ASEN 5050 SPACEFLIGHT DYNAMICS Lambert's Problem

Objectives:

- Conceptual & geometric introduction to Lambert's problem
- Derive Lambert's equation for elliptical orbits
- Associate quadrant ambiguities with transfer solutions
- Present similar expressions for hyperbolic, parabolic arcs
- Present systematic procedure for solving Lambert's problem Following derivation from Prussing & Conway, 2013, "Orbital Mechanics, 2nd edition"

Lambert's Problem

Given 2 position vectors, find connecting arc along a conic

→ Calculate orbital elements of that conic with a specific time of flight (TOF) and the two impulsive maneuvers required

Lambert's Problem

Transfer angle:

Lambert's Problem

There is also a variety of conics (via TOF) that may connect the two position vectors

Image credit: Vallado 2013

Elliptical Orbit Geometry

Use geometry to construct a Lambert arc transfer.

Recall the following relation:

To identify the transfer conic, need to locate the vacant focus E.g., assume a specified semi-major axis, *a*

To identify the transfer conic, need to locate the vacant focus

For a given transfer orbit semi-major axis, locate the vacant focus at the intersection of the two circles around each location i with radius 2a- r_i

For a given a, there are two possible vacant foci. The two choices correspond to different values of e. \rightarrow Also influences transfer arc geometry

Locus of possible vacant foci lies on one half of a hyperbola

Image credit: Prussing & Conway, 2013

Minimum Energy Transfer

The minimum value of a corresponds to the transfer with the minimum specific energy \mathcal{E}_{min} $2a_{min}$ $2a_{min}-r_2$ $2a_{min} - r_1$ Location 2 Location 1

11

ASEN5050 – Lambert's Problem

Defining the Space Triangle

Define a chord length, c, calculated using cosine law:

Then, a semi-perimeter, s, half the sum of lengths of all 3 sides of the triangle:

Defining the Space Triangle

For the minimum energy ellipse with a_{min} , write in terms of s

$$c = (2a_{min} - r_2) + (2a_{min} - r_1) = 4a_{min} - r_1 - r_2$$

$$cos(\Delta \theta^*) = \frac{\bar{r}_2 \cdot \bar{r}_1}{|\bar{r}_2||\bar{r}_1|}$$
 Design choice:
 $\Delta \theta^* < 180^{\circ}$
 $\Delta \theta^* > 180^{\circ}$

ASEN5050 – Lambert's Problem

Lambert's Equation

The time of flight from location 1 to location 2 is calculated using:

- Semi-major axis, a, of the transfer ellipse
- The chord length, c
- The sum $r_1 + r_2$

Recall from Kepler's equation:

$$TOF = t_2 - t_1 = \frac{1}{n}[(E_2 - e\sin(E_2)) - (E_1 - e\sin(E_1))]$$

However, need a and e to evaluate this. To turn this into a useable expression, define two mathematical quantities:

Such that:

Typo note: in the next few slides, $E_M = E_m$

Recall the following relation: $r = a(1 - e\cos(E))$

Then:
$$r_1 + r_2 = a \left[2 - e \left(\cos(E_1) + \cos(E_2) \right) \right]$$

And in terms of E_p and E_m :

$$r_1 + r_2 = a \left[2 - e \left(\cos(E_p - E_m) + \cos(E_p + E_m) \right) \right]$$

Using a trigonometric identity: $\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$

$$r_1 + r_2 = 2a[1 - e\cos(E_p)\cos(E_M)]$$

And defining Cartesian coordinates locating each point on an ellipse with respect to the center, C:

Recall that:

Where
$$b = a\sqrt{1 - e^2}$$

Employing trigonometric identities:

$$c^2 = a^2 \left[(2\sin(E_p)\sin(E_m)^2 + (1 - e^2)(2\cos(E_p)\sin(E_m))^2 \right]$$

Rearranging:

$$c^{2} = a^{2} \left[(2\sin(E_{p})\sin(E_{m}))^{2} + (1 - e^{2})(2\cos(E_{p})\sin(E_{m}))^{2} \right]$$

$$c^{2} = 4a^{2}\sin^{2}(E_{m}) \left[(\sin(E_{p}))^{2} + (1 - e^{2})(\cos(E_{p}))^{2} \right]$$

$$c^{2} = 4a^{2}\sin^{2}(E_{m}) \left[1 - e^{2}\cos^{2}(E_{p}) \right]$$

Then, because e < 1 for an ellipse, define the following variable: $\cos \xi = e \cos E_p$

Substitute into above expression:

$$c = 2a\sin(E_M)\sin(\xi)$$

Then, recall previous expression:

$$r_1 + r_2 = 2a \left[1 - e \cos(E_p) \cos(E_m) \right] = 2a \left[1 - \cos(\xi) \cos(E_m) \right]$$

