Inquiry Based Linear Algebra

© Jason Siefken, 2016–2018 Creative Commons By-Attribution Share-Alike @ 00

About the Document

This document is a hybrid of many linear algebra resources, including those of the IOLA (Inquiry Oriented Linear Algebra) project, Jason Siefken's IBLLinearAlgebra project, and Asaki, Camfield, Moon, and Snipes' Radiograph and Tomography project.

This document is a mix of student projects, problem sets, and labs. A typical class day looks like:

- 1. **Introduction by instructor.** This may involve giving a definition, a broader context for the day's topics, or answering questions.
- 2. **Students work on problems.** Students work individually or in pairs on the prescribed problem. During this time the instructor moves around the room addressing questions that students may have and giving one-on-one coaching.
- 3. **Instructor intervention.** If most students have successfully solved the problem, the instructor regroups the class by providing a concise explanation so that everyone is ready to move to the next concept. This is also time for the instructor to ensure that everyone has understood the main point of the exercise (since it is sometimes easy to do some computation while being oblivious to the larger context).
 - If students are having trouble, the instructor can give hints to the group, and additional guidance to ensure the students don't get frustrated to the point of giving up.

4. Repeat step 2.

Using this format, students are working (and happily so) most of the class. Further, they are especially primed to hear the insights of the instructor, having already invested substantially into each problem.

This problem-set is geared towards concepts instead of computation, though some problems focus on simple computation.

License Unless otherwise mentioned, pages of this document are licensed under the Creative Commons By-Attribution Share-Alike License. That means, you are free to use, copy, and modify this document provided that you provide attribution to the previous copyright holders and you release your derivative work under the same license. Full text of the license is at http://creativecommons.org/licenses/by-sa/4.0/

If you modify this document, you may add your name to the copyright list. Also, if you think your contributions would be helpful to others, consider making a pull requestion, or opening an *issue* at https://github.com/siefkenj/IBLLinearAlgebra

Content from other sources is reproduced here with permission and retains the Author's copyright. Please see the footnote of each page to verify the copyright.

Lesson 1: Linear Combinations

Textbook

Section 1.1

Objectives

- Internalize vectors as geometric objects representing displacements.
- Use column vector notation to write vectors.
- Relate points an vectors and be able to interpret a point as a vector and a vector as a point.
- Solve simple equations involving vectors.

Motivation

Students have differing levels of experience with vectors. We want to establish a common notation for vectors and use vector notation along with algebra to solve simple questions. E.g., "How can I get to location X given that I can only walk parallel to the lines y = 4x and y = -x?"

We will use column vector notation and the idea of equating coordinates in order to solve problems.

Notes/Misconceptions

We will use the language component of \vec{v} in the direction \vec{u} in the future and it will be a vector. For this reason, try to refer to the entries of a column vector as coordinates instead of components.

Task 1.1: The Magic Carpet Ride

You are a young traveler, leaving home for the first time. Your parents want to help you on Hands-on experience with vectors as your journey, so just before your departure, they give you two gifts. Specifically, they give you two forms of transportation: a hover board and a magic carpet. Your parents inform you that both the hover board and the magic carpet have restrictions in how they operate:

We denote the restriction on the hover board's movement by the vector $\begin{vmatrix} 3 \\ 1 \end{vmatrix}$

By this we mean that if the hover board traveled "forward" for one hour, it would move along a "diagonal" path that would result in a displacement of 3 miles East and 1 mile North of its starting location.

We denote the restriction on the magic carpet's movement by the vector

By this we mean that if the magic carpet traveled "forward" for one hour, it would move along a "diagonal" path that would result in a displacement of 1 mile East and 2 miles North of its starting location.

displacements.

- Internalize vectors as geometric objects representing displacements.
- Use column vector notation to write vectors.
- Use pre-existing knowledge of algebra to answer vector questions.

Notes/Misconceptions

- There are many ways to solve this problem, and some might start with equations. Make them draw a pic-
- When the students start coming up with vector equations, give them the vocabulary of linear combinations and column vector notation.

Scenario One: The Maiden Voyage

Your Uncle Cramer suggests that your first adventure should be to go visit the wise man, Old Man Gauss. Uncle Cramer tells you that Old Man Gauss lives in a cabin that is 107 miles East and 64 miles North of your home.

Task:

Investigate whether or not you can use the hover board and the magic carpet to get to Gauss's cabin. If so, how? If it is not possible to get to the cabin with these modes of transportation, why is that the case?

1

Lesson 2: Linear Combinations

Textbook

Section 1.2

Objectives

- Set up and solve vector equations $a\vec{v} + b\vec{u} = \vec{w}$. The solving method may be ad hoc.
- Use set notation and set operations/relations \cup , \cap , \in , \subseteq .
- Translate between set-builder notation and words in multiple ways.

Motivation

We revisit questions about linear combinations more formally and generate a need for algebra. The algebra we do to solve vector equations will become algorithmic when we learn row reduction, but at the moment, any method is fine.

As we talk about more complex objects, we need precise ways to talk about groups of vectors. I.e., we need sets and set-builder notation. This preview of set-builder notation will take some of difficulty away when we define span as a set of vectors.

In this course we will be using formal and precise language. Part of this lesson is that there are multiple correct ways (and multiple incorrect ways) to use formal language. Gone are the days of "there's only one right answer and it is 4"!

Notes/Misconceptions

You will have a mix of MAT135/136 and MAT137 students. The MAT137 students will be doing logic and sets in their class. The MAT135 students won't. Make sure not to leave them behind!

Task 1.2: The Magic Carpet Ride, Hide and Seek

You are a young traveler, leaving home for the first time. Your parents want to help you on Address an existential question involvyour journey, so just before your departure, they give you two gifts. Specifically, they give you two forms of transportation: a hover board and a magic carpet. Your parents inform you that both the hover board and the magic carpet have restrictions in how they operate:

We denote the restriction on the hover board's movement by the vector

By this we mean that if the hover board traveled "forward" for one hour, it would move along a "diagonal" path that would result in a displacement of 3 miles East and 1 mile North of its starting location.

We denote the restriction on the magic carpet's movement by the vector By this we mean that if the magic carpet traveled "forward" for one hour, it would move along a "diagonal" path that would result in a displacement of 1 mile East and 2 miles North of its starting location.

Scenario Two: Hide-and-Seek

Old Man Gauss wants to move to a cabin in a different location. You are not sure whether Gauss is just trying to test your wits at finding him or if he actually wants to hide somewhere that you can't visit him.

Are there some locations that he can hide and you cannot reach him with these two modes of transportation?

Describe the places that you can reach using a combination of the hover board and the magic carpet and those you cannot. Specify these geometrically and algebraically. Include a symbolic representation using vector notation. Also, include a convincing argument supporting your answer.

ing vectors: "Is it possible to find a linear combination that does...?'

The goal of this problem is to

- Formalize geometric questions using the language of vectors.
- Find both geometric and algebraic arguments to support the same conclusion.
- Establish what a "negative multiple" of a vector should be.

- Both yes and no are valid answers to this question depending on whether you are allowed to go backwards. Establish that "negative" multiples of a vector mean traveling backwards along that vector.
- This problem can be solved with algebra by finding a formula for the coefficients for an arbitrary position or with geometry, with arguments eventually hinging on the fact that non-parallel lines do not intersect.

Sets and Set Notation

A set is a (possibly infinite) collection of items and is notated with curly braces (for example, {1,2,3} is the set containing the numbers 1, 2, and 3). We call the items in a set *elements*.

If X is a set and a is an element of X, we may write $a \in X$, which is read "a is an element of *X*."

If X is a set, a subset Y of X (written $Y \subseteq X$) is a set such that every element of Y is an element of X. Two sets are called *equal* if they are subsets of each other (i.e., X = Y if $X \subseteq Y$ and $Y \subseteq X$).

We can define a subset using *set-builder notation*. That is, if X is a set, we can define the subset

$$Y = \{a \in X : \text{some rule involving } a\},\$$

which is read "Y is the set of a in X such that some rule involving a is true." If X is intuitive, we may omit it and simply write $Y = \{a : \text{some rule involving } a\}$. You may equivalently use "|" instead of ":", writing $Y = \{a \mid \text{some rule involving } a\}$.

Some common sets are

 $\mathbb{N} = \{\text{natural numbers}\} = \{\text{non-negative whole numbers}\}.$

 $\mathbb{Z} = \{\text{integers}\} = \{\text{whole numbers, including negatives}\}.$

 $\mathbb{R} = \{\text{real numbers}\}.$

 $\mathbb{R}^n = \{ \text{vectors in } n \text{-dimensional Euclidean space} \}.$

1 1.1 Which of the following statements are true?

- (a) $3 \in \{1, 2, 3\}$. True
- (b) $1.5 \in \{1, 2, 3\}$. False
- (c) $4 \in \{1, 2, 3\}$. False
- (d) "b" $\in \{x : x \text{ is an English letter}\}$. True
- (e) " δ " $\in \{x : x \text{ is an English letter}\}$. False
- (f) $\{1,2\} \subseteq \{1,2,3\}$. True
- (g) For some $a \in \{1, 2, 3\}, a \ge 3$. True
- (h) For any $a \in \{1, 2, 3\}, a \ge 3$. False
- (i) $1 \subseteq \{1, 2, 3\}$. False
- (j) $\{1,2,3\} = \{x \in \mathbb{R} : 1 \le x \le 3\}$. False
- (k) $\{1, 2, 3\} = \{x \in \mathbb{Z} : 1 \le x \le 3\}$. True

2 Write the following in set-builder notation

2.1 The subset $A \subseteq \mathbb{R}$ of real numbers larger than $\sqrt{2}$.

$$\{x \in \mathbb{R} : x > \sqrt{2}\}.$$

2.2 The subset $B \subseteq \mathbb{R}^2$ of vectors whose first coordinate is twice the second.

$$\left\{ \vec{v} \in \mathbb{R}^2 : \vec{v} = \begin{bmatrix} a \\ b \end{bmatrix} \text{ with } a = 2b \right\} \text{ or } \left\{ \vec{v} \in \mathbb{R}^2 : \vec{v} = \begin{bmatrix} 2t \\ t \end{bmatrix} \text{ for some } t \in \mathbb{R} \right\}$$
 or
$$\left\{ \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 : a = 2b \right\}.$$

Practice reading sets and set-builder notation.

The goal of this problem is to

- Become familiar with \in , \subseteq , and = in the context of sets.
- Distinguish between \in and \subseteq .
- Use quantifiers with sets

Notes/Misconceptions

- Most are easy up through (h).
- Make students "fix" (i) so it becomes true.
- (j) and (k) are an opportunity to use the definition of set equality. Students don't realize that ='s has a definition.

Practice writing sets using set-builder notation.

