SNUPI Technologies

TEST REPORT FOR

Gateway Model: 810-00008

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.247

Report No.: 96653-8

Date of issue: February 17, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 37 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	
15.207 AC Conducted Emissions	
15.247(a)(2) -6dB Bandwidth	14
15.247(b)(3) RF Power Output	17
15.247(d) Radiated Spurious Emissions and Band Edge	24
15. 247(e) Power Spectral Density	32
Supplemental Information	36
Measurement Uncertainty	36
Emissions Test Details	26

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

SNUPI Technologies Terri Rayle

4512 University Way NE CKC Laboratories, Inc.
Seattle, WA 98105 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Patrick Vilbrandt Project Number: 96653

Customer Reference Number: 1095

DATE OF EQUIPMENT RECEIPT:DATE(S) OF TESTING:
January 28, 2015
January 28-29, 2015

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve I Be

Page 3 of 37 Report No.: 96653-8

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	CB # TAIWAN		FCC	JAPAN	
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	A-0148	

Page 4 of 37 Report No.: 96653-8

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207 & 15.247

Test Procedure	Description	Modifications*	Results
15.207	Conducted Emissions	Mod #1	Pass
15.247(a)(2)	-6dB Occupied Bandwidth	Mod #1	Pass
15.247(b)(3)	RF Power Output	Mod #1	Pass
15.247(d)	Radiated Spurious Emissions and Band Edge	Mod #1	Pass
15.247(e)	Power Spectral Density	Mod #1	Pass

NA = Not Applicable

Modifications* During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

^{*}Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None

Page 5 of 37 Report No.: 96653-8

EQUIPMENT UNDER TEST (EUT)

Laptop

EQUIPMENT UNDER TEST

Gateway

Manuf: SNUPI Technologies

Model: 810-00008

Serial: 90-7A-F1-FE-FD-0B

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

N300 Wireless Router

Manuf: NetGear Manuf: Dell

Model: WNR2000 Model: Precision M4400

Serial: NA Serial: NA

Page 6 of 37 Report No.: 96653-8

FCC PART 15 SUBPART C

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: SNUPI Technologies

Specification: 15.207 AC Mains - Quasi-peak

 Work Order #:
 96653
 Date: 1/29/2015

 Test Type:
 Conducted Emissions
 Time: 09:40:53

Equipment: Gateway Sequence#: 5

Manufacturer: SNUPI Technologies Tested By: Steven Pittsford Model: 810-00008 Tested By: Development By: Steven Pittsford 120V 60Hz

S/N: 90-7A-F1-FE-FD-0B

Test Equipment:

1 cst Lqui	pinent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	9/2/2014	9/2/2016
T2	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
Т3	ANP06505	Cable	32026-29080-	10/18/2013	10/18/2015
			29080-84		
T4	AN01492	50uH LISN-Line	3816/2NM	7/21/2013	7/21/2015
	AN01492	50uH LISN-Neutral	3816/2NM	7/21/2013	7/21/2015
	AN02872	Spectrum Analyzer	E4440A	7/19/2013	7/19/2015
T5	AN02611	High Pass Filter	HE9615-150K-	3/26/2014	3/26/2016
			50-720B		

Equipment Under Test (* = EUT):

Equipment Cittle Test (201).		
Function	Manufacturer	Model #	S/N
Gateway*	SNUPI Technologies	810-00008	90-7A-F1-FE-FD-0B

Support Devices:

Function	Manufacturer	Model #	S/N
N300 Wireless Router	NetGear	WNR2000	
Laptop	Dell	Precision M4400	

Page 7 of 37 Report No.: 96653-8

Test Conditions / Notes:

Temperature: 23°C Pressure: 103.3kPa Humidity: 41%

Frequency: 150k-30MHz

Test Method: ANSI C63.4 (2009)

Mode: The EUT is Transmitting.

The EUT is located on top of a Styrofoam table, 80cm over the ground plane.

The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating

at 100M.

The router is connected to the laptop.

Ethernet shell disconnected from digital ground by removing R128 & C194.

