Example

Graphs

R. K. Ghosh

- Two possible variations in problems:
 - Single source shortest paths
 - All pairs of shortest paths
- ▶ Single source shortest path can be executed *n* times each with a different source vertex for all pairs shortest path.
- So, let us first examine how single source shortest path can be solved.

Djikstra's Algorithm

- Dijkstra's algorithm partitions the set of vertices logically into three partitions.
 - Set S: consists of vertices $u \in V$ such that dist[v] (from source s) already known.
 - Set I_1 : consists of vertices $v \in V S$ such that each $v \in I_1$ is directly connected to a vertex $x \in S$.
 - Set I_2 : consists of vertices $w \in V S I_1$.
- ▶ Dijkstra's algorithm iteratively expands set S to include all vertices in V.

Example

With source vertex 1, set $S = \{1\}$ and consider edges incident on vertices of S for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
2	∞	6	undef	1
3	∞	2	undef	1
4	∞	16	undef	1
7	∞	14	undef	1

Select vertex 3 (minimum d value) for inclusion into set S. So, $S=\{1,3\}$ and p[3]=1.

Blue colored vertices are in set S, yellow colored vertices are in set I_1 , and organge colored are in set I_2 .

Now set $S=\{1,3\}$ and only edges with end points 1 and 3 are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
2	6	6	1	1
4	16	16	1	1
5	∞	5	undef	3
6	∞	10	undef	3
7	14	14	1	1

Select vertex 5 for inclusion into set S.

So
$$S = \{1, 3, 5\}$$
, and $p[3] = 1, p[5] = 3$

Blue colored vertices are in set S, yellow colored vertices are in set I_1 .

Now set $S = \{1, 3, 5\}$ and only edges with end points 1, 3 and 5 are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
2	6	6	1	1
4	16	9	1	5
6	10	10	3	3
7	14	14	1	1

Select vertex 2 for inclusion into set S. So $S = \{1, 2, 3, 5\}.$

$$p[3] = 1, p[5] = 3, p[2] = 1$$

Blue colored vertices are in set S, yellow colored vertices are in set I_1 .

Now set $S = \{1, 2, 3, 5\}$ and only edges with end points 1, 2, 3 and 5 are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
4	16	9	5	5
6	10	10	3	3
7	14	14	1	1 1

Select vertex 4 for inclusion into set S. So $S = \{1, 2, 3, 5\}$.

$$p[3] = 1, p[5] = 3, p[2] = 1, p[4] = 5$$

Blue colored vertices are in set 1, yellow colored vertices are in set 2.

Now set $S = \{1, 2, 3, 4, 5\}$ and only edges with end points in S are considered for relaxation.

Edge from S	old d[v]	new d[v]	old p[v]	new p[v]
6	10	10	3	3
7	14	14	1	1

Select vertex 6 for inclusion into set S. So $S = \{1, 2, 3, 4, 5\}$. p[3] = 1, p[5] = 3, p[2] = 1, p[4] = 5, p[6] = 3

Blue colored vertices are in set 1, yellow colored vertices are in set 2.

The remaining vertex 7 is included in S the last iteration.

$$S=\{1,2,3,4,5,6,7\} \text{ and } \\ p[3]=1,p[5]=3,p[2]=1,p[4]=5,p[6]=3,p[7]=6.$$

Pseudo Code for Edge Relaxation

```
Relax(u, v) {
    new_d = min {d[v], d[u] + w(u,v)};
    if (new_d[v] < d[v]) {
        d[v] = new_d;
        p[v] = u;
    }
}</pre>
```

Pseudo Code for Dijkstra's Algorithm

```
for all (v \in V) {
    dist[v] = \infty; // Initialize distances
    prev[v] = undef;
choose(s); // Source
dist[s] = 0; // Initialize source distance
Q = V; // Initialize queue
while (!isEmpty(Q)) {
   u = \min(d[u]); // Add new vertex
   Q = Q - \{u\}; // Update Q
   for each (v \in ADJ_G(u))
       Relax(u,v);
```