02 - Управление данными в ИИ

CRISP-DM (Cross-Industry Standard Process for Data Mining)

CRISP-DM

Cross-Industry Standard Process for Data Mining наиболее распространённая методология по исследованию данных.

Датацентричный взгляд на моделирование:

- Ключевой ресурс в ML данные («новая нефть»)
- Наличие необходимых данных (разрезов, объема и качества) – определяющее для результата
- На сбор, понимание и подготовку данных обычно затрачивается 40%-80% ресурсов ML-проекта

Описание:

CRISP-DM — наиболее распространённая методология исследования данных, применяемая в проектах машинного обучения и анализа данных. Процесс ориентирован на итеративный подход и состоит из нескольких этапов

Этапы процесса:

1. Business Understanding (Понимание бизнеса):

- Определение целей и задач проекта с точки зрения бизнеса
- Определение ключевых метрик успеха

2. Data Understanding (Понимание данных):

- Сбор данных и их предварительный анализ
- Оценка качества данных, выявление пропусков и аномалий

3. Data Preparation (Подготовка данных):

- Очистка данных, преобразование форматов, создание новых признаков
- Этот этап занимает 40-80% времени проекта

4. Modeling (Моделирование):

- Выбор алгоритмов машинного обучения.
- Обучение и настройка моделей на подготовленных данных

5. Evaluation (Оценка):

- Проверка качества модели
- Сравнение результатов с бизнес-целями

6. Deployment (Внедрение):

- Интеграция модели в рабочую среду
- Использование модели для реального принятия решений

Датасентричный взгляд на моделирование:

• Данные — ключевой ресурс в ML: Их часто называют "новой нефтью".

- Наличие данных необходимого качества, объема и разрезов определяет успех проекта.
- Большая часть времени уходит на сбор, понимание и подготовку данных.

Итог: CRISP-DM помогает структурировать процесс работы с данными и моделями, фокусируясь на достижении бизнес-целей через понимание, подготовку и анализ данных. Это универсальный подход для успешной реализации проектов машинного обучения

Data Engineering + Machine Learning

Data engineering + Machine Learning

Data engineering - область ИТ, ориентированная на задачи обработки данных:

- Архитектура и инфраструктура хранения данных
- Сбор, обработка и преобразование данных (ETL)
- Обеспечение качества данных

Data Engineering:

Data engineering — это область ИТ, ориентированная на задачи обработки данных. Включает:

1. Архитектуру и инфраструктуру хранения данных:

- Создание устойчивых систем для обработки больших объемов данных
- Использование хранилищ данных (Data Warehouses) и озер данных (Data Lakes)

2. Сбор, обработку и преобразование данных (ETL):

- Экстракция данных из различных источников (Extract)
- Преобразование данных в нужный формат (Transform)
- Загрузка в хранилища или базы данных (Load)

3. Обеспечение качества данных:

- Проверка и валидация данных для устранения ошибок и пропусков
- Удаление дубликатов и аномалий

Machine Learning:

Machine learning включает этапы:

1. Train (Обучение):

• Использование данных для построения модели

2. Formulate (Формулирование задачи):

• Определение бизнес-проблемы и преобразование её в ML-задачу

3. Evaluate (Оценка):

• Проверка производительности модели с использованием метрик (например, точность, F1-скор)

Связь Data Engineering и ML:

Pipeline данных:

 Data Engineering отвечает за подготовку и структурирование данных, которые затем используются для обучения ML-моделей

• Подготовка данных:

• Сбор, валидация, очистка и анализ данных перед подачей их в модель

• Обратная связь:

• Результаты ML-модели могут повлиять на улучшение процессов Data Engineering (например, выявление проблем качества данных)

Ключевые этапы на диаграмме:

- 1. Data (обработка данных):
 - Transform → Validate → Curate → Collect → Explore
- 2. ML (машинное обучение):
 - Explore \rightarrow Formulate \rightarrow Train \rightarrow Evaluate

Итог: эффективная работа Data Engineering обеспечивает успех ML-моделей, так как качество входных данных определяет результативность и точность предсказаний. Эта синергия становится ключом к решению сложных бизнес-задач

Источники данных для ML-проектов

Источники данных для ML-проектов

P

Внутренние данные

- Из систем поддержки операционной деятельности
- Транзакционные данные
- Клиентские данные
- Цифровые следы
- ІоТ-данные
- Текстовые данные
- Аудио / видеоданные

Внешние данные

- Открытые данные
- Данные собранные из веба
- Закупленные данные и признаки
- Данные, собранные / созданные по заказу
- Синтетические данные

Внутренние данные:

- 1. Из систем поддержки операционной деятельности:
 - ERP-системы (SAP, Oracle), CRM-системы (Salesforce, HubSpot)
 - Данные о бизнес-процессах
- 2. Транзакционные данные:
 - Финансовые операции, чеки, продажи
- 3. Клиентские данные:
 - Личные данные клиентов, профили, истории покупок
- 4. Цифровые следы:
 - Логи веб-сайтов, события приложений, активность пользователей
- 5. ІоТ-данные:
 - Сведения с датчиков, умных устройств, оборудования
- 6. Текстовые данные:
 - Электронные письма, сообщения в чатах, документы

7. Аудио/видеоданные:

• Звонки в кол-центры, видеозаписи для анализа

Внешние данные:

1. Открытые данные:

- Госстатистика, отчеты, данные научных исследований
- Примеры: данные Росстата, Kaggle, UCI Machine Learning Repository

2. Данные, собранные из веба:

