```
import pandas as pd
In [2]:
        import warnings
        warnings.filterwarnings('ignore')
        data=pd.read csv("/home/placement/kambala/fiat500.csv")
In [3]:
        print(data)
                 ID
                      model
                              engine power
                                            age in days
                                                               km
                                                                   previous owners \
                  1
                     lounge
                                        51
                                                     882
                                                            25000
         0
                                        51
                                                    1186
                                                            32500
         1
                  2
                                                                                  1
                         pop
                  3
                      sport
                                        74
                                                    4658
                                                          142228
                                                                                  1
         3
                     lounge
                                        51
                                                    2739
                                                          160000
                                                                                  1
                                        73
         4
                  5
                         pop
                                                    3074
                                                          106880
                                                                                  1
                                                     . . .
                                        . . .
        1533
               1534
                                        51
                                                    3712
                                                          115280
                                                                                  1
                      sport
        1534
               1535
                                        74
                                                    3835
                                                          112000
                     lounge
                                                                                  1
        1535 1536
                                                    2223
                                        51
                                                            60457
                                                                                  1
                         pop
        1536
               1537
                     lounge
                                        51
                                                    2557
                                                            80750
                                                                                  1
        1537 1538
                                        51
                                                    1766
                                                            54276
                                                                                  1
                         pop
                     lat
                                      price
                                 lon
               44.907242
                            8.611560
                                       8900
         0
               45.666359
                          12.241890
                                       8800
         2
               45.503300
                          11.417840
                                       4200
         3
               40.633171 17.634609
                                       6000
               41.903221
                          12.495650
                                       5700
         4
                                        . . .
                                 . . .
                      . . .
         . . .
        1533
               45.069679
                            7.704920
                                       5200
        1534
               45.845692
                            8.666870
                                       4600
        1535
               45.481541
                            9.413480
                                       7500
        1536
              45.000702
                           7.682270
                                       5990
        1537 40.323410
                          17.568270
                                       7900
        [1538 rows x 9 columns]
```

```
In [4]: data.head(10)
```

Out[4]:

|   | ID | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|---|----|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0 | 1  | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1 | 2  | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2 | 3  | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3 | 4  | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4 | 5  | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
| 5 | 6  | pop    | 74           | 3623        | 70225  | 1               | 45.000702 | 7.682270  | 7900  |
| 6 | 7  | lounge | 51           | 731         | 11600  | 1               | 44.907242 | 8.611560  | 10750 |
| 7 | 8  | lounge | 51           | 1521        | 49076  | 1               | 41.903221 | 12.495650 | 9190  |
| 8 | 9  | sport  | 73           | 4049        | 76000  | 1               | 45.548000 | 11.549470 | 5600  |
| 9 | 10 | sport  | 51           | 3653        | 89000  | 1               | 45.438301 | 10.991700 | 6000  |

In [7]: data.describe()

Out[7]:

|       | ID          | engine_power | age_in_days | km            | previous_owners | lat         | lon         | price        |
|-------|-------------|--------------|-------------|---------------|-----------------|-------------|-------------|--------------|
| count | 1538.000000 | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000 | 1538.000000 | 1538.000000  |
| mean  | 769.500000  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 43.541361   | 11.563428   | 8576.003901  |
| std   | 444.126671  | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 2.133518    | 2.328190    | 1939.958641  |
| min   | 1.000000    | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 36.855839   | 7.245400    | 2500.000000  |
| 25%   | 385.250000  | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 41.802990   | 9.505090    | 7122.500000  |
| 50%   | 769.500000  | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 44.394096   | 11.869260   | 9000.000000  |
| 75%   | 1153.750000 | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 45.467960   | 12.769040   | 10000.000000 |
| max   | 1538.000000 | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 46.795612   | 18.365520   | 11100.000000 |

In [8]: datal=data.drop(columns=["ID","lat","lon"])

27/06/2023 fiat linear regression

In [9]: data1

Out[9]:

|      | model  | engine_power | age_in_days | km     | previous_owners | price |
|------|--------|--------------|-------------|--------|-----------------|-------|
| 0    | lounge | 51           | 882         | 25000  | 1               | 8900  |
| 1    | pop    | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | sport  | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | lounge | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | pop    | 73           | 3074        | 106880 | 1               | 5700  |
|      |        |              |             |        |                 |       |
| 1533 | sport  | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | lounge | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | pop    | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | lounge | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | pop    | 51           | 1766        | 54276  | 1               | 7900  |

