Introdução à Álgebra Linear

Pedro Patrício
Departamento de Matemática e Aplicações
Universidade do Minho
pedro@math.uminho.pt

② 2012

Conteúdo

1	Intr	rodução	5					
2	Cál	Cálculo Matricial						
	2.1	Notação matricial	7					
	2.2	Operações matriciais	9					
		2.2.1 Soma e produto escalar	9					
		2.2.2 Produto	10					
		2.2.3 Transposição	15					
		2.2.4 Invertibilidade	17					
	2.3	Um resultado de factorização de matrizes	21					
		2.3.1 Matrizes elementares	21					
		2.3.2 O Algoritmo de Eliminação de Gauss	27					
	2.4	Determinantes	35					
		2.4.1 Definição	35					
		2.4.2 Propriedades	37					
		2.4.3 Teorema de Laplace	40					
3	Sistemas de equações lineares 4							
	3.1	Formulação matricial	45					
	3.2	Resolução de $Ax = b$	46					
	3.3	Algoritmo de Gauss-Jordan	51					
	3.4	Regra de Cramer	53					
4	Os	s espaços vectoriais \mathbb{K}^n	57					
	4.1	Definição e exemplos	57					
	4.2	Independência linear	58					
	4.3	Bases de espaços vectoriais	61					
	4.4	Núcleo e espaço das colunas de uma matriz	64					
	4.5	Uma aplicação	74					
5	Va	llores e vectores próprios	81					
-	5.1	Motivação e definições	81					
	5.2	Propriedades	83					

4	CONTEÚDO
4	CONTEUDO

	5.3	Matrizes diagonalizáveis	84
6	Transformações lineares		
	6.1	Definição e exemplos	93
	6.2	Propriedades das transformações lineares	94
	6.3	Matriz associada a uma transformação linear	98
Bibliografia			105

Capítulo 1

Introdução

Estes apontamentos pretendem complementar a matéria abordada na componente teórica das aulas de Álgebra Linear. Poderá aqui encontrar provas de resultados referidos nas aulas, bem como exemplos de aplicações e exercícios.

Capítulo 2

Cálculo Matricial

Ao longo deste documento, \mathbb{K} designará o conjunto \mathbb{C} dos números complexos ou \mathbb{R} o dos números reais. Os elementos de \mathbb{K} são denominados por escalares.

2.1 Notação matricial

Uma matriz do tipo $m \times n$, com m e n naturais, sobre \mathbb{K} é uma tabela com mn elementos de \mathbb{K} , elementos esses dispostos em m linhas e n colunas:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Os elementos a_{ij} dizem-se os elementos, componentes ou entradas da matriz. A matriz diz-se do tipo $m \times n$ se tiver m linhas e n colunas. Usualmente as matrizes são denotadas por letras maiúsculas (A, B, C, \ldots) .

O conjunto de todas as matrizes (do tipo) $m \times n$ sobre \mathbb{K} representa-se por $\mathcal{M}_{m \times n}$ (\mathbb{K}) ou por $\mathbb{K}^{m \times n}$, e o conjunto de todas as matrizes (finitas) sobre \mathbb{K} por \mathcal{M} (\mathbb{K}). \mathbb{K}^m denota $\mathbb{K}^{m \times 1}$.

São exemplos de matrizes

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & -1 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 & 0 & 6 \end{bmatrix}, D = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

Quando conveniente, escrevemos a matriz A da definição anterior como

$$[a_{ij}]_{m\times n}$$
,

, ou simplesmente como $[a_{ij}]_{m\times n}$, e referimos a_{ij} como o elemento (i,j) de A, isto é, o elemento que está na linha i e na coluna j de A. Iremos também usar a notação $(A)_{ij}$ para indicar o elemento na linha i e coluna j de A.

Duas matrizes $[a_{ij}], [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ são iguais se $a_{ij} = b_{ij}$, para $i = 1, \ldots, m, j =$ $1, \ldots, n$. Ou seja, duas matrizes são iguais se têm o mesmo número de linhas e o mesmo número de colunas, e que os elementos na mesma linha e coluna são iguais.

Uma matriz do tipo m por n diz-se quadrada de ordem n se m=n, ou seja, se o número de linhas iguala o de colunas; diz-se rectangular caso contrário. Por exemplo, são quadradas as matrizes

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right], \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array}\right]$$

e rectangulares as matrizes

$$\left[\begin{array}{cc} 1 & 2 & 3 \\ 0 & 5 & -3 \end{array}\right], \left[\begin{array}{cc} 1 & -1 \end{array}\right], \left[\begin{array}{c} -1 \\ -4 \\ 0 \end{array}\right].$$

Os elementos diagonais de $[a_{ij}]_{i=1,\dots m,j=1,\dots n}$ são $a_{11},a_{22},\dots,a_{kk}$, onde $k=\min\{m,n\}$. Por exemplo, os elementos diagonais de $\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$ são 1 e - 2, e os da matriz $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & -3 \end{bmatrix}$ são 1 e 5.

Nos exemplos atrás apresentados, apenas a matriz A é quadrada, sendo as restantes rectangulares. Os elementos diagonais de A são 1, 3.

Apresentamos, de seguida, alguns tipos especiais de matrizes.

- 1. Uma matriz do tipo $1 \times n$ diz-se matriz-linha e uma do tipo $n \times 1$ diz-se matriz-coluna.
- 2. Uma matriz diz-se diagonal se for da forma

$$\begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} = diag(d_1, d_2, \dots, d_n),$$

ou seja, o elemento (i, j) é nulo, se $i \neq j$. Portanto, uma matriz quadrada é diagonal se os únicos elementos possivelmente não nulos são os diagonais.

Por exemplo, as matrizes $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ e $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ são matrizes diagonais.

3. A matriz identidade de ordem n, I_n , é a matriz diagonal de ordem n, com os elementos diagonais iguais a 1; ou seja,

$$I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right].$$

Quando é clara a ordem da matriz identidade, escreveremos simplesmente I.

4. Uma matriz $A = [a_{ij}]$ diz-se triangular superior se $a_{ij} = 0$ quando i > j, e triangular inferior se $a_{ij} = 0$ quando i < j. Ou seja, são respectivamente triangulares superiores e inferiores as matrizes

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}, \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Por exemplo, as matrizes $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} e \begin{bmatrix} 1 & -1 & -3 \\ 0 & 1 & -\frac{1}{3} \end{bmatrix}$ são triangulares superiores.

2.2 Operações matriciais

Vejamos agora algumas operações definidas entre matrizes, e algumas propriedades que estas satisfazem.

2.2.1 Soma e produto escalar

Sejam $A = [a_{ij}], B = [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K}) \in \alpha \in \mathbb{K}.$

- 1. A soma das matrizes $A \in B$, denotada por A + B, é a matriz $m \times n$ cujo elemento (i, j) é $a_{ij} + b_{ij}$. Ou seja, $(A + B)_{ij} = (A)_{ij} + (B)_{ij}$.
- 2. O produto da matriz A pelo escalar α , notado por αA , é a matriz $m \times n$ cujo elemento (i,j) é αa_{ij} . Ou seja, $(\alpha A)_{ij} = \alpha(A)_{ij}$.

Repare que a soma de duas matrizes, da mesma ordem, é feita elemento a elemento, e o produto escalar de uma matriz por $\alpha \in \mathbb{K}$ é de novo uma matriz da mesma ordem da dada, onde cada entrada surge multiplicada por α . Ou seja,

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2m} + b_{2m} \\ \vdots & & & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nm} + b_{nm} \end{bmatrix}$$

e

$$\alpha \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1m} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2m} \\ \vdots & & & \vdots \\ \alpha a_{n1} & \alpha a_{n2} & \dots & \alpha a_{nm} \end{bmatrix}.$$

10

Por exemplo,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix}$$

 \mathbf{e}

$$5\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 & 5 \cdot 2 \\ 5 \cdot 3 & 5 \cdot 4 \end{bmatrix}.$$

Em particular, se $A = [a_{ij}]$ então $-A = [-a_{ij}]$.

De ora em diante, 0 representa uma qualquer matriz cujos elementos são nulos. A matriz nula do tipo $m \times n$ denota-se por $0_{m \times n}$.

Estas operações satisfazem as propriedades que de seguida se descrevem, onde $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $\alpha, \beta \in \mathbb{K}$:

- 1. A soma de matrizes é associativa: (A + B) + C = A + (B + C).
- 2. A soma de matrizes é comutativa: A + B = B + A
- 3. A matriz nula é o elemento neutro da adição: A + 0 = 0 + A = A.
- 4. Existe o simétrico de cada matriz A + (-A) = (-A) + A = 0.
- 5. $\alpha(A+B) = \alpha A + \alpha B$.
- 6. $(\alpha + \beta)A = \alpha A + \beta A$.
- 7. $(\alpha\beta)A = \alpha(\beta A)$.
- 8. 1 A = A.

2.2.2 Produto

Resta-nos definir o produto matricial.

Seja $A = [a_{ij}]$ uma matriz $m \times p$ e $B = [b_{ij}]$ uma matriz $p \times n$. O produto de A por B, denotado por AB, é a matriz $m \times n$ cujo elemento (i, j) é $a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj}$. Assim,

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]_{m \times n} \text{ e portanto } (AB)_{ij} = \sum_{k=1}^{p} (A)_{ik} (B)_{kj}.$$

Atente-se aos tipos de A e B na definição anterior.

Como exemplo, façamos o produto da matriz $A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$ pela matriz $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. Ora

$$AB = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 1 + 2 \cdot 1 & 1 \cdot 0 + 2 \cdot (-1) \\ -1 \cdot 1 + 1 \cdot 0 & -1 \cdot 1 + 1 \cdot 1 & -1 \cdot 0 + 1 \cdot (-1) \end{bmatrix}.$$

Antes de fazermos referência a algumas propriedades, vejamos uma outra forma exprimir

o produto de duas matrizes. Para tal, suponha que
$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

sendo a primeira do tipo $1 \times n$ e a segunda do tipo $n \times 1$. Pelo que acabámos de referir, o produto de X por Y está bem definido, sendo a matriz produto do tipo 1×1 , e portanto, um elemento de \mathbb{K} . Esse elemento é $x_1y_1 + x_2y_2 + \dots x_ny_n$. Voltemos agora ao produto de $A_{m \times p}$ por $B_{p \times n}$, e fixemos a linha i de A e a coluna j de B. Ou seja, a matriz linha

$$\left[\begin{array}{ccc} a_{i1} & a_{i2} & \dots & a_{ip} \end{array}\right] \text{ e a matriz coluna } \left[\begin{array}{c} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{array}\right]. \text{ O produto da primeira pela segunda \'e o}$$

elemento de \mathbb{K} dado por $a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$. Ora, este elemento não é mais nem menos que a entrada (i,j) da matriz produto AB. Ou seja, a entrada (i,j) de AB é o produto da linha i de A pela coluna j de B.

Vejamos algumas propriedades deste produto de matrizes, onde os tipos das matrizes A, B, C, I, 0 são tais que as operações indicadas estão definidas, e $\alpha \in \mathbb{K}$:

- 1. O produto de matrizes é associativo (AB)C = A(BC);
- 2. O produto de matrizes é distributivo em relação à soma A(B+C)=AB+AC, (A+B)C=AC+BC;
- 3. A matriz identidade é o elemento neutro para o produto: AI = A, IA = A;
- 4. A matriz nula é o elemento absorvente para o produto: 0A = 0, A0 = 0;
- 5. $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Façamos a verificação da primeira igualdade de (2). A verificação de que as matrizes são do mesmo tipo fica ao cargo do leitor. Iremos apenas verificar que a entrada (i,j) de A(B+C) iguala a entrada (i,j) de AB+AC. Ora, supondo que A tem p colunas, e portanto que B e C têm p linhas,

$$(A(B+C))_{ij} = \sum_{k=1}^{p} (A)_{ik} ((B)_{kj} + (C)_{kj})$$

$$= \sum_{k=1}^{p} ((A)_{ik} (B)_{kj} + (A)_{ik} (C)_{kj})$$

$$= \sum_{k=1}^{p} (A)_{ik} (B)_{kj} + \sum_{k=1}^{p} (A)_{ik} (C)_{kj}$$

$$= (AB)_{ij} + (AC)_{ij} = (AB + AC)_{ij}.$$

Verifiquemos também a propriedade (3). Note-se que $(I)_{ii} = 1$ e $(I)_{ij} = 0$ se $i \neq j$. Ora $(AI)_{ij} = \sum_{k=1}^{p} (A)_{ik} (I)_{kj} = (A)_{ij}$.

É importante notar que o produto matricial <u>não é</u>, em geral, comutativo. Por exemplo, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. A lei do anulamento do produto também

não é válida, em geral, no produto matricial. Por exemplo, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0$, sem que um dos factores seja nulo. Ou seja, $AB = 0 \Rightarrow (A = 0 \text{ ou } B = 0)$. De uma forma mais geral, $(AB = AC \text{ e } A \neq 0) \Rightarrow (B = C)$, já que, por exemplo, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = 0$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} 2 & 2 \\ -1 & 3 \end{array}\right].$$

Como exercício, calcule
$$AB$$
 e BA , com $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$.

Como é fácil de observar, a soma de duas matrizes triangulares inferiores [resp. triangulares superiores] é de novo triangular inferior [resp. triangular superior]. O que se pode dizer em relação ao produto?

Teorema 2.2.1. O produto de matrizes triangulares inferiores [resp. triangulares superiores] é de novo uma matriz triangular inferior [resp. triangular superior].

Demonstração. Sejam A, B duas matrizes triangulares inferiores de tipo apropriado. Ou seja, $(A)_{ij}, (B)_{ij} = 0$, para i < j. Pretende-se mostrar que, para i < j se tem $(AB)_{ij} = 0$. Ora, para i < j, e supondo que A tem p colunas, $(AB)_{ij} = \sum_{k=1}^{p} (A)_{ik}(B)_{kj} = \sum_{k=1}^{i} (A)_{ik}(B)_{kj} = 0$. \square

Por vezes é conveniente considerar-se o produto matricial por blocos. Para tal, considere as matrizes A e B divididas em submatrizes

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

de forma conforme as operações descritas de seguida estejam definidas, então

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}.$$

De uma forma mais geral, se

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1p} \\ A_{21} & A_{22} & \cdots & A_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mp} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{pn} & B_{pn} & \cdots & B_{pn} \end{bmatrix}$$

2.2. OPERAÇÕES MATRICIAIS

13

em que as submatrizes são tais que as operações seguintes estão bem definidas, então

$$AB = \begin{bmatrix} \sum_{k=1}^{p} A_{1k} B_{k1} & \sum_{k=1}^{p} A_{1k} B_{k2} & \cdots & \sum_{k=1}^{p} A_{1k} B_{kn} \\ \sum_{k=1}^{p} A_{2k} B_{k1} & \sum_{k=1}^{p} A_{2k} B_{k2} & \cdots & \sum_{k=1}^{p} A_{2k} B_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{p} A_{mk} B_{k1} & \sum_{k=1}^{p} A_{mk} B_{k2} & \cdots & \sum_{k=1}^{p} A_{mk} B_{kn} \end{bmatrix}.$$

Exercícios _

1. Calcule A+B, se possível, onde

(a)
$$A = \begin{bmatrix} 0 & 2 & -2 \\ -2 & -1 & -3 \\ 1 & 2 & 4 \\ -4 & 2 & -2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 4 & 1 & 3 \\ -1 & -1 & -3 \\ 3 & 0 & -4 \\ 2 & 0 & 2 \end{bmatrix}$.
(b) $A = \begin{bmatrix} -1 & -3 & -2 \\ -2 & 4 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 4 & -4 & -4 \\ 3 & 0 & -1 \end{bmatrix}$.
(c) $A = \begin{bmatrix} 3 & 3 & -2 \\ -3 & -2 & 2 \\ -2 & 0 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 4 & -2 & -2 \\ -1 & 4 & -3 \\ -4 & 0 & -4 \end{bmatrix}$

2. Calcule AB e BA, se possível, onde

(a)
$$A = \begin{bmatrix} 2 & 1 & -2 \\ -3 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 4 & -2 & -2 \\ -1 & 4 & -3 \\ -4 & 0 & -4 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & 1 & -4 \\ 3 & 4 & -3 \end{bmatrix}$ e $B = \begin{bmatrix} -3 & -1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix}$

3. Considere as matrizes-linha
$$b=\left[\begin{array}{cccc} 0 & -1 & 12 & -23 \end{array}\right]$$
 e $c=\left[\begin{array}{ccccc} 3 & -4 & 0 & 3 \end{array}\right]$.

- (a) Construa a matriz A cujas linhas são b e c.
- (b) Calcule 5b.
- (c) Calcule b + c.

(d) Calcule
$$\left[\begin{array}{c} b \\ b-c \\ c \end{array} \right].$$

4. Considere as matrizes reais

$$A = \begin{bmatrix} 1 & 0 & -1 & 3 \\ 2 & 1 & 4 & -2 \\ 0 & -5 & 0 & 1 \\ -1 & 2 & -1 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 & 0 \\ -2 & 5 & 1 & 2 \\ 4 & 1 & 3 & -6 \\ -1 & 1 & 0 & 2 \end{bmatrix}, H = \begin{bmatrix} 2 & 1 & -1 & -2 \\ -3 & 4 & -1 & 3 \\ 0 & 2 & 2 & 1 \\ 1 & 1 & 0 & 3 \end{bmatrix}$$

- (a) Calcule AB e BA e compare as respostas. O que pode inferir sobre o produto matricial?
- (b) Faça o produto da linha i de A com a coluna j de B (fazendo i, j variar de 1 até 4), e compare o resultado com a entrada (i,j) de AB.
- (c) Calcule (AB)H e A(BH) e compare os resultados. O resultado final ilustra que propriedade do produto?
- (d) Calcule (A+B)H e AH+BH e compare os resultados. O resultado final ilustra que propriedade das operações matriciais?
- 5. Calcule as expressões seguintes:

(a)
$$\begin{bmatrix} 4 & 3 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 2 & -1 \\ -2 & -1 & 2 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} 7 & 3 & -1 \\ 5 & 0 & 0 \\ 1 & 5 & -4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 4 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -2 & 1 \\ 0 & 4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}^3$$

6. Calcule, se possível,

(a)
$$\begin{bmatrix} 1 & 14 & 20 \\ 8 & -25 & 9 \end{bmatrix} + \begin{bmatrix} 2 & -15 & 26 \\ 1 & 6 & -28 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -2 & 31 & 24 \\ -10 & 19 & 3 \end{bmatrix} + \begin{bmatrix} 18 & 22 & -29 \\ 15 & -9 & 17 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 9 & 4 \\ 4 & -19 \\ -4 & 1 \end{bmatrix} + \begin{bmatrix} -2 & 31 \\ 29 & 0 \\ 6 & -7 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 4 & 9 \\ 29 & 20 \\ 27 & 25 \end{bmatrix} + \begin{bmatrix} 22 & 18 & 29 \\ 1 & 8 & 22 \\ 14 & 0 & 23 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 27 & 1 & 10 \\ 30 & 30 & 4 \\ 6 & 14 & 23 \end{bmatrix} + \begin{bmatrix} 25 & 26 & 0 \\ 20 & 27 & 0 \\ 24 & 9 & 0 \end{bmatrix}$$

(f)
$$3\begin{bmatrix} 7 & -4 & 7 \\ 7 & 4 & -6 \end{bmatrix}$$

(g)
$$-1 \begin{bmatrix} 2 & 0 & 2 & 2 \end{bmatrix}$$

2.2. OPERAÇÕES MATRICIAIS

(h)
$$\begin{bmatrix} 2 & 0 \\ 5 & 0 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 6 & 6 \\ 6 & 7 & 4 \end{bmatrix}$$

(i)
$$\begin{bmatrix} 0 & 7 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 1 \\ 3 \end{bmatrix}$$

(j)
$$\begin{bmatrix} 3 \\ 7 \end{bmatrix} \begin{bmatrix} 3 & -6 \end{bmatrix}$$

- 7. Indique o valor lógico das afirmações seguintes, justificando:
 - (a) Se A,B são matrizes quadradas das mesma ordem então $(AB)^n=A^nB^n$
 - (b) Se A,B são matrizes quadradas das mesma ordem então $(A+B)^2=A^2+2AB+B^2$

15

- (c) Se A,B são matrizes quadradas das mesma ordem então $A^2-B^2=(A+B)(A-B)$
- 8. Dadas matrizes diagonais D_1, D_2 quadradas com a mesma ordem, mostre que $D_1D_2 = D_2D_1$

2.2.3 Transposição

A transposta de uma matriz $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$, é a matriz $A^T = [b_{ij}] \in \mathcal{M}_{n \times m}(\mathbb{K})$ cuja entrada (i, j) é a_{ji} , para $i = 1, \ldots, n, j = 1, \ldots, m$. Ou seja, $(A^T)_{ij} = (A)_{ji}$. A matriz é simétrica se $A^T = A$.

Como exemplo, a transposta da matriz $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ é a matriz $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, e a matriz $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ é uma matriz simétrica.

Repare que a coluna i de A^T é a linha i de A, e que uma matriz é simétrica se e só se for quadrada e forem iguais os elementos situados em posições simétricas relativamente à diagonal principal.

Exercícios _

 $1. \ \, \mathsf{Indique} \,\, A^T \,\, \mathsf{no} \,\, \mathsf{caso} \,\, \mathsf{de} \,\, A \,\, \mathsf{ser}$

(a)
$$\begin{bmatrix} 1 & 8 \\ 3 & 4 \\ 2 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$$

2. Para as seguintes escolhas de A e de B, compare $(A+B)^T$ com A^T+B^T . O que pode inferir?

(a)
$$A = \begin{bmatrix} 2 & 1 & -2 \\ -3 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 4 & -2 & -2 \\ -1 & 4 & -3 \\ -4 & 0 & -4 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & 1 & -4 \\ 3 & 4 & -3 \end{bmatrix}$$
 e $B = \begin{bmatrix} -3 & -1 \\ 4 & 3 \\ -1 & 0 \end{bmatrix}^T$

3. Para
$$S = \begin{bmatrix} 0 & -2 & 0 & 0 \\ 2 & 2 & 0 & -2 \\ 0 & 0 & -3 & 4 \end{bmatrix}$$
, $X = \begin{bmatrix} 2 & -2 \\ 0 & -2 \\ -1 & -3 \\ -4 & 1 \end{bmatrix}$ e $U = \begin{bmatrix} 0 & 4 & -3 & 1 & 0 \\ -4 & -1 & -3 & -1 & 1 \end{bmatrix}$,

verifique que $(SX)^T = X^TS^T$ e que $(X\bar{U})^T = U^T\bar{X^T}$.

