```
library(ggplot2)
pgm_name="precip_gamma"
read_site<-function(sname="amherst"){</pre>
  tempdf<-read.csv(paste(sname, "PRECIP.csv", sep=''))</pre>
  tempdf$site<-as.factor(rep(sname,nrow(tempdf)))</pre>
 names(tempdf)<-c("n","year","month","day","rain_mm","X01","site")</pre>
  return(tempdf)
rainfall=read.csv("amherstPRECIP.csv")
rainfall$site<-as.factor(rep("amherst",nrow(rainfall)))</pre>
names(rainfall)<-c("n","year","month","day","rain_mm","X01","site")</pre>
rainfall<-rbind(rainfall,read_site(sname="bedford"))</pre>
rainfall<-rbind(rainfall,read_site(sname="bluehill"))</pre>
rainfall<-rbind(rainfall,read_site(sname="gb"))</pre>
rainfall<-rbind(rainfall,read_site(sname="lawrence"))</pre>
rainfall<-rbind(rainfall,read_site(sname="nb"))</pre>
rainfall<-rbind(rainfall,read_site(sname="pk"))</pre>
rainfall<-rbind(rainfall,read_site(sname="ptown"))</pre>
rainfall<-rbind(rainfall, read_site(sname="reading"))</pre>
rainfall<-rbind(rainfall, read_site(sname="taunton"))</pre>
rainfall<-rbind(rainfall, read_site(sname="walpole"))</pre>
rainfall<-rbind(rainfall,read_site(sname="wm"))</pre>
str(rainfall)
## 'data.frame': 349544 obs. of 7 variables:
            : int 2 3 4 5 6 7 8 9 10 11 ...
## $ month : int 1 1 1 1 1 1 1 1 1 ...
## $ day
            : int 2 3 4 5 6 7 8 9 10 11 ...
## $ rain_mm: num 215 0 0 0 4 0 0 NaN 6 NaN ...
## $ X01 : int 0 0 0 0 0 0 0 0 0 ...
## $ site : Factor w/ 12 levels "amherst", "bedford", ..: 1 1 1 1 1 1 1 1 1 1 ...
   Select the desired subset and build the data STAN will read
rainfall2<-subset(rainfall,!is.na(rain_mm) & year>=1990 & year <= 1999 & rain_mm>0)
table(rainfall2$rain_mm)
```

6

7

925 936 728 479 588 378 290 341 246 398 241 275 227 212 226

8

9

10

11

12

13

5

##

1

##	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
##	167	178	210	147	168	125	145	132	142	183	106	108	154	101	148
##	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
##	92	121	118	98	122	95	74	89	70	112	59	107	79	63	94
##	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
##	84	55	71	48	84	54	64	66	56	74	53	66	67	41	60
##	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
##	49	54	49	47	60	37	35	60	30	60	40	42	47	33	70
##	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
##	31	39	45	26	48	30	35	40	27	37	32	30	25	23	29
##	91	92	93	94	95	96	97	98	100	101	102	103	104	105	106
##	30	31	21	21	24	26	16	27	54	19	25	29	23	21	18
##	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121
##	22	24	16	36	10	29	22	17	25	13	13	19	17	22	12
##	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136
##	11	21	11	18	9	12	11	8	17	11	12	13	12	18	13
##	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151
##	5	10	9	23	12	17	16	7	9	9	8	13	6	13	11
##	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166
##	4	7	9	9	13	8	9	8	9	7	5	6	8	8	2
##	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181
##	2	11	3	6	3	3	9	5	9	3	8	4	4	8	1
##	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196
##	1	2	9	10	1	1	4	3	4	2	3	3	5	8	6
##	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211
##	4	3	2	11	2	4	3	6	6	3	2	2	1	5	3
##	212	213	215	216	217	218	219	220	221	222	223	224	225	226	227
##	7	1	3	2	2	3	2	1	1	1	4	1	4	1	3
##	228	229	230	231	232	233	234	235	236	238	239	240 1	241	242 2	243
##	4 244	3 245	5 246	5 247	2 249	3 250	3 251	3 252	253	254	2 255	257	1 258	260	3 264
##	244	245	240	3	249	250	251	252	255	254	255	3	250	200	204
##	265	266	267	269	270	271	272	274	275	279	280	281	282	284	285
##	203	200	3	203	2	1	1	1	2/3	1	1	1	202	1	203
##	286	287	288	289	294	299	300	304	305	308	310	311	312	313	314
##	200	207	200	203	294	299	1	1	2	2	1	1	3	1	2
##	315	318	319	320	325	329	330	331	332	334	335	336	338	340	343
##	1	2	2	1	1	1	1	1	2	1	1	2	1	3	1
##	349	352	353	354	358	365	367	371	372	373	374	377	380	383	387
##	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
##	393	394	396	400	401	406	413	425	445	451	455	456	467	472	477
##	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
##	478	500	509	541	547	559	562	581	583	584	605	607	639	672	700
##	1	1	1	1	2	1		1	1	1		1	1	1	1
##	710	728	767		1000		_	_	_	_	_	_	Ť	_	_
	0			. 00											

```
## 1 1 1 1 1 1
Nobs<-length(table(rainfall2$rain_mm))
log_rain_mm<-1+log(rainfall2$rain_mm) #rainfall mm
Nobs<-length(log_rain_mm) #number of obs
Nobs
## [1] 13833</pre>
```

