Diversity Minute

But first, an announcement...

March 4, 2022

Dear Haihao,

Congratulations! I am pleased to inform you that you have been admitted to the Master of Education program in Learning Design, Innovation, and Technology at the Harvard Graduate School of Education to pursue full-time study for the 2022-2023 academic year.

You will be a part of a cohort of students who bring with them not only impressive professional experience and excellent academic training, but also dedication to the profession of education. You are to be commended on the fine record of achievement by which you earned your place in the class.

About me

- From Shenzhen, China
 - and Stamford, CT, and Hong Kong
- Rice University
 - BS in Materials Science and NanoEngineering
 - BA in Mathematics
- Diverse research experiences abroad in undergrad

Climbing Mount Fuji

Skiing in the French Alps

Tomb of Confucius

Information Extraction from Materials Science Literature: Machine Learning Tasks and Methods

Haihao Liu March 7, 2022

Motivation

Materials Informatics

• "Fourth paradigm" after experiments, theory, simulation

Need high-quality structured data for materials informatics

Sparsity and scarcity key issues

Background

Information Extraction

Background

Natural Language Processing

• Empirical linguistics since 90s

Applied fields – chemistry, polymers, biology/medical

Contextualized word embeddings (ELMo, BERT)

Overview

Information Extraction from Materials Science Literature

Task 1:

Sample name recognition

Task 2:

Aluminum alloy data extraction

Task 3:

Key phrase ranking and analysis

Task 1: Sample name recognition

Task Definition

Two low-density steel specimens were preprared for experiments by cold-rolling and annealing at 800 °C (T800) and 900 °C (T900) for 2 min in an infrared heating furnace. The macroscopic tensile behaviors of both

scale tensile behavior was observed in both steels. The yield strength of T800 is 718 MPa, which is much higher than the 561 MPa obtained for T900. While T800 shows

Hyperparameter Tuning

$$FL(y, \hat{y}) = -\alpha \sum_{c=1}^{m} (1 - \tilde{\hat{y}}_c)^{\gamma} y_c \log(\tilde{\hat{y}}_c) \in \mathbb{R}^n$$

$\gamma\setminus\ lr$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
0.0	0.0536	0.4857	0.5035	0.4463	0.0
2.0	0.0929	0.4739	0.5048	0.4770	0.0
4.0	0.2045	0.4795	0.4926	0.4388	0.0

Table 3: F1 results of hyperparameter grid search

Hyperparameter Tuning

Hyperparameter Tuning

Model Interpretation

y=B (probability 0.895, score 3.429) top features

Contribution?	Feature
+13.798	Highlighted in text (sum)
-10.369	<bias></bias>

[CLS] The affinity follows the sequence H ##60 ##0 - 0 . 5 N H ##60 ##0 - 3 N > H ##60 ##0 - 5 N > H ##60 ##0 . [SEP]

y=B (probability 0.959, score 4.469) top features

Contribution?	Feature
+14.062	Highlighted in text (sum)
-9.594	<bias></bias>

[CLS] All of the data were collected by adding 10 mg solid material into 10 m ##L H ##A solution, which was then kept at room temperature for 6 h. A few points worth noting are: (1) comparing Re value of PA ##C - C and PA ##C - P, it is shown that PA ##C - C exhibits a slight better performance than PA ##C - P. [SEP]

Model Interpretation

y=O (probability 0.555, score 0.599) top features

Contribution?	Feature
+2.194	<bias></bias>
-1.595	Highlighted in text (sum)

[CLS] After the four consecutive cat ##alytic runs, we observed a higher decrease of conversion for Amber ##ly ##st - 15 than for S ##BA - 15 - M ##w ##S and SM ##w - AG catalyst ##s, which showed just a slight conversion decrease (Fi ##g. [SEP]

y=B (probability 0.441, score 0.052) top features

Contribution?	Feature
+4.392	Highlighted in text (sum)
-4.340	<bias></bias>

[CLS] After the four consecutive cat ##alytic runs, we observed a higher decrease of conversion for Amber ##ly ##st - 15 than for S ##BA - 15 - M ##w ##S and SM ##w - AG catalyst ##s, which showed just a slight conversion decrease (Fi ##g. [SEP]

