Robustness Analysis in a Multistage Adaptive Optimization Setting

With Application to Industrial Decarbonization in the Netherlands

Justin Starreveld ¹ Dick den Hertog ¹

Zofia Lukszo²

Gregor Brandt ³ Jaron Davelaar ³ Nort Thijssen ³

¹Amsterdam Business School, University of Amsterdam

²Faculty of Technology, Policy and Management, Delft University of Technology

³Quo Mare

Parametric Uncertainty

Optimization problem with uncertain input parameter $\tilde{\mathbf{z}}$

$$\min_{\mathbf{x}} f(\mathbf{x}, \tilde{\mathbf{z}})$$
s.t. $\mathbf{x} \in \mathcal{X}(\tilde{\mathbf{z}})$

Approaches for dealing with parametric uncertainty:

- Stochastic Programming
- Robust Optimization
- ⇒ Can be difficult to apply to large-scale problems
- ⇒ Not always necessary, start with robustness analysis

Sensitivity Analysis vs. Robustness Analysis

Under variation in the uncertain input parameter $\tilde{\mathbf{z}}$...

- SA analyzes how the optimal solution changes
- RA analyzes how a fixed solution performs
- SA commonly assumes that:
 - (i) All decisions are adaptable
 - (ii) Decisions are able to adapt with perfect foresight
- RA discards assumptions (i) and (ii)

Static Setting

Input: Set of scenarios $\{\mathbf{z}^1, \dots, \mathbf{z}^N\}$. Given solution $\bar{\mathbf{x}}$. **Output:** Evaluation of solution $\bar{\mathbf{x}}$ w.r.t. each scenario in \mathcal{S} .

- 1: for scenario $i \in \{1, \dots, N\}$ do
- Evaluate feasibility by determining whether $\bar{\mathbf{x}} \in \mathcal{X}(\mathbf{z}^i)$
- Evaluate objective value by computing $f(\bar{\mathbf{x}}, \mathbf{z}^i)$

Multistage Adaptive Setting

Input: Set of scenarios $\{\mathbf{z}^1, \dots, \mathbf{z}^N\}$. Given static here-and-now decisions $\bar{\mathbf{x}}_0$ and adaptive decision policy θ .

Output: Evaluation of solution $(\bar{\mathbf{x}}_0, \theta)$ w.r.t. each scenario in \mathcal{S} .

- Fix first-stage decisions $\bar{\mathbf{x}}_0$
- 2: **for** scenario $i \in \{1, ..., N\}$ **do**
- for stage $k \in \{1, \dots, K\}$ do
- \mathbf{z}_k^i is observed
- Implement θ to determine $\bar{\mathbf{x}}_k$
- $\bar{\mathbf{x}} \leftarrow (\bar{\mathbf{x}}_0, \bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_K)$
- Evaluate feasibility by determining whether $\bar{\mathbf{x}} \in \mathcal{X}(\mathbf{z}^i)$
- Evaluate optimality by computing $f(\bar{\mathbf{x}}, \mathbf{z}^i)$

Scientific Contributions

- Highlight difference between SA and RA
- Argue that, in many situations, RA has more practical value than SA
- Extend RA methodology to a multistage adaptive setting
- Demonstrate RA methodology with realistic application

- Goal: optimize decarbonization pathway (2020-2050) for an industrial cluster in the Netherlands
- Possible via a combination of:
 - Carbon capture and storage
 - Electrification
 - Hydrogen usage
- MILP model with many uncertain parameters
 - Example: EU ETS carbon price

- Different methodology leads to different results
 - Comparison when applied to an illustrative toy problem. The dotted line indicates the nominal/expected objective value.

- SA is too optimistic
- RA in a static setting is too pessimistic
- RA in an adaptive setting is the most realistic assessment!

Project Partners

Nouryon

Breda University