The goal of this problem is to

- Express English descriptions using math notation.
- Recognize there is more than one correct way to write formal math.
- Preview vector form of a line.

- There are multiple correct ways to write each of these sets. It's a good opportunity to get man correct and incorrect sets up on the board for discussing.
- Don't worry about the geometry of B. That's coming in a later problem.

Unions & Intersections

Two common set operations are *unions* and *intersections*. Let X and Y be sets.

(union)
$$X \cup Y = \{a : a \in X \text{ or } a \in Y\}.$$

(intersection) $X \cap Y = \{a : a \in X \text{ and } a \in Y\}.$

3 Let $X = \{1, 2, 3\}$ and $Y = \{2, 3, 4, 5\}$ and $Z = \{4, 5, 6\}$. Compute

- 3.1 $X \cup Y \{1, 2, 3, 4, 5\}$
- 3.2 $X \cap Y \{2,3\}$
- 3.3 $X \cup Y \cup Z$ {1,2,3,4,5,6}
- 3.4 $X \cap Y \cap Z$ $\emptyset = \{\}$

Apply the definition of \cup and \cap .

- It's not important to emphasize that \cup and \cap are binary operations but we ask for $X \cup Y \cup Z$ without parenthesis. Students won't worry if you don't bring it up.
- It won't be clear to them how to write the empty set. Some will write $\{\emptyset\}$. Make sure this comes out.

Lesson 3: Visualizing Sets, Formal Language of Linear Combinations

Textbook

Section 1.2

Objectives

- Draw pictures of formally-described subsets of \mathbb{R}^2 .
- Graphically represent \cup and \cap for subsets of \mathbb{R}^2 .
- Graphically represent linear combinations and then come up with algebraic arguments to support graphical intuition.

Motivation

We want to build a bridge between the formal language of linear combinations and set-builder notation and geometric intuition. Where as last time the focus was on formal language, this time the focus is on linking geometry to formal descriptions.

- 4.1 $V = \left\{ \vec{x} \in \mathbb{R}^2 : \vec{x} = \begin{bmatrix} 0 \\ t \end{bmatrix} \text{ for some } t \in \mathbb{R} \right\}.$
- 4.2 $H = \left\{ \vec{x} \in \mathbb{R}^2 : \vec{x} = \begin{bmatrix} t \\ 0 \end{bmatrix} \text{ for some } t \in \mathbb{R} \right\}.$
- 4.3 $D = \left\{ \vec{x} \in \mathbb{R}^2 : \vec{x} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ for some } t \in \mathbb{R} \right\}.$

4.4
$$N = \left\{ \vec{x} \in \mathbb{R}^2 : \vec{x} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ for all } t \in \mathbb{R} \right\}.$$
 $N = \{\}.$

- $V \cup H$ looks like a "+" going through the origin.
- 4.6 $V \cap H$. $V \cap H = \{\vec{0}\}$ is just the origin.
- 4.7 Does $V \cup H = \mathbb{R}^2$?

No. $V \cup H$ does not contain $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ while \mathbb{R}^2 does contain $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Vector Combinations

Linear Combination

A *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ is a vector

$$\vec{w} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n.$$

The scalars $\alpha_1, \alpha_2, \dots, \alpha_n$ are called the *coefficients* of the linear combination.

5 Let $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and $\vec{w} = 2\vec{v}_1 + \vec{v}_2$.

5.1 Write \vec{w} as a column vector. When \vec{w} is written as a linear combination of \vec{v}_1 and \vec{v}_2 , what are the coefficients of \vec{v}_1 and \vec{v}_2 ?

$$\vec{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
; the coefficients are (2, 1).

- 5.2 Is $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ a linear combination of \vec{v}_1 and \vec{v}_2 ? Yes. $\begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3\vec{v}_1 + 0\vec{v}_2$.
- 5.3 Is $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ a linear combination of \vec{v}_1 and \vec{v}_2 ? Yes. $\vec{0} = 0\vec{v}_1 + 0\vec{v}_2$.
- 5.4 Is $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$ a linear combination of \vec{v}_1 and \vec{v}_2 ? Yes. $\begin{bmatrix} 4 \\ 0 \end{bmatrix} = 2\vec{v}_1 + 2\vec{v}_2$.
- 5.5 Can you find a vector in \mathbb{R}^2 that isn't a linear combination of \vec{v}_1 and \vec{v}_2 ?

The goal of this problem is to

- Apply set-builder notation in the context of vectors.
- Distinguish between "for all" and "for some" in set builder notation.
- Practice unions and intersections.
- Practice thinking about set equality.

Notes/Misconceptions

- 1-3 will be easy.
- Have a discussion about when you should draw vectors as arrows vs. as
- 4 gets at a subtle point that will come up again when we define span.
- Many will miss 7. Writing a proof for this is good practice.

Practice linear combinations.

The goal of this problem is to

- Practice using the formal term linear combination.
- Foreshadow span.

- In 2, the question should arise: "Is $3\vec{v}_1$ a linear combination of \vec{v}_1 and \vec{v}_2 ?" Address this.
- Refer to the magic carpet ride for 5. You don't need to do a full proof.

No.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2}\vec{v}_1 + \frac{1}{2}\vec{v}_2$$
 and $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2}\vec{v}_1 - \frac{1}{2}\vec{v}_2$. Therefore

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a(\frac{1}{2}\vec{v}_1 + \frac{1}{2}\vec{v}_2) + b(\frac{1}{2}\vec{v}_1 - \frac{1}{2}\vec{v}_2) = (\frac{a+b}{2})\vec{v}_1 + (\frac{a-b}{2})\vec{v}_2.$$

Therefore any vector in \mathbb{R}^2 can be written as linear combinations of \vec{v}_1 and \vec{v}_2 .

5.6 Can you find a vector in \mathbb{R}^2 that isn't a linear combination of \vec{v}_1 ?

Yes. All linear combinations of \vec{v}_1 have equal x and y coordinates, therefore $\vec{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is not a linear combination of \vec{v}_1 .

6 Recall the *Magic Carpet Ride* task where the hover board could travel in the direction $\vec{h} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and the magic carpet could move in the direction $\vec{m} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

6.1 Rephrase the sentence "Gauss can be reached using just the magic carpet and the hover board" using formal mathematical language.

Gauss's location can be written as a linear combination of \vec{m} and \vec{h} .

6.2 Rephrase the sentence "There is nowhere Gauss can hide where he is inaccessible by magic carpet and hover board" using formal mathematical language.

Every vector in \mathbb{R}^2 can be written as a linear combination of \vec{m} and \vec{h} .

6.3 Rephrase the sentence " \mathbb{R}^2 is the set of all linear combinations of \vec{h} and \vec{m} " using formal mathematical language.

$$\mathbb{R}^2 = {\vec{v} : \vec{v} = t\vec{m} + s\vec{h} \text{ for some } t, s \in \mathbb{R}}.$$

Practice formal writing.

Notes/Misconceptions

■ Make everyone write. They will think they can do it, but they will find it hard if they try.

Lesson 4: Restricted Linear Combinations, Lines

Textbook

Section 1.2

Objectives

- Read and digest a new definition.
- Use pictures to explore a new concept.
- Convert from an equation-representation of a line to a set-representation.

Motivation

Part of doing math in the world is reading and understanding other people's definitions. Most students will not have heard of non-negative linear combinations or convex linear combinations. This is a chance for them to read and try to understand these formal definitions. They will need to draw pictures to get an intuition about what these concepts mean.

These concepts are useful in their own right, and in particular, convex linear combinations can be used to describe line segments. Adding these definitions to a student's toolbox serves the goal of being able to describe the world with mathematics.

To that end, we start working with lines. Lines are something students have used since grade school, but they worked with them in y = mx + b form which is only applicable in \mathbb{R}^2 . We want to convert this representation into vector form and set-based descriptions which apply to all dimensions.

Non-negative & Convex Linear Combinations

The linear combination $\vec{w} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \cdots + \alpha_n \vec{v}_n$ is called a *non-negative* linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ if $\alpha_1, \alpha_2, \dots, \alpha_n \ge 0$.

If $\alpha_1, \alpha_2, \dots, \alpha_n \ge 0$ and $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$, then \vec{w} is called a *convex* linear combination

Let

$$\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad \vec{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \vec{d} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \qquad \vec{e} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}.$$

- 7.1 Out of \vec{a} , \vec{b} , \vec{c} , \vec{d} , and \vec{e} , which vectors are
 - (a) linear combinations of \vec{a} and \vec{b} ? All of them, since span $\{\vec{a}, \vec{b}\} = \mathbb{R}^2$.
 - (b) non-negative linear combinations of \vec{a} and \vec{b} ? \vec{a} , \vec{b} , \vec{c} , \vec{d} .
 - (c) convex linear combinations of \vec{a} and \vec{b} ?
- 7.2 If possible, find two vectors \vec{u} and \vec{v} so that
 - (a) \vec{a} and \vec{c} are non-negative linear combinations of \vec{u} and \vec{v} but \vec{b} is not.

Let $\vec{u} = \vec{a}$ and $\vec{v} = \vec{c}$.

(b) \vec{a} and \vec{e} are non-negative linear combinations of \vec{u} and \vec{v} .

Let $\vec{u} = \vec{a}$ and $\vec{v} = \vec{e}$.

(c) \vec{a} and \vec{b} are non-negative linear combinations of \vec{u} and \vec{v} but \vec{d} is not.

Impossible. If \vec{a} and \vec{b} are non-negative linear combinations of \vec{u} and \vec{v} , then every non-negative linear combination of \vec{a} and \vec{b} is also a non-negative linear combination of \vec{u} and \vec{v} . And, we already concluded that \vec{d} is a non-negative linear combination of \vec{a} and b.

(d) \vec{a} , \vec{c} , and \vec{d} are convex linear combinations of \vec{u} and \vec{v} .

Impossible. Convex linear combinations all lie on the same line segment, but \vec{a} , \vec{c} , and \vec{d} are not collinear.

Otherwise, explain why it's not possible.

Lines and Planes

- Let *A* be the set of points $(x, y) \in \mathbb{R}^2$ such that y = 2x + 1.
- 8.1 Describe *A* using set-builder notation.
- 8.2 Draw A as a subset of \mathbb{R}^2 .

8

- 8.3 Add the vectors $\vec{a} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\vec{d} = \vec{b} \vec{a}$ to your drawing.
- 8.4 For which $t \in \mathbb{R}$ is it true that $\vec{a} + t\vec{d} \in A$? Explain using your picture.

Geometric meaning of non-negative and convex linear combinations.

The goal of this problem is to

- Read and apply the definition of nonnegative and convex linear combina-
- Gain geometric intuition for nonnegative and convex linear combina-
- Learn how to describe line segments using convex linear combinations.

