Hướng dẫn bài tập Vi tích phân 2 Tuần 1

Ngày 20 tháng 5 năm 2024

Không gian Euclide

Không gian Euclide

Người ta ký hiệu \mathbb{R}^2 là tích Descartes

$$\mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}\$$

là tập hợp tất cả các cặp số thực có thứ tự. Tập hợp \mathbb{R}^2 được gọi là không gian Euclide.

Công thức khoảng cách

Khoảng cách giữa hai điểm $A(x_1,y_1)$ và $B(x_2,y_2)$ được cho bởi

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Không gian Euclide

Không gian Euclide

Người ta ký hiệu \mathbb{R}^n là tích Descartes

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, \forall i = \overline{1, n}\}\$$

là tập hợp tất cả các bộ có thứ tự n số thực. Tập hợp \mathbb{R}^n được gọi là không gian Euclide n chiều.

Khoảng cách trong \mathbb{R}^n

Cho $\pmb x, \pmb y \in \mathbb R^n$, với $\pmb x=(x_1,x_2,\dots,x_n)$ và $\pmb y=(y_1,y_2,\dots,y_n)$. Khoảng cách giữa chúng là

$$\|\boldsymbol{y} - \boldsymbol{x}\| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}$$

Quả cầu - Tập đóng - Tập mở

Cho $\boldsymbol{x} \in \mathbb{R}^n$ và $\varepsilon > 0$.

ullet Quả cầu mở tâm $oldsymbol{x}$ bán kính r:

$$B(\boldsymbol{x}, \varepsilon) = \{ \boldsymbol{y} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{y}|| < \varepsilon \}$$

• Quả cầu đóng tâm ${m x}$ bán kính r:

$$B'(\boldsymbol{x}, \varepsilon) = \{ \boldsymbol{y} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{y}|| \le \varepsilon \}$$

• Mặt cầu tâm \boldsymbol{x} bán kính r:

$$S(\boldsymbol{x}, \varepsilon) = \{ \boldsymbol{y} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{y}|| = \varepsilon \}$$

Quả cầu - Tập đóng - Tập mở

Ví dụ (trong \mathbb{R}^3)

Mặt cầu tâm C(a,b,c) với bán kính r được biểu diễn bởi phương trình

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

Nếu tâm là góc tọa độ O, thì phương trình của mặt cầu có dạng

$$x^2 + y^2 + z^2 = r^2$$
.

Quả cầu - Tập đóng - Tập mở

Cho $D \subset \mathbb{R}^n$ và điểm $x \in \mathbb{R}^n$.

- $+\ x$ được gọi là điểm trong của D nếu có một quả cầu tâm x được chứa trong D.
- $+\ x$ được gọi là điểm biên của D nếu bất kì quả cầu $B(x,\varepsilon)$ nào cũng chứa ít nhất một điểm trong D và một điểm không thuộc D.
- + x được gọi là điểm tụ của D nếu bất kì quả cầu $B(x,\varepsilon)$ nào cũng chứa ít nhất một điểm thuộc D khác với x.
- + Tập D được gọi là tập mở nếu mọi điểm của D đều là điểm trong của D (có nghĩa là mọi điểm thuộc D đều là tâm của một quả cầu nằm hoàn toàn trong D).
- + Tập D được gọi là tập đóng nếu mọi điểm biên của D đều thuộc D.

Bài tập 1: Phác thảo các điểm (0,5,2), (4,0,-1), (2,4,6) và (1,-1,2) trên hệ trục tọa độ.

Bài tập 2: Cho các điểm A(-4,0,-1), B(3,1,-5), C(2,4,6). Điểm nào gần mặt-yz nhất? Điểm nào nằm trên mặt-xz?

Bài tập 3: Tìm phương trình mặt cầu với tâm (-3,2,5) và bán kính là 4. Giao điểm của mặt cầu và mặt phẳng-yz là gì?.

Hàm nhiều biến

Hàm hai biến

Hàm số hai biến f là một qui tắc gán mỗi cặp số thực có thứ tự (x,y), thuộc một tập hợp D, với duy nhất một số thực f(x,y).

Tập hợp D được gọi là **tập xác định** của f.

Tập giá trị của f là tập hợp các giá trị mà f có; nghĩa là $\{f(x,y) \mid (x,y) \in D\}.$

Hàm n biến

Hàm số n biến f xác định trên tập $D \subset \mathbb{R}^n$ là một qui tắc gán mỗi bộ nsố thực có thứ tự $(x_1, x_2, \dots, x_n) \in D$, với duy nhất một số thực $f(x_1,x_2,\ldots,x_n)$.

$$f: D \longrightarrow \mathbb{R}$$

 $\mathbf{u} = (x_1, x_2, \dots, x_n) \longmapsto f(\mathbf{u}) = f(x_1, x_2, \dots, x_n)$

Bài tập 4: Cho $g(x, y) = \cos(x + 2y)$.

- (a) Tính g(2, -1).
- (b) Tìm tập xác định của g.
- (c) Tìm tập giá trị của g.

Bài tập 5: Cho $F(x,y) = 1 + \sqrt{4 - y^2}$.

