Conio Computabile

bubogunz feat. NeX

Febbraio 2021

1 Enunciati e dimostrazioni

1.1 Funzioni Primitive Ricorsive

Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive.

L'insieme \mathcal{PR} delle funzioni primitive ricorsive è il minimo insieme che include le funzioni di base:

- successore $s: \mathbb{N} \to \mathbb{N}, \ s(n) = n+1 \ \forall \ n \in \mathbb{N}$
- zero $z: \mathbb{N} \mapsto \mathbb{N}, \ z(n) = 0 \ \forall \ n \in \mathbb{N}$
- proiezione $\Pi_j: \mathbb{N}^{\mathbb{k}} \mapsto \mathbb{N}, \ \Pi_j(x_1,...,x_k) = x_j \ \forall \ j \in [1,k]$

ed è chiuso rispetto alle operazioni di

- composizione generalizzata: date $f_1,...,f_n:\mathbb{N}^k\mapsto\mathbb{N}$ e $g:\mathbb{N}^n\mapsto\mathbb{N}$, la loro composizione generalizzata è data dalla funzione $h:\mathbb{N}^k\mapsto\mathbb{N}$ tale che $h(\vec{x})=g(f_1(\vec{x}),...,f_n(\vec{x}))$
- ricorsione primitiva: date $f: \mathbb{N}^k \to \mathbb{N}, \ h: \mathbb{N}^{k+1} \to \mathbb{N}, \ g: \mathbb{N}^{k+2} \to \mathbb{N}$, l'operazione di ricorsione primitiva è definita come

primitiva è definita come
$$h(\vec{x},y) = \left\{ \begin{array}{ll} f(\vec{x}) & \text{se } y = 0 \\ h(\vec{x},y+1) = g(\vec{x},y,h(\vec{x},y)) & \text{altrimenti} \end{array} \right.$$

1.2 Teorema SMN

Enunciare il teorema SMN e darne la dimostrazione (è sufficiente fornire l'argomento informale che usa le funzioni di codifica/decodifica).

Enunciato: Il teorema SMN dice che dato il programma $e \in \mathbb{N}$ e $m, n \geq 1 \exists s : \mathbb{N}^{(m+1)} \mapsto \mathbb{N}$ calcolabile totale tale che $\varphi_e(\vec{x}, \vec{y}) = \varphi_{s(e, \vec{x})}(\vec{y})$

Dimostrazione: sia $P_{s(e,\vec{x})}$ il programma che calcola $\varphi_{s(e,\vec{x})}^{(n)}(\vec{y})$. Allora, nei primi $|\vec{y}| = n$ registri ci sono gli input del programma \vec{y} . Spostando verso destra questi registri di $|\vec{x}| = m$ registri e copiando in questi ultimi i valori in \vec{x} (operazione calcolabile) otteniamo un programma P'_e avente nei primi m registri valori di \vec{x} e nei secondi n registri i valori di \vec{y} . A questo punto basta osservare che P'_e ha la stessa configurazione iniziale di P_e e, pertanto, se eseguisse le stesse istruzioni di P_e ne calcolerebbe la medesima funzione. Per cui possiamo dedurre che $\varphi_e = \varphi'_e = \varphi_{s(e,\vec{x})}$

1.3 Teorema di struttura dei predicati semidecidibili

Dimostrare il teorema di struttura dei predicati semidecidibili, ovvero provare che un predicato $P(\vec{x})$ è semidecidibile se e solo se esiste un predicato decidibile $Q(\vec{x}, y)$ tale che $P(\vec{x}) = \exists y.Q(\vec{x}, y)$.

Dimostrazione:

- (\Rightarrow) Sia $P(\vec{x})$ un predicato semidecidibile. Allora la sua funzione caratteristica è la seguente: $SC_P = \begin{cases} 1 & \text{se } P(\vec{x}) \\ \uparrow & \text{altrimenti} \end{cases} \Rightarrow SC_P$ è calcolabile. Sia $\varphi_e = SC_P$ per qualche $e \in \mathbb{N}$. Allora φ_e può essere scritta come $\varphi_e(\vec{x}) = \exists \ t.H^{(k)}(e,\vec{x},t)$. Se pongo $Q(t,\vec{x}) = H^{(k)}(e,\vec{x},t)$ ottengo un predicato decidibile, perché H è un predicato decidibile. Allora posso riscrivere $P(\vec{x})$ come $P(\vec{x}) = \exists \ t.Q(t,\vec{x})$
- (\Leftarrow) Sia $Q(t, \vec{x})$ un predicato decidibile. Allora se pongo $SC_P = \begin{cases} 1 & \text{se } \exists \ t.Q(t, \vec{x}) \\ \uparrow & \text{altrimenti} \end{cases} \Rightarrow SC_P$ è calcolabile, perché SC_P può essere scritta come $SC_P = \mathbb{1}(\mu t.1 \chi_Q(t, \vec{x}))$. Allora la funzione SC_P è semicaratteristica. Allora $P(\vec{x})$ è semidecidibile.