- This question is about reading and applying; emphasize that before they start.
- The geometry won't be obvious. Ask them to draw specific linear combinations (e.g., (1/2, 1/2)) to get an
- They know \vec{a} and \vec{b} span all vectors from problem 5.
- \blacksquare In part 1, they will forget \vec{a} and \vec{b} are linear combinations of themselves.
- Part 2 (b) highlights a degeneracy that will come up again when discussing linear independependence and dependence. Explain how the picture for non-negative linear combinations almost always looks one way, but this case is an exception.

Lesson 5: Vector Form of Lines, Intersecting Lines

Textbook

Section 1.2

Objectives

- Fluency with vector form of a line in \mathbb{R}^2 and \mathbb{R}^3 .
- Recognize that vector form of a line is not unique.
- Find the intersection of two lines in vector form.

Motivation

A single linear equation cannot describe a line in more than two dimensions. One way to describe a line that works in all dimensions is vector form, which is a shorthand for a particular set. Vector form has the upside that it makes it easy to produce points on a line, but it has the downside that it is not unique.

Vector form works because a line in any dimension can be defined by two points or, equivalently, a point and a direction. Though we don't yet have a systematic way to write solutions to a system of linear equations, if we have a system representing a line, all we need to do is guess two solutions to that system to find vector form of the line.

One thing vector form makes difficult is finding intersections, but intersections can be turned into just another algebra problem involving a system of equations.

Notes/Misconceptions

The biggest stumbling block for finding the intersection of two lines in vector form will be choosing different dummy variables before setting the lines equal.

Vector Form of a Line -

A line ℓ is written in *vector form* if it is expressed as

$$\vec{x} = t\vec{d} + \vec{p}$$

for some vector \vec{d} and point \vec{p} . That is, $\ell = \{\vec{x} : \vec{x} = t\vec{d} + \vec{p} \text{ for some } t \in \mathbb{R}\}$. The vector \vec{d} is called a *direction vector* for ℓ .

- Let $\ell \subseteq \mathbb{R}^2$ be the line with equation 2x + y = 3, and let $L \subseteq \mathbb{R}^3$ be the line with equations 2x + y = 3 and z = y.
 - 9.1 Write ℓ in vector form. Is vector form of ℓ unique?
 - 9.2 Write L in vector form.
 - 9.3 Find another vector form for *L* where both " \vec{d} " and " \vec{p} " are different from before.
- 10 Let *A*, *B*, and *C* be given in vector form by

$$\overbrace{\vec{x} = t \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}^{A} \qquad \overbrace{\vec{x} = t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}}^{B} \qquad \overbrace{\vec{x} = t \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}^{C}.$$

- 10.1 Do the lines *A* and *B* intersect? Justify your conclusion.
- 10.2 Do the lines *A* and *C* intersect? Justify your conclusion.
- 10.3 Let $\vec{p} \neq \vec{q}$ and suppose *X* has vector form $\vec{x} = t\vec{d} + \vec{p}$ and *Y* has vector form $\vec{x} = t\vec{d} + \vec{q}$. Is it possible that *X* and *Y* intersect?

Lesson 6: Planes, Span

Textbook

Section 1.2

Objectives

- Describe a plane in vector form.
- Visualize spans.
- \blacksquare Recognize the dimension of span (X) is not necessarily how many vectors are in X.
- Define *span*.

Motivation

Planes are just like lines but one dimension hire. Vector form of a plane is just like vector form of a plane with all the advantages and disadvantages. But, we now have two direction vectors.

Spans are similar to lines and planes; span $\{\vec{a}, \vec{b}\}\$ looks a lot like vector form of the plane $\vec{x} = t\vec{a} + s\vec{b}$. Except, span $\{\vec{a}, \vec{b}\}$ may not always be a plane. We haven't defined linear independence and linear dependence yet, but we will continue to foreshadow it by seeing that the dimension of the span of a set is not always the size of that set.

Knowing definitions is an essential part of solving math problems. Span is the first definition that students will think they "know" but won't be able to write down.

A plane P is written in *vector form* if it is expressed as

$$\vec{x} = t\vec{d}_1 + s\vec{d}_2 + \vec{p}$$

for some vectors \vec{d}_1 and \vec{d}_2 and point \vec{p} . That is, $\mathcal{P} = \{\vec{x} : \vec{x} = t\vec{d}_1 + s\vec{d}_2 + \vec{p} \text{ for some } t, s \in \mathbb{R}\}.$ The vectors \vec{d}_1 and \vec{d}_2 are called *direction vectors* for \mathcal{P} .

11 Recall the lines A and B given in vector form by

$$\overbrace{\vec{x} = t \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}} \qquad \overbrace{\vec{x} = t \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}}.$$

Let \mathcal{P} the plane that contains the lines A and B.

- 11.1 Find two direction vectors in \mathcal{P} .
- 11.2 Write \mathcal{P} in vector form.
- 11.3 Describe how vector form of a plane relates to linear combinations.
- 11.4 Write \mathcal{P} in vector form using different direction vectors and a different point.

12 Let $Q \subseteq \mathbb{R}^3$ be a plane with equation x + y + z = 1.

- 12.1 Find three points in Q.
- 12.2 Find two direction vectors for Q.
- 12.3 Write Q in vector form.

Span

The *span* of a set of vectors *V* is the set of all linear combinations of vectors in *V*. That is, $\operatorname{span} V = \{\vec{v} : \vec{v} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n \text{ for some } \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \in V \text{ and scalars } \alpha_1, \alpha_2, \dots, \alpha_n \}.$

- Let $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. 13
 - 13.1 Draw span $\{\vec{v}_1\}$.
 - 13.2 Draw span $\{\vec{v}_2\}$.
 - 13.3 Describe span $\{\vec{v}_1, \vec{v}_2\}$.
 - 13.4 Describe span $\{\vec{v}_1, \vec{v}_3\}$.
 - 13.5 Describe span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.

Lesson 7: Span, Translated Span

Textbook

Section 1.2

Objectives

- Explain why spans always go through the origin.
- Express lines or planes through the origin as spans.
- Express lines or planes not through the origin as translated spans.

Motivation

Translated spans link vector form of lines and planes with sets and spans. Soon we will have the vocabulary of linear independence and be able to talk about independent direction vectors of a plane, but right now just connecting the concepts and notation is enough.

- 14.2 If possible, describe ℓ_2 as a span. Otherwise explain why it's not possible.
- 14.3 Does the expression span (ℓ_1) make sense? If so, what is it? How about span (ℓ_2) ?

Set Addition

If A and B are sets of vectors, then the set sum of A and B, denoted A + B, is

$$A+B=\{\vec{x}:\vec{x}=\vec{a}+\vec{b} \text{ for some } \vec{a}\in A \text{ and } \vec{b}\in B\}.$$

Let
$$A = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
, $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$, and $\ell = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$.

- 15.1 Draw A, B, and A + B in the same picture.
- 15.2 Is A + B the same as B + A?
- 15.3 Draw $\ell + A$.
- 15.4 Consider the line ℓ_2 given in vector form by $\vec{x} = t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Can ℓ_2 be described using only a span? What about using a span and set addition?

Lesson 8: Linear Independence & Dependence

Textbook

Section 1.2

Objectives

- Define linear independence/dependence using spans.
- Pick linearly independent subsets with the same span by inspection.
- Explain why having a "closed loop" or trivial linear combination means a set is linearly dependent.

Motivation

Linear independence/dependence is one of the biggest concepts in linear algebra. Linear independence/dependence tells us whether a set has redundant information in it with respect to spans. The idea of a having redundant information vs. not comes up all the time in the world (sometimes it's a plus, sometimes it's not).

Knowing a set is independent tells us what its span will look like (in terms of what dimension it will be). It is also an abstract concept that has both a "geometric" definition and an "algebraic" one. Geometrically, a set is linearly dependent if you can remove a vector without the span changing. Algebraically a set is linearly dependent if there is a non-trivial linear combination giving the zero vector. This lesson focuses on the geometric definition (with the algebraic definition coming next).

Though the algebraic definition is easier to work with in proofs, the geometric definition provides intuition about how to visualize linearly dependent sets.

Notes/Misconceptions

Don't define a linearly dependent set, define a linearly dependent list. Otherwise you cannot talk about be linearly dependent since sets don't contain duplicates.

Task 1.3: The Magic Carpet, Getting Back Home

Suppose you are now in a three-dimensional world for the carpet ride problem, and you have three modes of transportation:

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 6 \\ 3 \\ 8 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 4 \\ 1 \\ 6 \end{bmatrix}$$

You are only allowed to use each mode of transportation once (in the forward or backward direction) for a fixed amount of time (c_1 on \vec{v}_1 , c_2 on \vec{v}_2 , c_3 on \vec{v}_3).

- 1. Find the amounts of time on each mode of transportation (c_1 , c_2 , and c_3 , respectively) needed to go on a journey that starts and ends at home or explain why it is not possible to do so.
- 2. Is there more than one way to make a journey that meets the requirements described above? (In other words, are there different combinations of times you can spend on the modes of transportation so that you can get back home?) If so, how?
- 3. Is there anywhere in this 3D world that Gauss could hide from you? If so, where? If not, why not?
- 4. What is span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 6\\3\\8 \end{bmatrix}, \begin{bmatrix} 4\\1\\6 \end{bmatrix} \right\}$?

We say the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are *linearly dependent* if for at least one i,

$$\vec{v}_i \in \text{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{i-1}, \vec{v}_{i+1}, \dots, \vec{v}_n\}.$$

Otherwise, they are called linearly independent.

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

- 16.1 Describe span $\{\vec{u}, \vec{v}, \vec{w}\}$.
- 16.2 Is $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent? Why or why not? Let $X = {\vec{u}, \vec{v}, \vec{w}}.$
- 16.3 Give a subset $Y \subseteq X$ so that span Y = span X and Y is linearly independent.
- 16.4 Give a subset $Z \subseteq X$ so that span $Z = \operatorname{span} X$ and Z is linearly independent and $Z \neq Y$.

Trivial Linear Combination We say a linear combination $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_n\vec{v}_n$ is *trivial* if $a_1 = a_2 = \cdots = a_n = 0$.

Recall
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

- Consider the linearly dependent set $\{\vec{u}, \vec{v}, \vec{w}\}$ (where $\vec{u}, \vec{v}, \vec{w}$ are defined as above). Can you write $\vec{0}$ as a non-trivial linear combination of vectors in this set?
- 17.2 Consider the linearly independent set $\{\vec{u}, \vec{v}\}$. Can you write $\vec{0}$ as a non-trivial linear combination of vectors in this set?

19

Lesson 9: Linear Independence & Dependence—Equivalent **Definitions**

Textbook

Section 1.2

Objectives

- Define linear independence/dependence in terms of trivial linear combinations.
- Explain how the geometric and algebraic definitions of linear independence/dependence relate.
- Explain the connection between a vector equation having multiple solutions and those vectors being linearly independent/dependent.
- Identify the largest linearly independent set that could exist in \mathbb{R}^n .

