CIS 375 CHAPTER 10

The Internet

Outline

- Background
- Internet Architecture
 - How the Internet Works
- Internet Access Technologies
 - DSL
 - Cable
 - Fiber to the Home
 - Wireless
- Internet Governance
- The Future of the Internet
- Implications for Cyber Security

The Internet

- Most used network in the world
- Network of networks
 - Various networks managed by for-profit, non-profit, and government organizations
- Organizations use standardized protocols to communicate
- Few controls over content and applications

The Internet

- The World Wide Web (WWW) ≠ the Internet
- WWW is about content, specifically hyperlinked content
- The Internet is the transport mechanism that enables the WWW and other services

10.1 The Internet

Number of Internet Users Worldwide (in millions)

- Internet service providers (ISPs) connect the networks of their customers to the Internet
- Hierarchy of ISPs by size
 - Tier 1 National ISPs
 - Tier 2 Regional ISPs
 - Tier 3 Local ISPs

- Connections between ISPs
 - Historically, lower-tier ISPs purchased connections to highertier ISPs
 - Most interconnections between ISPs occurs at Internet exchange points (IXPs)

FIGURE 10-2 Basic Internet architecture.

ISP = Internet service provider and IXP = Internet exchange point

Connecting to the Internet

AT&T Internet Backbone Connection

Seattle	6. Phoenix	11. Houston	16. Chicago	21. Washington DC
Sacramento	7. Salt Lake City	12. Kansas City	17. Detroit	22. Philadelphia
. San Francisco	8. Denver	13. Omaha	18. Atlanta	23. New York
. Los Angeles	9. Austin	14. Minneapolis	19. Orlando	24. Hartford
. San Diego	10. Dallas	15. St. Louis	20. Pittsburgh	25. Boston

Internet Today

- ISPs are autonomous systems and share routing info using BGP
- Service charges
 - Higher-tier ISPs charge lower-tier ISPs for data transfer
 - ISPs at the same tier typically do not charge each other
 - Called *peering*
 - One of the primary reasons for IXPs

FIGURE 10-3 A typical Internet backbone of a major ISP

- ISP backbone
 - Larger backbone connections operating at OC-192 (10 Gbps) and experimenting with OC-768 (40 Gbps) and OC-3072 (160 Gbps)
 - Require faster backbone switches and routers
 - Internet peak traffic estimated to reach 1 Pbps by 2018

Connecting to an ISP

- A point of presence (POP) is the location where an ISP provides service to its customers
- The POP connects to the rest of the ISP's network
- Authentication is performed at the POP

Internet Access Technologies

- Some organizations use WAN technologies to connect to their ISP
- Common broadband technologies to connect to ISPs include:
 - Digital subscriber line (DSL)
 - Cable
 - Fiber to the Home (FTTH)
 - Wireless (e.g., WiMAX)

Digital Subscriber Line (DSL)

- A family of point-to-point technologies usually offered by telephone companies
- Provides high-speed transmissions over traditional telephone wires
- Customer premises equipment (CPE) includes a DSL modem and line splitter
- The local loop (or last mile) is the circuit from the customer premises to the ISP's office containing the main distribution facility (MDF)

FIGURE 10-4 Digital subscriber line (DSL) architecture. ISP = Internet service provider and POP = point of presence

Digital Subscriber Line (DSL)

- Many DSL technologies exist, but the most commonly implemented include:
 - Asymmetric DSL (ADSL)
 - 3 channels of different width (voice, downstream, upstream)
 - Downstream bandwidth greater than upstream
 - Bandwidth dependent on distance from equipment
 - Very-high-data-rate DSL (VDSL)
 - Similar to ADSL, but with higher data rates and shorter range
 - Often paired with fiber circuits to the node
 - May be used for high definition television in addition to data and voice transmission

Cable

- Alternative to DSL offered by cable television companies
- Most cable ISPs use hybrid fiber coaxial (HFC)
 networks with coaxial cables in the customer premises
- Cable networks are multipoint (shared) while DSL is point-to-point
 - Shared bandwidth
 - Potential issues with security

Cable

- Data over cable service interface specification (DOCSIS) is a set of standards used by cable ISPs
- The newest DOCSIS standards support data rates over 1 Gbps, but few ISPs have deployments that support these speeds
- The cable modem at the customer's premises are configured to "cap" the bandwidth at a maximum rate specified by contract

FIGURE 10-6 Cable modem architecture. ISP = Internet service provider and POP = point of presence

Fiber to the Home (FttH)

- A dedicated point-to-point fiber optic service
- Architecturally similar to DSL and cable
- Expensive to deploy and these networks are emerging slowly

Fiber to the Home (FttH)

Wireless

- Worldwide interoperability for microwave access (WiMax)
 - 802.16 wireless standard fixed/mobile
 - Similar to the 802.11 WiFi standards, but with longer range
 - One implementation of 4G mobile wireless
 - Maximum theoretical range is ~30 miles
 - Maximum theoretical data rate is ~70 Mbps
 - The WiMax standard includes possible use 2-66 GHz frequency bands, but only 2.3, 2.5, 3.5, and 5.8 GHz bands are used in North America

Wireless

- Long-term evolution (LTE) and LTE advanced
 - A 3GPP wireless standard for mobile devices
 - Upgrade to GSM and CDMA data networks
 - Frequencies from 700 MHz 2.7 GHz are used in various countries

Satellite

- Primarily used by rural customers
- Issues of high latency and low data rates
- Two-way vs. one-way

Internet Governance

- No single organization governs the Internet
- The Internet Society (ISOC)
 - Internet Architecture Board (IAB)
 - Internet Engineering Task Force (IETF)
 - Internet Engineering Steering Group (IESG)
 - Internet Research Task Force (IRTF)
- Internet Corporation for Assigned Names and Numbers (ICANN)
- Internet Governance Forum (IGF)
- International Telecommunication Union (ITU)

Internet Governance

- Issue of Net neutrality
 - Should all messages on the Internet be treated equally?
 - Can ISPs regulate (or discriminate) data that runs through their networks based on source, destination, protocol, or content?

Net Neutrality

What is Net Neutrality?

- Net Neutrality is the internet's guiding principle
 - It preserves our right to communicate freely online.
 - It enables and protects free speech
 - It ensures that ISPs provide us with open networks — and don't block or discriminate against any applications or content that ride over those networks

What Happens if Net Neutrality Goes Away?

- ISPs (AT&T, Comcast, Verizon) will be able to:
 - Charge extra fees to the few content companies that could afford to pay for preferential treatment
 - Decide who is heard and who isn't. They'd be able to block websites or content they don't like or applications that compete with their own offerings.

Building the Future Internet

- Internet continues to evolve and improve, often through a combination of commercial and governmental research projects
- Internet2
 - US National Science Foundation (NSF) project started in 1996
 - Used by more than 500 organizations to develop advanced networks and network management tools

Building the Future Internet

FIGURE 10-7 Internet2 network map. Reproduced by permission of Internet2®

Implications for Management

- The Internet continues to increase its capacity
- Broadband Internet data rates continue to increase
- Mobile Internet access is rapidly growing, disrupting the ISP market

10.5 Implications for Cyber Security

- DDOS is much more real

 - University students are targets

https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/

