Maths for Physics

March 9, 2022

Contents

1	Intr	roduzione	1
2	Ana	ılisi complessa	1
	2.1	Numeri complessi	1
	2.2	Serie e successioni	5
	2.3	Serie di potenze	7
	2.4	Funzione complessa	10
	2.5	Proiezione stereografica e punto all'infinito	15
	2.6	Singolarità	16

Lecture 1

mar 01 mar 2022 12:30

1 Introduzione

Il corso si articola in due filoni principali:

- Analisi complessa
- Spazi funzionali, algebra operatoriale, spazi infiniti dimensionali
 - ♦ trasformata di Fourier
 - ♦ trasformata di Laplace
 - \diamond distribuzioni

Libri. vedi e-learning

2 Analisi complessa

2.1 Numeri complessi

Si vede un richiamo sui numeri complessi. Storicamente sono comparsi nel XVI secolo per la risoluzione di equazioni polinomiali di terzo grado. Con essi si trovano soluzioni algebriche che non hanno soluzioni nel campo reale. Un esempio è $x^2 + 1 = 0$.

In fisica si sono visti nell'elettromagnetismo: in elettrotecnica si utilizza l'impedenza; in meccanica quantistica, la funzione d'onda è un oggetto complesso, $\Psi \in \mathbb{C}$.

Definizione. Un numero complesso è una coppia ordinata (a,b) con $a,b \in \mathbb{R}$ tali che siano definite l'addizione

$$(a,b) + (c,d) = (a+c,b+d)$$

la moltiplicazione

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

e la relazione di equivalenza

$$(a,b) = (c,d) \iff a = c \land b = d$$

con tale definizione è possibile dimostrare che l'insieme di tale coppie ordinate formano un campo (nel senso della definizione algebrica).

Teorema. L'insieme

$$\mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$$

è un campo abeliano rispetto alle operazioni di addizione e moltiplicazione.

Osservazione.

- La proprietà commutativa e la proprietà associativa derivano da quelle dei numeri reali.
- Esiste l'identità additiva (detto zero per analogia con \mathbb{R}) ed è (0,0).
- \bullet Esiste l'opposto di (a, b) definito come

$$(a,b) + (-a,-b) = (0,0)$$

- Esiste l'identità moltiplicativa (detta uno) ed è (1,0).
- \bullet Esiste l'inverso di (a,b) definito come

$$(a,b) \cdot \frac{1}{(a,b)} = (1,0)$$

Per trovare l'inverso si risolve

$$(a,b)\cdot(x,y) = (1,0) \implies \begin{cases} ax - by = 1 \\ ay + bx = 0 \end{cases} \implies \begin{cases} x = \frac{a}{a^2 + b^2} \\ y = -\frac{b}{a^2 + b^2} \end{cases}$$

Dunque

$$\frac{1}{(a,b)}=\left(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}\right)$$

Teorema. Il sottoinsieme

$$\mathbb{C}_0 = \{(a,0) \mid a \in \mathbb{R}\} \subset \mathbb{C}$$

è un campo a sua volta rispetto all'addizione ed alla moltiplicazione. Esso è isomorfo ad \mathbb{R} : cioè esiste una mappa tra i due insiemi che ne preserva la struttura: $f(a,0) \mapsto f(a)$.

Inoltre, \mathbb{C}_0 ha la stessa relazione di ordine di \mathbb{R} . Questo è importante perché \mathbb{C} non ha nessuna relazione d'ordine e non è possibile introdurne una in maniera sensata.

Definizione. L'unità immaginaria è (0,1) = i.

Si nota subito che multipli di i non hanno sempre parte immaginaria e dunque numeri che hanno solo parte immaginaria non formano un campo:

$$(0,1)\cdot(0,1)=(-1,0)\in\mathbb{C}_0$$

Quindi la soluzione di $x^2 + 1 = 0$ risulta essere x = (0,1). Si nota che anche (0,-1) risulta essere soluzione. In particolare, (0,-1) = -i.

Segue che $\pm i = \pm \sqrt{-1}$. Quindi $x^2 + 1 = 0$ ha soluzioni $x = \pm i$.

Definizione. Forma cartesiana. Considerato

$$z = (a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = a + ib$$

con $a, b \in \mathbb{R}$ e $z \in \mathbb{C}$. Inoltre, $a = \text{Re}\{z\}$ e $b = \text{Im}\{z\}$.

Definizione. La coniugazione complessa è un automorfismo (cioè una corrispondenza tra di un campo e se stesso che lascia invariate le relazioni). Considerato, z = a + ib, il suo complesso coniugato è

$$\overline{z} = a - ib = (a, -b)$$

Ne segue che

$$\overline{i} = -i, \quad \overline{z+w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z} \, \overline{w}$$

Le operazioni notevoli che si possono fare sono

$$z + \overline{z} = 2a = 2\operatorname{Re}\{z\}, \quad z - \overline{z} = 2ib = 2i\operatorname{Im}\{z\}, \quad z\overline{z} = a^2 + b^2 = |z|^2$$

Piano complesso. di Argand-Gauss. Il piano ha due assi ortogonali su cui si rappresenta la parte reale e la parte immaginaria di un numero complesso. Ogni punto è individuato da coordinate cartesiane o da coordinate sferiche. In questo modo la somma di numeri complessi diventa la somma di vettori.

Definizione. In questo modo si può utilizzare la rappresentazione tramite le coordinate polari. Considerato

$$z = a + ib = r(\cos\theta + i\sin\theta)$$

dove $r=|z|=\sqrt{a^2+b^2}$ e $\tan\theta=\frac{b}{a}$ a meno di 2π . L'angolo θ è detto anche argomento e si indica come

$$\theta = \operatorname{Arg}(z) = \begin{cases} \arctan \frac{b}{a}, & a > 0 \\ \arctan \frac{b}{a} + \pi, & a < 0, b > 0 \\ \arctan \frac{b}{a} - \pi, & a < 0, b < 0 \\ \frac{\pi}{2}, & a = 0, b > 0 \\ -\frac{\pi}{2}, & a = 0, b < 0 \\ -\pi, & a < 0, b = 0 \end{cases}$$

tutto questo è definito a meno di $2k\pi$, con $k \in \mathbb{Z}$.