1.4 Teorema di proiezione

Dimostrare il teorema di proiezione ovvero provare che se il predicato $P(x, \vec{y})$ è semidecidibile, allora anche $\exists x.P(x, \vec{y})$ è semidecidibile. Vale anche l'implicazione opposta? Vale che se $P(x, \vec{y})$ è decidibile allora anche $\exists x.P(x, \vec{y})$ è decidibile? Dimostrare o portare un controesempio.

Dimostrazione: per il teorema di struttura dei predicati semidecidibili, se $P(x, \vec{y})$ è semidecidibile allora $\exists \ Q(t, x, \vec{y})$ decidibile tale che $P(x, \vec{y}) = \exists \ t.Q(t, x, \vec{y})$. Se pongo $R(\vec{y}) = \exists \ x.P(x, \vec{y})$ allora posso riscriverlo come $R(\vec{y}) = \exists \ x.\exists \ t.Q(t, x, \vec{y}) = \begin{cases} 1 & \text{se } Q(t, x, \vec{y}) \text{ per qualche } t, x \in \mathbb{N} \\ \uparrow & \text{altrimenti} \end{cases}$. Inoltre, $R(\vec{y}) = \mu \omega.Q((\omega)_1, (\omega)_2, \vec{y}) \leftarrow \text{calcolabile e semidecidibile. Quindi } R(\vec{y})$ è semidecidibile.

Se $\exists x.P(x,\vec{y})$ è semidecidibile, allora anche $P(x,\vec{y})$ è semidecidibile? \rightarrow NO perché se si considera $P(x,y)=x\notin W_x=x\in \overline{K}$ è non semidecidibile, mentre $\exists x.P(x,y)$ è semidecidibile (addirittura decidibile, perché è una costante).

Vale che se $P(x, \vec{y})$ è decidibile allora anche $\exists x.P(x, \vec{y})$ è decidibile? Dimostrare o portare un controesempio.

 \rightarrow NO perché per il teorema di struttura dei predicati semidecidibili, se $P(x, \vec{y})$ è decidibile allora $\exists x.P(x, \vec{y})$ è semidecidibile.

1.5 Teorema di Rice

Enunciare e dimostrare il teorema di Rice (senza utilizzare il secondo teorema di ricorsione)

Enunciato: Sia A un insieme saturato, $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A è non ricorsivo/non decidibile. **Dimostrazione:** per riduzione, mostrando che $K \leq_m A$.

Sia A un insieme saturato, $A \neq \emptyset \land A \neq \mathbb{N}$. Sia e_0 la Gödelizzazione della funzione sempre indefinita \emptyset ($\varphi_{e_0}(x) = \uparrow$ $\forall x \in \mathbb{N}$). Supponiamo che $e_0 \notin A$, quindi che $e_0 \in \overline{A}$. Dato che $A \neq \emptyset$ allora $\exists e_1 \in \mathbb{N}$ tale che $e_1 \in A$. Ora, si definisca la funzione $g(x,y) = \begin{cases} \varphi_{e_1}(y) & \text{se } x \in K \\ \varphi_{e_0}(y) & \text{se } x \in \overline{K} \end{cases} = \begin{cases} \varphi_{e_1}(y) & \text{se } x \in K \\ \uparrow & \text{altrimenti} \end{cases}$ Allora $g(x,y) = (\mu\omega.S(x,y,(\omega)_1,(\omega)_2))_1$ con $\omega = \begin{cases} (\omega)_1 = \psi_U(e_1,y) \\ (\omega)_2 = t \end{cases}$ è calcolabile. Dunque, per il teorema SMN $\exists s : \mathbb{N} \mapsto \mathbb{N}$ calcolabile e totale tale che $g(x,y) = \varphi_{s(x)}(y)$. La funzione s è la funzione di riduzione cercata. Infatti:

- se $x \in K \Rightarrow s(x) \in A$ Se $x \in K$ allora $\varphi_x(y) \downarrow \forall y$. Allora $\chi_{S(x,y,z,t)} = 1 \forall y$. Allora $g(x,y) = \varphi_{s(x)}(y) = (\mu \omega.S(x,y,(\omega)_1,(\omega)_2))_1 = \varphi_{e_1}(y)$. Quindi $\varphi_{s(x)}(y) = \varphi_{e_1}(y)$. Ma allora anche $s(x) \in A$ per l'ipotesi di saturazione di A.
- se $x \in \overline{K} \Rightarrow s(x) \in \overline{A}$ Se $x \in \overline{K}$ allora $g(x,y) = \varphi_{s(x)}(y) = \uparrow \ \forall \ y$. Ma allora $\varphi_{s(x)} = \varphi_{e_0} = \emptyset$. $e_0 \in \overline{A} \Rightarrow s(x) \in \overline{A}$ per l'ipotesi di saturazione di A.

1.6 Secondo teorema di ricorsione

Enunciare e dimostrare il secondo teorema di ricorsione.

Enunciato: Sia $f: \mathbb{N} \to \mathbb{N}$ funzione unaria, calcolabile e totale. Allora $\exists \ e \in \mathbb{N}$ tale che $\varphi_e = \varphi_{f(e)}$. Dimostrazione: Sia $f: \mathbb{N} \to \mathbb{N}$ funzione unaria, calcolabile e totale. Si consideri un certo $x \in \mathbb{N}$ tale per cui $\varphi_x(x) = \psi_v(x,x)$. Quindi $\varphi_x(x)$ è calcolabile. Ma allora anche $f(\varphi_x(x))$ è calcolabile. Si consideri la funzione calcolata da questo programma: $\varphi_{f(\varphi_x(x))}(y) = g(x,y)$. Allora tale funzione g(x,y) è calcolabile, poiché $g(x,y) = \psi_v(f(\varphi_x(x)),y) = \psi_v(f(\psi_v(x,x)),y)$. Quindi per il (corollario del) teorema SMN $\exists \ s: \mathbb{N} \to \mathbb{N}$ calcolabile e totale tale che $\forall \ x,y \to g(x,y) = \varphi_{s(x)}(y)$, con $g(x,y) = \varphi_{f(\varphi_x(x))}(y)$. La funzione s è calcolabile, allora esiste un programma P_S che la calcola. Poniamo $s = \varphi_m$ la funzione calcolata dal programma P_S . Quindi possiamo riscrivere:

 $g(x,y) = \varphi_{\varphi_m(x)}(y) = \varphi_{s(x)}(y) = \varphi_{f(\varphi_x(x))}(y)$ Questa uguaglianza vale $\forall x,y \in \mathbb{N}$, in particolare per x=m. Dunque ottengo, ponendo $e_0 = \varphi_m(m)$: $\varphi_{e_0}(y) = \varphi_{f(e_0)}(y) \ \forall \ y \Rightarrow \varphi_{e_0} = \varphi_{f(e_0)}$.

2 Esercizi cancari

2.1 Esercizio 6.32

Sia A un insieme ricorsivo e siano $f1, f2: \mathbb{N} \to \mathbb{N}$ funzioni calcolabili. Dimostrare che è calcolabile la funzione $f: \mathbb{N} \to \mathbb{N}$ definita da:

$$f(x) = \begin{cases} f_1(x) & \text{se } x \in A \\ f_2(x) & \text{se } x \notin A \end{cases}$$

$$A \in RIC \Rightarrow \chi_A(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{altrimenti} \end{cases}$$
 Quindi possiamo riscrivere f come
$$f(x) = sg(\chi_A(x)) \cdot f_1 + \overline{sg}(\chi_A(x)) \cdot f_2$$

$$f(x) = (\mu\omega.(S((\omega)_1, x, (\omega)_2, (\omega)_3) \wedge sg(\chi_A)) \vee (S((\omega)_1, x, (\omega)_4, (\omega)_3) \wedge \overline{sg}(\chi_A)))_2 \text{ calcolabile perché composizione di funzioni calcolabili.}$$

Il risultato continua a valere se indeboliamo le ipotesi e assumiamo A r.e.? Spiegare come si adatta la dimostrazione, in caso positivo, o fornire un controesempio, in caso negativo.

$$\begin{array}{l} A \in RE \Rightarrow \chi_{\scriptscriptstyle A}(x) = \left\{ \begin{array}{l} 1 \quad \text{se } x \in A \\ \uparrow \quad \text{altrimenti} \end{array} \right. \Rightarrow f(x) = \left\{ \begin{array}{l} f_1(x) \quad \text{se } x \in A \\ \uparrow \quad \text{altrimenti} \end{array} \right. \\ f(x) = sg(\chi_{\scriptscriptstyle A}(x)) \cdot f_1 = (\mu \omega. S((\omega)_1, x, (\omega)_2, (\omega)_3))_2 \leftarrow \text{calcolabile con:} \end{array}$$

- $(\omega)_1$: l'enumerazione del programma f
- $(\omega)_2$: $f_1(x)$
- $(\omega)_3$: numero di passi per cui f(x) termina

2.2 Esercizio 7.15

Sia $\mathcal{A} \subseteq \mathcal{C}$ un insieme di funzioni calcolabili tale che, indicate con \mathbb{O} e $\mathbb{1}$ le funzioni costanti \mathbb{O} e $\mathbb{1}$, rispettivamente, si abbia $\mathbb{O} \notin \mathcal{A}$ e $\mathbb{1} \in \mathcal{A}$. Detto $A = \{x \mid \varphi_x \in \mathcal{A}\}$ mostrare che $A \notin RE$ oppure $\overline{A} \notin RE$. Ipotesi:

- $W_0 = W_1 = \mathbb{N};$
- $E_0 = 0$ e $E_1 = 1$
- Dunque $\mathcal{A} = \{f \mid cod(f) = \{1\}\}$ è saturato. \mathcal{A} non è vuoto, infatti contiene $\mathbb{1}$. Non è neppure tutto \mathbb{N} perché $\emptyset \notin \mathcal{A}$. Quindi A non è ricorsivo per il teorema di Rice. Quindi A è RE oppure non RE. Dato che A è non ricorsivo per Rice, anche \bar{A} lo è.

- Le cose sono due:
 - Né A né \bar{A} sono RE:
 - $-A \in RE \ e \ \bar{A} \notin RE \ o \ viceversa.$

Dal momento che $A \notin RIC$, non può esserlo nemmeno \bar{A} perché se lo fosse A sarebbe RIC; da cui segue che uno dei due è sicuramente \overline{RE} mentre il rimanente potrebbe essere RE. Provo ad usare il teorema di Rice-Shapiro:

1.
$$\exists f.f \notin A \Rightarrow \exists \theta \subseteq f.\theta \in A \rightarrow A \in \overline{RE}$$

2.
$$\exists f.f \in \mathcal{A} \Rightarrow \forall \theta \subseteq f.\theta \notin \mathcal{A} \rightarrow \mathcal{A} \in \overline{RE}$$

Provo ad usare 1: prendo una funzione che in un intervallo finito dà in output 1 mentre in tutto il resto no, per esempio la funzione \overline{sg} .

–
$$W_{\overline{sg}} = \{\mathbb{N}\}$$
 mentre $E_{\overline{sg}} = \{0, 1\}$

– Prendo $\theta \subseteq \overline{sg}$ tale che:

$$\theta(x) = \begin{cases} \frac{\overline{sg}(x)}{\overline{sg}(x)} & \text{se } x = 0\\ \uparrow & \text{altrimenti} \end{cases}$$
Chiaramente $\theta \in \mathcal{A}$ mentre $\overline{sg} \notin \mathcal{A}$.

Quindi per il primo caso del teorema di Rice-Shapiro, $A \in \overline{RE}$.

• $\overline{\mathcal{A}} = \{f \mid cod(f) \neq \{1\}\}$. Prendo $\mathbb{1} \notin \overline{\mathcal{A}}$. Pongo $\theta = \emptyset$ (la funzione sempre indefinita). Dunque $\theta \subseteq \mathbb{1}$ (perché la \emptyset è sottofunzione di qualsiasi funzione) e osservo che $\mathbb{1} \notin \overline{\mathcal{A}}$ mentre $\theta \in \overline{\mathcal{A}}$. Quindi per il primo caso del teorema di Rice-Shapiro, $\overline{A} \in \overline{RE}$.

2.3 Esercizio 8.14

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid W_x \cap E_x = \emptyset\}.$

Ipotesi di lavoro: A sembra saturo dato che non si fa riferimento alla logica del programma x nella definizione dell'insieme; A sembra dipendere solo da proprietà di input/output. $\mathcal{A} = \{f \mid dom(f) \cap cod(f) = \emptyset\}.$

Dimostro che A non è ricorsivo con il teorema di Rice.

- 1. A è saturato, $\mathcal{A} = \{ f \mid dom(f) \cap cod(f) = \emptyset \}.$
- 2. $A \neq \emptyset$ perché la funzione sempre indefinita ne fa parte: $\{\emptyset\} \in A$.
- 3. $A \neq \mathbb{N}$: la funzione succ(n) che calcola il successore del numero n non fa parte di A perché $dom(succ) \cap cod(succ) = \mathbb{N} \neq \emptyset$
- $\Rightarrow A \notin RIC$ per Rice. Ora provo a scrivere SC_A :

$$SC_A(x) = \begin{cases} 1 & \text{se } \varphi_x(x) = y \text{ e } x \neq y \\ \uparrow & \text{altrimenti} \end{cases} = \mathbb{1}(\mu \omega. (S((\omega)_1, (\omega)_1, (\omega)_2, (\omega)_3)) \wedge \bar{eq}((\omega)_1, (\omega)_2)))_3) \text{ con}$$

$$\bar{eq}(x, y) = \begin{cases} 1 & \text{se } x \neq y \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione $SC_A(x)$ è calcolabile in quanto composizione di funzioni calcolabili. Pertanto A è RE da cui \bar{A} non è RE altrimenti A sarebbe ricorsivo (ma abbiamo dimostrato che non lo è con Rice). Essendo A non ricorsivo, anche \bar{A} non lo è.

2.4 Esercizio 8.16

Sia \mathbb{P} l'insieme dei numeri pari. Dimostrare che l'insieme $A = \{x \in \mathbb{N} \mid E_x = \mathbb{P}\}$ si riduce $\overline{K} \leq_m A$

Di fatto si tratta di dire con la riduzione a \bar{K} che A non è RE.

Costruisco una funzione a due parametri, come segue:

 $g(x,y) = \begin{cases} 2y & \text{se } \neg H(x,x,y) \\ 1 & \text{altrimenti} \end{cases} = 2 \cdot y \cdot \overline{sg}(\chi_{H(x,x,y)}) + \chi_{H(x,x,y)} \leftarrow \text{calcolabile! Quindi per il teorema} \\ \text{SMN } \exists \ s : \mathbb{N} \mapsto \mathbb{N} \text{ calc. tot. tale che } g(x,y) = \varphi_{s(x)}(y). \text{ Verifico che } s \text{ sia una adeguata funzione di riduzione.} \end{cases}$

- Devo partire con un programma $x \in \overline{K}$ e mostrare che $s(x) \in A$. Dato $x \in \overline{K}$ significa che φ_x non termina. Pertanto $\chi_{H(x,x,y)} = 0$. Quindi il risultato sarà $2y \ \forall \ y \in \mathbb{N} = \mathbb{P}$. Quindi $g(x,y) = \varphi_{s(x)}(y) = 2y$. Quindi $s(x) \in A$.
- Devo partire con un programma $x \notin \overline{K}$ e mostrare che $s(x) \notin A$. Se $x \notin \overline{K}$ vuol dire che φ_x termina. Se φ_x termina significa che $\chi_{H(x,x,y)} = 1$. Quindi siamo nel secondo caso di g(x,y). Quindi $g(x,y) = 1 \ \forall y \in \mathbb{N}$. Ma $g(x,y) = \varphi_{s(x)}(y) = 1$ quindi $\varphi_{s(x)} \notin A$ perché restituisce qualcosa di dispari. Quindi $s(x) \notin A$.

2.5 Esercizio 8.17

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid \varphi_x(x) \downarrow \land \varphi_x(x) < x+1\}.$

Ipotesi di lavoro: $A \notin RIC, A \in RE, \bar{A} \notin RE, \bar{A} \notin RIC, A$ sembra non saturato.

$$SC_A = \left\{ \begin{array}{ll} 1 & \text{se} & \varphi_x(x) < x+1 \\ \uparrow & \text{altrimenti} \end{array} \right. = \mathbb{1}(\mu\omega.\psi_{\scriptscriptstyle U}(x,x) \stackrel{\cdot}{-} x) \leftarrow \text{calcolabile!}$$

Avendo definito la funzione semicaratteristica come composizione di funzioni calcolabili, è anch'essa calcolabile quindi A è RE.

Pongo
$$g(x,y) = \begin{cases} 1 & \text{se} \quad \varphi_x(x) < x+1 \\ \uparrow & \text{altrimenti} \end{cases}$$
 Allora $\exists \ h: \mathbb{N} \to \mathbb{N}$ calc. tot. tale che $g(x,y) = \varphi_{h(x)}(y) \ \forall \ x,y \in \mathbb{N}$ per il teorema SMN.

