Solutions to Homework 1

Question 1

- 1. We know by definition that $x \in A B$ iff $x \in A$, but $x \notin B$. Also by definition, \bar{B} is the set of elements not in B. Hence, $x \in A B$ iff $x \in A$ and $x \in \bar{B}$. That is, $x \in A B$ iff $x \in A \cap \bar{B}$.
- 2. We are given that $A \cap B = \emptyset$, so that if $x \in A$, then $x \notin B$. This is the same as saying that if $x \in A$, then $x \in \overline{B}$. Therefore $A \subseteq \overline{B}$, so that $A \cap \overline{B} = A$.
- 3. If A = B, we clearly have $A \times A = B \times B$. We prove the other direction by contradiction.

Assume that $A \times A = B \times B$, but that $A \neq B$. If $A \neq B$, there is some element in one of A or B that is not in the other. Without loss of generality, let $a \in A$, but $a \notin B$. Now, $(a, a) \in A \times A$, but clearly, $(a, a) \notin B \times B$. This contradicts our assumption that $A \times A = B \times B$.

- 4. (a) $P(\emptyset) = \{\emptyset\}$
 - (b) $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$
 - $\begin{array}{lll} \text{(c)} & P(P(P(\{\emptyset\}))) = P\left(\left.\left.\left\{\emptyset\right\}\right\}\right)\right) = P(\{\emptyset,\ \{\emptyset\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\}\right) = \\ & \{\emptyset,\ \{\emptyset\}\},\ \{\{\{\emptyset\}\}\},\ \{\{\emptyset,\{\emptyset\}\}\}\},\ \{\{\emptyset\},\{\{\emptyset\}\}\},\ \{\{\emptyset\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\},\{\{\emptyset\}\}\},\ \{\{\emptyset\}\},\{\{\emptyset\}$
- 5. $\{\emptyset\} \times P(\emptyset) = \{\emptyset\} \times \{\emptyset\} = \{(\emptyset,\emptyset)\}.$
- 6. $\emptyset \times P(\emptyset) = \emptyset$.

Question 2

- 1. $\{1,3,5\} \oplus \{1,2,3\} = \{2,5\}$
- 2. This follows from the definition of $A \oplus B$. If $x \in A$ or $x \in B$, $x \in A \cup B$. However, if $x \in A$ and $x \in B$, $x \in A \cap B$. Hence, $A \oplus B = A \cup B A \cap B$.
- 3. Assume $x \in A \oplus B$. By definition of $A \oplus B$, one of the following conditions must hold:
 - (a) $x \in A$ but $x \notin B$. In this case, $x \in A B$, so $x \in (A B) \cup (B A)$.
 - (b) $x \in B$, but $x \notin A$. In this case, $x \in B A$, so $x \in (A B) \cup (B A)$.

Conversely, assume $x \in (A - B) \cup (B - A)$. First note that no element of B is in (A - B), and no element of A is in (B - A). Hence, (A - B) and (B - A) are disjoint. Hence, $x \in A - B$, or $x \in B - A$, but not both. By definition of $A \oplus B$, $x \in A \oplus B$.

- 4. Use the immediately preceding result. $A \oplus B = (A B) \cup (B A) = (B A) \cup (A B) = B \oplus A$.
- 5. Let $x \in (A \oplus B) \oplus B$. By definition of \oplus , one of the following conditions must hold:
 - (a) $x \in A \oplus B$, but $x \notin B$. Since $A \oplus B$ contains all $x \in A$ such that $x \notin B$, we conclude $x \in A$.
 - (b) $x \notin A \oplus B$, but $x \in B$. Since $A \oplus B$ contains all $x \in B$ except those in $A \cap B$, we conclude that $x \in A \cap B$, that is, $x \in A$.

This shows that $(A \oplus B) \oplus B \subseteq A$. We now show that $A \subseteq (A \oplus B) \oplus B$. Let $x \in A$. We have two possibilities

- (a) $x \in A, x \notin B$. In this case, $x \in (A \oplus B)$, and hence also in $(A \oplus B) \oplus B$.
- (b) $x \in A, x \in B$. Clearly, $x \in A \cap B$, so $x \notin A \oplus B$. But this means $x \in (A \oplus B) \oplus B$.

Since $A \subseteq (A \oplus B) \oplus B$ and $(A \oplus B) \oplus B \subseteq A$, we must have $A = (A \oplus B) \oplus B$.

- 1. Entity types: BANK, ACCOUNT, CUSTOMER, LOAN
- 2. Weak entity type: BANK-BRANCH. Partial key: BranchNo. Identifying relationship: BRANCHES.
- 3. The partial key BranchNo in BANK-BRANCH specifies that the same BranchNo value may occur under different BANKs. The identifying relationship BRANCHES specifies that BranchNo values are uniquely assigned for those BANK-BRANCH entities that are related to the same BANK entity. Hence, the combination of BANK Code and BranchNo together constitute a full identifier for a BANK-BRANCH.
- 4. Relationships and their constraints
 - a) Branches
 - Relationship between Bank and Bank Branch entity sets.
 - A bank has one or more bank branches (i.e atleast one relationship ≥ 1).
 - A bank branch should be assigned to exactly one bank (i.e exactly one = 1)
 - Constraints: key and participation
 - b) Accts
 - Relationship between Bank Branch and Account entity sets.
 - An account is associated with one or more bank_branches (i.e atleast one relationship ≥ 1)
 - A bank_branch can have 0 or more Accounts (i.e ≥ 0)
 - Constraints: participation
 - c) Loans
 - Relationship between Bank Branch and Loan entity sets.
 - A Loan is associated with one or more bank_branches(i.e atleast one relationship ≥ 1)
 - A bank branch can have 0 or more Loans (i.e ≥ 0)
 - Constraints: participation
 - d) A_C
 - Relationship between Account and Customer entity sets.
 - An account is associated with one or more customer(i.e atleast one relationship
 ≥ 1)
 - A customer can have 0 or more Accounts (i.e ≥ 0)
 - Constraints: participation
 - e) L C
 - Relationship between Loan and Customer entity sets.
 - A Loan is associated with one or more bank_branches(i.e atleast one relationship ≥ 1)
 - A bank branch can have 0 or more Loans (i.e ≥ 0)
 - Constraints: participation

