Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL III: Relationen und Abbildungen

3. Abzählbar – überabzählbar

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Abzählbar und überabzählbar

Definition

Eine Menge M heißt abzählbar, falls $M=\emptyset$ oder falls es eine surjektive Abbildung

$$f: \mathbb{N} \to M$$

gibt, (also
$$f(\mathbb{N}) = M$$
).

Ansonsten heißt M überabzählbar.

Bemerkung

Mit dieser Definition sind endliche Mengen abzählbar. (Manche Autor*innen unterscheiden nicht nur

"abzählbar"– "überabzählbar",

sondern

"endlich"– "abzählbar"– "überabzählbar".)

Beispiele

Abzählbare Mengen sind zum Beispiel:

- ► N,
- ► Z,
- igwedge $\bigcup_{n=0}^{\infty} M_n$, wobei M_n für jedes $n \in \mathbb{N}$ abzählbar.

Überabzählbare Mengen sind zum Beispiel:

- \triangleright (0, 1),
- $ightharpoonup \mathbb{R}$,
- $ightharpoonup \mathbb{P}(\mathbb{N}).$

Bemerkung

Sind M und N Mengen, zwischen denen es eine bijektive Abbildung gibt, so besitzen sie dieselbe Kardinalität. Wir schreiben dann |M| = |N|.

Beispiel

- $\blacktriangleright |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|,$
- $|(0,1)| = |\mathbb{R}|,$
- $ightharpoonup |\mathbb{N}| \neq |\mathbb{R}|.$

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL IV: Kombinatorik

1. Permutationen, Variationen und Kombinationen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Permutationen

Definition

Eine Permutation einer n-elementigen Menge $X = \{x_1, \dots, x_n\}$ ist eine bijektive Abbildung

$$\pi: X \to X$$
.

Notationen

$$\pi = (\pi(x_1), \pi(x_2), \dots, \pi(x_n)).$$

Anzahl Anordnungen

Frage

Wie viele Möglichkeiten gibt es, eine *n*-elementige Menge anzuordnen?

Für eine n-elementige Menge X ist also die Anzahl P(n) der Elemente der Menge

$$\{(a_1,\ldots,a_n):a_i\in X \text{ und } a_i\neq a_j \text{ für } i\neq j\}$$

gesucht.

Bemerkung

Eine derartige Anordnung wird ebenfalls als eine "Permutation" bezeichnet.

Beispiele: Permutationen

- M = $\{a, b\}$ mit $a \neq b$, also n = 2. Mögliche Anordnungen: (a, b), (b, a)P(2) = 2
- ► $M = \{a, b, c\}$ mit $a \neq b, b \neq c, a \neq c$, also n = 3. Mögliche Anordnungen: (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)P(3) = 6
- ▶ Wie viele Sitzordnungen gibt es in einer Vorlesung mit 150 Studierenden in einem Hörsaal mit 150 Plätzen? Es gibt P(150) Sitzordnungen.

Anzahl Anordnungen einer n-elementigen Menge

Satz

Sei $n \ge 1$. Es gibt n! bijektive Abbildungen zwischen zwei n-elementigen Mengen $X = \{x_1, \dots, x_n\}$ und $Y = \{y_1, \dots, y_n\}$.

Folgerung

Es gilt

$$P(n)=n!$$

Es gibt also n! verschiedene Möglichkeiten, eine n-elementige Menge anzuordnen.

Variation ohne Wiederholung

Frage

Wie viele Möglichkeiten gibt es, aus einer n-elementigen Menge eine k-elementige Teilmenge auszuwählen und anzuordnen?

Für eine n-elementige Menge X ist also die Anzahl V(n,k) der Elemente der Menge

$$\{(a_1,\ldots,a_k):a_i\in X \text{ und } a_i\neq a_j \text{ für } i\neq j\}$$

gesucht.

Bemerkung

Eine derartige Anordnung nennt man eine "Variation ohne Wiederholung" oder eine "k-Permutation von n Objekten".

