

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年2月5日 (05.02.2004)

PCT

(10) 国際公開番号 WO 2004/011308 A1

(51) 國際特許分類?:

(21) 国際出願器号:

B60R 21/16, 21/22 PCT/JP2003/009492

(22) 国際出願日:

2003年7月25日 (25.07.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の合語:

日本琶

(30) 優先権データ: 特頭2002-217346

特願2002-267457

2002年7月25日(25.07.2002) æ 2002年9月12日(12.09.2002) JP

待顧 3002-382407 2002年12月27日(27.12.2002) TP (71) 出願人 (米国を除く全ての指定国について): オートリブ ディベロップメント アーベー (AUTOLIV DEVELOPMENT AB) [SE/SE]; エス-44783 ファルガ ルダ ヴァレンティンスフェーゲン2 2 Vargarda (SE).

(72) 免明者; および

(75) 発明者/出願人 (米国についてのみ): 是近 孝二 (KO. RECHIKA, Koji) (JP/JP); 〒315-8520 茨城県 新治郡千 代田町上稲官 1764-12 オートリブ・ジャパン 株式会社内 Ibaraki (JP).

(74) 代理人: 西村 征生 (NISHIMURA, Yukuo): 〒330-0074 埼玉県 さいたま市 浦和区北浦和 4-2-6 Saitama OP).

【铵菜有】

(54) Tille: INFLATOR BAG FOR OCCUPANT RESTRAINT DEVICE AND METHOD OF MANUFACTURING THE INFLA-TOR BAG

(54) 発明の名称: 乗員拘束装置用インフレータパッグ及びその製造方法

(57) Abstruct: An inflator bag for occupant restraint device and a method of manufacturing the inflator bag, the method comprising the steps of forming a rectangular box-shaped bag body (51) having fourchette parts (54) for assuring a height provided on the peripheral side surfaces thereof by forming a resin sheet or a metal sheet, forming folds (55) for bending the fourchette parts (54) inward at the vertical intermediate parts of the fourthette parts (54), forming triangular overlappingly folded parts (56) overlappingly folded on the folded portion of the fourthette part (54b) on one side according to the folding of the fourthette part (54b) on one side at the end part of the fourchette part (54a) on the other side holding the corner part of the rectangular box-shaped bag body (51), folding flat the rectangular box-shaped bag body (51) by folding the fourchette parts inward through the folds (55), and closing the rectangular box-shaped bag body (51) in a scaled structure by closing the bottom surface thereof opposed to the top plate (52) by the bottom plate (\$3v) thereof, whereby the inflator bag (\$0) for occupunt restraint device compactly stored, developed in a stable shape while assuring a sufficient developing stroke, and processed easily can be provided.

(57) 葵約: 樹脂シート又は金属シートを成形することによ り、高さ確保のための福部(54)を周側面に有する角箱状の パッグ本体(51)を形成する。 福部(54)の高さ方向の中間部 に、内側に谷折れする折れ線(55)を形成すると共に、角霜 状のバッグ本体(51)の角部を挟む一方の辺側の福部(54a) の端部に、他方の辺側の褶部(54b)の折り畳みに伴ってそ の折り畳み部分に重ね折りされる三角形状の重ね折り部 (56)を形成する。折れ線(55)で谷折りすることにより角箱 状のパッグ本体(51)を扁平に折り畳む。角箱状のパッグ本 体(51)の天板(52)に対向する底面を底板(53vで塞いで密閉 構造となす。それにより、乗員拘束装置用インフレータ

インフレータバッグ(50)をコンパクトに収納できると共に、十分 パッグ(50)を得る。このような構成とすることで、 な展開ストロークを確保しながら安定形状に展開することが

/校萃有/

- (81) 指定国 (图内): AB, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DB, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GB, GH, GM, HR, HU, D, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定図(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR),

OAPI 特許 (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

規則4.17に規定する申立て: - USのみのための免明者である目の申立て (規則 4.17(iv))

添付公開書類: 一 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略選 のガイダンスノート」を参照。

PCT/JP2003/009492

明細書

乗員拘束装置用インフレータバッグ及びその製造方法

5 技術分野

この発明は、乗員腰部拘束装置や乗員脚部拘束装置等に使用される乗員拘束装置用インフレータバッグ及びその製造方法に関する。

背景技術

25

10 車両が前方衝突したときには、慣性により乗員が前方へ移動しようとする。乗員がシートベルトを着用している場合、シートベルトの肩ベルト及び腰ベルトの拘束作用により、乗員の前方への移動はかなりの程度抑えられるが、必ずしも十分でない場合があった。

この乗員の前方への移動を防止するため、車両が前方衝突等により急減速した 場合に、瞬時にシートクッションの前端部を上昇させて、乗員の前方移動を制限 するようにした乗員腰部拘束装置が、例えば、特開平5-229378号公報、 特開平10-217818号公報、英国特許GB2357466等によって知ら れている。また、前方へ移動する乗員の脚部を保護するための乗員脚部拘束装置 が、特開平8-40177号公報や特開平9-123857号公報等によって知 5れている。

第13図は、この種の乗員腰部拘束装置として、英国特許GB2357466 に開示された乗員腰部拘束装置の例を示している。同図(a)は膨張展開前の状態、同図(b)は膨張展開後の状態を示している。図において、1はシートフレームであり、このシートフレーム1の前部には、上から見て凹んだ凹部1aが設けられ、その上面に、凹部1aを覆うようにメタルシート2が、溶接や接着等により貼り付けられている。この例において、インフレータバッグ3は、メタルシート2とシートフレーム1で構成されており、インフレータ4の発生したガスが、インフレータバッグ3の内部空間に充填されるようになっている。

この乗員腰部拘束装置を備えた車両においては、前方衝突等による車両急減速

15

PCT/JP2003/009492

2

時に、インフレータ4が作動して高圧ガスをインフレータバッグ3に送り込む。 そうすると、インフレータバッグ3を構成するメタルシート2が膨張展開し、シートクッション6の前部座面を上昇させることにより、シートに着座した乗員M の前方への移動を防止する。

第14図は乗員脚部拘束装置(ニーエアバッグ装置とも呼ばれている)の例を示している。同図(a)は膨張展開前の状態、同図(b)は膨張展開後の状態を示している。図において、11はインストルメントバネル、12はカバーパネル、13はカバーパネル12の裏側に内蔵されたエアバッグモジュールである。エアバッグモジュール13には、インフレータバッグ(エアバッグ本体)14と、インフレータ15が装備され、インフレータ15の発生したガスが、インフレータバッグ14の内部に充填されるようになっている。