Ext	t At	ttn	: 0) dB

Measur	ement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	150	150	15				150	
	MHz	dBμV	dB	dB	dB	dB	Table	dBμV	dBμV	dB	Ant
1	2.455M	26.3	+9.1	+0.1	+0.0	+0.4	+0.0	36.0	46.0	-10.0	Line
	Ave		+0.1								
^	2.455M	41.6	+9.1	+0.1	+0.0	+0.4	+0.0	51.3	46.0	+5.3	Line
	2.55.0.6	262	+0.1	. 0. 1	. 0 0	. 0. 4	. 0. 0	25.0	46.0	10.1	Ŧ.
3	2.574M	26.2	+9.1	+0.1	+0.0	+0.4	+0.0	35.9	46.0	-10.1	Line
	Ave	10.1	+0.1	.0.1	. 0. 0	. 0. 4	. 0. 0	50.1	46.0	161	т.
	2.574M	42.4	+9.1	+0.1	+0.0	+0.4	+0.0	52.1	46.0	+6.1	Line
	2.27()/	25.2	+0.1	+0.1	100	+0.4	100	25.0	46.0	11.0	т :
5	2.276M	25.3	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	35.0	46.0	-11.0	Line
	Ave 2.276M	40.0	+9.1	+0.1	+0.0	+0.4	+0.0	49.7	46.0	+3.7	Line
	2.2/0WI	40.0	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	49.7	40.0	+3.7	Line
7	1.383M	23.9	+9.3	+0.1	+0.0	+0.4	+0.0	33.9	46.0	-12.1	Line
	Ave	23.9	+0.2	10.1	10.0	10.4	10.0	33.9	40.0	-12.1	Line
^	1.383M	37.5	+9.3	+0.1	+0.0	+0.4	+0.0	47.5	46.0	+1.5	Line
	1.30311	31.3	+0.2	10.1	10.0	10.4	10.0	77.5	40.0	11.5	Line
9	2.850M	23.3	+9.1	+0.1	+0.0	+0.4	+0.0	33.0	46.0	-13.0	Line
	Ave	25.5	+0.1	. 0.1	. 0.0		. 0.0	33.0	10.0	15.0	Eme
^	2.850M	38.3	+9.1	+0.1	+0.0	+0.4	+0.0	48.0	46.0	+2.0	Line
			+0.1								
11	1.706M	22.3	+9.2	+0.1	+0.0	+0.4	+0.0	32.1	46.0	-13.9	Line
A	Ave		+0.1								
^	1.706M	39.3	+9.2	+0.1	+0.0	+0.4	+0.0	49.1	46.0	+3.1	Line
			+0.1								
13	2.157M	21.7	+9.2	+0.1	+0.0	+0.4	+0.0	31.5	46.0	-14.5	Line
A	Ave		+0.1								
^	2.157M	38.2	+9.2	+0.1	+0.0	+0.4	+0.0	48.0	46.0	+2.0	Line
			+0.1								
15	1.647M	21.5	+9.2	+0.1	+0.0	+0.3	+0.0	31.2	46.0	-14.8	Line
	Ave		+0.1								
^	1.647M	36.5	+9.2	+0.1	+0.0	+0.3	+0.0	46.2	46.0	+0.2	Line
			+0.1								

17	2.889M	21.1	+9.1	+0.1	+0.0	+0.4	+0.0	30.8	46.0	-15.2	Line
A	Ave		+0.1								
^	2.889M	36.7	+9.1	+0.1	+0.0	+0.4	+0.0	46.4	46.0	+0.4	Line
			+0.1								
19	713.585k	20.4	+9.4	+0.1	+0.0	+0.4	+0.0	30.5	46.0	-15.5	Line
A	Ave		+0.2								
^	713.585k	35.5	+9.4	+0.1	+0.0	+0.4	+0.0	45.6	46.0	-0.4	Line
			+0.2								
21	2.902M	20.6	+9.1	+0.1	+0.0	+0.4	+0.0	30.3	46.0	-15.7	Line
A	4ve		+0.1								
^	2.902M	36.2	+9.1	+0.1	+0.0	+0.4	+0.0	45.9	46.0	-0.1	Line
			+0.1								
23	1.264M	20.1	+9.3	+0.1	+0.0	+0.4	+0.0	30.1	46.0	-15.9	Line
A	Ave		+0.2								
^	1.264M	35.6	+9.3	+0.1	+0.0	+0.4	+0.0	45.6	46.0	-0.4	Line
			+0.2								
25	1.426M	19.2	+9.3	+0.1	+0.0	+0.4	+0.0	29.2	46.0	-16.8	Line
A	Ave		+0.2								
^	1.426M	36.8	+9.3	+0.1	+0.0	+0.4	+0.0	46.8	46.0	+0.8	Line
			+0.2								

CKC Laboratories, Inc. Date: 1/29/2015 Time: 09:40:53 SNUPl Technologies WO#: 96653 Test Lead: Line 120V 60Hz Sequence#: 5 Line SNUPl Technologies Gateway P/N: 810-00008

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: SNUPI Technologies

Specification: 15.207 AC Mains - Quasi-peak

 Work Order #:
 96653
 Date: 1/29/2015

 Test Type:
 Conducted Emissions
 Time: 09:53:08

Equipment: Gateway Sequence#: 6

Manufacturer: SNUPI Technologies Tested By: Steven Pittsford Model: 810-00008 Tested By: Development By: Steven Pittsford 120V 60Hz

