BỘ THÔNG TIN VÀ TRUYỀN THÔNG HỌC VIỆN CÔNG NGHỆ BỬU CHÍNH VIỄN THÔNG

Bài giảng GIẢI TÍCH HÀM MỘT BIẾN SỐ

Biên soạn: PGS. TS. Phạm Ngọc Anh

MỤC LỤC

Lời nói đầu		
Chương 1. Số	phức và giới hạn của dãy số	7
1.1. Số th	фс	8
1.1.1.	Mở đầu	8
1.1.2.	Các tính chất của tập số thực	ç
1.2. Số ph	nức	11
1.2.1.	Mở đầu	11
1.2.2.	Định nghĩa và các phép toán	11
1.2.3.	Tính chất	12
1.2.4.	Biểu diễn hình học	14
1.2.5.	Công thức Moive	16
1.2.6.	Căn bậc n của số phức	18
1.2.7.	Công thức Euler	19
1.3. Dãy	số thực	22
1.3.1.	Các khái niệm cơ bản	22
1.3.2.	Tính chất	23
1.3.3.	Các phép toán về giới hạn	28
1.3.4.	Dãy đơn điệu	29
1.3.5.	Hai dãy kề nhau	33
1.3.6.	Dãy con	34
1.3.7.	Dãy Cauchy	37
Bài ta	ập chương 1	40
Chương 2. Ph	iép tính vi phân của hàm một biến số	4 4
2.1. Các l	khái niệm cơ bản	44
2.1.1.	Hàm một biến thực	44
2.1.2.	Hàm số chắn, lẻ	
2.1.3.	Hàm số tuần hoàn	
2.1.4.		

	2.1.5.	Hàm số bị chặn	45
	2.1.6.	Cận trên đúng và cận dưới đúng	45
	2.1.7.	Hàm số ngược	47
	2.1.8.	Hàm số hypebolic	48
2.2.	Giới h	ạn của hàm một biến số	49
	2.2.1.	Định nghĩa	50
	2.2.2.	Quan hệ giữa giới hạn của dãy số và giới hạn của hàm số	52
	2.2.3.	Tính chất	52
	2.2.4.	Các phép toán về giới hạn	55
	2.2.5.	Giới hạn của hàm đơn điệu	55
	2.3.	Đại lượng vô cùng bé và vô cùng lớn	56
	2.3.1.	Định nghĩa	56
	2.3.2.	Tính chất	57
2.4.	Hàm s	ố liên tục	57
	2.4.1.	Định nghĩa	57
	2.4.2.	Tính chất đại số	58
	2.4.3.	Cực trị hàm liên tục	59
	2.4.3.	Tính chất bị chặn	61
2.5.	Hàm l	iên tục đều	62
	2.5.1.	Định nghĩa	62
	2.5.2.	Quan hệ giữa tính liên tục và liên tục đều	62
2.6.	Đạo h	àm	65
	2.6.1.	Định nghĩa	65
	2.6.2.	Các công thức của đạo hàm	66
	2.6.3.	Đạo hàm của một số hàm thông dụng	66
	2.6.4.	Đạo hàm của hàm ngược	66
2.7.	Vi phâ	in của hàm số	68
2.8.	Đạo h	àm và vi phân cấp cao	68
	2.8.1.	Định nghĩa	68
	282	Tính chất	69

	2.8.3.	Các định lý về hàm khả vi
2.9.	Công	thức Taylor 7
	2.9.1.	Da thức Taylor
	2.9.2.	Phần dư Taylor
	2.9.3.	Công thức khai triển Taylor
2.10). Quy t	ắc L'Hospital
2.11	. Hàm	lồi
	Bài tậ	p chương 2
Chirono	5 4. Pho	ép tính tích phân
4.1.	_	phân xác định
	4.1.1.	Định nghĩa
	4.1.2.	Y nghĩa hình học
	4.1.3.	Tổng Darboux trên và dưới
	4.1.4.	Các điều kiện khả tích
4.2.	Tính (chất
4.3.		ıuan hệ giữa nguyên hàm và tích phân xác định
	4.3.1.	Nguyên hàm
	4.3.2.	Hàm theo cận trên
	4.3.3.	Công thức Newton-Leibnitz
4.4.	Các p	hương pháp tính tích phân
	4.4.1.	Phương pháp đổi biến
	4.4.2.	Phương pháp tích phân từng phần
4.5.	Tích j	phân của hàm phân thức hữu tỷ
	4.5.1.	Các dạng cơ bản
	4.5.2.	Phương pháp đồng nhất hệ số
4.6.	Tích j	phân của hàm lượng giác
4.7.	Một v	vài ứng dụng của tích phân
	4.7.1.	Tính diện tích
	4.7.2.	Tính độ dài đường cong
	173	Tính thể tích của vật thể

	4.7.4.	Tính diện tích mặt tròn xoay	25
4.8.	Tích]	phân suy rộng với cận vô hạn	27
	4.8.1.	Định nghĩa	27
	4.8.2.	Các điều kiện hội tụ của tích phân suy rộng với cận vô hạn 1	29
	4.8.3.	Hội tụ tuyệt đối và bán hội tụ	32
4.9.	Tích]	phân suy rộng với cận hữu hạn	33
	4.9.1.	Định nghĩa	33
	4.9.2.	Quan hệ giữa hai loại tích phân suy rộng	35
	4.9.3.	Các định lý hội tụ	35
	Bài tậ	ip chương 4	38
~-			
_	-		46
4.1.		i số	
	4.1.1.	Định nghĩa	
	4.1.2.	Các điều kiện hội tụ	
	4.1.3.	Các tính chất	
4.2.	Chuỗ	i số dương	49
	4.2.1.	Định nghĩa	49
	4.2.2.	Các tiêu chuẩn hội tụ	49
4.3.	Chuỗ	i đan dấu	54
	4.3.1.	Định nghĩa	54
	4.3.2.	Dấu hiệu hội tụ	55
4.4.	Chuỗ	i hàm	56
	4.4.1.	Định nghĩa	56
	4.4.2.	Các điều kiện hội tụ đều	57
	4.4.3.	Tính chất của chuỗi hàm hội tụ đều	61
4.5.	Chuỗ	i lũy thừa	64
	4.5.1.	Định nghĩa	64
	4.5.2.	Tính chất	65
	4.5.3.	Quy tắc tìm bán kính hội tụ	65
	4.5.4.	Tính hội tu đều của chuỗi lũy thừa	67

	4.5.5.	Khai triển một hàm số thành chuỗi lũy thừa
4.6.	Chuỗi	Fourier
	4.6.1.	Chuỗi lượng giác
	4.6.2.	Khai triển Fourier của hàm số có chu kỳ 2π
	4.6.3.	Khai triển Fourier của hàm số có chu kỳ $2T$
	4.6.4.	Khai triển Fourier của hàm số xác định trên đoạn, khoảng 177
	Bài tập	o chương 4
	Tài liệ	u tham khảo

LỜI NÓI ĐẦU

Giải tích hàm một biến số là một môn học đang giữ một vị trí quan trọng trong các lĩnh vực ứng dụng và trong hệ thống các môn học của Học viện Công nghệ Bưu chính Viễn thông. Các kiến thức và phương pháp của giải tích hàm một biến số đã hỗ trợ hiệu quả các kiến thức nền tảng cho các môn học giải tích hàm nhiều biến, vật lý, xác suất thống kê, toán kỹ thuật, toán rời rạc và các môn chuyên ngành khác.

Bài giảng "Giải tích hàm một biến số" được biên soạn lại theo chương trình qui định của Học viện cho hệ đại học chuyên ngành Điện tử-Viễn thông-Công nghệ thông tin với hình thức đào tạo theo tín chỉ. Do đối tượng sinh viên rất đa dạng với trình độ cơ bản khác nhau, chúng tôi đã cố gắng tìm cách tiếp cận đơn giản và hợp lý để trình bày nội dung theo phương pháp dễ hiểu hơn, nhằm giúp cho sinh viên nắm được các kiến thức cơ bản nhất.

Giáo trình được chia thành 4 chương. Chương 1 dành cho phần số phức và giới hạn của dãy số. Chương 2 và 3 bao gồm các nội dung về hàm liên tục, phép tính vi phân và phép tính vi phân của hàm một biến. Chương 4 trình bày về chuỗi số, chuỗi hàm, chuỗi lũy thừa và chuỗi Fourier. Các khái niệm và công thức được trình bày tương đối đơn giản và được minh họa bằng nhiều ví dụ với các hình vẽ sinh động. Các chứng minh khó được lược bớt có chọn lọc để giúp cho giáo trình không quá công kềnh nhưng vẫn đảm bảo được để tiện cho sinh viên học tập chuyên sâu và tra cứu phục vụ quá trình học tập các môn học khác. Cuối mỗi chương học đều có các bài tập để sinh viên tự giải nhằm giúp các em hiểu sâu sắc hơn về lý thuyết và rèn luyện kỹ năng thực hành.

Tác giả hy vọng rằng giáo trình này có ích cho các em sinh viên và các bạn đồng nghiệp trong quá trình học tập và giảng dạy về môn học giải tích hàm một biến số. Tác giả cũng cám ơn mọi ý kiến góp ý để giáo trình bài giảng này được hoàn thiên hơn nhằm nâng cao chất lượng day và học môn học này.

2/9/2013, Tác giả: PGS. TS. Phạm Ngọc Anh

CHƯƠNG 1. SỐ THỰC, SỐ PHÚC VÀ GIỚI HẠN CỦA DÃY SỐ

1.1. Số thực

1.1.1. Mở đầu

Nhắc lại một số tập hợp quen thuộc

+ Tập các số tự nhiên

$$\mathbb{N} = \{0, 1, 2, ...\}.$$

+ Tập các số nguyên

$$\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}.$$

+ Tập các số hữu tỷ

$$\mathbb{Q} = \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{0\} \}.$$

Ta có $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$.

Trong tập các số hữu tỷ $\mathbb Q$ có thể thực hiện các phép toán cộng, trừ, nhân và chia cho số khác 0. Trong $\mathbb Q$ còn có quan hệ thứ tự \leq , \geq , =. Theo ngôn ngữ đại số, $\mathbb Q$ cùng với các phép toán và quan hệ thứ tự đã cho là một trường được sắp thứ tự.

Tuy nhiên, từ lâu người ta đã thấy tập $\mathbb Q$ chưa đầy đủ. Chẳng hạn, không có số hữu tỷ nào biểu diễn độ dài đường chéo của một hình vuông có cạnh bằng 1 đơn vị, biểu diễn số π là tỷ số giữa độ dài của một đường tròn và đường kính của nó.

Một số hữu tỷ x, bằng cách viết $x=\frac{p}{q}$ với $p,q\in\mathbb{Z},q\neq0$ và thực hiện phép chia p cho q, ta có thể đồng nhất với dãy mà sau đây sẽ được gọi là số thập phân:

$$x = x_0, x_1 x_2 \dots$$

trong đó $x_0 \in \mathbb{Z}$ và $x_1, x_2, ... \in \{0, 1, 2, ..., 9\}$. Số thập phân này hoặc hữu hạn, tức là tồn tại số k sao cho $x_n = 0 \ \forall n > k$ hay

$$x = x_0, x_1 x_2 ... x_k,$$

hoặc vô hạn tuần hoàn với chu kỳ p, tức là

$$x = x_0, x_1 x_2 \dots x_k \underbrace{x_{k_1} x_{k_2} \dots x_{k_p}}_{p} \underbrace{x_{k_1} x_{k_2} \dots x_{k_p}}_{p} \dots \underbrace{x_{k_1} x_{k_2} \dots x_{k_p}}_{p}.$$

Hiển nhiên

$$x = x_0 + \frac{x_1}{10} + \dots + \frac{x_y}{10^k},$$

hoặc

$$x = x_0 + \frac{x_1}{10} + \dots + \frac{x_y}{10^k} + x_{k_1} x_{k_2} \dots x_{k_p} \cdot \frac{1}{10^k (1 - 10^{-p})}.$$

Ngược lại, mọi số thập phân hữu hạn hay vô hạn tuần hoàn đều được biểu diễn dưới dạng một số hữu tỷ. Như vậy, ta có thể đồng nhất tập các số hữu tỷ $\mathbb Q$ với tập các số thập phân hữu han hay vô han tuần hoàn.

Một cách tổng quát, ta coi mọi số thập phân vô hạn không tuần hoàn là một số mới và gọi là $s\acute{o}$ $v\acute{o}$ $t\mathring{y}$. Tập các số hữu tỷ và vô tỷ gọi là $t\^{a}p$ $c\acute{a}c$ $s\acute{o}$ thực, ký hiệu là \mathbb{R} . Mỗi phần tỷ của \mathbb{R} được gọi là một $s\acute{o}$ thưc.

Cho số thực

$$x = x_0, x_1 x_2 \dots$$
 với $x_0 \in \mathbb{Z}, x_1, x_2, \dots \in \{0, 1, 2, \dots, 9\}.$

Khi đó

 x_0 được gọi là phần nguyên của x, ký hiệu là [x], x_n được gọi là phần thập phân thứ n của x.

Nếu tồn tại số nguyên m sao cho

$$m \le x < m + 1$$

thì m được gọi là sàn của x, ký hiệu $\lfloor x \rfloor$.

Nếu tồn tại số nguyên m sao cho

$$m-1 < x \le m$$

thì m được gọi là $tr \hat{a} n$ của x, ký hiệu [x].

Giả sử $x, y \in \mathbb{R}$

$$x = x_0, x_1 x_2 \dots$$
 và $y = y_0, y_1 y_2 \dots$

Ta viết x < y nếu $x_0 < y_0$ hoặc tồn tại k sao cho $x_0 = y_0,...,x_k = y_k$ và $x_{k+1} < y_{k+1}$. Hai số bằng nhau x=y nếu $x_i=y_i \ \forall i=0,1,...$

1.1.2. Các tính chất của tập số thực

+ Tính sắp thứ tự

Cho hai số thực a,b. Khi đó, a và b so sánh được với nhau, tức là $a\leq b$ hoặc a>b. Thật vậy, giả sử $a=a_0,a_1a_2...$, $b=b_0,b_1b_2...$. Nếu $a\neq b$ khi đó tồn tại $k\in\mathbb{N}$ sao cho

$$a_0 = b_0, ..., a_k = b_k$$

nhưng

$$a_{k+1} < b_{k+1}$$
 hoặc $a_{k+1} > b_{k+1}$.

Như vậy a < b hoặc a > b.

+ Tính trù mât

Cho 2 số thực a,b và a < b. Tồn tại số hữu tỷ $r \in \mathbb{Q}$ sao cho a < r < b. Thật vậy, ta giả sử $a = a_0, a_1 a_2 ..., b = b_0, b_1 b_2 ...$, từ a < b suy ra tồn tại $k \in \mathbb{N}$ sao cho

$$a_0 = b_0, ..., a_k = b_k, a_{k+1} < b_{k+1}.$$

Khi đó, ta chọn số hữu tỷ là

$$r = \begin{cases} a_0, a_1...a_k b_{k+1} & \text{n\'eu} \ b \in \mathbb{Q} \\ \\ \frac{1}{2}(a_0, a_1...a_k a_{k+1} 9 + a_0, a_1...a_k b_{k+1} 0) & \text{n\'eu} \ b \notin \mathbb{Q}, \end{cases}$$

thỏa mãn a < r < b.

+ Tính đầy đủ

Cho $A \subseteq \mathbb{R}$. Khi đó

 $m \in \mathbb{R}$ được gọi là $cận \, dưới$ của A nếu $m \leq a \, \forall a \in A$. Nếu m là cận dưới lớn nhất trong các cận dưới của A thì m được gọi là $cận \, dưới \, đúng$ của A, ký hiệu $m = \inf A$.

 $M \in \mathbb{R}$ được gọi là cận trên của A nếu $a \leq M$ $\forall a \in A$. Nếu M là cận trên nhỏ nhất trong các cận trên của A thì m được gọi là cận trên đúng của A, ký hiệu $M = \sup A$.

Theo tính sắp thứ tự của tập số thực, nên nếu tồn tại thì $\sup A$, $\inf A$ là duy nhất. Tính tồn tại được thừa nhân bởi nguyên lý đủ dưới đây.

Định lý 1.1. Mọi tập con khác rỗng của tập số thực \mathbb{R} có ít nhất một cận trên (tương ứng một cận dưới) thì tồn tại duy nhất cận trên đúng (tương ứng cận dưới đúng).

Chú ý rằng tập các số hữu tỷ $\mathbb Q$ không có tính đầy đủ. Ví dụ trong $\mathbb Q$ có tập $A=\{x:\ x^2<2\}$ không có cận trên đúng trong $\mathbb Q$.

- + Các tập số thực thông dụng.
- Đoạn trên ${\mathbb R}$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}.$$

- Nửa đoạn trên $\mathbb R$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}, [a,+\infty) = \{x \in \mathbb{R} : a \le x\}.$$

- Nửa khoảng trên $\mathbb R$

$$(a, b] = \{x \in \mathbb{R} : a < x \le b\}, (-\infty, b] = \{x \in \mathbb{R} : x \le b\}.$$

- Khoảng trên $\mathbb R$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}, \mathbb{R} = (-\infty, +\infty).$$

- Cho $a \in \mathbb{R}$ và $\epsilon > 0$, khoảng

$$(a - \epsilon, a + \epsilon) = \{x \in \mathbb{R} : |x - a| < \epsilon\} = B_{\epsilon}(a)$$

được gọi là một lân cận của điểm a.

1.2. Số phức

1.2.1. Mở đầu

Tập số thực $\mathbb R$ đã rất phong phú, xong nếu ta xét phương trình bậc 2

$$ax^2 + bx + c = 0,$$

ở đây $a \neq 0, a, b, c \in \mathbb{R}$ với $\Delta := b^2 - 4ac < 0$, thì phương trình sẽ vô nghiệm trên \mathbb{R} . Để mở rộng lớp nghiệm của phương trình này, ta mở rộng tập số thực thành tập số phức (ký hiệu: \mathbb{C}). Muốn xây dựng tập số phức, ta quan tâm tới số i thỏa mãn $i^2 = -1$, số i không phải là số thực và được gọi là don vi do.

1.2.2. Định nghĩa và các phép toán

• Tập số phức là một tập hợp xác định bởi

$$\mathbb{C} := \{ z = a + bi : a, b \in \mathbb{R}, i^2 = -1 \}.$$

• Cho số phức z := a + bi với $a, b \in \mathbb{R}$ (còn gọi là dạng *chính tắc* của z), khi đó a được gọi là *phần thực* của z, ký hiệu tắt bởi Rez (Real of z).

b được gọi là phần do của z, ký hiệu tắt bởi Imz (Image of z).

 $\sqrt{a^2+b^2}$ được gọi là $m\hat{o}$ đưn (còn gọi là độ dài) của z, ký hiệu tắt bởi |z|.

Số phức a - bi được gọi là số phức *liên hợp* của số phức z, ký hiệu tắt bởi \bar{z} .

Số phức -a - bi được gọi là số phức đối của số phức z.

- ullet Cho 2 số phức dưới dạng chính tắc $x=x_1+x_2i,y=y_1+y_2i.$ Các phép toán trên tập số phức $\mathbb C$ được xác định bởi các quy tắc sau:
- -Quy tắc cộng: $x + y = (x_1 + y_1) + (x_2 + y_2)i$.
- -Quy tắc trừ: $x y = (x_1 y_1) + (x_2 y_2)i$.
- -Quy tắc nhân: $x.y = (x_1y_1 x_2y_2) + (x_1y_2 + x_2y_1)i$.
- -Quy tắc bằng nhau:

$$x = y \Leftrightarrow \begin{cases} x_1 = y_1 \\ x_2 = y_2 \end{cases}$$

1.2.3. Tính chất

- a) Tính chất kết hợp (với phép cộng): $(x+y)+z=x+(y+z) \ \ \forall x,y,z\in\mathbb{C}.$
- b) Tính chất kết hợp (với phép nhân): $(xy)z = x(yz) \ \ \forall x,y,z \in \mathbb{C}.$
- c) Tính chất giao hoán: $x+y=y+x \ \ \forall x,y\in\mathbb{C}.$
- d) Tính chất phân phối của phép nhân với phép cộng: $x(y+z)=xy+xz \ \forall x,y,z\in \mathbb{C}.$
- e) $\overline{x + y} = \bar{x} + \bar{y} \ \forall x, y \in \mathbb{C}$.
- f) $\overline{x.y} = \bar{x}.\bar{y} \ \forall x, y \in \mathbb{C}$.
- g) $x.\bar{x} = |x|^2 \ \forall x \in \mathbb{C}$.
- h) $\overline{\left(\frac{x}{y}\right)} = \frac{\bar{x}}{\bar{y}} \ \forall x, y \in \mathbb{C}, y \neq 0.$
- i) $|x| \ge 0 \ \forall x \in \mathbb{C}, |x| = 0 \Leftrightarrow x = 0.$
- j) $|x.y| \le |x|.|y| \ \forall x, y \in \mathbb{C}$.
- k) $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{C}.$

Chứng minh Biểu diễn các số phức dưới dạng chính tắc và dùng định nghĩa 1.2.

Ví dụ 1.2. Giải và biện luận phương trình sau trên tập các số phức $\mathbb C$

$$ax^2 + bx + c = 0$$
 $v\acute{o}i$ $a \neq 0$.

Giải

Có $\Delta := b^2 - 4ac$.

-Nếu $\Delta=0$, thì phương trình có nghiệm kép $x_1=x_2=\frac{-b}{2a}$.

-Nếu $\Delta>0$, thì phương trình có 2 nghiệm thực phân biệt

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}.$$

-Nếu $\Delta<0$, thì $\Delta=-(-\Delta)=(i\sqrt{-\Delta})^2$. Khi đó, phương trình có 2 nghiệm phức phân biệt

$$x_{1,2} = \frac{-b + i\sqrt{-\Delta}}{2a}.$$

Ví dụ 1.3. Cho số phức $z=\frac{a-bi}{a+bi}$ với $a,b\in\mathbb{R},b\neq0$. Hãy tính Im(z),Re(z),|z|.

Giải

Nhân cả tử số và mẫu số với a - bi, ta có

$$z = \frac{(a-bi)^2}{a^2 - b^2 i^2}$$

$$= \frac{a^2 - b^2 - 2abi}{a^2 + b^2}$$

$$= \frac{a^2 - b^2}{a^2 + b^2} + \frac{-2ab}{a^2 + b^2}.i$$

Khi đó, $\operatorname{Re}(z) = \frac{a^2 - b^2}{a^2 + b^2}$, $\operatorname{Im}(z) = \frac{-2ab}{a^2 + b^2}$ và $|z| = \sqrt{Re^2(z) + Im^2(z)} = 1$.

Ví dụ 1.4. Bất đẳng thức Cauchy¹-Schwarz²

Cho các số phức $a_1, a_2, ..., a_n$ và $b_1, b_2, ..., b_n$. Khi đó

$$|\sum_{i=1}^{n} a_i.b_i|^2 \le \sum_{i=1}^{n} |a_i|^2.\sum_{i=1}^{n} |b_i|^2.$$

Chứng minh

Đặt

$$a = \sum_{i=1}^{n} |a_i|^2, b = \sum_{i=1}^{n} |b_i|^2, c = \sum_{i=1}^{n} a_i.\bar{b_i}.$$

¹21.8.1789-23.5.1857, nhà Toán học người Pháp Augustin Louis Cauchy sinh ra tại Paris có hơn 800 công trình nghiên cứu liên quan đến tất cả các lĩnh vực Toán học, đặc biệt là hàm chỉnh hình, phương trình vi phân, lý thuyết nhóm và đại số tuyến tính. Ông cũng có những công trình về thiên văn và vật lý, trong đó ông đặt cơ sở toán học cho lý thuyết đàn hồi.

²25.1.1843-30.11.1921, nhà Toán học người Đức Hermann Schwarz học Toán và Hóa ở Học viện công nghiệp Berlin, ở đấy ông là học trò của Weierstrass. Các công trình của ông liên quan đến hàm giải tích, ánh xạ bảo giác, phương trình đạo hàm riêng, lý thuyết thế và mặt.

Nếu b = 0 thì $b_1 = b_2 = ... = b_n$, thì bất đẳng thức luôn đúng. Nếu b > 0, thì theo tính chất 1.3.e) và g), ta có

$$0 \le \sum_{i=1}^{n} |b.a_{i} - c.b_{i}|^{2} = \sum_{i=1}^{n} (b.a_{i} - c.b_{i})(\overline{b.a_{i} - c.b_{i}})$$

$$= \sum_{i=1}^{n} (b.a_{i} - c.b_{i})(b.\overline{a}_{i} - c.\overline{b}_{i})$$

$$= b^{2} \sum_{i=1}^{n} |a_{i}|^{2} - bc \sum_{i=1}^{n} a_{i}.\overline{b}_{i} - bc \sum_{i=1}^{n} \overline{a}_{i}.b_{i} + |c|^{2} \sum_{i=1}^{n} |b_{i}|^{2}$$

$$= b^{2}.a - b|c|^{2}$$

$$= b(ab - |c|^{2}).$$

 $\mbox{Vì }b>0, \mbox{ nên }a.b-|c|^2\geq 0.$

1.2.4. Biểu diễn hình học của số phức

Cho mặt phẳng tọa độ Descartes vuông góc (Oxy). Xét một ánh xạ

$$f: \mathbb{C} \to (Oxy)$$

$$z = a + bi \mapsto f(z) = M(a; b) \in (Oxy)$$

Ánh xạ f là một sự tương ứng 1-1 (còn gọi là một $song \, anh$) giữa tập số phức C và tập các điểm trên mặt phẳng tọa độ (Oxy). Khi đó, mặt phẳng (Oxy) còn được gọi là mặt phẳng phức.

Hình 1: Biểu diễn hình học của z = a + bi

Ví dụ 1.5. Cho $z \in \mathbb{C}$ thỏa mãn $\frac{z^2}{z+i} \in i\mathbb{R}$. Hãy biểu diễn hình học của z trên mặt phẳng phức (Oxy).

Giải

Giả sử z = x + yi, khi đó

$$\frac{z^2}{z+i} = \frac{z^2(\bar{z}-i)}{|z+i|^2} = \frac{1}{|z+i|^2} \cdot (x+yi)^2 (x-yi-i)$$

Giả thiết cho $\frac{z^2}{z+i}\in i\mathbb{R}$, điều đó có nghĩa rằng $Re\Big(\frac{z^2}{z+i}\Big)=0$ hay

$$Re((x+yi)^2(x-yi-i)) = 0 \leftrightarrow x(x^2-y^2+2xy(y+1)) = 0 \leftrightarrow x(x^2+y^2+2y) = 0.$$

Hay x=0 hoặc $x^2+(y+1)^2=1$. Khi đó, điểm M(x,y) nằm trên trục Oy hoặc nằm trên đường tròn tâm I(0,-1) bán kính R=1.

Dựa vào biểu diễn hình học của z, ta có $OM = \sqrt{a^2 + b^2} = |z|$ và

$$\begin{cases} x = |z| \cdot \cos \varphi \\ y = |z| \cdot \sin \varphi . \end{cases}$$

Do vậy, số phức z có thể được viết lại rằng

$$z = |z| \cdot (\cos \varphi + i \sin \varphi),$$

 φ gọi là Acgumen của z và được ký hiệu bởi Arg(z). Như vậy với mọi $z \in \mathbb{C}$

$$z = |z| \cdot [\cos Arg(z) + i \sin Arg(z)]$$

biểu thức này được gọi là dạng lượng giác của z.

Arg(z) có một vài tính chất sau:

- 1) Nếu φ là một Acgumen của số phức z, thì $\varphi+k2\pi \ (k\in\mathbb{Z})$ cũng là Acgumen của z. Như vậy Arg(z) có thể sai khác số lần 2π .
- 2) $Arg(\bar{z}) = -Arg(z) \ \forall z \in \mathbb{C}.$

Chứng minh Giả sử $z=|z|.(\cos\varphi+i\sin\varphi)$, theo định nghĩa của \bar{z} ta có

$$\bar{z} = |z| \cdot (\cos \varphi - i \sin \varphi) = |z| \cdot [\cos(-\varphi) + i \sin(-\varphi)].$$

Do vây
$$Arq(\bar{z}) = -\varphi = -Arq(z)$$
.

3)
$$Arg(z_1.z_2) = Arg(z_1) + Arg(z_2) \ \forall z_1, z_2 \in \mathbb{C}.$$

Dùng quy nạp toán học, ta có tổng quát như sau:

$$Arg(z^n) = n.Arg(z) \ \forall z \in \mathbb{C}.$$

Chứng minh Giả sử $z_1=|z_1|.(\cos\varphi_1+i\sin\varphi_1),\ z_2=|z_2|.(\cos\varphi_2+i\sin\varphi_2).$ Khi đó

$$z_1.z_2 = |z_1|.|z_2|.(\cos\varphi_1 + i\sin\varphi_1).(\cos\varphi_2 + i\sin\varphi_2)$$

$$= |z_1|.|z_2|.[\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 + i(\sin\varphi_1\cos\varphi_2 + \cos\varphi_1\sin\varphi_2)]$$

$$= |z_1|.|z_2|.[\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)],$$

ta có
$$Arg(z_1+z_2)=\varphi_1+\varphi_2$$
.

Bằng cách chứng minh tương tự như tính chất 3), ta có các tính chất sau:

- 4) $Arg(\frac{1}{\bar{z}}) = -Arg(z) \ \forall z \in \mathbb{C}.$
- 5) $Arg(\frac{z_1}{z_2}) = Arg(z_1) Arg(z_2) \quad \forall z_1, z_2 \in \mathbb{C}.$
- 6) $|z_1+z_2|\leq |z_1|+|z_2| \ \forall z_1,z_2\in\mathbb{C}$. Dấu '=' xảy ra khi và chỉ khi $Arg(z_1)=Arg(z_2)$.

Ví dụ 1.6. Cho $a,b,c\in\mathbb{C}$ sao cho $|a|=|b|=|c|=1,a\neq c,b\neq c$. Chứng minh rằng:

$$Arg\frac{c-b}{c-a} = \frac{1}{2}Arg\frac{b}{a}. (1.1)$$

Giải

Từ tính chất 5), ta có

$$(1.1) \Leftrightarrow Arg\frac{c-b}{c-a} - \frac{1}{2}Arg\frac{b}{a} = 0 \Leftrightarrow Arg[(\frac{c-b}{c-a})^2 \cdot \frac{a}{b}] = 0.$$

Từ nhận xét $Arg(z)=0 \leftrightarrow z \in \mathbb{R} \leftrightarrow \bar{z}=z$, ta đặt $z=(\frac{c-b}{c-a})^2.\frac{a}{b}$

$$\bar{z} = \overline{\left(\frac{c-b}{c-a}\right)^2 \cdot \frac{a}{b}} = \overline{\left(\frac{c-b}{c-a}\right)^2} \cdot \frac{\bar{a}}{\bar{b}} = \left(\frac{\frac{1}{c} - \frac{1}{b}}{\frac{1}{c} - \frac{1}{a}}\right)^2 \frac{\frac{1}{a}}{\frac{1}{b}} = \left(\frac{b-c}{a-c}\frac{a}{b}\right)^2 \frac{b}{a} = \left(\frac{c-b}{c-a}\right)^2 \frac{a}{b} = z.$$

1.2.5. Công thức Moivre

Cho số phức z được biểu diễn dưới dạng lượng giác $z=|z|(\cos\varphi+i\sin\varphi)$, ta có công thức Moivre³

$$z^{n} = |z|^{n}(\cos n\varphi + i\sin n\varphi) \ \forall n \in \mathbb{N}^{*}, z \in \mathbb{C}.$$
 (1.2)

Chứng minh

-Với n = 1, (1.2) luôn đúng.

-Giả sử (1.2) đúng với n=k, $z^k=|z|^k(\cos k\varphi+i\sin k\varphi)$. Khi đó, $z^{k+1}=z^k.z=|z|^k(\cos k\varphi+i\sin k\varphi).|z|(\cos \varphi+i\sin \varphi)=|z|^{k+1}[\cos k\varphi\cos \varphi-\sin k\varphi\sin \varphi+i(\sin k\varphi\cos \varphi+\cos k\varphi\sin \varphi)]=|z|^{k+1}[\cos(k+1)\varphi+i\sin(k+1)\varphi]$. Điều này có nghĩa rằng (1.2) đúng với n=k+1. Theo quy nạp Toán học, (1.2) được chứng minh.

Ví dụ 1.7. Hãy biểu diễn $\sin 10x$ và $\cos 10x$ theo các hàm $\sin x, \cos x$.

Giải

Áp dụng công thức Moivre với n = 10, |z| = 1, ta đạt được

$$(\cos x + i\sin x)^{10} = \cos 10x + i\sin 10x. \tag{1.3}$$

Mặt khác, theo công thức khai triển Newton

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k,$$

ta có

$$(\cos x + i \sin x)^{10} = C_{10}^{0} \cos^{10} x + i C_{10}^{1} \cos^{9} x \sin x + \dots + i^{10} C_{10}^{10} \sin^{10} x.$$

$$= \left(C_{10}^{0} \cos^{10} x - C_{10}^{2} \cos^{8} x \sin^{2} x + \dots - C_{10}^{10} \sin^{10} x \right)$$

$$+ i \left(C_{10}^{1} \cos^{9} x \sin x - \dots + C_{10}^{9} \cos x \sin^{9} x \right). \tag{1.4}$$

Kết hợp (1.3), (1.4) với nhận xét $i^{2n}=(-1)^n$, ta nhận được

$$\sin 10x = C_{10}^{0} \cos^{10} x - C_{10}^{2} \cos^{8} x \sin^{2} x + \dots - C_{10}^{10} \sin^{10} x$$

³Abraham Moivre là một nhà Toán học người Anh, sinh ngày 26.5.1667 tại Pháp. Các công trình nghiên cứu của ông chủ yếu liên quan đến lý thuyết xác suất. Ông được có thể dược xem như là người đi tiên phong trong lĩnh vực Toán học tài chính và Toán học ứng dụng vào nghiên cứu dân số. Ông mất ngày 27.11.1754.

$$\cos 10x = C_{10}^1 \cos^9 x \sin x - C_{10}^3 \cos^7 x \sin^3 x + \dots + C_{10}^9 \cos x \sin^9 x.$$

1.2.6. Căn bâc n của một số phức

Cho số phức z biểu diễn dưới dạng lượng giác $z=|z|(\cos\varphi+i\sin\varphi)$. Căn bậc n của z được xác định bởi công thức

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos\frac{\varphi + k2\pi}{n} + i\sin\frac{\varphi + k2\pi}{n}\right) \quad \text{v\'oi } k = 0, 1, 2, ..., n - 1, \quad (1.5)$$
 trong đó $\sqrt[n]{|z|} \in \mathbb{R}^+ := \{x \in \mathbb{R} : x \ge 0\}.$

Chứng minh

Giả sử
$$z_0 = \sqrt[n]{z} = |z_0|(cos\varphi_0 + i\sin\varphi_0)$$
, từ $z_0^n = z$ suy ra

$$|z|(\cos\varphi + i\sin\varphi) = [|z_0|(\cos\varphi_0 + i\sin\varphi_0)]^n.$$

Theo công thức Moivre,

$$|z|(\cos\varphi + i\sin\varphi) = |z_0|^n(\cos n\varphi_0 + i\sin n\varphi_0).$$

Do đó

Ví dụ 1.8. Dùng công thức (1.5), tính căn bậc 3 của -1 trên $\mathbb C$

Giải

Từ $-1 = cos\pi + i \sin \pi$ ta có các căn bậc 3 của -1 là

$$z_k = \cos \frac{\pi + k2\pi}{3} + i \sin \frac{\pi + k2\pi}{3}$$
 với $k = 0, 1, 2$.

Vậy có ba căn bậc 3 khác nhau của -1 là

$$k = 0 \Rightarrow z_0 = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} + \frac{1}{2}i,$$

$$k = 1 \Rightarrow z_1 = \cos\frac{3\pi}{3} + i\sin\frac{3\pi}{3} = -1,$$

$$k = 2 \Rightarrow z_2 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i.$$

1.2.7. Công thức Euler⁴ (Ole)

$$e^{\alpha i} = \cos \alpha + i \sin \alpha \ \forall \alpha \in \mathbb{R}.$$

Ví dụ 1.9. Tính tổng

$$A_n = \sum_{k=1}^n \cos(a+kb), \quad B_n = \sum_{k=1}^n \sin(a+kb) \quad v \acute{o}i \ a, b \in \mathbb{R}, b \notin 2\pi \mathbb{Z}.$$

Giải

Dùng công thức Euler, ta có

$$A_n + iB_n = \sum_{k=1}^n [\cos(a+kb) + i\sin(a+kb)] = \sum_{k=1}^n e^{i(a+kb)} = e^{ai} \sum_{k=1}^n (e^{ib})^k.$$

Từ giả thiết $b \notin 2\pi \mathbb{Z}$, nên tổng các số hạng của một cấp số nhân được xác định bởi

$$\sum_{k=1}^{n} (e^{ib})^k = e^{ib} \frac{\left(e^{ib}\right)^n - 1}{e^{ib} - 1}.$$

Do đó, theo công thức Euler và Moivre, ta có

$$A_n + iB_n = e^{i(a+b)} \frac{\left(e^{ib}\right)^n - 1}{e^{ib} - 1} = \frac{(\cos(a+b) + i\sin(a+b))[(\cos b + i\sin b)^n - 1]}{\cos b + i\sin b - 1}$$
$$= \cos(a+b+\frac{nb}{2}) \cdot \frac{\sin\frac{nb}{2}}{\sin\frac{b}{2}} + i\sin(a+b+\frac{nb}{2}) \cdot \frac{\sin\frac{nb}{2}}{\sin\frac{b}{2}}.$$

Vì vậy,

$$A_n = \cos(a+b+\frac{nb}{2}).\frac{\sin\frac{nb}{2}}{\sin\frac{b}{2}}, \ B_n = \sin(a+b+\frac{nb}{2}).\frac{\sin\frac{nb}{2}}{\sin\frac{b}{2}}.$$

 $Nh\hat{q}n$ xét. Giả thiết cho $b \notin 2\pi\mathbb{Z}$ nên $\sin \frac{b}{2} \neq 0$. Bài toán trên còn có thể giải bằng cách nhân A_n hoặc B_n với $\sin \frac{b}{2}$, sau đó phân tích "tích \rightarrow tổng".

Ví dụ 1.10. Tìm ánh xạ $f: \mathbb{C} \to \mathbb{C}$ thỏa mãn

$$f(z) + zf(-z) = 1 + z \quad v\acute{o}i \ moi \ z \in \mathbb{C}. \tag{1.6}$$

⁴Nhà Toán học Thụy Sĩ Leonhard Euler sinh ngày 15.4.1707 và mất ngày 18.9.1783, ông nghiên cứu đến tất các các lĩnh vực của Toán học. Ông làm cho giải tích bay bổng nhờ những công cụ mới của phép tính vi phân và tích phân, ông phát triển hình học vi phân và có những công trình hàng đầu về lý thuyết số. Ông là người sáng lập ra lý thuyết liên phân số, công trình được công bố vào năm 1737.

Giải

Thay z bởi -z vào (1.6), ta có

$$f(-z) - zf(z) = 1 - z. (1.7)$$

Khử f(-z) từ (1.7) vào (1.6), ta nhận được

$$(1+z^2)f(z) = 1 + z^2.$$

-Nếu z=i, thì thay z=i vào phương trình trình (1.6), ta thấy đúng với mọi f(z). Không mất tính tổng quát, ta đặt $f(i)=\alpha+i\beta$ với $\alpha,\beta\in\mathbb{R}$.

-Nếu z=-i, thì thay z=-i vào (1.6), ta nhận được

$$f(i) + if(-i) = 1 + i \Leftrightarrow if(-i) = 1 + i - \alpha - \beta i \Leftrightarrow f(-i) = 1 - \beta + (\alpha - 1)i.$$

-Nếu $z \neq \underline{+}i$, thì f(z) = 1.

Như vậy, hàm f(z) cần tìm có dạng

$$f(z) = \begin{cases} 1 & \text{n\'eu } z \neq \underline{+}i, \\ \alpha + i\beta & \text{n\'eu } z = i, \\ 1 - \beta + (\alpha - 1)i & \text{n\'eu } z = -i. \end{cases}$$

Ví dụ 1.11. Chứng minh rằng: Với mọi số phức $z \neq 1, |z| = 1$ đều tồn tại $x \in \mathbb{R}$ sao cho z được biểu diễn dưới dang

$$z = \frac{x+i}{x-i}.$$

Giải

Dựa vào bảng biến thiên dưới đây và

Hình 2: Hàm số
$$y = \frac{2x}{1+x^2}$$

$$\left(\frac{x^2 - 1}{x^2 + 1}\right)^2 + \left(\frac{2x}{x^2 + 1}\right)^2 = 1,$$

ta có z=a+bi với giả thiết cho $a^2+b^2=1$, luôn tồn tại $x\in\mathbb{R}$ sao cho

$$\begin{cases} a = \frac{x^2 - 1}{x^2 + 1}, \\ b = \frac{2x}{x^2 + 1}. \end{cases}$$

Do vây,

$$z = \frac{x^2 - 1}{x^2 + 1} + i\frac{2x}{x^2 + 1} = \frac{(x+i)^2}{x^2 - i^2} = \frac{x+i}{x-i}.$$

Ví dụ 1.12. Cho $z \in \mathbb{C}$ thỏa mãn

$$z + \frac{1}{z} = 2\cos\varphi.$$

Chứng minh rằng:

$$z^n + \frac{1}{z^n} = 2\cos n\varphi. \tag{1.8}$$

Chứng minh

Ta có $z + \frac{1}{z} = 2\cos\varphi \Leftrightarrow z^2 - 2z\cos\varphi + 1 = 0 \Leftrightarrow z = \cos\varphi + i\sin\varphi$.

Trường hợp 1. $z = \cos \varphi + i \sin \varphi \Rightarrow |z| = 1 \Rightarrow z\bar{z} = 1 \Rightarrow \frac{1}{z} = \bar{z} = \cos \varphi - i \sin \varphi \Rightarrow \frac{1}{z^n} = (\bar{z})^n = \cos n\varphi - i \sin n\varphi$. Mặt khác $z^n = \cos n\varphi + i \sin n\varphi$. Do vậy, (1.8) đúng.

Trường hợp 2. $z = \cos \varphi - i \sin \varphi$, tương tự như trường hợp 1.

Ví dụ 1.13. Chứng minh rằng:

$$\left(\frac{1+i\tan\alpha}{1-i\tan\alpha}\right)^n = \frac{1+i\tan n\alpha}{1-i\tan n\alpha} \ \forall n \in \mathbb{N}^*, \ n\alpha - \frac{\pi}{2} \notin \pi\mathbb{Z}.$$

Giải

Từ giả thiết $n\alpha - \frac{\pi}{2} \notin \pi \mathbb{Z}$ suy ra $\cos n\alpha \neq 0$. Khi đó, theo công thức Moivre,

$$\left(\frac{1+i\tan\alpha}{1-i\tan\alpha}\right)^n = \left(\frac{\cos\alpha+i\sin\alpha}{\cos\alpha-i\sin\alpha}\right)^n = \frac{\cos n\alpha+i\sin n\alpha}{\cos n\alpha-i\sin n\alpha} = \frac{1+i\tan n\alpha}{1-i\tan n\alpha}.$$

Ví dụ 1.14. Giải phương trình ẩn $z \in \mathbb{C}$, biết phương trình có một nghiệm dưới dạng ix với $x \in \mathbb{R}$ (còn được gọi là nghiệm thuần ảo).

$$z^{3} + (1 - 2i)z^{2} + (1 - i)z - 2i = 0.$$

21

Do ix là nghiệm, nên thay ix vào phương trình, ta nhận được

$$-ix^{3} - (1-2i)x^{2} + (1-i)ix - 2i = 0 \Leftrightarrow (-x^{2} + x) + (-x^{3} + 2x^{2} + x - 2)i = 0$$
$$\Leftrightarrow \begin{cases} -x^{2} + x = 0, \\ -x^{3} + 2x^{2} + x - 2 = 0. \end{cases} \Leftrightarrow x = 1.$$

Như vậy, z=i là nghiệm. Phân tích thành nhân tử, phương trình được viết dưới dạng

$$(z-i)(z^2+(1-i)z+2)=0.$$

Nghiêm của phương trình là:

$$\begin{cases} z_1 = i, \\ z_2 = \frac{1}{2} \left((-1 - \sqrt{\sqrt{17} - 4}) + (1 + \sqrt{\sqrt{17} + 4})i \right), \\ z_3 = \frac{1}{2} \left((-1 - \sqrt{\sqrt{17} - 4}) + (1 - \sqrt{\sqrt{17} + 4})i \right), \end{cases}$$

1.3. Dãy số thực

1.3.1. Các khái niêm cơ bản

-Một ánh xạ

$$f: \mathbb{N} \to \mathbb{K}$$

$$n \mapsto f(n) = x_n,$$

khi $\mathbb{K} = \mathbb{R}$, ta sẽ nhận được một dãy số thực, gọi tắt là $d\tilde{a}y$ số, thường được ký hiệu bởi $(x_n)_{n=1}^{\infty}$ hay (x_n) hay $(x_n)_{n\geq 0}$. Trong trường hợp $\mathbb{K} = \mathbb{C}$, (x_n) được gọi là dãy số phức. Khi đó, x_n được gọi là số hạng tổng quát thứ n của dãy số (x_n) .

Ví dụ: Dãy số
$$(\frac{1}{n})$$
: $\frac{1}{1}, \frac{1}{2}, ..., \frac{1}{n}, ...$

Dãy số
$$\left((1+\frac{1}{n})^n\right): 1+\frac{1}{n}, 1+\frac{1}{2}, \dots$$

- -Dãy số (x_n) gọi là bi chặn dưới, nếu tồn tại $m \in \mathbb{R}$ sao cho $m \leq x_n \ \forall n$.
- -Dãy số (x_n) gọi là *bị chặn trên*, nếu tồn tại $M \in \mathbb{R}$ sao cho $x_n \leq M \ \forall n$.
- -Đãy số (x_n) gọi là bi chặn, nếu dãy (x_n) bị chặn trên và bị chặn dưới.
- -Ta nói dãy số (x_n) tiến tới $-\infty$, ký hiệu $\lim_{n\to\infty}x_n=-\infty$ khi và chỉ khi

$$\forall M < 0 \text{ (nhỏ tùy ý)}, \ \exists n_0 \in \mathbb{N} \text{ sao cho } \forall n \geq n_0 \Rightarrow x_n \leq M.$$

-Ta nói dãy số (x_n) tiến tới $+\infty$, ký hiệu $\lim_{n\to\infty}x_n=+\infty$ khi và chỉ khi

$$\forall M > 0 \text{ (l\'on tùy \'y)}, \ \exists n_0 \in \mathbb{N} \text{ sao cho } \forall n \geq n_0 \Rightarrow x_n \geq M.$$

-Số A được gọi là giới hạn của dãy số (x_n) khi n dần ra vô cùng, hay ta còn nói dãy số (x_n) hội tụ đến A, ký hiệu $\lim_{n\to\infty} x_n = A$ khi và chỉ khi:

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ sao cho } n \geq n_0 \Rightarrow |x_n - A| < \epsilon.$$

Ví dụ 1.15. Dùng định nghĩa, chứng minh rằng $\lim_{n\to\infty} \frac{a}{n} = 0$.

Chứng minh -Nếu a = 0, thì kết luận trên đúng.

-Nếu $a \neq 0$, ta đặt $x_n = \frac{a}{n}, \forall \epsilon > 0$ và xét

$$|x_n - 0| = \frac{|a|}{n} < \epsilon \Leftrightarrow n > \frac{|a|}{\epsilon} \Rightarrow \text{ chọn } n_0 = [\frac{|a|}{\epsilon}] + 1.$$

Thử lại định nghĩa:

$$\forall \epsilon>0 \ \exists n_0=[\frac{|a|}{\epsilon}]+1, \ \text{khi d\'o} \ n>n_0 \Rightarrow |x_n-0|=\frac{|a|}{n}<\frac{|a|}{n_0}<\frac{|a|}{\frac{|a|}{\epsilon}}=\epsilon.$$

1.3.2. Tính chất

1) Tính duy nhất

Định lý 1.16. Nếu dãy số (x_n) hội tụ đến A, thì A là duy nhất.

Chứng minh Giả sử (x_n) hội tụ đến A_1 và hội tụ đến A_2 và $A_1 \neq A_2$. Đặt $\epsilon = \frac{1}{2}|A_1 - A_2| > 0$.

Vì (x_n) hội tụ đến A_1 , theo định nghĩa, tồn tại số $n_1 \in \mathbb{N}$ sao cho $|x_n - A_1| < \epsilon \ \forall n \geq n_1$.

Tương tự, (x_n) hội tụ đến A_2 , theo định nghĩa, tồn tại số $n_2 \in \mathbb{N}$ sao cho $|x_n - A_2| < \epsilon \ \forall n \geq n_2$.

Đặt $n_0 = \max\{n_1, n_2\}$, ta có

$$\begin{cases} |x_n - A_1| < \epsilon \\ |x_n - A_1| < \epsilon \end{cases} \forall n \ge n_0,$$

suy ra $|A_1-A_2|=|A_1-x_n+x_n-A_2|\leq |x_n-A_1|+|x_n-A_2|<2\epsilon=2.\frac{1}{2}|A_1-A_2|,$ mâu thuẫn.

2) Tính bi chặn

Định lý 1.17. + Nếu $\lim_{n\to\infty} x_n = A \neq \infty$, thì (x_n) bị chặn.

- + $N\acute{e}u \lim_{n\to\infty} x_n = +\infty$, thì (x_n) bị chặn dưới.
- + $N\acute{e}u \lim_{n\to\infty} x_n = -\infty$, thì (x_n) bị chặn trên.

Chứng minh + Giả sử $\lim_{n\to\infty} x_n = A \neq \infty$, theo định nghĩa,

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0 \Rightarrow |x_n - A| < \epsilon.$$

Khi đó, $|x_n|=|x_n-A+A|\leq |x_n-A|+|A|<\epsilon+|A| \ \forall n\geq n_0.$ Đặt

$$m = \min\{x_0, x_1, ..., x_{n_0-1}, -(\epsilon + |A|)\},$$

$$M = \max\{x_0, x_1, ..., x_{n_0-1}, \epsilon + |A|\},$$

suy ra $m \le x_n \le M \ \forall n \in \mathbb{N}$.

+ Giả sử $\lim_{n\to\infty} x_n = +\infty$, theo định nghĩa,

$$\forall M > 0, \ \exists n_0 \in \mathbb{N} \text{ sao cho } \forall n \geq n_0 \Rightarrow x_n \geq M.$$

Đặt $m = \min\{x_0, x_1, ..., x_{n_0-1}, M\}$, ta có $x_n \ge m \ \forall n \in \mathbb{N}$.

3) Tính thứ tự

Định lý 1.18. Cho $\lim_{n\to\infty} x_n = A \ v \hat{a} \lim_{n\to\infty} y_n = B.$

- a) Nếu $a \in \mathbb{R}$, A < a, thì $\exists n_0 \text{ sao cho } x_n < a \ \forall n \geq n_0$.
- b) Nếu $a \in \mathbb{R}$, A > a, thì $\exists n_0 \text{ sao cho } x_n > a \ \forall n \geq n_0$.
- c) Nếu $a, b \in \mathbb{R}, A \in (a, b)$, thì $\exists n_0 \text{ sao cho } x_n \in (a, b) \ \forall n \geq n_0$.
- d) Nếu tồn tại n_1 sao cho $x_n \leq y_n \ \forall n \geq n_1$, thì $A \leq B$.

Chứng minh a) Giả sử $a \in \mathbb{R}, A = \lim_{n \to \infty} \langle a.$ Đặt $\epsilon = a - A > 0$, theo định nghĩa,

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0 \Rightarrow |x_n - A| < \epsilon,$$

suy ra $x_n < A + \epsilon = a$.

b) và c) Nếu $A=\lim_{n\to\infty}x_n < a$ hoặc $A=\lim_{n\to\infty}x_n\in(a,b)$ tương tự như chứng

minh trên.

d) Dùng phản chứng, giả sử A>B. Đặt $\epsilon=\frac{A-B}{2}$, theo định nghĩa, tồn tại n_2,n_3 sao cho

$$\begin{cases} |x_n - A| < \epsilon \ \forall n \ge n_2, \\ |y_n - B| < \epsilon \ \forall n \ge n_3. \end{cases}$$

Đặt $n_0 = \max\{n_1, n_2, n_3\}$, ta có

$$\begin{cases} a_n \leq b_n, \\ |x_n - A| < \epsilon, & \forall n \geq n_0 \Rightarrow \begin{cases} y_n < B + \epsilon = \frac{A+B}{2} \\ A - \epsilon = \frac{A+B}{2} < x_n \end{cases} \Rightarrow y_n < x_n \text{ mâu thuẫn.}$$

Ví dụ 1.19. Cho a > 1 và $\alpha \in \mathbb{N}^*$ cố định. Chúng minh rằng

$$\lim_{n\to\infty} \frac{a^n}{n^\alpha} = +\infty.$$

Chứng minh Từ $\lim_{n\to\infty}\frac{a^n}{n^\alpha}=\lim_{n\to\infty}\left(\frac{\sqrt[\alpha]{a}}{n}\right)^\alpha$, ta đặt $\sqrt[\alpha]{a}=1+h$. Do a>1, nên h>0. Khi đó, theo khai triển Newton, ta có

$$\sqrt[\alpha]{a}^n = (1+h)^n = \sum_{k=0}^n C_n^k h^k \ge 1 + nh + \frac{n(n+1)}{2}h^2 \ge \frac{n(n+1)}{2}h^2.$$

$$V_{ay}, \frac{\sqrt[n]{a^n}}{n} \ge \frac{n+1}{2}h^2 \Rightarrow \lim_{n \to \infty} \frac{\sqrt[n]{a^n}}{n} = +\infty.$$

Định lý 1.20. (Định lý kẹp) Nếu tồn tại $n_0 \in \mathbb{N}$ sao cho $x_n \leq y_n \leq z_n \ \forall n \geq n_0$ và

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = A,$$

thì $\lim_{n\to\infty} y_n = A$.

