topologia 24.04

April 2020

zad.9

Oznaczmy $A = (0, \frac{1}{2})^{\mathbb{N}}$.

Int(A)to zbi
ór tych $c_n \in A,$ dla których istnieje r>0taki, ż
e $B(c_n,r) \subseteq A.$

Ustalmy dowolne $c_n \in A$ oraz r > 0. Zdefiniujemy ciąg a_n , który należy do tej kuli, ale nie należy do A. Niech

$$a_n = \begin{cases} c_n & \text{dla } n \neq N \\ & \text{, gdzie } N \text{ takie, } \dot{\text{ze}} \ \frac{1}{2^N} < r. \\ 1 & \text{dla } n = N \end{cases}$$

Oczywiście $a_n \notin A$ oraz

$$d(a_n, c_n) = \sum_{0}^{\infty} \frac{\min(1, |a_i - c_i|)}{2^i} = \frac{1 - c_N}{2^N} < \frac{1}{2^N} < r$$
, wiec $a_n \in B(c_n, r)$.

Zatem żadna kula $B(c_n, r)$ nie zawiera się w A, więc

$$Int(A) = \emptyset.$$

Teraz zajmiemy się domknięciem.

Dla dowolnego $a_n \in A$ mamy $(0,0,0,\ldots) < a_n < (1/2,1/2,1/2,\ldots)$. Zatem ciąg ciągów z A może być zbieżny do elementu z A albo ewentualnie do $(0,0,\ldots)$ lub $(1/2,1/2,\ldots)$.

Druga opcja zachodzi, bo $x_n=(\frac{1}{n},\frac{1}{n},\ldots)\to (0,0,\ldots)$ oraz

$$y_n = (\frac{1}{2} - \frac{1}{n}, \frac{1}{2} - \frac{1}{n}, \ldots) \to (1/2, 1/2, \ldots)$$
. Zatem

$$Cl(A) = [0,\frac{1}{2}]^{\mathbb{N}}$$
oraz

$$Bd(A) = Cl(A) \setminus Int(A) = [0, \frac{1}{2}]^{\mathbb{N}}.$$

Zadanie 1 Lista 4

Treść

Niech $f:X\to\mathbb{R}$ będzie funkcją określoną na przestrzeni topologicznej (X,T). Wykazać, że zbiór: $E(f)=\{(x,t)\in X\times\mathbb{R}: f(x)\leq t\}$ jest domknięty w iloczynie kartezjańskim (X,T) i prostej euklidesowej wtedy i tylko wtedy, gdy funkcja f jest półciągła z dołu.

Definicja 1

Niech X będzie przestrzeną topologiczną oraz $x_0 \in X$. Funkcja $f: X \to \overline{\mathbb{R}}$ jest półciągła z dołu w punkcie x_0 , gdy dla każdego $\epsilon > 0$ istnieje takie otoczenie otwarte U punktu x_0 , że $f(x) > f(x_0) - \epsilon$ dla każdego $x \in U$. (Weźmy $U = \{x \colon f(x) > f(x_0) - \epsilon\}$.)

Definicja 2

Zbiór V jest domknięty w przestrzeni topologiczniej (X,T) wtedy i tylko wtedy, gdy dla każdego $x \notin V$ istnieje takie U, że $x \in U \in (X,T)$ oraz $V \cap U = \emptyset$.

Definicja 3

Niech $(X,T_1),(Y,T_2)$ będą przestrzeniami topologicznymi. Zbiór otwarty w iloczynie kartezjańskim tych przestrzeni $(X\times Y,T)$ jest sumą zbiorów postaci $U\times V,$ gdzie $U\in T_1$ oraz $V\in T_2.$

Fakt 1

Prosta euklidesowa jest przestrzenią Hausdorffa.

Rozwiązanie

E(f)-domknięty \implies f półciągła z dołu

Weźmy dowolny $x_0 \in X$ oraz dowolny $\epsilon > 0$. Z definicji zbioru E(f) wiemy, że $(x_0, f(x_0) - \epsilon) \notin E(f)$, więc istnieje otwarty zbiór U, taki że $(x_0, f(x_0) - \epsilon) \in U$ oraz $U \cap E(f) = \emptyset$. Z własności topologi iloczynu kartezjańskiego wiemy, że U jest postaci: $U = U_1 \times U_2$, gdzie $U_1 \in (X, T)$ oraz U_2 jest zbiorem otwartym w prostej euklidesowej. Więc, z rozłączności zborów U oraz E(f) mamy dla każdego $x \in U_1$ $(x, f(x_0) - \epsilon) \in U \implies (x, f(x_0) - \epsilon) \notin E(f)$. W końcu z definicji zbioru E(f) mamy $f(x) > f(x_0) - \epsilon$. Podsumowując dla każdego $x_0 \in X$ i $\epsilon > 0$ istnieje zbiór otwarty $U_1 \in (X, T)$ taki, że dla każdego $x \in U_1$ mamy $f(x) > f(x_0) - \epsilon$ co implikuje półciągłość funkcji z dołu.

f półciągła z dołu \implies E(f)-domknięty

Weźmy dowolny $(x_0, y_0) \notin E(f)$. Wiemy z Hausdorffności prostej euklidesowej, że istnieje zbiór otwarty $U \in (\mathbb{R}, d_e)$ taki, że $y_0 \in U$ oraz jeżeli $y > f(x_0) - \epsilon$ dla ustalonego ϵ to $y \notin U$. Wiemy z półciągłości dolnej funkcji f, że dla każdego $\epsilon > 0$ istnieje zbiór otwarty $V \in T$ taki, że $x_0 \in V$ oraz dla każdego $x \in V$ mamy $f(x) > f(x_0) - \epsilon$. Weźmy dowolny $(x, y) \in V \times U$, wiemy, że $y \leq f(x_0) - \epsilon < f(x)$, więc z definicji E(f) mamy $(U \times V) \cap E(f) = \emptyset$. Podsumowując, dla dowolnego $(x_0, y_0) \notin E(f)$ mamy $(x_0, y_0) \in V \times U$ gdzie $V \times U$ jest otwarty oraz $(U \times V) \cap E(f) = \emptyset$ co implikuje domkniętość E(f).