Definizione. Formula di Eulero. Per utilizzare tale formula, si vuole estendere ai numeri complessi, l'esponenziale definito per i numeri reali. Considerato $z \in \mathbb{C}$, z = x + iy allora

$$e^z = e^{x+iy} = e^x e^{iy}$$

si assume che le proprietà della funzione esponenziale rimangano invariante sia per argomento reale che per argomento complesso. Quindi si ha $e^x \in \mathbb{R}$ e $e^{iy} \in \mathbb{C}$. Pertanto

$$e^{iy} = A(y) + iB(y)$$

si deriva una volta rispetto ad y e si assume che la derivata si comporti allo stesso modo anche con i numeri complessi. Quindi

$$d_y e^{iy} = ie^{iy} = i(A(y) + iB(y)) = A'(y) + iB'(y) \implies \begin{cases} A(y) = B'(y) \\ B(y) = -A'(y) \end{cases}$$

derivando una seconda volta si ha

$$d_y^2 e^{iy} = i(ie^{iy}) = -e^{iy} = -A(y) - iB(y) = A''(y) + iB''(y) \implies \begin{cases} A(y) = -A''(y) \\ B(y) = -B''(y) \end{cases}$$

Queste sono delle equazioni differenziali da cui si può estrarre la soluzione; le condizioni al contorno sono $e^{i0}=1$. Dunque

$$\begin{cases} A(0) = 1 \\ B(0) = 0 \end{cases} \implies \begin{cases} A'(0) = 0 \\ B'(0) = 1 \end{cases}$$

le cui soluzioni sono

$$\begin{cases} A(y) = \cos y \\ B(y) = \sin y \end{cases}$$

questa è detta forma polare o di Eulero

$$e^{iy} = \cos y + i \sin y$$

Dunque si è così estesa la definizione di esponenziale ai numeri complessi. Si nota che

$$e^z = e^x e^{iy} = e * x(\cos y + i\sin y)$$

e considerato $|z| \ll 1$, cioè $x,y \ll 1$ si utilizza l'espansione in serie di Taylor per ottenere

$$e^z \approx (1+x)(1+iy) = 1+x+iy = 1+z$$

dunque l'espansione di Taylor funziona anche per i numeri complessi. In particolare

$$e^z = \lim_{z \to \infty} \left(e^{\frac{z}{n}}\right)^n = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$$

Osservazione. Considerato $z = re^{i\theta}$ segue $\overline{z} = re^{-i\theta}$. Inoltre

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Da ciò si evince la formula di de Moivre. Considerato $n \in \mathbb{Z}$, segue

$$z^{n} = (re^{i\theta})^{n} = r^{n}e^{in\theta} = r^{n}(\cos(n\theta) + i\sin(n\theta))$$

Definizione. Così si può trovare anche la radice n-esima. La radice n-esima w di un numero complesso z è tale per cui $w^n = z$. Infatti

$$w = z^{\frac{1}{n}} = \left[r(\cos\theta + i\sin\theta)\right]^{\frac{1}{n}} = \sqrt[n]{r} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right]$$

per de Moivre [r]. Inoltre, esistono n differenti radici di z se $|z| \neq 0$.

Esempio.

- La radice quadrata di $1 = 1e^{i0}$ risulta essere $e^{ik\pi}$, con $k \in \{0, 1\}$.
- La radice quadrata di $-1 = e^{i\pi}$ risulta essere $e^{i\left(\frac{\pi}{2} + k\pi\right)}$ con $k \in \{0, 1\}$.

Equazione di secondo gradi in \mathbb{C} . Un'equazione di secondo grado su \mathbb{C} si scrive come

$$az^2 + bz + c = 0$$
, $a, b, c \in \mathbb{R}$, $z \in \mathbb{C}$

Teorema. Un'equazione di tale tipo ha sempre due soluzioni nel campo complesso. La natura delle soluzioni è dato dal discriminante $\Delta = b^2 - 4ac$.

• Per $\Delta \geq 0$ si ha

$$z_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}, \quad z_{1,2} \in \mathbb{R}$$

• Per $\Delta < 0$ (cioè $-\Delta > 0$) si ha

$$z_{1,2} = \frac{-b \pm \sqrt{-(-\Delta)}}{2a} = \frac{-b \pm i\sqrt{-\Delta}}{2a}, \quad z_{1,2} \in \mathbb{C}$$

e si ha $z_1 = \overline{z}_2$.

Logaritmo. Considerato

$$z = re^{i\varphi} = e^{\ln r}e^{i\varphi} = e^{\ln r + i\varphi}$$

Si può definire il logaritmo come

$$\ln z = \ln r + i\varphi$$

Il logaritmo ha valori diversi in base all'angolo: se tale angolo viene considerato con multipli di 2π , il numero z è sempre lo stesso, ma il suo logaritmo cambia. Il logaritmo è una funzione polidroma.

Dunque, bisogna fare una scelta del valore di φ in modo da renderlo univoco

$$\begin{cases} \varphi \in [0, \pi], & y > 0 \\ \varphi \in [-\pi, 0], & y < 0 \end{cases}$$

[r] La funzione $\operatorname{Arg}(z)$ ha già le proprietà corrette, dunque si definisce il logaritmo in modo univoco come

$$\ln z = \ln r + i \operatorname{Arg}(z)$$

Tuttavia, in questo modo la funzione non è più continua e si ha un branch cut. Il logaritmo è discontinuo per $x \in (-\infty, 0]$. Il branch cut risulta essere $\mathbb{C} \setminus (-\infty, 0)$.

Osservazione. Vale $\overline{\ln z} = \ln \overline{z}$. Infatti

$$\ln r - i\operatorname{Arg}(z) = \ln r + i\operatorname{Arg}(\overline{z})$$

dato che si ha

$$\overline{z} \leadsto \begin{cases} \overline{r} = r \\ \overline{\varphi} = -\varphi \end{cases}$$

Lecture 2

lun 07 mar 2022 12:30

2.2 Serie e successioni

Si vedrà la proiezione stereografica.

