WINTER-2015

UNIT 1

Q.1 a) Solve:
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x} \cdot \sin 2x$$
. (6)

b) Solve:
$$(3x+2)\frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} - 3y = x^2 + x + 1.$$
 (7)

Q.2 a) Solve by using variation of parameter:

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = \frac{x^{3}}{1 + x^{2}}$$
 (6)

b) Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + y = \frac{\sin(\log x)}{x}$$
 (7)

UNIT 2

Q.3 a) Find Laplace transform of
$$t^{-3t}$$
.cos 2t (4)

b) Find
$$L^{-1} \left\{ \frac{e^{-2s}}{s^2 + 8s + 25} \right\}$$
 (5)

c) Solve differential equation by Laplace transform method:

$$x''(t) + x'(t) - 2x = 2(1 + t + t^2)$$
 with
 $x = 0, x' = 0$ at $t = 0$. (5)

Q.4 a) Evaluate
$$\int_{0}^{\infty} e^{-t} \frac{\sin^2 t}{t} dt$$
 (4)

b) Use convolution theorem to evaluate:

$$L^{-1} \left\{ \frac{1}{(s+1)(s+9)^2} \right\}$$
 (5)

c) Solve the differential equations by Laplace transform.

$$\frac{dx}{dt} - \frac{dy}{dt} + 29 = \cos 2t, \quad \frac{dx}{dt} + \frac{dy}{dt} - 2x = \sin 2t$$
Subject to $x(0) = 0$, $y(0) = -1$. (5)

Q.5 a) Solve the following difference equations:

i.
$$y_{n+2} - 4y_n = n^2 + n - 1$$
,

ii.
$$y_{n+2} - 2 \cos \alpha . y_{n+1} + y_n = \cos n\alpha$$
. (7)

b) Find inverse z-transform of:

$$\frac{10z}{z^2 - 3z + 2}; |z| > 2$$
 (4)

Q.6 a) Solve the difference equations:

i.
$$y_{n+2} - 5y_{n+1} + 6y_n = 2n^2 + 3$$

a) Solve the difference equations:
i.
$$y_{n+2} - 5y_{n+1} + 6y_n = 2n^2 + 3$$

ii. $y_{n+3} - 3y_{n+2} + 3y_{n+1} - y_n = 1$
solve by z-transform:
 $y_{k+2} - 2y_{k+1} + y_k = 2^k$ with $y_0 = 2$, $y_1 = 1$
UNIT 4
a) Express:
 $f(x) = 1$, $|x| < 1$

b) Solve by z-transform:

$$y_{k+2} - 2y_{k+1} + y_k = 2^k \text{ with } y_0 = 2, y_1 = 1$$
 (4)

Q.7 a) Express:

$$f(x) = 1, |x| < 1$$

= 0, |x| > 1

as a Fourier integral and hence evaluate:

$$\int_{0}^{\infty} \frac{\sin \lambda . \cos \lambda x}{\lambda} d\lambda \tag{6}$$

b) Solve:

i.
$$x^2(y-z) p + y^2(z-x) q = z^2(x-y)$$

ii.
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{3a^2}{z^2}$$
 (4)

Q.8 a) Solve the integral equation:

$$\int_{0}^{\infty} f(t)\cos \lambda t.dt = 1, \quad 0 \le \lambda < 1$$

$$= 2, \quad 1 \le \lambda < 2$$

$$= 0, \quad \lambda > 2$$
(6)

b) Solve:

i.
$$p^2 + q^2 = z^2(x + y)$$
, **ii.** $yp = 2yx + \log q$. (4)

UNIT 5

Q.9 a) If $u = log_e(x^2 + y^2)$, find analytic function f(z) = u + iv.

(4)

b) Find k such that,

$$f(z) = r^2 \cos 2\theta + ir^2 \sin k\theta$$
 is analytic. (4)

c) Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in Laurent's series for:

i.
$$1 < |z| < 2$$
, ii. $|z - 1| > 2$, iii. $0 < |z - 2| < 1$. (5)

Q.10 a) If f(z) is analytic function with constant amplitude, show that f(z) is constant. (6)

b) Find the bilinear transformation which maps the points z = 1, i, -1 onto points w = 0, 1, ∞ . (7)

UNIT 6

Q.11 a) Find the directional derivative of $\phi = 4 \ e^{2x-y+z}$ at point (1, 1, -1) in the direction towards the point (-3, 5, 6).

(6)

b) Prove that
$$\nabla^2 \left(\nabla \cdot \left(\frac{r}{r^2} \right) \right) = \frac{2}{r^4}$$
 (3)

c) If \overline{F}_1 and \overline{F}_2 are irrotational; show that $\overline{F}_1 \times \overline{F}_2$ is solenoidal. (4)

Q.12 a) Find the angle between the surfaces

$$x^2 + y^2 + z^2 = 9$$
 and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$. (6)

b) Evaluate $\iint_{S} (\nabla \times \overline{F}) d\overline{s}$ for $\overline{F} = (x^2 - y^3) \hat{i} - xyz\hat{j} + y^3\hat{k}$ over

the surface
$$x^2 + 4y^2 + z^2 - 2z = 4$$
, $z \ge 0$. (7)