AIM:

Assuming a set of documents that need to be consisted, we the naive Bayesian classified model to program this saw. Built-in Tava classes Apr can be used to usn't the program columbic the assuracy, Preasure and recall to your dators.

Dataset:

menage	Japel.
E have thin spandwitch	bar
Thus its an arraying place	baz
8 feel very good about the	pds
Thus is my best work	bas
What an awelone uper	baz
8 dant tuke this restaurant	erd
E our threed of this obtuly	neg
E can't deal with this	neg
He is my own enemy	neg
My bow is homibic	neg
Thus in an awarme place	baz
& donot like the Last of this	neg
some to donce	bol
8 on which & third of thing black	neg
whos a great holiday	pos
That is a bad locality to stay	urd.
we will rave good from temp	bay
I went to my enemyly house today	Par

Highwithm:

LEARN_NAIVE_BAYES_TEXT (Examples, V)

Evacorphis is a bet of test documents along with their target values. It is the out of all possible starget values. This function dearns the probability stems $p(w_k|v_i)$, describing the probability that a tandomly drawn word from a document in class v_i will be the English word w_k . Bt also learns the class prior probabilities $p(v_i)$.

- 1. collect all words, punituation and other tokens that becur in Examples.
 - · Vocabulary & the set of all dustinet words and other stokens occurring in any text document from Examples.
- 2. calculate the required $P(V_i)$ and $P(w_k|V_i)$ probability derivations for each starget value V_i in V_i do
 - doing = the soutset of dominents from Examples for which the
 - P(Vy) ~ Idouy) | Evamples |
 - Text; < a songle document created by concatenating all members of docks;
 - n < total number of downer word positions in text.
 - for each work we in vocabulary
 - * NE < manber of work me premay in text?
 - + p(wkluj) < nk+1

 n+ (nowabulary)

CLASSIFY_NATUE_BAYES_TEXT (DOC)

Return the estimated starget value for the document Doc, ar denotes the word found in the 1th polition within Doc.

· posttons = all word portitions in ook that contours tokens found in

· Return ups, where

Program;

point (at)

print (straun_dum)

umpost pandous as pol mig=pd. scad_ uv ('6pg- uv', namer=['murage', 'Laber']) print ("The alimensions by the dataset", mug. shape) mig ['saxdrum'] = mig. dabel. map & 1' post: 1, 'neg': 03) * mug. munage yo mug. label num ennt (x) print (y) from oklearn-model-selection import train-test-apport xxtrain, xxtest, yttain, ytest = droun_tox_sput (x,y) most (steet shape) mont (xtrain. shape) print (youtest schape) print (ytroun, shape) from oktion. Jeatur extraction. text import count rectorizer count vect = count vectorizer () x train_dtm = count_vect. fit_transform (x train) stest_dtm = count_vect. Hranyform (stest-) print (eount_veet get_teatur_names ()) dt = pd. Data Prame (xtrain_dtm. toamay (), columns = count_vert. get_feature_ names ())

```
from theom. name, bayes impost mentionalNB

cy = MultinomialNB(). He (xtran_otm, ytrain)

predicted = cy. predict (xtext_otm)

trom theory import metrics.

print ('Accuracy metrics')

print ('Accuracy metrics')

print ('Accuracy metrics')

print ('Conjultion metrix')

print ('Conjultion metrix')

print (metrics. conjuntion_metrix (ytext, predicted))

print ('Resource & presention')

print (metrics. recau_ seek (ytext, predicted))

print (metrics. presention_ knowe (ytext, predicted))
```

```
Accuracy metrics
Accuracy of the classifer is 1.0
Confusion matrix
[[3 0]
  [0 2]]
Recall and Precison
1.0
1.0
PS C:\Users\kindr>
```