

Alexander Haar

Key exchange using an online trusted third party

Outline

- overview
- TTP protocol
- different insecure Variotions
- conclusion

Overview

- -TTP must play an active role in all exchanges
- –efficient for clients
- –heavy load on TTP
- –usecase: corporate networks

Registration

 $\mathcal{K}_{\mathbf{e}}$: Cipher key space

 \mathcal{K}_{m} : MAC key space

<u>TTP</u>

$$k_P \stackrel{\mathbb{R}}{\leftarrow} (k_{\text{enc},P}, k_{\text{mac},P}) \in \mathcal{K}_e \times \mathcal{K}_m$$

Stores only (id_p) for security reasons

To Generate k_p again:

$$k_P \leftarrow F(k_{\text{TTP}}, id_P)$$

Key Exchange

Insecure Variations

- I. key exposure attack
- II. replay attack
- III. identity missbinding attack
- IV. secure channel bindings attack

KEA – remove c_p from tag

Key exposure attack

first step:

- 1. Adversary registers new user R
- 2. Initialize a conversation with Peter
- 3. Obtains $c_R := Enc_R(k')$ and decrypts it to obtain k'

KEA – second step

Key exposure attack

- -adversary can now read every message from Peter
- -same attack can be used against Quinn
 - Replace $\mathbf{c_Q}$ where $\mathbf{c'_Q} := \operatorname{Enc_Q}(\mathbf{k'})$

Insecure Variations

- I. key exposure attack
- II. replay attack
- III. identity missbinding attack
- IV. secure channel bindings attack

RA – remove r_p from tag

RA – remove r_p from tag

$RA - remove r_{P} from tag$

Peter thinks he is talking to Quinn but he is holding the old session key k'

RA – attack on Quinn

TTP

$$(r'_{P}, r_{Q}, id_{P}, id_{Q})$$

$$c_{Q} := Enc_{Q}(k),$$

$$t_{Q} := Mac_{Q}(id_{P}, r'_{P}, c_{Q})$$

$$c'_{Q} := Enc_{Q}(k'),$$

$$t'_{Q} := Mac_{Q}(id_{P}, r'_{P}, c_{Q})$$

Quinn thinks she is talking to Peter but is holding the old session key k'

Insecure Variations

- I. key exposure attack
- II. replay attack
- III. identity missbinding attack
- IV. secure channel bindings attack

IMA – remove id_Q from tag

Adversary Registration

IMA – remove id_Q from tag

<u>TTP</u>

IMA – remove id_Q from tag

- both user share the same key k
- Adversary has no information on k
- => parties are misbound

IMA – attack on Quinn

19.02.2024 identity missbinding attack Alexander Haar

Insecure Variations

- I. key exposure attack
- II. replay attack
- III. identity missbinding attack
- IV. secure channel bindings attack

SCBA – remove r_Q from tag

SCBA – remove r_Q from tag

<u>TTP</u>

SCBA – remove r_Q from tag

- -both sides agree on session key k
- k is unknown to the adversary
- disagree on their channel bindings

Conclusion

- -TTP is a statically secure key exchange protocol
- can provide secure channel bindings
- Not PFS secure
 - If adv. learns either P's key, Q's key, or the TTP's key
 - All past sessions between P and Q are exposed

Ressource

 Dan Boneh and Victor Shoup "A Graduate Course in Applied Cryptography" Version 0.6, Jan 2023 https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup 0 6.pdf