この乗員脚部拘束装置を備えた車両においては、前方衝突等による車両急減速時に、インフレータ15が作動して高圧ガスをインフレータバッグ14に送り込む。そうすると、インフレータバッグ14が膨張展開してカバーパネル12を押し出し、それにより、シートに着座した乗員の脚部Nを拘束して、車内装備へ脚部が衝突する際の衝撃を緩和する。

ところで、この種の乗員拘束装置のインフレータバッグを金属の単品部品として構成する場合、従来では第15図に示すように、2枚のメタルシート21、22を溶接(点線23が溶接部を示す)により貼り合わせて構成したり、第16図に示すように、蛇腹状の周壁25を有したベローズ式のものとして構成している。しかし、第15図に示すインフレータバッグは、高さ方向の寸法が制限されることから、展開ストロークSの確保が困難であり、衝撃吸収性能が劣る上、展開形状が不安定になりがちであるという問題があった。また、第16図に示すインフレータバッグは、展開ストロークSは確保しやすいが、加工が困難である上、収縮時の高さを小さくできないという問題があった。

この発明は、上述の事情に鑑みてなされたもので、コンパクトに収納できると共に、十分な展開ストロークを確保しながら安定形状に展開することができ、しかも、加工が容易な乗員拘束装置用インフレータバッグ及びその製造方法を提供することを目的とする。

PCT/JP2003/009492

3

発明の開示

5

10

15

25

請求項1記較の発明は、高圧ガスの充填により膨張展開可能であり、膨張展開することにより乗員を拘束する乗員拘束装置用インフレータパッグに係り、高さ確保のための福部を周側面に有する箱状のバッグ本体を形成し、前記福部の高さ方向の中間部に内側に谷折れする折れ線を形成すると共に、箱状のバッグ本体の角部を挟む一方の辺側の福部の端部に、他方の辺側の福部の折り畳みに伴ってその折り畳み部分に重ね折りされる重ね折り部を形成し、前記折れ線で谷折りすることにより、箱状のバッグ本体を扁平に折り畳んだ構成になされていることを特徴としている。

この発明のインフレータバッグは、高さ確保のための襠部を周側面に設けているので、十分な展開ストロークを確保することができる。また、高さ確保のための襠部に、内側に谷折れする折れ線を設けると共に、角部に三角形状の重ね折り部を形成しているので、扁平に折り畳むことができ、薄くコンパクトな形態で収納することができる。また、展開時には、折れ線部分が延びることで、均一な高さに安定展開させることができる。また、膨張展開するバッグ本体は、樹脂シート又は金属シートを角箱状に成形した上で襠部に折れ線を形成するだけで構成することができるから、ベローズ式のものに比べて加工が容易である。

請求項3記載の発明は、請求項1記載の乗員拘束装置用インフレータバッグに 20 係り、前記バッグ本体と底板とが一体成形されていることを特徴としている。

このように一体成形することにより、溶接等による接合が省けるので、高い気 密性を確保することができる。

また、請求項5記載の発明は、請求項1記載の乗員拘束装置用のインフレータ バッグに係り、前記バッグ本体が、縦辺が横辺よりも小さい長方形断面をなした 筒体の両端開口面を端面板で塞ぎ、前記筒体の縦辺に相当する側面板及び前記端 面板を襠部として形成されてなることを特徴としている。

請求項4記載の構成によれば、バッグ本体に、角筒体の側面板及び角筒体の両端開口面を塞ぐ端面板よりなる襠部を確保しているので、十分な展開ストロークを確保することができる。

5

25

PCT/JP2003/009492

また、襠部に、内側に谷折れする折れ線を設けると共に、バッグ本体の角部を挟む一方の辺側の襠部の端部に三角形状の重ね折り部を形成するようにすれば、バッグ本体を扁平に折り畳むことができ、薄くコンパクトな形態で収納することができる。また、展開時には、折れ線部分が延びることにより、均一な高さに安定展開させることができるので、乗員に対するサポート性能が向上する。また、膨張展開する角箱状のバッグ本体は、まず、長方形断面をなした角筒体を用意し、その両端開口面を端面板で塞ぐことにより構成しているから、ベローズ式のものに比べて極めて簡単に製作することができる。

また、請求項6記載の発明は、請求項4記載の乗員拘束装置用のインフレータ 10 バッグに係り、前記筒体を、該筒体の横辺に相当する上面板及び下面板を肉厚とし、かつ、縦辺に相当する側面板をそれよりも肉薄とした不等厚の筒体として構成すると共に、前記端面板の肉厚を前記側面板の肉厚相当としたことを特徴としている。

内部に高圧ガスを充填してインフレータバッグを膨張展開させた場合、インフレータバッグの広幅面である上下面が太鼓腹状態で膨らむことがあるが、この発明のインフレータバッグでは、襠部を構成する角筒体の側面板と角筒体の両端開口面を塞ぐ端面板を肉薄に形成し、バッグ本体の上面と下面を構成する角筒体の上面板と下面板を肉厚に形成しているので、襠部よりも肉厚に強化された分、インフレータバッグの上下面が、太鼓腹状態ではなく、均等に膨らむことになる。 20 従って、例えば、インフレータバッグの上面部で乗員の腰部や脚部をサポートす

る場合、エネルギーを拾い面積で均等に吸収することができる。また、襠部が肉 薄であることにより、素早く膨張展開させることができるようにもなる。 また、請求項7記載の発明は、高圧ガスの充填により膨張展開可能であり、膨 張展開することにより乗員を拘束する乗員拘束装置用のインフレータバッグに係

5

25

PCT/JP2003/009492

5

また、請求項8記載の発明は、請求項7記載の乗員拘束装置用のインフレータバッグに係り、簡体の互いに直交する2つの直径方向のうち一方の直径方向の両側面を内側にU字状に凹ませながら、他方の直径方向の両側面を平面状に押し没すことで、前記筒体が凌れた形状の断面を有する両端開放の中空体を形成し、該中空体の両端開口面を端面板で塞ぐことにより、前記中空体の内側に凹ませた両側面と前記端面板とを襠部としたバッグ本体を形成し、該襠部に相当する中空体の内側に凹ませた両側面と前記端面板とを、さらに内側に凹ませながら、前記他方の直径方向の両側面を、さらに押し潰すことで、前記バッグ本体を隔平に折り畳んだことを特徴としている。

