TRIGONOMETRIE

by RÉMY

1.1 Kurze Wiederholung

Definition

In einem Kreis mit Radius 1 gelte:

- $\cos(\alpha) = x_{\scriptscriptstyle M}$
- $\sin(\alpha) = y_{\scriptscriptstyle M}$
- $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$

Es ergeben sich folgende (wissenswerte) Werte:

Des Weiteren gilt:

	15°	45°	75°
	π	π	5π
	$\overline{12}$	$\frac{1}{4}$	$\overline{12}$
$\sin(\alpha)$	$\sqrt{6}-\sqrt{2}$	1	$\sqrt{6} + \sqrt{2}$
	4	$\sqrt{2}$	4
$\cos(\alpha)$	$\sqrt{6} + \sqrt{2}$	$\sqrt{3}$	$\sqrt{6}-\sqrt{2}$
	4	9	<u> </u>

1.2 Additions- und Verdopplungssätze

Theorem

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

Bemerkung:

Hieraus ergeben sich einige weitere Relationen, wie z.B. $\sin(2a)$. Diese lassen sich jedoch schnell und leicht herleiten.

1.3 Allgemeine Sinus- und Kosinussätze

In einem beliebigen Dreieck gelten abgewandelte Formen der aus der 8. Klasse bekannten Sätze:

Theorem

- $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$
- $c^2 = a^2 + b^2 2abcos(\gamma)$

Bemerkung:

Man bemerkt, dass sich die bekannten Relationen ergeben, wenn einer der Winkel den Wert $\frac{\pi}{2}$ annimmt.

1.4 Sinusfunktionen

Zur Vollständigen Funktionsdiskussion einer Sinus-Funktion sind einige Besonderheiten zu beachten:

- 1. Amplitude und Periodizität Eine Funktion der Form $f(x) = a \cdot \sin(b(x-c)) + d$ hat:
 - $\bullet \ \ {\rm die\ Periode}\ P = \frac{2\pi}{|b|}$
 - die Amplitude A = |a|
 - ullet die Verschiebung entlang der x-Achse um d und entlang der y-Achse um c

2. Symmetrieeigenschaften

Hier sollte zumindest bekannt sein, dass $f(x) = \sin(x)$ punktsymmetrisch zum Origo ist, und dass $f(x) = \cos(x)$ Achsensymmetrisch zur y-Achse ist.

3. Die Null-, Extrem- und Wendestellen sind in Form einer Menge anzugeben. (Es sei denn, die Aufgabenvorschrift fordert explizit zu einer Begrenzung auf ein angegebenes Intervall auf)

Beispiel:

Die Nullstellen der Funktion $f(x) = \sin(x)$ lassen sich dartstellen als: $x \in \{k\pi | k \in \mathbb{Z}\}$

4. Bei der Teilung durch eine Sinusfunktion können Definitionslücken an dessen Nullstellen entstehen. Auch diese können in der bereits gezeigten Form angegeben werden.

1.4.1 Zusammengesetzte Sinusfunktionen

1.5 Polarkoordinaten

In der Kursstufe beschränken wir uns auf die Benutzung von Polarkoordinaten für Punkte in der Ebene (2D).

Definition

Polarkoordinaten sind eine Form der eindeutigen Punktangaben, doch anstatt wie kartesische Koordinaten 2 Entfernungen x und y zu verwenden, haben sie die Form $(r|\varphi)$. r ist hierbei die Entfernung zum Origo und φ ein orientierter Winkel (in rad).

1.5.1 Umrechnung

Kartesisch → Polar

$$r = \sqrt{x^2 + y^2}$$

•
$$\varphi = \tan(\frac{y}{x})$$

Polar -> Kartesisch

•
$$x = r \cdot \cos(\varphi)$$

•
$$y = r \cdot \sin(\varphi)$$

1.6 Beispiele einer Funktionsdiskussion

1.6.1
$$f(x) = 2\cos(x) + 2\sin(x)\cos(x)$$

Sei die Funktion $f(x)=2\cos(x)+2\sin(x)\cos(x)$, ihr Schaubild sei K. Untersuchen Sie K im Intervall $[0;2\pi]$ auf gemeinsame Punkte mit der x-Achse, sowie Extrem- und Wendepunkte. Zeichnen Sie K im Intervall $[0;2\pi]$. Untersuchen Sie K auf Symmetrie.

