Actividad 1

Desarrollo de un sistema borroso

1. Dominio del sistema

El dominio del sistema es de diagnóstico del suelo para la construcción de viviendas en distintas áreas de la ciudad en que vivo Quito-Ecuador, ya que tiene muchas quebradas, rellenos y la ciudad se encuentra en la cordillera de los Andes, rodeada de montañas. Recientemente algunas áreas fueron arrasadas por un aluvión y no se había tomado en cuenta si eran factibles para construir.

Entonces se propone dos áreas específicas que son La Gasca y La Comuna, ambas con pendientes y en su lado Occidental un gran bosque andino, se tomará en cuenta el grado de erosión del suelo cercano, la cantidad de lluvia y si esto contribuirá para concluir si podría ocurrir un deslizamiento.

2. Reglas sobre el dominio

El sistema está definido por lo siguiente:

Grado de erosión del suelo: muy severo, severo, moderado, ligero, sin evidencia

Cantidad de lluvia: muy fuerte, fuerte, moderada, ligera, débil

Riesgo de deslizamiento: alto, medio, bajo

Las reglas propuestas son las siguientes:

R1: Si el grado de erosión es ligero y la cantidad de lluvia es muy fuerte entonces riesgo deslizamiento medio

R2: Si el grado de erosión es ligero y la cantidad de lluvia es moderada entonces riesgo deslizamiento bajo

R3: Si el grado de erosión es moderado y la cantidad de lluvia es muy fuerte entonces riesgo deslizamiento alto

R4: Si el grado de erosión es moderado y la cantidad de lluvia es moderada entonces riesgo deslizamiento medio

R5: Si el grado de erosión es moderado y la cantidad de lluvia es débil entonces riesgo deslizamiento bajo

R6: Si el grado de erosión es muy severo y la cantidad de lluvia es muy fuerte entonces riesgo deslizamiento alto

R7: Si el grado de erosión es muy severo y la cantidad de lluvia es moderada entonces riesgo deslizamiento medio

R8: Si el grado de erosión es muy severo y la cantidad de lluvia es débil entonces riesgo deslizamiento medio

3. Representación no continua de los conjuntos borrosos y usando relaciones borrosas y Modus Ponens Generalizado

Para realizar la representación se tomará en cuenta la siguiente regla:

 Si el grado de erosión es muy severo y la cantidad de lluvia es muy fuerte, el riesgo de deslizamiento será alto

Entonces en el sistema se tiene definido los siguientes conjuntos borrosos:

Grado de Erosión muy servera: (>80%/0.9, >30% y <80%/0.7, <30%/0.3) Lluvia muy fuerte: (>30mm y <60 mm/0.8, >15mm y <30mm/0.6, >2mm y <15mm/0.4)

Riesgo de deslizamiento alto: (0.9/alto, 0.5/medio)

Se tiene que el motor de inferencia utiliza el mínimo como T-norma, el máximo como T_conorma, la negación clásica(complemento) y como función de implicación I(a,b) = max(1-a, b).

Si el grado de erosión es muy severo y la cantidad de lluvia es débil, se observará el conjunto borroso que infererirá en el sistema experto sobre el riesgo de deslizamiento.

Tenemos el Modus Ponens Generalizado:

$$\frac{A \land B \rightarrow C}{A \land B'} \qquad C'$$

A: grado de erosión es muy severo

B: cantidad de lluvia es muy fuerte

C: riesgo de deslizamiento será alto

B': cantidad de lluvia débil

C': Resultado esperado

Regla:

 $(0.9, 0.7, 0.3) \land (0.8, 0.6, 0.4) \rightarrow (0.9/alto, 0.5/medio)$

$$\begin{array}{c} >30 \text{ y } < 60 \\ >80\% \\ >30\% \text{ y } < 80\% \\ < 30\% \end{array} \begin{array}{c} 0.8 & 0.6 & 0.4 \\ 0.7 & 0.6 & 0.4 \\ 0.3 & 0.3 & 0.3 \\ \end{array}$$

Resultado de Inferencia:

$$\begin{pmatrix}
0.8 & 0.6 & 0.4 \\
0.7 & 0.6 & 0.4 \\
0.3 & 0.3 & 0.3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.5 \\
0.9 & 0.7 \\
0.9 & 0.7 \\
0.9 & 0.7 \\
0.9 & 0.7 \\
0.9 & 0.7
\end{pmatrix}$$

Hecho:

Se determina la cantidad de lluvia cuando es débil en base a las reglas

Erosión muy severa Lluvia débil
$$(0.9 \ 0.7 \ 0.3) \land (0.36 \ 0.64 \ 0.84) = \begin{pmatrix} 0.36 \ 0.64 \ 0.84 \\ 0.36 \ 0.64 \ 0.7 \\ 0.3 \ 0.3 \ 0.3 \end{pmatrix}$$

Resultado:

$$\begin{pmatrix} 0.9 & 0.5 \\ 0.9 & 0.5 \\ 0.9 & 0.5 \\ 0.9 & 0.5 \\ 0.9 & 0.5 \\ 0.9 & 0.6 \\ 0.9 & 0.7 \\ 0.9 & 0.7 \\ 0.9 & 0.7 \end{pmatrix} \circ \begin{pmatrix} 0.36 & 0.64 & 0.84 \\ 0.36 & 0.64 & 0.7 \\ 0.3 & 0.3 & 0.3 \end{pmatrix} = \begin{pmatrix} 0.84 & 0.6 \\ 0.84 & 0.6 \\ 0.36 & 0.64 & 0.7 \\ 0.3 & 0.3 & 0.3 \end{pmatrix}$$
Alto Medio

4. Usar números borrosos para representar los universos de las variables de entrada y de salida, usando un mecanismo de inferencia tipo Mamdani.

Se definen las siguientes reglas:

A: Grado de erosión

B: Cantidad de lluvia

Α

В

	Muy fuerte	Fuerte	Moderada	Débil
Muy severo	Alto – R1	Alto – R3	Medio – R5	Medio – R8
Severo		Medio – R4		
Moderado	Alto – R2		Medio – R6	Bajo – R9
Ligero			Bajo – R7	Bajo – R10

Se definen los siguientes conjuntos borrosos:

Se valida las reglas que se disparan cuando la cantidad de lluvia es de 26,5 mm/h y el grado de erosión es del 35%.

Se disparan las reglas:

R1

R3

R4

A continuación las representación gráfica de las reglas que se disparan, el conjunto borroso y los valores obtenidos al desborrosificar:

R1

R3

R4

Representación del conjunto borroso:

Máximo: [60, 70] Media del máximo: 5

Centro de masa:

$$\frac{20*0,23+40*0,23+50*0,3+70*0,3}{0,23+0,23+0,3+0,3} = \frac{49,8}{1,06} = 46,98$$

Cálculos para obtener los valores de la observación:

$$\frac{30-25}{1-0} = \frac{26,5-25}{x-0} \qquad 5x = 1,5 \qquad \mathbf{x} = 0,3$$

$$5x = 1, 5$$

$$x = 0, 3$$

$$\frac{40 - 30}{1 - 0} = \frac{35 - 30}{x - 0} \qquad 10x = 5 \qquad \mathbf{x} = 0, 5$$

$$10x = 5$$

$$x = 0, 5$$

$$\frac{15-30}{1-0} = \frac{26, 5-30}{x-0} \qquad -15x = -3, 5 \qquad \mathbf{x} = 0, 23$$

$$-15x = -3,5$$

$$x = 0, 23$$

5. Implementación de las reglas en CLIPS/FUZZY CLIPS y ejemplo de inferencia TIPO MAMDANI (se anexan los archivos de BH y BC).

BH_Actividad_Fu z.clp