





## Сетевая модель двухфазной фильтрации в неоднородных пористых средах

#### Шаббир Кафи Ул, М03-304б

Центр образовательных программ ФАКТ, МФТИ Научный руководитель: Извеков О. Я. Научный консультант: Конюхов А.В. ГК-211, 11:00, 19.05.2025

## Содержание

- 1. Мотивация и цель
- 2. Обзор подходов к моделированию движения флюидов в неоднородных средах
- 3. Новая сетевая модель
- 4. Задачи
  - 1. Пропитка изолированного блока (imbibition)
  - 2. Вытеснение в среде с периодической неоднородностью
  - 3. Релаксационная модель Кондаурова
- 5. Выводы





## Мотивация и цель

Доля нефти, добываемой из нетрадиционных пластов со сложным строением, увеличивается год от года Цель работы:

моделирование эффектов капиллярной неравновесности двухфазных течений в пористой среде на основе неоднородной сетевой модели





# Классическое описание движения флюидов в пористой среде (Дарси)

- Поток происходит в состоянии капиллярного равновесия – в каждый момент времени успевает установиться равновесное распределение флюидов
- Перестает работать в средах с неоднородностями, когда время установления равновесия велико

$$Q = -\frac{K}{\mu} \nabla P,$$

$$S_k = \frac{V_k}{V_{\text{void}}}$$

$$K = K(S)$$



## Усложненные континуальные модели

$$K = K\left(S, \frac{\partial S}{\partial t}\right).$$

Barenblatt G. et al. The mathematical model of nonequilibrium effects in water – oil displacement // 2003.

Hassanizadeh S. Continuum description of thermodynamic processes in porous media:
Fundamentals and applications // 2004.



$$K_{\alpha} = K_{\alpha}(S, \xi),$$

$$\frac{\partial \xi}{\partial t} = \Omega(S, \, \xi).$$

Модель неравновесности Кондаурова



- 1 Матрица
- 2 Макротрещины
- 3 Измененная часть породы с кавернами и микротрещинами

Подход двойной пористости

## Сетевые модели

- Сетевая модель численный эксперимент
- Проверка выводов континуальных моделей
- Уточнение физического смысла параметров
- Дополнение континуальной модели





## Разные сетевые модели



Fig. 1—Single Hexagonal Network.
Fig. 2—Square Network.
Fig. 3—Double Hexagonal Network.

FIG. 3—DOUBLE HEXAGONAL NETWORK. FIG. 4—Triple HEXAGONAL NETWORK.

Fatt I // 1956, USA





*Aker E. et al. //* 1998, Norway



Zubov A et al. Pore-network extraction using discrete Morse theory // 2022, Russia

## Новая сетевая модель

- Капилляры представлены <u>трубками</u>, а поры — <u>узлами</u>
- 2D
- Разные радиусы
- Узлы не имеют объема
- Игнорируем гравитацию





Новый метод распределения жидкости в узлах: Когда смачивающая и несмачивающая жидкости поступают в узел на шаге интегрирования по времени, смачивающая жидкость поступает в более тонкие капилляры. Этот подход обеспечивает минимизацию поверхностной энергии.

## Алгоритм решения

- 1.Генерация СЛАУ
- 2.Расчет скорости во всех капиллярах
- 3.Распределение различных жидкостей (новый метод)
- 4.Измерение насыщенности, капиллярного давления

$$Q_{ij} = A_{ij} \Delta P_{ij} + B_{ij},$$

$$A_{ij} = \frac{\pi R_{ij}^4}{8M_{ij}l};$$

$$B_{ij} = \frac{\pi R_{ij}^4}{8M_{ij}l} \frac{2s_{ij}\sigma}{R_{ij}},$$

$$M = \sum_{i} \mu_i \frac{l_i}{l}$$

## Задача-1: Моделирование пропитки (imbibition) в изолированной области





#### S, P, t — безразмерные величины

Предварительные выводы:

- 1) Насыщенность блока релаксирует к равновесному значению
- 2) Полученная равновесная капиллярная кривая имеет классический вид

#### Задача-2: Модель с периодической неоднородностью



Расчетная область, состоящая из 21х21 узлов. Смачивающая жидкость (обозначена синим цветом) вводится с постоянной скоростью в систему капилляров, первоначально насыщенных несмачивающей жидкостью (обозначена красным цветом)



$$R(x, y) = A(1 + B\cos(k_x x)\cos(k_y y)),$$

Условие постоянного объема трубок: длина капилляра согласованна с его радиусом

$$l_i = \frac{A}{r_i^2}$$

#### Низкое поверхностное натяжение



Движение вытесняющей жидкости преимущественно по толстым капиллярам

#### Высокое поверхностное натяжение



Движение вытесняющей жидкости преимущественно по тонким капиллярам

## Моделирование вытеснения при различном расходе (различной степени неравновесности)



Зависимость средней насыщенности смачивающей жидкости *S* от *x* для различных безразмерных объемных расходов Q в разные моменты времени

