NBA Accolades Analysis

By: Mitchell Ren

Overview

Business Context

Data Exploration

Modeling

Results Evaluation

Key Takeaways & Next Steps

Business Context

Each year, members of the NBA media vote on superlative awards like Most Valuable Player and Defensive Player of the Year.

Data Exploration

I scraped seasonal player data from **Basketball-Reference.com** for the last 40 seasons - the final, consolidated dataset included over **20,000 rows and 140 features**.

Data Exploration (Cont.)

The below graph shows that **offensive win share (OWS) was a key consideration for certain years and not very much so for other years**.

MVP OWS Over Time

Data Exploration (Cont.)

The below graph shows that although Dennis Rodman won DPOY in 1991, there were other players more outstanding.

Data Exploration (Cont.)

The below graph visualizes how much **MVPs were outliers compared to the rest of the field** within a given season.

Modeling

A Decision Tree Classifier model learns patterns in the data through a series of **condition-based splits**. It splits the data into sub-samples and makes **predictions** from what it learns.

Decision Tree Classifier

A Random Forest Classifier model combines learnings from **multiple Decision Tree Classifiers** to make its predictions.

Random Forest Classifier

I took an **iterative** approach to modeling and applied it to each model version.

I originally approached this problem as a **multi-class** one. I built baseline models to categorize players into one of three categories: **Won (the award), Received Votes, Received No Votes**.

I then tested changing the target variables to be **binary** as opposed to multi-class to see how that impacted model performance.

Results & Evaluation (Multi-Class) - MVP

The Random Forest Classifier with SMOTE resampling and hyperparameter tuning showed the best performance.

Model	F1-Score (Macro Average)
Baseline Multi-class DTC	Train: 100% Test: 64%
Multi-class DTC with SMOTE Resampling	Train: 100% Test: 70%
Multi-class DTC with SMOTE Resampling and Hyperparameter Tuning	Train: 98% Test: 71%
Multi-class RFC with SMOTE Resampling and Hyperparameter Tuning	Train: 100% Test: 74%

Results & Evaluation (Binary) - MVP & DPOY

The final RFC I built for MVP predictions performed better than did the one I built for DPOY predictions.

Model	F1-Scores (Macro Average)	F1-Scores (Test)
Binary RFC with SMOTE Resampling and Hyperparameter tuning (MVP)	Train: 92% Test: 83%	Received No Votes: 99% Received Votes: 68%
Binary RFC with SMOTE Resampling and Hyperparameter tuning (DPOY)	Train: 98% Test: 71%	Received No Votes: 97% Received Votes: 45%

Key Takeaways

Feature importances reveal a good starting point for defining objective, statistical criteria for MVP and DPOY voting.

Recommendations

Next Steps

Thank You

Contact: mitchell.rensei@gmail.com