- Парсинг сайтов, АРІ публичных сервисов
- Примеры: отзывы на продукцию, данные социальных сетей

3. Закупленные данные и признаки:

- Данные от партнёров или специализированных компаний
- Например, маркетинговая информация, демографические данные

4. Данные, собранные/созданные по заказу:

• Пользовательские опросы, исследования

5. Синтетические данные:

- Искусственно созданные данные для тестирования или обучения моделей
- Используются, когда реальные данные недоступны или их недостаточно

Итог: для ML-проектов важно комбинировать **внутренние данные** (бизнес и операционные процессы) и **внешние данные** (контекст и дополнительная информация). Это позволяет создать более точные и полезные модели для реального применения

Принцип GIGO: Garbage In — Garbage Out

Суть принципа GIGO:

- Если на вход системы анализа или модели подаются **некачественные или нерелевантные данные** (garbage in), то на выходе результат также будет низкого качества (garbage out)
- Качество входных данных определяет точность и полезность результата

Ключевые элементы:

- 1. Garbage Data In (Мусорные данные на входе):
 - Проблемы:
 - Ошибки в данных (например, пропуски, выбросы, некорректные форматы)
 - Неверные источники данных.

• Отсутствие релевантности данных для задачи

2. Analysis Pipeline (Процесс анализа):

- Анализ или обработка данных
- Даже с идеально настроенным пайплайном, если входные данные плохие, результат будет некорректным

3. Garbage Data Out (Мусорные данные на выходе):

- Низкая точность модели или некорректные аналитические выводы.
- Ошибочные бизнес-решения, основанные на неверных данных

Почему качество данных важно:

1. Снижение ошибок:

• Гарантия, что данные соответствуют задачам анализа

2. Повышение производительности моделей:

Чистые и релевантные данные позволяют ML-моделям обучаться эффективно

3. Оптимизация ресурсов:

• Предотвращает затраты времени и ресурсов на переработку некорректных данных

Решения для обеспечения качества данных:

1. Очистка данных:

• Удаление пропусков, дубликатов, аномалий

2. Валидация данных:

• Проверка корректности, полноты и актуальности

3. Автоматизация обработки:

• Использование ETL-инструментов (например, Apache NiFi, Talend) для стандартизации данных

4. Мониторинг данных:

• Постоянный контроль качества поступающих данных

Итог: принцип GIGO подчеркивает важность работы с качественными данными на этапе подготовки. Это основной фактор успеха как аналитических систем, так и ML-проектов

Корпоративная функция управления данными (Data Governance)

Корпоративная функция управления данными

Управление данными (Data Governance) – функция, направленная на эффективное использование данных в качестве актива организации за счет:

- Улучшения доступности данных
- Обеспечения качества данных
- Снижения рисков при использовании данных
- Снижение издержек при использовании данных

Реализованная функция офиса CDO создает фундамент для массовой эффективной реализации ML-проектов.

Что такое Data Governance?

Управление данными (Data Governance) — это функция, направленная на эффективное использование данных как стратегического актива организации

Цели управления данными:

1. Улучшение доступности данных:

• Гарантия, что данные доступны для нужных людей в нужное время

2. Обеспечение качества данных:

• Работа над корректностью, полнотой, актуальностью и консистентностью данных

3. Снижение рисков при использовании данных:

- Управление доступом, защита конфиденциальных данных.
- Соблюдение нормативных требований

4. Снижение издержек при использовании данных:

- Оптимизация процессов хранения и обработки данных
- Исключение дублирования и избыточности

Структура Data Governance:

1. Стратегия:

- Определение роли данных в достижении бизнес-целей
- Управление и реализация корпоративной политики по данным

2. Операционные процессы:

- Включают:
 - Роли и ответственность (например, CDO Chief Data Officer).
 - Процессы очистки, интеграции, управления метаданными.
 - Мониторинг и контроль использования данных

3. Технологии:

- Использование инструментов для:
 - Хранения данных (Data Warehouses, Data Lakes)
 - Управления метаданными (например, Collibra, Alation)
 - Обеспечения безопасности данных.
 - Автоматизации процессов управления

4. Методология Data Governance:

• Поддержка стандартов и процедур управления данными

Роль офиса CDO:

Chief Data Officer (CDO):

- Ответственный за внедрение и реализацию управления данными
- Обеспечивает согласование стратегий и технологий для эффективного использования данных

Значение для МL-проектов:

Реализованная функция управления данными создает основу для успешной реализации ML-проектов, обеспечивая:

- Качественные и доступные данные для анализа
- Стандартизированные процессы и технологии

Итог: Data Governance обеспечивает стратегический подход к работе с данными, помогая бизнесу принимать информированные решения и снижать риски, а также создаёт фундамент для массового

Фундаментальный взгляд: Иерархия DIKW(A)

Фундаментальный взгляд: иерархия DIKW(A)

Внедрение в организацию:

- ведения бизнес-процессов в ИТ-системах
- интеграции данных методами управления данными
- аналитики и построение ИИ-моделей

представляют собой «цифровизацию» процесса осознания и использования информации в организации: от получения данных до совершения действий на основе понимания закономерностей и сложившейся ситуации.

