MODULE 7

LIMITING DISTRIBUTIONS

LECTURE 41

Topics

7.3 SOME PRESERVATION RESULTS

7.3 SOME PRESERVATION RESULTS

In this section, we will discuss the algebraic operations under which convergence in probability and/or convergence in distribution is preserved.

Theorem 3.1

Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be sequences of random variables and let X be another random variable.

- (i) Let $g: \mathbb{R} \to \mathbb{R}$ be continuous at $c \in \mathbb{R}$ and let $X_n \xrightarrow{p} c$, as $n \to \infty$. Then $g(X_n) \xrightarrow{p} g(c)$, as $n \to \infty$.
- (ii) Let $h: \mathbb{R}^2 \to \mathbb{R}$ be continuous at $(c_1, c_2) \in \mathbb{R}^2$ and let $X_n \stackrel{p}{\to} c_1, Y_n \stackrel{p}{\to} c_2$, as $n \to \infty$.
- (iii) Let $g: \mathbb{R} \to \mathbb{R}$ be continuous on a support S_X of X and let $X_n \overset{d}{\to} X$, as $n \to \infty$. Then $g(X_n) \overset{d}{\to} g(X)$, as $n \to \infty$.
- (iv) Let $h: \mathbb{R}^2 \to \mathbb{R}$ be continuous at all points in $D = \{(x, b): x \in S_X\}$, where b is a fixed real constant and S_X is a support of X. If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} b$, as $n \to \infty$, then $h(X_n, Y_n) \xrightarrow{d} h(X, b)$, as $n \to \infty$.

Proof. We shall not attempt to prove assertions (iii) and (iv) here as their proofs are slightly involved.

(i) Fix $\varepsilon > 0$. Since $g: \mathbb{R} \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$, there exists a $\delta \equiv \delta(\varepsilon, c)$ such that

$$|x - c| < \delta \Rightarrow |g(x) - g(c)| < \varepsilon$$

or equivalently

$$|g(x) - g(c)| \ge \varepsilon \Rightarrow |x - c| \ge \delta$$
.

Therefore,

$$0 \le P(\{|g(X_n) - g(c)| \ge \varepsilon\}) \le P(\{|X_n - c| \ge \delta\}) \xrightarrow{n \to \infty} 0 \qquad \text{(since } X_n \xrightarrow{p} c)$$

$$\Rightarrow \lim_{n \to \infty} P(\{|g(X_n) - g(c)| \ge \varepsilon\}) = 0$$

$$\Rightarrow g(X_n) \stackrel{p}{\to} g(c), \quad \text{as } n \to \infty.$$

(ii) Fix $\varepsilon > 0$. Since $h: \mathbb{R}^2 \to \mathbb{R}$ is continuous at $(c_1, c_2) \in \mathbb{R}^2$, there exists a $\delta = \delta(\varepsilon, c_1, c_2)$ such that

$$|x - c_1| < \delta$$
 and $|y - c_2| < \delta \Rightarrow |h(x, y) - h(c_1, c_2)| < \varepsilon$,

or equivalently

$$|h(x,y) - h(c_1,c_2)| \ge \varepsilon \Rightarrow |x - c_1| \ge \delta \text{ or } |y - c_2| \ge \delta.$$

Therefore,

$$P(\{|h(X_n, Y_n) - h(c_1, c_2)| \ge \varepsilon\}) \le P(\{|X_n - c_1| \ge \delta\} \cup \{|Y_n - c_2| \ge \delta\})$$

$$\le P(\{|X_n - c_1| \ge \delta\} + P\{|Y_n - c_2| \ge \delta\}) \text{ (using Boole's inequality)}$$

$$\xrightarrow{n \to \infty} 0 + 0 = 0 \left(\operatorname{since} X_n \xrightarrow{p} c_1 \text{ and } Y_n \xrightarrow{p} c_2\right)$$

$$\Rightarrow \lim_{n \to \infty} P\left(\{|h(X_n, Y_n) - h(c_1, c_2)| \ge \varepsilon\}\right) = 0$$

$$\Rightarrow h(X_n, Y_n) \xrightarrow{p} h(c_1, c_2), \text{ as } n \to \infty. \blacksquare$$

