Bilboko industria ingeniaritza teknikoko unibertsitate eskola

Kudeaketaren eta informazio sistemen informatikaren ingeniaritzako gradua

Analisi matematikoa

2011ko uztailaren 5a

1. ORRIALDEA

A) Frogatu $\sum_{n=1}^{\infty} \frac{5^{3n+2}}{n+1!}$ seriea konbergentea dela.

(Puntu bat)

B) Izan bedi $z = \frac{3+i}{2+i}$ zenbaki konplexua. Adierazi z forma binomikoan eta kalkulatu |z|, arg(z) eta $\sqrt[3]{z}$.

(Puntu bat)

C) Aztertu R-n definitutako honako f funtzioaren gorapen- eta beherapentarteak $f(x) = 2x - 1 e^{-x^2}$. Aurkitu, existitzen badira, f-ren mutur lokalak.

(Puntu bat)

D) Kalkulatu honako limite hauek:

$$\lim_{x\to 0} x^{\sin x}$$

$$\lim_{x\to 0}\frac{\sin^2 x+x}{\sin x^2}$$

(Puntu bat)

2. ORRIALDEA

A) Aurkitu eta adierazi grafikoki honako f funtzioaren definizio-eremua: $f(x,y) = \ln (1-x^2-y^2) + \sqrt{x^3-y}$.

(Puntu bat)

B) Kontsidera dezagun honako f funtzio hau:

$$f x,y = \begin{cases} \frac{y^3}{x^2 + y^2} & x,y \neq 0,0 \\ 0 & x,y = 0,0 \end{cases}$$

Aztertu f-ren jarraitutasuna eta deribagarritasuna (0, 0) puntuan.

(Puntu bat)

- **C)** Kontsidera dezagun \mathbb{R} -n definitutako $f(x,y) = \frac{y^5}{5} + x^3 y 3x$ funtzioa.
- a.- Aurkitu f-ren puntu kritikoak eta mutur lokalak, existitzen badira.

(Puntu bat)

b.- Aurkitu, existitzen badira, $f_1(x,y) = y - 1 = 0$ ekuazioarekin baldintzaturiko mutur lokalak.

(Puntu bat)