Chứng minh Giả sử $\epsilon>0$ và $\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n=A$, theo định nghĩa, tồn tại n_1,n_2 sao cho

$$\begin{cases} |x_n - A| < \epsilon \ \forall n \ge n_1, \\ |z_n - A| < \epsilon \ \forall n \ge n_2. \end{cases}$$

Đặt $n_0 = \max\{n_1, n_2\}$, ta có

$$\forall n \ge n_0 \Rightarrow \begin{cases} |x_n - A| < \epsilon \ \forall n \ge n_1, \\ |z_n - A| < \epsilon \ \forall n \ge n_2, \\ x_n \le y_n \le z_n \end{cases}$$

$$\Rightarrow -\epsilon \le x_n - A \le y_n - A \le z_n - A < \epsilon \Rightarrow |y_n - A| < \epsilon.$$

Theo định nghĩa, $\lim_{n\to\infty} y_n = A$.

Chú ý rằng: Ta có thể chứng minh định lý kẹp bằng cách dùng tính chất thứ tự d).

Ví dụ 1.21. Cho a cố định. Chứng minh rằng

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0.$$

Chứng minh Đặt $n_0 = [a] + 1$, từ $n > n_0 \ \forall n \geq n_0$ và n_0 cố định suy ra

$$0 \le \left| \frac{a^n}{n!} \right| = \left(\frac{|a|}{1} \cdot \frac{|a|}{2} \dots \frac{|a|}{n_0} \right) \cdot \left(\frac{|a|}{n_0 + 1} \cdot \frac{|a|}{n_0 + 2} \dots \frac{|a|}{n} \right)$$
$$\le \left(\frac{|a|}{1} \cdot \frac{|a|}{2} \dots \frac{|a|}{n_0} \right) \frac{|a|}{n} \to 0 \text{ khi } n \to \infty.$$

Theo định lý kẹp, ta có kết luận đúng.

Ví dụ 1.22. Chứng minh rằng

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

Chứng minh Từ $n \to \infty$, suy ra n > 1, áp dụng công thức khai triển Newton⁵

$$n = (\sqrt[n]{n})^n = (1 + \sqrt[n]{n} - 1)^n = \sum_{k=0}^n C_n^k (\sqrt[n]{n} - 1)^k$$

$$\geq 1 + C_n^2(\sqrt[n]{n} - 1)^2 = 1 + \frac{n(n-1)}{2}(\sqrt[n]{n} - 1)^2,$$

⁵25.12.1642-31.3.1727, Issac Newton là một nhà Toán học, Cơ học, Thiên văn học và Vật lý học người Anh. Cùng với Leibniz, ông được xem là người sáng lập ra phép tính vi phân, các công trình của Newton về Vật lý là cơ bản. Ông phát minh ra bản chất của ánh sáng trắng. Ông thiết lập luật vạn vật hấp dẫn. Luật này trở thành cở sở của Vật lý học cho tới năm 1905, năm mà Einstein công bố lý thuyết tương đối hẹp.

suy ra $0 \le \sqrt[n]{n} - 1 \le \sqrt{\frac{2}{n}}$. Theo định lý kẹp, ta có

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

Ví du 1.23. Chứng minh rằng

$$\lim_{n\to\infty}q^n=\begin{cases} 0 & \textit{n\'eu}\ |q|<1,\\ 1 & \textit{n\'eu}\ q=1,\\ +\infty & \textit{n\'eu}\ q>1. \end{cases}$$

Chứng minh -Nếu q > 1, đặt $q = 1 + h \Rightarrow h > 0$. Theo khai triển Newton,

$$q^n = (1+h)^n = \sum_{k=0}^n C_n^k h^k \ge 1 + nh,$$

ta có $\lim_{n\to\infty} q^n = +\infty$.

 $-\text{N\'eu} \ |q| < 1 \text{ và } q \neq 0 \Rightarrow \frac{1}{|q|} > 1 \Rightarrow \lim_{n \to \infty} \left(\frac{1}{|q|}\right)^n = +\infty \text{ (theo chứng minh trên)}$ $\Rightarrow \lim_{n\to\infty}q^n=0.$ -Nếu q=0, thì $\lim_{n\to\infty}q^n=0$. -Nếu q=1, thì $\lim_{n\to\infty}q^n=1$.

-Nếu
$$q=1$$
, thì $\lim_{n\to\infty}q^n=1$.

Ví dụ 1.24. Cho q > -1, tìm giới hạn

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (1 + q + \dots + q^n).$$

Giải -Nếu q=1, thì $x_n=n+1\Rightarrow \lim_{n\to\infty}x_n=+\infty$.

-Nếu $q \neq 1$, thì $x_n = 1 + q + ... + q^n$) là tổng của n+1 số hạng của cấp số nhân. Do vậy, $x_n = \frac{q^{n+1}-1}{q-1}$. Theo Ví dụ 1.23, ta có

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{q^{n+1}-1}{q-1} = \begin{cases} \frac{1}{1-q} & \text{n\'eu } |q|<1,\\ +\infty & \text{n\'eu } q>1. \end{cases}$$

Như vây

$$\lim_{n\to\infty} x_n = \begin{cases} \frac{1}{1-q} & \text{n\'eu } |q| < 1, \\ +\infty & \text{n\'eu } q \ge 1. \end{cases}$$

Ví dụ 1.25. Cho a, b > 0, hãy tìm giới hạn

$$\lim_{n \to \infty} x_n = \lim_{k=1} \sum_{k=1}^n \frac{n}{an^2 + bk}.$$

Giải Từ a, b > 0 suy ra

$$x_n = \sum_{k=1}^n \frac{n}{an^2 + bk} = \frac{n}{an^2 + b} + \frac{n}{an^2 + 2b} + \dots + \frac{n}{an^2 + nb}$$

$$\leq \frac{n}{an^2 + b} + \frac{n}{an^2 + b} + \dots + \frac{n}{an^2 + b} = \frac{n^2}{an^2 + b} \to \frac{1}{a}$$

$$x_n = \sum_{k=1}^n \frac{n}{an^2 + bk} \geq \frac{n}{an^2 + bn} + \frac{n}{an^2 + bn} + \dots + \frac{n}{an^2 + bn} = \frac{n^2}{an^2 + bn} \to \frac{1}{a}.$$

Theo định lý kẹp, ta có $\lim_{n\to\infty} x_n = \frac{1}{a}$.

1.3.3. Các phép toán về giới han

Định lý 1.26. Cho $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$ và $A, B \neq \infty$.

- a) $\lim_{n \to \infty} x_n = 0 \Leftrightarrow \lim_{n \to \infty} |x_n| = 0.$ b) $\lim_{n \to \infty} x_n = 0$ và (y_n) bị chặn $\Rightarrow \lim_{n \to \infty} x_n y_n = 0.$
- c) $\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$. d) $\lim_{n \to \infty} \lambda x_n = \lambda \lim_{n \to \infty} x_n$. e) $\lim_{n \to \infty} (x_n \cdot y_n) = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n$.

- $f) \lim_{n \to \infty} \left(\frac{x_n}{y_n}\right) = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n} v \acute{o} i \ B \neq 0.$

Chứng minh Giả thiết cho $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$ và $A, B \neq \infty$.

- a) Nếu $\lim_{n\to\infty}x_n=0$, thử lại định nghĩa, ta có $\lim_{n\to\infty}|x_n|=0$. Nếu $\lim_{n\to\infty}|x_n|=0$, dựa vào bất đẳng thức $-|x_n|\le x_n\le |x_n|$ và định lý kẹp, ta $\operatorname{có} \lim_{n \to \infty} x_n = 0.$
- b) Giả sử $|y_n| < C \ \, \forall n$, theo định nghĩa, với mọi $\epsilon > 0 \Leftrightarrow \frac{\epsilon}{C} > 0$ tồn tại n_0 sao cho

$$|x_n| < \frac{\epsilon}{C} \Leftrightarrow |x_n y_n| < C|x_n| < C \cdot \frac{\epsilon}{C} = \epsilon.$$

c) Theo định nghĩa, với mọi $\epsilon>0 \Leftrightarrow \frac{\epsilon}{2}>0$ tồn tại n_1,n_2 sao cho

$$\begin{cases} |x_n - A| < \frac{\epsilon}{2} \ \forall n \ge n_1, \\ |y_n - A| < \frac{\epsilon}{2} \ \forall n \ge n_2. \end{cases}$$

Đặt $n_0 = \max\{n_1, n_2\}$. Ta có

$$\begin{cases} |x_n - A| < \frac{\epsilon}{2}, \\ |y_n - A| < \frac{\epsilon}{2} \end{cases} \quad \forall n \ge n_0 \Rightarrow |x_n + y_n - (a + b)| \le |x_n - a| + |y_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

d) Nếu $\lambda=0$, thì kết luận luôn đúng. Ta xét trường hợp nếu $\lambda\neq 0$, theo định nghĩa, với mọi $\epsilon>0 \Leftrightarrow \frac{\epsilon}{|\lambda|}>0$ tồn tại n_0 sao cho

$$|x_n| < \frac{\epsilon}{|\lambda|} \Rightarrow |\lambda x_n| = |\lambda||x_n| < \epsilon.$$

e) Dùng tính chất b), c), d) và tính bị chặn của (y_n) , ta có

$$\lim_{n \to \infty} x_n y_n = \lim_{n \to \infty} (x_n - a) y_n + a \lim_{n \to \infty} y_n = AB = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n.$$

f) Ta có $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}x_n.\frac{1}{y_n}=\lim_{n\to\infty}x_n.\lim_{n\to\infty}\frac{1}{y_n}=\frac{A}{B}$ khi và chỉ khi $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{B}$. Từ $\lim_{n\to\infty}y_n=B\neq 0$ và bất đẳng thức $||y_n|-|B||\leq |x_n-B|$ suy ra

$$\lim_{n\to\infty} |y_n| = |B| > \frac{|B|}{2} > 0 \Rightarrow \exists n_1 \text{ sao cho } |y_n| > \frac{|B|}{2} \quad \forall n \ge n_1.$$

Với mọi $\epsilon > 0 \Leftrightarrow \frac{\epsilon B^2}{2} > 0$ tồn tại n_2 sao cho

$$|y_n - b| < \frac{\epsilon B^2}{2} \Rightarrow |\frac{1}{y_n} - \frac{1}{B}| = \frac{|y_n - B|}{|y_n| \cdot |B|} < \frac{2}{B^2} |y_n - B| < \epsilon \ \forall n \ge n_0,$$

$$\mathring{\sigma} \, \text{day } n_0 = \max\{n_1, n_2\}.$$

1.3.4. Dãy đơn điệu

- a) Định nghĩa -
Dãy số (x_n) được gọi là dãy tăng, nếu $x_n \leq x_{n+1} \ \forall n.$
- -Dãy (x_n) được gọi là dãy giảm, nếu $x_n \ge x_{n+1} \ \forall n$.
- b) Tính chất

Định lý 1.27. -Nếu dãy số (x_n) tăng và bị chặn trên thì tồn tại giới hạn hữu hạn $\lim_{n\to\infty} x_n$ (hay dãy (x_n) hội tụ).

-Nếu dãy số (x_n) giảm và bị chặn dưới thì dãy (x_n) hội tụ.

Chứng minh Trước hết ta quan tâm tới khái niệm cận trên đúng (supremum) và cận dưới đúng (infimum) của một tập hợp $M \subset \mathbb{R}$.

-Số α được gọi là cận trên đúng của M, ký hiệu $\alpha=\sup M$, nếu α là số nhỏ nhất thỏa mãn $x\leq \alpha \ \ \forall x\in M.$

-Số β được gọi là cận dưới đúng của M, ký hiệu $\beta=\inf M$, nếu β là số lớn nhất thỏa mãn $x\geq \alpha \ \ \forall x\in M.$

 $Ti \hat{e}n \ d\hat{e}$ Nếu M bị chặn dưới thì tồn tại $\inf M$, nếu M bị chặn trên thì tồn tại $\sup M$.

-Nếu (x_n) tăng và bị chặn trên, theo tiên đề trên, tồn tại $A = \sup\{x_n: n \in \mathbb{N}\}$. Với mọi $\epsilon > 0$, tồn tại n_0 sao cho

$$x_{n_0} > A - \epsilon$$
.

Do (x_n) tăng hay $x_n \leq x_{n+1} \leq ...$, nên $x_{n_0} \leq x_n \ \forall n \geq n_0$. Khi đó

$$x_n \ge x_{n_0} > A - \epsilon \ \forall n \ge n_0.$$

Mặt khác, theo định nghĩa của A, ta có $x_n \leq A < A + \epsilon$. Do đó

$$A + \epsilon > x_n > A - \epsilon \ \forall n \ge n_0.$$

 $V_{n\to\infty}^2 \lim_{n\to\infty} x_n = A.$

-Nếu (x_n) giảm và bị chặn dưới, bằng cách làm tương tự, ta đặt $B=\inf\{x_n:n\in\mathbb{N}\}$, ta cũng chứng minh được rằng $\lim_{n\to\infty}x_n=B$.

Ví dụ 1.28. Chứng minh dãy số (e_n) sau hội tụ

$$e_n = \left(1 + \frac{1}{n}\right)^n.$$

Chứng minh- Dãy (e_n) tăng. Thật vậy, dùng công thức khai triển Newton, ta có

$$e_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= C_{n}^{0} + C_{n}^{1}\left(\frac{1}{n}\right)^{1} + C_{n}^{2}\left(\frac{1}{n}\right)^{2} + \dots + C_{n}^{n}\left(\frac{1}{n}\right)^{n}$$

$$= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{1 \cdot 2} \cdot \frac{1}{n^{2}} + \dots + \frac{n(n-1) \cdot \dots (n-(n-1))}{1 \cdot 2 \cdot 3 \dots n} \cdot \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right).$$

$$(1.9)$$

Tuong tu

$$e_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1}$$

$$= 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{(n+1)!}\left(1 - \frac{1}{n+1}\right)\dots\left(1 - \frac{n}{n+1}\right)$$

$$> 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n+1}\right)\dots\left(1 - \frac{n-1}{n+1}\right)$$

$$> 2 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n}\right)\dots\left(1 - \frac{n-1}{n}\right).$$

$$(1.10)$$

Từ (1.9) và (1.10) suy ra $e_n < e_{n+1}$.

-Dãy (e_n) bị chặn trên. Thật vậy, cũng dùng công thức khai triển Newton, ta có

$$e_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= C_{n}^{0} + C_{n}^{1}\left(\frac{1}{n}\right)^{1} + C_{n}^{2}\left(\frac{1}{n}\right)^{2} + \dots + C_{n}^{n}\left(\frac{1}{n}\right)^{n}$$

$$= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{1 \cdot 2} \cdot \frac{1}{n^{2}} + \dots + \frac{n(n-1) \cdot \dots (n-(n-1))}{1 \cdot 2 \cdot 3 \cdot \dots n} \cdot \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!}\left(1 - \frac{1}{n}\right) \cdot \dots \left(1 - \frac{n-1}{n}\right)$$

$$\leq 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$\leq 2 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n}$$

$$= 2 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= 3 - \frac{1}{n}$$

$$< 3.$$

Vậy dãy số (e_n) hội tụ. Giới hạn này được gọi là số $e \approx 2,71718...$ Khi đó, ta có định nghĩa

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n.$$

Ví du 1.29. Chứng minh rằng:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} = e.$$

Chứng minh Theo Ví dụ 1.28, ta có

$$e_n \le x_n \ \forall n \tag{1.11}$$

và

$$e_{m} = 1 + 1 + \frac{1}{2!}(1 - \frac{1}{m}) + \dots + \frac{1}{m!}(1 - \frac{1}{m})(1 - \frac{2}{m})\dots(1 - \frac{m-1}{m})$$

$$= 2 + \frac{1}{2!}(1 - \frac{1}{m}) + \dots + \frac{1}{n!}(1 - \frac{1}{m})(1 - \frac{2}{m})\dots(1 - \frac{n-1}{m}) + \dots$$

$$> 2 + \frac{1}{2!}(1 - \frac{1}{m}) + \dots + \frac{1}{n!}(1 - \frac{1}{m})(1 - \frac{2}{m})\dots(1 - \frac{n-1}{m}).$$

Cho $m \to \infty$, ta có

$$e \ge x_n. \tag{1.12}$$

Từ (1.11) và (1.12) suy ra $e_n \le x_n \le e$. Chuyển qua giới hạn khi $n \to \infty$ cho $\lim_{n \to \infty} x_n = e$.

Ví dụ 1.30. Chứng minh rằng $(x_n)_{n\geq 1}$ hội tụ, với

$$x_n = C_{2n}^n \cdot \frac{\sqrt{n}}{4^n}.$$

Chứng minh - Dãy (x_n) tăng. Thật vậy, từ

$$\frac{x_{n+1}}{x_n} = \frac{(2n+2)(2n+1)\sqrt{n+1}}{4(n+1)^2} = \frac{n+\frac{1}{2}}{\sqrt{n(n+1)}} = \left(1 + \frac{1}{4(n^2+n)}\right)^{\frac{1}{2}} > 1,$$

suy ra $x_n < x_{n+1}$.

- Đãy (x_n) bị chặn trên. Thật vậy, từ bất đẳng thức trên và bất đẳng thức $\ln(1+x) \le x \ \forall x \ge 0$, ta có

$$\ln \frac{x_{n+1}}{x_n} = \ln x_{n+1} - \ln x_n$$

$$= \ln \left(1 + \frac{1}{4(n^2 + n)} \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \ln \left(1 + \frac{1}{4(n^2 + n)} \right)$$

$$\leq \frac{1}{8(n^2 + n)}$$

$$= \frac{1}{8} \left(\frac{1}{n} - \frac{1}{n+1} \right).$$

Cộng n bất đẳng thức trên lại, ta nhận được

$$\ln x_{n+1} - \ln x_1 = \sum_{k=1}^n (\ln x_{k+1} - \ln x_k) \le \frac{1}{8} \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1}) = \frac{1}{8} (1 - \frac{1}{n+1}) < \frac{1}{8},$$

nghĩa là
$$\ln x_{n+1} < \ln x_1 + \frac{1}{8} \Rightarrow x_{n+1} < x_1 e^{\frac{1}{8}} \ \forall n.$$

1.3.5. Hai dãy kề nhau

- a) Định nghĩa Hai dãy (x_n) và (y_n) gọi là kề nhau khi và chỉ khi (x_n) tăng, (y_n) giảm và $\lim_{n\to\infty}(y_n-x_n)=0$.
- b) Tính chất

Định lý 1.31. Nếu hai dãy (x_n) và (y_n) kề nhau, thì cả hai dãy đều hội tụ về cùng điểm.

Chứng minh Giả sử hai dãy (x_n) và (y_n) kề nhau, theo định nghĩa, dãy $z_n = y_n - x_n$ giảm và hội tụ về 0. Do vậy $z_n \geq 0 \ \forall n \Leftrightarrow x_n \leq y_n$. Kết hợp điều này với (y_n) giảm, ta có (x_n) tăng và bị chặn trên, dãy (y_n) giảm và bị chặn dưới. Theo tính chất của dãy đơn diệu, hai dãy (x_n) và (y_n) hội tụ. Vì $\lim_{n \to \infty} (y_n - x_n) = 0$, suy ra $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.

Hệ quả (định lý $Cantor^6$) Nếu dãy đoạn $[x_n,y_n]$ thỏa mãn

$$\begin{cases} [x_{n+1}, y_{n+1}] \subseteq [x_n, y_n] & \forall n \\ \lim_{n \to \infty} (y_n - x_n) = 0, \end{cases}$$

thì tồn tại duy nhất số A sao cho

$$\bigcap_{n=0}^{\infty} [x_n, y_n] = \{A\}$$

Chứng minh Từ $[x_{n+1},y_{n+1}]\subseteq [x_n,y_n]$ $\forall n$, suy ra (x_n) tăng và (y_n) giảm. Như vậy, hai dãy (x_n) và (y_n) kề nhau. Theo định lý trên, tồn tại duy nhất A sao cho $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=A$.

⁶3.3.1845-6.1.1918, nhà Toán học người Đức Georg Cantor có nguồn gốc Do Thái cả hai phía nội ngoại. Các công trình nghiên cứu của ông chủ yếu liên quan đến lý thuyết số, lý thuyết tập hợp và tôpô đại số. Nhân một chuyến du lịch tới Interlaken ở Thụy Sĩ năm 1872, ông gặp Richard Dedekind. Từ những cuộc trao đổi giữa hai ông và thư từ qua lai sau đó, *lý thuyết tâp hợp* ra đời.

Ví dụ 1.32. Chứng minh rằng (x_n) và (y_n) kề nhau, với

$$x_n = \sum_{k=3}^n \frac{1}{1+k^2}, \quad y_n = x_n + \frac{1}{n} - \frac{1}{2n^2} \quad n \ge 3.$$

Chứng minh Từ giả thiết $x_n = \sum_{k=2}^n \frac{1}{1+k^2}$, ta có

$$x_{n+1} - x_n = \frac{1}{(n+1)^2 + 1} \ge 0 \quad \forall n \ge 3,$$

vậy dãy số (x_n) tăng.

Theo giả thiết $x_n=\sum_{k=3}^n\frac{1}{1+k^2},\ y_n=x_n+\frac{1}{n}-\frac{1}{2n^2}\ n\geq 3,$ ta có

$$y_{n+1} - y_n = (x_{n+1} - x_n) + \frac{1}{n+1} - \frac{1}{n} - \frac{1}{2(n+1)^2} + \frac{1}{2n^2}$$
$$= \frac{-(n-1)^2 + 3}{2n^2(n+1)^2(n^2 + 2n + 2)}$$
$$\le 0 \ \forall n \ge 3,$$

vậy dãy (y_n) là dãy giảm. Theo giả thiết $y_n=x_n+\frac{1}{n}-\frac{1}{2n^2}$ $n\geq 3$, ta có

$$\lim_{n \to \infty} (y_n - x_n) = \lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{2n^2} \right) = 0.$$

Theo định nghĩa, hai dãy (x_n) và (y_n) kề nhau.

1.3.6. Dãy con

a) Định nghĩa Cho một dãy số (x_n) . Dãy (x_{n_k}) được gọi là dãy con của dãy (x_n) , nếu

$$n_1 < n_2 < \dots < n_k < \dots$$

- b) Các tính chất
- + Tính chất l Nếu dãy (x_n) hội tụ tới x^* thì mọi dãy con (x_{n_k}) của nó cũng hội tu tới x^* .

Chứng minh Theo giả thiết $\lim_{n\to\infty} x_n = x^*$, theo định nghĩa,

$$\forall \epsilon > 0 \ \exists n_0 \text{ sao cho } |x_n - x^*| < \epsilon \ \forall n \geq n_0.$$

Chọn k_0 thỏa mãn $n_{k_0} \ge n_0$, ta có $n_k \ge n_0 \ \forall k \ge k_0$. Vậy

$$\forall \epsilon > 0 \; \exists k_0 \; \text{sao cho} \; |x_{n_k} - x^*| < \epsilon \; \; \forall k \geq k_0.$$

Điều đó có nghĩa là $\lim_{k\to\infty}x_{n_k}=x^*$.

+ Tính chất 2 Dãy (x_n) hội tụ tới x^* khi và chỉ khi hai dãy con (x_{2n}) và (x_{2n+1}) đều hội tu tới x^* .

Chứng minh (\Rightarrow) Hiển nhiên theo tính chất 1.

(\Leftarrow) Giả thiết cho $\lim_{k\to\infty}x_{2k}=x^*=\lim_{k\to\infty}x_{2k+1}$, theo định nghĩa, tồn tại k_1,k_2 sao cho

$$\begin{cases} |x_{2k} - x^*| < \epsilon \ \forall k \ge k_1 \\ |x_{2k+1} - x^*| < \epsilon \ \forall k \ge k_2. \end{cases}$$

Đặt $n_0 = \max\{2k_1, 2k_2 + 1\}$. Khi đó,

$$\forall n \ge n_0 \Rightarrow \begin{cases} n \ge 2k_1 \\ n \ge 2k_2 + 1 \end{cases}$$

-Nếu n có dạng n=2k với $k\in\mathbb{N}$, thì $k\geq k_1\Rightarrow |x_n-x^*|=|x_{2k}-x^*|<\epsilon$.

-Nếu n có dạng n=2k+1 với $k\in\mathbb{N}$, thì $k\geq k_2\Rightarrow |x_n-x^*|=|x_{2k+1}-x^*|<\epsilon$. Như vây, với mọi $n\geq n_0$ ta có $|x_n-x^*|<\epsilon$ hay $\lim_{n\to\infty}x_n=x^*$. \square

Ví dụ 1.33. Cho dãy số (x_n) thỏa mãn

$$0 \le x_{n+m} \le \frac{n+m}{nm}.$$

Chứng minh rằng $\lim_{k\to\infty} x_n = 0$.

Giải Thay m=n ta có

$$0 \le x_{2n} \le \frac{2n}{n^2} \Rightarrow \lim_{k \to \infty} x_{2n} = 0.$$

Thay m = n + 1 ta có

$$0 \le x_{2n+1} \le \frac{n + (n+1)}{n(n+1)} \Rightarrow \lim_{k \to \infty} x_{2n+1} = 0.$$

Theo tính chất trên, $\lim_{k\to\infty} x_n = 0$.

+ Tính chất 3 (định lý Bolzano⁷-Weierstrass⁸)

Từ mọi dãy bị chặn ta đều có thể rút ra một dãy con hội tụ.

Chứng minh (phương pháp chia đôi)

Cho (x_n) là một dãy bị chặn. Ta sẽ xây dựng bằng quy nạp hai dãy kề nhau $(a_k), (b_k)$ và dãy con (x_{n_k}) sao cho $x_{n_k} \in [a_k; b_k] \ \forall k \geq 1$.

Vì (x_n) bị chặn nên tồn tại a_0 và b_0 sao cho $a_0 \le x_n \le b_0 \ \forall n$.

 $\textit{Bu\'oc}\ \emph{1}$. Chia $[a_0;b_0]$ thành 2 đoạn $[a_0;\frac{a_0+b_0}{2}]$ và $[\frac{a_0+b_0}{2};b_0]$. Xảy ra 2 trường hợp:

-Nếu $[a_0; \frac{a_0+b_0}{2}]$ chứa vô hạn phần tử của dãy (x_n) , thì đặt $a_1=a_0, b_1=\frac{a_0+b_0}{2}$ và chọn $x_{n_1}\in [a_1;b_1]$.

-Nếu $\left[\frac{a_0+b_0}{2};b_0\right]$ chứa vô hạn phần tử của dãy (x_n) , thì đặt $a_1=\frac{a_0+b_0}{2},b_1=b_0$ và chọn $x_{n_1}\in[a_1;b_1]$.

Sau bước 1, ta có

$$\begin{cases} [a_1;b_1]\subset [a_0;b_0]\\ b_1-a_1=\frac{1}{2}(b_0-a_0)\\ [a_1;b_1] \text{ chứa vô hạn phần tử của dãy }(x_n)\\ \exists x_{n_1}\in [a_1;b_1] \end{cases}$$

Bước k. Chia $[a_{k-1};b_{k-1}]$ thành 2 đoạn $[a_{k-1};\frac{a_{k-1}+b_{k-1}}{2}]$ và $[\frac{a_{k-1}+b_{k-1}}{2};b_{k-1}]$. Xảy ra 2 trường hợp:

-Nếu $[a_{k-1}; \frac{a_{k-1}+b_{k-1}}{2}]$ chứa vô hạn phần tử của dãy (x_n) , thì đặt $a_k=a_{k-1}, b_k=\frac{a_{k-1}+b_{k-1}}{2}$ và chọn $x_{n_k}\in [a_k;b_k]$ sao cho $n_k>n_{k-1}$.

-Nếu $\left[\frac{a_{k-1}+b_{k-1}}{2};b_{k-1}\right]$ chứa vô hạn phần tử của dãy (x_n) , thì đặt $a_k=\frac{a_{k-1}+b_{k-1}}{2},b_k=b_{k-1}$ và chọn $x_{n_k}\in[a_k;b_k]$ sao cho $n_k>n_{k-1}$.

⁷5.10.1781-18.12.1848, nhà Toán học và Triết học Séc Bernhard Bolzano là giáo sư các khoa học tôn giáo trong thành phố Praha, ông là người đầu tiên nghiên cứu bảng chân lý của một mệnh đề và đưa ra các dạng mệnh đề giống như các vị từ ngày nay.

 $^{^8}$ 31.10.1815-19.2.1897, nhà Toán học Đức Karl Weierstrass đôi khi được tôn vinh là cha để của giải tích hiện đại. Ông là người đầu tiên đưa ra định nghĩa tính liên tục bằng ngôn ngữ ϵ, δ .

Sau bước k, ta có

$$\begin{cases} n_{k-1} < n_k \\ [a_k;b_k] \subset [a_{k-1};b_{k-1}] \\ b_k - a_k = \frac{1}{2}(b_{k-1} - a_{k-1}) \\ [a_k;b_k] \text{ chứa vô hạn phần tử của dãy } (x_n) \\ \exists x_{n_k} \in [a_k;b_k]. \end{cases}$$

Cứ tiếp tục như vậy, ta sẽ có một dãy các đoạn lồng nhau

$$[a_0;b_0]\supset [a_1;b_1]\supset ...\supset [a_k;b_k]\supset ...$$

và

$$\lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} \frac{1}{2^k} (b_0 - a_0) = 0.$$

Vậy hai dãy $(a_k),(b_k)$ kề nhau. Theo tính chất của hai dãy kề nhau, ta có

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = x^*.$$

Mặt khác $a_k \leq x_{n_k} \leq b_k \ \ \forall k \geq 1$, nên $\lim_{k \to \infty} x_{n_k} = x^*.$

$$\lim_{k \to \infty} x_{n_k} = x^*$$

1.3.7. Dãy Cauchy

a) Định nghĩa Dãy (x_n) được gọi là dãy Cauchy (hay dãy c σ bản) nếu với mọi $\epsilon > 0$ cho trước, tồn tại $n_0 \in \mathbb{N}$ sao cho

$$|x_n - x_m| < \epsilon \ \forall n, m > n_0.$$

b) Tích chất Dãy (x_n) hội tụ khi và chỉ khi (x_n) là dãy Cauchy. Chứng minh (\Rightarrow) Giả thiết cho $\lim_{n\to\infty}x_n=x^*$, theo định nghĩa

$$\forall \epsilon \Leftrightarrow \frac{\epsilon}{2} > 0, \ \exists n_0 \ \text{ sao cho } |x_n - x^*| < \frac{\epsilon}{2} \ \forall n \geq n_0.$$

Khi đó,

$$|x_n - x_m| \le |x_n - x^*| + |x_m - x^*| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n, m \ge n_0.$$

 (\Leftarrow) Giả sử (x_n) là dãy Cauchy, hay với mọi $\epsilon>0\Leftrightarrow \frac{\epsilon}{2}>0$ cho trước, tồn tại $n_1\in\mathbb{N}$ sao cho

$$|x_n - x_m| < \frac{\epsilon}{2} \quad \forall n, m \ge n_1. \tag{1.13}$$

Suy ra

$$|x_n - x_{n_1}| < \epsilon \Leftrightarrow x_{n_1} - \epsilon < x_n < x_{n_1} + \epsilon \quad \forall n \ge n_1.$$

Vậy (x_n) bị chặn. Theo định lý Bolzano-Weierstrass, tồn tại một dãy con (x_{n_k}) hội tụ tới x^* . Hay

$$\exists k_0 \text{ sao cho } |x_{n_k} - x^*| < \frac{\epsilon}{2} \quad \forall k \ge k_0.$$
 (1.14)

Đặt $n_0 = \max\{n_1, n_{k_0}\}$. Kết hợp (1.13) và (1.14), ta có

$$|x_n - x^*| \le |x_n - x_{n_k}| + |x_{n_k} - x^*| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n \ge n_0.$$

Điều này có nghĩa rằng $\lim_{n\to\infty} x_n = x^*$.

Ví dụ 1.34. Cho $x_n = \frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n} \ \forall n \geq 1.$ Chứng minh rằng (x_n) phân kỳ.

Giải (Phản chứng) Giả sử (x_n) hội tụ, suy ra (x_n) phải là dãy Cauchy hay với mọi $\epsilon>0$ cho trước, tồn tại $n_0\in\mathbb{N}$ sao cho

$$|x_n - x_m| < \epsilon \ \forall n, m > n_0.$$

Ta chọn $\epsilon = \frac{1}{2}, m = 2n$, với mọi $n \ge n_0$ ta có

$$|x_n - x_{2n}| < \epsilon \Leftrightarrow \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} < \epsilon = \frac{1}{2}.$$
 (1.15)

Mặt khác

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} > n \cdot \frac{1}{n+n} = \frac{1}{2}.$$
 (1.16)

Từ (1.15) và (1.16), suy ra mâu thuẫn. Vậy (x_n) phân kỳ.

Ví dụ 1.35. Cho

$$x_n = \frac{3}{x_{n-1}} + 2 \ \forall n \ge 1, x_0 = 1.$$

Chứng minh rằng (x_n) hội tụ và hãy tìm $\lim_{n\to\infty} x_n$.

 $Gi \dot{a} i Gi \dot{a} s \dot{u} \lim_{n \to \infty} x_n = x^*$. Từ $x_n > 0 \ \forall n$ (theo qui nạp) suy ra

$$x^* = \frac{3}{x^*} + 2 \Leftrightarrow x^* = 3$$
 hoặc $x^* = -1$ (loại).

Ta có

$$x_{n+2} = \frac{3}{x_{n+1}} + 2 = \frac{3}{\frac{3}{x_n} + 2} + 2 = \frac{3x_n}{2x_n + 3} + 2.$$

Khi đó

$$\begin{cases} x_{n+2} - x_n = \frac{3x_n}{2x_n + 3} + 2 - x_n = \frac{2(x_n + 1)(3 - x_n)}{2x_n + 3}, \\ x_{n+2} - 3 = \frac{x_n - 3}{2x_n + 3}. \end{cases}$$
(1.17)

Ta xét hai dãy con của (x_n) .

-Dãy con (x_{2n}) , từ $x_0 = 1$ và (1.17), suy ra $x_{2n} < 3 \quad \forall n$ và $x_{2n+2} > x_{2n} \quad \forall n$. Vậy (x_{2n}) tăng và bị chặn trên bởi 3. Khi đó, $\lim_{n \to \infty} x_{2n} = x^* = 3$.

-Dãy con (x_{2n+1}) , từ $x_1=5$ và (1.17), suy ra $x_{2n+1}>3$ $\forall n$ và $x_{2n+1}< x_{2n-1}$ $\forall n$. Vậy (x_{2n+1}) giảm và bị chặn dưới bởi 3. Khi đó, $\lim_{n\to\infty}x_{2n+1}=x^*=3$. Như vậy $\lim_{n\to\infty}x_n=3$.

Ví dụ 1.36. Cho $a, b \in \mathbb{R}$, tính số hạng tổng quát của (x_n) , biết rằng

$$x_{n+1} = ax_n + b.$$

Giải -Nếu a=1, thì (x_n) là một dãy số cộng, do vậy $x_n=x_0+nb$. -Nếu $a\neq 1$, thì đặt $y_n=x_n+\lambda$. Khi đó

$$y_{n+1} = x_{n+1} + \lambda = ax_n + b + \lambda = a(y_n - \lambda) + b + \lambda = ay_n + b + (1 - a)\lambda,$$

chọn $\lambda = \frac{b}{a-1}$. Ta thấy (y_n) là một dãy số nhân với công bội a. Vậy

$$y_n = y_0.a^n \Leftrightarrow x_n = y_n - \lambda = (x_0 + \frac{b}{a-1})a^n - \frac{b}{a-1}.$$

Tóm lai

$$x_n = \begin{cases} x_0 + nb & \text{n\'eu} \quad a = 1, \\ (x_0 + \frac{b}{a-1})a^n - \frac{b}{a-1} & \text{n\'eu} \quad a \neq 1. \end{cases}$$

Nhận xét 1.37. Cho hai dãy số thực (x_n) và (y_n) . Khi đó, với $z_n = x_n + iy_n$, dãy số (z_n) được gọi là dãy số phức. Số phức $z^0 = a + bi$ được gọi là giới hạn của dãy số phức $z_n = x_n + iy_n$, nếu $\lim_{n \to \infty} x_n = a$ và $\lim_{n \to \infty} y_n = b$ và được ký hiệu $\lim_{n \to \infty} z_n = z^0$.

Bài tập chương 1

Bài tập 1.1. Viết số phức sau dưới dạng chính tắc

1)
$$z = 6i\left(\frac{1+i}{2-i}\right) + 3\left(\frac{i-4}{2i+1}\right)$$
.
2) $z = \frac{(1+i^3)^2(2-i)}{4-5i}$.
Description: $Ds: z = \frac{-24}{5} + \frac{33}{5}i$.
Description: $Ds: z = \frac{-28}{41} - \frac{6}{41}i$.

3) $z=(a+bi)^9$ với $a,b\in\mathbb{R}$. Đs: $z=(\sqrt{a^2+b^2})^9(\cos 9\alpha+i\sin 9\alpha)$ với $\alpha=\arccos\frac{a}{\sqrt{a^2+b^2}}$ hoặc $\alpha=\arcsin\frac{b}{\sqrt{a^2+b^2}}$.

Bài tập 1.2. Tính Im(z), Re(z) của các số phức sau: $1)z = \frac{(1-i\sqrt{3})^{15}}{(i-1)^{20}} + \frac{(1+i\sqrt{3})^{15}}{(1+i)^{20}}$.

$$Ds: Im(z) = 0, Re(z) = 64.$$

$$2)z = (1 + \cos \alpha - i \sin \alpha)^n.$$

Ds:
$$Re(z) = 2^n \cos^n \frac{\alpha}{2} \cos \frac{n\alpha}{2}$$
, $Im(z) = -2^n \cos^n \frac{\alpha}{2} \sin \frac{n\alpha}{2}$

$$3)z = (1-i)^n.$$

Ds:
$$Re(z) = 2^{\frac{n}{2}} \cos \frac{n\pi}{4}, Im(z) = -2^{\frac{n}{2}} \sin \frac{n\pi}{4}.$$

Bài tập 1.3. Giải các phương trình sau, với nghiệm phức

$$1)z^2 - 2z\cos\varphi + 1 = 0 \text{ v\'oi } \varphi \in \mathbb{R}, \varphi \neq 0, \varphi \neq 1.$$

$$\text{Ds}: e^{i\varphi}, e^{-i\varphi}.$$

$$2)z^4 + 4iz^2 + 12(1+i)z - 45 = 0$$
, một nghiệm: $z_0 = 3i$. Đs : $z_0, -3, 2-i, 1-2i$.

$$3)(z+i)^4 + (z^2+1)^2 + (z-i)^4 = 0.$$
 Ds: $-\sqrt{3}$, $\sqrt{3}$, $\frac{1}{\sqrt{3}}$, $-\frac{1}{\sqrt{3}}$.

$$4)(z^2 - 4z + 5)^2 + (z + 1)^2 = 0.$$

$$\textbf{Ds: } 1-i, 1+i, 3-2i, 3+2i.$$

$$5)z^4 = z + \bar{z}.$$

Ds:
$$0, \sqrt[3]{2}, \frac{1}{\sqrt[3]{2}}(-1-i), \frac{1}{\sqrt[3]{2}}(-1+i).$$

Bài tập 1.4. Giải hệ phương trình, với nghiệm phức.

1)
$$xy = z, yz = x, zx = y$$
.

Đs:
$$(0,0,0)$$
, $(1,1,1)$, $(1,-1,-1)$, $(-1,-1,1)$, $(-1,1,-1)$.

2)
$$x = y^2, y = z^2, z = x^2$$
.

Đs: $(0,0,0), \{(e^{\frac{2i\pi k}{7}}, e^{\frac{8i\pi k}{7}}, e^{\frac{4i\pi k}{7}}): k=0,1,...6\}$

Bài tâp 1.5. Chứng minh rằng

1) $|x+y|^2 < (1+|x|^2)(1+|y|^2) \ \forall x,y \in \mathbb{C}$.

2)
$$|z| < \frac{1}{2} \Rightarrow |(1+i)z^3 + iz| < \frac{3}{4} \quad \forall z \in \mathbb{C}.$$

3) Một trong 2 bất đẳng thức sau đúng $|1+z| \geq \frac{1}{2}$ hoặc $|1+z^2| \geq 1 \ \forall z \in \mathbb{C}$.

4)
$$z_1 z_2 = \frac{1}{4} \left(|z_1 + \overline{z_2}|^2 - |z_1 - \overline{z_2}|^2 + i|z_1 + \overline{iz_2}|^2 - i|z_1 - \overline{iz_2}|^2 \right) \ \forall z_1, z_2 \in \mathbb{C}.$$

5)
$$|\overline{z_1}z_2 - 1|^2 - |z_1 - z_2|^2 = (1 - |z_1|^2)(1 - |z_2|^2) \quad \forall z_1, z_2 \in \mathbb{C}.$$

Bài tập 1.6. Tìm ánh xạ $f:\mathbb{C} \to \mathbb{C}$ thỏa mãn:

1) $f(x) = x \ \forall x \in \mathbb{R}, f(z_1 + z_2) = f(z_1) + f(z_2), f(z_1 z_2) = f(z_1).f(z_2) \ \forall z_1, z_2 \in \mathbb{R}$

$$\mathbb{C}$$
 Đs: $f(z) = z$ hoặc $f(z) = \bar{z}$.

2)
$$zf(1-z) - (1-3z)f(1+z) = z^2 + 1$$
.

Bài tập 1.7. Khai triển các hàm số sau theo các hàm $\sin x$ và $\cos x$.

1) $A = \sin 7x$.

2) $B = \cos 9x$.

3) $C = \sin nx$.

Ds: $C = \sum_{k=0}^{n} a_k \cos^{n-k} x \sin^k x$, trong đó $b_k = 0$ nếu $k \in 2\mathbb{N}$, $a_k = C_n^k (-1)^{\frac{k-1}{2}}$ nếu $k \notin 2\mathbb{N}$.

4) $D = \cos nx$.

Đs: $D = \sum_{k=0}^{n} b_k \cos^{n-k} x \sin^k x$, trong đó $b_k = 0$ nếu $k \notin 2\mathbb{N}$, $b_k = C_n^k (-1)^{\frac{k}{2}}$ nếu $k \in 2\mathbb{N}$.

Bài 1.8. Dùng định nghĩa, chứng minh rằng

$$1) \lim_{n \to \infty} \frac{n}{n+1} = 1.$$

1)
$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$
.
2) $\lim_{n \to \infty} \frac{2n-1}{n+1} = 2$.

3)
$$\lim_{n \to \infty} \frac{n^2}{n^3 + 1} = 0.$$

4)
$$\lim_{n \to \infty} \frac{1+2^n}{3^n} = 0.$$

5)
$$\lim_{n \to \infty} \frac{1+n^2}{3n-1} = +\infty$$
.

Bài 1.9. Tìm các giới hạn sau:

1)
$$\lim_{n\to\infty} \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$$
.

Đs: 1.

2)
$$\lim_{n\to\infty} \frac{1}{1.2.3} + \frac{1}{2.3.4} + \dots + \frac{1}{n(n+1)(n+2)}$$
.
Ds: $\frac{1}{4}$.

3) $\lim_{n \to \infty} \frac{\sin(n-2)\cos(2n+1)}{n+1}$.

Đs: 0.

4) $\lim_{n\to\infty} (\sqrt{4n^2 + \alpha n + 1} - 2n)$. $\text{Ds: } \frac{\alpha}{4}$.

5) $\lim_{n\to\infty} (\sqrt[3]{27n^3 + 3n^2 - 5} - 3n)$. $\text{Ds: } \frac{1}{9}$.

6) $\lim_{n \to \infty} \frac{\sqrt{4n^2 + n - 1} \sqrt[3]{n^3 - n^2 + 10} - 2n^2}{3n - 5}$. $\text{Ds: } \frac{-5}{36}$.

Bài 1.10. Chứng minh các dãy sau hội tụ

1)
$$x_n = \frac{1}{2^3} + \frac{2}{3^3} + \dots + \frac{n}{(n+1)^3}$$
.

$$2) x_n = \sqrt[n]{3 + \sin n}.$$

2)
$$x_n = \sqrt[n]{3 + \sin n}$$
.
3) $x_n = \frac{n \sum_{k=0}^{n} (3k+1)}{\sum_{k=0}^{n} (2k^2 - 5k)}$.

4)
$$x_n = \sum_{k=1}^n \frac{1}{n+k}$$
.

CHƯƠNG 2. PHÉP TÍNH VI PHÂN CỦA HÀM MỘT BIẾN SỐ

2.1. Các khái niệm cơ bản

2.1.1. Hàm một biến thực

Cho $X \subseteq \mathbb{R}, Y \subseteq \mathbb{R}$, ánh xạ

$$f: X \to Y$$
$$x \mapsto y = f(x)$$

được gọi là một hàm số một biến, tập X được gọi là miền xác định của hàm số f. Thông thường ký hiệu x là đối số, y là hàm số.

2.1.2. Hàm số chẵn, lẻ

-Hàm số
$$y=f(x)$$
 được gọi là $ch{\tilde{a}}n$ trên miền $D\Leftrightarrow \begin{cases} x\in D\Rightarrow -x\in D,\\ f(-x)=f(x) \ \ \forall x\in D. \end{cases}$

-Hàm số
$$y=f(x)$$
 được gọi là l ể trên miền $D\Leftrightarrow \begin{cases} x\in D\Rightarrow -x\in D,\\ f(-x)=-f(x) \ \ \forall x\in D. \end{cases}$

 $Vi\ d\mu\ f_1(x) = |1-x| + |1+x|$ là hàm số chắn trên $\mathbb R$.

 $f_2(x) = x^4 \sin x$ là hàm số lẻ trên \mathbb{R} .

2.1.3. Hàm số tuần hoàn

Hàm số y=f(x) được gọi là *tuần hoàn* trên miền $D\Leftrightarrow$ tồn tại T>0 sao cho

$$\begin{cases} x\in D\Rightarrow x+T\in D,\\ T\text{ là số dương nhỏ nhất thỏa mãn } f(x+T)=f(x) \ \ \forall x\in D. \end{cases}$$

Khi đó T được gọi là chu kỳ của f.

 $Vi\ d\mu\ {\rm Ham\ so}\ y=\sin(ax+b)\ {\rm v\'oi}\ a>0\ {\rm tu\ran\ hoan\ v\'oi\ chu\ k\ry}\ T={2\pi\over a}\ {\rm tr\'en\ }\mathbb{R}.$

2.1.4. Hàm số đơn điệu (tăng hoặc giảm)

+ Hàm số y = f(x) được gọi là tăng trên miền D khi và chỉ khi

$$\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) \le f(x_2).$$

+ Hàm số y=f(x) được gọi là tăng ngặt (hay còn gọi là dồng biển) trên miền D khi và chỉ khi

$$\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$$

+ Hàm số y=f(x) được gọi là $\emph{giẩm}$ trên miền D khi và chỉ khi

$$\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2).$$

+ Hàm số y=f(x) được gọi là giảm ngặt (hay còn gọi là nghịch biến) trên miền D khi và chỉ khi

$$\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$$

2.1.5. Hàm số bị chặn

+ Hàm số y=f(x) được gọi là *bị chặn trên* trên miền D khi và chỉ khi tồn tại $M\in\mathbb{R}$ sao cho

$$f(x) \le M \ \forall x \in D.$$

+ Hàm số y=f(x) được gọi là bị chặn dưới trên miền D khi và chỉ khi tồn tại $m\in\mathbb{R}$ sao cho

$$f(x) \ge m \ \forall x \in D.$$

+ Hàm số y=f(x) được gọi là bi chặn trên miền D khi và chỉ khi f bị chặn trên và bị chặn dưới trên D.

2.1.6. Cận trên đúng và cận dưới đúng

+ Số m được gọi là cận dưới đúng (infimum) của hàm f trên miền D, ký hiệu $m=\inf_{x\in D}f(x)$ khi và chi khi m là số lớn nhất thỏa mãn

$$f(x) \ge m \ \forall x \in D.$$

+ Số M được gọi là cận trên đúng (supremum) của hàm f trên miền D, ký hiệu

$$M = \sup_{x \in D} f(x)$$

khi và chi khi M là số nhỏ nhất thỏa mãn

$$f(x) \le M \ \forall x \in D.$$

*Hệ quả

M là cận trên đúng của hàm f(x) trên D khi và chỉ khi

$$\begin{cases} M \geq f(x) & \forall x \in D, \\ \forall \epsilon > 0 \Rightarrow \exists x_0 \in D \text{ sao cho } M < f(x_0) + \epsilon. \end{cases}$$

m là cân dưới đúng của hàm f(x) trên D khi và chỉ khi

$$\begin{cases} m \leq f(x) & \forall x \in D, \\ \forall \epsilon > 0 \Rightarrow \exists x_0 \in D \text{ sao cho } m > f(x_0) + \epsilon. \end{cases}$$

Chứng minh Ta chứng minh với cận trên đúng, còn cận dưới đúng được chứng minh tương tự.

 (\Rightarrow) Giả sử $M=\sup_{x\in D}f(x)$, theo định nghĩa $f(x)\leq M \ \ \forall x\in D.$ Ta cần chứng minh rằng:

$$\forall \epsilon > 0 \Rightarrow \exists x_0 \in D \text{ sao cho } M > f(x_0) + \epsilon.$$

Giả sử điều này không đúng. Hay

$$\exists \epsilon > 0 : M \ge f(x_0) + \epsilon \ \forall x_0 \in D \Rightarrow f(x_0) \le M - \epsilon \ \forall x_0 \in D.$$

Điều này mâu thuẫn với giả thiết M là cận trên đúng.

 (\Leftarrow) Giả thiết cho M thỏa mãn

$$\begin{cases} M \geq f(x) \ \forall x \in D, \\ \forall \epsilon > 0 \Rightarrow \exists x_0 \in D \ \text{sao cho} \ M < f(x_0) + \epsilon. \end{cases}$$

Ta chứng minh bằng phản chứng, giả sử M không là số nhỏ nhất thỏa mãn $f(x) \le$ $M \ \forall x \in D$, hay tồn tại $M_0 < M$ sao cho $f(x) \leq M_0 \ \forall x \in D$. Đặt $\epsilon = M - M$ $M_0 > 0 \Rightarrow \exists x_0 \in D$ sao cho $M < f(x_0) + \epsilon = f(x_0) + M - M_0 \Leftrightarrow f(x_0) > M_0$, mâu thuẫn. Vậy $M = \sup_{x \in D} f(x)$.

- * Tiên đề
- Nếu f bị chặn trên trên D, thì tồn tại $\sup_{x\in D} f(x)$. Nếu f bị chặn dưới trên D, thì tồn tại $\inf_{x\in D} f(x)$.
- * Nhân xét

Cho hàm f tồn tai cân trên đúng và cân dưới đúng. Khi đó

$$\sup_{x \in D} f(x) \ge \max_{x \in D} f(x),$$

dấu " = " xảy ra khi và chỉ khi tồn tại $x_0 \in D$ sao cho $f(x_0) = \sup_{x \in D} f(x)$.

$$\inf_{x \in D} f(x) \le \min_{x \in D} f(x),$$

dấu " = " xảy ra khi và chỉ khi tồn tại $x_0 \in D$ sao cho $f(x_0) = \inf_{x \in D} f(x)$. * $Vi \ du$ Cho f tồn tại cận dưới đúng trên D. Chứng minh rằng

$$\inf_{x \in D} f(x) = -\sup_{x \in D} \{-f(x)\}.$$

Chứng minh Đặt $m = \inf_{x \in D} f(x) \Rightarrow -f(x) \leq -m \quad \forall x \in D \Rightarrow \sup_{x \in D} \{-f(x)\} \leq -m.$ Mặt khác $-f(x) \leq \sup_{x \in D} \{-f(x)\} \Rightarrow f(x) \geq \sup_{x \in D} \{-f(x)\} \quad \forall x \in D \Rightarrow \inf_{x \in D} f(x) \geq \sup_{x \in D} \{-f(x)\}.$ Như vậy $m = \sup_{x \in D} \{-f(x)\}.$

2.1.7. Hàm số ngược

Cho $X,Y\subseteq\mathbb{R}$ và một song ánh $f:X\to Y$. Khi đó, ánh xạ ngược $f^{-1}:Y\to X$ xác định một hàm số $y=f^{-1}(x)$ được gọi là hàm số ngược của hàm số y=f(x). Vi dụ Hàm số $y=a^x$ với $a>0, a\neq 1$ có hàm số ngược là $y=log_a x$ với $x\in(0;+\infty)$.

Tính chất đồ thị Đồ thị hàm số y=f(x) và đồ thị hàm ngược $y=f^{-1}(x)$ đối xứng qua đường thẳng y=x.

1. $H\grave{a}m\ y = arcsinx$

*Định nghĩa

$$y = \arcsin x \Leftrightarrow \begin{cases} x = \sin y \\ y \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]. \end{cases}$$

Như vậy, miền xác định của y = arcsinx là D = [-1; 1] và tập giá trị là $D_f = [-\frac{\pi}{2}; \frac{\pi}{2}].$

* $Vi\ d\mu\ Tinh\ arcsin\frac{1}{2}=?$

Giải Đặt $\arcsin\frac{1}{2}=y\Rightarrow\frac{1}{2}=\sin y\Rightarrow y=\frac{\pi}{6}$ vì $y\in \left[\frac{-\pi}{2};\frac{\pi}{2}\right]$. Vậy $\arcsin\frac{1}{2}=\frac{\pi}{6}$.

 $2. H \grave{a} m \ y = arccos x$

*Định nghĩa

$$y = \arccos x \Leftrightarrow \begin{cases} x = \cos y \\ y \in [0; \pi]. \end{cases}$$

Như vậy, miền xác định của $y=\arccos x$ là D=[-1;1] và tập giá trị là $D_f=[0;\pi]$.