Наблюдение: чем выше неравновесность, тем сильнее «убегает» скачок насыщенности

#### Релаксационная модель капиллярной неравновесности Кондаурова



Неравновесная задача Баклея-Леверетта (1D)

$$\frac{\partial S}{\partial t} + \frac{Q}{\phi} \frac{\partial}{\partial x} b(S, \xi) = 0$$

$$\frac{\partial \xi}{\partial t} = \frac{1}{\tau} \left( \frac{\alpha}{\beta} (1 - S) - \xi \right)$$

$$b(S,\xi) = \frac{f_1\left(2S + \frac{\beta}{\alpha}\xi - 1\right)}{f_1\left(2S + \frac{\beta}{\alpha}\xi - 1\right) + \frac{\mu_1}{\mu_2}f_2\left(2 - 2S - \frac{\beta}{\alpha}\xi\right)}$$

Равновесная задача Баклея-Леверетта (1D)

$$\frac{\partial S}{\partial t} + \frac{Q}{\phi} \frac{\partial}{\partial x} b(S, \xi_e) = 0$$

$$\xi_e = \frac{\alpha}{\beta} (1 - S)$$

$$b_{e}(S,\xi_{e}) = \frac{f_{1}(S)}{f_{1}(S) + \frac{\mu_{1}}{\mu_{2}} f_{2}(1-S)}$$

#### Релаксационная модель капиллярной неравновесности Кондаурова: предельные случаи

Мгновенная релаксация (равновесие)

$$\tau \to 0$$

$$b_{e}(S, \xi_{e}) = \frac{f_{1}(S)}{f_{1}(S) + \frac{\mu_{1}}{\mu_{2}} f_{2}(1-S)}$$

$$f_{1}(S) = S^{2} \qquad f_{2}(S) = (1-S)^{2}$$

Отсутствие релаксации

$$au o\infty$$

$$b_{e}(S,\xi_{0}) = \frac{f_{1}(2S)}{f_{1}(2S) + \frac{\mu_{1}}{\mu_{2}} f_{2}(2-2S)}$$



#### Релаксационная модель капиллярной неравновесности Кондаурова: S(x, t) в определенный момент времени для различных τ

Зеленая линия – равновесная задача Баклея-Леверетта ( $\tau \to 0$ )

#### Красная линия – параметр $\xi$









#### Релаксационная модель капиллярной неравновесности Кондаурова: сравнение с сетевой моделью



## Выводы

- 1. Предложена новая модель фильтрации на основе неоднородной сети капилляров.
- 2. С применением разработанной модели решены задачи о противоточной пропитке блока и о двухфазном вытеснении в неоднородной пористой среде.
- 3. Получено качественное соответствие результатов (Pc(S), S(x, t)) известным теоретическим зависимостям и решениям на основе модели капиллярной неравновесности.





## Публикации по результатам работы

- 1. Шаббир К., Извеков О. Я., Конюхов А. В., **Моделирование двухфазного течения в пористых средах с использованием неоднородной сетевой модели** // Компьютерные исследования и моделирование. 2024, Т. 16, № 4, С. 913–925.
- 2. Шаббир К., Извеков О. Я., Вамси Б., Моделирование пропитки пористой среды с помощью двумерной сетевой модели // Труды МФТИ. 2024, Т. 18, №. 2, С. 41–50.
- 3. Шаббир К., Извеков О. Я., Конюхов А. В. Моделирование процессов вытеснения в пористых средах с периодической неоднородностью // Труды 67-й Всероссийской научной конференции МФТИ, 1–5 апреля 2025 г. Аэрокосмические технологии. М: Физматкнига. 2025
- 4. Шаббир К., Извеков О. Я., Конюхов А. В. Моделирование противоточной капиллярной пропитки на основе сетевой (network) модели // VII Международная Конференция Триггерные Эффекты В Геосистемах 2–5 Июля 2024 Г., Долгопрудный, Тезисы Докладов, С. 54.
- 5. Шаббир К., Извеков О., Конюхов А., Моделирование двухфазного потока в пористой среде с использованием двумерной сетевой модели // Труды 66-й Всероссийской научной конференции МФТИ, 1–6 апреля 2024 г. Аэрокосмические технологии. М: Физматкнига. 2024, С. 164–166, ISBN 978-5-89155-411-5.
- 6. Вамси Б., Шаббир К., Извеков О., Моделирование двухфазного течения в пористых средах с использованием трехмерной сетевой модели // Труды 66-й Всероссийской научной конференции МФТИ, 1–6 апреля 2024 г. Аэрокосмические технологии. М: Физматкнига, 2024, С. 159–161, ISBN 978-5-89155-411-5.
- 7. Shabbir K., Izvekov O., Konyukhov A., Simulation of Two-Phase Flow in Porous Media using a Two-Dimensional Network Model // The International Summer Conference on Theoretical Physics 03.07.2023.
- 8. Shabbir K., Simulation of Two-Phase Flow in Porous Media using a Two-Dimensional Network Model // Труды 65-й Всероссийской научной конференции МФТИ в честь 115-летия Л. Д. Ландау, 3–8 апреля 2023 г. Аэрокосмические технологии. М: Физматкнига, 2023, С. 205–206, ISBN 978-5-89155-388-0.

## Спасибо!



