USTHB,
Faculté d'Informatique
Département d'Intelligence Artificielle
Et des Sciences de données
M2, Master SII
Module: Data mining

Le 24 Octobre 2022

TD 3

Exercice 1

Considérer un ensemble de 5 documents $D = \{d1, d2, ..., d5\}$ et un ensemble de 11 termes $T = \{t1, t2, ..., t11\}$, un document étant un ensemble de termes. La table suivante montre le contenu des documents de D:

document	termes
d1	{t1, t2, t3, t4, t5, t6}
d2	{t2, t3, t4, t5, t6, t7}
d3	{t1, t4, t5, t8}
d4	{t1, t4, t6, t9, t10}
d5	{t2, t4, t5, t10, t11}

Pour extraire les ensembles de termes fréquents avec un support minimal de 60% :

- 1) Appliquer l'algorithme Apriori sur D
- 2) Appliquer l'algorithme FP-Growth sur D
- 3) Appliquer l'Algorithme ECLAT sur D
- 4) Que peut-on en conclure ?

Exercice 2

Considérer la base suivante de cinq transactions. Supposer que *minsup* = 60% et *minconf* = 80%.

TID	Articles achetés
T100	$\{M, O, N, K, E, Y\}$
T200	{D, O, N, K, E, Y}
T300	$\{M, A, K, E\}$
T400	$\{M, U, C, K, Y\}$
T500	{C, O, O, K, I,E}

- 1) Ecrire l'algorithme FP-Growth étudié en cours. Quelle est sa complexité ?
- 2) Déterminer tous les itemsets fréquents en appliquant FP-Growth
- 3) Ecrire l'algorithme ECLAT étudié en cours. Quelle est sa complexité ?
- 4) Appliquer l'algorithme ECLAT sur la table des transactions ci-dessus.
- 5) Comparer l'efficacité des deux méthodes.

Exercice 3

Considérer un magasin avec trois points de vente géographiquement distribués sur Alger, Constantine et Oran. Chaque site a sa propre base de données, la base de données globale étant distribuée. Une transaction a le format T_j : $\{i_1, \ldots, i_m\}$ où T_j est l'identifiant d'une transaction, et i_k (1 <= k <= m) est l'identifiant d'un article acheté dans la transaction. Supposer que chaque site a la capacité d'extraire les motifs fréquents des transactions qui s'effectuent à son niveau et les envoie périodiquement à une machine centrale pour la gestion globale du magasin.

- 1) Proposer un algorithme efficace pour extraire les motifs fréquents globaux.
- 2) Proposer un algorithme efficace pour extraire les motifs fréquents spécifiques à chaque région.

Exercice 4

Considérer la base de connaissances 'vehicle' suivante :

R1: if vehicleType = cycle and num_wheels = 2 and motor = no then vehicle = Bicycle

R2: if vehicleType = cycle and num_wheels = 3 and motor=no then vehicle = Tricycle

R3: if vehicleType = cycle and num_wheels = 2 and motor = yes then vehicle = Motorcycle

R4: if vehicleType = automobile and num_wheels = 2 and size = small then vehicle = SportsCar

R5: if vehicleType = automobile and num_doors = 4 and size = medium then vehicle = Sedan

R6: if vehicleType = automobile and num_doors = 3 and size = medium then vehicle = MiniVan

R7: if vehicleType = automobile and num_doors = 4 and size = large then vehicle = Sports_Utility_Vehicle

R8: if num_wheels = 4 then vehicleType = cycle

R9: if num_wheels = 4 and motor = yes then vehicleType = automobile

- 1) Citer 3 algorithmes de détermination des motifs fréquents en évoquant leur principe et commentant leurs avantages et inconvénients.
- 2) Transformer la base de connaissances en une table d'entités lexicales. La première colonne indiquera le nom de la règle et la deuxième l'ensemble des entités lexicales appartenant à la règle. Ne pas considérer les mots en gras et le symbole '=' comme entités lexicales.
- 3) Donner la représentation verticale de cette table en inversant ses colonnes.
- 4) Rappeler l'algorithme Apriori et décrire chaque composant dans le détail.
- 5) Enumérer les motifs fréquents en appliquant l'algorithme Apriori avec un support minimal égal à 4. Des deux tables obtenues en 4) et en 5), quelle est celle qui convient le plus pour l'algorithme ? Pourquoi ?
- 6) Lister toutes les règles d'association (avec un support minimal égal à 44% (4/9) et une confiance minimale égale à 80%) correspondant à la métarègle suivante :

```
\forall X = Ri (i = 1..9), mention (X, item1) ^ mention (X, item2) \Longrightarrow mention (X, item3) et interprétée comme suit:
```

Si item1 est mentionné dans X et si item2 est mentionné dans X alors item3 est mentionné dans X.

Exercice 5

Considérer le dataset suivant contenant 10 instances et 5 attributs nommés A, B, C, D et E. On s'intéresse à extraire des motifs fréquents pour déduire des règles d'association. Les instances font office de transactions et les valeurs des attributs d'items.

	A	В	C	D	Е
I 1	1	4	13	2	3
I2	1	2	12	0	7
I3	1	3	13	2	6
I 4	1	4	11	2	7
I5	1	4	14	2	7
I 6	0	4	15	2	7
I7	1	1	13	0	3
I8	1	4	14	0	7
I 9	1	4	14	2	7
I10	1	4	12	2	7

- 1) Décrire avec clarté l'algorithme Apriori mais adapté à un dataset de format ci-dessus en précisant les points suivants :
 - a. Les structures de données utilisées
 - b. Les entrées- sorties de l'algorithme
 - c. Les techniques algorithmiques
- 2) En déduire la complexité de l'algorithme.
- 3) Appliquer l'algorithme Apriori sur le dataset avec un support minimal de 40%.

Exercice 6

La base de données suivante a quatre transactions. Supposer que minsup = 60% et minconf = 80%.

client ID	TID	Articles vendus (de la forme marque-article-catégorie)
01	T100	{Pêcherie-Poisson, Hodna-lait, Soumam-fromage, Meilleur-Pain}
02	T200	{Meilleur-fromage, ONA-lait, Ferme-pomme, Cherchell-biscuit, Bon-pain}
01	T300	{Ouest-pomme, ONA-lait, Bon-pain, Cherchell-biscuit}
03	T400	{Bon-pain, Hodna-lait, ONA-fromage}

- 1) En considérant la granularité de la catégorie de l'article où un exemple d'item peut être lait, pour la règle suivante :
 - $\forall X \in transaction, achète(X, item1) \land achète(X, item2)) \Longrightarrow achète(X, item3) [s, c]$ Enumérer les k-itemset fréquents pour la plus grande valeur de k, et toutes les règles d'association (avec leur support s et confiance c) contenant le k-itemset fréquent pour le plus grand k.
- 2) En considérant la granularité de la catégorie de la marque de l'article où un exemple d'item peut être Hodna-lait, pour la règle suivante :
 - $\forall X \in \text{client}, achète(X, item1) \land achète(X, item2)) \implies achète(X, item3) [s, c]$

Enumérer les k-itemset fréquents pour la plus grande valeur de k.