AMENDMENTS TO THE CLAIMS

Kindly amend claims 1-4 and cancel claims 8-9 without prejudice to the subject matter involved. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound of formula

$$\begin{array}{c}
M \\
R_{5}
\end{array}$$

$$\begin{array}{c}
(R_{4})_{k} \\
R_{1} \\
R_{2}
\end{array}$$

$$\begin{array}{c}
(R_{3})_{m} \\
X_{2} \\
R_{2}
\end{array}$$

$$\begin{array}{c}
(I), \\
R_{5}
\end{array}$$

wherein

 A_0 , A_1 and A_2 are each independently of the others a bond or a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C_3 - C_8 cycloalkyl;

A₃ is a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

Y is O, NR_{11} , S, SO or SO_2 ;

M is O or NOR₆.

 X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

 R_1 , R_2 and R_3 are each independently of the others H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl or C_3 - C_6 haloalkynyloxy; the substituents R_3 being independent of one another when m is 2;

Q is O, NR_{11} , S, SO or SO_2 ;

W is O, NR_{11} , S, SO, SO_2 , -C(=O)-O-, -O-C(=O)-, $-C(=O)-NR_{11}-$ or $-NR_{11}-C(=O)-$;

T is a bond, O, NR_{11} , S, SO, SO_2 , -C(=O)-O-, -O-C(=O)-, $-C(=O)-NR_{11}-$ or $-NR_{11}-C(=O)-$;

D is CH or N;

 R_4 is H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkynyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6 haloalkenyloxy, C_4 - C_6 alkynyloxy, C_5 - C_6 alkyl) or C_5 - C_6 alkyl) or C_6 - C_6 alkyl) wherein the two alkyl groups are independent of one another; the substituents C_4 being independent of one another when k is greater than 1;

 R_5 is $\underline{C_1-C_{12}}$ alkoxy- $\underline{C_1-C_{12}}$ alkyl or heterocyclyl; $\underline{C_4-C_{42}}$ alkyl substituted by from one to five substituents selected from the group consisting of $-N_3$, NO_{27} . OH, C_3 - C_6 ecycloalkyl, C_3 - C_8 ecycloalkoxy, C_4 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 haloalkynyloxy, C_3 - C_6 haloalkynyloxy, C_3 - C_6 cycloalkyl- C_4 - C_6 alkoxy, C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkoxy- C_4 - C_6 alkyl), $N(C_4$ - $N(R_2)$ 0 wherein the two $N(R_4)$ 1 wherein the two $N(R_4)$ 2 wherein the two $N(R_4)$ 3 are independent of one another and $N(R_4)$ 3.

 C_3 - C_8 cycloalkyl substituted by from one to five identical or different substituents selected from the group consisting of C_4 - C_6 alkyl, halogen, CN, NO₂₇-OH, C_4 - C_6 alkoxy, C_4 - C_6 alkyl) and N(C_4 - C_6 alkyl)₂ wherein the two alkyl groups are independent of one another;

 $-N(R_7)_2$ wherein the two R_7 s are independent of one another;

 $-C(=O)-O-R_6; -C(=O)-NH-R_0; -C(=N-O-R_9)R_{10}; -C(=N-NH-R_0)R_{10}; -C_2-C_6 \\ alkenyl; \\ C_2-C_6 \\ alkynyl; heterocyclyl; or$

-NR₄₄S(O)qR₄₅

wherein the alkenyl and alkynyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected from the group consisting of halogen, $-N_3$, CN, NO_{27} , OH, C_3 - C_6 ecycloalkyl, C_4 - C_6 alkoxy, C_4 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 haloalkynyloxy, C_3 - C_6 haloalkynyloxy, C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkylcarbonyl- C_4 - C_6 alkyl, C_4 - $C_$

and wherein the heterocyclyl radical mentioned under R₅ are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five substituents selected from

halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₈cycloalkyl-C₁-C₆alkoxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆alkyl, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynylthio, C₃-C₆cycloalkyl-C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₂-C₆haloalkenylthio, C₁-C₆alkyl, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₂-C₆haloalkoxy-C₁-C₆alkyl, C₂-C₆haloalkoxy-C₁-C₆alkyl, C₃-C₆alkynyloxy-C₁-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another, C₁-C₆alkylcarbonylamino, C₁-C₆haloalkylcarbonylamino, C₁-C₆alkoxycarbonylamino and C₁-C₆alkylaminocarbonylamino;

or, when A_0 is a C_4 - C_6 alkylene bridge, R_5 is C_2 - C_6 alkylene bonded to one of the carbon atoms of A_0 :

or, when R_4 and a group $-C(=NOR_6)R_5$ are in the ortho-position relative to one another, R_4 and R_5 together form a C_2 - C_6 alkylene bridge wherein one or two CH_2 groups each independently of the other may be replaced by O, NR_{42} , S or SO, and wherein the CH_2 -groups are unsubstituted or mono- or di-substituted by halogen, OH, SH, CN, nitro, C_4 - C_6 alkyl, C_4 - C_6 haloalkyl, C_4 - C_6 alkoxy or C_4 - C_6 haloalkoxy;

 R_6 is H, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, aryl, heterocyclyl or benzyl, wherein the alkyl, cycloalkyl, alkenyl and alkynyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected from the group consisting of halogen, -N₃, CN, NO₂, OH, SH, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkynyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 alkylcarbonyl- C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl- C_1 - C_6 alkylcarbonyl- C_1 - C_6 alkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 alkynylthio, C_3 - C_6 alkynylthio, C_3 - C_6 alkynylthio, C_3 - C_6 alkylthio, C_3 - C_6 alkylthio, C_4 - C_6 alkylthio, C_5 - C_6 alkylthio, C_7 - C_6 alkyl, C_7 - C_6 alky

and the aryl, heterocyclyl and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected

Appl No. 10/560,292 Amdt. Dated June 1, 2007 Reply to the Office action of March 1, 2007

from the group consisting of halogen, CN, NO₂, OH, SH, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆alkenyl, C₃-C₆cycloalkyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkoxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₆haloalkynyloxy, C₃-C₆haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆alkylcarbonyl-C₁-C₆alkylcarbonyl-C₁-C₆alkylcarbonyl-C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynylthio, C₃-C₆cycloalkyl-C₁-C₆alkylthio, C₃-C₆haloalkynyl, C₂-C₆haloalkenylthio, C₁-C₆alkylthio, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₂-C₆alkenyloxy-C₁-C₆alkyl, C₂-C₆alkyl, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl), V(C₁-C₆alkyl), N(C₁-C₆alkyl), N(C₁-C₆alkyl), NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl), N(C₁-C

 R_7 is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkylcarbonyl or formyl;

R₈ is H, C₁-C₁₂alkyl substituted by from one to five identical or different substituents selected from halogen, -N₃, CN, NO₂, OH, C₁-C₆alkoxy, C₁-C₆alkylthio, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another and C₁-C₆alkylcarbonylamino; C₃-C₈cycloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, aryl, heterocyclyl or benzyl, wherein the aryl, heterocyclyl and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five substituents selected from the group consisting of halogen, CN, NO₂, OH, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆alkenyl, C₃-C₆alkynyl, C₃-C₈cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C₁-C₆alkylcarbonyl, C₁-C₆haloalkylcarbonyl, C₁-C₆alkylthio, C₁-C₆alkylthio, C₂-C₆alkenylthio, C₃-C₆alkynylthio, C₁-C₆alkylthio, C

R₉ is H, C₁-C₁₂alkyl unsubstituted or substituted by from one to five identical or different substituents selected from halogen, CN, NO₂, OH, C₁-C₆alkoxy, C₁-C₆alkylthio, NH₂, NH(C₁-C₆alkyl), N(C₁-C₆alkyl)₂ wherein the two alkyl groups are independent of one another and C₁-C₆alkylcarbonylamino; C₃-C₈cycloalkyl, C₁-C₆alkylcarbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, aryl, heterocyclyl or benzyl, wherein the aryl, heterocyclyl and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five substituents selected from the group consisting of halogen, CN, NO₂, OH,

