1. Период тактового сигнала

 T_{clk1} — задержка от входа FPGA до запускающего триггера;

 T_{clk2} — задержка от входа FPGA до защелкивающего триггера;

 T_{p} – период тактового сигнала;

 T_{cq} – задержка Clk-to-Q для триггеров;

 T_{su} – setup time для триггеров;

 T_h – hold time для триггеров;

 T_{logic} – задержка через логику;

 T_{iit} – джиттер;

T_{un} – дополнительная непредвиденная задержка;

 $T_{clk\;skew}$ – расфазировка тактового сигнала.

Setup Time.

Запускающий фронт:

Launch Clk Time = $T_{clk1 max}$.

Защелкивающий фронт:

Latch Clk Time = $T_{clk2 min} + T_p$.

Задержка данных:

Data Delay = $T_{cq max} + T_{logic max}$.

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time $-T_{su}$.

$$\begin{split} \text{Slack} &= \text{Requier Time} - \text{Arrival Time} - T_{jit} - T_{un}. \\ \text{Slack} &= T_p + T_{clk\,skew} - T_{su} - T_{cq\,max} - T_{logic\,max} - T_{jit} - T_{un}. \\ &T_{clk\,skew} = T_{clk2\,min} - T_{clk1\,max}. \end{split}$$

Запускающий фронт:

Launch Clk Time = $T_{clk1 min}$.

Защелкивающий фронт:

Latch Clk Time = $T_{clk2 max}$.

Задержка данных:

Data Delay = $T_{cq min} + T_{logic min}$.

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time + T_h .

$$\begin{split} \text{Slack} &= \text{Arrival Time} - \text{Requier Time} - T_{jit} - T_{un}. \\ \text{Slack} &= T_{cq \; min} + T_{logic \; min} - T_{clk \; skew} - T_h - T_{jit} - T_{un}. \\ &T_{clk \; skew} = T_{clk2 \; max} - T_{clk1 \; min}. \end{split}$$

Constraints.

- create clock -name CLK -period Tp [get ports CLK PIN]
- set_system_jitter Tjit или set_input_jitter [get_clocks CLK] Tjit
- set_clock_uncertainty -from [get_clocks CLK] -to \ [get_clocks CLK] Tun

2. Входные ограничения

2.1. System Synchronous

 T_{cclk1} – задержка от входа Device до запускающего триггера;

 T_{bclk1} – задержка от генератора до входа Device;

 T_{cclk2} – задержка от входа FPGA до защелкивающего триггера;

T_{bclk2} – задержка от генератора до входа FPGA;

 T_{p} — период тактового сигнала;

 T_{cqd} — задержка Clk-to-Q для триггеров Device;

 T_{sud} – setup time для триггеров Device;

T_{hd} – hold time для триггеров Device;

 T_{logicd} — задержка через логику Device;

 T_{cqf} – задержка Clk-to-Q для триггеров FPGA;

 T_{suf} – setup time для триггеров FPGA;

 $T_{hf}-hold\ time\ для\ триггеров\ FPGA;$

 T_{logicf} – задержка через логику FPGA;

 T_{bdelay} — задержка данных на дорожке платы;

 T_{jit} – джиттер;

T_{un} – дополнительная непредвиденная задержка,

Setup Time.

Запускающий фронт:

Launch Clk Time = $T_{bclk1 max} + T_{cclk1 max}$.

Защелкивающий фронт:

Latch Clk Time =
$$T_{bclk2 min} + T_{cclk2 min} + T_p$$
.

Задержка данных:

Data Delay =
$$T_{cqd max} + T_{logicd max} + T_{bdelay max} + T_{logicf max}$$
.

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time
$$- T_{suf}$$
.

$$\label{eq:Slack} \begin{aligned} & \text{Slack} = \text{Requier Time} - \text{Arrival Time} - T_{jit} - T_{un}. \\ & \text{Slack} = \text{Latch Clk Time} - T_{suf} - \text{Launch Clk Time} - \text{ Data Delay} - T_{jit} - T_{un}. \end{aligned}$$

$$\begin{aligned} \text{Slack} &= T_{\text{bclk2}\,\text{min}} + T_{\text{cclk2}\,\text{min}} + T_{\text{p}} - T_{\text{suf}} - T_{\text{bclk1}\,\text{max}} - T_{\text{cclk1}\,\text{max}} - T_{\text{cqd}\,\text{max}} - \\ &- T_{\text{logicd}\,\text{max}} - T_{\text{bdelay}\,\text{max}} - T_{\text{logicf}\,\text{max}} - T_{\text{iit}} - T_{\text{un}}. \end{aligned}$$

$$Slack = T_p - Input Delay - FPGA Delay - T_{suf} - T_{iit} - T_{un}$$
.