*Ví dụ Chứng minh rằng

$$arcsinx + arccosx = \frac{\pi}{2} \ \forall x \in [-1; 1].$$

Chứng minh Từ $arcsinx \in \left[\frac{-\pi}{2}; \frac{\pi}{2}\right] \Rightarrow \frac{\pi}{2} - arcsinx \in [0; \pi]$

$$\Rightarrow \cos(\frac{\pi}{2} - arcsinx) = \sin(arcsinx) = x = \cos(arccosx) \ \forall x \in [-1; 1]$$

 $\Rightarrow \frac{\pi}{2} - arcsinx = arccosx.$

3. $H\grave{a}m\ y = arctanx$

*Đinh nghĩa

$$y = arctanx \Leftrightarrow \begin{cases} x = \tan y \\ y \in (-\frac{\pi}{2}; \frac{\pi}{2}). \end{cases}$$

Như vậy, miền xác định của $y=\arctan x$ là $D=\mathbb{R}$ và tập giá trị là $D_f=(-\frac{\pi}{2};\frac{\pi}{2})$. * $Vi~d\mu$ Tính $\arctan\sqrt{3}=?$

Giải Đặt $arctan\sqrt{3}=y\Rightarrow\sqrt{3}=\tan y\Rightarrow y=\frac{\pi}{3}$ vì $y\in(-\frac{\pi}{2};\frac{\pi}{2})$. Vậy $arctan\sqrt{3}=\frac{\pi}{3}$.

4. $H\grave{a}m\ y = arccotx$

*Định nghĩa

$$y = \operatorname{arccot} x \Leftrightarrow \begin{cases} x = \cot y \\ y \in (0; \pi). \end{cases}$$

Như vậy, miền xác định của y=arccotx là $D=\mathbb{R}$ và tập giá trị là $D_f=(0;\pi)$. * $Vi~d\mu$ Chứng minh rằng

$$arctgx + arccotx = \frac{\pi}{2}$$
.

Giải Theo định nghĩa $arctgx \in (-\frac{\pi}{2}, \frac{\pi}{2})$, ta có $\frac{\pi}{2} - arctgx \in (0, \pi)$. Do vậy

$$\cot(\frac{\pi}{2} - arctgx) = \tan(arctgx) \Leftrightarrow \frac{\pi}{2} - arctgx = arccotx.$$

2.1.8. Hàm hypebolic

1. Hàm sinhypebolic: Ký hiệu y = sh(x), được xác định bởi công thức:

$$sh(x) = \frac{1}{2}(e^x - e^{-x}).$$

2. Hàm cosinhypebolic Ký hiệu y = ch(x), được xác định bởi công thức:

$$ch(x) = \frac{1}{2}(e^x + e^{-x}).$$

 $Vi \ du \ Cho \ x, y \in \mathbb{R}$, dùng định nghĩa, chứng minh rằng:

$$sh(x+y) = sh(x).ch(y) + ch(x).sh(y),$$

$$sh(x-y) = sh(x).ch(y) - ch(x).sh(y),$$

$$ch(x+y) = ch(x).ch(y) + sh(x).sh(y),$$

$$ch(x-y) = ch(x).ch(y) - sh(x).sh(y),$$

$$ch^{2}(x) - sh^{2}(x) = 1,$$

$$ch^{2}(x) + sh^{2}(x) = ch(2x),$$

$$sh(2x) = 2sh(x).ch(x),$$

$$ch(x) + ch(y) = 2ch\frac{x+y}{2}.ch\frac{x-y}{2},$$

$$ch(x) - ch(y) = 2sh\frac{x+y}{2}.sh\frac{x-y}{2},$$

$$sh(x) + sh(y) = 2sh\frac{x+y}{2}.ch\frac{x-y}{2}.$$

 $sh(x) - sh(y) = 2ch \frac{x+y}{2} . sh \frac{x-y}{2}$

3. Hàm tanghypebolic Ký hiệu y=th(x), được xác định bởi công thức:

$$th(x) = \frac{sh(x)}{ch(x)}.$$

4. Hàm cotanghypebolic Ký hiệu y = coth(x), được xác định bởi công thức:

$$coth(x) = \frac{ch(x)}{sh(x)}.$$

 $Vi \ du \ Cho \ x, y \in \mathbb{R}$, dùng định nghĩa, chứng minh rằng:

$$th(x+y) = \frac{th(x) + th(y)}{1 + th(x) \cdot th(y)} \quad \text{v\'oi} \quad xy(x+y) \neq 0,$$

$$th(x-y) = \frac{th(x) - th(y)}{1 - th(x) \cdot th(y)} \quad \text{v\'oi} \quad xy(x-y) \neq 0,$$

$$th(2x) = \frac{2th(x)}{1 + th^2(x)} \quad \text{v\'oi} \quad x \neq 0.$$

Giải

$$\frac{th(x) + th(y)}{1 + th(x).th(y)} = \frac{\frac{sh(x)}{ch(x)} + \frac{sh(y)}{ch(y)}}{1 + \frac{sh(x)}{ch(x)}.\frac{sh(y)}{ch(y)}}$$
$$= \frac{sh(x).ch(y) + ch(x).sh(y)}{ch(x).ch(y) + sh(x).sh(y)} = \frac{sh(x + y)}{ch(x + y)} = th(x + y).$$

Các kết quả còn lại được chứng minh tương tự.

2.2. Giới hạn của hàm một biến số

2.2.1. Định nghĩa

+ Cho hàm số f(x) xác định trong khoảng (a,b), và $x_0 \in [a,b]$. Ta nói rằng f(x) có giới hạn A (hữu hạn) khi x dần tới x_0 , ký hiệu là $\lim_{x\to x_0} f(x) = A$ khi và chỉ khi

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{ sao cho } 0 < |x - x_0| < \delta \ \ \forall x \in (a,b) \Rightarrow |f(x) - A| < \epsilon.$$

+ Cho hàm số f(x) xác định trong khoảng (a,b), và $x_0 \in [a,b]$. Ta nói rằng f(x) có giới hạn trái <math>A (hữu hạn) khi x dần tới x_0 , ký hiệu là $\lim_{x \to x_0^-} f(x) = A$ khi và chỉ khi

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \text{ sao cho} \quad \forall x \in (a,b): \; 0 > x - x_0 > -\delta \Rightarrow |f(x) - A| < \epsilon.$$

+ Cho hàm số f(x) xác định trong khoảng (a,b), và $x_0 \in [a,b]$. Ta nói rằng f(x) có giới hạn phải <math>A (hữu hạn) khi x dần tới x_0 , ký hiệu là $\lim_{x \to x_0^+} f(x) = A$ khi và chỉ khi

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{ sao cho} \ \forall x \in (a,b): \ 0 < x - x_0 < \delta \ \ \forall x \in (a,b) \Rightarrow |f(x) - A| < \epsilon.$$

Nhân xét:

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \begin{cases} \lim_{x \to x_0^-} f(x) = A \\ \lim_{x \to x_0^+} f(x) = A \end{cases}$$

+ Cho hàm số f(x) xác định trong khoảng (a,b) và $x_0 \in [a,b]$. Ta nói rằng f(x) có $giới hạn +\infty$ (vô hạn) khi x dần tới x_0 , ký hiệu là $\lim_{x\to x_0} f(x) = +\infty$ khi và chỉ khi

$$\forall A \ \exists \delta > 0 \ \text{ sao cho } 0 < |x - x_0| < \delta \ \ \forall x \in (a, b) \Rightarrow f(x) > A.$$

+ Cho hàm số f(x) xác định trong khoảng (a,b) và $x_0 \in [a,b]$. Ta nói rằng f(x) có $giới hạn <math>-\infty$ (vô hạn) khi x dần tới x_0 , ký hiệu là $\lim_{x\to x_0} f(x) = -\infty$ khi và chỉ khi

$$\forall A \; \exists \delta > 0 \; \text{ sao cho } 0 < |x - x_0| < \delta \; \; \forall x \in (a,b) \Rightarrow f(x) < A.$$

+ Cho hàm số f(x) xác định trong khoảng $(a, +\infty)$. Ta nói rằng f(x) có giới hạn A (hữu hạn) khi x dần tới $+\infty$, ký hiệu là $\lim_{x\to +\infty} f(x) = A$ khi và chỉ khi

$$\forall \epsilon > 0 \ \exists x_0 \ \text{ sao cho } \forall x > x_0 \Rightarrow |f(x) - A| < \epsilon.$$

+ Cho hàm số f(x) xác định trong khoảng $(-\infty,a)$. Ta nói rằng f(x) có giới hạn A (hữu hạn) khi x dần tới $-\infty$, ký hiệu là $\lim_{x\to -\infty} f(x) = A$ khi và chỉ khi

$$\forall \epsilon > 0 \ \exists x_0 \ \text{ sao cho } \forall x < x_0 \Rightarrow |f(x) - A| < \epsilon.$$

+ Cho hàm số f(x) xác định trong khoảng $(a,+\infty)$. Ta nói rằng f(x) có giới hạn $+\infty(-\infty)$ (vô hạn) khi x dần tới $+\infty$, ký hiệu là $\lim_{x\to +\infty} f(x) = +\infty$ (tương ứng: $-\infty$) khi và chỉ khi

$$\forall A \; \exists x_0 \; \text{ sao cho } \forall x > x_0 \Rightarrow f(x) > A \; \text{ (twong \'ung: } < A\text{)}.$$

+ Cho hàm số f(x) xác định trong khoảng $(-\infty,a)$. Ta nói rằng f(x) có giới hạn $+\infty$ (tương ứng: $-\infty$) khi x dần tới $-\infty$, ký hiệu là $\lim_{x\to -\infty} f(x) = +\infty$ (tương ứng: $-\infty$) khi và chỉ khi

$$\forall A \; \exists x_0 \; \text{ sao cho } \forall x < x_0 \Rightarrow f(x) > A \; (\text{twong \'ung:} < A).$$

Ví dụ 2.1. Dùng định nghĩa chứng minh rằng

$$\lim_{x \to 1} \frac{x+1}{2x-1} = 2.$$

Giải Theo định nghĩa,

$$\lim_{x \to 1} \frac{x+1}{2x-1} = 2$$

khi và chỉ khi

$$\forall \epsilon > 0, \ \exists \delta = \delta(\epsilon) \text{ sao cho } \forall x : |x-1| < \delta \Rightarrow |\frac{x+1}{2x-1} - 2| = |x-1| \cdot \frac{3}{|2x-1|} < \epsilon$$

Nếu ta chọn $\delta < \frac{1}{2}$, thì

$$\forall x: |x-1| < \delta \Leftrightarrow 1-\delta < x < 1+\delta \Rightarrow |2x-1| = 2x-1 > 2(1-\delta)-1 = 1-2\delta > 0.$$

Do đó, với $\delta < \frac{1}{2}$, ta có

$$\forall x: |x-1| < \delta \Rightarrow \left| \frac{x+1}{2x-1} - 2 \right| = |x-1| \cdot \frac{3}{|2x-1|} < \frac{3\delta}{1-2\delta},$$

mà $\frac{3\delta}{1-2\delta}<\epsilon\Leftrightarrow\delta<\frac{\epsilon}{2\epsilon+3}$. Như vậy, $\delta=\delta(\epsilon)$ được xác định bởi

$$0 < \delta < \min\{\frac{1}{2}, \frac{\epsilon}{2\epsilon + 3}\}.$$

2.2.2. Quan hệ giữa giới hạn của dãy số và giới hạn của hàm số

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \{ \forall x_n : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = A \}.$$

Chứng minh (\Rightarrow) Giả sử $\lim_{x\to x_0} f(x) = A$ và $\lim_{n\to\infty} x_n = x_0$. Theo định nghĩa, ta có

$$\begin{cases} \forall \epsilon > 0 \ \exists \delta > 0 \ \text{ sao cho } 0 < |x - x_0| < \delta \ \forall x \in (a, b) \Rightarrow |f(x) - A| < \epsilon. \\ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \Rightarrow |x_n - x_0| < \delta \end{cases}$$

 $\Rightarrow |f(x_n) - A| < \epsilon$, điều này có nghĩa là $\lim_{n \to \infty} f(x_n) = A$.

 (\Leftarrow) Giả sử rằng dãy (x_n) bất kỳ thỏa mãn $\lim_{n\to\infty}x_n=x_0$ và $\lim_{n\to\infty}f(x_n)=A$ mà $\lim_{x\to x_0}f(x)\neq A.$ Theo định nghĩa,

$$\exists \epsilon > 0, \forall \delta > 0, \exists x \ \text{ sao cho } \forall x: \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| \geq \epsilon.$$

Ta chọn $\delta := \frac{1}{n} \Rightarrow \exists x_n : 0 < |x_n - x_0| < \delta \text{ và } |f(x_n) - A| \ge \epsilon$. Khi đó, ta có

$$\lim_{n\to\infty} x_n = x_0 \quad \text{và} \quad \lim_{n\to\infty} f(x_n) \neq A.$$

Điều này mẫu thuẫn với giả thiết trên. Như vậy $\lim_{x \to x_0} f(x) = A$. \square

Dựa vào mối quan hệ này và tính chất duy nhất của giới hạn của dãy số, ta có kết quả dưới đây.

 $Nh\hat{q}n$ $x\acute{e}t$: Nếu tồn tại $\lim_{x\to x_0}f(x)=A$, thì A là duy nhất.

2.2.3. Tính chất

1. Tính bị chặn

Định lý 2.2. Nếu $\lim_{x\to x_0} f(x) = A$ và $|f(x_0)| < +\infty$, thì f(x) bị chặn trong một lân cận của x_0 .

Chứng minh Giả sử $\lim_{x\to x_0} f(x) = A$, theo định nghĩa,

 $\forall \epsilon > 0 \text{ (cho trước) } \exists \delta > 0 \text{ sao cho } \forall x \in (a,b): \ 0 \neq |x-x_0| < \delta \Rightarrow |f(x)-A| < \epsilon.$

Hay với $\epsilon>0$ cho trước, ta có $\delta>0$ cũng được cho trước và

$$A - \epsilon < f(x) < A + \epsilon \quad \forall x \in (x_0 - \delta; x_0) \cup (x_0; x_0 + \delta).$$

Khi đó, $\forall x \in (x_0 - \delta; x_0 + \delta)$ ta có

$$m := \min\{-|f(x_0)|, A - \epsilon\} \le f(x) \le M := \max\{|f(x_0)|, A + \epsilon\}.$$

2. Tính thứ tự

Định lý 2.3. i) Giả sử tồn tại hữu hạn $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$. Nếu $f(x) \le g(x)$ $\forall x \in (x_0 - \delta_0, x_0 + \delta_0)$ thì $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

- ii) Nếu $\lim_{x\to x_0} f(x) > m$, thì tồn tại $\delta > 0$ sao cho f(x) > m $\forall x_0 \neq x \in (x_0 \delta, x_0 + \delta)$.
- iii) Nếu $f(x) \leq g(x) \ \forall x \in (x_0 \delta, x_0 + \delta) \ và \lim_{x \to x_0} f(x) = +\infty$, thì $\lim_{x \to x_0} g(x) = +\infty$.

Chứng minh i) Giả sử ngược lại rằng $A=\lim_{x\to x_0}f(x)>\lim_{x\to x_0}g(x)=B.$ Đặt $\epsilon=\frac{A-B}{2}>0$, theo định nghĩa, tồn tại δ_1 và δ_2 sao cho

$$\begin{cases} \forall x: \ 0 < |x - x_0| < \delta_1 \Rightarrow |f(x) - A| < \epsilon \\ \forall x: \ 0 < |x - x_0| < \delta_2 \Rightarrow |g(x) - B| < \epsilon. \end{cases}$$

Ta đặt $\delta := \min\{\delta_1, \delta_2\}$. Khi đó

$$\forall x: \ 0 < |x - x_0| < \delta \Rightarrow \begin{cases} |f(x) - A| < \epsilon \Rightarrow f(x) > A - \epsilon = A - \frac{A - B}{2} = \frac{A + B}{2} \\ |g(x) - B| < \epsilon \Rightarrow g(x) < B + \epsilon = B + \frac{A - B}{2} = \frac{A + B}{2} \end{cases}$$

 $\Rightarrow g(x) < f(x).$ Điều này mâu thuẫn với giả thiết. Như vậy $\lim_{x\to x_0} f(x) \leq \lim_{x\to x_0} g(x).$

ii) Giả sử $A=\lim_{x\to x_0}f(x)=A>m$, đặt $\epsilon=A-m>0$. Theo định nghĩa,

$$\exists \delta > 0 \ \text{ sao cho } \forall x: \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \epsilon \Rightarrow f(x) > A - \epsilon = m$$

iii) Theo định nghĩa của $\lim_{x \to x_0} f(x) = +\infty, \, \forall A, \exists \delta_1 > 0$ sao cho

 $\forall x: \ 0<|x-x_0|<\delta_1\Rightarrow f(x)>A$. Đặt $\delta_2=\min\{\delta,\delta_1\}$. Khi đó

$$\forall x: \ 0 < |x - x_0| < \delta_2 \Rightarrow \begin{cases} f(x) > A \\ f(x) < g(x) \end{cases} \Rightarrow g(x) > A \Rightarrow \lim_{x \to x_0} g(x) = +\infty.$$

Dựa vào tính chất i), ta dễ dàng có kết quả sau:

Nguyên lý kẹp: Nếu $f(x) \leq g(x) \leq h(x) \quad \forall x \in (x_0 - \delta, x_0 + \delta)$ và $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A$, thì $\lim_{x \to x_0} g(x) = A$.

Ví du 2.4. Chứng minh rằng

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Chứng minh Xét trường hợp $x\to +\infty$. Với mọi x>1, luôn tồn tại $n\in\mathbb{N}$ sao cho $n\le x\le n+1\Rightarrow \frac{1}{n+1}\le \frac{1}{x}\le \frac{1}{n}$. Khi đó, theo định nghĩa $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$, ta có

$$e \leftarrow \left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{x}\right)^n \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x$$
$$\le \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) \to e.$$

Suy ra $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$.

Trong trường hợp $x \to -\infty$. Đổi biến x = -y, ta có $x \to -\infty \Leftrightarrow y \to +\infty$ và

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to +\infty} \left(1 + \frac{1}{-y} \right)^{-y} = \lim_{y \to +\infty} \left(\frac{y}{y-1} \right)^y$$
$$= \lim_{y \to +\infty} \left(1 + \frac{1}{y-1} \right)^{y-1} \cdot \left(1 + \frac{1}{y-1} \right) = e.$$

Như vậy $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$.

Ta dễ dàng có các công thức dưới đây.

Một số tính chất về số e

Tính chất $1 \lim_{y \to 0} \left(1 + y\right)^{\frac{1}{y}} = e.$

Tính chất $2 \lim_{y \to 0} \frac{\ln(1+y)}{y} = 1$.

Tính chất $3 \lim_{y \to 0} \frac{e^y - 1}{y} = 1$.

Ví dụ 2.5. Tìm giới hạn

$$\lim_{x \to 0} \log_{1-x \sin 3x} (\cos 4x + x^2).$$

Giải Theo tính chất 2 và công thức $\lim_{x\to 0} \frac{\sin x}{x} = 1$, ta có

$$\lim_{x \to 0} \log_{1-x \sin 3x} (\cos 4x + x^2) = \lim_{x \to 0} \frac{\ln(\cos 4x + x^2)}{\ln(1 - x \sin 3x)}$$

$$= \lim_{x \to 0} \frac{\frac{\ln(1 - 2\sin^2 2x + x^2)}{x^2 - 2\sin^2 2x} \cdot (x^2 - 2\sin^2 2x)}{\frac{\ln(1 - x \sin 3x)}{-x \sin 3x} \cdot (-x \sin 3x)}$$

$$= \lim_{x \to 0} \frac{\frac{\ln(1 - 2\sin^2 2x + x^2)}{x^2 - 2\sin^2 2x} \cdot x^2 (1 - 8\frac{\sin^2 2x}{4x^2})}{\frac{\ln(1 - x \sin 3x)}{-x \sin 3x} \cdot (-3x^2 \frac{\sin 3x}{3x})}.$$

$$= \lim_{x \to 0} \frac{\frac{\ln(1 - 2\sin^2 2x + x^2)}{x^2 - 2\sin^2 2x} \cdot (1 - 8\frac{\sin^2 2x}{4x^2})}{\frac{\ln(1 - x \sin 3x)}{-x \sin 3x} \cdot (-3\frac{\sin 3x}{3x})}.$$

$$= \frac{7}{3}$$

2.2.4. Các phép toán về giới hạn

Cho các giới hạn hữu hạn $\lim_{x\to x_0} f(x) = A$ và $\lim_{x\to x_0} g(x) = B$ $(x_0\in \mathbb{R})$. Khi đó, ta có các phép toán giới han sau:

a)
$$\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$
.

a)
$$\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$
.
b) $\lim_{x \to x_0} [f(x) - g(x)] = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$.

c)
$$\lim_{x \to x_0} [k.f(x)] = k \lim_{x \to x_0} f(x)$$
, với mọi $k \in \mathbb{R}$.

d)
$$\lim_{x \to x_0} [f(x).g(x)] = \lim_{x \to x_0} f(x). \lim_{x \to x_0} g(x).$$

d)
$$\lim_{x \to x_0} [f(x).g(x)] = \lim_{x \to x_0} f(x). \lim_{x \to x_0} g(x).$$

e) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \text{ v\'oi } B \neq 0.$

2.2.5. Giới han của hàm đơn điều

Định lý 2.6. i) Cho hàm số f(x) tăng trên (a, x_0) . Nếu f(x) bị chặn trên, thì tồn tại hữu hạn $\lim_{x \to \infty} f(x)$. Nếu f(x) không bị chặn trên, thì $\lim_{x \to \infty} f(x) = +\infty$. ii) Cho hàm số f(x) giảm trên (a, x_0) . Nếu f(x) bi chăn dưới, thì tồn tai hữu han $\lim_{x \to \infty} f(x)$. Nếu f(x) không bị chặn dưới, thì $\lim_{x \to \infty} f(x) = -\infty$. $x \rightarrow x_0^-$

Chứng minh i) Giả sử f(x) tăng và bi chặn trên trên (a, x_0) . Tồn tại hữu hạn $A = \sup f(x)$. Theo Hệ quả của sup, ta có $\forall \epsilon > 0, \exists x^* \in (a, x_0): A - \epsilon < \infty$ $f(x^*) \leq A$. Mặt khác f(x) tăng, nên $f(x) \geq f(x^*) \ \forall x \in (x^*, x_0)$. Do đó, với

$$\delta = x_0 - x^* > 0$$
, ta có

$$A - \epsilon < f(x) \le A \ \forall x \in (x^*, x_0) \Rightarrow |f(x) - A| < \epsilon \ \forall x : 0 > x - x_0 > -\delta.$$

Như vậy $\lim_{x \to x_0^-} f(x) = A$.

Nếu f(x) không bị chặn trên, tức là $\forall A, \; \exists x^* \in (a,x_0): \; f(x^*) > A.$ Do f(x) tăng trên (a,x_0) , nên $f(x) \geq f(x^*) > A \; \; \forall x \in (x^*,x_0) \Rightarrow f(x) > A \; \; \forall x \in (a,x_0): \; x-x_0 > -\delta \text{ với } \delta = x_0-x^*.$ Như vậy $\lim_{x \to x_0^-} f(x) = +\infty.$

ii) Chứng minh tương tự như trong i) hoặc áp dụng i) cho hàm số g(x)=-f(x). \Box

2.3. Đại lượng vô cùng bé và vô cùng lớn

2.3.1. Định nghĩa

- + Hàm số $\alpha(x)$ được gọi là vô cùng bé, viết tắt là VCB tại x_0 nếu $\lim_{x\to x_0}\alpha(x)=0$.
- + Cho $\alpha(x)$, $\beta(x)$ là hai VCB tại x_0 . Nếu $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$ thì $\alpha(x)$ được gọi là VCB bậc cao hơn $\beta(x)$ tại x_0 , ký hiệu là $\alpha(x) = O(\beta(x))$ tại x_0 .
- + Cho $\alpha(x)$, $\beta(x)$ là hai VCB tại x_0 . Nếu $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = m \neq 0$ thì $\alpha(x)$, $\beta(x)$ được gọi là hai VCB cùng cấp tại x_0 . Đặc biệt, khi m=1, ta gọi $\alpha(x)$, $\beta(x)$ được gọi là hai VCB tương đương tại x_0 , ký hiệu $\alpha(x) \sim \beta(x)$ tại x_0 .

Tham khảo các định nghĩa dưới đây

- + Hàm số $\alpha(x)$ được gọi là vô cùng lớn, viết tắt là VCL tại x_0 nếu hàm số $\frac{1}{\alpha(x)}$ được gọi là vô cùng bé tại x_0 .
- + Cho $\alpha(x)$, $\beta(x)$ là hai VCL tại x_0 và $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = m$. Nếu $m=\infty$ thì $\alpha(x)$ được gọi là VCL bậc cao hơn $\beta(x)$ tại x_0 . Nếu $m\neq 0$ thì $\alpha(x)$, $\beta(x)$ được gọi là hai VCL cùng cấp tại x_0 . Đặc biệt, khi m=1, ta gọi $\alpha(x)$, $\beta(x)$ được gọi là hai VCL tương đương tại x_0 .

 H_{ℓ}^{2} quả: Nếu $\alpha(x) \sim \alpha_{1}(x)$ và $\beta(x) \sim \beta_{1}(x)$ tại x_{0} , thì

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}.$$

Ví dụ 2.7. Dùng VCB tương đương, tìm giới hạn

$$\lim_{x \to 0} \frac{\sin^2 3x}{x \sin 5x}.$$

Giải Theo công thức $\lim_{x\to 0} \frac{\sin x}{x} = 1$, ta có $\sin(kx) \sim kx$. Từ hệ quả trên, suy ra

$$\lim_{x \to 0} \frac{\sin^2 3x}{x \sin 5x} = \lim_{x \to 0} \frac{(3x)^2}{x 5x} = \frac{9}{5}.$$

2.3.2. Tính chất

Dựa vào định nghĩa VCB và tính chất của giới hạn, ta có các tính chất đại số của VCB như sau:

- 1. Nếu $\alpha_i(x)$ i=1,2,...,n là các VCB tại x_0 , thì $\sum\limits_{i=1}^n \alpha_i(x)$ và $\prod\limits_{i=1}^n \alpha_i(x)$ cũng là VCB tai x_0 .
- 2. Nếu $\alpha(x)$ là VCB tại x_0 và $\beta(x)$ bị chặn trong lân cận của điểm x_0 , thì $\alpha(x)$. $\beta(x)$ cũng là VCB tại x_0 .
- 3. Cho $\alpha(x)$, $\beta(x)$ là hai VCB tại x_0 , nếu $\alpha(x) \sim \beta(x)$, thì $c.\alpha(x) \sim c.\beta(x)$.

Ví dụ 2.8. Cho $\alpha \neq \beta$, tìm giới hạn

$$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{\sin(\alpha x) - \sin(\beta x)}.$$

Giải Theo công thức $\lim_{x\to 0} \frac{e^x-1}{x} = 1$, ta có $e^x-1\sim x$ tại $0\Rightarrow e^{ax}-e^{bx}\sim (a-b)x$. Từ $\sin x \sim x \Rightarrow \sin(ax) - \sin(bx) \sim (a - b)x$. Do đó

$$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{\sin(\alpha x) - \sin(\beta x)} = \lim_{x \to 0} \frac{(a - b)x}{(\alpha - \beta)x} = \frac{a - b}{\alpha - \beta}.$$

2.4. Hàm liên tục

2.4.1. Định nghĩa

Cho hàm số y = f(x) xác định trên miền D và $x_0 \in D$.

+ Hàm số f(x) được gọi là liện tực tại x_0 khi và chỉ khi $\lim_{x \to x_0} f(x) = f(x_0)$. Hay $\forall \epsilon > 0, \; \exists \delta > 0, \forall x : 0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$.

Hay
$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x : 0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon.$$

+ Hàm số f(x) được gọi là liện tực trái tại x_0 khi và chỉ khi $\lim_{x\to x_0^-}f(x)=f(x_0).$

Hay
$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x : 0 > x - x_0 > -\delta \Rightarrow |f(x) - f(x_0)| < \epsilon.$$

+ Hàm số f(x) được gọi là *liên tục phải* tại x_0 khi và chỉ khi $\lim_{x\to x_0^+} f(x) = f(x_0)$.

Hay
$$\forall \epsilon > 0$$
, $\exists \delta > 0$, $\forall x : 0 < x - x_0 < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$.

Nhận xét: f(x) liên tục tại x_0 khi và chỉ khi f(x) liên tục trái và liên tục phải tại x_0 .

+ Hàm số f(x) được gọi là gián đoạn tại x_0 , nếu f(x) không liên tục tại x_0 , khi

đó x_0 được gọi là điểm gián đoạn của f(x).

- + Nếu x_0 là điểm gián đoạn của f(x) và tồn tại hữu hạn các giới hạn $\lim_{x\to x_0^+}f(x)=f(x_0^+), \lim_{x\to x_0^-}f(x)=f(x_0^-),$ thì $h=|f(x_0^+)-f(x_0^-)|$ được gọi là độ dài của bước nhẩy của hàm f(x) tại x_0 .
- + Hàm số f(x) được gọi là liên tục trên khoảng (a,b), nếu f(x) liên tục tại $\forall x_0 \in (a,b)$.
- + Hàm số f(x) được gọi là *liên tục trên đoạn* [a,b], nếu f(x) liên tục trên khoảng (a,b), liên tục trái tại b và liên tục phải tại a.

Ví dụ 2.9. Tìm a, b để hàm số sau liên tục trên \mathbb{R}

$$f(x) = \begin{cases} ax^2 - bx + 1 & \text{n\'eu} \ x < 1, \\ 2a - b & \text{n\'eu} \ 1 \le x \le 2, \\ bx + a - 1 & \text{n\'eu} \ x > 2. \end{cases}$$

Giải -Nếu x<1, thì $f(x)=ax^2-bx+1$ liên tục trên \mathbb{R} , suy ra f(x) liên tục trên $(-\infty,1)$.

-Nếu $x\in[1,2]$, thì f(x)=2a-b liên tục trên \mathbb{R} , suy ra f(x) liên tục trên [1,2]. -Nếu x>2, thì f(x)=bx+a-1 liên tục trên \mathbb{R} , suy ra f(x) liên tục trên $(2,+\infty)$.

Như vậy f(x) liên tục trên $\mathbb R$ khi và chỉ khi f(x) liên tục trái tại 1 và liên tục phải tại 2. Tức là

$$\begin{cases} \lim_{x \to 1^{-}} f(x) = f(1), \\ \lim_{x \to 2^{+}} f(x) = f(2), \end{cases} \Leftrightarrow \begin{cases} \lim_{x \to 1^{-}} (ax^{2} - bx + 1) = 2a - b, \\ \lim_{x \to 2^{+}} (bx + a - 1) = 2a - b, \end{cases}$$

$$\Leftrightarrow \begin{cases} a - b + 1 = 2a - b, \\ 2b + a - 1 = 2a - b. \end{cases}$$

Vậy a=1 và $b=\frac{2}{3}$, hàm số f(x) liên tục trên \mathbb{R} .

2.4.2. Tính chất đại số

Cho f(x), g(x) là hai hàm số liên tục trên miền D, dùng định nghĩa hàm liên tục và các định lý về giới hạn hàm số, ta có các tính chất sau:

- + Hàm số f(x) + g(x) liên tục trên miền D.
- + Hàm số f(x).g(x) liên tục trên miền D.
- + Hàm số kg(x) liên tục trên miền D, với k=const.
- + Hàm số |f(x)| liên tục trên miền D.
- + Hàm số $\frac{f(x)}{g(x)}$ liên tục trên miền D trừ những điểm x_0 sao cho $g(x_0)=0$.

Từ các tính chất này suy ra các kết quả sau:

Hệ quả

- + Hàm đa thức bậc $n, y = P_n(x)$ liên tục trên $\mathbb R.$
- + Hàm phân thức $y=rac{P_n(x)}{Q_m(x)}$ liên tục trên $\mathbb R$ trừ những điểm x_0 sao cho $Q_m(x_0)=0$.
- + Các hàm số lượng giác, hàm số mũ, hàm số logarit, các hàm hypebolic và các hàm ngược liên tục trên tập xác định của chúng.

Ví dụ 2.10. Cho f(x), g(x) liên tục trên miền D. Chứng minh rằng các hàm số: $\min\{f(x),g(x)\}$ và $\max\{f(x),g(x)\}$ cũng liên tục trên D.

Giải Bằng cách sử dụng các hệ thức

$$\max\{f(x), g(x)\} = \frac{1}{2} \Big(f(x) + g(x) + |f(x) - g(x)| \Big) \quad \forall x \in D,$$

$$\min\{f(x), g(x)\} = \frac{1}{2} \Big(f(x) + g(x) - |f(x) - g(x)| \Big) \quad \forall x \in D.$$

và các tính chất trên, ta có các hàm số $\min\{f(x),g(x)\}$ và $\max\{f(x),g(x)\}$ cũng liên tục trên D.

2.4.3. Cực trị của hàm liên tục

Định lý 2.11. Nếu hàm số f(x) liên tục trên [a,b] và f(a).f(b) < 0, thì tồn tại $c \in (a,b)$ sao cho f(c) = 0.

Chứng minh (phương pháp chia đôi)

Từ f(a).f(b)<0, không mất tính tổng quát, ta giả sử rằng f(a)<0 và f(b)>0. Bước 1: Chia đoạn [a,b] thành 2 đoạn [a,c] và [c,b] với $c=\frac{a+b}{2}$. Xảy ra 3 trường hợp

+Trường hợp 1: Nếu f(c)>0 thì đặt $a_1=a,b_1=c.$ Ta luôn có

$$f(a_1) < 0, \ f(b_1) > 0, \ [a_1, b_1] \subset [a, b] \ \text{và } b_1 - a_1 = \frac{b - a}{2}.$$

+Trường hợp 2: Nếu f(c) < 0 thì đặt $a=c, b_1 = b$. Ta cũng có

$$f(a_1) < 0, \ f(b_1) > 0, \ [a_1, b_1] \subset [a, b] \ \ \text{và} \ b_1 - a_1 = \frac{b - a}{2}.$$

+Trường hợp 3: Nếu f(c) = 0 thì dùng.

Bước 2: Chia đoạn $[a_1,b_1]$ thành 2 đoạn $[a_1,c]$ và $[c,b_1]$ với $c=\frac{a_1+b_1}{2}$. Xảy ra 2 trường hợp

+Trường hợp 1: Nếu f(c)>0 thì đặt $a_2=a_1,b_2=c$. Ta luôn có

$$f(a_2) < 0, \ f(b_2) > 0, \ [a_2, b_2] \subset [a_1, b_1] \ \text{và } b_2 - a_2 = \frac{b - a}{2^2}.$$

+Trường hợp 2: Nếu f(c) < 0 thì đặt $a_2 = c, b_2 = b_1$. Ta cũng có

$$f(a_2) < 0, \ f(b_2) > 0, \ [a_2, b_2] \subset [a_1, b_1] \text{ và } b_2 - a_2 = \frac{b - a}{2^2}.$$

Bước n: Chia đoạn $[a_{n-1},b_{n-1}]$ thành 2 đoạn $[a_{n-1},c]$ và $[c,b_{n-1}]$ với $c=\frac{a_{n-1}+b_{n-1}}{2}$. Xảy ra 2 trường hợp

+Trường hợp 1: Nếu f(c) > 0 thì đặt $a_n = a_{n-1}, b_n = c$. Ta luôn có

$$f(a_n) < 0, \ f(b_n) > 0, \ [a_n, b_n] \subset [a_{n-1}, b_{n-1}] \ \text{và } b_n - a_n = \frac{b-a}{2^n}.$$

+Trường hợp 2: Nếu f(c) < 0 thì đặt $a_n = c, b_n = b_{n-1}$. Ta cũng có

$$f(a_n) < 0, \ f(b_n) > 0, \ [a_n, b_n] \subset [a_{n-1}, b_{n-1}] \ \text{và } b_n - a_n = \frac{b-a}{2^n}.$$

Như vậy, nếu tìm được c sẽ dừng lại, nếu không tìm được c thì nhận được hai dãy kề nhau (a_n) và (b_n) . Khi đó, tồn tại duy nhất c sao cho $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$. Kết hợp điều này với tính liên tục của hàm f(x), ta có

$$\lim_{n\to\infty} f(a_n) = f(c) \le 0 \text{ và } \lim_{n\to\infty} f(b_n) = f(c) \ge 0 \Rightarrow f(c) = 0.$$

Ví du 2.12. Tìm nghiệm xấp xỉ của phương trình

$$\sin x - \frac{x}{2} = 0$$

trên [1,3] đến độ chính xác 2 chữ số thập phân.

Gi di Đặt $f(x) = \sin x - \frac{x}{2}$, ta có f(x) liên tục trên [1,3] và $f(1)f(3) \approx 0.34(-1.36) < 0.0$ Dùng phương pháp chia đôi, suy ra

a	b	$c = \frac{a+b}{2}$	f(a)	f(b)	f(c)
1	3	2	0.34	-1.36	-0.09
1	2	1.5	0.34	-0.09	0.25
1.5	2	1.75	0.25	-0.09	0.11
1.75	2	1.88	0.11	-0.09	0.02
1.88	2	1.94	0.02	-0.09	-0.04
1.88	1.94	1.91	0.02	-0.04	-0.01
1.88	1.91	1.89	0.02	-0.01	0.00
1.89	1.91	1.90	0.00	-0.01	0.00.

Như vậy, nghiệm xấp xỉ là $x_0 \approx 1.90 \pm 0.01$.

Ví dụ 2.13. Cho hàm số f(x) liên tục trên [a,b] và $\gamma \in (f(a),f(b))$. Chứng minh rằng tồn tại $c \in (a,b)$ sao cho $f(c) = \gamma$.

 $Gi di \; ext{Dặt} \; g(x) = f(x) - \gamma. \; ext{Do} \; f(x) \; ext{liên tục trên} \; [a,b] \; ext{và} \; f(a) < \gamma < f(b), \, ext{nên} \; g(x) \; ext{cũng liên tục trên} \; [a,b] \; ext{và} \; g(a). g(b) < 0. \; ext{Theo tính chất trù mật của} \; f(x), \, ext{ta có tồn tại} \; c \in (a,b) \; ext{sao cho} \; g(c) = 0 \Rightarrow f(c) = \gamma.$

2.4.4. Tính chất bị chặn

Định lý 2.14. Nếu hàm số f(x) liên tục trên [a,b] thì f(x) đạt giá trị lớn nhất và nhỏ nhất trên [a,b]. Hay tồn tại $x_1, x_2 \in [a,b]$ sao cho

$$f(x_1) = \min_{x \in [a,b]} f(x), \quad f(x_2) = \max_{x \in [a,b]} f(x).$$

Chứng minh + Hàm số f(x) bị chặn trên /[a,b] (phản chứng).

Thật vậy, giả sử f(x) không bị chặn trên /[a,b], hay $\forall n \in \mathbb{N}, \exists y_n \in [a,b]$ sao cho $f(y_n) \geq n$. Dãy (y_n) bị chặn, theo Bolzano-Weierstrass, tồn tại dãy con (y_{n_k}) sao cho $\lim_{k \to \infty} y_{n_k} = y^* \in [a,b] \Rightarrow \lim_{k \to \infty} f(y_{n_k}) = f(y^*)$. Mặt khác $f(y_{n_k}) \geq n_k \Rightarrow \lim_{k \to \infty} f(y_{n_k}) = +\infty$. Điều này mâu thuẫn. Như vậy f(x) bị chặn

trên / [a, b].

+ Hàm số f(x) bị chặn dưới /[a,b] (chứng minh tương tự).

Như vậy, hàm số f(x) bị chặn /[a,b].

+ Tồn tại $x_1 \in [a,b]$ sao cho $f(x_1) = \min_{x \in [a,b]} f(x)$.

Thật vậy, do f(x) bị chặn dưới / [a,b] nên tồn tại cận dưới đúng của f(x) trên [a,b]. Đặt $m=\inf_{x\in[a,b]}f(x)$. Theo định nghĩa, với mọi $\epsilon=\frac{1}{n}>0,\ \exists y_n\in[a,b]:$ $m \leq f(y_n) \leq m + \frac{1}{n}$. Từ $y_n \in [a,b]$ và định lý Bolzano-Weierstrass, tồn tại một dãy con (y_{n_k}) sao cho

$$\begin{cases} 0 \le f(y_{n_k}) - m \le \frac{1}{n_k} \\ \lim_{k \to \infty} y_{n_k} = x_1 \in [a, b] \end{cases} \Rightarrow \begin{cases} \lim_{k \to \infty} f(y_{n_k}) = m \\ \lim_{k \to \infty} f(y_{n_k}) = f(x_1) \end{cases} \Rightarrow m = f(x_1).$$

Như vậy $f(x_1)=\min_{x\in[a,b]}f(x)$. + Tồn tại $x_2\in[a,b]$ sao cho $f(x_2)=\max_{x\in[a,b]}f(x)$.

Ta đặt
$$M = \sup_{x \in [a,b]} f(x)$$
 và được chứng minh tương tự.

Ví dụ 2.15. Cho hai hàm số f(x) và g(x) liên tục trên [a,b] thỏa mãn

$$0 < g(x) < f(x) \ \forall x \in [a, b].$$

Chứng minh rằng: Tồn tại $\lambda > 0$ sao cho $(1 + \lambda)g(x) \le f(x) \ \forall x \in [a, b]$.

 $Gi di ext{ } ext{D} ext{ } ext{t} ext{ } h(x) = rac{f(x)}{g(x)}, ext{ theo tính chất của hàm liên tục, ta có } h(x) ext{ liên tục trên } [a,b].$ Theo tính chất bị chặn của h(x), tồn tại $x_1 \in [a,b]$ sao cho $h(x_1) = \min_{x \in [a,b]} h(x)$. Từ $0 < g(x) < f(x) \ \forall x \in [a,b]$ suy ra $h(x_1) > 1$, đặt $\lambda = h(x_1) - 1 > 0$ (const). Khi đó

$$\forall x \in [a, b] : h(x) \ge h(x_1) = 1 + \lambda \Rightarrow f(x) \ge (1 + \lambda)g(x).$$

2.5. Hàm liên tục đều

2.5.1. Đinh nghĩa

Hàm số f(x) được gọi là *liên tục đều* trên miền D khi và chỉ khi

$$\forall \epsilon > 0, \ \exists \delta = \delta(\epsilon) > 0, \ \forall x, x' \in D : |x - x'| < \delta \Rightarrow |f(x) - f(x')| < \epsilon.$$

2.5.2. Quan hê giữa tính liên tục và liên tục đều

Định lý 2.16. Nếu hàm f(x) liên tục đều trên miền D, thì f(x) liên tục trên D.

Chứng minh Với mọi $x_0 \in D$ bất kỳ, theo định nghĩa của liên tục đều, chọn đặc biệt $x' = x_0$,

$$\forall \epsilon > 0, \exists \delta > 0, \forall x : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

 $\Rightarrow f(x)$ liên tục tại x_0 . Như vậy f(x) liên tục trên D.

Nhận xét 2.17. Nếu hàm f(x) liên tục trên $D \Rightarrow f(x)$ liên tục đều trên D.

 $Vi\ d\mu$ Hàm số $f(x)=x^2$ liên tục trên $\mathbb R$, nhưng f(x) không liên tục đều trên $\mathbb R$. Thật vậy, theo định nghĩa của liên tục đều, f(x) không liên tục đều trên $\mathbb R$ khi và chỉ khi

$$\exists \epsilon > 0, \forall \delta > 0, \exists x, x' \in \mathbb{R} : |x - x'| < \delta \Rightarrow |f(x) - f(x')| \ge \epsilon.$$

Ta chọn $\epsilon = \frac{1}{2}, x = \frac{1}{\delta^3}, x' = \frac{1}{\delta^3} + \frac{\delta}{2}$. Suy ra

$$|x - x'| = \frac{\delta}{2} < \delta \ \forall \delta > 0 \ \text{và} \ |f(x) - f(x')| = |\frac{1}{\delta^6} - (\frac{1}{\delta^3} + \frac{\delta}{2})^2|$$

$$= \frac{1}{\delta^2} + \frac{\delta^2}{4} \ge 1 > \frac{1}{2} = \epsilon.$$

Như vây, f(x) không liên tục đều trên \mathbb{R} .

Tuy nhiên, nếu f(x) liên tục trên một đoạn thì ta có định lý $(Heine^1)$ sau:

Định lý 2.18. Nếu hàm f(x) liên tục trên [a,b], thì f(x) liên tục đều trên [a,b].

Chứng minh Giả sử ngược lại rằng f(x) không liên tục đều trên [a, b], hay

$$\exists \epsilon > 0, \forall \delta > 0, \exists x, x' \in [a, b] : |x - x'| < \delta \Rightarrow |f(x) - f(x')| \ge \epsilon.$$

Chọn $\delta = \frac{1}{n} \ \forall n \geq 1 \Rightarrow x_n, x'_n \in [a, b]$:

$$|x_n - x'_n| < \frac{1}{n}, |f(x_n) - f(x'_n)| \ge \epsilon.$$

¹15.3.1821-24.10.1881, nhà Toán học người Đức Eduard Heine, các công trình của ông chủ yếu liên quan đến lý thuyết hàm, chuỗi Fourier, tôpô và lý thuyết thế. Ông đưa ra khái niêm liên tục đều và chứng minh vào năm 1872.

Từ $x_n \in [a,b] \ \, \forall n \geq 1$, theo Bolzano-Weierstrass, tồn tại dãy con (x_{n_k}) thỏa mãn

$$\lim_{k \to \infty} x_{n_k} = x^* \in [a, b].$$

Kết hợp điều này với $|x_{n_k} - x'_{n_k}| < \frac{1}{n_k}, |f(x_{n_k}) - f(x'_{n_k})| \ge \epsilon$, cho $k \to \infty$ suy ra $x'_{n_k} \to x^*$ và $|f(x^*) - f(x^*)| \ge \epsilon$, mâu thuẫn với giả thiết $\epsilon > 0$.

Ví dụ 2.19. Chứng minh rằng $f(x) = \sqrt{x}$ liên tục đều trên $[0, +\infty)$.

Giải + Xét hàm f(x) trên đoạn [0,1], theo định lý 2.18, f(x) liên tục đều trên [0,1].

+ Xét hàm f(x) trên đoạn $[1, +\infty)$, $\forall x_1, x_2 \in [1, +\infty)$: $|x_1 - x_2| < \delta$. Ta có

$$|f(x_1) - f(x_2)| = |\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{\sqrt{x_1} + \sqrt{x_2}} \le \frac{1}{2}|x_1 - x_2| < \frac{\delta}{2}.$$

Chọn $\delta:0<\delta<2\epsilon$. Theo định nghĩa, hàm f(x) liên tục đều trên $[1,+\infty)$. Do vậy, f(x) liên tục đều $/[0,+\infty)$.

Ví dụ 2.20. Chứng minh rằng $f(x) = \cos x^2$ không liên tục đều trên $[0, +\infty)$.

Giải Theo định nghĩa, f(x) không liên tục đều trên D khi và chỉ khi

$$\exists \epsilon > 0, \ \forall \delta > 0, \exists x_1, x_2 \in D: |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| \ge \epsilon.$$

Trong bài này, chọn $\epsilon \in (0, 2]$. Với mọi $\delta > 0$, ta chọn

$$x_k = \sqrt{2k\pi}, \ x_k' = \sqrt{(2k+1)\pi} \ \text{ v\'oi } \ k \in \mathbb{N}, k > \frac{\pi}{2\delta^2}.$$

Khi đó,

$$|x_k - x_k'| = |\sqrt{2k\pi} - \sqrt{(2k+1)\pi}| = \frac{\pi}{\sqrt{2k\pi} + \sqrt{(2k+1)\pi}} < \frac{\pi}{\sqrt{2k\pi}} < \delta$$

và

$$|f(x_k) - f(x_k')| = |\cos 2k\pi - \cos(2k+1)\pi| = 2 \ge \epsilon.$$

Như vậy, hàm $f(x) = \cos x^2$ không liên tục đều trên $[0, +\infty)$.

2.6. Đao hàm

2.6.1. Định nghĩa

Cho hàm số f(x) xác định trên khoảng (a, b).

+ Hàm số f(x) được gọi là $kh \mathring{a}$ vi (còn gọi là $c \acute{o}$ đạo $h \grave{a} m$) tại điểm $x_0 \in (a,b)$, nếu tồn tại hữu hạn giới hạn

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \quad \text{hay} \quad \lim_{\Delta_x \to 0} \frac{f(x_0 + \Delta_x) - f(x_0)}{\Delta_x}.$$

Giới hạn này được ký hiệu bởi $f'(x_0)$ hay $\frac{df}{dx}(x_0)$ và được gọi là đạo hàm của hàm f(x) tại x_0 .

+ Nếu f(x) khả vi tại mọi điểm $x_0 \in (a, b)$ thì f(x) được gọi là khả vi trên (a, b).

Nhận xét 2.21. Nếu hàm số f(x) khả vi tại điểm x_0 thì f(x) liên tục tại x_0 .

Thật vậy, f(x) khả vi tại điểm x_0 hay tồn tại giới hạn

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow \lim_{x \to x_0} \left(f(x) - f(x_0) \right) = 0 \Rightarrow \lim_{x \to x_0} f(x) = f(x_0).$$

Vây f(x) liên tục tại x_0 .

Ví dụ 2.22. Dùng định nghĩa, tìm đạo hàm của hàm số $f(x) = \sin 2x$ tại $x_0 = \frac{\pi}{6}$.

Giải Tìm giới hạn

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to \frac{\pi}{6}} \frac{\sin 2x - \sin \frac{\pi}{3}}{x - \frac{\pi}{6}}$$
$$= \lim_{x \to \frac{\pi}{6}} \frac{2\cos(x + \frac{\pi}{6}) \cdot \sin(x - \frac{\pi}{6})}{x - \frac{\pi}{6}} = 2\cos \frac{\pi}{3} = 1.$$

Vậy $f'(\frac{\pi}{3}) = 1$.

+ Hàm số f(x) được gọi là $kh \vec{a}$ vi $ph \vec{a}i$ (còn gọi là $c \acute{o}$ đạo $h \grave{a}m$ $ph \vec{a}i$) tại điểm $x_0 \in (a,b)$, nếu tồn tại hữu hạn giới hạn

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \text{ hay } \lim_{\Delta_x \to 0^+} \frac{f(x_0 + \Delta_x) - f(x_0)}{\Delta_x}.$$

Giới hạn này được ký hiệu bởi $f'_+(x_0)$ và được gọi là đạo hàm phải của hàm f(x) tại x_0 .

65

+ Hàm số f(x) được gọi là $kh \mathring{a}$ vi trái (còn gọi là $c \acute{o}$ đạo hàm trái) tại điểm $x_0 \in (a,b)$, nếu tồn tại hữu hạn giới hạn

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ \text{hay} \ \lim_{\Delta_x \to 0^-} \frac{f(x_0 + \Delta_x) - f(x_0)}{\Delta_x}.$$

Giới hạn này được ký hiệu bởi $f'_{-}(x_0)$ và được gọi là đạo hàm trái của hàm f(x) tại x_0 .

Nhận xét 2.23. Hàm số f(x) có đạo hàm tại x_0 khi và chỉ khi f(x) có đạo hàm phải $f_+(x_0)$, đạo hàm trái $f'_+(x_0)$ và $f'_-(x_0) = f'_+(x_0)$.

Ví dụ 2.24. Chứng minh rằng: Hàm số f(x) = x|x-1| tồn tại $f'_{-}(1), f'_{+}(1),$ nhưng không tồn tại f'(1).

Giải

$$f'_{+}(1) = \lim_{\Delta_x \to 0^{+}} \frac{f(1 + \Delta_x) - f(1)}{\Delta_x} = \lim_{\Delta_x \to 0^{+}} \frac{(1 + \Delta_x)|\Delta_x|}{\Delta_x} = \lim_{\Delta_x \to 0^{+}} (1 + \Delta_x) = 1.$$

$$f'_{-}(1) = \lim_{\Delta_x \to 0^{-}} \frac{f(1 + \Delta_x) - f(1)}{\Delta_x} = \lim_{\Delta_x \to 0^{-}} \frac{(1 + \Delta_x)|\Delta_x|}{\Delta_x} = -1.$$

Do đó $f'_{+}(1) = 1 \neq -1 = f'_{-}(1)$. Vậy f(x) không khả vi tại 1.

2.6.2. Các công thức của đạo hàm

Cho các hàm số f(x) và g(x) khả vi trên (a, b).

+
$$(f(x) + g(x))' = f'(x) + g'(x)$$
.

$$+ (f(x) - g(x))' = f'(x) - g'(x).$$

$$+ (f(x).g(x))' = f'(x).g(x) + f(x).g'(x).$$

$$+ \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x).g(x) - f(x).g'(x)}{g^2(x)}.$$

$$+ \left(kf(x)\right)' = kf'(x).$$

+ Đạo hàm của hàm hợp y=f(u), u=u(x). Khi đó $f_x'=f_u'.u_x'.$

+ Đạo hàm của hàm ngược $y_x' = \frac{1}{x_y'}$.

