0. Соглашения

За каждый листок с заданиями из трех дается максимум [100] баллов, которые можно набрать, комбинируя решения задач внутри одного листка произвольным образом. Баллы за все три задания суммируются, нормируются на 10 с округлением вверх, получившееся значение и будет оценкой. Так, для уд(3) нужно набрать минимум 90 баллов за все три задания. Из задач со звездочкой [XX*] для зачета задания обязательно решить минимум одну.

1. Классическая теория поля

1. [10] Под действием бесконечно малых преобразований группы Лоренца координаты пространства Минковского x^{μ} преобразуются как

$$x^{\prime \mu} = x^{\mu} + i\omega^{\rho\sigma} (L_{\rho\sigma})^{\mu}{}_{\nu} x^{\nu}, \tag{1.1}$$

где матрицы $L_{\mu\nu}$ удовлетворяют стандартному коммутационному соотношению для so(1,3)

$$[L_{\mu\nu}, L_{\rho\sigma}] = -i\eta_{\mu\rho}L_{\nu\sigma} + i\eta_{\nu\rho}L_{\mu\sigma} - i\eta_{\nu\sigma}L_{\mu\rho} + i\eta_{\mu\sigma}L_{\nu\rho}. \tag{1.2}$$

• Показать, что операторы вращений и бустов определенные как $J^i=\frac{1}{2}\epsilon^{ijk}J_{jk},\,K^i=J^{0i}$ удовлетворяют следующим коммутационным соотношениям

$$[J^{i}, J^{j}] = i\epsilon^{ijk}J^{k},$$

$$[K^{i}, K^{j}] = -i\epsilon^{ijk}J^{k},$$

$$[J^{i}, K^{j}] = i\epsilon^{ijk}K^{k}.$$
(1.3)

• Показать, что алгебра Лоренца so(1,3) изоморфна прямой сумме $so(1,3)=su(2)\oplus su(2),$ т.е. что можно определить такие линейные комбинации вращений и бустов $J^i_\pm=\frac{1}{2}(J^i\pm iK^i)$, которые удовлетворяют коммутационным соотношениям

$$[J_{+}^{i}, J_{+}^{j}] = i\epsilon^{ijk}J_{+}^{k},$$

$$[J_{-}^{i}, J_{-}^{j}] = i\epsilon^{ijk}J_{-}^{k}$$

$$[J_{+}^{i}, J_{-}^{j}] = 0.$$
(1.4)

- 2. [40*] Лагранжиан массивного комплексного скалярного поля имеет вид $\mathcal{L}=\partial_{\mu}\varphi^{*}\partial^{\mu}\varphi-m^{2}\varphi^{*}\varphi$
 - Получить уравнения движения для поля φ и φ^* . Показать, что в нерелятивистском пределе уравнение Клейна-Гордона переходит в уравнение Шредингера. Проследить судьбу решений уравнения КГ с положительной и отрицательной частотами $k^0=\pm\omega_k=\pm\sqrt{\vec{k}^2+m^2}$.
 - Получить осцилляторное разложение скалярного поля

$$\varphi(x) = \int \frac{d^3k}{2\omega_k} \left(e^{ikx} \tilde{a}_k^+ + e^{-ikx} \tilde{a}_k^- \right), \tag{1.5}$$

пояснить смысл коэффициентов \tilde{a}_k^{\pm} . Показать, что выражение $d^3k/2\omega_k$ инвариантно относительно преобразований Лоренца.

• Найти канонически сопряженный импульс для (комплексного) скалярного (спинорного, векторного) поля, получить Гамильтониан поля в терминах осцилляторов a_k^\pm и b_k^\pm

• Выписать тензор энергии-импульса для скалярного (спинорного, векторного) поля $T^{\mu\nu}$, показать, что соответствующий вектор 4-импульса $P^{\mu}=\int d^3x T^{0\mu}$ сохраняется, т.е.

$$\dot{P}^{\mu} = 0. \tag{1.6}$$

Получить выражение для 4-импульса в осцилляторном разложении.