В FPGA известны следующие параметры: T_{cclk2} , T_{suf} , T_{logicf} . Остальные необходимо указать.

Constraints 1.

$$Input\ Delay = T_{bclk1\ max} - T_{bclk2\ min} + T_{cclk1\ max} + \ T_{cqd\ max} + \ T_{logicd\ max} + T_{bdelay\ max}$$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- set_input_delay -clock CLK -max Input Delay [get_ports DATA_PIN]

Constraints 2.

Latency $1 = T_{bclk1 max}$

Latency $2 = T_{bclk2 min}$

Input Delay = $T_{cclk1 max} + T_{cqd max} + T_{logicd max} + T_{bdelay max}$

create_clock -name CLK_DEV -period Tp
 set clock latency -source -late Latency 1 [get clocks CLK DEV]

• set_input_delay -clock CLK_DEV -max \ Input Delay [get ports DATA PIN]

Запускающий фронт:

 $Launch \ Clk \ Time = T_{bclk1 \ min} + T_{cclk1 \ min}.$

Защелкивающий фронт:

Latch Clk Time = $T_{bclk2 max} + T_{cclk2 max}$.

Задержка данных:

Data Delay = $T_{cqd min} + T_{logicd min} + T_{bdelay min} + T_{logicf min}$.

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time + T_{hf} .

Slack = Arrival Time – Requier Time – T_{jit} – T_{un} .

 $Slack = Launch \ Clk \ Time + \ Data \ Delay - Latch \ Clk \ Time - T_{hf} - T_{jit} - T_{un}.$

$$\begin{split} Slack &= T_{bclk1\,min} + T_{cclk1\,min} + \ T_{cqd\,min} + T_{logicd\,min} + T_{bdelay\,min} + T_{logicf\,min} \\ &- T_{bclk2\,max} - T_{cclk2\,max} - T_{hf} - T_{jit} - T_{un}. \end{split}$$

 $Slack = Input Delay + FPGA Delay - T_{hf} - T_{jit} - T_{un}.$

В FPGA известны следующие параметры: T_{cclk2} , T_{hf} , T_{logicf} . Остальные необходимо указать.

Constraints 1.

 $Input\ Delay = T_{bclk1\ min} - T_{bclk2\ max} + T_{cclk1\ min} + T_{cqd\ min} + T_{logicd\ min} + T_{bdelay\ min}$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- set_input_delay -clock CLK -min Input Delay [get_ports DATA_PIN]

Constraints 2.

Latency $1 = T_{bclk1 min}$

Latency $2 = T_{bclk2 max}$

Input Delay = $T_{cclk1 min} + T_{cqd min} + T_{logicd min} + T_{bdelay min}$

 create_clock -name CLK_DEV -period Tp set_clock_latency -source -early Latency_1 [get_clocks CLK_DEV]

create_clock -name CLK_FPGA -period Tp [get_ports CLK_PIN]
set_clock_latency -source -late Latency_2 [get_clocks CLK_FPGA]

set_input_delay -clock CLK_DEV -min \
 Input Delay [get ports DATA PIN]

2.2. Source Synchronous

 T_{cclk1} – задержка от OSC до запускающего триггера;

 T_{sclk} – задержка от OSC до выхода Device;

T_{saclk} – дополнительная задержка от OSC до выхода Device;

T_{cclk2} – задержка от входа FPGA до защелкивающего триггера;

 T_{p} — период тактового сигнала;

 T_{cqd} – задержка Clk-to-Q для триггеров Device;

T_{sud} – setup time для триггеров Device;

T_{hd} – hold time для триггеров Device;

T_{logicd} – задержка через логику Device;

 T_{cqf} — задержка Clk-to-Q для триггеров FPGA;

 T_{suf} – setup time для триггеров FPGA;

 T_{hf} – hold time для триггеров FPGA;

 T_{logicf} – задержка через логику FPGA;

T_{dbdelav} – задержка данных на дорожке платы;

T_{cbdelav} – задержка тактового сигнала на дорожке платы;

 T_{jit} – джиттер;

T_{un} – дополнительная непредвиденная задержка,

Setup Time.

