

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MPI FORUM MEETING COLLECTIVES AND TOPOLOGY WG DECEMBER 2012

TORSTEN HOEFLER

ON BEHALF OF THE WORKING GROUP

AGENDA

- Neighborhood reductions
 - Addition of skipped functionality
 - Use-cases were found
- Scalable vector collectives
 - Two interfaces proposed, delayed
- A user-proposal
 - Unknown-length collectives
- Discussion
 - Misc. items

- Were proposed for MPI-3.0
 - Removed by Forum request due to missing usecase
- A *lot* of user-feedback about missing functionality
 - Jed Brown, Shirley Moore, Heike Jagode, others
 - Clear use-cases have been identified
 - See collwg mailinglist

REJUVENATING THE DISCUSSION

- Blocking interface
 - topol.pdf page 33ff
- Nonblocking interface
 - topol.pdf page 41ff

Reading & discussion ...

Torsten Hoefler

SCALABLE VECTOR COLLECTIVES

- State of the art:
 - Varying amounts of data from the processes
 - Integral part of the standard since MPI-1.0:
 - MPI_GATHERV,
 - MPI_SCATTERV,
 - MPI_ALLGATHERV,
 - MPI_ALLTOALLV,
 - MPI_ALLTOALLW (added in MPI-2.0),
 - and MPI_REDUCE_SCATTER (no 'v' suffix)

SCALABILITY PROBLEMS

- Need to specify counts and displacements for each process at each process
 - Memory and time grow linearly in P
 - → Well-known scalability problem
- Problems are getting worse with ever increasing system sizes
- Memory needs will eventually prevent the use of current vector collectives (cf. "Exascale")

ARE VECTOR COLLECTIVES USED?

- Yes, even in libraries such as
 - ParMETIS (Parallel Graph Partitioning)
 - PBGL (Parallel Boost Graph Library)
 - PETSc (Parallel Algorithms to solve PDEs)
 - PSBLAS (Parallel Sparse Linear Algebra)
 - LibTopoMap (Topology Mapping Library)
 - Many applications use them!

IMPORTANCE OF SCALABLE VARIANTS

- Vector collectives are used (irregular apps)
- They work on today's machines
- It is primarily not about performance
- Current vector collectives will not work on future systems ≥ "Exascale"!
- Add-on: Scalable variants will perform more efficiently in sparse scenarios

SIMPLE PROPOSAL (PART I)

- Four new distributed interfaces:
 - MPI_Gatherdv()
 - MPI_Scatterdv()
 - MPI_Allgatherdv()
 - MPI_Reduce_scatterdv()
- Each process specifies only the parameters for its local contribution
 - e.g., int recvcounts[p]
 int recvcount

SIMPLE PROPOSAL (PART II)

- Two new alltoall distributed interfaces:
 - MPI_Alltoalldv()
 - MPI_Alltoalldw()
- Each process specifies only the parameters for non-zero neighbors
 - Sparse representation (cf. topologies)
 - Still pair-wise specification assuming symmetric knowledge
- ... more coming later

Ticket #264

("Scalable Variants of Vector Collectives")

See coll.pdf

USER INPUT

- After discussion with Jeremiah Willcock
- Alltoallwl (don't discuss names!)
 - Semantics: essentially DSDE
 - Irregular communication
 - Every process knows its targets but not the sources
 - Several protocols exist (Hoefler, Moody ...)

[1] PPoPP'12: Scalable Communication Protocols for Dynamic Sparse Data

- Any other items for collective or topologies?
- Any visions for the next "big" MPI?

Anything else?

Torsten Hoefler

