模拟赛

第一试

题目名称	红黑树	机器人	阿鲁巴
题目类型	传统型	传统型	传统型
目录	rbtree	robot	aruba
可执行文件名	rbtree	robot	aruba
输入文件名	rbtree.in	robot.in	aruba.in
输出文件名	rbtree.out	robot.out	aruba.out
每个测试点时限	4.0 秒	3.0 秒	4.0 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	25	25
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	rbtree.cpp	robot.cpp	aruba.cpp
对于 C 语言	rbtree.c	robot.c	aruba.c
对于 Pascal 语言	rbtree.pas	robot.pas	aruba.pas

编译选项

对于 C++ 语言 -02		-02	-02	
	-std=c++11	-std=c++11	-std=c++11	
对于 C 语言	-02	-02	-02	
对于 Pascal 语言	-02	-02	-02	

红黑树 (rbtree)

【题目背景】

Yazid 和 cyand1317 是好朋友。

【题目描述】

Yazid 有一棵 n 个节点的有根树,节点的编号从 $1 \le n$,其中根节点的编号为 1。这棵树上的所有节点都可以被染成红色或黑色,因此 Yazid 把它叫做红黑树。cyand1317 不喜欢黑色,他希望把树上尽可能少的节点染成黑色。

而 Yazid 喜欢黑色,所以他要妨碍 cyand1317。作为这棵树的主人,他给出了一些限制,包含了 a 个 A 类限制和 b 个 B 类限制,每个限制都包含 2 个参数 r,s。两类限制的意义分别如下:

- A 类限制规定了以 r 为根的子树中,黑色节点的数目**不得少于** s 个。
- B 类限制规定了**除**以 r 为根的子树**外**,黑色节点的数目**不得少于** s 个。

cyand17 对这棵树的染色必须满足 Yazid 的所有限制。

cyand17 绝顶聪明,所以他一定会在满足限制的前提下,染黑尽可能少的节点。你能预测最终黑色节点的数目吗?

【输入格式】

从文件 rbtree.in 中读入数据。

本题包含多组数据。第一行一个非负整数 T 表示数据组数,接下来依次描述每组数据。对于每组数据:

第一行一个正整数 n,表示 Yazid 的红黑树的节点数目。

接下来 n-1 行,每行两个正整数 u,v,描述一条树上的边。数据保证这些边一定构成了一棵树。

接下来一行一个正整数 a,表示 A 类限制的数目。

接下来 a 行,每行两个正整数 r,s,描述一个 A 类限制。

接下来一行一个正整数 b,表示 B 类限制的数目。

接下来 b 行,每行两个正整数 r,s,描述一个 B 类限制。

【输出格式】

输出到文件 rbtree.out 中。

对于每组数据,输出一行一个整数,表示 cyand1317 染色后的黑点数目,特别地,对于不可能同时满足限制的情况,请输出 -1。

【样例1输入】

2

5

1 2

2 3

3 4

1 5

2

2 1

5 1

1

2 1

5

1 2

2 3

3 4

1 5

3

1 2

2 2

5 1

1

3 5

【样例1输出】

2

-1

【样例1解释】

对于第一组数据, cyand1317 只需将节点 2,5 染黑即可。可以证明不存在黑点更少的解。

对于第二组数据,唯一的一个 B 类限制是无法满足的(在以 3 为根的子树外,不可能选出 5 个节点染黑)。

【样例 2】

见选手目录下的 rbtree/rbtree2.in 与 rbtree/rbtree2.ans。

【子任务】

测试点编号	n	$\sum n$	特殊限制
1~3	≤ 17	≤ 200	 无
4~6	≤ 1,000	$\leq 10,000$	儿
7~9			b = 0
10~12			$b \le 1$
13~15	$\leq 10^5$	$\leq 10^{6}$	a = 0
16~18			对于所有树边有 $u = v + 1$
19~20			无

对于一个测试点, $\sum n$ 指的是该测试点中所有数据 n 的总和。

对于所有测试点,保证 $\sum n \leq 10^6$ 。

对于所有测试点的所有测试数据,保证 $n \le 10^5$,保证不存在 r 相同的**同类**限制(这也意味着 $a,b \le n$);对于所有的限制,保证 $0 \le s \le n$ 。

机器人 (robot)