Motivation

We've done geometry, now let's do algebra. The geometric and algebraic definitions are equivalent, but they suggest different consequences. The geometric definition of linear independence tells us about the dimension of a span. The algebraic definition tells us about the number of solutions to a vector equation.

We now have an equivalent definition of linear dependence.

Linearly Dependent & Independent

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are *linearly dependent* if there is a non-trivial linear combination of $\vec{v}_1, \dots, \vec{v}_n$ that equals the zero vector.

- 18 18.1 Explain how this new definition implies the old one.
 - 18.2 Explain how the old definition implies this new one.

Since we have old $\operatorname{def} \Longrightarrow \operatorname{new} \operatorname{def}$, and $\operatorname{new} \operatorname{def} \Longrightarrow \operatorname{old} \operatorname{def} (\Longrightarrow \operatorname{should} \operatorname{be} \operatorname{read} \operatorname{aloud} \operatorname{as}$ 'implies'), the two definitions are *equivalent* (which we write as new def \iff old def).

19 Suppose for some unknown $\vec{u}, \vec{v}, \vec{w}$, and \vec{a} ,

$$\vec{a} = 3\vec{u} + 2\vec{v} + \vec{w} \quad \text{and} \quad \vec{a} = 2\vec{u} + \vec{v} - \vec{w}.$$

19.1 Could the set $\{\vec{u}, \vec{v}, \vec{w}\}$ be linearly independent?

Suppose that

$$\vec{a} = \vec{u} + 6\vec{r} - \vec{s}$$

is the *only* way to write \vec{a} using $\vec{u}, \vec{r}, \vec{s}$.

- 19.2 Is $\{\vec{u}, \vec{r}, \vec{s}\}$ linearly independent?
- 19.3 Is $\{\vec{u}, \vec{r}\}$ linearly independent?
- 19.4 Is $\{\vec{u}, \vec{v}, \vec{w}, \vec{r}\}$ linearly independent?

21

Task 1.4: Linear Independence and Dependence, Creating Examples

1. Fill in the following chart keeping track of the strategies you used to generate examples.

	Linearly independent	Linearly dependent
A set of 2 vectors in \mathbb{R}^2		
A set of 3 vectors in \mathbb{R}^2		
A set of 2 vectors in \mathbb{R}^3		
A set of 3 vectors in \mathbb{R}^3		
A set of 4 vectors in \mathbb{R}^3		

2. Write at least two generalizations that can be made from these examples and the strategies you used to create them.

Lesson 10: Dot Product, Orthogonality

Textbook

Section 1.3

Objectives

- Compute the dot product of two vectors.
- Compute the length of a vector.
- Find the distance between two vectors.
- Define what it means for vectors to be orthogonal.
- Interpret the sign of the dot product geometrically.
- Create a unit vector in the direction of another.

Motivation

Studying \mathbb{R}^n we're in a natural inner product space with lengths and angles. The dot product allows us to get at lengths and angles. It will also give an alternative way to compute matrix products (dot product with rows instead of linear combination of columns).

Most importantly, the dot product tells us how much two vectors point in the same direction as well as when they're orthogonal.

Dot Product

Norm

is the length/magnitude of \vec{v} . It is written $||\vec{v}||$ and can be

computed from the Pythagorean formula

$$\|\vec{v}\| = \sqrt{v_1^2 + \dots + v_n^2}.$$

Dot Product

If
$$\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

are two vectors in n-dimensional space, then the $dot\ product$

of \vec{a} an \vec{b} is

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Equivalently, the dot product is defined by the geometric formula

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$$

where θ is the angle between \vec{a} and \vec{b} .

20

Let
$$\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, and $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

- (a) Draw a picture of \vec{a} and \vec{b} . 20.1
 - (b) Compute $\vec{a} \cdot \vec{b}$.
 - (c) Find $\|\vec{a}\|$ and $\|\vec{b}\|$ and use your knowledge of the multiple ways to compute the dot product to find θ , the angle between \vec{a} and \vec{b} . Label θ on your picture.
- 20.2 Draw the graph of cos and identify which angles make cos negative, zero, or positive.
- 20.3 Draw a new picture of \vec{a} and \vec{b} and on that picture draw
 - (a) a vector \vec{c} where $\vec{c} \cdot \vec{a}$ is negative.
 - (b) a vector \vec{d} where $\vec{d} \cdot \vec{a} = 0$ and $\vec{d} \cdot \vec{b} < 0$.
 - (c) a vector \vec{e} where $\vec{e} \cdot \vec{a} = 0$ and $\vec{e} \cdot \vec{b} > 0$.
 - (d) Could you find a vector \vec{f} where $\vec{f} \cdot \vec{a} = 0$ and $\vec{f} \cdot \vec{b} = 0$? Explain why or why not.
- 20.4 Recall the vector \vec{u} whose coordinates are given at the beginning of this problem.
 - (a) Write down a vector \vec{v} so that the angle between \vec{u} and \vec{v} is $\pi/2$. (Hint, how does this relate to the dot product?)
 - (b) Write down another vector \vec{w} (in a different direction from \vec{v}) so that the angle between \vec{w} and \vec{u} is $\pi/2$.
 - (c) Can you write down other vectors different than both \vec{v} and \vec{w} that still form an angle of $\pi/2$ with \vec{u} ? How many such vectors are there?

For a vector $\vec{v} \in \mathbb{R}^n$, the formula

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$$

always holds.

Distance

The *distance* between two vectors \vec{u} and \vec{v} is $||\vec{u} - \vec{v}||$.

Unit Vector

A vector \vec{v} is called a *unit vector* if $||\vec{v}|| = 1$.

21

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$.

- 21.1 Find the distance between \vec{u} and \vec{v} .
- 21.2 Find a unit vector in the direction of \vec{u} .
- 21.3 Does there exists a *unit vector* \vec{x} that is distance 1 from \vec{u} ?
- 21.4 Suppose \vec{y} is a unit vector and the distance between \vec{y} and \vec{u} is 2. What is the angle between \vec{y} and \vec{u} ?

Orthogonal

Two vectors \vec{u} and \vec{v} are *orthogonal* to each other if $\vec{u} \cdot \vec{v} = 0$. The word orthogonal is synonymous with the word perpendicular.

22

- 22.1 Find two vectors orthogonal to $\vec{a} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. Can you find two such vectors that are not parallel?
- 22.2 Find two vectors orthogonal to $\vec{b} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$. Can you find two such vectors that are not parallel?
- 22.3 Suppose \vec{x} and \vec{y} are orthogonal to each other and $||\vec{x}|| = 5$ and $||\vec{y}|| = 3$. What is the distance between \vec{x} and \vec{y} ?

Lesson 11: Normal Form of Lines and Planes

Textbook

Section 1.2

Objectives

■ Describe lines and planes in normal form.

Motivation

Physics often describes surfaces in terms of normal and tangential components. Normal form of lines and planes is one way to get at this decomposition. Further, thinking about lines and planes in terms of right angles will help when visualizing orthogonal projections.

23.1 Draw $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and *all* vectors orthogonal to it. Call this set *A*.

23.2 If $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ and \vec{x} is orthogonal to \vec{u} , what is $\vec{x} \cdot \vec{u}$?

23.3 Expand the dot product $\vec{u} \cdot \vec{x}$ to get an equation for A.

23.4 If possible, express A as a span.

Normal Vector

A normal vector to a line (or plane or hyperplane) is a non-zero vector that is orthogonal

24

Let
$$\vec{d} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\vec{p} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and define the lines

$$\ell_1 = \operatorname{span} \{\vec{d}\}$$
 and $\ell_2 = \{\vec{p}\} + \operatorname{span} \{\vec{d}\}.$

24.1 Find a vector \vec{n} that is a normal vector for both ℓ_1 and ℓ_2 .

24.2 Let $\vec{v} \in \ell_1$ and $\vec{u} \in \ell_2$. What is $\vec{n} \cdot \vec{v}$? What about $\vec{n} \cdot \vec{u}$?

24.3 A line is expressed in *normal form* if it is represented by an equation of the form $\vec{n} \cdot (\vec{x} - \vec{q}) = 0$ for some \vec{n} and \vec{q} . Express ℓ_1 and ℓ_2 in normal form.

25

Let
$$\vec{n} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
.

25.1 Use set-builder notation to write down the set, X, of all vectors orthogonal to \vec{n} . Describe this set geometrically.

25.2 Describe X using an equation.

25.3 Describe X as a span.

Lesson 12: Projections

Textbook

Section 1.4

Objectives

- Project a vector onto lines and finite sets.
- Find the components of one vector in terms of another.

Motivation

Projection of a vector onto a set, defined as the closet point in the set to the vector, is a general operation used outside of linear algebra. However, in the land of linear algebra, we have exact formulas for the projection. Projections are a chance to explore a seemingly simple definition and see it relate to sets, lines, normal form, and vector form.

 $comp_{\vec{v}}\vec{u}$ is the component of a vector in the direction of another, which is sometimes called the projection of \vec{u} onto \vec{v} . It relates to how much one vector points in the direction of another and provides a decomposition of vectors in terms of orthogonal components.

Notes/Misconceptions

In this class, we don't write $\text{proj}_{\vec{v}}\vec{u}$, i.e., the projection of one vector onto another. We instead call this $comp_{\vec{v}}\vec{u}$. We do this so as not to confuse $\mathrm{proj}_{\{\vec{\nu}\}}\vec{u}$ and $\mathrm{comp}_{\vec{v}}\vec{u}$. One is projection onto a singleton. The other is $\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$.

Projections

Projection

Let X be a set. The *projection* of the vector \vec{v} onto X, written $\text{proj}_X \vec{v}$, is the closest point to

- 26 Let $\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\ell = \operatorname{span} \{\vec{a}\}$.
 - 26.1 Draw \vec{a} , \vec{b} , and \vec{v} in the same picture.
 - 26.2 Find $\operatorname{proj}_{\{\vec{b}\}}\vec{v}$, $\operatorname{proj}_{\{\vec{a}.\vec{b}\}}\vec{v}$.
 - 26.3 Find $\operatorname{proj}_{\ell} \vec{v}$. (Recall that a quadratic $at^2 + bt + c$ has a minimum at $t = -\frac{b}{2a}$).
 - 26.4 Is $\vec{v} \text{proj}_{\ell} \vec{v}$ a normal vector for ℓ ? Why or why not?
- 27 Let *K* be the line given in vector form by $\vec{x} = t \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and let $\vec{c} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
 - 27.1 Make a sketch with \vec{c} , K, and $\text{proj}_K \vec{c}$ (you don't need to compute $\text{proj}_K \vec{c}$ exactly).
 - 27.2 What should $(\vec{c} \text{proj}_K \vec{c}) \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ be? Explain.
 - 27.3 Use your formula from the previous part to find $\operatorname{proj}_{\kappa}\vec{c}$ without computing any distances.

