

Vishay Beyschlag

Ultra Precision Metal Film Leaded Resistors

FEATURES

• Exceptional low TCR: ± 2 ppm/K to ± 10 ppm/K

 \bullet Super tight tolerance: \pm 0.01 % to \pm 0.25 %

• Exceptional overall stability: class 0.02

ROHS

- Exceptional overall stability: class 6.02

• Wide resistance range: 22 Ω to 1 M Ω

 Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

UXA 0204, UXB 0207, and UXE 0414 high precision leaded thin film resistors combine the proven reliability of the professional products with an exceptional level of precision and stability. Therefore they are perfectly suited for applications in the fields of precision test and measuring equipment and particularly for the design of calibration references and standards.

APPLICATIONS

- · Precision test and measuring equipment
- Design of calibration references and standards

TECHNICAL SPECIFICATIONS					
DESCRIPTION	UXA 0204	UXB 0207	UXE 0414		
DIN size	0204	0207	0414		
CECC size	A	В	D		
Resistance range	22 Ω to 221 kΩ	10 Ω to 1 M Ω	22 Ω to 511 kΩ		
Resistance tolerance	± 0.25 %; ± 0.1 %; ± 0.05 %; ± 0.01 %	± 0.25 %; ± 0.1 %; ± 0.05 %; ± 0.01 %	± 0.1 %; ± 0.05 %		
Temperature coefficient	± 10 ppm/K; ± 5 ppm/K; ± 2 ppm/K	± 10 ppm/K; ± 5 ppm/K; ± 2 ppm/K	± 10 ppm/K; ± 5 ppm/K		
Rated dissipation:					
P_{85}	0.05 W	0.125 W	0.25 W		
P ₇₀	0.1 W	0.25 W	0.5 W		
Operating voltage, $U_{\text{max.}}$ AC/DC	200 V	250 V	300 V		
Operating temperature range (1)	-20 °C to 125 °C				
Peak permissible film temperature (1)	125 °C				
Insulation voltage:					
1 min.; <i>U</i> _{ins}	300 V	500 V	800 V		
Continuous	75 V	75 V	75 V		
Max. resistance change at P_{70} for resistance range, $\Delta R/R$ max., after:	100 Ω to 100 k Ω	100 Ω to 250 k Ω	100 Ω to 100 k Ω		
2000 h	≤ 0.05 %	≤ 0.05 %	≤ 0.05 %		
Max. resistance change at P_{85} for resistance range, $\Delta R/R$ max., after:	100 Ω to 100 k Ω	100 Ω to 250 k Ω	100 Ω to 100 k Ω		
1000 h	≤ 0.02 %	≤ 0.02 %	≤ 0.02 %		
8000 h	≤ 0.04 %	≤ 0.04 %	≤ 0.04 %		
225 000 h	≤ 0.12 %	≤ 0.12 %	≤ 0.12 %		
Failure rate: FIT _{observed}		≤ 0.1 x 10 ⁻⁹ /h	1		

