

DCS Lab 5 AHB interconnect

Finite state machine 蔣洛亘

Flow Control: ready-valid flow

Handshake process

- Ready before valid / Valid before ready
- Valid with ready

AHB Interconnect

Basic components:

- Master
- Slave
- Arbiter
- Decoder
- •Mux

Lab - block diagram

Lab

- Masters will send input data to interconnect
- You should decode input data for valid, address and value
- Based on master priority(1->2->3), send data to slave memory
- Output handshake signal

Lab - decode

- [6:0]data_in_1 (from Master1)
- data_in_1[6]: 0->slave1 1->slave2
- data_in_1[5:3]: address
- data_in_1[2:0]: value
- Ex: 7'b0101001 for slave1, addr=5, value=1
- Ex: 7'b1011110 for slave2, addr=3, value=6

inter.sv

Input Signal	Bit Width	Definition	
clk	1	Clock	
rst_n	1	Asynchronous active-low reset	
in_valid_1	1	in_valid from master1	
in_valid_2	1	in_valid from master2	
in_valid_3	1	in_valid from master3	
data_in_1	7	Data from master1	
data_in_2	7	Data from master2	
data_in_3	7	Data from master3	
ready_slave1	1	Ready signal from slave1	
ready_slave2	1	Ready signal from slave2	

inter.sv

Output Signal	Bit Width	Definition
valid_slave1	1	valid signal to slave1
valid_slave2	1	valid signal to slave2
addr_out	3	Address you want to write
value_out	3	Value you want to save
handshake_slave1	1	High for 1 cycle after handshake with slave1
handshake_slave2	1	High for 1 cycle after handshake with slave2

Lab – Arbiter FSM (ref.)

Spec

- 不可以超過30個cycles沒有完成handshake(從 invalid或上一次handshake開始數)
- 拉起handshake signal(only 1 cycle)後,pattern會檢查 全部slave memory的值,必須依照master priority
- 可參考助教提供的FSM。
- 所有output必須非同步負準位reset。
- 01_RTL需要PASS。
- 02_SYN不能有error跟latches。
- 02_SYN時間timing slack必須為MET。
- 03_GATE 需要PASS

Input data

Master1 first

Decode: 0 110 101 => slave1 address:6 value:5

output handshake signal

Continue for Master2

Command

- tar -xvf ~dcsta01/Lab05.tar
- cd Lab05/01_RTL/
- Need 02_SYN
 - No Latch
 - No error
 - No timing violation (MET)
- Need 03_GATE
- Separate combinational and sequential blocks

Demo1: 3/31(四), 16:25:00

Demo2: 3/31(四), 23:59:59