- (a) Tính F(3,1).
- (b) Tìm và phác họa tập xác định của F.
- (c) Tìm tập giá trị của F.

Bài tập 6: Tìm và vẽ tập xác định của hàm số $f(x,y) = \sqrt{xy}$.

Bài tập 7: Tìm và vẽ tập xác định của hàm số

$$f(x,y) = \ln(9 - x^2 - 9y^2).$$

Bài tập 8: Tìm và vẽ tập xác định của hàm số $f(x,y) = \sqrt{x^2 - y^2}$.

Bài tập 9: Tìm và vẽ tập xác định của hàm số

$$f(x,y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}.$$

Đồ thị - Đường mức

Định nghĩa (Đồ thị)

Nếu f là hàm hai biến với tập xác định D, thì **đồ thị** của f là tập tất cả các điểm (x,y,z) trong \mathbb{R}^3 sao cho z=f(x,y) và (x,y) thuộc D.

Định nghĩa (Đường mức)

Đường mức của hàm hai biến f là các đường cong có phương trình f(x,y)=k, trong đó k là hằng số (trong tập giá trị của f).

Bài tập 10: Vẽ đồ thị của hàm số f(x,y) = 10 - 4x - 5y.

Bài tập 11: Vẽ đồ thị của hàm số $f(x,y) = \sqrt{x^2 + y^2}$.

Định nghĩa

Cho f là hàm số hai biến mà miền xác định D của nó chứa các điểm gần (a,b) tùy ý. Lúc đó ta nói rằng giới hạn của f(x,y) khi (x,y) tiến đến (a,b) là L và ta viết

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

nếu với mọi số $\epsilon>0$ cho trước, có một số $\delta>0$ tương ứng sao cho nếu $(x,y)\in D$ và $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$ thì $|f(x,y)-L|<\epsilon.$

Đối với hàm một biến, $\lim_{x\longrightarrow a} f(x)$, thì x tiến về a theo hai hướng, trái và phải. Đối với hàm hai biến, $\lim_{(x,y)\to(a,b)} f(x,y)$, thì (x,y) có thể tiến đến (a,b) theo vô số hướng, miễn là (x,y) vẫn trong tập xác định của f.

Hệ quả

Nếu $f(x,y)\longrightarrow L_1$ khi $(x,y)\longrightarrow (a,b)$ theo đường đi C_1 và $f(x,y)\longrightarrow L_2$ khi $(x,y)\longrightarrow (a,b)$ theo đường đi C_2 , với $L_1\neq L_2$, thì $\lim_{(x,y)\longrightarrow (a,b)}f(x,y)$ không tồn tại

Các tính chất bảo toàn phép tính của giới hạn (ví dụ như giới hạn của tổng bằng tổng các giới hạn,. . .) trong hàm số một biến cũng đúng cho hàm số hai biến. Định lý giới hạn kẹp cũng vậy:

Định lý giới hạn kẹp

Giả sử

- tồn tại các giới hạn $\lim_{(x,y) \to (a,b)} g(x,y) = \lim_{(x,y) \to (a,b)} h(x,y) = L$
- $g(x,y) \leq f(x,y) \leq h(x,y)$, đúng với mọi (x,y) trong một đĩa tròn tâm (a,b).

Khi đó,
$$\lim_{(x,y)\longrightarrow (a,b)} f(x,y) = L.$$

Định nghĩa

Một hàm hai biến f, xác định trên D, được gọi là **liên tục tại** điểm (a,b) nếu

$$\lim_{(x,y) \to (a,b)} f(x,y) = f(a,b)$$

Ta nói f **liên tục trên** D nếu f liên tục tại mọi điểm (a,b) trong D.

Định nghĩa của hàm n biến

Cho f là hàm số xác định trên tập con D của \mathbb{R}^n , thì $\lim_{{m x}\longrightarrow{m a}} f({m x}) = L$ có nghĩa là với mọi số $\epsilon>0$, có một số $\delta>0$ sao cho nếu ${m x}\in D$, và $0<|{m x}-{m a}|<\delta$ thì $|f({m x})-L|<\epsilon$. Tính liên tục có thể được viết

$$\lim_{\boldsymbol{x} \to \boldsymbol{a}} f(\boldsymbol{x}) = f(\boldsymbol{a}).$$

Tìm giới hạn nếu nó tồn tại hoặc chứng minh giới hạn không tồn tại.

Bài 1.
$$\lim_{(x,y)\to(1,2)} (x^4 - y^2 + x^3y^2 - 1).$$

Bài 2.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 2y^2}$$
.

Bài 3.
$$\lim_{(x,y)\to(0,0)} \frac{5y^4\cos^2 x}{x^4+y^4}$$
.

Bài 4.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$
.

Xác định tập hợp các điểm mà tại đó hàm số liên tục.

Bài 5.
$$F(x,y) = \frac{xy}{1 + e^{x-y}}$$
.

Bài 6.
$$F(x, y) = \cos \sqrt{1 + x - y}$$
.

Bài 7.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2}, & \text{n\'eu } (x,y) \neq (0,0) \\ 0 & \text{n\'eu } (x,y) = (0,0) \end{cases}$$