사물인터넷(IoT)

2. 옴의 법칙과 브레드 보드 활용 기본

목차

- 전자회로 용어
- 오옴의 법칙(V=IR)
- 저항읽기
- 브레드 보드 사용법 (fritzing 설치, 활용)
- 다이오드, LED 소개
- 기본함수: pinMode(), digitalWrite(), delay()
- 회로제작(LED 점멸 제어)
- 스케치 작성

회로(Circuit)

- 기능을 수행하기 위해 전자 부품들이 서로 연결 되어 있는 것
- 전원(VCC)과 접지(GND)는 반드시 존재
- 중간 끊어짐 없이 전원에서 출발하여 접지까지 연결되어야 함
- 각 부품들의 정격에 맞는 전압과 전류가 연결되 어야 함

정격(定格)

- 전기 기기 또는 그 밖의 기기의 정격은 지정된 조건하에서의 사용 한도 의미함
- 각 기기는 정격상태에서 가장 잘 동작할 수 있도록 설계된 것이므로 정격에 주의해서 사용해야 함

$$V = IR$$

$$R(\Omega)$$

$$I(A)$$

$$V(V)$$

- 전압(V)
 - 전류를 흐르게 하는 전기적인 압력
 - 단위 : 볼트 [V]
- 전류(I)
 - 단위 시간에 통과하는 전하의 양
 - 단위 : 암페어 [A]
- 저항(R)
 - 전류의 흐름을 방해하는 성질
 - 단위 : 옴 [Ω]

• 전원

- 회로에 전압을 만들어 줌
- 배터리의 (+)극이 전원
- VCC 등으로 표기

• 접지

- 전압의 크기를 결정
- 배터리의 (-)극이 접지
- GND로 표기
- 모든 회로는 같은 접지를 사용해야함

정격(定格)

- 모든 전자부품은 "정격"이 존재(제조자가 지정)
 - 정격 전압 : 해당 부품에 적합한 전압
 - 정격 전류 : 해당 부품에 적합한 전류
 - 해당 부품에 정격 전압 이상의 전류가 흐르면 파괴됨
 - 정격 출력: 전압x전류(부품에 와트(W)로 표기)

부품의 데이터시트를 참조하여야 함

- 핀 : 회로를 연결하는 곳
- 핀 맵 : 핀 별로 용도를 정리해 놓은 것
- 아두이노의 핀 맵

- 아두이노 출력 핀
 - 전원 역할을 하는 핀
 - 전압이 걸리고 전류가 나간다
 - 모터 구동, LED 불 켜기 등
 - I = V / R
- 아두이노 입력 핀
 - 전압을 측정하는 핀
 - 전류가 흘러 전압이 걸린다
 - 센서 값을 읽어들 일 때 사용
 - V= I*R

전기회로에 흐르는 전류는 전압에 비례하고 저항에 반비례

$$V = IR$$

$$I = \frac{V}{R}$$

$$V(V)$$

전압(V: Volt): 전류를 흐르게 하는 전기적인 압력, 단위 볼트 [V]

전류(I: Intensity of Current): 단위 시간에 통과하는 전하의 양, 단위 <mark>암페어 [A]</mark>

저항(R: Resistance): 전류의 흐름을 방해하는 성질, 단위 $\stackrel{\textbf{\textbf{A}}}{=}$ [Ω]

$$V = IR$$

$$1 = ?x1$$

$$R (1 \Omega)$$

$$V = ?x1$$

$$V = IR$$

$$1 = 0.5x?$$

$$R (?\Omega)$$

$$I(0.5A)$$

$$V(1V)$$

$$V = IR$$

$$5 = 0.5x?$$

$$R (?\Omega)$$

$$I(0.5A)$$

$$V(5V)$$

저항(Resistor)

- 전류의 흐름을 방해하는 성질, 단위(Ω)
- 회로를 구성할 때 사용되는 부품

• 저항의 크기는 저항에 그려진 띠들의 색으로 표시

저항값 읽기

5, 0, 2(50×100)

50×100 = 5,000Q 5,000Q = 5 KQ 오차 ±5%

5색 코드 저항

2, 6, 0, 3(260×1000)

자 검정색 적 3 등 4 5 녹 청 파란색 6 자 보라색 豆 회 8 하얀색 9 색

없음(무)

요단위 10 100 1K 10K 100K 1 M 10M 100M 1G

5% 10% 20%

오차

저항 값 읽기 연습

옴의 법칙 (Ohm's Law) (복습)

$$I = \frac{V}{R} \qquad \qquad \mathbf{R} \quad (330 \, \Omega)$$

$$I = \frac{V}{R} \qquad \qquad \mathbf{R} \quad (330 \, \Omega)$$

$$I = \frac{1}{1000} \times 1000 \text{ M}$$

$$V(5 \, V)$$

$$I = \frac{5}{1000} \approx 0.015 \text{ A} = 15 \text{ mA}$$

전기회로에 흐르는 전류는 전압에 비례하고 저항에 반비례

$$I = \frac{V}{R}$$

$$I = \frac{1V}{1\Omega} = 1A$$

$$I = \frac{1V}{0.1\Omega} = 10A$$

$$I = \frac{1V}{0.01\Omega} = 100A$$

$$I = \frac{1V}{0.0001\Omega} = 10000A$$

단락(short, 합선) <= 주의!

