RISC-V RV32IM ISA Reference Sheet v1.6

31 25	24 20	19 15	14 12	11 7	6 0	
funct7	rs2	rs1	funct3	rd	opcode	R-type
imm[11	1:0]	rs1	funct3	rd	opcode	I-type
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-type
imm[12,10:5]	rs2	rs1	funct3	imm[4:1,11]	opcode	B-type
imm[31:12]				rd	opcode	U-type
imm[20,10:1,11,19:12]				rd	opcode	J-type

reg	alias	reg	alias
x 0	zero	x5-x7	t0-t2
x1	ra	x8, x9	s0/fp, s1
x2	sp	x10-x17	a0-a7
x3	gp	x18-x27	s2-s11
x4	tp	x28-x31	t3-t6

imm[20,10:1,11,19:12]			rc	1	opcode J-type x4 tp x28-x31 t3-t6		
instruction fmt opcode		fun3	fun7	semantics			
lui rd,imm20 U 7 'h37				rd = imm20 << 12			
auipc rd,imm20 U		17			rd = pc + (imm20 << 12)		
addi rd,rs1,imm12	I	13	000		rd = rs1 + se(imm12)		
slti rd,rs1,imm12	I	13	010		rd = rs1 <signed 0<="" 1="" :="" ?="" se(imm12)="" td=""></signed>		
sltiu rd,rs1,imm12	I	13	011		rd = rs1 <unsign 0<="" 1="" :="" ?="" se(imm12)="" td=""></unsign>		
xori rd,rs1,imm12	I	13	100		rd = rs1 ^ se(imm12)		
ori rd,rs1,imm12	I	13	110		rd = rs1 se(imm12)		
andi rd,rs1,imm12	I	13	111		rd = rs1 & se(imm12)		
slli rd,rs1,imm12	Ι	13	001	0x0	rd = rs1 << imm12[4:0]		
srli rd,rs1,imm12	I	13	101	0x0	rd = rs1 >> imm12[4:0]		
srai rd,rs1,imm12	Ι	13	101	0x20	rd = rs1 >>> imm12[4:0]		
add rd,rs1,rs2	R	33	000	0x0	rd = rs1 + rs2		
sub rd,rs1,rs2	R	33	000	0x20	rd = rs1 - rs2		
sll rd,rs1,rs2	R	33	001	0x20	rd = rs1 << rs2[4:0]		
slt rd,rs1,rs2	R	33	010	0x0	rd = rs1 << rs2[4.0] rd = rs1 <signed 0<="" 1="" :="" ?="" rs2="" td=""></signed>		
sltu rd,rs1,rs2	R	33	010	0x0	rd = rs1 <sign 0<="" 1="" :="" eu="" rs2="" td=""></sign>		
xor rd,rs1,rs2	R	33	100	0x0	rd = rs1 \ rs2		
	R	33	100	0x0	$rd = rs1 \rightarrow rs2$ rd = rs1 >> rs2[4:0]		
	R	33	101	0x0	rd = rs1 >> rs2[4:0] rd = rs1 >>> rs2[4:0]		
sra rd,rs1,rs2					- -		
or rd,rs1,rs2	R	33	110	0x0	$rd = rs1 \mid rs2$		
and rd,rs1,rs2	R	33	111	0x0	rd = rs1 & rs2		
lb rd,imm12(rs1)	I	03	000		rd = se(mem[rs1+se(imm12)][7:0])		
lh rd,imm12(rs1)	I	03	001		rd = se(mem[rs1+se(imm12)][15:0])		
lw rd,imm12(rs1)	I	03	010		rd = mem[rs1+se(imm12)][31:0]		
lbu rd,imm12(rs1)	I	03	100		rd = ze(mem[rs1+se(imm12)][7:0])		
lhu rd,imm12(rs1)	I	03	101		rd = ze(mem[rs1+se(imm12)][15:0])		
sb rs2,imm12(rs1)	S	23	000		mem[rs1+se(imm12)][7:0] = rs2[7:0]		
sh rs2,imm12(rs1)	S	23	001		mem[rs1+se(imm12)][15:0] = rs2[15:0]		
sw rs2,imm12(rs1)	S	23	010	. , , , ,			
jal rd,targ20	J	6f			rd = pc+4; pc += se(targ20<<1)		
_jalr rd,imm12(rs1)	I	67	000		rd = pc+4; pc = (rs1+se(imm12)) & ~0x1		
beq rs1,rs2,targ12	В	63	000		if (rs1 == rs2) pc += se(targ12<<1)		
bne rs1,rs2,targ12	В	63	001		if (rs1 != rs2) pc += se(targ12<<1)		
blt rs1,rs2,targ12	В	63	100		<pre>if (rs1 <signed +="se(targ12<<1)</pre" pc="" rs2)=""></signed></pre>		
bge rs1,rs2,targ12	В	63	101		if (rs1 ≥signed rs2) pc += se(targ12<<1)		
bltu rs1,rs2,targ12	В	63	110		<pre>if (rs1 <unsign +="se(targ12<<1)</pre" pc="" rs2)=""></unsign></pre>		
bgeu rs1,rs2,targ12	В	63	111		if (rs1 ≥unsign rs2) pc += se(targ12<<1)		
ecall	I	73	insn[31	:7]==0	transfer control to OS		
fence		0f	000	varies			
fence.i		Of	001	0x0	order data memory writes and instruction memory fetch		
mul rd,rs1,rs2	R	33	000	0x01	rd = (rs1 * rs2)[31:0]		
mulh rd,rs1,rs2	R	33	001	0x01	rd = (signed(rs1) * signed(rs2))[63:32]		
mulhsu rd,rs1,rs2	R	33	010	0x01	rd = (signed(rs1) * unsign(rs2))[63:32]		
mulhu rd,rs1,rs2	R	33	011	0x01	rd = (signed(151) * unsign(152))[63:32] rd = (unsign(rs1) * unsign(rs2))[63:32]		
div rd,rs1,rs2	R	33	100	0x01	rd = rs1 /signed rs2		
divu rd,rs1,rs2	R	33	101	0x01	rd = rs1 /signed rs2		
rem rd,rs1,rs2	R	33	110	0x01	rd = rs1 %signed rs2		
remu rd,rs1,rs2	R	33	110	0x01	rd = rs1 %signed rs2		
Tellia Taji 31,132	1	33	111	UAUI	14 - 131 Mulistell 132		

