«ИССЛЕДОВАНИЕ СИСТЕМ ОСВЕЩЕНИЯ И ИХ

Вариант № 1 Разряд и подразряд зрительных работ по варианту <u>IV</u>⁶ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ ИССЛЕДОВАНИЕ СИСТЕМ ОСВЕЩЕНИЯ

Таблица 2

	Измеренное значение	Нормы на освещенность, лк						
Система	освещенности, создаваемой люминесцентными	Комбиниро	Общая система					
	лампами, лк	Всего	В т. ч. общая					
Общая	170		41.5	100				
Комбинированная	750	500	75	150				
Местная	580							

ИССЛЕДОВАНИЕ ОТНОСИТЕЛЬНОЙ СВЕТООТРАЖАЮЩЕЙ СПОСОБНОСТИ ФОНА

Таблица 3

Ти светил	ип њика		Цвет отражающей поверхности										
		Б	К	0	Ж	3	Γ	C	Ч				
"Универ-саль"	E_{omp} , лк	90	70	70	80	65	65	60	60				
	ρ_{omn}	1,00	0,48	0,78	0,89	0,42	0, 72	0,64	0,67				
"ОД"	E_{omp} , лк	80	50	60	65	50	45	45	40				
	ρ_{omn}	1,00	0,63	0,45	0,81	0,63	0,56	0,56	0,50				

ИССЛЕДОВАНИЕ КРИВОЙ СИЛЫ СВЕТА СВЕТИЛЬНИКА "УНИВЕРСАЛЬ"

Таблица 4

Угол наклона фотоэлемента	θ, град	0	10	20	30	40	50	60	70	80	90
Результат измерения освещенности	Е ₀ , лк	350	300	300	280	260	250	240	200	190	180
Расчет силы света (при R =0,6м)	Ι _θ , кд	126,0	108,0	108,0	100,8	93,6	99,0	86,4	42,0	63,4	64,8

Зависимость $I_{\theta} = f(\theta)$ строится в полярной системе координат.

ИССЛЕДОВАНИЕ ОСВЕЩЕННОСТИ НА НАКЛОННОЙ ПЛОСКОСТИ ДЛЯ СВЕТИЛЬНИКА «УНИВЕРСАЛЬ»

Таблица 5

1								_			-	GOMM
٧ <u></u>	Угол наклона плоскости	α, град	0	10	20	30	40	50	60	70	80	90
	Результат измерения освещенности	Е аэксп, лк	450	500	520	540	550	520	500	470	400	360
	Результат расчета освещенности	$E_{\alpha \; pac^{q}}$, лк	450,0	4,92,9	489,6	464,7	421,3	334,2	250	160,7	69,5	0,0

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ИСТОЧНИКОВ СВЕТА

Таблица 6

Длина		Деление на		Исследуемый источник света									
волны			Лампа нака	аливания	Лампа люминесцентная								
λ, мкм	g(\(\lambda\)	монохро- матора	Показание вольтметра U(λ), В	Расчетное значение φ(λ)	Показание вольтметра U(λ), В	Расчетное значение φ(λ)							
0,45	0,9	14,00	1,8	2,00	0,1	0,11							
0,48	0,95	16,00	2,1	2,21	3,4	3,58							
0,5	1,0	17,35	2,6	2,60	0,1	0,10							
0,56	0,9	21,00	7,1	7.89	4,1	4,56							
0,60	0,7	22,34	10,1	14.43	0,4	0,57							
0,62	0,6	23,00	12,2	20,33	0,2	0,33							
0,65	0,4	24.40	14,6	36,50	19,6	49,00							

1 Цель работы

Ознакомление с основными светотехническими характеристиками, определяющими условия работы в производственных помещениях, с видами и системами производственного освещения, требованиями санитарных норм на производственное освещение, методами и приборами для исследования светотехнических характеристик источников света, светильников и систем освещения.

