

CHEMISTRY Chapter 5

Propiedades Periódicas

MOTIVATING STRATEGY

¿Qué son las Propiedades Periódicas?

Son aquellas propiedades que tienen una variación regular ya sea en un grupo o en el periodo de la tabla periódica.

RADIO ATÓMICO (R.A.)

R.A. = d/2

AUMENTA RADIO ATÓMICO

-Z +Z

RADIO IÓNICO (R.I.)

ENERGÍA DE IONIZACIÓN (E.I.)

Es la energía mínima necesaria para arrancar le⁻ de un átomo al estado gaseoso.

AFINIDAD ELECTRÓNICA (A.E.)

También se denomina electroafinidad, es la energía liberada (generalmente) o absorbida cuando un átomo gana le- en su último nivel y al estado gaseoso.

ELECTRONEGATIVIDAD (E.N.)

Es la fuerza relativa de un átomo para atraer electrones en un enlace químico.

La escala de electronegatividad más empleada es la de Linus Pauling.

CARÁCTER METÁLICO (C.M.)

CARÁCTER NO METÁLICO (C.NM.)

LAS PROPIEDADES PERIÓDICAS VARÍAN DE LA SIGUIENTE MANERA

Ordene en forma creciente el radio atómico de los elementos $_{20}$ Ca, $_{5}$ B y $_{16}$ S.

Realizando la C.E:

C.E. $_{20}$ Ca: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Periodo: 4

Grupo: II A (2)

C.E. ₅B: 1s² 2s²2p¹

Periodo: 2

Grupo: III A (13)

C.E. $_{16}S$: $1s^2 2s^2 2p^6 3s^2 3p^4$

Periodo: 3

Grupo: VI A (16)

Ordene en forma creciente el radio iónico de Cl³+, Cl¹-, Cl⁵+ y Cl .

Para un mismo elemento:

* Los cationes tienen menor radio que su átomo neutro

* Los aniones tienen mayor radio que su átomo neutro

Rpta: $Cl^{5+} < Cl^{3+} < Cl < Cl^{1-}$

Dada la siguiente expresión: Na_(g) + 496 kJ/mol → Na¹⁺_(g) + 1e⁻ ¿qué propiedad periódica está involucrada?

* La energía de ionización siempre es un proceso endotérmico (energía necesaria).

* La energía de ionización siempre produce cationes.

Rpta: Corresponde a la energía de ionización

Determine el elemento más electronegativo del grupo VIA o familia de los anfígenos.

La familia de los anfígenos o calcógenos (grupo 16 o VI A)

Aumenta electronegatividad (E.N.)

Rpta: Oxígeno

¿Qué propiedades periódicas aumentan según los sentidos indicados?

RESOLUCIÒN

Sabemos lo siguiente:

- Energía de Ionización
- > Afinidad Electrónica
- Electronegatividad
- Carácter no metálico

Escriba verdadero (V) o falso (F) según corresponda.

- a. En un periodo, el carácter metálico aumenta hacia la derecha de la tabla periódica
- b. En un grupo, la electronegatividad se incrementa a medida que el número atómico disminuye.
- c. En un periodo, el radio atómico aumenta hacia la izquierda.

Sabemos lo siguiente:

Se tiene el proceso

$$X_{(g)} + 1e^- \rightarrow X_{(g)}^- + Energía$$

La energía es una propiedad periódica denominada

RESOLUCIÒN

Es la energía emitida (generalmente) o absorbida(casos especiales) cuando una especie química gana un electrón en estado gaseoso.

$$Be_{(q)} + 1e^- + 241 \text{ kj/mol} \rightarrow Be_{(q)}^-$$

 $F_{(g)} + 1e^- \rightarrow F_{(g)}^- + 333 \text{ kj/mol}$

$$AE=-333 \text{ kj/mol}$$

$$AE= +241 \text{ kj/mol}$$

Afinidad Electrónica

En la tabla periódica moderna, existen diversas propiedades que tienen una variación regular en los diversos grupos y periodos, a estas propiedades se les conocen como propiedades periódicas. Indique qué propiedad periódica aumenta en el sentido mostrado.

- A)Electronegatividad
- B) Afinidad electrónica
- C)Carácter no metálico
- Radio atómico
- E) Energía de ionización R.A. ,R.I. ,C.M.

E.I., A.E., EN, CNM

Escriba verdadero (V) o falso (F) según corresponda, luego marque la alternativa correcta.

- La afinidad electrónica (AE) permite obtener un anión. (V)
- La electronegatividad (EN) es la energía involucrada cuando un átomo neutro gana un electrón.
- La energía de ionización permite que un átomo neutro gane un electrón. (F)
- A) VVF

B) VVV

OVFF

D) FVF

E) FVV

Ordene en forma creciente el radio iónico de S , S , S 2 S $^{4+}$ $^{6+}$

Para un mismo elemento:

Los aniones tienen mayor radio que su átomo neutro

Los cationes tienen menor radio que su átomo neutro

Rpta: $S^{6+} < S^{4+} < S < S^{2-}$

RESOLUCIÒN

Sabemos lo siguiente: Aumenta en el sentido de las flechas

8

La escala de Pauling es una escala relativa de electronegatividades, creada en función a los valores de energía de ionización y afinidades electrónicas. Señale aquel elemento que presenta el mayor valor electronegatividad en la escala de Pauling (elemento más electronegativo de la tabla periódica).

A) He

B) Na

C) K

E) Ne

RESOLUCIÒN

Tabla periódica de la electronegatividad usando la escala de Pauling

<u>H</u> 2.1																
<u>Li</u> 1.0	<u>Be</u> 1.5											<u>B</u> 2.0	<u>C</u> 2.5	<u>N</u> 3.0	<u>Q</u> 3.5	E 4.0
<u>Na</u> 0.9	Mg 1.2											<u>Al</u> 1.5	<u>Si</u> 1.8	P 2.1	<u>S</u> 2.5	3.0
<u>K</u> 0.8	<u>Ca</u> 1.0	<u>Sc</u> 1.3	<u>Ii</u> 1.5	<u>∨</u> 1.6	<u>Cr</u> 1.6	Mn 1.5	<u>Fe</u> 1.8	<u>Co</u> 1.9	<u>Ni</u> 1.8	<u>Cu</u> 1.9	<u>Zn</u> 1.6	<u>Ga</u> 1.6	<u>Ge</u> 1.8	<u>As</u> 2.0	<u>Se</u> 2.4	<u>Br</u> 2.8
Rb 0.8	<u>Sr</u> 1.0	<u>Y</u> 1.2	<u>Zr</u> 1.4	Nb 1.6	Mo 1.8	<u>Tc</u> 1.9	<u>Ru</u> 2.2	Rh 2.2	Pd 2.2	Ag 1.9	<u>Cd</u> 1.7	<u>ln</u> 1.7	<u>Sn</u> 1.8	<u>Sb</u> 1.9	<u>Te</u> 2.1	1 2.5
<u>Cs</u> 0.7	<u>Ba</u> 0.9	Lu	Hf 1.3	<u>Ta</u> 1.5	<u>W</u> 1.7	<u>Re</u> 1.9	Os 2.2	<u>lr</u> 2.2	Pt 2.2	<u>Au</u> 2.4	<u>Hg</u> 1.9	<u>II</u> 1.8	Pb 1.9	<u>Bi</u> 1.9	<u>Po</u> 2.0	<u>At</u> 2.2
<u>Fr</u> 0.7	<u>Ra</u> 0.9															

-Radio atómico

-Carácter metálico

-Radio iónico

Rpta: