Σχετικά με τον μέγιστο αριθμό ανεξάρτητων κυκλωμάτων σε ένα γράφημα P. Erdös, L. Pösa

Μερκούρης Παπαμιχαήλ1

 $^1\Delta\Pi M\Sigma$ στους Αλγόριθμους, την Λογική και τα Δ ιακριτά Μαθηματικά ΕΚΠΑ, ΕΜΠ

Αλγοριθμική Θεωρία Γραφημάτων, Εαρινό 2020

Περιεχόμενα

1 Εισαγωγή

2 Ανεξάρτητα Κυκλώματα σε Γραφήματα

③ Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα

Περιεχόμενα

1 Εισαγωγή

Ανεξάρτητα Κυκλώματα σε Γραφήματα

③ Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα

Σύνολο Ανεξάρτητων Ακμών

Σύνολο Ανεξάρτητων Ακμών

Έστω ένα πολυγράφημα M=(V,E). Θα λέμε ένα σύνολο $\mathcal{I}\subseteq E$ σύνολο ανεξάρτητων ακμών, αν

$$\forall e_i, e_j \in \mathcal{I}, e_i \cap e_j = \emptyset$$

Σύνολο (Ασθενώς) Ανεξάρτητων Κυκλωμάτων

Σύνολο (Ασθενώς) Ανεξάρτητων Κυκλωμάτων

Έστω ένα πολυγράφημα M=(V,E). Θα λέμε μια οικογένεια υπογραφημάτων $\mathcal{C}\subseteq_{\upsilon\pi}2^M$ σύνολο ανεξάρτητων κυκλωμάτων, όταν κάθε $\mathcal{C}\in\mathcal{C}$ είναι κύκλωμα και

$$\forall C_i, C_j \in \mathcal{C}, V(C_i) \cap V(C_j) = \emptyset$$

Όταν ισχύει

$$\forall C_i, C_j \in \mathcal{C}, E(C_i) \cap E(C_j) = \emptyset$$

θα λέμε το C σύνολο ασθενώς ανεξάρτητων κυκλωμάτων.

Το Πρόβλημα

Ανεξάρτητο σύνολο κυκλωμάτων

Είσοδος: Έστω δύο φυσικοί αριθμοί $n, k \in \mathbb{N}$.

Έξοδος: Ένας φυσικός αριθμός $\ell \in \mathbb{N}$ τέτοιο ώστε, κάθε πολυγράφημα M = (V, E), με n(M) = n και $m(M) = \ell$ να περιέχει τουλάχιστον k ανεξάρτητα κυκλώματα.

Περιεχόμενα

Εισαγωγή

2 Ανεξάρτητα Κυκλώματα σε Γραφήματα

③ Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα

Ανεξάρτητα Τετράπλευρα

Λήμμα 1

Έστω ένα γράφημα G^n με n κόμβους, όπου $n \geq 6k$. Έστω, επίσης, ότι το G^n περιέχει 2k κόμβους βαθμού n-k. Τότε, περιέχει τουλάχιστον k ανεξάρτητα τετράπλευρα C_4 .

Σχήμα 1: Παράδειγμα για το Λήμμα 1. Εδώ k=2, n=12 και για κάθε κόμβο $x_i, d(x_i)=n-k=10$.

Ανεξάρτητα Κυκλώματα σε Γραφήματα (1)

Θεωρούμε την συνάρτηση f(n,k) όπου

$$f(n,k) = (2k-1)n - 2k^2 + k$$

Αποδεικνύεται το ακόλουθο Θεώρημα.

Θεώρημα 1

Έστω δύο φυσικοί αριθμοί k>1 και $n\geq 24k$. Τότε, κάθε γράφημα G με n κόμβους και f(n,k) ακμές, είτε περιέχει k ανεξάρτητα κυκλώματα, είτε 2k-1 κόμβους βαθμού n-1.

Ανεξάρτητα Κυκλώματα σε Γραφήματα (2)

Η απόδειξη που παρουσιάζεται από τους Erdös και Pösa:

- Είναι επαγωγική, ως προς το πλήθος των κόμβων η.
- Διακρίνει περιπτώσεις, ως προς τον βαθμό των κορυφών.
- Σε κάθε περίπτωση, χωρίζουμε το γράφημα στα σύνολα V^+ , V^- .
- Το V⁺ είναι ένα «μικρό» σύνολο, με «μεγάλο» βαθμό.
- Το V⁻ είναι ένα «μεγάλο» σύνολο, με μικρό βαθμό.

Θα εξετάσουμε τις απλούστερες περιπτώσεις του Θεωρήματος 1.

Ανεξάρτητα Κυκλώματα σε Γραφήματα (3)

- Υποθέτουμε ότι το $G^n_{f(n,k)}$ έχει 2k κορυφές β αθμού $\geq n-k$.
- Το ζητούμενο θα προκύπτει από το Λήμμα 1.
- Θεωρούμε ότι το G περιέχει το πολύ 2k-1 κορυφές, βαθμού > n-k.
- Επιπλέον, ότι όλες οι άλλες κορυφές έχουν βαθμό < 2k.
- Παρατηρούμε ότι τότε $m(G) \leq f(n,k)$.

Ανεξάρτητα Κυκλώματα σε Γραφήματα (4)

Πράγματι, θεωρούμε $V^+,V^-\subseteq V$, τ.ω. $V=V^+\uplus V^-$, όπου

$$V^{+} = \{ v \in V \mid d(G) \ge n - k \}$$

$$V^{-} = \{ v \in V \mid d(G) \le 2k - 1 \}$$

Από υπόθεση $|V^+| \leq 2k-1$, άρα $|V^-| \geq n-2k+1$. Έστω $\Delta^+=\Delta(V^+) \leq n-1$ και $\Delta^-=\Delta(V^-) \leq 2k-1$. Τότε, από το Λήμμα Χειραψίας έχουμε για το πλήθος των ακμών,

$$m(G) = \frac{1}{2} \left(\sum_{v \in V} d(v) \right) \le \frac{1}{2} (|V^{+}| \Delta^{+} + |V^{+}| \Delta^{-})$$

$$\le \frac{1}{2} [(2k-1)(n-1) + |V^{-}|(2k-1)]$$

$$\le \frac{1}{2} [(2k-1)(n-1) + (n-2k+1)(2k-1)]$$

Ανεξάρτητα Κυκλώματα σε Γραφήματα (5)

Σχήμα 2: Εδώ έχουμε k=2, n=15. Παρατηρούμε ότι τα γραφήματα που εξετάζουμε είναι μερικά γραφήματα του παραπάνω γραφήματος G. Στο παραπάνω γράφημα, μπορούμε να επιλέξουμε $\frac{|V^+|}{2}$ ανεξάρτητα κυκλώματα, επιλέγοντας μια ακμή της κλίκας.

Ανεξάρτητα Κυκλώματα σε Γραφήματα (6)

Θεώρημα 3

Έστω δύο φυσικοί αριθμοί $n, k \in \mathbb{N}, n \geq 4k$. Τότε κάθε γράφημα G με nκόμβους και $(2k-1)n-(2k-1)^2+1$ ακμές, το οποίο δεν περιέχει τρίγωνα, έχει k ανεξάρτητα κυκλώματα.

Σχήμα 3: Αντιπαράδειγμα του Θεωρήματος 4 k=2, n=8. Εδώ έχουμε $(2k-1)n-(2k-1)^2$ ακμές και $|\frac{2k-1}{2}|=1$ κυκλώματα.

Περιεχόμενα

Εισαγωγή

Ανεξάρτητα Κυκλώματα σε Γραφήματα

🗿 Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα

Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα (1)

Συνεχίζουμε με το πρόβλημα ασθενώς ανεξάρτητων κυκλωμάτων σε πολυγραφήματα. Θα θέλαμε να δείξουμε κάτι σαν το ακόλουθο.

