Pretext tasks 4. CPC | AR / LPC / VAR / RNN / APC / CPC | |

1 2	SELF-PREDICTION	INNATE RELATIONSHIP (Context-based)	1. ROTATION	IMAGE
			2. RELATIVE POSITION	
3	CONTRASTIVE LEARNING	INTER-SAMPLE CLASSIFICATION	 Instance Discrimination SimCLR [Contrastive Loss] Theory – Guarantees / Bou 	IMAGE nds
4	CONTRASTIVE LEARNING	INTER-SAMPLE CLASSIFICATION	Contrastive Predictive Coding (CPC), [NCE, InfoNCE Loss]	AUDIO/ SPEECH
5	SELF-PREDICTION	GENERATIVE (VAE)	1. AE – Variational Bayes	IMAGE
			2. VQ-VAE + AR	AUDIO/ SPEECH
6	SELF-PREDICTION	GENERATIVE (AR)	1. AR-LM – GPT	LANGUAGE
			2. Masked-LM – BERT	
7	SELF-PREDICTION	MASKED-GEN (Masked LM for ASR)	 Wav2Vec / 2.0 HuBERT 	AUDIO/ SPEECH

Learning with or without supervision – speech and audio

Next frame prediction

Masked prediction

Auto-regressive Model and Speech Spectrum

Spectrogram

- ☐ Speech is a continuous evolution of the vocal tract
- ☐ Spectrogram shows time-frequency evolution
- ☐ Represented as a time-series of short-time spectra

Short-time Analysis and Parameterization

AR/LPC/VAR/RNN/APC/CPC

AR - Auto-Regressive LPC - Linear Predictive Coding (Molysis) VAR - Vector Auto-Regression RNN- Recurrent Neural Networks APC - Auto-regressive Predictive Coding CPL - Contrastive Predictive Cooling

AR(P): Auto-regressive model of order 'p' $x_n = \sum_{i=1}^{p} d_i x_{n-i} + e_n$ fa, gaz, -- ai, -- ap J: Parameters of the model en: white noise

STime-Invariant

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n}} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

$$x_{n} = \underbrace{\sum_{i=1}^{2} a_{i} \times n_{-i}}_{X_{n} - i} + e_{n}$$

Frame/Record of N-Santles e.g. 10 ms Predicted Sishal True Signal n the time Instant In the fine instant Xn-1 Xn

Optimization | Solution for faight & PREDICTION } (5) Minimise [E[e*(n)] over a range of values $= \sum_{i=1}^{p} A_i R(j-i) = R(j)$ $= \sum_{j=1,\dots,p} | Normel Equations$ $= \sum_{j=1,\dots,p} | Yule - Walker$ $= \sum_{j=1,\dots,p} | Yule - Walker$ $= \sum_{j=1,\dots,p} | P(i) | Audo Correlation Coeff d x (a) for long is$ $R(i) = \mathbb{E}\left[x(a) x(n-i) \right]$ x(n) x(n) x(n-i) x(n-i) x(n-i) x(n-i) x(n-i) x(n-i) x(n-i)

Solution for daiging $\sum_{i=1}^{p} a_i R(j-i) = R(j), 1 \leq j \leq p$ Matrix form $\left[a_1 a_2 - \dots a_{p+1} a_p\right] \xrightarrow{p} \left[p \times 1\right]$

Symmetric, Toeplitz $R = \begin{cases} P \times P & P \times P \\ P \times P & P \times P \end{cases}$ = R(i-j) = R(i-j)

=> AR(1) => Q, => Spectral Property e.g $S(f) = \frac{\sigma}{1 + a_1^2 + 2a_1 \cos 2\pi f}$ In general for power AR(P) [a, az --- ap] => [P, Pz ---- P] Auto Correlation

[a, az --- ap] => [P, Pz ---- P] Caeffizients Power Spectral Density Fourier Transform Par d [x, >12 - - - - x] eig 10ms or short-time frame/window of speech /audio.

$$E(z) \left[\frac{1}{1-a_1 z^{-1} + \cdots + a_p z^{-p}} \right] = \chi(z)$$

$$\Rightarrow e(n) * h(n) = \chi(n)$$

$$\Rightarrow \text{ impulse response of filter.}$$

More precisely in 2-transform

$$\mathbb{E}(z) \cdot H(z) = \times (z)$$

$$(1-a, +1 + - - - a, +1) = \frac{1}{11}(2-7i)$$

$$H(z) = (1-a, z^{-1} - a, z^{-1})$$
 $Z_i : Roots d A(z) = 0$

p=10 for speech => 5 Resonances $a_{\beta} \Rightarrow A(\lambda) \Rightarrow S(\beta)$ Lestine Vector of [51, 3/2 - xn- xn]

Special Envelope

MRI of Speech (Prof. Shri Narayanan, USC)

Source-Filter Model

- ☐ Features based on speech production model: Source-filter interaction
 - Anatomical structure (vocal tract / glottis) conveyed in speech spectrum

To Quatieri and Rab – Slides 👈

Source-System Model of Speech Production

Linear Prediction based Speech Production Model

10mg 10 ms 10 ms 10 ms 10ms 10ms 10 mm 10100 L P Analysis Prediction 92 a 2

LP Analysis: Envelope (Filter) & Excitation (Source)

Spectral slices

Spectral Envelopes

Canonic Vowel Spectra

Short-time Analysis and Parameterization

Feature Space

One feature vector every 10 ms

Feature Space

SPEECH RECOGNITION ALGORITHMS

- ☐ TAKE THIS FEATURE VECTOR SEQUENCE
- ☐ AS INPUT AND DETERMINE "WHAT HAS BEEN SAID"
- □ e.g. SEQUENCE OF PHONES / SEQUENCE OF WORDS etc.

TWANK YOU!

Spectrogram

- ☐ Speech is a continuous evolution of the vocal tract
- ☐ Spectrogram shows time-frequency evolution
- ☐ Represented as a time-series of short-time spectra

