Заняття 6. Теплове випромінювання. Фотоефект.

Аудиторне заняття

- 1. Абсолютно чорне тіло нагріли від кімнатної температури $t_1 = 20$ °C до $t_2 = 500$ °C. Як при цьому змінилася потужність випромінювання? На скільки змінилися довжина максимуму випромінювальної здатності? (№1.59)
- 2. Яку потужність N потрібно підводити до металевої кульки радіусом r=2 см, щоб підтримувати її температуру на $\Delta T=27$ К вище температури оточуючого середовища? Температура оточуючого середовища T=293 К. Вважати, що тепло втрачається тільки за рахунок випромінення, кульку розглядати як абсолютно чорне тіло. (\mathbb{N} 1.71)
- 3. Радіус Сонця дорівнює $r_{\rm C} = 6,96 \cdot 10^5$ км; радіус орбіти Меркурія $R_{\rm Mk} = 5,79 \cdot 10^7$ км, Марса $R_{\rm Mp} = 2,28 \cdot 10^8$ км. Температура поверхні Сонця складає приблизно $T_{\rm C} = 6000$ К. Використовуючи закони теплового випромінювання, оцінити середні температури планет. (№1.62)
- 4. Визначити максимальну швидкість υ_{max} фотоелектронів, що вибиваються з поверхні срібла: а) ультрафіолетовим випромінюванням з довжиною хвилі λ_1 = 0,155 мкм; б) γ -випромінюванням з довжиною хвилі λ_2 =1 пм. (№1.76)
- 5. Червона границя фотоефекту для цинку $\lambda_0 = 310$ нм Визначити максимальну кінетичну енергію $E_{k,max}$ фотоелектронів в електрон-вольтах, якщо на цинк падає світло з довжиною хвилі $\lambda = 200$ нм.
- 6. При деякому максимальному значенні затримуючої різниці потенціалів фотострум з поверхні літію, який освітлюється електромагнітним випроміненням з довжиною хвилі λ_0 , припиняється. Змінивши довжину хвилі випромінення в $\gamma = 1,5$ рази, встановили, що для припинення фотоструму необхідно збільшити затримуючу різницю потенціалів в $\eta = 2$ рази. Визначити λ_0 . (№1.78)

Домашнє завдання

- 1. Початкова температура теплового випромінювання T = 2000 К. На скільки має змінитися ця температура, щоб найбільш ймовірна довжина хвилі у його спектрі збільшилась на $\Delta \lambda = 260$ нм? (№1.60)
- 2. Потік випромінювання абсолютно чорного тіла $\Phi = 10$ кВт, максимум енергії випромінення припадає на довжину хвилі $\lambda_m = 0.8$ мкм. Визначити площу S випромінюючої поверхні. (№1.64)
- 3. На поверхню металу падає монохроматичне світло з довжиною хвилі λ . Червона границя фотоефекту дорівнює λ_0 . Яка частка енергії фотону δ витрачається на надання електронові кінетичної енергії? (№1.79)
- 4. Знайти роботу виходу з деякого металу, якщо при почерговому освітленні його поверхні електромагнітним випроміненням з довжинами хвиль $\lambda_1 = 0.35$ мкм і $\lambda_2 = 0.54$ мкм максимальні швидкості фотоелектронів відрізняються в $\eta = 2$ рази. (№1.80)