTG	AGAGCC				34
5	(2)	INFORM	ATIO	N FOR	SEQ I	D NO:	7		
3		(i)	SEQU	JENCE	CHARA	CTERIS	TICS:		
			(A)	LE	NGTH:	340 nu	cleot	ides	
			(B)	TY	PE: nu	cleic	acid		
			(C)	ST	RANDED	NESS:	sing	le	
10			(D)	TO	POLOGY	: line	ar		
		(ii)	MOLE	CULE	TYPE:	DNA			
		(vi)	ORIG	SINAL	SOURC	E:			
15			(C)	IN	OIVIDU	AL ISO	LATE:	ns5j1	
		(xi)	SEQU	ENCE	DESCR	IPTION	: SEQ	ID NO: 7	
		CTCCACA	GTC	ACTG	AGAATG	ACACC	CGTGT	TGAGGAGTCA	40
		ATTTACC	TAA	GTTG	GACTT	GGCCC	CCGAA	GCCAGACAGG	80
20		CCATAAG	GTC	GCTC	CAGAG	CGGCT	CTATG	TCGGGGGTCC	120
		TATGACT	AAC	TCCA	AGGGC	AGAAC!	rgcgg	CTATCGCCGG	160
		TGCCGCG	CGA	GCGG	CGTGCT	GACGA	CTAGC	TGCGGTAATA	200
		CCCTCAC	ATG	CTAC	CTGAAG	GCCAC	AGCGG	CCTGTCGAGC	240
		TGCCAAG	CTC	CAGG	CTGCA	CGATG	CTCGT	GAACGGAGAC	280
25		GACCTTG	TCG	TTATO	CTGTGA	AAGCG	CGGGG	AACCAAGAGG	320
		ACGCGGC	AAG	CCTAC	GAGCC				340

	(2)	INFORMATION FOR SEQ ID NO. 5	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA	
10		<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: ns5kl</pre>	
15 20		(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8 CTCAACGGTC ACTGAGAATG ACATCCGTGT TGAGGAGTCA ATTTACCAAA GTTGTGACTT GGCCCCCGAG GCCAGACAAG CCATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGCCC CCTGACTAAT TCAAAAGGGC AGAACTGCGG CTATCGCCGA TGCCGCGCCA GCGGTGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG TTACTTGAAG GCCACTGCGG CCTGTAGAGC TGCGAAGCTC CAGGACTGCA CGATGCTCGT GTGCGGAGAC GACCTTGTCG TTATCTGTGA AAGCGCGGGA ACCCAGGAGG ATGCGGCGAG CCTACGAGTC	40 80 120 160 200 240 320 340
25	(2)	INFORMATION FOR SEQ ID NO: 9	

		(i) SEQUENCE CHARACTERISTICS.
		(A) LENGTH: 340 nucleotides
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
5		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: DNA
		(vi) ORIGINAL SOURCE:
10		(C) INDIVIDUAL ISOLATE: ns5k1.1
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9
		CTCAACGGTC ACCGAGAATG ACATCCGTGT TGAGGAGTCA 40
		ATTTATCAAT GTTGTGCCTT GGCCCCCGAG GCTAGACAGG 80
15		CCATAAGGTC GCTCACAGAG CGGCTTTATA TCGGGGGCCC 120
		CCTGACCAAT TCAAAGGGGC AGAACTGCGG TTATCGCCGG 160
		TGCCGCGCCA GCGGCGTACT GACGACCAGC TGCGGTAATA 200
		CCCTTACATG TTACTTGAAG GCCTCTGCAG CCTGTCGAGC 240
		CGCGAAGCTC CAGGACTGCA CGATGCTCGT GTGTGGGGAC 280
20		GACCTTGTCG TTATCTGTGA AAGCGCGGGA ACCCAGGAGG 320
20		ACGCGGCGAA CCTACGAGTC 340
	(2)	INFORMATION FOR SEQ ID NO: 10
25		(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 340 nucleotides
		(B) TYPE: nucleic acid

		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5		(ii) MOLECULE TYPE: DNA	
J		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5gh6	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10	
10		CTCAACGGTC ACTGAGAGTG ACATCCGTGT CGAGGAGTCG	40
		ATTTACCAAT GTTGTGACTT GGCCCCCGAA GCCAGGCAGG	80
			20
			60
			00
15			40
			80
		GACCTTGTCG TTATCTGCGA GAGCGCGGGA ACCCAAGAGG 32	20
			40
20	(2)	INFORMATION FOR SEQ ID NO: 11	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
25		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

		(ii)	MOLECULE	TYPE:	DNA			
		(vi)	ORIGINAL	SOURCE	Ξ:			
		•	(C) INI			ATE:	ns5spl	
5								
			SEQUENCE					
		_					TGAGGAGTCA	
							GCCAGACAGG	
							TCGGGGGTCC	
10							CTATCGCCGG	
							TGCGGTAACA	
		CCCTC	CATG TTACT	TGAAG	GCCTCT	GCGG	CCTGTCGAGC	
		TGCGA	GCTC CAGGA	ACTGCA	CGATGC	TCGT	GTGCGGTGAC	280
		GACCT	GTCG TTATO	CTGTGA	GAGCGC	GGGA	ACCCAAGAGG	320
15		ACGCGG	CGAG CCTA	CGAGTC				340
	(2)	INFOR	ATION FOR	SEQ I	D NO: 1	2		
		(i)	SEQUENCE					
20			(A) LEI				ides	
			(B) TY	PE: nu	cleic a	.cid		
			(C) ST	RANDED	NESS:	sing	le	
			(D) TO:	POLOGY	: linea	ır		
25		(ii)	MOLECULE	TYPE:	DNA			
		(wi)	ORIGINAL	SOURC	E:			

		(C) individual isolate: ns5sp3	
5		(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 12 CTCAACAGTC ACTGAGAGTG ACATCCGTGT TGAGGAGTCA ATCTACCAAT GTTGTGACTT GGCCCCCGAA GCCAGACAGG CTATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGTCC CCTGACTAAT TCAAAAGGGC AGAACTGCGG CTATCGCCGG TGCCGCGCAA GCGGCGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG TTACCTGAAG GCCAGTGCGG CCTGTCGAGC	40 80 120 160 200
10		TGCGAAGCTC CAGGACTGCA CAATGCTCGT GTGCGGTGAC GACCTTGTCG TTATCTGTGA GAGCGCGGGG ACCCAAGAGG ACGCGGCGAG CCTACGAGTC	280 320 340
15	(2)	<pre>INFORMATION FOR SEQ ID NO: 13 (i) SEQUENCE CHARACTERISTICS:</pre>	
20		(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA	
25		<pre>(vi) ORIGINAL SOURCE:</pre>	

SUBSTITUTE SHEET

		CTCAACCGTC ACTGAGAGAG ACATCAGAAC TGAGGAGTCC	40
		ATATACCGAG CCTGCTCCCT GCCTGAGGAG GCTCACATTG	80
		CCATACACTC GCTGACTGAG AGGCTCTACG TGGGAGGGCC	120
		CATGTTCAAC AGCAAGGGCC AGACCTGCGG GTACAGGCGT	160
5		TGCCGCGCCA GCGGGGTGCT CACCACTAGC ATGGGGAACA	200
		CCATCACATG CTATGTAAAA GCCCTAGCGG CTTGCAAGGC	240
		TGCAGGGATA GTTGCACCCT CAATGCTGGT ATGCGGCGAC	280
		GACTTAGTTG TCATCTCAGA AAGCCAGGGG ACTGAGGAGG	320
		ACGAGCGGAA CCTGAGAGCT	340
10			
	(2)	INFORMATION FOR SEQ ID NO: 14	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
15		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20			
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5arg8	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14	
25		CTCTACAGTC ACGTAAAAGG ACATCACATC CTAGGAGTCC	40
		ATCTACCAGT CCTGTTCACT GCCCGAGGAG GCTCGAACTG	80
		CTATACACTC ACTGACTGAG AGACTATACG TAGGGGGGCC	120

		CATGACAAAC AGCAAGGGCC AATCCTGCGG GTACAGGCGT TGCCGCGCGA GCGCAGTGCT CACCACCAGC ATGGGCAACA CACTCACGTG CTACGTAAAA GCCAGGGCGG CGTGTAACGC CGCGGGGATT GTTGCTCCCA CCATGCTGGT GTGCGGTGAC	200 240 280
5	(2)	GACCTGGTCG TCATCTCAGA GAGTCAAGGG GCTGAGGAGG ACGAGCAGAA CCTGAGAGTC ACGAGCAGAA CCTGAGAGTC	320 340
10		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		<pre>(ii) MOLECULE TYPE: DNA (vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: ns5il0</pre>	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15 CTCTACAGTC ACAGAGAGGG ACATCAGAAC CGAGGAGTCC ATCTATCTGT CCTGCTCACT GCCTGAGGAG GCCCGAACTG CTATACACTC ACTGACTGAG AGACTGTACG TAGGGGGGCC	40 80 120
25		CATGACAAC AGCAAGGGGC AATCCTGCGG GTACAGGCGT TGCCGCGCGA GCGGAGTGCT CACCACCAGC ATGGGCAACA CGCTCACGTG CTACGTGAAA GCCAGAGCGG CGTGTAACGC	200 240

- 67 -

		CGCGGGCATT GTTGCTCCCA CCATGTTGGT GTGCGGCGAC	280
		GACCTGGTTG TCATCTCAGA GAGTCAGGGG GTCGAGGAAG	320
		ATGAGCGGAA CCTGAGAGTC	340
5	(2)	INFORMATION FOR SEQ ID NO: 16	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5arg6	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16	
		CTCTACAGTC ACGGAGAGGG ACATCAGAAC CGAGGAGTCC	40
20		ATCTATCTGT CCTGTTCACT GCCTGAGGAG GCTCGAACTG	
20		CCATACACTC ACTGACTGAG AGGCTGTACG TAGGGGGGCC	
		CATGACAAAC AGCAAAGGGC AATCCTGCGG GTACAGGCGT	
		TGCCGCGCGA GCGGAGTGCT CACCACCAGC ATGGGTAACA	
25		CACTCACGTG CTACGTGAAA GCTAAAGCGG CATGTAACGC	
25		CGCGGGCATT GTTGCCCCCA CCATGTTGGT GTGCGGCGAC	
		GACCTAGTCG TCATCTCAGA GAGTCAAGGG GTCGAGGAGG	
		ATGAGCGAAA CCTGAGAGCT	340

	(2)	INFORMATION FOR SEQ 15 NO. 1	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		<pre>(ii) MOLECULE TYPE: DNA (vi) ORIGINAL SOURCE:</pre>	
15		CTCAACCGTC ACGGAGAGGG ACATAAGAAC AGAAGATOO ATATATCAGG GTTGTTCCCT GCCTCAGGAG GCTAGAACTG CTATCCACTC GCTCACTGAG AGACTCTACG TAGGAGGGCC CATGACAAC AGCAAGGGAC AATCCTGCGG TTACAGGCGT	40 80 120 160
20		TGCCGCGCCA GCGGGGTCTT CACCACCAGC ATGGGGAATA CCATGACATG CTACATCAAA GCCCTTGCAG CGTGCAAAGC TGCAGGGATC GTGGACCCTA TCATGCTGGT GTGTGGAGAC GACCTGGTCG TCATCTCGGA GAGCGAAGGT AACGAGGAGG ACGAGCGAAA CCTGAGAGCT	200 240 280 320 340
25	(2)	INFORMATION FOR SEQ ID NO: 18 (i) SEQUENCE CHARACTERISTICS:	
		(i) SEQUENCE CHARACTERISTICS:	

- 69 -

			(A)	LENGTH:	340 nuo	cleot	ides	
			(B)	TYPE: nu	cleic a	acid		
			(C)	STRANDEI	NESS:	sing	le	
			(D)	TOPOLOGY	: linea	ar		
5								
		(ii)	MOLEC	ULE TYPE:	DNA			
		(vi)	ORIGI	NAL SOURC	Œ:			
			(C)	INDIVIDU	AL ISOI	LATE:	ns5sa283	
10								
		(xi)	SEQUE	NCE DESCR	IPTION:	SEQ	ID NO: 18	
		CTCGAC	CGTT A	CCGAACATO	ACATA	ATGAC	TGAAGAGTCT	40
		ATTTAC	CAAT C	ATTGTACTI	GCAGCC	CTGAG	GCGCGTGTGG	80
		CAATAC	GGTC A	CTCACCCAA	. CGCCTG	TACT	GTGGAGGCCC	120
15		CATGTA	TAAC A	GCAAGGGGC	AACAAI	GTGG	TTATCGTAGA	160
		TGCCGC	GCCA G	CGGCGTCTT	CACCAC	CTAGT	ATGGGCAACA	200
		CCATGA	CGTG C	TACATTAAG	GCTTTA	GCCT	CCTGTAGAGC	240
		CGCAAA	GCTC C	AGGACTGCA	CGCTCC	TGGT	GTGTGGTGAT	320
		GATAAA	GCGA C	CTGAGAGCC				340
20								
	(2)	INFORM	ATION	FOR SEQ I	D NO: 1	.9		
		(i)	SEQUE	NCE CHARA	CTERIST	ICS:		
			(A)	LENGTH:	340 nuc	leoti	.des	
25			(B)	TYPE: nu	cleic a	cid		
			(C)	STRANDED	NESS:	singl	.e	
			(D)	TOPOLOGY	: linea	r		

		(ii)	MOLE	CULE	TYPE:	D	NA			
		(vi)								
			(C)	IN	DIVIDU	AL	ISOL	ATE:	ns5sa156	
5										
									ID NO: 19	
		CTCGAC	CGTT	ACCG	AACATG	AC	ATAA	TGAC	TGAAGAGTCC	40
		ATTTAC	CAAT	CATT	GTACTT	GC.	AGCC	TGAG	GCACGCGCGG	80
		CAATAC	GGTC	ACTC	ACCCAA	CG	CCTG	TACT	GTGGAGGCCC	120
10		CATGTA:	TAAC	AGCAI	AGGGGC	AA	CAAT	GTGG	TTACCGTAGA	160
		TGCCGC	GCCA	GCGG	CGTCTT	CA	CCAC	CAGT	ATGGGCAACA	200
		CCATGA	CGTG	CTAC	ATCAAG	GC'	TTCA	GCCG	CCTGTAGAGC	240
		TGCAAA	GCTC	CAGG	ACTGCA	CG	CTCC	TGGT	GTGTGGTGTG	280
		ACCTTG	GTGG	CCAT	TTGCGA	GA	GCCA	AGGG	ACGCACGAGG	320
15		ATGAAG	CGTG	CCTG	AGAGTC					340
	(2)	INFORM	MOITA	FOR	SEQ I	D NO	O: 2	0		
		(i)	SEQU	ENCE	CHARA	CTE	RIST	ics:		
20			(A)	LEN	NGTH:	340	nuc	leot	ides	
			(B)	TYI	E: nu	cle	ic a	cid		
			(C)	STE	RANDEDI	NES	s:	sing:	le	
			(D)	TOI	POLOGY	: 1:	inea	r		
25		(ii)	MOLE	CULE	TYPE:	Di	NA			
		(vi)	ORIG	INAL	SOURCE	E:				

- 71 -

		(C) INDIVIDUAL ISOLATE: ns5ill	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20 CTCTACTGTC ACTGAACAGG ACATCAGGGT GGAAGAGGAG ATATACCAGT GCTGTAACCT TGAACCGGAG GCCAGGAAAG	4 0 80
5		TGATCTCCTC CCTCACGGAG CGGCTTTACT GCGGGGGCCC	120 160
10		TGCCGTGCTA GTGGAGTCCT GCCTACCAGC TTCGGCAACA CAATCACTTG TTACATCAAG GCTAGAGCGG CTTCGAAGGC CGCAGGCCTC CGGAACCCGG ACTTTCTTGT CTGCGGAGAT	200 240 280 320
		ATAGAGCAGC CCTGAGAGCC	340
15	(2)	<pre>INFORMATION FOR SEQ ID NO: 21 (i) SEQUENCE CHARACTERISTICS:</pre>	
20		(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
25		<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: ns5i4</pre>	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21	

- 72 -

		CTCGACTGTC ACTGAACAGG ACATCAGGGT GGAAGAGGAG	40
		ATATACCAAT GCTGTAACCT TGAACCGGAG GCCAGGAAAG	80
		TGATCTCCTC CCTCACGGAG CGGCTTTACT GCGGGGGCCC	120
		TATGTTCAAT AGCAAGGGGG CCCAGTGTGG TTATCGCCGT	160
5		TGCCGTGCTA GTGGAGTTCT GCCTACCAGC TTCGGCAACA	200
		CAATCACTTG TTACATCAAG GCTAGAGCGG CTGCGAAGGC	240
		CGCAGGGCTC CGGACCCCGG ACTTTCTCGT CTGCGGAGAT	280
		GATCTGGTTG TGGTGGCTGA GAGTGATGGC GTCGACGAGG	320
		ATAGAACAGC CCTGCGAGCC	340
10			
	(2)	INFORMATION FOR SEQ ID NO: 22	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
15		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
00		(ii) MOLECULE TYPE: DNA	
20		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5gh8	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22 CTCAACTGTC ACTGAACAGG ACATCAGGGT GGAAGAGGAG	40
25		ATATACCAAT GCTGTAACCT TGAACCGGAG GCCAGGAAAG	
		TGATCTCCTC CCTCACGGAA CGGCTTTACT GCGGGGGCCC	120
		TGATCTCCTC CCTCACGGAA CGGCTTTACT GCGGGGGCCC	120