Definitionsmenge

$$D = \mathbb{R}$$

Periodizität und Amplitude Die Periode von f ist $P=2\pi$. Die Amplitude A beträgt $\frac{3}{2}$, $\sqrt{3}$

$$\frac{3}{2}\sqrt{3}$$
.

Nullstellen

Notwendige und hinreichende Bedingung:

$$f(x) = 0$$

$$\Leftrightarrow 2\cos(x) + 2\sin(x)\cos(x) = 0$$

$$\Leftrightarrow 2\cos(x)(1 + \sin(x)) = 0$$

$$S.d.N \begin{cases} 2\cos(x) = 0 \\ 1 + \sin(x) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \\ \sin(x) = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = \frac{1}{2}\pi \\ x_2 = \frac{3}{2}\pi \end{cases}$$

$$\Rightarrow \mathbb{L} = \left\{ \left(\frac{1}{2}\pi \middle| 0\right); \left(\frac{3}{2}\pi \middle| 0\right) \right\}$$

Ableitungen

$$f'(x) = -2\sin(x) + 2(\cos(x)\cos(x) - \sin(x)\sin(x))$$

$$= -2\sin(x) + 2(\cos^2(x) - \sin^2(x))$$

$$= -2\sin(x) + 2(1 - \sin^2(x) - \sin^2(x))$$

$$= -4\sin^2(x) - 2\sin(x) + 2$$

$$f''(x) = -4(\cos(x)\sin(x) + \sin(x)\cos(x)) - 2\cos(x)$$

$$= -8\sin(x)\cos(x) - 2\cos(x)$$

$$f'''(x) = -8(\cos(x)\cos(x) - \sin(x)\sin(x)) + 2\sin(x)$$

$$= -8(1 - \sin^2(x) - \sin^2(x)) + 2\sin(x)$$

$$= 16\sin^2(x) + 2\sin(x) - 8$$

Extremstellen

Notwendige Bedingung:

$$\begin{split} & \frac{f'(x) = 0}{f'(x) = 0} \\ & \Leftrightarrow 4\sin^2(x) - 2\sin(x) + 2 = 0 \\ & \text{Substitution: } y = \sin(x) \\ & \Rightarrow 4y^2 - 2y + 2 = 0 \\ & \xrightarrow{ABC-Formel} y_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 * (-4) * 2}}{-8} \\ & \text{Resubsitution:} \\ & \begin{cases} \sin(x) & = \frac{2 + \sqrt{20}}{-8} \\ \sin(x) & = \frac{2 - \sqrt{20}}{-8} \end{cases} \\ & \Rightarrow \mathbb{L} = \left\{ \frac{1}{6}\pi; \frac{5}{6}\pi; \frac{3}{2}\pi \right\} \end{split}$$

Hinreichende Bedingung:

$$f''(x) \neq 0$$

$$\Rightarrow \begin{cases} f''\left(\frac{1}{6}\pi\right) & \stackrel{?}{=} 0 \\ f''\left(\frac{5}{6}\pi\right) & \stackrel{?}{=} 0 \end{cases}$$

$$\Rightarrow \begin{cases} 8\sin\left(\frac{1}{6}\pi\right) & \stackrel{?}{=} 0 \\ 8\sin\left(\frac{1}{6}\pi\right)\cos\left(\frac{1}{6}\pi\right) - 2\sin\left(\frac{1}{6}\pi\right) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8\sin\left(\frac{5}{6}\pi\right)\cos\left(\frac{5}{6}\pi\right) - 2\sin\left(\frac{5}{6}\pi\right) & \stackrel{?}{=} 0 \\ 8\sin\left(\frac{3}{2}\pi\right)\cos\left(\frac{3}{2}\pi\right) - 2\sin\left(\frac{3}{2}\pi\right) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8\sin\left(\frac{3}{2}\pi\right)\cos\left(\frac{3}{2}\pi\right) - 2\sin\left(\frac{3}{2}\pi\right) & \stackrel{?}{=} 0 \\ 8*\frac{1}{2}*\frac{\sqrt{3}}{2} - 2*\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , < 0 \Rightarrow HP \\ 8*\frac{1}{2}*-\frac{\sqrt{3}}{2} - 2*-\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , > 0 \Rightarrow TP \\ 8*(-1)(0) - 2(0) & \stackrel{!}{=} 0 \Rightarrow \text{ kein } EP \end{cases}$$

