Foundations of Data Science, Fall 2020

2. Mathematics Basics

Prof. Dan Olteanu

DaST Property

Sept 18, 2020

https://lms.uzh.ch/url/RepositoryEntry/16830890400

Today's Lecture

- No Machine Learning without rigorous mathematics
- Serves as reference for notation used throughout the course
- If there are any holes make sure to fill them sooner than later
- Attempt Exercise Sheet 1 to see where you are standing
- Good reference: Maths4ML document in OLAT
- Specific maths topics will be discussed when needed

Lecture topics

- Linear algebra
- Calculus
- Probability theory

Linear Algebra

Vectors

We will mostly work in the real vector space

- Scalar: single number $r \in \mathbb{R}$
- Vector: array of numbers $\mathbf{v} \in \mathbb{R}^D$ of dimension D arranged in a **column**

$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_D \end{bmatrix}$$

- $\mathbf{v}^T = (v_1, \dots, v_D)$ is the transpose of \mathbf{v}
- $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^D$ are linearly independent if

$$ot \exists r_1,\ldots,r_n \in \mathbb{R} \setminus \{0\} \text{ such that } \sum_{i \in [n]} r_i \mathbf{v}_i = \mathbf{0}$$

 The span of v₁,..., vn ∈ V for a vector space V is the set of all vectors that can be expressed as a linear combination of them:

$$\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}=\{\boldsymbol{v}\in V: \exists \alpha_1,\ldots,\alpha_n \text{ such that } \alpha_1\boldsymbol{v}_1+\ldots+\alpha_n\boldsymbol{v}_n=\boldsymbol{v}\}$$

Vector Norms

Vector norms allow us to talk about the length of vectors

ullet The ${\it L}^{\it p}$ norm of ${\it v}\in \mathbb{R}^{\it D}$ is given by

$$\|\mathbf{v}\|_{\rho} = \left(\sum_{i \in [D]} |v_i|^{\rho}\right)^{1/\beta}$$

- ullet Properties of L^p (which actually hold for any norm):
 - $\|\mathbf{v}\|_p = 0$ implies $\mathbf{v} = \mathbf{0}$
 - $\|\mathbf{v} + \mathbf{w}\|_{p} \le \|\mathbf{v}\|_{p} + \|\mathbf{w}\|_{p}$
 - $\|r \mathbf{v}\|_p = |r| \|\mathbf{v}\|_p$ for all $r \in \mathbb{R}$
- Popular norms:
 - Manhattan norm L¹
 - Eucledian norm L²
 - $\bullet \ \ \mathsf{Maximum \ norm} \ L^{\infty} \ \mathsf{where} \ \|\mathbf{v}\|_{\infty} = \mathsf{max}_{i \in [\mathcal{D}]} \ |v_i|$

Inner Product Spaces

An **inner product** on a real vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ with:

- $\bullet \ \langle \textbf{x}, \textbf{x} \rangle \geq 0$ with equality if and only if x = 0
- Linearity: $\langle \mathbf{x}+\mathbf{y},\mathbf{v}\rangle=\langle \mathbf{x},\mathbf{v}\rangle+\langle \mathbf{y},\mathbf{v}\rangle$ and $\langle \alpha\mathbf{x},\mathbf{y}\rangle=\alpha\langle \mathbf{x},\mathbf{y}\rangle$
- Commutativity: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$

(for $\alpha \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y}, \mathbf{v} \in V$)

Any inner product on V induces a norm on V: $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$

• Check out the Pythagorean theorem and the Cauchy-Schwarz inequality

Standard inner product on \mathbb{R}^D is given by $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i \in [D]} x_i y_i = \mathbf{x}^\mathsf{T} \mathbf{y}$

- $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$ are orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Also denoted by $\mathbf{x} \bot \mathbf{y}$.
- $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$ are orthonormal if they are orthogonal and $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$.

