Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.12.6

Key words: Odd/Even-town, Linear Algebra Method (about polynomials)

Recall.

- (1) (Frankl-Wilson Theorem) $\mathcal{F} \subseteq 2^{[n]}$ is an L-intersecting family, then $|\mathcal{F}| \leqslant \sum_{i=0}^{|L|} \binom{n}{i}$.
- (2) Let p be a prime and $L \subset \mathbb{Z}_p = \{0, 1, \dots, p-1\}$. Assume $\mathcal{F} = \{A_1, \dots, A_m\} \subseteq 2^{[n]}$ such that
 - (a) $|A_i| \pmod{p} \notin L, \forall i \in [m];$
 - (b) $|A_i \cap A_j| \pmod{p} \in L, \forall i \neq j$.

Then
$$|\mathcal{F}| \leqslant \sum_{i=0}^{|L|} \binom{n}{i}$$

(3) (Application) \exists graph on $\binom{p^3}{p^2-1}$ vertices such that the size of maximum clique or maximum independent set is $\leqslant \sum_{i=0}^{p-1} \binom{p^3}{i}$. $\Longrightarrow R(t+1,t+1) \geqslant t^{\Omega(\ln t/\ln \ln t)}$.

Odd/Even-town. Let $\mathcal{F} \subseteq 2^{[n]}$ s.t. |A| is odd for all $A \in \mathcal{F}$, and $|A \cap B|$ is even for $\forall A \neq B \in \mathcal{F}$. Then $|\mathcal{F}| \leqslant n$.

<u>proof:</u> $\forall A \in \mathcal{F}$, let $\mathbf{e_A}$ be the indictor vector of A. View $\mathbf{e_A} \in \mathbb{F}_2^n$, then

$$<\mathbf{e_A}, \mathbf{e_A}>=1, \quad \forall \ A \in \mathcal{F}$$

 $<\mathbf{e_A}, \mathbf{e_B}>=0, \quad \forall \ A \neq B \in \mathcal{F}$

Assume $\exists \alpha_A \in \mathbb{F}_2 = \{0,1\} \ s.t. \sum_{A \in \mathcal{F}} \alpha_A \mathbf{e_A} = \mathbf{0}$, then

$$0 = <\sum_{A \in \mathcal{F}} \alpha_A \mathbf{e_A}, \mathbf{e_B} > = \alpha_B < \mathbf{e_B}, \mathbf{e_B} > = \alpha_B, \ \forall \ B \in \mathcal{F}$$

So e_A , $A \in \mathcal{F}$ are linearly independent, which implies $|\mathcal{F}| \leq n$. \square

Corollary. $R(t+1,t+1) > {t \choose 3} \sim t^3$.

proof: Define G = (V, E) as follows:

$$V = {[t] \choose 3}, \quad A \sim B \text{ iff } |A \cap B| = 1.$$

Consider a clique A_1, \dots, A_m , then $|A_i \cap A_j| = 1, \forall i \neq j$. By Fisher's Inequality, $m \leq t$.

Condsider an independent set $B_1, \dots B_s$, then $|B_i| = 3$ (Odd), $|B_i \cap B_j| = 0$ or 2 (Even). By Odd/Even-town, $s \leq t$.

Even/Odd-town. Let $\mathcal{F} \subseteq 2^{[n]}$ s.t. |A| is even for all $A \in \mathcal{F}$, and $|A \cap B|$ is odd for $\forall A \neq B \in \mathcal{F}$. Then $|\mathcal{F}| \leq n$.

<u>proof:</u> For $\forall A \in \mathcal{F}$, define $A' = A \cup \{n+1\}$. Define $\mathcal{F}' = \{A' : A \in \mathcal{F}\} \subseteq 2^{[n+1]}$. Then, by Odd/Even-town, $|\mathcal{F}| = |\mathcal{F}'| \leqslant n+1$.

