TITLE

by

Kraig Andrews

DISSERTATION

Submitted to the Graduate School of Wayne State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

2008

MAJOR: Physics				
Approved by:				
Advisor				

© COPYRIGHT BY YOUR NAME

Year

All Rights Reserved

This is a dedication.

"The fact that we live at the bottom of a deep gravity well, on the surface of a gas covered planet going around a nuclear fireball 90 million miles away and think this to be normal is obviously some indication of how skewed our perspective tends to be."

— Douglas Adams, The Salmon of Doubt: Hitchhiking the Galaxy One Last Time

ABSTRACT

TITLE HERE

by

AUTHOR NAME

August 2008

Advisor: Professor Your Prof

Major: Physics

Degree: Doctor of Philosophy

Abstract here

ACKNOWLEDGEMENTS

Acknowledgements here

Table of Contents

	Copyright	i
	Dedication	ii
	Quotation	ii
	Abstract ir	v
	Acknowledgments	V
	List of Figures	ii
	List of Tables	ii
	List of Symbols	Х
	List of Physical Constants	ζi
	Acronyms	ii
1	Chapter Title	1
	1.1 Section Title	1
\mathbf{R}	eferences	2
	Autobiographical Statement	3

List of Figures

List of Tables

List of Symbols

Symbol	Description	Unit
\mathbf{A}	vector potential	$\mathrm{V}\mathrm{s}\mathrm{m}^{-1}$
A	area	${ m cm}^2$
B	magnetic field	T
C	capacitance	F
E	electric field	$ m Vm^{-1}$
E	energy	eV(J)
$E_{ m F}$	Fermi energy	${ m eV}$
E_g	bandgap energy	${ m eV}$
$\hat{\mathbf{H}}$	Hamiltonian	add this
I	current	A
$I_{ m ds}$	drain current	A
L	length	${ m \mu m}$
L	channel length	$\mu \mathrm{m}$
m	mass	kg
m^{\star}	effective mass	kg
$\hat{\mathbf{p}}$	momentum operator	${ m kg}{ m m}{ m s}^{-1}$
R	resistance	$k\Omega \mu m (\Omega)$
R_c	contact resistance	${ m k}\Omega{ m \mu m}$
R_H	Hall coefficient	$\mathrm{m^3C^{-1}}$
$\hat{\mathbf{s}}$	spin operator	$\hbar \; (\mathrm{J} \mathrm{s})$
T	temperature	K
V	voltage	V
$V_{ m bg}$	backgate voltage	V

$V_{ m ds}$	drain voltage	V
$V_{ m H}$	Hall voltage	V
w	channel width	μm
μ	magnetic moment	${ m eVT^{-1}}$
μ	mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
μ_e	electron mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ ext{FE}}$	field-effect mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ m H}$	Hall mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
μ_p	hole mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
ho	resistivity	$\Omega\mathrm{cm}$
$ ho_{xx}$	longitudinal resistivity	add this
$ ho_{xy}$	transverse resistivity	add this
σ	conductivity	μS
σ_{xx}	longitudinal conductivity	add this
σ_{xy}	transverse conductivity	add this
au	lifetime	S
$\Phi_{ m B}$	barrier height	eV
$\Phi_{\mathrm{B}n}$	electron barrier height	eV
$\Phi_{\mathrm{B}p}$	hole barrier height	eV
Φ_M	metal work function	eV
Φ_S	semiconductor work function	eV
χ	electron affinity	eV
χ_S	semiconductor electron affinity	eV
ω_c	cyclotron frequency	add this