2.6.3. Đạo hàm của các hàm số thông dụng

$$y = C(const) \Rightarrow y' = 0 \ \forall x \in \mathbb{R}.$$

$$y = x^{\alpha} (\alpha \in \mathbb{R}) \Rightarrow y' = \alpha x^{\alpha - 1} \ \forall x \in \mathbb{R}.$$

$$y = \sin x \Rightarrow y' = \cos x \ \forall x \in \mathbb{R}.$$

$$y = \cos x \Rightarrow y' = -\sin x \ \forall x \in \mathbb{R}.$$

$$y = \tan x \Rightarrow y' = \frac{1}{\cos^2 x} \ \forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : \ k \in \mathbb{Z}\}.$$

$$y = \cot x \Rightarrow y' = -\frac{1}{\sin^2 x} \ \forall x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$$

$$y = e^x \Rightarrow y' = e^x \ \forall x \in \mathbb{R}.$$

$$y = a^x \text{ (v\'oi } 1 \neq a > 0) \Rightarrow y' = a^x \ln a \ \forall x \in \mathbb{R}.$$

$$y = \log_a x \text{ (v\'oi } 1 \neq a > 0) \Rightarrow y' = \frac{1}{x \ln a} \ \forall x \in \mathbb{R}^* = \{x \in \mathbb{R}: \ x > 0\}.$$

$$y = sh \ x \Rightarrow y' = chx \ \forall x \in \mathbb{R}.$$

$$y = ch \ x \Rightarrow y' = shx \ \forall x \in \mathbb{R}.$$

$$y = th \ x \Rightarrow y' = \frac{1}{ch^2x} \ \forall x \in \mathbb{R}.$$

$$y = \coth x \Rightarrow y' = \frac{-1}{sh^2x} \ \forall x \in \mathbb{R} \setminus \{0\}.$$

2.6.4. Đạo hàm của các hàm số ngược

$$+ y = \arcsin x \Rightarrow y' = \frac{1}{\sqrt{1-x^2}}.$$

Chứng minh Theo định nghĩa $y= \arcsin x \Leftrightarrow x=\sin y$ và $y\in [-\frac{\pi}{2},\frac{\pi}{2}].$ Ta có

$$y' = \frac{1}{x'_y} = \frac{1}{(\sin y)'_y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}.$$

Tương tự như chứng minh trên, ta có các kết quả sau:

$$+y = \arccos x \Rightarrow y' = \frac{-1}{\sqrt{1-x^2}} \quad \forall x \in (-1,1).$$

$$+y = \arctan x \Rightarrow y' = \frac{1}{1+x^2} \ \forall x \in \mathbb{R}.$$

$$+ y = \operatorname{arccot} x \Rightarrow y' = \frac{-1}{1+x^2} \ \forall x \in \mathbb{R}.$$

Ví dụ 2.25. Cho hàm số $f(x) = \left(x + \frac{1}{x}\right)^{2x+1} với \ x > 0$. Tìm f'(x).

 $Giải \ln f(x) = (2x+1)\ln(x+\frac{1}{x})$. Đạo hàm hai vế, ta có

$$\frac{1}{f(x)}f'(x) = 2x\ln(x+\frac{1}{x}) + (2x+1)\frac{1}{x+\frac{1}{x}}(1-\frac{1}{x^2})$$
$$= 2x\ln(1+x) + \frac{(2x+1)(x-1)}{x(x+1)}.$$

Vậy

$$f'(x) = f(x) \left(2x \ln(1+x) + \frac{(2x+1)(x-1)}{x(x+1)} \right)$$
$$= \left(x + \frac{1}{x} \right)^{2x+1} \left(2x \ln(1+x) + \frac{(2x+1)(x-1)}{x(x+1)} \right).$$

2.7. Vi phân của hàm số

Cho hàm f(x) khả vi tại x, theo định nghĩa

$$\lim_{\Delta_x \to 0} \frac{f(x + \Delta_x) - f(x)}{\Delta_x} = f'(x).$$

Điều này có nghĩa là

$$f(x + \Delta_x) - f(x) = f'(x)\Delta_x + o(\Delta_x).$$

Tích số $f'(x)\Delta_x$ được gọi là vi phân của f(x) tại điểm x, ký hiệu là df(x). Hay

$$df(x) = f'(x)dx.$$

Tương tự như đạo hàm của hàm số f(x) tại điểm x, ta có các tính chất của vi phân.

$$\begin{split} &+d\Big(f(x)+g(x)\Big)=d\Big(f(x)\Big)+d\Big(g(x)\Big).\\ &+d\Big(f(x)-g(x)\Big)=d\Big(f(x)\Big)-d\Big(g(x)\Big).\\ &+d\Big(f(x).g(x)\Big)=g(x)d\Big(f(x)\Big)+f(x)d\Big(g(x)\Big).\\ &+d\Big(\frac{f(x)}{g(x)}\Big)=\frac{g(x)d\Big(f(x)\Big)-f(x)d\Big(g(x)\Big)}{g^2(x)}. \end{split}$$

2.8. Đạo hàm và vi phân cấp cao

2.8.1. Định nghĩa

Cho hàm f(x) xác định trên miền $D, x \in D$.

- + Nếu f(x) khả vi tại x, thì f'(x) được gọi là đạo hàm cấp 1 của f(x).
- + Nếu f'(x) khả vi tại x, thì (f'(x))' được gọi là đạo hàm cấp 2 của f(x), ký hiệu là f''(x).
- + Nếu f''(x) khả vi tại x, thì (f''(x))' được gọi là đạo hàm cấp 3 của f(x), ký hiệu là $f^{(3)}(x)$.
- + Nếu $f^{(n-1)}(x)$ khả vi tại x, thì $(f^{(n-1)}(x))'$ được gọi là đạo hàm cấp n của f(x), ký hiệu là $f^{(n)}(x)$.

Tương tự như vậy, một cách quy nạp, vi phân cấp n của hàm f(x), ký hiệu $d^n f(x)$ được xác định bởi công thức

$$d^{n} f(x) = d(d^{n-1} f(x)) = f^{(n)}(x) dx^{n}.$$

2.8.2. Tính chất

Bằng quy nạp toán học, ta chứng minh được các tính chất sau:

Với đạo hàm cấp n.

$$+ \left(f(x) + g(x) \right)^{(n)} = \left(f(x) \right)^{(n)} + \left(g(x) \right)^{(n)}.$$

$$+ \left(f(x) - g(x) \right)^{(n)} = \left(f(x) \right)^{(n)} - \left(g(x) \right)^{(n)}.$$

$$+ \left(kf(x) \right)^{(n)} = k \left(f(x) \right)^{(n)} \text{ v\'oi } k = const.$$

$$+ (uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)} \text{ v\'oi } u = u(x), v = v(x), u^{(0)} = u, v^{(0)} = v.$$

Với vi phân cấp n tương tự như đạo hàm cấp n.

Ví dụ 2.26. Tìm đạo hàm cấp n của hàm số

$$f(x) = \sin(ax + b)$$
 với $a, b : const.$

Giải
$$f'(x) = a\cos(ax + b) = a\sin(ax + b + 1.\frac{\pi}{2}).$$

 $f''(x) = -a^2\sin(ax + b) = a^2\sin(ax + b + 2.\frac{\pi}{2}).$

Bằng quy nạp toán học, dễ dàng chứng minh được rằng

$$f^{(n)}(x) = a^n \sin(ax + b + \frac{n\pi}{2}).$$

Ví dụ 2.27. Tìm đạo hàm cấp n của hàm số

$$f(x) = \frac{1}{ax+b}$$
 với $0 \neq a, b : const.$

Giải
$$f(x) = (ax + b)^{-1} \Rightarrow f'(x) = (-1)1!a^{1}(ax + b)^{-2}$$
.
 $f''(x) = (-1)(-2)a^{2}(ax + b)^{-3} = (-1)^{2}2!a^{2}(ax + b)^{-3}$.

Bằng quy nạp toán học, dễ dàng chứng minh được rằng

$$f^{(n)}(x) = (-1)^n a^n (ax+b)^{-n-1} = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}}.$$

Ví dụ 2.28. Tìm đạo hàm cấp n của hàm số

$$f(x) = \frac{x^2 + 1}{(x - 1)^3(x + 3)}.$$

Giải Đồng nhất hệ số

$$\frac{x^2+1}{(x-1)^3(x+3)} = \frac{A}{x+3} + \frac{B}{(x-1)^3} + \frac{C}{(x-1)^2} + \frac{D}{(x-1)} \quad \forall x \neq 1, x \neq -3.$$

Ta nhận được

$$A = -\frac{5}{32}, B = \frac{1}{2}, C = \frac{3}{8}, D = \frac{5}{32}$$

Như vậy, f(x) được viết lại dưới dạng

$$f(x) = -\frac{5}{32}(x+3)^{-1} + \frac{1}{2}(x-1)^{-3} + \frac{3}{8}(x-1)^{-2} + \frac{5}{32}(x-1)^{-1}.$$

Tương tự như ví dụ 2.27, ta có

$$((x+3)^{-1})^{(n)} = (-1)^n n! (x+3)^{-n-1},$$

$$((x-1)^{-3})^{(n)} = \frac{1}{2} (-1)^n (n+2)! (x-1)^{-n-3},$$

$$((x-1)^{-2})^{(n)} = (-1)^n (n+1)! (x-1)^{-n-2},$$

$$((x-1)^{-1})^{(n)} = (-1)^n n! (x-1)^{-n-1}.$$

Như vậy

$$f^{(n)}(x) = -\frac{5}{32}(-1)^n n!(x+3)^{-n-1} + \frac{1}{4}(-1)^n (n+2)!(x-1)^{-n-3},$$

+ $\frac{3}{8}(-1)^n (n+1)!(x-1)^{-n-2} + \frac{5}{32}(-1)^n n!(x-1)^{-n-1}.$

Ví dụ 2.29. Tìm đạo hàm cấp n của hàm số

$$f(x) = (x^2 - 3x + 7)\cos(3x).$$

Giải $f(x) = (x^2 - 3x + 7) \sin(3x + \frac{\pi}{2})$. Theo công thức $(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$, ta có

$$f^{(n)}(x) = \sum_{k=0}^{n} C_n^k (x^2 - 3x + 7)^{(k)} \left(\sin(3x + \frac{\pi}{2}) \right)^{(n-k)}$$

Từ ví dụ 2.26, suy ra

$$\left(\sin(3x + \frac{\pi}{2})\right)^{(n-k)} = 3^{n-k}\sin(3x + (n-k+1)\frac{\pi}{2}).$$

Do

$$(x^2 - 3x + 7)' = 6x - 3, (x^2 - 3x + 7)'' = 6, (x^2 - 3x + 7)^{(k)} = 0 \ \forall k \ge 3,$$

nên

$$f^{(n)}(x) = C_n^0(x^2 - 3x + 7)3^n \sin(3x + (n+1)\frac{\pi}{2}) + C_n^1(2x - 3)3^{n-1}\sin(3x + n\frac{\pi}{2}) + 2C_n^23^{n-2}\sin(3x + (n-1)\frac{\pi}{2}).$$

Hay

$$f^{(n)}(x) = (x^2 - 3x + 7)3^n \sin(3x + n\frac{\pi}{2}) + n(2x - 3)3^{n-1} \sin(3x + (n-1)\frac{\pi}{2}) + \frac{n}{n-1}3^{n-2} \sin(3x + (n-2)\frac{\pi}{2}).$$

2.8.3. Các định lý về hàm khả vi

Cho hàm số f(x) xác định trên miền D và $x_0 \in D$.

+ f(x) được gọi là đạt *cực đại* (còn gọi là *cực đại địa phương*) tại điểm x_0 , nếu tồn tại $(x_0 - \delta, x_0 + \delta) \subseteq D$ sao cho

$$f(x) \le f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta).$$

+ f(x) được gọi là đạt *cực tiểu* (còn gọi là *cực tiểu địa phương*) tại điểm x_0 , nếu tồn tại $(x_0 - \delta, x_0 + \delta) \subseteq D$ sao cho

$$f(x) \ge f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta).$$

+ f(x) được gọi là đạt *cực đại toàn cục* (còn gọi là *giá trị lớn nhất*) tại điểm x_0 , nếu

$$f(x) \le f(x_0) \ \forall x \in D.$$

+ f(x) được gọi là đạt cực tiểu toàn cực (còn gọi là giá trị nhỏ nhất) tại điểm x_0 , nếu

$$f(x) \ge f(x_0) \ \forall x \in D.$$

+ f(x) đạt cực trị tại x_0 , nếu f(x) đạt cực đại hoặc cực tiểu tại x_0 .

Định lý 2.30. (Fermat²) Nếu f(x) khả vi tại x_0 và đạt cực trị tại x_0 , thì $f'(x_0) = 0$.

Chứng minh Giả sử f(x) xác định trên D và đạt cực đại tại điểm x_0 , tồn tại $\delta>0$ sao cho

$$f(x) < f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta) \subseteq D.$$

Suy ra

$$\begin{cases} f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \\ f'(x_0) = f'_-(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \end{cases} \Rightarrow f'(x_0) = 0.$$

²17.8.1601-12.1.1665, Luật gia-nhà Toán học Pháp Pierre de Fermat có các công trình nghiên cứu thuộc các lĩnh vực: Lý thuyết số, hình học giải tích, bước đầu của giải tích và lý thuyết xác suất, và một số vấn đề về Vật lý như nguyên lý cơ bản của Quang hình học.

Nhận xét 2.31. 1. Hàm số f(x) đạt cực trị tại điểm x_0 chưa chắc đã khả vi tại x_0 . Ví dụ như f(x) = |x| đạt cực tiểu tại $x_0 = 0$, nhưng f(x) không khả vi tại x_0 . 2. Nghiệm x_0 của phương trình f'(x) = 0 được gọi là điểm dừng của hàm số f(x). Điểm x_0 là điểm dừng của hàm số f(x), nhưng x_0 có thể không là điểm cực trị. Ví dụ như $f(x) = x^3$ không có điểm cực trị, nhưng $x_0 = 0$ là điểm dừng.

Định lý 2.32. (Rolle³) Cho hàm số f(x) liên tục trên [a,b], khả vi trong (a,b) và f(a) = f(b). Khi đó, tồn tại $c \in (a,b)$ sao cho f'(c) = 0.

Chứng minh Do f(x) liên tục trên [a,b], nên tồn tại $x_1,x_2\in [a,b]$ sao cho

$$f(x_1) = \max_{x \in [a,b]} f(x)$$
 và $f(x_2) = \min_{x \in [a,b]} f(x) \Rightarrow f(x_2) \le f(x_1)$.

Nếu $f(x_1) = f(x_2)$, thì $f(x) = f(x_1)(const) \ \forall x \in [a,b]$ suy ra $\forall c \in (a,b)$. Nếu $f(x_2) < f(x_1)$ và từ f(a) = f(b) suy ra $x_1 \in (a,b)$ hoặc $x_2 \in (a,b)$. Giả sử $x_1 \in (a,b)$, tồn tại $(x_1 - \delta, x_1 + \delta) \subseteq (a,b)$ sao cho $f(x_1) \ge f(x) \ \forall x \in (x_0 - \delta, x_0 + \delta)$. Do đó, x_1 là điểm cực đại, theo Fermat, $f'(x_1) = 0 \Rightarrow c = x_1$. Với $x_2 \in (a,b)$ bằng tương tự như trương hợp $x_1 \in (a,b)$, chọn $c = x_2$.

Ví dụ 2.33. Cho hàm số f(x) liên tục trên [a;b], khả vi trên (a;b) và thỏa mãn

$$\begin{cases} f(a) = f(b) = 0 \\ f'_{+}(a) > 0 \\ f'_{-}(b) < 0. \end{cases}$$

Chứng minh rằng: $\exists c_1, c_2, c_3 \in (a, b)$ sao cho

$$\begin{cases} c_1 < c_2 < c_3 \\ f(c_2) = 0 \\ f'(c_1) = f'(c_3) = 0. \end{cases}$$

 $^{^3}$ 21.4.1652-8.11.1719, nhà Toán học người Pháp Michel Rolle có những công trình nghiên cứu về đại số và giải tích.

Giải Theo đinh nghĩa đao hàm, ta có

$$f'_{+}(a) = \lim_{\Delta_{x} \to 0^{+}} \frac{f(a + \Delta_{x}) - f(a)}{\Delta_{x}} > 0$$

$$\Rightarrow \exists \delta_{1} > 0 : f(x) > 0 \quad \forall x \in (a, a + \delta_{1}) \Rightarrow f(a + \frac{\delta_{1}}{2}) > 0.$$

$$f'_{-}(b) = \lim_{\Delta_{x} \to 0^{-}} \frac{f(b + \Delta_{x}) - f(b)}{\Delta_{x}} < 0$$

$$\Rightarrow \exists \delta_{2} > 0 : f(x) < 0 \quad \forall x \in (b - \delta_{2}, b) \Rightarrow f(b - \frac{\delta_{2}}{2}) < 0.$$

Như vậy $f(a+\frac{\delta_1}{2})f(b-\frac{\delta_2}{2})<0\Rightarrow \exists c_2\in(a,b): f(c_2)=0 \ (\text{do}\ f(x)\ \text{liên tục}).$ Theo định lý Rolle, tồn tại $c_1\in(a,c_2): f'(c_1)=0$ và $c_3\in(c_2,b): f'(c_3)=0.$ Ví dụ dưới đây được xem như là một sự mở rộng của định lý Rolle.

Ví dụ 2.34. Cho hàm số f(x) liên tục trên đoạn [a,b], khả vi phải và trái trên khoảng (a,b), và f(a)=f(b). Chứng minh rằng tồn tại $c \in (a,b)$ sao cho

$$f'_{+}(c).f'_{-}(c) \le 0.$$

Giải Đặt

$$f(x_1) = \min_{x \in [a,b]} f(x), \quad f(x_2) = \max_{x \in [a,b]} f(x).$$

-Nếu $f(x_1 = f(x_2), \text{ thì } f(x) = const \Rightarrow f'_+(c).f'_-(c) = 0.$

-Nếu $f(x_1) < f(x_2)$, từ $f(a) = f(b) \Rightarrow x_1 \in (a,b)$ hoặc $x_2 \in (a,b)$, không mất tính tổng quát, giả sử $x_1 \in (a,b)$. Khi đó

$$\begin{cases} f'_{+}(x_{1}) = \lim_{x \to x_{1}^{+}} \frac{f(x) - f(x_{1})}{x - x_{1}} \ge 0 \\ f'_{-}(x_{1}) = \lim_{x \to x_{1}^{-}} \frac{f(x) - f(x_{1})}{x - x_{1}} \le 0 \end{cases} \Rightarrow f'_{+}(x_{1}) \cdot f'_{-}(x_{1}) \le 0 \Rightarrow c = x_{1}.$$

Định lý 2.35. (Lagrange⁴) Cho hàm f(x) liên tục trên [a,b] và khả vi trên (a,b). Chứng minh rằng: Tồn tại $c \in (a,b)$ sao cho

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

⁴25.1.1736-10.4.1813, nhà Toán học người Pháp Joseph Louis Lagrange có các công trình liên quan đến cơ học, lý thuyết số và phương trình đại số. Ông cùng với Euler được xem là người sáng lập ra phép tính biến phân. Ông cũng có nhiều công trình quan trọng về Vật lý, trước tiên về sự truyền tiếng động và lý thuyết dây rung, nhưng nhất là về cơ học thiên thể.

Hình 1: Biểu diễn hình học của định lý Lagrange

Ýnghĩa hình học Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm c song cong với đường thẳng AB, với A(a, f(a)), B(b, f(b)).

Chứng minh Đặt

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Do f(x) liên tục trên [a,b] và khả vi trên (a,b), nên g(x) cũng liên tục trên [a,b] và khả vi trên (a,b). Hơn nữa g(a)=f(a)=g(b). Theo định lý Rolle, với hàm g(x) trên [a,b], tồn tại $c\in(a,b)$ sao cho g'(c)=0. Mà

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \Rightarrow g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

Ví dụ 2.36. Cho hàm f(x) liên tục trên [a,b] và khả vi trên (a,b) trừ ra n điểm. Chứng minh rằng tồn tại n+1 số dương $\alpha_1,\alpha_2,...,\alpha_{n+1}$ và n+1 số c_i (i=1,2,...,n+1) sao cho

$$\begin{cases} \sum_{i=1}^{n+1} \alpha_i = 1\\ a < c_1 < c_2 < \dots < c_{n+1} < b\\ \frac{f(b) - f(a)}{b - a} = \sum_{i=1}^{n+1} \alpha_i f'(c_i). \end{cases}$$

 $Gi \ddot{a}i$ $Gi \ddot{a}$ sử f(x) không khả vi tại n điểm trên khoảng $(a,b): a < d_1 < d_2 < ... < d_n < b$. Theo định lý Lagrange, trên các đoạn $[a,d_1],[d_1,d_2],...,[d_n,b],$ ta

74

có

$$\begin{cases} \exists c_1 \in (a, d_1) : \frac{f(d_1) - f(a)}{d_1 - a} = f'(c_1) \Rightarrow f(d_1) - f(a) = (d_1 - a)f'(c_1) \\ \exists c_2 \in (d_1, d_2) : \frac{f(d_2) - f(d_1)}{d_2 - d_1} = f'(c_2) \Rightarrow f(d_2) - f(d_1) = (d_2 - d_1)f'(c_2) \\ \dots \\ \exists c_{n+1} \in (d_n, b) : \frac{f(b) - f(d_n)}{b - d_n} = f'(c_{n+1}) \Rightarrow f(b) - f(d_n) = (b - d_n)f'(c_{n+1}). \end{cases}$$

Suy ra

$$f(b) - f(a) = (d_1 - a)f'(c_1) + (d_2 - d_1)f'(c_2) + \dots + (b - d_n)f'(c_{n+1}).$$

Hay

$$\frac{f(b) - f(a)}{b - a} = \frac{d_1 - a}{b - a} f'(c_1) + \frac{d_2 - d_1}{b - a} f'(c_2) + \dots + \frac{b - d_n}{b - a} f'(c_{n+1}).$$

$$= \sum_{i=1}^{n+1} \alpha_i f'(c_i) \quad \text{v\'oi} \ d_0 = a, d_{n+1} = b, \alpha_j = \frac{d_j - d_{j-1}}{b - a} \ \forall j = 1, n + 1,$$

Đinh lý 2.37. (Cauchy)

Cho f(x), g(x) là hai hàm số liên tục trên [a,b], khả vi trên khoảng (a,b) và $g'(x) \neq 0 \ \forall x \in (a,b)$. Khi đó tồn tại $c \in (a,b)$ sao cho

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Chứng minh Theo định lý Lagrange, tồn tại $c_0 \in (a,b)$ sao cho

$$\frac{g(b) - g(a)}{b - a} = g'(c_0) \neq 0 \Rightarrow g(b) \neq g(a).$$

Đặt

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)].$$

Do f(x), g(x) liên tục trên [a,b], khả vi trên khoảng (a,b) nên $\varphi(x)$ cũng liên tục trên [a,b] và khả vi trên khoảng (a,b). Ta có $\varphi(a)=0=\varphi(b)$, theo định lý Rolle, tồn tại $c\in(a,b)$ sao cho $\varphi'(c)=0$. Từ

$$\varphi'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x),$$

suy ra

$$\varphi'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0 \Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Trong trường hợp đặc biệt: Nếu $g(x)=x \ \forall x\in [a,b]$, thì định lý Cauchy trở về định lý Lagrange.

Ví dụ 2.38. Cho hàm f(x) khả vi trên [a,b] và 0 < a < b. Chứng minh rằng: Tồn tại $c \in (a,b)$ sao cho

$$\frac{af(b) - bf(a)}{b - a} = cf'(c) - f(c).$$

Giải Ta có

$$\frac{af(b) - bf(a)}{b - a} = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{-\frac{1}{b} + \frac{1}{a}} = \frac{\varphi(b) - \varphi(a)}{\varphi(b) - \varphi(a)},$$

trong đó

$$\varphi(x) = \frac{f(x)}{x}, \quad \phi(x) = -\frac{1}{x}$$

là các hàm liên tục trên [a,b] và khả vi trên (a,b). Vì 0 < a < b, nên các hàm $\varphi(x)$ và $\phi(x)$ thỏa mãn tất cả các điều kiện của định lý Cauchy trên [a,b]. Bởi vậy, tồn tại $c \in (a,b)$ sao cho

$$\frac{\varphi(b) - \varphi(a)}{\varphi(b) - \varphi(a)} = \frac{\varphi'(c)}{\varphi'(c)} = cf'(c) - f(c).$$

Vậy

$$\frac{af(b) - bf(a)}{b - a} = cf'(c) - f(c).$$

Dưới đây là một vài ứng dụng của các định lý giá trị trung bình.

2.9. Công thức Taylor⁵

2.9.1. Da thức Taylor

Cho hàm số f(x) khả vi đến cấp n+1 trong lân cận của điểm x_0 . Khi đó, đa thức bậc n, $P_n(x)$ được gọi là đa thức Taylor bậc n của hàm f(x) tại điểm x_0 khi và chỉ khi

$$\begin{cases} P_n(x_0) = f(x_0) \\ P'_n(x_0) = f'(x_0) \\ \dots \\ P_n^{(n)}(x_0) = f^{(n)}(x_0). \end{cases}$$

⁵18.8.1685-29.12.1731, Brook Taylor là một nhà Toán học người Anh.

Trong trường hợp đặc biệt, nếu $x_0=0$ thì $P_n(x)$ được gọi là đa thức Maclaurin của hàm f(x).

Định lý 2.39. Nều $P_n(x)$ là đa thức Taylor của hàm f(x) tại điểm x_0 , thì

$$P_n(x) = f(x_0) + \frac{1}{1!}f'(x_0)(x - x_0)^1 + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n.$$
(2.1)

Chứng minh Do $P_n(x)$ là đa thức bậc n, nên $P_n(x)$ bao giờ cũng biểu diễn được dưới dạng

$$P_n(x) = A_0 + A_1(x - x_0)^1 + A_2(x - x_0)^2 + \dots + A_n(x - x_0)^n.$$

- Thay $x=x_0$ vào (2.1), ta có $A_0=P_n(x_0)$. Từ định nghĩa của đa thức Taylor $P_n(x)$, suy ra $A_0=f(x_0)$.
- Đạo hàm cấp 1 hai vế của (2.1), ta có

$$P'_n(x) = A_1 + 2A_2(x - x_0)^1 + \dots + nA_n(x - x_0)^{n-1}.$$

Thay $x=x_0$ vào $P_n'(x)$, ta có $A_1=1!P_n'(x_0)$. Từ định nghĩa của đa thức Taylor $P_n(x)$, suy ra $A_1=\frac{f'(x_0)}{1!}$.

...

- Đao hàm cấp n hai vế của (2.1), ta có

$$P_n^{(n)}(x) = n! A_n \Rightarrow A_n = \frac{P_n^{(n)}(x_0)}{n!}.$$

Từ định nghĩa của đa thức Taylor $P_n(x)$, suy ra $A_n = \frac{f^{(n)}(x_0)}{n!}$.

2.9.2. Phần dư Taylor

Cho $P_n(x)$ là đa thức Taylor bậc n tại x_0 của hàm f(x). Khi đó, phần dư Taylor bậc <math>n của hàm f(x), ký hiệu $R_n(x)$, được xác định bởi

$$R_n(x) = f(x) - P_n(x).$$

Định lý 2.40. Nếu f(x) khả vi cấp n+1 trong lân cận $(x_0-\delta,x_0+\delta)$ và $x\in (x_0-\delta,x_0+\delta)$, thì tồn tại số c nằm giữa hai số x và x_0 hay tồn tại $c=x_0+\lambda(x-x_0)$ với $\lambda\in (0,1)$ sao cho

$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(c)(x-x_0)^{n+1}.$$

Chứng minh Từ f(x) khả vi cấp n+1, suy ra $R_n(x)$ khả vi cấp n+1 và

$$R_n^{(k)}(x) = f^{(k)}(x) - P_n^{(k)}(x) \quad \forall k = 1, 2, ..., n.$$

Khi đó

$$R_n(x_0) = R'_n(x_0) = \dots = R_n^{(n)}(x_0) = 0.$$

Đặt $g(x)=(x-x_0)^{n+1}$. Ta cũng có

$$g(x_0) = g'(x_0) = \dots = g^{(n)}(x_0) = 0$$
 và $g^{(n+1)}(x) = (n+1)!$.

Theo đinh lý Cauchy, ta có tồn tại $c_1=x_0+\lambda_1(x-x_0)$ với $\lambda_1\in(0,1)$ sao cho

$$\frac{R_n(x)}{g(x)} = \frac{R_n(x) - R_n(x_0)}{g(x) - g(x_0)} = \frac{R'_n(c_1)}{g'(c_1)}.$$

Tồn tại $c_2 = x_0 + \lambda_2(c_1 - x_0)$ với $\lambda_2 \in (0, 1)$ sao cho

$$\frac{R'_n(c_1)}{g'(c_1)} = \frac{R'_n(c_1) - R'_n(x_0)}{g'(c_1) - g'(x_0)} = \frac{R''_n(c_2)}{g''(c_2)}.$$

...

Tồn tại $c_{n+1}=x_0+\lambda_n(c_n-x_0)$ với $\lambda_n\in(0,1)\Leftrightarrow c_{n+1}=x_0+\lambda(x-x_0)$ với $\lambda\in(0,1)$ sao cho

$$\frac{R_n^{(n)}(c_n)}{g^{(n)}(c_n)} = \frac{R_n^{(n)}(c_n) - R_n^{(n)}(x_0)}{g^{(n)}(c_n) - g^{(n)}(x_0)} = \frac{R_n^{(n+1)}(c_{n+1})}{g^{(n+1)}(c_{n+1})} = \frac{R_n^{(n+1)}(c_{n+1})}{(n+1)!}.$$

Như vậy

$$\frac{R_n(x)}{g(x)} = \frac{R_n^{(n+1)}(c_{n+1})}{(n+1)!} \Rightarrow R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(c) (x - x_0)^{n+1},$$
 với $\lambda \in (0,1), \ c = c_{n+1} = x_0 + \lambda (x - x_0).$

2.9.3. Công thức khai triển Taylor.

Cho f(x) là một hàm khả vi cấp n+1 trong lân cận của điểm x_0 , $P_n(x)$ là đa thức Taylor bậc n và $R_n(x)$ là phân dư bậc n của f(x) tại x_0 . Khi đó

$$f(x) = P_n(x) + R_n(x)$$

hay

$$\begin{split} f(x) &= f(x_0) + \frac{f'(x_0)}{1!} (x - x_0)^1 + \frac{f''(x_0)}{2!} (x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(x_0), \\ \text{với } \lambda &\in (0, 1), c = x_0 + \lambda(x - x_0), R_n(x_0) = \frac{1}{(n+1)!} f^{(n+1)}(c) (x - x_0)^{n+1} \text{ được gọi là khai triển Taylor bậc } n \text{ của hàm } f(x) \text{ tại điểm } x_0. \end{split}$$

Nhận xét 2.41. 1. Trong trường hợp đặc biệt $x_0 = 0$, khai triển Taylor của f(x) có dạng

$$f(x) = f(0) + \frac{f'(0)}{1!}x^{1} + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f^{(n)}(0)}{n!}x^{n} + R_{n}(0),$$

với $\lambda \in (0,1), c = \lambda x, R_n(0) = \frac{1}{(n+1)!} f^{(n+1)}(c) x^{n+1}$ được gọi là khai triển Maclaurin bậc n của hàm f(x).

2. Từ $R_n(x_0) = \frac{1}{(n+1)!} f^{(n+1)}(c) (x-x_0)^{n+1} \Rightarrow R_n(x_0) = o((x-x_0)^n)$. Vậy khai triển Taylor của f(x) còn được viết dưới dạng

$$f(x) = f(0) + \frac{f'(0)}{1!}x^{1} + \frac{f''(0)}{2!}x^{2} + \dots + o((x - x_{0})^{n}).$$

Các khai triển quan trọng nhất theo công thức Maclaurin là:

I.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n) = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$
.

II.
$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n+1}) = \sum_{k=0}^{n} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + o(x^{2n+1}).$$

III.
$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+2}) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+2}).$$

IV.
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^{n+1}) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^{n+1}).$$

Ví du 2.42. Khai triển hàm số

$$f(x) = (x-2)e^{3x}$$

theo công thức Maclaurin đến số hạng $o(x^n)$.

 $Gi \dot{a}i$ Ta có $f(x)=xe^{3x}-2e^{2x}$. Sử dụng công thức I, ta thu được

$$f(x) = x \left(\sum_{k=0}^{n-1} \frac{3^k x^k}{k!} + o(x^{n-1}) \right) - 2 \left(\sum_{k=0}^n \frac{3^k x^k}{k!} + o(x^n) \right).$$

$$= \sum_{k=0}^{n-1} \frac{3^k x^{k+1}}{k!} - \sum_{k=0}^n \frac{2 \cdot 3^k x^k}{k!} + o(x^n).$$

$$\begin{aligned} \text{Vì} \sum_{k=0}^{n-1} \frac{3^k x^{k+1}}{k!} &= \sum_{k=1}^n \frac{3^{k-1}}{(k-1)!} x^k, \text{ nên ta có} \\ f(x) &= -2 + \sum_{k=1}^n \frac{3^{k-1}}{(k-1)!} x^k - \sum_{k=1}^n \frac{2.3^k x^k}{k!} + o(x^n). \\ &= -2 + \sum_{k=1}^n \Big(\frac{3^{k-1}}{(k-1)!} - \frac{2.3^k}{k!} \Big) x^k + o(x^n). \\ &= -2 + \sum_{k=1}^n \frac{(k-6)3^{k-1}}{k!} x^k + o(x^n). \end{aligned}$$

Ví du 2.43. Khai triển hàm số

$$f(x) = \ln(2x - x^2 + 3)$$

theo công thức Taylor tại điểm $x_0 = 2$ đến số hạng $o((x-2)^n)$.

 $Gi\dot{a}i$ Ta biểu diễn f(x) dưới dạng

$$f(x) = \ln 3 + \ln \left(1 - (x - 2)\right) + \ln \left(1 + \frac{x - 2}{3}\right),$$

và áp dụng công thức IV ta thu được

$$f(x) = \ln 3 + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} (x-2)^k + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k3^k} (x-2)^k + o((x-2)^n).$$

$$= \ln 3 + \sum_{k=1}^{n} \frac{(-1)^{k-1} (1+3^k)}{k3^k} (x-2)^k + o((x-2)^n).$$

2.10. Quy tắc L'Hospital⁶

Định lý 2.44. Cho hai hàm số f(x) và g(x) xác định và khả vi trên một lân cận của điểm x_0 (có thể trừ điểm x_0) thỏa mãn:

- i) $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ ii) $g'(x) \neq 0$ trong lân cận đã chỉ ra (có thể trừ điểm x_0).
- iii) Tồn tại giới hạn $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$.

Khi đó, tồn tại giới hạn $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ và

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

⁶1661-2.2.1704, Guillaume de L'Hospital là nhà toán học người Pháp.

Chứng minh Đặt $f(x_0) = 0 = g(x_0)$. Khi đó, cả f(x) và g(x) liên tục trên lân cân của x_0 . Theo định lý Cauchy ta có

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)},$$

với c nằm giữa x và x_0 . Mặt khác, theo định nghĩa của $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = A$,

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x : 0 < |x - x_0| < \delta \Rightarrow \left| \frac{f'(x)}{g'(x)} - A \right| < \epsilon.$$

Do vậy

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x : 0 < |x - x_0| < \delta \Rightarrow \left| \frac{f(x)}{g(x)} - A \right| < \epsilon.$$

$$\operatorname{Hay} \lim_{x \to x_0} \frac{f(x)}{g(x)} = A.$$

Ta có thể dễ dàng chứng minh được nhận xét dưới đây.

Nhận xét 2.45. Nếu ta thay $x \to x_0$ bằng $x \to \infty$ hoặc giả thiết i) bởi

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty,$$

thì kết quả của định lý 2.44 không thay đổi.

Ví dụ 2.46. Tìm giới hạn

$$I_{1} = \lim_{x \to 1} \frac{x^{x} - 1}{\ln x + x - 1}.$$

$$I_{2} = \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{th \ x} - \frac{1}{\tan x} \right).$$

$$I_{3} = \lim_{x \to +\infty} \left(x + \sqrt{x^{2} + 1} \right)^{\frac{1}{\ln x}}.$$

 $\emph{Giải}$ Theo công thức $x=e^{\ln x} \ \ \forall x>0$ và quy tắc L'Hospital, ta có

$$\begin{split} I_1 &= \lim_{x \to 1} \frac{x^x - 1}{\ln x + x - 1} \quad (\text{dang: } \frac{0}{0}) \\ &= \lim_{x \to 1} \frac{e^{x \ln x} - 1}{\ln x + x - 1} \\ &= \lim_{x \to 1} \frac{e^{x \ln x} (\ln x + 1)}{\frac{1}{x} + 1} \\ &= \frac{1}{2}. \end{split}$$

$$I_{2} = \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{th} \frac{1}{x} - \frac{1}{\tan x} \right)$$

$$= \lim_{x \to 0} \frac{\tan x - th x}{x \cdot th x \cdot \tan x} \quad (\text{dang: } \frac{0}{0})$$

$$= \lim_{x \to 0} \frac{\frac{1}{\cos^{2} x} - \frac{1}{ch^{2} x}}{th x \tan x + \frac{x \tan x}{ch^{2} x} + \frac{x th x}{\cos^{2} x}}$$

$$= 0.$$

$$I_{3} = \lim_{x \to +\infty} \left(x + \sqrt{x^{2} + 1} \right)^{\frac{1}{\ln x}} = \lim_{x \to +\infty} e^{\frac{\ln(x + \sqrt{x^{2} + 1})}{\ln x}}.$$

Theo quy tắc L'Hospital, ta có

$$\lim_{x \to +\infty} \frac{\ln(x + \sqrt{x^2 + 1})}{\ln x} = \lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x^2 + 1}}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1}} = 1.$$

Vậy $I_3 = e$.

2.11. Hàm lồi (đọc thêm)

2.11.1. Định nghĩa

Tập $D \subseteq \mathbb{R}$ được gọi là tập lồi khi và chỉ khi

$$\forall x_1, x_2 \in D, \lambda \in [0, 1] \Rightarrow \lambda x_1 + (1 - \lambda)x_2 \in D.$$

- Hàm số f(x) được gọi là hàm lồi trên tập lồi D, nếu

$$\forall x_1, x_2 \in D, \forall \lambda \in [0, 1] \Rightarrow f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

- Hàm số f(x) được gọi là hàm lồi chặt trên tập lồi D, nếu

$$\forall x_1, x_2 \in D, \forall \lambda \in (0, 1) \Rightarrow f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2).$$

- Hàm số f(x) là hàm lõm trên miền D, nếu -f(x) là hàm lồi trên D.
- Hàm số f(x) là hàm lõm chặt trên miền D, nếu -f(x) là hàm lồi chặt trên D.

2.11.2. Bất đẳng thức Jensen

Cho f(x) là hàm lồi trên $D, x_1, x_2, ..., x_n \in D$ và $\lambda_1, \lambda_2, ..., \lambda_n \in [0,1]$: $\lambda_1 + \lambda_2 + ... + \lambda_n = 1$. Khi đó

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n). \tag{2.2}$$

Hình 2: Biểu diễn hình học của hàm lồi

Chứng minh Quy nạp theo n.

+ Với $n=1 \Rightarrow (2.2)$ đúng. Với $n=2 \Rightarrow (2.2)$ đúng theo định nghĩa của hàm lồi.

+ Giả sử tính chất trên đúng với n, hay $\forall~x_1,x_2,...,x_n\in D$ và $\lambda_1,\lambda_2,...,\lambda_n\in [0,1]:~\lambda_1+\lambda_2+...+\lambda_n=1$, ta có

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n).$$

+ Cần chứng minh tính chất trên đúng với n+1, hay $\forall \ \bar{x}_1, \bar{x}_2, ..., \bar{x}_n, \bar{x}_{n+1} \in D$ và $\bar{\lambda}_1, \bar{\lambda}_2, ..., \bar{\lambda}_n, \bar{\lambda}_{n+1} \in [0,1]$: $\bar{\lambda}_1 + \bar{\lambda}_2 + ... + \bar{\lambda}_n + \bar{\lambda}_{n+1} = 1$, ta có

$$f(\bar{\lambda}_1 \bar{x}_1 + \bar{\lambda}_2 \bar{x}_2 + \dots + \bar{\lambda}_n \bar{x}_n + \bar{\lambda}_{n+1} \bar{x}_{n+1}) \le \bar{\lambda}_1 f(\bar{x}_1) + \bar{\lambda}_2 f(\bar{x}_2) + \dots + \bar{\lambda}_{n+1} f(\bar{x}_{n+1}).$$

Nếu $\bar{\lambda}_1=\bar{\lambda}_2=...=\bar{\lambda}_n=0$, thì bất đẳng thức trên luôn đúng.

Nếu $\bar{\lambda}_1^2 + \bar{\lambda}_2^2 + \ldots + \bar{\lambda}_n^2 > 0$, thì đặt

$$\mu = \bar{\lambda}_1 + \bar{\lambda}_2 + \dots + \bar{\lambda}_n \Rightarrow \mu = 1 - \bar{\lambda}_{n+1} \in [0, 1].$$

Theo giả thiết quy nạp, với $\lambda_k = \frac{\bar{\lambda}_k}{\mu} \ \, \forall k=1,2,...,n.$

$$f(\bar{\lambda}_1 \bar{x}_1 + \bar{\lambda}_2 \bar{x}_2 + \dots + \bar{\lambda}_n \bar{x}_n + \bar{\lambda}_{n+1} \bar{x}_{n+1}) = f\left(\mu(\sum_{k=1}^n \frac{\bar{\lambda}_k}{\mu} x_k) + (1-\mu)x_{n+1}\right)$$

$$\leq \mu f\left(\sum_{k=1}^n \frac{\bar{\lambda}_k}{\mu} x_k\right) + (1-\mu)f(x_{n+1})$$

$$\leq \mu \sum_{k=1}^{n} \frac{\bar{\lambda}_{k}}{\mu} f(x_{k}) + (1 - \mu) f(x_{n+1})$$
$$= \sum_{k=1}^{n+1} \bar{\lambda}_{k} f(x_{k}).$$

Theo quy nạp Toán học, bất đẳng thức được chứng minh.

Đặc biệt: $\lambda_1=\lambda_2=...=\lambda_n=\frac{1}{n}$, bất đẳng thức Jensen có dạng:

$$f(\frac{x_1 + x_2 + \dots + x_n}{n}) \le \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}.$$

2.11.3. Điều kiên cần và đủ của hàm lồi

Cho hàm số f(x) xác định trên miền lồi D.

Định lý 2.47. Hàm số f(x) lồi trên miền D khi và chỉ khi

$$\forall a \in D \Rightarrow g(x) = \frac{f(x) - f(a)}{x - a}$$

tăng trên miền $D_1 = \{x \in D : x < a\}$ và $D_2 = \{x \in D : x > a\}$.

Chứng minh (\Rightarrow) Với mọi $x_1, x_2 \in D_1, a < x_1 < x_2$, tồn tại

$$\lambda = \frac{x_1 - x_2}{a - x_2} \in (0, 1) : x_1 = \lambda a + (1 - \lambda)x_2.$$

Khi đó

$$f(\lambda a + (1 - \lambda)x_2) \le \lambda f(a) + (1 - \lambda)f(x_2)$$

$$\Leftrightarrow f(x_1) \le \frac{x_1 - x_2}{a - x_2} f(a) + \left(1 - \frac{x_1 - x_2}{a - x_2}\right) f(x_2)$$

$$\Leftrightarrow (a - x_2)f(x_1) \le (x_1 - x_2)f(a) + (a - x_1)f(x_2)$$

$$\Leftrightarrow (x_2 - a)f(x_1) \le (x_2 - x_1)f(a) + (x_1 - a)f(x_2)$$

$$\Leftrightarrow \frac{f(x_1) - f(a)}{x_1 - a} \le \frac{f(x_2) - f(a)}{x_2 - a}.$$

Vậy g(x) tăng trên D_1 , tương tự ta cũng có f(x) tăng trên D_2 .

(\Leftarrow) Với mọi $x_1,x_2\in D, x_1< x_2, \lambda\in(0,1)$, đặt $x_3=\lambda x_1+(1-\lambda)x_2\Rightarrow x_1< x_3< x_2.$ theo giả thiết hàm số

$$g(x) = \frac{f(x) - f(x_1)}{x - x_1}$$
 tăng trên miền $D_1 = \{x \in D : x > x_1\}.$

Suy ra

$$\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Theo chứng minh trên, điều này tương đương với

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Như vây

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \ \forall x_1, x_2 \in D, \lambda \in [0, 1].$$

Định lý 2.48. Cho hàm số f(x) khả vi trên miền lồi D. Khi đó f(x) lồi trên D khi và chỉ khi hàm số f'(x) tăng trên D.

Chứng minh(\Rightarrow) Giả sử f(x) lồi trên D, với mọi $a,b\in D,a< b$. Theo định lý 2.47, hàm số

$$g(x) = \frac{f(x) - f(a)}{x - a}$$

tăng trên $D_1 = \{x \in D: x > a\}$ và hàm số

$$g(x) = \frac{f(x) - f(b)}{x - b}$$

tăng trên miền $D_2 = \{x \in D : x < b\}$. Suy ra

$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b} = f'(b).$$

Vậy $f'(a) \le f'(b)$ hay f'(x) tăng trên D.

(\Leftarrow) Giả sử f'(x) tăng trên D. Với mọi $a,b\in D,a< b,\lambda\in [0,1]$ và $x=\lambda a+(1-\lambda)b$. Theo định lý Lagrange, ta có

$$f(x) - f(a) = (x - a)f'(c) = (1 - \lambda)(b - a)f'(c)$$
 với $c \in [a, x]$, $f(b) - f(x) = (b - x)f'(d) = \lambda(b - a)f'(d)$ với $c \in [x, b]$.

Vì f'(x) tăng trên D, nên

$$f'(c) \le f'(d) \Rightarrow \lambda (f(x) - f(a)) \le (1 - \lambda) (f(b) - f(x))$$

 $\Leftrightarrow f(x) \le \lambda f(a) + (1 - \lambda) f(b).$

Vậy f(x) lồi trên D.

Hệ quả 2.49. Cho f(x) có đạo hàm cấp 2 trên miền lồi D. Khi đó, f(x) lồi trên miền D khi và chỉ khi

$$f''(x) \ge 0 \ \forall x \in D.$$

Chứng minh Theo định lý 2.48, f(x) lồi trên D khi và chỉ khi f'(x) tăng trên D. Ta đã biết f'(x) tăng trên D khi và chỉ khi $\left(f'(x)\right)' = f''(x) \ge 0 \ \forall x \in D$.

2.11.4. Cực trị của hàm lồi

Cho hàm số f(x) lồi trên miền lồi D.

Định lý 2.50. i) Nếu f(x) đạt cực tiểu toàn cục trên D, thì tập các điểm cực tiểu toàn cục là một tập lồi.

- ii) Nếu f(x) là lồi chặt và có cực tiểu toàn cục trên D, thì có duy nhất một điểm cực tiểu toàn cục.
- iii) Cho f(x) là lồi chặt, khả vi trên D và $(x_0 \delta, x_0 + \delta) \subseteq D$. Khi đó, f(x) đạt cực tiểu toàn cục tại x_0 khi và chỉ khi $f'(x_0) = 0$.

Chứng minh i) Giả sử $x_1, x_2 \in D$ sao cho

$$f(x_1) = f(x_2) \le f(x) \ \forall x \in D.$$

Do f(x) lồi trên D, ta có

$$\forall \lambda \in [0,1] \Rightarrow f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) = f(x_1).$$

Vậy
$$f(\lambda x_1 + (1 - \lambda)x_2) = f(x_1) \ \forall \lambda \in [0, 1].$$

ii) (*Phản chứng*) Giả sử ngược lại rằng tồn tại $x_1, x_2 \in D, x_1 \neq x_2$ sao cho

$$f(x_1) = f(x_2) \le f(x) \ \forall x \in D.$$

Do f(x) lồi chặt trên D, ta có

$$\forall \lambda \in (0,1) \Rightarrow f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2) = f(x_1).$$

Điều này có nghĩa là x_1 không phải là điểm cực tiểu toàn cục, trái giả thiết. Vậy tập các điểm cực tiểu nếu tồn tại thì tập điểm đó có duy nhất một phần tử.

iii) Phần thuận dễ dàng được suy ra từ định lý Fermat. Đảo lại, giả sử cho $f'(x_0) = 0$. Theo định lý 2.48, f'(x) tăng trên miền D. Vậy f'(x) đổi dấu từ "-" \rightarrow "+"

qua điểm x_0 . Vậy x_0 là điểm cực tiểu toàn cục.

Ví du 2.51. (Bất đẳng thức Cauchy)

Cho $a_k \geq 0 \ \forall k = 1, 2, ..., n$. Chứng minh rằng

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}.$$

Giải Nếu tồn tại $k: a_k = 0$, thì bất đẳng thức trên luôn đúng.

Nếu $a_k > 0 \quad \forall k = 1, 2, ..., n$, thì bất đẳng thức trên có dạng

$$\ln \frac{a_1 + a_2 + \dots + a_n}{n} \ge \frac{1}{n} \Big(\ln a_1 + \ln a_2 + \dots + \ln a_n \Big)$$

$$\Leftrightarrow -\ln \Big(\frac{1}{n} a_1 + \frac{1}{n} a_2 + \dots + \frac{1}{n} a_n \Big) \le \frac{1}{n} (-\ln a_1) + \frac{1}{n} (-\ln a_2) + \dots + \frac{1}{n} (-\ln a_n)$$

$$\Leftrightarrow -\ln \Big(\frac{1}{n} a_1 + \frac{1}{n} a_2 + \dots + \frac{1}{n} a_n \Big) \le \frac{1}{n} (-\ln a_1) + \frac{1}{n} (-\ln a_2) + \dots + \frac{1}{n} (-\ln a_n)$$

$$\Leftrightarrow f\Big(\frac{1}{n} a_1 + \frac{1}{n} a_2 + \dots + \frac{1}{n} a_n \Big) \le \frac{1}{n} f(a_1) + \frac{1}{n} f(a_2) + \dots + \frac{1}{n} f(a_n),$$

với $f(x) = -\ln x$.

Mặt khác $f(x) = -\ln x \Rightarrow f''(x) = \frac{1}{x^2} > 0 \quad \forall x \in (0, +\infty)$. Theo hệ quả 2.49, f(x) lồi trên $(0, +\infty)$. Theo bất đẳng thức Jensen, bất đẳng thức Cauchy được chứng minh.

Ví dụ 2.52. (Bất đẳng thức Schwartz)

Cho $b_k > 0 \ \forall k = 1, 2, ..., n$. Chứng minh rằng

$$\frac{a_1^2}{b_1} + \frac{a_2^2}{b_2} + \dots + \frac{a_n^2}{b_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{b_1 + b_2 + \dots + b_n} \quad \forall a_1, a_2, \dots, a_n.$$

Chứng minh Đặt $b = \sum_{k=1}^{n} b_k$. Khi đó

$$\frac{a_1^2}{b_1} + \frac{a_2^2}{b_2} + \dots + \frac{a_n^2}{b_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{b_1 + b_2 + \dots + b_n}$$

$$\Leftrightarrow b_1 \left(\frac{a_1}{b_1}\right)^2 + b_2 \left(\frac{a_2}{b_2}\right)^2 + \dots + b_n \left(\frac{a_n}{b_n}\right)^2 \ge b \left(\frac{a_1 + a_1 + \dots + a_n}{b}\right)^2$$

$$\Leftrightarrow \frac{b_1}{b} \left(\frac{a_1}{b_1}\right)^2 + \frac{b_2}{b} \left(\frac{a_2}{b_2}\right)^2 + \dots + \frac{b_n}{b} \left(\frac{a_n}{b_n}\right)^2 \ge \left(\frac{b_1}{b} \frac{a_1}{b_1} + \frac{b_2}{b} \frac{a_2}{b_2} + \dots + \frac{b_n}{b} \frac{a_n}{b_n}\right)^2$$

$$\Leftrightarrow \lambda_1 \left(\frac{a_1}{b_1}\right)^2 + \lambda_2 \left(\frac{a_2}{b_2}\right)^2 + \dots + \lambda_n \left(\frac{a_n}{b_n}\right)^2 \ge \left(\lambda_1 \frac{a_1}{b_1} + \lambda_2 \frac{a_2}{b_2} + \dots + \lambda_n \frac{a_n}{b_n}\right)^2$$

$$\Leftrightarrow \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n) \ge f\left(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n\right),$$

trong đó

$$\lambda_k = \frac{b_k}{b} \in (0,1) : \lambda_1 + \lambda_2 + \dots + \lambda_n = 1, x_k = \frac{a_k}{b_k}, f(x) = x^2 \quad \forall k = 1, 2, \dots, n.$$

Do $f(x)=x^2$ là hàm lồi trên $\mathbb R$, nên bất đẳng thức Schwartz được chứng minh.

Ví dụ 2.53. (Bất đẳng thức Minkowski⁷)

Cho $a_k > 0, b_k > 0 \ \forall k = 1, 2, ..., n.$ Chứng minh rằng

$$\sqrt[n]{a_1 a_2 ... a_n} + \sqrt[n]{b_1 b_2 ... b_n} \le \sqrt[n]{(a_1 + b_1)(a_2 + b_2) ... (a_n + b_n)}$$

Giải Ta có

$$\sqrt[n]{a_1 a_2 \dots a_n} + \sqrt[n]{b_1 b_2 \dots b_n} \le \sqrt[n]{(a_1 + b_1)(a_2 + b_2) \dots (a_n + b_n)}$$

$$\Leftrightarrow 1 + \sqrt[n]{\frac{b_1 b_2}{a_1 a_2} \dots \frac{b_n}{a_n}} \le \sqrt[n]{(1 + \frac{b_1}{a_1})(1 + \frac{b_2}{a_2}) \dots (1 + \frac{b_n}{a_n})}$$

$$\Leftrightarrow \ln\left(1 + \sqrt[n]{\frac{b_1}{a_1} \frac{b_2}{a_2} ... \frac{b_n}{a_n}}\right) \le \frac{1}{n} \left(\ln(1 + \frac{b_1}{a_1}) + ... + \ln(1 + \frac{b_n}{a_n})\right)$$

$$\Leftrightarrow \ln\left(1 + e^{\frac{1}{n} \left(\ln\frac{a_1}{b_1} + ... + \ln\frac{a_n}{b_n}\right)}\right) \le \frac{1}{n} \left(\ln(1 + \frac{b_1}{a_1}) + ... + \ln(1 + \frac{b_n}{a_n})\right)$$

$$\Leftrightarrow \ln\left(1 + e^{\frac{1}{n} \left(\ln\frac{a_1}{b_1} + \ln\frac{a_2}{b_2} + ... + \ln\frac{a_n}{b_n}\right)}\right) \le \frac{1}{n} \left(\ln(1 + e^{\ln\frac{b_1}{a_1}}) + ... + \ln(1 + e^{\ln\frac{b_n}{a_n}})\right)$$

$$\Leftrightarrow f(\lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n) \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + ... + \lambda_n f(x_n),$$

với
$$\lambda_k = \frac{1}{n}, x_k = \ln \frac{b_k}{a_k} \ \forall k = 1, 2, ..., n, f(x) = \ln(1 + e^x).$$

Do $f''(x)=\frac{e^x}{(1+e^x)^2}>0 \ \forall x\in\mathbb{R},$ nên f(x) là hàm lồi trên $\mathbb{R}.$ Vậy bất đẳng thức Minkowski được chứng minh.