A transposição de matrizes goza das seguintes propriedades:

$$1. \left(A^T\right)^T = A;$$

2.
$$(A+B)^T = A^T + B^T$$
;

3.
$$(\alpha A)^T = \alpha A^T$$
, para $\alpha \in \mathbb{K}$;

$$4. (AB)^T = B^T A^T;$$

5.
$$(A^k)^T = (A^T)^k, k \in \mathbb{N}.$$

A afirmação (1) é válida já que $((A^T)^T)_{ij} = (A^T)_{ji} = (A)_{ij}$.

Para (2),
$$((A+B)^T)_{ij} = (A+B)_{ji} = (A)_{ji} + (B)_{ji} = (A^T)_{ij} + (B^T)_{ij}$$
.

Para (4),
$$((AB)^T)_{ij} = (AB)_{ji} = \sum_k (A)_{jk} (B)_{ki} = \sum_k (B)_{ki} (A)_{jk} = \sum_k (B^T)_{ik} (A^T)_{kj} = (B^T A^T)_{ij}$$
.

Para (5), a prova é feita por indução no expoente. Para k = 1 a afirmação é trivialmente válida. Assumamos então que é válida para um certo k, e provemos que é válida para k + 1. Ora $(A^{k+1})^T = (A^k A)^T = (4)$ $A^T (A^k)^T = A^T (A^T)^k = (A^T)^{k+1}$.

Exercícios _

Considere a matriz real
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Considere ainda $e_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, $e_2 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$, $e_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$.

1. Faça os produtos $Ae_1, Ae_2, Ae_3, e_1^TA, e_2^TA, e_3^TA$.

2.2. OPERAÇÕES MATRICIAIS

- 2. Compare $A(e_1+e_2)$ com $A\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$.
- 3. Preveja, e confirme, o resultado de

(a)
$$A \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}^T$$

(b)
$$A \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}^T$$

(c)
$$A \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}^T$$

(d)
$$A\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

4. Mostre que, para $v \in \mathbb{R}^n$, se tem $v^T v = 0$ se e só se v = 0.

2.2.4 Invertibilidade

Uma matriz A quadrada de ordem n diz-se invertível se existir uma matriz B, quadrada de ordem n, para a qual

$$AB = BA = I_n$$
.

Teorema 2.2.2. Seja $A \in \mathcal{M}_n(\mathbb{K})$. Se existe uma matriz $B \in \mathcal{M}_n(\mathbb{K})$ tal que $AB = BA = I_n$ então ela é única.

Demonstração. Se B e B' são matrizes quadradas, $n \times n$, para as quais

$$AB = BA = I_n = AB' = B'A$$

então

$$B' = B'I_n = B'(AB) = (B'A)B = I_nB = B.$$

A matriz B do teorema, caso exista, diz-se a inversa de A e representa-se por A^{-1} .

Por exemplo, a matriz $S=\left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right]$ não é invertível. Por absurdo, suponha que existe

T, de ordem 2, tal que $ST = I_2 = TS$. A matriz T é então da forma $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$. Ora

 $ST = \begin{bmatrix} x & y \\ x & y \end{bmatrix}$, que por sua vez iguala I_2 , implicando por sua vez x = 1 e y = 0, juntamente com x = 0 e y = 1.

Considere, agora, a matriz real de ordem 2 definida por $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. Esta matriz é invertível. Mais adiante, forneceremos formas de averiguação da invertibilidade de uma

matriz, bem como algoritmos para calcular a inversa. Por enquanto, verifique que a inversa de A é a matriz $X = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$. Ou seja, que $AX = XA = I_2$.

O que podemos afirmar sobre o produto de duas matrizes invertíveis? Será ele uma outra matriz invertível? Em caso afirmativo, como se relaciona a inversa da matriz produto face às inversas das matrizes? O Teorema seguinte responde a esta questão.

Teorema 2.2.3. Dadas duas matrizes U e V de ordem n, então UV é invertível e

$$(UV)^{-1} = V^{-1}U^{-1}.$$

Demonstração. Como

$$(UV)(V^{-1}U^{-1}) = U(VV^{-1})U^{-1} = UI_nU^{-1} = UU^{-1} = I_n$$

 \mathbf{e}

$$(V^{-1}U^{-1})(UV) = V^{-1}(U^{-1}U)V = V^{-1}I_nV = V^{-1}V = I_n,$$

segue que UV é invertível e a sua inversa é $V^{-1}U^{-1}$.

Ou seja, o produto de matrizes invertíveis é de novo uma matriz invertível, e iguala o produto das respectivas inversas por ordem inversa.

Exercícios _

- 1. Seja A uma matriz invertível. Mostre que $(A^{-1})^{-1} = A$.
- 2. Sejam C uma matriz invertível e $A=CBC^{-1}$. Mostre que A é invertível se e só se B é invertível.
- 3. Dada uma matriz invertível A, mostre que toda a potência de A é também invertível.

Duas matrizes A e B, do mesmo tipo, dizem-se equivalentes, e denota-se por $A \sim B$, se existirem matrizes U,V invertíveis para as quais A=UBV. Repare que se $A \sim B$ então $B \sim A$, já que se A=UBV, com U,V invertíveis, então também $B=U^{-1}AV^{-1}$. Pelo teorema anterior, se $A \sim B$ então A é invertível se e só se B é invertível.

Exercícios

Mostre que equivalência de matrizes é uma relação reflexiva, simétrica e transitiva, ou seja, $A \sim A$, $A \sim B \Rightarrow B \sim A$, e $(A \sim B \land B \sim C) \Rightarrow A \sim C$.

As matrizes A e B são equivalentes por linhas se existir U invertível tal que A = UB. É óbvio que se duas matrizes A e B são equivalentes por linhas, então são equivalentes, ou seja, $A \sim B$.

Se uma matriz U for invertível, então a sua transposta U^T também é invertível e $(U^T)^{-1} = (U^{-1})^T$. A prova é imediata, bastando para tal verificar que $(U^{-1})^T$ satisfaz as condições de inversa, seguindo o resultado pela unicidade.

Segue também pela unicidade da inversa que

$$(A^{-1})^{-1} = A,$$

isto é, que a inversa da inversa de uma matriz é a própria matriz.

Vimos, atrás, que o produto de matrizes triangulares inferiores [resp. superiores] é de novo uma matriz triangular inferior [resp. superior]. O que podemos dizer em relação à inversa, caso exista?

Teorema 2.2.4. Uma matriz quadrada triangular inferior [resp. superior] é invertível se e só se tem elementos diagonais não nulos. Neste caso, a sua inversa é de novo triangular inferior [resp. superior].

Antes de efectuarmos a demonstração, vejamos a que se reduz o resultado para matrizes (quadradas) de ordem de 2, triangulares inferiores. Seja, então, $L = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix}$, que supusemos invertível. Portanto, existem $x,y,z,w \in \mathbb{K}$ para os quais $I_2 = L \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, donde segue, em particular, que $a_{11}x = 1$, e portanto $a_{11} \neq 0$ e $x = \frac{1}{a_{11}}$. Assim, como $a_{11}y = 0$ e $a_{11} \neq 0$ tem-se que y = 0. Ou seja, a inversa é triangular inferior. Como y = 0, o produto da segunda linha de L com a segunda coluna da sua inversa é $a_{22}w$, que iguala $(I)_{22} = 1$. Portanto, $a_{22} \neq 0$ e $w = \frac{1}{a_{22}}$. O produto da segunda linha de L com a primeira coluna da sua inversa é $a_{21}\frac{1}{a_{11}} + a_{22}z$, que iguala $(I)_{21} = 0$. Ou seja, $z = -\frac{a_{21}}{a_{11}a_{22}}$.

Demonstração. A prova é feita por indução no número de linhas das matrizes quadradas.

Para n=1 o resultado é trivial. Assuma, agora, que as matrizes de ordem n triangulares inferiores invertíveis são exactamente aquelas que têm elementos diagonais não nulos. Seja $A=[a_{ij}]$ uma matriz triangular inferior, quadrada de ordem n+1. Particione-se a matriz por blocos da forma seguinte:

$$\left[\begin{array}{c|c} a_{11} & O \\ \hline b & \widetilde{A} \end{array}\right],$$

onde b é $n \times 1$, O é $1 \times n$ e \widetilde{A} é $n \times n$ triangular inferior.

Por um lado, se A é invertível então existe $\left[\begin{array}{c|c} x & Y \\ \hline Z & W \end{array}\right]$ inversa de A, com $x_{1\times 1}, Y_{1\times n}, Z_{n\times 1},$ $W_{n\times n}$. Logo $a_{11}x=1$ e portanto $a_{11}\neq 0$ e $x=\frac{1}{a_{11}}$. Assim, como $a_{11}Y=0$ e $a_{11}\neq 0$ tem-se que Y=0. O bloco (2,2) do produto é então $\widetilde{A}W$, que iguala I_n . Sabendo que $\left[\begin{array}{c|c} x & Y \\ \hline Z & W \end{array}\right] \left[\begin{array}{c|c} a_{11} & O \\ \hline b & \widetilde{A} \end{array}\right] = \left[\begin{array}{c|c} 1 & 0 \\ \hline 0 & I_n \end{array}\right]$, tem-se que também $W\widetilde{A}=I_n$, e portanto \widetilde{A} é invertível,

 $n \times n$, com $(\widetilde{A})^{-1} = W$. Usando a hipótese de indução aplicada a \widetilde{A} , os elementos diagonais de \widetilde{A} , que são os elementos diagonais de A à excepção de a_{11} (que já mostrámos ser não nulo) são não nulos.

Reciprocamente, suponha que os elementos diagonais de A são não nulos, e portanto que os elementos diagonais de \widetilde{A} são não nulos. A hipótese de indução garante-nos a invertibilidade

de
$$\widetilde{A}$$
. Basta verificar que $\begin{bmatrix} \frac{1}{a_{11}} & 0 \\ -\frac{1}{a_{11}}\widetilde{A}^{-1}b & \widetilde{A}^{-1} \end{bmatrix}$ é a inversa de A .

Para finalizar esta secção, e como motivação, considere a matriz $V = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Esta matriz é invertível, e $V^{-1} = V^T$ (verifique!). Este tipo de matrizes denominam-se por ortogonais. Mais claramente, uma matriz ortogonal é uma matriz (quadrada) invertível, e cuja inversa iguala a sua transposta. De forma equivalente, uma matriz A invertível diz-se ortogonal se $AA^T = A^TA = I$.

Teorema 2.2.5. 1. A inversa de uma matriz ortogonal é também ela ortogonal.

2. O produto de matrizes ortogonais é de novo uma matriz ortogonal.

Demonstração. (1) Seja A uma matriz ortogonal, ou seja, para a qual a igualdade $A^T = A^{-1}$ é válida. Pretende-se mostrar que A^{-1} é ortogonal; ou seja, que $(A^{-1})^{-1} = (A^{-1})^{T}$. Ora $(A^{-1})^{T} = (A^{T})^{-1} = (A^{-1})^{-1}$.

(2) Sejam A,B matrizes ortogonais. Em particular são matrizes invertíveis, e logo AB é invertível. Mais,

$$(AB)^{-1} = B^{-1}A^{-1} = B^TA^T = (AB)^T.$$

Exercícios

Considere a matriz $A=\left[\begin{array}{cc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array}\right]$. Mostre que A é ortogonal.

A transconjugada de A é a matriz $A^* = \bar{A}^T$. Ou seja, $(A^*)_{ij} = \overline{(A)_{ji}}$. Esta diz-se hermítica (ou hermitiana) se $A^* = A$.

