

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

	*	•		The state of the s
				1807
				100
			•	10.50
			9 .	
				- 1 - 5 G
*				
•				
1				
				In the
				1
*		1		
				100
				6-7 242
				1 53
•				
•				
•				F/ 1/18
•				56.5
				1
				10
,				
			,	
	-			1
				1.6
· ·				
	-			
				1
				~
			1.0	
			,	
790 N B O CONT.				

AND STATE OF SERVICES

e visto best a la company

on the control of the

WORKS OF PROFESSOR MILO S. KETCHUM

PUBLISHED BY THE McGRAW-HILL BOOK COMPANY

THE DESIGN OF STEEL MILL BUILDINGS and the Calculation of Stresses in Framed Structures, Third Edition Cloth, 6½x9 ins., pp. 562+xvi, 66 tables and 270 illustrations in the text. Price, \$5.00 net, postpaid.

THE DESIGN OF WALLS, BINS AND GRAIN ELEVA-TORS, Third Edition

Cloth, 6½x9 ins., pp. 556+xiv, 40 tables, 304 illustrations in the text and two folding plates. Price, \$5.00 net, postpaid

THE DESIGN OF HIGHWAY BRIDGES OF STEEL, TIMBER AND CONCRETE, Second Edition.

In Press. Price \$5.00 net, postpaid.

THE DESIGN OF MINE STRUCTURES

Cloth, 6½x9 ins., pp. 460+xvi, 65 tables, 265 illustrations in the text and 7 folding plates. Price, \$5.00 net, postpaid.

STRUCTURAL ENGINEERS' HANDBOOK, Second Edition Flexible, 6½x9 ins. pp. 950+xvi, 260 tables, 400 illustrations in the text. Price, \$6.00 net, postpaid.

SPECIFICATIONS FOR STEEL FRAME MILL BUILDINGS
Paper, 6½x9 ins., pp. 32. Reprinted from "The Design of Steel Mill Buildings." Price, 25 cents.

SURVEYING MANUAL. A Manual of Field and Office Methods for the Use of Students in Surveying

By Professors William D. Pence and Milo S. Ketchum. Leather, 4½x7 ins., pp. 388 +xii, 10 plates and 140 illustrations, and 130 pages of tables. Price, \$2.50 net, postpaid.

OFFICE-COPY BOOKLET

For use with Pence and Ketchum's "Surveying Manual." Tag board, 4½x7 ins., pp. 32, ruled in columns and rectangles. Price, \$1.50 per dozen or 75 cents per half dozen.

Tables of contents of the different books follow the index.

STRUCTURAL ENGINEERS' HANDBOOK

DATA FOR THE DESIGN AND CONSTRUCTION OF STEEL BRIDGES AND BUILDINGS

BY

MILO S. KETCHUM, C.E. M. Am. Soc. C. E.

PROFESSOR-IN-CHARGE OF CIVIL ENGINEERING, UNIVERSITY OF PENNSYLVANIA; SOMETIME DEAN
OF THE COLLEGE OF ENGINEERING AND PROFESSOR OF CIVIL ENGINEERING,
UNIVERSITY OF COLORADO; CONSULTING ENGINEER

SECOND EDITION

SECOND EDITION

TENTH THOUSAND
Total Issue, 22,000

(Printed 1919)

McGRAW-HILL BOOK COMPANY, Inc.
239 WEST THIRTY-NINTH STREET, NEW YORK
LONDON: HILL PUBLISHING COMPANY, Ltd.
6-8 BOUVERIE STREET, E. C.

Copyright, 1914, 1918
By MILO S. KETCHUM

PREFACE

The aim in writing this book has been to give data, details and tables for the design and construction of steel bridges and buildings. The book is written for the structural engineer and for the student or engineer who has had a thorough course in applied mechanics and the calculation of stresses in structures. To this end data and tables that will be of service to the designing and constructing engineer have been given, rather than predigested data and designs that might be used by the untrained. The book is intended as a working manual for the engineer, draftsman and student and covers data, details and tables for the design of the structures ordinarily met with. Swing and movable bridges, cantilever and suspension bridges require special treatment and have not been considered. As the book is intended to supplement the present books on stresses the calculation of stresses in bridges and buildings has been only briefly considered. The calculation of stresses in retaining walls, bins, stand-pipes, and other structures not ordinarily covered in text-books on stresses have been given in compact form. Great care has been used to give examples of structures that represent standard practice. With a few exceptions the drawings of details of structures have been especially prepared for this book from actual working plans. The book is a source book and is not a treatise, and is intended to furnish data and details that are available only to a few engineers; and standard specifications for materials and workmanship that are available only in transactions of societies and in special treatises,

The tables giving properties of columns, top chords, plate girders and struts have been calculated especially for this book, and are original in material and arrangement. In calculating the tables only those sections which comply with standard specifications have been given. The tables have been calculated by the use of calculating machines and have been checked with great care. The values will be found to be correct to one unit in the last place given. Properties of Carnegie and Bethlehem sections are given in a compact form for easy reference. The tangents of the angle of the axis giving the least radius of gyration, given in the tables giving properties of Carnegie angles, were taken from Cambria Steel. With the exception of a few special I beams and channels the tables may be used for Cambria, Pencoyd and Jones & Laughlin angles, I beams and channels. The American Bridge Company standards for eye-bars, loop-bars, clevises, pins, and other structural details are given. Tables of logarithms, function of angles and tables that are easily available have not been included.

The size of the book and the size of the type page were selected for the reasons that they give a book of standard size with a type page large enough so that each table can come squarely on one page, and large enough so that complete plans of structures can be given. A large clear type was selected for both the text and for the tables. The paper has been selected with the idea of clearness of the printed page.

This book is a result of many years' work, during which time the author has written four books on structural engineering. In writing this book the author has drawn on his other books, although much of the material given on steel mill buildings and highway bridges is new, and the Structural Engineers' Handbook supplements the author's other books.

Data and details have been obtained from many sources, to which credit has been given in the body of the book. The author is under special obligation to many engineers, to which special acknowledgment cannot be made on account of lack of space. vi PREFACE

In writing this book the author has been assisted by several of his former students. Credit is due to Mr. I. C. Crawford, Instructor in Civil Engineering, for assistance in calculating tables and reading proof; to Mr. C. S. Sperry, Instructor in Engineering Mathematics, for assistance in calculating tables; to Professor H. C. Ford, of Iowa State College, and Mr. T. A. Blair, Instructor in Civil Engineering, for assistance in preparing the drawings; and especially to Mr. W. C. Huntington, Assistant Professor of Civil Engineering, for assistance in arranging and calculating tables, reading proof and assistance in other ways.

The author will appreciate notices of errors and suggestions for the improvement of future editions.

M. S. K

Boulder, Colorado. August 23, 1914.

PREFACE TO SECOND EDITION

In this edition details of steel windows and doors, data on cement and gypsum tile roofs, solutions for bending moments in mill building columns and stresses in stiff frames have been added to Chapter I, and Chapter III, Steel Highway Bridges, has been rewritten and enlarged. All known errors have been corrected. Duties required of the author as Assistant Director in Charge of Construction of the U. S. Government Explosives Plant, Nitro, West Virginia, have made it impossible to complete a more thorough revision that was planned.

M. S. K.

U. S. GOVERNMENT EXPLOSIVES PLANT "C,"
NITRO, WEST VIRGINIA,
May 12, 1918.

TABLE OF CONTENTS

PART I. DATA AND DETAILS FOR THE DESIGN AND CONSTRUCTION OF STEEL BRIDGES AND BUILDINGS.

CHAPTER I. STEEL ROOF TRUSSES AND MILL BUILDINGS.

Definitions	3	Roof Coverings	-4
Data for Design	3	Corrugated Steel Roofing	26
Weight of Roof Trusses	3	Anti-Condensation Lining	28
Weight of Purlins, Girts, Bracing and	3	Slate Roofing	28
Columns		Slate Roofing	28
Weight of Roof Covering	4	Tin Poofes	31
Snow Loads.	4	Tin Roofing	31
Wind Loads	4	Tar and Gravel Roof	32
Miscellaneous Loads.	5	Shop Floors	32
Stresses in Roof Trusses and Mill Buildings	7	Windows and Skylights	38
Design of Steel Mill Buildings	7	Ventilators	43
General Principles of Design	7	Wooden Doors	43
	7	Steel Doors.	44
Steel Frame Buildings	9	Examples of Steel Frame Buildings	44
Types of Roof Trusses	9	Ketchum's Modified Saw Tooth Roof.	44
Saw Tooth Roof Trusses	9	Steel Transformer Building	49
Transverse Bents	9	Steel Frame Building with Plaster Walls	53
Roof Arches	14	Steam Engineering Building	53
Pitch of Roof.	14		42
Pitch of Truss	14	Steel Doors	41
Spacing of Trusses and Transverse Bents.	14	Cement Roofing Tile 5	4m
Truss Details	15		4m
Details of Roof Framing	15	Bending Moments in Columns 5	
Columns	15	Stresses in Rigid Frames 5	4P
Corrugated Steel	15	General Specifications for Steel Frame	
Fastenings for Corrugated Steel	19	Buildings	55
Louvres, Ridge Roll,	24	References	68
Gutters, Purlins, Cornice	26		
CHAPTER II.	STEEL	Office Buildings.	
Skeleton Construction	69	Details of Framework	85
Fire Resisting Construction.	69	Floor Plan	
Loads.		Columns	85
	70	Column Schedule.	85
Dead Loads	70	Column Details.	04
Weights of Steel in Tall Buildings	70		94
Live Loads	70	Column Bases	94
Wind Loads	72		94
Snow Loads	72		04
Minimum Roof Loads	74		98
Live Loads on Columns	74		QQ
Loads on Foundations	75	opaniare occasionari vi	(JL)
Pressure on Foundations	75	The state of the s	CO
Pressure on Masonry	75	Zinam pico di diceri di managina	01
Calculations of Wind Load Stresses	76		03
Allowable Stresses	79		06
	vii		

CHAPTER III. STEEL HIGHWAY BRIDGES.

Types of Truss Bridges Types of Structure Loads Weights of Bridges Weights of Standard Bridges Live Loads Impact Concentrated Live Loads Distribution of Concentrated Loads Uniform Live Loads I	110 111 111 112 12c 12c 12d	Highway Bridge Floors. Wearing Surface for Floors. Stringers. Floor Beams. Calculation of Stresses. Allowable Stresses. Short Span Steel Bridges. Beam Bridges. Plate Bridges. Low Riveted Truss Bridges. High Truss Steel Bridges.	1120 112p 115 115 116 122 122 128
Wind Loads	12h 12h 12j	Shoes and Pedestals Fence and Hub Guards General Specifications for Steel Highway Bridges References.	136
Tiank Proofs	124	Acier circes	147
CHAPTER IV.	Steel	RAILWAY BRIDGES.	
Types of Steel Bridges	151	Examples of Plate Girders	185
	153 159	Clearances. Types of Bridges. Spacing of Trusses.	20I 202 202
Uniform Loads and One or Two Excess Loads	160	TiesLive Loads	
Maximum Stresses	160	Impact	-
Criteria for Maximum Stresses		Wind Loads	_
Kinds of Stress		Centrifugal Force	_
Impact Stresses		Unit Stresses	
Impact Formulas		Alternate Stresses.	
Launhardt-Weyrauch Formulas Cooper's Method		Net Sections	
Impact Tests	162	Compression Flanges	
Calculation of Stresses.		Counters.	
Moments, End Shears and Floorbeam	104	Minimum Angles	
Reactions	164	Expansion	
Moment Diagram		Rollers	
Shears in Bridges		Stringer Connection Angles	206
Moments in Bridges	164	Camber of Plate Girders	206
Shears and Moments in a Plate Girder	173	Web Stiffeners	207
Material	173	Camber of Trusses	207
Allowable Stresses	173	Rigid Members	207
Economic Design of Railway Bridges	174	Eye-Bars	207
Details of Railway Bridges	175		207
Sections for Chords and Posts		General Specifications for Steel Railway	
Floors	•	Bridges	208
Waterproofing Bridge Floors		Instructions for the Design of Railway	
Floorbeam Connections	184	Bridges	
Pedestals and Shoes	184	References	224

CHAPTER V. RETAINING WALLS.

Introduction	Design of Masonry Retaining Wall	21
Calculation of the Pressure on Retaining	Data	2 24
Walls	Coefficients of Friction.	23/
Rankine's Theory	Angles of Repose	23/
Rankine's Formulas 226	Allowable Pressures on Foundations	236
Coulomb's Theory	Allowable Pressures on Masonry	236
Algebraic Method	Weight and Strength of Masonry	222
Graphic Method229	Weights of Materials	217
Cain's Formulas	Examples of Retaining Walls	232
Wall with Loaded Filling 230	Concrete Retaining Walls	237
Stability of Retaining Walls 231	Methods of Constructing Forms	217
Overturning	Ingredients in Concrete	237
Sliding	Mixing and Placing Concrete	240
Crushing 231	Specifications for Concrete Retaining	-4-
General Principles of Design 232	Walls	241
Design of Retaining Walls 234	References	244
		- * *
CHAPTER VI. BRIDGE	ABUTMENTS AND PIERS.	
Introduction	Illinois Central R. R. Standard Abut-	
Types of Abutments	ments	254
Stability of Bridge Abutments without	Cooper's Standard Abutments	254
Wings 245	Examples of Railway and Highway Bridge	
Design of Concrete Abutments 245	Piers	255
Principles of Design	N. Y. C. & H. R. R. R. Standard Piers	255
Empirical Design	Illinois Central R. R. Standard Piers	255
Design of Bridge Piers	Cooper's Standard Piers	255
Allowable Pressures on Foundations 249	Steel Tubular Piers	255
Waterway for Bridges 250	Specifications for Steel Tubular Piers	257
Dun's Drainage Table 250	Cylinder Piers for Highway Bridge	260
Preparing the Foundations 250	Cylinder Piers for Railway Bridges	262
Rock 250	Masonry and Concrete Definitions and	
Hard Ground 250	Specifications	
Soft Ground	Definitions	266
Examples of Railway and Highway Bridge	Specifications for Stone Masonry	269
Abutments	Specifications for Plain and Reinforced	
N. Y. C. & H. R. R. R. Standard Abut-	Concrete and Steel Reinforcement	
ments	References	276
CHAPTER VII. TIMBER	BRIDGES AND TRESTLES.	
Definitions 277	N. Y, N. H. & H. R. R. Frame Trestle.	
Structural Timber	Illinois Central R. R. Frame Trestle	381
Definitions	Illinois Central R. R. Pile Ballasted	
Standard Defects	Trestle	
Piles and Pile Driving	Frame Trestles	
Specifications for Timber Piles 281	A HILLOW TO A THE STATE OF THE	288
Guard Rails and Guard Timbers 281	Highway Bridges and Trestles.	
Timber Trestles 281	Specifications for Pile and Frame Trestles	
Pile Trestles	References	298
N. Y., N. H. & H. R. R. Pile Trestle 282		

CHAPTER VIII. STEEL BINS.

Stresses in Bin Walls. Stresses in Shallow Bins. Algebraic Solution. Pressure of Bituminous Coal. Pressure of Anthracite Coal. Pressure of Sand. Pressure of Ashes. Tables of Pressures on Vertical Bin Walls Stresses in Shallow Bins, Graphic Solution Hopper Bin, Level Full. Stresses in Framework. Hopper Bin, Top Surface Heaped. Stresses in Suspension Bunkers. Stresses in Deep Bins. Data for Design of Bins. Weight of Materials.	299 299 303 304 305 306 302 307 307 307 307 309 311	Angle of Repose of Materials Angle of Friction on Bin Walls. Self Cleaning Hoppers. Design of Bins. Flat Plates. Buckle Plates. Types of Bins. Suspension Bunkers. Hopper Bins. Circular Bins. Examples of Bins. Steel Suspension Coal Bunkers. Steel Hopper Ore Bins. Steel Hopper Coal Bins. References.	312 312 312 315 316 316 316 317 317 317 318 318
CHAPTER IX.	Steel	Grain Elevators.	
Introduction Stresses in Grain Bins Stresses in Deep Bins Janssen's Solution Data for Design of Steel Grain Bins Coefficients of Friction of Wheat on Bin Walls Ratio of Lateral to Vertical Pressures of Wheat Hyperbolic Logarithms German Practice in Design of Grain Bins. Load on Bin Walls.	319 319 319 321 321 321 322 324	Experiments on the Pressure of Grain in Deep Bins	326 326 327 327 329 329 337
CHAPTER X. STEEL H	EAD F	RAMES AND COAL TIPPLES.	
Types of Head Works for Mines Methods of Hoisting	339 341 341 342 342 344 345 346 346 346 347 347	Data on Steel Head Frames. Estimate of Weight of Steel Head Frame. Coal Tipples. Sizing Coal. Types of Coal Tipples. Examples of Steel Coal Tipples. W. P. Rend Steel Coal Tipple. Spring Valley Shaft No. 5 Steel Coal Tipple. Phillip's Mine Steel Coal Tipple Data on Steel Coal Tipples. Specifications for Steel Head Frames and Coal Tipples, Washers and Breakers. References.	352 352 352 352 352 352 355 356 360 361

CHAPTER XI. STEEL STAND-PIPES AND ELEVATED TANKS ON TOWERS. Railway Water Tanks. 375 Formulas for Stresses in Stand-Pipes. . . . 365 Elevated Tank and Tower for Jackson, Formulas for Stresses in Elevated Steel Standard Elevated Tank on a Tower. . . 377 Tanks..... 366 Stresses in a Circular Girder.......... 367 Standard Steel Stand-Pipe...... 378 General Specifications for Elevated Steel Details of Steel Tanks............. 369 Properties of Water-tight Joints. 370 Tanks on Towers and for Stand-Pipes 379 General Specifications for Steel Water and Examples of Steel Stand-Pipes and Ele-vated Water Tanks on Towers. 375 CHAPTER XII. STRUCTURAL DRAFTING. Through Plate Girder Spans...... 401 General Plan..... 380 Truss Bridges; General Rules...... 401 Riveted Truss Bridges..... 401 Pin-connected Truss Bridges. 402 Foundation or Masonry Plan..... 389 Order of Detailing Truss Spans. 402 Office Buildings and Steel Frame Buildings 402 Rivet List...... 389 Riveted Girders..... 403 List of Drawings.................. 389 Erection Plan for Mill Buildings..... Rules for Shop Drawings........... 391 Points to be Observed in Order to Facili-Shapes and Plates Most Easily Obtained. 416 Stock Material 417 Lengths and Widths of Shapes and Plates 418 Field Rivets..... 400 Maximum Lengths of Shapes. 418 Maximum Lengths of Plates. 419 General Notes..... 400 Design Drawings for Steel Structures. . . . 421 Designs of Mill Buildings..... Designs of Plate Girders.... 423 Plate Girder Bridges; General Rules. . . . 400 Designs of Truss Bridges..... 423 Deck Plate Girder Spans..... 400 CHAPTER XIII. ESTIMATES OF STRUCTURAL STEEL. Miscellaneous Materials..... 427 Office Buildings. 426 Cost of Fabrication of Structural Steel. . . 429 Truss Bridges..... 426 Instructions for Taking off Material. . . . 426 Actual Cost of Drafting. 429 Classification of Material..... 426

Rivet Heads..... 427

Cost of Mill Details. 430

Card of Mill Extras 430	Placing and Bolting	
Extras on Round and Square Bars 431	Riveting	437
Miscellaneous Extras 431	Number of Field Rivets in Steel Spans.	
Mill Orders	Actual Cost of Erection	438
Cost of Shop Labor	Transportation	438
Shop Cost of Steel Frame Buildings 433	Freight Rates	438
Columns	Cost of Painting	
Roof Trusses	Miscellaneous Costs	
Eave Struts	Mill Building Floors	439
Plate Girders 433	Timber Floors on Tar Concrete Base	439
Shop Cost of Bins and Stand-Pipes 434	Concrete Floors	439
Shop Costs of Individual Parts of	Creosoted Timber Block Floor	439
Bridges 434	Roofing for Mill Buildings	439
Eye-bars	Corrugated Steel Roofing	439
Chords, Posts and Towers 434	Tar and Gravel Roofing	440
Pins	Tin Roofing	440
Floorbeams and Stringers 434	Slate Roofing	440
Shop Costs of Steel Bridges 435	Tile Roofing	440
Shop Costs of Steel Tubular Piers 435	Windows	440
Shop Cost of Combination Bridge Metal 435	Skylights	440
Shop Cost of Howe Truss Bridge Metal 436	Circular Ventilators	440
Cost of Erection of Steel Frame Office and	Waterproofing	440
Mill Buildings and Mine Structures 436	Chain	440
Cost of Placing and Bolting 436	Nails	440
Cost of Riveting	Gas Pipe	440
Actual Costs of Erection 436	Steel Railroad Rails	440
Cost of Erection of Steel Bridges 437	Wire Rope	440
Hauling 437	Manila Rope	440
Falsework	Hardware and Machinist's Supplies	
Erection of Tubular Piers 437	References	440
CHAPTER XIV. ERECTION	ON OF STRUCTURAL STEEL.	
Methods of Erection 441	Jacks	460
Plate Girders and Short Riveted Spans 441	Miscellaneous Tools	460
Truss Bridges 441	List of Tools	460
Cantilever and Arch Bridges 441	American Bridge Company List	460
High Viaducts 441	Actual Lists of Tools	460
Roof Trusses, Mill and Office Buildings 441	Erection of Truss Bridges	466
Elevated Towers and Tanks 442	Riveting	467
Erection Tools	Derricks and Travelers	470
Design of Erection Tools 443	Gin Pole	470
Hoists 443	Guy Derricks	
Winches and Crabs 443	"A" Derrick	472
Hoisting Rope	Stiff-Leg Derrick	
Manila Rope 443	Boom Travelers	472
Knots in Manila Rope 444	Viaduct Travelers	472
Wire Rope 446	Gallows Frame	
Hoisting Tackle 447	Through or Gantry Travelers	472
Rigging 447	Derrick Cars	
Efficiency of Tackle 451	Falsework	
Chains	Piles.	

Design of Falsework		Specifications for the Erection of Railway	
Traveler for Erection of Armory	479	Bridges	483
Instructions for the Erection of Structural		Instructions for the Inspection of Bridge	
Steel	479	Erection	485
•			
CHAPTER XV.	Engi	NEERING MATERIALS.	
Iron and Steel	487	Oil Paints	
Definitions		Linseed Oil.	
Classification.		Lead	
Cast Iron		Zinc	
Definitions		Iron oxide	214
Malleable Castings.		Carbon	
Strength of Cast Iron.	•	Mixing Paint.	214
Specifications for Gray-Iron Castings		Proportions	2.2
Wrought Iron		Covering Capacity	2,2
Method of Manufacture		Applying the Paint	
Specifications for Wrought-Iron Bars	1 /	Cleaning the Surface	
Specifications for Wrought-Iron Plates .		Shop Coat	
Steel.		Finishing Coat	
Manufacture of Steel		Asphalt Paint	
Strength of Steel		Coal Tar Paint	
Formulas for Tensile Strength		Cement and Cement Paint	
Special Steels		Portland Cement Paint	517
Specifications for Structural Steel for	470	Instructions for the Mill Inspection of	3-8
Buildings	407	Structural Steel	517
Specifications for Structural Steel for	471	Instructions for the Inspection of the	
Bridges	400	Fabrication of Steel Bridges	
Specifications for Structural Nickel Steel		Miscellaneous Metals	-
Specifications for Boiler Rivet Steel		Alloys	
Specifications for Billet-Steel Reinforce-	0-0	Timber	-
ment Bars	507	Stone Masonry	
Specifications for Rail-Steel Reinforce-	0-1	Concrete	_
ment Bars.	500	Working Stresses for Reinforced Con-	
Specifications for Steel Castings		crete	
Corrosion of Iron and Steel	-	Specifications for Portland Cement	
Paint.	-		
CHAPTER XVI.	STRU	ICTURAL MECHANICS.	
General Nomenclature		Axial Stresses	527
Reinforced Concrete Nomenclature		Simple Stress	527
Definitions.		Working Stress	527
Forces	-		527
Moment of Forces.		Strain	527
Couple.		Elasticity	527
Stress		Elastic Limit	528
Unit Stress.		Yield Point	528
Ultimate Stress.		Modulus of Elasticity	528
Tension		Shearing Modulus of Elasticity	528
Compression		Poisson's Ratio	5.28
Shear	527	Rupture Strength	528

Ultimate Deformation 528	Overhanging Beam, Stresses and Deflec-	
Work or Resilience of a Bar 528	tions	539
Stresses due to Sudden Loads 528	Uniform Load, Overhanging one Sup-	
Impact 529	port	539
Stresses in Beams 529	Load at any Point, Overhanging one	
Neutral Surface 529	Support	539
Neutral Axis 529	Uniform Load, Overhanging both Sup-	
Reactions	ports	539
Vertical Shear 529	Two Exterior Loads, Overhanging both	
Bending Moment 529	Supports	539
Relations between Shear and Bending	Beam Fixed at one End, Supported at	
Moment 529	other End, Stresses and Deflections	540
Formulas for Flexure 529	Load at any Point	540
Resisting Shear 529	Uniform Load	540
Resisting Moment 530	Load at Center	540
Moment of Inertia 530	Beam Fixed at Both Ends, Stresses and	
Section Modulus 530	Deflections	541
Deflection of Beams 530	Uniform Load	541
Simple and Combined Stress 531	Load at Center	
Elastic Deformation 532	Load at any Point	541
Stresses in Riveted Joints 532	Moving Loads	542
Stresses in Thin Pipes 532	Maximum Shears	542
Stresses in Beams 533	Maximum Moments	
Stresses in Columns 533	One Load	542
Torsion of Shafts 533	Two Loads	542
Stresses in Hooks 533	Three Loads	542
Stresses in Plate Girders 534	Four Loads	542
Eccentric Stress 534	Two Unequal Loads	542
Flexure and Direct Stress 534	Three Loads, Two Equal	542
True Stress	Continuous Beams, Uniform Loads	543
Stresses in Thick Pipes 534	Moments at Supports	544
Stresses in Rollers 534	Shears at Supports	544
Stresses in Flat Plates 535	Continuous Beams, Concentrated Loads	545
Work or Resilience 535	Moments and Reactions of Beams of	
Centroid or Center of Gravity 535	Two and Three Spans	
Moment of Inertia 535	Reinforced Concrete Beams, Stresses in	546
Product of Inertia 535	Rectangular Beams, Reinforced for	
Cantilever Beams, Stresses and Deflections	Tension only	
Load at Free End 536	Slabs, 12 inches wide	
Uniform Load 536	T-Beams	546
Load at any Point 536	Rectangular Beam, Reinforced for Ten-	`
Variable Load 536	sion and Compression	
Simple Beams, Stresses and Deflections 537	Shear	
Load at Center	Bond	
Load at any Point	Stirrups,	
Two Equal Symmetrical Loads 537	Columns	
	Working Stresses	
Uniform Load	Safe Loads in Reinforced Concrete Slabs.	547
Triangular Load Mariana at Cartan	Moments of Inertia and other Properties	
Triangular Load, Maximum at Center . 538	of Sections	548
Triangular Load, Maximum at End 538	Stresses in Framed Structures	
Trapezoidal Load	Loads	552

Methods of Calculation 552	Stresses in a Deck Baltimore Truss by
Graphic Resolution 552	Algebraic Resolution 559
Stresses in Roof Trusses 552	Stresses in a Through Baltimore Truss
Dead Load Stresses 553	by Algebraic Resolution 560
Snow Load Stresses 553	Stresses in a Camel Back Truss by Alge-
Wind Load Stresses 553	braic Moments 560
Stresses in a Transverse Bent 556	Stresses in a Warren Truss by Graphic
Stresses in Bridge Trusses 558	Moments 561
Dead Load Stresses in a Camel Back	Stresses in a Petit Truss by Algebraic
Truss by Graphic Resolution 558	Moments 562
Dead Load Stresses in a Petit Truss by	Stresses in a Through Pratt Truss for
Graphic Resolution 558	Cooper's E 60 Loading 562
Stresses in a Warren Truss by Algebraic	Stresses in a Portal of a Bridge 563
Resolution 558	Stresses in a Trestle Bent 563
Stresses in a Pratt Truss by Algebraic	
Resolution 559	
CHAPTER XVII THE D	ESIGN OF STEEL DETAILS.
CHAITER ZEVIII. THE D	ESIGN OF STREET DETRIES.
Members in Tension 571	Corrugated Steel Roofing 586
	Corrugated Steel Roofing 586 Bearing Plates 586
Members in Tension 571	Corrugated Steel Roofing
Members in Tension. 571 Loop Bar. 572	Corrugated Steel Roofing 586 Bearing Plates 586
Members in Tension 571 Loop Bar 572 Bar with Clevises 572	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 575	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 575 Double Angle Strut 576	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 575	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 576 Two Angles Starred 578	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 575 ' Double Angle Strut 576 Two Angles Starred 578 Plate and Angle Column 579	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 575 ' Double Angle Strut 576 Two Angles Starred 578 Plate and Angle Column 579 Expansion Rollers 579	Corrugated Steel Roofing
Members in Tension 571 Loop Bar 572 Bar with Clevises 572 Eye-Bar 573 Angle in Tension 573 Built-up Tension Member 574 Unriveted Pipe 575 Members in Compression 575 Single Angle Strut 575 ' Double Angle Strut 576 Two Angles Starred 578 Plate and Angle Column 579 Expansion Rollers 579 Members in Flexure 579	Corrugated Steel Roofing
Members in Tension. 571 Loop Bar. 572 Bar with Clevises. 572 Eye-Bar. 573 Angle in Tension. 573 Built-up Tension Member. 574 Unriveted Pipe. 575 Members in Compression. 575 Single Angle Strut. 575 Double Angle Strut. 576 Two Angles Starred. 578 Plate and Angle Column. 579 Expansion Rollers. 579 Members in Flexure. 579 I-Beam. 580	Corrugated Steel Roofing

The List of Tables in Part II follows page 600, Part 1.

The Index to Part I follows the Structural Tables in Part II

STRUCTURAL ENGINEERS' HANDBOOK

Introduction.—The book is divided into two parts which are self-contained. Part 1 includes a discussion of the design of structures and gives data and details for the design of steel bridges and buildings. Part II contains tables for structural design and includes tables giving the properties of rolled sections, properties of built-up sections for chords, columns, struts, plate girders, etc., and data for standard structural details.

PART I.

DATA AND DETAILS FOR THE DESIGN AND CONSTRUCTION OF STEEL BRIDGES AND BUILDINGS,

Introduction.—The discussion in Part I has been limited to steel bridges and buildings and other simple steel structures; no reference being made to swing and movable bridges, cantilever and suspension bridges. The design of a bridge includes the design of the substructure as well as the superstructure, so that the design of retaining walls and bridge abutments has been briefly discussed. Timber trestles and bridges are required for temporary structures and for the erection of steel structures, and a brief discussion of timber trestles and bridges is therefore properly included.

The design of a structure requires not only a knowledge of the properties of materials and the ability to calculate the stresses, but also a knowledge of local conditions and requirements, of economic design, of details of construction, of methods of erection, methods of fabrication and their effect on cost, and of many other matters which limit the design. The most economical structure for any given conditions is the one which will give the greatest service for the least money, quality of service and the life of the structure being given proper consideration. Financial limitations often limit the design and the problem then is to design a structure that will give satisfactory service with the money available.

To design a satisfactory structure when limited by financial considerations is a problem that requires the exercise of the highest possible skill on the part of the engineer. He must be able to select an economical type of structure; he must make an accurate estimate of the loads to be carried by the structure; he must be able to calculate the stresses with accuracy; he must make the detailed design with due reference to ease of obtaining the material, the cost of shop work, and the cost of erection.

The shop cost of steel structures varies with the type of structure, the size and weight of the members and upon the make-up of the members and the details. By using fewer and larger members, by using rolled beams and columns in the place of built-up plate girders and columns, and by using tie plates in the place of lacing, the shop cost per pound of a railroad bridge may be materially reduced. If the simplification of the design is carried too far the reduction in shop cost will result in a material increase in the weight of the bridge, and in an increase in the cost of the bridge, with a decrease in efficiency. The details of the design of a structure should be worked out with reference to ease and economy of erection as well as ease and low cost of fabrication. While the standardizing of connections so that multiple punches may be used may result in a consideral le-

2

saving in shop cost, it often results in a material increase in the weight of the details of the structure, and in the number of field rivets, so that the efficiency of the structure is not increased, and the final cost of the structure is not reduced. The author has in mind a case where to change the details of a plate girder so that multiple punches might be used required the addition of details equal to 5 per cent of the weight of the span and the addition of 25 per cent to the number of field rivets, with no increase in efficiency.

The best results are obtained when the structural engineer prepares carefully worked out detail drawings (not shop drawings) in which the efficiency of the structure, ease of fabrication and ease of erection are given due consideration. The shop drawings may then be prepared by the bridge company to take the greatest possible advantage of improved shop methods without decreasing the efficiency of the structure, or increasing the total weight, or increasing the cost of erection.

Part I is divided into seventeen chapters, of which the first eleven chapters cover different types of structures, and the last six chapters cover subjects which apply to all types of steel construction. While the aim has been to present the largest possible amount of information in the limited space, each subject presented is discussed briefly in a logical order.

While the author has drawn on his other books in the various chapters, the reader will find much new material on the subjects covered in the other books, especially in Chapter I, Steel Roof Trusses and Mill Buildings, and Chapter III, Steel Highway Bridges, so that this book supplements the author's other books on structures. Each chapter is self-contained, the illustrations and tables being numbered independently of the other chapters. As far as possible the different subjects are discussed fully in each chapter, thus reducing cross-references. The most of the cross-referencing is made through the index, which together with the table of contents will be found invaluable to the reader.

CHAPTER I.

STEEL ROOF TRUSSES AND MILL BUILDINGS.

Definitions.—The following definitions will assist the reader in a study of roof trusses and steel frame buildings.

Truss.—A truss is a framed structure in which the members are so arranged and fastened at their ends that external loads applied at the joints of the truss will cause only direct stresses in the members. In its simplest form a truss is a triangle or a combination of triangles. In this chapter it will be assumed (I) that the structure is not constrained by the reactions, (2) that the axes of the members meet in a common point at the joints, and (3) that the joints have frictionless hinges.

Transverse Bent.—A transverse bent consists of a truss supported at the ends on columns and braced against longitudinal movement by knee braces attached to the lower chord of the truss and to the columns.

Purlin.—A beam that rests on the top chords of roof trusses and supports the sheathing that carries the roof covering, or supports the roof covering directly, or supports rafters.

Rafter.—A beam that rests on the purlins and supports the sheathing, or may support subpurlins. Rafters are not commonly used in mill buildings.

Sub-purlin.—A secondary system of purlins that rest on the rafters and are spaced so as to support the tile or slate covering directly without the use of sheathing.

Sheathing.—A covering of boards or reinforced concrete that is carried on the purlins or rafters to furnish a support for the roof covering.

Girt.—A beam that is fastened to the columns to support the side covering either directly or to support the side sheathing.

Monitor Ventilator.—A framework at the top of the roof that carries fixed or movable louvres, or sash in the clerestory.

Clerestory.—The clear opening in the side framework of a monitor ventilator of a building, also the clear opening on the side of a building.

Louvres.—Slats made of metal or wood which are placed in the clerestory of a monitor ventilator to keep out the storm. Louvres may be fixed or movable. The opening of a monitor ventilator is also called a louvre.

Panel.—The distance between two joints in a roof truss or the distance between purlins.

Bay.—The distance between two trusses or transverse bents.

Pitch.—The pitch of a truss is the center height of the truss divided by the span where the truss is symmetrical about the center line.

Other terms are defined when they are first used.

DATA FOR THE DESIGN OF ROOF TRUSSES AND STEEL FRAME BUILDINGS.

Weight of Roof Trusses.—The weight of roof trusses varies with the span, the distance between trusses, the load carried or capacity of the truss, and the pitch.

The empirical formula

$$W = \frac{P}{45} A \cdot L \left(1 + \frac{L}{5 \sqrt{A}} \right) \tag{1}$$

where

W = weight of steel roof truss in pounds;

P = capacity of truss in pounds per square foot of horizontal projection of roof (30 to 80 lb.);

A =distance center to center of trusses in feet (8 to 30 ft.);

L = span of truss in feet;

was deduced by the author from the computed and shipping weights of mill building trusses of the Fink type.

Weight of Purlins, Girts, Bracing, and Columns.—Steel purlins will weigh from $1\frac{1}{2}$ to 4 lb. per sq. ft. of area covered, depending upon the spacing and the capacity of the trusses and the snow load. Girts and window framing will weigh from $1\frac{1}{4}$ to 3 lb. per sq. ft. of net surface. Bracing is quite a variable quantity. The bracing in the planes of the upper and lower chords will vary from $\frac{1}{2}$ to 1 lb. per sq. ft. of area. The side and end bracing, eave struts and columns will weigh about the same per sq. ft. of surface as the trusses.

Weight of Roof Covering.—The weight of corrugated iron or steel covering varies from $1\frac{1}{2}$ to 3 lb. per sq. ft. of area. The weight of corrugated steel is given in Table I. The approximate weight per square foot of various roof coverings is given in the following table:

Corrugated steel, without sheathing	to 3 lb.	
Felt and asphalt, without sheathing	2 "	
Tar and Gravel Roofing, without sheathing 8	to 10 "	
Slate, $\frac{3}{16}$ in. to $\frac{1}{4}$ in., without sheathing	to 9 "	
Tin, without sheathing I	to 11 "	
Skylight glass, $\frac{3}{1.6}$ in. to $\frac{1}{2}$ in., including frames		
White pine sheathing I in. thick		
Yellow pine sheathing I in. thick	4 "	
Tiles, flat15	to 20 "	
Tiles, corrugated 8	to 10 "	
Tiles, on concrete slabs30		
Plastered ceiling	10 "	

The actual weight of roof coverings should be calculated if possible.

Snow Loads.—The annual snowfall in different localities is a function of the humidity and the latitude and is quite a variable quantity. The amount of snow on the ground at one time is still more variable. The snow loads given in Fig. 1 were proposed by the author in "The Design of Steel Mill Buildings" in 1903 and have been generally adopted.

FIG. 1. SNOW LOAD ON ROOFS FOR DIFFERENT LATITUDES, IN POUNDS PER SQUARE FOOT.

One of the heaviest falls of snow on record occurred at Boulder and Denver, Colorado on Dec. 5 and 6, 1913, when 36 inches of snow weighing 9 lb. per cu. ft. fell during two days. Many

flat roofs were loaded with a snow load of more than 30 lb. per sq. ft. and roofs with a pitch of one-half carried the full snow load of 27 lb. per sq. ft. of horizontal projection.

A high wind may follow a heavy sleet and in designing the trusses the author would recommend the use of a minimum snow and ice load as given in Fig. 1 for all slopes of roofs. The maximum stresses due to the sum of this snow load, the dead and wind loads; the dead and wind loads; or of the maximum snow load and the dead load being used in designing the members.

Wind Loads.—The wind pressure, P, in pounds per square foot on a flat surface normal to the direction of the wind for any given velocity, V, in miles per hour is given quite accurately by the formula

$$P = 0.004 V^2 (2)$$

The pressure on other than flat surfaces may be taken in per cents of that given by formula (2) as follows: 80 per cent on a rectangular building; 67 per cent on the convex side of cylinders; 115 to 130 per cent on the concave side of cylinders, channels and flat cups; and 130 to 170 per cent on the concave sides of spheres and deep cups.

Recent German specifications for design of tall chimneys specify wind loads per square foot as follows: 26 lb. on rectangular chimneys; 67 per cent of 26 lb. on circular chimneys; and 71 per cent of 26 lb. on octagonal chimneys.

The official specifications for the design of steel framework in Prussia have recently been amplified in the matter of wind pressures. For the wind-bracing, as a whole, the wind pressure on the whole building is to be taken as 17 lb. per sq. ft. For proportioning individual frame members, girts, studs, trusses, etc., a higher value of wind pressure must be assumed, viz., 28 to 34 lb. per sq. ft.

It would seem that 30 lb. per square foot on the side and the normal component of a horizontal pressure of 30 lb. on the roof would be sufficient for all except exposed locations. If the building is somewhat protected a horizontal pressure of 20 lb. per square foot on the sides is certainly ample for heights less than, say 30 feet.

Wind Pressure on Inclined Surfaces.—The wind is usually taken as acting horizontally and the normal component on inclined surfaces is calculated.

The normal component of the wind pressure on inclined surfaces has usually been computed by Hutton's empirical formula

$$P_n = P \cdot \sin A^{1.842\cos A - 1} \tag{3}$$

where P_n equals the normal component of the wind pressure, P equals the pressure per square foot on a vertical surface, and A equals the angle of inclination of the surface with the horizontal, Fig. (2).

The formula due to Duchemin

$$P_n = P \frac{2 \sin A}{1 + \sin^2 A} \tag{4}$$

where P_n , P and A are the same as in (3), gives results considerably larger for ordinary roofs than Hutton's formula, and is coming into quite general use.

The formula

$$P_n = P \cdot A/45 \tag{5}$$

where P_n and P are the same as in (3) and (4), and A is the angle of inclination of the surface in degrees (A being equal to or less than 45°), gives results which agree very closely with Hutton's formula, and is much more simple.

Hutton's formula (3) is based on experiments which were very crude and probably erroneous. Duchemin's formula (4) is based on very careful experiments and is now considered the most reliable formula in use. The Straight Line formula (5) agrees with experiments quite closely and is preferred by many engineers on account of its simplicity.

The values of P_n as determined by Hutton's, Duchemin's and the Straight Line formulas are given in Fig. 3, for P equals 20, 30 and 40 lb.

It is interesting to note that Duchemin's formula with P equals 30 pounds gives practically the same values for roofs of ordinary inclination as is given by Hutton's and the Straight Line formulas with P equals 40 pounds.

FIG. 3. NORMAL WIND LOAD ON ROOF ACCORDING TO DIFFERENT FORMULAS.

Duchemin has also deduced the formula

$$P_h = P \, \frac{2 \, \sin^2 A}{1 + \sin^2 A} \tag{6}$$

where P_h in (6) equals the pressure parallel to the direction of the wind, Fig. 2; and

$$P_l = P - \frac{2 \sin A \cdot \cos A}{1 + \sin^2 A} \tag{7}$$

where P_l in (7) equals the pressure at right angles to the direction of the wind, Fig. 2. P_l may be an uplifting, a depressing or a side pressure. With an open shed in exposed positions the uplifting effect of the wind often requires attention. In that case the wind should be taken normal to the inner surface of the building on the leeward side, and the uplifting force determined

by using formula (7). If the gables are closed a deep cup is formed, and the normal pressure should be increased 30 to 70 per cent.

That the uplifting force of the wind is often considerable in exposed localities is made evident by the fact that highway bridges are occasionally wrecked by the wind.

The wind pressure is not a steady pressure, but varies in intensity, thus producing excessive vibrations which cause the structure to rock if the bracing is not rigid. The bracing in milk buildings should be designed for initial tension, so that the building will be rigid. Rigidity is of more importance than strength in mill buildings.

Miscellaneous Loads.—Data on the weights of materials are given in Chapter II. The weights and other data for hand cranes are given in Table 133 and of electric cranes are given in Table 130, Part II.

Minimum Loads.—For minimum loads to be calculated on roofs see § 27, "Specifications for Steel Frame Buildings" in the last part of this chapter.

STRESSES IN ROOF TRUSSES AND MILL BUILDINGS.—For the calculation of the stresses in roof trusses and in the framework of steel frame mill buildings, see the author's "The Design of Steel Mill Buildings."

DESIGN OF STEEL MILL BUILDINGS.

General Principles of Design.—The general dimensions and the outline of a mill building will be governed by local conditions and requirements. The questions of light, heat, ventilation, foundations for machinery, handling of materials, future extensions, first cost and cost of maintenance should receive proper attention in designing the different classes of structures. One or two of the above items often determines the type and general design of the structure. Where real estate is high, the first cost, including the cost of both land and structure, causes the adoption in many cases of a multiple story building, while on the other hand where the site is not too expensive the single story shop or mill is usually preferred. In coal tipples and shaft houses the handling of materials is the prime object; in railway shops and factories turning out heavy machinery or a similar product, foundations for the machinery required, and convenience in handling materials are most important; while in many other classes of structures such as weaving sheds, textile mills, and factories which turn out a less bulky product with light machinery, and which employ a large number of men, the principal items to be considered in designing are light, heat, ventilation and ease of superintendence.

Shops and factories are preferably located where transportation facilities are good, land is cheap and labor plentiful. Too much care cannot be used in the design of shops and factories for the reason that defects in design that cause inconvenience in handling materials and workmen, increased cost of operation and maintenance are permanent and cannot be removed.

The best modern practice inclines toward single floor shops with as few dividing walls and partitions as possible. The advantages of this type over multiple story buildings are (I) the light is better, (2) ventilation is better, (3) buildings are more easily heated, (4) foundations for machinery are cheaper, (5) machinery being set directly on the ground causes no vibrations in the building, (6) floors are cheaper, (7) workmen are more directly under the eye of the superintendent, (8) materials are more easily and cheaply handled, (9) buildings admit of indefinite extension in any direction, (10) the cost of construction is less, and (11) there is less danger from damage due to fire.

The walls of shops and factories are made (1) of brick, stone, or concrete; (2) of brick, hollow tile or concrete curtain walls between steel columns; (3) of expanded metal and plaster curtain walls and glass; (4) of concrete slabs fastened to the steel frame; and (5) of corrugated steel fastened to the steel frame.

The roof is commonly supported by steel trusses and framework, and the roofing may be slate, tile, tar and gravel or other composition, tin or sheet steel, laid on board sheathing or on concrete slabs, tile or slate supported directly on the purlins, or corrugated steel supported on board sheathing or directly on the purlins. Where the slope of the roof is flat a first grade tar

and gravel roof, or some one of the patent composition roofs is used in preference to tin, and on a steep slope slate is commonly used in preference to tin or tile. Corrugated steel roofing is much used on boiler houses, smelters, forge shops, coal tipples, and similar structures.

Floors in boiler houses, forge shops and in similar structures are generally made of cinders; in round houses brick floors on a gravel or concrete foundation are quite common; while in buildings where men have to work at machines the favorite floor is a wooden floor on a foundation of cinders, gravel, or tar concrete. Where concrete is used for the foundation of a wooden floor it should be either a tar or an asphalt concrete, or a layer of tar should be put on top of the cement concrete to prevent decay. Concrete or cement floors are used in many cases with good results, but they are not satisfactory where men have to stand at benches or machines. Wooden racks on cement floors remove the above objection somewhat. Where rough work is done, the upper or wearing surface of wooden floors is often made of yellow pine or oak plank, while in the better classes of structures, the top layer is commonly made of maple. For upper floors some one of the common types of fireproof floors, or as is more common a heavy plank floor supported on beams may be used.

Care should be used to obtain an ample amount of light in buildings in which men are to work. It is now the common practice to make as much of the roof and side walls of a transparent or translucent material as practicable; in many cases fifty per cent of the roof surface is made of glass, while skylights equal to twenty-five to thirty per cent of the roof surface are very common. Direct sunlight causes a glare, and is also objectionable in the summer on account of the heat. Where windows and skylights are directly exposed to the sunlight they may best be curtained with white muslin cloth which admits much of the light and shades perfectly. The "saw tooth" type of roof with the shorter and glazed tooth facing the north, gives the best light and is now coming into quite general use.

Plane glass, wire glass, factory ribbed glass, and translucent fabric are used for glazing windows and skylights. Factory ribbed glass should be placed with the ribs vertical for the reason that with the ribs horizontal, the glass emits a glare which is very trying on the eyes of the workmen. Wire netting should always be stretched under skylights to prevent the broken glass from falling down, where wire glass is not used.

Heating in large buildings is generally done by the hot blast system in which fans draw the air across heated coils, which are heated by exhaust steam, and the heated air is conveyed by ducts suspended from the roof or placed under the ground. In smaller buildings, direct radiation from steam or hot water pipes is commonly used.

The proper unit stresses, minimum size of sections and thickness of metal will depend upon whether the building is to be permanent or temporary, and upon whether or not the metal is liable to be subjected to the action of corrosive gases. For permanent buildings the author would recommend 16,000 lb. per square inch for allowable tensile, and $16,000 - 70 \frac{l}{r}$ lb. per square inch for allowable compressive stress for direct dead, snow and wind stresses in trusses and columns; l being the center to center length and r the radius of gyration of the member, both in inches. For wind bracing and flexural stresses in columns due to wind, add 25 per cent to the allowable stresses for dead, snow and wind loads. For temporary structures the above allowable stresses may be increased 20 to 25 per cent.

The minimum size of angles should be $2'' \times 2'' \times \frac{1}{4}''$, and the minimum thickness of plates $\frac{1}{4}$ in., for both permanent and temporary structures. Where the metal will be subjected to corrosive gases as in smelters and train sheds, the allowable stresses should be decreased 20 to 25 per cent, and the minimum thickness of metal increased 25 per cent, unless the metal is fully protected by an acid-proof coating (at present the best paints do little more in any case than delay and retard the corrosion).

The minimum thickness of corrugated steel should be No. 20 gage for the roof and No. 22 for the sides; where there is certain to be no corrosion Nos. 22 and 24 may be used for the roof and sides respectively.

Steel Frame Mill Buildings.—The framework of a steel frame mill building consists of a series of transverse bents, which carry the purlins on the tops of the trusses, and girts on the sides of the columns to carry the covering, Fig. 4. The framework is braced by diagonal bracing in the planes of the roof and the sides of the building, and in the plane of the lower chords. A transverse bent consists of a roof truss supported at the ends on columns and is braced against endwise movement by means of knee braces. The framing plan for a steel frame mill building is shown in Fig. 4. Steel mill buildings are also made with end trusses in place of the end framing shown in Fig. 4.

FIG. 4. FRAMEWORK FOR A STEEL MILL BUILDING.

Types of Roof Trusses.—Several types of roof trusses are shown in Fig. 5. These trusses have been subdivided so that the purlins will come at the panel points, and will not have a spacing greater than 4 ft. 9 in., the greatest spacing allowed for corrugated steel roofing when laid without sheathing. The Fink trusses shown in (a) to (g) are commonly used in steel frame buildings and are very economical. The other types of trusses need no explanation.

Different methods of lighting and ventilating buildings through the roof are shown in Fig. 6. Saw Tooth Roofs.—The common type of saw tooth roof is shown in (m) Fig. 6. The glazed leg faces the north and permits only indirect light to enter the building, thus doing away with the glare and varying intensity of light in buildings where direct sunlight enters. In cold climates the snow drifts the gutters nearly full and causes loss of light and also leakage from the overflowing gutters. The modified saw tooth roof shown in (n) was designed by the author, to obviate the defects in the common type of saw tooth roof. The modified saw tooth roof permits the use of a greater span and more economical pitch than the common form shown in (m).

Transverse Bents.—A number of the common forms of transverse bents are shown in Fig. 7. Transverse bents (a), (b), (d), and (h) are used for boiler houses, shops, etc., while (c), (e), (f)

Fig. 5. Types of Roof Trusses.

Fig. 7. Types of Transverse Bents.

THREE HINGED ARCH, GOVERNMENT BUILDING ST. LOUIS, Mo-

Fig. 8. Roof Arches.

and (g) are used for shops or buildings where the main part of the building is required to be covered by a crane and side sheds are used for lighter work.

Roof Arches.—Roof arches are used where a large clear floor space is required as in coliseums, exposition buildings and train sheds, Fig. 8. The arches are braced in pairs and carry the roof covering. Arches may have one, two or three hinges, or may be made without hinges. Three-hinged arches are statically determinate structures, while the stresses in all other arches are statically indeterminate. Arches without hinges are used for domes. Three-hinged roof arches have been commonly used in America, although the two-hinged roof arch is more economical and has many advantages. Arches may have a horizontal tie as in the Chicago Stock Pavilion and the Government Building, or the horizontal reactions may be carried by the foundations as in the St. Louis Coliseum, Fig. 8. For the calculation of the stresses in three-hinged and two-hinged roof arches, see the author's "The Design of Steel Mill Buildings."

Pitch of Roof.—The pitch of a roof is given in terms of the center height divided by the span; for example a 60-ft. span truss with $\frac{1}{4}$ pitch will have a center height of 15 ft. The minimum pitch allowable in a roof will depend upon the character of the roof covering, and upon the kind of sheathing used. For corrugated steel laid directly on purlins, the pitch should preferably be not less than $\frac{1}{4}$ (6 in. in 12 in.), and the minimum pitch, unless the joints are cemented, not less than $\frac{1}{5}$. Slate and tile should not be used on a less slope than $\frac{1}{4}$ and preferably not less than $\frac{1}{3}$. The lap of the slate and tile should be greater for the less pitch. Gravel should never be used on a roof with a greater pitch than about $\frac{1}{5}$, and even then the composition is very liable to run. Asphalt is inclined to run and should not be used on a roof with a pitch of more than, say, 2 in. to the foot. If the laps are carefully made and cemented a gravel and tar or asphalt roof may be practically flat; a pitch of $\frac{3}{4}$ to 1 in. to the foot is, however, usually preferred. Tin may be used on a roof of any slope if the joints are properly soldered. Most of the patent composition roofings give better satisfaction if laid on a roof with a pitch of $\frac{1}{5}$ to $\frac{1}{4}$. Shingles should not be used on a roof with a pitch less than $\frac{1}{4}$, and preferably the pitch should be $\frac{1}{3}$ to $\frac{1}{4}$.

Pitch of Truss.—There is very little difference in the weight of Fink trusses with horizontal bottom chords, in which the top chord has a pitch of $\frac{1}{5}$, $\frac{1}{4}$, or $\frac{1}{3}$. The difference in weight is quite noticeable, however, when the lower chord is cambered; the truss with the $\frac{1}{3}$ pitch being then more economical than either the $\frac{1}{5}$ or the $\frac{1}{4}$ pitch. Cambering the lower chord of a truss more than, say, 1–40 of the span adds considerable to the weight. For example the computed weights of a 60-ft. Fink truss with a horizontal lower chord, and a 60-ft. Fink truss with a camber of 3 ft. in the lower chord, showed that the cambered truss weighed 40 per cent more for the $\frac{1}{4}$ pitch and 15 per cent more for the $\frac{1}{3}$ pitch, than the truss having the same pitch with horizontal lower chord. It is, however, desirable for appearance sake to put a slight camber in the bottom chords of roof trusses, for the reason that to the eye a horizontal lower chord will appear to sag if viewed from one side.

In deciding on the proper pitch, it should be noted that while the $\frac{1}{3}$ pitch gives a better slope and has a less snow load than a roof with $\frac{1}{4}$ or $\frac{1}{5}$ pitch, it has a greater wind load and more roof surface. Taking all things into consideration $\frac{1}{4}$ pitch is probably the most economical pitch for a roof. A roof with $\frac{1}{3}$ pitch is, however, very nearly as economical, and should preferably be used where corrugated steel roofing is used without sheathing, and where the snow load is large.

Spacing of Trusses and Transverse Bents.—The weight of trusses and columns per square foot of area decreases as the spacing increases, while the weight of the purlins and girts per square foot of area increases as the spacing increases. The economic spacing of the trusses is a function of the weight per square foot of floor area of the truss, the purlins, the side girts and the columns, and also of the relative cost of each kind of material. For any given conditions the spacing which makes the sum of these quantities a minimum will be the economic spacing. It is desirable to use simple rolled sections for purlins and girts, and under these conditions the economic spacing will usually be between 16 and 25 ft. The smaller value being about right for spans up to, say, 60 ft., designed for moderate loads, while the greater value is about right for long spans, designed for heavy loads.

Calculations of a series of simple Fink trusses resting on walls and having a uniform span of 60 ft. and different spacings gave the least weight per square foot of horizontal projection of the roof for a spacing of 18 ft., and the least weight of trusses and purlins combined for a spacing of 10 ft. The weight of trusses per square foot was, however, more for the 10-ft. spacing than for the 18-ft. spacing, so that the actual cost of the steel in the roof was a minimum for a spacing of about 16 ft.; the shop cost of the trusses per lb. being several times that of the purlins. Local conditions and requirements usually control the spacing of the trusses so that it is not necessary that we know the economic spacing very definitely.

For long spans the economic spacing can be increased by using rafters supported on heavy purlins, placed at greater distances than would be required if the roof were carried directly by the purlins. This method is frequently used in the design of train sheds and roofs of buildings where plank sheathing is used to support slate or tile coverings, or where the tiles are supported by angle sub-purlins spaced close together as shown in Fig. 13.

Truss Details.—Riveted trusses are commonly used for mill buildings and similar structures. For ordinary loads the chord sections are commonly made of two angles, Fig. 10. For heavy loads the chords may be made of two channels, Fig. 12. Where the purlins are not placed at the panel points the upper chord must be designed for flexure as well as for direct stress. Two angles with a vertical plate make an excellent section where the chord must take both direct and flexural stress. Trusses supported on masonry walls should have one end supported on sliding plates for spans up to 70 ft., for greater lengths of span rollers or a rocker should be used. Shop drawings of a steel roof truss are given in Fig. 10. Details of the end connections of trusses resting on walls and fastened to columns are given in Fig. 11. Details of truss joints are given in Fig. 11. Wherever possible, truss joints should be so designed that the joint will not be eccentric.

Details of Roof Framing.—Roof trusses and transverse bents should be braced transversely with vertical framework and bracing to give the roof framing lateral stability. The bracing may be placed in the center line of the building as in Fig. 12, or at the quarter points as in Fig. 4; long span trusses should be braced at both the center and the quarter points. Details of roof framing giving methods of bracing roof trusses and transverse bents are given in Fig. 4, Fig. 41, and Fig. 42.

Details of a roof truss and roof framing to carry a Ludowici tile roof without sheathing, are shown in Fig. 13. The tiles are carried on sub-purlins, the sub-purlins are supported by rafters, which are in turn supported by the purlins.

Columns:—The common forms of columns used in mill buildings are shown in Fig. 14. For side columns with light loads column (g) composed of four angles laced is very satisfactory, while for side columns that take bending and heavy loads column (f) composed of four angles and a plate is the most satisfactory column. Columns (a), (b), (c), (d), (e) and (f) are used to carry heavy loads. The I beam and the angle columns are used for end and corner columns, respectively. Details of a four angle laced column and a four angle and plate column are shown in Fig. 15. Details of a heavy column and a light column made of two channels laced are shown in Fig. 16.

CORRUGATED STEEL.—Corrugated steel is rolled to U. S. standard gage. The weights of flat steel and corrugated steel for different gages and thickness are given in Table I. Corrugated siding and roofing is rolled as shown in Fig. 17. The special corrugated steel in (b) Fig. 17 is commonly used for roofing, and the corrugated steel in (c) is used for siding.

The standard stock lengths vary by single feet from 4 ft. to 10 ft. Sheets can be obtained as long as 12 ft., but are special and cost 5 per cent extra and will delay the order.

The purlins for corrugated steel without sheathing should be spaced for a load of 30 lb. per sq. ft. on the roof; and the girts for 25 lb. per sq. ft. on the sides, as given in Fig. 18.

The details of corrugated steel as given in Fig. 19 are standard with the McClintic-Marshall Construction Company and the American Bridge Company.

FIG. 10. DETAILS OF A RIVETED STEEL TRUSS.

DETAILS OF ROOF TRUSS CONNECTIONS

FIG. 11. DETAILS OF TRUSS CONNECTIONS AND JOINTS.

Fig. 12. Roof Truss and Transverse Bent Showing Transverse Bracing.

FIG. 13. DETAILS OF A ROOF COVERED WITH LUDOWICI TILE.

Fastenings for Corrugated Sheeting.—Corrugated steel is fastened to purlins and girts usually by the following fasteners.

Straps.—These are made of No. 18 U. S. gage steel, $\frac{3}{4}$ of an in. wide. These straps pass around the purlins and are riveted to the sheets at both ends by $\frac{8}{16}$ " diameter rivets, $\frac{3}{6}$ in. long; or, they may be fastened by bolts. Order one strap and two rivets, or bolts, for each lineal foot of girt or purlin, to which the corrugated steel is to be fastened, and add 20 per cent to the number of rivets for waste, and 10 per cent to the straps or the bolts. One thousand rivets will weigh 6 lb.; one bundle of hoop steel will weigh 50 lb. and contains 400 lineal feet.

FIG. 14. Types of Columns for Steel Mill Buildings.

Clinch Rivets or Nails.—These are special rivets or nails made of No. 9 Birmingham gage wire, which clinch around the edge of the angle iron or channel and are used for fastening the steel sheathing to steel purlins or girts. They are of the lengths shown on page 24.

FIG. 15. DETAILS OF MILL BUILDING COLUMNS.

FIG. 16. DETAILS OF MILL BUILDING COLUMNS.

Order two rivets to each lineal foot of purlin or girt to which the corrugated steel is to be fastened and add 10 per cent for waste.

Clips and Bolts.—These are used for fastening corrugated steel to steel purlins or girts. Clips are made of No. 16, $1\frac{1}{2}$ in. steel, about $2\frac{1}{2}$ in. long, and are slightly crimped at one end, to go over

FIG. 17. DETAILS OF CORRUGATED STEEL.

FIG. 18. SAFE LOADS FOR CORRUGATED STEEL.

the flange of the purlin. The bolts are of the same diameter, and have the same head as the clinch rivets, except that they are supplied with threads and nut, and are about 1 in. long. These clips and bolts should not be used excepting in special cases, where the regular fastenings cannot be easily applied.

FIG. 19. STANDARD DETAILS FOR CORRUGATED STEEL.

TABLE OF CLINCH NAILS.

L Purlin leg	5′′	4" 6" 29	5", 7" 23	6" 8" 21	7" 9" 18
L Purlin leg	6''	7" or 8" 21	5" 9" 18	6" 10" 16	7" 11" 14

In cases where flashing, cornice work, and several thicknesses of metal are to be fastened at one point, rivets or bolts, other than standard lengths given will be needed. Closing rivets $\frac{1}{2}$ in. long and bolts $\frac{1}{2}$ in. long will usually answer in these cases.

If side laps of corrugated steel are to be riveted, rivets should be ordered, one for each lineal foot of side lap, plus 20 per cent for waste.

If corrugated steel is to be fastened to wooden purlins or timber sheathing, order 8d barbed nails for roofing and for siding. These nails should be spaced one foot apart, for both end and side laps; add 20 per cent for waste. Ninety-six 8d barbed nails weigh 1 lb.

Corrugated steel for roofing should be laid with two corrugations side lap if standard or 1½ corrugations side lap if special, and 6 in. end lap. Corrugated steel for siding should have one corrugation side lap and 4 in. end lap.

Louvres.—Weights of Shiffier louvres of black iron or steel are as follows:

Gage No.	Weight per Square Feet
20	2.7 lb.
22	2.0 lb.

The weight is obtained from Fig. 20, as follows:

Fig. 20. Louvres.

Louvres are estimated in square feet = $2h \times length$.

To get weight multiply area by $(1.7 \times \text{weight per sq. ft. of flat of material used})$.

Ridge Roll.—Ridge roll is ordinarily of same gage as roofing and black or galvanized to correspond with same. Ridge roll is usually made from an 18 in. flat sheet.

WEIGHT OF RIDGE ROLL.

Gage No.	Weight, lb. per lineal ft.
20	2.4
22 24	2.0 Black Iron or Steel.

TABLE I.

CORRUGATED SHEETS. AMERICAN SHEET AND TIN PLATE COMPANY STANDARD.

D	ESCRIPTIO	N OF COR	RUGATED	SHEETS		Areas of Corrugated Sheets							
	Corrugations Width, Inches		of	Sq.	Ft. in 1 S	Sheet	Sheets in 100 Sq. Ft.						
Width,	Width, Inches Depth, Num-		Num-	Full	Covers	된급	C	orrugatio	ns	С	orrugatio	ns	
Nominal	Actual	Approx. Inches	ber per Sheet	Sheet	Ap- prox.	Leng Sheet,	5"	3", 21",	1½", ¾"	5"	3", 21".	11", 1"	
5 3,	43 25	7	6	28 26	24 24	60 72	11.67	10.83	10.42	8.57 7.14	9.23 7.69	9.60	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5	213	10 11 20	26 26 25	24 24 24	96 108	16.33 18.67 21.00	15.17 17.33 19.50	14.58 16.67 18.75	6.12 5.36 4.76	6.59 5.77 5.13	6.86 6.00 5.33	
Standar imum le	d lengths ngth, 12	81 5, 6, 7, 8, feet for 5	26 9 and 1 " to 11	o feet.	Max- gation.	I 20 I 44	23.33	21.67	20.83	4.29 3.57	3.85	4.80	

CORRUGATED SHEETS.—Painted.
Weights in Pounds per 100 Square Feet.

Nom.				nd Decin	Decimals of an Inch								
Cor- rug.	12	14	16	18	20	2 I	22	23	24	25	26	27	28
Inches	.109	.078	.063	.050	.038	.034	.031	.028	.025	.022	.019	.017	.016
5 3 2 2 1	474	339	271 271 271 271 271	217 217 217 217	163 163 163 163 170	150 150 150 150 156	136 136 136 136 142	123 123 123 123 123 128	110 110 110 110 114	96 96 96 96 100	83 83 83 83 86 86	76 76 76 76 76 79	68 68 68 68 72 72

CORRUGATED SHEETS.—Galvanized. Weights in Pounds per 100 Square Feet.

Nom. Thickness, U. S. Standard Gage and Decimals of an Inch													
Cor- rug.	12	14	16	18	20	21	22	23	24	25	26	27	28
Inches	.109	.078	.063	.050	.038	.034	.031	.028	.025	.022	.019	.017	.016
5		354	286	232	178	165	151	138	124	111	98	91	85
3 2 2	488	354	286 286	232 232	178 178	165	151	138 138	124 124	111	98 98	91	85 85
2 11			286	232	178 185	165	151	138	124	111	98	91 94	85 87
5 8									129		101	94	87

The weights per 100 square feet given in preceding tables do not include allowances for end or side laps. The following table gives the approximate number of square feet of sheeting necessary to cover an area of 100 square feet and is based on sheets of standard width, 96 inches long. If longer or shorter sheets are used, the number of square feet required will vary accordingly.

SQUARE FEET OF CORRUGATED SHEETS TO COVER 100 SQUARE FEET.

Cide V	End Lap, Inches								
Side Lap	I	2	3	4	5	6			
Corrugation	110 116 123	111 117 124	112 118 125	113 119 126	114 120 127	115 121 128			

Gutters.—Eave or valley gutters should always be galvanized. Valley gutters should be No. 20 gage. Eave gutters and conductors should be No. 22 gage. Gutters should be sloped not less than I in. in 15 ft.

WEIGHTS OF EAVE GUTTERS AND CONDUCTORS OF GALV. IRON OR STEEL.

Span of Roof.	Size of Gutter.	Wt. per ft.	Size and Spacing of Conductor.	Wt. per lin. ft. No. 22.
up to 50'	6", No. 22	1.8 lb.	4 in. every 40' 0"	1.5 lb.
50' to 70'	7", No. 22	1.9 lb.	5 in. every 40' 0"	2.1 lb.
70' to 100'	8", No. 22	2.1 lb.	5 in. every 40' 0"	2.3 lb.

Details of conductors and downspouts are given in Fig. 21.

Γ		Area	Size	Conductors			
	Туре	Drained	oF	Diam.	Spaceo		
L		Sg.Ft.	Gutter	Ins.	Ft.		
.		0 to 1200		4	40		
	Nº!	1200 to 1800		5	40		
L		1800 to 2400	8"	5	40		
1	Nº2	O to 2400	4"x8"	5	40		
		2400 to 3600		6	40		
1	Nº3	3600 to 4800	5"x10"	6	40		

Eave and Valley Gutters usually Nº 20 or same gage as roofing.

Slope one inch in fifteen feet.

Order in 8 Feet lengths. Conductors usually Nº22 or same gage as siding.

FIG. 21. DETAILS OF CONDUCTORS AND DOWNSPOUTS. AMERICAN BRIDGE COMPANY.

Purlins.—Details of connections for purlins used for a corrugated steel roof are given in Fig. 22.

Cornice.—For details of cornice see the author's "The Design of Steel Mill Buildings."

ROOF COVERINGS.—Mill buildings are covered with corrugated steel supported directly on the purlins; by slate, tile or cement tile supported by sub-purlins; or by corrugated steel, slate, tile, cement tile, shingles, gravel or other composition roof, or some one of the various patented roofings supported on sheathing. The sheathing is commonly made of a single thickness

FIG. 22. DETAILS OF PURLINS FOR CORRUGATED STEEL ROOF. AMERICAN BRIDGE COMPANY.

of planks, I to 3 inches thick. The planks are sometimes laid in two thicknesses with a layer of lime mortar between the layers as a protection against fire. In fireproof buildings the sheathing is commonly made of reinforced concrete. Concrete slabs are sometimes used for a roof covering, being in that case supported directly by the purlins, and sometimes as a sheathing for a slate or tile roof.

The roofs of smelters, foundries, steel mills, mine structures and similar structures are commonly covered with corrugated steel. Where the buildings are to be heated or where a more substantial roof covering is desired slate, tile, tin or a good grade of composition roofing is used, or the roof is made of reinforced concrete. For very cheap and for temporary roofs a cheap composition roofing is commonly used. The following coverings will be described in the order given; corrugated steel, slate, tile, tin, and tar and gravel. A slate roof on reinforced concrete sheathing is shown in Fig. 45 and in Fig. 46.

CORRUGATED STEEL ROOFING.—Corrugated steel roofing is laid on plank sheathing or is supported directly on the purlins. Corrugated steel roofing should be kept well painted with a good paint. Where the roofing is exposed to the action of corrosive gases as in the roof of a smelter reducing sulphur ores, ordinary red lead or iron oxide paint is practically worthless as a protective coating; better results being obtained with graphite and asphalt paints. Tar paint, made by mixing tar, Portland cement and kerosene in the proportions of 16 parts of tar, 4 parts of Portland cement, and 3 parts of kerosene, by volume, is an excellent protection against corrosive gases in smelters and similar structures. Galvanized corrugated steel is quite extensively used. To prevent the condensation of vapor on the inside of the metal roof, corrugated steel roofing should be laid on sheathing or should have anti-condensation lining.

Corrugated steel sheets covered with an asbestos preparation can now be obtained on the market.

Anti-Condensation Lining.—Anti-condensation lining, shown in Fig. 23, consists of asbestos felt supported on wire netting that is stretched tight and supported by the purlins. Anti-condensation lining is put on according to two systems.

Berlin System, (5) Fig. 23.—(1) Lay galvanized wire netting, No. 19, 2-in. mesh, transversely to the purlins with edges about 1½ in. apart so that when laced together with No. 20 brass wire the netting will be stretched smooth and tight. When the purlins are spaced more than 4 ft. apart stretch No. 9 galvanized wire across the purlins about 2 ft. centers to hold up the netting.

(2) On the top of the wire netting place a layer of asbestos paper weighing 14 lb. per square

of 100 sq. ft., and on this place a layer of asbestos paper weighing 6 lb. per square. All holes in

the paper must be patched when laid.

(3) On top of the asbestos paper lay two thicknesses of Neponset building paper. Note.—The asbestos and building paper should lap 3 in. and break joints 12 in. The corrugated steel is fastened with the usual connections. Use tin washers on corrugated steel bolts

where there is danger of breaking or tearing the lining.

Wire netting, No. 19 gage, 2-in. mesh comes in bundles 6 ft. wide and 150 ft. long, containing 900 sq. ft. Asbestos comes in rolls 36 in. wide and is sold by the pound. No. 20 brass wire is bought by the pound, 272 lineal ft. weigh one pound. Neponset building paper comes in rolls 36 in. wide and 250 ft. or 500 ft. long. Do not cut a roll. Add 10 per cent for laps of asbestos and building paper.

Minneapolis System, (6) Fig. 23.—(1) Lay wire netting, No. 19, 2-in. mesh, transversely to the purlins, with edges $1\frac{1}{2}$ in. apart, so that when laced together with No. 20 brass wire the netting

will be stretched smooth and tight.

(2) On the top of the netting lay asbestos paper weighing 30 lb. to the square of 100 sq. ft., allowing 3 in. for laps. For important work lay one or two thicknesses of building paper on top of the asbestos.

(3) Lay the corrugated steel and fasten to purlins in the usual manner.

Note.—If wood purlins are used the wire netting may be fastened to the nailing strips with $\frac{3}{4}$ in. staples. Where the purlins are more than 2 ft. 6 in. centers place a line of $\frac{3}{16}$ in. bolts between purlins, about 2 ft. centers, with washers I in. × 4 in. × ½ in. to prevent netting from sagging.

* SLATE ROOFING.—Roofing slates are usually made from \$ to \$\frac{1}{4}\$ inches thick; \$\frac{8}{16}\$ inch being a very common thickness. Slates vary in size from 6 in. X 12 in. to 24 in. X 44 in.; the sizes varying from 6 in. X 12 in. to 12 in. X 18 in. being the most common.

Fig. 23. Details of Roofing, Ventilators and Anti-Condensation Lining.

Slates are laid like shingles as shown in Fig. 23. The lap most commonly used is 3 inches; where less than the minimum pitch of $\frac{1}{4}$ is used the lap should be increased. The number of slates of different sizes required for one square of 100 sq. ft. of roof for a 3-in. lap are given in Table II. The weight of slates of the various lengths and thicknesses required for one square of roofing, using a 3-in. lap is given in Table III. The weight of slate is about 174 lb. per cu. ft. The weight of slate per superficial sq. ft. for different thicknesses is given in Table IV.

TABLE II.

Number of Roofing Slates Required to Lay One Square of Roof with 3-In. Lap.

Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.
$ 6 \times 12 \\ 7 \times 12 \\ 8 \times 12 \\ 9 \times 12 $	533	8 × 16	277	12 × 20	141
	457	9 × 16	246	14 × 20	121
	400	10 × 16	221	11 × 22	137
	355	12 × 16	184	12 × 22	126
10 × 12	320	9×18	213	14 × 22	108
12 × 12	266	10×18	192	12 × 24	114
7 × 14	374	11×18	174	14 × 24	98
8 × 14	327	12×18	160	16 × 24	86
9 × 14 10 × 14 12 × 14	291 261 218	14 × 18 10 × 20 11 × 20	137 169 154	14 × 26 16 × 26	89 78

 $\begin{tabular}{ll} TABLE III. \\ The Weight of Slate Required for One Square of Roof. \\ \end{tabular}$

Length in		,	Weight in po	unds, per sq	uare, for the	thickness.		
Inches.	1 ''	3/16	1//	3//	1/1	<u>5</u> "/	3//	I"
12	483	724	967	1450	1936	2419	2902	3872
14	460	688	920	1370	1842	2301	2760	3683
16	445	667	890	1336	1784	2229	2670	3567
18	434	650	869	1303	1740	2174	2607	3480
20	425	637	851	1276	1704	2129	2553	3408
22	418	626	836	1254	1675	2093	2508	3350
24	412	617	825	1238	1653	2066	2478	3306
26	407	610	815	1222	1631	2039	2445	3263

TABLE IV.
WEIGHT OF SLATE PER SQUARE FOOT.

Thickness—in	3 16 2.7I	3.62	38 5·43	$\frac{1}{2}$ 7.25	9.06	3 10.87	1 14.5
--------------	-----------------	------	------------	--------------------	------	------------	-----------

The minimum pitch recommended for a slate roof is \(\frac{1}{4}\); but even with steeper slopes the rain and snow may be driven under the edges of the slates by the wind. This can be prevented by laying the slates in slater's cement. Cemented joints should always be used around eaves, ridges and chimneys.

Slates are commonly laid on plank sheathing. The sheathing should be strong enough to prevent deflections that will break the slate, and should be tongued or grooved, or shiplapped, and dressed on the upper surface. Concrete sheathing reinforced with wire mesh, expanded metal or rods is now being used quite extensively for slate and tile roofs, and makes a fireproof roof, see

Fig. 46. Tar roofing felt laid between the slates and the sheathing assists materially in making the roof waterproof, and prevents breakage when the roof is walked on. The use of rubber-soled shoes by the workmen will materially reduce the breakage caused by walking on the roof. Roofing slates may also be supported directly on sub-purlins. The details of this method are practically the same as for tile roofing, which see.

When roofing slates are laid on sheathing they are fastened by two nails, one in each upper corner, Fig. 23. When supported directly on sub-purlins the slates are fastened by copper or composition wire. Galvanized and tinned steel nails, copper, composition and zinc slate roofing nails are used. Where the roof is to be exposed to corrosive gases copper, composition or zinc nails should be used.

TILE ROOFING.—Baked clay or terra-cotta roofing tiles are made in many forms and sizes. Plain roofing tiles are usually $10\frac{1}{2}$ in. long, $6\frac{1}{4}$ in. wide and $\frac{5}{8}$ in. thick; weigh from 2 to $2\frac{1}{2}$ lb. each and lay one-half to the weather. There are many other forms of tile among which book tile, Spanish tile, pan tile and Ludowici tile are well known. Tiles are also made of glass and are used in the place of skylights.

Tiles may be laid (1) on plank sheathing, (2) on reinforced concrete sheathing, or (3) may be supported directly on angle sub-purlins as shown in Fig. 13. Tiles are laid on sheathing in the

same manner as slates.

The roof shown in Fig. 13 was constructed as follows: Terra-cotta tiles, manufactured by the Ludowici Roofing Tile Co., Chicago, Ill., were laid directly on the angle sub-purlins, every fourth tile being secured to the angle sub-purlins by a piece of copper wire. The tiles were interlocking, requiring no cement except in exceptional cases. The tiles were 9 × 16 in. in size; 135 being sufficient to lay a square of 100 sq. ft. of roof. These tiles weigh from 750 to 800 lb. per square, and cost about \$6.00 per square at the factory. Skylights in this roof were made by substituting glass tiles for the terra-cotta tiles. This and similar tile have been used in this manner on a large number of mills and train sheds with excellent results.

Tile roofs laid without sheathing do not ordinarily condense the steam on the inner surface of the roof unless the tiles are glazed, although several cases have been brought to the author's attention where the condensation has caused trouble with tile roofs made of porous tiles. Anticondensation roof lining should be used where there is danger of excessive sweating, or a porous

tile should be used that is known to be non-sweating.

TIN ROOFING.—Two sizes of tin plates are in common use, 14 in. \times 20 in. and 20 in. \times 28 in., the latter size being most used. Tin sheets are made in several thicknesses, the IC, or No. 29 gage weighing 8 ounces to the sq. ft., and the IX, or No. 27 gage weighing 10 ounces to the sq. ft., being the most used. The standard weight of a box of 112 sheets, 14 \times 20 size is 108 lb. for IC plate, and 136 lb. for IX plate. Boxes containing imperfect sheets or "wasters" are marked ICW or IXW. Every sheet should be stamped with the name of the brand and the thickness. The value of tin roofing depends upon the amount of tin used in coating and the uniformity with which the iron has been coated. The amount of tin used varies from 8 to 47 lb. for a box of 20 \times 28 size containing 112 sheets.

Tin roofing is laid (1) with a flat seam, or (2) with a standing seam. In the former method the sheets of tin are locked into each other at the edges, the seam is flattened and fastened with tin cleats or is nailed firmly and is soldered water tight. Rosin is the best flux for soldering, although some tinners recommend the use of diluted chloride of zinc. For flat roofs the tin should be locked and soldered at all joints, and should be secured by tin cleats and not by nails. For steep roofs the tin is commonly put on with standing seams, not soldered, running with the pitch of the roof, and with cross-seams double locked and soldered. One or two layers of tar paper should be placed between the sheathing and the tin.

The under side of the sheets should be painted before laying. Tin roofs should be painted

every two or three years. If kept well painted a tin roof should last 25 to 30 years.

For flat seam roofing, using $\frac{1}{2}$ in. locks, a box of 14×20 tin will cover 192 sq. ft., and for standing seam, using $\frac{3}{2}$ in. locks and turning $1\frac{1}{4}$ and $1\frac{1}{2}$ in. edges, making 1 in. standing seams,

it will lay 168 sq. ft. For flat seam roofing, using \frac{1}{2} in. locks, a box of 20 \times 28 tin will lay about 399 sq. ft., and for standing seam, using $\frac{3}{8}$ in. locks and turning $1\frac{1}{4}$ and $1\frac{1}{2}$ in. edges, making 1 in. standing seams, it will lav about 365 sq. ft.

TAR AND GRAVEL ROOF.—Tar and gravel roofs are called three-, four-, five-ply, etc., depending upon the number of layers of roofing felt. Tar and gravel roofs may be laid upon timber sheathing or upon concrete slabs. For details of a tar and gravel roof see Fig. 23. The following specifications are taken from the author's "Specifications for Steel Frame Buildings,"

Specifications for Five-Ply Tar and Gravel Roof on Timber Sheathing.—The materials used in making the roof are I (one) thickness of sheathing paper or unsaturated felt, 5 (five) thicknesses of saturated felt weighing not less than I5 (fifteen) lb. per square of one hundred (100) sq. ft., single thickness, and not less than one hundred and twenty (120) lb. of pitch, and not less than four hundred (400) lb. of gravel or three hundred (300) lb. of slag from 1 to 1 in. in size,

free from dirt, per square of one hundred (100) sq. ft. of completed roof.

The material shall be applied as follows: First, lay the sheathing or unsaturated felt, lapping each sheet one in. over the preceding one. Second, lay two (2) thicknesses of tarred felt, lapping each sheet seventeen (17) in. over the preceding one, nailing as often as may be necessary to hold the sheets in place until the remaining felt is applied. Third, coat the entire surface of this two-ply layer with hot pitch, mopping on uniformly. Fourth, apply three (3) thicknesses of felt, lapping each sheet twenty-two (22) in. over the preceding one, mopping with hot pitch the full width of the 22 in. between the plies, so that in no case shall felt touch felt. Such nailing as is necessary shall be done so that all nails will be covered by not less than two plies of felt; fifth, spread over the entire surface of the roof a uniform coating of pitch, into which, while hot, imbed the gravel or slag. The gravel or slag in all cases must be dry.

Specifications for Five-Ply Tar and Gravel Roof on Concrete Sheathing.—The materials used shall be the same as for tar and gravel roof on timber sheathing, except that the one thick-

ness of sheathing paper or unsaturated felt may be omitted.

The materials shall be applied as follows: First, coat the concrete with hot pitch, mopped on uniformly. Second, lay two (2) thicknesses of tarred felt, lapping each sheet seventeen (17) in. over the preceding one, and mop with hot pitch the full width of the 17-in. lap, so that in no case shall felt touch felt. Third, coat the entire surface with hot pitch, mopped on uniformly. Fourth, lay three (3) thicknesses of felt, lapping each sheet twenty-two (22) in. over the preceding one, mopping with hot pitch the full width of the 22-in. lap between the plies, so that in no case shall felt touch felt. Fifth, spread the entire surface of the roof with a uniform coat of pitch, into which, while hot, imbed gravel or slag.

Cost of Five-Ply Tar and Gravel Roofing.*—The cost of a round house roof in the middle west, based on 1912 prices and containing 500 squares of five-ply tar and gravel roofing, was as follows.

, III - II - II - II - II - II - II - I	
Cost per square of 100 sq. ft. not including fixed charges or profit, not including sheathin	ıg.
Sheathing paper, 5 lb	
Pitch, 155 lb. at 60 cents per 100 lb	
Felt, 85 lb. at \$1.65 per 100 lb 1.40	
Nails and caps 0.05	
Cleats for flashing	
Gravel (about one-seventh yard)	
Labor, including hauling, board and railroad fare	
Total cost per square\$3.93	

SHOP FLOORS.—Floors for industrial plants may be placed on a foundation resting directly on the ground or may be self supporting. Several examples of shop floors that rest on the ground are shown in Fig. 25. Standard specifications for a cement floor and for a wood floor on a tar concrete base follow.

The following specifications are from the author's "Specifications for Steel Frame Buildings."

Specifications for Cement Floor on a Concrete Base. Materials.—The cement used shall be first-class Portland cement, and shall pass the standards of the American Society for Testing Materials. The sand for the top finish shall be clean and sharp and shall be retained on a No. 30 sieve and shall have passed the No. 20 sieve. Broken stone for the top finish shall pass a $\frac{1}{2}$ in.

^{*}Am. Ry. Eng. Assoc., Vol. 14, p. 852.

screen and shall be retained on the No. 20 screen. Dust shall be excluded. The sand for the base shall be clean and sharp. The aggregate for the base shall be of broken stone or gravel and

shall pass a 2 in. ring.

Base.—On a thoroughly tamped and compacted subgrade the concrete for the base shall be laid and thoroughly tamped. The base shall not be less than 2½ in. thick. Concrete for the base shall be thoroughly mixed with sufficient water so that some tamping is required to bring the moisture to the surface. If old concrete is used for the base the surface shall be roughened

Fig. 25. Examples of Ground Shop Floors.

and thoroughly cleaned so that the new mortar will adhere. The roughened surface of old concrete shall then be thoroughly wet so that the base will not draw water from the finish when the latter is applied. Before scrubbing the base with grout the excess water shall be removed.

Finish.—With old concrete the surface of the base shall first be scrubbed with a thin grout of pure cement, rubbed in with a broom. On top of this, before the thin coat is set, a coat of finish mixed in the proportions of one part Portland cement, one part stone broken to pass a $\frac{1}{2}$ in ring, and one part sand shall be troweled on using as much pressure as possible, so that it will take a firm bond. After the finish has been applied to the desired thickness it should be screeded and floated to a true surface. Between the time of initial and final set it shall be finished by

skilled workmen with steel trowels and shall be worked to a final surface. Under no condition

shall a dryer be used, nor shall water be added to make the material work easily.

Specifications for Wood Floor on a Tar Concrete Base. Floor Sleepers.—Sleepers for carrying the timber floor shall be 3 in. \times 3 in. placed 18 in. c. to c. After the subgrade has been thoroughly tamped and rolled to an elevation of $4\frac{1}{2}$ in. below the tops of the sleepers, the sleepers shall be placed in position and supported on stakes driven in the subgrade. Before depositing the tar concrete the sleepers must be brought to a true level.

Tar Concrete Base.—The tar concrete base shall be not less than $4\frac{1}{2}$ in. thick and shall be laid as follows: First, a layer three (3) in. thick of coarse, screened gravel thoroughly mixed with tar, and tamped to a hard level surface. Second, on this bed spread a top dressing $1\frac{1}{2}$ in. thick of sand heated and thoroughly mixed with coal tar pitch, in the proportions of one (1) part pitch to three (3) parts tar. The gravel, sand and tar shall be heated to from 200 to 300 degrees F., and shall be thoroughly mixed and carefully tamped into place.

Plank Sub-Floor.—The floor plank shall be of sound hemlock or pine not less than 2 in. thick, planed on one side and one edge to an even thickness and width. The floor plank is to be

toe-nailed with 4 in. wire nails.

Finished Flooring.—The finished flooring is to be of maple of clear stock, $\frac{7}{8}$ in. finished thickness, thoroughly air and kiln dried and not over 4 in. wide. The flooring is to be planed to an even thickness, the edges jointed, and the underside channeled or ploughed. The finished floor is to be laid at right angles to the sub-floor, and each board neatly fitted at the ends, breaking joints at random. The floor is to be final nailed with 10 d. or 3 in. wire nails, nailed in diagonal rows 16 in. apart across the boards, with two (2) nails in each row in every board. The floor to be finished off perfectly smooth on completion.

The finished flooring is not to be taken into the building or laid until the tar concrete base

and sub-plank floor are thoroughly dried.

FIG. 26. EXAMPLES OF SHOP FLOORS ABOVE GROUND.

Shop floors above ground may be made of timber resting on beams, of brick arch construction, (a) Fig. 26, of concrete with corrugated steel arch centers as shown in (b), of reinforced con-

crete as shown in (c) and (d), of steel filled with concrete as shown in (e), (f), (g), (h), or of concrete reinforced with Buckeye flooring as shown in (i) or Multiplex flooring as shown in (j).

Timber Floors.—The Yellow Pine Manufacturers Association has calculated the safe span of yellow pine when used for mill floors with fiber stresses of 1,200 to 1,800 lb. per sq. in. for live loads of 100 to 300 lb. per sq. ft. in addition to the weight of the floor, Table V. In the line marked "Deflection" is given the span which has a maximum deflection of one thirtieth of an inch per foot of span for the various live loads. The modulus of elasticity of timber was taken as 1,684,800 lb. per sq. in. The table may be used for any kind of timber by using the proper working stress. The maximum spans for fiber stresses less than 1,200 lb. per sq. in. may be found as follows: Required the maximum safe span for a timber floor $2\frac{5}{8}$ in. thick for a fiber stress of 800 lb. per sq. in. and a live load of 150 lb. per sq. ft. The span is approximately the same as for a fiber stress of 1,200 lb. per sq. in. and a live load of 300 lb. per sq. ft., = 6 ft. 11 in.; or for a fiber stress of 1,600 lb. per sq. in. and a live load of 300 lb. per sq. ft., = 6 ft. 11 in.

TABLE V.

ALLOWABLE SPAN FOR TIMBER FLOORS.

YELLOW PINE MANUFACTURERS ASSOCIATION.

		SPAN IN FEET.										
Thick- ness in Inches.	Stress per Square Inch. Pounds.	Live Load in Pounds Per Square Foot.										
		100	125	150	175	200	225	250	275	300		
15	1,200 1,300 1,500 1,600 1,800 Deflection	6' 4"' 6' 7" 7' 1"' 7' 4" 7' 9" 4' 8"	5' 8" 5' 11" 6' 4" 6' 7" 7' 0" 4' 4"	5', 3", 5', 5", 5', 10", 6', 0", 6', 5", 4', 1"	4' 10" 5' 0" 5' 5" 5' 7" 5' 11" 3' 11"	4' 6" 4' 9" 5' 1" 5' 3" 5' 7" 3' 9"	4' 4" 4' 6" 4' 10" 5' 0" 5' 3" 3' 7"	4' 1" 4' 3" 4' 7" 4' 8" 5' 0" 3' 5½"		3' 9" 3' 10" 4' 2" 4' 4" 4' 7" 3' 3"		
25	1,200 1,300 1,500 1,600 1,800 Deflection	10' 1" 10' 6" 11' 3" 11' 8" 12' 4" 7' 5½"	9' 1" 9' 6" 10' 2" 10' 6" 11' 2" 6' 11½"	8' 4" 8' 8" 9' 4" 9' 8" 10' 3" 6' 7"	7' 9" 8' 1" 8' 8" 8' 11" 9' 6" 6' 3"	7' 3" 7' 7" 8' 2" 8' 5" 8' 11" 6' 0"	6' 11" 7' 2" 7' 8" 7' 11" 8' 5" 5' 9½"	6' 6'' 6' 10'' 7' 4'' 7' 7'' 8' 0'' 5' 7''	6' 3" 6' 6" 7' 0" 7' 2" 7' 8" 5' 5"	6' 0" 6' 3" 6' 8" 6' 11" 7' 4" 5' 3"		
35	1,200 1,300 1,500 1,600 1,800 Deflection	IO' 2½"	9' 6½"	11' 3" 11' 8" 12' 7" 13' 0" 13' 9" 9' 0"	10' 7" 11' 0" 11' 10" 12' 3" 13' 0" 8' 7"	10' 0" 10' 5" 11' 2" 11' 6" 12' 3" 8' 3"	9' 5" 9' 10" 10' 7" 10' 11" 11' 7" 7' 11½"	9' 0" 9' 4" 10' 0" 10' 4" 11' 0" 7' 8"	8' 7" 8' 11" 9' 7" 9' 11" 10' 6" 7' 5½"	8' 3" 8' 7" 9' 2" 9' 6" 10' 1" 7' 3"		
45	1,200 1,300 1,500 1,600 1,800 Deflection	12' 11"	12' 1"	11' 5½"		12' 7" 13' 2" 14' 1" 14' 7" 15' 5" 10' 6"	11' 11" 12' 5" 13' 4" 13' 9" 14' 8" 10' 1"	11' 4" 11' 10" 12' 9" 13' 2" 14' 2" 9' 9"	10' 10" 11' 4" 12' 2" 12' 7" 13' 4" 9' 6"	10' 5" 10' 10" 11' 8" 12' 1" 12' 9" 9' 2½"		
5 8	1,200 1,300 1,500 1,600 1,800 Deflection	13′ 7″	12' 8½"	12' 0½"		15' 3" 15' 10" 17' 1" 17' 7" 18' 8" 11' 0½"	14' 5" 15' 0" 16' 1" 16' 8" 17' 8" 10' 8"	13' 9" 14' 4" 15' 4" 15' 10" 16' 10" 10' 4"	13' 2" 13' 8" 14' 8" 15' 2" 16' 1" 10' 9"	12' 7" 13' 1" 14' 1" 14' 7" 15' 5" 10' 9"		

Waterproofing.—For methods of waterproofing floors, walls, etc., see methods of waterproofing bridge floors in Chapter IV.

DIMENSIONS FOR GLAZED WOOD SASH

Size of Glass		Height H,	Height Hz	Height H3	Single Sash	Double Hung Sash	Height H ₂	Height H _i	Width W	Size of Glass
10*/2* 12×12 10×14 12×14 10×16 12×16	2'114 3-54 2-114 3-54 2-114 2-51	2 ¹⁵ 8 2-58 2-98 2-98 2-98 3-18	3'6" 3-6 4-0 4-0 4-6 4-6	468 4-68 5-28 5-28 5-108 5-108	H3 H2 H,	W W W W W W W W W W W W W W W W W W W	6'84 6-84 7-84 7-84 8-84 8-84	4'7\f\\ 4-7\f\\ 5-3\f\\ 5-3\f\\ 5-1 \f\\ 5-1 \f\\\	2-114 3-54 2-114	
12×16 14×16 10×12 12×12 10×14 12×14 10×16		3-15 2-55 2-55		5-10 3 5-10 3 4-6 3 4-6 3 5-2 3 5-2 3 5-10 3	## W W W	W W W	8-84 6-84 7-84 7-84 7-84 8-84	5-112 5-112 4-72 5-32 5-32 5-112		14×16 10×12 12×12 10×14 12×14
12×16 14×16 10×12 12×12 10×14	4-5\\\ 5-1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3-158 3-158 5-64-54 5-64-54 6-44	4-6 4-6 6-84 6-84 7-84	5-10 mg	H, H3	W W W	8-8 4 8-8 4	5-11½ 5-11½ 8-9 8-9 10-1	4-5 8 5-1 5 2-11 4 3-5 4 2-11 4	12×16 14×16 10×12 12×12 10×14
12×14 10×16 12×16 14×16	3-958 4-558 5-158	6-43 7-23 7-23 7-23 7-23 2-58	8-84 8-84 8-84		5LIDI	W W	3-6	10-1 11-5 11-5 11-5 2-5\frac{5}{8}	3-54 2-114 3-54 3-114 5-84	
12×12 10×14 12×14 10×16 12×16 14×16	4-7½ 3-11½ 4-7½ 3-11½ 4-7½	2-5 \frac{8}{5} \frac{2}{5} \frac{8}{5} \frac{8}{5} \frac{2}{5} \frac{9}{5} \frac{8}{5} \frac{5}{1} \frac{8}{5} \frac{5}{1} \frac{8}{5} \frac{5}{1} \frac{8}{5} \frac{5}{3} \frac{1}{5} \frac{8}{5} \frac{5}{3} \frac{1}{5} \frac{8}{5} \frac{5}{3} \frac{1}{5} \frac{8}{5} \frac{5}{3} \frac{1}{5} \frac{8}{5} \frac{1}{5} \frac{8}{5} \frac{1}{5} \f	3-6 <i>4-0</i>		W W		3-6 4-0 4-0 4-6 4-6 4-6	2-5\frac{5}{8} 2-9\frac{5}{8} \frac{5}{8} -1\frac{5}{8} \frac{5}{8} -1\frac{5}{8} \frac{5}{8} -1\frac{5}{8} \frac{5}{8} \frac{1}{8}	6-84 5-84 6-84	12×12 10×14 12×14 10×16

QUALITY OF GLASS

"B" American Single Strength					"B" American Double Strength				
10"× 12"	12"× 12"	10"×14"	12"x 14"		10"×16".	12"× 16"	14"×16"		

All sash to be $l_{\overline{a}}^{*}$ "thick, except Sliding Sash, Pivoted Sash, and Single Sash (or one half of Double Sash) exceeding 4'6" high or 4'0" wide, which should be made $l_{\overline{a}}^{*}$ " thick Top Rails $2l_{\overline{a}}^{*}$ ". Stiles $2l_{\overline{a}}^{*}$ ". Bottom Rail 3". Muntins $\frac{3}{2}$ ".

Pivoted Sash, 4 lights high or over, to have one Horizontal Muntin $l_2^{l''}$ thick; all other Sash, 6 lights high or over, to have one Horizontal Muntin $l_2^{l''}$ thick.

Pivoted Sash, 4 lights wide or over, to have one Vertical Muntin l_2^{-n} thick; all other Sash, 6 lights wide or over, to have one Vertical Muntin l_2^{-n} thick• For Pivoted Sash 4 and 5 lights high or wide, add l_3^{-n} to figures given in above tables•

Fig. 27. Dimensions and Data for Glazed Wood Sash.

American Bridge Company.

Fig. 28. Dimensions for Glazed Wood Sash. American Bridge Company.

WINDOWS AND SKY LIGHTS.—Mill and mine buildings should have an ample amount of glazing in the form of windows and sky lights. Plane glass is made in two thicknesses, single strength approximately $\frac{1}{16}$ in thick, and double strength approximately $\frac{1}{6}$ in thick. Plane

Fig. 29. Data for Double Hung Weighted Windows.

American Bridge Company.

glass is graded as AA, A, and B. The AA grade being the best and the B grade the poorest. Wire glass is $\frac{8}{16}$ in. or $\frac{1}{4}$ in. thick and may be obtained with a smooth surface, with factory ribs or prisms. For ordinary windows double strength glass gives very satisfactory results. For sky lights and where windows are liable to be broken, wire glass should be used. The best

FIG 30. DATA FOR COUNTERBALANCED WINDOWS.

AMERICAN BRIDGE COMPANY.

Fig. 31. Data for Pivoted Windows. American Bridge Company.

glass for glazing windows in industrial plants is "factory ribbed glass" with twenty-one ribs to the inch, the ribs being placed on the inside of the window. This glass is considerably more expensive than plane glass but is much more satisfactory.

Translucent fabric made by imbedding wire cloth in a translucent material made of linseed oil, is also used for glazing in industrial buildings. Translucent fabric will be charred by a live coal but is practically fire-proof. It shuts off part of the light, making it possible for men to work under it without shading.

Fig. 32. Data for Continuous Pivoted and Fixed Sash in Monitors.

American Bridge Company.

The amount of glazed surface required in mill buildings depends upon the use to which the building is put, the material used in glazing, the location and the angle of the windows and sky lights, and the clearness of the atmosphere. It is common to specify that not less than 10 per cent of the exterior surface of mill buildings and 25 per cent of the exterior surface of machine shops should be glazed. Many industrial plants have as much as 60 per cent of the exterior walls of glass.

Fig. 33. Data for Continuous Fixed Sash. American Bridge Company.

Details of glazed sash and window frames as adopted by the American Bridge Company are given in Fig. 27 to Fig. 34.

VENTILATORS.—Mill buildings may be ventilated by means of monitor ventilators, or by means of circular ventilators. Details of a circular ventilator as designed by the American Bridge Company are shown in (3) Fig. 23. Details of a standard monitor steel louvre ventilator are shown in Fig. 35. The sides of the monitor ventilator in Fig. 42 were fitted with louvres which were to be closed in cold weather. Buildings of this type should have glazed sash so that when the ventilators are closed the light will not be cut off. Data for estimating louvre slats are given in Fig. 20.

FIG. 34. DATA FOR CONTINUOUS SLIDING SASH.
AMERICAN BRIDGE COMPANY.

WOODEN DOORS.—Wooden doors are usually constructed of matched pine sheathing nailed to a wooden frame as shown in Fig. 36. These doors are made of white pine. Doors up to four feet in width should be swung on hinges; wider doors should be made to slide on an overhead track or should be counter-balanced and raise vertically. Sliding doors should be at least 4 in. wider and 2 in. higher than the clear opening.

Fig. 35. Details of a Steel Monitor Louvre Ventilator, American Bridge Company,

"Sandwich" doors are made by covering a wooden frame with flat or corrugated steel. The wooden framework of these doors is commonly made of two or more thicknesses of $\frac{7}{8}$ in, dressed and matched white pine sheathing not over 4 in. wide, laid diagonally and nailed with clinch nails. Care must be used in handling sandwich doors made as above or they will warp out of shape. Corrugated steel with $I_{\frac{1}{4}}$ in. corrugations makes the neatest covering for sandwich doors.

For swing doors use hinges about as follows: For doors 3 ft. \times 6 ft. or less use 10 in. strap or 10 in. T-hinges; for doors 3 ft. \times 6 ft. to 3 ft. \times 8 ft. use 16 in. strap or 16 in. T-hinges; for doors 3 ft. \times 8 ft. to 4 ft. \times 10 ft. use 24 in. strap hinges.

STEEL DOORS.—Details of a steel sliding door are shown in Fig. 37. Details of a swinging steel door are shown in Fig. 38. Steel doors should be covered with corrugated steel, preferably with 1½ in. corrugations.

Details of the track for a sliding door are shown in Fig. 39.

EXAMPLES OF STEEL MILL BUILDINGS.—The following examples will illustrate the practice in the design of steel mill buildings.

Example of Ketchum's Modified Saw Tooth Roof.—The modified form of saw tooth roof shown in (n) Fig. 6, was proposed by the author in the first edition of "The Design of Steel Mill Buildings" (1903). This form of saw tooth roof has been used in the paint shops of the Plank Road Shops of the Public Service Corporation of New Jersey, Newark, N. J.

Fig. 36. Details of Wooden Doors. American Bridge Company.

The building proper is 135 ft. wide by 354 ft. long. The main trusses are of the modified saw tooth type with 44 ft. spans and a rise of $\frac{1}{4}$, and are spaced 16 ft. centers. The general details of one of the main trusses are shown in Fig. 40. The building has an independent steel framing with

Corr. Sheeting to be Fastened to I angle frame top and bottom.

Corrugated Steel to be of same gage as siding.

Rivets on inside Frame, Nº5 wire. Holes for Fastening inside to outside Frame for Nº5 wire.

Rivets on outside frame $\frac{1}{2}$ inch · Inside frame to be shipped bolted in place · If desired to cheapen construction of door, omit side and center angles of inside frame ·

Fig. 37. Details of a Sliding Steel Door. American Bridge Company.

brick curtain walls on the exterior. Pilasters 24 in. by 20 in. are placed 16 ft. apart under the ends of the trusses, the intermediate curtain walls being 12 in. thick. The roof is a 5 ply slag roof laid on tongued and grooved spruce sheathing, which is spiked to 2 in. \times 5 in. spiking strips, which are bolted to 8 in. channel purlins spaced 6 ft. centers.

Corrugated Steel to be same gage as siding.

Rivets on inside frame, Nº5 wire. Holes for fastening inside frame to outer frame, Nº5 wire.

Rivets on outer frame $\frac{1}{2}$ " diameter. Inside frame to be shipped bolted in place. Corrugated Steel to be riveted in field to top and bottom angles of inside frame. If desired to cheapen construction of door, omit side and center angles of inside frame.

Fig. 38. Details of a Swinging Steel Door. American Bridge Company.

Fig. 39. Details of a Track for a Sliding Door.

Fig. 40. Modified Saw Tooth Roof, Paint Shop, Public Service Corporation.

A Steel Transformer Building.—The framework of a steel frame transformer building is shown in Fig. 41 and Fig. 42. The trusses are Fink trusses with the members made of angles placed back to back. The main columns carrying the roof trusses are made of four angles laced, the

BRACING IN PLANE OF BOTTOM CHORD BRACING IN PLANE OF TOP CHORD

FIG. 41. PLANS OF A TRANSFORMER BUILDING.

section being I-shaped, each flange being composed of two angles placed back to back with the long legs outstanding, and the web consisting of lacing. The columns in the end of the building are made of 9 in. I-beams. The main purlins are made of 5 in. channels @ 6½ lb., while the girts

END ELEVATION FIG. 42. Plans of a Transformer Building.

are 4 in. channels @ $5\frac{1}{4}$ lb. The purlins are spaced less than 4 ft. 9 in., which is a maximum spacing where corrugated steel roofing is used without sheathing. The steel framework is braced in the plane of the top chord and the sides and ends of the building by means of diagonal rods $\frac{7}{4}$ in. in diameter. The crane girder beams in the plane of the lower chord brace the building longitudinally, the diagonal bracing being composed of angles.

END ELEVATION

	29@6'-3"	0.0
10@9'6"	Louvres	0@9'6
i	27 <u>f</u> @ 4'-10" \ 47f @ 9'-6" \	
		20-72
	47;@9'6"	
	47: @ 5:0"	
	47: @ 6:2"	4@4:924
1:10 404-9 4204:10 404:9 404	10 42 @4 9 4@ 4:10 4@4.9 42@4:10	4:101
41@6:0 MOD 10 4@	5:0° 4@6:0° 8 1 42@6:0	9.00 GOW
210 () ()		5 46 3
	C L-1	> 1 270
1@4:0	1@4:0"	1@1:0
45-7-6-413-413-7-6-413	30 0 -0 6 - +30 -4 5 x -7 6 - +4 3 4 3	-7-6-x43
16'0"> 16'0">	16'-0"x16'-0"x	-16'-0"

SIDE ELEVATION

FIG. 43. CORRUGATED STEEL PLANS FOR TRANSFORMER BUILDING.

Corrugated Steel Covering.—The plans for the corrugated steel covering on the roof and sides are shown in Fig. 43 and Fig. 44. The corrugated steel for the roof is No. 22 gage steel with $2\frac{1}{2}$ in. corrugations, while the corrugated steel for the sides is No. 24 gage steel with $2\frac{1}{2}$ in. corrugations. The flashing and ridge roll are made of No. 22 flat sheet steel.

Corrugated Steel on Sides, No.24 Black, Painted, I Corrugation Side lap and 4"End lap. Corrugated Steel on Roof, No.22 Black, Painted, 2 Corrugations Side lap and 6"End lap.

METHOD OF FASTENING STEEL AND LINING ON ROOF

METHOD OF FASTENING STEEL ON THE SIDES

Fig. 44. Corrugated Steel List and Details for Transformer Building.

To prevent the condensation of moisture on the inside of the steel roof and the resulting dripping, anti-condensation lining was used, as is shown in Fig. 44. This lining was constructed as follows: Galvanized wire poultry netting was fastened to one eave purlin, was passed over the ridge, stretched tight and fastened to the other eave purlin. The edges of the wire were woven together by means of wire clips. On the wire netting was laid two layers of asbestos paper $\frac{1}{16}$ in. thick, and on top of the asbestos was laid two layers of tar paper. The corrugated steel was then laid on top of the roof in the usual way and was fastened to the purlins by means of long soft iron wire nails spaced as shown in Fig. 44. To prevent the lining from sagging stove bolts $\frac{1}{16}$ in. in diameter with I in. \times $\frac{1}{8}$ in. \times 4 in. flat washers on the lower side were placed between the purlins. The author would recommend that the purlins be spaced not to exceed 2 ft. 6 in. and the stove bolts omitted.

FIG. 45. STEEL FRAME BUILDING WITH PLASTER WALLS.

Steel Frame Building with Plaster Walls.—The steel frame building shown in Fig. 45 was covered with expanded metal and plaster walls and roof constructed as follows: The side walls were made by fastening $\frac{3}{4}$ in. channels at 12 in. centers to the steel framework and then covering this framework with expanded metal wired on. The expanded metal was then covered on the outside with a coating of cement mortar composed of one part Portland cement and two parts sand, and on the inside with a gypsum plaster, making the walls about 2 in. thick. The roof consists of a $2\frac{1}{2}$ in. concrete slab reinforced with expanded metal, this slab being covered with 10 in. \times 12 in. slate nailed directly to the concrete.

Steam Engineering Building.—Details of a transverse bent of the steam engineering building at the Brooklyn Navy Yard are given in Fig. 46.

The main columns are spaced 48 ft. centers while the main trusses are spaced 16 ft. centers. The intermediate trusses are carried on heavy trusses rigidly fastened to the main columns. The crane girders are carried on crane columns that are fastened to the main columns by light lacing. This method of supporting heavy crane girders is the most satisfactory method yet proposed. The building is well lighted with glass in the side walls, and sky lights in the roof. More than 60 per cent of the area of the external walls and roof is glazed. Many other interesting details can be obtained from the drawings.

Fig. 46. Steam Engineering Building, Brooklyn Navy Yard.

Fig. 47. Types of Steel Windows.

Fig. 51. Details of "United Steel Sash."

Details of window sash as taken from the catalogs of the "Fenestra" windows, made by the Detroit Steel Products Company, Detroit, Mich.; the "Lupton" windows, made by the David

FIG. 53. DETAILS OF STEEL SASH.
((f) is "Lupton," (g) is "United Steel Sash," and (h) is "Fenestra"

Lupton Son Company, Philadelphia, and United Steel Sash" made by the Trussed Concrete Steel Co., Youngstown, Ohio, are shown in Fig. 49 to Fig. 52. While each company uses different rolled sections the details are essentially the same and may be used interchangeably as far as the

designing engineer is concerned. Details of counterbalanced sash, are shown in (a) to (c) and details of a horizontal sliding sash are shown in (d) and (e), Fig. 53. The details of the sections used by the different firms may be determined by observing that in Fig. 53 (f) is "Lupton" (g) is "United Steel Sash," and (h) is "Fenestra." Details of construction, and details of operating

Fig. 54. Details of "United Steel Sash" Ventilators and Skylights.

devices and hardware can be obtained from the various catalogs. Details of "United Steel Sash" monitor ventilators and skylights are shown in Fig. 54. Details of "Lupton" monitor ventilators and skylights are shown in Fig. 55. The details shown in Fig. 54 and Fig. 55 are very complete. For address of other companies manufacturing steel windows, see Sweet's "Architectural Catalog" published by Sweet's Catalog Service, New York.

STEEL DOORS.—Steel doors built up out of special steel sections are made by several firms. Details of "Lupton" tubular steel doors manufactured by David Lupton Sons Company,

Philadelphia, Pa., are shown in Fig. 56. These doors are hinged to swing one way or slide horizontally. The lower part of the door is filled with No. 12 gage steel, while the upper part is commonly filled with wire glass set in steel sash and steel frames. "Lupton" doors have the frames welded.

Details of "Fenestra" tubular steel doors made by the Detroit Steel Products Company, Detroit, Mich., are shown in Fig. 57. The doors are hinged to swing one way, or slide horizontally.

Fig. 55. Details of "Lupton" Steel Monitor Ventilators and Skylights.

Special tubular sliding doors can be made 10 ft. wide and 25 ft. high, or with double doors for an opening 20 ft. wide and 25 ft. high. "Fenestra" doors have the frames riveted. Steel doors are also made by the Trussed Steel Concrete Company.

Diagrammatic sketches of several types of doors are shown in Fig. 58. These sketches represent different types of doors shown in the catalog of J. Edward Ogden Co., New York, N. Y. This company is prepared to furnish door hardware and mechanical parts of the doors shown, or will supply the doors complete. The following data have been taken from the Ogden catalog.

Fig. 56. Details of "Lupton" Tubular Steel Doors.

Fig. 57. Details of "Fenestra" Tubular Steel Doors.

Fig. 58. Diagrammatic Sketches of Doors. Compiled from Catalog of J. Edward Ogden Company.

Two-section Doors.—Doors may be made of wood frame with a sheet-steel covering, or with a steel frame with a sheet-steel covering; the upper section may be glazed with $\frac{1}{4}$ in. wire glass set in metal frames. Details of doors 20 ft. wide and 22 ft. high are shown as constructed with wood frames, and also with steel frames. Counterweights are commonly made equal to one-half the total weight of the door.

Fig. 59. Data for "Bonanza" Cement Tile.

Single-Section Doors.—Doors may be made with wood frames or with steel frames. Details of a door 27 ft. 9 in. wide and 19 ft. 6 in high are shown.

Multi-Section Door.—This door is especially adapted for locations where there is little ceiling space. Doors may be made with wood frames or with steel frames. Details of doors 18 ft. 3 in. wide and 22 ft. 2 in. high are shown.

FIG. 60. DATA FOR FEDERAL CEMENT TILE.

Turn-Over Door.—This door is used for small openings. There is no operating winch, the door being operated by hand.

Canopy Door.—This door protects the entrance when open. The minimum headroom above

the door is 16 inches. This is a modification of the single-section door.

Fig. 61. Data for Federal Cement Tile (upper part), and Data for Pyrobar Gypsum Tile (lower part).

Single-Leaf Vertical-Sliding Door.—These doors require adequate headroom. Details of a door 8 ft. wide and 8 ft. high are shown. These doors are often placed in pairs, where one counterweight and one winch will serve for both doors.

Double-Leaf Vertical-Sliding Doors.—The two sections of these doors are equipped with separate guides and are operated separately. Details of a door 20 ft. wide and 18 ft. high are shown.

Crane Runway Doors.—These doors may swing inward or outward. The doors may be

operated by the crane operator or from the floor. Additional doors should be provided for the load, and for the crane cage where necessary. Folding and sliding doors are also made by the Kinnear Manufacturing Company, Columbus, Ohio.

Rolling Steel Doors.—Rolling steel doors are made by several firms. The J. G. Wilson Corporation, New York, manufactures rolling steel doors that may be operated by hand with widths of 3 ft. to 6 ft. and heights of 6 ft. to 14 ft.; widths of 6 ft. to 10 ft. and heights of 13 ft. to 17 ft.; widths of 10 ft. to 15 ft., and heights of 13 ft. to 15 ft. Doors operated by gear have heights up to 21 ft. and widths up to 20 ft. The Kinnear Manufacturing Co., Columbus, Ohio, manufactures rolling steel doors with widths of 3 ft. to 20 ft., and heights of 6 ft. to 18 ft. For additional details and the names and addresses of other manufacturers of steel doors, see Sweet's Architectural Catalog, published by Sweet's Catalog Service, New York, N. Y.

CEMENT ROOFING TILE.—Cement tile are made of Portland cement and clean, sharp sand and are reinforced with steel rods.

Data for "Bonanza" cement tile, manufactured by the American Cement Tile Mfg. Co., Pittsburgh, Pa., are given in Fig. 59. The exposed surface of the tile is Indian red in color, while the underside has a cement finish. The least desirable slope of roof is a pitch of one-fifth. Data for Federal Cement tile, manufactured by the Federal Cement Tile Co., Chicago, Ill., are given in Fig. 60, and in the upper part of Fig. 61. Cement roofing tile have been very extensively used for industrial plants. The cement tile have the following advantages: (a) are fire resisting; (b) require very simple roof construction; (c) require no sheathing; (d) are non-conductors, (e) may be erected rapidly; (f) the first cost is low for a permanent type of roof; (g) maintenance is low.

Gypsum Roofing Tile.—Gypsum roofing tile made by the United States Gypsum Company, Chicago, are sold under the trade name of Pyrobar Gypsum Roof Tile. The tile are 12 in. wide and 30 in. long, and weigh 13 lb. per sq. ft. Data taken from the catalog for rafters and purlins for Pyrobar Gypsum Roof Tile are given in the lower part of Fig. 61. Gypsum roof tile have recently been used on buildings for the Navy Department at Norfolk, Va. The following advantages of gypsum roof slabs were given by L. M. Cox, U. S. N., Engineering News, Jan. 25, 1917. (a) Light weight; (b) rapid construction; (c) roof slab is non-conductor and non-condensing; (d) is fire resisting; (e) shows few cracks; (f) low cost of maintenance. Gypsum roofing tile are made by several firms, and are also made at the building site.

STRESSES IN MILL BUILDING COLUMNS CARRYING CRANE LOADS.—The stresses produced in columns of mill buildings by crane loads eccentrically applied depend upon the method used in bracing the structure against lateral forces. If the kneebraces are omitted or only very small kneebraces are used, the columns are practically hinged at the top and the lateral thrust due to the eccentric crane loads must be carried to the ends of the building by the lateral bracing in the planes of the chords of the trusses. Proper bracing must then be provided in the end bents.

If rigid kneebraces are provided the columns may be considered as fixed at the top and a transverse bent may be considered as carrying its load directly to the foundations. The lateral load will in reality be distributed between the direct path down the columns and the indirect path along the lateral bracing in the planes of the chords to the end bents. The portion carried by each route will depend upon the relative rigidity of the routes. Since the transverse bent is much more rigid than the lateral bracing, all of the load may be considered as carried by the transverse bent.

In Fig. 62 three cases are considered.

Case I. Columns Hinged at Base and Top.—This case is statically determinate. The lateral thrust is taken by the bracing in the plane of the chords and by the bracing in the end bents.

Case II. Columns Hinged at Base and Fixed at Top.—Columns with constant cross-section.—The formulas for rigid frames were used, making the ratio of the moment of inertia of the truss to the moment of inertia of the column equal to infinity. The formula is sufficiently accurate when this ratio becomes as small as four, and is on the safe side. The distance h is measured to a point one-half way between the foot of the knee-brace and the top of the column.

Case III. Columns Hinged at the Base and Fixed at Top. Columns with variable crosssections.—In this case the column has a different cross-section above and below the attachment of the crane girder. The formulas for rigid frames were used, making the ratio of the moment of inertia of the truss to the moment of inertia of the column equal to infinity. The formula is sufficiently accurate with a ratio of four and is on the safe side.

Case IV. Columns Fixed at Base and Fixed at Top.—Formulas for Case II and Case III may be used, the value of h being taken as the distance from the point of contraflexure to a point midway between the foot of the kneebrace and the top of the column. The point of contraflexure may be calculated by formula (4), page 556.

Stresses in Rigid Frames.—Formulas for stresses in rigid frames with pin-connected columns, for different loadings are given in Fig. 63. Formulas for the general case are given in the second column, while formulas for special cases are given in the third column. The formulas are very much simplified where the columns and the top girder have the same moment of inertia.

Fig. 62. Stresses in Mill Building Columns Carrying Crane Loads.

Fig. 63. Stresses in Rigid Frames.

STANDARD LAG SCREWS, HOOK BOLTS AND WASHERS.
AMERICAN BRIDGE COMPANY.

		LAG S	CREWS			•		BEAM CLAMP
	+	ength 		5 L	ength Screw	of Lag & Head Length of Head	Tored H	Size Dimensions of Clamp Weight Beam A B C D E in Ibs-
Viam L	Min· Length	Max· Length 6"	No-Three per inc		1½" 2 2½ 3½ 3½	1 14/234 2 24/234	D 1/6 E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5/6 3/67/6 1/2 9/6 5/6 3/47/8	12/2/2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 8 10 12 12 12 12 12	5 4 3		4 4 5 5 6 7 8 9	1234 14341434 2233 33444434		OGEE WASHERS S N N N N N N N N N N N N N N N N N N
1	5 6 8 Is are l	12 12 12 the sam	e as for	,	10 11 12 re head	5 5 5 d bolts.	Bolt A	Parsions of Washer Weight in Pounds $\frac{3''}{4}$ $\frac{11''}{16}$ $\frac{23''}{4}$ $\frac{12''}{8}$ $\frac{5''}{8}$ $\frac{31''}{4}$ $\frac{10''}{16}$ $\frac{32''}{34}$ $\frac{34''}{34}$ $\frac{34''}{8}$ $\frac{34''}{8}$ $\frac{34''}{4}$
3		R 7	KEWBA	CK I	WASH	ERS	R E	HOOK BOLTS, \$\frac{3}{6}\text{or}\frac{1}{6}\text{Square}\\ R=\frac{1}{6}\\ \Rightarrow\frac{1}{4}\\ \Rightarrow\frac{1}{
Used	14		sions of			_	Weight	Unless otherwise specified, "5" will be made 3". Hex- nuts furnished-
With Kewback A	M 23/4"	N 31/11/33/4	C 14 / 1/2 / 34	D 15."	E 3" 7 8 /	R 3 13 11 3 13 16 3 13 16 3 16	1.2 1.8 2.5	CAST IRON CUP WASHERS 5" 1" Y 11" 25" 16 1" Y 10" 25" 16
Skewback B Skewback A	33"	4" 4½		28"	" 	4 15 11 4 15 4 15 4 15 4 16	2·7 3·0 3·9	Wt·1·3 lbs·

GENERAL SPECIFICATIONS FOR STEEL FRAME BUILDINGS.*

MILO S. KETCHUM,

M. Am. Soc. C. E.

THIRD EDITION.

1914.

GENERAL DESCRIPTION.

1. Height of Building.—The height of the building shall be the distance from the top of the masonry to the under side of the bottom chord of the truss.

2. Dimensions of Building.—The width and length of the building shall be the extreme dis-

tance out to out of framing or sheathing.
3. Length of Span.—The length of trusses and girders in calculating stresses shall be considered as the distance from center to center of end bearings when supported, and from end to end when fastened between columns by connection angles.

4. Pitch of Roof.—The pitch of roof for corrugated steel shall preferably be not less than \(\frac{1}{6} \) (6 in. in 12 in.), and in no case less than \(\frac{1}{5} \). For a pitch less than \(\frac{1}{5} \) some other covering than

corrugated steel shall be used.

5. Spacing of Trusses.—Trusses shall be spaced so that simple shapes may be used for purlins. The spacing should be about 16 ft. for spans of, say, 50 ft. and about 20 to 22 ft. for spans of, say, 100 ft. For longer spans than 100 ft. the purlins may be trussed and the spacing may be increased.

6. Spacing of Purlins.—Purlins shall be spaced not to exceed 4 ft. 9 in. where corrugated

steel is used, and shall be placed at panel points of the trusses.

7. Form of Trusses.—The trusses shall preferably be of the Fink type with panels so subdivided that panel points will come under the purlins. If it is not practicable to place the purlins at panel points, the upper chords of the trusses shall be designed to take both the flexural and direct stresses. Trusses shall preferably be riveted trusses.

Trusses supported on masonry walls shall have one end supported on sliding plates for spans up to 70 ft., for greater lengths of span rollers or a rocker shall be used. No rollers with a

diameter less than 3 in. shall be used.

All field connections of the steel framework shall be riveted except the connections for purlins

and girts, which may be field bolted.

8. Bracing.—Bracing in the plane of the lower chords shall be stiff; bracing in the planes of

the top chords, the sides and the ends may be made adjustable.

9. Proposals.—Contractors in submitting proposals shall furnish complete stress sheets, general plans of the proposed structures giving sizes of material, and such detail plans as will clearly show the dimensions of the parts, modes of construction and sectional areas.

10. Detail Plans.—The successful contractor shall furnish all working drawings required by the engineer free of cost. Working drawings will, as far as possible, be made on standard size

sheets 24 in. × 36 in. out to out, 22 in. × 34 in. inside the inner border lines.

11. Approval of Plans.—No work shall be commenced or materials ordered until the working drawings are approved in writing by the engineer. The contractor shall be responsible for dimensions and details on the working plans, and the approval of the detail plans by the engineer will not relieve the contractor of this responsibility.

LOADS.

12. The trusses shall be designed to carry the following loads:

13. DEAD LOADS. Weight of Trusses.—The weight of trusses per sq. ft. of horizontal projection, up to 150 ft. span shall be calculated by the formula

$$W = \frac{P}{45} \left(\mathbf{r} + \frac{L}{5\sqrt{A}} \right)$$

where W = weight of trusses per sq. ft. of horizontal projection;

P = capacity of truss in pounds per sq. ft. of horizontal projection;

L = span of the truss in feet;

A =distance between trusses in feet.

^{*}Reprinted from the author's "The Design of Steel Mill Buildings."

14. Weight of Covering. Corrugated Steel.—The weight of corrugated steel shall be taken from Table I.

When two corrugations side lap and six in. end lap are used, add 25 per cent to the above weights; when one corrugation side lap and four in. end lap are used, add 15 per cent to the above weights to obtain weight of corrugated steel laid. For paint add 2 lb. per square. The weight of covering shall be reduced to weight per sq. ft. of horizontal projection before combining with the weight of trusses.

15. Slate.—Slate laid with 3 in. lap shall be taken at a weight of $7\frac{1}{2}$ lb. per sq. ft. of inclined roof surface for $\frac{3}{16}$ in. slate 6 in. \times 12 in., and $6\frac{1}{2}$ lb. per sq. ft. of inclined roof surface for $\frac{3}{16}$ in.

slate 12 in. × 24 in., and proportionately for other sizes.

16. Tile.—Terra-cotta tile roofing weighs about 6 lb. per sq. ft. for tile I in. thick; the actual

weight of tile and other roof coverings not named shall be used.

17. Sheathing and Purlins.—Sheathing of dry pine lumber shall be assumed to weigh 3 lb. per ft. and dry oak purlins 4 lb. per ft. board measure. 18. Miscellaneous Loads.—The exact weight of sheathing, purlins, bracing, ventilators,

cranes, etc., shall be calculated.

19. SNOW LOADS.—Snow loads shall be taken from the diagram in Fig. 1.
20. WIND LOADS.—The normal wind pressure on trusses shall be computed by Duchemin's formula, Fig. 3, with P = 30 lb. per sq. ft., except for buildings in exposed locations, where P = 40 lb. per sq. ft. shall be used.

21. The sides and ends of buildings shall be computed for a normal wind load of 20 lb. per

sq. ft. of exposed surface for buildings 30 ft. and less to the eaves; 30 lb. per sq. ft. of exposed surface for buildings 60 ft. to the eaves, and in proportion for intermediate heights.

22. Mine Buildings.—Mine, smelter and other buildings exposed to the action of corrosive

gases shall have their dead loads increased 25 per cent.

23. Concentrated Loads.—Concentrated loads and crane girders shall be considered in determining dead loads.

24. Purlins.—Purlins shall be designed to carry the actual weight of the covering, roofing and purlins, but shall always be designed for a normal load of not less than 30 lb. per sq. ft. 25. Girts.—Girts shall be designed for a normal load of not less than 25 lb. per sq. ft.

26. Roof Covering.—Roof covering shall be designed for a normal load of not less than 30

27. Minimum Loads.—No roof shall, however, be designed for an equivalent load of less

than 30 lb. per sq. ft. of horizontal projection.
28. Loads on Foundations.—The loads on foundations shall not exceed the following in tons per sq. ft.:

Ordinary clay and dry sand mixed with clay	2
Dry sand and dry clay	3
Hard clay and firm coarse sand	Α
Firm coarse sand and gravel	5
Shale rock	8
Hard rock	0
	•

For all soils inferior to the above, such as loam, etc., never more than one ton per sq. ft.

29. Stresses in Masonry.—The allowable stresses in masonry shall not exceed the following:

	Tons per Sq. Ft.	Lb. per Sq. 1
Common brick, Portland cement mortar	12	168
Hard burned brick, Portland cement mortar		210
Rubble masonry, Portland cement mortar		140
First class masonry, crystalline sandstone or limestone		350
First class masonry, granite	30	420
Portland cement concrete, 1-3-5	20	280
Portland cement concrete, 1-2-4	30	420

30. Pressures on Masonry.—The pressure of column bases, beams, etc., on masonry shall not exceed the following in pounds per sq. in.

Brick work with cement mortar	250
Rubble masonry with cement mortar	250
Portland cement concrete, 1-2-4	500
First class dimension sandstone or limestone	400
First class granite	500

31. Loads on Timber Piles.—The maximum load carried by a pile shall not exceed 40,000 lb., or 600 lb. per sq. in. of its average cross-section. The allowable load on piles driven with a drop hammer shall be determined by the formula $P = \frac{2W \cdot h}{s+1}$. Where P = safe load on pile in tons; W = weight of hammer in tons; h = free fall of hammer in ft.; s = average penetration for the last six blows of the hammer in in. Where a steam hammer is used, $\frac{1}{10}$ is to be used in place of unity in the denominator of the right hand member of the formula.

Piles shall have a penetration of not less than 10 ft. in hard material, such as gravel, and not

less than 15 ft. in loam or soft material.

PROPORTION OF PARTS.

32. Allowable Stresses.—In proportioning the different parts of the structure the maximum stresses due to the combinations of the dead and wind load; dead and snow load; or dead, minimum snow and wind load are to be provided for. Concentrated loads where they occur must be provided for.

33. Tensile Stress.—Allowable Unit Tensile Stresses for Structural Steel. For direct dead,

snow and wind loads.

	Lb. per Sq. In.
Shapes, main members, net section	16,000
Bars	. , . 16,000
Bottom flanges of rolled beams	16,000
Shapes, laterals, net section	20,000
Iron rods for laterals	20,000
Plate girder webs, shear on net section	10,000
Shapes liable to sudden loading as when used for crane girders	10,000
Expansion rollers per lineal inch	$\dots 600 \times d$
where $d = \text{diameter of roller in inches}$.	

Laterals shall be designed for the maximum stresses due to 5,000 pounds initial tension and the maximum stress due to wind.

34. Compressive Stress.—Allowable Unit Compressive Stress for Structural Steel. For direct dead, snow and wind loads

$$S = 16,000 - 70 \frac{l}{r}$$

where S = allowable unit stress in lb. per sq. in;

l = length of member in inches c. to c. of end connections;

r =least radius of gyration of the member in inches.

35. Plate Girders.—Top flanges of plate girders shall have the same gross area as the tension flanges.

36. Shear in webs of plate girders shall not exceed 10,000 lb. per sq. in. of net section.

37. Alternate Stress.—Members and connections subject to alternate stresses shall be designed to take each kind of stress.

38. Combined Stress.—Members subject to combined direct and bending stresses shall be proportioned according to the following formula:

$$S = \frac{P}{A} + \frac{M \cdot y_1}{I = \frac{P \cdot l^2}{10E}}$$

where S = stress in lb. per sq. in. in extreme fiber;

P =direct load in lb.;

A =area of member in sq. in.;

M =bending moment in in-lb.;

 y_1 = distance from neutral axis to extreme fiber in inches;

I =moment of inertia of member;

I = length member, or distance from point of zero moment to end of member in inches;

E = modulus of elasticity = 30,000,000. lb. per sq. in.

When combined direct and flexural stress due to wind is considered, 50 per cent may be added to the above allowable tensile and compressive stresses.

39 Stress Due to Weight of Member.—Where the stress due to the weight of the member or due to an eccentric load exceeds the allowable stress for direct loads by more than 10 per cent, the section shall be increased until the total stress does not exceed the above allowable stress for direct loads by more than 10 per cent.

The eccentric stress caused by connecting angles by one leg when used as ties or struts shall

be calculated, or only one leg will be considered effective.

40. Rivets.—Rivets shall be so spaced that the shearing stress shall not exceed 11,000 lb. per sq. in.; nor the pressure on the bearing surface (diameter × thickness of piece) of the rivet hole exceed 22,000 lb. per sq. in.

Rivets in lateral connections may have stresses 25 per cent in excess of the above. Field rivets shall be spaced for stresses two-thirds those allowed for shop rivets.

Field bolts, when allowed, shall be spaced for stresses two-thirds those allowed for field rivets.

Rivets and field bolts must not be used in direct tension. Where it is necessary that con-

nections take tension turned bolts shall be used.

41. Pins.—Pins shall be proportioned so that the shearing stress shall not exceed 11,000 lb. per sq. in.; nor the pressure on the bearing surface (diameter X thickness of piece) of the pin hole exceed 22,000 lb. per sq. in.; nor the extreme fiber stress due to cross bending exceed 24,000 lb. per sq. in. when the applied forces are assumed as acting at the center of the members.

42. Plate Girders.—Plate girders shall be proportioned by the moment of inertia of their net section or on the assumption that $\frac{1}{8}$ of the gross area of the web is available as flange area, and the shear is resisted by the web. The distance between centers of gravity of the flange areas

shall be considered as the effective depth of the girder.

43. Web Stiffeners.—The web of plate girders shall have stiffeners at the ends and inner edges of bearing plates, and at points of concentrated loads, and also at intermediate points where the thickness of the web is less than $\frac{1}{10}$ of the unsupported distance between flange angles, not farther apart than the depth of the full web plate with a maximum limit of 5 ft. Stiffeners shall be designed as columns for a length equal to one-half the depth of the girder. Stiffener angles must have enough rivets to properly transmit the shear.

44. Compression flanges of plate girders shall have at least the same sectional area as the tension flanges, and shall not have a stress per sq. in. on the gross area greater than $16,000 - 150 \frac{l}{b}$, where l = unsupported distance, and b = width of flange, both in inches. Compression flanges of plate girders shall be stayed transversely when their length is more than thirty times their

width.

45. Rolled Beams.—Rolled beams shall be proportioned by their moment of inertia. The depth of rolled beams in floors shall not be less than $\frac{1}{20}$ of the span. Where rolled beams or channels are used as roof purlins the depths shall not be less than $\frac{1}{40}$ of the span.

46. Timber.—The allowable stresses in timber purlins and other timber shall be taken from

the following table.

ALLOWABLE WORKING UNIT STRESSES IN TIMBER, IN POUNDS PER SQUARE INCH.

	Trans-		Columns		Sh	ear.	
Kind of Timber.	verse Loading, S.	End Bear- ing.	Under 10 Diam- eters, C.	Bearing Across Fiber.	Parallel to Grain.	Longitu- dinal Shear in Beams.	Modulus of Elasticity, E.
White Oak	1,200	1,200	1,000	450	200	110	1,150,000
Long Leaf Yellow Pine	1,300	1,300	1,000	300	180	120	1,610,000
White Pine and Spruce	1,000	1,000	800	200	100	70	1,130,000
Western Hemlock	1,000	1,000	800	200	160	100	1,480,000
Douglass Fir	1,200	1,200	1,000	350	180	110	1,510,000

Columns may be used with a length not exceeding 45 times the least dimension. The unit stress for lengths of more than 10 times the least dimension shall be reduced by the following formula:

$$P = C - \frac{C}{100} \frac{l}{d}$$

where C = unit stress, as given above for short columns;

P = allowable unit stress in lb. per sq. in.;

l =length of column in inches;

d = least side of column in inches.

COVERING.

47. Corrugated Steel.—Corrugated steel shall generally have 21 in. corrugations when used for roof and sides of buildings, and 11 in. corrugations when used for lining buildings. The minimum gage of corrugated steel shall be No. 22 for roofs, No. 24 for sides, and No. 26 for lining.

The gage of corrugated steel in U. S. standard gage and weight per sq. ft. shall be shown

on the general plan.

48. Spacing Purlins and Girts.—The span, or center to center distance of purlins, shall not exceed the distance given in Fig. 18 for a safe load of 30 lb. per sq. ft. Corrugated steel sheets shall preferably span two purlin spaces. Girts shall be spaced for a safe load of 25 lb. per sq. ft.

49. End and Side Laps.—Corrugated steel shall be laid with two corrugations side lap and six inches end lap when used for roofing, and one corrugation side lap and four inches end lap

when used for siding.

50. Fastening.—Corrugated steel shall be fastened to the purlins and girts by means of galvanized iron straps \(\frac{1}{4} \) in. wide by No. 18 gage, spaced 8 to 12 in. apart; by clinch nails spaced 8 to 12 in. apart; or by nailing directly to spiking strips with 8d barbed nails, spaced 8 in. apart. Spiking strips shall preferably be used with anti-condensation lining. Bolts, nails and rivets shall always pass through the top of corrugations. Side laps shall be riveted with copper or galvanized iron rivets 8 to 12 in. apart on the roof and 1½ to 2 ft. apart on the sides.

51. Corrugated Steel Lining.—Corrugated steel lining on the sides shall be laid with one corrugation side lap and four in. end lap. Girts for corrugated steel lining shall be spaced for a

- safe load of 25 lb. per sq. ft. as given in Fig. 18.
 52. Anti-condensation Lining.—Anti-condensation roof lining shall be used to prevent dripping in engine houses and similar buildings, and shall be constructed as follows: Galvanized wire poultry netting is fastened to one eave purlin and is passed over the ridge, stretched tight and fastened to the other eave purlin. The edges of the wire are woven together and the netting is fastened to the spiking strips, where used, by means of small staples. On the netting are laid two layers of asbestos paper $\frac{1}{16}$ in. thick and two layers of tar paper. The corrugated steel is then fastened to the purlins in the usual way; $\frac{3}{16}$ in. stove bolts with I in. $\times \frac{1}{8}$ in. plate washers on the lower side are used for fastening the side laps together and for supporting the lining; or the purlins may be spaced one-half the usual distance where anti-condensation lining is used and the stove bolts omitted.
- 53. Flashing.—Valleys or corners around stacks shall have flashing extending at least 12 in. above where water will stand, and shall be riveted or soldered, if necessary, to prevent leakage.

Flashing shall be provided above doors and windows.

54. Ridge Roll.—All ridges shall have a ridge roll securely fastened to the corrugated steel. 55. Corner Finish.—All corners shall be covered with standard corner finish securely fastened to the corrugated steel.

56. Cornice.—At the gable ends the corrugated steel on the roof shall be securely fastened to a finish angle or channel connected to the end of the purlins, or, where molded cornices are used, to a piece of timber fastened to the ends of the purlins.

57. Gutters.—Gutters and conductors shall be furnished at least equal to the requirements

of the following table:

Span of Roof.	Gutter.	Conductor.
Up to 50 ft. 50 ft. to 70 ft.	6 in. 7 in.	The second secon
70 ft. to 100 ft.	8 in.	5 in. every 40 ft. 5 in. every 40 ft.

Gutters shall have a slope of at least 1 in. in 15 ft. Gutters and conductors shall be made

of galvanized steel not lighter than No. 24.

58. Ventilators.—Ventilators shall be provided and located so as to properly ventilate the building. They shall have a net opening for each 100 sq. ft. of floor space as follows: not less than one-fourth sq. ft. for clean machine shops and similar buildings; not less than one sq. ft. for dirty machine shops; not less than four sq. ft. for mills; and not less than six sq. ft. for forge shops, foundries and smelters.

59. Shutters and Louvres.—Openings in ventilators shall be provided with shutters, sash,

or louvres, or may be left open as specified.

Shutters must be provided with a satisfactory device for opening and closing.

Louvres must be designed to prevent the blowing in of rain and snow, and must be made stiff so that no appreciable sagging will occur. They shall be made of not less than No. 20 gage galvanized steel for flat louvres, and No. 24 gage galvanized steel for corrugated louvres.

60. Circular Ventilators.—Circular ventilators, when used, must be designed so as to prevent

down drafts. Net opening only shall be used in calculations.

61. Windows.—Windows shall be provided in the exterior walls equal to not less than 10 per cent of the entire exterior surface in mill buildings, and of not less than 25 per cent in machine

shops, factories, washeries, concentrators, breakers and similar buildings.

Window glass up to 12.in. X 14 in. may be single strength, over 12 in. X 14 in. the glass shall be double strength. Window glass shall be A grade except in smelters, foundries, forge shops and similar structures, where it may be B grade. The sash and frames shall be constructed of white pine. Where buildings are exposed to fire hazard the windows shall have wire glass set in metal sash and frames.

62. Skylights.—At least half of the lighting shall preferably be by means of skylights, or sash in the sides of ventilators.

Skylights shall be glazed with wire glass, or wire netting shall be stretched beneath the skylights to prevent the broken glass from falling into the building. Where there is danger of the skylight glass being broken by objects falling on it, a wire netting guard shall be provided on the outside.

Skylight glass shall be carefully set, special care being used to prevent leakage. Leakage and condensation on the inner surface of the glass shall be carried to the down-spouts, or outside

the building by condensation gutters.

63. Windows in sides of buildings shall be made with counterbalanced sash, and in ventilators shall be made with sliding or swing sash. All swinging windows shall be provided with a

satisfactory operating device.

64. Doors.—Doors are to be furnished as specified and are to be provided with hinges, tracks, locks and bolts. Single doors up to 4 ft. and double doors up to 8 ft. shall preferably be swung on hinges; large doors, double and single, shall be arranged to slide on overhead tracks, or may be counterbalanced to lift up between vertical guides.

Steel doors shall be firmly braced and shall be covered with No. 24 corrugated steel with 11

in. corrugations.

The frames of sandwich doors shall be made of two layers of $\frac{7}{8}$ in. matched white pine, placed diagonally, and firmly nailed with clinch nails. The frame shall be covered on each side with a layer of No. 26 corrugated steel with 11 in. corrugations. Locks and all other necessary hardware shall be furnished for all windows and doors.

(Sections 65 to 77 cover specifications for tar and gravel roofing and concrete and wood floors

which have already been given.)

DETAILS OF CONSTRUCTION.

78. Details.—All connections and details shall be of sufficient strength to develop the full

strength of the member.

79. Pitch of Rivets.—The pitch of rivets shall not exceed 6 in., or sixteen times the thickness of the thinnest outside plate in the line of stress, nor forty times the thickness of the thinnest outside plate at right angles to the line of stress. The pitch shall never be less than three diameters of rivet. At the ends of compression members the pitch shall not exceed four diameters of the rivet for a length equal to twice the width of the member.

80. Edge Distance.—The minimum distance from the center of any rivet hole to a sheared edge shall be $1\frac{1}{2}$ in. for $\frac{7}{8}$ in. rivets, $1\frac{1}{4}$ in. for $\frac{3}{4}$ in. rivets, $1\frac{1}{8}$ in. for $\frac{5}{8}$ in. rivets, and 1 in. for $\frac{1}{2}$ in. rivets, and to a rolled edge $I_{\frac{1}{4}}$, $I_{\frac{1}{8}}$, I and $\frac{7}{8}$ in., respectively. The maximum distance from the

edge shall be eight (8) times the thickness of the plate.

81. Maximum Diameter.—The diameter of the rivets in angles carrying calculated stresses shall not exceed \(\frac{1}{4}\) of the width of the leg in which they are driven, except that \(\frac{5}{8}\) in. rivets may be used in 2 in. angles.

82. Diameter of Punch and Die.—The diameter of the punch and die shall be as specified

in § 147.

83. Net Sections.—The effective diameter of a driven rivet will be assumed the same as its diameter before driving. In deducting the rivet holes to obtain net sections in tension members, the diameter of the rivet holes will be assumed as \(\frac{1}{8} \) inch larger than the undriven rivet.

84. Minimum Sections.—No metal of less thickness than $\frac{1}{4}$ in. shall be used except for fillers; and no angles less than $2'' \times 2'' \times \frac{1}{4}''$. The minimum thickness of metal in head frames, rock houses and coal tipples, coal washers and coal breakers shall be $\frac{5}{16}$ in., except for fillers. No upset rod shall be less than $\frac{5}{8}$ in. in diameter. Sag rods may be as small as $\frac{3}{8}$ in. diameter. 85. Connections.—All connections shall be of sufficient strength to develop the full strength

of the member. No connections except for lacing bars shall have less than two rivets. All field

connections except lacing bars shall have not less than three rivets.

86. Flange Plates.—The flange plates of all girders shall not extend beyond the outer line of rivets connecting them to the angles more than 6 in. nor more than eight times the thickness of the thinnest plate.

87. Web Stiffeners.—Web stiffeners shall be in pairs, and shall have a close fit against flange angles. The stiffeners at the ends of plate girders shall have filler plates. Intermediate stiffeners may have fillers or be crimped over the flange angles. The rivet pitch in stiffeners shall not be greater than 5 in.

88. Web Splices.—Web plates shall be spliced at all points by a plate on each side of the

web, capable of transmitting the shearing and bending stresses through the splice rivets.

89. Net Sections.—Net sections must be used in calculating tension members and in deducting

the rivet holes they shall be taken \frac{1}{8} in. larger than the nominal size of rivet.

90. Pin connected riveted tension members shall have a net section through the pin hole 25 per cent in excess of the required net section of the member. The net section back of the pin hole in line of the center of the pin shall be at least 0.75 of the net section through the pin hole.

91. Upset Rods.—All rods with screw ends, except sag rods, must be upset at the ends so that the diameter at the base of the threads shall be $\frac{1}{16}$ inch larger than any part of the body of the bar.

92. Upper Chords.—Upper chords of trusses shall have symmetrical cross-sections, and shall

preferably consist of two angles back to back.

93. Compression Members.—All other compression members for roof trusses, except substruts, shall be composed of sections symmetrically placed. Sub-struts may consist of a single section.

94. Columns.—Side posts which take flexure shall preferably be composed of 4 angles laced, or 4 angles and a plate. Where side posts do not take flexure and carry heavy loads they shall preferably be composed of two channels laced, or of two channels with a center diaphragm.

95. Posts in end framing shall preferably be composed of I-beams or 4 angles laced. Corner

columns shall preferably be composed of one angle.

96. Crane Posts.—The cross-bending stress due to eccentric loading in columns carrying cranes shall be calculated. Crane girders carrying heavy cranes shall be carried on independent

97. Batten Plates.-Laced compression members shall be stayed at the ends by batten plates, placed as near the end of the member as practicable and having a length not less than the greatest width of the member. The thickness of batten plates shall not be less than $\frac{1}{40}$ of the

distance between rivet lines at right angles to axis of member.

98. Lacing.—Single lacing bars shall have a thickness of not less than $\frac{1}{40}$, and double bars connected by a rivet at the intersection of not less than 30 of the distance between the rivets connecting them to the member; they shall make an angle not less than 45 degrees with the axis of the member; their width shall be in accordance with the following standards, generally:

Size of Member.

Width of Lacing Bars.

For 15 in. channels, or built sections with $3\frac{1}{2}$ and 4 in. angles. $2\frac{1}{2}$ inches $(\frac{7}{8}$ in. rivets). For 12, 10 and 9 in. channels, or built sections with 3 in. angles. $2\frac{1}{4}$ inches $(\frac{3}{4}$ in. rivets). For 8 and 7 in. channels, or built sections with $2\frac{1}{2}$ in. angles. $2\frac{1}{4}$ inches $(\frac{5}{8}$ in. rivets). For 6 and 5 in. channels, or built sections with 2 in. angles.... 1 inches (1/2 in. rivets).

Where laced members are subjected to bending, the size of lacing bars or angles shall be cal-

culated, or a solid web plate shall be used.

99. Pin Plates.—All pin holes shall be reinforced by additional material when necessary, so as not to exceed the allowable pressure on the pins. These reinforcing plates must contain enough rivets to transfer the proportion of pressure which comes upon them, and at least one plate on each side shall extend not less than 6 in. beyond the edge of the batten plate.

100. Maximum Length of Compression Members.—No compression member shall have a length exceeding 125 times its least radius of gyration for main members, nor 150 times its least radius of gyration for laterals and sub-members. The length of a main tension member in which

the stress is reversed by wind shall not exceed 150 times its least radius of gyration.

101. Maximum Length of Tension Members.—The length of riveted tension members in horizontal or inclined position shall not exceed 200 times their radius of gyration except for wind bracing, which members may have a length equal to 250 times the least radius of gyration. horizontal projection of the unsupported portion of the member is to be considered the effective

102. Splices.—In compression members joints with abutting faces planed shall be placed as near the panel points as possible, and must be spliced on all sides with at least two rows of rivets

on each side of the joint. Joints with abutting faces not planed must be fully spliced.

103. Splices.—Joints in tension members shall be fully spliced.

104. Tension Members.—Tension members shall preferably be composed of angles or shapes capable of taking compression as well as tension. Flats riveted at the ends shall not be used.

105. Main tension members shall preferably be made of 2 angles, 2 angles and a plate, or 2 channels laced. Secondary tension members may be made of a single shape.

106. Eye-Bars.—Heads of eye-bars shall be so proportioned as to develop the full strength

of the bar. The heads shall be forged and not welded.

107. Pins.—Pins must be turned true to size and straight, and must be driven to place by means of pilot nuts. The diameter of pin shall not be less than \(\frac{3}{4} \) of the depth of the widest bar attached to it.

The several members attached to a pin shall be packed so as to produce the least bending

moment on the pin, and all vacant spaces must be filled with steel or cast iron fillers.

108. Bars or Rods.—Long laterals may be made of bars with clevis or sleeve nut adjustment. Bent loops shall not be used.

100. Spacing Trusses.—Trusses shall preferably be spaced so as to allow the use of single pieces of rolled sections for purlins. Trussed purlins shall be avoided if possible.

110. Purlins and Girts.—Purlins and girts shall preferably be composed of single sections channels, angles or Z-bars, placed with web at right angles to the trusses and posts and legs turned down.

III. Fastening.—Purlins and girts shall be attached to the top chord of trusses and to columns

by means of angle clips with two rivets in each leg.

112. Spacing.—Purlins for corrugated steel without sheathing shall be spaced at distances apart not to exceed the span as given for a safe load of 30 lb., and girts for a safe load of 25 lb. as given in Fig. 18.

113. Timber Purlins.—Timber purlins and girts shall be attached and spaced the same as

114. Base Plates.—Base plates shall never be less than \frac{1}{2} in. in thickness, and shall be of sufficient thickness and size so that the pressure on the masonry shall not exceed the allowable pressures in § 30.

115. Anchors.-Columns shall be anchored to the foundations by means of two anchor bolts not less than I in. in diameter upset, placed as wide apart as practicable in the plane of the wind. The anchorage shall be calculated to resist one and one-half times the bending moment

at the base of the columns.

116. Lateral Bracing.—Lateral bracing shall be provided in the plane of the top and bottom chords, sides and ends; knee braces in the transverse bents; and sway bracing wherever necessary. Lateral bracing shall be designed for an initial stress of 5,000 lb. in each member, and provision must be made for putting this initial stress into the members in erecting.

117. Temperature.—Variations in temperature to the extent of 150 degrees F. shall be

provided for.

MATERIAL AND WORKMANSHIP.

MATERIAL.

118. Process of Manufacture.—Steel shall be made by the open-hearth process.

119. Schedule of Requirements.

Chemical and Physical Properties.	Structural Steel.	Rivet Steel.	Steel Castings.
Phosphorus Max. { Basic Acid	o.o4 per cent o.o8 "" o.o5 ""	0.04 per cent 0.04 " " 0.04 " "	0.05 per cent 0.08 " " 0.05 " "
Ultimate tensile strength Counds per square inch Elongation: min. % in 8" { Clongation: min. % in 2" Character of fracture Cold bends without fracture. Desired 60,000 1,500,000* Ult. tensile strength 22 Silky 180° flat†		Desired 50,000 1,500,000 Ult. tensile strength Silky 180° flat‡	Not less than 65,000 18 Silky or fine granular 90°, $d=3t$

The yield point, as indicated by the drop of beam, shall be recorded in the test reports.

* See paragraph 128.

† See paragraphs 129, 130 and 131.

[†] See paragraph 132.

120. Allowable Variations.—If the ultimate strength varies more than 4,000 lb. from that desired, a retest shall be made on the same gage, which, to be acceptable, shall be within 5,000

lb. of the desired ultimate.

121. Chemical Analyses.—Chemical determinations of the percentages of carbon, phosphorus, sulphur and manganese shall be made by the manufacturer from a test ingot taken at the time of the pouring of each melt of steel and a correct copy of such analysis shall be furnished to the engineer or his inspector. Check analyses shall be made from finished material, if called for by the purchaser, in which case an excess of 25 per cent above the required limits will be allowed.

122. Form of Specimens. PLATES, SHAPES AND BARS.—Specimens for tensile and bending tests for plates, shapes and bars shall be made by cutting coupons from the finished product, which shall have both faces rolled and both edges milled to the form shown by Fig. 1; or with both edges parallel; or they may be turned to a diameter of $\frac{3}{4}$ in. for a length of at least 9 in.

with enlarged ends.

123. RIVETS.—Rivet rods shall be tested as rolled.

124. PINS AND ROLLERS.—Specimens shall be cut from the finished rolled or forged bar, in such manner that the center of the specimen shall be I in. from the surface of the bar. The specimen for tensile test shall be turned to the form shown by Fig. 2. The specimen for bending test shall be I in. by $\frac{1}{4}$ in. in section.

FIG. 2.

125. STEEL CASTINGS.—The number of tests will depend on the character and importance of the castings. Specimens shall be cut cold from coupons molded and cast on some portion of one or more castings from each melt or from the sink heads, if the heads are of sufficient size. The coupon or sink head, so used, shall be annealed with the casting before it is cut off. Test specimens shall be of the form prescribed for pins and rollers.

126. Annealed Specimens.—Material which is to be used without annealing or further treatment shall be tested in the condition in which it comes from the rolls. When material is to be annealed or otherwise treated before use, the specimens for tensile tests representing such material shall be cut from properly annealed or similarly treated short lengths of the full section

of the bar.

127. Number of Tests.—At least one tensile and one bending test shall be made from each melt of steel as rolled. In case steel differing \(\frac{3}{6}\) in. and more in thickness is rolled from one melt, a test shall be made from the thickest and thinnest material rolled.

128. Modifications in Elongation.—For material less than \(\frac{5}{16} \) in. and more than \(\frac{3}{4} \) in. in

thickness the following modifications will be allowed in the requirements for elongation:
(a) For each $\frac{1}{16}$ in. in thickness below $\frac{5}{16}$ in., a deduction of $2\frac{1}{2}$ per cent will be allowed from

the specified elongation.

(b) For each \{\frac{1}{2}\) in. in thickness above \{\frac{3}{4}\) in., a deduction of 1 per cent will be allowed from

the specified elongation.

(c) For pins and rollers over 3 in. in diameter the elongation in 8 in. may be 5 per cent less

than that specified in paragraph 119.

129. Bending Tests.—Bending tests may be made by pressure or by blows. Plates, shapes and bars less than I in thick shall bend as called for in paragraph 119.

130. Thick Material.—Full-sized material for eye-bars and other steel I in, thick and over, tested as rolled, shall bend cold 180 degrees around a pin the diameter of which is equal to twice the thickness of the bar, without fracture on the outside of bend.

131. Bending Angles.—Angles \(\frac{3}{4}\) in. and less in thickness shall open flat and angles \(\frac{1}{2}\) in. and less in thickness shall bend shut, cold, under blows of a hammer, without sign of fracture.

test will be made only when required by the inspector.

132. Nicked Bends.—Rivet steel, when nicked and bent around a bar of the same diameter

as the rivet rod, shall give a gradual break and a fine, silky, uniform fracture.

133. Finish.—Finished material shall be free from injurious seams, flaws, cracks, defective edges, or other defects, and have a smooth, uniform, workmanlike finish. Plates 36 in. in width and under shall have rolled edges.

134 Stamping.—Every finished piece of steel shall have the melt number and the name of the manufacturer stamped or rolled upon it. Steel for pins and rollers shall be stamped on the end. Rivet and lattice steel and other small parts may be bundled with the above marks on an

attached metal tag.

135. Defective Material.—Material which, subsequent to the above tests at the mills, and its acceptance there, develops weak spots, brittleness, cracks or other imperfections, or is found to have injurious defects, will be rejected at the shop and shall be replaced by the manufacturer

136. Allowable Variation in Weight.—A variation in cross-section or weight of each piece of steel of more than 2½ per cent from that specified will be sufficient cause for rejection, except in case of sheared plates, which will be covered by the following permissible variations, which are to

apply to single plates.

137. When Ordered to Weight.—Plates 12½ lb. per square foot or heavier: (a) Up to 100 in. wide, 2½ per cent below or above the prescribed weight.

PLATES 1 INCH AND OVER IN THICKNESS.

Thickness	Nominal	Width of Plate.						
Ordered, in.	Weight, lb.	Up to 75 in.	75 in. and up to 100 in.	100 in. and up to	Over 115 in.			
1-4 5-16 3-8 7-16 1-2 9-16 5-8 Over 5-8	10.20 12.75 15.30 17.85 20.40 22.95 25.50	To per cent 8 " " 7 " " 6 " " 5 " " 4 " " 4 " " 3 1 " "	14 per cent 12 " " 10 " " 8 " " 7 " " 6½ " " 5 " "	18 per cent 16 " " 13 " " 10 " " 8½ " " 8½ " " 6½ " "	17 per cent 13 " " 12 " " 11 " " 10 " "			

PLATES UNDER 1 INCH IN THICKNESS.

Thickness	Nominal Weights	Width of Plate.				
Ordered, in.	lb. per sq. ft.	Up to 50 in.	50 in. and up to 70 in.	Over 70 in.		
1-8 up to 5-32 5-32 " " 3-16 3-16 " " 1-4	5.10 to 6.37 6.37 " 7.65 7.65 " 10.20	10 per cent 8½ " " 7 " "	15 per cent 12½ " " 10 " "	20 per cent 17 " " 15 " "		

(b) One hundred in. wide and over, 5 per cent above or below.

138. Plates under 12½ lb. per sq. ft.:

(a) Up to 75 in. wide, $2\frac{1}{2}$ per cent above or below.

(b) Seventy-five in. and up to 100 in. wide, 5 per cent above or 3 per cent below.

(c) One hundred in. wide and over, 10 per cent above or 3 per cent below.

139. When Ordered to Gage.—Plates will be accepted if they measure not more than .or in. below the ordered thickness.

140. An excess over the nominal weight, corresponding to the dimensions on the order, will be allowed for each plate, if not more than that shown in the preceding tables, one cubic inch of rolled steel being assumed to weigh 0.2833 lb.

SPECIAL METALS.

141. Cast-Iron.—Except where chilled iron is specified, castings shall be made of tough gray iron, with sulphur not over 0.10 per cent. They shall be true to pattern, out of wind and free from flaws and excessive shrinkage. If tests are demanded they shall be made on the "Arbitration Bar" of the American Society for Testing Materials, which is a round bar, $1\frac{1}{4}$ in. in diameter and 15 in. long. The transverse test shall be on a supported length of 12 in. with load at middle. The minimum breaking load so applied shall be 2,900 lb., with a deflection of at least $\frac{1}{10}$ in. before rupture.

142. Wrought-Iron Bars.—Wrought-iron shall be double-rolled, tough, fibrous and uniform in character. It shall be thoroughly welded in rolling and be free from surface defects. When tested in specimens of the form of Fig. 1, or in full-sized pieces of the same length, it shall show an ultimate strength of at least 50,000 lb. per sq. in., an elongation of at least 18 per cent in 8 in., with fracture wholly fibrous. Specimens shall bend cold, with the fiber through 135°, without sign of fracture, around a pin the diameter of which is not over twice the thickness of the piece

tested. When nicked and bent the fracture shall show at least 90 per cent fibrous.

WORKMANSHIP.

143. General.—All parts forming a structure shall be built in accordance with approved drawings. The workmanship and finish shall be equal to the best practice in modern bridge works.

144. Straightening Material.—Material shall be thoroughly straightened in the shop, by methods that will not injure it, before being laid off or worked in any way.

145. Finish.—Shearing shall be neatly and accurately done and all portions of the work

exposed to view neatly finished.

146. Rivets.—The size of rivets, called for on the plans, shall be understood to mean the

actual size of the cold rivet before heating.

147. Rivet Holes.—When general reaming is not required, the diameter of the punch for material not over $\frac{3}{4}$ in. thick shall be not more than $\frac{1}{16}$ in., nor that of the die more than $\frac{1}{8}$ in. larger than the diameter of the rivet. The diameter of the die shall not exceed that of the punch by more than $\frac{1}{4}$ the thickness of the metal punched.

148. Planing and Reaming.—In medium steel over $\frac{3}{4}$ of an in. thick, all sheared edges shall be planed and all holes shall be drilled or reamed to a diameter of $\frac{1}{8}$ of an in. larger than the punched holes, so as to remove all the sheared surface of the metal. Steel which does not satisfy the

drifting test must have holes drilled.

149. Punching.—Punching shall be accurately done. Slight inaccuracy in the matching of holes may be corrected with reamers. Drifting to enlarge unfair holes will not be allowed. Poor matching of holes will be cause for rejection by the inspector.

150. Assembling.—Riveted members shall have all parts well pinned up and firmly drawn together with bolts before riveting is commenced. Contact surfaces to be painted (see § 182).

151. Lacing Bars.—Lacing bars shall have neatly rounded ends, unless otherwise called for. 152. Web Stiffeners.—Stiffeners shall fit neatly between flanges of girders. Where tight fits are called for the ends of the stiffeners shall be faced and shall be brought to a true contact bearing with the flange angles.

153. Splice Plates and Fillers.—Web splice plates and fillers under stiffeners shall be cut to

fit within 1 in. of flange angles.

154. Web Plates.—Web plates of girders, which have no cover plates, shall be flush with the backs of angles or be not more than $\frac{1}{4}$ in. scant, unless otherwise called for. When web plates are spliced, not more than $\frac{1}{4}$ in. clearance between ends of plates will be allowed.

155. Connection Angles.—Connection angles for girders shall be flush with each other and correct as to position and length of girder. In case milling is required after riveting, the removal

of more than $\frac{1}{16}$ in. from their thickness will be cause for rejection.

156. Riveting.—Rivets shall be driven by pressure tools wherever possible. Pneumatic

hammers shall be used in preference to hand driving.

157. Rivets shall look neat and finished, with heads of approved shape, full and of equal size. They shall be central on shank and grip the assembled pieces firmly. Recupping and calking will not be allowed. Loose, burned or otherwise defective rivets shall be cut out and replaced. In cutting out rivets great care shall be taken not to injure the adjacent metal. If necessary they shall be drilled out.

158. Turned Bolts.—Wherever bolts are used in place of rivets which transmit shear, the holes shall be reamed parallel and the bolts turned to a driving fit. A washer not less than \(\frac{1}{4}\) in.

thick shall be used under nut.

159. Members to be Straight.—The several pieces forming one built member shall be straight and fit closely together, and finished members shall be free from twists, bends or open joints.

160. Finish of Joints.—Abutting joints shall be cut or dressed true and straight and fitted close together, especially where open to view. In compression joints depending on contact bearing the surfaces shall be truly faced, so as to have even bearings after they are riveted up complete and when perfectly aligned.

161. Field Connections.—All holes for field rivets in splices in tension members carrying live loads shall be accurately drilled to an iron templet or reamed while the connecting parts are

temporarily put together.

162. Eye-Bars.—Eye-bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. The form of heads will be determined by the dies in use at the works where the eye-bars are made, if satisfactory to the engineer, but the manufacturer shall guarantee the bars to break in the body with a silky fracture, when tested to rupture. The thickness of head and neck shall not vary more than 18 in. from the thickness of the bar.

163. Boring Eye-Bars.—Before boring, each eye-bar shall be properly annealed and carefully straightened. Pin holes shall be in the center line of bars and in the center of heads. Bars of the same length shall be bored so accurately that, when placed together, pins $\frac{1}{32}$ in. smaller in diameter than the pin holes can be passed through the holes at both ends of the bars at the same

time.

164. Pin Holes.—Pin holes shall be bored true to gage, smooth and straight; at right angles to the axis of the health of the axis of the health of the health of the health of the member and parallel to each other, unless otherwise called for. Wherever possible the health of the member is righted up.

sible, the boring shall be done after the member is riveted up.

165. The distance center to center of pin holes shall be correct within $\frac{1}{32}$ in., and the diameter of the hole not more than $\frac{1}{50}$ in. larger than that of the pin, for pins up to 5 in. diameter, and $\frac{1}{32}$ in. for larger pins.

166. Pins and Rollers.—Pins and rollers shall be accurately turned to gage and shall be

straight and smooth and entirely free from flaws.

- 167. Pilot Nuts and Field Rivets.—At least one pilot and one driving nut shall be furnished for each size of pin for each structure; and field rivets 15 per cent plus 10 rivets in excess of the number of each size actually required.
- 168. Screw Threads.—Screw threads shall make tight fits in the nuts and shall be U. S. standard, except above the diameter of $1\frac{3}{8}$ in., when they shall be made with six threads per in.
- 169. Annealing.—Steel, except in minor details, which has been partially heated shall be properly annealed.

170. Steel Castings.—All steel castings shall be annealed.

171. Welds.—Welds in steel will not be allowed.

- 172. Bed Plates.—Expansion bed plates shall be planed true and smooth. Cast wall plates shall be planed top and bottom. The cut of the planing tool shall correspond with the direction of expansion.
- 173. Shipping Details.—Pins, nuts, bolts, rivets, and other small details shall be boxed or crated.

174. Weight.—The weight of every piece and box shall be marked on it in plain figures.

175. Finished Weight.—Payment for pound price contracts shall be by scale weight. No allowance over 2 per cent of the actual total weight of the structure as computed from the shop plans will be allowed for excess weight.

ADDITIONAL SPECIFICATIONS WHEN GENERAL REAMING AND PLANING ARE REQUIRED.

176. Planing Edges.—Sheared edges and ends shall be planed off at least 1/4 in.

177. Reaming.—Punched holes shall be made with a punch $\frac{3}{16}$ in. smaller in diameter than the nominal size of the rivets and shall be reamed to a finished diameter of not more than $\frac{1}{16}$ in.

larger than the rivet.

178. Reaming after Assembling.—Wherever practicable, reaming shall be done after the pieces forming one built member have been assembled and firmly bolted together. If necessary to take the pieces apart for shipping and handling, the respective pieces reamed together shall be so marked that they may be reassembled in the same position in the final setting up. No interchange of reamed parts will be allowed.

179. Removing Burrs.—The burrs on all reamed holes shall be removed by a tool counter-

sinking about 16 in.

TIMBER.

180. Timber.—The timber shall be strictly first-class spruce, white pine, Douglas fir, Southern yellow pine, or white oak timber; sawed true and out of wind, full size, free from wind shakes, large or loose knots, decayed or sapwood, wormholes or other defects impairing its strength or durability.

67

PAINTING.

181. Painting.—All steel work before leaving the shop shall be thoroughly cleaned from all loose scale and rust, and be given one good coating of pure boiled linseed oil or paint as specified, well worked into all joints and open spaces.

182. In riveted work, the surfaces coming in contact shall each be painted (with paint)

before being riveted together.

183. Pieces and parts which are not accessible for painting after erection shall have two coats of paint.

184. The paint shall be a good quality of red lead or graphite paint, ground with pure linseed

oil, or such paint as may be specified in the contract.

185. After the structure is erected the iron work shall be thoroughly and evenly painted with two additional coats of paint, mixed with pure linseed oil, of such quality and color as may be selected. Painting shall be done only when the surface of the metal is perfectly dry. No painting shall be done in wet or freezing weather unless special precautions are taken. The two field coats of paint shall be of different colors.

186. Machine finished surfaces shall be coated with white lead and tallow before shipment

or before being put out into the open air.

INSPECTION AND TESTING AT MILL AND THE SHOPS.

187. The manufacturer shall furnish all facilities for inspecting and testing weight and the quality of workmanship at the mill or shop where material is fabricated. He shall furnish a suitable testing machine for testing full-sized members if required.

188. Mill Orders.—The engineer shall be furnished with complete copies of mill orders, and no materials shall be ordered nor any work done before he has been notified as to where the orders

have been placed so that he may arrange for the inspection.

189. Shop Plans.—The engineer shall be furnished with approved complete shop plans, and must be notified well in advance of the start of the work in the shop in order that he may have an inspector on hand to inspect the material and workmanship.

190. Shipping Invoices.—Complete copies of shipping invoices shall be furnished the engineer

with each shipment.

191. The engineer's inspector shall have full access, at all times, to all parts of the mill or

shop where material under his inspection is being fabricated.

192. The inspector shall stamp each piece accepted with a private mark. Any piece not so marked may be rejected at any time, and at any stage of the work. If the inspector, through an oversight or otherwise, has accepted material or work which is defective or contrary to the specifications, this material, no matter in what stage of completion, may be rejected by the engineer.

193. Full Size Tests.—Full size tests of any finished member shall be tested at the manufacturer's expense, and shall be paid for by the purchaser at the contract price less the scrap value, if the tests are satisfactory. If the tests are not satisfactory the material will not be paid for and the members represented by the tested member may be rejected.

ERECTION.

194. Tools.—The contractor shall furnish at his own expense all necessary tools, staging and material of every description required for the erection of the work, and shall remove the same when the work is completed.

All field connections in the trusses and framework shall be riveted. Connections of purlins

and girts may be bolted.

195. Risks.—The contractor shall assume all risks from storms or accidents, unless caused by the negligence of the owner, and all damage to adjoining property and to persons until the work is completed and accepted.

196. The contractor shall comply with all ordinances or regulations appertaining to the

work.

197. The erection shall be carried forward with diligence and shall be completed promptly.

REFERENCES.—For data on windows and glazing; paints and painting; foundations, and additional data and examples of roof trusses and steel mill buildings, see the author's "The Design of Steel Mill Buildings." This book also contains a full treatment of algebraic and graphic statics; and the calculation of stresses in simple framed structures, in the transverse bent, the two-hinged arch, etc.; also contains 24 problems in algebraic and graphic statics illustrating the methods of calculating the stresses in roof trusses and other framed structures.

CHAPTER II.

STEEL OFFICE BUILDINGS.

Skeleton Construction.—Skeleton construction is a building where all external and internal loads and stresses are transferred from the top of the building to the foundations by a skeleton or framework of steel or reinforced concrete. In steel skeleton construction the framework consists of columns, floorbeams, girders, trusses, and diagonal and transverse bracing. The steel trusses have riveted connections and all connections in the steel framework should be riveted.

Fire Resisting Construction.—To protect the structural steel from fire the framework is covered with materials that are slow heat conducting or "fireproof material." The steel framework may be fireproofed with reinforced concrete, brick, tiles of burnt clay, or terra cotta. The windows on exposed sides and elevator enclosures are glazed with wire glass set in metal frames or are protected with fire shutters. Doors and other exposed openings are protected with fire doors or shutters. The interior finish, doors, etc. should be of metal and every precaution should be taken to prevent the spread of fire. Reinforced concrete fireproofing is usually made of the following thickness: For columns, trusses, girders or other very important members at least 2 inches of concrete outside of the metal reinforcement; for ordinary beams or long span floor slabs or arches, 1½ inches of concrete outside of the reinforcement, and for short span floor arches and slabs, partitions and walls at least 1 inch outside the metal reinforcement. Fireproofing of brick, tile or terra cotta is usually made with a thickness of not less than 4 inches for columns and the main framework. Metal flanges should be protected with not less than 2 inches of fireproofing at any point.

TABLE I.

WEIGHTS OF BUILDING MATERIALS, ETC.
POUNDS PER CUBIC FOOT.

Material.	Weight.	Material.	Weight.
Brick, pressed and paving "common building soft building Granite Marble Limestone Sandstone Cinders Slag Granulated furnace slag Gravel Slate Sand, clay and earth (dry) """ (moist) Coal ashes Paving asphaltum Plaster of Paris Glass Water Snow, freshly fallen "packed "wet Spruce	150 120 170 170 170 160 150 40 160–180 53 120 175 100 120 45 100 140 160 62½ 50 125	Hemlock White pine Douglas fir Yellow pine White oak Mortar Stone concrete Cinder Common brick work Rubble masonry, sandstone """limestone """sandstone """"sandstone """""sandstone """""sandstone """""sandstone """"""sandstone """"""""""""""""""""""""""""""""""""	25 25 30 40 50 100 150 110 100–120 130–140 140 150 140–150 165 450 480 490 711 490 523

For details and data on fireproofing and fireproofing materials, see Freitag's "Fire Prevention and Fire Protection," and Kidder's "Architects and Builders Pocket Book."

LOADS.—The loads coming on office buildings may be grouped under the following headings:
(1) dead loads; (2) live loads; (3) wind loads; (4) snow loads; (5) miscellaneous loads.

Dead Load.—The "dead load" includes the weight of the structure, and other permanent fixtures and machines. A formula for the weight of roof trusses is given in Chapter I. The weights of materials are given in Table I. The actual weights of all dead loads should be calculated. The minimum weight of a fireproof floor should be taken at not less than 75 lb. per sq. ft. of floor surface. In office buildings a minimum of 10 lb, per sq. ft. should be added for movable partitions.

WEIGHT OF STEEL IN TALL BUILDINGS.—The weight of the steel framework for tall steel buildings varies with the height, the column spacing, the floor loads and other conditions. The weights of steel per cubic foot for several tall steel buildings are given in Table II. In calculating the weight per cubic foot only the part of the building above the curb was considered.

TABLE II.

WEIGHT OF STEEL IN TALL BUILDINGS, POUNDS PER CUBIC FOOT.

Building.	Plan Sq. Ft.	Heigh	i	Weight of Steel, Lb. per Cu. Ft.	Reference.
		Stories.	Ft.	per Cu. Ft.	
Park Row Building, New York Hotel Astor (addition), New	15,000	26	307	3.6	Eng. News, Oct. 8, 1896
York	21,306	9		2.6	Eng. Record, Oct. 14, 1911
York	9,018	39	543	3.1	Eng. Record, Feb. 11, 1911
Underwood Building, New York.	3,952	18	220	2.6	Eng. Record, April 1, 1911
Hotel Rector, New York	13,231	13		2.3	Eng. Record, May 27, 1911
Woolworth Building, New York.	31,000	55	775	3.0	Eng. Record, May 27, 1911
Municipal Building, New York	42,686		580	3.6	Eng. News, July 27, 1911
Poole Bros. Printing, Chicago	5,000	7		2.1	Eng. News, July 25, 1912
Merchants & Mfgs. Exchange,					
New York	55,000	12		2.8	Eng. Record, May 11, 1912
Hotel McAlpin, New York	39,500	25	309	2.0	Eng. Record, Mar. 30, 1912
Curtis Building, Philadelphia	94,000	10	176	3.0	Eng. Record, July 9, 1910
Office Building, Denver	7,500	12	145	2.8	Designed by the author

Live Loads.—The live loads on floors are commonly given in pounds per square foot. The minimum live loads in pounds per square foot as required by the buildings laws of several cities are given in Table III.

Mr. C. C. Schneider, M. Am. Soc. C. E., in his "General Specifications for Structural Work of Buildings" gives the following requirements for live loads on floors.

"Table IV gives the 'live' load on floors, to be assumed for different classes of buildings. These loads consist of: (a) A uniform load per square foot of floor area; (b) A concentrated load which shall be applied to any point of the floor; (c) A uniform load per linear foot for girders. The maximum result is to be used in calculations. The specified concentrated loads shall also apply to the floor construction between the beams for a length of 5 ft."

TABLE III.

FLOORS AND ROOFS.

MINIMUM LIVE LOADS, POUNDS PER SQUARE FOOT.

By Building Laws of Various Cities.

American Bridge Company.

Kind of Building.	Boston, 1912.	New York, 1906.	Philadelphia, 1913.	Baltimore, 1908.	Pittsburgh, 1913. (Proposed.)	Cleveland, 1911.	Chicago, 1911.	St. Louis, 1910.	San Fran- cisco, 1910.
Apartments	50	60	70	60	50	50	40	60	60
Public Rooms* and Halls	100					80			
Assembly Halls	125	90	120		125	100		100	125
Fixed Seat Auditoriums				75	125	80	100		75
Movable Seat Auditoriums				125		100	100		125
Churches		90		75	125		100		125
Dance Halls	200			1	150	150	100		
Drill Rooms	200				150	!			
Riding Schools	200				150				
Theaters		90		75	125		100		125
Dwellings	50	60	70	60	50	40	40	60	60
Public Rooms*	100		l						
Hotels	50	60	70	60	70	50	50	60	60
First Floors					. , ,			100	-
Corridors						80			
Office Floors	100					80			
Public Rooms*	100					00			
Manufacturing	125	120	120	125	125		100		125
Light Factories		120	150		125		100	150	-
Mercantile				ļ	"]		150	
Heavy Storehouses		150	150	250	200	200			250
Retail Stores			120	_					250
Warehouses	250	150	150	125	125	125	100	150	125
	100	"	100		200	60	100	150	250
Offices	100	75		75	70		50	70	60
0 11	100	150		150				.150	150
	60					100			
Schools (Class Rooms)		75		75	70	60	40	100	75
Assembly Rooms—Halls	125	90			70	80	75		125
Sidewalks		300		200		200			150
Stables—Carriage Houses		75		100		80	100		75
Area less than 500 sq. ft.							40		
Stairways and Landings	70					80	100		
Fire Escapes	70					80			
Roofs—Flat	40	50		40	508	40	25	40	30
Horizontal Projection Steep Roofs		30		20	508		25		20
Superficial Surface			30		508	40			
Wind Pressure		30	30	30	25	30	20	30	20

^{*} Area greater than 500 square feet.

[†] First Floors 200.

I Slopes less than 20 degrees.

[§] Dead and live, except for one story steel frame buildings, corrugated iron roofs, 35 pounds.

^{||} High Buildings, built up districts, 35 pounds; 14 stories or over, 25 pounds at tenth story, 2\frac{1}{2} pounds less each story below.

Figures for manufacturing establishments do not include machinery.

TABLE IV.

TABLE OF LIVE LOADS, SCHNEIDER'S SPECIFICATIONS.

•	Liv	Live Loads in Pounds.						
Classes of Buildings.	Distributed Load.	Concentrated Load.	Load per Linear Ft. of Girder.					
Dwellings, hotels, apartment-houses, dormitories, hospitals. Office buildings, upper stories. Schoolrooms, theater galleries, churches. Ground floors of office buildings, corridors and stairs in public buildings. Assembly rooms, main floors of theaters, ballrooms, gymnasia, or any room likely to be used for drilling or dancing. Ordinary stores and light manufacturing, stables and carriage-houses. Sidewalks in front of buildings. Warehouses and factories. Charging floors for foundries.	50 60 80 Floor 100 Columns 50	engines, bo	500 I 000 I 000 I 000 I 000 I 000 Special al weights of ilers, stacks, cused, but in than 200 lb.					

"If heavy concentrations, like safes, armatures, or special machinery, are likely to occur on floors, provision should be made for them. For structures carrying traveling machinery, such as cranes, conveyors, etc., 25 per cent shall be added to the stresses resulting from such live load, to provide for the effects of impact and vibration."

Mr. Schneider's method for live loads is the most rational method yet proposed. In the design of floor slabs when using this method the author has used an equivalent distributed load equal to twice the distributed loads in Table IV, and has omitted the concentrated load and load per lineal foot of girders.

The floor loads on warehouses and the recommended floor loads per sq. ft. have been tabulated by the American Bridge Company in Table V.

Wind Loads.—The wind loads required by different cities are given in Table III.

Schneider's specifications for wind load are as follows:

"The wind pressure shall be assumed as acting in any direction horizontally: First.—At 20 lb. per sq. ft. on the sides and ends of buildings and on the actually exposed surface, or the vertical projection of roofs; Second.—At 30 lb. per sq. ft. on the total exposed surfaces of all parts composing the metal framework. The framework shall be considered an independent structure, without walls, partitions or floors."

Additional data on wind loads are given in Chapter I.

Snow Loads.—The snow loads on roofs are given in Fig. 1, Chapter I.

Schneider's specifications require "A snow load of 25 lb. per sq. ft. of horizontal projection of the roof for all slopes up to 20 degrees; this load to be decreased I lb. for every degree of increase of slope up to 45 degrees, above which no snow load is to be considered. The above snow loads are minimum values for localities, where snow is likely to occur. In severe climates these snow loads should be increased in accordance with the actual conditions existing in these localities."

TABLE V.

FLOOR LOADS.

CONTENTS OF STORAGE WAREHOUSES.
American Bridge Company.

				THE PARTY OF THE	merican pinge combany.				
Material.	Weights per Cubic Foot of Space, Pounds.	Height of Pile, Feet.	Weights per Square Foot of Floor, Pounds.	Live Loads, Pounds Per Square Foot.	Material.	Weights per Cubic Foot of Space, Pounds.	Height of Pile, Feet.	Weights per Square Foot of Floor, Pounds.	Recommended Live Loads, Pounds Per Square Foot.
Groceries, Wines, Liquors, Etc.					Building Materials	1	,		
Beans, in bags	28		320		Cement, Natural. Cement, Portland	53.3	0010	354 438 265	300 to 400
Coffee, Roasted, in bags		e ee	312		Hardware, Etc.				
Dates, in cases		9 1	330		Door Checks	545		:	
Flour, in barrels.		מנמ	200		Locks, in cases, packed	315		: :	
Molasses, in barrels		w.o	348	> 250 to 300	Sash Fasteners Screws	101			
Sal Soda, in barrels.		101	230		Sheet Tin, in boxes	278	- 64	556	> 300 to 400
Soap Powder, in cases		v oo	350 304		Wire Cables, on reels	:		425	
Starch, in barrels		v v	150		Wire Galvanized Iron in coils		10.4	315	
Sugar, in cases		900	300		Wire, Magnet, on spools	72	6	450	_
Wines and Liquors, in barrels		0 0	2200		Drugs, Paints, Oil, Etc.				
					Alum, Pearl, in barrels	33	9	198	_
					headsRue Vitriol in barnels	31	34	102	
Dry Goods, Cotton, Wool, Etc.					Glycerine, in cases	22.5	900	312	
Burlap, in bales	43	9	258	_	Linseed Oil, in barrels	30	0 4	180	
Coffee in bales compressed	33	00 o	264		Logwood Extract, in boxes	200	·w	350	200 40 200
Cotton Bleached Goods, in	0.	0	***		Shellac, Gum	4 κ 0 αδ	o c	90 00	200 m 300
cases	90	90 0	224		Soda Ash, in hogsheads	62	CQ :	167	
Cotton Flannel, in cases		0 00	184		Soda, Caustic, in iron drums	0 10	2	318	
Cotton Yarn, in cases		00 0	200		Sulphuric Acid	9	H	100	
Hemp, Italian, compressed	22	0 00	176	000	White Lead, dry	86	w 4	010 408	
Hemp, Manila, compressed	30	00 O	240	200 to 250	Red Lead and Litharge, dry	132	(A)	495	_
Linen Damask, in cases		0 1/2	250		Miscellaneous				
Linen Goods, in cases		00 4	240		Glass and Chinaware, in crates	40	90 0	320	
Linen Lowels, in cases	40 21	0 ∞	168		Hides and Leather, in bales Hides, Buffalo, in bundles	37	x0 x0	30 o	
Tow, compressed		90	232		Paper, Newspaper, and Straw-	. 1			الم
Wool, in bales, not compressed	13	• 00	104		Paper, Writing and Calendared	200	00	360	300
Wool, Worsteds, in cases		00	210		Kope, in coils.	32	9	192	
		-	-						•

Minimum Roof Loads.—Schneider's specifications contain the following:

"In climates corresponding to that of New York, ordinary roofs, up to 80 ft. span, shall be proportioned to carry the minimum loads in Table VI, per square foot of exposed surface, applied vertically, to provide for dead, wind and snow loads combined:

TABLE VI.

MINIMUM LOADS ON ROOFS.

Gravel or Composition Roofing On boards, flat slope, I to 6, or less 5 On boards, steep slope, more than I to 6 4 On 3-in. flat tile or cinder concrete 6	o 1b. 5 "
Corrugated sheeting, on boards or purlins	o "
Slate { On boards or purlins	0 "
Slate On 3-in. flat tile or cinder concrete.	5 ''
Tile, on steel purlins	
Glass 4	5 "

"For roofs in climates where no snow is likely to occur, reduce the foregoing loads by 10 lb. per sq. ft., but no roof or any part thereof shall be designed for less than 40 lb. per sq. ft."

LIVE LOADS ON COLUMNS.—Schneider's specifications require that:

"For columns, the specified uniform live loads per square foot, Table IV, shall be used, with a minimum of 20,000 lb. per column.

"For columns carrying more than five floors, these live loads may be reduced as follows:

"For columns supporting the roof and top floor, no reduction;

"For columns supporting each succeeding floor, a reduction of 5 per cent of the total live load may be made until 50 per cent is reached, which reduced load shall be used for the columns supporting all remaining floors."

The Chicago Building Ordinance (1911) requires that live loads on walls, columns and piers be taken as follows:

"(a) The full live load (see Table III) on roofs of all buildings shall be taken on walls, piers,

and columns.

"(b) The walls, piers and columns of all buildings shall be designed to carry the full dead loads and not less than the proportion of the live load given in Table VII.

TABLE VII.

Percentage of Live Load for Columns.

Chicago Building Ordinance (1911).

Floor	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
17	85 I 80	oer ce 85	nt														
15	75	80	85														
14	70 65	75 70	80 75	85 80	85												
12	60	65	70	75	80	85											
10	55 50	60 55	65 60	70 65	75 70	80 75	85 80	85									
9	50	50	55	60	65	70	75	80	85								
7	50 50	50 50	50 50	55 50	60 55	65 60	70 65	75 70	80 75	85 80	85						
6	50	50	50	50	50	55	60	65	70	75	80	85					
5	50	50	50	50	50	50	55	60	65 60	70 65	75	80	85 80	85			
3	50 50	50 50	50 50	50 50	50 50	50 50	50 50	55 50	55	60	70 65	75 70	75	80	85		
2	50	50	50	50	50	50	50	50	50	55	60	65 60	70	75	80	85	Q,
1	50	50	50	50	50	50	50	50	50	50	55	00	65	70	75	80	85

"(c) The proportion of the live load on walls, piers, and columns on buildings more than seventeen stories in height shall be taken in same ratio as the above table.

"(d) The entire dead load and the percentage of live load on basement columns, piers and walls shall be taken in determining the stress in foundations."

LOADS ON FOUNDATIONS .- Schneider's specifications require that:

"The live loads on columns shall be assumed to be the same as for the footings of columns. The areas of the bases of the columns shall be proportioned for the dead load only. That foundation which receives the largest ratio of live to dead load shall be selected and proportioned for the combined dead and live loads. The dead load on this foundation shall be divided by the area thus found and this reduced pressure per square foot shall be the permissible working pressure to be used for the dead load for all foundations."

PRESSURE ON FOUNDATIONS.—The following allowable pressures may be used in the absence of definite data. No important structure should be built without the making of careful tests of the bearing power of the soil upon which it is to rest.

The loads on foundations should not exceed the following in tons per square foot:

Ordinary clay and dry sand mixed with clay	2
Dry sand and dry clay 3	3
Hard clay and firm, coarse sand	ŀ
Firm, coarse sand and gravel	5
Shale rock	3
Hard rock)

For all soils inferior to the above, such as loam, etc., never more than one ton per square foot. The Chicago Building Ordinance (1911) requires that:

"(a) If the soil is a layer of pure clay at least fifteen feet thick, without admixture of any foreign substance other than gravel it shall not be loaded to exceed 3,500 lb. per sq. ft. If the soil is a layer of pure clay at least fifteen feet thick and is dry and thoroughly compressed, it may be loaded not to exceed 4,500 lb. per sq. ft.

"(b) If the soil is a layer of firm sand fifteen feet or more in thickness, and without admixture

of clay, loam or other foreign substance, it shall not be loaded to exceed 5,000 lb. per sq. ft.

(c) If the soil is a mixture of clay and sand, it shall not be loaded to exceed 3,000 lb. per sq. ft.
"Foundations shall in all cases extend at least four feet below the surface of the ground

upon which they are built, unless footings rest on bed rock." . PRESSURE ON MASONRY.—The allowable stresses in masonry and pressures of beams,

girders, column bases, etc. on masonry as given in Table VIII represent good practice.

TABLE VIII. ALLOWABLE STRESSES IN MASONRY AND PRESSURES OF BEARING PLATES.

Kind of Masonry.	Safe Stresses in Masonry, Lb. per Sq. In.	Safe Pressures of Walls, Plates and Columns on Masonry, Lb. per Sq. In.
Common Brick, Portland Cement Mortar	170	250
Hard burned brick, Portland Cement Mortar	210	300
Rubble Masonry, Portland Cement Mortar	170	250
First Class Masonry, Sandstone	280	350
First Class Masonry, Crystallized Sandstone	400	600
First Class Masonry, Limestone	300	500
First Class Masonry, Granite	400	600
Portland Cement Concrete, 1-2-4	400	600
Portland Cement Concrete, 1-3-5	300	400

BEARING POWER OF PILES.—The maximum load carried by a pile should not exceed 40,000 lb. Piles should be driven not less than 10 ft. in hard material, nor less than 20 ft. in soft material if the pile is to be loaded to full bearing. The safe load should not exceed that given by the Engineering News formula (1), Chapter XIV.

THICKNESS OF WALLS .- The minimum thickness of curtain walls in steel skeleton buildings should be 12 in, for brick or concrete and 8 in, for reinforced concrete.

Schneider's specifications give the following empirical rule for calculating the thickness of walls in buildings several stories in height.

"The minimum thickness of walls will be given by the formula

$$t = L/4 + (H_1 + H_2 + \cdots + H_n)/6$$

where t = minimum thickness of wall in inches, L = unsupported length in feet, which shall be assumed as not less than 24 ft.; and H_1 , H_2 , H_3 , etc. the heights of stories in feet beginning at the top. Cellar walls are to be 4 in. thicker than the first story walls."

The Chicago Building Ordinance (1911) contains the following:

"(a) Brick, stone, and solid concrete walls, except as otherwise provided, shall be of the thickness in inches indicated in the following table:"

THICKNESS OF WALLS.
Chicago Building Ordinance (1911).

	Basement.	Stories. Stories.												
		I	2	3	4	5	6	7	8	9	10	11	12	
One-story	12	12												
Two-story	16	12	12											
Three-story	16	16	12	12										
Four-story	20	20	16	16	12									
Five-story	24	20	20	16	16.	16								
Six-story	24	20	20	20	16	16	16							
Seven-story	24	20	20	20	20	16	16	16						
Eight-story	24	24	24	20	20	20	16	16	16					
Nine-story	28	24	24	24	20	20	20	16	16	16				
Ten-story	28	28	28	24	24	24	20	20	20	16	16		İ	
Eleven-story	28	28	28	24	24	24	20	20	20	16	16	16		
Twelve-story	32	28	28	28	24	24	24	20	20	20	16	16	16	

WATERPROOFING.—For methods of waterproofing walls, floors, etc., see methods of waterproofing bridge floors in Chapter IV.

CALCULATION OF WIND LOAD STRESSES.—(1) The wind load on the sides of the steel frame in a building in which the wind bracing is all in the outside walls of the building will be carried to the ends of the building by means of bracing in the plane of each floor or by the floor slabs where the floors are made of reinforced concrete, and the loads will then be transferred to the foundations by means of bracing in the planes of the ends of the building. In calculating the stresses in the bracing in the end panels it is usual to assume that the wind load carried by each braced bent, consisting of two columns, together with the floor girders and wind bracing, is equal to the total wind load divided by the number of braced panels in the plane. This was the method used in calculating the stresses in the Singer Tower, New York. (2) As usually constructed the interior columns have brackets and only part of the wind load will be transferred to the ends or sides of the building, the remainder of the wind load will be transferred to the foundations by portal action and flexure in the columns and beams. It is not possible to determine the proportion of the wind load that will be taken by the main framework and by the ends of the building, as the stresses in the framework are statically indeterminate. During erection and before the floors have been put in place, or with types of floors which do not increase the rigidity of the building in horizontal planes, the wind loads will all be taken by the framework normal to the side of the building upon which the wind blows. This wind load is commonly taken as 30 lb. per sq. ft. of all framework exposed. When rigid floors have been put in place and the building is completed the wind load will be taken by the end transverse frames and the intermediate transverse frames, in proportion to the relative rigidity of the two frameworks. In a long narrow building with efficient wind bracing in the intermediate framework, practically all the wind load will be taken directly to the foundations by the transverse intermediate bents; while in the direction of the length of the building, practically all the wind load will be carried by the bracing in the sides of the building. For a building as long as wide with rigid floors and efficient transverse framework

and efficient wind bracing in the ends and sides of the building, it would appear reasonable to assume that in the completed building one-half the wind load will be taken by the intermediate transverse framework, and one-half will be transferred by means of the floors to the ends of the building and then transferred to the foundations by means of wind bracing in the ends of the building. The author's specifications permit reinforced concrete floors to be considered as assisting in transferring wind loads in finished buildings, but most specifications require that the steel framework be required to carry all the wind loads in the completed structure.

The transverse intermediate framework usually consists of columns and floor girders, in which the floor girders have brackets or knee braces at the ends to increase the rigidity of the framework. It will be seen that it is not only impossible to calculate the amount of wind load that is taken by each intermediate transverse framework, but that the intermediate transverse framework is itself statically indeterminate. In addition to being statically indeterminate it is not possible to determine the sizes of the columns and floor girders until after the wind stresses are determined. With a given framework in which the sizes of the numbers and the loads are given the stresses may be calculated by taking into account the deformations of the structure or by the "Theory of Least Work." From the above it can easily be seen that an exact solution of the wind stresses in a tall steel frame building is impracticable and that an approximate practical solution must be used. Three approximate methods for calculating the wind stresses in tall steel frame buildings are described by Mr. R. Fleming in Eng. News, March 13, 1913. The third method described by Mr. Fleming, and known as the "Continuous Portal Method," follows the method of the continuous portal given in the author's "Design of Steel Mill Buildings" and is the method in most common use. This method will now be described and some of its limitations will be shown.

Problem.—A transverse intermediate frame bent consisting of four columns with bracketed floor girders will be taken as in Fig. 1. The wind loads are assumed as acting in the planes of the floors as shown. It will be assumed: (1) That the framework is rigid, that is the columns and floor girders do not change their lengths. (2) That each of the four columns takes one-fourth of the shear. (3) That the points of contra-flexure in the columns are midway between the floors. (4) That the vertical components of the stresses in the columns vary as the distance from the center of the building, or center of gravity of the columns.

The shear in each column between the 6th floor and the roof will be 1,000 lb. The shear in each column between the 5th and 6th floors will be 2,500 lb. The shear in each column between the 4th and 5th floors will be 4,000 lb. The shears in the other columns are shown in Fig. 1. The bending moments at the tops of each column between the 6th floor and the roof is M = +1,000 lb. \times 6 ft. = +6,000 ft.-lb. To calculate the vertical stresses in the columns in the top story take moments about a plane cutting the columns in the points of contra-flexure. Then since the stresses vary as the distance from the center of the building,

$$V_1 \times 24$$
 ft. $+ V_2 \times 8$ ft. $- V_3 \times 8$ ft. $- V_4 \times 24$ ft.
 $= 4,000$ lb. $\times 6$ ft.
 $= 24,000$ ft.-lb.
 $V_1 = - V_4 = 3V_2 = - 3V_3$,
 $V_2(3 \times 24 + 8 + 8 + 3 \times 24)$ ft. $= 24,000$ ft.-lb
 $V_2 = \frac{24,000}{160}$ lb. $= 150$ lb. $= - V_3$
 $V_1 = 450$ lb. $= - V_4$.

Now

and

The bending moment in the floor girder at the top of column No. 1 must be M=-6,000 ft.-lb., and will be equal to the vertical stress in column No. 1 multiplied by the distance to the point of contra-flexure. The point of contra-flexure in floor girder 2-3 will be at the center of

-132 000 indicates bending moment in ft-lbs. (2000) indicates direct stress in lbs.

Fig. 1. Wind Stresses in a Tall Building.

the panel, while the point of contra-flexure in floor girder 3-4 will be 13 ft. 4 in. from column No. 4. The bending moments at the top of column No. 2 will be $M_2 = +6,000$ ft.-lb.; in the right end of floor girder 1-2 will be $M_{1-2} = -450$ lb. \times 2 ft. 8 in. = -1,200 ft.-lb.; in the left end of floor girder 2-3 will be $M_{2-3} = -600$ lb. \times 8 ft. = -4,800 ft.-lb. It will be seen that the sum of the bending moments equals zero and the point is in equilibrium. The bending moments at the tops of columns No. 3 and No. 4 are calculated in the same manner. The direct stress in floor girder 3-4 is 4,500 lb., in floor girder 2-3 is 3,000 lb., and in floor girder 1-2 is 1,500 lb.

In the plane of the 6th floor the bending moments at the foot of the columns between the 6th floor and the roof will be M=+6,000 ft.-lb., while the bending moments in the columns below the 6th floor will be M=2,500 lb. \times 6 ft. =+15,000 ft.-lb. The bending moments in the floor girders are calculated as for the roof girders. It will be seen that the sum of the bending moments at each intersection of columns and floor girders equals zero and the structure is in static equilibrium. The remainder of the vertical stresses, horizontal stresses and bending moments are easily calculated in the same manner.

Limitation of Method.—When the transverse framework consists of more than four bays (five columns) the solution above locates the point of contra-flexure of the leeward floor girder in the second panel, and the method fails, as the point of contra-flexure in the girder must not fall outside of the girder. For a wide building the shears cannot be taken equal.

Distribution of Shears.—In the above solution it is assumed that the shear is taken equally by the columns. If the columns do not have the same cross-section this assumption will not be correct. If the columns do not have the same cross-section the condition that the deflection of the points of contra-flexure in each story are equal will require that the shears in the columns be in proportion to the moments of inertia of the cross-sections of the columns.

For buildings having a greater width than four bays the most consistent method is to calculate the shear in the outside columns so that the points of contra-flexure in the floor girders will not fall outside the girder, the remainder of the shear being equally divided among the inside columns.

ALLOWABLE STRESSES.—The allowable stresses in the steel framework of high buildings should be taken the same as for steel frame buildings in Chapter I. It is usual to add 25 per cent to the live load stresses due to cranes and vibrating machinery to provide for impact.

Comparison of Compression Formulas.—The standard formula for the design of compression members adopted by the Am. Ry. Eng. Assoc., is used by the author in his "Specifications for Steel Frame Buildings" in Chapter I, and by the building ordinance of Chicago. The A. R. E. A. formula is

$$P = 16,000 - 70l/r \tag{1}$$

where P = unit stress in lb. per sq. in.; l = length and r = least radius of gyration of the column in inches. The maximum value of P is taken as 14,000 lb.

The American Bridge Company's Formula.—The American Bridge Company has adopted the following formula for the design of compression members.

Axial compression of gross sections of columns, for

Ratio.	Amount.	Ratio.	Amount.
60	13000	130	6500
70	12000	140	6000
80	11000	150	5500
90	10000	160	5000
100	9000	170	4500
110	8000	180	4000
120	7000	190	3500

where l = effective length of members in inches,

r = corresponding radius of gyration of section in inches.

For ratios of l/r up to 120, and for greater ratios up to 200, use the amounts given in the preceding table. For intermediate ratios, use proportional amounts.

A comparison of several compression formulas is given in Table IX.

TABLE IX.

COMPARISON OF COMPRESSION FORMULAS.

Allowable Unit Stresses in Pounds per Square Inch. American Bridge Company.

I	A. B. Co.	A. R. E. Ass'n. Chicago. Ketchum.	Gordon.	New York.	Philadelphia.	Boston.
r	А. В. Со.	16,000-70 1/r 14,000 max.	$\frac{12,500}{1+\frac{1^2}{36,000 r^2}}.$	$15,200-58\frac{1}{r}$.	$\frac{16,250}{1+\frac{l^2}{11,000r^2}}.$	$\frac{16,000}{1 + \frac{l^2}{20,000 r^2}}.$
0 5	13 000	14 000 14 000	12 500 12 490	15 200 14 910	16 250 16 215	16 000 15 980
10	13 000 13 000	14 000 14 000	12 460 12 420	14 620 14 330	16 100 15 925	15 920 15 820
20 25	13 000	14 000 14 000	12 365 12 285	14 040 13 750	15 680 15 375	15 690 15 515
30 35 40 45	13 000 13 000 13 000	13 900 13 550 13 200 12 850	12 195 12 090 11 970 11 835 11 690	13 460 13 170 12 880 12 590	15 020 14 620 14 185 13 725	15 310 15 075 14 815 14 530 14 220
50 55 60 65 70	13 000 13 000 13 000 12 500 12 000	12 500 12 150 11 800 11 450 11 100	11 530 11 365 11 185 11 000	12 300 12 010 11 720 11 430 11 140	13 240 12 745 12 240 11 740 11 240	13 900 13 560 13 210 12 850
75 80 85	11 500 11 000 10 500	10 750 10 400 10 050	10 810 10 615 10 410	10 850 10 560 10 270	10 750 10 275 9 810	12 490 12 120 11 755
90 95 100	10 000 9 500 9 000	9 700 9 350 9 000	10 205 9 995 9 785	9 980 9 690	9 360 8 930 8 510	11 390 11 025 10 670
105	8 500 8 000	8 650 8 300	9 570 9 355	9 400 9 110 8 820	8 115 7 740	10 315 9 970
115 120 125	7 500 7 000 6 750	7 950 7 600 7 250	9 140 8 930 8 715	8 530 8 240	7 380 7 035 6 715	9 630 9 300
130	6 500 6 250	6 900 6 550	8 510 8 300		6 405 6 115	
140	6 000 5 750 5 500	6 200 5 850 5 500	8 095 7 890 7 690		5 840	
150	5 250		7 495			
160 165 170	5 000 4 750 4 500		7 305 7 120 6 935			
175	4 250		6 755 6 580			
185	3 750		6 410			
195	3 250 3 000		6 080 5 920			

TABLE IX.—Continued.

Name of Formula.	Abbreviation.	Maximum Ratio of l/r.					
Name of Formula.	Abbieviation.	Main Members.	Bracing Struts.				
American Bridge Company	A. B.	120	- 200				
American Railway Engineering Association	A. R. E. A.	100	120				
Chicago Building Law.	C.	120	150				
Ketchum's Specifications	K.	125	150				
Gordon.	G.						
New York Building Law	N. Y.	120					
Philadelphia Building Law	P.	140					
Boston Building Law	B.	120					

FLOOR PLAN OF STEEL OFFICE BUILDING.

FIG. 3. DETAILS OF FLOORBEAMS FOR A STEEL OFFICE BUILDING.

CAST IRON BEAM SEPARATORS

	Bear	กร			-	Sepa	rato	rs		B	Bolts	3"	For 5, 4" & 3" Beams
Size	Weight per Foot	Dist. c.toc of Beams		W	h.	ď	t	Weight Each	Incress Weight For I* Width	Length	Includ- ing	Incresse Weight For I" Length	use l''' gas pipe $3\frac{1}{4}''$, $3''$ and $2\frac{3}{4}''$ long respectively.
24"	115 # 100 95 & 90 85 80	834 8 8 8 8	16 % 15 ½ 15 ¼ 15 ¼ 15 ¼	8" 74 74 74 74 74 74	20" 20 20 20 20 20	12" 12 12 12 12	5/8" 5/8 5/8 5/8 5/8	31# 28 28 29 29	3.6* 3.6 3.6 3.6 3.6	10/2 10 10 9/2 9/2	3.6 3.5 3.5 3.3 3.3	0.25 0.25 0.25 0.25 0.25	
20"	100 & 95 90 85 & 80	8 7½ 7½	15 14 14 34 14 1/2	7 634 634	16 16 16	12 12 12	5/8 5/8 5/8	\$22 22 22	2·9 2·9 2·9	10 9½ 9	3·5 3·3 3·2	0·25 0·25 0·25	
20"	75 70 65	7½ 7 7	14 13½ 13¼	6 ³ / ₄ 6 ¹ / ₂	16 16 16	12 12 12	5/8 5/8 5/8	22 21 21	2·9 2·9 2·9	9 9 8 1/2	3·2 3·2 3·2	0-25 0-25 0-25	Cored Holes
18"	90 85 80 75	8 8 8	15/4 15/8 15/8 15	7 7/4 7/4 7/2	14 14 14 14	9 9 9	5/8 5/8 5/8 5/8	20 21 21 21	2.5 2.5 2.5 2.5 2.5	10 10 10	3·5 3·5 3·5 3·5	0·25 0·25 0·25 0·25	110
.18"	70 & 65 60 55	7 7 7	13¼ 13¼ 13	61/4 61/2 61/2	14 14 14	9	5/8 5/8 5/8	18 19 19	2.5 2.5 2.5	9 8½ 8½	3·2 3·2 3·2	0·25 0·25 0·25	16 /6"
15"	100 & 95 90 85	7½ 7½ 7½	14½ 14½ 14	61/2 61/2	// //	7½ 7½ 7½	1/2 1/2 1/2	12 12 12	1.6 1.6	9½ 9½ 9½	3·3 3·3 3·3	0·25 0·25 0·25	Y"Radius
15"	80&75 70&65 60	7 7 6½	134 134 12½	6 6/4 534	// //	7½ 7½ 7½	1/2 1/2 1/2	12 12 11	1.6 1.6	9 9 8	3·2 3·2 3·0	0·25 0·25 0·25	1/16 W
15"	55 50&45 42	6½ 6½ 6½	12½ 12½ 12	5 34 6	// //	7½ 7½ 7½	1/2 1/2 1/2	 2 2	1.6 1.6	8	3·0 3·0 3·0	0·25 0·25 0·25	
12"	55 50	6	1134 1142	54 54	8¾ 8¾	5 5	1/2	9	/·3 /·3	8	3·0 3·0	0-25 0-25	
12"	45 40&35 31·5	6 6	11/4	5/4 5/2 5/2	8章 8章	5 5 5	经处处	9 9	1.3 1.3 1.3	7½ 7½ 7½	2.9 2.9 2.9	0·25 0·25 0·25	
10"	40 35 30 25	5½ 5½ 5½ 5½	10% 10% 10% 10	4*4 4*4 5	7½ 7½ 7½ 7½		12 1/2 1/2	6 6 7 7	- - - -	7½ 7 7 7	1·4 1·4 1·4	0·13 0·13 0·13 0·13	Tored Hole
9"	35 30 25 21	5 5 5 5	10 9½ 9½ 9½	44 44 4½ 4½	6½ 6½ 6½ 6½		たたた たた	5 5 5 5	0.9 0.9 0.9	7 6½ 6½ 6½	/·4 /·3 /·3 /·3	0·13 0·13 0·13	The state of the s
8"	25.5 23 20.5 & 18	4½ 4½ 4½	9 8% 8½	4 4	5½ 5½ 5½		1/2 1/2	4 4 4	0.8 0.8 0.8	6 6 6	1·2 1·2 1·2	0·13 0·13 0·13	y"Radius
7"	20 17·5 15	4½ 4½ 4½	8½ 8¼ 8¼	4 4 4½	5 5 5		经经	4 4 4	0·7 0·7 0·7	6 6	/·2 /·2 /·2	0·13 0·13 0·13	/# W
6"	17·25 14·75 12·25	4 4 4	734 752 752	3½ 3½ 3 ¾	4½ 4½ 4½		经经	4 4 4	0.6 0.6	5½ 5½ 5½	1.2 1.2 1.2	0·13 0·13 0·13	-t

Fig. 4. Cast Iron Separators for Beams and Channels.

American Bridge Company.

(For details of separators for Bethlehem beams, see Part II.)

Fig. 5. Types of Columns for Steel Buildings.

DETAILS OF FRAMEWORK.—The framework of a steel skeleton building consists of floorbeams and floor girders which carry the floor loads to the columns, of columns which carry the loads to the foundations and of foundations which transfer the loads to the earth; the columns are braced transversely and longitudinally by wind bracing and by means of the floor girders, and the roof is carried on trusses or on roof beams or purlins. There is in addition miscellaneous framing to carry the outside walls and the cornice, and the framing around elevators, etc. For additional details, see Chapter XII, Structural Drafting.

Fig. 6. Column Schedule.

Floor Plan.—The floor is carried on floorbeams to the floor girders and by the floor girders to the columns. A detail plan of a section of a floor plan of a steel skeleton building is shown in Fig. 2. The floorbeams, girders and columns are numbered as shown.

Details of floorbeams for an eight story steel office building are given in Fig. 3. For additional details of rolled beams and bracing, see Chapter XII. Details of cast separators are given in Fig. 4.

Columns.—Details of steel columns that are commonly used in steel skeleton buildings are given in Fig. 5. The built-H columns made of 4 angles and 1 plate or of 4 angles and 3 or 5 plates

FIG. 7. DETAILS OF COLUMNS. AMERICAN BRIDGE COMPANY.

FIG. 8. DETAILS OF COLUMNS. AMERICAN BRIDGE COMPANY.

Fig. 9. Details of Columns. American Bridge Company.

FIG. 10. DETAILS OF COLUMNS. AMERICAN BRIDGE COMPANY.

FIG. 11. DETAILS OF COLUMN SPLICES. AMERICAN BRIDGE COMPANY.

FIG. 12. DETAILS OF COLUMN SPLICES. AMERICAN BRIDGE COMPANY.

2-3 $\frac{1}{2}$

2-6

2-6 13 9 9

2-9

2-9

3-0 12

3-0

3-0 1/2

3-6

3-6

3-6 13 1-3

4-0

4-0

4-0

4-6

4-6

4-6

4-9

4-9

4-9

13

1/2

2

13 1-3

13/8

1/2

12

13/4

2

13/4

2

24

13

2

24 1-9 13

9 9 1

9 9 / 1 1-8

1-3 9

1-3 9 14 14

1-3 10

1-3

1-3 //

1-3 //

1-9

1-9

1-9

1-9

1-9 12

1-9 12

1-9

1-9 13 14

14

14 14

14 14

14

14 14

1/2

1/2 1/2

14 14 2-1 1/2

1/2

13 13/4

1/2 1/2

13/4

2 2 2-3

13 13

10

10

//

//

//

//

12

13 12 1/2 2-5

14 1-8 12 / 1

14

14

1/2

1/2

13

2 2-5 24

/

/ /

/

/ /

14

1/4/2

13/4 13/4

13 24

12

13 13 9%

1/8

 $\frac{3}{8}$ / 1 5%

14

13 14 14

13/8 14 14

1/2 14 14 7

13 1/2

 $\frac{3}{4}$

2 1/2 12

 $\frac{3}{4}$ 1/2 12

2

13

1-6 18

1-8

1-8

/-9

1-9

1-9 1/2

2-/

2-1

2-/

2-1

2-1

2-3

2-3

2-5 2 4%

5

5

5%

6

6

7

7

8

8

8

9

9

9%

/

14 6

1/2

14

1/2

13 9

1/2 9₺ 14

20 20

/"

14

/

14

14

14

14

1/2

14

1/2

1/2

12 4

Edge

2%

23

3

23

3

3/2

3

3/2

4

35

4

45

35

4%

630

730

830

1 140

1270

1 260

1400

1460

1790

1 890

2 140

2 620

3 030

3 250

3 560

4 040

4 290

3 880

4 400

4 720

350 250

208 270

275 360

350 450

208 368

275

275

350 1012

490

810

676

188

50

30 208

50 350 3/2

30 208 226

50 350 378

30

40

50

30

40

50 350 612

30 208 480

40 275 640

50 350 800

30 208 608

40

50

30 208

40 275 902

50 350 1128

FIG. 13. CAST IRON COLUMN BASES. AMERICAN BRIDGE COMPANY.

Ba		Height		Hub			Cap Plate		Cap Plate		Ribs			Ribs			dge Rib	Esti- mated			Total
А	В	C	Diam D	Thick E	Rib G	Н	J	Cor. K	Int.	Dist: M	0	P	Weight	165		Thous-					
5'0" 5-0 5-0	14 2 24	2'3" 2-3 2-3	13" 13 13	13" 2 24	13/4	2'5" 2-5 2-5	12342	12 134	1/2	'0½" -0½ -0½	1/2	3½" 4 4½	5 390 5 850 6 550	30 40 50	208 275 350	750 000 250					
5-6 5-6 5-6	13/4 2 2/2	2-3 2-3 2-3	13 13 13	13/4 2 2/4	123/42	2-5 2-5 2-5	12/2	13/4 2 2/4	1/2 5/4 3/4	- \frac{3}{4} - \frac{3}{4} - \frac{3}{4}	1/2	3½ 4 5	6 190 7 010 7 780	30 40 50	208 275 350						
6-0 6-0 6-0	2 2½ 2½ 2½	2-9 2-9 2-9	13 13 13	2 24 2 <u>1</u> 2 <u>1</u>	1/2 3/42	2-5 2-5 2-5	1422	1 ³ / ₄ 2 2 ¹ / ₄	1/2 3/4 3/4	-3 -3 -3	1/2/2/2	4 4 ¹ / ₂ 5	8 250 9 280 9 8 90	30 40 50	208 275 3 50						

COLUMN SECTIONS

One Cover Plate

Channel Column Plate & Angle Column One Cover Plate

Two Cover Plates

Channel Column Plate & Angle Column Two Cover Plates

Channel Column Three Cover Plates

Plate & Angle Column Three Cover Plates Four Cover Plates

Channel Column

Plate & Angle Column Four Cover Plates

FIG. 14. STEEL COLUMN SECTIONS AND CAST IRON COLUMN BASES. AMERICAN BRIDGE COMPANY.

as given in (1) and (2) are the most satisfactory columns for usual conditions. The Bethlehem H columns in (11) and (12) make very satisfactory columns. While the Bethlehem H columns require the driving of less rivets than are required to fabricate built-H columns, the extra cost required to drill from the solid in heavy Bethlehem H columns makes the final cost of the two types of columns practically the same for average conditions. Columns made of two channels laced are deficient in lateral rigidity and should only be used for light loads. Z-bars are difficult to obtain from the rolling mill and Z-bar columns should not be used unless it is known that Z-bars can be obtained. Additional sections are given in Fig. 14.

Column Schedule.—A column schedule should be prepared as in Fig. 6. The column schedule should give the length, area of cross-section and the composition of every column in the building. For the use of the shop draftsmen the dead load, wind load and eccentric stresses should be given for each column.

Column Details.—Standard details for channel columns and for plate and angle columns are given in Fig. 7. Details of channel columns are given in Fig. 8. Details of plate and angle columns are given in Fig. 9 and Fig. 10. Details of column splices are given in Fig. 11 and Fig. 12. Details of a column used in the Singer Building are shown in Fig. 27.

Column Bases.—Details of cast iron column bases as designed by the American Bridge Company are given in Fig. 13 and Fig. 14. Intermediate sizes may be obtained by interpolation.

1° Pipe Separators

1° Pip

FIG. 15. CAST STEEL BASE.

Fig. 16. Built Steel Column Base.

Details of a cast steel column base used in the Singer Building are shown in Fig. 15. Details of a built steel column base designed by Mr. E. W. Stern, Consulting Engineer, are shown in Fig. 16 Mr. Stern considers the built steel column base as cheaper and more reliable than a cast steel base; and cheaper and very much more reliable than a cast iron base. In addition the base is easily set and readily grouted. After setting, the base is grouted with 1 to 2 Portland cement mortar. Bases of this design have been used for loads up to 1,600 tons.

Anchors.—Details of anchors are given in Fig. 17. Anchors for columns in tall buildings should be calculated for the actual conditions.

FOUNDATIONS.—The foundation for a tall building will depend upon the height of the structure, the total load on the foundation, the character of the soil, and the requirements of the design and may be briefly described as follows.

- (1) Ordinary wall or pier foundations built on the natural soil.
- (2) Walls and columns supported by timber grillage resting on the soil.
- (3) Walls and columns supported on grillages made of steel beams or bars encased in concrete and resting on the soil.
- (4) Piles of timber or concrete driven to rock or to a sufficient depth to carry the loads without settlement.
- (5) Caissons as constructed in Chicago by excavating in an open well or shaft, curbing it with timber, and then filling the well with concrete.
- (6) Caissons as constructed in New York by sinking steel cylinders, or steel and timber caissons, or reinforced concrete caissons, usually by the pneumatic process and filling the shaft with concrete. The first type of foundation, where the soil is compressible, can only be used for

Fig. 17. Details of Anchors and Anchor Bolts.

American Bridge Company.

Fig. 18. Details of Wall Construction, United Fire Company's Building, New York. (Eng. Record, Dec. 9, 1911.)

FIG. 19. TYPES OF WIND BRACING.

Fig. 20. Wind Bracing in United Fire Company's Building. (Eng. Record, Dec. 9, 1911.)

buildings of four to six stories, but may be used for buildings of twelve to fifteen stories where the supporting power of the soil is considerable as in Denver. With high buildings the footings become so large as to be very expensive and also encroach upon the basement area.

Timber grillage and timber piles must be kept permanently wet or the life of the foundation will be very short. Many of the early tall buildings in Chicago were carried on timber grillages and on timber piles, but the settlement of the structures was so great that the method was abandoned for the method of concrete wells.

Steel grillage foundations have been much used for high buildings. With steel grillage the foundations may be made very shallow so that the basement is not encroached upon.

Fig. 21. Details of Wind Bracing in United Fire Company's Building. (Eng. Record, Dec. 9, 1911.)

In cities like Chicago and New York where real estate is so valuable that basements are often made three or four stories in depth, and where nearby disturbances due to excavations and tunneling would cause settlement it has been found necessary to carry the foundations to rock by means of wells or pneumatic caissons. In Chicago the wells commonly vary from 5 ft. to 12 ft. in diameter and are sunk in the open and are lined with timber curbing. After bed rock is reached the well is filled with concrete.

For a description of the sinking of the foundations for buildings in New York City, see a paper entitled "Foundations for the New Singer Building, New York City" by Mr. T. Kennard Thomson, Consulting Engineer, in Trans. Am. Soc. C. E., Vol. 63, June, 1909.

SPACING OF COLUMNS.—The spacing of columns in steel frame buildings varies from about 11 ft. to 24 ft., depending upon the height of the building, the floor loads, the type of floor

and other conditions. For buildings a few stories in height it is economical to space the columns closely together, while in high buildings a spacing of 16 ft. to 20 ft. will commonly be found economical. The columns in the Singer Tower in Fig. 22 were spaced 12 ft. centers; the columns in the Guaranty Trust Company's New York Building, 162 ft. high were spaced about 16 ft. by 16 ft. and 21 ft. 6 in. by 19 ft. 9 in.; the columns in the Woolworth Building, New York, were spaced at distances varying from 18 ft. 6 in. by 18 ft. 6 in. in the main part to a maximum of 28 ft. by 28 ft. in the tower.

FIG. 22. TYPICAL FLOOR PLAN OF SINGER TOWER.

FLOOR PANELS.—For the long span system, floor girders connect the columns forming a square or rectangle, the floor slabs being supported on the floor girders. For the short span system, floorbeams are carried by the floor girders and the spans for the flooring are reduced. The spacing of the floorbeams will depend upon the type of floor, but it will commonly be found economical to use an even number of floorbeams giving an odd number of short spans in each panel. A common arrangement is to use two floorbeams which divide each panel into three short spans.

SPANDREL SECTIONS.—The design of the curtain walls that are supported by the spandrel beams will depend upon the material of which the wall is built, the amount and character of the ornamentation, and the details of the windows. The details of the wall construction in the United Fire Company's Building, New York, are given in Fig. 18. The spandrel masonry is carried by the wall girders and by horizontal angles bracketed from their outer faces. The angles in the outer flanges of the wall girders are often wider than those in the inner flanges to give additional support to the masonry, and both they and the detached spandrel angles have holes through their horizontal flanges to receive vertical expansion and wedge bolts to hold the stone or terracotta. The mullions over the windows are made of 3 in. by 4 in. tees.

Fig. 23. Foundation Plan of Singer Building.

The details of the spandrel walls should be worked out by the architect and the engineer working together if the best results are to be obtained.

WIND BRACING.—The arrangement of the wind bracing in a steel frame building will depend upon the size and height of the building, upon the arrangement of the columns and the space that may be occupied by the wind bracing. Several types of wind bracing are shown in Fig. 19. Where space permits the diagonal bracing is the most effective. Diagonal bracing can only be used in solid walls or partitions. Knee braces (b) and portal bracing (c), can be used in outside walls where there is sufficient space above and below windows. Brackets (d) are used where the vertical clearance is limited and in wind bracing transversely through the building. Details of wind bracing of the United Fire Company's Building, New York, are given in Fig. 20 and Fig. 21. The building is 130 ft. 6 in. by 173 ft. 6 in. in plan and 25 stories in height. The columns are of Bethlehem H sections two stories in height. The floor panels are chiefly 15 ft. 6 in. by 24 ft. 3 in. The columns rest on grillages which rest on pneumatic piers.

Details of the wind bracing in the Singer Building are given in Fig. 24, Fig. 25, and Fig. 26.

SINGER BUILDING.*—The Singer Building consists of a main portion approximately 75 ft. by 116 ft. in plan and 14 stories high, and a tower 60 ft. by 60 ft. in plan and 41 stories high with a four tier lantern which rises to a total height of 612 ft. The building is of skeleton steel con-

FIG. 24. DIAGRAM OF WIND BRACING, SINGER BUILDING.

struction, fireproofed with terra-cotta tiling and provided with terra-cotta floor systems surfaced with cement. The columns are carried on concrete footings sunk by the pneumatic process to a depth of 90 feet. The columns are spaced 12 ft. centers and are connected at right angles by

^{*} Engineering News, Vol. 58, pp. 595 to 598.

Fig. 25. Plan of Wind Bracing, Singer Building.

Fig. 26. Details of Wind Bracing, Singer Building.

FIG. 27. COLUMN IN SINGER BUILDING.

girders and floorbeams. A typical floor plan of the tower is shown in Fig. 22. The columns are made of two channels, reinforced with plates where necessary. Details of a typical column are shown in Fig. 27. The wind bracing of the steel frame is shown in Fig. 24. A plan of the wind bracing in the tower is shown in Fig. 25. The panels that have heavy full lines were wind braced to the 33d story on the exterior and to the 36th story on the interior. Heavy dotted lines indicate wind bracing to the 14th story. Fine lines indicate no diagonal bracing. Circles on diagonal intersections represent anchor bolts. In designing the bracing the loads were distributed as follows:—It will be noticed that in a north and south direction there are 11 lines of wind bracing in the tower, nearly symmetrically placed. It was therefore assumed that on each story each line of X-bracing took $\frac{1}{11}$ of the total wind pressure of 30 lb. per sq. ft. The loads on the bracing in an east and west direction were distributed in a similar manner. The details of the X-bracing 2re shown in Fig. 26. Each of the 12 ft. square towers was assumed to act independently and can uplift of the columns was provided for.

SPECIFICATIONS FOR STEEL OFFICE BUILDINGS.

BY

MILO S. KETCHUM, M. Am. Soc. C. E.

1914.

1. Design.—In all steel frame or skeleton buildings the stresses due to external and internal loads and wind stresses shall be transmitted to the foundation by the steel framework, no reliance being placed on the strength of the walls and partitions. Beams and girders shall have riveted connections to the steel columns. All columns shall be of structural steel with their different parts riveted together and shall be riveted to the beams and girders connecting to them.

2. LOADS.—The structure shall be designed to carry the following loads.

3. Dead Loads.—The dead load shall consist of the weight of all permanent construction and fixtures, such as walls, roofs, interior partitions, and fixed or permanent appliances. The weights of different materials shall be assumed as given in Table I. The minimum weight of fireproof floors to be assumed in designing the floor system shall be 75 lb. per sq. ft. The actual weight of floors shall be used in designing columns. The minimum weight of movable partitions shall be taken as 10 lb. per sq. ft.

4. Live Loads.—The live load shall consist of movable loads and loads due to machinery

and other appliances.

The live loads required by Schneider's specifications and given in Table IV shall be used for the different classes of buildings. The maximum stresses due to any one of the three systems of loads shall be used in the design. Floor slabs for office buildings may be designed for a uniform load equal to twice the distributed load given in the second column of Table IV, and the effect of the concentrated load may be neglected. The concentrated load and load per linear foot of girder shall be considered in the design of all beams and girders. Flat roofs of office buildings, hotels, etc. that can be loaded by crowds of people shall be designed as the floors.

5. Impact.—For structures carrying traveling machinery such as cranes or conveyors, or machinery such as printing presses, 25 per cent shall be added to the stresses resulting from live

load to provide for impact and vibrations.

6. Snow Loads.—The snow loads on roofs shall be taken the same as for steel frame mill

buildings, Fig. 1, Chapter I.

7. Wind Loads.—All structures shall be designed to resist the horizontal wind pressure on the surface exposed above surrounding buildings as follows.

a. The wind pressure on roofs shall be taken as the normal component, calculated by Duchem-

in's formula, Fig. 3, Chapter I, of 30 lb. per square foot on the vertical projection of the roof.
b. The wind pressure on the sides and ends of buildings except as otherwise provided in the following paragraph shall be assumed as 20 lb. per square foot acting in any direction horizontally.

c. In designing the steel or reinforced concrete framework of fireproof buildings the framework shall be designed to resist a wind pressure of 30 lb. per square foot acting on the total exposed surface of all parts composing the framework or a horizontal wind pressure of 20 lb. per square foot acting in any direction horizontally on the sides and ends of the completed building. The strength of reinforced concrete floors may be considered in calculating the strength of the framework in the completed structure. The framework before the structure has been completed shall

be self-supporting without walls, partitions or floors. In no case shall the overturning moment due to wind pressure exceed 75 per cent of the resisting moment of the structure. In the calculations for wind bracing the working stresses for dead and live loads may be increased 25 per cent providing the sections are not less than required for dead and live loads. Chimneys shall be designed to resist a wind pressure of 20 lb. ($\frac{2}{3}$ of 30 lb.) per square foot acting on the vertical projection of the chimney. Curtain walls carried on the framework of steel or reinforced concrete buildings shall be designed to resist a horizontal pressure of 30 lb. per square foot acting horizontally on the outside of the entire surface of the wall.

8. Minimum Loads on Roofs.—Roofs shall be designed for the minimum loads specified by

Schneider and given in Table VI.

9. Live Loads on Columns.—For columns carrying more than five floors, the live load may be reduced as follows:

For columns supporting the roof and top floor no reduction.

For columns supporting each successive floor a reduction of 5 per cent of the total live load may be made until 50 per cent is reached, which reduction of the load shall be used for the columns supporting all remaining floors. No column shall, however, be designed for a live load of less than 20,000 lb. The above reduction is not to apply to the live load on columns of warehouses, and similar buildings which are liable to be fully loaded on all floors at the same time.

10. Loads on Foundations. The loads on foundations shall not exceed the following in

tons per square foot:

Ordinary clay and dry sand mixed with clay	. 2
Dry sand and dry clay	. 3
Hard clay and firm, coarse sand	. 'A
Coarse sand and gravel. Shale rock.	. 5
Shale rock	. 8
Hard rock	. 20

For all soils inferior to the above, such as loam, etc. never more than I ton per square foot.

The loads on foundations shall be assumed to be the same as for the footings of columns. The area of the bases of the foundation shall be proportioned for the dead load only as follows. That foundation which has the largest ratio of live load to dead load shall be selected and proportioned for the combined dead and live loads. The dead load on this foundation shall be divided by the area thus found, and this reduced pressure per square foot shall be the permissible pressure to be used for the dead loads of all foundations.

11. Pressure on Masonry and Wall Plates.—The maximum pressure on masonry and wall

plates shall not be greater than the values given in Table VIII.

12. Bases.—Structural steel columns shall rest on either cast iron, cast steel or built steel bases proportioned so as to distribute entire load of the column on the concrete or masonry foundation. Columns carrying wind stresses shall be firmly anchored with at least two anchor bolts to a mass of concrete whose weight is at least 1½ times the up-lift in the column. All columns

shall be properly secured to the bases.

wall columns, where the center line of the column must lie within the middle third of the foundation. In this case the average intensity of the pressure on the soil shall not exceed one-half the safe load allowed for a symmetrical section. In cases where the wall column load exceeds the above safe loads the column must rest upon a steel or reinforced concrete girder or cantilever having a column or columns at the inner end. The foundation shall then be designed for the combined loads.

14. Rolled Beams.—The depth of rolled beams in floors shall be not less than one-twentieth of the span, and if used as roof purlins not less than one-thirtieth of the span. In case of floors subject to shocks and vibrations the depth of beams and girders shall be limited to one-fifteenth of the span. If shallower beams are used the sectional area shall be increased until the maximum deflection is not greater than that of a beam having a depth of one-fifteenth of the span, but the depth of such beams shall in no case be less than one-twentieth of the span.

15. Expansion.—Provision shall be made for expansion and contraction corresponding to a variation of temperature of 150 degrees Fahr. where necessary. Expansion rollers shall not be

less than 4 inches in diameter.

16. Cast Iron.—The allowable stresses in cast iron shall be as follows:

Compression = 12 000 lb. per sq. in.
Tension = 2 500 lb. per sq. in.
Shear = 1 500 lb. per sq. in.

17. Steel Columns.—Columns shall be of rolled or built sections. No wall column or column with eccentric loads shall be used which does not have at least one solid plate or web of metal in or

parallel to the plane of eccentric stress. Columns shall have a minimum length equal to two stories; and splices on adjacent columns shall preferably be made at different stories unless the building is symmetrical about a middle line of columns, in which case for ease in construction similarly situated columns may be made alike. Columns shall be designed so as to provide for effective connections for floorbeams, girders and brackets. The splices shall be strong enough to resist the bending stresses and make the columns practically continuous for their entire length. The splices of columns shall be riveted.

18. Roof Trusses.—Roof trusses shall be of steel and may have either pin or riveted connections, and shall be of such design that the stress in each member may be calculated. Roof trusses shall be braced in pairs and each pair of trusses shall be rigidly connected by lateral and transverse bracing. Purlins shall be made of shapes, or riveted plate or lattice girders. Trussed purlins will not be allowed. Main members of trusses shall be designed so that the neutral axes of intersecting members shall meet in a common point, or if this is not possible the eccentric

stresses shall be calculated and provided for.

19. Floorbeams.—Floorbeams shall generally be rolled steel beams and shall be riveted to the floor girders by means of connection angles. Floor girders may be rolled beams or plate girders and shall be riveted to columns by means of connection angles. Shelf angles may be provided

for convenience during erection.

The flange plate's of all girders shall be limited in width so as not to extend beyond the outer line of rivets connecting them to the angles, more than 4 inches, or more than 8 times the thickness of the thinnest plate. For fireproof floors, floorbeams shall generally be tied together with tie rods at intervals not to exceed 8 times the depth of the beams. Tie rods are not required with reinforced concrete floors where the reinforcement is rigidly fastened to all outside beams and girders. Holes for tie rods, where the construction of the floor permits, shall be spaced 3 inches above the bottom of the beam.

Where more than one rolled beam is used to form a girder, they shall be connected by cast iron or steel separators and bolts spaced at intervals of not more than 5 feet. All beams having a

depth of 12 inches and more shall have at least 2 bolts to each separator.

20. Wall Plates.—Bearing stones of granite, crystalline sandstone, or metal plates shall be used to reduce or distribute the pressure on the wall under the ends of wall beams, girders and trusses.

21. Wall Anchors.—The wall ends of beams, girders, and columns shall be anchored securely to give rigidity to the structure.

to give rigidity to the structure.

22. Minimum Thickness of Metal.—No plate or rolled section, having a thickness of less than 1 in shall be used except for fillers.

23. Bracing.—Lateral, longitudinal and transverse bracing shall preferably be composed of

rigid members.

24. Material.—All parts of the structure shall be of rolled steel except column bases, bearing plates, separators or minor details which may be of cast iron or cast steel. The steel shall be made by the open-hearth process. All rolled steel, cast steel and cast iron shall comply with the "Specifications for Structural Steel for Buildings" adopted by the American Society for Testing Materials and printed in Chapter XV.

25. Stresses.—All parts of the structural framework shall be designed for the same unit stresses as for steel frame buildings given in sections 32 to 46 inclusive of "Specifications for

Steel Frame Buildings" in Chapter I.

26. Details of Construction.—The details of construction shall comply with the specifications for steel frame buildings given in sections 78 to 117 inclusive of "Specifications for Steel Frame Buildings," in Chapter I.

27. Workmanship.—The workmanship shall be equal to the best practice in modern bridge works and shall comply with sections 143 to 186 inclusive of "Specifications for Steel Frame

Buildings" in Chapter I.

28. Inspection and Testing at Mill and Shop.—The specifications are the same as given in sections 187 to 193 inclusive in "Specifications for Steel Frame Buildings" in Chapter I.

ERECTION.

29. Tools.—The contractor shall furnish at his expense all necessary tools, derricks, hoists, staging and material of every description required for the erection of the work, and shall remove same when the work is completed.

30. Risks.—The contractor shall assume all risks from storms or accidents, unless caused by the negligence of the owner, and all damage to adjoining property and to persons until the work

is completed and accepted.

31. The contractor shall comply with all ordinances or regulations appertaining to the work.
32. Details of Erection.—The structural steel and iron work shall be erected as rapidly as the progress of the other work on the building will permit. Bases, bearing plates and ends of

girders which require to be grouted, shall be supported exactly at the proper level by means of steel wedges. Structural steel and ironwork shall be set accurately to the established lines and levels. The steel and iron must be plumb and level before riveting is commenced and must be kept in position until final completion. Temporary bracing shall be provided to resist the stresses due to derricks and other erection equipment. Elevator shafts shall be plumbed from top to bottom with piano wire. Riveted connections shall be carefully drawn up before riveting is commenced. Not less than one-third the holes shall be filled with field bolts, drawn up tight. All field connections shall be riveted. Pneumatic hammers shall be used in driving field rivets. Rivets must have a sufficient length to completely fill the holes and to form full heads. Rivets must be tight with full concentric heads. Loose or imperfect rivets must be cut out and redriven, recupping or calking will not be permitted. Holes which will not admit a cold rivet must be reamed. Where bolts are permitted, washers not less than \{\frac{1}{2}\) in. thick shall be used under the nuts, the nuts shall be drawn tight and the threads checked with a chisel. Connections to cast iron and for separators in steel beams may be bolted.

REFERENCES.—For the details of the design of tall buildings the following books may be consulted: Kidder's "Architects and Builders Pocketbook"; Freitag's "Fire Prevention and Fire Protection"; Freitag's "Architectural Engineering"; Ketchum's "The Design of Steel Mill Buildings."

For a full discussion of foundations for steel office buildings, see Jacoby and Davis, "Foundations of Bridges and Buildings," published by McGraw-Hill Book Co.

CHAPTER III.

STEEL HIGHWAY BRIDGES.

Definition.—A truss is a framework composed of individual members so fastened together that loads applied at the joints produce only direct tension or compression. The triangle is the only geometrical figure in which the form is changed only by changing the lengths of the sides. In its simplest form every truss is a triangle or a combination of triangles. The members of the truss are either fastened together with pins, pin-connected, or with plates and rivets, riveted.

Types of Truss Bridges.—The bridge in Fig. 1 consists of two vertical trusses which carry the floor and the load; of two horizontal trusses in the planes of the top and bottom chords, respectively, which carry the horizontal wind load along the bridge, and of cross-bracing in the planes of the end-posts, called portals, and in the planes of the intermediate posts, called sway bracing.

FIG. 1. DIAGRAMMATIC SKETCH OF A THROUGH PRATT TRUSS HIGHWAY BRIDGE.

The floor is carried on joists or stringers placed parallel to the length of the bridge, and which are supported in turn by the floorbeams. The names of the different parts of the bridge are shown in Fig. 1. The main ties, hip verticals, counters and intermediate posts are together called "webs." The bridge shown in Fig. 1, is a through pin-connected highway bridge of the Pratt type, the traffic passing through the bridge. In a deck bridge the roadway floor is carried on top of the main trusses. The bridge shown has square abutments; if the abutments are not at right

angles to the center line the bridge is called a "skew" bridge. Short span highway and railway bridges have low trusses and no top lateral system nor portals, as in Fig. 2. In a railway bridge the loads are carried to the panel points by stringers resting on or riveted to the floorbeams.

Fig. 2. Plan of a Low or "Pony" Truss Highway Bridge.

The simplest type of bridge is the beam bridge, (a) Fig. 3. Beam bridges commonly consist of I beams which span the opening, and are placed near enough together to carry the floor of the

Fig. 3. Types of Short Span Highway Bridges.

bridge. Where foundations are relatively expensive the beams may be carried on posts as in (b), Fig. 3. A truss leg-bridge is shown in (c), Fig. 3. Types (b) and (c) unless constructed with great care make inferior structures and are not to be recommended. A Warren truss is a combi-

nation of isosceles triangles as shown in (d), Fig. 3 and in (c) and (d), Fig. 4. The Pratt truss has its vertical web members in compression while its diagonal web members are in tension, as shown in (b), Fig. 4. The Warren truss is commonly built with riveted joints while the Pratt truss is usually built with pin-connected joints. The Warren low truss with riveted joints as shown in (d) is generally preferred in place of the low Pratt truss in either (e) or (f), Fig. 3. The Howe truss has its vertical web members in tension, and its inclined web members in compression as shown in (a), Fig. 4. The upper and lower chords and the inclined members of a Howe truss are commonly made of timber, while the vertical tension members are iron or steel rods or bars.

TYPFS OF HIGH TRUSS STEEL BRIDGES.

The Whipple truss, (e) Fig. 4, is a double intersection Pratt truss. This truss was designed to give short panels in long spans which have a considerable depth. The stresses in the Whipple truss are indeterminate for moving loads, and its use has been practically abandoned, the Baltimore truss, (g) Fig. 4 being used in its place. The quadrangular Warren truss with riveted joints is used by the American Bridge Company as a standard truss for through highway bridges, with spans of from 80 to 170 ft. Like the Whipple truss its stresses are indeterminate for moving loads.

For spans of from, say, 170 to 240 ft. it is quite common to use pin-connected trusses of the Pratt type having inclined chords as in (f), Fig. 4. The K-bracing in (h) or (j) is more economical of material and gives smaller secondary stresses than the subdivided bracing in (g) and (i), and is rapidly replacing both forms of bracing shown.

The Baltimore truss, (g) Fig. 4, is a Pratt truss with parallel chords in which the main panels have been subdivided by an auxiliary framework. The auxiliary framework may have struts as in (g), or ties as in (i), Fig. 4. The Baltimore truss with inclined upper chords, (i) Fig. 4, is

called a Petit truss. Baltimore and Petit trusses are statically determinate for all conditions of loading; are economical in construction and satisfactory in service, and have almost entirely replaced the Whipple truss for long span bridges.

The types of simple bridge trusses described above are those that are in the most common use, although quite a number of other types of trusses have been used and abandoned.

Beams and Plate Girders.—For spans of, say, 30 ft. and under rolled beams are often used to carry the roadway, while for spans from about 30 to 100 ft. plate girders are used for city bridges. When the roadway is carried on top of the girders, the bridge is called a deck plate girder bridge, and when the roadway passes between the girders, the bridge is called a through plate girder bridge as in Fig. 19.

Fig. 5. Swing Bridges.

Swing Bridges.—Swing bridges may be made of plate girders or trusses, and may turn on a center pivot as in (a), or on a turntable supported on a drum as in (b), Fig. 5. The center pivot swing bridge has two spans continuous over the pivot support, while the turntable swing bridge has three spans ordinarily continuous over the middle supports.

Steel Arches.—Steel arch bridges are made (1) with three hinges, (2) with two hinges, and (3) without hinges, and may have solid webs, or spandrel or open webs.

Cantilever Bridges.—A cantilever bridge consists of two anchor spans, which support a suspended or channel span. The shore ends of the anchor spans are anchored to the shore piers and are supported on the river piers.

Suspension Bridges.—In a suspension bridge the roadway is supported by hangers attached to the main cables. Stiffening trusses are placed above the plane of the roadway to assist in distributing the live loads and for the purpose of increasing the rigidity of the structure.

Simple truss bridges, beam and plate girder bridges, only, will be considered in this book.

TYPES OF STRUCTURE.—The types of structure for steel highway bridges as recommended by the author are given in section 3, "General Specifications for Steel Highway Bridges," printed in the last part of this chapter.

The following data will show present standard practice.

Illinois Highway Commission.—The types of highway bridge recommended by the commission are as follows:

Concrete Bridges.—For culverts requiring a waterway of 12 square feet or less, plain or reinforced concrete arch culverts or square culverts, reinforced concrete pipes or double strength castiron pipe.

For culverts having an area of more than 12 square feet, and for bridges having a span up to 30 ft., reinforced concrete slabs, plain or reinforced concrete arches.

For spans of 30 ft. to 65 ft., reinforced concrete through or deck girders, plain or reinforced concrete arches.

For spans greater than 65 ft., plain or reinforced concrete arches.

Steel Bridges.—For spans of 12 ft. to 45 ft., steel I-beams; for spans of 30 ft. to 100 ft., plate girders or riveted pony trusses; for spans of 90 ft. to 160 ft., riveted trusses with parallel chords; for spans of 160 ft. and more, riveted or pin-connected trusses with parallel or inclined upper chords.

Iowa Highway Commission.—The types of highway bridges recommended by the commission

Concrete Bridges.—Box culverts for spans up to 16 ft.; slab bridges for spans from 14 ft. to 25 ft.; arch culverts and bridges for spans of 6 ft. and over; girder bridges for spans of from 24 ft. to 40 ft.

Steel Bridges.—Steel I-beams up to 32 ft. span; plate girders, 20 ft. to 80 ft. span; low truss 30 ft. to 100 ft. span; high truss 100 ft. span and over, riveted up to 140 ft. span.

Massachusetts Public Service Commission. -- The types of highway bridge recommended by

the commission are as follows:

Steel Bridges.—For spans up to 20 ft., wooden stringers or rolled beams; for spans from 20 ft. to 40 ft., rolled beams or plate girders; for spans from 40 ft. to 70 ft., plate girders; for spans from 70 ft. to 100 ft., plate girders or riveted trusses; for spans from 100 ft. to 125 ft., riveted trusses; for spans from 125 ft. up, riveted or pin trusses.

Wisconsin Highway Commission.—The types of highway bridge recommended by the com-

mission are as follows:

Concrete Bridges.—Spans of 1½ ft. to 10 ft., slab culverts and bridges; spans 10 ft. to 18 ft.,

slab bridges; spans 10 ft. to 40 ft., through girders.

Steel Bridges.—Spans 10 ft. to 38 ft., rolled beams; spans 35 ft. to 80 ft., Warren riveted low trusses or plate girders; spans 80 ft. to 135 ft., Pratt riveted high trusses; spans over 135 ft., riveted high trusses with curved chords.

WIDTH OF ROADWAY.—The following data will show standard practice.

Illinois Highway Commission.—The widths of roadways are specified for State Aid Routes,

Principally Traveled Roads, and Secondary Roads.

On Designated State Aid Routes.—Bridges up to and including 10 ft. span, 20 to 30 ft. roadway; bridges over 10 ft. up to and including 60 ft. span, 18 to 24 ft. roadway; bridges over 60 ft. span, 16 to 20 ft. roadway.

On Principally Traveled Roads.—Bridges and culverts 10 ft. or less in span, 20 to 30 ft. roadway; bridges over 10 ft. and up to and including 60 ft. span, 16 to 20 ft. roadway; bridges over 60

ft. span, 16 to 18 ft. roadway.

On Secondary Roads.—Bridges and culverts 10 ft. or less in span, 18 to 24 ft. roadway; bridges

over 10 ft. span, 16 ft. roadway.

Culverts Under Fills.—The length of the barrel of the culvert shall have a length that will permit of side slopes of 1½ horizontal to 1 vertical, and a top width of 20 to 30 ft. on State Aid Routes, 20 to 30 ft. on Principally Traveled Roads, and 18 to 24 ft. on Secondary Roads.

Iowa Highway Commission.—The widths of roadway for highway bridges as recommended

by the commission are as follows:

Concrete Bridges.—For box or arch culverts with spans of 2 ft. to 16 ft., 24 ft. roadway for county roads, and 20 ft. for township roads; for slab bridges with spans over 16 ft. span, 20 ft. roadway for county roads, and 18 ft. for township roads; for girder bridges over 16 ft. span, 20 ft. roadway; for arches over 16 ft. span, 24 ft. roadway for county roads, and 20 ft. for township roads. The slopes on fills shall be $1\frac{1}{2}$ horizontal to 1 vertical.

Steel Bridges.—A roadway of 20 ft. on county roads, for all spans, and 18 ft. on township roads

for all spans. The minimum legal width of roadway is 16 ft.

Association of State Highway Departments.—The following minimum widths of concrete bridges are recommended.

For First Class Roads.—Culverts under 12 ft. span, 24 ft. roadway; slab bridges over 12 ft.

span, 20 ft. roadway; all other spans 20 ft. roadway.

For Second Class Roads.—Culverts under 12 ft. span, 20 ft. roadway; slab bridges over 12 ft. span, 18 ft. roadway; all other spans, 18 ft. roadway.

For Third Class Roads.—Culverts under 12 ft. span, 20 ft. roadway; slab bridges over 12 ft.

span, 18 ft. roadway; longer bridges, 16 ft. roadway.

The above widths of concrete bridges have been adopted by the Wisconsin Highway Commission.

LOADS.—The loads carried by a bridge consist of (1) fixed or dead loads, (2) the moving or live load, and (3) miscellaneous loads.

The dead load consists of the weight of the structure and is always carried by the bridge; the live load consists of the moving load which the bridge is built to carry, while the miscellaneous loads include wind loads, snow loads, etc. Data on dead loads are given in the "Specifications for Steel Highway Bridges" in the last part of this chapter.

WEIGHTS OF BRIDGES.—The weight of a bridge is composed of (I) the weight of the steel in the steel framework, consisting of the vertical trusses, the upper and lower lateral systems, the floorbeams, the portals and sway bracing; (2) the weight of the joists and the fence; and (3) the weight of the floor covering.

WEIGHTS OF STEEL HIGHWAY BRIDGES.—The following data may be used in calculating the dead loads in the design of highway bridges or as a basis for preliminary estimates.

AMERICAN BRIDGE COMPANY.—Standard Steel Highway Bridges with Timber Floor. Timber floor, 3-in. plank on roadway and 2-in. plank on footwalks. Live loads for floor and its supports, 100 lb. per sq. ft. of floor surface, or 6 tons on two axles 10 ft. centers and 5 ft. gage, or a 15-ton road roller. For trusses 100 lb. per sq. ft. of roadway up to a span of 75 ft., 75 lb. per sq. ft. of roadway for spans of 168 ft. and over, and proportional for intermediate spans. No allowance is made for impact. Designed for allowable stresses given in specifications in the latter part of this chapter. Let W = weight of the structural steel per lineal foot of span; L = length of span in feet, b = width of roadway in feet (without sidewalks).

1. Steel Through Plate Girders.—Through plate girder spans 36 ft. to 70 ft., roadway 20 ft. wide, without sidewalks, but including stringers. The weight of structural steel per lineal foot of span is

$$W = 300 + 3.8L. (1)$$

For sidewalks with steel joists add about 12 lb. per sq. ft. of sidewalks.

2. Steel Low Riveted Truss Spans, with Timber Floor.—For low truss spans 36 ft. to 102 ft., with timber floors, the weight of structural steel per lineal foot of span, not including the weight of the stringers and the railing, is given approximately by the formula for a 16-ft. roadway

$$W = 100 + 2.0L. (2)$$

and for a 20-ft. roadway

$$W = 150 + 1.7L. (3)$$

3. Steel Low Riveted Truss Spans, with Reinforced Concrete Floors.—For low truss spans 36 ft. to 102 ft., with reinforced concrete floors, 5 in. thick with 6 in. of gravel at center and 3 in. of gravel at curb, the weight of structural steel per lineal foot of span, not including the weight of the stringers and the railing, is given approximately by the formula for a 16-ft. roadway

$$W = 150 + 3.5L. (4)$$

and for a 20-ft, roadway

$$W = 185 + 3.5L. (5)$$

4. Steel High Truss Spans, with Timber Floor.—For high truss spans 104 to 204 ft., with timber floors the weight of structural steel per lineal foot of span, not including the weight of the stringers and the railing, is given approximately by the formula for a 16-ft. roadway

$$W = 250 + 1.5L. (6)$$

and for a 20-ft. roadway

$$W = 285 + 1.2L. (7)$$

IOWA HIGHWAY COMMISSION.—Steel Highway Bridges with Reinforced Concrete Floor.—Reinforced concrete floor slabs 6 in. thick for all spans in which stringers are used. Slabs for stringerless floors $7\frac{1}{2}$ in. thick for 8-ft. span, 8 in. thick for 9-ft. span, and $8\frac{1}{2}$ in. thick for 10-ft. span. Live loads for the floor and its supports a uniform live load of 100 lb. per sq. ft., and a 15-ton traction engine with two-thirds of the load on the rear axle; axles spaced 11 ft. centers, and rear wheels spaced 6 ft. centers. Rear wheels 22 in. wide. The trusses are to be designed for the uniform loads given in Table I. No allowance is made for impact.

Let W = weight of structural steel in lb. per lineal foot of span; L = length of span in feet; b = width of span in feet (without sidewalks).

1. Steel Beam Spans.—The weight of steel beam spans from 16 ft. to 32 ft. and with 16-ft., 18-ft., and 20-ft. roadway are given in Table IX.

2. Steel Low Truss Spans, with Stringers.—For low truss highway bridges with spans of 35 ft. to 85 ft., not including the weight of the fence or the steel stringers, the weight of structural steel per lineal foot of span for a 16-ft. roadway is

$$W = 235 + 2.35L. (8)$$

and for an 18-ft. roadway is

$$W = 240 + 2.40L. (9)$$

3. Steel Low Truss Spans, without Stringers.—For low truss highway bridges with spans of 35 ft. to 100 ft., not including the weight of the fence or steel floorbeams, the weight of the structural steel per lineal foot of span for a 16-ft. roadway is

$$W = 200 + 4L.$$
 (10)

and for an 18-ft. roadway is

$$W = 225 + 4.25L. \tag{11}$$

4. Steel High Truss Spans, with Stringers.—For high through truss highway bridges with spans of from 90 ft. to 150 ft., not including the weight of fence or the steel stringers, the weight of structural steel per lineal foot of span for a 16-ft. roadway is

$$W = 245 + 2.45L. (12)$$

and for an 18-ft. roadway is

$$W = 270 + 2.7L. (13)$$

WISCONSIN HIGHWAY COMMISSION. Steel highway bridges with reinforced concrete floor.—Reinforced concrete floor slabs 6 in. thick for all spans. Live loads for the floor and its supports a 15-ton road roller with two-thirds of the load on the rear axle, axles 10 ft. centers, rear rolls 4 ft. 10 in. centers, rear rolls 20 in. wide. The trusses designed for the loads given in Table I. No allowance is made for impact. Let W = weight of structural steel in lb. per lineal foot of span, L = length of span in feet; b = width of roadway in feet (without sidewalks).

1. Steel Beam Spans.—Weight of steel beam spans from 10 ft. to 38 ft. and for 16-ft., 18-ft.

and 20-ft, roadway are given in Table X.

2. Steel Through Plate Girders.—The weight of the structural steel in through plate girder highway bridges from 35 ft. span to 80 ft. span including floorbeams spaced 3 to 2½ ft. apart, is given approximately by the following formula. For a 16-ft. roadway

$$W = 300 + 3L.$$
 (14)

For an 18-ft. roadway

$$W = 300 + 3.25L. (15)$$

and for a 20-ft. roadway

$$W = 320 + 4L. (16)$$

3. Steel Low Truss Spans, with Stringers.—The weight of the structural steel in low truss steel highway bridges with spans of 35 ft. to 85 ft. span, not including the weight of the fence or the steel stringers, is given approximately by the formula. For a 16-ft. roadway

$$W = 80 + 3.5L. (17)$$

and for an 18-ft. roadway

$$W = 80 + 4L. (18)$$

4. Steel High Truss Spans, with Stringers.—For high through truss steel highway bridges with spans of from 90 ft. to 150 ft., not including the weight of the fence or the steel joists, the weight of structural steel per lineal foot of span is given approximately by the formula. For a 16-ft, roadway.

$$W = 180 + 2L. (19)$$

and for an 18-ft, roadway

$$W = 240 + 2L. (20)$$

ILLINOIS HIGHWAY COMMISSION. Steel highway bridges with reinforced concrete floor.—Reinforced concrete floor slabs 4 in. thick with a wearing surface assumed to weigh not less than 50 lb. per sq. ft. Live load for floor and its supports a 15-ton traction engine, supported on two axles spaced 10 ft. apart, with two thirds of the load on the rear axle; or a uniform live load of 125 lb. per sq. ft. The trusses designed for the loads given in Table I. No allowance is made for impact.

Let W = weight of steel in lb. per lineal foot of span, L = span of bridge in feet, b = width of roadway in feet (without sidewalks).

1. Steel Low Truss Spans, with Stringers.—The weight of the structural steel in low truss steel highway bridges with spans of 50 ft. to 85 ft., not including weight of the fence or the steel stringers, is given approximately by the formula. For a 16-ft. roadway, b = 16 ft.

$$W = 235 + 2.35L. (21)$$

and for an 18-ft. roadway, b = 18 ft.

$$W = 240 + 2.4L. (22)$$

2. Steel High Truss Spans, with Stringers.—The weight of structural steel in high truss steel highway bridges with spans of 90 ft. to 160 ft., not including the weight of fence or the steel stringers, is given approximately by the formula. For a 16-ft. span, b = 16 ft.

$$W = 140 + 4L. (23)$$

and for an 18-ft. span, b = 18 ft.

$$W = 180 + 4.5L. (24)$$

The weights given by formulas (21) to (24) are for bridges with concrete floors weighing 100 lb. per sq. ft. Calculations by Mr. Clifford Older, Bridge Engineer, Illinois Highway Commission, show that a variation of the weight of the floor of 10 lb. per sq. ft. makes a similar variation in the weight of the structural steel, including the joists, of 4.35 per cent for a 50-ft. span, of 3.75 per cent for a 160-ft. span, and proportional for intermediate spans. For the structural steel, not including the joists, an average value of 4 per cent may be used for each decrease of 10 lb. per sq. ft. of floor surface.

BOSTON BRIDGE WORKS STANDARDS.*—The weights of steel highway bridges designed by the Boston Bridge Works are as follows:

Through truss highway bridges without sidewalks designed for a live load of 80 lb. per sq. ft. for the trusses, 100 lb. per sq. ft. and a 6-ton wagon for the floor. The weight, w, of steel in lb. per sq. ft. of area covered by the floor, not including joist or fence, for a span of L ft., is

$$w = 5 + L/9.5 (25)$$

The weight of through truss highway bridges with two sidewalks is

$$w = 2.8 + L/11.3 \tag{26}$$

The sidewalks were 5 or 6 ft. wide, and the clear roadways were 16 to 20 ft. The total area covered by the roadway and sidewalk floors is to be used in calculating the weight of steel.

Weights of Steel Highway Plate Girder Bridges.—The weights of highway plate girder bridges as designed by the Boston Bridge Works for the live loads shown are as follows.

Deck plate girder highway bridges without sidewalks designed for a live load of 100 lb. per sq. ft. for girders, 100 lb. per sq. ft. and a 6-ton wagon for the floor. The weight, w, of steel in lb. per sq. ft. of area covered by the floor, not including joist or fence, for a span of L ft., is

$$w = 2.5 + L/3.4 \tag{27}$$

^{*} Published by permission of John C. Moses, Chief Engineer.

The weight of deck plate girder highway bridges with sidewalks is

$$w = 2.5 + L/4.4 \tag{28}$$

The weight of through plate girder highway bridges without sidewalks is

$$w = 3 + L/4.25 \tag{29}$$

The weight of through plate girder highway bridges with sidewalks is

$$w = 3.3 + L/5.6 \tag{30}$$

Weight of Electric Railway Bridges.—The Boston Bridge Works gives the following formula for the weight of electric railway bridges, where W = total weight of steel in lb. per lineal foot of bridge and L is the span of the bridge in feet.

Beam bridges

$$W = 50 + 5L \tag{31}$$

Light truss bridges

$$W = 200 + 0.8L \tag{32}$$

Heavy truss bridges

$$W = 250 + 1.5L \tag{33}$$

The beam bridges were designed for 30-ton cars; the light truss bridges were designed for 15-ton cars or 1,500 lb. per lineal foot of bridge, and the heavy truss bridges were designed for 30-ton cars, or 2,000 lb. per lineal foot of bridge. ___

LIVE LOADS.—The live loads for highway bridges are usually assumed to consist of a uniform live load for the trusses and a uniform live load or a concentrated moving load for the floor and its supports. A few highway bridge specifications require that trusses be designed for a concentrated moving load as well as for a uniform live load, and also that the floor and its supports be designed for a concentrated moving load and that the portion of the floor of the bridge not covered by the concentrated load be covered with a uniform live load. In calculating the stresses in the truss members the uniform live load is commonly assumed as applied in full joint loads at joints on the loaded chord. Moving loads and loads suddenly applied produce stresses that are greater than the static stresses due to stationary loads or to loads gradually applied. This increase in stress due to moving loads or due to loads suddenly applied is called impact stress.

IMPACT.—The effect of impact or increase in live load stresses over the stresses due to the same loads gradually applied, is very much less for highway bridges than for railway bridges. Experiments made by Professor F. O. Dufour and recorded in Journal of Western Society of Engineers, June, 1913, show that the effect of impact on steel truss highway bridges with concrete floors is very small. The effect of impact on steel truss bridges with plank floors is considerably larger than for bridges with concrete floors. The maximum impact percentages do not occur with maximum static stresses. Experiments made at the University of Colorado under the author's direction show that the effect of impact on highway bridges is very much less than for railway bridges.

The specifications of the highway commissions of Illinois, Iowa, Michigan, Nebraska and Wisconsin do not add impact for highway bridges.

The allowance for impact of the Massachusetts Railway Commission is as follows: For stringers, floorbeams and hangers, when loaded with a 20-ton auto truck, 50 per cent; for all other loads, floorbeams and stringers, 25 per cent; floorbeam hangers, 40 per cent; counters, 40 per cent; for all other members in trusses, and for main girders the percentage shall be 26 minus one-twelfth the loaded length in feet, with a maximum of 25 and a minimum of 10 per cent.

twelfth the loaded length in feet, with a maximum of 25 and a minimum of 10 per cent.

Mr. J. A. L. Waddell in "Bridge Engineering" specifies that highway bridges shall be designed for the impact allowance, I = 100/(nL + 200), where L is the loaded length of the bridge in feet that produces maximum stress and n is the total clear width of the roadway and footwalks divided by twenty. The above impact allowance is made for motor-truck loadings but not for road-roller

loadings.

The specifications for steel bridges prepared by the U. S. Office of Public Roads, and the specifications for steel bridges of the West Virginia Highway Commission and the Oregon Highway Commission specify the impact factor, I = 100/(L + 300), where L is the loaded length of the

The Montana Highway Commission specifies 25 per cent impact.

The Department of Public Roads of Kentucky requires no impact allowance for bridges with concrete floors, and 25 per cent for bridges with wooden floors.

The Utah Highway Commission specifies 25 per cent impact for floors, and 15 per cent for

For concrete highway bridges the impact allowance varies from no impact allowance, as specified by the highway commissions of Illinois, Iowa, Michigan, Nebraska and Wisconsin: an allowance of 15 per cent of the live load, as specified by the highway commission of West Virginia. to an allowance of 50 per cent of the live load, as specified by the U. S. Office of Public Roads. Watson's "General Specifications for Concrete Bridges," third edition, 1916, uses an impact allowance of I = 150/(L + 300), where L is the loaded length of the bridge in feet that produces maximum stress.

Ketchum's Specifications for Impact.—The author has adopted the following impact factors for concrete bridges and steel bridges.

(a) For concrete arches with spandrel filling on culverts with a minimum filling of one foot. no allowance for impact.

(b) For concrete slab and girder bridges and trestles, and arches without spandrel filling, 30

per cent for impact.

(c) For steel bridges the following allowance for impact. For the floor and its supports in-

cluding floor slabs, floor joist, floorbeams and hangers, 30 per cent.

For all truss members other than the floor and its supports, the impact increment shall be I = 100/(L + 300), where L = length of span for simple highway spans (for trestle bents, towers,movable bridges, arch and cantilever bridges, and for bridges carrying electric trains, L shall be taken as the loaded length of the bridge in feet producing maximum stress in the member).

CONCENTRATED LIVE LOADS .- Traction engines weighing 20 tons are quite common in the west and northwest. The heaviest motor truck in common use has a capacity of 7½ tons and a total weight of 13 tons, with nearly 10 tons on the rear axle. With an overload of 50 per cent. which is not unusual, this truck would carry 14 tons on the rear axle. The maximum road roller weighs 20 tons.

The highway commissions of the different states have adopted concentrated live loads as follows: Illinois specifies a 15-ton traction engine; Iowa specifies a 15-ton traction engine for bridges with reinforced concrete floors; Wisconsin specifies a 15-ton road roller; Michigan specifies an 18-ton road roller; Nebraska specifies a 20-ton traction engine; Minnesota specifies a 20-ton traction

engine; New York specifies a 15-ton road roller; all loadings to be used without impact.

Utah specifies an 18-ton road roller with 25 per cent impact; Oregon specifies a 15-ton road roller for medium traffic and a 20-ton road roller for heavy traffic; Ohio specifies a 15-ton concentrated load with 163 per cent impact; Montana specifies a 20-ton traction engine with 25 per cent impact; the Massachusetts Railway Commission specifies a 20-ton motor truck with 14 tons on the rear axle, with an allowance of 50 per cent for impact on the floor and its supports; Mr. J. A. L. Waddell in "Bridge Engineering" specifies for class A bridges an 18-ton motor truck with impact allowance as given above.

For additional data see article entitled "Concentrated Live Loads for Highway Bridges," by Milo S. Ketchum, printed in University of Colorado Journal of Engineering, October, 1916.

Ketchum's Specifications for Concentrated Moving Loads.—The author has adopted the following specifications for moving concentrated loads.

(a) That highway bridges on main roads or near towns or cities shall be designed to carry a 20-ton motor truck with axles spaced 12 ft. and wheels with a 6-ft. gage, with 14 tons on rear axle and 6 tons on front axle. The truck to occupy a space 10 ft. wide and 32 ft. long. The rear wheels to have a width in inches equal to the total load in tons (20 in. for a 20-ton truck).

(b) That bridges not on main roads shall be designed for a 15-ton motor truck with axles spaced 10 ft. and wheels with a 6-ft. gage, and occupying a space 10 ft. wide and 30 ft. long, with

10 tons on rear axle and 5 tons on front axle, and with rear wheels 15 in. wide.

(c) To provide for impact and vibration and unevenness of road surface thirty (30) per cent is to be added to the maximum live load stresses. Only one motor truck is to be assumed to be on a bridge at one time.

Motor trucks have narrower tires and are driven at greater speeds than traction engines, and therefore not only produce greater static stresses in the floor, but should have a greater impact allowance. In view of the above, it would not appear to be necessary to consider any road rollers or traction engines now in use in addition to the above motor-truck loadings.

DISTRIBUTION OF CONCENTRATED LOADS.—In designing floor slabs, floor stringers and floorbeams it is necessary to know the distribution of the concentrated loads.

Concrete Floor Slabs.—Tests of the distribution of concentrated loads on concrete floor slabs have been made by the Ohio Highway Commission, the results of which are given in Bulletin No. 28, published by the Commission; by Mr. W. A. Slater at the University of Illinois and described in Proceedings of American Society for Testing Materials, Vol. XIII, 1913, and by A. T. Goldbeck and E. B. Smith, described in Journal of Agricultural Research, Vol. VI, No. 6, Department of Agriculture, Washington, D. C., May 8, 1916.

Ohio Tests.—The following conclusions drawn from the Ohio tests are of interest:

"The percentage of reinforcement has little or no effect upon the distribution to the joists, so long as safe loads on the slabs are not exceeded.

"The outside joists should be designed for the same total live load as the intermediate joists. "The axle load of a truck may be considered as distributed over 12 ft. in width of roadway.

"The safe value for 'effective width' of a slab, where the total width of slab is greater than 1.33 L+4 ft. is given by the formula, e=0.6L+1.7 ft., where e= effective width (width over which a single concentrated load may be considered as uniformly distributed on a line down the

middle of the slab parallel to the supports) and L = span in feet.

Slater Tests.—It was recommended that where the total width of slab is greater than twice the span, the effective width be taken as e = 4x/3 + d, where x is the distance from the concentrated load to the nearest support, and d is the width at right angles to the support over which the load is applied. While the depth of slab and the amount of longitudinal reinforcement had little effect on the distribution, it was recommended that the latter be limited to I per cent.

Goldbeck and Smith Tests.—Tests were made on three slabs, each slab being 32 ft. wide, 16 ft. span, and with effective depths of 10.5 in., 8.5 in. and 6 in., respectively. All slabs were made of

1-2-4 Portland cement concrete, and were reinforced with 0.75 per cent of mild steel. The following conclusions were drawn from these tests:

(I) The effective width decreases as the effective depth increases; the effective width for safe loads being 75.7 per cent; 81.1 per cent, and 109.3 per cent of the span, for the slabs having effective depths of 10.5 in., 8.5 in. and 6 in., respectively.

(2) For slabs in which the ratio of the width of the slab is not less than twice the span length,

the effective width may be taken as

$$e = 0.7L \tag{34}$$

where e is the effective width and L is the span length.

(Additional tests by Goldbeck, Proceedings American Concrete Institute, 1917, show that

formula (34) may be used when the width of the slab is not less than the span.)

Watson's "General Specifications for Concrete Bridges," third edition, 1916, specifies that concentrated loads on reinforced concrete slabs may be assumed as distributed over a distance of 4 ft. at right angles to the supports, and a distance parallel to the supports equal to 2 ft. plus threetenths of the span of the slab.

The State Highway Department of Ohio uses the following distribution of concentrated loads on floor slabs.

For spans less than 6 ft. the percentage, p, of the wheel load carried by one foot in width of slab for a span in feet, l, is given by the formula

$$p = 42 - 4l \tag{35}$$

while for spans greater than 6 ft. the percentage, p', of the wheel load carried by one foot in width of slab for a span in feet, l, is given by the formula

$$p' = 20 - 0.4l \tag{36}$$

For a span of $5\frac{1}{2}$ ft., from formula (35), p = 20 per cent, and the concentrated load is assumed as carried by a slab 5 ft. wide, applied on a line parallel to the supports.

For a span of 10 ft., from formula (36), p' = 16 per cent, and the concentrated load is assumed

as carried by a slab 6.67 ft. wide, applied on a line parallel to the supports.

Floor Stringers and Floorbeams.—The Illinois Highway Commission specifies that longitudinal stringers be spaced not more than 2½-ft. centers, and that each stringer be designed for 20 per cent of the rear axle load concentrated at the center of the span when a concrete sub-floor is used, and 25 per cent of the rear axle load when a plank floor is used. Transverse stringers or floorbeams, spaced not more than 2½-ft. centers, shall be designed to carry 40 per cent of the rear axle load distributed over the middle 10 ft. of the stringer. Floorbeams shall be designed for maximum stresses due to concentrated load.

The Iowa Highway Commission specifies that one-third of a wheel load be assumed as carried by one joist, when a concrete floor slab is used, and that one-half of a wheel load be assumed as

carried by one joist, when a plank floor is used.

The Massachusetts Railway Commission specifies that the wheel load on plank floors be distributed over a width in feet equal to the thickness of the floor in inches, with a maximum distri-

bution of 6 ft. With solid floors each wheel load is assumed as distributed over a width of 6 ft.

Watson's "General Specifications for Concrete Bridges," third edition, 1916, specifies that
the part of the concentrated load carried by one stringer shall be found by dividing the stringer spacing by the gage distance of the concentrated load. With a gage distance of 6 ft. this gives one-third the total load for a stringer spacing of 2 ft.; one-half the total load for a stringer spacing of 3 ft.; the total load for a stringer spacing of 6 ft.

Ketchum's Specifications for Distribution of Concentrated Loads.-From a study of the various tests and specifications, the author has adopted the following rules for calculating the stresses in slabs, stringers and floorbeams:

FIG. 7.

(a) The distribution of concentrated wheel loads for bending moments in reinforced concrete slabs with longitudinal girders shall be calculated by the formula,

$$e = \frac{2}{3} (l + c) \tag{37}$$

with a maximum limit of 6 ft. for e, where e = effective width (distance that the load may be considered as uniformly distributed on a line down the middle of the slab parallel to the supports), l = span, and c = width of tire of wheel, all distances in feet. See Fig. 6.

(b) The distribution of concentrated wheel loads for bending moments in reinforced concrete

slabs with transverse girders shall be calculated by the formula

$$e = 2l/3 + c \tag{38}$$

with a maximum limit of 6 ft. for e, where e = effective width, l = span, and c = width of tire of wheel as defined in paragraph (a). See Fig. 7.

(c) The distribution of concentrated wheel loads for bending moments in slabs of girder bridges in which the span of the bridge is not less than the width of bridge center to center of girders, shall be calculated for spans of 9 ft. or over by the formula

$$e = 2l/3 \tag{39}$$

with a maximum limit of e = 12 ft., where e = effective width, and l = span as defined in paragraph (a).

(d) The effective width for shear in beams carrying concentrated loads shall be taken the same as for bending moment as calculated by formula (37) or formula (38), with a minimum effective

width of 3 ft. and a maximum effective width of 6 ft.

The total shear for an effective width of 3 ft. shall be considered as punching (pure) shear. The total shear for an effective width of 4.5 ft. and over shall be considered as beam shear (a measure of diagonal tension), for effective widths between 3 ft. and 4.5 ft. the total shear shall be divided proportionally between punching shear and beam shear. Beam shear shall be used in calculating bond stress and as a measure of diagonal tension.

(e) In the design of longitudinal joists or stringers with concrete floors, the fraction of the concentrated load carried by one stringer for spacings 6 ft. or less will be taken equal to the stringer spacing in feet divided by 6 ft.; with plank floors the fraction of the concentrated load carried by one stringer for spacings 4 ft. or less will be taken equal to the stringer spacing in feet divided by 4 ft., the maximum in each case being the full load. Outside stringers are to be designed for

the same load as intermediate stringers.

(f) In the design of transverse stringers or floorbeams with concrete floors, the fraction of the concentrated load carried by one floorbeam for floorbeams spaced 6 ft. or less, will be taken equal to the floorbeam spacing divided by 6 ft. For floorbeams spaced 6 ft. or over the entire reactions are assumed as carried by one floorbeam. Axle loads are assumed as distributed on a line 12 ft. long.

UNIFORM LIVE LOADS FOR TRUSSES.—The uniform live loads for trusses of steel highway bridges as specified by the highway commissions of Illinois, Iowa and Wisconsin, the American Concrete Institute, 1916, and the uniform loads as specified by the author for classes D_1 and D_2 are given in Table I. The D_1 and D_2 loadings are to be taken as proportional for intermediate spans, and are to be increased for impact.

It will be seen that the D_1 loadings with impact added are practically the same as the Illinois loadings; while the D_2 loadings with impact added are practically the same as the Iowa and Wis-

consin loadings.

TABLE I.

UNIFORM LIVE LOADS FOR HIGHWAY BRIDGES.

Illinois Hi		Iowa Hig		Wisconsin H		American		crete Institu 16.	ite,	Ketchum's Specification		ifications, 19	18.
sion.		sion.		way Commissi	ion.	Class A	۱.	Class E	3.	Class D ₁		Class D	ž+
Span, Ft.	Load, Lb./Sq. Ft.	Span, Ft.	Load, Lb./Sq. Ft.	Span, Ft.	Load, Lb./Sq. Ft.	Span, Ft.	Load, Lb./Sq. Ft.	Span, Ft.	Load, Lb./Sq. Ft.	Span, Ft.	Load, Lb./Sq. Ft.	Span, Ft.	Load, Lb./Sq. Ft.
50-100	100 100 85 85	Up to 50 50–100 100–150 150–200 200–250 Over 250	90 80 70 50	50 75 100	120 106 93 60	80-100	110 100 90 85	Up to 80 80–100 100–125 125–150 150–200 Over 200	90 80 75 65	30 50 80 100 160 200 and over	125 106 85 80 68 60	30 50 80 100 160 200 and over	75 71 60 50

Class D_1 and D_2 bridge loadings to be increased for impact.

UNIFORM LIVE LOADS FOR FLOORS.—The Illinois Highway Commission specifies that stringers and floorbeams for spans of 50 ft. and less shall be designed for a uniform live load of 125 lb. per sq. ft., and of spans over 50 ft. in length for a uniform live load of 100 lb. per sq. ft., or a 15-ton concentrated load for all spans. No allowance is made for impact.

The Iowa Highway Commission specifies a live load of 100 lb. per sq. ft. or a 15-ton traction engine for class "A" floors, and a live load of 100 lb. per sq. ft., or a 10-ton traction engine for class

"B" floors (plank floors). No allowance is made for impact.

The Wisconsin Highway Commission specifies that floor systems and spans under 40 ft. be designed for a 15-ton road roller. No allowance is made for impact.

The Michigan Highway Commission specifies that the floor and its supports be designed for

an 18-ton road roller, or 100 lb. per sq. ft. No allowance is made for impact.

The floor systems for D_1 bridges are to be designed for 125 lb. per sq. ft. or a 20-ton auto truck; while D_2 bridges are to be designed for 100 lb. per sq. ft. or a 15-ton auto truck. An impact factor of 30 per cent is to be added both for the uniform loads and for the auto truck.

WIND LOADS FOR HIGHWAY BRIDGES.—The Illinois Highway Commission specifies a wind load of 25 lb. per sq. ft. on the vertical projection of both trusses and the floor system, but in no case shall the wind be less than 300 lb. per lineal foot on the loaded chord nor less than 150 lb. per lineal foot on the unloaded chord.

The Iowa Highway Commission specifies 150 lb. per lineal foot on the unloaded chord and

300 lb. per lineal foot on loaded chord, all loads considered as moving loads.

The Wisconsin Highway Commission specifies 150 lb. per lineal foot on the unloaded chord and 300 lb. per lineal foot on the loaded chord; 150 lbs. of the latter being considered a moving load.

Cooper's 1909 specifications require that highway bridges be designed for a lateral force of 150 lb. per lineal foot on the unloaded chord and a lateral force of 300 lb. per lineal foot on the loaded chord, 150 lb. of the load on the loaded chord being treated as a moving load. For spans exceeding 300 ft. add in each case above 10 lb. for each additional 30 ft.

The author's specifications for wind loads are given in "General Specifications for Steel High-

way Bridges" given in the latter part of this chapter.

DESIGN OF HIGHWAY BRIDGE FLOORS. Types of Floors.—The choice of floor for a highway bridge depends upon the traffic, the cost, including first cost and cost of maintenance, and the climate. A highway bridge floor consists of a sub-floor which has the necessary strength to carry the loads and a wearing surface. Plank floors and reinforced concrete slabs without wearing surface have the sub-floor and wearing surface combined. A highway bridge floor should have a strength and a weight appropriate to the structure of the bridge, and should be well drained. The wearing surface should be waterproof, capable of resisting wear and should be as smooth as possible without being slippery. For proper drainage the wearing surface should have a longitudinal grade of not less than I in 50 or a transverse slope of not less than I in 12. Sub-floors for highway bridges are made (I) of reinforced concrete; (2) of buckle plates or other steel sections, and (3) of timber. The most common wearing surfaces for highway bridge floors are (a) concrete, (b) bituminous concrete, (c) asphalt, (d) creosoted timber blocks, (e) brick, (f) stone block, (g) macadam, (h) gravel or earth. The different types of sub-floors and wearing surfaces for highway bridges will be described in some detail.

Reinforced Concrete Floor Slabs.—Reinforced concrete floor slabs on steel highway bridges may be supported on joists or stringers and floorbeams, or by the floorbeams alone. Stringers are used for beam bridges and are commonly used for truss bridges, while the stringerless floor is commonly used on plate girder bridges. The sub-floor slabs are commonly calculated to carry the dead load due to the weight of the slab and of the wearing surface, and a live load consisting of a uniform load per square foot or a concentrated moving load. The thickness of reinforced concrete slabs in short spans is commonly determined by the concentrated moving load. The stresses in reinforced concrete slabs due to a concentrated load will depend upon the distribution of the load over the slab. The different methods for the distribution of concentrated loads in use in different specifications have been described and the specifications adopted by the author have already been given.

Design of Reinforced Concrete Floor Slabs.—The live loads and the distribution of loads on floor slabs as specified by the author are given on pages 112d and 112f. The concrete should be a 1-2-4 Portland cement concrete that will give a compressive strength of not less than 2,000 lb. per sq. in. when tested in cylinders 8 in. in diameter and 16 in. long after having been stored for 28 days in moist air. Allowable compression in slabs, 650 lb. per sq. in.; allowable tensile stress in steel, 16,000 lb. per sq. in., modulus of elasticity of steel to be taken as 15 times the modulus of elasticity of concrete, allowable shear as a measure of diagonal tension 40 lb. per sq. in.; punching shear 120 lb. per sq. in., bond stress in slabs 120 lb. per sq. in.

The thickness of floor slabs when supported on longitudinal joists or stringers is given in Table II and the thickness of floor slabs when supported on cross floorbeams (stringerless floor) is given in Table III. The reinforcing steel for reinforced concrete floor slabs is given in Table IV. The reinforcement given in the table is to be placed at the bottom of slabs calculated as simply supported and at top and bottom of slabs calculated as continuous or partially continuous.

TABLE II.

THICKNESS OF REINFORCED CONCRETE FLOOR SLABS, USED WITH JOISTS.

Simp	ly Suppo	orted, Re	inforcem	ent on U	nder Side	Only.	F	ully Cont	inuous, I	Reinforce	ment on	Both Side	es.
	12-Ton	Truck.	15-Ton	Truck.	20-Ton	Truck.		12-Ton	Truck.	15-Ton	Truck.	20-Ton	Truck.
Span, Ft.	Wei	ght of W	earing S	urface, L	b. per Sq	. Ft.	Span, Ft.	Wei	ight of W	earing S	arface, Ll	b. per Sq	. Ft.
		100	0	100	D	100		5	100	D.	100	0	100
3 4 5 6	in. 514 514 614 614 614	in. 5 1 6 6 6 1 6 3 6 3 7	in. 51/2 61/4 61/2 63/4 71/2	in. 5½ 6¼ 6¾ 7 7¾	in. 5 \frac{1}{2} 6 \frac{1}{2} 7 7 \frac{3}{4} 8 \frac{1}{4}	in. 5 \frac{1}{2} 6 \frac{1}{4} 7 \frac{1}{2} 8 8 \frac{1}{2} 8 1 2	2 3 4 5 6	in. 4½ 5 5½ 5½ 5½ 5¾	in. 4½ 5 54 54 6	in. 44 54 54 55 6	in. 43 54 54 66	in. 4 ³ / ₄ 5 ¹ / ₂ 6 6 ¹ / ₂ 6 ³ / ₄	in. 4 ³ / ₄ 5 ² / ₂ 6 ¹ / ₄ 6 ¹ / ₂ 7

Center of reinforcing I in. from face of slab. Impact 30 per cent. Reinforced as in Table IV.

TABLE III.

THICKNESS OF REINFORCED CONCRETE FLOOR SLABS, USED WITHOUT JOISTS.

Simp	ly Suppo	orted, Re	inforcem	ent on U	nder Side	Only.	Par	rtially Co	ntinuous,	Reinford	cement or	n Both S	ides.		
	12-Ton	Truck.	15-Ton	Truck.	20-Ton	Truck.		12-Ton	Truck.	15-Ton	Truck.	20-Ton	Truck.		
Span, Ft.	Wei	ght of W	earing S	ırface, Ll	b. per Sq	. Ft.	Span, Ft.	Span, Ft. Weight of Wearing Surface, Lb. per Sq. Ft.							
	0	100	0	100	0	100		13	100	0	100	0	100		
2 3 4	in. 53 61 61	in. 5 ³ / ₄ 6 ¹ / ₄ 6 ¹ / ₂	in. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	in. 6 6 1 7	in. 6½ 7 7¾	in. 6½ 7 7¾	2 3 4	in. 51/4 53/4 6	in. 5 \frac{1}{4} 5 \frac{3}{4} 6	in. 5½ 5¾ 6¼	in. 5½ 6 6¼	in. 534 612 634	in. 5 ³ / ₄ 6 ¹ / ₂ 7		
5 6 7	6¾ 7 7	7 7½ 7¾ 7¾	7 7 ¹ / ₂ 7 ³ / ₄	7½ 7¾ 8¼	81 81 83 84	8½ 8½ 9	5 6 7	6 6 6 6 1 6	$6\frac{1}{4}$ $6\frac{1}{2}$ $6\frac{3}{4}$	$6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{3}{4}$	6½ 7 7½	7 7 ³ 8	$\begin{array}{c} 7\frac{1}{2} \\ 7\frac{3}{4} \\ 8\frac{1}{4} \end{array}$		
8 9 10	7½ 8 8½	81 83 91	81 83 91	83 91 10	9 ¹ / ₄ 10 10 ¹ / ₂	9 ³ / ₄ 10 ¹ / ₂ 11 ¹ / ₄	8 9 10	63 71 73 74	7 ¹ / ₈ 8 8 ¹ / ₂	$7^{\frac{1}{2}}_{8}$ $8^{\frac{1}{2}}$	8 8½ 9	8½ 9 9½	9 9 ¹ 10		

Center of reinforcing I in. from face of slab for slabs less than $7\frac{1}{2}$ in. thick. Center of reinforcing I $\frac{1}{4}$ in. from face of slab for slabs $7\frac{1}{2}$ in. and over, in thickness. Impact 30 per cent. of live load. Reinforced as in Table IV.

Examples of Reinforced Concrete Floor Slabs.—The reinforced concrete floor slabs used by the Wisconsin Highway Commission are given in Fig. 14, Fig. 15, Fig. 21 and Fig. 22. The floor slabs used by the Iowa Highway Commission are given in Fig. 12, Fig. 13, Fig. 17, and Fig. 24. For a stringerless floor the slabs used by the Iowa commission agree very closely with the values given in Table III.

TABLE IV.

REINFORCEMENT FOR REINFORCED CONCRETE FLOOR SLABS.

The reinforcement given in this table is to be used at the bottom of slabs figured as simple supported, and at the top and bottom of slabs figured as continuous or partially continuous over the supports. Longitudinal reinforcement ½ in. round or square bars spaced two feet centers.

	Concrete		Weight			Spa	acing of B	ars in Inch	es.		
Total Thick-	Outside Center of Steel,	Steel per Foot Width,	of Slab, Lb, per		Rot	and.			Squ	are.	
ness, In.	In.	Sq. In.	Sq. Ft.	∄ In.	½ In.	5 In.	3 In.	3 In.	1 In.	§ In.	₹ In.
5 5 5 6 6 6 6	I I I	0.370 0.416 0.462 0.508	63 69 75 81	3 ½ 3 ½ 2 ½ 2 ½ 2 ½	6 ¹ / ₄ 5 ¹ / ₂ 5 4 ³ / ₄	10 9 8 7 ¹ / ₄		4 ¹ / ₂ 4 3 ³ / ₄ 3 ¹ / ₄	8 7 ¹ / ₄ 6 ¹ / ₂ 6	12½ 11¼ 10 9¼	
7 7 ¹ / ₂ 8 8 ¹ / ₂ 9	I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.554 0.578 0.624 0.670 0.716	88 94 100 106 113	2 1/4 2 1/4 2 2 2	4 ¹ / ₄ 4 3 ¹ / ₄ 3 ¹ / ₄ 3 ¹ / ₄	$ \begin{array}{c} 6\frac{3}{4} \\ 6\frac{1}{2} \\ 6 \\ 5\frac{1}{4} \end{array} $	8 7½	3 3 2 ³ / ₄ 2 ¹ / ₂	51343413 4413444444444444444444444444444	8½ 8 7½ 7 6½	10 9½
9½ 10 11 12	I \frac{1}{4} I \frac{1}{4} I \frac{1}{4} I \frac{1}{4}	0.762 0.809 0.901 0.993	119 125 138 150		3 23 23 23	$ \begin{array}{c} 4\frac{3}{4} \\ 4\frac{1}{2} \\ 4 \\ 3\frac{3}{4} \end{array} $	7 6½ 6 5¼		4 3 ³ / ₄ 3 ¹ / ₄ 3	6 5 ³ / ₄ 5 ³ / ₄ 4 ³ / ₄	9 8½ 7½ 6¾

Interpolate for intermediate slabs.

The Illinois Highway Commission for stringer spacings of about 2½ ft. uses a concrete subfloor 4 in. thick, with a 4 in. concrete wearing surface, or a 3 in. creosoted timber block wearing surface. The concrete sub-floor, 4 in. thick, is reinforced on the under side with $\frac{1}{2}$ in. square bars, spaced 6 in, centers and centers I in, above lower edge. Transverse reinforcement consists of in. square bars spaced 12 in. centers. The concrete is specified as I-2-3½ mix, and is designed for a stress of 800 lb. per sq. in.

The West Virginia Highway Commission specifies 1-2-4 concrete and a minimum thickness

of slab of 5 in. to the center of the tension reinforcement.

The Ohio Highway Commission specifies concrete slabs for different stringer spacings as follows: 5 in. slab for 2 ft. spacing; 6 in. slab for 3 ft. spacing; 6 in. slab for 4 ft. spacing.

Specifications for highway bridges of the state of Nebraska specify slabs made of concrete of a 1-2-4 mix, 6 in. thick reinforced with \frac{1}{2} in. round bars spaced 6 in. centers. The bottom of the concrete to be I inch below top of joists.

The standard reinforced concrete floor used by the Michigan Highway Commission is shown in Fig. 8. The slab is $6\frac{1}{2}$ in. thick at the center and 6 in. thick at the curb. The details of the floor are shown in the cut.

Buckle Plates.—Buckle plates are made by "dishing" flat plates as in Table 55, Part II. The width of the buckle W or length L, varies from 2 ft. 6 in. to 5 ft. 6 in. The buckles may be turned with the greater dimension in either dimension of the plate. Several buckles may be put in one plate, all of which must be of the same size and be symmetrically placed. Buckle plates are made \(\frac{1}{4}\) in., \(\frac{5}{16}\) in., \(\frac{3}{6}\) in. and \(\frac{7}{16}\) in. thick. Buckle plates should be firmly bolted or riveted around the edges with a maximum spacing of 6 inches, and should be supported transversely between the buckles. The process of buckling distorts the plates and an extra width should be ordered, and the plate should be trimmed after the process is complete. The buckle plates are usually supported on the tops of the stringers, but may be fastened to the bottoms of the stringers. The space above the buckles is filled with concrete which carries the wearing surface. Buckle plates are now seldom used except for special floors and heavy floors where the weight of a reinforced concrete floor would be too great, or where it is necessary to cut down the clearance.