Matrices

Matrix: two-dimensional array $\mathbf{A} \in \mathbb{R}^{m \times n}$ written as

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} = [\mathbf{a}_1 \dots \mathbf{a}_n]$$

- Vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are $\mathbb{R}^{m \times 1}$ matrices
- $\mathbf{A}_{i,:} = (a_{i,1}, \dots, a_{i,n})$ denotes *i*-th row
- $\mathbf{A}_{:,i} = \mathbf{a}_i$ denotes *i*-th column
- \mathbf{A}^{T} is the transpose of \mathbf{A} such that $(\mathbf{A}^{\mathsf{T}})_{i,j} = \mathbf{A}_{j,i}$

Special Matrices

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

- A is symmetric if $\mathbf{A} = \mathbf{A}^T$
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonal if $\mathbf{A}_{i,i} = 0$ for all $i \neq j$
- The identity matrix \mathbf{I}_n is the $n \times n$ diagonal matrix s.t. $(\mathbf{I}_n)_{i,i} = 1$

Operations on Matrices: Addition and Multiplication

- Addition: C = A + B s.t. $C_{i,j} = A_{i,j} + B_{i,j}$ with $A, B, C \in \mathbb{R}^{m \times n}$
 - associative: $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$
 - commutative: $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- Scalar multiplication: $\mathbf{B} = r \mathbf{A} \text{ s.t. } \mathbf{B}_{i,j} = r \mathbf{A}_{i,j}$
- Multiplication: $\underbrace{\mathbf{C}}_{m \times p} = \underbrace{\mathbf{A}}_{m \times n} \underbrace{\mathbf{B}}_{n \times p} \text{ s.t. } \mathbf{C}_{i,j} = \sum_{k \in [n]} \mathbf{A}_{i,k} \ \mathbf{B}_{k,j}$
 - $\bullet\,$ associative: A (B C) = (A B) C
 - not commutative in general: $\mathbf{A} \ \mathbf{B} \neq \mathbf{B} \ \mathbf{A}$
 - distributive wrt. addition: A (B + C) = A B + A C
 - $\bullet \ (\mathbf{A} \ \mathbf{B})^T = \mathbf{B}^T \ \mathbf{A}^T$

$$\begin{bmatrix}
a_{n} - a_{n}
\end{bmatrix} \begin{bmatrix}
x_{n}
\end{bmatrix}$$

$$\begin{bmatrix}
A_{n,n} - A_{n,u}
\end{bmatrix} \begin{bmatrix}
x_{n}
\end{bmatrix} \begin{bmatrix}
x_{$$

Operations on Matrices: Inversion

Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible if there is $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ s.t. $\mathbf{A} \ \mathbf{A}^{-1} = \mathbf{A}^{-1} \ \mathbf{A} = \mathbf{I}_n$.

- $\bullet~$ A is invertible if and only if rows of A are linearly independent
- If ${\bf A}$ invertible then ${\bf A} \ {\bf x} = {\bf b}$ has solution ${\bf x} = {\bf A}^{-1} \ {\bf b}$

Examples on how to compute the determinant of a square matrix:

$$\begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1} \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} - a_{1,2} \begin{vmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{vmatrix} + a_{1,3} \begin{vmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{vmatrix}$$

Properties of determinants: $det(\mathbf{A}^T) = det(\mathbf{A})$ $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$

Eigenvectors and Eigenvalues

- $\mathbf{v} \in \mathbb{R}^n$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$ if $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$
- If $\mathbf{A} \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1, \dots, \lambda_n$, then the determinant of \mathbf{A} is

$$\det(\mathbf{A}) = |\mathbf{A}| = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$$

A recipe to compute the eigenvalues and eigenvectors of **A**:

- Compute the determinant of A λl_n. With λ subtracted along the diagonal, this determinant is a polynomial of degree n. It starts with (–λ)ⁿ.
- Find the roots of this polynomial. The *n* roots are the eigenvalues of **A**.
- For each eigenvalue λ solve the the equation $(\mathbf{A}-\lambda\mathbf{I})\mathbf{x}=0$. The solution $\mathbf{x}\neq\mathbf{0}$ is the eigenvector corresponding to λ .

A han eigenvector
$$x$$
 and corresp. eigenvelous x : $Ax = \lambda x$

Qn: $(A+gI)x = Ax+gIx = \lambda x+gx$
 $\Rightarrow (A+g)x$
 $\Rightarrow Ax+gIx = \lambda x+gx$
 $\Rightarrow Ax+gIx = x+gx$
 $\Rightarrow Ax+gIx =$

Positive (Semi-)Definite Matrices

A symmetric matrix A is:

- positive semi-definite (PSD) if for all $\mathbf{x} \in \mathbb{R}^n$: $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq \mathbf{0}$.
- positive definite (PD) if for all non-zero $\mathbf{x} \in \mathbb{R}^n$: $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$.

Properties

- PD

 all eigenvalues are strictly positive
 ⇒ non-zero determinant ⇒ invertible
- ullet PSD \equiv all eigenvalues are nonnegative

Exercises:

- 1. If **A** is PSD then $(\mathbf{A} + \epsilon \mathbf{I})$ is PD
- 2. For $\mathbf{A} \in \mathbb{R}^{m \times n}$, is $\mathbf{A}^{\mathsf{T}} \mathbf{A}$ PSD?

A
$$\in \mathbb{R}^{n\times 1}$$
, is A^TA PSD?
Def: $\forall x \in \mathbb{R}^n$: $x^T (A^TA) \times 30$.
 $x^TA^TA \times = (A \times)^T A \times = (A \times, A \times) = || A \times ||_2^2 > 0$.
if A is PSD \Rightarrow is $(A + \varepsilon \dot{t})$ PD? for $\varepsilon > 0$.
 $x \neq 0$: $x^T (A + \varepsilon \dot{t}) \times = x^T A \times + x^T \varepsilon \dot{t} \times x^T A \times x^T$

Calculus

Minimising Objective Functions

Function $f: \mathbb{R}^D \to \mathbb{R}$

Extrema

- \mathbf{x} is local minimum for f if $f(\mathbf{x}) \leq f(\mathbf{y})$ for all \mathbf{y} in some neighbourhood of \mathbf{x}
- \mathbf{x} is global minimum for f if $f(\mathbf{x}) \leq f(\mathbf{y})$ for all \mathbf{y}

How to find extrema?

First and second order derivative tests

Maximising f is the same as minimising $-f \Rightarrow OK$ to focus on minimisation

Continuous and Differentiable Functions of One Variable

Functions of one variable $f: \mathbb{R} \to \mathbb{R}$

• f is differentiable at x₀ if

$$f'(x_0) = \frac{d}{dx}f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 exists

Differentiation rules:

$$\frac{d}{dx}x^n = n \cdot x^{n-1} \qquad \frac{d}{dx}a^x = a^x \cdot \ln(a) \qquad \frac{d}{dx}\log_a(x) = \frac{1}{x \cdot \ln(a)}$$

$$(f+g)' = f' + g'$$
 $(f \cdot g)' = f' \cdot g + f \cdot g'$

• Chain rule: if f = h(g) then $f' = h'(g) \cdot g'$

1.
$$f(r) = |x|$$
 . Q: is failf. at 0?

$$f'(o) = \lim_{h \to 0} \frac{f(o+h) - f(o)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{hh}{h}.$$

$$\lim_{h \to 0} \frac{|h|}{h} = 1 \quad \Leftrightarrow \quad \lim_{h \to 0} \frac{|h|}{h} = -1.$$

2. $f(x) = \max(0, x) = \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x}$

$$\lim_{h \to 0} \frac{f(h)}{h} = 0. \quad \Leftrightarrow \quad \lim_{h \to 0} \frac{f(h)}{h} = 1.$$

3. $f(x) = \lim_{h \to 0} (0, 1-x)^{2}$

$$\lim_{h \to 0} f(h) = 1.$$

3. $f(x) = \lim_{h \to 0} (0, 1-x)^{2}$

$$\lim_{h \to 0} f(h) = 1.$$

Testing for Extrema

First derivative test:

- $f'(x^*) = 0$ means that x^* is a critical or stationary point for f
 - Can be a local minimum, a local maximum, or a saddle point

Second derivative test to (partially) decide nature of critical point:

- $f'(x^*) = 0$ and $f''(x^*) > 0$ means that f has local minimum at x^*
- $f'(x^*) = 0$ and $f''(x^*) < 0$ means that f has local maximum at x^*
- $f'(x^*) = f''(x^*) = 0$ and $f'''(x^*) \neq 0$ means that f has a saddle point at x^*
- Otherwise, higher order derivative tests necessary

Functions of Multiple Variables

Functions of multiple variables $f: \mathbb{R}^m \to \mathbb{R}$

• Partial derivative of $f(x_1, ..., x_m)$ in direction x_i at $\mathbf{a} = (a_1, ..., a_m)$:

$$\frac{\partial}{\partial x_i} f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a}_1, \dots, \mathbf{a}_i + h, \dots, \mathbf{a}_m) - f(\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_m)}{h}$$

• Gradient (assuming f is differentiable everywhere):

$$abla_{\mathbf{x}}f=egin{bmatrix} rac{\partial t}{\partial \mathbf{x}_i} \ dots \ rac{\partial t}{\partial \sigma_{\mathbf{x}_i}} \end{bmatrix}$$
 This means: $[
abla_{\mathbf{x}}f]_i=rac{\partial t}{\partial x_i}$

- ∇_xf points in direction of steepest ascent
 ⇒ -∇_xf points in direction of steepest descent
- Critical point if $\nabla_{\mathbf{x}} f(\mathbf{a}) = \mathbf{0}$

Functions of Multiple Variables

Functions of multiple variables $f: \mathbb{R}^m \to \mathbb{R}$

 \bullet Hessian $\nabla^2_{\mathbf{x}} f$ is a matrix of second-order partial derivatives

$$\nabla^2_{\mathbf{x}} f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} \qquad \text{This means: } [\nabla^2_{\mathbf{x}} f]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

 If the partial derivatives are continuous, the order of differentiation does not matter

 the Hessian matrix is symmetric

Functions of Multiple Variables

Functions of multiple variables to vectors $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$:

- **f** given as $\mathbf{f} = (f_1, \dots, f_n)$ with $f_i : \mathbb{R}^m \to \mathbb{R}$
- Jacobian J of f is an $n \times m$ matrix:

$$\mathbf{J}_{I} = \begin{bmatrix} \frac{\partial I_{i}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial I_{i}}{\partial \mathbf{x}_{m}} \\ \vdots & & \vdots \\ \frac{\partial I_{d}}{\partial \mathbf{x}_{d}} & \frac{\partial J_{d}}{\partial \mathbf{x}_{d}} \end{bmatrix}$$
This means: $[\mathbf{J}_{I}]_{I,I} = \frac{\partial I_{I}}{\partial \mathbf{x}_{j}}$

Matrix Calculus: Useful Differentiation Rules

$$\nabla_{\mathbf{x}}(\mathbf{c}^{\mathsf{T}}\,\mathbf{x}) = \mathbf{c}$$

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}} \mathbf{x}) = 2\mathbf{x}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{A}\;\boldsymbol{x}) = \boldsymbol{A}^T$$

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}) = \mathbf{A} \mathbf{x} + \mathbf{A}^{\mathsf{T}} \mathbf{x}$$

(= 2A x for symmetric A)

$$\nabla_{\mathbf{x}}(f+g) = \nabla_{\mathbf{x}}f + \nabla_{\mathbf{x}}g$$

$$\nabla_{\mathbf{x}}(f\,g)=f\,\nabla_{\mathbf{x}}g+g\,\nabla_{\mathbf{x}}f$$

See http://en.wikipedia.org/wiki/Matrix_calculus for many more useful rules, and use them!

1.
$$e^{+}x = \sum_{i \in T_{i}}^{c_{i}} \frac{\partial (e^{+}x)}{\partial x_{i}} = c_{i}$$
, $\nabla_{x} (e^{+}x) = \sum_{i \in T_{i}}^{c_{i}} \frac{\partial (e^{+}x)}{\partial x_{i}} = c_{i}$.

