

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

ZUS MODEL NUMBER: ZU44BKRN

FCC ID: 2AFZBZUSQC20

REPORT NUMBER: 4787558562 - 2

ISSUE DATE: April 12, 2017

Prepared for

No NDA Inc 320 Mountainview Avenue, Mountainview, California 94041, United States

Prepared by

UL-CCIC Company Ltd. Suzhou Branch No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China Tel: +86-512-6808 6400

> Fax: +86-512-6808 4099 Website: www.ul.com

Revision History

REPORT NO: 4787558562 - 2 DATE: April 12, 2017 MODEL NUMBER: ZU44BKRN FCC ID: 2AFZBZUSQC20

Rev.	Issue Date	Revisions	Revised By
	04/12/2016	Initial Issue	

Summary of Test Results Clause Test Items **FCC Rules Test Results** 1 6db DTS Bandwidth FCC 15.247 (a) (2) Complied 2 Peak Conducted Power FCC 15.247 (b) (3) Complied 3 Power Spectral Density FCC 15.247 (3) Complied Conducted Band edge And 4 Complied FCC 15.247 (d) Spurious emission FCC 15.247 (d) Radiated Band edges and Spurious FCC 15.209 5 Complied emission FCC 15.205 Conducted Emission Test For AC Not 6 FCC 15.207 **Power Port** Application 7 FCC 15.203 Antenna Requirement Complied

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

TABLE OF CONTENTS

1.	TES	ST METHODOLOGY	7
2.	FA	CILITIES AND ACCREDITATION	7
3.	CA	LIBRATION AND UNCERTAINTY	8
3	3.1.	MEASURING INSTRUMENT CALIBRATION	8
3	3.2.	MEASUREMENT UNCERTAINTY	8
4.	EQ	UIPMENT UNDER TEST	9
4	1 . 1.	DESCRIPTION OF EUT	9
4	<i>1.2.</i>	MAXIMUM OUTPUT POWER	9
4	<i>4.3.</i>	CHANNEL LIST	9
4	1.4.	TEST CHANNEL CONFIGURATION	9
4	<i>1.5.</i>	THE WORSE CASE POWER SETTING PARAMETER	10
4	<i>1.6.</i>	DESCRIPTION OF AVAILABLE ANTENNAS	10
4	<i>1.7.</i>	WORST-CASE CONFIGURATIONS	10
4	<i>1.8.</i>	DESCRIPTION OF TEST SETUP	11
4	4.9.	MEASURING INSTRUMENT AND SOFTWARE USED	12
5.	ME	ASUREMENT METHODS	13
6.	AN [°]	TENNA PORT TEST RESULTS	14
6	5.1.	6 dB DTS BANDWIDTH	14
6	5.2.	99% DTS BANDWIDTH	17
6	5.3.	PEAK CONDUCTED OUTPUT POWER	20
6	6. <i>4</i> .	POWER SPECTRAL DENSITY	23
6	6. <i>5.</i>	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	26
7.	RA	DIATED TEST RESULTS	33
7	7.1.	LIMITS AND PROCEDURE	33
7		RESTRICTED BANDEDGE	
_		.1. GFSK MODE	
/		SPURIOUS EMISSIONS (1~25GHz)	
7		SPURIOUS EMISSIONS 30M ~ 1 GHz	
		.1. GFSK MODE	
7	7.5.	SPURIOUS EMISSIONS BELOW 30M	49
8.	AC	POWER LINE CONDUCTED EMISSIONS	50
		Dogo 4 of 51	

REPORT NO: 4787558562 - 2	DATE: April 12, 201
FCC ID: 2AFZBZUSQC20	MODEL NUMBER: ZU44BKRN

ANTENNA REQUIREMENTS......51

REPORT NO: 4787558562 - 2 DATE: April 12, 2017 FCC ID: 2AFZBZUSQC20 MODEL NUMBER: ZU44BKRN

ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: No NDA Inc

Address: 320 Mountainview Avenue, Mountainview, California 94041,

United States

Manufacturer Information

Company Name: WBE INDUSTRIES CO., LTD

Address: Gaotian area, Zhenlong town, Huiyang district, Huizhou city,

Guangdong provInce, China

EUT Description

Product Name ZUS Brand Name N/A

Model Name ZU44BKRN

FCC ID 2AFZBZUSQC20

Date Tested August 15, 2016 ~ September 09, 2016

APPLICABLE STANDARDS

STANDARD TEST RESULTS

Vivor you

CFR 47 Part 15 Subpart C PASS

Check By: Approved By:

Terry Hou Victor Yan

Project Engineer Laboratory Manager

1. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

2. FACILITIES AND ACCREDITATION

	AND AGGREDITATION
Test Location	Shenzhen Huatongwei International Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089
Accreditation Certificate	Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of elect rical testing, and proved to be in compliance with ISO/IEC 17025: 2005 Ge neral Requirements for the Competence of Testing and Calibration Labora tories and any additional program requirements in the identified field of tes ting. Valid time is until December 31, 2016. Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Fed eral Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017. The 3m Alternate Test Site of Shenzhen Huatongwei International Inspecti on Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Re gistration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016. Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspect ion Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Re gistration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

3. CALIBRATION AND UNCERTAINTY

3.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

3.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.39 dB
Radiated Disturbance, 9k to 30 MHz	± 2.20 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.24 dB
Radiated Disturbance, 1 to 18 GHz	± 5.16 dB
Radiated Disturbance, 18 to 40 GHz	± 5.54 dB

4. EQUIPMENT UNDER TEST

4.1. DESCRIPTION OF EUT

Equipment	ZUS			
Model Name	ZU44BKRN			
	Operation Frequency 2402 MHz ~ 24		z ~ 2480 MHz	
Product Description	Modulation Type		Data Rate	
	GFSK		1Mbps	
Power Supply	DC 12V			
Bluetooth Version	BT 4.0			

4.2. MAXIMUM OUTPUT POWER

Frequency Range (MHz)	Number of Transmit Chains (NTX)	Bluetooth Mode	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)	EIRP (dBm)
2400-2483.5	1	BLE	2402-2480	0-39[40]	-24.48	-15.48

4.3. CHANNEL LIST

Channel	Frequenc y (MHz)	Channel	Frequenc y(MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)
00	2402	11	2424	22	2442	33	2466
01	2404	12	2426	23	2446	34	2468
02	2406	13	2428	24	2448	35	2470
03	2408	14	2430	25	2450	36	2472
04	2410	15	2432	26	2452	37	2474
05	2412	16	2434	27	2454	38	2476
06	2414	17	2436	28	2456	39	2478
07	2416	18	2438	29	2458	40	2480
08	2418	19	2440	30	2460		
09	2420	20	2442	31	2462		
10	2422	21	2444	32	2464		

4.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 00, CH 19, CH 40	2402MHz, 2440MHz, 2480MHz

4.5. THE WORSE CASE POWER SETTING PARAMETER

The	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Softwar	re Version	uEnergy_Tools-2.2.0.51				
Modulation	Transmit	Test Channel				
Туре	Antenna Number	CH 00	CH 19	CH 40		
GFSK	1	7	7	7		

4.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2402-2480	Ceramic Chip Antenna	9.0

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

4.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BLE	DTS	GFSK	1Mbit/s

4.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	FCC ID
1	Laptop	ThinkPad	T410	N/A

I/O CABLES

Cable No	Port	Cable Type	Cable Length(m)	Remarks
1	USB	N/A	N/A	N/A
2	USB	N/A	N/A	N/A

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

Note: The EUT has no accessory.

TEST SETUP

The EUT can work in an engineer mode with a softwore through a table PC.