Plank Floors.—As long as an excellent grade of timber was available and the concentrated loads were not excessive, timber floors were quite satisfactory when properly constructed. Plank floors should be of white oak, long leaf yellow pine or similar timber, laid transversely. Where two layers of plank are used the lower layer is laid diagonally. Planks should be from 8 in. to 12 in. wide and not less than 3 in. thick. To carry modern auto trucks the plank should have a minimum thickness in inches of three halves the spacing of the stringers in feet. Planks should

Fig. 8. Reinforced Concrete Floor, Michigan Highway Commission.

be laid from $\frac{1}{4}$ in. to $\frac{1}{2}$ in. apart so that water will not be retained, but will run through and will give the planks an opportunity to dry out. Where more than one layer of planks is used a liberal coating of coal tar to the upper side of the lower planks and to the lower side of the upper planks will materially prolong the life of the floor. The timber in floors made of more than one layer of planks should be creosoted. Each plank should be solidly spiked to each joist with spikes having a length not less than twice the thickness of the plank, or 6-in. spikes for 3-in. plank and 8-in. spikes for 4-in. plank. Where steel joists are used, spiking strips about 3 in. by 8 in. are bolted to the tops of all joists, or spiking strips 4 in. by 6 in. are bolted to the sides of three lines of joists

under each plank length. When the latter method is used the floor planks are fastened to the intermediate joists by bending spikes, driven through the floor plank, around the upper flanges of the joist. For specifications for plank floors, see the author's "General Specifications for Steel Highway Bridges."

The thickness of plank for different loadings and spans calculated for the allowable stresses required by the author's specifications are given in Table V.

Laminated Timber Floor.—Highway bridge floors are sometimes made by placing 2 in. by 4 in., 2 in. by 6 in., or 3 in. by 8 in. timbers on edge and spiking them together. A waterproof wearing surface is placed on top of the laminated base. The safe spans for a laminated timber floor may be taken the same as for planks 12 inches wide.

The Oregon Highway Commission uses laminated wood floors made of 3 in. by 8 in. timbers placed on edge and spiked together at intervals of not less than 18 in. "The timbers shall preferably be long enough to extend the full width of the roadway, and in no case shall more than two lengths be used in the width of roadway. Every fifth timber shall project \(\frac{1}{2} \) in. above the intervening four pieces, to furnish a grip for the waterproof wearing surface."

A laminated floor made of 2 in. by 4 in. pine timbers placed on edge and spiked together was used for reflooring 23d Street Bridge, Denver, Colorado. The laminated timber base is covered

with an asphalt paving 11 inches thick.

TABLE V.

THICKNESS OF 12-INCH FLOOR PLANK.

For 8-inch plank add 23 per cent to the thickness of plank.

Thickness in Inches, Actual Size, No Impact.

Spacing of Joists, In.	10-Ton Auto Truck.	12-Ton Auto Truck.	15-Ton Auto Truck.	20-Ton Auto Truck.
12 15	2 2 3/8	$\frac{2}{2^{\frac{1}{2}}}$	2 2 ¹ / ₂	2 2 5 8
18	$2\frac{3}{4}$	2 7 8	3	3 8
2I 24 27	3 3 1/4 3 1/2	3 14 3 3 3 3 3 3 3 4	3 3 4 4	$3\frac{5}{8}$ 4 $4\frac{1}{2}$
30 33 36	3 3/4 4 4 1/4	4 . 4 ¹ / ₄ 4 ¹ / ₂	4 days or -18	4 ⁷ / ₈ 5 ¹ / ₄ 5 ¹ / ₂

Allowable Stresses.—Bending stress, 1,500 lb. per sq. in.; bearing across fiber, 400 lb. per sq. in. Minimum thickness of plank allowed by Ketchum's specifications is 3 in.; maximum spacing of joists is 30 in.

Creosoted Timber Floor.—Creosoted timber may be used as a sub-floor for a creosoted timber block wearing surface, for a bituminous wearing surface, or may carry a gravel or earth fill, or may have no wearing surface.

Specifications for Creosoted Timber.—Timber used for all creosoted floor timbers except blocks shall be first-class oak, long-leaf yellow pine or Oregon fir. It shall be cut from live trees and shall be straight grained, free from shakes, large or loose knots, decayed wood, worm holes or other defects that will impair its strength or durability. It shall be sawed straight and true and shall be full size. All timber shall be impregnated with at least 12 lb. of creosote oil per cubic foot of timber. The creosote oil shall be a pure coal-tar product free from any adulteration. It shall be free from any tar or any petroleum oil or petroleum residue. The specific gravity at 100° F. shall be at least 1.03, but not more than 1.07. The creosote oil shall comply with the specifications of the American Railway Engineering Association for creosote oil. The timber shall be impregnated with creosote oil by the full cell process. The details of the treatment shall comply with the specifications of the American Railway Engineering Association for the treatment of ties with creosote oil.

The timbers for the sub-floor shall be surfaced on one side and one edge, and shall not vary more than $\frac{1}{16}$ in. from the specified thickness. The timbers shall be laid with the surfaced side down with tight joints, and shall be fastened to the outside spiking strips with two 6-in. lag screws at each end of each plank, and to the intermediate stringers with two spikes in each stringer, the length of the spikes to be at least twice the thickness of the floor planks. The fellow guard shall be bolted to the stringers with $\frac{5}{6}$ -in. bolts spaced not more than 5 ft. centers.

WEARING SURFACES FOR HIGHWAY BRIDGE FLOORS.—The wearing surface of a highway bridge floor should satisfy the usual conditions for a pavement and in addition should not have an excessive weight; as an increase in dead load on the bridge increases the necessary amount of steel in the floor supports and the trusses and increases the total cost. The most common wearing surfaces will be briefly described.

Concrete.—A concrete wearing surface is laid on top of the concrete slab by the Illinois Highway Commission as follows:—The wearing surface shall have a thickness of not less than 4 inches. The lower 2 in. of the wearing surface shall be made of concrete mixed in the proportions of one part Portland cement, 2 parts clean sand and 4 parts clean gravel or broken stone that will pass a 1½-in. ring. The concrete shall be thoroughly mixed in a batch mixer to a jelly-like consistency and shall be placed immediately on the sub-floor slab. Upon this concrete layer shall be immediately laid a 2-in. layer of mortar made by mixing one part Portland cement and 2 parts of clean, coarse sand. The mortar shall be mixed to a jelly-like consistency in a batch mixer and shall be immediately placed upon the freshly laid concrete. Before the mortar has begun to set it shall be finished off with a wood float, and before it has hardened it shall be roughened by brushing with a stiff vegetable brush or broom.

The concrete slab and the concrete wearing surface are commonly laid in one operation,

the wearing surface being finished up as for a concrete pavement.

Creosoted Timber Blocks.—The blocks shall be made of prime sound long-leaf yellow pine or Oregon fir and shall contain no loose knots, worm holes or other defects, and shall be well manufactured. No wood averaging less than 6 rings to the inch, measured radially from the center of the heart shall be used. The blocks shall have a depth as specified, but the depth shall not be less than 3 in. The blocks shall be from 6 to 10. in. long. The width shall be from 3 to 4 in., but the blocks in any contract shall have the same width. A variation of $\frac{1}{16}$ in. in depth and $\frac{1}{8}$ inch in width will be permitted. The width shall be greater or less then the depth by not less than $\frac{1}{4}$ in. The blocks shall be impregnated with creosote oil by the full cell process. The creosote oil and the method of creosoting timber blocks shall be the same as specified for creosoted timber. All creosoted timber blocks shall contain not less than 16 lb. of creosote oil per cubic foot of timber.

Laying Creosoted Timber Blocks.—When the creosoted timber blocks are laid on a creosoted timber base, a layer of tar paper shall be laid on the timber base. When creosoted timber blocks are laid on a concrete floor slab, a layer of dry cement mortar made by mixing dry one part of Portland cement and four parts of clean dry sand shall be spread on the dry floor slab. The cement cushion shall be rolled to a thickness of $\frac{1}{2}$ in. As the blocks are laid on the concrete slab the sand and cement shall be moistened by sprinkling and the blocks shall be laid before the cement has The blocks shall be laid at right angles to the length of the bridge in parallel had time to set. lines, with the grain vertical. The blocks shall break joints at least 3 in. Two lines of blocks shall be laid next to the curb with the long dimension of the block parallel to the bridge, and the remainder of the blocks shall be laid at right angles to those blocks. The blocks shall be laid with open joints, \(\frac{1}{6}\)-in. open joints transversely, \(\frac{1}{4}\)-in. open joints longitudinally. Expansion joints not less than I in. thick the full depth of the block shall be provided along each curb, and transverse joints not less than \frac{1}{2} in. thick shall be provided every 50 ft. in length of the bridge. These joints shall be kept closed until the blocks are all laid, and the space is then to be filled with a bituminous filler. After the blocks have been laid they shall be tamped or rolled to firm bearing. All defective, broken, damaged or displaced blocks shall be removed and replaced with sound blocks. All joints and expansion joints shall then be filled to a depth of two-thirds the depth of the block with a satisfactory bituminous filler. The filler shall not be brittle at 0° F, nor flow at 120° F. filler shall be applied at a temperature of not less than 300° F. After the first application has set the joints shall be filled to the proper height with a second coat. Joints shall be filled only in dry weather, when the temperature is not less than 50° F. Before the second coat has hardened a layer of sand \(\frac{1}{4}\) in, thick shall be spread on the surface and shall be swept into the joints.

Bituminous Wearing Surface Floors.—Bituminous wearing surface floors may be laid on a creosoted timber sub-floor or on a concrete sub-floor.

Bituminous Wearing Surface on Timber Sub-Floor.—The bituminous wearing surface may be put on hot by the standard method, or by a cold process. The specifications adopted in 1917 by the Illinois Highway Commission are as follows:

Bituminous Wearing Surface-Hot Penetration Method. Illinois Highway Commission.

Asphalt.—The asphalt used for bituminous wearing surface shall conform to the following requirements: Asphalt shall have a specific gravity at 25° C. of not less than 0.97 nor more than unity. It shall be soluble in cold carbon disulphide to the extent of at least 98 per cent. Of the total bitumen, not less than 22 per cent nor more than 30 per cent shall be insoluble in 86° B. naphtha. When 20 grams (in a tin dish 2½ in. in diameter and ¾ in. deep with vertical sides) are maintained at a temperature of 163° C. for 5 hours in a N. Y. testing laboratory oven, the evaporation loss shall not exceed 2 per cent and the penetration shall not have been decreased more than The fixed carbon shall not exceed 16 per cent by weight. The penetration as determined with the Dow machine using a No. 2 needle, 100 g. weight, 5 seconds time, and a temperature of 25° C. shall be not less than 30 nor more than 50. The asphalt shall contain not to exceed 6 per cent by weight of paraffine scale.

Aggregate.—The aggregate shall consist of screened gravel, which shall have been approved by the engineer, dry, free from dust, dirt and clay, and graded in size from $\frac{3}{8}$ in. to $\frac{3}{4}$ in.

Cleaning Sub-Planking.—Before placing the wearing surface, the sub-planking shall be thoroughly cleaned from all foreign material and the cracks shall be filled and the plank covered to a depth of approximately \(\frac{1}{8} \) in. with asphalt of the character herein specified, which shall be applied at a temperature of not less than 400° F. The sub-planking shall be dry when the asphalt is applied.

Placing Wearing Surface.—The gravel shall be spread on the asphalt covering while the same

is hot and in a quantity which will just cover the asphalt. The thickness must not exceed that

which will be formed by a single layer of the gravel pebbles.

Upon the material thus spread, there shall be poured hot asphalt until the interstices are all

filled, the asphalt being at a temperature of not less than 400° F.

Upon the layer of asphalt thus poured there shall be spread a second layer of gravel which shall not exceed the thickness of a single layer of pebbles, but which must be spread in sufficient quantity to cover completely the layer of asphalt.

Upon the layer of gravel thus spread there shall be poured hot asphalt until all the interstices

are filled, the asphalt having a temperature of not less than 400° F.

Finish.—The surface shall then be covered with a layer of pebbles just sufficient to cover the asphalt, the pebbles to be well rolled or tamped into the asphalt and the surface finally covered with coarse sand sufficient to take up any free asphalt. After the surface has stood for one day, it may be opened to traffic.

Bituminous Wearing Surface-Cold Mixing Method, using an Asphalt Emulsion. Illinois

Highway Commission.

As phalt Emulsion.—The emulsion shall consist of asphalt, water and fatty or resin soap thoroughly emulsified. It shall conform to the following requirements:

Total Bitumen.—The total bitumen shall be considered as being 100 minus the sum of the percentages of water, of fatty or resin acids, of organic matter insoluble in carbon disulphide other than fatty or resin acids from the soap, or mineral matter (ash), and of ammonia.

For percentages of water, fatty or resin acids, organic matter insoluble in carbon disulphide, mineral matter (ash), and ammonia, see United States Department of Agriculture Bulletin 314,

Specific Gravity.—Standardized pycnometers, United States Department of Agriculture Bulletin 314, p. 4.

Penetration.—A. S. T. M. Stand. Test D 5-16.

Aggregate.—The aggregate shall consist of crushed stone chips uniformly graded from \(\frac{3}{4}\) in. down to dust with all dust removed, to which shall be added sufficient sand to fill all remaining voids, but not to exceed 20 per cent of the volume of the aggregate.

Cleaning Sub-Planking.—Before placing the wearing surface, the sub-planking shall be thoroughly cleaned from all foreign material and all cracks shall be filled with wood strips or oakum.

Mixing Materials.—The aggregate and the asphalt emulsion shall be mixed cold in the proportions of I gal. of emulsion to I cu. ft. of aggregate. To facilitate mixing, water to the extent of 20 per cent may be added to the emulsion. The proportions given above for mixing the aggregate and the emulsion are based on the undiluted emulsion. The mixing shall be done on a tight mixing board or in a batch concrete mixer, and shall continue until all particles of the aggregate are thoroughly coated.

Placing Wearing Surface.—After mixing, the material shall be spread upon the roadway in

sufficient quantity to provide a thickness of \{\frac{1}{4}} in., after rolling or tamping.

Finish.—After the material has been rolled or tamped smooth and to a uniform thickness of a in., the surface shall be given a paint coat of the emulsion applied at the rate of a gal. per sq. yd., and then shall be covered with coarse sand sufficient to take up any free asphalt and to fill all voids in the surface. After the surface has stood for one day, it may be opened to traffic.

Bituminous Pavement on Concrete.—A bituminous wearing surface may be laid as on the creosoted plank sub-floor, or the wearing surface may be laid according to the following standard method. The concrete shall be dry and thoroughly clean. A bituminous wearing surface two inches thick is applied as follows: The aggregate consists of broken stone or gravel passing a one-inch screen with the dust screened out to which is added sand equal to about one-quarter to one-half the volume of the stone. The aggregates shall be heated and mixed with the bituminous material in a mechanical mixer or by hand with hot shovels. The asphalt shall be mixed not less than 20 gallons to the cubic yard of aggregate at a temperature of 350° to 400° F. The mixture shall be applied hot to the concrete surface and shall be raked with hot hoes or rakes and is rolled with a roller weighing not less than 5 tons. After the surface has been rolled a layer of hot asphalt shall be applied and a layer of coarse sand rolled into hot asphalt.

Examples of Highway Bridge Floors.—The following examples of highway bridge floors

specified by different highway commissions are of interest.

The Illinois Highway Commission uses the following standard floors: (1) A reinforced concrete sub-floor 4 in. thick, and a concrete wearing surface 4 in. thick, weight 100 lb. per sq. ft.; (2) a reinforced concrete sub-floor 4 in. thick and a croesoted timber block wearing surface 3 in. thick, weight 65 lb. per sq. ft.; (3) a croesoted plank sub-floor 3 in. thick and a wearing surface of croesoted timber blocks 3 in. thick, weight 32 lb. per sq. ft.; and (4) a croesoted timber ship lap floor 3 in. thick and a wearing surface of croesoted timber blocks 3 in. thick, weight 26 lb. per sq. ft.

The Michigan Highway Commission uses the following surface treatment on concrete floor slabs. The surface of the concrete is thoroughly cleaned and $\frac{1}{3}$ of a gallon per sq. yd. of coal tar heated to a temperature of 250° to 350° F. is spread over the slab. While the tar is hot the surface

is evenly covered with a layer ½ in. thick of clean, sharp, coarse sand.

The Wisconsin Highway Commission does not specify a wearing coat on top of concrete floor

slabs.

The Iowa Highway Commission uses either a 3 in. fill of gravel or a creosoted block floor 3 in. thick. Concrete slabs are covered with a bituminous coating made by applying $\frac{1}{3}$ of a gallon per sq. yd. of hot tar to the clean dry slab. A layer of coarse dry sand is heated and sifted on top of the tar.

Cost of Floors.—The costs of highway bridge floors were estimated by Mr. Clifford Older, bridge engineer, Illinois Highway Commission in 1915 as follows: Concrete in sub-floors including reinforcing steel, \$12.00 per cu. yd.; concrete wearing surface, 4 in. thick, \$0.90 per sq. yd.; creosoted sub-plank (12-lb. treatment) in place, \$70 per thousand feet B. M.; creosoted blocks 3 in. thick, in place, \$1.80 per sq. yd.; bituminous gravel wearing surface, \$\frac{3}{4}\$ in. thick, \$0.60 per sq. yd. The weights and costs of the Illinois Highway Commission standard floors were as follows: concrete sub-floor 4 in. thick and concrete wearing surface 4 in. thick, weighs 100 lb. per sq. ft., and costs \$2.95 per sq. yd.; concrete sub-floor 4 in. thick, and creosoted blocks 3 in. thick, weighs 65 lb. per sq. ft., and costs \$3.25 per sq. yd.; creosoted plank sub-floor 3 in. thick, and creosoted blocks 3 in. thick, weighs 32 lb. per sq. ft., and costs \$4.10 per sq. yd.; creosoted plank \$ub-floor 3 in. thick, and bituminous wearing surface \$\frac{3}{4}\$ in. thick, weighs 26 lb. per sq. ft., and costs \$3.00 per sq. yd.

DESIGN OF STRINGERS.—Stringers or joists support the floor and in turn are supported by the floorbeams. The joists may be supported on the tops of the floorbeams or may be framed into the floorbeam by the use of connection angles. Where concrete floors are used the steel joists should either be supported on the tops of the floorbeams or if framed into the floorbeams should have the upper flanges of the beams coped so that the tops of the joists will be on the same level as the floorbeams. The loads earried by the joists are (I) the dead load which is made up of the weight of the joists, the floor slab and the wearing surface; (2) a uniform live load, or a concentrated moving load. The uniform live load and the concentrated moving loads are the same as the loads used in designing the floor slabs, but the distribution of the concentrated load is not the same.

The distribution of the moving concentrated load to the joists as specified by different highway commissions and others, and by the author have already been given.

Steel Stringers.—The sizes of steel I-beams of minimum weights required for stringers with different spacings to carry a dead load of 100 lb. per sq. ft. and a 20-ton auto truck with 30 per cent impact or a live load of 125 lb. per sq. ft. with 30 per cent impact are given in Fig. 9; and to carry a dead load of 100 lb. per sq. ft. and a 15-ton auto truck with 30 per cent impact or a live load of 100 lb. per sq. ft. with 30 per cent impact are given in Fig. 10. The sizes of steel I-beams of minimum weights required to carry a dead load of 100 lb. per sq. ft. and a 15-ton auto truck without impact or a live load of 100 lb. per sq. ft. without impact are given in Fig. 11. The steel stringers used by the Wisconsin Highway Commission to carry a 15-ton road roller without impact, and the steel stringers used by the Iowa Highway Commission to carry a 15-ton traction engine without impact are practically the same as those given in Fig. 11.

Timber Joists.—The sizes of timber stringers or joists for different spacings and spans to carry a 20-ton auto truck are given in Table VI; to carry a 15-ton auto truck in Table VII, and to carry a 10-ton auto truck in Table VIII. The timber joists were designed for the following unit stresses, to be used without impact: Allowable bending stress, 1,500 lb. per sq. in.; allowable bearing across the grain, 400 lb. per sq. in.; allowable longitudinal shear in beams, 140 lb. per sq. in. The maximum spacings of timber joists for short spans are determined by the longitudinal shear.

TABLE VI.

Spacing of Timber Stringers or Joists.

Calculated for 20-ton Auto Truck, Without Impact.

Nominal Size of		N	Iaximum Spa	cing in Feet	for Different	Spans in Fee	t.	
Joists, In.	6	8	10	12	14	16	18	20
3 × 10	0.7	0.7	0.6					
4 × 10	0.9	0.9	0.8					
3 × 12	0.8	0.8	0.8	0.7				
4 × 12	1.1	1.1	1.1	1.0				
3 × 14	1.0	1.0	1.0	1.0	0.8			
4 × 14	1.3	1.3	1.3	1.3	1.1	1.0		
6 × 14	2.0	2.0	2.0	2.0	1.7	1.5	1.3	1.2
4 × 16	1.5	1.5	1.5	1.5	1.5	1.3	1.2	1.0
6 × 16	2.2	2.2	2.2	2.2	2.2	2.0	1.7	1.5

The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists in feet divided by four feet.

Joists were designed for allowable stresses as follows: Cross-bending, 1,500 lb. per sq. in.; bearing across the grain 400 lb. per sq. in.; longitudinal shear 140 lb. per sq. in.

Spacing of joists for spans to left of heavy line are determined by longitudinal shear.

DESIGN OF FLOORBEAMS.—The floor loads may be carried to the floorbeams by means of stringers or joists, or the loads may be carried to the floorbeams directly by the floor slabs. The loads carried by the floorbeams consist of (1) the dead load which is the weight of the floor system; (2) a uniform live load; or a concentrated moving load. The uniform live loads are the same as the uniform live loads used in designing the floor slabs and stringers, but the distribution of the concentrated moving load is not the same as for either the floor slabs or the stringers. The distribution of the moving concentrated load to floorbeams as specified by different highway commissions and others, and by the author have already been given.

TABLE VII. SPACING OF TIMBER STRINGERS OR JOISTS. Calculated for 15-ton Auto Truck, Without Impact.

Nominal Size of		3	Maximum Spa	acing in Feet	for Different	Spans in Fee	t.	
Joists, In.	6	8	10	12	14	16	18	20
3 × 10	1.0	1.0	0.8			*		
4 × 10	1.3	1.3	I.I	0.9				
3 × 12	1.1	1.1	1.1	1.0				
4 × 12	1.6	1.6	1.6	1.4	1.2	1.0		
3 × 14	* I.4	1.4	1.4	1.4	1.2	1.0		
4 × 14	1.9	1.9	1.9	1.9	1.6	1.4	1.2	1.1
6 × 14	2.8	2.8	2.8	2.8	2.4	2.0	1.8	1.6
4 × 16	2.I	2. I	2.1	2. I	2.1	1.8	1.6	1.5
6 × 16	3.I	3.1	3.1	3.1	3.1	2.7	2.4	2.2

The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists in feet divided by four feet.

Joists were designed for allowable stresses as follows: Cross-bending, 1,500 lb. per sq. in.; bearing across the grain, 400 lb. per sq. in.; longitudinal shear, 140 lb. per sq. in.

Spacing of joists for spans to left of heavy line are determined by longitudinal shear.

TABLE VIII. SPACING OF TIMBER STRINGERS OR JOISTS. Calculated for 10-ton Auto Truck, Without Impact.

Nominal Size of		y	faximum Spa	acing in Feet	for Different	Spans in Fee	et.	
Joists In.	6	8	10	12	14	16	18	30,
3 × 10	1.4	1.4	1.2	1.0	0.9			
4 × 10	2.0	2.0	1.7	1.4	1.2	1.0		
g × 12	1.8	1.8	1.8	1.5	1.3	1.1	1.0	
4 × 12	2.4	2.4	2.4	2.0	1.8	1.5	1.4	1.2
3 × 14	2.0	2.0	2.0	2.0	1.8	1.5	1.4	1.2
4 × 14	2.8	2.8	2.8	2.8	2.4	2.I	1.9	1.7
6 × 14	4. I	4.1	4.1	4. I	3.5	3.1	2.8	2.5
4 × 16	3.2	3.2	3.2	3.2	3.2	2.8	2.5	2.2
6 × 16	4.7	4.7	4.7	4.7	4.7	4. I	3.6	3.3

The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists in feet divided by four feet.

Joists were designed for allowable stresses as follows: Cross-bending, 1,500 lb. per sq. in.; bear-

ing across the grain, 400 lb. per sq. in.; longitudinal shear, 140 lb. per sq. in.

Spacing of joists for spans to left of heavy line are determined by longitudinal shear.

Steel I-Beam Floorbeams.—The sizes of steel I-beams required for floorbeams for panel lengths of 10 ft. to 24 ft. and widths center to center of trusses or girders of 15 ft. to 26 ft. to carry a dead load of 100 lb. per sq. ft., and a 20-ton auto truck with 30 per cent impact, or a uniform live load of 125 lb. per sq. ft. with 30 per cent impact are given in Fig. 9; while the floorbeams required to carry a 15-ton auto truck with 30 per cent impact, or a uniform live load of 100 lb, per sq. ft. with 30 per cent impact are given in Fig. 10. It will be noted that the uniform live load controls for wide roadways or for long panels.

Fig. 9. Bending Moments in Floorbeams and Stringers for 20-ton auto truck.

(30 per cent Impact). Concrete Floor.

Fig. 10. Bending Moments in Floorbeams and Stringers for 15-ton Auto Truck.
(30 per cent Impact). Concrete Floor.

For a bridge 17 ft. center of trusses and 18 ft. panels, from Fig. 9 the required floorbeam is a 24 in. I @ 80 lb., while from Fig. 10 the required floorbeam is a 20 in. I @ 70 lb.

The sizes of steel I-beams required for floorbeams for panel lengths of 10 ft. to 24 ft., and widths center to center of trusses or girders of 15 ft. to 26 ft. to carry a dead load of 100 lb. per sq. ft. and a 15-ton auto truck without impact, or a uniform live load of 100 lb. per sq. ft. without impact are given in Fig. 11. These are practically the floorbeams required by the specifications of the Illinois, Iowa, and Wisconsin Highway Commissions. Steel stringers for the same loading are given in Fig. 11.

The bending moments for the design of built-up floorbeams may be obtained from Fig. 9, Fig. 10, or Fig. 11.

Fig. 11. Bending Moments in Floorbeams and Stringers for 15-ton Auto Truck.
(No Impact.) Concrete Floor.

CALCULATION OF STRESSES.—For the calculation of the stresses in highway bridges, see the author's "The Design of Highway Bridges," also see Chapter XVI.

ALLOWABLE STRESSES.—For allowable stresses to be used in the design of steel highway bridges, see "General Specifications for Steel Highway Bridges," printed in the last part of this chapter.

SHORT-SPAN STEEL HIGHWAY BRIDGES.—The term short-span highway bridges will be assumed to include beam, low truss and plate girder bridges.

BEAM BRIDGES.—Beam bridges are made by placing steel I-beams side by side with the ends resting on the abutments. The roadway floor may be made of planks laid transversely on the tops of the beams, or of reinforced concrete. The spacing of the beams depends upon the load to be carried and upon the thickness of the floor planks or floor slabs and varies from 2 to 4 ft. Timber joists should not be spaced more than $2\frac{1}{2}$ ft. centers. A common rule for the thickness of oak floor planks is that the plank shall have at least one and one-half inch in thickness for each foot of spacing of the joists or stringers. The outside beams should be the same size as the intermediate beams. It is commonly specified that rolled beams shall have a depth not less than $\frac{1}{10}$ the span.

FIG. 12. BEAM BRIDGES.

Standard steel beam bridges with concrete floor as designed by the Iowa Highway Commission are given in Fig. 12 and Fig. 13. The spans vary from 16 ft. to 32 ft. The details are shown in the cuts. Quantities for beam bridges with angle fence as shown in Fig. 12 are given in Table IX. A standard steel beam bridge as designed by the Wisconsin Highway Commission is shown in

Fig. 14. Data and quantities for beam spans from 10 ft. to 38 ft, are shown in Table X.

FIG. 13. BEAM BRIDGES.

The minimum sizes of I-beams for different loadings and for different spacings and spans and with a concrete and a plank floor have been calculated by the author and are given in Table XI and Table XII.

Floor planks may be spiked to spiking strips on the tops of the beams, or to spiking strips bolted on the sides of the I-beams. The floor planks are spiked to these spiking strips, and are fastened to the other beams by clinching spikes, which have been driven through the planks, around the top flanges of the beams.

The maximum span for beam bridges should be 30 ft. Riveted truss bridges or plate girders should be used for spans of 30 ft. and upwards for country bridges, and plate girders for heavy city bridges. Riveted bridges for spans of, say 40 ft., are more economical than plate girder bridges and will give fully as great a length of service if properly designed and constructed. The ends of beam bridges should always be supported on masonry abutments.

TABLE IX. ESTIMATED QUANTITIES FOR STANDARD BEAM SPANS. IOWA HIGHWAY COMMISSION.

	S	tructural Stee	el.		R	einforced Con	crete Floor.		
Span, Ft.		Roadway.		16 Ft. R	oadway.	18 Ft. R	oadway.	20 Ft. Ro	adway.
	16 Ft.	18 Ft.	20 Ft.	Concrete.	Steel.	Concrete.	Steel.	Concrete.	Steel.
16 18 20 22	lb. 3,370 4,280 4,720 6,340	lb. 3,780 4,810 5,300 7,130	lb. 3,800 4,820 5,320 7,150	cu. yd. 5.6 6.2 6.8 7.4	lb. 600 670 730 800	cu. yd. 6.3 7.0 7.6 8.3	lb. 680 750 830 900	cu. yd. 7.0 7.7 8.5 9.2	lb. 740 820 900 990
24 26 28 30 32	6,840 7,330 10,570 11,240 11,910	7,690 8,240 11,870 12,620 13,370	7,710 8,260 11,880 12,640 13,390	8.0 8.6 9.2 9.8 10.4	870 930 1,000 1,060 1,130	9.0 9.7 10.4 11.0	980 1,050 1,120 1,200 1,270	10.0 10.7 11.5 12.2	1,070 1,150 1,230 1,310 1,390

Standard angle railing for wing walls as shown in Fig. 12. Rails $\angle s \ 2^{\frac{1}{2}''} \times 2^{\frac{1}{2}''} \times 2^{\frac{1}{2}''} \times 5'-9''$. Top of rail 3'-2'' above grade. Post $\angle s \ 3'' \times 3'' \times 2^{\frac{1}{2}''} \times 4'-3''$.

Weight of rails and posts for one wing = 90 lb.

TABLE X. STEEL I-BEAM BRIDGES. WISCONSIN HIGHWAY COMMISSION. Channels on outside. Weight includes railing.

	16	Feet Roadw	ay.	18	Ft. Roadwa	y•	20	Ft. Roadwa	у.
Span, Ft.	No. Beams and Channels.	Size I-Beams, In. Lb.	Weight Structural Steel, Lb.	No. Beams and Channels.	Size I-Beams, In. Lb.	Weight Structural Steel, Lb.	No. Beams and Channels.	Size I-Beams, In, Lb,	Weight Structural Steel, Lb.
10 12 14 16 18	8 8 8 8	8—18 8—18 9—21 9—21 10—25	1,900 2,200 2,800 3,185 4,030	9 9 9 9	8—18 8—18 9—21 9—21 10—25	2,120 2,450 3,130 3,560 4,505	10 10 10	8—18 8—18 9—21 9—21 10—25	2,335 2,700 3,465 3,930 5,000
20 22 24 26 28	7 8 8 7 8	$12 - 31\frac{1}{2}$ $12 - 31\frac{1}{2}$ $12 - 31\frac{1}{2}$ $15 - 42$ $15 - 42$	4,810 6,050 6,435 8,275 10,045	8 9 9 8 9	$ \begin{array}{c} 12 - 31\frac{1}{3} \\ 12 - 31\frac{1}{2} \\ 12 - 31\frac{1}{2} \\ 15 - 42 \\ 15 - 42 \end{array} $	5,600 6,790 7,350 9,420 11,275	9 10 10 9	$12 - 31\frac{1}{2}$ $12 - 31\frac{1}{2}$ $12 - 31\frac{1}{2}$ $15 - 42$ $15 - 42$	6,285 7,545 8,160 10,570 12,510
30 32 34 36 38	8 7 7 8 8	15—42 18—55 18—55 18—55	10,715 12,050 12,825 15,530 16,350	9 8 8 9	15—42 18—55 18—55 18—55 18—55	12,025 13,930 15,760 17,570 18,405	10 9 10 10	15—42 18—55 18—55 18—55 18—55	13,350 15,750 16,685 19,615 20,655

16-ft. Rdwy. 18-ft. Rdwy. 20-ft. Rdwy.

Weight in lb. of reinforcing per lineal foot.... 48 40 Cu. yd. concrete per lineal foot..... 0.36 0.40 0.32

TABLE XI.

DEPTH IN INCHES OF I-BEAMS FOR DIFFERENT SPACINGS AND SPANS REQUIRED TO CARRY 20-TON,
15-TON AND 10-TON AUTO TRUCKS AND 30 PER CENT IMPACT. DEAD LOAD 100 LB.
PER SO. FT. MINIMUM WEIGHTS OF I-BEAMS ARE USED.

				Concrete F	oor.				
	30-1	Con Auto Tru	ick.	15-7	Γon Auto Tru	ick.	10-Ton	Auto Tru	ck.
Span, Ft.		Spacing, Ft.			Spacing, Ft.		Spacing, Ft.		
	2	3	4	2	3	4	2	3	4
10	8	10	12	7	9	10	6	8	9
12	9	10	12	8	9	10	7	8	9
14	10	12	15	9	10	12	8	9	10
14 16	10	12	15	9	12	12	8	10	12
18	12	15	15	10	12	15	9	10	12
200	12	15	15 18	10	15	15	9	12	12
22	12	15	18	12	15	15 18	10	12	15
24	15	15	18	12	15	18	10	12	15
26	15	18	18	15	15	18	12	15	15
28	15	18	20	15	15 18	18	12	15	18
30	15	18	20	15	18	20	12	15	18

The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists divided by six feet when reinforced concrete floor is used.

The outside beams to be the same as the intermediate beams.

TABLE XII.

Depth in Inches of I-Beams for Different Spacings and Spans Required to Carry 20-Ton, 15-Ton and 10-Ton Auto Trucks and 30 per cent Impact. Minimum Weights of I-Beams are Used.

				Plank Flo	or.					
	20-	Ton Auto Tr	uck.	15-	Ton Auto Tr	uck.	10-To1	Auto Tr	ack.	
Span, Ft.		Spacing, Ft.			Spacing, Ft.		Sp	acing, Ft.	t.	
	x1	2	21/2	11/2	9	21/2	x1/2	2	21/2	
10	8	9	10	7	8	9	6	7	7	
12	9	10	10	7 8 8	9	9	7	7	7 8	
14	9	10	12	8	9	10	7	8	9	
14 16	10	12	12	9	10	12	8	8	9	
18	10	12	15	9	10	12	8	9	10	
20	12	12	15	10	12	12	9	9	10	
. 22	12	15	15	10	· 12	15	9	10	12	
24	12	15	15 15 15	12	12	15 .	9	10	12	
26	15	15	18	12	15	15	10	12	12	
28	15	15	18	12	15	15	12	12	15	
30	15	18	18	12	15	18	12	12	15	

The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists divided by four feet when timber floor is used.

The outside beams to be the same as the intermediate beams.

Fig. 16. Details of 109-ft. Plate Girder Highway Bridge. (Engineering Record, May 21, 1910.)

PLATE GIRDERS.—Plate girders are frequently used for highway bridges. Where the conditions will permit deck plate girder bridges are to be preferred to through plate girder bridges for highway service. The details of plate girders when used for highway bridges are essentially the same as when used for railway bridges, which see.

Details of a steel through plate girder highway bridge as designed by the Wisconsin Highway Commission are shown in Fig. 15. Standard plans have been prepared for spans from 35 ft. to 80 ft., varying by 5-ft. intervals, and for 16-ft., 18-ft. and 20-ft. roadway. Spans of 35 ft. to 60 ft. inclusive have webs 60 in. by $\frac{6}{16}$ in.; the 65-ft. and 70-ft. spans have webs 66 in. by $\frac{1}{16}$ in.; the 75-ft. spans have a web 66 in. to 72 in. by $\frac{3}{8}$ in., while the 80-ft. spans have a web 72 in. to 78 in. by \(\frac{3}{8} \) in. For weights of plate girder bridges, see first part of this chapter.

Details of a 100-st. span through-plate girder highway bridge built over the D. L. & W. R. R. tracks in Jersey City, N. J., are given in Fig. 16. The girders were designed for a live load of 100 lb. per sq. ft. on roadway and sidewalk; while the roadway floor was designed for a live load of 100 lb. per sq. ft. and two 12,000 lb. axle loads spaced 10 ft. apart with an allowance of 25 per cent for impact. The expansion end is carried on 4-in. rollers. The concrete has a minimum thickness of 4 in. and is covered with 1½ in. of binder and 2 in. of asphalt. Each main girder weighed 112,000 lb.; and the total weight of steel in the bridge was about 403,000 lb.

LOW RIVETED TRUSS BRIDGES.—Low riveted bridges are made with either Warren or Pratt trusses, the Warren truss usually being preferred. The upper chords should be made of two angles and a plate, two channels laced, or two channels with a top cover plate and lacing on the bottom side of the member. The lower chord and the web members are made of two angles placed in the same relative positions as in the upper chords.

Details of a low riveted truss bridge with a reinforced concrete floor carried on steel stringers or joists, as designed by the Iowa Highway Commission are shown in Fig. 17. The commission has prepared standard plans for spans from 35 ft. to 85 ft. and with 16-ft. and 18-ft. roadway. Spans over 65 ft. in length have one end supported on rockers. Spans 65 ft. or less in length have one end supported on sliding plates.

Details of a low riveted truss bridge with a reinforced concrete floor carried directly on the floorbeams, as designed by the Iowa Highway Commission, are shown in Fig. 18. The commission has prepared standard plans for spans from 35 ft. to 100 ft. and with 16-ft. and 18-ft. roadway. Spans more than 65 ft. in length have one end supported on rockers. Spans 65 ft. or less in length have one end supported on sliding plates. The reinforced concrete floor slabs have a thickness of $7\frac{1}{2}$ in, for an 8-ft. span, of 8 in, for a 9-ft. span, and of $8\frac{1}{2}$ in, for a 10-ft. span. The slabs are reinforced top and bottom with $\frac{3}{4}$ in, square bars spaced 9 in, centers and $1\frac{1}{4}$ in, from face of slab. Transverse bars ½ in. sq. are spaced about 2 ft. centers with one bar over the floorbeam.

Details of a low riveted truss bridge with a reinforced concrete floor as designed by the Michigan Highway Commission are given in Fig. 19. The Commission has prepared standard plans for spans from 50 ft. to 100 ft. by 5-ft. intervals.

The riveted low truss highway bridge with an inclined upper chord shown in Fig. 20 is built by the American Bridge Company for locations requiring an artistic and serviceable bridge at a moderate cost. This bridge has been built with six panels and with spans of 90, 96 and 102 ft. The bridge in Fig. 20 has a 20-ft. roadway and was designed for a dead load of 930 lb. per lineal foot of bridge, and a live load of 2,400 lb. per lineal foot of bridge. The total weight of the steel in this bridge, exclusive of joists and fence is, approximately, 57,000 lb. The floorbeams are rolled I-beams and are riveted below the chords. The top chords are made of two channels with a top cover plate, the lower edges of the channels being fastened together with tie plates—lacing is much better practice. The bottom chord is composed of two angles, with tie plates—tie plates are all right for this member. The web members are made of 2 or 4 angles laced, as shown. Rods, not shown, are used for the lower lateral system.

Details of a low riveted truss bridge with a reinforced concrete floor as designed by the Wisconsin Highway Commission are given in Fig. 21. Standard plans have been prepared for spans from 35 ft. to 85 ft., and with 16-ft. and 18-ft. roadway. One end of all spans is carried on sliding

plates as shown.

FIG. 17. LOW TRUSS SPAN WITH STRINGERS.

Depth and Panel Length of Low Trusses.—The depths and number of panels in Iowa Highway Commission low truss bridges with joists are as follows: 35 ft. and 40 ft. span, 3 panels, 6 ft. deep; 45 ft. and 50 ft. spans, 3 panels, 6½ ft. deep; 60 ft. and 65 ft. span, 4 panels, 7 ft. deep; 70 ft. span, 5 panels, 7 ft. deep; 80 ft. and 85 ft. span, 5 panels, 8 ft. deep. For low truss bridges without joists, 35 ft. span, 4 panels, 6 ft. deep; 40 ft. span, 5 panels, 6 ft. deep; 45 ft. span, 5 panels, 6½ ft. deep; 50 ft. and 55 ft. span, 6 panels, 6½ ft. deep; 60 ft. span, 7 panels, 7 ft. deep; 65 ft. and 70 ft. span, 8 panels, 7 ft. deep; 75 ft. span, 9 panels, 7½ ft. deep; 80 ft. span, 10 panels, 8½ ft. deep; 95 ft. span, 10 panels, 9½ ft. deep; 100 ft. span, 10 panels, 10 ft. deep.

Fig. 18. Low Truss Span without Stringers.

The depths and number of panels in Wisconsin Highway Commission low truss bridges with joists are as follows: 35 ft. span, 3 panels, $4\frac{1}{2}$ ft. deep; 40 ft. span, 3 panels, 5 ft. deep; 45 ft. span, 3 panels, $5\frac{1}{4}$ ft. deep; 50 ft. span, 4 panels, $5\frac{1}{2}$ ft. deep; 55 ft. span, 4 panels, 6 ft. deep; 60 ft. span, 4 panels, $6\frac{1}{2}$ ft. deep; 65 ft. span, 5 panels, 7 ft. deep; 70 ft. span, 5 panels, $7\frac{1}{2}$ ft. deep; 75 ft. span, 5 panels, 8 ft. deep; 80 ft. span, 5 panels, 8 ft. deep; 80 ft. span, 5 panels, 9 ft. deep.

Fig. 19. Low Truss Span with Stringers.

(AMERICAN BRIDGE COMPANY.) DETAILS OF LOW TRUSS RIVETED HIGHWAY BRIDGE WITH INCLINED CHORDS. FIG. 20.

FIG. 21. LOW TRUSS STEEL HIGHWAY BRIDGE.

Fig. 23. Detail Plans of Through High Truss Span. Wisconsin Highway Commission.

HIGH TRUSS STEEL HIGHWAY BRIDGES.—Through truss bridges with spans of from 80 to 170 ft., are built with parallel chords and preferably with riveted joints. For spans of from 160 to 220 ft. bridges are usually built of the Pratt type with inclined upper chord (camel-back) trusses. Above 220 ft., bridges are usually built with the Petit type of truss. The above limits are approximate only. For long span bridges the inclined chord truss with K-bracing is rapidly taking the place of the Petit truss. High truss pin-connected bridges should never be built with less than five panels.

Examples of High Truss Highway Bridges.—Details of a high truss steel highway bridge as designed by the Wisconsin Highway Commission are shown in Fig. 22 and Fig. 23. Standard plans have been prepared for spans of 90 ft. to 150 ft., varying by 5-ft. intervals, and a roadway of 16 ft. and 18 ft. All spans have one end carried on rockers as shown. These designs have been worked out very economically by Mr. M. W. Torkelson, bridge engineer, and represent the extreme economy of design that will conform to good practice.

Details of a high truss steel highway bridge as designed by the Iowa Highway Commission are given in Fig. 24. Standard plans have been prepared for spans of 90 ft. to 150 ft. varying by 5-ft. intervals, and a roadway of 16 ft. and 18 ft. All spans have one end carried on rockers as shown. The designs are well worked out with the exception of the collision strut in the first panel,

which should be omitted.

FIG. 24. STANDARD HIGH THROUGH TRUSS SPAN.

Fig. 25. Details of a Through Riveted Highway Bridge.

Fig. 26. Details of a Through Riveted Highway Bridge.

FIG. 28. DETAILS OF A PIN-CONNECTED HIGHWAY BRIDGE.

The details of a riveted truss highway bridge for light country traffic designed by Mr. H. S. Crocker, Consulting Engineer, Denver, Colo., are given in Fig. 25 and Fig. 26. The details of a pin-connected truss highway bridge designed for country traffic are given in Fig. 27, Fig. 28 and Fig. 29. Both of these bridges represent standard practice in the design of steel highway bridges for light country traffic. For additional examples of steel highway bridges, see the author's "The Design of Highway Bridges."

Economic Depth and Panel Length of Trusses.-The economic depth and panel length of trusses is not capable of mathematical calculation. The minimum depth is determined by the required clear head room, which varies from 121 to 15 ft. Short panel lengths give heavy trusses and light floor systems; while long panels give light trusses and heavy floor systems. For ordinary conditions it is not economical to use panel lengths less than 15 ft. for short spans nor more than 25 ft. for long spans. The minimum depth for through spans is about 16 feet where the floorbeams are placed below the lower chords. To make a stiff structure, the depth should be sufficient to permit the placing of the floorbeams above the lower chords and to permit of efficient portal and sway bracing. Experience has shown that the most economical conditions occur when the angle θ , the tangent of which is the panel length divided by the depth, is about 40 degrees. The top chord points of bridges with inclined chords should be approximately on a parabola passing through the pin at the hip.

Depth and Panel Length of High Trusses .- The depths and number of panels in Iowa Highway Commission high truss riveted bridges are as follows: Pratt, riveted trusses, 90-ft. span, 5 panels, 20 ft. deep; 100-ft. and 110-ft. spans, 6 panels, 20 ft. deep; 120-ft. span, 7 panels, 20 ft. deep; 140-ft. span, 8 panels, 21 ft. deep. The depths and number of panels in Wisconsin Highway Commission high truss riveted bridges are as follows: 90-ft. and 96-ft. span, 6 panels, 18 ft. deep; 100-ft. span, 6 panels, 20 ft. deep; 105-ft. span, 7 panels, 20 ft. deep; 120-ft. span, 8 panels, 20 ft. deep; 128-ft. span, 8 panels, 21 ft. deep; 140-ft. span, 8 panels, 20 ft. deep at hip and 27 ft. deep at

center; 150-ft. span, 8 panels, 20 ft. deep at hip and 28 ft. deep at center.

The depths and number of panels in American Bridge Company's high truss bridges are as follows: Riveted and pin-connected trusses with parallel chords, 80-ft. to 90-ft. span, 5 panels, depth equal to panel length; 90- to 120-ft. span, 6 panels, depth equal to panel length; 120-ft. span to 140-ft. span, 7 panels, depth equal to panel length, 120-ft. to 168-ft. span, 8 panels, ratio of depth to panel length 1.1. For bridges with inclined chords with spans of 162 ft. to 180 ft., 9 panels, and ratios of depth to panel length of 1.0, 1.16, 1.25 and 1.29; 190-ft. to 220-ft. span, 9 panels, and ratios of depth to panel length of 1.0, 1.24, 1.28 and 1.43. For Petit trusses, 240-ft. to 276-ft. span, 12 panels, and ratios of depths to panel length of 1.0, 1.4, 1.6 and 1.7; 294-ft. to

322-ft. span, 14 panels, and ratios of depth to panel length of 1.0, 1.36, 1.60, 1.8 and 2.0.

· SHOES AND PEDESTALS.—The bridge rests on shoes or pedestals, the loads being transferred to the shoes in pin-connected bridges by means of pins, and through the riveted joints in riveted bridges. The shoes at the expansion ends of the bridge are placed on smooth sliding plates for bridges of less than, say, 65-ft. span, and on nests of rollers or rockers for spans of greater length. The action of the rollers under the expansion ends of riveted bridges will be much more satisfactory if the shoes are pin-connected to the truss the same as for pin-connected trusses. Rollers should be made with as large diameters as practicable in order to reduce the pressure on the base plate and also to reduce the resistance to movement. Experience shows that even for light bridges rollers smaller than 3 in. diameter are practically worthless. To economize space, segmental rollers, as shown in Fig. 35, Chapter IV, are often used for heavy spans.

It is usual to specify that a movement produced by a variation of 150 degrees Fahr, be provided for. The coefficient of expansion of steel is approximately 0.0000067 per degree Fahr., which makes it necessary to provide for approximately one inch of movement for each 80 ft. of

bridge span.

Where both bridge seats are of the same height, the fixed end is carried on cast iron pedestal

blocks. The blocks are usually made with recesses (honeycombed) to reduce the weight.

The Illinois, Iowa and Wisconsin Highway Commissions use rockers in the place of rollers for highway bridges. Details of rockers are shown in Fig. 17, Fig. 18, Fig. 23, and Fig. 24. The specifications of the Illinois Highway Commission contain the provision that rockers shall be made of cast iron as specified. They shall have a thickness of not less than $2\frac{1}{2}$ in. for spans of 45 ft. or less, and a thickness of 3 in. for spans exceeding 45 ft. in length, but in no case shall the unit compressive stress exceed 9.000-40 l/r lb. per sq. in. All rockers shall have bearing surfaces turned to a uniform radius and smooth surface and shall be provided with two 2-in. holes through the web to facilitate handling.

FIG. 30. STEEL FENCE FOR HIGHWAY BRIDGES.

FENCE AND HUB GUARDS.—The fence on steel bridges is commonly made of two lines of channels or two lines of angles with angle posts. Posts should not be spaced farther apart than 8 ft. to 10 ft.

A gas pipe railing with gas pipe posts is in frequent use. The posts should be spaced not more than 8 ft. apart. Details of the fence and light poles for the 20th St. Viaduct, and the fence on 23d St. Viaduct, Denver, Colo., designed by Mr. H. S. Crocker, consulting engineer, are shown in Fig. 30.

GENERAL SPECIFICATIONS FOR STEEL HIGHWAY BRIDGES.*

MILO S. KETCHUM,

M. Am. Soc. C. E.

THIRD EDITION,

1918

PART I. DESIGN.

GENERAL DESCRIPTION.

1. Classes.—Bridges under these specifications are divided into eight classes, as follows:

Class A.—For city traffic.

Class B.—For suburban or interurban traffic with heavy electric cars. Class C.—For country roads with ordinary traffic and light electric cars.

Class D1.—For country roads with heavy traffic. Class D₃.—For country roads with light traffic. Class E₁.—For heavy electric street railways only. Class E₂.—For medium electric street railways only. Class E₃.—For light electric street railways only.

2. Material.—All parts of the structure shall be of rolled steel, except the flooring, floor joists and wheel guards, when wooden floors are used. Cast iron or cast steel may be used in the machinery of movable bridges, for wheel guards, and in special cases for bed plates.

3. Types of Truss.—The following types of bridges are recommended:

Spans up to 30 ft.—Rolled beams.

Spans from 30 to 80 ft.—Riveted plate girders, or riveted low trusses for classes A, B, E1, E2 and E3; and riveted low trusses for classes C, D1 and D2.

Spans 80 to 160 ft.—Riveted or pin-connected high trusses.

Spans 160 to 200 ft.—Pin-connected trusses of the Pratt type with inclined chords.

Spans over 200 ft.—Pin-connected trusses of the Petit type or K-type.

4. Length of Span.—In calculating the stresses the length of span shall be taken as the distance between centers of end pins for pin-connected trusses, centers of end bearing plates for riveted trusses and for girders, and center to center of trusses for floorbeams.

5. Form of Trusses.—The form of truss shall preferably be as given in paragraph 3. In through trusses the end vertical suspenders and the two panels of the lower chord at each end shall be made rigid members if the wind load produces a reversal of stress in the lower chord. In

through bridges the floorbeams shall be riveted above or below the lower chord pins.

6. Lateral Bracing.—All lateral and sway bracing shall preferably, and all portal bracing must be, made of shapes capable of resisting compression as well as tension, and shall have riveted connections. Low trusses and through plate girders shall be stayed by knee braces or gusset

plates at each floorbeam.

7. Spacing of Trusses.—For bridges carrying electric cars the clear width from the center of the track shall not be less than 7 ft. at a height exceeding one foot above the track where the tracks are straight, and an equivalent distance when the tracks are curved. The distance between centers of trusses shall in no case be less than one-twentieth of the span between the centers of

end-pins or shoes, and shall preferably not be less than one-twelfth of the span.

8. Head Room.—For classes A, B, C, D₁, E₁, E₂ and E₃ the clear head room for a width of eight (8) ft. on each track, or eight (8) ft. on the center line of the bridge shall not be less than

15 ft., and for class D2 not less than 121 ft.

9. Footwalks.-Where footwalks are required, they shall generally be placed outside of the trusses and be supported on longitudinal beams resting on overhanging steel brackets.

10. Handrailing.—A strong and suitable handrailing shall be placed at each side of the bridge

and be rigidly attached to the superstructure.

11. Trestle Towers.—Trestle bents shall preferably be composed of two supporting columns, two bents forming a tower; each tower thus formed shall be thoroughly braced in both directions and have struts between the feet of the columns. The feet of the columns must be secured to an anchorage capable of resisting one and one-half times the specified wind forces (§89).

^{*} Reprinted from the author's "The Design of Highway Bridges."

Each tower shall have a sufficient base, longitudinally to be stable when standing alone. without other support than its anchorage. Tower spans for high trestles shall not be less than 30 ft.

12. Proposals.—Contractors in submitting proposals shall furnish complete stress sheets, general plans of the proposed structures, and such detail drawings as will clearly show the dimensions of all the parts, modes of construction and sectional areas.

13. Drawings.—Upon the acceptance and the execution of the contract, all working drawings

required by the engineer shall be furnished free of cost (§168).

14. Approval of Plans.—No work shall be commenced or materials ordered until the working drawings have been approved by the engineer in writing.

FLOOR SYSTEM.

15. Floorbeams.—All floorbeams shall be rolled or riveted steel girders, rigidly connected to the trusses at the panel points, or may be placed on the top of deck bridges at panel points.

Floorbeams shall preferably be square to the trusses or girders.

16. Joists and Stringers.—All joists and stringers of bridges of classes A, B, E1, E2 and E3 shall be of steel. Joists for classes C, D₁ and D₂ may be either of wood or steel as specified. Steel joists shall be securely fastened to the cross floorbeams, and steel stringers shall preferably be riveted to the webs of floorbeams by means of connection angles at least 7 in. thick.

17. End Spacers for Stringers.—Where end floorbeams cannot be used, stringers resting on masonry shall have cross-frames at their ends. These frames shall be riveted to girder or truss

shoe where practicable.

18. Wooden Joists.—Wooden floor joists shall be spaced not more than 2½ ft. centers, and shall lap by each other so as to have a full bearing on the floorbeams, and shall be separated ½ in. for free circulation of air. Their width shall not be less than 3 in., or one-fourth the depth in width. The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists in feet divided by four feet. No impact shall be considered in the design of wooden joists, planks or ties. Oak, longleaf yellow pine and Oregon fir shall be designed for a safe bending of 1,500 lb. per sq. in., bearing across the fiber of 400 lb. per sq. in., and shearing along Outside joists shall be designed for the same live loads as the interthe grain of 140 lb. per sq. in.

mediate joists.

19. Steel Joists.—Steel I-beams when used as joists shall have a depth of not less than onethirtieth of the span, and one-twentieth of the span when used as track stringers. The proportion of the concentrated live load carried by one joist shall be taken equal to the spacing of the joists in feet divided by four feet when timber flooring is used, and divided by six feet when a reinforced concrete or other rigid floor is used. Outside joists shall be designed for the same live loads as the

intermediate joists.

20. Floor Plank.—For single thickness the roadway planks shall not be less than 3 in. thick nor less than one-eighth of the distance between centers of joists, and shall be laid transversely with $\frac{1}{4}$ in. openings and securely spiked to each joist. All plank shall be laid with heart side down. When an additional wearing surface is required it shall be $1\frac{1}{2}$ in. thick, and the lower planks of a minimum thickness of 3 in. shall be laid diagonally with $\frac{1}{2}$ in. openings.

21. Footwalk plank shall be not less than 2 in. thick nor more than 6 in. wide, spaced with

½ in. openings.

All plank shall be laid with heart side down, shall have full and even bearing on and be firmly

attached to the joists.

22. Wheel Guards.—Wheel guards of a cross-section of not less than 6 in. by 4 in. shall be provided on each side of the roadway. They shall be spliced with half-and-half joints with 6 in. lap, and shall be bolted to the stringers or joist with $\frac{5}{5}$ in. bolts, spaced not to exceed 5 ft. apart. 23. Solid Floor.—For bridges of classes A and B a solid floor, consisting of wooden blocks,

brick, stone, asphalt, etc., on a concrete bed is recommended. For this case the floor shall consist of buckle plates or corrugated sections or reinforced concrete slabs, and a waterproof concrete (bitumen or cement) bed not less than 3 in. thick for the roadway and 2 in. thick for the footwalk, over the highest point to be covered, not counting rivet or bolt heads. The floor shall be laid with a slope of at least one inch in 10 ft.

Reinforced Concrete Floor.—See specifications for reinforced concrete floor on page 112 h,

and distribution of loads on page 112 f.

24. Buckle plates shall not be less than $\frac{1}{16}$ in. thick for the roadway and $\frac{1}{4}$ in. thick for the

The crown of the plates shall not be less than 2 in.

25. For solid floor the curb holding the paving and acting as a wheel guard on each side of the roadway shall be of stone or steel projecting about 6 in. above the finished paving at the gutter. The curb shall be so arranged that it can be removed and replaced when worn or injured. shall also be a metal edging strip on each side of the footwalk to protect and hold the paving in place.

26. Drainage.—Provision shall be made for drainage clear of all parts of the metal work.

27. Floor of Classes E1, E2, and E3.—The floors of classes E1, E2, and E3 shall consist of cross-ties not less than 6 in. by 6 in. for stringers spaced 61 ft.; and larger for greater spacings, they shall be spaced with openings not exceeding 6 in., shall be notched down 1 in., and secured to the supporting stringers by \(\frac{1}{4} \) in. bolts spaced not over 6 ft. apart. The ties shall extend the full width of the bridge on deck bridges, and every other tie shall extend the full width in through bridges to carry the footwalk. Ties shall be designed for the same allowable unit stresses as

There shall be guard timbers not less than 6 in. by 6 in., or 5 in. by 7 in., on each side of each track, with their inner faces not less than 9 in. from the center of the rail. They shall be notched I in. over every tie, and shall be spliced over a tie with a half-and-half joint with 6 in. lap. Each guard timber shall be fastened to every third tie and at each splice with a ? in. bolt. All heads or nuts on the upper faces of ties or guards shall be countersunk below the surface of

the wood.

PART II. LOADS.

28. Dead Load.—The dead load will consist of (1) the weight of the metal, and (2) the weight of the timber in the floor, or of the material other than steel. In determining the dead load the weight of oak or other hard wood shall be taken at $4\frac{1}{2}$ lb. per foot board measure, and the weight of pine or other soft woods at 3½ lb. per foot; the weight of asphalt at 130 lb., of concrete and paving brick at 150 lb., and of granite at 160 lb per cu. ft.

The rails, fastenings, splices and guard timbers of street railway tracks shall be assumed to

weigh not less than 100 lb. per lineal foot of track.

29. Live Load.—The bridges of different classes shall be designed to carry, in addition to their own weight and that of the floor, a moving load, either uniform or concentrated, or both, as

specified below, placed so as to give the greatest stress in each member.

For City Traffic.—For the floor and its supports, on any part of the roadway or on each of the street car tracks, a concentrated load of 24 tons on two axles 10 ft. centers and 5 ft. gage (assumed to occupy 12 ft. in width for a single line or 22 ft. for a double line), and upon the remaining portion of the floor, a load of 125 lb. per sq. ft. and a concentrated load as for class Sidewalks a load of 100 lb. per sq. ft.

Loads for the trusses as per Table I.

Class B. For Suburban or Interurban Traffic.-For the floor and its supports, on any part of the roadway, a concentrated load of 12 tons on two axles 10-ft. centers and 5-ft. gage (assumed to occupy a width of 12 ft.), or on each street car track a concentrated load of 24 tons on two axles 10-ft. centers; and on the remaining portion of the floor, a load of 125 lb. per sq. ft. and a concentrated load as for class D₁. Sidewalks a load of 100 lb. per sq. ft.

Loads for the trusses as per Table I.

Class C. For Highway and Light Interurban Traffic.—For the floor and its supports, on any part of the roadway, a concentrated load of 12 tons on two axles 10-ft. centers and 5-ft. gage (assumed to occupy a width of 12 ft.), or on each street car track c concentrated load of 18 tons on two axles 10-ft. centers; and upon the remaining portion of the floor, a load of 125 lb. per sq. ft. and a concentrated load as for class D₁. Sidewalks a load of 100 lb. per sq. ft.

Loads for the trusses as per Table I.

Heavy Country Bridges.—For the floor and its supports, a load of 125 lb. per sq.ft. of total floor surface or a 20-ton motor truck with axles spaced 12 ft. and wheels with a 6-ft. gage, with 14 tons on rear axle and 6 tons on front axle. The truck to occupy a space 10 ft. wide and 32 ft. long. The rear wheels to have a width of 20 in.

Loads for the trusses as per Table I. No bridge, however, to be designed for a load of less

than 1,000 lb. per lineal foot of bridge.

Class D_2 . Oridinary Country Bridges.—For the floor and its supports, a load of 100 lb. per sq. ft. of total floor surface or a 15-ton motor truck with axles spaced 10 ft. and wheels with a 6-ft. gage, and occupying a space 10 ft. wide and 30 ft. long, with 10 tons on rear axle and 5 tons on front axle, and with rear wheels 15 in. wide.

Loads for the trusses as per Table I. No bridge, however, to be designed for a load of less

than 800 lb. per lineal foot of bridge.

Class E₁. For Heavy Electric Railways Only.—On each track a series of concentrations consisting of two pairs of trucks, the axles of the pairs being spaced 5 ft. centers, while the distance between centers of interior axles is 10 ft., the pairs of trucks being spaced 15 ft. centers. The axles are loaded with a load of 40,000 lb., making a total of 160,000 lb. Or a uniform load of 6,000 lb. per lineal foot for all spans up to 50 ft., reduced to 4,500 lb. per lineal foot for spans of 200 ft. and over, and proportionately for intermediate spans.

Class E2. For Medium Electric Railways Only.—On each track a series of concentrations consisting of two pairs of trucks, the axles of the pairs being spaced 5-ft. centers, while the distance between centers of interior axles is 10 ft., the pairs of trucks being spaced 15-ft. centers. The axles are loaded with a load of 25,000 lb., making a total load of 100,000 lb. Or a uniform load of 3,500 lb. per lineal foot for all spans up to 50 ft., reduced to 2,000 lb. per lineal foot for spans of 200 ft. and over, and proportionately for intermediate spans.

For Light Electric Railways Only.—On each track a series of concentrations Class E₈. consisting of two pairs of trucks, the axles of the pairs being spaced 5-ft. centers, while the distance between centers of interior axles is 10 ft., the pairs of trucks being spaced 15-ft. centers. axles are loaded with a load of 20,000 lb. making a total load of 80,000 lb. Or a uniform load of 2,500 lb. per lineal foot for all spans up to 50 ft., reduced to 1,500 lb. per lineal foot for spans of

200 ft. and over, and proportionately for intermediate spans.

TABLE I. LIVE LOADS FOR THE TRUSSES

*	Clas	s A.	Clas	s B.	Clas	s C.	Class D ₁ .	Class D ₂ .
Span in Feet.	Pounds per Lineal Foot of Each Car Track.	Pounds per Square Foot of Remaining Floor Surface.	Pounds per Lineal Foot of Each Car Track,	Pounds per Square Foot of Remaining Floor Surface.	Pounds per Lineal Foot of Each Car Track,	Pounds per Square Foot of Remaining Floor Surface.	Pounds perl Square Foot of Floor Surface,	Pounds per Square Foot of Floor Surface.
Up to 30	1,800 1,800 1,440	125 105 88	1,800 1,800 1,440	125 85 68	1,800 1,200 1,080	125 85 68	125 85 68	100 75 60

Loads for intermediate spans to be proportional.

30. Wind Loads.—The lateral bracing in the unloaded chords of truss bridges shall be designed for a lateral wind load of 150 lb. per lineal foot of bridge, considered as a moving load. The lateral bracing in the loaded chords of truss bridges shall be designed for a lateral wind load of 300 lb. per lineal foot of bridge, considered as a moving load. For spans over 300 ft. each of the above loadings shall be increased 10 lb. for each 20 ft. increase in span. In highway bridges not carrying electric cars the end-posts of through and deck bridges and the intermediate posts of through bridges shall be designed for a combination (1) of the dead load stresses and the total live load stresses; or (2) of the dead load stresses, the live load stresses, the impact and centrifugal stresses, and one-half the total wind load stresses. In low truss bridges and plate girders not carrying electric cars the wind load on the unloaded chord may be omitted and the lateral bracing be designed for a lateral wind load of 300 lb. per lineal foot treated as a moving load. In bridges with sway bracing one-half of the wind load may be assumed to pass to the lower chord through the sway bracing.

31. In trestle towers the bracing and columns shall be designed to resist the following lateral forces, in addition to the stresses due to dead and live loads: The trusses loaded or unloaded, the lateral pressures specified above; and a lateral pressure of 100 lb. for each vertical lineal foot of

trestle bent.

32. Temperature.—Stresses due to a variation in temperature of 150 degrees shall be provided for (§81).

33. Centrifugal Force of Train.—Structures located on curves shall be designed for the centrifugal force of the live load acting at the top of the rail. The centrifugal force shall be calculated by the following formula: $C = (0.043 - 0.003 D) W \cdot D$; where C = centrifugal force in lb.; W = weight of train in lb.; and D = degree of curvature.

34. Longitudinal Forces.—The stresses produced in the bracing of the trestle towers, in any members of the trusses, or in the attachments of the girders or trusses to their bearings, by suddenly stopping the maximum electric car trains on any part of the work must be provided for; the coefficient of friction of the wheels on the rails being assumed as 0.20.

35. All parts shall be so designed that the stresses coming upon them can be accurately calculated.

PART III. UNIT STRESSES AND PROPORTION OF PARTS.

36. Unit Stresses.—All parts of the structure shall be proportioned so that the sum of the maximum stresses shall not exceed the following amounts in lb. per sq. in., except as modified by \$45 and \$48.

Impact.—The dynamic increment of the live load stress shall be added to the maximum live

load stresses as follows:

For the floor and its supports including floor slabs, floor joist, floorbeams and hangers, 30

per cent.

For all truss members other than the floor and its supports, the impact increment shall be I = 100/(L + 300), where $L = \text{length of span for simple highway spans (for trestle bents, towers, movable bridges, arch and cantilever bridges, and for bridges carrying electric trains, <math>L$ shall be taken as the loaded length of the bridge in feet producing maximum stress in the member).

Impact shall not be added to the stresses produced by longitudinal, centrifugal and lateral or

wind forces.

radius of gyration in inches.

No compression member, however, shall have a length exceeding 100 times its least radius of gyration for main members or 120 times for laterals for classes A, B, C, E_1 , E_2 , and E_3 ; or 125 times its least radius of gyration for main members or 150 times for laterals for classes D_1 and D_2 .

Rivets shall not be used in direct tension, except for lateral bracing where unavoidable; in which case the value for direct tension on the rivet shall be taken the same as for single shear.

42. Alternate Stresses.—Members subject to alternate stresses of tension and compression shall be proportioned for the stresses giving the largest section. If the alternate stresses occur in succession during the passage of one train, as in stiff counters, each stress shall be increased by 50 per cent of the smaller. The connections shall in all cases be proportioned for the sum of the stresses.

43. Angles in Tension.—When single-angle members subject to direct tension are fastened by one leg, only seventy-five per cent of the net area shall be considered effective. Angles with lug

angle connections shall not be considered as fastened by both legs.

44. Net Section.—In members subject to tensile stresses full allowance shall be made for reduction of section by rivet-holes, screw-threads, etc. In calculating net area the rivet-holes shall be taken as having a diameter \(\frac{1}{8} \) in greater than the normal size of rivet.

45. Long Span Bridges.—For long span bridges, where the ratio of the length to width of span is such that it makes the top chords acting as a whole, a longer column than the segments of

the chords, the chord shall be proportioned for the greater length.

46. Wind Stresses.—The stresses in truss members or trestle posts from assumed wind forces

need not be considered except as follows:

1. When the direct wind stresses per square inch in any member exceed 25 per cent of the stresses due to dead and live loads in the same member. The section shall then be increased until the total unit stress shall not exceed by more than 25 per cent the maximum allowable stress for dead and live loads.

2. When the wind stress alone or in combination with a possible temperature stress can

neutralize or reverse the stresses in the member.

When both direct and flexural stresses due to wind are considered 50 per cent may be added to allowable stresses for dead and live loads, provided the area thus obtained is not less than required for dead and live loads alone, or for dead, live and direct wind loads designed as in §46.

47. Combined Stresses.—Members subjected to direct and bending stresses shall be designed

so that the greatest fiber stress shall not exceed the allowable unit stress on the member.

48. Stress Due to Weight and Eccentric Loading.—If the fiber stress due to weight and eccentric loading on any member exceeds 10 per cent of the allowable unit stress on the member such excess must be considered in proportioning the member. See §46.

49. Counters.—Counters in bridges carrying electric cars shall be designed so that an increase

of the live load of 25 per cent will not increase the stress in the counters more than 25 per cent.

50. Design of Plate Girders.—Plate girders shall be proportioned either by the moment of inertia of their net section; or by assuming that the flanges are concentrated at their centers of gravity, in which case one-eighth of the gross section of the web, if properly spliced, may be used as flange section. The thickness of web plates shall be not less than 4 in., nor less than 1/160 of the unsupported distance between flange angles.

Compression Flanges.—In beams and plate girders the compression flanges shall have the same gross section as the tension flanges. Through plate girders shall have their top flanges stayed at each end of every floorbeam, or in case of solid floors, at distances not exceeding 12 ft., by knee braces or gusset plates. The stress per sq. in. in compression flange of any beam or girder shall not exceed 16,000 - 200 - l/b, when flange consists of angles only or if cover consists of flat plates, or 16,000-150 l/b if cover consists of a channel section, where l = unsupported distance

and b =width of flange.

51. Web Stiffeners.—There shall be web stiffeners, generally in pairs, over bearings, at points of concentrated loading, and at other points where the thickness of the web is less than $\frac{1}{60}$ of the unsupported distance between flange angles. The distance between stiffeners shall not exceed that given by the following formula, with a maximum limit of six feet (and not greater than the clear depth of the web): d = t (12,000 - s)/40. Where d = clear distance, between stiffeners of flange angles; t = thickness of web; s = shear

The stiffeners at ends and at points of concentrated loads shall be proportioned by the formula of paragraph 38, the effective length being assumed as one-half the depth of girders. End stiffeners and those under concentrated loads shall be on fillers and have their outstanding legs as wide as the flange angles will allow and shall fit tightly against them. Intermediate stiffeners may be offset or on fillers, and their outstanding legs shall be not less than one-thirtieth of the depth of girder, plus 2 in

52. Flange Rivets.—The flanges of plate girders shall be connected to the web with a sufficient number of rivets to transfer the total shear at any point in a distance equal to the effective depth of the girder at that point combined with any load that is applied directly on the flange. wheel loads, where the ties rest on the flanges, shall be assumed to be distributed over three ties.

53. Depth Ratios.—Trusses shall preferably have a depth of not less than one-tenth of the span. Plate girders and rolled beams, used as girders, shall preferably have a depth of not less than one-twelfth of the span. If shallower trusses, girders or beams are used, the section shall be increased so that the maximum deflection will not be greater than if the above limiting ratios had not been exceeded. For steel joists and track stringers, see § 19.

54. Low Trusses.—Riveted low trusses shall have top chords composed of a double web member with cover plate. The top chords shall be stayed against lateral bending by means of brackets or knee braces rigidly connected to the floorbeam at intervals not greater than twelve times the The posts shall be solid web members. The floorbeams shall be riveted, width of the cover plate. preferably above the lower chord. Pin-connected low truss bridges shall not be used.

55. Rolled Beams.—Rolled beams shall be designed by using their moments of inertia.

webs of rolled beams and plate girders shall be assumed to take all the shear.

PART IV. DETAILS OF DESIGN.

GENERAL REQUIREMENTS.

56. Open Sections.—Structures shall be so designed that all parts will be accessible for inspection, cleaning and painting.

57. Water Pockets.—Pockets or depressions which would hold water shall have drain holes,

or be filled with waterproof material.

58. Symmetrical Sections.—Main members shall be so designed that the neutral axis will be as nearly as practicable in the center of section, and the neutral axes of intersecting main members of trusses shall meet at a common point.

59. Counters.—Rigid counters are preferred; and where subject to reversal of stress shall preferably have riveted connections to the chords. Adjustable counters shall have open turn-

60. Strength of Connections.—The strength of connections shall be sufficient to develop the full strength of the member, even though the computed stress is less, the kind of stress to which

the member is subjected being considered.

61. Minimum Thickness.—The minimum thickness of metal shall be \(\frac{5}{16} \) in. in classes A, B, C, E1, E2 and E3, except for fillers; and 1/4 in. in classes D1 and D2, except for fillers and webs of channels. Webs of channels for classes D_1 and D_2 may have a minimum thickness of 0.20 in. The minimum angle shall be 2 in $x \ge 1$ in $x \ge 1$ in. The minimum rod shall have an area of at least 1 sq. in., in all classes except D1 and D2, which shall have no rods less than \(\frac{3}{4}\) in. in diameter. Webs of plate girders shall not be less than 16 in.

62. Pitch of Rivets.—The minimum distance between centers of rivet holes shall be three diameters of the rivet; but the distance shall preferably be not less than 3 in. for \(\frac{7}{8} \)-in. rivets,

2\frac{1}{2} in. for \frac{3}{2}-in. rivets, and 2 in. for \frac{5}{6}-in. rivets. The maximum pitch in the line of stress for members composed of plates and shapes shall be 16 times the thickness of the thinnest outside plate or 6 in. For angles with two gage lines and rivets staggered, the maximum shall be twice the above in each line. Where two or more plates are used in contact, rivets not more than 12 in. apart in either direction shall be used to hold the plates well together. In tension members composed of two angles in contact, a pitch of 12 in. will be allowed for riveting the angles together.

63. Edge Distance.—The minimum distance from the center of any rivet hole to a sheared edge shall be $1\frac{1}{2}$ in. for $\frac{7}{6}$ -in. rivets, $1\frac{1}{4}$ in. for $\frac{3}{6}$ -in. rivets, and $1\frac{1}{6}$ in. for $\frac{5}{6}$ -in. rivets, and to a rolled edge $1\frac{1}{4}$, $1\frac{1}{6}$ and I in., respectively. The maximum distance from any edge shall be eight times the thickness of the plate, but shall not exceed 6 in.

64. Maximum Diameter.—The diameter of the rivets in any angle carrying calculated stress shall not exceed one-quarter the width of the leg in which they are driven. In minor parts 1/4-in. rivets may be used in 3-in. angles, 3-in. rivets in 21-in. angles, and 5-in. rivets in 2-in. angles.

65. Long Rivets.—Rivets carrying calculated stress and whose grip exceeds four diameters

shall be increased in number at least one per cent for each additional \(\frac{1}{16}\)-in. of grip.

66. Pitch at Ends.—The pitch of rivets at the ends of built compression members shall not exceed four diameters of the rivets, for a length equal to one and one-half times the maximum

width of member.

67. Compression Members.—In compression members the metal shall be concentrated as much as possible in webs and flanges. The thickness of each web shall be not less than onethirtieth of the distance between its connections to the flanges. Cover plates shall have a thickness not less than one-fortieth of the distance between rivet lines.

68. Minimum Angles.—Flanges of girders and built members without cover plates shall

have a minimum thickness of one-twelfth of the width of the outstanding leg.

69. Batten Plates.—The open sides of all compression members shall be stayed by batten plates at the ends and diagonal lattice-work at intermediate points. The batten plates must be placed as near the ends as practicable, and shall have a length not less than the greatest width of

the member or 11 times its least width.

70. Lattice Bars.—The latticing of compression members shall be proportioned to resist the shearing stresses corresponding to the allowance for flexure for uniform load provided in the column formula in paragraph 38 by the term 70 l/r. They must not be less in width than $1\frac{1}{2}$ in. for members 6 in. in width, $1\frac{3}{4}$ in. for members 9 in. in width, 2 in. for members 12 in. in width, 2\frac{1}{4} in. for members 15 in. in width, nor 2\frac{1}{2} in. for members 18 in. and over in width. Single lattice bars shall have a thickness not less than one-fortieth, or double lattice bars connected by a rivet at the intersection, not less than one-sixtieth of the distance between the rivets connecting them to the members. They shall be inclined at an angle not less than 60° to the axis of the member for single latticing, nor less than 45° for double latticing with riveted intersections.
71. Spacing of Lattice Bars.—Lattice bars shall be so spaced that the portion of the flange

included between their connection shall be as strong as the member as a whole. The pitch of

the lattice bars must not exceed the width of the channel plus nine inches.

72. Rivets in Flanges.—Five-eighths-inch rivets shall be used for latticing flanges less than 21/2 in. wide; 3/4-in. for flanges from 21/2 to 31/2 in. wide; 3/6-in. rivets shall be used in flanges 31/2 in. and

over, and lattice bars with two rivets shall be used for flanges over 5 in. wide.

73. Splices.—In compression members joints with abutting faces planed shall be placed as near the panel points as possible, and must be spliced on all sides with at least two rows of rivets on each side of the joint. Joints with abutting faces not planed shall be fully spliced. Joints in tension members shall be fully spliced.

74. Pin Plates.—Where necessary, pin-holes shall be reinforced by plates, some of which must be of the full width of the member, so the allowed pressure on the pins shall not be exceeded, and so the stresses shall be properly distributed over the full cross-section of the members. These reinforcing plates must contain enough rivets to transfer their proportion of the bearing pressure, and at least one plate on each side shall extend not less than 6 in. beyond the edge of the nearest batten plate.

75. Riveted Tension Members.—Riveted tension members shall have an effective section through the pin-holes 25 per cent in excess of the net section of the member, and back of the pin

at least 75 per cent of the net section through the pin-hole.

76. Pins.—Pins shall be long enough to insure a full bearing of all the parts connected upon the turned body of the pin. The diameter of the pin shall not be less than 3 of the depth of any eye-bar attached to it.* They shall be secured by chambered Lomas nuts or be provided with washers if solid nuts are used. The screw ends shall be long enough to admit of burring the threads.

77. Filling Rings.-Members packed on pins shall be held against lateral movement.

78. Bolts.—Where members are connected by bolts, the turned body of these bolts shall be long enough to extend through the metal. A washer at least \(\frac{1}{4}\) in. thick shall be used under the * The allowable bearing stress = \frac{1}{2} allowable tensile stress.

Bolts shall not be used in place of rivets except by special permission. Heads and nuts shall be hexagonal.

79. Indirect Splices.-Where splice plates are not in direct contact with the parts which they connect, rivets shall be used on each side of the joint in excess of the number theoretically required to the extent of one-third of the number for each intervening plate.

80. Fillers.—Rivets carrying stress and passing through fillers shall be increased 50 per cent

in number; and the excess rivets, when possible, shall be outside of the connected member.

81. Expansion.—Provision for expansion to the extent of $\frac{1}{8}$ in. for each 10 ft. shall be made for all bridge structures. Efficient means shall be provided to prevent excessive motion at any one point (§32).

82. Expansion Bearings.—Spans of 60 ft. and over resting on masonry shall have turned rollers or rockers at one end; and those of less length shall be arranged to slide on smooth surfaces. 83. Fixed Bearings.—Movable bearings shall be designed to permit motion in one direction

Fixed bearings shall be firmly anchored to the masonry (§87).

84. Rollers.—Expansion rollers shall be not less than 3 in. in diameter for spans of 100 feet and less, and shall be increased I in. for each 100 ft. additional. They shall be coupled together with substantial side bars, which shall be so arranged that the rollers can be readily cleaned.

85. Bolsters.—Bolsters or shoes shall be so constructed that the load will be distributed over

the entire bearing.

86. Pedestals and Bed Plates.—Built pedestals shall be made of plates and angles. All bearing surfaces of the base plates and vertical webs must be planed. The vertical webs must be secured to the base by angles having two rows of rivets in the vertical legs. No base plate or web connecting angle shall be less in thickness than ½ in. The vertical webs shall be of sufficient height and must contain material and rivets enough to practically distribute the loads over the bearings

Where the size of the pedestal permits, the vertical webs must be rigidly connected trans-

87. All the bed-plates and bearings under fixed and movable ends must be fox-bolted to the masonry; for trusses, these bolts must not be less than 11 in. diameter; for plate and other girders, not less than 7 in. diameter.

The details of cast iron or cast steel shoes shall be subject to the special approval of the en-

gineer.

88. Wall Plates.—Wall plates may be cast or built up; and shall be so designed as to distribute the load uniformly over the entire bearing. They shall be secured against displacement. 89. Anchorage.—Anchor bolts for viaduct towers and similar structures shall be long enough

to engage a mass of masonry the weight of which is at least one and one-half times the uplift (§11). 90. Inclined Bearings.—Bridges on an inclined grade without pin shoes shall have the sole

plates beveled so that the masonry and expansion surfaces may be level.

91. Camber.—Truss spans shall be given a camber by making the panel length of the top chords, or their horizontal projections, longer than the corresponding panels of the bottom chord

in the proportion of $\frac{3}{16}$ in. in 10 ft. Plate girder spans need not be cambered.

92. Eye-bars.—The eye-bars composing a member shall be so arranged that adjacent bars shall not have their surfaces in contact; they shall be as nearly parallel to the axis of the truss as possible, the maximum inclination of any bar being limited to one inch in 16 ft.

PART V. MATERIALS AND WORKMANSHIP.

MATERIAL.

93. Process of Manufacture.—Steel shall be made by the open-hearth process and shall comply with the standard specifications of the Am. Ry. Eng. Assoc.

(Sections 94 to 117 inclusive cover the Am. Ry. Eng. Assoc. Specifications for steel, see specifications for railroad bridges, Chapter IV.)

118. Timber.—The timber shall be strictly first-class spruce, white pine, Douglas fir, Southern yellow pine, or white oak bridge timber; sawed true and out of wind, full size, free from wind shakes, large or loose knots, decayed or sapwood, wormholes or other defects impairing its strength or durability.

WORKMANSHIP.

119. General.—All parts forming a structure shall be built in accordance with approved The workmanship and finish shall be equal to the best practice in modern bridge works.

120. Straightening Material.—Material shall be thoroughly straightened in the shop, by methods that will not injure it, before being laid off or worked in any way.

121. Finish.—Shearing shall be neatly and accurately done and all portions of the work exposed to view neatly finished.

122. Size of Rivets.—The size of rivets, called for on the plans, shall be understood to mean the actual size of the cold rivet before heating.

123. Rivet Holes.—When general reaming is not required the diameter of the punch shall not be more than $\frac{1}{16}$ in. greater than the diameter of the rivet; nor the diameter of the diameter of the more than $\frac{1}{4}$ in. greater than the diameter of the punch. Material more than $\frac{3}{4}$ in. thick shall be sub-punched and reamed or drilled from the solid.

124. Punching.—All punching shall be accurately done. Drifting to enlarge unfair holes will not be allowed. If the holes must be enlarged to admit the rivet, they shall be reamed.

Poor matching of holes will be cause for rejection.

125. Sub-punching and Reaming.—Where reaming is required, the punch used shall have a diameter not less than $\frac{1}{16}$ in. smaller than the nominal diameter of the rivet. Holes shall then be reamed to a diameter not more than $\frac{1}{16}$ in. larger than the nominal diameter of the rivet. All

reaming shall be done with twist drills. (§140.)

126. Reaming After Assembling.—When general reaming is required it shall be done after the pieces forming one built member are assembled and firmly bolted together. If necessary to take the pieces apart for shipping and handling, the respective pieces reamed together shall be so marked that they may be reassembled in the same position in the final setting up. No interchange of reamed parts will be allowed.

127. Edge Planing.—Sheared edges or ends shall, when required, be planed at least \(\frac{1}{3} \) in.

128. Burrs.—The outside burrs on reamed holes shall be removed.

129. Assembling.—Riveted members shall have all parts well pinned up and firmly drawn

together with bolts, before riveting is commenced. Contact surfaces to be painted.

130. Lattice Bars.—Lattice bars shall have neatly rounded ends, unless otherwise called for. 131. Web Stiffeners.—Stiffeners shall fit neatly between flanges of girders. Where tight fits are called for, the ends of the stiffeners shall be faced and shall be brought to a true contact bearing with the flange angles.

132. Splice Plates and Fillers.—Web splice plates and fillers under stiffeners shall be cut to

fit within \frac{1}{8} in. of flange angles.

133. Web Plates.—Web plates of girders, which have no cover plates, shall be flush with the backs of angles or project above the same not more than $\frac{1}{8}$ in., unless otherwise called for. When web plates are spliced, not more than $\frac{1}{4}$ in. clearance between ends of plates will be allowed.

134. Connection Angles.—Connection angles for floorbeams and stringers shall be flush with each other and correct as to position and length of girder. In case milling (of all such angles) is needed or is required after riveting, the removal of more than $\frac{1}{16}$ in. from their thickness will be cause for rejection.

135. Rivets.—Rivets shall be driven by pressure tools wherever possible. Pneumatic

hammers shall be used in preference to hand driving.

136. Riveting.—Rivets shall look neat and finished, with heads of approved shape, full and of equal size. They shall be central on shank and grip the assembled pieces firmly. Recupping and calking will not be allowed. Loose, burned or otherwise defective rivets shall be cut out and replaced. In cutting out rivets, great care shall be taken not to injure the adjacent metal. If necessary, they shall be drilled out.

necessary, they shall be drilled out.

137. Turned Bolts.—Wherever bolts are used in place of rivets which transmit shear, the holes shall be reamed parallel and the bolts turned to a driving fit. A washer not less than $\frac{1}{4}$ in.

thick shall be used under nut.

138. Members to be Straight.—The several pieces forming one built member shall be straight and fit closely together, and finished members shall be free from twists, bends or open joints.

139. Finish of Joints.—Abutting joints shall be cut or dressed true and straight and fitted close together, especially where open to view. In compression joints, depending on contact bearing, the surfaces shall be truly faced, so as to have even bearings after they are riveted up complete and when perfectly aligned.

140. Field Connections.—Holes for floorbeam and stringer connections shall be sub-punched and reamed according to paragraph 125, to a steel templet one inch thick. (If required, all other field connections, except those for laterals and sway bracing, shall be assembled in the shop and the unfair holes reamed; and when so reamed, the pieces shall be match-marked before being

taken apart.)

141. Eye-bars.—Eye-bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. The form of heads will be determined by the dies in use at the works where the eye-bars are made, if satisfactory to the engineer, but the manufacturer shall guarantee the bars to break in the body when tested to rupture. The thickness of head and neck shall not vary more than $\frac{1}{16}$ in from that specified.

142. Boring Eye-bars.—Before boring, each eye-bar shall be properly annealed and carefully straightened. Pin-holes shall be in the center line of bars and in the center of heads. Bars of the same length shall be bored so accurately that, when placed together, pins $\frac{1}{32}$ in. smaller in diameter than the pin-holes can be passed through the holes at both ends of the bars at the same

time without forcing.

143. Pin-Holes.—Pin-holes shall be bored true to gages, smooth and straight; at right angles to the axis of the member and parallel to each other, unless otherwise called for. The boring shall be done after the member is riveted up.

144. Variation in Pin-Holes.—The distance center to center of pin-holes shall be correct within $\frac{1}{32}$ in., and the diameter of the holes not more than $\frac{1}{50}$ in. larger than that of the pin, for

pins up to 5-in. diameter, and $\frac{1}{32}$ in. for larger pins.

145. Pins and Rollers.—Pins and rollers shall be accurately turned to gages and shall be straight and smooth and entirely free from flaws.

146. Screw Threads.—Screw threads shall make tight fits in the nuts and shall be U. S. standard, except above the diameter of 13 in., when they shall be made with six threads per inch. 147. Annealing.—Steel, except in minor details, which has been partially heated, shall be

properly annealed.

148. Steel Castings.—All steel castings shall be annealed.

149. Welds.—Welds in steel will not be allowed.
150. Bed Plates.—Expansion bed plates shall be planed true and smooth. Cast wall plates shall be planed top and bottom. The cut of the planing tool shall correspond with the direction of expansion.

151. Pilot Nuts.—Pilot and driving nuts shall be furnished for each size of pin, in such

numbers as may be ordered.

152. Field Rivets.—Field rivets shall be furnished to the amount of 15 per cent plus ten rivets in excess of the nominal number required for each size.

153. Shipping Details.—Pins, nuts, bolts, rivets and other small details shall be boxed or crated.

154. Weight.—The weight of every piece and box shall be marked on it in plain figures.

155. Finished Weight.—Payment for pound price contracts shall be by scale weight. allowance over 2 per cent of the total weight of the structure as computed from the plans will be allowed for excess weight.

SHOP PAINTING.

156. Cleaning.—Steel work, before leaving the shop, shall be thoroughly cleaned and given one good coating of pure linseed oil, or such paint as may be called for, well worked into all joints and open spaces.

157. Contact Surfaces.—In riveted work, the surfaces coming in contact shall each be painted

before being riveted together.

158. Inaccessible Surfaces.—Pieces and parts which are not accessible for painting after erection, including tops of stringers, eye-bar heads, ends of posts and chords, etc., shall have a good coat of paint before leaving the shop.

159. Condition of Surfaces.—Painting shall be done only when the surface of the metal is perfectly dry. It shall not be done in wet or freezing weather, unless protected under cover.

160. Machine-finished Surfaces.—Machine-finished surfaces shall be coated with white lead and tallow before shipment or before being put out into the open air.

INSPECTION AND TESTING AT THE SHOP AND MILL.

161. Facilities for Shop Inspection.—The manufacturer shall furnish all facilities for inspecting and testing the weight and quality of workmanship at the shop where material is manufactured. He shall furnish a suitable testing machine for testing full-sized members, if required.

162. Starting Work in Shop.—The purchaser shall be notified well in advance of the start of the work in the shop, in order that he may have an inspector on hand to inspect material and

163. Copies of Mill Orders.—The purchaser shall be furnished complete copies of mill orders, and no material shall be rolled, nor work done, before the purchaser has been notified where the

orders have been placed, so that he may arrange for the inspection.

164. Facilities for Mill Inspection.—The manufacturer shall furnish all facilities for inspecting and testing the weight and quality of all material at the mill where it is manufactured. He shall furnish a suitable testing machine for testing the specimens, as well as prepare the pieces for the machine, free of cost.

165. Access to Mills.—When an inspector is furnished by the purchaser to inspect material at the mills, he shall have full access, at all times, to all parts of mills where material to be inspected

by him is being manufactured.

166. Access to Shop.—When an inspector is furnished by the purchaser, he shall have full access, at all times, to all parts of the shop where material under his inspection is being manufactured.

167. Accepting Material or Work.—The inspector shall stamp each piece accepted with a private mark. Any piece not so marked may be rejected at any time, and at any stage of the work. If the inspector, through an oversight or otherwise, has accepted material or work which is defective or contrary to the specifications, this material, no matter in what stage of completion, may be rejected by the purchaser.

168. Shop Plans.—The purchaser shall be furnished complete shop plans (§13).

169. Shipping Invoices.—Complete copies of shipping invoices shall be furnished to the purchaser with each shipment.

FULL-SIZED TESTS.

170. Test to Prove Workmanship.—Full-sized tests on eye-bars and similar members, to prove the workmanship, shall be made at the manufacturer's expense, and shall be paid for by the purchaser at contract price, if the tests are satisfactory. If the tests are not satisfactory, the members represented by them will be rejected.

171. Eye-bar Tests.—In eye-bar tests, the fracture shall be silky, the elongation in 10 ft., including the fracture, shall be not less than 15 per cent; and the ultimate strength and true

elastic limit shall be recorded (§141).

ERECTION.

172. If the contractor erects the bridge he shall, unless otherwise specified, furnish all staging and falsework, erect and adjust all metal work, and shall frame and put in place all floor timbers, guard timbers, trestle timbers, etc., complete ready for traffic.

173. The contractor shall put in place all stone bolts and anchors for attaching the steel work to the masonry. He shall drill all the necessary holes in the masonry, and set all bolts with

neat Portland cement.

174. The erection will also include all necessary hauling from the railroad station, the unloading of the materials and their proper care until the erection is completed.

175. Whenever new structures are to replace existing ones, the latter are to be carefully taken down and removed by the contractor to some place where the material can be hauled away.

176. The contractor shall so conduct his work as not to interfere with traffic, interfere with the work of other contractors, or close any thoroughfare on land or water.

177. The contractor shall assume all risks of accidents and damages to persons and properties

prior to the acceptance of the work.

178. The contractor must remove all falsework, piling and other obstructions or unsightly material produced by his operations.

PAINTING AFTER ERECTION.

.179. After the bridge is erected the metal work shall be thoroughly cleaned of mud, grease or other material, then thoroughly and evenly painted with two coats of paint of the kind specified by the engineer, mixed with linseed oil. All recesses which may retain water, or through which water can enter, must be filled with thick paint or some waterproof cement before the final painting. The different coats of paint must be of distinctly different shades or colors, and one coat must be allowed to dry thoroughly before the second coat is applied. All painting shall be done with round brushes of the best quality obtainable on the market. The paint shall be delivered on the work in the manufacturer's original packages and is subject to inspection. If tests made by the inspector shows that the paint is adulterated, the paint will be rejected and the contractor shall pay the cost of the analyses, and shall scrape off and thoroughly clean and repaint all material that has been painted with the condemned paint. The paint shall not be thinned with anything whatsoever; in cold weather the paint may be thinned by heating under the direction of the inspector. No turpentine nor benzine shall be allowed on the work, except by the permission of the inspector, and in such quantity as he shall allow. The inspector shall be notified when any painting is to be done by the contractor, and no painting shall be done until the inspector has approved the surface to which the paint is to be applied. Paint shall not be applied out of doors in freezing, rainy, or misty weather, and all surfaces to which paint is to be applied shall be dry, clean and warm. In cool weather the paint may be thinned by heating, and this may be required by the inspector.

REFERENCES.—For the calculation of stresses in bridge trusses and plate girders, for details of bridges, for the design of bridge details, and for additional examples of highway bridges, see the author's "The Design of Highway Bridges."

CHAPTER IV.

STEEL RAILWAY BRIDGES.

TYPES OF STEEL BRIDGES .- The same types of trusses are used for railway as for highway bridges, Fig. 4, Chapter III. Beam bridges are used for short spans, and plate girders up to spans of about 125 ft. Riveted truss spans are used for spans of 100 ft. and upwards. Pin-connected truss spans are still used for long span bridges and by a few railroads for spans of 150 ft. and upwards. Many railroads are building riveted trusses for spans of more than 200 ft., and riveted truss spans of 300 ft. are not uncommon. The new terminal bridge over the Missouri River at Kansas City, Mo., has riveted trusses with a span of 425 ft. 61 in. The Norfolk & Western R. R. has constructed a double track bridge over the Ohio River with a span of 520 ft., which is riveted with the exception of four bottom chord panel points, which have pin joints. The lengths and types of railway bridges as used by different railroads are given in Table XII in the latter part of this chapter. The longest simple truss span is 668 ft. and is in the Municipal Bridge over the Mississippi River at St. Louis, Mo. The maximum practical length of simple span truss bridges made of carbon steel is about 550 feet; while with nickel steel it is practical to build simple truss spans up to 750 feet and economical to build simple truss spans up to 700 feet. The proposed Metropolis Bridge over the Ohio River will be a double track simple truss bridge with a span of 720 feet.

Fig. 1. Diagrammatic Sketch of a Railway Truss Bridge.

FIG. 2. RAILWAY STEEL TRESTLE.

TABLE I.

Data on Railroad Bridges Designed Under Common Standard (Harriman Lines)

Specifications C. S. 1006.

	Sino	LE TRACK BRIDGES				Dou	BLE TRACK BRIDGES	S	
Length of Span, Ft.	Distance Center to Center of Trusses or Girders, FtIn.	Dist. C. to C. of Chords or B. to B. of Angles, FtIn.	No. of Panels.	Total Weight, Lb.	Length of Span, Ft.	Distance Center to Center of Trusses or Girders, FtIn.	Dist. C. to C. of Chords or B. to B. of Angles, FtIn.	No. of Panels.	Total Weight, Lb.
	Tł	rough Plate Gird	ers			Th	rough Plate Gird	ers	
30 40 50 60 70 80 90	13-6 15-6 15-6 16-0 16-6 16-6 16-6	4- 0½ 5- 0½ 5- 8½ 7- 0½ 8- 6½ 8- 6½ 9- 0½	3 4 5 6 7 8 9	27,500 41,900 56,600 79,600 105,100 132,300 161,350 198,500	50 60 70 80 90	29-6 29-6 29-6 30-0 30-0	8-0½ 9-0½ 9-6½ 10-0½ 10-6½	4 5 6 7 8	142,000 173,000 221,000 277,000 317,200
		Deck Plate Girde	г			T	hrough Rivet Spa	n	
20 30 40 50 60 70 80 90	7-0 7-0 7-0 7-0 7-0 8-0 8-0 9-0	I- 8 4- 0½ 4-11½ 5-11½ 6- 5½ 8- 8½ 9- 1¾ 9- 3¾	3 4 8 8 10 10 10 12 12	12,800 14,900 23,800 34,300 47,500 68,000 87,800 113,200 137,800	100 110 125 140	30-6 30-6 30-6	30-0 30-0 31-0	4 4 5 .	360,000 400,000 472,600
		hrough Rivet Sp	ап			,	Through Pin Span	n	
100 110 125 140 150	16-6 16-6 16-6 17-0 17-0	29- 0 29- 0 30- 0 31- 0 31- 0	4 4 5 6 6	165,000 185,000 220,000 273,000 311,000	150 160 180 200	30-6 30-6	33-0 40-0	6	633,000
150 160 180 200	17-0 17-0 17-0 17-0	Through Pin Spa 31-0 32-0 33-0 32-& 38	n 6 6 7 7	304,000 348,000 417,000 485,000					

A diagramatic sketch of a truss railway bridge is shown in Fig. 1. The names of the different members are shown on the diagram. The floor may be carried on two or more stringers. Two stringers are commonly used for an open timber floor and two or four stringers for a ballasted floor.

A railway steel trestle is shown in Fig. 2. Steel trestles are commonly built with the intermediate spans equal to twice the tower spans; 60 feet and 30 feet, and 80 feet and 40 feet being common lengths of span.

Swing, movable, cantilever and suspension bridges will not be considered in this chapter.

FIG. 3. WEIGHT OF SINGLE TRACK DECK
PLATE GIRDER SPANS, CONCRETE BALLAST
FLOOR. CHICAGO, MILWAUKEE & ST.
PAUL RY.

Fig. 4. Weight of Single Track Riveted Deck Truss Spans. Chicago, Milwaukee & St. Paul Ry.

WEIGHTS OF RAILWAY BRIDGES.—The weights of railway bridges vary with the loading, the specifications, the span, the width, the type of floor, and with the design. The weights of the total structural steel in single track bridges of different types as designed and built by the Chicago, Milwaukee & St. Paul Ry. are given in Fig. 3 to Fig. 10, inclusive.

Weights of single track plate girder spans as designed and built by the Illinois Central Railroad are given in Fig. 11, Fig. 12 and Fig. 13; weights of single track through bridges are given in Fig. 14, weights of signal bridges are given in Fig. 15, and weights of single track draw spans are given in Fig. 16. Weights and other data for railway bridges designed by the Harriman Lines, under "Common Standard Specification 1006" (approximately equal to Cooper's E 55), are given in Table I.

Weights of single track steel viaducts as designed by the McClintic-Marshall Construction Co. are given in Fig. 17.

For the relative weights of railway bridges built of carbon and of nickel steel, see paper entitled "Nickel Steel for Bridges," by Mr. J. A. L. Waddell, M. Am. Soc. C. E., printed in Trans. Am. Soc. C. E., Vol. 63, 1909.

FIG. 5. WEIGHT OF SINGLE TRACK THROUGH
PLATE GIRDER SPANS. TYPE C4 (FLANGES
OF 2 ANGLES AND COVER PLATES, TWO
STRINGERS). CHICAGO, MILWAUKEE
& ST. PAUL RY.

FIG. 6. WEIGHT OF THROUGH PLATE GIRDER
SPANS. TYPE C3 (FLANGES OF 2 ANGLES
AND COVER PLATES, SHALLOW FLOOR,
4 STRINGERS). CHICAGO, MILWAUKEE & ST. PAUL RY.

LOADS.—The dead load of a railway bridge is assumed to act at the joints the same as in a highway bridge. The dead joint loads are commonly assumed to act on the loaded chord, but may be assumed as divided between the panel points of the two chords, one-third and two-thirds of the dead loads usually being assumed as acting at the panel points of the unloaded and the loaded chords, respectively, see discussion of specifications in the last part of this chapter.

The live load on a railway bridge consists of wheel loads, the weights and spacing of the wheels depending upon the type of the rolling stock used. The locomotives and cars differ so much that it would be difficult if not impossible to design the bridges on any railway system for the actual conditions, and conventional systems of loading, which approximate the actual conditions, are assumed. The conventional systems for calculating the live load stresses in railway bridges that have been most favorably received are: (1) Cooper's Conventional System of Wheel Concentrations; (2) the use of an Equivalent Uniform Load; and (3) the use of a uniform load and one or two wheel concentrations. In addition to these some railroads specify special engine loadings. The three zethods will be briefly described.

Cooper's Conventional System of Wheel Concentrations.—In Cooper's loadings two consolidation locomotives are followed by a uniformly distributed train load. The typical loading for Cooper's Class E 40, E 45, E 50, E 55 and E 60, are shown in Fig. 18. The loads on the drivers in thousands of pounds and the uniform train load in hundreds of pounds are the same as the class number. The wheel spacings are the same for all classes. The stresses for Cooper's loadings calculated for one class may be used to obtain the stresses due to any other class loading. For example, the live load stresses in any truss due to Cooper's Class E 60 are equal to $\frac{3}{2}$ of the stresses in the same truss due to Class E 40 loading. The E 50, E 55 and E 60 loadings are those most used for steam railways in the United States. In bridges designed for Class E 40 loading and under the floor system must in addition be designed for two moving loads of 100,000 lb. each, spaced 6 ft. apart on each track. The special loads for Class E 50 are 120,000 lb. with the same

FIG. 7. WEIGHT OF SINGLE TRACK DECK PLATE GIRDER SPANS. OPEN TIMBER FLOOR. TYPE A4 (FLANGES OF 6 ANGLES WITH-OUT COVER PLATES). CHICAGO, MIL-WAUKEE & ST. PAUL RY.

FIG. 8. WEIGHT OF SINGLE TRACK DECK
PLATE GIRDER SPANS. TIMBER BALLAST
FLOOR. TYPE A4 (FLANGES OF 6 ANGLES
WITHOUT COVER PLATES). CHICAGO,
MILWAUKEE & ST. PAUL RY.

spacing. The American Railway Engineering Association has adopted Cooper's loadings, except that the special loads are spaced 7 ft. The live loads used by several prominent railroads are given in Table XVI. The heaviest locomotives in use on American railroads as given in Bulletin No. 161, November 1913, of the Am. Ry. Eng. Assoc., by Mr. J. E. Greiner, Consulting Engineer, are given in Table II. The maximum stresses in terms of the maximum stresses for E 50 loading for spans between 100 ft. and 10 ft. are given in the last two columns. The ratios for spans greater than 100 ft. are less than for those given. The larger ratio is for short spans so that by increasing the special concentrated loads a bridge designed for an E 50 loading will safely carry the heaviest engines now in use.

FIG. 9. WEIGHT OF SINGLE TRACK THROUGH RIVETED TRUSS SPANS. CHICAGO, MILWAUKEE & ST. PAUL RY.

FIG. 10. WEIGHT OF SINGLE TRACK THROUGH PIN CONNECTED TRUSS SPANS. CHI-CAGO, MILWAUKEE & ST. PAUL RY.

TABLE II.

HEAVIEST LOCOMOTIVES AND RELATIVE STRESSES PRODUCED FOR SPANS OF 10 FT. TO 100 FT.

	E	ngine Alone		De	ouble Heade	er.*	Proportiona Stress.		
Class.	Weight in 1,000 Lb.	Wheel Base, Ft.	Proportional Weight.	Weight in 1,000 Lb.	Wheel Base, Ft.	Weight per Ft., Lb.	From	То	
E 50†	225.0	23.00	1.00	710.0	104.0	6,830	1.00	1.00	
Atlantic	214.8	30.79	.96	728.4	127.76	5,700	0.83	1.15	
Prairie	244.7	34.25	1.09	807.5	132.92	6,070	0.88	1.03	
Consolidation	260.I	26.50	1.16	860.4	131.81	6,520	0.99	1.14	
12 Wheel	262.0	27.08	1.17	817.4	130.15	6,280	1.00	1.14	
Decapod	267.0	29.83	1.19	802.0	127.00	6,320	0.96	1.07	
Pacific	270.0	35.20	1.20	865.4	142.48	6,070	0.93	1.08	
Mikado	305.0	35.00	1.36	960.0	150.00	6,400	1.02	1.16	
12 Wheel Articulated‡.	334.5	30.66	1.49	473.8	64.56	7,340	0.98	1.15	
10 Coupled	361.0	43,50	1.60	1,074.0	161.00	6,670	1.00	1.26	
20 Wheel Articulated! .	478.0	59.80	2.12	703.6	99.70	7,060	1.01	1.14	
16 Wheel Articulated!	493.0	40.17	2.19	588.0	82.58	7,130	1.26	1.34	
24 Wheel Articulated! .	616.0	65.92	2.74	841.6	105.82	7,950	1.15	1.33	
12 Wheel Electric Motor	300.4	38 50	1.33	600.8	86.5 0	6,950	0.83	0.98	
16 Wheel Electric Motor	320.0	44.22	1.42	640.0	102.84	6,220	0.84	0.93	

^{*} Weight and wheel base for articulated engines are given for one engine and tender.

[†] Given for comparison.

[‡] Mallet Type.

		. *			ase of Pail	Span	Total EndShear	A	В	C	Weight of Span		
	Low Iron	44	-4	1/	p of Masonry	80'0"		2'23"	3' 104		149 000 lbs.		
CL.	ar in thou	seconde a	Enwood	F Dec Co	il.	85'0"	2200	2'3%	3' 104		163 000 "		
				*	lowed by	90'0"		2'35	3'10		180 000 # 200 000 #		
	,000lbs p				5,100	100'0"		2'37"	3'10		222 000 •		
						110'0"		2'45"	3'104		250 000 "		
5pan	Total End Shear	A	В	C	Weight of Span			Wajah	t of and	Weight of or	ne Weight of		
30'0"	98.0	2'14"	21/5"	15'0"	40 000 lbs.	5)	Dan			Heavy Gira			
35'0"	108-0	2'24"	2'/#"	16'0"	48000 "	30'0"	to 50'0"	0.	?2W	0-39 W	0.56 W		
40'0"	118.0	2'24"	21/5"	17'0"	58 000 "	55'0"	to 80'0"	0.2	27 W	0-48 W	0-47 W		
45'0"	129-0	2' 25"	2'2%"	17'6"	68 000 ×	85'0"	to 110'0"	0.3	31 W	0.57 W	0-38 W		
50'0"	139-0	2'27	2'2%	17'6"	77 000 "		I-E	leams, /	8"@ 6	5 lbs.			
55'0"	148-0	2'278	2'98"	17'6"	88 000 "	EREC	TOR'S M	OTE :-					
60'0"	158-0	2' 23"	2'98"	17'6"	98 000 "				one s	ingle traci	k span with		
65'0"	170-0	2/3 "	3'94"	17'6"	111 000 #		light gird		ATE		2011/6		
70'0" 75'0"	182-0	2'3\frac{3}{6}" 2'3\frac{5}{6}"	3'104"	17'6"	120 000 m	LAI	_	THROUGH PLATE GIRDER SPANS I-BEAM FLOORS					
130	1340	4 5/18	5104	110	135000 "			ULAVI	ILUUI	()			

Fig. 11. Weights of Through Plate Girder Spans.
Illinois Central Railroad.

		-		× +, 80	ise of Rail	Span	Total EndShear	A	В	C	Weight of Span
. 5	_	housand: 2-188	s of poun	ds per ingines,	p of Masonry rail· followed	80'0" 85'0" 90'0" 95'0" 100'0"	2/3·4 228·1 240·6 254·7 267·2 293·6	3'44" 3'44" 3'45' 3'45' 3'55' 3'55' 3'55'	4' \$ 4' \$ 4' \$ 4' \$ 4' \$ 4' \$	17'6" 17'6" 17'6" 17'6"	154 200 1b5 176 000 " 189 600 " 210 000 " 224 800 " 263 000 "
5par7	Total End Shear	A	В	C	Weight of Span		nan		of one	Weight of one Heavy Girder	Weight of
30'0" 35'0" 40'0" 45'0"		3' 27" 3' 3%" 3' 3%" 3' 3%"	3' 3 \\\ 3' 3 \\\\\\\\\\\\\\\\\\\\\\\\\	15'6" 16'6" 17'6" 17'6"	45 000 lbs 56 000 " 64 400 " 71 000 "	55'0"	to 50'0" to 80'0" to 110'0"	0.2.	4 W 25 W 28 W	0.42 W 0.46 W 0.51 W	0.54 W 0.50 W 0.43 W
50'0" 55'0" 60'0" 65'0" 70'0"	153:4 161:1 174:9 187:4	3'3\\\ 3'4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3' 3½" 3' 10½" 3' 10½" 3' 10½" 3' 10½% 4' 11½"	17'6" 17'6" 17'6" 17'6" 17'6"	81 200 • 95 900 • 103 800 • 116 000 • 128 000 •	H	light gir	meight d der s . DUGH PL	DATA O ATE G	ngle track . DN BIRDER SF FLOOR	

Fig. 12. Weights of Through Plate Girder Spans.
Illinois Central Railroad,

Span	Total End Shear	A	В	C	Weight of Span	Base of Rail
30'0" 35'0" 40'0" 45'0" 55'0" 60'0" 65'0" 75'0" 80'0" 85'0" 90'0" 90'0" 100'0" 110'0"	103-5	5'2\\ 5'9\\\ 5'9\\\\ 6'3\\\\\ 6'9\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4' 10%" 5' 25" 5' 91" 6' 34" 7' 16" 7' 101" 9' 101" 9' 101" 10' 04" 11' 74" 11' 74" 11' 191" 11' 11' 11' 12' 34"	7'0" 7'0" 7'0" 7'0" 7'0" 7'0" 8'0" 8'0" 8'0" 8'0" 9'0" 9'0" 9'0"	18 000 1bs 22 000 " 28 000 " 34 000 " 40 000 " 46 000 " 57 000 " 68 000 " 78 000 " 100 000 " 114 000 " 150 000 "	Shear in thousands of pounds per rail· Loading - 2-188.75 ton engines, followed by 6000 lbs per foot uniform load ERECTION HOTE: In all spans, 30'0" to 60'0" in length, one girder will weight 45% of total weight of span In all spans 65'0" to 110'0 in length, one girder mill meigh 46.5 per cent of total weight of span. DATA ON DECK PLATE GIRDER SPANS

FIG. 13. WEIGHTS OF DECK PLATE GIRDER SPANS.
ILLINOIS CENTRAL RAILROAD.

Fig. 14. Weights of Single Track Through Spans Illinois Central Railroad.

Fig. 15. Weights of Signal Bridges. Illinois Central Railroad.

FIG. 16. WEIGHTS OF SINGLE TRACK DRAW SPANS.
ILLINOIS CENTRAL RAILROAD.

WEIGHT OF SINGLE TRACK R.R. VIADUCT, TOWERS.

Coopers E 50 Loading

A.R.E.&M.W. Spec's -1906.

Height of Towers (from cap to base)

FIG. 17. WEIGHT OF STEEL VIADUCTS. McCLINTIC-MARSHALL CONSTRUCTION Co.

	40	0	0	0	0).() C	0.0	40	0	0	0	0	0	0		0	
Class	8	1	5/1	را ع	51	9'	5'	6'	51	8'	8'	51	51	5'	9'	5'	6'	515	Uniform Load
E-40	20 000	40 000	40 000 X	40 000	40000 A	26 000	25 000 X	26 000	5 000 92	20 000 62	8' 8000 04	40 000	40 000 ¥	5-10000	26 000	5 000 9Z	26 000	₹000 9Z	4 000 lb. per lin-Ft.
E-45	22 500	45 000	45 000	45 000	45 000	20 250	20 250		29 250		45 000	45 000		45 000	29 250	29 250	052 62	29 250	4500 lb- per lin. Ft.
E-50	25 000	50 000	20 000	20 000	20 000	22 500	22 500	27 500	32 500	25 000	20 000	20 000	50 000	20 000	32 500	32 500	32 500	32 500	5 000 lb. per lin.ft.
E-55	27 500	25 000	25 000	55 000	55 000	25 750	25 150	35 750	35 750	27 500	25 000	55 000	55 000	25 000	35 750	35 750	35 750	35 750	5 500 lb. per lin. Ft.
E-60	20 000	000 09	000 09	000 09	000 09	20 000	20 000	29 000	39 000	30 000	000 09	000 09	000 09	000 09	39 000	39 000	39 000	39 000	6000 lb· per lin·Ft·

FIG. 18. COOPER'S CONVENTIONAL ENGINE LOADINGS. (Loads for one track.)

Equivalent Uniform Load System.—The equivalent uniform load for calculating the stresses in trusses and the bending moments in beams, is the uniform load that will produce the same bending moment at the quarter points of the truss or beam as the maximum bending moment produced by the wheel concentrations. The equivalent uniform loadings for different spans for Cooper's E 40 loading are given in Fig. 19. The equivalent uniform loading for E 60 loading will be $\frac{3}{2}$ the values for E 40 in Fig. 19. In calculating the stresses in the truss members select

Fig. 19. Equivalent Uniform Live Load for Cooper's E40 Loading.
(Loads for one track.)

the equivalent load for the given span, and calculate the chord and web stresses by the use of equal joint loads, as for highway bridges. In designing the stringers for bending moment take a loading for a span equal to one panel length, and for the maximum floorbeam reaction take a

loading for a span equal to two panel lengths. It is necessary to calculate the maximum end shears and the shears at intermediate points by wheel concentrations, or to use equivalent uniform loads calculated for wheel concentrations. The calculated values of the moment, M, shear, S, and floorbeam reaction, R, for Class E 60 are given in Table III. The equivalent uniform load method has been advocated very strongly by Mr. J. A. L. Waddell who has described its use in detail in his "De Pontibus." Live load stresses as calculated by the method of equivalent uniform loads are too small for the chords and webs between the ends of the truss and the quarter points, and are too large between the quarter points. The stresses obtained for the counters are too large. The live load stresses calculated by the method of equivalent uniform loads are sufficiently accurate for all practical purposes. Even though the equivalent uniform load method is simple to apply and gives results which are sufficiently accurate, it is now seldom used.

Uniform Load and One or Two Excess Loads.—A uniform load is used and to provide for the wheel concentrations one or two excess loads are assumed to run on top of the uniform load. This method is now rarely used. In a paper entitled "Rolling Loads on Bridges," published in Bulletin No. 161, Am. Ry. Eng. Assoc., November 1913, Mr. J. E. Greiner, Consulting Engineer, found that thirty-eight of the thirty-nine most important railroads in the country used a system of wheel concentrations, and one road used a uniform load with a single excess load; the method of equivalent uniform loads was not used.

MAXIMUM STRESSES.—The conditions of live loading for maximum stresses in beams and trusses are as follows.

Uniform Live Load on Beam or Girder.—For bending moment the span should be fully loaded. For shear the longer segment of the span should be loaded.

Equal Joint Loads.—For bending moment (chord stresses) the bridge should be fully loaded. For shear (web stresses in trusses with parallel chords) the longer segment of the truss should be loaded for maximum stress, and the shorter segment of the truss should be loaded for maximum counter stress (minimum stress).

Point of Maximum Bending Moment in a Beam.—The maximum bending moment in a beam loaded with moving loads will come under a heavy load when this load is as far from one end of the beam as the center of gravity of all the moving loads then on the beam is from the other end of the beam.

Wheel Loads, Bridge with Parallel Chords.—The maximum bending moment at any joint in the loaded chord will occur when the average load on the left of the section is equal to the average load on the entire span.

The maximum bending moment at any joint in the unloaded chord of a symmetrical Warren truss will occur when the average load on the entire span is equal to the average load on the left of the section, one-half of the load on the panel under the joint being considered as part of the load on the left of the section.

The maximum shear in any panel of a truss will occur when the average load on the panel is equal to the average load on the entire bridge.

Wheel Loads, Bridge with Inclined Chords.—The criterion for maximum bending moment in a bridge with vertical posts is the same as for bridges with parallel chords.

For web members the criterion is that

$$P/L = P_2(\mathbf{I} + a/e)/l \tag{1}$$

where P = total load on the bridge;

 P_2 = load on the panel in question;

L = span of bridge;

l = panel length;

a =distance from left abutment to left end of panel in question;

e =distance from left abutment to intersection of top chord section of the panel produced and the lower chord. (The intersection is to the left and outside of the span.)

KINDS OF STRESS.—Bridges must be designed for the stresses due to (1) dead load; (2) live or moving load; (3) wind load; (4) snow load; (5) impact stresses; (6) temperature stresses; (7) centrifugal stresses, and (8) secondary stresses not taken into account in the calculations. In addition to the above it is necessary in determining the allowable stress in any member to take into account imperfections in materials and workmanship, possible increase in live loads, fatigue of metals, the frequency of the application of the stress, corrosion and deterioration of materials, etc. The structure should be so designed that no part will be ever stressed beyond the elastic limit. The allowable stresses for dead load are usually taken at about 60 to 70 per cent of the elastic limit; for an elastic limit of 30,000 lb., the allowable working stresses for dead loads alone would then vary from 18,000 to 21,000 lb. per sq. in.

IMPACT STRESSES.—As a load moves over the bridge it causes shocks and vibrations whereby the actual stresses are increased over those due to the static load alone. It is shown in mechanics of materials that a load suddenly applied to a bar or beam will produce stresses twice the stresses produced by the same load gradually applied. A bridge is a complex structure and it is not possible to determine the exact effect of the moving loads. It has been found by experiment that the ultimate strength for repeated loads is much less than for dead loads. In a bridge it will be seen that the dead load is a fixed load and that the live load is a varying load.

For stresses of one kind Professor Launhardt has proposed the following formula:

$$P = S\left(1 + \frac{\text{Min. stress}}{\text{Max. stress}}\right)$$
 (2)

where P is the allowable working stress required, and S is the allowable working stress for live loads, varying from zero to the maximum stress. For stresses of opposite kinds Professor Weyrauch has proposed the following formula:

$$P = S\left(\mathbf{1} - \frac{\text{Min. stress}}{2 \text{ Max. stress}}\right) \tag{3}$$

where P and S are the same as for the Launhardt formula, the maximum and minimum stresses being taken without sign. For columns and struts the allowable stresses as given by formulas (2) and (3) are to be reduced by a suitable column formula.

There are three methods in common use for taking account of impact and fatigue: (1) Impact formulas; (2) Launhardt-Weyrauch formulas, and (3) Cooper's Method.

(1) Impact Formulas.—The formula in most common use is given in the form

$$I = S\left(\frac{a}{L+b}\right) \tag{4}$$

where I = impact stress to be added to the static live load stress, S = the static live load stress, L = the length in feet of the portion of the bridge that is loaded to produce the maximum stress in the member, and a and b are constants expressed in feet. The American Railway Engineering Association specifies for railway bridges, a = b = 300 ft. Mr. J. A. L. Waddell specifies a = 400 ft., and b = 500 ft. for railway bridges; and a = 100 ft., and b = 150 ft. for highway bridges. For the names of several roads using A. R. E. A. impact formula, see Table XVI.

For highway bridges the American Bridge Company specifies that the maximum live load stress shall be increased 25 per cent to cover impact and vibration.

Mr. C. C. Schneider, M. Am. Soc. C. E., specifies that for electric railway bridges

$$I = S \cdot 150/(L + 300) \tag{5}$$

In the Osborn Engineering Company's 1901 specifications for railway and for highway bridges the impact is calculated by the formula

$$I = S \cdot S/(S+D) \tag{6}$$

where S is the static live load stress and D is the dead load stress. This method is used by the Illinois Central R. R.

(2) Launhardt-Weyrauch Formulas.—Formula (2) is used for determining the allowable stress for stresses of one kind and formula (3) is used for determining the allowable stress for stresses of different kinds. This method is used in Thatcher's Specifications, in Common Standard Specifications (Harriman Lines), and specifications of Pennsylvania Lines West of Pittsburgh.

(3) Cooper's Method.—Cooper uses formula (2) and calculates the area for the dead load and the area for the live load stress separately. For dead loads from formula (2) we have P = 2S,

while for live loads the range of stress is from zero to the maximum, and P = S.

For a reversal of stress Cooper designs the member to take both kinds of stress, but to each stress he adds eight-tenths of the lesser of the two stresses,

IMPACT TESTS.—The American Railway Engineering Association has made an exhaustive series of tests to determine the effect of impact on railway bridges. The following summary is taken from the Proceedings of Am. Ry. Eng. Assoc., Vol. 12, Part 3.

(I) With track in good condition the chief cause of impact was found to be the unbalanced drivers of the locomotive. Such inequalities of track as existed on the structures tested were of little influence on impact on girder flanges and main truss members of spans exceeding 60 to 75

ft. in length.

(2) When the rate of rotation of the locomotive drivers corresponds to the rate of vibration of the loaded structure, cumulative vibration is caused, which is the principal factor in producing impact in long spans. The speed of the train which produces this cumulative vibration is called the "critical speed." A speed in excess of the critical speed, as well as a speed below the critical speed, will cause vibrations of less amplitude than those caused at or near the critical speed.

(3) The longer the span length the slower is the critical speed and therefore the maximum

impact on long spans will occur at slower speeds than on short spans.

(4) For short spans, such that the critical speed is not reached by the moving train, the impact percentage tends to be constant so far as the effect of counterbalance is concerned, but the effect of rough track and wheels becomes of greater importance for such spans.

(5) The impact as determined by extensometer measurements on flanges and chord members of trusses is somewhat greater than the percentages determined from measurements of deflection,

but both values follow the same general law.

(6) The maximum impact on web members (excepting hip verticals) occurs under the same conditions which cause maximum impact on chord members, and the percentages of impact for the two classes of members are practically the same.

(7) The impact on stringers is about the same as on plate girder spans of the same length and the impact on floorbeams and hip verticals is about the same as on plate girders of a span

equal to two panels.

(8) The maximum impact percentage as determined by these tests is closely given by the formula

$$I = \frac{100}{1 + \frac{l^2}{20,000}} \tag{7}$$

in which I = impact percentage and l = span length in feet.

(9) The effect of differences of design was most noticeable with respect to differences in the bridge floors. An elastic floor, such as furnished by long ties supported on widely spaced stringers, or a ballasted floor, gave smoother curves than were obtained with more rigid floors. The results clearly indicated a cushioning effect with respect to impact due to open joints, rough wheels and similar causes. This cushioning effect was noticed on stringers, hip verticals and short span girders.

(10) The effect of design upon impact percentage for main truss members was not sufficiently marked to enable conclusions to be drawn. The impact percentage here considered refers to variations in the axial stresses in the members, and does not relate to vibrations of members

themselves.

(11) The impact due to the rapid application of a load, assuming smooth track and balanced loads, is found to be from both theoretical and experimental grounds, of no practical importance.

(12) The impact caused by balanced compound and electric locomotives was very small and

the vibrations caused under the loads were not cumulative.

(13) The effect of rough and flat wheels was distinctly noticeable on floorbeams, but not on truss members. Large impact was, however, caused in several cases by heavily loaded freight cars moving at high speeds.

TABLE III.

MAXIMUM MOMENTS, M; END SHEARS, S; AND FLOORBEAM REACTIONS, R; PER RAIL, FOR GIRDERS.

Cooper's E60 Loading (A. R. E. A.).

Loading Two E 60 Engines and Train Load of 6,000 Pounds per Foot or Special Loading Two 75,000 Pound Axle Loads 7 Ft. C. to C.

Moments in Thousands of Foot-Pounds. Shears and Floorbeam Reactions in Thousands of Pounds.

Results for One Rail. Results from Special Loading marked*. A. R. E. A. Impact Formula.

	results for	One rus		Suits II	om Speciai	Dodding ii	iaike		E. A. In	ipact I	ormula,
Span L, Ft.	Maximum Moments M.	Moment Impact M'.	End Shear S.	End Shear Impact S'.	Floorbeam Reaction R.	Floorbeam Impact R'.	Span L, Ft.	Maximum Moments M.	Moment Impact M'.	End Shear S.	End Shear Impact S'.
5	* 46.9	* 46.1	*37-5	*36.9	*37.5	*36.3	50	1426.3	1222.6	130.8	112.1
5	* 56.2	* 55.1	*37.5	*36.8	40.0	38.5	51	1474.7	1260.4	132.5	113.2
7	* 65.6	* 64.2	38.6	37.7	47.1	45.0	52	1522.8	1297.8	134.1	114.3
8	* 75.0	* 73.0	*42.2	*41.2	52.5	49.8	53	1571.0	1335.1	135.7	115.3
9	* 84.4	* 82.0	*45.8	*44.5	56.7	53.5	54	1621.5	1374.2	137.4	116.4
10	* 93-7	* 90.7	*48.8	*47.2	60.0	56.3	55	1675.2	1415.7	139.0	117.5
11	*103.0	* 99.5	*51.1	*49.3	65.5	61.0	56	1728.0	1456.7	140.6	118.5
12	120.0	115.4	*53.2	*51.1	70.0	64.8	57	1781.9	1497-4	142.2	119.5
13	142.5	136.6	55.4	53.1	73.9	68.0	58	1834.5	1537.4	143.8	120.5
14	165.0	157.6	57.8	55.2	78.2	71.5	59	1891.4	1580.6	145.4	121.5
15	187.5	178.6	60.0	57.2	82.0	74-5	60	1949.4	1624.5	147.0	122.5
16	210.0	199.3	63.8	60.6	85.3	77.I	61	2007.5	1668.3	148.6	123.5
17	232.5	220.0	67.1	63.5	88.2	79.2	62	2064.3	1710.8	150.2	124.5
18	255.0	240.5	70.0	66.0	91.0	81.3	63	2123.4	1754.9	152.0	125.6
19	280.0	263.2	72.6	68.3	94.3	83.7	64	2183.3	1799.4	153.8	126.8
20	309.5	290.5	75.0	70.3	98.3	86.7	65	2246.3	1846.3	155.7	128.0
21	339.0	316.8	77.1	72.I	101.9	89.4	66	2309.3	1893.0	157.5	129.1
22	368.5	343.3	79.1	73.7	105.2	91.7	67	2378.3	1943.2	159.6	130.5
23	398.2	369.8	80.9	75.1	108.2	93.8	68	2435.4	1985.3	161.7 163.8	131.8
24	427.8	396.1	83.1	76.9	110.9	95.6	96	2498.4	2031.2		133.2
25	457.5	422.3	85.2	78.6	113.5	97.3	70	2561.3	2076.8	165.8	134.4
26	487.2	448.3	87.1	80.2	116.6	99.4	71	2624.5 2688.0	2122.2	167.7	135.6
27	516.9	474.2	88.9 90.6	81.6 82.9	120.1	101.8	72	1	2100.0	170.0 172.2	137.1
	548.3 582.0	501.5	-	84.2	123.4	104.0 106.0	73	2750.9 2818.5	2260.7	174.4	139.9
29	-	530.7	92.3				74	2888.6	* 1	176.5	
30	615.8	559.8	94.6	86.0	129.4	107.8	75	2958.0	2310.9 2360.1	170.5	141.2
31	649.3 683.2	588.5 617.3	96.6 98.6	87.5 89.1	132.7 136.5	110.0 112.5	76	3028.6	2410.0	180.6	142.5
32	716.9	645.8	100.4	90.5	140.0	114.8	77 78	3096.6	2457.6	182.5	144.8
33	750.6	674.2	102.1	91.7	143.2	116.7	79	3168.2	2507.8	184.4	146.0
	784.5		103.8		146.4	118.7	80	3240.7	2558.5	186.3	147.1
35 36	823.0	702.5 734.9	103.8	93.0 94.6	140.4	120.4	81	3311.4	2607.4	188.4	148.4
37	861.6	767.0	107.8	96.0	152.2	120.4	82	3385.1	2658.4	190.4	149.5
38	900.0	798.8	109.7	97.4	155.6	124.2	83	3459.6	2709.8	192.3	150.6
39	940.0	831.8	111.4	98.6	158.8	126.0	84	3534.6	2761.4	194.2	151.7
40	983.4	867.7	113.1	99.8	162.0	127.9	85	3610.4	2813.3	196.1	152.8
41	1027.0	903.5	115.2	101.3	10410	/-9	86	3689.4	2867.4	198.1	154.0
42	1070.4	938.9	117.2	102.8			87	3766.5	2919.8	200.1	155.1
43	1113.9	974.2	119.0	104.1			88	3846.0	2973.7	202.I	156.3
44	1157.4	1009.4	120.8	105.3			89	3924.3	3026.5	204.0	157.3
45	1201.1	1044.4	122.5	106.5	Viaduct		90	4005.8	3081.4	205.8	158.3
46	1244.4	1078.9	124.2	107.7	Span		91	4084.4	3133.8	207.7	159.4
47	1287.9	1113.4	125.9	108.8	30'-60'		92	4164.0	3186.7	209.7	160.5
48	1331.4	1147.8	127.5	109.9	179.2		93	4246.6	3241.6	211.6	161.5
49	1378.3	1184.8	129.2	111.1			94	4328.0	3295.4	213.5	162.6
_											

TABLE III.—Continued.

MAXIMUM MOMENTS, M; END SHEARS, S; AND FLOORBEAM REACTIONS, R; PER RAIL, FOR GIRDERS.

Cooper's E60 Loading (A. R. E. A.).

Span L, Ft.	Maximum Moments M.	Moment Impact, M'.	End Shear S.	End Shear Impact S'.	Floorbeam Reaction R.	Floorbeam Impact R'.	Span L, Ft.	Maximum Moments M.	Moment Impact M'.	End Shear S.	End Shear Impact S'.
95 96 97 98 99 100 101 102 103 104 105 106 107 108	4408.4 4490.7 4573.5 4659.8 4743.8 4830.0 4916.9 5004.0 5115.5 5212.8 5306.5 5401.3 5499.2 5617.0 5727.6	3348.2 3402.0 3456.0 3512.4 3566.7 3622.5 3678.5 3734.4 3808.1 3870.9 3930.7 3991.1 4053.4 4130.1 4201.1	215.4 217.2 219.2 221.2 223.1 225.0 226.8 228.6 230.4 232.3 234.1 235.9 237.7 237.7 239.4 241.2	163.6 164.5 165.6 166.7 167.7 168.8 169.7 170.6 171.5 172.5 173.4 174.3 175.0 176.0	Viaduct Span 40'-60' 197.2 Viaduct Span 40'-80' 236.5		110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	5829.6 5937.4 6040.0 6148.2 6258.0 6366.8 6478.0 6586.1 6696.6 6808.3 6921.6 7030.5 7143.8 7260.1 7376.4	4265.5 4333.9 4398.1 4466.0 4534.8 4602.5 4671.6 4738.2 4806.1 4874.7 4944.0 5009.9 5078.5 5148.9 5219.1	243.0 244.8 246.6 248.3 250.0 251.8 253.6 255.3 257.0 258.8 260.5 262.2 264.0 265.7 267.4	177.8 178.7 179.5 180.3 181.2 182.0 182.9 183.6 184.4 185.3 186.1 186.9 187.7 188.4 189.2
		•	•	. ,			125	7495.2	5290.7	269.1	190.0

CALCULATION OF STRESSES.—For the calculation of stresses in railway bridges, see the author's "The Design of Highway Bridges;" Johnson, Bryan & Turneaure's "Framed Structures," Part I; Marburg's "Framed Structures," Part I; Spofford's "Theory of Structures"; or other standard textbook.

Moments, End Shears and Floorbeam Reactions.—The maximum bending moments and end shears, for Cooper's E 60, and A. R. E. A. special loadings, for girders up to 125 ft. span are given in Table III. The maximum moments occur at a point near the center of the girder. Maximum floorbeam reactions are given for stringers up to 40 ft. span. The table also gives the impact stress calculated for A. R. E. A. impact formula (4).

The maximum moments, end shears, quarter-point shears, center shears, and maximum

floorbeam reactions for girders up to 75 ft. span are given in Table IV.

Moment Diagram.—A diagram giving the position of the wheels in Cooper's E loadings that will produce maximum moment in a beam or at a panel point in a truss is given in Table Va. The condition for maximum shear in the first panel is the same as for bending moment at L₁, which value may be obtained from Table Va. Other loadings for maximum shear must be calculated by means of the criterion given above.

A moment diagram for Cooper's E 60 loading is given in Table Vb, and brief instructions

for use of the table are given on the page opposite Table Vb.

Shears in Bridges.—Shears in the panels of the loaded chords of spans with 3 to 9 panels, for Cooper's E 50 loading, are given in Table VI, Table VII, and Table VIII. To obtain the shears for E 60 loading multiply the tabular values by $\frac{6}{5}$. The stresses in the web members of a Pratt truss are equal to the shears \times sec θ , where θ is the angle that each web member makes with a vertical line. The tables were calculated by the McClintic-Marshall Construction Company.

Moments in Bridges.—Bending Moments in beams and girders and at points in the loaded chord of bridges, are given in Table IX and Table X. The bending moments for an E 60 loading

will be equal to the tabular values $\times \frac{6}{5}$.

For example, the bending moment for an E 50 loading, at joint L_1 , in an 8 panel truss of 200-ft. span from Table X, is 6,787 thousand ft.-lb. For an E 60 loading the bending moment at joint L_1 is 6,787 \times 6/5 = 8,145 thousand ft.-lb., which checks the value calculated from Table Vb on the page opposite Table Vb. The tables were calculated by the McClintic-Marshall Construction Company.

Elevated Trestle Span Reactions.—The floorbeam reactions and the maximum reactions of the intermediate and tower spans of elevated railway trestles may be calculated from Table IX

and Table X, as follows:

Required the end reactions for a 40 ft. tower span and an 80 ft. intermediate span. Take a span equal to 40 + 80 = 120 ft., and calculate the bending moment at a point 40 ft. from the left end. In Table IX, take a 6-panel bridge with 20 ft. panels, the bending moment at L_2 is

M = 5,255 thousand ft.-lb. Then the reaction, $R = M \times \frac{40 + 80}{40 \times 80} = M \times 3/80 = 5.255 \times 3/80 = 197.1$ thousand lb. For E 60, $R_1 = R \times 6/5 = 197.1 \times 6/5 = 236.5$ thousand lb., which checks the value in Table III.

TABLE IV.

MAXIMUM END SHEARS, QUARTER-POINT SHEARS, CENTER SHEARS; MAXIMUM MOMENTS, AND FLOORBEAM REACTIONS FOR GIRDERS.

Cooper's E60 Loading (A. R. E. A.).

Moments in Thousands of Foot-Pounds. Shears and Floorbeam Reactions in Thousands of Pounds.

Results for One Rail. Results from Special Loading marked*.

Span L, Ft.	End Shear.	Quarter Point Shear.	Center Shear.	Maximum Moment.	Floorbeam Reaction.	Span L, Ft.	End Shear.	Quarter Point Shear.	Center Shear.	Maximum Moment.
10	*48.8	30.0	*18.8	* 93.7	60.0	45	122.5	75.3	35.2	1201.1
II	*51.1	*32.4	*18.8	*103.0	65.5	46	124.2	76.1	35.6	1244.4
12	*53.2	*34.4	*18.8	120.0	70.0	47	125.9	77.1	36.0	1287.9
13	55.4	*36.0	*18.8	142.5	73.9	48	127.5	78.2	36.3	1331.4
14	57.8	*37.5	19.3	165.0	78.2	49	129.2	79.2	36.8	1378.3
15	60.0	*38.8	*20.0	187.5	82.0	50	130.8	80.2	37.2	1426.3
16	63.8	*39.9	*21.1	210.0	85.3	51	132.5	81.2	37.8	1474.7
17	67.1	41.1	*22.I	232.5	88.2	52	134.1	82.2	38.3	1522.8
18	70.0	42.6	*22.9	255.0	91.0	53	135.7	83.1	38.7	1571.0
19	72.6	43.8	*23.7	280.0	94.3	54	137.4	84.1	39.2	1621.5
20	75.0	45.0	*24.4	309.5	98.3	55	139.0	85.2	39.6	1675.2
21	77.1	47.2	*25.0	339.0	101.9	56	140.6	86.3	40.0	1728.0
22	79.1	49.2	*25.6	368.5	105.2	57	142.2	87.3	40.4	1781.9
23	80.9	50.8	*26.I	398.2	108.2	58	143.8	88.3	40.8	1834.5
24	83.1	52.5	*26.6	427.8	110.9	59	145.4	89.3	41.3	1891.4
25	85.2	54.0	*27.0	457.5	113.5	60	147.0	90.2	41.8	1949.4
26	87.1	55.4	*27.4	487.2	116.6	61	148.6	91.1	42.3	2007.5
27	88.9	56.7	*27.8	516.9	I20.I	62	150.2	92.0	42.8	2064.3
28	90.6	57.9	*28.I	548.3	123.4	63	152.0	92.9	43.2	2123.4
29	92.3	59.0	*28.5	582.0	126.5	64	153.8	93.8	43.7	2183.3
30	94.6	60.0	*28.8	615.8	129.4	65	155.7	94.7	44.1	2246.3
31	96.6	61.2	*29.I	649.3	132.7	66	157.5	95.6	44.6	2309.3
32	98.6	62.4	*29.3	683.2	136.5	67	159.6	96.5	45.0	2378.3
33	100.4	63.6	*29.6	716.9	140.0	68	161.7	97.4	45.4	2435.4
34	102.1	64.7	*29.8	750.6	143.2	69	163.8	98.3	45.7	2498.4
35	103.8	65.7	30.3	784.5		70	165.8	. 99.2	46.2	2561.3
36	105.9	66.7	30.9	823.0	1	71	167.7	100.1	46.6	2624.5
37	107.8	67.5	31.5	861.6		72	170.0	101.0	47.1	2688.0
38	109.7	68.3	32.0	900.0		73	172.2	101.9	47.5	2750.9
39	111.4	69.0	32.5	940.0		74	174.4	102.8	48.0	2818.5
40	113.1	70.2	33.0	983.4		75	176.5	103.6	48.4	2888.6
41	115.2	71.3	33.5	1027.0		1	, ,	3	• •	
42	117.2	72.3	33.9	1070.4						}
43	119.0	73.3	34.4	1113.9				1		
44	120.8	74.3	34.8	1157.4						
44	120.0	74.3	34.0	1157.4						

TABLE Va.

longer one except wheel is over-lined.

jo

Position of Wheels for Maximum Moment; Table Va.

point in a bridge, are given in Table Va. For example in an 8-panel Pratt truss of 200 ft. span, maximum moment at panel point L1, 25 ft. from the left end, occurs with wheel No. 4, at the point; a maximum The wheel loads that will produce maximum moment at a point a given distance from the left end of a beam, or at any loaded panel moment at L_2 occurs with wheel No. 7 at the point; etc.

INSTRUCTIONS FOR USE OF MOMENT TABLE; TABLE Vb.

Line (1) is summation of loads from head of uniform load.

Line (3) is the number of each wheel from wheel No. 1. Line (2) is summation of loads from wheel No. 1.

Line (5) is distance c. to c. of the wheels, in feet. Line (6) is distance of any wheel, or the head of uniform load, from Line (4) is amount of each wheel load in thousand pounds.

wheel No. 1.

Line (7) is distance of any wheel from head of uniform load. Line (8) is summation of moments of all wheels to right of any wheel, including the wheel in question, about head of uniform load.

Lines (9) to (25) are summations of moments of all wheels to left of the stepped line, including wheel on left of value, about the wheel just above the heavy vertical stepped line on each line.

The values to the right of the stepped lines are moments about EXAMPLES.—Problem 1.—Calculate moment of wheels Nos. I the stepped line, including wheel to right of moment value given.

Follow vertical line passing through wheel No. 15 down to stepped line, and follow over to the left on line (12), and find 16,220 thousand ft.-lb. to right of vertical line through wheel No. 1. to 15, inclusive, about wheel No. 15.

Problem 2.—Calculate the moment of wheels Nos. 17, 16, 15, 14,

about wheel No. 13. Follow vertical line passing through wheel No. 13 down to the stepped line, and follow line (14) to right, and to left of the vertical line through wheel No. 17, find 1,281 thousand ft.-lb.

Problem 3.—Given a 200-ft. span, 8 panel Pratt railway bridge. The moments and shears are calculated as follows:

 $R_1 \times 200 = 24,550 + 426 \times 84 + 3 \times 84^2/2 = 79,918$ thousand ft.-lb.; and $R_1 = 354.6$ thousand lb. The moment at L_1 is $M_1 = 354.6 \times 25 -$ Moments.—Panel point L1. From Table Va, there will be a maximum moment at L1 with wheel No. 4 at the joint; and from Taload, and it is also 175 ft. from joint L_1 to the end of the bridge, and there will be 175 - 91 = 84 ft. of uniform load on the bridge. Then, ble Vb, line (7) it is 91 ft. from wheel No. 4 to the end of the uniform 720 = 8,145 thousand ft.-lb.

Shear in Panel L_0L_1 is $S_1 = R_1 - 720/25 = 354.6 - 28.8 = 325.8$ thousand lb. (720 is the moment of wheels Nos. 1, 2, 3, about wheel

	14	8/	89	89	18													L				
	130	17	11	11	17	17												WHEEL DETERMINING MAXIMUM MOMENT			140	2
[120	15	15	15	15	15	15											Mo			The chorter enen is shoot followed by the	
	110	4	14	#	14	14	14	Ħ										NA	59		3	9
	100	13	13	13	13	13	13	13	13									×	LOADINGS	C.M. J. ST. P. RY.	7	244
	30	7/	21	21	21	11	13	13	13	13								Z	2	d.	Follo	
	80	1	*	7/	1/2	12	71	112	11	12	21	Ĺ						9N		57	2	0
l	100	10	01	*	*	1	1	1	×	13	<u> 21</u>	//						N/A	ER	1.4	phe	
	65,	9	0	9	10	10	10	0	13	13	7	1	//					ER	COOPER'S	J.		3
	09	90	80	9	9	9	9	9	12	13	12	1	11	//				DET	0		000	į
	55	7	00	8	90	80	8	80	14	13	12	7	<u>//</u>	11	//			73			,	3
	20	7	~	7	/	7	7	/	14	13	77	21	21	<u>//</u>	13	21		VHE			ort.	
l	45	9	0	9	9	0	9	7	14	13	12	12	75	<u>//</u>	1	13	13	1			sh	Š
l	40	60	W	20	3	3	2	9	9	13	<u>13</u>	71	21	21	21	13	13	21			7.00	2
	35	3	10	50	5	5	2	5	5	13	113	13	7	<u>13</u>	13	13	13	13	1/3			•
	30	A	4	4	4	4	4	4	2	3	13	13	2/	5	71	71	112	21	13	13		
1	25,	4	4	4	4	4	4	4	4	4	4	4	4	4	4	21	71	71	4	4	4	
I	20	~	3	2	3	2	3	3	3	4	4	4	4	4	12	71	21	3	1	4	4	ŀ
I	15	20	3	М	2	3	3	3	3	3	3	2	3	2	12	12	112	2	3	3	3	1
[10	2	2	7	3	3	3	ы	3	3	3	3	3	w	12	21	12	2	10	3	2	ľ
	Spans	300' to 260'	250' 70 200'	190' to 150'	140'	130'	120'	,011	,001	90,	80'	70,	,99	,09	55,	20,	45'	40,	35'	30'	25'	

TABLE Vb.

LOADING.
E60
COOPER'S
FOR
r TABLE FO
MOMENT

		Uniform Load 3000 #per lin. ft.																						
		.47	12	1601	5	37.5																		
	39 195	689	5,	104"	10,	5362	37.5	5.76	33/5	624	1326	9981	2556	3596	4980									
			9	T	,01 ,91	5.76 53.62 37.5	3/2	111	117	3/2	8385 1326	182	873	0292	1044							· 7/K	. 7/	l
	58.5	9/8	2, (32	21'	1014	624	35/55	3.76	5.16	4485	9981 1821 5561	820.5 1288.5 1873 2556	9335 2620 3396	2484 32055 4044 4980						1007	NE A	Y.	
	3675	21 (2))	X.									5 12		4 3%					15	PER	0,6	747	
	20.00		9	88	30'	1914	1374	952	218	270	175.5	423	820.	1368	248					DING	782	05 F	727	
DING.	8 348	400	25	15/	35'	5962	2775	289	880,	069	150	051	450	006	0981				MOMENT TABLE	707	2000	YOU'N	CUNI	
LOA	8 5/8	50 30	3	77	40,	7917	2525	2580	1808	097	450	051	150	450 900	0211				7	09-	5 + 6	1007	2	
00	897		3	69	45'	22/4	1524	7599	1829	086	900 450 150	450 150 150	150 150 450	150	630 1170 1860				MEN	5,2 7	VGINE	1000	S	
MOMENT LABLE FOR COOPER'S EGO LOADING.	861	1 (2)	 00	56' 64' 69' 74' 79'	53' 45' 40' 35'	6310 5514 4164 2965	5240 4524 3525 2275	4280 3632 2580 1682	3230 2678 1808 1088	2460 1980 1260 690	1245	021	345	021	240				MO	COOPER'S E-60 LOADING	IWO 215 TON ENGINES + 6000 LBS. PER FOOT.	MOMENT IN THOUSAND FOOT POUNDS FOR UNE KAIL	LVAUS IN INCUSANDS OF FOUNDS FOR ONE KAIL.	
	213	0 (2))	¥	4)	-			-	<u> </u>	-	_	_	7	2				1	3	15/1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	120	
FOR		7	ão	561	,19	7500	6340	2570	4110	5240	1850	1221	755	452	156						NO	ENT	5 13	
ABLE	291 271:5 252 232:5 54:5 174 193:5 215	e (2)	2	100				260	060	6200 5110 4120 5240	059		29	842	39.5	37.5	I			,	7	MOM	T041	
LNS	5 252 3	8 (2))	1/2	,99 ,21 ,21	8 06	10240 8830 7530	70 6	7370 6/80 5090	0 4	4290 3370 2550	55 18	21 58	88	1248 780 4095		7	l					4	
VIOM:	27/2	1 (88))	A	7 /2	101 00	10 88	02 75	0/9	119 00	35	0 25.	181	130	8 78	512 479	5 117	5	ì					
,	291 271:	98	5	3		9//		889	-			33/	192	66/			33/.5	97.5	L	ı				
			16	321	,98	0628 06101 06911 072\$1	0192	0911	9470	8155	5970	4900 3370 2555 1850	3990 2605 1885 1262	3220 1992 1368	2240	1374	932	815	270					
		N (3)	ì	37	,/6		1 052	069					029	1			28		06	00	ı			
	351	4 3	1	81.	6,9	2/ 088	380 15	170 13.	111 02	00/00	80 78	10 6	200 5	130 46	570 3	22 529	91 08	01 80	9 09	50 12	0.0	I		
	381	N (2)	1	3/ /2	101, 36,	24550 22910 19880 17000	22420 20860 17980 15250 12670	20380 18900 16170 13590 11160 8880 7570 6360 5270	18060 16670 14120 11720	16220 14900 12500 10250	13090 11910 9780 7800	11500 10400 8410 6580	10060 9030 7200 5520	7810 6130 4600	6110 4670 3380	5240 4524 3325 2275	4280 3632 2580 1682	3230 2678 1808 1088	069 0921 0861	900 450 150	450 150	150	1	
	411	2000		X		22 05	20 20.	18	19/ 0	0 14	011	0 102	16 0.	\vdash		0 45	9 36	0 26	6/					
	20 00	. (2)	8	8	109'	5455	2242	2038	1806	1622	1309	1150	1006	8770	6950	524	4281	323	2460	1245	720	345	120	
	1 426	3 /	5	9	7	8	9	01	//	12	13.	14	15	9/	17	18	61	20	12	22	23	24	25	
																						L		

TABLE VI.

MAXIMUM SHEARS IN TRUSS BRIDGES FOR COOPER'S E50 LOADING.

SHEARS FOR THROUGH SPANS COOPER'S E-50 LOADING

Shears in Thousands of Pounds For One Rail

Number									-						
OF							len	oth o	F Pai	nel					
Panels	Panels						20//	9111 0	, , 0,	,0,					
in		/-//	10/0//	/-//	10/01/	/ . //	/ .//	1 / . #	10/0//	10/08	10/00	1-10/1	10/4	10/01/	10/01/
Bridge		12'0"	12'6"	13'0"	136"	14'0"	14'6"	150"	15'6"	16'0"	16'6"	17'0"	17'6"	18'0"	18'6"
3	LoLi	51.6	530	54.3	55.9	57.4	58.7	60.0	61.5	63.0	64.3	65.6	66.9	68.2	69.5
	LoL,	71.6	73.6	75.5	77.6	79.6	81.6	83.6	85.5	87.3	89.0	90.6	92.6	94.5	96.4
4	LILZ	344	35.6	36.7	37.7	38.6	39.6	40.6	41.7	42.7	43.9	45.0	46.1	47.2	48.3
	L2L3	7.9	8.4	8.9	9.4	9.8	10.3	10-7	11.2	11.7	12-2	12.7	13.1	13.5	13.9
	LoL,	89.2	9/-4	93.6	96.4	99.2	102.3	105.4	108.6	111.8	115.1	118.3	121.5	124.6	127.5
5	L, L2	53.8	55.5	57.1	58.7	60.3	61.9	63:4	64.8	66.2	67.7	69.1	70.8	72.4	74.0
	L2 L3	25.9	26.9	27.8	28.7	29.5	30.4	31.2	32.0	32.8	33.6	34.3	35.1	35.8	36.6
	LoLi	106.7	110.5	114.3	118-7	123.1	127.1	131.0	134.9	138-8	142.7	146.5	150.2	153.8	157.5
6	LILZ	72.1	74.2	76.3	78.7	79.8	82.2	84.6	86.9	90.1	93.0	95.8	98.5	101.1	103.6
0	Lz L3	43.4	44.9	46.3	47.7	49.1	50.4	51.7	52.9	540	55.3	56.5	57.6	58.6	59.7
1 1	L3L4	20.2	21.1	21.9	22.6	23.3	24.1	24.8	25.6	26.3	27.0	27.6	28-3	28.9	29.6
	·LoLi	127.5	132.0	136.5	141.4	146.2	150.9	155.5	160.1	164.6	169.0	173:3	177.5	181.6	185.7
	LILZ	89.0	92.0	95.0	98.8	102.6	106.1	109.6	113.0	116.4	119.7	1231	126:4	1296	132.8
7 1	L2 L3	59.6	62.0	64.3	65.9	67.4	69.3	7/./	73.1	75.0	77.4	79.7	82.1	844	86.6
	L3L4	36.1	37.4	38.6	39.8	41.0	42.2	43:4	44.4	45.4	46.5	47.5	48.5	49.4	50.4
	LALS	16.1	16.9	17.7	18.4	19.0	19.7	20.3	21.0	21.6	22.2	22.8	23:4	24.0	24.6
	LoL,	147.2	1523	157:4	162.9	168.4	173.6	178.8	183.8	1887	193.6	198.4	2031	207.8	212.5
	L162	108.4	112.6	116.7	121.0	1253	129.5	133.7	137.8	141-8	145.7	149.5	153:2	156.9	160.5
8	LzL3	76.8	79.5	82.2	85.0	87.8	90.9	93.9	96.8	99.6	102.6	105-6	108.5	111.4	114.2
0	L3 L4	52.0	53.7	55.3	56.7	58.1	59.8	61.4	63.1	64.8	66.7	68.5	70.4	72.2	740
	L4 L5	30.5	31.7	32.8	33.9	35.0	36.1	37.1	38.0	38.9	39.9	40.9	41.7	42.5	43:4
	L5 L6	13./	13.8	14.5	15.1	15.7	16.4	17.0	17.6	18.1	18.7	19.2	19.8	20.3	20.8
	LoLI	166.4	172.0	177.6	183.5	189.4	1951	200.9	206:4		217.5	222.7	228.0	233.2	238:4
	LILZ	128.2	132.9	137.5	142.5	147.4	152.1	156.8	161.3	165.7	170-1	174.5	178.8	183.0	1872
	L2L3	95.4	99.2	102.9	106.4	109.8	112.9	116.6	120.4	124.1	127.6	131.0	1344	137.7	141.0
9	L3L4	67.4	69.8	72.2	74.8	77.3	80.1	82.7	85-2	87.6	90.1	92.5	94.9	97.3	99.9
	L4L5	45.3	46.8	48.3	49.6	50.8	52.4	53.8	55:4	56-9	58.6	60-2	61.9	63-5	65.3
	L5L6	26.2	27.3	28.3	29.3	30.3	31.3	32.3	331	33.9	34-8	35.7	36:5	37.2	38.0
	L5L6	16.7	61.5	28.5	19.5	20.5	21.5	26.3	227	33.9	34.8	55.1	365	31.6	30

TABLE VII.

MAXIMUM SHEARS IN TRUSS BRIDGES FOR COOPER'S E50 LOADING.

SHEARS FOR THROUGH SPANS COOPER'S E-50 LOADING

Shears in Thousands of Pounds for One Rail.

Number of Panels in	Panels						Leng	gth o	F Pai	nel					-
Bridge		190"	19'6"	200"	206"	210"	21'6"	22'0"	22'6"	23'0"	23'6"	24'0"	24'6"	250"	25'6"
3	LoLi	70.8	72.0	73.2											
	LoL,	98.2	100.7	103.0	105.6	108.2	110.7	113.2	115.5	1/7.7	120.0	122.2	1244	1265	128.7
4	LILZ	49-3	50-3	51.3	52.2	53:/	54.0	54.9	55.8	56.7	574	58.2	59.0	59.7	60.5
	L2L3	14.3	14.7	15.0	15.3	15.6	15.9	16.2	16.5	16.7	17.0	17.2	17.5	17.8	18-1
	LoLi	130.4	133:5	136.6	139.8	1429	146.0	149.0	152.0	1549	157.8	160.5	163:3	166.0	168.8
5	LILZ	75.6	77.4	79.1	80.9	82.6	84:4	86.1	88.0	89.9	91.7	93.5	95.1	96.6	98.3
	L2L3	37.3	38.1	38.8	39.6	40.3	40.9	41.6	42.3	42.9	43.7	44.3	45.0	45.5	46.3
	LoL,	161.1	164.6	168.1	171.7	1752	178.8	182.3	185.8	189.2	192.6	195.9	199.2	2025	2059
6	L162	106.1	108.6	111.0	1/3.6	116.0	118.5	120.8	123.2	1254	127.9	130.1	132:4	1345	136.8
0	L2L3	60.7	62.1	63.5	65:1	66.6	68.2	69.6	71.3	72.9	74.5	75.9	77.4	78.6	80-2
	L3L4	30-2	30-8	31.4	32.1	32.8	33.4	34.0	34.5	35.0	35.5	36.0	36.6	37.1	37.6
	LoLI	189.7	193.9	197-8	201.7	205:5	209.6	213.7	2/7.9	221-8	2258	229.7	233·6	237.4	2414
	LILZ	135.9	139.0	142-0	145.0	147.9	150-9	153.7	156.1	159.3	162:1	164.8	167.6	170-3	173-2
7	1213	88.8	91.0	93.1	95:4	97.5	99.6	101.6	103.8	105.8	107.9	109.8	111-8	113.6	115.6
	L3L4	51.3	52.4	53.4	54.5	55.5	56.7	57.8	59.3	60.6	62.1	63.4	64.7	65.8	67.1
	L4L5	25.1	25.7	26.3	26.9	27.4	28.0	28.5	29.0	29.4	29.9	303	30.8	31.3	31.8
	LoLi	217.1	221.7	2263	2308	2352	239.9	2443	248.9	253:4	258-0	262.5	267:1	271.5	276.0
	LILZ	164./	167-7	171.3	174.8	178-2	181.7	1850	188.4	191.7	195.1	198.3	201.7	2049	208:3
8	L2L3	117.0	119.8	1225	1251	1276	1305	132-9	135.4		140-3	142.7	145.2	147.5	150.0
0	L3L4	75.8	77.8	79-8	81.7	83.6	85.5	87.3	89.2	91.0	92.8	94.5	96.3	98.0	99.8
	L4L5	44.2	45.2	46.1	47.1	48.0	49.0	49.9	51.0	52.1	53./	54.1	55.3	56:4	57.4
	L5 L6	21.3	21.9	22.4	229	23:4	23.9	24:4	24.9	25.3	25.7	26.0	26.5	26.9	27.3
	LoLi	2436	248-8	253.9		2640	2692	2742			289-7	<i>794</i> ·9	299.9	3049	310-0
	LILZ	191.4	195.4	199.5	203.5	207.5	211.5		219.4		227.2	231.0	234.9	238-8	242.8
9	L2L3	1442	147.4	1506	153.8	156.9	160.0		166.0	169.0	172.0	1750	177.9	180-8	183.8
	L3L4	102.4	104.9	107.3	109.7	112.0	1143	116.6	118.9	121.1	1234	125.5	127.8	129.9	132.0
	LAL5	67.0	68.6	70-1	71.7	73:3	74.9	76.4	78.0	79.5	81.2	82.8	84:3	85.8	87.4
	LoLo	38.7	39.6	404	41.3	42-1	43-0	43.9	44.9	45.8	46.7	47.6	48.6	49.6	50.6

TABLE VIII.

MAXIMUM SHEARS IN TRUSS BRIDGES FOR COOPER'S E50 LOADING.

SHEARS FOR THROUGH SPANS COOPER'S E.50 LOADING

Shears in Thousands of Pounds For One Rail.

Number oF Panels in	Panels	-					Leng	gth o	oF Pai	ne/					
Bridge		26-0"	26-6"	27:0"	27-6"	28-0"	28-6"	29.0"	29-6"	3000	31-0"	32-0"	33.0	34.0"	350
3	LoL,														
	LoL,	130-9	133.1	135.2	137-3	139.3	141.5	143.6	145.8	147.9					
4	LILZ	61.3	62.1	62.9	63.8	64.6	65.6	66.5	67.4	68.3					
	L2L3	18.4	18.6	18.9	19.1	19.3	19.6	19.8	20.1	20-3					
	LoL,	171.4	174.1	176.7	1794	181.9	184:5	187.0	189.6	192.0	197-1	2024	207.5	212.6	217.6
5	LILZ	100.1	101.9	103.6	105:4	107.1	108.9	110.6	112.3	1/4.0	117.3	120.3	123.5	126.5	129.5
	L2 L3	46.9	47.7	48.3	49.0	49-6.	50.5	51.3	52.1	52.8	54.3	55.8	57.3	59.1	60.8
	LoL,	209.0	212.2	215.4	218.6	221.8	2249	228.0	231-1	234.2	240-3	246.6	252-8	259.1	2653
6	LILZ	139.0	141.3	143:5	145.8	148.0	150-3	152.4	154.6	156.7	160.8	165.1	169.3	173.3	177.3
0	LzL3	81.5	83.0	84.3	85.7	87.0	88.4	89.6	91.1	92.4	95.0	97.5	1000	102.5	105.1
	L3L4	38.1	38.6	39.1	39.6	40.0	40.5	41.0	41.7	42.4	43.6	45.1	46.3	47.8	49.3
	LoL,	245.2	249.1	252.8	256.6	2604	264.1	267-7	271.4	275.0	282.3	289-6	297.1	3046	312.0
	L162	175.9	178.8	181.5	184.4	187.0	189.9	192.5	195.4	197-9	2033	208.5	213.8	218.8	2240
7	L2 L3	117.4	119.3	121.1	123.0	124.8	126.6	128.3	130-2	131.9	1353	138.8	142.5	146.0	149.6
	L3L4	68.3	69.6	70-8	72.0	73.1	74.3	75.4	76.7	77.8	80-1	82.4	84.5	86.6	88-8
	L4L5	32.1	32.6	33.0	33.5	33.8	34:3	34.6	35.1	35.6	36.5	37.5	38.5	39-8	41.0
	LoL,	280.4	2849	289.2	293.6	2979	3023	3065	310.9	315.0	3235	3320	3406	3493	357.9
	L162	211.6	215.1	218:4	221.8	2250	228-4	231.7	2350	238-2	244.6	251.0	257-3	263-8	270-0
8	LZL3	152.3	1547	157.0	1594	161.7	164.0	166-1	168.5	170.8	175.4	180.1	184-8	189.3	193.9
0	L3L4	101.4	103.1	104.6	106.3	107.9	109.5	111.0	112.6	114:1	117:3	120.3	123.3	126.3	1293
	L4L5	58.4	59.5	60.5	61.6	62.6	63.7	64.8	65.9	66.9	68.9	70-8	72.8	74.8	76.7
	L5L6	27.6	28.0	28.4	28.8	29.1	29.5	29.9	30.4	30.8	31.5	32.5	33.3	34.3	35.2
	LoLi	315.0	320-1	3250	330.0	<i>334.9</i>	339.9	344.7		3545		373.8	383.5	393.5	4033
	LILZ	246.7	250.6	254:5	258.5	262.4	266.3	270-2	2740	277.8	285.4	293.0	300-5	308.0	315.5
9	L2L3	186.7	189.6	192.4	195.3	1980	200.9	203.8	206.7	2095	215:3	221.0	226.8	232.5	238.2
7	L3L4	134.1	136-3	138.4	140.5	142.5	144.6	146.6	148.6	150-6	154.8	158.8	1627	166.6	170.5
	L4L5	88.9	90.4	91.8	93.3	94.8	96.2	97.6	99.0	100.4	103.1	105.8	108.6	111.3	114.0
	LoLo	51.5	52.4	53.3	54.2	55.0	55.9	56.8	57.6	58.4	60.3	62.0	63.8	65.5	67.2

TABLE IX.

MAXIMUM BENDING MOMENTS IN PRATT TRUSS BRIDGES FOR COOPER'S E50 LOADING.

BENDING MOMENTS FOR THROUGH SPANS COOPER'S E.50 LOADING

Moments in Thousands of Foot-Pounds for One Rail.

-0	-/			3	4								
Number Panels	Panel					L	ength o	F Pane	?/				
in Bridge	Point	8-0"	9'-0"	10'-0"	11-0"	12-0"	12-6"	13'-0"	13-6"	14'-0"	14-6"	15-0"	15-6"
3	L,	325	392	464	542	6/9	661	707	755	803	850	900	952
4	L,	433	532	632	743	859	9/8	982	1046	1115	1183	1254	1324
4	Lz	569	681	821	964	1110	1189	1269	1 352	1441	1529	1624	1720
5	Lı	540	662	792	929	1071	1140	1217	1298	1389	1480	1580	1679
	Lz	790	964	1148	1361	1574	1675	1792	1910	2 047	2177	2309	2439
	L	641	783	930	1 095	1280	1375	1485	1600	1724	1840	1964	2089
6	Lz	1008	1166	1465	1710	1997	2 135	2 289	2445	2 616	2 792	2984	3 174
	Lz	1110	1351	1 617	1924	2 240	2407	2581	2760	2 946	3 /38	3 337	3 5 3 8
_	Lı	729	892	1 080	1292	1530	1645	1775	1906	2 047	2 185	2331	2479
7	Lz	1215	1475	1748	2 070	2441	2642	2 849	3 050	3 263	3485	3722	3957
	L3	1425	1739	2086	2465	2879	3100	3 332	3560	3802	4 040	4312	4 595
	L,	8/5	1021	1 254	1500	1766	1900	2047	2200	2358	2516	2680	2 845
8	Lz	1397	1701	2 046	2490	2933	3165	3405	3 645	3 898	4 160	4 436	4 7/0
0	L3	1715	2100	2 529	2991	3498	3775	4078	4 383	4710	5 040	5 380	5 720
	L4	1819	2 240	2 699	3 203	3742	4 025	4 344	4 681	5 034	5 398	5768	6 /47
	L,	922	1163	1418	1698	1997	2 /45	2309	2475	2651	2827	3010	3 195
	Lz	1576	1 955	2 404	2888	3400	3 670	3 946	4 224	45//	4 804	5 107	5420
9	L3	1933	2 435	2986	3 571	4 194	4 531	4 886	5 241	5 616	5 993	6 390	6 790
. 1	4	2127	2 598	3 186	3 860	4 588	4970	5370	5770	6 186	6610	7047	7 485
		16'-0"	16'-6"	17-0"	17-6"	18'-0"	18'-6"	19'-0"	19'-6"	20-0"	20'-6"	21'-0"	2/-6"
3	L,	1008	1060	1115	1170	1228	1285	1346	1404	1464			
4	L,	1396	1463	1539	1614	1701	1776	1868	1958	2061	2 166	2 273	2380
4	Lz	1819	1923	2 029	2134	2 240	2349	2465	2581	2701	2821	2 946	3 074
5	L,	1788	1895	2 009	2123	2 242	2355	2477	2600	2731	2864	3 001	3 /38
2	Lz	2580	2 724	2880	3 030	3 190	3350	3518	3 685	3 943	4 144	4 347	4 555
	L,	2 220	2 351	2488	2626	2769	2910	3 062	3 210	3362	3 5 1 6	3 678	3840
6	Lz	3 372	3 569	3 775	3978	4 194	4415	4650	4 885	5 255	5501	5 750	5998
	L3	3 742	3 952	4170	4 422	4681	4948	5215	5487	5 746	6028	6321	6617
- 1	L,	2633	2786	2945	3104	3268	3 434	3605	3778	3 955	4 130	4317	4505
7	Lz	4203	4450	4 705	4958	5218	5480	5746	6025	6326	6613	6914	7215
	L ₃	4898	5200	5509	5 815	6 135	6460	6 800	7140	7 646	7990	8347	8710
	L,	3018	3 189	3372	3 553	3 74/	3 930	4125	4320	4525	4727	4 9 3 9	5 150
8	Lz	4 994	5 280	5576	5 8 7 3	6 180	6487	6806	7125	7458	7805	8 162	8 5 20
	L3	6 072	6 4 3 0	6.806	7 180	7 573	7985	8369	8 780	9234		10 070	10 515
	L4	6516	6 9/5	733/	7 740	8164	8 5 9 5	9043	9490	9 943	10 396	10 862	11317
	L,	3388	3 582	3 785	3 987	4198	4410	4629	4850	5079	5308	5 545	5780
9	Lz	5747	6074	6414	6 755	7/08	7463	7830	8198	8578	8 970	9378	9790
	L3	7204	7620	8054	8 4 9 6	8 959	94/5	9892	10372	10 880	11 375	11 900	12425
igsquare	4	7966	8460	8 980	9490	10 010	10 530	11 065	11 605	12 172	12 735	13 310	13 880

TABLE X.

MAXIMUM BENDING MOMENTS IN PRATT TRUSS BRIDGES FOR COOPER'S E50 LOADING.

BENDING MOMENTS FOR THROUGH SPANS COOPER'S E-50 LOADING

Moments in Thousands of Foot-Pounds for One Rail •

Lo	L,	L_2		3 .	L4				UIIE	N d l l			
Number Panels	Panel					Le	ngth o	F Pane	/				
in Bridge	Point	22-0"	22-6"	23-0"	23'-6"	24'0"	24'-6"	25-0"	25'6"	26-0"	26-6"	27-0"	27-6"
3	Li												
4	Lı	2490	2 597	2 708	2819	2 933	3 046	3163	3 282	3402	3526	3 649	3774
4	L2	3 205	3 338	3470	3 607	3 743	3883	4 025	4170	4 344	4 501	4 681	4 858
5	41	3278	3418	3 562	3705	3852	3999	4150	4301	4456	4611	4770	4 929
2	L2	4767	4978	5 193	5415	5 640	5865	6 0 9 3	6371	6 552	6 783	7014	7250
	Li	4008	4175	4349	4522	4700	4878	5061	5 245	5433	5622	5816	6010
6	Lz	6 250	6501	6 756	7011	7270	7525	7 794	8 068	8352	8 654	8 960	9 768
	L3	6921	7228	7538	7850	8166	8491	8 821	9 153	9490	9828	10170	10514
_	Li	4702	4897	5100	5303	5512	5721	5936	6 051	6373	6595	6823	7051
7	Lz	7 530	7845	8173	8503	8842	9 182	9530	9875	10 236	10 600	10 980	11357
	L3	9079	9448	9826	10207	10 609	11 017	11444	11870	12312	12 752	13203	13 653
1	L,	5373	5 5 9 4	5829	6061	6300	6540	6787	7035	7289	7540	7806	8069
	Lz	8890	9260	9640	10030	10430	10832	11244	11655	12 080	12508	12950	13392
8	Lz	10993	11475	11976	12472	12981	13490	14 010	14528	15 063	15 605	16 163	16718
	44	11805	12283	12790	13 289	13 795	14300	14 820	15 340			16 965	
	L,	6030	6280	6542	6804	7074	7344	7622	7900	8 188	8477	8774	9070
	12	10 216	10 640	11082	11 525	11 985		12925			_	14888	15400
9	L3		13 535	14 118	14 705	15308	15910	16 528			18414		19 730
			15 068	15 684	16300	16 930		18205		19515			
	L4	14 412	12000	10004			17560	10205	10 000	19 919	20 180	20010	21 931
		28'0"	28'6"	29'0"	29'6"	30'0"	31'0"	32'0"	33'0"	34'0"	35'0"	36'0"	37'0"
3	· L1												
4	· L1	3 900	4031	4165	4300								
4	· L2	5 034	5 215	5398	5580	5 768							
5	· L1	5 092	5 255	5422	5 589	5760	6113	6477	6 849	7229	7617		
	Lz	7492	7736	7984	8 232	8482	8 985		10012	10 591	11.192		
	. 41	6 208	6408	6612	6817	7026	7449	7891	8346	8812	9288		
6	· L2	9580	9897	10 218	10 547	10880	11557	12248	12 978	13728			
	- L3	10862	11 208	11565	11 925	12 296	13 040	13 796	14563	15341	16 145		
7	Lı	7286	7521	7 762	8003	8 250	8 751	9267	9 805	10356	10 920		
7	L2	11 742	12125	12 520	12918	13 330	14 164	15016	15 894	16 810	17755		
	L3	14 112	14571	15.039	15 507	15984	16 965	17963	18 9 79	20012	21073	15 144	
	L,	8 3 3 8	8 608	8 887	9165	9450	10 029	10622	11239	11874	12 525	13/90	/3 873
8	- L2	13850	14308	14 780	15 250	15 730	16 721	17732	18 768	19850	20 959	22 092	
	L3	17285	17852	18431	19010	19 600	20812	22 052	23312	24601	25921	27271	28 652
\vdash	L4	18075	18 635	19210	19 795		21 635	22895	24 197	25530	26905	28311	29 726
	Li	9376	9686	9996	10310	10-633	11 289	11962	12656	13376	14 114	14 871	15 644
9	L2	15 930	16 460	17005	17547		19244	20416	21616	22 855	24 144	25425	26 793
	<u>L3</u>	20405	21 080	21770	22461		24 605		27595		30710		33 983
	L4	22 260	22955	23 678	24 405	25 170	26 707	28 282	29 908	31572	33 289	35051	36 826

SHEARS AND MOMENTS IN A PLATE GIRDER BRIDGE.—The maximum shears and moments in an 86 ft. span deck girder railway bridge are shown in Fig. 20. In calculating the maximum live load shears the girder was divided into sections about 7 ft. in length and the maximum shears were calculated as in a truss bridge. The maximum bending moments were also calculated for the same points in the girder. The make-up of the tension flange and the rivet spacing is shown in Fig. 20.

The stress diagram for a 60 ft. span single track deck plate girder bridge is shown in Fig. 21.

FIG. 20. SHEARS AND MOMENTS IN A RAILWAY PLATE GIRDER.

MATERIAL.—Open-hearth carbon steel complying with the specifications of the Am. Ry. Eng. Assoc. as given in the last part of this chapter is commonly used for bridges up to spans of 500 to 550 feet. For spans of more than 500 or 550 feet to about 650 feet carbon and nickel steel are used, or nickel steel alone is used. For spans of 650 to 750 feet nickel steel alone should be used. For an exhaustive discussion of the use of nickel steel in the construction of bridges see article entitled "Nickel Steel for Bridges" by Mr. J. A. L. Waddell, M. Am. Soc. C. E., in Trans. Am. Soc. C. E., Vol. 63, 1909. An excellent discussion of the design of large bridges is given in "Design of Large Bridges with Special Reference to the Quebec Bridge" by Ralph Modjeski, Consulting Engineer, in Journal Franklin Institute, September, 1913.

ALLOWABLE STRESSES.—The allowable stresses on carbon steel as adopted by the Am. Ry. Eng. Assoc. are given in the specifications in the last part of this chapter. Out of 39 railroads in the United States 24 were using the Am. Ry. Eng. Assoc. specifications for allowable unit

stresses in 1913. For additional data on unit stresses, see Table XVI.

ECONOMIC DESIGN OF RAILWAY BRIDGES.—Pin-connected truss bridges have been used for railroads on account of the ease of erection, ease in calculating the stresses, and the simplicity of details which give small secondary stresses. The present practice in railway bridge design is to use plate girders for spans up to about 115 ft., and riveted truss bridges for longer spans; pin-connected bridges being used only for very long spans and for spans of 200 ft. and over where there is some special reason such as ease of erection or low cost. The author would recommend pin-connected truss bridges for all spans of 200 ft. and over for the following reasons:—

(1) the weight of a pin-connected truss bridge with eye-bars is less than the weight of a riveted truss bridge of the same span and capacity, and while the shop cost per pound of pin-connected truss

bridges is slightly higher than for riveted truss bridges, the total cost erected of the structural steel in the pin-connected bridge is less than the steel in the riveted bridge. (2) The pin-connected truss bridge can be erected in less time at a very much less cost than the riveted truss bridge. (3) The secondary stresses in the pin-connected truss bridge are smaller than in the riveted truss bridge and the structure is more efficient. (4) With the present ballasted floors the vibration and impact stresses are no greater in a pin-connected truss bridge than in a riveted truss bridge. Riveted tension members are difficult to design and are expensive of material and labor. Eyebars are ideal tension members in which the material is used efficiently. For the above reasons the author predicts that the pin-connected bridge for spans of 200 ft. and over will regain its place as a standard type of railroad bridge.

The Pratt truss with parallel chords is used for pin-connected spans up to about 250 ft., while riveted truss spans are made with Pratt or Warren trusses; double and triple intersection trusses are also used for riveted trusses. For long span bridges the subdivided Pratt truss with inclined chords (Petit truss) is generally used. The width center to center of trusses should not be less than one-twentieth of the span, and preferably not less than one-eighteenth. The height at the center should be from one-fifth to one-seventh of the span; the Municipal Bridge at St. Louis has a center height of one-sixth of the span. The height at the ends should be only sufficient for an effective portal. The most economical inclination of diagonals is very nearly 40 degrees. so that in a Petit truss the panel length should be about 0.42 times the height. For the most economical web system the panels should vary in length as the depth varies, but this increases the weight of the floor and also increases the shop cost and cost of erection, so that constant panel lengths are commonly used. One railroad specification requires that panel lengths shall not exceed 35 feet. For truss bridges of the Pratt type with two stringers and an open timber floor the present practice is to use a panel length of $22\frac{1}{2}$ to $27\frac{1}{2}$ ft., with 25 ft. as an average. Increasing the length of the panels increases the weight of the floor system, and decreases the weight of the trusses. The economical panel lengths for bridges with ballasted floor is less than for bridges with open timber floor. Riveted truss bridges with triple-intersection web members, Fig. 41, are made with very short panels.

With the increase in the size of the sections in a bridge great care must be taken in detailing to use details that will develop the full strength of the members. Increased details increase the shop cost and for this reason there is a tendency for bridge companies to cut down details and to change details so as to simplify shop work even at the expense of added weight in order to obtain a low pound price. For this reason detail drawings, not necessarily shop drawings, should always be made by the designing engineer. The author has in mind a case where to change the details of a plate girder so that multiple punches might be used required the addition of details equal to 5 per cent of the weight of the span and the addition of 25 per cent to the number of field rivets, with no increase in efficiency. It is needless to say the change was not made.

An empirical rule for calculating the economical depth of plate girder spans is to make the area of the flanges equal to the area of the webs. The actual depths of plate girders are commonly slightly less than the depth given by the above rule. The minimum thickness of $\frac{3}{6}$ inch for plate girder webs should be used only for stringers with short spans, and the thickness of the web should be increased as the span and depth of the girder increases. For the depths and spacing of plate girders designed under Common Standard Specifications 1006, see Table I.

DETAILS OF RAILWAY BRIDGES.—It is very important that the details of railway bridges be worked out with great care. A few standard details will be briefly described.

Sections for Chords and Posts.—Chord sections are shown in (a) to (i) in Fig. 22. Sections (a) and (b) are used for light chords and (c), (d) and (e) for heavy chords. Sections (a) and (d) are also made by turning the angles in, as in section (i). Sections (f) to (i) are used for chord sections, for intermediate posts and for columns. Sections (n) and (p) to (t) are used for column sections. Chord sections, posts and columns with diaphragms or webs at right angles to each other as in (a) to (e), (n), and (p) to (t) give much better results under actual service than laced sections as in (f) to (i) and (o). Sections (j) to (m) and (o) are used for struts and braces.

Floors.—Bridges may have open timber floors as in Fig. 23, or ballasted floors as in Fig. 24, or in Fig. 25. For track elevation and for bridges crossing over streets, buildings, and similar locations and for ballasted floors, the bridge floor is waterproofed and the water falling on the floor is carried to the ground through properly arranged drains.

FIG. 22. Types of Columns and Top Chord Sections.

Details of the standard timber floors used by the Southern Pacific R. R., the Union Pacific R. R. and other Harriman Lines are given in Fig. 23. For additional details of open timber floors see Fig. 1 and Fig. 2, Chapter VII. The American Railway Engineering Association in 1912

recommended that guard timbers be used on all open-floor bridges, also that guard rails be used on all bridges, and that the guard rails should extend at least 50 ft. beyond the end of the bridge. For additional details see Chapter VII, "Timber Bridges and Trestles."

Details of a ballasted floor with a reinforced concrete slab deck, and a ballasted floor with a timber deck, as designed and used by the Chicago, Milwaukee & St. Paul Ry. are given in Fig. 24. The reinforced concrete slabs are made either at the bridge site or at some other convenient location and are hoisted into place after the concrete has gained sufficient strength.

The Chicago, Burlington & Quincy R. R. uses reinforced concrete slabs for a ballasted deck on deck girders that differ from the Chicago, Milwaukee & St. Paul slabs in Fig. 24, in the following details. The reinforced concrete slabs are 14 ft. long in place of 13 ft.; and are 5 ft. wide in place of 3 ft. 7 in. The top of the slabs and the edges of the slabs are painted with tar paint (made of 16 parts coal tar, 4 parts Portland cement, and 3 parts kerosene). The edges of the reinforced concrete slabs are beveled and after the slabs are laid the joint between the slabs is packed with oakum for a depth of I in, at the bottom and the remainder of the joint is filled with I to 3 Portland cement mortar. Where the reinforced concrete deck is placed on a deck girder with cover plates. a strip of No. 22 gage lead 3 in. wider than the cover plate is placed on top of the cover plate and forced down over the rivet heads. After the slabs have been put in place and blocked up to the proper elevation the space between the lead sheet and the slab is filled with I to 3 Portland cement mortar. The minimum thickness of the mortar joint is one inch. Cinders or slag are not used for ballast on reinforced concrete slab decks.

A standard reinforced concrete floor for a through plate girder bridge as designed by the Chicago, Burlington & Quincy R. R. is shown in Fig. 25. The concrete is 1:2:4 Portland cement concrete. The upper surface of the concrete slab is painted with coal tar paint, the same as the deck slabs. Zinc sheets, No. 22 gage and 8 in, wide are placed on the tops of the floorbeams.

A steel plate ballasted floor on a through riveted truss bridge is shown in Fig. 41.

WATERPROOFING BRIDGE FLOORS.—The problem of waterproofing bridge floors is a difficult one and has been worked out in great detail by the engineers of many railroads, and by the American Railway Engineering Association. For a very full discussion of the problem, see the proceedings of the American Railway Engineering Association, especially Volume 14, 1913, and Volume 15, 1914. The following extracts from the report of a committee of the American Railway Engineering Association presented at the annual meeting of the society in March, 1914, are of value.

The methods of waterproofing are stated as follows:-

"The ordinary methods of waterproofing are.

"(1) Coatings: (a) Linseed oil paints and varnishes. (b) Bituminous; asphalt and coal tar.

(c) Liquid hydrocarbons. (d) Miscellaneous compounds. (e) Cement mortar.

"(2) Membranes: Felts and burlaps in combination with various cementing compounds.

"(3) Integrals: (a) Inert fillers. (b) Active fillers.

"(4) Waterlight concrete construction."

The conclusions reached in the report are as follows:-

"(I) Watertight concrete may be obtained by proper design, reinforcing the concrete against cracks due to expansion and contraction, using the proper proportions of cement and graded aggregates to secure the filling of the voids and employing proper workmanship and close supervision.

"(2) Membrane waterproofing, of either asphalt or pure coal tar pitch in connection with felts and burlaps, with proper number of layers, good materials and workmanship and good working conditions, is recommended as good practice for waterproofing masonry, concrete and bridge floors.

"(3) Permanent drainage of bridge floors is essential to secure good results in waterproofing.
"(4) Integral methods of waterproofing concrete have given good results. Special care is required to properly proportion the concrete, mix thoroughly and deposit properly so as to have the void-filling compounds do the required duty; if this is neglected the value of the compound is lost and its waterproofing effect is destroyed. Careful tests should be made to ascertain the proper proportions and effectiveness of such compounds. Integral compounds should be used with caution, ascertaining their chemical action on the concrete as well as their effect on its strength; as a general rule, integral compounds are not to be recommended, since the same results as to watertightness can be obtained by adding a small percentage of cement and properly grading the aggregate.

SECTION OF STANDARD CONCRETE FLOOR 3'-7"

_				
BI	LL O	F MAT	ERIAL	FOR 3'-7" SLAB
	No.	Size	Length	Remarks
	13	3110	12-0"	Bars A"bent in bottom of slab
Bars	7	3 11 11	//'-6"	Straight in top of slab.
8	15	1"0	3'-3"	Longitudinal ·
	8	7 10	10-0"	Stirrup
	2	3 11 11	4'9"	Handling Rods Vo.
	2	2"	1-0"	Fibre Pipes, For all but end slab
	1.92			Cu. Yds. of Concrete

SECTION AT CENTER OF TRACK

Weight of Floor Section-Concrete

Ties $6^{n} \times 8^{n} \times 80^{n}$, 15^{n} ctrs = 115^{n} per lin-ft of track 144 cu-ft Concrete @ 145^{n} = 2090^{n} n n n n n 10.8 cu-ft fravel @ 110^{n} = 1190^{n} n n n n n

Reinforcing Steel = 110^{n} n n n n n $2-100^{n}$ Rails = 65^{n} n n n n

Total = 3570^{n} per lin-ft of track

FIG. 24. STANDARD BALLASTED FLOORS. CHICAGO, MILWAUKEE & St. PAUL RY.

"(5) Surface coatings, such as cement mortar, asphalt or bituminous mastic, if properly applied to masonry reinforced against cracks produced by settlement, expansion and contraction, may be successfully used for waterproofing arches, abutments, retaining walls, reservoirs and similar structures; for important work under high pressure of water these cannot be recommended for all conditions.

Fig. 25. Reinforced Concrete Floor for Through Plate Girder Bridge, C. B. & Q. R. R.

"(6) Surface brush coatings, such as oil paints and varnishes, are not considered reliable or lasting for waterproofing of masonry."

The membrane method of waterproofing bridge floors will be shown by describing the standard methods of waterproofing in use by two railroads.

CHICAGO, MILWAUKEE & ST. PAUL RY. SPECIFICATIONS FOR WATERPROOFING.

The specifications of the Chicago, Milwaukee & St. Paul Ry. for waterproofing are as follows:

The necessary provision for drainage and expansion must be made in designing the structure.

The waterproofing should never be compelled to resist hydrostatic pressure, and the membrane

The waterproofing should never be compelled to resist hydrostatic pressure, and the membrane should always be protected by a layer of concrete.

(I) Preliminary.—Fill all openings and pockets in the concrete except expansion joints

with cement mortar, and round off all sharp corners. Wherever waterproofing stops on a vertical surface the end should be flashed into a groove in the concrete.

(2) Preparing the Surface.—Thoroughly clean and dry the concrete surface using wire brushes and being careful to remove all the laitance. If necessary use hot sand to dry the concrete. Apply a coat of gasolene to the clean dry surface and follow with a coat of cold primer, spreading the primer evenly with a brush. Omit the primer where tar paper is to be placed and over expansion joints.

(3) Laying the Burlap.—After the primer coat has completely dried, apply a coat of pure hot asphalt, and mop until the layer has a thickness of $\frac{1}{8}$ in. While the asphalt is still hot begin laying the burlap. Lay the first strip of burlap transverse to the drainage at the lowest point. Lay the strips shingle fashion, as for tar and gravel roofs, and parallel to the first strip working

up to the summit and exposing one-third of each width of burlap to the weather. Press each strip firmly into the asphalt, then mop well with pure melted asphalt taking care to thoroughly saturate the burlap and to fill all cracks and blow holes. Lap the joints in the strips 6 in. On this three-ply layer of burlap spread a continuous layer of hot asphalt mopping well until a layer of 1 in. is obtained. See (f) Fig. 26.

(4) Summit Joints.—After the work has been brought up to the desired point from both sides, interlap in order the strips which reach across the joint, mopping asphalt between burlap surfaces. Place a strip of burlap along the joint for a closing strip; and complete by laying the

upper in. of asphalt as before described. See (g) Fig. 26.

(5) Longitudinal Joints.—If possible the waterproofing should be laid in one run the full width transverse to the drain slope of the surface to be waterproofed. The ends of the burlan strips should be flashed into recesses in the walls, curbs or parapets as shown in (e) Fig. 26. Where longitudinal joints are necessary cut the burlap long enough to extend 12 in. beyond the primed and asphalted surface of the concrete and use care as the strips are laid that the 12 in, strip is kept free from asphalt. When the succeeding section is to be waterproofed fold back the projecting strips of burlap over the completed waterproofing and bring the new up against the completed portion of the waterproofing, interlapping the projecting ends of the burlap with the new burlap as the work progresses, (f) Fig. 26. On concrete trestle or subway slabs longitudinal joints in the waterproofing should preferably be on the center line of the slabs. If it is necessary to place joints in the waterproofing over joints in the slabs special care should be taken.

(6) Expansion Joints.—Lay two continuous strips of tar paper 36 in. wide over the expansion joint, being careful to see that no asphalt gets between or under the two strips of tar paper. Then mop the top strip with hot asphalt and carry the waterproofing over the top of the paper the

same as if no joint existed. See (b) and (h) Fig. 26.

(7) Concrete Protection.—After the $\frac{1}{8}$ in. layer of asphalt on top of the burlap has become cold, spread a \(\frac{5}{8}\) in layer of concrete evenly over the surface. Then press a layer of expanded metal into the concrete, and cover the metal with a layer of concrete \frac{1}{2} in. thick making the total thickness of the concrete I is in., and trowel the concrete smooth. Protect the concrete from the sun for 24 hours after laying. The joints in the expanded metal should be lapped 6 in. See (d) Fig. 26.

(8) Materials.—Burlap.—The burlap is to be treated 8 oz. open mesh furnished in widths

of 36 in. to 42 in.

Concrete.—The concrete is to be I part Portland cement, 2 parts torpedo sand, and 3 parts stone or gravel that will pass a ½ in. ring.

Mortar.—The mortar is to be I part Portland cement and 2 parts washed torpedo sand.

Primer.—The primer is made by pouring hot asphalt in 80 per cent gasolene until mixture

will spread readily with a brush. Asphalt.—Pure asphalt conforming to accepted specifications is to be used. Before using the asphalt heat it in a suitable kettle to a temperature not exceeding 450° F. The temperature is to be taken with a thermometer. Asphalt heated above 450 degrees F. or giving off yellow fumes is to be discarded as overheated.

Expanded Metal.—The expanded metal is to be equivalent to Northwestern Expanded

Metal Co's. "21 in. No. 16 Regular" expanded metal.

Tar Paper.—The tar paper will be furnished in rolls 36 in. wide.

CHICAGO, BURLINGTON & QUINCY R. R. SPECIFICATIONS FOR WATERPROOF-ING.—The specifications of the Chicago, Burlington & Quincy R. R. for waterproofing are as follows:

(1) Description.—The waterproofing shall consist of a mat of 4-ply of burlap and 1-ply of felt thoroughly saturated and bonded together with waterproofing asphalt and covered with one

inch of sand and asphalt mastic.

(2) Preparing the Surface.—The surface of the concrete shall be smooth, clean and dry. Upon this surface apply a coat of primer, which shall be thin enough to penetrate the concrete and form an anchorage for the waterproofing. No waterproofing shall be done when the temperature

is less than 60 degrees F.

(3) Applying the Burlap.—After the priming coat has dried, a heavy coat of waterproofing asphalt heated to a temperature of 400 degrees F. shall be applied with mops the width of the burlap, and while the asphalt is still hot a layer of burlap shall be bedded in it. The burlap shall be laid just behind the mopping and shall be swept free from folds and pockets with a broom. The surface of the burlap shall be heavily mopped with waterproofing asphalt. Three more ply of burlap shall be laid in the same manner, making a 4-ply burlap mat all thoroughly saturated and bonded together.

The top of the burlap mat shall be heavily mopped with asphalt and one layer of felt saturated with asphalt shall be laid on the burlap and the edges of the felt lapped at least 3 inches and sealed

The top of this felt shall also be mopped with waterproofing asphalt.

(4) Mastic Protection.—The burlap and felt mat shall be covered with one inch of asphalt mastic laid in one layer, the mastic to be composed of one part waterproofing asphalt and four parts fine gravel graded from \(\frac{1}{4}\) in. to fine sand. The top of the mastic shall be leveled off with wooden floats and mopped with waterproofing asphalt.

(5) Expansion Joints.—At all expansion joints in the concrete a fold to allow for the expansion of the structure shall be formed by laying the burlap and felt over a one-inch pipe; the pipe being removed as the mat is being completed.

(6) Splices and Flashing.—Where the work is stopped before being completed at least 3 feet of burlap at the end and one-half the width of the burlap at the side shall be left exposed to form a splice.

Special care shall be taken to seal the waterproofing at the sides and ends of the bridge. The burlap and mastic shall be carried up the parapet walls at the sides and the ends of the burlap shall be concreted into a recess in the walls so that no water can enter. The burlap shall be carried down over the back-walls at the ends of the bridge to cover all construction joints and shall run into a line of tile to facilitate the escape of the water.

(7) Materials.—Burlap.—The burlap is to be 8 oz. open mesh high grade burlap saturated with an asphalt meeting the specifications for waterproofing asphalt. It shall come in rolls which shall be placed on end for shipment and storage, and shall not stick together in the roll.

Felt.—The felt shall be a good quality of wool felt saturated and coated with an asphalt meeting the specifications for waterproofing asphalt. It shall come in rolls which shall be placed on end for shipment and storage, and shall not stick together in the roll. It shall not weigh less than 15 lb. per 100 sq. ft.

Primer.—The primer shall be an asphaltic compound of approved quality and capable of

adhering firmly to the concrete.

Waterproofing Asphalt.—The waterproofing asphalt shall meet the following requirements.

The specific gravity of the asphalt desired shall be greater than 0.95 at 77 degrees F.
 The flowing point shall not be less than 100 degrees F. nor more than 140 degrees F.

3. The flash point shall not be lower than 450 degrees F.

STANDARD METHOD OF WATERPROOFING BRIDGE FLOORS. C. M. & St. P. Ry.

4. The penetration at 80 degrees F. for a period of 30 seconds shall be at least 15 millimeters and must not exceed 20 millimeters. This penetration to be measured with a Vicat needle weighing 300 grams, one end being one millimeter in diameter for a distance of 6 centimeters.

5. When heated to a temperature of 325 degrees F. for 7 hours the loss in weight shall not exceed 2 per cent and the penetration of the residue at 80 degrees F. and for the period of 30 seconds using the same instrument as described above shall not be reduced more than 50 per cent.

6. The total soluble in carbon bisulphide shall not be less than 99 per cent.

7. The total soluble in 88 degree naptha shall not be less than 70 per cent.
8. The total inorganic matter or ash shall not exceed one per cent.

9. Cold Test.

a. A cube of the asphalt one inch on edge shall be soft and malleable at a temperature of zero degrees F.

b. A film of the asphalt having a thickness not less than $\frac{1}{16}$ inch shall be so pliable at zero degrees F. that it can be bent in a radius of 2 inches. The total time consumed in the bending of this film shall not exceed 3 seconds.

10. The asphalt shall not be affected by any of the following solutions, after being immersed in them for a period of 3 days:—(a) a 25 per cent solution of sulphuric acid; (b) a 25 per cent

solution of hydrochloric acid; (c) a 20 per cent solution of ammonia.

FLOORBEAM CONNECTIONS.—The details of floorbeam connections depend upon the clearance, depth of truss, length of panels and type of floor. A standard type of floorbeam connection for a pin-connected truss of 150 ft. span is shown in Fig. 28, and details of the lower lateral connection are shown in Fig. 27. Details of a floorbeam connection for a pin-connected truss with

FIG. 29. Intermediate Floorbeam Connection. A. T. & S. F. Ry.

four stringers is shown in Fig. 29. Details of a floorbeam for a riveted truss bridge are shown in Fig. 40. Details of an end floorbeam are shown in Fig. 40. Details of the standard end floorbeam of the A. T. & S. F. Ry. are shown in Fig. 30. The end floorbeam in Fig. 30 is supported directly on the end pin, and gives a very satisfactory solution of a difficult problem and requires the driving of a minimum number of field rivets.

PEDESTALS AND SHOES.—Details of standard cast steel pedestals and shoes as designed by the Chicago, Milwaukee & St. Paul Ry. are shown in Fig. 31, Fig. 33, and Fig. 34. Details of segmental rollers are shown in Fig. 32, and Fig. 35. Details of expansion bearings for plate girders are shown in Fig. 36, and Fig. 37. Details of a built-up end shoe with circular rollers are shown in Fig. 40. Details of a built-up end shoe and segmental rollers are shown in Fig. 41.

EXAMPLES OF PLATE GIRDERS.—Details of an 85-ft. span single track deck railway plate girder bridge as designed for the Kansas City, Mexico & Orient R. R., by Mr. Ira G. Hedrick, Consulting Engineer, are shown in Fig. 36. The upper flanges are made of four angles

without cover plates, so that the ties may be of uniform thickness and there will be no rivet heads to interfere with placing the ties. The lower flanges are made of angles with cover plates. These plans represent the most modern practice in the design of deck plate girder railway bridges.

FIG. 30. END FLOORBEAM CONNECTION. A. T. & S. F. RY.

Details of a 60-ft. span single track through railway plate girder bridge as designed for the Harriman Lines are shown in Fig. 37. The details of the bearings are shown. Rollers are used for the expansion ends of spans of 75 ft. and over. Data on standard plate girder bridges designed under Common Standard Specifications 1006 are given in Table I.

EXAMPLES OF TRUSS BRIDGES.—The marking diagram for a truss railway bridge is shown in Fig. 38. The lower chord joints are marked L_0 , L_1 , L_2 , etc., while the upper chord joints are marked U_1 , U_2 , etc. In detailing a truss an inside view of the left end of the farther truss is shown; this is marked right as shown. Details of a single track through riveted truss

TYPICAL FIXED END PEDESTAL FOR TRUSSES 100 TO 150 FT. SPAN

Material-Cast Iron. TYPICAL FIXED END PEDESTAL FOR TRUSSES 150 TO 200 FT. SPAN

TYPICAL ROCKER BED DETAILS

FIG. 31. PEDESTALS. CHICAGO, MILWAUKEE & ST. PAUL RY.

FIG. 32. ROLLERS. CHICAGO, MILWAUKEE & St. PAUL RY.

FIG. 33. SHOE DETAILS. CHICAGO, MILWAUKEE & ST. PAUL RY.

FIG. 34. SHOE DETAILS. CHICAGO, MILWAUKEE & ST. PAUL RY.

bridge designed for the Kansas City, Mexico & Orient R. R., by Mr. Ira G. Hedrick, Consulting Engineer, are shown in Fig. 39 and Fig. 40. The end-posts and top chords are made of two 15 inch channels with a cover plate, and the lower chords, the posts and the main ties are made of two channels with the flanges turned in. The total weight of the steel in the span was 303,000 lb.

Fig. 35. Details of Segmental Rollers for Girders. Chicago, Milwaukee & St. Paul Ry.

Details of a double track through riveted truss bridge designed for the Chicago & Northwestern Ry. are given in Fig. 41. The bridge has a span of 170 ft., the trusses are spaced 29 ft. 1 in. centers, and the bridge has a vertical clearance of 22 ft. 6 in. This bridge has trusses with triple intersection webs, and has a ballasted track carried on a steel plate trough floor. This bridge was designed for a dead load of 4,570 lb. per lineal foot for each truss and an E 50 live load. There is a top lateral system of multiple X-bracing made with pairs of angles latticed, and sway bracing of transverse top chord struts and portals.

Detail shop drawings of the end-post of a pin-connected truss bridge are given in Fig. 42, and the detail shop drawings of the end section of the top chord of the same bridge are given in Fig. 43. The standard methods of detailing compression members are shown.

Details of a single track pin-connected truss bridge designed by Mr. Ralph Modjeski for the Northern Pacific R. R. are given in Fig. 44, Fig. 45 and Fig. 46.

SPECIFICATIONS FOR RAILWAY BRIDGES.—To determine the present practice in the design of railway bridges the author has made a study of the latest available specifications. As a basis for comparison the sixteen specifications given in Table XI, were selected as being representative of the best practice. Several other prominent railroads have adopted the specifications of the American Railway Engineering Association, so that the sixteen specifications cover the major part of the railroad mileage in North America. The standard specifications of the Chicago, Milwaukee and St. Paul Ry., the New York, New Haven and Hartford R. R., and the Canadian Society of Civil Engineers, all adopted in 1912, are based on the standard speci-

FIG. 37. THROUGH PLATE GIRDER BRIDGE.

FIG. 38. MARKING DIAGRAM FOR TRUSS BRIDGE.

Longitudinal Floor Section
Fig. 41. Chicago & Northwestern Railway Bridge.

ig. 42. Shop Drawing of End-Post of Pin-Connected Truss.

Fig. 43. Shop Drawing of Top Chord of Pin-Connected Truss.

Fig. 44. Single Track Through Pin-connected Railway Bridge.

Ends of Floor beams to be Faced

\$\frac{3}{4}\sigma \text{ftandard Floor Bolts, one to every} \text{solice in analytimber.}

splice in guard timber.

\$\frac{2}{8}\text{ Std-Hook, one every third tie, to}

each stringer-½"×10" Boat Spikes, one to every tie except at guard timber splices-Cooper's E-50 LoadingNORTHERN PACIFIC RY. STANDARD PLAN 150 FT. THROUGH SPAN. RALPH MODJESKI, ENGINEER.

Fig. 45. Single Track Through Pin-connected Railway Bridge.

BILL OF TRACK MATERIAL FOR ONE SPAN

Material	Nº Regid	Size	Length	Mərk
Cross Ties	122	9"x "	12-0"	
Guard Timber	18	6×8"	20-0"	
Std-FloorBolt	16	3"dia.	1-5%	B·X
Hook Bolts	88	3" dia.	1-44"	C·X
Boat Spikes	228	z dia.	0-10"	

Cooper's E-50 Loading.

Note:- Holes to be punched with \$\frac{3}{4}\text{"diameter} \\
die, and reamed to \$\frac{15}{6}\text{"diameter after assembling.} \\
Rivets to be \$\frac{7}{4}\text{"diameter.} \\
\tag{1}

Total weight of one span including track. bolts and bearings = 315,490 lbs.

NORTHERN PACIFIC RY. STANDARD PLAN 150 FT: THROUGH SPAN.

RALPH MODJESKI, ENGINEER.

Fig. 46. Single Track Through Pin-connected Railway Bridge.

fications of the American Railway Engineering Association; the specifications in each case differing from the specifications of the American Railway Engineering Association only in requirements for clearances, and in minor clauses, and clauses required to cover individual practice, and local conditions of the individual roads.

TABLE XI.

RAILWAY BRIDGE CLEARANCES

Specification	а	a'	Ь	С	d	е	e'	F	F'	1
	22-0"		14-0"	6-0"	10-6"	18-0"		40"		
2. A.T. & S.F. Ry. System, 1902		23-6"	14-0"	7-0"	10:0"		19-10"		4-0"	
3. Baltimore & Ohio, 1904		22-0"	14-0"	6-0"	10-6"		18-0"		4-10"	K-C->1
4-Boston & Maine (In Canada), 1912	ZZ-10"		16-0"	8-0"	13-0"	19-0"		4-0"		Tx-
5. Chi. Mil. & St. P. R. R., 1912	23.0"		15-0"	7-0"	11-0"	19-0"		2-16"		
6. Chi-Rock Island & Pac.R.R., 1906	23-6"		14-0"			18-6"		4-0"		0
7. Common Standard, 1909		24-0"	15-0"	6-0"	11-0"		19-0"		4-0"	
8. Cooper, 1906		21-0"	14-0"				15-10"		2-10"	1 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9. Illinois Central, 1911	22-0"		16-0"	8-0"	11-0"	18-0"		4-0"		-Top d 1825e
10-Kan-City, Mexico & Orient, 1907		23-0"	15-0"	7-0"	11-0"		19-0"		46"	of Rail of Rail
Il-Lehigh Valley, 1911	22.0"		14-0"	6-0"	11-'0"	18-0"		4-0"		For Double Track
12. New York Central 1910	22-0"		15-0"	8-0"	11-10"	15-0"		4-0"		add distance c. to c.
13-New York, New Haven & Hart Ford, (In Canada) 1912	22-0"		16:0"	8-0"	13:0"	18-0"		4-0"		of tracks to above figures b, c, and d
14 Penna-Lines West of Pittsburgh, 1906		21-6"	14-0"	6-0"	10-0"		16-0"		4-0"	
15. National Lines of Mexico, 1907		22-10"	15-0"	6-0"	11-0"		18-0"		4-0"	
16-Canadian Society Civil Engineers, 1912		22-6"	16:0"	7-0"	10-6"		17-16"		3-3"	

FIG. 47. CLEARANCE DIAGRAM.

The present practice is to use the specifications of the American Railway Engineering Association as a basis for specifications and to add such additional clauses as may be necessary to cover the practice of the individual railroad. Several railroads have adopted the specifications of the American Railway Engineering Association and issue supplementary instructions to cover their individual practice; see standards of Chicago, Milwaukee & St. Paul Ry. which follow the A. R. E. A. specifications in this chapter. The specifications of the American Railway Engineering

Association are reprinted in the last part of this chapter. To show the present practice in the design of railway bridges as given in the sixteen different specifications the most important variations from the American Railway Engineering Association Specifications will be briefly discussed. The sections in the specifications of the American Railway Engineering Association will be referred to by number.

§2. Clearances.—The clearances for through single track bridges on tangent are given in Table XI. The clearances on curves differ considerably. Standard formulas for calculating

bridge clearances on curves are as follows:

Nomenclature, Fig. 47:-

D =degree of curve

R = radius of curve, in feet

w = clearance width on tangent

a = mid-ordinate to chord of length A
 b = mid-ordinate to chord of length B

c =mid-ordinate to chord of length L

e = amount of superelevation in feet which is taken up in floor of span

h = height of car or distance from top of upper flange or chord, whichever is least

s = additional clearance required on account of superelevation

G =outside clearance from center line of bridge

H =inside clearance from center line of bridge

Formulas:—
$$a = \frac{A^2}{8R} \text{ (nearly)} = \frac{A^2 \cdot D}{8 \times 5730}$$

$$= .000021817 A^2 \cdot D$$

$$b = .000021817 B^2 \cdot D$$

$$c = .000021817 L^2 \cdot D$$

$$s = \frac{e}{5} \times h = 0.2e \cdot h \text{ (c. to c. rails}$$

$$= 5 \text{ ft. nearly)}$$

$$G = \frac{w}{2} + a - b + \frac{c}{2}$$

$$H = \frac{w}{2} + b + \frac{c}{2} + s$$
For Standard Car
$$A = 80' - 0'' \qquad B = 60' - 0''$$

$$a = 0.1396D$$

$$b = .07854D$$

 $G = \frac{w}{2} + (.06109 + .000010909L^2)D$ $H = \frac{w}{2} + (.07854 + .000010909L^2)D$

 $+ 0.2e \cdot h$

The following specifications indicate the present practice of several railroads.

New York Central Lines.—Single-track through bridges on curves shall have the location of the trusses or girders and the width between clearance lines as shown in Figs. 48 and 49.

Fig. 48.

FIG. 49.

W = lateral clearance from center line of track required by clearance diagram for tangent alinement.

M = middle ordinate of curve for a chord equal to span length.

X = addition for overhang of a car 85 ft. long, with trucks 60 ft. c. to c.; to be taken as one inch for each degree of curve.

Y = addition in inches (on the inside of the curve only) on account of the superelevation of the outer rail, to be taken as follows:

For heights from 15 ft. to 22 ft. above the top of rail; Y = 3 inches per inch of superelevation. For heights from 3 ft. 9 in. to 15 ft. above top of rail; $Y = s \cdot h/5$ (to use with W = 7 ft. 6 in.).

For heights from top of rail to 3 ft. 9 in. above; Y = s(h + 1.5)/4.

superelevation in inches.

h = height above top of rail in feet.

Cooper's Specifications.—The additional clearance for curves is to be as follows: 0.85D = inches on each side; 1.70D = inches between track; where D = degree of curve.

N. Y., N. H. & H. R. R.—The additional clearances on curves will be as follows: 1.00 X D

= inches on each side; 1.75D = inches between tracks, where D = degree of curve. Types of Bridges.—The present practice is to use plate girders for spans up to 110 or 120 ft., riveted trusses for spans of from 100 to 200 or 250 ft., and pin-connected trusses for spans of about 200 ft. and upwards. Riveted truss bridges of 300 and 400 ft. span are not uncommon. The types of bridges and minimum lengths of span as given in twelve specifications are given in

TABLE XII. TYPES OF BRIDGES AND LENGTHS OF SPAN.

Specification		Rolled Beams . Ft.	Plate Girders Ft.	Riveted Trusses Ft.	PinConnected Trusses Ft.
2.A.T.& S.F.Ry.System, 19	902	26 to 34	26 to 106	106 to 150	150 and up
3. Baltimore & Ohio, 19	904	30	30 to 110	100 to 150	150 and up
6. Chi., Rock Island & Pac.R.R., 19	906	19	19 to 110	100 to 200	200 and up
7. Common Standard, 19	909	19	19 to 100	100 to 150	150 and up
8. Cooper, 19	906	20	20 to 120	120 to 150	150 and up
9. Illinois Central, 19	9//	21	21 to 100	100 to 150	150 and up
10- Kansas City, Mexico & Orient, 19	907	20	20 to 100	100 to 250	250 and up
II- Lehigh Valley, 15	9//	25	25 to 110	110 to 160	160 and up
12. New York Central, 19	910	25	25 to 110	110 to 180	180 and up
14-Penna-Lines West of Pittsburgh, 19	906		to 100	100 to 250	250 and up
15 · National Lines of Mexico, 19	907	30	25 to 80	80 to 150	150 and up
17. Department of Railways of Canada, I.	1908	18	18 to 100	100 to 200	200 to 600

§3. Spacing of Trusses.—The present practice is not to put requirements for spacing of trusses, lengths of span, types of bridge, etc., in the specifications but to prepare office standards for the use of engineers and draftsmen. Data on spacing stringers, girders and trusses are given in Table XIII. The spacings for Illinois Central R. R. deck girders are given in Figs. 11, 12 and

13, and of Common Standard Bridges in Table I.

The Chicago, Milwaukee and St. Paul Ry. spaces girders 7 ft. 6 in. west of the Missouri River, and 8 ft. east of the Missouri River. The Northern Pacific R. R. spaces stringers 8 ft. for spans of 150 to 200 ft.; and deck girders 8 ft. for 80 ft. spans.

§5. Ties.—The present practice is to calculate the size of stringers for the specified fiber stress. Fifteen specifications require that the wheel load be considered as carried by three ties, and one specification by four ties. Data on ties are given in Table XIV.

The Illinois Central R. R. uses ties on deck girders as follows:

Deck Spans.	Distance Centers.	Ties.
60 ft. and under	7 ft.	8 in. × 8 in. × 10 ft.
60 ft. to 80 ft.	8 ft.	8 in. × 10 in. × 12 ft.
80 ft. to 100 ft.	9 ft.	10 in. × 10 in. × 12 ft.
100 ft. to 110 ft.	9½ ft.	10 in. × 12 in. × 12 ft.

^{§6.} Dead Loads.—Data on dead loads are given in Table XV.

TABLE XIII.

SPACING OF GIRDERS AND TRUSSES

Sanification		Girders	Trusses	
Specification	Stringers	Deck Girders	Deck	Through
I-American Ry Eng. Assoc., 1910		Span/20	Span/20	Span/20
3-Baltimore & Ohio 1904	6'6"	not less than 6'6"	not less than 10-0"	Span/20
6-Chicago, Rock Island & Pac. R-R , 1906	7-'0"	up to 60 Ft., 7-0" 60 Ft. to 80 Ft., 8'0"	·	Span/20
7-Common Standard, 1909	7-'0"	up to 60 Ft., 7:0" 60 Ft. to 80 Ft., 8:0" 80 Ft. to 100 Ft., 17:0"	100 Ft. to 110 Ft., 10'0" 110 Ft. to 130 Ft., 12'0" 130 Ft. to 150 Ft.,14'0"	
8. Cooper, 1906	6-6"	not less than 6'6"		
9· Illinois Central 1911	4 stringers spaced 2-16"	up to 60 Ft, 7:'0" 60'ft: to80 Ft, 8:'0" 80 Ft: to100 Ft, 9:'0" 100 Ft to110 Ft, 9:'6"	100 Ft to 110 Ft, 10 ¹ 0" 110 Ft to 130 Ft, 12 ¹ 0" 130 Ft to 150 Ft, 14 ¹ 0"	
10-Kans-City, Mexico & Orient, 1907	7-'0"	up to 80 Ft., 7-'0" over 80 Ft., 8-'0"		Span/20
II: Lehigh Vəlley, 1911	6-'6"	up to 75 Ft., 6'6" 75 Ft. to 100 Ft., 7:0" 100 Ft. to125 Ft., 7:6" to 8'0		
12 New York Central, 1910	6-'6"	up to 75 Ft., 6-6" over 75 Ft., 7-6"		Span/15
14-Penna Lines West of Pittsburgh, 1900	6'6", For 4stringers outer pair 7'0", inner pair 3'0"	6 <u>'</u> 6"		
17-Department of Railways of Canada, 1906	8-0"	Single Track, 8-'0" Double Track, 6-'6"	10-0" or 15 Span ·	Span 20

§7. Live Loads.—Data for live loads are given in Table XVI. The type of engine is given in the second column and the weight in thousands of pounds of a single engine without tender is given in the third column; the special loadings and the spacing of the loads are given in the fourth and fifth columns; the impact formulas are given in the sixth column; the allowable tensile stresses are given in the seventh column, and the equivalent loading is given in the last column. The equivalent loading is found by multiplying the loading in the second column by 16,000 and dividing by the allowable tensile strength. The present standard loading on trunk lines is Cooper's E 60 loading.

The C. M. & St. P. Ry. uses E 60 followed by a train load of 7,000 lb. per lineal foot of track on ore roads; while the Duluth & Iron Range R. R. uses E 60 followed by a train load of 8,000 lb.

per lineal foot of track.

In a paper entitled "Rolling Loads on Bridges" published in Bulletin No. 161, Am. Ry. Eng. Assoc., November 1913, Mr. J. E. Greiner, Consulting Engineer, has tabulated the live loads of 39 railroads, including all but one of the roads in Table XVI. Of the 39 roads thirteen are building bridges equal to E 60; four equal to E 57; seven equal to E 55; one equal to E 53; ten equal to E 50; two equal to E 47; one equal to E 45, and one equal to E 65.

Of the 39 roads considered 26 roads use the impact formula of the Am. Ry. Eng. Assoc.;

and 24 roads use a tensile stress of 16,000 lb. per sq. in. The highest tensile stress is 18,000 lb.

TABLE XIV.

DATA ON TIES ON BRIDGES.

	Minimum	Size and Spa	cing of Ties.	Data for De	sign.
Specifications.	Size.	Length.	Maximum Spacing.	Fiber Stress, Lb. per Sq. In.	Impact, Per Cent.
r. Am. Ry. Eng. Assoc.		10 ft.	6 in.	2,000	100
2. A. T. & St. F. R. R.	8 in. × 8 in.	12 ft.	12 in. centers	1,400	none
3. B. & O. R. R	8 in. × 8 in.	9 ft.	6 in.	1,000	none
4. B. & M. R. R		10 ft.	6 in.	2,000	100
5. C. M. & St. P. Ry 6. C. R. I. & P. R. R		10 ft.	6 in.	2,000	100
7. Common Standard			4 in.		
8. Cooper	(6" × 8" flat			1,000	none
9. Illinois Central R. R.				1,500	none
10. K. C., M. & O. R. R.		10 ft.	13 in. centers on edge	2,000	100
11. L. V. R. R					
12. N. Y. Central Lines					
13. N. Y., N. H. & H. R. R.		10 ft.	6 in.	2,000	100
14. Penna. W. of Pitts- burgh.					100
15. Nat. L. of Mexico			4 in.	1,000	none
16. Can. Soc. C. E				1,800	100

TABLE XV.

Data on Dead Loads.

		Weight in Lb.					
Specifications.	Timber.	Ballast.	Concrete.	Rails and Fastenings.	Total Weight of Floor, Lb.		
2. A., T. & S. F. R. R	$4\frac{1}{2}$				Timber Ballasted Deck 1,400		
3. B. & O. R. R	$4\frac{1}{2}$		130	100			
4. B. & M. R. R	$4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	100	150	150			
5. C. M. & St. P. Ry	41/2	100	150	150			
7. Common Standard					500		
8. Cooper	$4\frac{1}{2}$	110			400 min.		
9. Illinois Central R. R	$4\frac{1}{2}$	100	150	100			
	Creosoted 5						
10. K. C., M. & O. R. R					400		
11. Lehigh Valley R. R	$4\frac{1}{2}$		150	170	550		
12. N. Y. Central R. R	41/2	120	150	150	600 .		
13. N. Y., N. H. & H. R. R.	41/2	100	150	150			
14. Penna. W. of Pittsburgh					400		
15. Nat. L. of Mexico	4 .	100		120			
17. Dept. of R. R. of Canada	4				600		

per sq. in. and the lowest is 15,000 lb. per sq. in. Of the 39 roads considered all except one use a concentrated system of engine loadings; one road, the Pennsylvania Lines West of Pittsburgh, uses a uniform load of 5,500 lb. per lineal foot of track and an excess load of 66,000 lb. on one axle; no road is using an equivalent uniform load. For data on the heaviest locomotives in service and the relative stresses due to these locomotives compared with E 50 loading see Table II.

Mr. Greiner's conclusion is that E 50 bridges will safely carry all loads that can be carried

without increasing the present vertical and horizontal clearances.

TABLE XVI. LIVE LOADS FOR RAILWAY BRIDGES.

	Engir	ne.	Specia	l Loads.			
Specification.	Туре.	Weight in 1,000 Lb.	Weight per Track. Two Loads, Lb.	Spacing of Two Loads, Ft.	Impact.	Tensile Unit Stress in Lb.	Equivalent Loading in Terms of Tensile Stress.
2. A., T. & S. F. R. R	Consol. E 50 E 60 E 55 ¹ E 60 ¹	291.0 225.0 270.0 247.5 270.0	60,000 65,000 68,750 75,000	6 7 7	Cooper A. R. E. A. "	16,000 16,000 16,000	E 60 E 50 E 60 E 55 ² E 60 ²
R. R	E 55	247.5	68,750	7	66	16,000	E 55
7. Common Standard 9. Illinois Central	E 55	247.5			Launhardt	$8,500 \left(1 + \frac{\min}{\max}\right)$	E 558
R. R	E 55	247.5			$\frac{LL}{LL + DL}$	16,000	E 554
10. K. C., M. & O. R. R	E 45	202.5	56,250	7	A. R. E. A.	18,000	E 40
R. R	E 60 E 60		75,000 72,000	7½ 7	66	16,000 18,000	E 60 E 53
13. N. Y., N. H. & H. R. R	E 60	270.0	65,000	6	п	16,000	E 60
14. Penna. W. of Pittsburgh	Excess				Launhardt	$7,000\left(1+\frac{\min}{\max}\right)$	E 65
15. Nat. L. of Mex	E 60	270.0	75,000	5	Cooper		E 55

1. C. M. & St. P. Ry. uses E 55 east of the Missouri River and E 60 west.

A uniform train load of 7,000 lb. per lin. ft. on ore roads.
 A uniform train load of 5,000 lb. per lin. ft.
 A uniform train load of 6,000 lb. per lin. ft.

5. Train load of 5,500 lb. per lin. ft. and excess load of 66,000 lb.

§9. Impact.—Ten of the sixteen specifications use the impact coefficient as given in section 9, I = 300/(L + 300). Three specifications follow Cooper's method of using dead load unit stresses equal to twice the live load unit stresses, with different stresses for different members. Two specifications use Launhardt's formula, $P = S\left(1 + \frac{\text{min. stress}}{\text{may stress}}\right)$ where P = allowable unitmax. stress stress, and S = allowable unit stress for live load alone. One specification uses the impact Live Load Stress formula, $I = \frac{1}{\text{Live Load Stress}} + \text{Dead Load Stress}$

In the paper referred to in section 7, Mr. Greiner found that 26 roads used the A. R. E. A. formula for impact.

§10 & 11. Wind Loads.—The wind loads given in the different specifications are variable and space will not permit going into detail. Most of the specifications require that the moving wind load on the loaded chord be considered as applied at 6 or 7 ft. above the top of the rail.

§13. Centrifugal Force.—Five of the sixteen specifications have the same requirement as in section 13. The centrifugal force of a body moving in a circular path is $C = W \cdot V^2/32 \cdot 2R$, where W = weight of live load per lineal foot; V = velocity of train in feet per second, and R = radius of curve in feet. For a speed of $60 - 2\frac{1}{2}D$, C = 0.039W for a 1 degree curve; C = 0.071W for a 2 degree curve; C = 0.117W for a 4 degree curve, and C = 0.143W for a 10 degree 0.071W for a 2 degree curve; C = 0.117W for a 4 degree curve, and C = 0.143W for a 10 degree curve. Five specifications require that the centrifugal force be applied at 5 to $7\frac{1}{2}$ feet above the rail. Two specifications take the centrifugal force as $C = 0.03W \cdot D$, where W = equivalent weight of live load per lineal foot, and D = degree of curve; one takes $C = 0.02W \cdot D$, and two take $C = 0.045W \cdot D$. The K. C. M. & O. R. R. takes $C = W \cdot V^2/32 \cdot 2R$, where W = equivalent weight of live load per lineal foot, V = velocity of train in feet per second (calculated for 50 miles per hour), and R = radius of curve in feet. This gives $C = 0.029W \cdot D$. §14. Unit Stresses.—For a comparison of the tensile unit stresses see Table XVI.

§22. Alternate Stresses.—Four of the sixteen specifications use the same specification as in section 22. Six specifications use Cooper's specification. "All members and their connections shall be designed to resist each kind of stress. Both of the stresses shall, however, be considered as increased by 0.8 of the least of the two stresses." One specification increases each stress by 0.60 of the lesser stress, one by 0.70, and two by 0.75. One specification uses Weyrauch's formula,

 $P = S\left(1 - \frac{\text{min. stress}}{2 \text{ may stress}}\right)$, where P = allowable unit stress for alternate stresses, and S2 max. stress = allowable unit stress for live loads alone.

§26. Net Sections.—Section 26 is standard. In addition the method of calculating the

net area of a riveted tension member is given in several specifications.

Cooper requires that "The rupture of a riveted tension member is to be considered as equally probable, either through a transverse line of rivet holes or through a zigzag line of rivet holes, where the net section does not exceed by 30 per cent the net section along a transverse line."

The Baltimore & Ohio R. R. requires that "The greatest number of rivet holes that can be

cut by a transverse plane, or come within one inch of the plane is to be deducted in calculating

the net section.

The New York Central Lines require that "The net section of riveted members shall be the least area which can be obtained by deducting from the gross sectional area the areas of holes cut by any plane perpendicular to the axis of the member and parts of the areas of other holes on one side of the plane, within a distance of 4 inches, and which are on other gage lines than those of the holes cut by the plane, the parts being determined by the formula: $A(\mathfrak{I}-p/4)$, in which A= the area of the hole, and p= the distance in inches of the center of the hole from the plane."

The Canadian Society of Civil Engineers requires "There shall be deducted from each member

as many rivets as there are gage lines, unless the distance center to center of rivets measured in the diagonal direction is 40 per cent greater than their distance center to center of gage lines."

§29. Plate Girders.—Seven of the sixteen specifications require that plate girders be proportioned either by the moment of inertia of their net section; or by assuming that the flanges are concentrated at their centers of gravity; in which case one-eighth of the gross section of the web, if properly spliced, may be used as flange section. Six specifications require that the bending moment all be taken by the flanges. Two specifications require that the bending moment be taken by the flanges and that one-eighth of the gross section of the web be taken as flange area. One specification requires that plate girders with stiffeners be designed on the assumption that the flanges take all the bending moment, and that for plate girders without stiffeners one-eighth of the web may be considered as flange area.

§30. Compression Flanges.—Two specifications require that the flange angles shall contain at least one-half of the area of the flange. The specifications uniformly require that the com-

pression flange shall have the same gross area as the tension flange.

§36. Counters.—Eight specifications require that counters be stiff members. Eight speci-

fications permit adjustable counters and laterals.

§45. Minimum Angles.—Five specifications give $3\frac{1}{2}'' \times 3'' \times \frac{2}{8}''$ as the minimum angle. Two specifications give $3'' \times 2\frac{1}{2}'' \times \frac{2}{8}''$ as the minimum angle. One specification requires that the vertical leg be not less than $3\frac{1}{2}''$. One specification requires that connection angles for stringers and floorbeams be not less than $4'' \times 4'' \times \frac{5}{8}''$; one specification $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$, and one specification $6'' \times 4'' \times \frac{5}{8}''$.

§59. Expansion.—Six specifications require that provision be made for an expansion of $\frac{1}{8}$ in. for each 10 ft. of span. Five specifications require that provision be made for a range in temperature of 150 degrees F.; one for 180 degrees F. Three specifications require that provision be

made for an expansion of I in. in 100 ft.; one for an expansion of I in. in 70 ft.

§62. Rollers.—Six specifications require that rollers be at least 6 in. in diameter. Five specifications permit rollers 4 in. in diameter. One specification permits rollers 3 in. in diameter. Cooper requires that rollers for spans up to 100 ft. be 4% in., and that the diameter be increased I in. for each 10 ft. increase in span over 100 ft. The New York Central R. R. requires that rollers shall not have a less diameter in inches than 3 + 0.03 (span in feet).

§68. Stringer Connection Angles.—One specification requires that connection angles of stringers and floorbeams be not less than $4'' \times 4'' \times \frac{5}{5}''$; one specification $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$,

and one specification $6'' \times 4'' \times \frac{5}{8}''$.

\$77. Camber of Plate Girders.—Four specifications require that plate girders more than 50 ft. long be cambered $\frac{1}{16}$ in. per 10 ft. of length. Two specifications require a camber of $\frac{1}{1500}$ the span. Two specifications require a camber of $\frac{1}{1000}$ the span. One specification requires a camber of $\frac{1}{8}$ in. per 10 ft. of length, one specification requires a camber of $\frac{1}{16}$ in. per 15 ft. of length. Four specifications do not require that plate girders be cambered.

§79. Web Stiffeners.—Seven specifications have the same specification as given in section 79. Two specifications require that stiffeners be spaced not to exceed depth of girder. The Baltimore & Ohio R. R. requires that stiffeners be spaced not to exceed depth of girder or 6 ft., and that for webs up to 6 ft. 6 in., stiffeners shall be $3\frac{1}{2}$ \times $3\frac{1}{2}$ angles; for webs from 7 ft. to 7 ft. 6 in., stiffeners shall be 5 \times $3\frac{1}{2}$ angles; for webs 8 ft. and over, stiffeners shall be 6 \times \times \times \times \times \times \times angles. The New York Central Lines require that stiffeners be spaced not to exceed depth of girder or 5 ft. 6 in.; near ends of girders the spacing shall not exceed one-half the depth of girder or 3 ft. 6 in.

The New York Central Lines require that stiffeners shall have an outstanding leg not less

than 2 inches plus 10 the depth of the girder.

The Chicago, Milwaukee & St. Paul Ry. requires that stiffeners bearing against $6'' \times 6''$ flange angles shall be $5'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$; and against $8'' \times 8''$ flange angles shall be $6'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$. §81. Camber of Trusses.—Six specifications require full camber as stated in section 81. Six

specifications require that the upper chords be increased $\frac{1}{8}$ in. for each 10 ft. One specification requires that the upper chord be increased $\frac{1}{8}$ in. for each 15 ft. Two specifications require that trusses be cambered 1800 the span. One specification requires that trusses be cambered 1000 the

§82. Rigid Members.—All specifications require that hip verticals and the two end panels of bottom chords (two at each end) be stiff members. The Common Standard specifications (Harriman Lines) require that the bottom chords of bridges of less than 150 ft. span be stiff The Illinois Central R. R. requires that bridges with 6 panels or less shall have stiff The New York Central Lines limit the specification for rigid members to spans lower chords.

less than 300 ft. \$83. Eye-bars.—Nine specifications permit bars to be out of line 1 in. in 16 ft. as in section 83.

One specification permits bars to be out of line I in. in 8 ft.

Miscellaneous.—The following specifications are of interest.

Initial Stress.—Four of the sixteen specifications require that diagonals and struts be designed for an initial stress of 10,000 lb. in each diagonal.

Collision Strut.—Two of the sixteen specifications require collision struts.

Fastening Angles.—Two specifications require that angles must be fastened by both legs. Three specifications require that angles be fastened by both legs or only one leg will be considered effective. One specification requires that 75 per cent of the net area be considered effective where angles are fastened by one leg, and 90 per cent of the net area be considered effective where angles are fastened by both legs.

Calculating Dead Load Stresses.—One specification requires that all the dead load be considered as coming on the loaded chord.

Two specifications require that three-fourths of the dead load be considered as coming on the loaded chord and one-fourth on the unloaded chord. Two specifications require that two-thirds of the dead load be considered as coming on the loaded chord and one-third on the unloaded chord. Two specifications require that the floor load shall be assumed as taken by the loaded chord, and the remainder of the dead load to be divided equally between the chords.

The other specifications do not state where the dead load shall be applied.

Minimum Bar.—Three specifications require that the minimum bar shall have not less than

3 sq. in. cross section. One specification permits a minimum bar 1\frac{1}{4} in. square. One specification requires that an increase of 80 per cent in the live load shall not increase the stress in the counters more than 80 per cent. One specification has a similar clause with 70 per cent variation.

Paint.—The shop coat of paint as required by several specifications is as follows:
The New York Central Lines use red lead paint mixed by the following formula:—100 lb. pure red lead; 4 gallons pure open-kettle-boiled linseed oil; and not to exceed one-half pint of turpentine-japan drier.

The Boston & Maine R. R. and the New York, New Haven & Hartford R. R. use red lead

paint made by mixing 32 lb. of red lead to one gallon of linseed oil.

The A. T. & S. F. Ry. gives steel work a shop coat of linseed oil; while the C. R. I. & P. R. R. uses linseed oil with 10 per cent of lamp black.

The Illinois Central R. R. uses red lead paint for a shop coat.

The Pennsylvania Lines West of Pittsburgh use a shop coat of pure linseed oil.

The Common Standard specifications require a shop coat of red lead.

GENERAL SPECIFICATIONS FOR STEEL RAILWAY BRIDGES.*

American Railway Engineering Association.

Fourth Edition.

STANDARD SPECIFICATIONS.

PART FIRST-DESIGN.

I. GENERAL.

I. Materials.—The material in the superstructure shall be structural steel, except rivets,

and as may be otherwise specified.

2. Clearances.—When alinement is on tangent, clearances shall not be less than shown on the diagram; the height of rail shall, in all cases, be assumed as 6 in. The width shall be increased so as to provide the same minimum clearances on curves for a car 80 ft. long, 14 ft. high, and 60 ft. center to center of trucks, allowance being made for curvature and superelevation of rails.

3. Spacing Trusses.—The width center to center of girders and trusses shall in no case be less than one-twentieth of the effective span, nor less than is necessary to prevent overturning under the assumed lateral loading.

4. Skew Bridges.—Ends of deck plate girders and track stringers of skew bridges at abutments shall be square to the track, unless a ballasted

5. Floors.-Wooden tie floors shall be secured to the stringers and shall be proportioned to carry the maximum wheel load, with 100 per cent impact, distributed over three ties, with fiber stress not to exceed 2,000 lb. per sq. in. Ties shall not be less than 10 ft. in length. They shall be spaced with not more than 6-in. openings; and shall be secured against bunching.

II. LOADS.

6. Dead Load.—The dead load shall consist of the estimated weight of the entire suspended structure. Timber shall be assumed to weigh 4½ lb. per

ft. B. M.; ballast 100 lb. per cu. ft., reinforced concrete 150 lb. per cu. ft., and rails and fastenings, 150 lb. per linear ft. of track.

†7. Live Load.—The live load, for each track, shall consist of two typical engines followed by a uniform load, according to Cooper's series, or a system of loading giving practically equivalent strains. The minimum loading to be Cooper's E-40, and the special loading, the diagram as shown in the following diagrams, that which gives the larger strains to be used.

†8. Heavier Loading.—Heavier loadings shall be proportional to the above diagrams on the

same spacing.

9. Impact.—The dynamic increment of the live load shall be added to the maximum computed live load strains and shall be determined by the formula $I=S\,\frac{300}{L+300}$,

where I = impact or dynamic increment to be added to live-load strains.

S =computed maximum live-load strain.

L =loaded length of track in feet producing the maximum strain in the member. For bridges carrying more than one track, the aggregate length of all tracks producing the strain shall be used.

Impact shall not be added to strains produced by longitudinal, centrifugal and lateral or

wind forces.

10. Lateral Forces.—All spans shall be designed for a lateral force on the loaded chord of 200 lb. per linear foot plus 10 per cent of the specified train load on one track, and 200 lb. per linear foot on the unloaded chord; these forces being considered as moving.

* Adopted by the American Railway Engineering Association.

† See Addendum, clause (a).

11. Wind Force.—Viaduct towers shall be designed for a force of 50 lb. per sq. ft. on one and one-half times the vertical projection of the structure unloaded; or 30 lb. per sq. ft. on the same surface plus 400 lb. per linear ft. of structure applied 7 ft. above the rail for assumed wind force on train when the structure is either fully loaded or loaded on either track with empty cars assumed to weigh 1,200 lb. per linear ft., whichever gives the larger strain.

\$20000 \$40000 \$40000 \$40000	0 26 000 0 26 000 0 26 000 0 26 000	0 40 000 0 40 000 0 40 000	26 000 26 000 26 000 26 000	Train Load 4000 lb · per Ft.	0 50 000
8:0" 5:0"5:0" 5:0" 9:0	" 5'0"6'0"5'0" 8'0" 8	1.0" 5.0"5.0"5.0" 9	10" 5.0" 6.0" 5.0"5	ion and a second	Special Loading

12. Longitudinal Force.—Viaduct towers and similar structures shall be designed for a

longitudinal force of 20 per cent of the live load applied at the top of the rail.

13. Structures located on curves shall be designed for the centrifugal force of the live load applied at the top of the high rail. The centrifugal force shall be considered as live load and be derived from the speed in miles per hour given by the expression $60 - 2\frac{1}{2}D$, where "D" = degree of curve.

III. UNIT STRESSES AND PROPORTION OF PARTS.

14. Unit Stresses.—All parts of structures shall be so proportioned that the sum of the maximum stresses produced by the foregoing loads shall not exceed the following amounts in pounds per sq. in., except as modified in paragraphs 22 to 25:

15. Tension.—Axial tension on net section	6,000
16. Compression.—Axial compression on gross section of columns	6,000 — 70
with a maximum of	1,000
Direct compression on steel castings	6,000
17. Bending.—Bending: on extreme fibers of rolled shapes, built sections,	
girders and steel castings; net section	6,000
on extreme fibers of pins	4,000
18. Shearing.—Shearing: shop driven rivets and pins	2,000
field driven rivets and turned bolts	0,000
plate girder webs; gross section	0,000
19. Bearing.—Bearing: shop driven rivets and pins	4,000
field driven rivets and turned bolts20	0,000
expansion rollers; per linear inch	600d
where "d" is the diameter of the roller in inches.	
on masonry	600

20. Limiting Length of Members.—The lengths of main compression members shall not exceed 100 times their least radius of gyration, and those for wind and sway bracing 120 times their least radius of gyration.

21. The lengths of riveted tension members in horizontal or inclined positions shall not exceed 200 times their radius of gyration about the horizontal axis. The horizontal projection

of the unsupported portion of the member is to be considered as the effective length.

22. Alternate Stresses.—Members subject to alternate stresses of tension and compression shall be proportioned for the stresses giving the largest section. If the alternate stresses occur in succession during the passage of one train, as in stiff counters, each stress shall be increased by 50 per cent of the smaller. The connections shall in all cases be proportioned for the sum of the stresses.

23. Wherever the live and dead load stresses are of opposite character, only two-thirds of the dead load stresses shall be considered as effective in counteracting the live load stress.

24. Combined Stresses.—Members subject to both axial and bending stresses shall be proportioned so that the combined fiber stresses will not exceed the allowed axial stress.

25. For stresses produced by longitudinal and lateral or wind forces combined with those from live and dead loads and centrifugal force, the unit stress may be increased 25 per cent over those given above; but the section shall not be less than required for live and dead loads and centrifugal force.

26. Net Section at Rivets.—In proportioning tension members the diameter of the rivet holes

shall be taken \(\frac{1}{8}\)-in. larger than the nominal diameter of the rivet.

27. Rivets.—In proportioning rivets the nominal diameter of the rivet shall be used.

28. Net Section at Pins.—Pin-connected riveted tension members shall have a net section through the pin-hole at least 25 per cent in excess of the net section of the body of the member, and the net section back of the pin-hole, parallel with the axis of the member, shall be not less than the net section of the body of the member.

29. Plate Girders.—Plate girders shall be proportioned either by the moment of inertia of their net section; or by assuming that the flanges are concentrated at their centers of gravity; in which case one-eighth of the gross section of the web, if properly spliced, may be used as flange section. The thickness of web plates shall be not less than $\frac{1}{160}$ of the unsupported distance

between flange angles (see 38).

30. Compression Flange.—The gross section of the compression flanges of plate girders shall not be less than the gross section of the tension flanges; nor shall the stress per sq. in. in the compression flange of any beam or girder exceed $16,000 - 200 \frac{l}{b}$, when flange consists of angles

only or if cover consists of flat plates, or $16,000 - 150 \frac{l}{b}$, if cover consists of a channel section,

where l = unsupported distance and b = width of flange.

- 31. Flange Rivets.—The flanges of plate girders shall be connected to the web with a sufficient number of rivets to transfer the total shear at any point in a distance equal to the effective depth of the girder at that point combined with any load that is applied directly on the flange. The wheel loads, where the ties rest on the flanges, shall be assumed to be distributed over three
- 32. Depth Ratios.—Trusses shall preferably have a depth of not less than one-tenth of the span. Plate girders and rolled beams, used as girders, shall preferably have a depth of not less than one-twelfth of the span. If shallower trusses, girders or beams are used, the section shall be increased so that the maximum deflection will not be greater than if the above limiting ratios had not been exceeded.

IV. DETAILS OF DESIGN.

GENERAL REQUIREMENTS.

33. Open Sections.—Structures shall be so designed that all parts will be accessible for inspection, cleaning and painting.

34. Pockets.—Pockets or depressions which would hold water shall have drain holes, or be

filled with waterproof material.

35. Symmetrical Sections.—Main members shall be so designed that the neutral axis will be as nearly as practicable in the center of section, and the neutral axes of intersecting main members of trusses shall meet at a common point.

36. Counters.—Rigid counters are preferred; and where subject to reversal of stress shall preferably have riveted connections to the chords. Adjustable counters shall have open turn-

buckles.

37. Strength of Connections.—The strength of connections shall be sufficient to develop the full strength of the member, even though the computed stress is less, the kind of stress to which the member is subjected being considered.

38. Minimum Thickness.—The minimum thickness of metal shall be 3-in., except for fillers.

39. Pitch of Rivets.—The minimum distance between centers of rivet holes shall be three diameters of the rivet; but the distance shall preferably be not less than 3 in. for 3-in. rivets and 2½ in. for ¾-in. rivets. The maximum pitch in the line of stress for members composed of plates and shapes shall be 6 in. for $\frac{7}{8}$ -in. rivets and 5 in. for $\frac{3}{4}$ -in. rivets. For angles with two gage lines and rivets staggered the maximum shall be twice the above in each line. Where two or more plates are used in contact, rivets not more than 12 in. apart in either direction shall be used to hold the plates well together. In tension members, composed of two angles in contact, a pitch of 12 in. will be allowed for riveting the angles together.

40. Edge Distance.—The minimum distance from the center of any rivet hole to a sheared edge shall be $1\frac{1}{2}$ in. for $\frac{7}{8}$ -in. rivets and $1\frac{1}{4}$ in. for $\frac{3}{4}$ -in. rivets, and to a rolled edge $1\frac{1}{4}$ in. and $1\frac{1}{8}$ in., respectively. The maximum distance from any edge shall be eight times the thickness of the

plate, but shall not exceed 6 in.

41. Maximum Diameter.—The diameter of the rivets in any angle carrying calculated stress shall not exceed one-quarter the width of the leg in which they are driven. In minor parts 1/4 in. rivets may be used in 3-in. angles, and \(\frac{3}{4}\)-in. rivets in $2\frac{1}{4}$ -in. angles.

42. Long Rivets.—Rivets carrying calculated stress and whose grip exceeds four diameters

shall be increased in number at least one per cent for each additional 16-in. of grip.

43. Pitch at Ends.—The pitch of rivets at the ends of built compression members shall not exceed four diameters of the rivets, for a length equal to one and one-half times the maximum width of member.

44. Compression Members.—In compression members the metal shall be concentrated as much as possible in webs and flanges. The thickness of each web shall be not less than onethirtieth of the distance between its connections to the flanges. Cover plates shall have a thickness not less than one-fortieth of the distance between rivet lines.

45. Minimum Angles.—Flanges of girders and built members without cover plates shall have

a minimum thickness of one-twelfth of the width of the outstanding leg.

46. Tie-Plates.—The open sides of compression members shall be provided with lattice and shall have tie-plates as near each end as practicable. Tie-plates shall be provided at intermediate points where the lattice is interrupted. In main members the end tie-plates shall have a length not less than the distance between the lines of rivets connecting them to the flanges, and intermediate ones not less than one-half this distance. Their thickness shall not be less than onefiftieth of the same distance.

47. Lattice.—The latticing of compression members shall be proportioned to resist the shearing stresses corresponding to the allowance for flexure for uniform load provided in the column formula in paragraph 16 by the term $70\frac{1}{2}$. The minimum width of lattice bars shall be

2½ in. for ½-in. rivets, 2½ in. for ½-in. rivets, and 2 in. if ½-in. rivets are used. The thickness shall not be less than one-fortieth of the distance between end rivets for single lattice, and one-sixtieth for double lattice. Shapes of equivalent strength may be used.

48. Three-fourths-inch rivets shall be used for latticing flanges less than 2½ in. wide, and $\frac{3}{4}$ -in. for flanges from $2\frac{1}{2}$ to $3\frac{1}{2}$ in. wide; $\frac{7}{4}$ -in. rivets shall be used in flanges $3\frac{1}{2}$ in. and over, and lattice bars with at least two rivets shall be used for flanges over 5 in. wide.

49. The inclination of lattice bars with the axis of the member shall be not less than 45 degrees, and when the distance between rivet lines in the flanges is more than 15 in., if single rivet bar is used, the lattice shall be double and riveted at the intersection.

50. Lattice bars shall be so spaced that the portion of the flange included between their

connections shall be as strong as the member as a whole.

51. Faced Joints.—Abutting joints in compression members when faced for bearing shall be spliced on four sides sufficiently to hold the connecting members accurately in place. All other joints in riveted work, whether in tension or compression, shall be fully spliced.

52. Pin Plates.—Pin-holes shall be reinforced by plates where necessary, and at least one plate shall be as wide as the flanges will allow and be on the same side as the angles. They shall contain sufficient rivets to distribute their portion of the pin pressure to the full cross-section of the member.

53. Forked Ends.—Forked ends on compression members will be permitted only where unavoidable; where used, a sufficient number of pin plates shall be provided to make the jaws of twice the sectional area of the member. At least one of these plates shall extend to the far edge of the farthest tie-plate, and the balance to the far edge of the nearest tie-plate, but not less than 6 in. beyond the near edge of the farthest plate.

54. Pins.—Pins shall be long enough to insure a full bearing of all the parts connected upon the turned body of the pin. They shall be secured by chambered nuts or be provided with washers if solid nuts are used. The screw ends shall be long enough to admit of burring the

threads.

55. Members packed on pins shall be held against lateral movement.

56. Bolts.—Where members are connected by bolts, the turned body of these bolts shall be long enough to extend through the metal. A washer at least 1-in. thick shall be used under the Bolts shall not be used in place of rivets except by special permission. Heads and nuts shall be hexagonal.

57. Indirect Splices.—Where splice plates are not in direct contact with the parts which they connect, rivets shall be used on each side of the joint in excess of the number theoretically

required to the extent of one-third of the number for each intervening plate.

58. Fillers.—Rivets carrying stress and passing through fillers shall be increased 50 per cent in number; and the excess rivets, when possible, shall be outside of the connected member.

59. Expansion.—Provision for expansion to the extent of 1/8-in. for each 10 ft. shall be made for all bridge structures. Efficient means shall be provided to prevent excessive motion at any one point.

- 60. Expansion Bearings.—Spans of 80 ft. and over resting on masonry shall have turned rollers or rockers at one end; and those of less length shall be arranged to slide on smooth surfaces. These expansion bearings shall be designed to permit motion in one direction only.
- 61. Fixed Bearings.—Fixed bearings shall be firmly anchored to the masonry.
 62. Rollers.—Expansion rollers shall be not less than 6 in. in diameter. They shall be coupled together with substantial side bars, which shall be so arranged that the rollers can be readily cleaned. Segmental rollers shall be geared to the upper and lower plates.

63. Bolsters.—Bolsters or shoes shall be so constructed that the load will be distributed over the entire bearing. Spans of 80 ft. or over shall have hinged bolsters at each end.
64. Wall Plates.—Wall plates may be cast or built up; and shall be so designed as to distribute the load uniformly over the entire bearing. They shall be secured against displacement.

65. Anchorage.—Anchor bolts for viaduct towers and similar structures shall be long enough to engage a mass of masonry the weight of which is at least one and one-half times the uplift.

66. Inclined Bearings.—Bridges on an inclined grade without pin shoes shall have the sole plates beveled so that the masonry and expansion surfaces may be level.

FLOOR SYSTEMS.

67. Floorbeams.—Floorbeams shall preferably be square to the trusses or girders. They shall be riveted directly to the girders or trusses or may be placed on top of deck bridges.

68. Stringers.—Stringers shall preferably be riveted to the webs of all intermediate floorbeams by means of connection angles not less than ½-in. in thickness. Shelf angles or other supports provided to support the stringer during erection shall not be considered as carrying any of the

69. Stringer Frames.—Where end floorbeams cannot be used, stringers resting on masonry shall have cross frames near their ends. These frames shall be riveted to girders or truss shoes where practicable.

BRACING.

70. Rigid Bracing.—Lateral, longitudinal and transverse bracing in all structures shall be composed of rigid members.

71. Portals.—Through truss spans shall have riveted portal braces rigidly connected to the

end posts and top chords. They shall be as deep as the clearance will allow.

72. Transverse Bracing.—Intermediate transverse frames shall be used at each panel of through spans having vertical truss members where the clearance will permit. 73. End Bracing.—Deck spans shall have transverse bracing at each end proportioned to

carry the lateral load to the support.

74. Laterals.—The minimum sized angle to be used in lateral bracing shall be 3½ by 3 by 3-in. Not less than three rivets through the end of the angles shall be used at the connection.

75. Lateral bracing shall be far enough below the flange to clear the ties.
76. Tower Struts.—The struts at the foot of viaduct towers shall be strong enough to slide

the movable shoes when the track is unloaded.

PLATE GIRDERS.

77. Camber.—If desired, plate girder spans over 50 ft. in length shall be built with camber at a rate of $\frac{1}{16}$ -in. per 10 ft. of length.

78. Top Flange Cover.—Where flange plates are used, one cover plate of top flange shall

extend the whole length of the girder.

79. Web Stiffeners.—There shall be web stiffeners, generally in pairs, over bearings, at points of concentrated loading, and at other points where the thickness of the web is less than $\frac{1}{60}$ of the unsupported distance between flange angles. The distance between stiffeners shall not exceed that given by the following formula, with a maximum limit of six feet (and not greater than the clear depth of the web):

$$d = \frac{t}{40}$$
 (12,000 - s),

Where d = clear distance, between stiffeners of flange angles.

t =thickness of web.

s = shear per sq. in.

The stiffeners at ends and at points of concentrated loads shall be proportioned by the formula of paragraph 16, the effective length being assumed as one-half the depth of girders. End stiffeners and those under concentrated loads shall be on fillers and have their outstanding legs as wide as the flange angles will allow and shall fit tightly against them. Intermediate stiffeners may be

offset or on fillers, and their outstanding legs shall be not less than one-thirtieth of the depth of

girder plus 2 in.

80. Stays for Top Flanges.—Through plate girders shall have their top flanges stayed at each end of every floorbeam, or in case of solid floors, at distances not exceeding 12 ft., by knee braces or gusset plates.

TRUSSES.

81. Camber.—Truss spans shall be given a camber by so proportioning the length of the members that the stringers will be straight when the bridge is fully loaded.

82. Rigid Members.—Hip verticals and similar members, and the two end panels of the

bottom chords of single track pin-connected trusses shall be rigid.

83. Eye-bars.—The eye-bars composing a member shall be so arranged that adjacent bars shall not have their surfaces in contact; they shall be as nearly parallel to the axis of the truss as possible, the maximum inclination of any bar being limited to one inch in 16 ft.

84. Pony Trusses.—Pony trusses shall be riveted structures, with double webbed chords, and

shall have all web members latticed or otherwise effectively stiffened.

PART SECOND-MATERIALS AND WORKMANSHIP.

V. MATERIAL.

85. Steel.—Steel shall be made by the open-hearth process.

86. Properties.—The chemical and physical properties shall conform to the following limits:

Elements Considered.	Structural Steel.	Rivet Steel.	Steel Castings.
Phosphorus, max { Basic Acid	0.04 per cent 0.06 per cent	0.04 per cent 0.04 per cent	0.05 per cent 0.08 per cent
Sulphur, maximum	0.05 per cent	0.04 per cent	0.05 per cent
Ultimate tensile strength. Pounds per square inch	Desired. 60,000 1,500,000*	Desired. 50,000 1,500,000	Not less than 65,000
Elong., min. %, in 8", Fig. 1 { Elong., min. %, in 2", Fig. 2 Character of Fracture Cold Bends without Fracture.	Ult. tensile strength 22 Silky 180° flat†	Ult. tensile strength Silky 180° flat‡	Silky or fine granular $90^{\circ} d = 3t$

The yield point, as indicated by the drop of beam, shall be recorded in the test reports.

87. In order that the ultimate strength of full-sized annealed eye-bars may meet the requirements of paragraph 163, the ultimate strength in test specimens may be determined by the manufacturers; all other tests than those for ultimate strength shall conform to the above requirements.

88. Allowable Variations.—If the ultimate strength varies more than 4,000 lb. from that desired, a retest shall be made on the same gage, which, to be acceptable, shall be within 5,000 lb.

of the desired ultimate.

89. Chemical Analyses.—Chemical determinations of the percentages of carbon, phosphorus, sulphur and manganese shall be made by the manufacturer from a test ingot taken at the time of the pouring of each melt of steel, and a correct copy of such analysis shall be furnished to the engineer or his inspector. Check analyses shall be made from finished material, if called for by the purchaser, in which case an excess of 25 per cent above the required limits will be permitted.

90. Specimens.—Plate, shape and bar specimens for tensile and bending tests shall be made by cutting coupons from the finished product, which shall have both faces rolled and both edges milled to the form shown by Fig. 1; or with both edges parallel; or they may be turned to a diameter

of \(\frac{1}{4}\)-in. for a length of at least 9 in., with enlarged ends.

91. Rivet rods shall be tested as rolled.

* See paragraph 96. † See paragraphs 97, 98, and 99. ‡ See paragraph 100.

92. Pin and roller specimens shall be cut from the finished rolled or forged bar, in such manner that the center of the specimen shall be one inch from the surface of the bar. The specimen for tensile test shall be turned to the form shown by Fig. 2. The specimen for bending test shall be

one inch by $\frac{1}{2}$ -in. in section.

93. For steel castings the number of tests will depend on the character and importance of the castings. Specimens shall be cut cold from coupons molded and cast on some portion of one or more castings from each melt or from the sink heads, if the heads are of sufficient size. The coupon or sink head, so used, shall be annealed with the casting before it is cut off. Test specimens to be of the form prescribed for pins and rollers.

94. Specimens of Rolled Steel.—Rolled steel shall be tested in the condition in which it

comes from the rolls. 95. Number of Tests.—At least one tensile and one bending test shall be made from each melt of steel as rolled. In case steel differing \(\frac{3}{8}\)-in. and more in thickness is rolled from one melt. a test shall be made from the thickest and thinnest material rolled.

96. Modification in Elongation.—A deduction of 1 per cent will be allowed from the specified

percentage for elongation, for each $\frac{1}{8}$ -in. in thickness above $\frac{3}{4}$ -in.

97. Bending Tests.—Bending tests may be made by pressure or by blows. Plates, shapes

and bars less than one inch thick shall bend as called for in paragraph 86.

98. Thick Material.—Full-sized material for eye-bars and other steel one inch thick and over, tested as rolled, shall bend cold 180 degrees around a pin, the diameter of which is equal to twice the thickness of the bar, without fracture on the outside of bend.

99. Bending Angles.—Angles \(\frac{3}{4}\)-in. and less in thickness shall open flat, and angles \(\frac{1}{2}\)-in. and less in thickness shall bend shut, cold, under blows of a hammer, without sign of fracture. This

test shall be made only when required by the inspector.

100. Nicked Bends.-Rivet steel, when nicked and bent around a bar of the same diameter

as the rivet rod, shall give a gradual break and a fine silky uniform fracture.

101. Finish.—Finished material shall be free from injurious seams, flaws, cracks, defective edges or other defects, and have a smooth, uniform and workmanlike finish. Plates 36 in. in width and under shall have rolled edges.

102. Melt Numbers.—Every finished piece of steel shall have the melt number and the name of the manufacturer stamped or rolled upon it. Steel for pins and rollers shall be stamped on the end. Rivet and lattice steel and other small parts may be bundled with the above marks on an attached metal tag.

103. Defective Material.—Material which, subsequent to the above tests at the mills, and its acceptance there, develops weak spots, brittleness, cracks or other imperfections, or is found to have injurious defects, will be rejected at the shop and shall be replaced by the manufacturer at

his own cost.

104. Variation in Weight.—A variation in cross-section or weight of each piece of steel of more than $2\frac{1}{2}$ per cent from that specified will be sufficient cause for rejection, except in case of sheared plates, which will be covered by the following permissible variations, which are to apply to single plates, when ordered to weight:

105. Plates 12\frac{1}{2} lb. per sq. ft. or heavier:

(a) Up to 100 in. wide, 2½ per cent above or below the prescribed weight.

(b) One hundred inches wide and over, 5 per cent above or below.

106. Plates under 12½ lb. per sq. ft.:

(a) Up to 75 in. wide, 21 per cent above or below.

(b) Seventy-five inches and up to 100 in. wide, 5 per cent above or 3 per cent below.(c) One hundred inches wide and over, 10 per cent above or 3 per cent below.

107. Plates when ordered to gage will be accepted if they measure not more than 0.01 in,

below the ordered thickness.

108. An excess over the nominal weight, corresponding to the dimensions on the order, will be allowed for each plate, if not more than that shown in the following table, one cu. in. of rolled steel being assumed to weigh 0.2833 lb.:

Thickness	Nominal		Width	of Plate.	
Ordered.	Weights.	Up to 75".	75" and up to 100".	100" and up to	Over 115".
1 -inch 16 " 18 " 18 " 18 " 18 " 10 " 10 " 10 " 10 " 10 " 10 " 10 " 10	10.20 lb. 12.75 " 15.30 " 17.85 " 20.40 " 22.95 " 25.50 "	10 per cent 8 "" 7 "" 6 "" 4 3 "" 4 ""	14 per cent 12 " 10 " 8 " 7 " 62 " 5 "	18 per cent 16 " 13 " 10 " 9 " 8½ " 8 " 6½ "	17 per cent 13 " 12 " 11 " 10 "

109. Cast-Iron.—Except where chilled iron is specified, castings shall be made of tough gray iron, with sulphur not over 0.10 per cent. They shall be true to pattern, out of wind and free from flaws and excessive shrinkage. If tests are demanded, they shall be made on the "Arbitration Bar" of the American Society for Testing Materials, which is a round bar 11 in. in diameter and 15 in. long. The transverse test shall be made on a supported length of 12 in. with load at middle. The minimum breaking load so applied shall be 2,900 lb., with a deflection of at least $\frac{1}{10}$ in. before rupture.

110. Wrought-Iron.-Wrought-iron shall be double-rolled, tough, fibrous and uniform in character. It shall be thoroughly welded in rolling and be free from surface defects. When tested in specimens of the form of Fig. 1, or in full-sized pieces of the same length, it shall show an ultimate strength of at least 50,000 lb. per sq. in., an elongation of at least 18 per cent in 8 in., with fracture wholly fibrous. Specimens shall bend cold, with the fiber, through 135 degrees, without sign of fracture, around a pin the diameter of which is not over twice the thickness of the piece tested.

When nicked and bent, the fracture shall show at least 90 per cent fibrous.

VI. INSPECTION AND TESTING AT THE MILLS.

III. Mill Orders.—The purchaser shall be furnished complete copies of mill orders, and no material shall be rolled nor work done before the purchaser has been notified where the orders have

been placed, so that he may arrange for the inspection.

112. Facilities for Inspection.—The manufacturer shall furnish all facilities for inspecting and testing the weight and quality of all material at the mill where it is manufactured. He shall furnish a suitable testing machine for testing the specimens as well as prepare the pieces for the machine, free of cost.

113. Access to Mills.—When an inspector is furnished by the purchaser to inspect material at the mills, he shall have full access, at all times, to all parts of mills where material to be inspected

by him is being manufactured.

VII. WORKMANSHIP.

114. General.—All parts forming a structure shall be built in accordance with approved drawings. The workmanship and finish shall be equal to the best practice in modern bridge works. Material arriving from the mills shall be protected from the weather and shall have clean surfaces before being worked in the shops.

115. Straightening.—Material shall be thoroughly straightened in the shop, by methods that

will not injure it, before being laid off or worked in any way.

116. Finish.—Shearing and chipping shall be neatly and accurately done and all portions of the work exposed to view neatly finished.

117. Size of Rivets.—The size of rivets, called for on the plans, shall be understood to mean the actual size of the cold rivet before heating.

118. Rivet Holes.—When general reaming is not required, the diameter of the punch shall not be more than 16-in. greater than the diameter of the rivet; nor the diameter of the die more than \frac{1}{8}-in. greater than the diameter of the punch. Material more than \frac{3}{4}-in. thick shall be sub-punched and reamed or drilled from the solid.

119. Punching.—Punching shall be accurately done. Drifting to enlarge unfair holes will not be allowed. If the holes must be enlarged to admit the rivet, they shall be reamed. Poor

matching of holes will be cause for rejection.

120. Reaming.—Where sub-punching and reaming are required, the punch used shall have a diameter not less than \(\frac{3}{16}\)-in. smaller than the nominal diameter of the rivet. Holes shall then be reamed to a diameter not more than 16-in. larger than the nominal diameter of the rivet. (See 135.)

121. Reaming after Assembling.*-[When general reaming is required it shall be done after . the pieces forming one built member are assembled and so firmly bolted together that the surfaces shall be in close contact. If necessary to take the pieces apart for shipping and handling, the respective pieces reamed together shall be so marked that they may be reassembled in the same position in the final setting up. No interchange of reamed parts will be permitted.]

122. Reaming shall be done with twist drills and without using any lubricant.

123. The outside burrs on reamed holes shall be removed to the extent of making a 16-in.

124. Assembling.—Riveted members shall have all parts well pinned up and firmly drawn together with bolts, before riveting is commenced. Contact surfaces to be painted. (See 152.)

125. Lattice Bars.—Lattice bars shall have neatly rounded ends, unless otherwise called for. 126. Web Stiffeners.—Stiffeners shall fit neatly between flanges of girders. Where tight fits are called for, the ends of the stiffeners shall be faced and shall be brought to a true contact bearing with the flange angles.

127. Splice Plate and Fillers.—Web splice plates and fillers under stiffeners shall be cut to

fit within \(\frac{1}{8}\)-in. of flange angles.

128. Web Plates.—Web plates of girders, which have no cover plates, shall be flush with the backs of angles or project above the same not more than $\frac{1}{8}$ -in., unless otherwise called for. When web plates are spliced, not more than \(\frac{1}{4}\)-in. clearance between ends of plates will be allowed.

129. Floorbeams and Stringers.—The main sections of floorbeams and stringers shall be milled to exact length after riveting and the connection angles accurately set flush and true to the milled ends †[or if required by the purchaser the milling shall be done after the connection angles are riveted in place, milling to extend over the entire face of the memberl. The removal of more than $\frac{3}{32}$ in. from the thickness of the connection angles will be cause for rejection.

130. Riveting.—Rivets shall be uniformly heated to a light cherry red heat in a gas or oil furnace so constructed that it can be adjusted to the proper temperature. They shall be driven by pressure tools wherever possible. Pneumatic hammers shall be used in preference to hand

driving.

131. Rivets shall look neat and finished, with heads of approved shape, full and of equal They shall be central on shank and grip the assembled pieces firmly. Recupping and calking will not be allowed. Loose, burned or otherwise defective rivets shall be cut out and replaced. In cutting out rivets, great care shall be taken not to injure the adjacent metal. If

necessary, they shall be drilled out.

132. Turned Bolts.—Wherever bolts are used in place of rivets which transmit shear, the holes shall be reamed parallel and the bolts shall make a driving fit with the threads entirely

outside of the holes. A washer not less than 1-in. thick shall be used under nut.

133. Members to be Straight.—The several pieces forming one built member shall be straight and fit closely together, and finished members shall be free from twists, bends or open joints.

134. Finish of Joints.—Abutting joints shall be cut or dressed true and straight and fitted close together, especially where open to view. In compression joints, depending on contact bearing, the surfaces shall be truly faced, so as to have even bearings after they are riveted up complete and when perfectly aligned.

135. Field Connections.—Holes for floorbeam and stringer connections shall be sub-punched and reamed according to paragraph 120, to a steel templet not less than one inch thick. III required, all other field connections, except those for laterals and sway bracing, shall be assembled in the shop and the unfair holes reamed; and when so reamed the pieces shall be match-marked before being taken apart.

136. Eye-Bars.—Eye-bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. The form of heads will be determined by the dies in use

^{*} See Addendum, clause (d).

[†] See Addendum, clause (f). ‡ See Addendum, clause (e).

at the works where the eye-bars are made, if satisfactory to the engineer, but the manufacturer shall guarantee the bars to break in the body when tested to rupture. The thickness of head and neck shall not vary more than 18-in. from that specified. (See 163.)

137. Boring Eye-Bars.—Before boring, each eye-bar shall be properly annealed and carefully straightened. Pin-holes shall be in the center line of bars and in the center of heads. Bars of the same length shall be bored so accurately that, when placed together, pins 12-in. smaller in diameter than the pin-holes can be passed through the holes at both ends of the bars at the same time without forcing.

138. Pin-Holes.—Pin-holes shall be bored true to gages, smooth and straight; at right angles to the axis of the member and parallel to each other, unless otherwise called for. The boring

shall be done after the member is riveted up.

139. The distance center to center of pin-holes shall be correct within \(\frac{1}{37}\)-in., and the diameter of the holes not more than $\frac{1}{100}$ -in. larger than that of the pin, for pins up to 5-in. diameter, and $\frac{1}{100}$ in. for larger pins.

140. Pins and Rollers.-Pins and rollers shall be accurately turned to gages and shall be

straight and smooth and entirely free from flaws.

141. Screw Threads.—Screw threads shall make tight fits in the nuts and shall be U. S. standard, except above the diameter of 13 in., when they shall be made with six threads per inch.

142. Annealing.—Steel, except in minor details, which has been partially heated, shall be

properly annealed.

143. Steel Castings.—Steel castings shall be free from large or injurious blowholes and shall be annealed

144. Welds.—Welds in steel will not be allowed.
145. Bed Plates.—Expansion bed plates shall be planed true and smooth. Cast wall plates shall be planed top and bottom. The finishing cut of the planing tool shall be fine and correspond with the direction of expansion.

146. Pilot Nuts.—Pilot and driving nuts shall be furnished for each size of pin, in such

numbers as may be ordered.

147. Field Rivets.—Field rivets shall be furnished to the amount of 15 per cent plus ten rivets in excess of the nominal number required for each size.

148. Shipping Details.—Pins, nuts, bolts, rivets and other small details shall be boxed or

crated.

149. Weight.—The scale weight of every piece and box shall be marked on it in plain figures. 150. Finished Weight.—Payment for pound price contracts shall be by scale weight. No allowance over 2 per cent of the total weight of the structure as computed from the plans will be allowed for excess weight.

VIII. SHOP PAINTING.

*151. Cleaning.—Steel work, before leaving the shop, shall be thoroughly cleaned and given one good coating of pure linseed oil, or such paint as may be called for, well worked into all joints and open spaces.

152. Contact Surfaces.—In riveted work, the surfaces coming in contact shall each be painted

before being riveted together.

.153. Inaccessible Surfaces.—Pieces and parts which are not accessible for painting after erection, including tops of stringers, eye-bar heads, ends of posts and chords, etc., shall have an additional coat of paint before leaving the shop.

154. Condition of Surfaces.—Painting shall be done only when the surface of the metal is perfectly dry. It shall not be done in wet or freezing weather, unless protected under cover.
155. Machine-Finished Surfaces.—Machine-finished surfaces shall be coated with white

lead and tallow before shipment or before being put out into the open air.

IX. INSPECTION AND TESTING AT THE SHOPS.

156. Facilities for Inspection.—The manufacturer shall furnish all facilities for inspecting and testing the weight and quality of workmanship at the shop where material is manufactured. He shall furnish a suitable testing machine for testing full-sized members, if required.

157. Starting Work.—The purchaser shall be notified well in advance of the start of the work in the shop, in order that he may have an inspector on hand to inspect material and workmanship.

- 158. Access to Shop.—When an inspector is furnished by the purchaser, he shall have full access, at all times, to all parts of the shop where material under his inspection is being manufactured.
- 159. Accepting Material.—The inspector shall stamp each piece accepted with a private mark. Any piece not so marked may be rejected at any time and at any stage of the work. If the in-

^{*} See Addendum, clause (b).

spector, through an oversight or otherwise, has accepted material or work which is defective of contrary to the specifications, this material, no matter in what stage of completion, may be rejected by the purchaser.

160. Shop Plans.—The purchaser shall be furnished complete shop plans.

161. Shipping Invoices.—Complete copies of shipping invoices shall be furnished to the purchaser with each shipment. These shall show the scale weights of individual pieces.

X. FULL-SIZED TESTS.

162. Eye-Bar Tests.—Full-sized tests on eye-bars and similar members, to prove the work manship, shall be made at the manufacturer's expense, and shall be paid for by the purchaser at contract price, if the tests are satisfactory. If the tests are not satisfactory, the members repre-

sented by them will be rejected.

163. In eye-bar tests, the minimum ultimate strength shall be 55,000 lb. per sq. in. The elongation in 10 ft., including fracture, shall be not less than 15 per cent. Bars shall generally break in the body and the fracture shall be silky or fine granular, and the elastic limit as indicated by the drop of the mercury shall be recorded. Should a bar break in the head and develop the specified elongation, ultimate strength and character of fracture, it shall not be cause for rejection provided not more than one-third of the total number of bars break in the head (see 136).

ADDENDUM TO GENERAL SPECIFICATIONS FOR STEEL RAILWAY BRIDGES.

POINTS TO BE SPECIFICALLY DETERMINED BY BUYERS WHEN SOLICITING PROPOSALS FOR STEEL RAILWAY BRIDGES.

When general detail drawings are not furnished for the use of bidders specific answers should

be given to questions a, b and c, below.

Specific answers should also be given to questions d, e and f if the class of work described ir any of the paragraphs there referred to is desired. If these features are not specifically demanded the unbracketed paragraphs will be construed to define the kind of work desired.

(a) What class of live load shall be used? (Pars. 7 and 8.)

(b) Shall linseed oil or paint be used? If paint, what kind? (Par. 151.)

(c) Shall contractor furnish floor bolts?

(d) Shall general reaming be done? (Par. 121.)

(e) Shall field connections be assembled at the shop? (Par. 135.) (f) Shall floor connection angles be milled after riveting? (Par. 129.)

INSTRUCTIONS FOR THE DESIGN OF RAILWAY BRIDGES.*

The following instructions for the design of the details of railway bridges have been prepared by the engineering department of the Chicago, Milwaukee & St. Paul Railway, 1912.

RIVETS AND RIVET SPACING.—I. For conventional signs, actual sizes of heads and lengths of field rivets for various grips, see Fig. 10, Chap. XII, and Table 109, Part II.

2. Size.—Rivets for steel bridge work shall usually be \(\frac{1}{3} \) in. diameter, except where limited by size of material. In very heavy work, where rivets of long grip are required, such as in the drums of draw spans, I in. rivets are preferable.

3. Flattened.—Rivet heads are not to be flattened to less than \(\frac{1}{2} \) in. high.

4. Countersunk.—Where heads less than \(\frac{3}{6} \) in. high are required, they shall be countersunk. The conventional signs for countersunk rivets mean that rivets shall be countersunk and chipped. Where chipping is not required, it should be so noted on the drawing. Countersunk rivets should be avoided whenever possible.

5. Clearance of Heads.—In determining clearance the heights of heads should be assumed

Full head 7 in. rivet	 in. high
Full head 4 in. rivet	
Full head ‡ in. rivet	
Head flattened to ‡ in. rivet	
Countersunk, not chipped	 in. nigh

6. Spacing.—In spacing rivets the use of fractions smaller than \(\frac{1}{4} \) in. should be avoided. Where unavoidable, locate in such a way as to cause the least number of repetitions.

Locate splices and stiffeners with a view to keeping the rivet spacing as regular as possible.

7. Stagger and Clearance.—For distances center to center of staggered rivets and clearance equired for driving, see standards. In special cases where the prescribed clearances are impossible, allow at least $\frac{1}{2}$ in clearance for $\frac{7}{3}$ in and 1 in rivets and $\frac{7}{16}$ in for $\frac{3}{4}$ in rivets, from the dge of the rivet head to the nearest surface or other obstruction.

In the connection of cross-frames to girders, and in small lug angles and detail angles, rivets

nust be spaced so that they will not interfere with each other in driving.

In girder flange angles, the rivets in the "flange" legs should stagger at least I in. with rivets in the "web" legs, but should be staggered uniformly.

RIVETED CONNECTIONS .- I. Grouping .- Rivets should be grouped to insure that the line of applied stress passes as near as possible through the center of the group of rivets which esists that stress. Where the eccentricity is marked, the stress on the extreme rivet due to this ccentricity shall be computed and when properly combined with the direct stress shall not exceed the allowable stress per rivet.

2. Gusset Plates.—Gusset plates shall have such a thickness as will on any section develop, 1 bending and shear, the full stress which has been transmitted to it by the rivets outside the

3. Clearance.—The clearance between chords and web members entering same and other imilar riveted connections shall be not less than \(\frac{1}{8} \) in. in heavy structures and \(\frac{1}{16} \) in. in light tructures.

PINS AND PIN PACKING.—I. Pins.—Pins shall be proportioned to carry the reactions f the stresses in all the members meeting at a point at unit stresses specified. In computing

ending moment on pins, assume each load concentrated at its center of bearing.

2. Pin Packing.—Observe the following rules regarding arrangement of eye-bars and pin lates: (1) Arrange pin packing so as to reduce bending moment on pin to minimum.

(2) Leave at least 16 in. clearance between adjacent surfaces.

(3) Provide an additional clearance in the length of the pin of not less than \frac{1}{2} in.

(4) When two or more pin plates are riveted together, allow $\frac{1}{32}$ in. for each plate, in addition to its nominal thickness.

(5) Where hinge plates are used allow \(\frac{1}{2} \) in. clearance between hinge plates and faces of con-

(6) Adjacent surfaces of eye-bars composing a member shall have a clearance of \{\frac{1}{2}}\) in. to allow for painting.

(7) All eye-bars are to lie in planes as nearly as possible parallel to the center line of truss, ao divergence exceeding one inch in 16 ft. being permitted.

* Prepared by the engineering department of the Chicago, Milwaukee & St. Paul Ry.; Mr. C. F. Loweth, Chief Engineer, and Mr. J. H. Prior, Office Engineer.

(8) Where distance between adjacent surfaces is $\frac{3}{8}$ in. or more, filler rings shall be provided to prevent lateral motion, but the aggregate length of such filler rings shall be 1/2 in. less than the neat length required, after making necessary allowances for packing.

(9) The neat grip of pins shall be the distance out to out of outside surfaces after making

allowances for clearance.

(10) The ordered length of pins between shoulders shall exceed the neat grip by the following allowances:

For pins of $3\frac{1}{2}$ in. diam. or less, allow $\frac{1}{4}$ in. For pins of 34 in. diam. to 6 in. diam., allow 1 in. For pins of 61 in. diam. to 91 in. diam., allow 3 in.

GIRDER WEBS .- Width of Web Plates .- On deck girders the web must usually project I in. above the back of the top flange angles, to receive the notches in the track ties, except for concrete deck floors where the slabs rest on a top cover plate. In other cases, where no cover plates are required, the web must be flush with the top flange angles. At the bottom flange in all cases, and at the top flange where cover plates are required, the web may be set back ½ in.

Web plates shall not be ordered in widths having a fraction of an inch less than ½ in.

Thickness.—Web plates should have a minimum thickness of 76 in. At web splices 1/2 in.

clearance between ends of web plates shall be allowed.

Web Splices Location.—Web splices for girders, when required, should preferably be placed near the third or quarter points, and never when avoidable at the point of maximum moment.

Size.—Web splices should be of sufficient width to take two lines of rivets through each section of the web spliced. When not under floorbeam connection angles, in clearance may be

allowed top and bottom.

Moment Splices.—In addition there should be splice plates on the vertical legs of the flange angles, designed to splice the portion of the web covered by the flange and where thus spliced, the resisting moment on the web may be taken as equivalent to that of \(\frac{1}{8} \) of its gross area considered as flange section.

Where the splice plates on the flange angles are omitted, the rivets in the flange angles for a distance of one foot either side of the splice may be considered as part of the group of splicing rivets, and account shall be taken of the longitudinal shearing stress on these rivets as well as the stress

due to the splice.

Riveting.—The riveting shall, where practicable, be such as to develop the full strength of the web, and shall always be such as to develop the actual moment carried by the web at any point; this being determined by multiplying the total moment on the section by the ratio of $\frac{1}{3}$ of the gross web section to the total flange area, including this web equivalent. Splices shall also be designed to carry the total shear on the section due to the assumed loading.

GIRDER FLANGES.—I. Composition.—At least ½ of the area of the flange section should consist of angles, or else the maximum size of the latter be used, and in no case should the center of gravity of the flange come above the flange angles. For location of center of gravity for various

types of flange and sizes of material, see Table 88, Part II.

2. Composition of flanges shall preferably be as follows:

(I) $6'' \times 6''$ angles without cover plates.

(2) 6" × 6" angles with 14 in. or 16 in. cover plates.
(3) 8" × 8" angles with 17 in. or 18 in. cover plates.
(4) 8" × 8" angles with 2 or 4-6" × 4" angles, without cover plates.
(Type A4.)

Thickness of flanges without cover plates shall not be less than 1/2 the width of the outstanding leg of the angle.

3. Net Section.—The riveting in the tension flanges shall be computed according to method shown in Tables 109 to 113, Part II. Where the spacing of flange rivets is not known in advance, about the following allowances shall be made. In detailing flange riveting, where there is not a considerable excess of flange section, endeavor to keep within these allowances:

(I) Flange angles without cover plates and without lateral bracing connections, each angle—

one hole out.

- (2) Flange angles without cover plates, but with lateral connections, each angle—1½ holes out.
 - (3) Flange angles with cover plates, each angle—two holes out.

(4) Cover plates—two holes out. 4. Cover Plates.—Cover plates shall have the same thickness or shall diminish in thickness from the flange angle out. In determining length of cover plates, the curve of maximum moments shall be established and plates shall be made I ft. longer at each end than the theoretical requirement.

5. Flange Splices.—Flanges shall never be spliced unless it is impossible to get material of the required length. Where flange splices occur the following requirements shall be observed:

(1) Splices shall always be located at points where there is an excess of flange section.

(2) No two parts of the flange shall be spliced within 2 ft. of each other. (3) Flange angles shall be spliced with a splice angle of equal section riveted to both legs of the angle spliced. Where this is impossible, the largest possible splice angle shall be used, and the difference made up by a plate riveted to the vertical leg of the opposite angle.

(4) In splicing cover plates where one or more plates intervene between the splice plate and the cover plate which it splices, the requirement of paragraph 57 of the A. R. E. A. Specifications

for Design shall be observed.

(5) Rivets in splice plates and angles shall be located as close together as possible, in order that the transfer may take place in a short distance.

(6) No allowance shall be made for abutting edges of spliced members of the compression

flange.

6. Flange Riveting.—Rivets connecting flange to the web shall be sufficient to resist at any point the longitudinal shear combined with any load that is applied directly to the flanges. The wheel loads where ties rest directly on the flanges shall be assumed to be distributed over 3 ft.

The pitch of rivets between flange and web at any section may be computed by the formulas:

For through girders, $p = R \cdot d/S$.

For deck girders,
$$p = \frac{R}{\sqrt{\left(\frac{W}{36}\right)^2 + \left(\frac{S}{d}\right)^2}}$$

p =longitudinal spacing of rivets in inches; R =value of one rivet in bearing or double shear in pounds;

d = distance center to center of flanges in inches;

S = total maximum shear in pounds at the section, reduced in the ratio of the net area offlange angles and plates to the net area of flange plus $\frac{1}{h}$ the gross web section.

W =one wheel load plus 100 per cent impact.

7. Maximum Spacing.—Maximum spacing of rivets between flanges and web shall be:

Top flange, through girders..... $4\frac{1}{2}$ in.

For convenience in shop work, spacing of rivets in top and bottom flanges shall be exactly alike where possible.

8. Rivets in Cover Plates.—Where it is necessary to compute spacing of rivets connecting cover plates to flange angles, the following formula may be used:

$$p = n \cdot R \cdot d/S \times A/a$$

where R = value of one rivet in single shear or bearing;

n = number of rivets on one transverse line through cover plates and flanges;

a = total area of cover plates at section;

A = area of entire flange at section; S and d, as in section 6, "Flange Riveting."

The pitch as computed by this formula shall be diminished 15 per cent for every cover plate more than one. Rivets in cover plates shall preferably stagger half way with the rivets in the vertical legs of the flange angles. The maximum spacing shall be 6 in.

9. Circular Ends.—For through spans with circular ends, the end angles should be spliced near

the ends, as the full length angles cannot be handled in making the bends.

Rivets through cover plates on circular ends must be spaced close enough to draw the plates tight against the angles. The smaller the radius, the closer rivets should be spaced.

10. Overrun of Angles.—In plate girders whose top flange is composed of four or more angles,

about I in. should be allowed between the edges of angles to allow for overrun.

11. Gage in Cover-Plates.—On girders which are similar, but which have webs of different thickness, the gage in the angles should be left the same and the gage in the cover plate varied to suit the web thickness.

GIRDER STIFFENERS.—Intermediate Stiffeners.—Intermediate stiffeners, except at concentrated load, may be offset, and shall bear tightly against top and bottom flange. The ordered length of offset stiffener angles shall be the finished length plus the thickness of each angle over

Size of Stiffeners.—In general, the minimum size of stiffeners bearings against $6'' \times 6''$ flange angles shall be $5'' \times 3\frac{1}{2}'' \times \frac{1}{8}''$, and against $8'' \times 8''$ flange angles shall be $6'' \times 3\frac{1}{2}'' \times \frac{1}{8}''$.

Field riveted stiffeners at floorbeams of through girders may have \{\frac{1}{2}} in. clearance at the top. Fillers under end stiffeners and under concentrated loads must bear on bottom flange, but may have 1 in. clearance at top.

Rivets in Stiffeners.—Rivets in stiffener angles may have the maximum spacing, except that: (a) Rivets in end stiffeners and stiffeners at concentrated loads shall develop the full computed stress in the stiffeners.

(b) Spacing of rivets in end stiffeners, intermediate stiffeners, and web splices shall be identical, except that rivets in any line may be omitted where possible without exceeding the maximum specified pitch, in order to minimize shop work of punching.

Holes for Hand-Hooks.—All stiffeners on deck girders with concrete decks and ballast floors should have holes punched in the outstanding legs for inserting hand-hook to support a person inspecting bridge. Holes should be 15 in. diameter and located 6 in. from top flange on shallow girders and 6 ft. from bottom flange on deep girders. Gage line of hole to be 11 in. from outer edge of angle.

STRINGERS AND FLOORBEAMS.—I. Stringers.—Stringers for through girder spans may be either I-beams or built girders. Where I-beams are used two stringers shall be placed under each rail. Depth of stringers shall depend on available distance from base of rail to "low

bridge"; depth shall be preferably \(\frac{1}{6} \) to \(\frac{1}{6} \), but not less than \(\frac{1}{10} \), the panel length.

2. Floorbeams.—Depth of floorbeams shall be such as to allow stringers to be framed readily

into the web, and not less than $\frac{1}{8}$ of the distance center to center of girders or trusses.

3. Stringer Connections.—Stringers shall be riveted to webs of floorbeams with $\frac{5}{8}$ in. connection angles. Connection angles are to be faced to provide uniform bearing against webs of

floorbeams. Make stringers $\frac{1}{32}$ in, short at each end for clearance in erecting.

4. Floorbeams for Through Girders.—The gusset plates connecting floorbeams to main girders shall, wherever possible, extend to the top of the girder and shall have an angle riveted along the edge, to form an effective stay for the top flange of the main girder, and they shall also form the webs of the end portions of the floorbeams, extending out toward the center as far as the clearance line will allow, and being there spliced to the main web.

5. Floorbeams for Truss Bridges.—Floorbeams for truss spans shall preferably be riveted to the vertical posts or hangers, extending the connection angle above the top flange where necessary to secure sufficient rivets. When it is necessary to cut away the lower corner of the floorbeam to clear the chord, special care shall be taken to so reinforce the web as to carry the end shear into

the connection angles.

TRUSS AND TOWER MEMBERS .- 1. Top Chord and End-post .- The top chord and the inclined end-post shall usually consist of two built channels, with a thin cover plate on top and with bottom flanges latticed. The bottom flanges shall be made heavier than the top, in order that the gravity axis may come as close as possible to the center line of the webs.

2. Verticals and Rigid Tension Members.—Intermediate posts shall usually consist of two rolled or built channels latticed. Hip verticals and similar members and the two end panels of the bottom chords of single track pin-connected trusses shall be rigid, and may consist either

of two rolled or built channels latticed; or of four angles latticed to form an I-section.

3. Eye-bars.—Eye-bars shall be used for all bottom chord members and main diagonals that do not require to be stiffened in pin-connected trusses. Dimensions of heads shall be according to manufacturers shop standard. Length of eye-bars shall be given on the drawings, center to center of pin holes, and also back to back of pin holes.

4. Eccentricity.—The line of applied force must coincide with the gravity axes of built members or else the member must be designed for combined direct stress and flexure due to the

eccentricity of the applied load.

5. Bending Due to Weight.—Bending moment in the top chord and end-post due to weight of member may be computed by the approximate formula, $\frac{P}{A} \pm M \cdot c/I$, where P = total direct

stress in the member; A = gross area of the section of the member; M = bending moment at the section of the member in in.-lb.; c = distance to extreme fiber; and I = moment of inertia of the section of the member, and the stress from such bending shall be deducted from the average

compressive stress allowed by the column formula.

6. Bending in End-posts.—In computing stresses in the end-post of through pin-connected trusses, due to wind force, where the end-post consists of two built or rolled channels, if the product of the wind reaction in the top chord times one-half the distance from the foot of the post to the lowest connection of the portal bracing does not exceed the product of the dead load stress in one of the channels composing the end-post times the distance center to center of the bearings of the channels on the pin, the post may be considered fixed-ended and the point of contra-flexure assumed midway between the foot of the post and the lower connection of the portal bracing. Otherwise it must be considered pin-connected. The end-posts of riveted through trusses shall be considered as fixed-ended columns.

7. Over-run of Angles.—Where side plates are used on chord sections placed between the flange angles, at least \(\frac{1}{4}\) in. clearance should be allowed between the edges of the plate and the

angles to allow for over-run of angles.

8. Clearance for Riveting.-When flanges of angles and channels of built members are turned in. 51 in. opening between edges of angles or channels is required to rivet the tie plates and lacing.

LATERAL AND SWAY BRACING.—I. Minimum Sizes.—The minimum size of angles to be used in bracings shall be $3\frac{1}{2}$ " $\times 3$ " $\times \frac{1}{2}$ ". Not less than three rivets shall be used in the connection.

2. Effective Section.-Where single angles are used for bracing members without lug angles connecting the outstanding leg to the gusset plates, not more than 80 per cent of the net section, if

in tension, shall be considered as effective.

Where single angles, used for bracing members, have lug angles connecting their outstanding legs to the gusset plates, and where the center of the group of connecting rivets in the gusset plates fall close to the gravity line of the angle, in plan, 90 per cent of the net section may be

considered effective.

3. Double Diagonal Systems.—In double diagonal systems the shear due to wind force shall be considered as carried wholly by one diagonal in tension, but the maximum value of l/r = 120. specified for bracing members, shall not be exceeded. In assuming "r" the connection of diagonals at their intersection may be considered as offering support against deflection in the plane of the system, but not against deflection perpendicular thereto.

4. Bending at Connections.—Connections between bracing members and chords shall be

designed to avoid as far as possible any bending stress in main truss members.

5. Allowance for Draw.-For diagonal bracing of one or two angles the following draw should be allowed:

For lengths up to 10 ft. from 10 to 21 ft.

from 21 to 35 ft. over 35 ft.

No Allowance. Allow $\frac{1}{16}$ in. Allow $\frac{1}{8}$ in. Allow 1 in.

The use of thirty-seconds of an inch should be avoided but the above allowances should not be varied by more than in.

LATERAL BRACING.—I. Lateral Bracing.—Lateral bracing shall be in general as follows: (1) Deck girders and top flanges of stringers 15 ft. long and over; single diagonal system with transverse struts, composed of single angles. Slope of diagonals 45° to 60° with axis of bridge.

(2) Through girders: Double diagonal system of same panel length as floor system, com-

posed of single angles; floorbeams to act as the transverse struts of the system.

(3) Trusses, loaded chord: Double diagonal systems of same panel length as floor systems, composed of single angles, or double angles back to back; floorbeams to act as the transverse struts of the system.

(4) Trusses, unloaded chord: Double diagonal systems of same panel length as floor system with transverse struts at panel points; all composed of two or four angles laced to form a channel

or I-section, of depth equal to depth of chords.

2. Traction Stresses.—The lateral system in the plane of the loaded chord of truss spans and of through girder spans shall be effectively riveted to the stringers at intersections, and the diagonal shall be designed to transmit the traction for one panel length of track to the panel point; one diagonal for each stringer considered acting in tension.