S/N: 90-7A-F1-FE-FD-0B

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	9/2/2014	9/2/2016
T2	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
Т3	ANP06505	Cable	32026-29080-	10/18/2013	10/18/2015
			29080-84		
	AN01492	50uH LISN-Line	3816/2NM	7/21/2013	7/21/2015
T4	AN01492	50uH LISN-Neutral	3816/2NM	7/21/2013	7/21/2015
	AN02872	Spectrum Analyzer	E4440A	7/19/2013	7/19/2015
T5	AN02611	High Pass Filter	HE9615-150K-	3/26/2014	3/26/2016
			50-720B		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Gateway*	SNUPI Technologies	810-00008	90-7A-F1-FE-FD-0B

Support Devices:

Function	Manufacturer	Model #	S/N	
N300 Wireless Router	NetGear	WNR2000		
Laptop	Dell	Precision M4400		

Test Conditions / Notes:

Temperature: 23°C Pressure: 103.3kPa Humidity: 41%

Frequency: 150k-30MHz

Test Method: ANSI C63.4 (2009)

Mode: The EUT is Transmitting.

The EUT is located on top of a Styrofoam table, 80cm over the ground plane.

The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating at 100M.

The router is connected to the laptop.

Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

Page 10 of 37 Report No.: 96653-8

Ext Attn: 0 dB

	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	2.578M	26.5	+9.1	+0.1	+0.0	+0.3	+0.0	36.1	46.0	-9.9	Neutr
^	Ave	41.6	+0.1	+0.1	10.0	10.2	100	<i>5</i> 1.2	16.0	15.2	NI 4
	2.578M	41.6	+9.1 +0.1	+0.1	+0.0	+0.3	+0.0	51.2	46.0	+5.2	Neutr
3	1.379M Ave	24.4	+9.3 +0.2	+0.1	+0.0	+0.3	+0.0	34.3	46.0	-11.7	Neutr
^	1.379M	37.2	+9.3 +0.2	+0.1	+0.0	+0.3	+0.0	47.1	46.0	+1.1	Neutr
5	2.757M	24.5	+9.1	+0.1	+0.0	+0.3	+0.0	34.1	46.0	-11.9	Neutr
	Ave		+0.1					10.0	160	• •	
^	2.757M	39.3	+9.1 +0.1	+0.1	+0.0	+0.3	+0.0	48.9	46.0	+2.9	Neutr
7	2.902M Ave	21.7	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	31.4	46.0	-14.6	Neutr
^	2.902M	36.3	+9.1 +0.1	+0.1	+0.0	+0.4	+0.0	46.0	46.0	+0.0	Neutr
9	1.672M Ave	21.2	+9.2 +0.1	+0.1	+0.0	+0.3	+0.0	30.9	46.0	-15.1	Neutr
^	1.672M	38.3	+9.2 +0.1	+0.1	+0.0	+0.3	+0.0	48.0	46.0	+2.0	Neutr
11	928.238k	20.9	+9.3	+0.1	+0.0	+0.4	+0.0	30.9	46.0	-15.1	Neutr
12	Ave 1.290M	20.9	+0.2	+0.1	+0.0	+0.4	+0.0	30.9	46.0	-15.1	Neutr
^	Ave 1.290M	36.7	+0.2	+0.1	+0.0	+0.4	+0.0	46.7	46.0	+0.7	Neutr
1.4			+0.2								
14	928.238k Ave	20.9	+9.3 +0.2	+0.1	+0.0	+0.4	+0.0	30.9	46.0	-15.1	Neutr
^	928.238k	34.1	+9.3 +0.2	+0.1	+0.0	+0.4	+0.0	44.1	46.0	-1.9	Neutr
16	1.434M Ave	20.7	+9.3 +0.2	+0.1	+0.0	+0.3	+0.0	30.6	46.0	-15.4	Neutr
^	1.434M	36.3	+9.3	+0.1	+0.0	+0.3	+0.0	46.2	46.0	+0.2	Neutr
18	1.137M	20.6	+0.2 +9.3	+0.1	+0.0	+0.3	+0.0	30.5	46.0	-15.5	Neutr
	Ave		+0.2								
_ ^	1.137M	36.2	+9.3 +0.2	+0.1	+0.0	+0.3	+0.0	46.1	46.0	+0.1	Neutr
20	712.129k Ave	19.4	+9.4 +0.2	+0.1	+0.0	+0.4	+0.0	29.5	46.0	-16.5	Neutr
^		35.7	+9.4	+0.1	+0.0	+0.4	+0.0	45.8	46.0	-0.2	Neutr
22		19.6	+9.1	+0.1	+0.0	+0.4	+0.0	29.3	46.0	-16.7	Neutr
^	Ave 3.029M	33.5	+0.1 +9.1 +0.1	+0.1	+0.0	+0.4	+0.0	43.2	46.0	-2.8	Neutr
L			10.1								

