Problem Set 1 Convex Optimization

Department of Electrical Engineering Sharif University of Technology

Instructor: M. Babazadeh

Spring Semester 1397–98 Deadline: Monday–19 Farvardin

Problem 1. Let A and B be $n \times n$ matrices with real entries. Prove or disprove each of the following statements.

- (a) If $A \succeq 0$ and $\operatorname{trace}(A) = 0$, then A = 0.
- (b) If $A \succeq 0$, $B \succeq 0$, and AB = 0, then A = 0 or B = 0.
- (c) Suppose $A \succeq 0$. Then the largest entry in absolute value of A must be on the diagonal.
- (d) If $A \succeq 0$, $B \succeq 0$, and A + B = 0, then A = B = 0.

Problem 2. Let f be twice differentiable, with dom(f) convex. Show that f is convex if and only if,

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0 \quad \forall x, y.$$

Problem 3. Which of the following sets are convex?

a)
$$\{x \mid ||x - a||_2 \le \beta ||x - b||_2, \ a \ne b, \ 0 \le \beta \le 1\}$$

b)
$$\left\{ x \mid x_1 x_2 \dots x_n \ge 1, \ x_i > 0, \ i = 1, \dots n \right\}$$

Problem 4. Explain when is the epigraph of a function a halfspace? When is the epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?

Problem 5. Let $\lambda_1(X) \geq \lambda_2(X) \geq \ldots \geq \lambda_n(X)$ be the eigenvalues of $X \in \mathbf{S}^n$. We have already shown in class that $\lambda_1(X)$ is convex and $\lambda_n(X)$ is a concave function on \mathbf{S}^n . In this problem, Show that $\sqrt[n]{\lambda_1(X)\lambda_2(X)\ldots\lambda_n(X)}$ is concave on \mathbf{S}^n_{++}

Figure 1: Haji Firouz in Problem 8

Matlab Assignment

Problem 6. Let Q_1 and Q_2 be arbitrary $n \times n$ symmetric matrices (n > 2).

- (a) Use Matlab to draw the set $S = \{(x^TQ_1x, x^TQ_2x) \mid ||x||_2 = 1\}$ and investigate its convexity.
- (b) Extra point: Can you show your conclusion in part (a) theoretically?

Problem 7. Let the set S be described by,

$$S = \{(y_1, y_2) | 2x_1^4 + x_2^4 + y_1 x_1 x_2^3 + y_2 x_1^3 x_2 \ge 0 \ \forall (x_1, x_2) \in \mathbb{R}^2 \}.$$

- (a) Use Matlab to draw the set $\mathcal S$ and investigate its convexity.
- (b) Extra point: Can you show your conclusion in part (a) theoretically?

Problem 8. Let A be a real $m \times n$ matrix with a singular value decomposition given by $A = U\Sigma V^T$ (as discussed in class). For a positive integer $k \leq \min\{m,n\}$, we let A_k denote an $m \times n$ matrix which is an "approximation" of the matrix A obtained from its top k singular values and singular vectors, i.e.,

$$A_k = U_k \Sigma_k V_k^T,$$

where U_k has the first k columns of U, V_k has the first k columns of V, and Σ_k is the upper left $k \times k$ block of Σ .

- (a) To provide a good approximation for A, consider the cost function $||A X||_2$ where X is restricted to be an $m \times n$ matrix with rank $(X) \leq k$. Show that A_k is the minimizer of the cost function $||A X||_2$.
- (b) Download the file HajiFirouz.jpg. Read this file in Matlab by typing:

```
A=imread('HajiFirouz.jpg');
A=im2double(A);
A=rgb2gray(A);
```

The result is a 400×672 matrix A, with each entry representing a single pixel in the picture with a number between 0 and 1.

For different values of k, use Matlab to compute A_k , construct a compressed image with A_k (You can used the command imwrite), and report the value of $||A - A_k||_2$.

(c) Based on your experiments on part (b), provide a good compressed image for HajiFirouz and explain your interpretations.