Si studiano le successione e le serie sul campo dei numeri complessi. Per poter definire la successione ad una serie è necessario definire un concetto di distanza. Su $\mathbb C$ questo è possibile perché è definita la norma |z| che soddisfa le proprietà di distanza d(a,b), per due $a,b\in\mathbb C$:

- d(a,b) = d(b,a)
- $d(a,b) = 0 \iff a = b$
- $\forall c \in \mathbb{C}, d(a,c) + d(b,c) \ge d(a,c)$

Si definisce un concetto di distanza tra due numeri complessi $z_1, z_2 \in \mathbb{C}$ come il numero reale $|z_1 - z_2|$.

Definizione. Successione convergente. La successione di numeri $\{z_1, z_2, \ldots, z_n, \ldots\}$ con $z_k \in \mathbb{C}$ si dice convergere a $z \in \mathbb{C}$ se e solo se la successione dei numeri reali $|z_k - z| \to 0$, quando $k \to +\infty$.

Osservazione. Se si decompone un numero complesso nelle sue parti reale ed immaginaria allora

$$z_k - z = \operatorname{Re}(z_k - z) + i\operatorname{Im}(z_k - z)$$

 $_{\mathrm{ma}}$

$$\operatorname{Re}(z_k - z) \le |z_k - z| \le |\operatorname{Re}(z_k - z)| + |\operatorname{Im}(z_k - z)|$$

 $\operatorname{Im}(z_k - z) \le |z_k - z| \le |\operatorname{Re}(z_k - z)| + |\operatorname{Im}(z_k - z)|$

Pertanto

$$|z_k - z| \to 0$$
, $k \to +\infty \iff \operatorname{Re}(z_k - z) \to 0 \land \operatorname{Im}(z_k - z) \to 0$, $k \to +\infty$

Dove le successioni di parti reali ed immaginarie sono successioni di numeri reali.

Definizione. Successioni di Cauchy. Una successione di Cauchy è una successione successione $\{z_k\}_k$ tale che

$$\forall \varepsilon > 0, \exists N_{\varepsilon} > 0 \mid n, m > N_{\varepsilon} \implies |z_n - z_m| < \varepsilon$$

Osservazione. Si nota che

- Se la successione $\{z_k\}$ è di Cauchy allora pure $\{\operatorname{Re}(z_k)\}$ e $\{\operatorname{Im}(z_k)\}$ sono successioni di Cauchy.
- Tutte le successioni convergenti in C sono di Cauchy.
- In $\mathbb C$ vale anche il viceversa perché è uno spazio metrico completo.

Definizione. Serie. La serie $\sum_n z_n$ con $z_n \in \mathbb{C}$ converge a $z \in \mathbb{C}$ se la successione delle somme parziali $\{S_n\}$ convergenze a z. Le somme parziali sono

$$S_n = \sum_{k=0}^{n-1} z_k$$

Osservazione. Si osserva

- Condizione necessaria per la convergenza è $z_n \to 0$ per $n \to +\infty$. Dunque $\text{Re}(z_n) \to 0$ e $\text{Im}(z_n) \to 0$ per $n \to +\infty$.
- Condizione sufficiente per la convergenza è la convergenza assoluta: se converge $\sum_n |z_n|$ su $\mathbb R$ allora converge anche $\sum_n z_n$ su $\mathbb C$.

Esempio. Si consideri la serie

$$\sum_{n=0}^{\infty} \frac{1}{n!} (i\theta)^n$$

con $\theta \in \mathbb{R}$. Si studia la convergenza assoluta

$$\sum_{n=0}^{\infty} \left| \frac{1}{n!} (i\theta)^n \right| = \sum_{n=0}^{\infty} \frac{1}{n!} |i\theta|^n = \sum_{n=0}^{\infty} \frac{1}{n!} |\theta|^n = e^{|\theta|}$$

quindi la serie converge assolutamente su R a $e^{|\theta|}$ e quindi la serie originale converge in $\mathbb C$ a

$$\sum_{n=0}^{\infty} \frac{1}{n!} (i\theta)^n = e^{i\theta}$$

[r]

Osservazione. Si può ricordare la formula di Eulero

$$\begin{split} e^{i\theta} &= \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{(2n)!} + \sum_{n=0}^{\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(i^2)^n}{(2n)!} \theta^{2n} + \sum_{n=0}^{\infty} i \frac{(i^2)^n}{(2n+1)!} \theta^{2n+1} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \theta^{2n} + i \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \theta^{2n+1} = \cos \theta + i \sin \theta \end{split}$$

Si nota che riordinare i termini di una serie non ne cambia il valore se e solo se tale serie converge assolutamente, questo vale per il teorema delle serie di Riemann.

2.3 Serie di potenze

Definizione. Una serie di potenza è una quantità $S(z, z_0)$ dove z_0 è il centro della serie, $z, z_0 \in \mathbb{C}$ ed è definita come

$$S(z, z_0) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

con $a_n \in \mathbb{C}$ costanti.

Si studia la sua convergenza per ogni valore fissato di z, cioè si studia la convergenza puntuale. Si definisce l'insieme

$$E = \{ z \in \mathbb{C} \mid S(z, z_0) \text{ converge} \}$$

Osservazione. L'insieme E non è vuoto perché z_0 è suo elemento e la serie converge a $S(z_0, z_0) = a_0$.

Definizione. Raggio di convergenza. Si definisce l'insieme delle distanze

$$D = \{ |z - z_0| \mid z \in E \}$$

Il raggio di convergenza è $R = \sup_{z \in E} |z - z_0| = \sup D$, cioè la maggiore distanza da z_0 per cui S converge.

Osservazione. Si osserva

- Una serie di potenze convergente in \mathbb{C} , convernge in un cerchio di raggio R.
- Se la serie converge solo per $z = z_0$ allora R = 0.
- Se la serie converge $\forall z \in \mathbb{C}$ allora $R = +\infty$.