24	869.206k	17.6	+9.4	+0.1	+0.0	+0.4	+0.0	27.7	46.0	-18.3	Neutr
A	Ave		+0.2								
^	869.206k	34.6	+9.4	+0.1	+0.0	+0.4	+0.0	44.7	46.0	-1.3	Neutr
			+0.2								
26	4.250M	17.6	+9.0	+0.1	+0.0	+0.4	+0.0	27.2	46.0	-18.8	Neutr
A	Ave		+0.1								
^	4.250M	32.4	+9.0	+0.1	+0.0	+0.4	+0.0	42.0	46.0	-4.0	Neutr
			+0.1								
28	1.039M	16.5	+9.3	+0.1	+0.0	+0.4	+0.0	26.5	46.0	-19.5	Neutr
A	Ave		+0.2								
^	1.039M	33.0	+9.3	+0.1	+0.0	+0.4	+0.0	43.0	46.0	-3.0	Neutr
			+0.2								
30	7.851M	10.4	+8.8	+0.1	+0.1	+0.4	+0.0	19.9	50.0	-30.1	Neutr
A	Ave		+0.1								
^	7.851M	41.8	+8.8	+0.1	+0.1	+0.4	+0.0	51.3	50.0	+1.3	Neutr
			+0.1								

CKC Laboratories, Inc. Date: 1/29/2015 Time: 09:53:08 SNUPl Technologies WO#: 96653 Test Lead: Neutral 120V 60Hz Sequence#: 6 Neutral SNUPl Technologies Gateway P/N: 810-00008

1 - 15.207 AC Mains - Average

2 - 15.207 AC Mains - Quasi-peak

Test Setup Photos

15.247(a)(2) -6dB Bandwidth

Test Conditions / Setup

Test Conditions: Temp: 23°C Humidity: 41% Pressure: 103.3kPa Date Tested: 1/27/15

Test Method: KDB 558074 D01 DTS Meas Guidance v03r02

Engineer: Steven Pittsford

	Test Equipment								
Asset #	Description	Manufacturer	Model	Cal Date	Cal Due				
01996	Biconilog Antenna	Chase	CBL6111C	7/16/2014	7/16/2016				
02307	Preamp	HP	8447D	3/14/2014	3/14/2016				
P05360	Cable	Belden	RG214	12/1/2014	12/1/2016				
P06505	Cable	Astrolab	32026-29080- 29080-84	10/18/2013	10/18/2015				
02872	Spectrum Analyzer	Agilent	E4440A	7/19/2013	7/19/2015				
P05963	Cable	Belden	RG-214	2/21/2014	2/21/2016				

Gateway Setup

The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. EUT is located on top of a Styrofoam table, 80cm over the ground plane. The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating at 100M. This router is then connected to the lanton

Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

Frequency (MHz)	-6dB Bandwidth (Gateway)	
906	680.8kHz	
914	685.1kHz	
924	680.8kHz	

Page 14 of 37 Report No.: 96653-8

Test Data

Low Channel

Middle Channel

High Channel

Test Setup Photo

15.247(b)(3) RF Power Output

Test Conditions / Setup

Test Conditions: Temp: 23°C Humidity: 41% Pressure: 103.3kPa Date Tested: 1/28/15

Test Method: KDB 558074 D01 DTS Meas Guidance v03r02

Engineer: Steven Pittsford

	Test Equipment								
Asset #	Description	Manufacturer	Model	Cal Date	Cal Due				
01996	Biconilog Antenna	Chase	CBL6111C	7/16/2014	7/16/2016				
02307	Preamp	HP	8447D	3/14/2014	3/14/2016				
P05360	Cable	Belden	RG214	12/1/2014	12/1/2016				
P06505	Cable	Astrolab	32026-29080- 29080-84	10/18/2013	10/18/2015				
02872	02872 Spectrum Analyzer		E4440A	7/19/2013	7/19/2015				
P05963	Cable	Belden	RG-214	2/21/2014	2/21/2016				

Gateway Setup

The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. EUT is located on top of a Styrofoam table, 80cm over the ground plane. The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating at 100M. This router is then connected to the laptop.

Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

Page 17 of 37 Report No.: 96653-8

Correction factors are factored into the spectrum analyzer screen captures.

$P = (Ed)^2 / (30 * G)$

- E = Field strength of the measurement converted to V/M
- d = Measurement distance in meters
- G = Numerical gain of the EUT's antenna relative to an isotropic radiator.
- P = The power in watts for which we are solving.