【题目背景】

cyand1317 和 wangyurzee7 是好朋友。

【题目描述】

cyand1317 有一条数轴,于是他邀请 wangyurzee7 一起来玩游戏。

cyand1317 和 wangyurzee7 各有一个机器人。0 时刻时,他们都处于数轴的整点上(并不一定处于相同的位置)。

cyand1317 会向他的机器人依次下达 n 条指令(指令编号从 1 开始)。其中第 i 条指令的内容是:在接下来的 A_i 个时刻都以 V_i 每时刻的速度在数轴上**匀速运动**(V_i 的取值范围为 $\{-1,0,1\}$)。这意味着,cyand1317 的机器人会在 $[\sum\limits_{j=1}^{i-1}A_j,\sum\limits_{j=1}^{i}A_j)$ 时刻内,每时刻都向正方向移动 V_i 单位长度。

wangyurzee7 也会类似地向他的机器人依次下达 m 条指令。第 i 条指令的内容是:在接下来的 B_i 个时刻都以 W_i 每时刻的速度在数轴上匀速运动(W_i 的取值范围同样为 $\{-1,0,1\}$)。

由于 cyand1317 和 wangyurzee7 将会同时结束游戏,所以有 $\sum_{i=1}^{n} A_i = \sum_{i=1}^{m} B_i$,我们也认为这个时刻是整个游戏的最后一个时刻,我们将它记作 L。

对于任意的**整数**时刻,如果两个机器人处于坐标轴上相同位置,那么 cyand1317 会认为这个时刻是**优秀的**。

由于游戏时间太长,cyand1317 和 wangyurzee7 早就忘记了他们机器人的初始坐标。 不过他们都把自己的所有指令按顺序记录了下来。

wangyurzee7 对优秀的时刻数非常感兴趣。他想知道,对于所有可能的两机器人起始位置情况,最多可能有多少优秀的时刻。

无助的 wangyurzee7 并不能弄清机器人的运行过程,所以请你帮帮他。

【输入格式】

从文件 robot.in 中读入数据。

本题包含多组数据。第一行一个非负整数 T 表示数据组数,接下来依次描述每组数据。对于每组数据:

第 1 行一个正整数 n,表示 cyand1317 的指令数。

第 2 行到第 n+1 行,第 i+1 行两个用空格隔开的整数 V_i, A_i ,描述 cyand1317 的 第 i 条指令。

第 n+2 行一个正整数 m,表示 wangyurzee7 的指令数。

第 n+3 行到第 n+m+2 行,第 i+n+2 行两个用空格隔开的整数 W_i, B_i ,描述 wangyurzee7 的第 i 条指令。

【输出格式】

输出到文件 robot.out 中。

对于每组数据,输出一行一个整数表示答案。

【样例1输入】

2

1

1 2

2

1 1

-1 1

1

0 6

4

-1 2

1 1

-1 2

1 1

【样例1输出】

2

3

【样例 1 解释】

对于第一组数据,cyand1317 和 wangyurzee7 的机器人的初始坐标如果均为 0,即 会有 2 个优秀的时刻:

时刻 0 两机器人的坐标分别为 0 和 0, 是优秀的时刻。

时刻1两机器人的坐标分别为1和1,是优秀的时刻。

时刻2两机器人的坐标分别为2和0。

可以证明不可能存在更多优秀的时刻。

对于第二组数据, cyand1317 和 wangyurzee7 的机器人的初始坐标如果分别为 2 和 4, 即会有 3 个优秀的时刻(时刻 2,4,6)。可以证明不可能存在更多优秀的时刻。

【样例 2】

见选手目录下的 robot/robot2.in 与 robot/robot2.ans。

【子任务】

n, m	$\sum (n+m)$	测试点编号	L	V_{i}	W_i
≤ 100	≤ 1,000	1	≤ 200		$\in \{-1, 0, 1\}$
≤ 1,000	≤ 10,000	2	= n = m	$\in \{-1, 0, 1\}$	
		3~4	$\leq 3,000$		
		5~6	$\leq 10^9$		
$\leq 10^5$	$\leq 2 \times 10^6$	7~8	= n = m		
		9~10	$\leq 2 \times 10^5$		
		11	$\leq 10^{18}$	€ {0}	
		12~14		$\in \{0, 1\}$	$\in \{-1, 0\}$
		15~18			$\in \{0, 1\}$
		19~25		$\in \{-1, 0, 1\}$	$\in \{-1, 0, 1\}$