3. Clipping Angles for Clearance.—The vertical leg of laterals should be clipped at the end when there is a possibility that the square corner would interfere in any way with putting in the laterals or riveting up. This is to be particularly looked out for at floorbeam connections of

through girder spans and in top laterals of Type A4 girder spans.

4. Squaring of Holes in Connections.—Where laterals are riveted to stringers the holes should be squared with the stringers, if possible. At the intersection of diagonals, the holes in splices with two lines of rivets should be squared with lateral and skewed on the splice plate.

5. Tie Plates and Lacing Symmetrical.—Where laterals have tie plates or tie plates and lacing bars, they should be detailed symmetrically so that the angles will be identical by turning end for end. 6. Lateral Plates C3 and C4 Spans.—The lateral plates of Type C3 and Type C4 girder

spans (flanges two angles and cover plates) should not be shop riveted to the girders, as it is impossible to put in floorbeam connection angles when this is done.

TRANSVERSE BRACING.—I. Transverse bracing shall be used as follows:

(1) At intervals of not more than 15 ft. on deck girder spans. Intermediate frames shall be of minimum material. End frames shall be designed to carry to the abutment the total lateral forces acting on the top flange. End frames of skew deck girders shall be placed at the end of the short girder, and at right angles to same. Top and bottom lateral diagonal braces shall be used to stay the end of the long girder.

(2) As spacers for stringers resting on masonry where end floorbeams cannot be used. These

frames shall be riveted to girders or truss shoes where practicable.

(3) As spacers for stringers at all expansion points.

(4) At end panel of through truss spans, having vertical truss members. These frames shall be as deep as clearance will permit.

(5) Through truss spans shall have riveted portal braces rigidly connected to the end-posts and top chords. They shall be as deep as clearance will allow, and shall be designed to carry to the abutment the total wind force acting on the top chord.

(6) At panel points of deck truss spans, having vertical members. Intermediate frames shall be designed to carry ½ the panel concentration of wind and centrifugal force to the bottom chord and the end frame shall be designed to carry \frac{1}{2} the total wind and centrifugal force acting

on the top chord to the abutment.

Frames for (1), (2) and (3) shall consist of single angle struts, top and bottom and double diagonals. Frames for (4) may consist of knee braces attached to the top lateral struts, but preferably where clearance permits, of light open webbed girder. Portal frames shall consist of open webbed girders, with knee braces connections to inclined posts. Frames for (6) shall consist of double diagonals running between floorbeams and lower lateral struts and composed of two angles back to back, or of two or four angles laced.

2. Diaphragms for Twin Deck Spans.—Diaphragms connecting two pairs of twin girders are to be omitted on shallow spans. Where the girders exceed 3 ft. 6 in. in depth, diaphragms shall be added for rigidity. They shall be connected to girders with field bolts.

3. End Cross Frames and Diaphragms.—In the design and location of end cross frames and diaphragms their shape and position shall be such as to give access to the space between the

girders for inspection, painting and the placing of anchor bolts.

REFERENCES.—For the calculation of the stresses in railway bridges and for additional details and the details of design, the following books may be consulted: Merriman & Jacoby's "Roofs and Bridges," Part I, Stresses; Part II, Graphic Statics; Part III, Bridge Design; Part IV, Higher Structures; Johnson, Bryan and Turneaure's "Framed Structures," Part I, Stresses, Part II, Statically Indeterminate Structures and Secondary Stresses; Part III, Design (in preparation); Marburg's "Framed Structures," Part I, Stresses; Spofford's "Theory of Structures," stresses in structures; DuBois's "Framed Structures"; Burr and Falk's "Design and Construction of Metallic Bridges"; Skinner's "Details of Bridge Design," Parts I, II, III; Moore's "Design of Plate Girders"; Ketchum's "The Design of Highway Bridges," stresses, details and design.

CHAPTER V.

RETAINING WALLS.

Introduction.—A retaining wall is a structure which sustains the lateral pressure of earth or some other granular mass which possesses some frictional stability. The pressure of the material supported will depend upon the material, the manner of depositing in place, and upon the amount of moisture, and will vary from zero to the full hydraulic pressure. If dry clay is loosely deposited behind the wall it will exert full pressure, due to this condition. In time the earth may become consolidated and cohesion and moisture make a solid clay, which may cause the bank to shrink away from the wall and there will be no pressure exerted. On the other hand all cohesion may be destroyed by the vibration of moving loads or by saturation, and the maximum theoretical pressures may occur. The pressures due to a dry granular mass, a semi-fluid, without cohesion, of indefinite extent, the particles held in place by friction on each other, will be considered. The effect of cohesion and of limiting the extent of the mass is considered in the author's "The Design of Walls, Bins and Grain Elevators."

Nomenclature.—The following nomenclature will be used:

- ϕ = the angle of repose of the filling.
- ϕ' = the angle of friction of the filling on the back of the wall.
- θ = the angle between the back of the wall and a horizontal line passing through the heel of the wall and extending from the back into the fill.
- δ = angle of surcharge, the angle between the surface of the filling and the horizontal; δ is positive when measured above and negative when measured below the horizontal.
- z = the angle which the resultant earth-pressure makes with a normal to the back of the wall.
- λ = the angle between the resultant thrust, P, and a horizontal line.
- h = the vertical height of the wall in feet.
- d = the width of the base of the wall in feet.
- **b** = the distance from the center of the base to the point where the resultant pressure, E, cuts the base.
- P = the resultant earth-pressure per foot of length of wall.
- E = the resultant of the earth-pressure and the weight of the wall.
- w = the weight of the filling per cubic foot.
- W = the total weight of the wall per foot of length of wall.
- p_1 = the pressure on the foundation due to direct pressure.
- p_3 = the pressure on the foundation due to bending moments.
- p = the resultant pressure on the foundation due to direct and bending forces.
- y = the depth of foundation below the earth surface.

Calculation of the Pressure on Retaining Walls.—To fully determine the pressure of the filling on a retaining wall it is necessary that the resultant of the pressure be known (a) in amount, (b) in line of action, and (c) in point of application. Many theories have been proposed for finding the pressure, each differing somewhat as to the assumptions and results. All theories for the design of retaining walls that have any theoretical basis come in two classes: (1) the Theory of Conjugate Pressures, due to Rankine, and commonly known as Rankine's Theory, and (2) the Theory of the Maximum Wedge, probably first proposed by Coulomb, and commonly known as Coulomb's Theory. Rankine's Theory determines the thrust in amount, in line of action, and in point of application. In Coulomb's Theory, with the exception of Weyrauch's solution, the line of action and point of application must be assumed, thus leading to numerous solutions of

16

more or less merit. All solutions based on the theory of the wedge assume that the resultant thrust is applied at one-third the height for a wall with a level or inclined surcharge, as is given by Rankine; but the resultant is assumed as making angles with a normal to the back of the wall varying from zero to the angle of repose of the filling. In Rankine's solution the resultant pressure is parallel to the plane of the surcharge for a vertical wall with a level or positive surcharge.

(1) RANKINE'S THEORY.—In this theory the filling is assumed to consist of an incompressible, homogeneous, granular mass, without cohesion, the particles are held in position by friction on each other; the mass being of indefinite extent, having a plane top surface, resting on a homogeneous foundation, and being subjected to its own weight. The principal and conjugate stresses in the mass are calculated, thus leading to the ellipse of stress. In the analysis it is proved (a) that the maximum angle between the pressure on any plane and the normal to the plane is equal to the angle of internal friction, and (b) that there is no active upward component of stress in a granular mass. Both of these laws have been verified by experiments on semifluids. Rankine deduced algebraic formulas for calculating the resultant pressure on a vertical wall with a horizontal surcharge, and on a vertical wall with a surcharge equal to δ , an angle equal to or less than the angle of repose. The general case is best solved by constructing the ellipse of stress by graphics, or Weyrauch's algebraic solution may be used. The author has extended Rankine's solution in "The Design of Walls, Bins and Grain Elevators," so that it is perfectly general.

Rankine's Formulas.—With a vertical wall and a horizontal surcharge, Fig. 1, the total resultant pressure is

$$P = \frac{1}{2}w \cdot h^2 \frac{1 - \sin \phi}{1 + \sin \phi} \tag{1}$$

where w is the weight of the filling in lb. per cu. ft., h is the depth of the wall in feet, ϕ is the angle of repose of the filling, and P is the resultant pressure on the wall in pounds. The resultant pressure, P, will be horizontal,

Fig. 1.

For a vertical wall with surcharge at an angle δ , Fig. 2, the pressure is given by the formula

$$P = \frac{1}{2}w \cdot h^2 \cdot \cos \delta \frac{\cos \delta - \sqrt{\cos^2 \delta - \cos^2 \phi}}{\cos \delta + \sqrt{\cos^2 \delta - \cos^2 \phi}}$$
 (2)

Where δ is equal to ϕ , formula (2) becomes

$$P = \frac{1}{2}w \cdot h^2 \cos \phi \tag{3}$$

The resultant pressure, P, is parallel to the inclined top surface for a vertical wall with a level or a positive surcharge (many authors have incorrectly assumed that the resultant pressure is always parallel to the top surface of the surcharged filling).

Inclined Retaining Wall.—The pressure on an inclined retaining wall may be calculated by means of the ellipse of stress—see the author's "The Design of Walls, Bins and Grain Elevators."

The pressure on an inclined retaining wall may also be calculated by means of the graphic solution shown in Fig. 3 if the direction of the thrust be known. From Rankine's theory we know that the resultant pressure on a vertical retaining wall is always parallel to the top surface where the surcharge is level or is inclined upwards away from the wall. The pressure on a retaining wall inclined away from the filling may then be calculated as follows:

FIG. 3. PRESSURE ON AN INCLINED RETAINING WALL.

In Fig. 3 the retaining wall A CDB sustains the pressure of a filling having an angle of repose ϕ , and sloping up away from the top of the wall at an angle δ . Calculate P' the pressure on the plane E-B by means of formula (2). P' acts at a point $\frac{1}{3}EB$ above B and is parallel to the top surface DE. Let the weight of the triangle of filling DBE be G, which acts through the center of gravity of the triangle and intersects P' at point O. Then P_2 , the resultant of P' and G, will be the resultant pressure at O, and makes an angle z with a normal to the back of the wall, and an angle, $\lambda = \theta + z - 90^{\circ}$ with the horizontal.

(2) COULOMB'S THEORY.—In this theory it is assumed that there is a wedge having the wall as one side and a plane called the plane of rupture as the other side, which exerts a maximum thrust on the wall. The plane of rupture lies between the angle of repose of the filling and the back of the wall. It may coincide with the plane of repose. For a wall without surcharge (horizontal surface back of the wall) and a vertical wall the plane of rupture bisects the angle between the plane of repose and the back of the wall. This theory does not determine the direction of the thrust, and leads to many other theories having assumed directions for the resultant pressure.

Algebraic Method.—In Fig. 4, the wall with a height h, slopes toward the earth, being inclined to the horizontal at an angle θ , and the earth has a surcharge with slope δ , which is not greater than ϕ , the angle of repose. It is required to find the pressure P against the retaining wall, it being assumed that the resultant pressure makes an angle z with the back of the wall.

It is assumed that the triangular prism of earth above some plane, the trace of which is the line AE, will produce the maximum pressure on the wall and on the earth below the plane, and that in turn the prism will be supported by the reactions of the wall and the earth. Let OW represent the weight of the prism ABE, the length of the prism being assumed equal to unity, let OP be the reaction of the wall, and OR be the reaction of the earth below.

Now the forces OW, OP, and OR will be concurrent and will be in equilibrium; OP and OR will therefore be components of OW. When the prism ABE is just on the point of moving OP

will make an angle with a normal to the back of the wall equal to z (different authorities assume values of z from zero to ϕ' , the angle of friction of earth on masonry, or ϕ , the angle of repose of earth); while OR will make an angle with the normal to the plane of rupture AE equal to ϕ . Let P represent the pressure OP against the wall, W represent the weight of the prism of earth, and w the weight per cu. ft.

Fig. 4.

In the triangle OWR angle $WOR = x - \phi$, and angle $ORW = \theta + \phi + z - x$. Through E draw EN, making the angle $AEN = \theta + \phi + z - x$ with AE. Then the triangle AEN is similar to triangle ORW, and

$$\frac{P}{W} = \frac{EN}{AN}$$
, and $P = W \frac{EN}{AN}$

But W equals w area triangle $ABE = \frac{1}{2}w \cdot AB \cdot BE \cdot \sin(\theta - \delta)$, and

$$P = \frac{1}{2}w \cdot \sin \left(\theta - \delta\right) \frac{AB \cdot BE \cdot EN}{AN} \tag{4}$$

Now P varies with the angle x, and will have a maximum value for some value of x, which may be found by differentiating (4) and placing the result equal to zero.

Differentiating and substituting in (4) and reducing we have

$$P = \frac{1}{2}w \cdot h^{2} \frac{\sin^{2}(\theta - \phi)}{\sin^{2}\theta \cdot \sin(\theta + z) \left(1 + \sqrt{\frac{\sin(z + \phi) \cdot \sin(\phi - \delta)}{\sin(\theta + z) \cdot \sin(\theta - \delta)}}\right)^{2}}$$

$$= \frac{1}{2}w \cdot h^{2} \cdot K$$
(5)

which is the general formula for the pressure on a retaining wall.

Now if z in (5) is made equal to ϕ' , the angle of repose of earth on the wall,

$$P = \frac{1}{2}w \cdot h^2 \frac{\sin^2(\theta - \phi)}{\sin^2\theta \cdot \sin(\theta + \phi') \left(1 + \sqrt{\frac{\sin(\phi + \phi') \cdot \sin(\phi - \delta)}{\sin(\theta + \phi') \cdot \sin(\theta - \delta)}}\right)^2}$$
(7)

which is Cain's formula (20) in another form.

If z in (5) is made equal to δ , and θ made equal to 90° ,

$$P = \frac{1}{3}w \cdot h^2 \frac{\cos^2 \phi}{\cos \delta \left(1 + \sqrt{\frac{\sin (\phi + \delta) \cdot \sin (\phi - \delta)}{\cos^2 \delta}}\right)^2}$$
 (8)

which is Rankine's formula (2) in another form.

If s in (5) is made equal to zero,

$$P = \frac{1}{2}w \cdot h^2 \frac{\sin^2(\theta - \phi)}{\sin^3\theta \left(1 + \sqrt{\frac{\sin\phi \cdot \sin(\phi - \delta)}{\sin\theta \cdot \sin(\theta - \delta)}}\right)^2}$$
(9)

which gives the normal pressure on a wall.

If θ in (9) = 90°,

$$P = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\left(1 + \sqrt{\frac{\sin \phi \cdot \sin (\phi - \delta)}{\cos \delta}}\right)^2}$$
 (10)

If δ in (10) = 0° ,

$$P = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{(1 + \sin \phi)^2},$$

$$= \frac{1}{2}w \cdot h^2 \tan^2 (45^\circ - \frac{1}{2}\phi)$$

$$= \frac{1}{2}w \cdot h^2 \frac{1 - \sin \phi}{1 + \sin \phi}$$
(11)

which is Rankine's formula (1) for a vertical wall without surcharge.

Graphic Method.—If the angle z, the angle between the back of the wall and a normal to the wall, is known, the resultant pressure on a wall may be calculated by a graphic method, Fig. 5, based on the "theory of a wedge of maximum thrust." The graphic method will be described—the proof of the method is given in "The Design of Walls, Bins and Grain Elevators."

In Fig. 5 the retaining wall AB sustains the pressure of the filling with a surcharge δ and an angle of repose ϕ . It is required to calculate the resultant pressure P.

The graphic solution is as follows: Through B in Fig. 5 draw BM making an angle with BF, the normal to AD, equal to $\lambda = \theta + z - 90^{\circ}$, the angle that P makes with the horizontal. With

diameter AD describe arc ACD. Draw MC normal to AD and with A as a center and a radius AC describe arc CN. Then AN = y, AM = b and $y = \sqrt{a \cdot b}$. Draw EN parallel to BM. With N as a center and radius EN, describe arc ES. Then AE is the trace of the plane of runture, and $P = \text{area } SEN \cdot w$.

Cain's Formulas.*—Professor William Cain assumes that the angle z is equal to ϕ' , the angle of friction of the filling on the back of the wall. By substituting in (5) we have for a Vertical Wall With Level Surface, $\delta = 0$.

$$P = \frac{1}{2}w \cdot h^2 \left(\frac{\cos\phi}{n+1}\right)^2 \frac{1}{\cos\phi'} \tag{13}$$

where

$$n = \sqrt{\frac{\sin (\phi + \phi') \cdot \sin \phi}{\cos \phi'}}$$

If $\phi = \phi'$, then $n = \sqrt{2} \sin \phi$, and

$$P = \frac{1}{2} w \cdot h^2 \frac{\cos \phi}{(1 + \sin \phi \sqrt{2})^2}$$
 (14)

If $\phi' = 0$, then

$$P = \frac{1}{2}w \cdot h^2 \cdot \tan^2\left(45^\circ - \frac{\phi}{2}\right) \tag{15}$$

Vertical Wall With Surcharge = δ .

$$P = \frac{1}{2}w \cdot h^2 \left(\frac{\cos\phi}{n+1}\right)^2 \frac{1}{\cos\phi'} \tag{16}$$

where

$$n = \sqrt{\frac{\sin (\phi + \phi') \cdot \sin (\phi - \delta)}{\cos \phi' \cdot \cos \delta}}$$

If $\delta = \phi$,

$$P = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\cos \phi'} \tag{17}$$

If $\phi' = 0$, and $\delta = \phi$,

$$P = \frac{1}{2}w \cdot h^2 \cdot \cos^2 \phi \tag{18}$$

Inclined Wall With Horizontal Surface.

$$P = \frac{1}{2}w \cdot h^2 \left(\frac{\sin(\theta - \phi)}{(n+1)\sin\theta}\right)^2 \frac{1}{\sin(\phi' + \theta)}$$
 (19)

where

$$n = \sqrt{\frac{\sin (\phi + \phi') \cdot \sin \phi}{\sin (\phi' + \theta) \cdot \sin \theta}}$$

Inclined Wall With Surcharge = 8.

$$P = \frac{1}{2}w \cdot h^2 \left(\frac{\sin (\theta - \phi)}{(n+1) \cdot \sin \theta}\right)^2 \frac{1}{\sin (\phi' + \theta)}$$
(20)

where

$$n = \sqrt{\frac{\sin (\phi + \phi') \cdot \sin (\phi - \delta)}{\sin (\phi' + \theta) \cdot \sin (\theta - \delta)}}$$

Wall With Loaded Filling.—In Fig. 6, the filling is loaded with a uniformly distributed load. Calculate h_1 by dividing the loading per sq. ft. by w. Let $h + h_1 = H$. Then the resultant pressure for a wall with height H, will be

$$P_2 = \frac{1}{2}w \cdot H^2 \cdot K \tag{21}$$

and the resultant pressure for a wall with height h_1 , will be

$$P_1 = \frac{1}{2}w \cdot h_1^2 \cdot K \tag{22}$$

^{*} Professor Rebhann makes the same assumptions and uses the graphic method of Fig. 5.

The pressure on the wall AD will be

$$P = P_2 - P_1 = \frac{1}{2}w(H^2 - h_1^2)K \tag{23}$$

and the point of application is through the center of gravity of ADGE, which makes

Walls With Negative Surcharge.—For the calculation of the pressures on retaining walls with negative surcharge, & negative, see the author's "The Design of Walls, Bins and Grain Elevators," second edition.

STABILITY OF RETAINING WALLS.—A retaining wall must be stable (1) against overturning, (2) against sliding, and (3) against crushing the masonry or the foundation.

The factor of safety of a retaining wall is the ratio of the weight of a filling having the same angle of internal friction that will just cause failure to the actual weight of the filling. For a factor of safety of 2 the wall would just be on the point of failure with a filling weighing twice that for which the wall is built.

1. Overturning.—In Fig. 7, let P, represented by OP', be the resultant pressure of the earth, and W, represented by OW, be the weight of the wall acting through its center of gravity. Then E, represented by OR, will be the resultant pressure tending to overturn the wall.

Draw OS through the point A. For this condition the wall will be just on the point of overturning, and the factor of safety against overturning will be unity. The factor of safety for E = OR will be

$$f_0 = SW/RW \tag{25}$$

2. Sliding.—In Fig. 7 construct the angle H_1G equal to ϕ' , the angle of friction of the masonry on the foundation. Now if E passes through I, and takes the direction OQ, the wall will be on the point of sliding, and the factor of safety against sliding, f_{\bullet} , will be unity. For E = OR, the factor of safety against sliding will be

$$f_{\bullet} = QM'/RM \tag{26}$$

Retaining walls seldom fail by sliding.

The factor of safety against sliding is sometimes given as

$$f_{\mathfrak{o}} = \frac{F}{H} \tan \phi'. \tag{27}$$

where H is the horizontal component of P. Equations (26) and (27) give the same values only where the resultant P is horizontal.

3. Crushing.—In Fig. 7 the load on the foundation will be due to a vertical force F, which produces a uniform stress, $p_1 = F/d$, over the area of the base, and a bending moment $= F \cdot b$, which produces compression, p_2 , on the front and tension, p_3 , on the back of the foundation.

The sum of the tensile stresses due to bending must equal the sum of the compressive stresses, $= \frac{1}{4}p_2d$. These stresses act as a couple through the centers of gravity of the stress triangles on each side, and the resisting moment is

But the resisting movement equals the overturning moment, and

$$\frac{1}{6}p_2 \cdot d^2 = F \cdot b,$$

and

$$p_2 = \pm \frac{6F \cdot b}{d^2} \tag{29}$$

FIG. 8.

The total stress on the foundation then is

FIG. 7.

$$p = p_1 \pm p_2 = p_1(1 \pm 6b/d)$$
 (30)

Now if $b = \frac{1}{6}d$, we will have

$$p = 2p_1$$
, or o.

In order therefore that there be no tension, or that the compression never exceed twice the average stress, the resultant should never strike outside the middle third of the base.

If the resultant strikes outside of the middle third of a wall in which the masonry can take no tension, the load will all be taken by compression and can be calculated as follows:

In Fig. 8 the resultant F will pass through the center of gravity of the stress diagram, and will equal the area of the diagram.

$$F = \frac{8}{2} p \cdot a$$

and

$$p = \frac{2F}{3a} \tag{31}$$

which gives a larger value of p than would be given if the masonry could take tension.

General Principles of Design.—The overturning moment of a masonry retaining wall of gravity section depends upon the weight of the filling, the angle of internal friction of the filling, the surcharge, and the height and shape of the wall. The resisting moment depends upon the

weight of the masonry, the width of the foundation, and the cross-section of the wall. The most economical section for a masonry retaining wall is obtained when the back slopes toward the filling. In cold localities, however, this form of section may be displaced by heaving due to the action of frost, and it is usual to build retaining walls with a slight batter forwards. The front of the wall is usually built with a batter of from \(\frac{1}{2}\) in. to I in. in I2 in. In order to keep the center of gravity of the wall back of the center of the base it is necessary to increase the width of the wall at the base by adding a projection to the front side. Where the wall is built on the line of a right of way it is sometimes necessary to increase the width of the base by putting the projection on the rear side, making an L-shaped wall. The weight of the filling upon the base and back of the wall adds to the stability of the wall. Where the wall is built to support an embankment expensive to excavate, it is often economical to make the wall L-shaped, with all the projection on the front side.

In calculating the thrust on retaining walls great care must be exercised in selecting the proper values of w and ϕ , and the conditions of surcharge. It will be seen from the preceding discussion that the value of the thrust increases very rapidly as ϕ decreases, and as the surcharge increases. Where the wall is to sustain an embankment carrying a railroad track, buildings, or other loads, a proper allowance must be made for the surcharge.

The filling back of the wall should be deposited and tamped in approximately horizontal layers, or with layers sloping back from the wall; and a layer of sand, gravel or other porous material should be deposited between the filling and the wall, to drain the filling downwards. To insure drainage of the filling, drains should be provided back of the wall and on top of the footing, and "weep-holes" should be provided near the bottom of the wall at frequent intervals to allow the water to pass through the wall. With walls from 15 to 25 ft. high, it is usual to use "weepers" 4 in. in diameter placed from 15 to 20 ft. apart. The "weepers" should be connected with a longitudinal drain in front of the wall. The filling in front of the wall should also be carefully drained.

The permissible point at which the resultant thrust may strike the base of the foundation will depend upon the material upon which the retaining wall rests. When the foundation is solid rock or the wall is on piles driven to a good refusal, the resultant thrust may strike slightly outside the middle third with little danger to the stability of the wall. When the retaining wall, however, rests upon compressible material the resultant thrust should strike at or inside the center of the base. Where the resultant thrust strikes outside of the center of the base, any settlement of the wall will cause the top to tip forward, causing unsightly cracks and local failure in many cases, and total failure where the settlement is excessive. Where extended footings are used it may be necessary to use some reinforcing steel to prevent a crack in the footing in line with the face of the wall.

Plain masonry walls should be built in sections, the length depending upon the height of the wall, the foundation and other conditions.

Under usual conditions the length of the sections should not exceed 40 ft., 30 ft. sections being preferable, and in no case should the length of the section exceed about three times the height. Separate sections should be held in line and in elevation, either by grooves in the masonry or by means of short bars placed at intervals in the cross-section of the wall, fastened rigidly in one section and sliding freely in the other. The back of the expansion joints should be water-proofed with 3 or 4 layers of burlap and coal tar pitch. The burlap should be about 30 in. wide, and the pitch and the burlap should be applied as on tar and gravel roofs. The joints between the sections of a retaining wall on the front side should be from \(\frac{1}{2}\) to \(\frac{1}{2}\) of an in. in width, and should be formed by a V-shaped groove made of sheet steel and fastened to the forms while the concrete is being placed. Where there is danger of the water in the filling percolating through the wall or in an alkali country, the surface of the back of the wall should be coated with a water-proof coating. The most satisfactory waterproof coating known to the author is a coal tar paint made by mixing refined coal tar, Portland cement and kerosene in the proportions of 16 parts refined coal tar, 4 parts of Portland cement and 3 parts of kerosene oil. The Portland

cement and kerosene should be mixed thoroughly and the coal tar then added. In cold weather the coal tar may be heated and additional kerosene added to take account of the evaporation. This paint not only covers the surface but combines with it, so that two or three coats are sometimes required. While the surface of the concrete should be dry, coal tar paint will adhere to moist or wet concrete. In building retaining walls in sections, the end of the finished section should be coated with coal tar paint to prevent the adhesion to the next section.

For methods of waterproofing masonry, see methods of waterproofing bridge floors in Chapter IV.

DESIGN OF RETAINING WALLS.—The design of masonry retaining walls will be illustrated by the design of the retaining walls for West Alameda Avenue Subway, taken from the author's "The Design of Walls, Bins and Grain Elevators," second edition.

Design of Retaining Walls for West Alameda Avenue Subway, Denver, Colorado.—The height of the walls varied from 8 ft. to 29 ft. 3 in., while the foundation soil varied from a compact gravel to a mushy clay. The design of the maximum section, which rests on a compact gravel, will be given. The concrete was mixed in the proportion of I part Portland cement, 3 parts sand and 5 parts screened gravel. Crocker and Ketchum, Denver, Colo., were the consulting engineers. The wall is shown in Fig. 9 and in Fig. 10.

The following assumptions were made: Weight of concrete, 150 lb. per cu. ft.; weight of filling, w = 100 lb. per cu. ft.; angle of repose of filling, $1\frac{1}{2}: 1$ ($\phi = 33^{\circ}$ 40'); surcharge, 600 lb. per sq. ft., equivalent to 6 ft. of filling; maximum load on foundation, 6,000 lb. per sq. ft.

Solution.—After several trials the following dimensions were taken: Width of coping 2 ft. 6 in., thickness of coping 1 ft. 6 in., batter of face of wall $\frac{1}{2}$ in. in 12 in., batter of back of wall $\frac{3}{2}$ in. in 12 in., width of base 15 ft. $2\frac{5}{8}$ in. (ratio of base to height = 0.52), front projection of base 4 ft., other dimensions as shown in Fig. 9. The calculations were made for a section of the wall one foot in length.

The property back of the wall will probably be used for the storage of coal, etc., and it was assumed that the surcharge came even with the back edge of the footing of the wall. The resultant pressure of the filling on the plane A-2 was calculated by the graphic method of Fig. 5 and Fig. 6, and was found to be P'=17,290 lb. The weight of the filling in the wedge back of the wall is W'=16,435 lb., acting through the center of gravity of the filling. The resultant of P' and W' is P=23,850 lb. = the resultant pressure of the filling on the back of the wall. The weight of the masonry is W=33,144 lb., acting through the center of gravity of the wall, and the resultant of P and W is E=52,510 lb. = the resultant pressure of the wall and the filling upon the foundation. The vertical component of E is F=49,580 lb., and cuts the foundation, b=2.1 ft. from the middle.

1. Stability Against Overturning.—The line OD in this case is nearly parallel to the line QW which brings the point S in Fig. 9 at a great distance from the point W. The factor of safety against overturning was calculated on the original drawing and found to be $f_0 > 25$.

2. Stability Against Sliding.—The coefficient of friction of the masonry on the footing will be assumed to be $\tan \phi' = 0.57$ and $\phi' = 30^\circ$. Through O, Fig. 9, draw OQ, cutting the base of wall 5A at 6, and making an angle $\phi' = 30^\circ$ with a vertical line through 6. Then the factor of safety against sliding will be

$$f_{\bullet} = QM'/RM = 2.5$$

This is ample as the resistance of the filling in front of the toe will increase the resistance against sliding.

3. Stability Against Crushing.—In Fig. 9 the direct pressure will be $p_1 = 49,580/15.21 = 3,220$ lb. per sq. ft.

The pressure due to bending will be

 $p_2 = \pm 6 F \cdot b/d^2 = \pm (6 \times 49,580 \times 2.1)/231.4 = \pm 2,700$ lb. per sq. ft., and the maximum pressure is

$$p = 3,220 + 2,700 = +5,920$$
 lb. per sq. ft.

and the minimum pressure is

$$p = 3,220 - 2,700 = +520$$
 lb. per sq. ft.

The allowable pressure was 6,000 lb. per sq. ft., so that the pressure is safe for a compact gravel. Where the walls were supported on the mushy clay it was necessary to extend the projection of the footing on the front side and to bring the resultant F to the center of the wall.

FIG. 9. RETAINING WALL, WEST ALAMEDA AVENUE SUBWAY.

4. Upward Pressure on Front Projection of Foundation.—Where projections are used on the foundations of retaining walls it may be necessary to reinforce the base to prevent the projection breaking off in line with the face of the wall. The bending moment of the upward pressure about the front face of the wall from Fig. 9 is

$$M = \frac{1}{3}(5,920 + 4,120) \times 4 \times 2.1 \times 12$$

= 506,000 in-lb.

The tension on the concrete at the bottom of the footing will be

$$f = M \cdot c/I = M \cdot d/2I = (506,000 \times 27)/157,464$$

= 88 lb. per sq. in.

Since the ultimate strength of the concrete in tension is approximately 200 lb. per sq. in.,

no reinforcing is required. However, $\frac{3}{4}$ in. \square bars were placed 18 in. centers and 3 in. from the bottom of the foundation.

Data.—The coefficients of friction of various materials are given in Table I. The angles of repose of different materials are given in Table II. The conditions of surface and amount of moisture cause wide variations in the coefficients. Additional data for the design of retaining walls are given in Tables III to VI.

TABLE I.

COEFFICIENTS OF FRICTION.

Materials.	Coefficients.	Materials.	Coefficients.
Dry masonry on dry masonry Masonry on masonry with wet mortar. Timber on stone. Iron on stone. Timber on timber.	0.75 0.4 0.3 to 0.7	Masonry on dry clay	0.33 0.25 to 1.0 0.7

TABLE II.

Angles of Repose, ϕ , for Materials.

Materials.	φ	Materials.	φ
Earth, loam. Sand, dry. Sand, moist. Sand, wet.	30° to 45° 25° to 35° 30° to 45° 15° to 30°	Clay	25° to 45° 30° to 40° 25° to 40° 30° to 45°

TABLE III.
ALLOWABLE PRESSURE ON FOUNDATIONS.

Material.	Pressure in Tons per Sq. Ft.
Soft clay	I to 2
Ordinary clay and dry sand mixed with clay	2 to 3
Dry sand and clay.	3 to 4
Hard clay and firm, coarse sand	3 to 4 4 to 6
Firm, coarse sand and gravel	6 to 8
Bed rock	15 and up.
Ded lock.	15 and up.

TABLE IV.
ALLOWABLE PRESSURE ON MASONRY.

Materials.	Pressure in Tons per Sq. Ft.	
Common brick, Portland cement mortar	12	
Paving brick, Portland cement mortar	15	
Rubble masonry, Portland cement mortar	12	
Sandstone, first class masonry	20	
Limestone, first class masonry	25	
Granite, first class masonry	30	
Portland cement concrete, 1-2-4	25	
Portland cement concrete, 1-3-6	20	
Portland cement concrete, 1-3-6	20	

TABLE V.

WEIGHT, SPECIFIC GRAVITY AND CRUSHING STRENGTH OF MASONRY.

Materials.	Weight in Pounds per Cubic Foot.	Specific Gravity.	Crushing Strength in Pounds per Square Inch.	
Sandstone	150	2.4	4,000 to 15,000	
Limestone	160	2.6	6,000 to 20,000	
Trap	180	2.9	19,000 to 33,000	
Marble	165	2.7	8,000 to 20,000	
Granite		2.7	8,000 to 20,000	
Paving brick, Portland cement		2.4	2,000 to 6,000	
Stone concrete, Portland cement		2.2 to 2.4	2,500 to 4,000	
Cinder concrete, Portland cement	112	1.8	1,000 to 2,500	

TABLE VI.
WEIGHT OF DIFFERENT MATERIALS.

Materials.	Wt. per Cu. Ft., Lb.	Materials.	Wt. per Cu. Ft., Lb.
Loam, loose	90 to 100	Sand, wet	120 to 135

For specifications for concrete, plain and reinforced, see Chapter VI.

EXAMPLES OF RETAINING WALLS.—Details of six masonry retaining walls with a gravity section are given in Fig. 10. These retaining walls represent the best practice. Details of four reinforced concrete retaining walls are given in Fig. 11. For additional examples see the author's "The Design of Walls, Bins and Grain Elevators."

The contents of standard concrete retaining walls, as designed by the Illinois Central Railroad, are given in Fig. 12.

Concrete Retaining Walls. Methods of Constructing Forms.—Forms for a retaining wall may be built in sections, or may be built up each time they are used. The former method is much the cheaper, especially for plain concrete walls where the sections between expansion joints are of equal length. The forms used on the C. B. & Q. R. R. walls shown in Fig. 13 are shown in Fig. 14. The studs, coping and bottom forms for the face, and the back forming are sectional, while ordinary sheeting is used between the coping and bottom forms. No attempt was made to use sectional forms on the face of the wall, because the sections soon become badly warped, making a rough wall. The concrete had a tendency to lift the forms and they were tied to bars imbedded in the footings as shown. The sectional forms were 12 ft. 0 in. long, while the studs were spaced 3 ft. 0 in. center to center.

The forms for the Illinois Central R. R. retaining wall shown in Fig. 10 are shown in Fig. 15. The forms were built in sections 54 ft. long. The forms were cross-braced by $\frac{3}{4}$ in. rods spaced 7 ft. $8\frac{1}{2}$ in. center to center as shown. When the forms were taken down the ends of these rods were unscrewed, the main portion of the rod being left in the wall. The forms were made of 2 in. plank surfaced on the inside.

The forms used by the Chicago and Northwestern Ry. on track elevation in Chicago are shown in Fig. 16. The forms were built in sections 35 ft. long. The 2 in. × 8 in. braces were used to hold the sides of the forms apart and were removed as the concrete was put in place. The 2 in. pipe used to cover the rod bracing was old boiler flues and rejected pipe.

Ingredients in Concrete.—The proportions of concrete materials should be stated in terms of the volume of the cement. The volume of one barrel or four bags of cement is taken as 3.8 cu. ft., and the sand and aggregate are measured loose. Concrete mixed one part cement, 2 parts sand, and 4 parts stone is commonly called 1:2:4 concrete. The proportions should be such

FIG. 10. EXAMPLES OF MASONRY RETAINING WALLS.

FIG. 11. Examples of Reinforced Concrete Retaining Walls.

that there should be more than enough cement paste to fill the voids in the sand, and more than enough mortar to fill the voids in the stone. With voids in sand and stone varying from 40 to 45 per cent, the quantities of the ingredients are closely given by Fuller's rule, where

c = number of parts of cement;
 s = number of parts of sand;
 g = number of parts of gravel or stone.

Then $\frac{11}{c+s+g} = p$ = number of barrels of Portland cement required for one cu. yd. concrete. $\frac{p \times s \times 3.8}{s} = 0$ = number of cu. yd. sand required for one cu. yd. concrete.

 $\frac{p \times g \times 3.8}{27}$ = number of cu. yd. gravel or stone required for one cu. yd. concrete.

Fig. 12. Contents of Concrete Retaining Walls, Illinois Central Railroad.

The materials for one cu. yd. of I: 2: 4 concrete will then be: Portland cement I.57 barrels, sand 0.44 cu. yd., gravel or stone 0.88 cu. yd.

The proportions for plain walls commonly vary from $1:2\frac{1}{2}:5$ to 1:3:6, while the proportions for reinforced walls vary from 1:2:4 to $1:2\frac{1}{2}:5$.

Mixing and Placing Concrete.—For mixing concrete a batch mixer in which the materials can be definitely proportioned and thoroughly mixed is to be preferred. In cold weather the concrete materials should be heated by the addition of boiling water to the mixer. To prevent scalding the cement the sand, aggregate and hot water should first be placed in the mixer and, after giving it several turns to remove the frost, the cement should be added and the mixing completed.

The author uses the following specifications for placing concrete in cold or freezing weather. "When the temperature of the air during the time of mixing and placing is below 40° Fah. the water used in mixing the concrete shall be heated to such a temperature, that the temperature of the concrete when deposited in the forms shall not be less than 60° Fah. Care shall be used not to scald the cement."

Where the wall is in a cut and the materials can be delivered on the bank, the mixer may be installed on the bank above and the concrete wheeled or chuted to place. Concrete should not be chuted in freezing weather. In building the West Alameda Avenue Subway retaining walls,

Denver, Colo., the gravel and sand were taken from the cut, the concrete was mixed in mixers installed at the foot of movable towers, and the concrete was raised in a skip elevator and chuted into place.

On railroad work the mixer may be mounted on a flat car, the materials may be delivered on

other cars, and the concrete is dumped or chuted directly into place.

FIG. 13. RETAINING WALL, C. B. & Q. R. R.

Fig. 14. Forms for Retaining Wall, C. B. & O. R. R.

SPECIFICATIONS FOR CONCRETE RETAINING WALLS.—The following extracts have been taken from the specifications prepared by Crocker and Ketchum, Consulting Engineers, for the concrete retaining walls for the West Alameda Avenue Subway, Denver, Colo.

16. MATERIALS. Cement.—The cement shall be furnished by the Companies on board cars or in store houses at the site of the work as required. The cement shall be Portland, and shall meet the requirements of the Standard Specifications of the American Society for Testing Materials.

17. Concrete Aggregate.—The fine aggregate shall pass a screen with \(\frac{1}{4} \) in. mesh, while the coarse aggregate shall all be retained on a screen with \(\frac{1}{4} \) in. mesh and all shall pass a screen with \(\frac{3}{4} \) in. mesh. The sand and gravel shall be obtained from the excavation of the open cut of the Subway. The Consulting Engineers reserve the right to change the proportions of sand and screened gravel (\(\frac{8}{3} \) 34 and \(\frac{8}{3} \) 35) from time to time, as may be necessary to secure a dense concrete of desired consistency. Payment to the Contractor for the screening will be made on the basis of unit price per cubic yard of gravel measured after screening.

18. Water.—The water used in mixing concrete shall be clean and reasonably clear, free

from acids and injurious oils, alkalies or vegetable matter.

19. Lumber.—Lumber for forms shall have a nominal thickness of 2" before surfacing, and shall be of a good quality of Douglas fir or Southern long leaf yellow pine. Lumber used for forms of face work shall be dressed on one side and both edges to a uniform thickness and width. Lumber for backing and other rough work may be unsurfaced and of an inferior grade of the kinds above specified.

20. Reinforcing Steel.—All reinforcing steel shall be plain bars, and shall comply with the specifications for structural steel as given in the Standard Specifications of the American Railway

Engineering Association.

21. EXCAVATION.—The subway is being excavated by the Companies but the contractor shall make all necessary excavations for wall and pedestal footings, and shall furnish all necessary sheeting and supports and bracing to hold the forms in place during the construction of the work.

The cost of the necessary sheeting and supports shall be included in the unit price for excavation. The Contractor shall provide all pumps and other equipment incidental to such excavation.

22. All excavation shall be measured in vertical prisms whose end areas are of sufficient size to include the footing courses, and the sheeting surrounding the same. "Wet excavation"

shall include all excavation below the surface of standing water in open pits.

23. CONCRETE. Machine Mixing.—Machine mixers, preferably of the batch type, shall be used except where the volume of concrete to be mixed is not sufficient to warrant their use. The requirements are that the product delivered shall be of the specified proportions and consistency, and thoroughly mixed.

Fig. 15. Forms for Illinois Central R. R. Retaining Wall.

Fig. 16. Forms for C. & N. W. Ry. RETAINING WALL.

24. Mixing by Hand.—When it is necessary to mix by hand the mixing shall be done on water tight platforms of sufficient size to accommodate men and materials for the progressive and rapid mixing of at least two batches of concrete at the same time. Batches shall not exceed one-half yard. The mixing shall be done as follows: The fine aggregate shall be spread evenly upon the platform, then the cement upon the fine aggregate and these mixed thoroughly until of an even color. Then add the coarse aggregate which, if dry, shall first be thoroughly wet down. The mass shall then be turned with shovels until thoroughly mixed and all the aggregate covered with mortar, the necessary amount of water being added as the mixing proceeds.

25. Consistency.—The material shall be mixed wet enough to produce a concrete of such consistency that it will flow into the forms and about the metal reinforcement, and which on the other hand can be conveyed from the place of mixing to the forms without the separation of the

coarse aggregate from the mortar.

26. Retempering.—Retempering mortar or concrete, i. e., remixing with water after it has partially set will not be permitted.

27. Placing of Concrete.—Concrete after the addition of water to the mix, shall be handled rapidly from the place of mixing to the place of final deposit, and under no circumstances shall

concrete be used that has partially set before final placing.

28. The concrete shall be deposited in such a manner as will prevent the separation of the ingredients and permit the most thorough compacting. It shall be compacted by working with a straight shovel or slicing tool kept moving up and down until all the ingredients have settled in their proper place, and the surplus water is forced to the surface. All concrete must be deposited in horizontal layers of uniform thickness throughout. Temporary planking shall be placed at ends of partial layers so that the concrete shall not run out to a thin edge. In placing concrete it shall not be dropped through a clear space of over 6 ft. vertical, For greater heights a trough or other suitable device must be used to deliver the concrete in place, and in depositing each batch this trough or other device must first be carefully filled with concrete and then as fast as concrete is removed at the bottom it shall be replenished at the top.

29. The work shall be carried up in alternate sections of approximately 32 ft. in length as shown on the plans, and each section shall be completed without intermission. In no case shall

work on a section stop within 18 in. of the top.

30. Before depositing concrete, the forms shall be thoroughly wetted, except in freezing

weather, and the space to be occupied by the concrete cleared of debris.

31. Expansion Joints.—Expansion joints shall be provided (sections were approximately 32 ft. long) as shown on the plans. The wall shall be constructed in alternate sections, the ends of the sections being formed by vertical end forms, the section being completed as though it were the end of the structure. Before placing the remaining sections the end forms shall be removed and the surface of the concrete shall be painted with coal tar paint, composed of sixteen (16) parts coal tar, four (4) parts Portland cement and three (3) parts kerosene oil. The expansion joints shall be finished on the exposed side by the insertion in the forms of a metal mold that will give a groove \(\frac{1}{2}\) in. wide, I in. deep and shall have a draft of I in. The wall sections shall be locked together by means of bars as shown on the plans.

32. Forms.—Forms shall be substantial and unyielding and built so that the concrete shall conform to the design, dimensions and contours, and so constructed as to prevent the leakage of mortar. Where corners of the masonry and other projections liable to injury occur, suitable moldings shall be placed in the angles of the forms to round or bevel them off. Material once

used in forms shall be cleaned before being used again.

33. The forms must not be removed within 36 hours after all the concrete in that section has been placed; in freezing weather they must remain until the concrete has had sufficient time to become thoroughly set.

34. **Proportioning.**—In proportioning concrete, a barrel or 4 sacks of Portland cement shall be assumed to contain 3.8 cu. ft., while the sand and gravel shall be measured loose in a measuring

vessel. The proportions required for concrete are as follows:

For footings, walls of retaining walls, abutments, and pedestals, one (1) part Portland cement, three (3) parts sand and five (5) parts gravel. For bridge seats and copings, one (1) part Portland cement, two (2) parts sand and four (4) parts gravel.

35. The tops of the bridge seats, pedestals, and copings, shall be finished with a smooth surface composed of one (I) part Portland cement and two (2) parts sand applied in a layer I in.

hick. This must be put in place with the last course of concrete.

36. Water-Proofing.—The expansion joints in the retaining walls and abutments shall be water-proofed as follows: After the forms have been removed and the concrete is thoroughly dried, the back of the wall for a distance of 18 in. on each side of the expansion joints shall be mopped with hot refined coal tar pitch. A layer of burlap shall then be placed so as to cover the expansion joints, and the burlap shall be mopped with coal tar pitch. In the same manner two additional layers of burlap shall be applied, making a 3-ply water-proofing.

additional layers of burlap shall be applied, making a 3-ply water-proofing.

37. Reinforcing Bars.—Reinforcing bars, where used, shall be placed 3 in. clear from the outside surface of the concrete, and shall be placed in the position shown on the plans. Care must be taken to insure the coating of the metal with mortar, and a thorough compacting of concrete around the bars. All reinforcing bars shall be clean and free from all dirt or grease.

38. Freezing Weather.—Concrete shall not be mixed or deposited at a freezing temperature, unless special precautions are taken to avoid the use of materials containing frost or covered with ice, and means are provided to prevent the concrete from freezing. Where the temperature of the air during the time of mixing and placing concrete is below 40° Fahr. the water used in mixing the concrete shall be of such a temperature, that the temperature of the concrete when delivered in the forms shall not be lower than 60° Fahr. Special precautions shall be taken not to scald the cement.

39. Placing in Water.—Concrete shall not be deposited under water except on the approval of the Consulting Engineers. Where water is encountered without current, but in such quantity that it cannot be lowered to the required depth and maintained there, or where such lowering

would cause further difficulty, concrete may be deposited through troughs or other device in the manner designated above.

40. Cleaning Up.—Upon the completion of any section of the work the Contractor shall remove all debris caused by his operations and leave the work ready for backfilling.

REFERENCES.—For the design of reinforced concrete retaining walls, examples of plain and reinforced concrete retaining walls, details of construction, and the theory of reinforced concrete, see the author's "The Design of Walls, Bins and Grain Elevators." For a discussion of the theory of the pressures in granular materials and semi-fluids, see Chapter VIII, Bins, and Chapter IX, Grain Elevators; also see the author's "The Design of Walls, Bins and Grain Elevators."

CHAPTER VI.

BRIDGE ABUTMENTS AND PIERS.

Introduction.—An abutment is a structure that supports one end of a bridge span and at the same time supports the embankment that carries the track or roadway. An abutment also usually protects the embankment from the scour of the stream.

A pier is a structure that supports the ends of two bridge spans. Piers must be designed so as not to interfere with the flow of the stream, and care must be used to prevent undermining the pier by the scour of the stream.

TYPES OF ABUTMENTS.—Masonry abutments may be classified under four heads, Fig. 1, (a) straight or "stub" abutments; (b) wing abutments; (c) U abutments; (d) T abutments.

- (a) The standard straight abutment of the N. Y. C. & H. R. R. R., shown in Fig. 1, is an excellent example of an abutment of this type. The earth fill is allowed to flow around the ends of the abutment as shown. Straight abutments should not be used where the water will wash the fill away.
- (b) A standard wing abutment of the N. Y. C. & H. R. R. R. is shown in Fig. 1. The length of the wings is determined by the width of the roadway, the allowable slope of the sides of the embankment and the angle of the wings. The angle that the wings make with the face of the abutment ordinarily varies from 30 degrees to 45 degrees for standard conditions. For skew bridges and for unusual conditions the angle of the wing is variable.
- (c) A standard U abutment of the N. Y. C. & H. R. R. R. is shown in Fig. 1. This is a wing abutment with the wings making an angle of 90 degrees with the face of the abutment. The wings are tied together by means of old railroad rails as shown. The wing walls run back into the fill, which flows down in front of the wings. If the slope is liable to be washed away by the scour of the stream the wings should be extended farther into the bank.
- (d) A standard T abutment of the South Bend and Michigan Southern Railway for a skew span is shown in Fig. 1. The T abutment is essentially a straight abutment with a stem running back into the fill; the stem carries the roadway, supports the abutment, and prevents water from finding its way along the back of the abutment. A T abutment may be considered as a U abutment with the two wings in one.

STABILITY OF BRIDGE ABUTMENTS WITHOUT WINGS.—A bridge abutment must be stable (I) against overturning, (2) against sliding, and (3) against crushing the material on which the abutment rests, or the masonry in the abutment. The problem of the design of a bridge abutment is essentially the same as the design of a retaining wall, for which see Chapter V. The method of design will be shown by giving the calculations for a straight concrete abutment for West Alameda Avenue Subway, Denver, Colo.

Design of Concrete Abutment for West Alameda Avenue Subway, Denver, Colorado.—The height of the abutment is 21 ft. 6 in. from the bottom of the footing to the top of the bridge seat, and 25 ft. $0\frac{3}{8}$ in. to the top of the back wall. The following assumptions were made: Weight of concrete, 150 lb. per cu. ft.; weight of filling, w = 100 lb. per cu. ft.; angle of repose of the filling, $1\frac{1}{2}$ to 1 ($\phi = 33^{\circ} 42'$); surcharge 800 lb. per sq. ft., equivalent to 8 ft. of filling; maximum load on foundation 6,000 lb. per sq. ft.

Solution.—After several trials the dimensions given in Fig. 2 were taken. The stability of the abutment was investigated for two conditions: (a) with a full live and dead load on the bridge and on the filling, and (b) with no live load on the bridge and no surcharge coming on the filling above the wall, it being assumed that a locomotive is approaching the bridge from the right, and

FIG. 1. Types of Masonry Abutments.

has reached the point 2 in (b), Fig. 2. The weight of the girders and the live load was assumed as uniformly distributed over a length of the abutment equal to the distance between track centers, and one lineal foot of wall was investigated.

Case (a).—The pressure of the filling on the plane B-2 was calculated as in Chapter V, Fig. 9, and is P' = 14,700 lb., acting through the center of gravity of the trapezoid 2-3-4-B. The weight of the filling and surcharge is $W_2 + W_3 = 14,900$ lb., which when combined with P' gives the resultant pressure of the filling on the wall = P = 20,900 lb. The pressure P is then combined with the weight of the wall, $W_1 = 29,800$ lb., and with the dead load and live load from the girder = 12,820 lb., giving the resultant pressure on the foundation, E = 59,400 lb., and acting, b = 1.4 ft. from the center of the wall, and F = 57,500 lb.

1. Stability Against Overturning.—The resultant E is nearly vertical and well within the middle third, so that the wall is amply safe against overturning.

FIG. 2. ABUTMENT FOR WEST ALAMEDA AVENUE SUBWAY, DENVER, COLO.

2. Stability Against Sliding.—Assuming that $\phi' = 30^{\circ}$, then the coefficient of friction will be $\tan \phi' = 0.57$. Using the definition of factor of safety given in equation (27) Chapter V. the resistance of the wall against sliding will be $57.500 \times 0.57 = 32,765$ lb. The sliding force is P' = 14,700 lb., and the factor of safety is 32,765/14,700 = 2.23, which is ample.

3. Pressure on Foundation.—The pressure on the foundation will be $p = F/d = 6F \cdot b/d^2 = +5,740$ and +1,700 lb. per sq. ft., which is safe.

4. Upward Pressure on Front Projection of Foundation.—The base will be investigated on the plane 7-8 to see that the upward pressure will not break off the front projection of the foundation. The bending moment of the upward pressure about the front face of the wall in (a), Fig. 2, will be

$$M = \frac{1}{2}(5,740 + 4,690)4 \times 2.1 \times 12$$

= 525,672 in-lb.

The tension on the concrete at the bottom of the footing will be

$$f = \frac{M \cdot c}{I} = \frac{M \cdot d}{2I} = \frac{525,672 \times 27}{157,464}$$

= 92 lb, per sq. in.

The footing is safe, but $\frac{3}{4}$ in. \square rods were placed 18 in. centers and 3 in. from the bottom of the foundation.

Case (b).—The solution is the same as for (a) except that the live load from the girder = 9,980 lb., and the surcharge load $1-2-5-6 = W_3 = 6,620$ lb. were omitted. The wall is safe for overturning. The factor of safety against sliding is from equation (27) Chapter V, $f_0 = 41,500 \times 0.57/14,700 = 1.6$, which is safe. The pressure on the foundation is safe.

The back wall was placed after the bridge seats were finished. To bond the back wall to the abutment, $\frac{1}{2}$ in. \square rods 4 ft. long, spaced 18 in. centers, were placed in two rows 3 in. from the back and front face, one-half of the length of the rod being imbedded in the main wall.

PRINCIPLES OF DESIGN.—To prevent tension on the back side of the footing and to make sure that the maximum compression on the front side of the footing shall not be greater than twice the average pressure, the resultant of the thrust of the filling, the weight of the masonry, the weight of the bridge and the live load must strike within the middle third of the base. Where the abutment rests on rock or solid material where settlement will not occur, it will not be serious if the resultant strikes a little outside of the middle third, providing the allowable pressure on the foundation is not exceeded. When the abutment is on compressible material where settlement will take place, the resultant of the pressures should strike at or back of the center of the base, so that the abutment will not tip forward in settling. It is standard practice to use piles in the foundation for abutments resting on compressible soil.

For the design of wing walls see the design of Retaining Walls, Chapter V.

In addition to the requirements for stability abutments should satisfy the following additional requirements.

(a) The abutment should protect the bank from scour. (b) The abutment should prevent the embankment drainage from washing away the bank. (c) The abutment should be easily drained.

Empirical Design.—A common rule is to make the minimum thickness of the main part of the abutment not less than $\frac{4}{10}$ the height above any section; and project the footings on each side as may be required. Empirical methods of design often give unsatisfactory results and are not to be recommended.

DESIGN OF BRIDGE PIERS.—Bridge piers must be designed (1) for the total vertical load due to the dead load of the span and the live load on the span, and the weight of the pier; (2) for wind pressure on the pier and the bridge; (3) to withstand floating drift and ice; and (4) to take the longitudinal thrust due to stopping a car or train on the bridge, and due to temperature when the rollers do not move freely. The wind pressures are calculated as specified in specifications for bridges, and are assumed to act in the vertical line of the center of the pier; on the top chord of the truss; the bottom chord of the truss; 6 or 7 feet above the base of the rail; and at the center of gravity of the exposed part of the pier. The total wind moment is then calculated about the leeward edge of the base of the pier, and the maximum stresses on the foundation due to direct load and wind are calculated in the same manner as the calculation of the pressures of abutments.

The effect of the current of the stream and of floating ice and drift are difficult to calculate. The pressure of a flowing stream on an obstruction is given by the formula

$$P = m \cdot w \cdot a \cdot \frac{V^2}{2g}$$

where P = the total pressure on the surface; m = a constant; w = weight of a cubic foot of water; a = area of wetted surface normal to the current in square feet; v = velocity of current in feet per second; and g = acceleration due to gravity = 32.2 feet. The value of m varies with the shape and the dimensions of the pier. Weisbach's Mechanics gives the following data:— For a prism three times as long as broad, m = 1.33. For a pier five or six times as long as broad and with a cutwater having plane faces and an angle of 30 degrees between the cutwater faces, m = 0.48. For a square pier, m = 1.28, and for a circular pier, m = 0.64.

The maximum pressure due to floating ice will be the crushing strength of the ice, which varies from 400 to 800 lb. per sq. in. The principal danger from floating ice and drift is that the current of the stream will be deflected downward and will gouge out the material around and under the pier and cause failure. To prevent this it is quite common to build piers with a "break-water," "starkwater," "cutwater," or nose that will deflect drift and ice, or to put in a pile protection on the upstream side of the pier. If the water can get under the pier the buoyancy of the water must be considered in calculating the stability of the pier. If there is danger of scouring then it is well to deposit large stones and riprap around the base of the pier.

Batter.—Piers and abutments are seldom battered more than one inch to one foot of vertical height, or less than one-half inch to the foot, although high piers are sometimes battered only one-fourth inch to one foot.

ALLOWABLE PRESSURES ON FOUNDATIONS.—The allowable pressures on foundations depend upon the material, the drainage, the amount of lateral support given by the adjacent material, the depth of the foundation, and other conditions, so that it is not possible to give data that will be more than an aid to the judgment. If properly designed a moderate settlement of some particular structure may do no harm, while a less settlement in another structure may be disastrous. Professor I. O. Baker gives the values in Table I in his "Masonry Construction."

TABLE I.
SAFE BEARING POWER OF SOILS.*

Kind of Material.	Safe Bearing Power in	Tons per Square Foot.
King of Material.	Min.	Max.
Rock hardest in thick layers in bed	200	-
Rock equal to best ashlar masonry	25	30
Rock equal to best brick	15	20
Rock equal to poor brick.	5	10
Clay in thick beds, always dry	4	6
Clay in thick beds, moderately dry	2	4
Clay soft	I	2
Gravel and coarse sand, well cemented		10
Sand compact and well cemented	4	6
Sand clean, dry	2	4
Quicksand, alluvial soils, etc	0.5	I

Present practice is more nearly given by the values in Table II. Foundations should never be placed directly on quicksand.

TABLE II.
ALLOWABLE BEARING ON FOUNDATIONS.

Kind of M	Tons per Square Foot			
Soft clay or loam. Ordinary clay and dry sand mixed with of Dry sand and dry clay. Hard clay and firm, coarse sand. Firm, coarse sand and gravel. Shale rock. Hard rock.	elay.			2 3 4 6 8

^{*} Baker's "Masonry Construction," John Wiley & Sons.

Mr. E. L. Corthell gives the summary of the pressures on deep foundations in Table III.

TABLE III.
ACTUAL PRESSURES ON DEEP FOUNDATIONS.*

Material.	Number of	Pressure in Tons per Square Foot.								
Matchai.	Examples.	Maximum.	Minimum.	Average.						
Fine sand	10	. 5.4	dimum. Minimum. Average 5.4 2.25 4.5 7.75 2.4 5.1 3.5 2.5 4.9 5.2 1.5 2.9 3.0 2.0 5.08 2.0 3.0 8.7 wed Settlement. 7.0 1.8 5.2 5.6 4.5 5.2 7.6 1.6							
Coarse sand and gravel	33	7.75	2.4	5.1						
Sand and clay	10	8.5	2.5	4.9						
Alluvium and silt	7	6.2	1.5	2.9						
Hard clay	16	8.0	2.0	5.08						
Hard pan	5	12.0	3.0	8.7						
Act	ual Pressures wi	hich Showed Settle	ement.							
Fine sand	3	7.0	1.8	5.2						
Clay	5	5.6	4.5							
Alluvium and silt	2	7.6		_						
Sand and clay	3	7.4	1.6	3.3						

The data in Table III shows that great care must be used in determining on the allowable pressure for any particular foundation, and that safe values for the bearing power of soils should only be used as an aid to the judgment of the engineer.

WATERWAY FOR BRIDGES.—The clear waterway for bridges should be ample; great care should be used to prevent floating logs and debris from clogging up the opening. The necessary waterway depends upon the character and size of the runoff area, the slope and size of the stream and upon other local conditions. The "Dun Drainage Table," Table IV, will be of assistance in assisting the judgment of the engineer in determining on the proper waterway for any bridge.

Many formulas have been proposed for determining the waterway of culverts and bridges. The formula best known to the author is that proposed by Professor A. N. Talbot. It is

$$A = c^{4}\sqrt{M^{8}}$$

where A = area of the required opening in sq. ft.;

M =area of drainage basin in acres:

c = a coefficient varying with the slope of the ground, slope of the drainage area, character of the soil and character of vegetation.

Professor Talbot gives the following values of $c:c=\frac{2}{3}$ to I for steep and rocky ground; $c=\frac{1}{3}$ for rolling agricultural country, subject to floods at times of melting snow, and with the length of valley 3 to 4 times its width; $c=\frac{1}{3}$ to $\frac{1}{6}$ for districts not affected by accumulated snow and where the length of the valley is several times its width.

PREPARING THE FOUNDATIONS.—The preparation of the site of the abutment or pier will depend upon the conditions and character of the material.

Rock.—Where the water can be excluded, the rock should be cleared of all overlying material and disintegrated rock. The surface is then leveled up either by cutting off the projections or by depositing a layer of concrete.

Hard Ground.—The material should be excavated well below the frost and scour line. Where the foundations cannot be carried low enough to prevent undermining, piles should be driven at about $2\frac{1}{2}$ to 3 ft. centers over the foundation.

^{* &}quot;Allowable Pressures on Deep Foundations" by E. L. Corthell, John Wiley & Sons.

TABLE IV. THE DUN DRAINAGE TABLE. Atchican Toneka & Santa Fe Pailway System

Areas Drained in Areas	Wissouri and Vo. 0.0 2.0 4.0 0.0 7.5 12.3 5.15 16 25 23 8	ARE Cast Pipe	Box and Arch Oldwerts. Box and Arch Oldwerts. Int Fig. — Bench. L. M. A. d. Fig. — Bench.	Dail Illinois.	in. 9 Indian Ter-	Texas.	8 New Mex-	Areas Drained in Square Miles	Wissouri and Kansas.		ERCE?	TERW STAGE JMN 2	OF
1 Ares Drained 100 115 20 20 20 20 20 20 20 20 20 20 20 20 20	2 2.0 4.0 6.0 7.5 9.0 10.5 12.0 13.5 15 16 25 32 38	3 1-24 in. 1-24 " 1-30 " 1-36 " 1-42 " 1-42 " 1-48 " 2-36 " 2-36 "	4 2 x 1 B 2 x 2 " 2 x 3 " 2½ x 3 " 3½ x 3 " 3½ x 3 "	м Illinois.	o Indian Ter-	Texas.	New Mex-	r	Missouri Kansa	Illinois.	Indian Ter-	Texas.	New Mex- ico.
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .15 .20 .25 .30	2 2.0 4.0 6.0 7.5 9.0 10.5 12.0 13.5 15 16 25 32 38	3 1-24 in. 1-24 " 1-30 " 1-36 " 1-42 " 1-42 " 1-48 " 2-36 " 2-36 "	4 2 x 1 B 2 x 2 " 2 x 3 " 2½ x 3 " 3½ x 3 " 3½ x 3 "	5	6			r	Missouri Kansa	_			
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .10 .20 .25	2.0 4.0 6.0 7.5 9.0 10.5 12.0 13.5 16 25 32	1-24 in. 1-24 " 1-30 " 1-36 " 1-42 " 1-42 " 1-48 " 2-36 " 2-36 "	2 x 1 B 2 x 2 " 2 x 3 " 2 1 x 3 " 3 1 x 3 "			7	8			5	6	7	
.02 .03 .04 .05 .06 .07 .08 .09 .10 .15 .20 .25	4.0 6.0 7.5 9.0 10.5 12.0 13.5 16 25 32 38	1-24 " 1-30 " 1-36 " 1-42 " 1-48 " 2-36 " 2-36 "	2 x 2 " 2 x 3 " 2 x 3 " 3 x 3 " 3 x 3 "	nt.	ij			II	-				
40 45 50 55 50 65 77 85 90 1.1 1.2 1.3 1.4 1.5 1.6 2.2 2.4 2.6 2.8 3.0 3.2 4.0 4.2 4.6 4.8 5.0 5.0 6.5 6.5 7.7 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	44 51 56 62 66 70 74 78 81 85 88 89 91 94 97 100 120 130 140 150 160 170 180 200 240 260 280 301 340 357 373 388 403 417 433 443 443 443 483	3-42 "3-48 "	D 2 x 3 2 x 3 2 x 3 2 x 3 3 x 3 6 x 5 x 4 x 6 6 x 5 x 4 x 6 8 x 4 x 6 10 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	nt. West of Streator use 80 per cent.	cell use Texas Column.	201 201 201 201 201 201 201 201 201 201	26666666666666666666666666666666666666	12 13 14 15 16 17 18 20 22 24 26 30 32 34 36 38 40 45 50 60 60 60 60 60 60 10 10 10 10 10 10 10 10 10 10 10 10 10	710 740 740 775 805 835 865 890 920 935 1,060 1,100 1,140 1,180 1,255 1,290 1,350 1,350 1,780 1,780 1,780 1,780 2,015 2,405 2,120 2,220 2,500 2,580 2,665 2,120 2,240 2,900 2,915 3,495 3,615 4,885 5,030	Streator use 80 per cent. Streator use 60 per cent. East of Streator use 60 per cent.	Purcell use Column 2. North of Purcell use Column 2. South of Purcell use Texas Column.	105 105 105 105 105 105 105 105 105 110 110	93 1 93 1 93 1 93 1 93 1 93 1 93 1 93 1
6.5 7.0 7.5 8.0 8.5 9.0 9.5	509 533 556 579 601 622 641 660 679		32 x 7½ " 32 x 8 " 32 x 9 " 32 x 10 " 32 x 11 " 32 x 11½ " 32 x 12 " 32 x 12½ " 32 x 12½ "	West of Stre East of Stre	South of	105 105 105 105 105 105 105	97 97 97 97 97 97 93	700 800 900 1,000 2,000 3,000 4,000 5,000	5,420 5,800 6,080 6,380 8,820 10,640 12,160	West of Stre East of Stre	North of Pu South of Pu	130 130 130 130 130 130 130 130	65 62 59 56

The above classification by states is for convenience only, and merely denotes the general characteristics of

topography and rainfall.

Column 2 in this table is prepared from observations of streams in Southwest Missouri, Eastern Kansas, Western Arkansas and the southeastern portions of the Indian Territory. In all this region steep, rocky slopes prevail and the soil absorbs but a small percentage of the rainfalls. It indicates larger waterways than are required in Western Kansas and level portions of Missouri, Colorado, New Mexico and Western Texas.

^{*} American Railway Engineering Association, Vol. 12, p. 484. This report also contains an elaborate report on Runoff and Waterways for Culverts.

Fig. 3. Masonry Abutments, Baltimore and Ohio Railway.

Soft Ground.—The materials should be excavated to a solid stratum or piles spaced about 2½ to 3 ft. centers should be driven over the foundation to a good refusal. The piles should be cut off below low water level to carry a timber grillage, or concrete may be deposited around the heads of the piles. Where water cannot be excluded it will be necessary to use one of the following methods; open caisson, crib, coffer dam, or pneumatic caisson.

In using an open caisson the masonry is built up or the concrete is deposited in a water tight box built of heavy timbers or of reinforced concrete, the caisson being sunk as the pier is built up.

Fig. 4. Masonry Abutments, N. Y. C. & H. R. R. R.

The caisson is commonly floated into place and then is sunk on piles which have been sawed off to receive it, or on a solid rock foundation. The sides of timber caissons are usually removed after the pier is completed.

Timber cribs are made of squared timbers placed transversely and longitudinally, and bolted together so as to form a solid structure with open pockets. The crib is sunk by loading the pockets with stone. No timber should be left above the low water mark in open caissons or cribs.

A coffer dam is usually made by driving two rows of sheet piling around the pier, the space between the rows of piling being filled with clay puddle. For small depths a single row of sheet piling is often sufficient. Where the depth is too great for one length of sheet piling, additional rows are driven inside the first. Steel sheet piling is now much used for difficult foundations. Steel sheet piling can be driven through ordinary drift and similar material, is not limited in depth, and is practically water tight when used in a single row. It can be drawn and used again. It is almost impossible to shut off all the water with a coffer dam, and pumps should be provided.

Pneumatic caissons should only be used under the direction of experienced engineers and will not be considered here.

For details of sinking piers see Jacoby & Davis' "Foundations of Bridges and Buildings", McGraw-Hill Book Company.

EXAMPLES OF RAILWAY BRIDGE ABUTMENTS.—Standard stone masonry abutments designed by the Baltimore & Ohio Railway are shown in Fig. 3. These abutments are to be used for deck and through girder spans. The plans are worked out in detail and give data for different conditions.

Standard designs for a straight abutment and for a wing abutment designed by the N. Y. C. & H. R. R. are shown in Fig. 4. Data for different conditions are given on the plans. The quantity of masonry and of old railroad rails required for the N. Y. C. & H. R. R. R. abutments shown in Fig. 4 are given in Fig. 5. The wings are the length required for a flare of 30 degrees and a side slope of roadway of $1\frac{1}{2}$ to 1.

NOTE: - H equals distance from top of foundation to Base of Rail. Quantities shown by curves are NET. Foundation based on depth of 4 feet. N.Y. C. & H.R.R.R. QUANTITIES IN STANDALD ABUTMENTS Types A&B

FIG. 5. QUANTITIES IN MASONRY ABUTMENTS, N. Y. C. & H. R. R. R.

13.5 | 14.5 | 15.5 | 16.5 | 17.5 | 18.6 | 19.6 | 20.8 | 22.0 | 23.1 | 24.2 | 25.5 | 26.8 | 28.0 | 29.4 | 30.6 | 32.0 | 33.4 | 35.0 | 36.2 | 37.6 | 32.0 |

The quantity of concrete in single track railway bridge abutments as designed by the Illinois Central R. R. are given in Fig. 6. The quantities in double track abutments may be calculated as shown in Fig. 6.

Cooper's Standard Abutments — The abutment in (a), Fig. 7, is from Cooper's "General Specifications for Foundations and Substructures of Highway and Electric Railway Bridges." The length, l, and the thickness, a, for highway and single track electric railway bridges are as

given, and are proportional for intermediate spans. These abutments may be made of either first-class stone masonry, or first-class Portland cement concrete.

For double track electric railway bridges add one foot to the value of a in Fig. 7. The minimum thickness of the wall at any point is to be 0.4 of the height. The length of the wing walls will be determined by local conditions.

FIG. 6. QUANTITIES IN MASONRY ABUTMENTS, ILLINOIS CENTRAL RAILROAD.

The abutment without wing walls in (b), Fig. 7, has the same dimensions as the abutment with wing walls. The width for single track electric railways may be taken as 14 ft., double track 26 ft. The approximate cubical quantities in abutments without wing walls are given in Fig. 7.

RAILWAY BRIDGE PIERS.—Standard piers for railway bridges as designed by the N. Y. C. & H. R. R. R. are shown in Fig. 8. Dimensions and data for different spans and heights of piers are given on the plans. The quantities of masonry in the standard plans shown in Fig. 8 are given in Fig. 9, for deck spans and for through spans.

Quantities of masonry in piers for deck plate girder spans are given in Fig. 10 and for through girder and truss spans in Fig. 11. These piers were designed and the estimates were prepared by the bridge department of the Illinois Central Railroad.

Illinois Central Railroad Pier.—Details of a concrete pier designed and built by the Illinois Central Railroad are shown in Fig. 12. The pier rests on timber piles spaced as shown. The "starkwater" is reinforced with an 8 in, I beam.

Cooper's Standard Masonry Piers.—The masonry pier in Fig. 13 is from Cooper's "General Specifications for Substructures of Highway and Electric Railway Bridges." The length, *l*, and the thickness, *a*, for highway and single track electric railway bridges are given in Fig. 13. These piers may be made of either first-class stone masonry, or first-class Portland cement concrete.

For double track electric railway bridges add one foot to l, and 6 inches to a. The width, w = center to center of trusses, and may ordinarily be taken 14 ft. for single track, and 26 ft. for double track through bridges. Where drift and logs are liable to injure the pier the nose of the cut-water should be protected with a steel angle or plate. The approximate cubical contents of the piers are given in Fig. 13.

STEEL TUBULAR PIERS.—Steel tubular piers are made of steel plates riveted together and filled with concrete. Where the piers are founded on soft material, piles are driven in the

bottom of the tube, the piles being sawed off below the water line. The piles should extend at least two diameters of the tube above the bottom. The tubes are braced transversely by means of struts and tension diagonals above high water and by diaphragm bracing below high water. Where the piers will be subject to blows from floating drift or logs they should be protected by a timber cribwork or other device.

Cooper's Standards.—The tubular piers in Fig. 14 are from Cooper's "General Specifications for Foundations and Substructures for Highway and Electric Railway Bridges." Cooper specifies

DIMENSIONS OF MASONRY ABUTMENTS
WITH WING WALLS

Distance, a	Span, Feet	Length, L.
2'6"	50 100	w+4'0" w+5'0"
3'0"	150 200	w+5'9" w+6'6"
3'6"	250	w + 7'0''

w = center to center of trusses, 14 ft · for single track, 26 ft · for double track ·

(a) HIGHWAY ABUTMENT WITH WING WALLS

APPROXIMATE QUANTITIES IN CU-YOS-OF ONE MASONRY ABUTMENT WITHOUT WING WALLS

Span	Para dum	Depth Footing Below Grade									
Feet	Koaoway	10'	15'	20'	25'	30 ^t					
100	12 Feet 20 Feet E, Single T E, Double T	28 21	56	75	145 112	206					
300	12 Feet 20 Feet E,Single T. E,Double T.			77 106 85 141		227					

(b) HIGHWAY ABUTMENT WITHOUT WING WALLS

Fig. 7. Masonry Abutments for Electric Railway and Highway Bridges.

Cooper's Standards.

a minimum thickness of $\frac{3}{8}$ in. for plates below and $\frac{1}{4}$ in. above the high water. The minimum size of tubular piers are as given in Fig. 14.

A steel tubular pier with a timber crib protection is given in Fig. 14. The crib is filled with loose rock.

A steel oblong pier, as designed by Cooper, is given in Fig. 15. The center of the truss is to come a/2 + one ft. from the end of the pier. The width a, as specified by Cooper, is given in Fig. 15.

American Bridge Company Standards.—The American Bridge Company's standard tubular piers are shown in Fig. 16. The minimum diameters for a height of 15 feet to carry a single span,

and data on piers, pier beams and pier bracing are given in Fig. 16. In calculating the weight of a pier add one foot to the length of each tube. The weight of the concrete in two tubes is given in Fig. 16. The concrete is assumed to fill the tube, and the space occupied by piles should be deducted. The number of piles required for different diameters of tubes is given. The number of piles required for large tubes agrees quite closely with Cooper's Specifications, but the number for small tubes is very much less.

Pier Beams.—The sizes of pier beams required for different panel lengths and clear distance between tubes in feet are given in Fig. 16. The pier beam should be assumed as one foot longer than the clear distance between the tubes, in calculating the weight of the beams.

FIG. 8. MASONRY PIERS, N. Y. C. & H. R. R. R.

Pier Bracing.—The pier bracing for piers supporting the ends of two spans are given in Fig. 16. If the spans are unequal in length, enter the table with one-half of the algebraic sum of the spans. For example, for a pier carrying a 75 ft. and a 125 ft. span, enter the diagram with a span of 100 ft. Steel tubular piers should never be used for end abutments carrying a fill.

In calculating the weight of the diagonal bars the length of the bar should be multiplied by the weight per foot as obtained from a handbook, and the details for one bar added to the product. In calculating the weight of the struts add one foot to the clear length.

Pier Caps.—Tubular piers may be capped with steel plate caps, may be finished with concrete, or may have a stone pedestal block. The weights given in Fig. 16 do not include the weights of steel caps.

Specifications for Steel Tubular Piers for Highway and Electric Railway Bridges.—The plates for the tubes shall be not less than $\frac{1}{4}$ in. thick for tubes up to 30 in. in diameter, not less than $\frac{5}{16}$ in. for tubes from 30 to 48 in. in diameter, and not less than $\frac{3}{6}$ in. for tubes from 48 to 72 in. in diameter. Where the plates are in contact with the soil the thickness shall be increased at least $\frac{1}{16}$ in. For $\frac{5}{16}$ in. plate and less use $\frac{5}{6}$ in. rivets; for $\frac{3}{6}$ in. plate and over use $\frac{3}{4}$ in. rivets.

The horizontal seams shall be single lap joints riveted with a pitch of 4 diameters of rivet, while the vertical seams shall preferably be butt riveted with single riveting spaced 4 diameters of rivet, up to 48 in. diameter of tubes, and double riveting with 3 in spacing for tubes of larger diameter.

Fig. 9. Quantities in Masonry Piers, N. Y. C. & H. R. R. R.

Fig. 10. QUANTITIES IN MASONRY PIERS FOR DECK GIRDERS, ILLINOIS CENTRAL RAILROAD.

<u></u>		*		=7 _{7,82}	se of Ra	oil Fo X	rders d r Addit • (Cont	er trus tional l tents of	ses-15° Vidth oi	0" to 1 F Pier Track	Pier)+	toc	Foots	ng Pre	*\$\$W7 *	-/5 ta	ns/s	1-12-		
	T		to			SPAN:	5 150'	O" OR	UNDER	?			SPA)	45 0	VER	150'	0"			
/	4	10	130	/	H	200	30	0"	40'0"	50	0" 2	00"	30	0'0"	40	0	50	200		
	PIER A	~3 A	PIER B		Pier .	4 8	A	BA	B	A	BA	B	A	B	A	B	A	B		
-	TER M	•	TIEKD		C :	5.5 6.0	8.0	9.0 12	0 13-5	14.5	165 7.1	8.2	10-0	12.0	130	16-0	170	2/4		
			VAL	UES O	FX	FOR SH	PANS .	30'0"	TO 40	20'0"	IN LE	NGTH	,		٠					
	30	0"	40	10"	1	50'0"	60	2'0"	70	10"	80	2'0"	T	90'0"		90'0		1	100'0	
Н	A	B	A	В	A	8	A	B	A	8	A	B		4	8	À	Т	B		
20'0" 30'0" 40'0" 50'0"	121 208 314 410	143 244 364 470	121 208 314 410	143 244 364 470	127 219 320 415	149 255 370 477	127 219 320 415	149 255 370 477	130 221 322 4/7	152 257 372 477	138 274 325 420	160 260 375 480	2.3	77 27 36 27	169 263 386 482	158 234 340 424	,	180 270 390 484		
	12.	5'0"	150'0"		17.	175'0"		0'0"	25	0'0	30	0'0"	+	350	'0"	1	100'	04		
H	A	B	A	8	A	В	A	В	A	B	A	8		1	B	A	T	B		
20'0" 30'0" 40'0"	160 252 342 485	198 310 430 590	184 306 395 501	228 366 482 601	251 320 420 548	280 384 520 648	275 328 448 576	324 400 550 703	26/ 326 435 550	306 404 545 710	270 340 453 576	371 425 570 726	3.	85 70 80 08	351 467 632 793	298 399 5/5 648		370 5/6 673 862		
len		- Piers e design				ar mari	P 117		SINGLI		CONTE) ICK, TH	_	-	94/9	PIEK	25				

Fig. 11. Quantities in Masonry Piers for Through Spans, Illinois Central Railroad.

The bracing of piers shall be designed to take all the wind forces specified to come on the bridge. Diaphragm webs are to be used up to well above high water for piers located in the stream or where floating materials may find lodgment. Oblong piers shall be braced against inside and outside pressure. Piers exposed to injury from floating logs and drift shall be protected.

The tubes should be painted inside and out with two coats of red lead and linseed oil, or other prescribed paint.

The materials and workmanship shall comply with the specifications for the highway bridge superstructure.

Erection.—Where the bottom will permit, the tubes shall be sunk well below possible scour by loading the tube and excavating the material from the inside. For this purpose a clamshell bucket is very effective. Driving the tube with a pile driver will cut off the rivets in the horizontal seams and will not be permitted. After the tube is sunk, piles are to be driven inside of the steel shell, as closely together as possible, using care to get no pile nearer than 4 to 6 in. to the steel shell. The piles shall be driven to a good refusal, and the tops sawed off below the low water mark and reaching at least 2 diameters of the tube above the bottom. The space inside the tubes shall then be filled with concrete well tamped. Concrete should not be deposited in running water if possible to prevent it.

FIG. 12. DETAILS OF ILLINOIS CENTRAL RAILROAD PIER.

Where piers are founded on rock, the tubes are to be anchored to the rock and then filled with concrete. Or cribs may be sunk on the rock and the tube set in a pocket in the crib and resting on the rock. The space outside the tube is then filled with concrete and the tube is filled with concrete in the usual manner.

Cylinder Piers for Highway Bridge, Trail, B. C.*—Steel cylinder piers were used for a steel highway bridge designed by Waddell and Harrington, Consulting Engineers, and built across the Columbia River at Trail, B. C. The main spans are 172 ft. 8 in long and are carried on piers made of two steel cylinders filled with concrete. The steel cylinders are 9 ft. in diameter at the bottom and 6 ft. in diameter at the top, and are 86 ft. long. The cylinders are made of

^{*}Engineering News, Dec. 5, 1912.

DIMENSIONS FOR MASCHRY PIER FOR HIGHWAY AND SINGLE TRACK ELECTRIC RAILWAY BRIDGES

Distance a	Span Feet	Length
2'8"	50	W+4'0"
2'10"	75	W+4'6"
3'2"	100	W+5'0"
3'8"	150	W+5'9"
4'4"	200	W+6'6"
4'10"	250	W+7'0"
5'4"	300	W+7'6"

For double track Electric Railway bridges add 12" to 7.and 6" to 8.

APPROXIMATE CONTENTS IN CUBIC YARDS OF ONE MASONRY PIER

Spans	Roadway	Depth of Pier From Top of Coping to Bottom of Footing in Feet								
Feet	I2 Feet 20 Feet E, Single T. E, Double T. I2 Feet 20 Feet E, Single T. E, Double T. I2 Feet 20 Feet E, Single T. E, Double T. I2 Feet 20 Feet E, Single T. E, Double T. I2 Feet CO Feet E, Single T.	10	15	20	25	30				
100	20 Feet E, Single T.	29 38 3/ 50	44 59 46 75	60 82 62 102	77 108 80 132	94 136 100 166				
150	20 Feet E, Single T.	34 46 37 58	51 70 54 86	70 95 74 118	90 125 96 153	111 157 120 191				
200	20 Feet E, Single T.	39 53 43 66	58 80 63 99	80 109 - 86 135	103 143 112 174	128 178 140 217				
250	20 Feet	44 61 48 73	66 91 74 109	90 123 98 149	116 160 127 192	145 199 159 238				
300	12 Feet 20 Feet E, Single T. E, Double T.	49 68 54 80	73 101 80 120	100 137 109 164	130 177 142 210	162 220 178 260				

FIG. 13. MASONRY PIERS FOR ELECTRIC RAILWAY AND HIGHWAY BRIDGES.

COOPER'S STANDARDS.

plates $\frac{1}{2}$ in. thick and are connected by a double plate web diaphragm, each diaphragm made of $\frac{5}{16}$ in. plates spaced 24 in. apart and 25 ft. high, and reaching from below low water to above high water. The diaphragms were covered and filled with concrete. The cylinders are spaced 21 ft. centers. The piers were sunk by the pneumatic process,

MINIMUM SIZES OF STEEL TUBULAR PIERS, COOPER'S STANDARDS

Span	Highway &	Single Track Railway	Electric	Double Track Electric Railway						
Feet	Minimum Top, d	Diameter Bot· D·	Number of Piles	Minimum Top d	Diameter Bot D	Númber of Piles				
50 75 100 125 150 175 200 250	2'10" 3'4" 3'8" 4'0" 4'4" 5'6"	3'4" 3'9" 4'2" 4'7" 5'0" 5'6" 6'4"	4 5 6 8 9 10 11 12	3'4" 3'10" 4'6" 4'10" 5'2" 5'6" 5'10"	4'4" 5'6" 6'0" 6'4" 7'0" 8'0" 9'0"	8 10 10 12 12 15 15				

Fig. 14. Steel Tubular Piers for Electric Railway and Highway Bridges.

Cooper's Standards.

STEEL CYLINDER PIERS FOR RAILWAY BRIDGES.—Steel cylinder piers have been used for the foundations of several important bridges, Table V, by the Chicago and Northwestern Railway. Mr. W. H. Finley, Asst. Chief Engineer, gives the following advantages of steel cylinder piers over masonry piers.*

- (I) "Where it is desired to provide for future second track, cylinder foundations will cost very little more for double track than for single track.
 - * Engineering News, Oct. 24, 1912.

(2) "Cylinder piers can be constructed under traffic with less trouble than any other type.

(3) "Cylinder piers permit of rapid sinking by open dredging where the material is favorable and sunken logs are not liable to be encountered. Air pressure can be applied readily and cheaply if it becomes necessary."

Details of the cylinder piers for the Oxford Mill Pond bridge are shown in Fig. 17, and details of the steel shells for the base of the piers are shown in Fig. 18. The bridge is 481 feet long and consists of 30 ft. and 60 ft. spans resting on piers made of two steel cylinders and a steel shell for the base, filled with concrete.

MINIMUM SIZES OF STEEL OBLONG PIERS COOPER'S STANDARDS

C	Wide	th a
Span	Highway and	Double Track
Feet	Single Track	Electric
1660	Electric Railway	Railway
50	2'10"	3'4"
75	3'4"	4'0"
100	3'8"	4'6"
125	4'0"	4'10"
150	4'4"	5'2"
175	4'8"	5'6"
200	5'0" 5'6"	5'10" 6'4"
250	20	0 4

OBLONG STEEL PIERS

FIG. 15. STEEL OBLONG PIERS FOR ELECTRIC RAILWAY AND HIGHWAY BRIDGES.

COOPER'S STANDARDS.

TABLE V.

Data on Several Steel Cylinder Piers used by the Chicago and Northwestern Railway.

				Steel	Cylinde	er Pier	3.	2	Steel C	Caissor	Pier	8.
Bridge.	1; Ft.	Number of Cylinders		neter iers.	ss of In.	it of Ft.	of Piles One linder.	Ft.	FI tr	se of In.	of Ft.	Piles.
	Span,	in Pier.	Top, Ft.	Bot- tom, Ft	Thickness of Metal, In	Height Pier, F	No. of Piles in One Cylinder.	Width,	Length,	Thickness of Metal, In.	Height Caisson,	No. of Piles.
Boone Viaduct		4 (Tower)	10	10	58	70	*					
Lake Butte Des Morts Via- duct	{ 4 6	3	5½	8	16	34	†					
Buffalo Lake Viaduct	{ 60	2		8	8	30						
Oxford Mill Pond Viaduct	{ 30 60	2	6		5 16	34		10	291	3 8	191	49
Pekin Bridge	150	2 2		12 15	Į	92 97	‡					
Pekin Bridge	70	2		131	3 8	43	30					

^{*} Rests on Sandstone.

[†] Hard Clay.

I Rests on Hard Shale.

Increase diameter 3" for each additional 5 feet in height.

STEEL TUBULAR PIERS
AMERICAN BRIDGE COMPANY STANDARDS

CYLINDER PIERS

All							ubes		
Diam.	Weig	ht pe	r Ver	t. Ft	of 2	Tubes	Cu-Yd-	No-10 One	y
Tube	311	1"	511	311	7/1		per Vertift		
15"	75*	97*				187	0.091	1	
18	88	114	140	167	194	220	0.131	1	
21	102	131	162	194	223	253	0.178	1	
24	117	150	185	221	255	290	0.232	1	
27	130	167	206	247	284	324	0.296	1	
30	143	185	227	271	315	357	0:364	1	
33	157	203	250	300	347	393	0440	1	
36	172	222	273	326	377	429	0.524	2	
39	185	240	293	352	408	463	0.614	2	
42	200	257	316	378	437	497	0.712	3	
45	213	275	339	405	469	532	0.820	3	
48	227	293	362	412	500	568	0.930	4	
54				485	563	636	1.178	5	
60		365	449	539	621	705	1.454	6	
66			495	593	684	780	1.758	7	
72			538	643			2.094	8	
78				698	805	917	2.458	10	
84				749	866	984	2-850	13	

PIER BEAMS FOR VARIOUS PANEL LENGTHS AND CLEARANCES BETWEEN BEAMS

<i>c.</i>	Clear	ance.	s For	Vario	us Si	E65 0.	FI B	eams
5pan Length	8"I 18#	9"I 21#		~ ~			15"I 50#	_
12'0" 13-0 14-0 15-0 16-0	9'6" 9-0	10-6 10-0 9-9 9-6	11-9 11-3 11-0 10-9	14-3 13-9 13-3 13-0	16-0 15-6 15-0 14-6	18-6 17-9 17-0 16-6	200" 19-3 18-6 18-0 17-3	22-6 21-9 21-0 20-3
17-0 18-0 19-0 20-0 21-0		9-0	10-0 9-9 9-6	12-3 12-0	13-6 13-3 13-0	15-6 15-3 14-9	16-9 16-3 16-0 15-6 15-3	19-3 18-9

PIER BRACING

Support tad Dia	Size, Wt-perFt and	STRU	TS:-5	izes di	Wts-p	er Ft.
tance	Details Rod	12'0"	14'0"	16'0"	18'0"	20'0"
	7" @ 2.6 #/Ft Details, I-Rod 20"					
	l{"@4·3*/Ft· Details,FRod 30*					
751	la "@ 6.4*/Ft. Details, I-Rod45*	2[34×54 7*/ft	254"54 17#/ft	2 <u>55%65</u> 19**/Ft.	255×6½ 19*/ft.	286×8 22*/ft
	l g " @ 9 · 0 */Ft · Details, I-Rod 65*					
1251	l g " @ 12:0 */ F t : Details, F Rod 90 *	256×8 22*/ft	2B6×8 22*/ft	2E6×8 22#/ft-	257×94 26*/ft	26 #/ft

FIG. 16. STEEL TUBULAR PIERS FOR HIGHWAY BRIDGES, AMERICAN BRIDGE COMPANY.

Fig. 17. Steel Tubular Piers, Oxford Mill Pond Bridge, Chicago & Northwestern Railway.

Fig. 18. Steel Shell for Base of Cylinder Piers of the Oxford Mill Pond Bridge, Chicago & Northwestern Railway.

MASONRY AND CONCRETE DEFINITIONS AND SPECIFICATIONS.

CLASSIFICATION OF MASONRY.*

			Manner of	Dres	sing.
Kind.	Material.	Description.	Work.	Joints or Beds.	Face or Surface.
		Dimension	Coursed Coursed	Smooth	Smooth Rock-faced
Bridge and Retaining	Stone	Ashlar	Broken- coursed	Fine pointed Rough pointed	Smooth Rock-faced
Wall	Concrete	Rubble Reinforced	Uncoursed	Rough pointed Scabbled	Rock-faced
	(Concrete	Rubble			
	Stone	∫ Ashlar	Coursed	Smooth Fine pointed	Smooth Rock-faced
		Rubble	Uncoursed	Rough pointed Scabbled	Rock-faced
Arch	Concrete	{ Reinforced Plain	(n		
	Brick	No. 1	English Bond Flemish Bond		
Culvert	Stone	Rubble Dry	Uncoursed	Rough pointed Scabbled	Rock-faced
	Concrete	Reinforced Plain Rubble			
Dry	Stone	Rubble	Uncoursed		

DEFINITIONS.*

Masonry, Bridge and Retaining Wall.—Masonry of stone or concrete, designed to carry the end of a bridge span or to retain the abutting earth, or both.

Masonry, Arch.—That portion of the masonry in the arch ring only, or between the intrados

and the extrados.

Masonry, Culvert.—Flat-top masonry structure of stone or concrete, designed to sustain the fill above and to permit the free passage of water.

Masonry, Dry.—Masonry in which stones are built up without the use of mortar.

CONCRETE.

Concrete.—A compact mass of broken stone, gravel or other suitable material assembled together with cement mortar and allowed to harden.

Reinforced Concrete.—Concrete which has been reinforced by means of metal in some form.

so as to develop the compressive strength of the concrete.

Rubble Concrete.—Concrete in which rubble stone are imbedded.

BRICK.

Brick.—No. 1.—Hard burned brick, absorption not exceeding 2 per cent by weight.

CEMENT.

Cement.—A material of one of the three classes, Portland, Natural and Puzzolan, possessing the property of hardening into a solid mass when mixed with water.

* Adopted by Am. Ry. Eng. Assoc., Vol. 7, 1906, pp. 596-601, 619; Vol. 12, 1911.

Portland Cement.—This term shall be applied to the finely pulverized product resulting from the calcination to incipient fusion of an intimate mixture of properly proportioned argillaceous and calcareous materials, and to which no addition greater than 3 per cent has been made subsequent to calcination.

Natural Cement.—This term shall be applied to the finely pulverized product resulting from the calcination of an argillaceous limestone at a temperature only sufficient to drive off the carbonic

acid gas.
Puzzolan Cement, as Made in North America.—An intimate mixture obtained by finely

COURSES AND BOND.

Coursed.-Laid with continuous bed joints.

Broken Coursed.—Laid with parallel, but not continuous, bed joints.

Uncoursed.—Laid without regard to courses.

English Bond.—That disposition of bricks in a structure in which each course is composed

entirely of headers or of stretchers.

Flemish Bond.—That disposition of bricks in a structure in which the headers and stretchers alternate in each course, the header being so placed that the outer end lies on the middle of a stretcher in the course below.

DRESSING

Dressing.—The finish given to the surface of stones or to concrete.

Smooth.—Having surface, the variations of which do not exceed one-sixteenth inch from the pitch line.

Fine Pointed.—Having irregular surface, the variations of which do not exceed one-quarter

inch from the pitch line.

Rough Pointed.—Having irregular surface, the variations of which do not exceed one-half inch from the pitch line.

Scabbled.—Having irregular surface, the variations of which do not exceed three-quarters inch from the pitch line.

Rock-Faced.—Presenting irregular projecting face, without indications of tool mark.

DESCRIPTIVE WORDS

Abutment.—A supporting wall carrying the end of a bridge or span and sustaining the pressure of the abutting earth. The abuttment of an arch is commonly called a bench wall.

Arris.—The external edge formed by two surfaces, whether plain or curved, meeting each other.

Ashlar.—A squared or cut block of stone with rectangular dimensions.

Backing.—That portion of a masonry wall or structure built in the rear of the face. It must be attached to the face and bonded with it. It is usually of a cheaper grade of work than the face. Batter.—The slope or inclination of the face or back of a wall from a vertical line,

Bed.—The top and bottom of a stone. (See Course Bed; Natural Bed; Foundation Bed.)

Bed Joint.—A horizontal joint, or one perpendicular to the line of pressure.

Bench Wall.—The abutment from which an arch springs.

Bond.—The mechanical disposition of stone, brick or other building blocks by overlapping to break joints.

Build.—A vertical joint.

Centering.—A temporary support used in arch construction. (Also called centers.)

Clamp.—An instrument for lifting stone so designed that its grip on the surface of the stone is increased as the load is applied. That portion engaging the stone is of wood attached to a steel shoe, which in turn is hinged to the shank of the clamp in such a manner as to adjust itself to the surface of the body lifted.

Coping.—A top course of stone or concrete, generally slightly projecting, to shelter the masonry

from the weather, or to distribute the pressure from exterior loading. Course. - Each separate layer in stone, concrete or brick masonry.

Course Bed.—Stone, brick or other building material in position, upon which other material is to be laid.

Cramps.—Bars of iron having the ends turned at right angles to the body of the bar which enter holes in the upper side of adjacent stones.

Culvert.—A small covered passage for water under a roadway or embankment.

Dimension Stone.—(1) A block of stone cut to specified dimensions.

Dimension Stone.—(2) Large blocks of stone quarried to be cut to specified dimensions.

Dowels.—(a) Straight bars of iron which enter a hole in the upper side of one stone and also

a hole in the lower side of the stone next above.

Dowel.—(b) A two-piece steel instrument used in lifting stone. The dowel engages the stone by means of two holes drilled into the stone at an angle of about 45 degrees pointing toward each other. The dowel is not keved in place.

Draft.—A line on the surface of a stone cut to the breadth of the chisel.

Expansion Joint.—A vertical joint or space to allow for temperature changes.

Extrados.—The upper or convex surface of an arch.

Intrados.—The inner or narrow concave surface of an arch.

Face.—The exposed surface in elevation.

Facing.—In concrete: (1) A rich mortar placed on the exposed surfaces to make a smooth

(2) Shovel facing by working the mortar of concrete to the face.

Final Set.—A stage of the process of setting marked by certain hardness. (See Cement Specifications.)

Flush.—(Adj.) Having the surface even or level with an adjacent surface.

Flush.—(Verb.) (1) To fill. (2) To bring to a level. (3) To force water to the surface of mortar or concrete by compacting or ramming.

Footing.—A projecting bottom course.

Form.—A temporary structure for giving concrete a desired shape.

Foundation.—(1) That portion of a structure usually below the surface of the ground, which distributes the pressure upon its support. (2) Also applied to the natural support itself: rock. clay, etc.

Foundation Bed.—The surface on which a structure rests.

Grout.—A mortar of liquid consistency which can easily be poured.

Header.—A stone which has its greatest length at right angles to the face of the wall, and which bonds the face stones to the backing.

Initial Set.—An early stage of the process of setting, marked by certain hardness. (See

Cement Specifications.)

Joint.—The narrow space between adjacent stones, bricks or other building blocks, usually filled with mortar.

Lagging.—Strips used to carry and distribute the weight of an arch to the ribs or centering

during its construction.

Lewis.—A four-piece steel instrument used in lifting stone. (The lewis engages the stone by means of a triangular-shaped hole into which it is keyed.)

Lock.—Any special device or method of construction used to secure a bond in the work. Mortar.—A mixture of fine aggregate, cement or lime and water used to bind together the

materials of concrete, stone or brick in masonry or to cover the surface of the same.

Natural Bed.—The surfaces of a stone parallel to its stratification.

Parapet.—A wall or barrier on the edge of an elevated structure for protection or ornament. Paving.—Regularly placed stone or brick forming a floor.

Pier.—An intermediate support for arches or other spans.

Pitch.—(Verb.) To square a stone.

Pitched.—Having the arris clearly defined by a line beyond which the rock is cut away by the pitching chisel so as to make approximately true edges.

Pointing.—Filling joints or defects in the face of a masonry structure.

Retaining Wall.—A wall for sustaining the pressure of earth or filling deposited behind it. Voussoirs.—The individual stones forming an arch. They are always of truncated wedge

Ring Stones.—The end voussoirs of an arch.

Riprap.—Rough stone of various sizes placed compactly or irregularly to prevent scour by water.

Rubble.—Field stone or rough stone as it comes from the quarry. When it is of a large or massive size it is termed block rubble.

Rubbed.—A fine finish made by rubbing with grit or sand stone. The change from a plastic to a solid or hard state. Set.—(Noun)

Slope Wall.—A wall to protect the slope of an embankment or cut.

Soffit.—The under side of a projection.

Spall.—(Noun). A chip or small piece of stone broken from a large block.

Spandrel Wall.—The wall at the end of an arch above the springing line and extrados of the arch and below the coping or the string course.

Stretcher.—A stone which has its greatest length parallel to the face of the wall. Wing Wall.—An extension of an abutment wall to retain the adjacent earth.

SPECIFICATIONS FOR STONE MASONRY.*

GENERAL.

* r. Standard Specifications.—The classification of masonry and the requirements for cement and concrete shall be those adopted by the American Railway Engineering Association.

2. Engineer Defined.—Where the term "Engineer" is used in these specifications, it refers

to the engineer actually in charge of the work.

GENERAL REQUIREMENTS.

3. Stone.—Stone shall be of the kinds designated and shall be hard and durable, of approved quality and shape, free from seams, or other imperfections. Unseasoned stone shall not be used where liable to injury by frost.

4. Dressing.—Dressing shall be the best of the kind specified.
5. Beds and joints or builds shall be square with each other, and dressed true and out of wind.
6. Stone shall be dressed for laying on the natural bed. In all cases the bed shall not be

less than the rise.

Marginal drafts shall be neat and accurate.
 Pitching shall be done to true lines and exact batter.

Q. Mortar.—Mortar shall be mixed in a suitable box, or in a machine mixer, preferably of the batch type, and shall be kept free from foreign matter. The size of the batch and the proportions and the consistency shall be as directed by the engineer. When mixed by hand the sand and cement shall be mixed dry, the requisite amount of water then added and the mixing continued until the cement is uniformly distributed and the mass is uniform in color and homogeneous.

10. Laying.—The arrangement of courses and bond shall be as indicated on the drawings, or as directed by the engineer. Stone shall be laid to exact lines and levels, to give the required bond

and thickness of mortar in beds and joints.

II. Stone shall be cleansed and dampened before laving.

12. Stone shall be well bonded, laid on its natural bed and solidly settled into place in a full

13. Stone shall not be dropped or slid over the wall, but shall be placed without jarring stone already laid.

14. Heavy hammering shall not be allowed on the wall after a course is laid.

15. Stone becoming loose after the mortar is set shall be relaid with fresh mortar.

16. Stone shall not be laid in freezing weather, unless directed by the engineer. If laid, it shall be freed from ice, snow or frost by warming; the sand and water used in the mortar shall

17. With precaution, a brine may be substituted for the heating of the mortar. The brine shall consist of one pound of salt to eighteen gallons of water, when the temperature is 32 degrees Fahrenheit; for every degree of temperature below 32 degrees Fahrenheit, one ounce of salt shall

18. Pointing.—Before the mortar has set in beds and joints, it shall be removed to a depth of not less than one (1) in. Pointing shall not be done until the wall is complete and mortar set;

nor when frost is in the stone.

19 Mortar for pointing shall consist of equal parts of sand, sieved to meet the requirements, and Portland cement. In pointing, the joints shall be wet, and filled with mortar, pounded in with a "set-in" or calking tool and finished with a beading tool the width of a joint, used with a straight-edge.

BRIDGE AND RETAINING WALL MASONRY-ASHLAR STONE.

20. Bridge and Retaining Wall Masonry. Ashlar Stone.—The stone shall be large and well proportioned. Courses shall not be less than fourteen (14) in. or more than thirty (30) in. thick, thickness of courses to diminish regularly from bottom to top.

21. Dressing.—Beds and joints or builds of face stone shall be fine-pointed, so that the

mortar layer should not be more than one-half $(\frac{1}{2})$ in. thick when the stone is laid.

22. Joints in face stone shall be full to the square for a depth equal to at least one-half the height of the course, but in no case less than twelve (12) in.

^{*} Adopted by American Railway Engineering Association.

drawings.

- 23. Face or Surface.—Exposed surfaces of the face stone shall be rock-faced, and edges pitched to the true lines and exact batter: the face shall not project more than three (3) in, beyond the pitch line.
 - 24. Chisel drafts one and one-half (11) in. wide shall be cut at exterior corners.
- 25. Holes for stone hooks shall not be permitted to show in exposed surfaces. Stone shall be handled with clamps, keys, lewis or dowels.
 - 26. Stretchers.—Stretchers shall not be less than four (4) ft. long and have at least one and a
- quarter times as much bed as thickness of course.
- 27. Headers,—Headers shall not be less than four (4) ft. long, shall occupy one-fifth of face of wall, shall not be less than eighteen (18) in. wide in face, and, where the course is more than eighteen (18) in. high, width of face shall not be less than height of course.
- 28. Headers shall hold in heart of wall the same size shown in face, so arranged that a header in a superior course shall not be laid over a joint, and a joint shall not occur over a header: the same disposition shall occur in back of wall.
 - 29. Headers in face and back of wall shall interlock when thickness of wall will admit.
- 30. Where the wall is three (3) ft. thick or less, the face stone shall pass entirely through.
- Backing shall not be permitted.
- * 31-a. Backing.—Backing shall be large, well-shaped stone, roughly bedded and jointed: bed joints shall not exceed one (I) in. At least one-half of the backing stone shall be of same size and character as the face stone and with parallel ends. The vertical joints in back of wall shall not exceed two (2) in. The interior vertical joints shall not exceed six (6) in. Voids shall
- be thoroughly filled with { concrete. spalls, fully bedded in cement mortar.
 - concrete.
 - 31-b. Backing shall be \ headers and stretchers, as specified in paragraphs 26 and 27, and heart of wall filled with concrete.
 - 32: Where the wall will not admit of such arrangement, stone not less than four (4) ft. long
- shall be placed transversely in heart of wall to bond the opposite sides.

 33. Where stone is backed with two courses, neither course shall be less than eight (8) in.
- thick.
- 34. Bond.—Bond of stone in face, back and heart of wall shall not be less than twe!ve (12) Backing shall be laid to break joints with the face stone and with one another.
- 35. Coping.—Coping stone shall be full size throughout, of dimensions indicated on the drawings.
 - 36. Beds, joints and top shall be fine-pointed.
- 37. Location of joints shall be determined by the position of the bed plates, and be indicated
- on the drawings. 38. Locks.—Where required, coping stone, stone in the wings of abutments, and stone on piers, shall be secured together with iron clamps or dowels, to the position indicated on the

BRIDGE AND RETAINING WALL MASONRY—RUBBLE STONE.

- 39. Dressing.—The stone shall be roughly squared, and laid in irregular courses. Beds shall be parallel, roughly dressed, and the stone laid horizontal to the wall. Face joints shall not be more than one (I) in. thick. Bottom stone shall be large, selected flat stone.
- 40. Laying.—The wall shall be compactly laid, having at least one-fifth the surface of back and face headers arranged to interlock, having all voids in the heart of the wall thoroughly filled with { concrete, suitable stones and spalls, fully bedded in cement mortar.

ARCH MASONRY—ASHLAR STONE.

- 41. Arch Masonry, Ashlar Stone.—Voussoirs shall be full size throughout and dressed true to templet, and shall have bond not less than thickness of stone.
- 42. Dressing.—Joints of voussoirs and intrados shall be fine-pointed. Mortar joints shall not exceed three-eighths $(\frac{3}{8})$ in.
 - smooth. 43. Face or Surface.—Exposed surface of the ring stone shall be \(\frac{rock faced}{rock faced} \), with a marginal
 - 44. Number of courses and depth of voussoirs shall be indicated on the drawings.
 - 45. Voussoirs shall be placed in the order indicated on the drawings.
- * Paragraphs 31-a and 31-b are so arranged that either may be eliminated according to requirements. Optional clauses printed in italics.

46. Backing.—Backing shall consist of concrete. large stone, shaped to fit the arch bonded to the spandrel and laid in full bed of mortar.

47. Where waterproofing is required, a thin coat of mortar or grout shall be applied evenly for a finishing coat, upon which shall be placed a covering of approved waterproofing material.

48. Centers shall not be struck until directed by the engineer.

49. Bench Walls, Piers, Spandrels, etc.—Bench walls, piers, spandrels, parapets, wing walls and copings shall be built under the specifications for Bridge and Retaining Wall Masonry, Ashlar Stone.

ARCH MASONRY-RUBBLE STONE.

50. Arch Masonry, Rubble Stone.—Voussoirs shall be full size throughout, and shall have bond not less than thickness of voussoirs.

51. Dressing.—Beds shall be roughly dressed to bring them to radial planes.

52. Mortar joints shall not exceed one (1) in.

53. Face or Surface.—Exposed surfaces of the ring stone shall be rock-faced, and edges pitched to true lines.

54. Voussoirs shall be placed in the order indicated on the drawings.

55. Backing.—Backing shall consist of {
 concrete. large stone, shaped to fit the arch, bonded to the span-drel, and laid in full bed of mortar.

56. Where waterproofing is required, a thin coat of mortar or grout shall be applied evenly for a finishing coat, upon which shall be placed a covering of approved waterproofing material.

57. Centers shall not be struck until directed by the engineer.

58. Bench Walls, Piers, Spandrels, etc.—Bench walls, piers, spandrels, parapets, wing walls and copings shall be built under the specifications for Bridge and Retaining Wall Masonry, Rubble Stone.

CULVERT MASONRY.

59. Culvert Masonry.—Culvert Masonry shall be laid in cement mortar. Character of stone and quality of work shall be the same as specified for Bridge and Retaining Wall Masonry, Rubble Stone.

60. Side Walls.—One-half the top stone of the side walls shall extend entirely across the wall.

61. Cover Stones.—Covering stone shall be sound and strong, at least twelve (12) in. thick, or as indicated on the drawings. They shall be roughly dressed to make close joints with each other, and lap their entire width at least twelve (12) in. over the side walls. They shall be doubled under high embankments, as indicated on the drawings.

62. End Walls, Coping.—End walls shall be covered with suitable coping, as indicated on

the drawings.

DRY MASONRY.

63. Dry Masonry.—Dry Masonry shall include dry retaining walls and slope walls.

64. Retaining Walls.—Retaining Walls and Dry Masonry shall include all walls in which rubble stone laid without mortar is used for retaining embankments or for similar purposes.

65. Dressing.—Flat stone at least twice as wide as thick shall be used. Beds and joints

shall be roughly dressed square to each other and to face of stone.

66. Joints shall not exceed three-quarters (3) in.

67. Disposition of Stone.—Stone of different sizes shall be evenly distributed over entire face of wall, generally keeping the larger stone in lower part of wall.

68 The work shall be well bonded and present a reasonably true and smooth surface, free

from holes or projections.

69. Slope Walls.—Slope Walls shall be built of such thickness and slope as directed by the engineer. Stone shall not be used in this construction which does not reach entirely through the wall. Stone shall be placed at right angles to the slopes. The wall shall be built simultaneously with the embankment which it is to protect.

SPECIFICATIONS FOR PLAIN AND REINFORCED CONCRETE AND STEEL REINFORCEMENT.*

CONCRETE MATERIALS.

1. Cement.—The cement shall be Portland and shall meet the requirements of the standard

specifications.

2. Fine Aggregates.—Fine aggregate shall consist of sand, crushed stone or gravel screenings. graded from fine to coarse, and passing when dry a screen having \(\frac{1}{4} \) in. diameter holes; it shall preferably be of hard siliceous material, clean, free from dust, soft particles, vegetable loam or other deleterious matter, and not more than 6 per cent shall pass a sieve having 100 meshes per linear inch.

3. The fine aggregate shall be of such quality that mortar composed of one part Portland cement and three parts fine aggregate by weight when made into briquettes shall show a tensile strength at least equal to the strength of I: 3 mortar of the same consistency made with same

cement and standard Ottawa sand.

4. Coarse Aggregates.—Coarse aggregate shall consist of material such as crushed stone or gravel which is retained on a screen having \(\frac{1}{2} \) in. diameter holes and having gradation of sizes from the smallest to the largest particles; it shall be clean, hard, durable and free from all deleterious matter. Aggregates containing dust, soft or elongated particles shall not be used.

5. Water.—The water used in mixing concrete shall be free from oil, acid, and injurious

amounts of alkalies or vegetable matter.

STEEL REINFORCEMENT.

6. Manufacture.—Steel shall be made by the open-hearth process. Rerolled material will not be accepted.

7. Plates and shapes used for reinforcement shall be of structural steel only. Bars and

wire may be of structural steel or high carbon steel.

8. Schedule of Requirements.—The chemical and physical properties shall conform to the following limits:

Elements Considered.	Structural Steel.	High Carbon Steel.
Phosphorus, max { Basic Acid Sulphur, maximum	o.o4 per cent o.o6 per cent o.o5 per cent	0.04 per cent 0.06 per cent 0.05 per cent
Ultimate tensile strength in pounds per square inch.	Desired 60,000	Desired 88,000
Elong., min. per cent in 8 in., Fig. 1	1,500,000‡	1,000,000
Character of Fracture	Ult. tensile strength Silky	Ult. tensile strength Silky or finely
Cold Bends without Fracture	180° flat	granular 180° d = 4t§

9. Yield Point.—The yield point for bars and wire, as indicated by the drop of the beam,

shall be not less than 60 per cent of the ultimate tensile strength. 10. Allowable Variations.—If the ultimate strength varies more than 4,000 lb. for structural steel or 6,000 lb. for high carbon steel, a retest shall be made on the same gage, which, to be acceptable, shall be within 5,000 lb. for structural steel, or 8,000 lb, for high carbon steel, of the desired ultimate.

* Adopted by the American Railway Engineering Association.

† This sand may be obtained from the Ottawa Silica Company at a cost of 2 cts. per lb. f. o. b. cars, Ottawa, Ill.

 $\frac{1}{2}$ See paragraph 15. $\frac{1}{2}$ See paragraph 16. $\frac{1}{2}$ See paragraph 17. $\frac{1}{2}$ See paragraph 17. $\frac{1}{2}$ See paragraph 17. $\frac{1}{2}$ See paragraph 18. $\frac{1}{2}$ See paragraph 18. $\frac{1}{2}$ See paragraph 19. $\frac{1}{2}$ See paragraph 19.

11. Chemical Analyses.—Chemical determinations of the percentages of carbon, phosphorus, sulphur and manganese shall be made by the manufacturer from a test ingot taken at the time of the pouring of each melt of steel, and a correct copy of such analysis shall be furnished to the engineer or his inspector. Check analysis shall be made from finished material, if called for by the railroad company, in which case an excess of 25 per cent above the required limits will be allowed.

12. Form of Specimens.—Plates, Shapes and Bars: Specimens for tensile and bending tests for plates and shapes shall be made by cutting coupons from the finished product, which shall have both faces rolled and both edges milled to the form shown by Fig. 1; or with both edges

parallel; or they may be turned to a diameter of \frac{1}{2} in, with enlarged ends. 13. Bars shall be tested in their finished form.

Fig. 1.

14. Number of Tests.-At least one tensile and one bending test shall be made from each melt of steel as rolled. In case steel differing \(\frac{3}{8} \) in. and more in thickness is rolled from one melt, a test shall be made from the thickest and thinnest material rolled.

15. Modifications in Elongation.—For material less than $\frac{1}{16}$ in. and more than $\frac{1}{4}$ in. in thickness the following modifications will be allowed in the requirements for elongation:

(a) For each $\frac{1}{16}$ in. in thickness below $\frac{5}{16}$ in. a deduction of $2\frac{1}{2}$ will be allowed from the specified percentage.

(b) For each \(\frac{1}{2} \) in. in thickness above \(\frac{1}{2} \) in., a deduction of I will be allowed from the specified percentage.

16. Bending Tests.—Bending test may be made by pressure or by blows. Shapes and bars

less than one inch thick shall bend as called for in paragraph 8.

17. Thick Material.—Test specimens one inch thick and over shall bend cold 180 degrees around a pin, the diameter of which, for structural steel, is twice the thickness of the specimen, and for high carbon steel, is six times the thickness of the specimen, without fracture on the outside of the bend.

18. Finish.—Finished material shall be free from injurious seams, flaws, cracks, defective

edges or other defects, and have a smooth, uniform and workmanlike finish.

19. Stamping.—Every finished piece of steel shall have the melt number and the name of the manufacturer stamped or rolled upon it, except that bar steel and other small parts may be bundled with the above marks on an attached metal tag.

20. Defective Material.—Material which, subsequent to the above tests at the mills, and its acceptance there, develops weak spots, brittleness, cracks or other imperfections, or is found to have injurious defects, will be rejected and shall be replaced by the manufacturer at his own cost.

21. Reinforcing steel shall be free from excessive rust, loose scale, or other coatings of any character, which would reduce or destroy the bond.

WORKMANSHIP.

22. Unit of Measure.—The unit of measure shall be the cubic foot. A bag containing not less than 94 lb. of cement shall be assumed as one cubic foot of cement. Fine and coarse aggregates shall be measured separately as loosely thrown into the measuring receptacle.

23. Relation of Fine and Coarse Aggregates.—The fine and coarse aggregates shall be used

in such relative proportions as will insure maximum density.

24. Proportions.—The proportions of materials for the different classes of concrete shall be as follows:

Class.	Use.	Cement.	Aggregates.		
Class.			Fine.	Coarse.	

Note: This blank to be filled for each contract.

25. For plain concrete, a proportion of 1:9 (unless otherwise specified) shall be used, i. e., one part of cement to a total of nine parts of fine and coarse aggregates measured separately; for

example, I cement to a total of line parts of line and coarse aggregates measured separately; for example, I cement, 3 fine aggregate, 6 coarse aggregate.

26. For reinforced concrete a proportion of I: 6 (unless otherwise specified) shall be used, i. e., one part of cement to a total of six parts of fine and coarse aggregates measured separately;

for example, I cement, 2 fine aggregate, and 4 coarse aggregate.

27. Mixing.—The ingredients of concrete shall be thoroughly mixed to the desired consistency, and the mixing shall continue until the cement is uniformly distributed and the mass is uniform in color and homogeneous.

28. Measuring Proportions.—The various ingredients, including the water, shall be measured separately, and the methods of measurement shall be such as to secure the proper proportions at

29. Machine Mixing.—A machine mixer, preferably of the batch type, shall be used, wherever the volume of the work will justify the expense of installing the plant. The requirements demanded are that the product delivered shall be of the specified proportions and consistency

and thoroughly mixed.

30. Hand Mixing.—When it is necessary to mix by hand, the mixing shall be on a watertight platform of sufficient size to accommodate men and materials for the progressive and rapid mixing of at least two batches of concrete at the same time. Batches shall not exceed one-half cubic yard each. The mixing shall be done as follows: The fine aggregate shall be spread evenly upon the platform, then the cement upon the fine aggregates, and these mixed thoroughly until of an even color. The water necessary to mix a thin mortar shall then be added and the mortar spread again. The coarse aggregates, which, if dry, shall first be thoroughly wetted down, shall then be added to the mortar. The mass shall then be turned with shovels or hoes until thoroughly mixed and all the aggregate covered with mortar. Or, at the option of the engineer, the coarse aggregate may be added before, instead of after, adding the water.

31. Consistency.—The materials shall be mixed wet enough to produce a concrete of such consistency that it will flow into the forms and about the metal reinforcement, and which, on the other hand, can be conveyed from the place of mixing to the forms without separation of the

coarse aggregate from the mortar.

32. Retempering.—Retempering mortar or concrete, i e., remixing with water after it has

partially set, will not be permitted.

33. Placing of Concrete.—Concrete after the completion of the mixing shall be handled rapidly to the place of final deposit and under no circumstances shall concrete be used that has

partially set before final placing.

34. The concrete shall be deposited in such a manner as will prevent the separation of the ingredients and permit the most thorough compacting. It shall be compacted by working with a straight shovel or slicing tool kept moving up and down until all the ingredients have settled in their proper place and the surplus water is forced to the surface. In general, except in arch work, all concrete must be deposited in horizontal layers of uniform thickness throughout.

35. In depositing concrete under water, special care shall be exercised to prevent the cement

from floating away and to prevent the formation of laitance.

36. Before depositing concrete the forms shall be thoroughly wetted (except in freezing

weather) or oiled, and the space to be occupied by the concrete cleared of debris.

37. Before placing new concrete on or against concrete which has set, the surface of the latter shall be roughened, thoroughly cleansed of foreign material and laitance, drenched and slushed with a mortar consisting of one part Portland cement and not more than two parts fine aggregate.

38. The faces of concrete exposed to premature drying shall be kept wet for a period of at

least three days.

30. Freezing Weather.—Concrete shall not be mixed or deposited at a freezing temperature. unless special precuations, approved by the engineer, are taken to avoid the use of materials covered with ice crystals or containing frost and to provide means to prevent the concrete from

freezing.

The author has used the following specification for depositing concrete in freezing weather:— When the temperature of the air is below 40° F. during the time of mixing and placing concrete, the realer used in mixing concrete shall be heated to such a temperature that the temperature of the concrete mixture shall not be less than 60° when it reaches its final position in the forms. Care shall be used

that the cement shall not be injured by boiling water.

40. Rubble Concrete.—Where the concrete is to be deposited in massive work, clean, large stones, evenly distributed, thoroughly bedded and entirely surrounded by concrete, may be

used, at the option of the envineer.

41. Forms.—Forms shall be substantial and unyielding and built so that the concrete shall conform to the designed dimensions and contours, and so constructed as to prevent the leakage of mortar.

42. The forms shall not be removed until authorized by the engineer.

43. For all important work, the lumber used for face work shall be dressed to a uniform thickness and width; shall be sound and free from loose knots and secured to the studding or uprights in horizontal lines.

44. For backings and other rough work undressed lumber may be used.
45. Where corners of the masonry and other projections liable to injury occur, suitable moldings shall be placed in the angles of the forms to round or bevel them off.

46. Lumber once used in forms shall be cleaned before being used again.
47. The reinforcement shall be carefully placed in accordance with the plans, and adequate means shall be provided to hold it in its proper position until the concrete has been deposited and compacted.

DETAILS OF CONSTRUCTION.

48. Splicing Reinforcement.—Wherever it is necessary to splice the reinforcement otherwise than as shown on the plans, the character of the splice shall be decided by the engineer on the basis of the safe bond stress and the stress in the reinforcement at the point of splice. Splices shall not be made at points of maximum stress.

49. Joints in Concrete.—Concrete structures, wherever possible, shall be cast at one operation, but when this is not possible, the resulting joint shall be formed where it will least impair

the strength and appearance of the structure.

50. Girders and slabs shall not be constructed over freshly formed walls or columns without permitting a period of at least four hours to elapse to provide for settlement or shrinkage in the Before resuming work, the tops of such walls or columns shall be cleaned of foreign matter and laitance.

51 A triangular-shaped groove shall be formed at the surface of the concrete at vertical

ioints in walls and abutments.

52 Surface Finish.—Except where a special surface finish is required, a spade or special tool shall always be worked between the concrete and the form to force back the coarse aggregates and produce a mortar face.

53. Top Surfaces.—Top surfaces shall generally be "struck" with a straight edge or "floated"

after the coarse aggregates have been forced below the surface.

54. Sidewalk Finish.—Where a "sidewalk finish" is called for on the plans, it shall be made by spreading a layer of 1:2 mortar at least \(\frac{1}{4}\) in. thick, troweling the same to a smooth surface. This finishing coat shall be put on before the concrete has taken its initial set.

REFERENCES.—Plain masonry and concrete abutments and piers, only, have been considered in this chapter. The following books may be consulted for additional information.

Baker's "Masonry Construction," John Wiley & Sons, gives a full discussion of the design of masonry, plain and reinforced concrete abutments and piers, and the different methods of constructing abutments and piers.

Fowler's "Ordinary Foundations," John Wiley & Sons, gives a full discussion of the design and construction of abutments and piers, with special attention given to the coffer dam process.

Jacoby and Davis' "Foundations of Bridges and Buildings," McGraw-Hill Book Co., gives a full discussion of the design and construction of abutments and piers.

Bulletin 140 of the Am. Ry. Eng. Assoc. has an article on the Design of Railway Bridge Abutments by Mr. J. H. Prior, Asst. Engineer, C. M. & St. P. Ry. This article describes in detail the standard plain and reinforced concrete abutments used by the C. M. & St. P. Ry.

CHAPTER VII.

TIMBER BRIDGES AND TRESTLES.

Definitions.—The following definitions have been adopted by the American Railway Engi-

neering Association.

Wooden Trestle.-A wooden structure composed of upright members supporting simple horizontal members or beams, the whole forming a support for loads applied to the horizontal members.

Frame Trestle.—A structure in which the upright members or supports are framed timbers.

Pile Trestle.—A structure in which the upright members or supports are piles.

Bent.—The group of members forming a single vertical support of a trestle, designated as pile bent where the principal members are piles, and as framed bent where of framed timbers.

Post.—One of the vertical or battered members of the bent of a framed trestle.

Pile.—(See definition under subject of Piles and Pile Driving.)

Batter.—A deviation from the vertical in upright members of a bent.

Cap.—A horizontal member upon the top of piles or posts, connecting them in the form of a bent.

Sill.—A lower horizontal member of a framed bent.

Sub-Sill.—A timber bedded in the ground to support a framed bent.

Intermediate Sill.—A horizontal member in the plane of the bent between the cap and sill to which the posts are framed.

Sway Brace.—A member bolted or spiked to the bent and extending diagonally across its

Longitudinal Strut or Girt.—A stiff member running horizontally, or nearly so, from bent to bent. Longitudinal X-Brace.—A member extending diagonally from bent to bent in a vertical or battered plane.

Sash Brace.—A horizontal member secured to the posts or piles of a bent.

Stringer.—A longitudinal member extending from bent to bent and supporting the ties.

Jack Stringer.—A stringer placed outside of the line of main stringers.

Tie.—A transverse timber resting on the stringers and supporting the rails.

Guard Rail.—A longitudinal member, usually a metal rail, secured on top of the ties inside of the track rail, to guide derailed car wheels.

Guard Timber.—A longitudinal timber framed over the ties outside of the track rail, to

maintain the spacing of the ties.

Packing Block.—A small member, usually wood, used to secure the parts of a composite member in their proper relative positions.

Packing Spool or Separator.-A small casting used in connection with packing bolts to secure the several parts of a composite member in their proper relative positions.

Drift Bolt.—A piece of round or square iron of specified length, with or without head or

point, driven as a spike. Dowel.—An iron or wooden pin, extending into, but not through, two members of the struc-

ture to connect them.

Shim.—A small piece of wood or metal placed between two members of a structure to bring them to a desired relative position.

Fish-Plate.—A short piece lapping a joint, secured to the side of two members, to connect

them end to end.

Bulkhead.—A wall of timber placed against the side of an end bent to retain the embankment.

STRUCTURAL TIMBER.

Definitions.—The following definitions have been adopted by the American Railway Engineering Association.

Timber.—A single stick of wood of regular cross-section.

Cross-Section.—A section of a stick at right angles to the axis. True.—Of uniform cross-section. Defects are caused by wavy or jagged sawing or consist of trapezoidal instead of rectangular cross-sections.

Axis.—The line connecting the centers of successive cross-sections of a stick.

Straight.—Having a straight line for an axis.

Out of Wind.—Having the longitudinal surfaces plane.

Full Length.—Long enough to "square" up to the length specified in the order. Corner.—The line of intersection of the planes of two adjacent longitudinal surfaces. Girth.—The perimeter of a cross-section.

Side.—Either of the two wider longitudinal surfaces of a stick. Edge.—Either of the two narrower longitudinal surfaces of a stick.

Face.—The surface of a stick which is exposed to view in the finished structure.

Sapwood.—A cylinder of wood next to the bark and of lighter color than the wood within. It may be of uneven thickness.

Heartwood.—The older and central part of a log, usually darker in color than sapwood. It appears in strong contrast to the sapwood in some species, while in others it is but slightly different in color.

Springwood.—The inner part of the annual ring formed in the earlier part of the season,

not necessarily in the spring, and often containing vessels or pores.

Summerwood.—The outer part of the annual ring formed later in the season, not necessarily in the summer, being usually dense in structure and without conspicuous pores.

Decay.—Complete or partial disintegration of the cell walls, due to the growth of fungi. Sound.—Free from decay. Solid.—Without cavities: free from loose heart, wind shakes, bad checks, splits or breaks, loose slivers, and worm or insect holes.

Wane.—A deficient corner due to curvature or to taper of the log.

Square Cornered.-Free from wane.

Knot.—The hard mass of wood formed in a trunk at a branch, with the grain distinct and separate from the grain of the trunk.

Cross-Grain. The gnarly mass of wood surrounding a knot, or grain injuriously out of

parallel with the axis.

Wind Shake.—A crack or fissure, or a series of them, caused during growth.

STANDARD DEFECTS OF STRUCTURAL TIMBER.*

The standard defects included in the following list are mostly such as may be termed natural defects, as distinguished from defects of manufacture. The latter have usually been omitted. because the defects of manufacture are of minor significance in the grading of structural timber:

Sound Knot.—A sound knot is one which is solid across its face and is as hard as the wood surrounding it. It may be either red or black, and is so fixed by growth or position that it will retain its place in the piece.

Loose Knot.—A loose knot is one not firmly held in place by growth or position.

Pith Knot.—A pith knot is a sound knot with a pith hole not more than 1 in. in diameter †

in the center.

Encased Knot.—An encased knot is one which is surrounded wholly or in part by bark or Where the encasement is less than $\frac{1}{3}$ in. in width on each side, nor exceeding one-half the circumference of the knot, it shall be considered a sound knot.

Rotten Knot.—A rotten knot is one not as hard as the wood surrounding it.

Pin Knot.—A pin knot is a sound knot not over ½ in. in diameter.

Standard Knot.—A standard knot is a sound knot not over 1½ in. in diameter.

Large Knot.—A large knot is a sound knot, more than 11 in. in diameter.

Round Knot.—A round knot is one which is oval or circular in form.

Spike Knot.—A spike knot is one sawn in a lengthwise direction. The mean or average diameter shall be taken as the size of these knots.

Pitch Pockets.—Pitch pockets are openings between the grain of the wood, containing more or less pitch or bark. These shall be classified as small, standard and large pitch pockets.

Small Pitch Pocket.—(a).—A small pitch pocket is one not over \(\frac{1}{8} \) in. wide.

Standard Pitch Pocket.—(b).—A standard pitch pocket is one not over 3 in. wide nor over 3 in. in length.

Large Pitch Pocket.—(c).—A large pitch pocket is one over \(\frac{3}{8} \) in. wide, or over 3 in. in length. Pitch Streak.—A pitch streak is a well-defined accumulation of pitch at one point in the piece. When not sufficient to develop a well-defined streak, or where the fiber between grains, that is, the coarse grained fiber, usually termed "spring wood," is not saturated with pitch, it shall not be considered a defect.

* Adopted by Am. Ry. Eng. Assoc., Vol. 8, 1907.

† Measurements which refer to the diameter of knots or holes shall be considered as the mean or average diameter in all cases.

Shakes,-Shakes are splits or checks in timber which usually cause a separation of the wood between annual rings.

Ring Shake.—An opening between annual rings.

Through Shakes.—A shake which extends between two faces of a timber.

Rot. Dote and Red Heart.-Any form of decay which may be evident either as a dark red discoloration not found in the sound wood, or by the presence of white or red rotten spots, shall be considered as a defect.

Wane.—(See definition under the subject of Structural Timber.) Note.—See additional definitions of defects under Structural Timber.

PILES AND PILE DRIVING.*

The following definitions and the principles of Pile Driving have been adopted by the American Railway Engineering Association.

Pile.—A member usually driven or jetted into the ground and deriving its support from the underlying strata, and by the friction of the ground on its surface. The usual functions of a pile are: (a) to carry a superimposed load; (b) to compact the surrounding ground; (c) to form a wall to exclude water and soft material, or to resist the lateral pressure of adjacent ground.

Head of Pile.—The upper end of a pile.
Foot of Pile.—The lower end of a pile. Butt of Pile.—The larger end of a pile. Tip of Pile.—The smaller end of a pile.

Bearing Pile.—One used to carry a superimposed load.

Screw Pile.—One having a broad-bladed screw attached to its foot to provide a larger bearing area.

Disc Pile.—One having a disc attached to its foot to provide a larger bearing area. Batter Pile.—One driven at an inclination to resist forces which are not vertical.

Sheet Pile.—Piles driven in close contact in order to provide a tight wall, to prevent leakage of water and soft materials, or driven to resist the lateral pressure of adjacent ground.

Pile Driver.—A machine for driving piles.

Hammer.—A weight used to deliver blows to a pile to secure its penetration.

Drop Hammer.—One which is raised by means of a rope and then allowed to drop.

Steam Hammer.—One which is automatically raised and dropped a comparatively short distance by the action of a steam cylinder and piston supported in a frame which follows the pile. Leads.—The upright parallel members of a pile driver which support the sheaves used to hoist the hammer and piles, and which guide the hammer in its movement.

Cap.—A block used to protect the head of a pile and to hold it in the leads during driving.

Ring.—A metal hoop used to bind the head of a pile during driving. Shoe.—A metal protection for the point or foot of a pile.

Follower.—A member interposed between the hammer and a pile to transmit blows to the

latter when below the foot of the leads.

PILE-DRIVING-Principles of Practice.—(1) A thorough exploration of the soil by borings, or preliminary test piles, is the most important prerequisite to the design and construction of pile foundations.

(2) The cost of exploration is frequently less than that otherwise required merely to revise the plans of the structure involved, without considering the unnecessary cost of the structures

due to lack of information.

(3) Where adequate exploration is omitted, it may result in the entire loss of the structure, or in greatly increased cost.

(4) The proper diameter and length of pile, and the method of driving depend upon the result of the previous exploration and the purpose for which they are intended.

(5) Where the soil consists wholly or chiefly of sand, the conditions are most favorable to the use of the water jet.

(6) In harder soils containing gravel the use of the jet may be advantageous, provided sufficient volume and pressure be provided.

(7) In clay it may be economical to bore several holes in the soil with the aid of the jet before driving the pile, thus securing the accurate location of the pile, and its lubrication while being driven.

(8). In general, the water jet should not be attached to the pile, but handled separately. (9) Two jets will often succeed where one fails; in special cases a third jet extending a part

of the depth aids materially in keeping loose the material around the pile. (10) Where the material is of such a porous character that the water from the jets may be

^{*} For an elaborate bibliography on "Piles and Pile Driving" see Am. Ry. Eng. Assoc., Vol. 10.

dissipated and fail to come up in the immediate vicinity of the pile, the utility of the jet is uncertain, except for a part of the penetration.

(II) A steam or drop hammer should be used in connection with the water jet, and used to

test the final rate of penetration.

(12) The use of the water jet is one of the most effective means of avoiding injury to piles by overdriving.

(13) There is danger from overdriving when the hammer begins to bounce. Overdriving is

also indicated by the bending, kicking or staggering of the pile.

(14) The brooming of the head of a pile dissipates a part, and in some cases all, of the energy due to the fall of the hammer.

(15) The weight or the drop of the hammer should be proportioned to the weight of the

pile, as well as to the character of the soil to be penetrated.

(16) The steam hammer is more effective than the drop hammer in securing the penetration

of a pile without injury, because of the shorter interval between blows.

(17) Where shock to surrounding material is apt to prove detrimental to the structure, the steam hammer should always be used instead of the drop hammer. This is especially true in the case of sheet piling which is intended to prevent the passage of water. In some cases also the jet should not be used.

(18) In general, the resistance of piles, penetrating soft material, which depend solely upon skin friction, is materially increased after a period of rest. This period may be as short as fifteen

minutes, and rarely exceeds twelve hours.

(19) In tidal waters the resistance of a pile driven at low tide is increased at high tide on

account of the extra compression of the soil.

(20) Where a pile penetrates muck or a soft yielding material and bears upon a hard stratum at its foot, its strength should be determined as a column or beam; omitting the resistance, if any, due to skin friction.

(21) Unless the record of previous experience at the same site is available, the approximate bearing power may be obtained by loading test piles. The results of loading test piles should be used with caution, unless their condition is fairly comparable with that of the piles in the proposed foundation.

(22) In case the piles in a foundation are expected to act as columns the results of loading test piles should not be depended upon unless they are sufficient in number to insure their action

in a similar manner, and they are stayed against lateral motion.

(23) Before testing the penetration of a pile in soft material where its bearing power depends principally, or wholly, upon skin friction, the pile should be allowed to rest for 24 hours after driving.

(24) Where the resistance of piles depends mainly upon skin friction it is possible to diminish the combined strength, or bearing capacity, of a group of piles by driving additional piles within

the same area.

(25) Where there is a hard stratum overlying softer material through which the piles are to pass to a firm bearing below, the upper stratum should be removed by dredging or otherwise, provided it would injure the piles to drive through the stratum. The material removed may be replaced if it is needed to provide lateral resistance.

(26) Timber piles may be advantageously pointed, in some cases, to a 4-in, or 6-in, square

at the end.

blows.

(27) Piles should not be pointed when driven into soft material.(28) Shoes should be provided for piles when the driving is very hard, especially in riprap or shale, and should be so constructed as to form an integral part of the pile.

(29) The use of a cap is advantageous in distributing the impact of the hammer more uni-

formly over the head of the pile, as well as to hold it in position during driving.

(30) The specification relating to the penetration of a pile should be adapted to the soil which

the pile is to penetrate. (31) It is far more important that a proper length of pile should be put in place without injury than that its penetration should be a specified distance under a given blow, or series of

SPECIFICATIONS FOR TIMBER PILES *

RAILBOAD HEART GRADE

1. This grade includes white, burr, and post oak, longleaf pine, Douglas fir, tamarack, Eastern

white and red cedar, chestnut, Western cedar, redwood and cypress.

2. Piles shall be cut from sound trees; shall be close grained and solid, free from defects, such as injurious ring shakes, large and unsound or loose knots, decay or other defects, which may materially impair their strength or durability. In Eastern red or white cedar a small amount of heart rot at the butt, which does not materially injure the strength of the pile, will be allowed.

3. Piles must be butt cut above the ground swell and have a uniform taper from butt to tip. Short bends will not be allowed. A line drawn from the center of the butt to the center of the

tip shall lie within the body of the pile.

4. Unless otherwise allowed, piles must be cut when sap is down. Piles must be peeled soon

after cutting. All knots shall be trimmed close to the body of the pile.

5. For round piles the minimum diameter at the tip shall be nine (9) in, for lengths not exceeding thirty (30) ft.; eight (8) in. for lengths over thirty (30) ft. but not exceeding fifty (50) ft., and seven (7) in. for lengths over fifty (50) ft. The minimum diameter at one-quarter of the length from the butt shall be twelve (12) in, and the maximum diameter at the butt twenty (20) in.

6. For square piles the minimum width of any side of the tip shall be nine (9) in, for lengths not exceeding thirty (30) ft.; eight (8) in. for lengths over thirty (30) ft. but not exceeding fifty (50) ft., and seven (7) in. for lengths over fifty (50) ft. The minimum width of any side at one-

quarter of the length from the butt shall be twelve (12) in.

7. Square piles shall show at least eighty (80) per cent heart on each side at any cross-section of the stick, and all round piles shall show at least ten and one-half (101) in, diameter of heart at the butt.

RAILROAD FALSEWORK GRADE.

8. This grade includes red and all other oaks not included in R. R. Heart grade, sycamore, sweet, black and tupelo gum, maple, elm, hickory, Norway pine, or any sound timber that will stand driving.

9. The requirements for size of tip and butt, taper and lateral curvature are the same as for R. R. Heart grade.

10. Unless otherwise specified piles need not be peeled.
11. No limits are specified as to the diameter or proportion of heart.
12. Piles which meet the requirements of R. R. Heart grade except the proportion of heart specified will be classed as R. R. Falsework grade.

GUARD RAILS AND GUARD TIMBERS.—In 1912 the American Railway Engineering Association made an investigation of the use of guard rails and guard timbers for timber trestles and bridges and adopted the following report based on replies from 61 railroads,

I. It is recommended as good practice to use guard timbers on all open-floor bridges, and same shall be so constructed as to properly space the ties and hold them securely in their places.

2. It is recommended as good practice to use guard rails to extend beyond the end of the bridges for such a distance as required by local conditions, but that this length in any case be not less than fifty feet; that guard rails be fully spiked to every tie and spliced at every joint, the guard rail to be some form of metal guard rail.

3. It is recommended that the guard timber and guard rail be so spaced in reference to the

track rail that a derailed truck will strike the guard rail without striking the guard timber.

4. The height of the guard rail to be not over one inch less in height than the running (track) rail.

TIMBER TRESTLES.—The details of the design of timber trestles depends upon the loading. the details of the floor system, the available timber and upon the designer. The length of panels varies from 12 ft. to 16 ft., with 14 ft. as a fair average panel length.

Pile Trestles.—The details of the standard pile trestle with open floor of the N. Y., N. H. & H. R. R. are given in Fig. 1. The number and arrangement of the piles in the bents are shown. The bents are 12 ft. center to center. The stringers are 24 ft. long and are placed to span two panels and to break joints. The tops of the caps are covered with No. 20 flat galvanized iron to protect the trestle from fire. The details of washers, packing blocks, drift bolts, etc., are shown on the plans.

^{*} Adopted, Am. Ry. Eng. Assoc., Vol. 10, 1909.

FIG. I. PLANS OF A PILE TRESTLE.

FIG. 2. PLANS OF A FRAME TRESTLE.

FIG. 3. PLANS OF TIMBER FRAME TRESTLE. ILLINOIS CENTRAL RAILROAD.

Fig. 4. Plans of Timber Trestle with Ballasted Deck.

Fig. 6. Iron Details for 150 ft. Span, Howe Truss Span. C. M. & P. S. Ry.

Fig. 7. Iron Details for 150 ft. Span, Howe Truss Span. C. M. & P. S. Ry.

Frame Trestles.—The details of the standard frame trestle with open floor of the N. Y., N. H. & H. R. R. are given in Fig. 2. The bents are spaced 12 ft. center to center. The floor system is the same as for pile trestles. The frame trestle may be supported on a pile foundation, upon timber sub-sills (mudsills) or on concrete pedestals. Timber sub-sills soon decay and should be used only for temporary trestles. Other data and details are shown on the plans.

The plans of a standard frame trestle designed and built by the Illinois Central Railroad are given in Fig. 3. The bents are spaced 14 ft. centers, while the stringers are 28 ft. long and cover two panels. The details of the track and the guard rails are not shown. A complete bill of timber and iron for one bent and one panel of the floor are given in Fig. 3. The standard frame trestle may be carried on mudsills (sub-sills) as shown in Fig. 3, or on piles or concrete pedestals as shown in Fig. 2.

Detail plans of a pile trestle with ballasted deck are given in Fig. 4.

TIMBER HOWE TRUSSES.—Plans of a standard 150 ft. span Howe truss designed and erected by the C. M. & P. S. Ry. are shown in Fig. 5, Fig. 6, and Fig. 7. This bridge was designed for Cooper's E 55 Loading, with the allowable unit stresses as given in the American Railway Engineering Association Specifications for Timber Bridges and Trestles. The bill of lumber is given in Table I; the bill of castings and bolts is given in Table II; the bill of upset vertical rods is given in Table III, and the bill of lateral rods is given in Table IV. The following additional specifications were given on the plans.

TABLE I.
BILL OF TIMBER FOR ONE 150 FT. HOWE TRUSS SPAN.

No. of Pcs.	Size, In.	Length, FtIn.	Location.	No. of Pcs.	Size, In.	Length, FtIn.	Location.
	Size, In. 10 × 14 """ """ """ """ """ """ """ """ """	Length, FtIn. 12-6 18-3 \frac{1}{2} 24-7 \frac{1}{4} 29-10 \frac{1}{4} 35-7 \frac{1}{2} 41-5 46-3 47-2 \frac{1}{4} 52-11 \frac{1}{4} 52-11 \frac{1}{4} 52-12 \frac{1}{4} 53-12 \frac{1}{4} 54-11 \frac{1}{4} 57-8 \frac{1}{4} 57	Location. Top Chord. """" """" """" Bott. Chord. """ """ """ """ """ """ """		Size, In. 8 × 8 12 × 14 6 × 12 8 × 10 " " " " " " 8 × 8 " " " 6 × 6 " " " 6 × 6 " " " 1 " " " 1 " " " 1 " " " 1 " " " 1 " " " 2 × 12 8 × 12 8 × 10 6 × 8 4 × 8	Length, FtIn. 28-3\frac{1}{8} 22-0 14-0 9-0 8-7 18-0 17-9 8-8 17-4 8-1 17-0 8-5 8-5 17-1 17-8 8-9 8-10 17-11 9-2 9-5 18-6 9-3 18-7 11-7-1 17-3\frac{1}{8} 10-0 16-0	Location. Diag. Posts. Portal. Bott. Laterals. """""""""""""""""""""""""""""""""""

Lengths given for Top and Bottom Laterals are longer than finished lengths.

TABLE II.

BILL OF CASTINGS, BOLTS, ETC. FOR ONE 150 FT. HOWE TRUSS SPAN.

No. of Pcs.	Description.	Mark.	No. of Pcs.	Description.	Mark.
4	Angle Blocks	B3189	18	Dowels in. × oft9 in	
20	ii ii	B3190	176	Dowels in. X o ft3 in	
	44 44	B3191	275	Spikes 9 in. X in	
16	46 66	B3192	225	" 8 in. X in	
2	66 66	B3202	275	" 14 in. × ½ in.	
12	Lateral Angle Blocks	B3193	115	Drift Bolts 1 in. X I ft. 8 in.	
4	" " "	B3193A	24	Bolts I in. X I ftII3 in.	
12	46 46 46	B3194	- 4	Sq. H & N 21 in. thd	
12	46 46 46	B1395	24	Bolts I in. X I ft73 in.	
8	66 66 66	B3196	'	Sq. H & N 21 in. thd	
30	Clamp Blocks	B3090	56	Bolts 7 in. X 5 ft61 in.	
6	" "	B3090A		Sq. H & N 21 in. thd	
15	46 66	B3091R	32	Bolts $\frac{7}{4}$ in. \times 4 ft4 $\frac{3}{4}$ in.	
3	66 66	B3091RA		Sq. H & N 21 in. thd	
15	46 66	B3091L	В	Bolts # in. X 4 ft# in.	
3	"	B3091LA		Sq. H & N 21 in. thd	
4	Washers for Lateral Rods	B 3199	142	Bolts 7 in. × 3 ft87 in.	
72	66 66 66 64	B3197	1	Sq. H & N 21 in. thd	
72		B3198	24	Bolts 7 in. × 3 ft91 in.	
64		B3198A		Sq. H & N 21 in. thd	
4	O. G. Washers for 21 in. Bolts		60	Bolts 7 in. × 3 ft4 in.	
4	17				
4			16	Bolts \(\frac{1}{4} \) in. \(\times \) I ft.\(-9\) in. \(\times \) R. H & N 2\(\frac{1}{2} \) in. thd	
4			-6	Bolts \(\frac{1}{2}\) in. \(\times 2\) in. \(\times 2\) in. \(\times 2\) in.	
4	46 66 CC 13 CC CC		56	Sq. H & N 2½ in. thd	
4 8			72	Bolts $\frac{3}{4}$ in. \times 2 ft3 $\frac{3}{4}$ in.	
16	44 44 44 <u>11</u> 44 44		/2	Sq. H & N 21 in. thd	
48	« « « ** « «		2	Bolts \(\frac{1}{4} \) in. \(\times 2 \) ft4\(\frac{1}{2} \) in.	
322	ee ee ee 7 ee ee		_	Sq. H & N 21 in. thd	
246	ee ee ee 3 ee ee		4	Bolts # in. × 2 ft64 in.	
48	Slot Washers for I in. Bolts		l '	Sq. H & N 21 in. thd	
322	66 66 66 7 66 66		8	Bolts # in. × 2 ft10 in.	
410	" " " "			Sq. H & N 21 in. thd	
4	6 in. \times 4 in. \times $\frac{1}{2}$ in. \times 38 ft		8	Bolts $\frac{3}{4}$ in. \times 3 ft2 $\frac{1}{2}$ in.	
	53 in. Guard Angles	G_1		Sq. H & N 21 in. thd	
4	6 in. \times 4 in. \times $\frac{1}{2}$ in. \times	_	48	Bolts # in. × 3 ft5# in.	
	39 ft73 in. Guard Angles.	G_2	_	Sq. H & N 21 in. thd	
424	Packing Washers	B3251	8	Bolts $\frac{3}{4}$ in. \times 4 ft1 $\frac{3}{4}$ in.	
36	66 66	P_1	_	Sq. H & N 21 in. thd.	
152		P	8	Bolts & in. × 4 ft3 in.	
416		P ₂	16	Sq. H & N 2\frac{1}{2} in. thd Bolts \frac{3}{4} in. \times 4 ft4\frac{1}{2} in.	
36	Clamps	C ₃ W	10	Sq. H & N 2½ in. thd	
36 16	WedgesBearing Plates	BP	64	Bolts \(\frac{3}{2}\) in. \(\times \) I ft.\(-3\)\chi	
32	Bearing Channels	BCı	54	Sq. H & N 21 in. thd	
16	Bearing Channels	BC ₂	64	Recess Washers	
	Angle Blocks.	_	100	Special Bolts # in. × 1 ft	B3195A
6	Dowels 7 in. X o ft11 in.	3-7	4		B3192A
			2	Angle Blocks	- /

"Outer 6 in. × 8 in. Guard Rails are notched for ties, spiked to each tie with one o in. × \ \frac{1}{2} in. spikes. Each tie to be spiked to stringers with \(\frac{1}{2} \) in. \(\times 14 \) in. spikes. Stringers drift-bolted to floorbeams with \frac{3}{2} in. \times 18 in. drift bolts. All \frac{3}{2} in. \frac{7}{2} in. and I in. bolts to be provided with one O. G. and one slot washer. All contacts of wood and wood to be painted with white lead. Corbels to be creosoted. All holes bored in chord sticks to be creosoted. Inner 4 in. × 8 in. Guard Rails holted at center and ends of each piece, spiked to each tie not holted, with one 8 in. X 3 in. spike and spliced. The 6 in. \times 4 in. \times $\frac{1}{2}$ in. guard rail is bolted at ends and at intervals of not over 2 ties with \frac{3}{2} in, special bolts. Leave \frac{1}{2} in, opening between ends of Guard Rail angles."

The detail plans of a timber Howe truss railway bridge with an 80 ft, span are given in Fig. 8 and Fig. o. This bridge was designed for Cooper's E 55 loading for the allowable stresses given in the specifications of the American Railway Engineering Association. The details and a bill of materials are given on the plans.

TABLE III.

TABLE IV.

BILL OF UPSET VERTICAL RODS FOR ONE 150 FT. BILL OF LATERAL RODS FOR ONE 150 ET. HOWE TRUSS SPAN. HOWE TRUSS SPAN.

		Section "A" Diam., In,	Diameter	of Upsets.			Diameter of	Length of
No. of Pcs.	Length, FtIn.		U. S. Std., In.	Ry. Eng. & M. of W., In.	No. of Pcs.	Length, FtIn.	Rod "A," In.	Thread "T," In.
12 12 12 16 12	30-10\frac{1}{2} 30-10 30-8 30-9\frac{1}{2} 30-7\frac{1}{2}	234 212 212 213 24 24	3818187878787878787878787878787878787878	3 ¹ / ₄ 3 3 2 ³ / ₄ 2 ³ / ₄	2 2 2 2 2	22-9 ³ / ₄ 23-4 ³ / ₄ 23-4 24-5 24-4 ³ / ₄	24 22 178 145 145 168	5 4 4 4 4 4 4 4 1 4
inch.	$30-6\frac{3}{4}$ er of Upset "U" of upsets "M"			•	2 2 2 2 4 4	$ \begin{array}{c} 24 - 4 \frac{1}{4} \\ 24 - 3 \frac{3}{4} \\ 23 - 2 \frac{1}{4} \\ 23 - 1 \frac{3}{4} \\ 23 - 1 \frac{1}{4} \\ 22 - 5 \frac{1}{4} \end{array} $	Trais also The Later The L	43 4 4 4 4 4

HIGHWAY TIMBER TRESTLES AND BRIDGES.—Details of a highway crossing of the Illinois Central Railroad are given in Fig. 10 and Fig. 11.

A combination timber and iron bridge is shown in Fig. 12; while a short span timber highway bridge is given in Fig. 13.

For additional details of timber highway bridges, see the author's "The Design of Highway Bridges."

SPECIFICATIONS FOR WORKMANSHIP FOR PILE AND FRAME TRESTLES TO BE BUILT UNDER CONTRACT.*

- ·1. Site.—The trestle to be built under these specifications is located on the line of
- 2. General Description.—The work to be done under these specifications covers the driving, framing and erection of a track wooden trestle about ft. long and an average of ft. high. GENERAL CLAUSES.

3. The contractor shall furnish all necessary labor, tools, machinery, supplies, temporary 3. The contractor shall further all necessary labor, tools, machinely, supplies, temporary staging and outfit required. He shall build the complete trestle ready for the track rails, in a workmanlike manner, in strict accordance with the plans and the true intent of these specifications, to the satisfaction and acceptance of the engineer of the railroad company.

4. The workmanship shall be of the best quality in each class of work. Details, fastenings and connections shall be of the best method of construction in general use on first class work.

* Adopted by American Railway Engineering Association.

5. Holes shall be bored for all bolts. The depth of the hole and the diameter of the auger to be specified by the engineer.

6. Framing shall be accurately fitted; no blocking or shimming will be allowed in making

joints. Timbers shall be cut off with the saw; no axe to be used.

7. Joints and points of bearing, for which no fastening is shown on the plans, shall be fastened as specified by the engineer.

FIG. 10. HIGHWAY CROSSING. ILLINOIS CENTRAL RAILROAD.

8. The engineer or his authorized agents shall have full power to cause any inferior work to be condemned, and taken down or altered, at the expense of the contractor. Any material destroyed by the contractor on account of inferior workmanship or carelessness of his men is to be replaced by the contractor at his own expense.

9. Figures shown on the plans shall govern in preference to scale measurements; if any discrepancies should arise or irregularities be discovered in the plans, the contractor shall call on the engineer for instructions. These specifications and the plans are intended to co-operate, and if any question arises as to the proper interpretation of the plans or specifications, it shall be referred to the engineer for a ruling.

FIG. 11. DETAILS OF HIGHWAY CROSSING. ILLINOIS CENTRAL RAILROAD.

10. The contractor shall, when required by the engineer furnish a satisfactory watchman to

11. On the completion of the work, all refuse material and rubbish that may have accumulated on top or under and near the trestle, by reason of its construction, shall be removed by the contractor,

DETAILS OF A TIMBER HIGHWAY BRIDGE. Fig. 13.

DETAIL SPECIFICATIONS.

12. Piles.—Piles shall be carefully selected to suit the place and ground where they are to be driven. When required by the engineer, pile butts shall be banded with iron or steel for driving, and the tips with suitable iron or steel shoes; such shoes will be furnished by the railroad company.

-Piles shall be driven to a firm bearing, satisfactory to the engineer, or until five blows. of a hammer weighing 3,000 lb., falling 15 feet (or a hammer and fall producing the same mechanical effect), are required to cause an average penetration of one-half $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in. per blow, except in soft bottom, where special instructions will be given.

14.—Batter piles shall be driven to the inclination shown by the plans, and shall require but

slight bending before framing.

15.—Butts of all piles in a bent shall be sawed off to one plane and trimmed so as not to leave any horizontal projection outside of the cap.

16.—Piles injured in driving, or driven out of place, shall either be pulled out or cut off,

and replaced by new piles.

17. Caps.—Caps shall be sized over the piles or posts to a uniform thickness and even bearing The side with most sap shall be placed downward. on piles or posts.

18. Posts.—Posts shall be sawed to proper length for their position (vertical or batter), and

to an even bearing on cap and sill.

19. Sills.—Sills shall be sized at the bearing of posts to one plane.

20. Sway Braces.—Sway bracing shall be properly framed and securely fastened to piles or posts. When necessary for pile bents, filling pieces shall be used between the braces and the piles on account of the variation in size of piles, and securely fastened and faced to obtain a bearing against all piles.

21. Longitudinal Braces.—Longitudinal X-braces shall be properly framed and securely

fastened to piles or posts.

22. Girts.—Girts shall be properly framed and securely fastened to caps, sub-sills, posts or piles, as the plans may require.

23. Stringers.—Stringers shall be sized to a uniform height at supports. The edges with

most san shall be placed downward.

24. Jack Stringers, - Jack stringers, if required on the plans, shall be neatly framed on

caps, and their tops shall be in the same plane as the track stringers.

25. Ties.—Ties shall be framed to a uniform thickness over bearings, and shall be placed with the rough side upward. They shall be spaced regularly, cut to even length and line, as called for on the plans.

26. Guard Rails.—Timber guard rails shall be framed as called for on the plans, laid to line and to a uniform top surface. They shall be firmly fastened to the ties as required.

27. Bulkheads.—Bulkheads shall be of sufficient dimensions to keep the embankment clear of the caps, stringers and ties, at the end bents of the trestle. There shall be a space not less than two (2) in. between the back of end bent and the face of the bulkhead. The projecting ends of the bulkhead shall be sawed off to conform to the slope of the embankment, unless otherwise specified.

28. Time of Completion.—The work shall be completed in all its parts on or before

.... A. D. 19....

20. Payments.—Payments will be made under the usual regulations of the railroad company.

SPECIFICATIONS FOR METAL DETAILS USED IN WOODEN BRIDGES AND TRESTLES.

30. Wrought-iron.—Wrought-iron shall be double-rolled, tough, fibrous and uniform in character. It shall be thoroughly welded in rolling and be free from surface defects. When tested in specimens of standard form shall give an ultimate strength of at least 50,000 lb. per sq. in., an elongation of 18 per cent in 8 in., with fracture wholly fibrous. Specimens shall bend cold, with the fiber, through 135 degrees, without sign of fracture, around a pin the diameter of which is not over twice the thickness of the piece tested. When nicked and bent, the fracture shall show

at least 90 per cent fibrous.

31. Steel.—Steel shall be made by the open-hearth process and shall be of uniform quality. It shall contain not more than 0.05 per cent sulphur; if made by the acid process it shall contain not more than 0.06 per cent phosphorus, and if made by the basic process not more than 0.04 per cent phosphorus. When tested in specimens of standard form, or full sized pieces of the same length, it shall have a desired ultimate tensile strength of 60,000 lb. per sq. in. If the ultimate strength varies more than 4,000 lb. from that desired, a retest shall be made on the same gage, which to be acceptable, shall be within 5,000 lb. of the desired ultimate. It shall 1,500,000

have a minimum percentage of elongation in 8 in. of $\frac{1,300,000}{\text{ult. tens. strength}}$ and shall bend cold with-

out fracture 180 degrees flat. The fracture for tensile tests shall be silky.

32. Castings.—Except where chilled iron is specified, castings shall be made of tough gray iron, with sulphur not over 0.10 per cent. They shall be true to pattern, out of wind and free from flaws and excessive shrinkage. If tests are demanded, they shall be made on the "Arbitration Bar" of the American Society for Testing Materials, which is a round bar 11 in. in diameter and 15 in. long. The transverse test shall be made on a supported length of 12 in., with load at middle. The minimum breaking load so applied shall be 2,900 lb., with a deflection of at least 10 in. before rupture.

33. Bolts.—Bolts shall be of wrought-iron or steel, made with square heads, standard size, the length of thread to be 21 times the diameter of bolt. The nuts shall be made square, standard size, with thread fitting closely the thread of bolt. Threads shall be cut according to U. S. standards.

34. Drift Bolts.—Drift bolts shall be of wrought-iron or steel, with or without square head,

pointed or without point, as may be called for on the plans.

35. Spikes.—Spikes shall be of wrought-iron or steel, square or round, as called for on the plans; steel wire spikes, when used for spiking planking, shall not be used in lengths more than 6 in.; if greater lengths are required, wrought or steel spikes shall be used.

36. Packing Spools or Separators.—Packing spools or separators shall be of cast-iron, made to size and shape called for on plans; the diameter of the hole shall be 1 in. larger than diameter

of packing bolts.

37. Cast Washers.—Cast washers shall be of cast-iron. The diameter shall be not less than 31 times the diameter of bolt for which it is used, and its thickness equal to the diameter of bolt; the diameter of hole shall be & in. larger than the diameter of the bolt.

38. Wrought Washers.-Wrought washers shall be of wrought-iron or steel, the diameter shall be not less than 31 times the diameter of bolt for which it is used, and not less than 1 in

The hole shall be \(\frac{1}{4} \) in. larger than the diameter of the bolt.

39. Special Castings.—Special castings shall be made true to pattern, without wind, free from flaws and excessive shrinkage, size and shape to be as called for by the plans.

Working Unit-Stresses for Structural Timber Expressed in Pounds per Square Inch.*

Note.—The working unit-stresses given in Table V are intended for railroad bridges and trestles. For highway bridges and trestles the unit-stresses may be increased twenty-five (25) per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased fifty (50) per cent. To compute the deflection of a beam under long-continued loading instead of that when the load is first applied, only fifty per cent of the corresponding modulus of elasticity given in the table is to be employed.

TABLE V.

UNIT STRESSES FOR STRUCTURAL TIMBER EXPRESSED IN POUNDS PER SQUARE INCH.

AMERICAN RAILWAY ENGINEERING ASSOCIATION.

		Bend	ling.	;	Shear	ring.				Co	mpre	sion			a d
Kind of Timber.	Extr Fib Stre	er	Modulus of Elasticity.	Para to Gr		Longit nal S in Bea	hear	Perg dict to G	ılar	Parall Grai	el to	inder 15 e Stress.	for Safe	Long over 15	Length to Depti
	Average Ultimate.	Safe Stress.	Average.	Average Ultimate.	Safe Stress.	Average Ultimate.	Safe Stress.	Elastic Limit.	Safe Stress.	Average Ultimate.	Safe Stress.	For Col's under 15 Diam., Safe Stress.	Formulas for Safe	Stress in Long Columns over 15 Diams.	Ratio of Length of Stringer to Depth.
Douglas fir	6100	1200	1,510,000	690	170	270	110	630	310	3600	1200	900	1200	$\left(1 - \frac{l}{60d}\right)$	10
Longleaf pine	6500	1300	1,610,000	720	180	300	120	520	260	3800	1300	980	1300	$\left(1 - \frac{l}{60d}\right)$	10
Shortleaf pine	5600	1100	1,480,000	710	170	330	130	340	170	3400	1100	830	1100	$\left(1 - \frac{l}{60d}\right)$	10
White pine	4400	900	1,130,000	400	100	180	70	290	150	3000	1000	750	1000	$\left(1 - \frac{l}{60d}\right)$	10
Spruce	4800	1000	1,310,000	600	150	170	70	370	180	3200	1100	830	1100	$\left(1-\frac{l}{60d}\right)$	
Norway pine	4200	800	1,190,000	590*	130	250	100		150	2600†	800	600	800	$\left(1 - \frac{l}{60d}\right)$	
Tamarack	4600	900	1,220,000	670	170	260	100		220	3200†	1000	750	1000	$\left(1 - \frac{l}{60d}\right)$	
Western hemlock	5800	1100	1,480,000	630	160	270†	100	440	220	3500	1200	900	1200	$\left(1-\frac{l}{60d}\right)$	
Redwood	5000	900	800,000	300	80			400	150	3300	900	680	900	$\left(1 - \frac{l}{60d}\right)$	
Bald cypress	4800	900	1,150,000	500	120			340	170	3900	1100	830	1100	$\left(1 - \frac{l}{60d}\right)$	
Red cedar	4200	800	860,000					470	230	2800	900	680	900	$\left(1 - \frac{l}{60d}\right)$	
White oak	5700	1100	1,150,000	840	210	270	110	920	450	3500	1300	980	1300	$\left(1 - \frac{l}{60d}\right)$	12

Note.—These unit stresses are for a green condition of timber and are to be used without increasing the live load stresses for impact.

REFERENCES.—For additional details and information the following references may be consulted:

Foster's "A Treatise on Wooden Trestle Bridges," John Wiley & Sons, gives data and details of the design of timber trestles.

Jacoby's "Structural Details; Design of Heavy Framing," John Wiley & Sons, gives data and details of the design of timber trestles and timber structures, and is the best book on timber construction. Every engineer interested in the design of timber structures should have a copy of Jacoby's "Structural Details."

^{*} Adopted, Am. Ry. Eng. Assoc., Vol. 10, 1909.

[†] Partially air-dry. l = length in inches. d = least side in inches.

CHAPTER VIII.

STEEL BINS.

Stresses in Bin Walls.—The problem of the calculation of pressures on bin walls is similar to the problem of the calculation of pressures on retaining walls; but in the case of bin walls the material is limited in extent and the condition of static equilibrium is disturbed by drawing the material from the bottom of the bin. For plane bin walls where the plane of rupture cuts the free surface of the material (shallow bins), the formulas developed for retaining walls are directly applicable if friction on the wall is considered. The graphic solution will be found the simplest and most direct for any particular case. The following analyses of the calculations of stresses in bins have been abstracted from the author's "The Design of Walls, Bins and Grain Elevators," second edition.

STRESSES IN SHALLOW BINS.—The problem of the calculation of the pressures on bin walls is the same as the problem of the calculation of pressures on retaining walls. The forces acting on bin walls depend upon the weight, angle of repose, moisture, etc., of the material, which are variable factors, but are less variable than for the filling of retaining walls,

Algebraic Solution.—The same nomenclature will be used as in retaining walls except that P' will be used to indicate the pressure obtained by means of Cain's formulas when $z = \phi'$, N' will indicate the normal component of P', and N will indicate the normal pressure on the wall when $\phi' = 0$. This analysis applies to shallow bins, only.*

Case 1. Vertical Wall, Surface Level. Angle $s = \phi'$. Fig. 1.

$$P' = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\cos \phi' \left(1 + \sqrt{\frac{\sin (\phi + \phi') \sin \phi}{\cos \phi'}}\right)^2}$$
(1)

$$N' = P' \cdot \cos \phi' \tag{2}$$

$$\phi' = \phi$$

$$P' = \frac{1}{2}w \cdot h^{2} \frac{\cos \phi}{(1 + \sin \phi \sqrt{2})^{2}}$$

$$N' = P' \cdot \cos \phi$$
(3)

-

If $\phi' = 0$, which corresponds to a smooth wall,

If

$$N = \frac{1}{2}w \cdot h^2 \cdot \tan^2 (45^{\circ} - \phi/2)$$
 (5)

* A shallow bin is one where the plane of rupture cuts the free surface of the filling.

TABLE I.

CONSTANTS FOR STEEL PLATE BINS, CASE I.

Material.	ϕ Degrees.	φ' Degrees.	W Lb. Per Cu. Ft.	P' Lb.	N' Lb.	N Lb.
Bituminous coal	27	18 . 16 18	50 52 90 40	6.13h ² 8.73h ² 11.50h ² 4.02h ²	$5.83h^2$ $8.39h^2$ $10.93h^2$ $3.44h^2$	6.75h ² 9.77h ² 12.72h ² 4.34h ²

Case 2. Vertical Wall, Surface Surcharged at Angle δ . Angle $z = \phi'$. Fig. 2.

$$P' = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\cos \phi' \left(1 + \sqrt{\frac{\sin (\phi + \phi') \sin (\phi - \delta)}{\cos \phi' \cdot \cos \delta}}\right)^2}$$
 (6)

$$N' = P' \cdot \cos \phi' \tag{7}$$

$$\delta = \phi$$

If

$$P' = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\cos \phi'} \tag{8}$$

$$N' = P' \cdot \cos \phi' = \frac{1}{2} w \cdot h^2 \cdot \cos^2 \phi$$

$$\phi' = 0$$
(9)

If

$$N = \frac{1}{2}w \cdot h^2 \cdot \cos^2 \phi \tag{10}$$

TABLE II.

Constants for Steel Plate Bins, Case 2. $\delta = \phi$.

	Material.	Degrees.	φ' Degrees.	W Lb. Per Cu. Ft.	P' Lb.	N' Lb.	N Lb.
-	Bituminous coal	35 27 34 40	18 16 18 31	50 52 90 40	17.65h ² 21.45h ² 32.50h ² 13.70h ²	16.75h ² 20.50h ² 30.90h ² 11.73h ²	16.75h ² 20.50h ² 30.90h ² 11.73h ²

Case 3. Vertical Wall, Surcharge Negative = δ . Angle $z = \phi'$. Fig. 3.

$$P' = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\cos \phi' \left(1 + \sqrt{\frac{\sin (\phi + \phi') \sin (\phi + \delta)}{\cos \phi' \cdot \cos \delta}}\right)^2}$$
(11)

$$N' = P' \cdot \cos \phi' \tag{12}$$

If

$$N = \frac{1}{2}w \cdot h^2 \frac{\cos^2 \phi}{\left(1 + \sqrt{\frac{\sin \phi \sin (\phi + \delta)}{\cos \delta}}\right)^2}$$
(13)

TABLE III. $^{\circ}$ Constants for Steel Plate Bins, Case 3. $\delta = -\phi$.

Material.	Degrees.	φ' Degrees.	W Lb. Per Cu. Ft.	P' Lb.	N' Lb.	N Lb.
Bituminous coal Anthracite coal. Sand. Ashes.	35 27 34 40	18 16 18 31	50 52 90 40	$4.49h^2$ $6.64h^2$ $8.44h^2$ $2.85h^2$	4.27h ² 6.38h ² 8.00h ² 2.45h ²	5.13h ² 7.64h ² 9.61h ² 3.23h ²

Case 4. Wall Sloping Outward. $\theta < 90^{\circ} + \phi'$. Surface Level. Fig. 4.

$$P' = \frac{1}{2}w \cdot h^2 \frac{\sin^2(\theta - \phi)}{\sin(\phi' + \theta)\sin^2\theta \left(1 + \sqrt{\frac{\sin(\phi + \phi')\sin\phi}{\sin(\phi' + \theta)\sin\theta}}\right)^3}$$
(14)

$$N' = P' \cdot \cos \phi \tag{15}$$

FIG. 4.

Case 5. Wall Sloping Outward. $\theta < 90^{\circ} + \phi'$. Surface Surcharged. Fig. 5.

$$P' = \frac{1}{2}w \cdot h^2 \frac{\sin^2(\theta - \phi)}{\sin(\phi' + \theta)\sin^2\theta \left(1 + \sqrt{\frac{\sin(\phi + \phi')\sin(\phi - \delta)}{\sin(\phi' + \theta)\sin(\theta - \delta)}}\right)^2}$$

$$N' = P' \cdot \cos\phi'$$
(16)

Case 6. Wall Sloping Outward. $\theta > 90^{\circ} + \phi'$. Surface Level. Fig. 6. $P = \frac{1}{2}w \cdot h^{2} \cdot \tan^{2}(45^{\circ} - \phi/2)$

Fig. 5.

$$W = weight \triangle ABC = \frac{1}{2}w \cdot \tan \theta \cdot h^{2}$$

$$E = \sqrt{W^{2} + P^{2}}$$

$$= \frac{1}{2}w \cdot h^{2}\sqrt{\tan^{2}\theta + \tan^{4}(45^{\circ} - \phi/2)}$$
(18)

$$\tan (\theta + z - 90^{\circ}) = \frac{\tan \theta}{\tan^2 (45^{\circ} - \phi/2)}$$
 (19)

$$Q = E \cdot \cos z$$

$$T = E \cdot \sin z$$

For a wall sloping outwards, and sloping surface the use of formulas is cumbersome and the calculations can be more easily made by graphic methods as explained on succeeding pages.

Tables of Pressure on Vertical Bin Walls.—The normal pressure on vertical bin walls as calculated by the preceding formulas for bituminous coal, anthracite coal, sand, and ashes are given in Table IV, Table V, Table VI, and Table VII, respectively. In the tables column I gives the normal pressure for a smooth vertical wall and horizontal surcharge, while column 4 gives the normal pressure on a rough wall with an angle of friction = ϕ' . Column 2 gives the normal pressure on a rough wall with an angle of friction = ϕ' . Column 3 gives the normal pressure for a smooth vertical wall and a negative surcharge = $-\phi$, while column 6 gives the normal pressure on a rough wall with an angle of friction = ϕ' . It will be seen that the pressures in columns 2 and 5 are identical. For a vertical wall with $\delta = \phi$, the normal pressures as given by Rankine's and Cain's formulas are identical.

These tables have been taken from the author's "The Design of Walls, Bins and Grain Elevators." The tables of pressures and the formulas were first published in a modified form by Mr. R. W. Dull, in Engineering News.

The total pressures are given for a wall one foot long in all cases,

Note.—These tables apply to shallow bins only (bins where the plane of rupture cuts the free surface of the filling). For the calculation of the stresses in deep bins (bins where the plane of rupture cuts the side of the bin) see Chapter IX, Steel Grain Elevators.

TABLE IV.

TOTAL PRESSURE IN POUNDS FOR DEPTH "h" FOR BITUMINOUS COAL.

WALL ONE FOOT LONG.

 $w = 50 \text{ lb.}, \ \phi = 35^{\circ}.$ Smooth Wall, $\phi' = 0$. Rough Wall, Angle of Friction = $\phi' = 18^{\circ}$. I 3 5 6 Depth. h. 110 Mo in Feet. 7 h $\phi' = 0$ $\phi' = 18^{\circ}$ $\delta = \phi$ $\delta = -\phi$ $\delta = \phi$ - 6 5.83 6.75 5.83 16.75 1 16.75 4.27 18 27 67 20.5 23.32 67 17.1 60.75 3 150.75 46.2 52.47 150.75 38.4 108 268 82 268 68.3 4 93.4 Š 168.75 418.75 128 418.75 107 145.7 6 603 209.4 184.5 603 156 243 286 78 821 821 200 333 257 328 1,072 373 1,072 273 432 9 346 547 1,357 415 472 1,357 IÓ 675 583 1,675 513 1,675 427 2,027 817 615 705 516 11 2,027 840 2,412 738 615 12 972 2,412 866 13 1,141 2,831 985 2,831 722 3,283 1,005 1,143 3,283 848 14 1,323 960 1,519 3,769 1,152 1,312 3,769 15 16 4,288 4,288 1,728 1,492 1,093 1,311 4,841 1,480 1,685 4,841 1,232 17 1,951 1,382 18 2,187 1,660 1,889 5,427 5,427 6,047 19 2,437 6,047 1,852 2,105 1,541 6,700 2,052 6,700 1,708 20 2,700 2,332 1,883 21 2,977 7,387 2,262 7,387 2,571 22 3,267 8.102 2,483 2,821 8.102 2,067 2,560 3,084 23 3,571 8.86r 8,861 2,259 24 9,648 3,888 2.810 3,358 9,648 2,460 3,206 2,669 25 4,219 10,469 3,644 10,469 2,887 26 4,563 3,468 11,323 11,323 3,94I 4,250 3,113 27 4,923 12,211 3,740 12,211 4,022 28 5,292 13,142 4,570 13,142 3,348 5,677 14,087 4,314 3,591 29 14,087 4,903 3,843 30 6,075 15,075 4,617 5,247 15,075

TABLE V.

TOTAL PRESSURE IN POUNDS FOR DEPTH "h" FOR ANTHRACITE COAL.

WALL ONE FOOT LONG.

 $w = 52 \text{ lb.}, \ \phi = 27^{\circ}.$

	Sr	mooth Wall, $\phi' =$	0.	Rough Wall,	Angle of Friction	$n = \phi' = 16^{\circ}.$
	ı	2	3	4	5	6
Depth, h, in Feet.	h L	h y	h limb	h h	h h	h Trough
1 2 3 4 5	$\delta' = 0$ 9.75 39.0 87.8 156 244	$ \delta = \phi 20.5 82.0 184.5 328 513$	$ \delta = -\phi 7.64 30.6 68.8 122.2 191$	$\phi' = 16^{\circ}$ 8.39 33.5 75.5 134.2 210	$ \delta = \phi 20.5 82.0 184.5 328 513$	$ \delta = -\phi \\ 6.38 \\ 25.5 \\ 57.5 \\ 102.0 \\ 159.5 $
6 7 8 9	351 478 624 790 975	738 1,005 1,312 1,661 2,050	267 374 489 619 764	302 411 536 680 839	738 1,005 1,312 1,661 2,050	230 313 402 517 638
11 12 13 14 15	1,180 1,405 1,648 1,910 2,193	2,481 2,952 3,465 4,018 4,613	925 1,100 1,290 1,497 1,720	1,014 1,209 1,418 1,643 1,887	2,481 2,952 3,465 4,018 4,613	773 920 1,080 1,250 1,436
16 17 18 19 20	2,500 2,808 3,160 3,521 3,902	5,248 5,945 6,642 7,400 8,200	1,953 2,207 2,471 2,758 3,053	2,145 2,421 2,718 3,030 3,350	5,248 5,945 6,642 7,400 8,200	1,636 1,845 2,064 2,310 2,554
2I 22 23 24 25	4,303 4,718 5,156 5,611 6,097	9,041 9,922 10,845 11,808 12,813	3,372 3,701 4,040 4,398 4,770	3,700 4,061 4,438 4,833 5,244	9,041 9,922 10,845 11,808 12,813	2,820 3,086 3,372 3,680 3,985
26 27 28 29 30	6,600 7,112 7,638 8,202 8,775	13,858 14,945 16,072 17,241 18,450	5,160 5,560 5,979 6,421 6,880	5,672 6,116 6,578 7,056 7,551	13,858 14,945 16,072 17,241 18,450	4,521 4,650 5,000 5,370 5,742

TABLE VI.

TOTAL PRESSURE IN POUNDS FOR DEPTH "h" FOR SAND.

WALL ONE FOOT LONG.

 $w = 90 \text{ lb.}, \ \phi = 34^{\circ}.$

	Sn	nooth Wall, ϕ' =	0.	Rough Wall,	Angle of Friction	$= \phi' = 13^{\circ}.$
	I	2	3	4	5	6
Depth, h, in Feet.	h L	h +	h man	h J	h y	h h
1 2 3 4 5	$\phi' = 0$ 12.72 50.8 114.5 203.7 318	$ \delta = \phi 30.9 123.6 278 494 772$	$ \delta = -\phi 9.61 38.4 86.40 113.8 240$	$\phi' = 18^{\circ}$ 10.93 43.7 98.5 175 273	$ \delta = \phi \\ 30.9 \\ 123.6 \\ 278 \\ 494 \\ 772 $	$\delta = -\phi$ 3^{2} 7^{2} 1^{2} 200
6 7 8 9	458 624 815 1,030 1,272	1,113 1,515 1,980 2,500 3,090	346 471 615 778 961	394 535 700 885 1,093	1,113 1,515 1,980 2,500 3,090	288 392 512 648 800
11 12 13 14	1,540 1,833 2,150 2,495 2,862	3,740 4,450 5,230 6,060 6,960	1,162 1,383 1,624 1,880 2,160	1,345 1,575 1,848 2,160 2,460	3,740 4,450 5,230 6,060 6,960	968 1,152 1,352 1,568 1,800
· 16 17 18 19	3,256 3,676 4,121 4,592 5,088	7,910 8,930 10,012 11,155 12,360	2,460 2,777 3,114 3,469 3,844	2,798 3,159 3,541 3,946 4,372	7,910 8,930 10,012 11,155 12,360	2,048 2,312 2,592 2,888 3,200
21 22 23 24 25	5,610 6,156 6,729 7,327 7,950	13,627 14,956 16,346 17,798 19,313	4,238 4,651 5,084 5,535 6,006	4,820 5,290 5,782 6,296 6,831	. 13,627 14,956 16,346 17,798 19,313	3,528 3,872 4,232 4,608 5,000
26 27 28 29	8,599 9,273 9,972 10,698	20,889 22,526 24,225 25,987 27,810	6,496 7,006 7,534 8,082 8,649	7,389 7,968 8,569 9,192 9,837	20,889 22,526 24,225 25,987 27,810	5,408 5,832 6,272 6,728 7,200

TABLE VII.

Total Pressure in Pounds for Depth "h" for Ashes. Wall One Foot Long.

 $w = 40 \text{ lb.}, \ \phi = 40^{\circ}.$

	Sn	nooth Wall, φ' =	· 0.	Rough Wall,	Angle of Friction	$1 = \phi' = 31^{\circ}.$
	I	2	3	4	5	6
Depth, h, in Feet.	h	h y	h mind	h h	h +	h Through
1 2 3 4 5	$\phi' = 0$ 4.35 17.4 39.2 69.6 108.7	$\delta = \phi$ 11.73 47 105.7 188 294	$ \delta = -\phi 3.23 12.9 29.01 31.7 80.8 $	φ' = 31° 3.44 13.76 30.96 55.04	$\delta = \phi$ 11.73 47 105.7 188 294	$\delta = -\phi$ 2.45 9.80 22.05 39.20 61.2
6 7 8 9 10	156.4 213 278 352 435	423 576 751 952 1,173	116 158 207 261 323	124 168 220 279 344	423 576 751 952 1,173	88.2 120 157 199 245
11 12 13 14	526 626 735 852 978	1,420 1,690 1,985 2,300 2,640	391 465 546 634 726	416 495 581 674 774	1,420 1,690 1,985 2,300 2,640	296 353 414 480 550
16 17 18 19 20	1,113 1,257 1,408 1,527 1,740	3,010 3,400 3,803 4,240 4,700	828 934 1,045 1,165 1,290	881 994 1,115 1,242 1,376	3,010 3,400 3,803 4,240 4,700	627 708 794 884 980
21 22 23 24 25	1,920 2,100 2,300 2,506 2,720	5,181 5,677 6,215 6,756 7,331	1,423 1,561 1,706 1,860 2,017	1,517 1,665 1,820 1,981 2,150	5,181 5,677 6,215 6,756 7,331	1,080 1,186 1,296 1,411 1,531
26 27 28 29 30	2,940 3,165 3,406 3,660 3,915	7,929 8,551 9,196 9,865 10,557	2,180 2,352 2,530 2,718 2,910	2,325 2,508 2,697 2,893 3,096	7,929 8,551 9,196 9,865 10,557	1,656 1,786 1,921 2,060 2,205

STRESSES IN SHALLOW BINS, Graphic Solution.—The graphic solution will be given for two cases which frequently occur in practice.

Graphic Solution. Hopper Bin, Level Full.*—The calculation of stresses in bins by means of graphics will be illustrated by the following problem taken from "The Design of Walls, Bins and Grain Elevators." A cross-section of the bin shown in Fig. 7 is filled with coal weighing 58 lb. per cu. ft., and having an angle of repose $\phi = 30^{\circ}$. The total pressure on the plane A-H is

$$P_1 = \frac{1}{2}w \cdot h^2 \frac{1 - \sin \phi}{1 + \sin \phi} = 3.130 \text{ lb.}$$

acting horizontally through a point 12 ft. below the top surface. Now, to find the pressure P_2 on the plane G-A, produce P_1 until it intersects the line O_2 = the weight of triangle AHG = 10,440

lb. at O, and by constructing $O-I=P_2=10,860$ lb. P_2 is parallel to E in Fig. 7. The normal pressure on A-g is 9,900 lb. Now A-I=9,900 lb. acts through the center of gravity of triangle AG4, and is equal to the area of $AG4 \times w$. The normal unit pressure at A is 733 lb. per sq. ft., and the normal unit pressure at B is 320 lb. per sq. ft. The normal pressure on AB acts through the center of gravity of the shaded area, and is N=7,850 lb. Also by construction E=8,600 lb. The pressure on bottom A-F is equal to $18\times58=1,044$ lb. per sq. ft. The pressure on the wall C-B is

$$P_8 = \frac{1}{2}w \cdot h^2 \frac{1 - \sin \phi}{1 + \sin \phi} = 620 \text{ lb.}$$

Calculation of Stresses in Framework.—The loads on the bin walls are carried by a transverse framework as shown in Fig. 8, spaced 17 ft. 0 in. center to center. The loads at the joints act parallel to the pressures as previously calculated, and the loads can be calculated in the same manner as for a simple beam loaded with a similar loading. The stresses are calculated by graphic resolution and by algebraic moments as shown in Fig. 8 and Fig. 9.

Hopper Bin, Top Surface Heaped.—The bin in Fig. 10 is heaped at the angle of repose, $\phi = 30^{\circ}$. To calculate the pressure on side A-B, proceed as follows: Locate points G and H,

^{*} The calculations are made for a section of the bin one foot long.

Fig. 8.

and calculate the horizontal pressure $P_1 = 7,680$ lb., acting on the plane H-K at $\frac{1}{2}HK$ above H. Pressure P_1 was calculated by the graphic method. Produce P_1 until it intersects at O the line of action of the weight of the triangle GHK acting through the center of gravity of the triangle. From O lay off O-1 = W = 19,900 lb., acting downwards, and from 1 lay off $1-2 = P_1 = 7,680$ lb., acting to the left. Then $O-2 = P_2 = 21,300$ lb. Now $P_3 = 10$ area triangle 10 lb. Now 10 lb.

Fig. 10.

 $E = \text{area 8'-}B-A-5'\cdot w = 11,340 \text{ lb.}$ Force E acts through the center of gravity of area 8-B-A-5. The horizontal pressure on plane $C-B = 1,400 \text{ lb.} = \text{area } s'e'n'\cdot w$. The vertical pressure on the left-hand side of the bottom A-F is 7,480 lb., acting through the center of gravity of the pressure polygon. The vertical unit pressure at A is 1,412 lb. per sq. ft.

STRESSES IN SUSPENSION BUNKERS.—The suspension bunker shown in (a) Fig. 11, carries a load which varies from zero at the support to a maximum at the center. If the bunker is level full the loading from the supports to the center varies nearly as the ordinates to a straight line, while if the bunker is surcharged the straight line assumption for loading is more nearly correct.

We will, therefore, assume that the loading of the bunker in (a) is represented by the triangular loading varying from p = zero at each support to a maximum of p = P at the center.

Let l =one-half the span in feet;

S = the sag in feet;

H = the horizontal component of the stress in the plate in lb. per lineal foot of bin;

w = weight of bin filling in lb. per cu. ft.;

T = maximum tension in plate in lb. per lineal foot of bin;

V = reaction of the bunker in lb. per lineal foot of bin;

C = capacity of bunker in cu. ft. per lineal foot of bin:

B = origin of coordinates.

FIG. 11.

Now if the right-hand half of the bunker be cut away as in (b) and moments be taken about A, the moment will be

$$M = H \cdot S \tag{20}$$

If the bunker be assumed as an equilibrium polygon drawn by using a force polygon, the bending moment at the center is equal to the pole distance multiplied by the intercept S. Therefore H must be equal to the pole distance of the force polygon.

The following equations are deduced in the author's "The Design of Walls, Bins and Grain Elevators."

Equation of the curve of the bunker

$$y = \frac{1}{2} \frac{S}{l^2} \left(3x^2 - \frac{x^3}{l} \right) \tag{21}$$

Capacity of bunker level full

$$C = \frac{5}{2}l \cdot S \tag{22}$$

In calculating P for any given bunker, since P is the maximum pressure for a triangular loading

$$P = \frac{c \cdot w}{l} \tag{23}$$

for a bunker level full

$$P = \frac{5}{4}S \cdot w \tag{24}$$

also

$$H = \frac{C \cdot w \cdot l}{3S} \tag{25}$$

$$V = \frac{1}{2} C \cdot w$$
= $\frac{1}{8} S \cdot l \cdot w$, for a bin level full (26)

$$T = C \cdot w \sqrt{\frac{1}{4} + \frac{l^2}{9S^2}} \tag{27}$$

The length of the curve of a suspension bunker is given in Table VIII.

TABLE VIII.

Length of One-Half Curve. L.

Sag ratio = S/l .	Length, L.	Sag ratio = S/l .	Length, L.
-dir-distription)-st-lan	1.06378 <i>l</i> 1.13686 <i>l</i> 1.22992 <i>l</i> 1.28307 <i>l</i> 1.36651 <i>l</i>	I Cho-elecated	1.45722 <i>l</i> 1.61131 <i>l</i> 1.71906 <i>l</i> 1.85815 <i>l</i>

The curve may be constructed graphically as follows: In (c) Fig. 11 it is required to pass the curve through the points A and B. The loads 1, 2, 3, 4, etc., are laid off in the force polygon (d), and a pole O is taken. The equilibrium polygon A-B' is then constructed in (c). Now we know from graphic statics that if two poles be taken for the force polygon in (d), and corresponding equilibrium polygons be drawn through A, the strings meeting on the same load will intersect on a line through A parallel to the line O-O'. Now D is determined by the intersection of rays D-B' and D-B. The true curve is then easily constructed and pole O' is located.

If the bunker is surcharged by vertical walls as shown in (e) the curve is extended until it meets the slope of the material, and the span and sag are to be used as shown.

Deep Bins.—For the calculation of the stresses in deep bins, see the calculation of the stresses in grain bins, Chapter IX.

For methods of calculating the stresses in hopper bins with the top surface surcharged, and the calculation of the stresses in bin bottoms and circular girders, see the author's "The Design of Walls. Bins and Grain Elevators."

Angle of Repose.—The angle of repose and the weights of different materials are given in Table IX.

DATA.—For angles of internal friction, see Table IX, and for angles of friction on bin walls, see Table X.

TABLE IX.

WEIGHT AND ANGLE OF REPOSE OF COAL, COKE, ASHES AND ORE.

Material.	Weight Lb. per Cu. Ft.	Angle of Repose φ in Degrees.	Authority.
Bituminous coal	50	35	Link Belt Machinery Co.
Bituminous coal	47	35	Link Belt Engineering Co.
Bituminous coal	47 to 56		Cambria Steel.
Anthracite coal	52	27	Link Belt Machinery Co.
Anthracite coal	52.I	27	Link Belt Engineering Co.
Anthracite coal fine		27	K. A. Muellenhoff.
Anthracite coal	52 to 56		Cambria Steel.
Slaked coal	3	45	Wellman-Seaver-Morgan Co.
Slaked coal.	53	371	Gilbert and Barth.
Coke	23 to 32	1	Cambria Steel.
Ashes	40	40	Link Belt Machinery Co.
Ashes, soft coal	40 to 45		Cambria Steel.
Ore, soft iron		35	Wellman-Seaver-Morgan Co.

Coal, ore, etc., will give an angle of $\phi = 40^{\circ}$ if the material is dry, but if the material is wet the angle of repose may be increased to nearly 90° .

Angle of Friction on Bin Walls.—The values in Table X may be used in the absence of more accurate data.

TABLE X.

Angle of Friction of Different Materials on Bin Walls.

Material.	Steel Plate. ϕ' in Degrees.	Wood Cribbed. • • • • • • • • • • • • •	Concrete. φ' in Degrees.
Bituminous coal	18	35	35
Anthracite coal	16	25	27
Ashes	31	40	40
Coke	25	40	40
Sand	18	30	30

FIG. 12. COKE AND STONE BINS, LACKAWANNA STEEL CO.

Self-cleaning Hoppers.—In order to have hoppers self-cleaning when the material is moist it is necessary to have the hopper bottoms slope at an angle considerably in excess of the angle of repose ϕ or angle of friction ϕ' .

Ore pockets on the Great Lakes are made with hopper bottoms at an angle of 48° 40′ to 50° 45′, but the majority are at an angle of 49° 45′. Bituminous coal will slide down a steel chute at an angle of 40° and a wooden chute at an angle of 45°. Anthracite coal will slide down a steel chute at an angle of 30° and down a wooden chute at an angle of 35°.

FIG. 13. ELEVATION CIRCULAR STEEL ORE BIN FOR OLD DOMINION COPPER MINING CO.

DESIGN OF BINS.—Bins are usually subjected to sudden loads and vibrations and should be designed for two-thirds the allowable unit stresses for dead loads given in §§ 33 to 41, inclusive, in "Specifications for Steel Frame Buildings," Chapter I.

Bins are made of timber, of structural steel, or of concrete, or the different materials may be used in combination.

FLAT PLATES.—The analysis of the stresses in flat plates supported or fixed at their edges is extremely difficult. The following formulas by Grashof may be used: The coefficient of lateral contraction is taken as \{\frac{1}{4}\). For a full discussion of these formulas based on Grashof's "Theorie Der Elasticitat und Festigkeit" see Lanza's Applied Mechanics.

1. Circular plate of radius r and thickness t, supported around its perimeter and loaded with w

per square inch.—Let f = maximum fiber stress, v = maximum deflection, and E = modulus of elasticity.

$$f = \frac{117}{128} \frac{w \cdot r^2}{t^2} \tag{28}$$

$$v = \frac{189}{256} \frac{w \cdot r^4}{E \cdot t^8} \tag{29}$$

Fig. 14. Details for Circular Bins for Old Dominion Copper Mining Co.

2. Circular plate built in or fixed at the perimeter.

$$f = \frac{45}{64} \frac{w \cdot r^2}{\ell^2} \tag{30}$$

$$v = \frac{45}{256} \frac{\boldsymbol{w} \cdot \boldsymbol{r}^4}{E \cdot t^3} \tag{31}$$

3. Rectangular plate of length a breadth b, and thickness t, built in or fixed at the edges and

carrying a uniform load w per square inch.—Let f_a be the unit stress parallel to a, f_b be the unit stress parallel to b, and a > b.

$$f_a = \frac{b^4 \cdot w \cdot a^2}{2(a^4 + b^4)\ell^2}; \qquad f_b = \frac{a^4 \cdot w \cdot b^2}{2(a^4 + b^4)\ell^2}$$
(32)

$$v = \frac{a^4 \cdot b^4 \cdot w}{(a^4 + b^4)_{32} E \cdot b^3} \tag{33}$$

For a square plate a = b,

$$f = \frac{w \cdot a^2}{4\ell^2} \tag{34}$$

$$v = \frac{w \cdot a^4}{64 E \cdot \beta} \tag{35}$$

The strength of plates simply supported on the edges is about \(\frac{2}{3}\) the strength of plates fixed. Plates riveted or bolted around the edges may be considered as fixed.

For a diagram giving the safe loads on flat plates, see the author's "The Design of Walls, Bins and Grain Elevators," also see Part II.

Buckle Plates.—Buckle plates are made by "dishing" flat plates as in Table 59, Part II. The width of the buckle W, or length L, varies from 2 ft. 6 in. to 5 ft. 6 in. The buckles may be turned with the greater dimension in either direction of the plate. Several buckles may be put

Fig. 15. Coal Bunkers, Rapid Transit Subway, New York, N. Y.

in one plate, all of which must be the same size and symmetrically placed. Buckle plates are made $\frac{1}{4}$ in., $\frac{8}{16}$ in., $\frac{3}{8}$ in. and $\frac{7}{16}$ in. in thickness. Buckle plates should be firmly bolted or riveted around the edges with a maximum spacing of 6 in., and should be supported transversely between the buckles. The process of buckling distorts the plate and an extra width should be ordered and the plate should be trimmed after the process is complete.

Strength of Buckle Plates.—The safe load for a buckle plate with buckles placed up, is approximately given by the formula

 $W = 4f \cdot R \cdot t \tag{36}$

where W = total safe uniform load in lb. per inch of width of plate;

f = safe unit stress in lb. per sq. in.;

R = depth of buckle in in.;

t =thickness of plate in in.

Where buckle plates are riveted and the buckle placed down the safe load is from 3 to 4 times that given above.

TYPES OF BINS.—The most common types are (1) the suspension bunker, (2) the hopper bin, and (3) the circular bin.

Suspension Bunkers.—Suspension bunkers are made by suspending a steel framework from two side members, the weight of the filling causing the sides to assume the curve of an equilibrium polygon. The stresses in the plates of a true suspension bunker are pure tensile stresses. Steel suspension bunkers are commonly lined with a concrete lining about 1½ to 3½ in. thick, reinforced with wire fabric, to protect the metal of the bin.

FIG. 16. COAL BUNKERS, RAPID TRANSIT SUBWAY, NEW YORK, N. Y.

Hopper Bins.—Hopper bins may be made of timber, steel, or reinforced concrete. A steel coke and stone bin, erected by the Lackawanna Steel Company, is shown in Fig. 12. These bins were divided into panels 12 ft. 6 in. center to center, with double partitions at each panel point, leaving a clear length of 11 ft. 6 in. The bins are lined throughout with $\frac{3}{8}$ in. plates. All rivets in the floor are countersunk. The gates at the bottom of the bin are cylindrical and are revolved

by a system of shafting and gears. There is an opening in the side of the drum, and when the drum is revolved this opening comes opposite the opening in the bottom of the bin and the drum is filled. The drum is then revolved and the material is dumped into the larries.

Circular Bins. Circular bins are made of both steel and reinforced concrete. A circular

ore bin with a hemispherical bottom is shown in Fig. 13 and Fig. 14.

EXAMPLES OF BINS. Steel Coal Bin for Rapid Transit Subway.—A cross-section of a 1,000-ton suspension bunker built by the Rapid Transit Subway, New York City, is shown in Fig. 15 and Fig. 16. The bunker is supported on posts and is covered by corrugated steel. The bin is lined with a layer of concrete $3\frac{1}{2}$ in. thick, reinforced with expanded metal. The details of construction are plainly shown in the cuts.

Fig. 17. HOPPER BIN CANANEA CONSOLIDATED COPPER CO., CANANEA, MEXICO.

Ore Bins for Cananea Consolidated Copper Company.—Detail drawings of a hopper ore bin built by the Cananea Consolidated Copper Company are shown in Fig. 17. The ore is coarse and heavy and is dumped from cars on the top of the bins. The ore is drawn off through gates on the bottom and is carried away on a conveyor. The side plates are $\frac{1}{6}$ in. thick and are stiffened with channels spaced about 4 ft. apart. The hopper plates are $\frac{3}{6}$ in. thick and are stiffened with 10 in. channels.

FIG. 18. STEEL COAL BINS AT COKETON, W. VA.

Steel Coal Bins for Davis Coal and Coke Co.—The steel coal bin shown in Fig. 18 was designed by the American Bridge Company for the Davis Coal and Coke Co. for the coke ovens at Coketon, W. Va. The framework is made of structural steel and is covered with corrugated steel. The bin is lined with 3 in. oak plank spiked to timber spiking pieces which are bolted to the steel beams. The bin is carried on plate girders each having a web plate 96 in. $\times \frac{3}{8}$ in., and top and bottom flanges of two angles $6'' \times 6'' \times \frac{9}{16}''$. The bin is filled by a belt conveyor passing over the top of the bin, as shown in Fig. 18. The coal is drawn from the bins through gates into cars and is hauled to the coke ovens. The capacity of the bin is 300 tons.

References.—For the design of reinforced concrete bins, and for additional data and examples, see the author's "The Design of Walls, Bins and Grain Elevators."

CHAPTER IX.

STEEL GRAIN ELEVATORS.

Introduction.—Grain elevators, or "silos," as they are called in Europe, may be divided into two classes according to the arrangement of the bins and elevating machinery: (a) elevators which are self contained, with all the storage bins in the main elevator or working house; and (b) elevators having a working house containing the elevating machinery, while the storage is in bins connected with the working house by conveyors. The working house is usually rectangular in shape, with square or circular bins; while the independent storage bins are usually circular.

With reference to the materials of which they are constructed, elevators may be divided into (1) timber; (2) steel; (3) concrete; (4) tile, and (5) brick. Steel grain elevators, only, will be considered in this chapter. For a complete treatise on the design of grain elevators, see the

author's "The Design of Walls, Bins and Grain Elevators."

STRESSES IN GRAIN BINS.—The problem of calculating the pressure of grain on bin walls is somewhat similar to the problem of the retaining wall, but is not so simple. The theory of Rankine will apply in the case of shallow bins with smooth walls where the plane of rupture cuts the grain surface, but will not apply to deep bins or bins with rough walls. (It should be remembered that Rankine assumes a granular mass of unlimited extent.)

Stresses in Deep Bins.—Where the plane of rupture cuts the sides of the bin the solution for shallow bins does not apply.

Nomenclature.—The following nomenclature will be used:

 ϕ = angle of repose of the filling;

 ϕ' = the angle of friction of the filling on the bin walls;

 $\mu = \tan \phi = \text{coefficient of friction of filling on filling};$

 $\mu' = \tan \phi' = \text{coefficient of friction of filling on the bin walls};$

x =angle of rupture;

w =weight of filling in lb. per cu. ft.;

V =vertical pressure of the filling in lb. per sq. ft.;

L = lateral pressure of the filling in lb. per sq. ft.;

A =area of bin in sq. ft.;

U =circumference of bin in ft.;

R = A/U = hydraulic radius of bin.

Janssen's Solution.—The bin in (a) Fig. 1, has a uniform area A, a constant circumference U, and is filled with a granular material weighing w per unit of volume, and having an angle of repose ϕ . Let V be the vertical pressure, and L be the lateral pressure at any point, both V and L being assumed as constant for all points on the horizontal plane. (More correctly V and L will be constant on the surface of a dome as in (b).)

The weight of the granular material between the sections of y and $y + dy = A \cdot w \cdot dy$; the total frictional force acting upwards at the circumference will be $= L \cdot U \cdot \tan \phi' \cdot dy$; the total perpendicular pressure on the upper surface will be $= V \cdot A$; and the total pressure on the lower surface will be = (V + dV)A.

Now these vertical pressures are in equilibrium, and

 $V \cdot A - (V + dV)A + A \cdot w \cdot dy - L \cdot U \cdot \tan \phi' \cdot dy = 0$

and

Now in a granular mass, the lateral pressure at any point is equal to the vertical pressure times k, a constant for the particular granular material, and

$$L = k \cdot V$$

Also let A/U = R (the hydraulic radius), and $\tan \phi' = u'$.

Substituting the above in (1) we have

$$dV = \left(w - \frac{k \cdot V}{R} \mu'\right) dy$$

Now let

$$\frac{k \cdot \mu'}{R} = n \tag{2}$$

and

$$\frac{dV}{v - n \cdot V} = dy \tag{3}$$

Fig. 1.

Integrating (3) we have

$$\log (w - n \cdot V) = -n \cdot y + C \tag{4}$$

Now if y = 0, then V = 0, and $C = \log w$, and (4) reduces to

$$\log\left(\frac{w-n\cdot V}{w}\right)=-n\cdot y$$

and

$$\frac{w - n \cdot V}{w} = \frac{1}{e^{n \cdot y}} = e^{-n \cdot y}$$

where e is the base of the Naperian system of logarithms. Solving for V we have

$$V = \frac{w}{v} \left(1 - e^{-n \cdot y} \right) \tag{5}$$

Substituting the value of n from (2), we have

$$V = \frac{w \cdot R}{k \cdot \mu'} (\mathbf{I} - e^{-k \cdot \mu' \cdot y/R})$$
 (6)

Now if h be taken as the depth of the granular material at any point we will have

$$V = \frac{w \cdot R}{k \cdot u'} \left(\mathbf{I} - e^{-k \cdot \mu' \cdot h/R} \right) \tag{7}$$

Also since

$$L = k \cdot V$$

$$L = \frac{w \cdot R}{\mu'} \left(\mathbf{I} - e^{-k \cdot \mu' \cdot h/R} \right)$$
(8)

Now if w is taken in 1b. per cu. ft., and R in ft., the pressure will be given in 1b. per sq. ft. For deep bins with a depth of more than two and one-half diameters the last term of the right hand member of (8) may be omitted, and

$$L' = \frac{w \cdot R}{\mu'} \text{ (approx.)} \tag{9}$$

Now both μ' and k can only be determined by experiment on the particular grain and kind of bin. For wheat and a wooden bin, Janssen found $\mu' = 0.3$ and k = 0.67, making $k \cdot \mu' = 0.20$. Jamieson found by experiment that for wheat k = 0.6, and he found values in Table I for μ'

yamieson found by experiment that for wheat k = 0.6, and he found values in Table with wheat weighing 50 lb. per cu. ft. and having $\phi = 28^{\circ}$, $\mu = 0.532$:

TABLE I

Coefficients of Friction μ' for Wheat on Bin Walls. Jamieson.

Wheat Weighing 50 lb. per cu. ft., and Angle of Repose $\phi = 28$ Degrees.

Materials.	Coefficient of Friction	
Wheat on wheat	0.532	
Wheat on steel trough plate bin	0.468	
Wheat on steel flat plate, riveted and tie bars	0.375 to 0.400	
Wheat on steel cylinders, riveted	0.365 to 0.375	
Wheat on cement-concrete, smooth to rough	0.400 to 0.425	
Wheat on tile or brick, smooth to rough	0.400 to 0.425	
Wheat on cribbed wooden bin	0.420 to 0.450	

Pleisner obtained the values of μ' as given in Table II, and of k as given in Table III.

TABLE II.

COEFFICIENTS OF FRICTION OF GRAIN BIN WALLS. PLEISNER.

Bins.	Coefficient of Friction $\mu' = \tan \phi'$.		
Dins.	Wheat.	Rye.	
Cribbed bin	0.43	0.54	
Ringed cribbed bin	0.43	0.54 0.78	
Small plank bin	0.25	0.37	
Large plank bin	0.45		
Reinforced concrete bin	0.71	0.55	

TABLE III.

Values of k = L/V for Wheat and Other Grains in Different Bins. Pleisner.

Bins.	k = L/V.				
Dittis.	Wheat.	Rye.	Rape.	Flax-seed.	
Cribbed bin	0.4 to 0.5 0.4 to 0.5 0.34 to 0.46 0.3 0.3 to 0.35	0.23 to 0.32 0.3 to 0.34 0.3 to 0.45 0.23 to 0.28 0.3	0.5 to 0.6	0.5 to 0.6	

TABLE IV.

Hyperbolic or Naperian Logarithms.

	1117	ERBOLIC OR IV	APERIAN LOGARI	inms.	
N.	Log.	N.	Log.	N.	Log.
1.00	0.0000	3.65	1.2947	6.60	1.8871
1.05	0.0488	3.70	1.3083	6.70	1.9021
1.10	0.0953	3.75	1.3218	6.80	1.9169
1.15	0.1398	3.80	1.3350	6.90	1.9315
1.20	0.1823	3.85	1.3481	7.00	1.9459
1.25	0.2231	3.90	1.3610	7.20	1.9741
1.30	0.2624	3.95	1.3737	7.40	2.0015
1.35	0.3001	4.00	1.3863	7.60	2.0281
1.40	0.3365	4.05	1.3987	7.80	2.0541
1.45	0.3716	4.10	1.4110	8.00	2.0794
1.50	0.4055	4.15	1.4231	8.25	2.1102
1.55	0.4383	4.20	1.4351	8.50	2.1401
1.60	0.4700	4.25	1.4469	8.75	2.1691
1.65	0.5008	4.30	1.4586	9.00	2.1972
1.70	0,5306	4.35	1.4701	9.25	2.2246
1.75	0.5596	4.40	1.4816	9.50	2.2513
1.80	0.5878	4.45	1.4929	9.75	2.2773
1.85	0.6152	4.50	1.5041	10.00	2.3026
1.90	0.6419	4.55	1.5151	11.00	2.3979
1.95	0.6678	4.60	1.5261	12.00	2.4849
2.00	0.6931	4.65	1.5369	13.00	2.5649
2.05	0.7178	4.70	1.5476	14.00	2.6391
2.10	0.7419	4.75	1.5581	15.00	2.7081
2.15	0.7655	4.80	1.5686	16.00	2.7726
2.20	0.7885	4.85	1.5790	17.00	2.8332
2.25	0.8109	4.90	1.5892	18.00	2.8904
2.30	0.8329	4.95	1.5994	19.00	2.9444
2.35	0.8544	5.00	1.6094	20.00	2.9957
2.40	0.8755	5.05	1.6194	21.00	3.0445
2.45	0.8961	5.10	1.6292	22.00	3.0910
2.50	0.9163	5.15	1.6390	23.00	3.1355
2.55	0.9361	5.20	1.6487	24.00	3.1781
2.60	0.9555	5.25	1.6582	25.00	3.2189
2.65	0.9746	5.30	1.6677	26.00	3.2581
2.70	0.9933	5.35	1.6771	27.00	3.2958
2.75	1.0116	5.40	1.6864	28.00	3.3322
2.80	1.0296	5-45	1.6956	29.00	- 3.3673
2.85	1.0473	5.50	1.7047	30.00	3.4012
2.90	1.0647	5.55	1.7138	31.00	3.4340
2.95	1.0818	5.60	1.7228	32.00	3.4657
3.00	1.0986	5.65	1.7317	. 33.00	3.4965
3.05	1.1154	5.70	1.7405	34.00	3.5264
3.10	1.1314	5.75	1.7492	35.00	3.5553
3.15	1.1474	5.80	1.7579	40.00	3.6889
3.20	1.1632	5.85	1.7664	45.00	3.8066
3.25	1.1787	5.90	1.7750	50.00	3.9120
3.30	1.1939	5.95	1.7834	60.00	4.0943
3.35	1.2090	6.00	1.7918	70.00	4.2485
3.40	1.2238	6. 0	1.8083	80.00	. 4.3820
3.45	1.2384	6.20	1.8245	90.00	4.4998
3.50	1.2528	6.30	1.8405	100.00	4.6052
3.55	1.2669	6.40	1.8563		
3.60	1.2809	6.50	1.8718		
			1		

It will be seen in (8) that the maximum lateral pressure in a bin which must be used in the design of deep bins, is independent of k, and that therefore an exact determination of k is not very important. In calculating the values of V and L in (7) and (8), it is necessary to use a table of

natural or hyperbolic logarithms. A brief table of hyperbolic logarithms is given in Table IV. To find the hyperbolic logarithm of any number, using a table of Brigg's or common logarithms, use the relation: The hyperbolic or Naperian logarithm of any number = common or Brigg's logarithm $\times 2.30259$.

The author has calculated the lateral pressures on steel plate bins, Fig. 2.

Fig. 2. Lateral Pressure in Steel Plate Grain Bins Calculated by Janssen's Formula.

To use Fig. 2 to calculate the pressures in rectangular bins, calculate the pressure in a circular or square bin which has the same hydraulic radius, R (R = area of bin \div perimeter of bin), as the rectangular bin.

It will be seen in Fig. 2 that the pressure varies as the diameters, where the height divided by the diameter is a constant. By using this principle the pressure for any other diameter within the limits of the diagram may be directly interpolated.

Problem 1. Required the lateral pressure at the bottom of a cement lined bin, 10 ft. in diameter and 20 ft. high, containing wheat weighing 50 lb. per cu. ft. Assume $\mu' = 0.416$, and k = 0.6, also R will = $2\frac{1}{2}$ ft., w = 50 lb., h = 20 ft., and $k \cdot \mu' = 0.25$.

Now from (8)

$$L = \frac{50 \times 2.5}{0.416} (1 - e^{-0.25 \times 20 /2.5})$$
$$= 300(1 - e^{-2})$$

Now from Table IV the number whose hyperbolic logarithm is 2.00 is 7.40, and

$$L = 300 \left(1 - \frac{1}{7.40} \right),$$

= 260 lb. per sq. ft.,
= 1.8 lb. per sq. in.

German Practice.—Janssen's formula is given in Hutte Des Ingenieurs Taschenbuch, as the standard formula for the design of grain bins. For wheat Janssen found that $\mu' = 0.3$, and k = 0.67, so that $\mu' \cdot k = 0.20$. Using these values and changing to English units, we have for wheat,

$$V = \frac{w \cdot R}{0.2} (1 - e^{-0.2h/R})$$

or if d = diameter or side of bin, then

$$V = \frac{5}{4}w \cdot d(\mathbf{I} - e^{-0.8\hbar/d})$$
$$L = k \cdot V$$

which is the German practice.

Load on Bin Walls.—The walls of a deep bin carry the greater part of the weight of the contents of the bin. The total weight carried by the bin walls is equal to the total pressure, P, of the grain on the bin walls, multiplied by the coefficient of friction μ' of the grain on the bin walls.

From formula (8) the unit pressure on a unit at a depth y will be

$$L = \frac{w \cdot R}{\mu'} (1 - e^{-k \cdot \mu' \cdot y/R})$$
 (10)

and the total lateral pressure for a depth y, per unit of length of the perimeter of the bin, will be

$$P = \int_0^y L \cdot dy = \int_0^y \frac{w \cdot R}{\mu'} \left(1 - e^{-k \cdot \mu' \cdot y/R} \right) dy$$
$$= \frac{w \cdot R}{\mu'} \left[y - \frac{R}{k \cdot \mu'} + \frac{R}{k \cdot \mu'} \cdot e^{-k \cdot \mu' \cdot y/R} \right] \tag{II}$$

Now the last term in (II) is very small and may be neglected for depths of more than two diameters, and

$$P = \frac{w \cdot R}{\mu'} \left[y - \frac{R}{k \cdot \mu'} \right] \text{ (approx.)}$$

The total load per lineal foot carried by the side walls of the bin will be

$$P \cdot \mu' = w \cdot R \left[y - \frac{R}{k \cdot \mu'} \right]$$
 (approx.) (13)

For the total weight of grain carried by the side walls multiply (13) by the length of the circumference of the bin.

Formulas (12) and (13) may be deduced as follows:—The grain carried by the sides of the bin will be equal to the total weight of grain in the bin minus the pressure on the bottom of the bin. If P is the total side pressure on a section of the bin one unit long, then

$$P \cdot U \cdot \mu' = w \cdot A \cdot y - A \cdot V \tag{a}$$

$$= w \cdot A \cdot y - \frac{w \cdot A \cdot R}{k \cdot u'} \left(1 - e^{-k \cdot \mu' \cdot y/R} \right) \tag{b}$$

and solving (b)

$$P = \frac{w \cdot A}{\mu' \cdot U} \left[y - \frac{R}{k \cdot \mu'} \left(1 - e^{-k \cdot \mu' \cdot y/R} \right) \right]$$
 (c)

$$= \frac{w \cdot R}{\mu'} \left[y - \frac{R}{k \cdot \mu'} \left(1 - e^{-k \cdot \mu' \cdot y/R} \right) \right]$$
 (11)

$$= \frac{w \cdot R}{\mu'} \left[y - \frac{R}{k \cdot \mu'} \right] \text{ (approx.)} \tag{13}$$

and the total load carried on a section of the bin one unit long will be found by multiplying P in (II) by μ' , and

$$P \cdot \mu' = w \cdot R \left[y - \frac{R}{k \cdot \mu'} \left(\mathbf{1} - e^{-k \cdot \mu' \cdot y / R} \right) \right]$$
$$= w \cdot R \left[y - \frac{R}{k \cdot \mu'} \right] \text{ (approx.)}$$
(13)

For example take a steel bin 10 ft. in diameter and 100 ft. deep; weight of wheat, w = 50 lb. per cu. ft.; angle of friction of wheat on steel, $\mu' = 0.375$; angle of repose of grain on grain, $\mu = \tan 28^\circ = 0.532$ (μ does not occur in formula (13) but may be used in calculating an approximate value of $k = (1 - \sin 28^\circ)/(1 + \sin 28^\circ) = 0.37$ which is a close approximation to k = 0.4 which will be used). Then the load carried by the side walls per lineal foot will be from (13)

$$P \cdot \mu' = 50 \times 2.5 \left[100 - \frac{2.5}{0.4 \times 0.375} \right]$$

= 10,416 lb.

The total load on the entire bin walls will be

$$P \cdot \mu' \times 31.416 = 327,635$$
 lb.

The total weight of wheat in the bin is

$$50 \times 78.5 \times 100 = 392,700$$
 lb.

and the total load carried by the bottom of the bin is

$$392,700 - 327,635 = 65,065$$
 lb.

and the pressure on the bottom = V = 65,065/78.54 = 830 lb. per sq. ft. From formula (7) we find that V = 830 lb. per sq. ft.

EXPERIMENTS ON THE PRESSURE OF GRAIN IN DEEP BINS.—The laws of pressure of grain and similar materials are very different from the well known laws of fluid pressure. Dry wheat and corn come very nearly filling the definition of a granular mass assumed by Rankine in deducing his formulas for earth pressures. As stored in a bin the grain mass is limited by the bin walls, and Rankine's retaining wall formulas are not directly applicable.

If grain is allowed to run from a spout onto a floor it will heap up until the slope reaches a certain angle, called the angle of repose of the grain, when the grain will slide down the surface of the cone. If a hole be cut in the bottom of the side of a bin, the grain will flow out until the opening is blocked by the outflowing grain. There is no tendency for the grain to spout up as in the case of fluids. If grain be allowed to flow from an orifice it flows at a constant rate, which is independent of the head and varies as the diameter of the orifice.

Experiments by Willis Whited,* and by the author at the University of Illinois, with wheat have shown that the flow from an orifice is independent of the head and varies as the cube of the diameter of the orifice. This phenomenon can be explained as follows: The wheat grains in the bin tend to form a dome which supports the weight above. The surface of this dome is actually the surface of rupture. When the orifice is opened the grain flows out of the space below the dome and the space is filled up by grains dropping from the top of the dome. As these grains drop others take their place in the dome. Experiments with glass bins show that the grain from the center of the bin is discharged first, this drops through the top of the dome, while the grain in the lower part of the dome discharges last.

The law of grain pressures has been studied experimentally by several engineers within recent years. A brief resume of the most important experiments is given in the author's "The Design of Walls, Bins and Grain Elevators," where after a careful study of all available experiments the author reached the following conclusions:—

I. The pressure of grain on bin walls and bottoms follows a law (which for convenience will be called the law of "semi-fluids"), which is entirely different from the law of the pressure of fluids.

^{*} Proc. Eng. Soc. of West. Penna., April, 1901.

- 2. The lateral pressure of grain on bin walls is less than the vertical pressure (0.3 to 0.6 of the vertical pressure, depending on the grain, etc.), and increases very little after a depth of 2½ to 3 times the width or diameter of the bin is reached.
- 3. The ratio of lateral to vertical pressures, k, is not a constant, but varies with different grains and bins. The value of k can only be determined by experiment.
- 4. The pressure of moving grain is very slightly greater than the pressure of grain at rest (maximum variation for ordinary conditions is, probably, 10 per cent).
 - 5. Discharge gates in bins should be located at or near the center of the bin,
- 6. If the discharge gates are located in the sides of the bins, the lateral pressure due to moving grain is decreased near the discharge gate and is materially increased on the side opposite the gate (for common conditions this increased pressure may be two to four times the lateral pressure of grain at rest).
 - 7. Tie rods decrease the flow but do not materially affect the pressure.
- 8. The maximum lateral pressures occur immediately after filling, and are slightly greater in a bin filled rapidly than in a bin filled slowly. Maximum lateral pressures occur in deep bins during filling.
- The calculated pressures by either Janssen's or Airy's formulas agree very closely with actual pressures.
- 10. The unit pressures determined on small surfaces agree very closely with unit pressures on large surfaces.
- II. Grain bins designed by the fluid theory are in many cases unsafe as no provision is made for the side walls to carry the weight of the grain, and the walls are crippled.
- 12. Calculation of the strength of wooden bins that have been in successful operation shows that the fluid theory is untenable, while steel bins designed according to the fluid theory have failed by crippling the side plates.

RECTANGULAR STEEL BINS.—For the calculation of the stresses in and the design of rectangular steel bins, see the author's "The Design of Walls, Bins and Grain Elevators," Second Edition.

CIRCULAR STEEL BINS.—In the designing of steel grain bins particular attention should be given to the horizontal joints, and to the strength of the bin to act as a column to support the grain. To calculate the thickness of the metal the horizontal pressure L is obtained from Janssen's formula, and then the thickness may be found by the formula

$$t = \frac{L \cdot d}{2S \cdot f} \tag{14}$$

where t = thickness of the plate in in.;

L = horizontal pressure in lb. per sq. in.;

d = diameter of bin in in.;

S =working stress in steel in lb. per sq. in.:

f = efficiency of the joint.

The unit stress S may be taken at 16,000 lb. per sq. in., and f will be about 57 per cent for a single riveted lap joint, 73 per cent for a double riveted lap joint, and 80 per cent for double riveted double strap but joints. For the efficiency of riveted joints, see Table IIa, Chapter XI.

The allowable stresses given for the design of steel mill buildings should be used in design. These allowable stresses are as follows: Tension on net section 16,000 lb. per sq. in.; shear on cross-section of rivets 11,000 lb. per sq. in.; bearing on the projection of rivets (diameter \times thickness of plate) 22,000 lb. per sq. in. Compression in columns P = 16,000 - 70l/r where P = unit stress in lb. per sq. in., l = length of member and r = radius of gyration of the member, both in inches.

Rivets in Horizontal Joints.—The side walls carry a large part of the weight of the grain in the bin and this should be considered in designing the horizontal joints. The weight of the grain supported by the bin above any horizontal joint can be calculated as shown in the following example. Assume a steel plate bin 25 ft. in diameter, and it is required to calculate the grain

supported by the bin walls above a horizontal joint 75 ft. below the top of the grain. From equation (13) the grain carried by the bin walls per lineal foot of circumference of bin, where w = 50 lb. per cu. ft.; $\mu' = 0.375$; k = 0.40, also R = 25/4 = 6.25, and

$$P \cdot \mu' = 50 \times 6.25 \left[75 - \frac{6.25}{0.4 \times 0.375} \right]$$

= 10.415 lb.

The weight of the steel bin above the joint may be taken as 1,250 lb. per lineal foot of joint. The horizontal riveting should then be designed for a shear of 11,665 lb. per lineal foot of joint. Assume that the plates are $\frac{3}{8}$ in. thick and the rivets $\frac{3}{4}$ in. in diameter. For allowable stresses of 16,000 lb. per sq. in. in tension, 11,000 lb. per sq. in. in shear, and 22,000 lb. per sq. in. in compression; then, Table 114, Part II, the value of a $\frac{3}{4}$ in. shop rivet in single shear = 4,860 lb., and a field rivet is $\frac{2}{8}$ of 4,860 = 3,240 lb., and in compression = 6,190 lb. for shop rivets and = 4.127 lb. for field rivets. For a lap joint therefore the spacing should not be greater than 3,240 \times 12 \div 11,665 = 3.25 in., requiring but one row of rivets.

Stresses in a Steel Bin Due to Wind Moment.—If M is the moment due to the wind acting on the bin above the horizontal joint, then the stress per lineal foot of joint due to wind moment will be

$$S = \frac{M \cdot d}{2I}$$
, but $I = \frac{1}{8}\pi \cdot d^3$ (approx.) and $S = \frac{4M}{\pi \cdot d^2}$ (15)

where all dimensions are in feet. For a wind load of 30 lb. per sq. ft. on two-thirds of the tank (20 lb. per sq. ft. on the entire surface of the tank) the wind stress will be S = 2,865 lb. per lineal foot. The spacing therefore should not be greater than $3,240 \times 12 \div (11,665 + 2,865) = 2$ in.

Stiffeners.—In large circular steel bins the thin side walls are not sufficiently rigid to support the weight of the grain and it is necessary to supply stiffeners. For this purpose angles or Z-bars may be used. Experience has shown that bins in which the height is equal to or greater than about $2\frac{1}{2}$ times the diameter do not need stiffeners. There is at present no rational method for the design of these stiffeners or the stiffeners in plate girders. In Fig. 9 will be seen the details of a steel bin of the Independent Steel Elevator with Z-bar stiffeners. Angle stiffeners were used in the bins of the Electric Elevator, Minneapolis, Minn.

Fig. 3. Plan of Steel Storage Bins for a Steel Elevator.

Circular steel bins are used for storage in large elevators and may be used for a complete elevator as in Fig. 3. The space between the bins is sometimes used for auxiliary storage. The circular bin walls are stiffened by means of vertical channels, and the auxiliary bins are cross-braced with steel rods. Complete details of circular steel bins for the Independent Elevator, Omaha, Neb., are shown in Fig. 9.

STEEL ELEVATOR FOR MANHATTAN MILLING CO., MANHATTAN, MONTANA.

Steel Country Elevator.—General plans of a steel grain elevator for the Manhattan Milling Co., designed and constructed by the Minneapolis Steel & Machinery Co., Minneapolis, Minn., are given in Fig. 4. This elevator could easily be changed to a shipping elevator by putting in a wagon dump. Grain is run from the cars into the boot of the receiving leg, and is then elevated and conveyed by a screw conveyor to the large storage bins, or is run into the temporary storage bins, then cleaned and elevated and conveyed to the storage bins by the screw conveyor. The bins are built of steel plates, and the working house is built of steel framework covered with corrugated steel. This elevator has a capacity of 76,300 bushels but the scheme can be used for a 30,000 to 40,000 bushel elevator for either shipping or for milling purposes.

THE INDEPENDENT STEEL ELEVATOR, OMAHA, NEB. General Description.— This elevator consists of a steel working house having a bin capacity of 240,000 bushels and 8 steel storage bins having a storage capacity of 100,000 bushels each, making a total storage capacity of

1,040,000 bushels.

The steel working house is 64 ft. \times 70 ft., with 14 ft. sheds on two ends and one side, as shown in Fig. 5. The sub-story of the building is 26 ft. The bins are 64 ft. 4 in. high, as shown in Fig. 6, and are supported on steel columns, as shown in Fig. 6 and Fig. 7. The spouting story is 24 ft. 6 in. high; the garner and scale story is 26 ft. 6 in. high; and the machinery story is 13 ft. 8 in. high. The walls below and above the bins are covered with No. 24 corrugated steel laid with $1\frac{1}{2}$ corrugations side lap and 3 in. end lap. The roof is covered with No. 22 corrugated steel laid directly on the steel purlins with 2 corrugations side lap and 6 in. end lap.

On the first or working floor the floor between the tracks is made of $\frac{1}{4}$ in. plate bolted to the beams, while the remainder of this floor is made of concrete filled in above concrete arches which rest on the flanges of the beams with a finish $1\frac{1}{4}$ in. thick of Portland cement mortar consisting of one part cement to one part clean, sharp sand. The concrete is composed of one part Portland cement, two parts sand, and five parts crushed stone.

FIG. 5. PLAN OF INDEPENDENT ELEVATOR.

The floor of the cupola throughout the different floors and in the gallery leading over the bins is made of No. 24 corrugated steel resting on steel framework, and covered with 3 in. of concrete and a one-inch finish of one to one Portland cement mortar troweled smooth. All doors are of the rolling steel type. The window frames were made of 2 in. \times 6 in. timbers and are covered with No. 26 sheet steel. All windows are provided with $1\frac{3}{4}$ in. checked rail sash and are glazed with double strength glass.

Painting.—All steel work of every description was painted with one coat oxide of iron paint at the shop and a second coat after erection. The tank plates and corrugated steel were painted on the exterior surface only after erection.

Bins.—The eight steel storage bins are 44 ft. in diameter and 80 ft. high, have a capacity of 100,000 bushels and rest on separate concrete foundations. The bins are constructed of steel plates stiffened with Z-bars, as shown in Fig. 9. The bins are covered with a steel plate roof, Fig. 12, supported on roof trusses, as shown in Fig. 11 and Fig. 13. A conveyor gallery 10 ft.

FIG. 6. TRANSVERSE SECTION OF WORKING HOUSE OF INDEPENDENT ELEVATOR.

Fig. 7. Longitudinal Section of Working House of Independent Elevator.

wide and 8 ft. high extends from the working house over the bins. A conveyor tunnel extends from the working house under the bins. The rivet spacing in the circular bins is shown in Fig. 9.

The bins in the working house are arranged as shown in Fig. 8, and are constructed of plates, as shown in Fig. 6 and Fig. 7. The bins, 14 ft. \times 16 ft., are braced in the corners with angle braces spaced 5 ft. centers vertically, and of the sizes shown in Fig. 8. The large bins are also braced with $\frac{7}{8}$ and $\frac{3}{4}$ -in. round rods spaced 5 ft. apart as shown. All the smaller bins are braced with $\frac{5}{8}$ -in. round rods spaced 2 ft. 6 in. apart as shown. Vertical angles in the sides of the bins are provided, as shown in Fig. 6, Fig. 7, and Fig. 8.

Fig. 8. Plan of Bins in Working House of Independent Elevator.

ig. 9. Details of Steel Bins for Independent Elevator.

EQUIPMENT.—There are two stands of receiving elevators with receiving pits on either side. These elevators have 22-inch 6-ply belts and 20 in. \times 7 in. \times 7 in. buckets spaced 14 in. apart; the receiving pits are covered with steel grating, and a pair of Clark's automatic grain shovels are located at each unloading place. These elevators are driven with an electric motor of 100 H. P., each elevator being driven with a clutch and pinion so that the elevator may be stopped and started at will.

There is one stand of shipping elevators constructed in the same manner, having a 26-in. 6-ply belt and 2 lines of 12 in, \times 7 in, \times 7 in, buckets spaced 14 in, apart.

Fig. 10. Decails of Bin Bottoms and Conveyors under Bins, Independent Elevator.

There are two stands of cleaning elevators with 14-in. 6-ply belts with 12 in. × 6 in. × 6 in. buckets spaced 12 in. apart.

There are also two screenings elevators with 9-in. 5-ply belts with 8 in. \times 5 in. \times 5 in. buckets spaced 12 in. apart.

The shipping, screenings, and cleaner elevators are driven from a line shaft which is driven by a 100 H. P. motor, each elevator being driven by a core wheel and pinion.

Three scale hoppers, having a capacity of 1,800 bushels, are located in the cupola, and three garner hoppers of 1,800 bushels capacity are located above the scale hoppers.

The main line shaft on the first floor is driven by a 170 H. P. motor.

A car puller capable of moving 25 loaded cars is provided.

Elevators.—The boots of the receiving and shipping elevators rest in water-tight steel boot tanks made of $\frac{5}{16}$ -in. steel plates. The elevator boots are made of $\frac{3}{16}$ -in. steel plates, the boot pul-

leys having a vertical adjustment of 8 inches. The elevator cases are made of No. 12 steel up to the bins, and of $\frac{3}{16}$ -in. plates in the bins, and No. 14 steel above the bins. The cases are strengthened by angles at the corners. The elevator heads are made of No. 14 steel. At each receiving elevator is a large elevator pit extending from the leg back to the center of the track. This pit is constructed of beams and $\frac{3}{16}$ -in. plates and is covered with a grating of $1\frac{3}{4} \times \frac{1}{4}$ -in. bars spaced $1\frac{1}{4}$ in. apart.

The elevator buckets are "Buffalo" buckets; those for the receiving elevators are 20 in. \times 7 in. \times 7 in.; for the shipping elevators two lines of 12 in. \times 7 in. \times 7 in. buckets; for the cleaning elevators one line of 12 in. \times 6 in. \times 6 in. buckets; and for the screenings elevator one line of 8 in. \times 5 in. \times 5 in. buckets. The buckets in the receiving, shipping and cleaning elevators are spaced 14 in, apart, while those in the screenings elevator are spaced 12 in. apart.

The elevator belts in the receiving elevators are 22 in. wide and 6-ply, the shipping belts are 26 in. wide and 6-ply; the cleaning belts are 14 in. wide and 6-ply, and the screenings belts are 9 in. wide and 5-ply. The belting is made of 32 ounce duck and is first-class.

Roof Framing Plan for Tanks.

Fig. 11. Framing for Roof of Circular Bins, Independent Elevator.

Spouts.—The building is provided with a complete system of spouts. The general distributing spouts from the scales to the shipping spouts are double-jointed Mayo spouts. There are three shipping spouts which are provided with telescoping bottom sections. All bin bottoms are provided with a revolving spout with a cut-off gate operated with a rack and pinion, with cords leading to within reaching distance of the floor.

Conveyors.—The conveyor belt leading from the working house over the bins is a 36 in. 4-ply conveyor belt, is carried on disc rolls consisting of 3 straight-faced 6-in. pulleys and 2 special discs; the discs run loose on the shafts, which are $1\frac{3}{16}$ -in. diameter and are spaced 5 ft. centers. The return rolls are 5-in. straight-faced rolls spaced 15 ft. centers. At each point in the elevator where grain is loaded onto the belt there are two pairs of special concentrating rolls. Movable

Fig. 12. Details of Steel Roof for Steel Bins for Independent Elevator.

trippers provided with spouts are provided, so that grain may be discharged on either side of the belt. The entire conveyor is carried on a steel framework. The conveyor belt is driven by a 40 H. P. motor. The conveyor in the tunnel leading from the storage tanks to the working house is of the same type as the conveyor above the bins, and is supported on a steel framework, except that the top or carrying rolls are all of the concentrating types, as shown in Fig. 10. The concentrating rollers are composed of two straight-faced rolls from the main shaft, and two concentrating rolls meeting at an angle of 45° to the straight rolls. The lower conveyor is driven by a rope drive from the main line shaft in the working house.

FIG. 13. DETAILS OF STEEL ROOF TRUSS FOR STEEL BINS, INDEPENDENT ELEVATOR.

Scale Hoppers.—There are three scale hoppers of 1,800 bushels capacity, each mounted on a Fairbanks-Morse and Company's scales, having a capacity of 84,000 lb., and have steel frames. The hoppers have $\frac{3}{16}$ -in. steel plate sides, and $\frac{1}{4}$ -in. plate bottoms, stiffened with angle irons, and are tied together with tie rods. Each hopper is provided with a 22-in. cast iron outlet with a steel plate cut-off gate.

Garners.—A steel garner hopper is placed directly over each scale hopper. The garners have a capacity of 1,800 bushels, and are constructed with $\frac{3}{16}$ -in. side plates and $\frac{1}{4}$ -in. bottom plates. The bottoms of the garners are hoppered to four openings, which are provided with gates sliding on steel rollers.

Cleaning Machines.—A large size cleaning machine and a large size oat clipper are provided. These machines are connected with a large dust collector which discharges the dust from the cleaning machines and from the sweepings outside of the building.

Car Puller.—A car puller having a capacity of 25 loaded cars is provided. The car puller has two drums, each provided with 400 ft. of $\frac{5}{8}$ -in. crucible steel cable.

Shovels.—A pair of Clark automatic grain shovels, with all necessary counterweights, sheaves, scoops, etc., are provided.

The total weight of steel in the elevator is 1,700 tons; approximately 900 tons in the working house, and 800 tons in the circular bins and conveyors.

The total cost was \$205,000, of which the 8 steel bins and conveyors cost \$80,000.

COST OF STEEL GRAIN ELEVATORS.—The following costs of steel grain elevators have been taken from the author's "The Design of Walls, Bins and Grain Elevators," which also gives costs of reinforced concrete and tile bins, and timber grain elevators. The total cost of the steel grain elevator of the working house type, constructed by the Great Northern Railway at Superior, Wis., was 39.65 cts. per bushel of storage. The elevator had a storage capacity of 3,100,000 bushels, and the steel weighed 7 lb. per bushel of storage capacity. The Independent

Elevator cost 9½ cts. per bushel storage capacity for the steel bins, and 54 cts. per bushel storage capacity for the working house. A steel country elevator having four steel tanks, 17½ ft. diameter and 30 ft. high, with an interspace bin and a conveyor shed, and having a storage capacity of 30,000 bushels, weighed 3 lb. per bushel of storage capacity. The shop cost and cost of erection of the structural steel was \$15.00, and \$19.00 per ton, respectively.

References.—For the design of reinforced concrete grain bins and elevators, and for additional data and examples, see the author's "The Design of Walls, Bins and Grain Elevators,"

CHAPTER X.

STEEL HEAD FRAMES AND COAL TIPPLES.

Types of Head Works for Mines.—The design of the head works for a mine depends upon the material which is to be hoisted, upon the depth of the mine, the inclination of the shaft, the rate of hoisting, the amount to be hoisted at one time, the treatment of the ore or coal after being hoisted, and upon the material used in the construction of the structure. Head works for mines may be divided into three classes: (1) head frames; (2) rock houses; (3) coal tipples.

The first head frames were constructed of timber; the most common type being the 4-post head frame. The square or rectangular mine tower was cross-braced and the sheave supports were made of heavy timber. The back brace was inclined and was placed between the hoisting rope and the line of the resultant of the stress in the hoisting rope.

Steel head frames vary in design to suit local conditions and the ideas of the designer. The A-frame in Fig. 1 is the most satisfactory type where conditions permit of its use. It is simple in design and economical of material; the stresses are statically determinate, and it can be easily and effectively braced, making a very rigid frame. The 4-post frame in Fig. 2 is the type to use when it is necessary to hoist from several compartments of a shaft not in a single line. It is also used for coal tipples and double compartment shafts. The 4-post frame is not so economical of material as the A-frame; is more difficult to brace effectively, partly for the reason that part of the bracing in the tower must be omitted to permit the dumping of the ore or coal, and in addition the stresses are statically indeterminate. The frame shown in Fig. 3 is a modification of the A-frame used for an inclined shaft. Several early head frames in the coal fields of Pennsylvania were built on the lines of the frame shown in Fig. 4. This type of frame has no points of merit and is practically obsolete.

For an elaborate discussion of the design of head frames, coal tipples, and other mine structures, see the author's "The Design of Mine Structures."

METHODS OF HOISTING.—In hoisting from inclined or vertical shafts, the hoisting engine is placed at some distance from the mouth of the shaft, the cable passes up over the sheave at the top of the head frame and into the shaft. The rope, if round, is carried on a smooth or a grooved hoisting drum, and if flat, is carried on a hoisting reel. The maximum working load on the rope occurs when the loaded skip or cage is being hoisted from the bottom of the shaft. The working load then consists of the skip or cage, the load, the accelerating force, the weight of the

rope itself, and the friction of the rope on the sheave and drum and of the skip or cage in the guides.

With round ropes the hoisting drum for deep mines is commonly made conical, the small diameter being used when the load is at the bottom of the shaft. Flat ropes are wound on a reel,

so that the small diameter is used when the load is at the bottom of the shaft, the diameter of the reel increasing as the rope is wound up. The required height of the head frame depends upon (1) the room required for screening, crushing and handling the coal or ore; (2) the speed of hoisting—with rapid hoisting it is necessary to have a height from the landing to the sheaves

of from two to three times the height of the cage or skip or a full revolution of the drum to prevent over winding, and (3) the desired location of the hoisting engine. With a given height of head frame h, the distance d, Figs. 1 to 5, depends upon the diameter of the sheave, the diameter of the rope, and whether the rope is round or flat. The sheave should be as large as can conveniently

be used, as the larger the sheave the longer the life of the hoisting rope. The inertia of a large, heavy sheave, however, with rapid hoisting may kink the rope and cause excessive wear. The bending stresses in flat ropes for a sheave of given diameter are less than in round ropes having equal strength, but the life of flat ropes is less than for round ropes. Flat ropes are wound on reels which are at all times in line with the head frame sheave, while round ropes are wound on a drum so that the horizontal angle between the center line of the sheave and the cable is continually changing. The distance, d, for flat ropes can then be less than for round ropes.

FIG. 6. GILBERTON STEEL HEAD FRAME.

Hoisting from mine shafts is commonly done in two compartments of the shaft at the same time, the unloaded skip or cage descending as the loaded skip or cage ascends. This is known as hoisting in balance or counterbalance. There is a considerable saving in power in hoisting in balance. To hoist in balance it is necessary to take ore from one level with both skips unless the Whiting system is used. When a round rope winds off the drum it makes an angle with the groove in the sheave on the head frame and the friction increases the tension in the cable and also reduces its life. To reduce the friction and wear the hoisting engines are placed at a considerable distance back from the head frame.

The head frame may be placed so that the sheaves are parallel, as in Figs. I to 4, or so that the sheaves are in tandem, as in Figs. 5 and 6. With the latter method it is necessary to place the hoisting engine farther from the shaft than where the sheaves are in parallel. Where the hoisting engine is placed well back from the shaft it becomes necessary to support the hoisting rope on idlers, as shown in Fig. 6. Where mines have three compartment shafts, ore is commonly hoisted from but two compartments, the third compartment being used for pumps, pipes, etc. This arrangement makes it necessary to place the head sheaves so that they will not be symmetrical with the center line, bringing heavier working stresses on one side of the head frame than on the other side.

Hoisting from Deep Mines.—In deep mines the rope in the mine becomes a large part of the load and various methods have been used to counterbalance the weight of the rope. Four methods for obviating the difficulty just mentioned have been used: (1) the Koepe system; (2) the Whiting system; (3) modifications of (1) and (2), and (4) by the use of a taper rope. These methods are described in the author's "The Design of Mine Structures."

HOISTING ROPES.—Round hoisting ropes are commonly made of six strands, each of which is formed by twisting nineteen wires together, the strands being wound around a hemp

center. Wire strands are twisted around the core either to the right or the left, and the resulting rope is either "right lay" or "left lay." The twist may be long or short; the shorter twist forms a more flexible rope, while the longer twist forms a more rigid rope. Wire rope is made of iron, open-hearth steel, crucible steel, and plough steel. The strength of the wire from which the rope is made is about as follows: iron wire, 40,000 to 100,000 lb. per sq. in.; open-hearth steel wire, 50,000 to 130,000 lb. per sq. in.; crucible steel wire, 130,000 to 190,000 lb. per sq. in.; and plough steel wire, 190,000 to 350,000 lb. per sq. in. Hoisting ropes are usually made of crucible cast steel or plough steel.

Flat wire rope is composed of several round ropes whose diameter is equal to the required thickness of the flat rope, laid side by side and sewed together with iron or annealed cast steel wire. The round ropes are alternately of right and left lay or twist, have four strands without either hemp or wire center. The number of wires in each strand is usually seven, but may be nineteen. The chief drawbacks to the use of flat wire rope are its first cost and the rapid wear of the sewing wires.

Flat ropes and reels are used to a limited extent in the western part of the United States, while round ropes are generally used in hoisting coal and in the deep copper and iron mines in Michigan.

Strength of Wire Rope.—The dimensions, weight and strength of round crucible steel hoisting rope are given in Table I, while similar data for plough steel hoisting rope are given in Table II. The strengths of wire rope given by the different makers differ somewhat.

TABLE I.

CAST STEEL HOISTING ROPE. ULTIMATE STRENGTH, WORKING STRENGTH AND WEIGHT OF
WIRE ROPE COMPOSED OF 6 STRANDS AND A HEMP CENTER, 19 WIRES
TO THE STRAND.

Diameter, In.	Approximate Circumference, In.	Weight per Ft., Lb.	Safe Working Load, for Hoist- ing, L, Lb.	Approximate Breaking Stress, Lb.	Safe Working Stress for Direct Pull, S, Lb.	Minimum Size of Drum or Sheave, Ft.
2 2 1 4 505 12 205 14 105 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 5507 150 145 145 145 145 145 145 145 145 145 145	11.95 9.85 8.00 6.30 4.85 4.15 3.55 3.00 2.45 2.00 1.58 1.20 0.89 0.62 0.50 0.30 0.22 0.15 0.10	Safe working load, $L_{\rm s}$ =2 S -bending stress.	456,000 380,000 312,000 248,000 192,000 168,000 144,000 100,000 84,000 68,000 52,000 38,800 27,200 22,000 17,600 13,650 10,000 6,800 4,800	76,000 66,300 52,000 41,300 32,000 28,000 24,000 16,700 14,000 11,300 8,700 6,300 4,500 3,700 2,900 2,300 1,670 1,170 800	10 9812 8 14 6 15 12 14 14 12 14 14 12 14 12 14 14 12 14 14 12 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14

Working Load on Hoisting Rope.—The stresses in a hoisting rope are the sum of the stresses due to (1) the weight of the rope, (2) the friction of the rope, (3) the bending of the rope over the head sheave, (4) the live load, and (5) the impact due to starting and stopping the load. The stresses due to bending are discussed in the next section. The stresses due to impact vary from zero to twice the working load if the hoisting cable is taut, and to several times the working load

TABLE II.

PLOUGH STEEL HOISTING ROPE. ULTIMATE STRENGTH, WORKING STRENGTH AND WEIGHT OF WIRE ROPE COMPOSED OF 6 STRANDS AND A HEMP CENTER, 19 WIRES TO THE STRAND.

Diameter, In.	Approximate Circumfer- ence, In.	Weight per Ft., Lb.	Safe Working Load for Hoisting, L, Lb.	Approximate Breaking Stress, Lb.	Safe Working Stress for Direct Pull, S, Lb.	Minimum Size of Drum or Sheave, Ft.
2 3 4 4 2 2 2 2 4 4 2 2 1 4 4 1 5 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8507781 7781 6644 5744 44 44 44 312	9.85 8.00 6.30 4.85 4.15 3.55 3.00 2.45	2S – bending stress.	550,000 458,000 372,000 280,000 224,000 183,000 164,000 144,000	91,700 76,300 62,000 47,700 37,300 27,300 24,000 19,300	14 12½ 11 9¼ 8½ 7,6¾ 6,3 6
I 6 I 70 34 4 6 6 6 6 7 16 16 16 16 16 16 16 16 16 16 16 16 16	3 2 2 3 4 2 2 3 4 1 1 1 1 6 1 3 4 4 1 6 1 3 4	2.00 1.58 1.20 0.89 0.62 0.50 0.39 0.30 0.22 0.15	Safe working load, $L_{\nu} = 2$	94,000 76,000 58,000 46,000 31,000 24,600 20,000 16,000 11,500 7,600 5,300	15,700 12,700 9,700 7,700 5,170 4,100 3,300 2,700 1,900 1,270 890	5 4 ¹ / ₂ 4 3 1 4 2 2 1 3 4 1 1 2 1 1 3

TABLE III.

CAST STEEL FLAT HOISTING ROPE. ULTIMATE STRENGTH, WORKING STRESS AND WEIGHT OF FLAT WIRE ROPE COMPOSED OF 4 STRANDS, 7 WIRES TO THE STRAND.

Width and Thickness, In.	Weight in Lb. per Lineal Foot.	Safe Working Load for Hoisting, L, Lb.	Approximate Breaking Stress, Lb.	Safe Working Stress for Di- rect Pull, S, Lb.	Approximate Diameter in Inches of Round Cast Steel Rope of Equal Strength.
₹ × 5½	3.90		110,000	18,300	I 5 16
# × 5	3.40		100,000	16,700	114
₹ × 4½	3.12		94,000	15,700	1 3 6
$\frac{3}{6} \times 4$	2.86	1	86,000	14,300	18
$\frac{3}{8} \times 3\frac{1}{2}$	2.50	L, ess.	76,000	12,700	I
₹×3	2.00	d,	60,000	10,000	15
$\begin{array}{c} \frac{3}{8} \times 2\frac{1}{2} \\ \frac{3}{8} \times 2 \end{array}$	1.86	8 8	56,000	9,300	1
$\frac{3}{8} \times 2$	1.19	ng 1 ndin	36,000	6,000	4
3×7	5.90	working loa - bending	178,000	29,700	15
$\frac{1}{3} \times 6$	5.10) M	154,000	25,700	1 9
⅓ × 5⅓	4.82	Safe = 2S	144,000	24,000	11/2
$\frac{1}{2} \times 5$	4.27	Sa	128,000	21,300	13
1 × 41	4.00	•= n.	120,000	20,000	1½ 1½ 1½ 1 <u>5</u>
3×4	3.30		100,000	16,700	11
$\frac{1}{2} \times 3^{\frac{1}{2}}$	2.97		90,000	15,000	1 8
$\frac{1}{2} \times 3$	2.38		72,000	12,000	ı

if the cable is slack. If a descending cage should stick and then drop, the stress will be equal to the kinetic energy developed and will be very large. The load due to starting a cage suddenly from the bottom of a shaft may be taken as

$$K = 2W + R + F \tag{1}$$

where K = stress in lb. at the sheave at the instant of picking up the load;

W = gross load in lb.:

R = weight of rope in lb.;

 $^{\circ}$ F = friction in lb., = (W + R)f, where f = coefficient of friction, which may be taken at 0.01 to 0.02 for vertical shafts and from 0.02 to 0.04 for inclined shafts with the rope supported on rollers. The working load should not be greater than K plus the stress due to bending, and should not exceed $\frac{1}{2}$ of the ultimate strength of the rope, or $\frac{1}{2}$ of the ultimate strength for direct pull.

should not exceed $\frac{1}{3}$ of the ultimate strength of the rope, or $\frac{1}{6}$ of the ultimate strength for direct pull. For inclined shafts with angle of inclination with horizontal $= \theta$, the stress in the rope due to starting the cage is

$$K' = (2W + R)\sin\theta + f(W + R)\cos\theta \tag{2}$$

Bending Stresses in Wire Rope.—The stresses due to bending will depend upon the diameter of the rope, the make-up of the rope, the angle through which the rope is bent, and the diameter of the sheave. The unit stress due to bending in a round hoisting rope may be obtained from formula (3), the form of which is due to Rankine ("Machinery and Mill Work," p. 533).

$$S = 1,894,000 \frac{d}{D} \tag{3}$$

where D = the diameter of the sheaves in inches, and d = the diameter of the rope in inches. The area of the steel in a round hoisting rope is approximately $a = 0.4d^2$, and the total bending stress in a round rope will be

$$S_b = S \cdot a = 757,600 \frac{d^3}{D} \tag{4}$$

Now the direct breaking strength of a crucible steel round rope is closely

$$U = 60,000d^2 \tag{5}$$

Where bending stress is considered, the safe working load should not exceed \(\frac{1}{3} \) of the ultimate strength, and the safe working load, \(L \), should not exceed

$$L = 20,000d^2 - 757,600\frac{d^3}{D} \tag{6}$$

The safe working loads for crucible steel round ropes based on formula (6) are given in Fig. 7.* For plough steel ropes the ultimate strength is $U = 70,000d^2$, and

$$L = 26,700d^3 - 757,600\frac{d^3}{\overline{D}} \tag{6'}$$

Mr. William Hewitt in "Wire Rope," published by the Trenton Iron Company, gives the following formula for bending.†

$$S_b = \frac{E \cdot a}{1.03 \frac{D}{d'} + C} \tag{7}$$

where E = the modulus of elasticity of steel, a = the area of the rope in sq. in., D = the diameter of the sheave in inches, d' = the diameter of the individual wires in inches, and C = a constant

^{*} Redrawn from a diagram prepared by Mr. E. T. Sederholm, Chief Engineer, Allis-Chalmers Company.

[†] Also see Engineering News, May 7, 1896.

FIG. 7. SAFE WORKING STRESSES, L, IN CRUCIBLE STEEL, ROUND HOISTING ROPE.

depending upon the rope, and varies from 9.27 for haulage rope to 27.81 for tiller rope. For standard hoisting rope, C = 15.45. Substituting E = 29,000,000,

$$a = 0.4 d^3$$
, and $d' = \frac{d}{15}$, we have
$$S_b = \frac{750,000d^3}{D - d}$$
 (8)

Since d is very small as compared with the values of D used in hoisting, formulas (4) and (8) give practically the same results.

The bending stresses in crucible steel flat ropes are given in Fig. 8.

Cages and Skips.—For details of cages and skips, see the author's "The Design of Mine Structures"

Fig. 8. Safe Working Stresses, L, in Crucible Steel, Flat Hoisting Rope.

Sheaves and Safety Hooks.—For details and data on sheaves, safety hooks, etc., see the author's "The Design of Mine Structures."

EXAMPLES OF STEEL HEAD FRAMES.—The detail plans for three steel head frames taken from the author's "The Design of Mine Structures" are excellent examples of steel head frames. Data on 16 steel head frames are given in Table V.

Steel Head Frame for the Diamond Mine.—The details of the steel head frame of the Diamond mine are shown in Fig. 9. The Diamond head frame is 100 ft. high from the collar of the shaft to the center of the sheaves. The shaft is 2,800 ft. deep. The sheaves are 10 ft. in diameter and carry a 7 in. $\times \frac{1}{2}$ in. flat rope. The ore is hoisted in self-dumping skips with a capacity of 7 tons and weighing $3\frac{1}{2}$ tons, and is dumped into hoppers from which it is run directly into cars which pass beneath the head frame. The main front columns and back braces are

Fig. 9. Steel Head Frame for Diamond Mine, Built by the Gillette-Herzog Mfg. Co.

made of built-up sections consisting of one cover plate 20 in. $\times \frac{7}{16}$ in., two plates 18 in. $\times \frac{7}{16}$ in., 4 angles $3\frac{1}{2}$ in. $\times 3\frac{1}{2}$ in. $\times \frac{1}{2}$ in., with lacing bars on the inner side 4 in. $\times \frac{3}{8}$ in. The main diagonal bracing is made of two channels laced. The total weight of the structural steel in the head frame proper was 292,000 lb., while the steel work in the bins weighed 26,000 lb. At 40 cts. per hour the cost of shop labor on the structural steel was 1.09 cts. per lb. The cost of erection, everything being riveted, was \$11.20 per ton.

Steel Head Frame for the New Leonard Mine.—The steel head frame shown in Fig. 10 was built by the American Bridge Company for the New Leonard mine of the Boston & Montana Copper Company, Butte, Montana. The head frame is of the A-type, and is 140 ft. high from

the collar of the shaft to the center of the sheaves. The mine has a four compartment shaft, two of the compartments being used for hoisting ore. The mine is now 1,697 ft. deep, but the head frame was designed for an ultimate depth of 3,500 ft. The ore is hoisted in five-ton self-dumping skips with a single deck cage above the skip. The skips weigh 7,500 lb. each. Four-deck cages are used for hoisting men. The hoisting rope is $1\frac{1}{2}$ in. in diameter, a round hoisting rope being an innovation in the Butte district. The rate of hoisting is 2,800 ft. per minute. The skip ore bins have a capacity of 150 tons. From the skip ore bins the ore runs into railroad ore bins (not shown in Fig. 14), 26 ft. 9 in. wide by 150 ft. long, with a capacity of 1,500 tons. The sheaves are 12 ft. in diameter, and are placed 5 ft. 10 in., center to center.

The main posts are made of two channels 12 in. @ $20\frac{1}{2}$ lb., with a cover plate 16 in. wide and $\frac{5}{16}$ in. and $\frac{1}{4}$ in. thick, with lacing on the inner side. The back braces for the lower two panels are made of channels 12 in. @ 30 lb., with a plate 16 in. $\times \frac{3}{8}$ in.; the third section is made of two channels 12 in. @ 30 lb., with a plate 16 in. $\times \frac{5}{16}$ in., while the two upper sections are made of channels 12 in. @ $20\frac{1}{2}$ lb., laced on both sides. The main struts and diagonal braces are made of two channels, with battens top and bottom. The skip guides are made of two channels 12 in. @ $20\frac{1}{2}$ lb. The main girder at the top of the back brace consists of one plate 36 in. $\times \frac{3}{8}$ in., and four angles 4 in. $\times 4$ in. $\times \frac{3}{8}$ in. The skip bins are supported on columns made of two channels 10 in. @ 15 lb., laced on both sides. Where two channels are used for a section, the flanges are turned out. The New Leonard head frame is one of the highest in the country, and is one of the best designed frames that has been constructed. The shipping weight of the structural steel in this head frame was 346,425 lb.

Tonopah-Belmont Steel Head Frame.—The Belmont shaft of the Tonopah-Belmont Mining Co., Tonopah, Nevada, is at present 1,420 ft. deep. It has three compartments, one for the ladder-way and pipes and two for hoisting. Double-deck cages of the Leadville type are used for hoisting, but the use of skips is contemplated later. The head frame, Fig. 11, is of the A-type, and the height is 75 ft. from the base to the center of the sheaves. The hoisting drum is placed 100 ft. from the center of the shaft.

TABLE IV.
ESTIMATE OF WEIGHT OF 75-FT. STEEL HEAD FRAME, TONOPAH-BELMONT MINING CO.

Member.	Weight i	n Lb.	Total Weight,	Details in Per Cent of	
	Main Members.	Details.	Lb.	Main Members.	
Back braces	9,170	4,150	13,320	43	
Front posts	3,590	2,790	6,380	77	
Girders	5,446	1,250	6,696	23	
Diaphragms	2,936	2,582	5,518	82	
Channels	1,790	440	2,230	25	
Angle struts	2,627	1,015	3,642	39	
Channel struts	3,263	2,179	5,442	39 67	
Stringers	1,466	613	2,079	43	
Angle bracing	8,065	2,279	10,344	43 28	
Steel girders	6,673	414	7,087	6	
Total	45,026	17,712	62,738	39.4	

The sheave wheels are of the bicycle pattern with a diameter of 84 in. at the center of the rope groove, and an over all diameter of 91 in. Each wheel has 16 spokes of 1½ in. rolled iron rods. The spokes are cast at their inner ends into two rings 16 in. in diameter and 3 in. wide, so that they form integral parts of the hub, which is 12 in. in diameter and 16 in. long, while the outer ends are cast into bosses on the inside of the ring. The rolled steel shafts are 16 in. in diameter at the central portion with bearings 5 in. in diameter, and are 12 in. long. The rope grooves are turned in hard maple blocks fastened in a recess in the rim. The total weight of the sheaves is 2,950 lb. each.

FIG. 10. NEW LEONARD STEEL HEAD FRAME.

The head frame is designed so as to give a factor of safety of 8 when there is on each sheave a load of 100,000 lb. The head frame is sufficiently strong and rigid to permit of hoisting loads of 7 tons from a depth of 2,000 ft. at a speed of 1,000 ft. per minute without appreciable vibration during the most severe period of starting and acceleration.

TABLE V.

Data on Steel Head Frames.

		Depth of Mine, Ft.	nt of me, In.	ter of ves, In.	of ting , In.	od of ing.	Weigh	nt of	at of Lb.	Rate Hois		nt of rame,
	Description.		Height of Frame, Ft. In.	Diameter of Sheaves, Ft. In.	Size of Hoisting Rope, In.	Method of Hoisting.	Skip, Lb.	Cage, Lb.	Weight of Ore, Lb.	Ft. per Min.	Tons per Day.	Weight of Head Frame, Lb.
1	Sibley Mine, Ely, Minn	726 (de- signed for 2,000)	140-0	12-0	I 8	Skips	5,000	3,500	14,000	2,000		576,663
3	High Ore, Butte, Mont Diamond, Butte, Mont New Leonard, Butte,	2,800 2,800	100-0	10-0	7×⅓	Skips Skips	7,000		14,000	1,000	1,200	292,000 318,000
	Mont	1,679 (de- signed for 3,500)		12-0	I ½	Skips	7,500	• • • •	10,000	2,800		346,425
5	Inland Steel Co., Hibbing,											
6	Minn Elkton, Elkton, Colo	225	76-0 55-0		$\begin{array}{c} 1\frac{1}{8} \\ 3\frac{1}{2} \times \frac{3}{8} \end{array}$	Skips	3,700		6,700 15,200 work- ing load		• • • •	79,000
	Cia. Minera de Penoles, Bermejillo, Mex Tonopah-Belmont, Tono-	1,000	90-0	7-0	118	Skips	5,000		10,000			80,000
	pah, Nev	1,420	75-0	7-0	1					1,000		63,000
	Ariz	1,700	60-0	7-0	114	Skips						
	Union Shaft, Virginia, Nev.		50-0	7-0	I	Cages		1,200	2,400	1,000	500	
	Speculator, Butte, Mont Basin & Bay State, Basin,		50-0	7-0	7×½	Skips						42,200
	Mont		70-0	10-0	114	Skips						79,000
	Steward, Butte, Mont		55-0	7-0		Skips			10,000			45,000
	Anaconda, Butte, Mont.	2,400	58-8	10-0	7×½	Skips	7,000		14,000	1,000	1,200	74,700
15	Quincy Rock House, No. 2, Hancock, Mich	(in- clined	119-3	12-0	I ½	Skips	10,000		168 cu. ft.	• • • •	2,400	839,000
16	St. Lawrence, Butte, Mont.	57°) 2,100	97-0	10-0	7×½	Skips	7,000		14,000	1,000	1,200	117,000

The head frame was built by the Koken Iron Works, St. Louis, Mo., was made of structural steel furnished under standard specifications, and was fully riveted up in place with pneumatic hammers. The shipping weight of the structural steel was 63,000 lb.

The hoist is placed 100 ft. from the shaft, and is a Wellman-Seaver-Morgan double drum electric hoist with drums having 64 in. diameter and a face 36 in. wide between flanges. The hoist is designed to operate in or out of balance and is capable of handling a load of 12,000 lb. at a speed of 1,000 ft. per minute. The hoisting rope is a six strand, nineteen wire, plow-steel rope, 1 in. in diameter, that weighs 1.58 lb. per ft., and each rope is 1,700 ft. long. The diameter

of the drum at the hoist is 64 in., but the rope winds twice around the drum, so that the diameter is 66 in. near the end of the lift. With proper allowance for bending stresses the working stresses under the most severe conditions do not exceed the working load of 7.6 tons as given by the manufacturers of the wire rope.

Estimate of Weight of a Steel Head Frame.—A summary of a detailed estimate of the 75 ft. steel head frame built by the American Bridge Company at Tonopah, Nev., is given in Table IV. The details are 39.4 per cent of the weight of the main members. The rivet heads are 4.1 per cent of the weight of the structure.

For additional examples of steel head frames, see the author's "The Design of Mine Structures."

COAL TIPPLES.—The design of a coal tipple depends upon the quality of the coal, upon whether the coal is hoisted from the shaft or is taken from a drift or tunnel, and upon the work that it is necessary to do in order to prepare the coal for the market. The coal tipple for a bituminous mine in which the coal is hoisted from a shaft, consists of a head frame and a shaker structure or tipple proper where the coal is weighed and screened. A coal tipple for an anthracite mine ordinarily consists of a head frame with storage bins into which the coal is run without crushing or screening; the coal being prepared for market in a separate breaker building. Where bituminous coal is dirty or contains a large amount of refuse material it is sometimes cleaned in a washer building, or is broken, sized and cleaned in a coal breaker.

With a double compartment shaft the shaking structure, or tipple proper, is usually placed with its axis at right angles to the center line of the two compartments. The hoisting ropes may be either parallel to the axis of the tipple, in which case the head sheaves are parallel; or may be placed at right angles to the axis of the tipple, in which case the sheaves are placed in tandem. The coal may be run through rotary screens, or over shaking screens as is now the common practice. Shaking screens are usually divided into sections and are driven by eccentrics placed 180 degrees apart. The shaking screens do not ordinarily weigh more than two to three tons empty or four to six tons when loaded, but are driven with a velocity of 100 to 150 strokes per minute, with a length of stroke of from 4 to 12 in. and the shaking motion makes it necessary to design the shaker structure with great care in order to reduce the vibration. The best modern practice in the design of coal tipples is to make the head frame and the tipple, or shaker structure, entirely separate and independent units.

Sizing Coal.—The object in sizing coal is to separate the dirt and slack from the coal, and to obtain a product that can be burned more advantageously than unsized coal. A compact coal will not admit the air and will burn on the surface, and it is therefore an advantage to have the lumps of approximately equal size. The sizes and names of the different grades of coal differ considerably in different localities.

Types of Coal Tipples.—Coal tipples may be classed under three types, depending upon the manner in which the coal is brought to the tipple; (1) hoisting in cages or skips from vertical or slightly inclined shafts; (2) cage hoisting on an incline either from a shaft, or on a bridge, or from a tunnel; (3) conveyor hoisting either from the mine or from a head bin into which the coal has been dumped from cars or skips.

The design and operation of coal tipples will be illustrated by describing three steel coal tipples. (1) Steel Coal Tipple for the W. P. Rend Coal Company—vertical hoisting with self dumping cages and shaking screens; (2) Spring Valley No. 5 Steel Coal Tipple—vertical hoisting in cages, with Ramsey transfer and shaking screens; and (3) Phillip's Coal Tipple—vertical hoisting with self dumping cages dumping into a storage bin.

Steel Coal Tipple for W. P. Rend Coal Company.—The steel coal tipple for the W. P. Rend Coal Company, Rendville, Ill., has the head frame covering four tracks, with provision for four extra tracks on the opposite side of the center line of the head frame. The steel head frame is 79 ft. 6 in. from the collar of the shaft to the center of the sheaves. The sheaves are 8 ft. in diameter and carry a 13 in. hoisting cable.

Operation of Coal Tibble.—Detail plans of the shaking screens and tipple equipment are shown in Fig. 12. The coal is raised from the mine in self dumping cages and is dumped into two weigh hoppers having a capacity of four tons each. From the weigh hoppers the coal passes through a dump chute, and may be run directly into cars on the track or may be run over shaking screens. The first section of the shaking screens is 29 ft. 9 in, long, the top deck, having a length of 16 ft., has 2 in, round perforations; the middle, having a length of 18 ft., has 2 in, round perforations, the bottom plate being solid. The upper deck of screens sloping toward the head frame has perforations 3½ in, to 2 in, round; the second deck has perforations 2½ in, to 3 in, round; the third plate deck has perforations \frac{1}{2} in, round, the bottom deck being solid. The coal passing over the 2 in, and 3½ in, round perforations of the main screen may be run back over the shaking screens just described, or may be run over the second shaking screen 27 ft. 4 in, long and 8 ft, wide. This shaking screen has a length of 8 ft, with perforations 6 in, in diameter. By making different combinations of the screens different grades of coal can be obtained, as is shown in Fig. 12. The shaking screens are carried on rollers 12 in. in diameter, which are operated by eccentric connecting rods with a 12 in, stroke. These rollers give the shaking screens a motion in two directions and give much more satisfactory results than the earlier method of suspending the shaking screens from overhead supports. The capacity of the tipple is 2,500 tons in eight hours.

The tipple was designed and constructed by the Wisconsin Bridge & Iron Company, and the tipple equipment was furnished by the Link-Belt Company.

Steel Coal Tipple at Spring Valley Shaft No. 5.—The steel coal tipple constructed at Spring Valley shaft No. 5, Spring Valley, Illinois, is one of the best examples of steel tipple construction for bituminous mines. The steel tipple building is 187 ft. long, 36 ft. wide and 35 ft. from the track level to the level part of the main tipple floor. The steel head frame is 75 ft. and 85 ft. 6 in. from the track level to the centers of the sheaves, respectively. The sheaves are 10 ft. in

FIG. 14. STEEL HEAD FRAME, SPRING VALLEY COAL TIPPLE, SHAFT NO. 5.

diameter and are placed tandem with the hoisting rope, and at right angles to the axis of the main tipple building. The hoisting rope is crucible steel 13 in. in diameter. The steel tipple building and head frame are covered with No. 18 galvanized corrugated steel carried on steel purlins. Detail plans of the tipple structure are given in Fig. 13 and of the head frame in Fig. 14. The head frame and tipple building are fully braced and make a very rigid structure. The main track floor of the tipple is level over the first five panels on the left of the structure, the remainder of the floor having a pitch of 4 in. in 17 ft. The tipple floor is covered with 4 in. planking spiked to 4 in. nailing strips which are carried on I-beam joists. The weight of the structural steel, including the corrugated steel but not including tipple equipment, was 415,530 lb.

FIG. 15. PLAN OF TIPPLE TRACKS, SPRING VALLEY NO. 5 COAL TIPPLE.

Operation of Tipple.—The detail track plan is shown in Fig. 15; the operation of the Ramsey transfer is shown in Fig. 16, and the arrangement of the shaking bar screens is shown in Fig. 17. Two coal cars containing 1½ tons each are hoisted on the shaft cage. The loaded cars are pushed off the cage and two empty cars are pushed on the cage by means of a steam pusher, as shown in Fig. 16. From the cage platform the loaded cars run by gravity on a 1½ per cent grade to the dumps, where the coal is dumped by Phillips automatic tipples or dumps. After dumping, the cars pass to the right by gravity on the 10 per cent descending grade and are stopped by a 2 per cent ascending grade and a short piece of track. The cars then return by gravity, and may either be switched to the outside tracks or run back on the transfer tracks. The empty cars are run on the platform of the Ramsey transfer and are raised by a steam cylinder a height of 4 ft. 7 in. to the level of the floor of the shaft cage, and are ready to be shoved on the cage by the steam pusher.

The coal is dumped by the Phillips tipple dumps into one of two weigh hoppers 5 ft. wide, as shown in Fig. 17. After the coal is weighed it runs out of the weigh hopper on a converging chute having a slope of 30 degrees with the horizontal. From the converging chute the coal runs over shaking bar screens 6 ft. 6 in. wide, the bars being placed $\frac{7}{6}$ in. apart. The fine coal passing through this screen runs over a $\frac{5}{6}$ in. shaking bar screen and is chuted into the cars. The slack passing through the $\frac{5}{6}$ in. bar screen is run directly into the cars. From the $\frac{7}{6}$ in. shaking bar screen the lump coal passes through a converging chute and over a bar screen 5 ft. 6 in. wide with the bars spaced 5 in. apart, from which the lump coal is run into cars. It will be noted that five grades of coal are obtained: mine run coal; lump coal passing over the 5 in. screen; coal passing the 5 in. screen and retained on a $\frac{5}{6}$ in. screen and retained on a $\frac{5}{6}$ in. screen, and slack.

The capacity of the coal tipple is from 1,800 to 2,000 tons per day. The tipple was designed by Mr. W. Morava, Consulting Engineer, Chicago, Ill., and was built by the American Bridge Company in 1900.

Steel Coal Tipple for the Phillips Mine.—The steel coal tipple at the Phillips mine of the H. C. Frick Coke Company is an excellent example of a modern coal tipple for handling bituminous coal. Detail plans of the coal tipple are shown in Fig. 18. The steel head frame is of the 4-post

FIG. 16. RAMSEY TRANSFER, SPRING VALLEY NO. 5 COAL TIPPLE.

FIG. 17. SHAKING SCREENS, SPRING VALLEY NO. 5 COAL TIPPLE.

type, and is 107 ft. from the collar of the shaft to the center of the sheaves. The main tower of the head frame has six posts made of 4 Z's 3 in. \times 2 $\frac{11}{16}$ in. \times $\frac{3}{8}$ in. with one plate 6 in. \times $\frac{3}{8}$ in. The back braces consist of three columns having the same section as the main posts. The head frame is fully cross-braced with angle struts, as shown in Fig. 22. The batter of the main tower columns is 1 in. in 12 in., while the back brace makes an angle of 30 degrees with the vertical. The sheaves are 10 ft. in diameter and are supported on I-beams, resting at the end nearest the engine house on a built-up frame of angles and plates carried on two 15 in. I-beams, so as to make the necessary clearance for the sheaves. The roof trusses above the sheaves carry two I-beams, on the lower flanges of which are trolleys arranged for the attachment of chain blocks for placing and replacing the sheaves. The shipping weight of structural steel, including the corrugated steel, was 569,500 lb.

TABLE VI.

DATA ON STEEL COAL TIPPLES.

	h of Ft.	rt of rame, In.	eter /es, [n.	Hoist-	od of ing.	it of Skip,	it of Lb.		te of sting.	Weight of Struc-
	Depth of Mine, Ft.	Height of Head Frame, Ft. In.	Diameter Sheaves, Ft. In.	Size of ing Ro	Method of Hoisting.	Weight of Cage Skip, Lb.	Weight of Coal, Lb.	Ft. per Min.	Tons per Day.	ture in Lb.
Phillips Coal Tipple, Pennsylvania	268	107-0	10-0	18	Self dump- ing cages		4,000		6 tons per min.	569,500
Philadelphia & Read- ing, Gilberton	1,100	} 66-o	14-0	2			work-	2,300		•••••
Cardiff No. 2, Cardiff,		$\begin{cases} 65-9 \\ 74-3 \end{cases}$	10-0	1 3 8	Cars	compa	rtment		2,000	180,000
Spring Valley No. 5, Spring Valley, Ill		\right\} \begin{array}{c} 75-0 \\ 85-6 \end{array}	10-0	18					2,000	415,530
Alberta Railway & Irrigation Co., Lethbridge, Alta	600	} 83-0	12-0	$\mathbf{J}^{\frac{1}{2}}$	Cars	2,000	8,000		tons per hour	500,000
Rend Tipple, Rend- ville, Ill	• • • • •	79-6	8-0	13	Self dump- ing				2,500	Head Frame 100,000 Shaker 56,000
Carbon Tipple, Carbon, Montana	••••	90-0	9-0		Cars					355,400 Struc- tural steel 16,800 Corru- gated steel
R. F. C. Co. Tipple, Montana		• • • • • •			Cars					tural steel 31,300 Corrugated steel
Gebo Tipple, Montana			• • • •		Cars					117,200 Struc- tural steel 10,300 Corru- gated steel

The coal is hoisted in self-dumping cages which dump the coal into distributing chutes, in which it runs by gravity to the bins having a capacity of 800 tons. The coal, being all used for making coke, is not screened or weighed.

The storage bins are built with a steel framework and are lined with $\frac{1}{4}$ in. buckle plates on the sides, and have a $\frac{3}{8}$ in. plate floor. The sides are supported by the 15 in. I-beams @ 42 lb., spaced 3 ft. $5\frac{1}{4}$ in. center to center. The inclined bottom framing consists of girders having 48 in. $\times \frac{3}{8}$ in. web plates and flanges composed of two angles 6 in. $\times 6$ in. $\times \frac{7}{16}$ in., and are tied together with ties consisting of two angles 8 in. $\times 8$ in. $\times 8$ in. and one plate 17 in. $\times \frac{1}{4}$ in. at the bottom,

and 15 in. I-beams @ 42 lb. at the top, the girders being spaced 3 ft. 5½ in. center to center. The main side girders are composed of two I-beams 15 in. @ 42 lb., and one channel 15 in. @ 33 lb. The # in. plate floor is carried on 12 in. I-beams spaced about 1 ft. 6 in. centers. The steel plate floor is placed at a slope of 8 in, in 12 in., and it is stated that 95 per cent of the coal can be withdrawn from the bin. The bins discharge through vertical gates in the sides into motor-driven larries, which run to the coke ovens. The vertical gates are raised by rack and pinion and chain wheels.

Data on ten steel coal tipples are given in Table VI. For additional examples and data on steel coal tipples, see the author's "The Design of Mine Structures."

SPECIFICATIONS FOR STEEL HEAD FRAMES AND COAL TIPPLES. WASHERS AND BREAKERS.4

PART II.

MILO S. KETCHUM. M. Am. Soc. C. E.

1012

GENERAL DESCRIPTION.

198. Types of Structure.—The structure shall be of a type that will give maximum rigidity and strength. The structure shall be of a type in which the stresses can be calculated either by statics or by taking into account the deformations of the members.

199. Bracing.—All bracing shall be stiff, and shall be riveted together at all intersections to give maximum rigidity.

200. Proposals.—Contractors in submitting proposals shall furnish complete stress sheets, general plans of the proposed structures, giving sizes of material, and such detail plans as will clearly show the dimensions of the parts, modes of construction and sectional areas.

201. Detail Plans.—The successful contractor shall furnish all working drawings required

by the engineer free of cost. Working drawings will, as far as possible, be made on standard size sheets 24 in. × 36 in. out to out, 22 in. × 34 in. inside the inner border lines.

202. Approval of Plans.—No work shall be commenced or materials ordered until the working drawings are approved in writing by the engineer. The contractor shall be responsible for dimensions and details on the working plans, and the approval of the detail plans by the engineer will not relieve the contractor of this responsibility.

LOADS.

203. The structures shall be designed to carry the following loads without exceeding the

permissible unit stresses.

204. Dead Loads.—The dead loads shall consist of the weight of the head sheaves, sheaves, blocks and girders, the weight of the structure, and all concentrated machinery and equipment loads.

205. Working Loads.—The working loads on head frames for vertical shafts shall be taken as equal to

K = 2W + R + (W + R)f

where K = the working stress in lb. at the head sheave at the instant of picking up the load; W = the gross load of the cage or skip and the load of ore or coal in lb.; R = the weight of the rope from the head sheaves to the bottom of the shaft in lb.; and f = coefficient of friction of the rope, skip and sheaves, which may be taken at 0.01 to 0.02 for vertical shafts and 0.02 to 0.04 for inclined shafts with ropes supported on rollers.

206. For inclined shafts the working load shall be taken as

$$K' = (2W + R)\sin\theta + f(W + R)\cos\theta \tag{2}$$

where θ = the angle of inclination of the shaft with the horizontal.

* From Specifications for Steel Mine Structures as printed in the author's "The Design of Mine Structures." Part I is "Specifications for Steel Frame Buildings" as printed in Chapter I.

207. Breaking Load.—The head frame shall be designed for a load in one or all of the hoisting ropes equal to the breaking stress of the hoisting rope as given in the manufacturer's catalog.

208. Machinery Loads,—The stresses due to machinery, crushers, tipple equipment, etc.,

shall be considered the same as the stresses due the working or live load.

209. Wind Loads.—Where the head frame or tipple is enclosed the wind load shall be assumed as 30 lb. per sq. ft. of exposed surface acting horizontally. Where the framework is open the wind load shall be taken as 50 lb. per sq. ft. acting on the projection of the members of the head frame or tipple. In calculating the stresses due to wind, the wind loads may be assumed as applied at the joints of the structure. Where one side of the structure is open so that a deep cup or pocket is formed the wind load shall be taken as not less than 60 lb. per sq. ft. on the projection of the cup-like surface.

210. Snow Loads.—Snow loads shall be taken the same as for steel frame buildings.

ALLOWABLE UNIT STRESSES.

211. Steel head frames, coal tipples, coal washers and breakers, and similar structures shall

be designed for the following allowable stresses.

212. Dead Load Stresses.—The allowable unit stresses for dead loads shall be the same as for steel frame buildings given in "Specifications for Steel Frame Buildings." Snow loads shall be considered as dead loads.

213. Working Load Stresses.—The allowable unit stresses for working loads shall be one-half the allowable unit stresses for dead load stresses as given in "Specifications for Steel Frame

Buildings."

214. Bins.—Bins shall be designed for two thirds the allowable unit stresses for dead load

stresses as given in "Specifications for Steel Frame Buildings."
215. Breaking Load Stresses.—The allowable unit stresses for the maximum stresses due to breaking one or all the hoisting ropes shall be equal to the allowable unit stresses for dead load stresses, plus 50 per cent, equal to three times the allowable unit stresses for working loads. breaking loads and working loads for any shaft compartment or machine need not be assumed as acting together.

216. Machinery Load Stresses.—The allowable unit stresses for the maximum stresses due to machinery and moving loads shall be the same as the allowable unit stresses for working loads.

equal to one half the allowable unit stresses for dead load stresses.

217. Wind Load Stresses.—The allowable unit stresses when the wind load stress is combined with the dead load stress plus twice the working load and machinery load stresses shall not exceed the allowable unit stresses for dead loads by more than 25 per cent. If the sum of the wind load unit stress, the dead load unit stress, and twice the working load and machinery load unit stresses exceed the allowable unit stress for dead loads by more than 25 per cent the area of the section shall be increased to reduce the actual stresses to within the prescribed limit. Wind load stresses need not be combined with breaking load stresses.

218. Reversal of Stress.—Members subject to a reversal of stress due to a combination of dead load stresses and working load stresses shall be designed to take both tension and compression, each stress being increased by one half the smaller of the two stresses. Members subject to a reversal of stress due to wind stress combined with dead load stresses and working load stresses, or breaking load stresses combined with dead load stresses shall be designed to carry

both stresses.

EQUIPMENT.

219. Skips and Cages.—Skips and cages shall be made of structural steel, as shown on the detail drawings. They shall be provided with guide shoes and safety devices. For inclined shafts the wheels shall have phosphor bronze bushings.

220. Safety Detaching Hooks.—All skips and cages shall be provided with effective detaching The case shall be designed to take the stress due to a loaded cage or skip dropping a

vertical distance of two feet.

221. Bin Gates.—Unless otherwise specified all bin gates shall be of the undercut type. All gates shall be equipped with operating mechanism so that they can be opened in service by one man.

222. Screens.—Fixed screens shall be made of bars as shown on the drawings and shall be supported so that the bars will not be permanently deflected under the load. The screen bars shall be placed at an angle so that they will screen the ore or coal without choking up.

223. Shaking screens shall be carried on rollers and be driven by eccentric connecting bars. They shall be placed at proper slopes, and shall be provided with all necessary gates. Unless otherwise specified the screens shall be made of structural steel.

224. Rotary screens shall be made of structural and machinery steel, and shall perform the work required by the specifications.

225. Coal Tipples or Dumps.—Coal tipples or dumps shall be provided as shown on the detail plans or called for in the specifications.

226. Dumping Devices.—Where self-dumping skips or cages are used an efficient and satis-

factory dumping device shall be provided.

227. Head Sheaves.—The head sheaves shall be substantial with the top flanges turned smooth and true to receive the hoisting rope.

The sheave wheel shaft shall be of the best grade of machinery steel of ample strength, carefully and truly made.

The sheave boxes shall be lined with the best quality of anti-friction metal and shall be adjustable to take up the wear. Unless otherwise specified the sheave wheels shall have wrought iron spokes.

228. Landing Stage.—An efficient landing device shall be furnished.

DETAILS OF CONSTRUCTION.

220. Unless otherwise provided for the details of construction are to be the same as for

steel frame buildings.

230. Design.—In designing head frames, coal tipples, coal washers and breakers and similar structures care shall be used to strongly brace the different parts of the structure in order that it may be rigid. Preference shall be given to types of structures that are statically determinate. Where 4-post head frames and other statically indeterminate structures are used the stresses shall be calculated by taking account of the deformation and distortions of the members.* is to be made of stiff members; the use of rods or bars will not be permitted, except for sag rods and anchors. It is very important that head frames, coal tipples, coal washers and breakers and similar structures be made very rigid.

231. Lengths of Compression Members.—The length of compression members in head frames and shaker structures shall not exceed 100 times the least radius of gyration for main

members nor 140 times the least radius of gyration for secondary bracing.

232. Lengths of Tension Members.—The length of tension members in head frames shall not exceed 150 times the least radius of gyration for main members, nor 200 times the least radius of gyration for secondary bracing. The length of a tension member is to be taken as the distance center to center of end connections.

233. Splices.—All splices in main members shall be designed to carry the full strength of

the member.

234. Reaming.—The rivet holes for all field splices shall be punched to a diameter $\frac{1}{10}$ in less than the finished hole and shall be reamed to the required size with the members bolted in place with an iron templet. All metal more than \(\frac{1}{2} \) in, thick shall be punched and reamed, or be drilled from the solid.

235. Minimum Thickness of Metal.—The minimum thickness of metal in plates and sections

shall be 16 in., except for fillers. 236. Erection.—All field connections shall be riveted. Before the riveting is begun all field connections shall be fully drawn up with field bolts, in not less than one-half the holes of each joint.

237. Materials and Workmanship.—All materials and workmanship shall comply with the

Specifications for Steel Frame Buildings unless otherwise specified.

238. Painting.—All steel work shall receive one coat of satisfactory graphite or carbon paint at the shop. Before erecting all abraded spots shall be touched up, and all rivet heads shall be painted as soon as accepted by the inspector. After the erection is complete all structural steel work shall be given two coats of satisfactory graphite or carbon paint. The three coats of paint shall be of different colors.

REFERENCES.—For additional data for the design of head frames, rock houses, coal tipples and other mine structures, and for numerous examples of structures, see the author's "The Design of Mine Structures." This book gives the calculation of stresses in head frames, and also gives a full discussion of the details of design of mine structures, including specifications, methods

of construction and costs.

* For the calculation of the stresses in mine structures, see the author's "The Design of Mine Structures."

CHAPTER XI.

STEEL STAND-PIPES AND ELEVATED TANKS ON TOWERS.

DATA FOR DESIGN.—The following data will be of assistance in the design of steel stand-pipes and elevated tanks on towers. For definitions of stand-pipes and elevated tanks on towers, see the specifications in the latter part of this chapter.

Notation:-

h =distance in ft. of any point below the top of the stand-pipe or elevated tank;

d = diameter of the stand-pipe or elevated tank in feet;

r = radius of the stand-pipe or elevated tank in feet:

t = thickness of the shell in inches at any given point;

p = hydrostatic pressure in lb. per sq. in. at any point = 0.434h;

S =stress per vertical lineal inch of stand-pipe;

s = unit stress in lb. per sq. in. in vertical section of stand-pipe;

S' =stress per horizontal lineal inch of stand-pipe;

s' = unit stress in lb. per sq. in. in horizontal section of stand-pipe;

S'' =stress per lineal inch along a circumferential line, due to wind:

s'' = unit stress in lb. per sq. in. in circumferential line, due to wind.

Formulas for Stresses in Stand-Pipes.—The stress per lineal vertical inch of stand-pipe is

$$S = \frac{62.5h \cdot d}{2 \times 12} = 2.6h \cdot d \tag{1}$$

The stress per sq. in. is

$$s = 2.6h \cdot d/t \tag{2}$$

The stress per horizontal lineal inch of stand-pipe due to the weight of stand-pipe W, is

$$S' = W/(12\pi \cdot d) = 0.026W/d \tag{3}$$

The stress per sq. in. is

$$s' = 0.026W/(d \cdot t) \tag{4}$$

For ordinary conditions the wind pressure is taken at 30 lb. per sq. ft. acting on two-thirds of the surface, or 20 lb. per sq. ft. on the entire surface; while for exposed positions the wind pressure may need to be taken as high as 45 lb. per sq. ft. acting on two-thirds of the surface, or 30 lb. per sq. ft. on the entire surface. Recent Prussian specifications require that circular chimneys be designed for two-thirds of 25 lb. per sq. ft. At 30 lb. per sq. ft. acting on two-thirds of the surface (20 lb. per sq. ft.) the bending moment at any distance h below the top, due to wind is

$$M = 20 \times d \cdot h \times h \times 12/2 = 120d \cdot h^2 \tag{5}$$

where M is in in.-lb.

The stress in the extreme fiber of the shell is

$$s'' = M \cdot y/I \tag{6}$$

Now y = 12r, $I = \frac{1}{4}\pi(r_1^4 - r_2^4) = t \cdot \pi \cdot r^8$ (approx.—r is in ft.⁸ and t in in.) = $t \cdot \pi \cdot r^3 \cdot 12^3$ (in in.⁴). Substituting y and I in (6)

$$s'' = \frac{120d \cdot h^2 \cdot r \cdot 12}{t \cdot \pi \cdot r^3 \cdot 12^3}$$

$$= 1.06h^2/(t \cdot d)$$

$$365$$
(7)

The stress per lineal inch will be

$$S^{\prime\prime} = 1.06h^2/d \tag{8}$$

If the allowable stress in the net section of the plate is 12,000 lb. per sq. in., and e= efficiency of joint, then from (2)

$$t = 2.6h \cdot d/(12,000 \times e) \tag{9}$$

where values of e for different conditions are given in Table IIa.

Formulas for Stresses in Elevated Steel Tanks.—The stress per lineal vertical inch of plate is the same as in stand-pipes

$$S = 2.6h \cdot d \tag{I}$$

and the unit stress in vertical joints is

$$s = 2.6h \cdot d/t \tag{2}$$

Stresses on Radial Joints.—Spherical Bottoms.—In a hemispherical bottom the radial stress per sq. in., T_1 , will be one-half the stresses in a cylinder of the same radius and the same internal pressure.

$$T_1 = 2.6h \cdot d/(2t) = 2.6h \cdot r/t$$
 (10)

In a segmental bottom (b) Fig. 1, the stress T_1' will be

$$T_1' = \frac{W \cdot \csc \theta}{2 \times 12\pi \cdot b \cdot t} = \frac{W \cdot \csc^2 \theta}{24\pi \cdot r_1 \cdot t} \tag{11}$$

Now $W = 62.5h \cdot \pi \cdot b^2 = 62.5h \cdot \pi \cdot r_1^2 \cdot \sin^2 \theta$, and

$$T_1' = \frac{62.5h \cdot r_1}{24t} = 2.6h \cdot r_1/t \tag{12}$$

which reduces to equation (10) for a hemispherical bottom when $r_1 = r$.

