

# 数学物理方法

Mathematical Methods in Physics

武汉大学

物理科学与技术学院



### 第四章 解析延拓·Γ函数 Extending analytical function

 $\Gamma$  function



#### 一. 解析延拓

#### 1. 解析延拓定义



设 $f_1(z)$ 在区域 $\sigma_1$ 中解析,若 $f_2(z)$ 在另一与区域 $\sigma_1$ 有重叠部分 $\sigma_{12}$ 的区域 $\sigma_2$ 中解析,且在 $\sigma_{12}$ 中 $f_2(z) \equiv f_1(z)$ ,则称 $f_2(z)$ 为 $f_1(z)$ 在 $\sigma_2$ 中的解析延拓。同样亦称 $f_1(z)$ 为 $f_2(z)$ 在 $\sigma_1$ 中的解析延拓。

「例如: 
$$f_1(z) = \sum_{k=0}^{\infty} z^k$$
,  $|z| < 1$   $f_2(z) = \frac{1}{1-z}$ ,  $z \ne 1$   $|z| < 1$ :  $f_1(z) \equiv f_2(z)$ 

简单地说,解析延拓,就是把已知区域内解析的函数 推广到更大的区域上去。或者说解析延拓就是将解析函数 的定义域加以扩大。



#### 一. 解析延拓

#### 2. 解析延拓的方法-泰勒展开

**[7]:** 
$$f_1(z) = \sum_{k=0}^{\infty} z^k$$
,  $|z| < 1$   $f_1(z) \in H(\sigma_1: |z| < 1)$ 

$$i \ \, \mathcal{E} \quad f_2(z) = \sum_{k=0}^{\infty} \frac{f_1^{(k)}(\frac{i}{2})}{k!} (z - \frac{i}{2})^k = \sum_{k=0}^{\infty} \frac{1}{(z - \frac{i}{2})^{k+1}} (z - \frac{i}{2})^k \\ R = \left| 1 - \frac{i}{2} \right| = \frac{\sqrt{5}}{2}$$
 
$$\boxed{ II } \quad f_2(z) \in H(\sigma_2: \left| z - \frac{i}{2} \right| < \frac{\sqrt{5}}{2} )$$

泰勒展开法繁,此外还可利用函数关系,施瓦茨反射原理等(见4.2,4.3).



#### 一. 解析延拓



#### 3. 解析延拓的内唯一性定理

设 $f_1(z)$ 和 $f_2(z)$ 在区域G中均解析,若在G的任一子

区域g中 $f_1(z) \equiv f_2(z)$ ,则在整个区域G中必有 $f_1(z) \equiv f_2(z)$ 。 由此可见,解析函数  $e^z$ ,  $\sin z$ ,  $\cos z$ 等分别由实函数

 $e^x$ ,  $\sin x$ ,  $\cos x$ 等唯一确定。换句话说,只要这些函数是

解析的,而且在实轴上取值 $e^x$ ,  $\sin x$ ,  $\cos x$ 等,那末这些

函数在整个复平面上便只能如1.4节那样所定义。

由此定理还可推知,我们所熟知的各种初等函数的等式,在复变函数中也均成立。

例如:  $\sin 2x = 2\sin x \cos x \rightarrow \sin 2z = 2\sin z \cos z$ 

因为sin2z和2sinzcosz都是解析函数,而且他们在实轴上相等。



#### 二、Г函数

#### 1、 Г 函数的定义

$$\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt \quad \text{Re } z > 0$$
这积分又成为 第二类欧 拉(Euler)积分

#### 2. Г函数的基本性质

$$(1)\Gamma(1)=1$$

(2) 
$$\Gamma(z+1) = z\Gamma(z)$$

(3) 
$$\Gamma(n+1) = n!$$
  $N = 0,1,2...$ 

(4) 
$$\Gamma(z)\Gamma(1-z) = \pi/\sin z$$

(5) 
$$\Gamma(1/2) = \sqrt{\pi}$$



#### 二、Г函数

- 3. Г函数的解析性
  - (1) 定义: 在有限区域中除极点外别无其它奇点的函数称为半纯函数.
    - (2) Г函数是半纯函数
    - (3)  $\Gamma$  函数在全平面除  $z = 0,-1,-2,\cdots,-n,\cdots$  这些一阶极点之外是处处解析的。



#### 三、B函数

#### 1、B函数的定义

$$B(p,q) = \int_{0}^{1} t^{p-1} (1-t)^{q-1} dt$$
 Re  $p > 0$ , Re  $q > 0$  这积分又成为第一类欧 拉(Euler)积分

#### 2. B函数的基本性质

$$\Rightarrow t = \sin^2 \varphi$$

(1) 
$$B(p,q) = 2\int_0^{\frac{\pi}{2}} \sin^{2p-1}\varphi \cos^{2q-1}\varphi d\varphi$$

(2) 
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

(3) 
$$B(p,q) = B(q,p)$$





## Good-by!