Beispiele: Variation ohne Wiederholung

- ► $M = \{a, b, c\}$ mit $a \neq b, b \neq c, a \neq c$, also n = 3. Mögliche Anordnungen der 2-elementigen Teilmengen: (a, b), (a, c), (b, a), (b, c), (c, a), (c, b). Also ist V(3, 2) = 6.
- Wie viele "Wörter" aus 3 verschiedenen Buchstaben kann man bilden?
 Es gibt V(26,3) Wörter.
- ▶ Ziehe aus einer Urne mit n verschiedenen Kugeln k Kugeln ohne Zurücklegen und unter Beachtung der Reihenfolge. Es gibt V(n, k) Möglichkeiten.

Anzahl Variationen ohne Wiederholung

Satz

Sei $1 \le k \le n$. Es gibt $\frac{n!}{(n-k)!}$ injektive Abbildungen zwischen einer k-elementigen Menge X und einer n-elementigen Menge Y.

Folgerung

Es gilt

$$V(n,k) = \frac{n!}{(n-k)!}.$$

Es gibt also $\frac{n!}{(n-k)!}$ Möglichkeiten, aus einer n-elementigen Menge eine k-elementige Teilmenge auszuwählen und anzuordnen.

Variation mit Wiederholung

Frage

Wie viele Möglichkeiten gibt es, aus einer n-elementigen Menge k Elemente anzuordnen, wobei Elemente mehrfach auftauchen dürfen?

Für eine n-elementige Menge X ist also die Anzahl $V^*(n,k)$ der Elemente der Menge

$$\{(a_1,\ldots,a_k):a_i\in X\}$$

gesucht.

Bemerkung

Eine derartige Anordnung nennt man eine "Variation mit Wiederholung".

Beispiele: Variation mit Wiederholung

- Zahlenschloss mit 4 Zahlenrädern von 0 bis 9 Es gibt $V^*(10,4)$ verschiedene Zahlenkombinationen.
- $M = \{a, b, c\}$ mit $a \neq b, b \neq c, a \neq c$, also n = 3. Mögliche Anordnungen von 2 nicht notwendigerweise unterschiedlichen Elementen dieser Menge: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c).Also ist $V^*(3,2) = 9$.
- Ziehe aus einer Urne mit n verschiedenen Kugeln k Mal eine Kugel und lege sie nach jedem Zug wieder zurück, wobei die Reihenfolge der Ziehung beachtet wird. Es gibt $V^*(n, k)$ verschiedene Ausgänge der Ziehungen.

Anzahl Variationen mit Wiederholung

Satz

Seien $n, k \ge 1$. Es gibt n^k Abbildungen zwischen einer k-elementigen Menge X und einer n-elementigen Menge Y.

Folgerung

Es gilt

$$V^*(n,k)=n^k.$$

Es gibt also n^k Möglichkeiten, k nicht notwendigerweise verschiedene Elemente einer n-elementigen Menge anzuordnen.

Kombination ohne Wiederholung

Frage

Wie viele Möglichkeiten gibt es, aus einer n-elementigen Menge eine k-elementige Teilmenge auszuwählen?

Für eine n-elementige Menge X ist also die Anzahl C(n,k) der Elemente der Menge $\{M \in \mathbb{P}(X) : |M| = k\}$ gesucht.

Bemerkung

Eine derartige Auswahl nennt man eine "Kombination ohne Wiederholung".

Beispiele: Kombination ohne Wiederholung

- ► $M = \{a, b, c\}$ mit $a \neq b, b \neq c, a \neq c$, also n = 3. 2-elementigen Teilmengen: $\{a, b\}, \{a, c\}, \{b, c\}$. Also ist C(3, 2) = 3.
- ► Lottoziehung "6 aus 49": Es gibt *C*(49,6) mögliche Ausgänge.
- ► Eine Skathand besteht aus 10 von 32 Karten. Es gibt *C*(32,10) verschiedene Skathände.
- ▶ Ziehe aus einer Urne mit n verschiedenen Kugeln k Kugeln ohne Beachtung der Reihenfolge. Es gibt C(n, k) verschiedene Möglichkeiten.

Anzahl Kombinationen ohne Wiederholung

- ▶ Jede k-elementige Teilmenge kann auf P(k) = k! Arten angeordnet werden.
- V(n, k) erhält man, indem man zu jeder k-elementigen Teilmenge die möglichen Anordnungen mitzählt, also

$$=$$
 $C(n,k)$ \cdot $P(k)$

▶ Damit ist
$$C(n,k) = \frac{V(n,k)}{P(k)} = \frac{\frac{n!}{(n-k)!}}{\frac{k!}{k!}} = \frac{n!}{k!(n-k)!}$$
.