⁷22.6.1864-12.1.1909, nhà Toán học người Đức Hermann Minkowski quan tâm tới lý thuyết số ngay từ khi còn trẻ. Năm 18 tuổi, ông chia sẻ cùng J. B. Smith giải thưởng lớn tại Viện Hàn lâm khoa học Pháp. Ông là người sáng lập ra hình học số. Ông cũng quan tâm tới vật lý toán.

BÀI TẬP CHƯƠNG 2

Bài 2.1. Dùng định nghĩa, chứng minh rằng

1)
$$\lim_{x \to 1} (2x + x^2) = 3$$
,

$$2) \lim_{x \to -1} \frac{2x+7}{x+2} = 5,$$

3)
$$\lim_{x \to 1^+} \sqrt{x^2 - x} = 0$$
,

4)
$$\lim_{x \to 2^{-}} (\sqrt{2-x} + x) = 2.$$

Bài 2.2. Tìm các giới han sau:

1)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 3x + 1} + 2x + 3}{x}$$

$$2)\lim_{x\to 0}\frac{\sqrt[n]{1+\alpha x}-1}{x}\ \ \text{v\'oi}\ \alpha\neq 0, n\geq 2$$

$$\mathrm{d} \mathbf{s} : \frac{\alpha}{n}.$$

3)
$$\lim_{x \to 0} \frac{\sqrt[n]{1 + \alpha x} - \sqrt[m]{1 + \beta x}}{x} \text{ với } \alpha.\beta \neq 0, n, m \geq 2$$
4)
$$\lim_{x \to 0} \frac{\sqrt[n]{1 + \alpha x} \sqrt[m]{1 + \beta x} - 1}{x} \text{ với } \alpha.\beta \neq 0, n, m \geq 2$$

$$ds: \frac{\alpha}{n} - \frac{\beta}{m}$$
.

$$4) \lim_{x \to 0} \frac{\sqrt[n]{1 + \alpha x} \sqrt[m]{1 + \beta x} - 1}{x} \quad \text{v\'eti} \quad \alpha.\beta \neq 0, n, m \geq 2$$

$$ds: \frac{\alpha}{n} + \frac{\beta}{m}$$
.

Bài 2.3. Tìm các giới hạn sau

1)
$$\lim_{x \to -\infty} (\sqrt{x^2 - 3x + 1} + x)$$

$$ds: \frac{3}{2}$$
.

2)
$$\lim_{x \to +\infty} (\sqrt[3]{8x^3 + 2x^2 + 1} - 2x)$$

$$ds: \frac{1}{6}$$
.

3)
$$\lim_{x \to +\infty} (\sqrt[3]{x^3 + 4x^2 + 1} - \sqrt{x^2 + x - 1})$$

$$ds : \frac{5}{6}$$
.

Bài 2.4. Tìm các giới han sau

$$1)\lim_{x\to 0}\frac{\sin ax}{x}$$

$$ds:a$$
.

$$2)\lim_{x\to 0}\frac{1-\cos ax}{x^2}$$

$$ds: \frac{a^2}{2}$$
.

$$3)\lim_{x\to 0}\frac{1-\cos x\cos 2x...\cos nx}{x^2}$$

$$ds: \frac{n(n+1)(2n+1)}{12}.$$

4)
$$\lim_{x \to 0} \frac{\sqrt{\cos ax} - \sqrt[3]{\cos bx}}{x \sin cx}$$
 với $c \neq 0$

$$\mathrm{ds}:\frac{2b^2-3a^2}{12c}.$$

Bài 2.5. Tìm các giới hạn sau

1)
$$\lim_{x \to +\infty} \left(\frac{2x^2 + x + 1}{x^2 - 3x - 2} \right)^{\frac{x^3 - 3x}{1 - x^2}}$$
 ds: 0.

$$2) \lim_{x \to \infty} \left(\frac{2x+1}{2x-3}\right)^x \qquad \text{ds} : e^2.$$

3)
$$\lim_{x \to \infty} \left(\frac{2x^2 + x - 1}{2x^2 - x - 2} \right)^{1 - 3x}$$
 ds: e^{-3} .

4)
$$\lim_{x \to 0} (\cos ax)^{\frac{1}{x \sin bx}}$$
 ds: $e^{\frac{-a^2}{2b}}$.

5)
$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\frac{1}{\sin x}}$$
 ds: 1.

6)
$$\lim_{x\to 0} \frac{\log_2(1+x\sin 3x)}{2^{x^2}-1}$$
 ds: $\frac{3}{\ln^2 2}$.

7)
$$\lim_{x \to +\infty} x \sqrt{x} (\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x})$$
 ds: $\frac{-1}{4}$.

8)
$$\lim_{x\to 0} \frac{\ln(1+x+x^2) + \ln(1-x+x^2)}{1-\cos x}$$
 ds: 2.

9)
$$\lim_{x \to 0} \frac{\arcsin x - \arctan x}{\ln(1+x^3)}$$

$$ds: -\frac{1}{2}.$$

10)
$$\lim_{x \to 1} \left(\frac{1}{x}\right)^{\frac{1}{\sin \pi x}}$$
 ds: $e^{\frac{1}{\pi}}$.

Bài 2.6. Tìm các hàm số f(x) xác định trên $\mathbb R$ sao cho $1)f(x)f(x^2-1)=\sin x \ \forall x$ HD: Thay x=0 và $x=-1 \Rightarrow K$ hông tồn tại.

$$(2)xf(x) + f(1-x) = x^3 + 1 \ \forall x$$

HD: Thay x và 1-x $\Rightarrow f(x) = x^2 - x + 1$.

$$f(x + y^2) = f(x^2) + f(y) \ \forall x, y$$

HD:
$$f(0) = 0, f(y^2) = f(0 + y^2), f(0) = f(-y^2 + y^2).$$

$$4)f(x+y) - f(x-y) = 2y(3x^2 + y^2) \ \forall x, y$$

HD:
$$f(X) - f(Y) = X^3 - Y^3 \Rightarrow f(x) = x^3 + f(0)$$
.

Bài 2.7. Chứng minh rằng phương trình

$$x^{17} = x^{11} + 1$$

có it nhất một nghiệm x > 0.

HD: Xét hàm số $f(x) = x^{17} - x^{11} - 1 \Rightarrow f(0).f(2) < 0$ và f(x) liên tục trên [0,2].

Bài 2.8. Cho hai hàm số f(x), g(x) liên tục trên [0, 1] và

$$f(0) = g(1) = 0, \ f(1) = g(0) = 1.$$

Chứng minh rằng: Với mọi $\lambda \in \mathbb{R}, \lambda > 0$, tồn tại $x \in [0,1]$ sao cho $f(x) = \lambda g(x)$.

HD: Sử dụng định lý 2.11 cho hàm số $\varphi(x)=f(x)-\lambda g(x)$ trên [0,1].

Bài 2.9. Chứng minh rằng: Hàm số

$$f(x) = \sin\frac{\pi}{x}$$

liên tục, nhưng không liên tục đều trên trên khoảng (0,1).

HD: f(x) không liên tục đều: $\epsilon \in (0,1), \forall \delta > 0, k \geq \frac{1}{\delta}, x = \frac{1}{2k+1}, x' = \frac{2}{1+4k}$.

Bài 2.10. Dùng định nghĩa tìm đạo hàm của các hàm số sau

1)
$$y = \sin 3x$$
, $\qquad \qquad \text{tìm } y'(\frac{\pi}{4})$ $\qquad \text{ds} : \frac{-3\sqrt{2}}{2}$.

$$2) y = x|x|, tim y'(0) ds: 0$$

1)
$$y = \sin 3x$$
, $\lim y'(\frac{\pi}{4})$ $ds : \frac{-3\sqrt{2}}{2}$.
2) $y = x|x|$, $\lim y'(0)$ $ds : 0$.
3) $y = \begin{cases} \frac{1-\cos x}{x} & \text{v\'eti } x \neq 0 \\ 0 & \text{v\'eti } x = 0. \end{cases}$ Tim $y'(0)$ $ds : \frac{1}{2}$.

4)
$$y = \begin{cases} \frac{e^{x^2} - 1}{x} & \text{v\'oi } x < 0 \\ x^2 - x & \text{v\'oi } x \ge 0. \end{cases}$$
 Tìm $y'_+(0), y'_-(0)$ ds : $y'_+(0) = -1, y'_-(0) = 1.$

5)
$$y = |x - 1|e^x$$
 Tîm $y'_{+}(1), y'_{-}(1)$ ds : $y'_{+}(1) = e, y'_{-}(1) = -e$.

Bài 2.11. Tìm đạo hàm y_x^\prime của các hàm số dưới dạng tham số

1)
$$\begin{cases} x=e^{-t} \\ y=t^3, t \in \mathbb{R}. \end{cases}$$
 $\mathrm{d} s: y_x'=-3t^2e^t.$

2)
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t), t \in \mathbb{R}. \end{cases}$$
 ds: $y'_x = \cot \frac{t}{2}$.

Bài 2.12. Tìm đạo hàm của các hàm số sau

1)
$$y = (2x+1)\sin^2 3x$$

2)
$$y = e^{3^x} + x^{3^e}$$

3)
$$y = \log_x(x^2 + 1), \ 0 < x \neq 1$$

4)
$$y = x^{\cos x}, \ x > 0$$

$$5) y = \sin^2(\cos x)$$

$$6) y = \ln(x + \sqrt{x^2 + \alpha^2})$$

7)
$$y = \frac{1}{2\alpha} \ln \left| \frac{x - \alpha}{x + \alpha} \right|, \ x^2 \neq \alpha^2$$

$$ds : \sin^2 3x + 3(2x+1)\sin 6x.$$

$$ds: e^{3^x}3^x \ln 3 + 3^e x^{3^e-1}$$

$$ds: \frac{2x^2 \ln x - (x^2 + 1) \ln(x^2 + 1)}{x(x^2 + 1) \ln^2 x}.$$

$$ds: x^{\cos x} \left(\frac{\cos x}{x} - \ln x \sin x\right).$$

$$ds: -\sin x \sin(2\cos x).$$

$$ds: \frac{1}{\sqrt{x^2 + \alpha^2}}.$$

$$ds: \frac{1}{x^2 - \alpha^2}.$$

8)
$$y = \sin(\arcsin(2x)), x \in (-\frac{1}{2}, \frac{1}{2})$$

9)
$$y = \arctan(\tan x), \ x \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$$

10)
$$y = \sinh^2(x^2 + 1)$$

$$ds: \frac{2\cos\left(\arcsin(2x)\right)}{\sqrt{1-4x^2}}.$$

$$ds: 2x \operatorname{sh}(2x^2 + 2).$$

Bài 2.13. Tìm đạo hàm cấp cao của các hàm số sau

1)
$$y = x^2 e^{2x}$$

$$tim y^{(4)}$$

$$ds: 16e^{2x}(x^2 + 4x + 3).$$

$$2) y = \sqrt{x}$$

tìm
$$y^{(10)}$$

$$ds: \frac{1.3.5...17}{2^{10}x^9\sqrt{x}}.$$

3)
$$y = \frac{2x+1}{x-1}$$

tìm
$$y^{(100)}$$

$$ds: \frac{3.100!}{(x-1)^{101}}.$$

4)
$$y = f(x^2 + 1)$$

tìm
$$y^{(3)}$$

$$ds: 12xf''(x^2+1) + 8x^3f^{(3)}(x^2+1)$$

5)
$$y = \sqrt[3]{ax + b} \text{ tìm } y^{(n)}$$

$$ds: a^n \frac{1}{3} (\frac{1}{3} - 1) (\frac{1}{3} - 2) ... (\frac{1}{3} - (n+1)) (ax+b)^{\frac{1}{3}-n}.$$

6)
$$y = \ln(ax + b)$$
 tìm $y^{(n)}$

$$ds: (-1)^{n-1}a^n(n-1)! \frac{1}{(ax+b)^n} v\acute{o}i \ ax+b>0.$$

7)
$$y = \frac{4x^2 + 8x - 3}{\sqrt{2x + 1}}$$
.

$$ds: 2^{n+1}(\frac{3}{2}-1)(\frac{3}{2}-2)...(\frac{3}{2}-n+1)(2x+1)^{\frac{3}{2}-n}-2^n5(-\frac{1}{2}-1)(-\frac{1}{2}-2)...(-\frac{1}{2}-n+1)(2x+1)^{-\frac{1}{2}-n}.$$

8)
$$y = \sin^3(ax + b) \text{ tìm } y^{(n)}$$
.

 $ds: \frac{3}{4}\sin(ax+b+\frac{n\pi}{2}) - \frac{1}{4}(3a)^n\sin(3ax+3b+\frac{n\pi}{2}).$

9)
$$\begin{cases} x = a\cos^2 t \\ y = b\sin^2 t \end{cases}$$

tìm $y_x^{(n)}$ đs $: y_x' = -\frac{b}{a}, y_x^{(n)} = 0 \ n \ge 2.$

10)
$$\begin{cases} x = \frac{t}{t+1} \\ y = \frac{2t^2 + t}{(t+1)^2} \end{cases}$$

tìm $y_x^{(n)}$ đs: $y_x' = 2x + 1, y_x'' = 2, y_x^{(n)} = 0 \ n \ge 3.$

Bài 2.14. Chứng minh rằng

1)
$$xy^3 = 1 + y'$$
 với $x = \frac{1+t}{t^3}, y = \frac{3}{2t^3} + \frac{2}{t}$.

2)
$$y\sqrt{1+y'^2} = y'$$
 với $x = \frac{1}{1+t^2} - \ln \frac{1+\sqrt{1+t^2}}{t}, y = \frac{t}{\sqrt{1+t^2}}$.

3)
$$y.y' = 2xy'^2 + 1$$
 với $x = \frac{1+\ln t}{t^2}, y = \frac{3+2\ln t}{t}$

4)
$$f(1) + \frac{f'(1)}{1!} + \dots + \frac{f^{(n)}(1)}{n!} = 2^n \text{ v\'oi } f(x) = x^n.$$

Bài 2.15. Chứng minh rằng:

1) $\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}$.

2) $\arcsin x = \arctan \frac{x}{\sqrt{1-x^2}}$.

3)
$$x - \frac{x^2}{2} \le \ln(1+x) \le x \ \forall x \ge 0.$$

4) $\ln(x^2 + 1) \le 2x \arctan x \ \forall x$.

5)
$$e^x > 1 + x + \frac{x^2}{2} \ \forall x > 0$$
.

Bài 2.16. Kiểm tra định lý Rolle đối với hàm số

$$f(x) = (x-1)(x-2)(x-3)$$

trên các đoạn [1, 2], [2, 3].

HD: Trên $[1,2] \Rightarrow c_1 = 2 - \frac{1}{\sqrt{3}}$, trên $[2,3] \Rightarrow c_2 = 2 + \frac{1}{\sqrt{3}}$.

Bài 2.17. Cho hàm số f(x) khả vi cấp n trên $[x_0, x_n]$ và

$$f(x_0) = f(x_1) = \dots = f(x_n)$$
 với $x_0 < x_1 < \dots < x_n$.

Chứng minh rằng: Tồn tại ít nhất một điểm $c \in (x_0, x_n)$ sao cho $f^{(n)}(c) = 0$.

Bài 2.18. Kiểm tra định lý Lagrange đối với hàm số

$$f(x) = \begin{cases} \frac{3-x^2}{2} & \text{n\'eu } 0 \le x \le 1\\ \frac{1}{x} & \text{n\'eu } x > 1. \end{cases}$$

trên [0,2]. Xác định điểm trung bình c.

$$ds: c_1 = \frac{1}{2}, c_2 = \sqrt{2}$$

Bài 2.19. Dùng định lý Lagrange, chứng minh các bất đẳng thức sau:

- 1) $|\sin x \sin y| \le |x y| \quad \forall x, y.$
- 2) $py^{p-1}(x-y) \le x^p y^p \le px^{p-1}(x-y) \ \forall \ 0 < x < y, p > 0.$
- 3) $|\arctan x \arctan y| \le |x y| \ \forall x, y.$
- 4) $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b} \quad \forall \ 0 < b < a$.
- 5) $\frac{x-y}{\cos^2 y} \le \tan x \tan y \le \frac{x-y}{\cos^2 x} \ \forall \ 0 < y \le x < \frac{\pi}{2}$.

Bài 2.20. Cho hàm f(x) khả vi trên (a,b). Dùng định lý Lagrange, chứng minh rằng: Nếu hàm số f(x) có đạo hàm bị chặn trên miền (a,b), thì f(x) liên tục đều trên (a,b).

Bài 2.21. Cho hàm số f(x) liên tục trên [a,b], khả vi trên (a,b) và $f(x) \neq mx + n \ \forall m,n$. Chứng minh rằng: Tồn tại ít nhất $c \in (a,b)$ sao cho

$$\left|\frac{f(b) - f(a)}{b - a}\right| < |f'(c)|.$$

HD: Chia [a, b] bởi $a = x_0 < x_1 < ... < x_n = b$ và áp dụng định lý Lagrange cho các đoạn $[x_{k-1}, x_k] \ \forall k = 1, 2, ..., n$.

Bài 2.22.

Khai triển Taylor của các hàm số sau:

1) $f(x) = \ln \cos x$ tại $x_0 = 0$ đến số hạng $o(x^4)$.

$$ds: f(x) = -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4).$$

2) $f(x) = e^{x \cos x}$ tai $x_0 = 0$ đến số hang $o(x^3)$.

$$ds: f(x) = 1 + x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + o(x^3).$$

3) $f(x) = \arcsin x$ tại $x_0 = 0$ đến số hạng $o(x^6)$.

$$ds: f(x) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^6).$$

4) $f(x) = (x^2 - 1)e^{2x}$ tại $x_0 = -1$ đến số hạng $o((x+1)^n)$.

$$ds: f(x) = \sum_{k=0}^{n} \frac{e^{-2}2^{k-2}(k-5)}{(k-1)!} (x+1)^k + o((x+1)^n).$$

5)
$$f(x) = \frac{x^2 - 3x + 3}{x - 2}$$
 tại $x_0 = 3$ đến số hạng $o((x - 3)^n)$.
đs: $f(x) = 3 + \sum_{k=0}^{n} (-1)^k (x - 3)^k + o((x - 3)^n)$.

Bài 2.23. Dùng quy tắc L'Hospital, tìm các giới hạn sau:

$$\begin{array}{lll} \text{Bal } 2.23. \text{ Dung quy tac } 1 \text{ Hospital, thin cac giol han sat.} \\ 1) & \lim_{x \to 0} \frac{\sqrt[5]{1 + 3x^4} - \sqrt{1 - 2x}}{\sqrt[3]{1 + x} - \sqrt{1 + x}} & \text{ds}: -6. \\ 2) & \lim_{x \to 0} \frac{\sqrt[7]{a + x} - \sqrt[7]{a - x}}{x} \text{ v\'oi} & n \in \mathbb{N}, a > 0 & \text{ds}: \frac{2\sqrt[7]{a}}{na}. \\ 3) & \lim_{x \to 0^+} \frac{\ln x}{1 + 2\ln(\sin x)} & \text{ds}: \frac{1}{2}. \\ 4) & \lim_{x \to 0} \frac{\sqrt[3]{\cos 3x} - \sqrt{1 + x \sin 2x}}{e^{x^2} - 1} & \text{ds}: \frac{-5}{2}. \\ 5) & \lim_{x \to 1} x^{\frac{1}{1 - x}} & \text{ds}: \frac{1}{e}. \\ 6) & \lim_{x \to \frac{\pi}{4}} \left(\tan x\right)^{\tan \frac{\pi x}{2}} & \text{ds}: \frac{1}{e}. \\ 7) & \lim_{x \to \frac{\pi}{4}} \left(\tan x\right)^{\tan 2x} & \text{ds}: \frac{1}{e}. \end{array}$$

Bài 2.24. (*Tìm cực tiểu toàn cục của hàm số*) Chi phí khi tàu chạy cả ngày và đêm gồm hai phần: *Phần cố định* bằng a *đồng*, *phần biến đổi* tăng tỷ lệ với lập phương của tốc độ. Hỏi tàu chay với tốc độ v nào thì kinh tế nhất.

HD: Gọi thời gian tàu chạy là t ngày đêm. Khi đó chi phí là $R=at+ktv^3$ (k là hệ số tỷ lệ). Vì $t=\frac{S}{v}$, suy ra

$$R = \frac{Sa}{v} + kSv^2 \to \min \Leftrightarrow 0 = R' \Leftrightarrow v = \sqrt[3]{\frac{a}{2k}},$$

vì hàm số R là lồi trên $(0, +\infty)$.

Bài 2.25. Cho $f(x) = -\ln(\ln x)$ với $x \in D = (0, +\infty)$.

- a) Chứng minh rằng f(x) lồi trên D.
- b) Từ đó, chứng minh rằng

$$\ln \frac{x+y}{2} \ge \sqrt{\ln x \ln y} \ \forall x, y > 1.$$

Bài 2.26. Cho $f(x) = x \ln x$ với $x \in D = (0, +\infty)$.

- a) Chứng minh rằng f(x) lồi trên D.
- b) Từ đó, chứng minh rằng

$$x \ln \frac{x}{a} + y \ln \frac{y}{b} \ge (x+y) \ln \frac{x+y}{a+b} \quad \forall a, b, x, y > 0.$$

CHƯƠNG 3. PHÉP TÍNH TÍCH PHÂN

3.1. Tích phân xác định

3.1.1. Định nghĩa

Cho hàm số f(x) xác định trên [a, b].

+ Phép chia P đoạn [a,b] (hay còn gọi là $phân\ hoạch$) bởi n điểm

$$x_0 = a < x_1 < \dots < x_n = b.$$

Đặt $\Delta_{x_i}=x_i-x_{i-1} \ \forall i=1,2,...,n, \Delta_P=\max\{\Delta_{x_1},\Delta_{x_2},...,\Delta_{x_n}\}$ (được gọi là đô dài của phân hoach P)

+ Chọn một điểm $\xi_i \in [x_{i-1}, x_i] \ \forall i = 1, 2, ..., n.$

Khi đó

$$\sigma_n = \sum_{k=1}^n f(\xi_k) \Delta_{x_i}$$

được gọi là một tổng tích phân (hay còn gọi là tổng Riemann) của f(x) trên [a,b]. Xét giới hạn

$$I = \lim_{\Delta_P \to 0} \sigma_n.$$

Nếu I tồn tại hữu hạn, không phụ thuộc vào phép chia P và phép chọn các điểm ξ_i i=1,2,...,n, thì I được gọi là *tích phân xác định* của f(x) trên [a,b] và được ký hiệu $\int\limits_{b}^{b} f(x)dx$. Khi đó hàm số f(x) được gọi là *khả tích* trên [a,b].

Trong trường hợp đặc biệt, phép chia P đoạn [0,1] bởi n điểm cách đều nhau

$$0 < \frac{1}{n} < \frac{2}{n} < \dots < \frac{n}{n} = 1.$$

Với f(x) khả tích trên [0,1], ta có

$$\lim_{n \to \infty} \frac{1}{n} \left(f(\frac{1}{n}) + f(\frac{2}{n}) + \dots + f(\frac{n}{n}) \right) = \int_{0}^{1} f(x) dx.$$

Ý nghiã: Dùng tích phân để tính giới hạn.

Ví dụ 3.1. Gid sử $I = \int_{-1}^{2} x^2 dx$ tồn tại. Dùng định nghĩa của tích phân để tính I.

96

Giải Chia đoạn [-1,2] thành n phần bằng nhau và chọn ξ_i là mút bên trái của $[x_{i-1},x_i]$

i=1,2,...,n, ta nhận được

$$\sigma_P = \frac{3}{n} \sum_{k=1}^n \left(-1 + \frac{3(k-1)}{n} \right)^2 = \frac{3}{n} \sum_{k=1}^n \left(1 - \frac{6(k-1)}{n} + \frac{9(k-1)^2}{n^2} \right)^2$$
$$= \frac{3}{n} \left(n - \frac{3(n-1)}{2n} \right).$$

Vậy

$$I = \int_{1}^{2} x^{2} dx = \lim_{n \to \infty} \sigma_{n} = 3.$$

3.1.2. Ý nghĩa hình học

Nếu $f(x) \geq 0 \ \forall x \in [a,b]$, thì σ_n là tổng diện tích các hình chữ nhật có kích

Hình 1: Biểu diễn hình học của tích phân

thước là Δ_{x_i} và $f(\xi_i)$ $\forall i=1,2,...,n$. Khi Δ_P đủ nhỏ, σ_n xấp xỉ với diện tích hình thang cong ABba tạo bởi các đường x=a,x=b,Ox và y=f(x).

3.1.3. Tổng Darboux trên và dưới

Giả sử f(x) xác định và bị chặn trên [a, b]. Khi đó, tồn tại

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x), \quad M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) \quad \forall i = 1, 2, ..., n.$$

Ta gọi

$$s_P = \sum_{k=1}^n m_i \Delta_{x_i}$$

là tổng Darboux dưới của hàm f(x) trên [a, b] và

$$S_P = \sum_{k=1}^n M_i \Delta_{x_i}$$

là tổng Darboux trên của hàm f(x) trên [a, b].

Cho hai phân hoạch P_1 và P_2 . Khi đó $P_1 \subseteq P_2$, nếu mọi điểm chia của P_1 đều thuộc tập các điểm chia của P_2 . Đặt

$$I^* = \inf_P \{S_P\}, \quad I_* = \sup_P \{s_P\}.$$

Định lý 3.2. i) $s_P \leq \sigma_P \leq S_P \ \forall P$.

ii)
$$P_1 \subseteq P_2 \Rightarrow s_{P_1} \leq s_{P_2}, \ S_{P_1} \geq S_{P_2}$$
.

$$iii)$$
 $s_{P_1} \leq S_{P_2} \ \forall P_1, P_2.$

$$iv) I_* \leq I^*$$
.

Chứng minh i) Từ

$$\inf_{[x_{i-1},x_i]} f(x) \le f(\xi_i) \le \sup_{[x_{i-1},x_i]} f(x) \Rightarrow m_i \Delta_{x_i} \le f(\xi_i) \Delta_{x_i} \le M_i \Delta_{x_i} \quad \forall i = 1, 2, ..., n$$

$$\Rightarrow \sum_{i=1}^{n} m_i \Delta_{x_i} \leq \sum_{i=1}^{n} f(\xi_i) \Delta_{x_i} \leq \sum_{i=1}^{n} M_i \Delta_{x_i} \Rightarrow s_P \leq \sigma_P \leq S_P \ \forall P.$$

ii) Cho $P_1 \subseteq P_2$, không mất tính tổng quát, giả sử P_1 gồm các điểm chia

$$x_0 = a < x_1 < x_2 < \dots < x_n = b$$

và P_2 gồm các điểm chia

$$x_0 = a < x_1 < x_2 < \dots < x_{k-1} < x^* < x_k < \dots < x_n = b.$$

Đăt

$$\Delta_{x_{k1}} = x^* - x_{k-1}, \Delta_{x_{k2}} = x_k - x^*, m_{k1}^* = \inf_{[x_{k-1}, x^*]} f(x), m_{k2}^* = \inf_{[x^*, x_k]} f(x).$$

Từ $[x_{k-1}, x_k] = [x_{k-1}, x^*] \cup [x^*, x_k]$, ta có

$$m_{k}.\Delta_{x_{k}} = \inf_{[x_{k-1},x_{k}]} f(x).\Delta_{x_{k}}$$

$$= \inf_{[x_{k-1},x_{k}]} f(x).\Delta_{x_{k1}} + \inf_{[x_{k-1},x_{k}]} f(x).\Delta_{x_{k2}}$$

$$\leq \inf_{[x_{k-1},x^{*}]} f(x).\Delta_{x_{k1}} + \inf_{[x^{*},x_{k}]} f(x).\Delta_{x_{k2}}$$

$$= m_{k1}^{*}.\Delta_{x_{k1}} + m_{k2}^{*}.\Delta_{x_{k2}}.$$

Khi đó

$$s_{P_1} = \sum_{i=1}^{n} m_i \Delta_{x_i}$$

$$= \sum_{i=1}^{n} m_i \Delta_{x_i} + m_k \Delta_{x_k}$$

$$\begin{cases} i = 1 \\ i \neq k \end{cases}$$

$$\leq \sum_{i=1}^{n} m_i \Delta_{x_i} + m_{k_1}^* \cdot \Delta_{x_{k_1}} + m_{k_2}^* \cdot \Delta_{x_{k_2}}$$

$$\begin{cases} i = 1 \\ i \neq k \end{cases}$$

$$= s_{P_2}.$$

Bằng cách chứng minh tương tự, ta cũng có $S_{P_1} \geq S_{P_2}$.

iii) Đặt $P=P_1\cup P_2$ (P gồm các điểm chia của P_1 và P_2), suy ra $P_1\subseteq P, P_2\subseteq P$. Theo i) và ii), ta có

$$\begin{cases} s_{P_1} \le s_P \\ s_P \le S_P \end{cases} \Rightarrow s_{P_1} \le S_{P_2} \ \forall P_1, P_2.$$

$$S_P \le S_{P_2}$$

3.1.4. Các điều kiện khả tích

Định lý 3.3. Cho hàm số f(x) xác định trên [a, b]. Khi đó các mệnh đề sau tương đương.

i) f(x) khả tích trên [a, b].

$$ii) \lim_{\Delta_P \to 0} (S_P - s_P) = 0.$$

$$iii)$$
 $I^* = I_*$.

 ${\it Chứng\ minhi})\Rightarrow ii)$ Giả sử f(x) khả tích trên [a,b]. Hay giới hạn I sau tồn tại hữu hạn, không phụ thuộc vào phép chia P và phép chọn $\xi_k\in[x_{k-1},x_k]$

$$I = \lim_{\Delta_P \to 0} \sigma_P.$$

Theo định nghĩa,

$$\forall \epsilon > 0, \exists \delta > 0, \forall P : 0 < \Delta_P < \delta \Rightarrow |\sigma_P - I| < \frac{\epsilon}{4} \Rightarrow I - \frac{\epsilon}{4} < \sigma_P < I + \frac{\epsilon}{4}.$$

Mặt khác, $s_P = \sum_{k=1}^n m_k \Delta_{x_k}$, $S_P = \sum_{k=1}^n M_k \Delta_{x_k}$, theo định nghĩa của inf, sup và định lý 3.2, ta có

$$\begin{cases} s_P + \frac{\epsilon}{4} > \sigma_P \\ S_P - \frac{\epsilon}{4} < \sigma_P. \end{cases} \Rightarrow I - \frac{\epsilon}{2} < \sigma_P - \frac{\epsilon}{4} < s_P \le S_P \le \sigma_P + \frac{\epsilon}{4} < I + \frac{\epsilon}{2}.$$

Vây

$$|s_P - I| < \frac{\epsilon}{2}, \ |S_P - I| < \frac{\epsilon}{2} \Rightarrow |S_P - s_P| \le |s_P - I| + |S_P - I| < \epsilon \Rightarrow \lim_{\Delta_P \to 0} (S_P - s_P) = 0.$$

 $ii) \Rightarrow i)$ Theo định lý 3.2, dãy (s_P) đơn điệu tăng và bị chặn trên và dãy (S_P) đơn điệu giảm và bị chặn dưới, suy ra tồn tại hữu hạn giới hạn $\lim_{\Delta_P \to 0} s_P$ và $\lim_{\Delta_P \to 0} S_P$. Theo tính chất của dãy đơn điệu trong chương 2, ta có

$$\lim_{\Delta_P \to 0} s_P = \inf_P s_P = I_*, \ \lim_{\Delta_P \to 0} S_P = \sup_P S_P = I^*.$$

Từ giả thiết $\lim_{\Delta_P \to 0} (S_P - s_p) = 0 \Rightarrow I^* = I_*$. Theo định lý 3.2,

$$s_p \le \sigma_P \le S_P \Rightarrow \lim_{\Lambda_P \to 0} \sigma_P = I^*.$$

 $ii) \Leftrightarrow iii)$ Hiển nhiên.

Định lý 3.4. Nếu f(x) liên tục trên [a,b], thì f(x) khả tích trên [a,b].

Chứng minh Giả thiết cho f(x) liên tục trên [a,b], nên f(x) liên tục tại $\bar{x}_k \in [a,b]$ bất kỳ. Hay

$$\forall \epsilon > 0, \exists \delta > 0 \forall x \in [a, b] : 0 < |x - \bar{x}_k| < \delta \Rightarrow |f(x) - f(\bar{x}_k)| < \frac{\epsilon}{b - a}.$$

Giả sử P là một phân hoạch bất kỳ sao cho $\Delta_P < \delta$. Do f(x) liên tục trên $[x_{k-1},x_k]$, nên

$$\inf_{[x_{k-1},x_k]} f(x) = \min_{[x_{k-1},x_k]} f(x) = f(\bar{x}_k)$$

và

$$\sup_{[x_{k-1},x_k]} f(x) = \max_{[x_{k-1},x_k]} f(x) = f(\hat{x}_k).$$

Τừ

$$\Delta_P < \delta \Rightarrow |\hat{x}_k - \bar{x}_k| < \delta \Rightarrow |f(\hat{x}_k) - f(\bar{x}_k)| < \frac{\epsilon}{b-a} \Rightarrow M_k - m_k < \frac{\epsilon}{b-a}.$$

Do đó

$$\sum_{k=1}^{n} (M_k - m_k) \Delta_{x_k} < \sum_{k=1}^{n} \frac{\epsilon}{b - a} \Delta_{x_k} = \epsilon \Rightarrow |S_P - s_P| < \epsilon \Rightarrow \lim_{\Delta_P \to 0} (S_P - s_P) = 0.$$

Theo định lý 3.3, ta có f(x) khả tích trên [a, b].

Định lý 3.5. Nếu f(x) bị chặn và có hữu hạn điểm gián đoạn trên [a,b], thì f(x) khả tích trên [a,b].

Chứng minh Không mất tính tổng quát, ta giả sử rằng f(x) có đúng một điểm gián đoạn $x_0 \in [a,b]$. Đặt

$$m = \min_{[a,b]} f(x), \quad M = \max_{[a,b]} f(x), \Delta_{x_0} = [x_0 - \epsilon^2, x_0 + \epsilon^2].$$

Vì x_0 là điểm gián đoạn, suy ra m < M. Với mọi $0 < \epsilon < \frac{1}{8(M-m)}$, chọn $0 < \delta < \epsilon$. Ta có f(x) khả tích trên $[a, x_0 - \epsilon^2]$ và $[x_0 + \epsilon^2, b]$. Gọi P_1 là phân hoạch trên $[a, x_0 - \epsilon^2]$ và P_2 là phân hoạch trên $[x_0 + \epsilon^2, b]$ sao cho $\Delta_{P_1} < \delta, \Delta_{P_2} < \delta$. Ta đều có

$$\lim_{\Delta_{P_j} \to 0} (M_{P_j} - m_{P_j}) = 0 \Rightarrow \sum_{k=1}^{n} (M_k(P_j) - m_k(P_j)) < \frac{\epsilon}{2} \quad \forall j = 1, 2.$$
 (3.1)

xét phân hoạch P bất kỳ của [a,b] sao cho $\Delta_P < \delta$, ta có

$$\sum_{k=1}^{n} (M_k - m_k) \Delta_{x_k} = \sum_{\Delta_{x_k} \cap \Delta_{x_k} = \emptyset} (M_k - m_k) \Delta_{x_k} + \sum_{\Delta_{x_k} \cap \Delta_{x_k} \neq \emptyset} (M_k - m_k) \Delta_{x_k}.$$

Theo (3.1) ta có

$$\sum_{\Delta_{x_k} \cap \Delta_{x_k} = \emptyset} (M_k - m_k) \Delta_{x_k} < \frac{\epsilon}{2}.$$

Mặt khác, do $M_k - m_k < M - m$, nên

$$\sum_{\Delta_{x_k} \cap \Delta_{x_k} \neq \emptyset} (M_k - m_k) \Delta_{x_k} \leq (M - m) \sum_{\Delta_{x_k} \cap \Delta_{x_k} \neq \emptyset} \Delta_{x_k}$$

$$\leq (M - m) (2\epsilon^2 + 2\delta)$$

$$\leq (M - m) 4\epsilon^2$$

$$< (M - m) 4\epsilon \frac{1}{8(M - m)}$$

$$= \frac{\epsilon}{2}.$$

Vậy $\sum_{k=1}^{n} (M_k - m_k) \Delta_{x_k} = 0$. Theo định lý 3.3, f(x) khả tích trên [a, b].

Định lý 3.6. Nếu hàm số f(x) đơn điệu và bị chặn trên [a,b], thì f(x) khả tích trên [a,b].

Chứng minh Giả sử f(x) đơn điệu tăng trên [a, b]. Khi đó

$$m_k = \inf_{[x_{k-1}, x_k]} f(x) = f(x_{k-1}), M_k = \sup_{[x_{k-1}, x_k]} f(x) = f(x_k) \Rightarrow M_k - m_k = f(x_k) - f(x_{k-1}).$$

Với mọi $\epsilon > 0$ chọn

$$\delta = \frac{\epsilon}{f(b) - f(a)}.$$

Khi đó mọi phân hoạch P mà $|P| < \delta$ đều có

$$\sum_{k=1}^{n} (M_k - m_k) \Delta_{x_k} < \delta \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = \delta (f(b) - f(a)) = \epsilon.$$

Vậy hàm số f(x) khả tích trên [a, b].

3.2. Tính chất

Cho f(x), g(x) là hai hàm số khả tích trên [a, b]. Khi đó

$$+ \int_{a}^{b} \left(f(x) + g(x) \right) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

$$+ \int_{a}^{b} \left(f(x) - g(x) \right) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx.$$

$$+\int_{a}^{b} \left(kf(x)\right)dx = k\int_{a}^{b} f(x)dx$$
 với $k = const.$

+ Nếu
$$f(x) \le g(x) \ \forall x \in [a,b]$$
, thì $\int\limits_a^b f(x) dx \le \int\limits_a^b g(x) dx$.

$$\begin{split} &+\int\limits_a^b f(x)dx=\int\limits_a^c f(x)dx+\int\limits_c^b f(x)dx \ \, \forall c\in(a,b).\\ &+\int\limits_a^b f(x)dx=-\int\limits_b^a f(x)dx.\\ &+|\int\limits_a^b f(x)dx|\leq\int\limits_a^b |f(x)|dx.\\ &+\int\limits_a^b f(x)dx=\int\limits_a^b f(t)dt \ \, (\text{tích phân không phụ thuộc vào tên biến}). \end{split}$$

Định lý 3.7. (Định lý giá trị trung bình)

Nếu f(x) khả tích trên [a,b] và $m \leq f(x) \leq M \ \forall x \in [a,b]$, thì tồn tại số $\mu \in [m,M]$ sao cho

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x)dx.$$

Chứng minh Ta có

$$\forall x \in [a, b] : m \le f(x) \le M \Rightarrow m(b - a) \le \int_a^b f(x) dx \le M(b - a).$$

Hay

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le M.$$

Đặt $\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx$, ta có số μ cần tìm.

Ví dụ 3.8. (Bất đẳng thức Cauchy-Schwarz)

 $N\acute{e}u\ f(x),g(x)$ liên tục trên [a,b], thì

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \le \int_{a}^{b} f^{2}(x)dx. \int_{a}^{b} g^{2}(x)dx.$$

Chứng minh Ta có
$$\int_a^b (yf(x) + g(x))^2 dx \ge 0 \ \forall y \in \mathbb{R}$$
. Hay

$$Ay^2 + 2By + C \ge 0 \ \forall y,$$

với

$$A = \int_{a}^{b} f^{2}(x)dx, \ B = \int_{a}^{b} f(x)g(x)dx, \ C = \int_{a}^{b} g^{2}(x)dx.$$

Do $A = \int_{0}^{b} f^{2}(x) dx \ge 0$, nên ta xét hai trương hợp:

Trường hợp 1: Nếu A=0, thì B=0. Thật vậy

- Nếu
$$B>0$$
, thì $2By+C\geq 0\Rightarrow 0\leq \lim_{y\to -\infty}(2By+C)=-\infty$, mâu thuẫn. - Nếu $B<0$, thì $2By+C\geq 0\Rightarrow 0\leq \lim_{y\to +\infty}(2By+C)=-\infty$, mâu thuẫn.

Vây bất đẳng thức trên luôn đúng.

Trường hợp 2: Nếu A>0, thì theo định lý dấu tam thức bậc hai, ta có $\Delta'=$ $B^2 - AC \le 0$, hay

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \le \int_{a}^{b} f^{2}(x)dx.\int_{a}^{b} g^{2}(x)dx.$$

3.3. Mối quan hệ giữa nguyên hàm và tích phân xác định

Ta nhắc lai một số nét cơ bản của nguyên hàm.

3.3.1. Nguyên hàm

- Hàm số F(x) được gọi là một nguyên hàm của f(x), nếu F'(x)=f(x).

Nhận xét 3.9. + Nếu F(x) là một nguyên hàm của f(x), thì F(x) + C với $C = const \ c \tilde{u} ng \ l a \ nguyên hàm của \ f(x).$

+ Nếu F(x) và G(x) là hai nguyên hàm của f(x), thì tồn tại C = const sao cho G(x) = F(x) + C.

- Nếu F(x) là một nguyên hàm của f(x), thì F(x) + C C = const được gọi là một họ nguyên hàm của f(x) được ký hiệu bởi $\int f(x) dx$ (còn gọi là tích phân *không xác định*). Hay

$$\int f(x)dx = F(x) + C.$$

Chú ý rằng: Vi phân của hàm f(x) là df(x) = f'(x)dx.

Các công thức cơ bản của nguyên hàm:

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C \quad \text{v\'oi} \quad \alpha \neq -1, C = const.$$

$$\int \frac{1}{x} dx = \ln|x| + C.$$

$$\int e^x dx = e^x + C.$$

$$\int a^x dx = \frac{1}{\ln a} a^x + C \quad \text{v\'oi} \quad 1 \neq a > 0.$$

$$\int \sin x dx = -\cos x + C.$$

$$\int \cos x dx = \sin x + C.$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C.$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C.$$

$$\int \sinh x dx = \cosh x + C.$$

$$\int \cosh x dx = \sinh x + C.$$

$$\int \frac{1}{\sinh^2 x} dx = -\coth x + C.$$

$$\int \frac{1}{\sinh^2 x} dx = -\coth x + C.$$

$$\int \frac{1}{\cosh^2 x} dx = \sinh x + C.$$

$$\int \frac{1}{1 + x^2} dx = \arctan x + C.$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \ln|x + \sqrt{x^2 - 1}| + C.$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C.$$

3.3.2. Hàm theo cận trên

- Cho hàm số f(x) khả tích trên [a,b]. Hàm số

$$\varphi(x) = \int_{a}^{x} f(t)dt$$

xác định trên [a, b] được gọi là hàm theo cận trên.

Định lý 3.10. Nếu f(x) liên tục trên [a, b], thì

$$\varphi'(x) = f(x) \ \forall x \in [a, b].$$

Chứng minh Với mọi $x\in[a,b]$, giả sử $\Delta_x>0:x+\Delta_x\in[a,b]$ ($\Delta_x<0$ chứng minh tương tự). Khi đó

$$\Delta_{\varphi} = \varphi(x + \Delta_{x}) - \varphi(x)$$

$$= \int_{a}^{x + \Delta_{x}} f(t)dt - \int_{a}^{x} f(t)dt$$

$$= \int_{a}^{x} f(t)dt + \int_{x}^{x + \Delta_{x}} f(t)dt - \int_{a}^{x} f(t)dt$$

$$= \int_{x}^{x + \Delta_{x}} f(t)dt.$$

Theo định lý giá trị trung bình 3.7 và tính liên tục của hàm f(x), ta có tồn tại $c_x \in [x, x + \Delta_x]$ sao cho

$$\Delta_{\varphi} = \int_{x}^{x+\Delta_{x}} f(t)dt = f(c_{x}).\Delta_{x} \Rightarrow \varphi'(x) = \lim_{\Delta_{x} \to 0} \frac{\Delta_{\varphi}}{\Delta_{x}} = \lim_{\Delta_{x} \to 0} f(c_{x}) = f(x).$$

3.3.3. Công thức Newton-Leibnitz¹

Với mỗi F(x) xác định trên [a, b], ta ký hiệu

$$F(b) - F(a) = F(x) \Big|_a^b.$$

Định lý 3.11. (Công thức Newton-Leibnitz)

Nếu f(x) liên tục trên [a,b] và F(x) là một nguyên hàm của f(x), thì

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b}.$$

¹1.7.1646-14.11.1716, nhà toán học và cũng là nhà triết học, nhà sử học, nhà luật học, nhà ngoại giao Đức Gottfried Leipzig là một trong những thành viên nước ngoài đầu tiên của Viện Hàn lâm khoa học Paris. Công lao quan trọng nhất của ông trong toán học là phát minh ra phép tính vi tích phân, đồng thời và độc lập với Newton.

Chứng minh Theo định lý 3.10, $\varphi(x) = \int_a^x f(t)dt$ là một nguyên hàm của f(x). Theo định lý 3.9, tồn tại số C sao cho $\varphi(x) = F(x) + C \ \forall x \in [a,b]$. Vì

$$\varphi(a) = F(a) + C = 0 \Rightarrow C = -F(a),$$

nên

$$\int_{a}^{b} f(x)dx = \varphi(b) = F(b) + C = F(b) - F(a).$$

Ví du 3.12. Tính tích phân

$$\int_{0}^{2} \frac{1}{\sqrt{4+x^2}} dx.$$

Giải Ta có

$$\int_{0}^{2} \frac{1}{\sqrt{4+x^{2}}} dx = \frac{1}{2} \int_{0}^{2} \frac{1}{\sqrt{1+(\frac{x}{2})^{2}}} dx = \int_{0}^{2} \frac{1}{\sqrt{1+(\frac{x}{2})^{2}}} d\frac{x}{2} = \arctan \frac{x}{2} \Big|_{0}^{2} = \frac{\pi}{4}.$$

3.4. Các phương pháp tính tích phân

3.4.1. Phương pháp đổi biến

Dang 1: $x = \varphi(t)$.

Định lý 3.13. Nếu hàm f(x) liên tục trên [a,b] và hàm số $\varphi(t)$ thỏa mãn:

$$+ \varphi(\alpha) = a, \varphi(\beta) = b$$

+ $\varphi'(t)$ liên tực trên $[\alpha, \beta]$

 $+ \forall t \in [\alpha, \beta] \Rightarrow x = \varphi(t) \in [a, b],$

thì

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Chứng minh Vì f(x) liên tục, nên theo định lý 3.10, tồn tại nguyên hàm F(x), hay F'(x) = f(x). Khi đó rõ ràng $G(t) = F(\varphi(t))$ là một nguyên hàm của $f(\varphi(t)).\varphi'(t)$.

Theo công thức Newton-Leibnitz, ta có

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = F(\alpha) - F(\beta)$$

$$= F(\varphi(\alpha)) - F(\varphi(\beta))$$

$$= F(b) - F(a)$$

Vậy ta có công thức cần chứng minh.

Ví du 3.14. Tính tích phân

$$I = \int_{0}^{3} \sqrt{9 - x^2} dx.$$

Gi di Đặt $x=3\sin t, x=0 \Rightarrow t=0, x=3 \Rightarrow t=\frac{\pi}{2}, dx=3\cos t dt$. Theo định lý 3.13, ta có

$$I = \int_{0}^{3} \sqrt{9 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} \sqrt{9 - 9\sin^{2} t} \cdot 3\cos t dt = 9 \int_{0}^{\frac{\pi}{2}} |\cos t| \cdot \cos t dt = \frac{9\pi}{4}.$$

Dang 2: $t = \varphi(x)$.

Định lý 3.15. Nếu f(x) liên tục trên [a,b] và hàm $\varphi(t)$ thỏa mãn các điều kiện:

- + tăng ngặt trên [a,b]
- $+ \varphi'(x)$ liên tục trên [a,b]
- + $N\acute{e}u f(x)dx = g(t)dt$, thì g(t) liên tục trên $[\varphi(a), \varphi(b)]$,

thì

$$\int_{a}^{b} f(x)dx = \int_{\varphi(a)}^{\varphi(b)} g(t)dt.$$

 ${\it Ch\'ung\ minh\ }$ Bằng cách chứng minh tương tự như định lý 3.13 với $x=\varphi(t).$

Ví dụ 3.16. Tính tích phân

$$I = \int_{0}^{\ln 3} \frac{e^x dx}{\sqrt{(1+e^x)^3}}.$$

Giải Đặt $t=\sqrt{1+e^x} \Rightarrow e^x=t^2-1 \Rightarrow e^x dx=2t dt, x=0 \to t=\sqrt{2}, x=\ln 3 \to t=2$

$$I = \int_{0}^{\ln 3} \frac{e^x dx}{\sqrt{(1+e^x)^3}} = \int_{\sqrt{2}}^{2} \frac{2t dt}{t^3} = 2 \int_{\sqrt{2}}^{2} \frac{1}{t^2} dt = \frac{-2}{t} \Big|_{\sqrt{2}}^{2} = \sqrt{2} - 1.$$

Ví dụ 3.17. Cho các hàm trong dấu tích phân liên tục.

i) CMR:

$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx.$$

Từ đó tính $I_1 = \int\limits_0^{\frac{\pi}{2}} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$.

ii) CMR:

$$\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx.$$

Từ đó tính $I_2 = \int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$.

Giải i) Đổi biến $t = \frac{\pi}{2} - x$, ta có

$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{\frac{\pi}{2}}^{0} f(\cos t)(-dt) = \int_{0}^{\frac{\pi}{2}} f(\cos t) dt = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx.$$

Từ đó,

$$I_{1} = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt[3]{\cos x}}{\sqrt[3]{\cos x} + \sqrt[3]{\sin x}} dx \Rightarrow 2I_{1} = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx + \int_{0}^{\frac{\pi}{2}} \frac{\sqrt[3]{\cos x}}{\sqrt[3]{\cos x} + \sqrt[3]{\sin x}} dx.$$

Vậy
$$2I_1 = \int_{0}^{\frac{\pi}{2}} dx = \frac{\pi}{2} \Rightarrow I_1 = \frac{\pi}{4}.$$

ii) Đổi biến $t = \pi - x$, ta nhận được

$$\int_{0}^{\pi} x f(\sin x) dx = \int_{0}^{\pi} (\pi - t) f(\sin t) dt = \pi \int_{0}^{\pi} f(\sin t) dt - \int_{0}^{\pi} t f(\sin t) dt.$$

Vậy

$$\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx.$$

Từ đó

$$I_2 = \frac{\pi}{2} \int_0^{\pi} \frac{\sin x}{2 - \sin^2 x} dx = \frac{\pi}{2} \int_0^{\pi} \frac{d(\cos x)}{1 + \cos^2 x} = \frac{\pi}{2} \arctan(\cos x) \Big|_0^{\frac{\pi}{2}} = \frac{\pi^2}{4}.$$

3.4.2. Phương pháp tích phân từng phần

Cho u=u(x),v=v(x) là hàm số liên tục trên [a,b]. Từ công thức vi phân

$$d(uv) = udv + vdu,$$

ta có công thức tích phân từng phần sau

$$\int_{a}^{b} u dv = (uv) \Big|_{a}^{b} - \int_{a}^{b} v du.$$

Ví dụ 3.18. Tính tích phân

$$I = \int_{0}^{3} \arcsin \sqrt{\frac{x}{1+x}} dx.$$

Giải Dùng công thức tích phân từng phần, với

$$u = \arcsin\sqrt{\frac{x}{1+x}}, dv = dx \Rightarrow u = \frac{1}{\sqrt{x}(1+x)}, v = x.$$

Khi đó

$$I = x \arcsin \sqrt{\frac{x}{1+x}} \Big|_0^3 - \frac{1}{2} \int_0^3 \frac{x dx}{\sqrt{x}(1+x)}$$

$$= 3 \arcsin \frac{\sqrt{3}}{2} - \int_0^3 \frac{(\sqrt{x})^2 d\sqrt{x}}{1+(\sqrt{x})^2}$$

$$= \pi - \sqrt{x} \Big|_0^3 + \arctan \sqrt{x} \Big|_0^3$$

$$= \frac{4\pi}{3} - \sqrt{3}.$$

3.5. Tích phân của hàm phân thức hữu tỷ

Tổng quát, ta xét tích phân

$$I=\int\limits_a^b rac{P_n(x)}{Q_m(x)}dx$$
 với $P_n(x),Q_m(x)$ là hai đa thức bậc n và m tương ứng.