Definizione. Si vedono due definizioni per calcolare il raggio di convergenza. Una funziona solamente se un limite esiste.

• Vale

$$R = \left(\lim_{n \to +\infty} \sup_{k \ge n} |a_k|^{\frac{1}{k}}\right)^{-1}$$

questo si riduce a

$$\lim_{n \to +\infty} \frac{1}{|a_n|^{\frac{1}{n}}}$$

quando quest'ultimo limite esiste.

• Vale

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|}$$

quando il limite esiste.

Una volta trovato R, allora si può affermare che la serie converge per $|z - z_0| < R$ e diverge per $|z - z_0| > R$. Per $|z - z_0| = R$ la convergenza dipende dal caso particolare.

Esempio. Si consideri la serie geometrica

$$\sum_{n=0}^{\infty} z^n$$

essa è una particolare serie di potenze che ha $a_n = 1 \ \forall n \in z_0 = 0$. Si consideri la somma parziale n-esima:

$$S_n = \sum_{k=0}^{n-1} z^k = 1 + z + z^2 + \dots + z^{n-1} = \frac{1 - z^n}{1 - z}$$

Si studia la convergenza. Si utilizza il primo criterio

$$\lim_{n \to \infty} \frac{1}{1^{\frac{1}{n}}} = 1 \implies R = 1$$

Per il secondo criterio si ha

$$\lim_{n \to \infty} \frac{1}{1} = 1 \implies R = 1$$

pertanto la serie ha raggio di convergenza pari ad 1. Infatti

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - z^n}{1 - z} = \frac{1}{1 - z} \iff |z| < 1$$

Se |z| > 1 allora

$$\lim_{n\to\infty} S_n = \infty$$

Per |z|=1 si può riscrivere $z=e^{i\theta}$ e per qualsiasi valore di $\theta\in\mathbb{R}$ si ha

$$\sum_{n=0}^{\infty} a_n e^{i\theta} = \infty$$

perché $a_n=1 \ \forall n$ perché non è soddisfatta la condizione necessaria di convergenza $\lim_{n\to\infty}a_n=0$.

Pertanto la serie $\sum_{n=0}^{\infty} z^n$ converge solamente per |z| < 1.

Definizione. Una serie bilatera è la serie

$$S(z, z_0) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n \frac{1}{(z - z_0)^n} = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n$$

l'ultima uguaglianza è vera quando

$$c_n = \begin{cases} a_n, & n \ge 0 \\ b_n, & n < 0 \end{cases}$$

Se la serie $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converge con raggio R allora $|z-z_0| < R$. Se la serie $\sum_{n=0}^{\infty} b_n \frac{1}{(z-z_0)^n}$ converge con raggio R' allora

$$\frac{1}{|z-z_0|} < R' \implies |z-z_0| > R'$$

pertanto, la regione di convergenza è l'intersezione tra le due. Per R' < R si ha una corona circolare, per R' > R si ha l'insieme vuoto.

Esempio. La funzione esponenziale è definita come

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

con $a_n = \frac{1}{n!}$ e $z_0 = 0$. Si calcola il suo raggio di convergenza:

$$R = \lim_{n \to \infty} \frac{1}{|a_n|^{\frac{1}{n}}} = \lim_{n \to \infty} (n!)^{\frac{1}{n}} = \lim_{n \to \infty} (n^n e^{-n})^{\frac{1}{n}} = \lim_{n \to \infty} n e^{-1} = +\infty$$

si utilizza la formula di Stirling $n! \sim n^n e^{-n}$. Quindi la funzione esponenziale converge in tutto $\mathbb C$

Esempio. Si consideri la serie

$$\sum_{n=0}^{\infty} (in)^{in} z^n$$

essa ha $a_n = (in)^{in}$ e $z_0 = 0$. Si studia il raggio di convergenza con il primo criterio si utilizza il fatto che

$$|a_n| = |(in)^{in}| = |e^{in\ln(in)}| = |e^{in(\ln i + \ln n)}| = |e^{in(i\frac{\pi}{2} + \ln n)}| = |e^{-n\frac{\pi}{2}}| |e^{in\ln n}| = e^{-\frac{\pi}{2}n}$$

ricordando che $|e^{i\theta}| = 1, \forall \theta \in \mathbb{R}$. Pertanto

$$R = \lim_{n \to \infty} \frac{1}{|a_n|^{\frac{1}{n}}} = \lim_{n \to \infty} \frac{1}{e^{-\frac{\pi}{2}}} = e^{\frac{\pi}{2}}$$

Osservazione. La derivata di una serie di potenze, con raggio di convergenza R, ha ancora raggio di convergenza R. Si definisce la derivata come

$$S'(z, z_0) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}$$

Si mostra avere lo stesso raggio di convergenza tramite il primo criterio

$$R' = \lim_{n \to \infty} \sup_{k > n} |ka_k|^{\frac{1}{k}} = \lim_{n \to \infty} \sup_{k > n} |a_k|^{\frac{1}{k}} = R$$

questo perché

$$\lim_{n \to \infty} \sup_{k \ge n} k^{\frac{1}{k}} = \lim_{n \to \infty} e^{\frac{\ln n}{n}} = e^0 = 1$$

Corollario. Una serie di potenze è infinitamente differenziabile all'interno del proprio raggio di convergenza.

Osservazione. I coefficienti di

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

sono

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$

2.4 Funzione complessa

Definizione. Una funzione complessa è una mappa $f: \mathbb{C} \to \mathbb{C}$ che associa un punto $z \in \mathbb{C}$ ad un punto $w = f(z) \in \mathbb{C}$.

Inoltre, vale

$$f(z) = \operatorname{Re}(f(z)) + i\operatorname{Im}(f(z))$$

e dato che qualsiasi numero complesso si può scrivere come z = x + iy allora si può scrivere

$$f(z) = u(x, y) + iv(x, y)$$

con $u, v : \mathbb{R}^2 \to \mathbb{R}$ funzioni reali.