5		TATGTTCAAC AGCAAGGGG CCCAGTGTGG TTATCGCCGT TGCCGTGCCA GTGGAGTTCT GCCTACCAGC TTCGGCAACA CAATCACTTG TTACATCAAA GCTAGAGCGG CTGCCGAAGC CGCAGGCCTC CGGAACCCGG ACTTTCTTGT CTGCGGAGAT CARGCGTTG TGGTGGCTGA GAGTGATGGC GTCAATGAGG	200 240 280 320 340
	(2)	INFORMATION FOR SEQ ID NO: 23	
10		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		(ii) MOLECULE TYPE: DNA	
		<pre>(vi) ORIGINAL SOURCE: (ATCC # 40394) (C) INDIVIDUAL ISOLATE: hcv1</pre>	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23 GACGGCGTTG GTAATGGCTC AGCTGCTCCG GATCCCACAA GCCATCTTGG ACATGATCGC TGGTGCTCAC TGGGGAGTCC TGGCGGGCAT AGCGTATTTC	40 80 100
25		NOTIFICIPATION FOR SEQ ID NO: 24	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: US5	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 24	
		GACGGC	CGTTG GTGGTAGCTC AGGTACTCCG GATCCCACAA	40
		GCCATC	ATGG ACATGATCGC TGGAGCCCAC TGGGGAGTCC	80
15		TGGCGG	GCAT AGCGTATTTC	100
	(2)	INFORM	MATION FOR SEQ ID NO: 25	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

		(C) INDIVIDUAL ISOLATE: AUS5	
5		AACGGCGCTG GTAGTAGCTC AGCTGCTCAG GGTCCCCATTGGCGAGTCC GCCATCGTGG ACATGATCGC TGGTGCCCAC TGGGGAGTCC	4 0 8 0
	(2)	INFORMATION FOR SEQ ID NO: 26	
10		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		(ii) MOLECULE TYPE: DNA	
		<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: US4</pre>	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26 GACAGCCCTA GTGGTATCGC AGTTACTCCG GATCCCACAA GCCGTCATGG ATATGGTGGC GGGGGCCCAC TGGGGAGTCC TGGCGGGCCT TGCCTACTAT	40 80 100
25	(2)	INFORMATION FOR SEQ ID NO: 27	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: ARG2	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 27	
		AGCAG	CCCTA GTGGTGTCGC AGTTACTCCG GATCCCACAA	40
		AGCAT	CGTGG ACATGGTGGC GGGGGCCCAC TGGGGAGTCC	80
15		TGGCG	GGCCT TGCTTACTAT	100
	(2)	INFOR	MATION FOR SEQ ID NO: 28	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(i \	ODICINAL SOUDCE:	

- 77 -

			(C) INDIVIDUAL ISOLATE: 115	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 28	
		GGCAG	CCCTA GTGGTGTCGC AGTTACTCCG GATCCCGCAA	40
5		GCTGT	CGTGG ACATGGTGGC GGGGGCCCAC TGGGGAATCC	80
		TAGCG	GGTCT TGCCTACTAT	100
	(2)	INFORM	MATION FOR SEQ ID NO: 29	
10		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
15				
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: GH8	
20				
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 29	
		TGTGGG	GTATG GTGGTGGCGC ACGTCCTGCG TTTGCCCCAG	40
		ACCTT	GTTCG ACATAATAGC CGGGGCCCAT TGGGGCATCT	80
		TGGCGG	GGCTT GGCCTATTAC	100
25				
	(2)	INFORM	MATION FOR SEQ ID NO: 30	

- 78 -

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: 14	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 30	
		TGTGG	STATG GTGGTAGCAC ACGTCCTGCG TCTGCCCCAG	40
		ACCTT	STTCG ACATAATAGC CGGGGCCCAT TGGGGCATCT	80
15		TGGCA	GCCT AGCCTATTAC	100
	(2)	INFORM	MATION FOR SEQ ID NO: 31	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

- 79 -

		(C) INDIVIDUAL ISOLATE: I11	
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31 TGTGGGTATG GTGGTGCGC AAGTCCTGCG TTTGCCCCAG ACCTTGTTCG ACGTGCTAGC CGGGGCCCAT TGGGGCATCT TGGCGGGCCT GGCCTATTAC	40 80 100
	(2)	INFORMATION FOR SEQ ID NO: 32	
10		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		(ii) MOLECULE TYPE: DNA	
		<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: 110</pre>	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32 TACCACTATG CTCCTGGCAT ACTTGGTGCG CATCCCGGAG GTCATCCTGG ACATTATCAC GGGAGGACAC TGGGGCGTGA TGTTTGGCCT GGCTTATTTC	40 80 100
25	(2)	INFORMATION FOR SEQ ID NO: 33	

		(i)·	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE: (ATCC # 40394)	
10			(C) INDIVIDUAL ISOLATE: hcvl	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 33	
			FATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
			SAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
15			rgcca ggacgaccgg gtcctttctt ggatcaaccc	120
			ATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG	160
		CTAGC	CGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCT	GATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACC	GTGCA CC	252
20				
	(2)	INFOR	MATION FOR SEQ ID NO: 34	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
25			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: us5	
5				
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 34	
		GTTAGT	ATGA GTGTCGTGCA GCCTCCAGGA CCCCCCCTCC	40
		CGGGAG	AGCC ATAGTGGTCT GCGGAACCGG TONETHE	80
		GGAATT	GCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
10		GCTCAA	TGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG	160
		CTAGCC	GAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTG	ATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
			TGCA CC	252
15	(2)	INFORM	ATION FOR SEQ ID NO: 35	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
20			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(vi)	ORIGINAL SOURCE:	
		• •	(C) INDIVIDUAL ISOLATE: ausl	

SUBSTITUTE SHEET

		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 35	
			ATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	4 (
			SAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
			GCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
5			ATGCC TGGAGATTTG GGCACGCCCC CGCAAGATCA	160
J			GAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
			ATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
			TGCA CC	252
		AGACCC	TOCK CC	
10	(2)	INFORM	ATION FOR SEQ ID NO: 36	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: sp2	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 36	
		GTTAGI	ATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
25		CGGGAG	AGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATI	GCCA GGACGACCGG GTCCTTTCTT GGATAAACCC	120
			TGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160

		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA CC	252
5	(2)	INFORMATION FOR SEQ ID NO: 37	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: gm2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
20		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
25		AGACCGTGCA CC	252
	(2)	INFORMATION FOR SEQ ID NO: 38	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
10		(C) INDIVIDUAL ISOLATE: i21	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCCTC	
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACAC	_
15		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATAAACC	_
13		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACT	
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTA	
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCG	
		AGACCGTGCA CC	252
20			
	(2)	INFORMATION FOR SEQ ID NO: 39	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
25		(B) TYPE: nucleic acid	
•		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: us4	
5				
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 39	
		GTTAGT	TATGA GTGTCGTGCA GCCTCCAGGA CCCCCCCTCC	40
		CGGGAG	FAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATT	GCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
10		GCTCAA	TGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
		CTAGCC	GAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTG	SATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCG	TGCA CC	252
15	(2)	INFORM	MATION FOR SEQ ID NO: 40	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
20			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: ihl	

		(X1) SEQUENCE DESCRIPTION: BEQ 15 NO. 15	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	4 (
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	8
		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
5		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA TC	252
10	(2)	INFORMATION FOR SEQ ID NO: 41	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
15		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: nac5	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
25		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160

- 87 -

		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA CC	252
5	(2)	INFORMATION FOR SEQ ID NO: 42	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
10		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
15		(C) INDIVIDUAL ISOLATE: arg2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
20		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA CC	252
25			
	(2)	INFORMATION FOR SEQ ID NO: 43	

- 88 -

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: spl	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 43	
			ATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		_	AGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
15			GCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
			TGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
		CTAGCC	GAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTG	ATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCG	TGCA CC	252
20				
	(2)	INFORM	ATION FOR SEQ ID NO: 44	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
25			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	

		(ii)	MOLECT	ΙLΕ	TYPE:	DNA	A				
		(vi)	ORIGIN	IAL	SOURC	E:					
			(C)	INI	DIVIDU	AL IS	SOLA	TE:	ghl		
5											
		(xi)	SEQUEN	ICE	DESCR	IPTIC	ON:	SEQ	ID NO:	44	
		GTTAGT	ATGA GI	GTC	CGTGCA	GCCI	CCA	GGA	ccccc	CTCC	40
		CGGGAG	AGCC AI	'AG'	rggtct	GCGG	AAC	CGG	TGAGTA	CACC	80
		GGAATT	GCCA GG	ACC	BACCGG	GTCC	CTTI	CTT	GGATCA	ACCC	120
10		GCTCAA	GCC TG	GAG	ATTTG	GGCG	TGC	CCC	CGCGAG	ACTG	160
		CTAGCC	GAGT AG	TGI	TGGGT	CGCG	AAA	.GGC	CTTGTG	GTAC	200
		TGCCTGA	ATAG GG	TGC	CTTGCG	AGTG	CCC	CGG	GAGGTC	TCGT	240
		AGACCGI	GCA CC	!							252
15	(2)	INFORMA	TION F	OR	SEQ II	NO:	45				
		(i)	SEQUEN	CE	CHARAC	CTERI	STI	cs:			
			(A)	LEN	IGTH: 2	252 n	ucl	eoti	des		
			(B)	TYP	E: nuc	cleic	ac	id			
20			(C)	STR	ANDEDN	TESS:	s	ingl	e		
			(D)	TOP	OLOGY:	lin	ear				
		(ii)	MOLECU	LE	TYPE:	DNA	i				
25		(vi)	ORIGIN.	AL	SOURCE	2:					
			(C)	IND	IVIDUA	L IS	OLA:	TE:	i15		

		(xi)	SEQU	JENCE	DESCR	IPTION	: SEQ	ID NO: 45	•
		GTTAG'	TATGA	GTGT	CGTGCA	GCCTC	CAGGA	CCCCCCTC	CC 40
		CGGGA	GAGCC	ATAG'	TGGTCT	GCGGA	ACCGG	TGAGTACAC	C 80
		GGAAT'	TGCCA	GGAC	GACCGG	GTCCT	TTCTT	GGATCAACC	C 120
5		GCTCA	ATGCC	TGGA	GATTTG	GGCGT	GCCCC	CGCGAGACT	G 160
		CTAGC	CGAGT	AGTG	TTGGGT	CGCGA	AAGGC	CTTGTGGTA	C 200
		TGCCT	GATAG	GGTG	CTTGCG	AGTGC	CCCGG	GAGGTCTCG	T. 240
		AGACC	GTGCA	CC					252
10	(2)	INFOR	MOITAN	FOR	SEQ II	ONO:	46		
		(i)	SEQU	ENCE	CHARA	CTERIS	TICS:		
			(A)	LE	NGTH: 2	252 nu	cleoti	des	
			(B)	TYI	PE: nuc	cleic	acid		
15			(C)	ST	RANDEDI	VESS:	singl	e	
			(D)	TOI	POLOGY	line	ar		
		(ii)	MOLE	CULE	TYPE:	DNA			
20		(vi)	ORIG	INAL	SOURCE	Ξ:			
			(C)	INI	OIVIDUA	AL ISO	LATE:	i10	

- 91 -

		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46	
		GCTAGTATCA GTGTCGTACA GCCTCCAGGC CCCCCCTCC	4 (
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	8
		GGAATTGCCG GGAAGACTGG GTCCTTTCTT GGATAAACCC	120
5		ACTCTATGCC CGGCCATTTG GGCGTGCCCC CGCAAGACTG	160
		CTAGCCGAGT AGCGTTGGGT TGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA TC	252
10	(2)	INFORMATION FOR SEQ ID NO: 47	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
15		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: arg6	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47	
		GTTAGTATGA GTCTCGTACA GCCTCCAGGC CCCCCCCTCC	40
25		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATTGCTG GGAAGACTGG GTCCTTTCTT GGATAAACCC	120
		ACTCTATGCC CAGCCATTTG GGCGTGCCCC CGCAAGACTG	160

- 92 -

		CTAGCCGAGT AGCGTTGGGT TGCGAAAGGC CTTGTGGTAC	200
		TGCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA TC	252
		AGACCOTOC. 10	
5	(2)	INFORMATION FOR SEQ ID NO: 48	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
10		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
15		(C) INDIVIDUAL ISOLATE: s21	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48	
		GTTAGTACGA GTGTCGTGCA GCCTCCAGGA CTCCCCCTCC	40
20		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATCGCTG GGGTGACCGG GTCCTTTCTT GGAGCAACCC	120
		GCTCAATACC CAGAAATTTG GGCGTGCCCC CGCGAGATCA	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
25		AGACCGTGCA AC	252
	(2)	INFORMATION FOR SEQ ID NO: 49	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
5		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
10		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: gj61329	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49	
15		GTTAGTACGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATCGCTG GGGTGACCGG GTCCTTTCTT GGAGTAACCC 1	20
		GCTCAATACC CAGAAATTTG GGCGTGCCCC CGCGAGATCA 1	60
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC 2	00
20		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT 2	40
		AGACCGTGCA AC 2	52
	(2)	INFORMATION FOR SEQ ID NO: 50	
25		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 180 pugleotides	

- 94 -

			(B) TYPE: nucleic acid	
	<i>:</i>		(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: sa3	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 50	
10				40
			TATGA GTGTCGAACA GCCTCCAGGA CCCCCCTCC	
			BAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	
			GCCG GGATGACCGG GTCCTTTCTT GGATAAACCC	
		GCTCAP	ATGCC CGGAGATTTG GGCGTGCCCC CGCGAGACTG	
15		CTAGCO	CGAGT AGTGTTGGGT	180
	(2)	INFORM	MATION FOR SEQ ID NO: 51	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 180 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

- 95 -

			(C)	IND	IVIDU	AL	ISOL	ATE:	sa	4		
		(xi)	SEQU	ENCE :	DESCR	IPT	ION:	SEQ	ID :	NO:	51	
		GTTAG	TATGA (STGTC	GAACA	GC	CTCC	AGGA	CCC	ccc	CTCC	40
5		CGGGA	GAGCC 2	ATAGT(GGTCT	GC	GGAA	CCGG	TGA	GTAC	CACC	80
		GGAAT'	TGCCG (GGATG	ACCGG	GT	CCTT	CTT	GGA'	TAAZ	ACCC	120
		GCTCA	ATGCC (CGGAG	ATTTG	GG	CGTG	CCC	CGC	GAG	CTG	160
		CTAGC	CGAGT 2	AGTGT	IGGGT							180
10												
	(2)	INFOR	MATION	FOR S	SEQ II	ON C	D: 52	2				
		(i)	SEQUE	ENCE (CHARA	CTE	RISTI	cs:				
			(A)	LEN	STH: S	549	nucl	.eoti	.des			
15			(B)	TYPI	E: nuc	cle	ic ac	id				
			(C)	STRA	ANDEDI	VES!	S: S	ingl	. e			
			(D)	TOPO	DLOGY	: 1:	inear	•				
		(ii)	MOLEC	ULE 1	TYPE:	Dì	AI					
20												
		(vi)	ORIGI	NAL S	SOURCE	E :	(ATC	C #	4039	94)		
			(C)	INDI	VIDUA	AL]	SOLA	TE:	hev	71		

		(xi)	SEQU	JENCE	DESCR	IPTION	1: SEQ	ID NO:	52	
		ATGAGC	ACGA	ATCC	CAAACC	TCAAA	AAAAA	AACAAA	CGTA	40
		ACACCA	ACCG	TCGC	CACAG	GACGI	CAAGT	TCCCGG	GTGG	80
		CGGTCA	FATC	GTTG	TGGAG	TTTAC	CTTGTT	GCCGCG	CAGG	120
5		GGCCCT	AGAT	TGGGT	rgtgcg	CGCGA	ACGAGA	AAGACT	TCCG	160
		AGCGGT	CGCA	ACCT	CGAGGT	AGACG	STCAGC	CTATCC	CCAA	200
		GGCTCG!	rcgg	CCCGA	AGGGCA	GGACC	CTGGGC	TCAGCC	CGGG	240
		TACCCT'	rggc	CCCT	CTATGG	CAATO	BAGGGC	TGCGGG	TGGG	280
		CGGGAT	GCT	CCTGI	CTCCC	CGTGG	CTCTC	GGCCTA	GCTG	320
10		GGGCCC	CACA	GACCO	CCGGC	GTAGG	TCGCG	CAATTT	GGGT	360
_		AAGGTC	ATCG	ATACO	CCTTAC	GTGCG	GCTTC	GCCGAC	CTCA	400
		TGGGGT	ACAT	ACCG	CTCGTC	GGCGC	CCCTC	TTGGAG	GCGC	440
		TGCCAG	GCC	CTGG	CGCATG	GCGTC	CCGGGT	TCTGGA	AGAC	480
		GGCGTG	AACT	ATGC	ACAGG	GAACO	CTTCCT	GGTTGC	TCTT	520
15		TCTCTA:	CTT	CCTT	CTGGCC	CTGCT	CTCT			549
	(2)	INFORM	ATIO1	1 FOR	SEQ I	D NO:	53			
		(i)	SEQU	JENCE	CHARA	CTERIS	STICS:			
20			(A)	LEN	IGTH:	549 nu	icleot:	ides		
			(B)	TYI	E: nu	cleic	acid			
			(C)	STE	RANDED	NESS:	sing:	le		

25 (ii) MOLECULE TYPE: DNA

(vi) ORIGINAL SOURCE:

(D) TOPOLOGY: linear

- 97 -

4 \				_
(C)	7 1 1 1 1 1 1	זמווחדו	ISOLATE:	1165
/	T 1/1/1/1	LIDUAL	TOULDEL.	usu

	(xi) SEQ	UENCE DESCR	IPTION: SEQ	ID NO: 53	
	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	40
5	ACACCAACCG	TCGCCCACAG	GACGTCAAGT	TCCCGGGTGG	80
	CGGTCAGATC	GTTGGTGGAG	TTTACTTGTT	GCCGCGCAGG	120
	GGCCCTAGAT	TGGGTGTGCG	CGCGACGAGG	AAGACTTCCG	160
	AGCGGTCGCA	ACCTCGAGGT	AGACGTCAGC	CTATCCCCAA	200
	GGCGCGTCGG	CCCGAGGGCA	GGACCTGGGC	TCAGCCCGGG	240
10	TACCCTTGGC	CCCTCTATGG	CAATGAGGGT	TGCGGGTGGG	280
	CGGGATGGCT	CCTGTCTCCC	CGTGGCTCTC	GGCCTAGTTG	320
	GGGCCCCACA	GACCCCGGC	GTAGGTCGCG	CAATTTGGGT	360
	AAGGTCATCG	ATACCCTTAC	GTGCGGCTTC	GCCGACCACA	400
	TGGGGTACAT	ACCGCTCGTC	GGCGCCCTC	TTGGAGGCGC	440
15	TGCCAGGGCT	CTGGCGCATG	GCGTCCGGGT	TCTGGAAGAC	480
	GGCGTGAACT	ATGCAACAGG	GAACCTTCCT	GGTTGCTCTT	520
	ͲϹͲϹͲϪͲϹͲͲ	ССТТСТСССС	СТССТСТСТ		549

