Baleen: ML Admission & Prefetching for Flash Caches

Daniel et al. FAST'24

2025. 01. 15

Presented by Ramadhan Agung Rahmat agung@dankook.ac.kr

Content

단국대학교 Dankook University

- 1. Introduction
- 2. Background
- 3. Design of Baleen
- 4. Evaluation
- 5. Conclusion

SSD vs HDD

On paper the average is **100** IOPS

Low throughput

Source: https://www.enterprisestorageforum.com/hardware/ssd-vs-hdd/

Bulk storage systems depend on flash caches

Bulk Storage

Example: Facebook's Tectonic Filesystem

•••

Exabytes on Hard Disk

Better flash caches save more HDDs

Bulk Storage

Example: Facebook's Tectonic Filesystem

Exabytes on Hard Disk

Flash caches absorb HDD load

Example: CacheLib

Better flash caches save more HDDs

Bulk Storage

Example: Facebook's Tectonic Filesystem

Flash caches absorb HDD load

Example: CacheLib

Better cache?

Flash caches are write-heavy

Bulk Storage

Example: Facebook's Tectonic Filesystem

Exabytes on Hard Disk

Flash caches absorb HDD load

Example: CacheLib

Problem: Limited write endurance

Better cache?

Cost dominated by #HDDs & #SSDs

Exabytes on Hard Disk

Cost dominated by #HDDs & #SSDs

Baleen reduces cost by 17% on 7 traces

Exabytes on Hard Disk

How does Baleen reduce costs by 17%

- ❖ 3 key ideas
 - Exploit a new cache residency model (episodes)
 - Train ML admission & ML prefetching policies
 - Optimize an end-to-end metric (disk-head time)
- ❖ Why ML over heuristic?
 - More savings, more adaptive

Bulk storage clients access bytes ranges within blocks

Access

- 1. Block ID
- 2. Byte Range

Block

Host

36 hard disks

Cluster

Data center 1000s of hosts

Fetching bytes from backend causes disk IO

Cache stores segments (subset of block)

Cache hits save disk IO

Cache miss causes disk IO

Decompose flash caching into 3 decisions

Goal: Reduce HDD load without excessive flash writes

Policy Decisions:

- (a) Admit misses?
- (b) Prefetch? 5
- (c) When to evict?

Flash cache

2

3

4

5

•••

Decompose flash caching into 3 decisions

Goal: Reduce HDD load without excessive flash writes

5

Policy Decisions:

(a) Admit misses?

(b) Prefetch?

(c) When to evict?

3 4 Baleen

Baleen

LRU

Flash cache

2

3

4

5

•••

Metric: Disk-head time (DT)

11.5ms Seek, 143MB/s (Dotted Line):

This line represents a modeled approximation, combining a constant seek time of 11.5ms and a read bandwidth of 143MB/s.

- Q: Why DT instead of miss rates?
 - A: Miss rate alone does not indicate how expensive each miss is
 - A: DT does directly measure the latency each IO from disk.

DT = Seek time + Read time

Figure 2: Disk-head Time (DT) for one IO. When a HDD performs an IO, the disk head **seeks** before it **reads** data. For tiny IOs, throughput is limited by *IOPS*; for large IOs, by *bandwidth*. DT encompasses both metrics and generalizes to variable-size IOs.

$$DT_i = Fetches_{IOs} \cdot t_{seek} + Fetches_{Bytes} \cdot t_{read}$$

Example:

FetchesIO = 1 IO

FetchesBytes = **4** MB

Seek time = 11.5 ms = 0.0115 seconds

Read bandwidth = 143 MB/s = 0.006993 s/MB

$$DT = 1 \times 0.0115 + 4 \times 0.006993$$

$$DT = 0.0115 + 0.027972$$

DT = 0.039472 seconds = 40 ms

DT Validated in production

Figure 3: DT validated in production. Our DT formula (plugging counters into Eq 1) matches measured disk utilization (blue) closely. The peak of 58% occurs on Day 0.

Total DT for all misses

$$Util_{DT} = \frac{\sum_{i} DT_{i}}{DT_{Provisioned}}$$

19

Design Episodes model

ML for caching not straightforward

Typical supervised learning

e.g., "Is this picture a cat?"

ML for Caching

- Data: trace of accesses
- Multiple related decisions: Admit now? Later? Never?
- Tend to overfit on easy decisions
- Underfit on borderline cases that separate different policies.