Sejam A, B matrizes complexas de tipo apropriado e $\alpha \in \mathbb{C}$. Então

- 1. $(A^*)^* = A$;
- 2. $(A+B)^* = A^* + B^*$;
- 3. $(\alpha A)^* = \bar{\alpha} A^*$;
- 4. $(AB)^* = B^*A^*$;
- 5. $(A^n)^* = (A^*)^n$, para $n \in \mathbb{N}$;

A prova destas afirmações é análoga à que apresentámos para a transposta, e fica ao cuidado do leitor.

Uma matriz unitária é uma matriz (quadrada) invertível, e cuja inversa iguala a sua transconjugada. De forma equivalente, uma matriz A invertível diz-se unitária se $AA^* = A^*A = I$.

Teorema 2.2.6. 1. A inversa de uma matriz unitária é também ela unitária.

2. O produto de matrizes unitárias é de novo uma matriz unitária.

Remetemos o leitor ao que foi referido no que respeitou as matrizes ortogonais para poder elaborar uma prova destas afirmações.

2.3 Um resultado de factorização de matrizes

2.3.1 Matrizes elementares

Nesta secção, iremos apresentar um tipo de matrizes que terão um papel relevante em resultados vindouros: as matrizes elementares. Estas dividem-se em três tipos:

$$a \neq 0; D_k(a) = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & 0 & & \\ & & 1 & & & \\ & & & 1 & & & \\ & & & a & & & \\ & & & 0 & & \ddots & \\ & & & & & 1 \end{bmatrix} \leftarrow k$$

$$i
eq j; E_{ij}\left(a\right) = egin{bmatrix} 1 & & & & & 0 & \\ & \ddots & & & & & \\ & & 1 & \cdots & a & & \\ & & & \ddots & \vdots & & \\ & & & & 1 & & \\ & & & & 0 & & \ddots & \\ & & & & & 1 \end{bmatrix} \leftarrow i$$

Ou seja, as matrizes elementares de ordem n são obtidas da matriz identidade I_n fazendo:

- para $D_k(a)$, substituindo a entrada (k, k) por a;
- para $E_{ij}(a)$, substituindo a entrada (i, j) por a;
- para P_{ij} , trocando as linhas $i \in j$ (ou de outra forma, as colunas $i \in j$).

É óbvio que $D_{\ell}(1) = E_{ij}(0) = P_{kk} = I_n$.

A primeira propriedade que interessa referir sobre estas matrizes é que são invertíveis. Mais, para $a,b\in\mathbb{K}, a\neq 0$,

$$(D_k(a))^{-1} = D_k \left(\frac{1}{a}\right)$$
$$(E_{ij}(b))^{-1} = E_{ij}(-b), \text{ para } i \neq j$$
$$(P_{ij})^{-1} = P_{ij}$$

A segunda, relevante para o que se segue, indica outro o modo de se obter as matrizes $D_k(a)$ e $E_{ij}(a)$ da matriz identidade, cujas linhas são denotadas por l_1, l_2, \ldots, l_n :

- para $D_k(a)$, substituindo a linha k por $a l_k$;
- para $E_{ij}(a)$, substituindo a linha i por $l_i + a l_j$.

Aplicando o mesmo raciocínio, mas considerando as colunas c_1, c_2, \ldots, c_n da matriz identidade:

- para $D_k(a)$, substituindo a coluna k por $a c_k$;
- para $E_{ij}(a)$, substituindo a coluna j por $c_j + a c_i$.

O que sucede se, dada uma matriz A, a multiplicarmos à esquerda ou à direita¹ por uma matriz elementar? Vejamos com alguns exemplos, tomando

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 4 \end{bmatrix}, P = P_{12}, E = E_{31}(-2), D = D_2\left(\frac{1}{2}\right).$$

Vamos determinar o produto DEPA. Calcularemos primeiro PA, a este produto fazemos a multiplicação, à esquerda, por E, e finalmente ao produto obtido a multiplicação por D, de

novo à esquerda. Como exercício, verifique que $PA = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 2 & 0 \\ 2 & -1 & 4 \end{bmatrix}$. Qual a relação entre

A e PA? Repare que ocorreu uma troca da primeira e da segunda linha de A. Que por sinal foram as mesmas trocas que se efectuaram a I_3 de forma a obtermos P_{12} .

À matriz PA, multiplicamo-la, à esquerda, por E, para obtermos $EPA = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 2 & 0 \\ 0 & -3 & 4 \end{bmatrix}$.

Repare que a linha 3 de EPA foi obtida somando à terceira linha de PA o simétrico do dobro $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$

da sua linha 1. Finalmente $DEPA = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & -3 & 4 \end{bmatrix}$.

Exercícios

- 1. Considere as matrizes 3×3 elementares $E = E_{3,1}(-2), P = P_{1,2}, D = D_2(2)$.
 - (a) Descreva como foram obtidas à custa das linhas/colunas da matriz I_3 .
 - (b) Indique a inversa de cada uma delas.
 - (c) Considere $A = \begin{bmatrix} 3 & 2 & -1 \\ 8 & 3 & 3 \\ -2 & -1 & -7 \end{bmatrix}$. Faça os produtos DA, EA, PA. Relacione-as com
 - A. Recorde o que fez na alínea (a).
 - (d) Repita a alínea anterior, mas agora com os produtos AD, AE, AP.
- 2. Considere as matrizes $E_{2,1}(-2), E_{3,1}(-1), E_{3,2}(2)$ do tipo 3×3 . Considere ainda a matriz $A = \left[\begin{array}{ccc} 5 & 1 & -3 \\ 8 & 0 & -4 \\ 3 & 0 & 10 \end{array} \right].$
 - (a) Relacione os produtos $E_{2,1}(-2)A, E_{3,1}(-1)A, E_{3,2}(2)A$ e os produtos $AE_{2,1}(-2)$, $AE_{3,1}(-1)$ e $AE_{3,2}(2)$ com A.

¹Recorde que o produto matricial não é, em geral, comutativo, pelo que é relevante a distinção dos dois casos.

- (b) Indique uma matriz P_1 tal que $P_1A=\left[egin{array}{ccc} 5&1&-3\\3&0&10\\8&0&-4 \end{array}
 ight].$
- (c) Indique uma matriz P_2 tal que $AP_2=\left[\begin{array}{ccc}1&5&-3\\0&8&-4\\0&3&10\end{array}\right].$
- (d) Indique uma matriz D_1 tal que D_1A é a matriz obtida de A cuja segunda linha surge dividida por 2.
- (e) Indique uma matriz D_2 tal que AD_2 é a matriz obtida de A cuja terceira coluna surge multiplicada por 4.

Uma $matriz\ permutação$ de ordem n é uma matriz obtida de I_n à custa de trocas de suas linhas (ou colunas). Aqui entra o conceito de permutação. Uma permutação no conjunto $N_n=\{1,2,\ldots,n\}$ é uma bijecção (ou seja, uma aplicação simultaneamente injectiva e sobrejectiva) de N_n em N_n . Uma permutação $\varphi:N_n\to N_n$ pode ser representada pela tabela $\begin{pmatrix} 1 & 2 & \cdots & n \\ \varphi(1) & \varphi(2) & \cdots & \varphi(n) \end{pmatrix}$. Para simplificar a escrita, é habitual omitir-se a primeira linha, já que a posição da imagem na segunda linha indica o (único) objecto que lhe deu origem.

Definição 2.3.1. O conjunto de todas as permutações em N_n é denotado por S_n e denominado por grupo simétrico.

Como exemplo, considere a permutação $\gamma = (2, 1, 5, 3, 4) \in S_5$. Tal significa que

$$\gamma(1) = 2, \gamma(2) = 1, \gamma(3) = 5, \gamma(4) = 3, \gamma(5) = 4.$$

Note que S_n tem $n! = n(n-1)(n-2) \dots 2 \cdot 1$ elementos. De facto, para $\gamma = (i_1, i_2, \dots, i_n) \in S_n$, i_1 pode tomar n valores distintos. Mas i_2 apenas pode tomar um dos n-1 restantes, já que não se podem repetir elementos. E assim por diante. Obtemos então n! permutações distintas.

Dada a permutação $\varphi = (i_1, i_2, \dots, i_n) \in S_n$, se $1 \leq j < k \leq n$ e $i_j > i_k$ então $i_j > i_k$ diz-se uma inversão de φ . Na permutação $\gamma = (2, 1, 5, 3, 4)$ acima exemplificada existem três inversões, já que $\gamma(1) > \gamma(2), \gamma(3) > \gamma(4), \gamma(3) > \gamma(5)$. O sinal de uma permutação φ , denotado por $sgn(\varphi)$, toma o valor +1 caso o número de inversões seja par, e -1 caso contrário. Portanto, $sgn(\gamma) = -1$. As permutações com sinal +1 chamam-se permutações pares (e o conjunto por elas formado chama-se grupo alterno, A_n), e as cujo sinal é -1 denominam-se por permutações impares.

Uma transposição é uma permutação que fixa todos os pontos à excepção de dois. Ou seja, $\tau \in S_n$ é uma transposição se existirem i,j distintos para os quais $\tau(i) = j, \tau(j) = i$ e $\tau(k) = k$ para todo o k diferente de i e j. Verifica-se que toda a permutação φ se pode escrever como composição de transposições $\tau_1, \tau_2, \ldots, \tau_r$. Ou seja, $\varphi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_r$.

Esta decomposição não é única, mas quaisquer duas decomposições têm a mesma paridade de transposições. Ou seja, se existe uma decomposição com um número par [resp. ímpar] de intervenientes, então qualquer outra decomposição tem um número par [resp. ímpar] de transposições. Mais, esse número tem a mesma paridade da do número de inversões. Por consequência, o sinal de qualquer transposição é -1. A permutação γ definida atrás pode-se decompor como $(2, 1, 5, 3, 4) = (2, 1, 3, 4, 5) \circ (1, 2, 5, 4, 3) \circ (1, 2, 4, 3, 5).$

O conjunto das permutações S_n pode ser identificado com o conjunto das matrizes permutação de ordem n, em que a composição de permutação é de uma forma natural identificado com o produto de matrizes. A matriz permutação P associada à permutação γ é a matriz obtida de I_5 realizando as trocas de linhas segundo γ .

Para fácil compreensão, vejamos um exemplo. Considere-se a permutação $\gamma = (2, 1, 5, 3, 4)$ e a matriz P associada a γ . Ou seja, P é a matriz obtida de I_5 realizando as trocas de linhas

segundo
$$\gamma$$
, e portanto $P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$. Na primeira linha de P surge a segunda de I_5 , na segunda a primeira, na terceira a quinta de I_5 , e assim por diante.

 I_5 , na segunda a primeira, na terceira a quinta de I_5 , e assim por diante.

Toda a matriz permutação pode-se escrever como produto de matrizes da forma P_{ij} , tal como definidas atrás. Tal é consequência da existência de uma decomposição da permutação em transposições. Note que as transposições se identificam com as matrizes P_{ij} .

Voltemos ao exemplo acima, considerando as matrizes $P_{i,j}$ associadas às transposições na decomposição de γ enunciadas atrás. Ou seja, as matrizes $P_{1,2}, P_{3,5}$ e $P_{3,4}$. Verifica-se que $P = P_{1,2}P_{3,5}P_{3,4}$.

Operações elementares sobre as linhas de A são as que resultam pela sua multiplicação à esquerda por matrizes elementares. Ou seja, são operações elementares por linhas de uma matriz

- a troca de duas linhas,
- a multiplicação de uma linha por um escalar não nulo,
- a substituição de uma linha pela sua soma com um múltiplo de outra linha.

