Processus discrets

TD2. Martingales, strategies et arrêt optionnel.

Exercice 1. Soient T, S deux temps d'arrêt par rapport à une filtration $(\mathcal{F}_n)_{n \geqslant 0}$ donnée.

- a) Montrer que $T \wedge S$ et $T \vee S$ sont temps d'arrêt.
- b) Montrer que si $n \ge 0$ et $A \in \mathcal{F}_n$ alors $T_{n,A} = (n+1)\mathbb{I}_A + n\mathbb{I}_{A^c}$ est un temps d'arrêt.
- c) Soit $(X_n)_{n\geqslant 0}$ un processus adapté et integrable. Montrer que $T=\inf\{n\geqslant 0\colon \mathbb{E}[X_{n+1}|\mathcal{F}_n]>X_n\}$ est un temps d'arrêt.

Exercice 2. Soit $(M_n)_{n\geqslant 0}$ un processus adapté à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ et tel que $X_n\in L^1$ pour tout $n\geqslant 0$. Montrer que $(M_n)_{n\geqslant 0}$ est une martingale ssi $\mathbb{E}[M_T]=\mathbb{E}[M_0]$ pour tout T temps d'arrêt borné de $(\mathcal{F}_n)_{n\geqslant 0}$. Deux façon de proceder differentes montrent l'implication non-triviale:

- 1. Considerer les temps d'arrêt $T_{n,A}=(n+1)\mathbb{I}_A+n\mathbb{I}_{A^c}$ pour tout $n\geqslant 0$ et $A\in\mathcal{F}_n$ et conclure
- 2. Imaginer que M_n est le gain dans un jeux d'hasard. La condition $\mathbb{E}[M_T] = \mathbb{E}[M_0]$ implique que n'importe quelle strategie d'arrêt donne le même gain moyen. Par absurde on imagine que M n'est pas une martingale par exemple car pour un quelque $n \ge 0$ on a $\mathbb{P}(A_{>,n}) > 0$ pour $A_{>,n} = \{\mathbb{E}[M_{n+1}|\mathcal{F}_n] > M_n\}$. En exploitant cet evenement favorable on peut construire un temps d'arrêt S qui nous permet de obtenir un gain moyen $\mathbb{E}[M_S] > \mathbb{E}[M_0]$ en contradiction avec l'hypothése. Completer cet argument.

Exercice 3. Soit $(Y_n)_{n\geqslant 1}$ une suite de v.a. i.i.d. avec $\mathbb{P}(Y_i=1)=p=1-P(Y_i=-1)$. Soit $S_n=\sum_{i=1}^n Y_i$ (et $S_0=0$). Montrer que les processus $(W_n)_{n\geqslant 0}$ et $(M_n)_{n\geqslant 0}$ définit par

$$W_n = S_n - (2p-1)n, \qquad W_0 = 0$$

et

$$M_n = \left(\frac{1-p}{p}\right)^{S_n}, \qquad M_0 = 1$$

sont des martingales par rapport à la filtration naturelle des Y_n : $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$ pour $n \ge 1$ et $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Exercice 4. Soit $(M_n)_{n\geqslant 0}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\geqslant 0}$, telle que $\mathbb{E}(M_n^2)<+\infty$ pour tout $n\geqslant 0$. Soit

$$A_n = \sum_{i=1}^n \mathbb{E}([\Delta M_i]^2 | \mathcal{F}_{i-1})$$
(1)

Montrer que $M_n^2 - A_n$ est une $(\mathcal{F}_n)_{n \geqslant 0}$ -martingale $(\Delta M_i = M_i - M_{i-1})$.

Exercice 5. Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. avec $\mathbb{P}(X_n=\pm 1)=1/2$. Dans la suite on considère la filtration naturelle des X comme filtration de référence. Fixons a>0. On pose

$$Y_0 = a$$
, $Y_n = a + \sum_{k=1}^{n} 2^{k-1} a X_k$ $n \ge 1$.

C'est le gain dans un jeux de pile ou face où je double chaque fois la mise. J'aimerais m'arrêter de que je gagné la première fois, à cet effet on va introduire le processus suivante

$$G_0 = a$$
, $G_n = a + \sum_{k=1}^{n} 2^{k-1} a X_k \mathbb{I}_{X_1 = \dots = X_{k-1} = -1}$.

et la v.a. $T = \inf\{n \ge 1 : X_n = 1\}$ qui donne l'instant de temps où je gagné la première fois.

- a) Donner une interprétation intuitive du processus $(G_n)_{n\geq 0}$.
- b) Montrer que $(Y_n)_{n\geq 0}$ est une martingale.
- c) Montrer que $G_n \in \sigma(Y_1, ..., Y_n)$ et que $\{T = n\} \in \sigma(Y_1, ..., Y_n)$.
- d) Montrer que $G_n = Y_{n \wedge T}$ pour tout $n \ge 1$.
- e) Montrer que $(G_n)_{n\geq 0}$ est une martingale.
- f) Soit $D = |G_{T-1}|$. Montrer que $\mathbb{E}[D] = +\infty$. Interpréter cet résultat.

