HKN ECE 210 Final Exam Review Session

Corey Snyder

Topics

- Circuit Analysis with Differential Equations
- Fourier Series
- Fourier Transform
- Signal Energy and Bandwidth
- LTI System Response with Fourier Transform
- Modulation, AM, Coherent Demodulation
- Impulse Response and Convolution
- Sampling and Analog Reconstruction
- LTIC and BIBO Stability
- Laplace Transform
- Applications of Laplace Transform

Circuit Analysis with Differential Equations

- Given a circuit with time varying inputs and reactive components (capacitors/inductors), we can utilize differential equations in order find the system response
- $i_C = C \frac{dV}{dt}$; $v_L = L \frac{di}{dt}$
- Many different terms, make sure to know the differences!
- Zero-State Response (Particular Solution, zero initial conditions)
- Zero-Input Response (Homogeneous Solution)
- Transient Response
- Steady-State Response
- These all add up to form the full response of the system

Fourier Series

- Fourier Series allows us to express any periodic signal as the infinite summation of complex exponentials or trigonometric functions
- This is incredibly useful because complex exponentials are eigenfunctions to LTI systems
 - What's an eigenfunction? $Af(t) \rightarrow [LTI \ System] \rightarrow \lambda f(t)$
- We have three forms: Refer to Table 1 in the Tables Packet for each form
 - Exponential
 - Trigonometric
 - Compact
- Conceptually, Fourier Series is like a discrete version of the Fourier Transform, meaning we only capture specific harmonically related frequencies instead of every frequency
- Total Harmonic Distortion (THD) is the amount of power contained in the harmonics of the fundamental frequency, i.e. for all n > 1

Fourier Transform

- The Fourier Transform of a signal shows the frequency content of that signal
 - In other words, we can see how much power is contained at each frequency for that signal
 - This is a big deal!
 - This is the <u>biggest deal!</u>

•
$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j} dt$$

•
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Important Signals for Fourier Transform

$$rect\left(\frac{t}{T}\right) = \begin{cases} 1, for |t| < \frac{T}{2} \\ 0, for |t| > \frac{T}{2} \end{cases}$$

$$u(t) = \begin{cases} 0, for \ t < 0 \\ 1, for \ t > 0 \end{cases}$$

$$\Delta\left(\frac{t}{T}\right) = \begin{cases} 1 + \frac{2t}{T}, for \frac{-T}{2} < t < 0 \\ 1 - \frac{2t}{T}, for 0 < t < \frac{T}{2} \end{cases}$$

•
$$sinc(t) = \begin{cases} \frac{\sin(t)}{t}, for \ t \neq 0 \\ 1, for \ t = 0 \end{cases}$$

Fourier Transform Tips

- Convolution in the time domain is multiplication in the frequency domain
 - Conversely, multiplication in the time domain is convolution in the frequency domain
- Scaling your signal can force properties to appear; typically time delay
 - Ex: $e^{-2(t+1)}u(t-1) \to e^{-4}e^{-2(t-1)}u(t-1)$
- The properties really do matter! Take the time to acquaint yourself with them.
- Remember that the Fourier Transform is linear, so you can express a spectrum as the addition of two easier spectra
 - Ex: Staircase function
- Magnitude Spectrum is even symmetric, Angle Spectrum is odd symmetric for real valued signals

Signal Energy and Bandwidth

- Energy = $W = \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$
 - Energy signals can be either low-pass or band-pass signals
- Bandwidth for Low-pass Signals
 - 3dB BW
 - r% BW
 - $\frac{1}{2\pi} \int_{-\Omega}^{\Omega} |F(\omega)|^2 d\omega = rW$
- Bandwidth for Band-pass signals
 - r% BW
 - $\frac{1}{\pi} \int_{-\Omega}^{\Omega} |F(\omega)|^2 d\omega = rW$ notice that r% BW for Band-pass signals is twice that of low-pass signals!

LTI System Response using Fourier Transform

• Given the following LTI system:

$$f(t) \to H(\omega) \to y(t)$$

- $Y(\omega) = F(\omega)H(\omega)$
- Computationally speaking, and in future courses, we prefer to use Fourier Transforms instead of convolution to evaluate an LTI system
- Why?
 - So much faster, minimal error

Modulation, AM Radio, Coherent Demodulation

- Modulation Property
 - If $f(t) \leftrightarrow F(\omega)$, $f(t) \cos(\omega_o t) \leftrightarrow \frac{1}{2} [F(\omega \omega_o) + F(w + \omega_o)]$
- In general, for Amplitude Modulation in communications, we modulate with cosine in order to shift our frequency spectrum into different frequency bands
- Coherent Demodulation refers to the process of modulating a signal in order to make it band-pass, then modulating it back to the original low-pass baseband before low-pass filtering in order to recover the original signal
- Envelope detection is the process of Full-wave Rectification (absolute value), then low-pass filtering in order to extract the signal

