Tufts University Department of Mathematics Groupwork #7: Due on $11/3^1$

Fall, 2023

${\bf Problem}$

Let
$$f_n(x) = ae^{-nax} - be^{-bnx}$$
 for $x > 0$ and $0 < a < b$.

- (a) Prove that $\sum_{n=1}^{\infty} \int_{0}^{\infty} |f_n(x)| dx = \infty$.
- (b) Prove that $\sum_{n=1}^{\infty} \int_{0}^{\infty} f_n(x) dx = 0$.
- (c) Prove that $\sum_{n=1}^{\infty} f_n(x) \in L^1([0,\infty))$, and $\int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) dx = \ln(b/a)$.

¹©Kasso Okoudjou and Tufts University