Definizione. Continuità di una funzione. Una funzione f(z) è continua in $z_0 \in \mathbb{C}$ se essa è definita in un intorno di z_0 e se esiste finito il limite

$$\lim_{z \to z_0} f(z) = f(z_0)$$

Definizione. Limite. Il valore $f(z_0)$ è il limite di f(z) per $z \to z_0$ se

$$\forall \varepsilon > 0, \exists \delta > 0 \mid |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$$

Osservazione. Come nel caso di \mathbb{R}^2 , il limite deve essere indipendente dal cammino utilizzato.

Esempio. Si consideri

$$\lim_{z \to 0} \frac{\overline{z}}{z}$$

questo limite non esiste perché dipende dal cammino. Infatti, lungo l'asse reale si ha y=0 e pertanto

$$\lim_{x \to 0} \frac{x - iy}{x + iy} = \lim_{x \to 0} \frac{x}{x} = 1$$

d'altra parte, lungo l'asse immaginario si ha x=0 e quindi

$$\lim_{y \to 0} \frac{x - iy}{x + iy} = \lim_{y \to 0} \frac{-iy}{iy} = -1$$

Definizione. Continuità in un dominio. La funzione f(z) è continua su di un dominio $D \subset \mathbb{C}$ se essa è continua $\forall z \in D$.

Definizione. Derivata di una funzione continua. La funzione f(z) è differenziabile in z_0 se il limite

$$d_z f(z_0) \equiv f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

esiste.

Osservazione. Dato che la derivata è definita come un limite, se il limite esiste, allora la derivata è indipendente dal cammino.

Definizione. Funzione olomorfa. Una funzione differenziabile su di dominio $D\subset\mathbb{C}$ è detta olomorfa su tale dominio.

Esempio. Una funzione olomorfa su \mathbb{C} è

$$f(z) = z^3$$

infatti

$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

posto $\Delta z \equiv z - z_0$, con $z_0 \in \mathbb{C}$, si ha

$$f'(z) = \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z)^3 - z_0^3}{\Delta z} = \lim_{\Delta z \to 0} \frac{3z_0^2 \Delta z + 3z_0 (\Delta z)^2 + (\Delta z)^3}{\Delta z} = 3z_0^2$$

la derivata esiste ed è indipendente dall'incremento, quindi $f(z) = z^3$ è olomorfa su tutto \mathbb{C} .

Esempio. La funzione $f(z) = \overline{z}$ non è olomorfa su \mathbb{C} . Questo perché

$$\lim_{\Delta z \to 0} \frac{\overline{(z_0 + \Delta z)} - \overline{z}_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

ma, come visto, tale limite non esiste.

Lecture 3

Proposizione. Valgono

mar 08 mar 2022 12:30

- $(f \pm g)'(z) = f'(z) \pm g'(z)$
- (fg)'(z) = f'(z)g(z) + f(z)g'(z)
- $\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) f(z)g'(z)}{g^2(z)}$, quando $g(z) \neq 0$
- $d_z(f \circ q)(z) = f'(q(z))q'(z)$
- Considerata w = f(z) una funzione olomorfa in z_0 con $f'(z_0) \neq 0$, allora $z = f^{-1}(w)$ è olomorfa in $w_0 = f(z_0)$ e vale

$$(f^{-1}(w_0))' = \frac{1}{f'(z_0)}$$

Si determina la differenziabilità di una funzione in termini pratici.

Condizioni di Cauchy-Riemann. Queste condizioni sono equivalenti alla definizione tramite il rapporto incrementale, ma sono più pratiche. Esse sono condizioni necessarie e sufficienti per verificare la differenziabilità di una funzione f(z) in $z_0 \subset \mathbb{C}$. In \mathbb{C} la differenziabilità è legata alla derivabili.

Teorema. Si consideri una funzione f(z) = u(x,y) + iv(x,y) con $u,v: \mathbb{R}^2 \to \mathbb{R}$ tali che u,v abbiano derivate parziali continue in un intorno di $z_0 = x_0 + iy_0$. Allora le condizioni di Cauchy-Riemann sono

$$\partial_x f(z_0) = -i \, \partial_y f(z_0)$$

oppure, analogamente

$$\partial_x u(x_0, y_0) = \partial_y v(x_0, y_0)$$
$$\partial_y u(x_0, y_0) = -\partial_x v(x_0, y_0)$$

ed esse sono necessarie e sufficienti per definire f(z) differenziabile in z_0 .

Dimostrazione. Si vede come le condizioni di Cauchy-Riemann sono necessarie (f differenziabile implica condizioni). Se f(z) è differenziabile allora esiste la derivata e quindi

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

questo limite esiste ed esso non dipende da $h \subset \mathbb{C}$, quindi non dipende nemmeno dal cammino verso 0. Pertanto, si può procedere sull'asse reale ed sull'asse immaginario. Dunque, sull'asse reale $h = h \in \mathbb{R}$ e si ha

$$f'(z_0) = \lim_{h_x \to 0} \frac{f(z_0 + h_x) - f(z_0)}{h_x}$$

$$= \lim_{h_x \to 0} \frac{u(x_0 + h_x, y_0) + iv(x_0 + h_x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{h_x}$$

$$= \partial_x u(x_0, y_0) + i\partial_x v(x_0, y_0)$$

Mentre sull'asse immaginario $h=ih_y,\,h_y\in\mathbb{R}$ e si ha

$$f'(z_0) = \lim_{h_y \to 0} \frac{f(z_0 + ih_y) - f(z_0)}{ih_y}$$

$$= \lim_{h_y \to 0} \frac{u(x_0, y_0 + h_y) + iv(x_0, y_0 + h_y) - u(x_0, y_0) - iv(x_0, y_0 + h_y)}{ih_y}$$

$$= \frac{1}{i} \partial_y u(x_0, y_0) + \partial_y v(x_0, y_0)$$

Dato che la derivata dev'essere indipendente del cammino, segue che le espressioni devono essere identiche:

$$\begin{cases} \partial_x u = \partial_y v \\ \partial_y u = -\partial_x v \end{cases}$$

Si vede come le condizioni di Cauchy-Riemann sono sufficienti. Si consideri $h=h_x+ih_y$ e la definizione di derivata come limite

