Application 01

Mise à l'eau d'un robot sous-marin

Concours Centrale - MP 2019

Savoirs et compétences :

Pour réaliser l'ensouillage sous-marin de câbles, ceuxci sont déposés sur le fond marin par un navire câblier. Le robot sous-marin ROV (Remotely Operated Vehicle) est déposé sur le fond marin par un bateau support et ensouille le câble provenant du navire câblier après l'avoir détecté et s'être aligné dans l'axe de celui-ci.

Pour transférer le ROV du pont du bateau support jusqu'à l'aplomb de la surface d'immersion une grue portique est utilisée. La grue portique est actionnée par un ensemble de deux vérins hydrauliques modélisés en un seul vérin équivalent pour cette étude.

Lors de la descente du ROV dans la mer, il est suspendu à un câble ombilical. Un bon équilibrage hydrostatique est nécessaire pour assurer l'horizontalité du ROV pendant la descente.

Question 1 À partir des figures précédentes, relier les composants du modèle de simulation multiphysique de la grue portique. Quel(s) ensemble(s) n'ont pas été modélisés?

Pivot 3

Exercice 1 - Moteur à courant continux

On donne les équations du moteur à courant continu :

- $u(t) = e(t) + Ri(t) + L\frac{\mathrm{d}i(t)}{\mathrm{d}t}$;
- $e(t) = K\omega(t)$;

• c(t) = Ki(t);

•
$$c(t) = K t(t)$$
;
• $c(t) + c_r(t) - f \omega(t) = J \frac{d\omega(t)}{dt}$.

Question 1 Réaliser le schéma-blocs.

Question 2 Mettre le schéma-blocs sous la forme

suivante.

$$C_r(p) \longrightarrow A(p)$$

$$U(p) \longrightarrow B(p) \longrightarrow C(p) \longrightarrow \Omega(p)$$

Éléments de corrigé :

1. .

1. .
2.
$$A(p) = R + Lp$$
, $B(p) = K$, $C(p) = \frac{1}{K^2 + (f + Jp)(R + Lp)}$ (plusieurs réponses possibles).

Corrigé voir ??.

Application 02

La Seine Musicale

Concours Centrale - MP 2020

Savoirs et compétences :

 \Box

La Seine Musicale est un équipement à vocation musicale à fort rayonnement culturel, dont l'objet est de créer ou d'aménager des espaces pour des concerts, des expositions, des installations permanentes ou provisoires.

L'un des défis architecturaux de ce projet consiste à mettre en mouvement la voile, équipée de 470 panneaux photovoltaïques, autour de l'auditorium, tout en garantissant une acoustique exceptionnelle.

Les deux demi-voiles sont mises en mouvement de manière indépendante par des chariots motorisés, ainsi qu'une couronne motorisée déplaçant chacun des sommets des demi-voiles par l'intermédiaire de bielles.

Chaque chariot (central et latéral) se déplace grâce à quatre galets, appelés galets de roulement, qui roulent sur les deux rails circulaires concentriques de la voie médiane de roulement et grâce à quatre autres galets de guidage qui roulent sur les côtés des deux rails. Chacun des deux chariots centraux est motorisé à l'aide de deux motoréducteurs qui entraînent chacun en rotation deux des quatre galets de roulement. Afin d'optimiser son rendement énergétique, cette voile se déplace chaque jour toutes les 15 minutes pour suivre le soleil du garage Est au garage Ouest.

FIGURE 1 - Schéma d'architecture de la voile solaire

Afin d'effectuer un premier dimensionnement en phase d'avant-projet des solutions techniques choisies, un modèle multiphysique simple de la chaîne de traction d'un chariot motorisé est réalisé (??). On se place dans le cas le plus défavorable avec un seul motoréducteur fonctionnel qui entraîne deux galets de roulement (roue).

FIGURE 2 – Modèle multiphysique du déplacement d'une demi-voile

Le modèle multiphysique est constitué de trois parties :

- commande en tension qui résulte de la superposition de deux rampes pour générer la loi de vitesse trapézoïdale;
- modèle électrique constitué d'un moteur à courant continu alimenté;
- modèle mécanique constitué d'un réducteur, d'une roue de chariot, d'une masse mobile de la demivoile et d'un capteur de position.

Lors de son déplacement, il peut arriver que la voile soit soumise à l'effet du vent. Il est donc important de le prendre en compte dans le modèle pour évaluer son impact sur le déplacement. Par ailleurs, afin d'assurer une durée de vie du moteur conforme à son mode de fonctionnement, il est important de pouvoir estimer la consommation électrique du moteur en fonctionnement.

Le modèle **??** a donc été enrichi de nouveaux blocs, à savoir : un capteur de courant, un capteur de tension et l'effort extérieur lié au vent (échelon).

Question 1

Sur la figure suivante, compléter les liens du modèle proposé pour prendre en compte les deux capteurs.

FIGURE 3 - Modèle multiphysique du déplacement d'une demi-voile

Exercice 2 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

On donne le schéma de principe d'une servocommande.

