Techno Music Mel Spectrogram Generation with GANs

Christos Kyriazopoulos

MSc Artificial Intelligence

June 27, 2023

Contents

- Introduction
- 2 Methodology
- Results
- 4 Conclusion

Current Section

- Introduction
- Methodology
- 3 Results
- 4 Conclusion

Requirements

- PyTorch
- NumPy
- Matplotlib
- Librosa
- Pytube
- Pydub

Pydub

Current Section

- Introduction
- 2 Methodology
- 3 Results
- 4 Conclusion

Data Collection

Main Source -> Youtube Playlists

Over 3000 techno songs

Mean Duration ≈ 5 min

5 second segmentation (without overlap)

Transformation to Mel Spectograms ->

Final Dataset -> 260k Mel Spectograms

DCGANs

What are DCGANs

- Generator competes Discriminator
- Discriminator—> Conv Layers
- Generator—> Transposed Conv Layers
- No Pooling Layers
- Only Strided ConvLayers

DCGAN 1

Figure 1: Discriminator Structure

Figure 2: Generator Structure

DCGAN 2

Figure 3: Discriminator Structure

Figure 4: Generator Structure

WGANs

What are WGANs

- Generator competes Discriminator
- Make use of Wasserstein Distance for Loss

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

Discriminator Loss ->

$$\nabla_w \frac{1}{m} \sum_{i=1}^m \left[f(x^{(i)}) - f(G(z^{(i)})) \right]$$

Generator Loss ->

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f(G(z^{(i)}))$$

- 2 Implementations ->
 - with weight clipping -> more unstable
 - with gradient penalty -> more stable

WGAN

Figure 5: Discriminator Structure

Figure 6: Generator Structure

Training Models

- DCGAN 1 ->
 - Trained for 7 epochs
 - 260k samples used
- DCGAN2 ->
 - Trained for 2 epochs
 - 260k samples used
 - Trained for 6 epochs
 - 60k samples used
 - Trained for 7 epochs
 - 30k samples used
- WGAN ->
 - Trained for 5 epochs (weight clipping)
 - 60k samples used
 - Trained for 5 epochs (gradient penalty)
 - 60k samples used

Current Section

- Introduction
- 2 Methodology
- Results
- 4 Conclusion

Figure 7: DCGAN1 Generated 260k 7ep

Figure 8: Training Examples

Figure 9: DCGAN2 Generated 60k 6ep

Figure 10: Training Examples

Figure 11: DCGAN2 Generated 260k 2ep

Figure 12: Training Examples

Figure 13: WCGAN wc Generated 60k 5ep

Figure 14: Training Examples

Figure 15: WCGAN gp Generated 60k 5ep

Figure 16: Training Examples

Losses Visualization 1

Figure 17: DCGAN1 260k 7ep

Figure 18: DCGAN2 60k 6ep

Losses Visualization 2

Figure 19: WGAN wc 60k 5ep

Figure 20: WGAN gp 60k 5ep

Current Section

- Introduction
- Methodology
- Results
- 4 Conclusion

Summary & Future Work

- Models
 - Best Models (empirically) —>
 - DCGAN1 260k 7epDCGAN2 60k 6ep
 - WGAN GP —> Need more training
 - WGAN WC —> Diverges after 4ep
- Future Work
 - Inverse Generated Mel Spect. to Audio
 - Metrics Calculation (Inception Distance (FID) Inception Score (IS))
 - Train WGAN GP for more epochs
 - Use Pre trained autoencoders to enhance resolution

References

- Arjovsky M., Chintala S. and Bottou L. (2017) Wasserstein Gan. Available at: https://arxiv.org/abs/1701.07875.
- Improved training of Wasserstein Gans. Available at: https://arxiv.org/pdf/1704.00028v3.pdf.
- Radford, A., Metz, L. and Chintala, S. (2016) Unsupervised representation learning with deep convolutional generative Adversarial Networks. Available at: https://arxiv.org/abs/1511.06434.

Thank You