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{u(x_0 + h_x, y_0 + h_y) + iv(x_0 + h_x, y_0 + h_y) - u(x_0, y_0) - iv(x_0, y_0)}{h_x + ih_y}$$

Siccome u e v sono differenziabili in un intorno di z_0 allora per Taylor si ha

$$u(x_0 + h_x, y_0 + h_y) = u(x_0, y_0) + h_x \, \partial_x u(x_0, y_0) + h_y \, \partial_y u(x_0, y_0) + o(|h|)$$

$$v(x_0 + h_x, y_0 + h_y) = v(x_0, y_0) + h_x \, \partial_x v(x_0, y_0) + h_y \, \partial_y v(x_0, y_0) + o(|h|)$$

Sostituendo si ha

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{h_x \, \partial_x u + h_y \, \partial_y u + i h_x \, \partial_x v + i h_y \, \partial_y v}{h_x + i h_y}$$

$$= \lim_{h \to 0} \frac{h_x \, \partial_x u - h_y \, \partial_x v + i h_x \, \partial_x v + i h_y \, \partial_x u}{h_x + i h_y}$$

$$= \lim_{h \to 0} \frac{(h_x + i h_y)(\partial_x u + i \, \partial_x v)}{h_x + i h_y} = \partial_x u + i \, \partial_x v$$

Nella seconda uguaglianza si applicano le condizioni di Cauchy-Riemann. Il limite esiste, è finito e non dipende da h. Pertanto

$$f'(z_0) = (\partial_x u + i \,\partial_x v)\big|_{(x_0, y_0)}$$

Osservazione. Le condizioni di Cauchy-Riemann permettono di scrivere le derivate di f(z) = u(x, y) + iv(x, y) in quattro modi equivalenti:

$$f'(z) = \begin{cases} \partial_x u + i \, \partial_x v \\ \partial_y u - i \, \partial_y v \\ \partial_x u - i \, \partial_y u \\ \partial_y u + i \, \partial_x u \end{cases}$$

Esempio. Si consideri la funzione f(z) = z = x + iy. Si ha u(x, y) = x e v(x, y) = y. Per le condizioni di Cauchy-Riemann si ha

$$\begin{cases} \partial_x u = 1 \equiv \partial_y v = 1 \\ \partial_y u = 0 \equiv -\partial_x v = 0 \end{cases}$$

Questo equivale in ogni punto $z \in \mathbb{C}$, quindi f(z) = z è olomorfa in tutto \mathbb{C} .

Esempio. Si vede una funzione non olomorfa. Si consideri $f(z) = \overline{z} = x - iy$. Si ha u(x, y) = x e v(x, y) = -y. Le condizioni diventano

$$\partial_x u = 1 \neq \partial_u v = -1$$

le condizioni non sono verificare per alcun $z \in \mathbb{C}$; pertanto, la funzione non è mai olomorfa.

Osservazione. Se una funzione contiene \overline{z} , allora essa non è mai olomorfa (anzi è antiolomorfa).

Definizione. Operatori differenziali in $z \in \overline{z}$. Si definiscono due operatori differenziali rispetto a $z \in \overline{z}$ come

$$\partial_z \equiv \frac{1}{2} (\partial_x - i \, \partial_y), \quad \partial_{\overline{z}} \equiv \frac{1}{2} (\partial_x + i \, \partial_y)$$

Teorema. Se una funzione f(z) è olomorfa su di un dominio $D\subset \mathbb{C}$ allora

$$\partial_{\overline{z}} f(z) = 0$$

Dimostrazione. Infatti

$$\partial_{\overline{z}} f(z) = \frac{1}{2} (\partial_x f(z) + i \, \partial_y f(z)) = \frac{1}{2} (\partial_x (u(x,y) + iv(x,y)) + i \, \partial_y (u(x,y) + iv(x,y))) = \frac{1}{2} \left[\partial_x u + i \, \partial_x v + i \, \partial_y u - \partial_y v \right] = 0$$

l'ultima uguaglianza è data dal fatto che f(z) è olomorfa e quindi segue valere le condizioni di Cauchy-Riemann.

Osservazione. Quando una funzione è derivabile nel campo complesso, allora è derivabile un numero infinito di volte (per cui è detta funzione analitica). Le funzioni u e v non sono qualsiasi, ma sono funzioni armoniche: hanno precise relazione tra le loro derivate.

Le condizioni di Cauchy-Riemann affermano che $\partial_x f(z) = -i \partial_y f(z)$, ma se f(z) è olomorfa, allora ammette derivate seconde

$$\partial_x\partial_x f(z) = -i\,\partial_x\partial_y f(z) \iff \partial_x^2 f(z) = -i\,\partial_{xy}^2 f(z) = -i\,\partial_y\partial_x f(z) = -\partial_y^2 f(z)$$

dove nell'ultima uguaglianza si sono usate le condizioni di Cauchy-Riemann. Pertanto

$$(\partial_x^2 + \partial_y^2) f(z) = 0 \iff \nabla^2 f = 0$$

cio
è fsoddisfa l'equazione di Laplace in $\mathbb{R}^2,$ cio
è fè una funzione armonica.

Esempio. Si consideri la funzione $f(z) = \text{Re}(z) = \frac{1}{2}(z + \overline{z})$. Tale funzione non è olomorfa perché dipende da \overline{z} (propriamente, perché la derivata parziale rispetto \overline{z} non è nulla).

Esercizio. Si mostri valere quanto affermato utilizzando u e v, mostrando la violazione delle condizioni di Cauchy-Riemann.

Esempio. Si consideri la funzione $f(z) = |z|^2 = z\overline{z}$. Essa è olomorfa solamente in z = 0 perché $\partial_{\overline{z}}z\overline{z} = z$.

Definizione. Anti-olomorfia. Una funzione f(z) è detta anti-olomorfa se

$$\partial_z f(z) = 0$$

Osservazione. Si dimostra che se f(z) è anti-olomorfa, allora $\overline{f}(z)$ è olomorfa.