Provo una riduzione $K \leq_m A$: h(n) è la funzione di riduzione. Infatti:

- $x \in K \Rightarrow h(x) \in A$: sia $x \in K$. Allora $\varphi_x(x) \downarrow \forall x \in K$. Allora anche $\varphi_{h(x)}(y) \downarrow$. Se $\varphi_{h(x)}(y)$ allora significa che $\varphi_x(x) < x + 1$. Quindi $h(x) \in A$. OK.
- $x \notin K \Rightarrow h(x) \notin A$: sia $x \notin K$. Allora $\varphi_{h(x)}(y) \uparrow$. Allora $\varphi_x(x) \uparrow$ oppure Allora $\varphi_x(x) \ge x + 1$ e $\varphi_{h(x)}(y) \geq 1$. In ogni caso $h(x) \notin A$.

Quindi $K \leq_m A \Rightarrow A \in RE$.

Che dire di $\bar{A} = \{x \in \mathbb{N} \mid \varphi_x(x) \uparrow \lor \varphi_x(x) \ge x + 1\}$? **Ipotesi**: $\bar{A} \notin RE$ perché altrimenti $A \in RIC$ (falso). Provo ad usare Rice-Shapiro.

- Prendo $\varphi_x = id$. Chiaramente $id \notin \bar{A}$ infatti $id(x) \downarrow e id(x) < x + 1$. Però $\exists \theta \subseteq id$ tale che $\theta(x) = \emptyset$ (la funzione sempre indefinita) e $\theta(x) \subseteq id$ dal momento che $\emptyset \subseteq f \ \forall \ f$. Chiaramente $\theta \in \bar{A}$.
- \Rightarrow posso usare Rice-Shapiro (caso 1) per dimostrare che $\bar{A} \notin RE$.

Inoltre, essendo A non ricorsivo, anche $\bar{A} \notin RIC$

2.6 Esercizio 8.29

Dato $X \subseteq \mathbb{N}$, $X \neq \emptyset$ studiare la ricorsività dell'insieme $A_X = \{x \in \mathbb{N} \mid W_x = E_x \cup X\}$.

Ipotesi di lavoro: $A_X \in \overline{RE}$. Provo a dimostrarlo usando il caso 2 del teorema di Rice-Shapiro: $\exists f.f \in \mathcal{A}_X. \forall \theta \subseteq f, \ \theta \notin \mathcal{A}_X \Rightarrow A_X \in \overline{RE}$ Si consideri $X = \{0\}$. Allora la funzione $succ : \mathbb{N} \to \mathbb{N}, \ succ(n) = n+1$ appartiene all'insieme \mathcal{A}_X .

Ogni θ è definita rispettando la seguente forma generale: $\theta(x) = \begin{cases} succ(x) & \text{se } x \in I \\ \uparrow & \text{altrimenti} \end{cases}$

con I intervallo finito (anche vuoto). Dimostro per induzione sulla cardinalità del dominio di θ che $\theta \notin \mathcal{A}_X \ \forall \ \theta$:

- (CASO BASE) $|W_{\theta}| = 0$. Allora $\theta = \emptyset$ (la funzione sempre indefinita) $\Rightarrow \theta \notin A_X$ perché $W_{\theta} = E\theta = \emptyset$ quindi non può esistere nessun $X \neq \emptyset$ tale che $W_{\theta} = E_{\theta} \cup X$. OK.
- (PASSO RICORSIVO) $|W_{\theta}| = n + 1$: $\theta(x)$ è definita su $n \geq 1$ punti. Siano n, m gli estremi inf. e sup. dell'intervallo rispettivamente. Allora succ(m) = m + 1 per definizione di succ. Allora $W_{\theta} = \{k \mid n \leq k \leq m\}$ e $E_{\theta} = \{k \mid n+1 \leq k \leq m+1\}$: È facile vedere che $m+1 \notin W_{\theta}$ ma $m+1 \in E_{\theta}$. Quindi $W_{\theta} \neq_{\theta} \cup X \ \forall \ X \neq \emptyset$. Per tutti gli altri casi $|W_{\theta}| = n$ si applica l'ipotesi induttiva.

Osservazione: se la dimostrazione induttiva vale $\forall W_{\theta}$ (finito o infinito) allora vale certamente anche $\forall W_{\theta}$ finito. $\Rightarrow A_X \in \overline{RE}$ per il secondo caso del teorema di Rice-Shapiro.

