# Devoir Surveillé no 1 - 28/09/2022

#### Exercice 1 - forme canonique et factorisation

5 points

- f une fonction définie sur  $\mathbf{R}$ :  $f(x) = 2x^2 + 8x 2$  déterminer la forme canonique de f
- g une fonction définie sur  $\mathbf{R}: g(x) = 3x^2 + 4x 4$  déterminer les racines de g puis factoriser g

## Exercice 2 - équation

5 points

résoudre les équations suivantes sur  ${\bf R}$ 

- $3x^2 7x 6 = 0$
- $x^4 12x^2 + 27 = 0$ indice: on pourra poser  $X = x^2$

#### Exercice 3 - tableau de signe et inéquation

5 points

- construire le tableau de signe des fonctions suivantes :  $f(x) = -x^2 + 3x + 4$
- résoudre sur  $\mathbf{R}: \frac{1-4x}{x^2+x-6} \leq 0$

## Exercice 4 - problème

5 points

on considère la figure suivante :



- $\bullet$  déterminer la ou les valeur(s) de x pour que le parallélogramme IJKL ait une aire de 25 cm<sup>2</sup>
- $\bullet \ \ \text{rappel} : Aire\_Rectangle = Longueur \times Largeur \ \text{et} \ Aire\_Triangle = \frac{Base \times Hauteur}{2}$
- toutes tentatives de recherche sera pris en compte dans la notation

That's All Folks!

# Proposition de Corrigé no 1 - 28/09/2022

Exercice 5 - forme canonique et factorisation

5 points

- $f(x) = 2x^2 + 8x 2 = 2(x^2 + 4x 1) = 2(x^2 + 4x + 2^2 5) = 2(x + 2)^2 10$
- $g(x) = 3x^2 + 4x 4$
- $\Delta = b^2 4a \times c = 16 4 \times 3 \times -4 = 16 + 48 = 64 = 8^2$
- $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-4 \pm 8}{2 \times 3} \Longrightarrow x_1 = \frac{4}{6} = \frac{2}{3} \text{ et } x_2 = \frac{-12}{6} = -2$
- $g(x) = 3(x \frac{2}{3})(x+2)$

Exercice 6 - équation

5 points

résoudre les équations suivantes sur  ${f R}$ 

- $3x^2 7x 6 = 0 \Longrightarrow$  on fera delta tout simplement
- $x^4 12x^2 + 27 = 0$  (équation bicarrée)
- $\Delta = 144 4 \times 1 \times 27 = 144 108 = 36 = 6^2$
- $X_1 = \frac{12+6}{2} = 9$  et  $X_2 = \frac{12-6}{2} = 3$
- $x^2 = 9$  et  $x^2 = 3 \Longrightarrow S = \{-3, -\sqrt{3}, \sqrt{3}, 3\}$

Exercice 7 - tableau de signe et inéquation

5 points

- $f(x) = -x^2 + 3x + 4 = (x+1)(-x+4)$
- le tableau de signe en découle immédiatement ( a = -1, parabole vers le bas )

| x    | $-\infty$ |   | -1 |   | 4 |   | $+\infty$ |
|------|-----------|---|----|---|---|---|-----------|
| f(x) |           | _ |    | + |   | _ |           |

- résoudre sur  $\mathbf{R}$  :  $\frac{1-4x}{x^2+x-6} \leq 0$
- $\bullet \ 1 4x = 0 \Longrightarrow x = \frac{1}{4}$
- $x^2 + x 6 = 0 \implies x = 2$  ou x = -3

| x             | $-\infty$ |   | -3 |   | $\frac{1}{4}$ |   | 2 |   | $+\infty$ |
|---------------|-----------|---|----|---|---------------|---|---|---|-----------|
| 1-4x          |           | + |    | + | 0             | _ |   | _ |           |
| $x^2 + x - 6$ |           | + | 0  | _ |               | _ | 0 | + |           |
| f(x)          |           | + |    | _ | 0             | + | Ô | _ |           |

Exercice 8 - problème

5 points

Laisser à votre recherche personnelle