Intercepts of the Quadratic

Case1: △>0 $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the k-intercepts of multiplicity 1. d(0) = c computes the single d-intercept.

Given a quadratic $d(k) = a k^2 + b k + c$ compute its discriminant \triangle :

Example 1.

$d(k) = -3 k^2 - 12 k + 63$ compute its discriminant \triangle : $\triangle = 900 > 0$

 $\triangle = \sqrt{b^2 - 4ac}$

Example 2.

d(0)=8 d-intercept.

no k-intercepts.

Example 3.

-10

However there is a d-intercept.

-5

 $k_{1,2}=3,-7$ d(0) = 63 d-intercept.

△=0 $k_{1,2}=2,2$

 $d(k) = 2 k^2 - 8 k + 8$ compute its discriminant \triangle :

500 400 300 200 k-intercept 1,2 -10Case3: △<0

$d(k) = 4 k^2 + 72 k + 405$ compute its discriminant \triangle : $\triangle = -1296 < 0$ d(0) = 405 d-intercept.

 $\sqrt{\,\mathsf{b}^2\,_-\,\!\mathsf{4}\,\!\mathsf{ac}}$ has no value in Real Numbers. Therefore there are

500

d-intercept

5

10