Throughout, we shall use the following convention. If, for a real constant c, we write $X_n \xrightarrow{d} c$, as $n \to \infty$, then it would mean that X_n converges in distribution, as $n \to \infty$, to a random variable degenerate at c (i.e., $X_n \xrightarrow{p} c$, as $n \to \infty$). Similarly, for a random variable X, $0 \times X$ will be treated as a random variable degenerate at 0.

Now we provide the following useful lemma whose proof, being straight forward, is left as an exercise.

Lemma 3.1

- (i) Let X and Y be random variables and let c be a real constant. If $P({Y = c}) = 1$ then $X + Y \stackrel{d}{=} X + c$ and $XY \stackrel{d}{=} cX$, where $0 \times X$ is treated as a random variable degenerate at 0.
- (ii) Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be sequences of real numbers such that $X_n \stackrel{d}{=} Y_n$, n=1,2,... If, for some real constant $c,X_n \stackrel{p}{\to} c$, as $n\to\infty$, then $Y_n \stackrel{p}{\to} c$, as $n\to\infty$.
- (iii) Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be sequences of real numbers such that $X_n \stackrel{d}{=} Y_n, n = 1, 2, ...$ If, for some random variable X, $X_n \stackrel{d}{\to} X$, as $n \to \infty$, then $Y_n \stackrel{d}{\to} X$, as $n \to \infty$.
- (iv) Let $\{a_n\}_{n\geq 1}$ be sequence of real numbers such that $\lim_{n\to\infty}a_n=a\in\mathbb{R}$ and $\operatorname{let}\{X_n\}_{n\geq 1}$ be a sequence of random variables such that X_n is degenerate at $a_n, n=1,2,...$. Then $X_n\stackrel{p}{\to}a$, as $n\to\infty$.

Theorem 3.2

Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be sequences of random variables and let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be sequences of real numbers such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$.

- (i) Suppose that, for some real constants c_1 and c_2 , $X_n \xrightarrow{p} c_1$ and $Y_n \xrightarrow{p} c_2$, as $n \to \infty$. Then, as $n \to \infty$, $X_n + Y_n \xrightarrow{p} c_1 + c_2$, $X_n - Y_n \xrightarrow{p} c_1 - c_2$ and $X_n Y_n \xrightarrow{p} c_1 c_2$. Moreover, if $c_2 \neq 0$, then $\frac{X_n}{Y_n} \xrightarrow{p} \frac{c_1}{c_2}$, as $n \to \infty$.
- (ii) Suppose that, for a real constant c and a random variable $X, X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$, as $n \to \infty$. Then, as $n \to \infty$, $X_n + Y_n \xrightarrow{d} X + c$, $X_n Y_n \xrightarrow{d} X c$ and $X_n Y_n \xrightarrow{d} c X$. Moreover, if $c \ne 0$, then $\frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{c}$, as $n \to \infty$.
- (iii) Suppose that, for a real constant c, $X_n \stackrel{p}{\to} c$, as $n \to \infty$. Then $a_n X_n + b_n \stackrel{p}{\to} ac + b$, as $n \to \infty$.
- (iv) Suppose that, for a random variable X, $X_n \xrightarrow{d} X$, as $n \to \infty$. Then $a_n X_n + b_n \xrightarrow{d} a X + b$, as $n \to \infty$.

Proof. (i) and (ii) follow from Theorem 3.1 (ii) and (iv) as $h_1(x, y) = x + y$, $h_2(x, y) = x - y$ and $h_3(x, y) = xy$ are continuous functions on \mathbb{R}^2 , and $h_4(x, y) = \frac{x}{y}$ is continuous on $D = \{(s, t) \in \mathbb{R}^2 : t \neq 0\}$.