(2) INFORMATION FOR SEQ ID NO: 54

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 549 nucleotides
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

		(vi)	ORI	GINAL	SOURC	E:						
			(C)	IN	DIVIDU	AL I	SOLA	TE:	au	s 1		
5		(xi)	SEO	TENCE	DESCR	IPTI	ON:	SEO	ID 1	NO:	54	
J		ATGAGC										40
		ACACCA										80
		CGGTCA										120
		GGCCCT	_									160
10		AGCGGT										200
		GGCGCG	TCGG	CCCG	AGGGCA	GGA	CCTG	GGC	TCA	3CCC	GGG	240
		TACCCC	TGGC	CCCT	CTATGG	TAA	TGAG	GGT	TGC	GAI	GGG	280
		CGGGAT	GGCT	CCTG	rcccc	CGT	GGCT	CTC	GGC	CTAC	TTG	320
		GGGCCC	TACA	GACC	CCGGC	GTA	GGTC	GCG	CAA	TTTG	GGT	360
15		AAGGTC	ATCG	ATAC	CTCAC	GTG	CGGC	TTC	GCC	JACC	ACA	400
		TGGGGT.	ACAT	TCCG	CTCGTT	GGC	GCCC	CTC	TTG	GGG	CGC	440
		TGCCAG	GGCC	CTGG	CGCATG	GCG'	TCCG	GGT	TCT	GAA	GAC	480
		GGCGTG	AACT	ATGC	ACAGG	GAA'	TCTT	CCT	GGT	rgci	CTT	520
		TCTCTA	TCTT	CCTTC	CTGGCC	CTT	CTCT	CT				549
20												
	(2)	INFORM	MOITA	FOR	SEQ II	OM C	: 55					
		(i)	SEQU	ENCE	CHARA	CTER:	ISTI	cs:				
			(A)	LEN	IGTH:	549 1	nucl	eoti	des			
25			(B)	TYE	E: nuc	clei	c ac	id				
			(C)	STF	ANDEDI	VESS	: s	ingl	е			

- 99 -

			(D)	TOP	POLOGY	: linea	r			
		(ii)	MOL	ECULE	TYPE:	DNA				
5		(vi)	ORI	FINAL	SOURC	E:				
			(C)	INI	DIVIDU.	AL ISOL	ATE:	sp2		
		(xi)	SEQ	JENCE	DESCR	IPTION:	SEQ	ID NO:	55	
		ATGAG	CACGA	ATCCI	CAAACC	TCAAAG	AAAA	ACCAAA	CGTA	4 (
		ACACCA	AACCG	TCGCC	CACAG	GACGTC	AAGT	TCCCGG	GTGG	80
10		CGGTC	AGATC	GTTGG	TGGAG	TTTACT	TGTT	GCCGCG	CAGG	120
		GGCCCI	CAGAT	TGGGI	GTGCG	CACGAC	GAGG	AAGACT	rccg	160
		AGCGGI	CGCA	ACCTO	GAGGT	AGACGT	CAGC	CCATCC	CCAA	200
		GGCTC	TCGA	CCCGA	GGGCA	GGACCT	GGGC	TCAGCC	CGGG	240
		TACCCI	TGGC	CCCTC	TATGG	CAATGA	GGGC	TGCGGG	rggg	280
15		CGGGAI	GGCT	CCTGI	CTCCC	CGTGGC	TCTC	GGCCTA	GCTG	320
		GGGCCC	CACA	GACCO	CCGGC	GTAGGT	CGCG	CAATTT	GGT	360
		AAGGTO	CATCG	ATACC	CTTAC	GTGCGG	CTTC	GCCGAC	CTCA	400
		TGGGGI	ACAT	ACCGC	TCGTC	GGCGCC	CCTC	TTGGAG	GCGC	440
		TGCCAG	AGCC	CTGGC	GCATG	GCGTCC	GGGT	TCTGGA	AGAC	480
20		GGCGTG	AACT	ATGCA	ACAGG	GAACCT'	rccc	GGTTGCT	CTT	520
		TCTCTA	TCTT	CCTTC	TGGCC	CTGCTC	ICT			549
	(2)	INFORM	MOITA	FOR	SEQ II	NO: 5	6			
25		(i)	SEQU	ENCE	CHARAC	TERIST	ics:			
			(A)	LEN	GTH: 5	49 nuc	leoti	des		
			(B)	TYP	E: nuc	eleic ad	cid			

			(C)	STI	RANDEDI	NESS:	Sing	16		
			(D)	TO	POLOGY	line	ar			
5		(ii)	MOLI	ECULE	TYPE:	DNA				
		(vi)	ORIO	SINAL	SOURCE	Ξ:				
			(C)	INI	OIVIDU	AL ISO	LATE:	gm2		
		(xi)	SEQU	JENCE	DESCRI	PTION	: SEQ	ID NO:	56	
10		ATGAGC!	ACGA	ATCC	PAAACC	TCAAA	gaaga	ACCAAA	CGTA	40
		ACACCA	ACCG	TCGC	CCACAG	GACGT	CAAGT	TCCCGG	}TGG	80
		CGGTCAC	GATC	GTTG	STGGAG	TTTAC	TTGTT	GCCGCGC	CAGG	120
		GGCCCTZ	AGAT	TGGG	CTGCG	CGCGA	CGAGG	AAGACTI	rccg	160
		AGCGGT	CGCA	ACCT	CGAGGT	AGACG:	rcagc	CTATCC	CAA	200
15		GGCACG	rcgg	CCCGA	AGGGTA	GGACC	rgggc	TCAGCCC	GGG	240
		TACCCT	rggc	CCCT	CTATGG	CAATG	AGGGT	TGCGGGI	rggg	280
		CGGGAT	GCT	CCTGT	CTCCC	CGCGG	CTCTC	GGCCTA	\CTG	320
		GGGCCC	CACA	GACCO	CCGGC	GTAGG	rcgcg	CAATTT	GGT	360
		AAGGTCA	ATCG	ATACO	CTTAC	GTGCG	CTTC	GCCGACC	CTCA	400
20		TGGGGTA	ACAT	ACCG	CTCGTC	GGCGC	CCTC	TTGGAG	3CGC	440
		TGCCAGO	GCC	CTGG	CGCATG	GCGTC	CGGGT	TCTGGA	AGAC	480
		GGCGTGA	AACT	ATGC	AACAGG	GAACC	TCCT	GGTTGCT	CTT	520
		TCTCTAT	CTT	CCTT	CTGGCC	CTGCT	CTCT			549
25	(2)	INFORM	4OIT	I FOR	SEQ II	NO:	57			
		(i)	SEOU	JENCE	CHARAC	TERIST	rics:			

- 101 -

		(A) LENGTH: 549 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5			
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: i21	
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57	
		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG TCGCCCACAG GACGTCAAGT TCCCGGGTGG	80
		CGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	120
		GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG	160
15		AGCGGTCGCA ACCTCGTGGT AGACGCCAGC CTATCCCCAA	200
		GGCGCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG	240
		TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG	280
		CGGGATGGCT CCTGTCTCCC CGTGGCTCTC GGCCTAGCTG	320
		GGGCCCCACA GACCCCCGGC GTAGGTCGCG CAATTTGGGT	360
20		AAGGTCATCG ATACCCTTAC GTGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT ACCGCTCGTC GGCGCCCCTC TTGGAGGCGC	440
		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC	480
		GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT	520
		TTTCTATTTT CCTTCTGGCC CTGCTCTCT	549
25			
	(2)	INFORMATION FOR SEQ ID NO: 58	

- 102 -

	(i) S	EQUENCE CHARACTERISTICS:	
	(A) LENGTH: 549 nucleotides	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) M	OLECULE TYPE: DNA	
	(vi) 0	RIGINAL SOURCE:	
10	(C) INDIVIDUAL ISOLATE: us4	
	(xi) S	EQUENCE DESCRIPTION: SEQ ID NO: 58	
	ATGAGCAC	GA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
	ACACCAAC	CG CCGCCCACAG GACGTTAAGT TCCCGGGCGG	80
15	TGGCCAGG	TC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120
	GGCCCCAG	GT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
	AGCGGTCG	CA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
	GGCTCGCC	AG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG	240
	TACCCTTG	GC CCCTCTATGG CAATGAGGGT ATGGGGTGGG	280
20	CAGGATGG	CT CCTGTCACCC CGTGGCTCTC GGCCTAGTTG	320
	GGGCCCCA	CG GACCCCGGC GTAGGTCGCG TAATTTGGGT	360
	AAGGTCAT	CG ATACCCTCAC ATGCGGCTTC GCCGACCTCA	400
	TGGGGTAC	AT TCCGCTCGTC GGCGCCCCC TTAGGGGCGC	440
	TGCCAGGG	CC TTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
25	GGCGTGAA	CT ACGCAACAGG GAATCTGCCC GGTTGCTCCT	520
	TTTCTATC!	TT CCTCTTGGCT CTGCTGTCC	549

- 103 -

(2) INFORMATION FOR SEQ ID NO: !	(2)	INFORMATION	FOR	SEO	ID	NO:	59
----------------------------------	-----	-------------	-----	-----	----	-----	----

	(i)	SEQUENC	E CHARA	CTERIS	cics:		
		(A) L	ENGTH:	549 nuc	cleot	ides	
5		(B) T	YPE: nu	cleic a	acid		
		(C) S	TRANDED	NESS:	sing	le	
		(D) T	OPOLOGY	: linea	ar		
	(ii)	MOLECUL	E TYPE:	DNA			
10	(vi)	ORIGINA	L SOURC	E:			
		(C) II	MDIVIDU	AL ISOL	ATE:	jhl	
	(xi)	SEQUENCI	E DESCR	IPTION:	SEQ	ID NO: 59	
15	ATGAGCA	CAA ATC	CTAAACC	TCAAAG	AAAA	ACCAAACGTA	4 (
	ACACCAA	CCG CCG	CCACAG	GACGTC	AAGT	TCCCGGGCGG	80
	TGGTCAG	ATC GTT	GTGGAG	TTTACC	TGTT	GCCGCGCAGG	120
	GGCCCCA	GGT TGG	TGTGCG	CGCGAC	TAGG	AAGACTTCCG	160
	AGCGGTC	GCA ACCI	CGTGGA	AGGCGA	CAAC	CTATCCCCAA	200
20	GGCTCGC	CAG CCC	AGGGCA	GGGCCT	GGGC	TCAGCCCGGG	240
	TACCCTT	GGC CCCI	CTATGG	CAACGA	GGGT	ATGGGGTGGG	280
	CAGGATG	GCT CCT	TCACCC	CGTGGC	TCTC	GGCCTAGTTG	320
	GGGCCCC	ACG GACO	CCCGGC	GTAGGT	CGCG	TAATTTGGGT	360
	AAGGTCA	CG ATAC	CCTCAC	ATGCGG	CTTC	GCCGACCTCA	400
25	TGGGGTA	CAT TCC	CTTGTC	GGCGCC	CCCC	TAGGGGGCGC	440
	TGCCAGG	SCC CTGG	CACATG	GTGTCC	GGGT	TCTGGAGGAC	480

SUBSTITUTE SHEET

GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT 520

-104 -

		TCTCTATCTT CCTCTTGGCT CTGCTGTCC							
	(2)	INFORMATION FOR SEQ ID NO: 60							
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 549 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 							
10									
		(ii) MOLECULE TYPE: DNA							
		(vi) ORIGINAL SOURCE:							
15		(C) INDIVIDUAL ISOLATE: nac5							
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60							
		ATGAGCACAA ATCCTAAACC CCAAAGAAAA ACCAAACGTA	40						
		ACACCAACCG TCGCCCACAG GACGTCAAGT TCCCGGGCGG	80						
		TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120						
20		GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160						
		AGCGGTCGCA ACCTCGTCGA MOCCGMCTIC COMPANY	200						
			240						
		TACCOTTOC CCCTCT.TCC CLCC.TCC	280						
		CAOUATOOCT COTOTOLICO COOCCIOTO COOCCIOTO	320						
25			360						
		AAGGTCATCG ATACCCTCAC ATGCGGCTTC GCCGACCTCA	400						

SUBSTITUTE SHEET

- 105 -

		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TAGGGGGCGC	44
		TGCCAGGGCC CTGGCACATG GTGTCCGGGT TCTGGAGGAC	48
		GGCGTGAACT ATGCAACAGG GAATTTGCCT GGTTGCTCTT	526
		TCTCTATCTT CCTCTTGGCT CTGCTGTCC	549
5			
	(2)	INFORMATION FOR SEQ ID NO: 61	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 549 nucleotides	
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: arg2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61	
		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
20		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
		TGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	120
		GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
		AGCGGTCGCA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
		GGCTCGCCAG CCCGAGGGTA GGGCCTGGGC TCAGCCCGGG	240
25		TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG	280
		CAGGGTGGCT CCTGTCCCCC CGCGGCTCCC GGCCTAGTTG	320

- 106 -

		GGGCCCCACA GACCCCCGGC GTAGGTCGCG TAATTTGGGT	360
		AAGGTCATCG ATACCCTCAC ATGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TAGGGGGCGC	440
		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
5		GGCGTGAACT ATGCAACAGG GAATCTGCCC GGTTGCTCTT	520
		TCTCTATCTT CCTCTTGGCT TTGCTGTCC	549
	(2)	INFORMATION FOR SEQ ID NO: 62	
	(2)		
		(i) SEQUENCE CHARACTERISTICS:	
10		(A) LENGTH: 549 nucleotides	
10		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15		(ii) MOLECULE TYPE: DNA	
1.7		(22)	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: spl	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62	
20		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
		TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120
		GGCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
٥-		AGCGGTCGCA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
25		GGCTCGCCGG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG	240
		TATCCTTGGC CCCTCTATGG CAATGAGGGT CTGGGGTGGG	280
		TATUUTTEGU CUCTUMIEG CAMIENEGET CIEGOTTOO	

- 107 -

		CAGGA	rggct	CCTG	TCACCO	CGCGG	CTCTC	GGCCTAGCTG	320
		GGGCC	CTACC	GACC	CCCGGC	GTAGG	TCGCG	CAACTTGGGT	360
		AAGGTO	CATCG	ATAC	CCTTAC	GTGCG	GCTTC	GCCGACCTCA	400
		TGGGGT	TACAT	TCCG	CTCGTC	GGCGC	cccc	TTAGGGGCGC	440
5		TGCCAG	GGCC	CTGG	CGCATG	GCGTC	CGGGT	TCTGGAGGAC	480
		GGCGT	BAACT	ATGC	AACAGG	GAATT'	TGCCC	GGTTGCTCTT	520
		TCTCTA	TCTT	CCTC	TTGGCT	TTGCT	GTCC		549
10	(2)	INFORM	COITA	1 FOR	SEQ I	D NO:	63		
		(i)	SEQU	JENCE	CHARA	CTERIS!	TICS:		
			(A)	LE	NGTH:	549 nu	cleot:	ides	
			(B)	TY:	PE: nu	cleic a	acid		
			(C)	ST	RANDED	NESS:	sing:	le	
15			(D)	TO	POLOGY	: linea	ar		
		(ii)	MOLE	CULE	TYPE:	DNA			
		(vi)	ORIG	INAL	SOURCE	E:			
20			(C)	INI	UZIVIDU	AL ISOI	LATE:	ghl	
		(xi)	SEQU	ENCE	DESCR	IPTION:	: SEQ	ID NO: 63	
		ATGAGC	ACGA	ATCCI	TAAACC	TCAAA	AAAA	ACCAAACGTA	40
		ACACCA	ACCG	CCGC	CCACAG	GACGTO	CAAGT	TCCCGGGCGG	80
25		TGGTCA	GATC	GTTG	STGGAG	TTTACT	TGTT	GCCGCGCAGG	120
		GGCCCC	AGGT	TGGGI	GTGCG	CGCGAC	CTAGG	AAGACTTCCG	160
		AGCGGT	CGCA	ACCTO	GTGGA	AGGCGA	CAAC	CTATCCCCAA	200

		GGCTCGCCGG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG	240
		TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG	280
		CAGGATGGCT CCTGTCACCC CGTGGTTCTC GGCCTAGTTG	320
		GGGCCCCACG GACCCCCGGC GTAGGTCGCG CAATTTGGGT	360
5		AAGATCATCG ATACCCTCAC GTGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TAGGGGGCGC	440
		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
		GGCGTGAACT ATGCAACAGG GAATCTGCCC GGTTGCTCCT	520
		TTTCTATCTT CCTTCTGGCT TTGCTGTCC	549
10			
	(2)	INFORMATION FOR SEQ ID NO: 64	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 549 nucleotides	
15		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20			
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: i15	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64	
25		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
		TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120

- 109 -

		GGCC	CAGGT	TGGGTGTGCG	CGCGACTAGG	AAGACTTCCG	160
		AGCG	FTCGCA	ACCTCGTGGA	AGGCGACAAC	CTATCCCCAA	200
		GGCT	CGCCAG	CCCGAGGGCA	GGGCCTGGGC	TCAGCCCGGG	240
		TACCO	CTGGC	CCCTCTATGG	CAATGAGGGT	ATGGGGTGGG	280
5		CAGGA	TGGCT	CCTGTCACCC	CGCGGCTCCC	GGCCTAGTTG	320
		GGGCC	CCAAA	GACCCCGGC	GTAGGTCGCG	TAATTTGGGT	360
		AAGGI	CATCG	ATACCCTCAC	ATGCGGCTTC	GCCGACCTCA	400
		TGGGG	TACAT	TCCGCTCGTC	GGCGCCCCT	TAGGGGGCGC	440
		TGCCA	GGGCC	CTGGCGCATG	GCGTCCGGGT	TCTGGAGGAC	480
10		GGCGI	GAACT	ATGCAACAGG	GAATCTACCC	GGTTGCTCTT	520
		TCTCI	ATCTT	CCTCTTGGCT	TTGCTGTCC		549
	(2)	INFOR	MATION	FOR SEQ II	NO: 65		
15		(i)	SEQU	ENCE CHARAC	CTERISTICS:		
			(A)	LENGTH:	349 nucleot:	ides	
			(B)	TYPE: nuc	cleic acid		
			(C)	STRANDEDN	WESS: sing	le	
			(D)	TOPOLOGY:	linear		
20							
		(ii)	MOLE	CULE TYPE:	DNA		
		(vi)	ORIG	INAL SOURCE	::		
			(C)	INDIVIDUA	L ISOLATE:	i10	
25							
		(xi)	SEQU	ENCE DESCRI	PTION: SEQ	ID NO: 65	
		ATGAG	CACAA	ATCCTAAACC	TCAAAGAAAA	ACCAAAAGAA	40