3.5.1. Các dạng cơ bản

$$I_{1} = \int_{\alpha}^{\beta} \frac{dx}{ax+b} \quad (a \neq 0).$$

$$I_{2} = \int_{\alpha}^{\beta} \frac{dx}{(ax+b)^{\gamma}} \quad (a \neq 0, \gamma \neq 1).$$

$$I_{3} = \int_{\alpha}^{\beta} \frac{dx}{x^{2}+a^{2}}.$$

$$I_{4} = \int_{\alpha}^{\beta} \frac{xdx}{x^{2}+a^{2}}.$$

$$I_{5} = \int_{\alpha}^{\beta} \frac{dx}{(x^{2}+a^{2})^{\gamma}} \quad (\gamma \geq 2, \gamma \in \mathbb{N}).$$

$$I_{6} = \int_{\alpha}^{\beta} \frac{xdx}{(x^{2}+a^{2})^{\gamma}} \quad (\gamma \geq 2, \gamma \in \mathbb{N}).$$

Phương pháp giải + Tính I_1, I_2, I_3, I_4 .

$$I_{1} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{adx}{ax+b} = \int_{\alpha}^{\beta} \frac{d(ax+b)}{ax+b} = \frac{1}{a} \ln|ax+b| \Big|_{\alpha}^{\beta} = \frac{1}{a} \ln|\frac{a\beta+b}{a\alpha+b}|.$$

$$I_{2} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{adx}{(ax+b)^{\gamma}} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{d(ax+b)}{(ax+b)^{\gamma}} = \frac{1}{(1-\gamma)(ax+b)^{\gamma-1}} \Big|_{\alpha}^{\beta}.$$

$$I_{3} = \frac{1}{a^{2}} \int_{\alpha}^{\beta} \frac{dx}{1 + (\frac{x}{a})^{2}} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{d(\frac{x}{a})}{1 + (\frac{x}{a})^{2}} = \frac{1}{a} \arctan \frac{x}{a} \Big|_{\alpha}^{\beta}$$

$$I_{4} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{d(x^{2} + a^{2})}{x^{2} + a^{2}} = \frac{1}{a} \ln(x^{2} + a^{2}) \Big|_{\alpha}^{\beta}.$$

+ Phương pháp tính $I_5=\int\limits_{\alpha}^{\beta}\frac{dx}{(x^2+a^2)^{\gamma}}=J_{\gamma}$ (đặt) $(\gamma\geq 2,\gamma\in\mathbb{N})$. Đặt $u=\frac{1}{(x^2+a^2)^{\gamma}},dv=dx$. Khi đó

$$du = \frac{-2\gamma x dx}{(x^2 + a^2)^{\gamma + 1}}, v = x.$$

Theo công thức tích phân từng phần, ta có

$$I_5 = \frac{x}{(x^2 + a^2)^{\gamma}} \Big|_{\alpha}^{\beta} + 2\gamma \int_{\alpha}^{\beta} \frac{x^2 dx}{(x^2 + a^2)^{\gamma + 1}}.$$

Mặt khác

$$\int_{\alpha}^{\beta} \frac{x^2 dx}{(x^2 + a^2)^{\gamma + 1}} = \int_{\alpha}^{\beta} \frac{(x^2 + a^2 - a^2) dx}{(x^2 + a^2)^{\gamma + 1}} = \int_{\alpha}^{\beta} \frac{dx}{(x^2 + a^2)^{\gamma}} - a^2 \int_{\alpha}^{\beta} \frac{dx}{(x^2 + a^2)^{\gamma + 1}}.$$

Suy ra

$$J_{\gamma} = \frac{x}{(x^2 + a^2)^{\gamma}} \Big|_{\alpha}^{\beta} + 2\gamma J_{\gamma} - 2a^2 \gamma J_{\gamma+1}.$$

Như vậy

$$J_{\gamma+1} = \frac{x}{2\gamma a^2 (x^2 + a^2)^{\gamma}} \Big|_{\alpha}^{\beta} + \frac{2\gamma - 1}{2a^2 \gamma} J_{\gamma}.$$

Theo quy nạp toán học, ta tính được J_{γ} theo quá trình

$$J_1 \rightarrow J_2 \rightarrow ... \rightarrow J_{\gamma}$$

trong đó $J_1 = I_3$.

+ Tính
$$I_6=\int\limits_{lpha}^{eta} rac{xdx}{(x^2+a^2)^{\gamma}} \quad (\gamma\geq 2, \gamma\in \mathbb{N}).$$

$$I_6 = \frac{1}{2} \int_{\alpha}^{\beta} \frac{d(x^2 + a^2)}{(x^2 + a^2)^{\gamma}} = \frac{1}{2(1 - \gamma)} (x^2 + a^2)^{1 - \gamma} \Big|_{\alpha}^{\beta}.$$

3.5.2. Phương pháp đồng nhất hệ số

Bước 0. Nếu $n \geq m$ thì ta chia đa thức $P_n(x)$ cho đa thức $Q_m(x)$ sao cho phân thức $\frac{P_n(x)}{Q_m(x)}$ có n < m.

Bước 1. Phân tích $P_n(x)$ thành nhân tử:

$$Q_m(x) = a(x - x_1)^{\alpha_1} ... (x - x_k)^{\alpha_k} .(x^2 + b_1 x + c_1)^{\beta_1} ... (x^2 + b_h x + c_h)^{\beta_h}$$

sao cho $\Delta_i = b_i^2 - 4c_i^2 < 0 \ \forall i = 1, 2, ..., h.$

Bước 2. Quy tắc đồng nhất hệ số:

$$\begin{split} \frac{P_n(x)}{Q_m(x)} = & \frac{a_{11}}{(x-x_1)^1} + \frac{a_{12}}{(x-x_1)^2} + \ldots + \frac{a_{1\alpha_1}}{(x-x_1)^{\alpha_1}} \\ & + \ldots \\ & + \frac{a_{k1}}{(x-x_k)^1} + \frac{a_{k2}}{(x-x_k)^2} + \ldots + \frac{a_{k\alpha_k}}{(x-x_k)^{\alpha_k}} \\ & + \frac{b_{11}x + c_{11}}{(x^2 + b_1x + c_1)^1} + \frac{b_{12}x + c_{12}}{(x^2 + b_1x + c_1)^2} + \ldots + \frac{b_{1\beta_1}x + c_{1\beta_1}}{(x^2 + b_1x + c_1)^{\beta_1}} \\ & + \ldots \\ & + \frac{b_{h1}x + c_{h1}}{(x^2 + b_hx + c_h)^1} + \frac{b_{h2}x + c_{h2}}{(x^2 + b_hx + c_h)^2} + \ldots + \frac{b_{1\beta_h}x + c_{1\beta_h}}{(x^2 + b_hx + c_h)^{\beta_h}}. \end{split}$$

Nhận xét 3.19. *Từ*

$$\frac{px+q}{(x^2+bx+c)^{\alpha}} = \frac{pt+\bar{q}}{(t^2+a^2)^{\alpha}} \quad v\acute{o}i\ t = x+\frac{b}{2}, a^2 = c-\frac{b^2}{4} > 0, \bar{q} = q+\frac{pb}{2},$$

suy ra việc tính $I=\int\limits_a^b \frac{P_n(x)}{Q_m(x)}dx$ được chuyển về việc tính các tích phân dạng $I_1,...,I_6$.

Ví dụ 3.20. Tính tích phân

$$I = \int_{1}^{\sqrt{3}} \frac{3x+1}{x(1+x^2)^2} dx.$$

Giải Đồng nhất hệ số

$$\frac{3x+1}{x(1+x^2)^2} = \frac{A}{x} + \frac{Bx+C}{1+x^2} + \frac{Dx+E}{(1+x^2)^2}.$$

Hay

$$3x + 1 = (A + B)x^4 + Cx^3 + (2A + B + D)x^2 + (C + F)x + A.$$

Hệ số các lũy thừa hai vế bằng nhau.

$$\begin{cases} A+B=0\\ C=0\\ 2A+B+D=0\\ C+F=3\\ A=1. \end{cases}$$

Từ đó

$$I = \int_{1}^{\sqrt{3}} \frac{dx}{x} - \int_{1}^{\sqrt{3}} \frac{xdx}{1+x^2} - \int_{1}^{\sqrt{3}} \frac{xdx}{(1+x^2)^2} + 3 \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}.$$

$$= \left(\ln x - \frac{1}{2}\ln(1+x^2)\right) \Big|_{1}^{\sqrt{3}} - \frac{1}{2} \int_{1}^{\sqrt{3}} (1+x^2)^{-2} d(1+x^2) + 3 \int_{1}^{\sqrt{3}} \frac{dx}{(1+x^2)^2}$$

$$= \left(\ln x - \frac{1}{2}\ln(1+x^2) + \frac{1}{2(1+x^2)}\right) \Big|_{1}^{\sqrt{3}} + 3J$$

$$= -\frac{1}{8} + 3J.$$

Tính $J=\int\limits_{1}^{\sqrt{3}}\frac{dx}{(1+x^2)^2}.$ Theo công thứ tính I_5 , ta có

$$J = \frac{1}{2} \frac{x}{1+x^2} \Big|_{1}^{\sqrt{3}} + \frac{1}{2} \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} = \frac{1}{8} + \frac{1}{2} \arctan x \Big|_{1}^{\sqrt{3}} = \frac{1}{8} + \frac{\pi}{24}.$$

Vậy
$$I = -\frac{1}{8} + 3J = \frac{1}{4} + \frac{\pi}{8}$$
.

3.6. Tích phân của hàm lượng giác

Xét tích phân có dạng

$$I = \int_{\alpha}^{\beta} R(\sin x, \cos x) dx.$$

Dạng 1. (phương pháp chung) Đổi biến $t = \tan \frac{x}{2}$.

Khi đó

$$dt = \frac{1}{2\cos^2\frac{x}{2}}dx = \frac{1}{2}(1+\tan^2\frac{x}{2})dx = \frac{1}{2}(1+t^2)dx \Rightarrow dx = \frac{2dt}{1+t^2},$$

và

$$\sin x = \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}} = \frac{2t}{1+t^2}, \ \cos x = \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}} = \frac{1-t^2}{1+t^2}.$$

Ví dụ 3.21. Tính tích phân

$$I = \int_{0}^{2} \frac{dx}{2\sin x - \cos x + 5}.$$

 $\emph{Giải}$ Đặt $t=\tan\frac{x}{2}, x=0 \rightarrow t=0, x=2 \rightarrow t=\frac{\pi}{4}.$ Ta có

$$dx = \frac{2dt}{t^2}$$
, $\sin x = \frac{1 - t^2}{1 + t^2}$, $\cos x = \frac{1 - t^2}{1 + t^2}$.

Vậy

$$I = \int_{0}^{\frac{\pi}{4}} \frac{dt}{3t^2 + 2t + 2} = \frac{1}{\sqrt{5}} \arctan \frac{3t + 1}{\sqrt{5}} \Big|_{0}^{\frac{\pi}{4}} = \frac{1}{\sqrt{5}} \left(\arctan \frac{3\pi + 4}{4\sqrt{5}} - \arctan \frac{1}{\sqrt{5}}\right).$$

Dạng 2. $R(\sin x, \cos x)$ chắn đối với $\sin x, \cos x$, hay

 $R(-\sin x, -\cos x) = R(\sin x, \cos x) \ \forall x \in D \ (\text{tập xác định của} \ R(\sin x, \cos x)).$

Phương pháp giải: Đặt $t=\tan x\Rightarrow dt=\frac{1}{\cos^2 x}dx=(1+t^2)dx\Rightarrow dx=\frac{dt}{1+t^2}$ hoặc $t=\cot x\Rightarrow dt=-\frac{1}{\sin^2 x}dx=-(1+t^2)dx\Rightarrow dx=-\frac{dt}{1+t^2}.$

Ví dụ 3.22. Tính tích phân

$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{\sin^3 x \cos^5 x}.$$

 $\emph{Giải}$ Đặt $t=tanx\Rightarrow dx=\frac{dt}{1+t^2}, x=\frac{\pi}{4}\to t=1, x=\frac{\pi}{3}\to t=\sqrt{3}.$ Khi đó

$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{\sin^3 x \cos^5 x} = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{(1 + \tan^2 x)^3}{\tan^3 x} \frac{1}{\cos^2 x} dx$$

$$= \int_{1}^{\sqrt{3}} \frac{(1+t^2)^3}{t^3} dt = \left(-\frac{1}{2t^2} + 3\ln t + \frac{3}{2}t^2 + \frac{1}{4}t^4\right)\Big|_{1}^{\sqrt{3}}.$$

Vậy $I = \frac{3}{2} \ln 3 + \frac{19}{3}$.

Dang 3 $R(\sin x, \cos x)$ lẻ đối với $\sin x$, hay

Phương pháp giải: Đặt $t = \cos x \Rightarrow dt = -\sin x dx$.

Ví dụ 3.23. Tính tích phân

$$I = \int_{0}^{\frac{\pi}{4}} \frac{\sin x dx}{\cos x \sqrt{1 + \sin^2 x}}.$$

Giải Đặt $\cos x=t\Rightarrow dt=-\sin x dx, x=0\rightarrow t=1, x=\frac{\pi}{4}\rightarrow t=\frac{\sqrt{2}}{2}$, ta có

$$I = -\int_{0}^{\frac{\pi}{4}} \frac{-\sin x dx}{\cos x \sqrt{2 - \cos^{2} x}} = -\int_{1}^{\frac{\sqrt{2}}{2}} \frac{dt}{t\sqrt{2 - t^{2}}}$$

$$= -\int_{1}^{\frac{\sqrt{2}}{2}} \frac{dt}{t^2 \sqrt{\frac{2}{t^2} - 1}} = -\int_{1}^{\frac{\sqrt{2}}{2}} \frac{d\frac{1}{t}}{\sqrt{\frac{2}{t^2} - 1}}.$$

$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln|x + \sqrt{x^2 + a}| + C,$$

Theo công thức

$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln|x + \sqrt{x^2 + a}| + C,$$

ta có

$$I = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2}}{t} + \sqrt{\frac{2}{t^2} - 1} \right|_{1}^{\frac{\sqrt{2}}{2}} = -\frac{1}{\sqrt{2}} \ln \frac{2 + \sqrt{3}}{1 + \sqrt{2}}.$$

Dang 4. $R(\sin x, \cos x)$ lẻ đối với $\cos x$, hay

 $R(\sin x, -\cos x) = -R(\sin x, \cos x) \ \forall x \in D \ (\text{tập xác định của } R(\sin x, \cos x)).$

Phương pháp giải: Đặt $t = \sin x \Rightarrow dt = \cos x dx$.

Ví du 3.24. Tính tích phân

$$I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin 2x + \cos x)dx}{\sqrt{1 + 3\sin x}}.$$

116

Giải Đặt $\sqrt{1+3\sin x}=t\Rightarrow dt=rac{3\cos xdx}{2\sqrt{1+3\sin x}}, x=0 \to t=1, x=rac{\pi}{2} \to t=2$, ta có

$$I = \int_{0}^{\frac{\pi}{2}} \frac{(2\sin x + 1)\cos x dx}{\sqrt{1 + 3\sin x}} = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \frac{(2\sin x + 1)3\cos x dx}{2\sqrt{1 + 3\sin x}} = \frac{2}{3} \int_{1}^{2} (2\frac{t^{2} - 1}{3} + 1) dt$$
$$= \frac{2}{9} \int_{1}^{2} (2t + 1) dt = \frac{2}{9} (\frac{2}{3}t^{3} + t) \Big|_{1}^{2} = \frac{34}{27}.$$

Muốn quan sát các dạng tích phân khác, ta có thể tham khảo thêm các dạng trong phần bài tập.

3.7. Một vài ứng dụng của tích phân

3.7.1. Tính diện tích

Dang 1 Hình tạo bởi các đường cong trên hệ trục tọa độ Oxy.

+ Nếu hình (H) được cho bởi:

$$(H_1) \begin{cases} y = f(x) \\ y = g(x) \\ x = a \quad (a < b) \end{cases} \Rightarrow S_{H_1} = \int_a^b |f(x) - g(x)| dx.$$

$$x = b$$

Hình 2: Biểu diễn hình (H_1)

Ví du 3.25. Tính diên tích hình tao bởi các đường cong

$$(H) \begin{cases} x + y = 0 \\ y = 2x - x^2. \end{cases}$$

Giải Parabol và đường thẳng cắt nhau tại các điểm có hoành độ $x_1=0, x_2=3$. Vì vậy, diện tích được tính bởi

$$S_H = \int_0^3 (2x - x^2 + x) dx = \left(\frac{3}{2}x^2 - \frac{x^3}{3}\right)\Big|_0^3 = \frac{9}{2}.$$

+ Nếu hình (H) được cho bởi:

$$(H_2) \begin{cases} x = \varphi(y) \\ x = \psi(y) \\ y = \alpha \quad (\alpha < \beta) \end{cases} \Rightarrow S_{H_2} = \int_{\alpha}^{\beta} |\varphi(y) - \psi(y)| dy.$$

$$y = \beta$$

Hình 3: Biểu diễn hình (H_2)

Ví dụ 3.26. Hình tạo bởi các đường cong parabol $y^2 = 2x$ chia diện tích hình tròn

$$x^2 + y^2 \le 8$$
 theo $t\mathring{y}$ số nào?

Hình 4: Hình vẽ của ví dụ 3.26

Giải it Giải Ký hiệu diện tích hình tròn là S_1 , còn diện tích phần giới hạn bởi parabol và hình tròn (như trên hình vẽ) là S_2 . Rõ ràng $S_1 = 8\pi$. Tìm hoành độ giao điểm của parabol và đường tròn; muốn vây ta giải phương trình

$$x^{2} + 2x + 1 = 9 \Rightarrow x = 2 \Rightarrow y_{1} = 2, y_{2} = -2.$$

Từ phương trình đường tròn

$$x^2 + y^2 = 8 \Leftrightarrow x^2 = 8 - y^2 \Rightarrow cung(AB) : x = \sqrt{8 - y^2}.$$

Dựa vào đồ thị và công thức tính diện tích hình (H_2) , ta có

$$S_{2} = \int_{-2}^{2} (\sqrt{8 - y^{2}} - \frac{1}{2}y^{2}) dy$$

$$= \int_{-2}^{2} \sqrt{8 - y^{2}} dy - \frac{1}{6}y^{3} \Big|_{-2}^{2}$$

$$= J - \frac{8}{3}$$

$$J = \int_{2}^{2} \sqrt{8 - y^{2}} dy,$$

đặt $y=2\sqrt{2}\sin t, dy=2\sqrt{2}\cos t, y=-2 \rightarrow t=-\frac{\pi}{4}, y=2 \rightarrow t=\frac{\pi}{4}$. Vậy

$$J = 8 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |\cos t| \cos t dt = 4 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1 + \cos 2t) dt = 2\pi + 4.$$

Khi đó

$$S_2 = 2\pi + \frac{4}{3} \Rightarrow \frac{S_1 - S_2}{S_2} = \frac{9\pi - 2}{3\pi + 2}.$$

Dạng 2 Hình tạo bởi các đường cong trên hệ tọa độ cực $r=r(\varphi)$.

Mối quan hệ giữa hệ trục tọa độ Oxy và hệ trục toạ độ cực là

$$\begin{cases} x = r(\varphi)\cos\varphi \\ y = r(\varphi)\sin\varphi. \end{cases}$$

Khi đó diện tích hình tạo bởi

$$(H): r = r(\varphi) \quad (\alpha \le \varphi \le \beta).$$

là

$$S_H = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi.$$

Ví dụ 3.27. Tính diện tích tạo bởi đường cong Cardioid (hình trái tim) có phương trình

$$(H): r = a(1 + \cos \varphi).$$

Giải Đường Cardioid có tính chất đối xứng qua trục Ox, nên ta có

$$S_H = \int_0^{\pi} a^2 (1 + \cos \varphi)^2 d\varphi = a^2 \int_0^{\pi} (1 + 2\cos \varphi + \cos^2 \varphi) d\varphi = a^2 (\pi + \frac{1}{2}\pi) = \frac{3}{2}\pi a^2.$$

Dạng 3 Hình tạo bởi các đường cong dạng tham số.

Cho hình (H) được tạo bởi đường cong dạng tham số

$$\begin{cases} x = x(t) \\ y = y(t) & t_1 \le t \le t_2. \end{cases}$$

$$S_H = \int_{t_1}^{t_2} |y(t).x'(t)| dt.$$

Ví du 3.28. Tính diện tích hình tạo bởi elip có phương trình

$$(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Hình 5: Đường cong Cardioid

Giải Phương trình chính tắc của (E) được viết dưới dạng tham số

(E):
$$\begin{cases} x = a \cos t \\ y = b \sin t & 0 \le t \le 2\pi. \end{cases}$$

Do (E) có tính chất đối xứng qua trục Ox,Oy, nên diện tích của (E) được tính bởi

$$S_E = 4 \int_0^{\frac{\pi}{2}} |y(t).x'(t)| dt = 4 \int_0^{\frac{\pi}{2}} ab \sin^2 t dt = \pi ab.$$

3.7.2. Tính độ dài đường cong

Dang 1 Đường cong trên hệ trục tọa độ Oxy.

Cho đường cong AB có phương trình

$$\widetilde{AB}$$
: $y = f(x)$ $x \in [a, b]$.

Khi đó, độ dài đường cong AB được xác định bởi công thức

$$|\widetilde{AB}| = \int_{a}^{b} \sqrt{1 + f_{x}^{2}} dx.$$

Dạng 2 Đường cong trên hệ trục tọa độ cực.

Cho đường cong AB có phương trình

$$\widetilde{AB}$$
: $r = r(\varphi) \ \varphi \in [\alpha, \beta]$.

Khi đó

$$|\widetilde{AB}| = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi.$$

Dạng 3 Đường cong dạng tham số.

$$\widetilde{AB}: \begin{cases} x = x(t) \\ y = y(t) & t_1 \le t \le t_2. \end{cases}$$

Khi đó

$$|\widetilde{AB}| = \int_{t_1}^{t_2} \sqrt{x_t'^2 + y_t'^2} dt.$$

Ví dụ 3.29. Tính độ dài đường cong Astroid cho bởi phương trình tham số

$$\widetilde{AB}: \begin{cases} x = a\cos^3 t \\ y = a\sin^3 t & a > 0. \end{cases}$$

Giải Theo công thức dạng 3, ta có

Hình 6: Đường cong Cycloid

$$|\widetilde{AB}| = \int_{0}^{2\pi} \sqrt{x_t'^2 + y_t'^2} dt$$

$$= \frac{1}{2} \int_{0}^{2\pi} \sqrt{(-3a\cos^2 t \sin t)^2 + (3a\sin^2 t \cos t)^2} dt.$$

$$= 6a \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2t dt$$

$$= -3a\cos 2t \Big|_{0}^{\frac{\pi}{2}}$$

$$= 6a.$$

3.7.3. Tính thể tích của vật thể

Cho vật thể (H) nằm giữa hai mặt phẳng vuông góc với Ox

$$(\alpha): x = a, (\beta): x = b \ a < b.$$

Khi đó với mọi $x_0 \in [a,b]$, mặt phẳng (γ) có phương trình $x=x_0$ cắt vật thể (H) theo thiết diện có diện tích $S(x_0)$. Khi đó thể tích vật thể (H) được tính bởi công thức

$$V_H = \int\limits_a^b S(x)dx.$$

Trong trường hợp đặc biệt, (H) là một vật thể tạo bởi: Quay hình

$$\begin{cases} y = f(x) \ge 0 & \forall x \in [a, b] \\ x = a, \\ x = b. \end{cases}$$

xung quanh trục Ox. Khi đó, thể tích được xác định bởi công thức

$$V_H = \pi \int_a^b f^2(x) dx.$$

Thật vậy, do (γ) cắt hình (H) theo thiết diện là một hình tròn có bán kính $R=f(x_0)$ nên $S(x_0)=\pi R^2=\pi f^2(x_0)$.

Hình 7: Hình biểu diễn thể tích của (H)

Ví dụ 3.30. Tính thể tích của vật thể

$$(H): \begin{cases} M \breve{\alpha}t \ tr \dot{\mu}: \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \\ (\alpha): \ z = \frac{c}{a}x, \\ (\beta): \ z = 0. \end{cases}$$

Giải Thiết diện tạo bởi mặt phẳng $(\gamma): x=x_0$ là một hình chữ nhật. Từ sự đồng dạng của tam giác OAB và OCD ta có

$$\frac{AB}{DC} = \frac{OA}{OD},$$

từ đó

$$DC = \frac{AB.OD}{OA} = \frac{cx_0}{a}.$$

Diện tích S(x) của thiết diện bất kỳ vuông góc với trục Ox sẽ bằng

$$S(x) = \frac{2bcx}{a}\sqrt{1 - \frac{x^2}{a^2}}.$$

Vậy

$$V = \frac{2bc}{a} \int_{0}^{a} x \sqrt{1 - \frac{x^{2}}{a^{2}}} dx = \frac{2abc}{3} (1 - \frac{x^{2}}{a^{2}})^{\frac{3}{2}} \Big|_{a}^{0} = \frac{2}{3}abc.$$

3.7.4. Tính diện tích của mặt tròn xoay

Mặt tròn xoay (H) được tạo thành do cung AB qua xung quanh trục Ox. $Dang\ 1$ Cung AB cho bởi phương trình dạng tổng quát

$$\widetilde{AB}$$
: $y = f(x) \ge 0$ $a \le x \le b$.

Khi đó, diện tích mặt tròn xoay được định bởi công thức

$$S_H = 2\pi \int_a^b f(x) \sqrt{1 + f'^2(x)} dx.$$

Hình 8: Hình vẽ của ví dụ 3.31

 $Dang\ 2\ Cung\ AB$ cho bởi phương trình trong hệ toạ độ cực

$$r = r(\varphi)$$
 với $\sin \varphi \ge 0 \ \forall \ \varphi \in [\alpha, \beta].$

Khi đó, diện tích mặt tròn xoay được định bởi công thức

$$S_H = 2\pi \int_{\alpha}^{\beta} r(\varphi) \sin \varphi \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi.$$

Dạng 3 Cung AB cho bởi phương trình dạng tham số

$$\widetilde{AB}: \begin{cases} x = x(t) \\ y = y(t) \ge 0 \end{cases} \quad t_1 \le t \le t_2.$$

Khi đó, diện tích mặt tròn xoay được định bởi công thức

$$S_H = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{x'^2(t) + y'^2(t)} dt.$$

Ví dụ 3.31. Cho đường cong cycloide cho bởi phương trình dạng tham số

$$\widetilde{AB}$$
:
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad 0 \le t \le 2\pi, \ a > 0.$$

Tính diện tích mặt tròn xoay khi xoay cung \widetilde{AB} xung quanh trực Ox.

Giải Theo công thức tính diện tích mặt tròn xoay dạng 3, ta có

$$S_H = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{x'^2(t) + y'^2(t)} dt$$

$$= 2\pi \int_{0}^{2\pi} a(1 - \cos t) \sqrt{a^2(1 - \cos t)^2 + a^2 \sin^2 t} dt$$

$$= 4a^2 \pi \int_{0}^{2\pi} (1 - \cos t) |\sin \frac{t}{2}| dt$$

$$= 4a^2 \pi \int_{0}^{2\pi} (1 - \cos t) \sin \frac{t}{2} dt$$

$$= 2a^2 \pi \int_{0}^{2\pi} (3 \sin \frac{t}{2} - \sin \frac{3t}{2}) dt = \frac{64\pi a^2}{3}.$$

3.8. Tích phân với cận vô hạn

3.8.1. Định nghĩa

+ Cho hàm f(x) khả tích trên [a,b] $\forall b>a.$ Nếu tồn tại hữu hạn giới hạn

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

thì giới hạn này được gọi là tich phân suy rọng của hàm số f(x) với cận $+\infty$ và ký hiệu là

$$\int_{0}^{+\infty} f(x)dx.$$

Khi đó, ta nói rằng tích phân $\int\limits_a^{+\infty} f(x)dx\ hội\ tụ$. Ngược lại tích phân suy rộng trên là $phân\ k\grave{y}$.

+ Tương tự như vậy, ta định nghĩa tích phân suy rộng với cận $-\infty$

$$\lim_{a \to -\infty} \int_{a}^{b} f(x)dx = \int_{-\infty}^{b} f(x)dx.$$

+ Tích phân suy rộng của hàm số f(x) với hai cận $+\infty, -\infty$, ký hiệu là $\int\limits_{-\infty}^{+\infty} f(x) dx$.

Tích phân này hội tụ khi và chỉ khi cả hai tích phân suy rộng

$$\int_{a}^{+\infty} f(x)dx, \int_{-\infty}^{b} f(x)dx \ \forall a, b \in \mathbb{R}$$

cùng hội tụ. Khi đó

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{a}^{+\infty} f(x)dx + \int_{-\infty}^{a} f(x)dx \ \forall a \in \mathbb{R}.$$

Ví dụ 3.32. Cho a > 0, xét sự hội tụ hay phân kỳ của các tích phân sau.

$$i) \int_{0}^{+\infty} \frac{dx}{x^2 + a^2}.$$

$$ii) \int_{-\infty}^{0} \frac{xdx}{x^2 + a^2}.$$

$$iii) \int_{-\infty}^{+\infty} \frac{dx}{\sqrt{x^2 + a^2}}.$$

$$iv) \int_{1}^{+\infty} \frac{dx}{x^{\alpha}} \ \alpha \in \mathbb{R}.$$

Giải

$$i) \int_{0}^{+\infty} \frac{dx}{x^2 + a^2} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{x^2 + a^2}$$
$$= \lim_{b \to +\infty} \frac{1}{a} \arctan \frac{x}{a} \Big|_{0}^{b} = \frac{\pi}{2a} \quad (\text{hội tụ}).$$

ii)
$$\int_{-\infty}^{0} \frac{xdx}{x^2 + a^2} = \frac{1}{2} \ln(x^2 + a^2) \Big|_{-\infty}^{0} = -\infty$$
 (phân kỳ).

$$iii) \int_{-\infty}^{+\infty} \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} \Big|_{-\infty}^{0} + \frac{1}{a} \arctan \frac{x}{a} \Big|_{0}^{+\infty}.$$
$$= \frac{\pi}{2a} + \frac{\pi}{2a} = \frac{\pi}{a} \quad (\text{hội tụ}).$$

$$iv)\int\limits_{1}^{+\infty}\frac{dx}{x^{\alpha}}=\begin{cases} \frac{1}{(1-\alpha)x^{\alpha-1}}\Big|_{1}^{+\infty} & \text{n\'eu} \ \alpha\neq1\\ \ln x\Big|_{1}^{+\infty} & \text{n\'eu} \ \alpha=1. \end{cases} =\begin{cases} \frac{1}{\alpha-1} & \text{n\'eu} \ \alpha>1\\ \text{phân kỳ} & \text{n\'eu} \ \alpha\leq1. \end{cases}$$

Nhận xét 3.33. Tích phân suy rộng $\int_{a}^{+\infty} f(x)dx$ hội tụ khi và chỉ khi $\int_{b}^{+\infty} f(x)dx \ \forall b > 0$ a hội tụ. Thật vậy

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx.$$

3.8.2. Các điều kiên hội tu của tích phân suy rộng

Ta xét các điều kiên hội tu của tích phân suy rộng với cân là $+\infty$.

Định lý 3.34. Cho hàm số $f(x) \ge 0$ và khả tích trên $[a, b] \ \forall b > a$. Khi đó

$$\int_{a}^{+\infty} f(x)dx \ h\hat{\varrho}i \ tu$$

khi và chỉ khi hàm số

$$\varphi(x) = \int_{a}^{x} f(t)dt \text{ bị chặn trên}$$

 $tr\hat{e}n [a, b].$

Chứng minh Theo định nghĩa,

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \varphi(x).$$

Do $f(x) \ge 0$, nên $\varphi(x)$ đơn điệu tăng. Theo tính chất của giới hạn hàm số đơn điệu, giới hạn $\lim_{x\to\infty} \varphi(x)$ tồn tại khi và chỉ khi $\varphi(x)$ bị chặn trên trên $[a,+\infty)$. \square

Đinh lý 3.35. (Dấu hiệu so sánh)

Cho hai hàm số f(x), g(x) khả tích trên $[a, b] \forall b > 0$ và

$$0 \le f(x) \le g(x) \ \forall x \in [a, +\infty).$$

Khi đó,
$$+ N\acute{e}u\int\limits_{a}^{+\infty}g(x)dx\;hội\;tụ,\,thì\int\limits_{0}^{+\infty}f(x)dx\;hội\;tụ.$$

+
$$N\acute{e}u \int_{a}^{+\infty} f(x)dx \ phân \ kỳ, thì \int_{0}^{+\infty} g(x)dx \ phân \ kỳ.$$

Chứng minh

+ Nếu $\int\limits_a^{+\infty} f(x)dx$ phân kỳ, thì $\int\limits_0^{+\infty} g(x)dx$ phân kỳ. Ta chứng minh bằng phản chứng và sử dụng chứng minh trên.

Ví dụ 3.36. Xét sự hội tụ hay phân kỳ của tích phân

$$\int_{1}^{+\infty} \frac{xdx}{2x^5 + x^2 - 1}.$$

 $\textit{Giải}\ f(x) = \frac{xdx}{2x^5 + x^2 - 1} \geq 0 \ \ \forall x \geq 1 \ \text{và}\ f(x) \leq g(x) = \frac{1}{x^4} \ \ \forall x \geq 2.$ Mặt khác

$$\int_{1}^{+\infty} g(x)dx = \int_{1}^{+\infty} \frac{1}{x^4} dx = -\frac{1}{3x^3} \Big|_{1}^{+\infty} = \frac{1}{3}.$$

Theo định lý 3.35, $\int_{1}^{+\infty} \frac{xdx}{2x^5+x^2-1}$ hội tụ.

Đinh lý 3.37. (Dấu hiệu giới han)

Cho hai hàm số f(x), g(x) khả tích trên $[a,b] \ \forall b>0, f(x)\geq 0. g(x)\geq 0 \ \forall x\geq a$ và

$$\lim_{b \to +\infty} \frac{f(x)}{g(x)} = M \ge 0.$$

Khi đó,

- i) Nếu $M \in (0, +\infty)$, thì $\int\limits_a^{+\infty} f(x) dx$ hội tụ (phân kỳ) khi và chỉ khi $\int\limits_a^{+\infty} g(x) dx$ hội tụ (phân kỳ).
- ii) Nếu M=0 và $\int\limits_a^{+\infty}g(x)dx$ hội tụ, thì $\int\limits_a^{+\infty}f(x)dx$ hội tụ.
- iii) Nếu $M=+\infty$ và $\int\limits_a^{+\infty}g(x)dx$ phân kỳ, thì $\int\limits_a^{+\infty}f(x)dx$ phân kỳ.

Chứng minh i) Giả sử $M \in (0, +\infty)$, theo định nghĩa,

$$\forall M > \epsilon > 0, \ \exists > 0 \ \forall x > x \Rightarrow \left| \frac{f(x)}{g(x)} - M \right| < \epsilon \Rightarrow M - \epsilon < \frac{f(x)}{g(x)} < M + \epsilon$$

$$\Rightarrow (M - \epsilon)g(x) < f(x) < (M + \epsilon)g(x).$$

Theo định lý 3.35, từ $\int\limits_a^{+\infty} f(x)dx$ hội tụ, suy ra $\int\limits_a^{+\infty} (M+\epsilon)g(x)dx \Rightarrow \int\limits_a^{+\infty} g(x)dx$ hội tụ. Nếu $\int\limits_a^{+\infty} g(x)dx$ hội tụ thì $\int\limits_a^{+\infty} (M-\epsilon)g(x)dx$ hội tụ, suy ra $\int\limits_a^{+\infty} f(x)dx$ hội tụ. Như vậy $\int\limits_a^{+\infty} f(x)dx$ hội tụ khi và chỉ khi $\int\limits_a^{+\infty} g(x)dx$ hội tụ. Phân kỳ được chứng minh tương tự.

ii) Giả sử M=0 và $\int\limits_a^{+\infty}g(x)dx$ hội tụ. Từ định nghĩa

$$\lim_{b \to +\infty} \frac{f(x)}{g(x)} = 0 \Leftrightarrow \forall \epsilon > 0, \exists b, \ \forall x > b \Rightarrow \left| \frac{f(x)}{g(x)} \right| < \epsilon \Rightarrow 0 \le f(x) < \epsilon g(x)$$

và $\int\limits_a^{+\infty}g(x)dx$ hội tụ, suy ra $\int\limits_a^{+\infty}f(x)dx$ hội tụ.

iii) Giả sử $M=+\infty$ và $\int\limits_a^{+\infty}g(x)dx$ phân kỳ. Ta có

$$\lim_{b \to +\infty} \frac{f(x)}{g(x)} = +\infty \Leftrightarrow \forall K > 0, \exists b > 0, \ \forall x > b$$
$$\Rightarrow \left| \frac{f(x)}{g(x)} \right| > K \Rightarrow f(x) > Kg(x) \ \ \forall x > b.$$

Theo định lý 3.37 và giả thiết $\int_{a}^{+\infty} g(x)dx$ phân kỳ, ta có $\int_{a}^{+\infty} f(x)dx$ phân kỳ.

Ví dụ 3.38. Xét sự hội tụ hay phân kỳ của tích phân sau

$$I_1 = \int_{1}^{+\infty} \frac{(2x^2+1)dx}{x^3\sqrt[3]{x^4+2x+1}}, \quad I_2 = \int_{3}^{+\infty} \frac{\ln(x-2)dx}{3x^3+x^2+1}.$$

 $Gi \mathring{a} i$ + Xét I_1 với hàm số $f(x) = \frac{(2x^2+1)}{x^3 \sqrt[3]{x^4+2x+1}} \geq 0 \quad \forall x \geq 1$. Đặt

$$g(x) = \frac{x^2}{x^3 \sqrt[3]{x^4}} \ge 0 \quad \forall x \ge 1 \Rightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 2 \in (0, +\infty).$$

Mặt khác, theo ví dụ 3.32, $\int_{1}^{+\infty} g(x)dx$ hội tụ. Do vậy I_1 hội tụ.

+ Xét I_2 , $f(x)=\frac{\ln(x-2)}{3x^3+x^2+1}\geq 0 \ \forall x\geq 3, g(x)=\frac{\ln x}{x^3}\geq 0 \ \forall x\geq 3.$ Khi đó, theo quy tắc L'Hospital, ta có

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^3}{3x^3 + x^2 + 1} \frac{\ln(x - 2)}{\ln x} = \lim_{x \to +\infty} \frac{1}{3} \frac{\ln(x - 2)}{\ln x}$$

$$= \lim_{x \to +\infty} \frac{1}{3} \frac{\frac{1}{x-2}}{\frac{1}{x}} = \frac{1}{3} \in (0, +\infty).$$

Mặt khác $\int\limits_3^{+\infty}g(x)dx=\int\limits_3^{+\infty}x^{-3}\ln xdx$ hội tụ (Dùng tích phân từng phần với $u=\ln x,$

 $dv = x^{-3}dx$). Vậy I_2 hội tụ.

3.8.3. Hội tụ tuyệt đối và bán hội tụ

+ Tích phân suy rộng $\int\limits_a^{+\infty} f(x)dx$ được gọi là *hội tụ tuyệt đối*, nếu $\int\limits_a^{+\infty} |f(x)|dx$ hội tụ.

+ Tích phân suy rộng $\int\limits_a^{+\infty} f(x)dx$ được gọi là *bán hội tụ*, nếu $\int\limits_a^{+\infty} f(x)dx$ hội tụ và tích phân $\int\limits_a^{+\infty} |f(x)|dx$ phân kỳ.

Định lý 3.39. (không chứng minh)

 $N\acute{e}u\int\limits_{a}^{+\infty}|f(x)|dx$ hội tụ, thì $\int\limits_{a}^{+\infty}f(x)dx$ cũng hội tụ. Điều ngược lại có thể không đúng.

Ví dụ 3.40. i) Xét sự hội tụ của tích phân

$$I_1 = \int_{1}^{+\infty} \frac{\cos x}{x^2} dx.$$

ii) Cho tích phân

$$I_2 = \int\limits_{1}^{+\infty} \frac{\sin x}{x} dx.$$

Chứng minh rằng: I2 bán hội tụ.

Giải i) Ta có

$$0 \le \frac{|\cos x|}{x^2} \le \frac{1}{x^2} \ \forall x \ge 1 \text{ và } \int_{1}^{+\infty} \frac{1}{x^2} dx = 1.$$

Do đó I_1 hội tụ (Do định lý 3.39).

ii) I_2 hội tụ.

Thật vậy,

$$I_2 = \int_{1}^{+\infty} \frac{\sin x}{x} dx = \int_{1}^{+\infty} \frac{1}{x} d(-\cos x) = -\frac{\cos x}{x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{-1}{x^2} \cos x dx.$$

Mà $\lim_{x\to+\infty}\frac{1}{x}\cos x=0$ và theo i), $I_1=\int\limits_1^{+\infty}\frac{\cos x}{x^2}dx$ hội tụ. Do vậy I_2 hội tụ. I_2 không hôi tu tuyết đối.

Thật vậy, từ bất đẳng thức

$$\left| \frac{\sin x}{x} \right| \ge \frac{\sin^2 x}{x} \ \forall x \ge 1,$$

ta xét tích phân $J = \int_{1}^{+\infty} \frac{\sin^2 x}{x} dx$.

$$J = \int_{1}^{+\infty} \frac{1 - \cos 2x}{2x} dx = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{x} dx - \int_{1}^{+\infty} \frac{\cos 2x}{2x} dx.$$

Tương tự như I_2 , ta dễ dàng chứng minh được $\int\limits_{1}^{+\infty} \frac{\cos 2x}{2x} dx$ hội tụ. Từ

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{b \to +\infty} \ln x \Big|_{1}^{b} = +\infty$$

 $\int\limits_{1}^{+\infty}\frac{1}{x}dx=\lim_{b\to+\infty}\ln x\Big|_{1}^{b}=+\infty$ suy ra $J=+\infty$. Hay $\int\limits_{1}^{+\infty}\left|\frac{\sin x}{x}\right|dx$ phân kỳ. Vậy I_{2} không hội tụ tuyệt đối.

3.9. Tích phân suy rộng với cân hữu han

3.9.1. Đinh nghĩa

+ Cho hàm số f(x) khả tích trên $[a,c] \ \forall c \in (a,b)$ và $\lim_{x \to b^-} f(x) = \infty$. Khi đó

$$I = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx$$

được gọi là *tích phân suy rộng* với cực điểm b và ký hiệu là $\int\limits_{a}^{b} f(x)dx$. Nếu I tồn tại hữu hạn, thì $\int\limits_{0}^{\omega}f(x)dx$ được gọi là hội tụ. Ngược lại, gọi là phân kỳ. + Cho hàm số f(x) khả tích trên [c,b] $\forall c \in (a,b)$ và $\lim_{x \to a^+} f(x) = \infty$. Khi đó

$$I = \lim_{c \to a^+} \int_a^b f(x) dx$$

được gọi là *tích phân suy rộng* với cực điểm a và ký hiệu là $\int_a^b f(x)dx$. Nếu I tồn tại hữu hạn, thì $\int_a^b f(x)dx$ được gọi là hội tụ. Ngược lại, gọi là phân kỳ.

+ Cho hàm số f(x) khả tích trên [c,b] $\forall c \in (x_0,b)$, và [a,c] $\forall c \in (a,x_0)$ và $\lim_{x \to x_0} f(x) = \infty$. Khi đó $\int_a^b f(x) dx$ được gọi là *tích phân suy rộng* với cực điểm x_0 . Nếu $\int_a^{x_0} f(x) dx$ và $\int_{x_0}^b f(x) dx$ hội tụ, thì $\int_a^b f(x) dx$ được gọi là hội tụ. Ngược lại, gọi là phân kỳ.

+ Cho hàm số f(x) khả tích trên [c,b] $\forall b>c>a$ và $\lim_{c\to a^+}f(x)=\infty$. Khi đó $\int\limits_{a}^{+\infty}f(x)dx$ được gọi là *tích phân suy rộng* với cực điểm x_0 và cận vô hạn. Nếu $\int\limits_{a}^{b}f(x)dx$ và $\int\limits_{b}^{+\infty}f(x)dx$ hội tụ, thì $\int\limits_{a}^{+\infty}f(x)dx$ được gọi là hội tụ. Ngược lại, gọi là phân kỳ.

Ví dụ 3.41. Tính tích phân suy rộng

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} \quad (a < b, \alpha \in \mathbb{R}).$$

 $\emph{Giải}$ Nếu $\alpha>0,$ thì $\lim_{x\to a^+}\frac{1}{(x-a)^\alpha}=+\infty \Rightarrow x=a$ là cực điểm. Ta xét các trường hợp sau:

+ Nếu $\alpha > 1$, thì

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} = \int_{a}^{b} (x-a)^{-\alpha} d(x-a) = \frac{1}{(1-\alpha)(x-a)^{\alpha-1}} \Big|_{a}^{b} = +\infty.$$

+ Nếu $\alpha=1$, thì

$$\int_{a}^{b} \frac{dx}{x-a} = \ln(x-a) \Big|_{a}^{b} = +\infty.$$

+ Nếu α < 1, thì

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} = \int_{a}^{b} (x-a)^{-\alpha} d(x-a) = \frac{1}{1-\alpha} (x-a)^{1-\alpha} \Big|_{a}^{b} = \frac{1}{(1-\alpha)(b-a)^{\alpha-1}}.$$

Như vây

$$\int\limits_a^b \frac{dx}{(x-a)^\alpha} = \begin{cases} +\infty & \text{n\'eu } \alpha \geq 1 \\ \frac{1}{(1-\alpha)(b-a)^{\alpha-1}} & \text{n\'eu } \alpha < 1. \end{cases}$$

3.9.2. Quan hệ giữa hai loại tích phân suy rộng

Xét tích phân suy rộng với cận hữu hạn có cực điểm a

$$\int_{a}^{b} f(x)dx.$$

Đổi biến $x=a+\frac{1}{y}\to a^+\Leftrightarrow y\to +\infty$, ta có

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx = \lim_{y \to +\infty} \int_{y}^{\frac{1}{b-a}} f(a + \frac{1}{y}) \frac{(-dy)}{y^{2}} = \lim_{y \to +\infty} \int_{\frac{1}{b-a}}^{y} \frac{f(a + \frac{1}{y})}{y^{2}} dy.$$

Như vậy

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{+\infty} g(x)dx \quad \text{v\'oi } g(x) = \frac{f(a + \frac{1}{x})}{x^2}, \alpha = \frac{1}{b - a}.$$

3.9.3. Các định lý hội tụ

Tương tự như chứng minh đối với tích phân suy rộng với cận vô hạn. Ta có các định lý dưới đây.

Đinh lý 3.42. (Dấu hiệu so sánh)

Cho các hàm số $0 \le f(x) \le g(x) \quad \forall x \in [a,b) \text{ và } \lim_{x \to b^+} f(x) = \lim_{x \to b^+} g(x) = +\infty.$ Khi đó

- Nếu $\int_a^b g(x)dx$ hội tụ, thì $\int_a^b f(x)dx$ hội tụ.
- Nếu $\int_a^b f(x)dx$ phân kỳ, thì $\int_a^b g(x)dx$ phân kỳ.

Ví dụ 3.43. Khảo sát sự hội tụ của tích phân

$$I = \int_{0}^{1} \frac{|\ln x|}{x^{\alpha}} dx \quad (\alpha \in \mathbb{R}).$$

 $\emph{Giải Trường hợp 1}.$ Nếu $\alpha<1,$ Đặt $\epsilon=1-\alpha,$ khi đó $\epsilon>0.$ Ta có

$$\frac{|\ln x|}{x^{\alpha}} = \frac{|\ln x|}{x^{1-\epsilon}} = \frac{x^{\frac{\epsilon}{2}}|\ln x|}{x^{1-\frac{\epsilon}{2}}}.$$

Từ $\lim_{x\to 0^+} x^{\frac{\epsilon}{2}} |\ln x| = 0$ suy ra tồn tại x_0 sao cho

$$x^{\frac{\epsilon}{2}}|\ln x| < 1 \quad \forall x \in (0, x_0).$$

Vậy

$$\frac{|\ln x|}{x^{\alpha}} = \frac{x^{\frac{\epsilon}{2}}|\ln x|}{x^{1-\frac{\epsilon}{2}}} < \frac{1}{x^{1-\frac{\epsilon}{2}}}. \ \forall x \in (0, x_0).$$

Theo ví dụ 3.41, ta có $\int_0^1 \frac{1}{x^{1-\frac{\epsilon}{2}}} dx$ hội tụ. Khi đó, theo định lý 3.42, tích phân I hội tụ.

Định lý 3.44. (Dấu hiệu giới hạn)

Cho các hàm số $0 \le f(x), 0 \le g(x) \quad \forall x \in [a,b), \lim_{x \to b^+} f(x) = \lim_{x \to b^+} g(x) = +\infty.$ và

$$\lim_{x \to b^+} \frac{f(x)}{g(x)} = M \ge 0.$$

Khi đó

- Nếu $M \in (0, +\infty)$ thì $\int\limits_a^b f(x) dx$ hội tụ khi và chỉ khi $\int\limits_a^b g(x) dx$ hội tụ.
- Nếu M=0 và $\int\limits_a^b g(x)dx$ hội tụ, thì $\int\limits_a^b f(x)dx$ hội tụ.
- Nếu $M = +\infty$ và $\int_a^b g(x)dx$ phân kỳ, thì $\int_a^b f(x)dx$ phân kỳ.

Ví dụ 3.45. Khảo sát sự hội tụ của các tích phân sau

$$I_{1} = \int_{0}^{1} \frac{dx}{\sqrt{(1-x^{2})(1-k^{2}x^{2})}} v\acute{\sigma}i |k| < 1.$$

$$I_{2} = \int_{0}^{1} \frac{dx}{\sqrt[3]{x(e^{x}-e^{-x})}}.$$

$$I_{3} = \int_{0}^{\frac{\pi}{2}} \frac{\ln(\sin x)}{\sqrt{x}} dx.$$

Giải

- Xét I_1 .

Do |k| < 1 nên $1 - k^2 x^2 > 0 \ \ \forall x \in [0,1]$. Xét giới hạn

$$\lim_{x \to 1^{-}} \frac{1}{\sqrt{(1-x^2)(1-kx^2)}} = +\infty.$$

Vây x = 1 là cực điểm.

Đăt

$$f(x) = \frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}, g(x) = \frac{1}{1-x} = \frac{1}{(1-x)^{\frac{1}{2}}}$$

$$\Rightarrow \lim_{x \to 1^-} \frac{f(x)}{g(x)} = \lim_{x \to 1^-} \frac{1}{\sqrt{(1+x)(1-k^2x^2)}} = \frac{1}{\sqrt{2(1-k^2)}} \in (0, +\infty).$$

Theo ví dụ 3.41, $\int\limits_0^1 \frac{dx}{\sqrt{1-x}}$ hội tụ. Khi đó, theo định lý 3.44, I_1 hội tụ. - Xét I_2 .

Xét giới hạn

$$\lim_{x \to 0^+} \frac{1}{\sqrt[3]{x(e^x - e^{-x})}} = \lim_{x \to 0^+} \sqrt[3]{\frac{e^x}{x(e^{2x} - 1)}} = +\infty.$$

Đặt $g(x) = \frac{1}{\sqrt[3]{x^2}}$, suy ra

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \frac{1}{\sqrt[3]{2}} \in (0; +\infty).$$

Mà $\int\limits_0^1 g(x)dx=3$ hội tụ. Vậy I_2 hội tụ. - Xét I_3 .

Dễ dàng thấy x=0 là cực điểm. Đặt

$$f(x) = \frac{\ln(\sin x)}{\sqrt{x}}, g(x) = \frac{1}{x^{\lambda}} \text{ v\'oi } \lambda \in (\frac{1}{2}, 1).$$

Theo quy tắc L'Hospital, ta có

$$\lim_{x \to 0^{+}} \frac{f(x)}{g(x)} = \lim_{x \to 0^{+}} \frac{\ln(\sin x)}{x^{\frac{1}{2} - \lambda}}$$

$$= \lim_{x \to 0^{+}} \frac{\cot x}{(\frac{1}{2} - \lambda)x^{-\frac{1}{2} - \lambda}}$$

$$= \lim_{x \to 0^{+}} \frac{x^{\frac{1}{2} + \lambda}}{(\frac{1}{2} - \lambda)\tan x}$$

$$= \lim_{x \to 0^{+}} \frac{x^{\frac{1}{2} + \lambda}}{(\frac{1}{2} - \lambda)x}$$

$$= 0.$$

Theo ví dụ 3.41, $\int\limits_0^1 g(x)dx$ hội tụ, nên I_3 hội tụ.

BÀI TẬP CHƯƠNG 3.

