4.5 Подобрување на перформансите

- Техники за подобрување на перформансите на процесорот
 - кеш (cache) меморија
 - **нередоследно** извршување на инструкциите (вон редослед; out-of-order) со:
 - преименување на регистрите (register renaming)
 - **шпекулативно** извршување (speculative execution) засновано на:
 - претскажување на разгранувања (branch prediction)
 - претскажување на вредности (value prediction)

- Мала брза меморија во која се чуваат најнеодамна (најскоро) употребуваните мемориски зборови, со што се забрзува пристапот до нив
- Доколку доволно голем процент од потребните мемориски зборови се наоѓаат во кеш-меморијата, ефективното доцнење при комуникацијата со меморијата може значително да се намали
- Основна техника (работи мошне ефикасно):
 - раздвоена кеш-меморија (split cache) одделни кешмемории за инструкции (instruction cache) и податоци (data cache)
 - мемориските операции можат да се иницираат независно кај двете кеш-мемории, удвојувајќи ја, на тој начин, пропусната моќ на меморискиот систем
 - Пример: 32-битна и 8-битна мемориска порта кај Міс-1 микроархитектурата, секоја од нив со посебна кешмеморија

- Кај пософистицираните мемориски системи, можат да постојат две, три, или повеќе нивоа на кеш-меморија
 - L1 (на самиот CPU чип): 16 KB 64 KB
 - L2 (дел од "процесорскиот пакет"): 512 КВ 1МВ
 - L3 (на матичната плоча): неколку МВ (SRAM)
- Кеш мемориите се инклузивни
 - целата содржина на L1 кеш-меморијата е содржана и во L2 кеш-мемоијата
 - целата содржина на L2 кеш-меморијата е содржана и во L3 кеш-меморијата

4.5.1 Кеш меморија

4.5.1 Кеш меморија

- Кеш мемориите користат два вида на локалност на мемориските адреси:
 - просторна локалност (spatial locality)
 - АКО неодамна се пристапило на некоја мемориска локација, ТОГАШ, со голема веројатност, наскоро ќе им се пристапи и на мемориските локации кои имаат нумерички слични (соседни) адреси
 - временска локалност (temporal locality)
 - AKO неодамна се пристапило на некои мемориски локации, ТОГАШ, со голема веројатност, наскоро повторно ќе им се пристапи
 - Забелешка: принципот на временска локалност се применува при донесување на одлука "што треба да се исфрли од кеш-меморијата" при промашување

4.5.1 Кеш меморија

Модел:

- Главната меморија се дели на блокови со фиксна големина – кеш линии (со големина 4 – 64 последователни бајтови)
- Во секој момент, некои кеш линии се содржани во кеш-меморијата
- При комуникација со меморијата, се проверува дали бараниот збор е содржан во кешмеморијата(?)
 - Ако зборот е најден, веднаш може да се искористи соодветната вредност, без да се пристапува до главната меморија
 - Ако зборот не е најден, една од кеш-линиите се исфрла од кеш-меморијата, а на нејзино место (од главната меморија, или од кеш-меморијата од пониското ниво) се презема и се внесува бараната кеш-линија

- Директно-пресликана кеш меморија (Direct-Марреd Cache) – наједноставна кеш-меморија
- Пример:
 - 2048 (2¹¹) редици секоја од нив може да содржи само една кеш-линија од главната меморија
 - Должина на кеш-линија = 32 бајти
 - Капацитет = 2048 x 32 = 64 КВ
 - Секоја редица се состои од три дела:
 - Поле Valid (1 бит) покажува дали податоците во соодветната кеш-линија се валидни или не (при стартирање на системот, сите редици имаат бит Valid=0)
 - Поле **Tag** (16 бита) ја идентификува соодветната линија од меморијата од која потекнуваат податоците
 - Поле **Data** (32 бајти) содржи копија од податоците во меморијата (кеш-линија)

