

МГУ имени М.В. Ломоносова

Пятая международная универсиада по эконометрике Задания индивидуального тура

Задание № 1 (30 баллов)

Имеется временной ряд: $y_t = \theta * t + \varepsilon_t + \varepsilon_0$, t = 1, 2, ..., T. Здесь $E(\varepsilon_t) = 0$, $E(\varepsilon_t^2) = \sigma^2$, $E(\varepsilon_t \varepsilon_j) = 0$ при $t \neq j$; t, j = 0, 1, 2, ..., T.

- Вычислите дисперсию МНК-оценки параметра θ.
 Будет ли эта оценка состоятельной?
 Будет ли она эффективной?
- (2) Предложите метод для получения эффективной оценки $\hat{\theta}$.
- (3) Пусть T=4 и известно, что $y_1=-1$, $y_2=4$, $y_3=6$, $y_4=8$. Вычислите эффективную оценку $\hat{\theta}$.

Задание № 2 (30 баллов)

Рассматривается модель:

$$y_i = \theta_0 + \theta_1 x_i + \theta_2 w_i + \theta_3 x_i w_i + \varepsilon_i$$

Здесь $E(\varepsilon_i) = 0$, $E(\varepsilon_i^2) = \sigma^2$, i = 1, 2, ..., n; $E(\varepsilon_i \varepsilon_j) = 0$ при $i \neq j$, $x_i u w_i$ – бинарные переменные.

Выборка сконструирована так, что она состоит из четырех групп наблюдений равного объема m (общее число наблюдений n=4m). Причем для первой группы $x_i=w_i=0$, для второй группы $x_i=0$, $w_i=1$, для третьей группы $x_i=1$, $w_i=0$ и для четвертой группы $x_i=w_i=1$.

Пусть известно, что выборочные средние значения зависимой переменной для первой, второй, третьей и четвертой групп, соответственно, составляют \bar{y}_{00} , \bar{y}_{01} , \bar{y}_{10} и \bar{y}_{11} , а посчитанные по выборке дисперсии зависимой переменной для этих групп равны d_{00} , d_{01} , d_{10} и d_{11} .

- (1) Найдите МНК-оценку $\hat{\theta}_3$.
- (2) Найдите дисперсию МНК-оценки $\hat{\theta}_3$.
- (3) Найдите отношение дисперсий МНК-оценок параметров $\hat{\theta}_3$ и $\hat{\theta}_0$.

Задание №3 (30 баллов)

Представим, что в некоторой стране уровень зарплаты работников данной специальности описывается точным соотношением:

$$Y_i = \theta_0 + \theta_1 X_i + \theta_2 Q_i$$

 Y_i — зарплата і-го работника

 X_i — бинарная переменная, которая равна 1, если і-ый работник получил высшее образование.

 Q_i — уровень гениальности і-го работника (**ненаблюдаемая** переменная)

В вашем распоряжении имеются представленные в таблице данные о 1000 работников данной специальности:

	В родном городе есть университет	В родном городе нет университета
Получил высшее образование	400 человек Средняя зарплата \$5000	100 человек Средняя зарплата \$6000
Не получал высшее образование	100 человек	400 человек
ооразование	Средняя зарплата \$3000	Средняя зарплата \$4000

- (1) Предложите способ состоятельно оценить параметр θ_1 и вычислите его оценку, используя данные, которые есть в вашем распоряжении. Подробно аргументируйте выбор метода оценивания.
- (2) Если доступных данных достаточно для того, чтобы осуществить какой-либо тест, характеризующий релевантность данных для применения предложенного вами подхода, то осуществите его.

Задание № 4 (30 баллов)

Ниже представлены результаты МНК-оценивания двух регрессий, часть из которых не сохранилась. Утерянные оценки коэффициентов регрессий заменены символами.

Модель 1
$$\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$$
 (2)
$$\hat{y}_i = \hat{\alpha}_1 + \hat{\alpha}_2 x_i + 10 w_i$$
 $R^2 = 0.8$ (2)

Оценивание проводилось по 103 наблюдениям. В скобках под оценками коэффициентов указаны их стандартные ошибки.

Восстановите значение оценки коэффициента $\hat{\beta}_2$ первой регрессии?

Задание №5 (40 баллов)

Производственная функция монополиста имеет следующий вид: $Q_t = w_t K_t^{\beta K} L_t^{\beta L}$, где Q_t объем выпуска монополиста в период времени t, K_t - объем используемого объема капитала, L_t - объем используемого труда.