Task 2: Aluminum alloy data extraction

Aluminum alloy design

Second-most produced metal after steel, more room to innovate

Aluminum alloys

Steel alloys

TWIP/TRIP: Twinning/ transformation-induced plasticity

Task Definition

Table 1 Alloying elements in wrought aluminum and aluminum alloys

Representative list of common wrought aluminum alloys

		Composition, maximum unless a range or minimum is specified(a), wt%							
Aluminum Association designation	Unified Numbering System (UNS) designation	Si	Fe	Cu	Mn	Mg	Zn	Other specified alloying elements	Al, min or bal
1050	A91050	0.25	0.40	0.05	0.05	0.05	0.05		99.50
1060	A91060	0.25	0.35	0.05	0.03	0.03	0.05	• • •	99.60
1145	A91145	0.55 Si	+ Fe	0.05	0.05	0.05	0.05	• • •	99.45
1175	A91175	0.15 Si	+ Fe	0.10	0.02	0.02	0.04	• • •	99.75
1200	A91200	1.00 (Si	+ Fe)	0.05	0.05		0.10	• • •	99.0
1230	A91230	0.70 Si	+ Fe	0.10	0.05	0.05	0.10	• • •	99.30
1235	A91235	0.65 Si	+ Fe	0.05	0.05	0.05	0.10	•••	99.35
1345	A91345	0.30	0.40	0.10	0.05	0.05	0.05	• • •	99.45
1350	A91350	0.10	0.40	0.05	0.01			• • •	99.50
2011	A92011	0.40	0.7	5.0-6.0			0.30	0.20-0.6% Bi; 0.20-0.6% Pb	bal
2014	A92014	0.50-1.2	0.7	3.9-5.0	0.40 - 1.2	0.20 - 0.8	0.25	•••	bal
2017	A92017	0.20 - 0.8	0.7	3.5-4.5	0.40 - 1.0	0.40 - 0.8	0.25	• • •	bal
2018	A92018	0.9	1.0	3.5-4.5	0.20	0.45 - 0.9	0.25	1.7-2.3Ni	bal
2024	A92024	0.50	0.50	3.8-4.9	0.30-0.9	1.2 - 1.8	0.25	• • •	bal
2025	A92025	0.50-1.2	1.0	3.9-5.0	0.40-1.2	0.05	0.25	• • •	bal
2036	A92036	0.50	0.50	2.2 - 3.0	0.10-0.40	0.30-0.6	0.25	• • •	bal
2117	A92117	0.8	0.7	2.2 - 3.0	0.20	0.20 - 0.50	0.25	• • •	bal
2124	A92124	0.20	0.30	3.8-4.9	0.30-0.9	1.2 - 1.8	0.25	•••	bal
2218	A92218	0.9	1.0	3.5-4.5	0.20	1.2 - 1.8	0.25	1.7-2.3Ni	bal

Alloy Compositions

• 1000 — — — — — — — — — — — — — — — — —	– Cu
• 2000 Cu - Cu	Cu
• 2000 Cu — Cu	
	Mn
♦ 4000 Si — Si •	Si
♦ 5000 Mg - Mg -	Mg
♦ 6000	_
→ 7000 Zn - Zn -	Zn
◆ 8000	-
ı Cr — Cr	_
Fe Fe •	Fe
Ti – Ti -	Ti

n = 14,884

Pfeiffer, Liu, et al. (2022)

Alloy Properties

n = 1,278

Pfeiffer, Liu, et al. (2022)