Иерархия DIKW(A):

Иерархия DIKW представляет собой концептуальную модель, описывающую процесс преобразования данных в осмысленные действия

1. Data (Данные):

- Исходная, необработанная информация, собранная из различных источников
- Этапы: сбор и организация данных

2. Information (Информация):

- Обработанные данные, предоставляющие смысл или контекст
- Этапы: суммирование и упорядочивание данных

3. Knowledge (Знания):

- Осознание и понимание закономерностей и связей в данных
- Этапы: анализ и выявление взаимосвязей

4. Wisdom (Мудрость):

- Применение знаний для принятия решений и совершения действий
- Этапы: синтез и принятие решений

5. Action (Действие):

 Финальный этап, на котором знания и мудрость превращаются в конкретные действия для достижения целей

Внедрение DIKW(A) в организацию:

1. Ведение бизнес-процессов в ИТ-системах:

• Автоматизация и цифровизация процессов для повышения эффективности

2. Интеграция данных методами управления данными:

Организация работы с данными через стандартизацию и обеспечение их качества

3. Аналитика и построение ИИ-моделей:

 Использование знаний, извлечённых из данных, для построения прогнозных моделей и оптимизации бизнес-решений

Применение:

• DIKW(A) используется для цифровой трансформации бизнеса, улучшения управления данными и

Итог: иерархия DIKW(A) формирует основу для понимания и использования данных в организации, способствуя переходу от простой обработки информации к осознанным действиям и стратегическим решениям

Разведочный анализ данных (Exploratory Data Analysis, EDA)

Разведочный анализ данных

Цель разведочного анализа данных (Exploratory Data Analysis (EDA)) – глубокое понимании структуры и характеристик данных перед применением сложных методов моделирования. Основные шаги:

- «проникновение» в данные, их понимание
- обнаружение отклонений и аномалий
- выбор наиболее важных переменных
- понимание контекста данных
- формулировка базовых гипотез и их проверка
- разработка начальных моделей, «инсайты»

Цель EDA:

EDA направлен на глубокое понимание структуры, характеристик и особенностей данных перед применением сложных методов моделирования. Это ключевой этап подготовки данных в любом аналитическом проекте

Основные шаги EDA:

- 1. «Проникновение» в данные:
 - Изучение состава, структуры и общего состояния данных
- 2. Обнаружение отклонений и аномалий:
 - Идентификация выбросов, пропусков или других несоответствий в данных
- 3. Выбор наиболее важных переменных:
 - Определение признаков, которые наиболее значимы для дальнейшего анализа или моделирования
- 4. Понимание контекста данных:
 - Исследование взаимосвязей между переменными и влияние внешних факторов
- 5. Формулировка гипотез и их проверка:
 - Построение первых предположений на основе данных и проверка их с использованием статистических методов
- 6. Разработка начальных моделей и инсайты:
 - Использование простых методов анализа для выявления закономерностей и формирования выводов

Этапы EDA (на диаграмме):

- 1. Understand the Problem & the Data:
 - Определение цели анализа и изучение состава данных
- 2. Import & Inspect the Data:

• Загрузка данных и первичная проверка на корректность

3. Explore Data Characteristics:

• Анализ распределений, центральных тенденций, выбросов

4. Perform Data Transformations:

Очистка, нормализация, логарифмирование или масштабирование данных

5. Visualize Data Relationships:

Построение графиков для анализа взаимосвязей (корреляционные матрицы, scatter plots)

6. Handle Outliers:

• Работа с выбросами: удаление или обработка

7. Communicate Findings & Insights:

• Представление результатов анализа и выявленных закономерностей

Результаты EDA:

- Понимание структуры данных
- Определение ключевых переменных
- Подготовка данных для моделирования
- Формирование первых гипотез и инсайтов

Итог: EDA — это фундаментальный этап в анализе данных, который обеспечивает качественную подготовку данных, понимание их особенностей и выявление ключевых закономерностей, необходимых для успешной реализации проекта

Типы признаков в анализе данных

Типы признаков

- Дискретные (discrete) признаки, значения которых отличаются не менее чем на единицу измерения признака.
- Непрерывные (continuous) признаки, значения которых могут отличаться друг от друга на любую сколь угодно малую величину.
- **Ординарные** (порядковые) признаки (ordinal) признаки измеряемые в ординалъной шкале, могут быть упорядочены, т.е. расположены по возрастанию или убыванию.
 - способ представления: значения записываются в порядке возрастания начиная с 1, это число называется рангом • операции сложения и вычитания не имеют смысла, т.к. неизвестно соотноешние разницы между рангами.
- Номинальные признаки (nominal) качественные

признаки, которые не могут быть упорядочены. Например: порода собак, цвет глаз.

Классификация признаков:

Признаки делятся на количественные и качественные, а внутри этих категорий — на подтипы

Количественные признаки:

1. Дискретные (discrete):

- Значения отличаются не менее чем на единицу измерения признака
- Примеры:
 - Количество сотрудников, число автомобилей

2. Непрерывные (continuous):

- Значения могут принимать любые значения в определённом диапазоне.
- Примеры:

Качественные признаки:

- 1. Ординальные (ordinal):
 - Измеряются в порядковой шкале, имеют упорядоченность
 - Пример:
 - Уровень образования (начальное, среднее, высшее)
 - Особенности:
 - Значения записываются в порядке возрастания (ранги)
 - Операции сложения/вычитания не имеют смысла

2. Номинальные (nominal):

- Категории не могут быть упорядочены.
- Примеры:
 - Цвет глаз, порода собаки, город проживания
- Особенности:
 - Никакая количественная интерпретация недопустима

Пример структуры:

• Количественные:

• Дискретные: целые числа

• Непрерывные: дробные значения

• Качественные:

• Ординальные: могут быть упорядочены

• Номинальные: только категории

Итог: правильное понимание типов признаков помогает выбирать подходящие методы анализа, обработки и визуализации данных, а также строить корректные модели машинного обучения

Структурированные и неструктурированные данные

Структурированные и неструктурированные данные

Структурированные данные (Structured Data):

- Характеристики:
 - Организованы в виде таблиц, строк, столбцов (например, в реляционных базах данных)
 - Высоко организованные данные, которые легко анализировать

• Примеры:

- Номера телефонов клиентов, имена, почтовые индексы
- Таблицы в базах данных, электронные таблицы

• Преимущества:

- Легкость поиска, сортировки и анализа
- Простота интеграции с аналитическими инструментами

Неструктурированные данные (Unstructured Data):

• Характеристики:

- Не имеют строгой структуры и не могут быть представлены в таблицах или реляционных базах данных
- Данные сложны для анализа и требуют специальных инструментов

• Примеры:

- Электронные письма, видеофайлы, изображения
- Данные из социальных сетей (Facebook, LinkedIn)

• Проблемы:

- Сложность обработки и анализа
- Требует специализированных решений, таких как машинное обучение, NLP (обработка естественного языка)

Сравнение:

Аспект	Структурированные данные	Неструктурированные данные
Хранение	Реляционные базы данных	Облачные хранилища, файловые системы
Примеры	Таблицы, записи CRM	Изображения, видео, социальные сети
Анализ	Простые аналитические инструменты	Нужны инструменты Big Data и Al
Простота обработки	Высокая	Низкая

Итог: для эффективного использования данных в бизнесе и аналитике важно комбинировать структурированные данные (для быстрого анализа) и неструктурированные данные (для глубоких инсайтов с помощью современных технологий

Представление категориальных признаков: One-Hot Encoding и другие методы

1. Ordinal Encoding:

- Описание:
 - Используется для признаков, которые имеют порядок
 - Каждое значение преобразуется в числовой код, сохраняя порядок
- Пример:
 - ullet Размеры одежды: XS ightarrow 1, S ightarrow 2, M ightarrow 3, L ightarrow 4
- Особенность:
 - Подходит только для упорядоченных категорий

2. Label Encoding:

- Описание:
 - Каждой категории присваивается уникальное числовое значение
 - Не сохраняется информация о взаимосвязи категорий
- Пример:
 - Цвета: Green \rightarrow 1, Red \rightarrow 2, Black \rightarrow 3
- Проблема:
 - Алгоритмы могут воспринимать числовые значения как ранжированные, что может привести к ошибкам в моделировании

3. One-Hot Encoding:

- Описание:
 - Каждая категория превращается в отдельную бинарную колонку
 - Значение "1" обозначает присутствие категории, "0" её отсутствие
- Пример:
 - Цвета: Green \rightarrow [1, 0, 0, 0], Red \rightarrow [0, 1, 0, 0], Black \rightarrow [0, 0, 1, 0], Orange \rightarrow [0, 0, 0, 1]
- Особенности:
 - Подходит для всех категориальных признаков
 - Увеличивает размерность данных

4. Dummy Encoding:

- Описание:
 - Это вариация One-Hot Encoding, где одна из колонок опускается для предотвращения избыточности
 - Избегает проблемы мультиколлинеарности
- Пример:
 - Цвета: Green \rightarrow [1, 0, 0], Red \rightarrow [0, 1, 0], Black \rightarrow [0, 0, 1], Orange \rightarrow [0, 0, 0]

Ключевые моменты:

- 1. Выбор метода:
 - Ordinal Encoding: для упорядоченных данных
 - One-Hot Encoding: для неупорядоченных категорий, когда важна полная информация
 - Dummy Encoding: для моделей, чувствительных к мультиколлинеарности (например, линейные регрессии)
- 2. Недостатки One-Hot Encoding:
 - Увеличение количества столбцов при большом числе категорий

• Может потребоваться дополнительная оптимизация для больших данных

3. Преимущества Dummy Encoding:

- Снижает размерность данных, сохраняя минимальную необходимую информацию **Итог:** правильный выбор метода кодирования категориальных данных зависит от задачи, типа признаков и модели. One-Hot Encoding остаётся универсальным и широко используемым, а Dummy Encoding помогает оптимизировать работу с данными в случае необходимости

Типы шкал значений

Типы шкал значений

Качественные

- Номинальная шкала категоризация данных без какого-либо значения или порядка.
- Порядковая шкала значения можно упорядочить, но интервалы между ними не обязательно равны.

Количественные

- Интервальная шкала значения упорядочены и интервалы между ними равны, нет истинной нулевой точки (ноль условен).
- Шкала отношений значения упорядочены, интервалы между ними равны, есть истинная нулевая точка.

	NOMINAL	ORDINAL	INTERVAL	RATIO
	Qualitative		Quantitative	
Applicable Tests	Non-Parametric		Parametric or Non-Parametric	
Measure(s) of Central Tendency	Mode	Mode Median	Mode Median Mean	Mode Median Mean
Operations	= (=	= [=] > <	= (=; > <; + .	= (=; > <; + -; *)
Data Cri_racteristics	Named	Named	Named	Named
		Natural Order	Natural Order	Natural Order
			Equal interval between variables	Equal interval between variables
				Contains true zero
Examples	Political Preference (Rep.Dem.ind,Lib)	Manager Level (Level I, Level II, Level II)	Temperature (F or C) (-20C, 10C, 50C)	Length (0cm, 4cm, 20cm)
	Eye Color (Blue, Brown, Green)	Satisfaction Level (Poor, Average, Excellent)	SAT scores (400-1600)	Height (Dmm, 2mm, 7mm)
	Gender (M/F)	Temperature (Cold, Warm, Hot)	Credit Score (300-850)	Diameter (0, 2m, 4m)
	Hair Color (Brown, Black, Blonde)	Weight (Light, Heavy)	Time of Day	Weight (Dkg, 10kg, 20kg)
	Section (lower, middle, upper)	Age (Child, Teen, Adult)	Calendar Years	Age (Dyrs,2yrs,100yrs)
	Income Status (Low Medium, High)	Degree of Pain (Low, Avg, High)	IQ Test Score	Income (\$0, \$50k, \$100k)

