Comparing distributions: ℓ_1 geometry improves kernel two-sample testing

M. Scetbon^{1,2} G. Varoquaux¹

 1 Inria, Université Paris-Saclay $^2{\rm CREST},\,{\rm ENSAE}$

15 novembre 2019

• Two collections of samples X, Y from unknown distributions P and Q.

• **Problem**: Are the two set of observations **X** and **Y** drawn from the same distribution?

• Two collections of samples X, Y from unknown distributions P and Q.

• **Problem**: Are the two set of observations **X** and **Y** drawn from the same distribution?

Two-Sample Test

Test the null hypothesis $\mathbf{H}_0: \mathbf{P} = \mathbf{Q}$ against $\mathbf{H}_1: \mathbf{P} \neq \mathbf{Q}$

• Samples : $\mathbf{X} = \{x_i\}_{i=1}^n \sim \mathbf{P} \text{ and } \mathbf{Y} = \{y_i\}_{i=1}^n \sim \mathbf{Q}$

Two-Sample Test

Test the null hypothesis $\mathbf{H}_0: \mathbf{P} = \mathbf{Q}$ against $\mathbf{H}_1: \mathbf{P} \neq \mathbf{Q}$

• Samples : $\mathbf{X} = \{x_i\}_{i=1}^n \sim \mathbf{P} \text{ and } \mathbf{Y} = \{y_i\}_{i=1}^n \sim \mathbf{Q}$

×

- Gaussian Kernel : $k_{\sigma}(x,y) = \exp\left(-\frac{\|x-y\|_2^2}{2\sigma^2}\right)$
- \bullet Empirical Mean Embeddings of ${\bf P}$ and ${\bf Q}$:

$$\widehat{\mu}_{\mathbf{P}}(\mathbf{T}) = \sum_{i=1}^{n} k(x_i, \mathbf{T})$$
 $\widehat{\mu}_{\mathbf{Q}}(\mathbf{T}) = \sum_{j=1}^{n} k(y_j, \mathbf{T})$

• Aboslute difference of the Mean Embeddings :

$$\widehat{\mathbf{S}}(\mathbf{T}) = |\widehat{\mu}_{\mathbf{P}}(\mathbf{T}) - \widehat{\mu}_{\mathbf{Q}}(\mathbf{T})|$$

• Aboslute difference of the Mean Embeddings :

$$\widehat{\mathbf{S}}(\mathbf{T}) = |\widehat{\mu}_{\mathbf{P}}(\mathbf{T}) - \widehat{\mu}_{\mathbf{Q}}(\mathbf{T})|$$

• Test locations : $(\mathbf{T_j})_{i=1}^J \sim \Gamma$

$$- |\mu_P - \mu_Q| \qquad - \mu_P \qquad - \mu_Q \qquad \times$$

Test Statistic 1 with $p \ge 1$

$$\left(\widehat{d}_{\ell_p,\mu,J}(\mathbf{X},\mathbf{Y})\right)^p := n^{\frac{p}{2}} \sum_{j=1}^J |\widehat{\mu}_{\mathbf{P}}(\mathbf{T_j}) - \widehat{\mu}_{\mathbf{Q}}(\mathbf{T_j})|^p$$

• Aboslute difference of the Mean Embeddings :

$$\widehat{\mathbf{S}}(\mathbf{T}) = |\widehat{\mu}_{\mathbf{P}}(\mathbf{T}) - \widehat{\mu}_{\mathbf{Q}}(\mathbf{T})|$$

• Test locations : $(\mathbf{T_j})_{i=1}^J \sim \Gamma$

$$- |\mu_P - \mu_Q| \qquad - \mu_P \qquad - \mu_Q \qquad \times$$

Test Statistic ¹ with $p \ge 1$:

$$\left(\widehat{d}_{\ell_p,\mu,J}(\mathbf{X}, \mathbf{Y})\right)^p := n^{\frac{p}{2}} \sum_{j=1}^J |\widehat{\mu}_{\mathbf{P}}(\mathbf{T_j}) - \widehat{\mu}_{\mathbf{Q}}(\mathbf{T_j})|^p$$

1. The case when p=2 has been studied by $[1, 2] \longrightarrow \{0\} \longrightarrow \{0\} \longrightarrow \{0\}$

These Statistics are derived from metrics which **metrize the** weak convergence :

$$d_{L^p,\mu}(\mathbf{P},\mathbf{Q}) := \left(\int_{t \in \mathbb{R}^d} \left| \mu_{\mathbf{P}}(t) - \mu_{\mathbf{Q}}(t)
ight|^p d\Gamma(t)
ight)^{1/p}$$

Theorem : Weak Convergence

$$\alpha_n \stackrel{\mathcal{D}}{\longrightarrow} \alpha \iff d_{L^p,\mu}(\alpha_n,\alpha) \to 0$$

These Statistics are derived from metrics which **metrize the** weak convergence:

$$d_{L^p,\mu}(\mathbf{P},\mathbf{Q}) := \left(\int_{t \in \mathbb{R}^d} \left| \mu_{\mathbf{P}}(t) - \mu_{\mathbf{Q}}(t) \right|^p d\Gamma(t) \right)^{1/p}$$