Component

Let \vec{u} and $\vec{v} \neq \vec{0}$ be vectors. The *component of* \vec{u} *in the* \vec{v} *direction*, written comp $_{\vec{v}}\vec{u}$, is the vector in the direction of \vec{v} so that $\vec{u} - \text{comp}_{\vec{v}}\vec{u}$ is orthogonal to \vec{v} .

- 28 Let $\vec{a}, \vec{b} \in \mathbb{R}^3$ be unknown vectors.
 - 28.1 List two conditions that comp $_{\vec{b}}\vec{a}$ must satisfy.
 - 28.2 Find a formula for comp \vec{a} .

Lesson 13: Projections, Subspaces

Textbook

Sections 1.2, 1.4

Objectives

- Identify $\operatorname{proj}_{\operatorname{span}\{\vec{v}\}}\vec{u}$ with $\operatorname{comp}_{\vec{v}}\vec{u}$.
- Identify $\operatorname{comp}_{\vec{v}}\vec{u}$ and $\operatorname{comp}_{\alpha\vec{v}}\vec{u}$ for all $\alpha \neq 0$, including negative α .
- Define subspace.
- Distinguish subspaces and non-subspaces of \mathbb{R}^2 .

Spans are a constructive way to describe lines, planes, and other flat objects. Subspaces are a categorical way of defining flat objects. Instead of explaining how to find the vectors in a set, we list their properties. This is a really powerful idea that facilitates abstraction.

Since we do not do abstract vector spaces in this course, subspaces are the first place (unless you count projections) students will encounter a set defined by its properties. Subspaces are suitable for a first-encounter because 1) the properties are simple and familiar and 2) subspaces of \mathbb{R}^n have a concrete geometric interpretation.

- Philosophically, a subspace should be defined as a non-empty set closed under linear combinations. However, defining it as closed under addition and scalar multiplication gives students new to proofs something explicit to hang on to when attempting
- Some people define a subspace as a set containing $\vec{0}$ and satisfying closure. We define a subspace as a non-empty set satisfying closure. We won't be trying to trick students by asking if an empty set is a subspace, so don't belabor the point.

29

Let
$$\vec{d} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
 and $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- 29.1 Draw \vec{d} , \vec{u} , span $\{\vec{d}\}$, and $\text{proj}_{\text{span}\{\vec{d}\}}\vec{u}$ in the same picture.
- 29.2 How do $\operatorname{proj}_{\operatorname{span}\{\vec{d}\}}\vec{u}$ and $\operatorname{comp}_{\vec{d}}\vec{u}$ relate?
- 29.3 Compute $\operatorname{proj}_{\operatorname{span}\{\vec{d}\}}\vec{u}$ and $\operatorname{comp}_{\vec{d}}\vec{u}$.
- 29.4 Compute comp $_{\vec{d}}\vec{u}$. Is this the same as or different from comp $_{\vec{d}}\vec{u}$? Explain.

Subspaces and Bases

A *subspace* $V \subseteq \mathbb{R}^n$ is a non-empty subset such that

- (i) $\vec{u}, \vec{v} \in V$ implies $\vec{u} + \vec{v} \in V$.
- (ii) $\vec{u} \in V$ implies $k\vec{u} \in V$ for all scalars k.

Subspaces give a mathematically precise definition of a "flat space through the origin."

30

For each set, draw it and explain whether or not it is a subspace of \mathbb{R}^2 .

30.1
$$A = {\vec{x} \in \mathbb{R}^2 : \vec{x} = \begin{bmatrix} a \\ 0 \end{bmatrix} \text{ for some } a \in \mathbb{Z}}.$$

30.2
$$B = {\vec{x} \in \mathbb{R}^2 : \vec{x} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}}.$$

30.3
$$C = {\vec{x} \in \mathbb{R}^2 : \vec{x} = \begin{bmatrix} 0 \\ t \end{bmatrix} \text{ for some } t \in \mathbb{R}}.$$

30.4
$$D = {\vec{x} \in \mathbb{R}^2 : \vec{x} = \begin{bmatrix} 0 \\ t \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ for some } t \in \mathbb{R}}.$$

30.5
$$E = {\vec{x} \in \mathbb{R}^2 : \vec{x} = \begin{bmatrix} 0 \\ t \end{bmatrix} \text{ or } \vec{x} = \begin{bmatrix} t \\ 0 \end{bmatrix} \text{ for some } t \in \mathbb{R}}.$$

30.6
$$F = {\vec{x} \in \mathbb{R}^2 : \vec{x} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ for some } t \in \mathbb{R}}.$$

30.7
$$G = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$$

30.8 $H = \text{span}\{\vec{u}, \vec{v}\}\$ for some unknown vectors $\vec{u}, \vec{v} \in \mathbb{R}^2$.

Lesson 14: Basis, Dimension

Textbook

Sections 1.2, 4.3

Objectives

- Define Basis.
- Define Dimension.
- Find a basis for a subspace.
- Find the dimension of a subspace.
- Explain why every vector has a unique representation as a linear combination of basis vectors.

Motivation

Bases are sets of just enough vectors to describe every vector in a subspace. An additional consequence of a basis is that every vector can be uniquely represented as a linear combination of basis vectors. Using this fact we will be able to consider objects in multiple different coordinate systems. However, now is the time to get familiar with what a basis is and how to find one.

Dimension ties the abstract notion of subspace to our intuition about Euclidean space. We already know a plane in \mathbb{R}^3 is two dimensional, but now we know where that number *two* comes from.

A *basis* for a subspace V is a linearly independent set of vectors, \mathcal{B} , so that span $\mathcal{B} = V$.

The *dimension* of a subspace V is the number of elements in a basis for V.

31

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $V = \operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$.

31.1 Describe V.

V is the xy-plane in \mathbb{R}^3 .

31.2 Is $\{\vec{u}, \vec{v}, \vec{w}\}$ a basis for *V*? Why or why not?

No. The set $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly dependent since $\vec{w} = \vec{u} + \vec{v}$.

31.3 Give a basis for V.

 $\{\vec{u}, \vec{v}\}$

31.4 Give another basis for V.

 $\{\vec{u}, \vec{w}\}\$ or $\{\vec{v}, \vec{w}\}.$

31.5 Is span $\{\vec{u}, \vec{v}\}$ a basis for V? Why or why not?

No. span $\{\vec{u}, \vec{v}\}$ is an infinite set of vectors which includes $\vec{0}$, so it cannot be linearly independent and therefore isn't a basis.

31.6 What is the dimension of V?

A basis for *V* has two vectors so it is two dimensional. We also know this because *V* is the xy-plane in \mathbb{R}^3 and all planes are two dimensional.

32

Let
$$\vec{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $\vec{c} = \begin{bmatrix} 7 \\ 8 \\ 8 \end{bmatrix}$ (notice these vectors are linearly independent) and let

 $P = \operatorname{span} \{\vec{a}, \vec{b}\} \text{ and } Q = \operatorname{span} \{\vec{b}, \vec{c}\}.$

- 32.1 Give a basis for and the dimension of P.
- 32.2 Give a basis for and the dimension of Q.
- 32.3 Is $P \cap Q$ a subspace? If so, give a basis for it and its dimension.
- 32.4 Is $P \cup Q$ a subspace? If so, give a basis for it and its dimension.

Apply the definitions of basis and dimension to an easy example.

The goal of this problem is to learn

- To apply the definition of basis and dimension.
- Intuition that a plane is two dimensional.
- A basis is not unique, but always has the same size (this is not proved).
- Spans are never bases—you must not confuse a subspace with its basis!

- Students will claim V is \mathbb{R}^2 and fail to distinguish \mathbb{R}^2 and the xy-plane in \mathbb{R}^3 .
- Parts 2, 3, 4, 6 will be easy; don't belabor them.
- Students will fail to distinguish span $\{\vec{u}, \vec{v}\}$ from $\{\vec{u}, \vec{v}\}$. Make sure this distinction comes out.

Lesson 15: Matrices

Textbook

Section 3.1

Objectives

- Write a system of linear equations as a matrix equation.
- Write a matrix equation as a system of linear equations.
- Pose familiar problems (e.g., "find a normal vector", or "do these planes intersect?") as matrix-equation questions.

Motivation

Matrices will soon become a powerful tool to study linear transformations. However, we will start out viewing them as a notation to represent systems of linear equations. The fact that matrix-vector multiplication has two interpretations, as a linear combination of columns or as a dot product with rows, already connects geometry and angles with questions about linear combinations.

Matrices

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$$
, $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$.

- 33.1 Compute the product $A\vec{x}$.
- 33.2 Write down a system of equations that corresponds to the matrix equation $A\vec{x} = \vec{b}$.
- 33.3 Let $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ be a solution to $A\vec{x} = \vec{b}$. Explain what x_0 and y_0 mean in terms of *linear combinations* (hint: think about the columns of A).
- 33.4 Let $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ be a solution to $A\vec{x} = \vec{b}$. Explain what x_0 and y_0 mean in terms of intersecting lines (hint: think about systems of equations).

Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$.

- 34.1 How could you determine if $\{\vec{u}, \vec{v}, \vec{w}\}$ was a linearly independent set?
- 34.2 Can your method be rephrased in terms of a matrix equation? Explain.
- 35 Consider the system represented by

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{b}.$$

- 35.1 If $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, is the set of solutions to this system a point, line, plane, or other?
- 35.2 If $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, is the set of solutions to this system a point, line, plane, or other?
- Let $\vec{d}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and $\vec{d}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. Let $\mathcal P$ be the plane given in vector form by $\vec{x} = t\vec{d}_1 + s\vec{d}_2$. 36
 - Further, suppose M is a matrix so that $M\vec{r} \in \mathcal{P}$ for any \vec{r} .
 - 36.1 How many rows does M have?
 - Find such an M.
 - Find necessary and sufficient conditions (phrased as equations) for \vec{n} to be a normal vector for
 - Find a matrix *K* so that solutions to $K\vec{x} = \vec{0}$ are normal vectors for \mathcal{P} . How do *K* and *M* relate?

35

Lesson 16: Change of Basis I

Textbook

Section 4.4

Objectives

- Write a vector in multiple bases.
- **Explain** what the notation $[\vec{v}]_{\mathcal{B}}$ means.
- Explain what the notation $\begin{bmatrix} a \\ b \\ c \end{bmatrix}_{\mathcal{B}}$ means.

Motivation

One of the most useful ideas in linear algebra is that you can represent a vector, a geometric object, with a list of numbers. This is done by picking a basis. So far we've implicitly used the standard basis, but now we're going to use other bases.

