

planetmath.org

Math for the people, by the people.

proof of alternative characterization of filter

Canonical name ProofOfAlternativeCharacterizationOfFilter

Date of creation 2013-03-22 14:43:05 Last modified on 2013-03-22 14:43:05

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 5

Author rspuzio (6075)

Entry type Proof Classification msc 03E99 Classification msc 54A99 First, suppose that **F** is a filter. We shall show that, for any two elements A and B of **F**, it is the case that $A \cap B \in \mathbf{F}$ if and only if $A \in \mathbf{F}$ and $B \in \mathbf{F}$.

By the definition of filter, if $A \in \mathbf{F}$ and $B \in \mathbf{F}$ then $A \cap B \in \mathbf{F}$. Since $A \supseteq A \cap B$ and \mathbf{F} is a filter, $A \cap B \in \mathbf{F}$ implies $A \in \mathbf{F}$. Likewise, $A \cap B \in \mathbf{F}$ implies $B \in \mathbf{F}$.

Next, we shall show that any proper subset \mathbf{F} of the power set of X such that $A \cap B \in \mathbf{F}$ if and only if $A \in \mathbf{F}$ and $B \in \mathbf{F}$ is a filter.

If the empty set were to belong to \mathbf{F} then for any $A \subset X$, we would have $A \cap \emptyset = \emptyset \in \mathbf{F}$. This would imply that every subset of X belongs to \mathbf{F} , contrary to our hypothesis that \mathbf{F} is a proper subset of the power set of X.

If $A \subseteq B \subseteq X$ and $A \in \mathbf{F}$, then $A \cap B = A \in \mathbf{F}$. By our hypothesis, $B \in \mathbf{F}$.

The third defining property of a filter — If $A \in \mathbf{F}$ and $B \in \mathbf{F}$ then $A \cap B \in \mathbf{F}$ — is part of our hypothesis.