전기회로에서 부하(저항)없이 +, -가 연결되는 회로

단락(short, 합선) 예 <= 주의!

전지 단락이란?

단락: 전지의 + 와 -를 도체로 연결하는 것

부품에서 열 발생, 타는 냄새, 연기 등이 나면 즉시 전원 차단! => 전원 플러그 뽑기, 컴퓨터와 연결된 USB 케이블 분리 등

연결 절대 금지!

다이오드(diode)

- 전류가 한 방향(순방향)으로만 흐르는 소자 (극성이 있음. 저항은 극성이 없음)
- 교류->직류 변환, 역 전압 방지 회로 등에 활용

LED (Light Emitting Diode)

- 순방향 전압이 걸리면 빛을 내는 다이오드
- 간단한 정보를 표시하는 용도로 활용

LED 저항 값계산

색상	구분	최소전압	최대전압	전류(일반)	전류(최대)
적●	Red	1.8V	2.3V	20 mA	50 mA
등	Orange	2.0V	2.3V	30 mA	50 mA
황	Real Yellow	2.0V	2.8V	20 mA	50 mA
초	emerald Green	1.8V	2.3V	20 mA	50 mA
초	Real Green	3.0V	3.6V	20 mA	50 mA
청●	sky Blue	3.4V	3.8V	20 mA	50 mA
청•	Real Blue	3.4V	3.8V	20 mA	50 mA
자	Pink	3.4V	3.8V	20 mA	50 mA
백이	White	3.4V	4.0V	20 mA	50 mA

정확한 스펙은 LED의 데이터 시트를 살펴봐야하나 데이터 시트가 없는 경우 표 참고

음의 법칙 V = IR R = V/I

• LED 저항값 계산

- 저항값 = (입력 전압 LED 전압) / LED 전류
- 일반 : R=(5-2)/0.02 → R = 150 Ω
- 최대 : R=(5-2)/0.05 → R = 250 Ω

→ 보통 220 Ω 사용

브레드 보드(bread board)

• 납땜 없이 소자를 꼽아 회로를 쉽게 구성할 수 있음

브레드 보드 내부 연결 상태

830홀

fritzing

Breadboard 내부 연결 살펴보기

회로도 실제 회로 구성

LED 동작 회로 (브레드보드미사용)

LED 동작 회로 (브레드 보드 미사용)

LED 동작 회로 (브레드보드사용)

LED 동작 회로 (아두이노 전원 사용)

아두이노 우노 UNO SMD R3 호환보드

아두이노 기본 함수

pinMode(pin_no, mode)

- 지정한 핀(pin_no)이 **입력** 또는 **출력**으로 동작하 도록 설정
- 사용 예)
 - pinMode(7, **OUTPUT**); //7번 핀을 **출력모드**로 설정
 - pinMode(6, INPUT); //6번 핀을 입력모드로 설정

```
int ledPin = 9; //핀 번호를 변수에 지정하여 활용

void setup()
{
 pinMode(ledPin, OUTPUT); //ledPin(7)을 출력으로 지정
}
```

digitalWrite(pin_no, value)

- **출력모드**로 설정한 디지털 핀에 HIGH 또는 LOW 값을 출력
- 사용 예)
 - digitalWrite(7, HIGH); //7번 핀에 HIGH값 출력
 - digitalWrite(7, LOW); //7번 핀에 LOW값 출력

```
int ledOut = 7;  //핀 번호를 변수에 지정하여 활용

void setup()
{
   pinMode(ledOut, OUTPUT);
   digitalWrite(ledOut, HIGH);//7번 핀에 HIGH 출력
}
```

delay (ms)

- 지정한 시간(ms)만큼 프로그램 실행이 중단됨(대기)
- 시간 지정 단위: 1/1000초 (ms)
 - 1000 => 1초, 500 => 0.5초, 100 => 0.1초
- 사용 예)
 - delay(**1000**); //1초 대기
 - delay(100); //0.1초 대기

```
int ledPin = 13; //아두이노 내장 LED(13번)를 사용

void setup()
{
    pinMode(ledPin, OUTPUT); //13번 핀을을 출력으로 지정
}
void loop()
{
    digitalWrite(ledPin, HIGH); //LED On delay(1000); digitalWrite(ledPin, LOW); //LED Off delay(500);
}
```

아두이노로 LED 제어하기

아두이노 보드 7번 핀을 이용하여 LED를 1초 간격으로 점멸시킨다.

회로도

아두이노로 LED 제어하기

회로 구성

실제 구성

아두이노로 LED 제어하기

sketch

Http://fritzing.org/home/

fritzing.org/home/

Fritzing is an open-source hardware initiative that makes electronics accessible as a creative material for anyone. We offer a software tool, a community website and services in the spirit of

Download and Start

Download our latest version 0.9.3b released on June 2, 2016 and start right away.

Produce your own board