Запускающий фронт:

Launch Clk Time =
$$T_{cclk1 max}$$
.

Защелкивающий фронт:

Latch Clk Time =
$$T_{\text{sclk min}} + T_{\text{saclk}} + T_{\text{cclk2 min}} + T_{\text{cbdelay min}}$$
.

Задержка данных:

Data Delay =
$$T_{cqd max} + T_{logicd max} + T_{dbdelay max} + T_{logicf max}$$
.

Прибытие данных:

Требуемое время прибытие:

Requier Time = Latch Clk Time
$$- T_{suf}$$
.

$$\label{eq:Slack} \begin{aligned} & Slack = Requier\ Time - Arrival\ Time - T_{jit} - T_{un}. \\ & Slack = Latch\ Clk\ Time - T_{suf} - Launch\ Clk\ Time - \ Data\ Delay - T_{jit} - T_{un}. \end{aligned}$$

$$\begin{aligned} & Slack = T_{sclk\;min} + T_{saclk} + T_{cclk2\;min} + T_{cbdelay\;min} - T_{cclk1\;max} - \\ & - T_{cqd\;max} - T_{logicd\;max} - T_{dbdelay\;max} - T_{logicf\;max} - T_{suf} - T_{jit} - T_{un} \end{aligned}$$

$$Slack = T_p - Input Delay - FPGA Delay - T_{suf} - T_{jit} - T_{un}$$
.

В FPGA известны следующие параметры: T_{cclk2} , T_{suf} , T_{logicf} . Остальные необходимо указать.

$$\begin{split} \text{Input Delay max} &= T_{\text{cclk1}\,\text{max}} - T_{\text{sclk}\,\text{min}} - T_{\text{saclk}} - T_{\text{cbdelay}\,\text{min}} + \\ &+ T_{\text{cqd}\,\text{max}} + T_{\text{logicd}\,\text{max}} + T_{\text{dbdelay}\,\text{max}} + T_{\text{p}} \end{split}$$

Input Delay $max = T_p + Data$ to Pin Delay max - Clock to Pin Delay min

$$\begin{aligned} \text{Data to Pin Delay max} &= T_{\text{cclk1 max}} + \ T_{\text{cqd max}} + T_{\text{logicd max}} + T_{\text{dbdelay max}} \\ &\quad \text{Clock to Pin Delay min} &= T_{\text{sclk min}} + T_{\text{saclk}} + T_{\text{cbdelay min}} \end{aligned}$$

Запускающий фронт:

Launch Clk Time =
$$T_{cclk1 min}$$
.

Защелкивающий фронт:

Latch Clk Time = $T_{\text{sclk max}} + T_{\text{saclk}} + T_{\text{cclk2 max}} + T_{\text{cbdelay max}} - T_{p}$. Задержка данных:

 $Data\ Delay = T_{cqd\ min} + T_{logicd\ min} + T_{dbdelay\ min} + T_{logicf\ min}.$

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time + T_{hf} .

$$\label{eq:Slack} \begin{split} & Slack = Arrival\ Time - Requier\ Time - T_{jit} - T_{un}. \\ & Slack = Launch\ Clk\ Time +\ Data\ Delay - Latch\ Clk\ Time - T_{hf} - T_{jit} - T_{un}. \end{split}$$

$$\begin{split} \text{Slack} &= \text{T}_{\text{p}} + \text{T}_{\text{cclk1}\,\text{min}} - \text{T}_{\text{sclk}\,\text{max}} - \text{T}_{\text{saclk}} - \text{T}_{\text{cclk2}\,\text{max}} - \text{T}_{\text{cbdelay}\,\text{max}} + \\ &+ \text{T}_{\text{cqd}\,\text{min}} + \text{T}_{\text{logicd}\,\text{min}} + \text{T}_{\text{dbdelay}\,\text{min}} + \text{T}_{\text{logicf}\,\text{min}} - \text{T}_{\text{hf}} - \text{T}_{\text{jit}} - \text{T}_{\text{un}} \end{split}$$

$$Slack = Input Delay + FPGA Delay - T_{hf} - T_{jit} - T_{un}.$$

В FPGA известны следующие параметры: T_{cclk2} , T_{suf} , T_{logicf} . Остальные необходимо указать.

