Sciences Physiques: DS n° 1

24 Septembre 2018

Compétence	Maitrise
Exploiter des mesures de masse volumique pour différencier des espèces chimiques.	

Seul l'Exercice 1 est à faire sur le sujet. Le soin et la qualité de rédaction sont pris en compte dans la notation.

Exercice 1 QCM (5 points)

Pour chaque question, cocher la (ou les) bonne(s) réponses. Chaque question vaut 1 point et chaque mauvaise réponse en retire 0,25.

(1 point) On ne peut pas distinguer par la couleur : \bigcirc le fer, l'argent et l'or. \bigcirc le fer, le zinc et l'aluminium. \bigcirc le zinc, l'aluminium et le cuivre.		
(1 point) Le seul métal attiré par un aimant est : le fer.		
(1 point) Pour distinguer le fer du zinc, on peut utiliser : ○ les propriétés magnétiques. ○ la couleur. ○ la masse volumique.		
(1 point) Sachant que la température de fusion du zinc est 420 °C, l'état physique du zinc à 600 °C : \bigcirc solide. \bigcirc gazeux. \bigcirc liquide.		
(1 point) Pour calculer le volume d'un objet en connaissant sa masse et sa masse volumique on utilise la relation : $\bigcirc V = \frac{m}{\rho} \bigcirc V = m \times \rho \bigcirc V = \frac{\rho}{m}$		

Exercice 2 Une bague en argent (4 points)

Florent observe la bague de Suzanne. Suzanne lui affirme que c'est une bague en argent mais Florent pense qu'elle est en fer-blanc. Pour en avoir le cœur net, il pèse la bague et trouve $m=14,4\ g$. Il plonge la bague dans une éprouvette contenant5,0 mL d'eau : le niveau monte jusqu'à 6,4 mL.

- 1. (1 point) De combien le volume d'eau dans l'éprouvette a-t-il augmenté? En déduire la volume de la bague de Suzanne.
- 2. (1 point) A l'aide des données du tableau, calculer la masse que ferait la bague si elle était en fer-blanc.
- 3. (1 point) A l'aide du tableau, calculer la masse que ferait la bague si elle était en argent.
- 4. (1 point) Déterminer à l'aide des réponses précédentes, si la bague de Suzanne est en argent ou en fer-blanc.

Exercice 3 Classement (2 points)

Soit huit échantillons de 10g de matériaux différents.

Matériau	Masse volumique (kg/m^3)
diamant	3517
coton	40
acier	7800
bronze	8400
fer	7680
or	19 300
uranium	18 700
aluminium	2700

1. (2 points) Classer les échantillons par ordre de volume croissant.

Exercice 4 Conversions d'unité (3 points)

Convertir les masses, volumes et masses volumiques suivantes dans les unités demandées :

1. (
$$\frac{1}{2}$$
 point) $V_1 = 3,6$ $L =dm^3 =m^3 = 4$. ($\frac{1}{2}$ point) $m_2 = 2,31$ $kg =g =mg$
.... cm^3 5. ($\frac{1}{2}$ point) $\rho_1 = 19,3$ $kg/L =g/L = 2$. ($\frac{1}{2}$ point) $V_2 = 0,45$ $m^3 =L =dL =mg/L$
.... daL 6. ($\frac{1}{2}$ point) $\rho_2 = 19,3$ $kg/m^3 =g/m^3 = 3$. ($\frac{1}{2}$ point) $m_1 = 14,2$ $g =kg =mg$ mg/m^3

6.
$$(\frac{1}{2} \text{ point}) \rho_2 = 19.3 \ kg/m^3 =g/m^3 =g/m^3$$

Ordre de grandeur (5 points) Exercice 5

Le fer a longtemps été utilisé dans a fabrication d'objets quotidiens et a servi à la réalisation de grands projets urbains de l'aire industrielle. Sachant que la masse volumique du fer est de l'ordre de 8 g/cm^3 , donner une estimation du volume de fer nécessaire à la fabrication des objets suivants:

- 1 Un clou d'une masse approximative de 12 g.
- 1 Un fer à cheval d'une masse approximative de 500 g.
- 1 Un fer à repasser d'une masse approximative de 1 kg.
- 1 Un portail en fer forgé d'une masse approximative de 250 kg.
- 1 La charpente métallique du pont Dom-Luis à Porto, dont la masse approximative est 3045 tonnes.