Vishay Beyschlag

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE						
TYPE	TCR	TOLERANCE	RESISTANCE (1)(2)(3)	E-SERIES		
		± 0.25 %	22 Ω to 221 kΩ	E192		
	± 10 ppm/K	± 0.1 %	43 Ω to 221 kΩ	E192		
	± 10 ppm/K	± 0.05 %	100 Ω to 180 kΩ	E192		
		± 0.01 %	200 Ω to 150 kΩ	E192		
		± 0.25 %	47 Ω to 150 k Ω	E192		
UXA 0204	. F. nom/K	± 0.1 %	47 Ω to 150 kΩ	E192		
UXA 0204	± 5 ppm/K	± 0.05 %	100 Ω to 150 kΩ	E192		
		± 0.01 %	200 Ω to 150 kΩ	E192		
		± 0.25 %	100 Ω to 100 kΩ	E192		
	± 2 ppm/K ⁽³⁾	± 0.1 %	100 Ω to 100 kΩ	E192		
	± 2 ppm/x (9)	± 0.05 %	150 Ω to 100 kΩ	E192		
		± 0.01 %	200 Ω to 100 kΩ	E192		
	. 10	± 0.25 %	10 Ω to 1 MΩ	E192		
		± 0.1 %	10 Ω to 1 MΩ	E192		
	± 10 ppm/K	± 0.05 %	24 Ω to 301 kΩ	E192		
		± 0.01 %	24 Ω to 301 kΩ	E192		
		± 0.25 %	10 Ω to 1 MΩ	E192		
UXB 0207	. F. n.m.//	± 0.1 %	10 Ω to 1 MΩ	E192		
UXB 0207	± 5 ppm/K	± 0.05 %	24 Ω to 221 kΩ	E192		
		± 0.01 %	24 Ω to 221 kΩ	E192		
		± 0.25 %	100 Ω to 150 kΩ	E192		
	. 0 (1/ (3)	± 0.1 %	100 Ω to 150 kΩ	E192		
	± 2 ppm/K ⁽³⁾	± 0.05 %	150 Ω to 150 kΩ	E192		
		± 0.01 %	200 Ω to 150 kΩ	E192		
	. 10 nnm/K	± 0.1 %	22 Ω to 511 kΩ	E192		
LIVE 0414	± 10 ppm/K	± 0.05 %	100 Ω to 301 kΩ	E192		
UXE 0414	. F. nom/V	± 0.1 %	47 Ω to 301 k Ω	E192		
	± 5 ppm/K	± 0.05 %	100 Ω to 301 kΩ	E192		

Notes

⁽¹⁾ Resistance values to be selected from the E192 series, for other values please contact the factory.

⁽²⁾ TCR 10 and TCR 05 are specified over the temperature range from -20 °C to +85 °C.

 $^{^{(3)}}$ TCR 02 is specified over the temperature range 0 °C to +60 °C.

Vishay Beyschlag

Note

• The part number is shown to facilitate the introduction of a unified part numbering system.

PACKAGING								
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	DIMENSIONS		
UXA 0204	CU	100	Taped acc. to IEC 60286-1	53 mm	5 mm	74 mm x 42 mm x 184 mm		
	C1	1000	fan-folded in a box	33 11111	3 111111	74 IIIII X 42 INM X 184 MM		
UXB 0207	CU	100	Taped acc. to IEC 60286-1	53 mm	5 mm	75 mm x 40 mm x 187 mm		
	C1	1000	fan-folded in a box					
UNB 0207	R1	1000	Taped acc. to IEC 60286-1 53 mm 5 mm 315 mm x	5 mm	315 mm x 70 mm x 80 mm			
	RP	5000	on a reel	33 11111	5 111111	315 mm x 76 mm x 86 mm		
	CU	100	Taped acc. to IEC 60286-1	53 mm	53 mm 5 mm	47 mm x 84 mm x 374 mm		
UXE 0414	C1	1000	fan-folded in a box	33 111111	3 111111	47 mm x 64 mm x 374 mm		
	R2	2500	Taped acc. to IEC 60286-1 on a reel	53 mm	5 mm	315 mm x 80 mm x 90 mm		

SCRIPT MARKING - Printed resistance value and letter coding for TCR and tolerance							
RESISTANCE VALUE TOL. (%) LETTER CODE TCR (ppm/K) LETTER CODE							
	± 0.25	С	± 10	В			
Clear text code for value	± 0.1	В	± 5	А			
Clear text code for value	± 0.05	Α	± 2	Т			
	± 0.01	T	=	-			

UXA 0204, UXB 0207, UXE 0414

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic body (85 % Al₂O₃) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the metallized rods. Special laser devices are used repeatedly to achieve the target value by slowly and smoothly cutting a helical groove in the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilise the trimming result. Connecting wires of electrolytic copper plated with pure tin are welded to the termination caps. The resistors are covered by protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. Script marking designates the resistance value plus coded TCR and tolerance.