De forma análoga se definem as operações elementares sobre as colunas de uma matriz, sendo a multiplicação por matrizes elementares feita à direita da matriz. Na prática, tal resulta em substituir a palavra "linha" pela palavra "coluna" na descrição acima.

Considere a matriz
$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
. Em primeiro lugar, e efectuando operações elementares nas linhas de A , tentaremos obter zeros por debaixo da entrada $(A)_{11}$. Ou seja, pretendemos obter algo como $\begin{bmatrix} 2 & 4 & 6 \\ 0 & ? & ? \\ 0 & ? & ? \end{bmatrix}$. Substitua-se a segunda linha, l_2 , pela sua soma

com o simétrico de metade da primeira. Ou seja,

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 2 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 - \frac{1}{2}l_1} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Tal corresponde a multiplicar à esquerda a matriz A por $E_{21}(-\frac{1}{2}) = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Façamos o mesmo raciocínio para a terceira linha:

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 2 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 - \frac{1}{2}l_1} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 + \frac{1}{2}l_1} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 2 & 4 \end{bmatrix}$$

Tal correspondeu a multiplicar o produto obtido no passo anterior, à esquerda, por $E_{31}(\frac{1}{2})$. Ou seja, e até ao momento, obteve-se

$$E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2})A = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 2 & 4 \end{bmatrix} = B.$$

Todos os elementos na primeira coluna de B, à excepção de $(B)_{11}$, são nulos. Concentremonos agora na segunda coluna, e na segunda linha. Pretendem-se efectuar operações elemen-

nos agora na segunda coluna, e na segunda mina. Processo $\begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 0 & ? \end{bmatrix}.$ Para tal,

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 2 & 4 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 - l_2} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 0 & 5 \end{bmatrix} = U.$$

Ou seja, multiplicou-se B, à esquerda, pela matriz $E_{32}(-1)$. Como $B = E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2})A$ e $E_{32}(-1)B = U$ podemos concluir que

$$E_{32}(-1)E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2})A = U = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 0 & 5 \end{bmatrix}$$

Repare que U é uma matriz triangular superior, e que neste exemplo tem elementos diagonais não nulos, e portanto é uma matriz invertível. Como as matrizes elementares são invertíveis e $(E_{32}(-1)E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2}))^{-1}U = A$, segue que a matriz A é também ela invertível. Note ainda que $(E_{32}(-1)E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2}))^{-1} = E_{21}(\frac{1}{2})E_{31}(-\frac{1}{2})E_{32}(1)$. A estratégia descrita acima aplicada à matriz A é denominada por algoritmo de eliminação de Gauss. O resultado final foi a factorização A = LU, onde U é uma matriz triangular superior (veremos mais adiante que de facto pertence a uma subclasse desse tipo de matrizes) e L é uma matriz invertível triangular

inferior (por ser a inversa de produto de matrizes invertíveis triangulares inferiores). Nem sempre é possível percorrer estes passos do algoritmo, para uma matriz dada arbitrariamente. Veremos, na próxima secção, que modificações se realizam na estratégia apresentada acima por forma a que se garanta algum tipo de factorização.

O exemplo escolhido foi, de facto, simples na aplicação. Alguns passos podem não ser possíveis, nomeadamente o primeiro. Repare que o primeiro passo envolve uma divisão (no nosso caso, dividimos a linha 1 por $(A)_{11}$). A propósito, os elementos-chave na divisão, ou de forma mais clara, o primeiro elemento não nulo da linha a que vamos tomar um seu múltiplo denomina-se por *pivot*. Ora esse pivot tem que ser não nulo. E se for nulo? Nesse caso, trocamos essa linha por outra mais abaixo que tenha, nessa coluna, um elemento não nulo. E se *todos* forem nulos? Então o processo terminou para essa coluna e consideramos a coluna seguinte. Apresentamos dois exemplos, um para cada um dos casos descritos:

$$\left[\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ -3 & 2 & 9 \end{array}\right]; \left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 6 & 7 \\ 0 & 1 & -2 \end{array}\right].$$

No primeiro caso, a troca da primeira linha pela linha dois ou três resolve o problema. No segundo caso, aplicamos a estratégia a partir da segunda coluna. Recorde que a troca da linha i pela linha j é uma operação elementar de linhas que corresponde à multiplicação, à esquerda, por P_{ij} .

Apresentamos, de seguida, o algoritmo de eliminação de Gauss de uma forma mais formal.

2.3.2 O Algoritmo de Eliminação de Gauss

O Algoritmo de Eliminação de Gauss, (abrev. AEG), segue os passos que em baixo se descrevem:

Seja A uma matriz $m \times n$ não nula.

- Assuma que (A)₁₁ ≠ 0. Se tal não acontecer, então troque-se a linha 1 com uma linha i para a qual (A)_{i1} ≠ 0. Ou seja, multiplique A, à esquerda, por P_{1i}. Para simplificar a notação, A denotará tanto a matriz original como a obtida por troca de duas das suas linhas. A (A)₁₁ chamamos pivot do algoritmo. Se todos os elementos da primeira coluna são nulos, use 2.
- 2. Se a estratégia indicada no passo 1 não for possível (ou seja, os elementos da primeira coluna são todos nulos), então aplique de novo o passo 1 à submatriz obtida de A retirando a primeira coluna.
- 3. Para $i=2,\ldots,m$, e em A, substitua a linha i pela sua soma com um múltiplo da linha 1 por forma a que o elemento obtido na entrada (i,1) seja 0. Tal corresponde a multiplicar a matriz A, à esquerda, por $E_{i1}\left(-\frac{(A)_{i1}}{(A)_{11}}\right)$.
- 4. Repita os passos anteriores à submatriz da matriz obtida pelos passos descritos, a que se retirou a primeira linha e a primeira coluna.

Após se aplicar o passo 3 em todas as linhas e na primeira coluna, e supondo que $(A)_{11} \neq 0$, a matriz que se obtem tem a forma seguinte:

$$\begin{bmatrix} (A)_{11} & (A)_{12} & (A)_{13} & (A)_{1n} \\ 0 & ? & ? & ? \\ 0 & ? & ? & ? \\ \vdots & ? & ? & ? \\ 0 & ? & ? & ? \end{bmatrix}.$$

Ou seja, e por operações elementares de linhas, podemos obter de A uma matriz com a forma $\left| \begin{array}{c|c} (A)_{11} & * \\ \hline 0 & \widetilde{A} \end{array} \right|$. O algoritmo continua agora aplicado à matriz \widetilde{A} segundo os passos 1, 2 e 3. Note que as operações elementares operadas nas linhas de \widetilde{A} são também elas operações elementares realizadas nas linhas de $\left| \begin{array}{c|c} (A)_{11} & * \\ \hline 0 & \widetilde{A} \end{array} \right|$. As operações elementares efectuadas em \widetilde{A} dão origem a uma matriz da forma $\begin{bmatrix} \widetilde{(A)}_{11} & * \\ 0 & \widetilde{\widetilde{A}} \end{bmatrix}$, onde consideramos $(\widetilde{A})_{11} \neq 0$. Essas operações elementares aplicadas às linhas de $\begin{bmatrix} (A)_{11} & * \\ \hline 0 & \widetilde{A} \end{bmatrix}$ dão lugar à matriz $\begin{bmatrix} (A)_{11} & \dots & (A)_{1m} \\ 0 & (\widetilde{A})_{11} & * \\ \hline 0 & 0 & \widetilde{\widetilde{A}} \end{bmatrix}$. Note que se supôs que as entradas (i,i) são não nulas, ou que existe uma troca conveniente de linhas por forma a se contornar essa questão. Como é óbvio, tal pode não ser possível. Nesse caso aplica-se o passo 2. Ou seja, e quando tal acontece, tal corresponde à não existência de pivots em colunas consecutivas. Como exemplo, considere a matriz $M = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$. Multiplicando esta matriz, à esquerda, por $E_{31}(-\frac{1}{2})E_{21}(-1)$, ou seja, substiuindo a linha 2 pela sua soma com o simétrico da linha 1, e a linha 3 pela sua soma com metade do simétrico da linha 1, obtemos a matriz $M_2 = \begin{bmatrix} 2 & 2 & 2 & 2 \\ \hline 0 & 0 & 0 & -2 \\ \hline 0 & 0 & -1 & 0 \end{bmatrix}$. Aplicamos agora o algoritmo à submatriz $\widetilde{M} = \begin{bmatrix} 0 & 0 & -2 \\ 0 & -1 & 0 \end{bmatrix}$. Note que a esta submatriz teremos que aplicar (2) por impossibilidade de se usar (1); de facto, não há elementos não nulos na primeira coluna de \widetilde{M} . Seja, então, \widetilde{M}_2 a matriz obtida de \widetilde{M} a que retirou a primeira coluna; ou seja, $\widetilde{M}_2 = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix}$. É necessário fazer a troca das linhas por forma a obtermos um elemento não nulo que terá as funções de pivot. Essa troca de linhas é uma

operação elementar também na matriz original $M_2 = \begin{bmatrix} 2 & 2 & 2 & 2 \\ \hline 0 & 0 & 0 & -2 \\ 0 & 0 & -1 & 0 \end{bmatrix}$. Tal corresponde

a multiplicá-la, à esquerda, por P_{23} . Repare que, sendo os elementos nas linhas 2 e 3 e nas colunas 1 e 2 nulos, a troca das linhas de facto apenas altera as entradas que estão simultaneamente nas linhas envolvidas e nas entradas à direita do novo pivot. Obtemos, assim, a

matriz $\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$. A matriz obtida tem uma particularidade: debaixo de cada pivot

todos os elementos são nulos.

Como foi referido, a matriz obtida por aplicação dos passos descritos no Algoritmo de Eliminação de Gauss tem uma forma muito particular. De facto, debaixo de cada pivot todos os elementos são nulos. A esse tipo de matriz chamamos matriz escada (de linhas). Uma matriz $A = [a_{ij}]$ é matriz escada (de linhas) se

- (i) se $a_{ij} \neq 0$ com $a_{ik} = 0$, para k < j, então $a_{lk} = 0$ se $k \leq j$ e l > i;
- (ii) as linhas nulas surgem depois de todas as outras.

Sempre que o contexto o permita, diremos matriz escada para significar matriz escada de linhas.

A matriz $U=\left[egin{array}{cccc}2&2&2&2\\0&0&-1&0\\0&0&0&2\end{array}\right]$ é uma matriz escada (de linhas) que se obteve de M por

aplicação dos passos (1)-(4). É óbvio que uma matriz escada é triangular superior, mas o recíproco não é válido em geral. Como exemplo, considere a matriz $\left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right].$

Teorema 2.3.2 (Factorização PA = LU). Dada uma matriz A, existem matrizes P permutação, L triangular inferior com 1's na diagonal principal e U matriz escada para as quais PA = LU.

Ou seja, a matriz A iguala $P^{-1}LU$. Portanto, toda a matriz é equivalente por linhas a uma matriz escada de linhas.

