

Introduction

Spam = Unsolicited messages via email or text (SMS)

- Can be malicious
- Can be for tracking purposes

Ham = Directly or indirectly signed
up for the email and/or text (SMS)

December 2021,

45.37% of the total emails were deemed as spam emails

Different types of spam emails statistics

- ★ Email Spam Detection
 - https://www.kaggle.com/code/mfaisalqureshi/email-spam-detection-9
 8-accuracy/data
- ★ Spam Base
 - https://archive.ics.uci.edu/ml/machi ne-learning-databases/spambase/
- ★ SMS Spam Collection
 - https://www.kaggle.com/datasets/u ciml/sms-spam-collection-dataset
- ★ Email Spam Classification
 - https://www.kaggle.com/datasets/ balaka18/email-spam-classification -dataset-csv
- Spam or Not Spam
 - https://www.kaggle.com/datasets/o zlerhakan/spam-or-not-spam-data set

- ★ Pandas
- **★** Numpy
- ★ Tensor Flow
- ★ Keras
- **★** Pickle

- NLTK
- **★** SKLearn
- ★ Standard Scaler
- ★ Matplotlib

TOOLS:

Used a wealth of software, languages, commands, functions and libraries!

MACHINE LEARNING

LOGISTIC REGRESSION

Supervised machine learning model that is useful in determining shared characteristics among items in a dataset.

NEURAL NETWORK

Machine learning comprised of node layers, one or more hidden layers and an output layer. The nodes connect to each other send data to the other layers.

MACHINE LEARNING

NAIVE BAYES

Supervised learning classifier using Bayes Theorem to predict conditional independence between features and class variables

- **★** Tokenizer
- ★ Hashing
- ★ Stop Words from NLTK

RANDOM FOREST

Supervised machine learning model that is used for classification problems.
Similar advantages in relation to logistic regression model.

SEQUENTIAL MODEL

Base model

Applied two different activation functions:

- **★** Relu
- **★** Tanh

- 36/36 0s loss: 0.1651 accuracy: 0.9435 246ms/epoch 7ms/step
 - Loss: 0.16513986885547638, Accuracy: 0.943527340888977

36/36 - 0s - loss: 0.1608 - accuracy: 0.9496 - 190ms/epoch - 5ms/step

Loss: 0.16081812977790833, Accuracy: 0.9496090412139893

```
# First hidden layer
nn_model1.add(tf.keras.layers.Dense(units=10, activation='relu', input_dim=input_features)
# Second hidden layer
nn_model1.add(tf.keras.layers.Dense(units=10, activation='relu'))
# Output layer
nn_model1.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
# Check the structure of the model
nn_model1.summary()
```

Model: "sequential"

(None, 10)	580
(None, 10)	110
(None, 1)	11

yer (type)	Output	Shape	Param #
nse_3 (Dense)	(None,	30)	1740
nse_4 (Dense)	(None,	20)	620
nse_5 (Dense)	(None,	1)	21
nse_5 (Dense) ====================================	(None,	1)	21

LOGISTIC REGRESSION

Results

Training Data Score: 0.9220289855072463 Testing Data Score: 0.9339704604691572

- ★ Useful in classification
 - Recurrence of words
 - Count of words in a message

★ Defines the dependency of dependent variables to independent variables

DATASET ANALYSIS

Email Type					
ham	14.200822	11	130.519444	11.424511	0.164471

Email Type

spam 23.851408 25 33.778158 5.811898 0.212646

LOGISTIC REGRESSION


```
# Split the data into X_train, X_test, y_train, y_test
```

spambase_df.dropna(inplace=True)

X=spambase_df.drop("class",axis=1).values y=spambase_df["class"].values

```
M X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```


- # Train a Logistic Regression model and print the model score from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier
- 8]: LogisticRegression()
 - M classifier.fit(X_train, y_train)

Training Data Score: 0.9220289855072463 Testing Data Score: 0.9339704604691572

RANDOM FOREST

RESULTS

★ Precision: 0.992
 ★ Recall: 0.698
 ★ Fscore: 0.82
 ★ Accuracy: 0.959

ADVANTAGES

- ★ Perform both regression and classification
- ★ Handle large datasets
- ★ Higher level accuracy

DISADVANTAGES

- ★ More resources are required for computation
- ★ Consumes more time than a decision tree

RANDOM FOREST

