Unit-III: Algebraic Structures

Algebraic Structures:

Algebraic Systems: Examples and General Properties, Semi groups and Monoids, Polish expressions and their compilation, Groups: Definitions and Examples, Subgroups and Homomorphism's, Group Codes.

Lattices and Boolean algebra:

Lattices and Partially Ordered sets, Boolean algebra.

3.1 Algebraic systems

 $N = \{1,2,3,4,....\}$ = Set of all natural numbers.

$$Z = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \dots\} = Set of all integers.$$

Q = Set of all rational numbers.

R = Set of all real numbers.

Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a non- empty set A, if

$$a * b \in A$$
 for all $a, b \in A$ (Closure property).

Ex: The set N is closed with respect to addition and multiplication

but not w.r.t subtraction and division.

<u>3.1.1 Algebraic System:</u> A set A with one or more binary(closed) operations defined on it is called an algebraic system.

Ex:
$$(N, +)$$
, $(Z, +, -)$, $(R, +, ., -)$ are algebraic systems.

3.1.2 Properties

Associativity: Let * be a binary operation on a set A.

The operation * is said to be associative in A if

Identity: For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if a * e = e * a = a for all $a \in A$.

Note: For an algebraic system (A, *), the identity element, if exists, is unique.

Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

3.1.3 Semi groups

Semi Group: An algebraic system (A, *) is said to be a semi group if

- 1. * is closed operation on A.
- 2. * is an associative operation, for all a, b, c in A.

Ex. (N, +) is a semi group.

Ex. (N, .) is a semi group.

Ex. (N, -) is not a semi group.

3.1.4 **Monoid**

An algebraic system (A, *) is said to be a **monoid** if the following conditions are satisfied.

- 1) * is a closed operation in A.
- 2) * is an associative operation in A.
- 3) There is an identity in A.

Ex. Show that the set 'N' is a monoid with respect to multiplication.

<u>Solution</u>: Here, $N = \{1,2,3,4,....\}$

1. Closure property: We know that product of two natural numbers is again a natural number.

i.e., a.b = b.a for all $a,b \in N$

- : Multiplication is a closed operation.
- 2. Associativity: Multiplication of natural numbers is associative.

i.e.,
$$(a.b).c = a.(b.c)$$
 for all $a,b,c \in N$

3. Identity: We have, $1 \in \mathbb{N}$ such that

a.1 = 1.a = a for all $a \in N$.

: Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Examples

Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers

and the operation * is defined by n * m = maximum of (n, m).

Show that (Z, *) is a semi group.

Is (Z, *) a monoid?. Justify your answer.

Solution: Let a, b and c are any three integers.

Closure property: Now, a * b = maximum of (a, b) \in Z for all a,b \in Z

Associativity: $(a * b) * c = maximum of {a,b,c} = a * (b * c)$

∴ (Z, *) is a semi group.

<u>Identity</u>: There is no integer x such that

 $a * x = maximum of (a, x) = a for all a \in Z$

: Identity element does not exist. Hence, (Z, *) is not a monoid.

Ex. Show that the set of all strings 'S' is a monoid under the operation 'concatenation of strings'.

Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation

'concatenation of strings' by +.

Let s_1 , s_2 , s_3 are three arbitrary strings in S.

<u>Closure property</u>: Concatenation of two strings is again a string.

i.e.,
$$s_1+s_2 \in S$$

Associativity: Concatenation of strings is associative.

$$(s_1 + s_2) + s_3 = s_1 + (s_2 + s_3)$$

Identity: We have null string, $I \in S$ such that $s_1 + I = S$.

∴ S is a monoid.

Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

3.2 Groups

Group: An algebraic system (G, *) is said to be a **group** if the following conditions are satisfied.

- 1) * is a closed operation.
- 2) * is an associative operation.
- 3) There is an identity in G.
- 4) Every element in G has inverse in G.

Abelian group (Commutative group): A group (G, *) is

said to be abelian (or commutative) if

$$a * b = b * a$$
 "a, $b \in G$.