Frequency (MHz)	Voltage	Corrections due to cables, amplifiers and antennas (dB)	Corrected Reading (dBm)	Antenna Gain (dBi)	Conducted Power (Watts)
906	Nominal	0.7	-4.7	-2.9	0.01
906	85%	0.7	-4.7	-2.9	0.01
906	115%	0.7	-4.7	-2.9	0.01
914	Nominal	0.8	-5.0	-3.2	0.01
914	85%	0.8	-5.0	-3.2	0.01
914	115%	0.8	-5.0	-3.2	0.01
924	Nominal	1.0	-7.1	-5.3	0.01
924	85%	1.0	-7.1	-5.3	0.01
924	115%	1.0	-7.1	-5.3	0.01

Test Data

Low Nom Volt

Low 85% Volt

Low 115% Volt

Mid Nom Volt

Mid 85% Volt

Mid 115% Volt

High Nom Volt

High 85% Volt

High 115% Volt

Test Setup Photo

15.247(d) Radiated Spurious Emissions and Band Edge

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **SNUPI Technologies**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 96653 Date: 1/28/2015
Test Type: Maximized Emissions Time: 15:27:05

Equipment: Gateway Sequence#: 9

Manufacturer: SNUPI Technologies Tested By: Steven Pittsford

Model: 810-00008

S/N: 90-7A-F1-FE-FD-0B

Test Equipment:

	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN03209	Preamp	83051A	3/5/2013	3/5/2015
	T2	AN01467	Horn Antenna-ANSI	3115	9/16/2013	9/16/2015
			C63.5 Calibration			
	Т3	ANP05305	Cable	ETSI-50T	2/20/2014	2/20/2016
	T4	ANP06505	Cable	32026-29080-	10/18/2013	10/18/2015
				29080-84		
	T5	AN02872	Spectrum Analyzer	E4440A	7/19/2013	7/19/2015
	T6	AN03170	High Pass Filter	HM1155-11SS	10/14/2013	10/14/2015
	T7	AN00052	Loop Antenna	6502	5/20/2014	5/20/2016
	Т8	AN02307	Preamp	8447D	3/14/2014	3/14/2016
	Т9	AN01996	Biconilog Antenna	CBL6111C	7/16/2014	7/16/2016
	T10	ANP05360	Cable	RG214	12/1/2014	12/1/2016
Ī	T11	ANP05963	Cable	RG-214	2/21/2014	2/21/2016

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Gateway*	SNUPI Technologies	810-00008	90-7A-F1-FE-FD-0B

Support Devices:

Function	Manufacturer	Model #	S/N	
N300 Wireless Router	NetGear	WNR2000		
Laptop	Dell	Precision M4400		

Page 24 of 37 Report No.: 96653-8

Test Conditions / Notes:

Temperature: 23°C Pressure: 103.3kPa Humidity: 41%

Frequency: 9k-9.28GHz

Test Method: KDB 558074 D01 DTS Meas Guidance v03r02

Mode: The EUT is transmitting at Low Mid and High Channels.

The EUT is located on top of a Styrofoam table, 80cm over the ground plane.

The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating

The router is connected to the laptop.

Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

F	Attn:	Λ -In
- VT	ΔTTn:	II AR

	rement Data:		eading lis		argin.			est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	750.048M	44.3	+0.0	+0.0	+0.0	+0.8	+0.0	42.1	46.0	-3.9	V & H
			+0.0	+0.0	+0.0	-27.8	360				103
			+21.6	+1.8	+1.4						
2	699.824M	45.5	+0.0	+0.0	+0.0	+0.8	+0.0	41.9	46.0	- 4.1	V & H
			+0.0	+0.0	+0.0	-28.1	360				125
			+20.7	+1.7	+1.3						
3	800.272M	42.1	+0.0	+0.0	+0.0	+0.8	+0.0	41.0	46.0	-5.0	V & H
			+0.0	+0.0	+0.0	-27.7	360				103
			+22.5	+1.9	+1.4						
4	699.824M	44.3	+0.0	+0.0	+0.0	+0.8	+0.0	40.7	46.0	-5.3	V & H
			+0.0	+0.0	+0.0	-28.1	360				103
			+20.7	+1.7	+1.3						
5	750.048M	42.6	+0.0	+0.0	+0.0	+0.8	+0.0	40.4	46.0	-5.6	V & H
			+0.0	+0.0	+0.0	-27.8	360				125
			+21.6	+1.8	+1.4						
6	9140.052M	29.2	-27.6	+36.7	+5.5	+2.8	+0.0	46.8	54.0	-7.2	V & H
			+0.0	+0.2	+0.0	+0.0	-15		Mid		102
			+0.0	+0.0	+0.0						
7	7311.696M	30.3	-28.2	+37.0	+4.8	+2.4	+0.0	46.5	54.0	-7.5	V & H
			+0.0	+0.2	+0.0	+0.0			Mid		102
			+0.0	+0.0	+0.0						
8	47.770M	49.7	+0.0	+0.0	+0.0	+0.2	+0.0	32.5	40.0	-7.5	V & H
			+0.0	+0.0	+0.0	-28.0					251
			+9.9	+0.4	+0.3						
9	933.250M	37.3	+0.0	+0.0	+0.0	+0.9	+0.0	38.3	46.0	-7.7	V & H
			+0.0	+0.0	+0.0	-27.3					99
			+23.8	+2.1	+1.5						
10	8226.314M	29.3	-28.1	+36.7	+5.6	+2.5	+0.0	46.1	54.0	-7.9	V & H
			+0.0	+0.1	+0.0	+0.0	360		Mid		102
			+0.0	+0.0	+0.0						