2. $\nabla_{x} (x^{+}Ax) = A \times + A^{+}x$.

$$x^{+}Ax = \sum_{i \in T_{i}}^{c_{i}} \sum_{j \in T_{i}}^{c_{i}} A_{i,j} \cdot A_{i,j} \cdot$$

Chain Rule in Higher Dimensions

Let $\mathbf{y} = g(\mathbf{x}), z = f(\mathbf{y})$ for $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$:

$$\frac{\partial z}{\partial x_i} = \sum_{i \in [n]} \frac{\partial z}{\partial y_i} \cdot \frac{\partial y_i}{\partial x_i}$$

$$\nabla_{\mathbf{x}}z = \mathbf{J}_g \cdot \nabla_{\mathbf{y}}z = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \cdot \nabla_{\mathbf{y}}z$$

Let $g(x, y) = (x^2, y)$, $f(s, t) = (s + t)^2$ and z = f(g(x, y)). Then

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial s} \cdot \frac{\partial s}{\partial x} + \frac{\partial z}{\partial t} \cdot \frac{\partial t}{\partial x} = 2 \cdot (x^2 + y) \cdot 1 \cdot 2 \cdot x + 2 \cdot (x^2 + y) \cdot 1 \cdot 0 = 4x(x^2 + y)$$

$$\mathbf{J}_g = \begin{bmatrix} 2 \cdot X & 0 \\ 0 & 1 \end{bmatrix}$$

$$\nabla_{y}z = (2 \cdot (x^{2} + y), 2 \cdot (x^{2} + y))$$

$$\nabla_{\mathbf{x}}z = (4 \cdot x \cdot (x^2 + y), 2 \cdot (x^2 + y))$$

Optima with Side Conditions: Lagrange Multipliers

We will often encounter constrained optimisation problems:

maximise
$$f(\mathbf{x})$$

subject to
$$g_i(\mathbf{x}) = 0$$

for all
$$i \in [n]$$

- Optimal points of f lie tangential to the g_i
- For n = 1, optimum should fulfil:

$$\nabla_{\mathbf{x}} f = \lambda \nabla_{\mathbf{x}} g$$

 Optimum of the original optimisation problem will be critical point of the Lagrangian:

$$\Lambda(\mathbf{x},\lambda) := f(\mathbf{x}) - \lambda \cdot g(\mathbf{x})$$

ullet Generalises to any n>0 and inequality constraints

Probability Space

- Consists of sample space S and a probability function $p:\mathcal{P}(S)\to [0,1]$ assigning a probability to every event
- Satisfies axioms of probability:
 - $p(\emptyset) = 0$ and p(S) = 1
 - For mutually exclusive events A_1, A_2, \dots

$$\rho\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\rho(A_{i})$$

Trivial properties:

- $p(\overline{A}) = 1 p(A)$
- If $A \subseteq B$ then $p(A) \le p(B)$
- $p(A \cup B) = p(A) + p(B) p(A \cap B)$

Conditional Probability

Given events A, B with p(B) > 0, conditional probability of A given B is

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

$$= P(B \mid A) \cdot P(A).$$

Conditional Probability

Law of total probability: Given partition A_1, \ldots, A_n of S with $p(A_i) > 0$,

$$p(B) = \sum_{i=1}^{n} p(B|A_i) \cdot p(A_i)$$

$$P(B) = P(B|A_n) \cdot P(A_n) + P(B|A_2) \cdot P(A_2) + \dots$$

$$P(B|A_k) \cdot P(A_k).$$

Conditional Probability

Bayes' rule:

$$p(A|B) = \frac{\sum_{B \in B(A) \cdot P(A)}^{B \in B(B)} prior}{P(B)}$$
The properties of the prior production of the prior prio

Random Variables

- ullet Function from sample space to some numeric domain (usually $\mathbb R$)
- p(X = x) denotes probability of event $\{s \in S : X(s) = x\}$
- Write $X \sim p(x)$ to specify probability distribution of X

Discrete random variables:

- Discrete if there are countably many a_1, a_2, \ldots such that $\sum_{a_i} p(X=a_i) = 1$
- Probability mass function (PMF) p_X giving distribution of X

$$p_X(x) = p(X = x)$$

• Cumulative distribution function (CDF) maps x to $p(X \le x)$

Continuous random variables:

