

Ahmed Kedić Džanan Habibija Anđela Jeftović

Table of contents

- 01 Introduction
- Literature Review
- 03 Dataset
- Data Cleaning and Preprocessing
- Data Analysis
- Machine Learning Algorithms
- Conclusion

01

Introduction

Introduction

- What is movie recommendation system?
- Collaborative filtering VS Content-based filtering
- How did we implement a movie recommendation system?

Literature Review

Social and economic landscape

Content-based filtering

- Recommend movies based on attributes
- Solves cold-start problem
- Personalized reccomendations

MOVREC System

- Combines collaborative filtering + K-means clustering
- Uses IMDb dataset
- Reduces information overload

Hybrid approaches

- Collaborative, contentbased, hybrid systems
- Cold-start, sparse ratings, large-scale data
- Suggests novel similarity metric

Hotel recommendation system

- Collaborative filtering, NLP, classification
- High precision and recall with large datasets
- ML applicability across domains

Systematic review

- Covers algorithms: filtering, clustering, metaheuristics
- Datasets: MovieLens, IMDb, Netflix
- Hybrid systems, future trends

Dataset

For our movie recommendation system we are using 9000+ Movies Dataset.

This dataset contains following columns:

- Release_Date
- Title
- Overview
- Popularity
- Vote_Count
- Vote_Average
- Original_Language
- Genre
- Poster_Url

1111	212	
	000	
South		

4		Release_Date	Title	Overview	Popularity	Vote_Count	Vote_Average	Original_Language	Genre	Poster_Url
	0	2021-12-15	Spider-Man: No Way Home	Peter Parker is unmasked and no longer able to	5083.954	8940	8.3	en	Action, Adventure, Science Fiction	https://image.tmdb.org/t/p/original/1g0dhYtq4i
	1	2022-03-01	The Batman	In his second year of fighting crime, Batman u	3827.658	1151	8.1	en	Crime, Mystery, Thriller	https://image.tmdb.org/t/p/original/74xTEgt7R3
	2	2022-02-25	No Exit	Stranded at a rest stop in the mountains durin	2618.087	122	6.3	en	Thriller	https://image.tmdb.org/t/p/original/vDHsLnOWKI
	3	2021-11-24	Encanto	The tale of an extraordinary family, the Madri	2402.201	5076	7.7	en	Animation, Comedy, Family, Fantasy	https://image.tmdb.org/t/p/original/4j0PNHkMr5
	4	2021-12-22	The King's Man	As a collection of history's worst tyrants and	1895.511	1793	7.0	en	Action, Adventure, Thriller, War	https://image.tmdb.org/t/p/original/aq4Pwv5Xeu
	9832	1973-10-15	Badlands	A dramatization of the Starkweather-Fugate kil	13.357	896	7.6	en	Drama, Crime	https://image.tmdb.org/t/p/original/z81rBzHNgi
	9833	2020-10-01	Violent Delights	A female vampire falls in love with a man she	13.356	8	3.5	es	Horror	https://image.tmdb.org/t/p/original/4b6HY7rud6
	9834	2016-05-06	The Offering	When young and successful reporter Jamie finds	13.355	94	5.0	en	Mystery, Thriller, Horror	https://image.tmdb.org/t/p/original/h4uMM1w0hz
	9835	2021-03-31	The United States vs. Billie Holiday	Billie Holiday spent much of her career being	13.354	152	6.7	en	Music, Drama, History	https://image.tmdb.org/t/p/original/vEzkxuE2sJ
	9836	1984-09-23	Threads	Documentary style account of a nuclear holocau	13.354	186	7.8	en	War, Drama, Science Fiction	https://image.tmdb.org/t/p/original/IBhU4U9Eeh
9	837 ro	ws × 9 columns								

Data cleaning and preprocessing

.info() .head()	.describe()	Explored dataset	
.isnull().sum() .duplicated().any()		Checked for missing values and duplicates	
<u>.</u> fillna()	The second	Replaced missing Vote_Count with column mean.	
.median() .mean()	.mode()	Analyzed distribution: mean, median, mode, quartiles	
.min() .max()		Scaling: Min-Max scaling for numerical features	

