

Mécanique générale IE2 – Durée 1h Correction

Le mécanisme plan, schématisé ci-dessous, est un mécanisme d'entrainement d'une griffe de caméra ou de projecteur de cinéma.

Q1 Figures de changement de base et le graphe des liaisons

Q2 Condition de fermeture de chaîne, équations de liaison et mobilité.

<u>Condition de fermeture</u>: la fermeture de chaine en B impose $\overline{B_3B_2} = \vec{0}$

 $\underline{\textit{Equations de liaison}:} \qquad \text{soit:} \qquad \overline{\textit{BA}} + \overline{\textit{AO}_{1}} + \overline{\textit{O}_{1}\textit{O}_{2}} + \overline{\textit{O}_{2}\textit{B}} = -d \ \vec{\textit{x}}_{3} - \ell_{1} \ \vec{\textit{z}}_{1} + X_{0} \ \vec{\textit{x}}_{0} + Z_{0} \ \vec{\textit{z}}_{0} + \ell_{2} \ \vec{\textit{z}}_{2} = \vec{0}$

Soit, par projection dans la base 0 : $\begin{cases} -d\cos\theta_3 - \ell_1\sin\theta_1 + X_0 + \ell_2\sin\theta_2 = 0 \\ d\sin\theta_3 - \ell_1\cos\theta_1 + Z_0 + \ell_2\cos\theta_2 = 0 \end{cases}$

Mobilité: m = p - r = 3 - 2 = 1

Q3 Trajectoire de A/0, vitesse et l'accélération de A/0

<u>Trajectoire de A/0 :</u> Cercle de rayon ℓ_1 et de centre O1

<u>Vitesse de A/0 :</u> Il vient directement (mouvement élémentaire connu) : $V(A/0) = \ell_1 \dot{\theta}_1 \vec{x}_1$

<u>Accélération de A/0</u>: de même : $\vec{A}(A/0) = \ell_1 \vec{\theta}_1 \vec{x}_1 - \ell_1 \dot{\theta}_1^2 \vec{z}_1$

Q4 Nature du mouvement 3/2, torseur distributeur des vitesses en B et vitesse de C/2

<u>Nature du mouvement 3/2 :</u> Le mouvement 3/2 est un mouvement de rotation d'axe (B, \vec{y}) car la liaison 3/2 est une liaison pivot selon cet axe.

Torseur distributeur des vitesses en B : Il vient directement :

 $\{V_{3/2}\} = \begin{cases} \vec{\Omega} (3/2) = (\dot{\theta}_3 - \dot{\theta}_2) \vec{y} \\ \vec{V} (B/2) = \vec{0} \end{cases}$

Vitesse de C/2: par changement de point, il vient directement :

 $\vec{V}(C/2) = \overrightarrow{CB} \wedge \vec{\Omega}(3/2) = (d - \ell_3)(\dot{\theta}_3 - \dot{\theta}_2)\vec{z}_3$

Q5 Vitesse du point C dans R0.

<u>Vitesse de C /0</u>: Par définition : $\vec{V}(C/0) = \frac{dO_1C}{dt} \bigg|_{0} = \frac{d\left(\ell_1 \vec{z}_1 + \ell_3 \vec{x}_3\right)}{dt} \bigg|_{0}$

Soit, en utilisant la formule de la base mobile : $\vec{V}(C/0) = \ell_1 \dot{\theta}_1 \vec{x}_1 - \ell_3 \dot{\theta}_3 \vec{z}_3$

Equations de liaison dans le contexte des petits angles, vitesses angulaires $\dot{\theta}_2$ et $\dot{\theta}_3$, torseur distributeur des vitesses 3/0 en C, nature du mouvement 3/0 et de la trajectoire de C/0.

