

Statistiques descriptives bivariées

Objectifs

- Observer simultanément des individus d'une population sur deux caractères
- Mesurer un lien éventuel entre deux caractères en utilisant un résumé chiffré qui traduit l'importance de ce lien
- Qualifier ce lien:
 - en cherchant une relation numérique approchée entre deux caractères quantitatifs
 - en cherchant des correspondances entre les modalités de deux caractères qualitatifs

2 types de variables ⇒ 3 types de croisements : • qualitatif ×quantitatif

- qualitatif ×qualitatif
- quantitatif ×quantitatif

Croisement quantitatif × quantitatif

Croisement Quantitatif XQuantitatif

Droite de régression

Exemple: Etude du lien entre l'âge et le poids chez les enfants de 6 ans

Enfant	1	2	3	4	5	6	7	8	9	10
Taille	121	123	108	118	111	109	114	103	110	115
Poids	25	22	19	24	19	18	20	15	20	21

On considère X et Y deux variables qualitatives sur une population de taille n.

On note $\{x_i\}_{i=1,\dots,n}$ la série observée pour X et $\{y_i\}_{i=1,\dots,n}$ la série observée pour Y.

L'objectif est de trouver une fonction f telle que

$$y_i \approx f(x_i)$$
.

On se restreint aux fonctions affines f(x) = ax + b

Et on cherche les coefficients a et b qui minimisent *l'erreur quadratique moyenne*

$$EQ(a,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

Croisement Quantitatif X Quantitatif

Droite de régression

On obtient les coefficients :

$$\hat{a} = \frac{c_{xy}}{s_x^2}$$
 et $\hat{b} = \overline{y} - \hat{a}\overline{x}$

où
$$c_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
 est la *covariance* entre X et Y.

- 1. $y = \hat{a}x + \hat{b}$ est appelée *droite de régression* de Y en X. Elle traduit les variations de Y qui peuvent être expliquées par X.
- 2. Attention la droite de régression de X en Y n'est nécessairement la même que celle de Y en X

Exemple: Etude du lien entre l'âge et le poids chez les enfants de 6 ans

$\overline{\mathbf{X}}$	\overline{y}	S_x^2	S_y^2	C_{xy}
113,20	20,30	38,62	8,46	16,27

L'équation de la droite de Y en X : y=0,42 x - 27,38

L'équation de la droite de X en Y : y=1,92 x - 74,15

Croisement Quantitatif X Quantitatif

Covariance et coefficient de corrélation

A partir de la covariance, on définit le *coefficient de corrélation linéaire* (coefficient de Pearson) à valeurs dans [-1,1]

$$r_{xy} = \frac{c_{xy}}{s_x s_y}$$

- 1. |r| est proche de 1 alors X et Y sont très liés entre eux par une droite affine.
- 2. r < 0 : globalement X et Y varient en sens inverse.
- 3. r > 0 : globalement X et Y varient dans le même sens .
- 4. $|r| \cong 0$: on ne peut rien dire sur un lien éventuel entre X et Y.

Remarques:

• Le coefficient de corrélation correspond à la covariance des séries centrées et réduites

$$\hat{a} = \frac{c_{xy}}{s_x^2} = r_{xy} \frac{s_y}{s_x}$$

<u>Exemple</u>: Etude du lien entre l'âge et le poids chez les enfants de 6 ans On trouve

$$r_{xy} = 0.90$$

- $r_{xy} \cong 1 \implies L'$ équation de droite est donc pleinement justifiée
- $r_{xv} > 0 \implies$ plus la taille est grande et plus le poids est important (et vice-versa)

Croisement Quantitatif XQuantitatif

Prévision

On appelle *prévisions* les valeurs données par la droite de régression. Pour chaque point x_i de la série observée, on peut calculer la prévision (i.e. une valeur approchée de y_i par la droite de régression)

$$\hat{y}_i = \hat{a}x_i + \hat{b}$$

Propriétés:

1)

$$\overline{\hat{y}} = \overline{y}$$

Le caractère Y et la partie de cette variable expliquée par la droite de régression ont la même moyenne.

$$s_{\hat{y}}^2 = s_y^2 \times r_{xy}^2$$

- 1. La variance de Y expliquée la droite de régression est plus petite que la variance de Y.
- 2. La variance de Y expliquée la droite de régression est d'autant meilleure que le coefficient de Pearson est proche de 1 en valeur absolue.

Les résidus

On appelle *résidus* l'écart entre la valeur observée y_i et la valeur prédite \hat{y}_i

$$e_{i} = y_{i} - \hat{y}_{i} = y_{i} - (\hat{a}x_{i} + \hat{b})$$

On calcule alors l'erreur globale

$$EQ(\hat{a},\hat{b}) = s_e^2 = s_y^2 (1 - r_{xy}^2)$$

- L'erreur globale est proportionnelle à la variance de la variable Y.
- L'erreur est d'autant plus petite que le coefficient est proche de 1 en valeur absolue.

Propriétés:

- 1) La moyenne des résidus est nulle, $\bar{e} = 0$
- 2) Les résidus et la série explicative x sont non corrélés, $c_{ex} = \frac{1}{n} \sum_{i=1}^{n} e_i (x_i \overline{x}) = 0$

Les résidus ne contiennent plus « d'information » pouvant expliquer y.

3) Formule de décomposition de la variance

coefficient de détermination

$$\underline{S_y^2} = \underline{S_{\hat{y}}^2} + \underline{S_e^2}$$
variance
totale
variance
expliquée
variance
résiduelle

$$\mathbb{R}^2 = \frac{1}{2}$$

$$R^{2} = \frac{s_{\hat{y}}^{2}}{s_{y}^{2}} = r_{xy}^{2} \in [0,1]$$

Croisement Quantitatif × Quant

Transformations

- Les droites de régression n'explique que les liaisons linéaires.
- Si *X* et *Y* sont liées par une relation de la forme Y=aX² alors r_{XY}=0 Le coefficient de corrélation linéaire de Pearson ne peut pas détecter cette liaison.
- Il n'existe pas de mesure universelle pour détecter des relations quelconques
- On essaie par des transformations de se ramener à une droite affine

Famille	Fonctions	Transformation	Forme affine
exponentielle	$y = a.e^{bx}$	$y' = \log(y)$	$y' = \log(a) + b.x$
puissance	$y = ax^b$	$y' = \log(y) \ x' = \log(x)$	$y' = \log(a) + b.x'$
inverse	$y=a+\frac{b}{x}$	$x' = \frac{1}{x}$	y'=a+b.x'
logistique	$y = \frac{1}{1 + e^{-(a \cdot x + b)}}$	$y' = \log\left(\frac{y}{1-y}\right)$	y'=a.x+b