Bài 3.1. Dùng định nghĩa, tính các tích phân sau:

Bài 3.2. Dùng tổng tích phân, tìm các giới han sau:

$$\begin{array}{lll} 1) & \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \right) & \text{ds} : \ln 2. \\ 2) & \lim_{n \to \infty} \frac{1}{n^2} \left(\frac{1^2}{n+1} + \frac{2^2}{n+2} + \ldots + \frac{n^2}{n+n} \right) & \text{ds} : \ln 2 - \frac{1}{2}. \\ 3) & \lim_{n \to \infty} \left((1 + \frac{1^2}{n^2})^1 (1 + \frac{2^2}{n^2})^2 \ldots (1 + \frac{(n-1)^2}{n^2})^{n-1} 2^n \right)^{\frac{1}{n^2}} & \text{ds} : \frac{2}{\sqrt{e}}. \\ 4) & \lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \ldots + \frac{n}{n^2 + n^2} \right) & \text{ds} : \frac{\pi}{4}. \\ 5) & \lim_{n \to \infty} \left(\frac{1 + \sqrt[3]{2} + \sqrt[3]{3} + \ldots + \sqrt[3]{n}}{\sqrt[3]{n^4}} \right) & \text{ds} : \frac{3}{4}. \\ 6) & \lim_{n \to \infty} \left(\frac{1}{\sqrt{4n^2 - 1^2}} + \frac{1}{\sqrt{4n^2 - 2^2}} + \ldots + \frac{1}{\sqrt{4n^2 - n^2}} \right) & \text{ds} : \frac{\pi}{6}. \\ 7) & \lim_{n \to \infty} n \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \ldots + \frac{1}{(n+n)^2} \right) & \text{ds} : \frac{1}{2}. \\ 8) & \lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \ldots + \sin \frac{(n-1)\pi}{n} \right) & \text{ds} : \frac{2}{\pi}. \\ 9) & \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} & \text{ds} : \frac{1}{e}. \\ 10) & \lim_{n \to \infty} \sin \frac{\pi}{n} \left(\frac{1}{2 + \cos \frac{1\pi}{n}} + \frac{1}{2 + \cos \frac{2\pi}{n}} + \ldots + \frac{1}{2 + \cos \frac{n\pi}{n}} \right) & \text{ds} : \frac{\pi}{\sqrt{3}}. \end{array}$$

Bài 3.3. Tính các nguyên hàm sau

$$1) \int \frac{2x^4 + 5x^2 - 2}{2x^3 - x - 1} dx.$$

$$\mathrm{d}s: \frac{1}{2}x^2 + \ln|x - 1| + \ln(2x^2 + 2x + 1) + \arctan(2x + 1) + C$$

$$2) \int \frac{dx}{x(x-1)(x^2-x+1)^2} \cdot d\mathbf{s} : \ln |\frac{x-1}{x}| - \frac{10}{3\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} - \frac{1}{3} \frac{2x-1}{x^2-x+1} \cdot 3) \int \frac{x^4+1}{x^5+x^4-x^3-x^2} dx \cdot d\mathbf{s} : \ln |x| + \frac{1}{x} + \frac{1}{2} \ln |x-1| - \frac{1}{2} \ln |x-1| + \frac{1}{x+1} + C.$$

$$4) \int \frac{3x+5}{(x^2+2x+2)^2} dx \cdot d\mathbf{s} : \frac{2x-1}{2(x^2+2x+2)} + \arctan(x+1) + C.$$

$$5) \int \frac{(x^2-2)^2 dx}{(x+1)(x^2+1)^3} d\mathbf{s} : \frac{1}{2} \frac{1+x}{(1+x^2)^2} + \frac{1}{4} \frac{x-2}{x^2+1} + \frac{1}{4} \arctan x + C.$$

$$6) \int \frac{dx}{(x+\sqrt{x^2-1})^2} d\mathbf{s} : \frac{2}{3} (x^3 - \sqrt{(x^2-1)^3}) - x + C.$$

$$7) \int \frac{dx}{x \sin^2(2+\ln x)} \cdot d\mathbf{s} : -\cot(2+\ln x) + C.$$

$$8) \int \frac{2x-\sqrt{\arcsin x}}{\sqrt{1-x^2}} dx \cdot d\mathbf{s} : -2\sqrt{1-x^2} - \frac{2}{3} \sqrt{\arcsin^3 x} + C.$$

$$9) \int \frac{dx}{x^4\sqrt{x^2-1}} dx \cdot d\mathbf{s} : \frac{2x^4+1}{3x^3} \sqrt{x^2-1}.$$

$$10) \int \frac{dx}{(x-1)^2\sqrt{x^2+1}} \cdot d\mathbf{s} : \frac{x-2}{3(x-1)} \sqrt{\frac{x+1}{x-1}}.$$

Bài 3.4. Dùng phương pháp đổi biến, tính các tích phân sau

$$1) \int_{1}^{\sqrt{3}} \frac{(x^3+1)dx}{x^2\sqrt{4-x^2}}.$$

$$2) \int_{1}^{\frac{\pi}{2}} \frac{dx}{2+\cos x}.$$

$$3) \int_{0}^{3} \sqrt{\frac{x}{6-x}}.$$

$$4) \int_{0}^{3} \frac{dx}{x+\sqrt{9-x^2}}.$$

$$4) \int_{0}^{3} \arcsin \sqrt{\frac{x}{1+x}}.$$

$$5) \int_{0}^{3} \arcsin \sqrt{\frac{x}{1+x}}.$$

$$6) \int_{0}^{\pi} \frac{x \sin x dx}{1+\cos^2 x}.$$

$$ds: \frac{\pi}{2\sqrt{3}} - 1.$$

$$ds: \frac{\pi}{3\sqrt{3}}.$$

$$ds: \frac{3(\pi-2)}{2}.$$

$$ds: \frac{\pi}{4}.$$

$$ds: \frac{4\pi}{3} - \sqrt{3}.$$

$$ds: \frac{\pi^2}{4}.$$

$$7) \int_{0}^{1} x(2-x^{2})^{12} dx.$$

$$8) \int_{1}^{\sqrt{2}} \frac{(x^{2}+1)dx}{x^{4}+1}.$$

$$9) \int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{\frac{1+x}{1-x}} dx.$$

$$ds: \frac{1}{\sqrt{2}} \arctan \frac{1}{2}.$$

$$ds: \frac{\pi}{4}+1-\frac{\sqrt{2}}{2}.$$

 $\int_{0}^{m_2} \sqrt{e^x - 1} dx. \qquad \text{ds}: \frac{4 - \pi}{2}.$

Bài 3.5. Dùng phương pháp tích phân từng phần, tính các tích phân sau

$$\begin{array}{lll} 1) \int\limits_{0}^{1} x^{3} \arctan x dx. & \mathrm{ds} : \frac{1}{6}. \\ 2) \int\limits_{0}^{\pi} e^{x} \sin x dx. & \mathrm{ds} : \frac{1}{2} (e^{\pi} + 1). \\ 3) \int\limits_{0}^{1} x^{3} e^{2x} dx. & \mathrm{ds} : \frac{1}{8} (e^{2} + 3). \\ 4) \int\limits_{0}^{\frac{\pi}{4}} \frac{\arcsin x}{\sqrt{1+x}} dx. & \mathrm{ds} : \pi \sqrt{2} - 4. \\ 5) \int\limits_{0}^{\frac{\pi}{4}} \ln(1 + \tan x) dx. & \mathrm{ds} : \frac{\pi \ln 2}{8}. \\ 6) \int\limits_{0}^{3} \arcsin \sqrt{\frac{x}{1+x}} dx. & \mathrm{ds} : \frac{4\pi}{3} - \sqrt{3}. \\ 7) \int\limits_{0}^{\pi} (x \sin x)^{2} dx. & \mathrm{ds} : \frac{\pi^{3}}{6} - \frac{\pi}{4}. \\ 8) \int\limits_{0}^{\frac{\pi^{2}}{2}} \cos(\ln x) dx. & \mathrm{ds} : \frac{1}{2} (e^{\frac{\pi}{2}} - 1). \end{array}$$

9)
$$\int_{1}^{2} x \log_2 x dx$$
. $ds: 2 - \frac{3}{4 \ln 2}$. 10) $\int_{1}^{2} \sqrt{4 - x^2} dx$. $ds: \pi$.

Bài 3.6. Tính các tích phân sau theo công thức truy hồi.

$$1)I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx. \qquad \text{ds} : I_{n} = \frac{n-1}{n} I_{n-2}.$$

$$2)I_{n} = \int_{0}^{1} (1-x^{2})^{n} dx. \qquad \text{ds} : I_{n} = \frac{2^{2n}(n!)^{2}}{2n+1)!}.$$

$$3)I_{n} = \int_{1}^{e} \ln^{n} x dx. \qquad \text{ds} : I_{n} = e\left(1+n+\ldots+2.3\ldots(n-1)n\right) - n!.$$

$$4)I_{n} = \int_{1}^{\frac{\pi}{2}} \cos^{n} x \cos nx dx. \qquad \text{ds} : I_{n} = \frac{\pi}{2^{n+1}}.$$

Bài 3.7. Cho a>0, b>0, c>0, tính diện tích hình tạo bởi các đường cong

$$1)\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \qquad \text{ds}: \pi ab.$$

$$2)y^2 = x^2(4 - x^2). \qquad \text{ds}: \frac{4\pi}{3}.$$

$$3)y^2 = 2px, \ 27py^2 = 8(x - p)^3 \ (p > 0). \qquad \text{ds}: \frac{88p^2\sqrt{2}}{15}.$$

$$4)x = a(2\cos t - \cos 2t), y = a(2\sin t - \sin 2t). \qquad \text{ds}: \frac{6\pi a^2}{5}.$$

$$5)x = 3t^2, y = 3t - t^3. \qquad \text{ds}: \frac{72\sqrt{3}}{5}.$$

$$6)x = \frac{c^2}{a}\cos^2 t, y = \frac{c^2}{b}\sin^3 t \ c^2 = a^2 - b^2. \qquad \text{ds}: \frac{3\pi c^4}{8ab}.$$

$$7)r = a\sin 3\varphi. \qquad \text{ds}: \frac{\pi a^2}{12}.$$

$$8)r^2 + \varphi^2 = 1. \qquad \text{ds}: \frac{\pi}{3}.$$

$$9)r = a\cos 5\varphi. \qquad \text{ds}: \frac{\pi}{3}.$$

$$4s: \frac{\pi}{3}.$$

 $ds: a^2$.

Bài 3.8. Tính độ dài các đường cong

$$\begin{aligned} 1)y^2 &= 2x & 0 \leq x \leq \frac{1}{2}. & \text{ds} : \sqrt{2} + \ln(1 + \sqrt{2}). \\ 2)9y^2 &= 4(3 - x^2), y \geq 0. & \text{ds} : \pi. \\ 3)y &= \ln\cos x \ 0 \leq x \leq a < \frac{\pi}{2}. & \text{ds} : \ln\tan(\frac{\pi}{4} + \frac{a}{2}). \\ 4)x &= \frac{c^2}{a}\cos^3 t, y = \frac{c^2}{b}\sin^3 t. & c^2 &= a^2 - b^2 \ \text{ds} : \frac{4(a^3 - b^3)}{ab}. \\ 5)x &= \cos t + t \sin t, y = \sin t - t \cos t & 0 \in [0, 2\pi]. & \text{ds} : 2\pi^2. \\ 6)x &= ch^3t, y = sh^3t & 0 \leq t \leq b. & \text{ds} : \frac{3}{8} \left(\frac{1}{\sqrt{ch(2b)}} - 1\right). \\ 7)r &= a(1 + \cos\varphi). & \text{ds} : 8\sqrt{2}a. \\ 8)r &= \frac{a}{1 + \cos\varphi} & -\frac{\pi}{2} \leq \varphi \leq \frac{\pi}{2}. & \text{ds} : a\left(\sqrt{2} + \ln(1 + \sqrt{2})\right). \\ 9)r &= a\sin^3\frac{\varphi}{3}. & \text{ds} : \frac{3\pi a}{2}. \\ 10)\varphi &= \frac{1}{2}(r + \frac{1}{r}) & 1 \leq \varphi \leq 3. & \text{ds} : 2 + \frac{1}{2}\ln 3. \end{aligned}$$

Bài 3.9. Tính thể tích của vật thể tạo bởi các đường cong

$$1)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1. \qquad \text{ds}: \frac{4}{3}\pi abc.$$

$$2)x^{2} + y^{2} = a^{2}, x^{2} + z^{2} = a^{2}. \qquad \text{ds}: \frac{16}{3}a^{3}.$$

$$3)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, z = \frac{c}{a}x, z = 0, a, b, c > 0. \qquad \text{ds}: \frac{4\pi abc}{3}.$$

$$4)z^{2} = b(a - x), x^{2} + y^{2} = ax \quad a, b > 0. \qquad \text{ds}: \frac{16}{15}a^{2}\sqrt{ab}.$$

$$5)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{z^{2}} = 1, \ 0 < z < a. \qquad \text{ds}: \frac{\pi a^{3}}{2}.$$

$$6)x + y + z^{2} = 1, x = 0, y = 0, z = 0. \qquad \text{ds}: \frac{\pi a^{3}}{2}.$$

$$7)y = b\left(\frac{x}{a}\right)^{\frac{2}{3}}, \ x \leq x \leq a, \ \text{quay xung quanh true } Ox. \qquad \text{ds}: \frac{3}{7}\pi ab^{2}.$$

$$8)y = 2x - x^{2}, y = 0 \ \text{quay xung quanh true } Oy. \qquad \text{ds}: \frac{8\pi}{3}.$$

$$9)y = b(\frac{x}{a})^{2}, y = b\left|\frac{x}{a}\right| \ \text{quay xung quanh true } Ox. \qquad \text{ds}: \frac{2\pi^{2}a^{2}b}.$$

Bài .10. Tính các tích phân suy rộng sau

1)
$$\int_{2}^{+\infty} \left(\frac{1}{x^2 - 1} + \frac{2}{(x+1)^2} \right) dx$$
.

$$ds: \frac{2}{3} + \frac{1}{2} \ln 3.$$

$$2)\int\limits_{\sqrt{2}}^{+\infty}\frac{xdx}{(x^2+1)^3}.$$

$$\mathrm{ds}:\frac{1}{36}.$$

$$3) \int_{0}^{+\infty} e^{-ax} \sin bx dx, \ a > 0.$$

$$ds: \frac{b}{a^2 + b^2}.$$

4)
$$\int_{1}^{+\infty} \frac{\arctan x dx}{x^2}.$$

$$\mathrm{ds}: \frac{\pi}{4} + \frac{\ln 2}{2}.$$

$$5) \int_{1}^{+\infty} \frac{dx}{x\sqrt{1+x^2}}.$$

$$ds: \ln(1+\sqrt{2}).$$

$$6) \int_{0}^{1} \frac{\arcsin x dx}{x}.$$

$$\mathrm{d} s: \frac{\pi \ln 2}{2}.$$

$$7)\int\limits_{0}^{\frac{\pi}{2}}x\cot xdx.$$

$$\mathrm{ds}:\frac{\pi\ln 2}{2}.$$

$$8) \int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx.$$

$$ds: -\frac{\pi \ln 2}{2}.$$

9)
$$\int_{0}^{+\infty} \frac{x \ln x dx}{(x^2 + 1)^2}$$
.

$$10) \int_{0}^{1} \frac{\ln x dx}{\sqrt{x}}.$$

$$ds: -4.$$

Bài 3.11. Khảo sát sự hội tụ của các tích phân sau.

1)
$$\int_{1}^{+\infty} \frac{\sin^2 3x}{\sqrt[3]{2x^4 - x + 1}} dx$$
.

$$2) \int_{1}^{+\infty} \frac{1}{\sqrt[3]{4x - \log_2 x}} dx.$$

đs: phân kỳ.

$$3) \int\limits_{2}^{+\infty} \frac{1}{x^{3} \ln^{5} x} dx. \qquad \text{ds} : \text{hội tụ}.$$

$$4) \int\limits_{1}^{+\infty} (x^{2} - 5x + 8)2^{-x} dx. \qquad \text{ds} : \text{hội tụ}.$$

$$5) \int\limits_{0}^{+\infty} \frac{\cos x - \cos 9x}{x^{2}} dx. \qquad \text{ds} : \text{hội tụ}.$$

$$6) \int\limits_{0}^{+\infty} \frac{1 - x \sin 3x}{x^{2}} dx. \qquad \text{ds} : \text{hội tụ}.$$

$$7) \int\limits_{0}^{+\infty} \frac{1}{\sqrt{x}} \arctan \frac{x}{3 + x} dx. \qquad \text{ds} : \text{phân kỳ}.$$

$$8) \int\limits_{0}^{+\infty} \frac{\ln x}{x\sqrt{x^{2} - 1}} dx. \qquad \text{ds} : \text{hội tụ}.$$

$$9) \int\limits_{0}^{+\infty} \frac{\sin 3x}{2x^{3} + \sqrt[3]{x}} dx. \qquad \text{ds} : \text{hội tụ}.$$

$$10) \int\limits_{0}^{+\infty} \frac{x^{\alpha}(x + 2) dx}{3x + 1}. \qquad \text{ds} : \text{phân kỳ}.$$

Bài 3.12. Khảo sát sư hôi tu của các tích phân sau.

Ball 3.12. Knao sat sự nội tự của các tiến phân sau.

1)
$$\int_{0}^{1} \frac{\cos^{2} \frac{1}{x}}{\sqrt{x}} dx$$
.

2) $\int_{0}^{1} \frac{\ln(1+\sqrt[3]{x^{2}}) dx}{\sqrt{x} \sin \sqrt{x}}$.

3) $\int_{0}^{1} \frac{\sqrt{2^{x}-1}}{1-\cos 3x} dx$.

4) $\int_{0}^{1} \frac{\sqrt[3]{\ln(1+2x)}}{1-\cos 3x} dx$.

ds: hội tụ.

4) $\int_{0}^{1} \frac{\sqrt[3]{\ln(1+2x)}}{1-\cos 3x} dx$.

ds: phân kỳ.

đs: phân kỳ.

 $5) \int\limits_0^\pi \frac{\sin x}{x^2} dx.$

đs : phân kỳ.

 $6) \int_{0}^{1} \frac{dx}{\sqrt[4]{(1-x^9)}}.$

đs : hội tụ.

7) $\int_{0}^{2} \sqrt{\frac{4+x^2}{16-x^4}} dx$.

đs : hội tụ.

$$8) \int_{0}^{2} \frac{x dx}{|1 - x|^{3}|}.$$

$$9) \int\limits_0^1 \frac{dx}{2^x - \cos 3x}.$$

$$10) \int\limits_0^1 \frac{dx}{2^{\sqrt{x}} - 1}.$$

đs : hội tụ.

CHƯƠNG 4. CHUỖI SỐ VÀ CHUỖI HÀM

4.1. Chuỗi số

4.1.1. Đinh nghĩa

+ Cho dãy số thực (a_n) (hay phức). Khi đó tổng vô hạn

$$a_1 + a_2 + \dots + a_n + \dots$$

được gọi là $chu\tilde{o}i$ số thực (tương ứng: Chuỗi số phức) và được ký hiệu bởi $\sum_{n=0}^{+\infty} a_n$, a_n được gọi là số hạng thứ n của chuỗi số.

Ví dụ: Chuỗi điều hòa: $\sum_{n=1}^{+\infty} \frac{1}{n}$, chuỗi Riemann $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$,....

 $+ T \mathring{o} ng \ ri \hat{e} ng \ thứ \ n$ của chuỗi số $\sum_{n=1}^{+\infty} a_n$ là

$$S_n = \sum_{k=1}^n a_k.$$

 $S_n=\sum_{k=1}^n a_k.$ + Chuỗi số $\sum_{n=1}^{+\infty}a_n$ được gọi là hội tự tới S, nếu $\lim_{n\to\infty}S_n=S.$ Khi đó

$$R_n = S - S_n$$

được gọi là phần dư bậc n của $\sum_{n=1}^{+\infty} a_n$. Ngược lại, được gọi là phân kỳ.

Ví dụ 4.1. Khảo sát sự hội tụ hay phân kỳ của tổng vô hạn cấp số nhân với công bội q

$$\sum_{n=0}^{+\infty} q^n, \ q \neq 0.$$

 $\emph{Giải}$ Xét tổng riêng thứ n là S_n tổng hữu hạn các số hạng của một cấp số nhân $(q \neq 1)$

$$S_n = \sum_{k=0}^{n-1} q^k = \begin{cases} \frac{q^n - 1}{q - 1} & \text{n\'eu } q \neq 1\\ n & \text{n\'eu } q = 1. \end{cases}$$

Vây

$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{k=0}^{n-1}q^k=\begin{cases} \frac{1}{1-q} & \text{n\'eu }|q|<1, q\neq 0\\ \text{không tồn tại} & \text{n\'eu }q\leq -1\\ +\infty & \text{n\'eu }q\geq 1. \end{cases}$$

+ Chuỗi số $\sum\limits_{n=1}^{+\infty}a_n$ được gọi là hội tự tuyệt đới, nếu $\sum\limits_{n=1}^{+\infty}|a_n|$ hội tụ.

+ Chuỗi số $\sum_{n=1}^{+\infty} a_n$ được gọi là *bán hội tụ*, nếu $\sum_{n=1}^{+\infty} a_n$ hội tụ và $\sum_{n=1}^{+\infty} |a_n|$ phân kỳ.

4.1.2. Các điều kiện hội tụ

Định lý 4.2. (Cauchy)

Chuỗi số $\sum_{n=1}^{+\infty} a_n$ hội tụ khi và chỉ khi

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0, \forall p \in \mathbb{N} : |a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \epsilon.$$

Chứng minh. Tồn tại giới hạn $\lim_{n\to\infty} S_n$ khi và chỉ khi dãy (S_n) là dãy Cauchy (xem chương 2, mục 2.7) khi và chỉ khi

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0, \forall p \in \mathbb{N}: |S_{n+p} - S_n| < \epsilon \Leftrightarrow |a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \epsilon.$$

Ví dụ 4.3. Chứng minh rằng chuỗi điều hòa

$$\sum_{n=1}^{+\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

phân kỳ.

 $Giải Với moi <math>n \in \mathbb{N}^*$, ta có

$$|S_{2n} - S_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2}.$$

Theo định lý 4.2, chuỗi hiều hòa $\sum_{k=1}^{+\infty} \frac{1}{k}$ phân kỳ.

Định lý 4.4. Nếu chuỗi $\sum_{k=1}^{+\infty} a_k$ hội tụ, thì

$$\lim_{n\to\infty} a_n = 0.$$

Chứng minh. Áp dụng định lý 4.2 với p = 1 hay

$$\forall \epsilon > 0, \exists n_0, \forall n > n_0 : |a_{n+1}| < \epsilon.$$

Hay
$$\lim_{n\to\infty} a_n = 0$$
.

147

Ví dụ 4.5. Khảo sát sự hội tụ hay phân kỳ của chuỗi số

$$\sum_{n=1}^{+\infty} \frac{2n^2 - 3n - 1}{n^2 - 5n - 3}.$$

Giải Xét giới hạn

$$\lim_{n \to \infty} a_n = \lim \frac{2n^2 - 3n - 1}{n^2 - 5n - 3} = 2 \neq 0.$$

Theo định lý 4.4, chuỗi phân kỳ.

Định lý 4.6. Nếu chuỗi $\sum_{n=1}^{+\infty} a_n$ hội tụ tuyệt đối, thì $\sum_{n=1}^{+\infty} a_n$ hội tụ.

Chứng minh. Theo định lý 4.2, dãy $\sum_{n=1}^{\infty} |a_n|$ hội tụ khi và chỉ khi

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0 : \left| |a_{n+1}| + |a_{n+2}| + \dots + |a_{n+p}| \right| < \epsilon$$

Mà

$$\left| a_{n+1} + a_{n+2} + \dots + a_{n+p} \right| \le \left| \left| a_{n+1} \right| + \left| a_{n+2} \right| + \dots + \left| a_{n+p} \right| \right| < \epsilon.$$

Do đó, ta có

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0 : \left| a_{n+1} + a_{n+2} + \dots + a_{n+p} \right| < \epsilon.$$

Vậy
$$\sum_{n=1}^{+\infty} a_n$$
 hội tụ.

4.1.3. Các tính chất

Dựa vào định nghĩa, ta dễ dàng chứng minh được các tính chất sau:

+ T inh chất 1 Chuỗi số $\sum_{n=1}^{+\infty} a_n$ hội tụ hay phân kỳ không phụ thuộc vào tổng hữu hạn các số hạng đầu tiên. Hay

$$\sum_{n=1}^{+\infty} a_n \text{ hội tụ (phân kỳ) } \Leftrightarrow \sum_{n=n_0}^{+\infty} a_n \ \forall n_0 \geq 1.$$

+ Tinh chất 2 Nếu chuỗi số $\sum_{n=1}^{+\infty} a_n$ hội tụ, thì chuỗi số $\sum_{n=1}^{+\infty} \lambda a_n$ $\lambda \in \mathbb{R}$ hội tụ.

+ Tinh chất 3 Nếu hai chuỗi số $\sum_{n=1}^{+\infty} a_n$ và $\sum_{n=1}^{+\infty} b_n$ hội tụ, thì

$$\sum_{n=1}^{+\infty} (a_n + b_n) = \sum_{n=1}^{+\infty} a_n + \sum_{n=1}^{+\infty} b_n.$$

+ Tính chất 4 Chuỗi số phức

$$\sum_{n=1}^{+\infty} z_n = \sum_{n=1}^{+\infty} (Rez_n + iImz_n)$$

hội tụ khi và chỉ khi

$$\sum_{n=1}^{+\infty} Rez_n$$
 và $\sum_{n=1}^{+\infty} Imz_n$ hội tụ.

4.2. Chuỗi số dương

4.2.1. Định nghĩa

Chuỗi số thực $\sum_{n=1}^{+\infty} a_n$ được gọi là chuỗi số dương, nếu $a_n > 0 \ \forall n \in \mathbb{N}^*$.

Từ định nghĩa, ta nhận thấy rằng dãy số (S_n) đơn điệu tăng. Do vậy, chuỗi số dương $\sum_{n=0}^{+\infty} a_n$ hội tụ khi và chỉ khi dãy số (S_n) bị chặn trên.

4.2.2. Các tiêu chuẩn hội tụ Khảo sát sự hội tụ của chuỗi số dương

$$\sum_{n=1}^{+\infty} a_n.$$

Định lý 4.7. (so sánh 1)
Cho hai chuỗi số dương $\sum_{n=1}^{+\infty} a_n^{(1)}$ và $\sum_{n=1}^{+\infty} b_n^{(2)}$ thỏa mãn $a_n \leq b_n \ \, \forall n \geq n_0.$

Khi đó

+ Nếu (2) hôi tu, thì (1) hôi tu.

+ $N\acute{e}u$ (1) $ph\acute{a}n$ $k\grave{y}$, $th\grave{\iota}$ (2) $ph\acute{a}n$ $k\grave{y}$.

Chứng minh. Đặt

$$S_n = \sum_{k=n_0}^n a_k, \ \bar{S}_n = \sum_{k=n_0}^n b_k.$$

Ta có (2) hội tụ khi và chỉ khi tồn tại M sao cho $\bar{S}_n \leq M \ \forall n \geq n_0$. Từ bất đẳng thức,

$$a_n < b_n \ \forall n > n_0 \Rightarrow S_n < M \ \forall n > n_0$$
.

Vậy $\sum_{k=m}^{+\infty} a_k$ hội tụ hay $\sum_{k=1}^{+\infty} a_k$ hội tụ.

Nếu (1) phân kỳ, giả sử (2) hội tu, theo chứng minh trên, ta có (1) hội tu, trái giả thiết. Vây (2) phân kỳ. Ví dụ 4.8. Khảo sát sự hội tụ hay phân kỳ của chuỗi số

$$\sum_{n=1}^{+\infty} \frac{n}{e^{n^2} + n - 1}.$$

Giải Từ bất đẳng thức $e^x > \frac{1}{2}x^2 \ \ \forall x > 0$ suy ra

$$\frac{n}{e^{n^2} + n - 1} \le \frac{n}{e^{n^2}} < \frac{2}{n^3} < \frac{2}{n^2} \quad \forall n \in \mathbb{N}^* := \{1, 2, \dots\}.$$

Mà

$$S_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} < 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 2 - \frac{1}{n} < 2.$$

Vậy dãy số dương (S_n) hội tụ. Hay chuỗi số dương $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ hội tụ. Theo định lý 4.7, chuỗi số $\sum_{n=1}^{+\infty} \frac{n}{e^{n^2}+n-1}$ hội tụ.

Định lý 4.9. (so sánh 2)

Cho hai chuỗi số dương $\sum_{n=1}^{+\infty} a_n^{(1)}$ và $\sum_{n=1}^{+\infty} b_n^{(2)}$ thỏa mãn

$$\lim_{n \to \infty} \frac{a_n}{b_n} = M \ge 0.$$

Khi đó

 $+ N\acute{e}u \ M \in (0, +\infty)$, thì (1) hội tụ (phân kỳ) khi và chỉ khi (2) hội tụ (tương ứng: phân kỳ) .

 $+ N\acute{e}u M = 0 \ va (2) \ hội tụ, thì (1) hội tụ.$

+ $N\acute{e}u\ M = +\infty\ v\grave{a}$ (2) $ph\hat{a}n\ k\grave{y}$, $th\grave{i}$ (1) $ph\hat{a}n\ k\grave{y}$.

Chứng minh. + Nếu $\lim_{n\to\infty}\frac{a_n}{b_n}=M\in(0,+\infty)$, thì

$$\forall \epsilon \in (0, M), \exists n_0, \forall n \ge n_0 \Rightarrow \left| \frac{a_n}{b_n} - M \right| < \epsilon \Rightarrow (M - \epsilon)b_n < a_n < (M + \epsilon)b_n.$$

Theo định lý 4.7, ta có (1) hội tụ (phân kỳ) khi và chỉ khi (2) hội tụ (tương ứng: phân kỳ).

+ Nếu $\lim_{n \to \infty} \frac{a_n}{b_n} = M = 0$, thì

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0 \Rightarrow \left| \frac{a_n}{b_n} \right| < \epsilon \Rightarrow a_n \le \epsilon b_n.$$

Theo định lý 4.7, nếu (2) hội tụ thì (1) hội tụ.

+ Nếu $\lim_{n\to\infty} \frac{a_n}{b_n} = +\infty \Rightarrow \lim_{n\to\infty} \frac{b_n}{a_n} = 0$. Khi đó, chứng minh tương tự như trên. \Box

Ví du 4.10. Khảo sát sư hôi tu hay phân kỳ của

$$\sum_{n=1}^{+\infty} n \sin^2 \frac{2}{n}.$$

Giải Đặt

$$a_n = n \sin^2 \frac{2}{n} > 0 \ \forall n \in \mathbb{N}^*, b_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin^2 \frac{2}{n}}{\frac{1}{n^2}} = 4 \in (0, +\infty).$$

Mà chuỗi điều hòa

$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{1}{n} \text{ phân kỳ.}$$

Vậy $\sum_{n=0}^{+\infty} n \sin^2 \frac{2}{n}$ phân kỳ.

Đinh lý 4.11. (D'Alembert 1)

Cho chuỗi số dương $\sum\limits_{k=1}^{+\infty} a_k$ thỏa mãn

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = D \ge 0.$$

- $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=D\geq 0.$ Nếu D<1, thì $\sum\limits_{k=1}^{+\infty}a_k$ hội tụ.
- Nếu D > 1, thì $\sum_{k=1}^{+\infty} a_k$ phân kỳ.
- Nếu D=1, thì $\sum\limits_{k=1}^{+\infty}a_k$ chưa kết luận được.

Chứng minh. - Nếu $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = D < 1$, theo định nghĩa

$$\forall \epsilon \in (0, 1 - D), \exists n_0, \forall n \ge n_0 \Rightarrow \left| \frac{a_{n+1}}{a_n} - D \right| < \epsilon \Rightarrow a_{n+1} < (D + \epsilon)a_n = q.a_n,$$
 với $q = D + \epsilon \in (0, 1).$

Khi đó

$$\begin{cases} \text{Thay } n=n_0 & \Rightarrow a_{n_0+1} < a_{n_0}q \\ \text{Thay } n=n_0+1 & \Rightarrow a_{n_0+2} < a_{n_0+1}q < a_{n_0}q^2 \\ \dots & \\ \text{Thay } n=n_0+k & \Rightarrow a_{n_0+k} < a_{n_0}q^k. \end{cases}$$

¹16.11.1717-29.10.1783, nhà Toán học và Triết học Pháp Jean Le Rond D'Alembert có các công trình nghiên cứu trong lĩnh vực Toán học liên quan đến số phức, giải tích và lý thuyết xác suất. Năm 1754 ông được bầu vào Viện Hàn lâm khoa học Pháp.

Vì chuỗi số $\sum_{k=1}^{+\infty} a_{n_0} q^k$ hội tụ, nên $\sum_{k=n_0}^{+\infty} a_k$ hội tụ, suy ra $\sum_{k=1}^{+\infty} a_k$ hội tụ.

- Nếu $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=D>1$, theo định nghĩa

$$\forall \epsilon \in (0, D-1), \exists n_0, \forall n \ge n_0 \Rightarrow \left| \frac{a_{n+1}}{a_n} - D \right| < \epsilon \Rightarrow a_{n+1} > (D-\epsilon)a_n = q.a_n,$$

với $q=D-\epsilon>1$. Như vậy

$$a_{n+1} > a_n \ge a_{n_0} \quad \forall n \ge n_0 > 0 \Rightarrow \lim_{n \to \infty} a_n \ne 0.$$

Theo định lý 4.4, ta có $\sum_{k=1}^{+\infty} a_k$ phân kỳ.

Ví dụ 4.12. Khảo sát sự hội tụ của chuỗi số

$$\sum_{n=1}^{+\infty} \frac{n!}{n^n}.$$

Giải Đặt

$$a_n = \frac{n!}{n^n} \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1.$$

Theo dấu hiệu D'Alembert, ta có $\sum_{n=1}^{+\infty} \frac{n!}{n^n}$ hội tụ.

Định lý 4.13. (Cauchy)

Cho chuỗi số dương $\sum\limits_{k=1}^{+\infty} a_k$ thỏa mãn

$$\lim_{n \to \infty} \sqrt[n]{a_n} = D \ge 0.$$

- Nếu
$$D < 1$$
, thì $\sum_{k=1}^{+\infty} a_k$ hội tụ.

- Nếu
$$D > 1$$
, thì $\sum_{k=1}^{+\infty} a_k$ phân kỳ.

- Nếu
$$D=1$$
, thì $\sum_{k=1}^{+\infty} a_k$ chưa kết luận được.

Chứng minh. - Nếu $\lim_{n\to\infty} \sqrt[n]{a_n} = D < 1$, theo định nghĩa

$$\forall \epsilon \in (0, 1 - D), \exists n_0, \forall n \ge n_0 \Rightarrow |\sqrt[n]{a_n} - D| < \epsilon \Rightarrow \sqrt[n]{a_n} < D + \epsilon \Rightarrow a_n < q^n,$$

với $q = D + \epsilon \in (0, 1)$.

Mà chuỗi

$$\sum_{k=n_0}^{+\infty} q^n = \frac{q^{n_0}}{1-q} \quad \text{(hội tụ)},$$

nên $\sum_{k=n_0}^{+\infty} a_k$ hội tụ, suy ra $\sum_{k=1}^{+\infty} a_k$ hội tụ.

- Nếu $\lim_{n \to \infty} \sqrt[n]{a_n} = D > 1$, theo định nghĩa

$$\forall \epsilon \in (0, D-1), \exists n_0, \forall n \geq n_0 \Rightarrow |\sqrt[n]{a_n} - D| < \epsilon \Rightarrow \sqrt[n]{a_n} > D - \epsilon > 1 \Rightarrow a_n > 1.$$

Theo định lý 4.4, ta có
$$\sum_{k=1}^{+\infty} a_k$$
 phân kỳ.

Ví dụ 4.14. Cho chuỗi số dương $\sum_{k=1}^{+\infty} a_k$ có $\lim_{n\to\infty} a_n = a \in (0, +\infty)$. Khảo sát sự hội tụ hay phân kỳ của chuỗi số sau

$$\sum_{k=1}^{+\infty} \left(\frac{x}{a_k}\right)^k \quad v \acute{o} i \ x > 0.$$

Giải Ta có

$$D = \lim_{n \to \infty} \sqrt[n]{(\frac{x}{a_n})^n} = \frac{x}{a}.$$

Theo định lý 4.13, ta có

- + Nếu $x \in (0, a)$, thì hội tụ.
- + Nếu $x \in (a, +\infty)$, thì phân kỳ.
- + Nếu x=a, thì chuỗi trên có thể hội tụ và có thể phân kỳ. Ta xem các trường hợp đặc biệt sau.

Trường hợp $1: a_n = \sqrt[n]{n} \Rightarrow \lim_{n \to \infty} a_n = 1 \Rightarrow a = 1 = x$. Khi đó

$$\sum_{k=1}^{+\infty} (\frac{x}{a_n})^n = \sum_{k=1}^{+\infty} \frac{1}{n} \text{ phân kỳ}.$$

Trường hợp 2: $a_n = \sqrt[n]{n^2} \Rightarrow \lim_{n \to \infty} a_n = 1 \Rightarrow a = 1 = x$. Khi đó

$$\sum_{k=1}^{+\infty} (\frac{x}{a_n})^n = \sum_{k=1}^{+\infty} \frac{1}{n^2} \text{ hội tụ.}$$

Định lý 4.15. (tích phân)

Cho hàm số f(x) dương, giảm trên $[1,+\infty)$ thỏa mãn

$$f(n) = a_n \ \forall n \in \mathbb{N}^*.$$

Khi đó, chuỗi số dương $\sum_{k=1}^{+\infty} a_k$ hội tụ (phân kỳ) khi và chỉ khi $\int_{1}^{+\infty} f(x)dx$ hội tụ (tương ứng: Phân kỳ).

Chứng minh. Do hàm f(x) giảm trên $[1, +\infty)$, nên

$$n \le x \le n+1 \Leftrightarrow f(n+1) \le f(x) \le f(n) \Leftrightarrow a_{n+1} \le f(x) \le a_n \Rightarrow$$

$$a_{n+1} \le \int_{n}^{n+1} f(x)dx \le a_n \ \forall n = 1, 2, \dots \Rightarrow S_{n+1} - a_1 \le \sum_{k=1}^{n} \int_{k}^{k+1} f(x)dx \le S_n \Rightarrow 0$$

$$S_{n+1} - a_1 \le \int_{1}^{n+1} f(x) dx \le S_n.$$

Theo định lý 4.7, ta có điều cần chứng minh.

Ví dụ 4.16. Khảo sát sự hội tụ hay phân kỳ của chuỗi Riemann

$$\sum_{k=1}^{+\infty} \frac{1}{n^{\alpha}}.$$

Giải Đặt

$$a_n = \frac{1}{n^{\alpha}} = f(n)$$
 với $f(x) = \frac{1}{x^{\alpha}} > 0$ $\forall x \ge 1$.

Theo ví dụ (5.34),

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \begin{cases} \frac{1}{\alpha - 1} & \text{n\'eu } \alpha > 1\\ \text{phân kỳ} & \text{n\'eu } \alpha \leq 1. \end{cases}$$

Vậy

- Nếu $\alpha>1$, thì $\sum\limits_{k=1}^{+\infty}\frac{1}{n^{\alpha}}$ hội tụ.
- Nếu $\alpha \leq 1$, thì $\sum\limits_{k=1}^{+\infty} \frac{1}{n^{\alpha}}$ phân kỳ.

4.3. Chuỗi đan dấu

4.3.1. Định nghĩa Cho dãy số dương $a_1, a_2, ..., a_n, ...$ Khi đó $chu\tilde{o}i$ đan dấu là chuỗi số có dạng

$$\sum_{k=1}^{+\infty} (-1)^{k-1} a_k = a_1 - a_2 + a_3 - \dots + (-1)^{n-1} a_n + \dots$$

hoăc

$$\sum_{k=1}^{+\infty} (-1)^k a_k = -a_1 + a_2 - a_3 - \dots + (-1)^n a_n + \dots$$

4.3.2. Dấu hiệu hội tu

Đinh lý 4.17. (Leibnitz)

Cho chuỗi đan dấu dang

$$\sum_{k=1}^{+\infty} (-1)^{k-1} a_k = a_1 - a_2 + a_3 - \dots + (-1)^{n-1} a_n + \dots^{(*)}$$

$$i \grave{e} u \ k i \grave{e} n$$

$$\begin{cases} + \lim_{n \to \infty} a_n = 0 \\ + D \tilde{a} y \ (a_n) \ don \ d i \grave{e} u \ g i \mathring{a} m. \end{cases}$$

thỏa mãn điều kiên

$$\begin{cases} + \lim_{n \to \infty} a_n = 0 \\ + D\tilde{a}y \ (a_n) \ don \ diệu giảm. \end{cases}$$

Khi đó chuỗi (*) hội tụ.

Chứng minh. Xét hai dãy con của dãy (S_n) là (S_{2m}) và (S_{2m+1}) . Ta có

$$S_{2m} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2m-1} - a_{2m}).$$

Vì (a_n) giảm, suy ra $a_k - a_{k+1} \ge 0 \quad \forall k \ge 1 \Rightarrow S_{2m} \ge 0$.

Măt khác

$$S_{2m} = a_1 - \left((a_2 - a_3) + (a_4 - a_5) + \dots + (a_{2m-2} - a_{2m-1}) + a_{2m} \right) \le a_1.$$

Do đó dãy con (S_{2m}) đơn điệu tăng và bị chặn trên. Khi đó

$$\lim_{m \to \infty} S_{2m} = S.$$

Theo định nghĩa,

$$\forall \epsilon > 0, \exists n_1, \forall n \ge n_1 : |S_{2m} - S| < \frac{\epsilon}{2}.$$

Từ giả thiết $\lim_{n \to \infty} a_n = 0$, theo định nghĩa ta có

$$\forall \epsilon > 0, \exists n_2, \forall n \ge n_2 : |a_n| < \frac{\epsilon}{2}.$$

Đặt $n_0 = \max\{n_1, n_2\}$.

- Nếu n chắn, theo chứng minh trên ta có $|S_n S| < \epsilon$.
- Nếu n lẻ, suy ra n+1 chẵn. Khi đó

$$|S_n - S| = |S_{n+1} - a_{n+1} - S| \le |S_{n+1} - S| + |a_{n+1}| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Theo tính chất 2 của mục 2.6, ta có

$$\lim_{n\to\infty} S_n = S.$$

Ví dụ 4.18. Khảo sát sự hội tụ hay phân kỳ của đan dấu

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{k - \ln k}.$$

Giải Đặt

$$f(x) = \frac{1}{x - \ln x} \Rightarrow f'(x) = -\frac{1}{(x - \ln x)^2} (1 - \frac{1}{x}) < 0 \quad \forall x > 1.$$

Khi đó dãy số (a_n) thỏa mãn các điều kiện của định lý 4.17 với

$$a_n = f(n) = \frac{1}{n - \ln n} \Rightarrow \lim_{n \to \infty} a_n = 0.$$

Vậy chuỗi đan dấu

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{k - \ln k}$$

hội tu.

4.4. Chuỗi hàm

4.4.1. Định nghĩa Cho một dãy các hàm thực $f_1(x), f_2(x), ..., f_n(x), ...$ xác định trên (a,b). Khi đó, tổng vô hạn

$$\sum_{k=1}^{+\infty} f_k(x)^{(*)}$$

được gọi là một $chu\tilde{o}i$ hàm xác định trên (a, b).

- + Hàm số $f_n(x)$ được gọi là số hạng thứ n của chuỗi hàm (*).
- + Tổng hữu hạn

$$S_n(x) = \sum_{k=1}^n f_k(x)$$

được gọi là tổng riêng thứ n của chuỗi hàm (*).

+ Điểm x_0 được gọi là $diểm\ hội\ tụ$ (hay phân kỳ) của chuỗi hàm (*), nếu chuỗi số

$$\sum_{k=1}^{n} f_k(x_0)$$

hội tụ (hay phân kỳ).

- + Tập các điểm hôi tụ của chuỗi hàm được gọi là miền hội tụ của chuỗi hàm (*).
- + Chuỗi hàm (*) được gọi là hội tụ đều tới hàm số f(x) trên miền D, nếu

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0 : |S_n(x) - S(x)| < \epsilon \ \forall x \in D.$$

+ Nếu chuỗi hàm (*) hội tụ đều đến f(x), thì hàm số

$$R_n(x) = f(x) - S_n(x)$$

được gọi là phần dư bậc n của chuỗi hàm (*).

+ Chuỗi hàm (*) được gọi là hội tụ tuyệt đối trên miền D, nếu

$$\sum_{k=1}^{n} |f_k(x)|$$

hội tụ trên miền D.

4.4.2. Các điều kiện hội tụ đều

Cho chuỗi hàm

$$\sum_{k=1}^{n} f_k(x)^{(*)}$$

xác định trên miền D.

Định lý 4.19. (Cauchy)

Chuỗi hàm (*) hội tụ đều trên miền D khi và chỉ khi

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0, \forall p \in \mathbb{N} : |S_{n+p}(x) - S_n(x)| < \epsilon \ \forall x \in D.$$

Chứng minh. (\Rightarrow) Giả sử $\sum_{k=1}^{+\infty} f_k(x)$ hội tụ đều trên miền D đến hàm số f(x). Theo định nghĩa,

$$\forall \epsilon > 0, \exists n_0, \forall p \in \mathbb{N} : |S_{n+p}(x) - S(x)| < \frac{\epsilon}{2} \ \forall x \in D.$$

Khi đó

$$|S_{n+p}(x) - S_n(x)| \le |S_{n+p}(x) - S(x)| + |S_n(x) - S(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall x \in D.$$

$$(\Leftarrow) \text{ Giả sử}$$

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0, \forall p \in \mathbb{N} : |S_{n+p}(x) - S_n(x)| < \epsilon \ \forall x \in D.$$

Với mọi x cố định, dãy số $(S_n(x))$ là một dãy Cauchy. Theo tính chất của dãy Cauchy (mục 2.7), ta có

$$\lim_{n \to \infty} S_n(x) = S(x) \quad \forall x \in D \Rightarrow \lim_{p \to \infty} |S_{n+p}(x) - S_n(x)| = |S(x) - S_n(x)|.$$

Kết hợp điều này với $|S_{n+p}(x) - S_n(x)| < \epsilon \quad \forall p \in \mathbb{N}, x \in D$, ta có $|S(x) - S_n(x)| < \epsilon \quad \forall n \in \mathbb{N}, x \in D$. Vậy chuỗi hàm (*) hội tụ đều trên miền D.

Ví du 4.20. Chứng minh rằng các chuỗi hàm

i)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{x^2 + n}$$
,

ii)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^2}{(x^2+1)^n},$$

hội tụ đều trên \mathbb{R} .

Giải i) Đặt

$$S_n(x) = \sum_{k=1}^n \frac{(-1)^{k-1}}{x^2 + k}.$$

Khi đó

$$|S_{n+p}(x) - S_n(x)| = \left| \frac{(-1)^n}{x^2 + n + 1} + \frac{(-1)^{n+1}}{x^2 + n + 2} + \dots + \frac{(-1)^{n+p+1}}{x^2 + n + p} \right|.$$

Ta xét hai trường hợp của p.

Trường hợp 1: p lẻ.

$$|S_{n+p}(x) - S_n(x)|$$

$$= \left| \frac{1}{x^2 + n + 1} - \frac{1}{x^2 + n + 2} + \dots + \frac{1}{x^2 + n + p} \right|$$

$$= \left(\frac{1}{x^2 + n + 1} - \frac{1}{x^2 + n + 2} \right) + \dots$$

$$+ \left(\frac{1}{x^2 + n + p - 2} - \frac{1}{x^2 + n + p - 1} \right) + \frac{1}{x^2 + n + p}$$

$$= \frac{1}{x^2 + n + 1} - \left(\left(\frac{1}{x^2 + n + 2} \right) - \frac{1}{x^2 + n + 3} \right) + \dots$$

$$+ \left(\frac{1}{x^2 + n + p - 1} - \frac{1}{x^2 + n + p} \right)$$

$$< \frac{1}{x^2 + n + 1}$$

$$(4.1)$$

Trường hợp 2: p chấn.

$$|S_{n+p}(x) - S_n(x)|$$

$$= \left| \frac{1}{x^2 + n + 1} - \frac{1}{x^2 + n + 2} + \dots - \frac{1}{x^2 + n + p} \right|$$

$$= \left(\frac{1}{x^2 + n + 1} - \frac{1}{x^2 + n + 2} \right) + \dots + \left(\frac{1}{x^2 + n + p - 1} - \frac{1}{x^2 + n + p} \right)$$

$$= \frac{1}{x^2 + n + 1} - \left(\left(\frac{1}{x^2 + n + 2} \right) - \frac{1}{x^2 + n + 3} \right) + \dots$$

$$+ \left(\frac{1}{x^2 + n + p - 2} - \frac{1}{x^2 + n + p - 1} \right) + \frac{1}{x^2 + n + p}$$

$$< \frac{1}{x^2 + n + 1}$$

$$(4.2)$$

Từ (4.1) và (4.2) suy ra

$$|S_{n+p}(x) - S_n(x)| < \frac{1}{x^2 + n + 1} < \frac{1}{n} < \epsilon \Rightarrow n > \frac{1}{\epsilon} \Rightarrow n_0 = [\frac{1}{\epsilon}] + 1.$$

Theo dấu hiệu Cauchy, ta có $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{x^2+n}$ hội tụ đều trên \mathbb{R} .

ii) Tương tự như trên, ta cũng chứng minh được rằng

$$|S_{n+p}(x) - S_n(x)| < \frac{x^2}{(1+x^2)^n}$$

với

$$S_n(x) = \sum_{k=1}^n \frac{(-1)^{k-1} x^2}{(x^2+1)^k}.$$

Theo công thức khai triển Newton

$$(a+b)^n = \sum_{k=1}^n C_n^k a^k b^{n-k}.$$

Ta có

$$(1+x^2)^n = 1 + nx^2 + \dots > nx^2 \Rightarrow \frac{x^2}{(1+x^2)^n} < \frac{1}{n} < \epsilon \Rightarrow n > \frac{1}{\epsilon} \Rightarrow n_0 = \left[\frac{1}{\epsilon}\right] + 1.$$

Theo dấu hiệu Cauchy, ta có $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^2}{(x^2+1)^n}$ hội tụ đều trên \mathbb{R} .

Định lý 4.21. Cho $|f_n(x)| \le c_n \ \forall n \in \mathbb{N}^*, x \in D$ và chuỗi số dương $\sum_{n=1}^{+\infty} c_n$ hội tụ. Khi đó chuỗi hàm (*) hội tụ tuyệt đối và hội tụ đều trên miền D.

Chứng minh. + Chuỗi hàm (*) hội tụ tuyệt đối trên miền D.

Thật vậy, với mỗi $x_0 \in D$ cố định, ta có

$$|f_n(x_0)| \leq c_n \ \, orall n \in \mathbb{N}^* \, ext{và} \, \sum_{n=1}^{+\infty} c_n \, ext{hội tụ} \Rightarrow (*) \, ext{hội tụ tuyệt đối.}$$

+ Chuỗi hàm (*) hội tụ đều trên miền D.

Thật vậy,

Từ
$$\sum_{n=1}^{+\infty} c_n$$
 hội tụ, suy ra

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0, \forall p : |c_{n+1} + c_{n+1} + \dots + c_{n+p}| < \epsilon.$$

Khi đó

$$|S_{n+p}(x) - S_n(x)| = |f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x)|$$

$$\leq |f_{n+1}(x)| + |f_{n+2}(x)| + \dots + |f_{n+p}(x)|$$

$$\leq c_{n+1} + c_{n+1} + \dots + c_{n+p}$$

$$< \epsilon.$$

Theo định lý 4.19, ta có chuỗi hàm (*) hội tụ đều trên miền D.

Ví dụ 4.22. Chứng minh rằng chuỗi hàm

$$\sum_{n=1}^{+\infty} \frac{\sin n\alpha x}{n^3 + n - 1}$$

hội tụ đều và hội tụ tuyệt đối trên miền \mathbb{R} .

Giải Ta có

$$\left| \frac{\sin n\alpha x}{n^3 + n - 1} \right| \le \frac{1}{n^3} \ \forall n \in \mathbb{N}^*.$$

Do chuỗi số $\sum_{n=1}^{+\infty} \frac{1}{n^3}$ hội tụ, nên theo định lý 4.21, chuỗi $\sum_{n=1}^{+\infty} \frac{\sin n\alpha x}{n^3+n-1}$ hội tụ tuyệt đối và hội tu đều trên miền \mathbb{R} .

4.4.3. Tính chất của chuỗi hàm hội tụ đều

Cho chuỗi hàm

$$\sum_{n=1}^{+\infty} f_n(x)$$

hội tụ đều tới hàm f(x) trên miền D. Ta xét khảo sát các tính chất của hàm f(x) trên miền D như: Tính liên tục, khả vi,...

Đinh lý 4.23. Nếu chuỗi hàm

$$\sum_{n=1}^{+\infty} f_n(x)$$

hội tụ đều tới hàm f(x) trên miền D và các hàm số $f_k(x)$ liên tục trên miền D với mọi $k \in \mathbb{N}$, thì hàm số f(x) liên tục trên miền D.

Chứng minh. Từ giả thiết $\sum_{n=1}^{+\infty} f_n(x)$ hội tụ đều tới hàm f(x) trên miền D. Ta có

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0 : |S_n(x) - f(x)| < \frac{\epsilon}{3} \ \forall x \in D.$$

Do $f_k(x)$ liên tục trên miền D với mọi k, nên với mỗi n cố định, $S_n(x)$ là một hàm số liên tục trên D. Hay

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < \delta \Rightarrow |S_n(x) - S_n(x_0)| < \frac{\epsilon}{3}.$$

Khi đó, với mỗi $x_0 \in D$, ta có

$$|f(x) - f(x_0)| \le |S_n(x) - f(x)| + |S_n(x) - S_n(x_0)| + |S_n(x_0) - f(x_0)| \quad \forall n \ge n_0$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon.$$

Vậy hàm số f(x) liên tục tại điểm x_0 . Hay f(x) liên tục trên miền D.

Ví dụ 4.24. Chứng minh rằng chuỗi hàm

$$\sum_{n=1}^{+\infty} x(1-x)^n$$

không liên tục đều trên [0,2).

Giải Xét giới hạn

$$\sum_{n=1}^{+\infty} x(1-x)^n = \lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \sum_{k=1}^n x(1-x)^k$$

$$= x \lim_{n \to \infty} \sum_{k=1}^{n} (1 - x)^k = \begin{cases} 0 & \text{n\'eu } x = 0 \\ 1 & \text{n\'eu } x \in (0, 2). \end{cases}$$

Vậy hàm số

$$f(x) = \sum_{n=1}^{+\infty} x(1-x)^n$$

không liên tục trên [0, 2). Do đó, theo định lý 4.23, ta có chuỗi hàm

$$\sum_{n=1}^{+\infty} x(1-x)^n$$

không liên tục đều trên [0, 2).

