Big Data Foundations

- Sai Kiran Krishna Murthy

Agenda

- Day 1: Introduction
- Day 2: HDFS, Kafka, Spark
- Day 3: Practical Showcase
- Day 4: Free day

What is Big Data?

The 5 V's of Big Data

Volume

Velocity

Variety

Veracity

Value

Big Data is a Paradigm shift

- Schema on write vs Schema on read
- Scale up vs Scale out
 - Horizontal Scaling vs Vertical Scaling
 - Single Node vs Cluster Computing
- Specialized vs Commodity hardware

Schema on write

- Create table
- Write data (validation happens here)
- Read data

Schema on read

- Create file (Write data)
- Read data (validation happens here)

Scale up vs Scale out

Scale up

- Get a bigger machine
 - More RAM
 - Bigger CPU/GPU
 - More Cores

Problems?

- Increasing costs
- Physical Limitation
- Specialized software? → Vendor Lockin

Alternate?

- Scale out:
 - add more machines (nodes)
 - Create a cluster of these machines (nodes)

Scale out: In practice

Features

- Concurrency
- Scalability
- Availability
- Fault Tolerance

Case Study

Problem Statement

- Most of Scrooge's wealth is in his Gold Coins
- Total wealth ~= Number of Gold Coins * Cost of each gold coin

Introducing: The Counter

He counts gold coins for a living

shutterstock.com · 1044601729

Current Approach

- Identify gold coins from the vault
- Move the gold to where the counter is
- Let the counter do the counting and give us the results
- Currently we have 1 counter

- Total time taken
 - Sorting and Filter time
 - Transportation time
 - Counting time

How can we Improve?

Aspects we can improve?

- Storage Layout: How we store?
- Locality: Where we count?
- Processing Paradigm: How we count?

Storage Layout

Scenario #1: Row based

Discussion #1

Advantages and disadvantages

Storage Layout

Scenario #2: Column based

Discussion #2

Advantages and disadvantages

Storage Layout

Scenario #3: Hybrid

Locality

- Move Gold to where the Counter is?
- Move the Counter to the Vault?

How we count? (Processing Paradigm)

- Divide and Conquer
 - Divide the data
 - Add more counters
 - Let the counters work in parallel

Bucketing / Partitioning

Mapping

Reducing

Map + Reduce

- Split a big problem in smaller pieces
- Map each task to a counter (worker)
- Reduce the results of each worker, until you have only one result

Discussion

- What happens with too few partitions?
- What happens with too many partitions?
- What is the ideal number of partitions?

Discussion

- What happens with too few counters?
- What happens with too many counters?
- What is the ideal number of counters?

Examples

Exercise

- Take 10 mins and come up with an example problem you can solve with map reduce
- Present it to the group

Wait a minute

- Were we talking about Big Data all along?
 - Gold == Data
 - Scrooge has a lot of data (aka volume) == Big Data
 - Counter == A program
 - Vault == Storage
 - MapReduce == processing framework
 - Different Binary File formats == avro, parquet

Recap Lessons learned

- Data Locality: Move the program to where the data resides
- Program Paradigm: Map Reduce
- Data Storage: Depending on the use case, Row Vs Column Storage

Introducing Hadoop

- Hadoop = Storage + Processing Framework + Scheduler
 - Storage = HDFS
 - Processing Framework = Map Reduce
 - Scheduler = Yarn

Note on Map Reduce

 Map Reduce has been replaced with Apache Spark

Putting it all together

- Storage = HDFS
- Processing Framework = Spark
- Scheduler = Yarn
- Synchronization = Zoo Keeper
- SQL interface for HDFS = Hive
- NoSQL Database = HBase
- Message Queue = Kafka
- Notebook = Zeppelin

CDP: Walk through

Extra slides

Avro file format

- Rich data types
- Row based format
- Binary
- Splittable

Introducing CAP theorem

C – Consistency

A – Availability

P – Partition Tolerance

Distributed System? You can only have two

