Jan 25,23.

roday's Topics:

1° Syllabus,"Greensheet" up the Class.

San José State University College of Engineering/Computer Engineering Department CMPE240 Advanced Microcomputer Design

S2023

Professor Hua Harry Li

Engineering Building, Rm 267A

Phone: (650) 400-1116 for Text Message Only

Email hua.li@sjsu.edu

Class Time: Mondays and Wednesdays 1:30-2:45 PM

Office Hours: Mondays and Wednesdays 4:30 – 5:30 PM Zoom

Zoom link: Join Zoom Meeting https://us04web.zoom.us/j/9841607683?

pwd=UlA3aEk1TnV4bjNLQk5CQkw0dDk4UT09 Meeting ID: 984 160 7683 Passcode:

121092

Lecture Room: Engineering Building Room 303

Lab facility: Engineering Building Room 268

Prerequisites

Good Throughout the entire School Session. But it will expire by the Last Day of the

Class (May15th).

Note: 1° Attendeme; 2° Bring your Laptop

Computer; 3° Prototype Board in Class

Use/Inspection.

M. Prototype System (Board A: CPU

PM Zoom

us/j/9841607683?

Peting ID: 984 160 7683 Passcode:

Board B:

4" BoardA: CPU NXP LPCICZY to

Replace LEC 17 bg (Near the End of 6° Cab Access Code Policy 1ts Life, By 2024) for the Lab Usage.

Dao taonity. Diiginooring Dananig 1000iii 200

Prerequisites

CmpE 180D for non CMPE or non EE undergraduate major. Students who do not provide documentation of satisfied the class prerequisite requirements by the second class meeting will be dropped from the class.

Faculty Web Page and MYSJSU Messaging (Optional)

Copies of the course materials such as the syllabus, major assignment handouts, etc. can be found from github https://github.com/hualili/CMPE240-Adv-Microprocessors/tree/master/ 2018F and on SJSU CANVAS.

Note: Homeworks Projects Announcement will be Posted on CANVAS. Submission on CANVAS only

Course Description

Architecture of a computing system including system bus, memory subsystems and peripherals.

Uni-directional and bidirectional bus architectures, SRAM and FLASH memories and their interfaces with the system bus. Design of Graphics Processing Engines, interrupt controller, transmitted timers, display adapter, and other system peripherals and bus interfaces.

Required Texts/Readings

Textbook

- NXP LPC17xx datasheets:
- LPC1768/1769 CPU Module schematics;
- Dave Jaggar, ARM Architectural Reference Manual, Prentice Hall, ISBN 0-13-736299-4;

, Note: Find the Datasheet ON the Class github. CMPE244

- Reference: ARM11 data sheets and on-line web materials on line https://github.com/hualili/, or at the SJSU CANVAS provided copyright permitted;
- (Optional) Nvidia Jetson NANO datasheet and user menu (online from Nvidia developer website);
- (Optional) RISC-V tutorial (the link to be given in the lecture) and FPGA verilog
 implementation guide (the link to be given in the lecture).

Other Readings

- The reference material for ARM CPU hardware features, application notes, class handouts and lab assignments and reports, please see Professor Li's lecture notes, PPT, sample C code etc on line https://github.com/hualili/CMPE240-Adv-Microprocessors;
- Professor Li's book materials, ARM Microprocessor Systems (in preparation for publication) https://github.com/hualili/CMPE240-Adv-Microprocessors

Other equipment / material requirements

32Bit RISC Prototype/Development Board.

| 2021F-107-|pc-cpu-UM... Add files vi | 2021F-107b-sch-#LPO... Add file
| 3021F-107b-sch-#LPO... Add file
| 2021F-107b-sch-#LPO... Add file
| 2022F-101-notes-cmpe240-2022-11-30.pdf

deadlines and penalties for adding and dropping classes Howeverk Projects Assignments and Grading Policy Laboratory 30% Midterm Examination 30% Final 40% 0 to 59 F 60 to 69 D 70 to 79 C 80 to 89 B 90 to 100 A Option 1. Target CPU Module Board NXP LPC 11C24 ARM CPU Module (recommended as this course), NXP LPC1769 ARM CPU Mc Janza (Monday) 1. Check the CANVAS for Homework, Hunesty Pleage Z. Tavget Platform. Background: X86. MIPS, ARM NXP LPC Family. LPC 1769 - End of Life By 2024. 17011024 Option: Jetson NAND Zglo. OptionZ: RISC-V FPGA Board BOM (Bill on Material) on github. Anchor Electronics

2021F-107-pc-cpu-UM...

