Author Name Disambiguation using Markov Chain Monte Carlo (MCMC) Master's Thesis

Nagaraj Bahubali Asundi

First supervisor: Dr. Zeyd Boukhers Second supervisor: Dr. Claudia Schon

Institute for Web Science and Technologies (WeST)
University of Koblenz-Landau

January 2, 2023

Outline

- Introduction
- 2 Motivation
- Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- Future Work

- Introduction
- 2 Motivation
- 3 Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- Future Work

Introduction

Author Name Disambiguation (AND)

- Citation: a reference string that contains bibliographic information about a scientific paper
- Aim: map author name in citations to a real-world person

- Introduction
- 2 Motivation
- Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- Future Work

Motivation

Challenges

- Homonymy: authors sharing the same names
 - ▶ Hao Chen, Associate Professor from California
 - ▶ Hao Chen, Associate Professor from Memphis
- Synonymy: author sharing different name variants
 - ▶ JangMyung Lee, Pusan National University, South Korea
 - ▶ J. Lee, Pusan National University, South Korea

Motivation

- Quality of scientific data gathering
- Incorrect identification and credit attribution to authors

- Introduction
- 2 Motivation
- Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- Future Work

Problem Statement and Contributions 1/2

Problem Statement: Process a set of citations containing authors and their associated papers into clusters, each containing a set of papers pertaining to a real-world author.

- Let $P = \{p_1, p_2, ..., p_n\}$ be a set of n papers
- Let $A = \{a_1, a_2, ..., a_m\}$ be a set of m real-world authors
- A paper p_i belonging to real-world author a_j is denoted by (p_i, a_j)
- Goal: partition P into m disjoint clusters $C_1, C_2, ..., C_m$ such that $C_1 = \{p_i | (p_i, a_1)\}, ..., C_m = \{p_i | (p_i, a_m)\}$

Problem Statement and Contributions 2/2

Contributions

- Introduces AND-MCGC Author Name Disambiguation using Markov Chain-based Graph Clustering
- Employs multiple factors to achieve AND: research area, publication pattern over the years, patterns of co-authorship, and overlap of affiliations
- Conducts extensive experiments to analyze the contribution of each factor
- Provides an open-source implementation of the proposed approach¹

¹https://github.com/nagaraj-bahubali/author-name-disambiguation-using-mcmc

- Introduction
- 2 Motivation
- 3 Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- Future Work

Overview

Parse raw data and form citations

```
author_id | paper_id | author_name <> co_author_1@affiliation_1; co_author_2@affiliation_2;...;co_author_n@affiliation_n <> title <> venue <> year
```

- Organize citations according to namespaces atomic names
 - ightharpoonup Chen Li and Cheng Li ightarrow C Li
 - Steven Smith and Steffen Smith → S Smith
- Construct graph
- Perform graph actions

Parsed Citations

Bing Li

P₁ Bing Li@Uni-Trier;Fangshi Wang@Uni Trier<>Anisotropic Convolution for Image Classification<>CBMI<>2017
P₂: Bing Li@uni-trier;Zhipeng Zhang@Uni Uulm<>Object Tracking via Attention Retrieval<>AIPR<>2004

Da Xing

P₃: Da Xing@South China Uni;Chen Li@South China Uni<>Monte Carlo Study of Light<>ISOE<>2000
P₄: Da Xing@Fudan Uni;Wenfu Xu@Lanzhou Uni<>Algorithm for robot path planning<>ACPR<>2019

Name Spaces

B Li, D Xing

Graph Construction

title: t₁ co-authors: Bing Li, Fanngshi Wang venue: CBMI year: 2017 B Li

title: t₂
co-authors: Bing Li,
Zhipeng Zhang
venue: AIPR
year: 2004

D Xing

title: t₃
co-authors: Da
Xing, Chen Li
venue: ISOE
year: 2000

P₄

D Xino

title: t4 co-authors: Da Xing, Wenfu Xu venue: ACPR year: 2019

Graph Actions

(a) Merging the "Bing Li" papers.

(b) Splitting the "Da Xing" papers.

AND-MCGC - Architecture

MCMC in the context of AND

Metropolis-Hastings Algorithm

- Used for estimating target distribution
- Start with an initial random variable and propose subsequent variables in the form of a Markov chain
- Random variables are accepted/ rejected using acceptance criteria
- Propose enough times so that sampling distribution reflects target distribution

AND-MCGC

- ullet target distribution o *ideal state* of the graph
- ullet Start with an initial state o no. of graphlets = no. of citations
- Propose certain changes in the topology of the graph (merge/ split)
- accept/ reject the proposals using acceptance criteria
- Propose enough times to reach ideal state

Acceptance terms 1/2

1. Domain Similarity - α

•
$$\alpha_{merge} = \frac{\text{Sim b/w papers in } g \& h}{\text{Sim b/w papers in } g' \& g''}$$

Acceptance terms 2/2

2. Co-authorship Overlap - β

Jaccard similarity of the co-authors

3. Publication Pattern - γ

- Distribution of topics over time
- likelihood b/w graphlets

4. Affiliation Overlap - κ

 Jaccard similarity of the co-authors' affiliations

acceptance ratio = $\alpha * \beta * \gamma * \kappa$

- Introduction
- 2 Motivation
- 3 Problem Statement and Contributions
- Approach
- Experimental setup
- 6 Results
- Future Work

Experimental setup

Dataset

- Aminer-534K²
- 35,107 citations
- 6,399 unique real-world authors

Latent Topic Inference

- Gaussian LDA by Das et al. [1]
- number of topics K = 15
- number of iterations I = 20

- Introduction
- 2 Motivation
- 3 Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- 7 Future Work

Evaluation

• pairwise measures by Levin et al. [2]

Baseline Comparison

Model	Precision	Recall	F1
GHOST [3]	81.62	40.43	50.23
Louppe et al. [4]	57.09	77.22	63.10
Zhang et al. [5]	70.63	59.53	62.81
Chen et al. [6]	65.59	69.96	65.71
Pooja et al. [7]	62.60	76.10	66.90
Aminer-18 [8]	77.96	63.03	67.79
Wang et al. [9]	82.23	67.23	72.92
LAND [10]	77.24	61.21	64.18
$AND ext{-}MCGC_lpha$	47.07	54.44	43.71
$AND ext{-}MCGC_\gamma$	53.16	56.71	46.76
AND-MCGC _{all}	51.73	67.67	50.79

- Introduction
- 2 Motivation
- 3 Problem Statement and Contributions
- 4 Approach
- Experimental setup
- 6 Results
- Future Work

Future Enhancements

- Facilitate the integration process with global topic modeling
- Use abstracts/whole text of papers to extract latent topics
- Take advantage of the venues by profiling them according to the domain of the papers

Thank You

References I

- [1] R. Das, M. Zaheer, and C. Dyer, "Gaussian Ida for topic models with word embeddings," in *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, 2015, pp. 795–804.
- [2] M. Levin, S. Krawczyk, S. Bethard, and D. Jurafsky, "Citation-based bootstrapping for large-scale author disambiguation," *Journal of the American Society for Information Science and Technology*, vol. 63, no. 5, pp. 1030–1047, 2012.
- [3] X. Fan, J. Wang, X. Pu, L. Zhou, and B. Lv, "On graph-based name disambiguation," *Journal of Data and Information Quality (JDIQ)*, vol. 2, no. 2, pp. 1–23, 2011.

References II

- [4] G. Louppe, H. T. Al-Natsheh, M. Susik, and E. J. Maguire, "Ethnicity sensitive author disambiguation using semi-supervised learning," in *international conference on knowledge engineering and the semantic web*, Springer, 2016, pp. 272–287.
- [5] B. Zhang and M. Al Hasan, "Name disambiguation in anonymized graphs using network embedding," in *Proceedings of the 2017 ACM* on Conference on Information and Knowledge Management, 2017, pp. 1239–1248.
- [6] Y. Chen, H. Yuan, T. Liu, and N. Ding, "Name disambiguation based on graph convolutional network," *Scientific Programming*, vol. 2021, 2021.
- [7] K. Pooja, S. Mondal, and J. Chandra, "Exploiting similarities across multiple dimensions for author name disambiguation," *Scientometrics*, vol. 126, no. 9, pp. 7525–7560, 2021.

References III

- [8] Y. Zhang, F. Zhang, P. Yao, and J. Tang, "Name disambiguation in aminer: Clustering, maintenance, and human in the loop.," in *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, 2018, pp. 1002–1011.
- [9] H. Wang, R. Wan, C. Wen, et al., "Author name disambiguation on heterogeneous information network with adversarial representation learning," in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 34, 2020, pp. 238–245.
- [10] C. Santini, G. A. Gesese, S. Peroni, A. Gangemi, H. Sack, and M. Alam, "A knowledge graph embeddings based approach for author name disambiguation using literals," arXiv preprint arXiv:2201.09555, 2022.