ML for caching not straightforward

Typical supervised learning

e.g., "Is this picture a cat?"

ML for Caching

- Data: trace of accesses
- Multiple r
 Depend c

 Training on accesses non-trivial
- Tend to overfit on easy decisions
- Underfit on examples at margin that distinguish policies

Architecture

Figure 6: Architecture. An admission policy in CacheLib decides whether to admit items into flash. Prefetching (preloading of data beyond current request) takes place in Tectonic.

(Offline model)

What is an episode?

Episode:

Sequence of accesses that would be hits if corresponding item was admitted

Why use episodes to train ML?

- Right granularity
 - Focus on first access instead of all accesses
 - ❖Policies see misses, not accesses
- Right examples
 - Avoid overfitting on popular blocks with many accesses but only 1 miss
- Right labels
 - Costs & benefits defined on admission to eviction

Episodes: from admission to eviction

Episodes: from admission to eviction

Episodes: from admission to eviction

How to know when eviction happens?

How: model LRU cache state with constant eviction age

How episodes are generated

Consider interarrival times of accesses

Split into episodes when interarrival > eviction age

Focusing on Episode 1

Byte index (KB)

Benefits & cost defined on episodes

• Benefit: 27ms of DT saved

• Cost: 3 flash writes needed

Admission: Baleen learns from episode-based OPT

OPT (approx. optimal) admits highest scoring episodes

Score
$$(Ep) = \frac{DTSaved(Ep)}{FlashWrites(Ep)} = \frac{27 ms}{3 flash writes}$$
 Episode #1

OPT emits binary labels based on flash write budget

$$Yes\ if\ Score(Ep) > CutoffTa_{rgetFlashWriteRate}$$

Baleen imitates OPT admission

Baleen's ML-Range learns what to prefetch

- What range to prefetch
 - OPT-Range Start: lowest segment
 - OPT-Range End: highest segment
- ML-Range is trained on OPT-Range

Whole block always fetches [1,64] (8MB)

Baleen's ML-Range learns when to prefetch

- When to prefetch
 - Bad prefetching hurts: wasted DT & cache space
 - Prefetch only when confident of benefit
- ML-When: Yes if PrefetchBenefit(Ep) > epsilon

epsilon = 5ms

Training Data Comparison

Trace of accesses

Timestamp	Block ID	Access Frequency	Size (KB)
1	block1	5	32
2	block2	3	16
3	block3	2	64
4	Block1	6	32
5	block2	4	16
6	block4	1	128

Episodes

block_id	chunk_id	ts_physical	ts_logical	hits	ttl	admission_time	last_access_time	max_interarrival_time
block1	0	1000	0	2	300	900	1000	100
block1	1	1200	200	1	500	1100	1200	200
block2	0	1500	500	3	None	1400	1500	150
block3	0	2000	800	0	400	1900	2000	250

Source: https://github.com/wonglkd/BCacheSim/

Dankook University
System Software Laboratory

Baleen-TCO balances HDD savings against SSD cost

Q: How to balance #HDD against #SSDs?

$$TCO_1 \propto \frac{PeakDT_1}{PeakDT_0} \cdot \#HDDs_0 + \frac{Cost_{SSD}}{Cost_{HDD}} \cdot \frac{FlashWR_1}{FlashWR_0} \cdot \#SSDs_0$$

- Baleen-TCO picks optimal flash write rate
 - for each workload

*TCO function based on Google's CacheSack [Yang23]

Evaluation

- Production workloads from Meta's Tectonic
 - ❖ 7 clusters from 3 years (2019, 2021, 2023)
 - ❖ Each serves 1-10 tenants, e.g., data warehouse
 - ❖ Each tenant serves 100s of applications
- More details on Tectonic in Pan et al (FAST 2021)
- Traces & simulator code released
- Hardware
 - The Tectonic production setup used to record traces and counter values
 - ❖ 400 GB flash cache
 - ❖ 10 GB DRAM cache
 - ❖ 36 HDDs
 - Their testbed
 - ❖ 24-node cluster
 - each node has a
 - ❖ 16-core Intel Xeon E5-2698 CPU
 - ❖ 64 GB of DRAM
 - ❖ Intel P3600 400 GB NVMe SSD
 - ❖ Seagate ST4000NM 4 TB HDDs

Table 1: Key statistics of traces.