为了方便你阅读,我们把测试点编号放在了表格的中间,请注意。

对于一个测试点, $\sum (n+m)$ 指的是该测试点中所有数据 n+m 的总和。

对于所有测试点, 保证 $\sum (n+m) \le 2 \times 10^6$ 。

对于所有测试点的所有数据,保证 $1 \le n, m \le 10^5$, $V_i, W_i \in \{-1, 0, 1\}$, $1 \le A_i, B_i \le L \le 10^{18}$ 。

阿鲁巴 (aruba)

【题目背景】

YJQQQAQ 是 Yazid 和 cyand1317 和你的好朋友。

【题目描述】

阿鲁巴是一款风靡全国的游戏。

作为这款游戏狂热的爱好者, Yazid 和 cyand1317 和你打算邀请 YJQQQAQ 体验这款游戏, 感受其中的乐趣。

众所周知, 进行这款游戏首先需要一个柱子。

于是,Yazid 搬来了 c 种颜色的 $1 \times 1 \times 1$ 的砖头,每种颜色的砖头都有无限个。

小伙伴们希望用这些砖头造出 Q 个柱子底面为 2×2 正方形的柱子,其中第 i 个柱子的高度不超过 h_i 。也就是说,所有的柱子都是 $2 \times 2 \times x$ 的,对于第 i 个柱子,x 为 $[1,h_i]$ 之间的整数。

严格的 cyand1317 讨厌单调的事物,因此他不希望有超过 k 对相邻的砖头是颜色相同的。我们认为两个砖头是相邻的,当且仅当他们**有公共面**。

现在 Yazid 和 cyand1317 想知道对于每个柱子,共有多少种造出它的本质不同的方案。需要注意的是,两种可以通过旋转互相得到对方的方案不会被认为是本质相同的。两种方案被认为是本质相同的,当且仅当对于所有 i,j,l,都有第 l 层第 i 行第 j 列的砖头在两种方案中颜色相同。

YJQQQAQ 已经迫不及待要体验这款游戏了,所以请你帮助 Yazid 和 cyand1317 计算。你只需要告诉他们答案对 998,244,353 取模的结果即可。

【输入格式】

从文件 aruba.in 中读入数据。

第一行 2 个用空格隔开的正整数 c,k,分别表示颜色的数目、最多的相邻同色砖头对数。

第二行一个非负整数 Q,表示柱子的总数。

第 3 行到第 Q+2 行, 第 i+2 行一个正整数 h_i , 表示第 i 根柱子的最大高度。

【输出格式】

输出到文件 aruba.out 中。

输出 Q 行每行一个整数,第 i 行的整数表示造第 i 根柱子的方案数对 998, 244, 353 取模的结果。

【样例1输入】

- 2 0
- 3
- 1
- 2
- 3

【样例1输出】

- 2
- 4
- 6

【样例1解释】

由于不允许存在相邻的同色砖头,所以第一层只有 2 种方案。第一层确定方案后, 更高层的方案也随之确定。因此总方案数为底层方案数(即 2)与层数上限的乘积。

【样例 2 输入】

- 2 3
- 1
- 1

【样例 2 输出】

14

【样例3输入】

- 4 7
- 5
- 1
- 10
- 47
- 233
- 6666

【样例3输出】

256

378680255

317260259

349223183

155840265

【子任务】

测试点编号	С	k	Q	h_i
1	=2			
2	= 3	=0		
3	= 4	_ 0		
4	$\leq 1,000$		= 100	≤ 200
5	=2		1 = 100	<u>\</u> \ <u>\</u> \ <u>\</u> \ \ \ \ \ \ \ \ \ \ \ \ \
6	= 3	≤ 7		
7	=4	'		
8	$\leq 1,000$			
9	= 2		= 200	≤ 10 ⁹
10	=3	=0		
11	= 4	_ 0		
12	$\leq 1,000$			
13	=2			
14	=3		=1	
15	= 4		= 200	$\leq 10^{18}$
16	$\leq 1,000$			
17	= 1	7		
18	=2	≤ 7		
19	= 3			
20	= 4			
21	$\leq 1,000$			
22~25	$\leq 10^{9}$			

对于所有测试点,保证 $1 \le c \le 10^9$, $0 \le k \le 7$, $Q \le 200$, $h_i \le 10^{18}$ 。