- 110 -

								TCCCGGGCGG	80
		TGGCCAG	ATC (GTTGG	CGGAG	TATA	CTTGCT	GCCGCGCAGG	120
		GGCCCGA	GAT	rgggī	GTGCG	CGCG	ACGAGG	AAAACTTCCG	160
		AACGATC	CCA (GCCAC	GCGGA	AGGC	GTCAGC	CCATCCCTAA	
5		AGATCGT	CGC Z	ACCGC	TGGCA	AGTC	CTGGGG	AAGGCCAGGA	240
		TATCCTT	GGC (CCCT	TATGG	GAAT	GAGGGT	CTCGGCTGGG	280
								GCCCTTCATG	320
								CAACTTGGGT	360
								GCCGACCTCA	400
10								TTGGAGGCGT	440
10								TCTGGAGGAT	480
								GGTTGCTCTT	520
		TCTCTAT							549
		1010111							
15	(2)	INFORMA	TION	FOR	SEQ I	D NO:	66		
		(i)	SEQU.	ENCE	CHARA	CTERI	STICS:		
			(A)	LEN	IGTH:	510 n	ucleot	ides	
			(B)	TYE	E: nu	cleic	acid		
20			(C)	STE	RANDED	NESS:	sing	le	
			(D)	TOE	POLOGY	: lin	ear		
		(ii)	MOLE	CULE	TYPE:	DNA			
25		(vi)	ORIG	INAL	SOURC	E:			
			(C)	TMT	ותדעדה	AT. IS	OLATE:	arq6	

- 111 -

		(xi) S	EQUENCE	DESCR	IPTION:	SEQ	ID N	10:	6 6	
		ATGAGCAC	AA ATCC	TCAACC	TCAAAG	AAAA	ACC	AAA	GAA	40
		ACACTAAC	CG CCGC	CCACAG	GACGTC	AAGT	TCC	CGGG	CGG	80
		TGGTCAGA	TC GTTG	GCGGAG	TATACT	TGTT	GCC	GCGC	AGG	120
5		GGCCCCAG	GT TGGG'	TGTGCG	CGCGAC	GAGG	AAAA	CTT	CCG	160
		AACGGTCC	CA GCCA	CGTGGG	AGGCGC	CAGC	CCAT	CCC	CAA	200
		AGATCGGC	GC ACCA	CTGGCA	AGTCCT	GGGG	GAAG	CCA	GGA	240
		TACCCTTG	GC CCCT	GTATGG	GAATGA	GGGT	CTC	GCT	GGG	280
		CAGGGTGG	CT CCTG	rcccc	CGCGGT	TCTC	GCCC	TTC	ATG	320
10		GGGCCCCA	CT GACC	CCCGGC	ATAGAT	CACG	CAAC	CTTG	GGT	360
		AAGGTCAT	CG ATAC	CCTAAC	GTGTGG	TTTT	GCC	ACC	TCA	400
		TGGGGTAC	AT TCCC	GTCGGT	GGTGCC	CCCG	TTGG	TGG	TGT	440
		CGCCAGAG	CC CTTG	CCCATG	GGGTGA	GGGT	TCTG	GAA	GAC	480
		GGGATAAA'	TT ATGC	AACAGG	GAATCT	GCCC				510
15										
	(2)	INFORMAT	ION FOR	SEQ II	NO: 6	7				
		(i) S	EQUENCE	CHARAC	CTERIST:	ics:				
		(2	A) LEI	NGTH: 2	29 nucle	otic	les			
20		(1	3) TYI	PE: nuc	cleic ad	cid				
		((C) ST	RANDEDI	NESS: S	singl	.e			
		(1	O) TOI	POLOGY:	linear	<u>:</u>				
		(ii) M	OLECULE	TYPE:	DNA					
25		/ • • •	` ` ~ _	·						
		(xi) SI	EQUENCE	DESCRI	PTION:	SEQ	ID N	o:	67	
		CAAACGTAA	AC ACCAZ	ACCGRC	GCCCACA	AGG				29

	(2)	INFORMATION FOR SEQ ID NO: 68	
		(i) SEQUENCE CHARACTERISTICS:	
5		(A) LENGTH: 24 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
10		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68	
		ACAGAYCCGC AKAGRTCCCC CACG 24	:
15	(2)	INFORMATION FOR SEQ ID NO: 69	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 nucleotides	
		(B) TYPE: nucleic acid	
20		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69	
		CGAACCTCGA GGTAGACGTC AGCCTATECC 30)

	(2)	INFORMATION FOR SEQ ID NO: 70	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70	
		GCAACCTCGT GGAAGGCGAC AACCTATCCC	30
15	(2)	INFORMATION FOR SEQ ID NO: 71	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 nucleotides	
		· (B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
20		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71	
25		GTCACCAATG ATTGCCCTAA CTCGAGTATT	30
	(2)	INFORMATION FOR SEQ ID NO: 72	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 26 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
10	•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 72	
		GTCAC	GAACG ACTGCTCCAA CTCAAG	26
	(2)	INFOR	MATION FOR SEQ ID NO: 73	
15		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 28 nucleotides	
			(B) TYPE: nucleic acid	
		٠	(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
20				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 73	
		TGGAC	ATGAT CGCTGGWGCY CACTGGGG	28
25				
	(2)	INFORM	MATION FOR SEQ ID NO: 74	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 28 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 74	
10		TGGAYA	ATGGT GGYGGGGCY CACTGGGG	28
	(2)	INFORM	MATION FOR SEQ ID NO: 75	
		(i)	SEQUENCE CHARACTERISTICS:	
15			(A) LENGTH: 20 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 75	
		ATGATG	AACT GGTCVCCYAC	20
25	(2)	INFORM	ATION FOR SEQ ID NO: 76	
		(i)	SPOIDNOR CHADACTEDISTICS.	

- 116 -

			(A) LENGTH: 26 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5				
_		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 76	
		ACCITY	GCCC AGTTSCCCRC CATGGA	26
	403	7 177000	ANTON FOR SEC ID NO: 77	
10	(2)	INFORF	MATION FOR SEQ ID NO: 77	
		(i)	SEQUENCE CHARACTERISTICS:	
		\ -/	(A) LENGTH: 22 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 77	
		AACCCA	ACTCT ATGYCCGGYC AT	22
	(2)	INFORM	MATION FOR SEQ ID NO: 78	
25		(i)	SEQUENCE CHARACTERISTICS:	
- -		•	(A) LENGTH: 18 nucleotides	
			(P) TYPE: mucleic acid	

- 117 -

			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5		(ii)	MOLECULE TYPE: DNA	
•			SEQUENCE DESCRIPTION: SEQ ID NO: 78 GCTGG GGTGACCG	18
3.0	(2)	INFOR	MATION FOR SEQ ID NO: 79	
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 nucleotides (B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20			SEQUENCE DESCRIPTION: SEQ ID NO: 75	28
	(2)	INFORM	MATION FOR SEQ ID NO: 80	
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 nucleotides	
			(B) TYPE: nucleic acid (C) STRANDEDNESS: single	

			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
5	(2)	TTGCGG	SEQUENCE DESCRIPTION: SEQ ID NO: 80 GGGC ACGCCCAA NATION FOR SEQ ID NO: 81	18
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
20	(2)	YGAAGC	SEQUENCE DESCRIPTION: SEQ ID NO: 81 GGGC ACAGTCARRC AAGARAGCAG GGC ATION FOR SEQ ID NO: 82	33
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 82 GCCCY GWGGAGTTGC GCACTTGGTR GGC	33
	(2)		MATION FOR SEQ ID NO: 83	33
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 83 CGAG TTAGGGCAAT CATTGGTGAC RTG	33
20	(2)	INFORM	ATION FOR SEQ ID NO: 84	
2 5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 84 SCAGG ATGGYATCRK BCGYCTCGTA CAC	33
5	(2)	TNFORM	MATION FOR SEQ ID NO: 85	
	(/		SEQUENCE CHARACTERISTICS:	
		(-)	(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
15			SEQUENCE DESCRIPTION: SEQ ID NO: 85 CCTCR CGAACGCAAG GGACRCACCC CGG	33
	(2)	INFORM	NATION FOR SEQ ID NO: 86	
20		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25				
		(ii)	MOLECULE TYPE: DNA	

- 121 -

		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 86	
		CGTRG	GGTY AYCGCCACCC AACACCTCGA GRC	33
	(2)	INFORM	MATION FOR SEQ ID NO: 87	
5				
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
		•	(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 87	
15		CGTYGY	GGGG AGTTTGCCRT CCCTGGTGGC YAC	33
	(2)	INFORM	ATION FOR SEQ ID NO: 88	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 88	

- 122 -

		CCCGACAAGC AGATCGATGT GACGTCGAAG CTG	33
	(2)	INFORMATION FOR SEQ ID NO: 89	
5		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 nucleotides(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
10		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89 CCCCACGTAG ARGGCCGARC AGAGRGTGGC GCY	33
15	(2)	INFORMATION FOR SEQ ID NO: 90	
20		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90	22
		YTGRCCGACA AGAAAGACAG ACCCGCAYAR GTC	33

	(2)	INFORMATION FOR SEQ ID NO: 91	
		(i) SEQUENCE CHARACTERISTICS:	
5		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
10		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91	
		CGTCCAGTGG YGCCTGGGAG AGAAGGTGAA CAG	33
15	(2)	INFORMATION FOR SEQ ID NO: 92	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
20		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92	
		GCCGGGATAG ATRGARCAAT TGCARYCTTG CGT	33

	(2)	INFORMATION FOR SEQ ID NO: 93
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10		(ii) MOLECULE TYPE: DNA
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93 CATATCCCAT GCCATGCGGT GACCCGTTAY ATG 33
15	(2)	INFORMATION FOR SEQ ID NO: 94
20		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: DNA
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94 YACCAAYGCC GTCGTAGGGG ACCARTTCAT CAT 3:
	(2)	INTEGRATEION FOR SEC ID NO: 95

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 95	
10		GATGGC	TTGT GGGATCCGGA GYASCTGAGC YAY	33
	(2)	INFORM	ATION FOR SEQ ID NO: 96	
		(i)	SEQUENCE CHARACTERISTICS:	
15			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 96	
		GACTCCC	CCAG TGRGCWCCAG CGATCATRTC CAW	33
25	(2)	INFORMA	TION FOR SEQ ID NO: 97	
		/÷\	SECTENCE CHARACTERISTICS.	

		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5			
		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97	
			33
	٠		
10	(2)	INFORMATION FOR SEQ ID NO: 98	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
15		(C) STRANDEDNESS: single	
15		(D) TOPOLOGY: linear	
		(b) 10102001. 11	
		(ii) MOLECULE TYPE: DNA	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98	
			33
	(2)	INFORMATION FOR SEQ ID NO: 99	
25		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(R) TYPE: nucleic acid	

- 127 -

99 33
100
33

		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
5 (2)	GTAYAY	SEQUENCE DESCRIPTION: SEQ ID NO: 101 TYCCG GACRCGTTGC GCACTTCRTA AGC NATION FOR SEQ ID NO: 102	33
10	• •	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii)	MOLECULE TYPE: DNA	
		SEQUENCE DESCRIPTION: SEQ ID NO: 102 TGMG TTGGAGCART CGTTYGTGAC ATG	33
20 (2)	INFORM	ATION FOR SEQ ID NO: 103	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid	
25		<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	

		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 103 CATG ATCAYGTCCG YYGCCTCATA CAC	33
J	(2)		ATION FOR SEQ ID NO: 104	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
15		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 104	
		RTTGTY	YTCC CGRACGCARG GCACGCACCC RGG	3 3
	(2)	INFORM	ATION FOR SEQ ID NO: 105	
20		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25				
_		(ii)	MOLECULE TYPE: DNA	

		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 105	
		CGTGG	GRGTS AGCGCYACCC AGCARCGGGA GSW	33
	(2)	INFOR	MATION FOR SEQ ID NO: 106	
5				
		(i)	SEQUENCE CHARACTERISTICS:	
	,		(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 106	
15		YGTRG	IGGGG AYGCTGKHRT TCCTGGCCGC VAR	33
	(2)	INFORM	MATION FOR SEQ ID NO: 107	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 107	

- 131 -

		CCCRA	CGAGC AARTCGACRT GRCGTCGTAW TGT	33
	(2)	INFOR	MATION FOR SEQ ID NO: 108	
5		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 108	
15		YCCCA	CGTAC ATAGCSGAMS AGARRGYAGC CGY	33
• •	(2)	INFORM	MATION FOR SEQ ID NO: 109	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
20			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 109	
		CTGGGA	GAYR AGRAAAACAG ATCCGCARAG RTC	33

	(2)	INFORMATION FOR SEQ ID NO: 110	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110 YGTCTCRTGC CGGCCAGSBG AGAAGGTGAA YAG 3	3
15	(2)	INFORMATION FOR SEQ ID NO: 111	
20		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA	
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111 GCCGGGATAG AKKGAGCART TGCAKTCCTG YAC 3	3

	(2)	INFOR	MATION FOR SEQ ID NO: 112	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
5			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
10		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 112	
		CATAT	CCCAA GCCATRCGRT GGCCTGAYAC CTG	33
	(2)	INFOR	MATION FOR SEQ ID NO: 113	
15		(=)	CENTENCE CUADACTEDICALOS.	
		(1)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
		•	(B) TYPE: nucleic acid	
• •			(C) STRANDEDNESS: single	
20			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 113	
25		CACTA	RGGCT GYYGTRGGYG ACCAGTTCAT CAT	33
	(2)	INFORM	MATION FOR SEQ ID NO: 114	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
5		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114	
10		GACRGCTTGT GGGATCCGGA GTAACTGCGA YAC	33
	(2)	INFORMATION FOR SEQ ID NO: 115	
		(i) SEQUENCE CHARACTERISTICS:	
15		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
20		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115	
		GACTCCCCAG TGRGCCCCCG CCACCATRTC CAT	33
25	(2)	INFORMATION FOR SEQ ID NO: 116	
		(i) SEOUENCE CHARACTERISTICS:	

- 135 -

		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5			
		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116	
		SCCCACCATG GAWWAGTAGG CAAGGCCCGC YAG	33
10	(2)	INFORMATION FOR SEQ ID NO: 117	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
15		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117	
		GAGTAGCATC ACAATCAADA CCTTAGCCCA GTT	33
	(2)	INFORMATION FOR SEQ ID NO: 118	
25		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	

			<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 118 SGYRG GTRTKCCCGT CAACGCCGGC AAA	33
	(2)	INFORM	ATION FOR SEQ ID NO: 119	
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15		(ii)	(D) TOPOLOGY: linear MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 119	
20	403		CAGG GGAGTGATTC ATGGTGGAGT GTC	33
	(2)		SEQUENCE CHARACTERISTICS:	
25		, .	(A) LENGTH: 33 nucleotides(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	

- 137 -

			(D)	TOPOLOGY:	linear		
		(ii)	MOLECU	LE TYPE:	DNA		
5					PTION: SEQ		
	(2)			TTTCTGCG ' OR SEQ ID	TGAAGACAGT NO: 121	AGT	33
				_			
•		(i)	SEQUEN	CE CHARAC	TERISTICS:		
10			(A)	LENGTH: 3	3 nucleotid	les	
			(B) :	TYPE: nuc	leic acid		
			(C)	STRANDEDN	ESS: singl	. e	
			(D) !	TOPOLOGY:	linear		
15		(ii)	MOLECUI	LE TYPE:	DNA		
		(xi)	SEQUENC	CE DESCRI	PTION: SEQ	ID NO: 1	21
		GCCTGG	AGGC TGG	CACGRCAC	CATACTAAC	GCC	33
20	(2)	INFORM	ATION FO	OR SEQ ID	NO: 122		
		(i)	SEQUENC	E CHARACT	TERISTICS:		
			(A) I	ENGTH: 33	nucleotid	es	
			(B) I	YPE: nucl	eic acid		
25			(C) S	TRANDEDNE	SS: singl	е	
			(D) I	OPOLOGY:	linear		

		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122 CGCAGACCAC TATGGCTCTY CCGGGAGGGG GGG	33
5	(2)	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides	
10		(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123 TCRTCCYGGC AATTCCGGTG TACTCACCGG TTC	33
	(2)	INFORMATION FOR SEQ ID NO: 124	
20		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		(ii) MOLECULE TYPE: DNA	

			SEQUENCE DESCRIPTION: SEQ ID NO: 124 GAGCG GGTTDATCCA AGAAAGGACC CGG	33
5	(2)	INFOR	MATION FOR SEQ ID NO: 125	
J		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 125	
15		AGCAG'	ICTYG CGGGGGCACG CCCAARTCTC CAG	33
	(2)	INFOR	MATION FOR SEQ ID NO: 126	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEO ID NO: 126	

- 140 -

		ACAAG	GCCTT TCGCGACCCA ACACTACTCG GCT	33
	(2)	INFOR	MATION FOR SEQ ID NO: 127	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
15			SEQUENCE DESCRIPTION: SEQ ID NO: 127 ACTCG CAAGCACCCT ATCAGGCAGT ACC	33
12	(2)	INFORM	MATION FOR SEQ ID NO: 128	
		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides	
20			(B) TYPE: nucleic acid	
			<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	

- 141 -

		(ii) MOLECULE TYPE: DNA	
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128 YGTGCTCATG RTGCACGGTC TACGAGACCT CCC	33
		TOTOGICATIO ATOCACCOTE TACCACACCT CCC	33
	(2)	INFORMATION FOR SEQ ID NO: 129	
		(i) SEQUENCE CHARACTERISTICS:	
10		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129 GTTACGTTTG KTTYTTYTTT GRGGTTTRGG AWT	33
20	(2)	INFORMATION FOR SEQ ID NO: 130	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
25		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 130 ACTTR ACGTCCTGTG GGCGRCGGTT GGT	33
	(2)	INFORM	MATION FOR SEQ ID NO: 131	
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15		•	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 131 AACT CCACCRACGA TCTGRCCRCC RCC	33
20	(2)	INFORM	ATION FOR SEQ ID NO: 132	
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	

- 143 -

		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 132	
		RCGCA	CACCC AAYCTRGGGC CCCTGCGCGG CAA	33
5	(2)	INFOR	MATION FOR SEQ ID NO: 133	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 133	
15		AGGTT	GCGAC CGCTCGGAAG TCTTYCTRGT CGC	33
	(2)	INFORM	MATION FOR SEQ ID NO: 134	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEO ID NO: 134	

- 144 - .