Register Map

				0	1		
reg	alias	description	saver	reg	alias	description	saver
x0	zero	hard-wired zero		t7	t2	temporary	caller
x1	ra	return address	caller	x8	s0/fp	saved reg/frame pointer	callee
x2	sp	stack pointer	callee	x9	s1	saved reg	callee
х3	gp	global pointer		x10-x11	a0-a1	function args/return values	caller
x4	tp	thread pointer		x12-x17	a2-a7	function args	caller
x5	t0	temporary/alt link reg	caller	x18-x27	s2-s11	saved regs	callee
х6	t1	temporary	caller	x28-x31	t3-t6	temporaries	caller

pseudoinstruction	base instruction(s)	meaning	
la rd,symbol	auipc rd,symbol[31:12]	load address	
ia iu, symboi	addi rd,rd,symbol[11:0]	load address	
l{b h w d} rd,symbol	auipc rd,symbol[31:12]	load global	
I (b) i w w w w w w w w w	$l\{b h w d\}$ rd,symbol[11:0](rd)	load global	
s{b h w d} rd,symbol,rt	<pre>auipc rt,symbol[31:12]</pre>	store global	
3(b)11 w d) 1 d, 3 y 1 lb 0 1 , 1 c	$s\{b h w d\}$ rd,symbol[11:0](rt)		
nop	addi x0,x0,0	no operation	
li rd,immediate	lui and/or addi	load immediate	
mv rd,rs	addi rd,rs,0	copy register	
not rd,rs	xori rd,rs,-1	one's complement	
neg rd,rs	sub rd,x0,rs	two's complement	
seqz rd,rs	subw rd,x0,rs	set if = zero	
snez rd,rs	addiw rd,rs,0	set if ≠ zero	
sltz rd,rs	sltiu rd,rs,1	set if < zero	
sgtz rd,rs	sltu rd,x0,rs	set if > zero	
beqz rs,target	beq rs,x0,target	branch if $=$ zero	
bnez rs,target	bne rs,x0,target	branch if \neq zero	
blez rs,target	bge x0,rs,target	branch if \leq zero	
bgez rs,target	bge rs,x0,target	branch if \geq zero	
bltz rs,target	blt rs,x0,target	branch if < zero	
bgtz rs,target	blt x0,rs,target	branch if > zero	
bgt rs,rt,target	blt rt,rs,target	branch if >	
ble rs,rt,target	bge rt,rs,target	branch if \leq	
bgtu rs,rt,target	bltu rt,rs,target	branch if >, unsigned	
bleu rs,rt,target	bgeu rt,rs,target	branch if ≤, unsigned	
j target	jal x0,target	jump	
jal target	jal x1,target	jump and link	
jr rs	jalr x0,rs,0	jump register	
jalr rs	jalr x1,rs,0	jump and link register	
ret	jalr x0,x1,0	return from subroutine	
call target	auipc x6,target[31:12]	call far-away subroutine	
carr carget	<pre>jalr x1,x6,target[11:0]</pre>		
tail tanget	<pre>auipc x6,target[31:12]</pre>	tail call for avvey submouting	
tail target	<pre>jalr x0,x6,target[11:0]</pre>	tail call far-away subroutine	
fence	fence iorw,iorw	fence on all memory and I/O	

AXI-Lite Signals orange signals are to subordinate (from manager), others from subordinate (to manager)

orange signals are to subordinate (nom manager), others nom subordinate (to manager)									
Clock/Reset	Address Read	Read	Address Write	Write data	Write				
Clock/ Reset	request response		request	request	response				
ACLK	ARREADY	RREADY	AWREADY	WREADY	BREADY				
ARESETn	ARVALID	RVALID	AWVALID	WVALID	BVALID				
	ARADDR	RDATA	AWADDR	WDATA	BRESP				
	ARPROT	RRESP	AWPROT	WSTRB					