 Probability density function (PDF) p(x) is derivative of CDF giving distribution of X

$$\int_{-\infty}^{\infty} p(x)dx = 1 \qquad P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

Joint Probability Distributions

- Natural generalisation to vectors of random variables giving joint probability distributions, e.g., p(X = x, Y = y)
- Marginal probability distribution: Given p(X, Y), obtain p(X) via

$$p(X = x) = \sum_{y} \rho(X = x, Y = y)$$
 resp. $\rho(x) = \int \rho(x, y) dy$

• Conditional probabilities: Assuming p(X = x) > 0,

$$p(Y = y \mid X = x) = \frac{p(Y = y, X = x)}{p(X = x)}$$

• Chain rule of conditional probability:

$$\rho(X^{(1)},\ldots,X^{(n)})=\rho(X^{(1)})\cdot\prod_{i=2}^{n}\rho(X^{(i)}\mid X^{(1)},\ldots,X^{(i-1)})$$

Expectation and Variance

Expected value of random variable

• Discrete random variables: $\mathbb{E}[X] = \sum_{x \in \text{dom}(X)} x \cdot p(x)$

• Continuous random variables: $\mathbb{E}[X] = \int x \cdot p(x) dx$

• Linearity of expectation:

$$\mathbb{E}[\alpha \cdot X + \beta \cdot Y] = \alpha \cdot \mathbb{E}[X] + \beta \cdot \mathbb{E}[Y]$$

Variance of a random variable

• Captures how much values of probability distribution vary on average if randomly drawn:

$$\mathrm{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

• Properties of variance:

• $Var(\alpha \cdot X + \beta) = \alpha^2 \cdot Var(X)$

• If X and Y are independent: Var(X + Y) = Var(X) + Var(Y)

Standard Deviation and Covariance

• Standard deviation is square root of variance

$$SD(X) = \sqrt{Var(X)}$$

• Covariance generalises variance to two random variables

$$\mathrm{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

ullet Covariance matrix $oldsymbol{\Sigma}$ generalises covariance to multiple random variables X_i

$$\Sigma_{i,j} = \operatorname{Cov}(X_i, X_j)$$

Well-known Discrete Probability Distributions

· Bernoulli:

 $\bullet \ \ \mathsf{Parameter:} \ \phi \in [\mathsf{0},\mathsf{1}]$

• PMF: $p(X = 1) = \phi$, $p(X = 0) = 1 - \phi$;

•
$$\mathbb{E}[X] = \phi$$
; $\operatorname{Var}(X) = \phi \cdot (1 - \phi)$

· Binomial distribution:

 $\bullet \ \ \mathsf{Parameters:} \ \phi \in [\mathsf{0},\mathsf{1}], \ n \in \mathbb{N} \setminus \{\mathsf{0}\}$

• PMF: $p(X = k) = \binom{n}{k} \cdot \phi^k \cdot (1 - \phi)^{n-k}$ • $\mathbb{E}[X] = n \cdot \phi$; $\operatorname{Var}(X) = n \cdot \phi \cdot (1 - \phi)$

Well-known Continuous Probability Distributions

• Normal (Gaussian) distribution:

• Parameters: μ, σ^2

$$\mathcal{N}(x; \mu, \sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

• $\mathbb{E}[X] = \mu$; $\operatorname{Var}(X) = \sigma^2$

Well-known Continuous Probability Distributions

• Multivariate normal (Gaussian) distribution:

• Parameters: k, μ, Σ positive semi-definite

$$\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^k \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^\mathsf{T} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

• $\mathbb{E}[\mathbf{X}] = \mu; \operatorname{Var}(\mathbf{X}) = \mathbf{\Sigma}$

Well-known Continuous Probability Distributions

Laplace distribution:

 \bullet Parameters: μ (location) $\gamma^{\rm 2}$ (scale)

PDF:

$$\operatorname{Lap}(x;\mu,\gamma) = \frac{1}{2\gamma} \exp\left(-\frac{|x-\mu|}{\gamma}\right)$$

• $\mathbb{E}[X] = \mu$; $Var(X) = 2\gamma^2$

