Data Strategy & Business Analytics

Integrated Analytics Lab

whoami

Matteo Francia

- Email: m.francia@unibo.it
- Research fellow @ UniBO
- Adjunct professor @ UniBO

Research topics

- Big data / database
- Geo-spatial analytics

Analytics

Business intelligence

Strategies to transform raw data into decision-making insights

Analytics

- A catch-all term for a variety of different business intelligence and application-related initiatives
- The process of analyzing data from a particular domain (e.g., sales and supply chain)

Advanced Analytics

 (Semi-)Autonomous transformation of data using techniques and tools, to discover deeper insights, make predictions, or generate recommendations

Integrated Analytics (Lab)

 Analytics are based on the usage of statistics, machine learning, operational research, and advanced visualization techniques

https://www.gartner.com/en/information-technology/glossary?glossarykeyword=analytics

The knowledge pyramid

Family of transformations are usually abstracted in the "knowledge pyramid"

- Data: symbols representing real-word objects (e.g., store product sales)
- Information: processed data (e.g., query the product with highest profit)
- Knowledge: understanding (e.g., mine products often sold together)
- Wisdom: knowledge in action (e.g., discount products to optimize profits)

Data transformation requires a structured approach

 Choosing the best algorithm is only one of the success factors

Cross-industry standard process for data mining (CRISP-DM) is a model that describes common approaches used by data mining experts

CRISP-DM breaks the process of data mining into six major phases

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

The sequence of phases is not strict

- Arrows indicate the most important and frequent dependencies between phases
- The outer circle in the diagram symbolizes the cyclic nature of data mining itself

Understanding the domain

 Understanding project goals from the user's point of view, translate the user's problem into a data mining problem, and define a project plan

Understanding the data

 Preliminary data collection aimed at identifying quality problems and conducting preliminary analyzes to identify the salient characteristics

Data preparation

 Includes all the tasks needed to create the final dataset: selecting attributes and records, transforming and cleaning data

Model Creation

 Several data mining techniques are applied to the dataset also with different parameters in order to identify what makes the model more accurate

Evaluation of model and results

The model(s) obtained from the previous phase are analyzed to verify that they are sufficiently precise and robust to respond adequately to the user's objectives

Deployment

The built-in model and acquired knowledge must be made available to users. This phase can therefore simply lead to the creation of a report or may require implementation of a usercontrolled data mining system

The full picture

GOAL of this lab

Move through transformation phases

Integrated analytics lab

This checklist can help you while building your projects

- Frame the problem and look at the big picture
- Get the data
- Explore the data to gain insights
- Prepare the data
- Explore many different models and shortlist the best ones
- Fine-tune your models and combine them
- Present your solution
- Launch, monitor, and maintain your system

(Tentative) Time Schedule

Feel free to interrupt and ask questions
The time schedule can change

	Time	Activity	
Day 1	14:15 – 15:30	Introduction to integrated analytics and Pytho	on
	15:30 – 15:40	Break	? python™
	15:40 – 16:30	Hands on data preprocessing	
	16:30 – 16:40	Break	
	16:40 – 17.45	Hands on machine learning	
	9:15 – 10:30	Introduction to massive data processing	A
		_	
	10:30 – 10:40	Break	A PACHE +
Day 2	10:30 – 10:40 10:40 - 11:30	Break Hands on big data	APACHE
Day 2			APACHE +ab