GINZBURG LECTURE SERIES

2. Problem set 2 solutions

2.1. (i) In general for a Lie algebra $\mathfrak g$ with basis x_1,\ldots,x_n with $[x_i,x_j]=\sum c_{ij}^k x_k$, we have $\{a,b\}=\sum_{i,j,k}c_{ij}^k x_k \frac{\partial a}{\partial x_i} \frac{\partial b}{\partial x_j}$ for $a,b\in \operatorname{Sym}\mathfrak g$. Specializing to $\mathfrak g=\mathfrak{sl}_2$ we have given $a,b\in \mathbb C[e,h,f]$, the Poisson bracket is

$$\{a,b\} = 2f\frac{\partial a}{\partial f}\frac{\partial b}{\partial h} - h\frac{\partial a}{\partial f}\frac{\partial b}{\partial e} - 2f\frac{\partial a}{\partial h}\frac{\partial b}{\partial f} + 2e\frac{\partial a}{\partial h}\frac{\partial b}{\partial e} + h\frac{\partial a}{\partial e}\frac{\partial b}{\partial f} - 2e\frac{\partial a}{\partial e}\frac{\partial b}{\partial h}.$$

Let $P = \frac{1}{2}h^2 + 2ef$. Then $\{a,b\} = \{a,b\}_{dP}$ where $\{-,-\}_{dP}$ is the Poisson bracket on $\mathbb{C}[e,h,f]$ from Problem 1.1 with respect to $df \wedge dh \wedge de$.

(ii) The Poisson center of Sym \mathfrak{g} is equal to the $\mathrm{ad}(\mathfrak{g})$ -invariants of Sym \mathfrak{g} . Since G is connected, this is the same as $(\mathrm{Sym}\,\mathfrak{g})^G$ the $\mathrm{SL}(2)$ -invariant polynomials on \mathfrak{sl}_2 , which is generated by the determinant. Hence the Poisson center equals $\mathbb{C}[P]$.

2.2. (i) [CG, Proposition 1.4.6] Let $A \in \mathfrak{sp}(V)$. Define $\mathsf{H}_A \in \mathbb{C}[V]$ by

$$\mathsf{H}_A(v) = \frac{1}{2}\omega(Av, v).$$

Let $d_v \mathsf{H}_A$ denote the differential at $v \in V$. One checks that $d_v \mathsf{H}_A(w) = \omega(Av, w)$ for $w \in V$, i.e., $\mathsf{H} : \mathfrak{sp}(V) \to \mathbb{C}[V]$ is indeed the Hamiltonian of the natural action of $\mathrm{Sp}(V,\omega)$ on V. Now $\mu: V \to \mathfrak{sp}(V)^*$ is given by $\mu(v)(A) = \mathsf{H}_A(v) = \frac{1}{2}\omega(Av, v) = \mathrm{tr}(B_v A)$ where $B_v(w) = \frac{1}{2}\omega(w, v)v$. Thus $\mu: V \to \mathfrak{sp}(V)$ sends $v \mapsto B_v$.

(ii) The Hamiltonian is given by $\mathsf{H}_x = \lambda(\mathsf{act}(x)) \in \mathcal{O}(T^*\mathfrak{g})$ where $x \in \mathfrak{g}$ and λ is the canonical 1-form on $T^*\mathfrak{g}$. For $(\xi, y) \in T^*\mathfrak{g} = \mathfrak{g}^* \times \mathfrak{g}$, we have

$$\mathsf{H}_x(\xi,y) = \lambda_{(\xi,y)}(\mathsf{act}(x)) = \xi([x,y]).$$

Then $\mu: \mathfrak{g}^* \times \mathfrak{g} \to \mathfrak{g}^*$ is given by $\mu(\xi, y)(x) = \xi([x, y])$. Let $\xi(b) = \langle a, b \rangle$ for $a, b \in \mathfrak{g}$. Then $\xi([x, y]) = \langle a, [x, y] \rangle = \langle [y, a], x \rangle$. Thus under the identifications $\mathfrak{g}^* \cong \mathfrak{g}$ via $\langle -, - \rangle$ we have that $\mu: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ sends $(a, y) \mapsto [y, a]$.

2.3. Put $x = u^n + v^n$, $y = i(u^n - v^n)$, $z = (-4)^{1/n}uv$. This gives the isomorphism $\mathbb{C}[x, y, z]/(x^2 + y^2 + z^n) \cong \mathbb{C}[u, v]^{\Gamma_n}$.

1