		RCGHR	CCTTG GGGATAGGCT GACGTCWACC TCG	33
	(2)	INFOR	MATION FOR SEQ ID NO: 135	
5		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 135	
		RCGHR	CCTTG GGGATAGGTT GTCGCCWTCC ACG	33
15	(2)	INFOR	MATION FOR SEQ ID NO: 136	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
20			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 136	
		YCCRG	GCTGR GCCCAGRYCC TRCCCTCGGR YYG	33

	(2)	INFORM	MATION FOR SEQ ID NO: 137	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 137 CTCR TTRCCRTAGA GGGGCCADGG RTA	33
15	(2)	INFORM	ATION FOR SEQ ID NO: 138	
20		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25			SEQUENCE DESCRIPTION: SEQ ID NO: 138 GGGW GACAGGAGCC ATCCYGCCCA CCC	33
	(2)	INFORM	ATION FOR SEQ ID NO: 139	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
5		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139	
		CCGGGGGTCY GTGGGGCCCC AYCTAGGCCG RGA	33
	(2)	INFORMATION FOR SEQ ID NO: 140	
		(i) SEQUENCE CHARACTERISTICS:	
15		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
20		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140 ATCGATGACC TTACCCAART TRCGCGACCT RCG	33
	(0)		
25	(2)	INFORMATION FOR SEQ ID NO: 141	
		(i) SECTIONCE CHARACTERISTICS:	

- 147 -

			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 141	
		CCCCAT	IGAGR TCGGCGAAGC CGCAYGTRAG GGT	33
10				
	(2)	INFORM	MATION FOR SEQ ID NO: 142	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 142	
		GCCYCC	WARR GGGGCGCCGA CGAGCGGWAT RTA	33
	(2)	INFORM	ATION FOR SEQ ID NO: 143	
25		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	

- 148 -

(ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143 AACCCGGACR CCRTGYGCCA RGGCCCTGGC AGC (2) INFORMATION FOR SEQ ID NO: 144 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144 RTTCCCTGTT GCATAGTTCA CGCCGTCYTC CAG (2) INFORMATION FOR SEQ ID NO: 145 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear				<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144 RTTCCCTGTT GCATAGTTCA CGCCGTCYTC CAG 33 (2) INFORMATION FOR SEQ ID NO: 145 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	5		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 143	33
(A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144 RTTCCCTGTT GCATAGTTCA CGCCGTCYTC CAG 33 (2) INFORMATION FOR SEQ ID NO: 145 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single		(2)	INFORM	ATION FOR SEQ ID NO: 144	
(ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144 RTTCCCTGTT GCATAGTTCA CGCCGTCYTC CAG 33 (2) INFORMATION FOR SEQ ID NO: 145 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	10			(A) LENGTH: 33 nucleotides(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
RTTCCCTGTT GCATAGTTCA CGCCGTCYTC CAG (2) INFORMATION FOR SEQ ID NO: 145 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	15		(ii)		
(2) INFORMATION FOR SEQ ID NO: 145 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	20				33
(A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	20	(2)	INFORMA	ATION FOR SEQ ID NO: 145	
	25			(A) LENGTH: 33 nucleotides(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 145	33
	(2)	INFOR	MATION FOR SEQ ID NO: 146	
		(i)	SEQUENCE CHARACTERISTICS:	
10			(A) LENGTH: 20 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 146	
		AGGCA	TAGGA CCCGTGTCTT	20
20	(2)	INFOR	MATION FOR SEQ ID NO: 147	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 20 nucleotides	
			(B) TYPE: nucleic acid	
25			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 147	
		CTTCTT	TTGGA GAAAGTGGTG	20

-150 -

CLAIMS

- As a composition of matter, a non-naturally occurring nucleic acid having a non-HCV-1 nucleotide
 sequence of eight or more nucleotides corresponding to a nucleotide sequence within the hepatitis C virus genome.
- 2. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome is selected from the regions consisting of the NS5 region, envelope 1 region, 5'UT region, and the core region.
- 3. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the NS5 region.
- 20 4. The composition of claim 3 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome is selected from a sequence within sequences numbered 2-22.

5. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the envelope 1 region.

6. The composition of claim 5 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome corresponds to a sequence within sequence numbers 24-32.

- 7. The composition of claim 1 wherein at least one sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the 5'UT region.
 - 8. The composition of claim 7 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome corresponds to a sequence within sequences numbered 34-51.
 - 9. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the core region.

SUBSTITUTE SHEET

BNSDIGICID - WIC 9219743A2

5

10

15

10. The composition of claim 9 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome corresponds to a within sequences numbered 53-66.

5

11. The composition of claim 1 wherein said non-naturally occurring nucleic acid has a nucleotide sequence corresponding to one or more genotypes of hepatitis C virus.

10

- 12. The composition of claim 11 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, 33-38 in the 5'UT region, and 52-57 in the core region.
- 13. The composition of claim 11 wherein said
 20 non-naturally occurring nucleic acid has a sequence
 corresponding to a sequence of a second genotype which
 second genotype is defined substantially by sequences
 numbered 7-12 in the NS5 region, 26-28 in the envelope
 1 region, 39-45 in the 5'UT region, and 58-64 in the
 core region.

- 14. The composition of claim 11 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, 46-47 in the 5'UT region and 65-66 in the core region.
- 15. The composition of claim 11 wherein said

 10 non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.
- 16. The composition of claim 11 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region and 50-51 in the 5'UT region.
- 17. The composition of claim'l wherein said non-naturally occurring nucleic acid is capable of
 25 priming a reaction for the synthesis of nucleic acid to form a nucleic acid having a nucleotide sequence corresponding to hepatitis C virus.

- 18. The composition of claim 1 wherein said non-naturally occurring nucleic acid has label means for detecting a hybridization product.
- 5 19. The composition of claim 1 wherein said non-naturally occurring nucleic acid has support means for separating a hybridization product from solution.
- 20. The composition of claim 1 wherein said
 non-naturally occurring nucleic acid prevents the
 transcription or translation of viral nucleic acid.
 - 21. A method of forming a hybridization product with a hepatitis C virus nucleic acid comprising the following steps:
- a. placing a non-naturally occurring nucleic acid having a nucleotide sequence of eight or more nucleotides corresponding to a non-HCV-1 sequence in the hepatitis C viral genome into conditions in which hybridization conditions can be imposed said non-naturally occurring nucleic acid capable of forming a hybridization product with said hepatitis C virus nucleic acid under hybridization conditions; and

- b. imposing hybridization conditions to form a hybridization product in the presence of hepatitis C virus nucleic acid.
- 5 22. The method of claim 21 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence in the hepatitis C virus genome corresponds to a sequence within at least one of the regions consisting essentially of NS5 region, envelope 1 region, 5'UT region, and the core region.
 - 23. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponds to a sequence within the NS5 region.
 - 24. The method of claim 23 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponds to a sequence within sequences numbered 2-22.
 - 25. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponds to a sequence within the envelope 1 region.

26. The method of claim 25 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence is selected from a sequence within sequences numbered 24-32.

5

- 27. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponding to a sequence within the 5'UT region.
- 10 28. The method of claim 27 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence selected from a sequence within sequences numbered 34-51.
- 29. The method of claim 21 wherein said nucleotide 15 sequence corresponds to a non-HCV-1 sequence corresponding to a sequence within the core region.
 - 30. The method of claim 29 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence selected from a sequence within sequences numbered 53-66.
 - 31. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 nucleotide sequence corresponding to one or more genotypes of hepatitis C

25 virus.

- 32. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, 33-38 in the 5'UT region, and 52-57 in the core region.
- 33. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a second genotype which second genotype is defined substantially by sequences numbered 7-12 in the NS5 region, 26-28 in the envelope 1 region, 39-45 in the 5'UT region, and 58-64 in the core region.
- 15 34. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, 46-47 in the 5'UT region and 65-66 in the core region.
- 35. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.

- 36. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region and 50-51 in the 5'UT region.
- 37. The method of claim 21 wherein said hybridization product is capable of priming a reaction for the synthesis of nucleic acid.
- 38. The method of claim 21 wherein said non-naturally occurring nucleic acid has label means for detecting a hybridization product.
- 15 39. The method of claim 21 wherein said non-naturally occurring nucleic acid has support means for separating the hybridization product from solution.
- 40. The method of claim 21 wherein said non-naturally occurring nucleic acid prevents the transcription or translation of viral nucleic acid.
- 41. As a composition of matter, a non-naturally occurring polypeptide corresponding to a non-HCV-1 nucleotide sequence of nine or more nucleotides which sequence of nine or more nucleotides corresponds to a sequence within hepatitis C virus genomic sequences.

- 42. The composition of claim 41 wherein said non-HCV-1 sequence is selected from one of the regions consisting of NS5 region, envelope 1 region, and the core region.
- 5 43. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence corresponds to a sequence in the NS5 region.
- 44. The composition of claim 43 wherein said non-HCV-1 sequence is selected from a sequence within sequences numbered 2-22.
- 45. The composition of claim 41 wherein said non-HCV-1 sequence corresponds to a sequence in the envelope 1 region.
 - 46. The composition of claim 45 wherein said non-HCV-1 sequence is selected from a sequence within sequences numbered 24-32.
 - 47. The composition of claim 41 wherein said non-HCV-1 sequence corresponds to a sequence in the core region.
- 48. The composition of claim 47 wherein said non-HCV-1 sequence is selected from a sequence within sequences numbered 52-66.

- The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a nucleotide sequence corresponding to one or more genotypes of hepatitis C virus.
- The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, and 52-57 10 in the core region.
- The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a second genotype which second genotype is 15 defined substantially by sequences numbered 7-12 in the NS5 region, 26-28 in the envelope 1 region, and 58-64in the core region.
- The composition of claim 41 wherein said non-HCV-1 20 nucleotide sequence has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, and 65-66

- 53. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.
- 54. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region and 50-51 in the 5'UT region.
- 55. The composition of claim 41 wherein said15 polypeptide is capable of generating an immune reaction in a host.
 - 56. An antibody capable of selectively binding to the composition of claim 41.
 - 57. A method of detecting one or more genotypes of hepatitis C virus comprising the following steps:
- a) placing a non-naturally occurring nucleic acid having a nucleotide sequence of eight or more nucleotides corresponding to one or more genotypes of hepatitis C virus under conditions where hybridization conditions can be imposed,

- b) imposing hybridization conditions to form a hybridization product in the presence of hepatitis
 C virus nucleic acid; and
- c) monitoring the non-naturally occurring nucleic acid for the formation of a hybridization product, which hybridization product is indicative of the presence of the genotype of hepatitis C virus.
- 58. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, 33-38 in the 5'UT region, and 52-57 in the core region.
- 59. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a second genotype which second genotype is defined substantially by sequences numbered 7-12 in the NS5 region, 26-28 in the envelope 1 region, 39-45 in the 5'UT region, and 58-64 in the core region.

- 60. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, 46-47 in the 5'UT region and 65-66 in the core region.
- 61. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.
- 15 62. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region.

20

63. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 67-145.

- 64. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 69, 71, 73 and 81-99 to identify Group I genotypes in the core and region of the HCV genome.
- 65. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 70, 72, 70 and 100-118 to identify Group II genotypes in the core and envelope regions of the HCV genome.
- 66. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 77 to identify Group III genotypes in the 5' UT region of the HCV genome.
- 67. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence numbered 79 to identify Group IV genotypes in the 5' UT region of the HCV genome.

ć

Fig. 1

2/2-1

Fig. 2a

SEQUENCE		1) (1 (1 (1	00000000000000000000000000000000000000
ID NUMBER	GENOTYPE		
## ## ## ## ## ## ## ##	11 11 11 11 11 11 11 11 11	H H H H	
1	GI	,	CTCCACAGTC ACTGAGAGCG ACATCCGTAC GGAGGAGGCA ATCTACCAAT GTTGTGACCT CGACCCCAA
2		-	CICCACAGIC ACTGAGAGCG ACAICCGIAC GGAGGAGGCA AITIACCAAT GIIGIGACCI GGACCCCCAA
က		-	CICCACAGIC ACTGAGAGCG ACAICCGIAC GGAGGAGGCA AICIACCAAI GIIGIGAICI GGACCCCCAA
4		1	CTCTACAGTC ACTGAGAACG ACATCCGTAC GGAGGAGGCA ATTTACCAAT GTTGTGACCT GGACCCCCAA
Z.		-	CICCACAGIC ACTGAGAGCG ATAICCGIAC GGAGGAGGCA AICIACCAGI GIIGIGACCI GGACCCCCAA
9		٦,	CICIACAGIC ACIGAGAGCG AIAICCGIAC GGAGGAGGCA
ti ii ii ii ii ii ii ii ii ii	GII	9 9 9 8 7	CTCCACAGTC ACTGAGATG ACACCCGTGT TGAGGAGTCA ATTTACCAAT GTTGTGACTT GGCCCCCGAA
8		7	CICAACGGIC ACIGAGAAIG ACAICCGIGI IGAGGAGICA AITIACCAAA GIIGIGACII GGCCCCCGAG
6		-	CICAACGGIC ACCGAGAAIG ACAICCGIGI IGAGGAGICA AITIAICAAI GIIGIGCCII GGCCCCCGAG
10		-	CTCAACGGTC ACTGAGAGTG ACATCCGTGT CGAGGAGTCG ATTTACCAAT GTTGTGACTT GGCCCCCGAA
11		-	CICCACAGIC ACIGAGAGIG ACAICCGIGI IGAGGAGICA AITIACCAAI GIIGIGACII GGCCCCCGAA
12		-	CICAACAGIC ACIGAGAGIG ACAICCGIGI IGAGGAGICA AICIACCAAI GIIGIGACII GGCCCCCGAA
11 11 11 11 11 11 11 11	H H H H H H	14 11 61 11	
13	GIII	-	CICAACCGIC ACIGAGAGAG ACAICAGAAC IGAGGAGICC AIAIACCGAG CCIGCICCCI GCCIGAGGAG
14		-	CICIACAGIC ACGIAAAAGG ACAICACAIC CIAGGAGICC AICIACCAGI CCIGIICACI GCCCGAGGAG
15		~ -	CICIACAGIC ACAGAGAGG ACAICAGAAC CGAGGAGICC AICIAICIGI CCIGCICACI GCCIGAGGAG
16		٦	CICIACAGIC ACGGAGAGGG ACAICAGAAC CGAGGAGICC AICIAICIGI CCIGIICACI GCCIGAGGAG
17		-	CICAACCGIC ACGGAGAGGG ACATAAGAAC AGAAGAAICC ATATAICAGG GIIGTICCCI GCCICAGGAG
18	GV	1 1 1	CTCGACCGTT ACCGAACATG ACATAATGAC TGAAGAGTCT ATTTACCAAT CATTGTACTT GCAGCCTGAG
19		7	CICGACCGIT ACCGAACAIG ACATAAIGAC IGAAGAGICC AITTACCAAI CAITGIACII GCAGCCIGAG
		= -	nnennennennennennennennennennennennenne
21	•		TCGACTGTC ACTGAACAGG ACATCAGGGT GGAAGAGGAG ATATACCAAT GCTGTAACCT
22		-	CICAACIGIC ACTGAACAGG ACAICAGGGI GGAAGAGGAG ATATACCAAI GCIGIAACCI IGAACCGGAG
H H H H H H	11 11 11 11 11 11 11	11 11 11 11	

3/21

Fig. 2b uss region - (2/5)