10 請求項7又は8記載の構成によれば、バッグ本体に、簡体の内側に凹ませた両側面と簡体の両端開口面を塞ぐ端面板よりなる襠部を確保しているので、十分な展開ストロークを確保することができる。また、襠部を内側に、さらに凹ませながら簡体を押し潰すことにより、バッグ本体を扁平に折り畳んでいるので、薄くコンパクトな形態で収納することができる。また、展開時には、襠部が延びることで、均一な高さに安定展開させることができるので、乗員に対するサポート性能が向上する。また、膨張展開するバッグ本体は、まず、円筒体を用意し、それをいくらか潰して角形に近い変形断面の筒体とし、その両端開口面を端面板で塞ぐことにより構成しているから、ベローズ式のものに比べて極めて簡単に製作することができる。

20 また、請求項 9 記載の発明は、請求項 7 記載の乗員拘束装置用のインフレータ バッグに係り、前記端面板が、前記中空体の内側に位置して前記高圧ガスの充填 時に展開するように成形された収縮部を有してなることを特徴としている。

請求項10記載の発明は、請求項1乃至9のいずれか1つに記載の乗員拘束装置用のインフレータバッグに係り、車両のシートクッションの前下部に内装され、車両急減速時に高圧ガスの充壌により膨張展開することで、シートクッションの前部座面を上昇させ、それによりシートに着座した乗員の前方への移動を防止する乗員腰部拘束装置用のものであることを特徴としている。

請求項11記載の発明は、請求項1乃至9のいずれか1つに記載の乗員拘束装置用のインフレータバッグに係り、車両のインストルメントパネルの下部に配設

5

10

25

PCT/JP2003/009492

6

され、車両急減速時に高圧ガスの充填により膨張展開することで、着座した乗員の脚部を拘束する乗員脚部拘束装置用のものであることを特徴としている。

請求項16記載の発明は、高圧ガスの充填により膨張展開可能であり、膨張展開することにより乗員を拘束する乗員拘束装置用のインフレータバッグの製造方法に係り、所定長さに切断したパイプの断面を変形させることにより、縦辺が横辺よりも小さい概略長方形断面をなした筒体を形成すると共に、該筒体の縦辺に相当する側面板の高さ方向の中間部に内側に谷折れする折れ線を形成し、一方、前記筒体の両端開口面を塞ぐための端面板の高さ方向の中間部に内側に谷折れする折れ線を形成し、その端面板で前記筒体の両端開口面を塞ぐことにより、前記筒体の縦辺に相当する側面板及び前記端面板を補部とした箱状のパッグ本体を形成し、該箱状のパッグ本体の角部を挟む一方の辺側の襠部の端部に、他方の辺側の襠部の折り畳みに伴ってその折り畳み部分に重ね折りされる重ね折り部を形成し、前記側面板及び端面板よりなる襠部を折れ線で谷折りすることにより、扁平に折り畳んだインフレータバッグを得ることを特徴としている。

請求項16記載の構成によれば、円形パイプを変形させることにより、概略長方形断面をなした角筒体を形成し、その角筒体の両端開口面を塞ぐことにより、角箱状のバッグ本体を形成するので、バッグ本体の製作が容易になる。また、バッグ本体に、高さ確保のための襠部を設けるので、十分な展開ストロークを確保することができる。また、襠部に内側に谷折れする折れ線を設けると共に、バック本体の角部を挟む一方の辺側の襠部の端部に三角形状の重ね折り部を形成するので、バッグ本体を扁平に折り畳むことができるようになる。

なお、角筒体に対する端面板の接合には、例えば、溶接やヘミング加工を利用することができる。また、三角形状の重ね折り部は、端面板側に形成しても良いし、角筒体の側面板側に形成しても良い。折れ線や重ね折り部の形成は、円形パイプを変形させる際や端面板を加工する際に折りグセを付けたりすることで、簡単に行うことができる。

また、請求項17記載の発明は、高圧ガスの充填により膨張展開可能であり、 膨張展開することにより乗員を拘束する乗員拘束装置用のインフレータバッグの 製造方法に係り、所定長さに切断した円形パイプの互いに直交する2つの直径方

5

10

15

20

. 25

PCT/JP2003/009492

7

向のうち一方の直径方向の両側面が内側にU字状に凹み、他方の直径方向の両側面を平面状に押し潰された断面形状を有する両端開放の筒体を形成し、該筒体の両端開口面を端面板で塞ぐことによりパッグ本体を形成し、前記他方の直径方向の両側面を押し潰すことで、扁平に折り畳んだ密閉構造のインフレータパッグを得ることを特徴としている。

また、請求項19記載の発明は、請求項17記載の乗員拘束装置用のインフレータバッグの製造方法に係り、前記バッグ本体を成形するに際し、所定長さに切断した円形パイプの互いに直交する2つの直径方向のうち一方の直径方向の両側面を内側にU字状に凹ませながら、他方の直径方向の両側面を平面状に押し潰すことで、円形が潰れた形状の断面を有する両端開放の筒体を形成し、該筒体の両端開口面を端面板で塞ぐことにより、前記筒体の内側に凹ませた両側面と前記端面板とを襠部としたバッグ本体を形成し、前記バッグ本体を扁平に折り畳むに際し、前記襠部に相当する筒体の内側に凹ませた両側面と前記端面板とを、さらに内側に凹ませながら、前記他方の直径方向の両側面を、さらに平板状に押し潰すことを特徴としている。

請求項17及び19記載の構成によれば、円形パイプを、両側面をU字状に凹ませながら押し潰すことにより変形断面の簡体を形成し、その簡体の両端開口面を塞ぐことによりパッグ本体を形成するので、バッグ本体の製作が容易になる。また、バッグ本体に、簡体の凹状の両側面と端面板とで構成した襠部を設けるので、十分な展開ストロークを確保することができる。また、襠部を、さらに内側に凹ませながら押し潰すことで扁平形状に折り畳むので、コンパクトな収縮形態とすることができる。

なお、端面板の接合には、例えば、溶接やヘミング加工を利用することができる。また、円形パイプを変形させる際や端面板を加工する際に曲がりグセや折り グセを付けたりすることで、簡単に扁平形状に折り畳むことができる。加えて、 バッグ本体を構成する筒体を円形パイプを変形させて形成するので、安価にバッ グ本体を作成することができる。

以上説明したように、この発明のインフレータバッグによれば、十分な展開ストロークを確保しながら安定形状に展開させることができる。また、扁平に折り

O.

