DM N°5 (pour le 27/11/2015)

Le problème porte sur l'étude des séries factorielles, séries de fonctions de la forme

$$\sum_{n\geq 0} a_n \frac{n!}{x(x+1)(x+2)\dots(x+n)} \cdot$$

Partie I. Séries factorielles

I.A.

I.A.1. Pour tout entier naturel n et tout réel x strictement positif on pose :

$$u_n(x) = \frac{n!}{x(x+1)(x+2)\dots(x+n)} \quad \text{,} \quad v_n(x) = \frac{1}{(n+1)^x} \quad \text{,} \quad w_n(x) = \frac{u_n(x)}{v_n(x)} \cdot \frac{u_n(x)}{v_n(x)} \cdot$$

Montrer que la série de terme général

$$\ln\left(\frac{w_n(x)}{w_{n-1}(x)}\right)$$

définie pour $n \ge 1$, est convergente.

I.A.2. En déduire qu'il existe un nombre réel strictement positif $\ell(x)$ (dépendant de x) tel que

$$\lim_{n\to+\infty}\frac{u_n(x)}{v_n(x)}=\ell(x).$$

I.B. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de complexes et x un réel strictement positif.

Montrer que la série $\sum_{n\geqslant 0}a_nu_n(x)$ est absolument convergente si et seulement si la série

 $\sum_{n\geqslant 0} a_n \nu_n(x) \text{ est absolument convergente.}$

I.C. On désigne désormais par \mathscr{A} l'ensemble des suites $(a_n)_{n\in\mathbb{N}}$ de nombres complexes telles que la série $\sum_{n\geqslant 0}a_nu_n(x)$ soit absolument convergente pour tout réel x strictement positif.

Soit $\mathfrak{a}=(\mathfrak{a}_n)_{n\in\mathbb{N}}$ élément de \mathscr{A} . Montrer que :

- **I.C.1.** pour tout réel α strictement positif, la série de fonctions $\sum_{n\geqslant 0} a_n u_n(x)$ est normalement convergente sur $[\alpha; +\infty[$.
- **I.C.2.** la fonction f_a définie par

$$f_{\alpha}(x) = \sum_{n=0}^{+\infty} a_n u_n(x)$$

est continue sur l'intervalle $]0;+\infty[$.

I.C.3. la fonction f_a tend vers 0 en $+\infty$.

I.D.

- **I.D.1.** Donner un exemple d'un élément a de \mathscr{A} avec \mathfrak{a}_n non nul pour tout entier \mathfrak{n} .
- **I.D.2.** Donner un exemple d'une suite $a = (a_n)_{n \in \mathbb{N}}$ qui ne soit pas un élément de \mathscr{A} .

– DM N°5 – **PSI* 15-16**

I.E. Soit a un élément de \mathscr{A} .

I.E.1. Montrer que, pour tout entier \mathfrak{n} , la fonction $\mathfrak{x}\mapsto\mathfrak{u}_{\mathfrak{n}}(\mathfrak{x})$ est de classe \mathscr{C}^1 sur l'intervalle $]0;+\infty[$ et que

$$\forall x > 0$$
, $\left| u_n'(x) \right| \leqslant u_n(x) \left(\frac{1}{x} + \ln\left(1 + \frac{n}{x}\right) \right)$.

Indication : on pourra calculer la dérivée de la fonction $x \mapsto \ln u_n(x)$, puis utiliser la comparaison à une intégrale.

I.E.2. En déduire que la fonction f_a est de classe \mathscr{C}^1 sur l'intervalle $]0;+\infty[$.

Partie II. Représentation intégrale

II.A.

II.A.1. Soit n un entier naturel non nul. On pose

$$\forall k \in \llbracket 0 \, ; n \rrbracket \, , \, \mathsf{P}_k = \prod_{\substack{\mathfrak{i} = 0 \\ \mathfrak{i} \neq k}}^n (\mathsf{X} + \mathfrak{i}) \, \cdot \,$$

Montrer que les polynômes P_k forment une base de l'espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels de degré inférieur ou égal à n.

II.A.2. En déduire qu'il existe des réels $\alpha_0, \ldots, \alpha_n$ indépendants de x tels que

$$\forall x > 0$$
, $\frac{n!}{x(x+1)(x+2)...(x+n)} = \sum_{k=0}^{n} \frac{\alpha_k}{x+k}$.

II.A.3. Exprimer α_k en fonction de k et n.

II.B. Pour tout $x \ge 1$ et tout entier naturel k, calculer l'intégrale $\int_0^1 (1-y)^{x-1+k} dy$.

II.C. Déduire des deux questions précédentes que

$$\forall x\geqslant 1 \text{ , } \forall n\in\mathbb{N} \text{ , } \int_0^1 (1-y)^{x-1}y^n \, dy = \frac{n!}{x(x+1)(x+2)\dots(x+n)} \cdot$$

En conclure que, pour tout élément $\mathfrak a$ de $\mathscr A$ l'on a :

$$\forall x \geqslant 1$$
, $f_{\alpha}(x) = \sum_{n=0}^{+\infty} a_n \int_0^1 (1-y)^{x-1} y^n \, dy$.

II.D. Soit a un élément de \mathscr{A} .

II.D.1. Montrer que le rayon de convergence de la série entière $\sum_{n\geqslant 0} a_n y^n$ est supérieur ou égal à 1.

On note φ_{α} la fonction définie sur [0;1[par :

$$\varphi_{\mathfrak{a}}(y) = \sum_{n=0}^{+\infty} a_n y^n.$$

II.D.2. Vérifier que la fonction $y\mapsto (1-y)^{x-1}\phi_{\mathfrak{a}}(y)$ où $x\geqslant 1$ est continue sur [0;1] .

2/2

II.D.3. Montrer que pour tout $x \ge 1$

$$f_{\alpha}(x) = \int_{0}^{1} (1 - y)^{x-1} \varphi_{\alpha}(y) \, dy.$$