Now lists of numbers can mean many different things and can be identified with vectors in many ways, so we need some notation to keep things straight. It's important now to distinguish when something is a list of numbers (a matrix) and when it is a vector. This distinction will arise again when we talk about linear transformations and their matrix representations.

Notes/Misconceptions

So far, we have written $\begin{bmatrix} 1\\1 \end{bmatrix}$

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\mathcal{E}}$ where \mathcal{E} is the standard basis. We will continue to do this as convenient, but if multiple bases are ever involved, we will be careful to specify the basis.

Instead, every street is parallel to the vector $\vec{d}_1 = \frac{1}{5}\begin{bmatrix} 4 \text{ east} \\ 3 \text{ north} \end{bmatrix}$ or $\vec{d}_2 = \frac{1}{5}\begin{bmatrix} -3 \text{ east} \\ 4 \text{ north} \end{bmatrix}$. The center of town is City Hall at $\vec{0} = \begin{bmatrix} 0 \text{ east} \\ 0 \text{ north} \end{bmatrix}$.

Locations in Oronto are typically specified in *street coordinates*. That is, as a pair (a, b) where a is how far you walk along streets in the \vec{d}_1 direction and b is how far you walk in the \vec{d}_2 direction, provided you start at city hall.

- 37.1 The points A = (2,1) and B = (3,-1) are given in street coordinates. Find their east-north coordinates.
- 37.2 The points X = (4,3) and Y = (1,7) are given in east-north coordinates. Find their street coordinates.
- 37.3 Define $\vec{e}_1 = \begin{bmatrix} 1 \text{ east} \\ 0 \text{ north} \end{bmatrix}$ and $\vec{e}_2 = \begin{bmatrix} 0 \text{ east} \\ 1 \text{ north} \end{bmatrix}$. Does span $\{\vec{e}_1, \vec{e}_2\} = \text{span}\{\vec{d}_1, \vec{d}_2\}$?
- Notice that $Y = 5\vec{e}_1 + 5\vec{e}_2 = \vec{d}_1 + 7\vec{d}_2$. Is the point Y better represented by the pair (5,5) or by the pair (1,7)? Explain.

Representation in a Basis

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for a subspace V and let $\vec{v} \in V$. The *representation of* \vec{v} *in the* \mathcal{B} *basis*, notate $[\vec{v}]_{\mathcal{B}}$, is the column matrix

$$[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

such that $\vec{v} = \alpha_1 \vec{b}_1 + \dots + \alpha_n \vec{b}_n$.

Similarly,

$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}_{\mathcal{B}} = \alpha_1 \vec{b}_1 + \dots + \alpha_n \vec{b}_n$$

is notation for the linear combination of $\vec{b}_1, \ldots, \vec{b}_n$ with coefficients $\alpha_1, \ldots, \alpha_n$.

be another basis for \mathbb{R}^2 .

- 38.1 Express \vec{c}_1 and \vec{c}_2 as a linear combination of \vec{e}_1 and \vec{e}_2 .
- 38.2 Express \vec{e}_1 and \vec{e}_2 as a linear combination of \vec{c}_1 and \vec{c}_2 .
- 38.3 Let $\vec{v} = 2\vec{e}_1 + 2\vec{e}_2$. Find $[\vec{v}]_{\mathcal{E}}$ and $[\vec{v}]_{\mathcal{C}}$.
- Can you find a matrix X so that $X[\vec{w}]_{\mathcal{C}} = [\vec{w}]_{\mathcal{E}}$ for any \vec{w} ?
- Can you find a matrix Y so that $Y[\vec{w}]_{\mathcal{E}} = [\vec{w}]_{\mathcal{C}}$ for any \vec{w} ? 38.5
- 38.6 What is *YX*?

Lesson 17: Orientation, Matrix Transformations

Textbook

Section 3.2

Objectives

- Identify the orientation of ordered bases in \mathbb{R}^2 .
- Given a set of input and output vectors for a linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$, find a matrix for the transformation.
- Given a picture *X* and its image under a linear transformation, find a matrix for the transformation.

Motivation

Orientation is a topic that comes up in physics and explains the sign of the determinant. We define orientation with an existential statement about whether or not certain homeomorphisms exist. The goal is not to prove anything rigorously about orientation, but to get students to make pictures for themselves of vectors moving.

The Idea is simple: n-1 vectors span a space that partitions \mathbb{R}^n in two. Add a vector in the top partition (appropriately ordered) and you get a positive orientation; add to the bottom and you get a negative orientation. There's no way to get from one to the other without passing through the hyperplane. We focus on \mathbb{R}^2 so that the pictures are easy to draw. Eventually we will compute orientation from the determinant, but it's nice to have a grounding in where it comes from.

While we're thinking dynamically, we can start thinking about transformation. We already know how to multiply a matrix and a vector and interpret it in two different ways. Now we will add a third: multiplication by a given matrix is a transformation from vectors to vectors.

Most of our study of matrix transformations will be of transformations from \mathbb{R}^n to \mathbb{R}^n , even though non-square matrices can describe other transformations. For now we stick with pictures of \mathbb{R}^2 since they are easy to draw. Then we will generalize to linear transformations.

Orientation of a Basis

The ordered basis $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ is right-handed or positively oriented if it can be continuously transformed to the standard basis (with $\vec{b}_i \mapsto \vec{e}_i$) while remaining linearly independent throughout the transformation. Otherwise, \mathcal{B} is called *left-handed* or *negatively* oriented.

- 39 Let $\{\vec{e}_1,\vec{e}_2\}$ be the standard basis for \mathbb{R}^2 and let \vec{u}_θ be a unit vector. Let θ be the angle between \vec{u}_{θ} and \vec{e}_{1} measured counter clockwise.
 - 39.1 For which θ is $\{\vec{e}_1, \vec{u}_{\theta}\}$ a linearly independent set?
 - 39.2 For which θ can $\{\vec{e}_1, \vec{u}_{\theta}\}$ be continuously transformed into $\{\vec{e}_1, \vec{e}_2\}$ and remain linearly independent the whole time?
 - 39.3 For which θ is $\{\vec{e}_1, \vec{u}_{\theta}\}$ right-handed? Left-handed?
 - 39.4 For which θ is $\{\vec{u}_{\theta}, \vec{e}_1\}$ (in that order) right-handed? Left-handed?

Task 2.1: Italicizing N

Suppose that the "N" on the left is written in regular 12-point font. Find a matrix *A* that will transform the "N" into the letter on the right which is written in an *italic* 16-point font.

Work with your group to write out your solution and approach. Make a list of any assumptions you notice your group making or any questions for further pursuit.

Lesson 18: Linear Transformations I

Textbook

Section 1.2

Objectives

Task 2.2: Beyond the N

A few students were wondering how letters placed in other locations in the plane would be transformed under $A = \begin{bmatrix} 1 & 1/3 \\ 0 & 4/3 \end{bmatrix}$. If an "E" is placed around the "N," the students argued over four different possible results for the transformed E's. Which choice below, if any, is correct, and why? If none of the four options are correct, what would the correct option be, and why?

Linear Transformations

40 $\mathcal{R}: \mathbb{R}^2 \to \mathbb{R}^2$ is the transformation that rotates vectors counter-clockwise by 90°.

- 40.1 Compute $\mathcal{R}\begin{bmatrix}1\\0\end{bmatrix}$ and $\mathcal{R}\begin{bmatrix}0\\1\end{bmatrix}$.
- 40.2 Compute $\mathcal{R}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. How does this relate to $\mathcal{R}\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathcal{R}\begin{bmatrix} 0 \\ 1 \end{bmatrix}$?
- 40.3 What is $\mathcal{R}\left(a\begin{bmatrix}1\\0\end{bmatrix}+b\begin{bmatrix}0\\1\end{bmatrix}\right)$?
- 40.4 Write down a matrix R so that $R\vec{v}$ is \vec{v} rotated counter clockwise by 90°.

Linear Transformation

Let V and W be subspaces. A function $T:V\to W$ is called a *linear transformation* if

$$T(\vec{u} + \vec{v}) = T\vec{u} + T\vec{v}$$
 and $T(\alpha \vec{v}) = \alpha T\vec{v}$

for all vectors $\vec{u}, \vec{v} \in V$ and all scalars α .

- 41 41.1 Classify the following as linear transformation or not
 - (a) \mathcal{R} from before (rotation counter-clockwise by 90°).

(b)
$$W: \mathbb{R}^2 \to \mathbb{R}^2$$
 where $W \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 \\ y \end{bmatrix}$.

(c)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 where $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2 \\ y \end{bmatrix}$.

(d)
$$\mathcal{P}: \mathbb{R}^2 \to \mathbb{R}^2$$
 where $\mathcal{P}\begin{bmatrix} x \\ y \end{bmatrix} = \text{comp}_{\vec{u}} \begin{bmatrix} x \\ y \end{bmatrix}$ and $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

Lesson 19: Linear Transformations II, Composition of Linear Transformations

Textbook

Section 1.2

Objectives

Let $L: V \to W$ be a transformation and let $X \subset V$ be a set. The *image of the set* V *under* L, denoted L(V), is the set

$$L(V) = {\vec{x} : \vec{x} = L(\vec{y}) \text{ for some } \vec{y} \in V}.$$

- 42 Let $S = \{ \begin{bmatrix} x \\ y \end{bmatrix} : 0 \le x, y \le 1 \} \subseteq \mathbb{R}^2$ be the filled-in unit square and let $C = \{\vec{0}, \vec{e}_1, \vec{e}_2, \vec{e}_1 + \vec{e}_2\} \subseteq \mathbb{R}^2$ be the corners of the unit square.
 - 42.1 Find $\mathcal{R}(C)$, W(C), and T(C) (where \mathcal{R} , W, and T are from the previous question).
 - 42.2 Draw $\mathcal{R}(S)$, T(S), and $\mathcal{P}(S)$ (where \mathcal{R} , T, and \mathcal{P} are from the previous question).
 - 42.3 Suppose that $\ell = \{$ all convex combinations of \vec{a} and $\vec{b} \}$ is a line segment with endpoints \vec{a} and \vec{b} and A is a linear transformation. Must $A(\ell)$ be a line segment? What are its endpoints?
 - 42.4 Explain how images of sets relate to the *Italicising N* task.

Task 2.3: Pat and Jamie

Suppose that the "N" on the left is written in regular 12-point font. Find a matrix *A* that will transform the "N" into the letter on the right which is written in an *italic* 16-point font.

Two students—Pat and Jamie—explained their approach to the Italicizing N task as follows:

In order to find the matrix A, we are going to find a matrix that makes the "N" taller, find a matrix that italicizes the taller "N," and a combination of those two matrices will give the desired matrix A.