Exercice 6. Soient $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ deux sur-martingales et T un temps d'arrêt fini $(\mathbb{P}(T<+\infty)=1)$ tel que $X_T\geq Y_T$. Montrer que le processus $(Z_n)_{n\geq 0}$ defini par

$$Z_n = X_n \mathbb{I}_{T > n} + Y_n \mathbb{I}_{T \le n}$$

est une sur-martingale.

Exercice 7. (LA RUINE DU JOUEUR) Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. avec $\mathbb{P}(X_n=+1)=p\in]0,1[$, $\mathbb{P}(X_n=-1)=q=1-p$ et $(\mathcal{F}_n)_{n\geqslant 0}$ la filtration naturelle des X. On fixe un entier N>0 on pose $S_n=x+\sum_{k=1}^n X_k$ pour $n\geqslant 1$ avec $x\in \{0,1,...,N\}$. Soit $T=\inf\{n\geqslant 0: S_n=0 \text{ ou } S_n=N\}$.

- a) Montrer que T est un temps d'arrêt pour $(\mathcal{F}_n)_{n\geq 0}$.
- b) Montrer que pour tout $n \ge 0$, $\mathbb{P}(T \ge n + N | \mathcal{F}_n) \le 1 \min(p, q)^N = c < 1$.
- c) Montrer que $\mathbb{P}(T \ge kN) \le c^k$ pour tout $k \ge 1$. En déduire que $\mathbb{P}(T < +\infty) = 1$.
- d) Soit $M_n = (q/p)^{S_n}$ pour tout $n \ge 0$. Montrer que $(M_n)_{n \ge 0}$ est une martingale.
- e) Soit $Y_n = M_{n \wedge T}$. Montrer que $Y_{n+1} = Y_n(\mathbb{I}_{T \leq n} + (q/p)^{X_{n+1}}\mathbb{I}_{T > n})$ et que $(Y_n)_{n \geq 0}$ est une martingale (utiliser l'équation récursive pour Y ou le théorème d'arrêt optionnel).
- f) En déduire une expression pour $\mathbb{P}(X_T=0)$ en fonction de x.

Exercice 8. Soit G une v.a. géométrique de paramètre $p \in]0, 1[$ (c-à-d $\mathbb{P}(G = k) = p^k(1 - p), k \in \mathbb{N})$. Soit pour tout $n \geq 0$, $\mathcal{F}_n = \sigma(G \wedge (n+1))$.

- a) Montrer que $\mathcal{F}_n = \sigma(\{\{G=0\}, \{G=1\}, ..., \{G=n\}, \{G>n\}\}).$
- b) Montrer que $M_n = \mathbb{I}_{G \leqslant n} (1-p)(G \wedge n)$ et $Y_n = M_n^2 p(1-p)(G \wedge n)$, $n \geqslant 0$ sont deux martingales pour la filtration $(\mathcal{F}_n)_{n \geqslant 0}$.

Exercice 9. Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. telle que X_n est une v.a. choisie uniformément dans l'alphabet $\mathcal{A}=\{A,B,...,Z\}$ ($\#\mathcal{A}=26$). Soit $(\mathcal{F}_n)_{n\geqslant 1}$ la filtration naturelle des X ($\mathcal{F}_0=\{\emptyset,\Omega\}$). On considère la suite comme une chaîne de symboles. Soit T le premier instant où on voit apparaitre la chaîne « AB » dans la suite $X_1X_2...X_n...$ (formellement $T_{AB}=\inf\{n\geqslant 2\colon X_n=B,X_{n-1}=A\}$). On veut calculer $\mathbb{E}[T]$ le temps moyen d'apparition du mot « AB ».

a) Soit $Y_n = \sum_{k=2}^n 26^2 \mathbb{I}_{X_k = B, X_{k-1} = A} + 26 \mathbb{I}_{X_n = A}$. Montrer que $M_n = Y_n - n$ est une martingale. Donner une interpretation de M en terms de gain dans un jeux d'hasard.

- b) Montrer que il existe une constante 0 < c < 1 telle que $\mathbb{P}(T_{AB} > n) \leqslant c^n$. En déduire que $\mathbb{E}[T_{AB}] < +\infty$ et $\mathbb{P}(T_{AB} < +\infty) = 1$.
- c) Montrer que $\mathbb{E}[T_{AB}] = \mathbb{E}[Y_{T_{AB}}] = 26^2$.
- d) Soit $T_{\text{BB}} = \inf\{n \geqslant 2: X_n = B, X_{n-1} = B\}$. Montrer que $\mathbb{E}[T_{BB}] = 26^2 + 26$.
- e) Soit $T_{\rm ABRACADABRA}$ le premier instant où on voit apparaitre la chaîne « ABRACADABRA ». Montrer que $\mathbb{E}[T_{\rm ABRACADABRA}] = 26^{11} + 26^4 + 26$.