4.5.1.1 Директно-пресликана кеш меморија

- Секој мемориски збор може да биде сместен само на едно единствено место во кеш-меморијата ако се знае мемориската адреса, тогаш постои само едно место на кое може да се бара соодветниот збор (ако не е таму, тогаш воопшто не е во кеш-меморијата!)
- За запишување и читање на податоци од кешмеморијата, 32-битната адреса е поделена на четири компоненти:
 - Поле **Tag** соодветствува на истоименото поле содржано во една редица од кеш-меморијата
 - Поле LINE ја означува редицата од кеш-меморијата која ги содржи бараните податоци (доколку се присутни во неа)
 - Поле WORD означува кој збор од линијата е потребен
 - Поле ВҮТЕ означува кој бајт од зборот е потребен

4.5.1.1 Директно-пресликана кеш меморија

• 32-битна адреса

Bits	16	11	3	2	
	TAG	LINE	WORD	BYTE	

 Кога процесорот ќе генерира мемориска адреса, хардверот ги одвојува 11-те LINE битови и ги користи како индекс (покажувач) кон една од 2048-те редици

- Ако содржината на редицата е валидна, се споредува **TAG** полето од адресата со **Tag** полето од кеш-меморијата
 - Ако TAG=Tag, тогаш има совпаѓање редицата го содржи бараниот збор – погодок (cache hit)
 - Ако TAG<>Tag, тогаш има несовпаѓање бараната линија не е присутна во кеш-меморијата промашување (cache miss) 32-бајтната кеш-линија која што била побарана се презема од главната меморијата и се запишува во кеш-меморијата, а тековната содржина се пребришува
 - **Забелешка**: ако постојната редица од кеш-меморијата била менувана, тогаш мора да биде запишана назад во главната меморија пред да биде исфрлена!

- **ПРОБЛЕМ**: ако програмата пристапува кон податоци на локација X, а потоа кон податоци од локација X+65536 (или некоја соседна локација од истата кеш-линија), тогаш ќе се предизвика преземање на нова кеш-линија од главната меморија и пребришување на тековната содржина
 - ако тоа се случува често, доаѓа до деградација на перформансите(!)
- МОЖНО РЕШЕНИЕ: ако во секоја редица од кешмеморијата се запишуваат по две или повеќе кеш-линии, тогаш секоја редица ќе претставува множество од кешлинии (set)
- **n-насочна ограничено-асоцијативна кеш-меморија** (n-way Set-Associative Cache) кеш-меморија со **n** можни позиции за секоја адреса (најчесто, n=2 или n=4)
- **НЕДОСТАТОК**: Секогаш треба да се проверува множество од **n** кеш-линии за да се утврди дали бараната линија е присутна

Пример: 4-насочна ограничено-асоцијативна меморија (со ист капацитет)

АК-07 П.Митревски

- Прашање: која од кеш-линиите да се исфрли кога треба да се преземе нова кеш-линија од меморијата?
- Ефикасен алгоритам LRU (Least Recently Used) се исфрла линијата која најдолго време не била употребена
 - За линиите од едно множество се чува информација ("топ-листа") која ги подредува во склад со обраќањата до нив:
 - Штом ќе биде побарана (употребена) некоја од линиите, таа се става на врвот од листата
 - Линијата која се наоѓа на дното од листата е таа која најдолго време не била употребена и затоа е кандидат за исфрлање од кеш-меморијата(!)

4.5.1.2 Ограничено- асоцијативна кеш меморија

- Прашање: доколку процесорот запишува (write) некој мемориски збор, дали истиот треба веднаш да се запише во главната меморија?
- Постојат две можности:
 - Запишување низ кеш-меморијата (write through)

 зборот се запишува во кеш-меморијата, а
 истовремено и во главната меморија (на тој начин,
 содршината на главната меморија е секогаш
 ажурирана "up to date")
 - Одложено запишување (write back; write deferred)
 зборот се запишува во главната меморија многу подоцна, дури кога линијата треба да биде пребришана (во согласност со LRU алгоритмот)