Les différentes équations temporelles qui modélisent le fonctionnement d'une servocommande sont :

• un amplificateur différentiel défini par : $u_c(t) =$

- débit dans le vérin dans le cas d'une hypothèse de fluide incompressible $q(t) = S \cdot \frac{dx(t)}{dt}$;
 • capteur de position : $u_s(t) = K_c \cdot x(t)$;
- le servo-distributeur est un composant de la chaîne de commande conçu pour fournir un débit hydraulique q(t) proportionnel au courant de commande i(t). (Attention, valable uniquement en régime permanent.) Le constructeur fournit sa fonction de transfert:

$$F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$$

où K_d est le gain du servo-distributeur et T sa constante de temps.

Question 1 Réaliser le schéma-blocs.

Corrigé voir ??.

Application 03

Direction automatique découplée

Banque PT - SI A 2017

Savoirs et compétences :

☐.

Depuis maintenant de nombreuses années, les commandes de vol d'avions sont passées d'une technologie purement mécanique à la technologie par fil (Fly by Wire). Le secteur automobile suit cette tendance qui présente de nombreux avantages. C'est le système de direction par fil (Steer by Wire), encore nommé direction découplée, qui fait l'objet de l'étude proposée.

La **??** donne une vue de cette unité sous la forme d'une maquette numérique à laquelle est associé le schéma cinématique qui servira de base à l'étude mécanique.

FIGURE 4 – Unité de pilotage (chaîne d'énergie) et schéma cinématique

L'unité de pilotage est constituée d'une chaîne d'énergie chargée de solliciter le volant par un couple $C_{\rm mv}\overrightarrow{x_{\nu}}$ qui résiste à l'action du conducteur $C_c\overrightarrow{x_{\nu}}$ quand celui-ci cherche à tourner le volant.

En effet, la simple dynamique du système mécanique de l'unité de pilotage ne donnerait pas au conducteur la sensation de manier la direction d'une automobile. La composante $C_{\rm mv}$ est donc élaborée pour que la dynamique du volant en termes d'inertie et de raideur soit

équivalente à celle d'une direction conventionnelle optimisée selon le type de conduite visée.

La composante C_{mv} est élaborée à partir de la consigne d'angle du volant $C_{\mathrm{v_ref}}$, transmise par le générateur de consigne intégré au contrôleur de modèles, et de la composante C_c du couple conducteur.

Le modèle de la structure sous la forme d'un schéma bloc décrivant le comportement asservi de cette unité est donné $\ref{eq:composition}.$ On précise que la variable d'entrée est $\theta_{v_ref}(p)$, que la variable de sortie est $\theta_v(p)$ et que la variable $C_c(p)$ est considérée comme une perturbation. Un signal de commande $U_{mv}(p)$ pilote la motorisation.

FIGURE 5 – Unité de pilotage (chaîne d'énergie) et schéma cinématique

Un modèle acausal de cette structure dont certains composants ne sont pas reliés aux autres, est donné sur le cahier réponses.

Question 1 Compléter ce modèle en traçant les liens manquants qui donneraient un modèle équivalent au schéma bloc de la **??**.

Exercice 3 – Banc d'épreuve hydraulique * B2-07 Pas de corrigé pour cet exercice.

Analyse de la fonction technique « mettre le tube sous pression ».

Un schéma hydraulique simplifié est donné figure suivante.

Mise en place du modèle

Les équations du débit sont :

$$Q_e(t) = S_e \frac{\mathrm{d}z(t)}{\mathrm{d}t} - \frac{V_{e0}}{B_e} \frac{\mathrm{d}P_e(t)}{\mathrm{d}t}$$

et

$$Q_h(t) = S_h \frac{\mathrm{d}z(t)}{\mathrm{d}t} + \frac{V_{h0}}{B_h} \frac{\mathrm{d}P_h(t)}{\mathrm{d}t}.$$

En appliquant le théorème de la résultante dynamique selon \overrightarrow{z} sur le piston du multiplicateur, on a : $M\ddot{z}(t) = S_h p_h(t) - S_e p_e(t) - Mg - f \dot{z}(t)$.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

On note:

- *L*(*t*) la position de l'équipage mobile repérée par rapport à sa position initiale;
- $V_t(t)$ le volume du tube;
- $F_t(t)$ l'effort du tube sur l'équipage mobile, avec $F_t(t) = -r L(t)$.

On néglige les variations de volume du tube dues à ses déformations. L'équation du débit s'écrit alors :

$$Q_e(t) = (S_a - S_b).\frac{\mathrm{d}L(t)}{\mathrm{d}t} + \frac{V_t}{B_e}\frac{\mathrm{d}P_e(t)}{\mathrm{d}t}.$$

L'équation du mouvement de l'équipage mobile est donnée par :

$$m\ddot{L}(t) = -rL(t) + (S_a - S_b)p_e(t) - f'\dot{L}(t).$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_e(t)$ et $Q_e(t)$. Les conditions initiales sont supposées nulles.

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression d'épreuve dans le tube $P_e(p)$.

Corrigé voir ??.