グラフ理論に基づいたLattice fermionと Laplacian operatorとしてのWilson term

湯本 純

秋田大学大学院 理工学研究科

Background (Species and Wilson term)

QCDに必要な性質を理論に課すことで、

複数のlattice fermion (species)が出現するという問題。

これらのspeciesは縮退しているため、区別することができない。

Wilson fermion: species-splitting mass fermion

Wilson term : species-splitting term $S_W = \sum_{n,\mu} \frac{a^5}{2} \bar{\psi}_n \left(2\psi_n - \psi_{n+\mu} - \psi_{n-\mu}\right)$

$$D_W(p) = \frac{1}{a} \sum_{\mu} \left[i\gamma_{\mu} \sin ap_{\mu} + (1 - \cos ap_{\mu}) \right]$$

Physical (0, 0, 0, 0): $D_{W}(p) = i\gamma_{\mu}p_{\mu} + O(a)$

Non physical $(\pi/a, 0, 0, 0)$: $D_W(p) = i\gamma_\mu p_\mu + \frac{2}{a} + O(a)$

Previous research

Maximal # of species depend on the topological invariant of lattice.

Table: Topological invariant and maximum # of the species

lattice	Topological invariant	maximal $\#$ of species d
4-d torus	1+4+6+4+1	16
Torus T^D	$(1+1)^D$	2^D
Hyperball ${\cal B}^D$	$1+0+0+\cdots$	1
Sphere S^D	$1 + 0 + 0 + \cdots + 1$	2
$T^D imes B^d$	$2^{D} + 0$	2^D

数学的な説明を与えるために、graph theoryに着目した。

Lattice fermions as graph theory

of Fermion species \implies Nullity of spectral matrix [J.Y, T.MIsumi (2022)]

Wilson term \implies Laplacian matrix and topological invariant

New conjecture on species doubling of lattice fermions!

Spectral graph theory

Definition (graph)

A graph G is a pair G=(V,E). V is a set of vertices and E is a set of edge.

Definition (directed graph)

A directed graph is a pair (V, E) of sets of vertices and edges together with two maps $\operatorname{init}: E \to V$ and $\operatorname{ter}: E \to V$. The two maps are assigned to every edge e_{ij} with an initial vertex $\operatorname{init}(e_{ij}) = v_i \in V$ and a terminal vertex $\operatorname{ter}(e_{ij}) = v_j \in V$. If $\operatorname{init}(e_{ij}) = \operatorname{ter}(e_{ij})$, the edge e_{ij} is called a loop.

Definition (weighted graph)

A weighted graph has a value (weight) for each edge in a graph.

Definition (adjacency matrix)

An adjacency matrix A of graph is the $|V| \times |V|$ matrix given by

$$A_{ij} \equiv \begin{cases} w_{ij} & \text{if there is a edge from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$$

where w_{ij} is the weight of an edge from i to j.

e.g. A graph G and an adjacency matrix A_G of G.

Lattice fermions as spectral graphs

J.Y, T.Misumi, JHEP **02**, 104 (2022).

The naive lattice action as spectral graph theory is

$$S = \sum_{m,n} \sum_{\mu} \bar{\psi}_m \gamma_\mu D_{mn} \psi_n = \sum_{\mu} \bar{\psi} \gamma_\mu A_\mu \psi \equiv \bar{\psi} \mathcal{D} \psi$$

where $\psi = \sum_n \psi_n |n\rangle$ with $|n\rangle \equiv \bigotimes_{\mu} |n_{\mu}\rangle$.

$$\mathcal{D}(k) = \sum_{k,\mu} i\gamma_{\mu} \sin\left[\frac{2\pi}{N_{\mu}}(k_{\mu} - 1)\right] |k\rangle\langle k| = 0 \quad \Rightarrow \quad \sin\left[\frac{2\pi}{N_{\mu}}(k_{\mu} - 1)\right] = 0$$

16 species!

Lattice field theory \implies Spectral graph theory

Lattice fermion \implies Directed and Weighted spectral graph

of Fermion species \implies Nullity of spectral matrix

Wilson term as Laplacian operator

Definition (Laplacian operator)

A Laplacian operator ${\cal L}$ of a graph ${\cal G}(V,E)$ is given by

$$L_{ij} \equiv \begin{cases} d_i & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } (i, j) \text{ are linked} \\ 0 & \text{otherwise} \end{cases}$$

where d_i is the number of edges sharing the site i.

e.g. The Lagrangian on T^4 constructed from the Laplacian operator ${\mathcal L}$ is

$$\bar{\boldsymbol{\psi}}\mathcal{L}\boldsymbol{\psi} = 2\sum_{n,\mu} \bar{\psi}_n \left(2\psi_n - \psi_{n+\mu} - \psi_{n-\mu}\right) \quad \Rightarrow \quad S_W = \frac{a^5}{4}\bar{\boldsymbol{\psi}}\mathcal{L}\boldsymbol{\psi}$$

The Laplacian operator results in the Wilson term!

Theory (Hodge theory)

The nullity of a Laplacian operator defined on a complex chain coincides with the 0-th Betti number that is the topological invariant.

e.g. The Betti number and nullity of Dirac matrix with the Laplacian on T^4

the
$$r$$
-th Betti number β_r of T^4
$$\beta_0(T^4)=1, \quad \beta_1(T^4)=4, \quad \beta_2(T^4)=6, \qquad \underline{1}$$

$$\beta_3(T^4)=4, \quad \beta_4(T^4)=1, \qquad \underline{1}$$

The nullity of Dirac matrix with the Laplacian is consistent with Hodge theory, so # of zero-eigenvalue $=\beta_0(T^4)=1$.

The r-th Betti number and each species-splitting number just match!

Wilson term \Longrightarrow Laplacian operator and topological invariant (Betti number)

Summary

Lattice fermions as graph theory

of Fermion species \implies Nullity of spectral matrix Wilson term \implies Laplacian matrix and the Betti number

Lattice field theory

Graph theory
Topology

We believe that these are closely related.

Discussion

• A new conjecture on the number of fermion species on the discretized manifold.

J.Y, T.Misumi [arXiv:2301.09805]

- The proof of the new conjecture.
- The Laplacian operator as Persistent homology and Persistent spectral graph.