 $C_1-C_6\text{haloalkyl},\ C_2-C_6\text{alkenyl},\ C_2-C_6\text{haloalkenyl},\ C_3-C_6\text{alkynyl},\ C_3-C_8\text{cycloalkyl},\ C_1-C_6\text{alkoxy},\ C_1-C_6\text{haloalkenyloxy},\ C_2-C_6\text{haloalkenyloxy},\ C_3-C_6\text{alkynyloxy},\ C_3-C_6\text{haloalkynyloxy},\ C_1-C_6\text{alkylcarbonyl},\ C_1-C_6\text{alkylcarbonyl},\ C_1-C_6\text{alkylthio},\ C_2-C_6\text{alkenylthio},\ C_3-C_6\text{alkynylthio},\ C_1-C_6\text{alkylthio},\ C_3-C_6\text{haloalkynyl},\ C_1-C_6\text{haloalkylthio},\ C_1-C_6\text{alkyl},\ NH_2,\ NH(C_1-C_6\text{alkyl}),\ N(C_1-C_6\text{alkyl})_2\text{ wherein the two alkyl groups are independent of one another,}\ C_1-C_6\text{alkylcarbonylamino},\ C_1-C_6\text{alkylcarbonylamino}$

 R_{10} is H, C_1 - C_{12} alkyl unsubstituted or substituted by from one to five identical or different substituents selected from halogen, CN, NO₂, OH, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, NH₂, NH(C_1 - C_6 alkyl), N(C_1 - C_6 alkyl)₂ and C_1 - C_6 alkylcarbonylamino; C_3 - C_8 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, aryl, heterocyclyl or benzyl, wherein the aryl, heterocyclyl and benzyl radicals are unsubstituted or, depending upon the possibilities of substitution, substituted by from one to five identical or different substituents selected from the group consisting of halogen, CN, NO₂, OH, SH, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkyl, NH₂, NH(C_1 - C_6 alkyl), N(C_1 - C_6 alkyl)₂ wherein the two alkyl groups are independent of one another, C_1 - C_6 alkylcarbonylamino, C_1 - C_6 alkylcarbonylamino, C_1 - C_6 alkylaminocarbonylamino;

 R_{11} and R_{12} are each independently of the other H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkyl-carbonyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl or C_3 - C_8 cycloalkylcarbonyl;

```
R_{13} is H, C_1\text{-}C_6 alkyl, C_2\text{-}C_6 alkenyl, C_3\text{-}C_6 alkynyl or C_1\text{-}C_6 haloalkyl; R_{14} is H, C_1\text{-}C_6 alkyl, C_2\text{-}C_6 alkenyl, C_3\text{-}C_6 alkynyl or C_1\text{-}C_6 haloalkyl; R_{15} is H, C_1\text{-}C_6 alkyl, C_2\text{-}C_6 alkenyl, C_3\text{-}C_6 alkynyl or C_1\text{-}C_6 haloalkyl; k is 0, 1, 2, 3 or 4; m is 1 or 2; and q is 0, 1 or 2;
```

or, where applicable, a possible E/Z isomer, E/Z isomeric mixture and/or tautomer thereof, in each case in free form or in salt form.

2. (Currently amended) The A compound according to claim 1 wherein M is NOR6.

Appl No. 10/560,292 Amdt. Dated June 1, 2007

Reply to the Office action of March 1, 2007

- 3. (Currently amended) The A compound according to claim 1 wherein M is O.
- 4. (Currently amended) The A compound according to claim 1 in free form.
- 5. (Previously presented) A compound according to claim 1 wherein X₁ and X₂ are chlorine or bromine.
- 6. (Previously presented) A compound according to claim 1 wherein D is CH.
- (Previously presented) A compound according to claim 1 wherein A₃ is straight-chain alkylene bridge.
- 8. (Canceled)
- 9. (Canceled)
- 10. (Previously presented) A pesticidal composition which comprises as active ingredient at least one compound defined in claim 1, in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- 11. (Original) A method of controlling pests which comprises applying a pesticidal composition as defined in claim 10 to the pests or to the locus thereof.