(0) 020.

Fig. 1.

Stresses on Radial Joints. Conical Bottoms.—In a conical bottom the stress per sq. in. T_1 will be from (a) Fig. 1.

 $T_1'' = \frac{W \cdot \csc \theta}{2r_1 \cdot r_1 \cdot 12t} \tag{13}$

Now

 $W = 62.5h \cdot \pi \cdot r_1^2,$

and

$$T_{1}" = \frac{62.5h \cdot \pi \cdot r_{1}^{2} \cdot \csc \theta}{24r_{1} \cdot \pi \cdot t} \tag{14}$$

$$= 2.6h \cdot r_1 \cdot \csc \theta / t \tag{15}$$

Stresses on Circumferential Joints. Conical Bottoms.—In (a) Fig. 1, pass two horizontal planes through the cone so that the intercept along the cone will be a unit in length. The tapered ring cut away has a pressure of p' lb. per lineal inch. This pressure p' may be resolved into a pressure along the element of the cone, $p_1 = p'$ cot θ , and a horizontal pressure, $p_2 = p'$ csc θ . The stress in circumferential joint will be

$$T_{3}^{"} = 12p_{2} \cdot r_{1}/t = 12p' \cdot r_{1} \cdot \csc \theta/t$$

$$= 12 \times 0.434h \cdot r_{1} \cdot \csc \theta/t$$

$$= 5.2h \cdot r_{1} \cdot \csc \theta/t$$
(16)

which is twice the stresses in the radial joints.

Stresses in Circumferential Joints.—Spherical Bottoms.—The radial unit stress in a hemispherical bottom is given by equation (12). Now in a segment of a spherical shell the curvature is the same in all directions, and the unit stress on a circumferential joint will be the same as on a radial joint, and

$$T_1' = T_2' = 2.6h \cdot r_1/t \tag{17}$$

Connection Between Side and Bottom Plates.—With a conical bottom the inclined pull per lineal inch at the bottom of the circular tank will be from (15)

$$T_1^{\prime\prime\prime} = 2.6h \cdot r \csc \theta. \tag{18}$$

The compressive stress in the horizontal ring will be due to the horizontal components of the inclined stresses and will be

$$P' = T_1''' \cos \theta \cdot r \times 12$$

$$= 31.2h \cdot r^2 \cdot \cot \theta \tag{19}$$

There are no inclined or compressive stresses in a hemispherical bottom unless the circular shell and the hemispherical bottom are joined by an elliptical segment. If the radius of the circular tank divided by the radius of the segment = 2, there will be no secondary stresses (see "Stresses in Tank Bottoms," by Professor A. N. Talbot, The Technograph No. 16, p. 139).

Stresses in a Circular Girder.—The circular girder supports the weight of the tank, the contents of the tank, and its own weight. The load is uniformly distributed along the girder. The girder rests on or is supported by four or more columns, and transmits its load to them.

Let W = total load on girder in lb.;

r = radius of girder in in.;

n = number of posts:

 $\alpha = 2\pi/n$ = angle at center subtended by radii through two consecutive posts;

 α' = angle subtended at center by any arc;

M =direct bending moment in the girder at any point in in.-lb.;

T =torsional bending moment in girder at any point in in.-lb.;

S =shear in girder at any point in lb.;

Pa = Pb, etc., = reactions of columns in lb.

FIG. 2. CIRCULAR GIRDER.

Now in the author's "Design of Walls, Bins and Grain Elevators" it is proved that the bending moment at the supports is

$$M_1 = -\frac{W \cdot r}{n} \left(\frac{I}{\alpha} - \frac{I}{2} \cot \frac{\alpha}{2} \right) \tag{20}$$

and the maximum moment midway between the posts is

$$M_2 = M_1 \cdot \cos \frac{\alpha}{2} + \frac{W \cdot r}{2n} \left(\sin \frac{\alpha}{2} - \frac{2 \sin^2 \frac{\alpha}{4}}{\frac{\alpha}{2}} \right) \tag{21}$$

The torsional moment is zero at the supports and midway between the columns, and is a maximum at the points of zero bending moment at points between the columns.

The torsional moment is

$$T_b = M_1 \cdot \sin \alpha' - \frac{W \cdot r}{2n} \left(\mathbf{I} - \cos \alpha' \right) + \frac{W \cdot \alpha' \cdot r}{4} \left(\mathbf{I} - \frac{\sin \alpha'}{\alpha'} \right) \tag{22}$$

Values of M and T are given in Table Ia.

TABLE Ia. Stresses in Circular Girders.

No. of Posts.	Load on Post, Lb.	Max. Shear, Lb.	Bending Moment at Posts, In-lb.	Bending Moment Midway Between Posts, In-lb.	Angular Distance from Post to Point of Max. Torsion.	Max. Torsional Moment, In-lb.
4 6 8 12	$W \div 4$ $W \div 6$ $W \div 8$ $W \div 12$	$W \div 8$ $W \div 12$ $W \div 16$ $W \div 24$	-0.03415 <i>W·r</i> -0.01482 <i>W·r</i> -0.00827 <i>W·r</i> -0.00365 <i>W·r</i>	+0.01762 <i>W</i> ·r +0.00751 <i>W</i> ·r +0.00416 <i>W</i> ·r +0.00190 <i>W</i> ·r	12 44 9 33	0.0053 W·r 0.00151 W·r 0.00063 W·r 0.000185W·r

Stresses in Columns.—The stresses in the columns will be due to the dead load and to the wind moment. The vertical components of the dead load stress will be equal to W divided by the number of columns, where W is the total weight of tank and the water. To calculate the stresses due to wind moment in the columns proceed as follows: Calculate the wind force by multiplying the exposed surface by the wind pressure, and assume the wind force as acting through the center of gravity of the exposed surface. The pressure on circular tanks may be taken at two-thirds of 30 lb. per sq. ft. of the surface at right angles to the direction of the wind. To calculate the stresses in the columns at any point pass a horizontal section through the columns

as in Fig. 3. Then the maximum vertical stress in column 1 will occur on the leeward side when the wind is blowing in the direction 1-1. If M is the wind moment about the axis A-B, the moment of the stresses in the column about axis A-B will be equal to M. In a tower with 8 columns as in Fig. 3 we have (stress 1) \times 2r + (stress 2) \times 4 $r \cdot \cos$ 45° = M.

But Stress I is to Stress 2 as r is to $r \cdot \cos 45^\circ$; and Stress I (2r + 2r) = M. Stress I = M/4r, and Stress 2 = 0.7M/4r. In a 6 column tower the stress in the most remote post is M/3r and in each of the others is $\frac{1}{2}M/3r$. In a 4 column tower the stress in each column is M/2r. If the columns are vertical the maximum stresses will occur at the foot of the columns; if the columns are inclined the stress should be calculated at both the top and the bottom. The maximum stresses will be the sum of the dead and wind load stresses.

Having calculated the vertical components of the stresses in the columns, the stress in the column will be equal to the vertical component multiplied by the secant of the angle between the column and a vertical line.

FIG. 3.

If the upward pull of the columns on the windward side is greater than the dead load when the bin is empty the column must be anchored down. The masonry footing should have a weight equal to at least one and one-half times the resultant upward pull.

DETAILS OF STEEL TANKS.—The standard plans in Fig. 10 and Fig. 11 and the Jackson, Minn., tank in Fig. 6, show the plates in alternate courses of different diameters, while the standard details of the Chicago Bridge and Iron Co. in Fig. 8 shows the plates telescoped with the edge of the plate for caulking on the inside so that it may be caulked from above. The standard specifications given in the last part of this chapter, also the specifications of the American Railway Engineering Association in the last part of this chapter both require that the plates in alternate courses be of different diameters as shown in Fig. 10, Fig. 11, and Fig. 6.

Hemispherical or segmental bottoms are now quite generally used, the conical bottom being rarely used on account of the difficulty in making a satisfactory connection to the tank cylinder. Spherical tank bottoms are used to a limited extent.

The standard details of the Chicago Bridge and Iron Co. for circular water tanks and hemispherical bottoms are given in Fig. 8, and the standard column details are shown in Fig. 9.

The properties for water tight joints together with shearing and bearing values of rivets are given in Table IIa. Standard plans for a 95,000 gallon tank on a 100 ft. tower are given in Fig. 10; while standard plans for a stand-pipe 20 ft. in diameter and 90 ft. high are given in Fig. 11. Table IIa and Fig. 10 and Fig. 11 were prepared by Mr. C. W. Birch-Nord to accompany the standard specifications printed in Trans. Am. Soc. C. E., Vol. 64, and partially reprinted in this chapter.

TABLE IIa.
PROPERTIES OF WATERTIGHT JOINTS.

	Jo 0			‰ [″] Rivet	8		¾"Rive	ts	;	% ^{''} Rivet	8		1 ["] Rivet	3
	Thickness of plate	Number of rows of rivets	Efficiency of joints in per cent	Pitch of rivets in inches	Effective section of plates	Efficiency of joints in per cent	Pitch of rivets in inches	Effective section of plates	Efficiency of joints in per cent	Pitch of rivets in inches	Effective section of plates	Efficiency of joints in per cent	Pitch of rivets in inches	Effective section of plates
	1"	1 2	48.7	17/8 21/4	0.121 0.177									
1	_	1	39.5	17	0.124	47.1	91	0,147				-	-	
	5 16	2	65.4	21	0.205	70.5	9	0.147			-	-	· ·	
23	\vdash	2 3	61.3	2 1 2	0.230	66.6	21 25 31 25 31 25 31	0.147 0.220 0.250 0.284 0.279 0.317 0.295 0.347	70.7	34	0.265 0.274 0.291 0.329 0.319 0.363 0.344 0.397			
ig	8	3	70.8	25	0.230	75.6	31	0.284	73.2	34	0.274			
15	7	2	1010		0.000	63.5	28	0.279	66.5	3	0.291			
Lap Joints	7 16	2 3				63.5 72.3 58.9	31	0.317	75.2 63.8	3 §	0.329			
Γ	1	2				58.9	21	0.295	63.8	24	0.319			
	1/2	2 3 2 3				69.4	27	0.347	72.6	31	0.363			
1	0	2							61.0	25	0.344			
L	16								70.5 72.3	38	0.397			
Г	7	2 3 2 3 2 3				72.0	3 å	0.315	72.3	34	0,316 0.370			
1	7 16	3				82.2	3 to	0.359	84.7	34 34 35 35 35	0.370			
1	1/2	2				72.0	31	0.360	72.3	34	0.362			
	2	3				80.8	31	0.405	82.8	35	0.415			
1	9 16	2				72.0	31	0.405	72.3	35	0.407			
ı	16	3				80.5	31	0.453	82.1	35	0.463			
1	5	2				70.7	3	0.442	72.3	35	0.452			
1	8	3				78.4 68.3 75.7	3	0.490	81.0 72.3	3≨	0,506 0.498 0.552			
18	11 16	2				68.3	21	0.469	72.3	3 §	0.498			
0.00	16	_3				75.7	25	0.522	80.3	3 §	0.552			
Butt Joints	8	3				66.4	28	0.498 0.553	70.2	31	0.526 0.585		-	
Ba		3				73.8	25	0.553	78.0	38	0.585			-
	13 16	3						-	68.3	31	0.555		1	
1.		3			-	-	-	-	75.5	31	0.611			-
1	7 8	3							66.5 74.1	31 3	0.582			_
1	-	0	Note:			-			(4.1	3	0.017	70.1	35	0.657
	15 16	3		gures in	dionta							76.5	98	0.007
1		2		cal rivet								67.3	34	0.657 0.717 0.673
1	1"	3	есодош	Car Liver	ou joints			-		-	_	74.7	31	0.747
_		0							1	1		64.4	01	0.141

Note: The distances between rivets at caulked edges shall never exceed 10 times the thickness of plates or straps. The thickness of each strap for butt joints shall never be less than half the thickness of the plates plus $\frac{1}{16}$ inch.

SHEARING AND BEARING VALUE OF RIVETS.

	SHEARING AND BEARING VALUE OF RIVETS.														
neter ivets,	sa in, uare	Bhear 100 lb. 194. in.	Bear	ring val	lue for	differe	nt thick	nesses	of plate	es, in in	iches, a	t 18000]	b.per s	q.in.	
Diamo of rive to include the seque to sex seque at 900 per seque to sex seque to seque the seque t	1"	5"	8"	7"	1/1	9"	5	11"	<u>8</u> "	18"	7"	15" 16	1"		
	0.3068	2761	2813	3516	4219	4922	5625	6328	7031						
- 1	0.4418	3976	3375	4219	5063	5906	6750	7594	8438	9281	10125				
ě	0.6013	5412	3938	4922	5906	6891	7875	8859	9814	10828	11813		13781		
1	0.7854	7069	4500	5625	6750	7875	9000	10125	11250	12375	13500	14625	15750	16875	18000

FIG. 4. TYPICAL STEEL WATER TANKS.

Fig. 5. Elevated Tank and Tower, Jackson, Minn.

FIG. 6. ELEVATED TANK AND TOWER, JACKSON, MINN.

DETAIL OF COLUMN AND HORIZONTAL CIRCULAR GIRDER

Fig. 7. Elevated Tank and Tower, Jackson, Minn.

DETAILS OF STEEL TOWERS.—Steel towers are commonly made with four columns, although eight or twelve columns are sometimes used for large elevated tanks. The columns of towers are commonly made of two channels, laced top and bottom; of two channels with top cover plate and bottom lacing; of a built H section made of plates and angles, or a rolled H section. Z-bars are now very difficult to obtain and the Z-bar column should not be used. The struts are made of built channels, or of angles, or of plates and angles. The diagonal bracing is commonly made of rods with adjustable clevises or turnbuckles.

EXAMPLES OF STEEL STAND-PIPES AND ELEVATED TANKS ON TOWERS.—The design of steel stand-pipes and elevated tanks on towers will be illustrated by describing several

typical examples.

FIG. 8. DETAILS OF TANK AND HEMISPHERICAL BOTTOM. CHICAGO BRIDGE & IRON CO.

Railway Water Tanks.—Four typical examples of steel water tanks are shown in Fig. 4; the 50,000 gallon railway water tank in (a) Fig. 4 was designed by the American Bridge Company; the 65,000 gallon water tank in (b) is a standard tank on the Harriman Lines; the 50,000 gallon tank in (c) was designed by the C. B. & Q. R. R.; while (d) is a typical stand-pipe.

Elevated Tank and Tower for Jackson, Minn.—Details of the steel elevated tank and tower designed by Mr. L. P. Wolff, Consulting Engineer, St. Paul, Minn., for Jackson, Minn., are shown in Fig. 5, Fig. 6, and Fig. 7. A general plan and details of the foundations and the roof are shown in Fig. 5. Details of the riveting of the tank plates; details of the columns, and details of the frost proofing are shown in Fig. 6. Details of the circular girder, and the connections of the columns are shown in Fig. 7. The tank has a hemispherical bottom with a conical sub-bottom.

Fig. 9. Details of Column Connections for Elevated Tank and Tower. Chicago Bridge & Iron Co.

Fig. 10. Standard Plan of Elevated Tank on Tower, by C. W. Birch-Nord. (Trans. Am. Soc. C. E., Vol. 64, 1909.)

The details work out very satisfactorily. Mr. Wolff has designed a number of elevated tanks and towers following the standard details in the Jackson tank. The details of construction are shown by the drawings.

FIG. 11. STANDARD PLAN OF STAND-PIPE, BY C. W. BIRCH-NORD. (Trans. Am. Soc. C. E., Vol. 64, 1909.)

SPECIFICATIONS.—The details of design of steel stand-pipes and elevated tanks on towers are given in the specifications prepared by Mr. C. W. Birch-Nord and the specifications of the American Railway Engineering Association. Both of these specifications are printed in the last part of this chapter.

GENERAL SPECIFICATIONS FOR ELEVATED STEEL TANKS ON TOWERS, AND FOR STAND-PIPES.*

PART I. DESIGN OF ELEVATED STEEL TANKS ON TOWERS.

Definition.—I. An elevated tank is a vessel placed on a tower in order to furnish a certain required pressure head. The tank is filled through a riser or inlet pipe.

2. Elevated tanks are mostly used in connection with pumping stations, or are connected directly to Artesian wells, in order to store water under pressure.

3. As practically all tanks are cylindrical, this specification will only have reference to those of that shape.

Loads.-4. The dead load shall consist of the weight of the structural and ornamental steel-

work, platforms, roof construction, piping, etc.

5. The live load shall be the contents of the tank, the movable load on the platforms and roof, and the wind pressure.

6. The live load on the platforms and roof shall be assumed at 30 lb. per sq. ft., or a 200-lb.

concentrated load applied at any point.

7. The wind pressure shall be assumed at 30 lb. per sq. ft., acting in any direction. The surfaces of cylindrical tanks exposed to the wind shall be calculated at two-thirds of the diameter multiplied by the height. Similar assumptions may also be made for spherical and conical surfaces by using the correct heights.

8. The live load on platforms and roof shall not be considered as acting together with the

wind pressure.

Unit Stresses.—o. All parts of the structure shall be proportioned so that the sum of the dead and live loads shall not cause the stresses to exceed those given in Table I.

TABLE I.

Tension in tank plates
Tension in other part of structure
Compression
Shear on shop rivets and pins
Shear on field rivets (tank rivets) and bolts 9,000 lb. per sq. in.
Shear in plates
Bearing pressure on shop rivets and pins24,000 lb. per sq. in.
Bearing pressure on field rivets (tank rivets)18,000 lb. per sq. in.
Fiber strain in pins24,000 lb. per sq. in.
10. For compression members, the permissible unit stress of 16,000 lb, shall be reduced by the

formula:

 $\phi = 16,000 - 70 l/r$

where p = permissible working stress in compression, in lb. per sq. in.:

l = length of member, from center to center of connections, in inches;

r =least radius of gyration of section, in inches.

The ratio, l/r, shall never exceed 120 for main members and 180 for struts and roof construction members.

II. Stresses due to wind may be neglected if they are less than 25 per cent of the combined dead and live loads.

12. Unit stresses in bracing and other members taking wind stresses may be increased to 20,000 lb. per sq. in., except as shown in Section II.

13. The pressures given in Table II will be permissible on bearing plates.

TABLE II

ALIDEE II.													
Brickwork with cement mortar													
Portland cement concrete													
First-class sandstone40													
First-class limestone50	o lb. per	sq. in.											
First-class granite 60	o lb. per	so, in.											

^{*} Condensed from Specifications by C. W. Birch-Nord, Assoc. M. Am. Soc. C. E., Trans. Am. Soc. C. E., Vol. 64, pp. 548 to 563. The preliminary statement and the specifications for the foundations have been omitted. These specifications have been adopted by the American Bridge Company.

379

Details of Construction.—14. The plates forming the sides of cylindrical tanks shall be of different diameters, so that the courses shall lap over each other, inside and outside, alternately.

15. The joints for the horizontal seams, and for the radial seams in spherical bottoms. shall

preferably be lap joints.

16. For vertical seams double-riveted lap joints shall be used for 1, $\frac{1}{16}$, and $\frac{3}{6}$ in plates. Triple lap joints shall be used for $\frac{7}{18}$ and $\frac{1}{2}$ in. plates; double-riveted butt joints shall be used for $\frac{9}{18}$. $\frac{5}{8}$. 16 and 3 in. plates; and triple-riveted butt joints for \(\frac{1}{36}\), \(\frac{7}{3}\), \(\frac{1}{3}\) and 1 in. plates.

17. Rivets \(\frac{5}{3}\) in. in diameter shall be used for \(\frac{1}{4}\) in. plates; rivets \(\frac{3}{4}\) in. in diameter shall be

used for $\frac{5}{16}$ in, plates; rivets $\frac{7}{8}$ in. in diameter shall be used for $\frac{3}{8}$ to $\frac{7}{8}$ in, plates, inclusive. Rivets

I in, in diameter shall be used for $\frac{15}{16}$ in, and I in, plates.

Rivets shall be spaced so as to make the most economical seams (70 to 75 per cent efficiency).

A table of riveted joints is given in Table IIa.

18. In no case shall the spacing between rivets along the caulked edges of plates be more than ten times the thickness of the plates. All rivets shall be entered from the inside of the tank, and shall be driven from the outside, that is, new heads on rivets shall always be formed from the opposite side of the plate on which the caulking is done.

19. Plates $\frac{5}{6}$ in. thick, and not more than $\frac{7}{6}$ in. thick, shall be sub-punched with a punch $\frac{3}{16}$ in.

smaller in diameter than the nominal size of the rivets, and shall be reamed to a finished diameter

not more than $\frac{1}{16}$ in. larger than the rivet. Plates thicker than $\frac{7}{8}$ in. shall be drilled.

20. The minimum thickness of the plates for the cylindrical part shall be \frac{1}{4} in. ness of the plates in spherical bottoms shall never be less than that of the lower course in the cylindrical part of the tank.

21. The facilities at the plant where the material is to be fabricated will be investigated

before the material is ordered.

22. All plates shall be sheared or planed to a proper bevel along the edges for caulking.

23. All plates shall be caulked along the beveled edges from the inside of the tank, and with a round-nosed tool. The use of foreign material for caulking, such as lead, copper, filings, cement. etc., will not be permitted.

24. The plates in tanks for the storage of oil shall be beveled on both sides for outside and

25. The radial sections of spherical bottoms shall be made in multiples of the number of columns supporting the tank, and shall be reinforced at the lower parts, where holes are made

for piping.

26. When the center of the spherical bottom is above the point of connection with the cylin
26. When the center of the spherical bottom is above the point of connection to take the horizontal thrust. The horizontal girder may be made in connection with a balcony. This also applies where the tank is supported by inclined columns.

27. The balcony around the tank shall be 3 ft. wide, and shall have a floor-plate 1 in thick. which shall be punched for drainage. The balcony shall be provided with a suitable railing,

3 ft. 6 in. high.

28. The upper parts of spherical bottom plates shall always be connected on the inside of the

cylindrical section of the tank.

29. In order to avoid eccentric loading on the tower columns, and local stresses in spherical bottoms, the connections between the columns and the sides of the tank shall be made in such a manner that the center of gravity of the column section intersects the center of connection between the spherical bottom and the sides of the tank. Enough rivets shall be provided above this intersection to transmit the total column load.

30. If the tank is supported on columns riveted directly to the sides, additional material shall be provided in the tank plates riveted directly to the columns to take the shear. The shear may be taken by providing thicker tank plates, or by reinforcement plates at the column connections. while bending moments shall be taken by upper and lower flange angles. Connections to columns shall be made in such a manner that the efficiency of the tank plates shall not be less than that of the vertical seams.

31. For high towers, the columns shall have a batter of 1 to 12. The height of the tower shall be the distance from the top of the masonry to the connection of the spherical bottom, or

the flat bottom, with the cylindrical part of the tank.

32. Near the top of the tank there shall be provided one Z-bar to act as a support for the painter's trolley, and for stiffening the tank. Its section modulus shall not be less than $D^2/250$, where D is the diameter of the tank in feet. If the upper part of the tank is thoroughly held by the roof construction, this may be reduced.

33. On large tanks, circular stiffening angles shall be provided in order to prevent the plates from buckling during wind storms. The distance between the angles shall be determined by the

formula:

where d = approximate distance between angles, in feet:

t = thickness of tank plates, in inches;

D = diameter of tank, in feet.

34. The top of the tank will generally be covered with a conical roof of thin plates: and the pitch shall be I to 6. For tanks up to 22 ft. in diameter, the roof plates will be assumed to be self-supporting. If the diameter of the tank exceeds 22 ft., angle rafters shall be used to support the roof plates, which are generally in. thick.

Plates of the following thicknesses will be assumed to be self-supporting for various diameters:

in. plate, up to a diameter of 18 ft. in. plate, up to a diameter of 20 ft. in. plate, up to a diameter of 22 ft.

Rivets in the roof plates shall be from $\frac{1}{4}$ to $\frac{5}{16}$ in. in diameter, and shall be driven cold. These

rivets need not be headed with a button set.

35. A trap-door, 2 ft. square, shall be provided in the roof plate. Near the top of the higher tanks, there shall be a platform with a railing, for the safety of the men operating the trap-door.

36. There shall be an ornamental finial at the top of the roof.

37. There shall be a ladder, I ft. 3 in. wide, extending from a point about 8 ft. above the foundation to the top of the tank, and also one on the inside of the tank. Each ladder shal' be made of two 2½ by 1/2 in. bars with 1/2 in. round rungs I ft. apart. On large, high tanks, 30 ft. or more in diameter, a walk shall be provided from the column nearest the ladder to the expansion joint on the riser or inlet pipe.

38. In designing a tank, a height of 6 in. shall be added to the required height of the tank

if an overflow pipe is not specified by the owner.

39. Each elevated tank shall be furnished with a riser or inlet pipe, the size of which shall be determined by the rate at which the tank must be filled. The size of the riser pipe will be specified by the owner. The outlet pipe, in most cases, is not required, as the riser or inlet pipe will serve the same purpose, but it shall be furnished if demanded by the owner.

40. All pipes entering the tank shall have cast-iron expansion joints with rubber packing, and facilities for tightening such joints. The expansion joint, generally, shall be fastened to the bottom of the tank with bolts having lead washers. The tank plates shall be reinforced where the

pipes enter the tank.

41. All pipes entering the tank shall be thoroughly braced laterally with adjustable diagonal

bracing at the panel points of the tower.

42. The diagonal bracing in the tower shall preferably be adjustable, and shall be calculated

for an initial stress of 3,000 lb. in addition to wind stresses, etc.

43. The size and number of the anchor-bolts in the tower shall be determined by the maximum uplift when the tank is empty. The anchor-bolts in the tower, where the maximum uplift is greater than 10,000 lb., shall be fastened directly to the columns with bent plates or similar details. In all other cases it will be sufficient to connect the anchor-bolts directly to the baseplates

The tension in anchor-bolts shall not exceed 15,000 lb. per sq. in. of net area. The minimum section shall be limited to a diameter of 1½ in. The details shall be made so that the anchorbolts will develop their full strength, and, at the lower end, they shall be furnished with an anchorplate, not less than ½ in. thick, to assure good anchorage to the foundation without depending on

the adhesion between the concrete and the steel.

44. The concrete foundation shall be assumed to have a weight of 140 lb. per cu. ft., and

shall be sufficient in quantity to take the uplift, with a factor of safety of 1½.

45. Three-ply frost-proof casing shall be provided, if necessary, around the pipes leading to and from the tank. This casing shall be composed of two layers of ½ by 2½ in. dressed lumber, and each layer shall be covered with tar paper or tarred felt, and one outside layer of $\frac{7}{8}$ by $2\frac{1}{2}$ in. dressed and matched flooring. The lumber shall be in lengths of about 12 ft. There shall be a I in. air space between the layers of lumber, and wooden rings or separators shall be nailed to them every 3 ft. (In very cold climates it is good practice to fill the space between the pipes and the first layer of lumber with hay or similar material.) The frost casing may be square or cylindrical; it shall be braced to the tower with adjustable diagonal bracing, as described for pipes in

46. All detailed drawings shall be subject to the owner's approval before work is commenced. 47. For materials, workmanship, inspection, painting, and testing, see Part III; for founda-

tions, see Part IV.

PART II. DESIGN OF STAND-PIPES.

Definition.—1. A stand-pipe is a tank, generally cylindrical, used for the storage of water, Its height, in most cases, is considerably greater than its diameter; it has a flat bottom, and rests directly on its foundation.

2. Stand-pipes are economical only in special cases; where their capacity is more important than pressure, or where local conditions are such that an elevated tank is not required.

3. Stand-pipes for the storage of oil are an exception. These are generally of very large

diameter, while the height may not exceed 40 ft.; they are usually referred to as tanks.

4. Stand-pipes are filled and emptied through pipes connected with their sides or bottom.

and are provided with manholes for cleaning purposes.

5. In cold climates roofs are generally omitted on stand-pipes used for water supply. on account of the formation of ice. In warmer climates there may be roofs in order to prevent the water from becoming a breeding place for mosquitos, flies, etc. Stand-pipes used for the storage of oil or other fluids from which rain-water is to be excluded should always be roofed.

Loads.—6. The dead load shall consist of the weight of structural and ornamental steel work.

and the roof construction, if any,

7. The live load shall be the contents of the stand-pipe, the movable load on the eventual

roof, and the wind pressure.

8. The eventual live load on the roof shall be assumed at 30 lb. per sq. ft., or a 200 lb. con-

centrated load applied at any point.

9. The wind pressure shall be assumed at 30 lb. per sq. ft. acting in any direction. The surfaces of cylindrical stand-pipes exposed to the wind shall be calculated at two-thirds of the diameter multiplied by the height.

10. The eventual live load on the roof, if the stand-pipe is roofed, shall not be considered as

acting together with the wind pressure.

Stresses.—11. All parts of the structure shall be porportioned so that the sum of the dead and live load stresses shall not exceed the stresses given in Table III.

TABLE III.

Tension in plates forming sides or bottom of stand-pipes12,000 lb. per sq. in. of net are	a.
Tension in roof construction	a.
Compression in roof construction	
Shear on shop rivets in roof, etc	
Shear on field rivets (in stand-pipe plates) and bolts 9,000 lb. per sq. in.	
Shear in plates	
Bearing pressure on shop rivets	
Bearing pressure on field rivets (in stand-pipe plates)18,000 lb. per sq. in.	

12. For compression members in the roof construction, the permissible unit stress of 16,000 1b. shall be reduced by the formula:

$$p = 16.000 - 70 l/r$$

where p = permissible working stress in compression, in lb. per sq. in.;

l = length of member, from center to center of connections, in inches;

r = least radius of gyration of section, in inches. The ratio, l/r, shall never exceed 180. 13. Stresses due to wind may be neglected if they are less than 25 per cent of the combined dead and live loads.

14. The average permissible pressures on masonry shall be as given in Table II, Part I. Details of Construction.—15. The plates forming the sides of the stand-pipe shall be of different diameters, so that the courses shall lap over each other, inside and outside, alternately.

16. The joints for the horizontal seams in the sides, and for the bottom plates, shall pre-

ferably be lap joints.

17. For further information regarding riveted joints, etc., see Part I, Sections 16, 17, 18,

and 19.

18. The minimum thickness of the plates forming the sides shall be $\frac{1}{4}$ in. and $\frac{5}{16}$ in. for the bottom plates, except for oil tanks on a sand foundation. The bottom plates for ordinary standpipes shall be provided with tapped holes, 11 in. in diameter, with screw plugs, spaced at about 4 ft. centers, to permit of filling with cement grout on top of the foundation of the masonry while the bottom part is being erected, in order to secure proper bearing.

19. Oil tanks of large diameter are generally set directly on a sand foundation, and do not need any holes in the bottom plates for filling beneath with cement grout. In such cases, \(\frac{1}{4} \) in.

bottom plates will be sufficient.

20. The bottom plates shall be connected with the sides by an angle iron riveted inside the stand-pipe. This angle iron shall be bevel sheared for caulking along both legs. For the caulking of plates, see Part I, Sections 22 and 23.

21. On the side and near the bottom there shall be a 12 by 18 in. manhole of elliptical shape. In the same manner, or on the bottom plates, flanges shall be provided for the connection of inlet and outlet pipes of the sizes specified by the owner. All openings in stand-pipes shall be properly reinforced by forged rings or plates.

22. For stiffening angles, etc., see Part I, Sections 32 and 33.

23. In cases where a roof is used see Section 5; Sections 34, 35, and 36 of Part I should also

be followed.

24. There shall be an outside ladder, I ft. 3 in. wide, extending from a point about 8 ft. above the foundation to the top of the stand-pipe. The ladder shall be made of two 2½ by ¾ in. bars with ¾ in. round rungs I ft. apart. An inside ladder will not be required. (In no case should inside ladders be provided on stand-pipes in climates where ice will form. Owners of oil tanks often specify stairways to take the place of ladders.) All ladders shall be able to sustain a concentrated load of at least 800 lb.

25. Large stand-pipes for oil storage, the heights of which are very small compared with their diameter, will generally be set directly on a sand foundation, and will not need any anchorage whatever, as the overturning moment is very small in comparison with the resisting moment.

26. Stand-pipes of the ordinary type, for water storage, shall be set on concrete foundations, and shall be anchored thoroughly thereto with anchor-bolts not less than 1½ in. in diameter, set deep enough to take the necessary uplift, and provided with an anchor plate not less than ½ in. thick in the masonry. All anchor bolts shall be connected directly to the sides of the stand-pipe with bent plates or similar details. The unit stress in anchor-bolts shall not exceed 15,000 lb. per sq. in. of net area. See Part I, Section 43.

27. All detailed drawings shall be subject to the owner's approval before work is commenced.

28. For materials, workmanship, inspection, painting, and testing, see Part III; for foundations, see Part IV.

PART III. MATERIALS, WORKMANSHIP, INSPECTION, PAINTING, AND TESTING.

Structural Steel.—1. The steel shall be made by the open-hearth process.
2. The chemical and physical properties shall conform to the following limits:

Elements considered.	Structural Steel.	Rivet Steel.
Phosphorus, maximum { Basic	o.o4 per cent o.o6 " " o.o5 " "	0.04 per cent 0.04 " " 0.04 " "
Ultimate tensile strength, in pounds per square inch Elongation: minimum percentage in 8 in. Fig. 1 Elongation: minimum percentage in 2 in. Fig. 2 Character of fracture Cold bends without fracture.	Desired 60,000 1,500,000 Ultimate tensile strength 22 Silky 180° flat	Desired 50,000 1,500,000 Ultimate tensile strength Silky 180° flat

The yield point, as indicated by the drop of beam, shall be recorded in the test reports.

3. If the ultimate strength varies more than 4,000 lb. from that desired, a re-test shall be made on the same gage, which to be acceptable, shall be within 5,000 lb. of the desired ultimate.

4. Chemical determination of the percentages of carbon, phosphorus, sulphur, and manganese shall be made by the manufacturer from a test ingot taken at the time of the pouring of each melt of steel, and a correct copy of such analysis shall be furnished to the engineer or his inspector. Check analyses shall be made from finished material, if called for by the purchaser, in which case an excess of 25 per cent above the required limits will be allowed.

5. Specimens for tensile and bending tests, for plates, shapes, and bars, shall be made by cutting coupons from the finished product, which shall have both faces rolled and both edges milled to the form shown by Fig. 1; or with edges parallel; or they may be turned to a diameter

of \(\frac{1}{4} \) in. for a length of at least 9 in. with enlarged ends.

Rivet rods shall be tested as rolled.

7. Specimens shall be cut from the finished rolled or forged bar, in such manner that the center of the specimen shall be I in. from the surface of the bar. The specimen for the tensile test shall be turned to the form shown by Fig. 2. The specimen for the bending test shall be I in. by $\frac{1}{2}$ in. in section.

8. Material which is to be used without annealing or further treatment shall be tested in the condition in which it comes from the rolls. When material is to be annealed, or otherwise treated

before use, the specimens for tensile test representing such material shall be cut from properly annealed or similarly treated short lengths of the full section of the bar.

9. At least one tensile and one bending test shall be made from each melt of steel as rolled. In case steel differing $\frac{3}{8}$ in, and more in thickness is rolled from one melt a test shall be made

10. For material less than $\frac{5}{16}$ in. and more than $\frac{3}{4}$ in. in thickness, the following modifications will be allowed in the requirements for elongation:

FIG. 2.

(a) For each $\frac{1}{16}$ in. in thickness below $\frac{5}{16}$ in., a deduction of $2\frac{1}{2}$ from the specified percentage will be allowed.

(b) For each \(\frac{1}{2}\) in, in thickness above \(\frac{3}{2}\) in., a deduction of I from the specified percentage will be allowed.

11. Bending tests may be made by pressure or by blows. Plates, shapes, and bars less than 1 in. thick shall bend as called for in Section 2.

12. Angles $\frac{3}{4}$ in, and less in thickness shall open flat, and angles $\frac{1}{2}$ in, and less in thickness shall bend shut, cold, under blows of a hammer, without sign of fracture. This test will be made only when required by the inspector.

13. Rivet steel, when nicked and bent around a bar of the same diameter as the rivet rod,

shall give a gradual break and a fine, silky, uniform fracture.

14. Finished material shall be free from injurious seams, flaws, cracks, defective edges, or other defects, and have a smooth, uniform, workmanlike finish. Plates 36 in. in width and less shall have rolled edges.

15. Every finished piece of steel shall have the melt number and the name of the manufacturer stamped or rolled upon it. Steel for pins shall be stamped on the end. Rivet and lattice steel and other small parts may be bundled, with the above marks on an attached metal tag.

16. Material which, subsequent to the foregoing tests at the mills, and its acceptance there, develops weak spots, brittleness, cracks, or other imperfections, or is found to have injurious defects, will be rejected at the shop, and shall be replaced by the manufacturer at his own cost.

17. A variation in cross-section or weight of each piece of steel of more than 2½ per cent from that specified will be sufficient cause for rejection, except in cases of sheared plates, which will be covered by the following permissible variations, which are to apply to single plates: Plates weighing 12½ lb. per sq. ft. or more:

(a) Up to 100 in. wide, 2½ per cent above or below the prescribed weight;

(b) 100 in. wide or more, 5 per cent above or below. Plates weighing less than 12½ lb. per sq. ft.:

(a) Up to 75 in. wide, 2½ per cent above or below;
(b) 75 in., and up to 100 in. wide, 5 per cent above or 3 per cent below;
(c) 100 in. wide or more, 10 per cent above or 3 per cent below.
18. Plates will be accepted if their thickness is not more than 0.01 in. less than that ordered.

19. An excess over the nominal weight, corresponding to the dimensions on the order, will be allowed for each plate, if not more than that shown in Table IV, I cu. in. of rolled steel being assumed to weigh 0.2833 lb.

Cast Iron.—20. Except where chilled iron is specified, castings shall be made of tough, gray iron, with not more than 0.10 per cent of sulphur. They shall be true to patterns, out of wind, and free from flaws and excessive shrinkage. If tests are demanded, they shall be made on the

TABLE IV

Thickness, in	Nominal Weight in Width of Plates.			
Inches.	Pounds per Square Foot.	Up to 75 In.	75 In. and up to	100 In. and up to
To	10.20 12.75 15.3 17.85 20.4 22.95 25.5	10 per cent 8 " " 7 " " 6 " " 5 " " 4 " " 4 " " 3 ½ " "	14 per cent 12 " " 10 " " 8 " " 7 " " 6½ " " 6 " " 5 " "	18 per cent 16 " " 13 " " 10 " " 9 " " 8½ " " 8 " "

[&]quot;Arbitration Bar" of the American Society for Testing Materials, which is round bar, 11 in. in diameter and 15 in. long. The transverse test shall be made on a supported length of 12 in. with the load at the middle. The minimum breaking load thus applied shall be 2,900 lb., with a deflection of at least $\frac{1}{10}$ in. before rupture.

Workmanship, Inspection, and Painting .- 21. All parts forming the structure shall be built in accordance with approved drawings. The workmanship and finish shall be equal to the best

in modern shop practice.

22. All material shall be thoroughly straightened in the shop, by methods which will not injure it, before being laid off or worked in any way.

23. The shearing shall be done neatly and accurately, and all portions of the work exposed

to view shall have a neat and uniform appearance.

24. The size of each rivet, called for by the plans, shall be understood to mean the actual size of the cold rivet before it is heated. 25. All plates and shapes shall be shaped to the proper curve by cold rolling; heating or

hammering for straightening or curving will not be allowed. 26. Plates to be scarfed may be heated to a cherry-red color, but not hot enough to ignite a

piece of dry wood when applied to it. Most careful attention shall be paid to all scarfing. 27. All plates or shapes shall be punched before being beyel-sheared or planed for caulking. 28. All screw threads shall make tight fits in the nuts and turnbuckles, and shall be United States Standard, except for diameters greater than 13 in., when they shall have six threads per

inch. The dimensions of screws of various sizes shall be as follows: Number of threads per inch......8

The shape of the thread shall be U. S. Standard.

TABLE V. STANDARD UPSETS FOR ROUND AND SQUARE BARS.

Roun	d Bars.	Squa	re Bars.
Bar.	Upset.	Bar.	Upset.
Diameter, in Inches.	Diameter, in Inches.	Side, in Inches.	Diameter, in Inches.
<u>a</u>	I,	3 4	I 1/8
. *	18	- 8	14
118	1 8 1 2	· 1 1 1 8	1 ½ 1 ½
11	1 5 1 5	11	17
18	1 4	13	2
1 ½ 1 ½	1 to 2	1 ½ 1 %	21 23 28
1 8 4	21/2	. I 3	21/2
I i	2 ¼ 2 ¾ 2 ¾	1 1 8	2 ¼ 2 ¼

29. The diameter of the die used in punching rivet holes shall not exceed that of the punch by more than $\frac{1}{16}$ in. All rivet holes shall be punched, except as stated in Part I. Section 10.

30. All punched and reamed bolts shall be clean cuts, without torn or ragged edges. The burrs on all reamed holes shall be removed by a tool, countersinking not more than $\frac{1}{16}$ in. Any parts of the structure in which difficulties may arise in field riveting, shall be assembled in the shop and marked properly before shipment.

31. Rivet holes shall be accurately spaced; eccentrically located rivet holes, if not sufficient to cause rejection shall be corrected by reaming, and rivets of larger size shall be used in the

holes thus reamed.

32. The use of drift-pins will be allowed only for bringing together several parts forming part of the structure; force will not be allowed to be used in drifting under any circumstances.

33. The use of sledges in driving or hammering any part of the structure will not be allowed. Care shall be taken to prevent material from falling, or from being in any way subjected to heavy shocks.

34. Rivets shall be driven by pressure tools wherever possible. Pneumatic hammers shall

be used in preference to hand-driving. All rivet heads shall be concentric with the holes.

35. All caulking shall be done with a round-nosed tool, and only by experienced and skilled men. Caulking around rivet heads will not be allowed. All leaky rivets shall be cut out and replaced with new ones. All fractured material shall be replaced free of cost to the owner.

36. If the owner furnishes an inspector, he shall have full access, at all times to all parts of

the shop where material under his inspection is being manufactured.

37. The inspector shall stamp with a private mark each piece accepted. Any piece not thus marked may be rejected at any time, and at any stage of the work. If the inspector, through oversight or otherwise, has accepted material or work which is defective or contrary to these specifications, this material, no matter in what stage of completion, may be rejected by the owner.

Painting and Testing.—38. Before leaving the shop, all steel work excepting the laps in contact on the tank work, shall receive one coat of approved paint or boiled linseed oil. All parts which will be inaccessible after erection shall be well painted, except as stated before.

39. After the structure is erected and all seams have been caulked, it shall be tested for water-tightness, and leaky places shall be caulked or marked. The water shall then be discharged and the leaky seams shall be caulked. Leaky rivets shall be treated as per Section 35. After the structure has been standing empty for 3 days it shall be retested, and then, if all joints are water-tight, it shall be given one coat of approved paint both inside and outside of the tank or stand-pipe. Painting in the open air shall never be done in wet or freezing weather. The owner will select the color of the final coat of paint.

40. The contractor shall guarantee the tightness of the tank, or stand-pipe, against leakage.

when filled with the liquid it is designed to contain.

PART IV. FOUNDATIONS FOR ELEVATED TANKS ON TOWERS, AND FOR STAND-PIPES.

1. The average permissible pressure on the soil is as follows:

Soft clay	I ton per sq. ft.
Ordinary clay	
Dry sand and dry clay	
Hard clay	
Gravel and coarse sand	6 tons per sq. ft.

2. In all cases a thorough investigation of the ground and the site shall be made before proceeding with the foundations.

3. All foundations shall be carried below the frost line, and the anchor-bolts shall be placed

deep enough to develop their full strength.

4. In foundations for towers with inclined legs supporting elevated tanks care shall be taken that the piers are constructed in such a manner, that the resultant of the vertical and horizontal forces, due to direct loads, passes through the center of gravity of the piers.

5. Foundations, in general, shall be of concrete composed of I part Portland cement, 3 parts sand, and 5 parts crushed stone or gravel. In special cases, where part of the foundation is

under water, the concrete shall be a I: 2:4 mixture.

Note.—For specifications for mixing and placing the concrete in the foundations, see Chapter V.

GENERAL SPECIFICATIONS FOR STEEL WATER AND OIL TANKS.*

1. Scope of Specifications.—These specifications are intended for steel tanks requiring plates

not more than 1 in. thick.

2. Quality of Metal.—The metal in these tanks shall be open-hearth steel. The steel shall conform in physical and chemical properties to the specifications of this Association for steel

3. Loading.—The weight of water shall be assumed to be 63 lb., crude oil 56 lb., and creosote oil 66 lb. per cu. ft. Wind pressure, acting in any direction, shall be assumed to be, in pounds,

30 times the product of the height by two-thirds of the diameter of the tank in feet.

4. Unit Stresses.—Unit stresses shall not exceed the following:
(a) Tension in plates, 15,000 lb. per sq. in. on net section.

(b) Shear in plates, 12,000 lb. per sq. in. on net section. (c) Shear on rivets, 12,000 lb, per sq. in, on net section. (d) Bearing pressure on field rivets, 20,000 lb. per sq. in.

5. Cylindrical Rings.—Plates forming the shell of the tank shall be cylindrical and or different

diameters, in and out, from course to course.

6. Workmanship.—All workmanship shall be first-class. All plates shall be beyeled on all The punching shall be from the surface to be in contact. edges for caulking after being punched. The plates shall be formed cold to exact form after punching and beveling. All rivet holes shall be accurately spaced. Drift pins shall be used only for bringing the parts together. not be driven with enough force to deform the metal about the holes. Power riveting and caulking should be used. A heavy voke or pneumatic bucker shall be used for power driven rivets. Riveting shall draw the joints to full and tight bearing.

7. Caulking.—The tank shall be made water or oil tight by caulking only. No foreign substance shall be used in the joints. For water tanks, the caulking shall preferably be done on the inside of tank and joint only; but for oil tanks the caulking should be done on both sides.

No form of caulking tool or work that injures the abutting plate shall be used.

8. Minimum Thickness of Plates.—The minimum thickness of plates in the cylindrical part of the tank shall not be less than 1 in. and in flat bottoms not less than 1 in. In curved bottoms the thickness of plate shall be not less than that of the lower plate in the cylindrical part.

o. Horizontal and Radial Joints.—Lap joints shall generally be used for horizontal seams

and splices and for radial seams in curved bottoms.

10. Vertical Joints.—For vertical seams and splices, lap joints shall be used with plates not more than $\frac{1}{4}$ in. thick. With thicker plates, double butt joints with inside and outside straps shall generally be used. The edge of the plate in contact at the intersection of horizontal and

vertical lap joints shall be drawn out to a uniform taper and thin edge.

II. Rivets, Rivet Holes, Punching and Pitch.—For plates not more than \(\frac{3}{8} \) in. thick, \(\frac{5}{8} \) in. rivets shall be used. For thicker plates, $\frac{3}{4}$ in. rivets shall be used. The diameter of rivet holes shall be $\frac{1}{16}$ in. larger than the diameter of the rivets used. The punching shall conform to the specifications of this Association for such work on steel bridges. A close pitch, with due regard for thickness of plate and balanced stress between tension on plates and shear on rivets, is desirable for caulking.

12. Tank Support.—If the tank is supported on a steel substructure, the latter shall con-'form to the specifications of this Association for the manufacture and erection of steel bridges,

except that allowance shall be made for wind pressure, but not for impact.

13. Painting.—In the shop the metal shall be cleaned of dirt, rust and scale and, except the surfaces to be in contact in the joints of the tank, shall be given a shop coat of paint or metal preservative selected and applied as specified by the company.

After being completely erected, caulked and cleaned of dirt, rust and scale, all exposed metal work shall be painted or treated with such coat or coats of paint or metal preservative as shall

be selected by the railway company.

14. Plans and Specifications.—Under these specifications and in conformity thereto the railway company shall cause to be prepared or shall approve detailed plans and specifications for such tanks, herein specified, as it shall construct. Such plans and specifications shall cover all

necessary tank auxiliaries.

Hazlehurst's "Towers and Tanks for Waterworks," second edition, 1904, REFERENCES. published by John Wiley & Sons, covers the design and construction of steel stand-pipes and steel elevated tanks on steel towers, and supplements the data and discussion in this chapter. Considerable data on the design and construction of stand-pipes and elevated tanks on towers for railway service are given in the annual reports of the proceedings of the American Railway Engineering Association, particular reference is made to volume 11, part 2; volume 12, part 3, and volume 13.

^{*} Adopted, Am. Ry. Eng. Assoc., Vol. 13, 1912.

CHAPTER XII.

STRUCTURAL DRAFTING.

PLANS FOR STRUCTURES.

Introduction.—The plans for a structure must contain all the information necessary for the design of the structure, for ordering the material, for fabricating the structure in the shop, for erecting the structure, and for making a complete estimate of the material used in the structure. Every complete set of plans for a structure must contain the following information, in so far as the different items apply to the particular structure.

In writing this chapter the instructions of many bridge companies have been consulted; special credit being due the instructions prepared by the American Bridge Company, the Pennsylvanian and the company of the Pennsylvanian and the

sylvania Steel Company, and the McClintic-Marshall Construction Company.

I. General Plan.—This will include a profile of the ground; location of the structure; elevations of ruling points in the structure; clearances; grades; (for a bridge) direction of flow, high water, and low water; and all other data necessary for designing the substructure and superstructure.

- 2. Stress Diagram.—This will give the main dimensions of the structure, the loading, stresses in all members for the dead loads, live loads, wind loads, etc., itemized separately; the total maximum stresses and minimum stresses; sizes of members; typical sections of all built members showing arrangement of material, and all information necessary for the detailing of the various parts of the structure.
- Shop Drawings.—Shop detail drawings should be made for all steel and iron work and detail drawings of all timber, masonry and concrete work.
- 4. Foundation or Masonry Plan.—The foundation or masonry plan should contain detail drawings of all foundations, walls, piers, etc., that support the structure. The plans should show the loads on the foundations; the depths of footings; the spacing of piles where used; the proportions for the concrete; the quality of masonry and mortar; the allowable bearing on the soil; and all data necessary for accurately locating and constructing the foundations.
- 5. Erection Diagram.—The erection diagram should show the relative location of every part of the structure; shipping marks for the various members; all main dimensions; number of pieces in a member; packing of pins; size and grip of pins, and any special feature or information that may assist the erector in the field. The approximate weight of heavy pieces will materially assist the erector in designing his falsework and derricks.
- 6. Falsework Plans.—For ordinary structures it is not common to prepare falsework plans in the office, this important detail being left to the erector in the field. For difficult or important work erection plans should be worked out in the office, and should show in detail all members and connections of the falsework, and also give instructions for the successive steps in carrying out the work. Falsework plans are especially important for concrete and masonry arches and other concrete structures, and for forms for all walls, piers, etc. Detail plans of travelers, derricks, etc., should also be furnished the erector.
- 7. Bills of Material.—Complete bills of material showing the different parts of the structure with its mark, and the shipping weight should be prepared. This is necessary in checking up the material to see that it has all been shipped or received, and to check the shipping weight.
- 8. Rivet List.—The rivet list should show the dimensions and number of all field rivets, field bolts, spikes, etc., used in the erection of the structure.
- 9. List of Drawings.—A list should be made showing the contents of all drawings belonging to the structure.

STRUCTURAL DRAWINGS

METHODS.—The drawings for structural steel work differ from the drawings for machinery in that (a) two scales are used, one for the length of the member or the skeleton of the structure, and one for the details; (b) members are commonly shown by one projection; and (c) the drawings are not to exact scale, all distances being governed by figures.

Two methods are used in making shop drawings.

FIG. 1. TRUSS JOINT, COMPLETELY DETAILED.

- (I) The first method is to make the drawings so complete that the templets can be made for each individual piece on the bench. This method is used for all large trusses and members, and where there is not room to lay the member out on the templet shop floor. The details for the joint of a Fink roof truss completely detailed are shown in Fig. 1. A joint of a roof truss of the locomotive shop of the A. T. & S. F. Ry., at Topeka, Kansas, is completely detailed in Fig. 2.
- (2) The second method is to give on the drawings only sufficient dimensions to locate the position of each member, the number of rivets, and the sizes of members, leaving the details to be worked out by the templet maker on the laying-out floor. Sufficient data should be given to definitely locate the main laying-out points. The interior pieces should be located by center lines corresponding to the gage lines of the angles, or center line of the piece, as the case may be. The rivet spacing should be given complete for members detailed on different sheets, or where it is necessary to obtain a required clearance, and other places where it will materially assist the

templet maker. The drawings should indicate the number and arrangement of the rivets in each connection, as well as the maximum, the usual and the minimum rivet pitch allowed. Sketch details of the joint which was completely detailed in Fig. 1 are shown in Fig. 3, and the outline details of a roof truss by the second method are shown in Fig. 4.

Fig. 2. Joint of Roof Truss Completely Detailed. (Section of Shop Details of Roof Truss.)

Members may be detailed in the position which they are to occupy, or they may be detailed separately. For riveted trusses and riveted members the entire truss or member should be detailed in position. The detail shop plans for a riveted brace are shown in Fig. 5. The field rivets are shown by black and the shop rivets by open circles. The center lines are indicated by dotted lines. Light full black lines are commonly used for dimension lines, while red dimension lines are sometimes used but do not make as good blue prints as black lines.

RULES FOR SHOP DRAWINGS.—The following rules are essentially those in use by the best bridge and structural shops.

Size of Sheet.—The standard size of sheet shall be 24×36 in. with two border lines $\frac{1}{2}$ and I in. from the edge respectively, see Fig. 6. Sheets 18×24 in. with two border lines $\frac{1}{2}$ and I in.

from the edge respectively, may also be used. For beam sheets, bills of material, etc., use letter size sheets $8\frac{1}{2} \times 11$ in.

Title.—The title shall be arranged uniformly for each contract and shall be placed in the lower right hand corner. The title shall contain the name of the job, the description of the details on the sheet, the number of the sheet, spaces for approval and other information as shown in Fig. 6.

Scale.—The scale of the lengths of the members or skeleton of the structure shall be $\frac{1}{4}$, or $\frac{3}{8}$, or $\frac{1}{2}$ in. to I ft., depending upon the available space and the complexity of the member or structure. Shop details shall as a rule be made $\frac{3}{4}$ or I in. to I ft. For small details I $\frac{1}{2}$ and 3 in. to I ft. may be used; while for large plate girders $\frac{1}{2}$ or $\frac{5}{8}$ in. to I ft. may be used.

Views Shown.—Drawings shall be neatly and carefully made to scale. Members shall be detailed in the position which they will occupy in the structure; horizontal members being shown lengthwise, and vertical members crosswise on the sheet. Inclined members (and vertical members

FIG. 3. TRUSS JOINT, SKETCH DETAILED.

when necessary on account of space) may be shown lengthwise on the sheet, but then only with the lower end on the left. Avoid notes as far as possible; where there is the least chance for ambiguity, make another view.

In truss and girder spans, draw the inside view of the far truss, left hand end, Fig. 7. The piece thus shown will be the right hand, and need not be marked right. In cases where it is necessary to show the left hand of a piece, mark "left-hand shown" alongside the shipping mark.

Show all elevations, sections and views in their proper position, looking toward the member. Place the top view directly above, and the bottom view directly below the elevation. The bottom view should always consist of a horizontal section as seen from above.

In sectional views, the web (or gusset plate) shall always be blackened; angles, fillers, etc., may be blackened or cross-hatched, but only when necessary on account of clearness. In a plate

girder, for example, it is not necessary to blacken or cross-hatch all the fillers and stiffeners in the bottom view.

Holes for field connections shall always be blackened, and shall, as a rule, be shown in all elevations and sectional views. Rivet heads shall be shown only where necessary; for example, at the ends of members, around field connections, when countersunk, flattened, etc. In detailing members which adjoin or connect to others in the structure, part of the latter shall be shown in

FIG. 5. SHOP DETAILS OF BRACE.

FIG. 6. STANDARD SHEET AND TITLE FOR STRUCTURAL DRAWINGS.

Fig. 7. Standard Marking and Erection Diagram for a Truss Bridge.

FIG. 8. SHOP DETAILS OF END-POST OF A TRUSS BRIDGE.

Fig. 9. Shop Details of Top Chord of a Truss Bridge.

dotted lines, or in red, sufficiently to indicate the clearance required or the nature of the connection. Plain building work is exempted from this rule.

A diagram to a small scale, showing the relative position of the member in the structure, shall appear on every sheet, Fig. 8 and Fig. 9. The members detailed on the sheet shall be shown by heavy black lines, the remainder of the structure in light black lines. Plain building work is exempt from this rule.

Fig. 10. Conventional Signs for Rivets.

When part of one member is detailed the same as another member, figures for rivet spacing need not be repeated; refer to previous sheet or sheets, bearing in mind that these must contain final information. It is not permissible to refer to a sheet, which in turn refers to another sheet. The section, finished length, and the assembling mark for each member shall be shown on every sheet. Main dimensions which are necessary for checking, such as c. to c. distances, story heights, etc., shall be repeated from sheet to sheet. Holes for field connections must always be located independently, even if figured in connection with shop rivets; they shall be repeated from sheet to sheet unless they are standard, in which case they shall be identified by a mark and the sheet given on which they are detailed.

The quality of material, workmanship, size of rivets, etc., shall be specified on every sheet as far as it refers to the sheet itself. Standard workmanship need not be specified on each sheet.

Lettering.—Engineering News lettering as developed by Reinhardt in his book on freehand lettering shall be used on all drawings. Preferably main titles and sub-titles shall be vertical and the remainder of the lettering inclined. The height of letters shall be as follows: Main titles—capitals 15/50 in., small capitals 12/50 in.; sub-titles—capitals, full height lower case letters and numerals 5/20 in., lower case letters 3/20 in.; other lettering—capitals, full height lower case letters and numerals 5/30 in., lower case letters 3/30 in. Where the drawing is crowded the body of the lettering may be 5/40 in. and 3/40 in. respectively. The following pens are recommended: For

titles Leonardt & Co.'s Ball-Pointed No. 516F; for all other lettering Hunt Pen Co.'s extra fine Shot Point, No. 512. No pen finer than Gillott's No. 303 should be used. Light pencil guide lines shall be drawn for all lettering. All tracings shall be made on the dull side of the tracing cloth. Erasures shall be made with soft rubber pencil eraser and a metal shield. Rubber erasers containing sand destroy the surface of the cloth and make it difficult to ink over the erased spot. The use of knives or steel erasers will not be permitted. Tracings shall be cleaned with a very soft rubber eraser, and not with gasolene or benzine, which destroy the finish of the tracing cloth. All lines shall preferably be made with black India ink; full lines to represent members, dash and dot to represent center lines, and dotted lines (or full light black lines) to represent dimension lines. If permitted by the chief draftsman red ink may be used for dimension and center lines. The ends of dimension lines shall, however, always be indicated by arrows made with black ink.

Conventional Signs.—Conventional signs for rivets are shown in Fig. 10. Countersunk rivets project $\frac{1}{6}$ in.; if less height of rivets is required, drawings shall specify that they are to be chipped, or the maximum projection may be specified. Flattened heads project $\frac{3}{6}$ in. to $\frac{7}{16}$ in.; if less height of heads is required, they shall be countersunk. Metals in section shall be shown as in Fig. 11. Standards for rivets and riveting are given in Part II, which see.

Marking System.—A shipping mark shall be given to each member in the structure, and no dissimilar pieces shall have the same mark. The marks shall consist of capital letters and numerals, or numerals only; no small letters shall be used except when sub-marking becomes absolutely necessary. The letters R and L shall be used only to designate "right" and "left." Never use the work "marked" in abbreviated form in front of the letter, for example say, 3 Floorbeams G4, and not, 3 Floorbeams, Mk. G4. Whenever a structure is divided up into different contracts care should be taken not to duplicate shipping marks. Pieces which are to be shipped bolted on a

FIG. 11. CONVENTIONAL SIGNS FOR METALS.

member shall also have a separate mark, in order to identify them should they for some reason or another become detached from the main member. The plans shall specify which pieces are to be bolted on for shipment, and the necessary bolts shall be billed. For standard marking system for a truss bridge, see Fig. 7.

A system of assembling marks shall be established for all small pieces in a structure which repeat themselves in great numbers. These marks shall consist of small letters and numerals or numerals only; no capital letters shall be used; avoid prime and sub-marks, such as M_a . Pieces that have the same assembling mark must be alike in every respect; same section, length, cutting and punching, etc.

Shop Bills.—Shop bills shall be written on special forms provided for the purpose. When the bills appear on the drawings as well, they shall either be placed close to the member to which they belong or on the right hand side of the sheet. When the drawings do not contain any shop bills, these shall be so written that each sheet can have its bill attached to it if desired; one page of shop bills shall not contain bills for two sheets of drawings. In large structures which are subdivided into shipments of suitable size, both mill and shop bills must be written separately for each shipment. In writing the shop bill bear in mind that it shall serve as a guide for the laying out and assembling of the member, besides being a list of the material required. For this reason members which are radically different as to material shall not be bunched in the same shop bill, neither shall pieces which have different marks be bunched in the same item, even if the material

is the same. Bill first the main material in the member, and follow with the smaller pieces, beginning at the left end of a girder, or at the bottom of a post or girder. On a column each different bracket shall be billed complete by itself. Do not bill first all the angles and then all the flats; for example when the end stiffeners in a girder are billed, the fillers belonging to them shall follow immediately after the angles, and so on.

When machine-finished surfaces are required, the drawing and the shop bill shall specify the finished width and length of the piece, the proper allowance for shearing and planing being made in the mill bill. When the metal is to be planed as to thickness, the drawing and the shop bill shall specify both the ordered and the finished thickness; one pl. 15 in. $\times \frac{3}{4}$ in. \times 1 ft. 6 in. (planed from 13/16 in.).

Field Rivets.—A "Bill of Field Rivets" shall be made for each structure. The "Bill of Field Rivets" shall give in order the number, diameter, grip, length and the location of the rivets in the structure. The number of field rivets to be furnished to the erector shall be the actual number

of each diameter and length required, plus 15 per cent, plus 10.

Field bolts shall be billed on "bill of rivets and bolts" only. Bill them similarly to field rivets, and give the drawing number on which they are shown; 4—bolts $\frac{7}{8}$ in. \times 2 in. grip, 3 in. U. H. stringers "S" to floorbeam "F" drawing No. 13, 4 hex. (or 4 square) nuts for above bolts. Bill of bolts and bill of field rivets shall be prepared and placed in the shop in time to be made with other material.

General Notes.—Full information regarding the following points shall appear on the drawings, where practicable as "General Notes." Loading, Specifications, Material, Rivets, Open Holes, Reaming Requirements, Other Special Requirements, Painting.

Erection Plan.—Make erection plans simultaneously with the shop plans, and keep same up to date. The erection plans must show plainly the style of connections; joints in pin spans are to be shown separately to a larger scale. For the erection plan of a truss bridge see Fig. 7. Shipping bills showing the number of pieces, erection mark, and weight shall be made for each shipment.

Subdivisions.—Every contract embracing different classes of work shall have a subdivision for each class. These subdivisions will be furnished by the chief draftsman. Drawings, shop

and shipping bills must be kept separate for each class.

PLATE GIRDER BRIDGES.—General Rules.—The plate girder span shall be laid out with regard to the location of web splices, stiffeners, cover plates, and in a through span, floor-beams and stringers, so that the material can be ordered at once. Locate splices and stiffeners with a view of keeping the rivet spacing as regular as possible; put small fractions at the end of girder. Stiffeners, to which cross-frames or floorbeams connect, must not be crimped, but shall always have fillers. The outstanding leg shall not be less than 4 in., gaged $2\frac{3}{4}$ in.; this will enable cross-frames or floorbeams to be swung into place without spreading the girders. The second pair of stiffeners at the end of girder over the bed-plate shall be placed so that the plate will project not less than 1 in. beyond the stiffeners.

Always endeavor to use as few sizes as possible for stiffeners, connection plates, etc., and avoid all unnecessary cutting of plates and angles. For this purpose locate end holes for laterals and diagonals so that the members can be sheared in a single operation. In spans on a grade, unless otherwise specified, put the necessary bevel in the bed-plate and not in the base-plate. In short spans, say up to 50 ft. put slotted holes for anchor-bolts in both ends of girders, $\frac{3}{6}$ in larger diameter than the anchor bolts.

In square spans, show only one-half, but give all main dimensions for the whole span. In skew spans show the whole span; when the panels in one-half of span are same as in the other half, give the lengths of these panels, but do not repeat rivet-spacing, except where it differs.

In the small scale diagram, which shall appear on every sheet, unless span is drawn in full, show the position of stiffeners, particularly those to which cross-frames or floorbeams connect.

Deck Plate Girder Spans.—On top of sheet show a top view of span, with cross-frames, laterals and their connections complete, with the girders placed at right distances apart. Below

this view show the elevation of the far girder as seen from the inside, with all field holes in flanges and stiffeners indicated and blackened. At one end of the elevation show in red the bridge-seat and back wall, give figures for distance from base of rail to top of masonry, notch of ties, depth of girder, thickness of base-plate and of bed-plate or shoe. When the other end of girder has a different height from base of rail to masonry, give both figures at the one end, and specify "for this end" and "for other end." If span has bottom lateral bracing, a bottom view (horizontal section) shall be shown below the elevation. When no bottom laterals are required, show only end or ends of lower flange of girder, giving detail of base-plate and its connection to the flange. Detail the bed-plate separately, never show it in connection with the base-plate.

Cross-frames shall, whenever possible, be detailed on the right hand of the sheet in line with the elevation. The frame shall be made of such depth as to permit it being swung into place without interfering with the heads of the flange rivets in the girders. Always use a plate, not a washer with one rivet, at the intersection of diagonals. In skew spans it is always preferable to have an

uneven number of panels in the lateral system.

Through Plate Girder Spans.—Show on top of sheet an elevation of the far girder as seen from inside; below this view show a horizontal section of span as seen from above with the lateral system detailed complete. It is generally best to show floorbeams and stringers in red in this view and to detail them on a separate sheet. The stiffeners in a through span should always be arranged so that the floor system can be put in place from the center towards the ends. What is said under "deck spans" about showing bridge-seat, back wall, detailing bed-plate separately, etc., applies to through spans as well.

TRUSS BRIDGES.—General Rules.—Before any details are started all c. to c. lengths of chords, posts, diagonals, etc., shall be determined, and sketches made of shoes, panel-points,

splices, etc., so that the material can be ordered as soon as required.

If not otherwise specified, camber shall be provided in the top chord by increasing the length $\frac{1}{6}$ in. for every 10 ft. for railroad bridges, and $\frac{3}{16}$ in. for every 10 ft. for highway bridges. This increase in length shall not be considered in figuring the length of the diagonals, except in special cases, as directed by the engineer in charge. Half the increase in length shall be considered in figuring the length of the top laterals. Particular attention must be paid to what is said under "General Rules" about showing part of adjoining member in red, and about the small scale diagram on every sheet.

For every truss bridge an erection diagram shall be made on a separate sheet, giving the shipping marks of the different members and all main dimensions, such as c. to c. trusses, height of truss, number and length of panels, length of diagonals, distance from base of rail to masonry, distance from center of bottom chord or pin to masonry, size and grip of pins (Fig. 7), also show in larger scale the packing at panel points, state any special feature which the erector needs to look out for, and give approximate weight of heavy and important pieces when their weight exceeds five tons. If in any place it is doubtful whether rivets can be driven in the field, the erection diagram and also the detail drawings shall state that "turned bolts may be used if rivets cannot be driven." A list giving number and contents of drawings belonging to the bridge shall also appear on the erection diagram sheet.

Riveted Truss Bridges.—In square spans, not too large, show the left half of the far truss as seen from the inside and detail all members in their true position, making scale of the skeleton one-half the scale of the details. In skew spans, not symmetrical, show the whole of the far truss. In large spans detail every member separately. When detailing web members bear in mind that the intersection point on the chord must not be used as a working point for a member which stops outside of the chord. A separate working point, preferably the end rivet, shall be established on the member proper, and shall be tied up with the intersection point on the chord.

The clearance between the chord and a web member entering same shall, whenever possible, be not less than $\frac{1}{6}$ in. in heavy and $\frac{1}{16}$ in. in light structures,

Members shall be marked with the panel points between which they go, for example, end-post L_0 - U_1 ; hip vertical U_1 - L_1 ; top chord U_1 - U_2 , etc., see Fig. 7.

Pin-connected Truss Bridges.—In pin-connected truss bridges detail the left half of the far truss as seen from the inside, every member by itself. It is generally best to commence with the end-post, showing it lengthwise on the sheet with the lower end to the left; then the first section of the top chord, and so on. The packing at panel points shall, whenever possible, be so arranged that, besides the customary allowance of $\frac{1}{16}$ in. for every bar, a clearance of not less than $\frac{3}{8}$ in. can be provided between the two sides of the chord. When two or more plates are used, $\frac{1}{32}$ in. should in addition be allowed for each plate. Members shall be marked the same as for riveted truss bridges, with the panel points between which they go, see Fig. 7.

Order of Detailing Truss Spans.—In making detail plans and bills of material the following order shall be followed for truss spans.

- 1. General drawing:
- 2. End-posts:
- 3. Upper chords:
- 4. Lower chords:
- 5. Intermediate posts;
- 6. Sway bracing:

- 7. Upper laterals:
- 8. Lower laterals:
- o. Floorbeams:
- 10. Stringers:
- 11. Castings, bolts, eye-bars, pins, etc.

OFFICE BUILDINGS AND STEEL FRAME BUILDINGS.—Number of Drawings.—The different sheets shall be numbered consecutively, whether large or small. No half numbers are permissible except in emergency cases. It is always well to arrange the number so that the sheets follow in the order in which the material is required at the building. The following is generally a good order:

- 1. Floor plans for all floors:
- 2. Column schedule;
- 3. Cast-iron bases for columns;
- 4. Foundation girders;
- 5. Foundation beams;
- 6. First tier of columns:
- 7. Riveted girders, connecting to first tier of columns
- 8. Beams connecting to first tier of columns:
- o. Miscellaneous material for above:
- 10. Second tier of columns, etc., etc.

Floor Plans.—Floor plans, Fig. 12, shall, as a rule, be made to a scale \(\frac{1}{8} \) in. to I ft. A separate plan shall be made for each floor, unless they are exactly alike. Columns shall be marked consecutively with numerals, the word Col. always appearing in front of the numeral, for example, Col. 20. The architect or engineer has generally on his drawing adopted a system of marking for the columns, which should be adhered to, unless altogether too impracticable. Riveted girders shall be indicated with two (2) fine lines when they have cover plates, and with four (4) fine lines when they have no cover plates. They shall be marked consecutively with numerals, using the same marks for girders which are alike. Beams and channels shall be indicated with one single heavy line. They shall be marked the same as girders, with numerals, using same marks when alike. Tie-rods shall be indicated with one single fine line; they need not have any marks. The marking system shall be as uniform as possible for the different floors, i. e., a beam which goes between Col. 2 and Col. 3 shall be marked with the same numeral throughout all the floors. All figures necessary for making the details shall, as a rule, appear on the floor plan, care being taken in writing same to leave room for the erection marks, which must be printed in heavy type above the line or lines representing a beam or girder.

Column Schedule.—For every large building a schedule of the columns shall be made before the details are started, see Fig. 13. Each column, even should several be alike, shall have a separate space, in which shall be given the material and the finished length. As soon as the detail drawings for one tier of columns are finished the sheet numbers shall be inserted as shown on the sample schedule, Fig. 13, making the schedule serve as an index for the column drawings.

Columns.—Columns shall, whenever possible, be drawn standing up on the sheets as they appear in the building. If it becomes necessary to draw them lengthwise on the sheet, the base shall be to the left. Particular attention shall be paid to establishing a marking system for brackets, splice-plates, etc. A summary of all these standard pieces shall be made for each tier

FIG. 12. FLOOR PLANS FOR OFFICE BUILDINGS.

and sent to the shop as early as practicable, in order that they may be gotten out before the main material is taken up. The material for the small pieces shall, as far as possible, be chosen from stock sizes. Columns shall be marked with the numbers of the floors between which they go; Col. 5 (I-3). The lower tier is best marked "Basement Tier." Standard details for columns are given in Fig. 14 and Fig. 15.

Riveted Girders.—Girders shall be marked with the number of the floors, not with letters,

unless requested; for example, 2d Floor, No. 5. What is said under columns about marking system for standard pieces applies to girders as well. When a girder is unsymmetrical about the center line, and a question may arise how to erect it, one end shall be marked with the number of the column to which it connects, or with North, South, East or West. Girders must not be bunched

FIG. 13. COLUMN SCHEDULE FOR OFFICE BUILDINGS.

together for the different floors more than to meet the requirements in the field; but they must correspond to the tiers of columns as they will be erected.

Beams.—Beams shall be drawn on the standard forms provided for the purpose. They need not be drawn to scale, see Fig. 16 and Fig. 17. Beams shall be marked the same as girders with the number of the floor; One 12" I @ 40 lb. \times 19'- $3\frac{1}{2}$ ", (Mark) 2d Floor No. 35. What is said under girders about marking one end, when not symmetrical around the center line, and about not bunching the different floors more than to meet the requirements in the field, applies to beams as well.

Whenever possible use standard framing angles, Tables 117 and 118, Part II. If it is deemed necessary to use 6 in. \times 6 in. angles, punch both legs the same as the 6 in. leg of standard; in $3\frac{1}{2}$ in. \times $3\frac{1}{2}$ in. or 4 in. \times $3\frac{1}{2}$ in. angles, punch both legs the same as 4 in. leg of standard. It is not abso-

lutely imperative that the gage of the framing angles shall be standard as long as the vertical distance between the holes and in the 6 in. leg the horizontal distance (2½ in.), are kept standard. Holes for connections, tie-rods, etc., shall be located from one end of the beam, preferably the left. If one end rests on the wall and the other end is framed, then figure from the latter end, be it right

FIG. 14. STANDARD DETAILS FOR BETHLEHEM H-COLUMNS.

or left. This rule may be dispensed with in case of numerous holes regularly spaced in web or flange for connection of shelf-angles, buckle-plates, etc. The allowed overrun at ends of beams must always be indicated, either by giving figures or by showing wall bearing. Holes at the end

Fig. 15. Standard Details for Built-up H-Columns.

FIG. 16. STANDARD DETAILS FOR ROLLED BEAMS.

of beam for anchors are best figured from wall end, not connecting them with other figures. The distance between end holes in beams which connect through web or flange to columns, girders, etc., shall always be given. When framing angles are standard, do not give any figures for either shop or field rivets, except the distance from bottom of beam to center of connection or to first holes in framing angle, and the horizontal distance between field holes. When special framing angles are used, the fact must be noted and figures given for gages, etc. For standard connection holes in web of beam all figures required are the distance from bottom of beam to centre of connection or to first hole and the horizontal distance between holes. Whenever possible use standard punching.

FIG. 17. STANDARD DETAILS FOR ROLLED BEAMS.

ERECTION PLAN FOR MILL BUILDINGS.—The preceding method for office buildings will need considerable modification for steel frame mill buildings. The following method for making erection plans for steel frame mill buildings has been found very satisfactory.

If the points of the compass are known, mark all pieces on the north side with the letter, N, those on the south with the letter, S, etc. Mark girts N.G.1; N.G.2; etc. Mark all posts with a different number, thus: N.P.1; N.P.2; etc. Mark small pieces which are alike with the same mark; this would usually include everything except posts, trusses and girders, but in order to follow the general marking scheme, where pieces are alike on both sides of a building, change the general letter; e. g., N.G.7 would be a girt on the north side and S.G.7 the same girt on south side. Then in case the north and south sides are alike, only an elevation of one side need be shown, and under it a note thus: "Pieces on south side of building, in corresponding positions have the same

FIG. 18. STANDARD DETAILS FOR ANGLE STRUTS.

number as on this side, but prefixed by the letter, S, instead of the letter, N." Mark trusses T.I: T.2; etc. Mark purlins R.I; R.2; etc.

The above scheme will necessarily have to be modified more or less according to circumstances; for example, where a building has different sections or divisions applying on the same order number, in which case each section or division should have a distinguishing letter which should prefix the mark of every piece. In such cases it will perhaps be well to omit other letters, such as N., S., etc., so that the mark will not be too long for easy marking on the piece. In general, however, the scheme should be followed of marking all the larger pieces, whether alike or not, with a different mark. This would refer to pieces which are liable to be hauled immediately to their places from the cars. But for all smaller pieces which are alike, give the same mark.

DETAIL NOTES.—Sections.—End views of sections shall be shown as in (a) Fig. 19, and sections shall be cross-hatched or blackened as shown in (b) Fig. 19.

Assembling Note.—Covers, webs, flange angles, etc., must not be marked alike when it would be necessary to turn them end for end, see (c) Fig. 19.

Rivet Spacing.—Rivet spacing must be tied up from end to end.

Fig. 19.

Connection Plates.—In detailing connection plates wherever bevel for holes on lines "b," (d) and (e) Fig. 19, is different, spacing for holes on lines "a" should be made different to prevent plates from being interchanged.

Writing Angles.—In writing angles give the longer leg first, I-L $6'' \times 4'' \times \frac{1}{2}'' \times 10'-0\frac{1}{2}''$. Writing Plates.—In writing plates the width of the plate is given in inches, the thickness in inches, and the length in ft. and in.; 2-Pl. $48'' \times \frac{3}{8}'' \times 15'-0\frac{3}{4}''$. A length of 9 in. should be written 0'-9'' and not 9''. The width of a plate is the dimension at right angles to the length of the member, while the length of a plate is the dimension parallel to the length of the member to which the plate is attached; except that for lacing bars, tie plates and other universal mill plates 6 inches and less in width the least dimension is taken as the width of the member, and for splice plates the width is the dimension at right angles to the splice.

Writing Sections.—Sections are written as follows: 1-I 12" @ 40 lb. X 16'-3\frac{1}{4}".

Miscellaneous.—Bevels may be shown as so many inches in 12", (a) Fig. 20; or where convenient the total lengths may be given as in (b) Fig. 20. The latter method is the better as it assists the checker and the templet maker.

The maximum amount that one leg of an angle can be bent is 45°. For a greater bend than 45° a bent plate shall be used, (c) Fig. 20.

The center to center length of stiff laterals should be not less than \(\frac{1}{16}\) in. short.

Do not use 2 sizes of rivets in the same leg, or same angle, or same piece unless absolutely necessary.

Where unequal legged angles are used mark the width of one leg of the angle on the leg.

Where heavy laterals are spliced in the middle by a plate, ship the plate riveted to one angle

Do not countersink rivets in long pieces unless absolutely necessary.

Do not draw any more of a member than necessary, and do not dimension the same piece several times.

Revising Drawings.—When drawings have been changed after having been first approved, they must be marked, Revised (give date of revision).

Measuring Angles.—All measurements on angles are to be made from the back of the angle, and not from the edge of the flange. The center to center distance between open holes should always be given for each piece that is shipped separate, in order that the inspector can check the piece.

Width of Angles.—The widths of the legs of angles are greater than the nominal widths, unless the angle has been rolled with a finishing roll. The over-run for each leg is equal to the nominal width of the leg plus the increase in thickness of leg made by spreading the rolls. For example finishing rolls are used for rolling $3'' \times 3''$ angles with a thickness of $\frac{1}{4}''$. The actual length of the leg of a $3'' \times 3''$ angle is as follows: angle $3'' \times 3'' \times \frac{1}{4}''$, leg 3''; angle $3'' \times 3'' \times \frac{5}{8}''$, leg 3''; angle $3'' \times 3'' \times \frac{3}{8}''$, leg 3''; angle $3'' \times 3'' \times \frac{5}{8}''$, leg 3''.

The over-run of Pencoyd angles are given in Table 27, Part II; and the over-run of Pennsylvania Steel Company's angles are given in Table 28, Part II.

POINTS TO BE OBSERVED IN ORDER TO FACILITATE ERECTION.—The first consideration for ease and safety in erection should be to so arrange all details, joints and connections that the structure may be connected and made self-sustaining and safe in the shortest time possible. Entering connections of any character should be avoided when possible, notably on top chords, floorbeam and stringer connections, splices in girders, etc. When practicable, joints should be so arranged as to avoid having to put members together by entering them on end, as it is often impossible to get the necessary clearance in which to do this. In all through spans floor connections should be so arranged that the floor system can be put in place after the trusses or girders have been erected in their final position, and vice versa, so that the trusses or girders can be erected after the floor system has been set in place. All lateral bracing, hitch-plates, rivets in laterals, etc., should, as far as possible, be kept clear of the bottoms of the ties, it being expensive to cut out ties to clear such obstructions. Lateral plates should be shipped loose, or bolted on so that they do not project outside of the member, whenever there is danger of their being broken off in unloading and handling. Loose fillers should be avoided, but they should be tacked on with rivets, countersunk when necessary.

In elevated railroad work, viaducts and similar structures, where longitudinal girders frame into cross girders, shelf angles should be provided on the latter. In these structures the expansion

FIG. 21. CLEARANCE STANDARDS. AMERICAN BRIDGE COMPANY.

Clearance "a" should never be less than $\frac{1}{2}$ " Clearance "b" should never be less than $\frac{1}{2}$ " from center line to each piece, and where possible should be $\frac{1}{2}$ ".

Clearance "h" should never be less than \(\frac{1}{2} \) and as a rule should be \(\frac{1}{6} \).

Always give Figure for distance "m" on detail for use of checker.

When standard framing angles are used, make "m" = 6\(\frac{1}{2} \).

Clearances given should be allowed in addition to overrun of angles.

FIG. 22. CLEARANCE STANDARDS. AMERICAN BRIDGE COMPANY.

Fig. 23. Standards for Lacing Bars. American Bridge Company.

joints should be so arranged that the rivets connecting the fixed span to the cross girder can be driven after the expansion span is in place. In viaducts, etc., two spans, abutting on a bent, should be so arranged that either span can be set in place entirely independent of the other. The same thing applies to girder spans of different depth resting on the same bent. Holes for anchorbolts should be so arranged that the holes in the masonry can be drilled and the bolts put in place after the structure has been erected complete.

In structures consisting of more than one span a separate bed-plate should be provided for each shoe. This is particularly important where an old structure is to be replaced; if two shoes were put on one bed plate or two spans connected on the same pin, it would necessitate removing two old spans in order to erect one new one. In pin-connected spans the section of top chords nearest the center should be made with at least two pin-holes. In skew spans the chord splices should be so located that two opposite panels can be erected without moving the traveler. Tie plates should be kept far enough away from the joints and enough rivets should be countersunk inside the chord to allow eye-bars and other members being easily set in place. Posts with channels or angles turned out and notched at the ends should be avoided whenever possible.

ORDERING MATERIAL.—Bridge Work.—Ordinarily plates less than 48 in. wide are ordered U. M. (universal mill or edge plates), but when there is no need for milled edges and prompt delivery is essential specify either U. M. or sheared. Never order widths in eighths. Flats and universal (edge) plates over 4 in. in width should be ordered in even inches, flats under 4 in. should be ordered by $\frac{1}{2}$ in. variation in width. Flats $\frac{1}{4}$ in. and under in thickness are very difficult to secure from the mills and should be avoided if possible.

Rolling mills are allowed a variation of $\frac{1}{4}$ in. in width of plates, over or under, and a variation of $\frac{3}{6}$ in. in length, over or under, from the ordered width or length. Rolling mills are allowed a variation of $\frac{3}{6}$ in. over or under the ordered length of beams, channels, angles, zees, etc. An extra price is charged for cutting to exact length. See Chapter XIII.

Allow $\frac{1}{16}$ in. in thickness for planing plates 2 ft. 6 in. square or less, $\frac{1}{8}$ in. for plates more than 2 ft. 6 in. square, and $\frac{1}{8}$ in. for columns; chords and girders which have milled ends are ordered $\frac{1}{8}$ in. longer than the finished dimensions.

Web plates should be ordered \(\frac{1}{2}\) in, less than the back to back of flange angles unless a less clearance is specified. Web plates should preferably be ordered in even inches and the distance back to back of angles made in fractions.

When angles, beams or channels are bent in a circle allow 9 in. to 12 in. for bending. Bent plates should be ordered to the length of the outside of the bend.

Fig. 24. Beams Between Columns.

Large gusset plates, large plates with angle cuts, etc., should be ordered as sketch plates, when the amount of waste if ordered rectangular will exceed 20 per cent. Mills will not make reentrant cuts in plates or shapes.

In ordering lacing bars add $\frac{3}{16}$ in. to the finished length and order in multiple lengths. **ORDERING MATERIAL.**—Building Work.—Order beams in foundation neat length. Order beams framing into beams $\frac{3}{6}$ in. short for each end, see Fig. 24.

Order main column material $\frac{3}{4}$ in. long for milling both ends (this takes care of permissible variation in length of plus or minus $\frac{3}{6}$ in. as well as the milling).

Order girder flange angles and plates I in. long.

Order girder web plates \(\frac{1}{2}\) in, short, where end connections are used.

Order girder web plates neat length, where end connections are not used.

Order girder web plates $\frac{1}{2}$ in. less in width than back of flange angles.

Order stiffener angles ½ in. long.

Order fillers under stiffeners neat length.

Add $\frac{3}{16}$ in. to each lacing bar and order in multiple lengths.

SHAPES AND PLATES MOST EASILY OBTAINED.—The ease with which different commercial sizes of shapes and plates may be obtained from the rolling mill varies with the mill and with the demand. Where any section is in demand rollings are frequent and the orders are promptly filled, while the order for a section not in demand may have to wait a long time until sufficient orders have accumulated to warrant a special rolling.

The following list of plates and sections is fairly accurate, the list varying from time to time. Plates.—Plates most easily obtained.

Width, In.	Thickness, In.	Width, In.	Thickness, In.
$I^{\frac{1}{2}}$	$\frac{3}{16}$ and $\frac{1}{4}$	5	½ and up
I 3	$\frac{3}{16}$ and $\frac{1}{4}$	6	1 and up
2	$\frac{3}{16}$ and $\frac{1}{4}$	7	½ and up
21	½ and up	8	1 and up
$2\frac{1}{3}$	1 and up	9	and up
3	1 and up	. 10	1 and up
$3^{\frac{1}{2}}$	½ and up	12	½ and up
4	and up	14	½ and up

Over 14 in. in width it is immaterial what width of plate is specified.

Squares and Rounds.—Squares and rounds most easily obtained.

Rounds, $\frac{5}{8}$ ", $\frac{3}{4}$ ", $\frac{7}{8}$ ", $\frac{1}{8}$ ", $\frac{1}{4}$ ", $\frac{1}{2}$ ".

Squares, $\frac{3}{4}$ ", $\frac{7}{8}$ ", 1", $1\frac{1}{4}$ ", $1\frac{1}{2}$ ".

All other sizes are liable to cause delay.

Beams.—Sizes of I-Beams which can be obtained most readily.

Depth.	Weight.
6''	12½ lb.
8''	18 lb. $20\frac{1}{2}$ lb.
10"	25 lb. 30 lb.
12"	$31\frac{1}{2}$ lb. 35 lb. 40 lb.
15"	42 lb. 50 lb. 60 lb.
18"	55 lb. 60 lb. 70 lb.
20"	65 lb. 80 lb.
24"	80 lb. 90 lb. 100 lb.

Sizes of I-Beams which may be used but for which prompt deliveries may not be expected.

Depth.	Weight.	
5''	93	1b.
7''	15	lb.
9"	21	lb. 25 lb.

Beams of weights different from the above can always be obtained from the mills but not so readily as those given. Beams of minimum section can always be obtained more readily than heavier sections.

Channels.—Channels which can be most readily obtained from the mills.

Depth.	Weight.
6''	8 lb.
8"	11¼ lb. 18¼ lb.
10"	15 lb. 20 lb. 25 lb.
12"	201 lb. 25 lb. 30 lb.
15"	33 lb. 40 lb. 50 lb.

Sizes which may be used but for which prompt deliveries cannot be expected.

Depth.	Weight.
5"	6½ lb.
7"	9 ³ / ₄ lb.
9"	13½ lb.

Channels of weights different than those given above can always be obtained at the mills but not so readily as those given. Channels of minimum section can always be obtained more readily than heavier sections.

Angles.—Angles most easily obtained from the mill.

Even legs.— $2\frac{1}{2}'' \times 2\frac{1}{2}''; 3'' \times 3''; 3\frac{1}{2}'' \times 3\frac{1}{2}''; 4'' \times 4''; 6'' \times 6''$.

Uneven legs.— $2\frac{1}{2}$ " \times 2"; 3" \times $2\frac{1}{2}$ "; $3\frac{1}{2}$ " \times 3"; 4" \times 3"; 5" \times $3\frac{1}{2}$ "; 6" \times 4".

Angles which may be used but for which prompt deliveries cannot be expected.

Even legs.—2" \times 2"; $2\frac{1}{4}$ " \times $2\frac{1}{4}$ "; 5" \times 5"; 8" \times 8".

Uneven legs.— $3'' \times 2''$; $3\frac{1}{2}'' \times 2\frac{1}{2}''$; $4'' \times 3\frac{1}{2}''$; $6'' \times 3\frac{1}{2}''$.

Angles $4'' \times 3\frac{1}{2}''$; $5'' \times 4''$; $7'' \times 3\frac{1}{2}''$ and $8'' \times 6''$ are very difficult to obtain.

To obtain prompt deliveries as few sizes and shapes as practicable should be used for any contract. For example if $6'' \times 4''$ angles are used $6'' \times 3\frac{1}{4}''$ should be avoided, and vice versa.

Tees.—If possible the use of Tees should be confined to $3'' \times 3'' \times \frac{3}{8}''$ and $2'' \times 2'' \times \frac{5}{16}''$, and even these sizes are uncertain of delivery.

Zees.—The delivery of zees is uncertain and will depend upon special rollings, which do not occur frequently. The following sizes are the most used, and are therefore most easily obtained.

_	
Web.	Thickness.
3"	$\frac{1}{4}''$, $\frac{8}{16}''$ and $\frac{3}{8}''$
4"	$\frac{1}{4}''$, $\frac{8}{16}''$ and $\frac{3}{8}''$
5"	$\frac{5}{16}''$, $\frac{3}{8}''$ and $\frac{1}{2}''$
6"	$\frac{3}{8}$ ", $\frac{1}{2}$ ", $\frac{5}{8}$ ", $\frac{3}{4}$ ", $\frac{7}{8}$ " and I"

Stock Material.—The Pennsylvania Steel Company carries the following material in stock in 30 ft. lengths for use in its structural plant.

Angles, Even Legs.	Angles, Uneven Legs.
$6'' \times 6'' \times \frac{7}{16}''$ and $\frac{1}{2}''$	$6'' \times 4'' \times \frac{3}{6}''$, $\frac{7}{16}''$ and $\frac{1}{2}''$
$4'' \times 4'' \times \frac{3}{8}''$ and $\frac{7}{16}''$	$5'' \times 3^{\frac{1}{2}''} \times \frac{3}{8}''$, $\frac{7}{16}''$ and $\frac{1}{2}''$
$3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$ and $\frac{7}{16}''$	$4'' \times 3\frac{1}{2}'' \times \frac{5}{16}''$ and $\frac{3}{8}''$
$3'' \times 3'' \times \frac{5}{16}''$, $\frac{3}{8}''$ and $\frac{7}{16}''$	$3\frac{1}{2}'' \times 3'' \times \frac{5}{16}''$ and $\frac{3}{8}''$
	$3'' \times 2\frac{1}{2}'' \times \frac{5}{16}''$ and $\frac{3}{8}''$
Plates.	Flats.
$20'' \times \frac{3}{8}''$ and $\frac{1}{2}''$	7" × ¾"
$18'' \times \frac{3}{8}''$ and $\frac{1}{2}''$	$6'' \times \frac{3}{8}''$ and $\frac{1}{2}''$
$16'' \times \frac{3}{8}''$ and $\frac{1}{2}''$	$3\frac{1}{2}'' \times \frac{3}{8}'', \frac{1}{2}''$ and $\frac{5}{8}''$
$15'' \times \frac{3}{8}''$ and $\frac{1}{2}''$	$3'' \times \frac{3}{8}''$ and $\frac{7}{16}''$
$14'' \times \frac{3}{8}''$ and $\frac{1}{2}''$	$2\frac{1}{2}'' \times \frac{3}{8}''$ and $\frac{7}{16}''$
$13'' \times \frac{3}{8}''$ and $\frac{1}{2}''$	$2\frac{1}{4}'' \times \frac{8}{16}''$ and $\frac{3}{8}''$
$12'' \times \frac{3}{8}''$, $\frac{7}{16}''$ and $\frac{1}{2}''$	$2'' \times \frac{1}{4}''$ and $\frac{5}{16}''$
$10'' \times \frac{3}{8}''$ and $\frac{7}{16}''$	
9" × ‡"	

Lengths and Widths of Plates.—The maximum sizes and lengths of shapes and plates as rolled by the Carnegie Steel Company and the Illinois Steel Company are given in Table I to Table VII, inclusive.

TABLE I.

MAXIMUM LENGTHS OF SHAPES: CARNEGIE STEEL CO.

MAXIMUM DENGING OF SHA	LES, CHRILDOID OILLED CO.
I Beams:—	Angles (Eneven Legs):—
24" to 12" 75 ft.	$8'' \times 6''$
10" to 5"	$7'' \times 3\frac{1}{2}'' \times 1''$ to $\frac{7}{8}'' \dots 80$
4" and 3" 50 "	$7'' \times 3\frac{1}{2}'' \times \frac{18}{2}''$ to $\frac{7}{4}''$
Channels:-	$6'' \times 4'' \times 1''$ to $\frac{3}{4}''$
15" to 12" 75 ft.	$6'' \times 4'' \times \frac{1}{2} \frac{1}{4}$ and under on "
10" standard	$6'' \times 3\frac{1}{2}'' \times 1''$ to $\frac{1}{8}''$ 80 "
10" special	$6'' \times 3\frac{1}{2}'' \times \frac{1}{18}'' \dots 85$ "
9" to 5" 70 "	$6'' \times 3\frac{1}{2}'' \times 1''$ to $\frac{1}{4}'' \dots $
4" and 3" 50 "	5" × 4"
Tees:	$5'' \times 3\frac{1}{2}'' \times \frac{7}{8}'' \dots 75$ "
5" to 1" 50 ft.	$5'' \times 3\frac{3}{2}'' \times \frac{1}{3}\frac{3}{5}'' \dots 80$
Zees:—	$5'' \times 3\frac{2}{2}'' \times \frac{16}{2}''$ and under, 90 "
6" and 5" 70 ft.	
$4'' \times \frac{3}{4}''$	$5^{"} \times 3^{"} \times 3^{"} \times \frac{13}{15}^{"} \times 50^{"}$
4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$4'' \times \frac{11}{16}$ and under	$4\frac{1}{2}$ \times 3 \times 4 \times 1 \times
3"	$4\frac{1}{2}$ " \times 3" \times $\frac{1}{7}\frac{1}{6}$ " 60 " $4\frac{1}{2}$ " \times 3" \times $\frac{1}{8}$ " 65 "
	$4\frac{1}{2}$ \times 3" \times 8" \times 65 "
10"	$4\frac{1}{2}'' \times 3'' \times \frac{9}{1}\pi'' \dots 70''$
	$4\frac{1}{2}'' \times 3'' \times \frac{1}{2}''$ and under 80 " $4'' \times 3\frac{1}{2}'' \dots $
6" 60 " Bulb Angles:—	$4'' \times 3\frac{1}{2}'' \dots 90$ " $4'' \times 3'' \times \frac{1}{3} \frac{1}{6} \cdots 85$ "
10" to 7"	
6"	$4'' \times 3'' \times \frac{2}{3}''$ and under 90 " $3\frac{1}{2}'' \times 3'' \times \frac{1}{3}\frac{3}{2}'' \dots$ 60 "
5"	111 . 4 . 11 . 1 . 11
Angles (Even Legs):—	$3\frac{1}{2}$ \times 3 \times $4\frac{1}{1}$ \times 70 "
$8'' \times 8''$	$3\frac{1}{2}$ \times 3 \times $\frac{1}{2}$ \times $\frac{1}{$
$6'' \times 6'' \times 1''$ to $\frac{7}{8}''$	$3\frac{2}{3}$ \times 3 \times $\frac{8}{2}$ and under 80 "
$6'' \times 6'' \times \frac{13}{16}''$ and under 90 "	$3\frac{1}{2}$ \times $2\frac{1}{2}$ \times $2\frac{1}{1}$ \times $1\frac{1}{1}$ \times
5" × 5"	$3\frac{1}{2}$ $\times 2\frac{1}{2}$ $\times \frac{16}{4}$
4" × 4"	$3\frac{1}{2}$ $\times 2\frac{1}{2}$ $\times \frac{3}{16}$ $\times 3$
$3\frac{1}{2}$ $\times 3\frac{1}{2}$ $\times 90$ "	$3\frac{1}{2}$ $\times 2\frac{1}{2}$ $\times 2\frac{1}{15}$
$3^{\prime\prime} \times 3^{\prime\prime} \times 3$	$3\frac{1}{2}$ $\times 2\frac{1}{2}$ $\times \frac{7}{15}$
$2\frac{3}{4}$ \times $2\frac{3}{4}$ \times	$3\frac{1}{2}'' \times 2\frac{1}{2}'' \times \frac{3}{8}''$ and under 90 "
$2\frac{1}{2}$ $\times 2\frac{1}{2}$ $\times 2$	$3\frac{1}{4}$ \times $2\frac{7}{4}$ \times 27
$2\frac{1}{4}$ \times $2\frac{1}{4}$ \times	$3'' \times 2\frac{1}{2}''$ to $1\frac{3}{8}'' \times 1''$
$2^{\prime\prime\prime}\times2^{\prime\prime\prime}$	0 7, 24 22 20 7, 2 7, 11, 11, 11, 10
$I_{\frac{3}{4}''} \times I_{\frac{3}{4}''}$ to $\frac{5}{8}'' \times \frac{5}{8}'' \dots 50$ "	

TABLE II.

MAXIMUM LENGTHS OF MATERIAL; ILLINOIS STEEL CO. (SOUTH WORKS).

es:—	
All angles	oo ft
ams:—	
All I Beams up to 15	75 ft
15 I Beams 42 lb. to 55 lb	
15 I Beams 60 lb. to 75 lb	52 "
15 I Beams 80 lb	50 "
15 I Beams 90 lb	50 "
15 I Beams 100 lb	15 "
anels:—	
All Channels	rs ft

In case it is absolutely essential to have any of the above material in lengths longer than

shown, it will be necessary to take the matter up with the mill to ascertain whether same can be obtained.

For extreme lengths of material rolled at the Bay View (Milwaukee Works) follow list of maximum lengths rolled by Carnegie, as the facilities for rolling all smaller sections are about the same at both mills.

TABLE III.

MAXIMUM SIZES OF RECTANGULAR AND CIRCULAR PLATES; CARNEGIE STEEL CO.
SHEARED PLATES, ONE-FOURTH INCH AND OVER.

Thickness,				Widths	and Lei	ngths in	Inches.				Diam.,
Inches.	132	126	120	114	108	102	96	90	84	78	Inches
1					150	200	210	250	280	300	110
16			180	200	230	260	275	300	325	380	120
1		200	220	250	265	310	350	400	440	460	126
16 16 8 17	190	200	240	265	290	350	380	440	465	475	132
3	220	230	260	280	300	360	400	450	475	500	132
10	220	230	260	290	300	380	400	450	475	500	132
1 .	220	230	270	300	320	360	380	420	440	480	134
it it	220	230	270	300	320	350	380	420	440	480	134
4.	220	230	270	290	320	350	380	420	440	480	134
18	220	230	270	290	320	350	380	420	440	480	134
#	220	230	260	280	320	350	380	420	440	480	134
I	220	230	250	270	300	320	350	380	400	430	134
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	220	230	250	280	300	320	350	370	405	132
12	190	200	210	230	255	275	295	325	340	360	132
11/2	180	190	200	210	240	250	275	300	315	340	132
14	175	180	190	200	225	240	260	285	300	320	132
2	165	170	180	190	210	230	245	270	280	300	130
21	132	145	150	160	170	190	200	230	240	260	130
Thickness.	72	66	60	54	50	48	42	36	30	24	Diam.
1	350	350	380	400	400	430	400	400	380	380	110
16 16 17 16	380	400	450	460	460	500	450	450	400	400	120
Ř	490	500	540	540	540	540	500	500	480	480	126
16	520	560	560	560	560	560	550	550	530	530	132
1	525	560	560	560	560	560	550	550	530	530	132
16	525	560	560	560	560	560	550	550	530	530	132
8	520	560	560	560	560	560	560	560	530	500	134
9 16 5 11 16 3 4 13	500	530	540	.540	560	560	560	540	530	500	134
Ŧ.	490	500	540	540	560	560	560	540	530	500	134
18	480	500	520	540	540	540	560	540	520	480	134
ł	480	500	520	520	520	530	530	530	500	480	134
1	460	480	500	520	520	520	500	480	470	460	134
11	430	450	470	480	480	500	480	480	470	450	132
14	380	400	420	430	430	450	460	460	450	440	132
11/2	360	380	400	420	430	440	440	420	420	420	132
13	340	360	380	400	420	430	400	380	380	360	132
2.	320	340	360	380	400	400	360	350	350	320	130
21	280	300	320	340	350	330	300	300	250	200	130

Plates 48" wide and under can also be rolled on Universal Mills.

For greater length and Universal Mill Sizes, see Universal Mill Plate Table V.

Plates of greater dimensions than shown in above tables may be submitted for special consideration.

TABLE IV.

MAXIMUM SIZES OF RECTANGULAR AND CIRCULAR PLATES; CARNEGIE STEEL Co. SHEARED PLATES, THREE-SIXTEENTHS INCH AND UNDER.

Thickness, Inches,			W	idths and	Length	s in Inch	es			
B. W. G.	74	72	70	68	66	64	62	60	58	Diam., Inches.
$N_{0.}^{\frac{3}{16}}$ 8	200	220 200	240 210	250 210	270 220	290 240	310 250	320 260	330 270	77 74
No. 9 No. 10			160	170 140	160	200 170	200 170	220 190	230 200	70 68
No. 11 No. 12					140 140 120	150 150 130	150 150 130	160	170	66 66
Thickness.	56	54	52	50	48	42	36	30	24	64 Diam.
No. 8 No. 9	340 270 230	350 280 240	360 280 240	370 290 250	360 290 250	360 290 250	360 290 250	360 290 250	360 290 250	77 74 70
No. 10 No. 11	220 180 180	220 190 190	230 190 190	230 195 195	230 195 195	230 200 200	230 200 200	230 200 200	230 200 200	68 66 66
No. 12	160	160	170	176	180	180	180	180	180	64

TABLE V.

MAXIMUM SIZES OF RECTANGULAR UNIVERSAL PLATES; CARNEGIE STEEL CO. UNIVERSAL MILL PLATES, ONE-FOURTH INCH AND OVER.

Thick-					Widt	hs and Le	ngths in In	ches.			
ness, Inches.	48-46	45-41	40-36	35-31	30-26	25-20	19-17	16-15	14-12	11	10-61
145 116 116 118 7	600 840 960 960	600 840 960 950	600 960 960 1080	660 1140 1140 1200	720 1140 1140 1200	780 840 1140 1200 1200	780 840 1080 1080 1080	780 840 1080 1080 1080	780 840 1080 1080 1080	540 600 900 900 1020	540 600 840 840 840
9 15 6 3 4 7 6	960	960	1080	1200	1200	1200	1080	1080	1080	1020	840
	960	960	1020	1200	1200	1200	1020	1080	1080	1020	840
	840	840	960	1080	1080	1080	1020	1020	1020	900	840
	780	840	840	960	960	960	960	960	960	900	840
	720	720	720	840	840	840	900	960	960	900	840
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	600	600	660	708	720	780	780	900	900	840	840
	540	540	600	660	660	660	720	840	840	840	840
	480	528	540	600	600	600	660	780	840	840	840
	480	504	528	540	540	540	600	720	780	840	840
155	480	48c	480	480	480	480	540	660	720	840	840
134	420	420	432	420	420	420	480	600	660	720	720
178	420	420	432	420	420	420	480	540	600	660	720
2	420	420	420	408	408	408	420	480	540	. 600	720

Plates of greater dimensions than shown in above tables may be submitted for special consideration.

TABLE VI.

MAXIMUM SIZES OF UNIVERSAL PLATES; ILLINOIS STEEL CO.

Thickness,		Wid	th of Plate in Inches	١.	
Inches.	6	7	8	9	10 to 30
1	960	960	960	960	960
16	960	960	960	960	960
	960	960	960	960	960
7 16	960	960	960	960	960
1	960	960	960	960	960
916	960	960	960	960	960
8	960	960	960	960	960
11	810	960	960	960	960
2 1	750		960	960	960
16	690	930 860	960	960	960
7	640	800	910	960	960
18	600	740	850	960	960
I	560	700	800	900	960
116	530	660	750	850	900
1 8	500	620	710	800	850
136	470	590	670	760	810
14	450	560	640	720	770
1 16	420	530	610	680	730
18	400	510	580	650	690
1 16	390	490	560	620	660
11/2	370	470	530	600	640
1 9	360	450	510	570	610
1 5	340	430	490	550	590
116	330	410	470	530	570
14	320	400	460	510	550
113	310	390	440	490	530
1 7	300	370	430	480	510
115	290	360	410	460	490
2	280	350	400	450	480

All plates both sheared and Universal Mill rolled by Illinois Steel Co., can exceed above lengths by I ft. If longer lengths are necessary take up with the mill.

DESIGN DRAWINGS FOR STEEL STRUCTURES.

Drawings.—Designs shall be made on standard sized sheets. A scale of $\frac{1}{8}$ in. to I ft. shall be a minimum, a larger scale being used if practicable. Give such distances on both plan and cross-section that the dimensions of either can be understood without reference to the other.

DESIGNS OF MILL BUILDINGS.

Loads.—All roof loads, snow loads, wind loads, floor loads, wheel loads and spacing for cranes, and in case of bins, the weight per cubic foot and the angle of repose of the material shall appear on the design drawings.

Diagrams.—Draw as many sections as are necessary to show all transverse bents and trusses, a plan of lower chord bracing, and views to indicate framing and side views when necessary to give location of doors and windows. When a sectional view is shown, always mark the location of the sections on the plan. When two buildings frame into each other the design should always indicate the framing for the connections, drawing additional sections if required.

Stresses.—The stresses in all members of transverse bents, trusses and latticed and plate girders, and the loads on all main building columns shall be given on the design drawings. Give maximum bending moment and maximum shear in all crane girders, plate girders, and floor girders and columns. Maximum shear and bending moment shall be given for all stringers or I-Beams used as floor or crane girders.

Notes.—Material (whether O. H. (open-hearth) or Bessemer, soft, medium or structural steel): specifications (name and date; size of rivets and holes, reamed or punched full size).

Angle Members.—In all cases where two unequal legged angles are used as main members, show the direction in which the outstanding legs are turned by giving the dimension of the leg appearing in elevation, or by exaggerating the longer leg.

TABLE VII.

MAXIMUM SIZES OF SHEARED PLATES; ILLINOIS STEEL Co.

Thickness,					Width o	f Plate i	n Inches					
Inches.	120	115	110	100	90	80	72	60	50	40	30	Diam.
3 16 4 5 16 3 8 7	144 180 180	156 200 210	156 200 220 220	200 250 300 360	200 250 360 480	240 420 500 500	240 320 420 600 600	250 320 480 600 600	280 330 420 600 600	360 420 480 600 600	360 420 480 600 600	75 115 120 126 126
1.6 1.1 1.1 1.3	180 180 180	210 210 210 210 210 210	220 220 220 220 220	360 360 360 320 300	480 430 400 350 320	540 480 430 400 360	550 500 450 410	600 600 580 530 480	600 600 600 600 570	600 600 600 600	600 600 600 600	126 126 126 126 126
13 16 7 15 15 16 1	180 180 180 180	210 210 200 190 170	220 220 210 200 180	260 250 230 220 190	300 280 260 240 220	330 310 300 270 240	380 350 330 310 280	440 410 390 360 320	530 500 460 430 390	600 600 580 540 480	600 600 600 600	126 126 126 126 126
1 1 1 1 1 1 1 2 2 2	144 144	150 150 125	160 160 130 120	180 180 140 130	200 200 160 140	220 220 180 160	250 250 210 190	290 290 240 220	350 290 290 260	440 360 360 330	580 480 480 440	122 122 120 115

Sections.—Give sections of all members used in the structure. Whenever two or more columns or other members in different locations have the same section, either note it, or mark the section on each one. For a column of special make-up show a cross section.

Dimensions.—The following dimensions should be given: (I) Height of lower chord of trusses from floor level; (2) elevation of top of crane rail with clearance; (3) distance c. to c. of crane rail with clearance; (4) distance b. to b. of angles of all main columns; (5) pitch of trusses or height of same at heel and slope of upper chord; (6) width and height of ventilator; (7) length of bays; (8) distance c. to c. of building columns; (9) location and size of stacks; (10) location and size of openings and circular ventilators; (11) thickness of all walls, and relation to center line of columns.

Windows.—Give size and number of lights and height of windows. Show location of all windows. State whether pivoted, sliding, counter-balanced or fixed, and whether continuous. State kind of glass.

Doors.—Give dimensions (width by height) and state whether wood or steel, swinging, lifting, rolling or sliding. State style of track, hangers and latch.

Louvres.—Note depth on design, and whether wood or metal, fixed or pivoted. If metal give gage and kind of same.

Corrugated Steel.—Give gage and kind of all corrugated sheeting, painted or galvanized; method of fastening, lining, etc.

Gutters and Conductors.—Show gutters, conductors and downspouts where necessary and give size and kind and thickness of metal, methods of fastening, etc.

Circular Ventilators.—Show location on design and note size and kind.

Roofing.—Give kind of roofing material, and thickness of sheathing when used.

Notes.—Note on design the section of: (a) Purlins and form where trussed; (b) girts; (c) sag rods; (d) lateral bracing; (e) end columns; (f) window posts; (g) door posts.

Connections.—In making a design be sure that all clearances and connections with adjoining structures are properly provided for and that all dimensions necessary for detailing of same are given on the design.

DESIGNS OF PLATE GIRDER BRIDGES.

Loads.—Give assumed dead, live and wind loads, and show diagram of wheel loads.

Diagram and Views.—Show an elevation of girder with stiffeners, a plan with lateral bracing, and a half end view and a half intermediate section.

Stresses.—Give maximum bending moments and maximum shears, maximum stresses, required and actual net area of flanges, noting number of rivets deducted, and required net and actual gross areas of webs.

Dimensions.—The following dimensions should appear on all plate girder designs. Distance b. to b. of end angles, or distance out to out of girders, c. to c. of bearings, back wall to back wall, or c. to c. of piers, b. to b. of flange angles, spacing of girders and track stringers, base of rail to masonry, end of steel to face of back wall, angle of skew if any, and grade of base of rail.

For girder bridges on curves give the curvature and super-elevation of outer rail and distance from top of masonry to base of low rail. Give elevation of grade and of masonry on a vertical line through center of end bearing.

Rivet Spacing.—Note on the elevation of girders the spacing of rivets connecting flange angles to web, changing spacing at stiffener points. Give number of rivets in single shear for end connections of all laterals and cross frames.

Shoes and Pedestals.—Give maximum reaction, required and actual area of masonry plate, with allowable pressure on masonry. Note size of bed plate, and show in position with location of holes for anchor bolts. Note size and number of rollers for expansion pedestal, and also whether pedestal is built, cast iron or steel.

Expansion Points.—Mark fixed and expansion points and show whether pedestals or bearing plates are to be used.

Stiffeners.—Show end and intermediate stiffeners on elevation of girder, giving sections and stating whether fillers are used, or stiffeners crimped.

Super-elevation.—If the bridge be on a curve, show how the super-elevation of the outer rail is to be cared for, whether by tapering ties, or changing height of pedestal or masonry plate.

Track.—Show track in place, noting such information as size and notching of ties and guard timbers and manner of connecting timber deck to the girder. For through girder always show clearance diagram with dimensions.

Notes.—(a) Material (whether O. H. (open-hearth) or Bessemer, soft, medium or structural steel); (b) specifications (name and date); (c) size of rivets and holes, reamed or punched full size.

DESIGNS OF TRUSS BRIDGES.

Loads.—Always give the following assumed loads on the stress sheets.

Dead Loads.—(a) Weight of track in lb. per lin. ft. of track; (b) weight of trusses and bracing per lin. ft. of bridge; (c) weight of stringer and stringer bracing per lin. ft. of bridge; (d) weight of floorbeams per lin. ft. of bridge.

Live Load.—(Diagram of wheel loads.)

Wind Load.

Diagrams.—In general, the design shall show an elevation of the truss, plan of top lateral bracing, plan of bottom lateral bracing and stringer bracing, half end view showing portal, half intermediate view, or as many intermediate views as are necessary to show intermediate sway frames. The end view shall show track in place with information similar to that for plate girders. The design of a pin-connected bridge shall show the sizes of pins and the arrangement of the members at all panel points.

Stresses.—Give the stresses in all members of trusses as follows: D. L. (Dead Load); L. L.

(Live Load); I. (Impact); C. (Curvature); W. (Wind Stresses). Also total stresses.

Always use the minus sign for tensile stress and the plus sign for compressive stress. Compute and give traction stresses for viaduct towers.

For stringers and floorbeams give the bending moment and shear and stresses in the same manner as for plate girders.

General Dimensions.—The most important dimensions are, number of panels and length, depth of truss at every panel point if upper chord is curved, distance c. to c. of trusses, distance base of rail to masonry, distance center of end pin to masonry, distance c. to c. of end pins and face to face of masonry, or c. to c. of piers. If the bridge be on a curve, give the degree and show direction of curvature, the distance of base of low rail to masonry, and the super-elevation of outer rail. Note that greater clearances are required on curves. Show the clearance line and line of base of rail in the elevation of truss.

Compression Members.—Give the actual unit stress, the allowable unit stress, radius of gyration, moment of inertia, actual and required area, eccentricity and cross-section.

Tension Members.—Give allowable and actual stresses, the required and actual net area. For built sections give number of holes deducted for rivets in obtaining net area, and radius of gyration.

Sections.—Give section of every member and thickness of all gusset plates. Always give size of lacing bars, and state whether single or double lacing is required.

Built Sections.—On all built sections give depth of section, and in using plate and angle sections, make the web $\frac{1}{2}$ in. less in width than the depth of section.

Angles with Unequal Legs.—In any member composed of one or more angles with unequal legs, show clearly the direction in which the long or short leg is turned.

Rivets.—Note the number of rivets to be used for end connections of all members, and give the number of rivets in single shear required at end connection of track stringers.

Shoes or Pedestals.—Give maximum reaction, required and actual area of masonry plate, with allowable pressure on masonry. Note size of bed plate, and show in position with location of holes for anchor bolts. Note size and number of rollers for expansion pedestal, and also whether pedestal is built, cast iron or steel.

Camber.—The amount of camber should be shown on the design.

Notes.-Same as for Plate Girders.

CHAPTER XIII.

ESTIMATES OF STRUCTURAL STEEL.

GENERAL INSTRUCTIONS.—When an estimate of the structural steel in a structure is to be made the man in charge shall immediately examine all of the data furnished to see that he has sufficient information to make a satisfactory estimate. He shall fill out the data sheet completely, and then take off the quantities. Use only the standard estimate blanks for taking off material. The author has found the estimate blank below very satisfactory.

CROCKER & KETCHUM

Consulting Engineers
DENVER, COLO.

Bestimate of Works of 160-Ft. Span Highway Bridge

Sheet No.

Logan Periodicin Co.

Fah 73

Me.			Weight		WEIGHT		Mo.	TOTAL
Pec.	DESCRIPTION	LENGTH	Fer Pt.	Main Members	Details	Complete Member	Regid	WEST
2 2 4 4 2 46 526	4 END POSTS 8"[5@ 1/4# Cov.Pl. 12" 5/16 Bat.Pl. 12" 1/4" Hinge Pl. 62 x 1 Pin Pl. 8 x 1/9 Fill Pl. 62 x 16 Lac. Br.s. 13/4 x 1/4 Riv. Hds. For 2 4, pp	0 8 0 6 1 1 5	each 11.25 12.75 10.20 5.33 10.20 1.38 1.49 16.12	926	21 16 51 2 83 85 258	. 1184	4	4736

Number each page consecutively, and when all the quantities are totaled prepare a summary on the last page. Each sheet shall have the sheet number and also the total number of sheets in the estimate, for example 9 of 20. This will prevent the loss of a page. After the estimate is completely taken off another man shall check it. When checked the estimate shall be extended by the checker, each sheet being immediately totaled up as extended. The extensions shall then be checked by the original estimator, who also prepares a summary. The summary is then checked by the checker and the estimate is complete.

The estimate should be practically a condensed bill of material of the work, and should be so clearly made that a reference to the estimate will show at a glance the weight of all the principal pieces. Main and secondary trusses, main columns, girders, crane girders, etc., for buildings; and trusses, girders, floorbeams, etc., for bridges should be taken off separately, thus—I truss, 6 required—and shall not be mixed together even though the correct weight is obtained. In making an estimate the following order will be found convenient.

1. MILL BUILDINGS.—Trusses.—Top chords, lower chords, web members, purlin lugs, gusset plates, connection plates, splice plates, eave strut connections, knee braces and knee brace connections.

Ventilator Trusses.—Rafters, posts, web members, gusset plates, connections to trusses and purlin lugs.

425

Columns.—Column angles, web plate, base plate and angles, crane seat and cap. Base includes anchor bolts.

Crane Girders.—Flange angles, web plate, cover plates, end stiffeners, intermediate stiffeners. fillers, knee braces and knee brace connections. Rails, splice bars, clips and crane stons.

Miscellaneous.—Eave struts, lattice girders, purlins, girts, ridge struts, lower chord struts. column struts, rafter bracing, lower chord diagonals, reinforcing angles for purlins used as rafter struts, and sag rods.

Miscellaneous Materials Not Structural Steel.—Corrugated steel roofing and siding, louvres, flashing and ridge roll, gutters, conductors, downspouts, ventilators, stack collars. Windows, doors, skylights, operating device, lumber, roofing, brick and concrete.

2. OFFICE BUILDINGS.—Floorbeams, girders, including all their connections not riveted to other members. Floors should be estimated separately using a multiplier if two or more are exactly alike.

Columns,—Columns including splices and connections riveted to the columns. If columns are of Bethlehem "H" sections, it should be so noted on the estimate summary. Estimate columns in tiers.

Miscellaneous, such as suspended ceilings, galleries, penthouses, lintels, curb-angles, canopies, etc.

3. TRUSS BRIDGES.—Truss members should be taken off separately in order that the estimate will show at a glance the weight of any main member. Never write off material for the trusses thus, "1-Truss-4 Reg'd."

Stringers: floorbeams: portals: sway trusses: upper laterals: lower laterals: shoes, masonry plates, anchor bolts, etc.

A convenient order can easily be arranged for other structures.

INSTRUCTIONS FOR TAKING OFF MATERIAL.—Quantity estimates shall give the shipping weights, not shipping weights plus scrap. Pin plates, gusset plates, etc., shall be taken off as equivalent rectangular plates. Large irregular plates or small irregular plates which occur in larger numbers shall have the exact sizes shown in the estimate and should have their weights accurately calculated. All quantity estimates shall be made out with black drawing ink.

The following colored pencils shall be used in estimating:

Black.—In taking off quantities, all check marks on drawings or blue prints shall be made with a black pencil.

Red.—In checking "quantities taken off" all check marks on drawings, blue prints and data sheets shall be made with a red pencil.

Blue.—Blue pencils shall be used for checking extensions, also for making notes, corrections, alterations or additions on white prints or tracings.

Yellow.—All alterations, corrections or additions, on blue prints at the time of estimating shall be made with a yellow pencil.

All notes on blue prints or drawings in regard to alterations, corrections or additions shall be dated and signed by the person in charge of the estimate. In general all work shall be taken off in feet and inches. Lengths of bolts shall be given in feet and inches.

CLASSIFICATION OF MATERIAL.—In making the summary steel and iron should be classified as follows:

Bars, including plates 6 in. wide and under, rounds up to 3 in. in diameter and squares up to 3 in. on a side.

Plates (a) Flats over 6 in. wide up to and including 100 in., and \(\frac{1}{4}\) in. thick and over.

- (b) Flats over 100 in. wide up to and including 110 in.
- (c) Flats over 110 in. wide up to and including 115 in.
- (d) Flats over 115 in. wide up to and including 120 in.
- (e) Flats over 120 in.
- (f) Plates $\frac{3}{16}$ in. thick.
- (g) Plates ½ in. thick.

- (h) Plates checkered.
- (i) Plates buckle.

Angles (a) Having both legs 6 in. wide or under.

- (b) Having either leg more than 6 in. in width.
- (c) Having both legs less than 3 in. in width.

Channels and I-Beams

- (a) Channels and beams up to and including 15 in. in depth.
- (b) Over 15 in, in depth.

If Bethlehem sections are used distinguish between "Bethlehem Special I-Beams" and "Girder Beams," and also regarding depths as above.

7.005

Tees.

Rails (Separate rails under 50 lb. per yd., rails over 100 lb. per yd., and girder rails).

Rail Splices.

Iron Castings.

Steel Castings.

Nuts.

Clevises and Turnbuckles.

Pins, rounds from 3 in. diameter to 63 in. in diameter.

Forgings, rounds over 63 in. in diameter.

Bronze, Lead, etc.

Rivets and Bolts.

Rivet Heads.—Where the estimate is made from shop drawings the actual number of rivet heads shall be determined. The weight of rivet heads in per cent of the total weight of the other material is about as follows: Purlins, girts and beams, 2 per cent; trusses and bracing, 4 per cent; plate girders and columns of 4 angles and 1 pl., 5 per cent; plate girders and columns with cover plates, 6 per cent; box girders or channel columns with lacing, 7 per cent; trough floors, 8 to 10 per cent.

The rivet heads in highway bridges may be taken at 5 and 4 per cent of the total weight of steel exclusive of fence and joists for riveted and pin-connected trusses, respectively.

Bolts are usually taken off in the estimate when they occur, and entered as rivets. When bolts are under 6 in. in length, include bolts under the item "Bolts and Rivets." When over 6 in. in length, put the bolts under "Bars."

Miscellaneous Materials.—Corrugated Steel.—Always give the number of gage, whether painted or galvanized, and whether iron or steel. This remark also applies to louvres, flashing, ridge roll, gutters and conductors. State whether corrugated steel is for roofing or siding. Roofing shall be estimated in squares of 100 sq. ft., adding three feet on each end of building to the distance c. to c. of end trusses to allow for cornice. Allow one foot overhang at eaves. Siding shall be estimated in squares of 100 sq. ft., adding one foot at each end of building to allow for corner laps.

Louvres shall be estimated in sq. ft. of superficial area, stating whether fixed or pivoted.

Flashing shall be estimated in lineal feet and shall be taken off over all windows where corrugated sheathing is used on the sides of building, and under all louvres and windows in ventilators.

Ridge roll shall be estimated in lineal feet, adding one foot to the distance center to center of end trusses. Ridge roll is usually taken off the same gage as the corrugated steel roofing.

Gutters and conductors shall be estimated in lineal feet, the conductors usually being spaced from 40 to 50 ft., depending upon the area drained.

Circular ventilators shall be estimated by number, giving diameter and kind, if specified.

Stack collars shall be estimated by number, giving diameter of stack.

Windows shall be estimated in sq. ft. of superficial area, taking for the width the distance between girts. State whether windows are fixed, sliding, pivoted, counter-balanced or counter-weighted. State kind and thickness of glass and give list of hardware, and any thing else of a special nature.

Doors shall be estimated in sq. ft.; state whether sliding, lifting, rolling or swinging. Steel doors covered with corrugated steel shall be estimated by including the steel frame under steel and the covering with corrugated steel siding. State style of track, hangers and latch.

Skylights shall be estimated in sq. ft., giving kind of glass and frames.

Operating devices for pivoted windows or louvres shall be estimated in lineal feet.

Lumber shall be estimated in feet, board measure, noting kind. Note that lumber under I in. in thickness is classified as I in. Above I in. it varies by $\frac{1}{4}$ in. in thickness, and if surfaced will be $\frac{1}{8}$ in. less in thickness, i. e., I $\frac{3}{4}$ in. sheathing is actually I $\frac{5}{8}$ in. thick, but shall be estimated as I $\frac{3}{4}$ in. Lumber comes in lengths of even feet; if a piece IO ft.—8 in. or II ft.—O in. is required, a stick I2 ft.—O in. long shall be estimated. In using lumber there is usually considerable waste depending upon the purpose for which it is intended. In estimating tongue and grooved sheathing IO to 20 per cent shall be added for tongues and grooves and from 5 to IO per cent for waste, depending upon the width of boards and how the sheathing is laid.

Composition roofing or slate shall be estimated in squares of 100 sq. ft., allowing the proper amount for overhang at eaves and gables and for flashing up under a ventilator or on the inside of a parapet wall.

Tile roofing or slate shall be estimated in squares of 100 sq. ft., adding 5 per cent for waste. Include in an estimate for tile roof, gutters, coping, ridge roll, plates over ventilator windows and plates under ventilator windows, these being estimated in lineal feet. Flat plates for the ends of ventilators shall be estimated in sq. ft.

Brick shall be estimated by number. For ordinary brick such as is used in mill building construction, estimate 7 brick per sq. ft. for each brick in thickness of wall, i. e., a 9 in. wall is two bricks thick and contains 14 brick for each sq. ft. of superficial area.

Always note whether walls are pilastered or corbeled and estimate the additional amount of brick required. If walls are plain, no percentage need be added for waste, but if openings such as arched windows occur add from 5 to 10 per cent.

Concrete shall be estimated in cubic yards. Walls or ceiling of plaster on expanded metal shall be estimated in squares of 100 sq. ft., noting thickness and kind of reinforcement. Reinforced concrete floors shall be estimated in sq. ft. of floor area, noting thickness and kind of reinforcement. Paving of all kinds is estimated in square yards, but the concrete filling under the pavement itself is estimated in cubic yards. Concrete floor on cinder filling is usually estimated in square yards, specifying its proportions.

ESTIMATE OF COST.—The different types of framed steel structures vary so much with local conditions and requirements that it is only possible to give data that may be used as a guide to the experienced estimator. The cost of steel frame structures may be divided into (1) cost of material, (2) cost of fabrication, (3) cost of erection, and (4) cost of transportation.

1. Cost of Material.—The price of structural steel is quoted in cents per pound delivered f. o. b. cars at the point at which the quotation is made. Current prices may be obtained from the Engineering News, Iron Age or other technical papers. The present prices (1914) f. o. b. Pittsburgh, Pa., are about as follows:

TABLE I.

PRICES OF STRUCTURAL STEEL (1914) F. O. B. PITTSBURGH, PA., IN CENTS PER POUND.

Material.	Price in Cts. per Lb.
I-beams, 18 in. and over	1.55
I-beams and channels, 3 in. to 15 in	
H-beams, over 8 in	1.60
Angles, 3 in. to 6 in. inclusive	1.45
Angles, over 6 in	1.50
Zees, 3 in. and over	1.45
Angles, channels, and zees, under 3 in	

Deck beams and bulb angles 1.75
Checkered and corrugated plates
Plates, structural, base
Plates, flange, base
Corrugated steel No. 22, painted
Corrugated steel No. 22, galvanized
Steel sheets Nos. 10 and 11, black
Steel sheets Nos. 10 and 11, galvanized
Steel sheets No. 22, black
Steel sheets No. 22, galvanized
Bar iron, base
Rivets

COST OF FABRICATION OF STRUCTURAL STEEL.—The cost of fabrication of structural steel may be divided into (a) cost of drafting, (b) cost of mill details, and (c) cost of shop labor.

(a) COST OF DRAFTING.—The cost of drafting varies with the character of the structure and with the shop methods of the bridge company. There are two general methods in common use for detailing steel structures, sketch details, and complete details (see Chapter XII). The cost of drafting varies with the method of detailing and the number of pieces to be made from one detail, and costs per ton may mean but little and be very misleading. The cost per standard sheet (24 in. × 36 in.) is more nearly a constant and varies from \$15 to \$25 per sheet. The following approximate costs, based on a total average charge of 40 cents per hour may be of value.

Mill and Mine Buildings.—Details of ordinary steel mill buildings cost from \$2 to \$4 per ton; details for headworks for mines cost from \$4 to \$6 per ton; details for churches and court houses having hips and valleys, cost from \$6 to \$8 per ton; details for circular steel bins cost from \$1.50 to \$3 per ton; details for rectangular steel bins cost from \$2 to \$4 per ton; details for conical or hopper bottom bins cost from \$4 to \$6 per ton.

Bridges.—Details of steel bridges will cost from \$1 to \$2 per ton where sketch details are used and from \$2 to \$4 per ton where the members are detailed separately.

Actual Cost of Drafting.—The details of the Basin and Bay State Smelter, containing 270 tons, cost \$2 per ton.

The costs of making shop details for steel structures as given in the Technograph No. 21, 1907, by Mr. Ralph H. Gage, are given in Table II.

TABLE II.

Cost of Shop Drawings.

Character of Building.	Average Cost per Ton.
Entire skeleton construction, i. e., loads all carried to the foundation by means of steel columns	\$1.45
and their own weight	1.22
as well as their own weight	0.70
No columns and floorbeams resting on masonry walls throughout	0.85
Structure consisting mostly of roof trusses resting on columns	2.47
Structure consisting mostly of roof trusses resting on masonry walls	1.25
Mill buildings	2.56
Flat one-story shop or manufacturing buildings.	0.74
Tipples, mining structures or other complicated structures	4.88
Malt or grain bins and hoppers	2.47
can be made	1.87

Mr. Gage makes the following comments on the cost of drafting: "The cost of drafting materials and blue prints was not included. There is always a noticeable decrease in cost of the details when the plans for the ironwork are made and designed by an engineer and separated from the general work. On the average it cost 35 per cent more to make shop drawings of the structural steel when the data were taken from the architect's plans than when the data were taken from carefully worked out engineer's plans. Inaccurate plans where the draftsman is continually finding errors which must be referred to the architect materially increase the cost of shop drawings."

(b) COST OF MILL DETAILS.—If material is ordered directly from the rolling mill the price for the necessary cutting to exact length, punching, etc., is based on a standard "card of mill extras."

CARD OF MILL EXTRAS.—If the estimate is to be based on card rates it will be necessary

to have the subdivisions a, b, c, d, e, f, r, etc., as follows: a = 0.15cts. Plain punching, one size of hole in web only. Plain punching,

one size of hole in one or both flanges.

b = 0.25cts. per lb. This covers plain punching one size of hole either in web and one flange

or web and both flanges. (The holes in the web and flanges must be of same size.)

c = 0.3octs, per lb. This covers punching of two sizes of holes in web only. Punching of two sizes of holes either in one or both flanges. One size of hole in one flange and another size of hole in the other flange.

d = 0.35cts. per lb. This covers coping, ordinary beveling, riveting or bolting of connection angles and assembling into girders, when the beams forming such girders are held together by separators only.

e = 0.40cts. per lb. This covers punching of one size of hole in the web and another size of

hole in the flanges. f = 0.15cts. per lb.This covers cutting to length with less vibration than + \frac{3}{2} in.

r = 0.50cs. per lb. This covers beams with cover plates, shelf angles, and ordinary riveted beam work. If this work consists of bending or any unusual work, the beams should not be included in beam classification.

Fittings.—All fittings, whether loose or attached, such as angle connections, bolts, separators, tie rods, etc., whenever they are estimated in connection with beams or channels to be charged at 1.55cts, per lb. over and above the base price. The extra charge for painting is to be added to the price for fittings also. The base price at which fittings are figured is not the base price of the beams to which they are attached but is in all cases the base price of beams 15 in. and under.

The above rates will not include painting, or oiling, which should be charged at the rate of o. rocts. per lb. for one coat, over and above the base price plus the extra specified above.

For plain punched beams where more than two sizes of holes are used, 0.15cts. per lb. should be added for each additional size of hole, for example, plain punched beams, where three sizes of holes occur would be indicated as: c + 0.15cts., four sizes of holes; e + 0.3octs. For example: a beam with $\frac{5}{6}$ in, and $\frac{3}{4}$ in, holes in the flanges and $\frac{5}{6}$ in, and $\frac{3}{4}$ in, holes in the web should be included in class e.

Cutting to length can be combined with any of the other rates, class d excepted, and would have to be indicated; for example: Plain punching one size of hole in either web and one flange, or web and both flanges, and cutting to length would be marked bf, which would establish a total

charge of 0.40cts. per lb.

Note to class d.—No extra charge can be added to this class for punching various sizes of holes, or cutting to exact lengths; in other words; if a beam is coped or has connection angles riveted or bolted to it, it makes no difference how many sizes of holes are punched in this beam, the extra will always be the same, namely 0.35cts. When beams have angles or plates riveted to them, and same are not half length of the beam, figure the beams as class d, and the plates and angles as beam connections.

Note to class r.—This rate of 0.5octs. per lb. applies to all the material making up the riveted beam. In case of assembled girders in which one of the beams should be classed as a riveted beam. In case of assembled girders in which one of the beams should be classed as a riveted beam, in making up the estimate, figure only the beam affected as included in class "r." When beams have angles or plates riveted to them and same are half length or more than half length of the beam, figure the beams as class "r," including the plates or angles and rivets. When 18 in., 20 in., or 24 in. beams are in "r" class keep the I's separate from the material (plates, cast iron, separators, angles and rivets) which should go under heading, "15 in. I's and Under." Beams should be divided as 15 in. I's and under, and 18 in., 20 in. and 24 in. I's. If there are only one or two sizes of beams in any particular class, give exact sizes, instead of "15 in. I's and Under."

and Under.'

In estimating channel roof purlins classify 7 in. channels and smaller as one punched; 8 in. channels and larger as two punched, unless they are shown or noted otherwise, and keep separate from other beams.

No extra charge can be added to curved beams for riveting, cutting to length, etc.

Subdividing work into a large number of classes should be avoided; it is better to have too few classes, rather than too many.

The only subdivision necessary for cast iron columns are: I in. and over, and under I in.

Columns with ornamental work cast on must be kept separate.

Round and Square Bars.—In estimating round and square bars use the standard card for extras, Table III. It is not usual to enforce more than one-half the standard card extras for round and square bars.

Extras. - Shapes, Plates and Bars:

(Cutting to length)

Extras-Plates (Card of January 7, 1902):

Base 1 in. thick, 100 in. wide and under, rectangular (see sketches).

	Per 100 Lb.
Widths—100 in. to 110 in.	. \$.05
110 in. to 115 in	10
115 in. to 120 in	15
120 in. to 125 in	25
125 in. to 130 in	
Over 130 in	. 1.00
Gages under \(\frac{1}{4} \) in. to and including \(\frac{3}{16} \) in	10
Gages under 1 in. to and including No. 8	15
Gages under No. 8 to and including No. 9	
Gages under No. 9 to and including No. 10.	30
Gages under No. 10 to and including No. 12.	40
Complete circles	20
Boiler and flange steel	10
Marine and fire box	20
Ordinary sketches	10

(Except straight taper plates, varying not more than 4 in. in width at ends, narrowest end not less than 30 in., which can be supplied at base prices.)

TABLE III.

STANDARD CLASSIFICATION OF EXTRAS ON IRON AND STEEL BARS.* Rounds and Squares.

Squares up to 41 inches only. Intermediate sizes take the next higher extra.

1 to 3	in	
to H	44	o.10 extra.
1 to 18	•	.20 "
7.	"	.40 ''
4	44	.50 "
18	46	.70 ''
and 12		1.00
77		2.00 "
78	***************************************	2.50 "
318 to 31	46	.15 "

^{*} This classification has been quite generally adopted, although several firms issue a special card of extras.

TABLE III.—Continued.

STANDARD CLASSIFICATION OF EXTRAS ON IRON AND STEEL BARS.

Flat Bars and Heavy Bands.		
$3\frac{9}{16}$ to 4 in	25	extra.
$4\frac{1}{16}$ to $4\frac{1}{2}$ "	30	44
4 ⁹ / ₁₆ to 5 "	40	6.6
$5\frac{1}{8}$ to $5\frac{1}{2}$ "		4.6
$5\frac{5}{8}$ to 6 "		6.6
$6\frac{1}{8}$ to $6\frac{1}{2}$ "		66
$6\frac{5}{8}$ to $7\frac{1}{2}$ "		6.6
08 10 /4	. 1.25	
Flat Bars and Heavy Bands.		
	Per 10	o Lb.
I to 6 in. X 3 to I in	. Rates.	
1 to 6 " X and 5"	\$0.20	extra.
$\frac{11}{16}$ to $\frac{5}{16}$ " $\times \frac{3}{8}$ to $\frac{3}{4}$ "		44
$\frac{16}{16}$ to $\frac{15}{16}$ " $\times \frac{1}{4}$ and $\frac{5}{16}$ "	•	44
11 to 5 " X \$ to 4 " 11 to 15 " X \$ to 4 " 11 to 16 " X \$ and 5 " 15 and 5 " X \$ and 5 " 16 and 8 " X \$ and 5 " 17 " X \$ and 5 " 18 and 5 " X \$ and 5 " 19 " X \$ and 5 " 10 " X \$ and 5 " 11 to 15 " X \$ and 5 " 12 " X \$ and 5 " 13 " X \$ and 5 " 14 " X \$ and 5 " 15 " X \$ and 5 " 16 " X \$ and 5 " 17 " X \$ and 5 " 18 " X \$ and 5 " 19 " X \$ and 5 " 10 " X \$ and 5 " 11 to 15 " X \$ and 5 " 12 " X \$ and 5 " 13 " X \$ and 5 " 14 " X \$ and 5 " 15 " X \$ and 5 " 16 " X \$ and 5 " 17 " X \$ and 5 " 18 " X \$ and 5 " 19 " X \$ and 5 " 10 " X \$ and 5 " 11 to 10 " X \$ and 5 " 12 " X \$ and 5 " 13 " X \$ and 5 " 14 " X \$ and 5 " 15 " X \$ and 5 " 16 " X \$ and 5 " 17 " X \$ and 5 " 18 " X \$ and 5 " 19 " X \$ and 5 " 10 " X \$ and 5 " 11 to 10 " X \$ and 5 " 12 " X \$ and 5 " 13 " X \$ and 5 " 14 " X \$ and 5 " 15 " X \$ and 5 " 16 " X \$ and 5 " 17 " X \$ and 5 " 18 " X \$ and 5 " 19 " X \$ and 5 " 10 " X \$		46
$\frac{9}{16}$ and $\frac{5}{8}$ " $\times \frac{3}{8}$ to $\frac{1}{2}$ "		44
16 and 8 × 1 and 16		66
" X and 7 "		44
$\frac{1}{2}$ " $\times \frac{1}{4}$ and $\frac{5}{16}$ "		66
16 "×3 "		44
$\frac{1}{16}$ " $\times \frac{1}{4}$ and $\frac{1}{16}$ "		44
* X \(\frac{1}{4}\) and \(\frac{1}{16}\)		"
$I_{\frac{1}{6}}$ to 6 in. $\times I_{\frac{1}{16}}$ to $I_{\frac{3}{6}}$ in		
$I_{\frac{1}{8}}$ to 6 " \times $I_{\frac{1}{4}}$ to $I_{\frac{1}{2}}$ "	20	44
$I_{\frac{3}{4}}$ to 6 " $\times I_{\frac{5}{8}}$ to $2_{\frac{3}{4}}$ "	30	66
3½ to 6 " × 3 to 4 "	40	66
Light Bars and Bands.		
		oo Lb.
$1\frac{1}{2}$ to 6 in. \times Nos. 7, 8, 9 and $\frac{3}{16}$ in		extra.
$1\frac{1}{2}$ to 6 in. \times Nos. 10, 11, 12 and $\frac{1}{6}$ in		"
1 to $1\frac{7}{16}$ in. \times Nos. 7, 8, 9 and $\frac{3}{16}$ in		44
I to $1\frac{7}{16}$ in. \times Nos. 10, 11, 12 and $\frac{1}{6}$ in	70	44
$\frac{13}{16}$ to $\frac{15}{16}$ in. \times Nos. 7, 8, 9 and $\frac{3}{16}$ in		66
$\frac{18}{18}$ and $\frac{18}{16}$ in. \times Nos. 10, 11, 12 and $\frac{1}{8}$ in		44
$\frac{11}{16}$ and $\frac{3}{4}$ in. \times Nos. 7, 8, 9 and $\frac{3}{16}$ in		4.6
$\frac{11}{16}$ and $\frac{3}{4}$ in. \times Nos. 10, 11, 12 and $\frac{1}{8}$ in.		44
$\frac{11}{16}$ and $\frac{3}{4}$ in. \times Nos. 10, 11, 12 and $\frac{1}{8}$ in. $\frac{9}{16}$ and $\frac{5}{8}$ in. \times Nos. 7, 8, 9 and $\frac{3}{16}$ in. \times		46
$\frac{16}{9}$ and $\frac{8}{8}$ in. \times Nos. 10, 11, 12 and $\frac{1}{8}$ in.		44
1 0 - 13 1		64
$\frac{1}{2}$ X Nos. 10, 11, 12 and $\frac{1}{8}$ in.		44
7 No. 7 0 0 and 3 in.		44
$\frac{3}{2}$ × Nos. 7, 8, 9 and $\frac{1}{16}$ in. $\frac{1}{2}$ × Nos. 10, II, 12 and $\frac{3}{8}$ in. $\frac{7}{16}$ × Nos. 7, 8, 9 and $\frac{3}{16}$ in. × Nos. 10, II, 12 and $\frac{3}{8}$ in.		66
\times Nos. 10, 11, 12 and $\frac{1}{8}$ in		66
$\cdot \frac{3}{8}$ × Nos. 7, 8, 9 and $\frac{3}{16}$ in	. 1.90	••

Mill Orders.—In mill orders the following items should be borne in mind. Where beams butt at each end against some other member, order the beams $\frac{1}{2}$ in. shorter than the figured lengths this will allow a clearance of $\frac{1}{4}$ in. if all beams come $\frac{3}{8}$ in. too long. Where beams are to be built into the wall, order them in full lengths, making no allowance for clearance. Order small plates in multiple lengths. Irregular plates on which there will be considerable waste should be ordered cut to templet. Mills will not make reentrant cuts in plates. Allow $\frac{1}{4}$ in. for each milling for members that have to be faced. Order web plates for girders $\frac{1}{4}$ to $\frac{1}{2}$ in. narrower than the distance back to back of angles. Order as nearly as possible every thing cut to required length, except where there is liable to be changes made, in which case order long lengths.

 \times Nos. 10, 11, 12 and $\frac{1}{8}$ in...

It is often possible to reduce the cost of mill details by having the mills do only part of the work, the rest being done in the field, or by sending out from the shop to be riveted on in the field connection angles and other small details that would cause the work to take a very much higher

price. Standard connections should be used wherever possible, and special work should be avoided.—For additional notes on ordering material, see Chapter XII.

In estimating the cost of plain material in a finished structure the shipping weight from the structural shop is wanted. The cost of material f. o. b. the shop must therefore include the cost of waste, paint material, and the freight from the mill to the shop. The waste is variable but as an average may be taken at 4 per cent. Paint material may be taken as two dollars per ton. The cost of plain material at the shop would be

Average cost per lb. f. o. b. mill, say	5 cts.
Add 4 per cent for waste	7 "
Add \$2.00 per ton for paint material	
Add freight from mill to shop (Pittsburg to St. Louis)	25 "
Total cost per pound f. o. b. shop	45"

To obtain the average cost of steel per pound multiply the pound price of each kind of material by the percentage that this kind of material is of the whole weight, the sum of the products will

be the average pound price.

(c) COST OF SHOP LABOR.—The cost of shop labor may be calculated for the different parts of the structure, or may be calculated for the structure as a whole. The following costs are based on an average charge of 40 cents per hour and include detailing and shop labor. The cost of fabricating beams, channels and angles which are simply punched or have connection angles loose or attached should be estimated on the basis of mill details, which see.

SHOP COSTS OF STEEL FRAME BUILDINGS.—The following costs of different parts

of steel frame office and mill structures are a fair average.

Columns.—In lots of at least six, the shop cost of columns is about as follows: Columns made of two channels and two plates, or two channels laced cost about 0.80 to 0.70 cts. per lb., for columns weighing from 600 to 1,000 lb. each; columns made of 4 angles laced cost from 0.80 to 1.10 cts. per lb.; columns made of two channels and one I-beam, or three channels cost from 0.65 to 0.90 cts. per lb.; columns made of single I-beams, or single angles cost about 0.50 cts. per lb.; and Z-bar columns cost from 0.70 to 0.90 cts. per lb.

Plain cast columns cost from 1.50 to 0.75 cts. per lb., for columns weighing from 500 to 2,500

lb., and in lots of at least six.

Roof Trusses.—In lots of at least six, the shop cost of ordinary riveted roof trusses in which the ends of the members are cut off at-right angles is about as follows: Trusses weighing 1,000 lb. each, 1.15 to 1.25 cts. per lb.; trusses weighing 1,500 lb. each, 0.90 to 1.00 cts. per lb.; trusses weighing 2,500 lb. each, 0.75 to 0.85 cts. per lb.; and trusses weighing 3,500 to 7,500 lb. 0.60 to 0.75 cts. per lb. Pin-connected trusses cost from 0.10 to 0.20 cts. per lb. more than riveted trusses.

Eave Struts.—Ordinary eave struts made of 4 angles laced, whose length does not exceed

20 to 30 ft., cost for shop work from 0.80 to 1.00 cts. per lb.

Plate Girders.—The shop work on plate girders for crane girders and floors will cost from 0.60 to 1.25 cts. per lb., depending upon the weight, details and number made at one time.

TABLE IV.

SHOP COST OF CIRCULAR AND RECTANGULAR BINS AND STAND-PIPES, NOT INCLUDING HOPPERS OR BOTTOMS.

Thickness of Metal, In.	Shop Cost in C	Cents per Lb.
I mekness of Metal, In.	Water Tight.	Bins.
1	0.90	0.80
**	0.85	0.75
1	0.80	0.70
1	0.75	0.65

SHOP COSTS OF BINS AND STAND-PIPES.—Shop costs for circular and rectangular bins and stand-pipes are given in Table IV, while shop costs for bin and elevated tank bottoms are given in Table V. The shop cost of towers for elevated tanks are given in Table VI.

TABLE V.
SHOP COST OF BOTTOMS FOR CIRCULAR AND RECTANGULAR BINS AND STAND-PIPES.

Thickness of Material, In.	Flat Bottom, Cents per Lb.	Spherical Bottom, Cents per Lb.	Conical Bottom, Cents per Lb.	Hopper Bottom, Cents per Lb.
1 2 5	1.50	4.00	3.50	2.50
16 3 8	1.45	4.15 . 4.40	3.00 2.75	2.40 2.25
1 2	1.25	4.50	2.50	2.00

TABLE VI.

SHOP COST OF TOWERS FOR ELEVATED TANKS AND BINS.

Weight of Tower and Bracing in Lb.	Shop Cost in (Cents per Lb.
Weight of Tower and Bracing in Eb.	Adjustable Bracing.	Riveted Bracing.
10.000 and less	1.30	1.20
10,000 to 20,000	1.25	1.10
20,000 to 50,000	1.15	1.05
50,000 and up	1.10	1.00

SHOP COSTS OF INDIVIDUAL PARTS OF BRIDGES.—The cost of fabricating joists and other similar members should be estimated on the basis of mill details, which see.

Eye-Bars.—The shop cost of eye-bars varies with the size and length of the bars and the number made alike. The following costs are a fair average: Average shop costs of bars 3 in. and less in width and $\frac{3}{4}$ in. and less in thickness is from 1.20 to 1.80 cts. per lb., depending upon the length and size. A good order of bars running $2\frac{1}{4}$ in. $\frac{3}{4}$ in. to 3 in. $\frac{3}{4}$ in., and from 16 to 20 ft. long, with few variations in size, will cost about 1.20 cts. per lb. Large bars in long lengths ordered in large quantities can be fabricated at from 0.55 to 0.75 cts. per lb. To get the total cost of eye-bars the cost of bar steel must be added to the shop cost. Half card extras given in Table III should ordinarily be added to the base price of plain steel bars.

Chords, Posts and Towers.—In lots of at least four, the shop cost is about as follows: Members made of two channels and a top cover plate with lacing on the bottom side, or two channels laced on both sides cost about 1.00 to 0.85 cts. per lb. for pin-connected members weighing from 600 to 1,500 lb.; and about 0.80 to 0.70 cts. per lb. for members with riveted end connections. Members made of four angles laced cost from 0.80 to 1.10 cts. per lb. for members with riveted ends. Members made of two angles battened will cost about 0.50 cts. per lb. Angles used without end connections should have their cost estimated on the basis of mill details, which see.

Pins.—The cost of chord pins will vary with the size, number and other requirements. The shop cost of chord pins and nuts may be estimated at from 2.00 to 3.00 cts. per lb. Rollers will cost practically the same as pins. Rolled rounds (pin rounds) are used for making pins and rollers.

Latticed Fence.—The shop cost of light simple latticed fence made of two 2 in. $\times 2$ in. angles, with double lacing and about 18 in. deep, will be about 2.00 cts. per lb.; while the shop cost of latticed fence, with ornamental rosettes or ornamental plates, may be as much as 4.00 to 5.00 cts. per lb.

Floorbeams and Stringers.—Plate girders used for floorbeams and stringers will cost from 0.60 to 1.25 cts. per lb. depending upon the weight, details and number made at one time. Floorbeams made of rolled I-beams will cost from 0.50 to 0.75 cts. per lb.

SHOP COSTS OF BRIDGES AS A WHOLE.—The cost will be taken up under the head of pin-connected bridges, riveted bridges, plate girder bridges, combination bridge metal, and Howe truss metal.

Shop Costs of Pin-connected Bridges.—The shop costs of pin-connected highway or railway bridges, exclusive of fence and joists, are about as follows:

Bridges	weighing	5,000 lb. and less	cts.	per	lb.
44	44	5,000 to 10,000 lb	6.6	4.4	4.4
44	6.6	10,000 to 20,000 lb	4.4	4.6	4.4
44	6.6	20,000 to 40,000 lb	4.4	4.6	4.6
64	44	40,000 to 60,000 lb	6.6	44	6.6
44	6.6	60,000 to 100,000 lb	6.6	4.4	44
44	4.6	100,000 to 150,000 lb	6.6	4.6	4.6
44	6.6	150,000 and up	4.6	6.6	4.4

These costs include detailing and one coat of shop paint. For reaming add 0.15 cts. per lb. Shop Costs of Riveted Truss Bridges.—The shop costs of riveted truss highway or railway bridges, exclusive of fence and joists, are about as follows:

Bridges	weighing	5,000 lb. and less	5 cts.	per	lb.
66	6.6	5,000 to 10,000 lb) "	4.6	6.6
64	44	10,000 to 20,000 lb) "	4.6	6.6
66	44	20,000 to 40,000 lb	5 "	4.6	6.6
66	6.6	40,000 to 60,000 lb	5 "	4.4	4.4
44	66	60,000 to 100,000 lb) "	44	4.4
66	44	100,000 to 150,000 lb	5 "	44	44
66	44	150,000 lb. and up) "	4.6	44

These costs include detailing and one coat of shop paint. For reaming add 0.15 cts. per lb. Shop Costs of Plate Girder Bridges.—The shop costs of plate girder highway or railway bridges, exclusive of fence and joists, are about as follows:

S	oans we	ighing	10,000 lb. and less	cts.	per	1b.
	14	44	10,000 to 20,000 lb	6.6	6.6	4.6
	44	44	20,000 to 40,000 lb	4.6	6.6	6.6
	44	44	40,000 to 60,000 lb	6.6	4.6	4.6
	44	6.6	60,000 to 100,000 lb			
	44	44	100,000 and up	4.4	6.6	6.6

These costs include detailing and one coat of shop paint. For reaming add 0.15 cts. per lb. Shop Costs of Tubular Piers and Culverts.—The shop costs of steel tubular pier shells and steel culvert pipe are about as follows:

Tubes	18 in.	to 24 in.	diameter, }	in.	metal.		1.00	cts.	per	lb.
44	24 in.	to 30 in.	diameter,	in.	to § in.	metal0.75 to	0.65	64	6.6	6.6
64	30 in.	to 48 in.	diameter,	in.	to 3 in.	metal	0.60	6.6	4.4	4.6
44	48 in.	to 72 in.	diameter, a	in.	to ½ in.	metal0.65 to	0.50	6.6	4.6	6.6
64	72 in.	and up	ł	in.	to $\frac{5}{8}$ in.	metal	0.45	84	4.6	44

The above shop costs include detailing and one coat of shop paint. The necessary bracing and rods for tubular piers are included.

Shop Cost of Combination Bridge Metal.—Where the bars and rods are standard and the castings are made from standard patterns, the metal for combination bridges can be fabricated at about the same cost per pound as for pin-connected spans weighing the same as the weight of the metal in the combination bridges.

Shop Cost of Howe Truss Bridge Metal.—The shop cost of highway bridge castings made from standard patterns, is from 1.50 to 2.00 cts. per lb. The shop costs of the plates, rods and other miscellaneous iron work will be from 2.00 to 2.50 cts. per lb.

COST OF ERECTION OF STEEL FRAME OFFICE AND MILL BUILDINGS AND MINE STRUCTURES.—In estimating the cost of erection of structural steel work it is best to divide the cost into (a) cost of placing and bolting steel, and (b) cost of riveting. The cost will

be based on labor at an average price of \$3.20 per day of 8 hours or 40 cts. per hour.

(a) Cost of Placing and Bolting.—The cost of placing and bolting mill buildings for ordinary conditions may be estimated at from \$6.00 to \$8.00 per ton. The cost of placing and bolting up steel office buildings may be estimated at from \$5.00 to \$9.00 per ton. The cost of placing and bolting up steel bins may be estimated at from \$10.00 to \$15.00 per ton. The cost of placing and bolting up head frames may be estimated at from \$12.00 to \$18.00 per ton.

(b) Cost of Riveting.—It will cost from 6 to 10 cts. per rivet to drive $\frac{5}{8}$ or $\frac{3}{4}$ in. rivets by hand in structural framework where a few rivets are found in one place. A fair average is 7 cts. per rivet. The same size rivets can be driven in tank work for from 4 to 7 cts. per rivet, with

5 cts. per rivet as a fair average.

The cost of riveting by hand is distributed about as follows:

3 men, 2 driving and I bucking up, at \$3.50 per day of 8 hours	0
I rivet heater at \$3.00 per day of 8 hours	3.00
Coal, tools, superintendence	1.50
_	
Total per day	15.00

On structural work a fair day's work driving $\frac{3}{4}$ in. or $\frac{5}{8}$ in. rivets will be from 150 to 250, depending upon the amount of scaffolding required. This makes the total cost from 6 to 10 cts. per rivet.

On bin work when the rivets are close together and little staging is required the gang above will drive from 200 to 400 rivets per day. This makes the total cost from about 4 to 7 cts. per rivet.

Rivets can be driven by power riveters for one-half to three-fourths the above, not counting the cost of installation and air. The added cost for power and equipment makes the cost of driving field rivets with pneumatic riveters about the same as the cost of driving field rivets by hand.

Soft iron rivets $\frac{1}{2}$ in. and under can be driven cold for about one-half what the same rivets can be driven hot, or even less.

Cost of Erection.—Small steel frame buildings will cost about \$10.00 per ton for the erection of the steel framework, if trusses are riveted and all other connections are bolted. The cost of laying corrugated steel is about \$0.75 per square when laid on plank sheathing, \$1.25 per square when laid directly on the purlins, and \$2.00 per square when laid with anti-condensation lining. The erection of corrugated steel siding costs from \$0.75 to \$1.00 per square. The cost of erecting heavy machine shops, all material riveted and including the cost of painting but not the cost of the paint, is about \$8.50 to \$9.00 per ton. Small buildings in which all connections are bolted may be erected for from \$5.00 to \$6.00 per ton. The cost of erecting the structural framework for office buildings will vary from \$6.00 to \$10.00 per ton.

Actual Costs of Erection.—The cost of erecting the East Helena transformer building, 1897, was \$12.80 per ton, including the erection of the corrugated steel and transportation of the men. The cost of erecting the Carbon Tipple was \$8.80 per ton, including corrugated steel. The cost of erection of the Basin & Bay State Smelter was \$8.20 per ton, including the hoppers and corrugated steel.

The cost of erecting the structural steel work for the Great Northern Ry. Grain Elevator, Superior, Wisconsin, was \$13.25 per ton including the driving of all rivets. There were 10,600 tons of structural steel work, and 2,000,000 field rivets, or nearly 200 field rivets per ton of structural steel.

Erection of Structural Steel for an Armory.*—The structural framework for the new armory of the University of Illinois, consists of three-hinged arches having a span of 206 ft., and a center height of 94 ft. 3 in. The arches are spaced 26 ft. 6 in. centers and are braced in pairs. The total weight of structural steel was 985 tons, and contained 15,400, \(\frac{7}{8}\) in. and 14,900, \(\frac{3}{4}\) in. or a total of 30,300 field rivets. The cost of erecting the structural steel, including field riveting was \$9.55 per ton. The average cost of driving the field rivets was 13.1 cts. each.

COST OF ERECTION OF STEEL BRIDGES.—The cost of erection ordinarily includes:
(1) the cost of hauling the bridge to the bridge site; (2) the building of the falsework and the placing of the steel in position; (3) the riveting up of the bridge, and (4) painting the steel and

the woodwork.

Hauling.—Transportation over country roads will ordinarily cost about 25 cts. per tonmile, in addition to the cost of loading and unloading. In estimating the cost of hauling on any particular job the length of haul, kind of roads, price of teams and labor, and the character of the teams should be considered. The cost of loading on the wagons and unloading will depend upon the local conditions, but will ordinarily be from 25 to 50 cts. per ton. For railroad bridges the steel work may ordinarily be brought directly to the site by rail.

Falsework.—If piles are to be used the cost should be carefully estimated. The cost of the piles in place will vary with the cost of piles and local conditions. Under ordinary conditions piles in falsework will cost from 25 to 50 cts. per lineal foot in place. The cost of the timber will depend upon local conditions and upon what use is made of it after erection. The flooring plank in highway bridges, and ties and guard timbers in railway bridges can often be used in the falsework without serious injury. The cost of erecting the timber in the falsework will ordinarily be from \$6.00 to \$8.00 per thousand ft. B. M.

Erection of Tubular Piers.—The cost of setting tubular piers for highway bridges will depend upon the conditions. Tubes 36 in. in diameter and 20 ft. long have been set in favorable locations for \$25.00 per pair, not including the driving of the piles or the placing of the concrete. It is, however, not safe to estimate the cost of setting tubes from 36 to 48 in. in diameter under even favorable conditions at less than \$2.00 per lineal foot of tube. When the cost of setting tubes is estimated by weight, it should be figured at from \$15.00 to \$20.00 per ton, for ordinary conditions. It will commonly cost from 25 to 50 cts. per lineal ft. to drive piles in tubes, in addition to the cost of the piles, which will vary from 10 to 20 cts. per lineal foot. The concrete will commonly cost from \$6.00 to \$8.00 per cu. yd. in place in the tube.

Placing and Bolting.—The cost of placing and bolting up riveted highway spans, and erecting pin-connected highway spans, no rivets being driven, is about as follows:

Highway	spans	from	30 to	60 ft\$12.00 to \$15.00 p	er to	n.
44	44	66	60 to	100 ft	14 6	14
66	44	64	100 to	150 ft 9.00 to 10.00	14, 4	6
44	66	44	150 ft.	and up 8.00	44 4	4

The cost of placing and bolting up railroad spans will depend so much upon the local conditions and equipment that it is difficult to give general costs.

The cost of driving field rivets in pin-connected spans will vary from 7 to 12 cts. per rivet, while the cost of driving field rivets in riveted trusses will vary from 6 to 10 cts. per rivet. The number of rivets in riveted low truss highway bridges depends upon the number of panels and the style of details, and will be about 155 to 200 for a three-panel bridge, and 400 to 500 for a six-panel bridge. The number of rivets in through riveted highway bridges will be about 250 to 300 for a four-panel bridge, and 1,300 to 1,500 for a nine-panel bridge. Pin-connected bridges ordinarily have about $\frac{1}{3}$ to $\frac{1}{2}$ as many field rivets as a riveted bridge of similar dimensions.

The approximate number of field rivets in single track railway bridges, designed for E 55 loading, are given in Table VII.

^{*} Engineering and Contracting, Aug. 6, 1913.

TABLE VII.

Number of Field Rivets in Railway Bridges, Single Track, E 55 Loading. (Harriman Lines.)

	Plate (Girders.			Through T	russ Bridges.	*		
1	Deck.	Th	rough.	Ri	veted.	Pin-Connected.			
Span, Ft.	Number of Field Rivets.	Span, Ft.	Number of Field Rivets.	Span, Ft.	an, Ft. Number of Field Rivets. Span, Ft.		Number of Field Rivets.		
30	100	30	600 100 2,900	2,900	150	2,800			
40	200	40	1,200	110	2,900	160	3,000		
50	300	50 60	1,300	125	4,300	180	3,200		
60	400	60	1,700	140	5,300	200	3,200		
70	500	70	1,900	150	5,600				
80	500	80	2,000						
90 .	500	90	2,200						
100	600	100	2,400						

• The field rivets on the 20th St. Viaduct, Denver, Colorado, cost 7 cts. each. The rivets were driven by air riveters.

Actual Costs of Erecting Railway Bridges.—The cost of erecting railway bridges on the A. T. & S. F. Ry. in 1907 are given in the report of the Assoc. of Ry. Supt. of B. & B. as follows:—

Trusses, 984 tons erected, cost \$4.63 per ton.

Plate Girders, 2,784 tons erected, cost \$5.49 per ton.

I-Beams, 2,837 tons erected, cost \$2.88 per ton.

All girders and I-beams were erected with a steam wrecker and the through spans with a derrick car. The reason for the plate girders costing more to erect than the through trusses was that many of the plate girders were on second track where the old girders had to be cut apart and moved to the outside and heavier girders put in their place. All rivets were driven by hand. For additional examples of actual costs, see Gillette's "Cost Data."

Transportation.—Fabricated structural steel commonly takes a "fifth-class rate" when shipped in car load lots, and a "fourth-class rate" when shipped "local" (in less than car load lots). The minimum car load depends upon the railroad and varies from 20,000 to 30,000 lb. Tariff sheets giving railroad rates may be obtained from any railroad company. The shipping clerk should be provided with the clearances of all tunnels and bridges on different lines so that the car may be properly loaded.

Freight Rates.—The freight rates (1913) on finished steel products in car load shipments from the Pittsburgh District, including plates, structural shapes, merchant steel and iron bars, pipe fittings, plain and galvanized wire, nails, rivets, spikes and bolts (in kegs), black sheets (except planished), chain, etc., are as follows, in cts. per 100 lb. in carload shipments; Albany, 16; Buffalo, 11; Boston, 18; Baltimore, 14½; Cleveland, 10; Columbus, 12; Cincinnati, 15; Chicago, 18; Denver, Colo., 85½; Harrisburg, 14½; Louisville, 18; New York, 16; Norfolk, 20; Philadelphia, 15; Rochester, 11½; Richmond, 20; Scranton, 15; St. Louis, 23; Washington, 14½.

COST OF PAINTING.—The amount of materials required to make a gallon of paint and the surface of steel work covered by one gallon are given in Table VIII. Structural steel should be painted with one coat of linseed oil, linseed oil with lamp-black filler, or red lead paint at the shop; and two coats of first-class paint after erection. The two field coats should be of different colors; care being used to see that first coat is thoroughly dry before applying the second coat. Steel bridges and exposed steel frame buildings ordinarily require repainting every three or four years.

The steel work in the extension to the 16th St. Viaduct, Denver, Colo., was painted with red lead paint mixed in the following proportions,—100 lb. red lead, 2 lb. lamp-black and 4.125 gallons

of linseed oil. This mixture made 6 gallons of mixed paint of a chocolate color, and gave 1.455 gallons of paint for each gallon of oil.

TABLE VIII. Average Surface Covered per Gallon of Paint. Pencoyd Hand Book.

Paint.	Volume of Oil.	Pounds of Pigment.	Volume and Weight of Paint.	Square Feet.	
			Gal. Lb.	I Coat.	2 Coats.
Iron oxide (powdered)	I gal.	8.00	1.2 = 16.00	600	350
Iron oxide (ground in oil)		24.75	2.6 = 32.75	630	375
Red lead (powdered)	I gal.	22.40	1.4 = 30.40	630	375
White lead (ground in oil)	I gal.	25.00	1.7 = 33.00	500	300
Graphite (ground in oil)	I gal.	12.50	2.0 = 20.50	630	350
Black asphalt	I gal. (turp.)	17.50	4.0 = 30.00	515	310
Linseed oil (no pigment)				875	

Light structural work will average about 250 sq. ft., and heavy structural work about 150 sq. ft. of surface per net ton of metal, while No. 20 corrugated steel has 2,400 sq. ft. of surface.

It is the common practice to estimate $\frac{1}{2}$ gallon of paint for the first coat and $\frac{3}{6}$ gallon for the second coat per ton of structural steel, for average conditions.

The price of paint materials in small quantities in Chicago are (1914) about as follows: Linseed oil, 50 to 60 cts. per gal.; iron oxide, 1 to 2 cts. per lb.; red lead, 7 to 8 cts. per lb.; white lead, 6 to 7 cts. per lb.; graphite, 6 to 10 cts. per lb.

A good painter should paint 1,200 to 1,500 sq. ft. of plate surface or corrugated steel or 300 to 500 sq. ft. of structural steel work in a day of 8 hours; the amount covered depending upon the amount of staging and the paint. A thick red lead paint mixed with 30 lb. of lead to the gallon of oil will take fully twice as long to apply as a graphite paint or linseed oil. The cost of applying paint is roughly equal to the cost of a good quality of paint, the cost per ton depending on the spreading qualities of the paint. This rule makes the cost of applying a red lead paint with 30 lb. of pigment per gallon of oil from two to three times the cost of applying a good graphite paint, per ton of structural steel. For additional data on paints, see Chapter XV.

MISCELLANEOUS COSTS.—The following approximate costs will be of value in making preliminary estimates. The cost of construction depends so much upon local conditions that average costs should only be used as a guide to the judgment of the engineer.

MILL BUILDING FLOORS.—The following costs are for floors resting on a good compact soil and do not include unusual difficulties.

Timber Floor on Pitch-Concrete Base.—The cost varies from about \$1.25 per sq. yd. for a 2-in. pine sub-floor and a $\frac{7}{8}$ -in. pine finish, to about \$1.75 per sq. yd. for a 2-in. pine sub-floor and a $\frac{7}{8}$ -in. maple finish.

Concrete Floor on Gravel Sub-base.—The cost varies from \$1.25 to \$2.00 per sq. yd.

Creosoted Timber Block Floor.—Creosoted timber blocks 3 in. to 4 in. thick, laid on a 6-in. concrete base, will cost from \$2.50 to \$3.50 per sq. yd.

ROOFING FOR MILL BUILDINGS.—The following costs include the cost of materials and the cost of laying, but do not include the cost of the sheathing.

Corrugated Steel Roofing.—The weight of corrugated steel roofing and siding may be obtained from Table I, Chapter I. The price of corrugated steel may be obtained from current quotations in Engineering News or Iron Age. The cost of laying corrugated steel is about \$0.75 per square when laid on plank sheathing, \$1.25 per square when laid directly on the purlins, and \$2.00 per square when laid with anti-condensation lining. The erection of corrugated siding costs from \$0.75 to \$1.00 per square. Asbestos paper costs from $3\frac{1}{2}$ to 4 cts. per lb. Galvanized

wire netting, No. 10, costs 25 to 30 cts. per square of 100 sq. ft. Brass wire, No. 20, costs about 20 cts per lb. No. o galvanized wire costs about 3 cts. per lb. For trimmings, flashing, ridge roll. etc., add I ct. per lb. to the base price of corrugated steel.

Tar and Gravel Roofing.—Four- or five-ply tar and gravel roofing, for average conditions, costs from \$3.75 to \$4.00 per square, not including sheathing. Five hundred squares of 5-ply tar and gravel roofing, in 1912, in the middle west, cost \$3.93 per square, not including sheathing.

Tin Roofing.—Tin roofing costs from \$7.00 to \$9.00 per square, not including sheathing. Slate Roofing.—Slate roofing costs from \$7.00 to \$12.00 per square, not including sheathing. Tile Roofing.—The cost of tile roofing is variable, depending upon style of roof and location and local conditions, and may vary from \$13.00 to \$30.00 per square, not including sheathing.

WINDOWS.—Windows with wooden frames and sash, and double strength glass, will cost from 25 to 50 cts, per sq. ft. of opening. Windows with metal frames and sash and wire glass.

will cost from 45 to 55 cts. per sq. ft. of opening.

SKYLIGHTS.—Skylights with metal frames and sash and wire glass, will cost from 50 to 60 cts. per sq. ft. Skylights made of translucent fabric stretched on wooden frames, will cost from 25 to 30 cts, per sq. ft. Louvres without frames, will cost about 25 cts, per sq. ft.

CIRCULAR VENTILATORS.—Circular ventilators will cost about as follows:—12-in... \$2.00; 18-in., \$6.75; 24-in., \$10.00; 36-in., \$15.00 each, when ordered in lots of at least six.

ROLLING STEEL SHUTTERS.—Rolling steel shutters will cost \$0.75 to \$1.00 per sq. ft. WATERPROOFING.—The following costs for waterproofing engineering structures are taken from the Proceedings of the American Railway Engineering Association, Vol. 12, 1911. (1) Bridge floor, 6-ply felt and pitch, 12½ cts, per sq. ft., including protection over waterproofing. (2) Trough bridge floor, 4-ply burlap and asphalt, 10 to 16½ cts. per sq. ft. (3) Bridge floor, 3-ply burlap and asphalt, and asphalt mastic, 16 cts. per sq. ft. (4) Concrete slab bridge floor, 5-ply felt, I-ply burlap and pitch, $15\frac{1}{2}$ cts. per sq. ft., including a 10 year guarantee.

MISCELLANEOUS MATERIALS.—The following prices are for small lots, f.o.b. Pittsburgh

(May, 1914).

Chain.—Standard chain, $\frac{3}{16}$ in., $7\frac{1}{2}$ cts. per lb.; $\frac{1}{2}$ in., 3 cts. per lb.; I in., 2.6 cts. per lb. For BB chain, add 1½ cts. per lb., and for BBB chain, add 2 cts. per lb.

Nails.—Base price of nails, \$2.00 per keg of 100 lb.—20d to 60 d nails are base; for 10d to 16d, add 5 cts. per keg; for 8d and 9d, add 10 cts. per keg; for 6d and 7d, add 20 cts. per keg; for 4d and 5d, add 30 cts. per keg; for 3d, add 45 cts. per keg, and for 2d, add 70 cts. per keg.

Gas Pipe.—Gas pipe costs about as follows:—Standard gas pipe I in. diam., black, 3½ cts. per ft., glavanized, 5 cts. per ft.; 2 in. diam., black, $7\frac{1}{2}$ cts. per ft., galvanized, 11 cts. per ft.; 3 in. diam., black, 16½ cts. per ft., galvanized, 23 cts. per ft.

Steel Railroad Rails.—Bessemer rails, \$28 per gross ton (2240 lb.); open-hearth, \$30 per

gross ton.

Wire Rope.—The cost of steel wire rope is about as follows:—\(\frac{5}{6} \) in. rope, 10 cts. per lineal ft.; ½ in. rope, 13 cts. per lineal ft.; I in. rope, 20 cts. per lineal ft.; I½ in. rope, 45 cts. per lineal ft.

Manila Rope.—Manila rope costs about 12½ cts. per lb. Sisal rope costs about 9 cts. per lb. HARDWARE AND MACHINISTS SUPPLIES.—Prices of hardware and machinists supplies are for the most part quoted by giving a discount from standard list prices. The "Iron Age Standard Hardware Lists," price \$2.00, may be obtained from the Iron Age Book Department, 239, W. 39th St., New York. Discounts from these standard lists are given each week in Iron Age. The base prices of structural materials are given in the first issue of each month of Engineering News, and are given in each issue of Iron Age.

REFERENCES.—For detailed estimates of steel mill buildings and additional data on the cost of steel mill buildings see the authors "The Design of Steel Mill Buildings." For detailed estimates of steel highway bridges and additional data on the cost of steel highway bridges, see the author's "The Design of Highway Bridges." For data on the cost of retaining walls, bins and grain elevators, see the author's "The Design of Walls, Bins and Grain Elevators." For data on the cost of steel head frames, coal tipples, and other mine structures, see the author's "The Design of Mine Structures."

CHAPTER XIV.

ERECTION OF STRUCTURAL STEEL.

METHODS OF ERECTION.—The method used in erecting a steel structure will depend upon the type of structure, the size of the structure, the risk to be taken, as in bridge erection, whether the structure is to be erected without interfering with traffic, as in erecting a railroad bridge to replace an existing structure, or in erecting a building overfurnaces or working machinery, the available tools, and local conditions. The tendency of modern structural steel erection practice is, as far as possible, to use derrick cars for erecting railway bridges and locomotive cranes for erecting mill buildings and other structures.

The methods of erection that may be used for erecting different steel structures are as follows. Plate Girders and Short Riveted Spans.—Plate girders up to about 60 ft. span are very commonly riveted up complete with cross frames and bracing, either at the shop or at the site, and are placed in position on the abutments. With plate girders longer than 60 ft. and short riveted trusses one girder or truss is placed in position at a time and the floorbeams and bracing are put in place after the girders or trusses are in place. The girders or trusses may be swung into place by a stiff-leg derrick or a guy derrick set up alongside the track or back of the abutment where there is no track; by a derrick car, or may be hoisted into place by a gin pole. Where falsework has been placed girders are picked up from the cars by two gallows frames, one near each end of the span, or by one gallows frame and a derrick. Plate girders may also be put in place by sliding into place either longitudinally or fransversely, or by jacking and cribbing.

Truss Bridges.—Riveted trusses up to a span of 100 to 125 ft. may be riveted up on the bank and be swung into place by a boom traveler or a derrick. The floorbeams and bracing are then put in place and the span riveted up. Where falsework is required the bridge may be erected by a gantry or outside traveler placed outside of the trusses, by a boom traveler running on a track placed inside the trusses, or by a derrick car. The gantry or outside traveler is commonly used for long spans and for highway spans where no tracks are available. The boom traveler is commonly used for elevated railway and highway viaducts. The derrick car is now commonly used for erecting railway bridges and is sometimes used for erecting viaducts.

Cantilever Bridges.—Cantilever bridges are commonly erected by means of an overhang traveler running on the completed portion, the structure being built out from the shore. Cantilever bridges are sometimes erected on falsework in the same manner as simple trusses.

Arch Bridges.—Arches may be erected on falsework in the same manner as simple truss spans, or may be cantilevered out from each abutment, the cantilever being supported by temporary cables running over a tower placed back of the abutments.

High Viaducts.—High steel viaducts are commonly erected by means of an overhang or boom traveler running on a track on top of the viaduct girders. The overhang or boom is long enough to place a tower in advance with the traveler on the completed portion. Derrick cars have also been used for erecting high steel viaducts. The towers and the girders may be erected by means of gin poles. The tower bents may be bolted up before raising or may be erected and bolted up in place.

Roof Trusses, Mill and Office Buildings.—Where there is sufficient room, roof trusses up to 150 ft. span may be riveted or bolted up on the ground and may then be raised into position by means of one or two gin poles. Two gin poles should be used for long trusses. Care should be used not to cripple the lower chord. With light trusses, the lower chord members should be stiffened by means of timbers or other stiff members temporarily bolted or lashed to the member. Columns and beams in office buildings may be erected with stiff-leg or guy derricks, or "A"

derricks may be used for loads up to 5 tons. The bents of steel mill buildings may be erected in the same manner. Roof arches and train sheds are sometimes erected by means of falsework, which is moved as the erection proceeds. Boom-tower derricks running on tracks are found

FIG. 1. HOISTS FOR STEEL ERECTION.

very convenient. Locomotive cranes are now used for erecting mill buildings and similar structures where tracks are available.

Elevated Towers and Tanks.—The towers for high tanks are commonly erected by means of a gin pole. A gin pole long enough to erect the entire tower may be used, or short gin poles may be lashed to the part of the tower already erected; the gin poles being moved up as the erection

proceeds. Steel tanks are commonly erected from a movable platform suspended inside the tank. A movable swinging platform for the riveters is also swung outside of the tank.

ERECTION TOOLS.—The tools and appliances used in the erection of structural steel vary so much that it will only be possible to give a brief summary together with data not ordinarily available. Many of the tools and appliances used in the erection of structural steel are of standard contruction and may be purchased direct from dealers, so that a detailed description is not necessary.

Design of Erection Tools.—For the design of hoists, derricks, cranes, crane hooks, and other tools used in bridge erection, see Hess's "Machine Design, Hoists, Derricks, Cranes," published

by J. B. Lippincott Company.

Hoists.—Hoisting engines may have the boilers attached or may be detached. A self-contained steam hoisting engine is shown in Fig. 1. Gasoline or electric power may be used to advantage where available. For light hoisting the 4-spool engine is commonly used. Data for the standard hoisting engines used by the American Bridge Company are given in Table I.

Winches and Crabs.—For light hoisting winches or crabs operated by hand power may be used. A crab is attached to the mast or boom, while a winch is self-contained. Views of a crab and of a winch are shown in Fig. 1.

HOISTING ROPE.—Either manila rope or wire rope may be used for hoisting.

Manila Rope.—Only the very best new manila rope should be used for hoisting, as manila rope rapidly deteriorates when used and commercial manila rope varies greatly in strength. The weight, ultimate strengths and safe working loads for manila rope are given in Table II. Working loads with a factor of safety of three should only be used with new rope of the best quality.

TABLE I.
Standard Hoisting Engines. American Bridge Company.

	Ordinary		Weight	Drums.		Spools,	Boilers.		Bed.	
	Rated S H. P.		with Boiler, Lb.	Diam., In.	Length, In.	Size, In.	Diam., In.	Length, In.	Width, Ft-In.	Length, Ft-In
Double Drum, 4 Spool Double Drum,	20 H. P.	5,000	12,000	14	26	17	42	96	5-0	8-o
4 Spool 6 Spool	35 H. P. 45 H. P. 60 H. P.	9,000 12,000 15,000	15,000 22,000 30,000	14 16 16	27 30 34	19 22 22	46 50 54	108 108	6-0 7-0 8-0	10-0 11-0 12-0

TABLE II.

MANILA ROPE. ULTIMATE STRENGTH, WEIGHT AND WORKING STRESS OF BEST
MANILA ROPE.

	Circumference	Weight 100 Ft.	Ultimate	Working Load	for Derricks.	Minimum Size	
Diameter, In.	of Rope, In.	Rope, Lb.	Strength, Lb.	Used Rope, Factor of 6, Lb.	New Rope, Factor of 3, Lb.	of Drum or Sheave, In.	
1/2	1.57	7	1,800	300	600		
3	2.37	17	4,000	670	1,340		
18	2.75	. 24	5,400	900	1,800		
I	3.14	28	7,200	1,200	2,400	8	
114	3.93	46	11,200	1,870	3,740	10	
I ½	4.7I	64	16,000	2,670	5,340	12	
1 3	5.50	84	21,600	3,600	7,200	14	
2	6.28	115	28,500	4,750	9,500	16	
21/2	7.86	175	45,000	7,500	15,000		
3	9.42	252	64,200	10,700	21,400		

Knots in Manila Rope.—In a knot no two parts which lie alongside of each other should move in the same direction in case the rope were to slip. A few of the more common knots are shown in Fig. 2 which has been taken from C. W. Hunt Company's book on "Manila Rope."

- I. Bight of a rope.
- 2. Simple or Overhang Knot.
- 3. Figure 8 Knot.
- 4. Double Knot.
- 5. Boat Knot.
- 6. Bowline, first step.
- 7. Bowline, second step.
- 8. Bowline, completed.
- 9. Square or Reef Knot.
- 10. Sheet Bend or Weaver's Knot.
- 11. Sheet Bend with a toggle.
- 12. Carrick Bend.
- 13. "Stevedore" Knot completed.
- 14. "Stevedore" Knot commenced.
- 15. Slip Knot.

- 16. Flemish Loop.
- 17. Chain Knot with toggle.
- 18. Half-hitch.
- 10. Timber-hitch.
- 20. Clove-hitch.
- 21. Rolling hitch.
- 22. Timber-hitch and Half-hitch.
- 23. Black-wall-hitch.
- 24. Fisherman's Bend.
- 25. Round Turn and Half-hitch.
- 26. Wall Knot commenced.
- 27. Wall Knot completed.
- 28. Wall Knot Crown commenced.
- 29. Wall Knot Crown completed.

"The bowline 7 is one of the most useful knots; it will not slip, and after being strained is easily untied. Commence by making a bight in the rope, then put the end through the bight and under the standing part as shown in Fig. 2, then pass the end again through the bight, and haul tight.

"The square or reef knot 9 must not be mistaken for the 'granny' knot that slips under a strain. Knots 8, 10 and 13 are easily untied after being under strain. The knot 13 is useful when the rope passes through an eye and is held by the knot, as it will not slip, and is easily untied after being strained.

TABLE III.

CRUCIBLE STEEL HOISTING ROPE. WEIGHT, ULTIMATE STRENGTH AND WORKING LOADS OF WIRE ROPE COMPOSED OF 6 STRANDS AND A HEMP CENTER, 19 WIRES TO THE STRAND.

Diameter,	Approximate Circumference,	Weight per	Approximate Break-	Safe Working Stress for Derricks, Factor	Minimum Size of Drum or Sheave.		
In.	In.	Ft., Lb.	ing Stress, Lb.	of 4, Lb.	Derricks, In.	Rapid Hoist- ing, In.	
3/9	I 1 8	0.22	10,000	2,500	6	12	
7 16	11	0.30	13,600	3,400	$7\frac{1}{2}$	15	
$\frac{1}{2}$	$1\frac{1}{2}$	0.39	17,600	4,400	. 9	15 18	
9 16	$1\frac{1}{2}$ $1\frac{3}{4}$	0.50	22,000	5,500	.IO	21	
5 8	2	0.62	27,200	6,800	12	27	
34	$2\frac{1}{4}$ $2\frac{3}{4}$	0.89	38,800	9,700	14	36	
7/8	$2\frac{3}{4}$	1.20	52,000	13,000	18		
I	3	1.58	68,000	17,000	20	42 48	
I 3	3 ½	2.00	84,000	21,000	22	54 60	
114	4	2.45	100,000	25,000	24		
$1\frac{3}{8}$ $1\frac{1}{2}$	41/4	3.00	124,000	31,000	27	. 66	
$I\frac{1}{2}$	4 ¹ / ₃ 4 ³ / ₄	3-55	144,000	36,000	30	69	

"The timber-hitch, 19, looks as though it would give way, but it will not; the greater the strain the tighter it will hold. The wall knot looks complicated; but is easily made by proceeding as follows: Form a bight with strand a and pass the strand b around the end of it, and the strand c around the end of b, and then through the bight of a, as shown in the engraving 26. Haul the ends taut, when the appearance is as shown in 27. The end of the strand a is now laid

FIG. 2. KNOTS IN MANILA ROPE.

over the centre of the knot, strand b laid over a, and c over b, when the end of c is passed through the bight of a, as shown in 28. Haul all the strands taut, as shown in 29."

The efficiency of a knot will vary from 45 to 75 per cent.

TABLE IV.

PLOUGH STEEL HOISTING ROPE. WEIGHT, ULTIMATE STRENGTH AND WORKING LOADS OF WIRE ROPE COMPOSED OF 6 STRANDS AND A HEMP CENTER, 19 WIRES TO THE STRAND.

Diameter.	Approximate Circumference,	Weight per	Approximate Breaking	Safe Working Stress for Derricks,	Minimum Size of Drum or Sheave.		
In.	In.	Foot, Lb.	Stress, Lb.	Factor of 4, Lb.	Derricks, In.	Rapid Hoisting, In.	
3 8 ⁷ 6 15 83 4	118	0.22	11,500	2,870	9,	18	
76	I ‡	0.30	16,000	4,000	103	21	
20	I ½ I ¾	0.39	20,000	5,000	12	24	
16	14	0.50	24,600	6,150	14	27	
8	2	0.62	31,000	7,750	14	33	
34	21/4	0.89	46,000	11,500	16	39	
78	$2\frac{1}{4}$ $2\frac{3}{4}$	1.20	58,000	14,500	18	39 48	
I	3	1.58	76,000	19,000	20	54	
1 ½	3 1/2	2.00	94,000	23,500	24	54 60	
11/2	4	2.45	116,000	29,000	28	72	
13	41	3.00	144,000	36,000	32	72 81	
$1\frac{3}{8}$ $1\frac{1}{2}$	43	3.55	164,000	41,000	36	84	

TABLE V.

Data on Wooden Blocks for Manila Rope. American Bridge Company.

Type of Block.	Nomi- nal Size, In.	Width of Shell, In.	Thickness of Block, In.	Ca- pacity, Tons.	Size of Line, In.	Outside Diameter of Sheave, In.	Weight, Lb.
Single with hook Double with hook	8	5½ 5½	4 ½ 6 3 6 3 8	2 4	7 8 7 8	4½ 4½	15 20
Single with hook Double with hook Triple with hook	12 12 12	8 ½ 8 ½ 8 ½	51 83 111	5 7 8	11 11 11	7½ 7½ 7½ 7½	45 70 95
Single with hook Double with hook Triple with hook Quadruple with shackle	14 14 14 14	101 101 101 101 101	6 83 133 161	6 10 12 14	1 ½ 1 ½ 1 ½ 1 ½ 2 ½ 1 ½ 2 ½ 1 ½ 2 ½ 2 ½	9 9 9	70 115 150 190
Single with hook Double with hook Triple with hook Quadruple with shackle	16 16 16	$\begin{array}{c} 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \\ 11\frac{1}{2} \end{array}$	6½ 10½ 13¾ 17¾	8 12 15 20	I 4	101 101 101	90 140 190 270
Single with hook. Double with hook. Triple with hook. Quadruple with shackle. 16" snatch block. 20" snatch block.		14 14 14 14 8 ¹ / ₂ 9 ¹ / ₂	814 1234 174 214 5 612	15 22 30 35 5	$\begin{array}{c} 2 \text{ or } 2\frac{1}{4} \\ \end{array}$ $\begin{array}{c} 7 \text{ or } 1\frac{1}{4} \text{ or } 1\frac{1}{2} \\ 1\frac{1}{2} \text{ or } 1\frac{3}{4} \text{ or } 2 \text{ or } 2\frac{1}{4} \end{array}$	$ \begin{array}{c} 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 8 \\ 9 \end{array} $	170 230 360 430 50 95

Wire Rope.—Wire hoisting rope is now used for heavy hoisting and in all cases where practicable. Wire rope is much more reliable, gives much greater service, and is much more eco-

nomical and satisfactory than manila rope. Data on crucible cast steel hoisting rope are given in Table III; and data on plough steel hoisting rope are given in Table IV. A factor of safety of 4 should be used for working loads only with derricks or hoists that are not in continuous action. For pile driving and for continuous hoisting a factor of safety of 6 should be used for working loads. Wire ropes used in hoisting are commonly \(\frac{1}{2}, \frac{3}{4} \text{ and } \frac{1}{2} \text{ in. in diameter.}\) The smaller diameters are used for guy lines. For standing guy lines a cheaper wire rope will usually be found satisfactory. Bending stresses in wire ropes are given in Fig. 7, Chapter X.

HOISTING TACKLE.—Blocks for both manila rope and wire rope are made with wooden shells and with steel shells. Blocks up to 12 to 15 tons capacity are commonly provided with hooks; blocks for heavier loads are provided with shackles. Blocks should be well built with adequate bearings and carefully worked out details. The common types of blocks are shown in

Fig. 3.

Data on wooden blocks for Manila rope as used by the American Bridge Company are shown in Table V.

Data on steel blocks for wire rope as used by the American Bridge Company are shown in Table VI.

TABLE VI.

Data on Steel Blocks for Wire Rope. American Bridge Company.

Type of Block.	Width of Shell, In.	Thickness of Block, In.	Capacity, Tons.	Size of Line, In.	Outside Diameter of Sheave, In.	Weight, Lb.
Snatch with hook. Single with shackle. Double with shackle. Triple with shackle. Quadruple with shackle. Six sheave with shackle.	17 21 21 21 21 21 21	7 ⁵ / ₈ 6 8 ³ / ₄ 11 ³ / ₄ 14 ¹ / ₂ 20 ⁷ / ₈	8 10 20 30 40 60	3 and 7 8 3 4 3 4 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8	14 14 14 14 14 14	260 250 390 590 820 1,260

Rigging.—The rigging for lifting loads with wire rope are given in Fig. 4, and for manila rope in Fig. 5. These data are based on experiments made by the American Bridge Company, and have been adopted as standard by the American Bridge Company and the McClintic-Marshall Construction Company.

TABLE VII.

RATIOS OF LOAD TO PULL IN LEAD LINE.

	Work-						Mani	la Ro	pe.						
Diam. of Rope, In.	ing Load,		Lift per Unit Pull in Lead Line for Tackle with Parts as follows.												
	Lb.	ĭ	2	3	4	5	6	7	8	9	10	11	12	13	14
3 4	1,900	0.86	1.93	2.73	3.48	4.12					6.50				
7 8	2,300	0.83	1.92	2.68	3.37	3.95	4.48				5.96				
I	3,100	0.87	1.93	2.74	3.50	4.16			5.80	6.23	6.63	6.98	7.30	7.58	7.85
14	4,300	0.83	1.92	2.68	3.37	3.95	4.48	4.92			5.96	6.21	6.44	6.63	6.81
11/4 11/2 11/4	5,900	0.83	. 1.91	2.67	3.36	3.93	4.45	4.89					6.38		
17	7,900	0.81	1.91	2.64	3.30	3.84		4.72					6.04		
2	10,300-	0.82	1.91	2.65	3.32			4.78	5.14	5.45	5.72	5.94	6.15	6.31	6.46
24	13,100	0.80	1.90	2.63	3.28	3.80	4.28	4.65	5.00	5.27	5.52	5.72	5.90	6.04	6.17
	Wire Rope.														
3	16,600	0.86	1.93	2.73	3.47	4.11	4.70	5.20	5.68	6.08	6.46	6.78	7.08	7.34	7.58

(c)

BLOCK WITH SHACKLE

WOODEN SHEAVE BLOCK WITH BECKET SNATCH BLOCKS WITH HOOKS

(1)

(j)

(k)

FALL LINE BALL WEIGHTED SHEAVE BLOCK

Fig. 3. Blocks for Hoisting.

	Lead Line Pull-Lbs.	Rigg F"Wire	ging Rope	1	Lead Line Pull-Lbs	Rig Z"Wii	nging re Rope
10	5,700	Double Double	4 Parts Double	10	7,400	Double 3 Parts Single	Single Single
20	8,500	Triple 6 Parts Triple	6 Parts Triple	20	9,800	Triple 5 Parts Double	ODouble of Parts Double
30	10,600	Quadruple 8 Parts Quadruple	OTriple 0 8 Parts Quadruple	30	11,700	Quadruple 7 Parts Triple	7 Parts Triple
40	10,700		06 Sheav' 13 Parts 6 Sheave	40	13,400		Quadrupio 9 Parts Quadrupio
60				60	16,600		06 Sheav' 13 Parts 6 Sheave

	Lead Line Pull-Lbs	Rigging F"Wire Rope					
10	7,500	Double 3 Parts Single	Single 3 Parts Single				
20	11,000	Oouble 4 Parts Double	OSingle O 4 Parts Double				
30	13,800	Triple 6 Parts Triple	O Double 6 Parts Triple				
40	15,000	Quadruple 8 Parts Quadruple	OTriple 8 Parts Quadruple				
60	19,000		O5Sheav'O Il Parts 5 Sheave				

Best Crucible Cast Steel Hoisting Rope: 6 Strand, 19 Wires to a Strand and Hemp Core.

These values are only for tackle as shown · If the lead line is snatched or passes over additional sheaves, capacity diminishes ·

LIFTING CAPACITY OF TACKLE STEEL SHELL BLOCKS WITH WIRE ROPE

Fig. 4.

Lift Tons	Rigging I‡" Manila Rope	Lift Tons	Rigging I½"Mənilə Rope	Lift Tons	Rigging Iz"Mənilə Rope
4	Single Single • 2 Parts Single	5	Single Single 2 Parts Single Single	10	Triple O Double O 5 Parts 5 Parts Double Double
5	Double Single 3 Parts Single	6	Double 5ingle 3 Parts Single Single	//	Triple O Double O 6 Parts Triple Triple
6	Double Single A Parts Double Double	7	Double Single 4 Parts Double Double	12	Triple O Double 6 Parts Triple Triple
7	Double Single A Parts Double Double	8	Double Single 4 Parts Double Double	13	Quadruple O Triple 8 Parts 8 Parts Quadruple Quadruple
8	Triple O Double O 6 Parts Triple Triple	9	Double O Single O 4 Parts Double Double	14	Quadruple Triple 8 Parts 8 Parts Quadruple Quadruple

Lift Tons	Riggi 2" Mənilə	
20	Triple 6 Parts Triple	O Double O 6 Parts Triple
22	Triple 6 Parts Triple	O Pouble O 6 Parts Triple
24	Quadruple 8 Parts Quadruple	7 Parts Triple
26	Quadruple 8 Parts Quadruple	O Triple O 8 Parts Quadruple
28		O Quadruple 9 Parts Quadruple

12" Blocks for 12" Rope. Capacity of Blocks Single with Hook, 5 Tons. Double with Hook, 7 Tons. Triple with Hook, 8 Tons. Approximate pull on lead line, 2 Tons. 14" Blocks for 12" Rope. Capacity of Blocks Single with Hook , 6 Tons. Double with Hook, 10 Tons. Triple with Hook, 12 Tons. Quadruple with Shackle, 14 Tons. Approximate pull on lead line, 3 Tons. 20" Blocks For 2" Rope. Capacity of Blocks Single with Shackle, 15 Tons. Double with Shackle, 22 Tons. Triple with Shackle, 30 Tons. Quadruple with Shackle, 35 Tons. Approximate pull on lead line, 5 Tons. These values are only for tackle as shown. If lead line is snatched or passes over additional sheaves, capacity diminishes.

LIFTING CAPACITY OF TACKLE
WOODEN SHELL BLOCKS WITH MANILA ROPE.

FIG. 5.

Efficiency of Tackle.—The efficiency of rigging as calculated from tests made by the American Bridge Company is given in Table VII. The tables may be used in calculating the loads that can be lifted by tackle as follows:—

Given pull in lead line, to find load lifted—Divide the pull by 1.20 each time line is snatched or passes over sheaves other than those in tackle blocks; multiply quotient by ratio of load to lead line pull, Table VII, and the result is the load lifted. For example, lead line pull of engine = 10,000 lb.; rigging as follows:—2 snatch blocks, 2 sheaves, and 7 parts of $1\frac{1}{2}$ in. line in main falls. Then Load lifted = $\frac{10,000}{(1.20)^4} \times 4.89 = 23,600$ lb. If load to be lifted is given, to find

pull in lead line, reverse above operation.

TABLE VIII.

Data on Chains. American Bridge Company.

Size, Diam. of Bar, In.	Weight per Foot in Lb.;	Outside Lengths of Links in In.	Outside Width of Links in In.	Proof Test in Lb.	Ultimate Strength in Lb.	Working Load in Lb. Factor of 3.	Working Load in Lb. Factor of 4.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5 4.10 6.70 8.37 10.50 13.62	2 8 3 1 2 4 5 8 1 8 5 1 8 5 8 1 8 5 8 1 8 5 8 1 8 5 8 1 8 1	17/8 21/4 25/8 3 8 8 3 7 8	7,700 12,000 17,000 22,000 29,000 37,000	15,000 23,000 33,000 43,000 56,000 71,000	5,000 7,600 11,000 14,300 18,600 23,600	3,800 5,700 8,200 10,700 14,000 17,700
1 1 2 1 2 1 5 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	16.00 19.25 23.00 28.00	5555 5554 7	455 45 55 55	46,000 55,000 66,000 74,000	88,000 106,000 126,000 141,000	29,300 35,300 42,000 47,000	22,000 26,500 31,500 35,200

FIG. 6. CHAINS.

Fig. 7. Tools for Steel Erection. American Bridge Company.

Fig. 8. Tools for Steel Erection. American Bridge Company.

Fig. 9. Tools for Steel Erection. American Bridge Company.

FIG. 10. TOOLS FOR STEEL ERECTION. AMERICAN BRIDGE COMPANY.

FIG. 11. TOOLS FOR STEEL ERECTION. AMERICAN BRIDGE COMPANY.

FIG. 12. TOOLS FOR STEEL ERECTION. AMERICAN BRIDGE COMPANY.

Fig. 13. Tools for Steel Erection. American Bridge Company.

Fig. 14. Tools for Steel Erection. American Bridge Company.

Chains.—Chains should be made of the best grade of double refined iron, and should be fabricated with great care. Details of a $\frac{3}{4}$ -in. ring chain; a $\frac{3}{4}$ -in. hook chain, and of a $\frac{3}{4}$ -in. twin hook chain, as made for the American Bridge Company, are given in Fig. 6, and data on chains are given in Table VIII.

Jacks.—Hydraulic and power lifting jacks of the necessary capacity should be provided.

Miscellaneous Tools:—In addition to the standard tools required by bridge carpenters and by the blacksmiths many special tools are required by structural steel erectors. The most important special tools required in steel erection as used by the American Bridge Company are

FIG. 15. MISCELLANEOUS TOOLS FOR STEEL ERECTION.

given in Fig. 7 to Fig. 14. An improved "old man" as used by Terry and Tench is shown in Fig. 15. A corrugated rolling shear, and a steamboat jack and a steamboat ratchet are also shown in Fig. 15. The special tools used by the Chicago Bridge and Iron Company for the erection of elevated tanks are given in Fig. 16 and Fig. 17.

LIST OF TOOLS.—The tools required for any job will depend upon the size of the work, the number of men employed, and upon local conditions. A complete list of the tools that are commonly used by structural steel erectors is given in Table IX.

Actual lists of the tools used for the erection of a steel railway bridge, a steel highway bridge, and a steel mill building are given in Table XI, Table XI, and Table XII, respectively.

FIG. 16. TOOLS FOR ERECTION OF ELEVATED TANKS. CHICAGO BRIDGE & IRON COMPANY.

Fig. 17. Tools for Erection of Elevated Tanks. Chicago Bridge & Iron Company.

TABLE IX.

LIST OF ERECTION TOOLS FOR STRUCTURAL STEEL. AMERICAN BRIDGE COMPANY.

Name.	Name.			
Adzes.	Corrugated Iron Rivet Sets.			
Air Chippers.	" Shears.			
Air Compressors	Crabs, Single Gear Iron Frame A-Flat.			
Air Drills.	Crabs, Double Gear Iron Frame A-Flat.			
Air Pumps.	Crabs, Single Gear Wooden Frame A-Flat.			
Air Reamers.	Crabs, Double Gear Wooden Frame A-Flat.			
Air Receivers.	Cutters, Handle.			
Anchors.	Derricks.			
Angle Bars for R. R. Rails.	Derrick Balls Overhauling.			
Anvils.	" Booms (Steel).			
Auger Bits.	" Booms (Wood).			
Augers (ship) 11 in. to 116 in.	"Boom Bands, 2 Links.			
Axes.	" Foot Blocks.			
Axes (Hand).	" & Mast Angles.			
Backing Out Punches.	" Bearing Plates.			
Balance Beams.	" " Pins.			
	" " Plates.			
Bars, Chisel.	" Foot Blocks.			
Bars, Claw.	" Goose Necks.			
Bars, Connecting.	" Gudgeon Pins.			
Bars, Crow. Bars, Pinch.	" Masts (Steel).			
Bellows.	" Masts (Wood).			
Bits for Braces.	" Mast Band.			
Blacksmith Blowers.				
Blacksmith Hand Tools.	" Mast Band, one link.			
	" Mast Seat.			
Blocks (8, 10, 12, 14, 16, 18) in. Single.	" Round Spiders. " Long Spiders Two Court			
Blocks (8, 10, 12, 14, 16, 18) in. Double.	" Long Spiders, Two Guys.			
Blocks (14, 16, 18, 20) in., 3 Sheave.	One Guy.			
Blocks, 4 Sheave. Blocks (8, 10, 12, 14, 16, 18, 20) in. (Snatch)	Diamond Points.			
	Dolly Bars, Bent. " " Club.			
Gate.	" " Goose Necks.			
Blocks (1, 2, 3, 4, 6) Sheave, Wire Rope.	" " Heel.			
Boats (give kind).				
Boilers (only).	" " Spring.			
Boring Machines.	" " Straight.			
Braces (Carpenter).	Drawing Knife.			
Branding Irons. Brushes (Paint).	Drilling Machine (Portable).			
	Drift Pins $(\frac{9}{16}, \frac{11}{16}, \frac{13}{16}, \frac{13}{16})$ in. diameter.			
Brushes (Wire). Buckets.	Drills, Flat. Drills (Stone).			
Car Axles.				
Care Camp	Drills (Twist).			
Cars, Camp. Cars, Derrick.	Engine and Boiler. Eye Bolts.			
Cars, Flat.	Files.			
Cars, Lever.	Forges (not rivet).			
Cars, Push.	Gauges (Track).			
Cars, Tool.	Gin poles (Wood) Gas Pipe, Shoes.			
Car Wheels.	Grind Stone.			
Center Punches.	Guy Clamps.			
Chains, $(\frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8})$ in. Hook & Ring, — ft. long.	Guy Rods.			
Chains, I in. Hook & Ring, — ft. long.	Guy Wire.			
	Hammers (Chipping).			
Chains, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{3}{4}$, I in., two rings, — ft. long. Chisels, Cope.	Hand Gouges.			
Chisels, Framing.	Handle Gouges.			
Clevises.	Handles—Hammer, Maul, Axe, Adze, Pick.			
Cold Chisels.	Hatchets.			
Currugated Iron Cutters.	Hook for I Beams—Large, Medium, Small.			
Corrugated Iron Dolly Bars.	Hooks, Cant.			
" Hammers.	Hooks for Eye-Bars.			
" Punches.	Hooks, Girder.			
	Onder			

TABLE IX.—Continued.

TABLE IX.—Continued.						
Name.	Name.					
Hooks for Heavy Chord. Hooks for holding on. Hooks, Scaffold. "Stringer. "Timber. Horse Powers. Hose, Air Drill. "Rubber. "Steam. "Bands. "Couplings. Jacks, Hydr.—Capacity. "Norton. "Rail, Double. "Rail, Single. "Steamboat. "Steamboat. "Steamboat Pull. "Steamboat Pull. "Steamboat Pushing. "Screw. "Track. Kettles, Iron. Ladles. Lag Screws. Ladders. Lanterns. Levels (Spirit). Locks. Marking Pot. Mattocks. Mauls, Spike. Mauls, Spike. Mauls, Spike. Mauls, Steel (8, 9, 12, 16, 18, 20) lb. Nails. Oars. Oar Locks. Oil Cans. Oil Man. Picks. Pike Poles. Pile Hammers. "Driver Leads. "Rings. "Ring Hooks. Pins, Cotter. Pipe Cutters.	Reamers—\$\frac{11}{16}\$, \$\frac{15}{16}\$, \$\frac{15}{16}\$, \$\frac{15}{16}\$, \$\frac{15}{16}\$, \$\frac{1}{16}\$, \$					
Nails. Oars. Oar Locks. Oil Cans. Oil Cans. Old Man. Picks. Pike Poles. Pile Hammers. "Driver Leads. "Rings. "Ring Hooks. Pins, Cotter.	Squares (Carpenter). Stock and Dies. Stoves. Sulphur Pot. Tape Lines. Tarpaulins. Timber Buggies. Tool Boxes. "Steel, Octagon. "Steel, Round. "Steel, Square. Traveler Corner Irons.					
Pneumatic Hammer. Pump, Boat, Galvanized Iron. Pump, Centrifugal. "Force. "Steam. Punch, Hydraulic. Punch, Screw. Purchase Rings. Rails (Steel). Rail Splice Plates. Rail Buggies. Rams. Ratchets.	Travelers (Steel). Turnbuckle Rods. Tuyere Irons. Valves. Vises. Wagons. Wrenches, Chain. Wrenches, Fork—1/2, \$, 1/8, 7/8, in. Wrenches, Monkey. Wrenches, S. Wrenches, S. Wrenches, S. Wrenches, Stillson. Wedges.					

TABLE X.

LIST OF TOOLS FOR ERECTION OF STEEL RAILROAD BRIDGE CONSISTING OF SEVERAL 75-FT. PLATE GIRDERS, A 180-FT. THROUGH SPAN, AND AN 80-FT. VERTICAL LIFT SPAN, INTERNATIONAL FALLS. MINNESOTA. MINNEAPOLIS STEEL & MACHINERY CO.

Quantity.	Name and Size of Tool.	Quantity.	Name and Size of Tool.
3	Augers, Ship, 13 in.	3	Forges, Complete.
2	Adz.	3 2	Files.
1	Axe, Hand.		Gouges, Hand.
2	Anvils.	3	Gouges, Handle.
3	Bars, Crow.	3	Hack Saws and Blades.
I	Bars, Claw.		Hammer, 7 lb.
2	Bits, & in.	I	Hammer, Claw.
I	Box, Tool.	2	Hammers, Blacksmith, 5 lb.
2	Braces.	16	Handles.
1	Brushes, Wire. Brushes, Paint.	7 I	Hooks, Scaffold. Hose, Air, ‡ in., 700 ft.
7	Block, Steel, Snatch, 10 in.	9	Hose, Water, ½ in. × 50 ft.
3	Block Steel Snatch 12 in	4	Jack, Screw, 2½ in. × 16 in.
3	Block, Steel, Snatch, 12 in. Block, Steel, Snatch, Wire Rope, 12 in.	i	Jack, Track.
ĭ	Block, Steel, Single, Wire Rope, 12 in.	2	Jack, Stone.
2	Block, Steel, Single, Wire Rope, 12 in. Block, Steel, Single, Wire Rope, 14 in.	1	Jack, Hydraulic, 15 ton.
2	Block, Steel, 4 Part, Wire Rope, 16 in.	2	Lanterns.
4	Block, Steel, Double, Wire Rope, 18 in.	1	Level.
4	Block, Steel, Double, Wire Rope, 18 in. Block, Steel, Double, Wire Rope, 12 in.	1	Man, Old.
2	Block, Steel, Triple, Wire Rope, 12 in.	4	Punches, Backing Out.
4	Block, Wood, Snatch, 10 in.	3	Punches, Screw (Frame).
2	Block, Wood, Snatch, 12 in.	I	Pipe Vise.
I	Block, Wood, Single, Tackle, 8 in.	I	Pick.
1	Block, Wood, Single, Tackle, 10 in. Block, Wood, Single, Tackle, 12 in.	12	Drift Pins, § in.
I	Block, Wood, Single, Tackle, 12 in.	10	Drift Pins, in.
6	Block, Wood, Double, Tackle, 8 in.	4	Drift Pins, 7 in.
4	Plack Wood, Double, Tackle, 10 in.	1 2	Pail, Water. Ratchets.
2	Block, Wood, Double, Tackle, 12 in.	1 1	
I	Block, Wood, Double, Tackle, 8 in. Block, Wood, Double, Tackle, 10 in. Block, Wood, Double, Tackle, 12 in. Block, Wood, Triple, Tackle, 12 in. Block, Wood, Triple, Tackle, 14 in.	1,400 ft.	Receiver, Air, 30 in. × 60 in. Rope, Manila, 1 in., 7 pieces.
3	Block, Chain, 5 Ton.	1,300 ft.	Rope, Manila, 14 in., 5 pieces.
1,200 ft.	Cable, Wire, 1 in.	420 ft.	Rope, Manila, 2 in., 1 piece.
300 ft.	Cable, Wire, in.	640 ft.	Rope, Manila, 2 in., 1 piece.
100 ft.	Cable, Wire, in., galvanized.	275 ft.	Rope, Manila, 2 in., 1 piece.
2	Chains, § in., 23 ft. long.	565 ft.	Rope, Manila, 1 in., 2 pieces.
. 1	Chains, ‡ in., 14 ft. long.	4	Rope, Manila, Lashings.
2	Chains, § in., 12 ft. long.	i	Stock and Dies, Blacksmith.
2	Chains, ½ in , 12 ft. long.	I	Stock and Dies, Pipe.
12	Clamps, Cable, ½ in.	6	Snaps, Rivet, § in.
10	Clamps, Cable, $\frac{7}{8}$ in.	6	Snaps, Rivet, $\frac{3}{4}$ in. Snaps, Rivet, $\frac{3}{8}$ in.
8	Clamps, Cable, § in.	4	Snaps, Rivet, & in.
4	Clamps, Rivet.	3	Saws, Cross Cut.
2	Chisels, Round Nose. Chisels, Cold.	2	Saws, Hand.
	Cutters.	1	Shovels, No. 2. Shovels, Snow.
5 3	Cant Hooks.	4	Square.
3	Compressor, Air.	13	Shackles
ī	Derrick, 12 ton.	2	Trucks, Dolly.
i	Dolly, Timber.	3	Tongs, Blacksmith.
ī	Dolly, Goose Neck.		Tongs, Heater
I	Dolly, Straight.	7	Wrenches, Bridge # in.
3	Dolly, Straight. Dolly, Spring.	4 7 6	Wrenches, Bridge 7 in.
ĭ	Dolly, Wedge,	2	Wrenches, Monkey
1	Dolly, Heel. Drills, Twist, 15 in.	1	Heavy Traveler, 12 ton .
5	Drills, Twist, 15 in.	4	Rollers, 10 in. and 12 in.
6	Drills, Twist, 15 in. Drills, Twist, 16 in.	5	Pneumatic riveting guns.
6	Drills, Twist, 11 in.	2	28 in Turnbuckles.
I	Drills, $1\frac{1}{4}$ in. \times 4 ft.	2	Stoves.
2	Engine, Hoisting.	27	‡ in. × 8 in. Step bolts.

TABLE XI.

LIST OF TOOLS FOR THE ERECTION OF 80-FT. SPAN HIGHWAY BRIDGE.

MINNEAPOLIS STEEL & MACHINERY CO.

Quan- tity.	Name and Size of Tool.	Quan- tity.	Name and Size of Tool.
2	Axes.	I	Man, Old.
2	Axes, Hand.	4	Punches, Backing out.
	Bits, 1 in., $\frac{3}{4}$ in., $\frac{1}{2}$ in.	l i	Pick.
3	Buster.	1	Pump.
I	Box, Tool.	4	Pins, Drift, 3 in.
I	Brace.	6	Pins, Drift, 5 in.
I	Brush, Paint.	. 2	Pails, Water.
2	Blocks, 10 in.	2	Pile Driver Leads.
I	Block, Single Tackle, 8 in.	1	Pile Driver Hammer.
I	Block, Single Tackle, 10 in.	1	Pile Driver Head Block.
4	Blocks, Double Tackle, 8 in.	1	Pile Driver Nipper
i	Chain, 3 in., 8 ft. long.	I	Ratchet.
ı	Chain, ½ in., 7 ft. long.	124 ft.	Rope, Manila, 11 in.
1	Clamp, Rivet.	675 ft.	Rope, Manila, 1 in., 5 pieces.
1	Chisel, Hand.	2	Lashings, 15 ft.
I	Dolly, Timber.	1	Stock and Dies, Blacksmith.
4	Drills, Twist, 11 in.	I	Saw, Crosscut.
2	Files.	1	Saw, Hand.
2	Gouges, Handle.	5	Shovels, Short Handle
I	Hacksaw and Blades.	ĭ	Shovels, Long Handle.
	Hammers, 7 lb.	I	Square.
3 3 1	Hammers, Claw.	1	Wrench, Bridge, 3 in.
ı	Hammer, Machine.	6	Wrench, Bridge, 5 in.
3	Handles, 30 in.	2	Wrench, Bridge, ½ in.
ĭ	Jack Screw, 12 in.	1	Wrench, Stillson, 10 in.
ı	Level.	1	Wrench, Monkey, 12 in.
		4	Wheel Barrows.

ERECTION OF TRUSS BRIDGES.—Truss bridge spans are usually erected on falsework. The truss may be erected by means of a traveler or a derrick traveler or a derrick car. The usual procedure where a traveler is used will be briefly described. After the falsework and traveler are ready, lay out the center lines of the trusses on the falsework and locate the positions of the panel points. At each panel point place the necessary blocking for camber. Then beginning at the fixed end place the pedestals in position and place the lower chords and the floorbeams and stringers in position and distribute the pins. If the floorbeams and stringers will be in the way they are not placed until they are needed. The traveler is run to the center of the bridge and the center panel on each side is erected. The upper chord section is hoisted and held a little above its final position; the posts are raised, the diagonals are put in place and the pins are driven, or with a riveted truss the joints are field bolted in about 50 per cent of the holes. The panel on the opposite side is then erected and the top lateral struts and bracing are put in place, the floorbeams and stringers are connected up and the lower laterals are put in place, so that the center tower is fully braced. Great care must be used in erecting the middle tower to see that it is in exactly the proper place. After the center panel is complete the traveler is moved toward the fixed end, erecting the trusses one panel at a time. The traveler is then run back to the center and the roller end of the trusses are erected. After the span is all connected up and all connections are properly bolted up, the blocking is knocked out and the bridge is swung clear. The details of erection vary with the type of truss and local conditions and the above description is intended to merely give an idea of the procedure. Truss bridges may also be erected by starting the traveler at the fixed end.

Where a derrick car or a derrick traveler is used the erection is commonly started at the fixed end.

TABLE XII.

J.18T OF ERECTION TOOLS FOR THE ERECTION OF A STEEL MILL BUILDING 60 FT. BY 150 FT. WITH

CORRUGATED STEEL COVERING; 43 TONS STEEL, 7 TONS CORRUGATED STEEL.

MINNEAPOLIS STEEL & MACHINERY CO.

Quantity.	Name and Size of Tool.	Quantity.	Name and Size of Tool.
I	Axe, Hand.	I	Forge, Complete.
4	Bars, Crow.	I	Gin Pole.
4 1	Bars, Connecting.	4	Gouges, Handle.
	Box, Tool.	I	Hack Saw and Blades.
2	Braces.	I	Hammer, Claw.
4	Brushes, Paint.	1	Hammer, Machine.
i	Block, Steel, Single, Wire Rope,	6	Handles, 30 in.
	10 in.	1	Man, Old.
1	Block, Steel, Double, Wire Rope,	2	Punches, Backing out.
	10 in.	6	Punches, Corrugated.
1	Block, Wood Snatch, 10 in.	20	Pins, Drift, 🖁 in.
10	Block, Wood, Single Tackle, 8 in.	10	Pins, Drift, 4 in.
8	Block, Wood, Double Tackle, 8 in.	ı	Ratchet.
700 ft.	Cable, ½ in., 3 pieces.	1,100 ft.	Rope, Manila, ‡ in., 8 pieces.
1	Chain, § in., 3 ft. long.	4	Rope, Manila, Lashings.
1	Chain, ½ in., 8 ft. long.	i	Stock and Dies, Blacksmith.
1	Chain, a in., 9 ft. long.	3	Snaps, Rivet, in.
23	Clamps, Cable, § in.	ī	Saw, Hand.
7	Clamps, Cable, ½ in.	I	Square.
2	Clamps, Rivet.	4	Shackles.
6	Chisels.	2	Snips, Corrugated.
3	Cutters.	1 1	Tongs, Blacksmith.
ĭ	Crab, Small.	2	Tongs, Heater.
I	Dolly, Timber.	1	Tongs, Pick-up.
ı i	Dolly, Goose Neck, § in.	1	Vise, Machinist.
i	Dolly, Straight, 5 in.	15	Wrenches, Bridge, 3 in.
l i l	Dolly, Spring, 5 in.	20	Wrenches, Bridge, & in.
3	Dolly, Corrugated Steel.	8	Wrenches, Bridge, 1 in.
i	Dolly, Jam, & in.	ī	Wrenches, Bridge, 3 in.
i	Drills, Twist, 13 in.	2	Wrenches, Monkey.
	,		,

In erecting the Municipal Bridge over the Mississippi River at St. Louis, sand boxes were used for camber blocking in the place of the usual timber camber blocking.

The threads of pins should be protected by pilot nuts and pilot points when driving. Details of standard pilot nuts are given in Table 99, Part II, and of standard pilotpoints in Table 100, Part II.

RIVETING.—Field rivets may be driven by hand or with pneumatic riveters. Before driving the rivets the parts to be riveted must be drawn up by means of erection bolts so that the holes are fully matched and the surfaces of the metal are so close together that the metal from the rivet will not flow out between the plates. The holes are brought in line and matched by the use of drift pins, Fig. 7 and Fig. 17; care should be used not to injure the metal with the drift pin. If the holes will not match they should be reamed. A gang for hand riveting consists of four men, (1) a rivet heater, (2) a bucker-up, (3) a rivet driver, and (4) a man to catch and enter the rivets, to assist in driving and to hold the rivet set (snap). The hot rivet is thrown by the rivet heater with rivet-pitching tongs, Fig. 11; the rivet is caught in a bucket or keg and is put into the rivet hole with the rivet-sticking tongs, Fig. 11. The rivet is then bucked-up with a dolly, Fig. 9 or Fig. 10, and is upset with a rivet hammer, Fig. 7. After the rivet is upset to fill the hole a rivet set (snap), Fig. 7, is held over the upset rivet and a few blows with the riveting hammer completes the work. Field rivets are ordered with enough stock to furnish metal to fill the hole and to form a perfect rivet head. If the rivet is too short, either the hole will not be filled or the rivet

head will be imperfect. If the rivet is too long the rivet set (snap) will force the metal out under the edge of the rivet set (snap) making a bad looking job. The rivet should be heated uniformly so that it will be upset for its entire length. Riveters prefer to use rivets with scant stock so that

Fig. 18. Derricks and Travelers.

the rivet can be upset and a perfect head formed with little labor. To drive a rivet properly the rivet should be upset by striking it squarely on the end, as side blows will upset the rivet without filling the hole.

Where compressed air is available a pneumatic field riveter is used for driving rivets. Pneumatic field riveters are of two types: (a) jaw riveters that buck-up the rivet and form the head as in shop riveters; and (b) a pneumatic gun that is held against the rivet by the riveter, the rivet being bucked-up with a dolly as in hand riveting or with a pneumatic dolly. The pneumatic gun

Fig. 19. Details of Derricks.

is more convenient and is commonly used. A rivet snap is used in the air gun. Good rivets can be driven by hand, but the work of the pneumatic riveter is more uniform and most specifications for erection of structural steel call for its use. Several railroad bridge specifications now require that hand driven field rivets be calculated for only four-fifths of the allowable stresses on machine driven field rivets. While more rivets can be driven with an air gun than by hand, the added expense for air makes the cost of driving nearly the same as for hand driven rivets.

Dollys for bucking-up rivets are made in many forms to suit the different conditions. Straight, goose-neck, bent, heel and club dollys are shown in Fig. 9, a ring dolly is shown in Fig. 10, and a corrugated iron dolly in Fig. 11. Dollys for use in erecting elevated tanks are shown in Fig. 16, and include the bar dolly, the heel dolly, the combination dolly, and the spring dolly.

DERRICKS AND TRAVELERS.—Derricks and travelers are made in many different forms. A few of the more common forms will be described.

FIG. 20. DETAILS OF A VIADUCT TRAVELER AND A STEEL DERRICK CAR.

Gin Pole.—A gin pole, Fig. 18, is a timber or steel mast with four guys and a block at the top through which the hoist line leads to a crab bolted near the bottom, or the hoist line may run to the hoisting engine. The foot of a gin pole is supported by timbers which are shifted with bars or on rollers. The gin pole should not be inclined more than a few degrees from the vertical, and care must be used to prevent the bottom from kicking out with heavy loads. Gin poles may be made of timber, gas pipe, or may be built structural steel masts. Gin poles are not commonly made longer than 40 to 60 ft., but a trussed gin pole 120 ft. long has been used for erecting elevated towers. The mast of a gin pole may be built up so that only two guys are necessary, resulting in "shear legs" as in Fig. 18.

Each guy is fastened at its lower end to a "deadman" (a timber, or log, or beam buried in the ground).

FIG. 21. DETAILS OF A STIFF-LEG DERRICK.

Guy Derricks.—A guy derrick, Fig. 18 and Fig. 19, has a vertical mast guyed with three or more guy lines, and has a boom which carries blocks and a fall line on the upper end. The boom is raised and lowered with rigging called "topping lines" or "boom lines." The load is raised by rigging called "fall lines" or "falls." The hoisting line may be run down the boom to a crab or to the hoisting engine, or the hoisting line may be run through a "rooster" placed on top of the mast and then to the hoisting engine. Guy derricks may be swung in a full circle, either by hand or by means of a bull wheel operated by a line from the hoisting engine.

"A" Derrick.—The "A" derrick or "Jinniwink" derrick is shown in Fig. 18. "A" derricks are used for light hoisting up to three to five tons. The "A" derrick is a simple form of the stiff-leg derrick.

Stiff-Leg Derrick.—The stiff-leg derrick has a mast braced by "A" frames set at right angles to each other, Fig. 18 and Fig. 19. The loads may be lifted and the boom raised and lowered by means of a crab or by a hoisting engine. The stiff-leg derrick has a free swing of about 240 degrees. The mast may be turned by hand or by means of a bull wheel operated by a line from the hoisting engine. Details of a 12-ton timber stiff-leg derrick are shown in Fig. 21. Stiff-leg derricks of large capacity are now commonly made of structural steel. Details of a steel stiff-leg derrick are given in Fig. 29.

Fig. 22. Details of a Gallows Frame. American Bridge Company.

Boom Travelers.—The mast of a derrick may be supported by the framework of a traveler, Fig. 18. The traveler may be made one or several stories in height. The booms may swing or may be fixed to raise and lower in one plane, and may be used single or in pairs. Boom travelers are commonly used in erecting train sheds, and structural steel buildings. Details of a steel boom traveler are given in Fig. 28 and Fig. 29.

Viaduct Travelers.—An overhang traveler for erecting a high steel viaduct is shown in Fig. 20. Gallows Frame.—A gallows frame or a transverse bent as shown in Fig. 22, is used for erecting plate or riveted girders. The gallows frame is guyed fore and aft with steel cables. Gallows frames are commonly used in pairs or a gallows frame is used with a stiff-leg derrick.

Through or Gantry Travelers.—A through or gantry traveler consists of two or three transverse bents or "gallows frames" braced longitudinally and is carried on a track supported on the falsework and placed outside of the trusses. The traveler has a clearance such that it can be

TABLE XIII.

BILL OF TIMBER IN TRAVELER, FIG. 24.

No.	Cross Section, In.	Length, Ft-In.		No.	Cross Sec- tion, In.	Length, Ft-In.	
55422444412224888	10 × 12 12 × 12 8 × 16 8 × 8 8 × 10 6 × 8 6 × 8 4 × 8 3 × 8 8 ×	28-0 38-0 44-0 24-0 30-0 24-0 32-0 26-0 16-0 14-0 12-0 20-0 18-0 12-0 12-0 12-0 12-0 12-0	Hoisting beams. Longitudinal. Caps. Chord. Legs. Legs batter. Legs. Web braces. Web braces. Web braces. Web braces cut to 10 ft. Leg braces cut to 10 ft. Leg braces cut to 6 ft. Leg splaces cut to 6 ft. Leg splices cut to 6 ft.	4 4 2 10 4 10 I 4 4 2 2 I 2 2 I 4 2 I I	4 × 8 6 × 12 8 × 12 8 × 8 6 × 8 3 × 8 6 × 10 6 × 10 6 × 10 4 × 6 4 × 6 3 × 8 6 × 12 8 × 12 8 × 12 8 × 3 8 × 8	18-0 38-0 32-0 36-0 36-0 36-0	Platform cut to 9 ft. Sills. Sheave beams. Longitudinals. Platform. Platform plank. Blocks cut to 2 ft. Side braces. Side braces. Fillers cut to 8 ft. Fillers. Leg brace. Fillers cut to 2 ft. Trucks cut to 8 in. × 9 in. × 4 ft. Fillers. Chord cut to 10 ft. Leg brace cut to 11 ft. Leg brace cut to 4 ft. 6 in. Sliding beam.

TABLE XIV.

BILL OF BOLTS IN TRAVELER, FIG. 24.

TABLE XV.

BILL OF IRONS IN TRAVELER, FIG. 24.

No.	Diameter, In.	Length, Ft-In.	No.	Name.	Dimensions.
20	3 4	1-10	10	Sheave Chocks	101 in. Block Sheave.
135	1 1	18	4	Bent Bars	3 in. X 1 in. X 2 ft. 9 in.
100	3	I- 6	4	Bent Bars	3 in. X 1 in. X 3 ft. 5 in.
160	1	1-4	2	Bent Bars	
150	1 1	I- 2	2	Bent Bars	3 in. X 1 in. X 2 ft. 0 in.
100	1 1	I- 0	16	Scabs	3 in. X I in. X I ft. 10 in
20	1 1	0-10	8	Rods	11 in. diameter X 9 ft. 2 is
10	1 1	0-8	4	Traveler Wheels	
10	4	2- 0	Ŕ	Wheel Boxes	
10	11	1-4	2	Rods	11 in. diameter × 6 ft. 6 i
	-		2	Rods	11 in. diameter × 3 ft. 6 i

run past the completed bridge or structure. Travelers may be made of timber or structural steel. Outline plans for four standard timber travelers designed by the American Bridge Company are given in Fig. 23, while the detail plans for traveler No. I are given in Fig. 24. The bill of lumber for traveler No. I is given in Table XIII; the bill of bolts is given in Table XIV, and the bill of irons in Table XV. Traveler No. I may be used for single track railway spans up to 250 ft.; traveler No. 3 for single track spans up to 175 ft.; traveler No. 2 for double track spans up to 175 ft.; and traveler No. 4 for double track spans up to 250 ft.

Derrick Cars.—Derrick cars with a capacity up to 75 tons are in common use. The derrick cars are usually self-contained and can move under their own power. The boom can be folded back over the car out of the way when not in use. A sketch of a derrick car is shown in Fig. 20.

FALSEWORK.—Falsework for the erection of bridges is built up of bents made of three or more posts or piles, braced transversely in the same manner as for permanent trestles. Framed bents are carried on mudsills, or on piles where the foundation is inadequate or where the falsework is in flowing water. Where piles can not be driven in running water or where there is danger

FIG. 23. STANDARD TIMBER TRAVELERS. AMERICAN BRIDGE COMPANY.

FIG. 24. THROUGH BRIDGE TRAVELER. AMERICAN BRIDGE COMPANY. (Traveler No. 1 in Fig. 23.)

of flood, it may be necessary to use spread footings which are anchored in place. Where it is practicable to obtain piles of sufficient length they may be used for the full height of the falsework. The timber used in building falsework should be sound, strong, free from defects that will affect its strength or interfere with its use. Since the structure is temporary, durability is not an important element in selecting timber for falsework unless it is to be used several times.

For examples of timber trestles, see Chapter VII.

Plans of typical four-legged falsework as used by the American Bridge Company are shown in Fig. 25. When trains are to be carried and 2-8 in. \times 16 in. stringers are used under each rail, bents must not be spaced over 18 ft. centers for the falsework as shown.

FIG. 25.

Piles.—Timber piles may be driven with a drop hammer, Fig. 26, or with a steam hammer. A spool roller pile driver with a drop hammer is shown in Fig. 26. The hammer is raised to the top of the leads by the hoisting engine; the hammer is then permitted to fall on the top of the pile, dragging the hoisting rope down with it. The force of the blow of the hammer depends upon the weight of the hammer, the height of free fall, and the resistance of the hammer in the leads. By catching the hammer as it descends the operator can cushion the blow so that the safe bearing power of a pile as calculated from the penetration may be very misleading.

Details of a pile driver are given in Fig. 27.

The safe load on piles may be calculated by the Engineering News formula

$$P = \frac{2W \cdot h}{s+1} \tag{1}$$

where P =safe load on the pile in tons;

W =weight of hammer in tons;

h = height of free fall of hammer in ft.;

s = average penetration of the pile for last six blows.

FIG. 26. Types of PILE DRIVERS.

Fig. 27. Details of Standard Pile Driver.
American Bridge Company.

Fig. 28. Traveler used in Erection of Armory, University of Illinois.

Fig. 29. Stiff-Leg Derrick used on Erection Traveler for Erection of Armory, University of Illinois. (Two of these derricks were used on front of traveler.)

Piles should have a penetration of not less than 10 ft. in hard material and not less than 20 ft. in soft material. For a steam hammer unity in the denominator in (t) should be replaced by $\frac{1}{10}$.

The following specification is commonly used for piles for heavy falsework.

All piles are to be spruce, yellow pine or oak, not less than 9 in. in diameter at the point and not more than 14 in. in diameter at the butt. Piles are to be straight and sound, and free from defects affecting their strength or durability. Piles are to be driven into hard bottom until they do not move more than $\frac{1}{2}$ in, under the blow of a hammer weighing 2,000 lb. and falling 25 ft.

For specifications for falsework piles, see Chapter VII.

A track pile driver is shown in Fig. 26.

Design of Falsework.—Falsework should be designed to carry the necessary loads. Where the falsework is required to carry traffic it should be designed for the same allowable stresses as are permitted for timber trestles and bridges, Table V, Chapter VII. Where the falsework does not carry traffic the allowable stresses may be fifty per cent in excess of those permitted for permanent structures. Care should be used in the design to prevent crushing of timber across the grain. For details of timber trestles see Chapter VII.

Traveler for Erection of Armory.*—The new armory for the University of Illinois is 276 ft. by 420 ft. in plan, the main drill hall being covered by three-hinged arches with a span 206 ft. centers of end pins, a center height of 94 ft. 3 in., and are spaced 26 ft. 6 in. The arches have a

horizontal tie of two 4 in. $\times \frac{5}{8}$ in. bars, and are braced together in pairs.

Each arch was shipped in eight segments, and the four sections for each half of the arch were assembled and riveted up in horizontal position on the ground close to their final positions. One side of the arch was then lifted into a vertical plane by a two-boom traveler, and its lower end was fitted into the shoe and the shoe pin driven. The truss was then lowered on this pin until its head rested on the ground, the arch segment being supported by guys at the sides. The opposite segment of the arch was then raised and adjusted in the same way. The traveler was then placed at the center of the arch, and the hoisting lines of the two booms were attached near the ends of the two half-arches, which were then raised, the lower ends rotating on the shoe pins. The arch was then held while the center pin was driven and the purlins were placed connecting it to the adjacent arch.

The traveler, Fig. 28, consisted of a steel tower about 40 ft. square and 33 ft. high to the working deck. On this deck were two 40-ft. masts with A-frames, each carrying a 90-ft. boom, so that the top of the boom could reach about 20 ft. above the top of the arches, the maximum

height from the ground to the hoisting block being 125 ft.

The traveler was supported on wood rollers on tracks of 16×16 in. timbers about 40 ft. apart. The upper part of the traveler was composed of two stiff-leg derricks of the type shown in Fig. 29, with one stiff-leg and one sill removed from each, the masts being stepped on the traveler frame and connected by bracing as shown. Each derrick had a lifting capacity of 15 tons, and was operated by an engine of 8 H. P., the two engines being placed on a platform on the lower sills of the traveler about 2 ft. from the ground.

INSTRUCTIONS FOR THE ERECTION OF STRUCTURAL STEEL.—The McClintic-Marshall Construction Co. has issued the following instructions to foremen.

In Order to Avoid Accidents, as Far as Possible, be Guided by the Following:

1. See that Your Equipment is Sufficiently Strong.—It is your duty to see that the equipment and tools you use for each part of the work are sufficiently strong to handle the same safely.

You should see that the derricks you use are amply strong for the loads to be lifted. The goose neck and gudgeon pin are the critical points of a derrick. If you have any doubt about the strength of the goose neck, provide heavy wire guys from gudgeon pin to sill at base of stiff legs. Don't lift a ten ton load on a five ton derrick. The same thing applies to gin poles and travelers. Don't overload your equipment and don't run any chances where life is endangered. Be careful not to lift any but a light load on a derrick if the length of the boom exceeds seventy times the least width or thickness of the boom; that is, if your boom is 12 in. X 14 in. the least width is 12 in., you should not lift a heavy load on this boom if it is more than seventy feet in length.

^{*} Engineering News, Dec. 11, 1913. The structural steel was fabricated and erected and the traveler was designed by the Morava Construction Co., Chicago, Illinois.

See that travelers are well and carefully framed and erected, well braced and capable of withstanding the greatest wind, and shocks from heaviest loads that are to be lifted.

See that the hooks, shackles and beckets on your blocks are amply strong, and don't allow a gate block to be used without it being closed and hooked. Also see that your cables and chains,

as well as the rings and hooks in the same, are amply strong for the loads to be lifted.

Do not use old or worn line when there is any danger to men or material by so doing. Cut out the use of manila line whenever possible. When you are obliged to use it be sure it is amply Use steel cable whenever possible, as it is safer, will last longer and is cheaper in the long run. Be sure that the guy cables for gin poles, derricks, etc., are of sufficient size to withstand the tension to come upon them. Also that the cables are securely fastened by means of a sufficient number of good, strong clamps well fastened, and also that dead men or other anchorages are ample, and watch them when lifting heavy loads to see that guys do not cut dead men in two. Keep gin pole guys as near at right angles to each other as possible, when only four are used.

You should be careful to see that the gas pipe or wooden scaffold you use is of proper size and strength for the span and loads. If there is any question about the strength, test the same by applying several times the load that will come upon it. See that plank you use for scaffolding, etc., is the right kind of wood, preferably white or yellow pine, free from knots and shakes and plenty strong, watching to see that it is thick enough for the span on which it is used.

Do not put heavy loads on light push cars. The frame is not only liable to crush but the

shafts, boxes or wheels may bend or break, upsetting the load and injuring the men.

2. See That Your Equipment is in Order.—In setting up your derricks see that they are plumb, properly guyed and that the splices are brought into contact and bolted with tight-fitting See that the goose-necks fit gudgeon pin closely and are not cracked or bent and that the top of stiff-leg is tied down from the goose-neck to the sill to prevent lifting tendency. If the timbers in the mast, boom, stiff-legs or sills are rotten, knotty or wind shaken, do not use them. See that your gudgeon pin and pintle casting are well fastened to the mast, and if the mast is of

wood that the wood is not rotten or worn at these points.

You should see that all leads are as straight and direct as possible, as failure to provide good leads reduces the efficiency of your power and equipment, as well as producing heavy wear on the lines and is a frequent cause of accidents. Particular care should be exercised in securing good leads for wire cable on account of liability of breaking the individual wire strands by sharp bends or indirect leads. A broken individual wire is liable to lie across and cut the other wires of the When you use a wooden traveler see that the timbers are all in good condition and that it is erected plumb and square and the joints are properly and securely bolted. More accidents occur from the use of wooden derricks and wooden travelers than from any other cause, and for this reason extreme care should be exercised to see that they are in good condition before using them. When a traveler is used, see that it is properly erected and thoroughly bolted and all sway and bracing rods tightened.

Do not use an iron gin pole if the sections are bent or dented seriously, or the splices do not clamp the pole tightly and securely. Do not use a wooden gin pole unless the timber is in good

condition, well spliced with good long splices securely bolted.

See that your hoisting engine is in good order; that the shafts are not bent, the dogs, clutches and brakes, including the friction, are in good condition and working order. The lever controlling the winch heads should be straight and when thrown in should engage the ratchet fully. See that winch head cannot slip off shaft. See that the boilers are cleaned frequently and kept in good condition.

You should be particular to see that gas pipe scaffolding is not rusted on the inside and that it is fastened so that it cannot roll or turn. Do not use any plank or timber for scaffolding that is knotty, rotten or weather cracked, and allow no man to work on scaffold plank laid loose on The plank should be fixed so that they cannot move or slide endwise, by using drop

bolts

All cables should be in good condition and kept oiled or greased so that they will not rust; if they are not in good condition, do not use them. All guy cables should be securely fastened

by means of a sufficient number of good clamps.

See that your chains and the rings and hooks in the same are not worn, cracked or bent out of shape and that they are annealed at least once every three months in an annealing furnace, if you are near one, or otherwise anneal them yourself by laying them down in a straight line and building a good sized wood fire over them, heating slowly to a cherry red, then cover over thoroughly with ashes and heated dry dirt leaving them to cool slowly in the ashes and dirt. In laying the chains down in a straight line do not lay one chain on top of another. Be particular to see that the covering is ample so that air or moisture cannot cool the chains quickly or partially. This annealing should be done on Saturday and chains not disturbed until Monday. used frequently every day should be annealed once a month.

See that your blocks are in good order and that the beckets, shackles and hooks are not bent, cracked or out of shape, and that faces of blocks are in good condition, also that the sheaves

are not cracked or the flanges broken.

See that all button sets (rivet sets) are fastened to the air hammers.

3. See that Your Equipment and Tools are Properly Used .- In using a locomotive crane be sure that your track is properly ballasted and level and the rails well spiked down. Do not lift a load sideways when the locomotive crane is standing on a curve, without using extra care. Use your outriggers and rail clamps when lifting a heavy load.

The loads that a locomotive crane is capable of handling safely for each radius are plainly

marked on the crane: don't attempt to lift heavier loads with the crane.

See that the booms of locomotive cranes, derrick cars or derricks, are in first class condition. If the boom (or flanges of the boom) has been injured or bent, don't use it, but replace the broken or bent part with new material. Don't attempt to straighten it, as the material in all probability has been injured, and will break or collapse sooner or later.

A locomotive crane is a useful, but dangerous piece of equipment, for this reason the greatest possible care should be exercised in handling the same. Don't allow any man on the car or crane cab, except the craneman, and keep workmen from under the boom. Don't attempt to shift track with your crane standing on the same track, and don't attempt to lift a maximum load with the boom

horizontal.

You must be especially careful in swinging boom sidewise or lifting loads sidewise with a derrick car as your car will upset unless you use outriggers or guys. Don't run chances, but lift the load straight ahead wherever possible. See that the boom on the derrick car is tightly guyed at all times with wire rope running from end of boom to sides of car. Never use manila line for this purpose, as it will stretch and your boom will get away from you, upsetting the car. additional guys to end of boom when setting heavy loads.

In carrying loads with a locomotive crane or derrick car on a curve, be sure that the track is

level and the outer rail not elevated as is customary with railroad track.

Be very careful in using a wooden boom extension or outriggers, that you do not lift too The increased length of the boom and the weight of extension reduce the lifting Whenever possible, avoid the attachment of guy lines to railroad tracks, capacity considerably. as numerous accidents have occurred by car running into the guys.

Hook onto sheets or bundles of small material so that they cannot slip out.

Don't allow men to carry glazed window sash on their shoulders when the wind is blowing. See that gate blocks are securely fastened and that men do not stand in the "bite" of a line. Do not use a light gate block when lifting heavy loads.

Lines should be run around two winch heads when making a heavy lift.

When you use a derrick keep the boom elevated above a horizontal line as far as possible, as generally the worst stress comes on the boom and mast as well as stiff-legs or guy lines when boom is in a horizontal position. A maximum load for the derrick should never be lifted with the boom in a horizontal position.

When you use a gin pole see that the splices are well bolted and the pole is properly guyed. Do not lean the pole too much when lifting a load or moving the pole and see that the foot of the

pole cannot move or slip except when you desire to move it.

A number of accidents have occurred through the improper loading of push cars. See that the load is properly placed so that it cannot roll or tumble over, especially going around a curve. Do not allow your men to push on the side of the car with a top heavy load. They should push or pull from the ends of the piece.

When you lift a beam or girder use scissor dogs or cast steel girder hooks wherever possible, and if you are obliged to use either ordinary dogs or chains see that wooden blocks are used be-

tween the chain or dog and the flange to prevent the girder from slipping.

Avoid the use of chains except for lifting light loads. Where you have heavy loads to lift use cable slings, being careful to avoid sharp bends by using rounded wooden blocks between cable and load. Don't put too many parts of lashing into a hook as by doing so you are liable to open up the hook. See that exposed parts of dangerous machinery are properly covered.

4. Be Orderly, Careful.—See that your work is carried on in an orderly, careful manner. See that material is unloaded and piled in an orderly, careful way so that it cannot fall, turn

or be blown over.

Unless necessary, do no hoist any material to a structure until you are ready to put it into position and properly fasten it. In cases where you do hoist material to the structure before putting it in its final position, see that it is piled in an orderly way so that it cannot turn or roll over when a man steps on it.

Don't let tools or equipment such as bolts, nuts, drift pins, blocks, dolly bars, etc., lie around so that they can be knocked off the work or so that any one can fall over them. Keep every-

thing orderly and in ship-shape and allow nothing to lie around.

5. Be Vigilant.—You must use vigilance and be on the job practically all the time to see that your men are carrying out your instructions; that tools and equipment are in fit condition for the work and that they are handling the work carefully and intelligently.

Be careful and insist on the men under you being careful, and do not allow any one who is

reckless and careless to work for you.

Whenever any question as to the safety of equipment or tools or the work which you are erecting is brought to your attention by any of the men under you or others, investigate the same and satisfy yourself of the safety of the same before proceeding further. If you are satisfied the work, equipment or tools are not safe, put them in a safe condition immediately.

6. See that Proper Instruction is Given Employees.—Call attention of men to any dangerous conditions on the job so that they can be on the lookout. Your faithful attention to this matter

is to the interest of employee and employer alike.

7. Unfit Condition.—You must see that every employe under you is in proper physical condition. They should be strong, temperate, clear-headed, with good eyesight, good hearing, and not lame or crippled.

Do not allow any man to go to work who has been drinking or drinks during working hours or who is sick or in unfit condition. A man's mind is not clear who is at all under the influence of liquor and thus endangers his own and fellow workmen's lives. Don't employ ignorant persons.

Don't employ any one under eighteen years of age and preferably no one under twenty-one. Those employed between the ages of eighteen and twenty-one should be strong, sober, healthy boys who desire to learn the business. You must secure a written permit from the parents of all boys under twenty-one years of age, authorizing you to employ them. Forms for this purpose will be sent you. The character of this business is such that a workman should be strong and sound in body, temperate in habits, clear and alert in mind, to avoid accidents.

8. Use Judgment.—You must use judgment in assigning men to do certain work and see that

they are capable and experienced in the work to be done.

Signal men should be capable, experienced bridgemen, and should stand in a position where they can be seen by the men at the hoisting engine and those connecting the work. Signals should be clearly understood. Use none but good, careful, experienced locomotive cranemen.

derrick car men, and men on winch heads.

Don't resort to expediency by allowing an inexperienced man to do the work where experience counts. Educate the men up to their work. Don't throw too much on inexperienced men all at once. You should see that the pusher and men use proper tools to do the work and handle same properly. Don't allow your men to work on crane runway when cranes are in motion. Don't allow men to work on scaffold that you would not work on yourself. Where there are heavy pieces to be lifted see if the weight is marked on the piece; if not, get the weight from the invoice and mark it on, calling pusher's attention to it.

9. Do Not Allow Men to Work in Perilous Places.—You must see that your men are not exposed to extremely hazardous conditions and that they are not allowed to work in extremely

dangerous places.

Do not allow your men to work under loads and in places where there is imminent danger. Be careful not to allow men to work on the roofs of buildings when there is frost, ice or snow on the same, without taking extreme precautions. The same applies to other steel structures.

10. See That Workmen Obey Following Rules.

a. Don't Be Reckless.-More accidents occur through recklessness than any other cause.

Don't walk on rods. Don't ride a load. Don't ride on a locomotive crane.

b. Don't Be Careless.—Look where you step and be sure that on what you step is safe and secure. Don't step on ends of loose plank. Don't start to slide down a line unless you are sure the ends are fastened.

c. Be Orderly.—Do whatever you do in an orderly, careful manner. Pile material so that it cannot roll, fall, tumble, or be blown over. Don't let tools or equipment such as bolts, nuts, drift pins, blocks, dolly bars, etc., lie around so that they can be knocked off the work or so that

any one can fall over them.

d. Unfit Condition.—Don't go to work if you have been drinking or do not feel well. If you are lame or have any defect in hearing or eyesight you should not work at this business as by so doing you endanger your own and fellow workmen's lives. If you are inexperienced in, or unsuited for the work to be done, don't undertake it.

e. Be Vigilant.—Watch what you are doing. Don't stand or work under a load. Don't go in the "bite" of a line nor stand in front of a snatch block. Don't work on or about a crane

runway when the crane is in use unless there is a stop between you and the crane.

f. Don't Use Unfit Tools.—Be sure the tools and equipment you use are in good working order. If they are not, don't use them. Don't work with men who don't observe these rules.

SPECIFICATIONS FOR THE ERECTION OF RAILWAY BRIDGES.*

AMERICAN RAILWAY ENGINEERING ASSOCIATION.

1. Work to be Done.—The Contractor shall erect, rivet and adjust all metal work in place complete, and perform all other work hereinafter specified.

2. Plant.—The Contractor shall provide all tools, machinery and appliances necessary for

the expeditious handling of the work, including drift pins and fitting up bolts.

Falsework placed by the Railway Company under an old structure or for carrying traffic, may be used as far as practicable by the Contractor during erection, but it shall not be unneces-

sarily cut or wasted.

4. Conduct of Work.—The work shall be prosecuted with sufficient force, plant and equipment to expedite its completion to the utmost extent and in such a manner as to be at all times subordinate to the use of the tracks by the Railway Company, and so as not to interfere with the work of other contractors, or to close or obstruct any thoroughfare by land or water, except under proper authority.

Reasonable reduction of speed will be allowed upon request of the Contractor.

Tracks shall not be cut nor shall trains be subjected to any stoppage except when specifically authorized by the Engineer.

The Contractor shall protect traffic and his work by flagman furnished by and at the expense of the Railway Company. The Contractor shall provide competent watchmen to guard the work

and material against injury.

5. Engine Service.—If under the contract, work train or engine service is furnished the Contractor free of charge, such service shall consist only in unloading materials and in transferring the same from a convenient siding to the bridge site. Other engine service shall be paid for by the Contractor at the rate of \$..... per day per engine, the time to include the time necessary for the engine to come from and return to its terminal. When engine service is desired the Contractor shall give the proper railway officials at least 24 hours' advance notice and the Railway Company will furnish the service as promptly as possible, consistent with railroad operations.

When derrick cars are used on main tracks, their movements shall be in charge of a train crew, and the expense of the crew and any engine service other than as noted above shall be

charged to the Contractor.

. 6. Transportation.—When transportation of equipment, materials and men is furnished free over the Railway Company's line, it shall be subject to such conditions as may be stated

in the contract.

7. Masonry.—The Railway Company will furnish all masonry to correct lines and elevations, and unless otherwise stated in the contract, will make all changes in old masonry without unnecessarily impeding the operations of the Contractor. The Railway Company's engineers will establish lines and elevations and assume responsibility therefor, but the Contractor shall compare the elevations, distances, etc., shown on plans, with the masonry as actually constructed as far as practicable, before he assembles the steel. In case of discrepancy, he shall immediately notify the Engineer.

8. Handling and Storing of Materials.—Cars containing materials or plant shall be promptly unloaded upon delivery therefor, and in case of failure to do so the Contractor shall be liable for demurrage charges. Material shall be placed on skids above the ground, laid so as not to hold water, and stored and handled in such a manner as not to be injured or to interfere with railroad operations. The expense of repairing or replacing material damaged by rough handling shall be charged to the Contractor. The Contractor, while unloading and storing material, shall compare each piece with the shipping list and promptly report any shortage or injury discovered.

^{*} Adopted, Am. Ry. Eng. Assoc., Vol. 13, 1912, pp. 83–87, 935–945. † Insert "Railway Company" or "Contractor," as the case may be.

o. Maintenance of Traffic.—When traffic is to be maintained it will be carried on in such a manner as to interfere as little as practicable with the work of the Contractor.

Changes in the supporting structure or tracks required during erection shall be at all times

under the direct control and supervision of the Railway Company.

10. Removal of Old Structure.—Unless otherwise specified, metal work in the old structure shall be dismantled without unnecessary damage and loaded on cars or neatly piled at a site immediately adjacent to the tracks, and at a convenient grade for future handling, as may be When the structure is to be used elsewhere all parts will be matchmarked by the Railway Company; when the old bridge is composed of several spans the parts of each shall be kept

II. Metal Work.—Material shall be handled without damage. Threads of all pins shall be

protected by pilot and driving nuts while being driven in place.

Light drifting will be permitted in order to draw the parts together, but drifting for the purpose of matching unfair holes will not be permitted. Unfair holes shall be reamed or drilled. Nuts on pins and on bolts remaining in the structure shall be effectively locked by checking

the threads.

All splices and field connections shall be securely bolted prior to riveting. When the parts are required to carry traffic, important connections, such as attachments of stringers and floorbeams, shall have at least fifty (50) per cent of the holes filled with bolts and twenty-five (25) per cent with drift pins. All tension splices shall be riveted up complete before blocking is removed. When not carrying traffic, at least thirty-three and one-third $(3,\frac{1}{3})$ per cent of the holes shall have bolts

Rivets in splices of compression members shall not be driven until the members shall have been subjected to full dead load stresses. Rivets shall be driven tight. No recupping or caulking will be permitted. The heads shall be full and uniform in size and free from fins, concentric and in full contact with the metal. Heads shall be painted immediately after acceptance.

Rivets shall be uniformly and thoroughly heated and no burnt rivets shall be driven, defective rivets shall be promptly cut out and redriven. In removing rivets the surrounding

metal shall not be injured; if necessary, the rivets shall be drilled out.

12. Misfits.—Correction of minor misfits and a reasonable amount of reaming shall be con-

sidered as a legitimate part of the erection.

Any error in shop work which prevents the proper assembling and fitting up of parts by the moderate use of drift pins, and a moderate amount of reaming and slight chipping or cutting, shall be immediately reported to the Engineer and the work of correction done in the presence of the Engineer, who shall check the time expended. The Contractor shall render an itemized bill for such work of correction for the approval of the Engineer.

13. Anchor Bolts.—Holes for all anchor bolts, except where bolts are built up with the masonry, shall be drilled by the Contractor after the metal is in place and the bolts shall be set

in Portland cement grout.

14. Bed Plates.—Bed plates resting on masonry shall be set level and have a full even bearing over their entire surface; this shall be attained by either the use of Portland cement grout or mortar, or by tightly ramming in rust cement under the bed plates after blocking them accurately in position.

such color, quality and manufacture as may be specified.

Surfaces inaccessible after erection, such as bottoms of base plates, tops of stringers, etc.. shall receive two coats of paint, allowing enough time between coats for the first coat to dry before applying the second. No paint shall be applied in wet or freezing weather, nor when the surface of the metal is damp. Painting shall be done in good and workmanlike manner, subject to strict inspection during progress and after completion, and in accordance with special instructions which shall be given by the Engineer. All metal shall be thoroughly cleaned of dirt, rust, loose scale, etc., before the paint is applied.

17. Clearing the Site.—The Contractor, after completion of the work of erection, shall remove all old material and debris resulting from his operations and place the premises in a neat

condition.

18. Superintendence and Workmen.—During the entire progress of the work the Contractor shall have a competent superintendent in personal charge and shall employ only skilled and competent workmen. Instructions given by the Engineer to the Superintendent shall be carried out the same as if given to the Contractor. If any of the Contractor's employes by unseemly or boisterous conduct, or by incompetency or dishonesty, show unfitness for employment on the work, they shall, upon instructions from the Engineer, be discharged from the work, nor thereafter be employed upon it without the Engineer's consent.

^{*} Insert "Railway Company" or "Contractor," as the case may be.

to. Inspection.—The work of erection shall at all times be subject to the inspection and

acceptance of the Engineer.

20. Engineer.—The term "Engineer," as used herein, shall be understood to mean the Chief Engineer of the Railway Company, or his accredited representative.

INSTRUCTIONS FOR THE INSPECTION OF BRIDGE ERECTION.*

(1) Study and observe the plans and specifications for steel construction. Study the masonry plans and check the masonry as built with the steel plans.

(2) Familiarize yourself with the local conditions affecting erection.

Make the acquaintance of the principal men engaged upon the work and of local residents

whose interests may be affected thereby.

(3) Obtain and study carefully the time table and be well posted concerning the time when regular and extra trains are due and their relative importance. Acquaint yourself with all special traffic arrangements, made because of the work in hand.

(4) Secure full information concerning the conditions of the work in the bridge shop and the

probable dates of shipment.

(5) Obtain reports of any uncompleted or erroneous work that must be attended to after arrival of the material in the field.

(6) Study the erection program in order to avoid delays and be able to recommend some other procedure in an emergency.

(7) Endeavor to have full preparations made before disturbing the track so that the erection

may proceed rapidly and the period of such disturbance be made a minimum.

(8) Keep a record of the arrival of all materials. The contractor's record should be sufficient if available. Strive to anticipate any shortage of material and use all available facilities to hasten delivery of the needed parts.

(9) Study the progress of the work and determine whether it is likely to be completed in the time allotted. If not, endeavor to secure such additions to the force and equipment as will insure

such completion.

(10) Make a daily record of the force employed and the distribution of labor, in a way that

will assist in following clauses 9 and 23.

(II) Exercise a constant supervision of any temporary structure or falsework and make soundings if necessary with the purpose of discovering any evidence of failure or lack of safety and having it corrected before damage is done. Examine erection equipment with a view to its safety and adequacy.

(12) Be constantly on hand when work is in progress and note any damage to the metal,

failure to conform to the specification or any especial difficulty in assembling.

(13) Make sure that each member of the structure is placed in its proper position. If match marks are used, examine them with care.

Endeavor to have the several members assembled in such order that no unsatisfactory makeshifts need be resorted to in getting some minor member in place. (14) Prevent any abuse or rough usage of the material. Bending, straining and heavy pound-

ing with sledges are included in such abuse.

(15) Watch carefully the use of fillers, washers and threaded members to see that they are neither omitted nor misused.

(16) Make certain that all parts of the structure are properly aligned and that the required camber exists before riveting. It is possible for a structure to be badly distorted although the rivet holes are well filled with the bolts.

(17) Watch the heating of rivets to insure against overheating and to make sure that scale

is removed.

Examine and test carefully all field-driven rivets and have any that are loose or imperfect replaced.

Have cut out and replaced all rivets, whether shop-driven or field-driven, that may be loosened during erection and riveting.

Prevent injury to metal while removing rivets.

(18) Present to the contractor at once for his attention any violation of the specifications or contract, and secure a correction or refer the matter to the proper authorities as soon as possible.

(19) Keep informed concerning the use of Company material and work trains and assist in procuring such material and trains when needed, and preserve a record thereof.

(20) Secure a match-marking diagram of any old structure to be removed and see that each part of such structure is properly marked in accordance therewith. Make a record of the manner of cutting the old structure apart and report any damage to the members of the old structure.

^{*} Am. Ry. Eng. Assoc., Vol. 14, p. 90.

Indicate by sketches or otherwise such repairs or replacement as will be found necessary in re-

(21) Secure photographic records of progress and the important features of the work where-

ever practicable.

(22) Make a record of flagging of trains, whether performed for the benefit of the Contractor or otherwise, delays to trains, personal injuries, and accidents of every kind.

(23) Make reports as directed, showing the progress of the work, the size of the force and

the equipment in use.

Make a final report showing the cost of labor of erection per ton of material erected, the cost of labor per rivet in riveting, the cost of correcting errors in design and fabrication and commenting on the design and details; and give such other information as may be useful in planning similar work.

CHAPTER XV

ENGINEERING MATERIALS.

IRON AND STEEL.—The following definitions were adopted by the Committee on the Uniform Nomenclature of Iron and Steel of the International Association for Testing Materials. September, 1906.

Cast Iron.—Iron containing so much carbon or its equivalent that it is not malleable at any temperature. The committee recommends drawing the line between cast iron and steel at 2.20

per cent carbon.

Pig Iron.—Cast iron which has been cast into pigs direct from the blast furnace.

Bessemer Pig Iron.—Iron which contains so little phosphorus and sulphur that it can be used for conversion into steel by the original or acid Bessemer process (restricted to pig iron containing not more than 0.10 per cent of phosphorus).

Basic Pig Iron.—Pig iron containing so little silicon and sulphur that it is suited for easy conversion into steel by the basic open-hearth process (restricted to pig iron containing not more

than 1.00 per cent of silicon).

Gray Pig Iron and Gray Cast Iron.—Pig iron and cast iron in the fracture of which the iron itself is nearly or quite concealed by graphite, so that the fracture has the gray color of graphite. White Pig Iron and White Cast Iron.—Pig iron and cast iron in the fracture of which little

or no graphite is visible, so that the fracture is silvery and white.

Malleable Castings.—Castings made from iron which when first made is in the condition of

cast iron, and is made malleable by subsequent treatment without fusion. Malleable Pig Iron.—An American trade name for the pig iron suitable for converting into malleable castings through the process of melting, treating when molten, casting in a brittle state,

and then making malleable without remelting.

Wrought Iron.—Slag-bearing, malleable iron, which does not harden materially when suddenly cooled.

Steel.—Iron which is malleable at least in some one range of temperature and in addition is either (a) cast into an initially malleable mass; or, (b) is capable of hardening greatly by sudden cooling; or, (c) is both so cast and so capable of hardening.

Open-hearth Steel.—Steel made by the open-hearth process, irrespective of carbon content.

Bessemer Steel.—Steel made by the Bessemer process, irrespective of carbon content.

Blister Steel.—Steel made by carburizing wrought iron by heating it in contact with carbonaceous matter.

Crucible Steel.—Steel made by the crucible process, irrespective of carbon content.

Steel Castings,—Unforged and unrolled castings made of Bessemer, open-hearth, crucible or any other steel.

Alloy Steels.—Steels which owe their properties chiefly to the presence of an element other

than carbon.

Classification of Iron and Steel.—The limits of carbon, the specific gravity and properties of iron and steel are as follows:

	Per cent of Carbon.	Specific Gravity.	Properties.		
Cast Iron	5 to 1.50	7.2	Not malleable, not temperable		
Steel	1.50 to 0.10	7.8	Malleable and temperable		
Wrought Iron	0.30 to 0.05	7.7	Malleable, not temperable		

It will be seen that the percentage of carbon alone is not sufficient to distinguish between steel and wrought iron. The softer grades of steel resemble wrought iron. Very mild open-hearth steel is often sold under the trade name of "Ingot Iron," and is reputed to have many advantages over structural steel, most of which properties it does not possess among which is the ability to resist corrosion.

487

CAST IRON.—The product of the blast furnace, where the iron ore is reduced in the presence of a flux, is called pig iron. The term cast iron is commonly applied to pig iron after it has been again melted and cast into finished form. Cast iron contains carbon, silicon, sulphur, phosphorus, and manganese in addition to pure iron, and occasionally very small quantities of other elements. The amount of carbon depends largely upon the presence of other elements.

Carbon.—The percentage of carbon ordinarily varies between 1½ and 4 per cent, but in the presence of manganese the carbon may be much higher. Carbon may occur in the form of combined carbon, giving a white brittle cast iron, or in the form of graphite, giving a gray cast iron. which is the form used in structural castings. The proper amount of carbon in cast iron depends upon the amount of other impurities and upon the use that is to be made of the finished product.

Silicon.—The carbon is controlled by varying the amount of silicon and sulphur. Silicon acts as a precipitant of carbon, changing it from the combined form to the graphite form. silicon in gray cast iron is usually between 3 and 3 per cent.

Sulphur.—Sulphur has the opposite effect of silicon and its presence is considered objectionable. Sulphur produces "red-shortness" (brittleness when the iron is heated). The amount of sulphur in gray-iron castings should not exceed 0.12 per cent.

Manganese.—Manganese and sulphur both tend to increase the amount of combined carbon. but they tend to neutralize each other. Manganese gives closeness of grain and prevents the absorption of sulphur on remelting. The amount of manganese in gray-iron castings is usually less than \frac{1}{2} per cent: more than 2 per cent makes cast iron brittle.

Phosphorus,—Phosphorus increases the fusibility and fluidity of cast iron but at the same time makes it brittle. A high phosphorus content is necessary in cast iron for light ornamental castings where strength is not required. The phosphorus in gray-iron castings varies from \$1.00 11 per cent.

Malleable Castings.—Small thin castings made of white cast iron may be decarbonized by heating the castings in annealing pots containing hematite ore or forge iron scale. The castings are kept at a cherry red heat for three to four days, and are then allowed to cool slowly. The metal in malleable castings should not exceed $\frac{1}{4}$ in. in thickness in small castings, nor $\frac{1}{2}$ in. in large castings, and should be of uniform thickness.

Strength of Cast Iron.—The strengths of grav-iron castings are given in Table I and in the Specifications for Gray-iron Castings of the American Society for Testing Materials.

STANDARD SPECIFICATIONS FOR GRAY-IRON CASTINGS

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED SEPTEMBER 1, 1905.

- I. Process of Manufacture. Unless furnace iron is specified, all gray castings are understood to be made by the cupola process.
 - 2. Chemical Properties. The sulphur contents to be as follows:

Light castings......not over 0.08 per cent Medium castings.... 0.10

Heavy castings..... 0.12

3. Classification. In dividing castings into light, medium and heavy classes, the following standards have been adopted:

Castings having any section less than $\frac{1}{2}$ in. thick shall be known as light castings.

Castings in which no section is less than 2 in. thick shall be known as heavy castings. Medium castings are those not included in the above classification.

4. Physical Properties. Transverse Test. The minimum breaking strength of the "Arbitration Bar" under transverse load shall be not under:

Heavy castings......3,300 " In no case shall the deflection be under 0.10 in.

Tensile Test. Where specified, this shall not run less than:

Light castings18,00			
Medium castings	o ''	6.6	7.4
Heavy castings	o ''	6.6	4.6

- 5. Arbitration Bar. The quality of the iron going into castings under specification shall be determined by means of the "Arbitration Bar." This is a bar 14 in. in diameter and 15 in. long. It shall be prepared as stated further on and tested transversely. The tensile test is not recommended, but in case it is called for, the bar as shown in Fig. 1, and turned up from any of the broken pieces of the transverse test shall be used. The expense of the tensile test shall fall on the purchaser.
- 6. Number of Test Bars. Two sets of two bars shall be cast from each heat, one set from the first and the other set from the last iron going into the castings. Where the heat exceeds twenty tons, an additional set of two bars shall be cast for each twenty tons or fraction thereof above this amount. In case of a change of mixture during the heat, one set of two bars shall also be cast for every mixture other than the regular one. Each set of two bars is to go into a single mold. The bars shall not be rumbled or otherwise treated, being simply brushed off before testing.

FIG. 1.—ARBITRATION TEST BAR. TENSILE TEST PIECE

7. Method of Testing. The transverse test shall be made on all the bars cast, with supports 12 in. apart, load applied at the middle, and the deflection at rupture noted. One bar of every two of each set made must fulfil the requirements to permit acceptance of the castings represented.

8. Mold for Test Bar. The mold for the bars is shown in Fig. 2. The bottom of the bar is 16 in. smaller in diameter than the top, to allow for draft and for the strain of pouring. The pattern shall not be rapped before withdrawing. The flask is to be rammed up with green molding sand, a little damper than usual, well mixed and put through a No. 8 sieve, with a mixture of one to twelve bituminous facing. The mold shall be rammed evenly and fairly hard, thoroughly dried and not cast until it is cold. The test bar shall not be removed from the mold until cold enough to be handled.

9. Speed of Testing. The rate of application of the load shall be from 20 to 40 seconds for a

deflection of 0.10 in.

10. Samples for Analysis. Borings from the broken pieces of the "Arbitration Bar" shall be used for the sulphur determinations. One determination for each mold made shall be required. In case of dispute, the standards of the American Foundrymen's Association shall be used for comparison.

11. Finish. Castings shall be true to pattern, free from cracks, flaws and excessive shrinkage.

In other respects they shall conform to whatever points may be specially agreed upon.

12. Inspection. The inspector shall have reasonable facilities afforded him by the manufacturer to satisfy him that the finished material is furnished in accordance with these specifications. All tests and inspections shall, as far as possible, be made at the place of manufacture prior to shipment.

WROUGHT IRON.-Wrought iron is made in a reverberatory furnace from pig iron or from molten metal taken directly from the blast furnace. The hearth of the reverberatory furnace is fettled with high grade iron ore or mill scale, which acts as an oxidizing agent for reducing the impurities. The puddling process may be divided into four stages: First or melting down stage, occupying about 30 minutes, during which the silicon and manganese are oxidized and a considerable part of the phosphorus is oxidized; all oxidized products unite with the slag. Second or clearing stage, occupying about 10 minutes, during which the remainder of the silicon and manganese, and more of the phosphorus are oxidized and removed from the pig iron. Third or boiling stage, occupying about 30 minutes, in which nearly all the carbon is removed and most of the remaining phosphorus is removed. Last or balling stage, occupying about 20 minutes, in which the metal is gathered by the puddler into balls weighing about 75 to 100 lb.

FIG. 2.—MOLD FOR ARBITRATION TEST BAR.

The puddled balls of iron and slag are hammered or are run through rolls to squeeze the slag from the balls, and the resulting bars are called muck bars. The muck bar is again reheated and rerolled and the resulting product is commercial merchant bar.

Wrought iron when broken in tension shows a fractured section irregular and fibrous. The strength of wrought iron varies with the chemical composition, the mechanical work and heat treatment it has received. The strength of wrought iron is given in Table I, and the specifications for wrought-iron bars and plates as adopted by the American Society for Testing Materials are as follows:

STANDARD SPECIFICATIONS FOR REFINED WROUGHT-IRON BARS

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS. ADOPTED AUGUST 25, 1913.

I. MANUFACTURE.

1. Process. Refined wrought-iron bars shall be made wholly from puddled iron, and may consist either of new muck-bar iron or a mixture of muck-bar iron and scrap, but shall be free from any admixture of steel.

II. PHYSICAL PROPERTIES AND TESTS.

(b) The yield point shall be determined by the drop of the beam of the testing machine. The speed of the cross-head of the machine shall not exceed 1½ in. per minute.

3. Permissible Variations in Tensile Strength. Twenty per cent of the test specimens representing one size may show tensile strengths 1000 lb. per sq. in. under or 5000 lb. per sq. in. over that specified in Section 2; but no specimen shall show a tensile strength under 45,000 lb. per sq. in.

4. Modifications in Tensile Strength. For flat bars which have to be reduced in width, a deduction of 1000 lb. per sq. in. from the tensile strength specified in Sections 2 and 3 shall be made.

5. Permissible Variations in Elongation. Twenty per cent of the test specimens representing one size may show the following percentages of elongation in 8 in.:

ROUND BARS.

½ in. or over,	tested as	rolled.	 	 	 	 	 	 	 20	per cent
Under ½ in.,	44 44	44	 	 	 	 	 	 	 16	44
Reduced by	machining		 	 	 	 	 	 	 18	44

FLAT BARS

# in, or over, tested as rolled.		per cent
Under & in., " " "		4.4
Reduced by machining	16	4.4

6. Bend Tests. (a) Cold-bend Tests.—Cold-bend tests will be made only on bars having a nominal area of 4 sq. in. or under, in which case the test specimen shall bend cold through 180 deg. without fracture on the outside of the bent portion, around a pin the diameter of which is equal to twice the diameter or thickness of the specimen.

(b) Hot-bend Tests.—The test specimen, when heated to a temperature between 1700° and 1800° F., shall bend through 180 deg. without fracture on the outside of the bent portion, as follows: For round bars under 2 sq. in. in section, flat on itself; for round bars 2 sq. in. or over in section and for all flat bars, around a pin the diameter of which is equal to the diameter or thickness of the specimen

(c) Nick-bend Tests.—The test specimen, when nicked 25 per cent around for round bars, and along one side for flat bars, with a tool having a 60-deg. cutting edge, to a depth of not less than 8 nor more than 16 per cent of the diameter or thickness of the specimen, and broken, shall

not show more than 10 per cent of the fractured surface to be crystalline.

(d) Bend tests may be made by pressure or by blows.
7. Etch Tests.* The cross-section of the test specimen shall be ground or polished, and etched for a sufficient period to develop the structure. This test shall show the material to be free from steel.

*A solution of two parts water, one part concentrated hydrochloric acid, and one part concentrated sulphuric acid is recommended for the etch test.

8 Test Specimens, (a) Tension and bend test specimens shall be of the full section of material as rolled, if possible. Otherwise, the specimens shall be machined from the material as rolled; the axis of the specimen shall be located at any point one-half the distance from the center to the surface of round bars, or from the center to the edge of flat bars, and shall be parallel to the axis of the bar.

(b) Etch test specimens shall be of the full section of material as rolled.

o. Number of Tests. (a) All bars of one size shall be piled separately. One bar from each

roo or fraction thereof will be selected at random and tested as specified.

(b) If any test specimen from the bar originally selected to represent a lot of material, contains surface defects not visible before testing but visible after testing, or if a tension test specimen breaks outside the middle third of the gage length, one retest from a different bar will be allowed.

III. PERMISSIBLE VARIATIONS IN GAGE.

10. Permissible Variations. (a) Round bars shall conform to the standard limit gages adopted by the Master Car Builders' Association in 1883.

(b) The width or thickness of flat bars shall not vary more than 2 per cent from that specified.

IV. FINISH.

II. Finish. The bars shall be smoothly rolled and free from slivers, depressions, seams. crop ends, and evidences of being burnt.

V. INSPECTION AND REJECTION.

12. Inspection. (a) The inspector representing the purchaser shall have free entry. at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. Tests and inspection at the place of manufacture shall be made prior to shipment.

(b) The purchaser may make the tests to govern the acceptance or rejection of material in his own laboratory or elsewhere. Such tests, however, shall be made at the expense of the purchaser.

13. Rejection. All bars of one size will be rejected if the test specimens representing that

size do not conform to the requirements specified.

STANDARD SPECIFICATIONS FOR WROUGHT-IRON PLATES

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

I. Classes. These specifications cover two classes of wrought-iron plates, namely: Class A, as defined in Section 2 (b); Class B, as defined in Section 2 (c).

I. MANUFACTURE.

2. Process. (a) All plates shall be rolled from piles entirely free from any admixture of steel. (b) Piles for Class A plates shall be made from puddle bars made wholly from pig iron and such scrap as emanates from rolling the plates.

(c) Piles for Class B plates shall be made from puddle bars made wholly from pig iron or

from a mixture of pig iron and cast-iron scrap, together with wrought-iron scrap.

II. PHYSICAL PROPERTIES AND TESTS.

3. Tension Tests. The plates shall conform to the following minimum requirements as to tensile properties:

	CLA	ss A.	CLASS B.		
Properties Considered.	6 In. to 24 In., Incl., in Width.	Over 24 In. to 90 In., Incl., in Width.	6 In. to 24 In., Incl., in Width.	Over 24 In. to 90 In., Incl., in Width.	
Tensile strength, lb. per sq. in	26,000	48,000 26,000 12	48,000 26,000 14	47,000 26,000 IO	

4. Modifications in Elongation. For plates under $\frac{7}{16}$ in. in thickness, a deduction of 1 from the percentages of elongation specified in Section 3 shall be made for each decrease of $\frac{1}{16}$ in. in

thickness below 1 in.

5. Bend Tests. (a) Cold-bend Tests.—The test specimen shall bend cold through 90 deg. without fracture on the outside of the bent portion, as follows: For Class A plates, around a pin the diameter of which is equal to 1½ times the thickness of the specimen; and for Class B plates, around a pin the diameter of which is equal to 3 times the thickness of the specimen.

(b) Nick-bend Tests.—The test specimen, when nicked on one side and broken, shall show, for Class A plates a wholly fibrous fracture, and for Class B plates, not more than 10 per cent of

the fractured surface to be crystalline.

6. Test Specimens. Tension and bend test specimens shall be taken from the finished plates and shall be of the full thickness of plates as rolled. The longitudinal axis of the specimen shall be parallel to the direction in which the plates are rolled.

7. Number of Tests. (a) One tension, one cold-bend and one nick-bend test shall be made for each variation in thickness of $\frac{1}{8}$ in. and not less than one test for every ten plates as rolled.

(b) If any test specimen fails to conform to the requirements specified through an apparent local defect, a retest shall be taken; and should the retest fail, the plates represented by such test shall be rejected.

III. FINISH.

8. Finish. The plates shall be straight, smooth and free from cinder spots and holes, and free from injurious flaws, buckles, blisters, seams and laminations.

IV. INSPECTION AND REJECTION.

9. **Inspection.** (a) The inspector representing the purchaser shall have free entry at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the plates ordered The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the plates are being furnished in accordance with these specifications. Tests and inspection at the place of manufacture shall be made prior to shipment.

(b) The purchaser may make the tests to govern the acceptance or rejection of plates at his own laboratory or elsewhere. Such tests, however, shall be made at the expense of the purchaser.

STEEL.—The three principal methods for the manufacture of steel are (1) the crucible process, (2) the Bessemer process, and (3) the open-hearth process. The crucible process is used for making tool steel. The Bessemer process is used for making structural steel, but on account of its requiring a high grade ore for a satisfactory steel, and the difficulty of control, it is now practically replaced by the open-hearth process. The following description of the methods of manufacture of steel is taken from Kent's "Mechanical Engineer's Pocket-Book," page 451, 8th Edition, 1910.

The Manufacture of Steel.—Cast steel is a malleable alloy of iron, cast from a fluid mass. It is distinguished from cast iron, which is not malleable, by being much lower in carbon, and from wrought iron, which is welded from a pasty mass, by being free from intermingled slag. Blister steel is a highly carbonized wrought iron, made by the "cementation" process, which consists in keeping wrought-iron bars at a red heat for some days in contact with charcoal. Not over 2 per cent of C is usually absorbed. The surface of the iron is covered with small blisters, supposedly due to the action of carbon on slag. Other wrought steels were formerly made by direct processes from iron ore, and by the puddling process from wrought iron, but these steels are now replaced by cast steels. Blister steel is, however, still used as a raw material in the manufacture of crucible steel. Case-hardening is a process of surface cementation.

Crucible Steel is commonly made in pots or crucibles holding about 80 pounds of metal. The raw material may be steel scrap; blister steel bars; wrought iron with charcoal; cast iron with wrought iron or with iron ore; or any mixture that will produce a metal having the desired chemical constitution. Manganese in some form is usually added to prevent oxidation of the iron. Some silicon is usually absorbed from the crucible, and carbon also if the crucible is made of graphite and clay. The crucible being covered, the steel is not affected by the oxygen or sulphur in the flame. The quality of crucible steel depends on the freedom from objectionable elements, such as phosphorus, in the mixture, on the complete removal of oxide, slag and blowholes by "dead-melting" or "killing" before pouring, and on the kind and quantity of different elements which are added in the mixture, or after melting, to give particular qualities to the steel, such as carbon, manganese, chromium, tungsten and vanadium.

Bessemer Steel is made by blowing air through a bath of melted pig iron. The oxygen of the air first burns away the silicon, then the carbon, and before the carbon is entirely burned away, begins to burn the iron. Spiegeleisen or ferro-manganese is then added to deoxidize the metal and to give it the amount of carbon desired in the finished steel. In the ordinary or "acid" Bessemer process the lining of the converter is a silicious material, which has no effect on phosphorus, and all the phosphorus in the pig iron remains in the steel. In the "basic" or Thomas and Gilchrist process the lining is of magnesian limestone, and limestone additions are made to the bath, so as to keep the slag basic; and the phosphorus enters the slag. By this process ores that

were formerly unsuited to the manufacture of steel have been made available.

Open-hearth Steel.—Any mixture that may be used for making steel in a crucible may also be melted on the open hearth of a Siemens regenerative furnace, and may be desiliconized and decarbonized by the action of the flame and by additions of iron ore, deoxidized by the addition of spiegeleisen or ferro-manganese, and recarbonized by the same additions or by pig iron. In the most common form of the process pig iron and scrap steel are melted together on the hearth, and after the manganese has been added to the bath it is tapped into the ladle. In the Talbot process a large bath of melted material is kept in the furnace, melted pig iron, taken from a blast furnace, is added to it, and iron ore is added which contributes its iron to the melted metal while its oxygen decarbonizes the pig iron. When the decarbonization has proceeded far enough, ferro-manganese is added to destroy iron oxide, and a portion of the metal is tapped out, leaving the remainder to receive another charge of pig iron, and thus the process is continued indefinitely. In the Duplex process melted cast iron is desiliconized in a Bessemer converter, and then run into an open hearth, where the steel-making operation is finished.

The open-hearth process, like the Bessemer, may be either acid or basic, according to the character of the lining. The basic process is a dephosphorizing one, and is the one most generally

available, as it can use pig irons that are either low or high in phosphorus.

Strength of Steel.—The properties most desired in steel are strength and ductility. Pure iron has a tensile strength of about 40,000 lb. per sq. in. and is very ductile. This strength is usually increased by the impurities found in steel.

Carbon is the important impurity as it gives strength with the least decrease in ductility. Campbell states that each 0.01 per cent of carbon will increase the strength of acid open-hearth steel by 1000 lb. per sq. in., and of basic open-hearth steel by 770 lb. per sq. in. The maximum tensile strength of steel is reached with 0.9 to 1.0 per cent of carbon.

Silicon has little effect on the strength of rolled steel, but in castings 0.3 to 0.4 per cent of silicon increases the tensile strength of steel castings and produces soundness.

Sulphur has little effect on the strength of open-hearth steel, but it produces "red-shortness," and produces checks and cracks during the rolling or during the cooling of castings.

Phosphorus increases the static strength of steel about 1000 lb. for each 0.01 per cent of phosphorus. The increase in strength is obtained at a great loss in ductility and produces a steel that is brittle and unreliable.

Manganese when above 0.3 to 0.4 per cent increases the tensile strength of steel. The increase in strength above 0.4 per cent is about 300 lb. per sq. in. for acid open-hearth and 130 lb. per sq. in. for basic open-hearth steel for each additional 0.01 per cent of manganese.

From the above discussion it will be seen that if certain physical characteristics are required in a steel the manufacturer must be left free to vary part of the impurities. For example if a high grade structural steel with an ultimate tensile strength of 60,000 lb. per sq. in. is desired, the phosphorus and sulphur may be limited in addition to the prescribed physical limits if the carbon is left open.

Formulas for Tensile Strength.—Campbell gives the following formulas for the strength of acid and basic open-hearth steels:

For acid steel, Ultimate strength = 40,000 + 1000 C + 1000 P + X.Mn + R. For basic steel, Ultimate strength = 41,500 + 770 C + 1000 P + X.Mn + R.

In these formulas, C = 0.01 per cent carbon, P = 0.01 phosphorus, Mn = 0.01 per cent manganese above 0.4 per cent for acid and above 0.3 per cent for basic steel, and R is a variable depending upon the heat treatment of the steel. The coefficient of Mn. X. varies as follows: For acid steel, for 0.10 per cent carbon, X = 80, and for 0.60 per cent carbon, X = 480 and proportional for intermediate values; while for basic steel, for 0.05 per cent carbon, X = 110, and for 0.40 per cent carbon, X = 250 and proportional for intermediate values.

Special Steels.—The following special steels have been used. Nickel is used as an alloy for structural and other kinds of steel, the specifications for structural nickel steel of the American Society for Testing Materials require that there be not less than 3½ per cent of nickel. Chrome steel-carbon steel with about 0.5 per cent chromium-was used in the Eads bridge in 1871. Chromium is now used in combination with nickel, making Chromium-nickel steel: with vanadium making Chromium-vanadium steel, and with both nickel and vanadium, making Chromiumnickel-vanadium steel. Copper steels are those having from I to 4 per cent of copper, carbon being less than I per cent. Manganese steel with from 6 to 12 per cent manganese is very tough and malleable.

Specifications for Structural Steel.—The allowable stresses for structural steel are given in Table I and in the specifications of the American Society for Testing Materials which follow.

Allowable Stresses in Steel and Iron.—The allowable stresses for steel frame mill buildings are given in the "Specifications for Steel Frame Buildings," in Chapter I. The allowable stresses for steel office buildings are given in the "Specifications for Steel Office Buildings," in Chapter II. The allowable stresses for steel highway bridges are given in the "Specifications for Steel Highway Bridges," in Chapter III. The allowable stresses for steel railway bridges are given in the "Specifications for Steel Railway Bridges," in Chapter IV. The allowable stresses in steel bins are given in Chapter VIII, p. 313. The allowable stresses for steel grain bins are given in Chapter IX. p. 326. The allowable stresses in steel head frames and coal tipples are given in the "Specifications for Steel Head Frames and Coal Tipples, Washers and Breakers," in Chapter X. allowable stresses in steel stand-pipes and elevated tanks are given in the "Specifications for Elevated Steel Tanks on Towers and for Stand-Pipes," in Chapter XI. The allowable stresses for the steel and cast iron details in timber bridges are the same as for steel railway bridges given in Chapter IV. The allowable stresses in steel reinforcement are given on page 521.

Nickel Steel.—In a paper entitled "Nickel Steel for Bridges" by Mr. J. A. L. Waddell, in Trans. Am. Soc. C. E., Vol. 63, June 1909, the allowable unit stress in lb. per sq. in. for carbon steel is given as P = 18,000 - 70 l/r, and for nickel steel as P = 30,000 - 120 l/r, where l is the length and r is the corresponding radius of gyration, both in inches. The impact coefficient

adopted by Mr. Waddell is given on page 161.

TABLE I.

STRENGTH PROPERTIES OF STRUCTURAL STEEL AND IRON—AMERICAN SOCIETY FOR TESTING
MATERIALS, YEAR BOOK, 1913.

Metal. Ultimate. Elastic Limit. In 8 In. In 2 In. Of Per	luction Area, Cent.
BRIDGES Structural Steel. 55,000-65,000 ½ ultimate (1,500,000 ultimate (1,400,000 ultimate (1,400,000	Cent.
Structural Steel. 55,000-65,000 ½ ultimate 1,500,000 ½ ultimate 22	
BUILDINGS 2 1 1 1 1 1 1 1 1 1	
Rivet Steel. 48,000-58,000 ½ ultimate { ultimate	
SHIPS 2 ditimate ultimate	
(* **** **** **** **** **** **** **** ****	
Structural Steel	
Rivet Steel	
Flange Steel	
Firebox Steel $52,000-62,000$ $\frac{1}{2}$ ultimate $\left\{\frac{1,500,000}{\text{ultimate}}\right\}$	
Boiler Rivet Steel	
STRUCTURAL NICKEL STEEL Plates, Shapes and Bars	25
Eye-bars and rollers (unannealed) 95,000-110,000 $55,000$ $\left\{\frac{1,500,000}{\text{ultimate}}\right\}$ 16	25
Eye-bars and Pins (annealed) 90,000–105,000 52,000 20 20	35
Rivet Steel	40
BILLET-STEEL REINFORCEMENT BARS Structural	
Hard	
Deformed { Structural 55,000-70,000 33,000 { 1,250,000 ultimate 1,250,000 ultimate 1,250,000 1,	
Hard 80,000 min. 50,000 { 1,000,000 ultimate	
Cold Twisted recorded only 55,000 5	
RAIL-STEEL REINFORCEMENT BARS Plain 80,000	
Deformed and Hot-twisted 80,000 50,000 {\frac{1,000,000}{\text{ultimate}}}	
Refined Bars	
STEEL CASTINGS	20
Hard 80,000 36,000 15 Medium 70,000 31,500 18 Soft 60,000 27,000 22	20 25 30
GRAY IRON CASTINGS	,-
Light Castings	
Heavy Castings	

STANDARD SPECIFICATIONS FOR STRUCTURAL STEEL FOR BUILDINGS

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

I MANUFACTURE.

1. Process. (a) Structural steel, except as noted in Paragraph (b), may be made by the Bessemer or the open-hearth process.

(b) Rivet steel, and steel for plates or angles over \(\frac{3}{4} \) in. in thickness which are to be punched. shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS.

2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition: STRUCTURAL STEEL. RIVET STEEL.

Phosphorus $\left\{ \begin{array}{l} \text{Bessemer.} \dots \\ \text{Open-hearth.} \dots \end{array} \right.$ not over 0.10 per cent " " 0.06 " not over 0.06 per cent " " 0.045

3. Ladle Analyses. An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 2.

4. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt, in which case an excess of 25 per cent above the requirements specified in Section 2 shall be allowed.

III. PHYSICAL PROPERTIES AND TESTS.

5. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Properties Considered.	Structural Steel.	Rivet Steel.
Tensile strength, lb. per sq. in	55,000-65,000	48,000-58,000
Yield point, min., "" "	0.5 tens. str.	0.5 tens. str.
Elongation in 8 in., min., per cent	1,400,0001	1,400,000
Elongation in 8 m., min., per cent	Tens. str.	Tens. str.
Elongation in 2 in. " "	22	

(b) The yield point shall be determined by the drop of the beam of the testing machine.