Input Delay min =
$$T_p + T_{cclk1 min} - T_{sclk max} - T_{saclk} - T_{cbdelay max} + T_{cqd min} + T_{logicd min} + T_{dbdelay min}$$

 $Input\ Delay\ min = T_p + Data\ to\ Pin\ Delay\ min - Clock\ to\ Pin\ Delay\ max$

$$\begin{aligned} \text{Data to Pin Delay min} &= T_{\text{cclk1 min}} + T_{\text{cqd min}} + T_{\text{logicd min}} + T_{\text{dbdelay min}} \\ &\quad \text{Clock to Pin Delay max} &= T_{\text{sclk max}} + T_{\text{saclk}} + T_{\text{cbdelay max}} \end{aligned}$$

Constraints 1.

$$T_{\rm saclk} = T_{\rm p}/2$$

 dv_{bre} + Data to Pin Delay max = Clock to Pin Delay min $dv_{bre} = T_p - Input \ Delay \ max$ $Input \ Delay \ max = T_p - dv_{bre}$

 dv_{are} + Clock to Pin Delay max = T_p + Data to Pin Delay min $dv_{are} = \text{Input Delay min}$ $\text{Input Delay min} = dv_{are}$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- set_input_delay -clock CLK -max (Tp-dv_bre) [get_ports DATA_PIN]
- set_input_delay -clock CLK -min dv_are [get_ports DATA_PIN]

Constraints 2.

 $T_{\text{saclk}} = T_{\text{p}}$

 $skew_{are} + Clock$ to Pin Delay $min = T_p + Data$ to Pin Delay max $skew_{are} = Input Delay max$ $Input Delay max = skew_{are}$

 $skew_{bre} + T_p + Data$ to Pin Delay min = Clock to Pin Delay max $skew_{bre} = -Input \ Delay \ min$ $Input \ Delay \ min = -skew_{bre}$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- set_input_delay -clock CLK -max skew_are [get_ports DATA_PIN]
- set input delay -clock CLK -min -skew bre [get ports DATA PIN]

Constraints 3.

$$T_{\text{saclk}} = 0$$

 $skew_{are} + Clock \ to \ Pin \ Delay \ min = Data \ to \ Pin \ Delay \ max$ $skew_{are} = Input \ Delay \ max - T_p$ $Input \ Delay \ max = skew_{are} + T_p$

 $skew_{bre} + Data$ to Pin Delay min = Clock to Pin Delay max $skew_{bre} = T_p - Input \ Delay \ min$ $Input \ Delay \ min = T_p - skew_{bre}$

- create clock -name CLK -period Tp [get ports CLK PIN]
- set_input_delay -clock CLK -max (Tp+skew_are)[get_ports DATA_PIN]
- set input delay -clock CLK -min (Tp-skew bre) [get ports DATA PIN]

3. Выходные ограничения

3.1. System Synchronous

 T_{cclk1} – задержка от входа FPGA до запускающего триггера;

 T_{bclk1} – задержка от генератора до входа FPGA;

 T_{cclk2} – задержка от входа Device до защелкивающего триггера;

 T_{bclk2} – задержка от генератора до входа Device;

 T_{p} – период тактового сигнала;

 T_{cqd} – задержка Clk-to-Q для триггеров Device;

T_{sud} – setup time для триггеров Device;

T_{hd} – hold time для триггеров Device;

 T_{logicd} – задержка через логику Device;

 T_{cqf} – задержка Clk-to-Q для триггеров FPGA;

 T_{suf} – setup time для триггеров FPGA;

 T_{hf} – hold time для триггеров FPGA;

 T_{logicf} – задержка через логику FPGA;

T_{bdelay} – задержка данных на дорожке платы;

 T_{jit} – джиттер;

Tun – дополнительная непредвиденная задержка,

Setup Time.

Запускающий фронт:

Launch Clk Time = $T_{bclk1 max} + T_{cclk1 max}$.

Защелкивающий фронт:

Latch Clk Time =
$$T_{bclk2 min} + T_{cclk2 min} + T_p$$
.

Задержка данных:

Data Delay =
$$T_{cqf max} + T_{logicf max} + T_{bdelay max} + T_{logicd max}$$
.

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time
$$-T_{sud}$$
.

