

PRIPRAVA NA LABORATORIJSKE VAJE Vaja 4: Prikazovanje 3D slik v 2D

Obdelava slik in videa

prof. dr. Tomaž Vrtovec

PRIKAZOVANJE 3D SLIK v 2D

Pregled

3D slike: primer slike ukrivljene strukture

- koordinatni sistem slike
- koordinatni sistem opazovane ukrivljene strukture (žile, sapnik, črevo, kosti, čeljust, hrbtenica)
- preslikava koordinatnih sistemov

Prerezi

- ravninski prerezi
- ukrivljeni prerezi

Projekcije

- osnovne projekcije

Anatomske ravnine in smeri

Koordinatni sistem slike

Koordinatni sistem slike:

$$\mathbb{R}^3_I \to (x, y, z)$$

Anatomske smeri:

- levo-desno (*angl.* sinistro-dexter axis): x
- naprej-nazaj (*angl*. ventro-dorsal axis): y
- navzgor-navzdol (angl. cranio-caudal): z

Koordinatni sistem strukture

Koordinatni sistem strukture:

$$\mathbb{R}^3_S \to (u, v, w)$$

Anatomske smeri:

- levo-desno: u
- naprej-nazaj: v
- navzgor-navzdol: w

prečni pogled

Preslikava koordinatnih sistemov

prečni pogled

Pregled

Ravninski prerezi

Ravninski prerezi – MPR (angl. multi-planar reformation)

- temeljijo na koordinatnemu sistemu slike
- dve vrsti:
 - **pravokotni ravninski prerezi** (*angl.* **orthogonal MPR**): ravnina vzorčenja je pravokotna na eno od osi koordinatnega sistema slike
 - stranski pravokotni ravninski prerezi
 - čelni pravokotni ravninski prerezi
 - prečni pravokotni ravninski prerezi
 - poševni ravninski prerezi (angl. oblique MPR)
 - stranski poševni ravninski prerezi
 - čelni poševni ravninski prerezi
 - prečni poševni ravninski prerezi
 - (posplošeni poševni ravninski prerezi)

Stranski pravokotni ravninski prerezi

$$M_{x=x_c}(y,z) = I(x_c, y, z)$$

prerez

Čelni pravokotni ravninski prerezi

$$M_{y=y_c}(x,z) = I(x,y_c,z)$$

prerez

Prečni pravokotni ravninski prerezi

$$M_{z=z_c}(x,y) = I(x,y,z_c)$$

prerez

Stranski poševni ravninski prerezi

$$\beta = \beta_p = 0^{\circ}$$

$$\gamma = \gamma_p = 25^{\circ}$$

Vrtovec T: Automated Determination of the Spine-Based Coordinate System for an Efficient Cross-Sectional Visualization of 3D Spine Images. Spinal Imaging and Image Analysis. Li S, Yao J (ur.), Springer, 2015.

prerez

Čelni poševni ravninski prerezi

$$lpha=lpha_p=0^\circ$$
 $\gamma=\gamma_p=25^\circ$

prečni pogled

Prečni poševni ravninski prerezi

$$\alpha = \alpha_p = 25^{\circ}$$
$$\beta = \beta_p = 0^{\circ}$$

 $M_{z=z_c,\beta=\beta_n}(x,y) = I(R(0,\beta_p,0)[x,y,z_c]) = I(R_y(\beta_p)[x,y,z_c])$

Posplošeni poševni ravninski prerezi

 $M^s_{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3}$

prerez

$$M_{\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3}^n(y,z) = I(R^n[x_j,y,z])$$

$$M_{\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}}^{s}(x,z) = I(R^{s}[x,y_{j},z])$$

PREREZI Ukrivljeni prerezi

Ukrivljeni prerezi – CPR (*angl.* curved-planar reformation)

- temeljijo na koordinatnemu sistemu opazovane strukture
- dve vrsti:
 - pravokotni ukrivljeni prerezi (angl. orthogonal CPR)
 - stranski pravokotni ukrivljeni prerezi
 - čelni pravokotni ukrivljeni prerezi
 - prečni pravokotni ukrivljeni prerezi
 - poševni ukrivljeni prerezi (angl. oblique CPR)
 - stranski poševni ukrivljeni prerezi
 - čelni poševni ukrivljeni prerezi
 - prečni poševni ukrivljeni prerezi