Dataset	Req Rate (s ⁻¹)	Access size (MB)	CMR ¹	OHW ²	Admit- All Writes (MB/s)
Region1	244	3.41	18%	54%	316
Region2	106	2.85	39%	83%	121
Region3	139	2.42	19%	48%	45
Region4	406	2.87	14%	53%	280
Region5	364	2.62	18%	59%	480
Region6	404	2.74	14%	55%	478
Region7	426	2.23	17%	62%	492

¹ CMR (Compulsory miss rate): ratio of blocks to accesses;

Less than 20% of interarrival times exceed the eviction age

- (a) Block popularity (log-log).
- **(b)** Interarrivals to same block.

Figure 7: Block popularity and access interarrival. In a, lower values of α indicate it is harder to cache, and \times denotes 400 GB. In b, \times denotes eviction ages for Baleen at 400 GB & 3 DWPD.

The popularity distribution of all trace blocks fit a Zipf (a=0.8) (moderate skew)

- Accesses are more spread out across many blocks.
- This means many blocks need to be cached to achieve a good hit rate.
- Since caches have limited capacity, it becomes harder to predict and store all the required blocks, resulting in more misses.

² OHW (One-hit-wonder): % of blocks with no reuse.

Baseline admission policies

- CoinFlip: flip a coin for each IO
 - ❖Simplest, requires no state
- ❖ RejectX (e.g., X=1: accept segment after 1 reject)
 - Used by Meta, Google as baseline
 - ❖ 2nd access is always a miss
- CacheLib-ML
 - ❖Used by Meta in production for 3 years
 - Trained on accesses, not episodes

Reduce Peak

- Train (offline) on day 1 and evaluate on day 2-7
- Compare policies Peak DT (as a % of no caching)

Minimize peak backend load to minimize cost

Figure 1: Baleen-TCO reduces (estimated) TCO by 17% and peak load by 16% over the best baseline on 7 Meta traces by choosing the optimal flash write rate. IO and byte miss rates were reduced by 14% and 2% (Suppl A.1). For the default flash write rate, Baleen reduces peak load by 12% over the best baseline.

Figure 8: Baleen-TCO reduces TCO. Figure 9: Baleen reduces Peak DT. Figure 10: Benefits at higher write rates & cache sizes.

Reduce Total Cost

Reduce Peak IO

Higher Cache Usage

Region1

Average

Region7

Validation of simulator and testbed

Baleen @ Simulator Vs Baleen @ Testbed

Testbed is consistent with production counters

(a) Sim vs Testbed, Baleen

(b) Testbed vs Prod, RejectX

Figure 11: Validation of simulator and testbed.

Online flash caching simulator:

a Python simulator to accurately estimate CacheLib performance without doing the actual heavy lifting.

Figure 12: Baleen-TCO chooses higher flash write rates when needed to lower **peak backend load (and TCO).** × denotes the optimal flash write rate for that workload.

ML-Range outperforms the baseline (whole block) and No Prefetching at the expense of Median DT.

Figure 13: ML-Range saves Peak DT. Figure 14: Choose when to prefetch. Indiscriminate prefetching (on Every Miss) can hurt. Using ML-When or Partial Hit reduces Peak DT without compromising Median DT.

DWPD : Drive Write Per Day

Simple baseline (All on Partial Hit) Segment [1-64]

Confident of ML-When is better in Median

Lessons from deploying ML in prod

Optimize the Right Metric:

- Focus on system-level metrics like Disk-head Time (DT), not just hit rate.

Production ≠ Development:

- ML performance differs between environments; simulate before full deployment.

• Encapsulate Expertise:

- Simplify integration by bridging ML, caching, and storage with shared frameworks.

Plan for Model Decay:

- Models degrade over time; design for generalization and retraining.

Commit to Automation:

- Avoid manual dependencies to reduce regressions and improve sustainability.

Conclusion

- Baleen leverages ML to optimize prefetching and cache admission, achieving:
 - 16% reduction in peak disk time
 - 17% reduction in Total Cost of Ownership (TCO) on real workloads.
- Its design is built on lessons from early missteps and introduces an episodes-based formulation for effective training and ML-guided prefetching.
- Baleen marks a significant advancement in flash caching for disk storage, demonstrating the value of ML in system optimization.

Next Paper Idea

- Implement Online Training with low overhead with simpler model
 - Finding simpler model that can be implemented with episodes.

Q&A

Baleen: ML Admission & Prefetching for Flash Caches

Thank You!

2025. 01. 15

Presented by Ramadhan Agung Rahmat agung@dankook.ac.kr