SEQUENCE			
MBER	GENOTYPE		
: : : : : : :	61	71	GCCCCCCTGC CCATCAAGTC CCTCACGAG AGGCTTTATG TTGGGGGCCC TCTTACCAAT TCAAGGGGG
2	CI	7.1	GCCCCCATGG CCATCAAGTC CCTCACTGAG AGGCTTTATG TCGGGGGCCC TCTTACCAAT TCAAGGGGGG
٣	CI	71	GCCCGCGTGG CCATCAAGTC CCTCACTGAG AGGCTTTACG TTGGGGGCCC TCTTACCAAT TCAAGGGGGG
4	GI	7,1	GCCCGCGTGG CCATCAAGTC CCTCACTGAG AGGCTTTATG TTGGGGGCCC CCTTACCAAT TCAAGGGGGG
5	61	71	GCCCGCGTGG CCATCAAGTC CCTCACCGAG AGGCTTTATG TCGGGGGCCC TCTTACCAAT TCAAGGGGGG
9	CI	71	GCCCGIGIGG CCATCAAGIC CCICACIGAG AGGCIFIAIG IIGGGGGCCC ICTIACCAAI ICAAGGGGGG
H H H H H H H H H H H H H H H H H H H	13 15	11 11 11 11	
-	110	7 /	SCHAGALAGG CHAIAAGGIL GEILAGAGA CGGEILIAIG ILGGGGGILL IAIGALIAAL ILLAAAGGG
8		71	GCCAGACAAG CCATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGCCC CCTGACTAAT TCAAAAGGGC
6		7.1	GCTAGACAGG CCATAAGGTC GCTCACAGAG CGCCTTTATA TCGGGGGCCC CCTGACCAAT TCAAAGGGGC
10		11	GCCAGGCAGG,CCATAAGGTC GCTCACCGAG CGACTTTATA TCGGGGGCCC CCTGACTAAT TCAAAAGGGC
11		7.1	GCCAGACAGG CTATAAGGTC GCTCACAGAG CGGCTGTACA TCGGGGGTCC CCTGACTAAT TCAAAAGGGC
12		7.1	GCCAGACAGG CTATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGTCC CCTGACTAAT TCAAAAGGGC
11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11	11 11 11 11 11	
13	GIII	7.1	GCTCACATTG CCATACACTC GCTGACTGAG AGGCTCTACG TGGGAGGGCC CATGTTCAAC AGCAAGGGCC
14		7.1	GCTCGAACTG CTATACACTC ACTGACTGAG AGACTATACG TAGGGGGGCC CATGACAAAC AGCAAGGGCC
15		7.1	GCCCGAACTG CTATACACTC ACTGACTGAG AGACTGTACG TAGGGGGGCC CATGACAAAC AGCAAGGGGC
16		71	GCTCGAACTG CCATACACTC ACTGACTGAG AGGCTGTACG TAGGGGGGCC CATGACAAAC AGCAAAGGGC
17		71	GCIAGAACTG CIATCCACTC GCTCACTGAG AGACTCTACG TAGGAGGGCC CATGACAAAC AGCAAĞGGAC
	.======== GV	71	GCGCGTGTGG CAATACGGTC ACTCACCAA CGCCTGTACT GTGGAGGCCC CATGTATAAC AGCAAGGGC
19		71	GCACGCGCG CAATACGGTC ACTCACCCAA CGCCTGTACT GTGGAGGCCC CATGTATAAC AGCAAGGGC
	#1 #1	68 68 68 61 61	8 H Q 4 H H H H H H H H H H H H H H H H H
20	CIV	7.1	CAGGAAAG TGATCTCCTC CCTCAGGAG CGGCTTTACT GCGGGGGCCC
21		71	GCCAGGAAAG TGATCTCCTC CCTCACGGAG CGGCTTTACT GCGGGGCCC TATGTTCAAT AGCAAGGGG
2.2		71	GCCAGGAAAG TGATCTCCTC CCTCACGGAA CGCCTTTACT GCGGGGCCC TATGTTCAAC AGCAAGGGGG
25 21 21 21 21 21 21 21 21 21	19 19 11 11 11 11 11 11	11 11 11 11 11	

Fig. 2c NS5 REGION - (3/5)

EQUENCE D NUMBER	GENOTYPE	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1) 1 11 1 11 1 11 1 11 1 11 1
1 1	1 19	141 141 141 141 141	AGAACTGCGG CTATCGCAGG TGCCGCGCG GCGCGTACT GACAACTAGC TGTGGTAACA CCCT AGAACTGCGG CTATCGCAGG TGCCGCGCGA GCGGCGTACT GACAACTAGC TGTGGTAACA CCCT AGAACTGCGG CTACCGCAGG TGCCGGGCGA GCGGCGTACT GACAACTAGC TGTGGTAATA CCCT AAAACTGCGG CTATCGCAGG TGCCGCGCGA GCGGCGTACT GACAACTAGC TGTGGTAATA CCCT AAAACTGCGG CTATCGCAGG TGCCGCGCAA GCGGCGTACT GACAACTAGC TGTGGTAACA CCCT AAAACTGCGG CTATCGCAGG TGCCGCGCAA GCGGCGTACT GACAACTAGC TGTGGTAACA CCCT
7 7 8 9 9 10 11 12	611	141 141 141 141 141 141	AGAACTGCGG CTATCGCCGG TGCCGCGCGA GCGGCGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG AGAACTGCGG CTATCGCCGG TGCCGCGCCA GCGGCGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG AGAACTGCGG TTATCGCCGG TGCCGCGCCA GCGGCGTACT GACGACCAGC TGCGGTAATA CCCTTACATG AGAACTGCGG TTATCGCCGG TGCCGCGCGA GCGGCGTACT GACGACTAGC TGCGGTAATA CCCTCACATG AGAACTGCGG TTATCGCCGG TGCCGCGCAA GCGGCGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG AGAACTGCGG CTATCGCCGG TGCCGCGCAA GCGGCGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG
13	1115	141 141 141 141 141	AGACCTGCGG GTACAGGCGT TGCCGCGCCA GCGGGGTGCT CACCACTAGC ATGGGGAACA CCATCACATG AATCCTGCGG GTACAGGCGT TGCCGCGCGA GCGCAGTGCT CACCACCAGC ATGGGCAACA CACTCACGTG AATCCTGCGG GTACAGGCGT TGCCGCGCGA GCGGAGTGCT CACCACCAGC ATGGGCAACA CGCTCACGTG AATCCTGCGG GTACAGGCGT TGCCGCGCGA GCGGAGTGCT CACCACCAGC ATGGGGAATA CACTCACGTG AATCCTGCGG TTACAGGCGT TGCCGCGCCA GCGGGGTCTT CACCACCAGC ATGGGGAATA CCATGACATG
		141	AACAATGTGG TTATCGTAGA TGCCGCGCCA GCGGCGTCTT CACCACTAGT ATGGGCAACA AACAATGTGG TTACCGTAGA TGCCGCGCCA GCGGCGTCTT CACCACAGT ATGGGCAACA
20 21 22 22	OIV E	141	

4/2/

5/21

Fig. 2d NSS REGION - (4/5)

6/21

Fig. 2e

NSS REGION - (5/5)

GI 28 GACTTAGTCG TTATCTGTGA AAGTGGGGGG GTCCAGGAGG CCTGAGAGCC 28 GACTTAGTCG TTATCTGTGA AAGTGGGGGG GTCCAGGAGG CCTGAGAGCC 28 GACTTAGTCG TTATCTGTGA AAGTGGGGGG GTCCAGGAGG ACCGGGCGA CTTGAGACC 28 GACTTAGTCG TTATCTGTGA AGTGCGGGG GTCCAGGAGG ACCGGGCGA CTTGAGACC 28 GACTTAGTCG TTATCTGTGA AGTGCGGGG GTCCAGGAGG ACCCAGGAG CCTGAGACC 28 GACTTAGTCG TTATCTGGA AGTGCGGGG GTCCAGGAGG ACCCAGGAG CCTGAGACC 28 GACTTAGTCG TTATCTGGA AAGTGCGGGG GTCCAGGAGG ACCCAGGAG CCTGAGACC 28 GACTTGTCG TTATCTGGA AAGTGCGGGG GTCCAGGAGG CCTCAGGAGC CTACGAGTC 28 GACTTGTCG TTATCTGGA AAGTGCGGGG ACCCAAGAGG ACCCAGGAGG CCTCAGAGCC 28 GACTTGTCG TTATCTGGA AAGTGCGGGG ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTGGA AAGTGCGGGGG ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTGGA AAGTGCGGGGG ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTGGA AAGTGCGGGG ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTGGA AAGTGCGGGGG ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTGGA AAGTGCGGGGG ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTGGA AGCGCGGGGA ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTCTGA AGCGCGGGGA ACCCAAGAGG CCTCAGGACC 28 GACTTGTCG TTATCTCTGA AGCGCGGGGA ACCCAAGAGG CCTCAGGAGC CTACAGATC 28 GACTTGTCG TTATCTCTGA AGCCGCGGGA ACCCAAGAGG CCTCAGGAGC CTACAGATC 28 GACTTGTCG TTATCTCTGA AGCCGCGGGA ACCCAAGAGG CCTCAGGAGC CTACAGAGC 28 GACTTGTCG TTATCTCTGA AGCCGCGGGA ACCCAAGAGG ACCCAAGAGG CCTCAGGAGC CTACAGAGC 28 GACTTGTCG TTATCTCTGA AGCCGCGGGA ACCCAAGAGG ACCCAAGAGG CCTCAGAGACC 28 GACTTGTCG TTATCTGAG AGCCGCGGG ACCCAAGAGG ACCCAAGAGG CCTCAGAGACC 28 GACTTGTCG TTATCTGAG AGCCGCGGG ACCCAAGAGG ACCAAGAGG ACCAAGA	SEQUENCE ID NUMBER	GENOTYPE		
7 GII 281 8 281 9 281 10 281 11 281 12 281 13 GIFI 281 14 281 15 281 16 281 17 281 18 GV 281 19 GV 281 20 GIV 281 21 281	1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	19 19 19	II	TTATCTGTGA AAGCGGGGG GTCCAGGAGG ACGCGGCGAG CCTG TTATCTGTGA AAGTGCGGGG GTCCAGGAGG ACGCGGCGAG CCTG TTATCTGTGA AAGTGCGGGG GTCCAGGAGG ACGCGGCGAG CCTG TTATCTGTGA GAGTGCGGGG GTCCAGGAGG ACGCGGCGAG CCTG TTATCTGTGA GAGTGCGGGA GTCCAGGAGG ACGCGGCGAA CTTG TTATCTGTGA AAGTCAGGGA GTCCAGGAGG ACGCGGCGAA CCTG
14 281 15 281 16 281 17 281 18 GV 281 19 281 20 GIV 281 21 281	10 10 11 12 13 13	G111 G111	H H	TTATCTGTGA AAGCGGGGG AACCAAGAGG ACGCGGCAAG TTATCTGTGA AAGCGCGGGA ACCCAGGAGG ATGCGGCGAAG TTATCTGTGA AAGCGCGGGA ACCCAGGAGG ACGCGGCGAA TTATCTGTGA GAGCGCGGGA ACCCAAGAGG ACGCGGCGAG TTATCTGTGA GAGCGCGGGA ACCCAAGAGG ACGCGGCGAG TTATCTGTGA GAGCGCGGGA ACCCAAGAGG ACGCGGCGAG TTATCTGTGA AAGCCGGGGA ACCCAAGAGG ACGCGGCGAG TTATCTGTGA AAGCCAGGGG ACTGAGGAGG ACGCGCGAAGAGG ACGCGCGGAGGAGGAGGAGGAAACCAAGAGGAGAAACCAAGAGGAG
18 GV 281 19 281 20 GIV 281 21 281 22 281	14 15 16		281 281 281 281 281	TCATCTCAGA GAGTCAAGGG GCTGAGGAGG ACGAGCAGAA CCTGAGAGTC TCATCTCAGA GAGTCAGGGG GTCGAGGAAG ATGAGCGGAA CCTGAGAGTC TCATCTCAGA GAGTCAAGGG GTCGAGGAGG ATGAGCGAAA CCTGAGAGCT TCATCTCAGA GAGCGAAGGT AACGAGGAGG ACGAGCGAAA CCTGAGAGCT
20 GIV 281 21 281 22 281	18	8	281 281 281	GATCTIGIGG CCATTIGCGA GAGCCAGGGG ACGCACGAGG ATAAAAGCGAG CCTGAGAGCC ACCTIGGIGG CCATTIGCGA GAGCCAAGGG ACGCACGAGG ATGAAGCGIG CCTGAGAGTC
	2 2 2	010	281 281 281 281	GATCTGGTCG TGGTGGCTGA GAGTGATGGC GATCTGGTTG TGGTGGCTGA GAGTGATGGC GATCTGGTTG TGGTGGCTGA GAGTGATGGC

340 TOTAL

GGGAGGACAC TGGGGCGTGA TGTTTGGCCT GGCTTATTTC

61

GIII

7/2/

ENVELOPE REGION

EQUENCE D NÚMBER	GENOTYPE	11 12 14 15 16 16	
23 23 24 25	ID		GACGGCGTTG GTAATGGCTC AGCTGCTCCG GATCCCACAA GCCATCTTGG ACATGATCGC GACGGCGTTG GTGGTAGCTC AGGTACTCCG GATCCCACAA GCCATCATGG ACATGATCGC AACGGCGCTG GTAGTAGCTC AGCTGCTCAG GGTCCCGCAA GCCATCGTGG ACATGATCGC
20 27 28	1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11	GOCAGCCCTA GIGGIGICG AGITACICCG GAICCCACAA GCCGTCAIGG ATAIGGIGGC AGCAGCCCTA GIGGIGICGC AGITACICCG GAICCCACAA AGCAICGIGG ATAIGGIGGC GGCAGCCCTA GIGGIGICGC AGITACICCG GAICCCGCAA GCIGICGIGG ACAIGGIGGC
29 30 31	HI B B I B I B I B I B I B I B I B I B I	11 11 11	TGTGGGTATG GTGGTGGCGC ACGTCCTGCG TTTGCCCCAG ACCTTGTTCG ACATAATAGC TGTGGGTATG GTGGTAGCAC ACGTCCTGCG TCTGCCCCAG ACCTTGTTCG ACATAATAGC TGTGGGTATG GTGGTGGCGC AAGTCCTGCG TTTGCCCCAG ACCTTGTTCG ACGTGCTAGC
		H II	TACCACTATG CTCCTGGCAT ACTTGGTGCG CATCCCGGAG GTCATCCTGG ACATTATCAC
23 24 25 25	19	===5= 61 61 61	TECTCAC TEGEGAGICC TEGEGEGAT AGCGTATTIC AGCCCAC TEGEGAGICC TEGEGEGAT AGCGTATTIC TECCCAC TEGEGAGICC TEGEGEGEAT AGCGTATTIC
26 27 28	119	61 61 61	GGGGGCCCAC TGGGGAGTCC TGCCGGGCCT TGCCTACTAT GGGGGCCCAC TGGGGAGTCC TGCCGGGCCT TGCTTACTAT GGGGGCCCAC TGGGGAATCC TAGCGGGTCT TGCCTACTAT
29 30 31	OIV	61 61 61	CGGGCCCAT TGGGCATCT TGGCGGCTT GGCCTATTAC CGGGCCCCAT TGGGCATCT TGGCAGGCCT AGCCTATTAC CGGGCCCCAT TGGGGCATCT TGGCAGGCCT AGCCTATTAC

8/21

Fig. 4a

'UT Regior

EQUENCE D NUMBER	GENOTYPE); 	
333333333333333333333333333333333333333	19		TGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC A'
39 40 41 42 43 45	119		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT
46 47 48 49			GCTAGTATCA GTGTCGTACA GCCTCCAGGC CCCCCCTCC CGGGAGAGCC GTTAGTATGA GTCTCGTACA GCCTCCAGGC CCCCCCTCC CGGGAGAGCC =============================
50			GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCCTCC CGGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCCTCC CGGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCCTCC CGGGAGAGCC ATAGTGGTCT ================================

Fig. 4b

11	ii 6	11 51 49 11 11 31	
D NUMBER	ָב פֿר	 	
33	G1	61	AACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT
34		61	TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT
35		61	TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT
36		61	TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT
37		61	
38		61	CCV
H H H H H H H	11 11 11 13 13 13 13 14	15 11 11 11	15
39	.119	61	011111111
40		61	
41		61	GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTCTT GGATCAACCC
42		61	TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT
43		61	
44		61	GICCILICIL
45		61	GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC
11 12 13 11 11 11 11 11	11 11 11 11 11 11 11	H H H H	11
46	GIII		
47		61	GCGGAACCGG TGAGTACACC GGAATTGCTG GGAAGACTGG GTCCTTTCTT GGATAAACCC
11 11 11 11 11 11 11	11	51 13 14 14 14	CONTRACTOR OF THE THE TREE TERMS TO SECOND THE TREE TREE TREE TREE TREE TREE TREE
48	CIV	61	GCGGAACCGG TGAGIACACC GGAAICGCIG GGGAACCGG GICCGIAIAGGGGGAACGGGGAACGGGGGAACGGGGGAACGGGGGGAACGGGGGG
49		61	GCGGAACCGG TGAGTACACC GGAATCGCTG GGGTGACCGG GTCTTTTT 66A61AACCC
# C		=======================================	GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT GGATAAACCC
3 :	;	; ;	GERRAACEG TEAGTACACE GGAATTGCCG GGATGACCGG GTCCTTTCTT GGATAAACC
16		10	
11 11 11 11 11 11 11 11	11 12 13 14 14 14 14 14 14 14 14	11 31 11 11 11	

10/21

Fig. 4

5'UT Region (3/5)

EQUENCE D NUMBER	GENO'	1) 31 11	
33 33 34 35 35 37 38	11	121 121 121 121 121 121 121	TGGAGATITG GGCGTGCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT TGGAGATITG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT TGGAGATITG GGCACGCCC CGCAAGATCA CTAGCCGAGT AGTGTTGGGT TGGAGATITG GGCGTGCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT TGGAGATITG GGCGTGCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT TGGAGATITG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT
44 45 45 45 45	I D	121 121 121 121 121 121 121	GCTCAATGCC TGGAGATTTG GGCGTGCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT GCTCAATGCC TGGAGATTTG GCCGTGCCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT
46	6111	121	ACTCTATGCC CGGCCATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGCGTTGGG ACTCTATGCC CAGCCATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGCGTTGGG
4.9	GIV	121	GCTCAATACC CAGAAATTTG GGCGTGCCCC CGCGAGATCA CTAGCCGAGT AGTGTTGGGT GCTCAATACC CAGAAATTTG GGCGTGCCCC CGCGAGATCA CTAGCCGAGT AGTGTTGGGT
50	ΛS	121	GCTCAATGCC CGGAGATTTG GGCGTGCCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT GCTCAATGCC CGGAGATTTG GGCGTGCCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT

Fiq. 4d

ENVELOPE REGION (4/5)

EQUENCE D NUMBER	GENOTY		
33 33 35 37 38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	181 181 181 181 181 181	GAAAGGC CTTGTGGTAC TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT GAAAGGC CTTGTGGTAC TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT
======================================	1 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	181 181 181 181 181 181 181	CGCGAAAGGC CTTGTGGTAC TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT
46		181	11 11 14 11
4 8	OID	181	
11 11 11 11 11 11	H H H H H H H H	14 14 14 14 14 14	1

12/2/

Fig. 4e

SEQUENCE			
ID NUMBER	GENOTYPE		
	11 11 11 11 11 11 11 11	11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11
33	GI	241	AGACCGTGCA CC
34		241	AGACCGIGCA CC
35		241	AGACCGIGCA CC
36		241	AGACCGTGCA CC
37		241	AGACCGTGCA CC
38		241	AGACCGIGCA CC
11 11 11 11 11 11 11	11 12 11 11 11 11 11	11 11 12 14 14 15 11	
39	G11 J	241	AGACCGIGCA CC
40		241	AGACCGTGCA TC
41		241	AGACCGIGCA CC
42		241	AGACCGIGCA CC
43		241	AGACCGIGCA CC
44		241	AGACCGIGCA CC
45		241	AGACCGIGCA CC
46	GIII	241	AGACCGTGCA TC
47		241	AGACCGTGCA TC
11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	11 11 11 11 11	11
48	GIV	241	AGACCGTGCA AC
49		241	AGACCGTGCA AC