Definizione. Polinomi a coefficienti complessi. Un polinomio a coefficienti complessi è una funzione del tipo

$$P(z) = \sum_{k=0}^{n} a_k z^k$$

 $con z, a_i \in \mathbb{C}.$

Osservazione. Esso è una funzione olomorfa su tutto $\mathbb C$ in quanto $\partial_{\overline z} P(z) = 0$. Inoltre

$$\partial_z P(z) = \sum_{k=1}^{n-1} k a_k z^{k-1}$$

Invece, i polinomi del tipo

$$Q(z,\overline{z}) = \sum_{n,m=0}^{k} a_{nm} z^{n} \overline{z}^{m}$$

non sono olomorfi perché

$$\partial_{\overline{z}}Q(z,\overline{z}) \neq 0$$

Osservazione. Si consideri la funzione esponenziale $f(z) = e^z$. Non si sa come fare la derivata rispetto a \overline{z} per verificare l'olomorfia, in quanto si è scritta la derivata solamente in funzione di x ed y. Posto z = x + iy si ha

$$f(z) = e^z = e^x(\cos y + i\sin y) = e^x\cos y + i(e^x\sin y) = u(x,y) + iv(x,y)$$

Per le condizioni di Cauchy-Riemann si ha

$$\begin{cases} \partial_x u = e^x \cos y \equiv \partial_y v = e^x \cos y \\ \partial_y u = -e^x \sin y \equiv -\partial_x v = -e^x \sin y \end{cases}$$

Inoltre $\partial_z e^z = \frac{1}{2} (\partial_x - i \, \partial_y) e^z$ si vede che $\partial_z e^z = e^z$.

Definizione. Si possono definire le funzioni trigonometriche come

$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

Esercizio. Svolgere la derivata del seno e del coseno, verificando il dominio di olomorfia (che è \mathbb{C}).

Definizione. Si possono definire le funzioni iperboliche come

$$\cosh z = \frac{1}{2} \left(e^z + e^{-z} \right)$$
$$\sinh z = \frac{1}{2} \left(e^z - e^{-z} \right)$$

2.5 Proiezione stereografica e punto all'infinito

Si introduce la nozione della proiezione stereografica di un punto all'infinito. Dato che \mathbb{C} è rappresentabile con un piano, si possono avere infiniti in varie direzioni. Tuttavia, tutti i punti all'infinito sono uno solo punto e ciò si vede quando si considera il piano complesso come la proiezione di una sfera.

Il punto all'infinito estende \mathbb{C} ed ha particolari proprietà.

I numeri complessi del piano $\mathbb C$ possono essere rappresentati come punti sulla superficie di una sfera

$$S^{2} = \left\{ (\xi, \eta, \zeta) \mid \xi^{2} + \eta^{2} + \left(\zeta - \frac{1}{2}\right)^{2} = \frac{1}{4} \right\}$$

Per proiettare un punto dalla sfera al piano si considera la retta che passa per il polo nord ed il punto della sfera. Il punto d'intersezione con il piano complesso è la proiezione $(x, y, 0) \mapsto (x, y) \in \mathbb{C}$. [immagine]

La mappa si può ricavare considerando triangoli simili

$$\frac{x}{\xi} = \frac{y}{\eta} = \frac{1}{1 - \xi}$$

che implica

$$x = \frac{\xi}{1 - \xi}, \quad y = \frac{\eta}{1 - \xi}$$

Ricordando l'equazione della sfera si hanno le equazioni

$$\xi = \frac{x}{x^2 + y^2 + 1}, \quad \eta = \frac{y}{x^2 + y^2 + 1}, \quad \zeta = \frac{x^2 + y^2}{x^2 + y^2 + 1}$$

si ha una mappa univoca tra ogni punto di $\mathbb C$ ad S^2 , ma esiste un punto di S^2 che non è raggiungibile tramite tale mappa: $(\xi,\eta,\zeta)=(0,0,1)$. Infatti quando $\zeta=1$ si ha $x=y=\infty$. Questo punto è detto punto all'infinito.

Si definisce l'insieme di compattificazione di \mathbb{C} come $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ ed esso si può identificare con la sfera: $\hat{\mathbb{C}} \leftrightarrow S^2$. La sfera è detta sfera di Riemann.

Osservazione. La proiezione è fatta dal polo nord, tuttavia traslando la sfera verso il basso di un'unità, si può utilizzare la proiezione dal polo sud (0,0,-1). In questo caso, il punto all'infinito $z=\infty$ viene mappato ad un punto $w=z^{-1}=0$ e viceversa.

Il polo nord della sfera originale è mappato al punto all'infinito, mentre il polo nord della sfera traslata è mappato a zero. Similmente per gli altri punti: l'emisfero superiore della sfera originale mappa i punti al di fuori della circonferenza unitaria, mentre l'emisfero superiore della sfera traslata mappa i punti all'interno della circonferenza unitaria.

La visualizzazione è più semplice se si considera la sfera unitaria centrata nell'origine: posta la proiezione dal polo nord, l'emisfero superiore mappa i punti oltre la circonferenza unitaria, mentre l'emisfero inferiore mappa quelli all'interno; il polo sud è mappato a zero, mentre il polo nord ad infinito. Tuttavia, ponendo la proiezione dal polo sud, i ruoli degli emisferi si scambiano

e quindi il polo nord è mappato a zero ed il polo sud ad infinito. Per passare da una descrizione all'altra si utilizza la mappa di transizione definita da $w = z^{-1}$ e $z = w^{-1}$.

Per studiare una funzione f(z) su \mathbb{C} e comprendere il suo comportamento a $z=\infty$ si può studiare $f\left(\frac{1}{w}\right)$ intorno a $w=\frac{1}{z}=0$.

Se $f\left(\frac{1}{w}\right)$ è olomorfa o singolare in w=0 allora f(z) è olomorfa o singolare in $z=\infty$.

2.6 Singolarità

Si vedono le singolari delle funzioni olomorfe.

Definizione. Una funzione f(z) olomorfa su tutto \mathbb{C} si dice intera.

