MACHINE LEARNING - DECISION TREES EXERCISES/SOLUTION

Jan-Philipp Kolb

03 Juni, 2019

EXERCISE - RPART KYPHOSIS

Consider the Kyphosis data frame

- 1) Which variables are in the kyphosis dataset
- 2) Build a tree to classify Kyphosis from Age, Number and Start.

Consider the tree build above.

- 3) Which variables are used to explain Kyphosis presence?
- 4) How many observations contain the terminal nodes.

Consider the Kyphosis data frame.

- 5) Build a tree using the first 60 observations of kyphosis.
- 6) Predict the kyphosis presence for the other 21 observations.
- 7) Which is the misclassification rate (prediction error)

The dataset kyphosis

The dataset contains (1):

data(kyphosis,package = "rpart")

- Kyphosis: a factor with levels absent and present, indicating if a kyphosis (a type of deformation) was present after the operation.
- Age: in months.
- ▶ Number: the number of vertebrae involved.
- Start: the number of the first (topmost) vertebra operated on.

Build the tree (2)

```
(TREE<-rpart::rpart(Kyphosis~Age+Number+Start,
                    data=kyphosis,method="class"))
## n= 81
##
  node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
    1) root 81 17 absent (0.79012346 0.20987654)
##
##
      2) Start>=8.5 62 6 absent (0.90322581 0.09677419)
##
        4) Start>=14.5 29 0 absent (1.00000000 0.00000000) *
##
        5) Start< 14.5 33 6 absent (0.81818182 0.18181818)
##
         10) Age< 55 12 0 absent (1.00000000 0.00000000) *
         11) Age>=55 21 6 absent (0.71428571 0.28571429)
##
##
           22) Age>=111 14 2 absent (0.85714286 0.14285714) *
##
           23) Age< 111 7 3 present (0.42857143 0.57142857) *
      3) Start< 8.5 19 8 present (0.42105263 0.57894737) *
##
```

PLOT THE RESULT

rpart.plot::rpart.plot(TREE,extra=1)

Answers

- 3) Which variables are used to explain Kyphosis presence?
 - ► The variables are Start and Age
- 4) How many observations contain the terminal nodes.
 - ▶ The terminal nodes have 29, 12, 12, 3 and 8 observations
- 5) Build a tree using the first 60 observations of kyphosis.
 - ▶ y is a factor ⇒ we choose method="class"

FURTHER ANSWERS

6) Predict the kyphosis presence for the other 21 observations. PR <- predict(TREE,kyphosis[61:81,],type='class') 7) Which is the misclassification rate (prediction error) test <- kyphosis\$Kyphosis[61:81] table(PR,test) ## test ## PR. absent present ## absent 14 ## present (rate <- 100*length(which(PR!=test))/length(PR))</pre>

[1] 23.80952

EXERCISE RPART - IRIS

CONSIDER THE IRIS DATA FRAME

- 1) Build a tree to classify Species from the other variables.
- 2) Plot the trees, add nodes information.

Consider the tree build before

- 3) Prune the the using median complexity parameter (cp) associated to the tree.
- 4) Plot in the same window, the pruned and the original tree.
- 5) In which terminal nodes is clasified each oobservations of iris?
- 6) Which Specie has a flower of Petal.Length greater than 2.45 and Petal.Width less than 1.75.

Jan-Philipp Kolb

SOLUTION - RPART - IRIS (I)

1) Build a tree to classify Species from the other variables.

```
TREE2 <- rpart(Species ~ ., data=iris,method="class")</pre>
TREE2
## n = 150
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
   1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)
##
    2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000
     3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.5000
##
##
       6) Petal.Width< 1.75 54 5 versicolor (0.00000000 0.9074
       7) Petal.Width>=1.75 46
                                 1 virginica (0.00000000 0.02173
##
```

SOLUTION - RPART - IRIS (II)

2) Plot the trees, add nodes information.

```
library(rpart.plot)
rpart.plot(TREE2)
```


JAN-PHILIPP KOLB

SOLUTION - RPART - IRIS (III)

3) Prune the the using median complexity parameter (cp) associated to the tree.

```
TP <- prune(TREE2,cp=median(TREE2$cptable[,'CP']))</pre>
```

4) Plot in the same window, the pruned and the original tree.

```
par(mfrow=c(1,2))
rpart.plot(TREE2)
rpart.plot(TP)
```

THE PLOTTED RESULTS

SOLUTION - RPART - IRIS (IV)

5) In which terminal nodes is clasified each observations of iris?

TREE2\$where

##	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
##	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
##	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
##	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
##	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	
##	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	
##	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	
##	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
##	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	
##	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
##	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	1
##	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	
##	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	1
##	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	
##	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	1

Jan-

$\operatorname{SOLUTION}$ - RPART - IRIS (V)

6) Which species has a flower of Petal.Length greater than 2.45 and Petal.Width less than 1.75.