252 Total

Fig. 5a

CORE REGION

NUMBER	ID NUMBER GENOTYPE						
52	######################################	51 11 11 11 11 11 11 11	11 11	GA ATCCTABANC T	TCAAAAAAA	AACAAACGTA	saassassassassassassassassassassassassa
53	}	. ~	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCANACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG TCGCCCACAG
54		1	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG TCGCCCACAG
52		1	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG TCGCCCACAG
26		-	ATGAGCACGA	ATCCTAAACC	TCAAAGAAGA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAGA ACCAAACGTA ACACCAACCG TCGCCCACAG
57		7	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG TCGCCCACAG
58	611	-4	ATGAGCACGA	ATCCTAAACC	TCAAAGAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG CCGCCCACAG
50	ı	_	ATGAGCACAA	ATCCTABACC	TCAAAGAAAA	ACCAAACGTA	ATTABLE ATTITIONABLE TEAAAGAAA ALCAAACGTA ACACCAACG CCGCCACAG
09		ı	ATGAGCACAA	ATCCTAAACC	CCAAAGAAAA	ACCAAACGTA	ATGAGCACAA ATCCTAAACC CCAAAGAAAA ACCAAACGTA ACACCAACCG TCGCCCACAG
61		7	ATGAGCACGA	ATCCTAAACC	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG	ACCAAACGTA	ACACCAACCG CCGCCCACAG
62		-	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG CCGCCCACAG
63		1	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG CCGCCCACAG
64		1	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACCG CCGCCACAG
65	IIID	# H	======================================	======================================	TCAAAGAAAA	ACCAAAAGAA	ATGAGCACAA ATCCTAAACC TCAAAGAAAA ACCAAAAGAA ACACTAACCG CCGCCCACAG
99		_	ATGAGGAGAA	ATCCTCAACC	TCAAAGAAAA	ACCANAGAA	ATTRACTACIA ATTCTTCAACC TCAAAGAAA ACCAAAAGAA ACACTAAACCG CCGCCCACAG

q

CORE REGION (2/9)

SEQUENCE			
ID NUMBER GENOTYP	GENOTYPE		
## ## ## ## ## ## ## ## ## ## ## ## ##	11 11 11 11 11 11 11 11	11 14 11	
52	19	61	GACGICAAGI ICCCGGGIGG CGGICAGAIC GIIGGIGGAG II:
53		61	GACGICAAGI ICCCGGGIGG CGGICAGAIC GIIGGIGGAG IT
54		61	GACGTIAAGI ICCCGGGIGG CGGÏCAGAIC GIIGGIGGAG II
55		61	GACGICAAGI ICCCGGGIGG CGGICAGAIC GIIGGIGGAG ITTACITGII
56		61	GACGICAAGI ICCCGGGIGG CGGICAGAIC GIIGGIGGAG ITIACIIGII GCCGCGCAGG
27		61	GACCICAAGI ICCCGGGIGG CGGICAGAIC GITGGIGGAG ITIACITGII GCCGCCAGG
58	GII	61	GACGITAAGI ICCCGGGCGG IGGCCAGGIC GIIGGIGGAG ITIACCIGII GCCGCGCAGG
59		61	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG ITIACCIGII GCCGCGCAGG
60		61	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG ILIACCIGII GCCGCGCAGG
61		61	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG ITIACIIGII GCCGCGCAGG
62		61	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG IIIACCIGII GCCGCGCAGG
63		61	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG IIIACIIGII GCCGCGCAGG
64		61	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG IIIACCIGII GCCGCGCAGG
11 11 11 11 11 11 11 11 11 11 11 11 11	######################################	=======================================	GACGICAAGI ICCCGGCCGG IGGCCAGAIC GIIGGCGGAG TAIACTIGCI GCCGCCAGG
		61	GACGICAAGI ICČCGGGCGG IGGICAGAIC GIIGGCGGAG IAIACIIGII GCCGCGCAGG

14/21

Fig. 50

CORE REGION (3/9)

	GCCCTAGAT TGGGTGTGG CGCGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	GGCCCTAGAI IGGGIGIGG CGCGACGAGG AAGACTICCG AGCGGICGCA ACCICGAGGI GGCCCTAGAI IGGGIGIGG CGCGACGAGG AAGACTICCG AGCGGICGCA ACCICGAGGI	GGCCCTAGAT TGGGTGTGCG CACGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT	GCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT	GGCCCTAGAT TGGGIGIGGG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGT	GGCCCCAGGT TGGGTGTGG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA	GÓCCCCAGGI IGGGIGIGGG CGCGACIAGG AAGACIICCG AGCGGICGCA ACCICGIGGA	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTICCG AGCGGTCGCA ACCTCGTGGA	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA	***************************************	GOCCEGAGAI IGGGIGIGEG FOCGAFGAGG AAAALIICEG AACGAIECEA GELALGEGGA	GGCCCCAGGT TGGGTGTGCG CGCGACGAGG AAAACTTCCG AACGGTCCCA GCCACGTGGG
	14 14 14	121 GGCCCTAGAT TO	121 GGCCCTAGAT TO	121 GGCCCTAGAT TO	121 GGCCCTAGAT TO	121 GGCCCCAGGT TO	121 GGCCCCAGGT TO	121 GGCCCCAGGT TO	121 GCCCCCAGGT TO	121 GGCCCCAGGT TO	121 GGCCCCAGGT TO	121 GGCCCCAGGT TO	11 11 11	121 GGCCCGAGAI I	121 GGCCCCAGGT T
GENC	GI					GII							1! 11 + 11 + 11 C	1110	
ER	2 2 2	77 4 *	5	9	7	 8	6	09	61	62	3	₹.	## ## ## ##	C	99

16121

Fig. 5d

CORE REGION (4/9,)

SEQUENCE ID NUMBER 52 53 54 55 56 60 61 63		181 181 181 181 181 181 181 181 181 181		GGCTCGTCG CCCGAGGGCCTCGG CCCGAGGGCCTCGG CCCGAGGGCTCGG CCCGAGGGCACCTCGG CCCGAGGGCACCTCGG CCCGAGGGCTCGCCAGGGCTCGCCAGGGCTCGCCAGGGCTCGCCAGGGCTCGCCGGG CCCGAGGGCTCGCCGGG CCCGAGGGCTCGCCGG CCCGAGGGCTCCCCAGGCCCCGAGGCCCCGAGGCCCCGAGGCCCCAGGCCCCGAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCACGAGCCCCAGGCCCCACGCCCCACGCCCCACGCCCCACGCCCCCACGCCCCACGCCCCACGCCCCACGCCCCACGCCCCACGCCCCACCCCACCCCACCCCACCCACCCACCCCACCCACCCACCCACCCC	CCCGAGGGCA GGACCTGGGC TCAGCCCGGG CCCGAGGGCA GGCCTGGGC TCAGCCCGGG	TCAGCCCGGG
65 65 66	GIII	181	AGGCGCCAGC CCATCCCTAA AGATCGCCC ACCGCTGGCA AGTCCTGGGG AAGGCCAGGA AGGCGCCAGC CCATCCCCAA AGATCGCGC ACCACTGGCA AGTCCTGGGG GAAGCCAGGA	TCAGC CCATCCCTAA AGATCGTCGC ACCGCTGGCA AGTCCTGGGG AAGGCCAGGA	GGCA AGTCCTGGG GGCA AGTCCTGGGG	AAGGCCAGGA GAAGCCAGGA

Fig. 5e

CORE REGION (5/9)

ID NUMBER GENOT	YPE	11 11 14 14		11 11 11 11 11 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14
7	_	241	TACCCTTGGC CCCTCTATGG CAATGAGGGC TGCGGGTGGG CGGGATGGCT CCTGTCTCCC	G CGGGATGGCT CCTGTCTCCC
		241	TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG CGGGATGGCT CCTGTCTCCC	G CGGGATGGCT CCTGTCTCCC
54		241	TACCCTGGC CCCTCTATGG TAATGAGGGT TGCGGATGGG CGGGATGGCT CCTGTCCCCC	G CGGGATGGCT CCTGTCCCCC
55		241	TACCCTTGGC CCCTCTATGG CAATGAGGGC TGCGGGTGGG CGGGATGGCT CCTGTCTCCC	G CGGGATGGCT CCTGTCTCCC
56		241	TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG CGGGATGGCT CCTGTCTCCC	G CGGGATGGCT CCTGTCTCCC
57		241	TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG CGGGATGGCT CCTGTCTCCC	G CGGGATGGCT CCTGTCTCCC
	======= GII	241	TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC	G CAGGATGGCT CCTGTCACCC
59		241	TACCCTTGGC CCCTCTATGG CAACGAGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC	G CAGGATGGCT CCTGTCACCC
09		241	TACCCTTGGC CCCTCTATGG CAACGAGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC	G CAGGATGGCT CCTGTCACCC
61		241	TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGC	ATGGGGTGGG CAGGGTGGCT CCTGTCCCCC
62		241	TAICCITGGC CCCICTAIGG CAAIGAGGGI CIGGGGIGGG CAGGAIGGCI CCIGICACCC	G CAGGATGGCT CCTGTCACCC
63		241	TACCCTIGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC	G CAGGATGGCT CCTGTCACCC
64		241	TACCCCTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG CAGGATGGCT CCTGTCACCC	G CAGGATGGCT CCTGTCACCC
======================================	GIII	======================================	TATCCTTGGC CCCTGTATGG GAATGAGGGT CTCGGCTGGG CAGGGTGGCT CCTGTCCCC	G CAGGGIGGCI CCIGICCCC
94		241	TACCETTGG CCCTTTATGG GAATGAGGT CTCGCCTGGG CAGGGTGGCT CCTGTCCCCC	se casserser cersteece

18/2/

Fig. 51

CORE REGION (6/9)

D NUMBER	ID NUMBER GENOTYPE							
52	ID	301	11	GGCCTAGCTG G	GGGCCCCACA	GACCCCCGGC	CGTGGCTCTC GGCCTAGCTG GGGCCCCACA GACCCCCGGC GTAGGTCGC CAATTTGGGT	CAATTTGGGT
53		301	CGTGGCTCTC	GGCCTAGTTG	GGCCCCCACA	GGGCCCCACA GACCCCGGC GTAGGTCGCG	GTAGGTCGCG	CAATTTGGGT
54		301	CGTGGCTCTC	GGCCTAGTTG	GGGCCCTACA	GACCCCGGC	CGTGGCTCTC GGCCTAGTTG GGGCCCTACA GACCCCCGGC GTAGGTCGCG	CAATTTGGGT
55		301	CGTGGCTCTC	GGCCTAGCTG	GGGCCCCACA	GGGCCCCACA GACCCCGGGC GTAGGICGCG	GTAGGICGCG	CAATTTGGGT
56		301	CGCGGCTCTC	GGCCTAACTG		GGGCCCCACA GACCCCCGGC GTAGGTCGCG	GTAGGTCGCG	CAATTIGGGT
57		301	CGTGGCTCTC	GGCCTAGCTG	GGGCCCCACA	GACCCCCGCC	CGTGGCTCTC GGCCTAGCTG GGGCCCCACA GACCCCCGGC GTAGGTCGCG CAATTTGGGT	CAATTTGGGT
11 12 11 11 11 11 11 11	#1 #1 #1 #1 #1 #1 #1 #1	11 11 11 11 11		11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11 11 11	\$12 114 115 115 115 115 115 115 115 115 115	## ## ## ## ## ## ## ##
58	011	301	CGTGGCTCTC	GGCCTAGITG	GGGCCCCACG	GACCCCGGC	CGIGGCICIC GGCCIAGIIG GGGCCCCACG GACCCCCGGC GIAGGICGCG IAAIIIGGGI	TAATTTGGGT
59		301	CGTGGCTCTC	GGCCTAGTTG	GGGCCCCACG	GACCCCGGC	CGIGGCICIC GCCTAGIIG GGCCCCACG GACCCCGGC GIAGGICGCG IAATIIGGGI	TAATTTGGGT
09		301	CGCGGCTCCC	CGCGGCTCCC GGCCTAGTTG	GGGCCCCACG	GACCCCGGC	GGGCCCCACG GACCCCGGC GTAGGTCGCG TAATTTGGGT	TAATTTGGGT
61		301	cdcaacrccc	cdceecrece ecceraerre		GGGCCCCACA GACCCCGGC GTAGGTCGCG		TAATTTGGGT
62		301	CGCGGCTCTC	CGCGGCTCTC GGCCTAGCTG	GGGCCCTACC	GACCCCCGGC	GGGCCCTACC GACCCCGGC GTAGGTCGCG CAACTTGGGT	CAACTTGGGT
63		301	CGTGGTTCTC	CGTGGTTCTC GGCCTAGTTG	GGGCCCCACG	GACCCCGGC	GGGCCCCACG GACCCCGGC GTAGGTCGCG CAATTTGGGT	CAATTIGGGT
64		301	ລລາວອອລອລ	CGCGGCTCCC GGCCTAGTTG	GGGCCCCAAA	GGGCCCCAAA GACCCCGGC GTAGGTCGCG	GIAGGICGCG	TAATTTGGGT
======================================	GIII	301	CGTGGCTCTC	GCCCTTCATG	GGGCCCCACT	GACCCCGGC	CGTGGCTCTC GCCCTTCATG GGGCCCCACT GACCCCGGC ATAGATCGCG CAACTTGGGT	CAACTIGGGT
99		301	CGCGGTTCTC	CGCGGTTCTC GCCCTTCATG GGGCCCCACT GACCCCGGC ATAGATCACG CAACTTGGGT	GGGCCCCACT	GACCCCGGC	ATAGATCACG	CAACTTGGGT

Fig. 59

Fig. 5r

CORE REGION (8/9)

	GENOTYPE	ı	
502 503 504 504 504	0 I	421 421 421 421 421 421	421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC 421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCT CTGGCGCATG GCGTCCGGGT TCTGGAAGAC 421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC 421 GGCGCCCCTC TTGGAGGCGC TGCCAGAGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC 421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC 421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC 421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC
58 59 60 61 62 63	611	1 421 421 421 421 421 421 421	GGCGCCCCCC TTAGGGGCGC TGCCAGGGCC TTGGCGCATG GCGTCCGGGT TCTGGAGGAC GGCGCCCCCC TAGGGGCGC TGCCAGGGCC CTGGCACATG GTGTCCGGGT TCTGGAGGAC GGCGCCCCCC TAGGGGCGC TGCCAGGGCC CTGGCACATG GTGTCCGGGT TCTGGAGGAC GGCGCCCCCC TAGGGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC GGCGCCCCCC TAGGGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC GGCGCCCCCC TAGGGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC GGCGCCCCCT TAGGGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC GGCGCCCCCT TAGGGGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC
65	GI	421	11 421 GGCGCCCCCG TTGGAGGCGT TGCCAGAGCT CTCGCCCACG GAGTGAGGGT TCTGGAGGAT 421 GGTGCCCCCG TTGGTGGTGT CGCCAGAGCC CTTGCCCATG GGGTGAGGGT TCTGGAAGAC

J. 51

CORE REGION (9/9)

GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTGGCG CTGCTCTCTGGCG CTGCTCTCTGGCG CTGCTCTCTGGCG CTGCTCTTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTGGCG CTGCTCTCTGGCG CTGCTCTTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTGGCG CTGCTCTTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTGGCG CTGCTCTTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTGGCG CTGCTCTTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTTGGCGC CTGCTCTCTTGGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT TCTCTATCTT CCTTCTGGCC CTGCTCTCTTGGCGC CTGCTCTCTTGGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT TCTCTATCTT CCTCTTGGCT CTGCTGTCC GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT TCTCTATCTT CCTCTTGGCT CTGCTGTCC GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT TCTCTATCTT CCTCTTGGCT TTGCTGTCC GGCGGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT TCTCTATCTT CCTCTTGGCT TTGCTGCT TTGCTCTTT TTGCTGCT TTGCTGCT TTGCTGCT TTGCTGCT TTGCTGCT TTGCTGCT TTG	GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT TCTCTATCTT GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT TCTCTATCTTT GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT TCTCTATCTTTTTTTTTT	GCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT GGCGTGAACT ATGCAACAGG GAATCTGCCC GGTTGCTCTT GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT GCCATGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT GCCATGAACAGC GAATTTGCCC GGTTGCTCTT GCCATGAACAGC GAATTTGCCC GGTTGCTCTT GCCATGAACAGC GAATTTGCCC GGTTGCTCTTT GCCATGAACAGC GAATTTGCCC GGTTGCTCTT GCCATGAACAGC GAATTTGCCC GGTTGCTCTT GCCATGAACAGC GAACCTCCC GGTTGCTCTT GCCATGAACAGC GAACCTTCCT GCTTGCTCTTT GCCATGAACAGC GAACCTCCCC GGTTGCTCTTTTTTTTTT	GGCGTGAACT ATGCAACAGG		481 481 481 481 481 481 481 481 481 481	GENOTYPE	SEQUENCE ID NUMBER 110 NUMBER 52 53 54 55 56 60 61 62 63 64
		7770*71460 00	WINCHALA I	GGGALAHAII AIGCAACAGG GAAICIGCCC	401		00
		GGGATAAATT ATGCAACAGG GAATCTGCCC	r ATGCAACA	GGGATAAATI	481		99
					•		,
TT TCTCTTAGGC CTCTTGTCT	GGITGCICII ICICIAIC	GG GAATTTGCCC	r ATGCAACA	GGGGTAAATT	481	GIII	
11 11 11 11 11 11 11 11 11 11 11 11 11	11 13 11 11 11 11 11 11 11 11 11 11 11 1	11 11 11 11 11 11 11 11 11	H H H H H H H H H H H H H H H H H H H	11	11 11 11 11	H H H H H H H H H H H H H H H H H H H	11 12 11 11 11 11 11
TI CCICIIGGCI TIGCIGICC	GGTIGCICII ICICIAIC	3G GAATCTACCC	r ATGCAACA	GGCGTGAACT	481		64
	, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2000	100000000000000000000000000000000000000	TOF		ה ס
TT CCTTCTGGCT TTGCTGTCC	GGTTGCTCCT TTTCTATC	3G GAATCTGCCC	TGCAACAC	GGCGTGAACT	481		63
	GGTIGCICIT ICICIAIC	3G GAATTTGCCC	: ATGCAACA(GGCGTGAACT	481		62
rr ccrcrrsscr riscrere		3G GAATCIGCCC	: ATGCAACAC	GGCGTGAACT	481		61
TT CCTCTTGGCT CTGCTGTCC		3G GAATTIGCCT	: ATGCAACAC	GGCGTGAACT	481		09
r cererreger ergerere	GGTTGCTCTT TCTCTATC	3G GAATTTGCCC	: ATGCAACAC	GGCGTGAACT	481		59
rr ccrcrrcccr crccrcrcc	GGTTGCTCCT TTTCTATC	SG GAATCTGCCC	: ACCCAACAC	GGCGTGAACT	481	GII	58
11 11 11 11 11 11		H H H H H H H H H H H H H H	11 11 11 11 11 11 11 11	H	11 11 11	1) 13 14 16 17 11 11	11 13 15 11 11 11
	GGTTGCTCTT TTTCTATT	SG GAACCTICCT	ATGCAACAG	GGCGTGAACT	481		57
r ccrrcreece creererer	GGTIGCICII ICICIAIC	SG GAACCTTCCT	ATGCAACAG	GGCGTGAACT	481		56
r cerrendes creererer	GGTTGCTCTT TCTCTATC	SG GAACCITCCC	ATGCAACAG	GCCCTCAACT	481		55
	GGTIGCICIT ICICIAIC	SG GAATCTTCCT	ATGCAACAG	GCCCTGAACT	481		54
	GGTTGCTCTT TCTCTATC	GAACCTTCCT	ATGCAACAG	GGCGTGAACT	481		53
r cerrendece ergererer	GGTTGCTCTT TCTCTATC	GAACCTTCCT	ATGCAACAG	GGCGTGAACT	481	GI	52
11 11 11 11 11 11 11 11 11 11 11 11 11	H 11 11 11 11 11 11 11 11	11 16 16 16 16 17 18 18 18 18	11 11 11 11 11	H H H H H H H H H H H H H H H H H H H	11 11 11	11 12 11 11 11 11 11 13	H H H H H
						CENOTYPE	ID NUMBER
							SEQUENCE
	11	1) 	11 12 13 15 11 11 11 11 11		11 11 11	11 11 11 11 11 11 11	H H H H