Data cleaning and preprocessing - Scaling

```
import pandas as pd
from sklearn.preprocessing import minmax scale
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
data['Vote Count'] = pd.to numeric(data['Vote Count'], errors='coerce')
data['Vote Average'] = pd.to numeric(data['Vote Average'], errors='coerce')
columns_to_scale = ['Popularity', 'Vote_Count', 'Vote Average']
scaled data = minmax scale(data[columns to scale], axis=0)
fig, ax = plt.subplots(len(columns to scale), 2, figsize=(12, 8))
for i, col in enumerate(columns to scale):
    sns.kdeplot(data[col], ax=ax[i][0], color='blue')
    ax[i][0].set_title(f"Original {col}")
    sns.kdeplot(scaled_data[:, i], ax=ax[i][1], color='green')
    ax[i][1].set_title(f"Scaled {col}")
plt.tight layout()
plt.show()
```


Data cleaning and preprocessing – Normalization

```
from scipy import stats
positive_popularity = data['Popularity'][data['Popularity'] > 0]
normalized_popularity, _ = stats.boxcox(positive_popularity)
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
sns.kdeplot(positive popularity, ax=ax[0], color='blue')
ax[0].set title("Original Popularity")
sns.kdeplot(normalized popularity, ax=ax[1], color='green')
ax[1].set title("Box-Cox Normalized Popularity")
plt.tight_layout()
plt.show()
              Original Popularity
                                             Box-Cox Normalized Popularity
```


05
Data Analysis

- Genre popularity analysis
- Maximum vote count per genre
- Biggest vote average per genre
- Most common genres
- Top rated movies per genre

- Popularity per year
- Top 5 most popular movies per language
- The most popular movie for each language
- Top largest movies with largest popularity
- Top rated movies per genre
- Top languages by average vote

Keywords analysis

 Most Common Words in Movie Overviews

Machine learning algorithms

• K-Nearest Neighbors (KNN)

KMeans Clustering

• Random Forest Classifier

K-Nearest Neighbors (KNN)

recommend movies("Spider-man")

191

- Based on movie
 overview text using
 TF-IDF + Cosine
 Similarity
- Returns top 5 similar movies for any input movie
- Simple and effective for small/medium datasets

```
def recommend_movies(title, num_recommendations=5):
    title = title.lower()
    if title not in indices:
        return f"Movie '{title}' not found in dataset."

    idx = indices[title]
    distances, indices_rec = nn_model.kneighbors(tfidf_matrix[idx], n_neighbors=num_recommendations + 1)
    recommended_indices = indices_rec[0][1:] # Exclude the input movie itself
    return data[['Title', 'Overview']].iloc[recommended_indices]
```

Miles Morales is jugaling his life between bei...

```
7949 Beyond the Ultimate Spin: The Making of 'Spide...

201 Spider-Man 3 The seemingly invincible Spider-Man goes up ag...

1500 Spider-Man When an extortionist threatens to force a mult...

168 Spider-Man: Homecoming Following the events of Captain America: Civil...
```

Spider-Man: Into the Spider-Verse

KNN Evaluation

```
def evaluate_knn_recommender(title, num_recommendations=5):
    title = title.lower()
    if title not in indices:
        return f"Movie '{title}' not found in dataset."

    idx = indices[title]
    distances, indices_rec = nn_model.kneighbors(tfidf_matrix[idx], n_neighbors=num_recommendations + 1)
    recommended_indices = indices_rec[0][1:]

# Similarity scores (1 - distance)
    similarities = 1 - distances[0][1:]
    avg_similarity = np.mean(similarities)

print(f"\nKNN Recommender Evaluation for '{title}':")
    print(f"Average Cosine Similarity to Recommended Movies: {avg_similarity:.3f}")
    return data[['Title', 'Overview']].iloc[recommended_indices]

evaluate_knn_recommender("Parasyte: Part 1")
```