Slack = Requier Time
$$-$$
 Arrival Time T_{jit} T_{un} .

$$\label{eq:Slack} Slack = Latch \ Clk \ Time - \ T_{sud} - Launch \ Clk \ Time - \ Data \ Delay - T_{jit} - T_{un}.$$

$$\begin{split} \text{Slack} &= T_{\text{bclk2}\,\text{min}} + T_{\text{cclk2}\,\text{min}} + T_{\text{p}} - T_{\text{sud}} - T_{\text{bclk1}\,\text{max}} - T_{\text{cclk1}\,\text{max}} - T_{\text{cqf}\,\text{max}} - \\ &- T_{\text{logicf}\,\text{max}} - T_{\text{bdelay}\,\text{max}} - T_{\text{logicd}\,\text{max}} - T_{\text{jit}} - T_{\text{un}}. \end{split}$$

$$Slack = T_p - Output Delay - FPGA Delay - T_{jit} - T_{un}$$
.

В FPGA известны следующие параметры: T_{cclk1} , T_{cqf} , T_{logicf} . Остальные необходимо указать.

Constraints 1.

Output Delay = $T_{bclk1 max} - T_{bclk2 min} - T_{cclk2 min} + T_{sud} + T_{bdelay max} + T_{logicd max}$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- set_output_delay -clock CLK -max Output Delay [get_ports DATA PIN]

Constraints 2.

Latency $1 = T_{bclk1 max}$

Latency $2 = T_{bclk2 min}$

Output Delay = $T_{\text{sud}} + T_{\text{bdelay max}} + T_{\text{logicd max}} - T_{\text{cclk2 min}}$

create_clock -name CLK_DEV -period Tp
 set clock latency -source -early Latency 2 [get clocks CLK DEV]

set_output_delay -clock CLK_DEV -max \
Output Delay [get ports DATA PIN]

Запускающий фронт:

 $Launch \ Clk \ Time = T_{bclk1 \ min} + T_{cclk1 \ min}.$

Защелкивающий фронт:

Latch Clk Time = $T_{bclk2 max} + T_{cclk2 max}$.

Задержка данных:

Data Delay = $T_{cqf min} + T_{logicf min} + T_{bdelay min} + T_{logicd min}$.

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time + T_{hd} .

 $Slack = Arrival Time - Requier Time - T_{jit} - T_{un}$.

 $Slack = Launch Clk Time + Data Delay - Latch Clk Time - T_{hd} - T_{jit} - T_{un}$.

$$\begin{split} Slack &= T_{bclk1\,min} + T_{cclk1\,min} + T_{cqf\,min} + T_{logicf\,min} + T_{bdelay\,min} + T_{logicd\,min} \\ &- T_{bclk2\,max} - T_{cclk2\,max} - T_{hd} - T_{jit} - T_{un}. \end{split}$$

 $Slack = Output Delay + FPGA Delay - T_{jit} - T_{un}$.

В FPGA известны следующие параметры: T_{cclk1} , T_{cqf} , T_{logicf} . Остальные необходимо указать.

Constraints 1.

 $\text{Output Delay} = T_{\text{bclk1 min}} - T_{\text{bclk2 max}} - T_{\text{cclk2 max}} + T_{\text{bdelay min}} + T_{\text{logicd min}} - T_{\text{hd}}$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- set output delay -clock CLK -min Output Delay [get_ports DATA_PIN]

Constraints 2.

Latency $1 = T_{bclk1 min}$

Latency $2 = T_{bclk2 max}$

 $\label{eq:output Delay of Tbdelay min + Tbolicd min - Tbd - Tbdelay max} Output \ Delay = T_{bdelay \ min} + T_{logicd \ min} - T_{hd} - T_{cclk2 \ max}$

 create_clock -name CLK_DEV -period Tp set_clock_latency -source -late Latency_2 [get_clocks CLK_DEV]

create_clock -name CLK_FPGA -period Tp [get_ports CLK_PIN]
set clock latency -source -early Latency 1 [get clocks CLK FPGA]

 set_output_delay -clock CLK_DEV -min \ Output Delay [get ports DATA PIN]

3.2. Source Synchronous

 T_{cclk1} – задержка от OSC до запускающего триггера;

 T_{sclk} – задержка от OSC до выхода Device;

T_{saclk} – дополнительная задержка от OSC до выхода FPGA;

 T_{cclk2} – задержка от входа Device до защелкивающего триггера;

 T_{p} – период тактового сигнала;

