Seconda parte della lezione del 23 Marzo

1 Funzioni analitiche

Se non diversamente specificato il simbolo \sum equivale a $\sum_{n>0}$

Definizione 1.1. Sia U un aperto di \mathbb{C} .

Una funzione $f: U \to \mathbb{C}$ si dice analitica in z_0 se

- 1. Esiste una serie di potenze $\sum a_n(z-z_0)^n$ che converge assolutamente per $|z-z_0| < r$ per qualche r>0
- 2. $f(z) = \sum a_n(z z_n) \text{ per } |z z_0| < r$

Diciamo che f è analitica in U se è analitica in tutti i punti di U

Osservazione 1. I polinomi, l'esponenziale, il seno, il coseno, il logaritmo sono funzioni analitiche

Proposizione 1.1. Sia $U \subset \mathbb{C}$ aperto e siano $f, g: U \to \mathbb{C}$ analitiche in U allora

- $f + g \ e$ analitica in U
- $f \cdot q$ è analitica in U
- $\frac{f}{g}$ è definita e analitica in qualunque aperto contenuto in $\{z \in U \mid g(z) \neq 0\}$

Proposizione 1.2. Siano U, V aperti di \mathbb{C} , siano $f: U \to V$ e $g: V \to \mathbb{C}$ analitiche. Allora $g \circ f$ è analitica in U

Proposizione 1.3. Sia $U \subseteq \mathbb{C}$ aperto $e f : U \to \mathbb{C}$.

$$f$$
 analitica \Leftrightarrow f continua

Dimostrazione. Sia $z_0 \in U$ e assumiamo che $f(z) = a_n(z - z_0)^n$ per $|z - z_0| < r$. Senza perdere di generalità, possiamo supporre $z_0 = 0$ e $f(z_0) = f(0) = 0$ dunque

$$f(z) = \sum_{n>0} a_n (z - z_0)^n = \sum_{n>0} a_n z^n = \sum_{n>1} a_n z^n = z \sum_{n>1} a_n z^{n-1}$$

Se $0 < \rho < r$ e $|z| < \rho$ allora

$$|f(z)| \le |z| \sum_{n \ge 1} |a_n| |z|^{n-1} \le |z| \sum_{n \ge 1} |a_n| p^{n-1}$$

Ora l'ultima serie è assolutamente convergente e non dipende da |z| quindi per $|z| \to 0$ si ha $|f(z)| \to 0$ dunque f è continua in z_0

Proposizione 1.4. Sia $z_0 \in \mathbb{C}$ e sia $\sum a_n(z-z_0)^n$ una serie di potenze assolutamente convergente nel disco aperto $D_r(z_0) = \{z \in \mathbb{C} \mid |z-z_0| < r\}$. Allora la funzione

$$f: D_r \to \mathbb{C}$$
 $f(z) = \sum a_n (z - z_0)^n$

è analitica nel disco

Dimostrazione. Non è restrittivo assumere $z_0 = 0$ allora $f(z) = \sum a_n z^n$. Sia $a \in D_r(0)$ e scegliamo s tale che |a| + s < r.

Notiamo che

$$z^{n} = ((z-a) + a)^{n} = \sum_{k=0}^{n} {n \choose k} (z-a)^{k} a^{n-k}$$

dunque

$$f(z) = \sum_{k=0}^{n} \binom{n}{k} (z-a)^k a^{n-k}$$

se |z - a| < s allora |a| + |z - a| < r quindi la serie

$$\sum |a_n| (|a| + |z - a|)^n$$

converge.

Scambiando l'ordine delle sommatorie, scriveremo

$$f(z) = \sum_{n>0} \left(\sum_{k \ge n} a_k \binom{n}{k} a^{k-n} \right) (z-a)^n$$

Teorema 1.5. Sia $U \subseteq \mathbb{C}$ un aperto e sia $f: U \to \mathbb{C}$

$$f$$
 analitica in U \Rightarrow f olomorfa in U

inoltre f' è una funzione analitica in U

Dimostrazione. Sia $z_0 \in U$. Per ipotesi di funzione analitica, esiste una serie di potenze $\sum a_n(z-z_0)$ che converge assolutamente per $|z-z_0| < r$ Assumiamo $z_0 = 0$.

Sia $\delta > 0$ con $|z| + \delta < r$, allora per ogni $h \in \mathbb{C} \setminus \{0\}$ con $|h| < \delta$ abbiamo

$$f(z+h) = \sum a_n(z+h)^n = \sum a_n (z^n + nhz^{n+1} + h^2P_n(z,h))$$

dove

$$P_n(z,h) = \sum_{k=0}^{n-2} \binom{n}{k} h^{k-2} z^{n-k}$$

dunque

$$|P_n(z,h)| < \sum_{k=0}^{n-2} {n \choose k} \delta^{k-2} |z|^{n-k} = P_n(|z|, \delta)$$

dunque è minorato da qualcosa che non dipende da h.

$$f(z+h) - f(z) - \sum_{n>1} a_n nh z^{n-1} = h^2 \sum_{n>2} a_n P_n(z,h)$$

Andiamo a dividere per h otteniamo

$$\frac{f(z+h) - f(z)}{h} - \sum_{n \ge 1} a_n n z^{n-1} = h \sum_{n \ge 2} a_n P_n(z,h)$$

Ora per $h \to 0$ il termine di destra tende a 0 in quanto il polinomio è minorato da qualcosa che non dipende da h dunque

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \sum_{n \ge 1} a_n n z^{n-1}$$

dunque f è olomorfa in z con derivata che è una serie di potenze