Logic Simulation

- Introduction
- Simulation Models
- Logic Simulation Techniques
- Issues of Logic Simulations
 - Hazards
 - Oscillation
- Conclusions

Quiz Review

t	L _E	L _A	Scheduled events
0	(B,1)	G₁	(E,1)@8
2			
4			
8	(E,1)	$G_{2,}G_{3}$	(H,1)@16; (J,0)@12
10			
12	(J,0)	G ₄	(K,1)@18
14			
16	(H,1)	G ₄	(K,0)@22
18	(K,1)		
22	(K,0)		

Hazard [Huffman 57] [McCluskey 62]

- Hazard : Output signal waveform depends on
 - (Internal) circuit delay and (external) input signal change
- Two types of hazards:
- ① Static hazard: A momentary change of gate output that does not cause the steady gate output to change
 - Static-1 hazard: steady output is 1
 - Static-0 hazard: steady output is 0
- Opposite the property of th

Why Hazard?

① Logic hazard: signal change reconverge with different timing

2 Function hazard: more than one input changes

Logic Hazard Can be Improved by Circuit Design; Function Hazard Cannot.

Test Timing Is Important

- Strobe time = time to observe output
- Example: expect output = 0
 - Strobe time =16 → pass
 - Strobe time =20 → fail
 - Strobe time =24 → pass

Need to Consider Hazards to Decide Test Timing

How to Detect Hazard?

- Event-driven simulation is too slow
- Six-valued Logic is used to detect potential static hazards

Value	Meaning	
0	Static 0	
1	Static 1	
R	Rising transition, 0→1	
F	Falling transition, 1→0	
0*	Static-0 hazard	
1*	Static-1 hazard	

6-valued simulation cannot determine for sure if there is a hazard or not. It can only indicate "potential" hazards.

AND	0	1	R	F	0*	1*
0	0	0	0	0	0	0
1	0	1	R	F	0*	1*
R	0	R	R	0*	0*	R
F	0	F	0*	F	0*	F
0*	0	0*	0*	0*	0*	0*
1*	0	1*	R	F	0*	1*

Quiz

Q: Please fill in 6-valued table for NOR gate

A:

NOR	0	1	R	F	0*	1*
0	1	0	F	R	1*	0*
1	0	0	0	0	0	0
R	F	0				0*
F	R	0				0*
0*	1*	0				0*
1*	0*	0	0*	0*	0*	0*

Apply 6-valued Simulation

AND	0	1	R	F	0*	1*
0	0	0	0	0	0	0
1	0	1	R	F	0*	1*
R	0	R	R	0*	0*	R
F	0	F	0*	F	0*	F
0*	0	0*	0*	0*	0*	0*
1*	0	1*	R	F	0*	1*

NOR	0	1	R	F	0*	1*
0	1	0	F	R	1*	0*
1	0	0	0	0	0	0
R	F	0	F	0*	F	0*
F	R	0	0*	R	R	0*
0*	1*	0	F	R	1*	0*
1*	0*	0	0*	0*	0*	0*

Quiz

Q: Please run 6-valued simulation to determine whether there is static hazard on output?

A:

Logic Simulation

- Introduction
- Simulation Models
- Logic Simulation Techniques
- Issues of Logic Simulations
 - Hazards
 - Oscillation
- Conclusions

Quiz

Q: Simulate this circuit with initial values S'=1, R'=1, y=0, y'=1 Draw output waveforms.

t	L _E	L _A	Scheduled events	S'
0	(S ', 0)			
				У
4	(S ',1)			y '

Oscillation

- This is RS-latch with inverted inputs
- RS-latch is oscillating

S'	R'	у	y'
0	1	1	0
1	0	0	1
1	1	Last state	Last State
0	0	forbidden	forbidden

Simulator Must Stop Oscillation. How?

Local Oscillation Control

- Two methods:
 - 1) Monitor user-specified conditions on latches/FF
 - * Example: when y=y'=0, simulator forces y = u, y' = u
 - 2) Oscillation control via modeling
 - * Example: when y = y' = 0, G = u, y = y' = u, oscillation stops
 - * Example: replace it by SR-latch

Global Oscillation Control

- Count events occurring after any primary input change
- If number of events exceeds specified limit
 - Stop simulation and report warning
- Global feedback loop also cause fault sim./test gen. problem
 - see fault simulation 5.7

Global Feedback Should be Avoided

Conclusions

- Types of Hazards
 - Static-0 hazard, static-1 hazard
 - Dynamic-0 hazard, dynamic-1 hazard
- Why hazard?
 - Logic hazard: signal reconverges with differing timing
 - Function hazard: multiple input change
- 6-valued simulation can detect potential hazard
 - without event-driven simulation
- Oscillation should be suppressed by simulator
 - Local/Global oscillation control

Logic Sim. is Building Block for Many EDA Tools

FFT

Q: what would happen in real circuits?

S'	R'	у	y'
0	1	1	0
1	0	0	1
1	1	Last state	Last State
0	0	forbidden	forbidden

References

- [Huffman 1957] D. A. Huffman, "Design and Use of Hazard-free Switching Networks," J. ACM 4, pp.47, 1957.
- [McCluskey 1962] E.J. McCluskey, "Transients in Combinational Logic Circuits," Redundancy Techniques for Computing Systems, pp.9-46, Spartan Book, 1962.
- [Ulrich 1965] Ulrich, "Time sequenced logical simulation based on circuit delay and selective tracing of active network paths", ACM Nat'l Conference, pp.437-448, 1965.