2 Описание лабораторной установки

Для экспериментального исследования естественной и искусственной освещенности на рабочей поверхности применяется специальная установка(рис.1)

Для искусственного освещения в установке используются светильник с лампой накаливания типа «Универсаль» и светильник «ОД» с люминесцентными лампами.

Люксметр Ю 116 (рис.2) предназначен для измерения освещенности, создаваемой естественным светом и искусственными источниками света. Люксметр состоит из Измерительного блока, датчика с селеновым фотоэлементом и насадок для него.

Рисунок 1 – Установка для исследования систем искусственного освещения.

1 – светильник «Универсаль» с лампой накаливания.

- 2 светильник «ОД» с люминесцентными лампами.
- 3 блок коммутации ламп.
- 4 измерительный блок люксметра.
- 5 селеновый фотоэлемент.
- 6 штатив для крепления фотоэлемента.
- 7 угломер для установки и закрепления фотоэлемента.
- 8 регулируемая наклонная плоскость.
- 9 горизонтальная плоскость.

Рисунок 2 – Люксметр Ю 116.

- 1 измерительный блок люксметра.
- 2 шкала 0-100 лк.
- 3 шкала 0–30 лк.
- 4 кнопка задания предела измерения 0-30 лк.
- 5 кнопка задания предела измерения 0–100 лк.
- 6 датчик с селеновым фотоэлементом.
- 7 селеновый фотоэлемент.

- 8 насадка для уменьшения косинусной погрешности.
- 9, 10, 11 насадки с коэффициентом ослабления 10, 100, 1000 соответственно.

Для исследования спектральных характеристик источников света предназначена установка, изображенная на рис. 3.

Монохроматор 1 предназначен для разложения на отдельные длины волн светового потока, создаваемого исследуемыми источниками света.

Требуемая длина волны устанавливается с помощью микрометрического барабана монохроматора. Диапазон устанавливаемых для исследования длин волн 0,45 - 0,65 мкм.

Фотоэлектронный умножитель 2 служит для измерения светового излучения. Он представляет собой фотоэлектронный прибор, преобразующий световое излучение в электрический сигнал за счет явления внешнего фотоэлектрического эффекта и вторичной электронной эмиссии. На выход фотоэлектронного умножителя включается вольтметр типа В7-27.

Вольтметр предназначен для измерения напряжения на выходе фотоэлектронного умножителя (ФЭУ).

Рисунок 3 — Установка для исследования спектральных характеристик источников света

- 1 монохроматор.
- 2 фотоэлектронный умножитель.
- 3 вольтметр B7-27.
- 4 блок питания БВ-2-2.
- 5 микрометрический барабан.
- 6 выключатели источников света (лампа накаливания, газоразрядная лампа).

Формула 1: Где: - относительный коэффициент отражения - освещенность для отраженного света - освещенность для света отраженного от белой поверхности Формула 2: $I = E*R^2$ Где: I – сила света Е – освещенность R – радиус R =0,6 м Формула 3: $E_{\pi} = E_{r} * \cos \alpha$ Где: Е_п – расчетное значение освещенности при заданном угле наклона плоскости $E_{\rm r}$ – горизонтальная освещенность а - угол наклона плоскости Формула 4: Где: - спектральная плотность лучистого потока - экспериментально измеренное напряжение - значение функции заданно в протоколе

3

4

Формулы

Вычисления и исследования

ИССЛЕДОВАНИЕ СИСТЕМ ОСВЕЩЕНИЯ

Таблица 1

	Измеренное	Норм	ы на освещеннос	ть, лк
	значение	Комбинирова	нная система	
Система	освещенности,			Общая
	создаваемой	Всего	В т. ч. общая	система
	люминесцентными			
	лампами, лк			
Общая	170			
Комбинированная	750	500	75	150
Местная	580			

