# Numerical investigation of coincidence-correction in gamma spectroscopy

By Bogye Balázs

Supervisor: Horváth Ákos

Goal: simulate HPGE detector  $\rightarrow$  get efficiency curve + get data from literature  $\rightarrow$  calculate coincidence correction for given isotope  $\rightarrow$  analyze spectrum of an old experiment  $\rightarrow$  investigate effect of correction

# Coincidence summing

- Radioactive decay → nucleus in excited state → deexcitation not necessarily 1 step, multiple deexcitations → gamma cascades
- Fast (ps) transitions to ground (/isomer) state
  - Usually gamma emission
  - Can be internal conversion (e<sup>-</sup> instead of gamma), internal pair production (e<sup>-</sup> + e<sup>+</sup>)
- Multiple transitions detected as one (ps delay  $<< \mu s$  detector time resol.)
- Coincidences sum up as real transition peak → summing-in

$$E_{j\to k} + E_{k\to i} = E_{j\to i}$$

Coincidences sum up → single peaks not detected → summing-out

$$E_{j\to i} + E_{k\to l} \neq E_{j\to i}$$

# Model: Semkow matrix formalism, a bit modified

- Goal: coincidence corrected detection chance of  $j \rightarrow i$  transitions
- Inputs:
  - Transition probability matrix (X=G+E+W, actually 3 matrices) (from literature)
  - Efficiency matrices ( $\mu(E)$ , total, photopeak) (from simulation)
  - Feeding rates (f) (from **literature**) (distribution of starting levels)

- Full, Partial, Null detection probabilities for each transition
  - > F, P, N detection chains (from E level j to i, through all possible routes)
- Summing up as  $E_{j \to i} = f_t * N_{t \to j} * F_{j \to i} * N_{i \to 1}$
- http://atomfizika.elte.hu/akos/orak/mkm/coszu.pdf

### Geant4 simulation

- Geant4 simulation of the passage of particles through matter
- Geometry of HPGE detector:
  - Ge crystal (technical datasheet)
  - Outer Al shell (measured)
  - Inner positions, other elements (technical drawing from internet)
- Penelope physics (good at low energy too)
- Params:
  - source distance
  - gamma E, angle (mono energy, distribution)
  - geometry complexity
  - <sup>238</sup>U decay simulation
  - CaCO<sub>3</sub> sample simulation
- Various validation (/fun) simulations



Technical drawing



Simulation geometry with point source

# Efficiencies – energy dependence



Figure 14: Simulated total and photopeak efficiency at various energies (wide range) with 5th order polynomial fit in log-log scale at 5 cm sample distance

# Efficiencies – distance dependence

- r<sup>-2</sup> with r<sub>0</sub> effective distance (in detector)  $\rightarrow \propto \frac{1}{(r+r_0)^2}$
- Fit  $\mu(r)^{-\frac{1}{2}}$  lines to get  $r_0$  intercepts



r<sub>0</sub> is energy dependent, different at low (<10 mm) and large (10-100 mm) distances Fitted with empirical formula from literature



Figure 18: Ratio of efficiency data points per distance-energy dependent efficiency fit evaluated at simulation points for all 4 fits

- Energy and distance dependent error
- Could be better but is good enough at 100 keV 3 MeV

<sup>208</sup>TI

- Data from NuDat2 (x (I<sub>g</sub>), f, alpha)
- Good because:
  - feeding factor of 2614 keV = 0
  - almost all cascades go through 2614 keV
  - guaranteed coincidences
- Calculated corrected intensities:
- Summing-in
  - Impossible transitions
  - 3 strong summing-in effects
- Summing-out



Coincidence corrected / uncorrected intensities for <sup>208</sup>TI

### Measurement

- 1-day measurement of mineral deposit from thermal pipe from Bük
- 5-day background measurement
- Calculated <sup>208</sup>Tl peak areas (← only this done by me)



Spill spectrum analyzer software, spectrum of sample



Multipeak fitting in python (Spill can't handle it)

### Result

3 Blue dots at 1000s of Bq

- Uncorrected activity: 76.4 ± 5
- Corrected activity: 96 ± 7.6 Bq
  - ≈+25%

- Last 3 points much better fit
  - 4 000 80 000 Bq → ≈50 Bq



Figure 24: Calculated activities for all peaks, uncorrected, and coincidence corrected at 2 mm and 8.7 mm

8.7 mm was minimal std dev. of activity (not realistic distance)

### Possible further research

- Sample self-absorption (significant at low energies)
- Better distance dependence (exact solid angle)
- Simulate dead layer of detector
- Calculate activity for all isotopes
- Simulate readout
- Simulation validation with experiment

Thank you for your attention