Методы стохастической оптимизации

Лабораторная работа №4

Иванов Владимир, М3235, Боин Михаил, М3234 Шепелев Матвей, М3235 Зубарев Денис, М3235 Команда ООО АДВЧИПСГРУПП

1 Введение

В данной работе рассматриваются:

- Метод имитации отжига
- Генетический алгоритм

1.1 Функции для минимизации

1. Функция Розенброка

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

2. Функция Химмельблау:

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

3. Функция Экли:

$$f(x,y) = -20 \exp \left(-0.2 \sqrt{0.5 (x^2 + y^2)}\right) - \exp(0.5 (\cos(2\pi x) + \cos(2\pi y))) + 20 + e^{-2x^2 + 2x^2} + e^{-2x^2$$

(мультимодальная функция с минимумом в точке $x_0=(0,0)$, $f(x_0)=0$)

Каждый метод запускается несколько раз, и итоговые результаты усредняются (это сделано для того, чтобы учесть случайность методов).

2 Алгоритм имитации отжига

2.1 Реализация

Ключевые компоненты алгоритма:

Генерация нового состояния: $x_{k+1} = F(x_k)$

Приращения целевой функции: $\Delta E = E(x_{k+1}) - E(x_k)$

Вероятность перехода: $P(\Delta E,T)=e^{-\frac{\Delta E}{T}}$ (критерий Метрополиса)

Функция изменения температуры: $T_{k+1} = \alpha * T_k$ (геометрическое охлаждение)

2.2 Как работает

Алгоритм имитации отжига работает итеративно, на каждом шаге:

- 1. Генерация нового состояния:
 - При помощи F получаем новое состояние x_{k+1}

2. Оценка решения:

- ullet Вычисляем ΔE
- Если $\Delta E \leq 0$ (улучшение), решение всегда принимается
- Если $\Delta E>0$ (ухудшение), решение принимается с вероятностью, высчитывающейся соответствующей функцией $P(\Delta E,T)$

3. Обновление температуры:

- Температура снижается по выбранному закону
- Процесс продолжается пока $T>T_{\min}$

2.3 Результаты работы алгоритма

Для выбора нового состояния была использована следующая $F: F(x) = x + \alpha,$ где $\alpha \in [0.3, 0.3)$ - для поиска минимума обычной функции,

 $F(x)=\mathrm{concatenate}(x[:i],x[i:j+1].\mathrm{reverse}(),x[j+1:]),$ где i,j-индексы городов, $i\leq j$ - для решения задачи коммивояжера

• Поиск минимума функции

Рис. 1: на функции Розенброка

Рис. 2: на функции Химмельблау

Рис. 3: на функции Экли

• Задача коммивояжёра

Рис. 4: Количество итераций: 115124

Отжиг показывает не то что бы хорошие результаты на функциях Розенброка/Химмельблау: он находит минимум с большой

погрешностью за относительно высокое число итераций. На мультимодальной функции Экли он застревает в локальном минимуме.

Алгоритм эффективно решает задачу коммивояжера, находя оптимальный путь, но требует тщательного подбора точек. Для больших наборов точек (например, 100) необходимо использовать медленное охлаждение (например, α = 0.9999), чтобы избежать преждевременной сходимости к субоптимальному решению.

3 Генетический алгоритм

Алгоритм, вдохновленный биологическим процессом эволюции.

3.1 Как работает

- 1. Инициализация:
 - Создается начальная популяция случайных решений
 - Для задачи коммивояжера случайная перестановка городов
- 2. Скрещивание:
 - Выбираются два лучших родителя из случайной группы и создается новый объект на основание их признаков
- 3. Мутация:
 - Происходит небольшое случайное изменения в ребенке
- 4. Замена поколений:
 - Формируется новая популяция из лучших решений
 - Процесс повторяется пока не достигнут критерий остановки

3.2 Реализация для минимизации

Инициализация: Создаётся набор векторов со случайными вещественными числами

Скрещивание: На основание случайной величины α (от 0 до 1), мы получаем ребенка по формуле: $\alpha \cdot x_1 + (1-\alpha) \cdot x_2$, где x_1 и x_2 это лучшие вектора выбранные из текущей популяции

Мутации: С вероятностью mutation rate к каждому элементу вектора добавляется число от 0 до 1

Остановка: модуль разности между правильным ответом и нашим меньше ε , либо предел по шагам

3.2.0.1 Результаты работы алгоритма

• Поиск минимума функции

Рис. 5: на функции Розенброка

Рис. 6: на функции Химмельблау

Рис. 7: на функции Экли

Генетический хорошо показал себя на функции Экли, где за быстро смог найти глобальный минимум, но не лучшим образом отработал на функциях Химмельблау/Розенброка: ему потребовалось очень много итераций, чтобы сойтись (но зато с высокой точностью).

4 Заключение

Алгоритм отжига - не лучшее решение для обычной минимизации функции, т.к сложно подобрать достаточно универсальную и простую F(x), а с неудачной он показывает посредственные результаты.

С другой стороны, отжиг хорошо решает специализированные задачи, например, задачу коммивояжера.

Генетический алгоритм неплохо справляется с задачей минимизации: он очень точно находит ответ, но требует достаточно много итераций и вычислений.