DLD Quine-McCluskey Method

Department of Computer Science & IT Hazara University Mansehra

- To apply the Quine-McCluskey method, first write the function in standard minterm
- (SOP) form.
- To illustrate, we will use the expression

$$X = \overline{ABCD} + \overline{ABCD} +$$

 represent it as binary numbers on the truth table shown in Table 4–9. The minterms that appear in the function are listed in the right column.

ABCD	X	Minterm
0000	0	9
0001	1	m_1
0010	0	- 7
0011	1	m_3
0100	1	m_4
0101	1	8115
0110	0	
0111	0	
1000	0	
1001	0	
1010	0	M10
1011	0	
1100	1	m_{12}
1101	1	m ₁₃
1110	0	
1111	1	m15

 \sum (m1,m3,m4,m5,m10,m12,m13,m15)

ABCD	X	Minterm
0000	0	
0001	1	ATT 2
0010	0	M
0011	1	m ₃
0100	1	m ₄
0101	1	MIS
0110	0	
0111	0	
1000	0	
1001	0	
1010	1	m100
1011	0	
1100	1	m_{12}
1101	1	m_{13}
1110	0	
1111	1	m15

 $X = \Sigma(m1, m3, m4, m5, m10, m12, m13, m15)$

= T (Mo--

 The second step in applying the Quine-McCluskey method is to arrange the minterms in the original expression in groups according to the number of 1s in each minterm.

Number of 1s	Minterm	ABCD		
1	m_1	0001		
	m4	0100		
2	m ₃ .	0011		
Ī	m_5	0101		
	m_{10}	1010		
	m ₁₂	1100		
3 b	m ₁₃	1101		
4	m ₁₅	1111		

 compare adjacent groups, looking to see if any minterms are the same in every position except one. If they are, place a check mark by those two minterms, as shown in Table 4–11.

Number of 1s in Minterm	Minterm	ABCD	First Level
1	.ms	0001.✓	(m ₁ , m ₃) 00x1
	ett ₄	0100 🗸	(m1, m3) 0x01
2	m ₃	.0011 ✓	(m ₄ , m ₅) 010x
	.ms	0101 🗸	(m ₆ , m ₁₃) x100
	M ₁₀	1010	(m ₅ , m ₁₃) x101
	m12	1100 🗸	(m ₁₂ , m ₁₃) 110n
3	m13	1101 🗸	(m ₁₃ , m ₁₅) 11x1
4	mitt	111112	

 The terms listed in the First Level have been used to form a reduced table (Table 4–12) with one less group than before

First Level	Number of 1s in First Level	Second Level		
$(m_1, m_3) 00x1$	1	$(m_4, m_5, m_{12}, m_{13}) \times 10 \times$		
$(m_1, m_5) 0 \times 01$		$(m_4, m_5, m_{12}, m_{13}) \times 10 \times$		
(m_4, m_5) 010x 🗸				
$(m_4, m_{12}) \times 100 \checkmark$				
$(m_5, m_{13}) \times 101 \checkmark$	2			
(m ₁₂ , m ₁₃) 110x ✓				
(m ₁₃ , m ₁₅) 11x1	3			

$$X = B\overline{C} + \overline{A}\overline{B}D + \overline{A}\overline{C}D + ABD + A\overline{B}C\overline{D}$$

TABLE 4-13

-			
-	 -		
-	 	 -	
-	 		

Prime Implicants	m ₁	m_3	m_4	m_5	m ₁₀	m ₁₂	m ₁₃	m ₁₅
$B\overline{C}$ $(m_4, m_5, m_{12}, m_{13})$			1	1		1	1	
$\overline{AB}D(m_1, m_3)$	1	1						
\overline{ACD} (m_1, m_5)	1			1				b.
$ABD(m_{13}, m_{15})$							1	1
$A\overline{B}C\overline{D}$ (m_{10})					1			

$$X = B\overline{C} + \overline{A}\overline{B}D + \overline{A}\overline{C}D + ABD + A\overline{B}C\overline{D}$$

TABLE 4-13

	Minterms							
Prime Implicants	m ₁	m_3	m_4	m_5	m ₁₀	m ₁₂	m ₁₃	m ₁₅
$B\overline{C}$ $(m_4, m_5, m_{12}, m_{13})$			1	1		1	1	
$\overline{AB}D(m_1, m_3)$	1	1						
\overline{ACD} (m_1, m_5)	1			1				b.
$ABD\ (m_{13}, m_{15})$							1	1
$A\overline{B}C\overline{D}$ (m_{10})					1			

Notice that the two minterms in \overline{ACD} are covered by the prime implicants in the first two rows, so this term is unnecessary. The final reduced expression is, therefore,

$$X = B\overline{C} + \overline{A}\overline{B}D + ABD + A\overline{B}C\overline{D}$$