Equations de liaison dans le contexte des petits angles :

Dans ce contexte les équations de liaison peuvent se mettre sous la forme :

$$\begin{cases} -\ell_1\theta_1 + \ell_2\theta_2 + X_0 - d = 0 \\ d\theta_3 + Z_0 + \ell_2 - \ell_1 = 0 \end{cases} \quad \text{identifiable à la forme} : \quad \begin{cases} a_1\theta_1 + a_2\theta_2 + a_3 = 0 \\ b_3\theta_3 + b_4 = 0 \end{cases}$$

<u>Avec:</u> $a_1 = -\ell_1$ $a_2 = \ell_2$ $a_3 = X_0 - d$ et $b_3 = d$ $b_4 = Z_0 + \ell_2 - \ell_1$

Expressions des vitesses angulaires $\dot{\theta}_2$ et $\dot{\theta}_3$:

Par dérivation des équations précédentes on obtient : $-\ell_1\dot{\theta}_1+\ell_2\dot{\theta}_2=0$ et $\dot{\theta}_3=0$

Soit: $\dot{\theta}_2 = \frac{\ell_1}{\ell_2} \dot{\theta}_1$ et $\dot{\theta}_3 = 0$

Torseur distributeur des vitesses 3/0 en C:

Les expressions précédentes et les résultats de la question Q5, permettent d'écrire :

$$\{V_{3/0}\} = \begin{cases} \vec{\Omega} (3/0) = \dot{\theta}_3 \ \vec{y} = \vec{0} \\ \vec{V} (C/0) = \ell_1 \dot{\theta}_1 \ \vec{x}_1 \end{cases}$$

Nature du mouvement 3/0 :

- \Box le mouvement 3/0 est une rotation d'axe (O_1, \vec{y})
- \Box le mouvement 3/0 est une rotation d'axe (A, \vec{y})
- \square le mouvement 3/0 est une translation selon $\vec{x}_1 \approx \vec{x}_0$
- \Box le mouvement 3/0 est une translation selon $\vec{z}_1 \approx \vec{z}_0$

Nature de la trajectoire de C/0 :

- \Box la trajectoire de C/0 est un cercle de rayon ℓ_1 et de centre O_C tel que $\overrightarrow{O_1O_C} = \overrightarrow{O_1A}$
- \square la trajectoire de C/0 est une droite horizontale d'axe $\vec{x}_1 \approx \vec{x}_0$
- \Box la trajectoire de C/0 est une droite horizontale d'axe $\vec{z_1} \approx \vec{z_0}$

Justifications (mouvement 3/0 et trajectoire de C/0) :

Le mouvement 3/0 est une translation car : $\vec{\Omega}(3/0) = \vec{0}$

Cette translation est rectiligne horizontale car $\vec{V}(C/0) = \ell_1 \dot{\theta}_1 \vec{x}_1 = \ell_1 \dot{\theta}_1 \left(\cos\theta_1 \vec{x}_0 - \sin\theta_1 \vec{z}_0\right) \approx \ell_1 \dot{\theta}_1 \vec{x}_0$ est portée par \vec{x}_0 sur la totalité de la plage de variation de θ_1 ou l'hypothèse des petits angles est valide soit la condition la plus restrictive parmi $-15^\circ < \theta_i < 15^\circ$ pour $i \in \{1, 2, 3\}$.

Ce résultat peut également être obtenu à partir des coordonnées de C dans 0 qui sont données par :

$$\overrightarrow{O_1C} = \begin{pmatrix} X_C \\ 0 \\ Z_C \end{pmatrix} = \ell_1 \, \overrightarrow{z}_1 + \ell_3 \, \overrightarrow{x}_3 = \begin{pmatrix} \ell_3 \cos \theta_3 + \ell_1 \sin \theta_1 \\ 0 \\ -\ell_3 \sin \theta_3 + \ell_1 \cos \theta_1 \end{pmatrix} \approx \begin{pmatrix} \ell_3 + \ell_1 \theta_1 \\ 0 \\ -\ell_3 \theta_3 + \ell_1 \end{pmatrix}$$

Ce qui permet de montrer (grâce au équations de liaison linéarisée) que :

- **1** $Z_C \approx Cste$ car $\theta_3 \approx Cste$
- **2 -** $X_C \approx \ell_3 + \ell_1 \, \theta_1$ varie en fonction de θ_1 , la relation de dépendance étant linéaire nous pouvons, par ailleurs, affirmer que le mouvement de C/0 est localement rectiligne et uniforme si $\dot{\theta}_1 = \omega = Cste$ ce qui est vrai en fonctionnement nominal de la griffe de caméra.