Matroids

Thomas Cohn

11/29/18

This command may be useful:

From last time:

Prop: A lattice \mathcal{L} can be ranked if and only if every maximal chain $\hat{0} \prec x_1 \prec x_2 \prec \cdots \prec x_\ell = \hat{1}$ has the same length.

Proof " \Rightarrow ": rank $(x_{i+1}) = \text{rank}(x_i) + 1$. So $\ell = \text{rank}(x_\ell) = \text{rank}(\hat{1})$. Proof " \Leftarrow ": Inductive, starting with rank $(\hat{0}) = 0$.

Ш

Defn: A matriod $M = (E, \mathcal{I})$ is a finite set E and a family \mathcal{I} of subsets of E with 2 properties:

- M0) If $X \in \mathcal{I}$ and $Y \subseteq X$, then $Y \in \mathcal{I}$.
- M1) If $X, Y \in \mathcal{I}$ and |Y| > |X|, then $\exists e \in Y \setminus X \text{ s.t. } X \cup \{e\} \in \mathcal{I}$.

We call an $X \in \mathcal{I}$ an independent set in E. A maximal independent set is called a <u>base</u>.

Ex: $M = (E, \mathcal{I})$ where $E = \{1, 2, ..., n\}$ and $\mathcal{I} = \{X \subseteq E : |X| \le k\}$. (Uniform matroid). $|I| = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{k}$.

Ex: $M = (E, \mathcal{I})$ where $E \subseteq \mathbb{R}^n$ (finite set of *n*-dimensional vectors). $E = \{v_1, \dots, v_m\}$. $\mathcal{I} = \{X \subseteq E : X \text{ linearly independent}\}$. Then M is called a linear matroid.

- M0) X linearly independent, $Y \subseteq X$ means Y is also linearly independent, so $Y \in \mathcal{I}$.
- M1) X, Y linearly independent, |X| < |Y|. Then $\dim(\text{span}(X)) < \dim(\text{span}(Y))$. So by basic linear algebra, we're done.

Ex: G = (V, E) graph, $M = (E, \mathcal{I})$. $\mathcal{I} = \{X \subset E : X \text{ is acyclic}\}$ (or equivalently, X forms a forest in G). This is a graphic matroid.

- M0) X acyclic, $Y \subseteq X \to Y$ acyclic.
- M1) X, Y forests, |X| < |Y|. Recall that a forest with n vertices and ℓ components has $n \ell$ edges. So assume |X| = a < b = |Y|. Then X has n a components and Y has n b components. So there exists an edge e in Y connecting two components in X, so $X \cup \{e\}$ is still a forest.

Prop: All bases in a matroid have the same size.

Proof: Assume X and Y are bases and |X| < |Y|. By M0, $\exists e \in Y \setminus X$ s.t. $X \cup E \in \mathcal{I}$. Thus, X is not maximal, and is therefore not a base. Oops! \Box

Defn: $M = (E, \mathcal{I})$, let $S \subseteq E$. Then $r(S) = \max\{|X| : X \subseteq S \text{ is an independent set}\}$ is called the rank function. In particular, r(M) = r(E) is the size of any base.

If $S \subseteq T$, then $r(S) \leq r(T)$.

Lemma: Matroid $M = (E, \mathcal{I}), A \subseteq S \subseteq E, A$ is an independent set.

Then there is a set B with $A \subseteq B \subseteq S$ such that B is also an independent set and |B| = r(S). Proof: Let $C \subseteq S$ s.t. C is independent and |C| = r(S). If |A| = |C|, we're done. If |A| < |C|, by M1, there exists $e \in C \setminus A$ s.t. $A \cup \{e\}$ independent. We can repeat this until eventually we get $A \subset B$ independent with |B| = |C|. \square

Thm: (Rank semimodularity) Let $M = (E, \mathcal{I})$ be a matroid, $S, T \subseteq E$.

Then $r(S) + r(T) \ge r(S \cap T) + r(S \cup T)$.

Proof: Consider $S \cap T$, let $A \subseteq S \cap T$ such that A is independent and $|A| = r(S \cap T)$. $A \subseteq T \cup T$. By our lemma, we can find $A \subseteq B \subseteq S \cup T$ such that B independent, and $|B| = r(S \cup T)$.

Thus, $|A| = r(S \cap T)$ and $|B| = r(S \cup T)$. Let $B_1 \subseteq S$ and $B_2 \subseteq T$ both be independent sets. Then $r(S) \ge |B_1|$ and $r(T) \ge |B_2|$. So $r(S) + r(T) \ge |B_1| + |B_2|$.

Therefore, $|A| + |B| \ge r(S \cap T) + r(S \cup T)$. \square

Defn: $M = (E, \mathcal{I}), S \subseteq E$. We define the <u>closure</u> of S $cl(S) = \{x \in E : r(S) = r(S \cup x)\}$. We say S is <u>closed</u> or <u>flat</u> if cl(S) = S. We say S is <u>k-flat</u> if cl(S) = S and r(S) = k.

Some properties of the closure:

- $S \subseteq \operatorname{cl}(S)$
- $S \subseteq t \to \operatorname{cl}(S) \subseteq \operatorname{cl}(T)$
- $\operatorname{cl}(\operatorname{cl}(S)) = \operatorname{cl}(S)$