Properties

In a Group (G, *) the following properties hold good

- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

$$a * b = a * c \Rightarrow b = c$$
 (left cancellation law)

$$a * c = b * c => a = b$$
 (Right cancellation law)

4.
$$(a * b)^{-1} = b^{-1} * a^{-1}$$

In a group, the identity element is its own inverse.

Order of a group: The number of elements in a group is called order of the group.

<u>Finite group</u>: If the order of a group G is finite, then G is called a finite group.

Ex1 . Show that, the set of all integers is an abelian group with respect to addition.

Solution: Let Z = set of all integers.

Let a, b, c are any three elements of Z.

1. <u>Closure property</u>: We know that, Sum of two integers is again an integer.

i.e.,
$$a+b \in Z$$
 for all $a,b \in Z$

2. Associativity: We know that addition of integers is associative.

i.e.,
$$(a+b)+c = a+(b+c)$$
 for all $a,b,c \in Z$.

- 3. Identity: We have $0 \in Z$ and a + 0 = a for all $a \in Z$.
 - : Identity element exists, and '0' is the identity element.
- 4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that

$$a + (-a) = 0$$

Each element in Z has an inverse.

5. Commutativity: We know that addition of integers is commutative.

i.e.,
$$a + b = b + a$$
 for all $a, b \in Z$.

Hence, (Z, +) is an abelian group.

Ex2 . Show that set of all non zero real numbers is a group with respect to multiplication .

Solution: Let R^* = set of all non zero real numbers.

Let a, b, c are any three elements of R*.

1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.

i.e.,
$$a.b \in R^*$$
 for all $a,b \in R^*$.

2. Associativity: We know that multiplication of real numbers is

associative.

i.e., (a.b).c = a.(b.c) for all a,b,c
$$\in \mathbb{R}^*$$
.

3. <u>Identity</u>: We have $1 \in R^*$ and a .1 = a for all $a \in R^*$.

: Identity element exists, and '1' is the identity element.

4. Inverse: To each $a \in R^*$, we have $1/a \in R^*$ such that

a.(1/a) = 1 i.e., Each element in R^* has an inverse.

5. Commutativity: We know that multiplication of real numbers is

commutative.

i.e.,
$$a.b = b.a$$
 for all $a,b \in R^*$.

Hence, (R*, .) is an abelian group.

Note: Show that set of all real numbers 'R' is not a group with respect to multiplication.

Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example: Let S be a finite set, and let F(S) be the collection of all functions $f: S \rightarrow S$ under the operation of composition of functions, then show that F(S) is a monoid.

Is S a group w.r.t the above operation? Justify your answer.

Solution:

Let f_1 , f_2 , f_3 are three arbitrary functions on S.

<u>Closure property</u>: Composition of two functions on S is again a function on S.

i.e.,
$$f_1 o f_2 \in F(S)$$

Associativity: Composition of functions is associative.

i.e.,
$$(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$$

Identity: We have identity function $I: S \rightarrow S$

such that $f_1 \circ I = f_1$.

∴ F(S) is a monoid.

Note: F(S) is not a group, because the inverse of a non bijective function on S does not exist.

Ex. If M is set of all non singular matrices of order 'n x n'.

then show that M is a group w.r.t. matrix multiplication.

Is (M, *) an abelian group?. Justify your answer.

Solution: Let $A,B,C \in M$.

1.Closure property: Product of two non singular matrices is again a non singular matrix, because

 $\frac{1}{2}AB\frac{1}{2} = \frac{1}{2}A\frac{1}{2}$. $\frac{1}{2}B\frac{1}{2}$ (Since, A and B are nonsingular)

i.e., $AB \in M$ for all $A,B \in M$.

2. <u>Associativity</u>: Marix multiplication is associative.

i.e., (AB)C = A(BC) for all $A,B,C \in M$.

- 3. <u>Identity</u>: We have $I_n \in M$ and $A I_n = A$ for all $A \in M$.
 - : Identity element exists, and 'In' is the identity element.
- 4. Inverse: To each $A \in M$, we have $A^{-1} \in M$ such that

 $A A^{-1} = I_n$ i.e., Each element in M has an inverse.