Качественные шкалы:

1. Номинальная шкала (Nominal):

- Описание:
 - Категоризация данных без порядка или ранжирования
 - Категории равноправны и не имеют числового значения
- Примеры:
 - Пол (мужской/женский), цвет глаз (синий, зелёный, коричневый)
- Возможные операции:
 - Подсчёт, сравнение равенства

2. Порядковая шкала (Ordinal):

- Описание:
 - Значения можно упорядочить, но интервалы между ними не равны
 - Не сохраняется количественная информация
- Примеры:
 - Уровень удовлетворенности (низкий, средний, высокий), рейтинги
- Возможные операции:
 - Сравнение: больше/меньше

Количественные шкалы:

3. Интервальная шкала (Interval):

- Описание:
 - Значения упорядочены, интервалы между ними равны, но нет истинной нулевой точки (ноль условен)
- Примеры:
 - Температура (в градусах Цельсия или Фаренгейта), время на часах

- Возможные операции:
 - Сложение, вычитание, но не деление

4. Шкала отношений (Ratio):

- Описание:
 - Значения упорядочены, интервалы равны, есть истинная нулевая точка
- Примеры:
 - Рост, вес, возраст, доход
- Возможные операции:
 - Все математические операции: сложение, вычитание, умножение, деление

Сравнение шкал:

Шкала	Пример	Операции	Характеристики
Номинальная	Пол, цвет глаз	Равенство, подсчёт	Нет порядка или интервалов
Порядковая	Рейтинг, уровень боли	Равенство, сравнение	Есть порядок, интервалы неравны
Интервальная	Температура, SAT	Сложение, вычитание	Равные интервалы, нет истинного нуля
Шкала отношений	Рост, вес, доход	Все операции	Равные интервалы, есть истинный ноль

Итог: выбор шкалы измерения определяет доступные математические операции и методы анализа данных. Понимание различий между шкалами помогает правильно интерпретировать данные и использовать подходящие модели анализа

Шаги разведочного анализа данных (Exploratory Data Analysis, EDA)

Основные этапы EDA:

Load Data (Загрузка данных):

- Первичная загрузка данных из источников (базы данных, CSV-файлы и т.д.)
- Проверка структуры данных: форматы, типы данных, размер

Step 1: Distinguish Attributes (Идентификация признаков):

- Определение типов признаков (количественные, качественные)
- Разделение данных на независимые переменные (features) и целевую переменную (target)

Step 2: Univariate Analysis (Одномерный анализ):

- Анализ распределения отдельных признаков:
- Среднее, медиана, мода, стандартное отклонение
- Построение гистограмм и boxplot для анализа распределений

4 Step 3: Bi-/Multivariate Analysis (Двумерный и многомерный анализ):

- -Исследование взаимосвязей между признаками:
- -Корреляционные матрицы, scatter plots
- Выявление линейных и нелинейных зависимостей

Step 4: Detect Aberrant and Missing Values (Поиск аномалий и пропусков):

- Выявление пропусков данных и их обработка:
- Удаление, замена средним, медианой, прогнозирование
- Определение аномальных значений (например, невозможные отрицательные значения)

Step 5: Detect Outliers (Поиск выбросов):

- Анализ выбросов с помощью:
- IQR (межквартильный размах), Z-score
- Визуализация выбросов через boxplot

Step 6: Feature Engineering (Создание признаков):

- Преобразование и создание новых признаков:
- Нормализация, стандартизация
- Логарифмирование, создание полиномиальных признаков

Результат:

- Show Business Insights (Представление инсайтов):
 - Обнаружение ключевых закономерностей и выводов
 - Подготовка данных для моделирования и визуализация инсайтов для бизнеса

Итог: разведочный анализ данных позволяет глубоко понять структуру данных, выявить аномалии и скрытые закономерности, а также подготовить данные для построения моделей машинного обучения. Этот процесс является фундаментальным для успеха аналитического проекта

Одномерный анализ (Univariate Analysis)

Одномерный анализ

Фокусируется на анализе одной переменной.