 T_{cad} – задержка Clk-to-Q для триггеров Device;

 T_{sud} – setup time для триггеров Device;

T_{hd} – hold time для триггеров Device;

 T_{logicd} — задержка через логику Device;

 T_{caf} – задержка Clk-to-Q для триггеров FPGA;

 T_{suf} – setup time для триггеров FPGA;

 T_{hf} – hold time для триггеров FPGA;

 T_{logicf} — задержка через логику FPGA;

T_{dbdelav} – задержка данных на дорожке платы;

 $T_{cbdelav}$ – задержка тактового сигнала на дорожке платы;

 T_{iit} – джиттер;

Tun – дополнительная непредвиденная задержка,

Setup Time.

Запускающий фронт:

Launch Clk Time =
$$T_{cclk1 max}$$
.

Защелкивающий фронт:

$$Latch \ Clk \ Time = T_{sclk \ min} + T_{saclk} + T_{cclk2 \ min} + T_{cbdelay \ min}.$$

Задержка данных:

$$Data \ Delay = T_{cqf \ max} + T_{logicf \ max} + T_{dbdelay \ max} + T_{logicd \ max}.$$

Прибытие данных:

Требуемое время прибытие:

Requier Time = Latch Clk Time
$$-T_{sud}$$
.

$$\label{eq:Slack} Slack = Requier\ Time - Arrival\ Time - T_{jit} - T_{un}.$$

$$Slack = Latch\ Clk\ Time - T_{sud} - Launch\ Clk\ Time - \ Data\ Delay - T_{jit} - T_{un}.$$

$$\begin{aligned} & Slack = T_{sclk\,min} + T_{saclk} + T_{cclk2\,min} + T_{cbdelay\,min} - T_{cclk1\,max} - \\ & - T_{cqf\,max} - T_{logicf\,max} - T_{dbdelay\,max} - T_{logicd\,max} - T_{sud} - T_{jit} - T_{un} \end{aligned}$$

$$Slack = T_p - Output \ Delay - FPGA \ Delay - T_{jit} - T_{un}.$$

В FPGA известны следующие параметры: $T_{sclk\ min}$, T_{saclk} , T_{cclk1} T_{cqf} , T_{logicf} . Остальные необходимо указать.

Output Delay
$$\max = T_{\text{dbdelay max}} + T_{\text{logicd max}} + T_{\text{sud}} - T_{\text{cclk2 min}} - T_{\text{cbdelay min}} + T_{\text{position}}$$

Output Delay
$$\max = T_p + Pin$$
 to Data Delay $\max - Pin$ to Clock Delay \min

Pin to Data Delay max =
$$T_{dbdelay max} + T_{logicd max} + T_{sud}$$

Pin to Clock Delay min = $T_{cclk2 min} + T_{cbdelay min}$

Запускающий фронт:

Launch Clk Time =
$$T_{cclk1 min}$$
.

Защелкивающий фронт:

Latch Clk Time = $T_{\text{sclk max}} + T_{\text{saclk}} + T_{\text{cclk2 max}} + T_{\text{cbdelay max}} - T_{\text{p}}$. Задержка данных:

 $\label{eq:DataDelay} Data\ Delay = T_{cqf\,min} + T_{logicf\,min} + T_{dbdelay\,min} + T_{logicd\,min}.$

Прибытие данных:

Arrival Time = Launch Clk Time + Data Delay.

Требуемое время прибытие:

Requier Time = Latch Clk Time + T_{hd} .

 $\label{eq:Slack} \begin{aligned} & \text{Slack} = \text{Arrival Time} - \text{Requier Time} - T_{jit} - T_{un}. \\ & \text{Slack} = \text{Launch Clk Time} + \text{ Data Delay} - \text{Latch Clk Time} - T_{hd} - T_{jit} - T_{un}. \end{aligned}$

$$\begin{split} Slack &= T_p + T_{cclk1\,min} - T_{sclk\,max} - T_{saclk} - T_{cclk2\,max} - T_{cbdelay\,max} + \\ &+ T_{cqf\,min} + T_{logicf\,min} + T_{dbdelay\,min} + T_{logicd\,min} - T_{hd} - T_{jit} - T_{un} \end{split}$$

$$Slack = Output Delay + FPGA Delay - T_{jit} - T_{un}$$
.

