

6.7 Mạch biến đổi mã

Biến đổi nhị phân và Gray

$B_3 B_2 B_1 B_0$				$G_3G_2G_1G_0$			
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

```
G_3G_2G_1G_0 B_3B_2B_1B_0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1
          0 0 1 0
0 1 0 0
          0 1 1 1
0 1 0 1
          0 1 1 0
          0 1 0 0
          0 1 0 1
          1 1 1 0
1 0 1 0
        1 1 0 0
          1 1 0 1
1 1 0 0
          1 0 0 0
          1 0 0 1
          1 0 1 1
          1 0 1 0
```


6.7 Mạch biến đổi mã

• Biến đổi nhị phân và Gray

Lập các bìa K và rút gọn:

G0 = B1 ⊕ B0

G1 = B2 ⊕ B1

G2 = B3 ⊕ B2

G3 = B3

B3 = G3

 $B2 = G3 \oplus G2$

B1 = B2 ⊕ G1

B0 = B1 ⊕ G0

- Mạch có 2^n đầu vào $(X_0, X_1, ...)$, n đầu điều khiển, đầu vào chọn mạch và 1 đầu ra
- Tùy theo giá trị của n đầu vào điều khiển mà đầu ra sẽ bằng 1 trong các giá trị ở đầu vào.

Mạch ghép kênh 2 → 1

$$Y = \overline{S.D_0} + S.D_1$$

• Mạch ghép kênh $4 \rightarrow 1$ (multiplexer $4 \rightarrow 1$) (MUX $4 \rightarrow 1$)

 S_1 và S_0 giúp phân biệt 4 ngõ vào D_0 , D_1 , D_2 và D_3 để ngõ ra chọn.

Mạch ghép kênh 4 → 1

Ngõ vào lựa chọn dữ liệu S ₁ S ₀	Ngõ vào được chọn
0 0 0 1 1 0 1 1	$\begin{array}{c} \mathbf{D}_0 \\ \mathbf{D}_1 \\ \mathbf{D}_2 \\ \mathbf{D}_3 \end{array}$

Ngõ ra Y bằng D_0 chỉ nếu $S_1 = 0$ và $S_0 = 0$: $Y = D_0.\overline{S_1}.\overline{S_0}$

Ngõ ra Y bằng D_1 chỉ nếu $S_1 = 0$ và $S_0 = 1$: $Y = D_1 \cdot \overline{S_1} \cdot S_0$

Ngõ ra Y bằng D_2 chỉ nếu $S_1 = 1$ và $S_0 = 0$: $Y = D_2.S_1.\overline{S_0}$

Ngõ ra Y bằng D_3 chỉ nếu $S_1 = 1$ và $S_0 = 1$: $Y = D_3.S_1.S_0$

Suy ra: $Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$

Mạch ghép kênh 4 → 1

6.9 Mạch phân đường

• Mạch phân đường $1 \rightarrow 4$ (demultiplexer $1 \rightarrow 4$)

$(DEMUX 1 \rightarrow 4)$

$$D_0 = In.S_1.S_0$$
 $D_1 = In.S_1.S_0$
 $D_2 = In.S_1.S_0$
 $D_3 = In.S_1.S_0$

6.9 Mạch phân đường

Mạch phân đường 1 → 4