Цель: Понять распределение переменной, центральную тенденцию и разброс данных.:

- Описательная статистика (среднее значение, медиана, мода, дисперсия, стандартное отклонение)
- Визуализации (гистограммы, диаграммы размаха, столбчатые диаграммы, круговые диаграммы)
- Определение закона распределения, проверка на нормальность распределения
- Анализ выбросов и экстремальных значений

Фокус:

Одномерный анализ сосредоточен на изучении одной переменной, чтобы понять её распределение, центральные тенденции и разброс данных

Цель:

1. Понять, как распределяются значения переменной

- 2. Выявить центральную тенденцию (среднее, медиана, мода)
- 3. Определить наличие выбросов и аномалий

Методы:

1. Описательная статистика:

- Среднее значение (mean): показывает средний уровень значений
- Медиана (median): центральное значение в отсортированных данных
- Мода (mode): наиболее часто встречающееся значение
- Дисперсия (variance): мера разброса данных относительно среднего
- Стандартное отклонение (standard deviation): корень из дисперсии, показывает разброс данных

2. Визуализация:

- Гистограммы: анализ распределения значений
- Диаграммы размаха (boxplot): для выявления выбросов
- Столбчатые диаграммы: для категориальных данных
- Круговые диаграммы: для долей категориальных переменных

3. Анализ закона распределения:

- Проверка на нормальность распределения с использованием тестов:
 - Тест Шапиро-Уилка
 - Q-Q plot (график квантилей)

4. Анализ выбросов:

- Определение экстремальных значений, которые сильно отклоняются от основного набора данных
- Методы:
 - Межквартильный размах (IQR)
 - Z-оценка (Z-score)

На графике:

- Гистограмма с плотностью распределения демонстрирует, как значения переменной (highway_mpg) распределены по диапазону
- Выявлены пики, соответствующие часто встречающимся значениям

Итог: одномерный анализ помогает быстро понять базовые характеристики переменной, выявить проблемы с данными (например, выбросы) и подготовить их к дальнейшему многомерному анализу или моделированию

Анализ и заполнение пропущенных значений

Анализ / заполнение пропущенных значений

1. Проблема пропущенных значений:

- Пропущенные значения (Missing Values):
 - Возникают в данных из-за отсутствия информации, ошибок сбора данных или неправильной записи
 - Пропуски могут искажать распределение данных и снижать точность моделей машинного обучения

2. Методы заполнения пропущенных значений:

а. Удаление пропусков (Dropping Missing Values):

- Удаляются строки или столбцы с пропущенными значениями
- Плюсы: простота реализации
- Минусы: потеря информации, особенно при большом объёме пропусков

b. Заполнение фиксированными значениями:

- Zero Imputation (Замена на 0):
 - Все пропуски заменяются на 0
 - Плюсы: простота и понятность
 - Минусы: может сильно искажать распределение

с. Заполнение статистическими значениями:

- Mean Imputation (Среднее):
 - Пропуски заменяются средним значением колонки
 - Плюсы: сохраняется общее распределение данных
 - Минусы: уменьшается вариативность, не учитывается структура данных
- Median Imputation (Медиана):
 - Замена на медианное значение для устойчивости к выбросам
- Mode Imputation (Мода):
 - Для категориальных данных пропуски заполняются наиболее частым значением

d. Алгоритмические методы:

- KNN Imputation:
 - Заполнение на основе схожих наблюдений (ближайших соседей)
- Регрессионное заполнение:
 - Пропуски предсказываются с помощью других переменных

е. Продвинутые методы:

- Множественная иммутация (Multiple Imputation):
 - Генерируются несколько возможных значений для пропусков с учетом их вероятности
- Использование моделей:
 - Пропуски заполняются с использованием ML-алгоритмов

3. На графиках:

- Исходное распределение:
 - Среднее (mean) = 2.08, стандартное отклонение (std.) = 1.95

- Zero Imputation:
 - Среднее уменьшилось (mean = 1.66), стандартное отклонение практически не изменилось
- Mean Imputation:
 - Среднее сохранилось (mean = 2.08), но уменьшилось стандартное отклонение (std. = 1.76)

4. Выбор метода:

- Зависит от:
 - Количества пропусков
 - Характера данных (числовые, категориальные)
 - Влияния пропусков на результаты анализа

Итог: заполнение пропущенных значений — критически важный этап анализа данных. От выбора метода заполнения зависит, насколько точно модель сможет интерпретировать данные и делать прогнозы

Заполнение пропущенных значений: kNN Imputation

Заполнение пропущенных значений: kNN imputation

https://blog.dailydoseofds.com/p/missforest-and-knn-imputation-for

Суть метода kNN Imputation:

- Используется алгоритм ближайших соседей (k-Nearest Neighbors), чтобы заполнить пропущенные значения, основываясь на схожести с другими строками (наблюдениями)
- Пропуски заполняются средним (или медианой) значений ближайших соседей

Шаги алгоритма:

Step 1: Выберите строку с пропущенным значением.

- Определите, какие значения в строке отсутствуют, а какие присутствуют

Step 2: Найдите k ближайших соседей

- Рассчитайте расстояние (например, Евклидово расстояние) между строками, используя только доступные значения

Step 3: Заполните пропущенное значение

- Пропуск заменяется средним (или медианой) значений признака среди k ближайших соседей

Step 4: Повторите процесс

- Для всех строк с пропущенными значениями алгоритм выполняется повторно, пока все пропуски не будут заполнены

Преимущества kNN Imputation:

- Сохраняет структуру данных:
 - Заполнение выполняется на основе наблюдений с аналогичными характеристиками
- Подходит для числовых и категориальных данных.
- Гибкость: возможность настройки числа соседей (к) и метода расчета расстояний

Недостатки:

- Высокая вычислительная сложность:
 - При большом объёме данных алгоритм может быть медленным
- Чувствительность к выбору параметров:
 - Число соседей (k) и метрика расстояния влияют на качество заполнения
- Не всегда корректен при наличии большого числа выбросов

На графиках:

- Исходное распределение:
 - Среднее (mean) = 2.08, стандартное отклонение (std.) = 1.95
- После применения kNN Imputation:
 - Среднее практически не изменилось (mean = 2.07), стандартное отклонение уменьшилось (std. = 1.90), что показывает сохранение структуры данных

Вывод: kNN Imputation — мощный метод для заполнения пропущенных значений, который подходит для случаев, где данные имеют внутренние закономерности. Его использование особенно полезно для небольших и средних наборов данных с минимальными выбросами

Двухмерный и многомерный анализ

Двухмерный / многомерный анализ

Исследует взаимосвязь между двумя и более переменными.