: M is a group w.r.t. matrix multiplication.

We know that, matrix multiplication is not commutative.

Hence, M is not an abelian group.

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

Solution: Let A = set of all positive rational numbers.

Let a,b,c be any three elements of A.

1. <u>Closure property:</u> We know that, Product of two positive rational numbers is again a rational number.

i.e., a *b \in A for all a,b \in A.

2. <u>Associativity</u>: (a*b)*c = (ab/2)*c = (abc)/4

$$a*(b*c) = a*(bc/2) = (abc)/4$$

3. <u>Identity</u>: Let e be the identity element.

We have a*e = (a e)/2 ...(1), By the definition of *

again,
$$a^*e = a$$
(2), Since e is the identity.

From (1)and (2),
$$(a e)/2 = a \Rightarrow e = 2$$
 and $2 \in A$.

- : Identity element exists, and '2' is the identity element in A.
- 4. Inverse: Let $a \in A$

let us suppose b is inverse of a.

Now,
$$a * b = (a b)/2(1)$$
 (By definition of inverse.)

Again,
$$a * b = e = 2 \dots (2)$$
 (By definition of inverse)

From (1) and (2), it follows that

$$(a b)/2 = 2$$

$$\Rightarrow$$
 b = $(4/a) \in A$

 \therefore (A,*) is a group.

Commutativity: a * b = (ab/2) = (ba/2) = b * a

Hence, (A,*) is an abelian group.

Ex. Let R be the set of all real numbers and * is a binary operation defined by a * b = a + b + a b. Show that (R, *) is a monoid.

Try for yourself.

inverse of
$$a = -a/(a+1)$$

Ex. If $E = \{0, \pm 2, \pm 4, \pm 6, \dots\}$, then the algebraic structure (E, +) is

- a) a semi group but not a monoid
- b) a monoid but not a group.
- c) a group but not an abelian group.

d) an abelian group.

Ans; d

Ex. Let A = Set of all rational numbers 'x' such that $0 < x \pm 1$.

Then with respect to ordinary multiplication, A is

- a) a semi group but not a monoid
- b) a monoid but not a group.
- c) a group but not an abelian group.
- d) an abelian group.

Ans. b

Ex. Let C = Set of all non zero complex numbers . Then with respect to multiplication, C is

- a) a semi group but not a monoid
- b) a monoid but not a group.
- c) a group but not an abelian group.
- d) an abelian group.

Ans. d

Ex. In a group (G, *), Prove that the identity element is unique.

Proof : a) Let e_1 and e_2 are two identity elements in G.

Now,
$$e_1 * e_2 = e_1$$
 ...(1) (since e_2 is the identity)

Again,
$$e_1 * e_2 = e_2$$
 ...(2) (since e_1 is the identity)

From (1) and (2), we have $e_1 = e_2$

: Identity element in a group is unique.

Ex. In a group (G, *), Prove that the inverse of any element is unique.

<u>Proof</u>: Let $a,b,c \in G$ and e is the identity in G.

Let us suppose, Both b and c are inverse elements of a.

Now,
$$a * b = e \dots (1)$$
 (Since, b is inverse of a)

Again,
$$a * c = e ...(2)$$
 (Since, c is also inverse of a)

From (1) and (2), we have

⇒ b = c (By left cancellation law)
 In a group, the inverse of any element is unique.

Ex. In a group
$$(G, *)$$
, Prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a,b \in G$.

Proof: Consider,

$$(a * b) * (b^{-1} * a^{-1})$$

= $(a * (b * b^{-1}) * a^{-1})$ (By associative property).
= $(a * e * a^{-1})$ (By inverse property)
= $(a * a^{-1})$ (Since, e is identity)
= e (By inverse property)

Similarly, we can show that

$$(b^{-1} * a^{-1}) * (a * b) = e$$

Hence,
$$(a * b)^{-1} = b^{-1} * a^{-1}$$
.

Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.

<u>Proof</u>: Given that, a * a = a

- \Rightarrow a * a = a * e (Since, e is identity in G)
- \Rightarrow a = e (By left cancellation law)

Hence, the result follows.

