

SITUATION

Pour déterminer l'expression du terme général d'une suite (u_n) , l'énoncé invite parfois à utiliser une suite auxiliaire (v_n) définie en fonction de la suite (u_n) .

ÉNONCÉ

Soit (u_n) la suite définie par :

$$egin{cases} u_0=1\ orall n\in\mathbb{N},\ u_{n+1}=3u_n-8 \end{cases}$$

On considère la suite $\left(v_{n}
ight)$ définie par :

$$\forall n \in \mathbb{N}, \ v_n = u_n - 4$$

En utilisant la suite auxiliaire (v_n) , déterminer l'expression du terme général de la suite (u_n) en fonction de n.

Etape 1

Montrer que la suite auxiliaire est arithmétique ou géométrique

On exprime v_{n+1} en fonction de v_n pour déterminer si la suite auxiliaire (v_n) est arithmétique ou géométrique. On précise alors sa raison et son premier terme.

APPLICATION

Soit *n* un entier naturel :

$$v_{n+1} = u_{n+1} - 4$$

On remplace u_{n+1} par son expression en fonction de u_n :

$$v_{n+1} = 3u_n - 8 - 4$$

On remplace $u_n\,$ par son expression en fonction de $v_n\,$:

$$v_{n+1} = 3(v_n + 4) - 8 - 4$$

$$v_{n+1} = 3v_n + 12 - 8 - 4$$

Ainsi, pour tout entier naturel *n*:

$$v_{n+1}=3v_n$$

La suite $\left(v_{n}
ight)$ est donc une suite géométrique de raison 3. Son premier terme vaut :

$$v_0 = u_0 - 4 = 1 - 4 = -3$$

Etape 2

Donner le terme général de la suite auxiliaire

On donne l'expression de \emph{v}_n en fonction de \emph{n} . Deux cas se présentent :

- ullet Si la suite auxiliaire (v_n) est arithmétique de raison \emph{r} , alors, pour tout entier naturel \emph{n} , $v_n = v_0 + n \emph{r}$.
- ullet Si la suite auxiliaire (v_n) est géométrique de raison \emph{q} , alors, pour tout entier naturel \emph{n} , $v_n=q^nv_0$.

APPLICATION

La suite $\left(v_{n}
ight)$ est géométrique de raison 3 et de premier terme $v_{0}=-3$. Donc, pour tout entier naturel n :

$$v_n=-3 imes 3^n=-3^{n+1}$$

Etape 3

En déduire le terme général de la suite

On remplace v_n par l'expression trouvée dans l'étape précédente dans la définition de la suite auxiliaire pour en déduire l'expression du terme général de la suite (u_n) .

APPLICATION

Pour tout entier naturel *n*, on a :

$$u_n = v_n + 4$$

On a donc, pour tout entier naturel *n*:

$$u_n=4-3^{n+1}$$