Électromagnétisme S09 Conducteurs en électrostatique II

Iannis Aliferis

Université Nice Sophia Antipolis

Le champ électrique dans une cavité	2
Champ électrique dans une cavité vide	. 3
Champ électrique dans une cavité chargée	. 4
Cavités dans un conducteur : géométries sphériques	5
Conducteur sphérique avec cavité	. 6
Conducteur sphérique avec cavité sphérique	. 7
Conducteurs et potentiel électrostatique	8
Conducteurs, cavités et potentiel	. 9
Relation entre champ surfacique et forme des conducteurs	10
Le champ à la surface du conducteur	. 11
Condensateurs	12
Condensateur et capacitance	. 13
Épergie d'un condensateur	

2

Le champ électrique dans une cavité

Champ électrique dans une cavité vide

- lacktriangle Cavité vide (pas de charges); hypothèse : dans la cavité $ec{E}
 eq ec{0}$
- lacktriangledown $\Gamma = \Gamma_1$ (conducteur) $\cup \Gamma_2$ (cavité : suivre une ligne du champ)

$$\begin{split} \oint_{\Gamma} \vec{E}(\vec{r}) \cdot \hat{t} \, \mathrm{d}l &= \int_{\Gamma_1} \vec{E}(\vec{r}) \cdot \hat{t}_1 \, \mathrm{d}l + \int_{\Gamma_2} \vec{E}(\vec{r}) \cdot \hat{t}_2 \, \mathrm{d}l \\ &= 0 + \int_{\Gamma_2} \|\vec{E}(\vec{r})\| \, \mathrm{d}l = 0 \quad \text{[circ. champ \'electrostatique]} \end{split}$$

Dans une cavité vide : E=0

lacktriangle Même en présence d'un champ $ec{m{E}}_{\mathsf{ext}}$: blindage

Champ électrique dans une cavité chargée

- ▼ [Cavités charges]
- $lackbox{ } Q_{\mathrm{surf\ ext}}$ crée E=0 dans le conducteur
- $lackbox{ } Q_{\rm cav}$ et $Q_{\rm surf\ int}$ créent E=0 dans le conducteur

Dans une cavité chargée : $E \neq 0$

▼ Cas spéciaux : [cavité géométries sphériques]

5

Cavités dans un conducteur : géométries sphériques

Conducteur sphérique avec cavité

- **▼** [Cavité champ] : $E \neq 0$ dans la cavité
- ▼ [Cavité charges] : les charges induites Q_{surf} int annulent l'effet de Q_{cav}
- lacktriangledown Charge $Q_{
 m surf\ ext}=+q$ équirépartie sur la surface

$$ec{m{E}}(ec{m{r}})=rac{1}{4\pi\epsilon_0}rac{q}{r^2}\hat{m{e}}_{m{r}}$$
 en dehors du conducteur

Conducteur sphérique avec cavité sphérique

- lacktriangle Charge $Q_{\mathsf{cav}} = +q$ au centre de la cavité
- lacktriangledown Charge $Q_{
 m surf\ int}=-q$ équirépartie sur la surface interne
- lacktriangle Charge $Q_{
 m surf\ ext} = +q$ équirépartie sur la surface externe

$$ec{m{E}}(ec{m{r}})=rac{1}{4\pi\epsilon_0}rac{q}{r^2}\hat{m{e}}_{m{r}}$$
 en dehors du conducteur

$$ec{m{E}}(ec{m{r}^{\, \prime}}) = rac{1}{4\pi\epsilon_0} rac{q}{r^{\prime 2}} \hat{m{e}}_{r^\prime} \;\;\;$$
 dans la cavité

Conducteurs et potentiel électrostatique

Conducteurs, cavités et potentiel

- [Conducteurs champ intérieur] : E=0
- ▼ [Conducteurs surface] : $\vec{E} = \frac{\rho_s}{\epsilon_0} \hat{n}$ ▼ [Cavités champ] : E = 0 dans une cavité vide

$$V(\vec{\boldsymbol{r}_B}) - V(\vec{\boldsymbol{r}_A}) = -\int_{\Gamma: \vec{\boldsymbol{r}_A} \to \vec{\boldsymbol{r}_B}} \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = 0$$

Un conducteur (avec ses cavités vides) forme une région équipotentielle

À la surface, $ec{m{E}} \perp$ équipotentielle : $ec{m{E}} \parallel \hat{m{n}}$

8

Relation entre champ surfacique et forme des conducteurs

10

Le champ à la surface du conducteur

- lacktriangle Deux sphères métalliques, rayons R_1 , R_2
- Très éloignées; connectées par un fil conducteur
- Charges Q_1 , Q_2 ; densité de charge surfacique $ho_{si}=Q_i/4\pi R_i^2$
- Potentiel : $V_i = \frac{1}{4\pi\epsilon_0} \frac{Q_i}{R_i}$ « Connectées » : $V_1 = V_2$ [conducteurs potentiel] $\Longrightarrow \frac{Q_1}{R_1} = \frac{Q_2}{R_2}$
- Si $R_1 > R_2$, $ho_{s1} <
 ho_{s2}$ donc $E_1 < E_2$

Le champ électrique est plus fort aux endroits où le rayon de courbure est plus petit (p.ex. pointes)

Condensateurs 12

Condensateur et capacitance

▼ [Conducteurs potentiel] : région équipotentielle

▼ Condensateur : ensemble de deux conducteurs +Q à V_+ et -Q à V_-

$$V \triangleq V_{+} - V_{-} = -\int_{\Gamma:(-) \to (+)} \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l$$

lacksquare $V \propto E$, $E \propto
ho_s$ et $Q \propto
ho_s$ donc $V \propto Q$

Capacitance :
$$C \triangleq \frac{Q}{V}$$
 en $F = CV^{-1}$ (1)

▼ Paramètre purement géométrique

12

Énergie d'un condensateur

▼ Charger le condensateur :

$$dW = dq(V_{+} - V_{-}) = V dq = \frac{1}{C} q dq$$

▼ Travail fourni pendant la charge :

$$W = \int dW = \int_0^Q \frac{1}{C} q \, dq = \frac{1}{C} \frac{Q^2}{2} = \frac{1}{2} CV^2 = \mathcal{U}_e$$

▼ Autre méthode : [énergie électrostatique charges continues]

$$\mathcal{U}_{\mathsf{e}} = \frac{1}{2} \int_{S} \rho_{s}(\vec{r}) V(\vec{r}) \, \mathrm{d}S = \frac{1}{2} \int_{S+} \rho_{s}(\vec{r}) V_{+} \, \mathrm{d}S + \frac{1}{2} \int_{S-} \rho_{s}(\vec{r}) V_{-} \, \mathrm{d}S$$

$$= \frac{1}{2} V_{+} \int_{S+} \rho_{s}(\vec{r}) \, \mathrm{d}S + \frac{1}{2} V_{-} \int_{S-} \rho_{s}(\vec{r}) \, \mathrm{d}S = \frac{1}{2} [V_{+} Q + V_{-}(-Q)]$$

$$= \frac{1}{2} Q(V_{+} - V_{-}) = \frac{1}{2} QV = \frac{1}{2} CV^{2}$$

14

