Voix & Image: CE

Nom: 200

Groupe TD:

Prénom: Philippe

Aucun Document - Sans Calculatrice

Un résultat numérique sans unité est considéré comme faux

On rappelle log(2) = 0.3

Répondre directement sur l'énoncé à l'intérieur des cadres

Le barème est indiqué à droite de chaque question (sur un total de 40 points)

1. On considère une onde plane progressive de célérité c. Son expression en fonction de x en t = 0 est : $f(x,0) = \frac{A}{1+x^2}$. Donner l'expression de f(x,t) :

$$f(x,t) = f(x-ct) = \frac{A}{1+6x-c\theta^2}$$

2. Soit une onde plane progressive harmonique de période 50 ms, d'amplitude 0,2 SI, de célérité 30 m.s⁻¹. Donner l'expression de f(x,t), en utilisant les valeurs numériques données.

$$f(x,t) = A \cos(\omega t - kx + 4)$$

$$= 0,2 \cos(\alpha,5\pi - \pi x + 4)$$

- 3. Une onde acoustique sphérique est caractérisée par son intensité à 1 m I₁=10⁻² W.m⁻²
 - a. Donner l'expression de l'intensité en fonction de la distance à la source r
 - b. En déduire l'intensité du son à 10m
 - c. En déduire la valeur de la puissance totale émise par la source

- 8. L'équation de dispersion des ondes de houle est $k = \frac{\omega^2}{g}$, où g est l'accélération de la pesanteur ($g = 10 \text{ m.s}^{-2}$)
 - a. Donner l'expression de la vitesse de phase.
 - b. En donner la valeur pour $\omega = 0.2 \text{ rad.s}^{-1}$.
 - c. Donner l'expression de la vitesse de groupe
 - d. En donner la valeur pour $\omega = 0.2 \text{ rad.s}^{-1}$.

9. On rappelle la loi donnant la fréquence de vibration d'une corde vibrante : $f = \frac{1}{2L} \cdot \sqrt{\frac{T}{\mu}}$, où L est la longueur de la corde, T sa tension et μ sa masse linéique. Si

on part de f = 200 Hz, que devient cette fréquence si :

- a. On monte de 3 octaves
- b. On divise la longueur de la corde par 4
- c. On divise la masse par 2, en gardant la masse linéique constante

- 10. Un son se propage dans une paroi en béton. La célérité du son est c = 3000 m.s⁻¹ et l'impédance acoustique du milieu est Z = 6. 10^6 SI. La pression efficace du son est $p_{eff} = 3$ Pa
 - a. Quelle est la relation donnant, pour un milieu donné, Z en fonction des caractéristiques du milieu ?
 - b. En déduire la masse volumique du béton
 - c. Quel est, du point de vue des ondes acoustiques, l'analogue de la tension électrique (donner la réponse en toutes lettres)?
 - d. Donner l'équivalent en terme acoustique de la loi de Joule en électrocinétique

e. En déduire l'intensité acoustique de l'onde sonore

f. Calculer la vitesse efficace des molécules du milieu

11. Soit un son musical dont la représentation temporelle est donnée dans le graphique cicontre. Représenter le graphe, en respectant l'échelle rappelée par la courbe du son initial en pointillé, d'un son qui a :

a. même hauteur, même timbre, force plus faible

b. même force, même timbre, hauteur plus élevée

c. même force, même hauteur, timbre différent

a) force pur faible

b) fau teur plus élevée. -> frequence augmentée

c) timbre différent - motif courbe différente