Definizione. I punti in cui f(z) non è intera, non è differenziabile o non è definita si dicono punti di singolarità.

Le singolarità sono classificate come

ullet Isolata. La funzione f(z) è olomorfa (cioè differenziabile) in un intorno D di z_0 con

$$D(z_0, \varepsilon) = \{ z \in \mathbb{C} \mid 0 < |z - z_0| < \varepsilon \}$$

ma non in z_0 . Se $f(z_0)$ non è definita o non è differenziabile allora z_0 è la singolarità isolata.

• Se tale intorno non esiste, allora la singolarità non è isolata. Si nota che basta anche solo un punto z_1 tale che $|z_0 - z_1| < \varepsilon$ con $f(z_1)$ non olomorfa per avere che $f(z_0)$ non è una singolarità isolata.

Singolarità isolata. Esistono tre tipi di singolarità isolate

• Rimovibile. Se $f(z_0)$ non è definita, ma esiste finito

$$\lim_{z \to z_0} f(z)$$

allora si estende f(z) in z_0 definendo

$$f(z_0) = \lim_{z \to z_0} f(z)$$

Dato che la singolarità è isolata, segue che la funzione f(z) estesa diventa olomorfa in $D \cup \{z_0\}$.

ullet Polo di ordine k. Se esiste finito il limite

$$\lim_{z \to z_0} (z - z_0)^k f(z) = a \neq 0$$

con $k \in \mathbb{N}$. Si dice che f(z) ha un polo di ordine k. Per k = 1 si ha un polo semplice, per k = 2 si ha un polo doppio, etc.

• Essenziale. Essa è una singolarità che non si può rimuovere moltiplicando per alcuna potenza $(z-z_0)^k$.

Pertanto, il limite di f(z) per $z \to z_0$ non esiste e f(z) oscilla tanto più rapidamente tanto quanto si è vicini a z_0 ; essa oscilla rapidamente in base al cammino. Tale funzione assume qualsiasi valore un numero infinito di volte in base al cammino con cui ci si avvicina. Successivamente si vedono due teoremi.

Esempio. Si consideri la funzione $f(z) = \frac{\sin z}{z}$. Essa non è olomorfa in z = 0. Tuttavia, esiste finito il limite

$$\lim_{z \to 0} \frac{\sin z}{z} = 1$$

Dunque, definendo f(0) = 1 allora f(z) è olomorfa in z = 0 e $\forall z \in \mathbb{C}$.

Osservazione. Si osserva che nelle vicinanze di un polo di ordine k si può scrivere $f(z) = \frac{g(z)}{(z-z_0)^k}$, con g(z) olomorfa e $\lim_{z\to z_0} g(z) \neq 0$.

Osservazione. Dato un polo di ordine n, il limite

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \infty, \quad \forall k < n$$

In particolare, per k=0 cioè $\lim_{z\to z_0} f(z)=\infty$ segue che la funzione diverge al polo.

Esempio. Si consideri la funzione

$$f(z) = \frac{3z - 2}{(z - 1)^2(z + 1)(z - 4)}$$

In questo caso, i suoi poli sono gli zeri del denominatore (ma potrebbe non sempre essere così, bisogna fare il limite per essere sicuri): z = 1 è un polo doppio, z = -1 e z = 4 sono poli singoli.

Teorema. Weierstrass. Se z_0 è una singolarità essenziale di una funzione f(z) allora

$$\forall \varepsilon, \delta > 0, \forall c \in \mathbb{C}, \exists z \mid |z - z_0| < \delta, |f(z) - c| < \varepsilon$$

cioè avvicinandosi arbitrariamente alla singolarità essenziale, ci si può avvicinare arbitrariamente a qualsiasi numero complesso.

Teorema. Picard. In un intorno di z_0 singolarità essenziale di una funzione f(z), tale funzione assume qualsiasi valore complesso un numero infinito di volte con eccezione al più di un valore.

Esempio. Si consideri la funzione $f(z) = e^{\frac{1}{z}}$. Essa ha una singolarità essenziale in z = 0. Dato $c \in \mathbb{C}$ con $c \neq 0$ e dato $\delta > 0$, si può trovare z con $|z| < \delta$ tale che $e^{\frac{1}{z}} = c$. Infatti, posto $z = re^{i\theta}$ e $c = \rho e^{i\varphi}$, e considerato

$$c = e^{\frac{1}{z}} = e^{\frac{1}{r}e^{-i\theta}} = e^{\frac{1}{r}(\cos\theta - i\sin\theta)} \equiv \rho e^{i\varphi}$$

Uguagliando fattore a fattore si ha

$$\begin{cases} e^{\frac{\cos\theta}{r}} = \rho \\ e^{i\frac{-\sin\theta}{r}} = e^{i\varphi} \end{cases} \implies \begin{cases} \frac{\cos\theta}{r} = \ln\rho \\ -\frac{\sin\theta}{r} = \varphi \end{cases} \implies \begin{cases} -\tan\theta = \frac{\varphi}{\ln\rho} \\ \varphi^2 + \ln^2\rho = \frac{1}{r^2} \end{cases}$$

Studiando tale sistema, si afferma che esiste sempre una soluzione. Tuttavia, dato che $\rho e^{i\varphi} = \rho e^{i(\varphi+2k\pi)}$ per qualche $k \in \mathbb{Z}$, segue che si può ridefinire $\varphi' = \varphi + 2k\pi$ e quindi la seconda equazione è

$$(\varphi')^2 + \ln^2 \rho = \frac{1}{r^2}$$

con φ' arbitrariamente grande. Pertanto, r dev'essere arbitrariamente piccolo per mantenere l'uguaglianza. Quindi $r < \delta$ ed f(z) può assumere qualsiasi valore quando $r \to 0$. L'unico valore che non può assumere è f(z) = 0.

Definizione. Funzione meromorfa. Una funzione f(z) è meromorfa se ha solo singolarità rimovibili o poli in un dominio $D \subset \mathbb{C}$. Cioè non ha singolarità essenziali. Non si considerano le singolarità a $z = \infty$.