Ex. If every element of a group is its own inverse, then show that the group must be abelian .

Proof: Let (G, *) be a group.

Let a and b are any two elements of G.

Consider the identity,

$$(a * b)^{-1} = b^{-1} * a^{-1}$$

 \Rightarrow (a * b) = b * a (Since each element of G is its own inverse) Hence, G is abelian.

Note:
$$a^2 = a * a$$

 $a^3 = a * a * a$ etc.

Ex. In a group
$$(G, *)$$
, if $(a * b)^2 = a^2 * b^2$ "a,b $\in G$

then show that G is abelian group.

Proof: Given that $(a * b)^2 = a^2 * b^2$

$$\Rightarrow$$
 (a * b) * (a * b) = (a * a)* (b * b)

$$\Rightarrow$$
 a *(b * a)* b = a * (a * b) * b (By associative law)

$$\Rightarrow$$
 (b * a)* b = (a * b) * b (By left cancellation law)

$$\Rightarrow$$
 (b * a) = (a * b) (By right cancellation law)

Hence, G is abelian group.

3.2.2 Finite groups

Ex. Show that $G = \{1, -1\}$ is an abelian group under multiplication.

Solution: The composition table of G is

$$-1 -1 1$$

- 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. Associativity: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
- 3. Identity: Here, 1 is the identity element and $1 \in G$.
- 4. Inverse: From the composition table, we see that the inverse elements of

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication..

Ex. Show that $G = \{1, w, w^2\}$ is an abelian group under multiplication.

Where 1, w, w² are cube roots of unity.

Solution: The composition table of G is

$$1 w w^2$$

$$1 \quad 1 \quad w \quad w^2$$

$$w w w^2 1$$

$$w^2$$
 w^2 1 w

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. Identity: Here, 1 is the identity element and $1 \in G$.
- 4. Inverse: From the composition table, we see that the inverse elements of

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. Identity: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo systems.

Addition modulo m $(+_m)$

let m is a positive integer. For any two positive integers a and b

$$a +_m b = a + b$$
 if $a + b < m$

$$a +_m b = r$$
 if $a + b^3 m$ where r is the remainder obtained

by dividing (a+b) with m.

Multiplication modulo p (*m)

let p is a positive integer. For any two positive integers a and b

$$a *mb = ab$$
 if $ab < p$

$$a * mb = r$$
 if ab^3p where r is the remainder obtained

by dividing (ab) with p.

Ex.
$$3 *_5 4 = 2$$
 , $5 *_5 4 = 0$, $2 *_5 2 = 4$

Example: The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

$$+_6$$
 0 1 2 3 4 5

- 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.
- 2. Associativity: The binary operation $+_6$ is associative in G.

for ex.
$$(2 +_6 3) +_6 4 = 5 +_6 4 = 3$$
 and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5 are 0, 5, 4, 3, 2, 1 respectively.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.

Hence, $(G, +_6)$ is an abelian group.

Example: The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

* 7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under $*_7$.
- 2. Associativity: The binary operation $*_7$ is associative in G.

for ex.
$$(2 *_7 3) *_7 4 = 6 *_7 4 = 3$$
 and $2 *_7 (3 *_7 4) = 2 *_7 5 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row , i.e., 1 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5 6 are 1, 4, 5, 2, 5, 6 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $*_7$ is commutative.

Hence, $(G, *_7)$ is an abelian group.

More on finite groups

In a group with 2 elements, each element is its own inverse

In a group of even order there will be at least one element (other than identity element) which is its own inverse

The set $G = \{0,1,2,3,4,\dots,m-1\}$ is a group with respect to addition modulo m.

The set $G = \{1,2,3,4,....p-1\}$ is a group with respect to multiplication modulo p, where p is a prime number.

Order of an element of a group:

Let (G, *) be a group. Let 'a' be an element of G. The smallest integer n such that $a^n = e$ is called order of 'a'. If no such number exists then the order is infinite.