Che dire di $\overline{A_X}=\{x\in\mathbb{N}\mid W_x\neq E_x\cup X\}$ per un qualche $X\neq \emptyset$? Provo ad usare il secondo caso del teorema di Rice Shapiro per mostrare che $\overline{A_X} \in \overline{RE}$: $\exists f \cdot f \notin \overline{A_X}$, $\exists \theta$ finita $\theta \subseteq f \cdot \theta \in \overline{A_X} \Rightarrow \overline{A_X} \in \overline{RE}$

La funzione $succ \notin A_X$ per i motivi di cui sopra. Sia $\theta = \emptyset \subseteq succ$ una sottofunzione di succ sempre indefinita. $\theta \in \overline{\mathcal{A}_X}$ poiché $W_\emptyset = E_\emptyset = \emptyset$, per cui non può esistere nessun $X \neq \emptyset$ tale per cui $W_{\emptyset} = E_{\emptyset} \cup X \Rightarrow \theta \subseteq succ \text{ tale che } \theta \in \overline{\mathcal{A}_X}.$

 $\Rightarrow \overline{A_X} \in \overline{RE}$ per il primo caso del teorema di Rice-Shapiro.

2.7Esercizio 8.35

Sia f una funzione calcolabile totale tale che $img(f) = \{f(x) \mid x \in \mathbb{N}\}$ sia infinito. Studiare la ricorsività dell'insieme $A = \{x \mid \exists y \in W_x : x < f(y)\}.$

Ipotesi di lavoro:

- $f: \mathbb{N} \to \mathbb{N}, \ cod(f) = dom(f) = \mathbb{N}$
- A è l'insieme dei programmi in cui esiste un elemento del dominio tale che, se trasformato con f, sia maggiore della loro enumerazione.
- \rightarrow Ipotizzo $A \in RE, \ \overline{A} \in \overline{RE}$.

Provo a scrivere la funzione semicaratteristica di
$$A$$
:
$$SC_A(x) = \left\{ \begin{array}{ll} 1 & \text{se } x < f(y) \text{ per un certo } y \in W_x \text{ fissato} \\ \uparrow & \text{altrimenti} \end{array} \right. \text{. Pongo } g(x,y) = SC_A(x).$$

Allora $g(x,y) = \mu t \cdot \overline{sg}((x+1) - f(x)) \wedge \chi_{H(x,u,t)} \leftarrow \text{calcolabile perché composizione di funzioni}$ calcolabili. Quindi $A \in RE$. Pertanto $\bar{A} \in \overline{RE}$.

2.8 Esercizio 9.5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $x \in \mathbb{N}$ tale che $\varphi_x(y) = x + y$.

- 1. Enunciare secondo teorema di ricorsione. Data la funzione $f: \mathbb{N} \to \mathbb{N}$ unaria calcolabile e totale, $\exists e \in \mathbb{N}$ tale che $\varphi_e = \varphi_{f(e)}$
- 2. Scrivere la funzione come funzione di 2 parametri (g(x,y)=..): $g(x,y) = \left\{ \begin{array}{ll} x+y & \text{se} & \varphi_x(y) \downarrow \\ \uparrow & \text{altrimenti} \end{array} \right. = x+y+\bar{s}g(\mu t.H(x,y,t)) \leftarrow \text{calcolabile!}$ Vale anche $g(x,y) = x+y+\mathbb{O}(\psi_{\scriptscriptstyle U}(x,y))$
- 3. Applico teorema SMN pertanto esiste una funzione s calcolabile totale ad un parametro. $\exists f : \mathbb{N} \mapsto \mathbb{N}$ calc. tot. tale che $g(x,y) = \varphi_{f(x)}(y)$
- 4. Applico il secondo teorema di ricorsione e dico che per il secondo teorema di ricorsione $\exists x \in \mathbb{N}$ tale che $\varphi_x = \varphi_{f(x)}$
- 5. **VARIANTE**: se viene chiesto di dire che un insieme e saturo e mostrarlo con il secondo teorema di ricorsione, devo trovare 2 programmi, uno che sta nell'insieme ed uno che non ci sta, entrambi che calcolano la stessa funzione.