Run STAN

```
library(rstan)
## rstan (Version 2.8.2, packaged: 2015-11-26 15:27:02 UTC, GitRev:
05c3d0058b6a)
## For execution on a local, multicore CPU with excess RAM we recommend
## rstan_options(auto_write = TRUE)
## options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
#library(ShinyStan) #not available on cran for R3.2.2
library(shinystan)
                     #downloaded from cran
## Loading required package: shiny
## This is shinystan version 2.0.1
stanfit<-stan("precip_gamma.stan",iter=6000)</pre>
fname=paste("Rdata/",pgm_name,"_rainfall_gamma_",format(Sys.time(),'%m%d%Y%H%M%S'),".Rdata"
save(stanfit,file=fname)
launch_shinystan(stanfit)
##
## Loading...
## Note: for large models ShinyStan may take a few moments to launch.
## Listening on http://127.0.0.1:6739
```

Compare the data and posterior predictive draw

```
library(ggplot2)
quantile(log_rain_mm,c(.025,.25,.50,.75,.975,.999))
       2.5%
                 25%
                          50%
                                   75%
                                          97.5%
                                                   99.9%
## 1.000000 2.609438 3.890372 4.912023 6.194065 7.337088
print(stanfit)
## Inference for Stan model: precip_gamma.
## 4 chains, each with iter=6000; warmup=3000; thin=1;
## post-warmup draws per chain=3000, total post-warmup draws=12000.
##
##
                        mean se_mean sd
                                               2.5%
                                                          25%
                                                                    50%
## alpha
                        5.25 0.00 0.06
                                               5.13
                                                         5.20
                                                                    5.25
                        1.40 0.00 0.02
                                                         1.38
## beta
                                               1.36
                                                                    1.40
## log_rain_mm_rep
                      3.75 0.02 1.63
                                              1.28
                                                         2.54
                                                                    3.50
## lp__
                   -25559.06 0.02 0.99 -25561.73 -25559.43 -25558.75
##
                        75%
                               97.5% n_eff Rhat
## alpha
                        5.29
                                5.37 2163
## beta
                       1.41
                                 1.43 2183
                                                1
                        4.70
                                  7.59 11680
## log_rain_mm_rep
                                                1
## lp__
                   -25558.36 -25558.09 2718
##
## Samples were drawn using NUTS(diag_e) at Mon Dec 28 10:14:29 2015.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
mean(log_rain_mm)
## [1] 3.758728
rain_mm<-rainfall2$rain_mm</pre>
sfx<-extract(stanfit,c("log_rain_mm_rep"))</pre>
log_rain_mm_rep<-sfx$log_rain_mm_rep</pre>
pdf1<-data.frame(log_rain_mm)</pre>
pdf2<-data.frame(log_rain_mm_rep)</pre>
qplot(log_rain_mm,data=pdf1,geom="density",main="1+ln(rain mm) Days with measurable rainfal:
```


qplot(log_rain_mm_rep,data=pdf2,geom="density",main="Gamma posterior predictive Days with me ## Warning: Removed 74 rows containing non-finite values (stat_density).