Ex.
$$G = \{1, -1, i, -i\}$$
 is a group w.r.t multiplication. The order $-i$ is a) 2 b) 3 c) 4 d) 1

Ex. Which of the following is not true.

- a) The order of every element of a finite group is finite and is a divisor of the order of the group.
 - b) The order of an element of a group is same as that of its inverse.
- c) In the additive group of integers the order of every element except

0 is infinite

d) In the infinite multiplicative group of nonzero rational numbers the order of every element except 1 is infinite.

Ans. D

3.3 Sub groups

<u>Def.</u> A non empty sub set H of a group (G, *) is a sub group of G,

if
$$(H, *)$$
 is a group.

Note: For any group {G, *}, {e, * } and (G, *) are trivial sub groups.

Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.

$$H_1 = \{1, -1\}$$
 is a subgroup of G.

$$H_2 = \{1\}$$
 is a trivial subgroup of G.

Ex. (Z, +) and (Q, +) are sub groups of the group (R +).

Theorem: A non empty sub set H of a group (G, *) is a sub group of G iff

i)
$$a * b \in H$$
 "a, $b \in H$

ii)
$$a^{-1} \in H$$
 " $a \in H$

Theorem

<u>Theorem</u>: A necessary and sufficient condition for a non empty subset H of a group (G, *) to be a sub group is that

$$a \in H, b \in H => a * b^{-1} \in H.$$

Proof: Case1: Let (G, *) be a group and H is a subgroup of G

Let
$$a,b \in H \implies b^{-1} \in H$$
 (since H is is a group)
=> $a * b^{-1} \in H$. (By closure property in H)

<u>Case2</u>: Let H be a non empty set of a group (G, *).

Let
$$a * b^{-1} \in H$$
 "a, b $\in H$

Now,
$$a * a^{-1} \in H$$
 (Taking b = a)

 $=> e \in H$ i.e., identity exists in H.

Now,
$$e \in H$$
, $a \in H => e * a^{-1} \in H$

$$=> a^{-1} \in H$$

∴ Each element of H has inverse in H.

Further,
$$a \in H$$
, $b \in H \Rightarrow a \in H$, $b^{-1} \in H$

$$\Rightarrow$$
 a * (b⁻¹)⁻¹ \in H.

$$\Rightarrow$$
 a * b \in H. \therefore H is closed w.r.t *.

Finally, Let $a,b,c \in H$

$$\Rightarrow$$
 a,b,c \in G (since H \acute{I} G)

$$\Rightarrow$$
 (a * b) * c = a * (b * c)

∴ * is associative in H

Hence, H is a subgroup of G.

<u>Theorem:</u> A necessary and sufficient condition for a non empty finite subset H of a group (G, *) to be a sub group is that

$$a * b \in H$$
 for all $a, b \in H$

Proof: Assignment.

Example: Show that the intersection of two sub groups of a group G is again a sub group of G.

Proof: Let (G, *) be a group.

Let H₁ and H₂ are two sub groups of G.

Let $a, b \in H_1 \cap H_2$.

Now, a , b \in H₁ \Rightarrow a * b⁻¹ \in H₁ (Since, H₁ is a subgroup of G)

again, a, b \in H₂ \Rightarrow a * b⁻¹ \in H₂ (Since, H₂ is a subgroup of G)

 \therefore a * b⁻¹ \in H₁ \cap H₂.

Hence, $H_1 \cap H_2$ is a subgroup of G.

Ex. Show that the union of two sub groups of a group G need not be a sub group of G.

Proof: Let G be an additive group of integers.

Let $H_1 = \{0, \pm 2, \pm 4, \pm 6, \pm 8,\}$

and $H_2 = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots\}$

Here, H₁ and H₂ are groups w.r.t addition.

Further, H₁ and H₂ are subsets of G.

∴ H₁ and H₂ are sub groups of G.

 $H_1 \cup H_2 = \{0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots\}$

Here, H₁ U H₂ is not closed w.r.t addition.

For ex. $2,3 \in G$

But, 2+3=5 and 5 does not belongs to $H_1 \cup H_2$.

Hence, H₁ U H₂ is not a sub group of G.