SETUP DIAGRAM FOR TESTS

4.9. MEASURING INSTRUMENT AND SOFTWARE USED

DATE: April 12, 2017 MODEL NUMBER: ZU44BKRN

	4.9. MEASURING INSTRUMENT AND SOFTWARE USED					
	Instrument(Conducted for RF Port)					
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Expired date
\square	Spectrum Analyzer	R&S	FSV40		Dec.30,2015	Dec.29,2016
	Receiver Cable (30MHz-40GHz)	JUNFLON	J12J102248- 00-B-5	AUG-07-15- 043	Jan.18,2016	Jan.18,2017
	Ins	trument (Line C	Conducted Em	ission (AC Ma	ain))	
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Expired date
	EMI Test Receiver	R&S	ESCI	101247	Nov.3,2015	Nov.3,2016
	V-Network	R&S	ESH3-Z6	100211	Nov.3,2015	Nov.3,2016
\checkmark	V-Network	R&S	ESH3-Z6	100210	Nov.3,2015	Nov.3,2016
\checkmark	Pulse Limiter	R&S	ESH3-Z2	101488	Nov.3,2015	Nov.3,2016
\checkmark	Test Software	R&S	ES-K1	N/A	N/A	N/A
	Adapter (see note)	HUNTKEY	HW- 050100C2W	HWHKAPE5 1309936	-	-
		Instrum	ent (Radiated	Tests)		
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Expired date
	EMI Test Receiver	R&S	ESI 26	100009	Nov.2,2015	Nov.2,2016
	RF Test Panel	R&S	TS / RSP	335015/ 0017	N/A	N/A
$\overline{\checkmark}$	EMI Test Software	R&S	ESK1	N/A	N/A	N/A
V	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	Nov.8,2015	Nov.8,2016
	Horn Antenna	ShwarzBeck	9120D	1011	Nov.8,2015	Nov.8,2016
\checkmark	Loop Antenna	R&S	HZ-9	838622\013	Nov.8,2015	Nov.8,2016
V	Broadband Horn Antenna	ShwarzBeck	BBHA9170	BBHA91704 72	Nov.8,2015	Nov.8,2016
	Broadband Preamplifer	ShwarzBeck	BBV 9718	9718-247	Nov.2,2015	Nov.2,2016
	Broadband Preamplifer	ShwarzBeck	BBV 9721	9721-102	Nov.2,2015	Nov.2,2016
	Turn Table	MATURO	TT2.0		N/A	N/A
	Antenna Mast	MATURO	TAM-4.0-P		N/A	N/A
	EMI Test Software	Audix	E3	N/A	N/A	N/A
V	Test cable	Siva Cables Italy	RG 58A/U	W14.02	Nov.5,2015	Nov.5,2016

Page 12 of 51

REPORT NO: 4787558562 - 2 DATE: April 12, 2017 FCC ID: 2AFZBZUSQC20 MODEL NUMBER: ZU44BKRN

5. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6 dB Bandwidth	KDB 558074 D01 v03r05	8.2
2	Peak Output Power	KDB 558074 D01 v03r05	9.1.1
3	Power Spectral Density	KDB 558074 D01 v03r05	10.2
4	Out-of-band emissions in non-restricted bands	KDB 558074 D01 v03r05	11.0
5	Out-of-band emissions in restricted bands	KDB 558074 D01 v03r05	12.1
6	Band-edge	KDB 558074 D01 v03r05	13.3.2
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	7.3

6. ANTENNA PORT TEST RESULTS

6.1. 6 dB DTS BANDWIDTH

LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 1					
Section	Test Item	Limit	Frequency Range (MHz)		
FCC 15.247(a)(2) IC RSS-247 5.1 (1)	Bandwidth	>= 500KHz	2400-2483.5		

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST CONDITIONS

Temperature: 27°C Relative Humidity: 60% Test Voltage: DC 12V

RESULTS

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	672.90	500	Pass
Middle	2440	677.30	500	Pass
High	2480	681.60	500	Pass

6.2. 99% DTS BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Trace	Max hold
Sweep	Auto couple

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

Use the 99% bandwidth function in the spectrum analyser and allow the trace to stabilize, then recorded the measurement data.

TEST SETUP

TEST CONDITIONS

Temperature: 27°C Relative Humidity: 60% Test Voltage: DC 12V

RESULTS

Page 18 of 51

6.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247), Subpart C IC RSS-247 ISSUE 1				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247(b)(3) IC RSS-247 5.4 (4)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	≥DTS bandwidth(e.g. 1 MHz for BLE)	
VBW	≥3 × RBW	
Span	3 x RBW	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use peak marker function to determine the peak amplitude level.