Antes de procedermos à prova deste resultado, abrimos um parênteses para apresentarmos dois exemplos que servem de motivação ao lema que se segue.

dois exemplos que servem de motivação ao lema que se segue. $\begin{bmatrix} 0 & 3 & -2 \\ -1 & 3 & 0 \\ 1 & 3 & -5 \end{bmatrix}. \text{ A troca da primeira com a segunda linhas}$ dá origem à matriz $\widetilde{A} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 1 & 3 & -5 \end{bmatrix}, \text{ a qual, e usando o AEG descrito atrás, satisfaz}$ $E_{32}(-2)E_{31}(1)\widetilde{A} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & -1 \end{bmatrix}. \text{ Ou seja, existem matrizes } P \text{ permutação, } L \text{ triangular inferior com 1's na diagonal e } U \text{ matriz escada para as quais } PA = LU. \text{ Para tal, basta tomar}$ $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, L = (E_{32}(-2)E_{31}(1))^{-1} = E_{31}(-1)E_{32}(2), \text{ e } U = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & -1 \end{bmatrix}.$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, L = (E_{32}(-2)E_{31}(1))^{-1} = E_{31}(-1)E_{32}(2), e U = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & -1 \end{bmatrix}$$

Considere agora a matriz
$$M=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{array}\right]$$
. Ora $E_{31}(-1)M=\left[\begin{array}{cccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right]$, o que

força a troca da segunda pela terceira linha. Obtemos, assim, $P_{23}E_{31}(-1)M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

que é uma matriz escada. Neste caso, como se obtêm as matrizes P, L, U do teorema? contrário do exemplo anterior, a realização matricial das operações elementares por linhas do AEG não nos fornece, de forma imediata, essa factorização. No entanto, poder-se-ia escrever

$$E_{31}(-1)M = P_{23} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ já que } P_{23}^{-1} = P_{23}, \text{ e portanto } M = E_{31}(1)P_{23} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
 pois $E_{31}(-1)^{-1} = E_{31}(1)$. Note que $E_{31}(1)P_{23} \neq P_{23}E_{31}(1)$. Não obstante, repare que

$$E_{31}(1)P_{23} = P_{23}E_{21}(1)$$
, donde $M = P_{23}E_{21}(1)\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, e portanto $PA = LU$, com

$$P = P_{23}, L = E_{21}(1) \text{ e } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Lema 2.3.3. Para i, k, l > j, e para todo o $a \in \mathbb{K}$, é válida a igualdade $E_{ij}(a)P_{kl} = P_{kl}E_{lj}(a)$.

Demonstração. Se $k \neq i$, então a igualdade é óbvia.

Suponha que k = i. Pretende-se mostrar que $E_{ij}(a)P_{il} = P_{il}E_{lj}(a)$, com i, l > j. Sendo $P_{il}E_{lj}(a)$ a matriz obtida de $E_{lj}(A)$ trocando as linhas $i \in l$, e visto a linha l de $E_{lj}(a)$ ser

$$\begin{bmatrix} 0 & \cdots & 0 & a & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$j \qquad \qquad l$$

então a linha i de $P_{il}E_{li}(a)$ é

$$\begin{bmatrix} 0 & \cdots & 0 & a & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ & & \uparrow & & & & \uparrow & & & \\ & & j & & & l & & \\ \end{bmatrix} .$$

 $E_{ij}(a)P_{il}$ é a matriz obtida de P_{il} a que à linha i se somou a linha j de P_{il} multiplicada por a. Sendo a linha i de P_{il}

$$\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

e a linha j de P_{il} , e já que j < i, l,

$$\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\uparrow$$

segue que a linha i de $E_{ij}(a)P_{il}$ é a soma

Para $k \neq i$, a linha k de $E_{ij}(a)P_{il}$ é a linha k de P_{il} , sendo esta a linha k da matriz identidade se $k \neq l$, ou a linha i da identidade se k = l. Por sua vez, a linha k de $P_{il}E_{lj}(a)$ é a linha k da ientidade se $k \neq l$, ou é a linha i de I_n se k = l.

Demonstração do teorema 2.3.2. A prova segue da aplicação do algoritmo de eliminação de Gauss, fazendo-se uso do lema para se obter a factorização da forma U = PLA, onde os pivots do algoritmo são o primeiro elemento não nulo de cada linha (não nula) de U.

Exercícios _

1. Considere a matriz
$$A=\left[\begin{array}{ccc} 8 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 1 \end{array}\right].$$

- (a) Calcule $B = E_{21}(-\frac{1}{2})A$.
- (b) Indique uma matriz elementar da forma $E_{ij}(\alpha)$ tal que $C=E_{ij}(\alpha)B$ seja uma matriz com as entradas (2,1) e (3,1) nulas.
- (c) Indique uma matriz elementar E tal que EC é uma matriz triangular superior.
- (d) Indique uma matriz invertível K triangular inferior tal que KA é triangular superior.
- (e) Mostre existe uma matriz triangular superior U e L triangular inferior invertível para as quais A=LU.
- (f) Conclua que a matriz A é invertível.

2. Considere a matriz
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -1 & 4 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$
.

- (a) Indique uma matriz invertível K triangular inferior tal que KA é triangular superior.
- (b) Mostre existe uma matriz triangular superior U e L triangular inferior invertível para as quais A=LU.

- (c) Conclua que a matriz A é invertível.
- 3. Considere a matriz $A = \begin{bmatrix} 0 & 2 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Indique uma matriz P tal que $PA=\left[\begin{array}{ccc} -1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{array}\right].$
 - (b) Indique uma matriz invertível K triangular inferior tal que KPA é triangular superior.
 - (c) Mostre existe uma matriz triangular superior U e L triangular inferior invertível para as quais PA = LU.
 - (d) Conclua que a matriz A é invertível.
- 4. Considere matrizes 3×3 .
 - (a) Mostre que $E_{31}(2)P_{23} = P_{23}E_{21}(2)$.
 - (b) Mostre que $E_{32}(1)P_{13} = P_{13}E_{12}(1)$.
 - (c) Indique uma matriz permutação P e uma matriz elementar da forma $E_{ij}(\alpha)$ para as quais $E_{21}(-3)P_{23}=PE_{ij}(\alpha)$.
 - (d) Indique uma matriz permutação P e uma matriz elementar da forma $E_{ij}(\alpha)$ para as quais $P_{32}E_{21}(-1)=E_{ij}(\alpha)P$.
- 5. Considere a matriz $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ -1 & 1 & 2 \end{bmatrix}$.
 - (a) Indique uma matriz Y, à custa de produtos de matrizes elementares, tal que YA é triangular superior.
 - (b) Deduza que A é invertível.
 - (c) Factorize $Y = K\tilde{P}$, onde \tilde{P} é uma matriz permutação e K é triangular inferior.
 - (d) Mostre existe uma matriz permutação P, uma triangular superior U e L triangular inferior invertível para as quais PA=LU.
- 6. Encontre uma factorização da forma PA=LU para $A=\begin{bmatrix}0&1&0&2\\0&-1&0&2\\1&0&0&1\end{bmatrix}$.

A característica de uma matriz A, denotada por $\operatorname{car}(A)$, por c(A) ou ainda por $\operatorname{rank}(A)$, é o número de linhas não nulas na matriz escada U obtida por aplicação do Algoritmo de Eliminação de Gauss. Ou seja, e sabendo que toda a linha não nula de U tem exactamente 1 pivot que corresponde ao primeiro elemento não nulo da linha, a característica de A é o número

de pivots no algoritmo (ainda que o último possa não ser usado, por exemplo, no caso de estar na última linha). Note ainda que $\operatorname{car}(A) = \operatorname{car}(U)$. Por exemplo, $\operatorname{car}\begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} = 3$, já que a matriz escada obtida desta tem 3 linhas não nulas.

Uma matriz quadrada A de ordem n diz-se $n\tilde{a}o$ -singular se car(A)=n. Ou seja, A é não-singular se forem usados n pivots no algoritmo de eliminação de Gauss. Uma matriz é singular se não for não-singular.

Teorema 2.3.4. As matrizes não-singulares são exactamente as matrizes invertíveis.

Demonstração. Seja A uma matriz quadrada, e U a matriz escada obtida de A por Gauss.

Por um lado, se A é invertível, e como $A \sim U$, segue que U é invertível, quadrada. Como U é triangular superior, não pode ter linhas nulas caso contrário teria um elemento diagonal nulo, o que contraria a invertibilidade de U.

Por outro lado, se A é não-singular então U não tem linhas nulas. Como cada coluna de U tem no máximo 1 pivot, e existem n linhas e n pivots, então cada linha tem exactamente 1 pivot. Ou seja, os elementos diagonais de U são não nulos. Como U é triangular superior, segue que U é invertível, e portanto A é invertível visto $A \sim U$.

Teorema 2.3.5. Se A é uma matriz não-singular, então existe uma matriz P permutação tal que PA é factorizável, de forma única, como PA = LU, onde L é triangular inferior com 1's na diagonal e U é uma matriz triangular superior com elementos diagonais não nulos.

Demonstração. A existência de tal factorização é consequência do teorema 2.3.2. Repare que, sendo a matriz não singular, tal significa que os pivots estão presentes em todas as colunas de U. Assim, os elementos diagonais de U são os pivots, sendo estes não nulos. Resta-nos provar a unicidade. Para tal, considere as matrizes L_1, L_2 triangulares inferiores com 1's na diagonal, e as matrizes U_1, U_2 triangulares superiores com elementos diagonais diferentes de zero, matrizes essas que satisfazem $PA = L_1U_1 = L_2U_2$. Portanto, $L_1U_1 = L_2U_2$, o que implica, e porque L_1, U_2 são invertíveis (porquê?), que $U_1U_2^{-1} = L_1^{-1}L_2$. Como L_1, U_2 são, respectivamente, triangulares inferior e superior, então L_1^{-1} e U_2^{-1} são também triangulares inferior e superior, respectivamente. Recorde que sendo a diagonal de L_1 constituída por 1's, então a diagonal da sua inversa tem também apenas 1's. Daqui segue que $L_1^{-1}L_2$ é triangular inferior, com 1's na diagonal, e que $U_1U_2^{-1}$ é triangular superior. Sendo estes dois produtos iguais, então $L_1^{-1}L_2$ é uma matriz diagonal, com 1's na diagonal; ou seja, $L_1^{-1}L_2 = I$, e portanto $L_1 = L_2$. Tal leva a que $L_1U_1 = L_1U_2$, o que implica, por multiplicação à esquerda por L_1^{-1} , que $U_1 = U_2$.

1. Considere a matriz
$$A = \left[\begin{array}{ccc} 1 & -3 & 1 \\ 2 & -4 & 2 \\ 2 & 2 & -3 \end{array} \right].$$

- (a) Explique como se obteve $E_{2,1}(-2)$ à custa das linhas de I_3 , e como se obteve $E_{2,1}(-2)A$ à custa das linhas de A.
- (b) Efectue os passos seguintes do Algoritmo de Eliminação de Gauss para obter a matriz escada U equivalente por linhas a A.
- (c) Use as matrizes elementares de (a) para construir a matriz V tal que VA=U. Diga por que razão V é invertível.
- (d) Use a alínea anterior para determinar L triangular inferior tal que A=LU.
- (e) Indique a característica da matriz A. Diga, justificando, se a matriz é invertível.

2. Considere a matriz
$$B = \begin{bmatrix} 4 & 2 & 2 & -2 \\ 2 & 0 & 5 & 1 \\ -2 & -3 & 5 & 4 \end{bmatrix}$$
.

- (a) Efectue os passos do Algoritmo de Eliminação de Gauss para obter a matriz escada U equivalente por linhas a B. Identifique os pivots.
- (b) Use as matrizes elementares de (a) para construir a matriz V tal que VB=U. Diga por que razão V é invertível.
- (c) Encontre a decomposição LU de B.
- (d) Indique a característica da matriz B.

3. Considere a matriz
$$C = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -5 \\ -1 & 4 & -3 \\ 2 & 1 & 1 \end{bmatrix}$$
.