Task 3: Key phrase ranking and analysis

Task 3

Top key phrases per series

	5000		60	000				7000	
friction stir welding	1340	00 t6 alu	minium alloy		86000	á	aluminum alloy 7075		159000
5083 aluminum alloy	1130	00 sever	e plastic deformation		85000	7	7050 aluminum alloy		137000
5052 aluminum alloy	950	00 finite	element method		82000	9	stress corrosion cracking		131000
ultimate tensile strength	640	00 friction	n stir processing		65000	f	atigue crack growth		88000
aluminum alloy 5083	610	00 tool r	otational speed		62000	L	ultimate tensile strength		83000
friction stir processing	530	00 finite	element analysis		57000	á	aluminium alloy 7075		79000
aluminum alloy 5052	500	00 energ	y dispersive x		57000	ā	aluminum alloy 7050		58000
heat affected zone	370	00 6082	aluminum alloy		54000	ā	average grain size		57000
resistance spot welding	340	00 exper	imental results show		51000	ł	neat affected zone		55000
finite element analysis	330	00 differ	ential scanning calorimet	try	51000	t	7451 aluminum alloy		53000
aluminum alloy sheet	320	00 respo	nse surface methodolog	;y	48000	t	6 aluminium alloy		52000
aluminium alloy 5083	320	00 6061	aluminum alloys		47000	f	inite element method		48000
aluminum alloy sheets	300	00 fatigu	e crack growth		44000	7	7075 aluminum alloys		47000
5754 aluminum alloy	300	00 metal	matrix composites		43000	6	experimental results show		43000
average grain size	290	00 aa606	51 aluminum alloy		40000	9	solution heat treatment		38000
tool rotational speed	250	00 avera	ge grain size		40000	f	atigue crack initiation		37000
stress corrosion cracking	240	00 friction	n stir welded		40000	7	7085 aluminum alloy		36000
finite element method	240	00 6061	al alloy		39000	(crack growth rate		36000
strain rate sensitivity	230	00 finite	element model		39000	ł	nigh strength aluminum alloys		35000
5182 aluminum alloy	230	00 soluti	on heat treatment		37000	9	strain rate range		33000
energy dispersive x	230	00 alumi	num alloy 6063		36000	6	energy dispersive x		33000
digital image correlation	230	00 frictio	n stir spot welding		35000	7	7075 al alloy		32000

Task 3

Top studied alloys by series

2024	977.655614	3003	100.689273			7075	1040 16131
2219	201.870831	3004	29.207618	6061	1262.18073	7075	1040.16121
2014	87.982418	3104	24.94444	6063	334.403977	7050	289.886416
2124	41.268038	3105	7.75	6082	227.730373	7055	69.186334
2017	37.173993	3103	7.73	6016	81.378912	7475	64.352704
2618	32.9	5083	427.388609	6060	58.515152	7150	56.630952
2524	27.848851	5052	316.932317	6111	55.923308	7085	49.278571
		5754	149.311418	6013	35.199856	7020	41.374747
2050	11					7010	40.274359
2195	9.766667	5182	101.161663	6022	23.55	7005	30.106061
2519	9.474747	5056	20.816667	6351	16.725		
2624	8	5086	16.866667	6005	15.492308	7136	16
2011	7.333333	5005	15.287879	6056	14.583333	7175	12.271429
2099	5.8	5356	11	6101	11.119048	7449	9.733333
2139	5	5456	7.166667			7003	9.383333
	_						

Scores are sums of normalized occurrences

Top concepts specific to 7000 series

- Tempers
 - T6, T651, T7351, T7451, T76
 - cf. non-heat-treatable series e.g. 5000: H111, H116, H34, H321
- Temperatures
 - 120 °C, 470 °C, 480 °C

- Topics of study
 - stress corrosion cracking
 - fatigue crack growth
 - η' phase
 - slow strain rate test
 - residual stress
 - creep age forming
 - high strength aluminum alloys
 - surface roughness
 - grain boundary precipitates
 - residual stress distribution

Task 3

Links between keywords

channel angular pressing	average grain size	62
laser shock peening	compressive residual stress	45
channel angular pressing	fine grain size	41
initial strain rate	grain boundary sliding	40
equal channel angular pressing	average grain size	32
channel angular pressing	initial strain rate	26
resistance spot welding	tensile shear strength	26
grain boundary sliding	high strain rate superplasticity	26
thermal expansion coefficient	metal matrix composite	26
cast aluminum alloys	dendrite arm spacing	26
initial strain rate	average grain size	23
high specific strength	metal matrix composite	23
channel angular pressing	grain boundary sliding	21
maximum tensile strength	tool rotational speed	21
response surface methodology	metal matrix composite	21
	tool rotational speed	21
channel angular pressing	high strain rate superplasticity	21
compressive residual stress	fatigue crack growth rate	20
continuous dynamic recrystallization	average grain size	19
secondary dendrite arm spacing	cast aluminum alloys	19
channel angular pressing	high angle grain boundaries	18
	continuous dynamic recrystallization	18
fatigue crack growth rate	high strength al	18

Task 3

Inferring relationships between links

Conclusions and Outlook

- Three information extraction tasks
 - Sample name recognition, Al alloy data extraction, key phrase analysis

- NLP still young in its application to mat sci, many challenges remain
- To make most use of data, need to incorporate domain knowledge

Acknowledgments

Questions?