Jun 18 04 11:45a SVIPG 408 971 4660 p.5

IN THE CLAIMS:

Amended claims follow:

(Currently Amended) A system for authenticating message data to be exchanged 1.

between a sender and a receiver, comprising:

a controller that dynamically selects one of a plurality of authentication mechanisms to be

used in providing authentication for an exchange of message data;

a security association and key management module that establishes security associations for

said plurality of authentication mechanisms; and

an authentication module that includes support for said plurality of authentication

mechanisms, wherein said authentication module generates an authentication tag using an

authentication mechanism selected by said control, said authentication tag being appended to said

message data;

wherein a portion of a message associated with the message data is processed using a first

function that is utilized at least in part to produce the authentication tag;

wherein said portion of said message processed is selected by using a pseudorandom

probabilistic function;

wherein said message is partitioned into regions, each region including a number of message

parts, and providing one message part from each region as input to said first function.

(Original) The system of claim 1, wherein said controller receives an input identifying 2.

a processor load.

Docket: NAI1P078/99.042.02

-2-

PAGE 5/11 * RCVD AT 6/18/2004 3:36:57 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/2 * DNIS:8729306 * CSID:408 971 4660 * DURATION (mm-ss):03-38

Jun 18 04 11:45a SVIPG 408 971 4660

3. (Original) The system of claim 1, wherein said controller receives an input identifying

p.6

an authentication error level.

4. (Original) The system of claim 1, wherein said controller receives an input identifying

network defense alarms.

5. (Original) The system of claim 1, wherein said controller receives an input identifying

a security policy.

6. (Original) The system of claim 1, wherein said controller includes a network security

service resource and one or more security association resource managers contexts, each of said one

or more security resource managers contexts being established for a corresponding network

application and being responsible for establishing and maintaining an authentication mechanism for

a corresponding associated network application, said network security service resource being

responsible for providing resource and security constraints within which each of said one or more

security resource managers contexts operates.

7. (Original) The system of claim 1, wherein said security association and key

management module generates an authentication key for authenticating said message data.

8. (Original) The system of claim 1, wherein said security association and key

management module generates a confidentiality key for securing control messages.

Docket: NAI1P078/99.042.02

-3-

Jun 18 04 11:45a SVIPG 408 971 4660 p.7

9. (Original) The system of claim 1, wherein said security association and key management module operates in accordance with the Internet Key Exchange standard.

10. (Original) The system of claim 1, wherein said authentication module operates in accordance with the IPsec standards.

11. (Currently Amended) A system for authenticating message data to be exchanged between a sender and a receiver, comprising:

a controller that dynamically selects one of a plurality of authentication mechanisms to be used in providing authentication for an exchange of message data; and

an authentication module that generates an authentication tag using said selected

authentication mechanism, said authentication tag being appended to said message data;

wherein a portion of a message associated with the message data is processed using a first function that is utilized at least in part to produce the authentication tag;

wherein said portion of said message processed is selected by using a pseudorandom probabilistic function;

wherein said message is partitioned into regions, each region including a number of message parts, and providing one message part from each region as input to said first function.

12. (Original) The system of claim 1, further comprising a security association and key management module that establishes and maintains said plurality of authentication mechanisms.

Docket: NAI1P078/99.042.02

408 971 4660 Jun 18 04 11:45a SVIPG

p.8

13. (Original) The system of claim 2, wherein said security association and key management module operates in accordance with IKE.

14. - 23. (Cancelled)

24. (Previously Presented) The system of claim 1, wherein said message includes a

number of message parts, said message parts are 64-bit words.

25. (Currently Amended) The system of claim-1, further comprising A system for

authenticating message data to be exchanged between a sender and a receiver, comprising:

a controller that dynamically selects one of a plurality of authentication mechanisms to be

used in providing authentication for an exchange of message data;

a security association and key management module that establishes security associations for

said plurality of authentication mechanisms; and

an authentication module that includes support for said plurality of authentication

mechanisms, wherein said authentication module generates an authentication tag using an

authentication mechanism selected by said control, said authentication tag being appended to said

message data;

wherein a portion of a message associated with the message data is processed using a first

function that is utilized at least in part to produce the authentication tag;

wherein said portion of said message processed is selected by using a pseudorandom

probabilistic function;

Docket: NAI1P078/99.042.02

-5-

PAGE 8/11 * RCVD AT 6/18/2004 3:36:57 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/2 * DNIS:8729305 * CSID:408 971 4660 * DURATION (mm-ss):03-38

Jun 18 04 11:45a SVIPG 408 971 4660 p.9

wherein means is included for partitioning said message into regions, each region including a number of message parts, and providing one message part from each region as input to said first function.

26. (Currently Amended) The system of claim 1, A system for authenticating message data to be exchanged between a sender and a receiver, comprising:

a controller that dynamically selects one of a plurality of authentication mechanisms to be used in providing authentication for an exchange of message data;

a security association and key management module that establishes security associations for said plurality of authentication mechanisms; and

an authentication module that includes support for said plurality of authentication

mechanisms, wherein said authentication module generates an authentication tag using an

authentication mechanism selected by said control, said authentication tag being appended to said

message data;

wherein a portion of a message associated with the message data is processed using a first function that is utilized at least in part to produce the authentication tag;

wherein said portion of said message processed is selected by using a pseudorandom probabilistic function:

wherein said portion of said message processed is selected by:

defining a message selection percentage p; and

using said pseudorandom probabilistic function, uniform over an interval [1, 2L], where L = 1/p and p is a message selection percentage, to determine offsets between message parts which are provided as input to said first function.

Docket: NAI1P078/99.042.02 -6-

Jun 18 04 11:46a SVIPG 408 971 4660 p.10

27. (Previously Presented) The system of claim 1, wherein said first function is a keyed hash function.

28. (Previously Presented) The system of claim 1, wherein said first function is one of an MD4 hashing function, a bucket hashing function, a multilinear modular hashing function, a cyclic redundancy code-based hashing function, and an alternative hash algorithm.

29. (Previously Presented) The system of claim 1, wherein said portion of said message processed is selected by truncating said message.

Docket: NAI1P078/99.042.02