List of Physical Constants

Symbol	Quantity	Value
$k_{ m B}$	Boltzmann's constant	$1.38066 \times 10^{-23}\mathrm{JK^{-1}}$
		$8.61734\times 10^{-5}{\rm eV}{\rm K}^{-1}$
ϵ_0	dielectric constant	$8.85418 \times 10^{-12}\mathrm{A^2s^4kg^{-1}m^{-3}}$
e	elementary charge	$1.60218 \times 10^{-19}\mathrm{C}$
eV	electron volt	$1.60218 \times 10^{-19}\mathrm{J}$
c	speed of light	$2.99792\times10^8\mathrm{ms^{-1}}$
h	Planck's constant	$6.62607 \times 10^{-34}\mathrm{Js}$
\hbar	reduced Planck's constant	$1.05457 \times 10^{-34}\mathrm{Js}\;(h/2\pi)$
$R_{\mathrm{K-90}}$	von Klitzing constant	25812.80745555Ω
m_e	electron mass	$9.109383 \times 10^{-31} \mathrm{kg}$
$k_{ m B}T$	Thermal energy	$0.02586\mathrm{eV}\ (T=27^{\circ}\mathrm{C})$
		$0.02526\mathrm{eV}\ (T=20^{\circ}\mathrm{C})$
μ_B	Bohr magneton	$9.274009\times 10^{-24}\mathrm{JT^{-1}}$
		$5.788381 \times 10^{-5}\mathrm{eV}\mathrm{T}^{-1}$
		$e\hbar/2m_e$ (atomic units)

Source: CODATA Recommende Values of the Fundamental Physics Constants: 2014, Mohr $et\ al.^1$

Acronyms

2DEG two-dimensional electron gas

 ${\bf 2DES}\;$ two-dimensional electron system

 ${\bf 2DHG}\,$ two-dimensional hole gas

AFM atomic force microscopy

Au gold

 $\mathbf{BJD}\,$ Bell Jar deposition

 ${\bf BP}\;$ black phosphorus

 $\mathbf{CBM}\,$ conduction band minimum

C-V capcaitance-voltage

 \mathbf{CVD} chemical vapor deposition

DI deionized water

DFT density functional theory

 \mathbf{DOS} density of states

 $\mathbf{dHvA}\,$ de Haas-van Alphen

EBL electron beam lithography

F-D Fermi-Dirac

 \mathbf{FET} field effect transistor

FIB focused ion beam

 ${f FL}$ Fermi level FLP Fermi level pinning FQHE fractional quantum hall effect h-BN boron nitride IC integrated circuit IPA isopropanol \mathbf{IQHE} integer quantum Hall effect \mathbf{IR} infrared I-V current-voltage ${f LL}$ Landau levels $\mathbf{MEK}\,$ methyl ethyl ketone MFM magnetic force microscopy \mathbf{MIBK} methyl isobutyl ketone \mathbf{MIGS} metal induced gap states \mathbf{Mo} molybdenum $\mathbf{MoS_2}$ molybdenum disulfide MOSFET metal-oxide-semiconductor field-effect transistor $\mathbf{N_2}$ nitrogen \mathbf{Nb} niobium Ni nickel $\mathbf{NPGS}\,$ Nanometer Pattern Generation System

PC polycarbonate

 ${\bf PE}\,$ polymer electrolyte

PDMS polydimethylsiloxane

 ${f PL}$ photoluminescence

PMMA polymethyl methacrylate

PPMS physical property measurement system

 \mathbf{QHE} quantum hall effect

 \mathbf{Re} rhenium

 ${f RF}$ radio frequency

 \mathbf{S} sulfur

SB Schottky barrier

SBH Schottky barrier height

Se selenium

 ${\bf SEM}$ scanning electron microscope

 \mathbf{SdH} Shubnikov-de Haas

 ${\bf SiO_2}\,$ silicon dioxide

STM scanning tunneling microscopy

 ${f Te}$ tellurium

 ${f TE}$ thermionic emission

TEM transmission electron microscopy

TFE thermionic-field emission

 \mathbf{TFET} tunneling field effect transistor

 \mathbf{TFT} thin film transistor

Ti titanium

TLM transmission line model

TMD transition metal dichalcogenides

UHV ultra-high vacuum

 ${f V}$ vanadium

 ${f VBM}$ valence band maximum

 \mathbf{W} tungsten

 $\mathbf{WS_2}$ tungsten disulfide

 $\mathbf{WSe_2}$ tungsten diselenide

Chapter 1

Chapter Title

1.1 Section Title

Contents here with Schottky barrier (SB).

References

[1] P. J. Mohr, D. B. Newell, and B. N. Taylor. Codata recommended values of the fundamental physical constants: 2014. *ArXiv e-prints*, jul 2015.

Autobiographical Statement

Name: Your Name

Education:

M.S. Physics, Some University, City, State, Year M.S. Physics, Some Other University, City, State, Year

Professional Experience:

Some Job, Dept. of Physics and Astronomy, Somewhere, Year

Publications: "Paper Title" Journal Name

Your autobiographical statement.