Stranski pravokotni ukrivljeni prerezi

$$C_{u=u_c}(v,w) = I(u_c,v,w)$$

$$C_{u=u_c}\left(y,c_z(i)\right) = I\left(R_{\hat{\mathbf{t}}(i)}\left(\varphi(i)\right)R_x\left(\alpha(i)\right)\left[c_x(i) + \Delta x, y, c_z(i)\right]\right)$$

$$C_{u=u_c}(y, c_z(i)) = I(R_z(\varphi(i)) [c_x(i) + \Delta x, y, c_z(i)])$$

Čelni pravokotni ukrivljeni prerezi

 $C_{v=v_c}(u,w) = I(u,v_c,w)$

 $C_{v=v_c}(x, c_z(i)) = I(R_{\hat{\mathbf{t}}(i)}(\varphi(i)) R_y(\beta(i)) [x, c_y(i) + \Delta y, c_z(i)])$

$$C_{v=v_c}(x, c_z(i)) = I(R_z(\varphi(i)) [x, c_y(i) + \Delta y, c_z(i)])$$

Prečni pravokotni ukrivljeni prerezi

$$C_{w=w_c}(u,v) = I(u,v,w_c)$$

$$C_{w=w_c}(x,y) = I(R_{\hat{\mathbf{t}}(i)}(\varphi(i_p)) R_y(\beta(i_p)) R_x(\alpha(i_p)) [x, y, c_z(i_p)])$$

$$C_{w=w_c}(x,y) = I(R(\alpha(i_p),\beta(i_p),\varphi(i_p))[x,y,c_z(i_p)])$$

s.

Stranski poševni ukrivljeni prerezi

 $C_{u=u_c,\phi=\phi_p}(v,w) = I(R_w(\phi_p)[u_c,v,w])$ $C_{u=u_c,\phi=\phi_p}(y,c_z(i)) = I(R_{\hat{\mathbf{t}}(i)}(\varphi(i)+\phi_p)R_x(\alpha(i))[c_x(i)+\Delta x,y,c_z(i)])$ $C_{u=u_c,\phi=\phi_p}(y,c_z(i)) = I(R_z(\varphi(i)+\phi_p)[c_x(i)+\Delta x,y,c_z(i)])$

Čelni poševni ukrivljeni prerezi

 $C_{v=v_c,\phi=\phi_n}(u,w) = I(R_w(\phi_p)[u,v_c,w])$ $C_{v=v_c,\phi=\phi_p}\left(x,c_z(i)\right) = I\left(R_{\hat{\mathbf{t}}(i)}\left(\varphi(i)+\phi_p\right)R_y\left(\beta(i)\right)\left[x,c_y(i)+\Delta y,c_z(i)\right]\right)$ $C_{v=v_c,\phi=\phi_p}(x,c_z(i)) = I(R_z(\varphi(i)+\phi_p)[x,c_y(i)+\Delta y,c_z(i)])$

Prečni poševni ukrivljeni prerezi

Enaki prečnim poševnim ravninskim prerezom, pri čemer so centrirani v izbrani točki $\mathbf{p}_c = (u_c, v_c, w_c)$ na krivulji.

prerez

PROJEKCIJE

Vrste projekcij

Ravninske projekcije

- temeljijo na koordinatnemu sistemu slike
- dve vrsti:
 - **pravokotne ravninske projekcije (**stranska, čelna, prečna)
 - **poševne ravninske projekcije** (stranske, čelne, prečne)

Ukrivljene projekcije

- temeljijo na koordinatnemu sistemu opazovane strukture
- dve vrsti:
 - pravokotne ukrivljene projekcije (stranska, čelna, prečna)
 - **poševne ukrivljene projekcije** (stranske, čelne, prečne)

Prikazovanje 3D slik v 2D

3D slike človeškega telesa, pridobljene s slikovno tehniko računalniške tomografije (CT):

- Nalaganje 3D slik v 3D matriko.
- Pridobivanje in prikazovanje 2D pravokotnih ravninskih prerezov (stranski, čelni, prečni).
- Pridobivanje in prikazovanje 2D pravokotnih ravninskih projekcij (stranske, čelne, prečne) na osnovi poljubne funkcije točk (npr. maksimalna vrednost, povprečna vrednost, ...).

OBDELAVA SLIK IN VIDEA

prof. dr. Tomaž Vrtovec

Primer

Primer

Primer

