Exercise 1.4.3.

Ver	1fy	that	the	metrics	on Σ	n and	Σ_m	generate	the	product	topology	(1)	
_	_												

(2)

(3)

(4)

(5)

(6)

(9)

Proof + reasoning:

- Firstly, what product topology is being referred to? $\Sigma_m = A_m^{\mathbb{Z}}$, which is the space of sequences of elements in $\{1,\ldots,m\}$ indexed by \mathbb{Z} , which can be seen as a product $\prod_{z\in\mathbb{Z}}A_m$.
- The product topology is generated by products of open sets. Is there a general result that countable product topologies are generated by cylinders, instead of just by countable products of open sets?
- Yes, the result is that the *n*-dimensional cylinders form a basis for the product topology. This is exactly the topology on Σ_m and Σ_m^+ .
- How does (4) help us? From a metric we can generate the collection of open balls around all points. A metric generates a topology when, given a basis set B and any point $x \in B$, there is an open ball containing x that is contained in B.
- Let $C := C_{j_1,\dots,j_k}^{n_1,\dots,n_k} = \{x = (x_\ell) : x_{n_i} = j_i, i = 1,\dots,k\}$ where $n_1 < n_2 < \dots < n_k$ are indices in \mathbb{Z} or \mathbb{N} , and $j_i \in A_m$.
- Let $x := (x_i) \in C$. (7)
- We want to show that C contains an open ball B such that $x \in B$. (8)
- Recall that the metrics on Σ_m and Σ_m^+ are given by $d(x,x')=2^{-l}$, where $l=\min\{|i|: x_i\neq x_i'\}$. If we pick ε small enough, we can construct $B(x,\varepsilon)$ such that all points in $B(x,\varepsilon)$ agree with x up to the 'largest' index in the definition of C.
- Let $m = \max\{|n_i| : i \le k\}, y \in B(x, 2^{-m}), \text{ and } l = \min\{|i| : y_i \ne x_i\}.$ (10)
- We have $2^{-l} = d(x, y) < 2^{-m}$. (11)
- From (11), l > m, so $x_{n_i} = y_{n_i} \ \forall i \le k$, hence $y \in C$. (12)
- Therefore $B(x, 2^{-m}) \subseteq C$. (13)
- By (13), and the fact that the collection of sets such as $C_{j_1,\ldots,j_k}^{n_1,\ldots,n_k}$ form a basis for the product topology, the metrics generate the product topology. (14)