Homomorphism and Isomorphism.

Homomorphism: Consider the groups (G, *) and (G^1, \bigoplus)

A function $f: G \rightarrow G^1$ is called a homomorphism if

$$f(a * b) = f(a) \oplus f(b)$$

Isomorphism: If a homomorphism $f: G \to G^1$ is a bijection then f is called isomorphism between G and G^1 .

Then we write $G \equiv G^1$

Example: Let R be a group of all real numbers under addition and R^+ be a group of all positive real numbers under multiplication. Show that the mapping $f: R \to R^+$ defined by $f(x) = 2^x$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.

Let $a, b \in R$.

Now,
$$f(a+b) = 2^{a+b}$$

= $2^a 2^b$
= $f(a).f(b)$

∴ f is an homomorphism.

Next, let us prove that f is a Bijection.

For any $a, b \in R$, Let, f(a) = f(b)

$$=> 2^a = 2^b$$

$$=>a=b$$

∴ f is one.to-one.

Next, take any $c \in R^+$.

Then $\log_2 c \in R$ and $f(\log_2 c) = 2^{\log_2 c} = c$.

 \Rightarrow Every element in R⁺ has a pre image in R.

i.e., f is onto.

∴ f is a bijection.

Hence, f is an isomorphism.

Ex. Let R be a group of all real numbers under addition and R^+ be a group of all positive real numbers under multiplication. Show that the mapping $f: R^+ \to R$ defined by $f(x) = \log_{10} x$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.

Let a, b
$$\in R^+$$
.

Now,
$$f(a.b) = log_{10} (a.b)$$

= $log_{10} a + log_{10} b$
= $f(a) + f(b)$

∴ f is an homomorphism.

Next, let us prove that f is a Bijection.

For any
$$a, b \in R^+$$
, Let, $f(a) = f(b)$
=> $log_{10} a = log_{10} b$
=> $a = b$

∴ f is one.to-one.

Next, take any $c \in R$.

Then $10^c \in R$ and $f(10^c) = log_{10} 10^c = c$.

 \Rightarrow Every element in R has a pre image in R⁺.

i.e., f is onto.

∴ f is a bijection.

Hence, f is an isomorphism.

<u>Theorem</u>: Consider the groups (G_1 , *) and (G_2 , \bigoplus) with identity elements e_1 and e_2 respectively. If $f:G_1\to G_2$ is a group homomorphism, then prove that

a)
$$f(e_1) = e_2$$

b)
$$f(a^{-1}) = [f(a)]^{-1}$$

c) If H_1 is a sub group of G_1 and $H_2 = f(H_1)$,

then H_2 is a sub group of G_2 .

d) If f is an isomorphism from G_1 onto G_2 ,

then f^{-1} is an isomorphism from G_2 onto G_1 .

<u>Proof</u>: a) we have in G_2 ,

$$e_2 \oplus f(e_1) = f(e_1)$$
 (since, e_2 is identity in G_2)
$$= f(e_1 * e_1)$$
 (since, e_1 is identity in G_1)
$$= f(e_1) \oplus f(e_1)$$
 (since f is a homomorphism)
$$e_2 = f(e_1)$$
 (By right cancellation law)

b) For any $a \in G_1$, we have

$$f(a) \bigoplus f(a^{-1}) = f(a * a^{-1}) = f(e_1) = e_2$$

and $f(a^{-1}) \bigoplus f(a) = f(a^{-1} * a) = f(e_1) = e_2$

 \therefore f(a⁻¹) is the inverse of f(a) in G₂

i.e.,
$$[f(a)]^{-1} = f(a^{-1})$$

c) $H_2 = f(H_1)$ is the image of H_1 under f; this is a subset of G_2 .

Let $x, y \in H_2$.

Then x = f(a), y = f(b) for some $a,b \in H_1$

Since, H_1 is a subgroup of G_1 , we have a * $b^{-1} \in H_1$.