Assume $|\mathcal{F}| = n + 1$. For $\forall A \in \mathcal{F}$, let $\mathbf{e_A} \in \mathbb{F}_2^n$ be the indictor vector of A. Then $\mathbf{e_A}$, $A \in \mathcal{F}$ are linearly dependent, *i.e.* \exists not all zero $\alpha_A \in \mathbb{F}_2 = \{0,1\}$ s.t. $\sum_{A \in \mathcal{F}} \alpha_A \mathbf{e_A} = \mathbf{0}$.

Note that

$$<\mathbf{e_A}, \mathbf{e_A}>=0, \quad \forall \ A \in \mathcal{F}$$

 $<\mathbf{e_A}, \mathbf{e_B}>=1, \quad \forall \ A \neq B \in \mathcal{F}$

So

$$0 = <\sum_{A \in \mathcal{F}} \alpha_A \mathbf{e_A}, \mathbf{e_B} > = \sum_{A \in \mathcal{F}: A \neq B} \alpha_A = \sum_{A \in \mathcal{F}} \alpha_A - \alpha_B, \quad \forall B \in \mathcal{F}$$

 $\implies \alpha_B = \sum_{A \in \mathcal{F}} \alpha_A = 1, \ \forall \ B \in \mathcal{F} \ (\text{Since } \alpha_B \text{ are not all zero.})$ $\implies 1 = n + 1 \text{ in } \mathbb{F}_2. \implies n \text{ is even.}$ Consider $\mathcal{F}^c = \{A^c = [n] \setminus A : A \in \mathcal{F}\}, \text{ then}$

- $|A^c|$ is even, $\forall A \in \mathcal{F}$
- $|A^c \cap B^c| = n |A \cup B| = n (|A| + |B| |A \cap B|)$ is odd, $\forall A \neq B \in \mathcal{F}$

So \mathcal{F}^c is also Even/Odd-town & $|\mathcal{F}^c| = |\mathcal{F}| = n + 1$. Repeat the previous proof, we have

$$\sum_{A\in\mathcal{F}} \mathrm{e}_{\mathbf{A^c}} = 0.$$

Combine with $\sum_{A \in \mathcal{F}} \mathbf{e_A} = \mathbf{0}$, $\Longrightarrow \mathbf{0} = \sum_{A \in \mathcal{F}} (\mathbf{e_A} + \mathbf{e_{A^c}}) = \sum_{A \in \mathcal{F}} \mathbf{1} = (n+1)\mathbf{1} = \mathbf{1}$, a contradiction. Therefore, $|\mathcal{F}| \leq n$.

 $F: \text{field. } F[x_1, \cdots x_n] = \{\text{polynomial } f: F^n \to F\}.$

Definition. Say polynomial f vanishes on $E \subset F^n$ if $f(x_1, \dots, x_n) = 0, \forall (x_1, \dots, x_n) \in E$.

f is zero polynomial if and only if all coefficients are 0.

Note. If n = 1, univariate $f(x) \neq 0$, $deg(f) \leq d$, then f has at most d roots.

- (1) $f \neq 0$ vanishes on S, then $|S| \leq deg(f)$.
- (2) If $\nexists f \neq 0$ that vanishes on S, then |S| > deg(f).

Lemma 1. Given $E \subset F^n$, $|E| < \binom{n+d}{d}$, then $\exists 0 \neq f \in F[x_1, \dots, x_n]$ with $deg(f) \leq d$ that vanishes on E.

proof: Let $V_d = \{ f \in F[x_1, \cdots, x_n] : deg(f) \leq d \}$, then $dim(V_d) =$

Let $F^{\vec{E}} = \{\text{all functions from } E \text{ to } F\} = \{\text{all vectors over } F \text{ of } F\}$ length |E|}. i.e. $u \in F^E$, $u = (u_a)_{a \in E}$, $u_a \in F$. Define a map: $V_d \to F^E$, $f \mapsto (f(a))_{a \in E}$.