11	8153.907M	29.2	-28.1	+36.8	+5.6	+2.5	+0.0	46.1	54.0	-7.9	V & H
			+0.0	+0.1	+0.0	+0.0			Low		106
			+0.0	+0.0	+0.0						
12	9059.764M	28.8	-27.6	+36.5	+5.3	+2.8	+0.0	46.0	54.0	-8.0	V & H
			+0.0	+0.2	+0.0	+0.0	360		Low		106
			+0.0	+0.0	+0.0						
13	9239.688M	28.1	-27.7	+36.9	+5.7	+2.8	+0.0	46.0	54.0	-8.0	V & H
			+0.0	+0.2	+0.0	+0.0	359		High		107
	222222	• • • •	+0.0	+0.0	+0.0				1.5.0		
14	800.272M	38.9	+0.0	+0.0	+0.0	+0.8	+0.0	37.8	46.0	-8.2	V & H
			+0.0	+0.0	+0.0	-27.7	360				125
			+22.5	+1.9	+1.4						
15	8316.351M	29.0	-28.0	+36.5	+5.6	+2.6	+0.0	45.8		-8.2	V & H
			+0.0	+0.1	+0.0	+0.0	309		High		107
4.5	2 (0 (0 0 0)		+0.0	+0.0	+0.0						
16	3696.009M	41.2	-31.0	+29.8	+3.3	+1.6	+0.0	45.2	54.0	-8.8	V & H
			+0.0	+0.3	+0.0	+0.0	360		High		99
	265604235	40.0	+0.0	+0.0	+0.0	.1.6	. 0. 0	110			T. O. T.
17	3656.043M	40.8	-30.9	+29.8	+3.2	+1.6	+0.0	44.8	54.0	-9.2	V & H
			+0.0	+0.3	+0.0	+0.0			Mid		103
10	72.40.0(2).6	20.0	+0.0	+0.0	+0.0	. 2. 4	. 0. 0	44.7	540	0.2	X 7 0 II
18	7248.063M	28.9	-28.2	+36.7	+4.8	+2.4	+0.0	44.7	54.0	-9.3	V & H
			+0.0	+0.1	+0.0	+0.0	360		Low		106
10	76 20014	40.0	+0.0	+0.0	+0.0	.0.2		20.4	40.0	0.6	37 O II
19	76.300M	49.8	+0.0	+0.0	+0.0	+0.3	+0.0	30.4	40.0	-9.6	V & H
			+0.0	+0.0	+0.0	-27.8	360				103
20	3624.083M	39.9	+7.2	+0.5 +29.7	+0.4	+1.6	+0.0	43.8	54.0	-10.2	V & H
20	3024.083WI	39.9	-30.9 +0.0	+29.7	+3.2 +0.0	$^{+1.0}$	±0.0 213	43.8	Low	-10.2	V & П 112
			+0.0	+0.0	+0.0	10.0	213		LOW		112
21	7391.761M	27.3	-28.2	+37.3	+4.7	+2.5	+0.0	43.7	54.0	-10.3	V & H
21	/391./01M	21.3	+0.0	+37.3 $+0.1$	+0.0	+0.0	235	43.7	High	-10.3	107
			+0.0	+0.0	+0.0	10.0	233		IIIgii		107
22	6397.862M	31.1	-29.0	+34.0	+4.3	+2.4	+0.0	43.0	54.0	-11.0	V & H
22	0397.802IVI	31.1	+0.0	+0.2	+0.0	+0.0	359	43.0	Mid	-11.0	100
			+0.0	+0.0	+0.0	10.0	337		IVIIG		100
23	6467.761M	30.4	-28.9	+34.1	+4.3	+2.3	+0.0	42.4	54.0	-116	V & H
23	0 107.7011VI	JU.T	+0.0	+0.2	+0.0	+0.0	. 0.0		High	11.0	107
			+0.0	+0.0	+0.0	. 0.0			111511		107
24	6342.063M	30.0	-29.0	+33.9	+4.3	+2.4	+0.0	41.8	54.0	-12.2	V & H
2 '	33 .2.303111	20.0	+0.0	+0.2	+0.0	+0.0	. 0.0	.1.0	Low	12.2	106
			+0.0	+0.0	+0.0	. 0.0			Low		100
25	71.120M	47.8	+0.0	+0.0	+0.0	+0.3	+0.0	27.7	40.0	-12.3	V & H
	, 1.120111	.,.0	+0.0	+0.0	+0.0	-27.8	0.0	-/./	10.0	12.5	251
			+6.6	+0.4	+0.4						
26	5436.063M	31.3	-30.2	+32.9	+4.1	+2.7	+0.0	41.0	54.0	-13.0	V & H
		- 1.0	+0.0	+0.2	+0.0	+0.0	360		Low	10.0	106
			+0.0	+0.0	+0.0						
27	5543.661M	30.9	-30.1	+33.0	+4.1	+2.6	+0.0	40.7	54.0	-13.3	V & H
			+0.0	+0.2	+0.0	+0.0	360		High		107
			+0.0	+0.0	+0.0	- • •			S		- '