2021F-107b-sch-#LPC...

Note: To make sure match the

pins in the ScH to its physical

Connector

Note: Naming Convention - Encomeration Stats with Index | for the

first Pin.

I or Jo

Note: Fin Connectivity Information Should be tied to its physical Device. Fig. 1 And to its CPU Patishect. ____

> Enventually to Software TOE.

Notes: JZ-1, JZ-Z, ...; Avo Chippin Name & Number Forteci768 Such as pol.9, L. No Need Pro 8

Forteciabs of No Need

mbed	LPCXpresso	
GND	GND	
VIN (4.5-14V)	VIN (4.5-5.5V)	
VB (battery supply)	VB (battery supply)	
nR (reset)	RESET_N	
SPI1-MOSI	P0.9	MOSI1
SPI1-MISO	P0.8	MISO1
SPI1-SCK	P0.7	SCK1
GPIO	P0.6	SSEL1
UART1-TX / I2C1-SDA	P0.0	TXD3/SDA1
UART1-RX / I2C1-SCL	P0.1	RXD3/SCL1
SPI2-MOSI	P0.18	MOSI0
SPI2-MISO	P0.17	MISO0

\mathbf{T} \mathbf{q} , \mathbf{S} .	
Γ	Dual row holes (2
GND	 J2-1
_FXT_VIN	C J2-2
VBAT	C J2-3
_TARGET_RE	SET c J2-4
P0.9	 J2-5
P0.8	C J2-6
P0.7	C J2-7
P0.6	C J2-8
D0.0	

Functional Description of Each Pin, such as MOSI ... etc.

(Master Out Slave Invol)

Homework: The A week from today.

1. Download NXPMULX Presso,

z. Install MCUX xpresso;

3. Start MCU Xpresso, then Screen

Optured your MCN X-zvesso Start

Page, Make sure it has your

Rensonalidentifier on it.

Feblst (Wed)

Note: 10 Attendance Sheet

Zo ref. from the Class github.

2023S-102-MCUXpresso_IDE_Installation_...

3° LPC module to be finalized today by the Class. Phrchasing CPU module by the end of the

day today.

LPCHC24

LPC1769

End of Life

(PN module Board B

for Gruphics

Optimi Optimiz Phychane Removal of

Engine Design

Emulation. -pre-fab.

Out-of- All Parts. Stock. Except the Except the ~ Ibweeks. Cin module.

Example: Continuation of the SCH.

Ph. 9 -> P Port, General

Purpose part - Aram multiplexing Sach Pin Can

have more than One

functions -> Init & Config.

More than one port.

Z. Connection to CTU Datusheet.

PP.14 Memory Map.

P12.

OXFFFF_FFFF OB/ P30 RZ9! RZ8 ---4 GB 0 0 0 0 0 BANK 0x2000-0000 1 010 BANKS OXYUND-UNDO 4. DXD000-0000 User manu a. Power-up Address: ~ when the 2.1 Memory map and peripheral addressing CPIN is powered up, it will go to The ARM Cortex-M3 processor has a single 4 GB address space. The following table this memory location to featch shows how this space is used on the LPC176x/5x. the 1st Executable instruction Address for GPIO Controller. OXZ ---6. 8 memory Banks. Equal size of memory Blocks. 232/8 = 232/23 = 29 = 20 20 572 Meg. BANK \$, ... , the Last BANK is Bank 7 C. We use 3 Bits from the Address Bus to define the Starting Addr of Each Bank. "Little agazo ... a, a, Endian" Orgy organias ... On a