PCT/JP2003/009492

8

畳むことができるので、薄くコンパクトな形態で収納することができる。

さらに、膨張展開するバッグ本体は、まず、筒体を用意し、その両端開口面を 端面板で塞ぐだけで構成することができるので、ベローズ式のものに比べて極め て簡単に加工することができる。

5 さらに、膨張展開するバッグ本体は、樹脂シート又は金属シートを角箱状に成 形した上で襠部に折れ線を形成するだけで構成することができるので、加工も容 易である。

なお、バッグ本体と底板とを一体成形するようにすれば、溶接等による接合を 省くことができて、高い気密性を確保することができる。

10 また、襠部を構成する簡体の側面板と筒体の両端開口面を塞ぐ端面板を薄肉に形成し、バッグ本体の上面と下面を構成する筒体の上面板と下面板を厚肉に形成するようにすれば、インフレータバッグが太鼓腹状態でなく、均等に膨らむことになる。従って、例えば、乗員の腰部や脚部をサポートする場合、エネルギーを均等に吸収することができる。また、襠部が肉薄であることにより、素早く膨張風阻させることができる。

それゆえ、前記インフレータバッグを乗員腰部拘束装置や乗員脚部拘束装置に 適用することで、装置の信頼性とコスト低減を図ることができる。

したがって、この発明の構成を、前記インフレータバッグを乗員腰部拘束装置や乗員脚部拘束装置に適用することで、装置の信頼性とコスト低減を図ることができる。

図面の簡単な説明

20

25

PCT/JP2003/009492

9

である。また、第5図は、この発明の第4実施形態であるインフレータバッグの 分解斜視図、第6図は、同インフレータバッグの外観斜視図で、同図 (a) は収 縮前(あるいは展開時)の状態、(b)は収縮途中(あるいは展開途中)の状態、 (c) は収縮時(展開前)の状態をそれぞれ示す図、第7図は、同インフレータ バッグを構成する角筒体を円形パイプから製作する場合の説明図で、同図 (a) 5 は工程図、(b)は作成した角筒体の斜視図、第8図は、角筒体の端部処理の例を 示す要部斜視図、第9図は、角筒体と端面板の接合部の加工例 (a)、(b) を示 す図である。また、第10図は、この発明の第4実施形態であるインフレータバ ッグを構成する不等厚の角筒体の例を示す要部斜視図である。また、第11図は、 この発明の第5実施形態であるインフレータバッグの構成を示す斜視図であり、 10 同図(a)~(c)は製作工程順を示す図、第12図は、この発明の第6の実施 形態であるインフレータバッグ300の斜視図で、同図(a)~(c)は製作工 程順を示している。第13図は、従来の乗員腰部拘束装置の構成図であり、同図 (a)はインフレータバッグが膨張展開する前の状態、(b)はインフレータバッ グが膨張展開した後の状態を示す側断面図、第14図は、従来の乗員脚部拘束装 15 置の構成図で、同図 (a) はインフレータバッグが膨張展開する前の状態、(b) はインフレータバッグが膨張展開した後の状態を示す側断面図、第15図は、従

20

発明を実施するための最良の形態

レータバッグの構成を示す図である。

以下、この発明の実施形態を図面に基づいて説明する。

<第1の実施形態>

第1図は、この発明の第1の実施形態であるインフレータバッグ50の構成を 25 示す斜視図で、同図(a)は収縮時の状態、(b)は展開途中の状態、(c)は完 全展開時の状態をそれぞれ示している。

このインフレータバッグ50は、第1図に示すように、高圧ガスの充填により 膨張展開する密閉構造のものであり、樹脂シート又は金属シートの成形体よりな る角箱状のバッグ本体51と、このバッグ本体51の天板52に対向する底面を

来のインフレータバッグの構成を示す図、また、第16図は、従来の別のインフ

WQ 2004/011308

5

10

15

20

25

PCT/JP2003/009492

10

塞ぐ底板53とから構成されている。底板53は、バッグ本体51と一体成形しても良いが、加工が難しい場合は、後からバッグ本体51に加締めたり溶接により接合したりしても良い。

角箱状のバッグ本体51は、高さ寸法確保のための福部54を周側面に有しており、福部54の高さ方向の中間部には、内側に谷折れする折れ線55が形成されている。また、角部を挟んで互いに隣接する両辺側の福部54a、54bが、角部においても互いに干渉することなく確実に折り畳めるようにするため、角部を挟む一方の辺側の福部54aの端部には、他方の辺側の福部54bの折り畳みに伴ってその折り畳み部分に重ね折りされる三角形状の重ね折り部56が形成されている。この三角形状の重ね折り部56は、第1図の(b)、(c)に示す三角形の外縁のa線、b線で谷折りされ、折れ線55上にあるc線で山折りされることにより、隣りの福部54bに対して重ね折りされる。

そして、同図(a)に示すように、福部54を折れ線55で谷折りして、角箱状のバッグ本体51を扁平に折り畳むことにより、同図(a)に示す収縮状態のインフレータバッグ50が構成されている。実際には、この後、例えば、底板53に設けた小孔にインフレータのガス吹出口を嵌合し、インフレータを底板53に固定することにより、エアバッグモジュールが出来上がる。

このインフレータバッグ50は、高さ確保のための襠部54を周側面に設けているから、展開時に同図(c)に示すように十分なストロークSを確保することができる。また、高さ確保のための襠部54に、内側に谷折れする折れ線55を設けると共に、角部に三角形状の重ね折り部56を形成しているので、同図(a)に示すように扁平に折り畳むことができ、薄くコンパクトな形態で収納することができる。また、展開時には、同図(c)に示すように、折れ線55の部分が延びることで、均一な高さに安定展開させることができる。また、膨張展開するバッグ本体51は、樹脂シート又は金属シートを角箱状に成形した上で、襠部54に折れ線55を形成するだけで構成することができるから、従来のベローズ式のものに比べて加工が容易であり、安価に提供できる利点がある。

なお、このインフレータバッグ50は、第13図に示した乗員腰部拘束装置の インフレータバッグとして、また、第14図に示した乗員脚部拘束装置のインフ

PCT/JP2003/009492

11

レータバッグとして、使用することができる(以下の実施形態において同様である)。

<第2の実施形態>

20

. 25

第2図は、この発明の第2の実施形態であるインフレータパッグ60の構成を示す斜視図で、同図(a)は表面側、(b)は裏面側、(c)はインフレータを組み付けた状態を示す裏面側の構成図である。また、第3図は膨張展開したインフレータバッグ60を示している。

