Theo 1 Abgabe 4

Nick Daiber

December 18, 2024

1

Annahme: L sei Kontrextfreie Sprache. Sei $p \in \mathbb{N}$ gegeben und $w = w_1 c^p w_2$ und sei $w_1 = a$ und $w_2 = b$. dann gilt für w = uvzxy mit $|vx| \ge 1, |vzx| \le p$ ist $uv^n zx^n y \in L$

Da $|vzx| \leq p \Rightarrow vwx \neq c^p$ also ist entweder $v = ac^m$ oder $x = c^k b$ demnach ist $uv^n = u[ac^m]^n$ oder $x^ny = [c^kb]^ny$ und $uv^nzx^ny \notin L$ also ist L keine Typ-2 Sprache.

2

B kann man nach $B \to BB \to Baaa$ und $B \to AAB \to aaaaB$ und $B \to BAS \to BaaABS \to BaaaaBa$ man kann also zu jedem wort w mit $B \in w$ 3, $4 \equiv 1 \pmod{3}$ oder $5 \equiv 2 \pmod{3}$ as hinzufügen um für große wörter a^n zu erhalten, das trivial regulär ist. für wörter, die zu klein sind, um in a^n zu fallen sind nur endlich vorhanden, demnach ist unter Abschluss regulärer Sprachen L(G) regulär

3

a

sei $L_1 = \{\varepsilon\}$, dann ist $\overline{L_1} = \Sigma^n (n \ge 1)$

h

Sei $L_1 = L_2 = \{a^nb^n\}$ so ist $L_1 \cap L_2 = \{a^nb^n\}$

 \mathbf{c}

Sei $G=(\{S,S_1,S_2\}\cup V_1\cup V_2,\Sigma,P,S)$ mit den Produktionsregeln $S\to S_1|S_2$ mit S_i das Startsymbol der Grammatik G_i und den Restlichen Produktionsregeln der Grammatiken $G_1\cup G_2$. Da L(G) Kontrextfreie ist, gibt es keine Sprachen L_1,L_2 mit $L_1\cup L_2$ nicht Kontextfrei