

Generated by alessandro on 30 October 2020, 18:07:05

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222-256,

arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents Setup 2 1.1 Command history 2 1.2 ${\bf Configuration}$ 2 Datasets 3 2.1 $unweighted_events$ 3 Histos and cuts 4 ${\bf Histogram}\ 1$ 4 3.2 Histogram 2 5 3.3 ${\bf Histogram~3}$ 6 3.4Histogram 4 7

1 Setup

1.1 Command history

```
ma5>import /home/alessandro/Documents/PhD/courses/MG5_aMC/mg5amcnlo/2.7.3-new/_day3_dm/-
bin/internal/ufomodel
ma5>import /home/alessandro/Documents/PhD/courses/MG5_aMC/mg5amcnlo/2.7.3-new/_day3_dm/-
Events/run_02/unweighted_events.lhe.gz as unweighted_events
ma5>define vl = 12 14 16
ma5>define vl = -16 -14 -12
ma5>define invisible = ve ve vm vm vt vt vl vl xd xd
ma5>set main.graphic_render = matplotlib
ma5>plot MET 40 200 800 [logY]
ma5>plot PT(j[1]) 40 200 800 [logY]
ma5>plot ETA(j[1]) 40 -4 4 [logY]
ma5>plot MT_MET(j[1]) 40 400 1600 [logY]
ma5>submit /home/alessandro/Documents/PhD/courses/MG5_aMC/mg5amcnlo/2.7.3-new/_day3_dm/-
MA5_PARTON_ANALYSIS_analysis1
```

1.2 Configuration

- MadAnalysis version 1.8.45 (2020/05/01).
- Histograms given for an integrated luminosity of 10fb⁻¹.

2 Datasets

2.1 unweighted events

 \bullet Sample consisting of: signal events.

• Generated events: 10000 events.

• Normalization to the luminosity: 2234+/-9 events.

• Ratio (event weight): 0.22 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
	10000	0.223 @ 0.4%	0.0

3 Histos and cuts

3.1 Histogram 1

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2234	1.0	269.491	76.52	0.0	0.12

Figure 1.

3.2 Histogram 2

* Plot: PT (j[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2204	1.0	269.476	76.47	0.0	0.1216

Figure 2.

3.3 Histogram 3

* Plot: ETA (j[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2204	1.0	0.0459149	1.396	0.0	0.0

Figure 3.

3.4 Histogram 4

* Plot: MT_MET (j[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2204	1.0	538.952	152.9	0.0	0.1216

Figure 4.