6. Modifications in Elongation. (a) For structural steel over \(\frac{3}{4} \) in. in thickness, a deduction of I from the percentage of elongation in 8 in. specified in Section 5(a) shall be made for each increase of 1 in. in thickness above 1 in.

(b) For structural steel under $\frac{5}{16}$ in. in thickness, a deduction of 2.5 from the percentage of elongation in 8 in. specified in Section 5(a) shall be made for each decrease of $\frac{1}{16}$ in. in thickness

below $\frac{5}{16}$ in.

7. Bend Tests. (a) The test specimen for plates, shapes and bars shall bend cold through 180 deg. without cracking on the outside of the bent portion, as follows: For material \(^3_4\) in. or under in thickness, flat on itself; for material over \frac{1}{4} in. to and including 1\frac{1}{4} in. in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 11 in. in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

(b) The test specimen for pins and rollers shall bend cold through 180 deg. around a 1-in.

pin without cracking on the outside of the bent portion.

(c) The test specimen for rivet steel shall bend cold through 180 deg. flat on itself without cracking on the outside of the bent portion.

¹ See Section 6.

8. Test Specimens. (a) Tension and bend test specimens shall be taken from the finished rolled or forged material, and shall not be annealed or otherwise treated, except as specified in Paragraph (\bar{b}) .

(b) Tension and bend test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full section

of the piece.

(c) Tension and bend test specimens for plates, shapes and bars, except as specified in Paragraph (d), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in Fig. 1, or with both edges parallel.

(d) Tension and bend test specimens for plates and bars over $1\frac{1}{2}$ in. in thickness or diameter may be machined to a thickness or diameter of at least $\frac{3}{4}$ in. for a length of at least 9 in.

(e) The axis of tension and bend test specimens for pins and rollers shall be I in. from the surface and parallel to the axis of the bar. Tension test specimens shall be of the form and dimensions shown in Fig. 2. Bend test specimens shall be 1 by ½ in. in section.

(f) Tension and bend test specimens for rivet steel shall be of the full-size section of bars as

9. Number of Tests. (a) One tension and one bend test shall be made from each melt; except that if material from one melt differs \(\frac{2}{3} \) in. or more in thickness, one tension and one bend test shall be made from both the thickest and the thinnest material rolled.

(b) If any test specimen shows defective machining or develops flaws, or if an 8-in. tension test specimen breaks outside the middle third of the gage length, or if a 2-in. tension test specimen breaks outside the gage length, it may be discarded and another specimen substituted.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE.

10. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates:

(a) When Ordered to Weight.—For plates 12½ lb. per sq. ft. or over:

Under 100 in. in width, 2.5 per cent above or below the specified weight; 100 in. in width or over, 5 per cent above or below the specified weight.

For plates under 121 lb. per sq. ft.:

Under 75 in. in width, 2.5 per cent above or below the specified weight;

75 to 100 in., exclusive, in width, 5 per cent above or 3 per cent below the specified weight; 100 in. in width or over, 10 per cent above or 3 per cent below the specified weight.

(b) When Ordered to Gage.—The thickness of each plate shall not vary more than 0.01 in.

under that ordered.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 lb.:

Thickness Ordered, in. Nominal Weight, Lb. Per Sq. Ft.		ALLOW	VABLE EXCE		ED AS PERCE		Nominal Wi	EIGHT).
	Under 50 In.	50 to 70 In., Excl.	70 In. or Over.	Under 75 In.	75 to 100 In., Excl.	100 to 115 In., Excl.	115 In. or Over.	
1 to 1/2	5.10 to 6.37	10	15	20				
A " 16	6.37 " 7.65	8.5	12.5	17				
\$ 1.	7.65 " 10.20	7	10	15				
1	10.20				10	14	18	
70	12.75				8	12	16	
Ŧ	15.30				7	10	13	17
75	17.85				6	8	10	13
3	20.40				5	7	9 8.5	I 2
28	22.95				4.5	6.5		II
1	25.50				4	6	8	10
Over #					3.5	5	6.5	9

V. FINISH.

11. Finish. The finished material shall be free from injurious defects and shall have a work-manlike finish

VI. MARKING.

12. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

VII. INSPECTION AND REJECTION.

13. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

14. **Rejection.** (a) Unless otherwise specified, any rejection based on tests made in accordance with Section 4 shall be reported within five working days from the receipt of samples.

(b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's

works will be rejected, and the manufacturer shall be notified.

15. Rehearing. Samples tested in accordance with Section 4, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

STANDARD SPECIFICATIONS FOR STRUCTURAL STEEL FOR BRIDGES

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

I. MANUFACTURE.

I. Steel Castings. The Standard Specifications for Steel Castings adopted by the American Society for Testing Materials, are hereby made a part of these specifications, and shall govern the purchase of steel castings for bridges.*

2. Process. The steel shall be made by the open-hearth process.

* In using the Standard Specifications for Steel Castings for the purchase of castings for bridges, it is necessary to specify both the class and grade of casting desired.

II CHEMICAL PROPERTIES AND TESTS

2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

STRUCTURAL	STEEL.	RIVET STEEL.
Phosphorus Acidnot over Basic" Sulphur" ""	0.06 0.04 0.05	not over 0.04 per cent.

4. Ladle Analyses. An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 3.

5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt, in which case an excess of 25 per cent above the requirements specified in Section 3 shall be allowed.

III. PHYSICAL PROPERTIES AND TESTS.

6. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Properties Considered.	Structural Steel.	Rivet Steel.	
Tensile strength, lb. per sq. in	55,000–65,000 0.5 tens. str. 1,500,000 ¹	48,000–58,000 0.5 tens. str. 1,500,000	
Elongation in 8 in., min., per cent	Tens. str.	Tens. str.	

(b) The yield point shall be determined by the drop of the beam of the testing machine.

7. Modifications in Elongation. (a) For structural steel over $\frac{3}{4}$ in. in thickness, a deduction of I from the percentage of elongation in 8 in. specified in Section 6 (a), shall be made for each increase of \(\frac{1}{8}\) in. in thickness above \(\frac{3}{4}\) in.

(b) For structural steel under $\frac{5}{16}$ in. in thickness, a deduction of 2.5 from the percentage of elongation in 8 in, specified in Section 6 (a), shall be made for each decrease of $\frac{1}{10}$ in, in thickness

below $\frac{5}{16}$ in.

8. Bend Tests. (a) The test specimen for plates, shapes, and bars shall bend cold through 180 deg. without cracking on the outside of the bent portion, as follows: For material \(\frac{3}{4}\) in, or under in thickness, flat on itself; for material over \(\frac{3}{4}\) in. to and including I\(\frac{1}{4}\) in. in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 11 in. in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

(b) The test specimen for pins and rollers shall bend cold through 180 deg. around a 1-in.

pin without cracking on the outside of the bent portion.

(c) The test specimen for rivet steel shall bend cold through 180 deg. flat on itself without cracking on the outside of the bent portion.

9. Tests of Angles. Angles $\frac{3}{4}$ in. or under in thickness shall open flat, and angles $\frac{1}{2}$ in. or under in thickness shall bend shut, cold, under blows of a hammer without cracking. This test shall be made only when required by the inspector.

10. Test Specimens. (a) Tension and bend test specimens shall be taken from the finished rolled or forged material, and shall not be annealed or otherwise treated, except as specified in

(b) Tension and bend test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full section

of the piece.

(c) Tension and bend test specimens for plates, shapes and bars, except as specified in Paragraph (d), shall be of the full thickness of material as rolled. They may be machined to the form and dimensions shown in Fig. 1, or with both edges parallel; except that bend test specimens for eye-bar flats may have three rolled sides.

(d) Tension and bend test specimens for plates and bars (except eye-bar flats) over 1½ in. in thickness or diameter may be machined to a thickness or diameter of at least \{\frac{1}{2}} in. for a length of at

least 9 in.

¹ See section 7.

(e) The axis of tension and bend test specimens for pins and rollers shall be 1 in. from the surface and parallel to the axis of the bar. Tension test specimens shall be of the form and dimensions shown in Fig. 2. Bend test specimens shall be 1 by \(\frac{1}{2}\) in, in section.

(f) Tension and bend test specimens for rivet steel shall be of the full-size section of bars as rolled.

11. Number of Tests. (a) One tension and one bend test shall be made from each melt; except that if material from one melt differs $\frac{3}{6}$ in. or more in thickness, one tension and one bend test shall be made from both the thickest and the thinnest material rolled.

(b) If any test specimen shows defective machining or develops flaws, or if an 8-in. tension test specimen breaks outside the middle third of the gage length, or if a 2-in. tension test specimen breaks outside the gage length, it may be discarded and another specimen substituted.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE.

12. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates:

(a) When Ordered to Weight.—For plates 121 lb. per sq ft. or over:

Under 100 in. in width, 2.5 per cent above or below the specified weight; 100 in. in width or over, 5 per cent above or below the specified weight.

For plates under 12½ lb. per sq. ft.:

Under 75 in. in width, 2.5 per cent above or below the specified weight;

75 to 100 in., exclusive, in width, 5 per cent above or 3 per cent below the specified weight; 100 in. in width or over, 10 per cent above or 3 per cent below the specified weight.

(b) When Ordered to Gage.—The thickness of each plate shall not vary more than 0.01 in. under that ordered.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 lb.:

V. FINISH.

13. Finish. The finished material shall be free from injurious defects and shall have a work-manlike finish.

VI. MARKING.

14. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

Thickness Ordered.	Nominal Weight, Lb.	Allowable Excess (expressed as percentage of Nominal Weight). For Width of Plate as follows:									
In.	Per Sq. Ft.	Under 50 In.	50 to 70 In., Excl.	70 In. or Over.	Under 75 In.	75 to 100 In., Excl.	100 to 115 In., Excl.	115 In. or Over.			
½ to 5/32	5.10 to 6.37	10	15	20							
$\begin{array}{c} \frac{1}{8} \text{ to } \frac{5}{32} \\ \frac{5}{32} \text{ "} \frac{3}{16} \\ \frac{3}{16} \text{ "} \frac{1}{4} \end{array}$	6.37 " 7.65	8.5	12.5	17							
3 16 4	7.65 " 10.20	7	10	15							
1	10.20				10	14	18				
16 3 8 7	12.75				8	12	16				
3	15.30				7	10	13	17			
716	17.85	• •			6	8	10	13			
16 1 2 9 16 5	20.40	• •			5	7	9 8.5	12			
16	22.95	• •			4.5	6.5	8.5	11			
	25.50				4	6	8	10			
Over 🖁					3.5	5	6.5	9			

VII. INSPECTION AND REJECTION.

15. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

16. **Rejection.** (a) Unless otherwise specified, any rejection based on tests made in accordance with Section 5 shall be reported within five working days from the receipt of samples.

(b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's

works will be rejected, and the manufacturer shall be notified.

17. Rehearing. Samples tested in accordance with Section 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

STANDARD SPECIFICATIONS FOR STRUCTURAL NICKEL STEEL

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

I. MANUFACTURE.

I. Process. The steel shall be made by the open-hearth process.

2. Discard. A sufficient discard shall be made from each ingot intended for eye-bars to secure freedom from injurious piping and undue segregation.

II. CHEMICAL PROPERTIES AND TESTS.

3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

	STRUCTURAL STEEL.	RIVET STEEL.	
Carbon	not over 0.45	not over 0.30 per cen	t
Manganese Phosphorus { Acid Basic		" " 0.60 "	
Phosphorus Acid		" " 0.04 " " 0.03 "	
Basic		" " 0.03 "	
Sulphur		" " 0.04 "	
Nickel	not under 3.25	not under 3.25 "	

4. Ladle Analyses. An analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt. A copy of this analysis shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 3.

5. Check Analyses. A check analysis may be made by the purchaser from finished material representing each melt, and this analysis shall conform to the requirements specified in Section 3.

III. PHYSICAL PROPERTIES AND TESTS.

6. Tension Tests. (a) The steel shall conform to the following requirements as to tensile properties:

TENSILE PROPERTIES FROM SPECIMEN TESTS.

Properties Considered.	Rivets.	Plates, Shapes and Bars.	Eye-Bars and Rollers, Unannealed.	Eye-Bars ^a and Pins, ^c Annealed.
Tensile strength, lb. per sq. in Yield point, min., lb. per sq. in	45,000	50,000	95,000-110,000	90,000-105,000 52,000
Elongation in 8 in., min., per cent.	Tens. Str.	Tens. Str.	Tens. Str.	20
Elongation in 2 in., min., per cent. Reduction of area min., per cent	40	25	16 25	20 35

• Tests of annealed specimens of eye-bars shall be made for information only.

^b See Section 7.

⁶ Elongation shall be measured in 2 in.

(b) The yield point shall be determined by the drop of the beam of the testing machine.7. Modifications in Elongation. For plates, shapes and unannealed bars over 1 in. in thick-

ness, a deduction of I from the percentage of elongation specified in Section 6 shall be made for each increase of \{\frac{1}{8}\) in. in thickness above I in., to a minimum of I4 per cent.

8. Character of Fracture. All broken tension test specimens shall show either a silky or a

very fine granular fracture, of uniform color, and free from coarse crystals.

9. Bend Tests. (a) The test specimen for plates, shapes and bars shall bend cold through 180 deg. without fracture on the outside of the bent portion, as follows: For material \(\frac{3}{4}\) in. or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over \(\frac{1}{4} \) in. in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

(b) The test specimen for pins and rollers shall bend cold through 180 deg, around a 1 in.

pin, without fracture on the outside of the bent portion.

(c) The test specimen for rivet steel shall bend cold through 180 deg. flat on itself without cracking on the outside of the bent portion.

10. Tests of Angles. (a) Angles with 4 in. legs or under, and ½ in. or under in thickness, shall open flat or bend shut, cold, under the blows of a hammer without cracking. (b) Angles with legs over 4 in., or over \frac{1}{2} in. in thickness, shall open to an angle of 150 deg.,

or close to an angle of 30 deg., cold, under the blows of a hammer without cracking.

11. Drift Tests. Punched rivet holes pitched two diameters from a planed edge shall stand

drifting until the diameter is enlarged 50 per cent without cracking the metal.

12. Test Specimens. (a) Tension and bend test specimens shall be taken from the finished rolled or forged material. Specimens for pins shall be taken after annealing.

(b) Tension and bend test specimens for plates, shapes and bars, except as specified in Paragraph (c), shall be of the full thickness of material as rolled. They may be machined to the form and dimensions shown in Fig. 1, or with both edges parallel; except that bend test specimens shall not be less than 2 in. in width, and that bend test specimens for eye-bar flats may have three rolled sides.

FIG. I.

(c) Tension and bend test specimens for plates and bars (except eye-bar flats) over 1½ in. in thickness or diameter may be machined to a thickness or diameter of at least \(\frac{3}{4} \) in. for a length of at least 9 in.

(d) The axis of tension and bend test specimens for pins and rollers shall be I in, from the surface and parallel to the axis of the bar. Tension test specimens shall be of the form and dimensions shown in Fig. 2. Bend test specimens shall be I by \frac{1}{2} in. in section.

(e) Tension and bend test specimens for rivet steel shall be of the full-size section of bars as

rolled.

13. Number of Tests. (a) One tension and one bend test shall be made from each melt: except that if material from one melt differs & in. or more in thickness, one tension and one bend test shall be made from both the thickest and the thinnest material rolled.

(b) If any test specimen shows defective machining or develops flaws, or if an 8-in, tension test specimen breaks outside the middle third of the gage length, or if a 2-in. tension test specimen

breaks outside the gage length, it may be discarded and another specimen substituted.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAGE.

14. Permissible Variations. The cross section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates:

(a) When Ordered to Weight.—For plates 12½ lb. per sq. ft. or over: Under 100 in. in width, 2.5 per cent above or below the specified weight; 100 in. in width and over, 5 per cent above or below the specified weight.

For plates under 12½ lb. per sq. ft.:

Under 75 in. in width, 2.5 per cent above or below the specified weight;

75 to 100 in. in width, 5 per cent above or 3 per cent below the specified weight;

100 in. in width and over, 10 per cent above or 3 per cent below the specified weight.

(b) When Ordered to Gage.—The thickness of each plate shall not vary more than 0.01 in.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 lb.:

Thickness Ordered.	Nominal Weight, Lb.	Allowable Excess (expressed as percentage of Nominal Weight). For Width of Plate as follows:								
In.	Per Sq. Ft.	Under 50 In.	50 to 70 In., Excl.	70 In. or Over.	Under 75 In.	75 to 100 In., Excl.	100 to 115 In., Excl.	115 In. or Over.		
$\frac{1}{8}$ to $\frac{5}{32}$	5.10 to 6.37	10	15	20						
$\frac{1}{8}$ to $\frac{5}{32}$	6.37 " 7.65	8.5	12.5	17						
½ to 5/32 5 " 3/16 32 " 16 3 " 1	7.65 " 10.20	7	10	15						
1	10.20				10	14	18			
5 16	12.75				8	12	16			
16 3 8 7 16	15.30				7	10	13	17		
$\frac{7}{16}$	17.85				6	8	10	13		
1/2	20.40				5	7 6.5	9 8.5	12		
16 5	22.95				4.5		8.5	11		
	25.50				4	6	8	10		
Over 5					3.5	5	6.5	9		

V. FINISH.

15. Finish. The finished material shall be free from injurious seams, slivers, flaws and other defects, and shall have a workmanlike finish.

VI. MARKING.

16. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

VII. INSPECTION.

17. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

18. **Rejection.** (a) Unless otherwise specified, any rejection based on tests made in accordance with Section 5 shall be reported within five working days from the receipt of samples.

(b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's

works will be rejected and the manufacturer shall be notified.

19. Rehearing. Samples tested in accordance with Section 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time

VIII. FULL SIZE TESTS.

20. Tests of Eye-Bars. (a) Full size tests of annealed eye-bars shall conform to the following requirements as to tensile properties:

Tensile strength, lb. per. sq. in	
Yield point, min., lb. per sq. in	48,000
Elongation in 18 ft., min., per cent	10
Reduction of area, min., per cent	30
COL 111	4 4 :

(b) The yield point shall be determined by the halt of the gage of the testing machine.

STANDARD SPECIFICATIONS FOR BOILER RIVET STEEL

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

A. Requirements for Rolled Bars.

I. MANUFACTURE.

I. Process. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS.

2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

Manganese	0.30-0.50 per cent
Phosphorusnot	over 0.04 "
Sulphur"	" 0.045 "

3. Ladle Analyses. An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 2.

shall conform to the requirements specified in Section 2.

4. Check Analyses. A check analysis may be made by the purchaser from finished material representing each melt, and this analysis shall conform to the requirements specified in Section 2.

III. PHYSICAL PROPERTIES AND TESTS.

5. **Tension Tests.** (a) The bars shall conform to the following requirements as to tensile properties:

Tensile strength, lb. per sq. in	.45,000-55,000
	T 500 000
Elongation in 8 in., min., per cent	Tens. str.

(But need not exceed 30 per cent)

(b) The yield point shall be determined by the drop of the beam of the testing machine. 6. Bend Tests. (a) Cold-bend Tests.—The test specimen shall bend cold through 180 deg.

flat on itself without cracking on the outside of the bent portion.

(b) Quench-bend Tests.—The test specimen, when heated to a light cherry red as seen in the dark (not less than 1200° F.), and quenched at once in water the temperature of which is between 80° and 90° F., shall bend through 180° flat on itself without cracking on the outside of the bent

7. Test Specimens. Tension and bend test specimens shall be of the full-size section of

material as rolled.

8. Number of Tests. (a) Two tension, two cold-bend, and two guench-bend tests shall be

made from each melt, each of which shall conform to the requirements specified.

(b) If any test specimen develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted.

IV. PERMISSIBLE VARIATIONS IN GAGE.

o. Permissible Variations. The gage of each bar shall not vary more than 0.01 in. from that specified.

V. WORKMANSHIP AND FINISH.

10. Workmanship. The finished bars shall be circular within 0.01 in.

II. Finish. The finished bars shall be free from injurious defects, and shall have a workmanlike finish.

VI. MARKING.

12. Marking. Rivet bars shall, when loaded for shipment, be properly separated and marked with the name or brand of the manufacturer and the melt number for identification. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

VII. INSPECTION AND REJECTION.

13. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the bars ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the bars are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

14. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with Section 4 shall be reported within five working days from the receipt of samples.

(b) Bars which show injurious defects subsequent to their acceptance at the manufacturer's

works will be rejected, and the manufacturer shall be notified.

15. Rehearing. Samples tested in accordance with Section 4, which represent rejected bars, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

B. Requirements for Rivets.

I. PHYSICAL PROPERTIES AND TESTS.

16. Tension Tests. The rivets, when tested, shall conform to the requirements as to tensile properties specified in Section 5, except that the elongation shall be measured on a gage length not less than four times the diameter of the rivet.

17. Bend Tests. The rivet shank shall bend cold through 180 degrees flat on itself without

cracking on the outside of the bent portion.

18. Flattening Tests. The rivet heads shall flatten, while hot, to a diameter 2½ times the

diameter of the shank without cracking at the edges. 19. (a) When specified, one tension test shall be made from each size in each lot of rivets offered for inspection.

(b) Three bend and three flattening tests shall be made from each size in each lot of rivets offered for inspection, each of which shall conform to the requirements specified.

II. WORKMANSHIP AND FINISH.

20. Workmanship. Rivets shall be true to form, concentric, and shall be made in a workmanlike manner.

21. Finish. The finished rivets shall be free from injurious defects.

III. INSPECTION AND REJECTION.

22. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the rivets ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the rivets are being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

23. Rejection. Rivets which show injurious defects subsequent to their acceptance at the

manufacturer's works will be rejected, and the manufacturer shall be notified.

STANDARD SPECIFICATIONS FOR BILLET-STEEL REINFORCEMENT BARS*

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

1. Classes. (a) These specifications cover three classes of billet-steel concrete reinforcement bars, namely: plain, deformed, and cold-twisted.

(b) Plain and deformed bars are of two grades, namely: structural steel and hard.

2. Basis of Purchase. (a) The hard grade will be used only when specified.

(b) If desired, cold-twisted bars may be purchased on the basis of tests of the hot-rolled bars before twisting, in which case such tests shall govern and shall conform to the requirements specified for plain bars of structural steel grade.

I. MANUFACTURE.

3. Process. (a) The steel may be made by the Bessemer or the open-hearth process.

(b) The bars shall be rolled from new billets. No rerolled material will be accepted.

4. Cold-twisted Bars. Cold-twisted bars shall be twisted cold with one complete twist in a length not over 12 times the thickness of the bar.

II. CHEMICAL PROPERTIES AND TESTS.

5. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

Phosphorus Bessemer......not over 0.10 per cent Open-hearth..... " " 0.05 "

6. Ladle Analyses. An analysis to determine the percentage of carbon, manganese, phosphorus and sulphur, shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 5.

7. Check Analyses. Analyses may be made by the purchaser from finished bars representing each melt of open-hearth steel, and each melt, or lot of ten tons, of Bessemer steel, in which case an

excess of 25 per cent above the requirements specified in Section 5 shall be allowed.

III. PHYSICAL PROPERTIES AND TESTS.

- 8. **Tension Tests.** (a) The bars shall conform to the following requirements as to tensile properties:
- *For the American Railway Engineering Association specifications for steel reinforcement, see Chapter VI, p. 272.

TENSILE PROPERTIES.

	Plain B	Bars.	Deformed Bars.		Cold-twisted
Properties Considered.	Structural Steel Grade.	Hard Grade.	Structural Steel Grade.		
Tensile strength, lb.	55,000-70,000	80,000 min.	55,000-70,000	80,000 min.	Recorded only.
Yield point, min., lb. per sq. in	33,000	50,000	33,000	50,000	55,000
Elongation in 8 in., min., per cent	1,400,000 ¹ Tens. str.	Tens. str.	1,250,000 ¹ Tens. str.	Tens. str.	5

 (b) The yield point shall be determined by the drop of the beam of the testing machine.
 9. Modifications in Elongation. (a) For plain and deformed bars over ³/₄ in. in thickness or diameter, a deduction of 1 from the percentages of elongation specified in Section 8 (a) shall be made for each increase of \(\frac{1}{6} \) in. in thickness or diameter above \(\frac{3}{4} \) in.

(b) For plain and deformed bars under $\frac{7}{16}$ in. in thickness or diameter, a deduction of I from the percentages of elongation specified in Section 8 (a) shall be made for each decrease of $\frac{1}{16}$ in. in thickness or diameter below $\frac{7}{16}$ in.

10. Bend Tests. The test specimen shall bend cold around a pin without cracking on the outside of the bent portion, as follows:

BEND TEST REQUIREMENTS.

	Plain Bars.		Deform	Cold-twisted		
Thickness or Diameter of Bar.	Structural Steel Grade.	Hard Grade.	Structural Steel Grade.	Hard Grade.	Bars.	
Under 3/4 in	a = t	180 deg. d=3t	180 deg. d=t	180 deg. d=4t	180 deg. d=2t	
in. or over	180 deg. $d=t$	90 deg. d=3t	90 deg. d=2t	90 deg. d=4t	180 deg. d=3t	

EXPLANATORY NOTE: d = the diameter of pin about which the specimen is bent; t = the thickness or diameter of the specimen.

11. Test Specimens. (a) Tension and bend test specimens for plain and deformed bars shall be taken from the finished bars, and shall be of the full thickness or diameter of material as rolled; except that the specimens for deformed bars may be machined for a length of at least 9 in., if deemed necessary by the manufacturer to obtain uniform cross-section.

(b) Tension and bend test specimens for cold-twisted bars shall be taken from the finished

bars, without further treatment; except as specified in Section 2 (b).

12. Number of Tests. (a) One tension and one bend test shall be made from each melt of open-hearth steel, and from each melt, or lot of ten tons, of Bessemer steel; except that if material from one melt differs $\frac{3}{6}$ in. or more in thickness or diameter, one tension and one bend test shall be made from both the thickest and the thinnest material rolled.

(b) If any test specimen shows defective machining or develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another

specimen substituted.

IV. PERMISSIBLE VARIATIONS IN WEIGHT.

13. Permissible Variations. The weight of any lot of bars shall not vary more than 5 per cent from the theoretical weight of that lot.

¹See Section 9.

V. FINISH.

14. Finish. The finished bars shall be free from injurious defects and shall have a workman-like finish.

VI. INSPECTION AND REJECTION.

15. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the bars ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the bars are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

16. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accord-

ance with Section 7 shall be reported within five working days from the receipt of samples.

(b) Bars which show injurious defects subsequent to their acceptance at the manufacturer's

works will be rejected, and the manufacturer shall be notified.

17. Rehearing. Samples tested in accordance with Section 7, which represent rejected bars, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

STANDARD SPECIFICATIONS FOR RAIL-STEEL REINFORCEMENT BARS

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 25, 1913.

1. Classes. These specifications cover three classes of rail-steel concrete reinforcement bars, namely: plain, deformed, and hot-twisted.

I. MANUFACTURE.

Process. The bars shall be rolled from standard section Tee rails.

3. Hot-twisted Bars. Hot-twisted bars shall have one complete twist in a length not over 12 times the thickness of the bar.

II. PHYSICAL PROPERTIES AND TESTS.

4. **Tension Tests.** (a) The bars shall conform to the following minimum requirements as to tensile properties:

Properties Considered.	Plain Bars.	Deformed and Hot-twisted Bars.
Tensile strength, lb. per sq. in Yield point, lb. per sq. in Elongation in 8 in., per cent ¹	80,000 50,000 1,200,000 Tens. str.	80,000 50.000 1,000,000 Tens. str.

(b) The yield point shall be determined by the drop of the beam of the testing machine.

5. Modifications in Elongation. (a) For bars over $\frac{1}{4}$ in. in thickness or diameter, a deduction of I from the percentages of elongation specified in Section 4 (a) shall be made for each increase of $\frac{1}{4}$ in. in thickness or diameter above $\frac{3}{4}$ in.

(b) For bars under $\frac{7}{16}$ in. in thickness or diameter, a deduction of I from the percentages of elongation specified in Section 4 (a) shall be made for each decrease of $\frac{1}{16}$ in. in thickness or diameter below $\frac{7}{16}$ in.

6. Bend Tests. The test specimen shall bend cold around a pin without cracking on the outside of the bent portion, as follows:

¹ See Section 5.

Thickness or Diameter of Bar.	Plain Bars.	Deformed and Hot-twisted Bars.
Under ‡ in	180 deg. d=3 t	180 deg. d=4 t
3/4 in. or over	90 deg. d=3 t	90 deg. d=4 t

EXPLANATORY Note: d=the diameter of pin about which the specimen is bent; t=the thickness or diameter of the specimen.

7. Test Specimens. (a) Tension and bend test specimens for plain and deformed bars shall be taken from the finished bars, and shall be of the full thickness or diameter of bars as rolled; except that the specimens for deformed bars may be machined for a length of at least 9 in., if deemed necessary by the manufacturer to obtain uniform cross-section.

(b) Tension and bend test specimens for hot-twisted bars shall be taken from the finished

bars, without further treatment.

8. Number of Tests. (a) One tension and one bend test shall be made from each lot of ten tons or less of each size of bar rolled from rails varying not more than 10 lb. per yd. in nominal

weight.

(b) If any test specimen shows defective machining or develops flaws, or if a tension test specimen breaks outside the middle third of the gage length, it may be discarded and another specimen substituted.

III. PERMISSIBLE VARIATIONS IN WEIGHT.

9. Permissible Variations. The weight of any lot of bars shall not vary more than 5 per cent from the theoretical weight of that lot.

IV. FINISH.

10. Finish. The finished bars shall be free from injurious defects and shall have a workman-like finish.

V. INSPECTION AND REJECTION.

vii. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the bars ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the bars are being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

12. Rejection. Bars which show injurious defects subsequent to their acceptance at the

manufacturer's works will be rejected, and the manufacturer shall be notified.

STANDARD SPECIFICATIONS FOR STEEL CASTINGS

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS

Adopted August 25, 1913.

I. Classes. These specifications cover two classes of castings, namely: Class A, ordinary castings for which no physical requirements are specified;

Class B, castings for which physical requirements are specified. These are of three grades:

hard, medium, and soft.

2. Patterns. (a) Patterns shall be made so that sufficient finish is allowed to provide for all

variations in shrinkage.

(b) Patterns shall be painted three colors to represent metal, cores, and finished surfaces.

It is recommended that core prints shall be painted black and finished surfaces red.

3. Basis of Purchase. The purchaser shall indicate his intention to substitute the test to destruction specified in Section 11 for the tension and bend tests, and shall designate the patterns from which castings for this test shall be made.

I. MANUFACTURE.

4. Process. The steel may be made by the open-hearth, crucible, or any other process

approved by the purchaser.

5. Heat Treatment. (a) Class A castings need not be annealed unless otherwise specified. (b) Class B castings shall be allowed to become cold. They shall then be uniformly reheated to the proper temperature to refine the grain (a group thus reheated being known as an "annealing charge"), and allowed to cool uniformly and slowly. If, in the opinion of the purchaser or his representative, a casting is not properly annealed, he may at his option require the casting to be reannealed.

II. CHEMICAL PROPERTIES AND TESTS.

6. Chemical Composition. The castings shall conform to the following requirements as to chemical composition:

CLASS A.	CLASS B.
Carbon	cent not over 0.05 per cent " 0.05 "

7. Ladle Analyses. An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 6. Drillings for analysis shall be taken not less than \(\frac{1}{4} \) in. beneath the surface of the test ingot.

8. Check Analyses. (a) Analyses of Class A castings may be made by the purchaser, in which case an excess of 20 per cent above the requirement as to phosphorus specified in Section 6 shall be allowed. Drillings for analysis shall be taken not less than \(\frac{1}{2}\) in, beneath the surface.

(b) Analyses of Class B castings may be made by the purchaser from a broken tension or bend test specimen, in which case an excess of 20 per cent above the *equirements as to phosphorus and sulphur specified in Section 6 shall be allowed. Drillings for analysis shall be taken not less than 1 in. beneath the surface.

III. PHYSICAL PROPERTIES AND TESTS.

(FOR CLASS B CASTINGS ONLY.)

9. Tension Tests. (a) The castings shall conform to the following minimum requirements as to tensile properties:

	HARD.	MEDIUM.	Soft.
Tensile strength, lb. per sq. in	80 000	70 000	60 000
Yield point, lb. per sq. in		31 500	27 000
Elongation in 2 in., per cent	15	18	22
Reduction of area, "	20	25	30

(b) The yield point shall be determined by the drop of the beam of the testing machine.

10. Bend Tests. (a) The test specimen for soft castings shall bend cold through 120 deg., and for medium castings through 90 deg., around a 1-in. pin, without cracking on the outside of the bent portion.

(b) Hard castings shall not be subject to bend test requirements.

II. Alternative Tests to Destruction. In the case of small or unimportant castings, a test to destruction on three castings from a lot may be substituted for the tension and bend tests. This

FIG. I.

test shall show the material to be ductile, free from injurious defects, and suitable for the purpose intended. A lot shall consist of all castings from one melt, in the same annealing charge.

12. Test Specimens. (a) Sufficient test bars, from which the test specimens required in Section 13 (a) may be selected, shall be attached to castings weighing 500 lb. or over, when the

design of the castings will permit. If the castings weigh less than 500 lb., or are of such a design that test bars cannot be attached, two test bars shall be cast to represent each melt; or the quality of the castings shall be determined by tests to destruction as specified in Section 11. All test bars shall be annealed with the castings they represent.

(b) The manufacturer and purchaser shall agree whether test bars can be attached to castings. on the location of the bars on the castings, on the castings to which bars are to be attached, and

on the method of casting unattached bars.

(c) Tension test specimens shall be of the form and dimensions shown in Fig. 1. Bend test specimens shall be machined to I by $\frac{1}{2}$ in. in section with corners rounded to a radius not over $\frac{1}{16}$ in.

13. Number of Tests. (a) One tension and one bend test shall be made from each annealing charge. If more than one melt is represented in an annealing charge, one tension and one bend

test shall be made from each melt.

(b) If any test specimen shows defective machining or develops flaws, or if a tension test specimen breaks outside the gage length, it may be discarded; in which case the manufacturer and the purchaser or his representative shall agree upon the selection of another specimen in its stead.

IV. WORKMANSHIP AND FINISH.

14. Workmanship. The castings shall substantially conform to the sizes and shapes of the patterns, and shall be made in a workmanlike manner.

15. Finish. (a) The castings shall be free from injurious defects.

(b) Minor defects which do not impair the strength of the castings may, with the approval of the purchaser or his representative, be welded by an approved process. The defects shall first be cleaned out to solid metal; and after welding, the castings shall be annealed, if specified by the purchaser or his representative.

(c) The castings offered for inspection shall not be painted or covered with any substance

that will hide defects, nor rusted to such an extent as to hide defects.

V. INSPECTION AND REJECTION.

16. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the castings ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the castings are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

17. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accord-

ance with Section 8 shall be reported within five working days from the receipt of samples.

(b) Castings which show injurious defects subsequent to their acceptance at the manu-

facturer's works will be rejected, and the manufacturer shall be notified.

18. Rehearing. Samples tested in accordance with Section 8, which represent rejected castings, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

VI. SPECIAL REQUIREMENTS FOR CASTINGS FOR SHIPS.

19. Castings for Ships. In addition to the preceding requirements, castings for ships, when so specified, shall conform to the following requirements:

20. Heat Treatment. All castings shall be annealed.
21. Number of Tests. (a) One tension and one bend test shall be made from each of the following castings: stern frames, stern posts, twin screw spectacle frames, propellor shaft brackets, rudders, steering quadrants, tillers, stems, anchors, and other castings when specified.

(b) When a casting is made from more than one melt, four tension and four bend tests shall

be made from each casting.

22. Percussion Tests. (a) A percussion test shall be made on each of the following castings: stern frames, stern posts, twin screw spectacle frames, propellor shaft brackets, rudders, steering quadrants, tillers, stems, anchors, and other castings when specified.

(b) For this test, the casting shall be suspended by chains and hammered all over with a hammer of a weight approved by the purchaser or his representative. If cracks, flaws, defects, or weakness appear after such treatment, the casting will be rejected.

VII. SPECIAL REQUIREMENTS FOR CASTINGS FOR RAILWAY ROLLING STOCK.

23. Castings for Railway Rolling Stock. Castings for railway rolling stock, when so specified, shall conform to the requirements for Class B castings, Sections 1 to 18, inclusive, except that check analyses made in accordance with Section 8 (b) shall conform to the requirements as to phosphorus and sulphur specified in Section 6.

CORROSION OF IRON AND STEEL.—If iron or steel is left exposed to the atmosphere it unites with oxygen and water to form rust. Where the metal is further exposed to the action of corrosive gases the rate of rusting is accelerated but the action is similar to that of ordinary rusting. Neither dry air nor water free from oxygen has any corrosive effect. While not essential to corrosion acids greatly hasten its action. It seems evident that some weak electrolysis is essential for corrosive action. Where iron or steel are in contact with water electrolytic action will always take place, although the amount is very small under ordinary conditions. Where a considerable electrolytic force exists the corrosion is greatly hastened. The increase in the use of electricity has doubtless had a tendency to increase the corrosion of iron and steel and to make the problem of the preservation of iron and steel from corrosion of great importance.

In an article on "The Corrosion of Iron" in Proceedings of American Society for Testing Materials, vol. VII, 1907, pages 211 to 228, Mr. Allerson S. Cushman shows that the two factors without which the corrosion of iron is impossible are electrolysis and the presence of hydrogen in the electrolyzed or "ionic" condition. The electrolytic action can only take place in the presence of oxygen or some other oxidizing agent. Rust is a hydroxide of iron—ferric hydroxide, FeO₃H₃. The corrosion of iron or steel may be prevented or retarded by covering it with a coating that will protect it from the water or the air.

It is commonly believed, with good reason, that cast iron corrodes less rapidly than either wrought iron or steel. The graphite in the cast iron and the silicious coating that the cast iron receives in molding doubtless assist in protecting the cast iron from corrosion.

It is also commonly believed that steel corrodes more rapidly than wrought iron. The tests that have been made to determine the relative corrosion of wrought iron and steel are very conflicting, but it appears certain that the difference in the corrosion of well made steel and well made wrought iron is very slight. The acid test as a measure of natural corrosion has been used, especially by firms manufacturing and selling "ingot iron" (very low carbon Bessemer or openhearth steel). Committee A-5 on the Corrosion of Iron and Steel of the American Society for Testing Materials in the Proceedings of the Society, vol. XI, 1911, page 100, states that it considers the acid test as unreliable as a measure of natural corrosion and does not recommend its use.

In the paper on "The Corrosion of Iron" above referred to, Mr. Cushman states:—"A very widespread impression prevails that charcoal iron or a puddled wrought iron are more resistant to corrosion than steel manufactured by the Bessemer and open-hearth processes. It is by no means certain that this is the case, but it would follow from the electrolytic theory that in order to have the highest resistance to corrosion a metal should either be as free as possible from certain impurities, such as manganese, or should be so homogeneous as not to retain localized positive and negative nodes for a long time without change. Under the first condition iron would appear to have the advantage, but under the second much would depend upon the care exercised in manufacture, whatever process was used."

From the preceding discussion it would appear that neither "ingot iron" nor wrought iron has any advantage in resisting corrosion over a well made structural steel.

PAINT.*—The paints in use for protecting structural steel may be divided into oil paints, tar paints, asphalt paints, varnishes, lacquers, and enamel paints. The last two mentioned are too expensive for use on a large scale and will not be considered.

OIL PAINTS.—An oil paint consists of a drying oil or varnish and a pigment, thoroughly mixed together to form a workable mixture. "A good paint is one that is readily applied, has good covering powers, adheres well to the metal, and is durable." The pigment should be inert to the metal to which it is applied and also to the oil with which it is mixed. Linseed oil is commonly used as the varnish or vehicle in oil paints, and is unsurpassed in durability by any other drying oil. Pure linseed oil will, when applied to a metal surface, form a transparent coating that offers considerable protection for a time, but is soon destroyed by abrasion and the action of the elements. To make the coating thicker, harder and more dense, a pigment is added to the oil. An oil paint is analogous to concrete, the linseed oil and pigment in the paint corresponding to the

^{*} This discussion on paints is taken from the author's "The Design of Steel Mill Buildings." 34

cement and the aggregate in the concrete. The pigments used in making oil paints for protecting metal may be divided into four groups as follows: (1) lead; (2) zinc; (3) iron; (4) carbon.

Linseed Oil.—Linseed oil is made by crushing and pressing flaxseed. The oil contains some vegetable impurities when made, and should be allowed to stand for two or three months to purify and settle before being used. In this form the oil is known as raw linseed oil, and is ready for use. Raw linseed oil dries (oxidizes) very slowly and for that reason is not often used in a pure state for structural iron paint. The rate of drying of raw linseed oil increases with age; an old oil being very much better for paint than that which has been but recently extracted. Raw linseed oil can be made to dry more rapidly by the addition of a drier or by boiling. Linseed oil dries by oxidation and not by evaporation, and therefore any material that will make it take up oxygen more rapidly is a drier. A common method of making a drier for linseed oil is to put the linseed oil in a kettle, heat it to a temperature of 400 to 500 degrees F., and stir in about four pounds of red lead or litharge, or a mixture of the two, to each gallon of oil. This mixture is then thinned down by adding enough linseed oil to make four gallons for each gallon of raw oil first put in the kettle. The addition of four gallons of this drier to forty gallons of raw oil will reduce the time of drying from about five days to twenty-four hours. A drier made in this way costs more than the pure linseed oil, so that driers are very often made by mixing lead or manganese oxide with rosin and turpentine, benzine, or rosin oil. These driers can be made for very much less than the price of good linseed oil, and are used as adulterants; the more of the drier that is put into the paint, the quicker it will dry and the poorer it becomes. Japan drier is often used with raw oil, and when this or any other drier is added to raw oil in barrels, the oil is said to be "boiled through the bung hole."

Boiled linseed oil is made by heating raw oil, to which a quantity of red lead, litharge, sugar of lead, etc., has been added, to a temperature of 400 to 500 degrees F., or by passing a current of heated air through the oil. Heating linseed oil to a temperature at which merely a few bubbles rise to the surface makes it dry more rapidly than the unheated oil; however, if the boiling is continued for more than a few hours the rate of drying is decreased by the boiling. Boiled linseed oil is darker in color than raw oil, and is much used for outside paints. It should dry in from 12 to 24 hours when spread out in a thin film on glass. Raw oil makes a stronger and better film than boiled oil, but it dries so slowly that it is seldom used for outside work without the addition of a

drier.

Lead.—White Lead (hydrated carbonate of lead—specific gravity 6.4) is used for interior and exterior wood work. White lead forms an excellent pigment on account of its high adhesion and covering power, but it is easily darkened by exposure to corrosive gases and rapidly disintegrates under these conditions, requiring frequent renewal. It does not make a good bottom coat for other paints, and if it is to be used at all for metal work it should be used over another paint.

Red Lead (minium; lead tetroxide—specific gravity 8.3) is a heavy, red powder approximating in shade to orange; is affected by acids, but when used as a paint is very stable in light and under exposure to the weather. Red lead is seldom adulterated, about the only substance used for the purpose being red oxide. Red lead is prepared by changing metallic lead into monoxide litharge, and converting this product into minium in calcining ovens. Red lead intended for paints must be free from metallic lead. One ounce of lampblack added to one pound of red lead changes the color to a deep chocolate and increases the time of drying. This compound when mixed in a thick paste will keep 30 days without hardening.

Zinc.—Zinc white (zinc oxide—specific gravity 5.3) is a white loose powder, devoid of smell or taste and has a good covering power. Zinc paint has a tendency to peel, and when exposed

Zinc.—Zinc white (zinc oxide—specific gravity 5.3) is a white loose powder, devoid of smell or taste and has a good covering power. Zinc paint has a tendency to peel, and when exposed there is a tendency to form a zinc soap with the oil which is easily washed off, and it therefore does not make a good paint. However, when mixed with red oxide of lead in the proportions of I lead to 3 zinc, or 2 lead to I zinc, and ground with linseed oil, it makes a very durable paint for metal surfaces. This paint dries very slowly, the zinc acting to delay hardening about the same as

lampblack.

Iron Oxide.—Iron oxide (specific gravity 5) is composed of anhydrous sesquioxide (hematite) and hydrated sesquioxide of iron (iron rust). The anhydrous oxide is the characteristic ingredient of this pigment and very little of the hydrated oxide should be present. Hydrated sesquioxide of iron is simply iron rust, and it probably acts as a carrier of oxygen and accelerates corrosion when it is present in considerable quantities. Mixed with the iron ore are various other ingredients, such as clay, ocher and earthy materials, which often form 50 to 75 per cent of the mass. Brown and dark red colors indicate the anhydrous oxide and are considered the best. Bright red, bright purple and maroon tints are characteristic of hydrated oxide and make less durable paints than the darker tints. Care should be used in buying iron oxide to see that it is finely ground and is free from clay and ocher.

Carbon.—The most common forms of carbon in use for paints are lampblack and graphite. Lampblack (specific gravity 2.6) is a great absorbent of linseed oil and makes an excellent pigment. Graphite (black lead or plumbago—specific gravity 2.4) is a more or less impure form of carbon, and when pure is not affected by acids. Graphite does not absorb nor act chemically on linseed

oil, so that the varnish simply holds the particles of pigment together in the same manner as the cement in a concrete. There are two kinds of graphite in common use for paints—the granular and the flake graphite. The Dixon Graphite Co., of Jersey City, uses a flake graphite combined with silica, while the Detroit Graphite Manufacturing Co, uses a mineral ore with a large percentage of graphitic carbon in granulated form. On account of the small specific gravity of the pigment, carbon and graphite paints have a very large covering capacity. The thickness of the coat is, however, correspondingly reduced. Boiled linseed oil should always be used with carbon pigments.

Mixing the Paint.—The pigment should be finely ground and should preferably be ground with the oil. The materials should be bought from reliable dealers, and should be mixed as wanted. If it is not possible to grind the paint, better results will usually be obtained from hand mixed paints made of first class materials than from the ordinary run of prepared paints that are supposed to have been ground. Many ready mixed paints are sold for less than the price of linseed oil, which makes it evident that little if any oil has been used in the paint. The paint should be thinned with oil, or if necessary a small amount of turpentine may be added; however turbentine is an adulterant and should be used sparingly. Benzine, gasoline, etc., should never be used in paints.

as the paint dries without oxidizing and then rubs off like chalk.

Proportions.—The proper proportions of pigment and oil required to make a good paint vary with the different pigments, and the methods of preparing the paint; the heavier and the more finely ground pigments require less oil than the lighter or coarsely ground while ground paints require less oil than ordinary mixed paints. A common rule for mixing paints ground in oil is to mix with each gallon of linseed oil, dry pigment equal to three to four times the specific gravity of the pigment, the weight of the pigment being given in pounds. This rule gives the following weights of pigment per gallon of linseed oil: white lead, 19 to 26 lb.; red lead, 25 to 33 lb.; zinc, 15 to 21 lb.; iron oxide, 15 to 20 lb.; lampblack, 8 to 10 lb.; graphite, 8 to 10 lb. The weights of pigment used per gallon of oil varies about as follows: red lead, 20 to 33 lb.; iron oxide, 8 to 25 lb.; graphite, 3 to 12 lb.

Covering Capacity.—The covering capacity of a paint depends upon the uniformity and thickness of the coating; the thinner the coating the larger the surface covered per unit of paint. To obtain any given thickness of paint therefore requires practically the same amount of paint whatever its pigment may be. The claims often urged in favor of a particular paint that it has a large covering capacity may mean nothing but that an excess of oil has been used in its fabrication. An idea of the relative amounts of oil and pigment required, and the covering capacity of different paints may be obtained from Table VIII, Chapter XIII.

Light structural work will average about 250 square feet, and heavy structural work about 150 square feet of surface per net ton of metal.

It is the common practice to estimate \(\frac{1}{2}\) gallon of paint for the first coat and \(\frac{3}{3}\) gallon for the

second coat per ton of structural steel, for average conditions.

Applying the Paint.—The paint should be thoroughly brushed out with a round brush to remove all the air. The paint should be mixed only as wanted, and should be kept well stirred. When it is necessary to apply paint in cold weather, it should be heated to a temperature of 130 to 150 degrees F.; paint should not be put on in freezing weather. Paint should not be applied when the surface is damp, or during foggy weather. The first coat should be allowed to stand for three or four days, or until thoroughly dry, before applying the second coat. If the second coat is applied before the first coat has dried, the drying of the first coat will be very much retarded.

Cleaning the Surface.—Before applying the paint all scale, rust, dirt, grease and dead paint should be removed. The metal may be cleaned by pickling in an acid bath, by scraping and brushing with wire brushes, or by means of the sand blast. In the process of pickling the metal is dipped in an acid bath, which is followed by a bath of milk of lime, and afterwards the metal is washed clean in hot water. The method is expensive and not satisfactory unless extreme care is used in removing all traces of the acid. Another objection to the process is that it leaves the metal wet and allows rusting to begin before the paint can be applied. The most common method of cleaning is by scraping with wire brushes and chisels. This method is slow and laborious. The method of cleaning by means of a sand blast has been used to a limited extent and promises much for the future. The average cost of cleaning five bridges in Columbus, Ohio, in 1902, was 3 cts. per sq. ft. of surface cleaned.* The bridges were old and some were badly rusted. The painters followed the sand blast and covered the newly cleaned surface with paint before the rust had time to form.

Mr. Lilly estimates the cost of cleaning light bridge work at the shop with the sand blast at \$1.75 per ton, and the cost of heavy bridge work at \$1.00 per ton. In order to remove the mill scale it has been recommended that rusting be allowed to start before the sand blast is used. One of the advantages of the sand blast is that it leaves the surface perfectly dry, so that the paint can

be applied before any rust has formed.

^{*}Sand Blast Cleaning of Structural Steel, by G. W. Lilly, Trans. Am. Soc. C. E., Feb., 1903.

Priming or Shop Coat.—Engineers are very much divided as to what makes the best priming coat; some specify a first coat of pure linseed oil and others a priming coat of paint. Linseed oil makes a transparent coating that allows imperfections in the workmanship and rusted spots to be easily seen; it is not permanent however, and if the metal is exposed for a long time the oil will often be entirely removed before the second coat is applied. It is also claimed that the paint will not adhere as well to linseed oil that has weathered as to a good paint. Linseed oil gives better results if applied hot to the metal. Another advantage of using oil as a priming coat is that the erection marks can be painted over with the oil without fear of covering them up. Red lead paint toned down with lampblack is probably used more for a priming coat than any other paint; the B. & O. R. R. uses 10 oz. of lampblack to every 12 lb. of red lead. Linseed oil mixed with a small amount of lampblack makes a very satisfactory priming or shop coat.

Without going further into the controversy it would seem that there is very little choice between linseed oil and a good red lead paint for a priming coat. For data on the standard shop paints

specified by different railroads, see digest of specifications in Chapter IV.

Finishing Coat.—From a careful study of the question of paints, it would seem that for ordinary conditions, the quality of the materials and workmanship is of more importance in painting metal structures than the particular pigment used. If the priming coat has been properly applied there is no reason why any good grade of paint composed of pure linseed oil and a very finely ground, stable and chemically non-injurious pigment will not make a very satisfactory finishing coat. Where the paint is to be subjected to the action of corrosive gases or blasts, however, there is certainly quite a difference in the results obtained with the different pigments. The graphite and asphalt paints appear to withstand the corroding action of smelter and engine gases better than red lead or iron oxide paints; while red lead is probably better under these conditions than iron oxide. Portland cement paint or coal tar paint are the only paints that will withstand the action of engine blasts.

To obtain the best results in painting metal structures therefore, proceed as follows: (1) prepare the surface of the metal by carefully removing all dirt, grease, mill scale, rust, etc., and give it a priming coat of pure linseed oil or a good paint—red lead seems to be the most used for this purpose; (2) after the metal is in place carefully remove all dirt, grease, etc., and apply the finishing coats—preferably not less than two coats—giving ample time for each coat to dry before applying the next. The separate coats of paint should be of different colors. Painting should not be done in rainy weather, or when the metal is damp, nor in cold weather unless special precautions are taken to warm the paint. The best results will usually be obtained if the materials are purchased in bulk from a responsible dealer and the paint ground as wanted. Good results are obtained with many of the patent or ready mixed paints, but it is not possible in this place to go into a discussion of their respective merits.

ASPHALT PAINT.—Many prepared paints are sold under the name of asphalt that are mixtures of coal tar, or mineral asphalt alone, or combined with a metallic base, or oils. The exact compositions of the patent asphalt paints are hard to determine. Black bridge paint made by Edward Smith & Co., New York City, contains asphaltum, linseed oil, turpentine and Kauri gum. The paint has a varnish-like finish and makes a very satisfactory paint. The black shades of

asphalt paint are the only ones that should be used.

COAL TAR PAINT.—Coal tar paint is occasionally used for painting gas tanks, smelters, and similar structures that receive rough usage. Coal tar paint mixed as described below has been used by the U. S. Navy Department for painting the hulls of ships. It should give satisfactory service where the metal is subject to corrosion. The coal tar paint is mixed as follows: The proportions of the mixture are slightly variable according to the original consistency of the tar, the use for which it is intended and the climate in which it is used. The proportions will vary between the following proportions in volume.

		Portland Cement.	Kerosene Oil.
New Orleans Mixture	8	· 1	I
Annapolis Mixture	16	4	3

The Portland cement should first be stirred into the kerosene, forming a creamy mixture, the mixture is then stirred into the coal tar. The paint should be freshly mixed and kept well stirred. This paint sticks well, does not run when exposed to the sun's rays and is a very satisfactory paint for rough work. The cost of the paint will vary from 10 to 20 cts. per gallon. The kerosene oil acts as a drier, while the Portland cement neutralizes the coal tar.

If it is desired to paint with oil paint a structure which has been painted with coal tar paint,

the surface must be scraped and all the coal tar removed.

CEMENT AND CEMENT PAINT.—Experiments have shown that a thin coating of Portland cement is effective in preventing rust; that a concrete to be effective in preventing rust must be dense and made very wet. The steel must be clean when imbedded in the concrete. There is quite a difference of opinion as to whether the metal should be painted before being imbedded or

not. It is probably best to paint the metal if it is not to be imbedded at once, or is not to be used in concrete-steel construction where the adhesion of the cement to the metal is an essential element.

When the metal is to be imbedded immediately it is better not to paint it.

Portland Cement Paint.—A Portland cement paint has been used on the High St. viaduct in Columbus, Ohio, with good results. The viaduct was exposed to the fumes and blasts from locomotives, so that an ordinary paint did not last more than six months even on the least exposed portions. The method of mixing and applying the paint is described in Engineering News, April 24th and June 5th, 1902, as follows: "The surface of the metal was thoroughly cleaned with wire brushes and files-the bridge had been cleaned with a sand blast the previous year. A thick coat of Japan drier was then applied and before it had time to dry a coating was applied as follows: Apply with a trowel to the minimum thickness of in. and a maximum thickness of in. (in extreme cases in.) a mixture of 32 lb. Portland cement, 12 lb. dry finely ground lead, 4 to 6 lb. boiled linseed oil, 2 to 3 lb. Japan drier." After a period of about two years the coating was in almost perfect condition and the metal under the coating was as clean as when painted. The cost of the coating including the hand cleaning, materials and labor was 8 cts. per sq. ft.

INSTRUCTIONS FOR THE MILL INSPECTION OF STRUCTURAL STEEL.*

(1) Study the contract and specifications and secure such information concerning the proposed structure as will permit a full understanding of the use to be made of the various items of the order.

(2) Secure copies of the mill orders, shipping directions and other information concerning the

material to be inspected.

(3) Attend promptly when notified of the rolling of material and so conduct the inspection

and tests as not to interfere unnecessarily with the operations of the mill.

(4) Have the test specimens prepared and properly stamped with the melt numbers by the manufacturer. Observe the selection and stamping of specimens and verify the melt numbers when practicable.

(5) Attend and supervise the making of tensile, bending and drifting tests. Make sure that the testing machines are properly handled and that the specified speed of pulling is not exceeded.

Note the behavior of the metal and check and record the results of the tests.

(6) Select the bars or other members for full-size tests as specified. Supervise such tests

and check and record their results.

(7) Secure from the manufacturer records of the chemical analyses of the melts and accept only those in which the specified contents of impurities are not exceeded.

(8) Secure pieces of the test ingots and test specimens and have check analyses made outside of the manufacturers' laboratory when the analyses furnished by the manufacturer are erratic or

for any other reason appear to be incorrect.

(9) Examine each piece of finished material for surface defects before shipment, requiring the material to be handled in a manner that will permit the examination to be thorough and This inspection should detect evidence of excessive gagging or other injury due to cold straightening.

· (10) Report promptly the shipment of any material from the mill, whose surface inspection has been waived. Such material should be examined by the shop inspector.

(11) Verify the section of all material by measurement and by weight.

(12) Study the operations of the plant and become familiar with the various processes of manufacture.

Cultivate the acquaintance of the mill employees and become familiar with their work so as to have direct knowledge of the mill practice and determine as well as the circumstances permit the correctness of the mill practice in so far as it is covered by the specifications.

(13) Record all tests and analyses on the forms provided.
(14) Keep informed as to the progress of the work in the shop and endeavor to secure the shipment of material at such times and in such order as to avoid delay in the fabrication.

(15) Secure copies of the shipping lists and compare them with the orders and make regular statements of the material that has been rolled and shipped.

(16) Make reports weekly or as may be directed, submitting complete records of tests, analyses and shipments and such other information as may be required.

^{*}American Railway Engineering Association, Adopted, Vol. 14, 1913.

INSTRUCTIONS FOR THE INSPECTION OF THE FABRICATION OF STEEL BRIDGES *

(1) Acquire a full knowledge of the conditions of the contract, such as the time of delivery. the railway company's actual need of the work, the desired order of shipment, and any special features in connection with delivery such as the position of the girders or truss members on cars at the bridge site.

(2) Study in advance the plans and specifications and see that all provisions thereof are complied with. These instructions are not be construed as altering the specifications in any way.

Check every finished member against the drawings for its general dimensions and for the section of each piece of material forming a component part of the member.

(3) Endeavor to maintain pleasant relations with foremen and the workmen and by fairness.

decisiveness and good sense interest them in the successful completion of the work.

(4) Attend constantly to the work, making inspection during the progress of the work in the shop, striving to keep up with the output in order that errors may be corrected before the work leaves the shop.

Attend the weighing of material whenever practicable, especially that purchased on weight

Check the accuracy of the scales with test weights or by other sufficient means. hasis

Conduct the inspection so as not to interfere unnecessarily with the routine operations of the

(5) When unusual circumstances require an explanation of the plans or some variation from

the specified procedure, take the necessary action promptly.

(6) Study the field connections, paying particular attention to clearances and making notations on the drawings so that they may be checked rapidly.

(7) Check all bevels and field rivet holes.

(8) Give careful attention to the quality of the workmanship, the condition of the plain material, accuracy of punching, care in assembling, alignment of rivets, tightness of rivets, accuracy of finishing of machined joints, painting and general finish.

(9) Make sure that reamed holes are truly cylindrical and that drillings are not allowed to

remain between assembled parts.

(10) Watch for bends, kinks, and twists in the finished members and make certain that when leaving the shop they are in proper condition for erection.

(II) Make sure that the webs of girders do not project beyond the flange angles and that the depth of web below the flange angles complies with the specification.

(12) Allow only the material rolled and accepted for the work to be used therein.

(13) Have the fabricated material shipped in the correct order for erection and in accordance

with instructions, as far as practicable.

(14) Measure the width of each column and the lengths of all girders between columns when they are to be placed consecutively in a long row so as to insure that the columns and girders will not "build out" in erection, so as to exceed the calculated length.

(15) Check "rights" and "lefts" and make sure that the proper number of each is shipped.

(16) Check base plates of girders before riveting and make sure that the camber is not reversed.

(17) Check the space provided for driving field rivets, allowing sufficient space for the penumatic riveter.

(18) Examine field connections after riveting to insure proper fitting and ease of erection. (19) Make sure that shop splices are properly fitted and that matched and milled surfaces to transmit bearing are in close contact during riveting as specified.

(20) Examine and measure bored pinholes carefully to insure proper dimensions and spacing

and smoothness of finish.

(21) Measure the spacing center to center of the end connections for sections of I-beam floors or any similar construction in which the calculated spacing is liable to be exceeded because of the tendency of such work to "grow" as it is assembled.

(22) Make sure that stringers connecting to floorbeams beneath the flange have sufficient

clearance to care for their possible over-run in depth.

(23) Have the assembling of trusses and girder spans required by the specifications carefully done and in any case insure the accuracy of field connections. If a large number of duplicate parts are to be made, the number of parts to be assembled should be governed by the workmanship. If errors are found, a sufficient number of parts should be assembled to make it reasonably certain that such errors have been eliminated.

Have through girder spans with I-beam floors partially assembled and at least one bracket

bolted in its final position.

^{*} American Railway Engineering Association, Adopted, Vol. 14, 1913, and Vol. 15, 1914.

Have at least one upper and lower shoe of each kind assembled and make sure that there is no interference.

(24) Make sure that iron templets used for reaming are properly set and held to line.

(25) Secure match-marking diagrams for work which has been assembled and reamed and make sure that the match marks are plainly visible.

(26) Have proper camber blocking used in assembling trusses and secure the desired camber

before the reaming is done.

(27) Require that all treads and supports for the drums of draw spans be carefully leveled with an instrument.

(28) Study carefully the machine details and discriminate between those dimensions which

must be exact and those in which slight variations are permissible.

Determine in advance the desired accuracy of driving fits for bolts or keys and similar parts

and make sure that such accuracy is attained.

(29) Examine castings carefully for blowholes and other imperfections and discriminate

between such defects as are unimportant and those which render the castings unfit for use.

(30) Make sure that bushings, collars and similar parts are held securely in place.

(31) Make sure that all drum wheels, expansion rollers, turntable rollers and similar parts

are exact in size, so as to carry equally the loads which may be placed upon them.

(32) Ascertain in advance that the paint provided complies with specifications. Watch carefully the painting directions and make sure that paint is properly applied and only where intended.

(33) Verify all shop marks and make sure that they are legible as well as correct.

(34) Have important members so loaded as to be headed in the right direction upon arrival at the site of the work.

(35) Try a few countersunk head bolts in the holes where they are to be used to insure a

(36) Make sure that small pieces are bolted in place for shipment as shown on the plans and that other small parts are properly boxed or otherwise secured against loss.

(37) Make sure that rivets, tie rods, anchor bolts and miscellaneous parts are shipped so as to avoid delay in erection.

(38) Examine the field rivets to insure that they are free from fins or other defects.

(39) Exercise special care in the examination of all movable structures and particularly their moving parts.

(40) Make reports weekly or as directed, exhibiting carefully and concisely the actual con-

ditions.

(41) Observe carefully and report such unusual difficulties as may be encountered and the means adopted in overcoming them, and endeavor by a study of the details or other means to make recommendations which will prevent their recurrence in future work.

MISCELLANEOUS METALS.—The physical properties of the following metals depend upon whether they are cast, rolled, or drawn, and upon the details of manufacture, and the values given are therefore approximate.

Aluminum has a specific gravity of 2.58 to 2.7. The ultimate tensile strength per sq. in. is about 15,000 lb. for cast, 24,000 lb. for sheet, and 30,000 to 65,000 lb. for aluminum wire. The elastic limit is about 1 the ultimate strength. The modulus of elasticity is about 11,000,000 lb. per sq. in. Aluminum is used in engineering construction principally in the form of an alloy.

Copper has a specific gravity of 8.6 to 8.9. The ultimate tensile strength varies from 36,000 to 40,000 lb. per sq. in. for soft copper wire with an elongation in 10 in. of 35 to 20 per cent; to 49,000 to 67,000 lb. per sq. in. for hard-drawn copper wire with an elongation varying from 3.75 per cent in 10 in., to an elongation of 0.85 per cent in 60 in. Copper is also used in an alloy with other metals.

Zinc, or spelter, has a specific gravity of about 7.00. The ultimate tensile strength per sq. in. varies from 3000 to 8000 lb. It is used for galvanizing and for making alloys.

Nickel has a specific gravity of about 8.8. Nickel is used principally in alloys.

Tin has a specific gravity of about 7.35. Tin is used as a covering for iron and steel sheets and in alloys.

Lead has a specific gravity of about 11.4. Lead is very plastic and flows easily under stress.

ALLOYS.—An alloy is a combination of two or more metals made by mixing them when in a molten condition. Alloys are commonly mechanical mixtures; although some have a slight chemical union. The properties of alloys depend not only upon the ingredients, but upon the method and

details of manufacture. It is impossible to predict the properties of an alloy from the properties of the metals forming it. Many alloys are sold under trade names in which the properties depend both on the proportions of the ingredients and upon the details of manufacture. The most important alloys used by the structural engineer are as follows:

Brass is an alloy of copper and zinc in which the copper varies from 60 to 89 per cent, and the zinc from 40 to 11 per cent. A small amount of tin is sometimes added to make the brass more easily worked. The tensile strength of brass is greatest (about 50,000 lb. per sq. in.) when the composition is about 62 per cent copper and 38 per cent zinc; and the ductility and malleability are greatest when the composition is about 70 per cent copper and 30 per cent zinc. A widely used brass has $\frac{2}{3}$ copper and $\frac{1}{3}$ zinc.

Delta metal is brass with I to 2 per cent iron. The tensile strength of delta metal is about 45,000 lb. per sq. in.

Tobin bronze is brass with I to 2 per cent iron, and small amounts of lead and tin.

Bronzes are alloys of copper and tin or of copper, zinc and tin, and usually have small quantities of other metals. Bronzes having more than 24 per cent tin are too weak to be used. The tensile strength is greatest (23,000 lb. per sq. in.) when the composition is about 80 per cent copper and 20 per cent tin.

Phosphor bronze is an alloy of copper and tin containing \frac{1}{2} to I per cent phosphorus. It makes excellent castings and is very hard. The ultimate tensile strength varies from 50,000 to 100,000 lb. per sq. in.

Aluminum bronze is an alloy having 5 to 10 per cent aluminum and 95 to 80 per cent copper. The tensile strength varies from 75,000 to 100,000 lb. per sq. in.

Manganese-bronze as specified by the American Society for Testing Materials contains, copper 55 to 65 per cent, zinc 39 to 45 per cent, iron not over 2 per cent, tin not over 2 per cent, aluminum not over 0.5 per cent, manganese not over 0.5 per cent. The ultimate tensile strength of standard test pieces cut from manganese-bronze ingots shall not be less than 70,000 lb. per sq. in., with an elongation in 2 in. of not less than 20 per cent.

TIMBER.—For definitions of terms, standard defects, specifications and allowable stresses in timber, see Chapter VII.

STONE MASONRY.—For definitions of terms used in masonry construction and for specifications for different classes of stone masonry, see Chapter VI.

For the allowable pressure on masonry, see Table IV, Chapter V, and for the weight, specific gravity and crushing strength of masonry, see Table V, Chapter V; also see Table VIII, Chapter II. For an exhaustive treatise on brick and stone masonry see Baker's "Masonry Construction."

CONCRETE.—The average strengths of different mixtures of Portland cement concrete as given in Report of the Committee on Reinforced Concrete of the American Society of Civil Engineers, 1913, are given in Table II.

TABLE II.

STRENGTH OF PORTLAND CEMENT CONCRETE.

Aggregate	I:I:2	1:12:3	1:2:4	1:21:5	1:3:6
Granite, trap rock	3300	2800	2200	1800	1400
Gravel, hard limestone and hard sandstone	3000	2500	2000	1600	1300
Soft limestone and sandstone	2200	1800	1500	1200	1000
Cinders	800	70 0	600	500	400

Specifications for concrete are given in Chapter V, and specifications for reinforced concrete are given in Chapter VI.

Working Stresses.—The following working stresses have been recommended by the American Railway Engineering Association for concrete that will develop an average compressive strength of at least 2000 lb. per sq. in. when tested in cylinders 8 in. in diameter and 16 in. long and 28 days

16,000

old, under laboratory conditions of manufacture and storage, the mixture being of the same consistency as is used in the field. Lb. per

	Bq. in.
Structural steel in tension.	14,000
High carbon steel in tension	17,000
Concrete in bearing where the surface is at least twice the loaded area	700
the least width	450
Concrete in direct compression with not less than I per cent nor over 4 per cent longitudinal	
reinforcement on lengths not exceeding 12 times the least width	450
Concrete in compression, on extreme fiber in cross bending	750
Concrete in shear, uncombined with tension or compression in the concrete	120
Note.—The limit of shearing stresses in the concrete, even when thoroughly reinforced	40
for shear and diagonal tension, should not exceed	120
Bond for plain bars.	80
Bond for drawn wire.	40
Bond for deformed bars, depending on the form	00-150
The following working stresses have been recommended by the Committee on Concre	ete and
Reinforced Concrete of the American Society of Civil Engineers, Proceedings, vol. X	XXIX,
February, 1913.	
Per cent of com- pressive strength	Lb. per

Per cent of com- pressive strength
Structural steel in tension
Concrete in compression where the surface is at least twice the loaded area 32.5
Concrete for concentric compression on a plain concrete column or pier, the
length of which does not exceed 12 diameters 22.5
Compression on columns with longitudinal reinforcement only, to the
extent of not less than I per cent and not more than 4 per cent; the
length of the column shall not exceed 12 diameters 22.5
Compression on columns with reinforcement of bands, hoops or spirals
having not less than I per cent of the volume of the column, the clear
spacing of the hooping to be not greater than one-sixth of the diameter
of the encased column and preferably not greater than one-tenth, and
in no case more than 2½ in., the ratio of the unsupported length of
column to diameter of hooped core to be not more than 8
Compression on columns reinforced with not less than I per cent and not
more than 4 per cent of longitudinal bars and with bands, hoops or
' spirals as above specified, where the ratio of unsupported length of
column to diameter of hooped core is not more than 8
Compression on extreme fiber of a beam, calculated for constant modulus
of elasticity (stresses adjacent of the supports of continuous beams
may be 15 per cent higher)
Shear in beams with horizontal reinforcement or without reinforcement 2
Shear in beams thoroughly reinforced with web reinforcement (the web
reinforcement exclusive of bent-up bars to be designed to resist two-
thirds the external shear)
Shear in beams reinforced with bent-up bars, only
Punching shear, only
Bond stress between concrete and plain reinforcing bars
Bond stress between concrete and drawn wire

The modulus of elasticity to be taken for the design as follows:

(a) One-fifteenth that of steel where the strength of the concrete is taken as 2200 lb. per sq. in., or less.

(b) One-twelfth that of steel where the strength of the concrete is taken greater than 2200 lb.

per sq. in. or less than 2900 lb. per sq. in.

(c) One-tenth that of steel where the strength of concrete is taken as greater than 2900 lb. per sq. in. In calculating deflection take one-eighth of the modulus of elasticity of steel.

STANDARD SPECIFICATIONS FOR CEMENT

OF THE

AMERICAN SOCIETY FOR TESTING MATERIALS.

ADOPTED AUGUST 16, 1909.

I. General Observations. These remarks have been prepared with a view of pointing out the pertinent features of the various requirements and the precautions to be observed in the interpretation of the results of the tests.

2. The Committee would suggest that the acceptance or rejection under these specifications be based on tests made by an experienced person having the proper means for making the tests.

3. Specific Gravity. Specific gravity is useful in detecting adulteration. The results of tests of specific gravity are not necessarily conclusive as an indication of the quality of a cement, but when in combination with the results of other tests may afford valuable indications.

4. Fineness. The sieves should be kept thoroughly dry.

5. Time of Setting. Great care should be exercised to maintain the test pieces under as uniform conditions as possible. A sudden change or wide range of temperature in the room in which the tests are made, a very dry or humid atmosphere, and other irregularities vitally affect the rate of setting.

6. Constancy of Volume. The tests for constancy of volume are divided into two classes, the first normal, the second accelerated. The latter should be regarded as a precautionary test only, and not infallible. So many conditions enter into the making and interpreting of it that

it should be used with extreme care.

7. In making the pats the greatest care should be exercised to avoid initial strains due to molding or to too rapid drying-out during the first twenty-four hours. The pats should be preserved under the most uniform conditions possible, and rapid changes of temperature should be

avoided.

8. The failure to meet the requirements of the accelerated tests need not be sufficient cause for rejection. The cement may, however, be held for twenty-eight days, and a retest made at the end of that period, using a new sample. Failure to meet the requirements at this time should be considered sufficient cause for rejection, although in the present state of our knowledge it cannot be said that such failure necessarily indicates unsoundness, nor can the cement be considered entirely satisfactory simply because it passes the tests.

SPECIFICATIONS.

I. General Conditions. All cement shall be inspected.

2. Cement may be inspected either at the place of manufacture or on the work.

3. In order to allow ample time for inspecting and testing, the cement should be stored in a suitable weather-tight building having the floor properly blocked or raised from the ground.

4. The cement shall be stored in such a manner as to permit easy access for proper inspection

and identification of each shipment.

5. Every facility shall be provided by the Contractor and a period of at least twelve days allowed for the inspection and necessary tests.

6. Cement shall be delivered in suitable packages with the brand and name of manufacturer

plainly marked thereon.

7. A bag of cement shall contain 94 pounds of cement net. Each barrel of Portland cement shall contain 4 bags, and each barrel of natural cement shall contain 3 bags of the above net weight.

8. Cement failing to meet the seven-day requirements may be held awaiting the results of

the twenty-eight-day tests before rejection.

9. All tests shall be made in accordance with the methods proposed by the Committee on Uniform Tests of Cement of the American Society of Civil Engineers, presented to the Society January 21, 1903, and amended January 20, 1904, and January 15, 1908, with all subsequent amendments thereto. (See addendum to these specifications.)

10. The acceptance or rejection shall be based on the following requirements:

NATURAL CEMENT.

11. **Definition.** This term shall be applied to the finely pulverized product resulting from the calcination of an argillaceous limestone at a temperature only sufficient to drive off the carbonic acid gas.

12. Fineness. It shall leave by weight a residue of not more than 10 per cent on the No. 100,

and 30 per cent on the No. 200 sieve.

13. Time of Setting. It shall not develop initial set in less than ten minutes; and shall not

develop hard set in less than thirty minutes, or in more than three hours.

14. Tensile Strength. The minimum requirements for tensile strength for briquettes one square inch in cross section shall be as follows, and the cement shall show no retrogression in strength within the periods specified:

Age	Neat Cement.	Strength.			
24 hours in moist air		75 lb.			
7 days (1 day in moist air,	6 days in water)	150 ''			
28 days (I " " "	27 ")	250 ''			
One Part Cement, Three Parts Standard Ottawa Sand.					
7 days (1 day in moist air,	6 days in water)	50 lb.			
28 days (I " " " "	27 " ")	125 "			

15. Constancy of Volume. Pats of neat cement about three inches in diameter. one-half inch thick at center, tapering to a thin edge, shall be kept in moist air for a period of twenty-four hours.

(a) A pat is then kept in air at normal temperature.
(b) Another is kept in water maintained as near 70° F. as practicable.

16. These pats are observed at intervals for at least 28 days, and, to satisfactorily pass the tests, shall remain firm and hard and show no signs of distortion, checking, cracking, or disintegrating.

PORTLAND CEMENT.

17. **Definition.** This term is applied to the finely pulverized product resulting from the calcination to incipient fusion of an intimate mixture of properly proportioned argillaceous and calcareous materials, and to which no addition greater than 3 per cent has been made subsequent to calcination.

18. Specific Gravity. The specific gravity of cement shall not be less than 3.10. Should the test of cement as received fall below this requirement, a second test may be made upon a sample ignited at a low red heat. The loss in weight of the ignited cement shall not exceed 4 per cent.

10. Fineness. It shall leave by weight a residue of not more than 8 per cent on the No. 100.

and not more than 25 per cent on the No. 200 sieve.

20. Time of Setting. It shall not develop initial set in less than thirty minutes; and must

develop hard set in not less than one hour, nor more than ten hours.

21. Tensile Strength. The minimum requirements for tensile strength for briquettes one square inch in cross section shall be as follows, and the cement shall show no retrogression in strength within the periods specified:

	Age.	Neat Cement.	Strength.
	24 hours in moist air		175 lb.
	7 days (1 day in moist air, 6 da	ıys in water)	500 "
٠	7 days (I day in moist air, 6 da 28 days (I " " " 27	()	600 "
	One Part Cement	t. Three Parts Standard Ottawa.	Sand.
	7 days (1 day in moist air, 6 da 28 days (1 " " " 27"	lys in water)	200 lb.
	28 days (I " " 27 "	')	

22. Constancy of Volume. Pats of neat cement about three inches in diameter, one-half inch thick at the center, and tapering to a thin edge, shall be kept in moist air for a period of twentyfour hours.

(a) A pat is then kept in air at normal temperature and observed at intervals for at least 28

(b) Another pat is kept in water maintained as near 70° F, as practicable, and observed at intervals for at least 28 days. (c) A third pat is exposed in any convenient way in an atmosphere of steam, above boiling

water, in a loosely closed vessel for five hours.

23. These pats, to satisfactorily pass the requirements, shall remain firm and hard, and show no signs of distortion, checking, cracking, or disintegrating.
24. Sulphuric Acid and Magnesia. The cement shall not contain more than 1.75 per cent of anhydrous sulphuric acid (SO₂), nor more than 4 per cent of magnesia (MgO).

CHAPTER XVI.

STRUCTURAL MECHANICS.

GENERAL NOMENCLATURE.—The following nomenclature will be used for all materials except reinforced concrete, for which a special notation is given.

A =area of cross section.

l = length or span.

L = length or span.

b =breadth of rectangular section.

d = depth of section; diameter of rivet.

t =thickness of plates, etc.

R = radius of circle.

D = diameter of circle.

h = height of wall.

c = distance from neutral axis to extreme fiber.

 Δ = total deformation in length l, or maximum deflection of beams.

 δ = unit deformation.

x = horizontal coordinate of elastic curve; variable.

y = vertical coordinate or deflection of elastic curve; variable.

e = eccentricity; efficiency.

I = moment of inertia.

 $I_a = \text{polar moment of inertia.}$

J =product of inertia.

S = section modulus.

r = radius of gyration.

 ϕ = pitch of rivets.

P =concentrated load or total stress in a member.

f = unit fiber stress.

 f_{e} = unit compressive fiber stress.

 f_t = unit tensile fiber stress.

 $f_v = \text{unit shearing fiber stress.}$

W = total uniformly distributed load; weight of a body.

w = uniformly distributed load per unit of length; load per unit of length at a distance unity from left end for a uniformly varying load; unit internal pressure.

R =reactions at supports.

 M_x = moment at any section.

M = maximum moment.

 V_x = total shear on any section.

V = maximum total shear.

E = modulus of elasticity.

G = shearing modulus of elasticity.

 λ = Poisson's ratio.

+ = compressive stress.

- = tensile stress.

REINFORCED CONCRETE NOMENCLATURE. Rectangular Beams, Reinforced for Tension Only.

 f_* = tensile unit stress in steel, in pounds per square inch.

 $f_c =$ compressive unit stress in concrete, in pounds per square inch.

 $E_s = \text{modulus of elasticity of steel, in pounds per square inch.}$

 E_c = modulus of elasticity of concrete, in pounds per square inch.

 $n = \text{elasticity ratio}, E_s \div E_c$.

M =bending moment, in inch-pounds.

 M_s = moment of resistance of steel, in inch-pounds.

 M_c = moment of resistance of concrete, in inch-pounds.

A =area of steel section, in square inches.

b =width of beam, in inches.

d = depth of beam to center of steel reinforcement, in inches.

k = ratio of depth of neutral axis to effective depth, d.

i = ratio of arm of resisting couple to depth, d.

 $b = \text{steel ratio (not percentage)}, A \div bd.$

C = total compressive stress in concrete, in pounds.

T = total tensile stress in steel, in pounds.

Tee Beams.

b =width of flange, in inches.

b' =width of stem, in inches.

t =thickness of flange, in inches.

 ϕ = steel ratio (not percentage), $A \div bd$.

See also "Rectangular Beams Reinforced for Tension Only."

Rectangular Beams, Reinforced for Compression.

A' = area of compressive steel, in square inches.

p' = steel ratio for compressive steel, $A' \div bd$.

 $f_{s'}$ = unit compressive stress in steel, in pounds per square inch.

C = total compressive stress in concrete, in pounds.

C' = total compressive stress in steel, in pounds.

T = total tensile stress in steel, in pounds.

d' = depth to center of compressive steel, in inches.

z = depth to resultant of compressive stresses, in inches.

See also "Rectangular Beams Reinforced for Tension Only."

Shear and Bond.

V = total shear in pounds.

 $f_v = \text{unit shearing stress in concrete, in pounds per square inch.}$

 f_u = unit bonding stress in concrete, in pounds per square inch.

 Σ_0 = sum of the perimeters of the tension bars, in inches.

s = horizontal spacing of stirrups.

P = total stress carried by one stirrup.

Columns.

A = total net area, in square inches.

 A_s = area of longitudinal steel, in square inches.

 A_c = area of concrete, in square inches.

p = steel ratio, $A_s \div A$.

P =total axial load, in pounds.

DEFINITIONS.—The following definitions will be of service in a study of structural mechanics.

Forces.—Forces are concurrent when their lines of action meet in a point; non-concurrent when their lines of action do not meet in a point. Forces are coplanar when they lie in the same plane; or non-coplanar when they lie in different planes. Coplanar forces only will be here considered. A force is fully defined when its amount, its direction, and position are known.

Moment of Forces.—The moment of a force about a point is its tendency to produce rotation about that point, and is the product of the force and the perpendicular distance of the point from

the line of action of the force.

Couple.—A couple is a pair of equal and opposite forces having different lines of action. The moment of a couple is equal to the product of one of the forces by the distance between the lines of action of the forces, or the arm of the couple.

Stress.—If a body be conceived to be divided into two parts by a plane traversing it in any direction, the force exerted between these two parts at the plane of division is an internal stress. Stress is force distributed over an area in such a way as to be in equilibrium. Stresses are measured in pounds, tons, etc.

Unit Stress is the measure of intensity of stress. The unit stress at any point is the number of units of stress acting on a unit of area at that point. Unit stresses are expressed in pounds per square inch. tons per square foot, etc.

Ultimate Stress.—Ultimate stress is the greatest stress which can be produced in a body before rupture occurs.

Tension is the name for the stress which tends to prevent the two adjoining parts of a body from being pulled apart when the body is acted upon by two forces acting away from each other.

Compression is the name of the stress which tends to keep two adjoining parts of a body from being pushed together under the influence of two forces acting toward each other.

Shear is the name of the stress which tends to keep two adjoining planes of a body from sliding on each other under the influence of two equal and parallel forces acting in opposite directions.

Axial Stresses.—When the external forces producing tension or compression act through the center of a gravity of the body the stresses are uniformly distributed over the area, and the stresses are axial stresses.

Simple Stress.—If P = the force producing tension, compression, or shear and A = the area over which the stress is distributed, then

$$f_t = P/A; f_c = P/A; f_v = P/A,$$

where f_t is tensile stress, f_c is compressive stress, and f_v is shearing stress.

Working Stress.—The working stress for any material is the unit stress that has been found by experiment to be safe to allow for that particular material to give a properly designed structure. The working stress for any particular structure depends upon the material of which the structure is built, the loads that the structure is to carry, the accuracy with which the loads and stresses have been calculated, the possible defects in the material, etc.

Factor of Safety.—The factor of safety is the number by which the ultimate stress must be divided to give the working stress.

Deformation or Strain is the change in the shape of a body caused by the action of an external force. Deformation or strain is measured in linear units. Deformation may be due to tension, elongation; due to compression, shortening; or due to shear, detrusion or slipping of one plane past another.

Elasticity.—Up to a certain stress in an elastic body it has been found by experiment that stress is proportional to strain. This principle is known as "Hooke's Law." The ability of a body to return to its original form after deformation is termed elasticity. If the stress in a body is carried beyond a certain limit the body does not return to its original form, but a permanent set occurs.

Elastic Limit.—The elastic limit of a material is the highest unit stress to which that material may be subjected and still return to its original shape when the stress is removed, and is the limit within which the stresses are directly proportional to the deformations.

Yield Point.—In testing materials a point is reached beyond the elastic limit where unit elongations increase very rapidly without any or with a very slight increase in unit stress. This point is indicated by the drop of the scale beam of the testing machine. In steel the yield point is from three to six thousand pounds per square inch above the elastic limit.

Modulus of Elasticity.—The modulus of elasticity of a material is the constant, which within the elastic limit expresses the ratio between the unit stress and unit strain or deformation. If E = modulus of elasticity, P = an axial force; A = cross sectional area of the bar, f = unit stress = P/A; $\Delta = \text{deformation}$ produced by P in a length l, and $\delta = \Delta/l$; then

$$E = (P/A)/(\Delta/l)$$
 or $E = f/\delta$.

The modulus of elasticity may be defined as that force, were Hooke's law applicable without limit, which would produce in a bar with a cross section of one square inch a deformation equal to its original length.

The modulus of elasticity of steel is very closely E=30,000,000 lb. per sq. in.; the modulus of elasticity of timber is approximately E=1,500,000 lb. per sq. in.; while the modulus of elasticity of concrete varies from E=1,500,000 lb. per sq. in. to E=3,000,000 lb. per sq. in. with an average value of E=2,000,000 lb. per sq. in.

Shearing Modulus of Elasticity.—The shearing modulus of elasticity, also called the modulus of rigidity, is the modulus expressing the ratio between unit shearing stress and unit shearing strain. The value of shearing modulus of elasticity for steel is about $\frac{2}{5}$ of the value of E, or G = 12,000,000 lb. per sq. in.

Poisson's Ratio.—Direct stress produces a strain in its own direction and an opposite kind of strain in every direction perpendicular to its own. For example a bar under tensile stress extends longitudinally and contracts laterally. Poisson's ratio is the ratio of lateral strain to longitudinal strain, and is a constant below the elastic limit. For steel Poisson's ratio is $\frac{1}{3}$ to $\frac{1}{4}$, while for concrete it is from $\frac{1}{8}$ to $\frac{1}{10}$.

Rupture Strength.—In testing steel the cross sectional area rapidly decreases beyond the ultimate stress and if the rupture stress be divided by the original cross sectional area the unit stress at rupture will be less than the ultimate stress.

Ultimate Deformation.—The ultimate deformation is the total deformation in a prescribed length, commonly 8 inches, or 2 inches. It is usually expressed in per cent for a length of 8 inches, or of 2 inches.

Work or Resilience in a Bar.—The amount of work that can be stored up in a body under stress within the elastic limit is called resilience or "internal work." When the external force has been gradually applied all the work may be recovered when the force is removed.

From the law of conservation of energy the external work due to the force is equal to the resilience or internal work. If a load P is supported at the lower end of a bar without weight, having a length l and a cross sectional area A; then the external work will be $\frac{1}{2}P\cdot\Delta$, where Δ = the total deformation, and the internal work or resilience will be

$$\label{eq:K} \mathbf{K} = \frac{P}{2} \left(\, \frac{P \cdot l}{A \cdot E} \, \right) = \frac{\mathrm{I}}{2} \left(\, \frac{P^2}{A^2 \cdot E} \, \right) \, A \cdot l \, = \, \frac{\mathrm{I}}{2} \left(\frac{f^2}{E} \right) A \cdot l,$$

when f = elastic limit of the material then $\frac{1}{2}f^2/E$ is termed the Modulus of Resilience.

Stresses due to Sudden Loads.—In a bar acted on by a static load, P, gradually applied, the total resilience will be $K = \frac{1}{2}\Delta \cdot P$. If the load P is suddenly applied we will have $K = \Delta \cdot P$, from which it is seen that the stress produced by a sudden load is twice that produced by a load gradually applied.

Impact.—The stresses due to moving loads are greater than the stresses due to loads at rest. The increase in stress of the moving load over the load at rest is called impact. For a discussion of impact stresses in railway bridges see page 161, Chapter IV.

STRESSES IN BEAMS.—When a straight beam or bar is supported near the ends and carries loads or forces applied transverse to the length of the axis of the beam or bar, the axis of the member assumes a curve. The transverse loads or forces are carried by flexure, which is a combination of the three simple stresses of tension, compression and shear. For example, a simple beam resting horizontally on supports carries a concentrated load. The fibers on the lower or convex side of the beam will be elongated and are therefore in tension, while the fibers on the upper or concave side are shortened and are therefore in compression. Shear is taking place between each vertical plane of the beam and the plane adjoining between the load and each support. Since the longitudinal stresses in a simple beam vary from a maximum compression on the concave side to a maximum tension on the convex side, the stresses will pass through zero on some plane, called the neutral plane or axis. Also since the fibers on each side of the neutral axis carry different amounts of stress, they will lengthen or shorten different amounts, and there will therefore be horizontal shearing stresses as well as vertical shearing stresses.

Neutral Surface and Neutral Axis.—Under flexure a beam is curved, and the fibers on the concave side are in compression while the fibers on the convex side are in tension. The neutral surface is a surface on which the fibers have zero stress, and the neutral axis is the trace of this plane on any longitudinal section of the beam. In a simple horizontal beam carrying vertical loads the neutral axis passes through the center of gravity of the cross section of the beam, for a rectangular beam the neutral axis is at half the height of the beam. Where a beam carries loads that are not at right angles to the neutral axis of the beam, the beam is in equilibrium under flexure and direct stress, and the neutral axis or line of zero stress will not pass through the center of gravity of the cross section of the beam, and may fall entirely outside the beam. A bar carrying simple tension or compression may be considered as a beam in which the neutral axis is at an infinite distance from the center of gravity of the cross section of the beam.

Reactions.—For any structure to be in equilibrium, (1) the sum of the horizontal components of all forces acting on the beam must equal zero, (2) the sum of the vertical components of all forces acting on the beam must equal zero, and (3) the sum of the moments about any point of all forces acting on the beam must be equal to zero. Having the loads given the reactions can be calculated by applying the three conditions of equilibrium.

Vertical Shear.—The vertical shear in a beam is equal to the algebraic sum of the forces (reaction minus the loads) on the left of the section considered.

. Bending Moment.—The bending moment at any section of a beam is equal to the algebraic sum of the moments of the reaction and the loads on the left of the section.

Relations between Shear and Bending Moment.—In a simple beam carrying vertical loads the shear is a maximum at the supports and passes through zero at some intermediate point in the beam. The bending moment is zero at the supports and is a maximum at some intermediate point in the beam. The shear is the algebraic sum of all the forces on the left of a section, while the bending moment may be defined as the algebraic sum of all the shearing stresses on the left of the section. The definite integral of the loads to the left of the section equals the shear at the section, and the definite integral of the shear to the left of the section is equal to the bending moment at the section. From the above it will be seen that maximum bending moment will come at the point of zero shear.

Formulas for Flexure.—Applying the conditions for static equilibrium to any cross section of a beam we have, (1) Sum of Tensile Stresses = Sum of Compressive Stresses; (2) Resisting Shear = Vertical Shear; (3) Resisting Moment = Bending Moment.

Resisting Shear.—If the shearing stresses are uniformly distributed the shearing stress will be

$$f_v = V/A. (1)$$

The shearing stresses are not uniformly distributed and for a rectangular beam $f_v = \frac{3}{2}V/A$, while in a circular beam $f_v = \frac{4}{3}V/A$.

Resisting Moment.—The bending moment at any section is resisted by the moment of the tensile and compressive stresses which act as a couple with an arm equal to the distance between the centroids of the tensile and compressive stresses. The moment of this internal couple is called the resisting moment. If f = the unit stress at any extreme fiber on the surface of the beam due to bending moment, c = distance from that fiber to the neutral axis, and M = the bending moment, or the resisting moment, then

$$M = \frac{f \cdot I}{c}$$
, or $f = \frac{M \cdot c}{I}$, (2)

where I = the moment of inertia of the cross section of the beam.

Moment of Inertia.—The moment of inertia of any area about any axis is equal to the sum of the products obtained by multiplying each differential area, dA, by z^2 , the square of the distance of each elementary area from the axis, $I = \Sigma z^2 \cdot dA$. The moment of inertia of any section is a minimum when the axis passes through the center of gravity of the cross section.

Section Modulus.—In designing beams it is convenient to use the ratio S = I/c, so that $M = f \cdot S$, or f = M/S. The ratio S is known as the section modulus.

Tables of Moments of Inertia and Section Modulus.—Values of moment of inertia, I, and section modulus, S, for different sections are given on pages 548 to 551, inclusive. Values of moment of inertia and section modulus of structural shapes are given in Part II.

Deflection of Beams.—In a simple beam carrying vertical loads the upper fibers are shortened and the lower fibers are lengthened, while the fibers on the neutral axis are not changed in length but the neutral axis assumed the form of a curve. The differential equation of the elastic curve of a horizontal beam carrying vertical loads will be

$$\frac{d^2y}{dx^2} = \frac{M}{E \cdot I}.$$
 (3)

Substituting proper values of E, I and M, integrating twice and giving proper values to the constants of integration, the values y, or the deflection may be calculated for any point in the beam. The equation of the elastic curve of beams of various types are given on pages 531 to 547, inclusive.

The maximum bending moments and shears in beams due to moving concentrated loads are given on page 542.

The moments and shears in continuous beams are given on page 543, page 544 and page 545. Formulas for stresses in reinforced concrete beams are given on page 546, and stresses in columns, safe working stresses, and safe loads on slabs are given on page 547.

Unit tension on m-m. (2)

Total tension on m-m.

P=f.A. (h)

Area for given stress. (c)

where A=area section m-m

2. AXIAL COMPRESSION.

Unit compression on m-m. (2)

Total compression on m-m,

(6)

Area for given stress, (c)

where A=area of section m-m.

3. SIMPLE SHEAR.

Unit shear on m-m,

 $F_V = \frac{P}{\Lambda}$, (a) Total shear on m-m.

P=FA, (6)

Area for given stress,

where A=area section m-m

4. DIAGONAL STRESSES: TENSILE FORCE.

Unit shear on n-n. (a)

F=\frac{1}{2} \sin 20 = \frac{1}{2} \frac{1}{2} \sin 20

Unit tension on n-n,

(6)

Interession in in,

F=A sin \(^{\theta} = \text{f} \sin^{\theta} \text{O}

Max unit shear on n-n,

F=\frac{1}{2}f; \(^{\theta} = 45\);

Max unit tension on n-n, (c)

F= f; 0=900: (d)

where f,= P, A = area of section m-m.

5. DIAGONAL STRESSES: COMPRESSIVE FORCE.

Unit shearonn-n. F= = Fsin 20 = = Fsin 20; (a) Unit compression on n-n, f= sin² \theta=f:sin² \theta=f:si F=F: 0=900: where $f_c = \frac{P}{A}$, A = area section m - m.

6. DIAGONAL STRESSES: TENSILE & SHEARING FORCES.

Max.unit shear on n-n: f = |f, + f f | ; tan (0=+ f; (a) Max.unit compression on o-o,

where f= \(f_a \), f_y = \(\frac{R}{A} \), A=area sec. m-m

7. DIAGONAL STRESSES: COMPRESSIVE & SHEARING FORCES.

f= |f, t | tan 20 = + fc; (a) Max.unit compression on n-n, Maxunit tension on n-n.

Max.unit shear on n-n:

where for A; for A; A=area sec.m-m.

8. ELLIPSE OF STRESS: TWO LIKE STRESSES.

Given: Unit stresses on (D&DE. Required Unit stress on CE. LavoffAOand BO=unit stresses on (D&DE. Draw circles, n'O normal to CE, mFand n'Fparallel to AO and 80 Then FO = unitstress on CE. FOsin &= unit normal stress. FOcos 6 unit shear. Ellipse is locus of F for all valves of A.

9.ELASTIC DEFORMATION: TENSION AND COMPRESSION.

10. ELASTIC DEFORMATION: SHEAR.

where A= area section m-m.

II. ULTIMATE DEFORMATION:

Percent elongation,

\[\frac{2-l}{l} \cdot 100 \quad (a) \]

Percent reduction of area,
\[\frac{A-A}{A} \cdot 100 \quad (b) \]

\[\frac{2}{l} = \text{Uriginal length.} \]
\[\frac{2}{l} = \text{Length at failure.} \]
\[\frac{A-A}{l} = \text{Uriginal section area.} \]
\[\frac{A-A}{l} = \text{Uriginal section area.} \]

12. THIN PIPES AND CYLINDERS: INTERNAL PRESSURE.

13. STRESSES IN SINGLE RIVETED LAP JOINTS.

Unit tension on plate,

fi=P÷(p-d)·t (a)

Unit compression on rivet,

fi=P÷td (b)

Unit shear on rivet,

fi=P÷d/d (c)

For longitudinal joints in

pipes or cylinders P={wDp;(d) D=diam.pipeorcylinder. 14. STRESSES IN DOUBLE RIVETED LAP JOINTS.

15. DESIGN OF SINGLE RIVETED LAP JOINTS.

See figure above. For Butt Joints see Chapt XVII

Most efficient joint for cylinders and pipe, $e = \frac{f_c}{f_c + f_c}; t = \frac{wD}{2f_c e}; d = \frac{4f_c}{mf_v}t; p = \left[1 + \frac{f_c}{f_c}\right]d;$ (a) (b) (c) (d)

Most efficient joint for given thickness plate; $d = \frac{4f_c}{mf_v}t; p = \left[1 + \frac{f_c}{f_c}\right]d; e = \frac{p-d}{p};$ (e) (f) (g)

For joints with more than two rows of rivets see Chapt. XVII.

16:DESIGN OF DOUBLE RIVETED LAP JOINTS.

See Figure above.

Most efficient joint for cylinders and pipe, $e = \frac{2fc}{f_{c}}; t = \frac{wD}{2fc}; d = \frac{4fc}{\pi f_{c}}t; p = [l + \frac{2f}{f_{c}}]d;$ (a) (b) (c) (d)Most efficient joint for given thickness plate, $d = \frac{4fc}{\pi f_{c}}t; p = [l + \frac{2fc}{f_{c}}]d; e = \frac{p - d}{p};$ (e) (f) (g)For joints with more than two rows of rivets See Chapt XVII

17. FLEXURE FORMULA.

Fiber stress due to a given moment in a given beam,

Moment to cause a given fiber stress in a given beam,

Section modulus for given moment and fiber stress 5= I = M

Moment of inertia for given moment, fiber stress and distance to extreme fiber,

(d)

19. SHEARING STRESSES IN BEAMS.

O is centroid of shaded area

Average unitshearing stress. $f_{\nu} = \frac{V}{V}$

Unit horizontal shearing stress, (longitudinal shear)

 $f_v = \frac{V}{I_+} m$, (6)

m = static moment of area. above section considered, about

neutral axis. For horizontal shear at m-m, m= area of shaded portion multiplied by z, the distance to its centroid. The max unit horizontal shear will occur at the neutral axis.

The max unithorizontal shear for arectangular beam=3 average unit shear, for circular section, and for an I-beam may be as much as 25 times average unit shear.

For rolled or built I-beams the max.unit horizontal shear very nearly equals the total vertical shear divided by area of web.

18. ELASTIC DEFLECTION OF BEAMS.

Differential equation from which equation of elastic EI SY = MX curve is found.

To determine elastic curve when Jand E are constant.integrate twice determining constants of integration by substituting known values of slope and deflection and corresponding values of x.

The equation of curve changes at every concentrated load but is same throughoutforuniform load or for uniformly varying load.

20. COLUMN FORMULAS: AXIAI LOADS.

Straight Line Formula, $P = \alpha - \beta^2$ (a)

For constants & and B see Table | Xpage 80.

Rankine's (Gordon's) Formula,

(6)

For constants & and B'see Table IX page 80.

Euler's Formula,
$$\frac{P}{A} = C'' E \frac{r^2}{2^2} \qquad (c)$$

According to Merriman & "has the Following values: Both ends hinged, a"=112 One end fixed and one hinged, a"= 21/112 Bothends fixed, a"=4172 In Euler's Formula P-ultimate strength.

21. TORSION OF SHAFTS.

H=horse power. N=rev. per minute.

Solid round shafts. $Pe = \frac{1}{16} \pi d^3 F$ (a) F=321,000 H *(b)*

> $d=68.5\left|\frac{H}{NF}\right|^{\frac{1}{3}}$ (c)

Solid square shafts. $Pe = \frac{2}{9}d^3f$ (approx.) (d)

22: STRESSES IN HOOKS: Approximate Solution.

Maximum tension,

 $f = \frac{P}{A} + \frac{Pec}{I}$ where A=area of section m-m.e = distance from line ofaction of load, P. to centroid of mm, c = distance from centroid to extreme fiber on tension side, I= moment of inertia of section m-m about axis through centroid.

For exact solution see "Slocum and Hancock, p191.

23 PLATE GIRDERS: See also Chapter XVII

(I) Momentall carried by Flanges.

M=A'sfh (a)

(2) One-eighth area of web available as Flange M= (A' + + A ...) fh area

(3) Moment of inertia of net section,

M= \(\frac{fI}{2} \)

(c) (4) Moment of inertia of gross section.

Acand Aw = net area of one flange and gross area of web. I and I = moment of inertia of gross and of net section, h = dist. \$ to\$ of flanges.

24 UNSYMMETRICAL LOADS ON BEAMS. Approximate Solution.

M-max moment for vertical loads. I, = moment of inertia. axis I-I I, = moment of inertia.axis 2-2

Max tensile fiber stress: F. = M(C, cost, C25170), (b)

25. ECCENTRIC LOADS ON PRISMS: See also Chapt. V.

P=P+W P=Rsin a+W M=Pe+We' M=P, sin a e-P, cos a h+ We. Stressatm, f. P. Mc . Stressatm; f. P. Mc .

I = moment of inertia of section m-m'aboutaxisn-n A = area of section m-m'.

Line of action of resultant, x=M:P; If there is tension at m'and section will not take it, the stress at m'=0 and at $m = \frac{2}{3}P(\frac{d}{2}-x)$ for rectang. sect.

26.FLEXURE AND DIRECT STRESS.

Flexure and compression, $f = \frac{P}{A} \pm \frac{Mc}{T_{-}(P)^{2} \pm kF}$;(a)

Flexure and tension.

k = 10 for both ends hinged, 24 for one end hinged and one fixed. 32 for both ends fixed

Approximate formula.

for direct stress either tension or compression. M may be due to weight of member or to external load.

27. TRUE STRESS.

A = Poisson's Ratio.

f, f, & f = apparent unit stresses t,t,&t,=true unit stresses. t,=f,-Af,-Af;; t,=f,-Af,-Af;; (a) (6) t= f - Af - Af, - Af, (c) If any stress istension change its sign in above formulas.

1= for steel and wrought iron.

A= forcastiron. A = for concrete.

28. CYLINDRICAL ROLLERS.

Unit Stress for given load and roller. Length for given load, diam. and unit stress, Total load for given roller W= 2101 and unit stress. Load per unit length for given roller and unit stress. D=diam. of roller. L=length of roller, E=modulus of elasticity.

29. THICK PIPES AND CYLINDERS: Internal Pressure

Maximum unit tension. (a) Maximum unit compression,

Thickness for given pressure unit tension and internal radius

w=unit internal pressure.

30. STRESSES IN FLAT PLATES: UNIFORM LOAD.

Gircular Plate: Gircumference Fixed

E- 45Wr

Circumference supported. F= 117 Wr2

178 FZ

9

Rectangular Plate. Gircumference fixed.

f = 24.w.b2 21

Circumference supported. Unit stress is about & that for circumference fixed.

Square Plates.

Circumference Fixed,

Circumference supported, Unit stress is about 3 that for circumference fixed.

See Chapter VIII, p. 313 and Table 135.

31. WORK OR RESILIENCE.

BARS.

Work done in stressing a bar below elastic limit. From Oto P, or, Otof, K= = PA= = FBA = = (F2)AZ

From P. to P. or f. to f.

 $K = \frac{1}{2}P_2\Delta_2 - \frac{1}{2}P_1\Delta_1 = \frac{1}{2}(F_2\delta_2 - F_1\delta_1)A2;$ (b)

BEAMS.

Deflection under one load

(C)

Deflection at any point.

 $y = \int \frac{M_X M' \delta x}{FI};$ (d)

where M, = moment at any point due to given loading and M'= moment at any point due to a unit load placed at the point at which the deflection is reavired.

32 CENTROID (CENTER OF GRAVITY).

Fig. 2.

Fia.3.

parallel-

ntroidA.+A.

a

General Formulas: V= SXSA SXSA (a) $\frac{1}{y} = \frac{\int y \delta A}{\int \delta A} = \frac{\int y \delta A}{A};$

Structural sections canbe divided into finite elements ·theproperties of which are known. Then(a) and (b) become

= EXAA ZOny

(d)

In - Static moment about given axis. In Fig2 let A, A, A, and A = areas of top 15, bottom 15, cov. pl. and web pls. and y, y2, y3, y4 be or dinates of their centroids. X=0 by symmetry.

2

V = 2 mx = A, y, +A2 y2 + A3 y3 + A4 y4 A, +Ag+Az+AA Fig3 Centroid of trapesoid Fig 4. Centroid of any two areas.

33. MOMENT OF INERTIA AND PRODUCT OF INERTIA.

Principal Moments of Inertia; tan 2 = 2 J, / (I_Y-I_x);(i) I,=I,cos a+I,sin a+J, sinla I,=Ix+Ix-I,;

(d)

(e)

Axes are designated by subscripts.

Curve

55. MAXIMUM SHEARS AND MOMENTS IN SIMPLE BEAMS FOR MOVING CONCENTRATED LOADS. Oriterion for Maximum Shear.

The maximum shear due to moving concentrated loads will occur at one support when one of the loads is at that support and will equal the total reaction. The load giving the maximum must be determined by trial.

Griterion for Maximum Moment.

The maximum moment due to moving concentrated loads will occur under one of the loads when that load is as far from one end as the center of gravity of all the loads on the beam is from the other end. The load giving the greatest maximum must be found by trial.

For beams fixed at one or both ends and carrying one load, see 49 and 54, in this chapter.

a. ONE LOAD.

b. TWO EQUAL LOADS.

c. THREE EQUAL LOADS, EQUALLY SPACED.

d. Four Equal Loads, Equally Spaced.

Max.Moment, $X = \frac{1}{2}(2 - \frac{1}{2}a)$; $M = P(2 - 2a + \frac{a^2}{2})$; at 2. If a is greater than 0.2682, three loads give max. Mas in c.

e. TWO UNEQUAL LOADS.

F. TWO EQUAL LOADS AND ONE SMALLER LOAD.

(c)

Relation between moments at supports for the
$$n^{\frac{th}{4}}$$
 and $(n+l)^{\frac{5t}{4}}$ spans,

$$M_{n} \lambda_{n} + 2M_{n+1}(\lambda_{n} + \lambda_{n+1}) + M_{n+2} \lambda_{n+1} = \frac{1}{4} W_{n} \lambda_{n}^{3} - \frac{1}{4} W_{n+1} \lambda_{n+1}^{3}$$
(a)

Shear to right of
$$n^{th}$$
 support,

 $V_n' = \frac{M_{n+1} - M_n}{l_n} + \frac{1}{2} w_n l_n;$

Shear to left of $(n+1)^{\underline{st}}$ support,

 $V_n'' = \frac{M_{n+1} - M_n}{l_n} - \frac{1}{2} w_n l_n;$

Shear to right of $(n+1)^{\underline{st}}$ support,

Reaction at $(n+1)^{\underline{st}}$ support,

$$V_{nH} = \frac{M_{nH} - M_{nH}}{\lambda_{nH}} + \frac{1}{2} W_{nH} \lambda_{nH}; \qquad (d) \qquad R_{nH} = V_{nH} - V_{n}''; \quad (Note R, = V_{n}') \qquad (e)$$

point of max. positive moment in
$$n^{\underline{th}}$$
 span, Maximum positive moment in $n^{\underline{th}}$ span, $X = \frac{V_n'}{n}$; (i) $M = M_n + \frac{V_n'^2}{n}$; (i)

EXPLANATION OF FORMULAS; n=number of first span considered or its left support.

Given a continuous beam of several spans uniformly loaded (for spans with no load w=0). Apply formula(a) to 1st and 2nd spans at the left end making n=1. Three unknown moments appear, M, M,, and Mz. If beam is simply supported at left end M,=0. Next apply formula(a) to 2nd and 3rd spans making n=2. Again there will be three unknowns M. M. and M. Continue until last two spans have been considered (never consider last span alone). If beam is simply supported atright end, the Mforthat support = 0. There are now as many equations as there are unknowns so by solving, the moments at all of the supports may be found. If the beam is symmetrical as to loading and dimensions, the calculations may be shortened by equating moments which are known by inspection to be equal. Knowing the moments at the supports; the shear at any point, the reactions, and the moment at any point may be calculated. (R, = V, and R for last support equals V" for last span). For fixed ends imagine the beam to extend one span beyond the fixed end and apply the formulas as above, equating the length and load of the imaginary spanto zero and the moment at the extreme end of the imaginary span to zero. Care should be taken that shears and moments are used with their proper sign.

SPECIAL CASES:

For a beam of equal spans with equal uniform loads, formula(a) reduces to-
$$M_n + 4M_{n+1} + M_{n+2} = -\frac{1}{2}wl^2; \quad (\text{See also 57, of this chapter.})$$
(j)

For a beam of two unequal spans with unequal uniform loads and simply supported at the ends, M, = 0, Mz = 0 and from formula (a)

$$M_{2} = -\frac{\frac{1}{4}w_{1}l_{1}^{3} + \frac{1}{4}w_{2}l_{2}^{3}}{2(2+l_{2})} \tag{k}$$

57. MOMENTS AT SUPPORTS: CONTINUOUS BEAMS, EQUAL SPANS AND EQUAL UNIFORM LOADS.

COEFFICIENTS OF wl2, where w=load per unit length and l=length of one span. E and I constant.

Maximum positive moment in any span can be calculated from formula 56 i.

58. SHEARS AT SUPPORTS: CONTINUOUS BEAMS, EQUAL SPANS AND EQUAL UNIFORM LOADS.

COEFFICIENTS OF wl, where w=load per unit length and l=length of span. E and I constant.

Reactions at supports equal algebraic difference of shears to right and left.

Relation between moments at supports for nth and (n+1) st spans. Moln+2Mn+ (2n+2n+)+Mn+22n+=- E[Polo(kn-kn)]- E[Poul n+ (2kn+3kn+kn+1)]. (2) Shear to left of (n+1) St support. Shear to the right of nto support. Vn= Mn+1-Mn+ [Pn(1-kn)]; $V_n'' = \frac{M_{n+1} - M_n}{l_n} - \mathcal{E}[P_n k_n]$ (6) (C) Reactionat (n+1) st support. Shear to right of (n+1) st support, Rout = Va' - Va": (Note R.=V.') (d) (e)

Mast

V'nH = Mn+2-Mn+ +2[Pn+(1-Kn+)]
Shear at any point in n to span, Vx=V- FP. where FP equals (F) the sum of the loads between nt support and point considered.

Point of max. positive moment in nto span. The max positive moment occurs where shear, as calculated from(f) passes through zero. This point is always at one of the loads.

Moment at any point in nth span. $M_x = M_u + V_0 x - \mathcal{E}[P_0(x-k_0)]$, where (a) £[Po(x-kolo) equals the sum of the moments of the loads, between the nth support and the point considered, about the point

Mass

Maximum positive moment in the nth span. After the point of max positive moment has belocated as described in(h) the value of x thus determined is substituted in(a) and Madetermined.

EXPLANATION OF FORMULAS: (See under 56.)

SPECIAL CASE.

For a beam of two unequal spans with unequal concentrated loads and with ends

simply supported, $M_1 = 0$, $M_2 = 0$ and formula (a) reduces to- $M_2 = -\frac{2[R_1^2(k_1 - k_1^3) + 2[P_2^2(2k_2 - 3k_2^2 + k_2^3)]}{2(l_1 + l_2)},$ (1)

60. CONTINUOUS BEAMS OF TWO AND THREE EQUAL SPANS: Uniform load, w, per unit length or load Pincenter of one span-

Moment. +1/60. -1/15. Reaction. -1/10. +1/40. +/3/30, +/3/20. +29/40. Moment. -1/20, -1/20. -3/40. Reaction, +13/32, +11/16, -3/32, -1/20, +11/20. +11/20. -1/20, -3/40, +23/40, +23/40, -3/40, Coefficients of wiland Pl, for moments at supports, and of will and P, for reactions at supports. By addition of proper cases any beam may be solved. For shears and moments between supports see 56855.

DIAGRAMS.	GENERAL FORMULAS.	FOR F3=16,000, Fc=650, n=15.
61. RECTANGULAR BEAMS: Reinforced for tension only:	$k = \sqrt{2pn + p^{2}n^{2}} - pn = \frac{1}{1 + \frac{E}{nc}}; j = \frac{1}{3}k;$ $M_{s} = f_{s} A j d - f_{s} p j b d^{2}; M_{c} = \frac{1}{2} f_{c} k j b d^{2};$ $f_{s} = \frac{M}{A j d} = \frac{M}{p j b d^{2}};$ $f_{c} = \frac{2M}{j k b d^{2}} = \frac{k}{(1 - k)n} f_{s} = \frac{2p}{k} f_{s};$	k= 0.379; j= 0.8737; M _S = 107.55dd ² ; M _C =M _S ; F _S =16000; F _C =650;
	Steel ratio and depth, balanced reinforcement, $p = \frac{1}{\frac{2f_{5}}{f_{6}} \left[\frac{f_{5}}{nf_{6}} + 1\right]}; d = \sqrt{\frac{M}{f_{5}} pjb};$	Steel ratio and depth, balanced reinforcement, $p=0.0077; d=\sqrt{\frac{M}{107.5b}};$
62. St. ABS: Values for 12" strip. Reinforced fortension only. kd d jd d jd 12"	$k = \sqrt{2\rho n + p^{2}n^{2}} - \rho n = \frac{1}{1 + \frac{1}{5}}; j = 1 - \frac{1}{3}k;$ $M_{s} = f_{s}A_{j}d = 2f_{s}p_{j}d^{2}; M_{c} = 6f_{c}k_{j}d^{2};$ $f_{s} = \frac{M}{A_{j}d} = \frac{M}{ 2p_{j}d^{2} };$ $f_{c} = \frac{M}{6jkd^{2}} = \frac{k}{(1-k)n}f_{s} = \frac{2p}{k}f_{s};$ $Steel ratio and depth, balanced reinforcement,$ $p = \frac{1}{\frac{2f_{s}}{f_{c}} \left[\frac{f_{s}}{nf_{c}} + 1\right]} \qquad d = \sqrt{\frac{M}{ 2f_{s}p_{j}}};$	k=0.379; j=0.8737; M ₅ =1290d ² ; M _c =M ₅ ; f ₅ =16000; f _c =650; Steel ratio, depthand steel area, balanced reinforcement p=0.0077; d=0.028VM; A=0.0026VM;
63.T-BEAMS: Neglecting compression in Web. For t greater than kd, use 61.	$k = \frac{pn + \frac{1}{2}\left(\frac{t}{a}\right)^{2}}{pn + \frac{t}{a}} = \frac{1}{1 + \frac{f_{s}}{h_{c}}};$ $j = l - \frac{t}{3d} \cdot \frac{3kd - 2t}{2kd - t};$ $M_{s} = f_{s}Ajd = f_{s}pjbd^{2}; M_{c} = \left[l - \frac{t}{2kd}\right]f_{c}tjbd;$ $f_{s} = \frac{M}{Ajd} = \frac{M}{pjbd^{2}}; f_{c} = \frac{k}{(l - k)n}f_{s};$ $Steel\ ratio, balanced\ reinforcement,$ $p = \frac{t}{2d} \cdot \frac{f_{c}}{f_{s}} \left[2 - \left(1 + \frac{f_{s}}{a}\right)\frac{t}{d}\right]$	$k=0.379$ $J=J-\frac{L}{3d} \frac{J.137d-2L}{0.758d-L}$ $M_5=16000pjbd^2$ $M_c=M_5$ $f_5=16000; f_c=650;$ $Steel ratio, balanced reinf:$ $p=.0203(2-2.642\frac{L}{d})\frac{L}{d};$
64. RECTANGULAR BEAMS: Reinforced for tension and compression. rd=d'	$k = \sqrt{(p+p')^{2}n^{2} + 2(p+p'r)n - (p+p')n = \frac{1}{1+\frac{f_{s}}{2}}};$ $j = \frac{\frac{1}{2}k^{2}(l-\frac{1}{3}k) + (k-r)(l-r)p'n}{(l-k)pn};$ $M_{s} = f_{s}Ajd = f_{s}pjbd^{2}; M_{c} = \frac{l-k}{K}nf_{c}Ajd,$ $f_{s} = \frac{M}{M} = \frac{M}{k}ij : f_{s}' = \frac{k-r}{l-k}if_{s}; f_{c} = \frac{k}{(l-k)n}f_{s};$ $Steel \ ratio, balanced \ reinforcement,$ $p = \sqrt{\frac{nf_{c}}{f_{s}}(l-r) - r}p' + \frac{1}{\frac{2f_{s}}{f_{c}}f_{s}' + 1};$	k=0.379 j= .00418+(.379-r)(1-r)p' .00478+(.379-r)p' Ms use general formula Mc=Ms fs=16000;fs'=9750-2577r; fc=650; Steel ratio, balanced reinforcement, p=(0.6094-1,6094r)p'+0.0077,

65 SHEAR, BOND AND WEB REINFORCEMENT.

In the following formulas id refers to arm of resisting couple at section in question and Eo. to tension bars at section. Shear in Concrete & Bond Stress in Tensile Steel. Rectangular Beams, $f_v = \frac{V}{bjd}$; $f_v = \frac{V}{\xi_{ojd}}$, (single or double reinforced) T-Beams.

Stirrups, All rectangular beams and T-beams. Vertical stirrups, P= Vs ; s= Pjd

Stirrups inclined 45, (not bent up bars) $P = 0.7 \frac{V_s}{jd}; s = \frac{P_j d}{0.7V}$

P=Total stress in one stirrup. V= amount of shear not carried by concrete. for approximate results $i = \frac{7}{6}$ in formulas.

11.4

12.8

14.2

15.5

15.9

50

56

63

69

75

0.277

0.323

0.369

0.416

0.439

/

5

10.8

12.2

13.5

14.8

15.3

9.6

11.0

12.2

13.5

13.9

8.8

10.7

11.3

12.4

12.9

8.2

9.3

10.5

11.6

12.1

6.8

7.9

8.9

9.9

10.3

7.6

8.8

9.9

109

11.4

6.2

7.2

8.1

91

9.5

5.8

6.7

7.5

8.4

8.8

5.1

5.9

6.7

7.5

7.8

5.4

6.2

7./

7.9

8.3

66. COLUMNS: Ratio of length toleast width < 12

Axial load for given unit stress. P=fc (Ac+nAs) =fcA[/+(n-/)p], Unitstress for given axial load,

 $f_c = \frac{P}{A[1+(n-1)p]}; f_s = nf_c,$

67. WORKING STRESSES FOR STATIC / 0405 (A.S.C.F.) Ultimate Strengths for Various Mixtures. in Pound's per square inch

1:2 4 1:22:5 1:3:6 Agaregate 2200 Granite 1800 1400

Gravel, Hard Limestone or sandstone 2000 1600 1300 1500 Soft Limestone or Sandstone 1200

Working Stress. percent of Ultimate Strength; Bearing 32.5: Axial Comp. 22.5: Comp. Fiber Stress 32.5. Shear: longitudinal brs only. 2.0: Part of brs bentup 3.0: Shear: thorough web reinf. 6.0: Bond. brs 4.0. wire 2.0.

68.5	68. SAFE LOADS ON REINFORCED CONCRETE SLABS: F3=16000,Fc=650, n=15, M=10 w??													
Total Thickness of 5/ab.	Center of Steel toBottom of Slab	Area of Steel perft. of width.	Weight of Slab per sq. ft.		Span in Feet for Safe Live Lbad In Pounds per Square Foot of Slab. M=\frac{1}{10}wl^2 (for M=\frac{1}{8}wl^2 multiply span lengths by 0.894)					94)				
	-	-	-	40	50	75	100	125	150	200	250	300	350	400
ln.	In.	Sq.In.		Lb.	Lb.	Lb.	<i>Lb.</i>	Lb.	Lb.	Lb.	26.	Lb.	Lb.	16.
3,	3/4	0.208	38	8.4	7.9	7.0	6.3	5.8	5.4	4.8	4.3	4.0	3.7	3.6
3 / 2	3/4	0.254	44	9.6	9.3	8.3	7.5	6.9	6.5	5.8	5.3	4.9	4.5	4.3
4	/	0.277	50	10,4	9.0	8.8	8.0	7.4	7.0	6.2	5.7	5.3	4.9	4.7
4½ 5	/	0.323	56	//.7	11.2	10.0	9.2	8.5	8.0	7.2	6.6	6./	5.7	5.4
5	/	0.369	63	12.9	12.3	//.2	10.3	9.6	9.0	8.1	7.4	6.9	6.5	6.1
52	1,	0.4/6	69	14./	13.5	12.3	//.3	10.6	10.0	9.0	8.3	7.7	7.2	6.8
6	14	0.439	75	14.5	/3.9	12.7	//.8	11.0	10.4	9.4	8.6	8.0	7.5	7./
69.	SAFELO	0AD5 01	Y REINE	ORCED	CONCI	RETE S	LABS:	Fs=160	000, Fc	=650,	n=15,	$M=\frac{1}{12}$	wZZ	
355	196.	7.	5/36				Spanie	n Feet	For Sal	Fe Live	o load			
kme.	Ste	ree	18.5	1	Spanin Feet for Safe Live Load									
Thickm 5/86.	o o	55 m	rsq.	1	in Pounds per Square Foot of Slab.									
Total Thickness of Slab.	Genter of Steel	Area of Steel perftof width.	Weight of persq.f		$M = \frac{1}{12} w l^2$, (for $M = \frac{1}{8} w l^2$ multiply span lengths by 0.817)									
10	500	Ar	N. J.	40	50	75	100	125	150	200	250	300	350	400
In	In.	Sq.In.	Lb.	lb.	16.	<i>Lb.</i>	Lb.	Lb.	16.	16.	Lb.	Lb.	16.	Lb.
3	3/4	0.208	38	9.2	8.6	. 7.6	6.9	6.4	5.9	5.2	4.8	4.4	4./	3.9
3/2	3/4	0.254	44	10.8	10.2	9./	8.2	7.6	7./	6.3	5.8	5.3	5.0	4.7

			*		
Section	Area A	Distance from Axis to Extreme Fibers y and yı	Moment of Inertia I	Section Modulus $S = \frac{I}{Y}$	Radius of Gyration $r = \sqrt{\frac{I}{A}}$
a y	a²	y = <u>3</u>	<u>a</u> 4 12	$\frac{a^3}{6}$	<u>a</u> √12 = 0.289a
3 Y	a²	y=a	<u>a</u> ⁴ 3	<u>a</u> ³ 3	$\frac{a}{\sqrt{3}}$ =0.577a
7 Y	a- a.	y= <u>2</u>	<u>a⁴- a.⁴</u> 12	a4-a4 6a	$\sqrt{\frac{a^2+a_1^2}{12}}$
- 0. 0 y	a²	$y = \frac{a}{\sqrt{2}} = 0.707a$	a⁴ l?	$\frac{a^3}{6\sqrt{2}} = 0.118a^3$	$\frac{a}{\sqrt{ 2 }} = 0.289a$
d y	b∙d ₋	y= <u>d</u>	<u>b·d</u> ³	$\frac{b \cdot d^2}{6}$	$\frac{d}{\sqrt{12}} = 0.289 d$
d y	b∙d	y=d	$\frac{b \cdot d^3}{3}$	$\frac{b \cdot d^2}{3}$	$\frac{d}{\sqrt{3}} = 0.577d$
d1 • b, • y	b∙d-b _i d,	y= <u>d</u>	<u>b⋅d³- b₁d₁³</u> I2	<u>b·d³-b,d</u> ³ 6·d	$\sqrt{\frac{b \cdot d^3 - b_i d_i^3}{ \mathcal{I}[b \cdot d - b_i d_i]}}$
	b∙d	$y = \frac{b \cdot d}{\sqrt{b^2 + d^2}}$	$\frac{b^3 \cdot d^3}{6[b^2 + d^2]}$	$\frac{b^2 \cdot d^2}{6\sqrt{b^2 + d^2}}$	$\frac{b \cdot d}{\sqrt{6[b^2+d^2]}}$
To y	b∙d .	$y = \frac{d \cdot \cos \alpha + b \cdot \sin \alpha}{2}$	$\frac{bd}{12}[d^2\cos\alpha + b^2\sin^2\alpha]$	$\frac{bd}{6} \left[\frac{d^2\cos\alpha + b^2\sin\alpha}{d\cos\alpha + b\cdot\sin\alpha} \right]$	$\sqrt{\frac{d^2\cos^2\alpha+b^2\sin^2\alpha}{12}}$

Section	Area A	Distance from Axis to Extreme. Fibers y and y	Moment of Inertia I	Section Modulus $S = \frac{I}{Y}$	Radius of Gyration $r=\sqrt{\frac{I}{A}}$
d y	<u>b∙d</u> 2	$y = \frac{2d}{3}$, $y_1 = \frac{d}{3}$	<u>b</u> d ³ 36	<u>b·d²</u> 24	$\frac{d}{\sqrt{18}} = .736d$
d y	<u>b·d</u> 2	y= d	<u>b·d³</u> 12,	<u>b·d²</u> 12	$\frac{d}{\sqrt{6}} = .408d$
d y	<u>b+b</u> 1∙d	$y = \frac{b_1 + 2b}{b_1 + b} \cdot \frac{d}{3}$ $y_1 = \frac{b + 2b}{b + b_1} \cdot \frac{d}{3}$	$\frac{b^2 + 4b \cdot b_1 + b_1^2}{36[b + b_1]} \cdot d^3$	$\frac{b^2+4b\cdot b_1+b_1^2}{12\left[2b+b_1\right]}\cdot d^2$	$\frac{d}{6[b+b_i]}\sqrt{2[b+4b\cdot b_i+b_i^2]}$
a y	$\frac{\pi d^2}{4} = .785 d^2$	y= <u>d</u>	$\frac{\pi d^4}{64} = .049 d^4$	$\frac{\pi d^3}{32} = .098 d^3$	<u>d</u> 4
d d ₁ y	$\frac{\pi[d^{2}-d_{1}^{2}]}{4}$ $.785[d^{2}-d_{1}^{2}]$	y= <u>d</u>	$\frac{\pi[d^4 - d_1^4]}{64}$ = .049[d ⁴ - d ₁ ⁴]	$\frac{\pi[d^4-d^4]}{32d}$ = .098[d^4d^4]-d	$\frac{\sqrt{d^2+d_1^2}}{4}$
y y ₁	$\frac{\pi d^2}{8} = .393 d^2$	$y = \frac{[3\pi - 4]d}{6\pi} = 288d$ $y_1 = \frac{2d}{3\pi} = .212d$	$\frac{9\pi^{2}-64}{1152\pi}d^{4}$ = .007 d^{4}	$\frac{9\pi^{2}-64}{192[3\pi-4]} \cdot d^{3}$ =.024 d^{3}	$\frac{\sqrt{9\pi^2-64}}{12\pi} \cdot d$ =.132 d
d y	$\frac{\text{mb-d}}{4} = .785 \text{b-d}$	y= <u>d</u>	$\frac{\pi b \cdot d^3}{64} = .049 b \cdot d^3$	$\frac{\pi b \cdot d^2}{32} = .098b \cdot d^2$	<u>d</u> 4
b y	$\frac{\pi b \cdot d}{4} = .785 b \cdot d$	$y = \frac{b}{2}$	$\frac{\pi d \cdot b^3}{64} = .049 d \cdot b^3$	$\frac{\pi d \cdot b^2}{32} = .098 d \cdot b^2$	<u>b</u> 4

Section	Area A	Distances to Extreme Fibers y and y 1	Moment of Inertia I	Section Modulus $S = \frac{I}{y}$	Radius of Gyration $r = \sqrt{\frac{I}{A}}$
d y	$\frac{3}{2}d^2\tan 30^{\circ}$ $= .866 d^2$	y= <u>d</u>	$\frac{A}{12} \left[\frac{d^2(1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right]$ $= .06 d^4$	$\frac{A}{6} \left[\frac{d(1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right] = .12 d^3$	$\frac{d}{4}\sqrt{\frac{1+2\cos^2 30}{3\cos^2 30}}^{\circ}$ = .264 d
- A TY	$\frac{3}{2}d^2\tan 30^\circ$ $= .866 d^2$	$y = \frac{d}{2 \cdot \cos 30}$ $= .577 d$	$\frac{A}{12} \left[\frac{d^2(1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right]$ = .06 d ⁴	$\frac{A}{6} \left[\frac{d(1 + 2\cos^2 30^\circ)}{4\cos 30^\circ} \right] = .104 d^3$	$\frac{d}{4} \sqrt{\frac{1 + 2\cos^2 30^{\circ}}{3\cos^2 30^{\circ}}} = .264 d$
d y	$2d^2 \tan 22\frac{1}{2}$ $= .828d^2$	$y = \frac{d}{2}$	$\frac{A}{12} \left[\frac{d^2 (1 + 7\cos^2 22\frac{1}{2}^\circ)}{4\cos^2 22\frac{1}{2}^\circ} \right] = .055 d^4$	$\frac{A}{6} \left[\frac{d(1+2\cos^2 22\frac{1}{6}^{\circ})}{4\cos 22\frac{1}{6}^{\circ}} \right]$ $= .109 d^3$	$\frac{d}{4} \sqrt{\frac{1 + 2\cos^2 22\frac{1}{2}}{3\cos^2 22\frac{1}{2}}} = .257d$
d → t → t → t → t → t → t → t → t → t →	b·d-h(b-t)	y = <u>d</u>	<u>b·d³-h³(b-t)</u> 12	<u>b·d³- h³(b-t)</u> 6d .	$\sqrt{\frac{b \cdot d^3 - h^3(b-b)}{\text{li}[b \cdot d - h(b-b)]}}$
FSI h PSI	b·d – h(b−t)	y = 2	<u>2s·b³+ ht³</u> 12	<u>2s b³+h t³</u> 6b	$\sqrt{\frac{2s \cdot b^3 + h \cdot t^3}{\text{Vi2[b \cdot d - h(b - t)]}}}$
h y y	b·d−h(b-t)	y= <u>d</u>	<u>b⋅d³-h³(b−t)</u> I2	<u>b·d³-h³(b-t)</u> 6d	$\sqrt{\frac{b \cdot d^3 - h^3 (b - t)}{ \mathcal{L}[b \cdot d - h(b - t)] }}$
* 5 *····h···* 5 * b 1 	b· d− h(b−t)	$y = \frac{\frac{1}{2} \left[b^2 \cdot d - h(b - t)^2 \right]}{b \cdot d - h(b - t)}$ $y_1 = b - y$	$\frac{2b^3 + h!^3}{3} - Ay_1^2$	<u>I</u>	$\sqrt{\frac{I}{A}}$
d 4 y	t·d+s(b-t)	y= <u>d</u> ?	<u>t·d³+s⁵(b−t)</u> }	<u>t·d³+s³(b-t)</u> 6d	$\sqrt{\frac{td^5+s^3(b-t)}{12[td+s(b-t)]}}$

Section	Area A	Distances from Axis to Extreme Fibers yand y,	Moment of Inertia I	Sec. Modulus $5 = \frac{I}{Y}$	Radius of Gyration
5 y ₁	bs+ht	$y_i = \frac{d^2t + s^2(b-t)}{2A}$ $y = d - y_i$	$\frac{\text{ty}^{3}+\text{by}_{1}^{3}-(\text{b-t})(y_{1}-\text{s})^{3}}{3}$	i I	$\sqrt{\frac{I}{A}}$
d h	$bs+\frac{h}{2}(t+t_i)$	$y_{i} = \frac{3bs^{2}+3th(d+s)+h(t_{i}-t)(h+3s)}{6A}$ $y = d-y'_{i}$	4bs3+h3(3t+t1) - A(y,-s)2	Ţ	$\sqrt{\frac{I}{A}}$
d h y t - y t - y t - y t	b5+ht+b,5,	$y = \frac{td_{+}^{2}[b_{1}-t]s_{1}^{2}+[b-t][2d-s]s}{2A}$ $y_{1} = d - y$	$\frac{b_{1}y + b_{1}y_{1}^{3} - [b_{1} - b][y - s_{1}]^{3}[b - b][y_{1} - s]}{3}$	Ţ ÿ	$\sqrt{\frac{I}{A}}$
d + t + y	bs+2ht+b,s,	$y = \frac{2td_{+}^{2}[b_{-}(t)]s_{,+}^{2}[b_{-}(t)][2d-s]s}{2A}$ $y_{1} = d - y$	\frac{\b,y\frac{3}{2}\b,-?t][y-5,]^3[b-?t][y,-5]^3}{3}	Ţ	$\sqrt{\frac{1}{A}}$
d b b y	td+2b(s+n')	$y = \frac{d}{2}$ $q = \text{slope of flange} = (n'-s) + b' = (h-1)$	$\frac{1}{12} \left[bd^3 - \frac{1}{4q} (h^4 - l^4) \right]$ $(b-t) = \frac{1}{6} \text{ for standard sections}$	Ţ	$\sqrt{\frac{I}{A}}$
	td+2b'(s+n')	$y = \frac{b}{2}$ $q = slope of flange = (n'-s) = b' = (h-1)$	$\frac{1}{12} \left[b^3 (d-h) + 1 b^3 + \frac{9}{4} (b^4 b^4) \right]$ $-(b-t) = \frac{1}{6} \text{ for standard sections}$	Ϊ	$\sqrt{\frac{I}{A}}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	td+b'(s+n')		$\frac{1}{12} \left[bd^3 - \frac{1}{8q} (h^4 - l^4) \right]$ $-2(b-t) = \frac{1}{6} \text{ for standard sections}$	<u>I</u>	$\sqrt{\frac{I}{A}}$
* 94 h - 54 Y	td+b'(s+n')	y - U - y ₁	$\frac{1}{3}[25b^3+1t^3+\frac{9}{2}(b^4-t^6)]-Ay_1^2$ (h-1)÷2(b-t)=½6 for standard sec.	Ţ	$\sqrt{\frac{I}{A}}$

STRESSES IN FRAMED STRUCTURES.

Loads.—The stresses in roof trusses are due to (I) the dead load, (2) the snow load, (3) the wind load, and (4) concentrated and moving loads. Data for dead loads, snow loads, wind loads, crane loads and other loads to be carried on trusses are given in Chapter I to Chapter IV, inclusive. The loads on roof trusses are commonly given as a certain number of lb. per sq. ft. of horizontal projection of the roof. The loads are assumed to be transferred to the truss by means of purlins acting as simple beams, the joint loads being equal to the purlin reactions.

Methods of Calculation.—The determination of the reactions of simple framed structures usually requires the use of the three fundamental equations of equilibrium

			m wan r	5- 41	111
Σ horizontal	components of	forces	= ()	(a)

$$\Sigma$$
 vertical components of forces = 0 (b)

$$\Sigma$$
 moments of forces about any point = 0 (c)

Having completely determined the external forces, the internal stresses may be obtained by either equations (a) and (b) (resolution), or equation (c) (moments). These equations may be solved by graphics or by algebra. There are, therefore, four methods of calculating stresses:

Resolution of Forces { Graphic Method Algebraic Method Moments of Forces { Graphic Method Algebraic Method Algebraic Method

The stresses in any simple framed structure can be calculated by using any one of the four methods. The method of calculating the stresses in roof trusses by means of graphic resolution will be explained in detail. For the calculation of the stresses in roof trusses and other framed structures by algebraic resolution and by algebraic and graphic moments the reader is referred to the author's "The Design of Steel Mill Buildings."

Graphic Resolution.—In Fig. 1 the reactions R_1 and R_2 are found by means of the force and equilibrium polygons as shown in (b) and (a). The principle of the force polygon is then applied to each joint of the structure in turn. Beginning at the joint L_0 , the forces are shown in (c), and the force triangle in (d). The reaction R_1 is known and acts up, the upper chord stress 1-x acts downward to the left, and the lower chord stress 1-y acts to the right, closing the polygon. Stress 1-x is compression and stress 1-y is tension, as can be seen by applying the arrows to the members in (c). The force polygon at joint U_1 is then constructed as in (f). Stress 1-x acting toward joint U_1 and load P_1 acting downward are known, and stresses 1-2 and 2-x are found by completing the polygon. Stresses 2-x and 1-2 are compression. The force polygons at joints L_1 and L_2 are constructed, in the order given, in the same manner. The known forces at any joint are indicated in direction in the force polygon by double arrows, and the unknown forces are indicated in direction by single arrows.

The stresses in the members of the right segment of the truss are the same as in the left, and the force polygons are, therefore, not constructed for the right segment. The force polygons for all the joints of the truss are grouped into the stress diagram shown in (k). Compression in the stress diagram and truss is indicated by arrows acting toward the ends of the stress lines and toward the joints, respectively, and tension is indicated by arrows acting away from the ends of the stress lines and away from the joints, respectively. The first time a stress is used a single arrow, and the second time the stress is used a double arrow is used to indicate direction. The stress diagram in (k) Fig. 1 is called a Maxwell diagram or a reciprocal polygon diagram, i. e., areas in the truss diagram become points in the stress diagram. The notation used is known as Bow's notation. The method of graphic resolution is the method most commonly used for calculating stresses in roof trusses and in simple framed structures with inclined chords.

STRESSES IN ROOF TRUSSES.—The methods of calculating dead load, snow load, and wind load stresses in roof trusses by graphic resolution will be briefly described.

Dead Load Stresses.—The dead load is made up of the weight of the truss and the roof covering, and is usually considered as applied at the panel points of the upper chords in computing stresses in roof trusses. If the purlins do not come at the panel points, the upper chord will have to be designed for direct stress and stress due to flexure.

The stress in a Fink truss due to dead loads is calculated by graphic resolution in (a) Fig. 2. The loads are laid off, the reactions found, and the stresses calculated beginning at joint L_0 , as explained in Fig. 1. The stress diagram for the right half of the truss need not be drawn where the truss and loads are symmetrical as in (a) Fig. 2; however, it gives a check on the accuracy of the work and is well worth the extra time required. The loads P_1 on the abutments have no effect on the stresses in the truss, and may be omitted in this solution.

In calculating the stresses at joint P_{δ} , the stresses in the members 3-4, 4-5 and x-5 are unknown, and the solution appears to be indeterminate. The solution is easily made by cutting out members 4-5 and 5-6, and replacing them with the dotted member shown. The stresses in the members in the modified truss are now obtained up to and including stresses 6-x and 6-7. Since the stresses 6-x and 6-7 are independent of the form of the framework to the left, as can easily be seen by cutting a section through the members 6-x, 6-7 and 7-y, the solution can be carried back and the apparent ambiguity removed. The ambiguity can also be removed by calculating the stress in 7-y by algebraic moments and substituting it in the stress diagram. It will be noted that all top chord members are in compression and all bottom chord members are in tension.

Snow Load Stresses.—Large snow storms nearly always occur in still weather, and the maximum snow load will therefore be a uniformly distributed load. A heavy wind may follow a sleet storm and a snow load equal to the minimum given in § 19, "Specifications for Steel Frame Buildings," Chapter I, should be considered as acting at the same time as the wind load. The stresses due to snow load are found in the same manner as the dead load stresses.

Wind Load Stresses.—The stresses in trusses due to wind load will depend upon the direction and intensity of the wind, and the condition of the end supports. The wind is commonly considered as acting horizontally, and the normal component, as determined by one of the formulas in § 20, "Specifications for Steel Frame Buildings," Chapter I, is taken.

The ends of the truss may (1) be rigidly fixed to the abutment walls, (2) be equally free to move, or (3) may have one end fixed and the other end on rollers. When both ends of the truss are rigidly fixed to the abutment walls (1) the reactions are parallel to each other and to the resultant of the external loads; where both ends of the truss are equally free to move (2) the horizontal components of the reactions are equal; and where one end is fixed and the other end is on frictionless rollers (3) the reaction at the roller end will always be vertical. Either case (1) or case (3) is commonly assumed in calculating wind load stresses in trusses. Case (2) is the condition in a portal or a framed bent. The vertical components of the reactions are independent of the condition of the ends.

Wind Load Stresses: No Rollers.—The stresses due to a normal wind load, in a Fink truss with both ends fixed to rigid walls, are calculated by graphic resolution in (b) Fig. 2. The reactions are parallel and their sum equals the sum of the external loads; they are found by means of force and equilibrium polygons. To calculate the reactions, lay off the loads P_1 , P_2 , P_3 , P_4 , P_5 , as shown, and select the pole O at any convenient point. Then at a point on line of action of P_1 in the truss diagram, draw strings parallel to the rays drawn through the ends of P_1 in the force polygon. The string drawn parallel to the ray common to forces P_1 and P_2 in the force polygon will cut the force P_2 in the truss diagram. Through this point draw a string parallel to the ray common to forces P_2 and P_3 in the force polygon, and so on until the strings drawn parallel to the outside rays meet on the resultant of all the loads. The closing line of the force polygon connects the two points on the reactions. Through point O in the force polygon draw line O-V parallel to the closing line in the equilibrium polygon, P_1 and P_2 are the reactions, as shown.

The stress diagram is constructed in the same manner as that for dead loads. Heavy lines in truss and stress diagram indicate compression, and light lines indicate tension.

The ambiguity at joint P_3 is removed by means of the dotted member, as in the case of the dead load stress diagram. It will be seen that there are no stresses in the dotted web members in the right segment of the truss. It is necessary to carry the solution entirely through the truss, beginning at the left reaction and checking up at the right reaction. It will be seen that the load P_1 has no effect on the stresses in the truss in this case, the left reaction being simply reduced if P_1 is omitted.

Fig. 1.

Wind Load Stresses: Rollers.—Trusses longer than 70 ft. are usually fixed at one end, and are supported on rollers at the other end. The reaction at the roller end is then vertical—the horizontal component of the external wind force being all taken by the fixed end. The wind may come on either side of the truss, giving rise to two conditions: (1) rollers leeward and (2) rollers windward, each requiring a separate solution.

Rollers Leeward.—The wind load stresses in a triangular Pratt truss with rollers under the leeward side are calculated by graphic resolution in (c) Fig. 2.

The reactions in (c) Fig. 2 were first determined by means of force and equilibrium polygons, on the assumption that they were parallel to each other and to the resultant of the external loads. Then since the reaction at the roller end is vertical and the horizontal component at the fixed end is equal to the horizontal component of the external wind forces, the true reactions were obtained by closing the force polygon.

In order that the truss be in equilibrium under the action of the three external forces, R_1 , R_2 and the resultant of the wind loads, the three external forces must meet in a point if produced. This furnishes a method for determining the reactions, where the direction and line of action of one and a point in the line of action of the other are known, providing the point of intersection of the three forces comes within the limits of the drawing board.

The stress diagram is constructed in the same way as the stress diagram for dead loads. It will be seen that the load P_1 has no effect on the stresses in the truss in this case. Heavy lines in truss and stress diagram indicate compression, and light lines indicate tension.

Rollers Windward.—The wind load stresses in the same triangular Pratt truss as shown in (c) Fig. 2, with rollers under the windward side of the truss are calculated by graphic resolution in (d) Fig. 2.

The true reactions were determined directly by means of force and equilibrium polygons. The direction of the reaction R_1 is known to be vertical, but the direction of the reaction R_2 is unknown, the only known point in its line of action being the right abutment. The equilibrium polygon is drawn to pass through the right abutment and the direction of the right reaction is determined by connecting the point of intersection of the vertical reaction R_1 and the line drawn through O parallel to the closing line of the equilibrium polygon, with the lower end of the load line.

(d) WIND LOAD, ROLLERS WINDWARD FIG. 2.

Since the vertical components of the reactions are independent of the conditions of the ends of the truss, the vertical components of the reactions in (c) and (d) Fig. 2 are the same. It will be seen that the load P_1 produces stress in the members of the truss with rollers windward. If the line of action of R_2 drops below the joint P_5 , the lower chord of the truss will be in compression, as will be seen by taking moments about P_5 .

STRESSES IN A TRANSVERSE BENT.—A transverse bent in a steel mill building consists of a roof truss supported at the ends on columns and braced against longitudinal movement by means of knee braces, Fig. 3. The ends of the columns may be fixed at the base or may be free to turn (pin-connected). The stresses in a transverse bent are statically indeterminate and cannot be calculated without taking in account the deformations of the members themselves. The following approximate method, proposed by the author in the first edition of "The Design of Steel Mill Buildings," 1903, gives results that are approximately correct, are on the safe side, and is the method now used in practice.

Dead and Snow Load Stresses.—The stresses due to dead and snow loads in trusses of a transverse bent are calculated the same as though the trusses were supported on solid walls.

Wind Load Stresses.—The external wind loads may be taken (1) as horizontal or (2) as normal to the surface. The columns will be assumed to be pin-connected at the tops and to be either pin-connected or fixed at the base. It will be assumed that the horizontal reactions at the foot of the columns are equal to each other, and equal to one-half of the horizontal component of the external wind load. It is also assumed that the truss does not change its length, and that the deflection of the columns at the top of the columns and at the foot of the knee brace are equal.

It is shown in "The Design of Steel Mill Buildings" that when the columns are fixed at the base the point of contra-flexure comes at a distance of from $\frac{1}{2}$ to $\frac{5}{8}$ of the distance from the foot of the column to the foot of the knee brace. It is usually assumed that the point of contra-flexure is located at a point in the column one-half the distance from the foot of the column to the foot of the knee brace. If h = height of the column, d = height from the base of the column to the foot of the knee brace, then the distance from the base of the column to the point of contra-flexure will be

$$y_0 = \frac{d}{2} \frac{(d+2h)}{(2d+h)}.$$
 (4)

The calculation of the wind stresses in a transverse bent with a monitor ventilator is shown in Fig. 3. The bents are spaced 32 ft. centers and are designed for a horizontal wind load of 20 lb. per sq. ft., the normal wind load being calculated by Hutton's formula, Fig. 3, Chapter I. The point of contra-flexure is found by substituting in equation (4) to be

$$y_0 = \frac{30.5}{2} \left(\frac{30.5 + 85}{61 + 42.5} \right) = 17 \text{ ft.}$$

The external forces are calculated for the bent above the point of contra-flexure by multiplying the area supported at the point by the intensity of the wind pressure. For example, the load at B is $32' \times 6.75' \times 20$ lb. = 4320 lb.

The line of application and the amount of the external wind load, ΣW , is found by means of a force and an equilibrium polygon. ΣW acts through the intersection of the strings parallel to the rays O-B and O-C, and is equal to C-B (line C-B is not drawn in force polygon) in amount. The reactions R and R' may be calculated graphically as follows:—Lay off the total wind load ΣW so that it will be bisected by point A in Fig. 3. Perpendiculars dropped from the ends of load line ΣW to the dotted lines AB and AC will give V' = 12,800 lb., and V = 700 lb., respectively. Then R and R' are calculated as shown.

The calculation of stresses is begun at point B in the windward column, and in the stress diagram the stresses at B are found by drawing the force polygon a-B-A-b-a. The remaining stresses are calculated as for a simple truss. In calculating the stresses in the ventilator it was assumed that diagonals 9–10 and 10–12 are tension members, so that 9–10 will not be in action

when the wind is acting as shown. Before solving the stresses at the joint 6-7-9 it was necessary to calculate the stresses in members i-11, 10-11 and 9-h. The remainder of the solution offers no difficulty to one familiar with the principles of graphic statics.

Fig. 3.

The stress in post b-a is equal to V, while the stress in 1-c is found by extending 1-c to c in the stress diagram, c' being a point on the load line. The stress in post n-A is equal to V', while the stress in 19-m is found by extending 19-m to m' in the stress diagram, m' being a point on the horizontal line drawn through C. The kind of stress in the different members is shown by the weight of lines in the bent and stress diagrams.

For a detailed discussion of the calculations of the stresses in a transverse bent, see "The Design of Steel Mill Buildings."

STRESSES IN BRIDGE TRUSSES.—The stresses in bridge trusses may be calculated by applying the condition equations for equilibrium for translation, resolution; or by applying the condition equation for equilibrium for rotation, moments. Both resolution and moments may be calculated algebraically or graphically, giving four methods for calculation the same as for roof trusses.

Maximum Stresses.—The criteria for loading a truss or beam for maximum and minimum stresses are given on page 160, Chapter IV.

Problems.—The methods of calculating the stresses in bridge trusses are shown by several problems taken from the author's "The Design of Highway Bridges."

PROBLEM T, DEAD LOAD STRESSES IN A CAMEL-BACK TRUSS BY GRAPHIC RESOLUTION.

(a) Froblem.—Given a Camel-back (inclined Pratt) truss, span 160' o", panel length 20' o", denth at the hip 25' o", depth at the center 32' o", dead load 400 lb. per lineal foot per truss. Calculate the dead load stresses by graphic resolution. Scale of truss, I'' = 25' o". Scale of loads, I'' = 10,000 lb.

(b) Methods.—The loads beginning with the first load on the left are laid off from the bottom upwards. Calculate the stresses by graphic resolution, beginning at R_1 and checking up at R_2 .

Follow the order given in the stress diagram.

(c) Results.—The top chord is in compression and the bottom chord is in tension. All inclined web members are in tension; while part of the posts are in compression and part are in tension. Member 1-2 is simply a hanger and is always in tension.

PROBLEM 2. DEAD LOAD STRESSES IN A PETIT TRUSS BY GRAPHIC RESOLUTION.

(a) Problem.—Given a Petit truss, span 350' o", panel length 25' o," depth at hip 50' o", depth at center 58' o", dead load 0.9 tons per lineal foot per truss. Calculate the dead load stresses by graphic resolution. Scale of truss, 1'' = 50' o". Scale of loads, 1'' = 45 tons.

(b) Methods.—The loads beginning with the first load on the left are laid off from the top downwards. Calculate R_1 and R_2 . Calculate the stresses in the members at the left reaction by constructing force triangle 1-Y-X. Then calculate the stress in 1-2 by constructing polygon Y-1-2-Y. Draw 3-2, which is the stress in member 3-2. Then pass to joint W_2 where there appears to be an ambiguity, stress 4-5 being unknown. To remove the ambiguity proceed as follows: At W_3 on the left side of the stress diagram assume that W_3 is the stress in 5-6 (the member 5-6 is simply a hanger and the stress is as assumed). Calculate the stress in 4-5 by completing the triangle of stresses in the auxiliary members. The stresses are now all known 4 W_2 except 3-4 and 5-Y, but the stress in 4-5 is between the two unknown stresses. First complete the force polygon 2-3-4-5'-Y-Y-2. Then by changing the order the true polygon 2-3-4-5-Y-Y-2 may be drawn. This solution is sometimes called the method of sliding in a member. The apparent ambiguity at joint W_4 may be removed in the same manner. The stress diagram is carried through as shown and finally checked up at R_2 . It will be seen that there is no apparent ambiguity on the right side of the truss.

(c) Results.—It will be seen that the Petit truss is an inclined Pratt or Camel-back truss with subdivided panels. The auxiliary members are commonly tension members in all except the end primary panels as in the Baltimore truss in Problem 6. It will be seen that the stresses in the first four panels of the lower chord are the same. The loads in this type of Petit truss are carried directly to the abutments. The Petit truss is quite generally used for long span highway

and railway bridges.

PROBLEM 3. MAXIMUM AND MINIMUM STRESSES IN A WARREN TRUSS BY ALGEBRAIC RESOLUTION.

(a) Problem.—Given a Warren truss, span 160' o'', panel length 20' o'', depth 20' o'', dead load 800 lb. per lineal foot per truss, live load 1,600 lb. per lineal foot per truss. Calculate the maximum and minimum stresses in the members due to dead and live loads by algebraic reso-

lution. Scale of truss as shown.

(b) Methods.—Dead Load Stresses.—Beginning at the left end the left reaction is $R_1 = 3\frac{1}{2}W$. The shear in the first panel is $3\frac{1}{2}W$, in the second panel is $2\frac{1}{2}W$, in the third panel is $\frac{3}{2}W$, and in the fourth panel is $\frac{1}{2}W$. Now resolving at R_1 the stress in $I-Y=-3\frac{1}{2}W$ tan θ , stress $I-X=+3\frac{1}{2}W$ sec θ . Cut members I-Y, I-2 and I-X=1 and the trues to the right by a plane and equate the horizontal components of the stresses in the members. The unknown stress I-X=1 will equal the sum of the horizontal components of the stresses in I-Y=1 and I-X=1 with sign changed, I-X=1 where I-X=1 is I-X=1 and I-X=1 with sign changed, I-X=1 where I-X=1 is I-X=1 and I-X=1 with I-X=1 and I-X=1 is I-X=1 and I-X=1 and I-X=1 with sign changed, I-X=1 is I-X=1 when I-X=1 and I-X=1 is I-X=1 when I-X=1 is I-X=1 is I-X=1 when I-X=1 is I-X=1 in I-X=1 when I-X=1 is I-X=1 when I-X=1 is I-X=1 when I-X=1 is I-X=1 when I-X=1 is I-X=1 in I-X=1 when I-X=1 is I-X=1 in I-X=1 when I-X=1 is I-X=1 in I-X=1 when I-X=1 in I-X=1 in I-X=1 when I-X=1 in I-X=1 in I-X=1 in I-X=1 in I-X=1 in I-X=1 when I-X=1 in I-X

Live Load Stresses.—Chord Stresses —The maximum chord stresses occur when the joints are all loaded, and the chord coefficients are found as for dead loads. The minimum live load stresses in the chords occur when none of the joints are loaded, and are zero for each member.

Web Stresses.—The maximum web stresses in any panel occur when the longer segment into which the panel divides the truss is loaded, while the shorter segment has no loads on it. The minimum live load web stresses occur when the shorter segment is loaded and the longer segment has no loads on it. The maximum stresses in members I-X and I-2 occur when the truss is fully

loaded. The shear in the panel is $3\frac{1}{2}P$, or $\frac{2.5}{8}P$, and the stress in $I-X=3\frac{1}{2}P\cdot\sec\theta=+125,400$ lb., while the stress in $I-2=-3\frac{1}{2}P\cdot\sec\theta=-125,400$ lb. The minimum stresses in I-X and 10. While the stress in 1-2=-33 P sec $\theta=-125,400$ ib. The liminish stresses in 1-3 and 1-2 are zero. The maximum stresses in 2-3 and 3-4 occur when 6 loads are on the right of the panel and there are no loads on the left of the panel. The shear in the panel will then be equal to the left reaction, $=R_1=(6\times 3\frac{1}{8}\times P)/8=\frac{2}{9}P$. The stress in $2-3=\frac{2}{9}P$ sec $\theta=+94,080$ lb., while the stress in $3-4=-\frac{2}{9}P$ sec $\theta=-94,080$ lb. The minimum stresses in 2-3 and 3-4 will occur when there is one load on the shorter segment. In the corresponding panel on the right of the truss, if the shorter segment is loaded, the left reaction = $\frac{1}{4}P$ = the shear in the panel. The minimum stress in $2-3 = -\frac{1}{4}P \cdot \sec \theta = -\frac{4}{4.480}$ lb., while the minimum stress in $3-4 = +\frac{4}{4.480}$ lb. The stresses in the remaining panels are calculated in the same manner. The maximum chord stresses are equal to the sum of the dead and live load chord stresses. The minimum chord stresses are the dead load chord stresses. The maximum web stresses are equal to the sum of the dead and the maximum live load web stresses. The minimum web stresses are equal to the algebraic sum of the dead load stresses and the minimum live load

(c) Results.—The web members 7-6 and 7-8 have a reversal of stress from tension to compression, or the reverse. These members must be counterbraced to take both kinds of stress.

PROBLEM 4. MAXIMUM AND MINIMUM STRESSES IN A PRATT TRUSS BY ALGEBRAIC RESOLUTION.

(a) Problem.—Given a Pratt truss, span 140' o", panel length 20' o", depth 24' o", dead load 800 lb. per lineal foot per truss, live load 1,600 lb. per lineal foot per truss. Calculate the maximum and minimum stresses due to dead and live loads by algebraic resolution. Scale of

truss, I'' = 20' 0''.

(b) Methods.—Construct three truss diagrams as shown. On the first place the dead load coefficients and the dead load stresses. On the second place the live load coefficients and the live load stresses. On the third place the maximum and minimum stresses due to dead and live loads. The maximum chord stresses are the sums of the dead and live load chord stresses, while the minimum chord stresses are those due to dead load alone. The hip vertical is simply a hanger and has a minimum stress of one dead load and a maximum stress of one live and one dead load. The conditions for maximum and minimum stresses in the webs are the same as for the Warren truss, the vertical posts having stresses equal to the vertical components of the stresses in the inclined web members meeting them on the unloaded (top) chord.

(c) Results.—There is no dead load shear in the middle panel, but it is seen that there are stresses in the counters for live loads. Only one of the counters will be in action at one time Whenever the center of gravity of the loads is not in the center line of the truss, that counter will be acting that extends downward toward the center of gravity. The numerators of the maximum and minimum live load web coefficients are 0, 1, 3, 6, 10, 15, 21, as for the Warren truss. This shows that the maximum and minimum web stresses are proportional to the ordinates

to a parabola.

PROBLEM 5. MAXIMUM AND MINIMUM STRESSES IN A DECK BALTIMORE TRUSS BY ALGEBRAIC RESOLUTION.

(a) Problem.—Given a deck Baltimore truss, span 280' o", panel length 20' o", depth 40' o", dead load 0.375 tons per lineal foot per truss, live load 0.625 tons per lineal foot per truss. Calculate the maximum and minimum stresses due to dead and live loads by algebraic resolution.

(b) Methods.—Construct three truss diagrams and use them as shown.

(b) Methods.—Construct three truss diagrams and use them as shown.

Dead Load Stresses.—The auxiliary struts 1-2, 5-6, 9-10, etc., carry a full dead load compression, while the auxiliary web members 2-3, 6-7, 10-11, etc., have a tensile stress of $\frac{1}{2}W \cdot \sec \theta$. The stress in 1-Y equals the shear in the panel multiplied by $\sec \theta = -6\frac{1}{2}W \cdot \sec \theta$. The stress in 3-Y equals the shear in the panel multiplied by $\sec \theta$, plus the inclined component of the one-half load that is carried toward the center by the auxiliary member 2-3, $=-(5\frac{1}{2}+\frac{1}{2})W \cdot \sec \theta = -6W \cdot \sec \theta$. The stress in 3-4 is the vertical component of the stress in 3-Y=+6W. The stress in 4-Y is the horizontal component of the stress in $3-Y=-6W \cdot \tan \theta$. The stress in 1-X and $2-X=+6\frac{1}{2}W \cdot \tan \theta$. The stress in 4-5 is the inclined component of the shear in the panel $=-4\frac{1}{2}W \cdot \sec \theta$. The stress in $5-X=-(-6-4\frac{1}{2})W \cdot \tan \theta = +10\frac{1}{2}W \cdot \tan \theta$. The remaining dead load stresses are calculated in a similar manner.

Live Load Web Stresses.—The maximum shears in the different panels occur when the longer

Live Load Web Stresses.—The maximum shears in the different panels occur when the longer segment of the truss is loaded, while the minimum shears occur when the shorter segment of the truss is loaded. The maximum stresses in the webs in the first and second panels occur for a full live load on the bridge. The maximum shear in the third panel occurs with all loads to the right of the panel and no loads to the left. The shear in the panel will then be equal to the left reaction = $11 \times \frac{1}{2}(11+1)P/14 = \frac{6}{14}P$. The maximum live load stress in 4-5 will be =

- §§ $P \cdot \sec \theta$. With a maximum stress in 4-5 the stress in 4-7 will be = (-66/14 + 7/14)P. $\sec \theta = -\frac{5}{14} P \cdot \sec \theta$. This is the maximum stress, for the stress in 4-7 when there is a maximum shear in the panel is $= 10 \times 11/2 \times \frac{1}{14} P \cdot \sec \theta = -\frac{5}{12} P \cdot \sec \theta$. In a similar manner it will be found that maximum stresses in members 8-9 and 8-11 occur with a maximum shear in 8-o. On the right side it will be seen that minimum stresses in the diagonals occur for a minimum shear in the odd-numbered panels from the right.

(c) Results.—The dead and live loads were assumed as applied on the upper chord. The upper chords are in compression, while the lower chords are in tension the same as for a through truss. The live and dead load stresses are given separately on the left side of the lower truss.

PROBLEM 6. MAXIMUM AND MINIMUM STRESSES IN A THROUGH BALTIMORE TRUSS BY ALGEBRAIC

(a) Problem.—Given a through Baltimore truss, span 320' o", panel length 20' o", depth 40' o", dead load 800 lb. per lineal foot per truss, live load 1,800 lb. per lineal foot per truss. Calculate the maximum and minimum stresses due to dead and live loads by algebraic resolution. Scale of truss, I" = 40' 0".

(b) Methods.—Construct three truss diagrams as shown.

Dead Load Stresses.—The shear in each of the hangers is W, while the stress in each of the diagonal auxiliary members is $-\frac{1}{2}W \cdot \sec \theta$. The stress in the upper part of the end-post is $(+6\frac{1}{2}+\frac{1}{2})W \cdot \sec \theta = +7W \cdot \sec \theta$, where $+6\frac{1}{2}W \cdot \sec \theta$ is the stress due to the shear and $+\frac{1}{2}W \cdot \sec \theta$ is the stress due to the half load carried toward the center by the auxiliary diagonal member. The stress in the main diagonal in the third panel is $-5\frac{1}{2}W$ sec θ , where $5\frac{1}{2}W$ is the

shear in the panel; while the stress in the diagonal in the fourth panel is $(-4\frac{1}{2}-\frac{1}{2})W \cdot \sec \theta = -5W \cdot \sec \theta$, where $4\frac{1}{2}W \cdot \sec \theta$ is the stress due to the shear in the panel and $\frac{1}{2}W \cdot \sec \theta$ is the stress carried toward the center of the truss by the auxiliary member. The chord coefficients

are calculated as in Problem 5.

are calculated as in Problem 5. Live Load Stresses.—The maximum shear in the third panel occurs with 13 loads to the right of the panel and with no loads to the left of the panel. The shear in the panel is then equal to the left reaction, equals $13 \times \frac{1}{2}(13+1) \times P/16 = \frac{9}{16}P$. The stress in the main diagonal in the third panel is then equal to $-\frac{9}{16}P \cdot \sec \theta$. The stress in the main diagonal in the fourth panel is $(-\frac{9}{16}P + \frac{9}{16}P) \sec \theta = -\frac{9}{16}P \sec \theta$, a maximum, the maximum shear in the panel being $12 \times \frac{1}{2}(12+1) \times P/16 = \frac{7}{16}P$. In like manner the maximum stresses are found in the 3th panel and in the 7th and 8th panels 5th and 6th panels when there is a maximum shear in the 5th panel, and in the 7th and 8th panels when there is a maximum shear in the 7th panel. Minimum stresses in the 3d and 4th panels from the right abutment occur when there is a minimum shear in the 3d panel; and in the 5th and 6th panels when there is a minimum shear in the 5th panel.

(c) Results.—The double panels next to the center require counters. It should be noticed that in calculating the stresses in these counters the diagonal auxiliary ties will have the dead

load stress of +5.66 tons as a minimum.

PROBLEM 7. MAXIMUM AND MINIMUM STRESSES IN A CAMEL-BACK TRUSS BY ALGE-BRAIC MOMENTS.

(a) Problem.—Given a Camel-back truss, span 100' o", panel length 20' o", depth at hip 20' o'', depth at center 25' o'', dead load 300 lb. per lineal foot per truss, live load 800 lb. per lineal foot per truss. Calculate the maximum and minimum stresses due to dead and live loads by algebraic moments. Scale of truss, I'' = 20'0''.

(b) Methods.—Calculate the arms of the forces as shown and check the values by scaling

from the drawing.

Dead Load Stresses.—To calculate the stress in the end-post L_0U_1 , take center of moments at L_1 , and pass a section cutting L_0U_1 , U_1L_1 and L_1L_2 , and cutting away the truss to the right. Then assume stress L_0U_1 as an external force acting from the outside toward the cut section, and stress $L_0U_1 \times 14.14 - R_1 \times 20 = 0$. Now $R_1 = 6$ tons and stress $L_0U_1 = +8.48$ tons. To calculate the stresses in L_0L_1 and L_1L_2 take the center of moments at U_1 , and pass a section cutting members U_1U_2 , U_1L_2 and L_1L_2 , and cutting away the truss to the right. Then assume the stress in L_1L_2 as an external force acting from the outside toward the cut section, and $L_1L_2 \times 20$ $-R_1 \times 20 = 0$. Now $R_1 = 6$ tons and the stress in $L_0L_1 = L_1L_2 = -6$ tons. To calculate the stress in U_1U_2 take the center of moments at L_2 , and pass a section cutting members U_1U_2 , U_2L_2 and L_2L_2 , and cutting away the truss to the right. Then assume the stress in L_1U_2 as an external force acting from the outside toward the cut section, and $U_1U_2 \times 24.25 - R_1 \times 40 + W$ $\times 20 = 0$. Now $R_1 = 6$, W = 3 tons, and the stress in $U_1U_2 = +7.42$ tons. To calculate the stress in U_1L_2 take the center of moments at A, and pass a section cutting members U_1U_2 , U_1L_2 , and U_1L_2 , and cutting away the truss to the right. Then assume the stress in U_1L_2 as an external force acting from the outside toward the cut section, and $U_1L_2 \times 70.7 + R_1 \times 60$ – $W \times 80$ = 0. Now R_1 = 6 tons and W = 3 tons, and $U_1L_2 \times 70.7$ = -120 ft.-tons, and stress U_1L_2 = -1.70 tons. The other dead load stresses are calculated as shown.

Live Load Stresses.—The live load chord stresses are equal to the dead load chord stresses

multiplied by 8/3. The maximum stress in U_1L_2 will occur with loads at L_2 , L_2 , and L_1 , while the maximum stress in counter U_2L_1 will occur with a load at L_1 only. The maximum tension in U_1L_2 will occur with all the live loads on the bridge, while the maximum compression will occur when there is a maximum stress in the counter U_2L_2' , loads at L_2' and L_1' . The details of the solution are shown in the problem.

(c) Results.—The stress in the counter U_2L_2' and the chords U_2U_2' and L_2L_2' may be calculated by the method of coefficients, and will be the same as for a truss with parallel chords having a depth of 25' o''. The maximum stress in U_2L_2 ' will occur with loads L_2 ' and L_1 ' on the bridge, when the left reaction equals $2 \times 3P/5 = \frac{6}{5}P$. The stress in $U_2L_2' = -\frac{4}{5}P \cdot \sec \theta$

= -6.15 tons.

PROBLEM 8. MAXIMUM AND MINIMUM STRESSES IN A THROUGH WARREN TRUSS BY GRAPHIC MOMENTS.

(a) Problem.—Given a through Warren truss, span 140' o", panel length 20' o", depth , dead load 800 lb. per lineal foot per truss, live load 1,200 lb. per lineal foot per truss. Calculate the maximum and minimum stresses by graphic moments. Scale of truss, I" = 20' 0".

Scale of loads, I'' = 50,000 lb.

(b) **Methods.** Chord Stresses.—Calculate the center ordinate of the parabola $= w \cdot L^2/8d$ = 98,000 lb., and lay it off at 5 to the prescribed scale. Now lay off the vertical line 1-5 at the left and right abutments. Make 1-2 = 2-3 = 3-4 = 2 (4-5). Draw the inclined lines 1-5, 2-5, 3-5, 4-5, 5-5. The intersections of these lines with verticals let drop from the lower chord points are points in the stress parabola for the upper chord stresses. The stresses in the lower chords are the arithmetical means of the stresses in the upper chords on each side. By changing the scale the live load stresses may be scaled directly from the diagram.

Web Stresses.—At the distance of a panel to the left of the left abutment lay off the vertical line 1-8 equal to one-half the total live load on the truss, to the prescribed scale, equal 1,200 \times 70 = 84,000 lbs. Now divide the line 1-8 into as many equal parts as there are panels in the truss, and mark the points of division 2, 3, 4, etc. Connect these points of division with the panel point 7, the first panel point to the left of the right abutment. Drop verticals from the panel points of the lower chord of the truss to the line I-8, and the intersections of like numbered lines

will give points on the curve of maximum live load shears.

To construct the dead load shear diagram, lay off 3W, downward to the prescribed scale under the left abutment, and reduce the shear under each load to the right by W, until the dead load shear is - 3W at the right abutment. The dead load shear diagram is then constructed as

Maximum and Minimum Web Stresses.—The maximum shear in any panel is then the ordinate to the right of the panel point on the left end of the panel, and the stresses in the web members are calculated by drawing lines parallel to the corresponding member as shown. Positive stresses are measured downwards from the live load shear curve, and negative stresses are measured upwards from the live load shear curve.

(c) Results.—This method is an excellent one for illustrating the effect of the different systems of loads, but consumes too much time to be of practical use. It should be noted that the maximum ordinate to the chord parabola is not a chord stress in a Warren truss with an

odd number of panels.

PROBLEM 9. MAXIMUM AND MINIMUM STRESSES IN A PETIT TRUSS BY ALGEBRAIC

(a) Problem.—Given a Petit truss, span 350' o", panel length 25' o", depth at the hip 50' o", depth at center 58' o", dead load 0.9 tons per lineal foot per truss, live load 1.4 tons per lineal foot per truss. Calculate the maximum and minimum stresses due to dead and live loads by algebraic moments. Scale of truss, I'' = 40' o''. Scale of lever arms, any convenient scale.

(b) Methods.—Construct a truss diagram carefully to scale as shown. Construct one-

half the truss to scale on a large piece of paper and calculate the lever arms as shown, and check by scaling from the diagram. The methods of calculation will be shown by two examples:

1. Stresses in Tie 6-7. Dead Load Stress.—Pass a section cutting members 7-X, 6-7, and 6-Y, and cutting away the truss to the right. The center of moments will be at A, the intersection of chords 7-X and 6-Y. Now assume the stress in 6-7 as an external force acting from the outside toward the cut section. Then for equilibrium $6-7 \times 477.0 + R_1 \times 575 - 3W$

 \times 625 = 0. Now $R_1 = 146.25$ tons and W = 22.5 tons, and solving the equation gives stress

6-7 = -87.8 tons.

Live Load Stresses.—The maximum live load stress in 6-7 will occur with the longer segment of the truss loaded. Taking moments about point A as for the dead loads the maximum live load stress $6-7 \times 477.0 + R_1 \times 575 = 0$. Now $R_1 = 55/14 \times 35$ tons = 137.5 tons, and the stress in 6-7 = -165.8 tons.

The minimum live load stress in 6-7 will occur with the shorter segment of the truss loaded. Taking moments about the point A, 6-7 \times 477.0 + $R_1 \times 575 - 3P \times 625 = 0$. Now $R_1 = 90$ tons, P = 35 tons, and stress in 6-7 = +29.1 tons.

2. Stresses in Tie 4-7. Dead Load Stress.—Pass a section cutting members 7-X, 4-7, 4-5

and 5-Y, and cutting away the truss to the right. Now assume the stress in 4-7 as an external and 5-Y, and cutting away the truss to the right. Now assume the stress in 4-7 as an external force acting from the outside toward the cut section. Then for equilibrium about the point A, stress 4-7 \times 477.0 + $R_1 \times 575$ - stress 4-5 \times 442.0 - $2W \times 612.5$ = 0. Now the member 4-5 will carry one-half the load carried by 5-6, and the stress equals $1/2 \times 22.5 \times 1.414$ = +15.9 tons. R_1 = 146.25 tons, and 2W = 45 tons. Then stress 4-7 = -103.6 tons. Live Load Stresses.—The maximum live load stress in 4-7 will occur with the longer segment loaded. Taking moments about A as for dead loads, stress 4-7 \times 477.0 + $R_1 \times 575$ - stress

 $4-5 \times 442.0 = 0$. Now stress 4-5 = +24.8 tons, and $R_1 = 66/14 \times 35 = 165$ tons. Then

stress 4-7 = -175.7 tons.

The minimum live load stress in 4-7 will occur with two loads to the left of the panel. Taking moments about the point A, the stress $4\text{-}7 \times 477.0 + R_1 \times 575 - 2P \times 612.5 = 0$ Now $R_1 = 62.5$ tons and 2P = 70 tons. Then stress 4-7 = +14.5 tons.

The stresses in the members in the first and second panels and in the two middle panels

may be calculated by coefficients. Check up the dead load chord stresses by comparing with

the stresses obtained by graphic resolution in Problem 2.

(c) Results.—The auxiliary members carry the stresses directly toward the abutments and there is no ambiguity of loading as in the case of a truss subdivided as in Problem 6. However, the method of subdividing shown in Problem 6 is used in preference to that shown in this problem. The Petit truss is quite generally used for long span pin-connected highway and railway bridges.

PROBLEM 10. LIVE LOAD STRESSES IN A THROUGH PRATT TRUSS FOR COOPER'S E 60 LOADING.

(a) Problem.—Given a Pratt truss, span 165' o", panel length 23' 6\frac{\pi}{4}", depth 30' o", live load Cooper's E 60 loading. Calculate the position of the loads and the maximum and minimum stresses due to the prescribed loading by algebraic moments. Scale of truss, I" = 25' 0".

(b) Methods. Chord Stresses.—Calculate the position of the wheels for a maximum bending moment at the different joints in the lower chord. The criterion for maximum bending moment at any joint in a Pratt truss is, "the average load on the left of the section must be the same as the average load on the entire bridge." Having determined the wheel that is at the joint for a maximum moment, calculate the maximum bending moment as shown the maximum bending moments, the chord stresses are found by dividing the bending moment by the depth of the truss. The moment diagram is given in Table Vb, Chapter IV.

Web Stresses.—Calculate the position of the wheels for maximum shears in the different panels. The criterion for maximum shear in a panel is, "the load on the panel must equal the load on the bridge divided by the number of panels." The criterion for maximum bending moment at L_1 is the same as the criterion for maximum shear in panel L_0L_1 . Having determined the position of the wheels for maximum shears in the different panels, calculate the maxi-

mum shears as shown. The stress in a web is equal to the shear in the panel multiplied by $\sec \theta$. Floorbeam Reaction.—The stress in the hip vertical U_1L_1 is equal to the maximum floorbeam reaction. This is calculated as follows: Take a simple beam with a span equal to the sum of two panel lengths and calculate the maximum bending moment at the point in the beam corresponding to the panel point; in this case it will be the center of the span. This bending moment multiplied by the sum of the panel lengths divided by the product of the panel lengths will be the maximum floorbeam reaction; in this case the maximum bending moment at the center will be multiplied by 2 divided by the panel length.

(c) Results.—When the maximum stresses occur in chords U_2U_3 , U_3U_3' and L_3L_3' , counter $U_3'L_3$ is in action. It occasionally happens that there is more than one position of the loading that will satisfy the criterion for maximum bending moment. In this case the moments for each

loading must be calculated.

PROBLEM 11. STRESSES IN THE PORTAL OF A BRIDGE BY ALGEBRAIC MOMENTS AND GRAPHIC RESOLUTION.

(a) Problem.—Given the portal of a bridge of the type shown, inclined height 30' o", center to center width 15' o", load R = 2,000 lb., end-posts pin-connected at the base. Calculate the stresses by algebraic moments and check by graphic resolution. Scales as shown.

(b) Methods.—Now H = H' = 1.000 lb. V = -V', and by taking moments about B.

 $V = 30 \times 2,000/15 = 4,000 \text{ lb.} = -V$

Algebraic Moments,—In passing sections care should be used to avoid cutting the end-posts for the reason that these members are subject to bending stresses in addition to the direct stresses. To calculate the stress in member 3-Y take the center of moments at joint (1) and pass a section cutting members 4-b, 3-4 and 3-Y, and cutting the portal away to the left of the section. Then assume stress 3-Y as an external force acting from the outside toward the cut section, and $3-Y \times 10 \times 0.447 + H \times 30' = 0$. The stress in 3-Y = -6.710 lb. The remaining stresses are calculated as shown.

Graphic Resolution.—Lay off a-A=A-b=H=1,000 lb., and A-Y=V'=4,000 lb. Then beginning at point B in the portal the force polygon for equilibrium is a-A-Y-1'-a, in which 1'-a is the stress in the auxiliary member 1-a, and Y-1' is the stress in the post 1-Y when the auxiliary member is acting. The true stress in I-Y is equal to the algebraic sum of the vertical components of the stress I'-a and Y-I', and equal to the algebraic sum of the vertical components of the stress I'-a and Y-I', and equal V' = -4,000 lb. Next complete the force triangle at the intersection of the auxiliary members. Stress I'-a is known and the force triangle is a-I'-a'-a, the forces acting as shown. The stress diagram is carried through in the order shown, checking up at the point A. The correct stresses are shown by the full lines in the stress diagram. The true stress in 3-2 will produce equilibrium for vertical stresses at joint (1) as shown. maximum shear in the posts is H = 1.000 lb. The maximum bending moment in the posts will occur at the foot of the member 3-Y, joint (3), and is $M = 1,000 \times 20 \times 12 = 240,000$ in.-lb.

(c) Results.—The method of graphic resolution requires less work and is more simple than

the method of algebraic moments.

Note: The portal is not pin-connected at joints (3) and the corresponding joint on the opposite side, as might be inferred from the figure.

PROBLEM 12. WIND LOAD STRESSES IN A TRESTLE BENT.

(a) **Problem.**—Given a trestle bent, height 45' o", width at the base 30' o", width at the top o' o", wind loads P_0 , P_1 , P_2 , P_3 , P_4 , as shown. Calculate the stresses in the members of the bent due to wind loads by algebraic moments, and check by calculating the stresses by graphic resolution. Assume that the diagonal members are tension members, and that the dotted members are not acting for the wind blowing as shown. Scale of truss, I'' = 10' o''. Scale of loads,

I'' = 2,000 lb.

(b) Methods.—Algebraic Moments.—To calculate the stresses in the diagonal members take centers of moments about the point A, the point of intersection of the inclined posts. Then to calculate the stress in 3-4, pass a section cutting members 3-X, 3-4 and 4-Y; assume that the stress in 3-4 is an external force acting from the outside toward the cut section, and $3-4 \times 15.9' + 3,000 \times 19.3' + 3,000 \times 11.3' = 0$. The stress 3-4 = -5,800 lb. Stresses in 4-5, 5-6, 6-7, 7-8 and 8-Z are calculated in a similar manner. To obtain reaction R_1 take moments about R_3 , and $R_1 \times 30' - 2,000 \times 15' - 2,000 \times 30' - 3,000 \times 45' - 3,000 \times 53' = 0$. Then R_1 $= 12,800 \text{ lb.} = -R_2.$

To calculate the stress in 4-Y, take center of moments at joint P_2 , and pass a section cutting members 5-X, 4-5 and 4-Y, and assume the stress in 4-Y as an external force acting from the outside toward the cut section. Then $4-Y \times 15.6' - 3,000 \times 15' - 3,000 \times 23' = 0$. Then

4-Y = +7,300 lb.

Graphic Resolution.—The load P_0 is assumed as transferred to the bent by means of the auxiliary members. The loads P_0 , P_1 , P_2 , P_3 , P_4 are laid off as shown, and with the load P_0 the stress triangle Y-X-2 is drawn. The remainder of the solution is easily followed.

(c) Results.—The stress in the auxiliary member 2-Y acts as a load at the top of post 4-Y. Load P_0 is the wind load on the train and is transferred to the rails by the car. For the reason that the wind may blow from the opposite direction, both sets of stresses must be considered in combination with the dead and live load stresses in designing the columns.

CHAPTER XVII.

THE DESIGN OF STEEL DETAILS.

Introduction.—The design of any structure involves the design of the different members and the connections. In this chapter the design of the various steel details will be considered as fully and completely as the limited space permits. The design of the members and details of a steel structure are governed by the specifications for the particular structure. Reference will be made by section and page to the various specifications in this book.

MEMBERS IN TENSION.—Several different methods for making end connections of bars are shown in Fig. I. Loop Bars, (a) Fig. I, are used for lateral bracing on highway bridges, buildings and towers, with turnbuckles or sleeve nuts, to make them adjustable as shown in Tables 92 and 94. (All tables numbered with Arabic numerals are in Part II.) Clevises, (b) Fig. I, are used to secure the ends of bars used as lateral bracing on highway bridges and on buildings. The pin may be either a cotter pin as shown in Table 96, or a bridge pin as shown in Table 95. Ordinary eye-bars, (c) Fig. I, are used principally for lower chords and main ties on bridges. Data for eye-bars are given in Table 91. Counters are made of adjustable eye-bars as shown in Table 91. Bottom lateral plates or skew-backs, (d) Fig. I, are used to secure the ends of bottom lateral rods

FIG. 1. DETAILS OF TENSION MEMBERS.

of highway bridges and are shown in Table 121. Top lateral plates or U-plates, (e) Fig. 1, are used for top lateral connections on highway bridges and for lateral bracing on buildings, highway bridges and towers, see Table 122. The Cooper hitch has the same uses as the top lateral plate. The angle as shown in (g) Fig. 1 is used for end connections for light bars in buildings and towers, see Table 120. Cast iron beveled washers, (h) Fig. 1, are used for end connections of diagonal bracing, see Table 120. The ends of bars should be upset as shown in Tables 89 and 90, so that the strength in the threads will be greater than the strength of the main body of the bar. The dimensions of tie rods for beams are shown in Table 105.

In selecting bars in tension the area is determined by the formula:

$$A = \frac{P}{f_t}$$

where A is the required area, P the total tension in the bar and f_t the allowable unit tensile stress. The following problems are given to illustrate the use of the tables in selecting the details for bars, etc.

Loop Bar.—Select a loop bar to carry a tensile stress of 48,000 lb., one end passing around a 3 in. pin and the other end around a $3\frac{1}{2}$ in. pin, the center to center distance between pins being 30' 0''.

References.—Specification § 8, p. 55; § 33, p. 57; § 84, p. 60; § 91, p. 61; § 104, p. 61; § 108, p. 62; § 116, p. 62; § 37, p. 141; § 49, p. 142; § 61, p. 142; § 14, p. 206; § 36, p. 206; § 15, p. 209; § 36, p. 210; § 230, p. 363; § 8, p. 379; § 42, p. 381; § 28, p. 385.

Solution.—Using an allowable unit stress of $f_t = 16,000$ lb. per sq. in., the area required is,

$$A = \frac{P}{f_t} = \frac{48,000}{16,000} = 3.00 \text{ sq. in.}$$

A bar 1¾ in. square has an area of 3.06 sq. in. (Table 6), and a 2 in. round bar has an area of 3.14 sq. in. (Table 6). Either bar could be used. Using the 1¾ in. square bar the additional length required to pass around a 3 in. pin is 1′ 11″ (Table 92), and for a 3½ in. pin is 2′ 1″, making it necessary to add 4′ 0″ to the center to center distance of pins to obtain the total length of bar.

If a turnbuckle is used the upset required on a $1\frac{3}{4}$ in. square bar is $2\frac{1}{2}$ in. in diameter and $5\frac{1}{2}$ in. long (Table 89), requiring $4\frac{1}{2}$ in. extra material to make each upset, or 9 in. for the two upsets. The weight of a turnbuckle for a $2\frac{1}{2}$ in. screw is 25 lb. (Table 94). The clearance between the ends of the screws for all turnbuckles is 5 in. (Diagram at top of Table 92).

The total length and weight of the 13/4 in. square bar is therefore:

c. to c. of pins, less 5 in., = 29' 7" of $1\frac{3}{4}$ in. square bar, @ 10.41 lb. per ft. (Table 6) = 308.0 lb. Material for 2 loops = 4' 0" of $1\frac{3}{4}$ in. square bar, @ 10.41 lb. per ft. (Table 6) = 41.6 lb. Material for 2 upsets = 0' 9" of $1\frac{3}{4}$ in. square bar, @ 10.41 lb. per ft. (Table 6) = 7.8 lb. One Turnbuckle = 34' 4" = 382.4 lb. Total Length = 34' 4" = 382.4 lb.

If a sleeve nut is used, instead of a turnbuckle, its weight for a $2\frac{1}{2}$ in. screw, is 19 lb. (Table 94). The clearance between the ends of the screws is 3 in. for all sleeve nuts (Diagram at the top of Table 92).

The total length and weight of $1\frac{3}{4}$ in. square bar when a sleeve nut is used is therefore: c. to c. of pins, less 3 in., = 29' 9" of $1\frac{3}{4}$ in. square bar, @ 10.41 lb. per ft. (Table 6) = 309.8 lb. Material for 2 loops = 4' 0" of $1\frac{3}{4}$ in. square bar, @ 10.41 lb. per ft. (Table 6) = 41.6 lb. Material for 2 upsets = 0' 9" of $1\frac{3}{4}$ in. square bar, @ 10.41 lb. per ft. (Table 6) = 7.8 lb. One sleeve nut = 19 lb. (Table 94) = 19.0 lb. Total Length = 34' 6" Total Weight = 378.2 lb.

Bar with Clevises.—Select a bar to carry a tensile stress of 48,000 lb., the ends to be held by clevises, the distance center of pins being 12' o".

References.—Same as for loop bar, also § 41, p. 58; § 39, and § 41, p. 141; § 17, § 18, and § 19, p. 209.

Solution.—Using an allowable unit stress of $f_t = 16,000$ lb. per sq. in., the area required is,

$$A = \frac{P}{f_t} = \frac{48,000}{16,000} = 3.00 \text{ sq. in.}$$

A bar 1¾ in. square has an area of 3.06 sq. in. (Table 6), and a 2 in. round bar has an area of 3.14 sq. in. (Table 6). Either bar could be used. Using the 1¾ in. square bar a No. 6 clevis is required (Table 93).

The size of pin required by shear and moment can be obtained from the lower part of Table 93, and is a 2 in. pin if the forks are closed, or a 3 in. pin if the forks are used straight. The thickness of connection plate required by bearing when a 2 in. pin is used, is $48,000 + (2.00 \times 24,000) = 1.00$ in., if a 3 in. pin is used the plate must be $48,000 + (3.00 \times 24,000) = 0.66$ in.

The weight of the bar and two clevises is estimated as follows:

The length of the rod, allowing for clearance, etc., must be reduced by $A - \frac{1}{2}$ in. $= 8 - \frac{1}{2}$ = 7½ in. (Table 93) at each end, or a total of $2 \times 7\frac{1}{2} = 1'$ 3". The diameter of upset for a 1¾ in. square bar is $2\frac{1}{2}$ in., which requires $4\frac{1}{2}$ in. material to make each upset (Table 89), or 9 in. for both upsets.

The total length and weight of 134 in. square bar is:

Eye-Bar.—Select an eye-bar to carry a tensile stress of 190,000 lb., with an 8 in. pin at one end and a $6\frac{1}{2}$ in. pin at the other end, the length center to center of pins being 25' o".

References.—§ 33, p. 57; § 106, p. 62; § 162, p. 66; § 37, p. 141; § 92, p. 144; § 141, p. 145; § 171, p. 147; § 14, p. 206; § 36, p. 206; "Minimum Bar," p. 207; § 83, p. 207; § 15, p. 209; § 36, p. 210; § 83, p. 213; § 136, p. 216; § 162, p. 218.

Solution.—Using an allowable unit stress of $f_t = 16,000$ lb. per sq. in., the area required is,

$$A = \frac{P}{f_t} = \frac{190,000}{16,000} = 11.87 \text{ sq. in.}$$

A bar 8 in. \times 1½ in. has an area of 12.00 sq. in. (Table 1). From Table 91, the maximum thickness allowed for an 8 in. bar on a $6\frac{1}{2}$ in. pin is 2 in., and the minimum is 1 in. (The value $6\frac{1}{2}$ in. does not appear in the table but it is less than 7 in., which is the maximum pin which can be used if the die referred to is used.) For an 8 in. pin the maximum thickness is 2 in. and the minimum $1\frac{1}{8}$ in. The bar selected satisfies these requirements as to thickness.

The extra length of bar required to form a head for a $6\frac{1}{2}$ in. pin (die for 7 in. pin) is 2' 8" for ordering the bar, and 2' 3" for estimating the weight, and for an 8 in. pin 3' 0" and 2' 6", respectively (Table 91).

. The total length and weight of eve-bar is therefore:

c. to c. of pins = 25' 0'' of 8 in. $\times 1\frac{1}{2}$ in. bar. @ 40.8 lb. per ft. (Table 2) = 1020.0 lb. Eye for $6\frac{1}{2}$ in. pin = 2' 3'' of 8 in. $\times 1\frac{1}{2}$ in. bar, @ 40.8 lb. per ft. = 91.8 lb. Eye for 8 in. pin $= \frac{2' 6''}{9'}$ of 8 in. $\times 1\frac{1}{2}$ in. bar, @ 40.8 lb. per ft. = 102.0 lb. Total Length = 29' 9'' Total Gross Weight = 1213.8 lb.

The weight which must be deducted for pin holes (Table 6) is,

Pin hole for $6\frac{1}{2}$ in. pin is $1.5 \div 12 \times 112.8 = 14.1$ lb. Pin hole for 8 in. pin is $1.5 \div 12 \times 171.0 = 21.4$ lb. Total weight to be deducted = 35.5 lb.

The net weight of the eye-bar is then 1213.8 - 35.5 = 1178.3 lb.

For the design of an eye-bar subject to flexure due to its own weight, see "Combined Flexure and Direct Stress" in this chapter.

Angle in Tension.—Select an angle to carry a tensile stress of 40,000 lb., using ¾ in. rivets. References.—§ 33, p. 57; § 39, p. 57; § 40, p. 58; § 79, p. 60; § 83, p. 60; § 84, p. 60; § 85, p. 60; § 89, p. 61; § 104, p. 61; § 22, p. 105; § 37, p. 141; § 43, p. 141; § 60, p. 142; § 79, p. 144; § 80, p. 144; § 14, p. 206; § 26, p. 206; § 45, p. 206; "Fastening Angles," p. 207; § 15, p. 209; § 26, p. 210; § 38, p. 210; § 57, p. 210; § 74, p. 212; p. 219; p. 223; § 232, p. 363; § 8, p. 379.

Solution.—If fastened by both legs as in Fig. 2 the load may be considered as axial and the required net area, using an allowable unit stress of $f_t = 16,000$ lb. per sq. in., is

$$A = \frac{P}{f_t} = \frac{40,000}{16,000} = 2.50 \text{ sq. in.}$$

Try one angle $4'' \times 4'' \times \frac{3}{8}''$. Gross area = 2.86 sq. in. (Table 23 or Table 25). Net area, deducting one $\frac{7}{8}$ in. hole for a $\frac{3}{4}$ in. rivet = 2.86 - .33 = 2.53 sq. in. (Table 116). This angle will satisfy the conditions. This result can be obtained directly from Table 29.

If the angle is fastened by one leg as in Fig. 3, the load will be eccentric and the problem more difficult. An approximate solution is to consider only the area of the attached leg as effective. The solution would then be, as before

$$A = \frac{P}{f_t} = \frac{40,000}{16,000} = 2.50 \text{ sq. in.}$$

Fig. 2. Angle Connected by Both Legs.

FIG. 3. ANGLE CONNECTED BY ONE LEG.

Try one angle $6'' \times 4'' \times \frac{1}{2}''$ with 6 in. leg attached. Gross area of 6 in. leg = $6 \times \frac{1}{2}$ = 3.00 sq. in., net area = 3.00 - .44 = 2.56 sq. in., which will satisfy the conditions.

Built-up Tension Member.—Design a built-up member to carry a tensile stress of 390,000 lb., using $\frac{7}{8}$ in. rivets.

References.—§ 33, p. 57; § 83, p. 60; § 84, p. 60; § 89, p. 61; § 90, p. 61; § 101, p. 61; § 37, p. 141; § 44, p. 141; § 61, p. 142; § 75, p. 143; § 14 and § 26, p. 206; § 28, p. 210; § 38, p. 210; § 52, p. 211; § 82, p. 213; p. 219; § 11, p. 382.

Solution.—Using an allowable unit stress of $f_t = 16,000$ lb. per sq. in., the net area required is,

$$A = \frac{P}{f_t} = \frac{390,000}{16,000} = 24.4 \text{ sq. in.}$$

Try 4 angles $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$ and 2 plates 18 in. $\times \frac{1}{2}$ in., as shown in Fig. 4. Gross area = 18.00 + 13.00 = 31.00 sq. in. Referring to Fig. 4, it will be seen that the section n-n is the least section in the body of the member and that four rivet holes should be deducted from each side to obtain the net section, giving a net area of 31.00 - 4.00 - 2.00 = 25.00 sq. in., 4.00 sq. in. being the area of holes in the plates and 2.00 sq. in. being the area of holes in the angles, deducting 1 in. holes for $\frac{1}{8}$ in. rivets. This section has sufficient area, 24.4 sq. in. being required.

If the ends of the members are to be riveted they should be designed as outlined under "Riveted Connections and Joints" in this chapter.

If the ends are to be pin-connected they may be designed as follows. Assume that $5\frac{1}{2}$ in. pins are to be used at each end. The bearing area required allowing a unit stress of 24,000 lb. per sq. in., is $390,000 \div 24,000 = 16.2$ sq. in. This requires a total thickness of plates of $16.2 \div 5.5 = 2.95$ in., or 1.48 in. on each side. The web plates are $\frac{1}{2}$ in., the fill plates must be at least $\frac{1}{2}$ in., the thickness of the angles being $\frac{1}{2}$ in., and using $\frac{1}{2}$ in. outside plates the total thickness of plates is 1.50 in., which satisfies the conditions, 1.48 in. being required.

The net area through the pin hole (section m-m) must be 25 per cent in excess of the net area of the body of the member according to a common specification. It will probably be necessary to deduct the area of the pin hole and two rivet holes on each side, the rivet holes being so near the section m-m, see Fig. 4. The gross area through the pin hole is, web plates $2 \times 18 \times \frac{1}{2} = 18.00$ sq. in., angles $4 \times 3.25 = 13.00$ sq. in., fill plate $2 \times 11 \times \frac{1}{2} = 11.00$ sq. in., outside plate $2 \times 17 \times \frac{1}{2} = 17.00$ sq. in. making a total gross area of 59.00 sq. in. The net area is $59.00 - 2 \times 5.5 \times 1.5 - 4 \times 1 \times 1\frac{1}{2} = 36.5$ sq. in. The required net area through the pin hole is $1.25 \times 25.00 = 31.3$ sq. in.

FIG. 4. RIVETED TENSION MEMBER.

The net area back of the pin hole parallel with the axis of the member (section o-o) must not be less than the net area in the body of the member (section n-n) = 25.0 sq. in. The total thickness of the metal at this section is 1.50 in. for each side. Therefore the net length back of the pin must be $25.00 \div 2 \times 1.50 = 8.33$ in. Assuming that not over three rivets will come in this section, the total length back of the pin hole must be at least 8.33 + 3.00 = 11.33 in.

The number of rivets required and the size of pin plates is considered under "Riveted Connections and Joints."

Unriveted Pipe.—Design an unriveted iron pipe 12 in. in diameter to carry an internal pressure of 400 lb. per sq. in.

From Structural Mechanics, Chap. XVI (Formula 12a), $f = w \cdot D \div 2t$; and $t = w \cdot D \div 2f$, where t is the thickness of metal, w = unit internal pressure, D = diameter and f the allowable tensile stress which will be taken as 12,000 lb. per sq. in.

$$t = \frac{w \cdot D}{2f} = \frac{400 \times 12}{2 \times 12,000} = 0.20 \text{ in.}$$

MEMBERS IN COMPRESSION.—The design of compression members will be shown by several examples.

Single Angle Strut.—Select an angle to carry a compressive stress of 21,500 lb. The length center to center of connections is 6' o", and both legs are to be fastened at the ends, Fig. 2.

References.—Specifications § 34, p. 57; § 39, p. 57; § 84, p. 60; § 85, p. 60; § 93, p. 61; § 38, p. 141; § 43, p. 141; § 60, p. 142; § 100, p. 61; § 45, p. 206; p. 207; § 16, p. 209; § 20, p. 209; p. 223; § 231, p. 363; § 10, p. 379.

Solution.—Using $f_o = 16,000 - 70 l/r$ lb. per sq. in., as the allowable unit stress and 125 as the maximum value for the ratio l/r, the minimum value for r is as follows:

$$l/r = 125$$
, or $r = \frac{l}{125} = \frac{6 \times 12}{125} = 0.58$ in.

Any 3" \times 3" angle will satisfy the requirement for l/r (Table 23). The allowable unit stress will then be $16,000 - 70 \times \frac{72}{.58} = 7,300$ lb. per sq. in. The area required will be

$$A = \frac{P}{f_0} = \frac{21,500}{7,300} = 2.95 \text{ sq. in.}$$

The area of one angle $3'' \times 3'' \times 9/16''$ is 3.06 sq. in., which is sufficient.

Many other angles might be chosen but in no case could an angle smaller than $3'' \times 3''$ be used, for the requirement for l/r would not be satisfied. Larger angles will give lighter sections and be more rigid. Any angle $3\frac{1}{2}'' \times 3\frac{1}{2}''$ has a radius of gyration, r, of about 0.69 (Table 23), giving an l/r of about 104, and an allowable unit stress of about 8,700 lb. per sq. in. and requiring an area of 2.47 sq. in., which would be provided by one angle $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times 3\frac{1}{2}'' \times 3\frac{1}{8}''$. The minimum angle satisfying the l/r requirement is found as a guide in the selection of sections but is rarely a satisfactory section, except for long members with low stresses such as lateral bracing. Table 41, Part II, gives the safe loads for single angle struts fastened by both legs.

See also § 26, p. 203; § 45, p. 203; "Fastening Angles," p. 207; § 20, p. 209.

If the angle is fastened by one leg only as in Fig. 3, the load is eccentric and the problem is more difficult. An approximate solution is to consider only the area of the attached leg as effective. As before the least radius of gyration must be not less than 0.58 in., which corresponds to an allowable unit stress of 7,300 lb. per sq. in., requiring the area of the attached leg to be at least 2.95 sq. in. The requirement for radius of gyration would be satisfied by any $3\frac{1}{2}$ " \times 3" angle, but to provide 2.95 sq. in. of area if attached by the $3\frac{1}{2}$ in. leg the thickness would have to be 2.95 \div 3.50 = 0.85 in. requiring a $3\frac{1}{2}$ " \times 3" \times 3" angle, which is a very poor section and would be much heavier than a section with longer legs to satisfy the same conditions, and much less rigid. The least radius of gyrations of any 5" \times 3\frac{1}{2}" angle is about 0.76 in. (Table 24), and the allowable unit stress will be

$$f_c = 16,000 - 70 l/r = 16,000 - 70 \times \frac{72}{0.76} = 9,370 lb.$$
 per sq. in.,

requiring an area of the attached leg of

$$A = \frac{P}{f_c} = \frac{21,500}{9,370} = 2.30 \text{ sq. in.}$$

which would be provided by a $5'' \times 3\frac{1}{2}''$ angle of thickness equal to $\frac{2.30}{5} = .46$ in. An angle $5'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$ could be used with the 5 in. leg attached.

Double Angle Strut.—The member a-b Fig. 5 is to consist of two angles back to back separated by $\frac{3}{8}$ in. connection plates at the ends and washers $\frac{3}{8}$ in. thick in the body of the member. Design for a compressive stress of 50,000 lb.

References.—§ 34, p. 57; § 84, p. 60; § 93, p. 61; § 100, p. 61; § 38, p. 141; § 60, p. 142; § 45, p. 206; § 16, p. 209; § 20, p. 209; § 231, p. 363; § 10, p. 379.

Solution.—Using $f_c = 16,000 - 70 l/r$ lb. per sq. in. as the allowable unit stress, and 125 as the maximum value for the ratio l/r, the minimum value for r is found as follows

$$l/r = 125$$
, or $r = \frac{l}{125} = \frac{8 \times 12}{125} = 0.77$ in.

The lengths about axes X-X and Y-Y are equal, so that for a well designed member the radii of gyration about the two axes should be as nearly equal as practicable. This condition is satisfied by using angles with unequal legs, short legs turned out.

A member composed of two $2\frac{1}{2}$ " \times 2" angles, $\frac{3}{8}$ in. back to back, with short legs turned out will have a least radius of gyration of about 0.78 in. (Table 40), the value for axis X-X being about 0.78 in. and Y-Y about 0.95 in. The allowable unit stress is then $f_o = 16,000 - 70 l/r = 16,000 - 70 \times \frac{8 \times 12}{0.78} = 7,390$ lb. per sq. in., requiring an area of

$$A = \frac{P}{f_c} = \frac{50,000}{7,300} = 6.76 \text{ sq. in.}$$

This area cannot be supplied by two $2\frac{1}{2}" \times 2"$ angles, but even though it could, larger angles would be more economical as well as more rigid. The minimum angle satisfying the l/r

requirement is found so as to guide in the selection of angles but is rarely a satisfactory section, except for a long member with low stresses, such as lateral bracing.

Try two angles $4'' \times 3''$ with the short legs turned out, $\frac{3}{8}$ in. back to back. From Table 40 it is seen that for any thickness the least radius of gyration will be about the axis X-X, and will be about 1.26 in., giving an allowable unit stress of $f_c = 16,000 - 70 \times \frac{8 \times 12}{1.26} = 10,670$ lb. per sq. in., which requires an area of $50,000 \div 10,670 = 4.68$ sq. in. The area of 2 angles $4'' \times 3'' \times \frac{3}{8}'' = 4.96$ sq. in., which will satisfy the conditions. If the estimated radius of gyration does not agree closely enough with the actual radius of gyration, another calculation should be made, but this is not often necessary.

The spacing of the washers should be such that the l/r of one angle between the washers is not greater than the l/r for the whole member, or $l/r = \frac{8 \times 12}{1.26} = 76.2$, $l = 76.2 \times .64 = 48.7$ in., 0.64 being the least radius of gyration of one angle $4'' \times 3'' \times \frac{3}{8}''$ (Table 24). One washer in the center will be sufficient.

Fig. 5. Double Angle Strut.

If lengths about the two axes are different, as is often the case in roof trusses and portals, the greatest value for l/r should be used, the corresponding length and radius of gyration being taken; for example in designing the member b-d, Fig. 5, as a strut the length corresponding to the axis Y-Y is 12' o", and to the axis X-X is 6' o". To make an efficient member the long legs should be turned out and r_y should be equal to $2 \times r_x$.

The minimum allowable values of r_x and r_y are found as follows,

$$l/r = 125$$
, $r_x = \frac{l_x}{125} = \frac{6 \times 12}{125} = 0.58$ in.;
 $r_y = \frac{l_y}{125} = \frac{12 \times 12}{125} = 1.15$ in.

From Table 39 it is seen that any $2\frac{1}{2}'' \times 2''$ angle with long legs turned out and $\frac{3}{8}$ in. back to back is the smallest angle which will satisfy the requirements for l/r, $r_x = 0.58$ in. and $r_y = 1.26$ in. (approx.). The values for l/r are 124 and 114, respectively, 124 being the greater. The allowable unit stress is then

$$f_o = 16,000 - 70 \times 124 = 7,320$$
 lb. per sq. in.

If the stress in b-c is the same as that in c-d, 19,000 lb. compression, the required area is,

$$A = \frac{P}{f_c} = \frac{19,000}{7,320} = 2.60 \text{ sq. in.}$$

which will be taken by 2 angles $2\frac{1}{2}'' \times 2'' \times 5/16''$, having $r_x = 0.58$ in., and $r_y = 1.26$ in. (Table 39). If the stresses in b-c and c-d are not equal proceed as above and design for the maximum. The spacing of the washers should not be greater than, $l = 124 \times 0.42 = 52.1$ in., 0.42 in. being the least radius of gyration of one angle $2\frac{1}{2}'' \times 2'' \times 5/16''$.

If the controlling stress were 38,000 lb. compression, the required area for $2\frac{1}{2}'' \times 2''$ angles would be

$$A = \frac{P}{f_e} = \frac{38,000}{7,320} = 5.20 \text{ sq. in.}$$

which could not be supplied by two $2\frac{1}{2}'' \times 2''$ angles, so that two $3\frac{1}{2}'' \times 3''$ angles will be used for which, $r_x = 0.90$ and $r_y = 1.66$ for $\frac{3}{8}$ in. back to back, the values of l/r are $\frac{6 \times 12}{0.90} = 80$ and

 $\frac{12 \times 12}{1.66} = 86.8$, respectively, and the allowable unit stress is, $f_c = 16,000 - 70 \times 86.8 = 9,930$ lb. per sq. in., requiring an area of $A = 30,000 \div 9,930 = 3.83$ sq. in., which will be furnished by two angles $3\frac{1}{2}$ " $\times 3$ " $\times 5/16$ ". The spacing of the washers should not be greater than, $I = 86.8 \times 0.63 = 54.6$ in., 0.63 in. being the least radius of gyration of one angle $3\frac{1}{2}$ " $\times 3$ " $\times 5/16$ ". These results may be obtained by the use of Tables 43, 44 and 45, from which it is seen that the allowable stress in a member composed of two angles $3\frac{1}{2}$ " $\times 3$ " $\times 5/16$ " about axis I - I (I - I), the length being I = 12 0", is 38,000 lb., and about axis I = 12 (I - I), the length being I = 12 0", is 38,000 lb., and about axis I = 12 (I - I), the length being I = 12 0", is 38,000 lb., and about axis I = 12 (I - I), the length being I = 12 0", is 38,000 lb., and about axis I = 12 (I - I), the length being I = 12 0", is 38,000 lb., and about axis I = 12 (I - I), the length being I = 12 0", is 38,000 lb., and about axis I = 12 (I - I).

Two Angles Starred.—Design a member consisting of two angles starred, as in Fig. 6, to carry a compressive stress of 30,000 lb., the length to be 15' o" center to center of connections. References.—§ 34, p. 57; § 84, p. 60; § 100, p. 61.

Solution.—Using 125 as the maximum value of l/r, and $f_c = 16,000 - 70 \, l/r$ lb. per sq. in. as the allowable unit stress, the minimum allowable value of r is found to be

$$l/r = 125$$
, $r = \frac{l}{125} = \frac{15 \times 12}{125} = 1.44$ in.

Fig. 6. Two Angles Starred.

From Table 67 it is seen that $4'' \times 4''$ angles are the smallest equal leg angles that can be used, and that r will be about 1.56 in., and the allowable unit stress is

$$f_c = 16,000 - 70 \times \frac{15 \times 12}{1.56} = 7,920$$
 lb. per sq. in.,

which requires an area of

$$A = \frac{P}{f_a} = \frac{30,000}{7,920} = 3.79 \text{ sq. in.}$$

The area of two angles $4'' \times 4'' \times \frac{1}{4}''$ is 3.88 sq. in., and r = 1.57 in., which will satisfy the conditions. The batten plates must have a spacing of not more than

$$l = \frac{15 \times 12}{1.57} \times 0.79 = 75 \text{ in.} = 6' 3'';$$

the value of 0.79 in. being the least radius of gyration for one angle $4'' \times 4'' \times 1/4''$ (Table 23). Convenience in detailing may make it advisable to make l much less than 6' 3''. A spacing of 3' 9'' was used as shown in Fig. 6.

Plate and Angle Column.—Design a plate and angle column, Fig. 7, to carry an axial load of 340,000 lb., the unsupported length being 16' o".

References. - § 34, p. 57; § 38, p. 57; § 79, p. 60; § 94, p. 61; § 96, p. 61; § 100, p. 61; § 114,

p. 62; § 9, p. 104; § 12, p. 104; § 17, p. 104.

Solution.—A section with a 12 in. web plate and two 14 in. flange plates will be assumed. The angles will be spaced 12½ in. back to back to allow for an over-run in the web plate without interfering with the cover plates.

The radius of gyration about the axis A-A, Fig. 7, is approximately $0.45 \times 12.5 = 5.62$ in. (Table 136), and about the axis B-B is $0.23 \times 14 = 3.22''$ (Table 136). The axis B-B will control the design. The allowable unit stress is

$$f_o = 16,000 - 70 \, l/r$$
 lb. per sq. in. = 16,000 - 70 $\times \frac{16 \times 12}{3.22}$ = 11,800 lb. per sq. in.

which requires an area of

$$A = \frac{P}{f_0} = \frac{340,000}{11,800} = 28.8 \text{ sq. in.}$$

Try a section consisting of four angles $6'' \times 4'' \times \frac{3}{8}''$ with long legs turned out, and $12\frac{1}{2}$ in. back to back, one web plate 12 in. $\times \frac{3}{8}$ in. and two flange plates 14 in. $\times \frac{3}{8}$ in. The properties of various sections are given in Table 70. The properties of sections are calculated as shown at the bottom of the table. The radius of gyration about the axis A-A is found to be $r_A = 3.58$ in., about the axis B-B is $r_B = 3.14$ in., and the area 29.44 sq. in.

FIG. 7. PLATE AND ANGLE COLUMN.

For this section the ratio $l/r = 16 \times 12/3.14 = 61.2$ which satisfies the specification that the maximum value of l/r is 125. The allowable unit stress is,

$$f_c = 16,000 - 70^{\circ} \times 61.2 = 11,700 \text{ lb. per sq. in.,}$$

and the required area is,

$$A = \frac{P}{f_c} = \frac{340,000}{11,700} = 29.1 \text{ sq. in.}$$

The area provided by the above section is 29.44 sq. in.

Expansion Rollers.—Design the rollers for the expansion end of a single track railway bridge of 175 ft. span, the dead load stress being 110,000 lb., the live load stress being 282,000 lb., and the impact 178,000 lb. Total stress = 570,000 lb.

References.-\$ 19, p. 209; \$ 60, p. 212; \$ 62, p. 206; \$ 62, p. 212.

Solution.—The span being short a 6 in. roller will be used. The allowable stress per linear inch of rollers is $600 \times d$, when impact is considered, giving $600 \times 6 = 3,600$ lb. for 6 in. rollers.

The number of linear inches required is, 570,000/3,600 = 158 in.

Five rollers 32 in. long provide $5 \times 32 = 160$ linear inches and occupy a space about 32 inches square.

For highway bridge expansion rollers, see § 41, p. 141; § 82, § 83, § 84, p 144.

For roof truss expansion rollers, see § 7, p. 55; § 33, p. 57; § 117, p. 62; § 15, p. 104.

MEMBERS IN FLEXURE.—The design of structural members stressed in flexure will be shown by several examples.

I-Beam.—Select an I-Beam to carry a uniform load of 1000 lb. per linear foot, the span being 16' o" and the ends simply supported.

References. \$33, p. 57; § 42, p. 58; § 45, p. 58; § 14, p. 104; § 39, p. 141; § 50, p. 142; § 55. p. 142: § 17. p. 209; § 29. § 30. p. 210. Properties of Carnegie I-Beams are given in Tables 7 to 13 inclusive. Properties of Bethlehem Girder and I-Beams are given in Tables 151 to 160, inclusive.

Solution.—The bending moment is

 $M = \frac{1}{2} w \cdot l^2 = \frac{1}{2} \times 1000 \times 16^2 = 32,000 \text{ ft.-lb.} = 32,000 \times 12 \text{ in.-lb.} = 384,000 \text{ in.-lb.}$ From applied mechanics.

 $M = \frac{f \cdot I}{I} = f \cdot S.$

The section modulus required is then.

$$S = \frac{I}{c} = \frac{M}{f} = \frac{384,000}{16,000} = 24.0 \text{ in.}^3$$

The section modulus of a 9 in. I @ 35 lb. is 24.8 in.3, and of a 10 in. I @ 25 lb. is 24.4 in.3 (Table 7), either of which will carry the load, but the 10 in. I @ 25 lb. being lighter is the more economical, and being the minimum section is more easily obtained.

The allowable bending moments in ft.-lb. for I-Beams, using a fiber stress of 16.000 lb. per sq. in., are given in Table 7. The I-Beam could have been selected directly from the moment making use of these values. The allowable bending moments for other unit stresses are propor-

The safe uniform load, in tons, for I-Beams are given in Table 12, using a fiber stress of The I-Beam could have been selected directly from the load by using 16.000 lb. per sq. in. this table. Safe loads for other unit stresses are proportional.

If the I-Beam is not supported to prevent lateral deflection the allowable fiber stress must be reduced by the compression formula as shown in Table 12a.

Design an I-Beam 14' o" long to carry a concentrated load of P = 20,000 lb. at the center of the beam. The maximum moment is at the center, and is, $M = \frac{1}{4}P \cdot l = \frac{1}{4} \times 20,000 \times 14$ = 70.000 ft.-lb. = 840.000 in.-lb.

The required section modulus is, $S = M/f = 840,000 \div 16,000 = 52.5$. In Table 7, the lightest beam that will carry the load is a 15 in. I @ 42 lb., which has a value of S = 58.9 in.3, and a bending moment of 70,000 ft.-lb. A 12 in. I @ 55 lb. will also carry the load, but is not an economical section. A concentrated load, P, at the center will give the same maximum stresses as a uniformly distributed load of 2P. From Table 12, a 15 in. I @ 42 lb. will carry a uniformly distributed load of 22 tons, which is sufficient.

Two I-Beams with Separators.—Design a girder consisting of two I-Beams fastened together by means of separators, the girder having a span of 16' o" and carrying a uniform load of 2,000 lb. per linear ft.

References. \$33, p. 57; § 19, p. 105; § 39, p. 141; § 17, p. 209; § 30, p. 210. Solution.—The bending moment is

$$M = \frac{1}{8} w.l^2 = \frac{1}{8} \times 2000 \times 16^2 = 64,000 \text{ ft.-lb.} = 798,000 \text{ in.-lb.}$$

From mechanics,

$$M = \frac{f \cdot I}{c} = f \cdot S.$$

The section modulus required is,

$$S = \frac{I}{c} = \frac{M}{f} = \frac{798,000}{16,000} = 48.0 \text{ in.}^{8}$$

Each I-Beam must have a section modulus of $\frac{1}{2} \times 48.0 = 24.0$ in.³ The section modulus of one 9 in. I @ 36 lb., is 24.8 in.3 and of one 10 in. I @ 25 lb., is 24.4 in.3, either of which will carry one-half the load, but the 10 in. I @ 25 lb. being lighter is the more economical, and being the minimum section is more easily obtained.

The allowable bending moments, in ft.-lb. for I-Beams, using a fiber stress of 16,000 lb. per

sq. in. are given in Table 7. The I-Beams could have been selected directly from the moment making use of these values.

The safe uniform load, in tons, for I-Beams is given in Table 12, using a fiber stress of 16,000 lb, per sq. in. The I-Beams could have been selected directly from the load using this table.

If the girder is not supported to prevent lateral deflection the allowable fiber stress must be reduced by the compression formula as shown in Table 12a.

The separators for Carnegie I-Beams are given in Fig. 4, page 83, Chap. II. The separators for Bethlehem beams are given in Table 158.

Plate Girders.—The full discussion of the design of plate girders would require more space than is available. The following notes will be of value.

References.—The following references should be consulted.

Weights.-P. 115; p. 150; p. 151; p. 152; p. 153; p. 155; p. 156; p. 158.

Bending Moments and Shears.—Pages 159, 163, 164, 165, 166, 167, 173, 174.

Unit Stresses.—§ 33, § 35, § 36, p. 57; § 42, § 43, p. 58; § 36, § 37, § 39, § 40, § 41, § 44, p. 141; § 50, § 51, § 52, § 53, § 54, p. 142; § 14, § 29, p. 206; § 14, § 15, § 17, § 18, § 19, p. 209; § 29, § 30, p. 210.

Proportion of Parts.—§ 3, p. 55; § 43, p. 58; § 3, p. 137; p. 202; p. 203; § 26, § 29, § 30, § 77, p. 206; § 79, p. 207; § 26, § 27, § 29, § 31, § 32, § 38, p. 210; § 57, p. 211; § 77, § 78, § 79, p. 212; § 80, p. 213; pages 220, 221, 222.

Details.-Pages 54, 123, 124, 189, 190.

The gross and net areas of angles are given in Table 29; Area of Plates, Table 1; Areas to be Deducted for Rivet Holes, Table 116; Moments of Inertia of Angles, Tables 32, 33 and 34; Moments of Inertia of Web Plates, Table 3; Moments of Inertia of Cover Plates, Table 5; Properties of Plate Girders, Table 87; Centers of Gravity of Plate Girder Flanges, Table 88.

Nomenclature.—The following nomenclature will be used.

M =resisting moment of section.

V = vertical shear at section.

f = allowable unit fiber stress.

I = moment of inertia of gross section.

I' = moment of inertia of net section.

 I_{\bullet} = moment of inertia of gross section of web plate.

 $I_{w'}$ = moment of inertia of net section of web plate.

AF = gross area of one flange.

 A_{F}' = net area of tension flange.

 $A_{**} = \text{gross area of web.}$

h = distance between centers of gravity of flanges.

h' = distance between gage lines of rivets in tension and compression flanges.

d = distance back to back of angles in flanges.

c = distance from neutral axis to extreme fiber.

p = pitch of rivets in flanges.

r = allowable resistance of one rivet.

w = concentrated load per unit length of rail = P/l where P = concentrated load and l = distance over which the load, P, is considered as distributed (see § 5, p. 202).

2n = number of rivets on one side of web splice.

Resisting Moment.—There are four methods now in use for determining the resisting moment of a plate girder section.

(1) Assuming that all the bending moment is carried by the flanges (see § 29, p. 206),

$$M = A_F' \cdot f \cdot h \tag{1}$$

(2) Assuming that one-eighth the gross area of the web is available as flange area (see § 42, p. 58; § 50, p. 142; § 29, p. 206),

$$M = (A_F' + \frac{9}{8}A_F) \cdot f \cdot h \tag{1'}$$

(3) By moment of inertia of net section (see § 42, p. 58; § 50, p. 142; § 29, p. 206),

$$M = \frac{f \cdot I'}{c} \tag{I"}$$

(4) By moment of inertia of gross section (used by American Bridge Co. for plate girders for buildings),

$$M = \frac{f \cdot I}{c} \tag{1'''}$$

Rivets in Flanges Which do not Carry Concentrated Loads.

(1) Assuming that all bending moment is carried by flanges,

Fig. 8. Web Splice for Plate Girder.

FIG. 9. WEB SPLICE FOR PLATE GIRDER.

$$p = \frac{r \cdot h'}{V} \tag{2}$$

(2) Assuming that one-eighth the gross area of web is available as flange area.

$$p = \frac{A F' + \frac{1}{8} A_w}{A F'} \times \frac{r \cdot h'}{V} \tag{3}$$

(3) By moment of inertia of net section,

$$p = \frac{2r \cdot I'}{V \cdot A \cdot F' \cdot h} \tag{4}$$

(4) By moment of inertia of gross section,

$$p = \frac{2r \cdot I}{V \cdot A_F \cdot h} \tag{5}$$

Rivets in Flanges Carrying Concentrated Loads.

(1) Assuming that all the bending moment is carried by the flanges,

$$p = \frac{r}{\sqrt{w^2 + \left(\frac{V}{h'}\right)^2}} \tag{6}$$

(2) Assuming that one-eighth the gross area of the web is available as flange area,

$$p = \frac{r}{\sqrt{w^2 + \left(\frac{AF'}{AF' + \frac{1}{k}A_w} \cdot \frac{V}{h}\right)^2}} \tag{7}$$

(3) By moment of inertia of net section,

$$p = \frac{r}{\sqrt{w^2 + \left(\frac{V \cdot A F' \cdot h}{2I'}\right)^2}} \tag{8}$$

(4) By moment of inertia of gross section,

$$p = \frac{r}{\sqrt{w^2 + \left(\frac{V \cdot A_F \cdot h}{2I}\right)^2}} \tag{9}$$

Rivets Connecting Cover Plates to Flange Angles.

(1) and (2). Assuming that all the bending moment is carried by the flanges, or that one-eighth the gross area of the web is available as flange area,

$$p = \frac{n \cdot r \cdot d \cdot A_F}{V \cdot A_A'} \tag{10}$$

where n = number of rivets on one transverse line.

r = value of one rivet in single shear or bearing.

d = distance back to back of angles.

 $A_{e'}$ = total net area of cover plates in one flange.

(3) By moment of inertia of net section,

$$p = \frac{2n \cdot I' \cdot r}{V \cdot A_a' \cdot h_a} \tag{II}$$

where $A_{e'}$ = total net area of cover plates in one flange.

 h_c = distance between centroids of all cover plates in tension flange and all cover plates in compression flange.

(4) By moment of inertia of gross section,

$$p = \frac{2n \cdot I \cdot r}{V \cdot A_a \cdot h_a} \tag{12}$$

where A_{ε} = total gross area of cover plates in one flange.

 h_c = distance between centroids of all cover plates in tension flange and all cover plates in compression flange.

Web Splice.—An ordinary web splice is shown in Fig. 8. Where splice plates are designed to carry part of the moment as well as the shear the splice shown in Fig. 9 is sometimes used. Plates AB and A'B' are assumed to transfer that part of the moment carried by the web, and plate CD to transfer the shear. Two lines of rivets should be used in each section of the web spliced. The number and spacing of rivets in a web splice can be determined only by trial, except when the first method for proportioning the section is used. The rivet most remote from the neutral axis is the most severely stressed.

(1) Assuming that all the bending moment is carried by the flanges,

$$r = \frac{V}{2n}$$
, and $2n = \frac{V}{r}$ (13)

(2) Assuming that one-eighth the area of web is available as flange area. The stress in the outermost rivet is given by the formula, where M' is moment carried by web,

$$r = \sqrt{\left(\frac{V}{2n}\right)^2 + \left(\frac{M' \cdot d_n}{2\Sigma d^2}\right)^2} \tag{14}$$

(3) By moment of inertia of net section. The stress in the outermost rivet is given by the formula;

$$r = \sqrt{\left(\frac{V}{2n}\right)^2 + \left(\frac{I_{w'}}{I'} \cdot \frac{M \cdot d_n}{2\Sigma d^2}\right)^2}$$
 (15)

(4) By moment of inertia of gross section. The stress in the outermost rivet is given by the formula

$$r = \sqrt{\left(\frac{V}{2n}\right)^2 + \left(\frac{I_w}{I} \cdot \frac{M \cdot d_n}{2\Sigma d^2}\right)^2} \tag{16}$$

For the details of a web splice, see Fig. 16.

Flange Splice.—Flanges should never be spliced unless it is impossible to get material of the required length. Flange splices should always be located at points where there is an excess of flange section, no two parts of the flange should be spliced within two feet of each other. Rivets in splice plates and angles should be located as close together as possible in order that the transfer may take place in a short distance. No allowance should be made for abutting edges of spliced members of the compression flange.

Flange angles should be spliced with a splice angle of equal section riveted to both legs of the angle spliced. Where this is impossible the largest possible splice angle should be used and the difference made up by a plate riveted to the vertical leg of the opposite angle. The number of rivets required in the splice angle on each side of the joint in the angle is given by the formula,

$$n = \frac{f \cdot A}{r} \tag{17}$$

where f = the allowable unit stress in the flange, A = area of spliced angle, and r = the allowable stress on one rivet. Rivets which are already considered as transferring the shear may be considered as splice rivets if they are included in the splice angle.

Cover plates should be spliced with a splice plate of equal section. The number of rivets required in the splice plate on each side of the joint is determined by the above formula if the plates are in direct contact in the same way as for splice angles. Where one or more plates intervene between the splice plate and cover plate which it splices, rivets should be used on each side of the joint in excess of the number required in case of direct contact, to an extent of one-third that number for each intervening plate (see § 79, p. 144, and § 57, p. 211).

The above methods for flange splicing apply only when methods (1) and (2) of proportioning sections are used, but may be used with sufficient accuracy when methods (3) and (4) are used. Strictly speaking for methods (3) and (4) splice angles and plates should have moments of inertia about the neutral axis, equal to the moments of inertia of the members they splice, about the neutral axis. An exact analysis for the number of rivets required in splices would give a less number than obtained from above formula.

Stiffeners.—For method of designing stiffeners see § 43, p. 58; § 52, p. 142; § 79, p. 207; § 79, p. 212; p. 221.

Pins and Pin Packing.—A pin under ordinary conditions is a short beam and must be designed (1) for bending, (2) for shear, and (3) for bearing. If a pin becomes bent the distribution of the loads and the calculation of the stresses are very uncertain.

The cross-bending stress, f, is found by means of the fundamental formula for flexure, $f = M \cdot c/I$, where the maximum bending moment, M, is found as explained later; I is the moment of inertia; and c is one-half the radius of a solid or hollow pin.

The safe shearing stresses given in standard specifications are for a uniform distribution of the shear over the entire cross-section, and the actual unit shearing stress to be used in designing will be equal to the maximum shear divided by the area of the cross-section of the pin.

The bearing stress is found by dividing the stress in the member by the bearing area of the pin, found by multiplying the thickness of the bearing plates by the diameter of the pin.

References.—§ 41, p. 58; § 90, p. 61; § 99, p. 61; § 107, p. 62; § 39, p. 141; § 40 and § 41, p. 141; § 74, p. 143; § 75, p. 143; § 76, p. 143; § 92, p. 144; § 141, p. 145; § 142, p. 145; § 144, p. 146; § 17, p. 209; § 18, p. 209; § 19, p. 209; § 28, p. 210; § 52, p. 211; § 54, p. 211; § 136, p. 216; p. 219; p. 220; p. 402.

Details of Pins.—Details of bridge pins are given in Table 95, Part II.

Stresses in Pins.—The method of calculation will be illustrated by calculating the stresses in the pin at U_1 in (a) Fig. 10. In the complete investigation of the pin U_1 , it would be necessary to calculate the stresses when the stress in U_1U_2 was a maximum, and when the stress in U_1L_2 was a maximum. Only the case where the stress in U_1U_2 is a maximum will be considered. However, maximum stresses in pins sometimes occur when the stress in U_1L_2 is a maximum, and this case should be considered in practice.

Bending Moment.—The stresses in the members are shown in (c) Fig. 10, which gives the force polygon for the forces. The make-up of the members is shown in (a), and the pin packing on one side is shown in (b). The stresses shown in (c) are applied one-half on each side of the member, the pin acting like a simple beam. The stresses are assumed as applied at the centers of the plates which make the members.

FIG. 10. CALCULATION OF STRESSES IN A PIN.

Calculation of Stresses in a Pin.—The amounts of the forces and the distances between their points of application as calculated from (b) are shown in (d) Fig. 10. The horizontal and vertical components of the forces are considered separately, the maximum horizontal bending moment and the maximum vertical bending moment are calculated for the same point, and the resultant moment is then found by means of the force triangle.

In (d) the horizontal bending moments are calculated about the points 1, 2, 3, 4; the maximum horizontal moment is to the right of 3, and is 208,600 in.-lb. The vertical bending moments are calculated about points 5, 6, 7, 8; the maximum bending moment is to the right of 8, and is 283,000 in.-lb. The maximum bending moment is at, and to the right of 4 and 8, and is, $M = \sqrt{208,600^2 + 283,000^3} = 351,600$ in.-lb. Substituting in the formula, $f = M \cdot c/I$, the maximum bending stress is f = 16,600 lb. per sq. in. The allowable bending stress in pins for which this bridge was designed was 18,000 lb. per square inch. The allowable bending moments on pin are given in Table 98.

Shear.—The shear is found for both the horizontal and vertical components as in a simple beam, and is equal to the summation of all the forces to the left of the section. The maximum horizontal shear is between 1 and 2, and is 165,400 lb. The shear between 2 and 3 is 165,400 -99,300 = 66,100 lb. The maximum vertical shear is between 6 and 7, and is 126,300 lb. The resultant shear between 2 and 3, and 6 and 7, is, $V = \sqrt{126,300^2 + 66,100^2} = 145,000$ lb., which is less than the horizontal shear between 1 and 2. The maximum shear, therefore, comes

between 1 and 2, and is 165,400 lb. The maximum shearing unit stress is 165,400 ÷ 28.27 = 5.850 lb. per sq. in. The allowable shearing stress was 9,000 lb. per sq. in.

Bearing.—The bearing stress in L_0U_1 is $160,650 \div (6 \times 1.94) = 13,800$ lb. Bearing stress in U_1U_2 is $165,400 \div (6 \times 1.88) = 14,600$ lb. Bearing stress in U_1L_1 is $42,200 \div (6 \times 0.89) = 7,900$ lb. Bearing stress in U_1L_2 is $107,000 \div (6 \times 1\frac{7}{16}) = 12,400$ lb. per sq. in. The allowable bearing stress was 15,000 lb. per sq. in. Allowable bearing stresses on pins are given in Table 97.

For the calculation of the stresses in the pins of a 160 ft. steel highway bridge, see the author's "The Design of Highway Bridges," Chap. XXII, Part III.

Pin Packing.—For details of pin packing see pages 219, 220 and page 402. Details of pins are given in Table 95, Part II.

Corrugated Steel Roofing.—For the calculation of the strength of corrugated steel and for a diagram for the safe loads for corrugated steel, see Fig. 18, Chap. I, page 22.

Bearing Plates.—The bearing plates required for beams and columns, Fig. 11, may be determined by the following formulas.

Let R = reaction of beam or load on column.

A =area of bearing plate.

w = allowable unit pressure in masonry.

f = allowable fiber stress in plate.

p = projection of bearing plate beyond any edge of beam or column.

Area of bearing plate,

FIG. 11. BEARING PLATES.

$$A = \frac{R}{m} \tag{18}$$

Thickness of bearing plate required by a given projection,

$$t = p\sqrt{\frac{3R}{A \cdot f}} = p\sqrt{\frac{3w}{f}} \tag{19}$$

Safe projection for a given thickness of plate,

$$p = t\sqrt{\frac{A \cdot f}{3R}} = t\sqrt{\frac{f}{3W}} \tag{20}$$

The allowable pressures of bearing plates on masonry (value of w) are given in Table VIII, page \$75. Standard bearing plates for I-beams are given in Table 8; for channels in Table 15. The length of I-beams which should bear on plates in order that the full shearing strength be developed is given in Table 11; and of channels in Table 16.

For a full discussion of bearing plates, see Bulletin No. 35, University of Illinois Engineering Experiment Station, entitled "A Study of Base and Bearing Plates for Columns and Beams," by Professor N. Clifford Ricker.

COMBINED FLEXURE AND DIRECT STRESS.—The formulas for combined flexure and direct stress are given in section 26, Chapter XVI. The design of members stressed in combined flexure and direct stress will be shown by several examples.

Eye-Bar.—An eye-bar in a structure carries a direct stress due to the dead and live loads, and in addition is stressed in flexure due to its own weight.

If P = direct stress in eye-bar; $M_1 =$ bending moment due to weight in in.-lb.; c = distance from neutral axis to extreme fiber = h/2, where h = depth of eye-bar; l = length of bar, c. to c. of pins, t = thickness of eye-bar in inches; I = moment of inertia of eye-bar $= \frac{1}{12}t \cdot h^3$; k is a coefficient depending upon the condition of the ends being approximately 10 for eye-bars with pin ends, 24 for one pin end and one fixed end, and 32 for two fixed ends; E = modulus of elasticity of steel = 28,000,000 lb. per sq. in.; and $f_2 = \frac{P}{t \cdot h} =$ unit stress due to direct loads. Then the stress due to combined flexure and direct stress will be

$$f = f_2 + f_1 = \frac{P}{t \cdot h} + \frac{M_1 \cdot c}{I + \frac{P \cdot h}{k \cdot F}}$$
 (21)

Now, $M_1 = \frac{1}{6}w \cdot P$, where $w = 0.28 \ t \cdot h$ = the weight of the bar per lineal inch; $P = f_2 \cdot t \cdot h$; c = h/2; $I = \frac{1}{12}t \cdot h^2$; k = 10; and E = 28,000,000 lb. per sq. in.; and substituting

$$f_1 = \frac{\frac{1}{8}w \cdot l^2 \cdot \frac{1}{2}h}{\frac{b \cdot h^3}{12} + \frac{f_2 \cdot b \cdot h \cdot l^2}{10 \times 28.000,000}} = \frac{4,900,000h}{f_2 + 23,000,000} \left(\frac{h}{l}\right)^2}$$
(22)

then f_1 is the extreme fiber stress in the bar due to weight, and is tension in the lower fiber and compression in the upper fiber.

If the bar is inclined, the stress obtained by formula (22) must be multiplied by the sine of the angle that the bar makes with a vertical line.

Diagram for Stress in Bars Due to Weight .- Taking the reciprocal of equation (22)

$$\frac{\mathbf{1}}{f_1} = \frac{f_2}{4,900,000h} + \frac{23,000,000 \left(\frac{h}{l}\right)^2}{4,900,000h} = y_1 + y_2$$

and

$$f_1 = \frac{1}{\gamma_1 + \gamma_2} \tag{23}$$

A diagram for solving equation (23) is given in Table 134, Part II, which see. The intersections of the inclined lines in Table 134 correspond to depths of eye-bar that give maximum stresses due to weight.

End-Post.—Design the end-post, Fig. 12, for a 160 ft. span through highway bridge. Panel length, 20' o"; depth of truss c. to c. of pins, 24' o"; length of end-post, 31' 3". The direct stresses are as follows: dead load stress = 30,000 lb.; live load stress = 60,000 lb.; impact = $100/(160 + 300) \times 60,000 = 13,000$ lb.; total direct stress due to dead load, live load and impact = 103,000 lb. The bridge is to be a class C bridge designed according to the "General Specifications for Highway Bridges," in Chapter III. From § 38 of the specifications the allowable unit stress is $f_c = 16,000 - 70 \, l/r$. The section will be made of two channels and one cover plate. Try a section made of two 10 in. channels @ 15 lb., and one 14 in. by 5/16 in. plate, (b), Fig. 12. From Table 82, Part II, the radius of gyration about the horizontal axis A-A, is $r_A = 3.99$ in., and about the vertical axis B-B is, $r_B = 4.67$ in., and the eccentricity is, e = 1.70 in. The allowable stress is then $f_c = 16,000 - \frac{70 \times 375}{3.99} = 9,400$ lb. per sq. in. The required area will be = $103,000 \div 9,400 = 10.96$ sq. in. The actual area is 13.30 sq. in. While the section appears to be excessive, it will be investigated for stress due to weight, eccentric loading and wind

The area, radii of gyration and the eccentricity may be calculated as follows.

To calculate the area

before rejecting it.

area of two 10 in. channels (Table 14) = 8.92 sq. in. area of one 14 in. by 5/16 in. plate (Table 2) = 4.38 sq. in. Total area = 13.30 sq. in.

To locate the neutral axis A-A, take moments about the lower edge of the channels

$$c = \frac{8.92 \times 5 + 4.38 \times 10.156}{13.30} = 6.70 \text{ in.}$$

The eccentricity is e = 6.70 - 5.00 = 1.70 in. The moment of inertia I_A , about axis A-A may be calculated as follows:

Let $I_{\varepsilon} = I$ of channels about center of channels (Table 14).

 $I_p = I$ of plate about center of plate (Table 4).

 A_c = area of channels (Table 14).

 A_p = area of plate (Table I).

FIG. 12. END-POST OF A HIGHWAY BRIDGE.

$$I_A = I_c + I_p + A_c \times 1.70^2 + A_p \times 3.456^2$$
.
= 2 × 66.9 + 0.04 + 8.92 × 1.70² + 4.38 × 3.456²
= 133.8 + 0.04 + 25.76 + 52.20
= 211.80 in.⁴

Then $r_A = \sqrt{I_A \div A} = \sqrt{211.80 \div 13.3} = 3.99 \text{ in.}$

The moment of inertia I_B , about axis B-B may be calculated as follows.

Let $I_c' = I$ of channels about neutral axis parallel to the web (Table 14).

 $I_{p'} = I$ of plate about vertical axis (Table 3).

 A_c = area of channels (Table 14).

From Table 82 the distance back to back of channels is $8\frac{1}{2}$ in. From Table 14 the distance from neutral axis to back of channel is 0.639 in. The distance from neutral axis of channels to axis B-B is 4.25 + 0.639 = 4.889 in. (4.89 in. will be used).

Then
$$I_B = I_c' + I_{p'} + A_c \times 4.89^2$$

= 4.60 + 71.46 + 9.82 × 4.89²
= 4.60 + 71.46 + 213.28
= 289.34 in.⁴
Then $r_B = \sqrt{I_B \div A} = \sqrt{289.34 \div 13.3} = 4.67$ in.

Stress Due to Weight of Member.—The total weight of the member will be

Two 10 in. channels @ 15 lb., 31' 6" long = 945 lb. One 14 in. \times 5/16 in. plate @ 14.88 lb., 30' 0" long = 447 lb. Details and lacing about 25 per cent = 308 lb. Total Weight, W = 1700 lb.

The bending moment due to weight of member is $M = \frac{1}{8}W \cdot l \cdot \sin \theta$.

Stress due to weight

$$f_{\mathbf{w}} = \frac{M \cdot c}{I_A - \frac{P \cdot P}{10E}} = \frac{\frac{1}{8}W \cdot l \cdot \sin \theta \cdot \mathbf{x}}{I_A - \frac{P \cdot P}{10E}}$$
(25)

The stress due to weight in the upper fiber will be

$$f_{w} = \frac{\frac{1}{8} \times 1,700 \times 375 \times 0.645 \times 3.6125}{211.8 - \frac{103,000 \times 375^{2}}{10 \times 30,000,000}}$$
= 940 lb. per sq. in.

The stress due to weight in the lower fiber is

$$f'_w = -6.70 \times 940 \div 3.6125$$

= -1745 lb. per sq. in.

Stress Due to Eccentric Loading.—The pins were placed \(\frac{1}{2} \) inch above the center of the channels, and the stress due to eccentric loading will be

$$f_{e} = \frac{M_{1} \cdot c}{I - \frac{P \cdot P}{10E}} = \frac{P \times (1.70 - 0.5) \times c}{I - \frac{P \cdot P}{10E}}$$

$$(26)$$

The eccentric stress in the upper fiber will be

$$f_{o} = \frac{103,000 \times 1.20 \times 3.6125}{211.8 - \frac{103,000 \times 375^{3}}{10 \times 30,000,000}}$$

= -2,280 lb. per sq. in.

The eccentric stress in the lower fiber is

$$f_e = +6.70 \times 2,280 \div 3.6125$$

= +4,230 lb. per sq. in.

The resultant stress due to weight and eccentric loading is $f_l = f_w + f_e = +940 - 2,280 = -1,340$ lb. in the upper fiber, and -1,745 + 4,230 = 2,485 lb. per sq. in. in the lower fiber.

The allowable stress due to weight and eccentric loading is greater than 10 per cent of the allowable stress and must be considered, with the allowable unit stress increased by 10 per cent (§ 48, p. 142).

The total unit stress in the member will be, $f = 103,000 \div 13.30 + 2,485 = 7,752 + 2,485 = 10,237$ lb. per sq. in. The allowable unit stress when weight and eccentric loading are considered is $9,400 \times 1.10 = 10,340$ lb. per sq. in., which is sufficient.

Stress Due to Wind Moment.—The stresses in the portal and the direct wind stresses in the end-post when the end-post is assumed as pin-connected at the base are shown in (d) and (e) Fig. 12. The end-posts may both be assumed as fixed if the windward end-post is fixed. To fix the windward end-post the bending moment must not be greater than the resisting moment which will be

$$M_0 = H \cdot v_0 = (90,000 - V - D')a/2$$

where V = 5,060 lb. and D' = 7,000 lb. the direct stress due to wind, and a = distance center to center of metal in the sides of the end-post = 8.87 in., (f), Fig. 12. (The impact stress is omitted.) If y_0 is taken equal to $\frac{1}{2}d = \frac{10}{2}$ or $\frac{1}{2}$ in., we will have

$$2,000 \times 120 \le (90,000 - 5,060 - 7,000) 8.87/2$$

which makes 240,000 < 345,600, and the end-post may be assumed as fixed at the base.

The stress due to bending moment due to wind loads in the leeward end-post will be,

$$f_w = \frac{M \cdot c}{I - \frac{P \cdot l^2}{10E}}$$

$$= \frac{240,000 \times 7}{289.4 - \frac{(90,000 + 5,060 + 7,000)258^2}{10 \times 30,000,000}} = 6,730 \text{ lb. per sq. in.}$$
(27)

The total stress due to direct wind load will be $f_w = (5060 + 7000)/13.30 = +910$ lb. per sq. in. The total maximum wind load stress will come on the windward fiber of the leeward end-post, and will be $f_w'' = +6.370 + 910 = +7.280$ lb. per sq. in.

The maximum stress due to direct dead and live loads (not including impact) and wind load stresses will be

$$f = 90,000 \div 13.30 + 7,280$$

= $6,770 + 7,280 = 14,050$ lb. per sq. in.

From § 46 in the specifications the allowable stress may be increased 50 per cent when direct and flexural wind stresses are considered.

The allowable stress when both direct and flexural wind stress are considered is then

$$f_c = 9,400 \times 1.50 = 14,000$$
 lb. per sq. in.

The stresses in the windward post will be less than in the leeward end-post calculated above. While the section assumed appeared to be excessive, the additional area and the width of plate are required to take the flexure due to wind loads.

For the method used by the C. M. & St. P. Ry. for the design of an end-post, see p. 222.

Column of a Transverse Bent.—Design a column similar to that of the transverse bent shown in Fig. 3, Chapter XVI, but having column length of 25' 6" and being hinged at the base. Direct stress = + 12,800 lb., bending moment at foot of knee brace = 181,250 ft.-lb. Shear = H = 13,500 lb.

References.—§ 34 and § 38, p. 57; § 79, § 80 and § 84, p. 60; § 94, § 97, § 98 and § 100, p. 61. Solution.—A section composed of four angles and a plate will be used. The column will be supported laterally by the girts so the length in that direction will be taken as ½ × 25′ 6″ = 12.75 ft.

Try 4 angles $5'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$, long legs out, $18\frac{1}{2}$ in. back to back and one web plate 18 in. $\times \frac{3}{8}$ in. Distance between rivet lines = $18\frac{1}{2} - 2 \times 2 = 14\frac{1}{2}$ in. Maximum allowable distance for $\frac{3}{8}$ in. plate = $40 \times \frac{3}{8} = 15$ in.

Using method at bottom of Table 69, A=22.75 in.²; $I_A=1.311$ in.⁴; $I_B=94.6$ in.⁴; $r_A=7.59$ in.; $r_B=2.04$ in. The greatest value of $l\div r=12.75\times 12\div 2.04=75.0$. The maximum allowable value of $l\div r=125$. The allowable unit stress is:

$$1.50(16,000 - 70 l/r) = 1.50(16,000 - 70 \times 75.0) = 16,100 lb.$$
 per sq. in.

The actual unit stress is:

$$S = \frac{P}{A} + \frac{M \cdot c}{I - \frac{P \cdot l^2}{10E}} = \frac{12,800}{22.75} + \frac{181,250 \times 12 \times 9.25}{1311 - \frac{12,800 \times 25,5^2 \times 12^2}{10 \times 30,000,000}} = 16,000 \text{ lb. per sq. in.}$$

Floorbeam.—Floorbeams are designed in the same way as other plate girders. The section cut away for clearance at the joint must be strengthened by means of plates as shown in Fig. 13. To determine the strength at the weakest section, A-A, the following method is used.

The floorbeam is drawn to scale in Fig. 13, so that distances can be scaled and the maximum floorbeam reaction 189,980 lb. be resolved graphically, in the center line of the post, into 80,000 lb. normal to A-A, which produces direct tension on the section A-A, and 173,000 lb. parallel to A-A, which produces shear and flexural stress.

Rivet holes are considered as spaced 3 in. along the section A-A, for when the beam is detailed it is not probable that they will be spaced closer than 3 in. Holes are deducted from the tension side only. I in, holes being deducted for \mathcal{V}_{k} in, rivets.

The plates may not be exactly as indicated on Fig. 13 for it may be necessary to alter them slightly in detailing, but small changes will not change the results materially. It is quite an advantage to have the investigation made before the beam is completely detailed as alterations are more easily made at that time if the beam proves weak in any particular.

The curved angle at the bottom will not be considered as adding to the strength,

Values for the area, eccentricity and moment of inertia are found as follows.

First the moments and moments of inertia of the separate parts are found about an axis through the geometric center of the section, the eccentricity is then calculated. The moment of inertia about an axis through the center of gravity is found by subtracting the product of the

FIG. 13. DETAIL OF FLOORBEAM CONNECTION.

area and the eccentricity squared from the moment of inertia about the axis through the geometric center or

$$I_c = I_m - A \cdot e^2$$

Note.—For sake of simplicity the total section was divided up as follows:

A, includes three $\frac{1}{2}$ in. and two $\frac{5}{8}$ in. plates, the $6'' \times \frac{5}{8}''$ legs of the flange angles and $\frac{5}{8}$ in. $+\frac{1}{2}$ in. of the $4'' \times \frac{5}{8}''$ leg. The spaces allowed for clearance were considered as solid with no appreciable error.

B, includes the remainder of the $4'' \times \frac{5}{8}''$ legs of flange angles.

C, includes the 3/8 in. outside plates considered as solid.

D, includes the rivet holes, I in. in diameter and 3.5 in. long, spaced 3 in. center to center.

TABLES OF AREAS, MOMENTS AND MOMENTS OF INERTIA.

Section.	Size, In.	Area, Sq. In.	Y ₀ , In.	Moment, InLb.	Y ₀ , In.	I_m , In^4 .
A	35.5 × 2.75	+97.6	o oment of Inert	o ia about own a	o	0 +10,250
В	5.75 × 0.625			+ 62.6 ia about own a		+ 1,088
C	18.0 × 0.75	+13.5	- 8.8		- 8.8	+ 1,044 + 365
D	5 × 1 × 3.5	-17.5 Mo	- 9.3 oment of Inert	+162.6 ia about own a +106.6	- 9.3	- 1,513 - 315
e = 1	06.6 ÷ 97.2 = 1.10	$A \cdot e^2 = 97$	2 × 1.10 ² =	1 100.0		- 10,919
Total	moment of inertia a	bout centroida	al axis =			10,802

The bending moment of this section, from Fig. 14 is

$$M = 189,980 \times 27 = 5,130,000 \text{ in.-lb.}$$

or

$$M = 173,000 \times 29.5 = 5,130,000 \text{ in,-lb}$$

The direct tension is 80,000 lb.

The shear on the section is 173,000 lb.

Compression in extreme fiber due to moment

$$S_1 = M \cdot c' \div I = (5,130,000 \times 16.65) \div 10,802 = +7,850$$
 lb. per sq. in.

Tension in extreme fiber due to moment is

$$S_1 = M \cdot c^{\prime\prime}/I = 5,130,000 \times 18.85 \div 10,802 = -8,950$$
 lb. per sq. in.

Tension on whole section due to direct stress

$$S_2 = P/a = 80,000 \div 97.2 = -820$$
 lb. per sq. in.

Total compression in extreme fiber

$$S = S_1 + S_2 = 7.850 - 820 = +7.030$$
 lb. per sq. in.

Total tension in extreme fiber

$$S = S_1 + S_2 = -8,950 - 820 = -9,770$$
 lb. per sq. in.

Unit shear is approximately

$$S = 173,000 \div 97.2 = 1,780$$
 lb. per sq. in.

The allowable unit stress in compression = 16,000 lb. per sq. in. (Spec. § 16).

The allowable unit stress in tension = 16,000 lb. per sq. in. (Spec. § 15). The allowable unit stress in shear = 10,000 lb. per sq. in. (Spec. § 19).

END CONNECTIONS FOR TENSION AND COMPRESSION MEMBERS.—For simple connections with concentric stresses the number of rivets in riveted end connections may be taken as equal to the total stress in the member divided by the allowable stress on one rivet for bearing or for shear, Table 114, whichever gives the larger number of rivets. Specifications uniformly require that the connections of members be designed to develop the full strength of the member. The minimum number of rivets in shop connections should be two rivets, except for lacing bars; while the minimum number of rivets in field connections should be three rivets, except for lacing bars. In lateral bracing or stiff bracing or struts the actual number of rivets required to develop the full strength of the member should be increased by two rivets, for the reason that two rivet holes are almost certain to be badly distorted by the drift pins in drawing the member up. Rivets should be grouped symmetrically about the neutral axis of the member or the eccentric stresses should be calculated and provided for. The strength of a structure depends very much upon the strength of the connections, and the details of the joints and connections should be worked out with great care.

References.—§ 49, p. 58; § 78, § 79, § 80, § 81, § 85, p. 60; § 40, § 41, p. 141; § 60, § 62, p. 142; § 63, § 64, § 65, § 66, § 74, p. 143; § 18, § 19, p. 209; § 37, § 39, § 40, p. 210; § 41, § 42, § 52, p. 211; § 74, p. 212, p. 219, p. 223; Tables 106 to 119 inclusive.

Strut or Tie.—Design the end connection for a 4" x 4" x 3%" angle, carrying a stress (either tensile or compressive) of 40,000 lb., the angle being fastened by both legs to a 3% in. plate as shown

in Fig. 2, using 3/4 in. rivets.

Solution.—The allowable stress on one ¾ in. rivet in single shear is 5,300 lb. and in bearing on a ¾ in. plate is 6,750 lb., using 12,000 lb. per sq. in. and 24,000 lb. per sq. in. as the allowable stresses in shear and bearing, respectively. Table 114. The shear evidently controls, and the number of rivets is

$$n = \frac{40,000}{5,300} = 7.6$$
 or 8 rivets.

Four of these will be placed in the main angle and four in the lug angle. In order to transfer the proper portion of the stress to the lug angle, the number of rivets between the main angle and lug angle must be equal to the number of rivets in the lug angle, or four in this case.

If the angle is connected by one leg only the eight rivets will be put in one leg as shown in Fig. 3.

Pin-connected Top Chord.—Design the end connection for the top chord of a pin-connected bridge as shown in Fig. 14. Length center to center of pins = 25' o''. Rivets ½ in.

Solution.—The connections should be designed to carry the full strength of the member and not the stress that it carries. The allowable unit stress is $f_c = 16,000 - 70 \, l/r = 16,000 - 70 \times 25 \times 12 = 13,420$ lb. per sq. in. Total stress = 13,420 \times 51.84 = 695,700 lb.

The entire stress of 695,000 lb. must be transferred from the member to the pin through the pin plates and web plates. In the body of the member the stress is distributed among the different parts in proportion to the gross area, or as follows:

FIG. 14. END CONNECTION OF TOP CHORD.

Item.	Material.	Area × Unit Stress = Total Stress.	Stress on One Side.
1 Cover Plate 2 Top Angles 2 Web Plates 2 Bottom Angles	24 in. $\times \frac{9}{16}$ in. 4" \times 4" $\times \frac{7}{16}$ " in. 20 in. $\times \frac{1}{2}$ in. 6" \times 4" $\times \frac{5}{8}$ "	13.50 × 13,420 = 181,000 lb. 6.62 " = 88,900 " 20.00 " = 268,500 " 11.72 " = 157,300 " 51.84 × 13,420 = 695,700 lb.	90,500 lb. 44,450 " 134,250 " 78,650 "

The total bearing area required on one side of the member is,

$$A = \frac{347.850}{24.000} = 14.49 \text{ sq. in.}$$

The total thickness of bearing required on one side, using a 61/4 in. pin, is,

$$t = \frac{14.49}{6.25} = 2.32$$
 in.

This thickness will be provided by the plates A, B, C, D and E as shown in Fig. 14. The plate B in the web and has a thickness of $\frac{1}{2}$ in. Plate C must act as a fill plate so must be of the same thickness as the bottom angles or $\frac{5}{8}$ in. The outside plate E and the inside plate A should be thinner than D so they will be made $\frac{3}{8}$ in., and D will be made $\frac{1}{2}$ in. The actual thickness of bearing is then 2.375 in., and the required thickness is 2.32 in. In arranging the plates a clearance of $\frac{1}{8}$ in. should be allowed between the plates which pass around the pin, and the nearest plate as shown in Fig. 14. It is necessary to put a $\frac{3}{16}$ in. fill plate, F, opposite the top angle to make up for the difference in thickness in the $\frac{5}{8}$ in. bottom angle and the $\frac{7}{16}$ in. top angle,

The stress transmitted to a plate by the pin is equal to the ratio of its thickness to the total thickness, multiplied by the total stress. The stresses in the various plates are as follows.

Stress in
$$A = \frac{0.375}{2.375} \times 347,850 = 54,920 \text{ lb.}$$

$$B = \frac{0.500}{2.375} \times 347,850 = 73,240 \text{ lb.}$$

$$C = \frac{0.625}{2.375} \times 347,850 = 91,530 \text{ lb.}$$

$$D = \frac{0.500}{2.375} \times 347,850 = 73,240 \text{ lb.}$$

$$E = \frac{0.375}{2.375} \times 347,850 = \underline{54,920} \text{ lb.}$$

$$Total = 347,850 \text{ lb.}$$

An exact solution for the number and location of rivets is not practicable. A common solution is to consider that all the pin plates transmit their stress to the web and that the web, in turn, distributes this stress over the section. This solution overstresses the web in the vicinity of the pin.

A better solution is to consider that the stress in the cover plate and top angles is transmitted in double shear or bearing on the vertical leg of the top angles from the web plates and pin plates through the rivets in the vertical leg of the angles. The stress in the bottom angles is transmitted in double shear or bearing on the vertical leg of the bottom angles from the web plates and pin plates through the rivets in the vertical leg of the angles. The stress on the rivets between the web plate and plate C is equal to the sum of the stresses in C, D and E, minus one-half the sum of the stresses in the cover plate, top angles and bottom angles on one side.

The number of rivets in the plate A is determined by the stress in A only, and is controlled by single shear and is,

$$n = \frac{54,920}{7,220} = 8$$
 rivets.

The number of rivets in the plate E is determined by the stress in E only, and is controlled by single shear and is,

$$n = \frac{54,920}{7,220} = 8 \text{ rivets.}$$

The number of rivets between D and the top angle and between B and the top angle is determined by bearing on the 7/16 in. angle and is,

$$n = \frac{90,500 + 44,450}{9,190} = 15$$
 rivets.

The number of rivets between D and the bottom angle and between B and the bottom angle is,

$$n = \frac{78,650}{9,190} = 9 \text{ rivets.}$$

The number of rivets between C and web, B, is determined by single shear, and is

$$n = \frac{73,240 + 54,920 + 91,530 - \frac{1}{2}(90,500 + 44,450 + 78,650)}{7,220} = 16 \text{ rivets.}$$

End Connections for I-Beams.—The end connections for Carnegie I-Beams are given in Tables 117 and 118, and for Bethlehem I and Girder Beams in Tables 156 and 157, respectively. The end connections for short beams, and for beams carrying heavy loads should be carefully investigated for direct and bending stresses. Rivets should never be used in direct tension, Connections where rivets would be in direct tension should be provided with turned bolts.

Eccentric Riveted Connections.—The actual shearing stresses in riveted connections are often very much in excess of the direct shearing stresses. This will be illustrated by the calculation of the shearing stresses in the rivets in the standard connection shown in Fig. 15, which is assumed as loosely bolted to a column.

The eccentric force, P, may be replaced by a direct force, P, acting through the center of gravity of the rivets and parallel to its original direction, and a couple with a moment $M = P \times 3$ in. = 60,000 in.-lb. Each rivet in the connection will then take a direct shear equal to P divided by n, where n is the total number of rivets in the connection, and a shear due to bending moment M.

The shear in any rivet due to moment will vary as the distance, and the resisting moment exerted by each rivet will vary as the square of the distance of the rivet from the center of gravity of all the rivets.

Now, if a is taken as the resultant shear due to bending moment in a rivet at a unit's distance from the center of gravity, we will have the relation,

$$M = a(d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2})$$

= $a\Sigma d^{2}$

and

$$a = \frac{M}{\Sigma d^2}$$

The remainder of the calculations are shown in Table I. The resultant shears on the rivets are given in the last column of the table and are much larger than would be expected.

The force and equilibrium polygons for the resultant shears and load P, drawn in Fig. 15, close, which shows that the connection is in equilibrium.

TABLE I.

W	oment = 20,000 here a = Mom	$00 \times 3 = 60,00$ nent shear on 1	Fivet 3, = $2,630$	$a_1^2 + a_2^2 + a_3^2$ lb.	$^{\circ} + a_{4}^{\circ} + a_{5}^{\circ}$	
Rivet.	d, In.	<i>d</i> ², In.²	Moment, InLb.	M, Lb.	S, Lb.	R, Lb.
I	2.70	7.29	19,185	7,100	4,000	9,300
2	1.90	7.29 3.61	9,500	5,000	4,000	3,200
3	1.00	1.00	2,630	2,630	4,000	6,630
4	1.90	3.61	9,500	5,000	4,000	3,200
	2.70	7.29	19,185	7,100	4,000	9,300

$$a = 2,630$$
 lb. = moment shear on rivet 3.

M =shear due to Moment.

S =Shear due to Direct Load, P.

R = Resultant Shear.

Note.—In the analysis above it was assumed that the beam connections were bolted and that the bolts would not transmit tension in the direction of their length. If the connection is bolted or riveted rigidly so that the bolts or rivets may transmit tension (rivets should never transmit tension) in the direction of their length, the resisting moment thus developed will decrease the shearing stresses on the rivets in the connection due to bending moment.

FIG. 15. STRESSES IN AN ECCENTRIC RIVETED CONNECTION.

Web Splice.—The plate girder shown in Fig. 16 is to be spliced at a section where the bending moment is 1,667,000 in.-lb. and the shear is 165,000 lb.

Solution.—The method which assumes that one-eighth the area of the web is available as flange area will be used. The formula for stress in the outermost rivet is

$$r = \sqrt{\left(\frac{V}{2n}\right)^2 + \left(\frac{M' \cdot d_n}{2\Sigma d^2}\right)^2} \tag{14}$$

V =total shear at the section.

M' =moment carried by web.

2n = number of rivets on one side of the splice.

 $2\Sigma d^2$ = the sum of the squares of the distances of the rivets, on one side of the splice, from the neutral axis.

The joint must first be designed and then investigated. The number of rivets required is several rivets in excess of the number required to carry the direct shear. The number of $\frac{1}{16}$ in rivets required for shear alone is determined by bearing on the $\frac{1}{16}$ in. web plate, and is

$$2n = \frac{V}{r} = \frac{164,000}{10,500} = 15.6$$
, (Table 114).

A joint with 17 rivets spaced as shown in Fig. 16 will be assumed. An odd number of rivets simplifies the calculation.

$$V = 165,000$$
 ib.
 $M' = 1,667,000 \times 3.00 \div 12.50 = 400,000$ in.-lb.
 $2n = 17$.
 $d_n = 16$ in.
 $2\Sigma d^2 = 2(2^2 + 4^3 + 6^2 + 8^2 + 10^2 + 12^2 + 14^2 + 16^2) = 1632$ in.²

Then the maximum stress on the outside rivet will be,

$$r = \sqrt{\left(\frac{165000}{17}\right)^2 + \left(\frac{400,000 \times 16}{1,632}\right)^2} = \sqrt{9,660^2 + 3,920^2} = 10,430 \text{ lb.}$$

The allowable value of r for a 1/2 in rivet is 14,400 lb. in double shear and 10,500 lb. in bearing on 16 in. web plate (Table 114), so the joint is satisfactory.

Net area of flange angles = 9.50 in.² One-eighth of area of web plate = 3.00 " Total flange area 2/5 6"6""

DETAILS OF A WEB SPLICE.

Riveted Joints in Cylinder, Pipe or Tank.—A cylinder 46 in. in diameter is to be designed to carry an internal pressure of 100 lb. per sq. in. Compute the required thickness of plate and design a longitudinal double riveted lap joint of equal efficiency for all parts. Reduce to commercial dimensions and investigate.

Solution.—The unit stresses allowed by specifications for tanks are $f_t = 12,000$ lb. per sq. in., $f_{\bullet} = 12,000$ lb. per sq. in., $f_{c} = 24,000$ lb. per sq. in., for shop joints.

From "Structural Mechanics," Chapter XVI.

$$e = \frac{2f_c}{f_t + 2f_c} = \frac{2 \times 24,000}{12,000 + 2 \times 24,000} = 0.80$$
 (16a)

$$t = \frac{w \cdot D}{2f_t \cdot e} = \frac{100 \times 46}{2 \times 12,000 \times 0.80} = 0.24 \text{ in.}$$
 (16b)

$$d = \frac{4f_c}{\pi \cdot fv} \cdot t = \frac{4 \times 24,000}{3.1416 \times 12,000} \times .24 = 0.61 \text{ in.}$$
 (16c)

$$p = \left[1 + \frac{2f_o}{f_v}\right]d = \left[1 + \frac{2 \times 24,000}{12,000}\right] \times 0.61 = 3.05 \text{ in.}$$
 (16d)

This joint would have the efficiencies for tension, compression and shear all equal, but the sizes could not be obtained from stock so that the joint must be altered to suit commercial sizes. Make $t = \frac{1}{4}$ in., $d = \frac{5}{8}$ in., p = 3 in., and investigate the joint.

$$P = \frac{w \cdot D \cdot p}{2} = \frac{100 \times 46 \times 3}{2} = 6,900 \text{ lb.}$$
 (14*d*)

$$P = \frac{w \cdot D \cdot p}{2} = \frac{100 \times 46 \times 3}{2} = 6,900 \text{ lb.}$$

$$f_t = \frac{P}{(p-d)t} = \frac{6,900}{2.375 \times 0.25} = 11,600 \text{ lb. per sq. in.}$$
(14*d*)

$$f_e = \frac{P}{2t \cdot d} = \frac{6,900}{2 \times 0.25 \times 0.625} = 22,100 \text{ lb. per sq. in.}$$
 (14b)

$$f_* = \frac{P}{\frac{1}{2}\pi d^2} = \frac{6,900}{0.614} = 11,200 \text{ lb. per sq. in.}$$
 (14c)

Other considerations such as water-tightness enter into the design of joints; see Table II3. Table II4, page 370 gives the properties of water tight joints. By efficiency is meant the ratio of the strength of the joint to the strength of a plate of equal thickness. Under effective section of plates in Table II4, page 370, is given the thickness of an unriveted plate which would have the same strength as the joint.

The most efficient joint for a given thickness of plate is found as follows: For single riveted lap joint in a 1/2 in plate,

$$d = \frac{4f_c}{\pi \cdot fv} \cdot t = \frac{4 \times 24,000}{3.14 \times 12,000} \times 0.25 = 0.637 \text{ in.}$$
 (15e)

$$p = \left[1 + \frac{f_c}{f_t}\right] d = \left[1 + \frac{24,000}{12,000}\right] d = 3.0d = 1.911 \text{ in.}$$

$$e = \frac{p - d}{f_t} = 0.67.$$
(15f)

Use 5/8 in. rivets with 2 in. pitch.

Formulas for Riveted Joints.—The general formulas for the investigation of lap joints with any number of rows of rivets are (For Nomenclature, see Chapter XVI.),

$$f_t = \frac{P}{(p - d)t}; \quad f_c = \frac{P}{k \cdot t \cdot d}; \quad f_v = \frac{P}{k \cdot \frac{1}{4}\pi \cdot d^2}$$
 (28)

For design of a joint of maximum efficiency,

$$e = \frac{k \cdot f_c}{f_t + k \cdot f_c}; \quad t = \frac{w \cdot D}{2f_t \cdot e}; \quad d = \frac{4f_c}{\pi \cdot f_v} \cdot t; \quad p = \left[\mathbf{I} + k \frac{f_c}{f_t}\right] d, \tag{29}$$

where k = number of rows of rivets.

For a butt joint with a single strap plate and a single row of rivets the joint becomes two single riveted lap joints and the formulas for riveted lap joints may be used (Structural Mechanics 13 and 15). For a butt joint with double strap plates and a single row of rivets on each side,

$$f_t = \frac{P}{(p-d)t}; \quad f_c = \frac{P}{t \cdot d}; \quad f_v = \frac{P}{\frac{1}{2}\pi \cdot d^2}. \tag{30}$$

For a butt joint with double strap plates and double riveting on each side,

$$f_t = \frac{P}{(p-d)t}; \quad f_c = \frac{P}{2t \cdot d}; \quad f_v = \frac{P}{\pi \cdot d^2}.$$
 (31)

When a single strap plate is used it should never be thinner than the main plate, and when double strap plates are used they should never be thinner than $\frac{1}{2}$ the thickness of the main plate.

For data on riveted joints for tanks and stand-pipes, see Table IIa, page 370.

DESIGN OF LACING BARS FOR COLUMNS.—It is difficult to calculate the bending stresses in a built-up column, and since the shearing stresses depend on the bending stresses the design of lacing bars must be largely a matter of judgment until sufficient tests are made to establish empirical formulas. The following method gives results that agree with tests and with good practice.

For a column with a concentric loading, experiments show that the allowable unit stress may be represented by the straight line formula, $p = 16,000 - 70 \, l/r$ lb. per sq. in., where p = allowable unit stress in the member; l = length of the member, c. to c. of end connections, and r = radius of gyration of the column, both in inches. Now the allowable unit stress on a short block is 16,000 lb. per sq. in., and the 70 l/r represents the increase in the fiber stress in the column. Now if we assume that this fiber stress is caused by a uniform horizontal load, W, then $\frac{W \cdot l}{8} =$

 $\frac{70I \cdot l}{r \cdot c}$, where I = moment of inertia of the cross-section of the column = $A \cdot r^2$, where A = the

area of the cross-section of the column, and c= the distance from the neutral axis of column to the extreme fiber in the plane parallel to the plane of the lacing bars. Then $\frac{W \cdot l}{8} = \frac{70A \cdot r^2 \cdot l}{r \cdot c}$, and $W=560 \frac{A \cdot r}{c}$ Now the shear in the column will be S=W/2, and the shear is $S=280 \frac{A \cdot r}{c}$, and the stress in a lacing bar will be $=280 \frac{A \cdot r}{c} \times csc$ θ , where $\theta=$ the angle made by the bar with the axis of the column. In a laced channel column the shearing stress above will be taken by two lacing bars. This shows that the stresses in the lacing bars in the column with a concentric loading depend upon the make-up of the column, and are independent of the length of the column.

Mr. C. C. Schneider by a somewhat different method has deduced the same formula on page 195 of the Report of the Royal Commission on Collapse of Ouebec Bridge, 1908.

If the column carries a direct shear in addition to the shear due to the concentric load, or if the column has an eccentric load the additional shearing stresses must be considered in designing the lacing. The total stress in the lacing bar will be the total shear at the section multiplied by the cosec of the angle made by the lacing bar with the axis of the column.

STRUCTURAL ENGINEERS' HANDBOOK

PART II.

STRUCTURAL TABLES.

Introduction.—The tables in Part II include the properties of simple rolled sections; the properties of compound sections; the properties of built-up sections for columns, struts and chords; safe loads for angles, beams and channels, and of angle struts; properties of rivets and riveted joints, and miscellaneous data for structural design. It has been the aim to give tables and data that will be of use to the designing engineer and to the student in the designing room rather than to give safe loads, stresses and other predigested data that may be used by the novice. To this end properties of sections are given while safe loads for columns and chords have been omitted. Tables of trigonometric functions and logarithms and other tables that are readily available have not been included. The tables are arranged so that each page is self-contained and self-explanatory. In the tables the properties of rolled sections are grouped together for ease in reference, and are followed by properties of built-up sections. The tables in Part II are numbered in Arabic numerals.

Original Tables.—Tables 3, 4, 5, 13, 19, 20, 21, 22, 32, 33, 34, 35, 36, 37, 38, 39, 40, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 134, 135 and 136, covering 136 pages, were calculated especially for this book. The tables have been calculated and checked with great care and are believed to be accurate. These tables are fully protected by copyright and are not to be copied without permission from the author.

The properties of compound sections consisting of two or four angles or of two channels, placed in different relative positions, may be used in designing struts, columns or chords where the sections are held together by means of lacing and tie plates; or the properties of built-up sections may be obtained by combining the moments of inertia of the compound sections and the moments of inertia of one or two plates in the proper relative positions. The built-up sections are all designed to comply with standard specifications and with the standards of the American Bridge Co. for rivet spacing and structural details. To illustrate the use of the tables of compound sections in building up struts, columns and chords, a one page table is given for each built-up section in common use, in which the properties for the usual proportions are given and the methods for calculating additional values by using the key tables of compound sections are given. The method of calculating the properties of built-up sections by using the moments of inertia of compound sections is shown in Table I.

STANDARD TABLES.—The other tables in Part II have been taken from Carnegie Steel Company's "Pocket Companion," Cambria "Steel," American Bridge Company's "Book of Standards," and other sources to which credit has been given. Many of the copied tables have been rearranged and extended. The properties of I-Beams in Table 7, properties of channels in Table 14, and properties of angles in Table 23 and Table 24 were taken from American Bridge Company's "Book of Standards," but have been checked with the recent edition of Carnegie's "Pocket Companion."

TABLE I.

I+ II + III	I	I	111
A A	$\begin{array}{c c} B \\ A \\ \hline \end{array}$	A A B	AA
Required A Required I_A Required I_B	A of 4L5 Table 33. I_A of 4L5 = I_X , Table 33. I_B of 4L5 = I_Y , Table 36.	A of Pl. Table 1. I_A of Pl.= I_A , Table 3. I_B of Pl.= I_2 , Table 4.	AoF2Pl. Table1. I _A oF2Pl.=I _X ,Table 5. I _B oF2Pl.=I _J ,Table3.
I_A =Moment of Inertia, I_B =Moment of Inertia r_A =Radius of Gyration r_B =Radius of Gyratio	I_{γ} AxisB·B. I_{γ} =Mom I_{γ} AxisA-A. I_{γ} =Mom	ent of Inertia, Axis X-X. ent of Inertia, Axis Y-Y. ent of Inertia, Axis I-I. ent of Inertia, Axis 2-Z.	A = Area. $r_A = \sqrt{TotalI_A \div TotalA}$. $r_B = \sqrt{TotalI_B \div TotalA}$.

TOP CHORD SECTIONS.—The top chord sections given in Tables 82 to 86 were calculated to comply with the standard specifications which follow, unless otherwise noted in the tables.

Specifications.—All top chord sections shall comply with the following requirements.

Thickness of Metal.—The minimum thickness of metal shall be 1/4 in. for highway bridges and 3/4 in. for railway bridges.

Cover Plates.—The cover plate shall have a thickness not less than one-fortieth $\binom{1}{40}$ the distance between gage lines of rivets in the flange angles on each side of the section. The cover plate shall always have the minimum thickness that will comply with the above requirements.

Web Plates.—The web plates shall have a thickness not less than one-thirtieth $\binom{1}{30}$ the distance between gage lines of rivets in the flange angles in the line of stress. As much of the metal as practicable shall be concentrated in the web plates and flange angles.

Proportions of Chord Section.—There shall be a top cover plate which shall have a minimum thickness permitted by the specifications. As much of the metal as possible shall be concentrated in the web plates and flange angles. The top and bottom angles shall be so selected as to bring the neutral axis of the section as near the center of the web plates as practicable. The moments of inertia of the section about the two rectangular axes shall be approximately equal.

		BARS AND PLATES.	PAGE
Table Table Table	1. 2. 3.	Areas of Bars and Plates Weights of Steel Bars and Plates Moments of Inertia of Plates about Axis I-I	9 12 15
Table	4.	Moments of Inertia of Plates about Axis 2-2.	17
Table	5.	Moments of Inertia of Two Plates 1 inch Wide about Axis X-X	18
Table	6.	Weights and Areas of Round and Square Bars	21
		I-Beams.	
Table	7.	Properties of Carnegie I-Beams	23
Table	8.	Elements of Carnegie I-Beams	25
Table	9.	Dimensions and Elements of Standard Carnegie I-Beams	27
Table	10.	Dimensions and Elements of Supplementary Carnegie I-Beams	27
Table	II.	Web Resistance of I-Beams	28
Table	12.	Safe Loads and Deflections for Carnegie I-Beams	29
Table	12a.	Per cent Reductions for Lateral Deflection in Beams and Channels	30
Table	13.	Safe Loads and Deflections of Supplementary Carnegie I-Beams	31
		CHANNELS.	
Table	14.	Properties of Carnegie Channels	32
Table	15.	Elements of Carnegie Channels	33
Table	16.	Web Resistance of Channels	34
Table	17.	Safe Loads and Deflections of Carnegie Channels	35
Table	18.	Safe Loads and Deflections of Carnegie Channels Laid Flat	37
Table	18a.	Coefficients of Deflection	37
Table	19.	Moments of Inertia of Two Channels, Flanges Turned Out, Distances Back to Back.	38
Table		Moments of Inertia of Two Channels, Flanges Turned In, Distances Back to Back	
Table		Moments of Inertia of Two Channels, Flanges Turned In, Distances Inside to	
		Inside of Web	42
Table	22.	Properties of Two Channels, Flanges Turned Out, Small Distances	44
		Angles.	
Table	23.	Properties of Equal Leg Angles	45
Table	24.	Properties of Unequal Leg Angles.	48
Table	25.	Areas of Angles	53
Table	26.	Weights of Angles	54
Table	27.	Overrun of Pencoyd Angles	55
Table	28.	Overrun of Pennsylvania Steel Co. Angles	56
Table	29.	Net Areas and Allowable Tension Values for Angles	57
Table	30.	Safe Loads for Angles with Equal Legs	60
Table	31.	Safe Loads for Angles with Unequal Legs	61
Table	32.	Moments of Inertia of Four Angles with Equal Legs, Axis X-X	65

		DA	GE
Table	33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.	Moments of Inertia of Four Angles, Unequal Legs, Axis X-X, Long Legs Out Moments of Inertia of Four Angles, Unequal Legs, Axis X-X, Short Legs Out Moments of Inertia of Four Angles, Equal Legs, Axis Y-Y. Moments of Inertia of Four Angles, Unequal Legs, Axis Y-Y, Long Legs Out Moments of Inertia of Four Angles, Unequal Legs, Axis Y-Y, Short Legs Out Radii of Gyration of Two Angles with Equal Legs, Both Axes Radii of Gyration of Two Angles, Unequal Legs, Both Axes, Long Legs Out Radii of Gyration of Two Angles, Unequal Legs, Both Axes, Short Legs Out Safe Loads of Single Angle Struts, Equal Leg Angles. Safe Loads of Two Angle Struts, Unequal Legs Angles. Safe Loads of Two Angle Struts, Axis 1-1; Equal Legs and Unequal Legs with Long Legs Turned Out. Safe Loads of Two Angle Struts, Axis 2-2; Equal Legs and Unequal Legs with Long Legs Turned Out. Safe Loads of Two Angle Struts; Equal Legs and Unequal Legs with Short Legs	73 81 88 89 90 91 92 93 94 95 96
		Miscellaneous Sections.	
Table	46.	Properties and Elements of Z-Bars	103
Table	47.		104
Table	48.	Elements of Carnegie Unequal Tees	
Table	49.	Elements of A. S. C. E. and Light Rails	
Table	50.	Elements of Carnegie Bulb Beams.	107
Table	51.		107
Table	52.		801
Table	53.	Carnegie Trough Plates	109
Table	54.	Carnegie Corrugated Plates	
Table	55-	Buckle Plates	III
		COLUMNS AND STRUTS.	
Table	56.	Properties of Three I-Beams	112
Table	57.	Properties of Two Channels Laced, Flanges Turned Out.	
Table	58.	Properties of Two Channels Laced, Flanges Turned In.	-
Table	59.	Properties of Two Channels and Two Plates.	
Table	60.	Properties of Two Channels and One I-Beam, Flanges Turned Out	-
Table	6r.	Properties of Two Channels and One I-Beam, Flanges Turned In	
Table	62.		118
Table	63.	Properties of Two Channels and One Built I-Beam, Flanges Turned In	119
Table	64.	Properties of One Channel and One I-Beam	120
Table	65.	Properties of One Channel and One Built I-Beam.	
Table	66.	Properties of One Channel and One Angle.	
Table	67.	Properties of Two Angles and Four Angles Starred.	
Table	68.	Properties of Four Angles Laced.	
Table	69.	Properties of Four Angles and One Plate (Built H)	_
Table	70.	Properties of Four Angles and Three Plates (Built H with Covers)	
Table	71.	Properties of Four Angles and Two Plates Laced (Two Built Channels Laced).	
Table	72.	Properties of Four Angles and Four Plates (Two Built Channels and Two Plates)	132

		ı	PAGE
Table	73.	Properties of Four Angles Laced and Eight Angles Battened	134
Table	74.	Properties of Eight Angles and Three Plates (Two Built Channels and One Built	
		I-Beam)	
Table	75.	Properties of 4 Z-Bars and Three Plates	136
		TOP CHORD SECTIONS.	
Table	77.	Top Chord Sections of Two Angles and One Web Plate	137
Table		Top Chord Sections of Two Angles and One Cover Plate, Legs Turned Out	
Table	79.	Top Chord Sections of Two Angles and One Cover Plate, Legs Turned In	
Table	80.	Top Chord Sections of Two Angles, One Web Plate and One Cover Plate	141
Table	81.	Top Chord Sections of Two Angles, Two Web Plates and One Cover Plate	
Table	82.	Top Chord Section of Two Channels and One Plate	
Table	83.	Top Chord Sections of Four Angles and Three Plates; Highway Bridges	
Table		Top Chord Sections of Four Angles and Three Plates	
Table	85.	Top Chord Sections of Six Angles and Three Plates	
Table	86.	Top Chord Sections of Eight Angles and Five Plates	203
		PLATE GIRDERS.	
Table	87.	Properties of Plate Girders	204
Table	88.	Centers of Gravity of Plate Girder Flanges	205
		DETAILS FOR BARS.	
Table	80.	Upset Screw Ends for Square Bars.	206
Table	-	Upset Screw Ends for Round Bars.	
Table		Ordinary and Adjustable Eye-Bars	
Table		Loop Bars.	
Table	93.	Clevises	
Table	94.	Turnbuckles and Sleeve Nuts	211
		·	
		PINS, BOLTS AND NUTS.	
Table	95.	Bridge Pins and Nuts	212
Table		Cotter Pins	
Table	97-	Bearing Values of Pins	214
Table	98.	Bending Moments on Pins	215
Table	99.	Long Pilot Nuts	
Table		Short Pilot Nuts	
Table		Standard Screw Threads and General Dimensions of Bolt Heads and Nuts	
Table		Dimensions of Bolt Heads and Nuts	
Table		Weights of Bolts with Hexagon Heads and Nuts	
Table		Weights of Bolts with Square Heads and Nuts	
Table	105.	Lengths of Bolts and Tie Rods	222
		Designer and Designer	
-	_	RIVETS AND RIVETING.	
Table		Weights of Rivets	223
Table		Lengths of Rivets and Bolts for Beam Framing	
Table	108.	Lengths of Field Rivets for Various Grips	225

Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116.	Standards for Rivets and Riveting. Standards for Riveting. Standards for Riveting. Standards for Riveting. Standards for Riveting.	227 228 229 230 231 232
	BEAM AND LATERAL CONNECTIONS.	
Table 117. Table 118. Table 119. Table 120. Table 121. Table 122.	Old Standard Connections for Beams and Channels. Standard Connections for Beams and Channels. Beveled Beam Connections. Sway Rod and Lateral Connections. Lateral Connections for Highway Bridges. Lateral Connections and Stub Ends.	236 237 238 239
	MISCELLANEOUS.	
Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 130. Table 131. Table 132. Table 133. Table 133. Table 135. Table 136. Table 137.	Lag Screws, Hook Bolts and Washers. Weights of Lag Screws, Wrought Washers, Track Bolts. Weights of Steel Wire Nails and Spikes. Weights and Dimensions of Pipe and Pipe Coupling. Standard Gages, Comparative Table. Standard Gages and Weights of Sheet Steel. Clearance Dimensions and Wheel Loads for Electric Cranes. Clearance Dimensions and Wheel Loads for Electric Cranes. Crane Girder Specifications. Typical Hand Cranes. Stress in Eye-Bars Due to Weight. Safe Uniform Load on Square Flat Plates. Approximate Radii of Gyration for Compression Members. Details of a Steel Stair.	242 243 244 245 247 248 249 250 251 252 253 254 255
	BETHLEHEM SECTIONS.	
Table 151. Table 152. Table 153. Table 154. Table 155. Table 156. Table 157. Table 158. Table 159.	Properties of Bethlehem I-Beams. Properties of Bethlehem Girder Beams. Properties of Bethlehem H-Columns. Properties of Bethlehem Compound Columns. Elements of Bethlehem I-Beams and Girder Beams. Standard Connection Angles for Bethlehem I-Beams. Standard Connection Angles for Bethlehem Girder Beams. Cast Iron Separators for Bethlehem Girder and I-Beams. Safe Loads on Bethlehem I-Beams.	258 259 261 262 263 264 265
Table 160	Safe Loads on Bothlehom Circler Busines	

	MATHEMATICAL AND MISCELLANEOUS.	PAGI
Table 161.	Decimal Parts of a Foot and Inch	268
Table 162.	Table of Bevels	260
Table 163.	Ordinates for 16' 0" Chords	270
	Natural Tangents	
	Squares, Cubes, Square Roots and Cube Roots of Numbers	

TABLE 1.

Areas of Bars and Plates.

SQUARE INCHES.

Width,	Thickness, Inches.															
Inches.	計	i	4	ŧ	4	ŧ	7,0	j	*	ı	ti	i	Ħ	i	Ħ	ı
1	.016 .031 .047 .063	.031 .063 .094	.047 .094 .141	.063 .125 .188 .250	.078 .156 .234 .313	.094 .188 .281 -375	.109 .219 .328 .438	.125 .250 .375 .500	.141 .281 .422 .563	.156 .313 .469 .625	.172 ·344 .516 .688	.188 -375 .563 -750	.203 .406 .609	.22 .44 .66 .88	.23 ·47 ·70 ·94	.25 .50 .75 1.00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.078 .094 .109 .125	.156 .188 .219	.234 .281 .328 .375	.313 .375 .438 .500	.391 .469 .547 .625	.469 .563 .656 .750	.547 .656 .766 .875			1.094	1.203	.938 1.125 1.313 1.500	1.422	1.09 1.31 1.53 1.75	1.17 1.41 1.64 1.88	1.25 1.50 1.75 2.00
2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3	.141 .156 .172 .188	.281 .313 ·344 ·375	.422 .469 .516 .563	.563 .625 .688 .750		1.031	I.094 I.203	1.250 1.375	1.406 1.547	1.563 1.719	1.719	1.688 1.875 2.063 2.250	2.031 2.234	1.97 2.19 2.41 2.63	2.11 2.34 2.58 2.81	2.25 2.50 2.75 3.00
3 1 3 3 3 3 4 4	.203 .219 .234 .250	.406 .438 .469	.656 .703	.875 .938	1.094 1.172	1.313 1.406	1.531 1.641	1.750 1.875	1.969 2.109	2.188 2.344	2.406 2.578	2.438 2.625 2.813 3.000	2.844 3.047		3.52	3.25 3.50 3.75 4.00
41/4 41/4 41/4 5	.266 .281 .297 .313	.531 .563 .594 .625	.844 .891	1.125 1.188	1.406 1.484	1.688 1.781	1.969 2.078	2.250 2.375	2.531 2.672	2.813 2.969	3.094 3.266	3.188 3.375 3.563 3.750	3.656 3.859	4.16		4.25 4.50 4.75 5.00
514 512 54 6	.328 .344 .359 .375	.719	1.03 i 1.078	1.375 1.438	1.719	2.063 2.156	2.406 2.516	2.750 2.875	3.094 3.234	3.438 3.594	3.781 3.953	3.938 4.125 4.313 4.500	4.469 4.672	4.81 5.03	-	
61 61 62 7	391 .406 .422 .438	.813 .844	1.219 1.266	1.625 1.688	2.03 I 2.109	2.438 2.531	2.844 2.953	3.250 3.375	3.656 3.797	4.063 4.219	4.469 4.641	4.688 4.875 5.063 5.250	5.484	5.69 5.91	6.33	6.50 6.75
71 71 71 8	.453 .469 .484 .500	.938 .969	1.406 1.453	1.875	2.344 2.422	2.813 2.906	3.281 3.391	3.750 3.875	4.219 4.359	4.688 4.844	5.156	5.438 5.625 5.813 6.000	6.094 6.297	6.56 6.78	7.03 7.27	7.50 7.75
81 81 82 83 84	.531 .547	1.063 1.094	1.594 1.641	2.125 2.188	2.656 2.734	3.188 3.281	3.719 3.828	4.250 4.375	4.781 4.922	5.313 5.469	5.844 6.016	6.188 6.375 6.563 6.750	6.906 7.109	7.44 7.66	8.20	
91 91 93 10	-594	1.188	1.781	2.375	2.969 3.047	3.563	4.156	4.750	5.344 5.484	5.938 6. 0 94	6.531 6.703	6.938 7.125 7.313 7.500	7.7 1 9 7.922	8.31 8.53	8.91	9.50 9.75
101 101 101 11	.641 .656 .672 .688	1.313 1.344 1.375	1.969 2.016 2.063	2.625 2.688 2.750	3.281 3.359 3.438	3.938 4.031 4.125	4.594 4.703 4.813	5.250 5.375 5.500	5.906 6.047 6.188	6.563 6.719 6.875	7.219 7.391 7.563	7.688 7.875 8.063 8.250	8.531 8.734 8.938	9.19 9.41 9.63	9.84 10.08 10.31	11.00
$11\frac{1}{4}$ $11\frac{1}{2}$ $11\frac{3}{4}$ 12	.719	1.438	2.156	2.875	3.594	4.313	5.031	5.750	6.469	7.188 7.344	7.906 8.078	8.438 8.625 8.813 9.000	9.344	10.06	11.02	11.50

TABLE 1.—Continued. AREAS OF BARS AND PLATES.