```
rf = RandomForestClassifier(n_estimators=100,max_depth=None,n_jobs=-1)
rf_model = rf.fit(X_train,y_train)
```

X_test was:
3901x8357 sparse matrix of
type '<class 'numpy.int64'>'
 with 30356 stored
elements in Compressed
Sparse Row format>

```
y_pred=rf_model.predict(X_test)
precision,recall,fscore,support -score(y_test,y_pred,pos_label-1, average -'binary')
print('Precision : () / Recall : () / fscore : () / Accuracy: ()'.format(round(precision,3),round(recall,3),round(fscore,3),round((y_pred==y_test).sum()/len(y_test),3)))
```

NAIVE BAYES

RESULTS

Accuracy of model at predicting spam was: 0.956618

alpha	9.570010
Train Accuracy	0.979054
Test Accuracy	0.970008
Test Recall	0.773694
Test Precision	1.000000
Name: 87, dtype:	float64

ADVANTAGES

- ★ Requires small amount of training data
- ★ Simple & fast
- ★ Suited for categorical data

DISADVANTAGES

- ★ Assumes all attributes are independent
- ★ If class is not in dataset, the return is 0

NAIVE BAYES

alaba	Torin Armona	Tool Assume	Took Doorll	Test Descricion
alpha	Train Accuracy	Test Accuracy	lest kecali	lest Precision
0.00001	0.999402	0.961548	0.920696	0.813675
0.11001	0.998205	0.965137	0.955513	0.813839
0.22001	0.998205	0.966163	0.951644	0.821369
0.33001	0.998205	0.968470	0.949710	0.835034
0.44001	0.997008	0.970264	0.945841	0.847487
	·		*	

```
# Classifying spam and not spam msgs as 1 and 0
data["label"]=data["label"].map({'spam':1, 'ham':0})
```

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, data['label'], test_size=0.70, random_state=42)

NAIVE BAYES

Preprocessing

pos_neg_to_num = StringIndexer(inputCol='Category',outputCol='label')
tokenizer = Tokenizer(inputCol="Message", outputCol="token_text")
stopremove = StopWordsRemover(inputCol='token_text',outputCol='stop_tokens')
hashingTF = HashingTF(inputCol="stop_tokens", outputCol='hash_token')
idf = IDF(inputCol='hash token', outputCol='idf token')

Category	Message
	until jurong p
ham Ok	lar Joking
spam Fr	ee entry in 2 a
ham U	dun say so earl
ham Na	h I don't think
spam Fr	eeMsg Hey there
ham Ev	en my brother i
ham As	per your reque
spam WI	NNER!! As a val
spam Ha	d your mobile 1
ham I'	m gonna be home
spam SI	X chances to wi
spam UR	GENT! You have
ham I'	ve been searchi
ham I	HAVE A DATE ON
spam XX	XMobileMovieClu
ham Oh	ki'm watchi
ham Eh	u remember how
ham Fi	ne if that's th
spam En	gland v Macedon
+	

Before & After Preprocess

	+
label	features
	(262145,[38555,52
0.0	(262145,[51783,15
1.0	(262145,[9443,122
0.0	(262145,[2306,332
0.0	(262145,[25964,64
1.0	(262145,[19835,23
0.0	(262145,[103497,1
0.0	(262145,[12650,27
	(262145, [4314, 232
1.0	(262145,[1546,219
0.0	(262145,[12716,17
1.0	(262145,[7415,161
1.0	(262145, [23209, 35]
0.0	(262145, [15585, 41
0.0	(262145, [39504, 13
400	(262145, [26364,44]
1000	(262145, [18184, 22
100-100-1	(262145,[12524,16
	(262145,[37132,51
	(262145,[16168,29
2.0	(,,

features

