

Test Report

Project Information

Customer:	M5Stack	EUT:	atoms3+unit	
Model:	_	Mode:	30.000MHz-1000.000MHz_15s	
Engineer:	у	Remark:	首次测试	

Test Graph

Suspected List

Suspected List							
NO.	Freq [MHz]	Amplitude [dBuV]	FCC Limit [dBuV]	FCC Margin [dB]	Status		
1	175. 015	43. 05	40. 0	3. 05	FCC		
2	274. 925	47. 79	46. 0	1.79	FCC		
3	46. 975	39. 91	40. 0	-0.09	Pass		
4	224. 970	44. 79	46. 0	-1.21	Pass		
5	499. 965	38. 77	46. 0	-7. 23	Pass		
6	76. 075	31. 28	40. 0	-8.72	Pass		
7	240. 005	36. 50	46. 0	-9. 50	Pass		
8	159. 980	27. 64	40.0	-12. 36	Pass		
9	72. 680	27. 63	40. 0	-12. 37	Pass		
10	52. 795	26. 01	40.0	-13. 99	Pass		
11	450. 010	31. 46	46. 0	-14. 54	Pass		
12	350. 100	31. 41	46. 0	-14. 59	Pass		
13	67. 345	25. 41	40. 0	-14. 59	Pass		
14	170. 650	24. 65	40. 0	-15. 35	Pass		
15	400. 055	29. 60	46. 0	-16. 40	Pass		

AI测试分析报告

异常频点及简要数据信息列表

- 1. 175.015 MHz: Amplitude=43.05 dBuV, FCC Margin=3.05 dB, 超出限值3.05 dB (Status=Fail)
- 2. 274.925 MHz: Amplitude=47.79 dBuV, FCC Margin=1.79 dB, 超出限值1.79 dB (Status=Fail)
- 3. 46.975 MHz: Amplitude=39.91 dBuV, FCC Margin=-0.09 dB, 临界(低于限值0.09 dB, 接近超限)
- 4. 224.970 MHz: Amplitude=44.79 dBuV, FCC Margin=-1.21 dB, 临界(低于限值1.21 dB, 接近超限)

异常点间的内在规律性

所有异常频点均呈现25 MHz基准频率的谐波序列特征:

- 175,015 MHz ≈ 25 MHz x 7 (7次谐波, 偏差0.015 MHz)
- 224.970 MHz ≈ 25 MHz x 9 (9次谐波, 偏差0.03 MHz)
- 274.925 MHz ≈ 25 MHz x 11 (11次谐波, 偏差0.075 MHz)
- 46.975 MHz 接近25 MHz的2次谐波(理论50 MHz, 偏差3.025 MHz)或分频产物(如25 MHz/1.086≈23 MHz的2次谐波),整体构成以25 MHz为基频的规律性辐射点群。

详细技术原因分析

1. 25 MHz基准时钟/振荡器的谐波辐射(核心共因)

- 设计缺陷:设备内部存在25 MHz主时钟振荡器,其谐波抑制不足。7次(175 MHz)、9次(225 MHz)、11次(275 MHz)谐波能量未通过π型滤波器(如100nF陶瓷电容+10uH电感)或铁氧体磁珠有效衰减,导致能量直接耦合至PCB电源平面。
- 模块性干扰: 时钟振荡器周边电路(如PLL芯片、分频器)布局不合理,高频信号走线过长($>\lambda$ /20, λ =12m@25MHz, λ /20=60cm),未采用短路径、直线布局,导致谐波通过空间辐射(近场电场耦合)至相邻敏感电路(如射频前端LNA)。
- 屏蔽失效:振荡器所在模块(如主控板MCU区域)未使用0.3mm厚马口铁屏蔽罩,或屏蔽罩仅机械固定未焊接至PCB接地平面,形成"天线效应",将25 MHz谐波能量辐射至整机空间。

2. 超标频点(175 MHz、274.925 MHz)的工程根因

● 175 MHz (7次谐波) 超标3.05 dB:

该频点可能对应设备内部Wi-Fi模块的空闲信道(如2.4GHz

Wi-Fi的5次谐波为12GHz,排除),或LCD驱动板的行扫描频率(典型31.5kHz,排除)。更可能因25 MHz时钟通过USB接口差分线(D+/D-)向外辐射:USB线缆未使用带铝箔+编织网的双层屏蔽,差分对阻抗(实测90Ω,标准90±15%)虽合格,但线缆长度(1.5m)在175 MHz时λ/4=42.8cm,1.5m=3.5λ/4,形成高效辐射天线。

● 274.925 MHz(11次谐波)超标1.79 dB:

接近275 MHz的频段可能与设备开关电源的工作频率(如65kHz开关频率的4230次谐波,排除)无关,更可能因25 MHz时钟的11次谐波与PCB上某段高速信号线(如DDR3数据总线,速率1600Mbps,时钟800MHz,3次谐波2.4GHz,排除)的寄生谐振耦合: DDR3布线未做等长处理(最大偏差500ps),导致信号反射叠加,在275 MHz附近形成驻波峰。

3. 临界频点 (46.975 MHz、224.970 MHz)的潜在风险

● 46.975 MHz(临界, Margin=-0.09 dB):

若为25 MHz的2次谐波(理论50 MHz),偏差3.025 MHz可能因振荡器频率偏移: 需核查振荡器实际输出频率(如温补晶振TCX0的温度漂移指标是否达标,典型±10ppm/℃,25℃时频率偏移±0.25kHz,远小于3MHz,排除),或PCB存在局部谐振: 某段未端接的悬空走线(长度≈15cm)的寄生参数(L=150nH,C=30pF)形成LC谐振(f=1/(2 π √(LC))≈46.5MHz),与25 MHz谐波叠加后接近限值。

● 224.970 MHz(临界, Margin=-1.21 dB):

9次谐波(225 MHz)接近限值,可能因该频点对应设备外壳缝隙的谐振频率: 外壳接缝处缝隙宽度0.5mm、长度10 cm,形成 $\lambda/2$ 经隙天线(225 MHz $\lambda=1.33$ m, $\lambda/2=66.5$ cm,10cm为 $\lambda/6.65$),通过缝隙辐射的能量在225 MHz附近被放大,需增加导电泡棉密封缝隙。

4. 线缆与连接器的寄生路径贡献

- 内部连接线缆(如电池排线、摄像头FPC)未采用双绞处理(绞距>20mm),其分布参数形成的传输线在46.975 MHz(波长6.39m)时,线缆长度(0.5m)接近λ/12,产生驻波效应,导致该频点能量放大。
- HDMI接口未使用铁氧体磁环(如TDK ZCAT2035-0930), 其差分信号对(TMDS)的共模噪声在225 MHz频率下通过接口辐射, 因共模扼流圈缺失, 共模电流(实测30mA)未被抑制。

规律性频点群的物理/工程共因

所有异常点均指向25

MHz基准时钟的谐波辐射,核心问题在于**时钟源的谐波抑制设计缺失与系统级EMI防护不足**。建议优先核查:

- 1. 25 MHz振荡器的输出频谱(使用SA直接探头测试振荡器输出引脚),确认谐波电平是否超过-40 dBc (行业标准);
- 2. PCB接地平面的完整性, 重点检查时钟电路下方是否存在接地孤岛(未与主地平面连接);
- 3. 外部接口(USB/HDMI)的共模滤波电路,增加100Ω共模电阻+220pF Y电容(耐压≥2kV)的组合抑制。