- 1. Do you think Pat and Jamie's approach allowed them to find *A*? If so, do you think they found the same matrix that you did during Italicising N?
- 2. Try Pat and Jamie's approach. Either (a) come up with a matrix *A* using their approach, or (b) explain why their approach does not work.

Lesson 20: Range, Nullspace

Textbook

Section 3.4

Objectives

- 43 Define \mathcal{P} to be projection onto span $\{\vec{u}\}$ where $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and let \mathcal{R} be rotation counter-clockwise
 - 43.1 Find a matrix *P* so that $P\vec{x} = \mathcal{P}(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$.
 - 43.2 Find a matrix R so that $R\vec{x} = \mathcal{R}(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$.
 - 43.3 Write down matrices *A* and *B* for $P \circ R$ and $R \circ P$.
 - 43.4 How do the matrices A and B relate to the matrices P and R?

The *range* (or *image*) of a linear transformation $T: V \to W$ is the set of vectors that T can output. That is,

range
$$(T) = {\vec{y} \in W : \vec{y} = T\vec{x} \text{ for some } \vec{x} \in V}.$$

Null Space

The *null space* (or *kernel*) of a linear transformation $T: V \to W$ is the set of vectors that get mapped to zero under T. That is,

$$\text{null}(T) = \{\vec{x} \in V : T\vec{x} = \vec{0}\}.$$

- Let $\mathcal{P}: \mathbb{R}^2 \to \mathbb{R}^2$ be projection onto span $\{\vec{u}\}$ where $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ (like before). 44
 - 44.1 What is the range of \mathcal{P} ?
 - 44.2 What is the null space of \mathcal{P} ?
- 45 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be an arbitrary linear transformation.
 - 45.1 Show that the null space of T is a subspace.
 - 45.2 Show that the range of T is a subspace.

Induced Transformation

Let M be an $n \times m$ matrix. We say M induces a linear transformation $T_M : \mathbb{R}^m \to \mathbb{R}^n$ defined by

$$[T_M \vec{v}]_{\mathcal{E}'} = M[\vec{v}]_{\mathcal{E}},$$

where \mathcal{E} is the standard basis for \mathbb{R}^m and \mathcal{E}' is the standard basis for \mathbb{R}^n .

Lesson 21: Fundamental Subspaces

Textbook

Section 3.4

Objectives

- 46.1 What is the difference between " $M\vec{v}$ " and $M[\vec{v}]_{\mathcal{E}}$ "?
- 46.2 What is $[T_M \vec{e}_1]_{\mathcal{E}}$?
- 46.3 Can you relate the columns of M to the range of T_M ?

Fundamental Subspaces

DEF

Associated with any matrix M are three fundamental subspaces: the *row space* of M is the span of the rows of M; the *column space* of M is the span of the columns of M; and the *null space* of M is the set of solutions to $M\vec{x} = \vec{0}$.

- 47 Consider $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.
 - 47.1 Describe the row space of *A*.
 - 47.2 Describe the column space of *A*.
 - 47.3 Is the row space of *A* the same as the column space of *A*?
 - 47.4 Describe the set of all vectors perpendicular to the rows of *A*.
 - 47.5 Describe the null space of *A*.
 - 47.6 Describe the range and null space of T_A , the transformation induced by A.

48

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \qquad C = \operatorname{rref}(B) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

- 48.1 How does the row space of *B* relate to the row space of *C*?
- 48.2 How does the null space of *B* relate to the null space of *C*?
- 48.3 Compute the null space of *B*.

49

$$P = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} \qquad Q = \operatorname{rref}(P) = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

- 49.1 How does the column space of P relate to the column space of Q?
- 49.2 Describe the column space of P and the column space of Q.

Textbook

Section 3.4

Objectives

For a linear transformation $T: V \to W$, the *rank* of T, denoted rank(T), is the dimension of the range of T.

For an $n \times m$ matrix M, the *rank* of M, denoted rank(M), is the number of pivots in rref(M).

50

Let \mathcal{P} be projection onto span $\{\vec{u}\}$ where $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and let \mathcal{R} be rotation counter-clockwise by 90°.

- 50.1 Describe range (P) and range (R).
- 50.2 What is the rank of \mathcal{P} and the rank of \mathcal{R} ?
- 50.3 Let P and R be the matrices corresponding to \mathcal{P} and \mathcal{R} . What is the rank of P and the rank of
- 50.4 Make a conjecture about how the rank of a transformation and the rank of its corresponding matrix relate. Can you justify your claim?

51

51.1 Determine the rank of (a) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

52

Consider the homogeneous system

$$\begin{array}{rcl}
 x & +2y & +z & =0 \\
 x & +2y & +3z & =0 \\
 -x & -2y & +z & =0
 \end{array}
 \tag{1}$$

and the non-augmented matrix of coefficients $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 3 \\ -1 & -2 & 1 \end{bmatrix}$.

- 52.1 What is rank(A)?
- Give the general solution to (1).
- Are the column vectors of *A* linearly independent?
- Give a non-homogeneous system with the same coefficients as (1) that has
 - (a) infinitely many solutions
 - (b) no solutions.

53

- 53.1 The rank of a 3×4 matrix *A* is 3. Are the column vectors of *A* linearly independent?
- 53.2 The rank of a 4×3 matrix B is 3. Are the column vectors of B linearly independent?

Lesson 23: Rank-nullity Theorem, Inverses I

Textbook

Section 1.2

Objectives

Rank-nullity Theorem

The *nullity* of a matrix is the dimension of the null space.

The rank-nullity theorem for a matrix A states

rank(A) + nullity(A) = # of columns in A.

54 54.1 Is here a version of the rank-nullity theorem that applies to linear transformations instead of matrices? If so, state it.

55 The vectors $\vec{u}, \vec{v} \in \mathbb{R}^9$ are linearly independent and $\vec{w} = 2\vec{u} - \vec{v}$. Define $A = [\vec{u}|\vec{v}|\vec{w}]$.

- 55.1 What is the rank and nullity of A^T ?
- 55.2 What is the rank and nullity of *A*?

Task 2.4: Getting back N

Suppose that the "N" on the left is written in regular 12-point font. Find a matrix A that will transform the "N" into the letter on the right which is written in an *italic* 16-point font.

Two students—Pat and Jamie—explained their approach to the Italicizing N task as follows:

In order to find the matrix A, we are going to find a matrix that makes the "N" taller, find a matrix that italicizes the taller "N," and a combination of those two matrices will give the desired matrix A.

Consider the new task: find a matrix C that transforms the "N" on the right to the "N" on the left.

- 1. Use any method you like to find *C*.
- 2. Use a method similar to Pat and Jamie's method, only use it to find C instead of A.

Lesson 24: Inverses II, Elementary Matrices

Textbook

Section 3.5

Objectives

Inverses

56

- 56.1 Apply the row operation $R_3 \rightarrow R_3 + 2R_1$ to the 3 × 3 identity matrix and call the result E_1 .
- 56.2 Apply the row operation $R_3 \rightarrow R_3 2R_1$ to the 3 × 3 identity matrix and call the result E_2 .

An elementary matrix is the identity matrix with a single row operation applied.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- Compute E_1A and E_2A . How do the resulting matrices relate to row operations?
- 56.4 Without computing, what should the result of applying the row operation $R_3 \rightarrow R_3 2R_1$ to E_1 be? Compute and verify.
- 56.5 Without computing, what should E_1E_2 be? What about E_2E_1 ? Now compute and verify.

The *inverse* of a matrix A is a matrix B such that AB = I and BA = I. In this case, B is called the inverse of A and is notated by A^{-1} .

57

Consider the matrices

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ -3 & -6 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \qquad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

57.1 Which pairs of matrices above are inverses of each other?

58

$$B = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$$

- Use two row operations to reduce B to $I_{2\times 2}$ and write an elementary matrix E_1 corresponding to the first operation and E_2 corresponding to the second.
- 58.2 What is E_2E_1B ?
- 58.3 Find B^{-1} .
- 58.4 Can you outline a procedure for finding the inverse of a matrix using elementary matrices?

Lesson 25: Applications of Inverses I

Textbook

Section 3.5

Objectives

59

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad C = [A|\vec{b}] \qquad A^{-1} = \begin{bmatrix} 9 & -3/2 & -5 \\ -5 & 1 & 3 \\ -2 & 1/2 & 1 \end{bmatrix}$$

- 59.1 What is $A^{-1}A$?
- 59.2 What is rref(A)?
- 59.3 What is rref(C)? (Hint, there is no need to actually do row reduction!)
- 59.4 Solve the system $A\vec{x} = \vec{b}$.
- 60 60.1 For two square matrices X, Y, should $(XY)^{-1} = X^{-1}Y^{-1}$?
 - 60.2 If *M* is a matrix corresponding to a non-invertible linear transformation *T*, could *M* be invert-

More Change of Basis

- 61 Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ where $\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and let $X = [\vec{b}_1 | \vec{b}_2]$ be the matrix whose columns are \vec{b}_1 and \vec{b}_2 .
 - 61.1 Compute $[\vec{e}_1]_{\mathcal{B}}$ and $[\vec{e}_2]_{\mathcal{B}}$.
 - 61.2 Compute $X[\vec{e}_1]_{\mathcal{B}}$ and $X[\vec{e}_2]_{\mathcal{B}}$. What do you notice?
 - 61.3 Find the matrix X^{-1} . How does X^{-1} relate to change of basis?

Lesson 26: Applications of Inverses II, Change of Basis

Textbook

Section 4.4

Objectives

62

Let $S = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ be the standard basis for \mathbb{R}^n . Given a basis $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ for \mathbb{R}^n , the matrix $X = [\vec{b}_1 | \vec{b}_2 | \dots | \vec{b}_n]$ converts vectors from the B basis into the standard basis. In other words,

$$X[\vec{v}]_{\mathcal{B}} = [\vec{v}]_{\mathcal{S}}.$$

- 62.1 Should X^{-1} exist? Explain.
- 62.2 Consider the equation

$$X^{-1}[\vec{v}]_? = [\vec{v}]_?.$$

Can you fill in the "?" symbols so that the equation makes sense?

- 62.3 What is $[\vec{b}_1]_{\mathcal{B}}$? How about $[\vec{b}_2]_{\mathcal{B}}$? Can you generalize to $[\vec{b}_i]_{\mathcal{B}}$?
- Let $\vec{c}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{c}_2 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$, $C = \{\vec{c}_1, \vec{c}_2\}$, and $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$. Note that $A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ and that 63

A changes vectors from the C basis to the standard basis and A^{-1} changes vectors from the standard basis to the C basis.

63.1 Compute $[\vec{c}_1]_{\mathcal{C}}$ and $[\vec{c}_2]_{\mathcal{C}}$.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that stretches in the \vec{c}_1 direction by a factor of 2 and doesn't stretch in the \vec{c}_2 direction at all.

