Лабораторная работа №3

Кибербезопасность предприятия

Тимофеева Екатерина Николаевна

Содержание

1	Целі	ь работы	5
2		олнение лабораторной работы	6
	2.1	1. Слабый пароль пользователя	6
		2.1.1 Последствие Dev backdoor	7
	2.2	Атака XSS	9
		2.2.1 Последствие Redmine User	11
	2.3	Blind SQL-инъекция	13
3	Выв	ОДЫ	16

Список иллюстраций

2.1	Сброс пароля	. 6
2.2	Запуск исполняемого файла	
2.3	Удаление evil tasc из планировщика задач и удаление файла	
2.4	Атаки устранены	. 8
2.5	Создание карточки инцидента	. 9
2.6	Создание карточки	. 9
2.7	Изменение кода функции	. 10
2.8	Перезапуск веб-сервера	. 11
2.9	Удаление пользователя hacker	. 12
2.10	Ampire	. 12
2.11	Карточка инцидента	. 13
2.12	Карточка инцидента	. 13
2.13	Изменение кода	. 14
2.14	Перезапуск	. 14
2.15	Карточка инцидента	. 15
2.16	Ampire	. 15

Список таблиц

1 Цель работы

Устранить действий нарушителя «Защита научно-технической информации предприятия» для использования при проведении учебно-практических занятий на базе программного комплекса обучения методам обнаружения, анализа и устранения последствий компьютерных атак «Атрire».

2 Выполнение лабораторной работы

2.1 1. Слабый пароль пользователя

Для закрытия уязвимости необходимо изменить пароль на более сложный, не содержащийся в словаре.

Для этого на сервере AD открываем "Active Directory Users and Computers", находим пользователя dev1, нажимаем на "Reset Password" и вводим новый пароль. (рис. 1).

Рис. 2.1: Сброс пароля

2.1.1 Последствие Dev backdoor

Зпаускаем исполняемый файл в планировщике. (рис. 2).

Рис. 2.2: Запуск исполняемого файла

Для того, чтобы устранить полезную нагрузку мы удаляем задачу из планировщика задач и файл из директории. (рис. 3).

Рис. 2.3: Удаление evil tasc из планировщика задач и удаление файла

Устранили уязвимость 1 и последствие 1. (рис. 4).

Рис. 2.4: Атаки устранены

Создаём карточку инцидента для уязвимости. (рис. 5).

Рис. 2.5: Создание карточки инцидента

Создаём карточку инцидента для последствия. (рис. 6).

Рис. 2.6: Создание карточки

2.2 ATAKA XSS

Необходимо внести изменения в код Redmine. Находим обработку текста wikiстраницы при наличии в тексте html-тегов. Удаляем тег pre из разрешенных тегов, которые не будут экранированы. (рис. 7).

Рис. 2.7: Изменение кода функции

После внесения изменений перезапускаем службу веб-сервера. (рис. 8).

Рис. 2.8: Перезапуск веб-сервера

2.2.1 Последствие Redmine User

Для нейтрализации полезной нагрузки необходимо удалить созданного пользователя "hacker" через веб-интерфейс Redmine. (рис. 9).

Рис. 2.9: Удаление пользователя hacker

Устранили 2 уязвимости и 2 последствия. (рис. 10).

Рис. 2.10: Ampire

Заполняем карточку инцидента для 2 уязвимости. (рис. 11).

Рис. 2.11: Карточка инцидента

Заполняем карточку инцидента для 2 последствия. (рис. 12).

Рис. 2.12: Карточка инцидента

2.3 Blind SQL-инъекция

Для устранения этой уязвимости нам необходимо внести изменения в код Redmine. Находим файл query.rb и в нужный участок кода добавляем фильтрацию

значений и часть закомментируем. (рис. 13).

```
if has filter? ("subproject id")
  case operator for ("subproject id")
   # include the selected subprojects
    # ids = [project.id] + values_for("subproject_id").each(&:to_i)
   subproject ids = values for ("subproject id").
   project clauses << "#{Project.table name}.id IN (%s)" % ids.join(',')
  when '!*'
    # main project only
   project clauses << "#{Project.table name}.id = %d" % project.id
  else
   # all subprojects
   project clauses << "#{Project.table name}.lft >= #{project.lft} AND #$
 end
elsif Setting.display_subprojects_issues?
 project clauses << "#{Project.table name}.lft >= #{project.lft} AND #{P$
 project clauses << "#{Project.table name}.id = %d" % project.id
end
```

Рис. 2.13: Изменение кода

После внесения изменений перезапускаем службу веб-сервер. (рис. 14).

```
Using username "user".

ast login: Sat Oct 25 23:52:22 2025 from 10.10.2.254

ser@redmine:~$ cd /var/www/redmine/app/models

ser@redmine:/var/www/redmine/app/models$ nano query.rb

ser@redmine:/var/www/redmine/app/models$ sudo systemctl restart nginx.service

sudo] password for user:

ser@redmine:/var/www/redmine/app/models$
```

Рис. 2.14: Перезапуск

Заполняем карточку инцидента уязвимости. (рис. 15).

Рис. 2.15: Карточка инцидента

Успешно устранили 3 уязвимость. (рис. 16).

Рис. 2.16: Ampire

3 Выводы

В ходе данной лабораторной работы мы смогли устранить действия нарушителя «Защита научно-технической информации предприятия», а так же выполнить последствия к каждой уязвимости.