- (a) Efectue os passos do Algoritmo de Eliminação de Gauss para obter a matriz escada ${\cal U}$ equivalente por linhas a ${\cal C}.$
- (b) Use as matrizes elementares de (a) para construir a matriz V tal que VC=U. Diga por que razão V é invertível.
- (c) Indique a característica da matriz C.

4. Considere a matriz
$$G = \begin{bmatrix} 0 & 3 & -2 \\ -1 & 3 & 0 \\ 2 & 3 & -5 \end{bmatrix}$$
.

- (a) Efectue os passos do Algoritmo de Eliminação de Gauss para obter a matriz escada ${\cal U}$ equivalente por linhas a ${\cal G}.$
- (b) Use as matrizes elementares de (a) para construir uma matriz V tal que VG=U. Diga por que razão V é invertível. Verifique <u>se</u> V é triangular inferior.

2.4. DETERMINANTES

35

- (c) Indique a característica da matriz G.
- 5. Calcule a característica das matrizes seguintes, fazendo uso do Algoritmo de Eliminação de Gauss.

$$A = \begin{bmatrix} 6 & 3 & -4 \\ 1 & 2 & 5 \\ 3 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 3 & -1 \\ 1 & 2 & -4 & 3 \\ 1 & -3 & 2 & 2 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} 4 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 6 & -5 \\ 1 & 2 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 3 & 1 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \\ 3 & 6 & -2 \end{bmatrix}, E = \begin{bmatrix} 0 & 1 & 6 & -5 \\ -3 & 2 & 9 & -1 \\ -2 & 1 & 4 & 1 \\ -5 & 2 & 7 & 5 \end{bmatrix}, F = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \\ 2 & 6 & 11 \\ 0 & -1 & -3 \end{bmatrix}.$$

6. Determine $k \in \mathbb{R}$ por forma que a característica da matriz

$$F = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 2 & -1 & 2 & 1 \\ 1 & 2 & 1 & k \end{array} \right]$$

seja inferior a 3.

2.4 Determinantes

2.4.1 Definição

Considere a matriz $A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$ e suponha que $a\neq 0$. Aplicando o AEG, obtemos a factorização $\begin{bmatrix}1&0\\-\frac{c}{a}&1\end{bmatrix}\begin{bmatrix}a&b\\c&d\end{bmatrix}=\begin{bmatrix}a&b\\0&-\frac{bc}{a}+d\end{bmatrix}$. Ou seja, a matriz A é equivalente por linhas à matriz $U=\begin{bmatrix}a&b\\0&-\frac{bc}{a}+d\end{bmatrix}$, que é uma matriz triangular superior. Recorde que A é invertível se e só se U for invertível. Ora, a matriz U é invertível se e só se $-\frac{bc}{a}+d\neq 0$, ou de forma equivalente, se $ad-bc\neq 0$. Portanto, A é invertível se e só se $ad-bc\neq 0$.

Este caso simples serve de motivação para introduzir a noção de determinante de uma matriz.

Na definição que se apresenta de seguida, S_n indica o grupo simétrico (ver Definição 2.3.1).

Definição 2.4.1. Seja A uma matriz quadrada de ordem n. O determinante de A, denotado por det A ou |A|, \acute{e} o escalar definido por

$$\sum_{\sigma \in S_n} sgn(\sigma) \, a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

Vejamos o que resulta da fórmula quando consideramos matrizes 2×2 e matrizes 3×3 . Seja $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. Neste caso, o grupo simétrico S_2 tem apenas as permutações $\sigma_1 = (1\,2)$ e $\sigma_2 = (2\,1)$, sendo que $sgn(\sigma_1) = 1$ e que $sgn(\sigma_2) = -1$. Recorde que $\sigma_1(1) = 1$ $1, \sigma_1(2) = 2, \sigma_2(1) = 2$ e $\sigma_2(2) = 1$. Obtemos, então, $|A| = a_{11}a_{22} - a_{12}a_{21}$.

Figura 2.1: Esquema do cálculo do determinante de matrizes de ordem 2

Seja agora
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Recorde que S_3 tem 6 elementos. No quadro seguinte, indicamos, respectivamente, a permutação $\sigma \in S_3$, o seu sinal, e o produto $a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$.

Permutação $\sigma \in S_3$	$sgn(\sigma)$	$a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$
$\boxed{ (123) }$	+1	$a_{11}a_{22}a_{33}$
(231)	+1	$a_{12}a_{23}a_{31}$
(312)	+1	$a_{13}a_{21}a_{32}$
(132)	-1	$a_{11}a_{23}a_{32}$
(213)	-1	$a_{12}a_{21}a_{33}$
(321)	-1	$a_{13}a_{22}a_{31}$

Obtemos, assim,

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

Para fácil memorização, pode-se recorrer ao esquema apresentado de seguida.

Figura 2.2: Esquema do cálculo do determinante de matrizes de ordem 3, ou a Regra de Sarrus

37

2.4.2 Propriedades

São consequência da definição os resultados que de seguida apresentamos, dos quais omitimos a demonstração.

Teorema 2.4.2. Seja A uma matriz quadrada.

- 1. Se A tem uma linha ou uma coluna nula então |A| = 0.
- 2. $|A| = |A^T|$.
- 3. Se A é triangular (inferior ou superior) então $|A| = \prod_{i=1,\dots,n} (A)_{ii}$.
- 4. $|P_{ij}| = -1, |D_k(a)| = a, |E_{ij}(a)| = 1, \text{ com } i \neq j.$

Daqui segue que $|I_n|=1$. Segue também que dada uma matriz triangular (inferior ou superior) que esta é invertível se e só se tiver determinante não nulo. Mais adiante, apresentaremos um resultado que generaliza esta equivalência para matrizes quadradas não necessariamente triangulares.

Teorema 2.4.3. Dada uma matriz A quadrada, $a \in \mathbb{K}$,

- 1. $|D_i(a)A| = a|A| = |AD_i(a)|$;
- 2. $|P_{ij}A| = |AP_{ij}| = -|A|$;
- 3. $|E_{ij}(a)A| = |A| = |AE_{ij}(a)|$.

Como $|D_i(A)| = a$, $|P_{ij}| = -1$ e $|E_{ij}(a)| = 1$, segue que $|D_i(a)A| = |D_i(a)||A|$, $|P_{ij}A| = |P_{ij}||A|$ e que $|E_{ij}(a)A| = |E_{ij}(a)||A|$. Repare ainda que, se $A \notin n \times n$, ℓ válida a igualdade $|\alpha A| = \alpha^n |A|$, já que $\alpha A = \prod_{i=1}^n D_i(\alpha)A$. De forma análoga, dada uma matriz diagonal D com elementos diagonais d_1, d_2, \ldots, d_n , tem-se $|DA| = d_1 d_2 \cdots d_n |A| = |D||A|$.

Corolário 2.4.4. Uma matriz com duas linhas/colunas iguais tem determinante nulo.

Demonstração. Se a matriz tem duas linhas iguais, digamos i e j, basta subtrair uma à outra, que corresponde a multiplicar à esquerda pela matriz $E_{ij}(-1)$. A matriz resultante tem uma linha nula, e portanto tem determinante zero. Para colunas iguais, basta aplicar o mesmo raciocínio a A^T .

O corolário anterior é passível de ser generalizado considerando não linhas iguais, mas tal que uma linha se escreva como soma de múltiplos de outras linhas. O mesmo se aplica a colunas.

Corolário 2.4.5. Tem determinante nulo uma matriz que tenha uma linha que se escreve como a soma de múltiplos de outras das suas linhas.

Demonstração. Suponha que a linha i, ℓ_i , de uma matriz A se escreve como a soma de múltiplos de outras das suas linhas, ou seja, que $\ell_i = \sum_{j \in J} \alpha_j \ell_j = \alpha_{j1} \ell_{j1} + \alpha_{j2} \ell_{j2} + \cdots + \alpha_{js} \ell_{js}$. A linha i de $E_{ij_1}(-\alpha_{j_1})A$ é a matriz obtida de A substituindo a sua linha i por $\ell_i - \alpha_{j_1}\ell_{j_1} = \alpha_{j2}\ell_{j_2} + \cdots + \alpha_{js}\ell_{j_s}$. Procedemos ao mesmo tipo de operações elementares por forma a obtermos uma matriz cuja linha i é nula. Como o determinante de cada uma das matrizes obtidas por operação elementar de linhas iguala o determinante de A, e como a última matriz tem uma linha nula, e logo o seu determinante é zero, segue que |A| = 0.

Corolário 2.4.6. Seja U a matriz obtida da matriz quadrada A por Gauss. $Então |A| = (-1)^r |U|$, onde r indica o número de trocas de linhas no algoritmo.

Sabendo que uma matriz é invertível se e só se a matriz escada associada (por aplicação de Gauss) é invertível, e que esta sendo triangular superior é invertível se e só se os seus elementos diagonais são todos não nulos, segue que, e fazendo uso de resultados enunciados e provados anteriormente,

Corolário 2.4.7. Sendo A uma matriz quadrada de ordem n, as afirmações seguintes são equivalentes:

- 1. A é invertível;
- 2. $|A| \neq 0$;
- β . car(A) = n;
- 4. A é não-singular.

Portanto, uma matriz com duas linhas/colunas iguais não é invertível. Mais, uma matriz que tenha uma linha que se escreva como soma de múltiplos de outras das suas linhas não é invertível.

Teorema 2.4.8. Seja $A \in B$ matrizes $n \times n$.

$$|AB| = |A||B|.$$

Demonstração. Suponha que A é invertível.

Existem matrizes elementares E_1, \ldots, E_s e uma matriz escada (de linhas) U tal que $A = E_1 E_2 \ldots E_s U$. Ora existem também E_{s+1}, \ldots, E_r matrizes elementares, e U_1 matriz escada de linhas para as quais $U^T = E_{s+1} \ldots E_r U_1$. Note que neste último caso se pode pressupor que não houve trocas de linhas, já que os pivots do AEG são os elementos diagonais de U já que U^T é triangular inferior, que são não nulos por A ser invertível. Ora U_1 é então uma matriz triangular superior que se pode escrever como produto de matrizes triangulares inferiores, e portanto U_1 é uma matriz diagonal. Seja $D = U_1$. Resumindo, $A = E_1 E_2 \ldots E_s (E_{s+1} \ldots E_r D)^T = E_1 E_2 \ldots E_s DE_r^T E_{r-1}^T \ldots E_{s+1}^T$. Recorde que, dada uma

matriz elementar E, é válida |EB| = |E||B|. Então,

$$|AB| = |E_{1}E_{2} \dots E_{s}DE_{r}^{T}E_{r-1}^{T} \dots E_{s+1}^{T}B|$$

$$= |E_{1}||E_{2} \dots E_{s}DE_{r}^{T}E_{r-1}^{T} \dots E_{s+1}^{T}B|$$

$$= |E_{1}||E_{2}||E_{3} \dots E_{s}DE_{r}^{T}E_{r-1}^{T} \dots E_{s+1}^{T}B|$$

$$= \dots$$

$$= |E_{1}||E_{2}||E_{3}| \dots |E_{s}||D||E_{r}^{T}||E_{r-1}^{T}| \dots |E_{s+1}^{T}||B|$$

$$= |E_{1}E_{2}E_{3} \dots E_{s}DE_{r}^{T}E_{r-1}^{T} \dots E_{s+1}^{T}||B|$$

$$= |A||B|.$$

Se A não é invertível, e portanto |A|=0, então AB não pode ser invertível, e portanto |AB|=0.