- 63.2 Compute $T\begin{bmatrix} 2\\1 \end{bmatrix}$ and $T\begin{bmatrix} 5\\3 \end{bmatrix}$.
- 63.3 Compute $[T\vec{c}_1]_C$ and $[T\vec{c}_2]_C$.
- 63.4 Compute the result of $T\begin{bmatrix} \alpha \\ \beta \end{bmatrix}_{\mathcal{C}}$ and express the result in the \mathcal{C} basis (i.e., as a vector of the form $\begin{bmatrix} ? \\ ? \end{bmatrix}_{\mathcal{C}}$).
- 63.5 Find $[T]_{\mathcal{C}}$, the matrix for T in the \mathcal{C} basis.
- 63.6 Find $[T]_{\mathcal{E}}$, the matrix for T in the standard basis.

Similar Matrices

A matrices A and B are called *similar matrices*, denoted $A \sim B$, if A and B represent the same linear transformation but in possibly different bases. Equivalently, $A \sim B$ if there is an invertible matrix *X* so that

$$A = XBX^{-1}$$
.

Lesson 27: Determinants

Textbook

Section 5.4

Objectives

Determinants

Unit *n*-cube

The unit *n*-cube is the *n*-dimensional cube with side length 1 and lower-left corner located at the origin. That is

$$C_n = \left\{ \vec{x} \in \mathbb{R}^n : \vec{x} = \sum_{i=1}^n \alpha_i \vec{e}_i \text{ for some } \alpha_1, \dots, \alpha_n \in [0, 1] \right\} = [0, 1]^n.$$

The volume of the unit n-cube is always 1.

64 The picture shows what the linear transformation T does to the unit square (i.e., the unit 2-cube).

- 64.1 What is $T\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $T\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $T\begin{bmatrix} 1 \\ 1 \end{bmatrix}$?
- 64.2 Write down a matrix for T.
- 64.3 What is the volume of the image of the unit square (i.e., the volume of $T(C_2)$)? You may need to use trigonometry.

Determinant

The *determinant* of a linear transformation $X: \mathbb{R}^n \to \mathbb{R}^n$ is the oriented volume of the image of the unit *n*-cube. The determinant of a square matrix is the oriented volume of the parallelepiped (n-dimensional parallelogram) given by the column vectors (or the row vectors).

65 We know the following about the transformation *A*:

$$A\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\0 \end{bmatrix}$$
 and $A\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}$.

- 65.1 Draw C_2 and $A(C_2)$, the image of the unit square under A.
- 65.2 Compute the area of $A(C_2)$.
- 65.3 Compute det(A).
- 66 Suppose R is a rotation counterclockwise by 30° .
 - 66.1 Draw C_2 and $R(C_2)$.
 - 66.2 Compute the area of $R(C_2)$.
 - 66.3 Compute det(R).
- 67 We know the following about the transformation *F*:

$$F\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}$$

$$F\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix} \qquad \text{and} \qquad F\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}.$$

$$\text{Jason Siefken, 2015-2018} \quad \textcircled{\textcircled{0}} \ \textcircled{\textcircled{0}}$$

67.1 What is det(F)?

Lesson 28: Determinants and Compositions

Textbook

Section 5.2

Objectives

68 Let $D = \{\vec{x} : ||\vec{x}|| \le 1\}$ be the unit disk. You know the following about the linear transformations M, T, and S: M is defined by $\vec{x} \mapsto 2\vec{x}$; T has determinant 2; and S has determinant 3.

- 68.1 Find the oriented volumes of $M(C_2)$, $T(C_2)$, and $S(C_2)$.
- 68.2 How does the volume of $T(C_2 + \{\vec{e}_1\})$ compare to the volume of $T(C_2)$?
- 68.3 What is the oriented volume of $T \circ M(C_2)$? What is $\det(T \circ M)$?
- 68.4 What is the oriented volume of S(D)?

69

- E_f is $I_{3\times 3}$ with the first two rows swapped.
- E_m is $I_{3\times 3}$ with the third row multiplied by 6.
- E_a is $I_{3\times 3}$ with $R_1 \to R_1 + 2R_2$ applied.
- 69.1 What is $det(E_f)$?
- 69.2 What is $det(E_m)$?
- 69.3 What is $det(E_a)$?
- 69.4 What is $\det(E_f E_m)$?
- 69.5 What is $\det(4I_{3\times 3})$?
- 69.6 What is det(W) where $W = E_f E_a E_f E_m E_m$?

70

$$U = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 3 & -2 & 4 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

- 70.1 What is det(U)?
- 70.2 V is a square matrix and rref(V) has a row of zeros. What is det(V)?
- 70.3 *P* is projection onto the vector $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$. What is det(P)?
- 71 Suppose you know det(X) = 4.
 - 71.1 What is $\det(X^{-1})$?
 - 71.2 Derive a relationship between det(Y) and $det(Y^{-1})$ for an arbitrary matrix Y.
 - 71.3 Suppose Y is not invertible. What is det(Y)?

Lesson 29: Eigenstuff I

Textbook

Section 6.1

Objectives

Task 3.1: The Green and the Black

Consider the following two bases for \mathbb{R}^2 : the green basis $\mathcal{G} = \{\vec{g}_1, \vec{g}_2\}$ and the black basis $\mathcal{B} = \{\vec{e}_1, \vec{e}_2\}$.

- 1. Write each point above in both the green and the black bases.
- 2. Find a change-of-basis matrix *X* that converts vectors from a green basis representation to a black basis representation. Find another matrix *Y* that converts vectors from a black basis representation to a green basis representation.
- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that stretches in the y = -3x direction by a factor of 2 and leaves vectors in the y = x direction fixed.

Describe what happens to the vectors \vec{u} , \vec{v} , and \vec{w} when T is applied given that

$$[\vec{u}]_{\mathcal{G}} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} \qquad [\vec{v}]_{\mathcal{G}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} \qquad [\vec{u}]_{\mathcal{B}} = \begin{bmatrix} -8 \\ -7 \end{bmatrix}.$$

4. When working with the transformation *T*, which basis do you prefer vectors be represented in?

Textbook

Section 6.1

Objectives

Let *X* be a linear transformation. An *eigenvector* for *X* is a non-zero vector that doesn't change directions when X is applied. That is, $\vec{v} \neq \vec{0}$ is an eigenvector for X if

$$X\vec{v} = \lambda\vec{v}$$

for some scalar λ . We call λ the *eigenvalue* of X corresponding to the eigenvector \vec{v} .

72 The picture shows what the linear transformation T does to the unit square (i.e., the unit 2-cube).

- 72.1 Give an eigenvector for T. What is the eigenvalue?
- 72.2 Can you give another?

73 For some matrix A,

$$A \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2/3 \end{bmatrix} \quad \text{and} \quad B = A - \frac{2}{3}I.$$

- 73.1 Give an eigenvector and a corresponding eigenvalue for A.
- 73.2 What is $B\begin{bmatrix} 3\\3\\1 \end{bmatrix}$?
- 73.3 What is the dimension of null(B)?
- 73.4 What is det(B)?
- Let $C = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$ and $E_{\lambda} = C \lambda I$. 74
 - 74.1 For what values of λ does E_{λ} have a non-trivial null space?
 - 74.2 What are the eigenvalues of C?
 - 74.3 Find the eigenvectors of *C*.

Lesson 31: Characteristic Polynomial, Diagonalization I

Textbook

Section 6.2

Objectives

Characteristic Polynomial

For a matrix A, the *characteristic polynomial* of A is

$$char(A) = det(A - \lambda I).$$

75 Let $D = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$.

75.1 Compute char(D).

75.2 Find the eigenvalues of D.

Suppose char(E) = $\lambda(\lambda - 2)(\lambda + 3)$ for some unknown 3 × 3 matrix E.

76.1 What are the eigenvalues of E?

76.2 Is *E* invertible?

76.3 What is nullity(E), nullity(E-3I), nullity(E+3I)?

77 Consider

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

and notice that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are eigenvectors for A.

77.1 Find the eigenvalues of *A*.

77.2 Find the characteristic polynomial of *A*.

77.3 Compute $A\vec{w}$ where $w = 2\vec{v}_1 - \vec{v}_2$.

77.4 Compute $A\vec{u}$ where $\vec{u} = a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3$ for unknown scalar coefficients a, b, c. Notice that $\mathcal{V} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for \mathbb{R}^3 .

77.5 If $[\vec{x}]_{\mathcal{V}} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ is \vec{x} written in the \mathcal{V} basis, compute $A\vec{x}$ in the \mathcal{V} basis.

Lesson 32: Diagonalization II

Textbook

Section 6.2

Objectives

78

The transformation P^{-1} takes vectors in the standard basis and outputs vectors in their \mathcal{V} -basis representation (where \mathcal{V} is from above).

- 78.1 Describe in words what P does.
- 78.2 Describe how you can use P and P^{-1} to easily compute $A\vec{y}$ for any $\vec{y} \in \mathbb{R}^3$.
- 78.3 Can you find a matrix D so that

$$PDP^{-1} = A?$$

78.4
$$[\vec{x}]_{\mathcal{V}} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$
. Compute $A^{100}\vec{x}$.

- For an $n \times n$ matrix T, suppose its eigenvectors $\{\vec{v}_1, \dots \vec{v}_n\}$ form a basis for \mathbb{R}^n . Let $\lambda_1, \dots, \lambda_n$ be the corresponding eigenvalues.
 - 79.1 Is *T* diagonalizable (i.e., similar to a diagonal matrix)? If so, explain how to obtain its diagonalized form.
 - 79.2 What if one of the eigenvalues of T is zero? Is T diagonalizable?
 - 79.3 What if the eigenvectors of T did not form a basis for \mathbb{R}^n . Would T be diagonalizable?

Eigenspace

Let A be a matrix with eigenvalues $\{\lambda_1, \ldots, \lambda_m\}$. The *eigenspace* of A corresponding to the eigenvalue λ_i is the null space of $A - \lambda_i I$. That is, it is the space spanned by all eigenvectors that have the eigenvalue λ_i .

The *geometric multiplicity* of an eigenvalue λ_i is the dimension of the eigenspace corresponding to λ_i . The *algebraic multiplicity* of λ_i is the number of times λ_i occurs as a root of the characteristic polynomial of A (i.e., the number of times $x - \lambda_i$ occurs as a factor).

Lesson 33: Diagonalization III

Textbook

Section 6.2

Objectives

- 80.1 Is *F* diagonalizable? Why or why not?
- 80.2 What is the geometric and algebraic multiplicity of each eigenvalue of *F*?
- 80.3 Suppose *A* is a matrix where the geometric multiplicity of one of its eigenvalues is smaller than the algebraic multiplicity of the same eigenvalue. Is A diagonalizable? What if all the geometric and algebraic multiplicities match?