このインフレータバッグ60は、第2図に示すように、平面視四角形のバッグ 本体61の福部64の高さを、対向する一方の辺側[第2図(a)、第3図の前側] と他方の辺側[第2図(a)、第3図の後側] とで異ならせており、展開時に、側面視台形状にバッグ本体61が膨張展開するように構成している。その他の構成は第1図のものとほとんど同じで、62は天板、63は底板、65は折れ線、66は三角形の重ね折り部である。福部64の高さに応じて前側と後側の折り畳み15代(折り畳んだ際に重なる寸法)も異なっており、三角形の重ね折り部66の大きさも、前側に比べて後側の方が大きくなっている。

このインフレータバッグ60においても、第1図のものと同様の作用効果を得ることができる。また、このインフレータバッグ60は、展開時に、第3図に示すように、底板63に対して天板62が斜めの方向に展開するので、向きを考慮しながら図12の乗員腰部拘束装置や図13の乗員脚部拘束装置に取り付けることにより、高い性能を発揮することができる。

このインフレータパッグ60をモジュールとして組み立てる場合には、例えば、第2図(b)に示すように、底板63に形成した凹部69にインフレータ(図示略)を嵌め込み、凹部69に設けた小孔(図示略)にインフレータのガス吹出口を嵌合した状態で、インフレータをプラケット68により底板63に固定する。このようにして、エアバッグモジュールが出来上がる。

次に上記のインフレータバッグの作り方について説明する。

最初に、底板53、63を後からバッグ本体51、61に接合する例について 説明する。

5

10

15

PCT/JP2003/009492

12

・樹脂シートで構成する場合には、まず、角箱状のバッグ本体51、61を成形 する。その作り方としては、真空ブロー成形などにより金型の内面に樹脂シート を沿わせることで、簡単に天板52、62を有した角箱状のバッグ本体51、6 1を作ることができる。その際、折れ線55、65の位置を軽く曲がった形に形 成して折りグセを付けておく。そうすることで折り畳み時に折れ線55、65と しての機能を果たさせることができ、折れ線55、65の位置で簡単に襠部54、 64を折り畳むことができる。なお、折れ線55、65は、後から何らかの手段 で付けても良い。バッグ本体51、61を膨張展開形状に成形したら、次いでバ ッグ本体51、61を折り畳むと共に、その底面を底板53、63を溶剤するな どして塞ぐことにより、密閉構造のインフレータバッグ50、60が出来上がる。 一方、金属シート(鉄板やアルミニウム板等)で構成する場合には、まず、角 箱状のバッグ本体51、61をプレス成形する。その際、折れ線55、65の位 置を軽く曲がった形に成形したり、後で折れ線55、65を何らかの手段で形成 したりするのは、樹脂シートで作る場合と同じである。バッグ本体51、61を 膨張展開形状に成形したら、次いで、バッグ本体51、61を折り畳むと共に、 その底面を底板53、63を溶接あるいは加締め等で塞ぐことにより、密閉構造 のインフレータバッグ50、60が出来上がる。

次に、底板53、63とバッグ本体51、61を一体に成形し、ワンピースタイプのインフレータバッグを作る場合の例について、第4図を参照して説明する。 樹脂シートで構成する場合には、圧空成形や真空成形により金型の内面に樹脂シートを沿わせて、第4図(a)に示すような成形体71を得る。その際、折れ線75の位置を軽く曲がった形に形成して折りグセを付けておく。次いで、同図(b)に示すように、プレス等で成形体71を折り畳に状態に圧縮すると共に、底板73の周縁部に取り付け時に使用するフランジ74を形成し、最後に、同図(c)に示すように、圧縮空気等を導入した開口部76を溶融するなどして閉塞することにより、密閉構造のインフレータバッグ70を得る。

また、樹脂で構成する場合には、PETボトルを作る方法で作製することもできる。その場合は、まず、樹脂を射出成形することにより、先端が閉塞したチュープ状のプリフォームを作り、次に、軟化温度まで温めたプリフォームを金型内

5

10

15

PCT/JP2003/009492

13

に入れ、プリフォームの内部に圧縮空気を導入することにより、プリフォームを 延伸しながら金型の内面に沿ってブロー成形する。そして、折れ線の位置で折り 曲げながら成形体を折り畳み、最後に圧縮空気を導入した開口部を閉塞すること により、密閉構造のインフレータバッグを得ることができる。なお、この場合の 成形体は、厳密には樹脂シートを成形したものではないが、実際の成形品は樹脂 シート様のものであるから、ここでは樹脂シートの成形体とみなす。

一方、金属シートでワンピースタイプのインフレータバッグを作る場合は、まず、金属シートをプレス成形することにより、先端が閉塞した容器型のプリフォームを作る。次に、プリフォームを金型内に入れて、プリフォームの内部に非圧縮性の高圧流体(水、油、ゴム等)を導入することにより、プリフォームを延伸しながら金型の内面に沿ってバルジ成形する。次に、内部に導入した高圧流体を排除して、バルジ金型から成形体を取り出した後、プレス型等を利用し、前記と同様に設けた折れ線の位置で成形体を折り畳むことにより、ガス充填時の膨張代を付与する。最後に、高圧流体を導入した開口部をクロージング加工等にて閉塞することにより、密閉構造のインフレータバッグを得る。

このように、経ぎ目無しの一体成形品としてワンピースタイプのインフレータ バッグを作製することにより、気密に対する信頼性が格段に上がる上、製作が容 易であるから大幅なコスト減を達成できる。

なお、金属シートでインフレータバッグを作製する場合には、バルジ加工によ 5ずに、金属薄板をプレス成形することにより容器型の成形体を作り、さらに、 その成形体の開口部を徐々に絞り加工した上で、最後にクロージング加工することにより、密閉構造のインフレータバッグを得ることも可能である。この場合も、 クロージング加工を行う前に、成形体を折り畳むことにより、ガス充填時の膨張 代を付与することができる。

25 〈第3の実施形態〉

第5図は、この発明の第3の実施形態であるインフレータバッグ500の分解 斜視図、第6図はインフレータバッグ500の外観構成図で、同図(a)は収縮 前の状態を示す図、(b)は収縮途中の状態を示す図、(c)は収縮時の状態を示 す図である。