The result of the determined production is verified by an accelerated aging (burn-in) and extensive testing procedure performed on 100 % of the individual resistors. Only accepted products are stuck directly on the adhesive tapes in accordance with **IEC 60286-1**.

ASSEMBLY

The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines. Excellent solderability is proven, even after extended storage. They are suitable for automatic soldering using wave or dipping. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are completely lead (Pb)-free, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (1)
- The Global Automotive Declarable Substance List (GADSL) (2)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (3) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

Where applicable, the resistors are tested in accordance to **EN 60115-1** and **EN 140100**.

Vishay Beyschlag has achieved "Approval of Manufacturer" in accordance with IEC QC 001002-3, clause 2. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IEC QC 001002-3, clause 6 is granted for the Vishay Beyschlag manufacturing process.

Notes

- (1) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474.
- (2) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at
- (3) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table.

Vishay Beyschlag

FUNCTIONAL DESCRIPTION

Derating - Standard Operation

Temperature Rise

Current Noise A₁ in accordance with IEC 60195

Vishay Beyschlag

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the following specifications:

• EN 60115-1, Generic specification (includes tests)

The Test Procedures and Requirements table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068-2-xx test method and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. Climatic category -20 °C / +125 °C / 56 days (rated temperature range: Lower category temperature, upper category temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

• Temperature: 15 °C to 35 °C

• Relative humidity: 45 % to 75 %

• Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

For testing the components are mounted on a test board in accordance with IEC 60115-1, 4.31 unless otherwise specified.

In the Test Procedures and Requirements table only the tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60068-2-xx test method. A short description of the test procedure is also given.

			PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (ΔR)			
			Stability for product types:				
IEC 60115-1	IEC 60068-2	TEST	UXA 0204	100 Ω to 100 kΩ	22 Ω to < 100 Ω > 100 k Ω to 221 k Ω	-	
CLAUSE	TEST METHOD	. 20.	UXB 0207	100 Ω to 250 kΩ	40.2Ω to < 100 Ω > 250 k Ω to 301 k Ω	10 Ω to < 40.2 Ω > 301 k Ω to 1 M Ω	
			UXE 0414	100 Ω to 100 k Ω	22 Ω to < 100 Ω > 100 k Ω to 511 k Ω	-	
4.5	-	Resistance	-	± 0.25 %	%; ± 0.1 %; ± 0.05 %; ±	- 0.01 %	
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}$; 60 s	N	o flashover or breakdov	vn	
4.8		Temperature	At (20 / -20 / 20) °C and (20 / 85 / 20) °C	10 ppm/K; 5 ppm/K			
4.0	-	coefficient	At (20 / 0 / 20) °C and (20 / 60 / 20) °C				
4.13	-	Short time overload	Room temperature; $U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; 5 s	± (0.01 % R + 0.01 Ω)	± (0.01 % R + 0.01 Ω)	± (0.02 % R + 0.01 Ω)	
4.16	21 (Ua ₁) 21 (Ub) 21 (Uc)	Robustness of terminations	Tensile, bending, and torsion	± (0.01 % R + 0.01 Ω)	± (0.01 % R + 0.01 Ω)	± (0.02 % R + 0.01 Ω)	
4.17	20 (Ta)		at +235 °C; 2 s; solder bath method; SnPb40	Cood tinn	Good tinning (> 95 % covered); no dama		
4.17	20 (Ta)	Solderability	at +245 °C; 3 s; solder bath method; SnAg3Cu0.5	Good tinn	io damage		
4.18.2	20 (Tb)	Resistance to soldering heat	Unmounted components; (260 ± 5) °C; (10 ± 1) s	$\pm (0.01 \% R + 0.01 \Omega)$	$\pm (0.01 \% R + 0.01 \Omega)$	$\pm (0.02 \% R + 0.01 \Omega)$	
4.19	14 (Na)	Rapid change of temperature	30 min at -55 °C 30 min at +125 °C 5 cycles	± (0.01 % R + 0.01 Ω)	± (0.01 % R + 0.01 Ω)	± (0.02 % R + 0.01 Ω)	
4.22	6 (B4)	Vibration	10 sweep cycles per direction; 10 Hz to 2000 Hz 1.5 mm or 200 m/s ²	± (0.01 % R + 0.01 Ω)	± (0.01 % R + 0.01 Ω)	± (0.02 % R + 0.01 Ω)	