21/21

549 Total

	,

PCT

WORLD INTELLECTLAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

(11) International Publication Number:

WO 92/19743

C12N 15/51, 15/40, A61K 39/29 G01N 33/576, C12Q 1/68 C12Q 1/70, C07K 13/00

A3

(43) International Publication Date:

12 November 1992 (12/11/92)

(21) International Application Number:

PCT_US92_04036 !

(22) International Filing Date:

8 May 1992 (08:05 92)

(74) Agent: JANTUK, Anthony, J.; Wolf, Greenfield & Sacks, 600 Atlantic Avenue, Boston, MA 02210 (US)

(30) Priority data:

697,326

8 May 1991 (08.05.91)

US!

(71) Applicant: CHIRON CORPORATION [US US]; 4560 Horton Street, Emeryville, CA 94608 (US).

(72) Inventors: CHA, Tai-An, 964 Springview Circle, San Ramon, CA 94583 (US). BEALL, Eileen; 1150 Lincoln Avenue, # 5, Walnut Creek, CA 94596 (US). IRVINE, Bruce; 3401 El Monte Drive, Concord, CA 94519 (US). KOLBERG, Janice; 131 Scots Valley, Hercules, CA 94547 (US). URDEA, Michael, S.; 100 Bunce Meadow Road, Alamo, CA 94501 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent).

Published

With international search report

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments

(88) Date of publication of the international search report:

25 November 1993 (25 11 93)

(54) Title: HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS

(57) Abstract

The present application features nucleic acid, peptide and antibody compositions relating to genotypes of hepatitis C virus and methods of using such compositions for diagnostic and therapeutic purposes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A1	Austria	FI	trinland	мі	Mali
AU	Australia	FR	France	MN	Mongolia
RR	Barbados	GA	Cabon	MR	Mauritama
8E	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Gumea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Freland	RO	Romania
CA	Canada	1T	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korca	SN	Senegal
CL	Cole d Ivinic	KR	Republic of Karca	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TU	Chad
CS	Czechoslovakia	l.K	Sri Lanka	TG	Togo
DE	Germany	ı.u	Luxembourg	US	United States of America
DK	Denmark	MIC	Monaco		
ES	Spain	MG	Madagascar		

		INTERNATIONAL	SEARCH REPORT		92/04036
I CLASSIE	CATION OF SUBJE	CT MATTER (if several classification	symbols apply, indicate all)		
		Classification (IPC) or to both National			
	5 C12N15/51 C12Q1/68;	c12N15/40;	A61K39/29; C07K13/00	G01N3	3/576
II. FIELDS	SEARCHED				
	<u></u> .	Minimum Doc	encentation Searched		
Classificati	on System		Classification Symbols		
Int.Cl.	5	CO7K ; C12N ; G01N	C12Q ;	A61K	
		Documentation Searched of to the Extent that such Documen	her than Minimum Documentation ats are Included in the Fields Seas	ched ⁴	
III. DOCUM		D TO BE RELEVANT			
Category °	Citation of De	ocument, it with indication, where appr	opriate, of the relevant passages if	Ru	ievant to Claim No.[3]
x	vol. 17 pages 1 N. ENOM types 0	BIOPHYS. RES. COMMU 0, no. 3, 1990, 021 - 1025 OTO ET AL. 'There are f hepatitis c in Japa e 1023, line 3 - page 1	e two major in'	1 3 3 5 5 5 5	-4, 1-14, 7-24, 1-34, 17-44,49 11,52, 15-57, 19,60,63
X Y	vol. 88 pages 3 N. OGAT mutatio C virus	392 - 3396 A ET AL. 'Nucleotide n rate of the H strai	sequence and in of hepatitis		1-12,13, 17-33, 17-49, 51, 55-59, 53,65
					19,50, 55,56
"A" do co	neidered to be of parti- riler document but pub- ing date comest which may thre- ided is cited to establish ation or other special in comment referring to as her means published prior comment published priority dater than the priority dater.	meral state of the art which is not make relevance lished on or after the international per doubts on priority claim(s) or in the publication date of another reason (as specified) i oral disclosure, use, exhibition or r to the international filing date but	citéd to understand the invention "X" document of particular cannot be considered involve an inventive s' "Y" document of particular cannot be considered document is roubline.	of in conflict with the u le principle or theory un ir relevance; the claimed nevel or cannot be cons- trep ir relevance; the claimed to involve an inventive d with one or more other tion being obvious to a j	invention services to the invention invention invention invention in services the result of the resu
	MICATION	the International Search	Date of Mailing of the	s International Search	Legort
Date of the	30 SEPTEN	the International Search IBER 1993		20 OCT 1993	
Internation	EUROPI	EAN PATENT OFFICE	Signature of Authoriz		

ENTS CONSIDERED TO SE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
EP,A,O 388 232 (CHIRON CORPORATION) 19 September 1990 cited in the application see the whole document	40-44, 49,50, 55,56
JAPAN. J. EXP. MED. vol. 60, no. 3, 1990, pages 167 - 177 H. OKAMOTO ET AL. 'The 5' terminal sequence of the hepatitis C virus genome'	
PROC. NAT'L. ACAD. SCI. USA vol. 88, 1991, pages 2451 - 2455 Q. L. CHOO ET AL. 'Genetic organisation and diversity of the hepatitis C virus'	
WO,A,9 114 779 (MITSUI TOATSU CHEMICALS INCORPORATED) 3 October 1991	1-4, 11-14, 17-24, 31,33, 34, 37-44, 49,51,52
see figure i	59,60,63
WO,A,9 115 516 (GENELABS INCORPORATED) 17 October 1991	1-4,11, 12,31, 32, 37-44, 49,50, 55-58,63
see page 93 - page 94; claim 46	
VIROLOGY vol. 180, 1991, pages 842 - 848 A.WEINER ET AL. 'Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins' see figure 1	1,2,5,6, 11,12, 17-22, 25,26, 31,32, 37-42,45 46,49, 59, 55-58, 63,64
-/	
	EP,A,O 388 232 (CHIRON CORPORATION) 19 September 1990 cited in the application see the whole document JAPAN. J. EXP. MED. vol. 60, no. 3, 1990, pages 167 - 177 H. OKAMOTO ET AL. 'The 5' terminal sequence of the hepatitis C virus genome' PROC. NAT'L. ACAD. SCI. USA vol. 88, 1991, pages 2451 - 2455 Q. L. CHOO ET AL. 'Genetic organisation and diversity of the hepatitis C virus' WO,A,9 114 779 (MITSUI TOATSU CHEMICALS INCORPORATED) 3 October 1991 see figure 1 WO,A,9 115 516 (GENELABS INCORPORATED) 17 October 1991 see page 93 - page 94; claim 46 VIROLOGY vol. 180, 1991, pages 842 - 848 A.WEINER ET AL. 'Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins' see figure 1

III. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claum No.
X ,P	GB,A,2 239 245 (THE WELLCOME FOUNDATION LTD.)	1-4,11,
± .	26 June 1991	17-24, 31,33, 37-44, 49,51,
	see the whole document	55,56 57,59, 63,65
X,P	EP,A,O 463 848 (THE RESEARCH FOUNDATION FOR MICROBIAL DISEASES OF OSAKA UNIVERSITY) 2 January 1992	1-4,11, 13, 17-24, 31,33, 37-77,
	see the whole document	49,51, 55,56 57,59, 63,65
X,P	EP,A,O 464 287 (THE RESEARCH FOUNDATION FOR MICROBIAL DISEASES OF OSAKA UNIVERSITY) 8 January 1992	1-4,11, 13, 17-24, 31,33, 37-44, 49,51,
	see the whole document	55,56 57,59, 63,65
1		

INTERNATIONAL SEARCH REPORT

Li national application No.

PCT/US 92/04036

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This international scarch report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:							
ι	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:						
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:						
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)							
This In	ternational Searching Authority found multiple inventions in this international application, as follows:						
Se	e annexe 1 and annexe 2						
ر	ee forms PCT/ISA/206 dated 29.10.92 and 23.04.93						
,	ge Forms Form 200 deced Estimated and activities						
ι. [As all required additional search fees were timely paid by the applicant, this international search report covers all						
	scarchable claims.						
2.	As all scarchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3. X	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:						
	See annexe 1						
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:						
Remar	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

- 1. Claims 1-4 (partially), 11 and 12, (partially), 17-24 (partially), 31 and 32 (partially), 37-44 (partially), 49 and 50 (partially), 55-58 (partially), 63 (partially); Nucleic acid having a sequence corresponding to the MS5 region of a first genotype of HCV (excluding that of the prototype HCV-1), hybridisation and detection methods using it, polypeptides encoded by it, and antibodies to the polypeptides.
- 2. Claims 1 and 2 (partially), 5 and 6 (partially), 11 and 12 (partially), 17-22 (partially), 25 and 26 (partially), 31 and 32 (partially), 37-42 (partially), 45 and 46 (partially), 49 and 50 (partially), 55-58 (partially), 63 (partially), 64 (partially)*:

 As for subject 1, but where the nucleic acid has a sequence corresponding to the env1 region of HCV.
- 3. Claims 1 and 2 (partially), 7 and 8 (partially), 11 and 12 (partially), 17-22 (partially), 27 and 28 (partially), 31 and 32 (partially), 37-40 (partially), 57 and 58 (partially), 63 (partially):
 As for subject 1, but where the nucleic acid has a sequence corresponding to the 5'UT region of HCV.
- 4. Claims 1 and 2 (partially), 9-12 (partially), 17-22 (partially), 29-32 (partially), 37-42 (partially), 47-50 (partially), 55-58 (partially), 63 and 64 (partially): As for subject 1, but where the nucleic acid has a sequence corresponding to the core region of HCV.
- 5. Claims 1-12 (partially), 13,17-32 (partially), 33, 37-50 (partially), 51,55-58 (partially), 59, 63, 65:
 Nucleic acids having a sequence corresponding to that of a second genotype of HCV, and their uses.
- 6. Claims 1-12 (partially), 14, 17-32 (partially), 34, 37-50 (partially), 52, 55-58 (partially), 60, 63 (partially), 66: Nucleic acids having a sequence corresponding to that of a third genotype of HCV, and their uses.
- 7. Claims 1-12 (partially), 15, 17-32 (partially), 35, 37-50 (partially), 53, 55-58 (partially), 61, 63 (partially), 67: Nucleic acids having a sequence corresponding to that of a fourth genotype of HCV and their uses.
- 8. Claims 1-12 (partially), 16, 17-32 (partially), 36, 37-50 (partially), 54, 55-58 (partially), 62, 63 (partially): Nucleic acids having a sequence corresponding to that of a fifth genotype of HCV and their uses.
- * Assuming that the word "envelope" has been omitted in this claim due to an error.

The applicant should note that if divisional applications directed to nucleic acids having sequences corresponding to those of the second, third, fourth and fifth genotypes are filed (subjects 5-8) they may be open to further objections of lack of unity should some of the nucleic acids already be known in the prior art.

In accordance with the warning given in the last paragraph of the original reasons for finding lack of unity, the further search of the remaining 7 subjects has in the following cases revealed prior art which leads to objections of non-unity a posteriori:

5. Nucleic acids having a sequence corresponding to that of a second genotype of HCV and their uses

A sequence 100% identical to one of the second genotype NS5 sequences (that of seq. I.D. 9) is known, see BBRC, 180, 1021, 1990, Figure 1, sequence HCV-K1-1.

Its use as a hybridisation probe is also disclosed, see Materials and Methods, last paragraph. Hence there is no longer any technical relationship between the claimed nucleic acids corresponding to the various parts of the genome of the second genotype of HCV, since they have no common technical feature which defines a contribution which each makes compared to those of the prior art.

This subject-matter can therefore be subdivided into the following separate inventions:

5a: Claims 1-4,11,13,17-24,31,33,37-44,49,51,55-57, 59,63 (all partially):

Nucleic acids having a sequence corresponding to the NS5 region of a second genotype of HCV, hybridisation and detection methods using it, polypeptides encoded by it and antibodies to the polypeptides.

5b: Claims 1,2,5,6,11,13,17-22,25,26,31,33,37-42, 45,46,49,51,55-57,59,63 (all partially):

As for subject 5a, but where the nucleic acids have a sequence corresponding to the env1 sequence of a second genotype of HCV.

5c: Claims 1,2,7,8,11,13,17-22,27,28,31,33,37-42,57,59,63 (all partially):

As for subject 5a, but where the nucleic acids have a sequence corresponding to the 5'UT sequence of a second genotype of HCV.

5d: Claims 1,2,9-11,13,17-22,29-31,33,37-42,47,48, 51,55-57,59,63 (all partially):

As for subject 5a, but where the nucleic acids have a sequence corresponding to the core sequence of a second genotype of HCV.

6: Nucleic acids having a sequence corresponding to a third genotype of HCV and their uses:

A sequence 100% identical to one of the third genotype NS5 sequences (that of seq. I.D. 13) is known, see BBRC, 180, 1021, 1990, Figure 1, sequence HCV-K2a.
Its use as a hybridisation probe is also disclosed, see Materials and Methods, last paragraph.
Hence there is no longer any technical relationship between the claimed nucleic acids corresponding to the various parts of the genome of the third genotype of HCV, since they have no common technical feature which defines a contribution which each makes compared to those of the prior art.

This subject-matter can therefore also be subdivided into the following separate inventions:

6a: Claims 1-4,11,14,17-24,31,34,37-44,49,52,55-57, 60,63 (all partially):

Nucleic acids having a sequence corresponding to the NS5 region of a third genotype of HCV, hybridisation and detection methods using it, polypeptides encoded by it and antibodies to the polypeptides.

6b: Claims 1,2,5,6,11,14,17-22,25,26,31,34,37-42,45,46,49,52,55-57,60,63 (all partially):

As for subject 6a, but where the nucleic acids have a sequence corresponding to the envl sequence of a third genotype of HCV.

6c: Claims 1,2,7,8,11,14,17-22,27,28,31,34,37-42, 57,60,63 (all partially):

As for subject 6a, but where the nucleic acids have a sequence corresponding to the 5'UT sequence of a third genotype of HCV.

6d: Claims 1,2,9-11,14,17-22,29-31,34,37-42,47,48, 52,57,60,63 (all partially):

As for subject 6a, but where the nucleic acids have a sequence corresponding to the core sequence of a third genotype of HCV.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9204036 61008 SA

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 30/09/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0388232		AU-A- CA-A- JP-T- WO-A-	5278390 2012482 4504715 9011089	22-10-90 17-09-90 20-08-92 04-10-90
WO-A-9114779	03-10-91	None		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
WO-A-9115516	17-10-91	AU-A- CA-A- EP-A-	7743491 2079912 0527815	30-10-91 07-10-91 24-02-93
GB-A-2239245	26-06-91	AU-A- DE-A- FR-A- LU-A- NL-A- SE-A-	6817590 4040339 2655990 87861 9002779 9004010	20-06-91 20-06-91 21-06-91 08-10-91 16-07-91 19-06-91
EP-A-0463848	02-01-92	AU-A- CA-A- CN-A- AU-A- CA-A- CN-A- EP-A-	7925691 2045326 1059758 6860891 2045323 1057861 0464287	02-01-92 26-12-91 25-03-92 02-01-92 26-12-91 15-01-92 08-01-92
EP-A-0464287	08-01-92	AU-A- AU-A- CA-A- CA-A- CN-A- CN-A- EP-A-	6860891 7925691 2045323 2045326 1057861 1059758 0463848	02-01-92 02-01-92 26-12-91 25-12-91 15-01-92 25-03-92 02-01-92