20

25

PCT/JP2003/009492

14

このインフレータバッグ500は、高圧ガスの充填により膨張展開する密閉構 造のものである。このインフレータバッグ500を得るには、第5図に示すよう に、まず、縦辺が横辺よりも小さい略長方形断面をなした角筒体502を用意す る。そして、その角筒体502の両端開口面を端面板503で塞ぐことで、角筒 体502の縦辺に相当する側面板502a及び前記端面板503を襠部504と 5 し、かつ、角筒体502の上下面板502b、502cを上下面部とした角箱状 のバッグ本体501を形成する。また、バッグ本体501の製作途中あるいは製 作後に、襠部504の高さ方向の中間部に内側に谷折れする折れ線505を形成 すると共に、角箱状のバッグ本体501の角部を挟む一方の辺側の襠部504a の端部に、他方の辺側の襠部504bの折り畳みに伴ってその折り畳み部分に重 10 ね折りされる三角形状の重ね折り部506を形成する。そして、襠部504を折 れ線505で谷折りして、角箱状のバッグ本体501を扁平に折り畳むことによ り、収縮状態のインフレータバッグ500を得る。実際には、その後、例えばイ ンフレータバッグ500の下面板502cに設けた小孔にインフレータのガス吹 出口を嵌合し、インフレータを下面板502cに固定することにより、エアバッ 15 グモジュールが出来上がる。

なお、三角形の重ね折り部506は、第6図(b)に示すように、三角形の外縁のa線、b線で谷折りされ、折れ線505上にあるc線で山折りされることにより、 隣りの福部504bに対して重ね折りされる。こうすることで、角部を挟んで互いに隣接する両辺側の福部504a、504bが、角部においても互いに干渉することなく、確実に折り畳まれることになる(第6図(c))。

このインフレータバッグ500は、バッグ本体501の周側面に、角筒体502の側面板502a及び角筒体502の両端開口面を塞ぐ端面板503よりなる福部504を確保しているので、第6図(a)に示すように、十分な展開ストロークSを確保することができる。また、福部504を構成する角筒体502の側面板502a及び端面板503に、内側に谷折れする折れ線505を設けると共に、バッグ本体501の角部を挟む一方の辺側の福部504aの端部に三角形状の重ね折り部506を形成しているので、バッグ本体501を扁平に折り畳むことができ、薄くコンパクトな形態で収納することが可能になる。また、展開時に

5

10

PCT/JP2003/009492

15

は、折れ線505部分が延びることにより、均一な高さに安定展開させることができるので、乗員に対するサポート性能が向上する。また、膨張展開する角箱状のバッグ本体501は、まず、長方形断面をなした角筒体502を用意し、その両端開口面を端面板503で塞ぐだけで構成することができるから、従来のベローズ式のものに比べて加工が容易であり、安価に提供できる利点がある。

なお、角筒体502としては、押し出し加工材などをそのまま利用することができるが、第7図(a)に示すように、所定長さに切断した円形パイプ600を徐々に変形させていき、同図(b)に示すように、縦辺が横辺よりも小さい概略長方形断面形状に形成したものを利用することもできる。その場合、角筒体502への加工時に同時に、縦辺に相当する側面板502aの高さ方向の中間部に、内側に谷折れする折れ線505を形成しても良いし、角筒体502を完全に加工した後で、折れ線505を形成しても良い。また、第8図に示すように、三角形状の重ね折り部506については、角筒体502への加工時に同時に形成しても良いし、角筒体502を完全に加工した後で形成しても良い。

また、角筒体502に対する端面板503の接合には、例えば、溶接以外に、第9図(a)、(b)に示すようなヘミング加工を利用することもできる。また、上の例では、バッグ本体501が金属材で構成されていることを前提に説明したが、繊維強化した樹脂等で構成することもできる。

<第4の実施形態>

20 図10は、この発明の第4の実施形態であるインフレータバッグの一部を示す 図である。この図に示すように、バッグ本体を構成するための角簡体を、横辺に 相当する上面板152b及び下面板152cを肉厚とし、かつ、縦辺に相当する 側面板152aをそれよりも肉薄とした不等厚の角筒体152として構成し、角筒体152の両端開口面を塞ぐ端面板(本図では図示せず)の肉厚を側面板152aの肉厚相当としても良い。こうした場合、上下面部が肉厚で、襠部が肉薄のインフレータバッグが出来上がる。

このようにインフレータバッグを不等肉厚に構成した場合、上面部や下面部が 太鼓腹状態ではなく、均等に膨らむことになる。従って、例えば上面部で乗員の 腰部や脚部をサポートする場合に、エネルギーをインフレータバッグで均等に吸

PCT/JP2003/009492

16

収することができるようになると共に、福部が肉港であることにより、素早い膨 張展開が可能となる。

<第5の実施形態>

図11は、この発明の第5の実施形態であるインフレータバッグ200の斜視 5 図で、同図(a)~(c)は製作工程順を示している。

このインフレータバッグ200は、高圧ガスの充壌により膨張展開する密閉構造のものである。このインフレータバッグ200を得るには、まず、所定長さに切断した円筒体201Pを用意する。円筒体201Pとしては、例えば、押し出し成形した肉薄の円形パイプ等を使用することができる。

10 次に、同図(a)に示すように、その円筒体201の互いに直交する2つの直径方向A、Bのうち、横の直径方向Aの両側面(左右面)201a、201bを内側にU字状に凹ませながら、縦の直径方向Bの両側面(上下面)201c、201dを平面状に押し潰すことで、円形が潰れた形状の断面を有する両端開放の筒体201を形成し、該筒体201の両端開口面を端面板202で塞ぐことにより、筒体201の内側に凹ませた両側面201a、201bと端面板202とを、膨張展開時の高さ確保のための襠部204とした密閉構造のバッグ本体205を形成する。

次に、同図(b)に示すように、襠部204に相当する簡体201の内側に凹ませた両側面(左右面)201a、201bと端面板202とを、さらに内側に20 凹ませながら、他方の直径方向Bの両側面(上下面)201c、201dを、さらに平板状に押し潰して、パッグ本体205を扁平に折り畳むことにより、収縮状態のインフレータバッグ200を得る(同図(c))。実際には、この後、例えば、インフレータバッグ200の下面に設けた小孔にインフレータのガス吹出口を嵌合することでエアバッグモジュールが出来上がる。

25 このように、このインフレータバッグ200は、バッグ本体205に、筒体201の内側に凹ませた両側面201a、201bと筒体201の両端開口面を塞ぐ端面板202よりなる襠部204を確保しているので、十分な展開ストロークを確保することができる(同図(a))。また、襠部204を内側に、さらに凹ませながら筒体201を押し潰すことにより(同図(b))、バッグ本体205を扁平に

