

Stochastic/distribution Ray-Tracing

Apply distribution-based sampling to parts of the ray-tracing algorithm

Send multiple perturbed rays and average

Rendering of "soft" phenomena

- Anti-aliasing
- Soft shadows
- Glossy reflections
- Depth of field
- Motion blur

Anti-Aliasing

- Shoot many rays per pixel
- Average retrieved colors
- Methods

Regular sampling

Random Sampling

Stratified Sampling

Anti-Aliasing – Examples

Reference

Random Sampling

Stratified Sampling

Anti-Aliasing – Adaptive Supersampling

Shoot more rays only in case of large differences in color

Anti-Aliasing – Examples

Aliasing

Anti-Aliasing

Soft Shadows

Soft Shadows

Soft Shadows

9 shadow rays (3*3 grid)

16.384 shadow rays (128*128 grid)

Gloss/Translucency

 Produce blurry reflections/refractions by randomly perturbing reflection/refraction rays from their "true" directions

Gloss/Translucency

So far, exactly 1 reflected ray

- Shoot many "reflected" rays
- Accumulate, weighted by power-cosine law (Phong) $\cos^p \Theta_j$

Depth of Field

- So far: ideal pin-hole camera model
- For depth-of-field, we need to model real cameras

Depth of Field

Sample the whole shutter aperture

 Shoot ray from each sample point through focal plane point

 Details of implementation
steveharveynz.wordpress.com/2012/12/21/raytracer-part-5-depth-of-field

Depth of Field – Examples

Depth of Field – Shutter Speed Artifects

- A slower shutter speed means the shutter is open for more time
- This can result in motion blur

Motion Blur

- Goal: compute "average" image for time interval, during which objects move
- Sample time interval and shoot one ray per point in time t
- Ray-object intersections, use positions P(t)
- Average color of all rays for one pixel

