```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
# Load winequality dataset
df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv", delimiter=";")
# Split data into training and testing sets
X = df.drop(columns=['quality'])
y = df['quality']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train linear SVM model
linear_svm = SVC(kernel='linear')
linear_svm.fit(X_train, y_train)
                             SVC
           SVC(kernel='linear')
# Print classification report
y_pred = linear_svm.predict(X_test)
print("Linear SVM")
print(classification_report(y_test, y_pred))
          Linear SVM
                                      precision
                                                                recall f1-score
                                                                                                       support
                                3
                                                0.00
                                                                     0.00
                                                                                         0.00
                                                                                                                    1
                                                                                                                  10
                                4
                                                0.00
                                                                     0.00
                                                                                         0.00
                                5
                                                0.61
                                                                     0.78
                                                                                         0.68
                                                                                                                130
                                6
                                                0.52
                                                                     0.61
                                                                                         0.56
                                                                                                                132
                                7
                                                0.00
                                                                     0.00
                                                                                         0.00
                                                                                                                  42
                                8
                                                0.00
                                                                     0.00
                                                                                         0.00
                                                                                                                   5
                                                                                         0.57
                                                                                                                320
                  accuracy
                macro avg
                                                0.19
                                                                     0.23
                                                                                         0.21
                                                                                                                320
         weighted avg
                                                0.46
                                                                     0.57
                                                                                         0.51
                                                                                                                320
          /usr/local/lib/python 3.10/dist-packages/sklearn/metrics/\_classification.py: 1344: \ Undefined Metric Warning: \ Precision \ and \ F-score \ are \ ill-constraints and \ F-score \ ill-constraints and \ F-sco
              _warn_prf(average, modifier, msg_start, len(result))
          /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c
              _warn_prf(average, modifier, msg_start, len(result))
          /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c
              _warn_prf(average, modifier, msg_start, len(result))
# Plot confusion matrix
cm = confusion_matrix(y_test, y_pred)
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(cm, annot=True, fmt='d', cmap=plt.cm.Blues, cbar=False)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion matrix - Linear SVM')
plt.show()
```

Confusion matrix - Linear SVM

Plot histogram of predicted class probabilities
proba = linear_svm.decision_function(X_test)
plt.hist(proba, bins=50)
plt.xlabel('Predicted Decision Function Value')
plt.ylabel('Count')
plt.title('Histogram of Predicted Decision Function Values - Linear SVM')
plt.show()


```
# Print classification report
y_pred = nonlinear_svm.predict(X_test)
print("Non-Linear SVM")
print(classification_report(y_test, y_pred))
```

Non-Linear	SVI	М			
		precision	recall	f1-score	support
	3	0.00	0.00	0.00	1
	4	0.25	0.10	0.14	10
	5	0.58	0.65	0.61	130
	6	0.53	0.55	0.54	132
	7	0.50	0.31	0.38	42
	8	0.00	0.00	0.00	5
accura	су			0.54	320
macro a	vg	0.31	0.27	0.28	320
weighted a	vg	0.52	0.54	0.53	320
macro a	vg			0.28	320

```
# Plot confusion matrix
cm = confusion_matrix(y_test, y_pred)
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(cm, annot=True, fmt='d', cmap=plt.cm.Blues, cbar=False)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion matrix - Non-Linear SVM')
plt.show()
```

Confusion matrix - Non-Linear SVM

[#] Plot histogram of predicted class probabilities
proba = nonlinear_svm.decision_function(X_test)

```
plt.hist(proba, bins=50)
plt.xlabel('Predicted Decision Function Value')
plt.ylabel('Count')
plt.title('Histogram of Predicted Decision Function Values - Non-Linear SVM')
plt.show()
```


Colah naid products - Cancal contracts hara