ИССЛЕДОВАНИЕ ОТНОСИТЕЛЬНОЙ СВЕТООТРАЖАЮЩЕЙ СПОСОБНОСТИ ФОНА

Таблица 2

Тип светил	ьника		Цвет отражающей поверхности										
		Б	К	О	Ж	3	Γ	С	Ч				
"Универ-	E_{omp} , лк	90	70	70	80	65	65	60	60				
саль"	$p_{\scriptscriptstyle OMH}$	1,00	0,78	0,78	0,89	0,72	0,72	0,67	0,67				
"ОД"	E_{omp} , лк	80	50	60	65	50	45	45	40				
	$p_{\scriptscriptstyle OMH}$	1,00	0,63	0,75	0,81	0.63	0,56	0,56	0,50				

Вычисления по Формуле 1:

ИССЛЕДОВАНИЕ КРИВОЙ СИЛЫ СВЕТА СВЕТИЛЬНИКА "УНИВЕРСАЛЬ"

Таблица 3

Угол наклона	θ,	0	10	20	30	40	50	60	70	80	90
фотоэлемента	град										
Результат	Εθ,	350	300	300	280	260	250	240	200	190	180
измерения	лк										
освещенности											

Расчет силы	Ιθ, кд	126,0	108,0	108,0	100,8	93,6	90,0	86,4	72,0	68,4	64,8
света (при R =											
0,6 м)											

Вычисления по Формуле 2:

$$I = 350 * 0,6^2 = 126,0$$

Зависимость силы света $I(\theta)$ в полярной системе

ИССЛЕДОВАНИЕ ОСВЕЩЕННОСТИ НА НАКЛОННОЙ ПЛОСКОСТИ ДЛЯ СВЕТИЛЬНИКА "УНИВЕРСАЛЬ"

Таблица 4

Угол наклона	α,	0	10	20	30	40	50	60	70	80	90
плоскости	гра										
	Д										
Результат	E_{α}	450	500	520	540	550	520	50	470	400	360
измерения	эксп,							0			
освещенности	лк										
Результат	E_{α}	450,0	492,4	488,6	467,7	421,3	334,2	25	160,7	69,	0,0

расчета	расч,				0	5	
освещенности	лк						

Вычисления по Формуле 3:

$$E_{\pi} = 500 * \cos 10^{\circ} = 492,4$$

График зависимости E_{α} = $f(\alpha)$ в декартовой системе координат.

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ИСТОЧНИКОВ СВЕТА

Таблица 5

Длина	g(\lambda)	Деление на	Исследуемый источник света					
волны		барабане	Лампа накаливания	Лампа люминесцентная				

λ, мкм		монохроматора	Показание	Расчетное	Показание	Расчетное
			вольтметра	значение	вольтметр	значение
			U(λ), B	$\phi(\lambda)$	a U(λ), B	$\phi(\lambda)$
0,45	0,9	14,00	1,8	2,00	0,1	0,11
0,48	0,95	16,00	2,1	2,21	3,4	3,58
0,5	1,0	17,35	2,6	2,60	0,1	0,10
0,56	0,9	21,00	7,1	7,89	4,1	4,56
0,60	0,7	22,34	10,1	14,43	0,4	0,57
0,62	0,6	23,00	12,2	20,33	0,2	0,33
0,65	0,4	24,40	14,6	36,50	19,6	49,00

Вычисления по Формуле 4:

5 Вывод

В ходе данной лабораторной работы было выполнено ознакомление с основными светотехническими характеристиками, определяющими условия работы производственных помещениях, cвидами системами требованиями производственного освещения, санитарных норм производственное освещение, методами и приборами для исследования светотехнических характеристик источников света, светильников и систем Также были произведены измерения различных световых освещения. показателей И выполнены необходимые расчёты. По результатам исследования были выявлены несоответствия норме в таблице 1, полученные при измерениях значения значительно превышают норму (по СНиП 23-05-95). Также несоответствия были выявлены в значениях таблицы 4, значение полученные при экспериментальных измерениях также выше расчетных значений. Это обусловлено внешними источниками света, такими как лампы и свет из окна.

Для того, чтобы улучшить условия труда, необходимо соблюдать рекомендации из норм на освещение (СНиП): организовывать естественное

освещение помещения, следить за показателями освещённости, контраста, коэффициентом естественного освещения.