Θεώρημα 3

Έστω δύο φυσικοί αριθμοί $n,k\in\mathbb{N}$. Υπάρχει κάποια συνάρτηση g(k), τέτοια ώστε, κάθε πολυγράφημα M με n κόμβους και n+g(k) ακμές έχει τουλάχιστον k κυκλώματα. Επιπλέον,

$$g(k) = \Theta(k \log k)$$

Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα (2)

Σχήμα 4: Δίνουμε το παραπάνω σχήμα ως αντιπαράδειγμα του $g(2) \leq 3$ ή $g(2) \geq 4$. Παρατηρήστε ότι στο παραπάνω γράφημα δεν έχουμε δύο ανεξάρτητα κυκλώματα.

Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα (3)

Θεώρημα 4

Κάθε πολυγράφημα M με n κόμβους και n+4 ακμές έχει τουλάχιστον δύο ασθενώς ανεξάρτητα κυκλώματα ή g(2)=4.

Σχήμα 5: Παρατηρούμε ότι αν προσθέσουμε την μωβ ακμή το προηγούμενο αντιπαράδειγμά μας δεν δουλεύει. Τώρα υπάρχουν δύο ασθενώς ανεξάρτητα κυκλώματα.

Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα (4)

Η απόδειξη των Erdös και Pösa για το Θεώρημα 3 βασίζεται σε δύο λήμματα, όπου φράσουν το μήκος ενός κυκλώματος άνω και κάτω.

Λήμμα 2

Έστω ένας φυσικός αριθμός $n \ge 2$. Κάθε πολυγράφημα M με n κόμβους, όπου ο ελάχιστον βαθμός είναι 3 περιέχει ένα κύκλωμα με το πολύ $2 \log n$ ακμές.

Λήμμα 3

Έστω ένα φυσικός αριθμός $m \in \mathbb{N}$. Τότε υπάρχει ένα γράφημα G με m κόμβους και 2m ακμές, το οποίο να μην περιέχει κύκλωμα με μήκος μικρότερο από $O(\log m)$.

Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα (5)

Λήμμα 2

Έστω ένας φυσικός αριθμός $n \ge 2$. Κάθε πολυγράφημα M με n κόμβους, όπου ο ελάχιστον βαθμός είναι 3 περιέχει ένα κύκλωμα με το πολύ $2 \log n$ ακμές.

Διαισθητικά, το Λήμμα 2:

- Μας δίνει έναν τρόπο να βρίσκουμε συνέχεια μικρά κυκλώματα σε ένα αυθαίρετο γράφημα.
- Αφαιρούμε αυτά τα κυκλώματα από το γράφημα και έτσι επαγωγικά κατασκευάζουμε ένα σύνολο ασθενώς ανεξάρτητων κυκλωμάτων.
- Επειδή, έχουν $O(\log n)$ μήκος, και το πολυγράφημά μας έχει $\Omega(k \log k)$ ακμές, θα βρούμε k ανεξάρτητα κυκλώματα.

Ασθενώς Ανεξάρτητα Κυκλώματα σε Πολυγραφήματα (6)

Λήμμα 3

Έστω ένα φυσικός αριθμός $m \in \mathbb{N}$. Τότε υπάρχει ένα γράφημα G με m κόμβους και 2m ακμές, το οποίο να μην περιέχει κύκλωμα με μήκος μικρότερο από $O(\log m)$.

Διαισθητικά, το Λήμμα 3:

- Μας λέει ότι τα κυκλώματα σε ένα γράφημα δεν μπορούν να είναι πολύ μικρά.
- Επειδή, έχουν Ω(log n) μήκος, και το πολυγράφημά μας έχει
 O(k log k) ακμές, δεν θα βρούμε k ανεξάρτητα κυκλώματα.

Ευχαριστώ για τον χρόνο σας!

A mathematician is a device for turning coffee into theorems.

– Paul Erdös (1913 - 1996)