1538 rows × 6 columns

In [10]: data1=pd.get\_dummies(data1)

In [11]: data1

Out[11]:

|      | engine_power | age_in_days | km     | previous_owners | price | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|-------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 8900  | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 8800  | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 4200  | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 6000  | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 5700  | 0            | 1         | 0           |
|      |              |             |        |                 |       |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 5200  | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 4600  | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 7500  | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 5990  | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 7900  | 0            | 1         | 0           |

1538 rows × 8 columns

```
In [12]: y=data1['price']
x=data1.drop(columns='price')
```

In [13]: x

Out[13]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 0            | 1         | 0           |
|      |              |             |        |                 |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 0            | 1         | 0           |
|      |              |             |        |                 |              |           |             |

1538 rows × 7 columns

```
In [14]: y
Out[14]: 0
                  8900
                  8800
         2
                  4200
         3
                  6000
         4
                  5700
                  . . .
         1533
                  5200
         1534
                  4600
         1535
                  7500
         1536
                  5990
         1537
                  7900
         Name: price, Length: 1538, dtype: int64
```

27/06/2023 fiat linear regression

In [15]: from sklearn.model\_selection import train\_test\_split
x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.33,random\_state=42)

In [16]: x\_test

Out[16]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 481  | 51           | 3197        | 120000 | 2               | 0            | 1         | 0           |
| 76   | 62           | 2101        | 103000 | 1               | 0            | 1         | 0           |
| 1502 | 51           | 670         | 32473  | 1               | 1            | 0         | 0           |
| 669  | 51           | 913         | 29000  | 1               | 1            | 0         | 0           |
| 1409 | 51           | 762         | 18800  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |
| 291  | 51           | 701         | 22000  | 1               | 1            | 0         | 0           |
| 596  | 51           | 3347        | 85500  | 1               | 0            | 1         | 0           |
| 1489 | 51           | 366         | 22148  | 1               | 0            | 1         | 0           |
| 1436 | 51           | 1797        | 61000  | 1               | 1            | 0         | 0           |
| 575  | 51           | 366         | 19112  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |

508 rows × 7 columns

In [17]: x\_train

Out[17]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 527  | 51           | 425         | 13111  | 1               | 1            | 0         | 0           |
| 129  | 51           | 1127        | 21400  | 1               | 1            | 0         | 0           |
| 602  | 51           | 2039        | 57039  | 1               | 0            | 1         | 0           |
| 331  | 51           | 1155        | 40700  | 1               | 1            | 0         | 0           |
| 323  | 51           | 425         | 16783  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |
| 1130 | 51           | 1127        | 24000  | 1               | 1            | 0         | 0           |
| 1294 | 51           | 852         | 30000  | 1               | 1            | 0         | 0           |
| 860  | 51           | 3409        | 118000 | 1               | 0            | 1         | 0           |
| 1459 | 51           | 762         | 16700  | 1               | 1            | 0         | 0           |
| 1126 | 51           | 701         | 39207  | 1               | 1            | 0         | 0           |

1030 rows × 7 columns

In [18]: y\_test.head(5)

Out[18]: 481

481 7900 76 7900 1502 9400 669 8500 1409 9700

Name: price, dtype: int64

```
In [19]: y train.head(5)
Out[19]: 527
                9990
                9500
         129
         602
                7590
         331
                8750
         323
                9100
         Name: price, dtype: int64
In [20]: from sklearn.linear_model import LinearRegression
         reg=LinearRegression()#creating object of LinearRegression
         reg.fit(x train,y train)#training and fitting
Out[20]: LinearRegression()
In [21]: y_pred=reg.predict(x_test) #predict the price using x_test data
```

