Algebra HW5

Gandhar Kulkarni (mmat2304)

1

If we have $\nu=0$, then see that $\nu(E)=\int_E 0d\mu$, thus $\mu(E)=0 \implies \nu(E)=0$ trivially, so $\nu<<\mu$. Also see that $\nu\perp\mu$, as $X=X\sqcup\phi$, and see that $\mu(E)=\mu(E\cap X)$, while $\nu(E)=\nu(E\int\phi)$.

Now let us assume that $\nu << \mu$ and $\nu \perp \mu$. Then we have $X = A \sqcup B$, where $\mu(E) = \mu(E \cap A)$, while $\nu(E) = \nu(E \int B)$. Let us pick a measurable set $E \subseteq B$. Then we have $\mu(E) = \mu(E \cap B) = \mu(\phi) = 0$. Since $\nu << \mu$, we have $\nu(E) = 0$. Thus ν is zero on every measurable subset E in B. For a general measurable set E, we have $E = (E \cap A) \sqcup (E \cap B)$. We already know that $\nu(E \cap A) = 0$, now we see that $\nu(E \cap B) = 0$ also. Thus $\nu(E) = \nu(E \cap A) + \nu(E \cap B) = 0$ for all measurable $E \subset X$.

 $\mathbf{2}$

3

4

• We find the positive and negative parts of f. Note that the roots of this polynomial are $3 + 2\sqrt{2}$ and $3 - \sqrt{2}$. Let us call them α_1 and α_2 for sake of convenience. Then

$$p^{+} = \begin{cases} x^{2} - 6x + 1 & x \in (-\infty, \alpha_{2}] \cup [\alpha_{1}, \infty) \\ 0 & \text{else,} \end{cases}$$

and

$$p^{-} = \begin{cases} -(x^2 - 6x + 1) & x \in (\alpha_2, \alpha_1) \\ 0 & \text{else.} \end{cases}$$

Then $\nu(E) = \int_E p^+ d\mu - \int_E p^- d\mu = \nu^+ - \nu^-$, where $\nu^+ := \int_E p^+ d\mu$ and $\nu^- := \int_E p^- d\mu$ are two positive measures. Note that it is not possible for both of them to attain ∞ together, since ν^- is a finite measure. Thus it is trivial to see that ν must be a signed measure.

- Let $\mathbb{R} = A \sqcup B$, where $A = (-\infty, \alpha_2] \cup [\alpha_1, \infty)$ and $B = (\alpha_2, \alpha_1)$. See that since both the positive measures have their usual properties, we have that for $E \subseteq A$ measurable, we have $\nu(E) = \nu^+(E) \nu^-(E) = \nu^+(E) 0 \ge 0$, and likewise for $E \subseteq B$ measurable, we have $\nu(E) = \nu^+(E) \nu^-(E) = 0 \nu^-(E) \le 0$. Thus the above construction is a Hahn decomposition.
- See that ν^+ lives on A, while ν^- lives on B. That is, $\nu^+(E) = \nu(E \cap A)$, and $\nu^-(E) = -\nu(E \cap B)$. This is easy to see, as $E = (E \cap A) \sqcup (C \cap B)$. Then $\nu(E) = \int_{(E \cap A) \sqcup (E \cap B)} p^+ d\mu \int_{(E \cap A) \sqcup (E \cap B)} p^- d\mu = \int_{(E \cap A)} p^+ d\mu + \int_{(E \cap B)} p^+ d\mu \int_{(E \cap A)} p^- d\mu \int_{(E \cap B)} p^- d\mu$. Since p^+ is 0 on B, and p^- is 0 on A, we have that $\nu^+ \perp \nu^-$. Thus we have the Jordan decomposition.

5

Let us assume that $\mu(E) = 0$. As E is μ -null, then $\mu(E \cap E_n) = 0$ for all n, by monotonicity of the measure. Then we have $\nu(E) = \sum_{n=1}^{N} c_n \mu(E \cap E_n) = 0$. Thus $\nu << \mu$. See that the function $f := \sum_{n=1}^{N} c_n \chi_{E_n}$ is a good candidate for the Radon-Nikodym derivative.

$$\int_{E} f d\mu = \int_{E} \sum_{n=1}^{N} c_{n} \chi_{E_{n}} d\mu = \sum_{n=1}^{N} c_{n} \int_{X} \chi_{E} \chi_{E_{n}} d\mu = \sum_{n=1}^{N} c_{n} \int_{X} \chi_{E \cap E_{n}} d\mu = \sum_{n=1}^{N} c_{n} \mu(E \cap E_{n}),$$

which is the desired result. Thus $\frac{d\nu}{d\mu}=f.$

In $(\mathbb{N}, \mathbb{P}(\mathbb{N}))$, μ is the counting measure. Note that the empty set is the only μ -null set, since every non-empty set has cardinality more than zero. Then somewhat trivially we have $\mu(E) = 0 \implies E = \phi \implies \nu(E) = 0$. So $\nu << \mu$. We have ν is σ -finite, thus $\mathbb{N} = \sum_{n=1}^{\infty} \{n\}$, where $\nu(\{n\}) < \infty$. Thus define $f: \mathbb{N} \to \mathbb{R}$, where $f(n) = \nu(\{n\})$. Then we have $\nu(E) = \int_E f d\mu = \sum_{n \in E} f(n)$, is the required function. Thus $f = \frac{d\nu}{d\mu}$.