SECRETÁRIA DE EDUCAÇÃO DE MATO GROSSO DO SUL

Escola _____

Prof: Fábio Lima **Disciplina:** Química

Aluno: Turma: Data

Tabela 1: Entalpia de Formação de Várias Substâncias

tancias	
Substância	$\Delta \; \mathbf{H}_f^0 \; (\mathrm{kJ} \mathrm{mol}^{-1})$
C ₄ H ₁₀ (g)	-126
$CaC_2(s)$	-63
$Ca(OH)_2(s)$	-987
$CaCO_3(s)$	-1207
$C_2H_2(g)$	227
$C_6H_6(\ell)$	49
CO(g)	-110
$CO_2(g)$	-394
$CH_4(g)$	-75
$H_2(g)$	0
$H_2O(g)$	-242
$\mathrm{H}_{2}\mathrm{O}\left(\ell\right)$	-286
$NH_3(g)$	-46
NO(g)	90
$NO_2(g)$	34
$N_2O(g)$	82
$O_2(g)$	O
$O_3(g)$	143

1 Use os dados da tabela acima para calcular a variação de entalpia da reação.

$$3\,H_2(g)+O_3(g)\longrightarrow 3\,H_2O(g)$$

2 Use os dados da tabela acima para calcular a variação de entalpia da reação.

$$2 \text{ NO}(g) + O_2(g) \longrightarrow 2 \text{ NO}_2(g)$$

3 Use os dados da tabela acima para calcular a variação de entalpia da reação.

$$N_2O(g) + NO_2(g) \longrightarrow 3NO(g)$$

4 Use os dados da tabela acima para calcular a variação de entalpia da reação.

$$CaC_2(s) + NO_2(g) \longrightarrow 3Ca(OH)_2(s) + C_2H_2(g)$$

5 Use os dados da tabela acima para calcular a variação de entalpia da reação.

$$C_4H_{10}(g) + \frac{13}{2}O_2(g) \longrightarrow 4CO_2(g) + 5H_2O(\ell)$$

6 Os romanos utilizavam CaO como argamassa nas construções rochosas. O CaO era misturado com água, produzindo Ca(OH)₂, que reagia lentamente com o CO₂, atmosférico, dando calcário:

$$Ca(OH)_2(s) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(g)$$

A partir dos dados da tabela anterior, a variação de entalpia da reação, em kJ/mol, será igual a:

7 Usando o benzeno queima na presença de excesso de oxigênio, a quantidade de calor transferida à pressão constante está associada à reação:

$$C_6H_6(\ell) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(\ell)$$

Calcule a variação de entalpia

8 Essa reação de combustão liberava cerca de 57 Kcal/mol. Se a entalpia de formação do dióxido de carbono é igual a -94 Kcal/mol, qual é o valor da entalpia do monóxido de carbono?

$$CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$$