Consequently,

$$x \oplus y^{-1} = f(a) \oplus [f(b)]^{-1}$$

= $f(a) \oplus f(b^{-1})$
= $f(a * b^{-1}) \in f(H_1) = H_2$

Hence, H_2 is a subgroup of G_2 .

d) Since $f: G_1 \rightarrow G_2$ is an isomorphism, f is a bijection.

 $f^{-1}: G_2 \to G_1$ exists and is a bijection.

Let $x, y \in G_2$. Then $x \oplus y \in G_2$

and there exists $a, b \in G_1$ such that x = f(a) and y = f(b).

∴
$$f^{-1}(x \oplus y) = f^{-1}(f(a) \oplus f(b))$$

= $f^{-1}(f(a*b))$
= $a*b$
= $f^{-1}(x)*f^{-1}(y)$

- This shows that $f^{-1}: G_2 \rightarrow G_1$ is an homomorphism as well.
- \therefore f⁻¹ is an isomorphism.

3.3 Cosets

If H is a sub group of (G, *) and $a \in G$ then the set

 $Ha = \{ h * a | h \in H \}$ is called a right coset of H in G.

Similarly $aH = \{a * h \mid h \in H\}$ is called a left coset of H is G.

Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.

2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a sub group H is equal to G.

- 3) <u>Lagrange's theorem</u>: The order of each sub group of a finite group is a divisor of the order of the group.
- 4) The order of every element of a finite group is a divisor of the order of the group.
- 5) The converse of the lagrange's theorem need not be true.

Ex. If G is a group of order p, where p is a prime number. Then the number of sub groups of G is

a) 1

b) 2

c) p - 1

d) p

Ans. b

Ex. Prove that every sub group of an abelian group is abelian.

Solution: Let (G, *) be a group and H is a sub group of G.

Let a, $b \in H$

 \Rightarrow a, b \in G (Since H is a subgroup of G)

 \Rightarrow a * b = b * a (Since G is an abelian group)

Hence, H is also abelian.

State and prove Lagrange's Theorem

Lagrange's theorem: The order of each sub group H of a finite

group G is a divisor of the order of the group.

<u>Proof</u>: Since G is finite group, H is finite.

Therefore, the number of cosets of H in G is finite.

Let Ha₁,Ha₂, ...,Ha_r be the distinct right cosets of H in G.

Then, $G = Ha_1UHa_2U ..., UHa_r$

So that $O(G) = O(Ha_1) + O(Ha_2) ... + O(Ha_r)$.

But,
$$O(Ha_1) = O(Ha_2) = = O(Ha_r) = O(H)$$

$$\cdot \cdot O(G) = O(H) + O(H) ... + O(H). (r terms)$$

$$= r.O(H)$$

This shows that O(H) divides O(G).

Lattice and its Properties:

Introduction:

A lattice is a partially ordered set (L, \mathfrak{L}) in which every pair of elements a, b \hat{I} L has a greatest lower bound and a least upper bound.

The glb of a subset, $\{a, b\}$ Í L will be denoted by a * b and the lub by a Å b.

.

Usually, for any pair a, b \hat{I} L, GLB $\{a, b\} = a * b$, is called the **meet** or **product** and LUB $\{a, b\} = a \mathring{A} b$, is called the **join** or **sum** of a and b.

Example 1 Consider a non-empty set S and let P(S) be its power set. The relation \hat{I} "contained in" is a partial ordering on P(S). For any two subsets A, B \hat{I} P(S) GLB $\{A, B\}$ and LUB $\{A, B\}$ are evidently A $\{A, B\}$ and A $\{B\}$ respectively.

Example2 Let I+ be the set of positive integers, and D denote the relation of "division" in I+ such that for any a, b Î I+, a D b iff a divides b. Then (I+, D) is a lattice in which

the join of a and b is given by the least common multiple(LCM) of a and b, that is, a \mathring{A} b = LCM of a and b, and the meet of a and b, that is, a * b is the greatest common divisor (GCD) of a and b.

A lattice can be conveniently represented by a diagram.