PCT/JP2003/009492

17

折り畳んでいるので、薄くコンパクトな形態で収納することができる(同図(c))。また、展開時には、襠部204が延びることで、均一な高さに安定展開させることができるので、乗員に対するサポート性能が向上する。また、膨張展開するバッグ本体205は、まず、円筒体(円筒パイプ等)201Pを用意し、それをいくらか潰して角形に近い変形断面の筒体201とし、その両端開口面を端面板202で塞ぐことにより構成しているから、ベローズ式のものに比べて極めて簡単に製作することができる。

<第6の実施形態>

図12は、この発明の第6の実施形態であるインフレータバッグ300の斜視10 図で、同図(a)~(c)は製作工程順を示している。第6の実施形態では、第5の実施形態で述べたような、第11図(a)の状態から、同図(b)の状態に潰すという工程が廃され、いきなり、第12図(b)の状態が形成される構成となっている。

この実施形態によるインフレータバッグ300も、高圧ガスの充壌により膨張 展開する密閉構造のものである。このインフレータバッグ300を得るには、まず、所定のサイズに裁断された長方形状の金属シート301Pと共に、ひょうた ん型をした一対の帯状枠体301Qを用意する。ここで、ひょうたん型をした帯 状枠体301Qの扁平率は、完成時のバッグ本体300が膨張展開したと仮定し たときの30-60%に設定されるのが好ましい。

20 次に、第12図(a)に示すように、一対の帯状枠体301Qを、金属シート201Pの幅方向の左右側縁部間に相当する距離だけ隔てて対峙させる。この後、互いに対峙する帯状枠体301Qのひょうたん型の外周に沿って、順次、帯状枠体301Qのひょうたん型の外周に、金属シート301Pの幅方向の左右側縁部を波状に巻き付けて、ひょうたん形状の断面を有する両端開放の筒体301を形25 成する(同図(b))。次に、予め、バッグ本体300の内側方向に、くしゃくしゃに収縮(シュリンク)されたシート状の端面材302で、筒体301の両端開口面を塞ぐことにより、筒体301の内側に凹ませた両側面301a、301bと端面板302とを、膨張展開時の高さ確保のための褶部304とした密閉構造のバッグ本体305を形成する。ここで、端面材302の収縮具合は、完成した

5

PCT/JP2003/009492

18

バッグ本体300が、膨張展開したときは、緊張(伸張)状態となるように設定 されている。

次に、同図(c)に示すように、襠部304に相当する筒体301の内側に凹ませた両側面(左右面)301a、301bと端面板302とを、さらに内側に凹ませながら、他方の直径方向Bの両側面(上下面)301c、301dを、さらに平板状に押し潰して、バッグ本体305を扁平に折り畳むことにより、収縮状態のインフレータバッグ300を得る。実際には、この後、例えば、インフレータバッグ300の下面に設けた小孔にインフレータのガス吹出口を嵌合することでエアバッグモジュールが出来上がる。

10 この実施形態の構成によっても、上述した第5の実施形態で述べたと略同様の 効果を得ることができる。なお、この実施形態の変形例として、帯状枠体301 Qは、筒体301の完成後、バック本体305完成前に、取り外しても良い。

産業上の利用可能性

15 以上説明したように、この発明に係るインフレータバッグは、車両に搭載される乗員腰部拘束装置のインフレータバッグとして、また、乗員脚部拘束装置のインフレータバッグとして、使用することができる。従来のベローズ式のものに比べて加工が容易であり、安価に提供できる利点がある。

5

10

PCT/JP2003/009492

19

請求の範囲

- 1、高圧ガスの充填により膨張展開可能であり、膨張展開することにより乗員を 拘束する乗員拘束装置用インフレータバッグ(50)において、高さ確保のため の襠部(54)を周側面に有する箱状のバッグ本体(51)を形成し、前記襠部 (54)の高さ方向の中間部に内側に谷折れする折れ線を形成すると共に、箱状 のバッグ本体(51)の角部を挟む一方の辺側の襠部(54a)の端部に、他方 の辺側の襠部(54b)の折り畳みに伴ってその折り畳み部分に重ね折りされる 重ね折り部を形成し、前記折れ線で谷折りすることにより、箱状のバッグ本体(5 1)を扁平に折り畳んだ構成になされていることを特徴とする乗員拘束装置用イ ンフレータバッグ(50)。
 - 2. 箱状のバッグ本体(51)の天板(52)に対向する底面を底板(53)で塞ぎ密閉構造となしたことを特徴とする請求項1記載の乗員拘束装置用インフレータバッグ(50)。
- 15 3. 前記パッグ本体(51)と底板とが一体成形されていることを特徴とする請求項1記載の乗員拘束装置用インフレータバッグ(50)。
 - 4. 前記バッグ本体 (51) は、樹脂シート又は金属シートから成形されてなることを特徴とする請求項1記載の乗員拘束装置用インフレータバッグ。
- 5. 前記バッグ本体(51)は、縦辺が横辺よりも小さい長方形断面をなした筒 20 体の両端開口面を端面板で塞ぎ、前記筒体(502)の縦辺に相当する側面板(5 02a)及び前記端面板(502b)を襠部として形成されてなることを特徴と する請求項1記載の乗員拘束装置用のインフレータバッグ(500)。
 - 6. 前記筒体(502)を、該筒体(502)の横辺に相当する上面板(502
 - b) 及び下面板 (502c) を肉厚とし、かつ、縦辺に相当する側面板 (502
- 25 a)をそれよりも肉薄とした不等厚の簡体(502)として構成すると共に、前 記端面板の肉厚を前記側面板の肉厚相当としたことを特徴とする請求項5記載の 乗員拘束装置用のインフレータバッグ(500)。
 - 7. 高圧ガスの充填により膨張展開可能であり、膨張展開することにより乗員を 拘束する乗員拘束装置用のインフレータバッグ (200) において、箇体 (20

