Encuentra la *intersección* de las rectas f y g en el plano  $\mathbb{R}^2$ ,

f: 
$$y = 2x + 2$$
, g:  $y = -3x + 7$ 



Figura 1: En verde la gráfica de y = 2x + 2, en azul la gráfica de y = -3x + 7.

Las coordenadas  $(p_1, p_2)$  del punto de intersección P de las rectas f y g, deben satisfacer ambas ecuaciones, es decir

$$p_2 = 2p_1 + 2, (1)$$

$$p_2 = -3p_1 + 7. (2)$$

Una manera de resolver el anterior *sistema de ecuaciones*, dos *ecuaciones* con dos *incógnitas*, a saber  $p_1$  y  $p_2$ , es:

Despejar  $p_2$  en la ecuación (1) —de hecho ya lo está—, substituir el resultado en la ecuación (2), despejar de ahí  $p_1$ , obteniendo su *valor*. Lo substituimos en cualesquiera de las dos ecuaciones para hallar el *valor de*  $p_2$ .

Al substituir  $p_2$  en la ecuación (2) obtenemos

$$2p_1 + 2 = -3p_1 + 7$$

(lo que equivale a igualar ambas ecuaciones) despejamos p<sub>1</sub>,

$$2p_1 + 3p_1 = 7 - 2$$
  
 $5p_1 = 5$   
 $p_1 = \frac{5}{5} = 1$ .

Es decir,  $p_1 = 1$ . Substituimos este valor en la ecuación (1),

$$p_2 = 2p_1 + 2 = 2(1) + 2 = 4.$$

Así, el punto de intersección de las rectas f y g es P = (1,4).