Vishay Beyschlag

TEST P	TEST PROCEDURES AND REQUIREMENTS								
			PROCEDURE	REQUIREME	ENTS PERMISSIBLE C	HANGE (ΔR)			
			Stability for product types:						
IEC 60115-1	IEC 60068-2	TEST	UXA 0204	100 Ω to 100 kΩ	22 Ω to < 100 Ω > 100 k Ω to 221 k Ω	-			
CLAUSE	TEST METHOD		UXB 0207	100 Ω to 250 k Ω	40.2Ω to < 100 Ω > 250 k Ω to 301 k Ω	10 Ω to < 40.2 Ω > 301 k Ω to 1 M Ω			
			UXE 0414	100 Ω to 100 k Ω	22 Ω to < 100 Ω > 100 k Ω to 511 k Ω	-			
4.23		Climatic sequence:							
4.23.2	2 (Ba)	Dry heat	125 °C; 16 h			\pm (0.06 % R + 0.01 Ω); no visible damage			
4.23.3	30 (Db)	Damp heat, cyclic	55 °C; 24 h; 90 % to 100 % RH; 1 cycle		± (0.05 % R + 0.01 Ω); no visible damage				
4.23.4		Cold	-55 °C; 2 h	\pm (0.04 % R + 0.01 Ω); no visible damage					
4.23.5		Low air pressure	8.5 kPa; 2 h; 15 °C to 35 °C	no violote damage					
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 5 days; 95 % to 100 % RH; 5 cycles						
4.23.7		DC load	apply rated power for 1 min						
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	$\pm (0.04 \% R + 0.01 \Omega)$	$\pm (0.05 \% R + 0.01 \Omega)$	$\pm (0.06 \% R + 0.01 \Omega)$			
		Endurance	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max.}}$; 1.5 h on; 0.5 h off						
4.25.1	- (at 70 °C)		70 °C; 2000 h	$\pm (0.05 \% R + 0.01 \Omega)$	$\pm (0.05 \% R + 0.01 \Omega)$	$\pm (0.05 \% R + 0.01 \Omega)$			
			85 °C; 1000 h	$\pm (0.02 \% R + 0.01 \Omega)$	$\pm (0.03 \% R + 0.01 \Omega)$	$\pm (0.04 \% R + 0.01 \Omega)$			
			85 °C; 8000 h	$\pm (0.04 \% R + 0.01 \Omega)$	$\pm (0.06 \% R + 0.01 \Omega)$	$\pm (0.08 \% R + 0.01 \Omega)$			
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h	± (0.04 % R + 0.01 Ω)	± (0.06 % R + 0.01 Ω)	$\pm (0.08 \% R + 0.01 \Omega)$			
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol (used in industrial application) +23 °C; toothbrush method	Marking legible; no visible damage					

DIMENSIONS

DIMENSIONS - Leaded resistor types, mass, and relevant physical dimensions								
TYPE	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
UXA 0204	1.6	3.6	0.5	29.0	5.0	125		
UXB 0207	2.5	6.3	0.6	28.0	7.5	220		
UXE 0414	4.0	11.9	0.8	31.0	15.0	750		

Vishay Beyschlag

12NC INFORMATION FOR HISTORICAL CODING REFERENCE

- The resistors have a 12-digit part number starting with 2312.
- The subsequent 4 digits indicate the resistor type, specification and packaging; see the 12NC Part Number table.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with the 12NC Indicating Resistance Decade table.

