```
In [1]: #data annalysis libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: data=pd.read csv(r"C:\Users\91852\Downloads\data.csv")
         data.head()
Out[2]:
                  id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_me
                            Μ
              842302
                                     17.99
                                                 10.38
                                                              122.80
                                                                        1001.0
                                                                                        0.118
              842517
                            M
                                     20.57
                                                 17.77
                                                              132.90
                                                                        1326.0
                                                                                        0.084
                            M
                                     19.69
          2 84300903
                                                 21.25
                                                              130.00
                                                                        1203.0
                                                                                        0.109
          3 84348301
                            M
                                     11.42
                                                 20.38
                                                               77.58
                                                                         386.1
                                                                                        0.142
          4 84358402
                            Μ
                                     20.29
                                                 14.34
                                                              135.10
                                                                        1297.0
                                                                                        0.100
         5 rows × 33 columns
In [3]: data.shape
Out[3]: (569, 33)
In [4]:
          data.isnull().sum()
Out[4]: id
                                          0
         diagnosis
         radius mean
         texture_mean
         perimeter_mean
         area_mean
```

```
smoothness mean
        compactness mean
        concavity mean
        concave points mean
        symmetry mean
        fractal dimension mean
                                     0
        radius se
        texture se
        perimeter se
        area se
        smoothness se
        compactness se
        concavity se
        concave points se
        symmetry se
        fractal dimension se
        radius worst
        texture_worst
        perimeter worst
        area worst
        smoothness worst
        compactness worst
        concavity worst
                                     0
        concave points worst
        symmetry worst
                                     0
        fractal dimension worst
                                     0
        Unnamed: 32
                                   569
        dtype: int64
In [5]: data=data.dropna(axis=1)
        data.shape
Out[5]: (569, 32)
In [6]: data["diagnosis"].value counts()
Out[6]: B
             357
             212
        Name: diagnosis, dtype: int64
```

In [7]: sns.countplot(data["diagnosis"],label="count") Out[7]: <matplotlib.axes. subplots.AxesSubplot at 0x188dc2bad30> 350 300 250 th 200 150 100 50 diagnosis In [8]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 32 columns): Column Non-Null Count Dtype id 569 non-null int64 diagnosis 569 non-null object 1 radius mean 569 non-null float64 569 non-null float64 texture mean perimeter mean 569 non-null float64 area mean 569 non-null float64

569 non-null

569 non-null

569 non-null

569 non-null

569 non-null

float64

float64

float64

float64

float64

smoothness mean

concavity_mean

symmetry mean

compactness mean

concave points mean

```
11 fractal dimension mean
                                  569 non-null
                                                float64
        12 radius se
                                  569 non-null
                                                float64
        13 texture se
                                  569 non-null
                                                float64
           perimeter se
                                                float64
                                  569 non-null
        15 area se
                                                float64
                                  569 non-null
           smoothness se
                                  569 non-null
                                                float64
           compactness se
        17
                                  569 non-null
                                                float64
        18 concavity se
                                  569 non-null
                                                float64
        19 concave points se
                                  569 non-null
                                                float64
        20 symmetry se
                                  569 non-null
                                                float64
        21 fractal dimension se
                                  569 non-null
                                                float64
        22 radius worst
                                  569 non-null
                                                float64
        23 texture worst
                                  569 non-null
                                                float64
           perimeter worst
                                  569 non-null
                                                float64
        25 area worst
                                  569 non-null
                                                float64
        26 smoothness worst
                                  569 non-null
                                                float64
           compactness worst
                                  569 non-null
                                                float64
        28 concavity worst
                                  569 non-null
                                                float64
        29 concave points worst
                                                float64
                                  569 non-null
        30 symmetry worst
                                  569 non-null
                                                float64
        31 fractal dimension worst 569 non-null
                                                float64
       dtvpes: float64(30), int64(1), object(1)
       memory usage: 142.4+ KB
In [9]: from sklearn.preprocessing import LabelEncoder
       labelencoder y=LabelEncoder()
       labelencoder y.fit transform(data.iloc[:,1].values)
0,
             1,
             1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1,
       1,
             0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1,
       1,
             0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
       Θ,
             0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
```

```
1,
      1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
Θ,
      0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
Θ,
      0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
1,
      1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
1,
      0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0,
0,
      0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,
      1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
Θ,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
0,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1,
1,
      1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1,
      1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1,
1,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
0,
      0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
1,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,
0,
      0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
Θ,
      0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0,
0,
      0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0,
      0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Θ,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0]
```

In [10]: data.corr()
Out[10]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smo
id	1.000000	0.074626	0.099770	0.073159	0.096893	
radius_mean	0.074626	1.000000	0.323782	0.997855	0.987357	
texture_mean	0.099770	0.323782	1.000000	0.329533	0.321086	
perimeter_mean	0.073159	0.997855	0.329533	1.000000	0.986507	
area_mean	0.096893	0.987357	0.321086	0.986507	1.000000	
smoothness_mean	-0.012968	0.170581	-0.023389	0.207278	0.177028	
compactness_mean	0.000096	0.506124	0.236702	0.556936	0.498502	
concavity_mean	0.050080	0.676764	0.302418	0.716136	0.685983	
concave points_mean	0.044158	0.822529	0.293464	0.850977	0.823269	
symmetry_mean	-0.022114	0.147741	0.071401	0.183027	0.151293	
fractal_dimension_mean	-0.052511	-0.311631	-0.076437	-0.261477	-0.283110	
radius_se	0.143048	0.679090	0.275869	0.691765	0.732562	
texture_se	-0.007526	-0.097317	0.386358	-0.086761	-0.066280	
perimeter_se	0.137331	0.674172	0.281673	0.693135	0.726628	
area_se	0.177742	0.735864	0.259845	0.744983	0.800086	
smoothness_se	0.096781	-0.222600	0.006614	-0.202694	-0.166777	
compactness_se	0.033961	0.206000	0.191975	0.250744	0.212583	
concavity_se	0.055239	0.194204	0.143293	0.228082	0.207660	
concave points_se	0.078768	0.376169	0.163851	0.407217	0.372320	
symmetry_se	-0.017306	-0.104321	0.009127	-0.081629	-0.072497	
fractal_dimension_se	0.025725	-0.042641	0.054458	-0.005523	-0.019887	
radius_worst	0.082405	0.969539	0.352573	0.969476	0.962746	

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smo
texture_worst	0.064720	0.297008	0.912045	0.303038	0.287489	
perimeter_worst	0.079986	0.965137	0.358040	0.970387	0.959120	
area_worst	0.107187	0.941082	0.343546	0.941550	0.959213	
smoothness_worst	0.010338	0.119616	0.077503	0.150549	0.123523	
compactness_worst	-0.002968	0.413463	0.277830	0.455774	0.390410	
concavity_worst	0.023203	0.526911	0.301025	0.563879	0.512606	
concave points_worst	0.035174	0.744214	0.295316	0.771241	0.722017	
symmetry_worst	-0.044224	0.163953	0.105008	0.189115	0.143570	
fractal_dimension_worst	-0.029866	0.007066	0.119205	0.051019	0.003738	

31 rows × 31 columns

```
In [11]: sns.heatmap(data.corr(),annot=True)
  plt.figure(figsize=(40,40))
```

Out[11]: <Figure size 2880x2880 with 0 Axes>

<Figure size 2880x2880 with 0 Axes>

```
In [12]: x=data.iloc[:,2:31].values
y=data.iloc[:,1].values

In [22]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,rando
    m_state=0)

In [14]: #Feature Scaling
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    x_train = sc.fit_transform(x_train)
    x_test = sc.transform(x_test)
```

```
In [20]: def models(x train,y train):
           #Using Logistic Regression
           from sklearn.linear model import LogisticRegression
           log = LogisticRegression(random state = 0)
           log.fit(x train, y train)
           #Using KNeighborsClassifier
           from sklearn.neighbors import KNeighborsClassifier
           knn = KNeighborsClassifier(n neighbors = 5, metric = 'minkowski', p =
         2)
           knn.fit(x train, y train)
           #Using SVC linear
           from sklearn.svm import SVC
           svc lin = SVC(kernel = 'linear', random state = 0)
           svc lin.fit(x train, y train)
           #Using SVC rbf
           from sklearn.svm import SVC
           svc rbf = SVC(kernel = 'rbf', random state = 0)
           svc rbf.fit(x train, y train)
           #Using GaussianNB
           from sklearn.naive bayes import GaussianNB
           gauss = GaussianNB()
           gauss.fit(x train, y train)
           #Using DecisionTreeClassifier
           from sklearn.tree import DecisionTreeClassifier
           tree = DecisionTreeClassifier(criterion = 'entropy', random state = 0
           tree.fit(x_train, y_train)
           #Using RandomForestClassifier method of ensemble class to use Random
          Forest Classification algorithm
           from sklearn.ensemble import RandomForestClassifier
           forest = RandomForestClassifier(n estimators = 10, criterion = 'entro
         py', random state = 0)
           forest.fit(x train, y train)
```

```
#print model accuracy on the training data.
           print('[0]Logistic Regression Training Accuracy:', log.score(x train,
         y train))
           print('[1]K Nearest Neighbor Training Accuracy:', knn.score(x train,
         y train))
           print('[2]Support Vector Machine (Linear Classifier) Training Accurac
         y:', svc lin.score(x train, y train))
           print('[3]Support Vector Machine (RBF Classifier) Training Accuracy:'
         , svc rbf.score(x train, y train))
           print('[4]Gaussian Naive Bayes Training Accuracy:', gauss.score(x tra
         in, y train))
           print('[5]Decision Tree Classifier Training Accuracy:', tree.score(x
         train, y train))
           print('[6]Random Forest Classifier Training Accuracy:', forest.score(
         x train, y train))
           return log, knn, svc lin, svc rbf, gauss, tree, forest
In [23]: model=models(x train,y train)
         C:\Users\91852\Anaconda3\lib\site-packages\sklearn\linear model\ logist
         ic.py:762: ConvergenceWarning: lbfqs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown
         in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-
         regression
           n iter i = check optimize result(
         [0]Logistic Regression Training Accuracy: 0.9577464788732394
         [1]K Nearest Neighbor Training Accuracy: 0.9413145539906104
         [2]Support Vector Machine (Linear Classifier) Training Accuracy: 0.9647
         887323943662
         [3] Support Vector Machine (RBF Classifier) Training Accuracy: 0.9037558
         68544601
         [4]Gaussian Naive Bayes Training Accuracy: 0.9507042253521126
```

```
[5] Decision Tree Classifier Training Accuracy: 1.0
         [6]Random Forest Classifier Training Accuracy: 0.9953051643192489
In [24]: from sklearn.metrics import confusion matrix
         for i in range(len(model)):
           cm = confusion matrix(y test, model[i].predict(x test))
           TN = cm[0][0]
           TP = cm[1][1]
           FN = cm[1][0]
           FP = cm[0][1]
           print(cm)
           print('Model[{}] Testing Accuracy = "{}!"'.format(i, (TP + TN) / (TP
         + TN + FN + FP)))
           print()# Print a new line
         [[85 5]
          [ 1 52]]
         Model[0] Testing Accuracy = "0.958041958041958!"
         [[85 5]
          [ 4 49]]
         Model[1] Testing Accuracy = "0.9370629370629371!"
         [[86 4]
          [ 1 5211
         Model[2] Testing Accuracy = "0.965034965034965!"
         [[89 1]
          [ 8 45]]
         Model[3] Testing Accuracy = "0.9370629370629371!"
         [[86 4]
          [ 5 48]]
         Model[4] Testing Accuracy = "0.9370629370629371!"
         [[84 6]
          [ 1 52]]
         Model[5] Testing Accuracy = "0.951048951048951!"
```

```
[[87 3]
          [ 2 51]]
         Model[6] Testing Accuracy = "0.965034965034965!"
In [25]: #Show other ways to get the classification accuracy & other metrics
         from sklearn.metrics import classification report
         from sklearn.metrics import accuracy score
         for i in range(len(model)):
           print('Model ',i)
           #Check precision, recall, f1-score
           print( classification report(y test, model[i].predict(x test)) )
           #Another way to get the models accuracy on the test data
           print( accuracy score(y test, model[i].predict(x test)))
           print()#Print a new line
         Model 0
                       precision
                                    recall f1-score
                                                       support
                    В
                                      0.94
                                                0.97
                            0.99
                                                            90
                                      0.98
                    М
                            0.91
                                                0.95
                                                            53
                                                0.96
                                                           143
             accuracy
                                                0.96
                            0.95
                                      0.96
                                                           143
            macro avq
         weighted avg
                            0.96
                                      0.96
                                                0.96
                                                           143
         0.958041958041958
         Model 1
                       precision
                                    recall f1-score
                                                       support
                                      0.94
                                                0.95
                    В
                            0.96
                                                            90
                            0.91
                                      0.92
                                                0.92
                    М
                                                            53
                                                0.94
                                                           143
             accuracy
                            0.93
                                      0.93
                                                0.93
                                                           143
            macro avg
                                      _ _ .
```

weighted avg	0.94	0.94	0.94	143			
0.9370629370629371							
Model 2	precision	recall	f1-score	support			
B M	0.99 0.93	0.96 0.98	0.97 0.95	90 53			
accuracy macro avg weighted avg	0.96 0.97	0.97 0.97	0.97 0.96 0.97	143 143 143			
0.965034965034965							
Model 3	precision	recall	f1-score	support			
B M	0.92 0.98	0.99 0.85	0.95 0.91	90 53			
accuracy macro avg weighted avg	0.95 0.94	0.92 0.94	0.94 0.93 0.94	143 143 143			
0.9370629370629371							
Model 4	precision	recall	f1-score	support			
B M	0.95 0.92	0.96 0.91	0.95 0.91	90 53			
accuracy macro avg weighted avg	0.93 0.94	0.93 0.94	0.94 0.93 0.94	143 143 143			
0.9370629370629371							

. . . -

```
Model 5
                       precision
                                    recall f1-score
                                                       support
                            0.99
                                      0.93
                                                0.96
                                                            90
                    В
                    М
                            0.90
                                      0.98
                                                0.94
                                                            53
                                                0.95
                                                           143
             accuracy
            macro avg
                            0.94
                                      0.96
                                                0.95
                                                           143
         weighted avg
                            0.95
                                      0.95
                                                0.95
                                                           143
         0.951048951048951
         Model 6
                                    recall f1-score
                       precision
                                                       support
                                      0.97
                    В
                            0.98
                                                0.97
                                                            90
                            0.94
                                      0.96
                                                0.95
                    М
                                                            53
                                                0.97
                                                           143
             accuracy
                                                0.96
            macro avg
                            0.96
                                      0.96
                                                           143
         weighted avg
                            0.97
                                      0.97
                                                0.97
                                                           143
         0.965034965034965
In [26]: #conclusion for selectiong best model
In [ ]:
```