Como $|I_n|=1$, segue do teorema anterior a relação entre o determinante uma matriz invertível com o da sua inversa.

Corolário 2.4.9. Se A é uma matriz invertível então

$$|A^{-1}| = \frac{1}{|A|}.$$

Recorde que para que uma matriz A seja invertível exige-se a existência de uma outra X para a qual $AX = I_n = XA$. O resultado seguinte mostra que se pode prescindir da verificação de uma das igualdades.

Corolário 2.4.10. Seja A uma matriz $n \times n$. São equivalentes:

- 1. A é invertível
- 2. existe uma matriz X para a qual $AX = I_n$
- 3. existe uma matriz Y para a qual $YA = I_n$

Nesse caso, $A^{-1} = X = Y$.

Demonstração. As equivalências são imediatas, já que se $AX = I_n$ então $1 = |I_n| = |AX| = |A||X|$ e portanto $|A| \neq 0$.

Para mostrar que $A^{-1} = X$, repare que como $AX = I_n$ então A é invertível, e portanto $A^{-1}AX = A^{-1}$, donde $X = A^{-1}$.

Faça a identificação dos vectores $(a,b) \in \mathbb{R}^2$ com as matrizes coluna $\begin{bmatrix} a \\ b \end{bmatrix}$. O produto interno usual $(u_1,u_2) \cdot (v_1,v_2)$ em \mathbb{R}^2 pode ser encarado como o produto matricial $\begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. Ou seja, $u \cdot v = u^T v$. Esta identificação e noção pode ser generalizada de forma trivial para \mathbb{R}^n . Dois vectores u e v de \mathbb{R}^n dizem-se ortogonais, $u \perp v$, se $u \cdot v = u^T v = 0$. A norma usual em \mathbb{R}^n é definida por $||u|| = \sqrt{u \cdot u}$, com $u \in \mathbb{R}^n$

Corolário 2.4.11. Seja A uma matriz real $n \times n$ com colunas c_1, c_2, \ldots, c_n . Então A é ortogonal se e só se $c_i \perp c_j = 0$ se $i \neq j$, $e ||c_i|| = 1$, para $i, j = 1, \ldots, n$.

Demonstração. Condição suficiente: Escrevendo $A = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}$, temos que

$$I_n = A^T A = \begin{bmatrix} c_1^T \\ c_2^T \\ \vdots \\ c_n^T \end{bmatrix} \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}.$$

Como o elemento (i,j) de $\begin{bmatrix} c_1^T \\ c_2^T \\ \vdots \\ c_n^T \end{bmatrix} \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \text{ \'e } c_i^T c_j, \text{ obtemos o resultado.}$ $Condição \ necessária: \ \text{Ora} \ c_i^T c_j = 0 \ \text{se} \ i \neq j, \ \text{e} \ c_i^T c_i = 1 \ \text{\'e o mesmo que } A^T A = I_n, \ \text{e pelo}$

corolário anterior implica que A é invertível com $A^{-1} = A^T$, pelo que A é ortogonal.

Ou seja, as colunas das matrizes ortogonais são ortogonais duas a duas. O mesmo se pode dizer acerca das linhas, já que a transposta de uma matriz ortogonal é de novo uma matriz ortogonal.

2.4.3 Teorema de Laplace

Dada uma matriz A, quadrada de ordem n, denota-se por A(i|j) a submatriz de A obtida por remoção da sua linha i e da sua coluna j.

Definição 2.4.12. Seja $A = [a_{ij}]$ uma matriz quadrada.

1. O complemento algébrico de a_{ij} , ou cofactor de a_{ij} , denotado por A_{ij} , está definido por

$$A_{ij} = (-1)^{i+j} |A(i|j)|$$

2. A matriz adjunta é a transposta da matriz dos complementos algébricos

$$Adj(A) = [A_{ij}]^T.$$

Teorema 2.4.13 (Teorema de Laplace I). Para $A = [a_{ij}], n \times n, n > 1, então, e para$ $k=1,\ldots,n,$

$$|A| = \sum_{j=1}^{n} a_{kj} A_{kj}$$
$$= \sum_{j=1}^{n} a_{jk} A_{jk}$$

O teorema anterior é o caso especial de um outro que enunciaremos de seguida. Para tal, é necessário introduzir mais notação e algumas definições (cf. [10]).

Seja A uma matriz $m \times n$. Um menor de ordem p de A, com $1 \leq p \leq \min\{m, n\}$, é o determinante de uma submatriz $p \times p$ de A, obtida de A eliminando m-p linhas e n-p colunas de A.

Considere duas sequências crescentes de números

$$1 \le i_1 < i_2 < \dots < i_p \le m, \ 1 \le j_1 < j_2 < \dots < j_p \le n,$$

e o determinante da submatriz de A constituída pelas linhas $i_1, i_2, \ldots i_p$ e pelas colunas j_1, j_2, \ldots, j_p . Este determinante vai ser denotado por $A \begin{pmatrix} i_1 & i_2 & \ldots & i_p \\ j_1 & j_2 & \ldots & j_p \end{pmatrix}$. Ou seja,

$$A\begin{pmatrix} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{pmatrix} = |[a_{i_k j_k}]_{k=1,\dots p}|.$$

Paralelamente, podemos definir os menores complementares de A como os determinantes das submatrizes a que se retiraram linhas e colunas. Se A for $n \times n$,

$$A\left(\begin{array}{ccc} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{array}\right)^c$$

denota o determinante da submatriz de A após remoção das linhas $i_1, i_2, \dots i_p$ e das colunas j_1, j_2, \dots, j_p de A. O cofactor complementar está definido como

$$A^{c} \begin{pmatrix} i_{1} & i_{2} & \dots & i_{p} \\ j_{1} & j_{2} & \dots & j_{p} \end{pmatrix} = (-1)^{s} A \begin{pmatrix} i_{1} & i_{2} & \dots & i_{p} \\ j_{1} & j_{2} & \dots & j_{p} \end{pmatrix}^{c},$$

onde $s = (i_1 + i_2 + \cdots + i_p) + (j_1 + j_2 + \cdots + j_p).$

O caso em que p=1 coincide com o exposto no início desta secção.

Teorema 2.4.14 (Teorema de Laplace II). Sejam $A = [a_{ij}], n \times n, 1 \leq p \leq n$. Para qualquer escolha de p linhas i_1, i_2, \ldots, i_p de A, ou de p colunas j_1, j_2, \ldots, j_p de A,

$$|A| = \sum_{j} A \begin{pmatrix} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{pmatrix} A^c \begin{pmatrix} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{pmatrix}$$

onde a soma percorre todos os menores referentes à escolha das linhas [resp. colunas].

Para finalizar, apresentamos um método de cálculo da inversa de uma matriz não singular.

Teorema 2.4.15. Se A é invertível então

$$A^{-1} = \frac{Adj(A)}{|A|}.$$

Exercícios

1. Seja
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ -1 & 2 & -4 \end{bmatrix}$$
.

- (a) Troque duas linhas de A e compare o determinante da matriz obtida com |A|. Repita o exercício fazendo trocas de colunas.
- (b) Substitua uma linha/coluna de A pela linha nula e calcule o determinante da matriz obtida.
- (c) Multiplique uma linha por um escalar não nulo e compare o determinante da matriz obtida com |A|. Repita o exercício multiplicando uma coluna por um escalar não nulo.
- (d) A uma linha de A some-lhe outra multiplicada por um escalar não nulo. Compare o determinante da matriz obtida com |A|. Repita o exercício fazendo a operação elementar por colunas.
- (e) Encontre uma factorização PA = LU. Calcule det(U) e compare com det(A).
- (f) O que pode conjecturar sobre o valor de |-A|? Teste a validade da sua conjectura.
- (g) Verifique que $|A^T| = |A|$.
- (h) Calcule a matriz dos complementos algébricos, a adjunta e a inversa (caso exista) da matriz dada.

$$\text{2. Considere a matriz } A = \left[\begin{array}{ccc} -1 & 2 & -5 \\ 0 & -6 & 6 \\ -4 & -1 & 0 \end{array} \right].$$

- (a) Encontre uma factorização PA = LU.
- (b) Calcule car(A).
- (c) Calcule $\det(A)$.
- (d) Calcule a matriz dos complementos algébricos, a adjunta e a inversa (caso exista) da matriz dada.

3. Seja
$$A = \begin{bmatrix} 3 & 0 & -1 \\ 0 & -1 & 5 \\ 6 & 0 & -2 \end{bmatrix}$$
.

- (a) Encontre uma factorização PA = LU.
- (b) Calcule car(A).
- (c) Calcule $\det(A)$.
- (d) Calcule a matriz dos complementos algébricos, a adjunta e a inversa (caso exista) da matriz dada.

2.4. DETERMINANTES

43

4. Considere a matriz
$$A=\left[\begin{array}{ccc}2&2&1\\2&2&1\\4&1&1\end{array}\right].$$

- (a) Encontre uma factorização PA = LU.
- (b) Calcule car(A).
- (c) Calcule det(A).
- (d) Calcule a matriz dos complementos algébricos, a adjunta e a inversa (caso exista) da matriz dada

5. Para
$$A = \begin{bmatrix} 1 & 5 & 2 & -4 \\ 0 & 0 & -1 & -1 \\ -1 & -3 & 0 & 0 \\ 6 & 0 & 3 & -6 \end{bmatrix}$$
,

- (a) encontre uma factorização PA = LU,
- (b) calcule car(A),
- (c) calcule det(A).
- (d) calcule a matriz dos complementos algébricos, a adjunta e a inversa (caso exista).
- 6. Calcule o determinante, a matriz dos complementos algébricos, a adjunta e a inversa (caso exista) das matrizes

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 2 \\ 7 & 1 & 1 \end{bmatrix}.$$

(b)
$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 1 \\ 2 & 3 & 3 \end{bmatrix}.$$

(c)
$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 5 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$

(d)
$$\begin{bmatrix} 0 & -3 & 3 & 4 \\ 0 & -1 & 0 & -3 \\ 2 & -4 & -4 & 0 \\ 0 & -2 & 1 & -4 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 0 & -1 & -2 \\ 4 & -3 & -1 & 4 \\ -3 & 0 & 4 & -1 \end{bmatrix}$$

(f)
$$\begin{bmatrix} -2 & 3 & 0 & 2 \\ -4 & 3 & -1 & 2 \\ -2 & -4 & 0 & -1 \\ 3 & -1 & 3 & -2 \end{bmatrix}.$$

7. Calcule o determinante das matrizes seguintes:

(a)
$$\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 6 & 9 \\ 8 & 12 \end{bmatrix}$ (e) $\begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$ (f) $\begin{bmatrix} n+1 & n \\ n & n-1 \end{bmatrix}$ (g) $\begin{bmatrix} a+b & a-b \\ a-b & a+b \end{bmatrix}$ (h) $\begin{bmatrix} 1 & i \\ 1 & 1 \end{bmatrix}$ (i) $\begin{bmatrix} a & c+di \\ c-di & b \end{bmatrix}$ (j) $\begin{bmatrix} a+bi & b \\ 2a & a-bi \end{bmatrix}$ (k) $\begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ (l) $\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$

- 8. Se A é uma matriz simétrica, mostre que $\det{(A+B)} = \det{(A+B^T)}$, para qualquer matriz B com a mesma ordem de A.
- 9. Uma matriz A é anti-simétrica se $A^T=-A$. Mostre que, para $A\in\mathcal{M}_n\left(\mathbb{K}\right)$ com n ímpar e A anti-simétrica, se tem $\det A=0$.