SQUARE INCHES.

Width,	Thickness, Inches.															
Inches.	16	1	3 16	1	16	1	7 16	1	16	58	118	34	18	I	18	1
$ \begin{array}{c} 12\frac{1}{2} \\ 13 \\ 13\frac{1}{2} \\ 14 \end{array} $.813	1.625	2.344 2.438 2.531 2.625	3.25	3.91 4.06 4.22 4.38	5.06	5.69	6.25 6.50 6.75 7.00	7.59		9.28	9.75 10.13	10.56	11.38	12.19 12.66	12.50 13.00 13.50 14.00
14½ 15 15½ 16	.938 .969	1.875 1.938	2.719 2.813 2.906 3.000	3.75 3.88		5.81		7.25 7.50 7.75 8.00	8.72	9.38 9.69	10.31	11.25 11.63	12.19	13.13 13.56	14.06	14.50 15.00 15.50 16.00
$16\frac{1}{2}$ 17 17 $\frac{1}{2}$ 18	1.063 1.094	2.125 2.188	3.094 3.188 3.281 3.375	4.13 4.25 4.38 4.50	5.16 5.31 5.47 5.63	6.38 6.56	7.44		9.56 9.84	10.63	11.69	12.75	13.81	14.88	15.94 16.41	16.50 17.00 17.50 18.00
$18\frac{1}{2}$ 19 $19\frac{1}{2}$ 20	1.188	2.375 2.438	3.469 3.563 3.656 3.750	4.75 4.88		7.13 7.31	8.53	9.50 9.75	10.69	11.88	13.06 13.41	14.25 14.63	15.44 15.84	16.63 17.06	17.81 18.28	18.50 19.00 19.50 20.00
$ 20\frac{1}{2} \\ 2I \\ 2I\frac{1}{2} \\ 22 $	I.313 I.344	2.625 2.688	3.844 3.938 4.031 4.125	5.13 5.25 5.38 5.50		8.06	9.19 9.41	10.50	11.81	13.13 13.44	14.44 14.78	15.75 16.13	17.06	18.38 18.81	19.69 20.16	20.50 21.00 21.50 22.00
$ 22\frac{1}{2} \\ 23 \\ 23\frac{1}{2} \\ 24 $	1.438 1.469	2.875 2.938	4.219 4.313 4.406 4.500	5.75 5.88	7.03 7.19 7.34 7.50	8.63 8.81	10.06 10.28	11.50 11.75	12.94 13.22	14.38 14.69	15.81 16.16	17.25 17.63	18.69	20.13 20.56	21.56	22.50 23.00 23.50 24.00
25 26 27 28	1.625 1.688	3.250 3.375	4.688 4.875 5.063 5.250	6.25 6.50 6.75 7.00	8.44	9.75 10.13	11.38 11.81	13.00 13.50	14.63	16.25 16.88	17.88 18.56	19.50	21.13	22.75	24.38 25.31	25.00 26.00 27.00 28.00
29 30 31 32	1.875 1.938	3.750 3.875	5.438 5.625 5.813 6.000	7.25 7.50 7.75 8.00	9.38 9.69	11.25 11.63	13.13 13.56	15.00 15.50	16.88 17.44	18.75 19.38	20.63	22.50	24.38 25.19	26.25 27.13	28.13 29.06	29.00 30.00 31.00 32.00
33 34 35 36	2.125 2.188	4.250 4.375	6.188 6.375 6.563 6.750	8.50 8.75	10.63	12.75 13.13	14.88 15.31	17.00 17.50	19.13	21.25 21.88	23.38 24.06	25.50 26.25	27.63 28.44	29.75 30.63	31.88 32.81	33.00 34.00 35.00 36.00
37 38 39 40	2.438 2.500	4.750 4.875 5.000	7.125 7.313 7.500	9.50 9.75 10.00	11.88 12.19 12.50	14.25 14.63 15.00	16.63 17.06 17.50	19.00 19.50 20.00		23.75 24.38 25.00	26.13 26.81 27.50	28.50 29.25 30.00	30.88 31.69 32.50	33.25 34.13 35.00	35.63 36.56 37.50	38.00 39.00 40.00
41 42 43 44	2.625 2.688 2.750	5.250 5.375 5.500	7.875 8.063 8.250	10.50 10.75 11.00	13.13 13.44 13.75	15.75 16.13 16.50	18.38 18.81 19.25	21.00 21.50 22.00	23.63 24.19 24.75	26.25 26.88 27.50	28.88 29.56 30.25	31.50 32.25 33.00	34.13 34.94 35.75	36.75 37.63 38.50	39.38 40.31 41.25	43.00
45 46 47 48	2.875 2.938	5.750 5.875	8.438 8.625 8.813 9.000	11.50	14.38 14.69	17.25 17.63	20.13 20.56	23.00 23.50	25.88 26.44	28.75 29.38	31.63	34.50 35.25	37.38 38.19	40.25 41.13	43.13 44.06	45.00

TABLE 1.—Continued.

AREAS OF BARS AND PLATES.

SQUARE INCHES.

Width.	Thickness, Inches.															
Inches.	7/8	ì	A	1	A	1	7 16	1	14	1	11	ŧ	11	i	H	I
49	3.06	6.13														49.00
50	3.13	6.25														50.00
51 52	3.19	6.38														51.00
53	3.31	6.63					1									53.00
54	3.38															54.00
55	3.44															55.00
56	3.50		_				1									56.00
57 58	3.56															57.00
59	3.69															59.00
60	3.75	7.50	11.25	15.00	18.75	22.50	26.25	30.00	33.75	37.50	41.25	45.00	48.75	52.50	56.25	60.00
61	3.81															61.00
62 63	3.88	7.75	11.03	15.50	19.38	23.25	27.13	31.00	34.88	38.75	42.03	40.50	50.38	54.25	58.13	62.00
64	3.94 4.00															64.00
65	4.06				1							1 .	-			65.00
66	4.13															66.00
6 7 68	4.19															68.00
69	4.25 4.31															68.00
70	4.38	8.75	13.13	17.50	21.88	26.25	30.63	35.00	39.38	43.75	48.13	52.50	56.88	61.25	65.63	70.00
71	4.44	8.88	13.31	17.75	22.19	26.63	31.06	35.50	39.94	44.38	48.81	53.25	57.69	62.13	66.56	71.00
72	4.50					1				1 -			1			72.00
73 74	4.56															73.00 74.00
75	4.69															75.00
76	4.75	9.50	14.25	19.00	23.75	28.50	33.25	38.00	42.75	47.50	52.25	57.00	61.75	66.50	71.25	76.00
77	4.81	9.63	14.44	19.25	24.06	28.88	33.69	38.50	43.31	48.13	52.94	57.75	62.56	67.38	72.19	77.00
78 79	4.88	9.75	14.03	19.50	24.38	29.25	34.13	39.00	43.88	48.75	53.03	58.50	64.10	60.12	73.13	78.00 79.00
80	5.00															80.00
8 r	5.06	10.13	15.19	20.25	25.31	30.38	35.44	40.50	45.56	50.63	55.69	60.75	65.81	70.88	75.94	81.00
82	5.13	10.25	15.38	20.50	25.63	30.75	35.88	41.00	46.13	51.25	56.38	61.50	66.63	71.75	76.88	82.00
. 83 84	5.19															83.00 84.00
85	5.31															85.00
86	5.38	10.75	16.13	21.50	26.88	32.25	37.63	43.00	48.38	53.75	59.13	64.50	69.88	75.25	80.63	86.00
87	5.44	10.88	16.31	21.75	27.19	32.63	38.06	43.50	48.94	54.38	59.81	65.25	70.69	76.13	81.56	87.00
88																88.00
89 90	5.56	11.13	16.88	22.25	27.81	33.38	30.28	45.00	50.00	55.03	61.88	67.50	72.31	78.75	84.28	89.00 90.00
91	5.69	11.38	17.06	22.75	28.44	34.13	39.81	45.50	51.19	56.88	62.56	68.25	73.94	79.63	85.31	91.00
92	5.75	11.50	17.25	23.00	28.75	34.50	40.25	46.00	51.75	57.50	63.25	69.00	74.75	80.50	86.25	92.00
93	5.81	11.63	17.44	23.25	29.06	34.88	40.69	46.50	52.31	58.13	63.94	69.75	75.56	81.38	87.19	93.00
94 · 95	5.88	11.75	17.81	23.50	29.38	35.25	41.13	47.50	52.88	50.28	65.21	70.50	77.10	82.12	80.06	94.00 95.00
96		12.00	18.00	24.00	30.00	36.00	42.00	48.00	54.00	60.00	66.00	72.00	78.00	84.00	90.00	96.00
97	6.06	12.13	18.19	24.25	30.31	36.38	42.44	48.50	54.56	60.63	66.69	72.75	78.81	84.88	90.94	97.00
98	6.13	12.25	18.38	24.50	30.63	36.75	42.88	49.00	55.13	61.25	67.38	73.50	79.63	85.75	91.88	98.00
99 100	6.19	12.38	18.75	25.00	30.94	37.50	43.31	50.00	55.09	62.50	68.75	75.00	81.25	87.50	92.81	99.00
	0.23		1/3	3.30	1,2,23	37.30	13.73	30.00	130.23	1	30.73	/3.50	3	7,.30	33.73	

TABLE 2. WEIGHTS OF STEEL BARS AND PLATES.

Pounds per Lineal Foot.

Width.	Thickness, Inches.															
Inches.	16	ł	1,6	ł	16	ł	7 16	ī	16	I	116	1	13	7 8	15	I
14 22 33 4	.053 .106 .159	.106 .213 .319 .425	.319	.213 .425 .638 .850	.27 .53 .80		·37 ·74 1.12 1.49	.43 .85 1.28 1.70	.48 .96 1.43	.53 1.06 1.59 2.13	.58 1.17 1.75 2.34	.64 1.28 1.91 2.55	.69 1.38 2.07 2.76	.74 1.49 2.23 2.98	.80 1.59 2.39 3.19	
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$ 2	.266 .319 .372 .425				1.86		1.86 2.23 2.60 2.98	2.13 2.55 2.98 3.40	2.39 2.87 3.35 3.83	2.66 3.19 3.72 4.25	2.92 3.51 4.09 4.68	3.19 3.83 4.46 5.10	4.83	3.72 4.46 5.21 5.95	3.98 4.78 5.58 6.38	5.95
$ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \end{array} $.584	1.063 1.169	1.434 1.594 1.753 1.913	2.125 2.338	2.66 2.92	3.19 3.51	3.35 3.72 4.09 4.46	3.83 4.25 4.68 5.10	4.30 4.78 5.26 5.74	5.31 5.84	5.26 5.84 6.43 7.01	5.74 6.38 7.01 7.65	6.91 7.60	7.44 8.18	7.17 7.97 8.77 9.56	8.50
3 ¹ / ₄ 3 ² / ₂ 3 ⁴ / ₄	·744 ·797	1.488 1.594	2.072 2.23 I 2.39 I 2.550	2.975 3.188			4.83 5.21 5.58 5.95	5.53 5.95 6.38 6.80	6.22 6.69 7.17 7.65	7·44 7·97	7.60 8.18 8.77 9.35	9.56	9.67 10.36	10.41 11.16	11.16 11.95	11.05 11.90 12.75 13.60
$4\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{3}{4}$ 5	.956 1.009	1.913	2.709 2.869 3.028 3.188	3.825 4.038	4.78 5.05	5.42 5.74 6.06 6.38	6.32 6.69 7.07 7.44	8.08		9.56 10.09	10.52	11.48 12.11	12.43 13.12	13.39	14.34 15.14	14.45 15.30 16.15 17.00
5 ¹ / ₄ 5 ¹ / ₂ 5 ³ / ₄ 6	1.169	2.338	3.347 3.506 3.666 3.825	4.675 4.888	5.58 5.84 6.11 6.38	6.69 7.01 7.33 7.65	7.81 8.18 8.55 8.93	9.35 9.78	10.52 11.00	11.69	12.86 13.44	14.03 14.66	15.19 15.88	16.36	17.53 18.33	17.85 18.70 19.55 20.40
$6\frac{1}{4} \\ 6\frac{1}{2} \\ 6\frac{3}{4} \\ 7$	1.381 1.434	2.763 2.869	3.984 4.144 4.303 4.463	5.525 5.738	6.91 7.17	8.29 8.61	9.67 10.04	11.05 11.48	12.43 12.91	13.81 14.34	15.19 15.78	16.58 17.21	17.96 18.65	19.34 20.08	20.72 21.52	21.25 22.10 22.95 23.80
7 ¹ / ₄ 7 ¹ / ₂ 7 ³ / ₄ 8	1.594	3.188 3.294	4.622 4.781 4.941 5.100	6.375 6.588	7.97 8.23	9.56 9.88	11.16	12.75 13.18	14.34 14.82	15.94 16.47	17.53 18.12	19.13 19.76	20.72 21.41	22.31 23.06	23.91 24.70	24.65 25.50 26.35 27.20
8 1 4 1 2 3 4 9	1.806	3.623 3.719	5.259 5.419 5.578 5.738	7.225 7.438	9.03	10.84	12.64 13.02	14.45 14.88	16.26 16.73	18.06 18.59	19.87 20.45	21.68 22.31	23.48 24.17	25.29 26.03	27.09 27.89	28.05 28.90 29.75 30.60
$9\frac{1}{4}$ $9\frac{1}{2}$ $9\frac{3}{4}$ 10	1.966 2.019 2.072	3.931 4.038 4.144	5.897 6.056 6.216	7.863 8.075 8.288	9.83 10.09 10.36	12.11	14.13	16.15 16.58	18.17 18.65	20.19 20.72	22.2 I 22.79	24.23 24.86	26.24 26.93	28.26 29.01	30.28 31.08	31.45 32.30 33.15 34.00
$10\frac{1}{4}$ $10\frac{1}{2}$ $10\frac{3}{4}$ 11	2.23 I 2.284 2.338	4.463 4.569 4.675	6.694 6.853 7.013	8.925 9.138 9.350	11.16 11.42 11.69	13.39 13.71 14.03	15.62 15.99 16.36	17.85 18.28 18.70	20.08 20.56 21.04	22.31 22.84 23.38	24.54 25.13 25.71	26.78 27.41 28.05	29.01 29.70 30.39	31.24 31.98 32.73	33·47 34·27 35.06	34.85 35.70 36.55 37.40
11½ 11½ 11¾ 12	2.444	4.888	7.331 7.491	9.775 9.988	12.22	14.66	17.11	19.55	21.99 22.47	24.44 24.97	26.88 27.47	29.33 29.96	31.77 32.46	34.21 34.96	36.66 37.45	38.25 39.10 39.95 40.80

TABLE 2.—Continued.

WEIGHTS OF STEEL BARS AND PLATES.

POUNDS PER LINEAL FOOT.

Width.																
Inches.	7,0	i	A	1	A	1	16	1	44	1	##	1	+1	i	11	ı
$ \begin{array}{c} 12\frac{1}{2} \\ 13 \\ 13\frac{1}{2} \\ 14 \end{array} $	2.66 2.76 2.87 2.98	5.53 5.74	8.29 8.61	11.05 11.48	13.81 14.34	16.58 17.21	19.34	21.25 22.10 22.95 23.80	24.86 25.82	27.63 28.69	30.4	33.2 34.4	0.0	38.7 40.2	41.4 43.0	
14½ 15 15½ 16	3.08 3.19 3.29 3.40	6.16 6.38 6.59	9.24 9.56 9.88	12.33 12.75 13.18	15.41 15.94 16.47	18.49 19.13 19.76	21.57 22.31 23.06	24.65 25.50 26.35 27.20	27.73 28.69 29.64	30.81 31.88 32.94	33.9 35.1 36.2	37.0 38.3 39.5	40.I 41.4 42.8	43.I 44.6 46.I	46.2 47.8 49.4	49.3 51.0 52.7 54.4
16½ 17 17½ 18	3 51 3.61 3.72 3.83	7.23 7.44	10.84 11.16	14.45 14.88	18.06 18.59	21.68 22.31	25.29 26.03	28.05 28.90 29.75 30.60	32.51 33.47	36.13 37.19	39.7 40.9	43.4 44.6		50.6	54.2 55.8	56.1 57.8 59.5 61.2
18½ 19 19½ 20	3.93 4.04 4.14 4.25	8.08	12.11	16.15 16.58	20.19 20.72	24.23 24.86	28.26 29.01	31.45 32.30 33.15 34.00	36.34 37.29	40.38 41.44	45.6	48.5 49.7	53.9	58.0	60.6 62.2	62.9 64.6 66.3 68.0
$ \begin{array}{c} -20\frac{1}{2} \\ 2I \\ 2I\frac{1}{2} \\ 22 \end{array} $	4.36 4.46 4.57 4.68	8.93 9.14	13.39 13.71	17.85 18.28	22.31 22.84	26.78 27.41	31.24 31.98	34.85 35.70 36.55 37.40	40.16 41.12	44.63	49.1 50.3	52.3 53.6 54.8 56.1	56.6 58.0 59.4 60.8		66 9 68.5	69.7 71.4 73.1 74.8
$ \begin{array}{c} 22\frac{1}{3} \\ 23 \\ 23\frac{1}{3} \\ 24 \end{array} $	4.78 4.89 4.99 5.10	9.78	14.66 14.98	19.55 19.98	24.44 24.97	29.33 29.96	34.21 34.96	38.25 39.10 39.95 40.80	43·99 44·94	48.88 49.94	54.9		62.2 63.5 64.9 66.3	66.9 68.4 69.9 71.4	73·3 74·9	76.5 78.2 79.9 81.6
25 26 27 28	5.53 5.74	11.05	16.58 17.21	22.10 22.95	27.63 28.69	33.I5 34.43	38.68 40.16	42.50 44.20 45.90 47.60	49.73 51.64	55.25 57.38	63.1	63.8 66.3 68.9 71.4	69.1 71.8 74.6 77.4	74·4 77·4 80.3 83.3	79.7 82.9 86.1 89.3	85.0 88.4 91.8 95.2
29 30 31 32	6.38	12.75	19.13 19.76	25.50 26.35	31.88 32 94	38.25 39.53	44.63 46.11	49.30 51.00 52.70 54.40	57.38 59.29	63.75 65.88	70.1 72.5	74.0 76.5 79.1 81.6	80.1 82.9 85.6 88.4	92.2		102.0 105.4
33 34 35 36	7.23 7.44 7.65	14.45 14.88 15.30	21.68 22.31 22.95	28.90 29.75 30.60	36.13 37.19 38.25	43.35 44.63 45.90	50.58 52.06 53.55	56.10 57.80 59.50 61.20	65.03 66.94 68.85	72.25 74.38 76.50	84.2	84.2 86.7 89.3 91.8	93.9 96.7	101.2 104.1	105.2 108.4 111.6 114.8	115.6 119.0
37 38 39 40	8.08 8.29 8.50	16.15 16.58 17.00	24.23 24.86 25.50	32.30 33.15 34.00	40.38 41.44 42.50	48.45 49.73 51.00	56.53 58.01 59.50	62.90 64.60 66.30 68.00	72.68 74.59 76.50	80.75 82.88 85.00	91.2 93.5	96.9 99.5 102.0	105.0 107.7 110.5	113.1 116 0 119.0	117.9 121.1 124.3 127.5	129.2 132.6 136.0
41 42 43 44	8.93 9.14 9.35	17.85 18.28 18.70	26.78 27.41 28.05	35.70 36.55 3 7.4 0	44.63 45.69 46.75	53.55 54.83 56.10	62.48 63.96 65.45	74.80	80.33 82.24 84.15	89.25 91.38 93.50	98.2 100.5 102.9	107.1 109.7 112.2	116.0 118.8 121.6	125.0 127.9 130 9	130.7 133.9 137.1 140.3	142.8 146.2 149.6
45 46 47 48	9.78	19.55	29.33 29.96	39.10	48.88	59.93	68.43	78.20 79 90	87.98 89.89	97·75 99.88	107.5	117.3	127.1 129.8	136.9 139.8	143.4 146.6 149.8 153.0	156.4

TABLE 2.—Continued. WEIGHTS OF STEEL BARS AND PLATES.

Pounds per Lineal Foot.

Width,	Thickness, Inches.															
Inches.	16	1	3 16	ł	16	ı	7 16	ı	16	ă	11	1	118	I	11	I
49 50 51 52	10.4 10.6 10.8 11.1	20.8 21.3 21.7 22.1	31.2 31.9 32.5 33.2	41.7 42.5 43.4 44.2	52.1 53.1 54.2 55.3	62.5 63.8 65.0 66.3	72.9 74.4 75.9 77.4	83.3 85.0 86.7 88.4	95.6 97.5	106.3	114.5 116.9 119.2 121.6	127.5	138.1 140.9	148.8 151.7	159.4 162.6	170.0
53 54 55 56	11.3 11.5 11.7 11.9	22.5 23.0 23.4 23.8	33.8 34.4 35.1 35.7	45.1 45.9 46.8 47.6	56.3 57.4 58.4 59.5	67.6 68.9 70.1 71.4	78.8 80.3 81.8 83.3	91.8 93.5 95.2	103.3 105.2 107.1	1 14 .8 116.9 119.0	123.9 126.2 128.6 130.9	137.7 140.3 142.8	149 2 151.9 154.7	160.7 163.6 166.6	172.1 175.3 178.5	183.6 187 0 190.4
57 58 59 60	12.1 12.3 12.5 12.8	24.2 24.7 25.1 25.5	36.3 37.0 37.6 38.3	48.5 49.3 50.2 51.0	60.6 61.6 62.7 63.8	72.7 74.0 75.2 76.5	89.3	98.6 100.3 102.0	110.9 112 8 114.8	123.3 125.4 127.5	133.2 135.6 137.9 140.3	147.9 150.5 153.0	160.2 163.0 165.8	172.6 175.5 178.5	184.9 188.1 191.3	197.2 200.6 204.0
61 62 63 64	13.0 13.2 13.4 13.6	25.9 26.4 26.8 27.2	38 9 39.5 40.2 40.8	51.9 52.7 53.6 54.4	64.8 65.9 66.9 68.0	77.8 79.1 80.3 81.6	92.2 93.7 95.2	105.4 107.1 108.8	118.6 120.5 122.4	131.8 133.9 136.0	142.6 144.9 147.3 149.6 151.9	158.1 160.7 163.2	171.3 174.0 176.8	184 5 187.4 190 4	197.6 200.8 204.0	210.8 214.2 217.6
65 66 67 68 69	14.0 14.2 14.5	27.6 28.1 28.5 28.9 29.3	41.4 42.1 42.7 43.4 44.0	55.3 56.1 57.0 57.8 58.7	70.1 71.2 72.3 73.3	82.9 84.2 85.4 86.7	98.2 99.7 101.2	112.2 113.9 115.6	126.2 128.1 130.1	140.3 142.4 174.5	154.3 156.6 159.0 161.3	168.3 170.9 173 4	182.3 185.1 187.9	196.4 199.3 202.3	210.4 213.6 216.8	224.4 227.8. 231.2
70 71 72 73	14.9 15.1 15.3 15.5	29.8 30.2 30.6 31.0	44.6 45.3 45.9 46.5	59.5 60.4 61.2 62.1	75.4 75.4 76.5 77.6	89.3 90.5 91.8	104.1 105.6 107.1	119.0 120.7 122.4	133.9 135.8 137.7	148.8 150.9 153.0	163.6 166.0 168.3	178.5 181.1 183.6	193.4 196.1 198.9	208.3 211.2 214.2	223.I 226.3 229.5	238.0 241.4 244.8
74 75 76	15.7 15.9 16.2 16.4	31.5 31.9 32.3 32.7	47.2 47.8 48.5 49.1	62.9 63.8 64.6 65.5	78.6 79.7 80.8 81.8	94·4 95.6 96.9	110.1 111.6 113.1	125.8 127.5 129.2	141.5 143 4 145.4	157.3 159.4 161.5	173.0 175.3 177.7 180.0	188.7 191.3 193.8	204.4 207.2 210.0	220.2 223.1 226.1	235.9 239.1 242.3	251.6 255.0
78 79 80 81	16.6 16.8 17.0	33.2 33.6 34.0 34.4	49.7 50.4 51.0 51.6	66.3 67.2 68.0 68.9	85.0 86.1	99.5 100.7 102.0 103.3	116.0 117.5 119.0 120 5	132.6 134.3 136.0 137.7	149.2 151.1 153.0 154.9	165.8 167.9 170.0 172.1	182.3 184.7 187.0 189.3	198.9 201.5 204.0 206.6	215.5 218.2 221.0 223.8	232.I 235.0 238.0 241.0	248.6 251.8 255.0 258.2	268.6 272.0 275.4
82 83 84 85	17.4 17.6 17.9 18.1	34.9 35.3 35.7 36.1	52.3 52.9 53.6 54.2	69.7 70.6 71.4 72.3	87.1 88.2 89.3 90.3	104.6 105.8 107.1 108.4	122.0 123.5 125.0 126.4	139.4 141.1 142.8 144.5	156.8 158.7 160.7 162.6	174.3 176.4 178.5 180.6	191.7 194.0 196 4 198.7	209.1 211.7 214.2 216.8	226.5 229.3 232.1 234.8	244.0 246.9 249.9 252.9	261.4 264.6 267.8 270 9	278.8 282.2 285.6 289.0
86 87 88 89	18.3 18.5 18.7 18.9	36.6 37.0 37.4 37.8	54.8 55.5 56.1 56.7	73.1 74.0 74.8 75.7	92.4 93.5 94.6	110.9 112.2 113.5	129.4 130.9 132.4	147.9 149.6 151.3	166.4 168.3 170.2	184.9 187.0 189.1	208.0	221.9 224.4 227.0	240.3 243.1 245.9	258.8 261.8 264.8	277.3 280.5 283.7	295.8 299.2 302.6
90 91 92 93	19.1 19.3 19.6 19.8	38.3 38.7 39.1 39.5	57.4 58.0 58.7 59.3	76.5 77.4 78.2 79.1	96.7 97.8 98.8	116.0 117.3 118.6	135.4 136.9 138.3	154.7 156.4 158.1	174.0 176.0 177.9	193.4 195.5 197.6	215.1	232.I 234.6 237.2	251.4 254.2 256.9	270.7 273.7 276.7	290.1 293.3 296.4	309.4 312.8 316.2
94 95 96 97	20.0 20.2 20.4 20.6	40.0 40.4 40.8 41.2	59.9 60.6 61.2 61.8	79.9 80.8 81.6 82.5	100.9 102.0 103.1	121.1 122.4 123.7	141.3 142.8 144.3	161.5 163.2 164.9	181.7 183.6 185.5	201.9 204.0 206.1	222.1 224.4 226.7	242.3 244.8 247.4	262.4 265.2 268.0	282.6 285.6 288.6	302.8 306.0 309.2	319.6 323.0 326.4 329.8
98 99 100	20.8 21.0 21.3	41.7 42.1 42.5	62 5 63 I 63.8	83.3 84.2 85.0	104.1	125.0	145.8	166.6	187 4	208.3	229.I 23I.4	249.9 252.5	270.7 273.5	291.6	312.4	333.2

TABLE 3.

MOMENTS OF INERTIA OF PLATES, AXIS I-1.

						- E			AXIS I				
			ts of Iner ne Plate.	tia		1	1	<u>l</u>			About is z-z.		
h in					,	Thickness	of Plate	in Inche	·s.				
Width in Inches.	ł	A		¥8	3	1,8		tà	ž	18	Ĭ.	18	ı
5	2.6	3.3	3.9 6.8	4.6	1	5.9	6.5		7.8	8.5	9.1	9.8	10.
	4.5	5.6		7.9	9.0	10.1	11.3	12.4	13.5	14.6	15.8	16.9	18.
7 8	7.1	8.9	10.7	12.5	14.3	16.1	17.9	1	21.4	23.2	25.0	26.8	28.
	10.7	13.3	16.0	18.7	21.3	24.0	26.7	29.3	32.0	34.7	37-3	40.0	42.
9	15.2	19.0	22.0	20.0	30.4	34.2	38.0	41.8	45.6	49.4	53.2	57.0	60.
IO	20.8	26.0	31.3	36.5	41.7	46.9	52.1	57.3	62.5	67.7	72.9		83.
II	27.7	34.7	41.6	48.5	55.5	62.4	69.3	76.3	83.2	90.1	97.0		110.
12	36.0	45.0	54.0	63.0	72.0	81.0	90.0	-	108.0	117.0			144.
13	45.8	57.2	68.7	80.1	91.5	103.0	114.4	125.9	137.3	148.8	160.2		183.
14	57.2	71.5	85.8	100.0	114.3	120.0	142.9	157.2	171.5	185.8	200.1	214.4	228.
15	70.3	87.9	105.5	123.0	140.6	158.2	175.8	193.4	210.9	228.5	246.1	263.7	281.
16	85.3	106.7	128.0	149.3	170.7	192.0	213.3	234.7	256.0	277.3	298.7	320.0	341.
17	102.4	127.9	153.5	179.1	204.7	230.3	255.9	281.5	307.1	332.7	358.2	383.8	409
18	121.5	151.9	182.3	212.6	243.0	273.4	303.8	334.1		394.9	425.3	455.6	486.
19	142.9	178.6	214.3	250.1	285.8	321.5	357.2	393.0	428.7	464.4	500.1	535-9	571.
20	166.7	208.3	250.0	291.7	333-3	375.0	416.7	458.3	500.0	541.7	583.3	625.0	666.
21	192.9	241.2	289.4	337.6	385.9	434.I	482.3	530.6	578.8	627.0	675.3	723-5	771.
22	221.8	277.3	332.7	388.2	443.7	499.1	554.6	610.0	665.5		776.4	831.9	887.
23	253.5	316.9	380.2	443.6	507.0	570.3	633.7	697.1	760.4	823.8			
24	288.0	360.0	432.0	504.0	576.0	648.0	720.0	792.0	864.0	936.0	1008.0	1080.0	1152.
25	325.5	406.9	488.3	569.7	651.0	732.4	813.8	895.2	976.6	1057.9	1139.3	1220.7	1302.
26	366.2	457-7	549.3	640.8	732.3	823.9	915.4			1190.0	1281.6	1373.1	1464.
27	410.1	512.6	615.1	717.6	820.1	922.6			1230.2			1537.7	
28	457.3	571.7	686.0	800.3	914.7	1029.0			1372.0			1715.0	
29	508.1	635.1	762.2	889.2	1016.2	1143.2	1270.3	1397.3	1524.3	1651.3	1778.4	1905.4	2032
30	562.5	703.1	843.8	984.4	1125.0	1265.6	1406.3	1546.9	1687.5	1828.1	1968.8	2109.4	2250.0
31	620.6	775.8	931.0		1241.3		1551.6		1861.9			2327.4	
32	682.7	853.3	1024.0			1536.0						2560.0	
33	748.7	935.9		1310.2		1684.5		2058.9	2246.1	2433.2	2620.4	2807.6	2994.
34	818.8	1023.5	1228.2	1433.0	1637.7	1842.4	2047.1	2251.8	2456.5	2661.2	2865.9	3070.6	3275.3
35	893.2		1339.8	1563.2	1786.5	2009.8	2233.1	2456.4	2679.7	2903.0	3126.3	3349.6	3572.0
36	972.0	1215.0	1458.0	1701.0	1944.0	2187.0	2430.0	2673.0	2916.0	3159.0	3402.0	3645.0	3888.0
37	1055.3	1319.1	1582.9	1846.7	2110.5	2374.4	2638.2	2902.0	3165.8	3429.6	3693.4	3957-3	4221.1
38		1429.0	1714.7	2000.5	2286.3	2572.I	2857.9	3143.7	3429.5	3715.3	4001.1	4286.9	4572.7
39	1235.8	1544.8	1853.7	2162.7	2471.6	2780.6	3089.5	3398.5	3707.4	4016.4		4634.3	
40	1333.3	1666.7	2000.0	2333.3	2666.7	3000.0	3333.3	3666.7	4000.0	4333.3	4666.7	5000.0	5333.3
41						3230.7						5384.5	
42	1543.5	1929.4	2315.3	270I.I	3087.0	3472.9	3858.8	4244.6	4630.5	5016.4	5402.3	5788.2	6174.0
43	1656.4	2070.5	2484.6	2898.7	3312.8	3726.9	4141.0	4555.0	4969.2	5383.3	5797-4	6211.5	6625.6
44	1774.7	2218.3	2662.0	3105.7	3549-3	3993.0	4436.7	4880.3	5324.0	5767.7	6211.3	6655.0	7098.7

TABLE 3.—Continued.

MOMENTS OF INERTIA OF PLATES, AXIS I-I.

			s of Inera ne Plate.	tia		1	1	-			bout is 1-1.		
h in					7	hickness	of Plate	in Inche	s.				
Width in Inches.	ł	5 16	38	7 16	1/2	76 16	<u>5</u>	116	3	13 16	7 8	15	. I
45 46 47 48 49	1898 2028 2163 2304 2451	2373 2535 2704 2880 3064	2848 3042 3244 3456 3677	3322 3549 3785 4032 4289	3797 4056 4326 4608 4902	4271 4563 4867 5184 5515	4746 5070 5407 5760 6128	5221 5577 5948 6336 6740	5695 6083 6489 6912 7353		7570 8064	8640	8111 8652 9216
50 52 54 56 58	2604 2929 3280 3659 4065	3255 3662 4101 4573 5081	3906 4394 4921 5488 6097	4557 5126 5741 6403 7113	5208 5859 6561 7317 8130	5859 6591 7381 8232 9146	6510 7323 8201 9147 10162	7161 8056 9021 10061 11178	7812 8788 9841 10976 12194	9520 10662 11891	10253 11482 12805	10985 12302 13720	11717 13122 14635
60 62 64 66 68	4500 4965 5461 5989 6551	5625 6206 6827 7487 8188	6750 7448 8192 8984 9826	7875 8689 9557 10482 11464	9000 9930 10923 11979 13101	10125 11172 12288 13476 14739	11250 12413 13653 14974 16377	12375 13654 15019 16471 18014	13500 14895 16384 17968 19652	16137 17749 19466	17378 19115 20963	18619 20480 22461	19861 21845 23958
70 72 74 76 78	7145 7776 8442 9145 9886	8932 9720 10553 11432 12358	10719 11664 12663 13718 14830	i2505 13608 14774 16004 17301	14292 15552 16884 18291 19773	16078 17496 18995 20577 22245	17865 19440 21105 22863 24716	19651 21384 23216 25150 27188	21437 23328 25326 27436 29659	27437 29722	27216 29548 32009	29160 31658 34295	33769 36581
80 82 84 86 88	10667 11487 12348 13251 14197	13333 14359 15435 16564 17747	16000 17230 18522 19877 21296	18667 20102 21609 23190 24845	21333 22974 24696 26502 28395	24000 25845 27783 29815 31944	26667 28717 30870 33128 35493	29333 31589 33957 36441 39043	32000 34460 37044 39753 42592	37332	43218 46379	46305	45947 49392 53005
90 92 94 96 98	15187 16223 17304 18432 19608	18984 20278 21630 23040 24510	22781 24334 25956 27648 29412	26578 28390 30282 32256 34314	30375 32445 34608 36864 39216	34172 36501 38934 41472 44118	37969 40557 43260 46080 49020	41766 44612 47586 50688 53922	45562 48668 51911 55296 58824	49359 52724 56237 59904 63727	56779 60563	60835 64889 69120	69215
100 102 104 106 108	20833 22108 23435 24813 26244	26042 27636 29293 31016 32805	31250 33163 35152 37219 39366	36458 38690 41011 43422 45927	41667 44217 46869 49626 52488	46875 49744 52728 55829 59049	52083 55271 58587 62032 65610	57292 60798 64445 68235 72171	62500 66325 70304 74438 78732	67708 71853 76163 80642 85293	72917 77380 82021 86845 91854	87880 93048	10.00
110 112 114 116 118 120	27729 29269 30865 32519 34230 36000	34661 36587 38582 40648 42787 45000	41594 43904 46298 48778 51345 54000	48526 51221 54015 56908 59902 63000	55458 58539 61731 65037 68460 72000	62391 65856 69447 73167 77017 81000	69323 73173 77164 81297 85575 90000	76255 80491 84880 89426 94132 99000	97556 102689	100313 105686 111247	102443 108029 113815 119804	103984 109760 115746 121945 128362 135000	117077 123462 130075 136919

TABLE 4.

MOMENTS OF INERTIA OF PLATES, AXIS 2-2.

5 OI O2 O3 O5 O7 IO .14 .18 .22 .28 .34 6 OI .02 .03 .04 .06 .09 .12 .16 .21 .27 .33 .41 7 OI .02 .03 .05 .07 .10 .14 .19 .25 .31 .39 .48 9 .01 .02 .04 .06 .09 .13 .18 .24 .32 .45 .55 10 .01 .03 .04 .07 .10 .15 .20 .27 .35 .45 .56 .69 11 .01 .03 .04 .07 .10 .15 .20 .27 .35 .45 .56 .69 12 .02 .03 .05 .08 .11 .16 .22 .33 .42		Moi	nents of of One l	Inertia Plate.		2			2			About dis 2-2.		
Table Tabl	in					Тню	CKNESS (F PLATE	s in Inc	HES.				
6 .oI .o2 .o3 .o9 .o5 .o9 .l12 .l6 .21 .27 .33 .41 .25 .31 .39 .48	Inches.	2	₹ 8	1	ਪੌਰ	è	18	1	118	1	18	X	18	1
6 OI O2 O3 O9 LIZ LIG C21 C27 C33 A9 A8 8 OI O2 O4 O6 O8 LIZ LIG L25 C31 C39 A48 C30 9 OI O2 O4 O6 O9 L13 L18 C24 .32 .36 .45 .55 .45 10 O.01 O3 O.9 L1 O.01 L15 C20 .27 .35 .45 .56 .62 .51 .73 11 O.1 O.3 O.9 .08 .13 .18 .24 .33 .42 .54 .67 .82 I. 12 O.2 .04 .06 .10 .15 .21 .28 .38 .49 .63 .89 I. 13 .02 .04 .07 .10 .16 .22 .31 .41 .53 .67 .84 </td <td>5</td> <td>.01</td> <td>.01</td> <td>.02</td> <td>.03</td> <td>.05</td> <td>.07</td> <td>.10</td> <td>.14</td> <td>.18</td> <td>.22</td> <td>.28</td> <td>-34</td> <td>.42</td>	5	.01	.01	.02	.03	.05	.07	.10	.14	.18	.22	.28	-34	.42
8 .oI .o2 .o4 .o6 .o8 .12 .16 .22 .28 .36 .45 .55 .5 .0 .01 .02 .04 .o6 .o9 .13 .18 .24 .32 .40 .50 .62	6	.01	.02	.03	.04	.06	.09	.12	.16	.2 I	.27	-33	.41	.50
10		.01	.02	.03								-39	.48	.58
10										1			-55	.67
11 .O1 .O3 .O5 .O8 .II .I6 .22 .30 .39 .49 .61 .76 13 .O2 .O3 .O5 .O8 .I3 .18 .24 .33 .42 .54 .67 .82 14 .O2 .O4 .O6 .IO .I5 .21 .28 .38 .49 .63 .78 .96 I. 15 .O2 .O4 .O6 .IO .I6 .22 .31 .41 .53 .67 .84 I.O3 I. 16 .O2 .O4 .O7 .II .I7 .24 .33 .43 .56 .72 .89 I.I.D .17 .17 .18 .02 .05 .08 .13 .19 .27 .37 .49 .63 .80 I.O0 .124 I. 17 .0 .05 .09 .I4 .21 .30 .	9	10.	.02	.04	.06	.09	.13	.18	.24	.32	.40	.50	.62	.75
12 .02 .03 .05 .08 .13 .18 .24 .33 .42 .54 .67 .82 1.1 13 .02 .03 .06 .09 .14 .19 .26 .35 .46 .58 .73 .89 1.1 14 .02 .04 .07 .10 .16 .22 .31 .41 .53 .67 .84 1.03 1.1 16 .02 .04 .07 .11 .17 .24 .33 .43 .56 .72 .89 1.10 1.1 17 .02 .04 .07 .12 .18 .25 .35 .46 .60 .76 .95 1.17 1.17 1.17 .24 .33 .43 .56 .72 .89 1.10 1.1 .17 .26 .35 .35 .46 .60 .76 .85 1.06 .12 .14 .11 .21 .33	10	.01	.03	.04	.07	.10	.15	.20	.27	-35	-45	.56	.69	.83
12 .02 .03 .05 .08 .13 .18 .24 .33 .42 .54 .67 .82 .1 13 .02 .03 .06 .09 .14 .19 .26 .35 .46 .58 .73 .89 1. 14 .02 .04 .06 .10 .15 .21 .28 .38 .49 .63 .78 .96 1. 15 .02 .04 .07 .11 .17 .24 .33 .43 .56 .72 .89 1.10 1. 17 .02 .04 .07 .12 .18 .25 .35 .46 .60 .76 .95 1.17 1.17 1.17 .24 .33 .43 .56 .72 .89 1.10 1. 18 .02 .05 .08 .13 .20 .28 .39 .51 .67 .85 1.00 .10 .	**	.OI	.03	.05	.08	.II			.30				.76	.92
13	12	.02		.05		.13		.24	-33	.42	-54			1.00
15 .02 .04 .07 .10 .16 .22 .31 .41 .53 .67 .84 1.03 1 16 .02 .04 .07 .11 .17 .24 .33 .43 .56 .72 .89 1.10 1 17 .02 .04 .07 .12 .18 .25 .35 .46 .60 .76 .95 1.17 1 18 .02 .05 .08 .13 .19 .27 .37 .49 .63 .80 1.00 1.24 1.1 19 .02 .05 .08 .13 .20 .27 .37 .49 .63 .80 1.00 1.24 1.1 20 .03 .05 .09 .15 .22 .31 .41 .54 .70 .89 1.12 1.37 1.4 21 .03 .05 .09 .15 .22 .31 .4				.06				.26			.58	.73		1.08
16 .02 .04 .07 .11 .17 .24 .33 .43 .56 .72 .89 I.10 I.1 18 .02 .04 .07 .12 .18 .25 .35 .46 .60 .76 .95 1.17 I.1 19 .02 .05 .08 .13 .19 .27 .37 .49 .63 .80 1.00 1.24 1.1 19 .02 .05 .08 .13 .20 .28 .39 .51 .67 .85 1.06 1.30 1.2 20 .03 .05 .09 .14 .21 .30 .41 .54 .70 .89 1.12 1.37 1.2 21 .03 .05 .09 .15 .22 .31 .43 .57 .74 .94 .1.17 1.44 1.2 22 .03 .06 .10 .16 .24 .34	14	.02	.04	.06	.10	.15	.21	.28	.38	-49	.63	.78	.96	1.17
16 .02 .04 .07 .11 .17 .24 .33 .43 .56 .72 .89 I.10 I.1 18 .02 .04 .07 .12 .18 .25 .35 .46 .60 .76 .95 1.17 I.1 19 .02 .05 .08 .13 .19 .27 .37 .49 .63 .80 1.00 1.24 1.1 19 .02 .05 .08 .13 .20 .28 .39 .51 .67 .85 1.06 1.30 1.2 20 .03 .05 .09 .14 .21 .30 .41 .54 .70 .89 1.12 1.37 1.2 21 .03 .05 .09 .15 .22 .31 .43 .57 .74 .94 .1.17 1.44 1.2 22 .03 .06 .10 .16 .24 .34	15	.02	.04	.07	.10	.16	.22	.31	.41	.53	.67	.84	1.03	1.25
17 .02 .04 .07 .12 .18 .25 .35 .46 .60 .76 .95 1.17 1. 18 .02 .05 .08 .13 .19 .27 .37 .49 .63 .80 1.00 1.24 1. 19 .02 .05 .08 .13 .20 .28 .39 .51 .67 .85 1.06 1.20 1. 20 .03 .05 .09 .14 .21 .30 .41 .54 .70 .89 1.12 1.37 1. 21 .03 .05 .09 .15 .22 .31 .43 .57 .74 .94 1.17 1.44 1. 22 .03 .06 .10 .16 .24 .34 .47 .62 .81 1.03 1.28 1.58 1. 23 .03 .06 .11 .17 .25 .36 <th< td=""><td></td><td></td><td></td><td></td><td>.11</td><td></td><td></td><td></td><td></td><td></td><td>.72</td><td></td><td></td><td>1.33</td></th<>					.11						.72			1.33
18 .02 .05 .08 .13 .19 .27 .37 .49 .63 .80 1.00 1.24 1.1 20 .03 .05 .09 .14 .21 .30 .41 .54 .70 .89 1.12 1.37 1. 21 .03 .05 .09 .15 .22 .31 .43 .57 .74 .94 1.17 1.44 1. 22 .03 .06 .10 .15 .23 .33 .45 .60 .77 .98 1.23 1.51 1. 23 .03 .06 .10 .16 .24 .34 .47 .62 .81 1.03 1.28 1.58 1. 24 .03 .06 .11 .17 .26 .37 .51 .68 .88 1.12 1.40 1.72 2. 25 .03 .06 .11 .17 .26 .37		1	.04	.07						.60	.76			1.42
19 .02 .05 .08 .13 .20 .28 .39 .51 .67 .85 1.06 1.30 1.2 20 .03 .05 .09 .14 .21 .30 .41 .54 .70 .89 1.12 1.37 1. 21 .03 .05 .09 .15 .22 .31 .43 .57 .74 .94 1.17 1.44 1. 22 .03 .06 .10 .15 .23 .33 .45 .60 .77 .98 1.23 1.51 1. 24 .03 .06 .10 .16 .24 .34 .47 .62 .81 1.03 1.28 1.58 1. 25 .03 .06 .11 .17 .26 .37 .51 .68 .88 1.12 1.40 1.72 2 26 .03 .07 .11 .18 .27 .39 <	18	.02		.08	.13	.19				.63	.80	1.00		1.50
21	19	.02	.05	.08	.13	.20	.28		.51	.67	.85	1.06	1.30	1.58
21	20	.03	.05	.00	.14	.21	.30	.41	.54	.70	.80	1.12	1.37	1.67
23 .03 .06 .10 .16 .24 .34 .47 .62 .81 1.03 1.28 1.58 1. 24 .03 .06 .11 .17 .25 .36 .49 .65 .84 1.07 1.34 1.65 2. 25 .03 .06 .11 .17 .26 .37 .51 .68 .88 1.12 1.40 1.72 2. 26 .03 .07 .11 .18 .27 .39 .53 .70 .91 1.16 1.45 1.79 2. 27 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2. 28 .04 .07 .13 .20 .39 .43 .59 .79 1.02 1.30 1.62 1.99 2. 30 .04 .08 .13 .21 .31 .44		-	.05				.31							1.75
23 .03 .06 .10 .16 .24 .34 .47 .62 .81 1.03 1.28 1.58 1. 24 .03 .06 .11 .17 .25 .36 .49 .65 .84 1.07 1.34 1.65 2. 25 .03 .06 .11 .17 .26 .37 .51 .68 .88 1.12 1.40 1.72 2. 26 .03 .07 .11 .18 .27 .39 .53 .70 .91 1.16 1.45 1.79 2. 27 .04 .07 .12 .19 .28 .40 .55 .73 .95 1.21 1.51 1.85 2. 28 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2. 30 .04 .08 .13 .21 .31 .44			.06						.60	.77				1.83
24 .03 .06 .11 .17 .25 .36 .49 .65 .84 1.07 1.34 1.65 2. 25 .03 .06 .11 .17 .26 .37 .51 .68 .88 1.12 1.40 1.72 2. 26 .03 .07 .11 .18 .27 .39 .53 .70 .91 1.16 1.45 1.79 2. 27 .04 .07 .12 .19 .28 .40 .55 .73 .95 1.21 1.51 1.85 2. 28 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2. 30 .04 .08 .13 .21 .31 .44 .61 .81 1.05 1.34 1.67 2.06 2. 32 .04 .08 .14 .22 .33 .47	23	.03		.IO	.16	.24				.81	1.03	1.28		1.92
26 .03 .07 .11 .18 .27 .39 .53 .70 .91 1.16 1.45 1.79 2 27 .04 .07 .12 .19 .28 .40 .55 .73 .95 1.21 1.51 1.85 2 28 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2 29 .04 .07 .13 .20 .30 .43 .59 .79 1.02 1.30 1.62 1.99 2 30 .04 .08 .14 .22 .33 .47 .65 .87 1.12 1.43 1.79 2.20 2 34 .04 .09 .15 .24 .35 .50 .69 .92 1.20 1.52 1.90 2.33 2 36 .05 .09 .16 .25 .38 .53	24	.03	.06	.11	.17	.25	.36	-49	.65	.84	1.07	1.34	1.65	2.00
26 .03 .07 .11 .18 .27 .39 .53 .70 .91 1.16 1.45 1.79 2 27 .04 .07 .12 .19 .28 .40 .55 .73 .95 1.21 1.51 1.85 2 28 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2 29 .04 .07 .13 .20 .30 .43 .59 .79 1.02 1.30 1.62 1.99 2 30 .04 .08 .14 .22 .33 .47 .65 .87 1.12 1.43 1.79 2.20 2 34 .04 .09 .15 .24 .35 .50 .69 .92 1.20 1.52 1.90 2.33 2 36 .05 .09 .16 .25 .38 .53	25	.03	.06	.11	.17	.26	.37	.51	.68	.88	1.12	1.40	1.72	2.08
27 .04 .07 .12 .19 .28 .40 .55 .73 .95 1.21 1.51 1.85 2.2 28 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2. 39 .04 .07 .13 .20 .30 .43 .59 .79 1.02 1.30 1.62 1.99 2. 30 .04 .08 .13 .21 .31 .44 .61 .81 1.05 1.34 1.67 2.06 2. 32 .04 .08 .14 .22 .33 .47 .65 .87 1.12 1.43 1.79 2.20 2. 34 .04 .09 .15 .24 .35 .50 .69 .92 1.20 1.52 1.90 2.33 2. 36 .05 .09 .16 .25 .38 .53			.07			.27			.70	.91				2.17
28 .04 .07 .12 .20 .29 .42 .57 .76 .98 1.25 1.56 1.92 2.2 30 .04 .08 .13 .21 .31 .44 .61 .81 1.05 1.34 1.67 2.06 2.3 32 .04 .08 .14 .22 .33 .47 .65 .87 1.12 1.43 1.79 2.20 2.3 34 .04 .09 .15 .24 .35 .50 .69 .92 1.20 1.52 1.90 2.33 2.3 36 .05 .09 .16 .25 .38 .53 .73 .98 1.27 1.61 2.01 2.47 3.3 40 .05 .10 .18 .28 .42 .59 .81 1.08 1.41 1.79 2.23 2.75 3.4 42 .05 .11 .18 .29 .44 .6	27			.12	.19	.28					1.21		1.85	2.25
30	28	.04	.07	.12	.20	.29	.42		.76	.98	1.25	1.56	1.92	2.33
32 .04 .08 .14 .22 .33 .47 .65 .87 I.12 I.43 I.79 2.20 2.33 2.34 .35 .50 .69 .92 I.20 I.52 I.90 2.33 2.34 2.88 3.3 3.34 1.70 2.11 2.11 1.18 2.29 4.44 .62 .85 1.14 1.48 1.88 2.34 2.88 3.3 3.4	29	.0.4	.07	.13	.20	.30	-43	-59	.79	1.02	1.30	1.62	1.99	2.42
32 .04 .08 .14 .22 .33 .47 .65 .87 I.12 I.43 I.79 2.20 2.33 2.34 .35 .50 .69 .92 I.20 I.52 I.90 2.33 2.34 2.88 3.3 3.34 1.70 2.11 2.11 1.18 2.29 4.44 .62 .85 1.14 1.48 1.88 2.34 2.88 3.3 3.4	30	.04	.08	.13	.21	.31	.44	.61	.81	1.05	1.34	1.67	2.06	2.50
34 .04 .09 .15 .24 .35 .50 .69 .92 1.20 1.52 1.90 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.47 3.33 2.47 3.33 2.47 3.33 2.47 3.33 2.47 3.33 2.47 3.34 1.70 2.12 2.61 3.33 2.47 3.43 1.70 2.12 2.61 3.33 2.61 3.33 2.61 3.33 2.61 3.33 2.61 3.33 3.34 1.70 2.12 2.61 3.33 2.75 3.34 1.70 2.12 2.61 3.33 2.75 3.43 4.44 1.62 .85 1.14 1.48 1.88 2.34 2.88 3.34 3.44 1.65 .90 1.19 1.55 1.97 2.46 3.02 3.44 3.65 .90 1.19 1.55 1.97 2.46 3.02 3.16								.65						2.6
36 .05 .09 .16 .25 .38 .53 .73 .98 I.27 I.6I 2.0I 2.47 3.38 40 .05 .10 .18 .28 .42 .59 .8I I.08 I.4I I.79 2.23 2.75 3.42 42 .05 .1I .18 .29 .44 .62 .85 I.14 I.48 1.88 2.34 2.88 3.44 44 .06 .1I .19 .3I .46 .65 .90 I.19 I.55 I.97 2.46 3.02 3.48 48 .06 .12 .20 .32 .48 .68 .94 I.25 I.62 2.06 2.57 3.16 3. 48 .06 .12 .21 .33 .50 .71 .98 I.30 I.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52			.09	.15	.24	-35	.50	.69		1.20			2.33	2.83
38 .05 .10 .17 .27 .40 .56 .77 I.03 I.34 I.70 2.12 2.61 3. 40 .05 .10 .18 .28 .42 .59 .81 I.08 I.41 I.79 2.23 2.75 3. 42 .05 .11 .18 .29 .44 .62 .85 I.14 I.48 1.88 2.34 2.88 3. 44 .06 .11 .19 .31 .46 .65 .90 I.19 I.55 I.97 2.46 3.02 3. 46 .06 .12 .20 .32 .48 .68 .94 I.25 I.62 2.06 2.57 3.16 3. 48 .06 .12 .21 .33 .50 .71 .98 I.30 I.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52 .74 I.02 I.35 I.76 2.23 2.79 3.43 4. 52 .07 .13 .23 .36 .54 .77 I.05 I.4I I.82 2.32 2.90 3.57 4.		.05	.09	.16	.25	.38	-53	.73	.98	1.27				3.00
42 .05 .11 .18 .29 .44 .62 .85 1.14 1.48 1.88 2.34 2.88 3. 44 .06 .11 .19 .31 .46 .65 .90 1.19 1.55 1.97 2.46 3.02 3. 46 .06 .12 .20 .32 .48 .68 .94 1.25 1.62 2.06 2.57 3.16 3. 48 .06 .12 .21 .33 .50 .71 .98 1.30 1.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52 .74 1.02 1.35 1.76 2.23 2.79 3.43 4. 52 .07 .13 .23 .36 .54 .77 1.05 1.41 1.82 2.32 2.90 3.57 4. 54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4.	38	.05	.10	.17	.27	.40	.56	-77	1.03	1.34	1.70	2.12	2.61	3.17
42 .05 .11 .18 .29 .44 .62 .85 1.14 1.48 1.88 2.34 2.88 3. 44 .06 .11 .19 .31 .46 .65 .90 1.19 1.55 1.97 2.46 3.02 3. 46 .06 .12 .20 .32 .48 .68 .94 1.25 1.62 2.06 2.57 3.16 3. 48 .06 .12 .21 .33 .50 .71 .98 1.30 1.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52 .74 1.02 1.35 1.76 2.23 2.79 3.43 4. 52 .07 .13 .23 .36 .54 .77 1.05 1.41 1.82 2.32 2.90 3.57 4. 54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4.	40	.05	.10	.18	.28	.42	.59	.81	1.08	1.41	1.79	2.23	2.75	3.33
44 .06 .11 .19 .31 .46 .65 .90 1.19 1.55 1.97 2.46 3.02 3.46 46 .06 .12 .20 .32 .48 .68 .94 1.25 1.62 2.06 2.57 3.16 3.46 48 .06 .12 .21 .33 .50 .71 .98 1.30 1.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52 .74 1.02 1.35 1.76 2.23 2.79 3.43 4. 52 .07 .13 .23 .36 .54 .77 1.05 1.41 1.82 2.32 2.90 3.57 4. 54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4. 56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.<		.05		.18	.29		.62						2.88	3.50
46 .06 .12 .20 .32 .48 .68 .94 1.25 1.62 2.06 2.57 3.16 3.48 48 .06 .12 .21 .33 .50 .71 .98 1.30 1.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52 .74 1.02 1.35 1.76 2.23 2.79 3.43 4. 52 .07 .13 .23 .36 .54 .77 1.05 1.41 1.82 2.32 2.90 3.57 4. 54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4. 56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.					.31	.46	.65	.90	1.19	1.55		2.46		3.67
48 .06 .12 .21 .33 .50 .71 .98 1.30 1.69 2.15 2.68 3.30 4. 50 .07 .13 .22 .35 .52 .74 1.02 1.35 1.76 2.23 2.79 3.43 4. 52 .07 .13 .23 .36 .54 .77 1.05 1.41 1.82 2.32 2.90 3.57 4. 54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4. 56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.						.48								3.83
54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4. 56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.	48	.06	.12	.21	-33	.50	.71	.98	1.30	1.69	2.15	2.68	3.30	4.00
54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4. 56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.	50	,07	.13	.22	-35	.52	-74	1.02	1.35		2.23	2.79	3.43	4.17
54 .07 .14 .24 .38 .56 .80 1.10 1.46 1.90 2.41 3.01 3.71 4. 56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.	52			.23	.36	.54	.77	1.05	1.41	1.82		2.90		4.3
56 .08 .14 .25 .39 .58 .83 1.14 1.52 1.96 2.50 3.13 3.85 4. 58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.		.07		.24	.38	.56	.80						3.71	4.50
58 .08 .15 .25 .41 .60 .86 1.18 1.57 2.04 2.59 3.24 3.98 4.					-39	.58	.83							4.67
60 .08 .15 .26 .42 .63 .89 1.22 1.63 2.11 2.68 3.35 4.12 5.	58 60	.08		.25		.63	.86				2.59			4.8 5.00

TABLE 5.

MOMENTS OF INERTIA OF TWO PLATES ONE INCH WIDE, AXIS X-X.

		MOM	ENTS ()F INE	RTIA C	JF IWO) FLAT	ES ON	E INC	H WID	E, AXI	5 A-A	•		
]	X						
	;	One In	of Iner o Plates ch Wide X-X.			<u>X</u>		_X	a Y		M	Distances easured from e to Inside			
						<-	1">								
đ		,				Thick	ness of	Plate in	Inches.						
Ins.	ł	<u>5</u> 16	9300	1 ⁷ 6	1 2	16	- 4	11	1	13	1	15	I	1	
5	3.4 4.4 5.4 6.5 7.6 8.7 9.9 11.2 12.5 13.8 15.2 16.6 18.2 1.6 3.8 4.8 5.9 7.1 8.3 9.5 10.8 12.2 13.6 15.0 16.5 18.1 19.7 1.8 4.1 5.3 6.5 7.7 9.0 10.4 11.8 13.2 14.7 16.3 17.9 19.6 21.3 2.0														
5 1/2 5 1/2 5 3/4	3.8 4.8 5.9 7.1 8.3 9.5 10.8 12.2 13.6 15.0 16.5 18.1 19.7 1.8 4.1 5.3 6.5 7.7 9.0 10.4 11.8 13.2 14.7 16.3 17.9 19.6 21.3 2.0														
52															
6	4.9	6.2	7.6	9.1	10.6	12.1	13.8	15.4	17.2	18.9	20.7	22.7	24.7	2.3	
61/4	5.3	6.7	8.2	9.8	11.4	13.1	14.8	16.6	18.5	20.4	22.3	24.4	26.5	2.5	
$6\frac{1}{2}$ $6\frac{3}{4}$	5.7 6.1	7.3	8.9	10.5	12.3	14.1	15.9	17.8	19.8	21.8	23.9	26.1	28.3	2.7	
7	6.6	7.8 8.4	9.5	11.3	13.2 14.1	15.1	17.0	19.1	21.2	23.3	25.5 27.2	27.8	32.2	3.2	
71	7.0	8.9	10.2	12.1	15.0	17.2	19.4	21.7	24.1	26.5	29.0	31.6	34.2	3.4	
$7\frac{1}{2}$	7.5	9.5	11.6	13.8	16.0	18.3	20.7	23.I	25.6	28.2	30.8	33.5	36.3	3.6	
7 ³ / ₄	8.0	10.2	12.4	14.7	17.0	19.5	22.0	24.5	27.2	29.9	32.7	35.5	38.4	3.9	
8 ₁	8.5 9.0	10.8	13.2	15.6	18.1	20.6	23.3	26.0	28.8	31.6	34.6	37.6 39.7	40.7	4.I 4.4	
$8\frac{1}{2}$	9.6	12.1	14.8	17.5	20.3	23.1	26.1	29.1	32.2	35.3	38.6	41.9	45.3	4.6	
$8\frac{3}{4}$	10.1	12.8	15.6	18.5	21.4	24.4	27.5	30.7	33.9	37.2	40.6	44.I	47.7	4.9	
9 9 ¹ / ₄	10.7	13.6	16.5	19.5	22.6	25.7 27.I	29.0 30.5	32.3 34.0	35·7 37.6	39.2 41.2	42.8 45.0	46.4	50.2 52.7	5.2 5.5	
91 92	11.9	15.0	18.3	21.6	25.0	28.5	32.I	35.7	39.5	43.3	47.2	51.2	55.3	5.8	
$9\frac{3}{4}$	12.5	15.8	19.2	22.7	26.3	29.9	33.7	37.5	41.4	45.4	49.5	53.7	57.9	6.1	
10	13.1	16.6	20.2	23.8	27.6	31.4	35.3	39.3	43.4	47.6	51.9	56.2	60.7	6.4	
$10\frac{1}{4}$ $10\frac{1}{2}$	13.8	17.4	21.2	25.0 26.2	28.9 30.3	32.9 34.5	37.0 38.7	41.2 43.1	45·5 47·5	49.8 52.1	54·3 56.7	58.8 61.5	63.5	6.7 7.1	
$10\frac{3}{4}$	15.1	19.1	23.2	27.4	31.7	36.0	40.5	45.0	49.7	54.4	59.2	64.2	69.2	7.4	
II.	15.8	20.0	24.3	28.6	33.I	37.6	42.3	47.0	51.9	56.8	61.8	66.9	72.2	7.7	
111	16.5	20.9	25.4	29.9	34.5	39.3	44.I	49.0	54.1	59.2 61.7	64.4 67.1	69.8	75.2 78.3	8.1	
$\frac{11\frac{1}{2}}{11\frac{3}{4}}$	17.3 18.0	21.8	26.5 27 6	31.2 32.5	36.0 37.5	40.9 42.7	46.0 47.9	51.1 53.2	56.4 58.7	64.2	69.8	75.6	81.4	8.8	
12	18.8	23.7	28.7	33.9	39.1	44.2	49.8	55.4	61.0	66.8	72.6	76.8	84.7	9.2	
121	19.5	24.7	29.9	35.2	40.7	46.2	51.8	57.6	63.5	69.4	75.5	81.7	88.0	9.6	
$12\frac{1}{2}$ $12\frac{3}{4}$	20.3 21.1	25.7 26.7	31.I 32.3	36.6 38.1	42.3 43.9	48.0 49.9	53.9 55.9	59.8 62.1	65.9	72.I 74.8	78.4 81.3	84.8 88.0	91.3 94.7	10.0	
13	21.9	27.7	33.6	39.5	45.6	51.8	58.1	64.5	71.0	77.6	84.3	91.2	98.2	10.8	
131	22.8	28.8	34.8	41.0	47.3	53.7	60.2	66.8	73.6	80.4	87.4	94.5	101.7	11.2	
$13\frac{1}{2}$ $13\frac{3}{4}$	23.6	29.8	36.1	42.5	49.0	55.6	62.4	69.3	76.2 78.9	83.3 86.2	90.5	97.8	105.3	11.6	
134	24.5 25.4	30.9	37·4 38.8	44.0 45.6	50.8 52.6	57.6 59.7	64.6	71.7 74.2	81.7	89.2	93·7 96.9	104.7	112.7	12.5	
144	26.3	33.I	40.1	47.2	54.4	61.7	69.2	76.8	84.5	92.3	100.2	108.3	116.5	12.9	
$14\frac{1}{2}$	27.2	34.3	41.5	48.8	56.3	63.8	71.5	79.4	87 3	95.3	103.5	111.9	120.3	13.4	
143	28.1	35.5	42.9	50.5	58.2	66.0	73.9	82.0	90.2	98.4	106.9	115.5	124.2	13.8	
15 15 ¹ / ₄	29.I 30.0	36.7 37.9	44.3 45.8	52.1 53.9	60.1 62°0	68.1 70.4	76.3 78.8	84.7 87.4	93.I 96.I	101.7	110.4	123.0	132.2	14.8	
152	31.0	39.1	47.3	55.6	64.0	72.6	81.3	90.1	99.1	108.2	117.4	126.8	136.3	15.3	
154	32.0	40.3	48.7	57.3	66.0	74.9	83.8	92.9	102.2	111.5	121.0	130.7	140.4	15.7	
]	for Mo	ment .	f Inert	ia, ded	ucting	for rive	et holes	, multi	ply tab	oular va	lue by	net wid	th.		

TABLE 5.— Continued.

MOMENTS OF INERTIA OF TWO PLATES ONE INCH WIDE, AXIS X-X.

									X .					
	N	of Two	of Inert Plates ch Wide, X-X.	ia		<u>X</u>		X	d Y		Me	Distances easured from to Insid		
						K-	1">							
d						Thick	ness of I	Plate in	Inches.					
Ins.	ł	_ ☆	1	70	- 1	- th	1	18	1	18	I	18	1	à
16	33.0	41.6	50.2	59.1	68.1	77.2	86.4	95.8	105.3	114.9	124.7	134.6	144.7	16.2
161	34.0	42.9	51.8	60.9	70.2	79.5	89.0	98.7	108.5	118.4	128.4	138.6	149.0	16.8
161	35.1	44.2	53-4	62.8	72.3	81.9	91.7	101.6	111.7		132.2	142.7	153.3	17.3
164	36.1	45.5	55.0	64.6	74-4	84.3	94.4	104.6	114.9		136.0	146.8	157.7	17.8
181	42.8	53.9	65.1	76.4	87.9	99.6	111.4	123.3	135.5	147.7	160.1	172.7	185.5	21.1
182	43.9	55.3 66.1	66.8 79.8	78.5	90.3	102.2	114.3	126.6 150.8	139.0			177.2	190.3	21.7
201	52.5 53.8	67.7	81.7	93.6	107.7	124.8	130.2	154.4	165.5		195.4	210.6	226.0	26.6
221	63.3	79.6	96.0	112.6	129.4	146.4	163.6	180.0		1 -		252.2	270.5	31.3
223	64.7	81.3	98.1	115.1	132.3	149.6	167.2	184.9	3		0 1	257.6	276.3	32.0
241	75.0	94.3	113.7	133.3	153.2	173.2	193.4	213.8	234.5	-	1 2	297.5	319.0	37.1
241	76.6	96.2	116.0	136.0	156.3	176.7	197.3	218.1	239.2		281.8	303.5	325.3	37.9
261	87.8	110.3	132.9	155.8	178.9	202.2	225.8	249.5	273.5		322.0	346.6	371.5	43.5
261	89.4	112.3	135.4	158.7	182.3	206.0	230.0	254.1	278.5		328.0	353.0	378.3	44-3
281	101.5	127.5	153.7	180.0	206.7	233.5	260.6	287.9	315.5	343.2	371.2	399.5	428.0	50.3
281	103.3	129.7	156.3	183.2	210.3	237.6	265.1	292.9	320.9	349.2	377.6		435-3	51.2
301	116.3	146.0	175.9	206.0	236.4	267.1	297.9	329.1	360.5		424.0	456.1	488.5	57.7
301	118.2	148.4	178.7	209.4	240.3	271 4	302.8	334-4	366.3		430.8	463.4	496.3	58.6
321	132.0	165.7	199.6	233.8	268.2	302.8	337.8	373.0	408.5			516.4	553.0	65.5
321	134.1		202.7	237.3	272.3	307.5	342.9	378.7	414.7	1		524.2	561.3	-
344	148.8	186.7	224.0 228.I	263.2 267.0	301.9	340.9	380.1 385.6	419.6			539.9	580.5	621.5	73.9
34½ 36¼	166.5	208.9	251.5	294.5	306.3 337.7	345.8	425.0	425.7 469.1	466.0 513.5	506.7 558.1	547.6 603.1	588.8 648.3	630.3	74.9 82.7
361	168.8	211.7	255.0	298.5	342.3	386.4	430.7	475.4	520.4	1	611.2	657.1	703.3	83.8
381	185.3	232.4	279.7	327.4	375.4	423.7	472.3	521.2	570.5	620.0	669.8	720.0	770.5	92.0
381	187.7	235.4	283.4	331.7	380.3	429.2	478.4	527.9	577.8		678.4	729.2	780.3	93.2
401	205.0	257.1	309.5	362.2	415.2	468.5	522.2	576.1	630.5	685.1	740.1	795.3	851.0	
401	207.6	260.3	313.3	366.6	420.3	474-3	528.6	583.2	638.2		749.1	805.0	861.3	103.1
421	225.8	283.1	340.7	398.6	456.9	515.5	574-5	633.8	693.5	753-4	813.8	874.4	935.5	112.2
$42\frac{1}{2}$	228.4	286.4	344.7	403.3	462.3	521.6	581.2	641.2	701.5	762.2	823.2	884.6	946.3	113.6
444	247.5	310.3	373.4	436.9	500.7	564.8	629.4	694.2	759.5	825.0	891.0	957.3	1024.0	123.1
442	250.3	313.8	377.6	441.7	506.3	571.1	636.4	702.0	767.9	834.2	900.9	967.9	1035.3	124.6
461 461	270.3	338.8	407.6	476.8	546.4	616.4	686.7	757.4	828.5	899.9	971.7	1043.9	1116.5	
481	273.2 294.0	342.4	412.0	481.9	552.3	623.0	694.0	765.5	837.3	909.5	982.0		-	135.9
481	297.1	372.3	443·4 447·9	518.6 523.9	594.2 600.3	670.2 677.0	746.5	823.3	900.5		1055.9 1066.7	1134.3	1213.0	
501	318.8	399.5	480.6	562.0	643.9	726.2	754-2 808.9	831.7	909.7					147.8
50	321.9	403.4	485.3	567.6	650.3	733.4	816.8	900.7			1143.6 1154.8		1313.5	158.0
524	344.5	431.7	519.3	607.3	695.7	784.5	873.7			1144.0		1326.2		171.5
521	347.8	435.8	524.2	613.0	702.3	791.9	882.0			1154.7		1338.7		
541	371.3	465.2	559-5	654.3	749.4	845.0							1526.5	
542	374-7	469.4	564.6	660.2	756.3	852.7				1243.0		1440.8	1540.3	
561	399.0	499.9	601.2	703.0	805.2	907.8	1010.9	1114.5	1218.5	1322.9	1427.8	1533.2	1639.0	198.6
561	402.6		606.5										1653.3	200.4
]	For Mo	oment o	of Inert	ia, ded	ucting	for riv	et holes	, multi	ply tab	oular va	alue by	net wid	lth.	

TABLE 5.—Continued.

MOMENTS OF INERTIA OF TWO PLATES ONE INCH WIDE, AXIS X-X.

								1	T					
	I	of Two	of Inert o Plates ch Wide X-X.			X	1">	X	d V		Me	Distances easured from to Inside	De	
						Thick	ness of I	Plate in I	nches.					
Ins.	ł	18 18	a a	7	ł	18	1	11	1	13	ě	18	I	i
58½ 58½ 60¼ 60½	427.8 431.4 427.5 461.3	535.9 540.5 573.1 577.8	644.4 649.9 689.2 694.8	753.5 759.9 805.7 812.3	870.3 922.7	981.1 1040.1	1092.5	1204.3 1276.5	1316.5 1395.5	1429.3	1529.5 1542.5 1634.7 1648.1	1656.1	1755.5 1770.3 1876.0 1891.3	214.8
$62\frac{1}{4} \\ 62\frac{1}{2} \\ 64\frac{1}{4} \\ 64\frac{1}{2}$	488.3 492.2 520.0 524.1	611.6 616.5 651.3 656.4	735.4 741.2 783.1 789.1	859.7 866.5 915.4 922.4	992.3 1048.2	1118.5	1245.3	1372.5	1500.3 1584.5	1628.5	1757.3	1871.7 1886.5 1992.1 2007.4	2016.3	259.0
$66\frac{1}{4}$ $66\frac{1}{2}$ $68\frac{1}{4}$ $68\frac{1}{2}$	552.8 556.9 586.5 590.8	692.3 697.5 734.5 739.9	883.0	980.1 1032.1	1122.3 1181.7	1264.9 1331.8	1408.1	1551.8 1633.7	1696.0 1785.5	1840.8	1986.1	2116.2 2131.9 2244.0 2260.2	2278.3	275.4 277.4 292.2 294.3
$70\frac{1}{4}$ $70\frac{1}{2}$ $72\frac{1}{4}$ $72\frac{1}{2}$	621.3 625.7 657.0 661.6	778.0 783.5 822.8 828.4	941.9 989.0	1100.8 1155.8	1260.3 1323.2	1420.3 1491.1	1580.9 1659.7	1742.1 1828.8	1903.8	2066.1 2168.7	2213.3 2228.9 2339.6 2355.5	2392.3	2538.5 2556.3 2683.0 2701.3	327.4
74½ 76½ 78½ 80½	698.4 736.3 775.2 815.1	921.9	1108.1	1294.9 1363.1	1482.3 1560.3	1670.3 1758.1	1858.9	2048.1 2155.6	2237.9 2355.3	2428.3 2555.6	2485.7 2619.4 2756.5 2897.2	2811.0 2958.1	2850.3 3003.3 3160.3 3321.3	348.0 367.0 386.4 406.3
$\begin{array}{c} 82\frac{1}{2} \\ 84\frac{1}{2} \\ 86\frac{1}{2} \\ 88\frac{1}{2} \end{array}$	897.8 940.7	1123.9 1177.6	1350.7 1415.1	1578.1 1653.3	1806.3 1892.3	2035.0 2131.9	2264.5 2372.I	2494.6 2613.1	2725.4 2854.8	2956.9 3097.1	3041.3 3189.0 3340.1 3494.8	3421.8 3583.9	3486.3 3655.3 3828.3 4005.3	447.6
$92\frac{1}{2}$ $94\frac{1}{2}$	1075.3 1122.2	1346.0 1404.6	1617.4 1687.7	1889.4 1971.6	2162.3 2256.3	2435.8 2541.6	2710.1 2827.8	2985.2 3114.7	3260.9 3402.3	3537·4 3690.7	3653.0 3814.6 3979.8 4148.4		4186.3 4371.3 4560.3 4753.3	513.3 536.2 559.6 583.5
$100\frac{1}{2}$ $102\frac{1}{2}$	1268.8	1588.0 1651.6	1908.0	2228.7 2317.9	2550.3 2652.3	2872.6 2987.4	3195.7 3323.4	3519.7 36 6 0.2	3844.4 3997.8	4169.9 4336.2		4823.4		607.9 632.8 658.2 684.1
$108\frac{1}{2}$ $110\frac{1}{2}$ $112\frac{1}{2}$	1478.3 1533.2 1589.1	1850.0 1918.7 1988.6	2222.6 2305.0 2388.9	2596.0 2692.2 2790.1	2970.3 3080.3 3192.3	3345·4 3469.2 3595·3	3721.4 3859.0 3999.2	4098.2 4249.7 4404.0	4475.9 4641.3 4809.7	4854.5 5033.7 5216.2	5623.7	5614.1 5821.2 6032.0	6441.3	710.5 737.5 764.9 792.8
$116\frac{1}{2}$ $118\frac{1}{2}$	1703.8	2132.1 2205.7	2561.2 2649.6	2991.3 3094.5	3422.3 3540.3	3854.2 3987.0	4287.0 4434.6	4720.8 4883.3	5155.4 5332.8	5591.0 5783.3	6027.5 6234.6	6246.6 6464.9 6687.0 6912.8	6903.3	821.2 850.1 879.5 909.4
	For Mo	oment	of Iner	tia, dec	lucting	for riv	rets, mu	ltiply 1	abular	value i	by net	width.		

TABLE 6.

WEIGHTS AND AREAS OF SQUARE AND ROUND BARS AND CIRCUMFERENCES OF ROUND BARS.

ONE CUBIC FOOT OF STEEL WEIGHING 489.6 LB.

Thickness or Diam- eter in Inches.	Weight of Bar One Ft. Long.	Weight of Bar One Ft. Long.	Area of Bar in Sq. Inches.	Area of Bar in Sq. Inches.	Circum- ference Bar in Inches.	Thickness or Diam- eter in Inches.	Weight of Bur One Ft Long.	Weight of Bar One Ft. Long.	Area of Bar in Sq. Inches.	Area of Bar in Sq. Inches.	Circum- ference Bar in Inches.
16	.013 .053	.010 .042 .094	.0039 .0156 .0352	.0031	.1963 .3927 .5890	3 16 16 8 3	30.60 31.89 33.20 34.55	24.03 25.04 26.08 27.13	9.0000 9.3789 9.7656 10.160	7.0686 7.3662 7.6699 7.9798	
16 38 7	.212 ·333 .478 .651	.167 .261 .375 .511	.0625 .0977 .1406 .1914	.0491 .0767 .1104 .1503	.7854 .9817 1.1781 1.3744	5 16 3 8 7	35.92 37.31 38.73 40.18	28.20 29.30 30.42 31.56	10.563 10.973 11.391 11.816	8.6179 8.9462	10.210 10.407 10.603 10.799
16	.850 1.076 1.328 1.608	.667 .845 1.043 1.262	.2500 .3164 .3906 .4727	.1963 .2485 .3068 .3712	1.5708 1.7671 1.9635 2.1598	10 16 8 116	41.65 43.14 44.68 46.24	32.71 33.90 35.09 36.31	12.250 12.691 13.141 13.598		10.996 11.192 11.388 11.585
3 13 16 7 8 16	1.913 2.245 2.603 2.989	1.502 1.763 2.044 2.347	.5625 .6602 .7656 .8789	.4418 .5185 .6013 .6903	2.3562 2.5525 2.7489 2.9452	7 0 2 4-17 0 1 7 07 1	47.82 49.42 51.05 52.71	37.56 38.81 40.10 41.40	14.063 14.535 15.016 15.504	11.045 11.416 11.793 12.177	11.781 11.977 12.174 12.370
I 16 8 16	3.400 3.838 4.303 4.795	2.670 3.014 3 379 3.766	1.0000 1.1289 1.2656 1.4102	.7854 .8866 .9940 1.1075	3.1416 3.3379 3.5343 3.7306	4 16 8 3 16	54.40 56.11 57.85 59.62	45.44 46.83	16.000 16.504 17.016 17.535	12.566 12.962 13.364 13.772	12.566 12.763 12.959 13.155
1 4 8 1 1 6 3 8 7 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.312 5.857 6.428 7.026	4.173 4.600 5.049 5.518	1.5625 1.7227 1.8906 2.0664	1.2272 1.3530 1.4849 1.6230	3.9270 4.1233 4.3197 4.5160	5 16 3 8 7 16	61.41 63.23 65.08 66.95	48.24 49.66 51.11 52.58	18.063 18.598 19.141 19.691	14.186 14.607 15.033 15.466	13.352 13.548 13.744 13.941
16 5 8 11 16	7.650 8.301 8.978 9.682	6.008 6.520 7.051 7.604	2.2500 2.4414 2.6406 2.8477	1.7671 1.9175 2.0739 2.2365	4.7124 4.9087 5.1051 5.3014	1 9 15 5 1 16 3	68.85 70.78 72.73 74.70	57.12 58.67	20.250 20.816 21.391 21.973	15.904 16.349 16.800 17.257	14.137 14.334 14.530 14.726
3 4 3 6 7 8 5 1 6 2	10.41 11.17 11.95 12.76	8.178 8.773 9.388 10.02 10.68	3.0625 3.2852 3.5156 3.7539 4.0000	2.4053 2.5802 2.7612 2.9483	5.4978 5.6941 5.8905 6.0868 6.2832	2)41-17-20-11 1	76.71 78.74 80.81 82.89		22.563 23.160 23.766 24.379 25.000	17.721 18.190 18.665 19.147	14.923 15.119 15.315 15.512 15.708
16 3 3 16	14.46 15.35 16.27	11.36 12.06 12.78	4.2539 4.5156 4.7852 5.0625	3.1416 3.3410 3.5466 3.7583 3.9761	6.4795 6.6759 6.8722 7.0686	5 16 8 3 16	85.00 87.14 89.30 91.49 93.72	68.44	25.629 26.266 26.910	20.129 20.629 21.135 21.648	15.904 16.101 16.297
16 20 27 16	19.19 19.18 20.20	13.52 14.28 15.07 15.86 16.69	5.3477 5.6406 5.9414 6.2500	4.2000 4.4301 4.6664 4.9087	7.2649 7.4613 7.6576 7.8540	16 16 38 7	95.96 98.23 100.5	75.37 77.15 78.95	28.223 28.891 29.566	22.166 22.691 23.221 23.758	16.690 16.886 17.082
16 55 11 16 2	22.33 23.43 24.56 25.71	17.53 18.40 19.29	6.5664 6.8906 7.2227 7.5625	5.1572 5.4119 5.6727 5.9396	8.0503 8.2467	16 5 11 16	105 2 107.6 110.0	82.62 84.49 86.38	30.941 31.641 32.348 33.063	24.850 25.406 25.967	17.475 17.671 17.868 18.064
3 4 3 16 7 8 5 16	26.90 28.10 29.34	21.12 22.07 23.04	7.9102 8.2656 8.6289	6.2126	8.8357 9.0321	3 13 16 15 15 16	114.9 117.4 119.9	90.22 92.17	33.785 34.516 35.254	26.535 27 109 27.688	18.261 18.457 18.653

TABLE 6.—Continued.

Weights and Areas of Square and Round Bars and Circumferences of Round Bars-One Cubic Foot of Steel Weighing 489.6 lb.

Thickness or Diam- eter in Inches.	Weight of . Bar One Ft. Long.	Weight; of Bar One Ft. Long.	Area of Bar in Sq. Inches.	Area of Bar in Sq. Inches.	Circum- ference Bar in Inches.	Thickness or Diam- eter in Inches.	Weight of Bar One Ft. Long.	Weight of Bar One Ft. Long.	Area of Bar in Sq. Inches.	Area of Bar in Sq. Inches.	Circum- ference Bar in Inches.
6 16 18 3 16	122.4 125.0 127.6 130.2	96.14 98.14 100.2 102.2	36.000 36.754 37.516 38.285	28.274 28.866 29.465 30.069	18.850 19.046 19.242 19.439	9 16 18 3 16	275.4 279.3 283.2 287.0	216.3 219.3 222.4 225.4	81.000 82.129 83.266 84.410	63.617 64.505 65.397 66.296	28.471 28.667
14 5 16 38 7	132.8 135.5 138.2 140.9	104.3 106.4 108.5 110.7	39.063 39.848 40.641 41.441	30.680 31.296 31.919 32.548	19.635 19.831 20.028 20.224	16 38 7	290.9 294.9 298.9 302.8	228.5 231.5 234.7 237.9	85.563 86.723 87.891 89.066	67.201 68.112 69.029 69.953	29.256 29.452 29.649
9 15 15 16	143.6 146.5 149.2 152.1	112.8 114.9 117.2 119.4	42.250 43.066 43.891 44.723	33.183 33.824 34.472 35.125	20.420 20.617 20.813 21.009	9 16 5 8 11 16	306.8 310.9 315.0 319.1	241.0 244.2 247.4 250.6	90.250 91.441 92.641 93.848	70.882 71.818 72.760 73.708	30.04I 30.238 30.434
3 1 1 1 1 6 7 8 1 1 5 1 6	154.9 157.8 160.8 163.6	121.7 123.9 126.2 128.5	45.563 46.410 47.266 48.129	35.785 36.450 37.122 37.800	21.206 21.402 21.598 21.795	3 4 1(6) 17 6 15 6	323.2 327.4 331.6 335.8	253.9 257.1 260.4 263.7	95.063 96.285 97.516 98.754	76.589 77.561	30.827 31.023 31.022
7 16 18 3 16	166.6 169.6 172.6 175.6	130.9 133.2 135.6 137.9	49.000 49.879 50.766 51.660	38.485 39.175 39.871 40.574	21.991 22.187 22.384 22.580	10 16 16 8 3 16	340.0 344.3 348.5 352.9	267.0 270.4 273.8 277.1	100.00 101.25 102.52 103.79	79.525 80.516 81.513	31.416 31.612 31.809 32.005
1 4 5 1 6 3 8 7 1 6 1	178.7 181.8 184.9 188.1	140.4 142.8 145.3 147.7	52.563 53.473 54.391 55.316	41.282 41.997 42.718 43.445	22.777 22.973 23.169 23.366	1 6 3 8 7 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	357.2 361.6 366.0 370.4	280.6 284.0 287.4 290.9	105.06 106.35 107.64 108.94	83.525 84.541 85.562	32.201 32.398 32.594 32.790
166 166 111 16	191.3 194.4 197.7 200.9	150.2 152.7 155.2 157.8	56.250 57.191 58.141 59.098 60 063	44.179 44.918 45.664 46.415	23.562 23.758 23.955 24.151	129 16 55 116 3	374.9 379.4 383.8 388.3	294.4 297.9 301.4 305.0	110.25 111.57 112.89 114.22	87.624 88.664 89.710	
34 136 7 156 16	204.2 207.6 210.8 214.2 217.6	163.0 165.6 168.2	61.035 62.016 63.004 64.000	47.173 47.937 48.707 49.483 50.265	24.347 24.544 24.740 24.936 25.133	34336 778 156	392.9 397.5 402.1 406.8 411.4	308.6 312.2 315.8 319.5 323.1	115.56 116.91 118.27 119.63	91.821 92.886	
1 16 1 8 3 16	221.0 224.5 228.0 231.4	173.6 176.3 179.0	65.004 66.016 67.035	51.054 51.849 52.649	25.133 25.329 25.525 25.722 25.918	16 16 8 3 16	416.1 420.9 425.5 430.3	326.8 330.5 334.3	122.38 123.77 125.16 126.56	96.116 97.205 98.301 99.402	34.754 34.950 35 147
16 16 38 7 16	234.9 238.5 242.0 245.6	184.5 187.3 190.1	69.098 70.141 71.191 72.250	53.436 54.269 55.088 55.914 56.745	26.114 26.311 26.507 26.704	16 38 7 16	435.1 439.9 444.8 449.6	341.7 345.5 349.4 353.1	127.97 129.39 130.82	100.51	35.539 35.736 35.932 36.128
12 9 16 8 11 16	249.3 252.9 256.6 260.3	195.7 198.7 201.6	73.316 74 391 75.473 76.563	57.583 58.426 59.276	26.900 27.096 27.293 27.489	12 9 16 558 116 314	454.5 459.5 464.4 469.4	357.0 360.9 364.8 368.6	133.69 135 14 136.60	105.00	36.325 36.521 36.717 36.914
13 16 7 8 15 16	264.1 267.9 271.6	207.4 210.3 213.3	77.660 78.766	60.994 61.862 62.737	27.685 27.882	3 4 3 16 7 8 5 16	474·4 479·5 484·5	372.6 376.6 380.6	139 54 141.02 142.50	110.75	37.110 37 306 37.503

TABLE 7
PROPERTIES OF CARNEGIE I BEAMS

Depth	Weight per Foot	Area	s of Web	of Flange	2-	11		2	Section Modu- lus	Maximum Bending Mo- ment (9) 16,000 Lb, per Sq. In.	Distance Center to Center Required to Make Radii of Gyration
Ď	Veight	Ā	Thickness of	Width o	I = Mon Inert			adius of ation			Equal
	4		F	-	Axis 1-1	Axis 2-2	Axis z-z	Axis 2-2	Axis 1-1	Axis 1-1	ŤŤ
					Iı	I ₂	r ₁	rg	S ₁	M_1	44
Inches	Pounds	Inches ²	Inches	Inches	Inches4	Inches4	Inches	Inches	Inches8	Foot-Pounds	Inches
24	115 110 105 100 95 90 85 80	34.00 32.48 30.98 29.41 27.94 26.47 25.00 23.32	0.750 0.688 0.625 0.754 0.692 0.631 0.570 0.500	8.000 7.938 7.875 7.254 7.192 7.131 7.070 7.000	2 955.5 2 883.5 2 811.5 2 380.3 2 309.6 2 239.1 2 168.6 2 087.9	83.23 81.0 78.9 48.56 47.10 45.70 44.35 42.86	9.33 9.42 9.53 9.00 9.09 9.20 9.31 9.46	1.57 1.58 1.60 1.28 1.30 1.31 1.33 1.36	246.4 240.3 234.3 198.4 192.5 186.6 180.7 174.0	328 000 321 000 312 000 264 000 257 000 249 000 241 000 232 000	18.39 18.58 18.78 17.82 17.99 18.21 18.43 18.72
20	95 90 85 80 75 70 65	29.41 27.94 26.47 25.00 23.73 22.06 20.59 19.08	0.884 0.810 0.737 0.663 0.600 0.649 0.575 0.500	7.284 7.210 7.137 7.063 7.000 6.399 6.325 6.250	1 655.8 1 606.8 1 557.8 1 508.7 1 466.5 1 268.9 1 219.9 1 169.6	52.65 50.78 48.98 47.25 45.81 30.25 29.04 27.86	7.50 7.58 7.67 7.77 7.86 7.58 7.70 7.83	1.34 1.35 1.36 1.37 1.39 1.17 1.19 1.21	165.6 160.7 155.8 150.9 146.7 126.9 122.0	221 000 214 000 208 000 201 000 196 000 169 000 163 000 156 000	14.76 14.92 15.10 15.30 15.47 14.98 15.21
18	90 85 80 75 70 65 60	26.47 25.00 23.53 22.05 20.59 19.12 17.65 15.93	0.807 0.725 0.644 0.562 0.719 0.637 0.555 0.460	7.245 7.163 7.082 7.000 6.259 6.177 6.095 6.000	1 260.3 1 220.6 1 180.9 1 141.3 921.3 881.5 841.8 795.6	52.00 49.99 48.08 46.23 24.62 23.47 22.38 21.19	6.90 6.99 7.09 7.19 6.69 6.79 6.91 7.07	1.40 1.42 1.43 1.45 1.09 1.11 1.13	140.0 135.6 131.2 126.8 102.4 97.9 93.5 88.4	187 000 181 000 175 000 169 000 136 000 131 000 125 000 118 000	13.51 13.69 13.89 14.08 13.20 13.40 13.63 13.95
15	95 90 85 80 75 70 65 60 55 50 45	29.41 27.94 26.47 25.00 23.81 22.06 20.59 19.12 17.67 16.18 14.71 13.24 12.48	1.184 1.085 0.987 0.889 0.810 0.882 0.784 0.686 0.590 0.656 0.558 0.460 0.410	6.774 6.675 6.577 6.479 6.400 6.292 6.194 6.006 6.000 5.746 5.648 5.550	900.5 872.9 845.4 817.8 795.5 691.2 663.6 636.0 609.0 511.0 483.4 455.8	50.98 48.37 45.91 43.57 41.76 30.68 29.00 27.42 25.96 17.06 16.04 15.00 14.62	5.53 5.59 5.65 5.72 5.78 5.60 5.68 5.77 5.62 5.73 5.87 5.95	1.31 1.32 1.32 1.32 1.32 1.18 1.19 1.20 1.21 1.02 1.04 1.07 1.08	120.1 116.4 112.7 109.0 106.1 92.2 88.5 84.8 81.2 68.1 64.5 60.8 58.9	160 000 155 000 150 000 145 000 141 000 123 000 118 000 113 000 108 000 91 000 86 000 81 000 79 000	10.75 10.86 10.99 11.13 11.25 10.95 11.11 11.29 11.49 11.05 11.27 11.54
12	55 50 45 40 35 31.5	16.18 14.71 13.24 11.84 10.29 9.26	0.822 0.699 0.576 0.460 0.436 0.350	5.612 5.489 5.366 5.250 5.086 5.000	321.0 303.3 285.7 268.9 228.3 215.8	17.46 16.12 14.89 13.81 10.07 9.50	4.45 4.54 4.65 4.77 4.71 4.83	1.04 1.05 1.06 1.08 .99 1.01	53.5 50.6 47.6 44.8 38.0 36.0	71 000 67 000 63 000 60 000 51 000 48 000	8.65 8.83 9.06 9.29 9.21 9.45

TABLE 7.—Continued
PROPERTIES OF CARNEGIE I BEAMS

Depth	Weight per Foot	Aren	Thickness of Web	Width of Flange	2	ent of	r = Po	dius of	Section Modu- lus	Maximum Bending Mo- ment @ 16,000 Lb. per Sq. In,	Distance Center to Center Required to Make Radii of Gyration Equal
	/eig		hick	/idtl	Inert			ation			T
	×		Ŧ	*	Axis 1-1	Axis 2-2	Axis 1-1	Axis 2-2	Axis 1-1	Axis 1-1	ff
					I ₁	I ₂	r ₁	rg	S ₁	\mathbf{M}_1	77
Inches	Pounds	Inches ²	Inches	Inches	Inches4	Inches4	Inches	Inches	Inches 8	Foot-Pounds	Inches
10	40	11.76	0.749	5.099	158.7	9.50	3.67	.90	31.7	42 000	7.12
1	35	10.29	0.602	4.952	146.4	8.52	3-77	.ýı	29.3	39 000	7.32
	30	8.82	0.455	4.805	134.2	7.65	3.90	.93	26.8	36 000	7.57
	25	7.37	0.310	4.660	122.1	6.89	4.07	.97	24.4	33 000	7.91
9	35	10.29	0.732	4.772	111.8	7.31	3.29	.84	24.8	33 000	6.36
	30	8.82	0.569	4.609	101.9	6.42	3.40	.85	22.6	30 000	6.58
	25	7.35	0.406	4.446	91.9	5.65	3.54	.88	20.4	27 000	6.86
	2 I	6.31	0.290	4.330	84.9	5.16	3.67	.90	18.9	- 25 000	7.12
8	25.5	7.50	0.541	4.271	68.4	4.75	3.02	.80	17.1	23 000	5.82
	23	6.76	0.449	4.179	64.5	4.39	3.09	.81	16.1	21 000	5.96
	20.5	6.03	0.357	4.087	60.6	4.07	3.17	.82	15.1	20 000	6.12
	18	5.33	0.270	4.000	56.9	3.78	3.27	.84	14.2	19 000	6.32
7	20	5.88	0.458	3.868	42.2	3.24	2.68	-74	12.1	16 000	5.15
	17.5	5.15	0.353	3.763	39.2	2.94	2.76	.76	11.2	15 000	5.31
	15	4.42	0.250	3.660	36.2	2.67	2.86	.78	10.4	14 000	5.50
6	17.25	5.07	0.475	3.575	26.2	2.36	2.27	.68	8.7	11 600	4.33
	14.75	4.34	0.352	3.452	24.0	2.09	2.35	.69	8.0	10 700	4.49
	12.25	3.61	0.230	3.330	21.8	1.85	2.46	.72	7.3	9 700	4.70
5	14.75	4.34	0.504	3.294	15.2	1.70	1.87	.63	6.1	8 100	
	12.25	3.60	0.357	3.147	13.6	1.45	1.94	.63	5.4	7 300	
	9.75	2.87	0.210	3.000	12.1	1.23	2.05	.65	4.8	6 400	
4	10.5	3.09	0.410	2.880	7.1	1.01	1.52	-57	3.6	4 800	
•	9.5	2.79	0.337	2.807	6.7	-93	1.55	.58	3.4	4 500	
	8.5	2.50	0.263	2.733	6.4	.85	1.59	.58	3.2	4 200	
	7.5	2.2I	0.190	2.660	6.0	.77	1.64	-59	3.0	4 000	
	7.5	2.21	0.361	2.521	2.9	.60	1.15	.52	1.9	2 600	
3	6.5	1.91	0.263	2.423	2.7	-53	1.19	.52	1.8	2 400	
	5.5	1.63	0.170	2.330	2.5	.46	1.23	-53	1.7	2 200	
	·	·	·		SUPPLEM	ENTAR	ВЕАМ	ıs			
	0.5				-000 (00	1		1 .0.	47.76
27	83	24.41	0.424	7.500	2888.6	53.1	10.88	1.47	214.0	285 300	21.56
24	69.5	20.44	0.390	7.000	1928.0	39.3	9.71	1.39	160.7	214 220	19.22
21	57.5	16.85	0.357	6,500	1227.5	28.4	8.54	1.30	116.9	155 880	16.87
18	46.0	13.53	0.322	6,000	733.2	19.9	7.36	1.21	81.5	72 020	14.52
15	36.0	10.63	0.289	5.500	405.1	13.5	6.17	1.13	54.0		12.14
12 10	27.5	8.04	0.255	5.000	199.6	8.7	4.98	1.04	33.3	44 350	9.74
8	17.5	5.15	0.232	4.670	58.3	6.4	4.18	0.99	14.6	30 370 19 450	6.48
U U	-7.3	3.15	0.210	4.330	50.3	4.5	3.37	0.93	14.0	19 450	0

TABLE 8
ELEMENTS OF CARNEGIE I BEAMS

		Л	10-1-							•			
Depth	Weight per Foot	Flange	Web	∦ Web	t	k	Maximum Bending Moment	Gage	Grip	Dis- tance	Maximum Rivet in Flange	Bearing on Wall	Bearing Plate
Inches	Pounds	Inches	Inches	Inches	Inches	Inches	FtLb.	Inches	Inches	Inches	Inches	Inches	Bear
24	115 100 95 90 85 80	8 74 74 78 78 78	11 16 58 9 16	35 35 35 35 35 35 35 35 35 35 35 35 35 3	201 203 203 203 203 203 203 203 203	Tankonkonkonkonko	328 000 264 000 257 000 249 000 241 000 232 000	4 4 4 4 4	1 57 67 67 67 67 67 67	7 16 7 16 7 16 3 8 3 8 3 8 3 8	7 8 .	16	
20	95 90 85 80 75 70 65	74 74 78 78 78 78 68 66 64	7 13 16 3 4 11 16 5 8 1 16 9 16 16 16 16 16 16 16 16 16 16 16 16 16	7 16 7 16 3 8 8 3 16 5 16 5 16 5	16½ 16½ 16½ 16½ 16½ 16½ 16½ 17 17	1434343143143143143143143143143143143143	22I 000 2I4 000 208 000 20I 000 I96 000 I69 000 I63 000 I56 000	4 4 4 4 4 4 4	I I I I I 3443444	1/21/21/16 miss miss miss miss miss miss miss mis	7 8	16	16"×1"×1'-4", wt. 73 lbs
18	90 85 80 75 70 65 60 55	71/4 71/8 71/6 7 61/4 61/4 61/8 6	136 216 216 216 216 216 216 216 216 216 21	7 16 3 8 5 16 6 15 5 16 5 16 5 16	14½ 14½ 14½ 14½ 15¼ 15¼ 15¼	1 3 4 3 1 4 3 1 4 3 1 6 3 6 3 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	187 000 181 000 175 000 169 000 136 000 131 000 125 000 118 000	4 4 4 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	I I I 34434434434443444	16 3:5 3:5 3:6 77 16 3:6 5:6 5:6 5 16	7 8	16	18,,,91
Heavy 51	95 90 85 80	634 634 656 656 622 638	$ \begin{array}{c} 1\frac{3}{16} \\ 1\frac{1}{8} \\ 1\\ \frac{7}{8} \\ \frac{13}{16} \end{array} $	58 9 16 16 17 16 7	11	2 2 2 2 2	160 000 155 000 150 000 145 000 141 000	34 34 34 34 34 34 34	I I I I	5/85/89 16	78	12	wt. 41 lbs.
Light 51	75 70 65 60 55 50 45 42	63 6 6 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7. 8.3.1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	7 16 3 8 3 8 5 16 5 16 4 16	1134 1134 1134 1134 1232 1221 1221 1221	155518518518518444444444444444444444444	123 000 118 000 113 000 108 000 91 000 86 000 81 000 79 000	33-12-12-12-12-12-12-12-12-12-12-12-12-12-	7-107-107-107-100-0100-0100-0100	16 7 16 7 16 7 16 7 16 7 16 7 16 7 16 7	3.4	12	$12'' \times \frac{3}{4}'' \times 1' - 4''$, wt. 41 lbs.
12	65 60 55 50 45 40 35 31.5	55 Sales S	13 16 11 16 2 7 16 3	7 16 3 8 16 14 4 3 16	94 94 94 94 94 94 94	I site site site site site site site site	90 000 86 000 71 000 67 000 63 000 60 000 51 000 48 000	31/21/2 31/21/2 31/2 3 3 3 3 3	77 8 77 8 23 4 23 4 33 4 33 4 33 4 34 9 16 9 16	16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1	12	12"X3"X1'~o", wt. 31 lbs.

TABLE 8.—Continued FLEMENTS OF CARNEGIE I BEAMS

			f[]	t k	-								
Depth	Weight per Foot	Flange	Web	½ Web	t	k	Maximum Bending Moment	Gage	Grip b	Dis- tance	Maximum Rivet in Flange	Bearing on Wall	Bearing Plate
Inches	Pounds	Inches	Inches	Inches	Inches	Inches	FtLb.	Inches	Inches	Inches	Inches	Inches	Bea
10	40 35 30 25	5 1/8 5 4 5/8 4 5/8	3 4 5 8 1 2 5 6	16 16 14 3	8 8 8	I I I	42 000 39 000 36 000 33 000	234 243 243 243 234	1:21-121-121-12	7 16 3 8 5 16 14	34	8	X\frac{5}{8}''\X1'-0'', wt. 17 lbs.
9	35 30 25 21	43/45/85/42/43/8	34 9 16 7 16 5 16	3/8 5 1/6 1/8 5 1/6 1/8 1/6 1/8 1/6 1/8 1/8 1/6 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	7 7 7 7	I I I	33 000 30 000 27 000 25 000	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	12121212	7 16 3 8 1 4 3 16	34	8	8''X\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8	25.5 23 20.5 18	4 ¹ / ₄ 4 ¹ / ₈ 4	9 16 7 16 3 8 1	5 16 1 4 3 16 1	6 ¹ / ₄ 6 ¹ / ₄ 6 ¹ / ₄	7 807 807 807 80	23 000 21 000 20 000 19 000	$ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \end{array} $	7 16 7 16 7 16	5 16 5 16 14 3 16	34	8	8"X\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7	17.5 15	3 78 3 34 3 55 3 8	1 3 8 1 4	1 4 3 16 1 18	5 ¹ / ₄ 5 ¹ / ₄ 5 ¹ / ₄	7 007 007	16 000 15 000 14 000	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$	3 03 m3 0	5 16 1 4 3 16	<u>5</u>	8	8"X wt.
6	17.25 14.75 12.25	$\frac{3\frac{5}{8}}{3\frac{1}{2}}$ $\frac{3}{8}$	1 2 3 8 1 4	1 3 16 1 8	4½ 4½ 4½ 4½	3 43 43 4	11 600 10 700 9 700	2 2 2	2:02:02:00	5 16 1 4 3 16	5 8	6	lbs.
5	14.75 12.25 9.75	3 8 3 1 8 3 8 3	1(243)001(4	$\frac{\frac{1}{4}}{\frac{3}{16}}$	$\begin{array}{r} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	গ্ৰহাৰ গ্ৰহ	8 100 7 300 6 400	I 3/4 I 3/4 I 3/4	ଅବ ଅବ ଅବ	5 16 1 4 3 16	1/2	6	wt. 5
4	10.5 9.5 8.5 7.5	2 7/8 2 7/8 2 7/8 2 3/4 2 5/8	7 16 3 11 1 4 3 16	1 3 16 1 8 1 8	234344 24344 2434 2434	5 05 05 m5 8	4 800 4 500 4 200 4 000	$ \begin{array}{c} I\frac{1}{2} \\ I\frac{1}{2} \\ I\frac{1}{2} \\ I\frac{1}{2} \end{array} $	$ \begin{array}{r} $	1 1 1 3 16 3 16	1/2	6	6"×½"×6",
3	7.5 6.5 5.5	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{3}{8} \end{array} $	3 8 1 4 3 16	3 16 1 8 1 8	I 3 I 3 I 3 I 3	ත භාඛක ත ග	2 600 2 400 2 200	$1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{1}{2}$	5 16 5 16 5 16	1 3 16 1 8	38	6	.,9
					Supp	LEMEN	TARY BE	AMS					
27	83.0	7 ¹ / ₂	7 16	1/4	2I½	23/4	285 300	4	7 8	5 16	78	16" × × 1' 16" × × 1' 16" × × 1' 16" × × 1' 16" × × 1' 12" × × 1' 12" × × 1'	(1" -4"
24	69.5	7	<u> 18</u>	3 16	19	21/2	214 220	4	13 16	1/2	7 8	X 1'	-#"
2 I	57-5	$6\frac{1}{2}$	38	3 16	16½	21/4	155 880	4	116	1	7 8	X 1'	-4"
18	46.0	6	5 16	3 16	14	2	108 620	3 4	<u>5</u> .	1	7 8	X1'	-,4"
15	36.0	5½	<u>5</u>	3 16	1112	1 3/4	72 020	3 ¹ / ₂	9 16	1	34	X 1'	-4''
12	27.5	5	1 4	1 8	834	I 5/8	44 350	3	1/2	3 16	34	X1' 8" X	- o" (₹" - o"
10	22.0	4 8	1/4	1 8	71/4	1 3/8	30 370	2 3/4	7 16	3 16	34	X1' 8" ×	- o"
8	17.5	4 ³ / ₈	1/4	1/8	5 1/2	114	19 450	21/4	7 16	3 16	34	× o′	(\frac{5}{8}" \) = 8"

TABLE 9

DIMENSIONS AND ELEMENTS OF STANDARD CARNEGIE I BEAMS

					2- n-	m SLOPE OF	TLANGES U						
, d	Weight	Area	Width	Thick- ness of	Root,	Toe,	Radius.	1	Axis 1-1		1	xis 2-2	
Depth,	Foot	of Section	Flange, b	Web,	m	п	r	I ₁₋₁	S ₁₋₁	Г1-1,	I 2-2	S ₃₋₂	r ₃₋₂
In.	Pounds	Sq. In.	Inches	Inches	Inches	Inches	Inches	Inches ⁴	Inches ²	Inches	Inches ⁴	Inches	In.
24	105	30.98	7.875	0.625	1.404	0.800	0.60	2 811.5	234.3	9.53	78.9	20.0	1.60
24	90	26.47	7.131	0.631	1.142	0.600	0.60	2 238.4	186.5	9.20	45.7	12.8	1.3
24	80	23.32	7.000	0.500	1.142	0.600	0.60	2 087.2	173.9	9.46	42.9	12.2	1.3
20	80	23.73	7.000	0.600	1.183	0.650	0.70	1 466.3	146.6	7.86	45.8	13.1	1.39
20	65	19.08	6.250	0.500	1.029	0.550	0.60	1 169.5	117.0	7.83	27.9	8.9	1.2
18	7.5	22.05	7.000	0.562	1.195	0.659	0.66	1 141.3	126.8	7.19	46.2	13.2	1.4
18	60	17.65	6.095	0.555	0.922	0.460	0.56	841.8	93.5	6.91	22.4	7.3	1.1
18	5.5	15.93	6.000	0.460	0.922	0.460	0.56	795.5	88.4	7.07	21.2	7.1	I.I
15	60	17.67	6.000	0.590	1.041	0.590	0.69	609.0	81.2	5.87	26.0	8.7	1.2
15	50	14.71	5.648	0.558	0.834	0.410	0.51	483.4	64.5	5.73	16.0	5.7	1.0
15	42	12.48	5.500	0.410	0.834	0.410	0.51	441.8	58.9	5.95	14.6	5.3	1.0
12	40	11.84	5.250	0.460	0.859	0.460	0.56	268.9	44.8	4.77	13.8	5.3	1.0
12	31.5	9.26	5.000	0.350	0.738	0.350	0.45	215.8	36.0	4.83	9.5	3.8	1.0
10	30	8.82	4.805	0.455	0.673	0.310	0.41	134.2	26.8	3.90	7.6	3.2	0.9
10	25	7.37	4.660	0.310	.0.673	0.310	0.41	122.1	24.4	4.07	6.9	3.0	0.9
9	21	6.31	4.330	0.290	0.627	0.290	0.39	84.9		3.67	5.2	2.4	0.9
8	18	5-33	4.000	0.270	0.581	0.270	0.37	56.9	14.2	3.27	3.8	1.9	0.8
6	12.25	3.61	3.330	0.230	0.488	0.230	0.33	21.8	7.3	2.46	1.8	I.I	0.7

TABLE 10

DIMENSIONS AND ELEMENTS OF SUPPLEMENTARY CARNEGIE I BEAMS

							m l	o OPE OF FI	1 1 LANGES		3					
pth, d	Dimensions for Double Axis I-I Axis 2-2															
Ď	Der	-RA	NE.	Thi	Ro	Ĭ	0	p	R	r	I ₁₋₁	S ₁₋₁	r ₁₋₁	I ₃₋₂	S ₂₋₂	r ₂₋₂
In.	Lb.	Sq.In.	In.	In.	In.	In.	In.	In.	In.	In.	In.4	In.ª	In.	In.4	In.3	In.
27				0.424						0.65	2888.6		10.88	53.1	14.1	1.47
24	69.5	20.44	7.00	0.390	1.091	0.540	1.392	0.195	5.88	0.60	1928.0		9.71	39.3	11.2	
21	57.5	10.85	0.50	0.357	0.996	0.484	1.203	0.172	5.31	0.55	1227.5	116.9	8.54	28.4	8.8	1.30
18				0.322						0.50	733.2	81.5	7.36	19.9	6.6	1.21
15	_			0.289						0.45	405.1	54.0	6.17	13.5	4.9	1.13
12	27.5			0.255						0.40	199.6		4.98	8.7	3.5	1.04
10	22.0			0.232						0.37	113.9	22.8	4.18	6.4		0.99
8	17.5	5.15	4.33	0.210	0.583	0.240	0.704	0.105	2.86	0.33	58.3	14.6	3.37	4.5	2.1	0.93

TABLE 11.
Web Resistances for I-Beams.

		C.	arnegie I-B	EAMS, F	ROM CA	RNEGIE'S	Роскет	COMPANIO	ν.		
Depth of Beam.	Weight per Foot.	Allowable Web Shear.	Allowable Buckling Resistance.	Min. End Bear- ing.	End Reac- tion $a=3\frac{1}{2}$ ".	Depth of Beam.	Weight per Foot.	Allowable Web Shear.	Allowable Buckling Resistance.	Min. End Bear- ing.	End Reac- tion $a=3\frac{1}{2}$ ".
Inches.	Pounds.	Pounds.	Pounds per Sq. In.	Inches.	Pounds.	Inches.	Pounds.	Pounds.	Pounds per Sq. In.	Inches.	Pounds.
27	83.0	114480	7970	27.1	34650		55.0 50.0	98520 83880	16470 16030	4·3 4·5	87890 72830
	115.0 110.0 105.0	180000 165120 150000	13460 12960 12350	11.8 12.5 13.4	95880 84690 73320	12	45.0 40.0 35.0	69120 55200 52320	15390 14480 14230	4.8 5.3 5.4	57620 43300 40330 29710
24	95.0 90.0	180960 166320 151440	13490 13000 12410	11.8 12.5 13.3	96620 85610 74410		31.5 27.5 40.0	42000 30600 74900	13060 10850 16600	6.2 8.1 3.5	17990
	85.0 80.0 69.5	136800 120000 93600	11710 10690 8340	14.5 16.5 22.8	63410 50780 30910	10	35.0 30.0 25.0	60200 45500 31000	16120 15190 13410	3.7 4.1 5.0	58220 41470 24940
21	57-5	74970	8820	18.6	27540		22.0 35.0	23200 65880	11540 16870	6.2 3.1	16060 71010
	95.0 90.0 85.0	176800 162000 147400 132600	15080 14720 14300 13780	8.3 8.6 9.0 9.5	113320 101370 89590 77630	9	30.0 25.0 21.0	51210 36540 26100	16260 15160 13620	3.3 3.7 4.4	53200 35390 22710
20	80.0 75.0 70.0 65.0	120000 129800 115000 100000	13230 13660 12980 12080	9.6 10.4 11.6	67460 75380 63420 51320	8	25.5 23.0 20.5 18.0	43280 35920 28560 21600 16800	16440 15910 15120 13870 12400	2.9 3.0 3.3 3.8	48920 39290 29690 20600 14320
	90.0 85.0 80.0 75.0	145260 130500 115920 101160	15140 14700 14160 13450	7.4 7.7 8.2 8.0	97730 85260 72940 60480	7	17.5 20.0 17.5 15.0	32060 24710 17 5 00	163 50 15570 141 5 0	4.5 2.5 2.7 3.2	39310 28850 18580
18	70.0 65.0 60.0	129420 114660 99900	14670 14110 13380	7.8 8.3 9.0	84350 71890 59420	6	17.25 14.75 12.25	28500 21120 13800	16810 16050 14480	2.I 2.2 2.6	39930 28250 16650
	55.0 46.0 75.0	82800 57960 132300	12220 9320 16050	10.2 14.8 5.6	44980 24020 102660	5	17.0 14.75 12.25	19000 25200 17850	16726 17280 16580	1.7 1.6 1.8	30180 41370 28120
15	70.0 65.0 60.0 55.0	117600 102900 88500 98400	15690 15210 14600 15040	5.8 6.1 6.5 6.2	89160 75650 62440 71530	4	9.75 10.5 9.5 8.5	10500 16400 13480 10520	14870 17310 16940 16360	2.I 1.3 1.4 1.4	14830 31940 25690 19360
	50.0 45.0 42.0 36.0	83700 69000 61500 43350	14340 13350 12670 10010	6.7 7.5 8.1 11.2	58020 44520 37660 20970	3	7.5 7.5 6.5 5.5	7600 10830 7890 5100	15360 17560 17020 15950	1.6 1.0 1.0	26940 19020 11530

For explanation of above table see footnote Table 16.

			Самв	RIA I-	BEAMS	Uniform	LY Lo	ADED,	From C	AMBRIA'S	Han	DBOOK.			
Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.	Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.	Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.	Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.
In.	Lb.	Lb.	Ft.	In.	Lb.	Lb.	Ft.	In.	Lb.	Lb.	Ft.	In.	Lb.	Lb.	Ft.
3 4 5 6	5.5 6.5 7.5 7.5 8.5 9.5 10.5 9.75 12.25 14.75 12.25 14.75 17.25	10900 17790 25230 15330 22670 30820 20050 39730 25130 44320 62890 30510 49320 69540	1.7 1.1 .9 2.1 1.6 1.2 1.1 2.6 1.5 1.2 3.1 2.0 1.6 3.7 2.5 1.9	9 10	18 20.25 22.75 25.25 25 25 30 35 25 30 35 40 40 40 45	36310 53560 72760 91590 42450 71530 109620 146670 48960 86630 126460 165320 62890 91730 130540 99380 138110	4.2 3.1 2.4 2.1 4.8 3.1 2.3 1.9 5.4 2.6 2.2 4.5 3.5 4.9 3.8	12 15 15	50 ° 55	176250 213760 86530 106100 146260 186740 201330 237380 276990 316160 247900 2287290 322350 361780 309220	3.2 2.8 7.3 6.2 4.8 4.0 3.6 5.5 4.6 4.1 3.7 3.4 4.6 4.2 3.9 3.6 3.6	18 20 20	55 60 65 70 65 70 75 80 85 90 95 100 80 85 90	109040 155580 194040 232870 129150 169980 206910 182710 214600 257610 295400 333150 127540 166820 202450 239330 277070	8.8 6.6 5.5 4.9 9.6 7.3 6.7 7.7 6.6 6.0 5.5 14.7 11.8 10.1 8.8

TABLE 12

SAFE LOADS, IN TONS, AND DEFLECTIONS, CARNEGIE I BEAMS
AMERICAN BRIDGE COMPANY STANDARDS

Size	Weight per Foot.						LEN	GTH (OF SP.	AN IN	FEET						
	Pounds	10	11	12	13	14	15	16	17	18	20	22	24	26	28	30	32
	115.			110	101	94	88	82	77	73	66	60	55	51	47	44	4
	100.			88	81	76	71	66	62	59	53	48	44	41	38	35	3
	95.			86	79	73	68	64	60	57	51	47	43	39	37	34	3
24"	90.			83	77	71	66	62	59	55	50	45	41	38	36	33	3
- 1	85.			80	74	69	64	60	57	54	48	44	40	37	34	32	3
	80.			77	71	66	62	58	55	52	46	42	39	36	33	31	2
	Def.			.10	.12	.14	.16	.18	.20	.22	.28	-33	.40	.47	.54	.62	.7
	100.			74	68	63	59	55	52	49	44	40	37	34	32	29	2
	95.			71	66	61	57	54	50	48	43	39	36	33	31	29	2
	90.			69	64	59	55	52	49	46	42	38	35	32	30	28	2
	85.			67	62	57	54	50	47	45	40	37	34	31	29	27	2
20"	80.			65	60	56	52	49	46	43	39	36	33	30	28	26	2
	75-			56	52	48	45	42	40	38	34	31	28	26	24	23	2
	70.			54	50	46	43	41	38	36	33	30	27	25	23	22	2
	65.			52	48	45	42	39	37	35	31	28	26	24	22	21	I
	Def.			.12	.14	.16	.19	.2I	.24	.27	.33	.40	.48	.56	.65	.74	.8
	90.			62	57	53	49	46	43	41	37	33	31	28	26	24	2
	85.			60	55	51	48	45	42	40	36	32	30	27	25	24	2
	80.			58	53	50	46	43	41	38	35	31	29	26	25	23	2
011	75.			56	52	48	45	42	39	37	33	30	28	26	24	22	2
18"	70.			45	42	39	36	34	32	30	27	25	23	21	19	18	I
	65.			44	40	37	35	33	31	29	26	24	2 I	20	19	17	I
	60.			42	38	36	33	31	29	28	25	23	21	19	18	17	I
	55.			39	36	34	31	29	28	26	24	21	20	18	17	16	1
	Def.			-13	.16	.18	.21	.24	.27	.30	.37	.45	.53	.62	.72	.83	1.0
	100.			53	49	46	43	40	38	36	32	29	27	25	23	21	2
	95.			52	48	44	41	39	37	34	31	28	26	24	22	21	I
	90.			50	46	43	40	37	35	33	30	27	25	23	2 I 2 I	19	I
	85. 80.			48	45	41	39 38	36	34	32	29	26	24	22	20	19	
	75.	57 49	51	47 41	38	40		35	33	31	25	22	24	19	18	16	
15"	70.	47	45	39	36	35	33	20	28	26	24	21	20	18	17	16	
- 3	65.	45	41	38	35	32	30	28	27	25	23	21	19	17	16	15]
	60.	43	39	36	33	31	29	27	25	24	22	20	18	17	15	14	
	55.	36	33	30	28	26	24	23	21	20	18	17	15	14	13	12	
	50.	34	31	29	26	25	23	21	20	19	17	16	14	13	1.2	11	
	45.	32	29	27	25	23	22	20	19	18	16	15	14	12	12	11	
	42.	31	29	26	24	22	2 I	20	18	17	16	14	13	12	11	10	
	Def.	.II	.13	.16	.19	.22	.25	.28	.32	.36	.44	-53	.64	.75	.87	.99	
	55.	29	26	24	22	20	19	18	17	16	14	13	12	11	10	9.5	
	50.	27	25	22	21	.19	18	17	16	15	13	12	11	10	9.6	9.0	
	45.	25	23	21	20	18	17	16	15	14	13	12	11	9.8	9.1	8.4	
12"	40.	24	22	20	18	17	16	15	14	13	12	11	10	9.2	8.5	8.0	
	35.	20	18	17	16	14	14	13	12	11	10	9.2	8.5	7.8	7.2	6.8	
	31.5	19	17	16	15	14	13	12	11	II	10	8.7	8.0	7.4	6.9	6.4	
	Def	.14	.17	.20	.23	.27	.31	-3.5	.40	-45	-55	.67	.79	.03	I.I	1.2	

The figures give the safe uniform load in tons, based on extreme fiber stress of 16,000 lb., or the end reactions from safe uniform load in thousands of pounds.

For load concentrated at center, use one-half of figures given for allowable load and four-fifths values given for deflection.

Figures for deflections are given in inches.

.For figures at right of heavy zigzag lines, deflections are considered excessive for plastered ceilings.

TABLE 12.—Continued.

SAFE LOADS, IN TONS, AND DEFLECTIONS, CARNEGIE I BEAMS.

AMERICAN BRIDGE COMPANY STANDARDS.

Size.	Weight per]	LENGT	H OF	Span	in Fe	SET.							
	Foot, Pounds.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	20	22	24
10"	40. 35. 30. 25. Def.		34 31 29 26	28 26 24 22 .06	24 22 20 19	21 20 18 16	19 17 16 14	17 16 14 13	15 14 13 12	14 13 12 11	13 12 11 10	12 11 10 9.3	9.5 8.7 -37	9.8 8.9 8.1	9.2 8.4 7.7	9.4 8.7 8.0 7.2 .54	8.5 7.8 7.2 6.5	7.7 7.1 6.5 5.9	7.1 6.5 6.0 <u>5.4</u>
9"	35. 30. 25. 21. Def.		27 24 22 20	22 20 18 17	19 17 16 14	17 15 14 13	15 13 12 11 .15	13 12 11 10 .18	12 11 9.9 9.2	11 10 9.1 8.4	9.3 8.4 7.7	9.5 8.6 7.8 7.2 .36	8.8 8.1 7.3 6.7 -41	8.3 7.5 6.8 6.3	7.8 7.1 6.4 5.9	7.4 6.7 6.1 5.6	6.6 6.0 5.4 5.0	6.0 5.5 5.0 4.6 .89	5.5 5.0 4.5 4.2 I.I
8"	25.5 23. 20.5 18. Def.		18 17 16 15	15 14 13 13	13 12 12 11 .IO	11 11 10 9.5	9.6 9.0 8.4	9.1 8.6 8.1 7.6	8.3 7.8 7.3 6.9	7.6 7.2 6.7 6.3	7.0 6.6 6.2 5.8	6.5 6.1 5.8 5.4	6.1 5.7 5.4 5.1	5·7 5·4 5·1 <u>4·7</u>	5.4 5.1 4.8 4.5 .60	5.I 4.8 4.5 4.2 .67	4.6 4.3 4.0 3.8 .83	4.2 3.9 3.7 3.4 1.0	3.8 3.6 3.4 3.2 1.2
7"	20. 17.5 15. Def.		13 12 11	11 10 9.2	9.2 8.5 7.9	8.0 7.5 6.9	7.I 6.6 6.1	6.4 6.0 5.5	5.8 5.4 5.0	5.4 5.0 4.6	4.9 4.6 4.3 .40	4.6 4.3 3.9 .46	4.3 4.0 3.7 .53	4.0 3.7 3.5 .6r	3.8 3.5 3.3 .68	3.6 3.3 3.1 .77	3.2 3.0 2.8	2.9 2.7 2.5 <i>I.I</i>	2.7 2.5 2.3 1.4
6"	17.25 14.75 12.25 Def.	12 10 9.7	9.3 8.5 7.8	7.8 7.1 6.5	6.6 6.1 5.5	5.8 5.3 4.8	5.2 4.7 4.3	4.7 4.3 3.9	4.2 3.9 3.5	3.9 3.6 3.2	3.6 3.3 3.0	3.3 3.0 2.8	3.I 2.8	2.9 2.6 2.4 .7I	2.7 2.5 2.3 .80				
5"	14.75 12.25 9.75 Def.	8.I. 7.3 6.5	6.5 5.8 5.2	5.4 4.8 4.3	4.6 4.2 3.7 .16	4.0 3.6 3.2	3.6 3.2 2.9	3.2 2.9 2.6	2.9 2.6 2.3	2.7 2.4 2.2 .48	2.5 2.2 2.0 .56	2.3 2.1 1.8	2.2 I.9 I.7	2.0 1.8 1.6	I.9 I.7 I.5				
4"	9.5 8.5 7.5 Def.	4.8 4.5 4.2 4.0	3.8 3.6 3.4 3.2	3.2 3.0 2.8 2.7	2.7 2.6 2.4 2.3	2.4 2.3 2.1 2.0	2.I 2.0 I.9 I.8	1.9 1.8 1.7 1.6	1.7 1.6 1.5 1.4	1.6 1.5 1.4 1.3									
3"	7.5 6.5 5.5 Def.	2.6 2.4 2.2	2.I 1.9 1.8	1.7 1.6 1.5	I.5 I.4 I.3	1.3 1.2 1.1 ·35	1.2 1.1 .98	1.0 .96 .88	.94 .87 .80	.86 .80 .73 .80									

The figures give the safe uniform load in tons, based on extreme fibre stress of 16,000 lb., or the end reactions from safe uniform load in thousands of pounds.

For load concentrated at center, use one-half of figures given for safe loads and four-fifths of the values given for deflections. Figures for deflections are given in inches.

For figures at right of heavy zigzag lines, deflections are excessive for plastered ceilings.

TABLE 12a.

Percent of Tabular Safe Loads for Beams and Channels Without Lateral Support.

			Ratio	of Spa	ın, or	Dista	nce Be	etweer	Lat	eral	Supp	orts,	to I	lang	e W	idth.			
Authority.	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Cambria Am. B. Co.	100	100	99 81	93 72	87 63	80 53	73 44	67 Rati											

The tabular safe loads should be reduced in accordance with the ratios given in the above table in order to insure that the stresses in the compression flanges should not exceed the allowed unit stress.

TABLE 13. SAFE LOADS, IN TONS, AND DEFLECTIONS, SUPPLEMENTARY I-BEAMS.

Size.	Weight.			Span	in Fee	et, Safe	e Unif	orm L	oad ir	1 Ton	, and	Defle	ction i	n Inch	ies.		
		Span	10	11	12	13	14	15	16	17	18	20	22	24	26	28	30
27"	83.0	Load	114	104	95	88	81	76	71	67	63	57	52	47	44	40	38
		Def.	.06	.08	.09	.10	.12	.14	.16	.18	.20	.25	.30	-35	.42	.48	.53
		Span	10	11	12	13	14	15	16	17	18	20	22	24	26	28	30
24	69.5	Load	86	78	71	66	61	57	53	50	47	43	39	35	33	30	28
		Def.	.07	.08	.10	.12	.14	.16	.18	.20	.22	.28	-34	.40	.47	.54	.62
		Span	9	10	11	12	13	14	15	16	17	18	20	22	24	26	28
21	57-5	Load	69	62	56	52	48	44	41	39	36	34	31	28	26	24	22
		Def.	.06	.03	.io	.12	.13	.15	.18	.20	.23	.25	.32	.38	.45	.53	.62
		Span	8	9	10	11	12	13	14	15	16	17	18	20	22	24	26
18	46.0	Load	54	48	43	39	36	33	31	29	27	25	24	22	20	18	16
		Def.	.06	.08	.09	.II	.13	.16	.18	.21	.24	.27	.30	-37	-45	-53	.62
		Span	7	8	9	10	11	12	13	14	15	16	17	18	20	22	24
15	36.0	Load	41	36	32	29	26	24	22	20	19	18	17	16	14	13	12
		Def.	.06	.07	.09	.II	.13	.16	.19	.22	.25	.28	.32	.36	-44	.54	.64
		Span	6	7	8	9	10	11	12	13	14	15	16	17	18	20	22
12	27.5	Load	29	25	22	20	18	16	15	13	12	12	II	10	10	8.8	8.0
		Def.	.05	.07	.09	.II	.14	.17	.20	.23	.27	.31	-35	.40	-45	.55	.67
		Span	6	7	8	9	10	II	12	13	14	15	16	17	18	20	22
10	22.0	Load	20	17	15	13	12	11	10	9.3	8.7	8.1	7.6	7.1	6.7	6.1	5.5
		Def.	.06	.08	.II	.13	.17	.20	.24	.28	.32	-37	.42	.48	.54	.66	.80
		Span	`5	6	7	8	9	10	II	12	13	14	15	16	17	18	20
8	17.5	Load	15	13	11	9.7	8.6	7.8	7.1	6.4	6.0	5-5	5.2	4.8	4.6	4.3	3.9
		Def.	.05	.07	.IO	.13	.17	.21	.25	.30	.35	.40	.46	-53	.60	.67	.83

The figures give the safe uniform load in tons, based on extreme fiber-stress of 16,000 lb.; or the end reactions from safe uniform load in thousands of pounds.

For load concentrated at center, use one half of figures given for allowable load and four-

fifths values given for deflection.

Figures for deflection are in inches.

For figures to right of heavy zigzag lines, deflections are considered excessive for plastered ceilings.

TABLE 14
PROPERTIES OF CARNEGIE CHANNELS

					RIIES		RNEGIE	CHANI				
Depth	Weight per Foot	Area	Thickness of Web	Width of Flange	2—————————————————————————————————————	Coment	r = Ra	dius of	Section Modu- lus	Dis- tance from Center of Gravity	Maximum Bending Moment @ 16,000 Lb. per Sq. In.	Distance Back to Back Required to Make Radii of Gyration
Ă	eight	¥	ckne	dth c	of In	ertia	Gyra	ation		to Out- side of Web		Equal
	W		Thi	Μž	Axis1-1	Axis2-2	Axis 1-1	Axis 2-2	Axis1-1	web	Axis 1-1	
					I1	I 2	r ₁		S ₁	X	M ₁	11
Inches	Pounds	Inches ²	Inches	Inches	Inches ⁴	Inches ⁴	Inches	Inches	Inches ³	Inches	FtLb.	Inches
15	55 50 45 40 35 33	16.18 14.71 13.24 11.76 10.29 9.90	0.818 0.720 0.622 0.524 0.426 0.400	3.818 3.720 3.622 3.524 3.426 3.400	430.2 402.7 375.1 347.5 320.0 312.6	12.19 11.22 10.29 9.39 8.48 8.23	5.16 5.23 5.32 5.43 5.58 5.62	.868 .873 .882 .893 .908	57.4 53.7 50.0 46.3 42.7 41.7	.823 .803 .788 .783 .789 .794	76 000 72 000 67 000 62 000 57 000 56 000	8.53 8.71 8.92 9.15 9.43 9.50
12	40 35 30 25 20.5	11.76 10.29 8.82 7.35 6.03	0.758 0.636 0.513 0.390 0.280	3.418 3.296 3.173 3.050 2.940	197.0 179.3 161.7 144.0 128.1	6.63 5.90 5.21 4.53 3.91	4.09 4.17 4.28 4.43 4.61	.751 .757 .768 .785 .805	32.8 29.9 26.9 24.0 21.4	.722 .694 .677 .678 .704	44 000 40 000 36 000 32 000 28 000	6.60 6.81 7.07 7.36 7.67
10	35 30 25 20 15	10.29 8.82 7.35 5.88 4.46	0.823 0.676 0.529 0.382 0.240	3.183 3.036 2.889 2.742 2.600	115:5 103.2 91.0 78.7 66.9	4.66 3.90 3.40 2.85 2.30	3.35 3.42 3.52 3.66 3.87	.672 .672 .680 .696	23.1 20.6 18.2 15.7 13.4	.695 .651 .620 .609 .639	31 000 28 000 24 000 21 000 18 000	5.17 5.40 5.67 5.97 6.33
9	25 20 15 13.25	7.35 5.88 4.41 3.89	0.615 0.452 0.288 0.230	2.815 2.652 2.488 2.430	70.7 60.8 50.9 47.3	2.98 2.45 1.95 1.77	3.10 3.21 3.40 3.49	.637 .646 .665 .674	15.7 13.5 11.3 10.5	.615 .585 .590 .607	21 000 18 000 15 000 14 000	4.84 5.12 5.49 5.63
8	21.25 18.75 16.25 13.75 11.25	6.25 5.51 4.78 4.04 3.35	0.582 0.490 0.399 0.307 0.220	2.622 2.530 2.439 2.347 2.260	47.8 43.8 39.9 36.0 32.3	2.25 2.01 1.78 1.55 1.33	2.77 2.82 2.89 2.98 3.11	.600 .603 .610 .619	11.9 11.0 10.0 9.0 8.1	.587 .567 .556 .557 .576	16 000 15 000 13 000 12 000 11 000	4.23 4.38 4.54 4.72 4.94
7	19.75 17.25 14.75 12.25 9.75	5.81 5.07 4.34 3.60 2.85	0.633 0.528 0.423 0.318 0.210	2.513 2.408 2.303 2.198 2.090	33.2 30.2 27.2 24.2 21.1	1.85 1.62 1.40 1.19	2.39 2.44 2.50 2.59 2.72	.565 .564 .568 .575	9.5 8.6 7.8 6.9 6.0	.583 •555 •535 •528 •546	12 600 11 500 10 300 9 200 8 000	3.48 3.64 3.80 3.99 4.22
6	15.5 13.0 10.5 8	4.56 3.82 3.09 2.38	0.563 0.440 0.318 0.200	2.283 2.160 2.038 1.920	19.5 17.3 15.1 13.0	1.28 1.07 .88 .70	2.07 2 13 2.21 2.34	.529 .529 .534 .542	6.5 5.8 5.0 4.3	.546 .517 .503 .517	8 700 7 700 6 700 5 800	2.91 3.09 3.28 3.52
5	9 6.5	3.38 2.65 1.95	0.477 0.330 0.190	2.037 1.890 1.750	10.4 8.9 7.4	.82 .64 .48	1.75 1.83 1.95	•493 •493 •498	4.2 3.5 3.0	.508 .481 .489	5 500 4 700 3 900	2.34 2.56 2.79
4	7.25 6.25 5.25	2.13 1.84 1.55	0.325 0.252 0.180	1.725 1.652 1.580	4.6 4.2 3.8	.44 .38 .32	1.46 1.51 1.56	•455 •454 •453	2.3 2.1 1.9	.463 .458 .464	3 000 2 800 2 500	1.85 1.96 2.06
3	6 5 4	1.76 1.47 1.19	0.362 0.264 0.170	1.602 1.504 1.410	2.1 1.8 1.6	.31 .25 .20	1.08 1.12 1.17	.421 .415 .409	I.4 I.2 I.I	•459 •443 •443	1 800 1 600 1 400	1.07 1.19 1.31

TABLE 15
ELEMENTS OF CARNEGIE CHANNELS

							7								
		1	_ t	-b			A SE								
Depth	Weight per Foot	Flange	Web	∳ Web	t	k	h	Maximum Bending Moment	For Columns Only	Gage	Grip	Distance	Maximum Rivet in Flange	Bearing on Wall	Bearing Plate
In.	Pounds	In.	In.	In.	In.	In.	Ĭn.	FtLb.	In.	In.	In.	In.	In.	In.	Bear
15	55 50 45 40 35 33	3 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 16 at 4 ac is a 4 ac is	7-16	124 124 124 124 124 124	I sile sile sile sile sile sile sile sile	$ \begin{array}{r} 2\frac{9}{16} \\ 2\frac{1}{2} \\ 2\frac{3}{16} \\ 2\frac{3}{16} \\ 2\frac{3}{16} \\ 2\frac{3}{16} \end{array} $	76 000 72 000 67 000 62 000 57 000 56 000	1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	2½ 2½ 2½ 2 2 2		7	7 8	12	12"X\\\X1'-4", X1'-4", wt. 41 lbs.
12	40 35 30 25 20.5	31/2 38/3 31/4 38/3 3	on design descriptions of a sign of the section of a	7 6 5 5 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10	I I I I	$ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{1}{8} \\ 2 \\ 1\frac{7}{8} \\ 1\frac{13}{16} \end{array} $	44 000 40 000 36 000 32 000 28 000	I 1/2	2 2 1 ³ / ₄ 1 ³ / ₄ 1 ³ / ₄	12) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	13 16 11 16 9 16 7 16	7 8	12	12"X3" X1'-o", wt. 31 lbs.
10	35 30 25 20	314 387 887 883 245 8	7 de	- 0 m m-d-m 0 -do	81 81 81 81 81	F- 10	2 1 16 1 15 1 16 1 13 1 16 1 18 1 12	31 000 28 000 24 000 21 000 18 000	14 14 14 14 14	134 134 142 122 122	1211211217 16716	7 8 3 4 9 16 7 16 5 16	7	8	8",×§",×1'-o", wt. 17 lbs.
9	25 20 15 13.25	278 288 288 212 212	5 7 16 5 16 14 4	5 16 16 16	74 74 74 74 74	7-007-007-007-00	1 3 1 6 1 7 1 1 6 1 3 8	21 000 18 000 15 000 14 000	I 18 I 18 I 18 I 18	11/2 12/2 12/2 10/3 10/3	16 7 16	116 12 33 5 16	34	8	8"X = wt.
8	21.25 18.75 16.25 13.75 11.25	258 222 238 244	5187 6 5187 6 7 6 8 7 6 7 6	5 16 14 5 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	61 61 61 61	r- 007- 007- 007- 00	$ \begin{array}{c} I_{\frac{5}{8}} \\ I_{\frac{1}{2}} \\ I_{\frac{16}{16}} \\ I_{\frac{1}{4}} \\ I_{\frac{1}{4}} \end{array} $	16 000 15 000 13 000 12 000 11 000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	121 121 122 123 123 123 123 123	122-157-167-167-167-167-167-167-167-167-167-16	116 12235 55 16 116 9 16 116 9 16 116 9 16 116 9 16 116 9 16 116 9 16 116 9 116 116	34	8	8"X\$", wt. 12 lbs.
7	19.75 17.25 14.75 12.25 9.75	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.5 1.6 5.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1- 101- 101- 101- 101- 10 cs - 4 cs	$ \begin{array}{c} 1\frac{5}{8} \\ 1\frac{9}{16} \\ 1\frac{7}{16} \\ 1\frac{5}{16} \\ 1\frac{1}{4} \end{array} $	12 600 11 500 10 300 9 200 8 030	I I I I	1½ 1½ 1¼ 1¼ 1¼	7 16 7 16 7 16 3 8 3	11 16 9 16 1 2 3 8 5	wiles	8	8"X\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
6	15.5 13 10.5 8	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	9 16 7 16 5 16 3 16	5 16 16 3 16 16	4½ 4½ 4½ 4½ 4½			8 700 7 700 6 700 5 800		138 138 138 148 148	7 3 8 3 8 7 8 8	50 22 30 16 30 30 16 30 30 16 4 7 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16	e) police	6	5 lbs.
5	9 6.5	2 1 7 1 8 1 3 1 4	16 3 16	16 16 18	3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	an (on can) can can) can		5 500 4 700 3 900		I 1/8 I 1/8 I 1/8	5 16 5 16 5	9 16 3 8 1	1/2	6	", wt.
4	7.25 6.25 5.25	1 3 1 5 1 5 1 5	5 16 1 2 3 16	16	2 3 2 3 2 3 2 3			3 000 2 800 2 500		I I	5 16 5 16 5	3 8 5 16	1/2	6	6"×4"×6", wt. 5 lbs.
3	6 5 4	1 5 1 2 1 2 1 3	7 16 16	3 16 1 8	13 13 13 13	orion orion orion		1 800 1 600 1 400		7-107-107-10	1 4 1 4	7 16 5 16 1	1/2	6	(,,9

TABLE 16. WER RESISTANCES FOR CHANNELS.

		CA	RNEGIE CHA	NNELS,	From C	ARNEGIE'	s Роске	T COMPANIO	on.		
Depth of Chan- nel.	Weight per Foot.	Allowable Web Shear.	Allowable Buckling Resistance.	Min. End Bear- ing.	End Reac- tion $a = 3\frac{1}{2}$ ".	Depth of Chan- nel.	Weight per Foot.	Allowable Web Shear.	Allowable Buckling Resistance.	Min. End Bear- ing.	End Reac- tion $a = 3\frac{1}{2}$ ".
Inches.	Pounds.	Pounds.	Pounds per Sq. In.	Inches.	Pounds.	Inches.	Pounds.	Pounds.	Pounds per Sq. In.	Inches.	Pounds.
15	55.0 50.0 45.0 40.0 35.0 33.0	122700 108000 93300 78600 63900 60000	15820 15390 14820 14040 12900 12510	5.7 6.0 6.4 6.9 7.9 8.2	93830 80350 66840 53350 39850 36270	8	21.25 18.75 16.25 13.75 11.25	46560 39200 31920 24560 17600	16620 16170 15530 14490 12700	2.8 2.9 3.2 3.5 4.3	53200 43580 34070 24460 15370
13	50.0 45.0 40.0 37.0 35.0 32.0	102830 88140 73450 64610 58760 48750	16150 15680 15020 14470 14020 13000	4.8 5.0 5.4 5.7 6.0 6.8	86250 71760 57260 48540 42770 32900	7	19.75 17.25 14.75 12.25 9.75	44310 36960 29610 22260 14700	17090 16700 16130 15190 13230	2.3 2.4 2.6 2.9 3.5	46300 35830 25360 14580 48280
12	40.0 35.0 30.0 25.0 20.5	90960 76320 61560 46800 33600	16260 15730 14950 13670 11570	4.4 4.6 5.0 5.8 7.4	80090 65040 49850 34660 21060	5	13.0 10.5 8.0 11.5 9.0 6.5	26400 19080 12000 23850 16500 9500	16640 15730 13810 17180 16380	2.I 2.3 2.8 1.7 1.8 2.2	36610 25010 13810 38920 25670 13040
10	35.0 30.0 25.0 20.0 15.0	82300 67600 52900 38200 24000	16900 16440 15730 14470 11780	3.4 3.6 3.9 4.4 6.0	83430 66670 49910 33160 16970	4	7.25 6.25 5.25	13000 10080 7200	14450 16870 16250 15150	1.4 1.5 1.6	24670 18430 12270
9	25.0 20.0 15.0 13.25	55350 40680 25920 20700	16470 15550 13590 12220	3.2 3.5 4.4 5.1	58220 40420 22500 16170	. 3	5.0 4.0	7920 5100	17030 15940	1.0	19110

Safe end reaction $R = f_b \times t(a + d/4)$, Safe interior load $P = 2f_b \times t(a^1 + d/4)$. In these formulas R is the end reaction, P the concentrated load, t the web thickness, d the depth of the beam, a^1 half the distance over which the concentrated load is applied and a the whole distance over which the end reaction is applied, while f_b is the safe resistance of the web to buckling in pounds per square inch by the formula 19000 -100d/2r (d/2 = l in column formula). The tables give for beams with unsupported webs:

1. The allowable shear V, on the gross area of beam or channel webs at 10,000 pounds per square inch.

2. Allowable buckling resistance f_b , in pounds per square inch computed from this compression formula.

3. The distance a, or the distance over which the end reaction must be distributed when the shearing stress, V, in the web is the maximum allowable of 10,000 pounds per square inch.

4. The allowable end reaction (R) when a is taken at $3\frac{1}{2}$ " which is the usual length of beam actually resting on the 4" angles ordinarily used in building construction for beam seats.

			Самвя	eia Ci	HANNELS	, Unifoi	RMLY I	OADEI	, From	CAMBRI	a Han	р Вос	ĸ.		
Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.	Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.	Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.	Depth.	Weight per Ft.	Max. Safe Load.	Min. Span.
In.	Lb.	Lb.	Ft.	In.	Lb.	Lb.	Ft.	In.	Lb.	Lb.	Ft.	In.	Lb.	Lb.	Ft.
3 4 5	4 5 6 5.25 6.25 7.25 6.5 9	10970 17830 25260 14300 21660 29830 17390 35900 54920	1.1 0.8 .6 1.4 1.1 .9 1.6 1.1	7	8 10.5 13 15.5 9.75 12.25 14.75 17.25 19.75	20280 39580 58300 76540 22950 43660 62200 82110 99880 25560 44800 64140	2.3 1.4 1.1 1.0 2.8 1.7 1.4 1.2 1.1	9	18.75 21.25 13.25 15 20 25 15 20 25 30 35	83150 101800 28120 42250 80980 118810 30570 67420 107670 147010 182940	1.5 1.3 4.0 2.9 1.8 1.4 4.7 2.6 1.9 1.6 1.4	12	20.5 25 30 35 40 33 35 40 45 50	41390 75440 114230 156000 193920 83430 95070 130940 171400 211750 251710	5.5 3.5 2.6 2.1 1.9 5.4 4.9 4.3 3.2 2.8 2.5

TABLE 17

SAFE LOADS, IN TONS, AND DEFLECTIONS, CARNEGIE CHANNELS

AMERICAN BRIDGE COMPANY STANDARDS

Size	Weight						LEN	GTH O	f Spa	N IN	FEET						
	Foot, Pounds	В	9	10	11	12	13	14	15	16	18	20	22	24	26	28	30
15"	55· 50. 45· 40. 35· 33·	38 36 33 31 28 28	34 32 30 27 25 25	31 29 27 25 23	28 26 24 22 21 20	25 24 22 21 19	24 22 21 19 18	22 20 19 18 16	20 19 18 16 15	19 18 17 15 14	17 16 15 14 13	15 14 13 12 11	14 13 12 11 10	13 12 11 10 9.5 9.3	12 11 10 9.5 8.8 8.6	11 10 9.5 8.8 8.1 7.9	10 9.5 8.9 8.2 7.6 7.4
	Def.	.07	.00	.II	.13	.16	.19	.22	.25	.28	.36	.44	-53	.64	.75	.87	.99
12"	40. 35. 30. 25. 20.5 Def.	22 20 18 16 14	19 18 16 14 13	18 16 14 13 11	16 14 13 12 10	15 13 12 11 9.5	13 12 11 9.9 8.8	13 11 10 9.1 8.1	12 10 9.6 8.5 7.6	11 10 9.0 8.0 7.1	9.7 8.9 8.0 7.1 6.3	8.8 8.0 7.2 6.4 5.7	8.0 7.2 6.5 5.8 5.2	7·3 6.6 6.0 5·3 4·7	6.7 6.1 5.5 4.9 4.4	6.3 5.7 5.1 4.6 4.1	5.8 5.3 4.8 4.3 3.8
10"	35. 30. 25. 20. 15. Def.	15 14 12 11 8.9	14 12 11 9.3 7.9	12 11 9.7 8.4 7.1	11 10 8.8 7.6 6.5	10 9.2 8.1 7.0 5.9	9.5 8.5 7.5 6.5 5.5	8.8 7.9 6.9 6.0 5.1	8.2 7.3 6.5 5.6 4.8	7.7 6.9 6.1 5.3 4.5	6.8 6.1 5.4 4.7 4.0	6.2 5.5 4.9 4.2 3.6	5.6 5.0 4.4 3.8 3.2 .80	5.I 4.6 4.0 3.5 3.0	4.7 4.2 3.7 3.2 2.7 I.I	4·4 3·9 3·5 3·0 2.6 1·3	4.I 3.7 3.2 2.8 2.4 I.5
9"	25. 20. 15. 13.25 Def.	10 9.0 7.5 7.0	9.3 8.0 6.7 6.2	8.4 7.2 6.0 5.6	7.6 6.6 5.5 5.1	7.0 6.0 5.0 4.7	6.4 5.5 4.6 4.3	6.0 5.1 4.3 4.0 .36	5.6 4.8 4.0 3.7 .41	5.2 4.5 3.8 3.5 -47	4.7 4.0 3.3 3.1 .60	4.2 3.6 3.0 2.8 -74	3.8 3.3 2.7 2.6 .89	3.5 3.0 2.5 2.3	3.2 2.8 2.3 2.2	3.0 2.6 2.2 2.0 1.4	2.8 2.4 2.0 1.9

The figures give the safe uniform load in tons, based on extreme fiber stress of 16,000 lb., or the end reactions from safe uniform load in thousands of pounds.

For load concentrated at center, use one-half of figures given for safe loads and four-fifths of the values given for deflections.

Figures for deflections are given in inches.

For figures at right of heavy zigzag lines, deflections are considered excessive for plastered ceilings.

TABLE 17.—Continued

SAFE LOADS, IN TONS, AND DEFLECTIONS, CARNEGIE CHANNELS

AMERICAN BRIDGE COMPANY STANDARDS

Size	Weight per						LEN	GTH (OF SPA	AN IN	FEET						
	Foot, Pounds	5	6	7	8	9	10	11	12	13	14	15	16	18	20	22	24
8"	21.25 18.75 16.25 13.75 11.25 Def.	13 12 11 9.6 8.6	9.7 8.9 8.0 7.2	9.1 8.4 7.6 6.9 6.2	7.9 7.3 6.7 6.0 5.4	7.I 6.5 5.9 5.3 4.8	6.4 5.8 5.3 4.8 4.3	5.8 5.3 4.8 4.4 3.9	5·3 4·9 4·4 4·0 3.6	4.9 4.5 4.1 3.7 3.3 .35	4.6 4.2 3.8 3.4 3.1 .4I	4.2 3.9 3.5 3.2 2.9	4.0 3.7 3.3 3.0 2.7 .53				
7"	19.75 17.25 14.75 12.25 9.75 Def.	9.2 8.3 7.4 6.7	8.4 7.7 6.9 6.1 5.6	7.2 6.6 5.9 5.3 4.8	6.3 5.8 5.2 4.6 4.2	5.6 5.1 4.6 4.1 3.7	5.I 4.6 4.I 3.7 3.3	4.6 4.2 3.8 3.4 3.0	4.2 3.8 3.5 3.1 2.8	3.9 3.5 3.2 2.8 2.6	3.6 3.3 3.0 2.6 2.4	3.4 3.1 2.8 2.5 2.2	3.2 2.9 2.6 2.3 2.1				
6"	15.5 13. 10.5 8.	7.0 6.2 5.4 4.6	5.8 5.1 4.5 3.9	5.0 4.4 3.8 3.3	4·3 3·9 3·4 2.9	3.9 3.4 3.0 2.6	3.5 3.1 2.7 2.3	3.2 2.8 2.4 2.1	2.9 2.6 2.2 1.9	2.7 2.4 2.1 1.8	2.5 2.2 1.9 1.7	2.3 2.1 1.8 1.5	2.2 1.9 1.7 1.4				
5"	9. 6.5 Def.	4.4 3.8 3.2 .08	3.7 3.2 2.6	3.2 2.7 2.3 .16	2.8 2.4 2.0	2.5 2.1 1.8	2.2 1.9 1.6	2.0 1.7 1.4	1.9 1.6 1.3	I.7 I.5 I.2	1.6 1.4 1.1	I.5 I.3 I.0	I.4 I.2 .99				
4''	7.25 6.25 5.25 Def.	2.4 2.2 2.0	2.0 1.9 1.7	1.7 1.6 1.4	I.5 I.4 I.3	I.4 I.2 I.I -34	I.2 I.I I.O	1.1 1.0 .92	1.0 .93 .84 .60	.94 .86 .78	.87 .80 .72	.81 .74 .67	.76 .70 .63				
3"	6. 5. 4. Def.	I.5 I.3 I.2	1.2 1.1 .97	1.1 .94 .83	.92 .82 .73	.82 .73 .64 .45	·74 .66 .58	.67 .60 .53	.61 ·55 ·48	·57 ·50 ·45 ·93	·53 ·47 ·41 <i>I.I</i>	.49 .44 .39	.46 .41 .36 <i>I.4</i>				

The figures give the safe uniform load in tons, based on extreme fiber stress of 16,000 lb., or the end reactions from safe uniform load in thousands of pounds.

For load concentrated at center, use one-half of figures given for safe loads and four-fifths of the values given for deflections.

Figures for deflections are given in inches.

For figures at right of heavy zigzag lines, deflections are considered excessive for plastered ceilings.

TABLE 18.

SAFE LOADS, IN TONS, AND DEFLECTIONS, CARNEGIE CHANNELS LAID FLAT.

AMERICAN BRIDGE COMPANY STANDARDS.

Size	Weight per		LENG	TH OF	SPAN	I IN I	PEET.		Size.	Weight per		LENG	TH O	P SPA	ท ใท	Peet.	A ed Wild
	Foot, Pounds.	3	4	5	6	7	8	9		Foot, Pounds.	3	4	5	6	7	8	9
	55.	7.2	5.4	4.3	3.6	3.1	2.7	2.4		21.25	1.9	1.5	1.2	.98	.84	-74	.65
	50.	6.8	5.I	4.I	3-4	2.9	2.6	2.3		18.75	1.8	1.3	I.I	.91	.78	.68	.61
	45-	6.4	4.8	3.9	3.2	2.8	2.4	2. I	8"	16.25	1.7	1.2	1.0	.84	.72	.63	.56
15"	40.	5.9	4.5	3.6	3.0	2.5	2.2	2.0		13.75	1.5	I.I	.92	.77	.66	.58	.51
	35-	5.7	4.3	3.4	2.8	2.4	2.I	1.9		11.25	1.4	1.0	.84	.70	.60	.53	-47
	33.	5.6	4.2	3.4	2.8	2.4	2.I	1.9	İ	Def.	.05	.08	.13	.18	.24	.32	.40
	Def.	.03	.05	.08	.12	.16	.21	.26		19.75	1.7	1.3	1.0	.85	.73	.64	.57
	40.	4.4	3.3	2.6	2.2	1.9	1.6	1.5		17.25	1.5	1.1	.93	.77	.66	.58	-52
	35-	4.0	3.0	2.4	2.0	1.7	1.5	1.3	.,,	14.75	1.4	1.0	.84	.70	.60	.53	.47
	30.	3.7	2.8	2.2	1.8	1.6	1.4	1.2	7"	12.25	1.2	-95	.76	.63	.54	-47	-42
12"	25.	3.4	2.5	2.0	1.7	1.4	1.3	I.I		9.75	I.I	.85	.67	.56	.48	.42	-37
	20.5	3.I	2.3	1.9	1.5	1.3	I.2	1.0		Def.	.05	.00	.14	.20	.26	-35	.44
	Def.	.03	.06	.09	.İ4	.18	.24	.30		15.5	1.3	.98	.78	.65	.56	.49	-43
	35.	3.3	2.5	2.0	1.6	1.4	1.2	I.I	-	13.	I.I	.87	.69	.58	.50	-43	-39
	30.	2.9	2.2	1.7	1.4	1.2	1.1	1.0	6"	10.5	1.0	.76	.61	.51	-43	.38	.34
	25	2.7	2.0	1.6	1.3	I.I	1.0	.89		8.	.88	.66	.53	-44	.38	-33	.29
10"	20.	2.4	1.8	1.4	1.2	1.0	.89	.79		Def.	.05	.IO	.15	.22	.20	.38	.4
	15.	2.I	1.5	1.2	1.0	.89	.78	.69		11.5	.95	.71	-57	-47	.41	.36	-32
	Def.	.04	.07	.II	.15	.21	.27	.34		9.	.81	.60	.48	.40	-35	.30	.27
	25.	2.4	1.8	1.4	1.2	1.0	.90	.80	5"	6.5	.67	.50	.40	-34	.29	.25	.2
	20.	2.1	1.6	1.3	1.0	.90	.79	.70		Def.	.06	.II	.17	.24	.32	.42	-54
9"	15.	1.8	1.3	I.I	.91	.78	.68	.61		1 2019.			/	4	.5~		.94
9	13.25	1.7	1.3	1.0	.86	.74	.65	.57									
	Def.	.04	.08	.12	.17	.22	.20	-37									

The figures give the safe uniform load in tons, based on extreme fiber stress of 16,000 lb., or the end reactions from safe uniform load in thousands of pounds.

For load concentrated at center, use one-half of figures given for safe loads and four-fifths of the values given for deflections. Figures for deflections are given in inches.

For figures at right of heavy zigzag lines, deflections are excessive for plastered ceilings.

TABLE 18A.

COEFFICIENTS OF DEFLECTION, UNIFORMLY DISTRIBUTED LOADS.
For Concentrated Load at center use four-fifths the tabular coefficient.

Span,		Stress, I Square I		Span, Feet.		Stress, I Square I		Span, Feet.		Stress, Por Square Inc	
Feet.	16000	14000	12500	reet.	16000	14000	12500	rect.	16000	14000	12500
I	0.017	0.014	0.013	16	4.237	3.708	3.310	31	15.906	13.918	12.427
2	0.066	0.058	0.052	17	4.783	4.186	3.737	32	16.949	14.830	13.241
3	0.149	0.130	0.116	18	5.363	4.692	4.190	33	18.025	15.772	14.082
4	0.265	0.232	0.207	19	5.975	5.228	4.668	34	19.134	16.742	14.948
5	0.414	0.362	0.323	20	6.621	5.793	5.172	35	20.276	17.741	15.841
6	0.596	0.521	0.466	21	7.299	6.387	5.703	36	21.451	18.770	16.759
7	0.811	0.710	0.634	22	8.011	7.010	6.259	37	22.659	19.827	17.703
8	1.059	0.927	0.828	23	8.756	7.661	6.841	38	23.901	20.913	18.672
9	1.341	1.173	1.047	24	9.534	8.342	7.448	39	25.175	22.028	19.668
10	1.655	1.448	1.293	25	10.345	9.052	8.082	40	26.483	23.172	20.690
11	2.003	1.752	1.565	26	11.189	9.790	8.741	41	27.824	24.346	21.737
12	2.383	2.086	1.862	27	12.066	10.558	9.427	42	29.197	25.548	22.810
13	2.797	2.448	2.185	28	12.977	11.354	10.138	43	30.603	26.779	23.900
14	3.244	2.839	2.534	29	13.920	12.180	10.875	44	31.954	28.039	25.034
15	3.724	3.259	2.909	30	14.897	13.034	11.638	45	33.517	29.328	26.185

To find the deflection in inches of a section symmetrical about the neutral axis, such as beams, channels, zees, etc., divide the coefficient in the table corresponding to given span and fiber stress by the depth of the section in inches. For unsymmetrical sections, such as angles and channels laid flat, divide the coefficient by twice the distance from neutral axis to most extreme fiber.

TABLE 19.

Moments of Inertia of Two Channels, Both Axes.
Flanges Turned Out, Distances from Back to Back.

	of Two	operties Channe Turned (ls, Dut.		X	Y	X		M	or Distan leasured f ack to Ba	rom	
Depth.	5	"	6	"				8′′			9"	
Weight.	6.50	9.00	8.00	10.50	9-75	12.25	11.25	13.75	16.25	13.25	15.00	20.00
Area 2[s I _X -2[s Flange 2[s	3.90 14.8 31	5.30 17.8 3 ³ 4	4.76 26.0 4	6.18 30.2 41	5.70 42.2 41	7.20 48.4 4 ¹ / ₂	6.70 64.6 4½	8.08 72.0 4 ³ / ₄	9.56 79.8 5	7.78 94.6 5	8.8 ₂ 101.8 5	11.76 121.6 51
ь	N	Ioments	of Inertia	of 2 Cha	nnels Ab	out Axis	Y-Y for	Various	Distance	s Back to	Back. I	n.4.
3 1/4 3 1/4 3 2/3 3 4	16.4 18.4 20.5 22.8	22.I 24.8 27.7 30.7	20.8 23.2 25.9 28.6	26.5 29.7 33.1 36.6	25.8 28.8 32.0 35.4	32.0 35.8 39.7 44.0	31.5 35.1 38.9 42.9	37·3 41.6 46.1 50.9	44.0 49.0 54.4 60.1	38.1 42.3 46.8 51.5	42.4 47.2 52.2 57.5	56.0 62.3 69.0 76.1
4 44 43 44 44	25.I 27.6 30.2 33.0	33.9 37.3 40.8 44.5	31.6 34.6 37.8 41.2	40.4 44.4 48.6 52.9	38.9 42.6 46.5 50.6	48.4 53.1 58.0 63.1	47.1 51.6 56.2 61.0	55.9 61.2 66.8 72.6	66.0 72.3 78.9 85.7	56.4 61.6 67.1 72.8	63.1 68.9 75.0 81.4	83.5 91.3 99.4 107.9
5 5 5 5 5 5 5 5	35.8 38.8 41.9 45.1	48.4 52.4 56.6 61.0	44.7 48.4 52.2 56.2	57.5 62.2 67.2 72.3	54.8 59.2 63.8 68.6	68.4 74.0 79.8 85.8	66.1 71.3 76.8 82.5	78.6 84.9 91.5 98.2	92.9 100.3 108.1 116.1	78.7 84.9 91.3 97.9	95.1 102.3 109.8	116.8 126.1 135.7 145.7
6 6 ¹ / ₄ 6 ¹ / ₂ 6 ³ / ₄	48.4 51.9 55.5 59.2	65.5 70.2 75.1 80.1	60.3 64.6 69.0 73.5	77.6 83.1 88.8 94.8	73.6 78.7 84.0 89.5	92.0 98.5 105.2 112.1	94.5 100.8 107.3	105.3 112.6 120.2 128.0	124.5 133.2 142.1 151.4	104.8 112.0 119.3 127.0	117.6 125.6 133.9 142.5	156.0 166.8 177.8 189.3
7 74 712 73 74	63.0 67.0 71.1 75.3	85.1 90.5 96.0 101.7	78.2 83.1 88.1 93.3	100.8 107.1 113.6 120.3	95.2 101.0 107.1 113.3	119.2 126.6 134.2 142.0	114.0 120.9 128.1 135.4	136.1 144.4 153.0 161.8	160.9 170.8 180.9 191.3	134.8 143.0 151.3 160.0	151.4 160.6 170.0 179.7	201.1 213.3 225.9 238.8
8 8 14 8 23 8 8 8	79.6 84.0 88.6 93.3	107.5 113.5 119.7 126.1	98.6 104.0 109.6 115.4	127.2 134.2 141.5 148.9	119.6 126.2 132.9 139.9	150.1 158.3 166.8 175.5	143.0 150.8 158.7 166.9	170.9 180.2 189.8 200.0	202.0 213.0 224.4 236.0	168.8 177.8 187.2 196.7	189.7 200.0 210.5 221.3	252.I 265.8 279.8 294.2
9 9 ¹ / ₄ 9 ¹ / ₂ 9 ³ / ₄	98.1 103.0 108.0 113.2	132.6 139.3 146.1 153.1	121.3 127.3 133.5 140.0	156.6 164.4 172.5 180.7	146.9 154.2 161.7 169.3	184.4 193.6 203.0 212.6	175.3 183.9 192.8 201.8	209.7 220.1 230.7 241.5	247.9 260.2 272.7 285.6	206.5 216.6 227.0 235.7	232.4 243.7 255.3 267.2	309.0 324.1 339.6 355.5
$ \begin{array}{c} 10 \\ 10\frac{1}{4} \\ 10\frac{1}{2} \\ 10\frac{3}{4} \end{array} $	118.5 123.9 129.5 135.1	160.3 167.7 175.2 182.8	146.4 153.0 159.8 166.7	189.1 197.7 206.5 215.5	177.1 185.1 193.3 201.6	222.4 232.5 242.8 253.3	211.0 220.5 230.1 240.0	252.6 264.0 275.6 287.4	298.7 312.1 325.8 339.9	248.2 259.3 270.5 282.1	279.4 291.9 304.6 317.6	371.7 388.3 405.3 422.6
$\begin{array}{c} \mathbf{II} \\ \mathbf{II} \frac{1}{4} \\ \mathbf{II} \frac{1}{2} \\ \mathbf{II} \frac{1}{4} \\ \mathbf{II} \end{array}$	140.9 146.8 152.8 159.0 165.3	190.7 198.7 206.8 215.2 223.7	173.8 181.1 188.4 196.0 203.7	224.7 234.I 243.6 253.4 263.4	210.1 218.8 227.7 236.7 246.0	264.I 275.0 286.2 297.6 309.3	250.1 260.3 270.8 281.5 292.4	300.0 311.9 324.5 337.4 350.5	354.2 368.8 383.8 399.0 414.5	293.8 305.1 317.9 330.3 343.0	330.9 344.5 358.3 372.4 386.8	440.3 458.4 476.9 495.7 514.8

TABLE 19.—Continued.

Moments of Inertia of Two Channels, Both Axes.
Flanges Turned Out, Distances from Back to Back.

			rties hannels, rned Out		X	J	6	·-X		Mean	Distance sured from t to Back	n	
Depth.		10"	-		12		Ý I			2.5	."		
Weight.	15.00	30.00	25.00	20.50	25.00	30.00	35.00	33.00	35.00	40.00	45.00	50.00	55.00
Area 2[s l _x -2[s Flange 2[s	8.92 133.8 51	11.76 157.4 51	14.70 182.0 51	12.06 256.2	14.70 288.0 61	17.64 323.4 64	20.58 358.6 63	19.80 625.2 61	20.58 640.0	23.52 695.0 7	26.48 750.2 7\$	29.42 805.4	32.36 860.4
b				ertia of a	Channel	s About	Axis Y-Y						
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 6	99.6 107.0 114.7	119.4 128.7 138.4 148.5 158.9	149.9 161.6 173.8 186.4	131.6 141.5 151.7 162.3	157.5 169.4 181.8 194.6	188.5 202.8 217.6 233.0 248.9	221.8 238.5 255.9 273.9	231.3 247.9 265.1 283.0	239.6 256.8 274.7 293.2	272.3 292.0 312.4 333.5	306.9 329.0 352.0 375.9	343.4 368.2 393.8 420.4	381. 409. 437. 466.
61 61 63 63	131.0 139.5 148.3	169.7 180.9 192.4 204.3	199.4 213.0 227.0 241.4 256.3	173.3 184.6 196.4 208.5 221.0	207.9 221.7 235.9 250.5 265.7	265.4 282.5 300.0 318.2	292.6 311.9 331.9 352.5 373.8	301.5 320.6 340.3 360.6 381.5	312.4 332.2 352.7 373.8 395.5	355.4 378.0 401.3 425.0 450.2	400.5 426.0 452.3 479.5 507.5	447.9 476.4 505.7 536.0 567.2	497 528 561 594 629
71 71 71 71 8	176.4 186.3	216.6 229.2 242.2 255.5	271.7 287.5 303.8 320.6	233.8 247.1 260.7 274.7	281.2 297.3 313.8 330.8	336.9 356.1 375.9 396.3	395.7 418.2 441.4 465.3	403.I 425.3 448.I 471.5	417.9 440.9 464.6 489.0	475.8 502.1 529.1 556.9	536.2 565.9 596.3 627.6	599.3 632.3 666.2 701.1	664 701 738 777
81 81 83 83	207.0 217.8 228.8	269.2 283.3 297.8	337.8 355.5 3.3.6	289.1 303.8 318.9	348.2 366.1 384.4	417.2 438.6 460.6	489.7 514.8 540.6	495.5 520.2 545.5	513.9 539.5 565.8	585.3 614.6 644.5	659.7 692.6 726.4	736.9 77 .6 811.2	816 857 898
9 94 91 92 93	251.7 263.6 275.8	312.7 327.9 343.4 359.4	430.7 450.7	334.4 350.3 366.6 383.2	403.2 422.5 442.2 462.4	483.2 506.3 530.0 554.2	567.0 594.0 621.7 650.0	571.4 597.9 625.0 652.8	592.7 620.3 648.5 677.3	675.2 706.7 738.8 771.7	761.0 796.4 832.7 869.8	849.8 889.2 929.6 970.9	941 984 1029 1075
10 101 102 103	300.9 313.9 327.2	375.7 392.3 409.4 426.8	471.1 492.0 513. 535.2	400.2 417.6 435.5 453.5	483.0 504.1 525.6 547.7	578.9 604.2 630.1 656.5	679.0 708.6 738.8 769.8	681.2 710.1 739.7 770.0	7 6.7 736.9 767.6 799.0	805.4 839.7 874.8 910.7	907.7 946.4 958.9 1026.3	1013.2 1056.4 1100.4 1145.4	1121 1169 1217 1267
11 114 112 113	354.6 368.7 383.1	444.6 462.7 481.2 500.1	580.1 603.3 627.0	472.0 490.9 510.2 539.9	570.1 593.1 616.5 640.3	683.5 711.0 739.1 767.7	801.4 833.6 866.4 899.9	800.8 832.3 864.4 897.1	830.9 863.6 896.9 930.9	1061.4	1109.6 1152.5 1196.2	1191.2 1238.1 1285.8 1334.4	1318 1369 1422 1476
$ \begin{array}{c} 12 \\ 12 \\ \hline 4 \\ \hline 12 \\ \hline 12 \\ \hline 4 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ \hline 12 \\ $	412.7 427.9 443.4	519.4 539.0 558.9 579.3	651.0 675.5 700.6 726.0	549.8 570.2 591.0 612.1	664.6 689.4 714.6 740.3	796.8 826.6 856.8 887.7		930.4 964.3 998.9 1034.1	965.5 1000.7 1036.6 1073.2	1141.2 1182.2 1223.9	1240.7 1286.0 1332.2 1379.2	1538.2	1530 1586 1643 1701
13 134 132 134	475.2 491.6 508.2	600.0 621.1 642.5 664.4		633.7 655.6 677.9 700.6		-	1114.2 1152.2 1190.8	1181.0	1186.6	1353.5 1398.1		1645.7 1700.8 1756.8	
14 14 ¹ / ₄ 14 ¹ / ₄	542.3 559.7 577.4	709.1 732.0 755.3	860.3 888.6 917.3 946.4	723.6 747.0 770.8 795.0	904.I 933.I 962.4	1084.2 1118.9 1154.1	1230.1 1270.0 1310.5 1351.7	1258.1 1297.6 1337.8	1305.9 1347.0 1388.6	1489.7 1536.5 1584.1	1678.6 1731.4 1785.0	1871.6 1930.4 1990.0	2068 2133 2199
15 154 152 153 16	613.7 632.3 651.2	803.0 827.4 852.1	976.0 1006.1 1036.7 1067.6 1099.1	869.8 895.5	1022.5 1053.3 1084.5	1226.2 1263.1 1300.5	1393.6 1436.0 1479.2 1522.9 1567.3	1419.9 1461.9 1504.5	1473.9 1517.5 1561.8	1681.5 1731.3 1781.9	1894.8 1950.9 2007.8	2112.2 2174.6 2238.0	2333 2402 2472

TABLE 20.

Moments of Inertia of Two Channels, Both Axes.
Flanges Turned In, Distances from Back to Back.

	of Ty	Properties wo Channe es Turned	ds, in.	X	—		-2 3) -	D	For Distan Measured fi Back to Ba	rom	
Depth.	7'	,		8′′			9"			10''	
Weight.	9-75	12.25	11.25	13.75	16.25	13.25	15.00	20.00	15.00	20.00	25.00
Area 2[s I _X -2[s Web 2[s	5.70 42.2 7	7.20 48.4 5 8	6.70 64.6 7	8.08 72.0 5 8	9.56 79.8 18	7.78 94.6 7	8.82 101.8	11.76 121.6	8.92 133.8	11.76 157.4	14.70 182.0 118
ъ	N	Ioments of	Inertia of	2 Channe	ls about A	xis Y-Y f	or Various	Distances	Back to H	Back, In.	i,
7 '' 7 1/4 7 1/2 7 3/4 8 8 1/4 8 1/2 8 8 3/4	51.7 56.0 60.5 65.1 70.0 75.0 80.2 85.5	66.0 71.4 77.1 83.0 89.2 95.5 102.1 108.9	59.9 64.9 70.2 75.6 81.2 87.0 93.1 99.4	73.I 79.2 85.5 92.I 98.9 106.0 113.3 120.9	86.4 93.6 101.1 108.9 117.0 125.3 134.0 143.0	68.6 74.4 80.4 86.6 93.1 99.8 106.8	78.6 85.1 92.0 99.1 106.5 114.1 122.0 130.3	104.8 113.6 122.7 132.2 142.1 152.3 162.9 173.8	77.6 84.1 90.9 98.0 105.4 113.0 120.9	104.0 112.7 121.7 131.1 140.9 151.1 161.6	128.7 139.5 150.8 162.5 174.7 187.4 200.5
9 9 ¹ / ₄ 9 ¹ / ₂ 9 ³ / ₄ 10	91.1 96.8 102.7 108.8 115.0	116.0 123.2 130.7 138.4 146.4	105.8 112.5 119.4 126.5 133.8	128.7 136.8 145.2 153.8 162.6	152.3 161.8 171.7 181.9	121.4 129.1 137.1 145.3 153.7	138.7 147.5 156.5 165.8 175.4	185.2 196.8 208.9 221.3 234.1	137.6 146.3 155.3 164.7 174.2	183.7 195.4 207.4 219.7 232.4	228.1 242.6 257.5 272.9 288.8
101 102 103 11 111 111	121.5 128.1 134.9 141.9 149.0 156.3	154.5 162.9 171.5 180.4 189.4 198.7	141.3 149.0 157.0 165.1 173.5 182.0	171.7 181.1 190.7 200.5 210.6 221.0	203.I 214.2 225.6 237.2 249.2 261.5	162.3 171.2 180.4 189.8 199.4 209.3	185.3 195.4 205.8 216.5 227.5 238.7	247.3 260.8 274.7 289.0 303.6 318.6	184.1 194.2 204.7 215.4 226.3 237.6	245.5 259.0 272.8 287.0 301.6 316.5	305.1 321.9 339.2 356.9 375.0 393.7
$ \begin{array}{c} 11\frac{3}{4} \\ 12 \\ 12\frac{1}{4} \\ 12\frac{1}{2} \\ 12\frac{3}{4} \end{array} $	163.8 171.5 179.4 187.4 195.6	208.2 218.0 227.9 238.1 248.5 259.2	190.8 199.8 209.0 218.4 228.0 237.8	231.6 242.5 253.6 265.0 276.6 288.5	274.1 286.9 300.1 313.6 327.3 341.3	219.4 229.8 240.4 251.3 262.4 273.7	250.2 262.0 274.1 286.4 299.1 312.0	334.0 349.7 365.8 382.3 399.2 416.4	249.1 261.0 273.1 285.4 298.1 311.0	331.8 347.5 363.5 379.9 396.7 413.8	412.7 432.3 452.3 472.8 493.7 515.1
$ \begin{array}{c} 13 \\ 13 \\ \hline 13 \\ 13 \\ \hline 13 \\$	204.0 212.6 221.4 230.3	270.0 281.1 292.4	247.8 258.1 268.5	300.6 313.0 325.6	355.7 370.3 385.3	285.3 297.1 309.2	325.I 338.6 352.3	433.9 451.9 470.2	324.2 337.7 351.5	431.3 449.2 467.4	536.9 559.2 582.0
$ \begin{array}{c} 14 \\ 14 \\ \hline 4 \\ \hline 14 \\ \hline 4 \\ \hline 14 \\ 14 $	239.4 248.7 258.1 267.8	304.0 315.7 327.7 339.9	279.1 289.9 301.0 312.3	338.5 351.7 365.1 378.7	400.5 416.1 432.0 448.1	321.5 334.0 346.8 359.9	366.3 380.6 395.1 409.9	488.9 507.9 527.3 547.0	365.5 379.8 390.5 409.3	486.0 505.0 524.4 544.1	605.2 628.9 653.0 677.6
$ \begin{array}{c} 15 \\ 15 \\ \hline{4} \\ 15 \\ \hline{2} \\ 15 \\ \hline{4} \end{array} $	277.6 287.6 . 297.8 308.1	352.4 365.0 377.9 391.0	323.8 335.5 347.4 359.5	392.6 406.8 421.2 435.8	464.5 481.3 498.3 515.7	373.2 386.7 400.5 414.5	425.0 440.4 456.0 472.0	567.2 587.7 608.6 629.9	424.5 439.9. 455.7 471.7	564.I 584.6 605.4 626.6	702.6 728.1 754.1 780.5
16 $16\frac{1}{4}$ $16\frac{1}{2}$ $16\frac{3}{4}$	318.7 329.4 340.3 351.3	404.4 417.9 431.7 445.7	371.9 384.4 397.2 410.1	450.7 465.9 481.3 497.0	533.3 551.3 569.5 588.1	428.8 443.3 458.0 473.0	488.2 504.7 521.4 538.4	651.5 673.5 695.8 718.6	487.9 504.5 521.3 538.4	648.1 670.0 692.3 715.0	807.4 834.8 862.6 890.9
17 174 172 173 18	362.6 374.0 385.6 397.4 409.3	460.0 474.4 489.1 504.0 519.2	423.3 436.6 450.2 464.0 478.0	512.9 529.1 545.5 562.2 579.1	606.9 626.0 645.5 665.2 685.2	488.2 503.7 519.4 535.3 551.6	555.8 573.3 591.2 609.3 627.7	741.6 765.1 788.9 813.1 837.6	555.8 573.5 591.4 609.7 628.2	738.0 761.3 785.1 809.2 833.7	919.6 948.8 978.4 1008.5 1039.1

TABLE 20.—Continued.

MOMENTS OF INERTIA OF TWO CHANNELS, BOTH AXES.
FLANGES TURNED IN, DISTANCES FROM BACK TO BACK.

						5					
	of T	Properties wo Chann ges Turned	els, i In.	λ			X		For Dista Measured Back to E	from	
Desch	1	-				<u> </u>					
Depth.		1	12"	1			1	1	5''	,	
Weight.	20.5	25	30	35	40	33	35	40	45	50	55
Area 2[s I _X -2[s Web 2[s	12.06 256.2 18	288.0	323.4 1	358.6 11	23.52 394.0 178	19.80 625.2	20.58 640.0	23.52 695.0 118	26.48 750.2 11	29.42 803.4 178	32.36 860.4
b	1	doments o	f Inertia of	2 Channe	ls About A	xis Y-Y f	or Various	Distances	Back to	Back, In.	4,
9 "	181.6	223.8	268.2	309.9	349.0	288	300.4	343.7	385.5	424.6	461.
91	193.2	238.1	285.4	329.8	371.6	307.1	319.8	366.0	410.4	452.2	492.
9± 9±	205.2	252.8	303.0	350.4	394.9	326.3	339.9	388.9	436.3	480.8	523.4
10	230.4	283.7	321.3 340.1	371.6	418.9	346.2	360.6	412.6	462.9	510.3	555.
101	243.5	299.8	359.4	393·4 415.9	443.7 469.2	387.9	403.9	437.0 462.2	490.4	540.7 572.0	589.6
101	257.1	316.3	379.3	439.0	495.5	409.6	426.5	488.I	547.8	604 2	658.
103	270.9	333-3	399-7	462.7	522.5	432.0	449.8	514.7	577.8	637.4	694.
11	285.2	350.9	420.7	487.2	550.2	455.0	473.7	542.I	608.5	671.5	732.
111	299.9	368.8	442.3	512.2	578.7	478.6	498.3	570.2	640.2	706.5	770.0
113	314.9	387.2 406.0	464.4 487.0	537.9	637.9	502.8	523.5 549.3	599.0 628.6	705.9	742.4	809.
12	346.1	425.4	510.2	591.2	668.5	553.1	575.8	658.9	739.9	817.0	891.
121	362.2	445.I	534.0	618.8	699.9	579.2	602.9	690.0	774.9	855.7	934
121	378.8	465.4	558.3	647.1	732.0	605.9	630.7	721.7	810.6	895.3	977.
124	395.7	486.1	583.1	676.0	764.9	633.2	659.1	754-3	847.2	935.8	1021.
13	413.0	507.3	608.5	705.6	798.5	661.1	688.2	787.5	884.6	977.3	10 7.
13 ¹ / ₄	430.6 448.7	528.9	634.5	735.8	832.8 867.9	689.7 718.9	717.9	821.5	922.8	1019.6	1113.
134	467.1	573.6	688.0	798.1	903.7	748.7	779.2	891.7	1001.8	1107.1	1161.
14	485.9	596.6	715.7	830.2	940.3	779.1	810.8	927.9	1042.5	1152.3	1259.
141	505.0	620.1	743.8	863.0	977.6	810.1	843.1	964.8	1084.0	1198.3	1309.
143	524.6	644.0	772.5	896.4	1015.6	841.7	876.0	1002.4	1126.4	1245.2	1361.
144	544-5	666.4	801.8	930.4	1054.3	874.0	909.6	1040.8	1169.6	1293.1	1413.0
15	564.8 585.5	693.2	831.6	965.1	1093.8	906.9	943.8	1080.0	1213.6	1341.9	1467.
151	606.6	718.5	862.0 892.9	1000.5	1134.0	940.4 974.5	978.7	1119.8	1258.4	1391.7	1521.
154	628.0	770.5	924.4	1073.1	1216.7	1009.3	1050.3	1201.7	1350.6	1493.9	1633.
16	649.8	797.2	956.4	1110.3	1259.1	1044.6	1087.1	1243.8	1397.9	1546.3	1691.
161	672.0	824.3	989.0	1148.2	1302.3	1080.6	1124.5	1286.6	1446.1	1599.7	1749.
161	694.5	851.9	1022.1	1186.8	1346.2	1117.2	1162.6	1330.2	1495.1	1654.0	1809.4
_	717.5	879.9	1055.8	1226.0	1390.8	1154.4	1201.3	1374.4	1544.9	1709.3	1870.0
17 171	740.8 764.5	908.5 937.4	1090.0	1265.8	1436.2	1192.2 1230.7	1240.6	1419.4	1595.5	1765.4	1931.7
171	788.6	966.9	1160.1	1347.4	1529.1	1269.8	1321.3	1511.7	1699.3	1880.5	1994.3
174	813.0	996.8	1196.0	1389.2	1576.7	1309.5	1362.5	1558.9	1752.5	1939.4	2122.5
18	837.8	1027.1	1232.4	1431.6	1625.0	1349.8	1404.5	1606.8	1806.4	1999.2	2188.2
18½	863.0	1057.9	1269.4	1474.7	1674.0	1390.7	1447.0	1655.5	1861.2	2060.0	2254.8
183	888.6 914.6	1089.2	1306.9 1345.0	1518.4 1562.8	1723.8	1432.3	1490.2	1704.9	1916.8	2121.6	2322.5
19	940.9	1153.1	1383.6	1607.7	1774.3 1825.6	1474.4	1534.1	1755.1	1973.3	2184.2	2391.2
191	967.6	1185.8	1422.8	1653.3	1877.5	1560.6	1623.7	1857.6	2030.5	2312.2	2531.6
191	994.7	1218.9	1462.5	1699.6	1930.3	1604.6	1669.5	1910.0	2147.5	2377.5	2603.3
197	1022.2	1252.4	1502.8	1746.5	1983.7	1649.3	1715.9	1963.1	2207.3	2443.8	2676.0
20	10500	1286.5	1543.6	1794.1	2037.9	1694.5	1763.0	2016.9	2267.8	2510.9	2749.

TABLE 21.

Moments of Inertia of Two Channels, Both Axes.

Flanges Turned In, Distances Inside to Inside of Web.

	of T	Properties wo Channe wes Turned		X			-X	_ 1	For Distar Measured e to Inside	from	
Depth.	:	7		8			9			10	
Weight.	9-75	12.25	11.25	13.75	16.25	13.25	15.00	20.00	15.00	20.00	25.00
Area 2[s I _x -2[s Web 2[s	5.70 42.2 7	7.20 48.4 5	6.70 64.6 *7 *8	8.08 72.0 5 8	9.56 79.8 13 18	7.78 94.6 18	8.82 101.8	11.76 121.6	8.92 133.8	11.76 157.4	14.70 182.0 118
ь	Momen	nts of Iner	tia of 2 Ch	annels Abo	out Axis Y	-Y for Va	rious Dista	ances Insid	de to Insid	e of Web.	In.4.
7 14 7 14 7 14 7 14 12 2 3 4 8 14 12 2 3 4 8 8 14 12 2 3 14	59.1 63.7 68.4 73.4 78.5 83.8 89.3 95.0	80.4 86.4 92.7 99.2 105.9 112.8 120.0	68.9 74.3 79.8 85.7 91.6 97.8 104.3 110.9	88.6 95.3 102.2 109.5 116.9 124.6 132.6 140.8	110.5 118.6 127.0 135.8 144.8 154.2 163.8 173.7	79.4 85.6 92.1 98.7 105.7 112.8 120.2 127.9	94.2 101.4 108.9 116.6 124.6 132.9 141.5 150.3	138.1 148.1 158.6 169.4 180.6 192.1 204.0 216.3	90.4 97.4 104.8 112.4 120.3 128.4 136.9 145.6	131.5 141.3 151.5 162.0 172.9 184.2 195.8 207.8	177.7 190.5 203.7 217.4 231.5 246.1 261.2 276.7
9 9 1 9 1 10 10 10 10 10 10 10	100.8 106.9 113.1 119.4 126.0 132.7 139.6 146.7	135.0 142.8 150.9 159.2 167.7 176.4 185.4	117.7 124.8 132.0 139.5 147.2 155.1 163.1 171.5	149.2 158.0 166.9 176.2 185.6 195.4 205.3 215.8	184.0 194.5 205.3 216.5 227.9 239.6 251.6 264.0	135.8 143.9 152.3 160.9 169.8 178.9 188.3	159.5 168.9 178.5 188.5 198.7 209.2 220.0	229.0 242.0 255.4 269.1 283.2 297.7 312.6 327.8	154.6 163.9 173.5 183.3 193.4 203.8 214.5 225.5	220.2 233.0 246.1 259.5 273.4 287.6 302.2 317.1	292.7 309.1 326.0 343.4 361.2 379.5 398.2 417.4
$ \begin{array}{c} 11 \\ 11\frac{1}{4} \\ 11\frac{1}{2} \\ 11\frac{3}{4} \\ 12 \\ 12\frac{1}{4} \\ 12\frac{1}{2} \end{array} $	154.0 161.5 169.1 176.9 184.9 193.0 201.4	204.0 213.6 223.5 233.6 243.9 254.5 265.2	180.0 188.7 197.6 206.8 216.1 225.7 235.4	226.1 236.8 247.8 259.0 270.5 282.3 294.3	276.6 289.5 302.7 316.3 330.1 344.2 358.6	207.7 217.8 228.1 238.7 249.5 260.6 271.9	242.4 254.0 265.9 278.0 290.4 303.2 316.2	343·4 359·4 375·7 392·4 409·4 426·9	236.7 248.2 260.0 272.1 284.4 297.1 310.0	332.4 348.1 364.2 380.6 397.4 414.5 432.0	437.0 457.2 477.7 498.7 520.2 542.2 564.6
$ \begin{array}{c} 12\frac{3}{4} \\ 13 \\ 13\frac{1}{4} \\ 13\frac{1}{2} \\ 13\frac{3}{4} \end{array} $	209.9 218.6 227.4 236.5 245.7	276.2 287.4 298.9 310.5 322.4	245.4 255.6 266.0 276.6 287.4 298.4	306.5 319.0 331.8 344.8 358.1	373·3 388.3 403.6 419·2 435·1	283.4 295.2 307.3 319.5 332.0	329.4 342.9 356.7 370.8 385.2	462.8 481.3 500.2 519.5 539.1	323.2 336.6 350.4 364.4 378.7	449.9 468.2 486.8 505.8 525.1	587.5 610.8 634.6 658.8 683.5 708.7
14 14 ¹ / ₂ 14 ² / ₃ 14 ³ / ₄	255.I 264.7 274.5 284.4 294.5	334.5 346.9 359.4 372.2 385.2	309.7 321.1 332.8 344.6	371.6 385.3 399.4 413.6 428.2	451.4 467.9 484.7 501.8 519.2	344.8 357.8 371.1 384.5 398.3	399.8 414.7 429.9 445.4 461.1	559.1 579.5 600.2 621.3	393.3 408.1 423.3 438.7 454.4	544.8 564.9 585.4 606.2	734·3 760·4 786·9 813·9
15½ 15½ 15¾ 16 16¼	304.8 315.3 326.0 336.8 347.8	398.5 411.9 425.6 439.5 453.7	356.7 369.0 381.5 394.2 407.1	442.9 458.0 473.2 488.8 504.6	536.9 554.9 573.2 591.8 610.7	412.3 426.5 440.9 455.6 470.6	477.1 493.4 510.0 526.8 543.9	664.6 686.9 709.4 732.4 755.7	470.4 486.6 503.1 519.9 537.0	649.0 670.9 693.2 715.9 738.9	841.4 869.3 897.7 926.5 955.8
$ \begin{array}{c} 16\frac{1}{2} \\ 16\frac{3}{4} \\ 17 \\ 17\frac{1}{4} \\ 17\frac{1}{2} \end{array} $	359.0 370.4 381.9 393.6 405.5	468.0 482.6 497.4 512.5 527.7	420.2 433.5 447.1 460.8 474.8	520.6 536.9 553.4 570.2 587.3	629.9 649.4 669.1 689.3 709.6	485.8 501.2 516.9 532.8 549.0	561.3 579.0 596.9 615.2 633.6	779.3 803.4 827.8 852.6 877.7	554.4 572.0 590.0 608.2 626.7	762.3 786.1 810.2 834.7 859.6	985.6 1015.8 1046.5 1077.6 1109.2
17 <u>4</u> 18	417.6 429.9	543.2 558.9	488.9 503.3	604.6 622.1	730.3 751.3	565.4 582.0	652.4 671.5	903.2 929.1	645.4 664.5	884.8 910.4	1141.3

TABLE 21.—Continued.

Moments of Inertia of Two Channels, Both Axes. Flanges Turned In, Distances Inside to Inside of Web.

	of T	Properties wo Chann ges Turnec		χ			·X		For Dista Measured le to Inside	from	
Depth.			12"			<u> </u>		1	5''		
Weight.	30,5	25	30	35	40	33	35	40	45	50	55
Area 2[s 1-2[s Web 2[s	12,06 256,2 18	14.70 288 o	17.64 323.4	20.58 358.6	23.52 394.0 118	19.80 625.2	20.58 640.0	23.52 695.0 118	26.48 750.2	29.42 805.4 178	32.36 860.4 1 §
b	Mome	nts of lner	rtia of 2 Cl	annels ab	out Axis Y	Y-Y for Va	rious Dist	ances Insi	de to Insid	le of Webs	In.4.
9" 91 91 92 93	208.2 220.7 233.5 246.7	269.9 285.6 301.7 318.4	342.I 361.5 381.4 401.9	417.9 441.1 464.9 489.3	497.2 524.2 552.0 580.5	350.3 370.9 392.2 414.0	369.2 390.8 413.0 435.9	441.8 467.1 493.2 519.9	518.0 547.1 577.0 607.8	596.4 629.4 663.2 698.0	678.2 715.1 753.0 791.9
10 10 10 10 10	260.4 274.3 288.7 303.4 318.6	335.4 353.0 371.0 389.5	423.0 444.6 466.7 498.4	514.4 540.2 566.6 593.6 621.3	609.7 639.7 670.4 701.9	436.5 459.6 483.4 507.7	459.5 483.7 508.5 533.9	547.4 575.7 604.7 634.4	639.4 671.8 705.0 739.1	733.7 770.3 807.9 846.4	831.8 872.7 914.6 957.6
11 114 112 113	334.0 350.0 366.1	408.4 427.8 447.6 467.9	512.7 536.5 560.9 585.8	649.6 678.6 708.2	734.I 767.0 800.6 835.0	532.7 558.3 584.5 611.3	560.0 586.8 614.2 642.2	664.8 696.0 727.9 760.6	774.0 809.7 846.3 883.6	885.7 926.0 967.3 1009.4	1001.5 1046.5 1092.4 1139.4
$ \begin{array}{c} 12 \\ 12\frac{1}{4} \\ 12\frac{1}{2} \\ 12\frac{3}{4} \end{array} $	382.8 399.8 417.2 434.9	488.7 510.0 531.6 553.7	611.2 637.2 663.8 690.9	738.4 769.3 800.9 833.0	870.2 906.0 942.6 979.9	638.7 666.8 695.5 724.8	670.9 700.2 730.2 760.8	794.0 828.1 862.9 898.5	921.8 960.9 1000.7 1041.4	1052.5 1096.4 1141.3 1187.2	1187.4 1236.4 1286.4 1337.5
13 13 ¹ / ₄ 13 ¹ / ₂ 13 ³ / ₄	453.0 471.6 490.4 509.7	576.3 599.4 622.9 646.9	718.6 746.8 775.6 804.9	865.9 899.3 933.4 968.2	1018.0 1056.8 1096.3 1136.6	754.7 785.2 816.4 848.2	792.0 824.0 856.5 889.7	934.9 971.9 1009.7 1048.2	1082.9 1125.3 1168.5 1212.5	1233.9 1281.5 1330.1 1379.6	1389.5 1442.5 1496.6 1551.7
14 14 ¹ / ₄ . 14 ¹ / ₄ . 14 ³ / ₄	529.3 549.4 569.7 590.5	671.3 696.2 721.6 747.4	834.8 865.2 896.2 927.6	1003.6 1039.6 1076.3 1113.6	1177.6 1219.4 1261.8 1305.0	880.5 913.5 947.2 981.4	923.5 958.0 993.1 1028.9	1087.6 1127.6 1168.3 1209.8	1257.3 1302.9 1349.4 1396.7	1430.0 1481.4 1533.6 1586.8	1607.8 1664.9 1723.0 1782.1
15 151 152 153	611.7 633.2 655.1 677.4	773.6 800.4 827.6 855.2	959.8 992.4 1025.6 1059.3	1151.6 1190.2 1229.5 1269.3	1349.0 1393.7 1439.1 1485.2	1016.3 1051.8 1087.9 1124.6	1065.2 1102.3 1140.0 1178.3	1252.0 1294.9 1338.6 1383.0	1444.9 1493.8 1543.6 1594.3	1640.9 1695.9 1751.9 1808.7	1842.2 1903.4 1965.5 2028.7
16 161 161 163 163	700.0 723.0 746.5 770.2	883.3 911.9 940.9 970.4	1093.6 1128.4 1163.8 1199.7	1309.9 1351.1 1392.9 1435.4	1532.1 1579.7 1628.0 1677.1	1161.9 1199.9 1238.5 1277.7	1217.3 1256.9 1297.1 1338.0	1428.2 1474.1 1520.7 1568.0	1645.7 1698.0 1751.1 1805.0	1866.5 1925.1 1984.8 2045.3	2092.8 2158.0 2224.2 2291.4
17 17 ¹ / ₄ 17 ¹ / ₂ 17 ³ / ₄	794.4 818.9 843.9 869.1	1000.4 1030.8 1061.7 1093.0	1236.2 1273.2 1310.8 1349.0	1478.5 1522.2 1566.6 1611.7	1727.0 1777.6 1828.9 1880.9	1317.5 1357.9 1399.0 1440.6	1379.6 1421.8 1464.6 1508.1	1616.1 1664.9 1714.5 1764.8	1859.8 1915.3 1971.8 2029.0	2106.7 2169.1 2232.4 2296.6	2359.6 2428.9 2499.1 2570.4
18 181 181 183 183	894.8 920.9 947.3 974.1	1124.8 1157.0 1189.7 1222.9	1387.7 1426.9 1466.7 1507.0	1657.4 1703.7 1750.7 1798.3	1933.6 1987.1 2041.4 2096.3	1482.9 1525.8 1569.4 1613.5	1552.2 1596.9 1642.3 1688.4	1815.8 1867.6 1920.1 1973.3	2087.1 2146.0 2205.7 2266.2	2361.7 2427.8 2494.7 2562.6	2642.6 2715.9 2790.2 2865.5
19 19 ¹ / ₄ 19 ¹ / ₂ 19 ³ / ₄	1001.3 1028.8 1056.8 1085.1 1113.7	1256.5 1290.6 1325.1 1360.1 1395.6	1547.9 1589.4 1631.4 1673.9 1717.0	1846.5 1895.4 1945.0 1995.2 2046.0	2152.1 2208.5 2265.7 2323.6 2382.2	1658.3 1703.7 1749.7 1796.3 1843.5	1735.1 1782.4 1830.4 1880.0 1928.3	2027.3 2082.0 2137.4 2193.6 2250.5	2327.6 2389.8 2452.8 2516.7 2581.4	2631.4 2701.1 2771.8 2843.3 2915.8	2941.8 3019.1 3097.5 3176.8 3257.1

TABLE 22.

Properties of Two Channels, Spaced Small Distances.

Properties For Distances of Two Channels. *X*--Measured from Flanges Turned Out. Back to Back. Ý Chan-Axis V-V. nels. Axis X-X Total $b = \frac{1}{2}''$ $b = \frac{1}{2}$ $b = \frac{3}{7}$ ". b = 2''. b = 0Depth. Weight. Area. I. r. I_v ry I. rv ΙΨ ry Ιv rv I٠ $\mathbf{r}_{\mathbf{v}}$ In Lh In 2 In 4 In. In i In In 4 In. In 4 ľ'n In 4 In In.4 In. 2.38 1.17 3.2 1.50 4 5.4 6.6 3.6 0.60 3 2.94 1.12 T.T 1.4 0.70 1.50 5 4.2 0.62 τ.8 2.4 0.82 8.1 3.52 T.08 1.4 0.71 3.1 0.93 1.52 3.10 7.6 8.4 1.56 0.65 0.74 0.84 2.8 5 1 6 1 1.3 1.7 2.2 0.05 7·3 8.5 1.53 0.64 0.84 3.78 1.51 1.6 2.0 0.73 2.6 4 3.4 0.95 1.52 1.8 0.65 0.84 71 4.26 9.2 1.46 0.74 3.0 0.95 10.0 2.4 3.9 1.53 61 14.8 0.60 0.78 0.80 9.6 3.90 1.95 1.9 2.4 3.I 3.9 0.99 1.57 5 17.8 0.88 5.30 1.83 0.68 0.78 9 2.5 3.2 4. I 5.2 0.98 12.9 1.56 8 4.76 26.0 0.84 T.61 2.7 0.74 4.2 5.2 12.4 2.34 3.4 0.93 1.03 10 6.18 30.2 2.21 0.82 0.02 6.5 1.02 15.7 T.60 3.3 0.73 4.2 5.3 34.6 7.64 2.13 0.74 0.83 0.93 8.2 1.03 1.61 4.2 5.3 19.7 13 42.2 0.80 5.6 94 5.70 2.72 0.80 4.5 0.99 6.8 1.00 15.6 1.65 3.7 48.4 0.87 6.7 7 121 7.20 2.59 0.78 5.5 0.97 8.3 1.07 19.2 1.63 4.4 8.68 0.87 8.1 143 54.4 2.50 5.3 0.78 0.97 10.ď 1.07 23.3 1.64 0.85 6.70 64.6 4.9 6.0 8.7 111 3.11 0.94 7.2 1.03 1.14 10.3 1.70 0.83 8.3 1.68 8 8.08 5.6 6.8 1.01 72.0 2.98 0.92 10.I 134 1.12 22.7 79.8 2.80 0.83 8.0 0.91 9.8 1.01 11.8 26.7 1.67 161 9.56 6.5 I.II 7.78 131 94.6 6.4 0.90 0.99 1.00 23.6 1.74 3.49 9.3 TT.O 1.19 8.4 8.82 101.8 7.0 0.80 0.97 10.1 1.07 12.1 1.12 26.2 1.72 9 15 3.40 3.21 8.9 1.05 0.87 20 11.76 121.6 10.0 0.96 13.1 15.7 1.15 1.71 34.5 28.6 8.92 3.87 0.06 0.8 11.6 1.79 15 133.8 8.2 1.05 1.14 13.7 1.24 11.76 3.66 0.92 1.01 1.10 1.20 36.2 20 157.4 10.0 12.0 14.3 17.0 1.75 10 25 14.70 182.0 3.52 0.92 1.00 1.10 21.3 1.20 45.4 1.76 12.4 14.9 17.9 206.4 1.78 30 17.64 3.42 15.2 0.93 18.4 1.02 22.I 1.12 26.3 1.22 55.9 68.5 1.82 20.58 231.0 19.2 0.96 23.I 1.06 27.6 1.16 32.8 1.26 35 3.35 4.61 42.8 12.06 256.2 1.80 203 16.1 18.8 13.4 1.05 1.15 1.24 21.9 1.34 14.70 288.0 15.8 25.3 1.85 25 4.43 1.03 18.5 1.12 21.7 1.21 I.3I 50.5 4.28 1.85 60.0 12 30 17.64 323.4 18.5 1.02 21.7 LII 25.5 1.20 1.30 29.9 20.58 358.6 25.5 70.9 1.86 35 4.17 21.7 1.02 1.11 30. I I.2I 1.31 35.3 83.0 1.88 40 23.52 394.0 4.09 1.13 1.22 1.32 25.5 1.04 41.5 30.I 35.4 5.62 33 19.80 623.2 28.8 1.20 T.20 38.0 1.38 1.48 80.2 2.01 33.I 43.5 20.58 640.0 5.58 1.38 44.8 82.8 2.01 35 29.8 1.20 34.I 1.28 39.I 1.47 23.52 43.8 40 695.0 1.18 38.I 1.36 1.46 93.5 1.99 33.I 1.27 50.3 5.43 15 45 26.48 750.2 37.I 1.18 1.26 49.I 1.36 56.3 1.45 105.2 1.99 5.32 42.6 118.1 29.42 805.4 5.23 41.2 1.36 63.2 2.00 50 1.18 47.7 1.27 55.0 1.46 61.4 860.4 2.02 55 32.36 46.I 53.2 1.28 131.9 5.16 1.19 1.37 70.5 1.47

TABLE 23
PROPERTIES OF EQUAL LEG ANGLES

Size of Angle	Thickness	Weight per Foot	Area	Distance from Center of Gravity to Back of Angle	i		-1	Least Radius of Gyration	Maximum Bending Moment @ 16,000 Lb. per Sq. In.
N N	1	Weigh		of Angle	Moment of Inertia	Section Modulus	Radius of Gyration	Axis 3-3	Axis 1-1
				x	I ₁	Sı	rı	r ₃	Mi
Inches	Inches	Pounds	Inches ²	Inches	Inches ⁴	Inches ³	Inches	Inches	Foot- Pounds
8×8	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{3}{16} \\ 1\frac{1}{8} \\ 1\frac{1}{16} \end{array} $	62.7 59.8 56.9 54.0	18.44 17.59 16.73 15.87	2.45 2.43 2.41 2.39	106.56 102.31 97.97 93.53	19.21 18.38 17.53 16.67	2.40 2.41 2.42 2.43	1.55 1.55 1.55 1.56	25 600 24 500 23 400 22 200
	I 15 16 8 13 16 3	51.0 48.1 45.0 42.0 38.9	15.00 14.12 13.23 12.34 11.44	2.37 2.34 2.32 2.30 2.28	88.98 84.33 79.58 74.72 69.74	15.80 14.92 14.02 13.11 12.19	2.44 2.44 2.45 2.46 2.47	1.56 1.56 1.57 1.57 1.57	21 100 19 900 18 700 17 500 16 200
	16 16 16	35.8 32.7 29.6 26.4	9.61 8.68 7.75	2.25 2.23 2.21 2.19	64.64 59.43 54.09 48.63	11.25 10.30 9.34 8.37	2.48 2.49 2.50 2.50	1.58 1.58 1.58 1.58	15 000 13 700 12 500 11 200
6×6	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37.4 35.3 33.1 31.0 28.7 26.5 24.2 21.9 19.6 17.2 14.9	11.00 10.37 9.73 9.09 8.44 7.78 7.11 6.43 5.75 5.06 4.36	1.86 1.84 1.82 1.80 1.78 1.75 1.73 1.71 1.68 1.66	35.46 33.72 31.92 30.06 28.15 26.19 24.16 22.07 19.91 17.68 15.39	8.57 8.11 7.63 7.15 6.66 6.17 5.66 5.14 4.61 4.97 3.53	1.80 1.80 1.81 1.82 1.83 1.83 1.84 1.85 1.86 1.87	1.16 1.16 1.17 1.17 1.17 1.18 1.18 1.18 1.19	11 400 10 800 10 200 9 550 8 900 8 250 7 550 6 850 6 150 5 450 4 700
,5 ×5.	1 1178 - 118	30.6 28.9 27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	9.00 8.50 7.98 7.47 6.94 6.40 5.86 5.31 4.75 4.18 3.61	1.61 1.59 1.57 1.55 1.52 1.50 1.48 1.46 1.43 1.41	19.64 18.71 17.75 16.76 15.74 14.68 13.58 12.44 11.25 10.02 8.74	5.80 5.49 5.17 4.85 4.20 3.86 3.51 3.15 2.79 2.42	1.48 1.49 1.50 1.51 1.51 1.52 1.53 1.54 1.55	.96 .96 .96 .97 .97 .97 .98 .98 .98	7 730 7 320 6 890 6 470 6 040 5 600 5 150 4 680 4 200 3 720 3 230
4×4	116 116 117 118 118 118 118 118 118 118 118 118	19.9 18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2 6.6	5.84 5.44 5.03 4.61 4.18 3.75 3.31 2.86 2.40	1.29 1.27 1.25 1.23 1.21 1.18 1.16 1.14 1.12	8.14 7.67 7.17 6.66 6.12 5.56 4.97 4.36 3.72 3.04	3.01 2.81 2.61 2.40 2.19 1.97 1.75 1.52 1.29	I.18 I.19 I.19 I.20 I.21 I.22 I.23 I.23 I.24 I.25	.77 .77 .77 .77 .78 .78 .78 .78 .79 .79	4 010 3 750 3 480 3 200 2 920 2 630 2 330 2 030 1 720 1 400

TABLE 23.—Continued
PROPERTIES OF EQUAL LEG ANGLES

Size of Angle	Thickness	Weight per Foot	Area	Distance from Center of Gravity to Back of Angle	3 1- 8	1 3	·1	Least Radius of Gyration	Maximum Bending Moment @ 16,000 Lb. per Sq. In.
Size	Œ	Weigh		or ringic	Moment of Luertia	Section Modulus	Radius of Gyration	Axis 3-3	Axis 1-1
				x	I ₁	S ₁	r ₁	r ₂	M ₁
Inches	1 nches	Pounds	Inches ²	Inches	Inches ⁴	Inches ⁸	Inches	Inches	Foot- Pounds
3½×3½	100 110 110 110 110 110 110 110 110 110	17.1 16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8 4.4 3.64	5.03 4.69 4.34 3.98 3.62 3.25 2.87 2.48 2.09 1.69 1.28 1.07	1.17 1.15 1.12 1.10 1.08 1.06 1.04 1.01 .99 .97	5.25 4.96 4.65 4.33 3.99 3.63 3.26 2.87 2.45 2.01 1.55 1.31	2.25 2.11 1.96 1.81 1.65 1.49 1.32 1.15 .98 .79	1.02 1.03 1.04 1.04 1.05 1.06 1.07 1.07 1.08 1.09 1.10	0.67 0.67 0.67 0.68 0.68 0.68 0.69 0.69 0.69	3 000 2 810 2 610 2 410 2 200 1 990 1 760 1 530 1 310 1 050 800 680
3×3	E(8 9) (6 1) (8 7) (6 3) (8 5) (7) (4 4 9) (7) (8 5)	11.5 10.4 9.4 8.3 7.2 6.1 4.9 3.71 2.50	3.36 3.06 2.75 2.43 2.11 1.78 1.44 1.09 0.74	.98 .95 .93 .91 .89 .87 .84 .82	2.62 2.43 2.22 2.00 1.76 1.51 1.24 .96	1.30 1.19 1.07 .95 .83 .71 .58 .44	.88 .89 .90 .91 .91 .92 .93 .94	.57 .58 .58 .58 .58 .59 .59 .60	1 730 1 585 1 430 1 270 1 110 950 770 590 400
2 ³ / ₄ ×2 ³ / ₄	1/2/7/6 3/8 5/6 1/443/6 1/18	8.5 7.6 6.6 5.6 4.5 3.39 2.29	2.50 2.22 1.92 1.62 1.31 1.00 0.68	.87 .85 .82 .80 .78 .76	1.67 1.51 1.33 1.15 .95 .73	.89 .79 .69 .59 .48 .37	.82 .82 .83 .84 .85 .86	-53 -53 -53 -54 -54 -54 -55	1 190 1 050 920 790 640 490 330
$2\frac{1}{2} \times 2\frac{1}{2}$	1/27 16 mos 5/6 1/4 3/6 1/18	7.7 6.8 5.9 5.0 4.1 3.07 2.08	2.25 2.00 1.73 1.47 1.19 .90	.81 .78 .76 .74 .72 .69	1.23 1.11 .98 .85 .70 .55	.73 .65 .57 .48 .39 .30	.74 .74 .75 .76 .77 .78	.47 .48 .48 .48 .49 .49	970 870 760 640 530 400 270
2½×2¼	127 16 38 5 16 14 3 16 4 3	6.8 6.1 5.3 4.5 3.62 2.75 1.86	2.00 1.78 1.55 1.31 1.07 .81	.74 .72 .70 .68 .66 .63	.87 .79 .70 .61 .51 .39	.58 .52 .45 .39 .32 .24	.66 .67 .67 .68 .69 .70	.43 .43 .43 .44 .44 .44	770 690 600 520 430 320 220

TABLE 23.—Continued

Properties of Equal Leg Angles

Size of Angle	Thickness	Weight per Foot	Area	Distance from Center of Gravity to Back of Angle	i		-1	Least Radius of Gyration	Maximum Bending Moment @ 16,000 Lb. per Sq. In.
Size	Thi	Weigh		of Angle	Moment of Inertia	Section Modulus	Radius of Gyration	Axis 3-3	Axis 1-1
				×	I ₁	S ₁	Γ1	F2	Mı
Inches	Inches	Pounds	Inches ²	Inches	Inches*	Inches ²	Inches	Inches	Foot- Pounds
2×2	76 5 76 16 1 3	5·3 4·7 3.92 3.19 2.44 1.65	1.56 1.36 1.15 .94 .71 .48	.66 .64 .61 .59 .57	-54 -48 -42 -35 -28 -19	.40 .35 .30 .25 .19	.59 .59 .60 .61 .62	.39 .39 .39 .39 .40	530 470 400 330 250 170
13×13	76 16 16 16 16 18	4.6 3.99 3.39 2.77 2.12 1.44	1.34 1.18 1.00 .82 .63 .43	-59 -57 -55 -53 -51 -48	.35 .31 .27 .23 .18	.30 .26 23 .19 .14	.51 .51 .52 .53 .54	·33 ·34 ·34 ·34 ·35 ·35	400 350 310 250 190 130
1½×1½	3 16 16 3 16	3.35 2.86 2.34 1.80 1.23	.99 .84 .69 .53	.51 .49 .47 .44 .42	.19 .16 .14 .11	.19 .16 .134 .10	.44 .44 .45 .46	.29 .29 .29 .29	250 220 180 140 90
11×11	5 16 1 3 16 1	2.33 1.92 1.48 1.01	.68 .56 .43	.42 .40 .38 .35	.091 .077 .061	.109 .091 .071	.36 .37 .38 .38	.23 .24 .24 .25	150 120 90 70
11×11	3 16 1	1.32 .91	·39 ·27	·35 ·33	.044 .032	.057 .040	·34 ·34	.22	75 50
ı×ı	16	1.49 1.16 .8 .71	.44 .34 .23 .21	·34 ·32 ·30 ·29	.037 .030 .022 .020	.056 .044 .031 .028	.29 .30 .31	.19 .19 .20	75 60 40 40
₹×₹	16 1 3 32	1.00 .70 .53	.30 .21 .16	.29 .26 .25	.019 .014 .011	.033 .023 .018	.26 .26 .27	.18 .19 .20	40 30 20
1×1	18 18 32	.84 .59 .45	.25 .18 .14	.26 .23 .22	.012 .0088 .0069	.024 .017 .013	.22	.15	32 23 17
å×ŧ	1 1 1 2 2	.48	.15	.20	.0048	.0113	.18	.12	15
1×1	1 0 3 32	.38	.11	.17	.0023	.007	.15	.10	9 7

TABLE 24
PROPERTIES OF UNEQUAL LEG ANGLES

	Size of Angle	Thickness	Weight per Foot	Area	Distance from Center of Gravity to Back of Longer Leg	Distance from Center of Gravity to Back of Shorter Leg	Mome Iner		Sect Mod		R	adius o		Tangent of Angle a	Maximum Bending Moment @ 16,000 Lbs. per Sq. In. Long Leg Vertical	Maximum Bending Moment @ 16,000 Lbs. per Sq. In. Short Leg Vertical
1					X1	X2	I1	I 2	S_1	S2	r ₁	T2	r ₃		Me	M ₁
	In.	In.	Lb.	In.2	In.	In.	In.4	In.4	In.²	In.²	In.	In.	In.		FtLb.	FtLb.
	8×6	$\begin{array}{c} \mathbf{I} \\ 15 \\ 16 \\ 7 \\ 13 \\ 16 \\ 34 \\ 116 \\ 15 \\ 89 \\ 16 \\ 12 \\ 716 \\ 16 \\$	44.2 41.7 39.1 36.5 33.8 31.2 28.5 25.7 23.0 20.2	13.00, 12.25 11.48 10.72 9.94 9.15 8.36 7.56 6.75 5.93	1.65 1.63 1.61 1.59 1.56 1.54 1.52 1.50 1.47	2.65 2.63 2.61 2.59 2.56 2.54 2.52 2.50 2.47 2.45	38.78 36.85 34.86 32.82 30.72 28.56 26.33 24.04 21.68 19.25	76.59 72.31 67.92 63.42 58.82 54.10 49.26 44.31	8.92 8.43 7.94 7.44 6.93 6.41 5.88 5.34 4.79 4.23	15.11 14.27 13.41 12.55 11.67 10.77 9.87 8.95 8.02 7.07	1.73 1.74 1.75 1.76 1.77 1.77 1.78 1.79	2.49 2.50 2.51 2.52 2.53 2.54 2.54 2.55 2.56 2.57	1.28 1.28 1.29 1.29 1.30 1.30 1.30	·543 ·545 ·546 ·549 ·553 ·556 ·554 ·556 ·558 ·560	20 150 19 030 17 900 16 730 15 560 14 400 13 160 11 930 10 700 9 420	11 900 11 250 10 600 9 900 9 250 8 550 7 850 7 100 6 400 5 640
	8×3½	$\begin{array}{c} \mathbf{I} \\ \underline{15677881366} \\ \underline{136589} \\ \underline{1176589} \\ \underline{166} \\ \underline{27766} \end{array}$	35.7 33.7 31.7 29.6 27.5 25.3 23.2 21.0 18.7 16.5	10.50 9.90 9.30 8.68 8.06 7.43 6.80 6.15 5.50 4.84	.92 .89 .87 .85 .82 .80 .78 .75	3.17 3.14 3.12 3.10 3.07 3.05 3.03 3.00 2.98 2.95	7.8 7.4 7.1 6.7 6.3 5.9 5.4 5.0 4.5	66.2 62.9 59.4 55.9 52.3 48.5 44.7 40.8 36.7 32.5	3.0 2.9 2.7 2.5 2.3 2.2 2.0 1.8 1.6	13.7 12.9 12.2 11.4 10.6 9.8 9.0 8.2 7.3 6.4	.86 .87 .87 .88 .89 .90 .90	2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.57 2.58 2.59	·73 ·73 ·73 ·73 ·73 ·73 ·74 ·74 ·74 ·74		18 400 17 200 16 200 15 200 14 100 13 000 12 000 10 900 9 700 8 600	4 000 3 870 3 600 3 330 3 060 2 930 2 660 2 400 2 190 2 000
	7×3½	T 556 78 3 6 1 1 6 5 8 9 16 1 2 7 6 3 8	32.3 30.5 28.7 26.8 24.9 23.0 21.0 19.1 17.0 15.0 13.0	9.50 8.97 8.42 7.87 7.31 6.75 6.17 5.59 5.00 4.40 3.80	.94 .91 .89 .87 .85 .82 .80 .78	2.70 2.69 2.64 2.62 2.60 2.57 2.55 2.53 2.50 2.48	7.18 6.83 6.46 6.08 5.69 5.28 4.85 4.41 3.95	45·37 43·13 40·82 38·44 35·99 33·47 30·87 28·19 25·42 22·56 19·60	2.31 2.14 1.97 1.80 1.62 1.44	10.58 10.00 9.42 8.82 7.60 6.97 6.33 5.68 5.01 4.33	.89 .90 .91 .91 .92 .93 .94 .95	2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.25 2.26 2.27	·74 ·74 ·74 ·74 ·74 ·75 ·75 ·75 ·76	.24I .244 .247 .250 .253 .257 .259 .262 .264 .267	14 100 13 350 12 550 11 750 10 950 10 150 9 300 8 450 7 570 6 680 5 770	3 950 3 740 3 520 3 310 3 080 2 850 2 630 2 400 2 160 1 920 1 680
	6×4	$\begin{array}{c} \mathbf{I} \\ 15 \\ 16 \\ 7 \\ 83 \\ 136 \\ 53 \\ 411 \\ 166 \\ 589 \\ 166 \\ 127 \\ 16 \\ 38 \\ 8 \\ \end{array}$	30.6 28.9 27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3	9.00 8.50 7.98 7.47 6.94 6.40 5.86 5.31 4.75 4.18 3.61	I.14 I.12 I.10 I.08 I.06 I.03 I.01	2.17 2.14 2.12 2.10 2.08 2.06 2.03 2.01 1.99 1.96	9.75 9.23 8.68 8.11 7.52 6.91 6.27 5.60	30.75 29.26 27.73 26.15 24.51 22.82 21.07 19.26 17.39 15.46 13.47	3.79 3.59 3.39 3.18 2.97 2.76 2.54 2.31 2.08 1.85 1.60	8.02 7.59 7.15 6.70 6.25 5.78 5.31 4.83 4.33 3.83 3.32	1.10	1.85 1.86 1.86 1.87 1.88 1.90 1.90 1.91 1.92 1.93	.85 .86 .86 .86 .86 .87 .87 .87	.414 .418 .421 .425 .428 .431 .434 .438 .440 .443 .446	10 700 10 120 9 550 8 950 8 350 7 700 7 080 6 450 5 770 5 100 4 430	5 050 4 790 4 520 4 240 3 960 3 680 3 390 3 080 2 770 2 470 2 140

TABLE 24.—Continued
PROPERTIES OF UNEQUAL LEG ANGLES

Ingle	852	r Foot	er.	Distance from Center of Gravity to Back of Longer Leg	Distance from Center of Gravity to Back of Shorter Leg			1 2	x 19	<u> </u>			ngle a	Maximum Rending foment @ 16,000 Lbs. per Sq. In. Long Leg Vertical	n Bending 16,000 Lbs. Short Leg
Size of Angle	Thickness	Weight per	Area	stance i Gravior of Lon	stance f Gravio of Sho	Mome Ine	ent of rtia	Sec Mod	tion ulus		adius c yratio		Tangent of Angle	Moment @	Maximum I Moment @ 16 per Sq. In. S
03		We		Ä B	Ö Ö	Axis 1-1	Axis 2-2	Axis 1-1	Axis 2-2	Axis 1-1	Axis 2-2	Axis 3-3	Tange		Mon
				X1	X1	Iı	I 2	Sı	Sı	r _i	r ₂			M ₂	M ₁
In.	In.	Lb.	In.3	In.	In.	In.4	In.4	In.3	In. ³	In.	In.	In.		FtLb.	FtLb.
6×3⅓	1 15 17 18 11 16 11 15 18 9 16 16 17 16 18 5 16	28.9 27.3 25.7 24.0 22.4 20.6 18.9 17.1 15.3 13.5 11.7 9.8	8.50 8.03 7.55 7.06 6.56 6.06 5.55 5.03 4.50 3.97 3.42 2.87	1.01 -99 -97 -95 -93 -90 .88 .86 .83 .78 -75	2.26 2.24 2.22 2.20 2.18 2.15 2.11 2.08 2.06 2.04 2.02	6.88 6.55 6.20 5.84 5.47 5.08 4.67 4.25 3.81	29.24 27.84 26.39 24.89 23.34 21.74 20.08 18.37 16.60 14.77 12.86 10.88	2.90 2.74 2.59 2.43 2.27 2.11 1.94 1.77 1.59 1.41 1.23 1.04	7.83 7.41 6.98 6.55 6.10 5.65 5.19 4.72 4.24 3.75 3.25	.92 .93 .93 .94 .95 .96 .96 .97 .98 .99	1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95	·74 ·75 ·75 ·75 ·75 ·75 ·75 ·76 ·76 ·77	.317 .320 .323 .327 .331 .334 .341 .344 .347 .350	10 450 9 880 9 300 8 750 8 150 7 550 6 920 6 300 5 650 5 000 4 330 3 650	3 870 3 650 3 450 3 240 3 030 2 810 2 590 2 360 2 120 1 880 1 640 1 380
5×4	7 8 3 4 1 1 6 5 8 9 1 6 1 2 7 1 6 3 8	24.2 22.7 21.1 19.5 17.8 16.2 14.5 12.8 11.0	7.11 6.65 6.19 5.72 5.23 4.75 4.25 3.75 3.23	I.21 I.18 I.16 I.14 I.12 I.10 I.07 I.05	1.71 1.68 1.66 1.64 1.62 1.60 1.57 1.55	9.23 8.74 8.23 7.70 7.14 6.56 5.96 5.33 4.66	16.45 15.54 14.60 13.62 12.61 11.56 10.46 9.32 8.14		4.99 4.69 4.37 4.05 3.73 3.39 3.05 2.70 2.34	1.14 1.15 1.16 1.17 1.18 1.18 1.19 1.20	1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59	.84 .84 .84 .84 .85 .85	.617 .620 .623 .626 .629	6 650 6 250 5 830 5 400 4 970 4 520 4 070 3 600 3 120	4 410 4 150 3 870 3 590 3 310 3 010 2 720 2 420 2 090
5×3½	78316 3416 116 116 116 116 116 116 116 116 116	22.7 21.3 19.8 18.3 16.8 15.2 13.6 12.0 10.4 8.7	6.67 6.25 5.81 5.37 4.92 4.47 4.00 3.53 3.05 2.56	1.04 1.02 1.00 .97 .95 .93 .91 .88 .86	1.79 1.77 1.75 1.72 1.70 1.68 1.66 1.63 1.61	6.21 5.89 5.55 5.20 4.83 4.45 4.05 3.63 3.18 2.72	15.67 14.81 13.92 12.99 12.03 11.03 9.99 8.91 7.78 6.60	2.06 1.90 1.73 1.56 1.39 1.21	4.88 4.58 4.28 3.97 3.65 3.32 2.99 2.64 2.29 1.94	.96 .97 .98 .98 .99 I.00 I.01 I.01 I.02	1.53 1.54 1.55 1.56 1.56 1.57 1.58 1.59 1.60	·75 ·75 ·75 ·75 ·75 ·75 ·75 ·76 ·76	.455 .460 .464 .468 .472 .476 .479 .482 .485	6 510 6 110 5 710 5 290 4 870 4 430 3 990 3 520 3 060 2 590	3 360 3 160 2 960 2 750 2 530 2 310 2 080 1 850 1 610
5×3	13 16 34 11 16 16 12 17 16 18 16 17 16 18 16 16 16 16 16 16 16 16 16 16 16 16 16	19.9 18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2	5.84 5.44 5.03 4.61 4.18 3.75 3.31 2.86 2.40	.86 .84 .82 .80 .77 .75 .73 .70	1.86 1.84 1.82 1.80 1.77 1.75 1.73 1.70 1.68	3.71 3.51 3.29 3.06 2.83 2.58 2.32 2.04	13.98 13.15 12.28 11.37 10.43 9.45 8.43 7.37 6.26	1.63 1.51 1.39 1.27 1.15 1.02	4.45 4.16 3.86 3.55 3.23 2.91 2.58 2.24 1.89	.80 .80 .81 .82 .82 .83 .84 .84	1.55 1.56 1.57 1.58 1.59 1.60 1.61	.64 .64 .64 .65 .65 .65	.336 .340 .345 .349 .353 .357 .361 .364	5 930 5 550 5 150 4 740 4 310 3 880 3 440 2 990 2 520	2 320 2 170 2 010 1 850 1 690 1 530 1 360 1 190 1 000

TABLE 24.—Continued
PROPERTIES OF UNEQUAL LEG ANGLES

ngle	less	r Foot	et.	cance from Center Gravity to Back of Longer Leg	Distance from Center of Gravity to Back of Shorter Leg				x2 2 2				ngle a	Maximum Bending Moment @ 16,000 Lbs. per Sq. In. Long Leg Vertical	Maximum Bending Moment @ 16,000 Lbs. per Sq. In. Short Leg Vertical
Size of Angle	Thickness	Weight per	Area		stance f Gravi of Sho	Ine	ent of rtia	Sec	tion lulus		adius o yratio		Tangent of Angle	faximui ment @ r Sq. In Ver	laximur nent @ r Sq. In Ver
02		M		Dis	<u> </u>	Axis I-I	Axis 2-2	Axis 1-1	Axis 2-2	Axis 1-1	Axis 2-2	Axis 3-3	Tange	Mon	Mor
				X1	X2	I1	I 2	Sı	S ₂	r ₁	T2	Гз		M 2	M ₁
In.	In.	Lb.	In.2	In.	In.	In.4	In.4	In.3	Ins.3	In.	In.	In.		FtLb.	FtLb.
4½×3	$\begin{array}{c} 13\\ \overline{16}\\ \underline{3}\\ \underline{4}\\ 1\overline{16}\\ \underline{5}\\ \underline{8}\\ \underline{9}\\ \overline{16}\\ \underline{5}\\ \underline{8}\\ \underline{5}\\ \underline{6}\\ \underline{16}\\ \underline{6}\\ \underline{5}\\ \underline{6}\\ $	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	5.43 5.06 4.68 4.30 3.90 3.50 3.50 2.67 2.25	.90 .88 .85 .83 .81 .79 .76 .74	1.65 1.63 1.60 1.58 1.56 1.54 1.51 1.49	3.60 3.40 3.19 2.98 2.75 2.51 2.25 1.98	10.33 9.73 9.10 8.44 7.75 7.04 6.29 5.50 4.67	1.71 1.60 1.49 1.37 1.25 1.13 1.01 .88	3.62 3.38 3.14 2.89 2.64 2.37 2.10 1.83 1.54	.81 .82 .83 .84 .85 .85	1.38 1.39 1.40 1.41 1 42 1.43 1.44	.64 .64 .64 .65 .65 .66	.419 .424 .428 .431 .437 .440 .443	4 830 4 500 4 180 3 850 3 520 3 160 2 800 2 440 2 050	2 280 2 130 1 990 1 830 1 660 1 510 1 350 1 170 1 000
4×3½	136341163686611271636566	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	5.43 5.06 4.68 4.30 3.90 3.50 3.50 2.67 2.25	1.11 1.09 1.07 1.04 1.02 1.00 .98 .96	1.36 1.34 1.32 1.29 1.27 1.25 1.23 1.21 1.18	5.49 5.18 4.86 4.52 4.16 3.79 3.40 2.99 2.56	7.77 7.32 6.86 6.37 5.86 5.32 4.76 4.17 3.56	2.30 2.15 2.00 1.84 1.68 1.52 1.35 1.18	2.92 2.74 2.55 2.35 2.15 1.94 1.72 1.50 1.26	I.01 I.02 I.03 I.03 I.04 I.05 I.06 I.07	I.19 I.20 I.21 I.22 I.23 I.23 I.24 I.25 I.26	.72 .72 .72 .72 .72 .72 .72 .73 .73	.742 .742 .747 .750 .753 .755 .757	3 900 3 650 3 400 3 140 2 870 2 590 2 290 2 000 1 680	3 070 2 870 2 670 2 460 2 240 2 030 1 800 1 570 1 350
4×3	13 16 21 15 58 9 16 12 7 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	17.1 16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8	5.03 4.69 4.34 3.98 3.62 3.25 2.87 2.48 2.09 1.69	.94 .92 .89 .87 .85 .83 .80 .78 .76	I.44 I.42 I.39 I.37 I.35 I.30 I.28 I.26 I.24	3.47 3.28 3.08 2.87 2.66 2.42 2.18 1.92 1.65 1.36	7.34 6.93 6.49 6.03 5.55 5.05 4.52 3.96 3.38	1.68 1.57 1.46 1.35 1.23 1.11 .99 .87 .74	2.87 2.68 2.49 2.30 2.10 1.89 1.68 1.46 1.23	.83 .84 .84 .85 .86 .86 .87 .88	I.21 I.22 I.22 I.23 I.24 I.25 I.25 I.26 I.27	.64 .64 .64 .64 .64 .64 .65	.518 .524 .529 .534 .538 .543 .547 .551 .554	3 830 3 570 3 320 3 070 2 800 2 520 2 240 I 950 I 640 I 330	2 240 2 090 1 950 1 800 1 640 1 490 1 320 1 160 990 800
3½×3	136 116 116 116 116 116 116 116 116 116	15.8 14.7 13.6 12.5 11.4 10.2 9.1 7.9 6.6 5.4	4.62 4.31 4.00 3.67 3.34 3.00 2.65 2.30 1.93 1.56	.98 .96 .94 .92 .90 .88 .85 .83 .81	I.23 I.21 I.19 I.17 I.15 I.13 I.10 I.08 I.06	3·33 3·15 2·96 2·76 2·55 2·33 2·09 1·85 1·58	4.98 4.70 4.41 4.11 3.79 3.45 3.10 2.73 2.33 1.91	1.65 1.54 1.44 1.33 1.21 1.10 .98 .85 .72 .58	2.20 2.05 1.91 1.76 1.61 1.45 1.29 1.13 .96	.85 .86 .87 .87 .88 .89 .90	1.04 1.05 1.06 1.07 1.07 1.08 1.09 1.10	.62 .62 .62 .62 .62 .62 .62 .63	.694 .698 .703 .707 .711 .714 .718 .721 .724 .727	2 930 2 730 2 550 2 350 2 150 1 930 1 720 1 510 1 280 1 040	2 200 2 050 1 920 1 770 1 610 1 470 1 310 1 130 960 770
3½×2½	11 16 5 5 9 16 16 13 8 5 16 14	12.5 11.5 10.4 9.4 8.3 7.2 6.1 4.9	3.65 3.36 3.06 2.75 2.43 2.11 1.78 1.44	.77 .75 .73 .70 .68 .66 .64 .61	1.27 1.25 1.23 1.20 1.18 1.16 1.14 1.11	1.72 1.61 1.49 1.36 1.23 1.09 .94 .78	4.13 3.85 3.55 3.24 2.91 2.56 2.19 1.80	.99 .92 .84 .76 .68 .59 .50	1.85 1.71 1.56 1.41 1.26 1.09 .93 .75	.69 .69 .70 .70 .71 .72 .73 .74	1.06 1.07 1.08 1.09 1.09 1.10 1.11	•53 •53 •53 •53 •54 •54 •54 •54	.468 .472 .480 .486 .491 .496 .501	2 470 2 280 2 080 1 880 1 680 1 450 1 240 1 000	1 320 1 230 1 120 1 010 910 790 670 550

TABLE 24.—Continued

Properties of Unequal Leg Angles

ingle	688	r Foot		Gravity to Back of Longer Leg	Of Gravity to Back of Shorter Leg			1 21	2 3	<u></u>			ngle a	Maximum Bending oment (@ 16,000 Lbs. oer Sq. In. Long Leg Vertical	num Bending t @ 16,000 Lbs. In. Short Leg Vertical
Size of Angle	Thickness	Weight per	Area	Distance from of Gravity to of Longer I	Gravit of Shor	Mome	ent of rtia	Sect Mod		R	ladius d Syratio	of n	Tangent of Angle	Maximun Moment @ per Sq. In	Maximum Moment @ 16 per Sq In. S
on		We		Dist	Dis	Axis I-I	Axis 2-2	Axis I-I	Axis 2-2	Axis 1-1	Axis 2-2	Axis 3-3	Tanger	Mom per	Mon
			_	x1	XI	Iı	I ₂	Sı	S2	rı	Г3	r ₃		M 2	Mı
In.	In.	Lb.	In. ³	In.	In.	In.4	In.4	In.3	In.ª	In.	In.	In.		FtLb.	FtLb.
3½×2	16 16	6.6 5.6 4.5	1.93 1.63 1.32	.50 .48 .46	I.25 I.23 I.21	·57 ·49 ·41	2.36 2.02 1.67	.38 .32 .26	1.05 .89 .72	·54 ·55 ·56	I.II I.I2 I.I3	·43 ·43 ·43	.324 .329 .335	1 400 1 190 960	500 430 350
3 1 ×2	9 5-4:14 6:00 0-44	9.0 8.1 7.2 6.3 5.3 4.3	2.64 2.38 2.11 1.83 1.55 1.25	.59 .57 .54 .52 .50	I.21 I.19 I.17 I.15 I.12 I.09	.75 .69 .62 .55 .48	2.64 2.42 2.18 1.92 1.65 1.36	.53 .48 .43 .37 .32 .26	1.30 1.17 1.05 .91 .77 .63	·53 ·54 ·54 ·55 ·56 ·57	I.00 I.01 I.02 I.02 I.03 I.04	·44 ·44 ·44 ·45 ·45	.369	1 730 1 560 1 400 1 210 1 020 840	700 640 570 500 430 350
3½×15	$\frac{3}{16}$	2.99	.88	-34	1.16	.17	.98	.13	· 4 7	-44	1.05	-35		630	170
$3\times2\frac{13}{16}$	$\frac{9}{16}$	10.1	2.96	.88	.98	2.01	2.37	1.04	1.17	.82	.90	.54		1 560	1 390
3×211	$\frac{9}{16}$	9.8	2.89	.84	.99	1.76	2.38	-95	1.17	.78	.91	-55		1 560	I 270
3×21	9 16 127 16 16 16 16	9.5 8.5 7.6 6.6 5.6 4.5 3.39	2.78 2.50 2.22 1.92 1.62 1.31 1.00	.77 .75 .73 .71 .68 .66	1.02 1.00 .98 .96 .93 .91	I.42 I.30 I.18 I.04 .90 .74	2.28 2.08 1.88 1.66 1.42 1.17	.82 .74 .66 .58 .49 .40	1.15 1.04 .93 .81 .69 .56 .43	.72 .72 .73 .74 .74 .75 .76	.91 .91 .92 .93 .94 .95	.52 .52 .52 .52 .53 .53	.661 .666 .672 .676 .680 .684	I 530 I 390 I 240 I 080 920 750	1 090 990 880 770 650 530 410
3×2	10 10 10 10 16	7.7 6.8 5.9 5.0 4.1 3.07	2.25 2.00 1.73 1.47 1.19	.58 .56 .54 .52 .49 .47	1.08 1.06 1.04 1.02 .99	.67 .61 .54 .47 .39	I.92 I.73 I.53 I.32 I.09	.47 .42 .37 .32 .26 .20	1.00 .89 .78 .66 .54	•55 •55 •56 •57 •57 •58	.92 .93 .94 .95 .95	.43 .43 .43 .43 .43 .43	.414 .421 .428 .434 .440 .446	I 330 I 190 I 040 880 720 550	630 560 490 430 350 270
2⅓×2	16 16 16 16 16	6.8 6.1 5.3 4.5 3.62 2.75	2.00 1.78 1.55 1.31 1.06 .81	.63 .60 .58 .56 .54	.88 .85 .83 .81 .79	.64 .58 .52 .45 .37	1.14 1.03 .91 .79 .65	.46 .41 .36 .31 .25	.70 .63 .55 .47 .38	.56 .57 .58 .58 .59	.75 .76 .77 .78 .78 .79	.42 .42 .42 .42 .42 .43	.600 .607 .614 .620 .626 .632	930 830 730 630 510 390	610 550 480 410 330 270
2½×1¾	$\frac{5}{16}$ $\frac{1}{4}$ $\frac{3}{16}$	4.2 3.40 2.59	I.24 I.00 -77	-47 -45 -43	.85 .83 .81	.31 .25 .20	.76 .62 .49	.24 .20	.46 .37 .29	.50 .50	.79 .79 .80	•37 •38 •38		610 500 390	320 270 200
2½×1½	16 16 3 16	3.92 3.19 2.44	1.15 .94 .72	.40 .38 -35	.90 .88 .85	.19 .16	.71 .59 .46	.17 .14 .11	·44 .36 .28	.4I .4I .42	·79 ·79 .80	.32 .32 .33	·349 ·357 .364	590 480 370	230 190 150
2½×1¼	33	1.91	-57	.27	.89	.064	-37	.066	.23	-34	.81	.27	.265	300	90

TABLE 24.—Continued

PROPERTIES OF UNEQUAL LEG ANGLES

ngle	less	r Foot		tance from Center Gravity to Back of Longer Leg	Distance from Center of Gravity to Back of Shorter Leg			8	2222	<u>_</u> 3 1			ngle a	Maximum Bending Moment @ 16,000 Lbs. per Sq. In. Long Leg	Maximum Bending Moment @ 16,000 Lbs. per Sq. In. Short Leg Vertical
Size of Angle	Thickness	Weight per	Area	Distance from of Gravity to of Longer I	stance f Gravio of Shoo	Mome Iner	nt of tia	Sect Mod			adius o		Tangent of Angle	laximur nent @ Sq. In Ver	aximur nent @ r Sq. In Ver
w		We		Of	д ^Б	Axis 1-1	Axis 2-2	Axis 1-1	Axis 2-2	Axis I-I	Axis	Axis 3-3	Tanger	Mor	Mor
				X1	X2	I1	I 2	Sı	S ₂	r ₁	r ₂	r ₃		M ₂	M ₁
In.	In.	Lb.	In.2	In.	In.	In.4	In.4	In.3	In.3	In.	In.	In.		FtLb.	FtLb.
2½×I½	$\begin{array}{c} \frac{1}{2} \\ 7 \\ \hline 16 \\ 38 \\ \hline 5 \\ \hline 16 \\ \hline 4 \\ 3 \\ \hline 16 \\ \end{array}$	5.6 5.0 4.4 3.66 2.98 2.28	1.63 1.45 1.27 1.07 .88 .67	.48 .46 .44 .42 .39	.86 .83 .81 .79 .77	.26 .24 .21 .19 .16	.75 .68 .61 .53 .44	.26 .23 .20 •17 .14	.54 .48 .42 .36 .30	.40 .41 .41 .42 .42 .43	.68 .69 .69 .70 .71	.32 .32 .32 .32 .32 .32 .33	.424	720 640 560 480 400 310	350 300 270 230 190 150
2×1½	385 16 14 3 6 18	3.99 3.39 2.77 2.12 1.44	1.17 1.00 .81 .62 .42	.46 .44 .41 .39 .37	.71 .69 .66 .64	.21 .18 .15 .12	.43 .38 .32 .25	.20 .17 .14 .11	·34 ·29 ·24 ·18	.42 .42 .43 .44 .45	.61 .62 .62 .63 .64	.32 .32 .32 .32 .33	.524 .534 .543 .551 .559	450 390 320 240 170	270 230 190 150 100
2×18	38 5 16 14 3	3.83 3.26 2.66 2.04	1.13 .96 .79 .60	·42 ·39 ·37 ·35	.73 .71 .68 .66	.16 .14 .12 .096	.42 .37 .31	.17 .14 .12 .094	.33 .28 .23	.38 .38 .39 .40	.61 .62 .63	.29 .29 .30 .31	·434 ·445 ·455 ·475	440 370 300 240	230 190 160 125
2×11/4	1 4 3 16	2.55 1.96	·75	·33	.71 .69	.089 .071	.30	.097 .075	.23 .18	·34 ·35	.63 .64	.27		300 240	130 100
1 ³ / ₄ × 1 ¹ / ₄	16 16	2.34 1.80 1,23	.69 .53 .36	·35 ·33 .31	.60 .58 .56	.085 .069 .049	.20 .16 .11	.095 .075 .052	.18 .14 .094	·35 .36 ·37	·54 ·55 ·56	.27 .27 .27		240 190 125	125 100 70
$I_{\frac{3}{4}} \times I_{\frac{1}{8}}$	$\frac{\frac{1}{4}}{\frac{3}{16}}$	2.24 1.72 1.17	.66 .51 .35	.31 .29 .27	.62 .60 .58	.062 .050 .037	.19 .15 .11	.077 .060 .043	.17 .13 .093	.3I .32 .32	·54 ·55 ·56	.24 .24 .24		230 170 125	80 57
$I^{\frac{1}{2}} \times I^{\frac{1}{4}}$	5 16 1 3 16	2.59 2.13 1.64	.76 .63 .48	.40 .38 .35	.52 .50 .48	.097 .081 .065	.16 .13 .10	.113 .093 .073	.16 .13 .10	·35 ·36 ·37	.45 .46	.26 .26		210 170 130	150 125 97
13×1	1 3 16 1 8	1.81 1.40 .96	.54 .41 .29	.30 .28 .26	·49 ·47 ·44	.041 .033 .024	.093 .075 .053	.059 .046 .032	.106 .082 .057	.28 .28 .29	.42 .43 .44	.2I .2I .22		140 110 75	80 60 40
1 ³ / ₈ × ⁷ / ₈	3 16 1 8	1.32	·39	.24	·49 ·47	.022	.071 .051	.035 .026	.081	.24	·43 ·44	.19		75	45 35
1½×7/8	1/8	.85	.25	.23	.41	.016	.039	.024	.047	.25	.40	.19		60	30
$1\frac{1}{16} \times \frac{13}{16}$	3 16	1.08	.32	.24	-37	.015	.033	.027	.048	.22	.32	.16		64	35
1×3/4	$\frac{\frac{3}{16}}{\frac{1}{8}}$	1.00	.30	.23	-35	.0094	.027	.025	.042	.21	.30	.16		55 40	30 20
1×5	$\frac{3}{16}$ $\frac{1}{8}$.92 .64	.27	.19 .17	.38 ·35	.0074		.017	.041	.17	.3 I .3 I	.13		55 40	20 16
$\frac{7}{8} \times \frac{1}{2}$.095	.42	.13	.13	.31	.0022	.0093	.0054	.017	.13	.28	.12		20	7
$\frac{13}{16} \times \frac{1}{2}$	32	.62	.19	.15	.31	.0032	.OII	.0091	.022	.13	.25	.II		30	12

TABLE 25
AREAS OF ANGLES

							A				INCHE							
							A	NGLE	s wr	гн Ео	JAL LE	tGS						
Size	ě	16	ł	5 16	1	76	1/2	9 16	1	11	3	13	7 8	15 16	ı	116	118	Size
8"×8"							7.75	8.68	9.61	10.53	11.44	12.34	13.23	14.12	15.00	15.87	16.73	8"×8"
6 ×6					4.36	5.06	5.75	6.43	7.11	7.78	8.44	9.09	9.73	10.37	11.00			6 ×6
5 ×5						4.18					6.94	7.47	7.98	8.50	9.00			5 ×5
4 ×4				2.40	2.86	3.31	3.75	4.18	4.61	5.03	5.44	5.84						4 ×4
31×31				2.09	2.48	2.87	3.25	3.62	3.98	4.34	4.69	5.03						3½×3½
3 ×3			1.44	1.78	2. I I	2.43	2.75	3.06	3.36									3 ×3
$2\frac{3}{4} \times 2\frac{3}{4}$			1.31	1.62	1.92	2.22	2.50											24×24
21×21			1		1			1					1	1		l .		
21×21		0.81	1.06	1.31	1.55	1.78	2.00											21×21
2 ×2		0.71	0.94	1.15	1.36	1.56								ļ.·				2 ×2
14×14		0.62	0.81	1.00	1.17	1.34								.				12×12
$1\frac{1}{2}\times1\frac{1}{2}$		ł									,		i .			1		
11×11	0.30	0.43	0.56	0.68										. .				11×11
1×1							ı	1	1		1		ı		ı		1	ı×ı
	-	1	1	1	1	<u> </u>	<u> </u>		<u> </u>	1	1		<u> </u>		!	i	1	<u> </u>
	,	,		i		1	Ar	IGLES	WITI	UNE	QUAL I	LEGS						
Size	1 8	3 16	14	5 16	3 8	7 16	1/2	16	58	116	34	13 16	7 8	15 16	1	I 16	118	Size
7"×3½"						4.40	5.00	5.59	6.17	6.75	7.31	7.87	8.42	8.97	9.50			7"×3½
6 ×4					3.61	4.18	4.75	5.31	5.86	6.40	6.94	7.47	7.98	8.50	9.00			6 ×4
6 ×31					3.42	3.97	4.50	5.03	5.55	6.06	6.56	7.06	7.55	8.03	8.50			$6 \times 3\frac{1}{2}$
5 ×4										5.72		6.65	7.11					5 X4
5 ×3½										5.37	5.81	6.25	6.67					5 ×3½
5 ×3										5.03	5.44	5.84						5 ×3
4 ×3½										4.68	5.06							
4 ×3		l .	1	1				1		4-34	4.69			1		l		4 ×3
31×3		i				2.65		1-						ı		1		$3\frac{1}{2}\times3$
$3\frac{1}{2}\times 2\frac{1}{2}$						1	1			1								31×21
$3 \times 2\frac{1}{2}$						2.22				1	l	l -						$3 \times 2\frac{1}{2}$
3 ×2							-			1	l .	Į l	i	l				3 X2
$2\frac{1}{2}\times2$		0.81					_	ł	1	1	j		l					$2\frac{1}{2}\times2$
Size	1 8	3 16	1	5 16	3 8	7 16	1 2	9 16	1	11	3 4	13	7 8	15	ı	1 1 1 1	11	Size

TABLE 26
Weights of Angles

٠						V			v Pot									
Size	1/8	3 16	14	5 16	38	7 16	1/2	9 16	<u>5</u> 8	11 16	34	13 16	7 8	15 16	I	$I_{\overline{16}}^{\underline{1}}$	118	Size
8"×8"							26.4	29.6	32.7	35.8	38.9	42.0	45.0	48.1	51.0	54.0	56.9	8"×8"
6 ×6					14.9	17.2	19.6	21.9	24.2	26.5	28.7	31.0	33.1	35-3	37.4			6 ×6
5 ×5					12.3	14.3	16.2	18.1	20.0	21.8	23.6	25.4	27.2	28.9	30.6			5 ×5
4 ×4				8.2	9.8	11.3	12.8	14.3	15.7	17.1	18.5	19.9						4 ×4
$3\frac{1}{2} \times 3\frac{1}{2}$				7.2	8.5	9.8	11.1	12.4	13.6	14.8	16.0	17.1						$3\frac{1}{2} \times 3$
3 ×3			4.9	6.1	7.2	8.3	9.4	10.4	11.5									3 ×3
$2\frac{3}{4} \times 2\frac{3}{4}$			4.5	5.6	6.6	7.6	8.5											21×2
$2\frac{1}{2} \times 2\frac{1}{2}$		3.1	4.I	5.0	5.9	6.8	7.7											$2\frac{1}{2}\times 2$
$2\frac{1}{4} \times 2\frac{1}{4}$		2.8	3.6	4.5	5.3	6.1	6.8											21×2
2 ×2		2.4	3.2	3.9	4.7	5-3												2 ×2
$1\frac{3}{4} \times 1\frac{3}{4}$		2.1	2.8	3.4	4.0	4.6												13×1
$1\frac{1}{2} \times 1\frac{1}{2}$	1.2	1.8	3.3	2.9	3.4													$I_{2}^{1}\times I$
$I_4^1 \times I_4^1$	1.0	1.5	1.9	2.3			• • • •											$I_4^1 \times I_7^1$
$\mathbf{i} \times \mathbf{i}$	0.8	1.2	1.5]						ı×ı
	,	2	1	5	3							LEGS		1.5		,	,	g:
Size	8	3 16		16	8	16	- <u>1</u>	16	5 8	116	34	13 16	-78	15		$\frac{I\frac{1}{16}}{I}$	I 1/8	Size
$7'' \times 3^{\frac{1}{2}''}$						15.0	17.0	19.1	21.0	23.0	24.9	26.8	28.7	30.5	32.3			$7'' \times 3\frac{1}{2}$

$7'' \times 3^{\frac{1}{2}''}$						15.0	17.0	19.1	21.0	23.0	24.9	26.8	28.7	30.5	32.3			$7'' \times 3\frac{1}{2}''$
6 ×4					12.3	14.3	16.2	18.1	20.0	21.8	23.6	25.4	27.2	28.9	30.6			6 X4
$6 \times 3^{\frac{1}{2}}$					11.7	13.5	15.3	17.1	18.9	20.6	22.4	24.0	25.7	27.3	28.9			$6 \times 3^{\frac{1}{2}}$
5 ×4					11.0	12.8	14.5	16.2	17.8	19.5	21.1	22.7	24.2					5 ×4
$5 \times 3^{\frac{1}{2}}$				8.7	10.4	12.0	13.6	15.2	16.8	18.3	19.8	21.3	22.7					$5 \times 3^{\frac{1}{2}}$
5 ×3				8.2	9.8	11.3	12.8	14.3	15.7	17.1	18.5	19.9						5 ×3
$4 \times 3^{\frac{1}{2}}$				7.7	9.1	10.6	11.9	13.3	14.7	16.0	17.3	18.5						4 ×3½
4 ×3				7.2	8.5	9.8	11.1	12.4	13.6	14.8	16.0	17.1						4 ×3
$3\frac{1}{2}\times3$				6.6	7.9	9.1	10.2	11.4	12.5	13.6	14.7	15.8						$3\frac{1}{2}\times3$
$3\frac{1}{2} \times 2\frac{1}{2}$			4.9	6.1	7.2	8.3	9.4	10.4	11.5	12.5								$3\frac{1}{2} \times 2\frac{1}{2}$
$3 \times 2\frac{1}{2}$			4.5	5.6	6.6	7.6	8.5	9.5										$3 \times 2^{\frac{1}{2}}$
3 ×2			4.1	5.0	5.9	6.8	7.7											3 ×2
$2\frac{1}{2}\times2$		2.8	3.7	4.5	5.3	6.1	6.8											$2\frac{1}{2}\times2$
Size	18	3 16	14	5 16	8	7 16	1/2	16	5)8	11 16	34	13 16	7 8	15 16	I	I 1 6	I 1/8	Size

TABLE 27
OVERRUN OF PENCOYD ANGLES

						Over	run of	Angles	in Inc	hes						
Size of Angle							Ti	nicknes	s in In	ches						
Inches	1 1 8	$1\frac{1}{16}$	I	15	7 8	13 16	34	11 16	<u>5</u> 8	9 16	1/2	7 16	3 8	<u>5</u> 16	1	3 16
×8	3	5 16	1	3.	1 8	1.	0	3 16	1	16	0					
X6	-	10	1	$\frac{3}{16}$ $\frac{1}{16}$	ô	1 16 16	0	0	16	0	o	1.5	0			
X4							1	3 16	1	16	0	18	16	0		
½×3½									1 8	1 16 16	0	16	16 16	0	0	
X3																
X23											16	14	16	1 8	16	0
X2								[]					$\frac{3}{16}$ $\frac{3}{16}$	18 18 18 16	16 16 16 16 16	0
1×13													16	- 8	16	0
}×ı}													1	16	8	16
×6			16 16 7 16	76	3 16 5 16 8	5 16 18 14 14	16 3 16 3 16 3 16	3 16	8	16 1 5	0					
$\times 3\frac{1}{2}$			16	1	16	8	16	0	1,6		16	0				
X4,			1,6	8 3	16	4	16	8	16	0	8	16	0			
×3½			16	8	16	- 2	16	8	16	0	8	16	0			
X4,								8 8	16	0	8	16	0			
$\times 3\frac{1}{2}$							ì	16	8	16	٥	8	16	0		
X3 X3½							1	18 18 16 16 16 3	3 16 16 16 16 16 16 18 8	16 16 16 16	0	3	16	0		
X3 2							4	16	3	16	0	16 16 16 18 18 18 18 18	1 16 16 1 16 16	0		
$\frac{1}{2} \times \frac{3}{3}$									8	16	-	8	16			
X21			1								3 16	1	16	0	0	
X21											10	1 16 3 16	0	16	0	
X2											ĭ	3	1	16	0	
X2									. 1		5	1	1 5 3 16	16 16 16 18	16	o
XI3					,	' '	,					- 1				1

TABLE 28

OVERRUN OF PENNSYLVANIA STEEL CO. ANGLES

									(Over	un o	f An	gles	n In	ches				
Size of Angle								Th	ickn	ess in	Inc	hes							Maximum Length of Angles
Inches	1 2	1 8	I 16	I	15 16	78	$\frac{13}{16}$	3.	11 16	58	9 16	1/2	7 16	3	<u>5</u>	14	3 16	18	Feet
86	144		38	5 16 3 16	3 16 13 	3 16 1 16 1 16 1 16 1 1 16 1 1 1 1 1 1 1	3 16 1 16 3 8	3 16 16 38 285 5 16 16 14 47 16 5 16 7 16 38 11 32 38	3 6 14 14 5 7 7 4 4 5 6 7 14 5 7 14 5 6 7 14 5	3 16 14 14 14 14 14 14 14 14 14 14 14 14 14	3 16 14 3 16 3 16 3 16 3 16 3 16 3 16 3	3 6 16 14 16 16 14 16 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16	16 48 16 48	16 3 16 16 16 18 3 16 17 16 18 3 16 17 17 17 18 18 18 3 16 17 17 17 17 17 17 17 17 17 17 17 17 17	16 0 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 16 16 16 16 16	1 1 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3		56 for 1½" to 105 for ½" 88 for 1" to 105 for ½" 70 70 70 70 70 35 for ½" to 50 for ½" 50 50 63 for 1½" to 105 for ½" 70 70 70 70 70 70 70 70 70 70 70 70 70

CARNEGIE ANGLES NET AREAS AND ALLOWARLE TENSION VALUES IN THOUSANDS OF POUNDS.

TABLE 20

Maximum Fiber Stress, 16,000 Pounds per Square Inch. Net Areas and Stresses-Two Holes Deducted Thick-Weight Inch Rivets. Size. Area. 4 Inch Rivets. 4 Inch Rivets. ness, Inches per Foot. Inches Inches Pounds. Area, Inches². Area. Area. Stress. Stress Stress. Inches Inches2. 8 × 8 8 × 8 8 × 8 8 × 8 15.00 13.00 208.0 13.25 1 51.0 2120 12.24 15 48.1 195.8 12.48 14.12 199.7 13.23 11.48 183.7 187.2 11.70 45.0 ià 42.0 12.34 10.72 171.5 10.02 174.7 ×8 ×8 8 38.0 9.94 159.0 10.13 162.1 TI.44 35.8 10.53 9.16 146.6 9.33 149.3 X 8 8 9.61 8.36 133.8 8.52 136.3 8.67 138.7 32.7 8×8 8.68 20.6 120.8 7.70 123.2 7.84 125.4 7 55 8 × 8 6.75 108.0 6.87 26.4 7.00 112.0 7.75 109.9 X 6 13.00 11.00 176.0 11.25 180.0 44.2 8 × 6 8 × 6 15 41.7 12.25 10.37 165.9 10.61 169.8 39.I 11.48 9.95 973 155.7 159.2 8 × 6 148.8 Ĭ. 36.5 10.72 9.10 145.6 9.30 8 × 6 33.8 8.44 135.0 8.63 138.1 9.94 8 × 6 i 31.2 7.78 7.95 127.2 9.15 124.5 8 × 6 8.36 113.8 28.5 7.42 6.72 118.7 7.11 7.27 116.3 8 × 6 6.58 107.5 7.56 25.7 6.43 102.9 105.3 8 X 6 5.87 6.75 6.00 23.0 5.75 92.0 93.9 96.0 8 × 6 7 82.6 20.2 5.93 5.05 80.8 5.16 5.27 84.3 6 × 6 6 × 6 6 × 6 783 7.98 8.20 33.I 9.73 127.7 131.2 7.67 31.0 9.09 7 47 6.94 119.5 122.7 28.7 8.44 111.0 7.13 114.1 18 7.78 6.41 6.58 26.5 102.6 105.3 6 × 6 5.86 93.8 6.02 96.3 98.7 24.2 7.11 6.17 89.4 6 × 6 6.43 84.8 5.30 87.2 21.9 5.45 5.59 6×6 76.0 4.87 80.0 19.6 5.75 77.9 4.75 5.00 6 × 6 5.06 4.18 66.9 68.6 17.2 4.29 4.40 70.4 6 × 6 4.36 361 57.8 3.70 59.2 3.80 60.8 14.9 6 X 4 18 7.98 6.23 6.45 27.2 99.7 103.2 6 × 4 6.05 25.4 7.47 5.85 93.6 96.8 6 $\times 4$ 23.6 6.94 87.0 5.63 90.1 5.44 11 6 X 4 80.5 21.8 640 5.20 83.2 5.03 73.8 66.9 6 $\times 4$ 4.61 20.0 5.86 76.3 78.7 4.77 4.92 16 6 $\times 4$ 18.1 5.31 4.18 69.3 4.47 71.5 4.33 6 × 4 6 × 4 16.2 3.87 64.0 4.75 3.75 60.0 61.9 4.00 16 14.3 4.18 3.30 52.8 3.41 54.6 3.52 56.3 48.8 6 X 12.3 3.61 45.8 2.95 47.2 3.05 61.3 16.8 58.7 3.98 63.7 5 \times 3 $\frac{1}{2}$ 4.92 3.67 3.83 X 31 16 2 7 16 58.1 5 15.2 3.49 55.8 3.63 4.47 3.34 53.4 48.0 × 31 13.6 5 4.00 3.00 3.12 49.9 3.25 52.0 5 × 3½ 12.0 3.53 2.65 42.4 2.76 44.2 2 87 45.9 X 33 36.8 38.2 10.4 5 2.30 2.39 2.49 39.8 3.05 $\times 3\frac{1}{2}$ 16 5 8.7 2.56 30.9 2.01 32.2 2.09 1.93 33.4 ļ 3.00 48.0 \times 3 12.8 44.0 2.87 5 2.75 45.9 3.75 X 3 27 16 2.43 38.9 2.54 40.6 2.65 42.4 5 11.3 3.31

5 × 3

5 × 3

2.II

1.77

2.86

2.40

9.8

8.2

33.8

28.3

2.20

185

ı

36.8

30.9

2.30

1.93

35.2

29.6

TABLE 29.—Continued.

CARNEGIE ANGLES.

NET AREAS AND ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS.

Maximum Fiber Stress, 16,000 Pounds per Square Inch.

					Net Areas a	nd Stresses	One Hole I	Deducted.	
Size, Inches.	Thick- ness,	Weight per Foot,	Area, Inches².	Inch	Rivets.	₫ Inch	Rivets.	Inch F	Civets.
Inches.	Inches.	Pounds.	Inches !	Area, Inches².	Stress.	Area, Inches².	Stress.	Area, Inches².	Stress.
6 × 6	7	33.1	9.73	8.85	141.6	8.96	143.4		
6×6	13	31.0	9.09	8.28	132.5	8.38	134.1		
6×6	34	28.7	8.44	7.69	123.0	7.78	124.5		
6×6	116	26.5	7.78	7.09	113.4	7.18	114.9		
6×6	<u>5</u>	24.2	7.11	6.48	103.7	6.56	105.0	6.64	106.2
6×6	9 16	21.9	6.43	5.87	93.9	5.94	95.0	6.01	96.2
6×6	1/2	19.6	5.75	5.25	84.0	5.31	85. o	5.37	85.9
6×6	7 16	17.2	5.06	4.62	73.9	4.68	74.9	4.73	75-7
6×6	38	14.9	4.36	3.98	63.7	4.03	64.5	4.08	65.3
6×4	7 8	27.2	7.98	7.10	113.6	7.21	115.4		
6×4	13	25.4	7.47	6.66	106.6	6.76	108.2		
6 X 4	3 4	23.6	6.94	6.19	99.0	6.28	100.5		
6×4	11 16	21.8	6.40	5.71	91.4	5.80	92.8		
6×4	<u>5</u>	20.0	5.86	5.23	83.7	5.3I	85.0	5.39	86.2
6 X 4	9 16	18.1	5.31	4.75	76.0	4.82	77.1	4.89	78.2
6 X 4	1/2	16.2	4.75	4.25	68.0	4.31	69.0	4-37	69.9
6 X 4	7 16	14.3	4.18	3.74	59.8	3.80	60.8	3.85	61.6
6×4	38	12.3	3.61	3.23	51.7	3.28	52.5	3.33	53.3
$5 \times 3^{\frac{1}{2}}$	5 8	16.8	4.92	4.29	68.6	4.37	69.9	4.45	71.2
$5 \times 3^{\frac{1}{2}}$	9 16	15.2	4.47	3.91	62.6	3.98	63.7	4.05	64.8
$5 \times 3^{\frac{1}{2}}$	$\frac{1}{2}$	13.6	4.00	3.50	56 o	3.56	57.0	3.62	57.9
$5 \times 3^{\frac{1}{2}}$	7 16	12.0	3.53	3.09	49.4	3.15	50.4	3.20	51.2
$5 \times 3^{\frac{1}{2}}$	3 8	10.4	3.05	2.67	42.7	2.72	43.5	2.77	44-3
$5 \times 3^{\frac{1}{2}}$	5 16	8.7	2.56	2.25	36.0	2.29	36.6	2 33	37.3
5×3	<u>5</u> 8	15.7	4.61	3.98	63.7	4.06	65.0	4.14	66.2
5×3	916	14.3	4.18	3.62	57.9	3.69	59.0	3.76	60.2
5×3	1/2	12.8	3.75	3.25	52.0	3.31	53.0	3.37	53.9
5×3	7 16	11.3	3.31	2.87	45.9	2.93	46.9	2.98	47.7
5×3	38	9.8	2.86	2.48	39.7	2.53	40.5	2.58	41.3
5×3	16	8.2	2.40	2.09	33-4	2.13	34.1	2.17	34.7
4×4	<u>5</u>	15.7	4.61	3.98	63.7	4.06	65.0	4.14	66.2
4 × 4 .	16	14.3	4.18	3.62	57.9	3.69	59.0	3.76	60.2
4×4	1/2	12.8	3.75	3.25	52.0	3.3I	53.0	3-37	53.9
4×4	7 16	11.3	3.31	2.87	45.9	2.93	46.9	2.98	47.7
4×4	3 8	9.8	2.86	2.48	39.7	2.53	40.5	2.58	41.3
4×4	16	8.2	2.40	2.09	33.4	2.13	34.I	2.17	34.7
4×4	1/4	6.6	1.94	1.69	27.0	1.72	27.5	1.75	28.0
4×3	1/2	11.1	3.25	2.75	44.0	2.81	45.0	2.87	45.9
4×3	7 16	· 9.8	2.87	2.43	38.9	2.49	39.8	2.54	40.6
4×3	3 8	8.5	2.48	2.10	33.6	2 15	34.4	2.20	35.2
4×3	16	7.2	2.09	1.78	28.5	1.82	29.1	1.86	29.8
4×3	1/4	5.8	1.69	1.44	.23.0	1.47	23.5	1.50	24.0

TABLE 29.—Continued. CARNEGIE ANGLES.

NET AREAS AND ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS. Maximum Fiber Stress, 16,000 Pounds per Square Inch.

					Net Areas a	nd Stresses-	One Hole I	Deducted.	
Size, Inches.	Thick- ness,	Weight per Foot,	Area, Inches ³ ,	i Inch	Rivets.	‡ Inch	Rivets.	# Inch I	Rivets.
Inches.	Inches.	Pounds.		Area, Inches ² .	Stress.	Area, Inches².	Stress.	Area, Inches ³ .	Stress.
31×31	5	13.6	3.98	3-35	53.6	3.43	54.9	3.51	56.2
$3\frac{1}{2} \times 3\frac{1}{2}$	16	12.4	3.62	3.06	49.0	3.13	50.1	3.20	51.2
$3\frac{1}{2} \times 3\frac{1}{2}$	4	II.I	3 25	2.75	44.0	2.81	45.0	2.87	45.9
$3\frac{1}{2} \times 3\frac{1}{2}$	16	9.8	2.87	2.43	38.9	2.49	39.8	2.54	40.6
$3\frac{1}{2} \times 3\frac{1}{2}$	1	8.5	2.48	2.10	33.6	2.15	34-4	2.20	35.2
$3\frac{1}{2} \times 3\frac{1}{2}$	16	7.2	2.09	1.78	28.5	1.82	29.1	1.86	29.8
3½ × 3½	1 1	5.8	1.69	1.44	23.0	1.47	23.5	1.50	24.0
31×3	1	10.2	3.00	2.50	40.0	2.56	41.0	2.62	41.9
31 × 3	18	9.1	2.65	2.21	35.4	2.27	36.3	2.32	37.1
$3\frac{1}{2}\times3$	3	7-9	2.30	1.92	30.7	1.97	31.5	2.02	32.3
$3\frac{1}{2}\times 3$	16	6.6	1.93	1.62	25.9	1.66	26.6	1.70	27.2
$3\frac{1}{2}\times3$	1	5.4	1.56	1.31	210	1.34	21.4	1.37	21.9
$3\frac{1}{3}\times2\frac{1}{3}$	1	9.4	2.75	2.25	36.0	2.31	37.0	2.37	37.9
$3\frac{1}{2} \times 2\frac{1}{2}$	16	8.3	2.43	1.99	31.8	2.05	32.8	2.10	33.6
$3\frac{1}{2} \times 2\frac{1}{2}$		7.2	2.11	1.73	27.7	1.78	28.5	1.83	29.3
3½ × 2½	16	6.1	1.78	1.47	23.5	1.51	24.2	1.55	24.8
$3\frac{1}{2} \times 2\frac{1}{2}$	1	4.9	1.44	1.19	19.0	1.22	19.5	1.25	20.0
3 × 3	3	9.4	2.75	2.25	36.0	2.31	37.0	2.37	37.9
3 × 3	7 16	8.3	2.43	1.99	31.8	2.05	32.8	2.10	33.6
3 × 3	8	7.2	2.11	1.73	27.7	1.78	28.5	1.83	29.3
3 × 3	5 16	6.1	1.78	1.47	23.5	1.51	24.2	1.55	24.8
3 × 3	4	4.9	1.44	1.19	19.0	1.22	19.5	1.25	20.0
3 × 2½	3 8	6.6	1.92	1.54	24.6	1.59	25.4	1.64	26.2
$3 \times 2\frac{1}{2}$	16	5.6	1.62	1.31	21.0	1.35	21.6	1.39	22.2
$3 \times 2\frac{1}{2}$	1	4-5	1.31	1.06	17.0	1.09	17.4	1.12	17.9
$2\frac{1}{2} \times 2\frac{1}{2}$	3 8	5.9	1.73			1.40	22.4	1.45	23.2
$2\frac{1}{2} \times 2\frac{1}{2}$	16	5.0	1.47			1.20	19.2	1.24	19.8
$2\frac{1}{2} \times 2\frac{1}{2}$	1	4.I	1.19			0.97	15.5	1.00	16.0
2½ × 2½	16	3.07	0.90			0.74	8.11	0.76	12.2
$2\frac{1}{2} \times 2$	-	5-3	1.55			1.22	19.5	1.27	20.3
2½ × 2	3 6 1 6 m	4.5	1.31			1.04	16.6	1.08	17.3
$2\frac{1}{2} \times 2$	1	3.62	1 06			0.84	13.4	0.87	13.9
21 × 2	78	2.75	0.81			0.65	10.4	0.67	10.7
2 × 2	1	4.7	1.36					1.08	17.3
2 X 2	16	3.92	1.15		· · · · · · · · ·			0.92	14.7
2 × 2	1	3.19	0.94					0.75	12.0
2 × 2	16	2.44	0.71		• • • • • • • • • •			0.57	9.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 1	3-39	1.00					0.77	12.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 16	2.77	0.81					0.62	9.9
- ^ 12	16	2.12	0.02					0.48	7.7

TABLE 30

SAFE LOADS, IN TONS, FOR EQUAL LEG ANGLES

AMERICAN BRIDGE COMPANY STANDARDS

	Size of An	CY 12					LENGTH	OF SPA	N IN F	EET				
	SIZE OF AN	GLE	I	2	3	4	5	6	7	8	9	10	11	12
	8"×8"	I \frac{1}{8}"	93·493 44.640	46.747 22.320	31.164 14.880	23.373 11.160	18.699 8.928	7.440		11.687 5.580	4.960	4.464	4.058	3.720
	6"×6"	1 3 8	45.707 18.827	22.854 9.413	15.236 6.276		9.141 3.765	7.618 3.138	6.529 2.689	5.713 2.353	5.078	4.571	4.155 1.712	3.809
	5"×5"	I 38	30.933 12.907	15.467 6.453	10.311 4.302	7.733 3.227	6.187 2.581	5.156 2.151	4.419 1.844	3.867 1.613			2.812	
	4"×4"	13 16 1	16.053 5.600	8.027 2.800	5.351 1.867	4.013	3.211 1.120	2.676 -933	2.293 .800	2.007	1.784		1.459	
	$3^{\frac{1}{2}''} \times 3^{\frac{1}{2}''}$	$\frac{13}{16}$ $\frac{5}{32}$	12.000	6.000 1.360	4.000	3.000 .680	2.400 ·544	2.000 ·453	1.714	1.500			1.091	1.000
	3"×3"	5 801 80	6.933	3.467 .800	2.311	1.733	1.387	1.156 .267	.990		.770		.630 .145	.578
	$2\frac{3}{4}'' \times 2\frac{3}{4}''$	1218	4.747 1.333	2.373 .667	1.582	1.187 -333	·949	.791	.679	·593	.527		.431	.396
SS	$2\frac{1}{2}$ " $\times 2\frac{1}{2}$ "	1 2 1 8	3.893 1.067	1.947 ·533	1.298 .356	·973	·779	.649 .178	.556	.487	·433		·354	.324
ANGLES	$2\frac{1}{4}'' \times 2\frac{1}{4}''$	1 2 1 8	3.093	1.546	1.031	·773	.619 .171	.515	.442		·344 .095		.281	.258
LEG	2"×2"	7 16 1 8	2.133	1.067 ·347	.711	·533	.427	.356			.237		.194	.178
EQUAL	1¾"×1¾"	7 16 1 8	1.600 ·533	.800 .267	·533	.400	.320	.267	.229		.178	1	.145	.133
-	$\overline{I_{\overline{2}}^{\prime\prime}\times I_{\overline{2}}^{1\prime\prime}}$	3 8 1 8	1.013	.507	.338	.253	.203	.169 .064	.145		.113		.092	.084
	$\overline{\mathfrak{1}_{4}^{1\prime\prime}}\times \mathfrak{1}_{4}^{1\prime\prime}$	5 16 1 8	.587	.293	.196	.147	.117	.098	.084	.073	.065	0/		.049
	$\overline{\mathfrak{1}_{8}^{1\prime\prime}}\times\mathfrak{1}_{8}^{1\prime\prime}$	$\frac{\frac{3}{16}}{\frac{1}{8}}$.304	.152	.101	.076	.061	.051	.043	.038	.034		.028	.025
	I"XI"	.109	.299	.149 .075	.099	.075	.060	.050	.043	.037	.033	-	.027	.025 .012
	7"×7"	3 16 3 32	.176 .096	.088	.059		.035	.029 .016	.025	.022 .012	.020	.018	.009	.015
	3″X3″	$\begin{array}{r} \frac{3}{16} \\ \frac{3}{32} \end{array}$.128 .069	.064	.043	.032	.026 .014	.02 I	.010	.016	.014	1	.012	.006
	5/″×5/″	$\frac{\frac{1}{8}}{\frac{3}{32}}$.060	.030			1	.010.	.009	.007	.007	.006	.005	.005
	½"×½"	$\begin{array}{c} \frac{1}{8} \\ \frac{3}{32} \end{array}$.037	-		.009		.006	.005	.005		.004	.003	.003

Safe Load in tons of 2000 pounds uniformly distributed, for maximum fiber stress of 16,000 pounds per square inch. The Safe Load includes weight of Angle. The Safe Load for Angles of intermediate thickness can be assumed as approximately proportional to their area or weight.

TABLE 31

SAFE LOADS, IN TONS, FOR UNEQUAL LEG ANGLES
AMERICAN BRIDGE COMPANY STANDARDS

Si	ZE OF ANGI	E	Vertical					LENGTH	OF SPA	n in Fi	ET				
			Ver	I	2	3	4	5	6	7	8	9	10	11	12
	8"×6"	ı"	8			26.862 15.857			13.431 7.928				8.058 4.757		
		7 16	8		18.853 11.280	7.520			6.284 3 760	5.387 3.222			3.771 2.256		
	8"×3½"	I	8 3 ¹ / ₂	73.488 16.079	36.744 8.039			3.216	12.500 2.679	2 297		8.165 1.786	7.349 1.608	6.681 1.461	6.25
	0 \ 32.	7	8 3 ¹ / ₂	34.312 7.801	17.156 3.900	11.437 2.600	1.950	1.560	5.718 1.300	4.901	4.289 0.975	3.812 0.867	3.431	3.119 0.709	2.85
	7"×3½"	1	$\frac{7}{3\frac{1}{2}}$	56.427 15.787	28.213 7.893	5.262	14.107 3.947	3.157	9.404 2.631	8.061 2.255	1.973	1.754	5.643 1.579	1.435	1.31
	/ ^32	38	$\frac{7}{3\frac{1}{2}}$	23.093 6.720		7.698 2.240	5.773 1.680	4.619 1.344	3.845 1.120	3.299 .960	.840	-747		.611	.56
	6"×4"	I	6		10.107	14.257 6.738	10.693 5.053	8.555 4.043	7.129 3.369		2.527	2.246	4.277 2 02 I	1.838	1.68
ANGLES	~4	3 8	6	17.707 8.533	8.853 4.267	5.902 2.844	4.427 2.133	3.54I 1.707	2.951 1.422	2.529 1.219	1		1.771 .853	1.609 .776	
	6"×3½"	I	6 3 ¹ / ₂	41.760 15.467	20.880 7.733	13.920 5.156		8.352 3.093	6.960 2.578	5.966 2.209			4.176 1.546		
UNEQUAL LEG	0 ×32	5 16	$\frac{6}{3^{\frac{1}{2}}}$	14.613 5.547	7.307 2.773	4.871 1.848	3.653 1.386	2.923 1.109	2.435 .924	2.087 -792	1.827		1.461 -555		
UNEO	5"×4"	7 8	5 4	26.613 17.653	13.306 8.826	8.871 5.884	6.653 4.413	5.323 3.531	4·435 2.942	3.802 2.522			2.661 1.765		
	5 ^4	3 8	5 4	12.480 8.373	6.240 4.186	4.160 2.791	3.120 2.093	2.496 1.675	2.080 1.395	1.783 1.196			1.248 .837		
	5"×3½"	78	$\frac{5}{3\frac{1}{2}}$	26.026 13.440	13.013 6.720	8.675 4.480	6.506 3.360	5.205 2.688	4.338	3.718 1.920			2.603 1.344		I.I
	5 ^32	5 16	$\frac{5}{3\frac{1}{2}}$	5.440	5.173 2.720	3.449 1.813	2.587 1.360	2.069 1.088	1.724 .907	1.478 -777	1.293 .680	1.149 .604	1.035 -544	.941 .494	.84
	5"×3"	13	5 3	23.733 9.280	11.867 4.640	7.911 3.093		4.747 1.856		3.390 1.326	1.160	2.637 1.031	.928	2.157 .843	
	5 ^3	5	5 3	10.080 4.000	5.040 2.000	3.360 1.333	1.000	2.016	1.68o .666	I.440 .571	1.260 .500	1.120	1	.931 .363	.3:
	4½"×3"	13	4½ 3	19.306 9.120	9.653 4.560	6.433 3.040	4.827 2.280	3.861 1.824	3.217 1.520	2.758 1.303		2.145 1.013	1.931	1.755 .829	1.68
	47 ~3	5 16	4 ¹ / ₂ 3	8.213 4.000	4.106 2.000	, , ,		1.643 .800	1.369 .666	1.173 .571	1.027 .500	.913 ·444	.821	·747	.68

Safe Load in Tons of 2000 pounds uniformly distributed, for maximum fiber stress of 16,000 pounds per square inch. The Safe Load includes weight of Angle. The Safe Load for Angles of intermediate thickness can be assumed as proportional to their area or weight.

TABLE 31.—Continued

SAFE LOADS, IN TONS, FOR UNEQUAL LEG ANGLES

AMERICAN BRIDGE COMPANY STANDARDS

	Size of An	CIF	Vertical Leg				1	ENGTH	OF SP	AN IN	FEET				
	OLES OF TEX		Ver	I	2	3	4	5	6	7	8	9	10	11	12
	4"×3½"	13//	4 3 ¹ / ₂	15.573	6.133	4.089	3.067	3.115 2.453	2.595 2.044	1.752	1.533	1.363	1.227		1.022
	7 7 32	5 16	4 3 ¹ / ₂			2.240 1.778	1.680 1.333	I.344 I.067	.889	.960 .768	.840 .667	.747 .592	.672	.619 .485	.560 -444
	115.4.11	13 16	4 3		4.480	2.987	3.827 2.240	3.061 1.792	2.551	2.187 1.280	1.913	1.701 -995	1.531 .896	1.391	
	4"×3"	1/4	4 3	5.333 3.200	2.667 1.600	1.778 1.067	1.333 .800	1.067 .640	.889	.762 ·457	.667	-593	·533	.485	·444 .267
	.//>/-1//	<u>5</u>	4 2 ¹ / ₄	11.627 4.053	5.8 13 2.026	3.875 1.351	2.907 1.013	2.325	1.938 .675	1.661 .599	1.453 .507	1.291 .451	1.163	.368	.969
	4"×2½"	3/8	4 2 ¹ / ₄		3.707 1.307	2.47I .87I	1.853	1.483	1.235 ·435	1.059 ·373	.927 .327	.824	.741 .261	.674	.618
		3	4 2	7.253	3.627 1.013	2.418 .675	1.813			1.036	.907	.806	.725	.659	.604
	4"×2"	14	4 2	5.013 1.440	2.507	1.671	1.253	1.003	.835	.716	.627 .180	·557	.501	.456	.418
ES	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13 16	$\frac{3^{\frac{1}{2}}}{3}$	11.733	5.867 4.400	3.911	2.933	2.347 1.760	1.955		1.467	1.304 .978	I.173 .880	1.067	.978 .733
ANGL	3½"×3"	1/4	3½ 3	4.160		1.387	1.040 ·773	.832	.693	·594 ·442	.520	.462	.416	.378	·344 .258
UNEQUAL LEG ANGLES		11 16	3½ 2½ 2½	9.867	4.933	3.289 1.760	2.467	1.973	1.644		1.233	1.096	.987	.897 .480	.822
QUAL	$3\frac{1}{2}" \times 2\frac{1}{2}"$	1/4	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	4.000	2.000	1.333	1.000 ·547	.800	.666	.571	.500	·444 ·243	.400	.364	·333
CNI		3 8	$\frac{3\frac{1}{2}}{2}$	5.600	2.800	1.867	1.400	1.120	·933	.800	.700	.622	.560	.509	.467
	$3\frac{1}{2}$ " $\times 2$ "	1 4	$\frac{3^{\frac{1}{2}}}{2}$	3.840 1.387		1.280	.960	.768	.640	.548	.480	.427 .154	.384	·349 .126	.320
		9 16	$\frac{3\frac{1}{4}}{2}$	6.933	3.466	2.311	1.733	1.386	1.155	.990	.867	.770	.693	.630	.578 .235
	3 ¹ / ₄ "×2"	1 4	3 ¹ / ₄	3.360 1.387		1.120	.840	.672	.560	.480	.420 .173	·373	.336	.305	.280
	3½"×1½"	3 16	3 ¹ / ₈ 1 ⁵ / ₈	2.507		.835	.627	.501	.418	.358	.313	.278	.251	.228	.209
	3"×2 ¹³ "	9 16	3 2 ¹³ / ₁₆	6.240 5.547	3.120	2.080 1.849	1.560	1.248 1.109	1.040	.891 .792	.780	.693	.624	.567	.520
	3"×2 ¹¹ / ₁₆ "	9 16	3 2 11 1 16	6.240 5.067	3.120	2.080	1.560	1.248	1.040	.891	.780	.693	.624	.567 .461	.520
		9 16	$\frac{3}{2\frac{1}{2}}$	6.133 4.373	3.067	2.044	I.533 I.093	1.227	1.022	.876 .625	.767	.681	.613	·557	.511
	3"×2½"	3 16	$\frac{2}{3}$ $2\frac{1}{2}$	2.293 1.653		.764 .551	·573 ·413	·459 ·331	.729 .382 .275	.328	.287 .207	.255	.229	.208	.191

Safe Load in tons of 2000 pounds uniformly distributed, for maximum fiber stress of 16,000 pounds per square inch. The Safe Load includes weight of Angle. The Safe Load for Angles of intermediate thickness can be assumed as approximately proportional to their area or weight.

TABLE 31.—Continued

SAFE LOADS, IN TONS, FOR UNEQUAL LEG ANGLES
AMERICAN BRIDGE COMPANY STANDARDS

	Size of Ang	-	Vertical Leg				I	ENGTH	OF SPA	AN IN	FEET				
	SIZE OF ANG	LBS	ver T	I	2	3	4	5	6	7	8	9	10	11	12
	3"×2"	1/1	3 2	5·333 2.507	2.667	1.778	1.333	1.067	.889	.762 .358	.667	·592 ·278	·533	.485	.444
	3 X2	3 16	3 2	2.187	1.093	·729 ·355	·547	·437	.365	.312	.273	.243	.219	.199	.18
	2½"×2"	1/2	2 ½ 2	3.733 2.453	1.867	1.244	.933 .613	·747	.622 .409	·533 ·350	.467	.415 .272	·373	.339	.31
	22 /2	3 16	$\frac{2\frac{1}{2}}{2}$	I.547 I.067	·773	.515 ·355	.387 .267	.309	.258 .178	.221	.193	.172	.155	.141	.12
	2½"×1¾"	5 16	2½ 1¾	2.453 1.280	1.223 .640	.818	.613	.491 .256	.409	.350	.307	.272 .142	.245	.223	.20
	22 714	3 16	2½ 1¾	1.547 .800	·773	.515	.387	.309 .160	.258	.221	.193	.172	.155	.141	.12
SIT	2½"×1½"	5 16	$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	2.347 .907	1.173 -453	.782 .302	.587	.469 .181	.391 .151	·335	.293	.261	.235	.213	.19
ANG	22 7.12	3 16	2½ 1½	1.493 .587	·747	·497	·373	.299 .117	.249 .098	.213	.187 .073	.166 .065	.149 .059	.136 .053	.12
UNEQUAL LEG ANGLES	$2\frac{1}{2}'' \times 1\frac{1}{4}''$	5 32	2½ 1¼	1.227 .352	.613 .176	.409 .117	.307 .088	.245	.204 .059	.175 .050	.153	.136 .039	.035	.032	.10
TEQUA	2½"×1½"	1/2	2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	2.880 1.387	1.440 .693	.960 .462	.720 -347	.576 .277	.480 .231	.411	.360 .173	.320 .154	.288 .139	.262 .126	.24 .11
Š	7,12	16	$\frac{2\frac{1}{4}}{1\frac{1}{2}}$	I.227 .587	.613	.409 .195	.307 .147	.245 .117	.204	.175 .084	.153 .078	.136 .065	.123	.111	.10
	2"×1½"	3 8	2 1 ¹ / ₂	1.813	.907 .533	.604 -355	·453 .267	.363	.302 .178	.259 .152	.227 .133	.201	.181	.165 .097	.08
		¥	2 1 ¹ / ₂	.693 .400	·347	.231	.173	.080	.115 .067	.099 .057	.087 .050	.077 .044	.069 .040	.063 .036	.03
	2"×13"	3 8	2 1 3/8	1.760 .907	.880 .453	.587	.440	.352	.293 .151	.129	.220	.195	.176	.160	.14
		3 16	2 1 3/8	.960	.480	.320	.125	.192	.160 .083	.137 .072	.120	.107	.096 .050	.087	.08
	2"×11"	1	2 1 ¹ / ₄	1.227	.613 .259	.409	.307	.245	.204	.175	.153 .065	.136 .057	.123	.111	.10
		$\frac{3}{16}$.	2 114	.960 .400	.480	.320	.240	.080	.160	.137	.120 .050	.107	.096 .040	.087 .036	.08

Safe Load in Tons of 2,000 pounds uniformly distributed, for maximum fiber stress of 16,000 pounds per square inch. The Safe Load includes weight of Angle. The Safe Load for Angles of intermediate thickness can be assumed as proportional to their area or weight.