の乗員拘束装置用のインフレータバッグ (500)。

WO 2004/011308

5

10

15

PCT/JP2003/009492

20

- 1) の互いに直交する2つの直径方向のうち一方の直径方向の両側面が内側にU字状に凹み、他方の原径方向の両側面が平面状に押し潰された断面形状を有する両端開放の中空体(201P)が形成され、該中空体(201P)の両端開口面が端面板で塞がれることにより、バッグ本体が形成され、前記他方の直径方向の両側面が押し潰されることで、前記バッグ本体が扁平に折り畳まれてなることを特徴とする乗員拘束装置用のインフレータバッグ(500)。
- 8. 前記筒体(201)の互いに直交する2つの直径方向のうち一方の直径方向の両側面を内側にU字状に凹ませながら、他方の直径方向の両側面を平面状に押し強すことで、前記筒体(201)が潰れた形状の断面を有する両端開放の中空体(201P)を形成し、該中空体(201P)の両端開口面を端面板で塞ぐことにより、前記中空体201P)の内側に凹ませた両側面(201c、201d)と前記端面板(202)とを襠部としたバッグ本体を形成し、該襠部に相当する中空体の内側に凹ませた両側面(201c、201d)と前記端面板(202)とを、さらに内側に凹ませながら、前記他方の直径方向の両側面を、さらに押し潰すことで、前記バッグ本体を扁平に折り畳んだことを特徴とする請求項7記載
- 9. 前記端面板は、前記中空体の内側に位置して前記高圧ガスの充填時に展開するように成形された収縮部を有してなることを特徴とする請求項7記載の乗員拘束装置用のインフレータバッグ (500)。
- 20 10. 車両のシートクッションの前下部に内装され、車両急減速時に高圧ガスの 充填により膨張展開することで、シートクッションの前部座面を上昇させ、それ によりシートに着座した乗員の前方への移動を防止する乗員腰部拘束装置用のも のであることを特徴とする請求項1乃至9のいずれか1つに記載の乗員拘束装置 用のインフレータバッグ(50;200;500)。
- 25 11 車両のインストルメントパネルの下部に配設され、車両急減速時に高圧ガスの充填により膨張展開することで、着座した乗員の脚部を拘束する乗員脚部拘束装置用のものであることを特徴とする請求項1乃至9のいずれか1つに配載の乗員拘束装置用のインフレータバッグ(50;200;500)。
 - 12. 前記箱状のバッグ本体が、角箱状のバッグ本体(51) であることを特徴

PCT/JP2003/009492

21

とする請求項1乃至5のいずれか1つに記載の乗員拘束裝置用のインフレータバッグ(50;500)。

- 13. 前記折り畳み部分が、三角形状の折り畳み部分であることを特徴とする請求項1記載の乗員拘束装置用のインフレータバッグ (50;500)。
- 5 14. 前記筒体(502)が、角筒体であることを特徴とする請求項5又は6記載の乗員拘束装置用のインフレータバッグ(50;500)。
 - 15. 前記筒体(201)が、円筒体であることを特徴とする請求項5又は6記載の乗員拘束装置用のインフレータバッグ(500)。
- 16. 高圧ガスの充填により膨張展開可能であり、膨張展開することにより乗員 10 を拘束する乗員拘束装置用のインフレータバッグ(500)の製造方法において、 所定長さに切断したパイプの断面を変形させることにより、縫辺が横辺よりも小 さい概略長方形断面をなした筒体(502)を形成すると共に、該筒体の縦辺に 相当する側面板の高さ方向の中間部に内側に谷折れする折れ線(505)を形成 し、一方、前記筒体の両端開口面を塞ぐための端面板の高さ方向の中間部に内側 15 に谷折れする折れ線(505)を形成し、その端面板で前記筒体の両端開口面を 塞ぐことにより、前記筒体の縦辺に相当する側面板及び前記端面板を襠部とした 箱状のバッグ本体を形成し、該箱状のバッグ本体の角部を挟む―方の辺側の襠部 の端部に、他方の辺側の襠部の折り畳みに伴ってその折り畳み部分に重ね折りさ れる重ね折り部を形成し、前記側面板及び端面板よりなる襠部を折れ線で谷折り することにより、 扁平に折り畳んだインフレータパッグ (500) を得ることを 20 特徴とする乗員拘束装置用のインフレータバッグ(500)の製造方法。
- 17. 高圧ガスの充填により膨張展開可能であり、膨張展開することにより乗員を拘束する乗員拘束装置用のインフレータバッグ(200)の製造方法において、所定長さに切断した円形パイプの互いに直交する2つの直径方向のうち一方の直径方向の両側面が内側にU字状に凹み、他方の直径方向の両側面を平面状に押し潰された断面形状を有する両端開放の筒体(201)を形成し、該筒体(201)の両端開口面を端面板で塞ぐことによりバッグ本体を形成し、前記他方の直径方向の両側面を押し潰すことで、扁平に折り畳んだ密閉構造のインフレータバッグ(500)を得ることを特徴とする乗員拘束装置用のインフレータバッグ(50

PCT/JP2003/009492

22

0)の製造方法。

0)の製造方法。

- 18. 前記端面板は、前記中空体の内側に位置して前記高圧ガスの充填時に展開するように成形された収縮部を有することを特徴とする請求項17記載の乗員拘束装置用のインフレータバッグ(500)の製造方法。
- 5 19. 前記パッグ本体を成形するに際し、所定長さに切断した円形パイプの互いに直交する2つの直径方向のうち一方の直径方向の両側面を内側にU字状に凹ませながら、他方の直径方向の両側面を平面状に押し潰すことで、円形が潰れた形状の断面を有する両端開放の筒体(201)を形成し、該筒体(201)の両端開口面を端面板で塞ぐことにより、前記筒体の内側に凹ませた両側面と前記端10 面板とを襠部としたパッグ本体を形成し、前記パッグ本体を隔平に折り畳むに際し、前記襠部に相当する筒体の内側に凹ませた両側面と前記端面板とを、さらに内側に凹ませながら、前記他方の直径方向の両側面を、さらに平板状に押し潰すことを特徴とする請求項17記載の乗員拘束装置用のインフレータパッグ(50
- - 21. 前記筒体が、角筒体であることを特徴とする請求項16記載の乗員拘束装置用のインフレータバッグ(500)の製造方法。
- 22. 前記パイプが、円形のパイプあることを特徴とする請求項18又は17記20 歳の乗員拘束装置用のインフレータバッグ(200;500)の製造方法。
 - 23. 前記インフレータバッグ(200;500)が密閉構造に形成されることを特徴とする請求項16又は17記載の乗員拘束装置用のインフレータバッグ(200;500)の製造方法。

WO 2004/011308 PCT/JP2003/009492 1/12 第1図 **50** (a) 5,2 51 53 56 55 55 56 50 51 (b) 55 54b 56 54a 55 56 b **50** (c) S 53 55 54b b 55 56 54a 56

2/12

第2図

第4図

4/12

第5図

504

PCT/JP2003/009492

5/12

PCT/JP2003/009492

6/12

第7図

第8図

第9図

7/12

第10図

8/12

9/12

PCT/JP2003/009492

10/12

第13図

PCT/JP2003/009492

11/12

第14図

(a)

(b)

PCT/JP2003/009492

12/12

第15図

第16図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.