28	4570.006M	34.2	-31.0	+31.4	+3.6	+2.2	+0.0	40.7	54.0	-13.3	V & H
			+0.0	+0.3	+0.0	+0.0	360		Mid		103
			+0.0	+0.0	+0.0						
29	5484.006M	30.1	-30.1	+32.9	+4.1	+2.6	+0.0	39.8	54.0	-14.2	V & H
			+0.0	+0.2	+0.0	+0.0			Mid		122
			+0.0	+0.0	+0.0						
30	4620.134M	32.7	-31.0	+31.6	+3.6	+2.2	+0.0	39.4	54.0	-14.6	V & H
			+0.0	+0.3	+0.0	+0.0			High		107
			+0.0	+0.0	+0.0						
31	1827.981M	38.9	-30.6	+27.2	+2.3	+1.2	+0.0	39.4	54.0	-14.6	V & H
			+0.0	+0.4	+0.0	+0.0	360		Mid		114
			+0.0	+0.0	+0.0						
32	4530.000M	32.5	-31.0	+31.3	+3.5	+2.1	+0.0	38.7	54.0	-15.3	V & H
			+0.0	+0.3	+0.0	+0.0			Low		106
			+0.0	+0.0	+0.0						
33	2741.888M	35.5	-30.2	+28.8	+2.8	+1.4	+0.0	38.6	54.0	-15.4	V & H
			+0.0	+0.3	+0.0	+0.0	360		Mid		113
			+0.0	+0.0	+0.0						
34	250.000M	42.7	+0.0	+0.0	+0.0	+0.5	+0.0	30.5	46.0	-15.5	V & H
			+0.0	+0.0	+0.0	-27.1	360				103
			+12.7	+1.0	+0.7						
35	2772.069M	35.2	-30.2	+28.9	+2.8	+1.5	+0.0	38.5	54.0	-15.5	V & H
			+0.0	+0.3	+0.0	+0.0			High		114
			+0.0	+0.0	+0.0						
36	2717.892M	34.3	-30.2	+28.7	+2.8	+1.4	+0.0	37.3	54.0	-16.7	V & H
			+0.0	+0.3	+0.0	+0.0	360		Low		122
			+0.0	+0.0	+0.0						
37	349.900M	37.9	+0.0	+0.0	+0.0	+0.6	+0.0	28.5	46.0	-17.5	V & H
			+0.0	+0.0	+0.0	-27.2	360				125
			+15.2	+1.1	+0.9						
38	250.030M	40.5	+0.0	+0.0	+0.0	+0.5	+0.0	28.3	46.0	-17.7	V & H
			+0.0	+0.0	+0.0	-27.1	360				125
			+12.7	+1.0	+0.7						
39	1811.862M	35.0	-30.6	+27.1	+2.3	+1.2	+0.0	35.4	54.0	-18.6	V & H
			+0.0	+0.4	+0.0	+0.0	360		Low		128
			+0.0	+0.0	+0.0						
40	1847.965M	34.3	-30.6	+27.4	+2.3	+1.2	+0.0		54.0		V & H
			+0.0	+0.4	+0.0	+0.0	360		High		104
			+0.0	+0.0	+0.0						
41	906.000M	105.0	+0.0	+0.0	+0.0	+0.9	+0.0	105.7	125.2	-19.5	V & H
			+0.0	+0.0	+0.0	-27.4	21				99
			+23.7	+2.0	+1.5						
42	133.307M	36.4	+0.0	+0.0	+0.0	+0.4	+0.0	22.0	43.5	-21.5	V & H
			+0.0	+0.0	+0.0	-27.7	360				99
			+11.8	+0.6	+0.5						
43	149.972M	35.8	+0.0	+0.0	+0.0	+0.4	+0.0	21.4	43.5	-22.1	V & H
			+0.0	+0.0	+0.0	-27.5	284				99
			+11.4	+0.7	+0.6						
44	914.152M	102.0	+0.0	+0.0	+0.0	+0.9	+0.0	102.8	125.2	-22.4	V & H
			+0.0	+0.0	+0.0	-27.3	360				103
			+23.7	+2.0	+1.5						

