Reg. No.:

Name:

TERM END EXAMINATIONS (TEE) – May 2021

Programme	: B.Tech.	Semester	: Winter 2020-21
Course Name	: Digital Logic Design	Course Code	: ECE2002
Faculty Name	: Dr.Anirban Bhowmick	Slot / Class No	: D11+D12+D13/0377
Time	: 1½ hours	Max. Marks	: 50

Answer ALL the Questions

Q. No.		Question Description	Marks
1	PART - A (30 Marks) (a) (i) Perform signed addition of -32.75 to -54.625 using 2's complement in a 12-bit		7
		register (4 bit for decimal). Verify the answer. (ii) Prove the following: A \(\opprox \) B = A' \(\opprox \) B'	3
		$A \oplus B - A \oplus B$ OR	
	(b)	Design a 4 bit parallel adder using carry look ahead logic	10
2	(a)	(i) Design an S-R flipflop using T flipflop?	6
		(ii) Write the excitation table of the following flip flop: SR flip flop and JK flip flop	4
	(b)	OR State diagram of this synchronous sequential circuit is shown in the figure 1, you have to design the circuit with D Flip Flop.	10

Figure 1

3 (a)		Design a synchronous J K counter that goes through states 3, 4, 6, 7, 3.	
	(b)	OR Design a overlapping sequence detector which can detect '101' sequence using JK flip-flop	10
		PART - B (20 Marks)	
4		(i) Design a Full adder circuit using two 4:1 Multiplexer, one multiplexer output will be sum and another for carry out.	7
		(ii) Reduce the following Boolean expressions: F=AB+A(B+C)+B'(B+D)	3
5		What is HDL? Write a Verilog code to design positive edge trigger J-K flip-flop.	10
		$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	