TABLE 31.—Continued

Safe Loads, in Tons, for Unequal Leg Angles

American Bridge Company Standards

	Size of Angi	E.	Vertical Leg					LENGT	H OF S	SPAN IN	FEET	r			
ļ	SIZE OF ANGI		Ver	1	2	3	4	5	6	7	8	9	10	11	12
	1\frac{3}{4}"\times 1\frac{1}{4}"	1/1	$1\frac{3}{4}$ $1\frac{1}{4}$.960	.480	.320	.240	.192 .101	.160	.137	.120	.107	.096	.087	.080
	14 ×14	1 8	$1\frac{3}{4}$ $1\frac{1}{4}$.501	.251	.167	.125	.100	.083	.072	.063	.056	.050	.045	.042
	1\frac{3}{4}"\times 1\frac{1}{8}"	1/4	I 3/4 I 1/8	.907 .411	·453	.302 .137	.227	.181	.151	.129	.113	.101	.091	.082	.075
		1/8	$1\frac{3}{4}$ $1\frac{1}{8}$.496 .229	.248	.165 .076	.124 .057	.099 .046	.083	.033	.062 .029	.055 .025	.050	.045 .021	.041
	$I_{\frac{1}{2}''}\times I_{\frac{1}{4}''}$	<u>5</u> 16	$\begin{array}{c c} I\frac{1}{2} \\ I\frac{1}{4} \end{array}$.853 .603	.426 .301	.284	.213	.171 .120	.142	.122 .086	.107	.095 .067	.085 .060	.077 .055	.071 .050
		3 16	I ½ I ¼	·533 ·389	.195	.178	.133 .097	.107	.089 .065	.076 .056	.067 .049	.059 .043	.053	.048 .035	.044
,,	13"×1"	1/4	I 3/8	.565	.157	.188	.141	.063	.094 .052	.081	.071	.063	.056	.051 .029	.047 .026
ANGLES		1/8	I 3/8	.304	.085	.101	.076	.061	.051	.044	.038	.034	.030	.028	.025
LEG A	1\frac{3}{8}"\times\frac{7}{8}"	3 16	I 8 7 8	.432 .187	.093	.062	.108	.086	.072 .031	.062	.054	.048	.043	.039	.036
UNEQUAL		18	I 3/8	.299	.149 .069	.099	.075	.060	.050	.043	.037	.033	.030	.027	.025
UNE	1¼"×¾"	1 8	$\frac{I_{\frac{1}{4}}^{\frac{1}{4}}}{\frac{7}{8}}$.251	.125	.083	.063	.050	.042 .021	.036	.031	.028	.025	.023	.021
	1 1 16" × 13"	3 16	I 16 13 16	.256 .144	.128 .072	.085 .048	.064	.051	.043	.036	.032	.028	.026	.023	.02I .012
	ı″×¾″	3 16	1 3 4	.224	.067	.075	.056	.045	.037	.032	.028	.025	.022	.020	.019
		1/8	I 3 4	.160	.080 .045	.053	.040	.032	.027 .015	.023	.020 .011	.018	.009	.014	.007
	I"×5"	3 16	1 5 8	.091	.045	.030	.055	.044	.036	.031	.027	.024	.022	.020	.007
		1 8	5 8	.155	.077	.051	.039	.031	.026	.022	.008	.007	.006	.006	.005
	₹"×½"	.095	1 3 1 3	.091	.045	.030	.023	.006	.005	.004	.004	.010	.009	.003	.007
	13/1×2"	32	13 16 1 2	.048	.059	.039	.029	.023	.008	.007	.006	.005	.005	.001	.004

Safe Load in tons of 2,000 pounds uniformly distributed, for maximum fiber stress of 16,000 pounds per square inch. The Safe Load includes weight of Angle. The Safe Load for Angles of intermediate thickness can be assumed as approximately proportional to their area or weight.

TABLE 32.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

			of Inert Angles, X-X, Legs.			X	₩ 	$X \stackrel{\bullet}{d}$			Mea	istances isured com to Back.		
		2	}″ × 2	''						3" ×	3"			
Thick.	₩′	1"	₩′	1''	74"	1''	Thick.	1''	16"	1"_	78''	1"	₹6′′	1''
Area 4[s	3.60	4.76	5.88	6.92	8.00	9.00	Area 4 s	5.76	7.12	8.44	9.72	11.00	12.24	13.4
d"	Mom	ents of l	nertia 1	About A	xis X-X	C, In.4.	d''		Moments	of Inert	ia Abou	t Axis X	-X, In.4	
51	17	22	27	31.	35	39	61	38	46	54	61	68	75	80
54	19	25	30	35	39	43	63	42	50	58 65	67	75	83	88
6	21	28	33	39	44	48	7	46	55	65	73	82	89	96
61 61	24	30	37	43	48	53	71	50	60	70	80	89	97	104
61	26	33	40	47	53	58	7 2	54	65	76	86	96	106	114
6	28	36	44	51	58	64	73	58	70	82	93.	104	114	12
7	31	40	48	56	64	70	8	62	76	89	101	113	124	13
71 71 71 71	33	43	52	61	69	76	81	67	81	95	108	121	133	14:
7	36	46	57	66	75	83	81	72	87	102	116	130	143	15
	39	50	61	71	81	89	83	77	94	110	125	139	153	16
8	42	54	66	77	87	96	9.	82	100	117	133	149	164	17
81	45	58	71	82	94	104	91	87	106	125	142	159	175	180
81	48	62	76	88	101	III	91	93	113	134	151	169	186	20
84	51	66	81	94	108	119	93	99	120	141	161	180	198	21.
9	54	71	87	101	115	127	10	105	127	150	171	191	211	228
91	58	75	92	107	123	136	104	111	135	158	181	202	223	24
91/2	62	80	98	114	131	145	101	117	143	167	191	214	236	25
91	65	85	104	121	139	154	104	123	151	177	202	226	249	270
10	69	90	110	128	147	163	II	130	159	186	213	239	263	28
101	73	95	116	136	155	172	1114	137	167	196	224	251	277	300
10	77	100	123	143	164	182	1112	144	176	206	237	264	292	316
104	81	106	130	151	173	192	$11\frac{3}{4}$	151	184	217	248	278	307	333
II	85	112	137	159	183	203	12	158	193	227	260	292	322	349
111	90	117	144	168	192	214	121	166	203	238	272	306	338	360
111	94	123	151	176	202	225	121	174	212	250	285	320	354	38
113	99	129	158	185	212	236	123	181	222	261	298	335	370	40
12	104	135	166	194	222	247	13	189	232	273	312	350	387	420
121	109	142	174	203	233	259	134	198	242	285	325	366	404	43
121	113	148	182	216	244	271	131	206	252	297	339	382	422	45
124	119	155	190	222	255	283	134	215	263	309	354	398	439	47
13	124	162	198	232	266	296	14	224	274	322	368	414	458	49
134	129	169	207	242	278	309	141	233	285	335	383	43 I	476	51
131	134	176	216	252	290	322	142	242	296	348	399	448	496	53
134	140	183	225	263	302	336	143	251	307	362	414	466	515	56
14	146	191	234	273	314	350	15	261	319	376	430	484	535	58
144	151	198	243	284	327	364	151	270	331	390	446	502	555	60.
145	157	206	253	295	339	378	152	280	343	404	463	521	576	62
144	163	214	262	307	352	393	153	290	355	419	480	539	597	64
15	169	222	272	318	366	408	16	300	368	434	496	559	618	67
151	175	230	282	330	379	423	161	311	381	449	514	578	640	69
151	182	238	292	342	393	438	161	321	394	464	532	598	662	72
154	188	246	303	354	407	454	163	332	407	480	550	619	685	74

TABLE 32.—Continued.

Moments of Inertia of Four Angles with Equal Legs, Axis X-X.

	N	of F	nts of lour Antis X-Z	gles, X,			X		X d	!		Me	Distances easured from to Back,		
										<u>-</u>					
								3½′′× 3	½"						
Thick.	16"	3''	75"	3''	9"	5//	11"	Thick.	3//	7''	1/1	16"	5"	11"	½"
Area 4[s	8.36	9.92	11.48	13.00	14.48	15.92	17.36	Area 4[s	9.92	11.48	13.00	14.48	15.92	17.36	18.7
d''	Mor	nents	of lne	rtia a b	out Ax	is X-X	, In.4.	ď"		Momen	ts of Ine	rtia about	Axis X-	X, In.4.	
$7\frac{1}{2}$	73	86	97	109	119	129	139	201	836	961	1083	1201	1314	1426	153
$7\frac{3}{4}$	79	93	105	118	129	140	150	$20\frac{1}{2}$	858	987	1112	1234	1350	1466	157
8	86	100	114	127	139	151	163	221	1026	1181	1332	1477	1617	1756	
81 01	92	108	122	137	150	163	175	$22\frac{1}{2}$	1052	1210	1364 1606	1514	1657	1800	193
$8\frac{1}{2}$ $8\frac{3}{4}$	99 106	116	131 141	147 157	161	175	189 203	$24\frac{1}{4}$ $24\frac{1}{2}$	1237	1424	1642	1823	1952	2121,	22
9	113	132	150	168	185	201	217	26½	1467	1690	1907	2117	2319	2521	27
$9^{\frac{1}{4}}$	120	141	161	180	198	215	232	$26\frac{1}{2}$	1498	1725	1946	2161	2367	2573	27
$9^{\frac{1}{2}}$	128	150	171	192	211	229	247	281	1718	1979	2234	2480	2718	2955	31
$9^{\frac{3}{4}}$	136	160	182	204	224	244	263	$28\frac{1}{2}$	1750	2016	2276	2528	2770	3011	32
10	144	169	193	216	238	259	280	301	1988	2291	2586	2872	3149	3424	36
101	153	179	205	229	253	275	297	303	2023	2331	2632	2923	3205	3485	37.
$10\frac{1}{2}$	162	190	217	243	267	291	315	321	2278	2625	2965	3294	3611	3927	42
IO <u>3</u>	171	200	229	257	283	308	333	321	2315	2669	3014	3348	3671	3993	42
11 11 ¹ / ₄	180	211	241	27 I 285	299	325	352 371	344	2588 2628	2983 3030	3370	3744 3802	4106	4466 4535	48 48
$11\frac{1}{2}$	199	234	254 268	301	315	343 362	391	$\frac{34^{\frac{1}{2}}}{36^{\frac{1}{4}}}$	2917	3364	3800	4223	4632	5039	54
113	209	246	281	316	349	380	411	361	2960	3413	3856	4285	4700	5113	55
12	220	258	295	332	366	400	432	381	3267	3768	4257	473I	5190	5646	60
121	230	271	310	348	385	419	453	381	3312	3820	4316	4797	5262	5725	61
121	241	284	325	365	403	440	475	401	3636	4194	4740	5268	5780	6289	67
124	252	297	340	382	422	460	498	403	3684	4249	4802	5337	5856	6372	68
13,	264	310	355	399	441	482	521	424	4025	4644	5248	5834	6401	6966	75
131	275	324	371	417	461	503	. 545	422	4075	4702	5314	5907	6481	7053 7678	75
$13\frac{1}{2}$ $13\frac{3}{4}$	287 299	338 353	3 ⁸ 7 404	435 454	481 502	525 548	569 594	44 ¹ / ₄ 44 ¹ / ₂	4434 4487	5117	5783 5852	6505	7055 7139	7769	82
14	312	368	421	473	523	571	619	46 ¹ / ₄	4863	5612	6344	7053	7740	8425	90
141	324	383	438	493	545	595	645	461	4918	5776	6416	7133	7828	8520	91
$14\frac{1}{2}$	337	398	456	513	567	619	671	484	5312	6131	6930	7706	8457	9206	99
$14\frac{3}{4}$	351	414	474	533	590	644	698	481	5369	6197	7006	7790	8549	9306	100
15	364	430	492	554	613	669	725	501	5780	6672	7543	8388	9206	10022	108
151	378	446	511	575	636	695	753	50½	5840	6742	7622	8475	9302	10127	109
$15\frac{1}{2}$ $15\frac{3}{4}$	392	462	530	596	660	721	782	521	6269	7237	8182	9099	9987	10873	117
	406	479	549	618	685	748	811	521/2	6331	7309	8264	9189	10087	10982	118
16 164	421	496	569	663	709	775 803	840	541	6842	7824	8847	9838	10800	11758	126
$16\frac{1}{4}$	435 450	514 532	589	687	735	831	870 901	54½ 56¼	7305	7899 8435	8931 9537	9933	11644	12679	136
$16\frac{3}{4}$	466	550	631	710	787	860	932	561	7372	8513	9537	10705	11752	12796	137
18	546	645	740	834	924	1011	1097	581	7853	9068	10254	11405	12521	13634	147
$18\frac{1}{4}$	563	665	763	860	953	1043	1131	$58\frac{1}{2}$	7923	9149	10345	11507	12633	13756	148
$18\frac{1}{2}$	580	685	787	887	982	1075	1166	601	8421	9724	10997	12232	13429	14623	157
$18\frac{3}{4}$	598	706	811	913	1012	1107	1202	601	8494	9808	11091	12338	13546	14751	159

TABLE 32.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

	M	oments of Four Axis Equal	of Inert Angles, X-X, Legs.	ia		X		X d	# 0 B B B B B B B B B B B B B B B B B B		M	Distances easured from t to Back		
Size.							4	"×4"						
Thick.	18"	1"	18''	¥"	₹6′′	£''	Thick.	1 m	10"	1"	18"	1"	18"	1''
Area 4[s	9.60	IX-44	13.24	15.00	16.72	18.44	Area 4[s	11.44	13.24	15.00	16.72	18.44	20.12	21.76
d''	Mome	nts of la	nertia A	bout A	cis X-X	, In.4.	ď′′		Momen	ts of Inc	rtia Abou	t Axis X	-X, In,4	
81314 9 9 9 9 10 10 10 10 10 10 10 10 11 11 11 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	109 117 125 133 141 150 159 179 189 199 210 221 232 243 255 267 280 293 306 319 333 347 361	128 137 146 156 167 178 188 199 211 223 235 248 261 274 288 302 316 331 346 362 377 394 410 427	146 157 168 179 191 203 215 228 241 255 269 284 299 314 330 346 363 380 397 415 434 452 471 491	164 176 188 200 213 227 241 256 271 286 302 319 336 353 371 389 408 427 447 467 488 509 530 552	179 192 205 219 234 249 265 281 297 315 332 350 369 388 428 449 471 492 515 538 561 585 609	195 209 224 239 255 272 289 306 325 343 363 383 424 468 491 515 5363 588 614 667	245 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1398 1430 1661 1695 1946 1984 22555 2295 2586 2629 2941 2986 3318 3367 3718 3769 4141 4195 4587 4644 5055 5115	1612 1648 1915 1955 2245 2289 2602 2648 2985 3035 3395 3448 3831 3887 4293 4353 4782 4845 5297 5364 5839 5909 6408 6481	1819 1860 2162 2208 2536 2585 2939 2992 3373 3429 3836 3896 4329 4393 4853 4920 5406 5477 5989 6064 6603 6681 7246 7329	2016 2062 2398 2448 2813 2868 3262 3320 3744 3807 4259 4326 4808 4879 5391 5466 6007 6086 6656 6739 7338 7426	2215 2267 2636 2692 3093 3154 3587 3652 4118 4188 4686 4760 5290 5369 5932 6016 6610 6699 7325 7418 8078 8175 8867 8969	2408 2463 2866 2926 3364 3429 3902 3972 4481 4556 5099 5179 5758 5843 6457 6548 7197 7292 7976 8077 8796 8902 9656 9767	259 265 308 315 362 369 420 428 483 491 550 558 621 630 696 776 786 860 871 949 960
141 141 15 151 151 16 161 161 161	376 390 406 421 437 453 469 486 503 520	444 462 480 499 517 536 556 576 596 616	511 531 552 573 595 617 639 662 685 709	575 598 621 645 670 695 720 746 772 799	634 660 686 713 740 767 795 824 853 883	695 723 752 781 810 841 872 903 935 968	4814 482 50414 50214 524 5414 5614 5614	6061 6127 6599 6667 7159 7231 7742 7816 8348 8425	8355 8946 9032 9647	10217	8804 8900 9587 9687 10404 10508 11253 11362 12137 12250	9693 9799 10555 10667 11455 11571 12392 12512 13365 13490	10557 10672 11497 11618 12478 12604 13499 13630 14561 14696	1139 1152 1241 1254 1347 1360 1457 1471 1572 1587
18 18 ¹ / ₄ 18 ¹ / ₂ 18 ³ / ₄ 20 ¹ / ₄ 20 ¹ / ₂ 22 ¹ / ₄ 22 ¹ / ₂	611 630 649 669 793 825 976	724 747 770 793 941 967 1158	834 850 886 913 1084 1114 1335 1369	939 959 999 1030 1222 1256 1506	1039 1072 1105 1138 1353 1391 1668 1710	1141 1176 1213 1250 1486 1527 1832 1879	502 581 582 601 602 621 621 641 641	8977 9057 9629 9712 10303 10389 11001	10374 10467 11128 11224 11908 12007 12715	11736 11841 12589 12698 13473	13054 13170 14004 14125 14987 15113 16004 16134	14375 14505 15423 15557 16507 16646 17628 17771	15662 15803 16804 16950 17986 18137 19208 19364	1507 1691 1706 1814 1830 1942 1958 2074 2091

TABLE 32.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

		oments of Four A Axis X Equal L	ingles -X,		2	ار ع ال_	X	đ		M	Distance: easured from t to Back		
Size,							5" × 5"	· · · · · · · · · · · · · · · · · · ·					
Thick.	3//	7/1	1//	2//	<u> </u>	Thick.	3''	7/1	1//	9''	5"	11"	₹″
Area 4[s	14.44	16.72	19.00	21,24	23.44	Area 4 [5	14.44	16.72	19.00	21.24	23.44	25.60	27.76
d''	Moment	s of Iner	tia Abou	t Axis X-	-X, In.4.	d''		Moment	s of Inert	ia About	Axis X-	X, In.4.	
10½ 10¾	250 264	287 303	322 34I	355 375	3 ⁸ 7	28½ 28½ 30¼ 30½	2377 2423 2759 2809	2743 2797 3185 3243	3107 3168 3608 3674	3457 3524 4016 4089	3802 3877 4419 4499	4139 4220 4811 4899	447 456 520 529
II II ¹ / ₄ II ² / ₂ II ³ / ₄	279 294 309 325	320 337 355 373	360 379 400 420	396 418 441 464	433 457 482 507	32½ 32½ 34¼ 34½	3170 3224 3610 3667	3660 3722 4169 4235	4148 4218 4725 4800	4618 4696 5262 5345	5082 5168 5792 5884	5434 5628 6309 6409	598 608 682 693
$ \begin{array}{c} 12 \\ 12 \frac{1}{4} \\ 12 \frac{1}{2} \\ 12 \frac{3}{4} \end{array} $	342 359 376 394	392 412 432 452	442 464 486 510	488 512 537 563	533 560 588 616	36½ 36½ 38¼ 38½	4079 4140 4577 4641	4712 4782 5287 5361	5341 5420 5994 6078	5949 6037 6678 6772	6549 6646 7352 7456	7134 7241 8011 8124	771 783 866 878
$ \begin{array}{c} 13 \\ 13 \\ \hline 13 \\ \hline 13 \\ \hline 13 \\ \hline 4 \end{array} $	412 431 450 469	473 495 517 540	533 558 583 608	589 616 644 673	645 675 705 737	40½ 40½ 42¼ 42¼ 42½	5103 5171 5659 5730	5896 5975 6539 6622	6686 6775 7415 7509	7449 7549 8264 8368	8203 8313 9100 9216	8939 9059 9918 10044	967 980 1073 1086
$ \begin{array}{c} 14 \\ 14\frac{1}{4} \\ 14\frac{1}{2} \\ 14\frac{3}{4} \end{array} $	489 510 531 552	563 586 610 635	634 661 689 717	702 731 762 793	769 801 835 869	44 ¹ / ₄ 44 ¹ / ₂ 46 ¹ / ₄ 46 ¹ / ₂	6243 6318 6857 6935	7215 7302 7924 8015	8182 8281 8988 9091	9120 9230 10019 10135	10045 10166 11036 11163	10949 11081 12030 12169	1184 1199 1302
$ \begin{array}{c} 15 \\ 15 \\ \hline{4} \\ 15 \\ \hline{2} \\ 15 \\ \hline{4} \end{array} $	574 596 619 642	660 686 712 739	745 774 804 834	825 857 890 924	904 939 976 1013	48½ 48½ 50½ 50½	7499 7581 8170 8256	8667 8762 9443 9543	9831 9939 10712 10825	10961 11081 11945 12071	12074 12207 13159 13298	13163 13308 14347 14499	1424 1440 1553 1569
16 $16\frac{1}{4}$ $16\frac{1}{2}$ $16\frac{3}{4}$	666 690 715 739	766 794 822 851	865 897 929 961	958 993 1029 1065	1051 1089 1129 1169	52½ 52½ 54½ 54½	8870 8959 9598 9692	10253 10357 11096 11204	11632 11750 12589 12712	12971 13103 14040 14177	14291 14436 15470 15621	15582 15740 16869 17033	1686 1704 1826 1844
18 $18\frac{1}{4}$ $18\frac{1}{2}$ $18\frac{3}{4}$	871 899 927 956	1003 1035 1068 1101	1134 1170 1207 1244	1257 1298 1339 1380	1380 1424 1469 1515	56 ¹ / ₂ 56 ¹ / ₂ 58 ¹ / ₄ 58 ¹ / ₂	10356 10453 11143 11243	11973 12085 12883 12999	13585 13712 14618 14750	15152 15294 16306 16453	16696 16852 17968 18131	18206 18377 19595 19772	1971 1989 2121 2140
$20\frac{1}{4}$ $20\frac{1}{2}$ $22\frac{1}{4}$ $22\frac{1}{2}$	1137 1169 1403 1439	1310 1347 1618 1659	1481 1523 1831 1877	1645 1691 2034 2085	1806 1857 2235 2292	60 ¹ / ₄ 60 ¹ / ₂ 62 ¹ / ₄ 62 ¹ / ₂	11958 12062 12802 12910	13827 13947 14804 14928	15690 15826 16799 16940	17502 17655 18741 18899	19288 19456 20654 20828	21035 21219 22526 22716	2277 2297 2439 2459
$ \begin{array}{c} 24\frac{1}{4} \\ 24\frac{1}{2} \\ 26\frac{1}{4} \\ 26\frac{1}{2} \end{array} $	1699 1738 2023 2066	1960 2005 2335 2384	2218 2269 2644 2700	2466 2523 2940 3002	2710 2773 3233 3302	64 ¹ / ₄ 64 ¹ / ₂ 66 ¹ / ₄ 66 ¹ / ₃	13676 13787 14578 14693	15814 15943 16858 16991	17946 18093 19132 19283	20023 20186 21347 21515	22067 22247 23527 23713	24069 24265 25662 25865	2606 2627 2779 2801

TABLE 32.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

	of F	ents of Inci- our Angle- xis X-X, qual Legs.	rtia ·	2		X d			For Distar Measure from Back to Ba	d	
Size.						6"×6"					
Thick.	₹′′	74"	1∕′′	₹8′′	ŧ"	18"	1"	18"	1"	18"	1"
Area4[s	17-44	20.24	23.00	25.72	28.44	31.13	33.76	36.36	38.92	41.48	44.00
d''		Moments	of Inertia	About Ax	is X-X fo	r Various	Distances	Back to B	ack of Ang	les, In.4.	
12½ 14½ 14½ 16¼ 16½	432 586 610 795 824	497 675 703 917 950	560 762 793 1035 1072	618 842 878 1147 1788	678 924 963 1260 1306	735 1004 1046 1370 1420	787 1077 1123 1472 1526	840 1151 1200 1575 1633	891 1223 1275 1675 1737	942 1293 1349 1773 1839	990 1362 142 1860 1938
181 181 201 201 202	1039 1072 1317 1354	1199 1237 1521 1564	1354 1398 1720 1769	1502 1551 1910 1964	1652 1705 2101 2161	1797 1855 2288 2353	1934 1996 2464 2535	2071 2138 2640 2716	2205 2276 2812 2894	2336 2412 2982 3069	2464 254 314 3239
221 221 241 241 242	1631 1672 1979 2025	1884 1932 2287 2341	2131 2186 2589 2649	2368 2429 2878 2946	2607 2674 3170 3244	2840 2913 3455 3536	3061 3140 3726 3813	3282 3367 3996 4091	3497 3589 4261 4362	3711 3808 4523 4630	402 477 489
261 261 281 281 281	2362 2412 2780 2835	2731 2790 3216 3279	3092 3159 3642 3714	3440 3513 4053 4133	3789 3871 4466 4555	4131 4220 4871 4967	4458 4554 5258 5362	4784 4887 5644 5756	5102 5212 6021 6141	5417 5535 6395 6523	572 5850 676 6890
301 301 321 321	3233 3292 3721 3784	3740 3809 4306 4379	4237 4315 4879 4962	4717 4804 5433 5526	5200 5295 5990 6093	5672 5776 6535 6648	6125 6238 7060 7181	6576 6698 7581 7712	7017 7147 8092 8232	7456 7594 8599 8748	788. 803 909 925
34½ 34½ 36¼ 36½	4243 4311 4801 4873	4911 4990 5558 5641	5566 5655 6300 6395	6200 6299 7019 7125	6837 6947 7741 7858	7461 7581 8449 8577	8062 8192 9132 9270	8660 8799 9810 9959	9244 9394 10475 10634	9826 9985 11135 11305	1039 1056 1178 1196
38½ 38½ 40¼ 40¼	5393 5470 6021 6102	6244 6333 6972 7065	7079 7180 7905 8011	7889 8001 8810 8929	8702 8826 9720 9851	9500 9635 10612 10756	10269 10416 11474 11629	11034 11192 12330 12497	11783 11952 13169 13347	12528 12708 14003 14194	1325 1344 1482 1502
42 \\ 42 \\ 42 \\ 44 \\ 44 \\ 44 \\	6683 6768 7380 7470	7739 7838 8548 8651	8776 8888 9694 9112	9783 9909 10808 10939	10795 10933 11926 12072	11787 11938 13024 13183	12747 12910 14087 14259	13699 13875 15141 15326	14632 14821 16174 16372	15562 15762 17203 17414	1647: 1668 1821 1843
461 464 484 484	8112 8206 8879 8977	9396 9505 10285 10399	10657 10781 11667 11796	11884 12022 13011 13155	13115 13268 14360 14520	14323 14490 15685 15859	15494 15675 16969 17158	16655 16850 18242 18446	17794 18001 19491 19709	18927 19149 20735 20966	2003 2027 2195 2220
501 501 521 521 521	9681 9783 10517 10624	11215 11334 12185 12309	12722 12857 13823 13964	14190 14341 15420 15577	15663 15829 17022 17196	17108 17291 18594 18785	18511 18709 20121 20327	19902 20115 21635 21856	21266 21493 23119 23356	22625 22867 24598 24850	2395 2421 2604 2631

TABLE 32.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

				•			T		E - D' -					
	of I	ents of Inc Four Angle Axis X-X, qual Legs	es,		X	X	a		For Dista Measur from Back to	red				
	17.44 20.24 23.00 25.72 28.44 31.12 33.76 36.36 38.92 41.48 44													
Size.						€'' × 6"								
Thick.	3//	78"	1/2"	9"	5"	11"	₹″	13"	₹′′	₹8″	1"			
Area 4[s	17.44	20,24	23.00	25.72	28.44	31.12	33.76	36,36	38.92	41.48	44.00			
d''		Moment	s of Inerti	a about A	tis X-X, fo	r Various	Distances	Back to B	ack of Ang	gles, In.4.				
54 ¹ / ₂ 54 ¹ / ₂ 56 ¹ / ₄	11500	13325	15118	16865	18619	20341	22013	23671	25297	26917	28228 28507			
562	12411	14381	16317	18205	20099	21959		25558			30495 30785			
58½ 58½ 60¼ 60½	13356 14212	15478 16470	17562 18689	19596 20855	21636 23027	23639 25161	25588 27237	27518 29292	29411 31309	31299 33321	32851 33151 35294 35605			
62\frac{1}{4} 62\frac{1}{2} 64\frac{1}{4} 64\frac{1}{2}	15223 15352 16269	17643 17792 18856	2002 I 2019 I 21398	22342 22532 2388I	24671 24880 26371	26958 27187 28817	29184 29432 31199	31388 31655 33557	33551 33837 35872	35709 36013 38179	37825 38148 40445 40778			
66\frac{1}{4} 66\frac{1}{2} 68\frac{1}{4} 68\frac{1}{2}	17350	20109	22822	25471	28128	30739	33282	35799	38269	40733	43152 43496 45947 46303			
$ 70\frac{1}{4} \\ 70\frac{1}{2} \\ 72\frac{1}{4} \\ 72\frac{1}{2} $	19616 19762 20801 20952	22738 22907 24113 24287	25807 25999 27368 27567	28806 29022 30551 30773	31814 32052 33742 33987	34769 35029 36877 37145	37650 37932 39935 40225	40500 40803 42960 43272	43299 43623 45930 46264	46090 46436 48893 49249	48830 49197 51802 52179			
74½ 76½ 78½ 80½	22177 23436 24731 26060	25708 27169 28670 30212	29180 30839 32544 34295	32575 34429 36334 38291	35979 38027 40133 42296	39324 41564 43867 46232	42587 45015 47512 50075	45814 48428 51115 53875	48983 51780 54655 57607	52145 55124 58186 61331	55250 58408 61654 64989			
$ 82\frac{1}{2} \\ 84\frac{1}{2} \\ 86\frac{1}{2} \\ 88\frac{1}{2} $	27424 28823 30257 31726	31794 33417 35080 36784	36093 37936 39825 41760	40299 42359 44470 46633	44515 46792 49125 51515	48660 51149 53701 56315	52707 55405 58172 61005	56707 59612 62590 65641	60638 63746 66932 70196	64559 67870 71264 74741	68411 71921 75520 79206			
90½ 92½ 94½ 96½	33230 34768 36342 37950	38528 40313 42138 44004	43742 45769 47842 49961	48847 51112 53429 55797	53962 56466 59026 61644	58992 61730 64531 67394	63907 66876 69912 73016	68764 71960 75229 78571	73537 76957 80454 84029	78301 81943 85669 89478	82980 86843 90793 94831			
$ 98\frac{1}{2} \\ 100\frac{1}{2} \\ 102\frac{1}{2} \\ 104\frac{1}{2} $	39593 41271 42984 44732	45910 47857 49844 51872	52126 54338 56595 58898	58217 60689 63211 65785	64319 67050 69838 72683	70319 73307 76357 79469	76187 79426 82733 86107	81985 85472 89031 92664	87682 91413 95222 99109	93369 97344 101401 105542	98958 103172 107474 111865			
$106\frac{1}{2}$ $108\frac{1}{2}$ $110\frac{1}{2}$ $112\frac{1}{2}$	46515 48332 50185 52072	53940 56049 58198 60387	61247 63643 66084 68571	68411 71088 73817 76597	75585 78544 81560 84633	82643 85879 89178 92539	89548 93057 96634 100278	96369 100147 103997 107920	103074 107116 111236 115434	109765 114072 118461 122934	116343 120909 125563 130306			
Mo	ment of	Inertia o					1	÷ Gross		pprox.).				

TABLE 32.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

	of F	ents of Inc Four Angle axis X-X, qual Legs.		:	<i>x</i>	X			For Dista Measure from Back to B	ed	
e:		<u></u>			الے	8"×8"					
Size.	3"	å"	£"	18"	3"	13"	1"	18"	1"	110"	11"
								56.48	60,00		
Area 4[s	31,00	34-72 Momente	38.44	About As	45.76 tis X-X fo	49.36	52.92 Distances		1	63.48	66.92
-		Мощения	or mercu	About As	IIS A-A IO	· various	Distances	Dack to D	i view of Zin	gics, in	1
16½ 18½ 18½ 20¼	1333 1686 1740 2146 2208	1483 1877 1937 2391	1631 2065 2132 2634	1775 2249 2322 2871	1910 2423 2502 3095	2046 2598 2683 3321	2179 2769 2860 3542	2310 2937 3034 3760	2430 3094 3196 3964 4082	2554 3254 3361 4172	267 340 352 437
20½ 22½ 22½ 24½	2669 2739 3254	2461 2976 3054 3630	3279 3365 4001	2954 3576 3670 4366	3186 3859 3961 4714	3419 4143 4253 5064	3646 4421 4538 5406	3871 4696 4821 5745	4955 5087 6066	5218 5357 6390	547 562 670
24½ 26½ 26½ 28½	3332 3901 3987 4610	3716 4353 4448 5145	4097 4801 4906 5677	5240 5355 6198	4828 5661 5786 6699	5186 6083 6217 7201	5536 6497 6640 7693	5884 6907 7060 8182	6213 7296 7458 8647	6546 7690 7861 9116	687 807 825 957
28½ 30½ 30½ 32½ 32½	5381 5482 6214 6323	5249 6008 6120 6939 7060	5792 6630 6754 7659 7794	6324 7241 7377 8367 8514	6835 7829 7977 9050 9209	7348 8418 8577 9733 9904	7850 8996 9166 10404 10587	9569 9751 11070 11266	8824 10117 10310 11708 11915	9303 10669 10872 12350 12569	977 1121 1142 1298 1321
34½ 34½ 36½ 36½	7109 7225 8066 8190	7940 8070 9010 9149	8766 8910 9950 10103	9578 9736 10873 11041	10363 10534 11768 11950	11147 11331 12660 12856	11918 12114 13538 13748	12684 12893 14410 14634	13419 13641 15249 15486	14157 14392 16091 16342	1488 1512 1691 1718
381 382 401 402	9085 9217 10166 10306	10150 10298 11360 11516	11210 11373 12547 12720	12253 12431 14717 13905	13264 13457 14851 15056	14272 14480 15982 16203	15263 15487 17095 17331	16250 16488 18202 18454	17200 17452 19270 19538	18152 18419 20340 20623	1908 1936 2139 2169
42 \\ 42 \\ 42 \\ 44 \\ 44 \\ 44 \\ 44 \\ 24 \\ 44 \\	11309 11456 12514 12669	12638 12803 13987 14160	13962 14144 15453 15645	15264 15464 16897 17107	16530 16746 18300 18528	17791 18024 19699 19944	19032 19282 21076 21338	20268 20534 22446 22726	21461 21743 23772 24069	22656 22954 25098 25412	2383 2414 2640 2673
461 461 481 481 481	13781 13944 15110 15280	15404 15586 16891 17082	17021 17222 18666 18877	18613 18833 20414 20645	20162 20401 22116 22366	21705 21963 23811 24081	23225 23501 25480 25769	24738 25032 27142 27450	26202 26514 28753 29080	27667 27997 30363 30709	2910 2945 3194 3231
501 501 521 521 522	16501 16679 17954 18140	18448 18647 20074 20282	20387 20608 22186 22416	22299 22540 24268 24520	24161 24423 26297 26571	26014 26291 28317 28612	27840 28143 30307 30623	29659 29982 32290 32626	31423 31766 34214 34571	33186 33548 36136 36513	3492 3530 3802 3842
54 ¹ 54 ¹ 56 ¹ 56 ¹	19469 19663 21046 21247	21769 21986 23534 23759	24061 24301 26014 26263	26321 26584 28459 28732	28525 28810 30845 31141	30718 31026 33219 33538	32879 33208 35578 35900	35033 35384 37889 38254	37125 37497 40155 40542	39212 39606 42416 42826	4126 4168 4464 4507

TABLE 32.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH EQUAL LEGS, AXIS X-X.

	of A	ents of Inc Four Angla Axis X-X, qual Legs	es,		<u>x</u>	X	ā.		For Dista Measur from Back to H	ed	
						—	<u>.</u>				
Size.						8" × 8"					
Thick.	1/2"	16"	5//	11"	₹″	13"	₹″	15"	ı"	116"	11"
Area 4[s	31.00	34.72	38.44	42,12	45.76	49.36	52.92	56.48	60,00	63.48	66.92
d''		Moments	of Inertia	About A	cis X-X fo	r Various	Distances	Back to E	ack of An	gles, In.4.	
58½	22685	25368	28043	30680	33256	35817	38342	40858	43306	45747	48152
58½	22894	25602	28302	30964	33564	36149	38697	41237	43708	46172	48601
60¼	24386	27272	30149	32986	35759	38515	41232	43940	46576	49205	51795
60½	24603	27515	30418	33281	36078	38859	41600	44333	46994	49646	52260
$62\frac{1}{4} \\ 62\frac{1}{2} \\ 64\frac{1}{4} \\ 64\frac{1}{2}$	26149	29245	32332	35377	38353	41311	44228	47135	49967	52789	55571
	26376	29497	32610	35681	38683	41668	44609	47543	50399	53247	56053
	27974	31288	34592	37851	41038	44206	47329	50443	53478	56501	59481
	28206	31548	34880	38167	41381	44575	47724	50865	53925	56974	59980
661 661 681 681 681	29861 30101 31810 32058	33400 33669 35581 35859	36929 37226 39342 39650	40410 40736 43053 43389	43816 44169 46684 47049	47200 47581 50292 50686	50537 50945 53850 54272	53864 54300 57398 57848	57108 57570 60859 61336	60340 60829 64305 64810	63525 64040 67703 68235
$ 70\frac{1}{4} \\ 70\frac{1}{2} \\ 72\frac{1}{4} \\ 72\frac{1}{2} $	33821	37832	41833	45780	49645	53483	57269	61045	64729	68398	72015
	34076	38118	42150	46127	50021	53889	57704	61509	65222	68919	72563
	35894	40152	44400	48592	52696	56773	60794	64805	68720	72617	76460
	36157	40447	44727	48949	53084	57191	61242	65283	69227	73154	77025
74½ 76½ 78½ 80½	38300	42846	47381	51856	56239	60592	64886	69170	73353	77516	81621
	40505	45314	50111	54846	59485	64092	68636	73170	77598	82006	86351
	42771	47851	52919	57921	62823	67690	72492	77283	81964	86622	91215
	45100	50458	55804	61080	66252	71387	76453	81509	86450	91365	96213
$82\frac{1}{2} \\ 84\frac{1}{2} \\ 86\frac{1}{2} \\ 88\frac{1}{2}$	47491	53134	58765	64323	69773	75183	80521	85847	91055	96235	101344
	49943	55880	61803	67651	73385	79077	84694	90299	95781	101233	106609
	52458	58695	64919	71062	77089	83071	88973	94864	100626	106357	112008
	55035	61579	68111	74558	80884	87163	93398	99541	105592	111608	117541
90½	57674	64533	71380	78139	84771	91353	97849	104332	110678	116986	123208
92½	60374	67557	74725	81803	88749	95643	102446	109236	115883	122491	129009
94½	63137	70650	78148	85552	92819	100031	107148	114252	121209	128123	134943
96½	65962	73812	81648	89385	96981	104518	111956	119382	126654	133882	141011
$ 98\frac{1}{2} \\ 100\frac{1}{2} \\ 102\frac{1}{2} \\ 104\frac{1}{2} $	68848	77044	85224	93302	101234	109103	116871	124624	132220	139767	147214
	71797	80345	88877	97303	105578	113787	121891	129980	137906	145780	153550
	74808	83715	92608	101389	110014	118570	127016	135448	143711	151920	160019
	77881	87155	96415	105559	114542	123452	132248	141029	149637	158187	166623
$\begin{array}{c} 106\frac{1}{2} \\ 108\frac{1}{2} \\ 110\frac{1}{2} \\ 112\frac{1}{2} \end{array}$	81015	90665	100299	109813	119161	128432	137587	146723	155682	164581	173361
	84212	94244	104260	114151	123871	133512	143029	152531	161848	171101	180232
	87471	97892	108297	118574	128673	138689	148578	158451	168134	177749	187237
	90792	101610	112412	123081	133567	143966	154233	164484	174539	184523	194376
$114\frac{1}{2}$ $116\frac{1}{2}$ $118\frac{1}{2}$ $120\frac{1}{2}$	94174 97619 101126 104694	105397 109254 113180 117176	116603 120872 125217 129639	127672 132347 137107 141950	138552 143628 148796	149341 154815 160388 166060	159994 165861 171833 177912	170630 176890 183262 189747	181065 187710 194476 201362	191425 198454 205609 212891	201649 209056 216596 224270

TABLE 33.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Long Legs Turned Out.

	o	f Four Axis	of Ineri Angles X-X, Turned			X		X	à	,	M	Distance leasured from k to Back		
								-	_ <u>*</u>					
Size.		3"×	236", L	ong Leg	s Out.				3½"	X2½",]	Long Leg	s Out.	1	
Thick	ł"	18″	1"		<u>1"</u>	16"	<u>‡"</u>	16"	<u></u> *"_	78"	1"	18"	1"	112"
Area 4[s	5.24	6,48	7.68	8.88	10,00	11.12	5.76	7.12	8.44	9.72	11.00	12.24	13.44	14.60
ď"		Moi	nents of	Inertia	About	Axis X	-X for	Various	Distance	ces Back	to Back	of Angle	s, ln.4,	
5556 6666 7 7 7 8 14 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	26 29 32 35 38 41 45 49 53 57 61 66 67 75 80 85 96 102 107 113 120 126 132 139 146	31 35 39 43 47 51 55 60 75 81 86 92 98 104 111 118 125 132 132 146 154 162 178	36 41 45 50 55 59 64 69 75 81 87 94 100 107 114 122 129 137 145 162 171 180 190 199 209	41 46 52 57 62 68 73 79 86 93 100 107 115 123 131 139 148 157 176 186 196 207 218 229 240	45 51 57 63 69 75 81 87 95 103 111 119 128 137 146 155 175 186 197 208 219 231 243 258	49 555 61 67 74 81 89 96 104 113 122 131 140 150 171 182 193 205 217 229 241 254 268 281 295	30 34 37 41 44 48 51 560 64 69 74 79 85 90 96 102 108 114 121 127 134 141 148 155 60	35 40 44 49 53 58 62 67 73 78 84 90 97 103 110 117 124 131 139 147 155 163 172 181	41 46 52 57 62 68 73 79 85 92 99 106 113 121 129 137 146 154 163 173 182 192 202 212 223 234	47 53 59 65 70 76 82 89 97 104 112 120 129 138 147 156 166 176 186 197 208 219 231 243 256 267	52 59 65 72 79 85 92 99 108 116 125 134 144 175 186 197 209 221 233 246 259 272 286	56 62 69 76 84 92 100 109 118 127 137 147 158 169 180 192 204 216 229 242 256 270 285 293 315 330	60 67 74 82 90 99 108 118 127 138 148 159 171 183 195 208 221 235 249 264 279 294 310 326 342 359	644 722 799 888 977 1066 1266 1377 148 1599 171 184 197 210 224 2388 2533 268 284 300 3166 334 351 369 387
12 124 125 125 124 13	152 159 167 174 182 189	187 196 205 214 223 233 242	219 229 240 250 261 273 284	251 263 275 288 301 314 327	281 294 308 322 336 350 365	310 325 340 355 371 387 403	170 178 186 195 203 212 220	208 218 228 238 248 259 270	245 256 268 280 292 305 317	280 293 306 320 334 349 363	314 329 344 360 375 392 408	346 362 379 396 414 431 450	377 395 413 432 451 470 490	406 426 445 465 486 507 529
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	205 214 222 231 239 248 257 266 276	252 262 273 283 294 305 316 327 339	296 308 320 333 345 358 371 385 398	340 354 368 382 397 412 427 443 458	380 396 412 428 444 461 478 495 513	420 437 455 473 491 509 528 547 567	229 238 248 257 267 277 287 297 307	281 292 303 315 327 339 351 364 376	330 344 357 371 385 399 414 429 444	378 393 409 424 441 457 474 491 508	425 442 460 477 495 514 533 552 572	468 487 507 526 547 560 588 609 631	511 531 553 574 596 619 642 665 689	551 574 597 620 644 668 693 718

TABLE 33.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Long Legs Turned Out.

		of Fou Axis	s of Ine r Angle X-X, Turnec	s,		X		·X	å			For Dis Meas from Back to	ured m		
							الے	<u>L</u>	¥_						
Size.						4"	× 3′′, I	ong Legs	Turne	d Out.					
Thick.	<u>ł"</u>	18"	₽"	7/1	3''	18"	5//	Thick.	₹ ′′	16"	3''	%′	₹ ′′	11''	₹"
Area 4[s	6.76	8.36	9.92	11.48	13.00	14.48	15.92	Area 4[s	9.92	11.48	13.00	14.48	15.92	17 36	18.76
d''		M	loments	of Iner	tia Abo	at Axis	X-X fo	r Various	Distar	ices Bac	k to Ba	ck of A	ngles, l	[n.4.	
6½ 6¾ 7 7¼ 7½ 7¾ 7¼ 7½ 7¾	48 52 57 62 67 72	58 63 69 75 81 88	68 84 81 88 95 103	78 85 92 100 109 117	86 94 102 111 121 130	94 103 112 122 132 143	102 111 122 132 144 155	16 16 16 16 16 18 18 18	525 543 561 580 699 719	604 625 646 667 804 828	678 702 725 750 904 931	751 777 804 831 1002 1032	821 849 879 908 1096 1129	890 921 953 983 1190 1226	954 987 1023 1055 1276 1315
8 8 14 8 12 8 34 8	77 83 89 95	94 101 108 116	111 119 127 136	126 136 145 155	140 151 162 173	154 166 178 191	167 180 193 207	$ \begin{array}{c} 20\frac{1}{4} \\ 20\frac{1}{2} \\ 22\frac{1}{4} \\ 22\frac{1}{2} \end{array} $	874 897 1069 1095	1007 1034 1233 1262	1133 1163 1388 1421	1256 1290 1539 1577	1375 1412 1686 1727	1493 1533 1831 1876	1603 1646 1967 2015
9 9 1 9 1 9 3 4	101 107 114 121	124 131 140 148	145 154 164 174	166 177 188 199	185 197 209 222	204 217 231 245	221 236 251 267	241 241 261 261 262	1284 1313 1519 1550	1481 1514 1753 1788	1668 1705 1975 2015	1851 1892 2192 2237	2028 2073 2402 2451	2204 2253 2611 2664	2368 2421 2808 2865
10 101 102 103	128 135 143 151	157 166 175 185	184 195 206 217	211 223 236 249	236 249 264 278	260 275 291 307	283 300 317 335	28½ 28½ 30¼ 30½	1774 1808 2049 2085	2047 2085 2364 2406	2308 2351 2666 2713	2562 2611 2961 3013	2809 2862 3247 3303	3053 3111 3530 3592	
$ \begin{array}{c} 11 \\ 11 \\ 11 \\ \hline{1} \\ 11 \\ \hline{3} \\ 11 \\ \end{array} $	159 167 175 184	194 204 215 225	229 241 253 265	262 276 290 304	293 309 324 341	324 341 358 376	353 371 391 410	321 321 341 342	2344 2382 2658 2699	2705 2749 3068 3115	3051 3101 3462 3515	3389 3445 3846 3905	3716 3777 4218 4283	4042 4108 4588 4659	4949
$12 \\ 12\frac{1}{4} \\ 12\frac{1}{2} \\ 12\frac{3}{4}$	192 201 211 220	236 247 259 270	278 291 305 318	319 334 350 366	357 374 392 409	395 414 433 453	430 451 472 494	36½ 36½ 38¼ 38½	2992 3035 3346 3392	3455 3504 3864 3917	3898 3955 4361 4421	4332 4395 4847 4913	4751 4820 5317 5390	5169 5244 5785 5864	5647
$ \begin{array}{c} 13 \\ 13 \\ \hline{1} \\ 13 \\ \hline{2} \\ 13 \\ \hline{4} \end{array} $	230 240 250 260	282 294 307 319	332 347 361 376	382 398 415 432	428 446 465 485	473 494 515 536	516 539 562 585	401 403 421 421 423	3720 3768 4114 4164	4296 4352 4751 4810	4850 4912 5364 5430	5390 5460 5963 6037	5914 5991 6543 6624	6435 6519 7120 7209	7672
14 144 142 143 144	270 281 292 303	332 345 359 372	391 407 423 439	450 468 486 505	505 525 546 567	558 581 604 627	610 634 659 685	44 ¹ / ₄ 44 ¹ / ₂ 46 ¹ / ₃	4527 4580 4961 5016	5229 5291 5730 5795	5905 5974 6472 6544	6565 6642 7195 7276	7204 7289 7896 7986	7840 7933 8595 8692	8449 8548 9263 9367
15 15 ¹ / ₂ 15 ³ / ₄	314 326 338 350	386 401 415 430	456 472 490 507	524 543 563 583	588 610 632 655	651 675 700 725	711 738 765 792	481 482 501 501	5414 5472 5887 5948	6254 6322 6801 6871	7064 7140 7683 7762	7855 7939 8543 8631	8621 8714 9377 9475	9486	10115 10224 11004 11118
M	omen	t of I	nertia	of Net	Area	= Tab	ular V	alue X	Net A	rea ÷	Gross	Area	(appro	x.).	

TABLE 33.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Long Legs Turned Out.

		of Four Axis	of Inert Angles X-X, Turned	•		X	UU	X	d		N	Distance leasured from k to Bac		
						6		—	<u> </u>					
Size.						5" ×	3", Lo	ng Legs	Turned	Out,				
Thick.	x8''	1"	χ̄ε''	1"	24"	1"	18"	Thick.	1"	76"	3"	18"	1''	18"
Area 4[s	9.60	XX.44	13.24	15,00	16.72	18.44	20,12	Area 4[s	11.44	13.24	15.00	16.72	18.44	20.12
d"		Mo	ments o	f Inertis	About	Axis X	X-X for	Various	Distance	es Back	to Back	of Angle	s, In.4.	
61 61 61 61 61 61 61 61 61 61 61 61 61 6	73 78 83 90 97 105 113 121 129 138 147 156 166 176 186 197 207 219 230 242	83 90 98 106 115 124 133 142 152 163 173 184 196 208 220 232 245 258 272 286	93 102 111 120 130 140 151 162 173 185 197 210 223 237 251 265 280 295 311	104 114 124 134 145 157 169 181 194 207 221 236 250 265 281 297 314 331 349 367	114 125 136 148 160 172 186 200 214 229 244 260 276 293 310 328 346 366 385 405	123 135 147 159 173 187 201 216 232 248 265 282 282 300 318 337 357 377 398 420	132 145 158 171 186 201 217 233 250 267 286 304 334 344 365 386 408 431 454	181 182 1 20 1 20 2 2 2 1 2 2 2 4 2 2 2 2 2 2 3 3 2 2 3 3 2 3 3 2 3 3 4 4 4 4	820 845 1024 1052 1251 1282 1501 1534 1774 1810 2070 2109 2430 2730 2774 3094 3142	942 970 1178 1209 1440 1475 1728 1766 2043 2085 2385 2429 2753 2801 3147 3198 3568	1062 1094 1329 1364 1625 1664 1951 1994 2307 2354 2694 2744 3110 3164 3556 3614	1179 1214 1475 1514 1804 1848 2167 2215 2564 2615 2994 3049 3457 3517 3954 4018 4484	1290 1329 1616 1659 1978 2026 2377 2430 2871 3286 3348 3796 3863 4343 4414 4927	140 144 175 180 215 228 264 306 312 357 364 413 420 472 480
1114 112 124 124 1234 134 134 1323 134	254 266 277 292 305 318 332 346 361 375	300 315 330 345 361 377 393 410 427 444	342 360 377 395 413 432 451 470 490 510	385 404 424 444 464 485 506 528 550 573	426 447 469 491 513 537 560 585 609 634	464 487 511 535 560 585 611 638 665 693	502 527 553 579 606 634 662 691 721 751	3421412 36413 384131412 4021412 4221412 444412	3482 3532 3892 3945 4325 4381 4781 4839 5259 5321	4016 4073 4489 4551 4990 5054 5517 5584 6070 6141	4539 4604 5075 5144 5641 5714 6237 6314 6864 6944	5047 5120 5645 5721 6275 6356 6939 7024 7636 7726	5547 5627 6205 6289 6899 6988 7630 7724 8398 8497	544 603 612 675 684 751 760 830 841 914 925
14 14 14 14 14 14 14 15 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	390 406 421 437 453 470 487	462 480 499 518 537 557 577	530 551 573 595 617 639 662	596 620 644 668 694 719 745	660 687 713 741 769 797 826	721 750 779 809 840 871 903	782 813 845 878 911 945 979	461/2 481/4 481/2 501/2 501/2	5761 5825 6286 6353 6833 6903 7403	6650 6724 7256 7334 7889 7970 8548	7520 7604 8206 8294 8922 9014 9668	8367 8461 9132 9229 9929 10031 10760	9203 9306 10045 10153 10923 11036 11839	1002 1013 1094 1105 1189 1202 1289
15\frac{3}{4} 16\frac{1}{4} 16\frac{1}{4} 16\frac{3}{4}	504 521 539 557 575	597 618 639 660 682	686 710 734 759 784	772 799 826 854 882	855 885 916 947 978	935 968 1002 1036 1070	1015 1050 1087 1124 1162	52½ 54¼ 54½ 56¼ 56½	7476 7996 8072 8612 8691	9234 9321 9946 10037	9764 10445 10544 11251 11354	10866 11625 11735 12523 12637	11956 12791 12913 13781 13907	1302 1393 1406 1501 1515

TABLE 33.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH UNEQUAL LEGS, AXIS X-X.

LONG LEGS TURNED OUT.

TABLE 33.— Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Long Legs Turned Out.

	of A	ents of Inc Four Angl- Axis X-X, egs Turne	cs,	ž	ال <u>×</u>	X	å		For Distan Measure from Back to Ba	d •	
Size.				6	" × 4", Lo	ng Legs T	Curned Ou	t,			
Thick.	1"	7"	1"	x8"	1"	11"	1"	13"	ł"	11"	1"
Area 4 [s	14.44	26 72	19.00	21.24	23.44	25.60	27.76	29.88	31.92	34.00	36.00
d"		Moments	of Inertia	About Ax	is X-X fo	r Various		Back to B	ack of An		
8 1 10 1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1	178 273 288 408 427 572 595	203 312 330 468 490 658 684	227 350 370 526 551 740 770	251 387 409 583 611 822 855	273 423 448 639 669 901 937	293 455 482 689 722 974 1013	314 489 517 741 777 1049 1092	333 521 552 791 829 1122 1167	352 551 583 839 879 1190 1238	370 581 615 886 929 1259	385 606 642 927 973 1320 1374
141 161 161 181 181 201 201	765 791 987 1017 1238 1271	881 911 1137 1171 1427 1465	992 1027 1282 1321 1611 1654	1103 1141 1426 1470 1792 1841	1210 1252 1566 1614 1969 2023	1310 1356 1698 1750 2136 2195	1413 1462 1831 1888 2306 2369	1512 1564 1961 2022 2471 2539	1605 1662 2084 2149 2627 2700	1700 1760 2209 2277 2786 2863	1782 1848 2322 2393 2930 301
221 221 241 241 242	1518 1555 1826 1867	1750 1793 2107 2154	1977 2025 2381 2434	2201 2255 2652 2711	2419 2478 2916 2981	2626 2691 3167 3238	2836 2906 3421 3498	3040 3115 3669 3752	3234 3315 3905 3993	3431 3516 4144 4238	361 370 436 446
26\frac{1}{4} 26\frac{1}{2} 28\frac{1}{4} 28\frac{1}{2}	2164 2208 2530 2578	2497 2548 2920 2976	2823 2881 3303 3366	3145 3210 3681 3751	3459 3530 4050 4127	3759 3837 4402 4486	4062 4146 4759 4850	4358 4448 5106 5204	4639 4736 5438 5542	4925 5027 5775 5885	518 529 608 620
30½ 30½ 32¼ 32½	2925 2977 3349 3404	3377 3437 3868 3931	3821 3889 4377. 4450	4259 4335 4880 4961	4687 4770 5371 5460	5097 5187 5842 5939	5511 5609 6318 6423	5914 6020 6782 6895	6300 6412 7226 7346	6692 6810 7677 7804	705. 718 809. 823
34½ 34½ 36¼ 36¾	3802 3861 4284 4346	4391 4459 4949 5021	4971 5048 5604 5685	5544 5629 6249 6341	6102 6197 6880 6981	6639 6743 7488 7597	7181 7293 8100 8219	7710 7830 8698 8825	8216 8344 9269 9406	8730 8865 9851 9995	920 935 1039 1054
38½ 38½ 40¼ 40½	4795 4861 5334 5404	5539 5616 6164 6244	6274 6360 6982 7073	6998 7094 7788 7890	7705 7811 8577 8689	8387 8503 9337 9460	9074 9200 10104 10236	9745 9880 10852 10995	10387 10531 11568 11720	11040 11192 12297 12458	1164 1181 1297 1314
42 ¹ / ₄ 42 ¹ / ₂ 44 ¹ / ₄ 44 ¹ / ₂	5903 5976 6500 6577	6821 6906 7512 7601	7728 7824 8512 8613	8622 8729 9497 9610	9495 9613 10461 10585	10339 10468 11392 11527	11189 11328 12329 12476	12019 12169 13245 13403	12813 12974 14122 14291	13622 13791 15015 15193	1437 1455 1585 1604
461 461 481 481	7127 7207 7787 7866	8237 8330 8995 9092	9334 9440 10194 10305	10416 10533 11376 11499	11473 11603 12533 12668	12496 12638 13651 13800	13526 13679 14777 14938	14532 14697 15878 16050	15495 15671 16932 17116	16476 16662 18005 18199	1739 1759 1901 1922

TABLE 33.—Continued.

MOMENTS OF INERTIA OF FOUR ANGLES WITH UNEQUAL LEGS, AXIS X-X.

LONG LEGS TURNED OUT.

							*				
	of I	ents of Inc Four Angle Axis X-X, egs Turne	28,	2	ζ	X	å		or Distan Measure from Back to Back	d	
	Long L	egs Turne	u Outi				V		aca to Da		
Size.				6′	′×4″, Lo	ng Legs T	urned Ou	t.			
Thick.	3//	7''	1/"	18"	<u>\$</u> "	118"	3"	13"	₹"	18"	1 "
Area 4[s	14.44	16.72	19.00	21.24	23.44	25.60	27.76	29.88	31.92	34.00	36.00
d''		Moments	of Inertia	About Ax	is X–X fo	r Various	Distances	Back to B	ack of Ang	gles, In.4.	
50½	8466	9786	11093	12379	13639	14858	16085	17284	18433	19602	20701
50½	8553	9887	11207	12508	13780	15012	16252	17464	18625	19805	20917
52¼	9179	10611	12029	13425	14792	16116	17447	18749	19997	21267	22462
52½	9270	10716	12148	13559	14939	16277	17622	18937	20197	21478	22687
54½	9921	11469	13003	14513	15992	17425	18866	20275	21626	23000	24295
54½	10015	11579	13127	14652	16145	17592	19047	20470	21833	23220	24529
56¼	10691	12361	14015	15644	17238	18785	20339	21860	23318	24801	26200
56½	10789	12475	14144	15788	17397	18958	20527	22062	23533	25029	26443
581/2	11491	13286	15065	16817	18532	20196	21869	23505	25074	26669	28176
581/2	11593	13404	15199	16967	18697	20376	22064	23715	25297	26907	28429
601/4	12319	14244	16153	18032	19873	21659	23453	25209	26894	28606	30225
601/2	12425	14367	16292	18187	20043	21845	23655	25427	27125	28852	30486
62½	13176	15236	17279	19291	21260	23172	25094	26974	28778	30611	32346
62½	13286	15363	17423	19451	21437	23365	25303	27199	29017	30866	32616
64½	14063	16262	18443	20591	22694	24737	26790	28798	30725	32684	345 39
64½	14175	16392	18592	20757	22877	24937	27006	29030	30972	32947	34818
66½	14978	17321	19646	21934	24175	26353	28541	30682	32736	34825	36803
66½	15094	17455	19799	22105	24364	26559	28764	30922	32991	35097	37092
68¼	15922	18413	20886	23320	25703	28021	30348	32625	34811	37034	39140
68½	16042	18552	21043	23496	25898	28233	30578	32873	35074	37314	39437
70½ 70½ 72¼ 72½ 72½	16894 17018 17896 18023	19539 19682 20698 20845	22164 22326 23480 23647	24747 24929 26218 26405	27278 27478 28900 29106	29739 29958 31509 31734	32210 32447 34128 34372	34629 34885 36692 36955	36950 37221 39153 39432	39311 39600 41656 41953	41549 41855 44030 44345
74½ 76½ 78½ 80½	19057	22042	25006	27923	30781	33561	36352	39086	41707	44375	46907
	20121	23272	26403	29484	32502	35440	38388	41276	44045	46864	49540
	21212	24536	27838	31087	34270	37370	40480	43526	46447	49422	52246
	22333	25833	29311	32733	36086	39350	42627	45836	48914	52047	55024
82½	23483	27164	30822	34421	37948	41383	44829	48205	51444	54741	57874
84½	24662	28528	32370	36151	39857	43466	47087	50634	54037	57502	60795
86½	25869	29925	33957	37925	41812	45600	49401	53123	56695	60332	63789
88½	27105	31356	35582	39740	43815	47786	51770	55672	59417	63229	66855
90½	28371	32821	37245	41598	45865	50023	54194	58281	62202	66195	69993
92½	29665	34318	38946	43499	47961	52311	56674	60949	65051	69228	73202
94½	30988	35850	40685	45442	50105	54651	59210	63677	67964	72330	76484
96½	32340	37414	42462	47427	52295	57041	61801	66465	70941	75499	79838
$ \begin{array}{c} 98\frac{1}{2} \\ 100\frac{1}{2} \\ 102\frac{1}{2} \\ 104\frac{1}{2} \end{array} $	33720	39012	44277	49455	54532	59483	64448	69312	73982	78736	83264
	35130	40644	46129	51526	56816	61976	67150	72220	77086	82402	87761
	36569	43309	48020	53639	59147	64520	69908	75187	80254	85415	90331
	38036	44007	49949	55794	61524	67115	72721	78214	83487	88857	93973
Mo	ment of	Inertia o	of Net A	rea = Ta	bular Va	lue × N	let Area	÷ Gross	Area (ap	prox.).	

TABLE 33.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Long Legs Turned Out.

ı	of Four	of Inertia Angles, X-X, Turned O	ut.	X		_X d		M ear	istances sured om Back.	
						<u> </u>				
Size.					× 6", Long	Legs Tur	ned Out.			
Thick.	18"	¥"	- 18″	1"	18"	<u></u> ‡"	13"	1"	18"	1"
Area 4[s	23.72	27.00	30.24	33-44	36,60	39.76	42.88	45.92	49.00	52.00
d"	1	Moments o	f Inertia A	bout Axis	X-X for	Various Dis	stances Bacl	k to Back of	f Angles, In	.4.
121	624	704	778	853	926	997	1062	1128	1193	125
144	841	950	1053	1156	1256	1354	1445	1536	1627	171
143	875	989	1096	1203	1308	1410	1505	1600	1695	178
161	1134	1283	1423	1564	1701	1837	1963	2089	2214	233
161	1174	1328	1474	1620	1762	1902	2033	2164	2295	242
181	1474	1669	1854	2039	2220	2398	2566	2733	2900	306
187	1520	1721	1912	2103	2290	2474	2647	2820	2993	315
201	1862	2109	2346	2581	2812	3040	3255	3469	3683	389
201	1914	2168	2411	2654	2891	3125	3347	3568	3788	400
221	2297	2604	2898	3190	3477	3761	4030	4297	4565	482
221	2355	2669	2971	3271	3565	3856	4133	4407	4682	494
244	2780	3152	3510	3866	4215	4561	4890	5217	5545	586
241	2844	3224	3591	3955	4312	4667	5004	5338	5674	599
261	3310	3754	4183	4609	5026	5441	5837	6228	6622	700
261	3380	3833	4271	4706	5133	5556	5961	6361	6764	715
281	3888	4411	4916	5418	5911	6400	6869	7332	7798	824
281	3963	4497	5012	5524	6027	6526	7004	7476	7951	841
301	4513	5121	5710	6295	6869	7439	7987	8527	9071	959
303	4594	5214	5813	6409	6994	7575	8133	8683	9237	977
324	5185	5885	6564	7238	7900	8558	9190	9814	10443	1105
321	5273	5985	6675	7361	8034	8703	9347	9982	10621	1123
344	5905	6704	7479	8248	9004	9756	10480	11193	11912	1260
342	5999	6810	7598	8379	9147	9911	10647	11372	12103	1281
361	6672	7576	8454	9326	10181	11033	11855	12664	13480	1426
361	6772	7689	8580	9465	10334	11198	12033	12854	13682	1448
381	7487	8503	9490	10470	11432	12390	13316	14227	15145	1603
381	7593	8622	9624	10617	11594	12565	13505	14428	15360	1626
401 401	8349 8461	9483 96 0 9	10586	11680 11836	12756	13827	14863	15881 16094	16909	1790
								17627		
421	9259	10517	11743	12958	14153	15342	16495 16705	17027	18770	1987
421	9376	11606	12960	13123 14303	14333 15623	15538 16937	18213	19466	19010	2013
44 ¹ / ₄ 44 ¹ / ₂	10339	11746	13116	14476	15812	17143	18434	19702	20981	2222
46 ¹ / ₄	11221	12748	14238	15714	17167	18612 18828	20017	21396	22787 23051	2413
481	12273	13944	15576	17193	18783	20367	21907	23417	24943	2642
481	12408	14098	15747	17382	18990	20593	22149	23677	25219	2671
501	13372	15195	16974	18738	20473	22201	23882	25531	27196	2881
50	13513	15355	17153	18936	20689	22437	24135	25082	27485	2911
521	14519	16499	18433	20350	22236	24115	25944	27737	29548	3130
521	14666	16666	18620	20556	22462	24360	26207	28019	29848	3162
				-	,				,	

TABLE 33.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Long Legs Turned Out.

:	of Fou	s of Inertia ir Angles, s X-X, s Turned (X		X d		For Dist Measu from Back to	red n	
Size.				877		Legs Tur	ned Out.			
Thick.	7"	1"	9.// 16	5//	13"	3//	13"	1"	16"	1"
Area 4[s	23.72	27.00	30.24	33.44	36,60	39.76	42.88	45.92	49.00	52,0
d"			!				stances Back	-		
			1		1		1	1	, , ,	1
54½	15713	17858	19953	22029	24072	26108	28091	30034	31997	339
54½	15866	18031	20147	22244	24307	26364	28365	30328	32310	342
56¼	16955	19270	21533	23775	25982	28181	30323	32423	34545	366
56½	17114	194 5 0	21735	23998	26226	28446	30608	32728	34870	369
58½	18244	20736	23174	25588	27964	30333	32642	34904	37190	394
58½	18409	20923	23383	25819	28217	30608	32938	35221	37528	397
60¼	19581	22257	24875	27467	30020	32564	35046	37477	39934	423
60½	19751	22450	25091	27707	30282	32850	35353	37805	40284	426
62½	20965	23831	26636	29414	32149	34876	37536	40142	42775	453
62½	21141	24032	26860	29662	32420	35171	37853	40482	43137	457
64¼	22396	25459	28458	31427	34351	37266	40112	42899	45715	484
64½	22579	25667	28690	31684	34632	37572	40440	43250	46089	488
66\frac{1}{4}	23875	27142	30340	33508	36627	39737	42774	45747	48752	516
66\frac{1}{2}	24064	27356	30580	33772	36916	40052	43112	46110	49139	520
68\frac{1}{4}	25402	28878	32283	35655	38975	42287	45521	48687	51888	549
68\frac{1}{2}	25596	29099	32530	35928	39274	42612	45870	49061	52287	554
70½	26976	30669	34287	37869	41397	44916	48354	51719	55121	584
70½	27176	30896	34541	38150	41705	45251	48714	52105	55532	588
72¼	28597	32513	36351	40150	43892	47625	51273	54843	58453	619
72½	28803	32747	36613	40440	44209	4 7 970	51644	55240	58876	624
$74^{\frac{1}{2}} 76^{\frac{1}{2}} 78^{\frac{1}{2}} 80^{\frac{1}{2}}$	30478	34652	38745	42796	46787	50768	54659	58468	62318	660
	32200	36611	40937	45219	49437	53646	57760	61787	65858	698
	33969	38625	43190	47709	52161	56603	60947	65198	69495	736
	35786	40692	45503	50266	54958	59640	64220	68700	73231	776
$82\frac{1}{2} \\ 84\frac{1}{2} \\ 86\frac{1}{2} \\ 88\frac{1}{2}$	37651	42813	47 ⁸ 77	52889	57828	62757	67578	72295	77065	816
	39562	44988	50312	55800	60771	65953	71022	75981	80997	858
	41522	47217	52 ⁸ 06	58337	63788	69228	74552	79760	85026	901
	43528	49500	553 ⁶ 2	61162	66878	72583	78168	83630	89154	945
90½	45583	51837	57977	64053	70041	76017	81869	87592	93380	990
92½	47684	54228	60654	67011	73277	79531	85656	91646	97704	1035
94½	49833	56674	63390	70036	76586	83125	89529	95791	102125	1082
96½	52030	59173	66188	73128	79969	86798	93488	100029	106645	1130
$ 98\frac{1}{2} \\ 100\frac{1}{2} \\ 102\frac{1}{2} \\ 104\frac{1}{2} $	54274	61726	69045	76287	83425	90551	97532	104358	111263	1179
	56565	64333	71963	79512	86954	94383	101662	108779	115979	1229
	58904	6 6994	74942	82805	90556	98294	105878	113292	120792	1280
	61290	697 09	77981	86164	94231	102285	110180	117897	125 04	1332
$106\frac{1}{2}$ $108\frac{1}{2}$ $110\frac{1}{2}$ $112\frac{1}{2}$	63724	72478	81081	89590	97980	106356	114567	122594	130714	1386
	66205	75301	84241	93084	101802	110506	119041	127382	135822	1440
	68733	78178	87461	96644	105697	114736	123600	132263	141028	1495
	71309	81110	90742	100270	109665	119045	128244	137235	146331	1551

TABLE 34.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Short Legs Turned Out.

	•	of Four Axis	of Inerc Angles, X-X, Turned			X		X d	<u>.</u>			For Dir Meas fro Back to	ured m		
Size.	3"	X 21/4"	, Short	Legs O	ut.	31	″×2}″	, Short	Legs (Out,	4	"×3"	Short 1	Legs O	18.
Thick.	ł"	₹6′′	1"	78''	1''	1"	18″	1"	₹8"	₫′′	18"	1"	78"	1'	16"
lrea 4[s	5.24	6.48	7.68	8.88	10,00	5.76	7.12	8.44	9.72	11.00	8.36	9 92	11.48	13.00	14.4
ď"		Mo	ments o	Inertia	About	Axis X	-X for	Various	Dista	nces Ba	ck to B	ack of	Angles,	In.4.	
6½ 6¾ 7 71	33 37 40 43	41 44 48 53	47 51 56 61	53 58 64 70	59 65 71 77										
73 74 8 84 84	47 51 55 59 63	57 62 67 72 77	66 72 78 84 90	76 82 89 95 102	98 106 114	47 51 55 60 64	57 62 67 72 78	67 72 78 84 91	76 82 89 96 103	94 92 99 107 115	88	103	118	131	144
81 9 91 91 92	68 72 77 82	83 88 94 100	96 103 110 117	110 118 125 134	122 131 140 149	69 73 78 84	83 89 95 101	97 104 112 119	111 119 127 136	124 133 142 152	95 101 108 115	111 119 127 135	127 136 145 155	141 151 161 172	155 166 178 190
94 10 104 102	92 98 104	107 113 120 127	124 132 140 148	142 151 160 169	158 168 178 189	94 100 106	108 115 122 129	127 135 143 151	144 153 163 173	162 172 182 193	123 130 138 147	144 153 162 172	165 175 186 197	184 195 207 220	20: 21: 22: 24:
101 111 111 111 111	109 115 121 127 134	134 141 149 156 164	156 165 174 183 192	179 189 199 210 220	200 211 222 234 246	112 118 125 131 138	136 144 152 160 168	160 169 179 188 198	183 193 204 215 226	205 216 228 241 253	155 164 173 182 192	182 192 203 214 225	209 221 233 245 258	233 246 260 274 289	25 27 28 30 31
12 12 12 12 12 12	140 147 154 161	172 181 189 198	202 211 222 232	231 243 254 266	258 271 284 297	145 152 159 167	177 186 195 204	208 218 229 240	237 249 261 274	266 280 293 308	20I 2II 222 232	237 249 261 273	272 285 299 314	304 319 335 351	33 35 37 38
13 13 ¹ / ₄ 13 ¹ / ₂ 13 ³ / ₄	168 176 184 191	207 216 225 235	242 253 264 275	278 290 303 316	311 325 339 353	175 182 190 199	213 223 233 243	251 262 274 286	287 300 313 327	322 337 352 367	243 254 265 277	286 299 313 326	329 344 359 375	368 385 402 420	40 42 44 46
14 144 142 143	199 207 215 223	244 254 266 275	287 299 310 323	329 343 357 371	368 383 399 415	207 216 224 233	253 264 275 286	298 311 323 336	341 355 370 385	383 400 415 432	289 301 313 326	340 355 369 384	39I 407 424 442	438 457 476 495	48. 50. 52. 54.
15 15 15 15 15	232 241 250 258	285 296 307 318	335 348 361 374	385 400 415 430	431 447 464 481	242 252 261 271	297 308 320 332	349 363 377 391	400 415 431 447	450 467 485 503	339 352 366 379	400 415 431 447	459 477 495 514	515 535 556 577	579 59 61 63
16 16 1 16 1 16 1	268 277 287 297	330 341 353 365	387 401 415 429	445 461 477 493	498 516 534 552	281 291 301 311	344 356 369 381	405 420 434 450	464 480 497 515	522 540 560 579	393 408 422 437	464 481 498 515	533 553 573 593	599 620 643 665	66 68 71 73
18 184 182 183	348 358 369 380	428 441 454 468	503 519 534 550	579 596 615 633	648 669 689 710	366 377 389 401	449 463 477 492	529 546 363 580	606 625 645 664	682 704 726 748	514 531 547 564	607 626 646 666	699 721 744 767	785 810 836 862	87 89 92 95

TABLE 34.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X. Short Legs Turned Out.

	s	of F	nts of I our Ang xis X-X gs Turi	gles,		;			d		Me f	Distances asured from to Back.		
Size.						5"	x 3″, Sl	nort Legs	s Turned	Out.				
Thick.	5"	3//	176"	1/1	9 " 18"	5"	11"	Thick.	3"	7 "	1/1	9"	8"	11"
Area 4[s	9.60	11.44	13.24	15.00	16.72	18.44	20.12	Area [4s	11.44	13.24	15.00	16.72	18.44	20,12
d''		Mo	oments	of Inert	ia Abou	t Axis	X-X fo	r Various	Distanc	es Back t	o Ba ck o	f Angles	, In.4.	
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	147 156 165 165 174 184 194 204 215 226 237 248 260 323 336 350 364 379 3408 424 439 455 557 557 557 557 559 3690 710 730 751	174 184 195 206 217 229 241 253 307 331 336 351 363 382 444 450 502 558 578 660 682 703 660 682 703 8841 8866 890	198 210 222 235 248 261 275 289 304 319 335 351 367 384 401 419 4376 456 475 494 574 574 574 574 578 681 683 782 808 939 967 995 1023	222 235 249 263 278 293 309 325 342 359 376 394 413 431 492 512 533 556 601 624 647 672 696 721 747 773 799 826 854 910 1059 11059 11154 1186	244 259 274 290 307 323 341 359 377 396 416 436 456 456 477 499 521 544 567 640 665 691 717 799 827 827 827 827 827 827 827 827 827 827	265 281 298 315 333 352 371 493 475 497 520 544 568 593 645 647 698 726 754 783 843 873 904 936 969 1001 1035 1069 1104 1285 1323 1362 1401	286 303 322 340 360 380 401 424 447 490 514 538 563 589 615 642 670 698 727 787 818 849 881 914 947 981 1015 1086 1198 1395 1437 1447 1458 1437 1449 1548 1548 1558 15	22442244224422442244224422442242424242	1046 1073 1273 1303 1523 1556 1796 1831 2091 2410 2451 2751 2796 3116 3163 3553 3913 3966 4346 4402 4802 4861 5381 5382 5782 5782 5782 5782 5782 5782 5782 57	1202 1234 1464 1499 1753 1791 2068 2109 2454 2777 2825 3172 3223 3593 3647 4040 4098 4514 4575 5014 5079 5541 5069 6094 6165 6674 6748 7280 7358 7913 7994 8572 8657 9258 9346 9970 10061 10709	1356 1392 1652 1692 1979 2022 2335 2382 2721 2772 3137 3192 3584 3642 4566 4632 5172 5669 5742 6265 6342 6891 6972 7547 7632 8234 8322 8950 9042 9696 9792 10472 10572 11282 11382 12115	1505 1544 1835 1878 2198 2245 2594 2646 3024 3080 3487 3547 3984 4048 4514 4583 5078 5151 5675 5752 6305 6366 6969 7055 7667 7775 6388 6969 7055 7669 1062 10791 10897 11655 11766 12553 12668 13485	1649 1649 1692 2011 2059 2410 2463 2847 2904 3320 3381 3829 3896 4376 4447 4960 5035 5580 5660 6238 6322 7021 7663 7757 8431 8530 9236 9339 10078 10186 11056 11059 11872 11989 12824 12946 13814 13940 14840	1791 1838 2138 2620 2678 3950 3158 3651 3678 4166 4239 4762 4839 53480 6074 6162 6791 6883 7547 7645 8344 8447 9182 9289 10059 10172 10977 11094 11935 12057 12933 13060 13971 14104 15050 15187 16169
$ \begin{array}{c c} 2I\frac{1}{4} \\ 2I\frac{1}{2} \\ 2I\frac{3}{4} \end{array} $	772 793 815 837	915 941 966 992	1052 1081 1111 1141	1219 1253 1287	1316 1353 1390 1428	1441 1482 1523 1564	1609 1654 1699	$ \begin{array}{c} 60\frac{1}{2} \\ 62\frac{1}{4} \\ 62\frac{1}{2} \end{array} $	9273 9354 9935 10019 Net Are	10803 11474 11571	12222 12981 13092	13603 14450 14573	14971 15903 16038	16311 17328 17475

TABLE 34.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X. Short Legs Turned Out.

Size. Thick. 1" Area 4 s 12.20 10 204 11 216 11 228 11 253 12 266 12 280 12 294 12 308 13 333 13 333 13 353 13 449 14 409 14 437 15 454 15 472 15 491 15 549 16 529 16 589 16 589 18 720 18 720 18 740 18 767 20 915	193 204 216 228 240 353 366 380	221 234 247 261 275 290 305 321 337	246 261 276 292 308 324	17.88 of Inert 272 288 305 322	296 314	21.48	23.24	Thick,	1"	Out.	1"	₫"	1"	18"	1"
Area 4[5 12.20 d" 10½ 193 10¼ 204 11 216 11¼ 240 11¼ 253 12 266 12¼ 280 12½ 294 12¾ 308 13¼ 333 13¾ 353 13¾ 353 13¾ 353 13¾ 353 13¾ 419 14¼ 402 14¼ 402 14¼ 402 15½ 491 15¼ 510 16 529 16¼ 549 16½ 569 16¼ 589 18¼ 720 18¼ 743 18¾ 767 20¼ 915	193 204 216 228 240 353 366 380	Mo 221 234 247 261 275 290 305 321 337	246 261 276 292 308 324	17.88 of Inert 272 288 305	296 314	2x.48	23.24		<u> </u>	78"	1."	₹8″	1"	18"	1"
d" 10\frac{1}{2} 193 10\frac{1}{2} 204 11\frac{1}{1} 228 11\frac{1}{2} 280 12\frac{1}{2} 280 12\frac{1}{2} 280 12\frac{1}{2} 308 13\frac{1}{2} 353 369 14\frac{1}{2} 491 14\frac{1}{2} 491 15\frac{1}{2} 491 15\frac{1}{2} 510 569 16\frac{1}{2} 549 16\	193 204 216 228 240 253 366 880	221 234 247 261 275 290 305 321 337	246 261 276 292 308 324	of Inert	296 314	at Axis	<u> </u>	Area 415	12.20						1
10 193 193 104 204 111 216 228 111 240 253 12 266 121 280 1121 308 13 323 131 353 131 369 141 402 419 141 472 151 472 151 472 151 510 569 161 589 181 697 743 181 767 201 915	204 216 228 240 253 266 280	221 234 247 261 275 290 305 321 337	246 261 276 292 308 324	272 288 305	296 314	<u> </u>	X-X fo		1	14.12	16,00	17.88	19.68	21.48	23.2
101 204 111 216 111 216 111 228 1253 12 266 121 280 121 294 121 308 131 323 333 131 369 114 402 419 141 437 15 454 151 472 151 491 151 569 161 569 161 589 18 697 181 720 181 767 201 915	204 216 228 240 253 266 280	234 247 261 275 290 305 321 337	261 276 292 308 324	288 305	314	320		r Various	Distan	ces Bac	k to Ba	ck of A	ngles, l	n,4,	
103 204 11 216 111 228 111 253 12 266 121 280 121 294 123 308 131 353 131 353 131 369 14 386 141 402 1142 419 143 419 144 407 151 454 151 472 152 491 153 510 16 529 161 549	204 216 228 240 253 266 280	247 261 275 290 305 321 337	261 276 292 308 324	288 305			340	321	2601	3002	3388	3775	4143	4509	48
111 228 111 240 112 240 112 253 12 266 121 294 122 294 123 308 13 323 131 353 132 353 134 402 144 402 144 472 151 454 152 491 164 549 164 549 164 589 18 697 720 183 767 201 915 915	28 40 53 66 80	261 275 290 305 321 337	292 308 324			339	361	321	2646		3446		4214	4587	49
11½ 240 11½ 253 12 266 12½ 280 12½ 308 13 323 13½ 353 13½ 353 13½ 492 14½ 419 14½ 472 15½ 491 16½ 549 16½ 589 18½ 720 18½ 743 18½ 767 20½ 915	40 53 66 80	275 290 305 321 337	308 324	322	332	359	382	344	2967	3426	3867	4309	4731	5149	55
111 253 12 266 12½ 294 12½ 294 12½ 308 13 323 13½ 353 13½ 369 14½ 402 14½ 419 14½ 472 15½ 474 15½ 549 16½ 549 16½ 589 18½ 720 18½ 767 20½ 915	53 66 80	290 305 321 337	324		351	380	405	342	3015	3481	3929	4379	4807	5233	56
12 266 121 280 121 294 121 308 131 323 131 353 131 369 14 386 144 402 141 419 141 437 15 454 151 472 152 491 153 569 161 549 1	80 80	305 321 337	-	340	371	401	428	$\frac{36\frac{1}{4}}{36\frac{1}{2}}$	3358	3877	4378	4880	5357	5833	628
12½ 280 12½ 294 12¾ 308 13 323 13¼ 353 13½ 353 13¼ 369 14 402 14½ 419 15¼ 472 15½ 491 15¼ 510 16 529 16½ 569 16¼ 589 18 697 18¼ 720 18¼ 767 20¼ 915	80 94	321		359	391	423	451		3409	3936	4444	4953	5439	5921	638
12½ 294 12¾ 308 13 323 13¼ 338 13⅓ 353 13¾ 369 14 386 14¼ 402 14⅓ 419 14⅓ 419 15⅓ 472 15⅓ 472 15⅓ 510 16 529 16⅙ 549 16⅙ 589 18⅙ 720 18⅙ 720 18⅙ 720 18⅙ 720 18⅙ 743	94	337	341	378 398	412	445	475 501	$\frac{381}{381}$	3773	4357	4920	5485	6024	6559	707
121 308 13 323 131 338 132 353 133 369 14 402 141 402 142 419 142 437 15 454 151 451 16 529 161 549 161 549 161 589 181 720 181 720 181 720 181 767 201 915			359 377	418	433 456	469	526	401	3827 4213	4419 4866	4990 5495	5564 6127	6729	6653 7328	717
13 323 323 338 13½ 353 13¼ 369 14¼ 402 419 14¼ 472 15½ 471 15¼ 472 15½ 491 15⅙ 549 16⅙ 589 16⅙ 589 18 697 720 18½ 767 20⅙ 915 18⅙ 767 20⅙ 915		354	396	439	478	517	553	401	4270	4931	5569	6210	6820	7427	80
131 338 339 353 131 353 353 353 353 369 141 402 141 402 141 402 151 472 151 472 151 51 51 51 51 51 51 51 51 51 51 51 51	1	370	415	460	502	543	580	421	4677	5402	6102	6805	7474	8140	878
13½ 353 13½ 369 14¼ 402 14½ 419 14¼ 437 15¼ 472 15½ 491 15¼ 472 15½ 491 16½ 569 16¼ 589 18 697 18¼ 767 20¼ 915	60	388	434	482	525	569	608	421	4737	5471	6180	6892	7570	8245	880
13\frac{3}{4} 369 14 386 14\frac{1}{4} 402 14\frac{3}{2} 419 14\frac{3}{4} 419 15\frac{1}{4} 472 15\frac{1}{2} 491 15\frac{3}{4} 510 16 529 16\frac{1}{4} 549 16\frac{3}{2} 569 16\frac{3}{4} 589 18\frac{6}{7} 720 18\frac{1}{2} 743 18\frac{3}{4} 767 20\frac{1}{4} 915		406	454	504	550	595	637	441	5165	5967	6741	7518	8258	8995	970
144 402 142 419 144 437 15 454 151 491 151 510 16 529 161 549 162 569 163 589 181 720 181 720 183 767 201 915		424	475	527	575	623	666	442	5228	6039	6823	7610	8359	9105	982
14½ 419 14¾ 437 15 454 15¼ 472 15½ 491 16 529 16⅓ 569 16⅙ 549 16⅙ 589 18⅙ 720 18⅙ 720 18⅙ 720 18⅙ 767 20⅙ 915	86	443	496	551	601	651	6;6	461	5678	6560	7412	8267	9082	9894	1067
144 437 15 454 151 472 151 491 152 491 153 510 16 529 161 549 162 569 163 569 163 720 181 720 182 743 183 767 201 915	.02	462	518	575	627	679	727	461	5744	6636	7498	8363	9188	10009	1079
15	.19	482	540	599	654	709	759	481	6215	7181	8115	9052		10835	
151 472 152 491 153 510 16 529 161 549 161 569 161 589 18 697 181 720 182 743 183 767 201 915	37	502	563	625	682	739	791	481/2	6285	7260	8205	9152	10055	10955	1182
15½ 491 15¾ 510 16 529 16¼ 549 16⅓ 569 16⅓ 589 18 697 18⅓ 720 18⅓ 743 18⅓ 767 20⅙ 915		522	586	650	710	770	824	501	6777	7830	8850		10847		
151 510 16 529 161 549 162 569 161 589 181 697 181 720 182 743 183 767 201 915		543	609	677	739	801	858	503	6849	7913	8944		10963		
16 529 161 549 162 569 163 589 18 697 181 720 182 743 183 767 201 915		564	633	704	768	833	892	521	7363	8508			11789		
161 549 162 569 163 589 18 697 181 720 182 743 183 767 201 915	- 1	586	658	731	798	866	928	523	7438	8594			11909		
161 569 162 589 18 697 181 720 182 743 183 767 201 915	-	609	683	759	829	899	964	541	7973		10415				
16\frac{1}{4} 589 18 697 18\frac{1}{4} 720 18\frac{1}{2} 743 18\frac{1}{4} 767 20\frac{1}{4} 915		631	709	788 817	860 892	933 968	1000	$54\frac{1}{2}$ $56\frac{1}{4}$	8052 8608		10518				
18 697 181 720 181 743 183 767 201 915		678	735 761	846	925	1003	1076	561			11246				
181 720 181 743 181 767 201 915	_	803	902							٠					
18½ 743 18¾ 767 20¼ 915		829	932	1003	1097	1190	1277	581 581			12109				
18 ³ 767 20 ¹ 915		856	962	1070	1170	1270	1363	601			13004				
201 915		883	992	1104	1207	1311	1407	60			13118				
3 7 3	,	-	1186	1319	1445	1569	1686	621	10658		-				
201 942		23	1221	1357	1487	1615	1735	621	10749						
221 1135			1473	1639	1796	1952	2099	641			14890				
22 1165	65 I	342	1511	1682	1843	2003	2153	641	11485	13274	15012	16753	18416	20073	2167
241 1379	79 I	591	1792	1995	2187	2377	2558	661	12148	14042	15881	17724	19483	21237	2293
241 1412		628	1834	2042	2239	2434	2618	$66\frac{1}{2}$			16007				
261 1648			2143	2386	2617	2846	3063	681			16904				
261 1684	W 4 1 -		2189	2438	2674	2908	3129	681			17034				
281 1941	.	240	2526	2813	3086	3357	3615	701			17958				
28½ 1980 30½ 2259	41 2	607	2576	2869	3148	3424	3687	703			18093				
301 2259	80 2	655	294I 2995	3276 3337	3595 3661	3912 3984	4214 4291	$72\frac{1}{4}$ $72\frac{1}{2}$			19045				

TABLE 34.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Short Legs Turned Out.

	of	ments of In Four Ang Axis X-X Legs Turr	gles, K,		<u>x</u>	X d			or Distance Measured from ack to Back		
					الے	غـــــغ					
Size.						hort Legs					
Thick.	3"	16"	1 ''	16"	5 //	116"	3"	18"	- I ''	15"	1"
Area 4[s	14.44	16.72	19.00	21.24	23.44	25.60	27.76	29.88	31.92	34.00	3 ⁶ .00
d"		Moments	s of Inertia	About Ax	cis X-X fo	various	Distances	Back to B	ack of Ang	gles, In.4.	
I 2 ½ " I 4 ½	322	370	414	459	502	54I	581	619	655	691	72
	442	508	571	633	693	748	805	858	911	962	100
14½ 16¼	461 606	530 697	595 785	660 871	723 955	781	840	897	951 1262	1335	105
$16\frac{1}{2}$	629	723	814	904	991	1072	1155	1235	1311	1386	145
18½	799	920	1037	1152	1264	1369	1476	1578	1677	1776	186
18½	825	950	1071	1190	1306	1415	1525	1632	1734	1836	192
20¼	1021	1177	1327	1476	1620	1756	1895	2028	2156	2285	240
20½	1051	1211	1366	151	1668	1808	1951	2089	2221	2353	247
$ \begin{array}{c} 22\frac{1}{4} \\ 22\frac{1}{2} \\ 24\frac{1}{4} \\ 24\frac{1}{2} \end{array} $	1272	1466	1655	1842	2023	2195	2369	2537	2699	2862	30:
	1305	1505	1699	1890	2077	2253	2432	2606	2772	2939	30:
	1552	1790	2021	2250	2473	2685	2899	3107	3306	3507	36:
	1589	1832	2070	2304	2533	2749	2969	3183	3387	3592	37:
26½	1860	2146	2425	2701	2970	3226	3485	3736	3977	4220	444
26½	1901	2193	2479	2760	3035	3297	3562	3819	4066	4314	454
28½	2198	2536	2868	3195	3513	3818	4126	4424	4711	5001	520
28½	2242	2587	2925	3259	3585	3895	4210	4516	4808	5103	537
$ 30\frac{1}{4} \\ 30\frac{1}{2} \\ 32\frac{1}{4} \\ 32\frac{1}{2} $	2564	2960	3348	3730	4104	4461	4822	5173	5510	5850	616
	2612	3015	3410	3800	4181	4545	4913	5272	5614	5961	628
	2959	3417	3866	4309	4741	5156	5574	5981	6372	6767	713
	3011	3476	3933	4384	4824	5246	5672	6087	6484	6886	726
34½	3383	3907	4422	4930	5425	5901	6382	6849	7298	7752	81
34½	3439	3971	4494	5010	5514	5998	6486	6963	7418	7880	83
36¼	3836	4431	5016	5593	6156	6698	7245	7777	8288	8805	92
36½	3895	4499	5093	5679	6251	6801	7356	7898	8416	8941	94
38½	4318	4988	5648	6299	6934	7546	8163	8764	9341	9926	104
38½	4381	5060	5730	6390	7035	7656	8282	8893	9478	10071	106
40¼	4829	5579	6318	7047	7759	8446	9137	9812	10459	11115	117
40½	4895	5655	6405	7143	7866	8562	9263	9948	10603	11268	118
$42\frac{1}{4}$ $42\frac{1}{2}$ $44\frac{1}{4}$ $44\frac{1}{2}$	5369	6203	7026	7838	8631	9396	10167	10919	11640	12372	130
	5438	6283	7118	7940	8743	9519	10300	11062	11793	12534	132
	5937	6861	7773	8671	9550	10398	11252	12085	12885	13697	144
	6010	6945	7 868	8778	9668	10527	11392	12237	13046	13867	146
$ 46\frac{1}{4} 46\frac{1}{2} 48\frac{1}{4} 48\frac{1}{2} $	6535	7552	8557	9547	10515	11451	12393	13312	14194	15090	159;
	6611	7640	8657	9659	10639	11586	12539	13471	14363	15269	161;
	7161	8276	9379	10465	11527	12555	13589	14598	15567	16551	174;
	7241	8369	9484	10583	11657	12697	13742	14764	15744	16738	176;
50½	7816	9034	10239	11426	12587	13710	14841	15944	17004	18080	1900
50½	7900	913 1	10349	11549	12722	13858	15001	16118	17189	18275	1930
52¼	8500	9826	11137	12429	13693	14917	16148	17350	18505	19677	2078
52½	8588	9927	11252	12557	13834	15071	16315	17531	18697	19881	2099

TABLE 34.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Short Legs Turned Out.

	of	ments of 1: Four Ang Axis X- Legs Turn	\mathbf{X}_{i}		<u>x</u>	X d			or Distance Measured from ack to Bac		
Size.					5"×4", S	hort Legs	Turned O	ıt,			
Thick.	ŧ"	7.''	<u></u>	18"	1"	16"	1"	18"	ł"	18"	1''
Area 4[s	I4-44	16.72	19.00	21.24	23-44	25.60	27.76	29.88	31.92	34.00	36,00
d''		Moments	of Inertia	About A	cis X–X fo	r Various	Distances	Back to B	ack of An	gles, ln.4.	
541"	9213	10650	12073	13475	14846	16175	17511	18816	20069	21342	22542
541	9304	10756	12193	13608	14993	16335	17685	19004	20269	21554	22767
561	9955	11509	13047	14563	16046	17484	18929	20341	21697	23075	2437.
561	10049	11618	13172	14701	16199	17651	19110	20537	21906	23296	24600
581	10725	12400	14059	15693	17292	18844	20403	21926	23389	24876	26280
582	10824	12514	14189	15837	17452	19016	20591	22130	23606	25105	2652;
601	11525	13325	15110	16866	18586	20255	21932	23571	25145	26744	28250
602	11627	13443	15244	17016	18751	20434	22127	23782	25370	26983	28500
621	12353	14284	16198	18082	19927	21718	23517	25276	26965	28681	3030
621	12459	14406	16336	18237	20097	21903	23719	25494	27197	28928	3056
641	13211	15276	17324	19340	21314	23231	25157	27040	28849	30686	3242
641	13320	15402	17467	19500	21491	23423	25366	27266	29089	30942	3269
661	14097	16301	18488	20641	22748	24796	26853	28365	30796	32759	3489
661	14210	16432	18636	20806	22931	24994	27069	29098	31045	33023	3489
681	15012	17360	19690	21984	24229	26412	28604	30748	32807	34900	3688
681	15128	17495	19843	22154	24418	26617	28827	30989	33064	35173	3717
701	15956	18453	20930	23369	25758	28080	30411	32692	34882	37109	3922
703	16076	18591	21088	23545	25952	28291	30641	32940	35147	37390	3951
721	16929	19578	22208	24797	27332	29798	32274	34696	37021	39386	4162
721	17052	19721	22371	24978	27533	30016	32510	34951	37294	39676	4193
74½	18058	20885	23692	26454	29160	31792	34435	37022	39505	42029	4442
.76½	19092	22082	25051	27972	30835	33619	36416	39152	41780	44451	4698
.78½	20155	23312	26447	29533	32556	35498	38452	41343	44118	46940	4962
80½	21247	24576	27882	31136	34325	37427	40543	43593	46520	49498	5232
82½	22368	25873	29355	32782	36140	39408	42690	45902	48986	52123	5510
84½	23517	27203	30866	34470	38002	41440	44892	48272	51516	54817	5795
86½	24696	28567	32415	36201	39911	43524	47150	50701	54110	57578	6087
88½	25903	29965	34002	37974	41867	45658	49464	53190	56768	60408	6386
90½	27140	31396	35627	39789	43869	47844	51833	55739	59489	63305	6693
92½	28405	32860	37290	41647	45919	50081	54258	58347	62275	66271	7007
94½	29699	34358	38990	43548	48015	52369	56738	61016	65124	69304	7328
96½	31022	35889	40729	45491	50159	54708	59273	63744	68037	72406	7656
98½	32374	37454	42506	47476	52349	57099	61864	66531	71014	75575	7991
100½	33755	39052	44321	49504	54586	59541	64511	69379	74054	78812	8334
102½	35164	40683	46174	51575	56870	62034	67213	72286	77159	82118	8684
104½	36603	42348	48065	53688	59201	64578	69971	75253	80327	85491	9041
106½	38070	44047	49994	55843	61579°	67173	72784	78280	83560	88933	9405
108½	39566	45779	51961	58041	64003	69820	75653	81367	86856	92442	9776
110½	41092	47544	53966	60282	66475	72517	78577	84513	90216	96020	10155
112½	42646	49343	56008	62564	68993	75267	81557	87719	93639	99665	10541

TABLE 34.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X. Short Legs Turned Out.

	of	nents of In Four Ang Axis X-X Legs Turn	les,			X d		For Dista Measur from Back to I	ed	
Size.				8"	× 6", Short	Legs Turn	ed Out.			
Thick.	7''	1/1	18"	5"	11"	3"	13"	7"	18"	1"
Area 4[s	23.72	27.00	30.24	33-44	36.60	39.76	42.88	45.92	49.00	52.00
d"		Moments	of Inertia	About Axis	X-X for V	arious Dista	ances Back	to Back of	Angles, In.4	
16½" 18¼ 18½ 20¼ 20½ 20½ 22¼ 22½ 24¼ 24½	955 1214 1254 1554 1600 1942 1994 2377 2435	1079 1373 1418 1759 1812 2200 2259 2694 2760	1197 1524 1575 1955 2013 2447 2512 2999 3072	1314 1675 1731 2150 2215 2692 2765 3301 3382	1429 1822 1883 2341 2411 2933 3012 3598 3686	1541 1967 2033 2529 2605 3170 3256 3891 3987	1645 2103 2174 2706 2788 3395 3488 4170	1750 2238 2314 2883 2970 3619 3717 4447	1854 2373 2454 3059 3152 3842 3947 4724 4841	1954 2503 2588 3229 3327 4058 4169 4991
26 ¹ / ₄ 26 ¹ / ₂ 28 ¹ / ₄ 28 ¹ / ₂ 30 ¹ / ₄	2860 2924 3390 3460 3968	3243 3315 3845 3924 4501	3611 3692 4284 4372 5017	3977 4066 4720 4818 5530	4336 4433 5147 5254 6032	4692 4797 5572 5687 6531	4273 5031 5144 5977 6101	4557 5366 5488 6378 6511 7482	5703 5833 6781 6923	5115 6029 6166 7170 7320 8416
$30\frac{1}{2}$ $32\frac{1}{4}$ $32\frac{1}{2}$	4043 4593 4674	45 ⁸ 7 5212 5304	5113 5811 5914	5635 6406 6520	6148 6990 7115	66 ₅ 6 7570 7705	7144 8127 8273	7626 8677 8833	8110 9230 9396	8579 9765 9941
$ 34\frac{1}{4} \\ 34\frac{1}{2} \\ 36\frac{1}{4} \\ 36\frac{1}{2} $	5265 5353 5985 6078	5976 6075 6794 6900	6665 6776 7580 7698	7349 7472 8360 8491	8021 8155 9125 9268	8688 8834 9886 10042	9331 9487 10620 10787	9964 10131 11343 11522	10602 10780 12071 12262	11218 11407 12776 12978
38½ 38½ 40¼ 40½	6752 6852 7567 7672	7667 7780 8593 8713	8555 8681 9591 9725	9437 9576 10581 10728	10303 10455 11553 11715	11164 11329 12521 12696	11995 12173 13456 13645	12814 13004 14376 14578	13639 13841 15304 15519	14437 14652 16203 16431
$42\frac{1}{4}$ $42\frac{1}{2}$ $44\frac{1}{4}$ $44\frac{1}{2}$	8429 8540 9339 9456	9573 9700 10608 10741	10687 10828 11844 11993	11791 11948 13069 13234	12877 13048 14274 14454	13957 14143 15473 15668	15003 15202 16635 16845	16031 16244 17777 18002	17068 17295 18929 19169	18072 18313 20045 20299
46½ 46½ 48¼ 48½ 48½	10296 10419 11301 11430	11696 11836 12839 12985	13061 13217 14339 14502	14414 14587 15825 16007	15744 15933 17288 17486	17069 17274 18744 18959	18354 18574 20158 20389	19615 19852 21545 21793	20889 21140 22946 23210	22123 22390 24304 24584
$50\frac{1}{4} \\ 50\frac{1}{2} \\ 52\frac{1}{4} \\ 52\frac{1}{2}$	12353 12487 13452 13593	14035 14188 15285 15445	15677 15848 17075 17254	17304 17493 18849 19047	18904 19111 20504 20810	20499 20734 22333 22568	22047 22290 24023 24277	23567 23827 25681 25952	25102 25378 27355 27644	26590 26883 28979 29285
$54\frac{1}{4} \\ 54\frac{1}{2} \\ 56\frac{1}{4} \\ 56\frac{1}{2}$	14599 14746 15793 15946	16590 16757 17948 18122	18534 18721 20054 20248	20461 20667 22140 22355	22357 22583 24193 24428	24246 24491 26240 26494	26084 26349 28231 28506	27887 28169 30184 30478	29707 30007 32156 32469	31472 31791 34070 34402
N	Ioment o	of Inertia	of Net	Area = T	abular Va	lue × Net	t Area ÷	Gross Are	a (approx	.).

TABLE 34.—Continued.

Moments of Inertia of Four Angles with Unequal Legs, Axis X-X.

Short Legs Turned Out.

	of	nents of Ir Four Ang Axis X-X Legs Turn	les,	ė		X d		For Dista Measur from Back to E	ed	
Size.					8" × 6", S	short Legs (Out,			
Thick.	78"	3 "	y8"	1"	11"	₹″	18"	1"	18"	1"
Area 41s	23.72	27.00	30.24	33-44	36.60	39.76	42.88	45.92	49.00	52.00
d"		Moments	of Inertia	About Axis	X-X for V	arious Dist	ances Back	to Back of	Angles, In.4	
58½" 58½ 60¼ 60½	17035 17194 18324 18489	19360 19541 20827 21014	21634 21836 23274 23484 24975	23886 24109 25699 25930 27578	26103 26347 28085 28338 30141	28312 28577 30465 30739 32696	30464 30750 32782 33079 35187	32573 32878 35054 35371 37627	34704 35029 37349 37687 40093	3677 3711 3957 3993 4248
62½ 64½ 64½ 66½	19831 21045 21221 22476	2254I 23922 24122 25550	25192 26737 26961 28559	27818 29525 29773 31538	30403 32270 32541 34472	32981 35007 35302 37398	35494 37677 37995 40252	37955 40292 40631 43048	40442 42934 43296 45874	4285 4549 4588 4861
66½ 68½ 68½	22659 23955 24143 25482	25757 27232 27446 28969	28791 30441 30681 32384	31795 33619 33884 35766	34753 36748 37037 39096	37703 39869 40183 42418	40581 42914 43254 45661	43400 45897 46259 48837	46248 48911 49298 52047	4901 5183 5224 5516
70½ 72¼ 72¼ 72½	25676 27056 27256 28883	29190 30759 30987 32838	32631 34388 34642 36714	36039 37980 38261 40551	39395 41518 41826	42743 45048 45382 48101	46012 48494 48856 51785	49211 51869 52255	52446 55280 55691	5558 5859 5902 6257
74½ 76½ 78½ 80½	30557 32279 34049	34743 36702 38715	38846 41038 43291	42907 45330 47820	44330 46908 49558 52282	50899 53777 56734	54800 57901 61088	55390 58617 61937 65347	59035 62477 66017 69654	6622 6998 7383
82½ 84½ 86½ 88½	35866 37730 39642 41601	40782 42903 45078 47308	45604 47978 50412 52907	50377 53000 55691 58449	55079 57949 60893 63909	59771 62887 66083 69359	64361 67719 71163 74693	68850 72445 76131 79910	73390 77224 81156 85185	7780 8186 8603 9031
90½ 92½ 94½ 96½	43608 45662 47764 49913	49591 51928 54319 56764	55463 58078 60755 63491	61273 64164 67122 70147	66999 70162 73398 76707	72714 76148 79662 83256	78309 82010 85797 89670	83780 87742 91796 95941	89313 93539 97863 102284	9469 9917 10375 10845
98½ 100½ 102½ 104½	52109 54353 56645 58983	59263 61816 64423 67085	66288 69146 72064 75043	73239 76398 79623 82916	80090 83546 87075 90677	86929 90681 94513 98425	93629 97674 101804 106020	100179 104508 108929 113442	106804 114422 116138 120951	11324 11814 12314 12825
106½ 108½ 110½ 112½	61370 63803 66284 68813	69800 72569 75392 78269	78082 8118 2 84342 87562	86275 89702 93195 96755	94352 98101 101923 105818	102416 106487 110637 114867	110321 114709 119182 123741	118047 122744 127532 132413	125863 130873 135981 141186	13346 13877 14419 14971
114½ 116½ 118½ 120½	71389 74012 76683 79402	81200 84185 87224 90318	90843 94185 97587 101049	100382 104075 107836 111664	109786 113827 117942 122129	119176 123564 128033 132580	128386 133116 137993 142835	137385 142449 147605 152853	146490 151892 157392 162990	15534 16107 16690 17284

TABLE 35.

Moments of Inertia of Four Angles with Equal Legs, Axis Y-Y.

	of	ents of Four An Axis Y- Equal Le	gles, Y,			<u>Y</u>				Y				N	Distanted Distanted Piezes Distanted Distanted Piezes Distanted Di	ed		
Size of Angles.	Area, Four Angles.	D	istance	Back	to Ba	ack ir	Inche	5.	Size of Angles.	Area, Four	Angles.	I	Distanc	e Bac	k to B	ack in	Inche	es.
In.	In.2	0	1	8 16	3 8	1/2	5 8	2	In.	In.	- -	0	1	5 16	3 8	1 2	<u>5</u>	3 4
$2X2X\frac{3}{16}$	2.84	2.1	2.5	2.6	2.8	3.1	3.4	3.7	$2\frac{1}{2}x2\frac{1}{2}x$	1 4.7	6 5	:-3	6.2	6.5	6.7	7.3	7.9	8.5
66 1 66 5	3.76	2.7	3.3	3.5	3.7	4.1		4.9	66 1	5.8 6.9	- 1	5.6	7.8	8.1	8.5	9.2	9.9	10.7
16	4.60	3.4	4.2	4.4	4.6	5.1		6.1	66	8 6.9		7.9	9.3	9.7	10.1	1	11.9	12.8
" 3 8	5.44	4.2	5.1	5.3	5.5	11.8	. '-	7.3	1 3½x3½x	8.0	_ -).3	11.0	11.5 16.6	11.9		14.0	15.1
3 X 3 X \(\frac{1}{4} \) \(\frac{5}{16} \) \(\frac{3}{3} \)	5.76 7.12	9.0			14.0	15.0		13.5		6.7 8.3			20.2	20.8	17.I 21.4		19.2 24.0	25.4
	8.44	13.7			6.8	18.0		20.6	**	3 9.9		- 1	24.3	25.0	25.7		28.8	30.5
16	9.72				19.7	21.0	-	24.0	" 1	7 II.4	8 25		28.6	29.5	30.3		34.0	36.0
" <u>1</u>	11.00			-	22.6	24.2		27.6	66	13.0				33.7	34.7		39.0	41.3
66 \frac{16}{5}	12.24		23.8		25.6 28.5	30.5		31.2 35.1	"	14.4 5 15.9				38.1	39.2		44.I	46.7
	13.44	23.3	20.5	7.3		130.3	132.3	33.1		8 13.9	130	··5	41.2	44.5	43.7	40.3	49.1	52.0
Size of Angles,	Area, Four Angles						Distan	ce Back	to Bac	k of An	gles	in I	nches.					
In.	In.2	0	1	5 16		3 8	7 16	1 2	9	5 8		ł	1 2		1	x 1/8		11
4×4×1/4	7.76	21.5	23.6	24.	3 2	25.0	25.6	26.3	26.9	27.4	2	8.9						
16	9.60	26.9	29.7		-	31.3	32.1	32.9	33.7	34.5		6.3						
66 7	11.44	32.3	35.8		0	37.6	38.6	39.5	40.5	41.6	1	3.7					- -	
" 16 " 1 " 2 " 9	13.24	37.7	41.7		1 '	13.9	45.I	46.2	47.4	48.6		I.I					- -	
دد <mark>2</mark>	15.00	43.I 49.0	47.8 54.3	49. 55.	1 -	7.I	51.6 58.6	52.9 60.1	54.3	55.7 63.2		8.5 6.5		ļ		*******	- -	
" $\frac{16}{5}$	18.44	54.5	60.5			3.7	65.3	67.0	68.7	70.5		4.I						
5x5x\frac{3}{8}	14.44	62.7	68.1	69.		70.9	72.3	73.8	75.3	76.8	1	9.9						
16	16.72	73.2	79.5	81.		32.7	84.4	86.1	87.9	89.7		3.3						
" 16 " 1 2	19.00	84.0	90.9			4.7	96.7	98.6	100.6	102.7	10	6.9					- -	
16	21.24	94.8	103.1			7.4	109.6	111.9	114.2	116.5	12	-					- -	
8	23.44 25.60	105.6	114.7			19.5	122.0	124.5 137.1	127.0	129.6	13	5.0		-				
66 3 6	27.76	126.8	138.1			13.9	134.4 146.9	150.0	140.0	156.2	16							
6x6x ³ / ₈	17.44	108.5				19.8	121.8	123.9	125.9	128.1	13:		136	1	141.4	146.:		151.0
66 7	20.24	126.5			1	9.8	142.2	144.6	147.0	149.5	15.		159		165.2	170.		176.5
" 16 2	23.00	144.6			15	9.8	162.5	165.3	168.1	171.0		6.8	182		188.9	195.	3 2	8.102
16	25.72	163.5				30.9	184.0	187.1	190.3	193.5	200		206	-	213.9			228.5
8	28.44 31.12	181.8 200.1				21.6	204.6	208.I 229.2	211.7	215.3	22:		230	-	238.1 262.3	246. 266.	- 1	254.4
66 36	33.76	219.6				13.3	247.5	251.7	233.2 256.0	237.I 260.4	24		253		288.I	297.	'	275.7 307.9
66 7 8	38.92	256.6				34.6	289.5	294.4	299.5	304.8		5.2	326		337.2	348.		360.3
	44.00	294.0			32	26.3	332.0	337.7	343.5	349.5	36		374	1 '	386.9	400.		113.5
	31.00	343.2			36	59.8	374-4	379.1	383.8	388.7	39		408	.5	418.9	429.	4 4	140.2
" 9 16	34.72	385.9				5.9	421.2	426.5	431.8	437.3	44	8.4	459		471.3	483.	2 4	195.4
8	38.44	428.8				2.4	468.2	474·I	480.1	486.2	49		511		524.2	537-		551.0
16	42.I2 45.76	471.8 516.8				8.8 7.6	515.3 564.7	521.8 571.9	528.4 579.2	535.I 586.5	54	8.8 1.6	562		577.0 632.6	591. 648.		665.1
44 7 8	52.92	603.2					659.4	667.9	676.4	685.1	70:		720	- 1	739.2	758.		777.3
" I	60.00	692.9					758.0	767.8	777.7	787.7	80		828		850.1	871.		394.1
" I 1/8	66.92	780.8						865.4	876.6	887.9	910	0.9	934		958.5	983.		008.3
Rad	dii of (Gyratic	n abo	ut A	xis Y	∕-Y,	same	as giv	en in	table o	of R	adi	i of C	Syrat	tion o	f Two	An	gles.

TABLE 36.

Moments of Inertia of Four Angles with Unequal Legs, Axis Y-Y.
Long Legs Out.

I	of I	ents of Four An Axis Y- egs Tur	ngles, Y,		٠	Y]	<u> </u>			or Distr Measur from ack to I	red		
Size of Angles.	Area, Four Angles.	Dis	tance	Back t	о Ва	ck in	Inches.		Size of	Angies.	Area, Four Angles.			Distai	nce Bacl	to Bac	k in In	ches.	
In.	In.*	0	ŧ	N.R.	1	1	1	ž	In		In.ª		0	ł	87	1	1	1	1
21x2x16	3.24 4.24 5.24	3.9 5.2 6.6	4.6 6.2 7.7	4.8 6.4 8.1	5.0 6.7 8.4	5·4 7·2 9·1		6.2 8.4 0.5	"	$\frac{X_{4}^{1}}{\frac{5}{16}}$	5.24 6.48 7.68		9.0 11.2 13.8	10.3 12.9 15.7	13.3	11.0 13.8 16.8	14.7	12.5 15.7 19.1	16.7
" 7/16 31/21/21/21	6.20 7.12		9.3	1.3	0.i 1.8 6.9	12.7	11.7 1	2.6 4·7	" {} {}x3	$\begin{array}{c} \frac{7}{16} \\ \frac{1}{2} \\ \frac{7}{2} \end{array}$	8.88 10.00 6.24	:	16.0 18.3 14.4	18.4 21.0 16.1	19.0	19.6 22.4 17.0	21.0	22.4 25.6 19.0	23.8
" 16 " 16	7.12 8.44 9.72	18.1 2 21.4 2	20.2 2	0.7 2 4.9 2	5.6	22.5 27.0	23.8 2 28.5 3 33.3 3	5.I 0.I	"	16 3 8	7.72 9.20 10.60		18.0 21.6 25.2	20.2 24.3 28.3	20.7 25.0	21.3 25.7 30.0	22.6 27.2	23.9 28.8	25.2 30.4
4x3x1 4x3x1 5	6.76	28.6 3	32.3 3 23.7 2	3.2 3	4.I 4.8	36.1 26.1	38.1 4 27.4 2	0.2 8.8	" (X3X	1 1 16	9.60	1	29.2 52.3 52.7	32.7 56.3	33·7 57·4	34.6 58.5	36.7 60.8	33.5 38.8 63.2	41.0 65.6
" ½		32.1 3	35-4 3 11-4 4 17-7 4	6.3 3 2.4 4 .8.9 5	7.2 3.5 0.1	39.1 45.7 52.7	34.2 3 41.0 4 47.9 5 55.3 5 62.2 6	3.0 0.3 8.0	66	$\frac{7}{16}$ $\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$	11.44 13.24 15.00 16.72 18.44	I	73.2 84.0 94.0	113.8	80.8 92.3 103.8 116.1	105.8 I 118.3 I	85.6 97.8 I 10.0 I 23.0 I	14.2 27.8	92.4 105.5 118.7
" 5	15.92	54.0 5	9.9 6	1.3 6	2.7	65.9	69.0 7	2.6	66	16	20.12	1	15.9	125.2	127.7	130.2,1	35.3 I	40.6	146.1
Size of Angles	Area, Four Angles.		٠				Distan	ce Ba	ick t	о Ва	ick of	Ar	ngles	in Inc	hes.				
In.	In.ª	0	1	5 11	3	1	7	1		18	_ _	1	_	1	ł	I	11		11
5x3½x5 6	10.24	62.7	67.	8 69).2	58.8 70.5	59.9 71.9	61 73	.3	62. 74	7 7	3.5	2 7	9.2					
" 16 1 2 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	14.12 16.00 17.88	94.6	90.	9 92 4 104	.7 .4 I	82.2 94.6 06.5	83.9 96.4 108.6	HIC	.7	87. 100. 112.	2 10 9 11	5.1	1 II	92.4 96.2 19.6					
" 11 16 " 3	19.68 21.48 23.24	115.6	113. 125. 137.	1 127	7.6 I	18.2 30.1 42.9	132.7 145.8	135	.3	125. 138. 151.	0 14	0.7	7 14	12.9 16.2 00.6				-	
6x4x ³ / ₈ " 16	14.44 16.72 19.00	126.1	2 115. 1 134. 3 154.	5 136	5.7 1	19.2 39.0 59.7	121.2 141.2 162.3	143	.5	125. 145. 167.	8 14	8.2	2 15	3.0 5.9	*******			-	
" 16 " 5 " 11	21.24 23.44 25.60	180.9	173. 193. 1213.	1 196	5.3 1	79.6 99.5 20.8	182.6 202.8 224.4	185	·5	188. 209. 231.	5 21	2.9	21	97.9 19.9 13.3	*******				
" 3 " 7 " 8	27.76 31.92 36.00	254.2	233. 2271. 3312.	0 236	5.3 2	40.8 80.9 23.1	244.7 285.5 328.4	248 290	0.2	295	8 25	6.6 9.8	3 30	5.4 9.6 6.2					
$8x6x\frac{7}{16}$	23.72 27.00 30.24	299.2 342.0	2		3	21.9	1	329 377	8.c	333 381	- 1	7.9	34	6.2 5.7 7.0	354-7 405-4 458-0	363.3 415.3 469.2	425.	4 4	381.2 435.8 497-4
" 11 " 16	33·44 36.60 39.76	428.8	2		4	61.5 07.5 53.8	467.2	473 520	.0	478. 526.	8 48 6 53 7 58	$\frac{4 \cdot 7}{3 \cdot 1}$	7 49	6.7	508.9 559.8 611.0	521.4 573.5 626.0	534· 587.	5 6	547.2 501.9 557.1
" 7 " I	45.92	602.0			6	48.6	656.7 751.1	664	.9	673	I 68	1.5	5 69	98.5	715.8 818.8	733-5 839.1	751.	5 7	769.9 380.9
Dag	lii of C	Svrati	on ab	out A	xis	Y-Y	, same	as	give	en i	n tab	le	of F	Radii	of Gyr	ation o	of Two	An	gles.

TABLE 37.

Moments of Inertia of Four Angles with Unequal Legs, Axis Y-Y.

Short Legs Out.

	of l	ents of Four A Axis Y- egs Tu	ngles, Y,			Y		 -	— E	\int_{Y}				or Dis Measi froi ack to	ired n		
Size of Angles,	Area, Four Angles.	D	istance	Back	to I	Back in	Inche	s.	Size of Angles.	Area, Four Angles.]	Distan	ce Ba	ck to l	Back i	n Inch	es.
In.	In.2	0	1	16	1	1 1	5 8	2	In.	In.s	0	1	16	8	1	ě	1
2½X2X ³ / ₁₆ 2½X2X ³ / ₁₆ 2½X2X ³ / ₁₆ 2½X2X ³ / ₁₆ 2½X2X ³ / ₁₆ 2½X2X ³ / ₁₆	3.24 4.24 5.24 6.20 7.12	2.0 2.7 3.4 4.1 4.8	2.5 3.4 4.3 5.2 6.1	2.6 3.5 4.5 5.4 6.4	2.7 3.7 4.7 5.7 6.7	3.0 4.1 5.2 6.3 7.5	3.3 4.6 5.8 7.0 8.2	3.7 5.0 6.4 7.7 9.1	$3 \begin{array}{c} 3 \\ \cancel{1} \\ \cancel{2} \\ \cancel{2} \\ \cancel{2} \\ \cancel{3} \\ \cancel{4} \\ \cancel{5} \\ \cancel{16} \\ \cancel{6} \\ \cancel{7} \\ \cancel{16} \\ \cancel{16} \\ \cancel{2} \\ \end{matrix}$	5.24 6.48 7.68 8.88 10.00	5.2 6.6 8.0 9.5 10.8	6.2 7.8 9.5 11.2 12.9	6.5 8.1 9.9 11.7 13.4	6.7 8.5 10.3 12.2 14.0	7·3 9.2 11.2 13.2 15.2	7.9 10.0 12.2 14.4 16.5	8.6 10.8 13.2 15.6 17.9
$\begin{array}{c} 3\frac{1}{2}x2\frac{1}{2}x\frac{1}{4} \\ \vdots \\ 5\frac{5}{16} \\ \vdots \\ \frac{7}{16} \\ \vdots \\ \frac{1}{2} \end{array}$	5.76 7.12 8.44 9.72 11.00	1 .	11.2	11.7	6.8 8.6 10.4 12.2 14.1	11.3	12.3	8.7 11.0 13.4 15.7 18.2	3½X3X¼	6.24 7.72 9.20 10.60 12.00	16.0	10.4 13.1 15.8 18.4 21.4	10.7 13.5 16.3 19.1 22.2	11.1 14.0 16.9 19.8 23.0	11.9 15.0 18.1 21.2 24.6	12.7 16.0 19.4 22.7 26.4	13.6 17.2 20.8 24.3 28.2
4×3×4 16 16 16 17 16 16 16 16 16 16 16 16 16 16	6.76 8.36 9.92 11.48 13.00 14.48 15.92	11.4 13.7 16.1 18.6 21.1	13.1 15.8 18.5 21.5 24.4	13.6 16.4 19.2 22.3 25.3	26.2	15.1 18.2 21.4 24.8	22.9 26.7 30.2	17.4 20.9 24.6 28.6 32.4	" 1 " 9 16 " 5 8	11.44 13.24 15.00 16.72	16.1 18.5 21.0 23.8		29.I	14.2 17.2 20.4 23.5 26.7 30.2 33.6	28.7 32.6	16.5 19.9 23.7 27.3 30.9 35.1 39.0	17.7 21.4 25.4 29.3 33.2 37.7 41.8
Size of Angles.	Area, Four Angles.						Distan	ice Bac	k to Bac	k of Ar	ngles ir	Inch	es.				
In.	In.2	0	1	17	5 -	1	76	1/2	16	50	3 4	_	7 8	I	_ _	r 1 8	11
084 X 716 C C C C C C C C C C C C C C C C C C C	10.24 12.20 14.12 16.00 17.88 19.68 21.48 23.24 14.44 16.72 19.00 21.24 23.44 22.5.60 27.76 31.92 36.00	18.1 21.7 25.5 29.4 33.3 37.1 41.0 45.4 32.4 37.8 43.7 49.3 54.9 61.2 67.1 78.9 92.1	20.2 24.0 28.8 33.3 37.7 42.1 46.6 51.6 42.1 48.7 55.0 61.3 68.4 75.0 88.5	256 258 298 343 436 436 437 506 566 637 707 777 777 915	·3 ·7 ·4 ·9 ·4 ·0 ·3 ·0 ·2 ·0 ·5 ·1	21.7 26.1 30.6 35.5 40.1 44.8 49.6 55.0 38.0 44.4 58.1 64.8 72.3 79.3 93.6 09.3	22.4 26.9 31.6 36.6 41.4 46.2 51.2 56.7 39.0 45.6 52.8 59.7 66.6 74.3 81.5 96.2	23.0 27.8 32.5 37.7 42.7 47.7 52.8 58.5 40.0 46.9 54.3 61.4 68.5 76.4 83.8 98.9 115.6	28.6 33.6 38.9 44.0 49.2 554.4 60.4 41.1 48.2 55.8 63.1 70.4 78.5 86.2	24.5 29.5 34.6 40.1 45.4 50.7 56.1 62.2 49.5 57.3 64.8 72.3 80.7 88.5 104.5 122.1	26. 31. 36. 42. 48. 53. 59. 66. 44. 52. 60. 68. 76. 85. 93. 110. 128.	3 3 3 7 6 5 4 5 5 5 7 6 7 8 9					
8x6x 7 16 1 16 16 16 16 16 16 16 16 16 16 16 1	23.72 27.00 30.24 33.44 36.60 39.76 45.92 52.00	126.9 145.1 164.2 182.6 201.0 219.6 258.5 296.7			I I I I I I I I I I I I I I I I I I I	40.6 60.9 82.3 02.8 23.5 44.3 87.8 30.7	143.0 163.7 185.5 206.4 227.4 248.7 293.0 336.7	145.5 166.6 188.8 210.1 231.5 253.2 298.3 342.8	148.1 169.5 192.1 213.8 235.6 257.7 303.7	150.7 172.5 195.5 217.6 239.8 262.3 309.1 355.4	156. 178. 202. 225. 248. 271. 320. 368.	0 16 6 13 5 20 4 2 5 2 8 2 4 3 3 3	61.5 84.9 99.7 33.5 57.4 81.6 31.9	167. 191. 217. 241. 266. 291. 343. 395.	5 19 2 22 8 25 5 27 7 39 9 35 5 40	73.0 98.3 24.8 50.4 76.0 92.1 56.1	179.1 205.2 232.7 259.2 285.8 312.7 368.8 424.3

TABLE 38.

RADH OF GYRATION OF TWO ANGLES WITH EQUAL LEGS, BOTH AXES.

			Gyration Angles, Legs,			<u>x</u> =		Y	\supseteq_X			Measu	istances red from o Back,	n	
Size of Angles.	Area, Two Angles.	Х-Х.	Distanc		is Y~Y.	in Incl	hes.	Size of Angles.	Area, Two Angles.	x-x.	Dista	A:	k to Ba	-	iches.
In.	In.º	Axis	0 1	18	1 1] 1	1	In.	In.3	Axis	0 1	18	1 1	1 j 1	1 1
2x2x16	I.42 I.88 2.30 2.72	.60 .59	.84 .93 .85 .94 .86 .95	.96	.99 1.0 1.00 1.0 1.01 1.0.1	7 1.11	1.14 1.15 1.16	1x21x	2.94 3.46 4.00	.76 .75 .75	1.05 1.1 1.06 1.1 1.07 1.1	15 1.17 16 1.18 1 7 1.20	I .20 I I .21 I I .22 I	.25 I.3 .26 I.3 .27 I.3	0 1.35 1 1.36 2 1.37
3x3x4 " 16 " 18 " 18 " 18	2.88 3.56 4.22 4.86 5.50 6.12	.92 I .91 I .91 I .90 I	.25 1.34 .26 1.36 .27 1.37 .28 1.38 .29 1.39	1.38 1.39 1.40 1.41 1.42	I.40 I.4 I.41 I.4 I.42 I.4 I.43 I.4 I.45 I.5	1.50 6 1.51 7 1.52 8 1.53 0 1.54	1.55 1.56 1.57 1.58 1.60	\$X3 2 X B 3 7 10 2 10	4.18 4.96 5.74 6.50 7.24	1.08 1.07 1.07 1.06 1.05	1.45 1. 1.47 1. 1.48 1. 1.49 1. 1.50 1.	56 1.58 57 1.59 58 1.60 59 1.61 60 1.62	1.60 I 1.61 I 1.62 I 1.63 I 1.64 I	1.65 1.6 1.66 1.7 1.67 1.7 1.67 1.7	9 1.74 0 1.75 2 1.77 3 1.78 5 1.80
Size of Angles	Area, Two Angles,	X-X.	.3211.41	1.43	40,1.5				xis Y-	₹.	1.52 1.6		1.00	/01./	01.01
In.	In.®	Axis	0	ž	1g	1	7	1	16	1	1 1	1	I	[x1/8	21
4X4X 156	3.88 4.80 5.72 6.62 7.50 8.36 9.22 7.22 8.36 9.50 10.62 11.72 12.80 13.88 8.72 10.12 11.50 12.86 14.22	1.25 1.24 1.23 1.22 1.21 1.20 1.56 1.55 1.54 1.53 1.52 1.51 1.50 1.88 1.87	1.66 1.68 1.69 1.70 1.71 1.72 2.08 2.09 2.11 2.12 2.13 2.14 2.49 2.50 2.51 2.52	1.75 1.76 1.77 1.78 1.79 1.80 1.81 2.17 2.18 2.19 2.20 2.21 2.22 2.23	1.77 1.78 1.79 1.80 1.81 1.82 1.83 2.19 2.20 2.21 2.22 2.23 2.24 2.25	1.79 1.80 1.81 1.82 1.83 1.85 1.86 2.22 2.22 2.23 2.25 2.26 2.27 2.28 2.62 2.63 2.64 2.65 2.66	1.82 1.83 1.84 1.85 1.86 1.87 1.88 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.64 2.65 2.66 2.67 2.68	1.84 1.85 1.86 1.87 1.90 1.91 2.26 2.27 2.28 2.29 2.30 2.32 2.33 2.66 2.67 2.68 2.70 2.71	1.86 1.87 1.88 1.89 1.90 1.92 1.93 2.28 2.30 2.32 2.33 2.34 2.35 2.69 2.69 2.71 2.72	1.88 1.89 1.90 1.92 1.93 1.94 1.95 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.71 2.72 2.73	1.93 1.94 1.95 1.96 1.97 1.99 2.00 2.35 2.37 2.38 2.40 2.41 2.42 2.75 2.76 2.77 2.79 2.80	2.80 2.81 2.82 2.84 2.85	2.85 2.86 2.87 2.88 2.89	2.90 2.91 2.91 2.93 2.94	2.94 2.95 2.96 2.98 2.99
8x8x2 6 1 8x8x2 6 1 6 1 6 1 6 1 7 1 6 1 7 1 7 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	15.56 16.88 19.46 22.00 15.50 17.36 19.22 21.06 22.88 26.46 30.00 33.46	1.83 1.81 1.80 2.51 2.50 2.49 2.48 2.47 2.45 2.44	3.35 3.36 3.38 3.40			2.67 2.68 2.70 2.72 3.44 3.46 3.47 3.48 3.49 3.51 3.53 3.55	2.69 2.71 2.73 2.75 3.47 3.48 3.49 3.50 3.51 3.53 3.55 3.57	2.71 2.73 2.75 2.77 3.49 3.50 3.51 3.52 3.53 3.55 3.57 3.60	2.74 2.76 2.77 2.79 3.52 3.53 3.53 3.54 3.56 3.57 3.60 3.62	2.76 2.78 2.80 2.82 3.54 3.55 3.56 3.57 3.60 3.62	3.61 3.62 3.64 3.67	2.85 2.88 2.90 2.92 3.63 3.64 3.65 3.67 3.69 3.71 3.74	2.90 2.92 2.94 2.97 3.67 3.68 3.69 3.70 3.72 3.74 3.76 3.79	2.95 2.97 2.99 3.01 3.72 3.73 3.74 3.75 3.76 3.78 3.81 3.83	3.00 3.02 3.04 3.06 3.77 3.78 3.78 3.79 3.81 3.83 3.86 3.88

91

TABLE 39.

RADII OF GYRATION OF TWO ANGLES WITH UNEQUAL LEGS, BOTH AXES.

LONG LEGS OUT.

							I	Y							
	of	Two A	yration ingles, urned O	ut.		X			$\supset X$			For Dis Measure Back to	d from		
			,					Y							
ze of	Area, Two Angles.	X-X.			is Y-Y.			ze of igles.	Area, Two Angles.	X-X.			ris Y-Y		
		Axis X			to Back		-	Angl	In.2	Axis 3		ance Bacl		- 1 -	hes.
In.	In.2		0 1	16 16			3 d	In.			O	10 T 42	T	50 T 51	-
$\frac{1}{2}$ X2X $\frac{3}{16}$	2.12	·59 I	.10 1.19	1.23	1.25 1.	30 1.36	1.40	$3 \times 2 \frac{1}{2} \times \frac{1}{4}$ $4 \times \frac{5}{16}$	2.62 3.24	·75	1.32 1	.40 I.42	1.46 1	.51 1.50	6 1.60
" 5 16	2.62 3.10		.12 1.2					46 8	3.84 4.44	·74	I.33 I	.43 I.45	I.48 I	.53 1.50	0 1.6
" $\frac{8}{7}$	3.56	-	.14 1.2	-		- -	1 - 21	$\frac{16}{2}$	5.00	.72		.45 1.47			
$\frac{1}{2}$ x 2 $\frac{1}{2}$ x $\frac{1}{4}$	2.88		.58 1.6					$3\frac{1}{2}x3x\frac{1}{4}$	3.12	.91		.61 1.63			
" 3 8	3.56 4.22		.60 1.68					" 5 16 " 3 " 7 16 " 16	3.86 4.60	.90		.61 1.64 .62 1.65			
$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	4.86	.7I I	.61 1.70	0 1.73	1.75 1.	80 1.85	1.90	" 7 16	5.30	.89	1.54 1	.63 1.66	1.68	.73 1.7	8 1.8
	5.50	_	.62 1.7	1 - 1		-		2 5x3x 5	4.80	.88		.65 1.68		.75 1.00	
$4x3x\frac{1}{4}$	3.38 4.18		.77 I.8		1.92 1. 1.93 1.	- 1	1	66 3 8	5.72	.84		.43 2.46			
" $\frac{3}{8}$	4.96	.88 I	.80 1.80	9 1.91	1.94 1.	98 2.03	2.08	$\frac{1}{16}$	6.62		2.35 2	.45 2.47	2.49 2	.54 2.5	9 2.6
" 16 12	5.74 6.50		.81 1.90 .82 1.93						7.50 8.36			46 2.48 47 2.49			
" 9 16	7.24	.86 I	.83 1.9	3 1.95	1.97 2.	02 2.07	2.12	" 16 " 5 " 11	9.22	.82	2.39 2	.48 2.51	2.53 2	.58 2.6	3 2.6
8	7.96	.85 1	.84 1.9	4 I.96	1.98 2.	03 2.08	2.14	16	10.06	.81	2.40 2	.49 2.52	2.54 2	.59 2.0	4 2.0
		1 .	1	•			-								
gles.	wo wo gles.	×		•				A	xisY-Y						
Size of Angles.	Area, Two Angles.	is X-X.		•		Dis	tance E	A Back to I		7.		nches.			
Angles	ar Area, Two Angles.	Axis X-X.	0	1	B 16	Dis	tance F			Angi	es in I	7 8	I	<u> </u>	114
Angle	In.2 5.12	1.03	2.26	2.35	2.37	2.39	7 18 2.42	Back to I	Back of 18 2.47	Angl	es in II	4	I		
In. X3\frac{1}{2}X\frac{5}{16} "\frac{3}{7} "\frac{7}{16}	In.2	Axis		2.35 2.36	2.37 2.38	2.39 2.40	2.42 2.43	2.44 2.45	Back of	Angi	es in In	45	I		
In. X3\frac{1}{2}\times\frac{5}{16} 3\frac{3}{8}	In.2 5.12 6.10 7.06 8.00	1.03 1.02 1.01	2.26 2.27 2.28 2.29	2.35 2.36 2.37 2.38	2.37 2.38 2.39 2.41	2.39 2.40 2.41 2.43	2.42 2.43 2.44 2.45	2.44 2.45 2.46 2.48	3ack of 2.47 2.48 2.49 2.50	Angl 2.49 2.50 2.51 2.52	es in II 2.5 2.5 2.5 2.5 2.5 3.2.5	48	I		
In. X3½X56 12 X 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17	In.2 5.12 6.10 7.06 8.00 8.94	1.03 1.02 1.01 1.01	2.26 2.27 2.28 2.29 2.30	2.35 2.36 2.37 2.38 2.39	2.37 2.38 2.39 2.41 2.42	2.39 2.40 2.41 2.43 2.44	2.42 2.43 2.44 2.45 2.46	2.44 2.45 2.46 2.48 2.49	3ack of 2.47 2.48 2.49 2.50 2.51	Angl 2.49 2.50 2.51 2.52 2.53	es in In 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	4589	I		
E	In.2 5.12 6.10 7.06 8.00 8.94 9.84 10.74	1.03 1.02 1.01 1.01 1.00 .99	2.26 2.27 2.28 2.29 2.30 2.31 2.32	2.35 2.36 2.37 2.38 2.39 2.40 2.41	2.37 2.38 2.39 2.41 2.42 2.43 2.44	2.39 2.40 2.41 2.43 2.44 2.45 2.46	2.42 2.43 2.44 2.45 2.46 2.48 2.49	2.44 2.45 2.46 2.48 2.49 2.50 2.51	3ack of 2.47 2.48 2.49 2.50 2.51 2.52 2.53	Angl 2.49 2.50 2.52 2.52 2.52 2.52 2.53	es in In 2.5 2.5 2.5 2.5 3.2.5 4.2.5 5.2.6 6.2.6	4 5 6 8 9 1	I		
eziss In. X3½ X 5/16 6/16 1/16 1/16	F. I F. I F. I F. I F. I F. I F. I F. I	1.03 1.02 1.01 1.01 1.00 .99 .98	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51	2.44 2.45 2.46 2.48 2.49 2.50 2.51 2.53	2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55	Angl 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.55 2.55	es in In 2.5 2.5 2.5 2.5 3.2 5.5 4.2 5.5 2.6 2.6 3.2 2.6	4 5 8 9 1 3	I		
ezibu V In. X3½ X 516 "16 "16 "16 "16 "16 "16 "16	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22	1.03 1.02 1.01 1.01 1.00 .99 .98 .98	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83	2.37 2.38 2.39 2.41 2.42 2.43 2.44	2.39 2.40 2.41 2.43 2.44 2.45 2.46	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51	2.44 2.45 2.46 2.48 2.49 2.50 2.51 2.53 2.92	2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94	Angl 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.55 2.56 2.59	es in In 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.6	4 5 6 8 9 1 3	1		
ezibu V In. X3½ X 5/16 16 29 16 16 16 16 16 16 16 17 16 17 16 17 16 17 16 17 17	1. T W In.2 1. 1. 2 5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50	1.03 1.02 1.01 1.01 1.00 .98 .98 1.17 1.16 1.15	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48 2.87 2.88 2.90	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51 2.90 2.91 2.92	2.44 2.45 2.46 2.49 2.50 2.51 2.53 2.92 2.93	2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.95 2.97	2.49 2.59 2.55 2.55 2.55 2.56 2.59 2.99 2.99	es in In 2.50 2.50 2.52 2.53 2.55 2.66 2.66 2.66 3.00 3.00 3.00	4 5 6 8 9 1 3 4			
ezig V In. X3 ½ X 16 6 12 2 12 12 12 12 12 12 12 12 12 12 12 1	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62	1.03 1.02 1.01 1.01 1.00 .99 .98 1.17 1.16 1.15 1.14	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76 2.77	2.35 2.36 2:37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48 2.87 2.88 2.90 2.91	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51 2.90 2.91 2.92 2.93	2.44 2.45 2.46 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.96	3ack of 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.95 2.97 2.98	Angl 2.49 2.50 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51	es in In 2.50 2.52 2.53 2.55 4.2.56 2.66 2.66 3.00 3.00 3.00	4			
ezig V In. x3½ x 56 x 12 x 12 x 12 x 13 x 12 x 13 x 13 x 14 x 14 x 14 x 14 x 14 x 14	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80	1.03 1.02 1.01 1.01 1.00 .98 .98 1.17 1.16 1.15	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76 2.77 2.78 2.79	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48 2.87 2.88 2.90	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51 2.90 2.91 2.92	2.44 2.45 2.46 2.49 2.50 2.51 2.53 2.92 2.93	2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.95 2.97	2.49 2.59 2.55 2.55 2.55 2.56 2.59 2.99 2.99	es in II 2.5 2.5 2.5 2.5 2.6 5.2 2.6 6.3 2.6 7.3.0 8.3.0 9.3.0 9.3.0 9.3.0 9.3.0 9.3.0 9.3.0 9.3.0 9.3.0 9.3.0	4 4 55 66 8 8 55 66 8 5 6 6 8 5 6 6 6 8 5 6 6 6 6			
97/S/H In. X3½ X 5/6 S/6 S/6 S/6 S/6 S/6 S/6 S/6 S/6 S/6 S	11.2 5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80 13.88	1.03 1.02 1.01 1.01 1.00 .98 .98 1.17 1.16 1.15 1.14 1.13 1.13	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76 2.77 2.78 2.79 2.80	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86 2.87 2.89 2.90	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91 2.92	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.87 2.88 2.90 2.91 2.92 2.94 2.95	2.42 2.43 2.44 2.45 2.46 2.49 2.51 2.90 2.91 2.92 2.93 2.94 2.96 2.97	2.44 2.45 2.46 2.48 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.96 2.97 2.98 2.99	3ack of 18 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.95 2.97 3.01 3.02	Angle 2.44(2.55(2.55) 2.55(2.55) 2.55(2.55) 2.59(2.99) 3.00(3.0) 3.00(3.0) 3.00(3.0)	es in II 2.5 2.5 2.5 3.2 2.5 3.2 2.5 4.2 2.5 5.2 2.6 6.2 6.6 8.3 2.6 7.3 0.0 8.3 0.0 9.3 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4 4 5 6 8 8 9 0 0 1 1 1 2 2 4 4 8 8 8	I		
No. 1	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80	1.03 1.02 1.01 1.01 1.00 .99 .98 .98 1.17 1.16 1.15 1.14 1.13	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76 2.77 2.78 2.79	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86 2.87 2.89	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91	2.39 2.40 2.41 2.43 2.44 2.45 2.48 2.87 2.88 2.90 2.91 2.92 2.94	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51 2.90 2.91 2.92 2.93 2.94 2.96	2.44 2.45 2.46 2.48 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.96 2.97 2.98	3ack of 18 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.99 2.99 3.01	Angle 2.44(2.56(2.55) 2.55(2.55) 2.55(2.99) 2.99(3.00) 3.00(3.00) 3.00(3.00)	es in In 2.50 2.50 2.52 2.53 2.55 2.66 2.66 2.66 2.67 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	4 4 5 6 6 8 8 9 0 1 1 3 3 3 1 1 2 2 4 4 8 8 8 8 8 9 9 1			
SIGN II. X3 1 X 5 6 6 1 1 6 6 1 1 1 6 1 1 1 1 6 1	10.2 5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80 13.88 15.96 18.00	1.03 1.02 1.01 1.01 1.00 .99 .98 1.17 1.16 1.15 1.14 1.13 1.12 1.11 1.09	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.82	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86 2.87 2.89 2.90 2.92	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91 2.92	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48 2.87 2.88 2.90 2.91 2.92 2.94 2.95 2.97 2.99 3.68	2.42 2.43 2.44 2.45 2.46 2.48 2.51 2.90 2.91 2.92 2.93 2.94 2.96 2.97 2.99	2.44 2.45 2.46 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.97 2.97 2.99 3.01	3.02 3.04 3.02 3.02 3.02 3.04	Angi 2.44 2.55 2.55 2.55 2.55 2.55 2.99 2.99 3.00 3.00 3.00 3.00 3.70	es in In In In In In In In In In In In In In	4 4	3.91	3.96	4.01
No. 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80 13.88 15.96 18.00 11.86	1.03 1.02 1.01 1.01 1.00 .99 9.8 9.8 1.17 1.16 1.13 1.13 1.13 1.12 1.11 1.09	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.76 2.77 2.78 2.80 2.80 2.85 3.55 3.56	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86 2.87 2.89 2.90 2.92	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91 2.92	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48 2.87 2.88 2.90 2.91 2.92 2.94 2.95 2.97 2.99 3.68 3.69	2.42 2.43 2.44 2.45 2.46 2.48 2.49 2.51 2.90 2.91 2.92 2.93 2.94 2.96 2.97 2.99 3.02 3.71 3.71	2.44 2.45 2.46 2.48 2.50 2.51 2.53 2.92 2.93 2.95 2.96 2.97 2.98 2.99 3.04 3.73 3.74	3.04 of 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.95 2.99 3.01 3.02 3.04 3.75 3.76	Angl 2.44 2.55 2.55 2.55 2.55 2.55 2.99 2.99 3.00 3.00 3.00 3.00 3.77 3.73	es in In In In In In In In In In In In In In	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.91	3.96	4.01
In. (X3\frac{1}{2}X\frac{5}{16}X\frac{1}{2}X\frac{1}{16}	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80 13.88 15.96 18.00 11.86 13.50 15.12 16.72	1.03 1.02 1.01 1.01 1.00 .99 .98 1.17 1.16 1.15 1.14 1.13 1.12 1.11 1.09	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.85 3.55 3.55 3.56	2.35 2.36 2.37 2.38 2.39 2.41 2.43 2.84 2.85 2.86 2.87 2.89 2.90 2.92	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91 2.92	2.39 2.40 2.41 2.43 2.44 2.45 2.46 2.48 2.87 2.88 2.90 2.91 2.92 2.94 2.95 2.97 2.99 3.68	2.42 2.43 2.44 2.45 2.46 2.49 2.51 2.90 2.91 2.92 2.93 2.94 2.96 2.97 2.99 3.02 3.71	2.44 2.45 2.46 2.48 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.96 2.97 2.98 2.99 3.01 3.73	3ack of 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.97 2.98 2.99 3.01 3.02 3.04 3.07 3.75	Angl 2.44 2.55 2.55 2.55 2.55 2.55 2.59 2.99 2.99	es in In In In In In In In In In In In In In	4	3.91	3.96	4.01
Tn. 5.3.3 \(\frac{1}{2} \times \frac{5}{16} \) (1 \frac{1}{2} \times \frac{5}{16} \) (2 \frac{1}{2} \times \frac{5}{16} \) (3 \frac{1}{2} \times \frac{5}{16} \) (4 \frac{1}{2} \times \frac{5}{16} \) (5 \frac{1}{2} \times \frac{5}{16} \) (6 \frac{4}{2} \frac{5}{16} \) (6 \frac{1}{2} \frac{1}{2} \frac{5}{16} \) (7 \frac{1}{2} \frac{1}{2} \frac{1}{2}	11.62 7.22 8.36 9.50 10.62 11.72 12.80 13.88 15.96 13.86 13.50 15.12 16.72 18.30	1.03 1.02 1.01 1.01 1.00 .99 .98 .98 1.17 1.14 1.13 1.12 1.11 1.09 1.79 1.78	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.74 2.75 2.77 2.78 2.79 2.80 2.85 3.55 3.55 3.55 3.57	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86 2.87 2.89 2.90 2.92	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91 2.92	2.39 2.40 2.41 2.43 2.44 2.45 2.87 2.88 2.90 2.91 2.92 2.94 2.95 2.97 2.99 3.68 3.69 3.71 3.71 3.72	2.42 2.43 2.44 2.45 2.45 2.45 2.91 2.91 2.92 2.93 2.94 2.99 3.02 3.71 3.73 3.73 3.73 3.74	2.44 2.45 2.46 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.97 2.98 2.99 3.01 3.73 3.74 3.75 3.76 3.77	3.75 3.78 3.79 3.48 2.49 2.51 2.52 2.53 2.55 2.94 2.97 2.98 3.01 3.04 3.77 3.76 3.77 3.78	Angl 2.44'2.55'2.55'2.55'2.55'2.55'2.55'2.99'2.99	es in In In In In In In In In In In In In In	4	3.91 3.92 3.95 3.95 3.96	3.96 3.97 3.99 4.00	4.01 4.02 4.03 4.04
In. 5.33 ½ X 56 6 116 6	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62 7.22 8.36 9.50 10.62 11.72 12.80 13.88 15.96 18.00 11.86 13.50 15.12 16.72	1.03 1.02 1.01 1.01 1.00 .98 .98 1.17 1.16 1.15 1.14 1.13 1.12 1.19 1.80 1.79 1.78 1.77	2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.74 2.75 2.76 2.77 2.80 2.80 2.85 3.55 3.55 3.55 3.55	2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.43 2.83 2.84 2.85 2.86 2.87 2.89 2.90 2.92	2.37 2.38 2.39 2.41 2.42 2.43 2.44 2.46 2.85 2.86 2.88 2.88 2.89 2.91 2.92	2.39 2.40 2.41 2.43 2.44 2.45 2.48 2.88 2.90 2.91 2.92 2.94 2.95 2.97 2.99 3.68 3.69 3.71	2.42 2.43 2.44 2.45 2.45 2.45 2.90 2.91 2.92 2.93 2.94 2.97 2.93 3.71 3.71 3.73 3.73	2.44 2.45 2.46 2.48 2.49 2.50 2.51 2.53 2.92 2.93 2.95 2.96 2.97 2.98 2.99 3.01 3.73 3.74 3.75 3.76	3.75 3.78 3.48 2.49 2.50 2.51 2.52 2.53 2.55 2.94 2.99 3.01 3.02 3.75 3.75 3.75	Angl 2.44 2.55 2.55 2.55 2.55 2.55 2.59 2.99 2.99	es in In 2.5 co 2.5 co 2.6 co	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.91 3.92 3.92 3.94 3.95	3.96	

Moments of Inertia about Axis Y-Y equal one-half of values given in Table of Moments of Inertia of Four Angles, Table 36.

TABLE 40.

RADII OF GYRATION OF TWO ANGLES WITH UNEQUAL LEGS, BOTH AXES.

SHORT LEGS OUT.

		f Two	Gyratic Angles Turned	l,		X-		F.—.x	7		M	or Dista casured ack to F	from		
Size of Angles.	Area Two	X-X.	Distanc		is Y-Y	k in Inc	hes.	Size of Angles.	Area Two Angles	х-х.	Distan		kis Y-Y	k in Inc	hes.
In,	In.º	Axis	0 1	16	1	1 1	1	ln.	In.2	Axis	0	Y [®] 8	1	1 1	1
2 2 x 2 x 3 6 6 6 7 16 6 6 7 16 7 16 7	1.62 2.12 2.62 3.10 3.56 2.88 3.56 4.22 4.86 5.50	.78 .77 .76 1.12 1.11 1.10 1.09	.96 1.0 .97 1.0 .98 1.0	9 .91 1 .93 2 .94 3 .95 4 1.06 5 1.08 7 1.09 7 1.10 8 1.11	.93 .95 I .96 I .97 I I.09 I I.10 I I.11 I I.12 I	.98 1.02 .00 1.05 .01 1.06 .02 1.07 .13 1.18 .15 1.20 .16 1.21 .17 1.22	1.09 5 1.10 6 1.11 7 1.13 8 1.23 1.24 1 1.26 2 1.27 3 1.29	3x2½x¼ 56 36 7 16 2 3½x3x¼ 56 7 16 7 16 7 16	3.86 4.60 5.30	.94 .93 .92 .91 I.11 I.10 I.09 I.08	1.00 1.0 1.01 1.1 1.02 1.1 1.03 1.1 1.04 1.1 1.20 1.2 1.22 1.3 1.23 1.3 1.24 1.3	0 1.12 1 1.14 2 1.15 4 1.16 9 1.31 0 1.32 1 1.33 2 1.34	1.14 I 1.16 I 1.17 I 1 18 I 1.33 I 1.35 I 1.36 I 1.37 I	.19 I.2 .21 I.2 .22 I.2 .23 I.2 .38 I.4 .39 I.4 .40 I.4	4 1.26 6 1.3 7 1.3 8 1.3 3 1.4 4 1.4 5 1.5 6 1.5
4X3X+56 4 156 4 156 4 156 4 156 4 156 4 156 5 156 6 156 6 156 6 156 7 156	4.18 4.96 5.74 6.50 7.24 7.96	1.27 I 1.26 I 1.25 I 1.25 I 1.24 I 1.23 I	.17 1.2 .17 1.2 .18 1.2 .20 1.2 .21 1.3	5 1.28 6 1.28 7 1.29 8 1.31 0 1.32	1 30 I 1.31 I 1.32 I 1.33 I 1.35 I	.34 1.38 .35 1.39 .36 1.40 .36 1.4 .38 1.4 .40 1.4 .41 1.46	1.44 1.45 1.46 1.48 1.50		5.72 6.62 7.50 8.36 9.22 10.06	1.61 1.60 1.59 1.58 1.57	1.09 1.1 1.09 1.1 1.10 1.2 1.11 1.2 1.12 1.2 1.14 1.2 1.15 1.2	8 1.21 O 1.22 I 1.23 2 1.24 3 1.26	I .23 I I .24 I I .25 I I .26 I I .28 I	.27 I.3 .29 I.3 .30 I.3 .31 I.3 .33 I.3	2 I.3 4 I.3 5 I.4 6 I.4 8 I.4
Size c	Area Two Angles	х-х				Dis	tance I		xis Y-Y Back of		s in Incl	nes.			
In.	In.s	Axis	0	ŧ	18	1 1	7	1 1	9 18	1	1 1	1	I	11	x1
5x4x 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.50	1.61 1.60 1.59 1.58 1.57 1.56 1.56 1.55 1.93 1.92 1.91 1.90 1.89 1.88 1.85 2.57	1.33 1.34 1.35 1.36 1.37 1.38 1.38 1.40 1.50 1.51 1.52 1.53 1.55 1.56 1.58 1.60 2.31	1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.49 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.66	1.43 1.44 1.45 1.47 1.48 1.49 1.50 1.51 1.60 1.61 1.62 1.63 1.64 1.66 1.67 1.69	1.46 1.47 1.49 1.50 1.51 1.52 1.54 1.62 1.63 1.65 1.66 1.67 1.68 1.69 1.71	1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.66 1.67 1.68 1.69 1.71 1.72 1.74 1.77 2.45 2.46	1.50 1.51 1.52 1.54 1.55 1.56 1.57 1.59 1.66 1.68 1.69 1.70 1.71 1.73 1.74 1.76 1.76 2.47	1.52 1.53 1.54 1.56 1.57 1.59 1.61 1.70 1.71 1.72 1.73 1.75 1.76 1.79 1.82 2.49 2.51	1.556 1.576 1.581 1.591 1.601 1.621 1.721 1.741 1.751 1.761 1.814 2.522 2.533	1.60 1.62 1.63 1.64 1.66 1.67 1.77 1.78 1.79 1.81 1.82 1.84 1.86	2.61	2.66	2.70	2.71
(c 9 16 15 16 16 16 16 17 18 16 17 18 16 16 17 18 16 16 17 18 16 16 17 18 16 16 16 16 16 16 16 16 16 16 16 16 16	13.50 15.12 16.72 18.30 19.88 22.96 26.00	2.55 2.54 2.54 2.53 2.51	2.32 2.33 2.34 2.34 2.35 2.37 2.39			2.46 2.46 2.47 2.48 2.5 I	2.46 2.48 2.49 2.49 2.50 2.53 2.54	2.48 2.50 2.51 2.52 2.52 2.55 2.57	2.51 2.52 2.53 2.54 2.55 2.57 2.59	2.53 2.54 2.55 2.56 2.57 2.59 2.62	2.59 2.60 2.61 2.62 2.64	2.62 2.63 2.64 2.65 2.66 2.69 2.71	2.66 2.69 2.70 2.71 2.74 2.76	2.71 2.73 2.74 2.75 2.77 2.79 2.81	2.70 2.70 2.80 2.80 2.80 2.80 2.80

TABLE 41 SAFE LOADS OF SINGLE ANGLE STRUTS EQUAL LEG ANGLES

AMERICAN BRIDGE COMPANY STANDARDS

Safe loads in thousands of pounds for least radius of gyration $p = \text{16,000} - 70 \, \text{l/r}$

3

To left of heavy line values of 1/r do not exceed 125 To right of heavy line values of 1/r do not exceed 150

Size	Thickness						Len	gth in l	Feet					
Inches	Inches	3	4	5	6	7	8	9	10	11	12	13	14	15
$I^{\frac{1}{2}} \times I^{\frac{1}{2}}$	3 16	4												
$1\frac{3}{4}\times1\frac{3}{4}$	3 16 1 4	5 7	4 5											
2 ×2	3 16 1 4 5 16	7 9 11	5 7 8											
$2\frac{1}{2} \times 2\frac{1}{2}$	3 16 1 4 5	10 13 16	8 11 13	7 9 11	5 7 8						• • • • •			
3 ×3	16 16 38 7	17 21 25 28	15 18 22 25	13 16 18 21	11 13 15 18	9 11 12 14								
$3\frac{1}{2} \times 3\frac{1}{2}$	5 16 8 7 16	26 31 35	23 28 32	2I 25 28	18 22 25	16 19 2J	13 16 18							
4 ×4	5 13 8 16 12	31 37 42 48	28 34 39 44	26 31 35 40	23 27 32 36	21 24 28 32	18 21 24 28	15 18 21 24						
5 ×5	38 7 16 1 9	49 56 64 71	46 53 60 67	42 49 56 62	39 45 52 58	36 42 47 53	33 38 43 48	30 35 39 44	27 31 35 39	24 27 31 35	21 24 27 30			
6 ×6	2007 6 - (20 a 6 - 5) to	60 70 80 89 98	57 67 76 85 93	54 63 72 80 89	51 59 67 75 83	48 56 63 71 78	45 52 59 66 73	42 49 55 62 68	39 45 51 57 63	36 42 47 53 58	33 38 43 48 53	30 34 39 43 48	27 31 35 39 43	

Note: The values in this table have been calculated on the assumption that the angle is fastened by both legs.—M. S. K.

TABLE 42
SAFE LOADS OF SINGLE ANGLE STRUTS
UNEQUAL LEG ANGLES
AMERICAN BRIDGE COMPANY STANDARDS

Safe loa radiu	ds in thousands of gyration p = 16,00			r least	3-	7	To	left of hexceed In right of exceed In	heavy li			
Size	Thickness					Le	ngth in I	Peet				
Inches	Inches	3	4	5	6	7	8	9	10	11	12	13
$2 \times 1\frac{3}{8}$	3 16	5										
2½×2	16 16 8 16	8 11 13	7 8 10	5 6 8								
3 ×2	16	12 15	10 12	7 9								
3 ×2½	16 3 8	15 18 21	13 16 18	11 13 15	8 11 12							
3½×2½	1 5 16 3 8	16 20 24	14 17 21	12 15 17	10 12 14							
3½×3	16 3 6 7 16 1	23 27 32 36	2I 24 28 32	18 21 24 28	15 18 21 24	13 15 17 20						
×3	16 3 5 7 16 1 2	25 30 35 39	23 27 31 35	20 23 27 31	17 20 23 26	15 17 20 22	12 14 16 18					
5 ×3½	16 3 5 7 16 1 2	32 39 45 50	30 35 41 46	27 32 37 42	24 29 33 37	21 25 29 33	18 22 25 28	15 18 21 24				
5 ×4	16 12 2 2 3 16 5 5	47 55 62 70 77	44 51 58 65 71	41 47 53 59 65	37 43 49 54 59	34 39 44 49 54	30 35 39 44 48	27 31 35 39	23 26 30 34 36	20		

Note: The values in this table have been calculated on the assumption that the angle is fastened by both legs.—M. S. K.

TABLE 43

SAFE LOADS OF TWO ANGLE STRUTS, AXIS I-I EQUAL LEG, AND UNEQUAL LEG WITH LONG LEG TURNED OUT AMERICAN BRIDGE COMPANY STANDARDS

		ads in ct to p=	axis 1			ounds	with	ı	2_) - %	<u> </u>	3	To	xceed	of h	eavy eavy						
Size of Angles	Thickness	Radius of Gyration	Weight of Two Angles per Foot	Area of Two Angles								L	engt	h in	Feet								
In.	In.	In.	Lb.	In.2	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
2 ×2	$\frac{3}{16}$ $\frac{1}{4}$.	.98		I.44 I.88	16 21	14 19	13	12 16	11 14	9	8											: : :	
2½×2	$\frac{3}{16}$ $\frac{1}{4}$ $\frac{5}{16}$	I.24 I.25 I.26	7.4	1.62 2.12 2.62	19 25 32	18 24 30	17 23 28	16 21 26	15 20 25	14 18 23	13 17 21	12 15 19	11 14 18	9 13 16							• • •		
$2\frac{1}{2} \times 2\frac{1}{2}$	$\frac{\frac{1}{4}}{\frac{5}{16}}$	I.19 I.20	8.2 10.0	2.38 2.94	28 35	26 33	25 31	23 29	2I 26	20 24	18	16 20	15 18	16									
3 ×2	1 5 16 3		8.2 10.0 11.8	_	30 37 44	29 36 42	27 34 40	26 33 38	25 31 37	24 29 35	22 28 33	21 26 31	20 25 29	18 23 27	17 21	16 20 23	14 18 22	 17 20					
3 ×2½	$\begin{array}{c} \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \end{array}$		9.0 11.2 13.2		33 41 48	31 39 46	30 37 44	28 35 42	27 33 40	25 31 37	24 29 35	22 28 33	21 26 31	19 24 29	18 22 27	16 20 24	15 18 ,22						
3 ×3	14 5 16 38 7 16	I.41 I.42	I2.2 I4.4	4.22 4.86	36 44 52 61 69	34 42 50 58 66	32 40 47 55 62	30 38 45 52 59	29 36 42 49 56	27 33 40 46 53	25 31 37 43 49	23 29 35 40 46	22 27 32 38 43	20 25 30 35 40	18 23 27 32 37	17 21 25 29 33	30						
$3\frac{1}{2}\times2\frac{1}{2}$	$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	1.71 1.73 1.74 1.76 1.77	12.2 14.4 16.6	4.22 4.86	38 47 55 64 72	36 45 53 62 70	35 43 51 59 67	33 41 49 57 65	32 40 47 55 62	31 38 45 52 59	29 36 43 50 57	28 34 41 48 54	26 33 39 45 51	25 31 37 43 49	23 29 35 41 46	22 28 33 38 44	21 26 31 36 41	19 24 29 34 38	18 22 27 31 36	16 21 25 29 33	27 3I		
3½×3	$\begin{array}{c} 5 \\ 16 \\ 38 \\ 7 \\ \hline 16 \\ \frac{1}{2} \end{array}$	1.66 1.67 1.69 1.70	15.8 18.2	4.60 5.30	50 60 69 78	48 57 66 75	46 55 64 72	44 53 61 69	42 50 58 66	40 48 56 63	38 46 53 60	36 44 50 58	34 41 48 54	32 39 45 52	30 37 42 49	28 34 40 46	27 32 37 43	25 30 34 40	23 27 32 37	29 34			
3½×3½	5 16 3 7 16 12	[4.96 5.74	54 64 74 84	52 61 71 81	49 59 68 77	47 56 65 74	45 53 62 71	43 51 59 67	41 48 56 64	38 46 53 61	36 43 50 57	34 41 47 54	32 38 45 51	30 35 42 47	27 33 39 44	25 30 36 40	23 28 33 37				
↓ ×3	5 16 3 8 7 16 1 2 9 16 5 8	1.94 1.95 1.96 1.97		4.96 5.74 6.50	56 66 77 87 97	54 64 75 85 94 104	52 62 72 82 91	51 60 70 79 88 97	49 58 67 76 85 94	47 56 65 73 82 90	45 54 62 71 79 87	43 51 60 68 76 84	41 49 57 65 73 80	40 47 55 62 70 77	38 45 52 59 67 74	36 43 50 56 64 70	34 41 47 54 61	32 39 45 51 57 64	30 36 42 48 54 60	29 34 40 45 51	27 32 37 43 48 53	25 30 35 40 45 50	23 28 33 43 43 43

TABLE 43.—Continued

SAFE LOADS OF TWO ANGLE STRUTS, AXIS 1-1 EQUAL LEG, AND UNEQUAL LEG WITH LONG LEG TURNED OUT AMERICAN BRIDGE COMPANY STANDARDS

Safe loads in thousands of pounds with respect to axis I-I p = 16,000 - 70 l/r

To left of heavy line values of 1/r do not exceed 125 To right of heavy line values of 1/r do not exceed 150

											1			_	ACCC									
Size of Angles	Thickness	Radius of Gyration	Weight of Two Angles per Foot	Area of Two Angles									Leng	gth ir	n Fee	t								
In.	In.	In.	Lb.	In.2	6	7	8	9	10	ıı	12	13	14	16	18	20	22	24	26	28	30	32	34	36
4×4	5 16 3 8 7 16	1.83	16.4 19.6 22.6 25.6		76 88	61 73 85 96	59 70 81 93	57 68 78 89	54 65 75 86	52 62 72 82	50 60 69 79	48 57 66 75	45 54 63 72	'41 49 57 65	36 44 51 58	32 38 45 52	28 33 39 45							
5×3	5 16 3 8 7 16 12	2.48	16.4 19.6 22.6 25.6	6.62	80 93	65 78 90 102	64 76 88 100	62 74 86 97	61 72 84 95	59 70 81 92	57 68 79 90	56 66 77 87	54 64 75 85	51 61 71 80	47 57 66 75	44 53 61 70	41 49 57 65	38 45 52 60	34 41 48 55	31 37 44 50	28 33 39 45			• •
5×3½	5 16 2 2 7 16 12 9 16 5 8 11 16 3 4	2.40 2.41 2.43 2.44 2.45 2.46	17.4 20.8 24.0 27.2 30.4 33.6 36.6 39.6	6.10 7.06 8.00 8.94	85 98 112 125 137 150	122 134 146	119 131 143	127 139	76 89 100 112 124 135	120 132	128	59 70 81 92 103 114 124 135	110 121	104 114		46 55 64 73 81 90 99	42 51 59 67 75 83 91 99	39 46 54 62 69 76 84 92	35 42 49 56 63 70 77 84	32 38 44 51 57 63 70 76	28 34 40 45 51 56 62 68			
5×5	7 16 12	2.23	24.6 28.6 32.4	8.36	115	II2	94 109 124	91 105 120	88 102 116	86 99 112	96	80 93 106	77 90 102	72 83 95	66 77 88	61 71 81	55 64 74		44 52 59					• •
6×3½	3/87-6	2.96 2.98	23.4 27.0 30.6 37.8	7.94	114	111 126	109 124	121	105	102 116	114	111		103	74 87 98 122	71 82 93 115	67 78 88 109	83	68	55 64 73 91	68	55 63	43 50 57 72	46 52
6×4	38 7 16 12 9 16 5 8 1 16 3 4	2.88 2.90 2.91 2.92 2.93	43.6	8.36	136 152 167 183	117 133 149 164 179	114 130 145 161 176	112 127 142 157 172	109 124 139 154 169	107 122 136 151 165	105 119 133 147 161	102 116 130 144 158	100 113 127 140 154	95 108 121 134 147	90 102 115 127 139	120 131	113	75 86 96 107	70 80 90 100	84 93 102	61 69 78 86 95	56 64 72 80 87	44 51 58 65 73 80 87	46 53 59 66 72
6×6	3 8 7 16 12 9 16 16 16 3 4	2.64 2.65 2.66 2.67	39.2 43.8 48.4 53.0	8.72 10.12 11.50 12.86 14.22 15.56 16.88	162 181 201 220	139 159 177 196 215	136 155 173 192 210	133 151 169 187 205	130 148 165 183 200	126 144 161 178 195	123 140 157 174 190	120 136 153 169 186	117 133 149 165 181	110 126 141 156 171	104 118 132 147 161	97- 111 124 138 151	103 116 129 141	96 108 120 132	89 100 111 122	82 92 102 112	74 84 93 102	50 59 67 75 84 92		

TABLE 44

SAFE LOADS OF TWO ANGLE STRUTS, AXIS 2-2 EQUAL LEG, AND UNEQUAL LEG WITH LONG LEG TURNED OUT AMERICAN BRIDGE COMPANY STANDARDS

Š		ct to a	thousai xis 2–2 16,000			with	2-	1	, →%"	2	To right	ed 125	eavy li		s of 1/r		
Section		ius of ation	Weight of Two Angles per Foot	Area of Two Angles	Thickness					1	ength	in Fee	t				
S ₂	Г2	r ₁	H	1													
In.3	In.	In.	Lb.	In.2	In.	3	4	5	6	7	8	9	10	11	12	13	14
			\$				2	"×2"	Angles							•	
.38	.62 .61	.98 .99	5.0 6.4	I.44 I.88	3 16 1 4	17 22	15	13	11	9 12							
							2	¹″×2″	Angle	8							
.40 .50 .62	.60 .59 .58	I.24 I.25 I.26	5.6 7.4 9.0	1.62 2.12 2.62	3 16 1 4 5	19 25 31	17 22 27	15 19 23	12 16 19	10 13 15							
		·			-		<u> </u>		' Angle				,				
.80 .96	·77	I.19 I.20	8.2	2.38	1 4 5 16	30 37	28 34	25 31	22 28	20	17 21	15					
							3	″×2″	Angles								
.50 .64 .74	·57 ·57 ·56	1.52 1.53 1.55	8.2 10.0 11.8	2.38 2.94 3.46	1 5 16 3 8	28 34 40	24 30 35	2I 25 29	17 21 24	14 17 19							
''		55		2 1		-			Angles					,		1	1
.80 .98 1.16	·75 ·74 ·74	I.45 I.46 I.48	9.0 11.2 13.2	2.62 3.24 3.84	1 4 5 16 3 8	33 41 48	30 37 44	27 33 40	24 30 35	21 26 31	18 22 27	16 19 22					
ļ —									Angles						-		
1.16 1.42 1.66 1.90 2.14	.93 .92 .91 .91	1.39 1.40 1.41 1.42 1.44	9.8 12.2 14.4 16.6 18.8	2.88 3.56 4.22 4.86 5.50	1 4 5 1 6 3 8 7 1 6 1 2	38 47 56 64 73	36 44 52 60 67	33 41 48 55 62	30 37 44 50 57	28 34 40 46 52	25 31 36 42 47	22 28 32 37 42	20 24 29 33 37	17 21 25 28 32			
				1			31/	″×2⅓″	Angle	9					1		
.82 I.00 I.18 I.36 I.52	.74 .73 .72 .71 .70	1.71 1.73 1.74 1.76 1.77	9.8 12.2 14.4 16.6 18.8	2.88 3.56 4.22 4.86 5.50	14 5 16 3 8 7 16 12	36 45 53 61 68	33 41 48 55 62	30 36 43 49 55	26 32 38 43 48 Angles	23 28 33 38 42	20 24 28 32 35	17 20 23					
I.44 I.70 I.96 2.20	.90 .90 .89 .88	1.66 1.67 1.69 1.70	13.2 15.8 18.2 20.4	3.86 4.60 5.30 6.00	5 16 3 8 7 16 12	51 61 70 79	47 56 65 73	44 52 60 67	40 48 55 62	37 44 50 56	33 39 45 50	29 35 40 44	26 31 35 39	22 26 30 33			

TABLE 44.—Continued

SAFE LOADS OF TWO ANGLE STRUTS, AXIS 2-2

EQUAL LEG, AND UNEQUAL LEG WITH LONG LEG TURNED OUT AMERICAN BRIDGE COMPANY STANDARDS

Se		to ax	is 2-2	nds of		ds wit	h re-	9-		×			exc Co ri	eed	125 of he						lo no	
Section Modulus	Radi Gyra		Weight of Two Angles per Ft.	Area of Two Angles	Thickness							Le	ngth	in F	eet							
In.ª	In.	In.	Lb.	In.3	In.	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
			1				- 1			1" A	ngles								1			-
1.96 2.30 2.64 2.98	1.08 1.07 1.07 1.06	1.60 1.61 1.63 1.64		4.18 4.96 5.74 6.50	5 16 3 7 16 12	57 68 78 89	54 64 74 83	51 60 69 78	47 56 65 73	44 52 60 68	41 48 56 63	38 44 51 58	35 40 47 53	31 37 42 47	33	25 29 33 37						
								4	4″×3	" An	gles											
1.48 1.74 1.98 2.24 2.46 2.70	.86	1.93 1.94 1.95 1.96 1.97	14.4 17.0 19.6 22.2 24.8 27.2	4.18 4.96 5.74 6.50 7.24 7.96	5 3 67 6 12 9 6 5 8	55 65 75 85 95	51 60 70 79 88 96	47 56 64 72 81 88	43 51 59 66 73 80	39 46 53 60 66 72	35 41 48 53 59 64	31 37 42 47 52 57	27 32 36 40 45 49	23 27 								
									4"×4	" An	gles											
3.50	I.24 I.23 I.23 I.22	1.81	19.6 22.6	4.80 5.72 6.62 7.50	5 16 7 16 1	67 80 92 105	64 76 88 99	61 72 83 94	57 68 79 89	54 64 74 84	51 60 70 79	48 56 65 74	44 53 61 68	41 49 56 63	45	35 41 47 53	31 37 43 48	28 33 38 43				
									5″×3	" An	gles											
1.50 1.78 2.04 2.30	.84	2.47 2.48 2.49 2.50		4.80 5.72 6.62 7.50	5 16 3 8 7 16 1	63 74 86 97	58 69 79 90	53 63 73 82	48 57 66 74	44 51 60 67	39 46 53 59	34 40 46 52	29 34 40 44									
								5	"×3	≟″ Ar	ngles											
2.04 2.42 2.78 3.12 3.46 3.80 4.12 4.44	I.02 I.01 I.01 I.00 .99 .98	2.40 2.41 2.43 2.44 2.45 2.46 2.48	17.4 20.8 24.0 27.2 30.4 33.6 36.6 39.6	5.12 6.10 7.06 8.00 8.94 9.84 10.74 11.62	5 16 3 8 7 16 12 9 16 11 16 13 4	69 83 95 108 121 132 144 156	65 78 89 101 113 124 135 146	61 73 84 95 105 116 126 136		53 62 72 81 90 99 107 116	48 57 66 75 83 91 98 106	44 52 60 68 75 82 89 96	40 47 54 61 68 74 80 86	36 42 48 55 60 66 71 76	37 43 48 53 57 61							
		1	1	1 .			1	1	5″×5	5" An	gles	1			_	_		1	1		_	1
4.84 5.58 6.30	1.56 1 55 1.54	2.22 2 23 2 24	24.6 28.6 32.4	7.22 8.36 9.50	3 16 16 2	104 120 136	100 116 131	96 111 126	92 107 121	88 102 116	84 98 111	81 93 105	77 88 100	73 84 95		65 75 85	61 70 79	57 66 74	53 61 69	49 57 64	46 52 59	42 48 54

TABLE 44.—Continued

SAFE LOADS OF TWO ANGLE STRUTS, AXIS 2-2 EQUAL LEG, AND UNEQUAL LEG WITH LONG LEG TURNED OUT AMERICAN BRIDGE COMPANY STANDARDS

s		ect to	axis:	sands (2–2 00 – 7	_	unds	witl	h	2		1	==_; ;"	L	To	xceed right	1 125	eavy			of 1			
Section Modulus		lius of ation	Weight of Two Angles per Foot	Area of Two Angles	Thickness						-		Le	ngth	in F	`eet							
S ₂	r ₂	r ₁	PA																				
In.3	In.	In.	Lb.	In.2	In.	3	4	5	6	7	8	9	10	11	12	13	14	16	18	19	20	22	23
									6'	″×3	/′ A	ngles											
	.98	2.95 2.96 2.98 3.00	27.0 30.6	7.94	3 87 6	92 107 121 148	113	93 105	86 97	69 79 89	73 82	66 74	51 59 66 80	46 52 58 71	45 51								
										6"	′×4′	' Ang	gles										
3.70 4.16 4.62 5.08 5.52	1.16 1.15 1.14 1.13 1.13	2.92 2.93	28.6 32.4 36.2 40.0 43.6	8.36	1/2 9 1/6 5/8	100 116 131 147 161 177	110 124 139 153 167	117 131 144 157	97 110 123 135 148	127 138	118 129	100 109 119	110	59 67 76 84 92 100	76 83 91	48 55 62 68 74 81 87	43 49 55 60 66 72 76						
									6'	′×6′	" Ar	igles											
8.14 9.22 10.28 11.32 12.34	1.87 1.86 1.85 1.84 1.83	2.64 2.65 2.66 2.67	34·4 39·2 43·8 48·4 53·0	8.72 10.12 11.50 12.86 14.22 15.56 16.88	1 2 16 5 8 11 16	148 168 188 208 228	144 163 182 202 220	139 158 177 195 213	153 171 189 206	130 148 165 182 199	126 142 159 176 192	121 137 153 169 185	117 132 147 163 178	97 112 127 142 156 170 185	122 136 150 163	117 130 143	98 111 124 137 149	77 89 101 112 124 135 146	111 120	75 85 95 104	71 80 89 98 106	77 85 92	57 65 71 78

TABLE 45

SAFE LOADS OF TWO ANGLE STRUTS

EQUAL LEG, AND UNEQUAL LEG WITH SHORT LEG TURNED OUT AMERICAN BRIDGE COMPANY STANDARDS

Saf	e loads adius c	f gyra	ousands tion 16,000			or least	9-	1	- % "	4	exceed	d 125 t of hea			es of 1/		
Section Modulus	Radi Gyra		Weight of Two Angles per Foot	Area of Two Angles	Thickness					L	ength	in Fee	t				
In.8	In.	In.	Lb.	In.2	In.	3	4	5	6	7	8	9	10	11	12	13	1.4
				["XI}"		- 1							
.21	.78 .79	.46	3.6	1.06 1.38	3 16 14	11	9	7 9									
							2"	×11"	Angles	3							
.36 .46	.67 .68	.63 .63	4.2 5.4	1.20	3 16 1	14	13	11	10 12	8							
							12	"×13"	Angle	8							
.28	.88	·54 ·53	4.4 5.6	1.24	3 16 1 4	14 18	12 16	10	8								
							2'	′×2″	Angles								
.38 .50	.98 .99	.62 .61	5.0 6.4	1.44 1.88	$\begin{array}{c} \frac{3}{16} \\ \frac{1}{4} \end{array}$	17 22	15 20	13	11	9 12						<u> </u>	
							2	"×2"	Angles	3							
.58 .76 .94	.92 .94 .95	·79 ·78 ·78	5.6 7.4 9.0	1.62 2.12 2.62	$ \begin{array}{r} 3 \\ \hline 16 \\ \hline 4 \\ 5 \\ \hline 16 \end{array} $	2 I 27 33	19 25 31	17 23 28	16 20 25	14 18 22	12 16 19	10 13					
7	-73	.,,,,,	1 9.0		1.0	1 33		"X2}"			1 -7	-/	1			1	
.80 .96 1.14	I.19 I.20 I.21	·77 .76	8.2 10.0 11.8	2.38 2.94 3.46	14 5 16 3 8	30 37 44	28 34 40	25 31 36	22 28 32	20 24 28	17 21 24	15 18 21					
		- 75		13.4.	-	- 11		"×2".					-	,	,		
1.08 1.32 1.56	.89 .90	·95 ·95 ·94	8.2 10.0 11.8	2.38 2.94 3.46	1 5 16 3 8	31 39 46	29 36 43	27 33 39	25 31 36	22 28 33	20 25 30	18 22 27	16 20 23	13 17 20			
							3"	′×2 <u>1</u> ″	Angles	3							
1.12 1.38 1.62	1.13 1.14 1.16	·95 ·94 ·93	9.0 11.2 13.2	2.62 3.24 3.84	16 16 38	35 43 51	33 40 48	30 37 44	28 34 41	26 32 37	23 29 34	2I 26 30	19 23 27	16 20 23			
								"×3"	Angles								
1.16 1.42 1.66 1.90 2.14	I.39 I.40 I.41 I.42 I.44	.93 .92 .91 .91	9.8 12.2 14.4 16.6 18.8	2.88 3.56 4.22 4.86 5.50	16 16 16 7 16 12	38 47 56 64 73	36 44 52 60 67	33 41 48 55 62	30 37 44 51 57	28 34 40 46 52	25 31 36 42 47	23 28 32 37 42	20 24 29 33 37	17 21 25 28 32			

TABLE 45.—Continued

SAFE LOADS OF TWO ANGLE STRUTS SHORT LEG TURNED OUT

AMERICAN BRIDGE COMPANY STANDARDS

Se	afe lo radii	18 of §	gyrati	sands o on 5,000 -			for le	ast			F _{×′}	-2		exce o rig	t of eed I tht of eed I	25 hea							
Section Modulus		dius of ation	Weight of Two Angles per Foot	Area of Two Angles	Thickness								Lei	ngth	in F	eet							
S2	r ₁	Г2								ı	I _		ſ	1	[1	1	1	I .		1.1	1	
In.ª	In.	In.	Lb.	In.º	In.	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18	19	20 21
		1	1	1 .		1 1				"X3	An	gies			1		- 1			1 1		1	
2.92 3.36 3.78 4.18	I.31 I.32 I.33 I.34	I.25 I.25 I.24	17.0 19.6	5.74 6.50 7.24	16	59 69 80 91 101	56 66 76 87 96 106		59 69 78 86 95	48 56 65 73 82 89	45 53 61 69 77 84	42 50 57 65 72 78	39 46 53 60 67 73	37 43 49 56 62 68	57	31 36 42 47 52 57	28 33 38 43 47 51	25 30 34 38 42 46					
									5'	"×3	" An	gles											
4.48 5.16 5.82 6.46	I.23 I.24 I.25 I.26	1.60 1.59 1.58	16.4 19.6 22.6 25.6 28.6 31.4	6.62 7.50 8.36	5 16 3 8 7 16 12 9 16 5 8	117	64 76 88 100 111 123		111	54 64 75 85 95 105	50 60 70 80 89 99		44 52 61 70 78 87	40 49 57 65 72 81	37 45 52 60 67 75	34 41 48 54 61 69	31 37 43 49 56 63	27 33 39 44 50 57	51		• • •		
2 88	T 45	1.61	17.4	5.12	8	73	70	67	64	61	58	55	52	49	46	42	40	37	34	31	28	1	
4.58 5.28 5.98 6.64 7.30 7.94	I.46 I.47 I.49 I.50 I.51 I.52	1.60 1.59 1.58 1.57 1.56 1.56	20.8 24.0 27.2 30.4 33.6 36.6	6.10 7.06 8.00 8.94	5 16 3 87 16 15 11 16 3 4	87 101 114 128 141 154	84 97 110 123 136 148	80 93 105 118 130 142	77 89 101 113 125 136	73 85 96 108 119	70 81 92 103 114 124	66 77 87 98 108 118	73 83 93 103	59 69 78 88 97 107	55 65 74		48 57 65 73 81 89 97	45 53 60 68 75 83 90	48 56 63 70 77 84	38 44 51 58 64 71	34 40 47 53 59 65	59	
						, ,			6"	X3⅓	" An	gles											
7.50 8.48 9.44 10.38 11.30	I.40 I.41 I.42 I.43 I.45	1.92 1.91 1 90 1.89	27.0 30.6 34.2 37.8 41.2		367 16 15 16 15 16 16 13 14	128 143 158 173	137 152 166	117 131 145 159	125 138 152 165	81 94 106 119 132 145 157	113 125 138 150	84 96 107 119 131 142	112 124	117		56 65 74 84 93 103 112	52 60 69 78 86 96 104	47 55 64 72 80 89 97	43 51 58 66 73 82 89	39 46 53 60 67 75 82			
66.	7.60	T 00	246	7.00	3	TOA	I	0		1		1	-0	~ .		6-1	601	# 0	-6	ral	10		
7.66 8.66 9.66 10.62	1.63 1.65 1.66 1.67 1.68	1.92 1.91 1.90 1.90 1.89	40.0 43.6	8.36	7 16 12 9 16 5 8 1 16 3 4	170 186	117 133 148 164 179	128 143 158 173	123 138 152 167	118 132 146 160	127 140 154	122 134 147	116 129 141	123 135	71 82 94 105 117 128 140	111	115		56 65 75 84 93 103	70 79 87 96	65 6 73 6 81 7 90 8	52 4 50 5 58 6 76 7	18

TABLE 46
PROPERTIES AND ELEMENTS OF Z BARS

						+0			1				
		Actu	al Size	-			ents of tia, I	Radii	of Gyra	tion, r			
Size				Foo		Inc	hes*		Inches		es es	t or	Size
Nominal Size	Thickness	Web	Flange	Weight Per Foot	Area	Neutral Axis Through Center of Gravity Perpen- dicular to Web	Neutral Axis Through Center of Gravity Coin- cident with Web	Neutral Axis Through Center of Gravity Perpen- dicular to Web	Neutral Axis Through Center of Gravity Coin- cident with Web	Least Radius, Neutral Axis Diagonal	M Gage	Max. Rivet or Bolt in Flange	Nominal Size
In.	In.	In.	In.	Lb.	Sq. In.	Thra	of of cide	The Spin	Tho of o	72	In.	In	In.
	16	6 616 61	3 1 6 3 5 8	15.6 18.3 21.0	4.59 5.39 6.19	25.32 29.80 34.36	9.11 10.95 12.87	2.35 2.35 2.36	1.41 1.43 1.44	0.83 0.83 0.84	214	7 8	
6	16 2 16	6 61 61 61	3 1 6 3 1 6 3 8	22.7 25.4 28.0	6.68 7.46 8.25	34.64 38.86 43.18	12.59 14.42 16.34	2.28 2.28 2.29	1.37 1.39 1.41	0.81 0.82 0.84	214	7 8	6
	13 13 7	6 616 618	3½ 3½ 3½ 35 35	29.3 31.9 34.6	8.63 9.40 10.17	42.12 46.13 50.22	15.44 17.27 19.18	2.21 2.22 2.22	1.34 1.36 1.37	0.81 0.82 0.83	21/4	7 8	
	5 16 3 8 7 16	5 5 5 5 8	3 ¹ / ₈ 3 ¹⁶ / ₃ 3 ⁸ / ₈	11.6 13.9 16.4	3.40 4.10 4.81	13.36 16.18 19.07	6.18 7.65 9.20	1.98 1.99 1.99	1.35 1.37 1 38	0.75 0.76 0.77	21/8	7 8	
5	16 16	5 5 5 5 8	3 ¹ / ₆ 3 ¹ / ₈ 3 ³ / ₈	17.9 20.2 22.6	5.25 5.94 6.64	19.19 21.83 24.53	9.05 10.51 12.06	1.91 1.91 1.92	1.31 1.33 1.35	0.74 0.75 0.76	$2\frac{1}{8}$	7 8	5
	118 118	5 5 16 5 8	3 1 6 3 8 3 8	23.7 26.0 28.3	6.96 7.64 8.33	23.68 26.16 28.70	11.37 12.83 14.36	1.84 1.85 1.86	I.28 I.30 I.31	0.73 0.74 0.76	21/8	7 8	
•	100	4 416 48	316 38 316	8.2 10.3 12.4	2.41 3.03 3.66	6.28 7.94 9.63	4.23 5.46 6.77	1.62 1.62 1.62	I.33 I.34 I.36	o.67 o.68 o.69	2	3 4	
4	16 16 2 3 16	4 416 48	3 16 3 8 3 16	13.8 15.8 17.9	4.05 4.66 5.27	9.66 11.18 12.74	6.73 7.96 9.26	I.55 I.55 I.55	I.29 I.31 I.33	o.66 o.67 o.68	2	3 4	4
	116	4 416 48	316 38 316	18.9 20.9 23.0	5.55 6.14 6.75	12.11 13.52 14.97	8.73 9.95 11.24	1.48 1.48 1.49	I.25 I.27 I.29	o.66 o.67 o.68	2	3 4	
	16	3 3 1 3 16	2 1 1 6 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.7 8.4	1.97 2.48	2.87 3.64	2.81 3.64	I.2I I.2I	I.19 I.21	0.55	I 5	1	
3	16	3 3 16	2 11 2 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9.7 11.4	2.86 3.36	3.85 4.57	3.92 4.75	1.16 1.17	1.17	0.54 0.55	15	3	3
	16	3 3 1 6	2 11 6 2 4	12.5 14.2	3.69 4.18	4.59 5.26	4.85 5.70	I.I2 I.I2	1.15	0.53 0.54	18	4	

TABLE 47. . Elements of Carnegie Equal Tees.

	Si	ze.			Area		Axis	ı-ı.			Axis 2-2	
Flange.	Stem.	Min. Th	ickness.	Weight per Foot.	of Sec- tion.	ı	r	s	x	I	r	s
Flange.	Stem.	Flange.	Stem.		-					•	r	3
In.	In.	In.	In.	Lb.	In.2	In.4	In.	In.8	In.	In.4	In.	In.8
4	4	$\frac{1}{2}$	$\frac{1}{2}$	13.5	3.97	5.7	1.20	2.0	1.18	2.8	0.84	1.4
4	4	38	8 .	10.5	3.09	4.5	1.21	1.6	1.13	2.1	0.83	1.1
$3\frac{1}{2}$	$3\frac{1}{2}$	$\frac{1}{2}$	1/2	11.7	3.44	3.7	1.04	1.5	1.05	1.9	0.74	1.1
$3\frac{1}{2}$	3 ½	38	<u>B</u>	9.2	2.68	3.0	1.05	1.2	1.01	1.4	0.73	0.81
3	3	$\frac{1}{2}$	1/2	9.9	2.91	2.3	0.88	1.1	0.93	1.2	0.64	0.80
3	3	7 16	7 16	8.9	2.59	2.1	0.89	0.98	0.91	1.0	0.63	0.70
3	3	38	3	7.8	2.27	1.8	0.90	0.86	0.88	0.90	0.63	0.60
3	3	<u>5</u>	<u>5</u>	6.7	1.95	1.6	0.90	0.74	0.86	0.75	0.62	0.50
$2\frac{1}{2}$	$2\frac{1}{2}$	38	38	6.4	1.87	1.0	0.74	0.59	0.76	0.52	0.53	0.42
$2\frac{1}{2}$	$2\frac{1}{2}$	<u>5</u> 16	5 16	5.5	1.60	0.88	0.74	0.50	0.74	0.44	0.52	0.35
21/4	$2\frac{1}{4}$	<u>5</u>	5 16	4.9	1.43	0.65	0.67	0.41	0.68	0.33	0.48	0.29
$2\frac{1}{4}$	21/4	1/4	1/4	4.1	1.19	0.52	0.66	0.32	0.65	0.25	0.46	0.22
2	2	5 16	<u>5</u>	4-3	1.26	0.44	0.59	0.31	0.61	0.23	0.43	0.23
. 2	2	1/4	1/4	3.56	1.05	0.37	0.59	0.26	0.59	0.18	0.42	0.18
I 3/4	134	1/4	1/4	3.09	0.91	0.23	0.51	0.19	0.54	0.12	0.37	0.14
I ½	I ½	1/4	1/4	2.47	0.73	0.15	0.45	0.14	0.47	0.08	0.32	0.10
$I^{\frac{1}{2}}$	11/2	3 16	3 16	1.94	0.57	0.11	0.45	0.11	0.44	0.06	0.32	0.08
$I_{\frac{1}{4}}^{\frac{1}{4}}$	114	14	1/4	2.02	0.59	0.08	0.37	0.10	0.40	0.05	0.28	0.07
I 1/4	$1\frac{1}{4}$	3 16	3 16	1.59	0.47	0.06	0.37	0.07	0.38	0.03	0.27	0.05
I	I	3 16	3 16	1.25	0.37	0.03	0.29	0.05	0.32	0.02	0.22	0.04
I	I	1	1 8	0.89	0.26	0.02	0.30	0.03	0.29	0.01	0.21	0.02

TABLE 48. ELEMENTS OF CARNEGIE UNEQUAL TEES.

TABLE 49. Elements of A. S. C. E. and Light Rails.

	Weight	Area				Dime	isions.					Axis	ı-ı.	
Section Index.	yard.	Section.	ш	b	с	d	e	f	g	h	ı	r	s	x
	Pounds.	In.º	In.	In.	In.	In.	In.	In.	In.	In.	In.4	In.	In.ª	In.
110A	110	10.80	61/8	61/8	2 7 8	125	3 11 32	x	37 64	243	55.2	2.26	17.2	2.92
гооА	100	9.84	5 ³ / ₄	5 4	234	I 45	3 6 4	31 32	9 16	$2\frac{6.5}{12.8}$	44.0	2.11	14.6	2.73
95A	95	9.28	5 16	5 16	$2\frac{11}{16}$	1 41	2 6 3 6 4	15 16	9 16	$2\frac{5.5}{12.8}$	38.8	2.05	13.3	2.65
90A	90	8.83	5 3 8	5 3	2 5 8	I 19	2 5 5 6 4	59 64	9 16	$2\frac{45}{128}$	34-4	1.97	12.2	2.55
85A	85	8.33	5 3 16	5 3 1 6	$2\frac{9}{16}$	1 35	23/4	57 64	16	$2\frac{17}{64}$	30.1	1.90	11.1	2.47
8oA	80	7.86	5	5	$2\frac{1}{2}$	$I^{\frac{1}{2}}$	25/8	7 8	35 64	2 3 6	26.4	1.83	10.1	2.38
75A	75	7-33	$4\frac{13}{16}$	$4\frac{13}{16}$	$2\frac{15}{32}$	1 37	2 3 5 4	37	17 32	$2\frac{15}{128}$	22.9	1.77	9.1	2.30
70A	70	6.81	4 5 8	4 ⁵ / ₈	27/16	$1\frac{11}{32}$	$2\frac{15}{32}$	13 16	33 64	$2\frac{3}{64}$	19.7	1.70	8.2	2.22
65A	65	6.33	4 7 6	4 7 1 6	$2\frac{13}{52}$	1 3 2	28	25 32	1/2	$1\frac{31}{32}$	16.9	1.63	7.4	2.14
60A	60	5.93	41/4	41/4	2 3 8	$1\frac{7}{32}$	2 17 64	49 64	31 64	$1\frac{1}{1}\frac{1}{2}\frac{5}{8}$	14.6	1.57	6.6	2.05
55A	55	5.38	416	$4\frac{1}{16}$	21/4	$1\frac{1}{6}\frac{1}{4}$	$2\frac{1}{6}\frac{1}{4}$	33	15 32	$1\frac{108}{128}$	12.0	1.50	5.7	1.97
50A	50	4.87	3 7 8	3 7 8	21/8	I 1/8	$2\frac{1}{16}$	11 16	7 16	$1\frac{23}{32}$	9.9	1.43	5.0	1.88
45A	45	4.40	3 1 1 6	3 ¹¹ / ₁₆	2	I 16	$1\frac{31}{32}$	31	37 64	I 41	8.1	1.36	4.3	1.78
40A	40	3.94	3 ¹ / ₂	3 ½	I 7/8	I 1 64	I 55	III 8	25 64	$I_{\frac{7}{128}}$	6.6	1.29	3.6	1.68
35A	35	3.44	3 16	3 16	I 3/4	61	I 25	37 64	23 64	$1\frac{15}{32}$	5.2	1.23	3.0	1.60
30A	30	3.00	3 1/8	3 ½	I_{16}^{11}	7 8	$1\frac{23}{32}$	$\frac{17}{32}$	31 64	1 2 5	4.1	1.16	2.5	1.52
25A	25	2.39	$2\frac{3}{4}$	$2\frac{3}{4}$	$I^{\frac{1}{2}}$	25 32	$1\frac{31}{64}$	31 64	19 64	I 128	2.5	1.02	1.8	1.33
20A	20	2.00	25/8	2 ⁵ / ₈	$I_{\frac{11}{32}}$	33 32	$1\frac{15}{32}$	7	1	$1\frac{1}{6}\frac{1}{4}$	1.9	0.99	1.4	1.27
16A	16	1.55	28	2 ³ / ₈	I_{64}^{11}	41	1 2 3	<u>II</u> 8	7 32	I 7 28	1.2	0.89	1.0	1.15
14A	14	1.34	$2\frac{1}{16}$	$2\frac{1}{16}$	I 1/6	5 8	$1\frac{3}{32}$	$\frac{11}{32}$	1	57	0.76	0.75	0.73	1.02
12A	12	1.18	2	2	I	9 16	I 3/2	$\frac{11}{32}$	3 16	57 64	0.66	0.75	0.63	0.96
юА	10	0.96	134	$1\frac{3}{4}$	15 16	33 64	15 16	19 64	3 16	49 64	0.40	0.65	0.46	0.87
8A	8	0.77	I 9 16	1 16	13 16	15 32	13 16	32	5 32	11 16	0.26	0.58	0.32	0.75

TABLE 50.

ELEMENTS OF CARNEGER BULB BEAMS.

TABLE 51.
ELEMENTS OF CARNEGIE BULB ANGLES.

TABLE 52. ELEMENTS OF CARNEGIE H BEAMS.

TABLE 53. CARNEGIE TROUGH PLATES.

ELEMENTS OF TROUGH PLATES.

	Single Section.			Rivet	ed Section.	
Section Index.	Size, Inches.	Weight per Foot, Pounds.	a, Inches.	d, Inches.	Weight per Square Foot, Pounds.	Section Modulus, One Foot Width, Inches ³ .
M 14	$9\frac{1}{2} \times 3\frac{3}{4}$	23.2	8	61	34.8	15.58
M 13	$9\frac{1}{2} \times 3\frac{3}{4}$	21.4	8	63	32.1	14.28
M 12	$9\frac{1}{2} \times 3\frac{3}{4}$	19.7	8	61	29.6	13.00
Мп	$9\frac{1}{2} \times 3\frac{3}{4}$	18.0	8	61	27.0	11.79
Мю	$9\frac{1}{2} \times 3\frac{3}{4}$	16.3	8	6	24.5	10.69

ALLOWABLE UNIFORM LOAD IN POUNDS PER SOUARE FOOT.

Span	Fi	ber Stress,	16,000 Lb	. per Sq. 1	n.	Fi	ber Stress,	12,000 Lb	s. per Sq. l	n.
Feet.	M 14	М 13	M 12	Мп	М 10.	M 14	М 13	M 12	Мп	М
5	6647	6093	5547	5030	4561	4986	4570	4160	3773	342
6	4616	4231	3852	3493	3167	3462	3173	2889	2620	237
7	3392	3109	2830	2567	2327	2543	2331	2124	1925	174
8	2597	2380	2167	1965	1782	1948	1785	1625	1474	133
9	2052	1880	1712	1553	1408	1539	1410	1284	1164	105
, 10	1662	1523	1387	1258	1140	1246	1142	1040	943	85
11	1373	1259	1146	1039	942	1030	944	860	780	70
12	1154	1058	963	873	792	866	793	722	655	59
13	983	901	821	744	675	738	676	615	558	50
14	848	777	707	642	582	636	583	53 I	481	43
15	739	677	616	559	507	554	509	462	419	38
16	649	595	542	491	445	487	446	406	368	33
17	575	527	480	435	395	43 I	395	360	328	29
18	513	470	428	388	352	385	353	321	291	26
19	460	422	384	349	316	345	316	288	261	23
20	415	381	347	314	285	312	286	260	236	21

The values given in above tables are the safe loads per square foot of floor surface and are based upon the average resistance of the riveted portion within distance a.

The weight of the plates are included in the safe loads and must be deducted to obtain the net superimposed safe load.

Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses.

The weight per square foot does not include the weight of rivet heads or other details.

TABLE 54. CARNEGIE CORRUGATED PLATES.

ELEMENTS OF CORRUGATED PLATES.

	Single Section.			Rivete	d Section.	
Section Index.	Size, Inches.	Weight per Foot, Pounds.	a, Inches.	d, Inches.	Weight per Square Foot, Pounds.	Section Modulus, One Foot Width, Inches ⁸ .
M 35	$12\frac{3}{16} \times 2\frac{7}{8}$	23.7	123 16	27/8	23.3	4-39
M 34	$12\frac{3}{16} \times 2\frac{13}{16}$	20.8	$12\frac{3}{16}$	$2\frac{13}{16}$	20.4	3.84
M 33	$12\frac{3}{16} \times 2\frac{3}{4}$	17.8	$12\frac{3}{16}$	234	17.5	3.28
M 32	$8\frac{3}{4} \times 1\frac{5}{8}$	12.0	834	15	16.5	1.95
М 31	$B_{4}^{3} \times I_{16}^{9}$	10.1	834	1 16	13.8	1.55
M 30	$8\frac{3}{4} \times 1\frac{1}{2}$	8.1	83	$I^{\frac{1}{2}}$	11.5	1.10

ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT.

Span		Fiber St	ress, 16,0	000 lb. pe	er sq. in.			Fiber S	Stress, 12	Fiber Stress, 12,000 lb. per sq. in.						
Feet.	M 35	M 34	М 33	M 32	М 31	М 30	M 35	M 34	М 33	M 32	М 31	М 30				
5	1873	1638	1400	832	661	469	1405	1229	1050	624	496	352				
6	1301	1138	972	578	459	326	976	853	729	433	344	244				
7	956	836	714	425	337	240	717	627	536	318	253	180				
8	732	640	547	325	258	183	549	480	410	244	194	138				
9	578	506	432	257	204	145	434	379	324	193	153	109				
10	468	410	350	208	165	117	351	307	262	156	124	88				
11	387	339	289	172	137	97	290	255	217	129	103	73				
12	325	284	243	144	115	82	244	213	182	108	86	6 1				
13	277	242	207	123	98	69	208	182	155	92	73	52				
14	239	209	179	106	84	60	179	157	134	80	63	45				
15	208	182	156	92	74	52	156	137	117	69	51	39				

The values given in above tables are the safe loads per square foot of floor surface and are based upon the average resistance of the riveted portion within distance a.

The weight of the plates are included in the safe loads and must be deducted to obtain the

net superimposed safe load.

Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses.

TABLE 55. BUCKLE PLATES.

AMERICAN BRIDGE COMPANY STANDARD.

1 3-11 4-6 3\frac{1}{2} 6-8\frac{5}{6} 8-9\frac{7}{6} 1 to 8 2 4-6 3-11 3-6 3 3 3-11 3-6 3 3 3-11 3-6 3 4 3-6 3-11 3-9 3 6 3-1 3-9 3-9 3 7-1\frac{7}{6} 7-1\frac{7}{6} 1 to 8 8 3-8 3-8 2 10-2 10-2 1to 11 8 3-8 2-8 2 10-2 10-2 1to 11 10 3-8 2-8 3-8 2 10-2 10-2 1to 11 10 3-8 2-8 3-8 2 10-2 10-2 1to 11 10 3-8 2-8 3-8 2 10-2 10-2 1to 11 10 3-8 2-8 3-8 2 10-2 3-7\frac{1}{4} 1to 8 11 2-2 3-8 2-2 2 10-2 3-7\frac{1}{4} 1to 10 14 2-9 2-9 3-1 3-10\frac{1}{4} 2-7\frac{1}{6} 1 to 10 14 2-9 2-9 2-6 2\frac{1}{2} 3-10\frac{1}{4} 3-10\frac{1}{4} 1 to 11 10 2-6 2-6 2-6 2\frac{1}{2} 3-10\frac{1}{4} 3-10\frac{1}{4} 1 to 12 10 3-8 2-8 3-8 3-10\frac{1}{4} 3-10\frac{1}{4} 1 to 11 10 3-10\frac{1}{4} 3								2	·
1 3-11 4-6 3\frac{1}{2} 6-8\frac{1}{2} 8-9\frac{7}{2} 1 to 8 2 4-6 3-11 3-6 3 3 3-11 3-6 3 4-6 3-11 3-6 3 5 3-9 3-9 3-9 3 6 3-1 3-9 3-9 3 7-1\frac{7}{2} 7-1\frac{1}{2} 1 to 9 7-1\frac{7}{2} 1 to 10 8 3-8 3-8 3-8 3-8 2 10-2 10-2 1 to 11 12-2 3-8 2-2 2 10-2 1 to 11 12-2 3-8 2-2 2 10-2 1 to 11 13-10 4-6 1 to 10 14-6 3\frac{1}{2} 1 to 10 14-6 3-11 3-10 4 14-6 3-11 3-10 4 14-6 3-11 3-10 4 15-6 3-1 3-9 3 16-10 5-11 10 11 17-6 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18-7 3-10 11 18	Size Size	e of Buckle.	Direct 1	Radii of	Buckle.	Number	Widths	of Flanges	and Fillets.
3 3-11 3-6 3 7-9½ 6-3 1 to 8 3-6 3-11 3-6 3-9 3 4-105 7-1½ 1 to 10 8 3-8 3-8 3-8 3-8 3-8 2 10-2 1 to 10 3-8 2-8 3-8 2 10-2 3-7¼ 1 to 10 3-8 2-8 3-8 2 10-2 3-7¼ 1 to 10 3-8 2-8 3-8 2 10-2 3-7¼ 1 to 10 3-8 2-8 3-8 2 10-2 3-7¼ 1 to 10 3-8 2-8 3-8 2 3-7¼ 1 to 10 3-8 2-8 3-8 3-9 3-10½ 3-10½ 1 to 11 3-10½ 3-	Side FtIn	l, Side b, rtIn.	In.	Side 1, FtIn.	Side b, FtIn.	Buckles in One Plate.	End Flanges h, ls.	Filleta	Side Flanges b ₁ , b ₂ .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4-6 3 3-1 4 3-6 5 3-6 6 3-7 7 3-6 8 3-8 10 3-8 11 2-2 12 3-8 11 2-2 20 2-6 21 2-6 22 3-6 24 3-6 25 3-6 26 3-7 27 3-8 29 3-8 29 3-8 29 3-8 29 3-8 29 3-8 20 3-8 20 3-8 21 2-6 22 3-8 24 3-6 25 3-6 27 3-7 28 3-7 29 3-7 20 3-8 20 3-8 21 2-6 22 3-7 23 3-8 24 3-6 25 3-7 27 3-7 28 3-7 29 3-7 20 3-7 20 3-7 21 3-7 22 3-7 23 3-7 24 3-7 27 3-7 28 3-7 29 3-7 30 2-7 30 3-7 30 3-	3-II 3-6 3-II 3-9 3-9 3-1 3-9 3-8 2-8 3-8 2-2 3-0 2-9 2-6 3-6 3-5 3-6 3-6 3-6 3-6 3-6 3-6 3-6 3-6	3 3 3 3 3 2 2 E E 3 2 2 2 3 3 3 3 3 3 3	8-978-12 6-3 7-10-2 6-3 7-11-2 7-11-2 10-2 5-5 10-2 6-10-2 6-10-2 6-10-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 6-3 7-11-2 13-10-2 13	6-3 197 197 197 197 197 197 197 197 197 197	I to 7 I to 8 I to 8 I to 8 I to 10 I to 8 I to 10 I to 8 I to 11 I to 8 I to 14 I to 8 I to 10 I to 11 I to 12 I to 11 I to 12 I to 11 I to 12 I to 9 I to 9 I to 9 I to 10 I to 10 I to 10 I to 10 I to 10 I to 10 I to 10 I to 10 I to 10 I to 10 I to 10 I to 5 I to 5	= 2" Preferably made alike ian I'-6" use angles riveted across the pla stiffeners	= 2"-Maximum = 4" or less preferred	Minimum = 2"—Maximum = 6\frac{4}{3}" Note.—When the side flanges b ₁ and b ₂ are of unequal width, the material should be ordered wide enough to make two flanges of the greater width, the narrower flange to be sheared to required width after buckling.

Plates are steel $\frac{1}{4}$ ", $\frac{5}{16}$ ", $\frac{3}{8}$ " or $\frac{7}{16}$ " thick. Plates of greater length than given in table may be made by splicing with bars, angles, or tees. All plates are made with buckles up, unless otherwise ordered. When buckles are turned down, a drain hole should be punched in the center of each buckle and should be shown on sketch.

Buckles of different sizes should not be used as it increases the cost of the plate.

Connection holes are generally for §", ¾" or ¾" rivets or bolts. Different sized holes in same plate will increase the cost of the plate.

Spacing for holes lengthwise of plate should be in multiples of 3" and should not exceed 12". Odd spaces to be at end of plate and in even \(\frac{1}{2} \)". Minimum spacing crosswise \(\frac{1}{2} \)", usually \(\frac{6}{2} \)". Die number must be shown on drawings.

Sketches for Buckle Plates should indicate allowable overrun in length and width.

TABLE 56.
Properties of Column Sections.

Properties of Three I-Beam Section.

SERIES I SERIES I.

SERIES I.

SERIES II.

SERIES II.

SERIES II.

Moments of Inertia and Radii of Gyration.

Flange Beams.

Beam.

Total Area. Axis A-A. Axis B-B.

	RIES I		SERIES I. Web Moments of Inertia a									SERIES	II.		
	lange leams.		eb am.				Inertia Gyration			Web eam.				Inertia : Gyration	
Depth.	Weight.	Depth.	Weight.	Total Area.	Axis A	A-A.	Axis 1	B-B.	Depth.	Weight.	Total Area.	Axis	A-A.	Axis	В-В.
ğ	- & -	Ã	We		I_A	r _A	IB	r _B	ă	We		IA	rA	IB	r _B
In.	Lb.	In.	Lb.	In.2	In.4	In.	In.4	In.	In.	Lb.	In.2	In.4	In.	In.4	In.
10 	25 25 30 30 35 35	8 10 8 10 8 10	18 25 18 25 18 25 25	20.07 22.11 22.97 25.01 25.91 27.95	248 251 272 275 297 300 439	3.51 3.37 3.44 3.32 3.38 3.27	325 528 387 619 455 717 635	4.02 4.89 4.11 4.97 4.19 5.06	9 12 9 12 9 12	21 31.5 21 31.5 21 31.5	21.05 24.00 23.95 26.90 26.89 29.84 27.78	249 254 274 278 298 302 441	3.44 3.25 3.38 3.21 3.33 3.18	418 788 494 915 576 1050	4.45 5.73 4.54 5.83 4.63 5.93 5.82
66	31.5 35 35 40 40	15 10 15 10 15	42 25 12 25 42	31.00 27.95 33.06 31.05 36.16	446 464 471 545 552	3.79 4.07 3.78 4.19 3.91	1552 703 1688 797 1884	7.07 5.01 7.14 5.06 7.22	18 12 18 12 18	55 31.5 55 31.5 55	34.45 29.84 36.51 32.94 39.61	453 466 478 547 559	3.63 3.95 3.62 4.08 3.76	2373 1032 2565 1162 2841	8.30 5.88 8.38 5.94 8.47
15 66 66 66 66	42 42 45 45 50 60 60	10 15 10 15 10 15 10	25 42 25 42 25 42 25 42	32.33 37.44 33.85 38.96 36.79 41.90 42.71 47.82	890 898 919 926 974 981 1225	5.24 4.89 5.21 4.87 5.14 4.84 5.42 5.07	828 1953 876 2054 974 2254 1165 2641	5.06 7.22 5.09 7.26 5.14 7.33 5.22 7.43	12 18 12 18 12 18 12 18	31.5 55 31.5 55 31.5 55 31.5	34.22 40.89 35.74 42.41 38.68 45.35 44.60 51.27	893 905 921 933 976 988 1228	5.11 4.70 5.07 4.69 5.02 4.67 5.24 4.91	1206 2939 1274 3082 1408 3360 1668 3901	5.94 8.48 5.97 8.53 6.04 8.61 6.11 8.72
18	55 55 60 60 65 65 70 70	12 18 12 18 12 18 12 18	31.5 55 31.5 55 31.5 55 31.5	41.12 47.79 44.56 51.23 47.50 54.17 50.44 57.11	1601 1612 1693 1705 1773 1784 1852 1864	6.24 5.81 6.16 5.77 6.09 5.74 6.06 5.71	1496 3552 1652 3879 1789 4163 1930 4452	6.03 8.62 6.09 8.70 6.12 8.77 6.19 8.84	15 20 15 20 15 20 15 20 15	42 65 42 65 42 65 42 65	44·34 50·94 47·78 54·38 50·72 57·32 53·66 60·26	1606 1619 1698 1712 1778 1791 1857 1871	6.02 5.64 5.96 5.61 5.92 5.59 5.88 5.57	2388 4546 2622 4943 2827 5288 3035 5639	7·35 9·44 7·41 9·53 7·47 9·60 7·52 9.66
20	65 65 70 70 75 75	15 20 15 20 15 20	42 65 42 65 42 65	50.64 57.24 53.66 60.26 56.60 63.20	2354 2367 2454 2468 2552 2566	6.82 6.43 6.76 6.40 6.71 6.37	2790 5234 2997 5586 3203 5933	7.42 9.56 7.48 9.63 7.52 9.69	18 24 18 24 18 24	55 80 55 80 55 80	54.09 61.48 57.11 64.50 60.05 67.44	2360 2382 2461 2483 2559 2581	6.60 6.23 6.56 6.21 6.53 6.19	4116 7870 4406 8363 4692 8851	8.72 11.31 8.78 11.39 8.84 11.46
24	80 80 85 85 90 90 100	20 15 20 15	42 65 42 65 42 65 42 65	59.12 65.72 62.48 69.08 65.42 72.02 71.28 77.88	4190 4204 4352 4365 4493 4506 4775 4789	8.42 8.00 8.35 7.95 8.29 7.91 8.18 7.84	3329 6155 3561 6548 3767 6893 4187 7597	7.50 9.68 7.55 9.73 7.60 9.78 7.66 9.88	18 24 18 24 18 24 18 24	55 80 55 80 55 80 55 80	62.57 69.96 65.93 73.32 68.87 76.26 74.73 82.12	4197 4219 4358 4380 4499 4521 4782 4804	8.18 7.76 8.13 7.73 8.08 7.70 8.00 7.65	4872 9173 5194 9723 5481 10207 6060 11193	8.82 11.45 8.87 11.51 8.92 11.56 9.01 11.66

Heavier web beams, of same depth as those given in table, may be substituted by subtracting area and moments of inertia of given beam, respectively, from values given in table, and adding the corresponding properties of new beam. The radii of gyration must then be recalculated from the formula $\tau = \sqrt{I + A}$.

TABLE 57. PROPERTIES OF COLUMN SECTIONS.

	Two	Properti Channe		d.	9	A d d d h	B					anges ed Out.		
Chai	mels.			Momen	ts of I	nertia a		lii of G	yration.					
		Total Area.	Axis	A-A.	Dist	tance II	iside to	B-B. Inside s = b'.	of Web	os in	Web of Chan- nel.	Ga	iges.	Max. Rivet.
Depth.	Weight.				4	1	5	i	6	1				
	I _A r _A I _B r _B I _B r _B I _B r										t	d	h	
In.	Lb.	In.2	In.4	In.	In.4	In.	In.4	In.	In.4	In.	In.	In.	In.	In.
.7	9.75 12.25	5.70 7.20	42 48	2.72	43 51	2.73	59 71	3.22 3.14	79 95	3.72 3.64	1 4 5 16	I	$\begin{array}{c} I\frac{1}{4} \\ I\frac{5}{16} \end{array}$	5 8 66
	1 2 2 7 7 2 7 4 7 1 2 3 9				4	$+\frac{1}{2}$		$5\frac{1}{2}$	6	$5\frac{1}{2}$				
8	11.25 13.75 16.25	6.70 8.08 9.56	65 72 80	3.10 2.98 2.89	47 53 57	2.65 2.57 2.45	66 76 82	3.14 3.06 2.94	88 102 112	3.63 3.55 3.43	14 5 16 7 16	: "	$ \begin{array}{c c} I_{\frac{1}{4}} \\ I_{\frac{16}{16}} \\ I_{\frac{7}{16}} \end{array} $	3 4 66
						51	7	71	81		-10			
2 "	13.25 15.00 20.00	7.78 8.82 11.76	95 102 122	3.49 3.40 3.21	98 106 131	3.55 3.47 3.34	127 138 172	4.04 3.95 3.83	160 175 220	4·54 4·45 4·32	$\begin{array}{c} \frac{1}{4} \\ \frac{5}{16} \\ \frac{7}{16} \end{array}$	1 1 8 46 46	$ \begin{array}{c c} I \frac{3}{8} \\ I \frac{7}{16} \\ I \frac{9}{16} \end{array} $	3 4 66
						6		7		8	10			
10	15.00 20.00 25.00	8.92 11.76 14.70	134 157 182	3.87 3.66 3.52	107 129 150	3.46 3.31 3.19	140 170 199	3.95 3.80 3.68	176 217 256	4.44 4.29 4.17	1438	I 1/4	I ½ I ½ I ¾	3 4 66
			-			8		9	1	10				
12	20.50 25.00 35.00	12.06 14.70 20.58	256 288 359	4.61 4.43 4.17	240 281 353	4·47 4·37 4·14	296 348 441	4.96 4.87 4.63	358 423 541	5.45 5.36 5.13	5 16 3 8 5 8	I ½	$ \begin{array}{c c} I_{\frac{13}{16}}^{\frac{13}{16}} \\ I_{\frac{7}{8}}^{\frac{1}{8}} \\ 2_{\frac{1}{8}}^{\frac{1}{8}} \end{array} $	7 8 "
						$\frac{1}{2}$		01/2		I ½				
15	33.00 45.00 55.00	19.80 26.48 32.36	625 750 860	5.62 5.32 5.16	540 660 758	5.22 4.99 4.84	646 796 920	5.68 5.48 5.33	763 946 1098	6.18 5.98 5.83	7 16 5 8 13 16	13/4 "	$ \begin{array}{c c} 2\frac{3}{16} \\ 2\frac{3}{8} \\ 2\frac{9}{16} \end{array} $	7 8 "

The table given above is intended to serve only as a guide in the choice of sections, and not as a complete table. The properties of sections not given in table may be found as follows:

Example.—Required the properties of a section consisting of 2 [s 10 in. at 15 lb., laced, with flanges turned out, $8\frac{1}{4}$ in. back to back. Distance inside to inside of web = $8\frac{1}{4} + \frac{1}{2} = 8\frac{3}{4}$.

From Table 14, Area = 8.92 in.2.

$$I_A = I_X$$
 in Table 19 = 133.8 in.4; $r_A = \sqrt{I_A \div A} = \sqrt{133.8 \div 8.92} = 3.87$ in.

$$I_B = I_Y$$
 in Table 19 = 207.0 in.4; $r_B = \sqrt{I_B \div A} = \sqrt{207.0 \div 8.92} = 4.81$ in.

The table given above is intended to serve only as a guide in the choice of sections, and not as a complete table. The properties of sections not given in table may be found as follows:

Example 1: Required the properties of a section consisting of 2 [s 10 in. at 15 lb., laced, with flanges turned in, 10½ in. back to back.

From Table 14, Area = 8.92 in.2.

$$I_A = I_X$$
 from Table 20 = 133.8 in.4; $r_A = \sqrt{I_A \div A} = \sqrt{133.8 \div 8.92} = 3.87$ in.

$$I_B = I_Y$$
 from Table 20 = 194 2 in.4; $\tau_B = \sqrt{I_B \div A} = \sqrt{194.2 \div 8.92} = 4.68$ in.

Example 2: Required the properties of a section consisting of 2 [s 10 in. at 15 lb., laced, with flanges turned in, 12 in. inside to inside of web.

From Table No. 14, Area = 8.92 in.2.

$$I_A = I_X$$
 from Table 21 = 133.8 in.4; $\tau_A = \sqrt{I_A \div A} = \sqrt{133.8 \div 8.92} = 3.87$ in.

$$I_B = I_Y$$
 from Table 21 = 284.4 in.4; $r_B = \sqrt{I_B \div A} = \sqrt{284.4 \div 8.92} = 5.65$ in.

TABLE 59. PROPERTIES OF COLUMN SECTIONS.

	т	Propert wo Char Two P	nels and			l->h	B g			F	Clanges Curned Out.		
Cha	nnels.			Inside	Back	Momen		ertia and	Radii	Ga	ges.	Web	
Depth.	Weight.	Cover Total Inside Peak				Axis .	A-A.	Axis	В-В.	Plate.	Chan- nels.	of Chan- nel.	Max Rivet.
ğ	We			b'	b	IA	rA	IB	ш	h	t		
In.	Lb.	In.	In.	In.	In.	In.4	In.	In.4	In.	In.	In.	In.	In.
7	9:75 12.25	10×1	10.70 13.20 12.20	5 ³ / ₄	5½ 108 3.18 144 3.31 5½ 114 3.06			101 122 113	3.07 3.04 3.04	74	1 1/4 cc 1 1/6 cc	1 6 6 16	5 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
8	11.25	12×1 " 3 " 1	14.70 12.70 15.70 14.08	7½	7. 67.	150 167 223	3.62 3.76 3.52	134 186 222 204	3.02 3.83 3.76 3.81	9 1	1 1 4 66 66 66 66 66 66 66 66 66 66 66 66 6	14.6	3 4 66
66	13.75	" 3	17.08	66	"	230	3.67	240	3.74	66	1 16	16	- 66
9 "	13.25	12×38	16.78 19.78 20.76 23.76	714	63 63 63	293 366 320 393	4.17 4.30 3.92 4.06	235 271 280 316	3.74 3.70 3.67 3.64	9½ "	1 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 4 7 16	3 4 66 66
10	15.00	14×3/8	19.42	9 "	81/2	417	4.63	389	4.47	1112	11/2	1 4	3 4
66	25.00	" <u>5</u>	26.42 25.20 32.20	66	8	628 465 676	4.88 4.29 4.58	504 492 606	4.37 4.42 4.34	66	13/4	1/2	66
12	20.50	16×3 " 5	24.06 32.06	10	9 ³ / ₆	715	5·45 5·73	614 785	5.05	13	I 13 16	16 66	7 8
66	25.00		26.70 34.70	66	24	747 1085	5.29 5.59	679 849	5.04 4.94	66	I 7/8	3 8	66
66	35.00	" ½ " ¾	36.58 44.58	46	83	984 1335	5.19 5.47	882 1053	4.91 4.86	66	2 1/8	5 8 46	66
15	33.00	18×3	33.30 42.30	1112	105	1423 1999	6.54 6.87	1119	5.79 5.68	15	2 3 16	7 16	8 66
66	45.00	" bis is in it is in	39.98 48.98 50.36	66	101	1548 2124 1942	6.22 6.59 6.21	1311 1554 1584	5.72 5.63 5.61	66	2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 8 66 13	66
66	55.00	" 3	59.36	66	978	2536	6.54	1827	5.55	46	2 16	13	66

The table given above is intended to serve only as a guide in the choice of sections, and not as a complete table. The properties of sections not given in table may be found as follows:

Example: Required the properties of a section consisting of 2 [s 12 in. at 20\frac{1}{2} lb., flanges turned out, 9\frac{1}{4} in. back to back, and 2 Pls. 16"\times\frac{1}{2}".

	Iten	n.		A	IA		IB		rA	r _B
Number.	Section.	Size.	Table.	In.º	Table.	In.4	Table.	In.4	In.	In.
2	[8	12 in. at 201	14	12.06	19	256	19	350	882	691
2	Pls	$16'' \times \frac{1}{2}''$	I	16.00	5	626	3	34T	1 28.06	V _{28.06}
		Total		28.06		882		691	5.61	4.96

TABLE 60.

PROPERTIES OF COLUMN SECTIONS.

RChannel Flanges Out. Properties of Channel and I-Beam Minimum I-Beam for Web. Section \dot{B} SERIES I SERIES I. SERIES II. AND II. Moments of Inertia and Moments of Inertia and Flange Web Beam. Web Ream Radii of Gyration. Radii of Gyration. Channels. Total Total Depth. Weight. Avis B-R. Depth. Weight. Axis A-A. Avis R-R Axis A-A. Denth. Weight. Area Area IA I_A $I_{\mathbf{B}}$ Tο r_A f'ro TA r_{B} In. Lb. Lb. In. Lb. In.2 In.4 In. In.4 In. In.2 In.4 In. In.4 Īn. In. 6 8.00 6 8.37 28 1.82 82 15.00 9.18 12.25 3.13 29 1.77 114 3.53 " 66 10.50 1.81 10.60 9.79 32 99 3.19 33 1.76 137 3.59 2.18 3.60 6 7 9.75 3.20 7 15.00 10.12 2.11 12.25 9.31 44 95 45 131 3.66 12.25 10.81 2.16 11.62 50 114 3.24 51 2.10 155 11.25 8 6 66 67 2.46 12.25 10.31 2.54 110 3.27 7 15.00 11.12 150 3.67 13.75 11.60 74 2.51 127 3.30 12.50 75 172 3.71 2.44 8 9 13.25 15.00 2.82 18.00 98 226 7 12.20 97 171 3.74 13.11 2.74 4.15 " 3.76 15.00 104 2.81 188 14.15 106 4.17 13.24 2.73 247 " " .. 66 22 3.83 20.00 16.18 124 2.77 237 17.09 125 2.71 300 4.25 8 18.00 15.23 4.62 10 15.00 14.25 138 3.11 253 4.22 21.00 139 3.02 325 66 18.07 398 4.69 20.00 17.09 161 3.07 312 4.28 163 3.00 46 66 " 46 66 25.00 20.03 186 21.01 187 2.98 4.77 3.05 377 4.34 477 18.37 419 4.78 19.43 3.68 522 5.18 20.50 261 TO 25.00 263 12 9 21.00 3.77 488 4.82 5.24 25.00 21.01 22.07 295 3.66 605 293 3.74 44 56 66 568 66 66 4.87 5.29 30.00 23.95 3.70 25.01 330 3.63 701 329 66 66 66 66 66 3.68 35.00 3.62 26.89 364 652 4.92 27.95 366 801 5.35 " " 66 " " 3.66 4.98 3.60 40.00 29.83 399 740 30.89 401 905 5.41 15 4.82 31,50 29.06 4.67 6.28 33.00 10 25.00 27.17 632 803 5.44 12 635 1146 66 647 66 29.84 650 4.67 1181 6.29 35.00 27.95 4.81 829 5-45 66 66 5.48 32.78 6.34 40.00 30.89 4.64 702 4.77 927 705 1317 66 66 66 66 760 4.61 6.38 33.85 45.00 5.52 35.74 757 4.73 1030 1457 66 66 38.68 50.00 815 36.79 812 1600 6.43 4.59 4.70 1135 5-55 60 55.00 867 5.60 41.62 6.48 4.67 870 1747 39.73 1244 4.57

The table given above is intended to serve only as a guide in the choice of sections, and not as a complete table. The properties of sections not given in the table may be found as follows:

Example: Required the properties of a section consisting of 2 [s 10 in. at 20 lb., flanges turned out, and one I9 in. at 21 lb.

		Item.		A	1	A	1	В	rA	r _B
Num- ber.				In.2	Table.	In.4	Table.	In.4	In.	In.
2 I	[s I	10 in. at 20 lb. 9 in. at 21 lb. Total	7	11.76 6.31 18.07	19 7	157.4 5.2 162.6	19 7	312.7 84.9 397.6	$ \sqrt{\frac{162.6}{18.07}} $ 3.00	$\sqrt{\frac{397.6}{18.07}}$ 4.69

TABLE 61. PROPERTIES OF COLUMN SECTIONS.

) Chai	Propertie and and Section	I-Beam			A C	B		··- - A		Minin	el Flange num I-Bo or Web.		
	RIES I			S	ERIES	I.						Series	II.		
	lange annels.	We	b Beam.				of Inerti Gyratic		Wei	Beam.		Me		f Inertia Gyratio	
Depth.	Weight.	Depth.	Weight.	Total Area.	Axis	À-A.	Axis	В-В.	Depth.	Weight.	Total Area.	Axis	A-A.	Axis	В-В.
	*	A	*		IA	r _A	IB	rB	Ă	× ×		IA	rA	IB	rB
In.	Lb.	In.	Lb.	In.2	In.4	In.	In 4	In.	In.	Lb.	In.2	In.4	In.	In.4	In.
6 " 7 " B " " IO " " "	8.00 10.50 9.75 12.25 11.25 13.75 13.25 15.00 20.00 15.00 25.00	7 8 8 9 4 9	15.00 15.00 18.00 " 21.00 " 21.00	9.18 10.60 10.12 11.62 12.03 13.41 14.09 15.13 18.07 15.23 18.07 21.01	29 33 45 51 68 76 100 107 127 139 163 187	1.77 1.76 2.11 2.10 2.38 2.38 2.66 2.66 2.65 3.02 3.00 2.98	86 106 95 117 149 174 221 244 314 240 305 378	3.06 3.16 3.07 3.17 3.52 3.60 3.96 4.02 4.17 3.97 4.11 4.24	8 " 9 " 10 " "	18.00 18.00 21.00 " 25.00 " 25.00 "	10.09 11.51 11.03 12.53 13.01 14.39 15.15 16.19 19.13 16.29 19.13 22.07	30 34 46 52 70 77 101 109 129 141 164 189	1 72 1.72 2.04 2.04 2.32 2.32 2.58 2.59 2.60 2.94 2.93 2.93	123 149 135 163 203 234 292 321 405 316 396 483	3.49 3.60 3.50 3.61 3.95 4.03 4.45 4.60 4.40 4.55 4.68
12	20.50 25.00 30.00 35.00 40.00	10 44	25.00	19.43 22.07 25.01 27.95 30.89	263 295 330 366 401	3.68 3.66 3.63 3.62 3.60	383 458 545 637 732 855	4.44 4.55 4.67 4.77 4.87	12 " "	31.50	21.32 23.96 26.90 29.84 32.78	266 298 333 368 404	3.53 3.52 3.52 3.51 3.51	599 705 827 954 1086	5.30 5.42 5.54 5.66 5.76
15 " " "	35.00 40.00 45.00 50.00 55.00	66 66 66 66	31.50	29.84 32.78 35.74 38.68 41.62	650 705 760 815 870	4.67 4.64 4.61 4.59 4.57	887 1010 1138 1268 1403	5.42 5.45 5.55 5.64 5.73 5.81	15 " "	42.00	32.28 33.06 36.00 38.96 41.90 44.84	640 655 710 765 820 875	4.45 4.45 4.44 4.43 4.42 4.41	1458 1507 1694 1887 2083 2284	6.72 6.75 6.86 6.96 7.05 7.15

The table given above is intended to serve only as a guide in the choice of sections, and not as a complete table. The properties of sections not given in the table may be found as follows:

Example: Required the properties of a section consisting of 2 [s 10 in. at 20 lb., flanges turned in and one 19 in. at 21 lb.

		Item.	1	A	I	A	I	В	r _A	r _B
Num- ber.	Section.	Size.	Table.	In.2	Table.	In.4	Table.	In.4	In.	In.
2 I	[s I	10 in. at 20 lb. 9 in. at 21 lb.	14 7	11.76 6 31	2 I 7	157.4 5.2	21 7	220.2 84.9	$\sqrt{\frac{162.6}{18.07}}$	$\sqrt{\frac{305.1}{18.07}}$
		Total		18.07		162.6		305.1	3.00	4.11

TABLE 62.

PROPERTIES OF TWO CHANNELS AND A BUILT I-BEAM.
FLANGES TURNED OUT.

Properties of Two Channels and a Built I-Beam.

Channel Flanges Out.
Distance Back to Back
of Channels Equals
Width of Web Plate Plus \(\frac{1}{2} \).

Se	ries 1 a	nd 2.			Serie	5 I.					Serie	S 2.		
Cha	nnel.		te.	of.	Axis	A-A.	Axis	В-В.	ite.	ei .	Axis	A-A.	Axis	В-В.
Depth.	Weight.	Size of Angles.	Size of Web Plate,	Total Area.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia	Radius of Gyration.	Size of Web Plate.	Total Area.	Moment of Inertia.	Radius of Gyration,	Moment of Inertia.	Radius of Gyration.
	İ		Si	A	IA	rA	IB	r _B	Š	A	I_A	r_{A}	IB	r _B
In.	Lb.	In.	In.	In.2	In.4	In.	In.4	In.	In.	In.2	Jn.4	In.	In.4	In.
12 12 12	20½ 25 30	3×3×5/16	8x1/4	21.18 23.82 26.76	269 301 337	3.57 3.56 3.55	402 464 536	4.35 4.41 4.48	10x3/8	22.93 25.57 28.51	270 302 337	3·44 3·44 3·44	610 700 804	5.16 5.23 5.31
12 12 12	20½ 25 30	3½x3½x8	8x ³ / ₄	24.98 27.62 30.56	282 314 349	3.36 3.37 3.37	436 498 571	4.18 4.25 4.33	10x3	25.73 28.37 31.31	282 314 349	3.31 3.32 3.33	657 747 851	5.05 5.13 5.21
15 15 15	33 35 40	3½x3½x8	8x3 "	32.72 33.50 36.44	651 666 721	4.46 4.46 4.45	652 672 747	4.46 4.48 4.53	10x3	33.47 34.25 37.19	651 666 721	4.4I 4.4I 4.4I	961 989 1096	5.36 5.38 5.43
15 15 15	33 35 40	4×4×3/8	10x3/8	34.99 35.77 38.71	663 677 733	4·35 4·35 4·35	982 1010 1117	5.30 5.32 5.37	12x3	35.74 36.52 39.46	663 677 733	4.31 4.31 4.31	1110 1138 1245	5.57 5.58 5.62

The above table is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of sections not given in table may be obtained as follows:

Example: Determine the properties of a section composed of 2 channels $15'' \times 55$ lb., 1 plate $12'' \times \frac{1}{2}''$ and 4 angles $4'' \times 4'' \times \frac{1}{2}''$, $12\frac{1}{4}''$ back to back.

Solution:

	Α.,	ea.	I	Moment o	of Inertia		Radius of	Gyration.
Item.	AI	ca.	Axis	A-A.	Axis	В-В.	Axis A-A.	Axis B-B.
	Table No.	A	Table	IA	Table	IB	$r_{\mathbf{A}} = \sqrt{\overline{\mathbf{I}_{\mathbf{A}} + \mathbf{A}}}$	$r_{\rm B} = \sqrt{I_{\rm B} + A}$
	No.	In.	No.	In.4	No.	In.4	In.	In.
2 [s15"x55 lb. 1 Pl—12"x½"	19	32.36 6.00	19	860	19	1587	913	2048
4 4 4 "x4" x ½"	32	15.00	35	_ 53	32	72 389	V _{53.36}	V _{53.36}
Total	A = 53 36	I _A =	913	I _B =	2048	$r_A = .414$	$r_B = 6.20$	

TABLE 63.

PROPERTIES OF TWO CHANNELS AND A BUILT I-BEAM. FLANGES TURNED IN.

Properties of Two Channels and a Built I-Beam.

Channel Flanges In.
Distance Inside to Inside
Of Channels Equals
Width of Web Plate Plus \(\frac{1}{2} \)".

Se	ries 1 s	ind 2.			Serie	B 1.					Serie	\$ 2.		
Char	mels.	*	ate.	Area.	Anis	A -A.	Axis	В-В.	ate.	ea.	Axis	A -A.	Axis	В-В.
Depth.	Weight.	Size of Angles.	Size of Web Plate,	Total Ar	Moment of Inertia.	Radius of Gyra- tion.	Moment of Inertia.	Radius of Gyra- tion.	Size of Web Plate.	Total Area.	Moment of Inertia.	Radius of Gyra- tion.	Moment of Inertia.	Radius of Gyra-
_		Si	Size	A	IA	rA	IB	rB	Size	A	$1_{\mathbf{A}}$	rA	IB	rB
In.	Lb.	In,	In.	In.2	In.4	ln.	In.4	In.	In.	in.2	In.4	In.	In.4	In.
12 12 12	20½ 25 30	3x3x 5 6	10x1	21.68 24.32 27.26	269 301 336	3.52 3.52 3.52	453 535 631	4.57 4.70 4.81	12x3	23.68 26.32 29.26	270 302 337	3.38 3.38 3.39	683 798 930	5.38 5.53 5.64
12 12 12	20 ¹ / ₃ 25 30	3½x3½x8	14x3	27.23 29.87 32.81	282 314 349	3.22 3.24 3.25	1054 1205 1380	6.22 6.35 6.49	16x½	29.98 32.62 35.56	283 315 350	3.08 3.11 3.14	1449 1644 1867	6.93 7.10 7.25
15 15 15	33 35 40	3½x3½x¾	12x3	34.22 35.00 37.94	651 666 721	4.36 4.36 4.36	1034 1068 1201	5.50 5.52 5.63	14X8	34.97 35.75 38.69	651 666 721	4.31 4.32 4.32	1431 1477 1652	6.40 6.43 6.54
15 15 15	33 35 40	4x4x‡	16x3	37.24 38.02 40.96	663 677 733	4.22 4.22 4.23	1963 2021 2245	7.26 7.29 7.41	18x½	40.24 41.02 43.96	667 679 735	4.07 4.07 4.09	2582 2655 2933	8.01 8.05 8.18

The above table is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of sections not given in table may be obtained as follows:

.Example: Determine the properties of a section composed of 2 channels $15'' \times 55$ lb., 1 plate $18'' \times \frac{1}{8}''$ and 4 angles $4'' \times 4'' \times \frac{1}{2}''$, $18\frac{1}{4}''$ back to back.

Solution:

	Δ-	ea.		Moment	of Inertia		Radius of	Gyration.
	74.	ca,	Axis	A-A.	Axis	В-В.	Axis A-A.	Axis B-B.
Item.	Table	A	Table	IA	Table	IB	$r_A = \sqrt{I_A + A}$	$r_{B} = \sqrt{I_{B} + A}$
		In.º		In.4	140.	In.4	In.	In.
2[815"x55 lb. 1 Pl—18"x5" 4 44"x4"x2"	21 I 32	32.36 11.25 15.00	21 4 35	. 860 o 56	21 3 32	2716 304 969	$\sqrt{\frac{916}{58.61}}$	$\sqrt{\frac{3989}{58.61}}$
Total	A =	58.61	I _A =	916	$I_B =$	3989	$r_A = 3.96$	$r_B = 8.25$

TABLE 64.

Properties of One Channel and One I-Beam.

RProperties of Properties of One Channel and One I-Beam. One Channel à and One I-Beam. $|_{R}$ Ser. 1 & 2 Series 1. Series 2. Channel. Axis B-B. Channel. Ream Axis A-A. Axis A-A. Axis B-B. Area. Total Area. Radius of Gyration. Radius of Gyration. Moment of Inertia. oment Inertia. oment Inertia. Radius of Gyration. ö Moment of Inertia. Radius of Gyratinn. Eccen-tricity. Eccen-tricity. Total / Weight. Weight. Depth. Depth, Depth. Weight. Wo Myo A ĪΔ IB ۲. 10 T'n Α IΑ TΛ į. Īъ t'n Lb. In. Lb. In.2 In.4 Lb In.4 In. In. In. In. In 4 In In 1 In.4 In. 1.48 8 т8 80 16.8 61 7.28 3.25 0.99 11.2 1.24 6 7.71 3.22 1.13 5 Ŕτ. 3.20 66 66 8.41 84 3.16 201 7.91 0.91 1.20 1.04 17.0 1.42 11.4 21 6 8.69 3.65 18.2 8 9.66 3.58 116 1.15 114 124 1.44 37.5 1.97 1.45 1.38 1.88 124 **18.6** 1.30 25 9.73 3.57 T.02 10.70 133 3.52 37.9 4.08 10 9.75 1.14 4.02 10.1 25 162 8 111 10.72 173 1.45 30.2 19.9 1.43 -.. ~ " 3.97 11.20 176 12.17 188 3.02 1.28 1.81 30 0.99 20.6 1.36 39.9 8 $II^{\frac{1}{4}}$ 4.84 41.8 1.82 2.36 12 313 12.61 295 1.50 1.82 10 13.72 313 4.77 76.4 40 15.19 4.82 46.I 16.30 373 4.78 1.53 80.7 2.22 353 1.25 1.74 8 81.5 15 111 15.83 578 15 610 6.00 1.87 6.04 1.51 46.9 1.72 10 16.94 2.10 18.51 3.82 12 201 640 5.92 2.78 22.38 729 5.71 3.15 327.2 2.3I 142.7 15 33 66 5.86 5.88 8 18.06 624 658 1.65 82.9 2.08 50 111 1.32 48.3 1.63 19.17 TO 15 66 5.67 702 5.81 328.6 3.65 12 201 20.74 2.06 2.64 24.61 791 2.86 144.1 15 33 .. 60 8 5.99 1.14 1.67 5.98 1.43 $II^{\frac{1}{2}}$ 21.00 58.3 10 15 22.13 791 92.9 2.05 " 23.68 12 201 838 5.95 1.80 15 27.57 938 5.83 2.55 338.6 3.50 2.55 33 154.1 18 8 1.88 88.1 2.08 19.28 7.21 20.39 1056 $II^{\frac{1}{2}}$ 1004 1.50 1.67 10 15 7.19 53.5 66 12 20 21.96 1122 2.61 25.83 1257 6.97 3.30 333.8 3.59 7.14 2.35 149.3 15 33 .. 65 8 1.58 10 6.98 1.63 1.96 H 22.47 1096 6.98 1.28 55.8 15 23.58 1151 90.4 66 336.1 12 6.88 201 25.15 2.46 15 2.94 3.40 1223 6.97 2.06 151.6 33 29.02 1373 66 111 8 26.51 113.1 2.06 25.40 1360 7.32 1.14 78.7 1.76 10 15 1418 7.3 I 1.45 66 12 $20\frac{1}{2}$ 28.08 1.84 1656 7.24 2.67 358.8 3.37 1494 7.29 174.3 2.49 15 33 31.95 20 65 134 8.00 8.00 1.82 94.8 2.01 9 1.63 1.81 1507 22.97 1470 10 15 23.54 -7.84 12 $20\frac{1}{2}$ 25.11 156.0 28.98 1779 3.29 340.5 3.43 1594 7.97 2.30 2.49 15 33 66 7.89 1562 7.89 1.71 70 9 134 24.48 1524 76.3 25.05 95.9 1.96 1.53 1.77 10 15 66 1846 341.6 12 201 26.62 1652 7.88 2.17 157.1 30.49 7.79 3.12 3.34 2.43 15 33 66 80 28.19 1816 8.03 | 1.52 9 131 27.62 1777 8.02 1.36 93.1 1.84 10 15 112.7 2.00 66 358.4 3.26 12 20% 29.76 1912 8.02 1.94 173.9 15 33.63 2120 7.94 2.83 2.42 33 24 80 9.66 1.86 109.8 Q 137 27.2I 2539 9.66 1.66 90.2 1.82 27.78 2594 1.99 TO 15 $20\frac{1}{2}$ 2.38 9.55 3.46 355.5 3.27 12 29.35 2734 9.66 171.0 2.41 33.22 3033 15 33 66 9.43 1.67 112.6 1.91 90 2700 9 134 30.36 9.43 1.49 93.0 1.75 10 15 30.93 2755 66 12 $20\frac{1}{2}$ 32.50 9.40 358.3 3.14 2.15 173.8 36.37 3.16 2902 9.45 2.3I 15 33 3219 66 9.28 3.35 9.28 2.92 396.I 3.10 100 10 33.87 3548 15 2904 9.26 I.53 115.5 1.85 15 40 41.17 " 361.2 3.03 12 $20\frac{1}{2}$ 35.44 3055 9.29 1.97 176.7 2.23 15 33 39.31 3387 66 105 10 15 35.44 3338 9.69 145.8 2.03 3997 9.67 3.23 426.4 3.16 1.46 15 40 42.74 66 12 $20\frac{1}{2}$ 33 40.88 9.67 2.81 391.5 3.09 37.01 3492 9.71 1.89 207.0 2.36 3831 15

TABLE 65, PROPERTIES OF ONE CHANNEL AND A BUILT I-BEAM.

Properties of One Channel and One Built I-Beam.

Back to Back of Angles Equals
Width of Web Plate Plus †"
*Top Angles, Short Legs Out.
Bottom Angles, Long Legs Out.

Plate.	Cha	nnel.	Anı	gles.		Aı	cis A-A.		Axis	В-В.
Web.	Depth.	Weight.	Bottom.	Top.	Total Area.	Moment of Inertia.	Radius of Gy- ration.	Eccen- tricity.	Moment of Inertia.	of Gy-
					A	IA	r_{A}	е	IB	r _B
In.	In.	Lb.	In.	In.	In.2	In.4	In.	In.	In.4	In.
16x}	10	15	5x3½x3	3½x3½x3	21.52	979	6.75	1.20	115	2.31
"	66	44	" ½	" ½	24.96	1166	6.83	0.92	132	2.30
66			8	8	28.26	1340	6.89	0.71	148	2.29
66	12	20.5	6x4x1	4x4x3	24.97	1144	6.86	1.41	207	2.84
66	66	66	" \$\frac{2}{8}	" ½	32.97	1572	6.91	0.83	260	2.81
18x1	10	15	5x3½x3	3½x3½x3	24.52	1338	7.39	1.19	117	2.19
66	66	66	" ½	" ½	27.96	1577	7.51	0.92	134	2.19
"	44		8	8	31 26	1802	7.59	0.72	152	2.20
66	12	20.5	6x4x 3	4x4x3	27.97 32.03	1555	7.46	1.42	209	2.73
"	"	66	€€ 5 8	FI 5	35.97	2103	7.64	0.86	265	2.71
20x1	12	20.5	6x4x ³	4×4×3	28.97	1971	8.24	1.52	209	2.69
66	66	"	66 1 66 5	" ½	33.03	2329	8.39	1.19	237	2.68
66	66	66	8	- A	36.97	2662	8.49	0.93	265	2.68
66	15	33	6x6x3	*6x4x3	35.84	2317	8.04 8.16	2.30	395	3.32
44	44	66	" <u>\$25</u>	" <u>5</u>	40.90 45.84	2725 3104	8.24	1.90 1.59	423 45I	3.14
24×5	12	20.5	6x4x3	4x4x3	33.97	3133	9.62	1.56	212	2.50
	66	66 -	66 1 66 5	66 5	38.03	3656	9.81	1.24	241	2.52
66	46	"	8	R	41.97	4150	9.95	0.99	270	2.54
"	15	33	6x6x ³ / ₈	*6x4x3	40.84	3686	9.50	2.42	398	3.12
66	66	66	44 <u>5</u> 8	66 2 5 8	45.90 50.84	429 0 4858	9.78	2.03 1.72	427 457	3.00
30x3	12	20.5	6x4x3	4x4x3	41.47	5546	11.56	1.61	217	2.29
66	66	66	" 1 6 5	" ½	45.53	6381	11.84	1.30	246	2.32
66	66	46	8	2	49.47	7174	12.05	1.05	276	2.36
"	15	3,3	6x6x1	*6x4x1/2	53.40	7490	11.84	2.19 1.88	432 463	2.82
66	"	66	"	66 3 66 3	58.34 63.16	8413 9293	12.13	1.63	495	2.80
36x‡	12	20.5	6x6x1	*6x4x1/2	54.03	10485	13.93	1.32	248	2.14
66	"	"	66 3	" <u>5</u>	58.97	11825	14.16	1.06	278	2.17
66	1		4	4	63.79	13104	14.31	0.85	311	2.20
"	15	3,3	6x6x1	*6x4x1	57.90	11483	14.08	2.43	433 463	2.74
66	66	66	"	66 3	62.84	12859	14.31	1.82	495	2.70

TABLE 66.
PROPERTIES OF BUILT STRUTS.

					Axis	A-A.			Axis	В-В.	
Depth of Chan- nel.	Weight of Chan- nel.	Size of Angle.	Total Area.	Mo- ment of Inertia.	Radius of Gyra- tion.	Section Modu- lus.	Eccen- tricity.	Mo- ment of Inertia.	Radius of Gyra- tion.	Section Modu- lus.	Eccen- tricity.
			A	I_A	r_{A}	S_A	e	I_B	r _B	S _B	e'
In.	Lb.	In.	In.2	In.4	In.	In.3	In.	In.4	In.	In.ª	In.
4	51/4	$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4}$ $3 \times 2\frac{1}{2} \times \frac{1}{4}$	2.74 2.86	5·7 5.8	I.44 I.43	2.23 2.22	.56 .62	1.97 2.82	.85 .99	0.81	+.05 +.17
5	6½	$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \\ 3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 4 \times 3 \times \frac{5}{16} \end{array}$	3.14 3.26 3.39 4.04	10.3 10.8 11.1 12.1	1.81 1.82 1.81 1.73	3.24 3.34 3.36 3.56	.68 .71 .80	2.27 3.19 4.41 6.96	.85 .99 1.14 1.31	.90 1.09 1.33 1.94	03 +.07 +.19 +.41
6	8	$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \\ 3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 4 \times 3 \times \frac{5}{16} \end{array}$	3.57 3.69 3.82 4.47	17.8 18.3 18.9 20.2	2.23 2.23 2.23 2.13	4.74 4.78 4.85 4.99	.76 .83 .90	2.62 3.59 4.89 7.61	.86 .99 1.13 1.30	1.01 1.19 1.44 2.06	11 01 +.09 +.31
7	91	$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{1}{4} \\ 3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 4 \times 3 \times \frac{5}{16} \\ 5 \times 3 \times \frac{8}{16} \end{array}$	4.16 4.29 4.94 5.25	29.1 30.0 31.8 33.2	2.64 2.64 2.54 2.51	6.62 6.71 6.83 6.94	.89 .97 1.16 1.29	4.06 5.42 8.31 13.73	.99 I.I2 I.30 I.62	1.31 1.55 2.20 3.03	09 +.01 +.22 +.47
8	1114	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.44 5.75 5.91 6.77 6.96	47.5 49.6 49.5 53.3 53.4	2.95 2.93 2.89 2.81 2.77	9.06 9.21 9.22 9.48 9.56	1.24 1.39 1.37 1.62 1.59	9.07 14.74 14.76 25.82 25.87	1.29 1.60 1.58 1.95 1.93	2.34 3.18 3.18 4.91 4.91	+.13 +.36 +.36 +.74 +.73
9	131	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.98 6.29 6.45 7.31 7.50	68.0 70.7 70.7 76.0 76.0	3·37 3·35 3·31 3·22 3.18	11.70 11.86 11.88 12.20 12.23	1.31 1.46 1.45 1.74 1.71	9.91 15.82 15.84 27.42 27.46	1.29 1.59 1.57 1.94 1.91	2.50 3.34 3.34 5.11 5.10	+.04 +.26 +.26 +.63 +.62
10	15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.55 6.86 7.02 7.88 8.07	94.1 97.7 97.7 104.8 101.6	3.79 3.77 3.73 3.65 3.60	14.81 15.00 15.00 15.36 15.35	1.35 1.51 1.52 1.83 1.82	10.82 16.97 16.99 29.05	1.28 1.57 1.55 1.92 1.90	2.68 3.51 3.52 5.31 5.31	03 +.17 +.17 +.52 +.52
12	201/2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.12 8.43 8.59 9.45 9.64	172.3 177.9 178.8 190.7 190.8	4.61 4.59 4.56 4.49 4.45	23.45 23.68 23.73 24.19 24.19	1.35 1.52 1.54 1.89 1.90	13.25 19.90 19.93 33.16 33.15	1.28 1.54 1.52 1.87 1.85	3.16 3.97 3.97 5.81 5.81	20 02 02 +.29 +.29
15	33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.99 12.30 12.46 13.32 13.51	392.6 404.0 405.4 430.9 431.3	5.72 5.72 5.70 5.69 5.66	45.25 45.75 45.71 46.70 46.65	1.18 1.33 1.37 1.72 1.75	18.86 26.82 26.87 41.47 41.47	1.25 1.48 1.47 1.76 1.75	4.26 5.13 5.15 6.84 6.84	43 23 22 06 06

TABLE 67. PROPERTIES OF STARRED ANGLES.

	ngles Sta ual Legs.	rred,	Two A Une	ngles Sta qual Lea	arred,	Four A	ingles St ual Legs	arred,	Fo	ur Angle Unequa		1,
A C	Axis A-	C A same	B-B sar	B or Axes ne as in	Tables	<u>A</u>	A	<u>- 4</u>	۵)	ī
as m	Total Area.	Least Radius of Gy-	39 & 4	Total Area.	Least Radius of Gy-	Size of	Total Area.	Radius of Gy-	Size of	Total	Radi Gyra	us of tion.
Angles.		ration.	Angles.		ration.	Angles.	A	ration.	Angles.		A-A.	В-В
In.	In.2	In.	In.	A In.3	In.	In.	A In.2	In.	In.	A In.2	In.	In.
2X2X1	1.88	.77	2½x2x½	2.12	·73	2x2x1/4	3.76 5.44	.85	2½x2x¼	4.24	1.11	.80
2½x2½x¼ 38	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3x2½x¼	2.62 3.84	I.00 I.00	2½x2½x¼ 38	4.76	1.05	3x2½x¼	5.24 7.68	1.31 1 33	1.00
3x3x1 " 1 " 2 " 5	2.88 4.22 5.50 6.72	1.17 1.16 1.13 1.10	3½x3x¼ " ½ " ½	3.12 4.60 6.00 7.34	I.22 I.20 I.18 I.16	3x3x1/4 *** 38 *** 12 *** 58	5.76 8.44 11.00 13.44	I.25 I.27 I.29 I.32	3½X3X¼ " ½ " ½ " ½	6.24 9.20 12.00 14.68	1.52 1.53 1.55 1.57	I.20 I.23 I.24 I.26
3½x3½x¼ " ½ " ½	3.38 4.96 6.50 7.96	1.37 1.35 1.33 1.31	4x3x1 " 3 " 1 " 5	3.38 4.96 6.50 7.96	1.23 1.21 1.19 1.17	3½x3½x¼ ½ ½ ½	6.76 9.92 13.00 15.92	1.45 1.48 1.50 1.52	4x3x1 " 38 " 12 " 58	6.76 9.92 13.00 15.92	1.77 1.80 1.82 1.84	1.16 1.17 1.20 1.22
4x4x1	3.88 5.72 7.50 9.22	1.58 1.56 1.53 1.51	5x3x3 " 12 " 5 " 3	5.72 7.50 9.22 10.88	1.16 1.16 1.15 1.15	4×4×1 4×4×1 4×1 4×1 4×1 1×1 1×1 1	7.76 11.44 15.00 18.44	1.66 1.68 1.70 1.72	5×3×8	11.44 15.00 18.44 21.76	2.34 2.36 2.39 2.41	I.09 I.1 I.1
5x5x3	7.22 9.50 11.72 13.88	1.98 1.95 1.92 1.89	5x3½x8 "122 "58 "63	6.10 8.00 9.84 11.62	1.37 1.35 1.34 1.33	5×5×3 66 12 66 13 66 33	14.44 19.00 23.44 27.76	2.08 2.10 2.12 2.14	5x3½x3812x3812x38	12.20 16.00 19.68 23.24	2.27 2.29 2.31 2.33	1.30 1.30 1.40
6x6x8	8.72 11.50 14.22 16.88 19.46 22.00	2.37 2.35 2.33 2.30 2.28 2.26	6x4x3 " 12 " 58 " 31 " 47 " 76	7.22 9.50 11.72 13.88 15.96 18.00	1.56 1.56 1.55 1.55 1.54 1.54	6x6x3	17.44 23.00 28.44 33.76 38.92 44.00	2.49 2.51 2.53 2.55 2.57 2.59	6x4x ³ 6 " ⁵ 5 " ⁷ 7 " ⁸ 6 " ⁷ 8	14.44 19.00 23.44 27.76 31.92 36.00	2.74 2.76 2.78 2.80 2.82 2.85	1.50 1.51 1.50 1.50 1.50
8x8x ¹ / ₂ " ⁸ / ₃ " ⁷ / ₈ " ¹ / ₈	15.50 19.22 22.88 26.46 30.00	3.17 3.14 3.12 3.09 3.07	8x6x ¹ / ₂ " ⁵ / ₃ " ⁷ / ₈ " ¹ / ₈	13.50 16.72 19.88 22.96 26.00	2.39 2.38 2.36 2.35 2.34	8x8x½ 66 5 66 34 66 7 66 1		3.32 3.34 3.36 3.38 3.40	8x6x ¹ / ₄ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸	27.00 33.44 39.76 45.92 52.00	3.56 3.58 3.60 3.62 3.64	2.3 2.3 2.3 2.3 2.3

B & C-C varies between 10° & 34°. The plates for unequal leg angles = $\frac{3}{6}$ ".

TABLE 68.
PROPERTIES OF FOUR ANGLES LACED.

For Equal Legs and Properties Unequal Legs with of. Long Legs Turned Out. Four Angles Laced. \dot{R} Moments of Inertia and Radii of Gyration. Axis B-B. Axis A-A. Thickness of 2 Lacing Four Total Distance Back to Back of Angles in Inches = d. Bare = t Angles. Area. $\frac{2}{4}'' = \frac{1}{2}''$ 2 Bars 81 TOR 164 T 2 1 143 $\mathbf{I}_{\mathbf{A}}$ I_A I_A I_A IA I_{R} I_{R} r_A rA rA rA rA ľπ In.3 In 4 In. In.4 In. In.4 In. In.4 In. In.4 In. In.4 In. In.4 Ĭn. In. 3.68 13 4.64 167 5.64 6.64 7.63 $3 \times 2 \frac{1}{2} \times \frac{1}{4}$ 5.24 12 1.50 1.55 71 113 23 I 305 7.68 18 1.53 10 1.58 100 3.61 162 4.59 240 5.59 333 6.58 440 7.58 66 308 24 26 1.60 128 3.57 208 4.56 5-55 428 6.54 567 10.00 1.55 7.54 1.98 41 127 3.58 206 4.56 305 6.53 561 4x3x 39 2.03 5-55 423 9.92 7.52 2.06 546 7.48 2.01 55 162 3.53 264 4.51 392 5.49 6.48 725 53 13.00 2.04 69 3.48 4.46 66 2.08 193 317 472 5.44 659 6.43 879 15.92 7.42 2 Bars 2 Bars I23 141 164 181 103 $\frac{1}{4}'' = \frac{1}{2}''$ $\frac{5}{16}'' = \frac{5}{8}''$ 284 398 6.34 685 $3\frac{1}{2}x3\frac{1}{2}x\frac{3}{6}$ 1.66 4.38 532 687 7.32 8.31 9.92 29 1.71 190 5.34 365 6.28 887 8.26 13.00 1.69 4.32 5.30 513 7.27 37 39 1.73 243 66 8.21 1.70 5.26 619 6.23 831 7.18 15.92 46 49 1.76 29I 4.27 440 1075 1.86 8.20 316 6.22 7.22 5.25 596 770 4X4X II.44 39 42 1.91 211 4.29 444 408 6.19 1.88 56 7.17 8.16 15.00 53 1.93 27I 4.25 5.22 575 772 999 695 18.44 67 4.20 5.16 6.14 1.91 71 1.96 325 49I 935 7.12 1213 8.11 2 Bars 2 Bars 163 181 $\frac{5}{16}'' = \frac{5}{8}''$ 103 121 141 $\frac{3''}{6} = \frac{3''}{4}$ $5x_{\frac{3}{2}}x_{\frac{3}{8}}$ 12.20 76 2.55 248 367 5.48 6.47 679 7.46 8.45 2.50 79 4.51 511 318 16.00 102 2.53 106 2.58 4.46 472 5.43 659 6.41 878 7.41 1129 8.40 19.68 128 2.55 2.60 382 4.40 57I 5.39 800 6.37 1067 7.36 1374 8.36 133 6.36 8.34 $6x4x^{\frac{1}{2}}$ 19.00 170 2.99 176 3.04 370 4.41 55I 5.39 770 1027 7.35 1321

The above table is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of other sections may be found as follows:

4.37

4.32

669

777

5.34

5.29

6.32

1252

1462

7.32

7.26

937

1092 6.27

8.30

8.24

1614

1888

448

517

213

3.01

3.04

23.44

27.76

220 3.06

265 3.09

The areas and moments of inertia of four angles about the axis A-A are given in Table 32, for equal leg angles; Table 33, for unequal leg angles, long legs out, and Table 34, unequal leg angles, short legs out; the axis A-A corresponding to axis X-X in Tables. The radius of gyration about axis A-A may be calculated from the formula $\tau_A = \sqrt{I_A \div A}$.

The moments of inertia of four angles about the axis B-B are given in Tables 35, 36 and 37, the axis B-B corresponding to Y-Y in Tables. The radii of gyration of four angles about the axis B-B may be calculated from the formula $\tau_B = \sqrt{I_B \div A}$, or may be found from Tables 38, 39 and 40, the radius of gyration of four angles being equal to that of two angles.

TABLE 69. PROPERTIES OF FOUR ANGLES AND ONE PLATE.

Without Without
Flange Plates
Long Legs Out.
d = Width of Web Plate Plus 1 In. Properties of Plate and Angle Column Sections. \dot{R}

Series I and II.		-	Serie	ı.					Series	II.		
				ments of Radii of (ments of Radii of (
Web Plate.	Four Angles.	Total Area.	Axis	A-A.	Axis	В-В.	Four Angles.	Total Area.	Axis	A-A.	Axis	В-В
			IA	r _A	IB	r_{B}			I_A	r_A	IB	$r_{\rm B}$
In.	In.	In.2	In.4	In	In.4	In.	In.	In.2	In.4	In.	In.4	In
$8x^{\frac{1}{4}}$	3x2\frac{1}{2}x\frac{1}{4}	7.24	81	3.36	10	1.19	31x21x1	7.76	90	3.41	16	1.4
44	" <u>5</u>	8.48	97	3.38	13	1.23	" 5	9.12	108	3.43	20	1.4
$8x_{16}^{5}$	32x22x5	9.62	110	3.38	21	1.47	4X3X 16	10.86	122	3.35	30	1.6
44	66 <u>3</u>	10.94	127	3.40	25	1.51	66 3	12.42	141	3.36	36	1.7
8x	4X3X3	12.92	143	3.33	37	1.70	4x3x1/2	16.00	178	3.33	50	1.7
66	16	14.48	161	3.34	43	1.73	16	17.48	194	3.33	56	1.7
10x 16	$3\frac{1}{2}$ x $2\frac{1}{2}$ x $\frac{5}{16}$	10.25	181	4.20	2 I	1.42	4x3x 5	11.49	201	4.18	30	1.6
44	" 3	11.57	208	4.24	25	1.47	46 3	13.05	232	4.22	36	1.6
IOX	4x3x8	13.67	237	4.16	37	1.65	6x4x3	18.19	319	4.19	119	2.5
44	16	15.23	267	4.18	44	1.69	16	20.47	361	4.20	139	2.6
66	5x3½x3	15.95	279	4.18	71	2.10	" 1	22.75	401	4.20	160	2.6
66	" 7 16	17.87	315	4.20	82	2.15	" 9	24.99	440	4.19	180	2.6
10x}	5x3½x½	21.00	360	4.14	98	2.16	6x4x½	24.00	412	4.14	165	2.6
66	16	22.88	393	4.14	III	2.20	16	26.24	451	4.15	187	2.6
66	66 <u>5</u> 8	24.68	424	4.15	123	2.22	" 16 8	28.44	489	4.15	206	2.6
12x 5	4X3X ⁵	12.11	304	5.01	30	1.57	$5 \times 3 \times \frac{1}{2} \times \frac{5}{16}$	13.99	355	5.02	58	2.0
66	16 3 A	13.67	350	5.06	36	1.62	"	15.95	412	5.04	69	2.0
12x3	4x3x3	14.42	359	4.99	37	1.60	6x4x3	18.94	481	5.04	119	2.5
66	" 7 16	15.98	404	5.02	44	1.66	" 7 " 16 " ½	21.22	544	5.06	139	2.5
66	5x3½x8	16.70	421	5.02	70	2.05	"	23.50	605	5.07	160	2.6
. "	16	18.62	476	5.04	82	2.10	" 9 " 16 " 5	25.74	665	5.08	180	2.6
66	" 1	20.50	526	5.06	95	2.15	66 5	27.94	723	5.09	200	2.6
12x1	$5x3\frac{1}{2}x\frac{1}{2}$	22.00	544	4.97	98	2.11	6x4x1	25.00	623	4.99	165	2.5
66		23.88	596	5.00	111	2.16	" 9 16	27.24	683	5.01	186	2.6
66	" 5	25.68	643	5.00	123	2.19	" 16 5	29.44	741	5.02	206	2.6
66	" 11	27.48	692	5.02	135	2.2I	" 11	31.60	794	5.01	228	2.6
66	"	29.24	735	5.01	149	2.26	" 3	33.76	849	5.01	249	2.7

The above table is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of other sections may be found as follows:

Example: Required the properties of a section composed of $4 \stackrel{\checkmark}{2} 5'' \times 3\frac{1}{2}'' \times \frac{7}{16}''$, long legs out, $12\frac{1}{4}''$ back to back, and one plate $12'' \times \frac{7}{16}''$.

	Ar	-	N	Ioment	of Inertia	•	Radius of	Gyration.
Item.	Al	ca.	Axis	A-A.	Axis	в-в.	Axis A-A.	Axis B-B.
	Table	A	Table	I_A	Table	IB	$r_A = \sqrt{I_A + A}$	$r_B = \sqrt{I_B + I_B}$
In.	No.	In.2	No.	In.4	No.	In.4	In.	In.
4 4 5 x 3 ½ x 7	33	14.12	33	403	36	84	466	84
1 Pl $-12x\frac{7}{16}$	I	5.25	3	63	4	0	V _{19.37}	$\sqrt{19.37}$
Totals	A =	19.37	I. =	466	In =	84	$r_A = 4.90$	$r_{\rm B} = 2.08$

TABLE 70 PROPERTIES OF FOUR ANGLES AND THREE PLATES.

R Properties of With Plate and Angle Flange Plates. Column Sections. d = Width of Web Plate Plus 1 In. k Series I and II. Series I Series II. Moments of Inertia and Moments of Inertia and Radii of Gyration. Radii of Gyration. Two Two 337ab Four Total Total Cover Cover Avis A-A Axis B-B. Axis A-A. Axis B-B. Plate. Angles Area Area Plates. Plates. IA ГΔ In I. ra In Tn. rp In. In In. In 2 In 4 In. In.4 In. In. In 2 In.4 In. In.4 In. 4.62 4.78 IOX 3 4x3x8 IOX3 21.17 2.26 459 TOO 2.17 IOX 3 23.67 TOT 5.16 2.24 682 26.75 598 4.73 134 29.25 154 2.46 4.60 26.20 181 2.63 $IOX^{\frac{1}{2}}$ $5x3\frac{1}{2}x\frac{3}{8}$ T2X 556 I2x 29.20 653 4.73 217 2.73 4.68 824 4.78 278 2.78 33.00 723 242 2.71 36.00 5x3\frac{1}{2}x\frac{1}{2} 12X8 I2X 25.70 794 5.3I 179 2.64 I2X 28.70 929 5.69 215 2.74 66 32.50 1034 5.66 239 2.71 35.50 1173 5.75 275 2.78 66 66 5.68 2.67 278 $I2X_2^{\frac{1}{2}}$ $5x3\frac{1}{2}x\frac{1}{2}$ 34.00 1052 5.59 242 37.00 1191 2.74 " 66 5.64 40.68 43.68 1387 1290 5.63 303 2.73 339 2.78 29.44 5.71 348 $12x_{8}^{3}$ 6x4x 14X 916 5.58 201 3.14 14x 32.94 1073 3.25 388 5.76 37.50 1197 5.65 41.00 1360 446 3.20 3.22 66 66 6x4x 39.00 1215 5.58 3.18 1378 5.69 3.26 12X1 394 42.50 45 I 66 66 46.94 1496 5.64 492 50.44 1664 5.75 3.30 3.24 549 14X8 6x4x 14x 30.10 1261 6.46 201 3.10 33.69 1469 6.60 348 3.2I 14X 38.25 1644 6.55 388 3.10 1857 6.67 446

The above table is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of other sections may be found as follows:

"

66

66

66

..

66

66

66

66

I 1

1 3 70.69

T 2

I 7 84.69

2 1 91.69

40.00

47.94

49.69

56.69

63.69

77.69

98.69

1672

2052

2081

2529

3006

3512

4048

4615

5214

5846

6.46

6.54

6.47

6.68

6.87

7.05

7.22

7.38

7.54

7.69

394

492

499

613

728

842

956

1071

1185

1299

3.14

3.20

3.17

3.29

3.38

3.45

3.51

3.56

3.60

3.63

6x4x1

6x4x

..

..

66

..

 $14x_{2}^{1}$

14X8

66

"

ce

41.75

43.50

51.44

53.19

60.19

67.19

74.19

88.19

2 102.10

6.58

6.63

6.57

6.74

6.96

7.13

7.30

7.46

7.62

7.77

1885

2263

2292

2764

3255

3776

4327

4910

5525

6175

,,

..

"

66

66

66

44

"

66

66

1

11

1

13 81.19

2

21/4 95.19 3.27

3.22

3.26

3.23

3.34

3.42

3.48

3.53

3.58

3.62

3.64

45 I

549

556 671

785

899

1014

1128

1242

1356

Example: Required the properties of a section composed of $4 \stackrel{\checkmark}{=} 5'' \times 3\frac{1}{2}'' \times \frac{7}{16}''$, long legs out, $12\frac{1}{4}''$ back to back, one web plate $12'' \times \frac{7}{16}''$ and two flange plates $12'' \times \frac{3}{8}''$.

	Δ	ea.	N	Ioment	of Inertia	ı.	Radius of	Gyration.
Item.	AI	ea.	Axis	A-A.	Axis	в-в.	Axis A-A.	Axis B-B.
	Table	A	Table	IA	Table	IB	$r_A = \sqrt{I_A \div A}$	$r_B = \sqrt{I_B \div A}$
In.	Table No.	In.2	No.	In.4	No.	In.4	In.	In.
$\begin{array}{c c} 4 \stackrel{\checkmark}{\sim} 5 \times 3^{\frac{1}{2}} \times \frac{7}{16} \\ 1 & \text{Pl} - 12 \times \frac{7}{16} \end{array}$	33	14.12	33	403	36	84	825	192
1 Pl— $12x\frac{7}{16}$ 2 Pl— $12x\frac{3}{8}$	I	5.25 9.00	3 5	63 359	4 3	0 801	$\sqrt{\frac{825}{28.37}}$	$\sqrt{\frac{192}{28.37}}$
Total	A =	28.37	$I_{\rm A} =$	825	$I_{\rm B} =$	192	$r_{\rm A} = 5.39$	$r_{\rm B} = 2.60$

TABLE 71.

PROPERTIES OF FOUR ANGLES AND TWO PLATES, LACED.

B 1B b = Width, Back to Back Properties of --of Angles, for Equal Four Angles and Two Plates. Moments of Inertia about Axes A-A and B-B with Angles Turned Out. Laced Angles Turned Out c = Same as b, but with Angles Turned in. d = Depth of Web Plates + \frac{1}{2}. and Angles Turned In. la İB Series 2. Series 3. Series 1. Series 4. Series Moment of Inertia. Radius of Gyration. Radius of Gyration. Radius of Gyration. Moment of Inertia. I, 2, 3 and 4. oment Inertia. Moment of Inertia b. to b. Angles. b to b. Angles. b. to b. Angles. b. to b. Angles. Total Area. Total Area. Total Area. Total Area. Size of Angles. I I I Δ ħ Α r h c A ī ŧ c c A 7 b c In. In.2 In. In.ª In.4 In. In.4 In. In. In In.4 Īn. In. In. In. In In.4 In. In In 8"x3" Web Plates. 8"x1" Web Plates. 8"x1" Web Plates. 8"x 1" Web Plates. 10.76 94 2.95 5.3 6.3 12.76 105 2.87 5.4 8.76 83 3.08 5.4 6.7 5.8 14.76 115 2.79 5.3 24x24x1 5.4 10.92 109 3.16 5.3 7.0 12.92 119 3.04 5.3 6.6 14.92 130 2.95 5.4 6.1 16.92 141 2.89 5.2 5.8 15.00 143 3.00 5.2 13.00 132 3.19 5.2 7.3 6.9 17.00 154 3.01 5.3 6.5 19.00 165 2.95 5.2 6.1 3x3x1 9.76 93 3.09 5.1 6.8 11.76 104 2.97 5.1 6.4 13.76 115 2.89 5.1 6.0 15.76 126 2.83 5.1 5.6 12.44 123 3.15 5.0 14.44 134 3.05 5.0 6.7 16.44 145 2.97 5.0 6.4 18.44 156 2.91 5.0 6.0 7.1 7.0 19.00 173 3.02 4.9 1 15.00 151 3.17 4.8 7.4 17.00 162 3.00 4.0 6.7 21.00 184 2.96 5.0 6.3 31x31x8 13.92 137 3.14 4.6 7.3 15.92 148 3.05 4.7 6.0 17.02 159 2.98 4.7 6.6 19.92 170 2.92 4.8 6.2 17.00 168 3.15 4.5 7.2 21.00 190 3.01 4.5 7.5 19.00 179 3.07 4.6 6.9 23.00 201 2.96 4.6 6.5 7.7 21.92 207 3.08 4.4 10.02 106 3.15 4.3 7.4 23.92 218 3.02 4.3 7.1 25.92 229 2.97 4.4 6.8 10"x1" Web Plates. 10"x3" Web Plates. 10"x1" Web Plates. 10"x 3" Web Plates. 12.26 162 3.63 6.5 21x21x1 9.76 142 3.82 6.4 7.3 14.76 183 3.52 6.6 7.5 7.0 17.26 204 3.44 6.8 6.7 11.92 185 3.94 6.6 8.1 14.42 205 3.77 6.7 7.8 16.92 226 3.66 6.7 7.5 19.42 247 3.56 6.8 7.1 14.00 224 4.00 6.0 8.8 16.50 244 3.85 6.9 8.4 19.00 265 3.73 6.8 8.0 21.50 286 3.65 6.8 7.5 8.3 13.26 179 3.68 6.7 3x3x1 10.76 159 3.84 6.7 7.8 15.76 200 3.56 6.7 7.4 18.26 221 3.48 6.7 6.9 8.2 18.44 250 3.67 6.6 13.44 209 3.94 6.7 8.7 15.94 229 3.79 6.7 7.8 20.94 271 3.60 6.6 7.3 0.0 18.50 276 3.86 6.6 8.6 21.00 297 3.76 6.6 16.00 256 4.00 6.6 8.1 23.50 318 3.68 6.6 7.7 3½x3½x3 14.92 232 3.94 6.4 1 18.00 285 3.98 6.2 8.9 17.42 252 3.80 6.5 8.5 19.92 273 3.70 6.4 8.0 22.42 294 3.62 6.4 7.5 9.1 20.50 305 3.86 6.3 8.7 23.00 326 3.76 6.3 8.3 25.50 347 3.69 6.3 7.8 9.3 23.42 353 3.88 6.1 20.92 333 3.99 6.0 8.9 25.92 374 3.78 6.2 8.5 28.42 395 3.72 6.2 8.1 12"x3" Web Plates. 12"x1" Web Plates. 12"x1" Web Plates. 12"x 5" Web Plates. 9.4 13.76 256 4.32 8.3 10.76 220 4.52 8.4 9.0 16.76 292 4.17 8.2 21x21x1 8.5 19.76 328 4.08 8.2 8.0 12.92 288 4.72 8.5 9.9 15.92 324 4.51 8.4 9.4 18.92 360 4.36 8.3 8.9 21.92 396 4.25 8.3 8.4 15.00 343 4.78 8.6 10.3 18.00 379 4.59 8.5 9.8 21.00 415 4.45 8.4 9.3 24.00 451 4.34 8.3 8.8 3x3x1 11.76 246 4.57 8.3 9.7 14.76 282 4.37 8.2 9.3 17.76 318 4.23 8.1 8.8 20.76 354 4.13 8.0 8.3 14.44 322 4.72 8.2 10.2 17.44 358 4.53 8.2 9.7 20.44 394 4.39 8.1 9.2 23.44 430 4.28 8.1 8.7 17.00 392 4.80 8.2 10.6 20.00 428 4.63 8.2 10.1 23.00 464 4.49 8.2 9.6 26.00 500 4.39 8.2 9.0 31x31x1 15.92 356 4.73 8.0 10.4 18.92 392 4.55 7.9 9.9 21.92 428 4.42 7.9 9.4 24.92 464 4.31 8.0 8.9 19.00 437 4.80 8.0 10.7 22.00 473 4.64 7.9 10.2 25.00 509 4.51 7.9 9.7 28.00 545 4.41 8.0 9.2 \$ 21.92 512 4.83 7.9 11.0 24.92 548 4.69 7.9 10.6 27.92 584 4.57 7.9 10.1 30.92 620 4.48 7.9 9.6 4x4x⁸ 17.44 388 4.72 7.7 1 21.00 480 4.78 7.7 10.5 20.44 424 4.58 7.7 10.0 23.44 460 4.43 7.7 9.4 26.44 496 4.33 7.7 9.0 10.8 24.00 516 4.64 7.6 9.8 30.00 588 4.43 7.6 9.3 10.3 27.00 552 4.53 7.6 24.44 563 4.80 7.6 11.1 27.44 599 4.67 7.5 10.6 30.44 635 4.57 7.5 10.1 33.44 671 4.51 7.5 5.7

PROPERTIES OF FOUR ANGLES AND TWO PLATES, LACED.

Properties of Four Angles and Two Plates, Laced. Angles Turned Out and Angles Turned In.

b= Width, Back to Back of Angles, for Equal Moments of Inertia about Axes A-A and B-B when Angles Are Turned Out. c= Same as b with Angles Turned In. d= Depth of Web Plates $+\frac{1}{2}$ ".

							,,,,					İĐ								
Series		Se	ries I				Se	ries 2				Se	ries 3.				Se	eries 4		
1, 2, 3 and 4.	Total Area.	Moment of Inertia.	Radius of Gyration.	b. to b.	Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	b. to b.	Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	b. to b.	Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	to to	Angles.
Size of Angles.		- <u>I</u>			С		I	r	b	С		1	r	b	с		-	r	ь	с
In.	In.2	In.4	In.	In.	In.	In.2	In.4	In.	In.	In.	In.2	In.4	In.	In.	In.	In.2	In.4	In.	In.	In.
	14"	x 3"	Web	Plat	es.	14"	x ½"	Web	Plat	es.	14"	x 5"	Web	Plat	es.	14"	x 3"	Web	Plat	es.
avavl	16 26	414	5.05	0.6	10.2	19.76	471	4.89	0.6	10.0	23.26	£28	4.77	0.5	0.5	26.76	-8r	4.67	9.6	9.0
8	16.26 18.94 21.50	520	5.24 5.37	9.7	10.9	22.44 25.00	577	5.07 5.20	9.7	10.4	25.94 28.50	634	4.94 5.07	9.6	9.9	29.44 32.00	691	4.84 4.97	9.6 9.6	9.5
$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	20.42	570	5.28			23.92		5.12			27.42	684	4.99			30.92	741	4.89	9.5	9.8
66 5	23.50 26.42		5.40 5.47			27.00 29.92		5.25 5.32			30.50 33.42		5.12 5.20			34.00 36.92	856 962	5.02 5.10	9.5	10.1
4×4×3	21.94 25.50 28.94	616 747 867	5.30 5.41 5.47	9.3	11.8	25.44 29.00 32.44	804	5.15 5.26 5.34	9.3	11.3	28.94 32.50 35.94	861	5.02 5.15 5.23	9.3	10.8	32.44 36.00 39.44	918	4.93 5.05 5.13	9·4 9·4 9·3	10.0 10.4 10.8
	16"	x ½"	Web	Plat	es.	16"	x 5"	Web	Plat	es.	16"	x 3"	Web	Plat	es.	16"	x 7"	Web	Plat	es.
3 ½ X 3 ½ X	25.92 29.00 31.92	1028	5.96	II.I	12.4	33.00	1114	5.81	11.0	11.9	37.00	1199	5.69	11.0	11.5	41.00	1284	5.60	10.9	11.0
4X4X \(\frac{3}{8} \) \(\tau \) \(\tau \) \(\tau \) \(\tau \) \(\tau \) \(\tau \) \(\tau \) \(\tau \) \(\tau \) \(\tau \)	27.44 31.00 34.44	937 1113 12 7 6	5.84 5.99 6.09	10.9 10.9	12.1 12.5 13.0	31.44 35.00 38.44	1023 1199 1362	5.71 5.85 5.96	10.9 10.9 10.9	11.7 12.2 12.6	35.44 39.00 42.44	1108 1284 1447	5.60 5.74 5.84	10.9 10.9 10.8	11.5 11.8 12.1	39·44 43.∞ 46.44	1193 1369 1532	5.50 5.64 5.74	10.8 10.8 10.8	11.1 11.4 11.7
" <u>1</u> " <u>5</u>	33.44 39.00 44.44 49.76	1413 1647	6.02	9.7 9.6	13.2 13.6	43.00	1499 1733	5.91	9.7 9.6	12.8	41.44 47.00 52.44 57.76	1584 1818	5.81 5.89	9.8 9.7	12.6	45.44 51.00 5 <u>6</u> .44 61.76	1669 19 0 3	5.72 5.81	10.1	12.I 12.5
	18"	x ½"	Web	Plat	es.	18"	x 5/1	Web	Plat	es.	18"	x 3"	Web	Plat	es.	18"	x 7"	Web	Plat	tes.
3½x3½x3 66 5 8	27.92 31.00 33.92	1373	6.66	12.6	13.7	35.50	1495	6.49	12.5	13.3	40.00	1919	6.36	12.5	12.9	44.50	1738	6.25	12.4	12.4
4X4X 8 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29.44 33.00 36.44	1256 1485 1699	6.53 6.71 6.82	12.4 12.5 12.6	13.5 14.0 14.5	33.94 37.50 40.94	1378 1607 1821	6.38 6.55 6.67	12.2 12.3 12.4	12.9 13.4 13.9	38.44 42.00 45.44	1499 1728 1942	6.25 6.42 6.54	12.2 12.3 12.4	12.6 13.0 13.4	42.94 46.50 49.94	1621 1850 2064	6.14 6.31 6.43	12.1 12.2 12.3	12.1 12.5 12.9
6x6x\frac{1}{2}	41.00 46.44 51.76 56.92	2191 2482	6.87	II.3 II.2	15.2 15.5	50.94 56.26	2313 2604	6.74	11.3	14.7	50.00 55.44 60.76 65.92	2434 2725	6.63	11.3	14.2 14.6	59.94 65.26	2556 2847	6.53	11.4	13.7 14.1

TABLE 71.—Continued. Properties of Four Angles and Two Plates, Laced.

lB b = Width, Back to Back Properties of of Angles for Equal Four Angles and Moments of Inertia wo Plates. about Axes A-A and B-B with Angles Turned Out. Laced. Angles Turned Out c = Same as b, but with Angles Turned In. d = Depth of Web Plates + \frac{1}{2}". and Angles Turned In. İB İB Series 2. Series 3. Series 4. Series T. Series Radius of Gyration. Radius of Gyration. Moment of Inertia. Moment of Inertia. Radius of Gyration. Radius of Gyration. 1, 2, 3 and 4, Moment of Inertia. b. to b. Angles. b. to b. Angles. b. to b. Angles. b. to b. Angles. Total Area. Total Area. Total Area. Total Area. Size of Angles r À T . I . c Δ _ c -Īn. In. In. In. In.2 In.4 In. In.3 In In.2 In 4 In In 2 In 4 Ĭn. In. In In 20"x " Web Plates. 20"x3" Web Plates. 20"x1" Web Plates. 20"x " Web Plates. 31x31x1 29.92 1525 7.14 13.8 14.5 34.92 1691 6.96 13.7 14.0 39.92 1858 6.83 13.6 13.5 44.92 6.72 13.5 13.0 33.00 1779 7.34 14.0 15.0 38.00 1945 7.15 13.9 14.5 48.00 6.90 13.6 13.5 43.00 2112 7.02 13.8 14.0 \$\frac{1}{2}\$\frac 45.92 2350 7.15 13.9 14.5 50.92 7.03 13.7 14.0 4x4x3 31.44 1634 7.21 13.7 14.8 36.44 1800 7.03 13.6 14.2 41.44 1967 6.89 13.6 13.8 46.44 6.78 13.5 13.3 35.00 1923 7.41 13.9 15.4 40.00 2089 7.23 13.8 14.8 45.00 2256 7.08 13.7 14.3 50.00 6.96 13.6 13.8 38.44 2194 7.58 14.1 16.0 43.44 2360 7.37 13.9 15.3 48.44 2527 7.23 13.9 14.8 53.44 7.10 13.7 14.2 53.00 2769 7.23 13.3 15.2 58.00 7.12 13.4 14.2 58.44 3161 7.36 13.2 15.6 63.44 7.24 13.3 14.7 68.76 7.34 13.1 15.2 63.76 3535 7.45 13.1 16.0 58.92 3561 7.79 12.9 17.4 63.92 3727 7.64 12.9 16.9 68.92 3894 7.52 12.9 16.4 73.92 7.42 12.9 15.7 22"x 1" Web Plates. 22"x3" Web Plates. 22"x 7" Web Plates. 22"x1" Web Plates. $3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$ 37.42 2161 7.60 15.0 15.2 42.92 2383 7.45 14.9 14.8 " $\frac{1}{2}$ 40.50 2473 7.82 15.3 15.7 46.00 2695 7.68 15.2 15.3 " $\frac{1}{2}$ 43.42 2766 7.98 15.5 16.2 48.92 2988 7.82 15.4 15.8 48.42 2605 7.34 14.9 14.3 51.50 2917 7.53 15.1 14.8 53.92 7.24 14.8 13.9 57.00 7.43 15.0 14.4 54.42 3210 7.67 15.3 15.3 59.92 7.57 15.2 14.9 4x4x3 38.94 2296 7.68 15.0 15.5 44.44 2518 7.54 15.0 15.2 15.7 42.50 2652 7.90 15.3 16.1 48.00 2874 7.74 15.2 15.7 15.2 15.7 15.9 45.94 2988 8.07 15.6 16.7 51.44 3210 7.90 15.4 16.2 49.94 2740 7.41 15.1 14.8 55.44 7.30 15.1 14.2 53.50 3096 7.61 15.2 15.3 59.00 7.51 15.1 14.7 56.94 3432 7.76 15.3 15.7 62.44 7.65 15.1 15.3 6x6x\frac{1}{2}50.50\ 3295\ 8.08\ 14.6\ 17.0\ 56.00\ 3517\ 7.93\ 14.6\ 16.5\ 17.0\ 56.00\ 3517\ 7.93\ 14.6\ 16.5\ 16.9\ 17.4\ 61.44\ 4005\ 8.08\ 14.6\ 16.9\ 17.4\ 61.26\ 4249\ 8.33\ 14.6\ 17.9\ 66.76\ 4471\ 8.19\ 14.6\ 17.4\ 61.42\ 4005\ 8.27\ 14.6\ 17.8\ 17.9\ 17.8\ 17.8\ 17.9\ 17.8\ 17 61.50 3739 7.80 14.6 16.1 67.00 7.69 14.6 15.6 66.94 4227 7.93 14.6 16.5 72.44 7.83 14.6 16.0 72.26 4693 8.05 14.6 16.9 77.76 7.96 14.6 16.5 77.42 5142 8.15 14.6 17.4 82.92 8.04 14.5 16.9 24"x 3" Web Plates. 24"x3" Web Plates. 24"x7" Web Plates. 24"x1" Web Plates. 4x4x3 41.44 2870 8.32 16.4 16.7 47.44 3158 8.16 16.3 16.3 53.44 3446 8.03 16.1 16.0 59.44 7.93 16.0 15.6 57.00 3876 8.25 16.4 16.5 60.44 4283 8.42 16.6 16.9 45.00 3300 8.56 16.6 17.3 51.00 3588 8.47 16.5 16.9 63.00 8.14 16.3 16.0 48.44 3707 8.75 16.8 17.9 54.44 3995 8.57 16.7 17.4 66.44 8.30 16.5 16.4 6x6x\frac{1}{2}53.00 4089 8.79 16.2 18.4 59.00 4377 8.62 16.1 17.9 16.2 18.9 64.44 4972 8.79 16.1 18.4 63.76 5253 9.08 16.2 19.3 69.76 5541 8.92 16.2 18.9 64.92 5802 9.18 16.2 19.8 74.92 6090 9.02 16.2 19.3 65.00 4665 8.47 16.0 17.4 71.00 8.36 16.0 16.0 70.44 5260 8.64 16.0 17.9 76.44 8.53 16.0 17.4 75.76 5829 8.77 16.1 18.3 80.92 6378 8.88 16.1 18.8 81.76 8.66 16.1 17.8 86.92 8.76 16.1 18.3 8x8x½ 61.00 4772 8.85 15.3 19.0 67.00 5060 8.69 15.3 18.5 73.00 5348 8.56 15.3 18.0 79.00 8.45 15.3 17.5 68.44 5537 8.98 15.2 19.6 74.44 5825 8.85 15.2 19.1 75.76 6268 9.11 15.1 20.1 81.76 6556 8.96 15.1 19.6 80.44 6113 8.72 15.2 18.6 86.44 8.60 15.3 18.0 87.76 6844 8.84 15.1 19.1 93.76 8.72 15.3 18.5 82.92 6976 9.16 15.0 20.5 88.92 7264 9.04 15.0 19.9 94.92 7552 8.93 15.0 19.4 100.92 8.82 15.2 19.0 90.00 7653 9.22 14.9 20.8 96.00 7941 9.10 14.9 20.2 102.00 8229 8.99 14.9 19.7 108.00 8.89 15.2 19.5

TABLE 71.—Continued.

