

# Programación Matemática. Relación 3. Curso 2016/17.

### Problema 1

Dados dos conjuntos convexos no vacíos A y B en  $\mathbb{R}^n$  demuestra que son convexos los siguientes conjuntos:

- 1.  $A \cap B$ .
- $2. A \times B.$
- 3.  $M \cdot A := \{Ma : a \in A\}$  (M es una matriz  $m \times n$  fija).
- 4.  $A + B := \{a + b : a \in A, b \in B\}.$
- 5. cl(A), la clausura de A.
- 6. int(A), el interior de A.

### Problema 2

Dado  $C \subset \mathbb{R}^{p+q}$ , convexo no vacío, demuestra que es convexo el conjunto  $B = \{b \in \mathbb{R}^q : (a,b) \in C \text{ para algún } a \in \mathbb{R}^p\}.$ 

#### Problema 3

Sea  $\|\cdot\|$  una norma en  $\mathbb{R}^n.$  Demuestra que son convexos los siguientes conjuntos:

- 1.  $\{x \in \mathbb{R}^n : ||x|| \le 1\}$
- $2. \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : ||x|| \le t\}$

# Problema 4

Sea  $S \subset \mathbb{R}^n$  un conjunto convexo y cerrado, y sea  $d \in \mathbb{R}^n$ . Demuestra que son equivalentes:

- 1.  $\exists x_0 \in S \text{ tal que } x_0 + \lambda d \in S \ \forall \lambda \geq 0.$
- 2.  $x_0 + \lambda d \in S \ \forall \lambda \ge 0, \forall x_0 \in S$ .

¿Es cierto el resultado si  ${\cal S}$  no es cerrado?

### Problema 5

Prueba que un cono  $K \subset \mathbb{R}^n$  es convexo si<br/>iK+K=K.

#### Problema 6

Sea  $K \subset \mathbb{R}^n$  un cono convexo cerrado. Demuestra que K tiene puntos extremos si y sólo si K no contiene ninguna recta.

#### Problema 7

Describe la función  $\pi$  de proyección sobre los siguientes convexos

1. 
$$S = co(\{(1,0),(0,4),(-1,-1),(0,-2)\})$$
.

2. 
$$S = \{x \in \mathbb{R}^n : x^{\top}x \le 1\}$$

3. 
$$S = \{x \in \mathbb{R}^n : a^{\top}x = b\}$$
.

#### Problema 8

Identifica el conjunto de puntos extremos y el cono de direcciones de los siguientes conjuntos convexos:

1. 
$$S = \{x \in \mathbb{R}^n : x_i \ge 0 \ \forall i\}.$$

2. 
$$S = \{x \in \mathbb{R}^n : x_i \ge 1 \ \forall i\}.$$

3. 
$$S = \{x \in \mathbb{R}^n : \sum_{i=1}^n |x|_i \le 1\}$$

4. 
$$S = \{ x \in \mathbb{R}^n : x^{\top} x \le 1 \}$$

5. 
$$S = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 \le 10, -x_1 - 2x_2 = 4, x_1, x_2, x_3 \ge 0\}$$

6. 
$$S = \{x \in \mathbb{R}^2 : x_1 + 2x_2 \ge 2, -x_1 + x_2 = 4, x_1, x_2 \ge 0\}$$

### Problema 9

Describe mediante restricciones lineales el poliedro  $co(\{a_1,\ldots,a_5\}) \subset \mathbb{R}^3$ ,

| $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ |
|-------|-------|-------|-------|-------|
| 1     | 0     | 0     | 0     | 1     |
| 0     | 0     | 0     | 3     | 3     |
| 0     | 0     | 1     | 0     | 0     |

### Problema 10

Demuestra el teorema de Farkas: Sea una matriz  $A \in \mathbb{R}^{m \times n}$  y  $b \in \mathbb{R}^n$ . Se cumple exactamente una de las dos condiciones siguientes:

1. 
$$\exists x \in \mathbb{R}^n \text{ tal que } Ax = b, x \ge 0.$$

2. 
$$\exists y \in \mathbb{R}^m \text{ tal que } y^{\top} A \geq 0, y^{\top} b < 0.$$

# Problema 11

Demuestra el teorema de Gordan: Sea una matriz  $A \in \mathbb{R}^{m \times n}$ . Se cumple exactamente una de las dos condiciones siguientes:

1. 
$$\exists x \in \mathbb{R}^n \text{ tal que } Ax = 0, x \ge 0, x \ne 0.$$

2. 
$$\exists y \in \mathbb{R}^m \text{ tal que } y^{\top} A > 0.$$

# Problema 12

Demuestra el teorema de Gale: Sea una matriz  $A \in \mathbb{R}^{m \times n}$  y  $b \in \mathbb{R}^n$ . Se cumple exactamente una de las dos condiciones siguientes:

1. 
$$\exists x \in \mathbb{R}^n \text{ tal que } Ax = b.$$

2. 
$$\exists y \in \mathbb{R}^m \text{ tal que } y^\top A = 0, b^\top y = 1.$$

### Problema 13

Sean  $A := \{a_1, \dots, a_p\} \subset \mathbb{R}^n$ ,  $x \in \mathbb{R}^n$ . Escribe un problema de programación lineal que es factible sii  $x \in co(A)$ , la envolvente convexa de A.