KNN Recommender Evaluation for 'parasyte: part 1': Average Cosine Similarity to Recommended Movies: 0.334					
	Title	O verview			
1746	Parasyte: Part 2	Alien pods come to Earth and, naturally, start			
9731	Crayon Shin-chan: Fierceness That Invites Stor	The Noharas get abducted by aliens who claim t_{\cdots}			
7158	Alien Nation	A few years from now, Earth will have the firs			
3649	Attraction	After an alien ship crash lands in a Russian c			
9627	Crayon Shin-chan: Action Mask vs. Leotard Devil	Everyone's favorite TV superhero Action Mask s			

KMeans Clustering

- Used MultiLabelBinarizer to convert genres to binary matrix
- Grouped movies into 5 clusters based on genre similarity
- Recommends movies from the same cluster

```
score = silhouette_score(genre_matrix, data['Genre_Cluster'])
print(f"Silhouette Score: {score:.3f}")
```

Silhouette Score: 0.217

```
def recommend_by_genre_cluster(title, n=5):
    title_lower = title.lower()
    matches = data.index[data['Title'].str.lower() == title_lower]
    if len(matches) == 0:
        return f"Movie '{title}' not found."

    idx = matches[0]
    cluster_id = data.at[idx, 'Genre_Cluster']

    peers = data[data['Genre_Cluster'] == cluster_id].drop(idx)
    if peers.empty:
        return f"No other movies in cluster {cluster_id}."

    sample = peers.sample(min(n, len(peers)), random_state=42)
    return sample[['Title', 'Genre_list']]
```

```
recommend_by_genre_cluster("The Batman", n=5)
```

	Title	Genre_list
1885	Friday the 13th Part 2	[Horror, Thriller]
7559	Sexy Beast	[Crime, Drama, Thriller]
2514	Run and Gun	[Action, Thriller]
4421	The Silence	[Horror, Drama, Thriller, Fantasy]
6791	Psycho II	[Horror, Mystery, Thriller]

Random Forest Classifier

- Supervised learning to predict if a movie is Highly Rated (>= 7.5)
- Used features: Popularity, Vote Count, Genre
- Trained on 75% of data, tested on 25%.

Recommendations for 'Batman':					
	Titl	e Overview			
260	Batman Return	s While Batman deals with a deformed man calling			
1639	The Batman vs. Dracul	a Gotham City is terrorized not only by recent e			
2162	Batman Beyond: Return of the Joke	er The Joker is back with a vengeance, and Gotham			
221	The Dark Knigh	nt Batman raises the stakes in his war on crime			
2487	Batman Unmasked: The Psychology of the Dark Kn.	Delve into the world of Batman and the vigilan			

	precision	recall	f1-score	support
0	0.88	0.97	0.92	2099
1	0.54	0.22	0.31	361
accuracy			0.86	2460
macro avg	0.71	0.59	0.61	2460
weighted avg	0.83	0.86	0.83	2460

ML Algorithms Comparison

	KNN	KMeans	Random Foresr
Goal	Recommended similar movies based on Overviews.	Clear understanding with well-developed ideas	Predict whether a movie will be highly rated
Туре	Unsupervised	Unsupervised	Supervised
Personalization	Yes	Yes	No
Output	Top N movies based on similarities	Top N movies in same cluster	Wheather movie is highly rated or not
Performance	Good	Clusters are overlapping	Good prediction
Strengths	Fine-grained, story-based similarity. Great for personalized recommendations	Captures genre-based groupings. Simple, fast	Predictive power Uses multiple features -Interpretable outpu
Weaknesses	Ignores genre or popularity. Doesn't explain why results are similar	Clusters may be ambiguous due to genre overlap. Less personalized	Needs labeled data. Not used for content recommendation

Conclusion

Each model had its own purpose and strengths:

- KNN gave accurate and personalized results based on movie overviews.
- KMeans grouped movies effectively by genre, though with some overlap.
- Random Forest achieved good predictive performance using multiple features.

Our system demonstrates that combining multiple ML models creates a more accurate and informative movie recommendation and analysis tool.