Note that F^E is a linear space, $dim(F^E) = |E| < {n+d \choose d} =$ $dim\ (V_d)$. So $\exists\ f_1 \neq f_2 \in V_d$ such that $(f_1(a))_{a \in E} = (f_2(a))_{a \in E}$. $\Longrightarrow ((f_1 - f_2)(a))_{a \in E} = 0$, i.e. $0 \neq f_1 - f_2 \in V_d$ vanishes on E.

Lemma 2. $\forall 0 \neq f \in \mathbb{F}_q[x_1, \dots, x_n]$ with deg(f) = d < q has at most dq^{n-1} roots.

proof: n = 1: univariate case, OK.

Assume $n \ge 2$. Write f = g + h, where g is homogenous of degree d and $deg(h) \leq d-1$. Then $g \neq 0$, $\exists \omega \in \mathbb{F}_q^n \setminus \{0\}$ such that $g(\omega) \neq 0$. $\forall u \in \mathbb{F}_q^n$, let $L_u = \{u + t\omega : t \in \mathbb{F}_q\}$ (line). $\Longrightarrow |L_u| = q$. If $v \notin L_u$, then $L_u \cap L_v = \emptyset$. (Since otherwise, $u + t\omega = v + t'\omega \implies$ $v = u + (t - t')\omega \in L_u$.) Hence \mathbb{F}_q^n is partitioned into $q^n/q = q^{n-1}$ disjoint lines.

Now, it remains to show that f has at most d roots in each line. Let $P_u(t) = f(u + t\omega)$, then $deg(P_u) \leq d$ and a root of P_u corresponds to a root of f in line L_u .

$$[t^d]P_u(t) = [t^d]f(u + t\omega) = [t^d]g(u + t\omega) = [t^d]g(t\omega) = g(\omega) \neq 0$$

 $\implies P_u \neq 0.$

 $\implies P_u$ has at most d roots.

 $\implies f$ has at most d roots in line L_u .

Lemma 3. $\forall S \subset F, |S| \geqslant d, \forall 0 \neq f \in F[x_1, \dots, x_n]$ of degree d. Then f has at most $d|S|^{n-1}$ roots in $S^n = S \times \cdots \times S$.

proof: Prove by induction on n.

n=1: univariate case, OK.

Assume $n \ge 2$. Write $f = f_0 + f_1 x_n + \dots + f_t x_n^t$, $t \le d$, $f_t \ne 0$,

 $f_i \in F[x_1, \dots, x_{n-1}], \ deg(f_i) \leq a - i.$ Now estimate the number of points $(a, b) \in S^{n-1} \times S \ s.t. \ f(a, b) = 0.$

- (1) $f_t(a) = 0$. Since $deg(f_t) \leq d t$, by assumption, f_t has at most $(d-t)|S|^{n-2}$ roots in S^{n-1} . So there are at most $(d-t)|S|^{n-2}$. $|S| = (d-t)|S|^{n-1}$ points $(a,b) \in S^{n-1} \times S$ s.t. f(a,b) = 0 and $f_t(a) = 0.$
- (2) $f_t(a) \neq 0$. Given such $a \in S^{n-1}$, let $g_a(x_n) = f(a, x_n)$, then $deg(g_a) \leq t$. So $g_a \neq 0$ has at most t roots in S. i.e. Given $a \in$ S^{n-1} satisfying $f_t(a) \neq 0, \exists$ at most t elements $b \in S$ s.t. f(a,b) = $g_a(b) = 0$. Since there are at most $|S|^{n-1}$ such a, the number of points $(a,b) \in S^{n-1} \times S$ s.t. f(a,b) = 0 and $f_t(a) \neq 0$ is at most $t|S|^{n-1}$.

Together, there are at most $d|S|^{n-1}$ points $(a,b) \in S^{n-1} \times S$ such that f(a,b) = 0.

凝定工业分块.