Функция спроса на продукцию фирмы: $Q_t = A_t p_t^{-\xi}$, где p_t – цена на продукцию монополиста, а ξ – коэффициент, ξ > 1. Предложение всех факторов производства совершенно эластично. Цены на ресурсы p_K и p_L не меняются в времени. В распоряжении исследователей имеются следующие временные ряды (p_t, Q_t, K_t, L_t) , t = 1, ..., T. Товар монополиста не является товаром длительного пользования. Задача исследования – оценить эластичность выпуска по труду β_L .

Переменная A_t , определяющая объем спроса на рынке, является логорифмически нормальным «белым шумом»: $\ln(A_t) \sim i.i.d.N(0; \sigma_A^2)$

Переменная w_t , определяющая производительность фирмы, описывается авторегрессионным процессом первого порядка вида: $\ln(w_t) = \rho \ln(w_{t-1}) + \varepsilon$, где $\rho < 1$ начальное значение $\ln w_0 \sim N(0, \sigma_w^2)$, а случайная величина $\varepsilon_t \sim i.i.d.N(0, \sigma_\varepsilon^2)$

Монополист максимизирует прибыль в каждом периоде

Представители научной школы «МНК – наш» утверждают, что для решения поставленной задачи достаточно применить метод наименьших квадратов к следующей модели:

$$\ln Q_t = const + \beta_K \ln K_t + \beta_L \ln L_t$$

Полученный коэффициент \hat{eta}_L , по их мнению, будет состоятельной оценкой эластичности выпуска по труду.

Представители конкурирующей научной школы «Все под контроль» утверждают, что предложенная оппонентами оценка страдает от эндогенности, так как спрос на труд и объем выпуска одновременно зависят от ненаблюдаемой реализации случайной величины w_t

Они также утверждают, что включение дополнительной переменной $\ln p_t$ в качестве контрольной устранит эту проблему. Их предложение — оценить методом наименьших квадратов следующую модель:

$$\ln Q_t = const + \beta_K \ln K_t + \beta_L \ln L_t + \beta_p \ln p_t$$

Уважаемые участники универсиады, помогите решить данный спор. Какой из предложенных подходов позволит решить поставленную задачу?

Задание №6 (40 баллов)

Пусть Y и D — две случайные переменные, причем D принимает значение из дискретного множества $\{0,1,\ldots,K\}$, где $K\leq\infty$. Нас интересует функция условного математического ожидания f(x)=E[Y|D=x]. Чтобы оценить эту функцию, мы делаем предположение о ее линейности:

$$f(x) = \alpha + \beta x$$

и оцениваем параметры α и β с помощью МНК.

1. Выразите параметр β в виде функции от некоторых моментов совместного распределения случайных величин (Y, D).

Обозначая полученное выражение через β_{OLS} , покажите, что оно может быть представлено в терминах совместного распределения величин (E[Y|D], D) в виде

$$\beta_{OLS} = \frac{E[E[Y|D](D - E[D])]}{E[(D - E[D])^2]}$$

2. Пусть $\mu_j = E[Y|D=j] - E[Y|D=j-1]$, $j \in \{1,...,K\}$. Покажите, что β_{OLS} можно представить в виде $\beta_{OLS} = \sum_{j=1}^K \lambda_j \; \mu_j$, где $\lambda_j \geq 0$ и $\sum_{j=1}^K \lambda_j = 1$. Что Вы можете сказать о распределении значений весовых коэффициентов λ_j ?

Указание: воспользуйтесь формулами

$$E[g(D)] = \sum_{k} g(k) P(D = k) , \qquad f(k) = f(0) + \sum_{j=1}^{k} (f(j) - f(j-1))$$

- 3. Дайте интерпретацию результатов, полученных в пункте 2 (в том числе, в случае монотонно возрастающей функции f(x)).
- 4. Рассмотрим следующую ситуацию: Вы оценили модель $ln\ Y = \alpha + \beta\ D + \varepsilon$, где Y стартовая зарплата работника (назначенная после окончания учебы), D количество лет обучения. Вы представляете результаты на конференции, и один из коллег высказывает следующее замечание: «Очевидно, что связь между логарифмом заработной платы и числом лет обучения нелинейная. Поэтому Ваши результаты не имеют особого смысла». Что Вы ему ответите?
- 5. В каких из вышеперечисленных пунктов (1-4) нет необходимости предполагать, что «истинная» функция f(x) является линейной (это предположение мы сделали только для того, чтобы оценить f(x))?