Цель: Понять, как одна переменная влияет на другую или связана с ней и более сложные взаимосвязи.

- Диаграммы рассеяния
- Визуализации (линейные графики, диаграммы рассеяния, парные графики) / Многомерные графики (парные графики, графики параллельных координат)
- Анализ зависимостей между категориальными переменными (хи-квадрат тест)
- Методы снижения размерности (PCA, t-SNE),
 Кластерный анализ, Факторный анализ
- •Тепловые карты и корреляционные матрицы

Определение:

- Двухмерный анализ (Bivariate Analysis):
 - Изучает взаимосвязь между двумя переменными
- Многомерный анализ (Multivariate Analysis):
 - Анализирует взаимодействие более чем двух переменных для выявления сложных взаимосвязей

Цели анализа:

- 1. Понять, как одна переменная влияет на другую
- 2. Выявить зависимости или взаимосвязи между переменными

Методы и инструменты:

- 1. Графические методы:
 - Диаграммы рассеяния (Scatter Plots):
 - Используются для визуализации зависимости между двумя числовыми переменными
 - Парные графики (Pair Plots):
 - Отображают взаимосвязь нескольких переменных в виде набора диаграмм рассеяния
 - Графики параллельных координат:
 - Используются для анализа многомерных данных
- 2. Корреляционный анализ:
 - Корреляционная матрица:
 - Показатели линейной зависимости между переменными (например, коэффициент Пирсона)
 - Тепловые карты (Heatmaps):
 - Визуализация корреляций между переменными
- 3. Анализ категориальных переменных:
 - Хи-квадрат тест:
 - Оценка связи между категориальными переменными
- 4. Методы снижения размерности:
 - PCA (Principal Component Analysis):
 - Преобразование данных в набор главных компонент для уменьшения размерности
 - t-SNE:
 - Нелинейное снижение размерности для визуализации сложных данных
 - Кластерный анализ:
 - Группировка данных на основе их схожести

На графике (справа):

- Пример парных графиков (Pair Plots):
 - На диагонали показаны распределения переменных
 - Вне диагонали диаграммы рассеяния, демонстрирующие взаимосвязи между переменными

Результаты анализа:

- 1. Выявление значимых взаимосвязей между переменными
- 2. Понимание структуры и закономерностей в данных
- 3. Определение переменных, которые следует использовать в моделировании

Итог: двухмерный и многомерный анализ являются мощными инструментами для изучения зависимостей и выявления закономерностей, которые могут быть неочевидны при одновременном анализе только одной переменной. Эти методы особенно важны для подготовки данных к построению моделей машинного обучения

Выявление выбросов (Outliers Detection)

Выявление выбросов (outliers)

Box-plot

Violinplot

1. Что такое выбросы?

- Выбросы это данные, которые значительно отличаются от остальных значений набора данных
- Могут возникать из-за ошибок измерений, особенностей системы или редких, но значимых событий

2. Методы визуализации выбросов:

а. Box-Plot (Ящичковая диаграмма):

- Описание:
 - Отображает ключевые статистики: медиану, квартили и потенциальные выбросы
- Элементы:
 - Q1 (25-й перцентиль): Нижняя граница ящика
 - Q3 (75-й перцентиль): Верхняя граница ящика
 - IQR (межквартильный размах): Разница между Q3 и Q1
 - Усы: Границы, выходящие за пределы IQR (обычно на 1.5 × IQR от Q1 и Q3)
 - Точки за пределами усов: Потенциальные выбросы
- Применение:
 - Быстрый способ выявления выбросов

b. Violin-Plot (Виолончельная диаграмма):

- Описание:
 - Сочетает функции box-plot и плотности распределения
- Элементы:
 - Показаны медиана и межквартильный размах
 - Гладкая форма демонстрирует распределение данных
- Применение:
 - Используется для понимания распределения данных и выявления выбросов
 - Подходит для сравнения нескольких групп

3. Как интерпретировать?

Box-Plot:

- Значения за пределами "усов" это выбросы.
- Пример:
 - Влево или вправо от границ IQR можно увидеть точки, представляющие выбросы

Violin-Plot:

- Ширина "виолончели" показывает плотность данных
- Узкие участки указывают на низкую плотность, а аномальные пики на выбросы

4. Выводы:

- 1. Вох-plot проще для базового анализа выбросов
- 2. Violin-plot даёт более полную картину распределения данных

Итог: для выявления выбросов лучше комбинировать методы визуализации. Вох-рlot помогает быстро найти выбросы, а Violin-plot предоставляет контекст распределения, что особенно важно для сложных наборов данных

Основные подходы к созданию признаков (Feature Engineering)

Основные подходы к созданию признаков

1. Feature Engineering:

Процесс преобразования данных в формат, подходящий для анализа и моделирования, включает создание, преобразование и отбор признаков

2. Основные подходы:

a. Data-Driven Feature Engineering (Основанный на данных):