Định lý 4.25. Nếu chuỗi hàm

$$\sum_{n=1}^{+\infty} f_n(x)$$

hội tụ đều tới hàm f(x) trên miền [a,b] và các hàm số $f_k(x)$ liên tục trên miền [a,b] với mọi $k \in \mathbb{N}$, thì hàm số f(x) khả tích trên tục trên miền [a,b]. Hơn nữa

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{+\infty} \int_{a}^{b} f_k(x)dx.$$

Chứng minh. Theo định lý 4.23, hàm số f(x) liên tục trên [a,b]. Do đó f(x) khả tích trên [a,b]. Từ giả thiết $\sum_{n=1}^{+\infty} f_n(x)$ hội tụ đều tới hàm f(x) trên miền D. Ta có

$$\forall \epsilon > 0, \exists n_0, \forall n \geq n_0 : |S_n(x) - f(x)| < \frac{\epsilon}{b-a} \ \forall x \in D.$$

Khi đó

$$\left| \int_{a}^{b} S_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} \left(S_{n}(x) - f(x) \right) dx \right|$$

$$\leq \int_{a}^{b} \left| S_{n}(x) - f(x) \right| dx$$

$$< \int_{a}^{b} \frac{\epsilon}{b - a} dx$$

$$= \epsilon.$$

Như vậy

$$\lim_{n \to \infty} \int_{a}^{b} S_n(x) dx = \int_{a}^{b} f(x) dx.$$

Định lý 4.26. Nếu chuỗi hàm (*) hội tụ về hàm f(x) trên (a,b) và các đạo hàm $f'_k(x)$ $k \in \mathbb{N}^*$ thỏa mãn:

i) $f'_k(x)$ liên tục trên (a,b),

ii) $\sum_{n=1}^{+\infty} f'_n(x) \ h \hat{\rho} i \ t \dot{\mu} \ d \hat{e} u \ (a,b)$.

Khi đó

$$f'(x) = \sum_{n=1}^{+\infty} f'_n(x) \ x \in (a, b).$$

Chứng minh. Theo định lý 4.25, với $a < x < x_0 < b$, ta có

$$g(t) = \sum_{n=1}^{\infty} f'_k(t) \ \forall t \in (a, b)$$

liên tục trên (a, b) và

$$\int_{x_0}^{x} g(t)dt = \int_{x_0}^{x} \sum_{n=1}^{\infty} f'_k(t)dt$$

$$= f_1(x) - f_1(x_0) + f_2(x) - f_2(x_0) + \dots$$

$$= f(x) - f(x_0).$$

Đạo hàm hai vế, theo định lý 5.10, ta có

$$g(x) = f'(x) \Leftrightarrow f'(x) = \sum_{n=1}^{\infty} f'_k(x).$$

Ví dụ 4.27. Tìm miền hội tụ của hàm f(x) và xét tính khả vi của nó trên miền đó.

$$f(x) = \sum_{n=1}^{+\infty} \frac{|x|}{n^2 + x^2}.$$

Giải Ta có

$$\frac{|x|}{n^2 + x^2} \frac{|x|}{n^2}$$

và chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ hội tụ. Do đó hàm f(x) có tập xác định là \mathbb{R} .

Tiếp theo, tiến hành xét đạo hàm dạng

$$\sum_{n=1}^{\infty} f'_k(x) = \sum_{n=1}^{\infty} \frac{n^2 \operatorname{sgn} x - x|x|}{(n^2 + x^2)^2} \quad (x \neq 0).$$

Ta có, tồn tại $n_0 = [x^2] + 1$ sao cho

$$\left| \frac{n^2 \operatorname{sgn} x - x|x|}{(n^2 + x^2)^2} \right| \le \frac{n^2 + x^2}{n^4} \le \frac{2n^2}{n^4} = \frac{2}{n^2} \ \forall n \ge n_0.$$

Theo định lý 4.21, chuỗi hàm $\sum_{n=1}^{\infty} f_k'(x)$ hội tụ đều. Theo định lý 4.26, ta có f(x) khả vi trên \mathbb{R} . Hơn nữa

$$f'(x) = \sum_{n=1}^{\infty} \frac{n^2 \operatorname{sgn} x - x|x|}{(n^2 + x^2)^2} \ \forall x \in \mathbb{R}.$$

4.5. Chuỗi lũy thừa

4.5.1. Định nghĩa

Chuỗi lũy thữa là một chuỗi hàm có dạng

$$\sum_{n=0}^{\infty} a_n x^n \text{ hoặc } \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

trong đó $x_0, a_k : const$ và $x^0 = 1$. Khi đó, các số a_0, a_1, \dots được gọi là các hệ số của chuỗi lũy thừa.

4.5.2. Tính chất

Ta khảo sát miền hội tụ của chuỗi lũy thừa dạng

$$\sum_{n=0}^{\infty} a_n x^n.^{(*)}$$

Định lý 4.28. $(Abel^2)$

Nếu một chuỗi lũy thừa (*) hội tụ tại x_0 , thì nó hội tụ tại mọi x: $|x| < |x_0|$. Nếu một chuỗi lũy thừa (*) phân kỳ tại x_0 , thì nó phân kỳ tại mọi x: $|x| > |x_0|$. Khi đó

$$R = \sup\{|x_0| : \sum_{n=0}^{\infty} a_n x_0^n \ h \hat{\rho} i \ t u\}$$

được gọi là bán kính hội tu của (*).

Chứng minh. Giải sử chuỗi số $\sum_{n=0}^{\infty} a_n x_0^n$ hội tụ. Theo định lý 4.4, ta có

$$\lim_{n \to \infty} a_n x_0^n = 0 \Leftrightarrow \forall \epsilon > 0, \exists n_0, \forall n \ge n_0 : |a_n x_0^n| < \epsilon.$$

Khi đó

$$\forall x: |x| < |x_0| \Leftrightarrow q = \left| \frac{x}{x_0} \right| \in (0, 1),$$

ta có

$$|a_n x^n| = |a_n x_0^n \cdot (\frac{x}{x_0})^n| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n = |a_n x_0^n| q^n < \epsilon q^n.$$

Mà chuỗi số $\sum_{n=n_0}^{\infty} \epsilon q^n = \epsilon \frac{q^{n_0}}{1-q}$ hội tụ, suy ra $\sum_{n=0}^{\infty} |a_n x^n|$ hội tụ. Theo định lý 4.7, ta có (*) hội tụ tuyệt đối. Vậy chuỗi hàm (*) hội tụ.

Bây giờ ta xét trường hợp (*) phân kỳ tại x_0 và $|x| > |x_0|$. Giả sử (*) hội tụ tại x. Theo chứng minh trên, với $x_0 : |x| > |x_0|$, ta có (*) hội tụ tai x_0 , trái với giả thiết. Vậy (*) phân kỳ tại x.

4.5.3. Quy tắc tìm bán kính hội tụ

Định lý 4.29. Nếu

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\ \ \text{hoặc}\ \lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho.$$

²5.8.1802-6.4.1829, Niels Henrik Abel là một nhà Toán học vĩ đại người Na Uy, ông có các công trình nghiên cứu liên quan chủ yếu đến phép giải đại số của phương trình tổng quát bậc 5 và lý thuyết hàm eliptic. Hermite từng nói: "Người đã để lai công việc cho các nhà Toán học nghiên cứu trong 500 năm sau".

thì chuỗi hàm (*) có bán kính hội tu được xác định bởi:

+
$$N\acute{e}u \ \rho \in (0, +\infty)$$
, thì $R = \frac{1}{\rho}$.

- $+ N\acute{e}u \
 ho = 0$, thì $R = +\infty$ và miền hội tụ $D = \mathbb{R}$.
- + $N\acute{e}u \ \rho = +\infty$, thì R = 0 và miền hội tụ $D = \{0\}$.

Chứng minh. Giả sử rằng $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$ (trường hợp: $\lim_{n\to\infty}\sqrt[n]{a_n}=\rho$ được chứng minh tương tự).

+ Nếu $\rho \in (0, +\infty)$ và $|x| < \frac{1}{\rho}$, thì

$$\lim_{n \to \infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx_n|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| < \rho \cdot \frac{1}{\rho} = 1.$$

Theo dấu hiệu D'Alembert, chuỗi (*) hội tụ tuyệt đối, suy ra chuỗi (*) hội tụ.

+ Nếu $\rho = 0$, thì

$$\lim_{n \to \infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx_n|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| = 0 \quad \forall x \in \mathbb{R}.$$

Vậy chuỗi (*) hội tụ với mọi $x \in \mathbb{R}$.

+ Nếu $\rho = +\infty$ và $|x| > \frac{1}{\rho}$, thì

$$\lim_{n \to \infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx_n|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| > 1 \quad \forall x \in \mathbb{R} \setminus \{0\}.$$

Theo dấu hiệu D'Alembert, ta có chuỗi hàm (*) phân kỳ.

Ví dụ 4.30. Tìm miền hội tụ của các chuỗi lũy thừa sau:

$$i) \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

$$ii) \sum_{n=1}^{+\infty} n^n x^n.$$

$$iii) \sum_{n=1}^{+\infty} \frac{x^n}{(\frac{n+1}{n})^{n^2}}.$$

 $Gi \dot{a} i$ i) Đặt $a_n = \frac{1}{n!}$. Khi đó

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{1}{n+1} = 0.$$

Theo đinh lý 4.29, ta có miền hội tu là $D = \mathbb{R}$.

ii) Đặt $a_n = n^n$. Khi đó

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} n = +\infty.$$

Theo định lý 4.29, ta có miền hội tụ là $D = \{0\}$.

iii) Đặt $a_n = \frac{1}{(\frac{n+1}{n})^{n^2}}$. Khi đó

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \frac{1}{e} \Rightarrow R = \frac{1}{\rho} = e.$$

Xét tại x: x = -e, chuỗi (*) có dạng

$$\sum_{n=1}^{+\infty} \frac{(-1)^n e^n}{\left(\frac{n+1}{n}\right)^{n^2}}$$

Từ ví dụ 2.8, dãy (e_n) : $e_n = (1 + \frac{1}{n})^n$ đơn điệu tăng đến e, suy ra

$$\lim_{n \to \infty} \left| \frac{(-1)^n e^n}{\left(\frac{n+1}{n}\right)^{n^2}} \right| = \lim_{n \to \infty} \left(\frac{e}{\left(1 + \frac{1}{n}\right)^n} \right)^n > 1.$$

Vậy chuỗi (*) không hội tụ tại x=e và x=-e. Theo định lý 4.29, ta có miền hội tụ là D=(-e,e).

4.5.4. Tính hội tụ đều của chuỗi lũy thừa

Định lý 4.31. Nếu chuỗi lũy thừa (*) có bán kính hội tụ R > 0, thì với mọi R': 0 < R' < R, ta có chuỗi (*) hội tụ đều trên [-R', R'].

Chứng minh. Vì $R' \in (0, R)$, nên chuỗi số

$$\sum_{n=0}^{+\infty} |a_n R'^n|$$

hội tụ. Với mọi $x_0: x_0 \in [-R', R']$, ta có $|a_n x_0^n| \leq |a_n R'^n| \quad \forall n$. Theo định lý 4.21, ta có chuỗi (*) hội tụ đều trên [-R', R'].

Định lý 4.32. Cho chuỗi lũy thừa (*) có bán kính hội tụ R > 0. Đặt

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Khi đó

i) Hàm số f(x) liên tục trên (-R, R).

ii)
$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{+\infty} \int_{0}^{x} a_n t^n dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} \quad \forall x \in (-R, R).$$

iii)
$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} \ \forall x \in (-R, R).$$

Chứng minh. i) Do hàm số $a_n x^n$ liên tục trên $\mathbb{R} \ \forall n$ và theo định lý 4.31, ta có f(x) liên tục trên (-R,R).

ii) Theo định lý 4.25, với hàm số $f_k(x)=a_nx^n$ liên tục trên [0,x] $\forall x\in (-R,R)$ và chuỗi $\sum\limits_{n=0}^{+\infty}a_nx^n$ hội tụ đều đến hàm số f(x) trên (-R,R). Do vậy, ta có

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{+\infty} \int_{0}^{x} a_n t^n dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} \quad \forall x \in (-R, R).$$

iii) Ta sẽ chứng minh chuỗi lũy thừa $\sum\limits_{n=1}^{+\infty}na_nx^{n-1}$ hội tụ đều trên (-R,R). Thật vậy, với $x\in (-R,R)\setminus\{0\}$, tồn tại r sao cho |x|< r< R. Từ chuỗi số $\sum\limits_{n=1}^{+\infty}a_nr^n$ hội tụ, suy ra $\lim\limits_{n\to\infty}a_nr^n=0$, theo định nghĩa

$$\forall \epsilon > 0, \exists n_0, \forall n \ge n_0 : |a_n r^n| < \epsilon.$$

Khi đó

$$|na_n x^{n-1}| = n|a_n|r^n \left| \frac{x}{r} \right|^{n-1} \frac{1}{r} < \frac{\epsilon n}{r} \left| \frac{x}{r} \right|^{n-1}.$$

Với $x: \left|\frac{x}{r}\right| < 1 \Rightarrow \sum_{n=1}^{+\infty} \frac{\epsilon n}{r} \left|\frac{x}{r}\right|^{n-1}$ hội tụ (theo dấu hiệu D'Alembert). Vậy chuỗi lũy thừa $\sum_{n=1}^{+\infty} n a_n x^{n-1}$ hội tụ trên [-r,r]. Theo định lý 4.31, chuỗi lũy thừa $\sum_{n=1}^{+\infty} n a_n x^{n-1}$ hội tụ đều trên (-R,R). Vậy hàm số f(x) thỏa mãn tất cả các giả thiết của định lý 4.26, ta có iii) được chứng minh.

Ví du 4.33. Tính tổng

$$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots \quad v \acute{\sigma} i \ x \in (-1, 1).$$

Giải Ta có chuỗi

$$f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

hội tụ trên (-1,1). Khi đó

$$f'(x) = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots = \frac{1}{1+x} \quad \forall |x| < 1.$$

Lấy nguyên hàm hai vế

$$f(x) = \int \frac{dx}{1+x} = \ln(1+x) + C.$$

Thay x = 0 vào f(x), ta nhận được

$$f(0) = C = 0.$$

Vậy $f(x) = \ln(1+x) \ \forall x \in (-1,1).$

4.5.5. Khai triển hàm số thành chuỗi lũy thừa

Giả sử hàm f(x) có đạo hàm mọi cấp tại lân cận điểm x_0 . Chuỗi Taylor của hàm f(x) tại lân cận của điểm x_0 là một chuỗi lũy thừa dạng:

$$S(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0)^1 + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

Trong trường hợp đặc biệt, $chu \tilde{o}i$ Maclaurin của hàm f(x) tại lân cận của điểm x_0 là một chuỗi lũy thừa có dạng

$$S(x) = f(0) + \frac{f'(0)}{1!}x^1 + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

Vấn đề mà ta quan tâm ở đây là: f(x) = S(x)? Ta xét ví dụ dưới đây.

Ví du 4.34. Cho hàm số

$$f(x) = \frac{1}{1-x} + \varphi(x) \quad v \acute{o}i \ \varphi(x) = \begin{cases} e^{-\frac{1}{x^2}} & \textit{n\'eu} \ x \neq 0 \\ 0 & \textit{n\'eu} \ x = 0. \end{cases}$$

Chứng minh rằng: $S(x) \neq f(x) \ \forall x \in (-1,1) \setminus \{0\}.$

Giải Ta dễ dàng chứng minh được rằng

$$\varphi^{(k)}(0) = 0$$
 và $\left(\frac{1}{1-x}\right)^{(k)} = \frac{k!}{(1-x)^{k+1}} \quad \forall k = 0, 1, 2, \dots$

Khi đó, ta có

$$f^{(k)}(0) = k! \ \forall k = 0, 1, 2, \dots$$

Thay $f^{(k)}(0)$ vào biểu thức S(x), ta nhận được S(x) có dạng tổng vô hạn các số hạng của cấp số nhân lùi vô hạn (công bội $q:\ |q|<1)$

$$S(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x} \neq \frac{1}{1-x} + \varphi(x) = f(x) \ \forall x \in (-1,1) \setminus \{0\}.$$

Khi nào thì dấu "=" xảy ra?

Định lý 4.35. Nếu f(x) khả vi mọi cấp tại lân cận của điểm x_0 và

$$\lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} = 0 \quad v \acute{\sigma} i \; \xi = \lambda x_0 + (1 - \lambda)x, \; \lambda \in (0, 1),$$

thì f(x) = S(x). Hay

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0)^1 + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

Chúng minh Theo mục 4.5, ta có

$$f(x) = P_n(x) + R_n(x),$$

trong đó

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \ R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} = 0$$

với
$$\xi = \lambda x_0 + (1 - \lambda)x, \ \lambda \in (0, 1).$$

Khi đó

$$f(x) = \lim_{n \to \infty} R_n(x) + \lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} P_n(x).$$

Định lý 4.36. Nếu f(x) có đạo hàm mọi cấp tại lân cận của điểm x_0 và trong lân cận này có

$$|f^{(k)}(x)| \le M \ \forall k \in \mathbb{N},$$

 $thi\ f(x) = S(x).\ Hay$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0)^1 + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

Chứng minh Ta có

$$\sum_{n=0}^{+\infty} \frac{1}{(n+1)!} (x-x_0)^{n+1} = (x-x_0)(e^x - e^{x_0}) \Rightarrow \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} (x-x_0)^{n+1} \text{ hội tụ}.$$

Theo định lý 4.4, ta có

$$\lim_{n \to \infty} \frac{1}{(n+1)!} (x - x_0)^{n+1} = 0 \Rightarrow \lim_{n \to \infty} \frac{1}{(n+1)!} |x - x_0|^{n+1} = 0.$$

Khi đó,

$$\lim_{n \to \infty} |R_n(x)| = \lim_{n \to \infty} \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right| \le \lim_{n \to \infty} \frac{M}{(n+1)!} |x - x_0|^{n+1} = 0.$$

Vậy $\lim_{n\to\infty} R_n(x) = 0$. Theo định lý 4.35, định lý được chứng minh.

Ví dụ 4.37. (Công thức Euler)

Chứng minh rằng:

$$e^{\alpha i} = \cos \alpha + i \sin \alpha.$$

Giải Theo công thức khai triển Taylor, ta dễ dàng tính được rằng

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

Chú ý rằng $i^{2n}=(-1)^n$, ta có

$$e^{ix} = 1 + \frac{ix}{1!} + \frac{(ix)^2}{2!} + \dots + \frac{(ix)^n}{n!} + \dots$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$+ i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots\right)$$

$$= \cos x + i\sin x.$$

4.6. Chuỗi Fourier³

4.6.1. Chuỗi lượng giác

³21.3.1768-16.5.1830, Joseph Fourier là một nhà Toán học người Pháp. Các công trình của ông về Vật lý liên quan đến lý thuyết nhiệt, về Toán học liên quan đến các phương trình vi phân và chuỗi lượng giác.

Là một chuỗi hàm số có dạng

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx),^{(*)}$$

trong đó $a_k, b_k : const \ \forall k \in \mathbb{N}.$

Xét hệ các hàm số

$$H = \{1, \cos x, \sin x, \cos 2x, \sin 2x, ...\}.$$

Ta dễ dàng chứng minh được rằng: Hệ H có tính trực giao, nghĩa là

$$\int_{-\pi}^{\pi} \alpha(x)\beta(x)dx = 0 \ \forall \alpha(x) \neq \beta(x) \in H.$$

Ta xét sự hội tụ đều của chuỗi hàm (*).

Định lý 4.38. Nếu hai chuỗi số $\sum_{n=0}^{+\infty} a_n$ và $\sum_{n=0}^{+\infty} b_n$ hội tụ tuyệt đối, thì chuỗi lượng giác (*) hội tụ đều và hội tụ tuyệt đối trên \mathbb{R} .

Chứng minh Từ

$$|a_n \cos nx + b_n \sin nx| \le |a_n| + |b_n| \ \forall x \in \mathbb{R}$$

và giả thiết cho hai chuỗi số $\sum_{n=0}^{+\infty} |a_n|$ và $\sum_{n=0}^{+\infty} |b_n|$ hội tụ, theo định lý 4.21, suy ra chuỗi lượng giác (*) hội tụ đều và hội tụ tuyệt đối trên \mathbb{R} .

Định lý 4.39. Nếu hai dãy số dương (a_n) và (b_n) đơn điệu giảm và hội tụ về 0, thì chuỗi lượng giác (*) hội tụ trên miền $D = \mathbb{R} \setminus \{k2\pi : k \in \mathbb{Z}\}$.

Chứng minh Đặt

$$S_n = \sum_{k=1}^n a_n \cos kx, \quad \bar{S}_n = \sum_{k=1}^n a_n \sin kx.$$

+ Chứng minh rằng: $(S_n(x))$ hội tụ trên D.

$$2\sin\frac{x}{2}.S_n(x) = a_1 2\sin\frac{x}{2}\cos x + a_2 2\sin\frac{x}{2}\cos 2x + \dots + a_n 2\sin\frac{x}{2}\cos nx$$

$$= a_1 \left(\sin(1+\frac{1}{2})x - \sin(1-\frac{1}{2})x\right) + a_2 \left(\sin(2+\frac{1}{2})x - \sin(2-\frac{1}{2})x\right)$$

$$+ \dots + a_n \left(\sin(n+\frac{1}{2})x - \sin(n-\frac{1}{2})x\right)$$

$$= a_n \sin(n+\frac{1}{2})x - a_1 \sin\frac{x}{2} + \sum_{k=2}^n (a_{k+1} - a_k) \sin(k-\frac{1}{2})x.$$

Τừ

$$|(a_{k-1} - a_k)\sin(k - \frac{1}{2})x| \le |a_{k-1} - a_k| = a_{k-1} - a_k \text{ và}$$

$$\sum_{k=2}^{n} (a_{k-1} - a_k) = a_1 - a_n \to a_1 \text{ khi } n \to \infty,$$

theo dấu hiệu Weierstrass, suy ra

$$\sum_{k=2}^{n} (a_{k+1} - a_k) \sin(k - \frac{1}{2}) x \text{ hội tụ tới } S_0(x).$$

Kết hợp điều này với

$$\lim_{n \to \infty} a_n \sin(n + \frac{1}{2})x = 0,$$

ta có $2\sin\frac{x}{2}S_n$ hội tụ tới $-a_1\sin\frac{x}{2}+S_0(x)$. Hay $(S_n(x))$ hội tụ tới $-\frac{a_1}{2}+\frac{S_1(x)}{2\sin\frac{x}{2}}=S(x)$ $\forall x\in D$.

+ Bằng cách chứng minh tương tự, ta cũng chứng minh được rằng chuỗi $(\bar{S}_n(x))$ hội tụ tới $\bar{S}(x)$ khi $n\to\infty$.

Vậy chuỗi (*) hội tụ tới
$$S(x) + \bar{S}(x)$$
 trên miền D .

4.6.2. Khai triển Fourier của hàm số có chu kỳ 2π

Cho hàm f(x) xác định trên \mathbb{R} và có chu kỳ 2π . Hàm số f(x) được gọi là *khai* triển được thành chuỗi lượng giác, nếu ta có thể viết

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos kx + b_k \sin kx) \quad \forall x \in \mathbb{R}.$$

Khi đó, nếu có thể chuyển dấu tích phân qua tổng vô hạn (xem định lý 4.25), thì ta có

$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} \frac{a_0}{2} dx + \sum_{n=1}^{+\infty} \int_{-\pi}^{\pi} (a_n \cos nx + b_n \sin nx) dx$$
$$= \pi a_0,$$

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} a_n \cos^2 nx dx$$
$$= \pi a_n,$$

$$\int_{-\pi}^{\pi} f(x) \sin nx dx = \int_{-\pi}^{\pi} a_n \sin^2 nx dx$$
$$= \pi b_n.$$

Như vậy, ta có

$$(**) \begin{cases} a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \\ a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx \\ b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx \quad \forall k \in \mathbb{N}^*. \end{cases}$$

Khi đó, ta gọi chuỗi Fourier của hàm số f(x) là chuỗi lượng giác có dạng

$$S(x) = \frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos kx + b_k \sin kx) \quad \forall x \in \mathbb{R},$$

trong đó, các hệ số $a_0, a_k, b_k \ \forall k \in \mathbb{N}^*$ được xác định bởi (**) gọi là các hệ số Fourier của hàm số f(x).

Vấn đề ta quan tâm là: Khi nào S(x) = f(x)?

Đinh lý 4.40. (Dirichlet⁴)

Cho hàm số f(x) tuần hoàn với chu kỳ 2π thỏa mãn một trong hai điều kiện sau trên $[-\pi,\pi]$:

- i) f(x) và f'(x) liên tục từng khúc.
- ii) f(x) đơn điệu từng khúc và bị chặn.

Khi đó, nếu f(x) liên tục tại x_0 , thì

$$f(x_0) = S(x_0),$$

 $n\acute{e}u f(x)$ gián đoạn tại x_0 , thì

$$S(x_0) = \frac{1}{2} \left(\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \right).$$

(không chứng minh).

⁴13.2.1805-5.5.1859, Gustav Lejeune Dirichlet là nhà Toán học lớn người Đức, cũng là học trò và là người rất hâm mộ Gauss. Các công trình nghiên cứu của ông liên quan đến lý thuyết số, giải tích, cơ học và vật lý toán. Sau khi ông qua đời, bộ óc của ông được bảo quản tại khoa sinh lý học trường Đại học Göttingen.

Ví dụ 4.41. Tìm khai triển Fourier của hàm số tuần hoàn với chu kỳ 2π

$$f(x) = x^2 \quad v \acute{o}i - \pi \le x \le \pi.$$

Giải Tính các hê số Fourier, ta có

Hình 1: Biểu diễn hình học của $f(x) = x^2 \;\; x \in [-\pi,\pi]$, chu kỳ 2π

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2\pi^2}{3},$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos nx dx = \frac{4(-1)^n}{n^2},$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin nx dx = 0.$$

Vậy khai triển Fourier của hàm f(x) có dạng

$$S(x) = \frac{\pi^2}{3} - 4\left(\cos x - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \dots + \frac{4(-1)^{n+1}\cos nx}{n^2} + \dots\right).$$

Chú ý rằng f(x) và f'(x) liên tục từng khúc, theo định lý 4.40, ta có f(x) = S(x).

4.6.3. Khai triển Fourier của hàm số có chu kỳ 2T

Cho hàm f(x) xác định trên $\mathbb R$ và có chu kỳ 2T. Bằng cách đổi biến

$$t = \frac{\pi x}{T},$$

ta có, hàm số

$$g(t)=f(\frac{T}{\pi}t)\,$$
 tuần hoàn với chu kỳ $2\pi.$

Như vậy, theo chứng minh trên, khai triển Fourier của hàm g(t) có dạng

$$\frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos kt + b_k \sin kt) \quad \forall t \in \mathbb{R},$$

trong đó

$$\begin{cases} a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t)dt \\ a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos kt dt \\ b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin kt dt \ \forall k \in \mathbb{N}^*. \end{cases}$$

Bằng cách đổi biến $t \to x$, ta nhận được $chu \tilde{o}i$ Fourier của hàm f(x) có dạng:

$$S(x) = \frac{a_0}{2} + \sum_{k=1}^{+\infty} \left(a_k \cos \frac{\pi kx}{T} + b_k \sin \frac{\pi kx}{T} \right) \ \forall x \in \mathbb{R},$$

trong đó, các hệ số Fourier $a_0, a_k, b_k \ \forall k \in \mathbb{N}^*$ được xác định bởi

$$\begin{cases} a_0 = \frac{1}{T} \int_{-T}^{T} f(x) dx = \frac{1}{T} \int_{0}^{2T} f(x) dx \\ a_k = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{k\pi x}{T} dx = \frac{1}{T} \int_{0}^{2T} f(x) \cos \frac{k\pi x}{T} dx \\ b_k = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{k\pi x}{T} dx = \frac{1}{T} \int_{0}^{2T} f(x) \sin \frac{k\pi x}{T} dx \quad \forall k \in \mathbb{N}^*. \end{cases}$$

Ví dụ 4.42. Tìm khai triển Fourier của hàm số tuần hoàn với chu kỳ 2T=2

$$f(x) = |x| \quad v \acute{o} i - 1 \le x \le 1.$$

Từ đó tính tổng

$$S = \frac{1}{1^2} + \frac{1}{3^2} + \dots + \frac{1}{(2n+1)^2} + \dots$$

Giải Tính các hệ số Fourier, ta có

Hình 2: Biểu diễn hình học của $f(x) = |x|, x \in [-1,1]$, chu kỳ 2.

$$a_0 = \frac{1}{T} \int_{-T}^{T} f(x) dx = 2 \int_{0}^{1} x dx = 1,$$

$$a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos n\pi x dx = 2 \int_{0}^{1} x \cos n\pi x dx = 2 \cdot \frac{(-1)^n - 1}{n^2 \pi^2},$$

$$b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin n\pi x dx = 0.$$

Vậy khai triển Fourier của hàm f(x) có dạng

$$S(x) = \frac{1}{2} - \frac{2}{\pi^2} \left(\frac{\cos \pi x}{1^2} + \frac{\cos 3\pi x}{3^2} + \dots + \frac{\cos (2n+1)\pi x}{(2n+1)^2} + \dots \right).$$

Chý ý rằng f(x) và f'(x) liên tục từng khúc, theo định lý 4.40, ta có f(x)=S(x). Để tính tổng S, thay x=0 vào f(x), ta có

$$0 = \frac{1}{2} - \frac{2}{\pi^2} \left(\frac{1}{1^2} + \frac{1}{3^2} + \dots + \frac{1}{(2n+1)^2} + \dots \right).$$

Vậy

$$S = \frac{\pi^2}{4}.$$

4.6.4. Khai triển Fourier của hàm số xác định trên [a,b].[a,b), (a,b], hay (a,b) Giả sử cho hàm số f(x) xác định trên [a,b], ta thác triển hàm f(x) thành hàm số F(x) xác định trên $\mathbb R$ và có chu kỳ 2T. Khi đó ta có khai triển Fourier của hàm F(x) và cũng có khai triển Fourier của hàm f(x) với $x \in [a,b]$. Thác triển hàm

 $f(x) \to F(x)$ có các dạng sau:

Dạng 1. Chu kỳ của hàm số F(x) là 2T = b - a.

Ví dụ 4.43. Cho hàm số f(x) xác định trên (0, 2]

$$f(x) = \begin{cases} x & \text{n\'eu} \ x \in (0,1] \\ 1 & \text{n\'eu} \ x \in (1,2]. \end{cases}$$

Tìm chuỗi Fourier của hàm f(x).

Giải Thác triển hàm $f(x)\to F(x)$ xác định trên $\mathbb R$ và có chu kỳ 2T=2. Tính các hệ số Fourier, ta có

$$a_0 = \frac{1}{T} \int_{-T}^{T} F(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} 1 dx = \frac{3}{2},$$

$$a_n = \frac{1}{T} \int_{-T}^{T} F(x) \cos \frac{n\pi x}{T} dx = \int_{0}^{1} x \cos n\pi x dx + \int_{1}^{2} \cos n\pi x dx = \frac{(-1)^n - 1}{n^2 \pi^2},$$

$$b_n = \frac{1}{T} \int_{-T}^{T} F(x) \sin \frac{n\pi x}{T} dx$$

$$= \int_{0}^{1} x \sin n\pi x dx + \int_{1}^{2} \sin n\pi x dx = \frac{(-1)^n + (-1)^n - 1}{n\pi} = -\frac{1}{n\pi}.$$

Vậy khai triển Fourier của hàm F(x) có dạng

Hình 3: Đồ thị của F(x) trong ví dụ 4.43.

$$S(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n^2 \pi^2} \cos n\pi x - \frac{1}{n\pi} \sin n\pi x \right).$$

Chý ý rằng F(x) và F'(x) liên tục từng khúc, theo định lý 4.40, ta có F(x) = S(x). Hay

$$F(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n^2 \pi^2} \cos n\pi x - \frac{1}{n\pi} \sin n\pi x \right).$$

Thu gọn hàm F(x) trên (0,2] cho khai triển Fourier của hàm f(x)

$$f(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n^2 \pi^2} \cos n\pi x - \frac{1}{n\pi} \sin n\pi x \right).$$

 $Dang\ 2$. Hàm số F(x) chấn (đồ thị đối xứng qua trục Oy).

Ví dụ 4.44. Cho hàm số f(x) xác định trên (0, 2]

$$f(x) = \begin{cases} x & \text{n\'eu} \ x \in (0,1] \\ 1 & \text{n\'eu} \ x \in (1,2]. \end{cases}$$

Hãy khai triển Fourier hàm số f(x) thành các hàm cosin.

 ${\it Giải}$ Thác triển hàm $f(x) \to F(x)$ xác định bởi

$$F(x) = \begin{cases} |x| & \text{n\'eu } |x| \leq 1 \\ 1 & \text{n\'eu } x \in [-2,-1) \cup (1,2]. \end{cases}$$

và tuần hoàn với chu kỳ 2T = 4. Tính các hệ số Fourier, ta có

$$a_{0} = \frac{1}{T} \int_{-T}^{T} F(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} 1 dx = \frac{3}{2},$$

$$a_{n} = \frac{1}{T} \int_{-T}^{T} F(x) \cos \frac{n\pi x}{T} dx = \int_{0}^{1} x \cos \frac{n\pi x}{2} dx + \int_{1}^{2} \cos \frac{n\pi x}{2} dx$$

$$= \frac{4}{n^{2}\pi^{2}} (\cos \frac{n\pi}{2} - 1) - \frac{2}{n\pi} \sin \frac{n\pi}{2},$$

$$b_{n} = \frac{1}{T} \int_{-T}^{T} F(x) \sin \frac{n\pi x}{T} dx = 0.$$

Vậy khai triển Fourier của hàm F(x) có dạng

Hình 4: Đồ thị của F(x) trong ví dụ 4.44.

$$S(x) = \frac{3}{4} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{2}.$$

Chý ý rằng F(x) và F'(x) liên tục từng khúc, theo định lý 4.40, ta có F(x)=S(x). Thu gọn hàm F(x) trên (0,2] cho khai triển Fourier của hàm f(x)

$$f(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \left(\frac{4}{n^2 \pi^2} \left(\cos \frac{n\pi}{2} - 1 \right) - \frac{2}{n\pi} \sin \frac{n\pi}{2} \right) \cos \frac{n\pi x}{2}.$$

Dạng 3. Hàm số F(x) lẻ (đồ thị đối xứng qua tâm O)

Ví dụ 4.45. Cho hàm số f(x) xác định trên (0,2]

$$f(x) = \begin{cases} 1 - x & \text{n\'eu } x \in (0, 1] \\ 0 & \text{n\'eu } x \in (1, 2]. \end{cases}$$

Hãy khai triển Fourier hàm số f(x) thành các hàm sin.

 $\emph{Giải}$ Thác triển hàm $f(x) \to F(x)$ xác định bởi

$$F(x) = \begin{cases} 1-x & \text{n\'eu } 0 < x \leq 1 \\ -(x+1) & \text{n\'eu } -1 \leq x \leq 0 \\ 0 & \text{n\'eu } x \in [-2,-1) \cup (1,2]. \end{cases}$$

và tuần hoàn với chu kỳ 2T = 4. Tính các hệ số Fourier, ta có

$$a_0 = \frac{1}{T} \int_{-T}^{T} F(x) dx = \int_{-1}^{0} (1+x) dx + \int_{0}^{1} (1-x) dx = 0,$$

$$a_n = \frac{1}{T} \int_{-T}^{T} F(x) \cos \frac{n\pi x}{T} dx = 0,$$

$$b_n = \frac{1}{T} \int_{-T}^{T} F(x) \sin \frac{n\pi x}{T} dx = 2 \int_{0}^{1} (1-x) \sin \frac{n\pi x}{2} dx = \frac{2}{n\pi} - \frac{4 \sin \frac{n\pi}{2}}{n^2 \pi^2}.$$

Vậy khai triển Fourier của hàm F(x) có dạng

Hình 5: Đồ thị của F(x) trong ví dụ 4.45.

$$S(x) = 4\sum_{n=1}^{\infty} \left(\frac{1}{n\pi} - \frac{2\sin\frac{n\pi}{2}}{n^2\pi^2} \right) \sin\frac{n\pi x}{2}.$$

Chý ý rằng F(x) và F'(x) liên tục từng khúc, theo định lý 4.40, ta có F(x) = S(x). Thu gọn hàm F(x) trên (0,2] cho khai triển Fourier của hàm f(x) dạng

$$f(x) = 4\sum_{n=1}^{\infty} \left(\frac{1}{n\pi} - \frac{2\sin\frac{n\pi}{2}}{n^2\pi^2} \right) \sin\frac{n\pi x}{2}.$$

BÀI TẬP CHƯƠNG 4

Bài 4.1. Tính các tổng sau:

1)
$$\sum_{n=1}^{+\infty} \frac{1}{2^{n-1}}$$
 ds: 2.

2)
$$\sum_{1}^{+\infty} \frac{(-1)^n}{3^{n-1}}$$
 $ds: -\frac{3}{4}$.

3)
$$\sum_{n=2}^{+\infty} \frac{1}{4n^2 - 9}$$
 ds: $\frac{23}{15}$.

4)
$$\sum_{n=2}^{+\infty} \frac{1}{n(n+2)(n+4)}$$
 ds: $\frac{1}{2}$.

5)
$$\sum_{1}^{+\infty} (\sqrt[3]{n+2} - 2\sqrt[3]{n+1} + \sqrt[3]{n})$$
 $ds: 1 - \sqrt[3]{2}.$

6)
$$\sum_{n=1}^{+\infty} \frac{2n+1}{n^2(n+1)^2}$$
 ds: 1.

7)
$$\sum_{n=1}^{+\infty} \ln \frac{n}{n+1}$$
 ds: $-\infty$.

8)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n + 1}{n}$$
 ds: phân kỳ.

9)
$$\sum_{n=2}^{+\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$
 $ds: 1 - \sqrt{2}$

10)
$$\sum_{n=0}^{+\infty} \log_3^{2n+1} 2$$

$$ds: \frac{\log_3 2}{1 - \log_3^2 2}.$$

Bài 4.2. Dùng định lý Cauchy, xét sự hội tụ của các chuỗi sau:

1)
$$\sum_{n=1}^{+\infty} \frac{\cos nx - \cos(n+1)x}{n}$$
 đs : hội tụ.

2)
$$\sum_{n=1}^{+\infty} \frac{\cos x^n}{n^2}$$
 ds : hội tụ.

3)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

đs : phân kỳ, xét: $|S_{6n} - S_{3n}|$

4)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n(n+1)}}$$

đs : phân kỳ, xét: $|S_{2n} - S_n|$.

Bài 4.3. Dùng dấu hiệu so sánh, xét sự hội tụ của các chuỗi sau:

$$1) \sum_{n=1}^{+\infty} \frac{n+2}{n^n}$$

đs: hội tụ.

$$2) \sum_{n=1}^{+\infty} \frac{1}{\log_2(n^2+1)}$$

đs : phân kỳ.

3)
$$\sum_{n=1}^{+\infty} \frac{n+1}{(n+4)2^n}$$

đs : hội tụ.

4)
$$\sum_{n=1}^{+\infty} \frac{n+2}{\sqrt{(n^2+1)(n^4+3n-1)}}$$

đs : hội tụ.

$$5) \sum_{n=1}^{+\infty} \frac{\ln n}{n}$$

đs : phân kỳ.

6)
$$\sum_{n=1}^{+\infty} \frac{n^2 + 2}{3^n}$$

đs : hội tụ.

$$7) \sum_{n=1}^{+\infty} \frac{1}{n \cos n}$$

đs: hội tụ.

8)
$$\sum_{n=1}^{+\infty} \sin \frac{n+2}{n^3\sqrt{3n+1}}$$

đs : hội tu.

9)
$$\sum_{n=1}^{+\infty} \arcsin^3 \frac{1}{n^p}, p > 0$$

 $\mathrm{d}\mathbf{s}: p > \frac{1}{3} \to \mathbf{h} \\ \hat{\mathbf{p}} \mathbf{i} \ \mathbf{t} \\ \mathbf{u}, p \leq \frac{1}{3} \to \mathbf{p} \mathbf{h} \\ \hat{\mathbf{a}} \mathbf{n} \ \mathbf{k} \\ \hat{\mathbf{y}}.$

10)
$$\sum_{n=1}^{+\infty} (1 - \cos \frac{1}{n^p}), p > 0$$

 $\mathrm{d}\mathbf{s}: p > \frac{1}{2} \to \mathbf{h} \\ \mathbf{\hat{p}} \mathbf{i} \ \mathbf{t} \\ \mathbf{u}, p \leq \frac{1}{2} \to \mathbf{p} \mathbf{h} \\ \mathbf{\hat{a}} \mathbf{n} \ \mathbf{k} \\ \mathbf{\hat{y}}.$

Bài 4.4. Dùng dấu hiệu D'alembert, xét sự hội tụ của các chuỗi sau:

1)
$$\sum_{n=1}^{+\infty} \frac{4.7.10...(3n+1)}{2.6.10...(4n-2)}$$

đs : hội tụ.

2)
$$\sum_{n=1}^{+\infty} \frac{n+1}{2^n}$$

đs : hội tụ.

3)
$$\sum_{n=1}^{+\infty} \frac{(n+4)}{6^n}$$
 ds : hội tụ.

4)
$$\sum_{n=1}^{+\infty} \frac{1.3.5...(2n+1)}{3^{n+1}n!}$$
 ds: hội tụ.

5)
$$\sum_{n=1}^{+\infty} \frac{n+1}{2n-1} \sin \frac{2}{n^4}$$
 ds : hội tụ.

6)
$$\sum_{n=0}^{+\infty} \frac{4^n}{n!}$$
 ds : hội tụ.

7)
$$\sum_{n=1}^{+\infty} \frac{n!}{n^{\sqrt{n}}}$$
 ds: phân kỳ.

8)
$$\sum_{n=1}^{+\infty} \left(\frac{n}{n+2}\right)^{n+1}$$
 ds: phân kỳ.

9)
$$\sum_{1}^{+\infty} \frac{2^n + n^2 - 1}{3^n + 2n + 3}$$
 ds : hội tụ.

10)
$$\sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!}$$
 ds : hội tụ.

Bài 4.5. Dùng dấu hiệu Cauchy, xét sự hội tụ của các chuỗi sau:

1)
$$\sum_{n=1}^{+\infty} \left(\frac{n+1}{3n-1}\right)^{2n+1}$$
 ds: hội tụ.

2)
$$\sum_{n=1}^{+\infty} \left(\cos\frac{2}{n}\right)^{\frac{1}{n+1}}$$
 ds: hội tụ.

3)
$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(\frac{2n+1}{2n-1}\right)^{n^2+1}$$
 ds : hội tụ.

4)
$$\sum_{n=1}^{+\infty} 2^n \left(\frac{n}{n+3}\right)^{n^2-1}$$
 ds: hôi tụ.

5)
$$\sum_{n=1}^{+\infty} \arctan^n \frac{n+1}{n+5}$$
 ds : hội tụ.

6)
$$\sum_{n=1}^{+\infty} \left(1 + \arcsin \frac{1}{2n^2 + 1}\right)^{\frac{1}{3n+4}}$$
 ds : hội tụ.

7)
$$\sum_{n=1}^{+\infty} 3^{(-1)^n + 2n}$$
 ds: phân kỳ.

8)
$$\sum_{n=1}^{+\infty} 3^{(-1)^n - 2n}$$
 ds : hội tụ.

9)
$$\sum_{n=1}^{+\infty} \left(\frac{2n+(-1)^n}{3n-4}\right)^{2n+5}$$
 ds : hội tụ.

10)
$$\sum_{n=1}^{+\infty} \arccos^{2n-1} \frac{n+1}{2n+3}$$
 ds : hội tụ.

Bài 4.6. Dùng dấu hiệu tích phân, xét sự hội tụ của các chuỗi sau:

1)
$$\sum_{n=1}^{+\infty} \frac{2n}{n^2 + 4}$$
 ds: phân kỳ.

2)
$$\sum_{n=2}^{+\infty} \frac{1}{n \ln^5 n}$$
 ds : hội tụ.

3)
$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n \ln(\ln n)}$$
 ds: phân kỳ.

4)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{1+n\sqrt[3]{1+n^2}}}$$
 ds : hội tụ.

5)
$$\sum_{n=0}^{+\infty} \frac{\sqrt{n^3}}{1+n^2}$$
 ds: phân kỳ.

6)
$$\sum_{n=1}^{+\infty} \frac{n \ln n}{\sqrt{(1+n^2)^3}}$$
 ds : hội tụ.

7)
$$\sum_{m=1}^{+\infty} n^m e^{-n}$$
, $m \in \mathbb{N}$ ds: phân kỳ.

8)
$$\sum_{n=2}^{+\infty} \frac{\ln n}{n\sqrt{n^2 - 1}}$$
 ds: hội tụ.

9)
$$\sum_{n=1}^{+\infty} \frac{n}{\sqrt{e^{3n}-4}}$$
 ds: hội tụ.

10)
$$\sum_{n=1}^{+\infty} \frac{1+n^2}{1+n^4}$$
 ds : hội tụ.

Bài 4.7. Dùng dấu hiệu Leibniz, xét sự hội tụ của các chuỗi sau:

$$1) \ \sum_{n=1}^{+\infty} \frac{(-1)^n}{2n+4}$$
đs : hội tụ.

2)
$$\sum_{n=2}^{+\infty} \frac{(-1)^{n+1}}{n \ln^5 n}$$
 ds : hội tụ.

3)
$$\sum_{n=3}^{+\infty} \frac{(-1)^n \log_2 n}{n}$$
 ds: hội tụ.

4)
$$\sum_{n=1}^{+\infty} (-1)^{n+2} \frac{1+n^2}{n^2-n+1}$$
 ds: phân kỳ.

5)
$$\sum_{n=0}^{+\infty} (-1)^n (\sqrt[n]{3} - 1)$$
 ds: hội tụ.

6)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n \sqrt{n}}{n-1}$$
 ds : hội tụ.

7)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$
 ds: phân kỳ.

8)
$$\sum_{n=3}^{+\infty} \frac{(-1)^n (2n+19)}{3n^2+n+1}$$
 ds : hội tụ.

9)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{n^2}{e^n}$$
 ds : hội tụ.

10)
$$\sum_{n=1}^{+\infty} \frac{\cos n\pi}{n \sin \frac{1}{n}}$$
 ds: phân kỳ.

Bài 4.8. Khảo sát sự hội tụ đều của các hàm số sau:

1)
$$\sum_{n=1}^{+\infty} x^{n-1}$$
 trên $D=[-\frac{1}{2},\frac{1}{2}]$: hội tụ đều.

2)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{\sqrt{n}}$$
 trên $D = [0, 1]$: hội tụ đều.

3)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt[3]{n}}$$
 trên $D = [0, +\infty)$: hội tụ đều.

4)
$$\sum_{n=1}^{+\infty} \sqrt{x}e^{-nx}$$
 trên $D = [0, +\infty)$: không hội tụ đều.

5)
$$\sum_{n=1}^{+\infty} \ln(1 + \frac{x}{n \ln^2(n+1)})$$

$$\text{trên } D=[0,2]$$

: hội tụ đều.

$$6) \sum_{n=1}^{+\infty} \frac{\cos nx}{n}$$

$$\text{trên } D=[0,+\infty)$$

: hội tụ đều.

7)
$$\sum_{n=1}^{+\infty} \frac{1}{(x+2n)(x+2n+2)}$$

trên
$$D = [0, +\infty)$$

: hội tụ đều.

8)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n + \cos nx}$$

$$\text{trên } D = \mathbb{R}$$

: hội tụ đều.

9)
$$\sum_{n=1}^{+\infty} \sqrt{\frac{\sin nx}{\sqrt{2x^4 + n^4 + 1}}}$$

trên
$$D=\mathbb{R}$$

: hội tu đều.

10)
$$\sum_{n=1}^{+\infty} \frac{1}{2^n \sqrt{1+3nx}}$$

trên
$$D = [0, +\infty)$$

: hội tu đều.

Bài 4.9. Tìm miền hội tụ của các chuỗi lũy thừa sau:

1)
$$\sum_{n=0}^{+\infty} \frac{(x^3-2)^n}{n!}$$

$$ds: D = \mathbb{R}.$$

2)
$$\sum_{n=1}^{+\infty} (\frac{4}{11})^n \frac{(x+2)^n}{n}$$

$$ds: D = [-\frac{19}{4}, \frac{3}{4}).$$

3)
$$\sum_{n=1}^{+\infty} \frac{x^n}{2\sqrt{n}}$$

$$ds : D = [-1, 1].$$

4)
$$\sum_{n=1}^{+\infty} \frac{n!2^n}{n^n} (x+1)^{2n}$$

$$ds: D = (-\sqrt{\frac{e}{2}} - 1, \sqrt{\frac{e}{2}} - 1).$$

5)
$$\sum_{n=1}^{+\infty} \frac{n!2^n}{(2n)!} (3x+4)^{2n}$$

$$ds: D = \mathbb{R}.$$

6)
$$\sum_{n=1}^{+\infty} \frac{(2x+1)^n}{n^n}$$

$$\mathrm{d}\mathbf{s}:D=\mathbb{R}.$$

7)
$$\sum_{n=1}^{+\infty} \frac{2^n x^{2n-1}}{(4n-3)^2}$$

$$ds: D = [-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}].$$

$$8) \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} 4^n x^n}{n^2}$$

$$ds: D = [-\frac{1}{4}, \frac{1}{4}].$$

9)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n (x-1)^{6n+3}}{2n+1}$$

$$ds: D = [0, 2].$$

10)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n (x+1)^{2n+1}}{3^{2n+1} (2n+1)}$$

$$ds : D = [-2, 4].$$

Bài 4.10. Khai triển Fourier các hàm số sau:

$$1)f(x) = \frac{\pi - x}{2}$$
 với $x \in (0, 2\pi)$ theo sin .

$$ds: \sum_{m=1}^{\infty} \frac{\sin nx}{n}$$
.

$$2) f(x) = \cos \frac{x}{2} \text{ v\'oi } x \in (-\pi, \pi), \text{ chu kỳ } 2\pi.$$

$$ds : \cos \frac{x}{2} = \frac{2}{\pi} + \frac{1}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n \cos nx}{\frac{1}{4} - n^2}.$$

3)
$$f(x) =$$

$$\begin{cases} 6 & \text{n\'eu } 0 < x < 2 \\ 3x & \text{n\'eu } 2 < x < 4. \end{cases}$$

$$ds: a_0 = \frac{15}{2}, \ a_n =$$

$$\begin{cases} \frac{12}{\pi^2 n^2} & \text{n\'eu} \ n \notin 2\mathbb{N} \\ 0 & \text{n\'eu} \ n \in 2\mathbb{N}, \end{cases}$$

$$b_n = -\frac{6}{\pi n}.$$

$$4) f(x) = \cos \frac{x}{2} x \in (0, 2\pi], \text{ chu kỳ } 2T = 4\pi.$$

$$ds: a_0 = 0, \ a_n = 0, b_n = \frac{8n}{\pi(2n-1)(2n+1)}.$$

$$5) f(x) = x \sin x \quad x \in [-\pi, \pi].$$

$$ds: a_0 = -2, \ a_1 = -\frac{1}{2}, a_n = \frac{2}{n^2 - 1} \ (n \ge 2), b_n = 0.$$

$$f(x) = x \cos x$$
 $x \in (0, \pi)$ theo $cosin$. Từ đó tính tổng $S = \sum_{n=1}^{\infty} \frac{4n^2 + 1}{(4n^2 - 1)^2}$.

$$ds: -\frac{2}{\pi} + \frac{\pi}{2}\cos x - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{4n^2 + 1}{(4n^2 - 1)^2} \cos 2nx, \ S = \frac{\pi^2}{8} + \frac{1}{2}.$$

$$7) f(x) = x \cos x \quad x \in (0, \pi) \text{ theo } sin.$$

$$ds: -\frac{1}{2}\sin x + 2\sum_{n=2}^{\infty} (-1)^n \frac{n}{n^2 - 1}\sin nx.$$

$$8) f(x) = \begin{cases} 0 & \text{n\'eu} \quad -3 < x \leq 2 \\ x & \text{n\'eu} \quad 2 < x < 3. \end{cases} \text{ Từ đó tính tổng } S = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

$$ds: \frac{3}{4} - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos \frac{(2n-1)\pi x}{3} - \frac{3}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{3}, S = \frac{\pi^2}{8}, \ (x=0).$$

$$9) f(x) = \begin{cases} 0 & \text{n\'eu } \frac{\pi}{2} \le |x| \le \pi \\ \cos x & \text{n\'eu } |x| < \frac{\pi}{2}. \end{cases}$$

trên $[-\pi, \pi]$.

$$ds: \frac{1}{\pi} + \frac{1}{2}\sin x - \sum_{n=1}^{\infty} \frac{2}{\pi(4n^2 - 1)}\cos 2nx$$

$$10) f(x) = \begin{cases} x & \text{n\'eu } 0 \le x \le 1 \\ 1 & \text{n\'eu } 1 < x < 2. \\ 3 - x & \text{n\'eu } 2 \le x \le 3. \end{cases}$$

theo các hàm cosin.

$$ds: \frac{2}{3} + \frac{3}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos \frac{2n\pi}{3} - 1}{n^2} \cos \frac{2n\pi x}{3}.$$

TÀI LIỆU THAM KHẢO

- 1. Brown, Pearcy A. and Carl, "An introduction to analysis", Graduate Texts in Mathematics, Springer-verlag, 1995.
- 2. Liasko Y. Y., Boiatruc A. C., Gai Ia. G. and Golovac G. P, "Giải tích toán học", Tập 1, NXB ĐH&THCN, 1979.
- 3. Trim D., "Calculus for engineers", Springer, 2001.
- 4. Stewart J., "Essential Calculus", Thomson Brooks/Cole, 2006a.
- 5. Stewart J., "Calculus: Concepts and Contexts", Thomson Brooks/Cole, 2006.
- 6. Rudin W., "Principles of Mathematical Analysis", 3rd ed, McGraw-Hill, 1976.
- 7. Trí N. Đ., Đĩnh T. V. và Quỳnh N. H. "Toán cao cấp tâp 1", NXBGD, 2003.
- 8. Wrede R., and Spiegel M., "Theory and Problems of Advanced Calculus", McGraw-Hill, 2002.