В FPGA известны следующие параметры: $T_{sclk\ min}$, T_{saclk} , T_{cclk1} T_{cqf} , T_{logicf} . Остальные необходимо указать.

Output Delay
$$\min = T_p + T_{dbdelay \min} + T_{logicd \min} - T_{hd} - T_{cclk2 \max} - T_{cbdelay \max}$$

Output Delay min = T_p + Pin to Data Delay min - Pin to Clock Delay max Pin to Data Delay min = $T_{dbdelay\,min}$ + $T_{logicd\,min}$ - T_{hd} Pin to Clock Delay max = $T_{cclk2\,max}$ + $T_{cbdelay\,max}$

Constraints 1.

Rising Edge Source Synchronous Outputs

Source synchronous output interfaces can be constrained either by the max data skew

relative to the generated clock or by the destination device setup/hold requirements.

Max Skew Case:

The skew requirements for FPGA are known from system level analysis.

forwarded

clock _____|

bre_skew|are_skew

<---->|<---->
|

data ___XXXXXXXXXXXXXXXXX ___XXXXX

Example of creating generated clock at clock output port

create_generated_clock -name <gen_clock_name> -multiply_by 1 -source \

[get_pins <source_pin>] [get_ports <output_clock_port>]

gen_clock_name is the name of forwarded clock here. It should be used below for defining

"fwclk".

$$T_{saclk} = 0$$
 Необходимое условие: Slack ≥ 0 . Пусть $T_{jit} = T_{un} = 0$

Для Setup:

$$\begin{aligned} Slack &= 0 \\ T_{sclk\,min} + T_{saclk} + T_{cclk2\,min} + T_{cbdelay\,min} - T_{cclk1\,max} - \\ - T_{cof\,max} - T_{logicf\,max} - T_{dbdelav\,max} - T_{logicd\,max} - T_{sud} &= 0 \end{aligned}$$

$$\begin{split} & \text{Forwareded Clk Delay min} = T_{sclk\,min} + T_{saclk} \\ & \text{Pin to Clock Delay min} = T_{cclk2\,min} + T_{cbdelay\,min} \\ & \text{Pin to Data Delay max} = T_{cclk1\,max} + T_{cqf\,max} + T_{logicf\,max} \\ & \text{Data to Pin Delay max} = T_{dbdelay\,max} + T_{logicd\,max} + T_{sud} \end{split}$$

0 = Forwareded Clk Delay min + Pin to Clock Delay min --Pin to Data Delay max - Data to Pin Delay max

Data to Pin Delay max — Forwareded Clk Delay min = = Pin to Clock Delay min — Pin to Data Delay max $+ T_p - T_p$

 $are_{skew}=Data$ to Pin Delay max — Forwareded Clk Delay min Output Delay max = T_p + Pin to Data Delay max — Pin to Clock Delay min $are_{skew}=T_p$ — Output Delay max

Output Delay
$$max = T_p - are_{skew}$$

Для Hold:

 $\begin{aligned} Slack &= 0 \\ T_p + T_{cclk1\,min} - T_{sclk\,max} - T_{saclk} - T_{cclk2\,max} - T_{cbdelay\,max} + \\ + T_{cqf\,min} + T_{logicf\,min} + T_{dbdelay\,min} + T_{logicd\,min} - T_{hd} &= 0 \end{aligned}$

 $\begin{array}{l} \text{Forwareded Clk Delay min} = T_{sclk\,max} + T_{saclk} \\ \text{Pin to Clock Delay min} = T_{cclk2\,max} + T_{cbdelay\,max} \\ \text{Pin to Data Delay max} = T_{cclk1\,min} + T_{cqf\,min} + T_{logicf\,min} \\ \text{Data to Pin Delay max} = T_{dbdelay\,min} + T_{logicd\,min} - T_{hd} \end{array}$

0 = T_p + Pin to Data Delay min + Data to Pin Delay min Forwareded Clk Delay max - Pin to Clock Delay max

Forwareded Clk Delay max – Data to Pin Delay min = T_p + Pin to Data Delay min – Pin to Clock Delay max

 $bre_{skew} = Forwareded Clk Delay max - Data to Pin Delay min$ Output Delay min = T_p + Pin to Data Delay min - Pin to Clock Delay max