- 1. Domain Knowledge (Знание предметной области):
 - Использование знаний об области анализа для создания новых признаков
 - Пример: расчёт возраста пользователя по дате рождения
- 2. Data Munging (Обработка данных):
 - Очистка, преобразование и подготовка данных
 - Пример: исправление ошибок в данных, удаление пропусков
- 3. Exploratory Data Analysis (EDA):
 - Использование визуализации и анализа для выявления скрытых закономерностей
 - Пример: создание признаков на основе корреляций

b. Technical Feature Engineering (Технический):

1. Text Vectorization (Векторизация текста):

- Преобразование текстовых данных в числовой формат
- Пример: TF-IDF, Bag-of-Words

2. Binning & Categorization (Категоризация):

- Группировка числовых данных в интервалы
- Пример: преобразование возраста в категории (молодой, взрослый, пожилой)

3. Data Standardization (Стандартизация данных):

- Приведение данных к единому масштабу
- Пример: нормализация (Min-Max Scaling)

3. Техники Feature Engineering:

1. Binning:

- Преобразование непрерывных данных в интервалы
- Пример: разделение дохода на категории

2. Log Transform (Логарифмическое преобразование):

- Уменьшение влияния выбросов
- Пример: логарифмирование дохода

3. One-Hot Encoding:

- Преобразование категориальных данных в бинарные признаки.
- Пример: цвет (зеленый, красный) → [1, 0], [0, 1].

4. Scaling (Масштабирование):

- Приведение данных к единому масштабу (например, от 0 до 1)
- Пример: использование Min-Max Scaling или Z-Score

5. Imputation (Заполнение пропусков):

- Заполнение пропущенных значений
- Пример: заполнение медианой или средним

6. Outlier Handling (Обработка выбросов):

- Удаление или корректировка выбросов
- Пример: замена выбросов на границы IQR

4. Применение:

Feature Engineering играет ключевую роль в успешности моделей машинного обучения, обеспечивая:

- Улучшение качества данных
- Оптимизацию предсказательной силы признаков

Итог: комбинация подходов и техник Feature Engineering позволяет эффективно готовить данные, улучшать качество моделей и выявлять скрытые зависимости

Log Transformation (Логарифмическое преобразование)

Log transformation

Преимущества:

- Приведение к нормальному распределению
- Уменьшение влияния выбросов
- Стабилизация дисперсии
- Линеаризация экспоненциальных отношений
- Улучшение работы линейных моделей

Описание:

Логарифмическое преобразование — это математическое преобразование данных, которое применяется для уменьшения асимметрии и стабилизации дисперсии в данных. Оно полезно, если распределение данных скошено или имеет выбросы

Преимущества:

- 1. Приведение к нормальному распределению:
 - Снижает скошенность данных (положительную или отрицательную)
 - Упрощает работу с методами, чувствительными к распределению данных (например, линейные модели)
- 2. Уменьшение влияния выбросов:
 - Уменьшает эффект экстремальных значений, делая их менее значимыми
- 3. Стабилизация дисперсии:
 - Снижает изменчивость данных, что важно для некоторых моделей
- 4. Линеаризация экспоненциальных отношений:
 - Преобразует экспоненциальные или мультипликативные связи в линейные
- 5. Улучшение работы линейных моделей:
 - Повышает точность линейных регрессий и других моделей, основанных на предположении о нормальном распределении

Пример на графике:

- 1. До логарифмического преобразования:
 - Верхние графики показывают положительно и отрицательно скошенные распределения
- 2. После логарифмического преобразования:
 - Преобразование приводит распределения к симметричной форме, близкой к нормальной

Когда применять:

- При наличии положительно или отрицательно скошенных данных.
- Для работы с данными, которые имеют выбросы
- Если переменные показывают экспоненциальную зависимость

Примечания:

 Логарифмическое преобразование требует, чтобы значения данных были положительными. Для работы с нулями или отрицательными значениями используется модификация, например, log(x+c), где **Итог:** логарифмическое преобразование — это мощный инструмент для подготовки данных, который улучшает их пригодность для моделирования, особенно для линейных и статистических методов

Отбеливание данных (Data Whitening)

Определение:

Отбеливание данных — это процесс преобразования, направленный на то, чтобы:

- 1. Признаки стали некоррелированными друг с другом
- 2. Признаки имели одинаковую дисперсию
- 3. Ковариационная матрица стала единичной

Этапы процесса:

1. Центрирование (Center):

- Удаляется среднее значение каждого признака.
- Формула: X_centered = X μ
- µ среднее значение признака.

2. Масштабирование (Scale):

- Приведение признаков к одинаковой дисперсии.
- Формула: X_scaled = X_centered / σ
- σ стандартное отклонение признака.

3. Ротация (Rotate):

- Устраняется корреляция между признаками, ковариационная матрица становится единичной
- Формула: $X_{whitened} = Q * \Lambda^{(-1/2)} * Q^T * X_{scaled}$
- Q матрица собственных векторов
- Л— диагональная матрица собственных значений

Преимущества:

- Улучшение сходимости методов: Ускоряет обучение моделей
- Снижение чувствительности к выбору гиперпараметров: Данные становятся однородными
- Устранение мультиколлинеарности: Признаки становятся независимыми
- Повышение интерпретируемости: Упрощается анализ данных

Иллюстрация:

- 1. Исходные данные (X) признаки коррелированы
- 2. Центрирование (Х-µХ) приводит данные к нулевому среднему
- 3. Масштабирование (Х/σХ) нормализует дисперсию
- 4. Ротация (Q∗Λ(−1/2)∗Q^T) устраняет корреляцию

Итог: отбеливание данных — это важный этап обработки данных, который улучшает качество данных для моделей машинного обучения и повышает эффективность алгоритмов