27/06/2023 fiat linear regression

```
In [22]: y pred
                 9653.06224923.
                                 7948.63618724.
                                                  9704.82523573.
                                                                  7971.05970955.
                                 9176.43567301,
                10399.51752022.
                                                  5803.03205787.
                                                                  6698.19524313.
                 8257.83550573. 10452.95284574.
                                                  9948.66454584.
                                                                  9789.65062843.
                10582.50828537, 7568.91955482,
                                                  6804.97705225,
                                                                  8065.01292384,
                10310.29143419,
                                 8836.34894739,
                                                  8390.05091229,
                                                                  9582.13932508,
                 9745.34784981, 10045.45021387, 10294.09872915,
                                                                  7145.15315349.
                                                                  9387.9203723
                 9727.85493167,
                                 6281.78952194,
                                                  7901.36245623,
                 5039.55649797,
                                 9351.49777725,
                                                  9980.70844784, 10094.79341516,
                 6359.24321991,
                                 9856.10227211,
                                                  9099.07023804,
                                                                  5234.05388382,
                 5534.45288323,
                                 4495.02309231, 10199.78432943, 10024.87037067,
                 5465.58034188,
                                 8520.72057674, 7034.71038647, 10054.65061446,
                10191.12067767,
                                 6008.34860428,
                                                 9748.18097947,
                                                                  9669.4333196
                 9145.3756075 ,
                                 9175.66562699, 10087.86753845,
                                                                  9825.02990067,
                 7340.29803785.
                                 5083.8487301 ,
                                                 9441.50914802, 10243.05490667,
                 5556.42300245, 10676.01945733,
                                                 6126.99295838,
                                                                  9845.16661356,
                 9850.77978959,
                                 7840.83596305,
                                                  6552.05146566,
                                                                  9938.82104889.
                 8327.79232274,
                                 9119.62204137,
                                                  6111.83787367, 10410.00504522,
                 6360.97695249,
                                 8601.59209793,
                                                  8377.80258216,
                                                                  9803.81343895,
                 8285.09831762, 10091.75635129, 10003.86694939, 10028.60283146,
         from sklearn.metrics import r2 score #to know the efficiency bw the predicted price
In [23]:
         r2 score(y test,y pred)
Out[23]: 0.8415526986865394
In [24]: from sklearn.metrics import mean squared error#calaculating mse
         mean squared error(y test,y pred)
Out[24]: 581887.727391353
```

27/06/2023 fiat linear regression

```
In [25]: y test.head(10)
Out[25]: 481
                  7900
                  7900
         76
         1502
                  9400
         669
                  8500
         1409
                  9700
         1414
                  9900
         1089
                  9900
         1507
                  9950
         970
                 10700
         1198
                  8999
         Name: price, dtype: int64
In [26]: results=pd.DataFrame(columns=['Price', 'Predicted']) #create datafame for price and predicted
         results['Price']=y_test
         results['Predicted']=y_pred
         results=results.reset_index() #remove the index as ID values
         results['id']=results.index
```

27/06/2023 fiat linear regression

In [27]: results

Out[27]:

|     | index | Price | Predicted    | id  |
|-----|-------|-------|--------------|-----|
| 0   | 481   | 7900  | 5867.650338  | 0   |
| 1   | 76    | 7900  | 7133.701423  | 1   |
| 2   | 1502  | 9400  | 9866.357762  | 2   |
| 3   | 669   | 8500  | 9723.288745  | 3   |
| 4   | 1409  | 9700  | 10039.591012 | 4   |
|     |       |       |              |     |
| 503 | 291   | 10900 | 10032.665135 | 503 |
| 504 | 596   | 5699  | 6281.536277  | 504 |
| 505 | 1489  | 9500  | 9986.327508  | 505 |
| 506 | 1436  | 6990  | 8381.517020  | 506 |
| 507 | 575   | 10900 | 10371.142553 | 507 |

508 rows × 4 columns

results["Difference"]=results.apply(lambda x:x.Price-x.Predicted,axis=1)#

27/06/2023 fiat linear regression

In [28]: results

Out[28]:

|     | index | Price | Predicted    | id  |
|-----|-------|-------|--------------|-----|
| 0   | 481   | 7900  | 5867.650338  | 0   |
| 1   | 76    | 7900  | 7133.701423  | 1   |
| 2   | 1502  | 9400  | 9866.357762  | 2   |
| 3   | 669   | 8500  | 9723.288745  | 3   |
| 4   | 1409  | 9700  | 10039.591012 | 4   |
|     |       |       |              |     |
| 503 | 291   | 10900 | 10032.665135 | 503 |
| 504 | 596   | 5699  | 6281.536277  | 504 |
| 505 | 1489  | 9500  | 9986.327508  | 505 |
| 506 | 1436  | 6990  | 8381.517020  | 506 |
| 507 | 575   | 10900 | 10371.142553 | 507 |

508 rows × 4 columns

```
In [29]: import seaborn as sns
   import matplotlib.pyplot as plt
   sns.lineplot(x='id',y='Price',data=results.head(50)) #actual color=blue
   sns.lineplot(x='id',y='Predicted',data=results.head(50)) #predicted color=orange
   plt.show()
```



In [ ]: