Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

КОМПЛЕКСИРОВАНИЕ ДАННЫХ ВИЗУАЛЬНОЙ ОДОМЕТРИИ И НАВИГАЦИОННОЙ СИСТЕМЫ ДЛЯ БЕСПИЛОТНЫХ УСТРОЙСТВ

Выполнил: Азаров Максим Сергеевич, гр. 0382 Руководитель: Черниченко Дмитрий Александрович, к.т.н., доцент

Санкт-Петербург, 2024

Цель и задачи

Актуальность: локализация беспилотного устройства

Проблема подбора аппаратуры для получения необходимой точности

Цель: разработать ПО определяющую зависимость точности работы алгоритма viSLAM от различных параметров датчиков

Задачи:

- 1. Выбрать алгоритм viSLAM
- 2. Выбрать исследуемые параметры датчиков
- 3. Выбрать набор данных для моделирования
- 4. Разработать ПО, моделирующую работу выбранного алгоритма, на различных параметрах датчиков.

Что такое SLAM?

- SLAM (англ. simultaneous localization and mapping) метод для построения карты в пространстве с одновременным контролем текущего местоположения и пройденного пути. Широко применяется в задачах локализации объекта.
- Для построения карты и определения местоположения используют данные полученные с различных датчиков:
 - Камеры
 - IMU (англ. inertial measurement unit) датчик измеряющий угловую скорость и ускорение объекта.(гироскоп + акселерометр)
 - Лидар (LIDAR) Система использует лазерный луч на вращающейся платформе для измерения расстояния до окружающих объектов.
 - И пр.
- viSLAM (англ. visual inertial SLAM) алгоритм SLAM который опирается на данные полученные с камер (visual) и *IMU* (inertial)

Обзор Аналогов

Работа	SLAM алгоритм	Какие параметры моделировались		
Cao L., Ling J., Xiao X. Study on the influence of image noise on monocu-lar feature-based visual slam based on ffdnet	ORB-SLAM2	Различные уровни шума камеры		
Zhang S. The Research of RBPF- SLAM Accuracy under the Influence of Depth Camera Noises	RBPF-SLAM	шумов камеры глубины		
Wang G. Robust visual SLAM with compressed image data: A study of ORB-SLAM3 performance under extreme image compression	ORB-SLAM3	влияние сжатия изображений		
Godio S. et al. Resolution and Frequency Effects on UAVs Semi- Direct Vis-ual-Inertial Odometry (SVO) for Warehouse Logistics	SVO Pro	Разрешение и частота изображения		

Выбор алгоритма SLAM и набора данных

- Был выбран алгоритм **VINS-Fusion**, из-за своей лучшей точности по сравнению с другими SOTA(state of the art) алгоритмами viSLAM.
- Был выбран набор данных **EuRoC**, из-за своей распространённости в задачах viSLAM

Разработка ПО (моделирование параметров)

Задействованные инструменты: Python, OpenCV, ROS, bash, EVO.

Разрешение камеры:

- Моделировалось с помощью cv.resize() и флагом cv.INTER_AREA
- Допустимые значения: 752 x 480 (орг.); 677 x 432; 609 x 389; 548 x 350; 493 x 315

Частота IMU:

- Моделировалось с помощью исключения каждого второго сообщения.
- Допустимые значения: 200Гц (орг.); 100Гц; 50Гц; 25Гц;

Разработка ПО (моделирование параметров IMU)

Белый шум акселерометра:

 Шум акселерометра описывается двумя составляющими, смещением нуля bias и гауссовским (белым) шумом:

$$m = m_t + bias + \eta_w \qquad \eta_w \sim N(0, \sigma_w^2)$$

Где, m_t – истинное значение ускорения, bias – смещением нуля, η_w – гауссовский(белый) шум, $N(\mu, \sigma^2)$ - нормальное распределение

Для моделирования использовалась следующая формула

$$m + \eta_a = m_t + bias + \eta_w + \eta_a \qquad \eta_a \sim N(0, \sigma_a^2)$$

Где , η_a – изменяющая состовляющая белого шума акселерометра.

Разработка ПО (моделирование параметров IMU)

Белый шум акселерометра (продолжение):

 Данное изменение не нарушает модель шума, так как сумам нормально распределенных сл. вел. тоже нормальна:

$$\eta_w + \eta_a \sim N(0, \sigma_w^2 + \sigma_a^2)$$

• Допустимые значения получаемого шума $\sigma = :0.1$ (орг.); 0.2; 0.4; 0.8; 1.6; 3.2;

Белый шум гироскопа:

- Моделируется аналогичным способом что и белый шум акселерометра.
- Допустимые значения получаемого шума $\sigma = : 0.01$ (орг.); 0.02; 0.04; 0.08; 0.16; 0.32;

Разработка ПО (оценка точности VINS)

Оценка точности VINS:

APE(absolute pose error):

$$E_i = P_{est,i} \ominus P_{ref,i} = P_{est,i}^{-1} P_{ref,i}$$

Где $P_{est,i}$ - поза истинной траектории в момент і , $P_{\mathrm{ref},i}$ - поза вычисленной SLAM траектории в момент і, E_i - значение APE в момент і.

■ Статистики APE: RMSE, mean, median, std, min/max

Характеристики ПК:

■ CPU: Intel Core i7-8550U;

■ ОЗУ: 16,0 ГБ;

■ Видеокарта: NVIDIA GeForce GTX 1050 with Max-Q Design

Схема ПО

Пример результата работы ПО (разрешение)

Заключение

- Был выбран алгоритм VINS-Fusion
- Были выбраны следующие 4 характеристики датчиков и разработаны способы моделирования их:
 - Камеры: разрешение
 - IMU: частота, белый шум акселерометра и гироскопа.
- Был выбран набор данных EuRoC.
- Разработано ПО состоящая из 4 модулей, с помощью которых моделируется работа VINS-Fusion, для различных значений 4 характеристик датчиков.

Дальнейшее развитие данной работы может заключаться в поддержке системой моделирования следующих параметров:

- Камеры: частота
- IMU: Уровень смещение нуля (bias) акселерометра и гироскопа

Апробация работы

• Репозиторий проекта

https://github.com/AzMax22/model_data_for_VINS

GitHub

Запасные слайды

Пример работы VINS-Fusion

Пунктиром обозначена истинная траектория, цветной линией траектория полученная из VINS

Результат работы ПО (разрешение ч.2)

	rmse	mean	median	std	min	max
V1 original	0.14	0.13	0.145	0.058	0.0	0.25
V1 432x677	0.38	0.34	0.32	0.17	0.0	1.06
V1 389x609	1.12	0.97	0.77	0.57	0.0	2.88
V1 350x548	2.21	1.70	1.05	1.41	0.0	5.68
V1 315x493	3.41	2.92	2.78	1.76	0.0	8.03
MH original	0.44	0.39	0.41	0.20	0.0	0.96
MH 432x677	2.58	1.75	1.11	1.89	0.0	11.34
MH 389x609	2.08	1.80	1.96	1.03	0.0	3.75
MH 350x548	21.76	12.87	6.64	17.55	0.0	109.86
MH 315x493	X	X	Х	X	X	х
V2 original	0.21	0.19	0.16	0.08	0.0	0.43
V2 432x677	12.7	11.39	10.42	5.64	0.0	20.18
V2 389x609	10.59	8.50	9.01	6.31	0.0	21.17
V2 350x548	X	X	X	X	X	х
V2 315x493	X	X	х	X	X	х

Таблица статистик APE VINS-Fusion для различных исходных данных.

Выбор набора данных для моделирования

Dataset	Sensor	Environment	Availability
KITTI	RGB-D+LIDAR+GPS+IMU	Outdoor	[75]
Oxford	RGB-D+LIDAR+GPS+IMU	-D+LIDAR+GPS+IMU Outdoor	
ASL Kinect	RGB-D	Indoor	[77]
ASL RGB-D	RGB-D+LIDAR	Indoor	[78]
TUM RGB-D	RGB-D	Indoor	[72]
ICL-NUIM	RGB-D	Indoor	[79]
VaFRIC	RGB-D	Indoor	[80]
EuRoC	Binocular+IMU	Indoor	[81]
TUM VI	Binocular+IMU	Indoor/Outdoor	[74]
TUM monoVO	Monocular	Indoor/Outdoor	[73]

Широко распространенные наборы данных для задач SLAM алгоритмов

Выбор алгоритма viSLAM

					Xavier				
	VINS-Mono	ALVIO	ROVIO	Kimera	VINS-Fusion	VINS-Fusion-gpu	VINS-Fusion-imu	ORB-SLAM2	S-MSCKF
cir-n	0.12	0.12	×	0.08	0.07	0.09	0.08	0.08	0.11
cir-f	0.14	0.12	0.80	0.08	0.16	0.13	0.13	0.12	0.23
cir-h	0.41	0.49	2.11	0.26	0.06	0.11	0.07	0.15	0.20
inf-n	0.24	0.12	1.19	0.09	0.07	0.09	0.07	0.07	0.09
inf-f	0.10	0.09	0.44	0.13	0.07	0.05	0.07	0.07	0.12
inf-h	0.57	0.48	\times	1.09	0.09	0.14	0.12	0.09	0.87
squ-n	0.11	0.10	0.47	0.13	0.17	0.10	0.15	0.12	0.15
squ-f	0.12	0.10	0.56	0.14	0.08	0.11	0.10	0.14	0.17
squ-h	0.30	0.36	\times	1.50	0.18	0.15	0.18	0.17	0.50
rot-n	×	0.81	×	0.18	0.11	0.12	0.11	0.16	0.07
rot-f	0.89	0.72	×	0.90	0.26	0.11	0.07	0.18	0.19

Результат сравнению алгоритмов viSLAM