Fazit

Es gilt

$$C(n,k) = \binom{n}{k}.$$

Eine *n*-elementige Menge besitzt also $\binom{n}{k}$ verschiedene k-elementige Teilmengen, wobei $0 \le k \le n$.

Weitere Beispiele – Binomischer Lehrsatz

$$(a+b)^n = ?$$

$$(a+b)^n = \underbrace{(a+b)}_{\text{Klammer 1}} \underbrace{(a+b)}_{\text{Klammer 2}} \dots \underbrace{(a+b)}_{\text{Klammer n}}$$

- Beim Ausmultiplizieren wählt man in jeder Klammer entweder a oder b.
- Wenn man aus k Klammern a wählt und aus den verbleibenden n-k Klammern b, so erhält man a^kb^{n-k} .
- Es gibt $\binom{n}{k}$ Möglichkeiten, aus k verschiedenen Klammern a auszuwählen, so dass der Ausdruck $a^k b^{n-k}$ beim Ausmultiplizieren $\binom{n}{k}$ Mal auftaucht.

Diese Überlegung führt auf den binomischen Lehrsatz, siehe Kapitel II.1:

$$\left| (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \right| \quad a, b \in \mathbb{R}.$$

Weitere Beispiele – Anzahl der Elemente der Potenzmenge

Sei M eine Menge mit |M| = n.

Frage

Wie groß ist $|\mathbb{P}(M)|$?

Überlegung

$$|\mathbb{P}(M)| = \sum_{k=0}^{n} \#k\text{-elementige Teilmengen von } M$$

$$= \sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} \stackrel{\text{binom.}}{=} (1+1)^{n} = 2^{n}.$$

Kombination mit Wiederholung

Frage

Wie viele Möglichkeiten gibt es, aus einer n-elementigen Menge eine k Elemente auszuwählen, wobei Elemente mehrfach ausgewählt werden dürfen.

Die Anzahl der Möglichkeiten bezeichnen wir mit $C^*(n, k)$.

Bemerkung

Eine derartige Auswahl nennt man eine "Kombination mit Wiederholung".

Beispiele: Kombination mit Wiederholung

- ➤ Ziehe aus einer Urne mit *n* verschiedenen Kugeln *k* Mal eine Kugel und lege sie nach jedem Zug wieder zurück, wobei die Reihenfolge egal ist.
 - Es gibt $C^*(n, k)$ mögliche Ausgänge.
- Wurf mit 3 (nicht unterscheidbaren) Würfeln Es gibt $C^*(6,3)$ verschiedene Ausgänge.

Anzahl Kombinationen mit Wiederholung

Mit Hilfe des vorigen Beispiels aus der Vorlesung kommen wir auf die folgende Idee:

$$C^*(n,k)=\#$$
 Möglichkeiten, k Häkchen auf $n-1+k$ Positionen zu verteilen
$$=\#$$
 Möglichkeiten, aus einer $(n-1+k)$ -elementigen Menge eine k -elementige Menge auszuwählen
$$=C(n-1+k,k)=\binom{n-1+k}{k}.$$

Fazit

Seien $n, k \ge 1$. Es gilt

$$C^*(n,k) = \binom{n-1+k}{k}.$$

Variation und Kombination

Bemerkung

- Eine Variation ist eine Anordnung von Objekten in einer bestimmten Reihenfolge.
- ► Eine Kombination ist eine Auswahl von Elementen (ohne Berücksichtigung der Reihenfolge).

Mathematische Grundlagen der Informatik

WiSe 2023/2024

KAPITEL IV: Kombinatorik

2. Urnenmodelle

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Zusammenfassung Urnenmodelle

- ▶ Urne mit $n \ge 1$ verschiedenen Kugeln
- ightharpoonup Ziehung von $k \ge 1$ Kugeln

	Berücksichtigung der Reihenfolge	Reihenfolge egal
ohne Wiederholung	$V(n,k) = \frac{n!}{(n-k)!}$	$C(n,k) = \binom{n}{k}$
mit Wiederholung	$V^*(n,k)=n^k$	$C^*(n,k) = \binom{n-1+k}{k}$