Ćwiczenie 6 Zastosowanie Dyskretnej Transformacji Kosinusowej (DCT) do kompresji obrazów statycznych

1. Dla algorytmu kompresji 2 DCT z dolnoprzepustową filtracją przestrzenną zbadałem zależność SQNR(k) posługując się skryptem petla1.m dla obrazów mandrill.mat i trees.mat dla k=1, 2, 3, 4, 5, 6, 7, 8. Przy wydruku na rysunku zmieniłem skalę na osi OX z wartości k na p=k*k . Otrzymane 2 wykresy umieściłem na jednym rysunku oraz dokonałem analizy porównawczej zdolności do kompresji analizowanych 2 obrazów przy zastosowaniu algorytmu 2D DCT.

Wykres 1. Zależność SQNR(p) dla obrazków "trees" i "mandrill".

Porównując obrazki "mandrill" i "trees" można zauważyć, że "trees" kompresuje się lepiej. Obrazek "trees" SQNR na poziomie ~20 [dB] osiąga dla p=9, natomiast obrazek "mandrill" ten sam poziom SQNR osiąga dla p=36. Różnica zachowanych współrzędnych dla SQNR=~20 wynosi 27.

Biorąc pod analizę wykres 1 można zauważyć, że dla p=9 obrazek "trees" osiąga SQNR na poziomie 19,77 [dB], natomiast "mandrill" 14,87 [dB]. Obrazek "trees" dla p=36 osiąga poziom SQNR=24,63 [dB], a obrazek "mandrill" dla tego samego parametru p osiąga SQNR=20,31 [dB]. Różnica pomiędzy SQNR-ami oscyluje w okolicach 4 – 5 [dB] w środkowym obszarze wykresu, zmniejszając się coraz bardziej do różnicy ~1,4 [dB] dla p=64, dla wartości p=1 SQNR-y są praktycznie identyczne i wynoszą ~12,2 [dB].

2. Dla algorytmu kompresji 2 DCT z dolnoprzepustową filtracją przestrzenną oceniłem w sposób subiektywny (używając skryptu petla2.m) jakość obrazu mandrill.mat po dekompresji.

Tabela 1. Wrażenia subiektywne, SQNR i stopień kompresji dla obrazka "mandrill".

Parametr k	Wrażenia subiektywne	SQNR [dB]	Stopień kompresji η
1	Efekt blokowości na całym obrazie, brak możliwości rozróżnienia zawartości obrazu	12.3054	64
2	Efekt blokowości na całym obrazie, brak możliwości rozróżnienia zawartości obrazu	13.5696	16
3	Zanik efektu blokowości, widoczny efekt rozmycia obrazu, rozróżnialność obrazu	14.8746	7.11
4	Efekt rozmycia obrazu	16.3751	4
5	Zanik rozmycia obrazu, możliwości rozróżnienia zawartości obrazu, jakość akceptowalna	18.1076	2.56
6	Jakość akceptowalna	20.305	1.78
7	Obraz idealny	23.7136	1.31
8	Obraz idealny	42.3674	1

Zanik efektu blokowości dla obrazka "mandrill" obserwuję dla k=3, SQNR w tym punkcie wynosi 14,87 [dB], jakość akceptowalną obserwuję dla k=5 (SQNR=18,10 [dB]), jakość określaną jako obraz idealny obserwuję dla k=7, gdzie SQNR=23,71 [dB].

3. Wprowadzenie zależności na stopień kompresji η w zależności od wartości parametru k dla algorytmu kompresji 2 DCT z dolnoprzepustową filtracją przestrzenną

Przykład dla "mandrill" (480x496):

• Obraz jest dzielony na L podobrazów MxM (8x8):

$$L = L_x * L_y = \frac{480}{8} * \frac{496}{8} = 3720,$$

gdzie:

- L-ilość podobrazów
- Lx-ilość składowych poziomych
- Ly-ilość składowych pionowych
- Ilość informacji na wejściu wyznaczamy ze wzoru:

$$I_{we} = L * M^2,$$

gdzie:

- Iwe– ilość informacji na wejściu
- M wymiar podobrazu (M x M)
- L liczba podobrazów
- Wykonujemy na podobrazach dwuwymiarową dyskretną transformatę kosinusową (DCT).
- Filtrujemy za pomocą filtra dolnoprzepustowego LPF 2D (równomierny prostokątny, użyty, ponieważ człowiek jest niewrażliwy na usunięcie wysokoczęstotliwościowych składników).
- Wynikiem filtracji jest macierz o wymiarach (k x k) współczynników DCT.
- Ilość informacji na wyjściu:

$$I_{wy} = L * k^2,$$

gdzie:

- k macierz współczynników
- L- liczba podobrazów
- Stopień kompresji wyznaczamy ze wzoru:

$$\eta = \frac{I_{we}}{I_{wy}} = \frac{L * M^2}{L * k^2} = \frac{M^2}{k^2}$$

Przykład obliczeniowy dla obrazka "mandrill":

k=2

$$\eta = \frac{I_{we}}{I_{wv}} = \frac{L * M^2}{L * k^2} = \frac{64}{4} = 16$$

k=3

$$\eta = \frac{I_{we}}{I_{wv}} = \frac{L * M^2}{L * k^2} = \frac{64}{9} = 7,11$$

k=5

$$\eta = \frac{I_{we}}{I_{wv}} = \frac{L * M^2}{L * k^2} = \frac{64}{25} = 2,56$$

k=7

$$\eta = \frac{I_{we}}{I_{wy}} = \frac{L * M^2}{L * k^2} = \frac{64}{49} = 1,31$$

4. Skrypt petla3.m implementuje algorytm kwantyzacji składowej luminancji w algorytmie JPEG. Wartości tot (całkowita liczba pikseli w obrazie), g (całkowita liczba zer w postaci skompresowanej obrazu) oraz wartość SQNR dla rekonstrukcji (po dekompresji) dla obrazków "madrill" i "trees".

Tabela 2. Algorytm JPEG dla "trees" i "mandrill".

obraz	tot	g	n	SQNR
trees	88064	76957	7,93	21,86
mandrill	238080	197902	5,93	18,40

$$\eta = \frac{tot}{tot - g}$$

$$\eta_{trees} = \frac{88064}{88064 - 76957} = 7,928693 \approx 7,93$$

$$\eta_{mandrill} = \frac{238080}{238080 - 197902} = 5,92563 \approx 5,93$$

Ocena subiektywna dla mandrill:

Różnica w obrazkach jest niezauważalna, obrazy wydają się być idealne. SQNR po kompresji wynosi 18,40 [dB].

Ocena subiektywna dla trees:

Obraz po kompresji posiada efekty rozmycia. SQNR po kompresji wynosi 21.86 [dB].

Algorytm JPEG nie utrzymuje SQNR, wartości te różnią się od siebie.

5.Porównanie efektywności JPEG oraz kompresji w oparciu o transformację 2D DCT i równomierną dolnoprzepustową filtrację przestrzenną.

Tabela 3. Podsumowanie kompresji 2D DCT i JPEG.

Obrazek/rozdzaj	SQNR [dB]	η
kompresji		
Mandrill/2D DCT	18.10	2,56
Mandrill/JPEG	18,40	5,93
Trees/2D DCT	21,58	4
Trees/JPEG	21,86	7,93

(Obliczenie η dla Trees (2D DCT) dla k=4 -> $\eta = \frac{64}{16} = 4$).

Porównując kompresje JPEG i 2D DCT dla obrazków "trees" oraz "mandrill" można zauważyć, że stopień kompresji JPEG-a jest większy względem 2D DCT. Dla wartości SQNR=~21,7 [dB] stopień kompresji JPEG-a wynosi 7,93, natomiast dla 2D DCT stopień kompresji jest równy 4, różnica pomiędzy kompresjami wynosi 3,93. Dla wartości SQNR=~18,25 [dB] stopień kompresji JPEG-a wynosi 5,93, natomiast dla 2D DCT stopień kompresji jest równy 2,56, różnica pomiędzy kompresjami wynosi 3,37.

Porównując subiektywnie kompresje JPEG i 2D DCT zauważyłem, że patrząc na obrazki z tym samym SQNR, 2D DCT określiłem jako możliwy do rozróżnienia i jakość akceptowalna, natomiast JPEG na obraz idealny.