TEST SETUP

TEST CONDITIONS

Temperature: 27°C Relative Humidity: 60% Test Voltage: DC 12V

RESULTS

Test Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
CH00	2402	-25.08	-16.08	29
CH19	2440	-24.48	-15.48	29
CH39	2480	-26.56	-17.56	29

Note:

- 1.EIRP = Maximum Conducted Output Power (PK) + Antenna Gain
- 2. The maximum conducted output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

6.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 1			
Section	Test Item	Limit	Frequency Range (MHz)
FCC §15.247 (e) IC RSS-247 5.2 (2)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW 100 ≤ kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST CONDITIONS

Temperature: 27°C Relative Humidity: 60% Test Voltage: DC 12V

RESULTS

Frequency	Power Spectral Density (dBm)	Limit (dBm)	Result
2402 MHz	-41.69	8	PASS
2440 MHz	-42.16	8	PASS
2480 MHz	-42.05	8	PASS

6.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 1		
Section Test Item Limit		
FCC §15.247 (d) IC RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum PSD level.

3030	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

Page 26 of 51

TEST CONDITIONS

Temperature: 27°C Relative Humidity: 60% Test Voltage: DC 12V

RESULTS

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209

Please refer to IC RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Radiation Disturbance Test Limit for FCC (Above 1G)

Fraguency (MHz)	dB(uV/m) (at 3 meters)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

TEST SETUP AND PROCEDURE

Below 30MHz

REPORT NO: 4787558562 - 2 DATE: April 12, 2017 FCC ID: 2AFZBZUSQC20 MODEL NUMBER: ZU44BKRN

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G

The setting of the spectrum analyser

RBW	120kHz
VBW	300kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

Page 35 of 51

ABOVE 1G

The setting of the spectrum analyser

RBW	1MHz
VBW	3MHz
Sweep	Auto
Detector	Peak and CISPR Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement above 1GHz, the emission measurement will be measured by the peak detector and the AV detector.
- 7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

TEST CONDITIONS

Temperature: 23.5°C Relative Humidity: 59.2% Test Voltage: DC 12V

DATE: April 12, 2017 MODEL NUMBER: ZU44BKRN

7.2. RESTRICTED BANDEDGE

7.2.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

DATE: April 12, 2017 MODEL NUMBER: ZU44BKRN

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

DATE: April 12, 2017 MODEL NUMBER: ZU44BKRN

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Note: This test was tested by Shenzhen Huatongwei International Inspection Co., Ltd.

7.3. SPURIOUS EMISSIONS (1~25GHz)

7.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS

Note: This test was tested by Shenzhen Huatongwei International Inspection Co., Ltd.

7.4. SPURIOUS EMISSIONS 30M ~ 1 GHz

7.4.1. GFSK MODE

SPURIOUS EMISSIONS 30 TO 1000 MHz

DATE: April 12, 2017

MODEL NUMBER: ZU44BKRN

Note: This test was tested by Shenzhen Huatongwei International Inspection Co., Ltd.

REPORT NO: 4787558562 - 2 DATE: April 12, 2017 FCC ID: 2AFZBZUSQC20 MODEL NUMBER: ZU44BKRN

7.5. SPURIOUS EMISSIONS BELOW 30M

Note 1: The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Note 2: This test was tested by Shenzhen Huatongwei International Inspection Co., Ltd.

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to FCC §15.207 (a) and RSS-Gen Clause 8.8

FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)	
	Quasi-peak	Average	Quasi-peak	Average
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 -5.0	73.00	60.00	56.00	46.00
5.0 -30.0	73.00	60.00	60.00	50.00

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.4-2014.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST RESULTS

Not application.

REPORT NO: 4787558562 - 2 DATE: April 12, 2017 FCC ID: 2AFZBZUSQC20 MODEL NUMBER: ZU44BKRN

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3dB that the directional gain of the antenna exceeds 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

ANTENNA CONNECTOR

Antenna Connector is on the PCB within enclosure and not accessible to user.

ANTENNA GAIN

The antenna gain of EUT is 9dBi which is greater than 6dBi.

The maximum conducted output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

END OF REPORT

Page 51 of 51