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
10 Ω to 99.9 Ω	9
100 Ω to 999 Ω	1
1 k Ω to 9.99 k Ω	2
10 kΩ to 99.9 kΩ	3
100 k Ω to 999 k Ω	4

12NC Example

The part number of a UXA 0204 resistor, value 47 k Ω and TCR 10 with \pm 0.1 % tolerance, supplied on bandolier in a box of 1000 units is: 2312 662 34703.

12NC PAF	12NC PART NUMBER - Resistor type and packaging							
					2312			
	DESCRIPTION		BANDOLIER IN BOX	BANDOLIER IN BOX	BANDOLIER ON REEL	BANDOLIER ON REEL	BANDOLIER ON REEL	
TYPE	TCR	TOL.	CU 100 units	C1 1000 units	R1 1000 units	R2 2500 units	RP 5000 units	
		± 0.25 %	562 2	662 2	462 2	-	-	
		± 0.1 %	562 3	662 3	462 3	-	-	
	± 10 ppm/K	± 0.05 %	562 4	662 4	462 4	-	-	
		± 0.01 %	562 7	662 7	462 7	-	-	
		(1)	562 91	662 91	462 91	-	-	
		± 0.25 %	563 2	663 2	463 2	-	-	
		± 0.1 %	563 3	663 3	463 3	-	-	
UXA 0204	± 5 ppm/K	± 0.05 %	563 4	663 4	463 4	-	-	
		± 0.01 %	563 7	663 7	463 7	-	-	
		(1)	563 91	663 91	463 91	-	-	
		± 0.25 %	564 2	664 2	464 2	-	-	
		± 0.1 %	564 3	664 3	464 3	-	-	
	± 2 ppm/K	± 0.05 %	564 4	664 4	464 4	-	-	
		± 0.01 %	564 7	664 7	464 7	-	-	
		(1)	564 91	664 91	464 91	-	-	
		± 0.25 %	572 2	672 2	472 2	-	577 2	
		± 0.1 %	572 3	672 3	472 3	-	577 3	
	± 10 ppm/K	± 0.05 %	572 4	672 4	472 4	-	577 4	
		± 0.01 %	572 7	672 7	472 7	-	577 7	
		(1)	572 91	672 91	472 91	-	577 91	
		± 0.25 %	573 2	673 2	473 2	-	578 2	
		± 0.1 %	573 3	673 3	473 3	-	578 3	
UXB 0207	± 5 ppm/K	± 0.05 %	573 4	673 4	473 4	-	578 4	
		± 0.01 %	573 7	673 7	473 7	-	578 7	
		(1)	573 91	673 91	473 91	-	578 91	
		± 0.25 %	574 2	674 2	474 2	-	579 2	
		± 0.1 %	574 3	674 3	474 3	-	579 3	
	± 2 ppm/K	± 0.05 %	574 4	674 4	474 4	-	579 4	
		± 0.01 %	574 7	674 7	474 7	-	579 7	
		(1)	574 91	674 91	474 91	-	579 91	
		± 0.1 %	592 3	692 3	-	597 3	-	
	± 10 ppm/K	± 0.05 %	592 4	692 4	-	597 4	-	
UXE 0414		(1)	592 91	692 91	-	597 91	-	
UAE 0414		± 0.1 %	593 3	693 3	-	598 3	-	
	± 5 ppm/K	± 0.05 %	593 4	693 4	-	598 4	-	
		(1)	593 91	693 91	-	598 91	-	

Note

⁽¹⁾ Readable 12NC coding of resistance values is restricted to values with three significant digits. For resistance values with more than three significant digits, a non readable sequential number will be issued by the factory for each requested combination of resistance value and tolerance.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.