Ergebnis

 $\text{Auf dem Intervall } [0;2\pi] \text{ besitzt K den Hochpunkt H} \left(\frac{1}{6}\pi|f\left(\frac{1}{6}\pi\right)\right) \text{ und den Tiefpunk T} \left(\frac{5}{6}\pi|f\left(\frac{5}{6}\pi\right)\right). \\ \Leftrightarrow \text{H} \left(\frac{1}{6}\pi|\frac{3}{2}\sqrt{3}\right) \text{ und T} \left(\frac{5}{6}\pi|-\frac{3}{2}\sqrt{3}\right).$

Wendestellen

Notwendige Bedingung:

$$f''(x) = 0$$

$$\Leftrightarrow -8\sin(x)\cos(x) - 2\cos(x) = 0$$

$$\Leftrightarrow \cos(x)(-2 - 8\sin(x)) = 0$$

$$\stackrel{SdN}{\Rightarrow} \begin{cases} \cos(x) = 0 \\ \sin(x) = -\frac{1}{4} \end{cases}$$

$$\Rightarrow \mathbb{L} = \left\{ \frac{1}{2}\pi; \frac{3}{2}\pi; \sim 3,394; \sim 6,031 \right\}$$

Hinreichende Bedingung:

$$f'''(x) \neq 0$$

$$f'''\left(\frac{1}{2}\pi\right) \stackrel{?}{=} 0$$

$$f'''\left(\frac{3}{2}\pi\right) \stackrel{?}{=} 0$$

$$f'''(6,031) \stackrel{?}{=} 0$$

$$\begin{cases} 16\sin^2\left(\frac{1}{2}\pi\right) + \sin\left(\frac{1}{2}\pi\right) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 16\sin^2\left(\frac{3}{2}\pi\right) + \sin\left(\frac{3}{2}\pi\right) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$16\sin^2(3,394) + \sin(3,394) - 8 & \stackrel{?}{=} 0$$

$$16\sin^2(6,031) + \sin(6,031) - 8 & \stackrel{?}{=} 0$$

$$\begin{cases} 16*1 + 1 - 8 & \neq 0 \\ -7,5 & \stackrel{!}{=} 0 \end{cases}, > 0 \Rightarrow WP$$

$$-7,5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP$$

$$-7,5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP$$

$$-7,5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP$$

Bemerkung:

Außerdem:
$$f'\left(\frac{3}{2}\pi\right)=0\Rightarrow$$
 Sattelpunkt

Ergebnis

 $\text{Auf dem Intervall } [0;2\pi] \text{ besitzt K die Wendepunkte } \left(\frac{1}{2}\pi \middle| f\left(\frac{1}{2}\pi\right)\right), \ (3,394|f(3,394)), \ (6,031|f(6,031)) \ \text{und} \right)$ $\text{den Sattelpunkt} \left(\frac{3}{2} \pi \bigg| f\left(\frac{3}{2} \pi \right) \right).$

$$\Leftrightarrow W_1\left(\frac{1}{2}\pi\middle|0\right), W_2(3,394|-1,452), W_3(6,031|1,452), S\left(\frac{3}{2}\pi\middle|0\right).$$

Schaubild

Symmetrie

K ist punktsymmetrisch zu W_1 , denn es gilt:

$$\begin{split} f(\frac{1}{2}\pi + x) &= -1 * f(\frac{1}{2}\pi - x) \\ \Leftrightarrow 2\cos(\frac{1}{2}\pi + x) + 2\sin(\frac{1}{2}\pi + x)\cos(\frac{1}{2}\pi + x) &= -1 * (2\cos(\frac{1}{2}\pi - x) + 2\sin(\frac{1}{2}\pi - x)\cos(\frac{1}{2}\pi - x)) \\ \Leftrightarrow -2\sin(x) - 2\cos(x)\sin(x) &= -1 * (2\sin(x) + 2\cos(x)\sin(x)) \end{split}$$

K ist außerdem zu S punktsymmetrisch, denn es gilt:

$$\begin{split} f(\frac{3}{2}\pi + x) &= -1 * f(\frac{3}{2}\pi - x) \\ \Leftrightarrow 2\cos(\frac{3}{2}\pi + x) + 2\sin(\frac{3}{2}\pi + x)\cos(\frac{3}{2}\pi + x) &= -1 * (2\cos(\frac{3}{2}\pi - x) + 2\sin(\frac{3}{2}\pi - x)\cos(\frac{3}{2}\pi - x)) \\ \Leftrightarrow 2\sin(x) + 2\cos(x)\sin(x) &= -1 * (-2\sin(x) - 2\cos(x)\sin(x)) \end{split}$$