And define two additional variables:

Such that:

Then:

$$r_1 + r_2 + c = 2a \left[1 - \cos(\xi) \cos(E_m) + \sin(E_m) \sin(\xi) \right]$$
$$2s = 2a \left[1 - \cos(\xi + E_m) \right] = 2a \left[1 - \cos\alpha \right]$$
$$2s = 4a \sin^2\left(\frac{\alpha}{2}\right) \longrightarrow \sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{s}{2a}}$$

And:

$$r_1 + r_2 - c = 2a \left[1 - \cos(\xi) \cos(E_m) - \sin(E_m) \sin(\xi) \right]$$
$$2s - 2c = 2a \left[1 - \cos(\xi - E_m) \right] = 2a \left[1 - \cos(\beta) \right] = 4a \sin^2\left(\frac{\beta}{2}\right)$$
$$\sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{s - c}{2a}}$$

Back to Kepler's equation:

$$TOF = t_2 - t_1 = \frac{1}{n} [(E_2 - e\sin(E_2)) - (E_1 - e\sin(E_1))]$$

$$TOF = \frac{1}{n} (2E_m - e\sin(E_p + E_m) + e\sin(E_p - E_m))$$

Substituting trigonometric identities:

$$TOF = \frac{2}{n} [E_M - e \cos E_p \sin E_M] = \frac{2}{n} [E_M - \cos(\xi) \sin E_M]$$

Lambert's Equation

Rewrite in terms of α and β via a trigonometric identity, to recover **Lambert's equation**:

where:

Note: this expression holds only when using less than one revolution along an **elliptical orbit**

But there is an ambiguity in the quadrants of the angles α and β !

Multiple Revolution Arcs along Ellipses

Can perform *N* additional revolutions along an ellipse.

Then, TOF expression becomes:

$$TOF = \frac{1}{n} (2N\pi + \alpha - \beta - (\sin \alpha - \sin \beta))$$

Corresponding to an additional N orbital periods, increasing TOF

Transfer Arcs for Given a Along Ellipses

For a given set of position vectors and semi-major axis, $a > a_{min}$, there are four possible transfer arcs. (not drawn to scale!)

Quadrant Ambiguities - Ellipses

For a given value of a, these four arcs are distinguished by different combinations of the angles α and β

$$\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{s}{2a}} \qquad \qquad \sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{s-c}{2a}}$$

Because

Label α_0 , β_0 the principal values, defined for $[0,\pi]$ rad

Must choose correct combination to ensure that α - β = E_2 - E_1 and the correct transfer arc is calculated

Transfer Arcs and Quadrant Ambiguities

$$\Delta \theta^* < 180^{\circ}$$
$$\alpha = \alpha_0$$
$$\beta = \beta_0$$

$$\Delta \theta^* > 180^{\circ}$$

$$\alpha = 2\pi - \alpha_0$$

$$\beta = -\beta_0$$

Transfer Arcs and Quadrant Ambiguities

Minimum Energy Transfer Along Ellipse

At the minimum value of semi-major axis, a_{min} :

$$a_{min} = \frac{s}{2}$$

$$\alpha$$
 - β = E_2 - E_1

$$\sin\left(\frac{\alpha_m}{2}\right) = \sqrt{\frac{s}{2a_{min}}}$$

$$\sin\left(\frac{\beta_m}{2}\right) = \sqrt{\frac{s-c}{2a_{min}}} = \sqrt{\frac{s-c}{s}}$$

If:
$$\Delta \theta^* < 180^{\circ}$$

$$\Delta\theta^* > 180^{\circ}$$

Minimum Energy Transfer Along Ellipse

The TOF along each of these two arcs is useful:

$$TOF_{min} = \frac{1}{n} \left((\alpha_m - \beta_m) - (\sin(\alpha_m) - \sin(\beta_m)) \right)$$

Evaluate TOF_{min} expression using α_m , β_m that correspond to selected transfer angle

For each transfer angle on a general transfer that uses an arc along an ellipse:

Transfer Arcs for Given a Along Ellipses

For a given set of position vectors and semi-major axis, $a > a_{min}$, there are four possible transfer arcs.

Assigning Angle Quadrants

For Lambert's equation, given a value of a, solve iteratively:

$$TOF = \frac{1}{n} \left(\alpha - \beta - (\sin(\alpha) - \sin(\beta)) \right)$$

Plug in the correct combination of α and β , in terms of the principal values, that corresponds to the desired transfer type

	Shorter TOF TOF < TOF _{min}	Longer TOF TOF > TOF _{min}
$\Delta heta$ * < 180°	Blue arc $\alpha = \alpha_0$ $\beta = \beta_0$	$\begin{vmatrix} \operatorname{Red} \operatorname{arc} \\ \alpha = 2\pi - \alpha_0 & \beta = \beta_0 \end{vmatrix}$
$\Delta heta$ * $> 180^{\circ}$	Purple arc $\alpha = \alpha_0$ $\beta = -\beta_0$	Brown arc $\alpha = 2\pi - \alpha_0$ $\beta = -\beta_0$

Solving Lambert's Equation

Solve Lambert's equation iteratively using a numerical method:

Recall:

$$TOF = \frac{1}{n} \left((\alpha - \beta) - (\sin(\alpha) - \sin(\beta)) \right)$$

where

$$n = \sqrt{\frac{\mu}{a^3}}$$
 $\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{s}{2a}}$ $\sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{s-c}{2a}}$

Solving Lambert's Problem for Ellipses

If using a Lambert's arc for a transfer, need to calculate the orbital elements of the conic (*a*, *e*) connecting two position vectors and then the velocity at each of the two locations to compute the two maneuvers

Calculate *a* from Lambert's equation.

Calculate *e* from:

$$p = \frac{4a(s - r_1)(s - r_2)}{c^2} \sin^2\left(\frac{\alpha + \beta}{2}\right) = a(1 - e^2)$$

ASEN5050 – Lambert's Problem

Calculating Transfer Arc Along Hyperbola

For $\Delta \theta^* < 180^{\circ}$

$$TOF_h = \sqrt{\frac{a^3}{\mu}} \left(\sinh(\alpha_h) - \alpha_h - \left(\sinh(\beta_h) - \beta_h \right) \right)$$

For $\Delta \theta^* > 180^{\circ}$

$$TOF_h = \sqrt{\frac{a^3}{\mu}} \left(\sinh(\alpha_h) - \alpha_h + \left(\sinh(\beta_h) - \beta_h \right) \right)$$

Where:

$$\alpha_h = 2\sinh^{-1}\sqrt{\frac{s}{2|a|}} \qquad \beta_h = 2\sinh^{-1}\sqrt{\frac{s-c}{2|a|}}$$

Calculating Transfer Arc Along Parabola

For
$$\Delta\theta^* < 180^{\circ}$$

$$TOF_p = \frac{1}{3}\sqrt{\frac{2}{\mu}}\left(s^{3/2} - (s-c)^{3/2}\right)$$

For
$$\Delta \theta^* > 180^{\circ}$$

$$TOF_p = \frac{1}{3}\sqrt{\frac{2}{\mu}}\left(s^{3/2} + (s-c)^{3/2}\right)$$

Example

Let's design a transfer with a TOF of 5 hrs to connect the following two states in Earth-centered inertial coordinate system:

$$ar{R}_1 = -654\hat{X} + 13605\hat{Y} + 1997\hat{Z}$$
 km $ar{V}_1 = -5.53\hat{X} + 0.849\hat{Y} + 0.6830\hat{Z}$ km/s

$$ar{R}_2 = 7284 \hat{X} - 19341 \hat{Y} - 3264 \hat{Z}$$
 km $ar{V}_2 = 3.07 \hat{X} + 2.63 \hat{Y} + 0.444 \hat{Z}$ km/s

For a transfer angle greater than 180 degrees (design choice)

Step 1: Calculate the transfer angle

$$\Delta \theta^* = \cos^{-1}\left(\frac{\bar{r}_1 \cdot \bar{r}_2}{|\bar{r}_1||\bar{r}_2|}\right) = 197.7^\circ = 360^\circ - 162.31^\circ$$

Step 2: Calculate geometric quantities

$$c = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\Delta\theta^*)} = 34$$
 275 km

$$s = 0.5(r_1 + r_2 + c) = 34,492$$
 km

Step 3: Determine if transfer uses elliptical or hyperbolic orbit

Compare to parabolic transfer TOF for $\Delta\theta^* > 180^{\circ}$

$$TOF_p = \frac{1}{3}\sqrt{\frac{2}{\mu}}\left(s^{3/2} + (s-c)^{3/2}\right) = 1.329 \text{ hrs}$$
Ly Since desired TOF > TOFp, a 5hr
transfer between the 2 position vectors
leverages a segment along an elliptical orbit

Step 4: Determine if transfer requires shorter or longer TOF via comparison to TOF along the minimum energy transfer

Semi-major axis for min. energy transfer:

Since

$$a_m=rac{s}{2}$$
 = 17,246 km $n_m=\sqrt{rac{\mu}{a_m^3}}$ $lpha_m=\pi$ $eta_{m,0}=2\sin^{-1}\sqrt{rac{s-c}{s}}$ $\Delta heta^*>180^\circ$ $eta_m=-eta_{m,0}=-O\cdot/5/5$

$$TOF_{min} = \frac{1}{n_m}((\alpha_m - \beta_m) - (\sin(\alpha_m) - \sin(\beta_m))) = 3 \cdot 3 \text{ hs}$$

Since TDF > TDFmin, we can set convect qualitate as SEN5050-Lambert's Problem 39

	Shorter TOF TOF < TOF _{min}		Longer TOF TOF > TOF _{min}	
$\Delta heta$ * < 180°	$\alpha = \alpha_0$	$\beta = \beta_0$	$\alpha = 2\pi - \alpha_0$	$\beta = \beta_0$
$\Delta heta$ * $> 180^{\circ}$	$\alpha = \alpha_0$	$\beta = -\beta_0$	$\alpha = 2\pi - \alpha_0$	$\beta = -\beta_0$

Step 5: Iteratively solve the TOF equation to calculate *a*

- Iterate until |TOF-TOF_i|< tol
- Initial guess $a_m + \Delta a$ $\rightarrow what is a good value of <math>\Delta a$?
- Use correct α and β for this transfer type in Lambert's equation

$$\alpha_0 = 2\sin^{-1}\left(\sqrt{\frac{s}{2a}}\right)$$
 $\beta_0 = 2\sin^{-1}\left(\sqrt{\frac{s-c}{2a}}\right)$

- For this transfer example, $\alpha = 2\pi - \lambda$. $\beta = -\beta$.

$$TOF = \frac{1}{n} \left(\alpha - \beta - (\sin(\alpha) - \sin(\beta)) \right)$$

Step 6: After iterating,

$$a = 19,001 \text{ km}$$

Double check that this value is correct, by plugging into TOF eq:

Step 7: Find eccentricity via
$$p$$
 walnak using $a=19,001$ km
$$p=\frac{4a(s-r_1)(s-r_2)}{c^2}\sin^2\left(\frac{\alpha+\beta}{2}\right)=17,175$$
 km

$$e = \sqrt{1 - \frac{p}{a}} = 0.31$$
 (e > 0 so no sign check needed)

Step 8: Find true anomaly at each location along transfer whit

$$\theta_1^* = \mathbf{z}\cos^{-1}\left(\frac{1}{e}\left(\frac{p}{r_1}-1\right)\right) = \mathbf{z}\mathbf{z}\mathbf{z}$$

$$\theta_2^* = \mathbf{t}\cos^{-1}\left(\frac{1}{e}\left(\frac{p}{r_2} - 1\right)\right) = \mathbf{t}/\lambda \mathbf{5} \cdot \mathbf{3}^{\bullet}$$

Check all combinations of $\theta_2^* - \theta_1^*$ to identify combination that equals transfer angle $\theta_2^* - \theta_1^* = \Delta \theta^* = 197.7^{\circ}$

True only for: $\theta_1^* = 37^\circ$, $\theta_2^* = -125 \cdot 3^\circ$, $a34 \cdot 7^\circ$

Step 9: Calculate the velocity vectors at each of t_1 , t_2 before and after the maneuvers in a common frame

$$\vec{r}_2 = f\vec{r}_1 + g\vec{v}_1$$

$$\vec{v}_2 = f\vec{r}_1 + g\vec{v}_1$$

$$\vec{\nabla}_{i,f} = -6.0331 \hat{x} + 0.5490 \hat{y} + 0.4824 \hat{z}$$
 km/s $\vec{\nabla}_{2,i} = 3.2735 \hat{x} + 2.5273 \hat{y} + 0.1439 \hat{z}$ km/s

Optional: can also calculate other orbital elements when needed

Step 10: Find the maneuvers required for the transfer

$$\Delta \vec{v}_1 = \vec{v}_{1,f} - \vec{v}_{1,i}$$
 $\rightarrow \Delta v_i = 0.616$ lem/s
$$\Delta \vec{v}_2 = \vec{v}_{2,f} - \vec{v}_{2,i}$$
 Final Orbit
$$\bar{v}_{2,i} = \bar{v}_{2,f} - \bar{v}_{2,i}$$
 Final Orbit

Interplanetary Transfers

Simplified analysis: match states of bodies in heliocentric orbits Transfer design space between two orbits considers broader array of initial/final state vectors and, potentially, flight times

Interplanetary Transfers

Simplified analysis: match states of bodies in heliocentric orbits Transfer design space between two orbits considers broader array of initial/final state vectors and, potentially, flight times

Arrival variable for final orbit (e.g., epoch, true anomaly, etc)

Departure variable for initial orbit (e.g., epoch, true anomaly, etc)

Characterizing Transfers

Properties of interest:

Porkchop Plot

EARTH TO MARS 2005 type 1,2 C3L[b[ue], TTIME[red], SEP[green], Ls[magento] Ballistic transfer trajectory

Credit: NASA

Transfer Boundary Conditions