(iii) Let Y_n be a random variable that is degenerate at a_n and let Z_n be a random variable that is degenerate at b_n , n = 1, 2, ... Then $Y_n \stackrel{p}{\to} a$ and $Z_n \stackrel{p}{\to} b$, as $n \to \infty$

(Lemma 3.1 (iv)). Now using (i) we get $X_nY_n + Z_n \xrightarrow{p} ac + b$, as $n \to \infty$. Since $a_nX_n + b_n \stackrel{d}{=} X_nY_n + Z_n$, n = 1,2,..., (Lemma 3.1 (i)), the assertion follows on using Lemma 3.1 (ii).

(iv) Let Y_n and Z_n be as defined in (iii). Then $Y_n \stackrel{p}{\to} a$ and $Z_n \stackrel{p}{\to} b$, as $n \to \infty$. Using (ii) we get $X_n Y_n + Z_n \stackrel{d}{\to} aX + b$, as $n \to \infty$. Since $a_n X_n + b_n \stackrel{d}{=} X_n Y_n + Z_n$, n = 1, 2, ..., the assertion follows on using Lemma 3.1(iii).

Remark 3.1

The CLT asserts that if $X_1, X_2, ...$ are i.i.d. random variables with mean μ and finite variance $\sigma^2 > 0$, then

$$Z_n \stackrel{\text{def}}{=} \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{d}{\to} Z \sim N(0,1), \text{ as } n \to \infty,$$

where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Since $\frac{\sigma}{\sqrt{n}} \to 0$, as $n \to \infty$, using Theorem 3.2 (iv) we get

$$\bar{X}_n - \mu = \frac{\sigma}{\sqrt{n}} Z_n \stackrel{d}{\to} 0 \times Z$$
, as $n \to \infty$.

Note that $0 \times Z$ is a random variable degenerate at 0. Thus it follows that

$$ar{X}_n - \mu \stackrel{d}{ o} 0, \quad \text{as } n o \infty$$

 $\Leftrightarrow ar{X}_n - \mu \stackrel{p}{ o} 0, \quad \text{as } n o \infty$
 $\Leftrightarrow ar{X}_n \stackrel{p}{ o} \mu, \quad \text{as } n o \infty.$

The above discussion suggests that, under the finiteness of second moment (or variance), the CLT is a stronger result than the WLLN.

Example 3.1

Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be sequences of random variables.

- (i) If $X_n \stackrel{p}{\to} \ln 4$ and $Y_n \stackrel{p}{\to} 2$, as $n \to \infty$, show that $X_n + \ln Y_n \stackrel{p}{\to} \ln 8$ and $e^{X_n} \ln Y_n \stackrel{p}{\to} \ln 16$, as $n \to \infty$;
- (ii) If $X_n \stackrel{d}{\to} Z \sim N(0,1)$, as $n \to \infty$, show that $X_n^2 \stackrel{d}{\to} Q_1 \sim \chi_1^2$ (the chi-square distribution with one degree of freedom), as $n \to \infty$.
- (iii) If $X_n \stackrel{d}{\to} Z \sim N(0,1)$, and $Y_n \stackrel{p}{\to} 3$, as $n \to \infty$, show that $X_n Y_n \stackrel{d}{\to} V \sim N(0,9)$ and $2X_n + 3Y_n \stackrel{d}{\to} Q_2 \sim N(9,4)$, as $n \to \infty$.

(iv) For a given $\theta > 0$, if $X_1, X_2, ...$ are i.i.d. $U(0, \theta)$ random variables and $X_{n:n} = \max\{X_1, ..., X_n\}$, n = 1, 2, ..., show that $e^{X_{n:n}} \stackrel{p}{\to} e^{\theta}$, $X_{n:n}^2 + X_{n:n} + 1 \stackrel{p}{\to} \theta^2 + \theta + 1$ and $e^{-\frac{n(\theta - X_{n:n})}{\theta}} \stackrel{d}{\to} U \sim U(0, 1)$, as $n \to \infty$.