 $A=\{x\in\mathbb{N}\mid \varphi_x(y)=x+y\}$. Abbiamo appena dimostrato che $\exists\ x\in\mathbb{N}$ che calcola la funzione $\varphi_x(y)=x+y$. Allora il programma P_x che calcola la funzione φ_x termina. Allora è calcolabile. Allora esistono infinite funzioni calcolabili che calcolano la stessa funzione. Dunque $\exists\ k\in\mathbb{N}, k\neq x$ tale che $\varphi_x=\varphi_k$. Ma allora $\varphi_k(y)=x+y\neq k+y$. Ma allora $k\notin A\Rightarrow A$ non è saturato.

2.9 Esercizio 9.19

Dimostrare che $\exists n \in \mathbb{N}$ tale che $\varphi_n = \varphi_{n+1}$ ed esiste anche $m \in \mathbb{N}$ tale che $\varphi_m \neq \varphi_{m+1}$.

Il secondo teorema di ricorsione dice che, data $f: \mathbb{N} \to \mathbb{N}$ unaria, totale e calcolabile, $\exists e \in \mathbb{N}$ tale che $\varphi_n = \varphi_{f(n)}$.

- Si consideri la funzione successore $succ: \mathbb{N} \to \mathbb{N}$ tale che $succ(n) = n+1 \ \forall \ n \in \mathbb{N}$. Essa è unaria, totale e calcolabile: può essere quindi utilizzata come funzione per applicare il secondo teorema di ricorsione. Si ha quindi il seguente risultato: $\exists \ n \in \mathbb{N}$ tale che $\varphi_n = \varphi_{succ(n)} = \varphi_{n+1}$.
- Si consideri ora la funzione predecessore $pred: \mathbb{N} \mapsto \mathbb{N}$ tale che $pred(n) = \begin{cases} 0 & \text{se } n = 0 \\ n-1 & \text{altrimenti} \end{cases}$. La funzione pred è unaria, calcolabile e totale: può quindi essere utilizzata come funzione per applicare il secondo teorema di ricorsione. Si ha quindi il seguente risultato: $\exists m \in \mathbb{N}$ tale che $\varphi_m = \varphi_{pred(m)} = \varphi_{m-1} \neq \varphi_{m+1}$.

2.10 Esercizio 9.26

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che $\exists e \in \mathbb{N}$ tale che $W_e = \{e^n \mid n \in \mathbb{N}\}$ Significa trovare un programma il cui dominio è formato dalle potenze della sua enumerazione (Gödelizzazione)

- 1. Enunciare secondo teorema di ricorsione. Data la funzione $f: \mathbb{N} \to \mathbb{N}$ unaria calcolabile e totale, $\exists \ e \in \mathbb{N}$ tale che $\varphi_e = \varphi_{f(e)}$
- 2. Scrivere la funzione come funzione di 2 parametri (g(x,y) = ..):

$$g(x,y) = \begin{cases} 1 & \text{se} \quad y = x^n \text{ per qualche } n \\ \uparrow & \text{altrimenti} \end{cases}$$
$$= \mu n.(|y - x^n|) \leftarrow \text{calcolabile!}$$

- 3. Applico teorema SMN pertanto esiste una funzione s calcolabile totale ad un parametro. $\exists s : \mathbb{N} \mapsto \mathbb{N}$ calc. tot. tale che $g(x,y) = \varphi_{s(x)}(y)$
- 4. Applico il secondo teorema di ricorsione e dico che per il secondo teorema di ricorsione $\exists e \in \mathbb{N}$ tale che $\varphi_e = \varphi_{s(e)}$ e quindi:

$$\varphi_e(y) = \begin{cases} 1 & \text{se } y = e^n \text{ per qualche } n \\ \uparrow & \text{altrimenti} \end{cases}$$
Pertanto $W_e = \{e^n \mid n \in \mathbb{N}\}.$

5. **VARIANTE**: se viene chiesto di dire che un insieme è saturo e mostrarlo con il secondo teorema di ricorsione, devo trovare 2 programmi, uno che sta nell'insieme ed uno che non ci sta, entrambi che calcolano la stessa funzione.

$$A = \{ x \in \mathbb{N} \mid \varphi_x(y) \downarrow \forall \ y, z \in \mathbb{N} : y = x^z \}$$

 φ_x tale che $x \in A$ è calcolabile. Ma allora, visto che \exists infinite funzioni calcolabili che calcolano la stessa funzione, $k \in \mathbb{N}, k \neq e$ tale che $\varphi_e = \varphi_k$. Ma allora $dom(\varphi_e) = dom(\varphi_k)$. A questo punto è facile vedere che $k \notin A$ perché $W_k \neq \{k^n \mid n \in \mathbb{N}\}$. Quindi A non è saturato.