- Используя теорему Нётер, показать что в теории свободного скалярного поля сохраняющийся ток, соответствующий U(1) симметрии $\varphi' = e^{i\alpha}\varphi$ равен $j_{\mu} = q(\partial_{\mu}\varphi^{*}\varphi \varphi^{*}\partial_{\mu}\varphi)$.
- 3. [40*] Лагранжиан безмассового векторного поля имеет вид $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$, где $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$.
 - Вывести уравнения Максвелла.
 - Найти канонически сопряженный импульс π_{μ} для поля A^{μ} . Чему равна компонента π^0 ?
 - Показать, что решения уравнения Максвелла $\partial_{\mu}F^{\mu\nu}=0$ имеют две возможные поляризации, которые ортогональны направлению импульса.
 - Для массивного векторного поля с Лагранжианом $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + m^2 A_\mu A^\mu$ показать, что решения уравнений движения имеют три поляризации
- 4. [15] Дираковское сопряжение определяется как $\bar{\psi}=\psi^\dagger\gamma^0$
 - Показать, что выражение $\bar{\psi}\psi$ инвариантно относительно преобразований Лоренца
 - Показать, что выражение $\bar{\psi}\gamma^{\mu}\psi$ преобразуется как вектор при действии группы Лоренца
 - Показать, что выражение $\bar{\psi}\gamma^5\psi$ преобразуется как псевдоскаляр
- 5. [15] Используя только свойство $\{\gamma^\mu,\gamma^\nu\}=2\eta^{\mu\nu}$ и обозначения $p=p^\mu\gamma_\mu,\,\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3$ показать, что
 - $p p = p^2 = p^{\mu} p_{\mu}$
 - $\gamma^{\mu}\gamma_{\mu}=4$, $Tr[\gamma^{\mu}]=0$
 - $\text{Tr}[\gamma^{\mu}\gamma^{\nu}] = 4\eta^{\mu\nu}, \text{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}] = 0$
 - $\operatorname{Tr}[p \not q] = 4p \cdot q$.
 - $\operatorname{Tr}[p_1 \ p_2 \ p_3 \ p_4] = 4 \left[(p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) (p_1 \cdot p_3)(p_2 \cdot p_4) \right]$
 - $\text{Tr}[\gamma^5 p_1 p_2] = 0$
 - ${\rm Tr}[\gamma^5 p_1 p_2 p_3 p_4] = 4i \epsilon_{\mu\nu\rho\sigma} p_1^{\mu} p_2^{\nu} p_3^{\rho} p_4^{\sigma}$
 - $\gamma_{\mu} p \gamma^{\mu} = -2 p$
 - $\gamma_{\mu} p_{1} p_{2} \gamma^{\mu} = 4p_{1} \cdot p_{2}$
 - $\bullet \ \gamma_{\mu} p_{1} p_{2} p_{3} \gamma^{\mu} = -2 p_{3} p_{2} p_{1}$
- 6. [10] Показать, что если верно $\{\gamma^\mu,\gamma^\nu\}=2\eta^{\mu\nu}$, где $\eta^{\mu\nu}={\rm diag}[+1,-1,-1,-1]$ метрика Минковского, то выполняются следующие коммутационные соотношения

$$[\Sigma_{\mu\nu}, \Sigma_{\rho\sigma}] = -i\eta_{\mu\rho}\Sigma_{\nu\sigma} + i\eta_{\nu\rho}\Sigma_{\mu\sigma} - i\eta_{\nu\sigma}\Sigma_{\mu\rho} + i\eta_{\mu\sigma}\Sigma_{\nu\rho}, \tag{1.7}$$

где

$$\Sigma^{\mu\nu} = \frac{i}{2} \gamma^{\mu\nu} = \frac{i}{4} (\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu}). \tag{1.8}$$

(для произвольного базиса гамма-матриц)

- 7. [40*] Лагранжиан массивного спинорного поля равен $\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ m)\psi$
 - Показать, что в безмассовом случае m=0, Лагранжиан $\mathcal{L}=\bar{\psi}i\partial\!\!\!/\psi$ инвариантен относительно аксиальных преобразований $\psi'=\exp[i\gamma^5\alpha]\psi$ с некоторым параметром $\alpha=$ const. Убедиться, что массовое слагаемое нарушает эту инвариантность.
 - Используя теорему Нётер, найти сохраняющийся ток, соответствующий аксиальной симметрии
 - Показать, что сохраняющийся ток, соответствующий U(1) симметрии $\psi'=e^{i\alpha}\psi$, равен $j^\mu=\bar\psi\gamma^\mu\psi$
- 8. [20] В вейлевском базисе гамма-матриц

$$\gamma^0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \gamma^i = \begin{bmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{bmatrix}$$
 (1.9)

- найти матрицу зарядового сопряжения C, определяемую как $C^{-1}(\gamma^{\mu\nu})^TC = -\gamma_{\mu\nu}$. Получить в явном виде условия на компоненты майорановского спинора ψ_M , определяемого условием $\bar{\psi}_M = \psi_M^T C$.
- найти оператор киральности $\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3$ в явном виде.
- Показать, что комбинации $P_{L,R}=\frac{1}{2}(1\pm\gamma^5)$ являются проекторами, т.е. удовлетворяют условиям

$$P_L P_L = P_L, \quad P_R P_R = P_R, P_L P_R = 0.$$
 (1.10)

• Показать, что преобразования Лоренца не меняют киральность спинора, т.е. левый спинор остается левым под действием преобразования

$$\psi' = \exp\left[-\frac{1}{4}\omega^{\mu\nu}\gamma_{\mu\nu}\right]\psi\tag{1.11}$$

- 9. [30] Лагранжиан комплексного скалярного поля инвариантен относительно преобразований $\varphi'=e^{i\alpha}\varphi$, где $\alpha={
 m const.}$
 - Переходя к локальным калибровочным преобразованиям $\alpha = \alpha(x) \neq \text{const}$ построить калибровочно инвариантный Лагранжиан для поля φ , взаимодействующего с калибровочным полем A_{μ} .
 - Проверить, что $[D_\mu,D_
 u]=F_{\mu
 u}$, где ковариантная производная $D_\mu=\partial_\mu+A_\mu$
 - Показать, что $\tilde{F}^{\mu\nu}F_{\mu\nu}$, где $\tilde{F}^{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$, является полной производной