Theorem: Weak Convergence

$$\alpha_n \xrightarrow{\mathcal{D}} \alpha \iff d_{L^p,\mu}(\alpha_n,\alpha) \to 0$$

These Statistics are derived from metrics which **metrize the** weak convergence:

$$d_{L^p,\mu}(\mathbf{P},\mathbf{Q}) := \left(\int_{t \in \mathbb{R}^d} \left| \mu_{\mathbf{P}}(t) - \mu_{\mathbf{Q}}(t) \right|^p d\Gamma(t) \right)^{1/p}$$

Theorem: Weak Convergence

$$\alpha_n \xrightarrow{\mathcal{D}} \alpha \iff d_{L^p,\mu}(\alpha_n,\alpha) \to 0$$

Test of level α : Compute $\left(\widehat{d}_{\ell_p,\mu,J}(\mathbf{X},\mathbf{Y})\right)^p$ and reject \mathbf{H}_0 if $\left(\widehat{d}_{\ell_p,\mu,J}(\mathbf{X},\mathbf{Y})\right)^p > \mathbf{T}_{\alpha,\mathbf{p}} = \mathbf{1} - \alpha$ quantile of the asymptotic null distribution.

Proposition : ℓ_1 geometry improves power

Let $\delta > 0$. Under the alternative hypothesis $\mathbf{H_1}$, almost surely there exist $N \geq 1$ such that for all $n \geq N$ with a probability $1 - \delta$:

$$\left(\widehat{d}_{\ell_2,\mu,J}(\mathbf{X},\mathbf{Y})\right)^2 > \mathbf{T}_{\alpha,\mathbf{2}} \Rightarrow \widehat{d}_{\ell_1,\mu,J}(\mathbf{X},\mathbf{Y}) > \mathbf{T}_{\alpha,\mathbf{1}}$$

Test of level α : Compute $\left(\widehat{d}_{\ell_p,\mu,J}(\mathbf{X},\mathbf{Y})\right)^p$ and reject \mathbf{H}_0 if $\left(\widehat{d}_{\ell_p,\mu,J}(\mathbf{X},\mathbf{Y})\right)^p > \mathbf{T}_{\alpha,\mathbf{p}} = \mathbf{1} - \alpha$ quantile of the asymptotic null distribution.

Proposition : ℓ_1 geometry improves power

Let $\delta > 0$. Under the alternative hypothesis $\mathbf{H_1}$, almost surely there exist $N \geq 1$ such that for all $n \geq N$ with a probability $1 - \delta$:

$$\left(\widehat{d}_{\ell_2,\mu,J}(\mathbf{X}, \mathbf{Y})\right)^2 > \mathbf{T}_{\alpha,\mathbf{2}} \Rightarrow \widehat{d}_{\ell_1,\mu,J}(\mathbf{X}, \mathbf{Y}) > \mathbf{T}_{\alpha,\mathbf{1}}$$

- Under the alternative hypothesis, Analytic Kernel (e.g. Gaussian Kernel) guarantees dense differences between $\widehat{\mu}_{\mathbf{P}}$ and $\widehat{\mu}_{\mathbf{Q}}$
- ℓ_1 geometry captures better these dense differences:

4 D F 4 D F 4 D F 4 D F

- Under the alternative hypothesis, Analytic Kernel (e.g Gaussian Kernel) guarantees dense differences between $\widehat{\mu}_{\mathbf{P}}$ and $\widehat{\mu}_{\mathbf{Q}}$
- ℓ_1 geometry captures better these dense differences :

For a fixed level α , under \mathbf{H}_1 , when the number of samples is large enough, with high probability, the ℓ_1 -based test rejects better the null hypothesis.

We have also normalized the tests to obtain a simple null distribution and learn the locations where the distribution differ the most.

- Under the alternative hypothesis, Analytic Kernel (e.g Gaussian Kernel) guarantees dense differences between $\widehat{\mu}_{\mathbf{P}}$ and $\widehat{\mu}_{\mathbf{Q}}$
- ℓ_1 geometry captures better these dense differences :

For a fixed level α , under H_1 , when the number of samples is large enough, with high probability, the ℓ_1 -based test rejects better the null hypothesis.

• We have also normalized the tests to obtain a simple null distribution and learn the locations where the distributions differ the most.

- Under the alternative hypothesis, Analytic Kernel (e.g Gaussian Kernel) guarantees dense differences between $\widehat{\mu}_{\mathbf{P}}$ and $\widehat{\mu}_{\mathbf{Q}}$
- ℓ_1 geometry captures better these dense differences :

For a fixed level α , under \mathbf{H}_1 , when the number of samples is large enough, with high probability, the ℓ_1 -based test rejects better the null hypothesis.

• We have also normalized the tests to obtain a simple null distribution and learn the locations where the distributions differ the most.

References I

- [1] K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast two-sample testing with analytic representations of probability measures. In *Advances in Neural Information Processing Systems*, pages 1981–1989, 2015.
- [2] W. Jitkrittum, Z. Szabó, K. P. Chwialkowski, and A. Gretton. Interpretable distribution features with maximum testing power. In Advances in Neural Information Processing Systems, pages 181–189, 2016.