For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the relation "division" such that for any a, b Î Sn, a D b iff a divides b.

```
Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b). Take n=6. Then S6 = \{1, 2, 3, 6\}. It can be represented by a diagram in Fig(1). Take n=8. Then S8 = \{1, 2, 4, 8\}
```

Two lattices can have the same diagram. For example if $S = \{1, 2, 3\}$ then (p(s), 1) and (S6,D)

have the same diagram viz. fig(1), but the nodes are differently labeled. We observe that for any partial ordering relation £ on a set S the converse relation 3 is also partial ordering relation on S. If (S, £) is a lattice With meet a * b and join a Å b , then (S, 3) is the also a lattice with meet a Å b and join a * b i.e., the GLB and LUB get interchanged . Thus we have the principle of duality of lattice as follows.

Any statement about lattices involving the operations $^{\land}$ and $^{\lor}$ and the relations £ and 3 remains true if $^{\land}$, $^{\lor}$, $^{\circ}$ and £ are replaced by $^{\lor}$, $^{\land}$, £ and $^{\circ}$ respectively.

The operation $^{\land}$ and $^{\lor}$ are called duals of each other as are the relations £ and 3 .. Also, the lattice (L, £) and (L, 3) are called the duals of each other.

Properties of lattices:

Let (L, \pounds) be a lattice with the binary operations * and Å then for any a, b, c Î L,

•
$$a * a = a$$
 $a \check{A} a = a$ (Idempotent)

•
$$a * b = b * a$$
 , $a \mathring{A} b = b \mathring{A} a$ (Commutative)

•
$$(a * b) * c = a * (b * c)$$
, $(a Å) Å c = a Å (b Å c)$

o (Associative)

•
$$a * (a \mathring{A} b) = a$$
 , $a \mathring{A} (a * b) = a$ (absorption)

For any a ÎL, a £ a, a £ LUB {a, b} => a £ a * (a Å b). On the other hand, GLB {a, a Å b} £ a i.e., (a Å b) Å a, hence a * (a Å b) = a

Theorem 1

Let (L, \pounds) be a lattice with the binary operations * and Å denote the operations of meet and join respectively For any a, b \hat{I} L,

$$a \pounds b \acute{o} a * b = a \acute{o} a \mathring{A} b = b$$

Proof

Suppose that $a \pounds b$. we know that $a \pounds a$, $a \pounds GLB \{a, b\}$, i.e., $a \pounds a * b$. But from the definition of a * b, we get $a * b \pounds a$.

Now we assume that a * b = a; but is possible only if $a \pounds b$,

that is
$$a * b = a \Rightarrow a \pounds b$$
(2)

From (1) and (2), we get a £ b ó a * b = a.

Suppose a * b = a.

but b Å (
$$a * b$$
) = b (by iv)......(4)

Hence a Å b = b, from (3) => (4)

Suppose aA b = b, i.e., LUB $\{a, b\} = b$, this is possible only if a£ b, thus(3) => (1)

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$$
. Hence these are equivalent.

Let us assume a * b = a.

Now
$$(a * b) Å b = a Å b$$

We know that by absorption law, (a * b) Å b = b

so that a
$$\mathring{A} b = b$$
, therefore a * b = a P a $\mathring{A} b = b$ (5)

similarly, we can prove a
$$\mathring{A} b = b P a * b = a$$
 (6)

From (5) and (6), we get

$$a * b = a \hat{U} a \mathring{A} b = b$$

Hence the theorem.

Theorem2 For any a, b, c \hat{I} L, where (L, £) is a lattice. b

£ c => {
$$a * b £ a * c$$
 and { $a Å b £ a Å c$

Proof Suppose b £ c. we have proved that b £ a ó b * c = b......(1)

Now consider

$$(a * b) * (a * c) = (a * a) * (b * c)$$
 (by Idempotent)
= $a * (b * c)$

$$= a * b$$
 (by (1))

Thus $(a * b) * (a * c) = a * b$ which => $(a * b) £ (a * c)$ Similarly
$$(a Å b) Å (a Å c) = (a Å a) Å (b Å c)$$

$$= a Å (b Å c)$$

$$= a Å c$$
which => $(a Å b) £ (a Å c)$

note:These properties are known as isotonicity.