```
token text
Category
                       Message length label
                                                                            stop tokens
rawPrediction
                       probability prediction
      ham | "7 wonders in My ... | 155 | 0.0 | ["7, wonders, in,... | ["7, wonders, wor... |
[-1576.1658865825...|[1.0,1.7390252805...|
      ham | "7 wonders in My ... | 155 | 0.0 | ["7, wonders, in,... | ["7, wonders, wor... |
[-1576.1658865825...|[1.0,1.7390252805...|
      ham | "A swt thought: "... | 160 | 0.0 | ["a, swt, thought... | ["a, swt, thought... |
[-1582.0029941322...|[1.0,1.8729839925...|
      ham "An Amazing Quote... | 144 | 0.0 | ["an, amazing, qu... | ["an, amazing, qu... |
[-1379.4067172087...|[1.0,1.1282744219...|
      ham | "And that is the ... | 383 | 0.0 | ["and, that, is, ... | ["and, problem., ... |
[-1970.9755119910...|[1.0,5.3057835434...|
```

(262144,[59381,60...|(262144,[59381,60...|(262145,[59381,60...| (262144,[59381,60...|(262144,[59381,60...|(262145,[59381,60...| (262144,[8804,380...|(262144,[8804,380...|(262145,[8804,380...| (262144,[38640,44...|(262144,[38640,44...|(262145,[38640,44...| (262144,[21823,35...|(262144,[21823,35...|(262145,[21823,35...|

idf token

hash token

DISADVANTAGES

★ Requires a lot of computational resources

NEURAL NETWORK

Preprocessing

```
corpus=[]

for i in range(len(df)):
    # removing all non-alphanumeric characters
    message=re.sub('[^a-zA-Z0-9]',' ',df['Text'][i])
    # converting the message to lowercase
    message=message.lower()
    message = message.split()

corpus.append(message)
```

```
[ ] cv=CountVectorizer(max_features=2500,ngram_range=(1,3))
    cvfit=cv.fit(corpus)
    X = cvfit.transform(corpus).toarray()
    y=df['Spam']
```



```
Text Spam

O Subject: naturally irresistible your corporate... 1

Subject: the stock trading gunslinger fanny i... 1

Subject: unbelievable new homes made easy im ... 1

Subject: 4 color printing special request add... 1

Subject: do not have money, get software cds ... 1
```

NEURAL NETWORK

Saving the model

```
import pickle
with open("pickle2.pkl","wb") as f:
pickle.dump(cvfit, f)
```

```
[ ] nn.save("success1.h5")
```


ham_message = "Subject: meeting with vince set for 1 pm monday , april 17 maureen , thank you very much

spam_message = "Subject: mail receipt thank you for your mail regarding our site . we will reply as soon as possible

NEURAL NETWORK

Calling the model

```
def preprocess(text):
    corpus = []
    message=re.sub('[^a-zA-Z0-9]',' ',text)
    # converting the message to Lowercase
    message=message.lower()
    # message = np.asarray(message)
    corpus.append(message)
    with open('pickle2.pkl', 'rb') as pickle_file:
        content = pickle.load(pickle_file)
        words = content.transform(corpus)
```



```
model1 = keras.models.load model("../h5/success1.h5")
model1.compile()
app = Flask( name )
@app.route("/api/classify", methods = ["POST"])
def classify():
    if request.method == 'POST':
        text = request.form["text"]
        print(text)
        processed text = preprocess(text)
        result1= model1.predict(processed text)
        if result1 > .65:
            classification = 'Spam'
        else:
            classification = 'Ham'
        if classification == 'Spam':
            response = random.choice(spam response)
        if classification == 'Ham':
            response = random.choice(ham response)
        return render template("spam.html", result={
            "text": text,
            "classification": classification,
            "response": response
```


Spam or Ham Dashboard

Dashboard

3 out of 6

Were examples of Spam. The others were examples of Ham.

- https://www.mailmodo.com/g uides/email-spam-statistics/
- https://startbootstrap.com/
- https://www.nltk.org/search.ht ml?q=stopwords&check_key words=yes&area=default
- https://towardsdatascience.co m/email-spam-detection-1-2-b 0e06a5c0472