Impulse Response and Convolution

- Convolution
 - $x(t) * y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d = \int_{-\infty}^{\infty} x(t-\tau)y(\tau)d\tau$
 - We "flip and shift" one signal and evaluate the integral of the product of the two signals at any value of t (our delay for the shift)
- Representing LTI Systems
 - y(t) = x(t) * h(t), where h(t) is the **impulse response** of the system
- Impulse Response is the system output to a $\delta(t)$ input
- Graphical convolution helps to visualize the process of flipping and shifting

Helpful Properties for Convolution

- Derivative
 - $h(t) * f(t) = y(t) \to \frac{d}{dt}h(t) * f(t) = h(t) * \frac{d}{dt}f(t) = \frac{d}{dt}y(t)$
 - Use of Derivative property: Finding the impulse response from the unit-step response
 - If y(t) = u(t) * h(t), then $\frac{d}{dt}y(t) = \frac{d}{dt}u(t) * h(t) = \delta(t) * h(t) = h(t)$
- Start Point
 - If the two signals have start points at t_1 and t_2 , then the start point of their convolution will be at $t_1 + t_2$
- End Point
 - Similarly for the end points, if the two signals have end points at t_1 and t_2 , then the end point of their convolution will be at $t_1 + t_2$
- Width
 - From the above two properties, we can see that if the two signals have widths W_1 and W_2 , then the width of their convolution will be $W_1 + W_2$

The Impulse Function $\delta(t)$

- The impulse function is the limit of $\frac{1}{T}rect\left(\frac{t}{T}\right)as T \to 0$
 - Infinitesimal Width
 - Infinite Height
 - Of course, it integrates to 1. $(0 * \infty = 1)$
- Sifting
 - $\int_a^b \delta(t-t_o)f(t)dt = f(t_o)$ if t_o lies in your limits of integrations; 0 else
- Sampling
 - $f(t)\delta(t-t_o) = f(t_o)\delta(t-t_o)$
- Unit-step derivative
 - $\frac{du}{dt} = \delta(t)$

Sampling and Analog Reconstruction

- If we have an original analog signal f(t)
- Our digital samples of the signal are obtained through sampling property as:
 - f[n] = f(nT) where T is our sampling period; this is Analog to Digital (A/D) conversion
 - This results in infinitely many copies of the original signal's Fourier Transform spaced by $\frac{2\pi}{T}$ and scaled by $\frac{1}{T}$
- We must make sure to satisfy Nyquist Criterion:
 - $T < \frac{1}{2B} \text{ or } f_S > 2B$
- Following A/D conversion, we perform D/A conversion, then low-pass filter our signal in order to obtain our original signal according to the following relation
- $f(t) = \sum_{n} f_n sinc(\frac{\pi}{T}(t nT))$
- For a more complete explanation, take ECE 310!

LTIC

- LTIC stands for Linearity Time-Invariance and Causality (sometimes called LSIC, where SI means Shift-Invariance)
- Linearity
 - Satisfy Homogeneity and Additivity
 - Can be summarized by Superposition
 - If $x_1(t) \to y_1(t)$ and $x_2(t) \to y_2(t)$, then $ax_1(t) + bx_2(t) \to ay_1(t) + by_2(t)$
- Shift Invariance
 - If $x(t) \rightarrow y(t)$ then $x(t t_o) \rightarrow y(t t_o) \forall t_o$ and x(t)
- Causality
 - Output cannot depend on future input values

BIBO Stability

- A system is BIBO stable if for any bounded input, we obtain a bounded output
- Two ways to check BIBO stability
- By the definition:
 - If $|f(t)| \le \alpha < \infty$, then $|y(t)| \le \beta < \infty \ \forall \ t$
- By Absolute Integrability
 - $\int_{-\infty}^{\infty} |h(t)| d < \infty$

Laplace Transform

- The Laplace Transform is another way we can capture the frequency content of a signal.
 - So then why do we need it?
 - It can be used for stability analysis and initial value circuit problems
- $s = \sigma + j\omega$
- $\widehat{H}(s) = \int_0^\infty h(t)e^{-s} dt$
- h(t) = big mess
 - Use Partial Fraction Expansion and Inspection for the Inverse Laplace Transform!
- Every Laplace transform has a region of convergence.
- If you are instead given the transfer characteristic, the ROC is the right half plane from the rightmost pole.
- s-plane has x-axis of σ and y-axis of $j\omega$

Applications of the Laplace Transform

- BIBO Stability
 - If the ROC of a system includes the $\sigma = 0$ line, the system is stable.
- Initial Value Circuit Problems
 - A distinct advantage of Laplace Transforms is that they can give the full response of a system, while Fourier Transforms only give us the zero-state response.
 - When transferring a circuit into the s-domain we need to do a few things:
 - Take the Laplace transform of all sources
 - Capacitors go to $\frac{1}{sC}$; inductors go to sL
 - For initial state on a capacitor, place a current source in parallel with the capacitor that points from "-" to "+" with value of $Cv(0^-)$ where $v(0^-)$ is the initial voltage across the capacitor
 - For initial state on an inductor, place a voltage source in series with the inductor such that the current through inductor enters the positive terminal first. This source should have a voltage of $Li(0^-)$ where $i(0^-)$ is the initial current traveling through the inductor