Solution.

- (i) Since $h_1(x) = \ln x$, $x \in (0, \infty)$ is a continuous function, using Theorem 3.1 (i) it follows that $\ln Y_n \stackrel{p}{\to} \ln 2$, as $n \to \infty$. Now on using Theorem 3.2 (i) we get $X_n + \ln Y_n \stackrel{p}{\to} \ln 4 + \ln 2 = \ln 8$, as $n \to \infty$. Also, since $h_2(x) = e^x$, $x \in \mathbb{R}$, is a continuous function on \mathbb{R} , on using Theorem 3.1 (i), we get $e^{X_n} \stackrel{p}{\to} e^{\ln 4} = 4$, as $n \to \infty$. Now on using Theorem 3.2(i) it follows that $e^{X_n} \ln Y_n \stackrel{p}{\to} 4 \ln 2 = \ln 16$, as $n \to \infty$.
- (ii) Since $h_3(x) = x^2, x \in \mathbb{R}$, is a continuous function on \mathbb{R} , using Theorem 3.1 (iii) we get $X_n^2 \stackrel{d}{\to} Z^2$, as $n \to \infty$. Let $Q_1 = Z^2$. Since $Z \sim N(0,1)$, we have $Q_1 \sim \chi_1^2$ (Theorem 4.1 (ii), Module 5). Consequently $X_n^2 \stackrel{d}{\to} Q_1 \sim \chi_1^2$, as $n \to \infty$.
- (iii) Using Theorem 3.2 (ii) we get $X_nY_n \stackrel{d}{\to} 3Z$, as $n \to \infty$. Let V = 3Z. Since $Z \sim N(0,1)$ we have $V = 3Z \sim N(0,9)$ (Theorem 4.2 (ii) Module 5) and, therefore, $X_nY_n \stackrel{d}{\to} V \sim N(0,9)$, as $n \to \infty$. Using theorem 3.2 (iii) and (iv) we get $2X_n \stackrel{d}{\to} 2Z$ and $3Y_n \stackrel{p}{\to} 9$, as $n \to \infty$. Now using Theorem 3.2 (ii) we also conclude that $2X_n + 3Y_n \stackrel{d}{\to} 2Z + 9$, as $n \to \infty$. Let $Q_2 = 2Z + 9$. Since $Z \sim N(0,1)$, we have $Q_2 \sim N(9,4)$ (Theorem 4.2 (ii), Module 5).
- (iv) From Example 1.4 we have $X_{n:n} \stackrel{p}{\to} \theta$, as $n \to \infty$, and $Y_n = n(\theta X_{n:n})$ $\stackrel{d}{\to} Y \sim \operatorname{Exp}(\theta)$, as $n \to \infty$. Since $h_4(x) = e^x$, $x \in \mathbb{R}$, $h_5(x) = x^2 + x + 1$, $x \in \mathbb{R}$, and $h_6(x) = e^{\frac{x}{\theta}}$, $x \in \mathbb{R}$, are continuous functions on \mathbb{R} , using Theorem 3.1 (i) and (ii), we get $e^{X_{n:n}} \stackrel{p}{\to} e^{\theta}$, $X_{n:n}^2 + X_{n:n} + 1 \stackrel{p}{\to} \theta^2 + \theta + 1$ and $e^{-\frac{Y_n}{\theta}} \stackrel{d}{\to} e^{-\frac{Y}{\theta}}$, as $n \to \infty$. Let $U = e^{\frac{Y}{\theta}}$. Since $Y \sim \operatorname{Exp}(\theta)$, it is easy to verify that $U \sim U(0,1)$. Consequently, $e^{-\frac{n(\theta X_{n:n})}{\theta}} = e^{-\frac{Y_n}{\theta}} \stackrel{d}{\to} U \sim U(0,1)$, as $n \to \infty$.