《概率论与数理统计》期末测验试题

专业、班级:	姓名:	学号:	

题 号	_	=	三	四	五	六	七	八	九	+	+-	+=	总成绩
得 分													

单项选择题(每题3分共18分)

(1)

若事件 $A \setminus B$ 适合 P(AB) = 0,则以下说法正确的是().

- (A) A与B互斥(互不相容);
- (B) P(A) = 0 或 P(B) = 0;
- (C) A 与 B 同时出现是不可能事件;
- (D) P(A) > 0, $\mathbb{M} P(B|A) = 0$.
- (2) 设随机变量 X 其概率分布为

则 $P{X \le 1.5} =$ ()。

- (A) 0. 6 (B) 1 (C) 0 (D) $\frac{1}{2}$

(3)

设事件 A_1 与 A_2 同时发生必导致事件A发生,则下列结论正确的是()

- (A) $P(A) = P(A_1 A_2)$ (B) $P(A) \ge P(A_1) + P(A_2) 1$
- (C) $P(A) = P(A_1 \cup A_2)$ (D) $P(A) \le P(A_1) + P(A_2) 1$

(4)

设随机变量 $X \sim N(-3, 1)$, $Y \sim N(2, 1)$, 且 X 与 Y 相互独 立, 令 Z = X - 2Y + 7, 则 $Z \sim ($).

- (A) N(0, 5); (B) N(0, 3); (C) N(0, 46); (D) N(0, 54).

(5) 设 $X_{1,}X_{2},\cdots,X_{n}$ 为正态总体 $N(\mu,\sigma^{2})$)的一个简单随机样本,其中 $\sigma=2,\mu$
未知,则()是一个统计量。	
$(A) \sum_{i=1}^{n} X_i^2 + \sigma^2$	(B) $\sum_{i=1}^{n} (X_i - \mu)^2$
(C) $\overline{X} - \mu$	(D) $\frac{\overline{X} - \mu}{\sigma}$
(6) 设样本 X_1, X_2, \dots, X_n 来自总体 $X \sim X_n$	$N(\mu,\sigma^2),\sigma^2$ 未知。统计假设
为 H_0 : $\mu = \mu_0(\mu_0$ 已知) H_1 : $\mu \neq \mu$	u ₀ 。 则所用统计量为 ()
$(A)U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	(B) $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$
(C) $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	(D) $\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$
二、 填空题 (1) 如果 $P(A) > 0$, $P(B) > 0$, $P(A B) = P(A B)$	$A), \ \mathbb{M} P(B A) = $
(2) 设随机变量 X 的分布函数为	
$F(x) = \begin{cases} 0, \\ 1 - (1 + x) \end{cases}$	$x \le 0,$ $x \ge 0.$
则 X 的密度函数 $f(x) =$	P(X > 2) =
(3)	
设 $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$ 是总体分布中参数 θ 的 当 $a = $ 时, $\hat{\theta}$ 也 θ 是的无	
	$N(0,1)$, $X_1, X_2, \cdots X_9$ 是来自总体 X 的
	样本,则统计量 $U = \frac{X_1 + \dots + X_9}{\sqrt{Y_1^2 + \dots + Y_9^2}}$
服从分布(要求给出自日	由度)。

(5)设随机过程 $X(t) = e^{-At}$,随机变量, $X(t)$ 的均值函数是		

三、(6分) 设 A, B相互独立、P(A) = 0.7、 $P(A \cup B) = 0.88$ 、求P(A - B).

四、(6分)某宾馆大楼有4部电梯,通过调查,知道在某时刻T,各电梯在运行的概率均为0.7,求在此时刻至少有1台电梯在运行的概率。

五、(6 分) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, &$ 其它 , 求随机变量 Y=2X+1 的概率密度。

六、 $(8 \, \text{分})$ 已知随机变量 $X \, \text{和} Y$ 的概率分布为

$$\begin{array}{c|cc}
Y & 0 & 1 \\
\hline
P & \frac{1}{2} & \frac{1}{2} \\
\end{array}$$

而且 $P{XY = 0} = 1$.

- (1) 求随机变量 X 和 Y 的联合分布;
- (2) 判断 X 与 Y 是否相互独立?

七、(8分)设二维随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 12e^{-(3x+4y)}, & x > 0, y > 0, \\ 0, &$$
其他.

求: (1) $P(0 \le X \le 1, 0 \le Y \le 2)$; (2) 求 X 的边缘密度。

九、(8分)设随机变量 X 与 Y 的数学期望分别为 -2 和 2,方差分别为 1 和 4,而相关系数为 -0.5,求 E(2X-Y), D(2X-Y)。

十、(7分)设供电站供应某地区 1000户居民用电,各户用电情况相互独立。已知每户每日用电量(单位:度)服从[0,20]上的均匀分布,利用中心极限定理求这 1000户居民每日用电量超过 10100度的概率。(所求概率用标准正态分布函数 $\Phi(x)$ 的值表示).

十一、(7分)设 x_1, x_2, \dots, x_n 是取自总体X的一组样本值,X的密度函数为

$$f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1, \\ 0, & 其他, \end{cases}$$

其中 $\theta > 0$ 未知,求 θ 的最大似然估计。