45	74.424M	36.4	+0.0	+0.0	+0.0	+0.3	+0.0	16.7	40.0	-23.3	V & H
			+0.0	+0.0	+0.0	-27.8					99
			+7.0	+0.4	+0.4						
46	150.000k	47.8	+0.0	+0.0	+0.0	+0.0	-80.0	-22.6	24.1	-46.7	Perp
			+0.0	+0.0	+9.6	+0.0	359				107
			+0.0	+0.0	+0.0						
47	28.687M	16.1	+0.0	+0.0	+0.3	+0.2	-40.0	-18.8	29.5	-48.3	Perp
			+0.0	+0.0	+4.6	+0.0	359				107
			+0.0	+0.0	+0.0						
48	14.414k	44.5	+0.0	+0.0	+0.0	+0.0	-80.0	-21.5	44.4	-65.9	Perp
			+0.0	+0.0	+14.0	+0.0					107
			+0.0	+0.0	+0.0						

CKC Laboratories, Inc. Date: 1/28/2015 Time: 15:27:05 SNUPl Technologies WO#: 96653 Test Distance: 3 Meters Sequence#: 9 V & H SNUPl Technologies Gateway P/N: 810-00008

Band Edge

Test Conditions / Setup

Test Conditions: Temp: 23°C Humidity: 41% Pressure: 103.3kPa Date Tested: 1/28/15

Test Method: KDB 558074 D01 DTS Meas Guidance v03r02

Engineer: Steven Pittsford

	Test Equipment						
Asset #	Description	Manufacturer	Model	Cal Date	Cal Due		
01996	Biconilog Antenna	Chase	CBL6111C	7/16/2014	7/16/2016		
02307	Preamp	HP	8447D	3/14/2014	3/14/2016		
P05360	Cable	Belden	RG214	12/1/2014	12/1/2016		
P06505	Cable	Astrolab	32026-29080-29080-84	10/18/2013	10/18/2015		
02872	Spectrum Analyzer	Agilent	E4440A	7/19/2013	7/19/2015		
P05963	Cable	Belden	RG-214	2/21/2014	2/21/2016		

Gateway Setup

The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. EUT is located on top of a Styrofoam table, 80cm over the ground plane. The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating at 100M. This router is then connected to the laptop.

Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

Page 29 of 37 Report No.: 96653-8

Test Data

Test Setup Photo

15. 247(e) Power Spectral Density

Test Conditions / Setup

Test Conditions: Temp: 23°C Humidity: 41% Pressure: 103.3kPa Date Tested: 1/29/15

Test Method: KDB 558074 D01 DTS Meas Guidance v03r02

Engineer: Steven Pittsford

	Test Equipment						
Asset #	Description	Manufacturer	Model	Cal Date	Cal Due		
01996	Biconilog Antenna	Chase	CBL6111C	7/16/2014	7/16/2016		
02307	Preamp	НР	8447D	3/14/2014	3/14/2016		
P05360	Cable	Belden	RG214	12/1/2014	12/1/2016		
P06505	Cable	Astrolab	32026-29080- 29080-84	10/18/2013	10/18/2015		
02872	Spectrum Analyzer	Agilent	E4440A	7/19/2013	7/19/2015		
P05963	Cable	Belden	RG-214	2/21/2014	2/21/2016		

Gateway Setup

The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. EUT is located on top of a Styrofoam table, 80cm over the ground plane. The EUT is connected to a wireless router located outside the test chamber via an unshielded Cat 5e cable operating at 100M. This router is then connected to the laptop.

Mod #1: Ethernet shell disconnected from digital ground by removing R128 & C194.

Correction factors are factored into the spectrum analyzer screen captures.

$P = 10log((Ed)^2 / (30 * G)*1000)$

E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P = The power in dBm for which we are solving

Frequency (MHz)	Corrections due to cables, amplifiers, antennas (dB)	Corrected Reading (dBm)	Antenna Gain (dBi)	Spectral Density (dBm)
906	0.7	-13.4	-2.9	1.27
914	0.8	-14.7	-3.2	0.27
924	1.0	-16.8	-5.3	0.27

Page 32 of 37 Report No.: 96653-8

Test Data

Low

High

Test Setup Photo

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 36 of 37 Report No.: 96653-8

	SAMPLE CALCULATIONS							
	Meter reading (dBμV)							
+	Antenna Factor	(dB)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 37 of 37 Report No.: 96653-8