Output Delay $min = bre_{skew}$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- create_generated_clock -name FWCLK -multiply_by 1 -source \
 [get_pins CLK_PIN] [get_ports CLK_OUT_PIN]
- set_input_delay -clock FWCLK -max (Tp -are_skew) [get_ports DATA_PIN]
- set input delay -clock FWCLK -min bre skew [get ports DATA PIN]

Constraints 2.

$$T_{\text{saclk}} = 0$$

Необходимое условие: Slack ≥ 0 . Пусть $T_{iit} = T_{un} = T_{cbdelay \, min} = 0$

Для Setup:

$$\begin{aligned} \text{Slack} &= 0 \\ T_{\text{sclk min}} + T_{\text{saclk}} + T_{\text{cclk2 min}} + T_{\text{cbdelay min}} - T_{\text{cclk1 max}} - \\ -T_{\text{cqf max}} - T_{\text{logicf max}} - T_{\text{dbdelay max}} - T_{\text{logicd max}} - T_{\text{sud}} &= 0 \end{aligned}$$

 $\label{eq:continuous} \text{Forwareded Clk Dev Delay min} = T_{\text{sclk min}} + T_{\text{saclk}} + T_{\text{cbdelay min}}$ $\text{Data to Dev Pin Delay max} = T_{\text{cclk1 max}} + T_{\text{cqf max}} + T_{\text{logicf max}} + T_{\text{dbdelay max}}$

Forwareded Clk Dev Delay min – Data to Dev Pin Delay max +
$$T_{cclk2 \ min} - T_{logicd \ max} - T_{sud} = 0$$

 $T_{sud} = T_{p} + Forwareded Clk Dev Delay min - Data to Dev Pin Delay max$

$$\begin{split} T_{sud} - T_p + T_{cclk2\,min} - T_{logicd\,max} - T_{sud} &= 0 \\ T_{sud} + T_{dbdelay\,max} - T_{dbdelay\,max} - T_p + T_{cclk2\,min} - T_{logicd\,max} - T_{sud} &= 0 \end{split}$$

Output Delay max =
$$T_{dbdelay max} + T_{logicd max} + T_{sud} - T_{cclk2 min} + T_{p}$$

 $T_{sud} + T_{dbdelay max} - Output Delay max = 0$

Output Delay
$$max = T_{sud} + T_{dbdelay max}$$

Для Hold:

$$\begin{aligned} Slack &= 0 \\ T_p + T_{cclk1\,min} - T_{sclk\,max} - T_{saclk} - T_{cclk2\,max} - T_{cbdelay\,max} + \\ + T_{cqf\,min} + T_{logicf\,min} + T_{dbdelay\,min} + T_{logicd\,min} - T_{hd} &= 0 \end{aligned}$$

 $\label{eq:continuous} \text{Forwareded Clk Dev Delay max} = T_{\text{sclk max}} + T_{\text{saclk}} + T_{\text{cbdelay max}}$ $\text{Data to Dev Pin Delay min} = T_{\text{cclk1 min}} + T_{\text{cqf min}} + T_{\text{logicf min}} + T_{\text{dbdelay min}}$

$$T_p$$
 – Forwareded Clk Dev Delay max + Data to Dev Pin Delay min –
$$-T_{cclk2\;max} + T_{logicd\;min} - T_{hd} = 0$$

 T_{hd} = Data to Dev Pin Delay max – Forwareded Clk Dev Delay min

$$\begin{split} T_p + T_{hd} - \ T_{cclk2 \ max} + T_{logicd \ min} - T_{hd} &= 0 \\ T_p + T_{dbdelay \ min} - \ T_{cclk2 \ max} + T_{logicd \ min} - T_{hd} - T_{dbdelay \ min} + T_{hd} &= 0 \end{split}$$

Output Delay min =
$$T_p + T_{dbdelay\,min} + T_{logicd\,min} - T_{hd} - T_{cclk2\,max}$$

Output Delay min $- T_{dbdelay\,min} + T_{hd} = 0$

Output Delay
$$min = T_{dbdelay \, min} - T_{hd}$$

- create_clock -name CLK -period Tp [get_ports CLK_PIN]
- create_generated_clock -name FWCLK -multiply_by 1 -source \
 [get pins CLK PIN] [get ports CLK OUT PIN]
- set_input_delay -clock FWCLK -max (Tdbmax + Tsu) [get_ports DATA_PIN]
- set_input_delay -clock FWCLK -min (Tdbmin + Thd) [get_ports_DATA_PIN]