PROPERTIES OF FOUR ANGLES AND TWO PLATES, LACED.

TABLE 71 -- Continued

PROPERTIES OF FOUR ANGLES AND TWO PLATES, LACED.

TABLE 72.

PROPERTIES OF FOUR ANGLES AND FOUR PLATES.

							1	3								
	Fo	Propertie ur Angl Four Pl	les and			A			Ad			dges of Edges of Depth of	of Cove	r Plate	es.	•
Series 1,2	and 3.		S	eries 1			<u>'</u>		eries 2			1	5	Series 3	ļ.	
			Axis	A-A.	Axis	В-В.		Axis	A-A.	Axis	В-В.		Axis .	A-A.	Axis	в-в
Size of Angles.	Cover Plates.	Total Area.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.	Total Area	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.	Total Area	Moment of Inertia.	Radius of Gyration	Moment of Inertia.	Radius of Gyration.
		A	I_A	r_A	IB	rB	A	I_A	r_A	IB	rB	A	I_A	rA	IB	r _B
In.	In.	In.2	In.4	In.	In.4	In.	In.2	In.4	In.	In.4	In.	In.2	In.4	In.	In.4	In.
		12	″× ¾′	' Web	Plate	es.	12'	$' \times \frac{1}{2}'$	' Wel	Plate	es.	12'	" × §"	'Web	Plate	es.
3x3x\frac{1}{4} 3x3x\frac{3}{2}x3\frac{1}{2}x\frac{3}{2}x3\frac{1}{2}x\frac{3}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\frac{1}{2}x\frac{3}{2}x\f	14X3/8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					28.26 31.76 35.26 30.94 34.44 37.94 33.92 37.92 41.92 37.00 41.00 14' 37.42	$' imes rac{1}{2}'$	5.16 5.35 5.52 5.18 5.35 5.53 5.22 5.40 5.55 5.22 5.38 5.52 7 Web	Plate	4.13 4.12 4.11 4.22 4.19 4.81 4.79 4.78 4.91 4.88 4.86	31.26 34.76 38.26 33.94 37.44 40.94 36.92 40.92 44.92 40.00 48.00 14' 40.92		5.02 5.22 5.39 5.05 5.23 5.38 5.10 5.28 5.43 5.11 5.27 5.41 ' Web	Plate	4.06 4.06 4.06 4.15 4.14 4.13 4.75 4.73 4.72 4.84 4.82 4.81
"" 3½x3½x½ "" 4x4x¾ "" 4x4x½ ""	18X383812 18X38812 18X38812 18X38812 18X38814 18X3881 18X3881 18X3881 18X3881 18X3881 18X3881 18X3881	38.42 42.92 37.00 41.50 46.00 35.44 39.94 44.44 39.00 43.50	1583 1857 1432 1698 1972 1363 1629 1903 1494 1760	6.42 6.58 6.22 6.40 6.55 6.20 6.55 6.19 6.36	1215 1336 1235 1357 1478 1057 1178 1300 1203 1325	5.63 5.58 5.78 5.72 5.67 5.47 5.44 5.41 5.56 5.52	41.92 46.42 40.50 45.00 49.50 38.94 43.44 47.94 42.50 47.00	1640 1914 1489 1755 2029 1415 1686 1960 1551 1817	6.26 6.42 6.07 6.30 6.41 6.03 6.23 6.42 6.04 6.22	1304 1426 1325 1446 1568 1130 1251 1373 1276 1397	5.58 5.54 5.72 5.67 5.63 5.39 5.35 5.48 5.45	45.42 49.92 44.00 48.50 53.00 42.44 46.94 51.44 46.00 50.50	1473 1743 2017 1608 1874	6.12 6.28 5.93 6.12 6.28 5.89 6.10 6.26 5.91 6.09	1390 1511 1410 1532 1653 1198 1320 1441 1345 1466	5.54 5.51 5.66 5.62 5.60 5.33 5.30 5.29 5.41 5.39
	8	48.00 16'	2034 " × ¾"	6.51 'Wel	Plate		51.50 16'		6.38 Web	1519 Plate		55.00 16'	2148	6.25 ' Web	1588 Plate	
3½x3½x3 "" 3½x3½x½ "" 4x4x38 "" 4x4x½ ""	20X 1/2 (1/2 5/10 8/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	41.92 46.92 51.92 45.00 50.00 55.00 43.44 48.44 53.44 47.00	2234 2622 3022 2389 2777 3177 2298 2686 3086 2474	7.30 7.48 7.63 7.29 7.45 7.56 7.28 7.44 7.60 7.26	1883 2049 1903 2069 2236 1674 1840 2007 1869	6.34 6.28 6.50 6.43 6.45 6.21 6.16 6.13	45.92 50.92 55.92 49.00 54.00 59.00 47.44 52.44 57.44 51.00	2319 2707 3107 2474 2862 3262 2383 2771 3171 2559	7.43 7.09	2030 2196 2050 2217 2383 1797 1964 2130 1992	6.32 6.27 6.47 6.41 6.35 6.16 6.12 6.09 6.25	49.92 54.92 59.92 53.00 58.00 63.00 51.44 56.44 61.44 55.00	2405 2793 3193 2560 2948 3348 2469 2857 3257 2645	6.94 7.13 7.30 6.95 7.14 7.30 6.93 7.12 7.28 6.94	2171 2337 2191 2357 2524 1915 2082 2249 2110	6.29 6.25 6.43 6.38 6.33 6.10 6.07 6.05 6.20
66	66 3 4	52.00 57.00	2862 3262	7.42 7.55			56.00 61.00	2947 3347	7.26 7.41			60.00 65.00	3033 3433	7.11 7.27	2277 2444	6.16

TABLE 72.—Continued.

Properties of Four Angles and Four Plates.

							1	В								
	Fo	Properti ur Angl Four Pl	les and			Δ.			<u>^</u>			Edges of A Edges of Depth of	of Cove	r Plate	ь.	
Series 1, 1	and 3.			Series 1			<u>.</u>		Series 2			1	S	eries 3.		
			Axis	A-A.	Axis	В-В.	,	Axis	A-A.	Axis	В-В.		Axis	A-A.	Axis	В-В.
Size of Angles.	Cover Plates.	Total Area	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radios of Gyration.	Total Area.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.	Total Area	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.
		A	IA	$r_{\mathbf{A}}$	IB	rB	A	IA	rA	IB	rB	A	IA	rA	IB	rB
In.	In	In.2	In.4	In.	In.4	In.	In.2	In.4	In.	In.4	In.	In.2	In.4	In.	In.4	Īn.
		18	"×1	" Wel	Plate	C8.	18	"× 1	" Wel	Plate	es.	18"	× 1"	Web	Plate	es.
3½x3½x}	22X ¹ / ₂ " 5 8 4	49.92 55.42 60.92	3158 3686 4229	7.97 8.15 8.34	2564 2786 3008	7.17 7.10 7.03	54.42 59.92 65.42	3279 3807 4351	7.76 7.98 8.16	2780 3002 3224	7.16 7.11 7.02	58.92 64.42 69.92	340I 3929 4472	7.60 7.81 8.00	2989 3211 3432	7.13 7.06 7.01
3½x3½x½	22X 2 4 5 8 4 4	53.00 58.50 64.00	3360 3888 4431	7.96 8.16 8.32	3023 3245	7.20 7.13	57.50 63.00 68.50	3481 4009 4553	7.79 7.98 8.15	3018 3239 3461	7.25 7.17 7.11	67.50 73.00	3603 4131 4674	7.63 7.82 8.00	3226 3448 3670	7.15 7.09
4x4x8	22X2 " 5 " 3	51.44 56.94	3243 3771	7.94 8.14	2484	6.89	55.94 61.44	3364 3892	7.76 7.96	2669 2891	6.86	65.94	3486 4014	7.59 7.80	2849 3071	6.82
4x4x1	22X1	62.44 55.00	4314 3472	8.32 7.95	2927 2734		66.94 59.50		8.14 7.77	3113	6.81 7.01	71.44 64.00	4557 3715	8.00 7.62	3293 3099	
" "	" <u>5</u>	60.50	4000	8.13	2956	7.00	65.00	4121	7.96	3141	6.95	69.50	4243	7.80	3321	6.92
		66.00 20	4543 " ~ 1	8.30 " Wel	3178		70.50		8.14	3363 		75.00 20"	4786 × 3"		3543 Plate	
21-21-1	2471								8.61		8.07	67.00				
3 ½ x 3 ½ x ½	24X 1/2 1/5 8 4 3 4	57.00 63.00 69.00	4426 5127 5844	8.83 9.02 9.22	3717 4005 4293	8.08 7.98 7.88	68.00 74.00	4593 5293 6011	8.83 9.01	4319 4607	7.98 7.89	73.00 79.00	4759 5460 6178	8.85	4337 4625 4913	7.96 7.89
34x34x8	24X2	59.92 65.92	4664	8.82 9.02	3999 4287	8.18	64.92 70.92	4831 5531	8.62 8.84	4313	8.15	69.92 75.92	4997 5698	8.46 8.67	4619 4907	
* 66	"	71.92	5365 6082	9.02	4575	7.98	76.92	6249	9.02	4889	7.97	81.92	6416	8.86	5195	
4x4x1	24X1/2	59.00 65.00 71.00	4571 5271 5988	9.80 9.01 9.18	3640 3928 4216	7.86 7.77 7.71	64.00 70.00 76.00	4737 5437 6155	8.60 8.82 9.01	3916 4204 4492	7.84 7.78 7.70	69.00 75.00 81.00	4903 5604 6322	8.44 8.65	4184 4472 4760	7.73
4x4x5	24X 1 5 8 4 3 4	62.44 68.44		8.80 9.00	3952 4240	7.96 7.87	67.44 73.44	5008 5708	8.6 ₂ 8.8 ₂	4228 4516	7.92 7.84	72.44 78.44	5174 5875	8.45 8.66	4496 4784	7.88 7.80
		74.44		9.17			<u>79-44</u>		9.00				65931	8.85		
	0.5		1.0	" Wel						Plate			× ¾″			
3½x3½x½	28x 5 " 3 " 7	70.00 77.00 84.00		9.96 10.15 10.32	6351 6808 7265	9.53 9.40 9.31		7155 8152 9171	9.74 9.94	6894 7351 7809	9.56 9.44 9.35		7377 8373 9393	9.55 9.76 9.95	7422 7879 8337	9.47
3½x3½x5	28x 5 4 4	72.92 79.92	7226 8223	9.96	6758 7216	9.51 9.51	78.42 85 42	7448 8445	9.75 9.95	7302 7759	9.55 9.54	83.92 90.92	7670 8666	9.56 9.76	7830 8287	9.66 9.56
"	8	86.92	9242	10.31	7673	9.40	92.42	9464		8217	9-43	97.92	9686	9.95	8745	
4X4X1	28x 5 3	72.00	7112 8109	9.95	6276	9.34	77.50 84.50	7334 8331	9.74 9.94	7222	9.35		7556 8552	9·55 9·75	7242 7699	
66	" 1 8	86.00	9128	10.30	7191		91.50	9350		7679	9.16	97.00	9572	10.04	8157	9.17
4x4x§	28x 5 4 7	75·44 82.44 89.44	8445	9.94 10.12 10.28	6731 7188 7646	9·45 9·34	80.94 87.94 94.94	7670 8667 9686	9·74 9·94	7677	9.45 9.35 9.26	86.44 93 -4 4 100.44	7892 8888 9908	9.56 9.76 9.96	7697 8154 8612	9.35

PROPERTIES OF FOUR ANGLES LACED AND EIGHT ANGLES BATTENED.

Four Angles. A A A A A A A A A
Laced (Box Column).

Eight Angles.

Battened (Gray Column).

l															
				Axis A	λ-A.							Axis A	-A.		
Size of Angles.	Area of Four Angles.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.	Size of Angles.	Area of Eight lAngles.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.	Moment of Inertia.	Radius of Gyration.
		IA	rA	IA	rA	IA	rA			I_A	r_{A}	IA	r_A	IA	r_A
In.	In.2	In.4	In.	In.4	In.	In.4	In.	In.	In.º	In.4	In.	In.4	In.	In.4	In.
			Valu	e of d	in Inc	hes.					Valu	e of di	n Incl	ies.	
		8	L	10	$\frac{1}{2}$	1:	2 1/2			12	1/2	14	1 2	16	$5\frac{1}{2}$
3x3x ¹ / ₄ " ³ / ₈ " ¹ / ₂	5.76 8.44 11.00	102	3.53 3.48 3.44	167	4.50 4.45 4.41	249	5·49 5·44 5·39	3x3x ¹ / ₄ " ³ / ₈ " ¹ / ₂	11.52 16.88 22.00	263	3.97 3.95 3.92	362	4.67 4.63 4.60	478	5·35 5·32 5·29
		10	1 2	12	$\frac{1}{2}$	1.	4 ¹ / ₂			12	$\frac{1}{2}$	14	1/2	10	51/3
3½x3½x ³ / ₈ ½ ½	9.92 13.00 15.92	243	4.38 4.32 4.28	365	5.35 5.30 5.26	513	6.33 6.28 6.24	3½x3½x ³ / ₈ " ½	19.84 26.00 31.84	394	3.93 3.89 3.87	542	4·59 4·57 4·54	716	5.28 5.25 5.22
		12	$\frac{1}{2}$	14	$\frac{1}{2}$	10	61/2			14	1	16	1/2	1	31/2
4×4×3/8 4 1 1 2 4 5 8	11.44 15.00 18.44	408	5.26 5.22 5.16	525	6.23 6.19 6.14	772	7.22 7.17 7.12	4x4x ³ / ₈ " ¹ / ₂ " ⁵ / ₈	22.88 30.00 36.88	618	4.56 4.54 4.51	815	5.24 5.21 5.18	802 1042 1267	5.92 5.89 5.86
		16	$\frac{1}{2}$	18	$\frac{1}{2}$	20	$0\frac{1}{2}$			18	$\frac{1}{2}$	20	$\frac{1}{2}$	2:	21/2
6x6x ³ / ₈ " 12 " 55 6 3	17.44 23.00 28.44 33.76	1072 1306	6.87 6.82 6.77 6.72	1705	7·79 7·74	1354 1769 2161 2535	8.76 8.72	6x6x38	34.88 46.00 56.88 67.52	1542	5.82 5.79 5.76 5.73	1914 2343	6.48 6.45 6.42 6.39	1781 2331 2856 3360	7.12 7.08

The table given above is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of other sections may be found as follows:

Example: Required the properties of a square box column consisting of 4 \(\alpha\) 4"x4"x\(\frac{1}{2}\)",

laced, 13\frac{1}{4} in. back to back.

Solution: Table 32 evidently applies to angles with legs turned in, as well as angles with legs turned out.

Area, from Table $32 = 15.00 \text{ in.}^2$ $I_A = I_X$, from Table $32 = 467 \text{ in.}^4$

 $r_{\rm A} = \sqrt{I_{\rm A} \div A} = \sqrt{467 \div 15.00} = 5.58 \text{ in.}$

The table given above is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of other sections may be found as follows:

Example: Required the properties of a column consisting of 8 \(\Delta\) 4"x4"x\(\frac{1}{2}\)", battened,

151 in. back to back.

Solution: From Tables 32 and 35 the moment of inertia about axis A-A equals 645 + 43 = 688 in. 4 and the area equals 2 \times 15.00 = 30.00 sq. in.

The radius of gyration equals

 $r = \sqrt{I \div A} = \sqrt{688 \div 30.00} = 4.79 \text{ in.}$

TABLE 74.

PROPERTIES OF EIGHT ANGLES AND THREE PLATES.

Properties of Eight Angles and Three Plates.

d = Width of Web Plate
Plus One-half Inch,
b = Width of Flange Plates
Plus One-half Inch,
Large Sections may be
Laced on Open Sides,

01 6	61 6			en i	Axis	A-A.	Axis	В-В.
Size of Web Plate,	Size of Flange Plates.	Size of Inside Angles.	Size of Outside Angles.	Total Area	Moment of Inertia.	Radius of Gyration,	Moment of Inertia.	Radius of Gyration,
				A	IA	r _A	IB	r _B
In.	In.	In.	In.	In.2	In.4	In.	In.4	In.
18x1	18x1/2	3½x3½x3	3½x3½x¾	46.84	3238	8.31	1198	5.06
66 8	66 5	3	'' 1	59.75	4135	8.32	1534	5.07
"	"	" 1	66 <u>5</u>	72.34	5016	8 32	1856	5.06
20x1	20x1	4×4×2	4x4x1	60.00	5051	9.17	1976	5.74
44 <u>5</u>	" <u>5</u>	" <u>5</u>	" <u>\$</u>	74.38	6261	9.17	243 I	5.71
" 3	" 3	" 3	" 3	88.52	7459	9.18	2875	5.70
22X 5	22X 5	4×4×2	4x4x ¹ / ₂	71.24	7319	10.13	2708	6.16
" 3	" 3	" <u>5</u>	" <u>5</u>	86.37	8885	10.14	3285	6.16
" 7 8	" 7	" 4	" 3	101.26	10434	10.15	3845	6.16
24X 5	24X 5	4×4×1	4×4×1	75.00	9175	11.05	3356	6.69
" 3	" 3	46 <u>5</u>	" <u>5</u>	90.88	11139	11.06	4070	6.69
" 7 8	" 1	" 3	" 3	106.52	13083	11.08	4767	6.68
26x3	26x3	6x6x3	6x6x 3	126.02	17447	11.77	7021	7.46
" 7 8	" 7	" 7 8	" 7 8	146.09	20234	11.77	8102	7.44
" I	" 1	" I	" ĭ	166.00	23001	11.77	9168	7.43
28x3	$28x_{4}^{3}$	6x6x3	6x6x 3	130.52	21081	12.71	8376	8.01
" 7 8	" 7 8	" 7 8	" 7 8	151.34	24456	12.71	9672	7.99
" I	" I	" I	" I	172.00	27809	12.71	10943	7.98
30x 7	30x 7	6x6x ³	6x6x3	146.27	27369	13.67	10456	8.45
" I	" I	" 7 8	" 7 8	167.84	31433	13.68	11988	8.45
" I 1 1	" I 1 1	" I	" I	189.25	35477	13.69	13496	8.45

[·] The above table is intended to serve only as a guide in the choice of sections and not as a complete table. The properties of other sections may be found as follows:

Solution:

		A-	ea.	1	Moment o	of Inertia		Radius of	Gyration.
Item.				Axis	A-A.	Axis	B-B.	Axis A-A.	Axis B-B.
	•	Table No.	A	Table	IA	Table	IB	$r_A = \sqrt{I_A + A}$	$r_{\mathbf{B}} = \sqrt{1_{\mathbf{B}} + \mathbf{A}}$
In.		140.	In.º	No.	In 4	No.	In,4	In.	ln
1-Wb. Pl. 2-Fl. Pls.	20x 5 24x 3	I	12 50	3 5	417 3972	4	0 1728	7506	5205
4-Ins. 🗗 4-Outs. 🗹	4x4x 1 6x4x 1	32 34	15.00	32	1222	35 33	56 3421	V _{91.26}	191.26
Total		A =	91.26	I _A =	7506	IB =	5205	$r_A = 9.07$	$r_B = 7.55$

Example: Required the properties of a section composed of a $20'' \times \frac{5}{5}''$ web plate, two $24'' \times \frac{3}{4}''$ flange plates, four $4'' \times 4'' \times \frac{1}{2}''$ inside angles and, four $6'' \times 4'' \times \frac{3}{4}''$ outside angles fastened by 4'' legs, $d = 20\frac{1}{4}''$, $b = 24\frac{1}{4}''$.

TABLE 75

ELEMENTS OF Z-BAR COLUMNS

AMERICAN BRIDGE COMPANY STANDARDS

		I	Dimensions in Inche	8]	Rive	rs ¶"	DIAM	•	
Size of Column	Size of Web Pl.	Thick- ness	Size of Z-Bars Size of Flanges	双 Width	o Gage	Tang't	STANDARD DIMENSIONS	Moment of Inertia	Radius of H	Moment of Inertia	Radius of Cyration	Weight per Foot	Area
In.		In.	Ins.	In.	In.	In.		ğ	20	M	20	Lbs.	Sq. In.
6	6" Web Same Thickness as Z-Bar	$\begin{array}{c} \frac{1}{4} \\ \frac{5}{5} \\ 16 \\ \frac{3}{8} \\ \frac{7}{16} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 2\frac{5}{5} \times 3 & \times 2\frac{5}{9} \\ 2\frac{1}{16} \times 3\frac{1}{16} \times 2\frac{1}{16} \\ 2\frac{3}{4} \times 3\frac{1}{5} \times 2\frac{3}{4} \\ 2\frac{1}{16} \times 3 & \times 2\frac{1}{16} \\ 2\frac{3}{4} \times 3\frac{1}{16} \times 2\frac{3}{4} \end{array}$	$\begin{array}{c} 6\frac{1}{4} \\ 6\frac{7}{16} \\ 6\frac{5}{8} \\ 6\frac{7}{16} \\ 6\frac{5}{8} \end{array}$	1 $\frac{3}{8}$ 1 $\frac{7}{16}$ 1 $\frac{1}{2}$ 1 $\frac{9}{16}$ 1 $\frac{5}{8}$	5 5 7 6 3 6 5 5 4 7 8 4 8	1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	84.7 105.1 125.1 134.6 153.1	3.0 2.9 2.9	31.7 41.8 53.4 55.2 67.1	1.9 1.9 1.8	31.5 39.6 47.6 53.5 61.2	9.26 11.64 14.01 15.63 18.00
8	7" Web Same Thickness as Z-Bar	1455 16387 161229 15181 1634	$\begin{array}{c} 2\frac{7}{8} & \swarrow 4 & \swarrow 2\frac{7}{8} \\ 2\frac{15}{16} & \swarrow 4\frac{1}{16} & \swarrow 2\frac{15}{16} \\ 3 & \swarrow 4\frac{1}{8} & \circlearrowleft 3 \\ 3\frac{1}{16} & \swarrow 4\frac{1}{16} & \circlearrowleft 3\frac{1}{16} \\ 3\frac{1}{8} & \swarrow 4\frac{1}{16} & \circlearrowleft 3\frac{1}{16} \\ 3\frac{1}{8} & \swarrow 4\frac{1}{16} & \circlearrowleft 3\frac{1}{8} \\ 3\frac{1}{16} & \swarrow 4\frac{1}{16} & \circlearrowleft 3\frac{1}{16} \\ 3\frac{1}{8} & \swarrow 4\frac{1}{16} & \circlearrowleft 3\frac{1}{16} \\ 3\frac{1}{8} & \swarrow 4\frac{1}{8} & \circlearrowleft 3\frac{1}{16} \\ \end{array}$	$\begin{array}{c} 8\frac{1}{4}\frac{4}{7}\overline{16}\\ 8\frac{1}{16}\\ 8\frac{7}{15}\underline{8}\\ 8\frac{7}{15}\underline{8}\\ 8\frac{1}{15}\underline{8}\\ 8\frac{1}{16}\\ 8\frac{1}{16}\\ 9 \end{array}$	I 58 I 116 I 14 I 158 I 116 I 158 I 116 I 158 I 116 I 16 I 16 I 16 I 16 I 16 I 16 I	$\begin{array}{c} 7\frac{1}{8} \\ 7\frac{3}{16} \\ 7\frac{1}{4} \\ 6\frac{1}{16} \\ 6\frac{1}{8} \\ 6\frac{1}{2} \\ 6\frac{1}{5} \\ 6\frac{1}{8} \\ \end{array}$	13" -7\dagger 136 136 136"	134.7 166.9 199.4 220.6 250.8 280.4 296.3 323.8 351.5	3·4 3·4 3·4 3·3 3·3 3·3	65.7 85.8 107.8 115.6 138.6 163.0 167.3 192.8 220.5	2.4 2.5 2.4 2.5 2.5 2.5 2.5 2.5	37·5 47·0 56·5 64·3 73·9 83·6 90·1 99·9 109·7	11.03 13.83 16.71 18.90 21.74 24.58 26.58 29.37 32.25
10	5ame Thickness as Z-Bar	5 16 3 8 7 16 5 8 1 16 3 4	$\begin{array}{c} 3\frac{3}{16} \times 5 & \times 3\frac{3}{16} \\ 3\frac{1}{4} \times 5\frac{1}{16} \times 3\frac{1}{4} \\ 3\frac{5}{16} \times 5\frac{1}{8} \times 3\frac{5}{16} \\ 3\frac{1}{4} \times 5 & \times 3\frac{1}{4} \\ 3\frac{1}{16} \times 5\frac{1}{16} \times 3\frac{5}{16} \\ 3\frac{3}{8} \times 5\frac{1}{8} \times 3\frac{3}{8} \\ 3\frac{1}{4} \times 5 & \times 3\frac{3}{16} \\ 3\frac{1}{16} \times 5\frac{1}{16} \times 3\frac{5}{16} \end{array}$	$\begin{array}{c} IO\frac{5}{16}\\ IO\frac{1}{2}\\ IO\frac{1}{16}\\ IO\frac{1}{2}\\ IO\frac{1}{16}\\ IO\frac{1}{8}\\ IO\frac{1}{16}\\ IO\frac{7}{8}\\ IO\frac{7}{8}\\ IO\frac{7}{8}\\ \end{array}$	1 1 1 3 1 6 1 7 8 1 1 5 1 6 2	916 918 918 918 916 814 916 814 8116 817 817 812	136" 316" 156" 116" 116" 116" 116" 116" 116" 1	193.8 231.0 267.6 287.6 321.1 354.3 364.8 395.5	3.5 3.4 3.4 3.4 3.3	147.4 183.4 222.0 234.4 273.7 315.6 320.0 363.0	3.1 3.1 3.1 3.1 3.2 3.1	53.1 64.0 75.0 83.0 93.7 104.7 111.0 121.7	15.63 18 83 22.06 24.42 27.58 30.78 32.65 35.81
12	8" Web Same Thickness as Z-Bar	3.87 16 15.81 1.63 1.63 1.74 1.74 1.86	$\begin{array}{c} 3\frac{1}{3} \times 6 & \times 3\frac{1}{3} \\ 3\frac{1}{16} \times 6\frac{1}{16} \times 3\frac{1}{16} \\ 3\frac{1}{16} \times 6\frac{1}{16} \times 3\frac{1}{16} \\ 3\frac{1}{3} \times 6\frac{1}{16} \times 3\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{16} \times 3\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{16} \times 3\frac{1}{3} \\ 3\frac{1}{3} \times 6 \times 3\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{16} \times 3\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{3} \times 3\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{3} \\ 3\frac{1}{3} \\ 3\frac{1}{3} \times 6\frac{1}{3} \\ 3\frac{1}{3} \\ 3\frac{1}{$	$\begin{array}{c} 12\frac{3}{8}\\ 12\frac{1}{16}\\ 12\frac{3}{4}\\ 12\frac{1}{4}\\ 12\frac{3}{4}\\ 12\frac{1}{4}\\ 12\frac{1}{16}\\ 12\frac{1}{16}\\ 12\frac{1}{16}\\ 13\frac{1}{8}\\ \end{array}$	$\begin{array}{c} \mathbf{I} \frac{3}{4} \\ \mathbf{I} \frac{1}{16} \\ \mathbf{I} \frac{7}{8} \\ \mathbf{I} \frac{15}{16} \\ 2 \\ 2 \frac{1}{16} \\ 2 \frac{1}{8} \\ 2 \frac{1}{16} \\ 2 \frac{1}{4} \\ \end{array}$	II II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14"	337.0 391.4 444.6 469.1 518.0 566.5 579.7 622.5 666.6	3.9 3.8 3.8 3.8 3.7 3.7	287.8 346.9 409.2 426.3 489.2 555.8 562.4 628.2	3.7 3.6 3.7 3.8 3.7 3.7	72.6 85.2 97.7 106.1 118.4 130.9 137.9 149.6 162.0	21.36 25.06 28.76 31.22 34.84 38.50 40.56 44.02 47.64

TABLE 77.

PROPERTIES OF CHORD SECTIONS.

McClintic-Marshal Construction Co. Standards.

	Two	perties Angles Web P	and				A	{	B	· · · · · · · · · · · · · · · · · · ·	Lor To	ng Leg p of P Backs	late 🛔	" Bel	Out. ow		
- ·				Axis A	A-A.		Axis	В-В	_				Axis A	\-A.		Axis	B-B
Size of Web Plate.	Size of Angles.	Total Area	Moment of Inertia.	Radius of Gyration.	Section Modulus.	Centroid.	Moment of Inertia.	Radius of Gyration.	Size of Web Plate.	Size of Angles.	Total Area	Moment of Inertia.	Radius of Gyration.	Section Modulus.	Centroid.	Moment of Inertia.	Radius of Gyration.
is .		_A	IA	rA	SA	e	IB	rB	SZ.		_A	IA	rA	SA	_e	IB	rB
In.	In.	In.3	In.4	In.	In.3	In.	In.4	In.	In.	In.	In.2	In.4	In.	In.3	In.	In.4	In.
6×1 7×1 8×1 8×1 8×1 8×3	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	3.38 3.62 3.63 3.87 4.13 4.37 3.88 4.12 4.38 4.62 5.24 4.88 5.56 5.44 5.56 6.56 6.56 7.96	11.7 17.1 18.7 18.7 18.7 24.4 25.6 27.1 26.8 26.8 27.9 29.2 31.7 33.2 33.6 34.3 39.1 40.6	2.41 2.47 2.40 2.46 2.38 2.44 2.38	7.1 9.1 8.9 10.0 9.9 9.8 10.9 11.0 12.1 13.3 15.1 13.5 14.8 14.2 16.1 17.1 18.1	1.66 1.87 1.99 1.87 1.90 2.48 2.34 2.33 2.21 2.22 2.04 2.10 2.35 2.42 2.30 2.42 2.30 2.31 2.22 2.42 2.30 2.31 2.22 2.34 2.35 2.31 2.22 2.31	1.7 3.1 5.1 5.2 1.7 3.1 3.1 3.9 5.1 5.2 6.5 8.0 10.1 4.1 5.3 6.7	.666 .877 .844 .899 1.000 1.111 1.28 1.355 .877 1.02 1.08 1.244 1.31	10×3/8	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	4.88 5.44 4.88 5.12 5.74 5.38 6.06 6.68 6.07 5.75 6.01 6.69 7.31 8.09 7.93 8.85 8.25 9.23 6.99 7.31 7.93 8.71 8.55 9.47	50.1 49.3 49.3 52.2 51.3 54.0 55.7 58.6 61.2 60.0 63.4 69.3 72.1 69.3 72.4 69.5 72.1 74.5 77.8 77.8	3.19 3.09 2.99 2.89 3.10 3.16 3.16 3.10 3.16 2.99 2.91 2.91 2.96 2.85 2.81 3.15 3.14 3.07 2.99 3.10	17.8 16.8 17.0 19.6 19.6 18.5 21.2 22.8 19.1 18.2 21.0 21.0 21.0 27.2 27.8 27.2 27.8 27.2 23.9 25.9 25.9 25.9 25.9	2.82 2.93 2.90 2.67 2.77 2.55 2.44 3.07 3.16 2.91	3.9 5.1 5.2 6.5 8.0 10.1 14.8 4.1 5.3 6.7 8.2 10.3 15.1 18.2 28.7 4.0 6.9 10.6 6.9 11.5 15.5 15.5 15.5 16.7 16.9 16.9	.85 1.00 1.00 1.22 1.29 1.29 1.02 1.17 1.25 1.44 1.50 1.91 1.97 1.87 1.91
9×1 9×1 9×1	$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 3 \times 2 \times \frac{1}{4} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \\ 3\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4} \\ 3 \times 2\frac{1}{2} \times \frac{1}{4} \\ 3 \times 2\frac{1}{2} \times \frac{1}{5} \\ 3\frac{1}{2} \times 2\frac{1}{2} \times \frac{5}{6} \\ 3\frac{1}{2} \times 2\frac{1}{2} \times \frac{5}{6} \end{array}$	4.63 4.63 4.87 5.13 6.05 6.37	35.4 37.3 37.0 38.4 45.8	2.84 2.75 2.73 2.75	13.5 14.5 15.8	2.77 2.55 2.43 2.62	5.2 8.0	1.05 1.03 1.25		$\begin{array}{c} 3 & \times 2^{\frac{1}{2}} \times \frac{1}{4} \\ 3 & \times 2^{\frac{1}{2}} \times \frac{5}{16} \\ 3^{\frac{1}{2}} \times 2^{\frac{1}{2}} \times \frac{5}{16} \\ 4 & \times 3 & \times \frac{5}{16} \\ 5 & \times 3 & \times \frac{5}{16} \\ 5 & \times 3 & \times \frac{5}{16} \\ 5 & \times 3^{\frac{1}{2}} \times \frac{5}{16} \\ 5 & \times 3^{\frac{1}{2}} \times \frac{5}{16} \\ 5 & \times 3^{\frac{1}{2}} \times \frac{5}{16} \\ 5 & \times 3^{\frac{1}{2}} \times \frac{5}{16} \\ \end{array}$	5.62 6.24 5.88 6.56 7.18 7.80 8.72	86.2 84.3 89.1 92.0	3.73 3.78 3.67 3.58 3.52	25.6 24.2 27.8 30.2 34.3	3.65 3.37 3.49 3.20 3.05 2.82 2.61	6.5 3.0 10.1 14.8 28.1	1.02 1.17 1.24 1.44 1.90

TABLE 77.—Continued.

Properties of Chord Sections.

McClintic-Marshall Construction Co. Standards.

									В		,				,			
	Two	perties Angles Web Pi	and			4	4		8	٩	L	To	ig Legi p of Pl Backs	ate 1'	Belo	ut. ow		
rte.		ű		Axis A	A-A.		Axis		ate.		ni.	6,		Axis .	A-A.		Axis	в-в.
Size of Web Plate.	Size of Angles.	Total Area	Moment of Inertia.	Radius of Gyration.	Section Modulus.	Centroid.	Moment of Inertia.	Radius of Gyration.	Size of Web Plate		Size of Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus.	Centroid.	Moment of Inertia.	Radius of Gyration.
Siz		A	I_A	rA	SA	e	IB	rB	Siz	_		A	IA	rA	SA	e	IB	rB
In.	In.	In.2	In.4	In.	In.3	In.	In.4	In.	In.	_	In.	In.2	In 4	In.	In.3	In.	In.4	In.
12×\frac{5}{16}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.63 7.31 7.93 8.71 8.55 9.47 8.87 9.85 7.74 8.06 8.68 9.46 9.30 10.22 9.62 10.60	100.7 98.5 104.5 107.9 112.8 113.9 119.0 114.3 118.5 122.7 128.4 129.9 135.8 141.8	3.79 3.86 3.78 3.70 3.60 3.64 3.55 3.58 3.47 3.84 3.83 3.76 3.68 3.74 3.64 3.55	25.9 29.6 32.0 35.8 36.3 40.9 36.4 40.9 29.3 31.4 34.0 38.0 43.2 38.4 43.1	3.67 3.81 3.53 3.37 3.15 3.13 2.91 3.91 3.91 3.91 3.91 3.91 3.91 3.91 3	10.3 15.1 18.2 28.7 34.4 28.8 34.6 6.9 10.6 15.5 18.6 29.2 35.1 29.4 35.3 59.6	1.11 1.19 1.38 1.44 1.82 1.92 1.80 1.88 .95 1.15 1.34 1.40 1.77 1.85 1.75 1.82	14×3/8	45556666 455666	Teleplands Tel	11.72 13.50 14.00 12.84 15.00 15.50 10.21 10.97 11.35 12.09 12.47 13.50 14.50 15.00 15.00	168.6 166.4 178.2 178.2 174.1 186.3 196.5 207.4 207.5 216.6 216.7 258.2 273.5 265.7 285.3	3.76 3.63 3.56 3.52 3.52 4.39 4.28 4.23 4.16 4.37 4.34 4.27 4.38	46.8 55.9 55.7 52.0 62.1 61.5 47.8 54.1 54.4 60.5 60.5 62.2 70.1 70.8 65.3 78.3	3.55 3.19 3.20 3.35 3.00 3.03 4.11 3.83 3.81 3.59 3.59 4.16 3.89 3.87 4.07 3.64	36.5 48.9 49.7 61.6 82.0 82.5 18.6 35.1 35.3 59.6 59.6 48.9 49.2 61.6 82.0	1.77 1.90 1.88 2.19 2.34 2.31 1.35 1.79 1.76 2.22 2.19 1.40 1.84 1.81 2.11 2.26
12×716	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.35 12.31 12.09 13.10	149.1 150.0 151.5 157.1 158.4	3.68 3.69 3.65 3.57 3.62	45.1 44.8 45.2 49.6 50.2	3.31 3.35 3.35 3.17 3.16	22.3 35.8 35.9 42.0 60.6	1.42 1.81 1.78 1.85 2.24 2.31	16×3 16×3	5 6 6 6 6 6	$\begin{array}{c} \times 3\frac{1}{2} \times \frac{3}{2} & \times 3\frac{1}{2} \times \\ \times 3\frac{1}{2} \times \frac{1}{2} \times \frac{3}{2} & \times 3\frac{1}{2} \times \frac{1}{2} \times \\ \times 3\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \\ \times 3\frac{1}{2} \times \frac{1}{2} 12.84 15.00 14.84 15.94	412.4	4.94 4.72 5.09 5.03 4.92	73.3 88.1 79.5 87.5	4.27 3.80 4.81 4.55 4.32	59.7 80.0 61.6 71.9 82.0	2.16 2.30 2.04 2.13 2.18	

TABLE 78.

Properties of Top Chord Sections.

Properties of Two Angles and One Cover Plate. Angles Turned Out.

Short Legs Against Plate, and Turned Out. Edges of Angles Flush with Edges of Plate.

Series			S	Series 1	I.						1	Series	2.			
and 2.				Axis A	\-A.		Axis	В-В.		ا نـ		Axis	A-A.		Axia l	В-В.
Size of Plate.	Size of Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus. Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.	Size of Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of
- vo		A	IA	rA	SA	е	IB	rB		A	IA	rA	SA	e	IB	rB
In.	In.	In.3	In.4	In.	In.3	In.	In.4	In.	In.	In.2	In.4	In.	In.3	In.	In.4	In
iox‡	3x2½x¼ 4x3 x¼	5.12 5.88	3·7 8.2	.86 1.18	5.8 9.0	.40 .66			$3x2\frac{1}{2}x\frac{3}{8}$ $4x3$ $x\frac{3}{8}$	6.34 7.46	5.I II.2	.90 1.23	6.6	·53	62.5 63.0	3.I. 2.9
10x 5	3x2½x} 4x3 x}	5.74 6.50	4.0 8.7	.84 1.16	6.3	·33 ·57			3x2½x3 4x3 x3	6.96 8.08	5.6 11.9	.90 1.22	7·3 11.5	.46 .73	67.7 68.2	3 I: 2.90
12x1	3x2½x½ 4x3 x½ 5x3½x½	5.62 6.38 8.12	3.9 8.5 18.8	.83 1.16 1.52	6.4 10.2 15.5	.36 .60 .96	86.1	3.67	3x2½x¾ 4x3 x¾ 5x3½x√6	6.84 7.96 10.06		.89 1.21 1.56	7·4 11.7 17.9	.48 .75 1.11	106.2 110.7 124.0	3.9 3.7 3.5
12X 16	3x2½x½ 4x3 x½ 5x3½x½	6.37 7.13 8.87	4.I 9.I 19.8	.80 1.13 1.49	6.9 11.1 17.1	.28 .51 .85		3.65	$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{3}{8} \\ 4 \times 3 \times \frac{3}{8} \\ 5 \times 3\frac{1}{2} \times \frac{7}{16} \end{array}$	7.59 8.71 10.81		.87 1.19 1.54	8.0 12.7 19.4	.41 .66 1.01	115.2 119.7 133.0	3.7
12x3	3×2½×¼ 4×3 ×¼ 5×3½×½	7.12 7.88 9.62	4·4 9·5 20.8	.79 1.10 1.47	7.5 11.9 18.4	.22 •43 .76	104.1	3.64	$ 3x2\frac{1}{2}x\frac{3}{8} 4x3 x \frac{3}{8} 5x3\frac{1}{2}x\frac{7}{16} $	8.34 9.46 11.56		.86 1.18 1.53	8.6 13.8 20.7	·34 ·58 ·92	124.2 128.7 142.0	3.6
14x1	3x2½x¼ 4x3x ¼ 5x3½x¾ 6x4 x¾	6.12 6.88 8.62 10.72	4.0 8.8 19.3 37.1	.81 1.13 1.50 1.86	7.0 11.0 17.0 24.4	.32 .55 .89	135.9	4.45	$3x2\frac{1}{2}x\frac{3}{8}$ $4x3$ $x\frac{3}{8}$ $5x3\frac{1}{2}x\frac{7}{16}$ $6x4$ $x\frac{1}{2}$	7.34 8.46 10.56 13.00	25.0	.87 1.19 1.54 1.88	8.1 12.7 19.2 27.7	.44 .70 1.05	163.5 174.3 199.8 220.9	4.5
14X 16	3x2½x¼ 4x3 x¼ 5x3½x¼ 6x4 x¾	6.99 7.75 9.49 11.59	4.2 9.3 20.4 39.0	.78 1.11 1.47 1.83	7.7 12.3 18.7 26.7	.24 .45 .78 1.15	150.2 173.4	4.52 4.40 4.27 4.08		8.21 9.33 11.43 13.87	26.4	.85 1.17 1.52 1.87	8.7 13.9 20.9 30.0	·37 .61 ·95	177.7 188.6 214.1 235.1	4·4 4·3
14x3	$3x2\frac{1}{2}x\frac{1}{4}$ $4x3$ $x\frac{1}{4}$ $5x3\frac{1}{2}x\frac{5}{16}$ $6x4$ $x\frac{3}{8}$	7.87 8.63 10.37 12.47	4.5 10.2 21.4 40.8	.76 1.07 1.44 1.81	8.2 13.1 20.2 28.7	.18 .37 .69 1.04	164.5 187.7	4.25	$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{3}{8} \\ 4 \times 3 \times \frac{3}{8} \\ 5 \times 3\frac{1}{2} \times \frac{7}{16} \\ 6 \times 4 \times \frac{1}{2} \end{array}$	9.09 10.21 12.31 14.75	13.5 27.6	.83 1.15 1.50 1.85	9.4 14.8 22.4 32.0	.30 .53 .86	192.0 202.9 228.4 249.5	4.4
16x1	$\begin{array}{cccc} 4x3 & x_4^1 \\ 5x3\frac{1}{2}x\frac{5}{16} \\ 6x4 & x_8^3 \end{array}$	7.38 9.12 11.22	9.0 19.8 38.0	1.10 1.47 1.84	12.0 18.2 26.2	.50 .84 1.20	236.8	5.09	$\begin{array}{cccc} 4x3 & x_{8}^{\frac{3}{8}} \\ 5x3\frac{1}{2}x_{16}^{\frac{7}{16}} \\ 6x4 & x_{2}^{\frac{1}{2}} \end{array}$	8.96 11.06 13.50	25.7	1.18 1.52 1.87	13.8 20.6 27.4	.65 1.00 1.36	254.8 296.9 334.4	5.1
16x16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.38 10.12 12.22	9.5 20.9 42.0	1.07 1.44 1.81	13.2 20.1 28.8	.41 .73 1.08	258.1	5.05	$4x3 ext{ } x \frac{3}{8}$ $5x3\frac{1}{2}x\frac{7}{16}$ $6x4 ext{ } x\frac{1}{2}$	9.96 12.06 14.50	27.1	1.15		.56 .89 1.25	276.2 318.2 355.7	5.1
16x3	5x3½x ⁵ 6x4 x ³ 8x6 x ⁷	13.22	21.9 41.9	1.40 1.78 2.44		.63		4.87	5x3½x ⁷ 6x4 x½	15.50	52.2	1.48	34.3	.80 1.15	339.6 377.0	

TABLE 79.

Properties of Top Chord Sections.

Properties of Two Angles and One Cover Plate. Angles Turned In.

Short Legs Against Plate, and Turned In. Backs of Angles Flush with Edges of Plate.

	***	.8.00						В								
Series				Series	I.				i			Series	2.			
1 and 2.	l			Axis	A-A.		Axis	в-в.		ا ا		Axis	A-A.		Axis	в-в.
Size of Plate.	Size of Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.	Size of Angles.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.
\(\overline{Q}_{2}\)		A	I_A	r _A	SA	е	IB	r _B		A	IA	ΓA	SA	е	IB	r _B
In.	In.	In.2	In.4	In.	In.8	In.	In.4	In.	In.	In.2	In.4	In.	In.8	In.	In.4	In.
8x ¹ / ₄	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.62 5.38	3.6 7.9	0.88 1.21	5.I 8.I	.46 .73			$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{3}{8} \\ 4 \times 3 \times \frac{3}{8} \end{array}$	5.84 6.96	4.9 10.8	.91 1.25	5.8 9.6	·59 .88	54·3 66.0	3.05 3.08
8x 5	$3 \times 2 \frac{1}{2} \times \frac{1}{4}$ $4 \times 3 \times \frac{1}{4}$	5.12 5.88	3.9 8.4	0.87	5.6 8.7	.39 .65	44.0 52.1		$3x2\frac{1}{2}x\frac{3}{8}$ $4x3$ $x\frac{3}{8}$	6.34 7.46	5·3 11·4	.91 1.24	6.4	.52 .80	57.0 68.6	3.00
10x1/4	$\begin{array}{c} 3 \times 2 \frac{1}{2} \times \frac{1}{4} \\ 4 \times 3 \times \frac{1}{4} \\ 5 \times 3 \frac{1}{2} \times \frac{5}{16} \\ 6 \times 4 \times \frac{3}{8} \end{array}$	5.12 5.88 7.62 9.72	3.8 8.4 18.1 34.9	0.86 1.19 1.54 1.89	5.8 9.2 14.1 21.0	.41 .66 1.03 1.41	85.0 114.9	3.80 3.88	$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{3}{8} \\ 4 \times 3 \times \frac{3}{8} \\ 5 \times 3\frac{1}{2} \times \frac{7}{16} \\ 6 \times 4 \times \frac{1}{2} \end{array}$	6.34 7.46 9.56 12.00	23.5	.90 1.23 1.57 1.91	6.6 10.6 16.5 24.3	.53 .81 1.17 1.55	93.6 113.0 147.9 186.1	3.89
10x 5 16 44	$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{1}{4} \\ 4 \times 3 \times \frac{1}{4} \\ 5 \times 3\frac{1}{2} \times \frac{5}{16} \\ 6 \times 4 \times \frac{3}{8} \end{array}$	5.74 6.50 8.24 10.34	4.I 8.8 19.2 36.7	0.83 1.16 1.53 1.88	6.2 10.0 15.5 22.6	·33 ·57 ·93 I.31	90.2 120.1	3.72 3.82	$ 3x2\frac{1}{2}x\frac{3}{8} 4x3 x\frac{3}{8} 5x3\frac{1}{2}x\frac{7}{16} 6x4 x\frac{1}{2} $	6.96 8.08 10.18 12.62	24.7	.90 1.22 1.56 1.90	7·3 11·5 17·8 25·8	.46 .73 1.08 1.46	98.8 118.2 153.2 191.3	3.82 3.88
10x 3/8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.37 7.13 8.87 10.97	4.2 9.3 22.0 38.2	0.81 1.14 1.50 1.87	6.6 10.6 16.5 24.0	.26 .49 .84 1.21		3.66 3.76	$\begin{array}{c} 3 \times 2\frac{1}{2} \times \frac{3}{8} \\ 4 \times 3 \times \frac{3}{8} \\ 5 \times 3\frac{1}{2} \times \frac{7}{16} \\ 6 \times 4 \times \frac{1}{2} \end{array}$	7.59 8.71 10.81 13.25	25.9	.88 1.20 1.54 1.89	7.7 12.2 18.8 27.3	.39 .66 1.00 1.37	104.0 123.4 158.4 196.5	3.76 3.83
12X4 	$\begin{array}{c} 4 \times 3 & \times \frac{1}{4} \\ 5 \times 3 & \times \frac{1}{2} \times \frac{5}{16} \\ 6 \times 4 & \times \frac{3}{8} \end{array}$	6.38 8.12 10.22	8.6 18.8 36.0	1.16 1.52 1.88	10.2 15.5 22.8	.60 .96 I.33	132.3 177.8 230.6	4.68	$ 4x3 x_8^3 5x3\frac{1}{2}x_{16}^7 6x4 x_2^4 $	7.96 10.06 12.50	24.3	1.21 1.56 1.90	11.7 17.9 26.0	.75 1.11 1.48	175.0 228.4 287.0	4.76 4.79
12x 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.13 8.87 10.97	9.1 19.8 37.9	1.13 1.49 1.86	11.1 17.1 24.8	.51 .85 1.22	141.3 186.8 239.6	4.59	4x3 x38 5x312x716 6x4 x12	8.71 10.81 13.25	25.6	1.19 1.54 1.89	12.7 19.4 27.9	.66 1.01 1.38	184.0 237.6 296.0	4.69
12x3/8	4x3 x ¹ / ₄ 5x3 ¹ / ₂ x ⁵ / ₁₆ 6x4 x ³ / ₈	7.88 9.62 11.72	9.5 20.8 39.6	1.10 1.47 1.84	11.9 18.4 26.4	.43 .76 1.12	150.3 195.8 248.6	4.51	$\begin{array}{cccc} 4 \times 3 & \times \frac{3}{8} \\ 5 \times 3 & \times \frac{7}{16} \\ 6 \times 4 & \times \frac{1}{2} \end{array}$	9.46 11.56 14.00	26.9	1.18 1.53 1.87	13.8 20.7 29.6	.58 .92 1.29	193.0 246.6 305.0	4.62
14x ¹ / ₄	$\begin{array}{cccc} 4 \times 3 & \times \frac{1}{4} \\ 5 \times 3 & \times \frac{5}{16} \\ 6 \times 4 & \times \frac{3}{8} \end{array}$	6.88 8.62 10.72	8.8 19.3 37.1	1.13 1.50 1.86	11.0 17.0 24.4	.55 .89 I.27	257.0	5.46	$\begin{array}{cccc} 4 \times 3 & \times \frac{3}{8} \\ 5 \times 3 & \times \frac{7}{16} \\ 6 \times 4 & \times \frac{1}{2} \end{array}$	8.46 10.56 13.00	25.0	1.19 1.54 1.88	12.7 19.2 27.7	.70 1.05 1.42	252.9 328.9 412.9	5.58
14X 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.75 9.49 11.59	9.3 20.4 39.0	1.11 1.47 1.83	12.3 18.7 26.7	.45 .78 I.I5	271.3	5.34	$4x3 ext{ } x\frac{3}{8}$ $5x3\frac{1}{2}x\frac{7}{16}$ $6x4 ext{ } x\frac{1}{2}$	9.33 11.43 13.87		1.17 1.52 1.87	13.9 20.9 30.0	.61 .95 1.31	267.2 343.1 427.2	5.48
14x ³ / ₄	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.63 10.37 12.47 17.11	9.9 21.4 40.8 103.7	1.07 1.44 1.81 2.46	13.1 20.2 28.9 51.6	.37 .69 1.04 1.64	221.0 285.5 360.6 489.7	5.24	$4x3 x\frac{3}{8}$ $5x3\frac{1}{2}x\frac{7}{16}$ $6x4 x\frac{1}{2}$ $8x6 x\frac{9}{16}$	10.21 12.31 14.75 20.37	508	1.50	14.8 22.4 32.0 58 I	.53 .86 1.22 1.81	281.5 357.4 441.4 591.2	5·39 5·47

TABLE 80.

PROPERTIES OF TOP CHORD SECTIONS.

Properties of Two Angles, One Web Plate and One Cover Plate.

Long Legs Turned Out.
Top of Web Plate ‡"
Below Backs of Angles.

								10									
Serie	s I and 2.				Serie	8 I.							Ser	les 2.			
ė		ů,	٠.		Axis	A-A.		Axis	в-в.	e e	4		Axis	A-A.		Axis 1	В-В.
Size of Web Plate.	Size of Angles.	Size of Top Plate.	Total Area.	Moment of Inertia	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.	Size of Top Plate.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.
		S	A	IA	rA	SA	e	IB	r _B	S	A	IA	\mathbf{r}_{A}	SA	e	IB	r _B
In.	In.	In.	In.2	In.4	In.	In.ª	In.	In.4	In.	In.	In.2	In.4	In.	In.3	In.	In.4	In.
6x1	2 X2 X4	6x1	4.88	14.8	1.74	10.3	1.19	6.1	1.12	6x3/8	5.63	16.2	1.70	11.8	.99	8.4	1.22
8x14	2 x2 x ¹ / ₄ 2 ¹ / ₂ x2 ¹ / ₂ x ¹ / ₄ 66 8 3 x2 ¹ / ₂ x ¹ / ₄ 67 8 16	6x1 6x1 6x1 8x1 8x1	5.38 5.88 6.44 6.62 7.24	31.6 32.3 32.9 34.4 35.3	2.34 2.26 2.28	15.8 16.5 17.5 19.5 20.8	1.75 1.71 1.63 1.51 1.45	6.1 7.6 8.4 15.8 17.1	1.07 1.14 1.14 1.55	6x36 6x36 6x36 8x36 8x38	6.13 6.63 7.19 7.62 8.24	35.0 35.5 37.1	2.37 2.30 2.22 2.21 2.14	18.9 19.7 22.5	1.50 1.48 1.43 1.27 1.23	8.4 9.9 10.7 21.2 22.5	1.17 1.22 1.22 1.67 1 65
8x 16	$2\frac{1}{2}x2\frac{1}{2}x\frac{1}{4}$ $3 x2\frac{1}{2}x\frac{1}{4}$ $5 16$ $3 x^{2}\frac{1}{2}x\frac{1}{4}$	6x1 6x1 8x1 8x1	6.38 6.94 7.12 7.74	38.0 38.9 40.5 41.4	2.37 2.38	17.6 18.8 20.8 22.0	1.91 1.82 1.70 1.63	7.6 8.4 16.0 17.3	1.10 1.10 1.49 1.49	6x3 6x3 8x3 8x3	7.13 7.69 8.12 8.74	41.9 44.0	2.41 2.33 2.33 2.26	20.2 21.1 24.1 25.2	1.67 1.61 1.45 1.40	10.0 10.8 21.3 22.7	1.18 1.18 1.62 1.61
8x3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8x1 8x1 10x8 10x8	7.62 8.24 10.93 11.71	46.3 47.3 54.9 55.5	2.39 2.24	21.8 23.3 31.1 32.1	1.87 1.78 1.40 1.36	16.2 17.6 46.8 49.9			12.18	49·4 58.6	2.37 2.31 2.19 2.14		1.73 1.67 1.21 1.19	21.5 22.9 57.2 60.3	1.58 1.57 2.17 2.16
IOX4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6x1 6x1 8x1 8x1 10x3 10x3	6.38 6.94 7.12 7.74 10.43 11.21	58.1 60.0 62.4 64.3 72.4 73.0	2.94 2.96 2.88 2.63	24.7	2.30 2.18 2.05 1.94 1.50 1.45	7.6 8.4 15.8 17.1 46.1 49.9		$6x_{\frac{3}{8}}^{\frac{3}{8}}$	7.13 7.69 8.12 8.74 11.68 12.46	64.4 67.2 68.3 76.5	2.96 2.89 2.88 2.81 2.56 2.49	27.9 31.5 33.0 42.7	2.02 1.93 1.76 1.70 1.29 1.26	9.9 10.7 21.2 22.5 56.5 59.4	1.18 1.18 1.62 1.60 2.20 2.18
10x 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10x 3 12x 3		73.5 75.3 85.8 87.0 90.5 91.9	3.00 2.79 2.71 2.66	41.1 42.8 46.8	2.31 2.20 1.71 1.66 1.56 1.50	16.0 17.4 46.4 49.4 82.8 88.6	2.05 2.56	$\begin{array}{c} IOX_{\frac{1}{2}}^{\frac{1}{2}} \\ I2X_{\frac{1}{2}}^{\frac{1}{2}} \end{array}$	12.31 13.09		2.69 2.59	32.9 35.3 46.7 48.5 51.8 53.0	2.01 1.94 1.49 1.45 1.35 1.33	21.3 22.7 56.9 59.9 100.8 106.6	1.56 1.56 2.15 2.14 2.66 2.64
10x3	3 X2½X¼ " 5 16 4 X3 X 16 3 8 5 X3½X 16 3 8	IOX 3 12X 3	8.99 11.68 12.46	83.7 85.8 98.4 99.7 103.7 105.3	3.10 2.92 2.83 2.78	30.I 32.4 43.2 45.2 49.4 51.4	2.42 1.90 1.84 1.73	17.6 46.8 49.9 83.4	2.00 2.50	8x3 IOx2 IOx2 IOx2	9.37 9.99 12.93 13.71 14.87 15.85	105.4	3.05 2.81 2.77 2.72		2.23 2.15 1.67 1.63 1.51 1.48	22.9 57.2	

TABLE 81.

Properties of Top Chord Sections.

Properties of Two Angles, Two Web Plates and One Cover Plate.

Angle Legs Turned Out.
Edges of Angles Flush
with Edges of Top Plate.
Web Plates & Below
Backs of Angles,

																	-
Serie	es I and 2.				Ser	ies I.							Se	eries 2.			
es.		te.	-		Axis	A-A.		Axis	в-в.	e e	٠		Axis	A-A.		Axis	в-в.
Size of Web Plates.	Size of Angles.	Size of Top Plate.	Total Area.	Moment of Inertia.	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.	Size of Top Plate.	Total Area	Moment of Inertia.	Radius of Gyration.	Section Modulus, Upper Fiber.	Centroid.	Moment of Inertia.	Radius of Gyration.
Siz		Si	A	IA	r _A	SA	е	IB	r _B	SZ.	A	IA	rA	SA	e	IB	r _B
In.	In.	In.	In.º	In.4	In.	In.3	In.	In.4	In.	In.	In.2	In.4	In.	In.3	In.	In.4	In.
8x ¹ / ₄ " 3 " 1 " 1 4 8	$2\frac{1}{2}X2\frac{1}{2}X\frac{1}{4}$ $2\frac{1}{2}X2\frac{1}{2}X\frac{3}{8}$	10x14	8.88 10.88 9.96 11.96	58 76 60 80	2.56 2.64 2.45 2.58	27.9 27.4	2.07 2.47 1.94 2.33	79.9 82.2	2.80 2.71 2.87 2.77	10x 3/8	10.13 12.13 11.21 13.21	64 86 66 88	2.52 2.66 2.43 2.57	33.3	1.78 2.19 1.69 2.08	79.9 90.3 92.6 102.1	2.81 2.73 2.87 2.78
8X 1 6 3 6 1 6 1 6 3 7 8	$2\frac{1}{2}x2\frac{1}{2}x\frac{1}{4}$ $2\frac{1}{2}x2\frac{1}{2}x\frac{3}{8}$	12x ¹ / ₄	9.38 11.38 10.46 12.46	60 80 62 83	2.53 2.65 2.44 2.58	30.7 29.7	1.95 2.36 1.84 2.23	125.4 145.7 146.4 166.7	3·57 3·74	12X8	10.88 12.88 11.96 13.96	67 89 68 91	2.48 2.63 2.39 2.56	36.8 35.0	1.64 2.05 1.57 1.95	143.4 163.7 164.4 184.7	3.63 3.56 3.71 3.64
IOX 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4		12x ¹ / ₄	10.38 12.88 11.46 13.96	I43 II3	3.24 3.33 3.14 3.27	41.9 41.2		136.8 162.2 157.8 183.2	3.55 3.71	12x3/8	11.88 14.38 12.96 15.46	120 159 123 164	3.18 3.33 3.08 3.25	50.1	2.28 2.80 2.17 2.66	154.8 180.2 175.8 201.2	3.61 3.54 3.68 3.61
IOX 1/4 4 3 8 4 4 3 8	$2\frac{1}{2}X2\frac{1}{2}X\frac{1}{4}$ $2\frac{1}{2}X2\frac{1}{2}X\frac{3}{8}$	14x ¹ / ₄	10.88 13.38 11.96 14.46	116	3.22 3.34 3.12 3.26	40.5 45.3 43.9 46.3	3.04 2.38	219.1 262.9 250.6 294.4	4.43 4.58	14x3/8	12.63 15.13 13.71 16.21	125 166 127 170	3.14 3.31 3.04 3.23	49.6 54.8 52.7 58.3	2.65	247.8 291.6 279.2 323.0	4.43 4.39 4.51 4.46
12X38 44 12 44 12 12 12 12 12 12 12 12 12 12 12 12 12	3x3x ¹ / ₄ 3x3x ³ / ₈	14x ¹ / ₄	15.38 18.38 16.72 19.72	244 295 254 309	3.98 4.01 3.90 3.96	60.4 66.5 66.7 73.2	4.19 3.56	258.1 296.1 292.6 330.7	4.01 4.18	14x3/8	17.13 20.13 18.47 21.47	270 328 279 339	3.97 4.03 3.88 3.97	72.2 78.5 77.9 84.7	3.80 3.20	286.7 324.8 321.2 359.3	4.09 4.02 4.17 4.09
12X38 12 12 12 13 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	3x3x ¹ / ₄ 3x3x ³ / ₈	16x3	17.88 20.88 19.22 22.22	280 339 286 348	3.96 4.03 3.86 3.96	77.7 84.3 83.5 90.1	3.65 3.06	437·3 499·9 486·3 548·9	4.89 5.03	16x½	19.88 22.88 21.22 24.22		3.91 4.02 3.82 3.95	90.6 97.4 95.7 102.8	3.30 2.73	480.0 542.6 529.0 591.6	4.91 4.87 4.99 4.94
14X ₈ " ½ " ½ " ½ " ½	3x3x ³ / ₈ 3x3x ¹ / ₂	16x ³ / ₈	20.72 24.22 22.00 25.50	431 524 441 537	4.56 4.65 4.48 4.59	103.2 112.1 109.9 119.1	4.30 3.64	521.1 594.0 569.0 641.9	4.95 5.08	16x½	22.72 26.22 24.00 27.50	472	4.52 4.64 4.44 4.58	118.1 127.3 124.1 133.8	3.94 3.31	563.8 636.7 621.7 684.6	4.98 4.93 5.09 4.99
14X \frac{3}{8} \(\text{i} \frac{1}{2} \) \(\text{i} \frac{1}{2} \) \(\text{i} \frac{1}{2} \)	3x3x ³ / ₈ 3x3x ¹ / ₂	18x 3/8	21.47 24.97 22.75 26.25	539 452	4.64	109.7 118.6 116.1 125.6	4·17 3·52	740.9 849.1 805.6 913.8	5.83	18x ¹ / ₄	23.72 27.22 25.00 28.50	582 484	4.63	126.5 136.0 132.2 142.4	3.79 3.16	801.6 909.8 866.3 974.5	5.81 5.78 5.89 5.85

TABLE 82.

Properties of Top Chord Sections.

TABLE 82.—Continued. PROPERTIES OF TOP CHORD SECTIONS.

	Cha	nnels.		B to B		Eccen-		ents of rtia.		f Gyra- on.	Ga	ges.	Web	
Sec- tion Num-	Depth.	Weight.	Cover Plate.	Chan- nels.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.	Plate.	Chan- nel.	of Chan- nel.	Max. Rivet.
ber.	Ă	×		b		е	IA	IB	rA	r _B	g	h		
	In.	Lb.	In.	In.	In.2	In.	In.4	In.4	In.	In.	In.	In.	In.	In.
37 38 39 40 41	8	11.25	$ \begin{array}{c} 12 \times \frac{1}{4} \\ 12 \times \frac{5}{16} \\ 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \end{array} $? ?	9.70 10.45 11.08 11.95 12.70	1.28 1.49 1.64 1.84 1.98	99.9 106.2 110.4 116.3 120.2	150.2 159.3 247.2 261.4 378.5	3.21 3.19 3.16 3.12 3.08	3.93 3.90 4.72 4.67 5.46	$ \begin{array}{c} 9^{\frac{1}{2}} \\ 11^{\frac{1}{2}} \\ 13^{\frac{1}{2}} \end{array} $	1 1 4 66 66 66 66	.22	3 cc cc
42 43 44 45 46 47 48	8	13.75	$ \begin{array}{c} 16 \times \frac{7}{16} \\ 12 \times \frac{1}{4} \\ 12 \times \frac{5}{16} \\ 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \\ 16 \times \frac{7}{16} \end{array} $	678 878 	13.70 11.08 11.83 12.46 13.33 14.08 15.08	2.16 1.12 1.32 1.46 1.65 1.78 1.96	125.4 109.2 116.3 121.0 127.8 132.5 138.7	400.0 168.3 177.3 276.6 290.9 421.9 443.2	3.03 3.14 3.13 3.12 3.10 3.07 3.03	5.40 3.90 3.87 4.71 4.67 5.48 5.42	9 ¹ / ₂ 11 ¹ / ₂ 13 ¹ / ₂	1 5 16 66 66 66 66 66 66	.3I 	3 4 66 66 66 66
49 50 51 52 53 54	9	13.25	$ \begin{array}{c} 12 \times \frac{1}{4} \\ 12 \times \frac{5}{16} \\ 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \\ 16 \times \frac{7}{16} \end{array} $	634 "4 834 "1034	10.78 11.53 12.16 13.03 13.78 14.78	1.29 1.51 1.68 1.89 2.04 2.23	140.9 149.5 155.3 163.5 169.1 176.8	162.9 171.9 268.2 282.4 409.9 431.3	3.62 3.60 3.57 3.54 3.50 3.46	3.89 3.86 4.70 4.66 5.45 5.40	9½ 11½ 13½	18 cc	.23	3 4 66 66 66 66
55 56 57 58 59 60	9	15.00	$ \begin{array}{c} 12 \times \frac{1}{4} \\ 12 \times \frac{5}{16} \\ 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \\ 16 \times \frac{7}{16} \end{array} $	65 85 66 44 108	11.82 12.57 13.20 14.07 14.82 15.82	1.17 1.39 1.54 1.75 1.90 2.09	149.7 158.8 165.2 174.2 180.3 188.6	174.1 183.1 287.4 301.7 439.4 460.7	3.56 3.55 3.54 3.52 3.49 3.45	3.84 3.82 4.67 4.63 5.44 5.40	$9^{\frac{1}{2}}_{2}$ $11^{\frac{1}{2}}_{2}$ $13^{\frac{1}{2}}_{2}$	1 16 cc cc cc cc cc	.29	# 4 66 66 66
61 62 63 64 65 66	10	15.00	$ \begin{array}{c} 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \\ 16 \times \frac{7}{16} \\ 18 \times \frac{7}{16} \\ 18 \times \frac{1}{2} \end{array} $	8½ 10½ 112½ 112½	13.30 14.17 14.92 15.92 16.80 17.92	1.70 1.92 2.09 2.30 2.45 2.64	211.7 222.8 230.4 240.6 247.7 257.1	289.4 303.6 441.9 463.9 641.2 671.6	3.99 3.97 3.93 3.89 3.84 3.79	4.67 4.63 5.44 5.39 6.18 6.12	11½ 13½ 13½ 15½	1 ½ 66 66 66 66	.24	66 66 66 66
67 68 69 70 71 72	10	20.00	$ \begin{array}{c} 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \\ 16 \times \frac{7}{16} \\ 18 \times \frac{7}{16} \\ 18 \times \frac{1}{2} \end{array} $	101 101 121 66	16.14 17.01 17.76 18.76 19.64 20.76	1.40 1.60 1.75 1.95 2.09 2.28	242.1 255.2 264.4 276.9 286.9 297.8	341.2 355.0 520.4 542.0 752.3 782.7	3.88 3.87 3.86 3.84 3.82 3.79	4.60 4.57 5.41 5.37 6.19 6.14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5 66 66 66 66 66	.38	66 66 66 66
73 74 75 76 77 78	10	25.00	$ \begin{array}{c} 14 \times \frac{5}{16} \\ 14 \times \frac{3}{8} \\ 16 \times \frac{3}{8} \\ 16 \times \frac{7}{16} \\ 18 \times \frac{7}{16} \\ 18 \times \frac{1}{2} \end{array} $	7 ⁷ / ₈ 9 ⁷ / ₈ 11 ⁷ / ₈	19.08 19.95 20.70 21.70 22.58 23.70	1.18 1.37 1.50 1.62 1.73 1.99	271.8 286.2 296.8 313.6 325.2 336.0	383.9 398.2 588.8 610.1 851.4 881.8	3.77 3.79 3.79 3.80 3.79 3.77	4.48 4.47 5.33 5.30 6.14 6.10	11½ 13½ 15½	1 1 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	·53	# 4 66 66 66

TABLE 82.—Continued.

TABLE 83.
PROPERTIES OF TOP CHORD SECTIONS.

1	Propertie Highway E Cop Chord S	Bridge	d	B	A we have a second seco			our Angle and aree Plate		
	Pla	ites.	Anı	B gles.		Eccen-		ents of	Radii o	f Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B	Axis A-A.	Axis B–B
					A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inche
			12" X	14" Section	. A Series.					
*I	12"X4"	14"x 5"	$2\frac{1}{2}X2\frac{1}{2}X\frac{5}{16}$	$2\frac{1}{2}x_{16}^{\frac{1}{2}}x_{16}^{\frac{5}{16}}$	16.26 17.76	1.66	359 381	351 378	4.76	4.65
3	44 3 6	66	66	66	19.26	1.40	402	404	4.57	4.58
4	" 7	46	66	46	20.76	1.30	423	429	4.52	4.55
ξ.	66 1	66	66	66	22.26	1.21	443	453	4.46	4.52
5 6	44 9	66	66	et	23.76	1.14	463	476	4.41	4.48
7	" <u>5</u>	66	66	66	25.26	1.07	483	498	4.37	4.44
*8	12x1/4	14x 5	$2\frac{1}{2}X2\frac{1}{2}X\frac{5}{16}$	2½x2½x3	16.80	1.45	384	367	4.78	4.67
9 .	66 5	14.16	22423416	~2~~3~8	18.30	1.33	405	394	4.70	4.63
. 10	6 3 6 G	66	66	ш	19.80	1.33	425	420	4.63	4.60
II	" 7 16	66	66	66	21.30	1.14	445	445	4.57	4.57
12	" 16	66	66	66	22.80	1.07	465	469	4.52	4.54
13	66 9 16	66	66	66	24.30	1.00	485	492	4.47	4.50
14	" 5 8	66	п	66	25.80	0.94	504	514	4.42	4.47
*15	12x1	14x 5	$2\frac{1}{2}X2\frac{1}{2}X\frac{5}{16}$	2½x2½x 7	17.32	1.25	405	383	4.83	4.70
16	66 B	14416	~2A22A18	~2^24	18.82	1.16	425	410	4.75	4.66
17	" 3 16	66	66	66	20.32	1.06	445	436	4.68	4.63
18	" 7 16	66	66	66	21.82	0.99	465	461	4.61	4.59
19	" 10	66	66	**	23.32	0.93	484	485	4.55	4.50
20	// 0	66	66	66	24.82	0.87	503	508	4.50	4.5
21	" 5 8	66	66	66	26.32	0.82	522	530	4.46	4.49
*22	12x1	14X 5	$2\frac{1}{2}x2\frac{1}{2}x\frac{5}{16}$	21x21x1	17 82	1.07	425	398	4.88	4.7
23	" 5 16	44416	22422416	22A22A2	19.32	0.99	444	425	4 79	4.6
24	66 3	66	66	66	20.82	0.92	463	451	4.71	4.6
25	" 7	66	66	66	22.32	0.86	483	476	4.65	4.6
26	"	66	ra e	66	23.82	0.80	502	500	4.59	4.5
27	" 9	66	66	66 .	25.32	0.75	521	523	4.54	4.5
28	" 16 5 8	66	24	66	26.82	0.71	540	545	4.49	4.5
*29 30	12x1/4	14X 5	2\frac{1}{2}\times 2\frac{1}{2}\times \frac{5}{16}	$2\frac{1}{2}x2\frac{1}{2}x\frac{9}{16}$	18.32 19.82	0.91	442 461	414 441	4.9I 4.82	4.7
31	" 3	66	66	66	21.32	0.78	480	467	4.74	4 6
32	" ⁸ 7	66	66	66	22.82	0.73	499	492	4.67	4.6
33	" 16	66	66	66	24.32	0.68	518	516	4.61	4.6
34	دد <u>ع</u>	66	66	66	25.82	0.64	536	539	4.56	4.5
35	" <u>5</u>	66	66	66.	27.32	0.61	555	561	4.51	4.5
23	8	1	1	ì	1 -1.3-	1 0.02	1 333	1 3	1.2.	1 73

TABLE 83.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

т	Propertie Highway B Cop Chord So	ridge	A	B	A day			our Angl and aree Plate		
	Pla	ites.	Ang	gles.	Cross Area	Eccen-	Mome	ents of rtia	Radii o	f Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	r _A	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inche
			13" X	14" Section	. B Series.					
*36 37	12x1/4	14x 5	$2\frac{1}{2}x2\frac{1}{2}x\frac{5}{16}$	3x2½x5	16.58	1.52	377 398	368 395	4.77	4.71
38	" 3	66	66	66	19.58	1.28	419	42I	4.62	4.64
39	" 7	66	66	66	21.08	1.19	439	446	4.56	4.60
40	" 1	66	66	66	22.58	1.11	459	470	4.51	4.56
4I 42	66 9 66 5 8	. 66	66	66	24.08 25.58	0.98	479 498	493 515	4.46 4.41	4.49
*43	12x1	14×15	$2\frac{1}{2}x2\frac{1}{2}x\frac{5}{16}$	$3x2\frac{1}{2}x\frac{3}{8}$	17.18	1.29	403	387	4.84	4.74
44	" <u>5</u>	-66	66	"	18.68	1.18	423	414	4.76	4.70
45	66 3	66	66	66	20.18	1.09	443	440	4.69	4.67
46	" 7 16	66	66	66	21.68	1.02	463	465	4.62	4.63
47	66 2		66	66	23.18	0.95	482	489	4.56	4.59
48 49	دد <u>ا</u> ا	66	66	66	24.68 26.18	0.90	501	512 534	4.51	4.55
*50	12x1	14x 5	$2\frac{1}{2}x2\frac{1}{3}x\frac{8}{16}$	3x2½x ⁷ / ₁₆	17.76	1.07	427	406	4.90	4.78
51	66 5	. 66	66	66	19.26	0.99	446	433	4.81	4.74
52	" 3	66	66	66	20.76	0.92	465	459	4.73	4.70
.53	" 7	66	66	66	22.26	0.86	485	484	4.67	4.66
54	" 3	66	66	"	23.76	0.80	504	508	4.60	4.62
55	66 5 E	46	66	66	25.26	0.75	523	531	4.55	4.58
56	8				26.76	0.71	541	553	4.50	4.54
*57	12X4 5	14x16	$2\frac{1}{2}$ X $2\frac{1}{2}$ X $\frac{5}{16}$	3x2 1x 1	18.32	0.88	447	424	4.94	4.81
58	" 16 " 3	66	66	66	19.82	0.82	466	45I	4.85	4.77
59	8_	66	46	66	21.32	0.76	485	477	4.77	4.73
60	" 16 " 16	66	46	44	22.82	0.71	504	502	4.70	4.69
61 62	"	44	66	66	24.32 25.82	0.67	522	526	4.63	4.65
63	46 5 8	66	66	66	27.32	0.59	54I 560	549 571	4.57 4.52	4.61
*64	12x1	14x5	21x21x15	3x22x9	18.88	0.71	466	443	4.97	4.84
65	66 B	66	46	66	20.38	0.66	485	470	4.88	4.80
66	,66 3	- 61	66	66	21.88	0.61	504	496	4.80	4.76
67	" 7 16	46	66	66	23.38	0.57	522	521	4.73	4.72
68	66 1	44	66	"	24.88	0.54	541	545	4.66	4.68
69	" ² 9 16 " 5	66	66	66	26.38	0.51	559	568	4.60	4.64
70	8				27.88	0.48	578	590	4.55	4.60

TABLE 83.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

*71	Plates.		$\overset{ }{B}$	1		Th	and ree Plate	28.	
*71		Ang	gles.	6	Eccen-	Mome	ents of rtia.	Radii o	of Gyra
*71	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
*71				A	e	I _A	IB	r _A	rB
*72 73 74 75 76 *78 *78 *78 *79 *78 *78 *79 *80 *81 *79 *80 *81 *82 *83 *84 *85 *84 *85 *86 *87 *88 *87 *88 *89 90 *14 *92 *93 *92 *14 *93 *94 *99 *16 *99 *16 *16 *17 *17 *17 *17 *17 *17 *17 *17 *17 *17	. Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches4.	Inches.	Inche
*72 73 74 74 75 76 77 *78 *78 *79 *78 *79 *80 *81 *79 *80 *81 *82 *83 *84 *85 *84 *85 *14x\frac{1}{2}* *88 *89 90 91 *92 *14x\frac{1}{4}* *93 94 *95 *92 *93 94 *95 *96 97 98 *88		14" ×	(16" Section	a. A Series.					
*72 73 74 74 75 76 77 *78 *78 *79 *80 *81 *79 *80 *81 *78 *80 *81 *82 *83 *84 *85 *14x\frac{1}{2}* *86 *87 *88 *89 90 *14x\frac{1}{2}* *92 *93 *94 *92 *93 *94 *89 *89 *89 *89 *89 *89 *89 *89 *89 *89	16x3/8	3x3x 5	3x3x 5	20.12	2.14	666	546	5.49	5.21
73 74 75 76 77 *78 *79 *79 *79 *80 *81 *79 *80 *81 *82 *83 *84 *85 *84 *85 *84 *85 *86 *87 *88 *89 *91 *92 *14x1 *89 *91 *92 *93 *94 *95 *96 *97 *98	"	66	"	21.87	1.97	641	585	5.41	5.17
74 75 76 77 77 78 *78 *78 *79 *78 *79 *80 *81 *82 *83 *84 *85 *84 *85 *86 *87 *88 *89 90 91 *92 *93 *93 *94 95 96 97 98 *88	46	66	66	23.62	1.82	677	623	5.35	5.1
75 76 77 77 *78 *78 *79 *80 *81 *82 *83 *84 *85 *86 *78 *88 *89 90 91 *92 *93 *93 94 *89 90 **93 **93 94 **93 **93 94 **85 **86 **86 **87 **88 **89 **89 **89 **89 **89 **89	"	66	66	25.37	1.70	711	660	5.29	5.10
77	66	66	66	27.12	1.59	744	696	5.24	5.0
77	66	66	66	28.87	1.49	777	731	5.19	5.0
*78 *79 *79 80 *80 81 *3 82 *83 84 *85 *86 *87 *88 *71 88 *71 *88 *71 *88 *71 *88 *71 *71 *71 *71 *71 *71 *71 *71 *71 *71	66	66	"	30.62	1.41	808	765	5.14	4.99
*79 **80 **81 **82 **83 **84 **85 **86 **86 **87 **88 **14 **87 **89 **14 **15 **16 **18 *	16x3	3×3×5	27273	20.78	1.88	648	570	5.58	
80	66	343416	3x3x8	22.53	1.73	683	609		5.2
81	66	66	66		1.61	716		5.50	
82 " 1	. 66	66	66	24.28 26.03	1		647 684	5.43	5.1
83	46	66	66	27.78	1.50	749 781		5.36	5.1
*85 *85 *86 *7 *88 *7 *89 *90 91 *92 *93 *94 95 96 97 98	. 66	66	46			-	720	5.30	5.0
*85 *86 *86 *87 *88 *7 *88 *9 *9 90 *9 91 *92 *14x\frac{1}{4} *93 *94 *95 *97 *98 *8 *8 *8 *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *14x\frac{1}{4} *15x\frac{1}{4} *15	66	66	66	29.53 31.28	I.32 I.25	813	755 789	5.25	5.0
*86		0 - 5	2-5-7						
*92	16x3	3x3x16	3×3×16	21.44	1.64	688	594	5.66	5.2
*92	"	"	66	23.19	1.52	722	633	5.58	5.2
*92	- 66	- 66	"	24.94	1.41	754	671	5.50	5.1
*92	"	"	46	26.69	1.32	786	708	5.42	5.1
90 "		"	"	28.44	1.24	816	744	5.36	5.1
*92	"	66	66	30.19	1.17	848	779	5.30	5.0
*93				31.94	1.10	879	813	5.24	5.0
*93	16x3	3x3x 5	3x3x1/2	22.06	1.43	721	618	5.72	5.2
94 " 17 95 " 17 96 " 12 97 " 9 98 " 58	66	66		23.81	1.32	755	657	5.63	5.2
95 96 97 98 " 10 10 10 10 10 10 10 10 10 10	66	"	_66	25.56	1.23	786	695	5.54	5.2
96 $\frac{1}{2}$ $\frac{1}{2}$ 97 $\frac{1}{2}$ $\frac{1}{2}$ 98 $\frac{1}{8}$	"	"	46	27.31	1.15	818	732	5.47	5.1
97 98 " ⁹ / ₁₀	66	"	66	29.06	1.08	848	768	5.40	5.1
98 " 58	- "	"	66	30.81	1.02	879	803	5.34	5 1
*99 I4x1/4	66	. 66	"	32.56	0.97	909	837	5.28	5.0
	16x3	3x3x 5	3x3x 9	22.68	1.23	756	641	5.77	5.3
*100 " 5 16	""	66	66	24.43	1.14	787	680	5.67	5.2
IOI " 3	"	46	66	26.18	1.07	817	718	5.58	5.2
102 " 7	"	66	66	27.93	1.00	848	755	5.50	5.2
103 " 1	66	66	66	29.68	0.94	878	791	5.43	5.1
- 66 9	66	66	66	31.43	0.89	908	826	5.37	5.1
104 " 105	r "	66	66	33.18	0 84	938	860	5.32	5.0

TABLE 83.—Continued.

Properties of Top Chord Sections.

To	Properties Highway B op Chord Se	ridge	A d		A Colored			our Ang and hree Plat		
	Pla	ites.	An	gles.		Eccen-	Mome		Radii o	f Gyra
Section Number.	Web	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
					A	е	IA	Ів	r _A	rB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.			Inches.	Inche
*106	14X4 66 8	16x3	3×3×5	3x3x8	23.28	1.05	784	665	5.80	5.34
*107	3.6	"		66	25.03	0.98	814	704	5.70	5.30
108	" 3 8	66	66	66	26.78	0.92	844	742	5.61	5.20
109	" 7 16	66	**	66	28.53	0.86	875	779	5-53	5.22
110	" 1	46	66	66	30.28	0.81	904	815	5.46	5.19
111	" 9 16	"	66	66	32.03	0.76	934	850	5.39	5.1
112	" 5	46	"	"	33.78	0.73	963	884	5.34	5.12
			14" >	< 16" Section	n. B Series.					
*113	14x1	16x3	3x3x 5	4×3×5	20.74	1.87	654	590	5.62	5.33
*114	1.6	66	66		22.49	1.72	689	629	5.53	5.20
115	*** **	66	66	66	24.24	1.60	722	667	5.46	5.24
116	" 7	"	46	66	25.99	1.49	755	704	5.39	5.20
117	" 1	46	66	- "	27.74	1.40	788	740	5.33	5.16
118	" 9 16	66	66	66	29.49	1.32	819	775	5 27	5 1:
119	44 5 8	66	46	46	31.24	1.24	851	809	5.22	5.0
*120	14x ¹ / ₄	16x3	3x3x 5	4x3x ³ / ₈	21.52	1.57	704	624	5.72	5.3
*121	16	"	66	"	23.27	1.46	736	663	5.62	5.3
122	46 g	66	41	66	25.02	1 36	768	701	5.54	5.29
123	. " 7	66	66	66	26.77	1.27	800	738	5.46	5.2
124		66	48	66	28.52	1.19	831	774	5.40	5.2
125	" ² 9 16	66	66	46	30.27	I 12	862	809	5 34	5.1
126	" <u>\$</u>	66	66	66	32.02	1.06	892	843	5.28	5.1
*127	14x4	16x3	3x3x 5	4x3x 7	22.30	1.31	748	658	5.79	5.4
*128	" <u>5</u> " 16	"			24.05	1.21	780	697	5.69	5.3
129	- X		66	"	25.80	1.13	810	735	5.60	5.3
130	16	"	66	66	27.55	1.06	841	772	5.52	5 2
131	" 1	"	66	"	29.30	1.00	872	808	5.45	5.2
132	16	66	66	66	31.05	0.94	902	843	5 38	5.2
133	41 <u>5</u>	66	66	66	32.80	0 89	932	877	5.33	5.1
*134	14x1/8	16x3	3x3x 8	4x3x1/2	23.06	1.08	787	690	5.84	5.4
*135	" <u>8</u> 16	66	66	66	24.81	1.00	817	729	5.73	5.4
136	44 8	66	66	66	26.56	0.93	848	767	5.65	5.3
137	" 16	66	"	"	28 31	0.88	877	804	5 56	5.3
138	44 2	66	66	- 66	30.06	0.83	907	840	5.49	5.2
139	" 16 5		66	"	31.81	0.78	938	875	5.42	5.2
140	8	1 "		.,	33 56	0.74	967	909	5.37	5.2

TABLE 83.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

	Properties Highway B. Plate Web. Inches. I4x\frac{1}{4} \cdots \frac{1}{3} \cdots \cdots \frac{1}{4} \cdot	ridge ections	And Top. Inches.	Bottom.	Gross Area.	Eccentricity.	Mon	our Angle and aree Plate	Radii o	of Gyra
*141 *142 143 144 145 146	Web. Inches. I 4 X \frac{1}{4} \\ \(\cdots \frac{5}{16} \\ \cdots \frac{3}{8} \\ \cdots \frac{7}{16} \end{array}	Cover. Inches	Top.	gles.	Gross Area.	Eccen-			Radii o	of Gyr
*141 *142 143 144 145 146	Inches. I4x\frac{1}{4} \(\frac{5}{16} \) \(\frac{3}{8} \) \(\frac{7}{16} \)	Inches		Bottom.	Gross Area.	tricity.				
*141 *142 143 144 145 146	Inches. I4x\frac{1}{4} \(\frac{5}{16} \) \(\frac{3}{8} \) \(\frac{7}{16} \)	16x3					Axis A-A.	Axis B-B.	Axis A-A.	Axi B-1
*142 143 144 145 146	14X \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \end{array}	16x3	Inches.		A	e	IA	IB	rA	rB
*142 143 144 145 146	" 5 16 " 3 " 7 16			Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inch
143 144 145 146	16	*-	3×3×5	4x3x 9	23.80	0.85	824	724	5.88	5.5
144 145 146	16	66	66	66	25.55	0.79	853	763	5.77	5.4
145 146	16	66	66	46	27.30	0.74	883	801	5.68	5.4
146	*** *	66	66	- 46	29.05	0.69	913	838	5.60	5.3
	66 9	"	"	66	30.80	0.65	942	874	5.52	5-3
147	16 66 58	66	46	66	32.55	0.62	971	909	5.46	5.2
			_		34.30	0.59	1000	943	5.40	5.2
148	14X4 66 5	16x3	3x3x16	4x3x	24.52	0.65	856	756	5.91	5.5
*149	66 5 16 6 3	66	66	66	26.27	0.61	884	795	5.80	5.5
150	66 7	66	"	66	28.02	0.57	914	833	5.71	5-4
151	16	66	- 66	66	29.77	0.54	942	870	5.62	5-4
152	9	66	"	66	31.52	0.51	972	906	5.55	5.3
153	" 9 16 " 5	66	"	66	33.27	0.48	1001	941	5.48	5.3
154	8	**	**	**	35.02	0.46	1030	975	5.42	5.2
			1	14" × 17" S	ection.					
*155	14X1/4	17x3	3×3× 5 16	4×3×5	21.12	1.96	665	704	5.61	5.7
*156	" <u>5</u>	66	"	66	22.87	1.82	699	75 I	5.52	5.7 5.6
157	66 7	66	"	66	24.62	1.69	734	797	5.45	5.6
158	16	66		66	26.37	1.57	767	842	5.39	5.6
159	" ½ " 9	66	" "	65	28.12	1.47	800	886	5.33	5.6
160	66 5 8	46	"	66	29.87	1.39	833	929	5.28	5.5
		2			31.62	1.31	864	971	5.22	5-5
*162	14x1/5	17x3	3X3X16	4x3x1	21.90	1.67	715	743	5.71	5.8
*163	66 3 6	66	"		23.65	1.55	748	790	5.62	5.7
164	66 7	"	£1.	66	25.40	1.44	780	836	5-54	5.7
165 166	" 16	66		66	27.15	1.35	813	881	5-47	5.6
	66 9	66	ES	*"	28.90	1.27	845	925	5.4I	5.6
167 168	44 16 44 5	66	66	66	30.65 32.40	1.19	875 907	968	5.35 5.29	5.6 5.5
	14x1	17x3	3x3x 5	4×3×76	22.68	1.40	761	781	5.79	5.8
*170	66 8	66	J~J~16	TAJA16	24.43	1.30	792	828	5.69	5.8
171	66 3 6	66	66	66	26.18	1.22	824	874	5.60	5.7
172	" 7	66	66	66	27.93	1.14	855	919	5.53	5.7
173	66 1 0	66	66	66	29.68	1.07	886	963	5.46	5.6
174	" 9	66	66	"	31.43	1.01	917	1006	5.40	5.6
175	" <u>5</u>	66	66	66	33.18	0.96	946	1048	5.34	5.6

TABLE 83.—Continued.

Properties of Top Chord Sections.

TABLE 83.—Continued.

Properties of Top Chord Sections.

Т	Properties Highway B op Chord Se	ridge	A	B				our Ang and hree Plat		
	Pla	ites.	An	B gles.				ents of	Radii o	f Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inches
				15" × 17" S	Section.					
*209 *210	15x 16 3 3	17x3	3x3x 5	4×3×5	23.50 25.38	1.89	821 862	766 816	5.91 5.83	5.7I 5.67
211	" 7	66	66	66	27.25	1.63	902	865	5.75	5.63
212	" 1/2	66	66	66	29.13	1.52	942	912	5.68	5.59
213	16	"	66	66	31.00	1.43	983	958	5.62	5.56
214	16 5 8	66	66	66	32.88	1.35	1021	1003	5.57	5.52
215	" 11	66	66	41	34.75	1.28	1059	1047	5.52	5.49
216	44 3 T	"	66	66	36.63	1.21	1097	1090	5.47	5.46
*217 *218	$15_{1}^{5} \times \frac{5}{16}$	17x3	3x3x 5	4x3x8	24.28 26.16	1.61 1.49	877	807 857	6.0 1	5.76 5.72
219	" 7	66	66	66	28.03	1.39	956	906	5.84	5.68
220	" 1	"	66	66	29.91	1.31	994	953	5.76	5.64
22I	" 9 16	"	66	66	31.78	1.23	1033	999	5.70	5.60
222	" <u>5</u>	"	"	66	33.66	1.16	1071	1044	5.64	5.57
223	" 11 16	"	66	66	35.53	1.10	1108	1088	5.58	5.54
224	66 3 4	66	66	66	37.41	1.05	1145	1131	5.53	5.50
*225 *226	$15x\frac{5}{16}$	17x3/8	3×3× 5	4x3x 7	25.06 26.94	1.36 1.26	929 967	845 895	6.08 5.98	5.81 5.76
226	" 7	66	66	66	28.81	1.18	1005	944	5.90	5.72
227	" <u>1</u>	66	66	66	30.69	I.II	1042	991	5.82	5.68
228	" 9 16 " <u>5</u>	"	66	66	32.56	1.04	1080	1037	5.76	5.64
229	" <u>5</u>	46	66	66	34.44	0.99	1117	1082	5.69	5.61
230	" 11 16 " 3	66	66	66	36.31	0.94	1154	1126	5.63	5.57
231	€€ 3 °	66	66	66	38.19	0.89	1191	1169	5.58	5.53
*232 *233	$15x\frac{5}{16}$	17x8	3×3×5	4x3x1/2	25.82 27.70	1.13	973 1010	88 ₃ 933	6.14 6.04	5.84 5.80
234	" 7	66	46	66	29.57	0.99	1047	982	5.95	5.76
235	"	66	66	66	31.45	0.93	1084	1029	5.87	5.72
236	" ⁹ / ₁₆	66	66	66	33.32	0.88	1121	1075	5.79	5.68
237	" <u>5</u>	66	66	66	35.20	0.83	1158	1120	5.73	5.64
	" 11 16 " 3	66	66	66	37.07	0.79	1194	1164	5.68	5.61
238	" 16	66	66	66			/			

TABLE 83.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

T	Propertie Highway B Op Chord S	s of tridge ections.	4	B	A do A constant			our Angl and aree Plate		
	Pla	tes.	· An	gles.	- Gross Area.	Eccen-		ents of rtia.		of Gyra- on.
Section Number.	Web.	Cover.	Top.	Bottom.		tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	r _A	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inches
*240 *24I	$15x\frac{5}{16}$	17x3	3x3x 5	4x3x 9	26.56	0.91	1016	920	6.18	5.88
242	" 7 16	66	66	"	28.44 30.31	0.85	1052	970	5.99	5.80
243	"	66	66	66	32.19	0.75	1125	1066	5.91	5.76
244	" 9	"	66	66	34.06	0.71	1161	1112	5.84	5.72
245	66 <u>\$</u>	"	66	"	35.94	0.68	1197	1157	5.77	5.68
246	" [1	"	"	66	37.81	0.64	1233	1201	5.71	5.64
247	** 4	"	"	66	39.69	0.61	1269	1244	5.65	5.60
*248 *249	15x 16	17x3	3x3x 8	4x3x8	27.28 29.16	0.72	1055	959	6.22	5.92 5.88
250	" ⁸ 7.	46	66	66	31.03	0.63	1127	1058	6.03	5.84
251	" ‡	66	66	66	32.91	0.60	1162	1105	5.94	5.80
252	" 9	66	66	66	34.78	0.57	1199	1151	5.87	5.75
253	46 <u>5</u>	46	66	66	36.66	0.54	1234	1196	5.80	5.71
254	" 11	46	66	"	38.53	0.51	1270	1240	5.74	5.67
255	" 4	66	66	66	40.41	0.49	1305	1283	5.68	5.63
*256	15x 16	17x3	3x3x 5	4×3×11	28.00	0.54	1089	995	6.24	5.96
*257	" 1	"	"	"	29.88	0.51	1124	1045	6.14	5.91
258	" 16	66	"	"	31.75	0.48	1160	1094	6.04	5.87
259 260	" ²	66	66	"	33.63	0.45	1195	1141	5.96	5.82
261	" 16	66	66	66	35.50	0.43	1231	1187	5.89 5.82	5.78
262	" 11	66	66	66	37.38 39.25	0.41	1302	1232	5.76	5.74 5.70
263	" 🛂	66	66 .	66	41.13	0.37	1337	1319	5.70	5.66
	-		1	15" × 18" S			001			
*264	TCY-5	18-7	1	1 .		2.05	970	017	r 00	6.10
*265	15x 16	18x16	3x3x16	4X3X16	25.00	2.25	872 915	931 991	5.90 5.83	6.07
266	" 7	66	"	66	28.75	1.95	958	1050	5.77	6.04
267	" 1	66	"	66	30.63	1.83	1000	1108	5.71	6.01
268	" 9 16	66		46	32.50	1.73	1042	1164	5.66	5.98
269	"	66	66	66	34.38	1.64	1082	1219	5.61	5.95
270	$\frac{11}{16}$	66	"	"	36.25	1.55	1122	1272	5.56	5.92
271	.4	**	66	66	38.13	1.47	1161	1324	5.52	5.89

TABLE 83.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

	Propertii Highway I Top Chord S	Bridge	d d	B	A de de de de de de de de de de de de de			our Angl and aree Plate		
	Pla	ates.	An	gles.	Gross Area.	Eccen-		ents of rtia.	Radii o	f Gyr
Section Number.	Web.	Cover.	Top.	Bottom.		tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axi B-I
					A .	e	IA	IB	r _A	rB
	Inches.	Inches.	Inches.	Inches.	Inches².	Inches.	Inches4.	Inches ⁴ .	Inches.	Inch
*272 *273	15X 16 3 8 4 7	18x 7	3×3×5/16	4x3x8	25.78 27.66	1.97	933 974	976 1036	6.01 5.93	6.1 6.1
274	16	"	"	66	29.53	1.72	1015	1095	5.86	6.0
275	66 g	66	66	66	31.41	1.62	1055	1153	5.79	6.0
276	66 <u>5</u>	66	66	66	33.28	1.53	1096	1209	5.73 5.68	
277 278	" 11	66	66	66	35.16 37.03	1.45	1135	1317	5.63	5.9 5.9
279	" 11 16 " 3	66	66	"	38.91	1.31	1212	1369	5.58	5.9
*280 *281	$15x\frac{5}{16}$	18x:7	3x3x 5	4×3×7/16	26.56 28.44	1.72 1.61	988 1028	1020	6.10	6.2 6.1
282	11 77	66	66	66	30.31	1.51	1068	1139	5.93	6.1
283	" 16	66	. 66	66	32.19	1.42	1107	1197	5.86	6.0
284	((0	66	66	46	34.06	1.35	1146	1253	5.79	6.0
285	66 5 8 B	16	66	46	35.94	1.28	1184	1308	5.74	6.0
286	" 11	66	66	66	37.81	1.21	1222	1361	5.68	6.0
287	" 3	66	66	66	39.69	1.15	1260	1413	5.63	5.9
*288	$15x\frac{5}{16}$	18x 7	3x3x 5	4x3x1/2	27.32	1.50	1038	1063	6.16	6.2
*289	66 7	66	66	66	29.20	1.40	1077	1123	6.07	6.2
290 291	" 16	"	66	66	31.07	I.32	1115	1240	5.99 5.92	6.1
292	" 9 16	66	66	66	32.95 34.82	1.24	1153	1240	5.85	6.1
293	16 6 11 16	66	66	66	36.70	1.12	1229	1351	5.79	6.0
294	" 11 16	"	. 66	66	38.57	1.06	1266	1404	5.73	6.0
295	" <u>3</u>	"	66	66	40.45	1.01	1303	1456	5.68	6.0
*296	15x 5 16	18x 7	3x3x 5	4×3×9	28.06	1.28	1085	1107	6.21	6.2
*297	66 7	"	66	66	29.94	1.20	1123	1167	6.12	6.2
298	" 16	66	66	- 66	31.81	1.13	1160	1226	6.04 5.96	6.2
299 300	" 9	66	66	66	33.69	1.07	1197	1340	5.89	6.1 6.1
301	" 9 " 5	66	66	66	35.56	0.96	1235	1395	5.83	6.1
302	" 11	"	66	66	37·44 39.31	0.92	1309	1448	5.77	6.0
303	" 3	66	66	66	41.19	0.88	1345	1500	5.71	6.0

TABLE 83.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

TABLE 84.
Properties of Top Chord Sections.

				D						
To	Propertion of Chord Se		. A	B				Four Ang and Three Pla		
1				B	1	Ī	Mom	ents of	Radii o	f Gyra-
	Pla	ites.	An	igles.	Gross Area.	Eccen-		rtia.	ti	on.
Section Number.	Web.	Cover.	Top.	Bottom.		tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	е	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inches
			15" >	18" Section	. A series.					
*1001 1002	15x ³ / ₈	18x 7/16	3x3x8	4x3x8	28.31 30.19	1.96 1.84	988 1029	1067 1126	5.91 5.84	6.14
1003	66 9	"	66	"	32.06	1.73	1070	1184	5.78	6.08
1004	66 <u>5</u>	66	66	66	33.94 35.81	1.63	1112	1240	5.72 5.67	6.05
1006	" 11	66	66	66	37.69	1.47	1191	1348	5.62	5.98
1007	66 11 66 3 4	46	66	61	39.55	1.40	1229	1400	5.58	5.95
*1008	$15x\frac{3}{8}$	18x 7	3x3x3	4X3X16	29.09	I.73 I.62	1043	1111	5.99	6.18 6.15
1010	" 16	66	66	66	30.97 32.84	1.53	1123	1228	5.92 5.85	6.11
1011	" <u>9</u> 16	66	66	66	34.72	1.45	1163	1284	5.79	6.08
1012		66	66	66	36.59	1.37	1202	1339	5.73	6.05
1013	" 11 16	66	66	66	38.47	1.30	1241	1392	5.68	6.01
1014	4				40.34	1.24	1279	1444	5.63	5.98
*1015	15X 3 7	18x 7/16	3x3x8	4x3x2	29.85	1.52	1093	1156	6.05	6.22
1016	" 18	"	66	66	31.73 33.60	1.43	1132	1215	5.97 5.90	6.19
1018	" 9 16	66	66	66	35.48	I.35 I.28	1210	1329	5.84	6.12
1019	66 <u>5</u>	66	66	66	37.35	1.21	1248	1384	5.78	6.09
1020	" <u>11</u> 16 " 3	66	66	66	39.23	1.15	1286	1437	5.73	6.05
1021	4		66	66	41.10	1.10	1323	1489	5.67	6.02
*1022	15x ³ / ₇	$18x\frac{7}{16}$	3x3x8	4×3× 9	30.59	1.32	1140	1199	6.10	6.26
1023	" 16 " 1	66	66	66	32.47	1.25	1178	1258	6.02	6.22
1024	"	46	66	66	34-34	1.18	1216	1316	5.95	6.19
1025	66 <u>5</u>	46.	66	66	36.22	1.12	1255	1372	5.89	6.16
1026		"	66	66	38.09	1.06	1292	1427	5.83	6.12
1027	" 11 16 " 3	"	66	66	39.97 41.84	0.97	1329	1480	5.77 5.71	6.05
*1029	15x3	18x 7	3×3×3	4x3x ⁵ / ₈	31.31	1.15	1183	1241	6.15	6.30
1030	" 18	66	66	64	33.19	1.08	1220	1300	6.06	6.26
1031	" 9	46	66	66	35.06	1.02	1257	1358	5.99	6.19
1032	" 5 5	44	66	66	36.94 38.81	0.97	1295	1469	5.86	6.15
1034	" 11 16 " 3	66	66	66	40.69	0.88	1368	1522	5.80	6.12
1035	" 3	"	66	"	42.56	0.84	1405	1574	5.75	6.08
* Spa	cing of riv	vet lines of	web grea	ter than 3	o × thickn	ess of p	late.			

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

				В						
7	Properti of Fop Chord S		d		A de la constantina della constantina della cons			our Angl and aree Plate		
	Pla	ites.	An	B gles.	G	Eccen-		ents of	Radii o	of Gyr
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Ax B-
					A	е	IA	IB	r _A	- rE
	Inches.	Inches.	Inches	Inches.	Inches².	Inches.	Inches ⁴ .	Inches4.	Inches.	Inch
*1036	15x3	18x 7	3x3x8	$4x3x\frac{11}{16}$	32.03	0.98	1223	1284	6.18	6.3
1037	" 16		66	"	33.91	0 92	1260	1343	6.10	6.2
1038	7	"		"	35.78	0.87	1297	1401	6.02	6.2
1039	66 9 66 5 6			"	37.66	0.83	1334	1457	5.95	6.2
1040	- A		66		39.53	0.79	1370	1512	5.89	6.
1041	" \(\frac{16}{4}\)	66	"	44	41.41 43.28	0.76	1406 1442	1565	5.83 5.77	6.:
*1043	15x3	$18x\frac{7}{16}$	3x3x ³ / ₈	4x3x4	32.73	0.82	1259	1327	6.20	6.
1044	" 7 16	"	"		34.61	0.78	1295	1386	6.12	6.3
1045	2	. "	"	66	36.48	0.74	1331	1444	6.04	6.2
1046	" 9 16	"	"	"	38.36	0.70	1368	1500	5.97	6.2
1047	8	"			40.23	0.67	1404	1555	5.90	6.2
1048	" 11 " 36	"	"		42.11	0.64	1440	1608	5.85	6.1
1049	4		<u> </u>	⟨ 18" Section	43.98 a. B Series.	0.61	1475	1660	5.79	6.1
7070	17-3	-0-3	1	1		T 50	YOUR	1010	= 06	
1050	15x3	18x3	3½x3½x¾	5x3 ¹ / ₂ x ³ / ₈	29.06	1.50	1035	1042	5.96	5.9
1051	" 16	66	66	66	30.94 32.81	1.41	1074	1137	5.82	5.8
1053	66 <u>9</u>	66	66	46	34.69	1.33	1151	1183	5.76	5.8
1054	46 5 T G	"	66	66	36.56	1.20	1190	1228	5.70	5.7
1055	" 11 16	66	66	66	38.44	1.14	1227	1272	5.65	5.7
1056	66 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	66		"	40.31	1.08	1265	1315	5.60	5.7
1057	15x3	18x3	3½x3½x8	5x3 1 x 7 16	30.02	1.25	1095	1095	6.04	6.0
1058	1.6	66		1	31.90	1.18	1133	1143	5.96	5.9
1059	66 1	66	66	66	33.77	1.11	1170	1190	5.89	5.9
1060	16 16 16	66	66	"	35.65	1.05	1207	1236	5.82	5.8
1061	76 5 8	66	66	66	37.52	1.00	1245	1281	5.76	5.8
1062	" 11 16	66	"	66	39.40	0.95	1282	1325	5.70	5.8
1063	4	*6	66	"	41.27	0.91	1319	1368	5.65	5.7
1064	15x3	18x3	3½x3½x8	5x3 2x2	30.96	1.02	1149	1148	6.09 6.00	6.0
1066	" 16	66	66	66	32.84	0.96	1186	1196		
1067	" 9 16	66	66	66	34.71	0.91	1222	1243	5.93	5.9
1068	" 56	66	66	66	36.59	0.80	1259	1289	5.86 5.80	5.8
1069	" 11 16	66	"	66	38.46	0.78	1296	1334		5.8
1070	6 36	66	66	66	40.34 42.21	0.75	1332 1368	1378	5.74 5.69	5.8
.0/0	4				44.41	2./3	1300	1401	3.09	2.0

TABLE 84.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

				В						
To	Properti of op Chord Sec		A d		A digital states of the states			our Angl and aree Plate		
			1	B	1	1	Mome	ents of	Radii o	f Gyra-
	Pla	tes.	Ang	gles.	Gross Area.	Eccen- tricity.	Ine	rtia.	tic	n.
Section Number.	Web.	Cover.	Top.	Bottom.			Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
	Inches.	Inches.	Inches.	Inches.	A Inches².	Inches.	I _A	Inches ⁴ .	Inches.	Inches.
		_								-
1071	15X\frac{3}{8}	18x3	3½x3½x¾	5x3½x16	31.90	0.80	1200	1201	6.13	6.08
1073 1074 1075	66 9 16 46 5 8	"	66	66 66	35.65 37.53 39.40	0.71 0.68 0.65	1308	1296	5.97 5.90 5.84	6.03 5.98
1076	" 11 " 3	66	66	« . «	41.28	0.62	1344 1380 1416	1387 1431 1474	5.78 5.72	5.93 5.89 5.84
1078	15x3/8	18x3	3½x3½x8	5x3\frac{1}{2}x\frac{5}{8}	32.80 34.68	ó.60 o.57	1246	1253	6.16	6.18
1080	" 16 " 2 " 9 16	66	66	66	36.55 38.43	0.54	1317	1348	6.00	6.07
1082 1083	" <u>5</u> " <u>11</u>	66	66	66	40.30 42.18	0.49	1389	1439	5.87	5.97 5.92
1084	$\frac{3}{4}$	18x3	3½x3½x¾	5x3½x11	44.05 33.70	0.45	1460	1526	5.76	5.88
1086	$\frac{1}{16}$	66	66	66	35.58 37.45	0.39	1325	1353	6.10	6.16
1088	" 9 16 " 5	66	66	66	39.33 41.20	0.35	1395	1446	5.95	6.06
1091	" 11 16 4 3	66	66	66	43.08	0.32	1467	1535	5.83	5.96
1092	$15x\frac{3}{8}$	18x3	3½x3½x3	5x3 2x2	34.58 36.46	0.25	1326	1358	6.19	6.26
1094	" ½ " 9 16	66	66	66	38.33 40.21	0.22 0.21	1396	1453 1499	6.03 5.96	6.15
1096	" 11 16 " 3	"	66	66	42.08	0.20	1467	1544	5.90	6.05
1098	4	1		19" Section	45.83 a. A Series.	0.18	1537	1631	5.79	5.96
*1099	15x3	19x-7/16	3x3x ³ / ₈	4x3x8	28.75	2.04	1002	1240	5.91	6.57
1100 1101 1102	" 16 " ½ " 9	66	"	66	30.63 32.50 34.38	1.92 1.81 1.71	1044	1310	5.84 5.78 5.73	6.54 6.51 6.48
1103	66 9 16 66 5 8 66 11	66	"	66	34.36 36.25 38.13	1.62	1168	1445 1510 1574	5.68	6.45
1105	" 11 16 " 3 4	"	"	66	40.00	1.47	1247	1637	5.59	6.40
* Spa	acing of ri	vet lines o	of web grea	ter than 3	o × thick	ness of	plate.			

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

1	Properti of Cop Chord S		d	B				our Angl and hree Plat		
	Pla	ites.	An	gles.		Eccen-		ents of rtia.	Radii c	of Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
					A	e	IA	IB	rA	rB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inche
*1106	15x3	19x 7/16	3x3x3	4x3x18	29.53	1.81	1059	1291	5.99	6.61
1107	1.6				31.41	1.71	1100	1361	5.92	6.58
1108	" ½ " 9	"	"	66	33.28	1.61	1140	1429	5.85	6.55
1109	18	"	"	"	35.16	1.52	1	1180 1496		6.52
1110	8	"	"	"	37.03	1.45	1219	1561	5.74	6.49
IIII	" 11	"	"	"	38.91	1.38	1258	1625	5.69	6.46
1112	. 4	"			40.78	1.31	1297	1088	5.64	6.43
*1113	15x3	19x 7	3x3x8	4x3x1/2	30.29	1.61	1110	1341	6.05	6.65
1114	16	"			32.17	1.51	1149	1411	1688 5.64 1341 6.05	
1115		"	66	66	34.04	1.43	1188		1341 6.05 1411 5.98 1479 5.91 1546 5.85	
1116	" 9 16		"	"	35.92	1.36	1228		5.85	6.56
1117	T		"	"	37.79	1.29	1266	1611	5.79	6.53
1118	" 11		"		39.67	1.23	1304	1675	5.73	6.50
1119	4		"		41.54	1.17	1342	1738	5.68	6.47
*1120	15x3	19x 7	3x3x8	$4x3x\frac{9}{16}$	31.03	1.41	1158	1390	6.11	6.60
II2I		"		66	32.91	1.33	1196	1460	6.03	6.66
1122	66 <u>1</u>	66	44	66	34.78	1.26	1235	1528	5.96	6.63
11123	" 9 16	"	66	66	36.66	1.20	1273	1595	5.89	6.60
1124		66	"	66	38.53	1.14	1311	1660	5.83	6.57
1125	" 11 " 16	"			40.41	1.09	1348	1724	5.77	6.53
1126	" 🕯		66	66	42.28	1.04	1385	1787	5.72	6.50
*1127	15x8	19x17	3x3x8	4x3x5	31.75	1.24	1201	1437	6.15	6.73
1128	1.6	"	3.6	4	33.63	1.17	1239	1507	6.07	6.70
1129	"	66	66	66	35.50	1.11	1277	1575	6.00	6.66
1130	"] 6	66	66	66	37.38	1.05	1315	1642	5.93	6.63
1131		66	66	44	39.25	1.00	1352	1707	5.87	6.60
1132	"]]	66	66	46	41.13	0.96	1388	1771	5.81	6.56
1133	" 4	"	66	66	43.00	0.91	1425	1834	5.76	6.53
*1134	15x8 7	19x1	3x3x8	4×3×11	32.47	1.07	1243	1486	6.19	6.76
1135	16	""	"	66	34-35	1.01	1280	1556	6.10	6.73
1136	" 1	66	"	66	36.22	0.96	1317	1624	6.03	6.70
1137	" <u>9</u>	"	66	66	38.10	0.91	1354	1691	5.96	6.66
1138	" <u>5</u>	66	"	"	39.97	0.87	1391	1756	5.90	6.6
1139	" 11	66	66	66	41.85	0.83	1427	1820	5.84	6.60
1140	ιι <u>ặ</u> *	1 "	46	66	43.72	0.79	1463	1883	5.79	6.50

TABLE 84.—Continued.

Properties of Top Chord Sections.

				B						
1	Properti of Cop Chord S		a d					our Angle and hree Plate		
	Pla	ntes.	Ang	les.		Eccen-	Mome		Radii o	of Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
					A	<u>e</u>	IA	I _B	r _A	fB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inchest.	Inches.	Inche
*1141	15x\frac{3}{8}	19x 7	3x3x ³ / ₈	4x3x4	33.17	0.92	1279	1535	6.21	6.80
1142	" 16	66	66	"	35.05	0.87	1316	1605	6.13	6.7
1143	" ² 9		66	66	36.92 38.80	0.82	1352 1388	1673	6.05	6.7
1144	46 5 6 E	66	66	66	40.67	0.75	1425	1740	5.98 5.92	6.6
1146	" 11	66	66	66	42.55	0.71	1461	1869	5.86	6.6
1147	" 11 16 " 3	66	66	66	44.42	0.68	1497	1932	5.81	6.5
			15" ×	19" Section						
1148	15x ³ / ₈	19x 7	3½x3½x3	5x3½x3/8	30.62	1.83	1094	1250	5.98	6.39
1149		66			32.50	1.72	1136	1308	5.91	6.3
1150	" 1 2	66	66	66	34.37	1.63	1176	1365	5.85	6.3
1151	" 16 5	66	66	66	36.25	1.55	1215	1421	5.79	6.2
1152	8	"	"	66	38.12	1.47	1255	1476	5.73	6.2
1153	" 118 " 3	66	"	66	40.00	1.40	1294	1530	5.68 5.64	6.1
1155	15x3	19x 7	3½x3½x¾	5x3\frac{1}{2}x\frac{7}{16}	31.58	1.58	1160	1310	6.06	6.4
1156		66			33.46	1.49	1200	1368	5.98	6.3
1157	66 1/2 .	66	66	66	35.33	1.41	1239	1425	5.92	6.3
1158	" $\frac{9}{16}$ " $\frac{5}{2}$	66	66	66	37.21	1.34	1277	1481	5.86	6.3
1159			"	66	39.08	1.27	1317	1536	5.80	6.2
1160	" 11 " 34	66	66	66	40.96	1.21	1355	1590	5.75	6.2
	-				42.83	1.16	1392	1643	5.70	6.1
1162	15x ³ / ₈	19x 16	3½x3½x3	5x3 2x2	32.52	1.35	1218	1371	6.12	6.4
1163	" 16	66	66	66	34.40	1.27	1256	1429	6.04	6.4
1165	" 9	66	66	66	36.27 38.15	1.21	1294	1542	5.97 5.91	6.40
1166	" <u>5</u>	66	64	66	40.02	1.09	1370	1597	5.85	6.3
1167	" 11	66	66	66	41.90	1.04	1407	1651	5.79	6.2
1168	" 11 16 4 3	66	"	66	43.77	1.00	1414	1704	5.74	6.2
1169	15x3/8	19x 7	3½x3½x3	5x3 ¹ / ₂ x ⁹ / ₁₆	33.46	1.13	1274	1431	6.17	6.54
1170	" 7 " 16	66	24	66	35-34	1.07	1311	1489	6.09	6.49
1171	2	66	66	66	37.11	1.02	1348	1546	6.02	6.45
1172	" 9 16	"	"	66	38.99	0.97	1385	1602	5.96	6.41
1173	8	66	"	66	40.86	0.92	1423	1657	5.90	6.37
1174	" 11 " 3	"	66	66	42.74 44.61	0.85	1460	1764	5.84 5.79	6.33
-13	4				44.01	1 2.03	-470	-/	2.12	3,29

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

т	Propertion of Chard Se		A d	B	A de la constant de l			our Angle and aree Plate		
	Pla	ites.	Ang			Eccen-		ents of rtia.		of Gyra
Section Number	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	е	IA	IB	$r_{\mathbf{A}}$	rB
	Inches.	Inches.	Inches.	Inches.	Inches2.	Inches.	Inches4.	Inches4.	Inches.	Inches
1176	15x3 "7 16	19x 76	3½x3½x3 66	5x3½x5	34.36 36.24	0.93	1325 1362	1490 1548	6.21	6.59
1178	" 9 16	46	66	66	38.11	0.84	1398 1434	1661	6.06 5.99	6.48
1180	" 3 " 11	"	"	"	41.86	0.76	1472	1716	5.93	6.40
1181	" 36	66	"	66	43.74 45.61	0.73	1508 1544	1770	5.87 5.82	6.36
1183 1184	15x3/8	19x 7	3½x3½x3	5x3½x116	35.26 37.14	0.74	1372	1549 1607	6.24	6.63
1185	66 1 2 46 29	66	66	66	39.01	0.67	1444	1664	6.08	6.53
1186	" 16	"	66	66	40.89	0.64	1479	1720	6.01	6.48
1188	" 11	66	66	"	42.76 44.64	0.59	1516 1552	1775	5.95 5.89	6.44
1189	66 3	46	66	66	46.51	0.56	1587	1882	5.84	6.36
1190	$15x\frac{3}{8}$	19x 7	3½x3½x8	5x3 ¹ / ₂ x ³ / ₄	36.14 38 02	0.58	1413	1609 1667	6.25	6.67
1192	" 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	66	"	66	39.89	0.52	1484	1724	6.09	6.57
1193	" 16 " 5	66	66	"	41.77 43.64	0.50	1520	1780	6.03 5.97	6.52
1195	" 16	66	66	66	45.52	0.46	1591	1889	5.91	6.44
1196	66 3	66	66	- "	47.39	0.44	1627	1942	5.86	6.40
			16" ×	19" Section	a. A Series.	1				
*1197	16x3	19x 7	3x3x8	4x3x8	29.49	2.12	1165	1270	6.28	6.56
1198	" 7 16	66	66	66	31.49	1.99	1216	1344	6.21	6.53
1200	" ² 16	66	46	"	33·49 35·49	1.76	1315	1488	6 09	6.48
1201	16 6 5	66	44	"	37 49	1.67	1364	1558	6.04	6.45
1202	" 11	66	"	66	39.49	1.58	1412	1626	5.98	6.42
1203	16x3	x0x-7	2-2-3	1227	41.49	1.51	1459	1693	5.93	6.39
*1204 1205	10X § 7 16	19x 16	3x3x8	4x3x16	30.27 32.27	1.77	1229	1321	6.37	6.60
1206	" 16	"	66	66	34.27	1.66	1326	1468	6.22	6-54
1207	" 9 16	66	46	66	36.27	1.57	1374	1539	6.15	6.51
1208	" <u>5</u>	"	66	66	38.27	1.49	1422	1609	6.09	6.48
1209	" 11 " 16	66	66	"	40.27	1.42	1469	1677	6.04	6.45
1210	4	1	1	1	42.27	1.35	1515	1744	5.99	6.42

TABLE 84.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

Т	Propertie of op Chord So		A a	B	A d d d 2			Four Ang and Three Pla		
	Pla	ites.	An	B gles.		Eccen-	Mom	ents of	Radii o	of Gyr
Section Number.	Web.	. Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-E
	T .				A	e	IA	IB	TA	TB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inch
			16" ×	19" Section	. A Series.					
*1211	16x3	19x 7	3x3x8	4x3x1/2	31.03	1.67	1287	1371	6.45	6.6
1212	16	66			33.03	1.57	1335	1445	6.36	6.6
1213	" 1/2	"	66	66	35.03	1.48	1382	1518	6.28	6.5
1214	6 9 16 6 5 6 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6	66	68	66	37.03	1.40	1429	1589	6.21	6.5
1215	66 <u>\$</u>	66	68	66	39.03	1.32	1476	1659	6.15	6.5
1216	" 11 16		66	66	41.03	1.26	1522	1727	6.09	6.4
1217	4 3	66	66	66	43.03	1.20	1567	1794	6.04	6.4
*1218	16x3	19x 7/16	$3x3x\frac{3}{8}$	4×3×9	31.77	1.46	1342	1420	6.50	6.6
1219	" 7 16	66	66	66	33.77	1.38	1389	1494	6.41	6.6
1220	" 1	66	66	66	35.77	1.30	1435	1567	6.33	6.6
1221	66 9 16 66 5	66	66	66	37.77	1.23	1481	1638	6.26	6.5
1222	8	66	66	66	39.77	1.17	1527	1708	6.19	6.5
1223	" 11 16	66	66	66	41.77	1.11	1572	1776	6.13	6.5
1224	" <u>3</u>	66	66	66	43.77	1.06	1617	1843	6.08	6.4
*1225	16x3	19x 7	3x3x3	4×3×5	32.49	1.28	1392	1467	6.55	6.7
1226	16 7	2.6	JJ8	4.7.8	34.49	1.20	1438	1541	6.46	6.6
1227	** **	66	46	66	36.49	1.14	1483	1614	6.37	6.6
1228	" 9	66	66	66	38.49	1.08	1528	1685	6.30	6.6
1229	· " 5 8	66	66	"	40.49	1.03	1573	1755	6.23	6.5
1230	" 11 16 " 3	66	66	66	42.49	0.98	1618	1823	6.17	6.5
1231	" 3	66	66	66	44.49	0.93	1662	1890	611	6.5
1232	16x3	19x 7	2×2×3	4x3x11	33.21	1.10	1439	1516	6.58	6.7
1233	" 7 16	19416	3x3x8	443416	35.21	1.04	1484	1590	6.49	6.7
1234	" 1	66	66	66	37.21	0 98	1528	1663	6.41	6.6
1235	66 9	66	66	66	39.21	0.93	1573	1734	6.33	6.6
1236	" 5 8	66	66	66	41.21	0.89	1617	1804	6.26	6.6
1237	" 11 " 3 4	66	66	66	43.21	0.85	1662	1872	6.20	6.5
1238	66 3	66	66	46	45.21	0.81	1705	1939	6.14	6.5
1239	16x3	19x 7	2×2×3	48283		0.94	1481	1565	6.61	6.7
1240	" 7 16	-7A16	3x3x8	4x3x4	33.91 35.91	0.89	1526	1639	6.52	6.7
1241	" 16	66	66	66	37.91	0.84	1569	1712	6.43	6.7
1242	66 29 16 66 5	66	66	66	39.91	0.80	1614	1783	6.36	6.6
1243	66 5	66	66	66	41.91	0.76	1658	1853	6.29	6.6
1244	" 11 " 3	66	66	66	43.91	0.73	1702	1921	6.23	6.6
1245	66 3	66	66	66	45.91	0.70	1745	1988	6.17	6.5

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

1	Properti of Cop Chord S	ics ections.	4	B				our Angl and aree Plate		
	Pla	ites.	Anı	gles.		Faces		ents of rtia.	Radii o	
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
					A		I_A	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches4.	Inches.	Inche
			16" ×	19" Section	. B Series.			-		
*1246	16x}	19x 7	3½x3½x¾	5x3½x¾	31.37	1.90	1271	1275	6.36	6.37
1247	" 7	"	32-53-6	3-5,5	33.37	1.79	1320	1337	6.29	6.33
1248	"	66	66	66	35.37	1.69	1368	1398	6.22	6.28
1249	" 9 16	66	618	"	37-37	1.60	1417	1458	6.15	6.24
1250	66 \$	66	"	"	39.37	1.52	1464	1516	6.10	6.20
1251	" 11	66	66	66	41.37	1.44	1511	1573	6.05	6.16
1252	"	66	66	"	43.37	1.37	1558	1629	6.00	6.13
*1253	16x3	19x 7	31x31x3	5x3½x 7	32.33	1.64	1345	1335	6.45	6.42
1254	1028	19416	3223328	3432416	34.33	1.54	1393	1397	6.37	6.38
1255	" 10	66	66	66	36.33	1.46	1440	1458	6.30	6.33
1256	" 9 16	66	66	66	38.33	1.38	1487	1518	6.23	6.29
1257	"	66	66	66	40.33	1.31	1534	1576	6.17	6.25
1258	" 👬	66	66	66	42.33	1.25	1579	1633	6.11	6.21
1259	"	66	66	66	44.33	1.19	1625	1689	6.05	6.17
*1260	16x}	19x 7	3½x3½x3	5x3\frac{1}{2}x\frac{1}{2}		1.40	1412	1396	6.51	6.48
1261	66 7	19416	3243248	545342	33.27 35.27	1.40	1459	1458	6.42	6.42
1262	" 16	46	66	- 66	37.27	1.25	1504	1519	6.35	6.38
,1263	" ² 9	66	66	66	39.27	1.18	1550	1579	6.28	6.34
1264	66 30	66	66	66	41.27	1.13	1595	1637	6.21	6.30
1265	" 👬	66	61	21	43.27	1.08	1640	1694	6.15	6.26
1266	"	46	66	66	45.27	1.03	1685	1750	6.10	6.22
*1267	16x1	19x 7	2172173	FY21-9		1.17	1475	1456	6.57	6.52
1268	66 7	19416	3½x3½x3	5x3 2x 16	34.2I 36.2I	1.10	1475	1518	6.48	6.47
1269	" 16	66	66	66	38.21	1.05	1565	1579	6.39	6.42
1270	دد <mark>ع</mark>	46	66	66	40.21	1.00	1610	1639	6.32	6.38
1271	44 F	66	46	66	42.21	0.95	1655	1697	6.26	6.34
1272	" 👬	66	66	66	44.21	0.91	1699	1754	6.20	6.30
1273	"	66	66	"	46.21	0.87	1743	1810	6.14	6.26
*1274	16x3	19x 7	3½x3½x3	5x3\frac{1}{2}x\frac{5}{8}	35.11	0.96	1534	1514	6.61	6.57
1275	" 7	- 5410	32-32-8	3-53-8	37.11	0.91	1578	1576	6.52	6.51
1276	66 1	66	66	66	39.11	0.85	1622	1637	6.44	6.46
1277	" 9	66	66	66	41.11	0.82	1666	1697	6.36	6.42
1278	66 <u>5</u>	66	66	66	43.11	0.78	1711	1755	6.29	6.38
1279	" j i	46	66	66	45.11	0.75	1754	1812	6.23	6.34
1280	دد <u>غ</u>	66	66	66	47.11	0.72	1798	1868	6.17	6.30

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

				В						
1	Properti of Cop Chord S		A d					our Angle and aree Plate		
	Pla	tes.	An	B gles.		Eccen-		ents of rtia.	Radii o	of Gyra-
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	I _B	r _A	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inches.
*1281 1282 1283	$16x\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	19x 7/16	3½x3½x¾	5x3½x116	36.01 38.01 40.01	0.77 0.73 0.69	1586 1630 1673	1573 1635 1696	6.64 6.55 6.47	6.60 6.56 6.51
1284 1285 1286 1287	16 66 16 66 16 66 34	66	66 68	66	42.01 44.01 46.01 48.01	0.66 0.63 0.60	1717 1761 1803 1847	1756 1814 1871	6.39 6.32 6.26 6.20	6.46 6.42 6.37
*1288 1289	16x ³ / ₈ " 7/16	19x 7	3½x3½x¾	5x3½x¾	36.89 38.89	0.57 0.59 0.56	1632 1678	1927 1634 1694	6.65 6.56	6.33 6.65 6.59
1290 1291 1292 1293	66 9 16 6 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 66	66	66	40.89 42.89 44.89 46.89	0.53 0.51 0.48 0.46	1720 1764 1807 1850	1755 1815 1873 1930	6.48 6.41 6.34 6.28	6.55 6.50 6.46 6.42
1294	" 11 16 " 1	46	"	"	48.89	0.44	1893	1986	6.22	6.37
			16" >	20" Section	. A Series.	ı	1	1	,	
*1295 1296 1297 1298 1299 1300 1301	16x3/8 (1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/1	20x 7/16	3×3×8	4x3x8 	29.93 31.93 33.93 35.93 37.93 39.93 41.93	2.21 2.07 1.95 1.84 1.74 1.65 1.58	1180 1232 1282 1332 1382 1431 1478	1463 1550 1635 1719 1801 1881 1959	6.28 6.21 6.15 6.09 6.04 5.99 5.94	6.99 6.97 6.94 6.92 6.89 6.86 6.84
*1302 1303 1304 1305 1306 1307 1308	16X36 16 11 16 19 16 11 16 11 16 11 16 13 14	20x 7/6	3x3x ³ / ₆	4x3x ⁷ / ₁₆	30.71 32.71 34.71 36.71 38.71 40.71 42.71	1.97 1.85 1.75 1.65 1.57 1.49	1246 1297 1346 1394 1442 1490 1536	1519 1606 1691 1775 1857 1937 2015	6.37 6.30 6.23 6.16 6.10 6.05 6.00	7.04 7.01 6.98 6.95 6.93 6.90 6.87
*1309 1310 1311 1312 1313	16x3/8 7 16 6 12 2 6 9 16 6 5 1	20x 7/6	3×3×3/8	4×3×½	31.47 33.47 35.47 37.47 39.47	1.76 1.65 1.56 1.48 1.40	1306 1355 1402 1449 1496	1576 1663 1748 1832 1914	6.44 6.36 6.29 6.22 6.16 6.10	7.08 7.05 7.02 6.99 6.96
1314	66 3 4	"	"	66	41.47	1.33	1543 1589	1994 2072	6.05	6.93
* Sp	acing of ri	vet lines o	of web grea	ter than 3	o × thicks	ness of	plate.			

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

Т	Properti of op Chord Se		A		JA ala			our Angle and aree Plate		
	Pla	tes.	Ang			Eccen-		ents of		of Gyra-
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	I _A Inches ⁴ .	Inches*.	r _A Inches.	Inches
							-			-
*1316	16x3	20x 16	3x3x3	4x3x 9	32.21	1.55	1361	1631	6.50	7.12
1317	" 7 16	66	"	66	34.21	1.46	1409	1718	6.42	7.09
1318	3			66	36.21	1.38	1455	1803	6.34	7.06
1319	" 1 6	"	- 66	66	38.21	1.31	1501	1887	6.27	7.03
1320	" 11	66	- 66	66	40.21	1.25	1548	1969	6.20	7.00
1321	" 11	66	66	66	42.2I 44.2I	1.19	1504	2049	6.15	6.97
*1323	16x3	20x 7	3x3x3	4×3×5	32.93	1.37	1412	1685	6.55	7.16
1324	" 7	"	3 %		34.93	1.29	1459	1772	646	7.12
1325	" 1	"	"	66	36.93	1.22	1504	1857	6.38	7.09
1326	" 16	66	66	66	38.93	1.16	1550	1941	6.31	7.06
1327		66	"	66	40.93	1.10	1595	2023	6.24	7.03
1328	" 11	66	"	66	42.93	1.05	1641	2103	6.18	7.00
1329	"	66	"	46	44.93	1.00	1685	2181	6.13	6.97
*1330	16x3	20x 7	3x3x8	$4x3x\frac{11}{16}$	33.65	1.19	1461	1739	6.59	7.19
1331	" 16		"	"	35.65	1.12	1507	1826	6.50	7.16
1332	" 2	"	"	66	37.65	1.06	1551	1911	6.42	7.12
1333	" 16	- 66	"	66	39.65	1.01	1596	1995	6.35	7.09
1334	8	66	"	"	41.65	0.96	1641	2077	6.28	7.06
1335	" 11 " 36	66	66	66	43.65	0.92	1686	2157	6.22	7.03
1336	4				45.65	0.88	1730	2235	6.16	7.00
*1337	16x3	20x 16	3x3x8	4x3x4	34-35	1.03	1504	1794	6.62	7.23
1338	" 16	"	"	"	36.35	0.98	1549	1881	6.53	7.19
1339	1 2	66	"	"	38.35	0.93	1593	1966	6.45	7.16
1340	44 5 16	66	66	46	40.35	0.88	1638	2050	6.37	7.13
1341	. 8	66	66	"	42.35	0.84	1682	2132	6.30	7.10
1342 1343	" 11 " 16	46	"	66	44.35	0.80	1727	2212	6.24	7.06
1343	4		76" V	20" Section	46.35 n. B Series.	0.77	1//0	1 2290	0.10	7.03
	1				1	1		1	1 .	1
*1344	16x3	20x 7	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{6}$	5x3½x3	31.81	1.99	1288	1473	6.36	6.80
1345	" 7 16	"	"	"	33.81	1.87	1339	1547	6.28	6.76
1346	" 2	46	"	"	35.81	1.76	1388	1620	6.22	6.72
1347	" 16 " 5	"	"	"	37.81	1.67	1437	1691	6.16	6.68
1348	" 11	"		"	39.81	1.59	1485	1761	6.10	6.64
1349	" 16	"		**	41.81	1.51	1532	1829	6.05	6.61
1350	4		1		43.81	1.44	1579	1896	6.00	6.58

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

1	Properti of Fop Chord S		A d	B				our Angl and hree Plat		
	Pla	ites.	Ang	gles.	Gross Area.	Eccen-		ents of rtia.		of Gyra- on.
Section Number.	Web.	Cover.	Top.	Bottom.		tricity	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	е	IA	I _B .	rA	rB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inches
*1351 1352	$16x\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	20x 76	3½x3½x¾	5x3½x ⁷ 16	32.77 34.77	1.72 1.62	1364 1412	1541	6.45 6.37	6.85 6.81
1353	66 9	46	66	66	36.77 38.77	1.54	1459	1688	6.30	6.77
1354	" 9 16 " 5	66	66	66	40.77	1.39	1553	1829	6.17	6.70
1356 1357	" 11 16 " 3	66	66	66	42.77 44.77	I.32 I.26	1599	1897 1964	6.11	6.66
*1358	$16x_{8}^{3}$	20x 7	3½x3½x¾	5x3\frac{1}{2}x\frac{1}{2}	33.71	1.49	1431	1609	6.51	6.91
1359	" .7 16	66	66	46	35.71	I 40	1479	1683	6.43	6.86
1360		66	66	"	37.71	1.33	1525	1756	6 35	6.82
1361 1362	" 9 16 " 5	66	66	66	39.71	1.26	1571	1827	6.29	6.78
1363	" 11	46	66	66	41.71 43.71	1.15	1617	1965	6.16	6.70
1364	66 3 6	66	66	66	45.71	1.10	1707	2032	6.11	6.66
*1365 1366	16x ³ / ₈	20x 7	3½x3½x8	5x3\frac{1}{2}x\frac{9}{16}	34.65 36.65	1.26	1497 1543	1677 1751	6.57 6.48	6.96 6.91
1367	66 <u>1</u>	"	66	66	38.65	1.13	1588	1824	6.41	6.87
1368	" 9 16 " <u>5</u>	66	66	66	40.65	1.07	1633	1895	6.34	6.83
1369	" <u>11</u>	66	66	66	42.65	1.02	1678	1965	6.27	6.79
1370	66 116 66 3	64	66	"	44.65 46.65	0.98 0.94	1722	2033	6.21 6.15	6.75 6.71
*1372 1373	16x ³ / ₁₆	20x 7/16	3½x3½x3	5x3\frac{1}{2}x\frac{5}{8}	35·55 37 55	1.05	1556 1600	1742 1816	6.61 6.53	7.00 6.95
1374	66 1	66	66	"	39.55	0.94	1644	1889	6.45	6.91
1375	" ² 9 16 " <u>5</u>	66	66	66	41.55	0.90	1698	1960	6.37	6.87
1376	" <u>5</u>	66	"	66	43.55	0.86	1733	2030	6.31	6.83
1377 1378	" 11 16 " 3	66	"	"	45.55 47.55	0.82 0.78	1777 1822	2098 2165	6.24 6.19	6.78 6.74
*1379 1380	16x ³ / ₇	20x 7/16	3½x3½x3 44	5x3½x11	36.45 38.45	o.86 o.81	1610 1655	1808 1882	6.64 6.56	7.04 6.99
1381	" 1	66	"	66	40.45	0.77	1698	1955	6.48	6.95
1382	66 5 66 5	66	66	66	42.45	0.73	1742	2026	6.41	6.91
1383	66 11	66	66	66	44.45	0.70	1786	2096	6.34	6.87
1384	66 11 16 66 3 4	66	66	"	46.45	0.67	1829 1873	2164	6.28 6.22	6.83
* Spa	acing of ri	vet lines o	f web grea	ter than 3	o × thickn	ess of	plate.			

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

7	Properti of op Chord Se		4	B				our Angl and aree Plate		
	Pla	ites.	Anı	gles.	Gross Area.	Eccen-		ents of rtia.		of Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	rA	rB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches	Inches ⁴ .	Inches4.	Inches.	Inche
*1386	16x3	20X 16	3½x3½x3	5x3 ¹ / ₂ x ³ / ₄	37-33	0.68	1660	1875	6.67	7.09
1387	66 7	66	32 66	3.5	39.33	0.64	1704	1949	6.58	7.03
1388	" 18 " ½	66	66	66	41.33	0.61	1747	2022	6.50	6.99
1389	7.6	66	66	66	43.33	0.58	1790	2093	6.42	6.94
1390	- 1	66	66	66	45.33	0.56	1834	2163	6.36	6.90
1391	" 11	46	66	66	47.33	0.53	1876	223 I	6.30	6.86
1392	"	44	66	66	49.33	0.51	1920	2298	6.24	6.83
			18" ×	21" Section	n. A Series.					
*1393	18x 7	21x1/2	3x3x8	4x3x2	35.43	2.56	1712	1912	6.95	7.35
1394	1 2	"	66	66	37.68	2.40	1787	2023	6 89	7.33
1395	" 16		1	66	39.93	2.27	1860	2132	6.82	7.31
1396	8	"	"		42.18	2.15	1931	2239	6.77	7.29
1397	" 11	66	66	66	44.43	2.04	2002	2345	6.72	7.27
1398	" å	66	44	66	46.68	1.94	2072	2449	6.66	7.24
*1399	18x17	21x1/2	3x3x8	4x3x 7	36.21	2.33	1799	1975	7.05	7.39
1400	66 1	44	"	66	38.46	2.19	1871	2086	6.97	7.37
1401	" 9 16	66	16	66	40.71	2.07	1942	2195	6.91	7.35
1402	66 <u>\$</u>	66	46	66	42.96	1.96	2012	2302	6.85	7.32
1403	" 11	66	66	66	45.21	1.86	2081	2408	6.79	7.30
1404	" 4	66	"	66	47.46	1.78	2149	2512	6.73	7.28
*1405	18x16	21x1/2	3x3x8	4x3x1/2	36.97	2.12	1878	2039	7.13	7.43
1406	" 1	"	1 "	**	39.22	2.00	1948	2150	7.05	7.41
1407	" 9 16	66	46	66	41.47	1.89	2018	2259	6.98	7.38
1408	8	66	"	66	43.72	1.79	2086	2366	6.91	7.36
1409	" 11	46	66	66	45.97	1.70	2154	2472	6.85	7.33
1410	" 1	**	66	44	48.22	1.62	2221	2576	6.79	7.31
*1411	18x 7	21x2	3x3x8	4×3×9	37.71	1.92	1952	2100	7.20	7.46
1412	" 1	"	"	"	39.96	1.81	2021	22 I I	7.11	7.44
1413	" 9 16	66	66	"	42 21	172	2089	2320	7.03	7.42
1414	66 5	"	66	66	44 46	1.63	2155	2427	6.96	7.39
1415	" 11	"	66	66	46.71	1.55	2222	2533	6.90	7.36
1416	" 3	66	66	66	48.96	1.48	2288	2637	6.84	7.34

TABLE 84.—Continued.

Properties of Top Chord Sections.

				В				4 1		
Т	Properti of op Chord So		a a		2 2 2 2			our Angl and aree Plat		
	Pla	tes.	Anı	gles.		Eccen-		ents of rtia.	Radii o	of Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B–B
					A	e	I_A	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches'.	Inches.	Inche
*1417 1418	$18x\frac{7}{16}$	2 I X 1/2	3x3x ³ / ₈	4x3x ⁵ / ₈	38.43 40.68	1.74 1.64	2021 2088	2160 2271	7.25 7.17	7.50 7.42
1419	" 9 16 5	66	66	66	42.93	1.55	2154	2380	7.09	7.4
1420	" 11		66	66	45.18	1.48	2220	2487	7.01	7.4
1421 1422	66 11 16 6 46 3 4	"	"	"	47·43 49.68	1.41	2286 2351	2593 2697	6.94 6.88	7-4
*1423	$18x\frac{7}{16}$	2 I X 1/2	3x3x8	4x3x 11	39.15	1.56	2087	2221	7.30	7-5
1424	" <u>1</u>	66	66	66	41.40	1.47	2153	2332	7.21	7-5
1425	" 9 16 6 5	"	66	66	43.65	1.40	2219	244I	7.13	7.4
1426	" 8 " 11	"	66	"	45.90	1.33	2283	2548	7.05	7.4.
1427 1428	66 11 16 66 3	"	66	"	48.15 50.40	I.27 I.21	2348	2654	6.98 6.92	7.4
*1429	$18x^{\frac{7}{16}}$	2 I X ½	3x3x8	4x3x4	39.85	1.40	2146	2282	7.34	7.5
1430 1431	" <u>1</u>	66	66	66	42.10	1.32	2212	2393	7.25 7.16	7.5
1432	" 5 8	66	#6	- 64	44.35 46.60	1.19	2340	2609	7.09	7.5
1433	66 11 16	66	66	66	48.85	1.14	2404	2715	7.02	7.4
1434	66 11 16 6 6 3	"	"	"	51.10	1.09	2467	2819	6.95	7-4
			18" ×	21" Section	B Series.		1	ı		
*1435	$18x\frac{3}{8}$	$2Ix^{\frac{1}{2}}$	3½x3½x3	5x3½x8	35.06	2.49	1779	1805	7.12	7.1
*1436	" 7 16	66			37.31	2.34	1853	1901	7.05	7.1.
1437		66	66	66	39.56	2.21	1925	1996	6.98	7.1
1438	" 9 16 " 5	66	66	"	41.81	2.09	1995	2090	6.91	7.0
1439	" II	66	"	"	44.06	1.98	2065	2183	6.84	7.0
1440 1441	" 11 16 " 3	66	66	66	46.31 48.56	1.80	2135	2275 2366	6.79 6.74	7.0 6.9
*1442	18x3/8	2 I X 1/2	$3\frac{1}{2}x_{3}\frac{1}{2}x_{8}^{3}$	5x3\frac{1}{2}x\frac{7}{16}	36.02	2.21	1883	1880	7.23	7.2
*1443	" 7 16	66	66	66	38.27	2.08	1954	1977	7.14	7.1
1444		66	66	66	40.52	1.97	2024	2072	7.06	7.1
1445	$\begin{array}{ccc} & & \frac{2}{9} \\ & & \frac{1}{1}6 \end{array}$	66	66	"	42.77	1.86	2093	2166	6.99	7.1
1446	8	66	66	"	45.02	1.77	2161	2259	6.93	7.0
1447 1448	" 11 " 3	66	66	66	47.27	1.69	2229	2351	6.87	7.0
1440	4				49.52	1.01	2290	2443	0.01	7.0

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

* Spacing of rivet lines of web greater than 30 × thickness of plate.

TABLE 84.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

1	Propert: of Fop Chord S		A	В				our Angle and ree Plate		
	Pla	tes.	An	B gles.				ents of	Radii o	of Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
· · · · · · · · · · · · · · · · · · ·	Web.	Cover.	Top.	Doctoin.	A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches4.	Inches.	Inche
			18")	< 22" Section	n. A Series.					
*1484 1485 1486 1487 1488 1489	18x 7/16 66 1/2 66 5/8 66 111 66 3/4	22x ¹ / ₂	3×3×3/8	4x3x ³ / ₈	35.93 38.18 40.43 42.68 44.93 47.18	2.65 2.49 2.35 2.23 2.12 2.02	1735 1811 1885 1957 2028 2099	2170 2297 2422 2545 2667 2787	6.95 6.89 6.83 6.77 6.72 6.67	7.7 7.7 7.7 7.7 7.7 7.6
*1490 1491 1492 1493 1494 1495	10X 16 12 9 16 11 12 11 12 11 12	22X\frac{1}{2}	3x3x8 	4×3× 76	36.71 38.96 41.21 43.46 45.71 47.96	2.42 2.28 2.16 2.05 1.94 1.85	1823 1896 1968 2038 2108 2177	2240 2367 2492 2615 2737 2857	7.05 6.98 6.91 6.85 6.79 6.74	7.8 7.8 7.7 7.7 7.7 7.7
*1496 1497 1498 1499 1500	18x 7/16 44 1/2 44 9/16 44 1/5	22X½	3x3x3	4x3x½	37.47 39.72 41.97 44.22 46.47 48.72	2.21 2.09 1.97 1.87 1.78 1.70	1904 1975 2045 2114 2182 2250	2310 2437 2562 2685 2807 2927	7.13 7.05 6.98 6.92 6.85 6.80	7.8 7.8 7.8 7.7 7.7 7.7
*1502 1503 1504 1505 1506 1507	18x 7/16 44 1/2 46 9/16 46 1/8 46	22x ¹ / ₂	3x3x8	4×3× 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	38.21 40.46 42.71 44.96 47.21 49.46	2.02 1.90 1.80 1.71 1.63 1.56	1979 2048 2117 2184 2251 2318	2379 2506 2631 2754 2876 2996	7.20 7.12 7.04 6.97 6.90 6.85	7.8 7.8 7.8 7.8 7.8 7.7
*1508 1509 1510 1511 1512 1513	18x 1/16 16 1/16 16 1/16 16 1/16 17 1/16 18 1/16 18 1/16 18 1/16 18 1/16	22x\frac{1}{2}	3x3x8	4x3x ⁵ / ₈	38.93 41.18 43.43 45.68 47.93 50.18	1.83 1.73 1.64 1.56 1.49	2049 2118 2185 2251 2317 2383	2445 2572 2697 2820 2942 3062	7.26 7.17 7.09 7.02 6.95 6.89	7.9 7.9 7.8 7.8 7.8 7.8

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

т.	Propertion of Chord Se		d d	B	T A			ur Angle and iree Plate		
	Pla	tes.	Ang		Gross Area.	Eccen-	Mome	ents of	Radii c	of Gyra- on.
Section Number.	Web.	Cover.	Top.	Bottom.	Gloss Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches*.	Inches.	Inches
*1514 1515 1516 1517 1518 1519	18x7 " 2 " 2 " 3 " 5 " 5 " 16 " 16 " 3 " 16 " 3 " 4	22X1/2	3x3x3	4x3x116	39.65 41.90 44.15 46.40 48.65 50.90	1.65 1.57 1.49 1.41 1.34 1.29	2116 2183 2249 2314 2379 2444	2513 2640 2765 2888 3010 3130	7.30 7.22 7.14 7.06 6.99 6.93	7.96 7.94 7.92 7.89 7.87 7.84
*1520 1521 1522 1523 1524 1525	18x 76 " 18 " 16 " 16 " 11 " 16 " 3	22x½	3x3x3	4x3x3	40.35 42.60 44.85 47.10 49.35 51.60	1.49 1.41 1.34 1.28 1.22 1.17	2177 2243 2308 2372 2437 2501	2581 2708 2833 2956 3078 3198	7.35 7.26 7.17 7.09 7.03 6.96	8.00 7.97 7.95 7.92 7.90 7.87
			18" ×	22" Section	. B Series.					
*1526 *1527 1528 1529 1530 1531 1532	18x 3 7 16 16 16 16 16 16 16 16 16 16 16 16 16	22x½	3½x3½x3 	5x3½x3	35.56 37.81 40.06 42.31 44.56 46.81 49.06	2.59 2.43 2.30 2.17 2.06 1.96 1.87	1801 1877 1950 2021 2093 2163 2232	2052 2166 2277 2386 2493 2599 2702	7.11 7.05 6.98 6.92 6.86 6.80 6.75	7.60 7.57 7.54 7.51 7.48 7.45 7.42
*1533 *1534 1535 1536 1537 1538 1539	18x 3 176 116 116 116 116 116	22x½ " " " " " " " " " " " " " " " " " " "	3½x3½x3 	5x3½x76	36.52 38.77 41.02 43.27 45.52 47.77 50.02	2.31 2.18 2.06 1.95 1.85 1.76 1.68	1906 1978 2049 2118 2188 2257 2324	2137 2250 2361 2470 2577 2683 2787	7.23 7.14 7.07 7.00 6.93 6.87 6.82	7.65 7.62 7.59 7.56 7.53 7.50 7.47
*1540 *1541 1542 1543 1544 1545 1546	18x3 7 16 1 2 2 1	22x ¹ / ₂	3½x3½x¾	5x3½x½	37.46 39.71 41.96 44.21 46.46 48.71 50.96	2.05 1.93 1.83 1.74 1.65 1.58 1.15	2002 2072 2141 2208 2276 2343 2409	2222 2335 2446 2555 2662 2768 2872	7.31 7.22 7.14 7.06 7.00 6.94 6.88	7.70 7.67 7.64 7.60 7.57 7.54 7.51

TABLE 84.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

т	Properti of Op Chord Se		d d	B					Four Angles and Three Plates.			
	Pla	tes.	Ang	gles.	Gross Area.	Eccen-	Mome Ine	ents of rtia.	Radii o	of Gyra- on.		
Section Number.	Web.	Cover.	Top.	Bottom.	Gioss Alea.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.		
					A	e	I _A	IB	rA	r _B		
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inches.		
*1547 *1548	$18x\frac{3}{8}$	22x½	3½x3½x¾	5x3½x3/16	38.40 40.65	1.81	2093 2161	2306 2419	7.38 7.29	7.75 7.71		
1549 1550 1551	" 9 16		66	"	42.90 45.15 47.40	1.62 1.54 1.47	2229 2294 2360	2530 2639 2746	7.21 7.13 7.06	7.68 7.64 7.61		
1552 1553	66 11 16	66	66	66	49.65 51.90	I.40 I.34	2426 2491	2852 2956	6.99	7.58 7.54		
*1554 *1555 1556 1557	18x ³ / ₈ 7 16 16 16 16 16 16	22X ¹ / ₂	3½x3½x¾	5x3½x5 «	39.30 41.55 43.80 46.05	1.58 1.50 1.42 1.35	2177 2243 2309 2373	2388 2502 2613 2722	7.44 7.35 7.26 7.18	7.80 7.76 7.73 7.69		
1558 1559 1560	" $\frac{16}{3}$	66	66	66 66	48.30 50.55 52.80	I.29 I.23 I.18	2438 2502 2566	2829 2935 3039	7.11 7.04 6.97	7.66 7.62 7.59		
*1561 *1562 1563 1564 1565	18x3/8 7 16 16 9 16 16 11 1 16	22X ¹ / ₂	3½x3½x¾	5x3½x116	40.20 42.45 44.70 46.95 49.20	1.37 1.30 1.24 1.18 1.12	2255 2320 2385 2448 2512	2470 2584 2695 2804 2911	7.49 7.39 7.30 7.22 7.15	7.84 7.80 7.77 7.73 7.69		
1566	" 3 4	66	66	"	51.45	1.07	2576 2639	3017	7.08 7.01	7.66 7.63		
*1568 *1569 1570 1571 1572 1573	18x3/6 7 16 6 7 16 6 6 6 6 6 6 6 6 6 6 6 6 6	22x½	3½x3½x¾	5x3½x¾	41.08 43.33 45.58 47.83 50.08 52.33	1.18 1.12 1.06 1.01 0.97 0.93	2326 2390 2454 2516 2579 2642	2553 2667 2778 2887 2994 3100	7.53 7.43 7.34 7.25 7.17 7.11	7.89 7.85 7.81 7.77 7.73 7.70		
1574	Ĭ			23" Section	54.58	0.89	2705	3204	7.04	7.66		
*1575 1576 1577 1578	20X ¹ / ₂ " 9 16 5 8 6 11 16 6 3 4	23x½	3½x3½x3 ""	5x3½x¾	42.56 45.06 47.56 50.06	2.51 2.37 2.25 2.13	2530 2628 2724 2820	2697 2836 2973 3107	7.71 7.64 7.57 7.51	7.97 7.94 7.91 7.88		
1579 * Sp			1	<u> </u>	52.56 50 × thicks	2.03	plate.	3239	7-45	7.85		

TABLE 84.—Continued.

Properties of Top Chord Sections.

	Pla	tes.	Ang	gles.		Eccen-	Moments of Inertia.		Radii of Gyra	
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis. A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A		I_A	IB	r _A	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches.	nches.	Inches.	Inche
*1580	20x1/2	23x1/2	3½x3½x33	5x3\frac{1}{2}x\frac{7}{16}	43.52	2.25	2655	2790	7.81	8.01
1581	" 9 " 16	**			46.02	2.13	2750	2929	7.73	7.98
1582	" <u>5</u>	66	"	66	48.52	2.02	2844	3066	7.66	7.95
1583	" <u>}</u>	66	"	"	51.02	1.92	2938	3200	7.59	7.92
1584	" 3	66	66	"	53.52	1.83	3029	3332	7.52	7.89
*1585	20x1	23x1/2	3½x3½x¾	5x3½x½	44.46	2.02	2769	2884	7.89	8.06
1586	" 16 " 5	66	66 .		46.96	1.91	2862	3023	7.81	8.03
1587	66 <u>5</u>	66	66	66	49.46	1.82	2954	3160	7.73	8.00
1588	" 🚻	46	66	- "	51.96	1.73	3046	3294	7.66	7.96
1589	" 11 " 18	66	66	44	54.46	1.65	3136	3426	7.59	7.93
*1590	20x1	23x1/2	3½x3½x3	5x3½x ⁹ / ₁₆	45.40	1.79	2880	2978	7.97	8.10
1591	" 9 " 1 8	"	32 %	3 32 10	47.90	1.70	2971	3117	7.89	8.07
1592	46 <u>\$</u>	66	66	66	50.40	1.62	3061	3254	7.80	8.04
1593	" 🚻	66	66	66	52.90	1.54	3151	3388	7.72	8.00
1594	" 11	- 66	66	66	55.40	1.47	3239	3520	7.64	7.97
*1595	20x1/2	23x1/2	3½x3½x3	5x3½x5	46.30	1.59	2980	3068	8.03	8.14
1596	" 9 16 " 5		"		48.80	1.50	3069	3207	7.93	8.11
1597		66	- 66	66	51.30	1.43	3158	3344	7.85	8.07
1598	" 11 " 16	66	66	66	53.80	1.36	3247	3478	7.77	8.04
1599	44 3 4	66	"	"	56.30	1.30	3334	3610	7.70	8.01
*1600	20x1/2	23x1/2	3½x3½x3	5x3½x11	47.20	1.39	3077	3159	8.08	8.18
1601	" 1 6		"		49.70	1.32	3164	3298	7.98	8.14
1602	" 5	"	"	46	52.20	1.26	3251	3435	7.90	8.11
1603	" <u>‡</u>	66	22		54.70	1.20	3339	3569	7.82	8.08
1604	" 3	"	- 66	"	57.20	1.15	3426	3701	7-74	8.0
*1605	20x1	23x1/2	3½x3½x3	5x3½x¾	48.08	1.21	3164	3251	8.11	8.2
1606	" 9 16 " 5	"	**	**	50.58	1.15	3250	3390	8.02	8.10
1607	دد <u>\$</u>	66	"		53.08	1.09	3336	3527	7.93	8.1
1608	$\frac{1}{16}$	66	46	66	55.58	1.04	3423	3661	7.85	8.1
1609	" 3	66	66	- 66	58.08	1.00	3509	3793	7.77	8.0

^{*} Spacing of rivet lines of web greater than 30 \times thickness of plate.

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

1	Properti of Cop Chord S		A	B	A d d 2	1		our Angl and aree Plat		
	Pla	tes.	An	gles.	Gross Area.	Eccen-		ents of		of Gyra-
Section Number.	Web.	Cover.	Top.	Bottom.		tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	I _B	r _A	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches	Inches4.	Inches.	Inches.
_			20" >	23" Section	. B Series.					
*1610 1611 1612 1613	20X 7/16 " 1/2 " 9/16 " 5/8	23x ¹ / ₆₆	4×4× 7	6x4x 7	43.98 46.48 48.98 51.48	2.29 2.17 2.06 1.96	2782 2877 2973 3066	2721 2845 2966 3085	7.95 7.87 7.79 7.72	7.86 7.82 7.78 7.74
1614 1615	66 11 16 66 3 4	66	66	66	53.98 56.48	1.87	3158 3250	3202 3317	7.65 7.58	7.70 7.66
*1616 1617 1618 1619 1620 1621	20X \frac{7}{16} \\ \frac{1}{2} \\ \frac{9}{16} \\ \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4} \end{array}	23x ¹ / ₂ « « « « « « «	4X4X ⁷ 6	6x4x½	45.12 47.62 50.12 52.62 55.12 57.62	2.01 1.91 1.81 1.73 1.65 1.58	2919 3012 3104 3195 3285 3376	2832 2956 3077 3196 3313 3428	8.04 7.95 7.87 7.79 7.72 7.65	7.92 7.88 7.84 7.79 7.75 7.71
*1622 1623 1624 1625 1626 1627	20X 7 16 4 1 1 1 6 4 5 1 1 6 4 3 4	23x ¹ / ₂	4×4×7/16	6x4x ⁹ / ₁₆	46.24 48.74 51.24 53.74 56.24 58.74	1.75 1.66 1.58 1.51 1.44 1.38	3050 3140 3230 3319 3408 3497	2941 3065 3186 3305 3422 3537	8.12 8.03 7.94 7.86 7.78 7.72	7.97 7.93 7.88 7.84 7.80 7.76
*1628 1629 1630 1631 1632 1633	20X 7/16 1/2 1/2 1/6 1/6 1/6 1/6 1/6	23x½	4×4× ⁷ / ₁₆	6x4x5 	47·34 49·84 52·34 54·84 57·34 59·84	1.51 1.43 1.36 1.30 1.24 1.19	3170 3258 3347 3434 3521 3609	3048 3172 3293 3412 3529 3644	8.18 8.08 8.00 7.92 7.84 7.77	8.02 7.98 7.93 7.89 7.84 7.80
*1634 1635 1636 1637 1638 1639	20X 16	23x\frac{1}{2}	4×4× ⁷ / ₁₆	6x4x116	48.42 50.92 53.42 55.92 58.42 60.92	1.28 1.22 1.16 1.11 1.06 1.02	3279 3366 3453 3539 3625 3712	3157 3281 3402 3521 3638 3753	8.23 8.13 8.04 7.96 7.88 7.81	8.08 8.03 7.98 7.94 7.89 7.85
* Spa	cing of ri	vet lines o	f web grea	ter than 3	o × thickr	ess of	plate.			

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

т	Properti of op Chord Se		4	B	d d			our Angle and aree Plate		
	Pla	tes.	Ang	gles.	Gross Area.	Eccen-		ents of rtia.		of Gyra
Section Number.	Web.	Cover.	Top.	Bottom.		tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
		A	e	I_A	IB	rA	rB			
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches*.	Inches ⁴ .	Inches.	Inche
*1640	20X 7	23x1/2	4×4× 7	6x4x3	49.50	1.06	3384	3265	8.27	8.12
1641	" 1	"	- 66	66	52.00	1.01	3470	3389	8.17	8.07
1642	" 16 " 15 8	66	"	66	54.50	0.96	3556	3510	8.08	8.02
1643	" 16 " 11 " 3 " 3	"	"	"	57.00	0.92	3641	3629	7.99	7.98
1644	" 1 6	"	"	"	59.50	0.88	3726	3716	7.91	7.93
1645	***		l	24" Section	62.00 n. A Series.	0.85	3812	3861	7.84	7.89
		1 .	1	1	1 ,	1 .		1	1	
*1646	20x 1	24X 16	3½x3½x3	5x3 2x3	44.56	2.87	2651	3104	7.71	8.35
1647	" 9 16	"	"	"	47.06	2.71	2754	3262	7.65	8.33
1648	" 🗓	"	- "	"	49.56	2.57	2855	3418	7.59	8.31
1649 1650	" 46	66	"	"	52.06 54.56	2.45	2954 3051	3572 3724	7.54 7.48	8.29
*1651	20x1/2	247	3½x3½x3	cv2lv.I	45.52	2.61	2784	3207	7.82	8.39
1652	" 9	24X 9 16	3243248	5x3½x16	48.02	2.48	2883	3365	7.75	8.37
1653	" 9 16 " 5	66	66	66	50.52	2.36	2980	3521	7.68	8.34
1654	" រំរុ	66	66	66	53.02	2.25	3077	3675	7.62	8.32
1655	" 11 16 " 3	66	46	66	55.52	2.14	3173	3827	7.56	8.30
*1656	20x1	24×9/16	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	5x3\frac{1}{2}x\frac{1}{2}	46.46	2.38	2907	3310	7.91	8.44
1657	" 9 16 " <u>\$</u>				48.96	2.26	3003	3468	7.83	8.41
1658	" <u>\$</u>	"	"	66	51.46	2.15	3098	3624	7.76	8.39
1659	" 11 " 18	"	"	"	53.96	2.05	3193	3778	7.69	8.37
1660	" 4	66		66	56.46	1.96	3286	3930	7.63	8.34
*1661	20x1	24x 9	3½x3½x3	5x3 ¹ / ₂ x ⁹ / ₁₆	47.40	2.16	3024	3413	7.98	8.49
1662	" <u>9</u> 16 " <u>5</u>			"	49.90	2.05	3118	3571	7.90	8.46
1663	" 11	"	"	"	52.40	1.95	3211	3727	7.83	8.44
1664 1665	" 11 " 16	"	"	"	54.90 57.40	1.86	3305	3881	7.76	8.41
*1666	20x1	24× 9	3½x3½x¾	5x3\frac{1}{2}x\frac{5}{8}	48.30	1.95	3132	3513	8.05	8.53
1667	" 9 16	**************************************	7247248	343348	50.80	1.86	3224	3671	7.97	8.50
1668	46 5 6	"	"	"	53.30	1.77	3315	3827	7.89	8.47
1669	" 11	66	66	66	55.80	1.69	3407	3981	7.81	8.45
1670	" 3	66	66	"	58.30	1.62	3497	4133	7.74	8.42

TABLE 84.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

				В						7 114		
Properties of Top Chord Sections.			of e				Four Angles and Three Plates.					
	Pla	tes.	Ang	gles.	- Gross Area.	Eccen-	Moments of Inertia.		Radii of Gyra- tion.			
Section Number.	Web.	Cover.	Top.	Bottom.	Gross zirca.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.		
					A	e	IA	IB	r _A	r _B		
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inches		
*1671 1672 1673 1674 1675	20X ¹ / ₂ " 9 16 " 5 8 " 11 16 " 3 4	24×9/16	3½x3½x3 66 66	5x3½x116	49.20 51.70 54.20 56.70 59.20	1.76 1.67 1.60 1.53 1.46	3234 3325 3414 3504 3593	3613 3771 3927 4081 4233	8.11 8.02 7.94 7.86 7.79	8.57 8.54 8.51 8.48 8.45		
*1676 1677 1678 1679 1680	20X ½ 9 1.6 % 5.8 % 111 1.6 % 3.4	24x 9 16 16 16 16 16 16 16 16 16 16 16 16 16	3½x3½x3 	5x3½x¾	50.08 52.58 55.08 57.58 60.08	1.57 1.50 1.43 1.37 1.31	3329 3418 3506 3595 3683	3714 3872 4028 4182 4334	8.15 8.06 7.98 7.90 7.83	8.61 8.58 8.55 8.52 8.49		
			20" ×	24" Section	a. B Series.							
*1681 1682 1683 1684 1685 1686	20X 76 (12 19 16 (15 16 16 16 16 16 16 16 16 16 16 16 16 16	24x 9/16	4×4×7 	6x4x ⁷ / ₁₆	45.98 48.48 50.98 53.48 55.98 58.48	2.65 2.51 2.39 2.28 2.17 2.08	2910 3009 3108 3205 3300 3396	3134 3276 3415 3552 3687 3820	7.95 7.88 7.81 7.74 7.68 7.62	8.26 8.22 8.18 8.15 8.11 8.08		
*1687 1688 1689 1690 1691 1692	20X 7 16 12 16 16 16 16 16 16	24 ^X 16	4×4× 7 6	6x4x ¹ / ₂	47.12 49.62 52.12 54.62 57.12 59.62	2.37 2.25 2.14 2.05 1.96 1.87	3056 3152 3248 3343 3435 3528	3257 3399 3538 3675 3810 3943	8.05 7.97 7.90 7.82 7.76 7.69	8.31 8.28 8.24 8.20 8.17 8.13		
*1693 1694 1695 1696 1697 1698	20X 7 16 16 16 16 16 16 16 16 16 16 16 16 16	24x 9 16	4X4X 78	6x4x ⁹ / ₁₆	48.24 50.74 53.24 55.74 58.24 60.74	2.11 2.01 1.91 1.83 1.75 1.68	3194 3288 3381 3473 3564 3655	3375 3517 3656 3793 3928 4061	8.14 8.05 7.97 7.89 7.82 7.76	8.37 8.33 8.29 8.25 8.21 8.17		
*1699 1700 1701 1702 1703 1704	20X 7/16 " 1/2 " 9/16 " 5/5 " 1/16 " 3/4	24 ^x / ₁₆	4×4×76	6x4x ⁵ / ₈	49·34 51.84 54·34 56.84 59·34 61.84	1.87 1.78 1.70 1.62 1.55 1.49	3323 3414 3506 3595 3685 3775	3495 3637 3776 3913 4048 4181	8.21 8.12 8.03 7.95 7.88 7.81	8.41 8.38 8.34 8.30 8.26 8.22		

TABLE 84.—Continued.

Properties of Top Chord Sections.

	Proper of Top Chord S		A	B A A			Four Angles and Three Plates.				
	Pla	ites.	Ang	les.		Faces	Moments of Inertia.		Radii of Gyra		
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B	
					A	e	I_A	IB	$r_{\mathbf{A}}$	$r_{\rm B}$	
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inche	
*1705 1706	20x 7 16	24X 9 16	4×4×7	6x4x 11	50.42 52.92	1.64	344I 3530	3615 3757	8.26 8.17	8.47 8.43	
1707	" 16	66	"	66	55.42	1.50	3620	3896	8.08	8.39	
1708	*	- "	66	66	57.92	1.43	3708	4033	8.00	8.35	
1709	" 1	46	46	66	60.42	1.37	3796	4168	7.93	8.31	
1710	" 🛔	- "	66	"	62.92	1.32	3885	4301	7.86	8.27	
*1711	20x16	24x 16	4×4×7	6x4x3	51.50	1.43	3554	3733	8.31	8.51	
1712	" 1	"	"	**	54.00	1.36	3642	3875	8.21	8.47	
1713	" 9 16	"	'"	"	56.50	1.30	3730	4014	8.12	8.43	
1714	" \$	"	66	66	59.00	1.25	3817	4151	8.04	8.39	
1715	" 11 " 36	- 66		66	61.50	1.20	3904	4286	7.97	8.35	
1716	" 3	66	66	"	64.00	1.15	3992	4419	7.90	8.31	
			22" X	25" Section	. A Series.						
*1717	22X 9	25X 9	3½x3½x 7	5x3½x½	52.55	2.57	3839	4129	8.55	8.87	
1718	44 <u>5</u>	**		66	55.30	2.44	3967	4323	8.47	8.84	
1719	" 11 " 15	66	66	66	58.05	2.33	4093	4514	8.40	8.82	
1720	" 🖥	66	"	46	60.80	2.22	4219	4703	8.33	8.80	
*1721	22X16	25x 9	$3\frac{1}{2}x3\frac{1}{2}x\frac{7}{16}$	5x3 ¹ / ₂ x ⁹ / ₁₆	53.49	2.35	3983	4242	8.63	. 8.90	
1722	66 <u>5</u>	1	32-32-16	3-32-16	56.24	2.24	4108	4436	8.54	8.88	
1723	" 11	"	66	"	58.99	2.14	4232	4627	8.47	8.86	
1724	" 4	66	"	46	61.74	2.04	4355	4816	8.40	8.83	
*1725	22x 16	25x 9	3 2 x 3 2 x 7 6	5x3½x5	54-39	2.15	4116	4350	8.70	8.94	
1726	66 5				57.14	2.05	4238	4544	8.61	8.92	
1727	" 11	66	66	"	59.89	1.95	4361	4735	8.53	8.89	
1728	" 11	66	"	66	62.64	1.86	4483	4924	8.46	8.87	
*1729	22x 9	25x 9	$3\frac{1}{2}x3\frac{1}{2}x\frac{7}{16}$	5x3½x 11	55.29	1.96	4242	4460	8.76	8.98	
1730	** 9	66	34-34-16	5-54-10	58.04	1.86	4363	4654	8.67	8.96	
1731	" 📆	66	**	"	60.79	1.78	4483	4845	8.59	8.93	
	€€ <u>3</u> °	66	66	66	63.54	1.70	4603	5034	8.51	8.90	

TABLE 84.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

т	Properti of op Chord S		A		Four Angles and Three Plates.					
	Pla	tes.	Ang				Moments of Inertia.		Radii of Gyra	
Section Number.	Web.	Web. Cover.	Top.	Bottem.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axi B-1
TVUMDCI.	WCD.	COVER	Top.	Bottem.	A	e	IA	IB	rA	тв
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inch
*1733 1734 1735 1736	22X 9 16 5 8 6 11 16 6 3 4	25×9/16	3½x3½x76	5x3 ¹ / ₄ x ³ / ₄	56.17 58.92 61.67 64.42	1.77 1.69 1.62 1.55	4361 4480 4598 4716	4570 4764 4955 5144	8.81 8.72 8.63 8.55	9.0 8.9 8.9
			22" X	25" Section	. B Series.					
*1737 *1738 1739 1740 1741	22X ¹ / ₂ 66 9 16 66 5 8 66 1 1 1 6 66 3 4	25× 9/16	4×4×7/6	6x4x½	52.18 54.93 57.68 60.43 63.18	2.47 2.34 2.23 2.13 2.04	3974 4102 4227 4351 4473	3939 4113 4284 4453 4620	8.73 8.64 8.56 8.49 8.41	8.6 8.6 8.5 8.5
*1742 *1743 1744 1745 1746	22X\frac{1}{2} \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \(\text{2} \) \(\text{3} \) \(\text{4} \)	25x 9 6 66 66 66 66	4×4×76	6x4x ⁹ / ₁₆	53.30 56.05 58.80 61.55 64.30	2.21 2.10 2.00 1.91 1.83	4141 4265 4388 4509 4630	4070 4244 4415 4584 4751	8.81 8.72 8.64 8.56 8.49	8.7 8.7 8.6 8.6 8.6
*1747 *1748 1749 1750	22X ¹ / ₂ 9 16 58 11 16 34	25x 9 66 66 66 66 66 66 66 66 66 66 66 66 6	4×4×7 66 66 66 66 66	6x4x ⁵ / ₄	54.40 57.15 59.90 62.65 65.40	1.96 1.87 1.78 1.70 1.63	4299 4419 4539 4659 4778	4200 4374 4545 4714 4881	8.89 8.79 8.70 8.62 8.54	8.7 8.7 8.6 8.6
1752 1753 1754 1755 1756	22X\frac{1}{2} \(\text{''} \frac{9}{16} \) \(\text{''} \frac{1}{16} \) \(\text{''} \frac{1}{3} \) \(\text{''} \frac{1}{3} \)	25× 9 66 66 66 66 66 66 66 66 66 66 66 66 6	4×4× 7	6x4x ¹¹ / ₄	55.48 58.23 60.98 63.73 66.48	1.74 1.66 1.58 1.51 1.45	4441 4560 4678 4796 4913	4331 4505 4676 4845 5012	8.95 8.85 8.76 8.68 8.60	8.8 8.7 8.7 8.6
1757 1758 1759 1760 1761	22X 1/2 9 1/6 (1) 1/6 (1) 1/6 (1) 1/6 (1)	25x 9 16	4×4× 7 6	6x4x3	56.56 59.31 62.06 64.81 67.56	I.52 I.45 I.39 I.33 I.27	4580 4697 4814 4930 5046	4461 4635 4806 4975 5142	9.00 8.90 8.81 8.72 8.64	8.8 8.8 8.7 8.7

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

r	Properti of Op Chord S		4					our Angle and aree Plate		
			1	B			1 24			
	Pla	tes.	Ang	des.	Gross Area.	Eccen-		ents of rtia.		of Gyra- on.
Section Number.	Web.	Cover.	Top.	Bottom.	Gloss Alea.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inches
			22" X	26" Section	a. A Series.					
*1762 1763 1764	22X 9 16 6 5 6 6 1 16 6 6 1 16 6 6 1 1 16 6 6 1 1 16 6 1 1 16 6 1	26x5 4 4 4	3½x3½x ⁷ 16	5x3½x½	54·74 57·49 60.24	2.93 2.80 2.67	4006 4138 4270	4681 4901 5116	8.56 8.48 8.41	9.25 9.23 9.21
*1765 *1766 1767 1768	22X 16	26x \frac{5}{8} \displays	3½x3½x7 	5x3½x16	62.99 55.68 58.43 61.18	2.54 2.71 2.59 2.47	4402 4160 4289 4418	5326 4804 5024 5239	8.36 8.64 8.57 8.50	9.19 9.29 9.27 9.25
1769 *1770	$\frac{1}{4}$ $22 \times \frac{9}{16}$	26x5	3 ¹ / ₂ x3 ¹ / ₂ x ⁷ / ₁₆	5x3 ¹ / ₂ x ⁵ / ₈	63.93 56.58	2.36	4546	5449 4923	8.43 8.72	9.23
1771 1772 1773	" <u>5</u> " <u>11</u> 16 " <u>3</u>	66	66	66	59.33 62.08 64.83	2.40 2.29 2.19	4427 4554 4679	5143 5358 5568	8.64 8.57 8.50	9.31 9.29 9.27
*1774 1775 1776	$22x\frac{9}{16} \\ \frac{5}{8} \\ \frac{11}{16}$	26x5	3½x3½x½	5x32x116	57.48 60.23 62.98	2.32 2.21 2.11	4436 4562 4686	5042 5262 5477	8.78 8.70 8.63	9·37 9·35 9·33
1777	" 3	66	66	66	65.73	2.02	4809	5687	8.56	9.31
*1778 1779 1780 1781	22X 16	26x \frac{5}{8}	3½x3½x7 "	5x3½x¾	58.36 61.11 63.86 66.61	2.14 2.04 1.95 1.87	4560 4684 4806	5163 5383 5598 5808	8.84 8.76 8.68 8.60	9.41 9.39 9.36
1/01	4	1	22" >	26" Section		1.07	4927	3000	1 0.00	9.34
*1782	22X1/2	26x5			1	2.83	4148	4475	8 72	9.07
*1783 1784 1785 1786	" 9 " 16 " 5 " 11 " 16 " 3	66 66 66 46	4×4×16	6x4x½	54.37 57.12 59.87 62.62 65.37	2.69 2.57 2.46 2.36	4280 4410 4538 4664	4475 4672 4866 5058 5247	8.73 8.65 8.57 8.51 8.45	9.04 9.01 8.99 8.96
*1787 *1788 1789 1790	22X½	26x \$	4×4×76	6x4x ⁹ / ₁₆	55.49 58.24 60.99 63.74	2.57 2.45 2.34 2.24	4325 4453 4580 4705	4619 4816 5010 5202	8.82 8.74 8.66 8.59	9.12 9.09 9.06 9.03
1791	" 3	"	66	66	66.49	2.15	4829	5391	8.52	9.00

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

				В						
Т	Properti of op Chord S		A	B	A de A de A de A de A de A de A de A de			our Angle and aree Plate		
	Pla	tes.	Ang	gles.		Eccen-	Mome Ine	ents of	Radii o	f Gyra
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B
					A	e	I _A	I _B	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches².	Inches.	Inches ⁴ .	Inches4.	Inches.	Inche
*1792 *1793 1794 1795 1796	22X \frac{1}{2} \(\text{9} \) \(\text{16} \) \(\text{11} \) \(\text{16} \) \(\text{3} \) \(\text{4} \)	26x \frac{5}{8}	4×4×7/6	6x4x ⁵ / ₈	56.59 59.34 62.09 64.84 67.59	2.33 2.23 2.13 2.04 1.95	4490 4614 4738 4861 4984	4761 4958 5152 5344 5533	8.91 8.82 8.74 8.66 8 59	9.1 9.1 9.1 9.0
*1797 *1798 1799 1800 1801	22X ½	26x 5 6 66 66 66 66 66 66 66 66 66 66 66 66	4×4×7 	6x4x ¹¹ / ₄	57.67 60.42 63.17 65.92 68.67	2.11 2.02 1.93 1.85 1.77	4642 4764 4886 5007 5128	4904 5101 5295 5487 5676	8.97 8.88 8.80 8.72 8.64	9.2 9.1 9.1 9.1 9.0
*1802 *1803 1804 1805 1806	22X \frac{1}{2} \(\begin{pmatrix} \frac{9}{16} \\ \frac{5}{5} \\ \frac{1}{16} \\ \frac{1}{3} \\ \frac{1}{4} \end{pmatrix}	26x ⁵ / ₈	4×4×16	6x4x ³ / ₄	58.75 61.50 64.25 67.00 69.75	1.90 1.81 1.73 1.66 1.60	4790 4911 5031 5150 5268	5046 5243 5437 5629 5818	9.03 8.94 8.85 8.77 8.69	9.2 9.2 9.2 9.1 9.1
			2	2" × 28" Se	ction.					
*1807 1808 1809 1810	22X 9 16	28x ⁵ / ₆₆	4×4×3 	6x4x½ "" ""	57.47 60.22 62.97 65.72	2.77 2.65 2.53 2.42	4326 4457 4586 4714	5601 5844 6083 6320	8.67 8.60 8.53 8.47	9.8 9.8 9.8 9.8
*1811 1812 1813 1814	$\begin{array}{c} 22 \overline{16} \\ 66 \\ \underline{5} \\ 66 \\ \underline{11} \\ 66 \\ \underline{3} \\ \underline{4} \end{array}$	28x \frac{5}{8}	4x4x ³ / ₆	6x4x 9 16 ""	58.59 61.34 64.09 66.84	2.53 2.42 2.31 2.22	4502 4630 4756 4881	5771 6014 6253 6490	8.76 8.68 8.61 8.55	9.9 9.9 9.8 9.8
*1815 1816 1817 1818	$22 \frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$ $\frac{3}{4}$	28x \frac{5}{8}	4×4×3	6x4x ⁵ / ₈	59.69 62.44 65.19 67.94	2.30 2.20 2.10 2.02	4666 4791 4916 5038	5939 6182 6421 6658	8.84 8.76 8.68 8.61	9.9 9.9 9.9
*1819 1820 1821 1822	22X 9 16 5 8 11 16 3 4	28x ⁵ / ₈	4×4×3/8	6x4x ¹¹ / ₁₆	60.77 63.52 66.27 69.02	2.09 2.00 1.92 1.84	4818 4940 5062 5182	6108 6351 6590 6827	8.90 8.82 8.74 8.67	10.0 10.0 9.9

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

т	Propertie of Op Chord Se	-	4	B				our Angl and aree Plat		
	Pla	tes.	Ang	B.		n		ents of		f Gyra-
Section Number.	Web.	Cover.	Тор	Bottom.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
					A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches4.	Inches.	Inches
*1823 1824 1825 1826	22X 16 5 11 16 4 3	28x 5 .	4×4×3 66 66	6x4x3 	61.85 64.60 67.35 70.10	1.89 1.81 1.73 1.67	4966 5086 5206 5325	6275 6518 6757 6994	8.96 8.87 8.79 8.72	10.07 10.04 10.01 9.99
			24"	X 27" Sect	 	8.	1 55 5			
*1827 1828 1829	24X 8 11 16 16 16	27x 8	3½x3½x7 "	5x3½x½	60.62 63.62 66.62	3.00 2.86 2.73	5138 5308 5476	5655 5919 6174	9.21 9.13 9.07	9.66 9.64 9.52
*1830 1831 1832	24x ⁵ / ₈ " 11 " 16 " 3	27x5	3½x3½x7	5x3 ¹ / ₂ x ⁹ / ₁₆	61.56 64.56 67.56	2.79 2.66 2.54	5318 5484 5648	5789 6051 6308	9.29 9.22 9.15	9.70 9.68 9.66
*1833 1834 1835	24X 5 11 16 4 3	27 t 5	3½x3½x7 "	5x3½x8	62.46 65.46 68.46	2.60 2.48 2.37	5483 5647 5809	5918 6179 6437	9.37 9.29 9.21	9.74 9.72 9.70
*1836 1837 •1838	24x \frac{5}{8} \(\cdot\) \frac{11}{16} \(\cdot\) \frac{3}{4}	27x 5	3½x3½x 7	5x3½x 11	63.36 66.36 69.36	2.4I 2.30 2.20	5644 5804 5964	6048 6309 6567	9.44 9.36 9.28	9.77 9.75 9.73
*1839 1840 1841	24x 5 11 16 16 16 16	27x 5	3½x3½x7 "	5x3½x¾	64.24 67.24 70.24	2.23 2.13 2.04	5792 5950 6107	6179 6440 6698	9.49 9.40 9.32	9.81 9.79 9.77
			24"	X 27" Sect	ion. B Serie	8.				
*1842 *1843 1844 1845	24× 16 " 58 " 11 " 16 " 34	27x 1 66 66	4×4× 7 " "	6x4x½ "	60.00 63.00 66.00 69.00	2.92 2.78 2.65 2.54	5296 5464 5631 5797	5372 5610 5844 6075	9.39 9.31 9.24 9.17	9.46 9.43 9.41 9.39
*1846 *1847 1848 1849	846 24x 8 27x 4 4 847 " 1 " 4 848 " 1 " "		4×4× 7 " "	6x4x 9 " "	61.12 64.12 67.12 70.12	2.66 2.54 2.43 2.32	5506 5670 5832 5994	5529 5767 6001 6232	9.49 9.40 9.32 9.25	9.51 9.49 9.46 9.43
*1850 *1851 1852 1853	24x 16 4 5 4 11 4 16 4 3 4	27 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4×4×7 	6x4x5 "	62.22 65.22 68.22 71.22	2.43 2.32 2.22 2.12	5702 5863 6022 6181	5684 5922 6156 6387	9.57 9.48 9.40 9.32	9.56 9.53 9.50 9.47
	acing of ri	vet lines o	of web grea	ter than 3						

TABLE 84.—Continued.

Properties of Top Chord Sections.

т	Properti of Op Chord S		d	B	A degrad			our Angle and aree Plate		
a.			-L-							
	Pla	ites.	Ang	gles.	- Gross Area.	Eccen-	Mome Ine	nts of rtia.	Radii o	f Gyr
Section Number.	Web.	Cover.	Top.	Bottom.	Gross Alea.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axi B-1
					. A	e	I_A	I_B	rA	rB
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inch
*1854 *1855 1856 1857	24X 9 16	27x ⁵ / ₈ "	4×4× ⁷ / ₆	6x4x ¹¹ 6 "	63.30 66.30 69.30 72.30	2.2I 2.1I 2.02 1.93	5883 6040 6197 6353	5840 6078 6312 6543	9.64 9.55 9.46 9.38	9.6 9.5 9.5 9.5
*1858 *1859 1860 1861	24X 9 16 11 16 11 16	27x ⁵ / ₈	4×4× 7	6x4x ³ 4 "	64.38 67.38 70.38 73.38	1.99 1.90 1.82 1.75	6061 6217 6371 6524	5994 6232 6466 6697	9.71 9.61 9.52 9.43	9.0 9.0 9.
	-		24" ×	28" Section	n. A Series.					
*1862 1863 1864	24X ⁵ / ₈ 4 11 16 4 3	28x 5 66	3½x3½x ⁷ 16	5x3 ¹ / ₂ x ¹ / ₂	61.24 64.24 67.24	3.10 2.96 2.82	5190 5361 5531	6232 6521 6808	9.21 9.14 9.07	10.0
*1865 1866 1867	24×5 11 16	28x ⁵ / ₈	3½x3½x7 66	5x3 ¹ / ₂ x ⁹ / ₁₆	62.18 65.18 68.18	2.89 2.76 2.63	5372 5539 5707	6377 6666 6953	9.29 9.22 9.15	IO.:
*1868 1869 1870	24X \(\frac{5}{8} \) (1\) \(\frac{11}{16} \)	28x \frac{5}{8}	3½x3½x76	5x3½x5	63.08 66.08 69.08	2.70 2.57 2.46	5540 5706 5869	6518 6807 7094	9.37 9.29 9.22	10. 10. 10.
*1871 1872 1873	24X ⁵ / ₈ 31116 34	28x ⁵ / ₆₆	3½x3½x76	5x3½x 11	63.98 66.98 69.98	2.50 2.39 2.29	5705 5866 6027	6659 6948 7235	9.44 9.36 9.28	10.
*1874 1875 1876	24X ⁵ / ₈ 4 11 16 4 24X ⁵ / ₈	28x \frac{5}{8}	3½x3½x76	5x3½x¾	64.86 67.86 70.86	2.32 2.22 2.13	5855 6014 6172	6791 7080 7367	9.50 9.42 9.34	10.2
			24" X	28" Section	a. B Series.					
*1877 *1878 1879 1880	24X ⁹ / ₁₆ (11) (24X ⁹ / ₁₆ (34)	28x ⁵ / ₈	4×4×7 66	6x4x ¹ / ₄	60.62 63.62 66.62 69.62	3.01 2.87 2.74 2.62	5352 5522 5690 5855	5930 6195 6457 6715	9.39 9.31 9.24 9.17	9.8 9.8 9.8

TABLE 84.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

т	Propertit of op Chord Se		4	B				our Angl and aree Plate		
	Pla	tes.	Ang	gles.		-		ents of		of Gyra
Section				B	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
Number.	Web.	Cover.	Top.	Bottom.	A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inches
*1881 *1882 1883 1884	24X 9 16 5 11 16 46 26 46 26	28x 5 66	4×4×7/6	6x4x ⁹ / ₁₆	61.74 64.74 67.74 70.74	2.76 2.63 2.52 2.41	5563 5729 5892 6055	6100 6365 6627 6885	9.49 9.41 9.33 9.25	9.94 9.92 9.89 9.86
*1885 *1886 1887 1888	24×16 5 11 16 34	28x \frac{5}{8}	4×4×7 "	6x4x5 " "	62.84 65.84 68.84 71.84	2.53 2.41 2.30 2.21	5762 5925 6086 6244	6268 6533 6795 7053	9.58 9.49 9.40 9.32	9.99 9.96 9.93 9.91
*1889 *1890 1891 1892	24X 9 16 6 8 11 16 6 16 16 16 16 16 16 16 16 16 16 1	28x \frac{5}{8}	4×4×7 	6x4x 11	63.92 66.92 69.92 72.92	2.30 2.20 2.11 2.02	5947 6106 6263 6420	6437 6702 6964 7222	9.65 9.55 9.47 9.39	10.03 10.00 9.98 9.95
*1893 *1894 1895 1896	24X 9 35 36 37 37	28x \$	4×4× 7	6x4x3	65.00 68.00 71.00 74.00	2.09 2.00 1.91 1.83	6126 6283 6439 6594	6604 6869 7131 7389	9.71 9.61 9.52 9.44	10.08
,				24" × 30" S	Section.					
*1897 1898 1899	24x 5 11 16 16 16	30x11 "	4x4x ³ / ₆	6x4x½	65.85 68.85 71.85	3.22 3.08 2.95	5747 5921 6093	7465 7785 8103	9.35 9.28 9.21	10.63
*1900 1901 1902	24X 5 11 16 4 3	30x11	4x4x8	6x4x 9	66.97 69.97 72.97	2.99 2.86 2.74	5966 6136 6304	7663 7983 8301	9.44 9.36 9.29	10.70 10.68 10.66
*1903 1904 1905	24X \(\frac{5}{8} \) \(\frac{11}{16} \) \(\frac{3}{4} \)	30x116	4x4x}	6x4x5 "	68.07 71.07 74.07	2.76 2.65 2.54	6173 6339 6504	7859 8179 8497	9.52 9.44 9.37	10.74 10.72 10.71
*1906 1907 1908	24X 8 11 16 4 3	30x11	4x4x3	6x4x116	69.15 72.15 75.15	2.56 2.45 2.35	6363 6526 6687	8056 8376 8694	9.59 9.51 9.43	10.79
*1909 1911	24X \frac{5}{8} \\ \display \frac{11}{16} \\ \display \frac{3}{4} \end{array}	30x116	4x4x3	6x4x3	70.23 73.23 76.23	2.35 2.25 2.17	6552 6712 6871	8250 8570 8888	9.67 9.58 9.49	10.82

TABLE 85.
PROPERTIES OF TOP CHORD SECTIONS.

					D						
	P	roperties of		A	B			S	ix Angles	8	
	Top CI	nord Section	ons.	d V		- · · ·		Th	ree Plate	es.	
	Pla	tes.		Angles.		Gross	Eccen-	Mome Ine	ents of rtia.	Radii o	f Gyra
Section Num- ber.	Web.	Cover.	Top.	Bott	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axi B-E
Der.				Outside.	Inside.	A	e	I_A	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches2.	Inches.	Inches4.	Inches4.	Inches.	Inche
				16" × 20"	Section. A	A Series.					
2001	16x3	20x 7/16	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	3½x3½x3	35.63	1.04	1553	1480	6.60	6.4
2002	" 7 16 " ½	46	66	68	66 .	37.63	0.98	1597	1551	6.51	6.4
2003		611	66	66	66	39.63	0.93	1642	1621	6.44	6.3
2004	" 5 16	66	66	66	66	41.63	0.85	1730	1756	6.36	6.3
2005	" 11	611	66	66	66	43.63	0.81	1774	1821	6.24	6.3
2007	16 (15 (11 16 (13 4	411	66	46	"	47.63	0.78	1818	1887	6.18	6.2
2008	16x3/8	$20x\frac{7}{16}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	$3\frac{1}{2}x_{3}\frac{1}{2}x_{16}$	$3\frac{1}{2}x_{3}^{\frac{1}{2}}x_{16}^{\frac{7}{16}}$	37.19	0.72	1633	1547	6.63	6.4
2009	66 1 1 E	66	66	66	66	39.19	0.69	1677	1617	6.54	6.4
20I0 20II	66 9	66	66	66	66	41.19	0.63	1720	1754	6.46	6.4
2011	66 5	66	66	66	66	43.19	0.60	1807	1821	6.32	6.3
2013	" 11 16	66	66	66	66	47.19	0.57	1850	1886	6.26	6.3
2014	" 11 16 " 3	"	"	66	66	49.19	0.55	1894	1951	6.20	6.3
2015	16x3	20x 7	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{1}{2}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{1}{2}$	38.71	0.42	1729	1612	6.68	6.4
2016	" 7 16	"		- "	66	40.71	0.41	1772		6.60	6.4
2017	44 2 9	66	66	66	66	42.71	0.39	1815	1751	6.52	6.3
2018	" 16	66	66	66	66	44.71	0.38	1858	1819	6.44	-6.3
2019	" 11 16	66	66	66	66	46.71	0.36	1901	1885	6.38	6.3
2021	66 3 6 4	66	66	66	66	50.71	0.33	1987	2014	6.26	6.2
2022	16x3	20x 7	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{9}{16}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{9}{16}$	40.19	0.16	1803	1675	6.70	6.4
2023	" 7	66	6.6	66	66	42.19	0.16	1845	1745	6.61	6.4
2024	" ½ " 9	66	66	66	66	44.19	0.15	1888	1813	6.53	6.3
2025	16	"	66	. 66	66	46.19	0.14	1931	1880	6.46	6.3
2026	76	"	66		66	48.19	0.13	1973	1946	6.40	6.3
2027	" 11 16 3	66	46	"	66	50.19	0.12	2016	2010	6.34	6.3
2029	16x3	20x 7/16	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{5}{8}$	3½x3½x5	41.63	08	1870	1738	6.70	6.4
2030	" 7 16	"	66	66	66	43.63	08	1913	1807	6.62	6.4
2031	2	"	66	66	66	45.63	07	1956	1874	6.54	6.4
2032	" 9 16 " 5	66	66	66	66	47.63	07	1998	1941	6.47	6.3
2033	" 11 16	66	66	66	66	49.63	07 07	2041	2007	6.41	6.3
2034	" 3	44		66	"	51.63	06	2126	2070	6.35	6.3
2035	4		1	eb greater					2134	. 0.50	1 0.5

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

					В	=					
		roperties of nord Sectio	ns.	A d					x Angles and ree Plate	ь.	
	Pla	tes.		Angles.	B				ents of	Radii o	
						Gross	Eccen-	Ine	rtia.	tio	n.
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
DC.				Outside.	Inside.	A	е	IA	IB	r_A	rB
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches2.	Inches.	Inches4.	Inches4.	Inches.	Inches
			-	16"×20"	Section. B	Series.					
	-6.3	7	.1 .1 3			1				((((-
2036	16x 3	20x 16	3½X3½X8	5x3 ¹ / ₂ x ³ / ₈	3½x3½x¾	36.77	0.77	1640	1606	6.67	6.61
2037	" 7 16 " ½	66	66	44	66	38.77	0.73	1684	1677	6.59	6.55
2039	66 9	66	66	66	66	40.77	0.70	1727	1747	6.43	6.52
2040	66 9 16	66	66	66	66	42.77	0.64	1814	1882	6.36	6.48
2041	" 11	66	66	66	66	46.77	0.61	1858	1947	6.30	6.45
2042	" 116 " 3	66	66	66	66	48.77	0.58	1902	2013	6.24	6.42
2043	16x3	20x 7	3 ½ X 3 ½ X 8	5x3½x 7	$3\frac{1}{2}x3\frac{1}{2}x\frac{7}{16}$	38.51	0.43	1725	1695	6.69	6.63
2044	" 7	"	32328	3432416	32.32.16	40.51	0.42	1768	1765	6.60	6.60
2045	"	44	66	44	66	42.51	0.40	1810	1834	6.52	6.57
2046		66	66	66	66	44.51	0.38	1854	1902	6.45	6.54
2047	66 5	66	66	66	66	46.51	0.36	1897	1970	6.39	6.51
2048	" 11	66	66	66	66	48.51	0.34	1940	2034	6.32	6.48
2049	66 9 66 5 66 11 16 6	66	66	66	66	50.51	0.33	1982	2099	6.26	6.45
*2050	16x3	20x 7	3 ½ x 3 ½ x ¾	5x3½x½	3 ½ X 3 ½ X ½	40.21	0.12	1826	1781	6.74	6.65
2051	16 7	66	32.00	3-3,2-2	66	42.2I	0.12	1868	1852	6.65	6.62
2052	44 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	66	66	66	66	44.21	0.11	1911	1920	6.57	6.58
2053	66 9	66	66	66	66	46.21	0.11	1954	1988	6.50	6.55
2054	66 <u>5</u>	6.6	66	66	66	48.21	0.11	1996	2054	6.43	6.52
2055	16 6 5 6 11 6 16 6 3	66	66	66	"	50.21	0.10	2039	2119	6.37	6.49
2056			66	66	66	52.21	0.10	2082	2183	6.31	6.46
*2057	$16x_{8}^{3}$	20x 7	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	5x3 ¹ / ₄ x ⁹ / ₁₆	3 ½ X 3 ½ X 16	41.89	15	1903	1866	6.75	6.67
2058	" 7 16	6.6	66			43.89	14	1946	1936	6.66	6.64
2059	" 1	"	"	66	66	45.89	14	1988	2004	6.58	6.61
2060	" 9 16 " 5	65	66	66	66	47.89	13	203 I	2071	6.51	6.58
2061	26	66	66	66	"	49.89	13	2074	2137	6.45	6.55
2062 2063	" 11 16 " 3	66	66	66	"	51.89	I2 I2	2115	2201	6.39	6.52
	_	20 7	.11. 3	1 5	1 1 4	53.89		2158			
*2064 2065	16x 3	2QX 7	3½x3½x8	5x3½x5	3½x3½x8	43.5I	41	1978	1951	6.74	6.66
2066	" 16	66	66	46	66	45.5I	39	2021	2020	6.65	6.63
2067	دد <mark>9</mark>	66	66	66	46	47.51	-·37	2063	2087	6.58	6.60
2068	66 <u>9</u> 16 66 <u>5</u>	66	66	66	66	49.51	36	2107	2154	6.46	6.57
2069	" 11 16	66	66	46	66	53.51	34 33	2150	2283	6.40	6.53
2070	66 3	66	66	66	66	55.51	33	2235	2347	6.34	6.50
			lines of w	1	1				3 17/	1 77	

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

					В						
		roperties of hord Section	ons.	A	B		,		ix Angle and ree Plate		
	Pla	tes.		Angles.		Gross	Eccen-	Mome Ine	ents of rtia.	Radii o	of Gyra-
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
ber.				Outside.	Inside.	A	е	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches2.	Inches.	Inches4.	Inches4.	Inches.	Inches
				16"	× 22" Section	on.			'		
*2071 2072	16x ³ / ₈ " 7/16	22X ¹ / ₂	3½x3½x3 66	5x3½x8	3½x3½x3 "	39.02 41.02	1.21	1761	2163 2259	6.72	7·45 7·42
2073 2074 2075	" 1 2 9 16 4 5 8	66	66	66	66	43.02 45.02 47.02	1.10 1.05 1.00	1851 1897 1942	2354 2448 2540	6.56 6.49 6.43	7.40 7.37 7.35
2076	" 11 16 " 3	66	66	66	66	49.02 51.02	0.96	1988	2630	6.37	7.33 7.30
*2078 2079 2080 2081 2082 2083 2084	16x \frac{3}{8} \(\frac{7}{16} \(\frac{1}{2} \) \(\frac{1}{5} \) \(\frac{1}{16} \) \(\frac{1}{5} \) \(\frac{1}{16} \) \(\frac{3}{4} \)	22X ¹ / ₂	3½x3½x3 	5 x 3 ½ x 7 6 cc cc cc cc cc cc	3½x3½x76	40.76 42.76 44.76 46.76 48.76 50.76 52.76	0.86 0.82 0.78 0.75 0.72 0.69 0.67	1873 1917 1960 2005 2049 2093 2136	2276 2372 2467 2560 2652 2741 2828	6.78 6.70 6.62 6.55 6.48 6.42 6.36	7.47 7.45 7.43 7.40 7.38 7.35 7.32
*2085 2086 2087 2088 2089 2090 2091	16x 3/8 (16 16 16 16 16 16 16 16 16 16 16 16 16 1	22X ¹ / ₂	3½x3½x3 	5x3½x½	3½x3½x½	42.46 44.46 46.46 48.46 50.46 52.46 54.46	0.56 0.53 0.51 0.49 0.47 0.45 0.43	1970 2013 2056 2099 2142 2186 2229	2388 2483 2577 2670 2761 2850 2937	6.81 6.73 6.65 6.59 6.52 6.45 6.40	7.50 7.47 7.45 7.42 7.40 7.37 7.35
*2092 2093 2094 2095 2096 2097 2098	16x \frac{3}{8} \(\frac{7}{16} \(\frac{1}{2} \(\frac{9}{16} \(\frac{5}{8} \(\frac{11}{16} \(\frac{3}{4} \)	22X ¹ / ₂	3½x3½x¾	5x3½x ⁹ / ₁₆	3½x3½x3½x6	44.14 46.14 48.14 50.14 52.14 54.14 56.14	0.27 0.26 0.25 0.24 0.23 0.22	2060 2103 2145 2188 2231 2274 2316	2498 2593 2687 2779 2869 2957 3043	6.83 6.75 6.68 6.61 6.54 6.48 6.42	7.52 7.50 7.47 7.44 7.42 7.39 7.36
*2099 2100 2101 2102 2103 2104	16x ³ / ₆ ⁷ / ₁₆ ¹ / ₂ ⁹ / ₁₆ ¹ / ₁₆	22X ¹ / ₂	3½x3½x¾	5x3½x5 	3½x3½x8	45.76 47.76 49.76 51.76 53.76	0.02 0.02 0.02 0.02 0.02 0.02	2139 2182 2224 2267 2310	2605 2699 2792 2883 2973	6.84 6.76 6.69 6.62 6.56	7.55 7.52 7.49 7.46 7.44
2104	" 3 4	66	66	**	66	55.76	0.02	2353 2395	3061 3147	6.50	7.41 7.38
	Spacing	of rivet	lines of w	eb greater	than 30 >		·		3*4/	0.44	7.30

TABLE 85.—Continued.

Properties of Top Chord Sections.

					В							
		roperties of nord Sectio	na.	Angles.				Six Angles and Three Plates.				
	Pla	tes.		Angles.	В	Gross	Eccen-	Mome	ents of		of Gyra	
Section Num-	Web.	Cover.	Top.	Boti	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B	
ber.		COVCI	Lop.	Outside.	Inside.	A	e	IA	IB	rA	r _B	
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inche	
2106 2107 2108 2109 2110 2111	16x3/8 7 16 16 16 16 16 16 16 16 16 16 16 16 16	22x½	3½x3½x3 	5x3½x16	3½x3½x½ 	47.38 49.38 51.38 53.38 55.38 57.38	21 20 19 18 18 17	2212 2255 2297 2340 2383 2426	2712 2806 2899 2989 3078 3165	6.83 6.76 6.69 6.62 6.56 6.50	7.56 7.54 7.51 7.48 7.45 7.45	
2112	"	"	66	66	66	59.38	16	2468	3251	6.45	7.40	
2113 2114 2115 2116 2117 2118 2119	16x3 6x3 7 16 6x3 16 6x3 16 6x3 16	22X½ 66 68 68 66 68	3½x3½x3 	5x3½x¾	3½x3½x¾ 	48.96 50.96 52.96 54.96 56.96 58.96 60.96 A Series.	41 40 38 37 35 34 33	2275 2318 2360 2404 2447 2492 2532	2817 2910 3002 3092 3181 3268 3353	6.83 6.74 6.67 6.61 6.55 6.50 6.44	7.59 7.50 7.50 7.50 7.47 7.44 7.41	
*2120 *2121 2122 2123 2124 2125 2126	18x3/8 7 16 16 16 16 16 16 16 16 16 16 16 16 16	22x1/2	3½x3½x¾	3½x3½x¾	3½x3½x¾	39.38 41.63 43.88 46.13 48.38 50.63 52.88	1.58 1.49 1.41 1.34 1.28 1.23 1.17	2177 2243 2309 2374 2439 2503 2566	2086 2196 2304 2410 2514 2616 2716	7.43 7.34 7.25 7.17 7.10 7.03 6.96	7.28 7.26 7.24 7.23 7.21 7.19 7.16	
*2127 *2128 2129 2130 2131 2132 2133	18x3 16 16 16 16 16 16 16 16 16 16	22x\frac{1}{2}	3½x3½x¾	3½x3½x½ 	3½x3½x76	40.94 43.19 45.44 47.69 49.94 52.19 54.44	1.22 1.16 1.10 1.05 1.00 0.96 0.92	2310 2374 2437 2500 2564 2627 2689	2176 2285 2393 2500 2604 2703 2802	7.51 7.41 7.32 7.24 7.17 7.10 7.03	7.29 7.28 7.26 7.24 7.22 7.20 7.18	
*2134 *2135 2136 2137 2138 2139 2140	18x 3 7 16 16 15 5 6 11 16 16 14 16	22x ¹ / ₂	3½x3½x¾	3½x3½x½	3½x3½x½	42.46 44.71 46.96 49.21 51.46 53.71 55.96	0.90 0.85 0.81 0.77 0.74 0.71 0.68	2428 2491 2553 2616 2678 2740 2801	2259 2368 2475 2581 2683 2784 2883	7.56 7.46 7.37 7.29 7.21 7.14 7.08	7.20 7.20 7.20 7.20 7.20 7.20 7.10	

TABLE 85.—Continued.
PROPERTIES OF TOP CHORD SECTIONS.

					В						
		roperties of hord Section	ons.	A d			1	-	ix Angles and ree Plate		
	Pla	tes.		Angles.	В	Gross	Eccen-		ents of	Radii o	f Gyra-
Section Num-	Web.	Cover.	Top.	Boti	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
ber.	1,001	001011		Outside.	Inside.	A	е	IA	I_B	$\mathbf{r}_{\mathbf{A}}$	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inches.
*2141	18x3	22X1/2	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	3½x3½x½	$3\frac{1}{2}$ X $3\frac{1}{2}$ X $\frac{9}{16}$	43.94	0.60	2538	2345	7.60	7.30
*2142	" 7	66	"	66	66	46.19	0.57	2600	2454	7.51	7.29
2143	" 1/2	"	46	66	66	48.44	0.55	2660	2559	7.42	7.27
2144	" 9 16 " 5	66	66	1 "	66	50.69	0.52	2722	2665	7.34	7.25
2145	" §	66	"	- 66	66	52.94	0.50	2785	2765	7.26	7.23
2146	" 11 16 " 34	66	"	66	66	55.19	0.48	2845	2866	7.18	7.21
2147	1	1	.1 .1 3	-1 -1 5		57-44	0.46	-	_		
*2148	18x3/8	22X½	3½x3½x¾	3½x3½x5	3½x3½x5	45.38	0.34	2636	2426	7.62	7.31
*2149	" 16 " 12	66	66	66	. 66	47.63	0.32	2697	2535	7.53	7.29
2150		66	66	66	66	49.88	0.31	2757	2640	7.44	7.27
2151	16 66 5 8	66	66	66	66	52.13	0.30	2818	2744	7.35	7.25
2152	" 11	66	66	66	66	54.38	0.29	2879	2846	7.27	7.23
2153	" 11 16 " 3	66	"	66	66	56.63	0.37	3001	2947 3044	7.20	7.19
*2155	18x3	$22x^{\frac{1}{2}}$	3½x3½x3	$3\frac{1}{2}x3\frac{1}{2}x\frac{11}{16}$	3½x3½x½	46.82	0.12	2722	2506	7.63	7.32
*2156	" 7 16	"	32-32-8	32-32-16	32-32-16	49.07	0.11	2783	2613	7.53	7.30
2157	"	44	66	66	66	51.32	0.11	2843	2719	7.44	7.28
2158	66 9	66	"	66	- 66	53.57	0.10	2904	2824	7.36	7.26
2159	" 9 16 " 5	66	66	66	66	55.82	0.10	2965	2924	7.29	7.24
2160	" 11	66	66	66	66	58.07	0.09	3025	3024	7.22	7.22
2161	" 11 16 " 3	66	"	"	11	60.32	0.09	3086	3122	7.15	7.20
*2162	18x3/8	$22x^{\frac{1}{2}}$	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{8}$	3 1 x 3 1 x 3	$3\frac{1}{2}x3\frac{1}{2}x\frac{3}{4}$	48.22	11	2802	2585	7.62	7.32
*2163	16	66	66	"	66	50.47	11	2863	2693	7.53	7.30
2164	66 1/2	66	66	66	66	52.72	10	2923	2797	7.44	7.28
2165	" 9 16 " 5	66	66	66	66	54.97	10	2984	2902	7.36	7.26
2166		66	66	66	66	57.22	10	3045	3001	7.29	7.24
2167	" 11 " 16	66	66	66	66	59.47	09	3105	3101	7.22	7.22
2168	66 3 4		• •			61.72	09	3166	3198	7.16	7.20
				18" × 22'	Section. 1	B Series.		1			
*2169	18x3 .	$22x^{\frac{1}{2}}$	$3\frac{1}{2}x_{3}\frac{1}{2}x_{8}^{3}$	5x3 ¹ / ₂ x ³ / ₈	3½x3½x3	40.52	1.29	2297	2241	7.53	7-44
*2170	" 7	"	l .	1		42.77	1.22	2361	2351	7.43	7.42
2171	` 1/2	66	"	66	66	45.02	1.16	2426	2459	7.34	7-39
2172	" <u>9</u> " <u>16</u>	"	66	66	66	47.27	1.10	2489	2566	7.26	7.37
2173	8	66	46	66	66	49.52	1.05	2552	2669	7.18	7-34
2174	" 116 " 36	66	"	66	66	51.77	1.01	2615	2772	7.11	7.32
2175	4					54.02	0.97	2678	2872	7.04	7.29
*	Spacing	of rivet	lines of w	eb greater	than 30 >	< thick:	ness of	plate.			

TABLE 85.—Continued.

Properties of Top Chord Sections.

		roperties of ord Sectio	ons.	A					ix Angles and ree Plate		
	Pla	tes.		Angles.		Gross	Eccen-	Mome		Radii o	f Gyra-
Num ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
				Outside.	Inside.	A	е	I_A	IB	rA	rB
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches2.	Inches.	Inches4.	Inches4.	Inches.	Inches
2176 2177 2178 2179 2180 2181	18x8 7 7 16 2 9 16 4 58 4 11 16	22x½	3½x3½x¾	5×3½×76	3½x3½x76	42.26 44.51 46.76 49.01 51.26 53.51	0.90 0.86 0.82 0.78 0.75 0.72	2437 2500 2563 2624 2684 2746	2357 2467 2574 2681 2783 2885	7.60 7.50 7.41 7.33 7.25 7.17	7.47 7.44 7.42 7.39 7.37 7.34
2182 2183 2184	18x3 18x3	22x1/2	3½x3½x¾	5x3½x½	3½x3½x½	55.76 43.96 46.21	0.69 0.57 0.55	2810 2563 2623	2985 2466 2575	7.10 7.64 7.54	7.31 7.49 7.47
2185 2186 2187 2188 2189	(c 16 16 (c 16 (c 16 (c 16 16 (c 16	66 66 66	66 66 66	66 66 66	66 66	48.46 50.71 52.96 55.21 57.46	0.52 0.50 0.48 0.46 0.44	2685 2745 2807 2868 2930	2682 2788 2890 2991 3090	7.45 7.36 7.28 7.21 7.14	7.44 7.41 7.39 7.36 7.34
*2190 *2191 2192 2193 2194 2195 2196	18x3 " 7 16 " 1 " 9 16 " 5 " 11 16 " 3	22x½	3½x3½x3 	5x3½x36	3½x3½x3½x16	45.64 47.89 50.14 52.39 54.64 56.89 59.14	0.26 0.25 0.24 0.23 0.22 0.21 0.20	2680 2741 2801 2862 2923 2984 3045	2578 2687 2792 2898 2998 3101 3199	7.66 7.56 7.47 7.39 7.31 7 24 7.18	7.52 7.49 7.46 7.44 7.41 7.38 7.36
*2197 *2198 2199 2200 2201 2202 2203	18x3 " 7 16 " 16 " 1/2	3½x3½x3 	5x3½x5	3½x3½x58	47.26 49.51 51.76 54.01 56.26 58.51 60.76	02 02 02 01 01 01	2782 2843 2904 2964 3025 3086 3146	2685 2794 2899 3003 3105 3206 3303	7.67 7.57 7.48 7.40 7.33 7.26 7.20	7.54 7.51 7.46 7.46 7.40 7.40	
*2204 *2205 2206 2207 2208 2209 2210	18x3 " 7 " 16 " 16 " 2 " 9 16 " 58 " 11 " 3	22X1/2	3½x3½x¾	5x3½x116	3½x3½x116	48.88 51.13 53.38 55.63 57.88 60.13 62.38	27 26 25 24 23 22 21	2875 2937 2998 3059 3119 3180 3241	2791 2898 3004 3109 3209 3309 3407	7.67 7.57 7.48 7.41 7.34 7.27 7.20	7.56 7.53 7.59 7.48 7.45 7.42 7.43

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

				a	B						
		roperties of Section	ns.	A d	B				ix Angles and aree Plate		
	Pla	tes.		Angles.		Gross	Eccen-	Mome Ine	ents of rtia.		f Gyra- on.
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
				Outside.	Inside.	A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inches.
*2211 *2212 2213 2214 2215 2216 2217	18X 38	22x½	3½x3½x3 66 66 66 66 66	5x3½x¾	3½x3½x¾	50.46 52.71 54.96 57.21 59.46 61.71 63.96	50 48 46 44 42 41 39	2958 3020 3081 3142 3203 3265 3326	2896 3003 3108 3212 3312 3412 3508	7.65 7.55 7.47 7.40 7.33 7.26 7.20	7.57 7.54 7.52 7.49 7.47 7.44 7.41
				18"		'	•				
2218 2219 2220 2221 2222	18X\frac{1}{2} \(\frac{9}{16} \(\frac{5}{5} \) \(\frac{11}{16} \(\frac{3}{4} \)	24x 9 16	3½x3½x¾ 	5x3½x¾	3½x3½x3 	47.52 49.77 52.02 54.27 56.52	1.59 1.52 1.45 1.39 1.34	2584 2650 2716 2781 2846	3215 3354 3491 3625 3757	7.37 7.29 7.22 7.16 7.10	8.23 8.21 8.19 8.17 8.15
2223 2224 2225 2226 2227	18x ¹ / ₂ 9 16 5 11 16 3	24x 9 66 66 66 66 66 66 66 66 66 66 66 66 6	3½x3½x¾	5×3½×76	3½x3½x ⁷ 16	49.26 51.51 53.76 56.01 58.26	1.26 1.20 1.15 1.10 1.06	2736 2801 2865 2928 2991	3354 3492 3628 3761 3893	7.45 7.37 7.30 7.23 7.17	8.25 8,23 8.21 8.19 8.17
2228 2229 2230 2231 2232	18x2	24× 16	3½x3½x¾	5x3½x½	3½x3½x½ ""	50.96 53.21 55.46 57.71 59.96	0.95 0.91 0.88 0.84 0.81	2874 2937 2999 3061 3124	3494 3632 3767 3900 4031	7.51 7.43 7.36 7.28 7.22	8.28 8.26 8.24 8.22 8.20
2233 2234 2235 2236 2237	18X ¹ / ₂ 9 16 56 11 16	24x 9/16	3½x3½x¾	5x3½x16	3½x3½x36	52.64 54.89 57.14 59.39 61.64	0.67 0.64 0.62 0.60 0.57	3001 3063 3125 3186 3248	3631 3768 3903 4035 4165	7.55 7.47 7.39 7.32 7.26	8.31 8.28 8.26 8.24 8.22
2238 2239 2240 2241 2242	18x\frac{1}{2} \(\text{9} \) \(\frac{1}{5} \) \(\frac{1}{16} \) \(\frac{1}{16} \) \(\frac{3}{4} \)	24x 9/16	3½x3½x¾	5x3½x5 66 66	3½x3½x8 ""	54.26 56.51 58.76 61.01 63.26	0.42 0.40 0.39 0.37 0.36	3114 3176 3237 3297 3359	3766 3902 4036 4168 4298	7.58 7.50 7.42 7.35 7.29	8.33 8.31 8.29 8.26 8.24
*	Spacing	g of rivet	lines of w	eb greater	than 30 >	< thick	ness of	plate.			

TABLE 85.—Continued.

Properties of Top Chord Sections.

		roperties of ord Sectio	ns.	A d					x Angles and ree Plate		
	Pla	tes.		Angles.		Gross	Eccen-	Mome		Radii o	f Gyra-
Section Num- ber.	Web.	Cover.	Top.	Bott	om.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
Del.				Outside.	Inside.	A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inches
2243 2244 2245 2246 2247	3 18x½ 24x¾ 32x3½x¾ 6 4 16 4 16 4 16 6 4 16 4 16 4 16 16 16 16 16 16 16 16 16 16 16 16 16		5x3½x11 ""	3½x3½x116	55.88 58.13 60.38 62.63 64.88	0.18 0.18 0.17 0.16 0.16	3221 3282 3343 3403 3464	3895 4031 4165 4296 4425	7.59 7.51 7.44 7.37 7.31	8.35 8.33 8.31 8.28 8.26	
2248 2249 2250 2251 2252	18x\frac{1}{2} \(\text{9}{16} \(\text{5}{8} \(\text{11}{16} \(\text{3}{4} \)	24x 16	3½x3½x3	5x3½x¾	3½x3½x¾	57.46 59.71 61.96 64.21 66.46	03 03 03 03 03	3314 3375 3436 3496 3557	4026 4161 4294 4424 4553	7.60 7.52 7.45 7.38 7.32	8.37 8.35 8.33 8.30 8.28
				20" × 24"	Section.	A Series.				1	
2253 2254 2255 2256 2257	20X ¹ / ₂ 9 16 16 16 4	24x 9 16	3½x3½x¾	3½x3½x¾	3½x3½x¾	48.38 50.88 53.38 55.88 58.38	1.94 1.85 1.76 1.68 1.61	3136 3227 3319 3410 3500	3171 3324 3477 3627 3777	8.04 7.96 7.88 7.81 7.74	8.09 8.08 8.06 8.05 8.04
2258 2259 2260 2261 2262	20X1/2 9 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	24x 9/16	3½x3½x3 	3½x3½x16	3½×3½×16	49.94 52.44 54.94 57.44 59.94	1.61 1.53 1.46 1.40 1.34	3310 3400 3489 3577 3665	3282 3435 3587 3736 3886	8.14 8.05 7.96 7.88 7.82	8.10 8.09 8.08 8.06 8.05
*2263 2264 2265 2266 2267	20X ¹ / ₂ " 9 " 16 " 16 " 16 " 16 " 16	24x 9 66 66 66 66 66 66 66 66 66 66 66 66 6	3½x3½x3	3½x3½x½	3½x3½x½ " "	51.46 53.96 56.46 58.96 61.46	1.31 1.25 1.19 1.14 1.09	3466 3553 3640 3728 3815	3387 3540 3691 3839 3988	8.21 8.12 8.03 7.95 7.89	8.12 8.10 8.09 8.07 8.05
2268 2269 2270 2271 2272	9 (1		66	3½x3½x16	52.94 55.44 57.94 60.44 62.94	1.02 0.97 0.93 0.89 0.86	3617 3703 3788 3874 3959	3497 3649 3799 3947 4095	8.26 8.17 8.08 8.00 7.93	8.13 8.11 8.09 8.08 8.08	

TABLE 85.—Continued.

Properties of Top Chord Sections.

		roperties of Chord Secti	ions.	A d			Six Angles and Three Plates.				
	Pla	tes.		Angles.		Gross	Eccen-		ents of rtia.		of Gyra
Section Num- ber.	Web.	Cover.	Top.	Bott	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
				Outside.	Inside.	A	e	I_A	I_B	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches*.	Inches4.	Inches.	Inches
*2273 2274 2275 2276 2277	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			66	3½x3½x5 	54.38 56.88 59.38 61.88 64.38	0.76 0.73 0.70 0.67 0.64	3752 3836 3921 4005 4090	3599 3751 3900 4047 4195	8.30 8.21 8.12 8.04 7.97	8.13 8.11 8.10 8.08 8.07
*2278 2279 2280 2281 2282	20X\frac{1}{2} \(\begin{array}{ccc} \frac{9}{16} \\ \cdot \frac{5}{16} \\ \cdot \frac{1}{16} \\ \cdot \frac{3}{4} \end{array}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		66	3½x3½x½16	55.82 58.32 60.82 63.32 65.82	0.53 0.50 0.48 0.46 0.45	3873 3957 4041 4115 4209	3851 4000 4147 4294	8.33 8.23 8.14 8.06 7.99	8.14 8.12 8.10 8.08 8.07
*2283 2284 2285 2286 2287	20X ¹ / ₂ 46 9 16 46 55 46 11 16 46 34	24 ^x / ₁₆	3½x3½x8	3½x3½x¾	3½x3½x¾	57.22 59.72 62.22 64.72 67.22	0.30 0.29 0.28 0.27 0.26	3985 4068 4151 4235 4319	3800 3951 4099 4245 4392	8.35 8.25 8.16 8.08 8.01	8.15 8.13 8.11 8.09 8.08
				20" × 24"	Section. E	Series.					
*2288 2289 2290 2291 2292	2289				3½x3½x8	49.52 52.02 54.52 57.02 59.52	1.67 1.59 1.52 1.45 1.39	3285 3375 3465 3554 3642	3354 3507 3660 3810 3960	8.14 8.05 7.97 7.89 7.82	8.22 8.20 8.19 8.17 8.15
*2293 2294 2295 2296 2297	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3½x3½x16	51.26 53.76 56.26 58.76 61.26	1.33 1.27 1.21 1.16 1.11	3473 3560 3648 3734 3820	3495 3648 3800 3949 4099	8.23 8.14 8.05 7.97 7.90	8.25 8.23 8.22 8.20 8.18		
*2298 2299 2300 2301 2302	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3½x3½x½ 	52.96 55.46 57.96 60.46 62.96	0.98 0.93 0.90 0.86 0.83	3644 3732 3817 3902 3988	3631 3784 3935 4083 4232	8.30 8.20 8.11 8.03 7.96	8.28 8.26 8.23 8.21 8.19		

TABLE 85.—Continued.

Properties of Top Chord Sections.

TABLE 85.—Continued.

Properties of Top Chord Sections.

		roperties of nord Sectio	ns.	A d				Six Angles and Three Plates.			
	Pla	ites.		Angles.	В	Gross	Eccen-	Mome	nts of	Radii o	of Gyra
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axia B-B
Der.				Outside.	Inside.	A	e	IA	IB	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inch
2333 2334 2335 2336 2337	20X½ 66 9 16 66 11 16 66 34	26x \frac{5}{8}	3½x3½x¾	5x3½x½	3½x3½x½	55.71 58.21 60.71 63.21 65.71	1.46 1.40 1.34 1.29 1.24	3879 3967 4056 4143 4230	4614 4809 5000 5189 5375	8.35 8.26 8.17 8.10 8.02	9.1 9.0 9.0 9.0
2338 2339 2340 2341 2342	20X\frac{1}{2} \(\text{ 9 \\ 16} \) \(\text{ 11 \\ 16} \) \(\text{ 11 \\ 16} \) \(\text{ 3 \\ 4} \)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		66	3½x3½x9 66 66	57·39 59.89 62.39 64.89 67·39	1.16 1.11 1.06 1.02 0.99	4053 4139 4226 4312 4397	4782 4976 5167 5355 5541	8.40 8.31 8.23 8.15 8.08	9.1 9.1 9.1 9.0 9.0
2343 2344 2345 2346 2347	20X\frac{1}{2} \(\cdot \frac{9}{16} \) \(\cdot \frac{5}{8} \) \(\cdot \frac{1}{16} \) \(\cdot \frac{3}{4} \)	26x ⁵ / ₈	3½x3½x¾	5x3½x5 	3½x3½x8	59.01 61.51 64.01 66.51 69.01	0.89 0.85 0.82 0.79 0.76	4211 4296 4381 4466 4550	4945 5138 5328 5516 5701	8.45 8.36 8.27 8.19 8.12	9.1 9.1 9.1 9.1 9.0
2348 2349 2350 2351 2352	20X ¹ / ₂ 9 16 5 11 16 34	26x \frac{5}{8}	3½x3½x8 	5x3½x116	3½x3½x½16	60.63 63.13 65.63 68.13 70.63	0.63 0.60 0.58 0.56 0.54	4358 4442 4527 4611 4694	5107 5299 5489 5675 5860	8.48 8.39 8.31 8.23 8.15	9.1 9.1 9.1 9.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26x \frac{5}{8}	3½x3½x8	5x3½x¾	3½x3½x¾	62.21 64.71 67.21 69.71 72.21	0.40 0.38 0.37 0.35 0.34	4489 4573 4657 4740 4824	5267 5459 5648 5834 6017	8.50 8.41 8.32 8.25 8.17	9.2 9.1 9.1 9.1
				22" × 26	" Section.	A Series.					
2358 2359 2360 2361 2362	22X ¹ / ₂ 9 16 5 11 16 3	26x 16	4×4×½	4×4×½	4×4×½	59.13 61.88 64.63 67.38 70.13	1.55 1.48 1.41 1.35 1.30	4811 4928 5045 5163 5282	4499 4691 4879 5066 5246	9.02 8.92 8.83 8.75 8.68	8.7 8.6 8.6 8.6

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

					В						
		roperties of sectio	na.	A					Six Angle and aree Plate		
	Pla	ites.	•	Angles.	В				ents of	Radii o	
Section Num-	Web.	Cover.	Тор.	Botto	m. •	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
ber.	WCD.	cova.	100.	Outside.	Inside.	A	e	IA	IB	r _A	гв
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches ⁴	Inches ⁴	Inches.	Inches
*2363 *2364 2365 2366 2367	22X2 "9 "56 "58 "116 "34	26x 9 16 116 116 116 116 116 116 116 116 11	4x4x½	4×4×96	4×4× 9 16	60.85 63.60 66.35 69.10 71.85	I.23 I.18 I.13 I.08 I.04	5023 5137 5252 5367 5483	4640 4832 5019 5204 5385	9.09 8.99 8.90 8.81 8.73	8.73 8.71 8.69 8.67 8.65
*2368 *2369 2370 2371 2372	22X2 9 5 11 16 11 3	26x 9 16 116 116 116 116 116 116 116 116 11	4×4×½	4×4×3 	4×4×5 " " "	62.57 65.32 68.07 70.82 73.57	0.93 0.89 0.85 0.81 0.79	5219 5332 5445 5558 5671	4777 4967 5154 5339 5519	9.13 9.03 8.94 8.86 8.78	8.74 8.72 8.70 8.68 8.66
*2373 *2374 2375 2376 2377	22X2 9 16 58 11 3	26x 9	4×4×½	4×4×116	4×4×16	64.25 67.00 69.75 72.50 75.25	0.67 0.64 0.61 0.59 0.57	5397 5509 5620 5732 5844	4916 5106 5291 5475 5655	9.16 9.06 8.97 8.89 8.81	8.75 8.73 8.71 8.69 8.67
*2378 *2379 2380 2381 2382	22X\frac{1}{2} \(\frac{9}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\)	26x 9 46 46 46 46 46 46 46 46 46 46 46 46 46	4×4×½	4×4×3 (c (c (c (c	4×4×3	65.89 68.64 71.39 74.14 76.89	0.41 0.40 0.38 0.37 0.35	5563 5675 5786 5888 6009	5047 5235 5420 5604 5783	9.19 9.09 9.00 8.91 8.84	8.75 8.73 8.71 8.69 8.67
				23" × 26"	Section.	B Series.					
*2383 *2384 2385 2386 2387	22X\frac{1}{2} \tag{16} \tag{5} \tag{11} \tag{16} \tag{11} \tag{16} 16	26x 16	26x 1/8 4x4x 1/2 6x4x 1/2		4x4x½ " "	61.13 63.88 66.63 69.38 72.13	1.14 1.09 1.05 1.01 0.97	5104 5219 5333 5446 5560	4891 5083 5271 5458 5638	9.14 9.04 8.95 8.86 8.78	8.95 8.93 8.90 8.87 8.84
*2388 *2389 2390 2391 2392	22X\frac{1}{2} \(\text{if } \frac{9}{16} \(\text{if } \frac{5}{8} \(\text{if } \frac{1}{16} \(\text{if } \frac{1}{3} \)	26x 16	4×4×1/2	6x4x ⁹ / ₁₆	4×4×16	63.11 65.86 68.61 71.36 74.11	0.80 0.77 0.74 0.71 0.68	5333 5445 5557 5670 5782	5082 5274 5461 5646 5827	9.20 9.10 9.00 8.91 8.83	8.98 8.95 8.92 8.89 8.87
	Spacing	of rivet	lines of w	eb greater	than 30>	thickn	ess of 1	plate.			

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

		roperties of hord Secti o	ns.	A		A d d	Six Angles and Three Plates.				
	Pla	tes.		Angles.	<u>B</u>			Mome	ents of	Radii o	f Gyra-
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Gross Area.	Eccen- tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
DCI.				Outside.	Inside.	A	e	IA	IB	TA.	ŤВ
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inches.
*2393 *2394 2395 2396 2397	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		66	4×4×5 	65.07 67.82 70.57 73.32 76.07	0.48 0.46 0.44 0.42 0.41	5544 5656 5767 5879 5991	5267 5457 5644 5829 6009	9.24 9.14 9.04 8.95 8.87	9.00 8.97 8.94 8.92 8.89	
*2398 *2399 2400 2401 2402		26x 9 16	4×4×½	6x4x ¹¹ / ₁₆ " " " "	4x4x116 ""	66.99 69.74 72.49 75.24 77.99	0.19 0.19 0.18 0.18	5735 5846 5957 6068 6179	5456 5646 5831 6015 6195	9.25 9.15 9.06 8.98 8.90	9.02 8.99 8.97 8.94 8.91
*2403 *2404 2405 2406 2407	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4×4×3 	68.89 71.64 74.39 77.14 79.89	07 07 07 06 06	6024 6135 6246	5636 5824 6009	9.26 9.16 9.08 8.99 8.92	9.04 9.01 8.98 8.96 8.93		
				22" × 26'	Section.	C Series.	<u>'</u>	-			
*2408 *2409 2410 2411 2412	22X ¹ / ₂ " 9 16 " 58 " 11 " 16 " 34	26x 9 16	4×4×½	6x4x½	6x4x1	63.13 65.88 68.63 71.38 74.13	0.77 0.73 0.70 0.67 0.65	5378 5491 5604 5716 5828	4915 5106 5293 5479 5659	9.23 9.13 9.04 8.95 8.86	8.82 8.80 8.78 8.76 8.73
*2413 *2414 2415 2416 2417	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6x4x 16	65.37 68.12 70.87 73.62 76.37	0.40 0.38 0.37 0.36 0.35	5621 5732 5844 5955 6066	5110 5301 5487 5671 5851	9.28 9.17 9.08 8.99 8.92	8.84 8.82 8.80 8.78 8.76		
*2418 *2419 2420 2421 2422	22X 1 9 156	66 66 66		6x4x ⁵ / ₈	67.57 70.32 73.07 75.82 78.57	0.07 0.07 0.07 0.06 0.06	5845 5956 6067 6178 6289	5298 5487 5673 5857 6035	9.31 9.21 9.12 9.03 8.95	8.86 8.84 8.82 8.80 8.77	
*	Spacing	of rivet	lines of w	eb greater	than 30 >	< thickn	ess of p	plate.			

TABLE 85.—Continued.

Properties of Top Chord Sections.

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

					В						
		roperties of Sectio	ns.	a a			-		ix Angle and aree Plat		
	F	lates.		Angles.		Gross	Eccen-		ents of rtia.		of Gyra-
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
				Outside.	Inside.	A	e	I_A	IB	rA	r_{B}
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches ⁴ .	Inches.	Inches
2451 2452	22X \(\frac{5}{8} \) \(\frac{11}{16} \)	28x \frac{5}{8}	4x4x ¹ / ₄	6x4x ³ / ₄	6x4x3	80.26 83.01	o ₅	6851 6962	7536 7763	9.24 9.16	9.69 9.67
2453	" 3	66	. "	"	66	85.76	04	7073	7988	9.08	9.65
				24" × 28"	Section.	A Series.					
*2454 *2455	24X 9 16 5 8	28x ⁵ / ₆	4×4×½	4X4X ¹ / ₂	4×4×½	67.00 70.00	2.00 1.92	6348 6502	6117 6376	9.73 9.64	9.56 9.54
2456 2457	" 11 16 " 3	66	66	66	46	73.00	1.84	6656 6810	6882	9.55 9.46	9.53 9.51
*2458 *2459	24X \frac{9}{16} \\ \(\frac{5}{8} \\ \(\frac{1}{11} \)	28x ⁵ / ₈	4×4×½	4X4X ⁹ 16	4X4X 9	68.72 71.72	1.69	6617 6770	6287 6545	9.81 9.72	9·57 9·55
2460 2461	" 11 16 " 3	"	66	"	"	74.72 77.72	1.50	6920 7071	7050	9.63 9.54	9·54 9·52
*2462 *2463	24X \frac{9}{16} \\ \cdot \frac{5}{8} \\ \cdot 11	28x ⁵ / ₆₆	4X4X1/2	4×4×5	4x4x8	70.44 73.44	1.38	6873 7021	6456 6712	9.88 9.78	9.58 9.56
2464	" 11 16 " 3 4	"	46	66	66	76.44	1.28	7170	6966 7215	9.61	9.55 9.53
*2466 *2467	24X \frac{9}{16} \\ \frac{5}{8} \\ \frac{1}{11}	28x 5 66	4×4×½	4×4×116	4×4×116	72.12	1.11	7103 7250	6625 6880	9.92 9.82	9.58 9.56
2468 2469	66 11 16 66 3	"	**	66	66	78.12 81.12	1.03	7397 7543	7133	9.72 9.63	9.55 9.53
*2470 *2471	24X 9 16 6 8 11	28x ⁵ / ₄	4×4×½	4×4×3	4x4x3	73.76 76.76	0.86 0.82	7318 7465	6785 7040	9.96 9.86	9.59 9.58
2472 2473	" 11 16 " 3	"	66	46	66	79.76 82.76	0.79	7611 7767	7292 7540	9.77	9.56 9.55
	,			24" × 28"	Section. I	3 Series.					
*2474	24X 9 16	28x5	4×4×½			69.00	1.61	6713	6567	9.87	9.76
*2475 2476 2477	" 58 " 11 16 " 3	66	66	66	"	72.00 75.00 78.00	1.54 1.48 1.43	6865 7015 7164	6826 7081 7332	9.77 9.67 9.58	9.74 9.72 9.69
	4	of rivet	lines of w	eb greater	than 20 V				1334	9.50	9.09
,	Spacing	or livet	unes of W	o greater	man 30 A	tinckii	COS OI I	nate.			

TABLE 85.— Continued.

PROPERTIES OF TOP CHORD SECTIONS.

					В							
		roperties of nord Sectio	ns.	A	B	- 14 d	Six Angles and Three Plates.					
	Pla	ites.		Angles.		Gross	Eccen-		ents of rtia.		f Gyra- on.	
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.	
DC1.				Outside.	Inside.	A	е	IA	IB	rA	r _B	
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches².	Inches.	Inches ⁴ .	Inches4.	Inches.	Inches.	
*2478 *2479 2480 2481	24x 9 " 5 " 16 " 16 " 3	28x 5 6 66	4×4×½	6x4x 9	4×4× 9 16 16 16 16 16 16 16 16 16 16 16 16 16	70.98 73.98 76.98 79.98	1.26 1.21 1.17 1.13	7010 7158 7305 7452	6794 7052 7306 7557	9.94 9.84 9.74 9.65	9.78 9.76 9.74 9.72	
*2482 *2483 2484 2485	24x 9 16 6 6 11 16 6 6 16 16 6 16 16 16 16 16	28x 5 44 44	4x4x½	6x4x ⁵ / ₈	4x4x ⁵ / ₈	72.94 75.94 78.94 81.94	0.94 0.90 0.87 0.84	7285 7431 7577 7723	7019 7275 7529 7778	9.99 9.89 9.80 9.71	9.81 9.79 9.77 9.75	
*2486 *2487 2488 2489	24X 9 16 11 16 16 16 16	28x5	4x4x½	6x4x116	4×4×116	74.86 77.86 80.86 83.86	0.64 0.62 0.60 0.58	7535 7680 7825 7970	7244 7499 7752 8001	9.93 9.84 9.75	9.84 9.82 9.80 9.77	
*2490 *2491 2492 2493	24X 9 16 6 5 8 6 11 16 6 6 4 16	28x 5 66	4x4x1/2	6x4x ³ / ₄	4x4x3	76.76 79.76 82.76 85.76	0.36 0.35 0.34 0.33	7770 7913 8057 8202	7460 7715 7967 8215	9.96 9.87 9.78	9.86 9.83 9.81 9.79	
				24" × 28"	Section.	Series.						
*2494 *2495 2496 2497	24X 16 6 8 11 16 6 3 4	28x 5	4×4×½	6x4x½	6x4x½ "	71.00 74.00 77.00 80.00	1.23 1.19 1.14 1.10	7061 7208 7356 7503	6606 6864 7119 7368	9.98 9.87 9.78 9.69	9.65 9.63 9.62 9.60	
*2498 *2499 2500 2501	24x 16 28x 5 4x4x 1 6x4x 16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		6x4x 9 "	73.24 76.24 79.24 82.24	0.85 0.82 0.79 0.76	7379 7525 7671 7817	6838 7095 7348 7598	9.93 9.84 9.75	9.66 9.64 9.63 9.61			
*2502 *2503 2504 2505	3 4 5 4 4 1 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						0.53 0.51 0.49 0.47	7670 7815 7960 8104	7068 7322 7575 7823	10.08 9.98 9.89 9.80	9.68 9.67 9.65 9.63	
*	Spacing	of rivet	lines of w	veb greater	than 30>	< thickn	ess of	plate.	,			

TABLE 85.—Continued.

Properties of Top Chord Sections.

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

		roperties of nord Section	ns.	A				Six Angles and Three Plates.				
	Pta	ites.		Angles.	В		Eccen-	Moments of Inertia.		Radii of Gyr		
Section Num- ber.	Web.	Cover.	Top.	Bott	tom.	Gross Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B–B.	
bea.				Outside.	Inside.	A	e	IA	IB	rA	rB	
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches ² .	Inches.	Inches4.	Inches4.	Inches.	Inches	
2532 2533 2534	24x \frac{5}{8} \tag{11} \tag{15} \tag{15}	30x116	4×4×½	6x4x3	6x4x ³ / ₄	85.89 88.89 91.89	0.38 0.37 0.36	8806 8950 9094	9526 9832 10135	10.13 10.04 9.95	10.53	
331				26" × 30'	Section.	A Series.						
*2535 *2536 2537	26x 5 11 16 11 11 11 11 11 11 11 11 11 11 11	30x116	4×4×½	4x4x½	4×4×½	75.63 78.88 82.13	2.47 2.37 2.27	8220 8421 8623	8157 8499 8834	10.38 10.32 10.26	10.38	
2538 2539 2540	26x 5 11 16 4 3 4	30x11	4×4×½	4×4×16	4×4×26	77·35 80.60 83.85	2.15 2.06 1.98	8559 8757 8953	8363 8704 9038	10.52 10.43 10.34	10.40	
*2541 *2542 2543	26x 5 11 16 16	30x11	4x4x½	4x4x5 "	4x4x5	79.07 82.32 85.57	1.85 1.78 1.71	8878 9062 9265	8563 8904 9237	10.59 10.49 10.40	10.41 10.40 10.39	
2544 2545 2546	26x \$ 11 16 16	30x118	4x4x½ "	4×4×116	4×4×116	80.75 84.00 87.25	1.57 1.51 1.45	9169 9360 9551	8764 9103 9425	10.65 10.55 10.45	10.42 10.41 10.39	
*2547 *2548 2549	26x \frac{5}{8} \\ \cdots \frac{11}{16} \\ \cdots \frac{3}{4} \end{array}	30x11	4x4x½	4x4x3	4x4x3	82.39 85.64 88.89	I.32 I.27 I.22	9441 9629 9817	8962 9301 9632	10.70 10.60 10.50	10.43 10.42 10.41	
				26" × 30"	' Section.	B Series.						
*2550 *2551 2552	26x 5	30x116	4x4x1/2	6x4x1	4x4x½	77.63 80.88 84.13	2.08 2.00 1.92	8669 8865 9061	8669 9011 9346	10.56 10.46 10.37	10.57 10.55 10.53	
*2553 *2554 2555	26x \frac{5}{8} \\ \displaystyle{11}{16} \\ \displaystyle{3}{4}	30x11	4x4x½	6x4x 9	4×4×16	79.61 82.86 86.11	1.73 1.65 1.57	9042 9238 9434	8939 9280 9614	10.65 10.55 10.46	10.60 10.58 10.56	
*2556 *2557 2558	26x 5 11 16 16	30x11	4×4×½	x ¹ / ₂ 6x4x ⁵ / ₆ 4		81.57 84.82 88.07	1.41 1.36 1.31	9389 9577 9766	9203 9544 9877	10.72 10.62 10.53	10.62 10.60 10.58	

TABLE 85.—Continued.

PROPERTIES OF TOP CHORD SECTIONS.

		roperties of nord Sectio	ns.	A	B			S Th	s es.		
	Pla	ites.		Angles.		Gross	Eccen-	Mome Ine	ents of	Radii of	
Section Num- ber.	Web.	Cover.	Top.	Bot	tom.	Area.	tricity.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
Der.				Outside.	Inside.	A	е	IA	I_B	rA	r _B
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches2.	Inches.	Inches ⁴ .	Inches ⁴ .	Inches.	Inches
*2559 *2560 2561	26x \frac{5}{8} \\ \frac{1}{16} \\ \frac{3}{4} \end{array}	30x116	4X4X ¹ / ₂	6x4x ¹¹ / ₁₆	4×4×116	83.49 86.74 89.99	I.II I.07 I.03	9707 9894 10081	9468 9807 10139	10.78 10.68 10.58	10.64 10.62 10.61
*2562 *2563 2564	26x \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4}	30x116	4×4×½	6x4x ³ / ₄	4×4×3	85.39 88.64 91.89	0.82	10011 10195 10379	9730 10069 10400	10.83 10.72 10.62	10.67
2304 1				26" × 30'	' Section.	C Series.	0.70	110379	110400	10.02	10.03
*2565 *2566 2567	26x \frac{5}{8} \\ \cdots \frac{11}{16} \\ \cdots \frac{3}{4} \end{array}	30x116	4×4×½	6x4x½	6x4x1/2	79.63 82.88 86.13	1.70 1.63 1.57	9100 9292 9481	8727 9067 9403	10.69 10.59 10.49	10.46 10.45 10.44
*2568 *2569 2570	26x \frac{5}{8} \\ \frac{11}{16}	30x11/16	4×4×½	6x4x 9	6x4x ⁹ / ₁₆	81.87 85.12 88.37	I.33 I.28 I.24	9500 9688 9875	9004 9343 9676	10.76 10.66 10.56	10.48 10.47 10.46
*2571 *2572 2573	26x ⁵ / ₈ " 11/ ₁₆	30x11 "	4×4×½	6x4x ⁵ / ₆	6x4x5	84.07 87.32 90.57	0.99 0.95 0.91	9870 10056 10243	9275 9614 9946	10.83 10.73 10.63	10.50
*2574 *2575 2576	26x \frac{5}{8} \frac{11}{16} \frac{3}{4}	30x11 "	4×4×½	6x4x ¹¹ / ₁₆	6x4x11 "	86.23 89.48 92.73	0.66 0.63 0.61	10212 10397 10582	9548 9885 10215	10.88 10.77 10.67	10.51
*2577 *2578 2579	26x \frac{5}{8} \\ \tag{11}{16} \\ \tag{3}{4}	30x116	4×4×1/2	6x4x3	6x4x3	88.39 91.64 94.89	0.37 0.36 0.35	10530 10723 10897	9817 10154 10483	10.92 10.82 10.72	10.53 10.52 10.51
·	··	<u> </u>	-	26"	X 32" Secti	on.					
2580 2581 2582 2583 2584 2585 2586	26x3 	32x34	4×4×½	6x4x ³ / ₈ 4 16 4 1 5 16 4 11 6 11 6 12 6 11 6 12 6 13	6x4x ³ / ₈ 1 7 1 1 1 2 1 1 1 1 1 1 1 3	84.94 87.22 89.50 91.74 93.94 96.10 98.26	2.77 2.39 2.03 1.69 1.37 1.06 0.80	9017 9498 9948 10369 10761 11124 11466	10718 11048 11379 11703 12023 12338 12652	10.30 10.44 10.54 10.63 10.70 10.76 10.80	11.23 11.25 11.27 11.29 11.31 11.33

TABLE 86.
PROPERTIES OF TOP CHORD SECTIONS.

TABLE 87 PROPERTIES OF PLATE GIRDERS.

Some specifications require that plate girders be proportioned by the moment of inertia of their gross section and some by the moment of inertia of their net section. The moment of inertia of the gross section can be obtained by direct addition from Tables 3, 5 and 33. The moment of inertia of the net section is obtained by subtracting the moment of inertia of the holes from that of the gross section. The moment of inertia of the holes can be calculated by the formula $I = A_0 h^2$. the moment of inertia of the holes about their own axis being negligible, Ao being the diametral area of the hole and h the distance from the neutral axis to the center of the hole.

The method of calculating the moments of inertia of plate girders will be illustrated by a typical

example.

Example: Determine the moment of inertia and section modulus of a section consisting of 4 angles $5''x3\frac{1}{2}''x\frac{1}{2}''$, long legs out, $24\frac{1}{2}''$ back to back, I web plate $24''x\frac{3}{8}''$, 2 cov. plates $12''x\frac{3}{8}''$. Moment of Inertia and Section Modulus of Gross Section.

Item.	b. to b. Angles.	Extreme Fiber.	Moment of Ine	rtia, Axis A-A.	Section Modulus.
rem.	d	С	Table.	I	S = I/c.
Inches.	Inches.	Inches.	rable.	Inches ⁴ .	Inches ³ .
4	24·5 "	12.25 + 0.625	33 3 5	2074 432 2366	4872
		12.875	Total $I =$	4872	S = 378.4

Moment of Inertia of Rivet Holes (7" Rivets, 1" holes).

		Size.	Area.	Dist. to Ø of Hole.	Dist.2	A ₀ h ²
Location.	Number.	$t \times d$	$A_0 = t \times d$	h	h²	
		Inches.	Inches.2	Inches.	Inches ² .	Inches4.
Web Flange	2	I	2.75 4.50	10.3	106.1 151.3	292 681
- 8-		-6			Total =	973

The Moment of inertia of the net section is 4872 - 973 = 3899 in.⁴, and the section modulus is 3899 ÷ 12.875 = 302.8 in.3.

Approximate Methods.

The use of the moment of inertia of the net section in proportioning plate girders, requires that holes in the compression flange be deducted as well as those in the tension flange. This only approximates the true condition so that great accuracy in calculating the moment of inertia of the net section does not seem warranted. The following approximate solutions give results which are sufficiently accurate for use in design.

1st Approximate Method:

Net I of Angles = Gross
$$I \times \frac{\text{Net Area}}{\text{Gross Area}} = 2074 \times \frac{12}{16} = 1556$$
 Table 33.

Net I of Web Pl. = Gross I of Net Depth = I of
$$22'' \times \frac{3}{5}''$$
 Pl. = 333 " 3. Net I of Cov. Pls. = Gross I of Net Width = I of $2 - 10'' \times \frac{5}{5}''$ Pls. = 1972 " 5.

Total Moment of Inertia of Net Section $= 3861 \text{ in.}^4$

2d Approximate Method:

Net
$$I = \text{Gross } I \times \frac{\text{Net Area}}{\text{Gross Area}} = 4872 \times \frac{32.75}{40.00} = 3989 \text{ in.}^4$$

This method gives more accurate results for sections without cover plates.

TABLE 88.

CENTERS OF GRAVITY OF PLATE GIRDER FLANGES.

CHICAGO, MILWAUKEE & ST. PAUL RY.

	c.g.			00		C.g	y			84,	- -	c.g	7					
		7	уре	/				Typ	e Z	>			7	Туре.	3			
_		TY	PE 1	· ·				T						PE 2.				
	T	wo 6"	x 4"	Botte	om A	ngles.		-		1			Four 6	5" x 4"	Botto	m Ang	les.	
Two Top					vo 1				T	hicknes	s in I	iches.						
Augies.	3 8	ì		ŧ	1		i		mgi		1		1	18	1		2 4	Ī
Inches.	In.	١.	In.	I	nche	s.	In		In.	In.	In		In.	In.				
8×8×1/2 5 8 8 1 1 1 1 1 1 1 1 1 1	3X\frac{1}{2} 3.81 4.12 4.35 4.55 4 \[\frac{1}{2} 3.62 3.90 4.12 4.30 4 \] \[\frac{1}{2} 3.49 3.75 3.96 4.13 4 \] \[\frac{1}{2} 3.39 3.70 3.83 3.99 4 \] \[\frac{1}{2} 3.33 3.55 3.73 3.89 4 \] \[\frac{1}{2} 3.28 3.48 3.67 3.81 3 \]									X 1215/89/417/8	5.1 4.8 4.5 4.4 4.2 4.3	31 59 12 28	5.53 5.22 4.99 4.80 4.65 4.53	5.69 5.40 5.16 4.96 4.81 4.66	5.8 5.3 5.1 4.9 4.8	4 0 1 6	5.07 5.79 5.55 5.25 5.19 5.06	6.27 5.98 5.75 5.57 5.41 5.26
								TY	PE	3.								
Size of Angles.	Width of Plate.							Th	Thickness of Plate, Inches.									
In.	In.	0	1	3		1	ı	I I I I I I I I I I						1 🖁	2	2 1	3	
6×6×½ 6×6×½ 6×6×½ 6×6×½	13 14 15 16 13 14 15 16 13 14 15 16	1.78	1.09 1.07 1.04 1.24 1.21 1.19 1.16 1.34 1.31 1.29 1.26 1.42 1.39 1.37	1.08 1.05 1.02 1.21 1.18 1.15 1.13 1.30 1.27	I.07 I.03	1.05 1.01	.63 .59 .55 .52 .77 .73 .69 .65 .89 .85 .99 .95	.52 .48 .45 .41 .67 .63 .59 .75 .71 .67 .89 .85 .81	.39 .35 .31 .57 .53 .49 .45 .69 .65 .61 .59	.29 .25 .21 .47 .43 .39 .35	.38 .34 .30 .26 .51 .46 .42 .38 .62 .57	.15 .11 .07 .04 .30 .25 .21 .17 .42 .38 .33 .29 .54 .49	.07 03 01 05 .21 .17 .13 .09 .34 .29 .25 .21 .45 .40	02 06 10 13 .08 .04 .00 .25 .20 .16 .12 .37 .32 .27		22 26 29		
$8 \times 8 \times \frac{1}{3}$ $8 \times 8 \times \frac{5}{5}$ $8 \times 8 \times \frac{3}{4}$ $8 \times 8 \times \frac{7}{5}$ $8 \times 8 \times 1$ $8 \times 8 \times 1$ $8 \times 8 \times 1$	17 18 17 18 17 18 17 18 17 18	2.23 2.28 2.32 2.37	1.46 1.63 1.60 1.75 1.72 1.85 1.81 1.94	1.29 1.47 1.44 1.60 1.57 1.71 1.67 1.80	1.43 1.57 1.53 1.68 1.64	1.00 1.19 1.15 1.33 1.29 1.45 1.41 1.55	1.07	1.06 1.22 1.18 1.35 1.30		.56 .52 .73 .69 .84 1.00 .96 1.13 1.09		.36 .32 .53 .49 .68 .64 .81 .77 .94 .89		.17 .13 .34 .30 .46 .42 .62 .57 .75 .71		01 04 .17 .12 .31 .27 .45 .40 .58	37 16 21 02 06 .11 .07 .25	48 52 36 40 20 25 08

TABLE 89.

UPSET SCREW ENDS FOR SQUARE BARS.

AMERICAN BRIDGE COMPANY STANDARD.

		Pi	tch and Shape	of Thread	A. B. Co. Sta	∤ ndard.							
	BAR. UPSET.												
Side of Square d, Inches.	Area, Sq. Inches.	Weight per Foot, Lbs.	Diameter b, Inches.	Length a, Inches.	Additional Length for Upset +10%, Inches.	Diameter at Root of Thread c, Inches.	At Root of Thread, Sq. Inches.	Excess Over Area of Bar, %.					
* 3	0.563	1.91	I 1/8	4	4	0.939	0.693	23.2					
* 7/8	0.766	2.60	I 1/4	4	3 1/2	1.064	0.890	16.2					
1	1.000	3.40	11/2	4	4	1.283	1.294	29.4					
1 1/8	1.266	4.30	I 5/8	4	3 ¹ / ₂	1.389	1.515	19.7					
I 1/4	1.563	5.31	I 7/8	4 ¹ / ₂	41/2	1.615	2.049	31.1					
I 3/8	1.891	6.43	2	41/2	4	1.711	2.300	21.7					
I ½	2.250	7.65	21	5	5	1.961	3.021	34-3					
I 5/8	2.641	8.98	2 ³ / ₈	5	41/2	2.086	3.419	29.5					
I 3/4	3.063	10.41	$2\frac{1}{2}$	5 ¹ / ₂	41/2	2.175	3.716	21.3					
17/8	3.516	11.95	2 ³ / ₄	$5^{\frac{1}{2}}$	5	2.425	4.619	31.4					
2	4.000	13.60	27/8	6	5	2.550	5.108	27-7					
21/8	4.516	15.35	3	6	41/2	2.629	5.428	20.2					
21/4	5.063	17.21	31/4	61/2	5½	2.879	6.509	28.6					
2 ³ / ₈	5.641	19.18	31/2	7	61/2	3.100	7.549	33.8					
$2\frac{1}{2}$	6.250	21.25	3 3 4	7	7	3.317	8.641	38.3					
2 5	6.891	23.43	3 4	7	51/2	3.317	8.641	25.4					
23/4	7.563	25.71	4	7½	61/2	3.567	9-993	32.1					
278	8.266	28.10	414	8	71/2	3.798	11.330	37.1					
3	9.000	30.60	41	8	6	3.798	11.330	25.9					
3 ½	9.766	33.20	41/2	81/2	7	4.028	12.741	30.5					
31/4	10.563	35.91	434	81/2	71/2	4.255	14.221	34.6					
Upse	ets marked	* are speci	al.										

TABLE 90.

UPSET SCREW ENDS FOR ROUND BARS.

AMERICAN BRIDGE COMPANY STANDARD.

	BAR.		UPSET.										
Diameter d, Inches.	Area, Sq. Inches.	Weight per Foot, Lb.	Diameter b, Inches.	Length a, Inches.	Additional Length for Upset +10 %, Inches.	Diameter at Root of Thread c, Inches.	At Root of Thread, Sq. Inches.	Excess Over Are of Bar, %					
* 3	0.442	1.50	I	4	4	0.838	0.551	24.7					
* 7/8	0.601	2.04	114	4	5	1.064	0.890	48.0					
1	0.785	2.67	I 3/8	4	4	1.158	1.054	34.2					
118	0.994	3.38	$I^{\frac{1}{2}}$	4	4	1.283	1.294	30.2					
114	1.227	4.17	I 5	4	4	1.389	1.515	23.5					
1 3	1.485	5.05	134	4	4	1.490	1.744	17.5					
11/2	1.767	6.01	2	41/2	41/2	1.711	2.300	30.2					
I 5	2.074	7.05	2 ½	41/2	4	1.836	2.649	27.7					
13/4	2.405	8.18	21/4	5	4	1.961	3.021	25.6					
17	2.761	9.39	2 3/8	5	4	2.086	3.419	23.8					
2	3.142	10.68	$2\frac{1}{2}$	51/2	4	2.175	3.716	18.3					
21/8	3.547	12.06	2 5	5½	3 1/2	2.300	4.156	17.2					
21/4	3.976	13.52	2 7 8	6	41/2	2.550	5.108	28.4					
23/8	4.430	15.06	3	6	41/2	2.629	5.428	22.5					
$2\frac{1}{2}$	4.909	16.69	314	61/2	5 1/2	2.879	6.509	32.6					
2 8	5.412	18.40	31/4	61/2	41/2	2.879	6.509	20.3					
$2\frac{3}{4}$	5.940	20.19	31/2	7	5 ¹ / ₂	3.100	7.549	27.1					
27/8	6.492	22.07	3 4	7	6	3.317	8.641	33.1					
3	7.069	24.03	3 4	7	5	3.317	8.641	22.2					
31/8	7.670	26.08	4	71/2	6	3.567	9.993	30.3					
31/4	8.296	28.21	4	71/2	5	3.567	9.993	20.5					
3 €	8.946	30.42	41	8	5 2	3.798	11.330	26.6					
3 1/2	9.621	32.71	414	8	5	3.798	11.330	17.8					
3 5	10.321	35.09	41/2	81	5 2	4.028	12.741	23.4					
34	11.045	37.55	43	81/2	6	4.255	14.221	28.8					
3 7 8	11.793	40.10	44	81/2	5 1/2	4.255	14.221	20.6					

TABLE 91 STANDARD EYE BARS

AMERICAN BRIDGE COMPANY STANDARDS

			ORDINAL	RY EY	E BARS	3		Adjustable Eye Bars						
		!)	<u>←</u> D→		5						
-	Bar		<u> </u>		HEAD	•		1	BAR SCREW END					<u> </u>
-		ick-		Max	r. Pin	Add. M	aterial A		eg e		۵, په	In.	Add. Ma	aterial B
Width, In.	Max, In.	Min., In.	Dia. D., In.	Dia., In.	Excess Head Over Bar, $\%$.	For Order- ing Bar, Ft. & In.	For Figuring Weight of Bar, Ft. & In.	Width, In.	Min. Thickness In.	Día. U., In.	Excess Upset Over Bar, %.	Length M., I	For Order- ing Bar, In.	For Figur- ing Weight, In.
2	1	1/2	$\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ * 6\frac{1}{2} \end{array}$	1 3 4 2 3 4 3 4 3 4	37.5	I- 0 I- 4 I- 9	0- 7 0-11 1- 4	2	15 00 t5 417- 00	$1\frac{3}{4}$ $1\frac{7}{8}$ 2	39.6 36.6 31.4	4 4 ¹ / ₂ 4 ¹ / ₂	12 12 11	8 7½ 7½ 7½
$2\frac{1}{2}$	I	5/8	6 7 * 8	$\begin{array}{c} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	40.0	I- 3 I- 7 2- 0	0-10 1- 2 1- 7	21/2	*3 7 8	2 1 2 1 2 1 2 2 3 2 8	41.2 38.1 36.7	4½ 5 5	12 12 12	8 8 7 ¹ / ₂
3	I ½	5 8	7½ 8½ * 9½	3 \\\ 4 \\\ 5 \\\ 4 \\ 5 \\\ 4 \\ 5 \\\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8	41.7	I- 6 I-II 2- 4	I- I I- 5 I-IO	3	*3 7 8 I	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34·3 41.6 23.9	5 5 5 5 2	12 13 13	7½ 9½ 8½ 8½
4	1 3/4	3 4 7 8 I	10 11 *12	$\begin{array}{c} 4\frac{1}{2} \\ 5\frac{1}{2} \\ 6\frac{1}{2} \end{array}$	37.5	I-II 2-3 2-8	I- 6 I-I0 2- 2	4	*3 4 77 8 E	$2\frac{1}{2}$ $2\frac{3}{4}$ 3	23.9 32.0 35.7	5½ 5½ 6	13 11 13	8½ 7½ 8½ 9½
5	2	3 4 I I	12 13½ *15	5 ¹ / ₄ 6 ³ / ₄ 8 ¹ / ₄	35.0	2- I 2- 8 3- 3	I-8 2-2 2-9		*3 *3 7 8	3 ¹ / ₄ 2 ⁷ / ₈	36.2	$\frac{6\frac{1}{2}}{6}$	14	8
6	2	3 4 I	14 14 ³ / ₄ *16 ¹ / ₂	5 ³ / ₄ 6 ¹ / ₂ 8 ¹ / ₄	37.5	2- 4 2- 6 3- 2	I-IO 2- I 2- 8	5	8 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 1 3 2 3 3 3	24.I 30.2 34.2 38.3	6½ 7 7	11 12 13 14	7 8 8 ¹ / ₂ 9
7	2	I I 1 8 I 1 8	$16\frac{1}{2}$ $17\frac{1}{2}$ $*18\frac{1}{2}$	7 8 9	35.7	2- 7 2-11 3- 4	2- 2 2- 6 2-11	6	*I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3½ 3¾ 4 44	25.8 28.0 33.2	7 7 7 ¹ 8	12 12 13	7½ 8 8½ 9½ 9½
8	2	I I 1 8 I 1 4	18 19 *20	7 8 9	.37.5	2-8 3-0 3-4	2- 3 2- 6 2-II 2- 6	7	*118 114 13	4 4 4 4 4 4	37·3 26.9 29.5 32.4	7 ¹ / ₂ 8 8 ¹ / ₂	14 12 13 14	8 8½ 9
9	2	I 1/4	*22	7½ 9½	38.9	2-II 3- 7	3- I		1½ *1½	$\frac{4^{\frac{3}{4}}}{4^{\frac{1}{4}}}$	35.4	8½ 8	14	9 ¹ / ₂ 8
10	2	I 1 4 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{r} 22\frac{1}{2} \\ 24 \\ *25 \\ \hline 26\frac{1}{2} \end{array} $	9 10½ 11½	35.0	3-5 3-9 4-1 3-8	2-10 3-3 3-7	8	14 13 13 12 15 18	4½ 4¾ 5	25.9 27.4 29.3 31.4	8½ 8½ 9	13 13 14	8½ 8½ 9
12	2	11/4 13/8 11/2	$20\frac{2}{3}$ 28 $*29\frac{1}{2}$	10 11½ 13	37.5	3-8 4-2 4-8	3- 3 3- 8 4- 1		18	51/4	35.2	91	15	10
14	2	I 38 I 12 I 58	31 33 *34	12 14 15	35.7	4-3 4-10 5-5	3-9 4-4 4-8	4 avoidable						
16	2	1 3/4 1 7/8	36 *37½	14 16	37·5 34·4	4-11 5- 5	4- 5 4-10	to end of screw 6'-6", preferably 7'-0".						

208

Bars marked * should only be used when ab-

Deduct Pin Holes when figuring weights.

solutely unavoidable.

TABLE 92.

LOOP RODS.

AMERICAN BRIDGE COMPANY STANDARD.

Pitch and Shape of Thread A. B. Co. Standard.

Additional Length "A" in Feet and Inches for One Loop. A = 4.17P + 5.89R.

Diam.				Diame	eter or Sid	le "R" of	Rod in Ir	iches.			
P.	ŧ	i	I	11	11	1	1 1	1	13	1 1	2
11	0- 91	0-10	0-11	0-112							
14 15 14	0-11 0-10	$0-10\frac{1}{2}$ $0-11\frac{1}{2}$ $1-0\frac{1}{2}$	$\begin{array}{c} 0 - I I \frac{1}{2} \\ I - O \frac{1}{2} \\ I - I \frac{1}{2} \end{array}$	I- 0 I- I I- 2	I- I I- 2 I- 3	$ \begin{array}{c c} & \mathbf{I} - 2\frac{1}{2} \\ & \mathbf{I} - 3\frac{1}{2} \end{array} $	I- 4½	1-5	ı- 6		
2	1- I	1- 12	I- 21/2	1- 3	1- 4	I- 4½	I- 5½	ı- 6	r- 7	I- 7½	ı- 8½
2 1 2 1 2 2 2 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4	I- 2 I- 3 I- 4	I- 3 I- 4 I- 5	$ \begin{array}{r} I - 3\frac{1}{2} \\ I - 4\frac{1}{2} \\ I - 5\frac{1}{2} \end{array} $	$ \begin{array}{r} 1 - 4\frac{1}{2} \\ 1 - 5\frac{1}{2} \\ 1 - 6\frac{1}{2} \end{array} $	I- 5 I- 6 I- 7	I- 5½ I- 7 I- 8	$ \begin{array}{c c} \mathbf{I} - 6\frac{1}{2} \\ \mathbf{I} - 7\frac{1}{2} \\ \mathbf{I} - 8\frac{1}{2} \end{array} $	I- 7 I- 8 I- 9½	1-10 1- 8 1- 8	$1 - 8\frac{1}{2}$ $1 - 9\frac{1}{2}$ $1 - 11$	$ \begin{array}{c} I - 9\frac{1}{2} \\ I - 10\frac{1}{2} \\ I - 11\frac{1}{2} \end{array} $
3	1-5	r- 6	ı- 6½	I- 7½	1 - 8	I- 9	I- 9½	I-10½	1-11	2- 0	2- O2
*3 ¹ / ₄ 3 ¹ / ₂ *3 ³ / ₄	I- 6 I- 7½ I- 8½	I- 7 I- 8 I- 9	I- 7½ I- 8½ I-IO	$ \begin{array}{r} 1 - 8\frac{1}{2} \\ 1 - 9\frac{1}{2} \\ 1 - 10\frac{1}{2} \end{array} $	I-11 I-0	I-IO I-II 2- O	$ \begin{array}{c c} I - IO_{\frac{1}{2}}^{\frac{1}{2}} \\ I - II_{\frac{1}{2}}^{\frac{1}{2}} \\ 2 - O_{\frac{1}{2}}^{\frac{1}{2}} \end{array} $	$ \begin{array}{cccc} I - I & I & \frac{1}{2} \\ 2 - & O & \frac{1}{2} \\ 2 - & I & \frac{1}{2} \end{array} $	2- O 2- I 2- 2	2- I 2- 2 2- 3	$\begin{array}{ccc} 2 - & 1\frac{1}{2} \\ 2 - & 2\frac{1}{2} \\ 2 - & 3\frac{1}{2} \end{array}$
4	I- 9½	1-10	1-11	1-112	2- 0 ¹ / ₂	2- I	2- 2	2- 21/2	2- 3	2- 4	2- 41/2
*4 ¹ / ₄ 4 ¹ / ₂ *4 ¹ / ₄		I-II 2- 0 2- I	2- O 2- I 2- 2	$\begin{array}{ccc} 2 - & O_{2}^{\frac{1}{2}} \\ 2 - & I_{2}^{\frac{1}{2}} \\ 2 - & 2_{2}^{\frac{1}{2}} \end{array}$	$\begin{array}{ccc} 2 - & 1\frac{1}{2} \\ 2 - & 2\frac{1}{2} \\ 2 - & 3\frac{1}{2} \end{array}$	2- 2 2- 3 2- 4	2- 3 2- 4 2- 5	$ \begin{array}{cccc} 2 - & 3\frac{1}{2} \\ 2 - & 4\frac{1}{2} \\ 2 - & 5\frac{1}{2} \end{array} $	$ \begin{array}{cccc} 2 - & 4\frac{1}{2} \\ 2 - & 5\frac{1}{2} \\ 2 - & 6\frac{1}{2} \end{array} $	2- 5 2- 6 2- 7	2- 6 2- 7 2- 8
5		2- 21/2	2- 3	2- 31/2	2- 41/2	2- 5	2- 6	2- 61/2	$2-7\frac{1}{2}$	2- 8	2- 9
*51 52 *51			2- 4 2- 5 2- 6	2- 5 2- 6 2- 7	$\begin{array}{ccc} 2 - & 5\frac{1}{2} \\ 2 - & 6\frac{1}{2} \\ 2 - & 7\frac{1}{2} \end{array}$	$\begin{array}{c} 2-6 \\ 2-7\frac{1}{3} \\ 2-8\frac{1}{2} \end{array}$	2- 7 2- 8 2- 9	2- 7½ 2- 9 2-IO	$\begin{array}{ccc} 2 - & 8\frac{1}{2} \\ 2 - & 9\frac{1}{2} \\ 2 - & 10\frac{1}{2} \end{array}$	2- 9 2-IO 2-II ¹ / ₂	2-10 2-11 3- 0
6			2- 7	2- 8	2- 81	2- 91/2	2-10	2-11	2-1112	3- 0½	3- 1
*61 61 *61		• • • • • • •		2- 9 2-10 2-11	$\begin{array}{c} 2 - 9\frac{1}{2} \\ 2 - 10\frac{1}{2} \\ 3 - 0 \end{array}$	$ \begin{array}{c c} 2 - I O_{\overline{2}}^{1} \\ 2 - I I_{\overline{2}}^{1} \\ 3 - O_{\overline{2}}^{1} \end{array} $	2-II 3- 0 3- I	3- 0 3- I 3- 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 3 - & 1\frac{1}{2} \\ 3 - & 2\frac{1}{2} \\ 3 - & 3\frac{1}{2} \end{array}$	3- 2 3- 3 3- 4
7		• • • • • •		3-0	3- I	3- 11/2	3- 21/2	3- 3	3- 31/2	3- 41/2	3- 5

Pins marked * are special. Maximum shipping length of "L" = 35 feet.

TABLE 93.

CLEVISES.

AMERICAN BRIDGE COMPANY STANDARD.

All dimensions in inches.

Grip = thickness of plate $+\frac{1}{2}$ ".

jo	He	ad.	Diar	Diameter		Diameter		Diameter		ne.		eg eg	Diar	neter				jo
Number of Clevis.	Dia.	Thick- ness.	of I	Pin,	Width	Extreme	Fork	Distance	of U	pset.	N	ut.	Weight, Pounds.	Number Clevis.				
	D	Т	Max.	Min.	w	E	F	A	Max.	Min.	N	В		-				
3	3	$\frac{1}{2}$	$I^{\frac{1}{2}}$	I	11/2	3 16	114	5	1 1 5	I	11/2	21/4	4	3				
4	4	1/2	2	$I_{\frac{1}{4}}$	2	3 8	13	6	I 5/8	118	134	27/8	8	4				
5	5	5 8	21/2	$1\frac{1}{2}$	21/2	41/2	21/4	7	218	$1\frac{1}{2}$	21/4	3 3 4	16	5				
6	6	3 4	3	2	3	5 8	$2\frac{3}{4}$	8	21/2	2	21/2	48	26	6				
7	7	78	31/2	$2\frac{1}{2}$	31	63	31	9	27/8	21/4	3	5	36	7				

CLEVIS NUMBERS FOR VARIOUS RODS AND PINS.

	Rods.			Pins.												
Round.	Square.	Upset.	I	11	I ½	14	2	21	21/2	24	3	31	31/2			
34		I	3	3	3											
7 8	34	1 1/8	3	3	3	4	4									
	7 8	I 1/4		4	Ī 4	4	4									
I		I 3/8		4	4	4	4									
I 1/8	. I	$I^{\frac{1}{2}}$		4	4	4	4	5	5							
14	1 1 8	I 5/8		4	4	4	4	5	-5							
		1 3/4			5	5	5	5	5							
1 1/2	114	178			5	5	5	5	5							
1 5	13	2			5	5	5	5	5	6	6					
		21/8			5	5	5	5	5	6	6					
178	I 1/2	21					6	6	6	6	6	7	7			
2	15	2 ³ / ₈					6	- 6	6	6	6	7	7			
21/8	134	$2\frac{1}{2}$					6	6	6	6	6	7	7			
$2\frac{1}{4}$	178	23/4							7	7	7	7	7			
2 3/8	2	27/8							7	7	7	7	7			

Clevises to be used with the Rods and Pins given above. Clevises above and to right of zigzag line may be used with forks straight, those below and to left of this line should have forks closed so as not to overstress pin.

TABLE 94.

TURNBUCKLES AND SLEEVE NUTS.

AMERICAN BRIDGE COMPANY STANDARD.

All Dimensions in Inches.

TURNBUCKLES.

A = 6"; A = 9"9 for turnbuckles marked *. Pitch and shape of thread, A. B. Co. Standard.

SLEEVE NUTS.

Pitch and shape of thread, A. B. Co. Standard,

				-			1 .	Diam. Standard Dimensions.							
Diam.		Star	ndard 1	Dimens	ions.		Weight, Pounds.	Diam.		Sta	ndard I	Dimensi	ons.		Weight.
Screw. U	D	L	С	t	G	В	Wei	Screw. U	D	L	A	В	С	t	We
3	9 16	71/8	9 16	3 16	1/2	116	I								
7 16	33	716	1	1	5 8	I 3	I								
1	3	71	5 8	1	100	I 3	I								
16	37	711	$\frac{13}{16}$	5 16	3	$1\frac{9}{16}$	1 1 2								
4	15 16	7 7 8	13	16	3 4	1 16	1 1 2						ļ		
3 7 8	18	81	116	313	7 8	2	2								
7 8	1 16	85	14	3 8	I	21/4	3	7 8	I ½	7	I 5/8	178	I 1/8	1/4	3
I	$I^{\frac{1}{2}}$	9	1 5	7 16	114	27/16	4	1	112	7	1 5	178	1 1/8	1	3
18	111	98	1 16	1 2	11	2 9 16	5	1 1 8	134	$7\frac{1}{2}$	2	2 16	I 3/8	16	4
$1\frac{1}{4}$	1 7 8	94	I 9 16	1 2	11/2	23	6	114	1 3	$7\frac{1}{2}$	2	2 5 16	1 3	16	4
1 3	216	108	111	1/2	I 5/8	316	.7	1 3	2	8	23/8	2 3/4	I 5/8	3 8	5
11/2	21/4	102	134	5 8	1 4	316	8	11/2	2	8	2 3 8	234	I 5	*	6
I 5	2 7 6	107	2	5 8	178	3 1/2	10	I 5/8	21/4	81/2	23/4	3 1 8	17/8	16	8
1 4	25/8	1114	21/8	5 8	2	34	II	$1\frac{3}{4}$	21/4	81/2	23/4	316	17	16	9
I 7/8	$2\frac{13}{16}$	I I 5	2 3 16	116	2 1/8	3 7 8	12	I 7/8	21/2	9	3 18	3 8	2 1/8	1/2	IC
2	3	12	2 3 8	116	21/4	44	14	2	$2\frac{1}{2}$	9	3 1	3 8	21/8	1/2	II
21/8	316	123	21/2	33	2 1/2	41/2	.17	21/8	234	91/2	3 1/2	416	23/8	9 16	14
24	3 8	123	$2\frac{11}{10}$	13	21/2	4 3 4	20	21/4	234	91/2	3 1/2	416	23	16	15
2 3	3 16	131	$2\frac{3}{4}$	13 16	23/4	4 7 8	22	2 3 8	3	10	3 7 8	41/2	25	<u>5</u>	18
21/2	3 4	131	316	37	3	5 ³ 8	25	$2\frac{1}{2}$	3	10	3 7 8	$4\frac{1}{2}$	25/8	5 8	19
24	41/8	144	34	15	31	5 3 4	33	23	31	$10\frac{1}{2}$	41/4	415	2 7 8	11	23
2 7 8	$4\frac{5}{16}$	145	3 16	I 1/32	31	616	36	2 7 8	3 1/2	11	4 5 8	5 🕏	3 18	3	27
3	$4\frac{1}{2}$	15	3 5	1 1 3 2	3 1/2	63	40	3	3 1/2	11	4 5	5 8	3 18	3 4	28
31	$4\frac{7}{8}$	154	3 7	I 16	4	63	50	31	3 4	$II\frac{1}{3}$	5	513	3 8	13 16	35
3 1/2	51	161	44	I 7/32	4	71	65	3 1/2	4	12	5 8	61	3 8	7 8	40
34	5 \$	174	$4\frac{7}{16}$	I 16	5	81	95	3 4	414	121/2	54	611	3 7 8	15 16	47
4	6	18	4 8	1 7 16	5	83	108	4	41/2	13	61/8	716	41/8	I	55
*41	61	211	4 8	15	5 3 2	91	140	41	4 4	131	61/2	71/2	48	116	65
*41/2	63	221	51/2	13	61/2	104	195	41	5	14	67	715	44	I 16	75
*41	71	231	5 8	2	61	114	205								
*5	$7\frac{1}{2}$	24	6	21	61	117	250								

TABLE 95.

Bridge Pins and Nuts. AMERICAN BRIDGE COMPANY STANDARD. All Dimensions in Inches.

To obtain grip, add $\frac{1}{16}$ " for each bar. Nuts threaded 6 threads per inch. To obtain distance between shoulders, add amount given in table to grip.

				Pin.		Nut.									
Diameter of Pin, d.		Thread.		Add to	Thick- ness.	Diameter.			Depth	Diam- eter	Weight, Pounds.	Pattern			
			ш	b	Grip.	t	n	m ·	с	8	Rough Hole.	Wei	No.		
	2,	$2\frac{1}{4}$ $2\frac{3}{4}$	$I^{\frac{1}{2}}$	I	1/4	7 8	$2\frac{15}{16}$	3 8	25/8	1	1 16	1.1	PN 21		
	$2\frac{1}{2}$,	2 3 4	2	1 1 8	1	1	3 1 6	48	3 1	1 4	118	1.7	PN 22		
3,	*3 ¹ / ₄ , *3 ³ / ₄ ,	31/2	$\frac{2\frac{1}{2}}{3}$	1 1/4 1 3/8	1	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$4\frac{5}{16}$	-5	3 3 4 5 5 5 6 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6	8 3	$2\frac{5}{16}$ $2\frac{13}{16}$	2.5	PN 23 PN 24		
41,	$4\frac{1}{2}$,	*434	$\frac{3}{3\frac{1}{2}}$	$\mathbf{I}^{\frac{1}{2}}$	1 2	13	48 54 64	$\frac{5\frac{5}{8}}{6\frac{5}{8}}$	5 ± 1	1 1	3 16	3.7 4.6	PN 25		
		*51	4	I \$\frac{5}{8}\$ I \$\frac{3}{4}\$	1 3	1½ 15	61	73	5 4	1 2	3 16	6.2	PN 26		
$5\frac{1}{2}$,	5, *5¾, *6¼,	6	41/2	1 3/4	1/2	15	7	81		5 8	416	.7.8	PN 27		
	*61,	*61/2	5,	$I\frac{7}{8}$	4	13	7 8	878	7,	ojas o	416	9.9	PN 28		
	$*6\frac{3}{4}$,	7,	52	2	3	17/8	81 05	$9^{\frac{3}{8}}$	7½ 8	4 3	3 16	11.8	PN 29		
73,	*7 ¹ / ₄ ,	*7½ *8¼	$\frac{5^{\frac{1}{2}}}{6}$	2 21/4	3	1 7 8 2 1 2 1 8	85 98	10 10 ⁷ / ₈	8 <u>3</u>	3	$5\frac{5}{16}$ $5\frac{5}{16}$	14.3 18.6	PN 30 PN 31		
81,	0,	9	6	21/4	3	2 1 2 1	101	117	$9\frac{5}{8}$	3	516 518	23.8	PN 32		
$9\frac{1}{2}$,		ió	6	2 3 8	3	21	111	13	108	3	518	31.1	PN 33		

Pins marked * are special.

TABLE 96.

COTTER PINS.

AMERICAN BRIDGE COMPANY STANDARD.

All Dimensions in Inches.

TABLE 97
BEARING VALUES OF PINS.

701		Dooring Vol	us of Plate T"	Thick for Unit	Stress per Squ	iora Inch of	<u> </u>
Pir			1	1	1		Diam. of Pin in In.
Diam. in In.	Area.	12 000	15 000	20 000	22 000	24 000	
1	.785	12 000	15 000	20 000	22 000	24 000	1
$\begin{array}{c} \mathbf{I} \frac{1}{4} \\ \mathbf{I} \frac{1}{2} \end{array}$	1.227	15 000	18 800	25 000	27 500	30 000	11
I ½	1.767	18 000	22 500	30 000	33 000	36 000	$I^{\frac{1}{2}}$
13	2.405	21 000	26 300	35 000	38 500	42 000	1 3
2	3.142	24 000	30 000	40 000	44 000	48 000	2
$2\frac{1}{4}$	3.976	27 000 30 000	33 800	45 000 50 000	49 500	54 000 60 000	2 1/4 2 1/2
$2\frac{1}{2}$ $2\frac{3}{4}$	4.909 5.940	33 000	37 500 41 300	55 000	55 000 60 500	66 000	23/2
3	7.069	36 ooo	45 000	60 000	66 000	72 000	3
3 ½	8.296	39 000	48 800	65 000	71 500	78 000	31/4
31/2	9.621	42 000	52 500	70 000	77 000	84 000	31/2
3½ 3¾	11.045	45 000	56 300	75 000	82 500	90 000	3 ¹ / ₂ 3 ¹ / ₄
4	12.566	48 000	60 000	80 000	88 000	96 000	4.
4 4 ¹ / ₄	14.186	51 000	63 800	85 000	93 500	102 000	44
$4\frac{1}{2}$ $4\frac{3}{4}$	15.904	54 000	67 500	90 000	99 000	108 000	4½ 4¾ 4¾
44	17.721	57 000	71 300	95 000	104 500	114 000	44
5_	19.635	60 000	75 000	100 000	110 000	120 000	5,
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21.648	63 000	78 800	105 000	115 500	126 000	51 51 52 53 54
52	23.758	66 000	82 500	110 000	121 000	132 000	5 2
54	25.967	69 000	86 300	115 000	126 500	138 000	F
6	28.274	72 000	90 000	120 000	132 000	144 000	6
61	30.680	75 000	93 800	125 000	137 500	150 000	61
$6\frac{1}{2}$ $6\frac{3}{4}$	33.183	78 000 81 000	97 500 101 300	130 000	148 500	156 000 162 000	63 63
-	35.785	31 000	101 300	135 000	140 500	102 000	
7 71 74	38.485	84 000	105 000	140 000	154 000	168 000	7 7
74	41.282	87 000	108 800	145 000	159 500	174 000	74
$7\frac{1}{2}$ $7\frac{3}{4}$	44.179	90 000	112 500	150 000	165 000	180 000	7½ 7¾ 7¾
	47.173	93 000	116 300	155 000	170 500	100 000	
8	50.265	96 000	120 000	160 000	176 000	192 000	8 01
81	53.456	99 000	123 800	165 000 170 000	181 500	198 000	81 81 82
8½ 8¾	56.745 60.132	105 000	127 500 131 300	175 000	187 000	204 000	834
	63.617	108 000	T25 000	180 000	198 000	216 000	0
9 9 ¹ / ₄	67.201	111 000	135 000 138 800	185 000	203 500	222 000	9 9 1
$9\frac{4}{1}$	70.882	114 000	142 500	190 000	209 000	228 000	9 <u>1</u> 9 <u>1</u>
91	74.662	117 000	146 300	195 000	214 500	234 000	94
10	78.540	120 000	150 000	200 000	220 000	240 000	10
101	82.516	123 000	153 800	205 000	225 500	246 000	101
102	86.590	126 000	157 500	210 000	231 000	252 000	101
104	90.763	129 000	161 300	215 000	236 500	258 000	104
II	95.033	132 000	165 000	220 000	242 000	264 000	11 11 ¹ / ₄
$\begin{array}{c} II\frac{1}{4} \\ II\frac{1}{2} \end{array}$	99.402 103.869	135 000	168 800	225 000	247 500	270 000 276 000	117
113	103.809	141 000	172 500 176 300	235 000	253 000 258 500	282 000	113
12	113.097	144 000	180 000	240 000	264 000	288 000	12
	3.09/	144 000	100 000	240 000	204 000	200 000	

TABLE 98
Bending Moments on Pins.

Pir	1.	M	Max. Moments in Inch-Pounds for Fiber Stress per Square Inch of							
Diam. in In.	Area.	15 000	18 000	20 000	22 000	22 500	24 000	25 000	Diam. of Pin in In.	
I I 4 I 4 I 4	.785 1.227 1.767 2.405	1 470 2 880 4 970 7 890	3 450 5 960	1 960 3 830 6 630 10 500		2 210 4 310 7 460 11 800	2 360 4 600 7 950 12 630	2 450 4 790 8 280 13 200	I I 1 I 1 I 2 I 3	
2 2 2 2 2 2 2	3.142 3.976 4.909 5.940	11 800 16 800 23 000 30 600	20 100 27 600		33 700	17 700 25 200 34 500 45 900	18 800 26 800 36 800 49 000	19 600 28 000 38 300 51 000	2 2 1 2 1 2 2 2 3	
3 14 13 13 13 13 13 13 13 13 13 13 13 13 13	7.069 8.296 9.621 11.045	39 800 50 600 63 100 77 700	60 700 75 800		92 600	59 600 75 800 94 700 116 500	63 600 80 900 101 000 124 300	9	3 14 12 3 3 3 3 3 3 3 4 1 3 3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 44 42 43 44	12.566 14.186 15.904 17.721	94 200 113 000 134 200 157 800	135 700		165 800 196 800	141 400 169 600 201 300 236 700	150 800 180 900 214 700 252 500	188 400 223 700	4 44 42 43 43	
5 14 15 15 15 15 15 15 15 15 15 15 15 15 15	19.635 21.648 23.758 25.967	184 100 213 100 245 000 280 000	255 700 294 000	284 100 326 700	312 500 359 300	319 600 367 500	294 500 340 900 392 000 447 900	355 200 408 300	5 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
6 61 61 63	28.274 30.680 33.183 35.785	318 100 359 500 404 400 452 900	431 400	479 400 539 200	527 300 593 100	539 300 606 600	508 900 575 200 647 100 724 600	599 200 674 000	6 6 6 6 6 3 6 3	
7 7 7 7 7 7	38.485 41.282 44.179 47.173	505 100 561 200 621 300 685 500	673 400	748 200 828 400	823 100 911 200	841 800 931 900	994 000			
8 81 81 82 83	50.265 53.456 56.745 60.132	904 400	904 800 992 300 1 085 300 1 183 900	I 102 500 I 205 800	1 326 400	I 240 400 I 356 600	I 323 000 I 447 000	I 378 200 I 507 300	81/2	
9 94 91 92 94	67.201 70.882	I 165 500 I 262 600	1 288 200 1 398 600 1 515 100 1 637 900	I 554 000 I 683 500	1 709 400 1 851 800	I 748 300 I 893 900	1 864 800 2 020 100	1 942 500 2 104 300	91/2	
$ \begin{array}{c} 10 \\ 10 \\ 4 \\ 10 \\ 2 \\ 10 \\ 4 \end{array} $	82.516 86.590	1 585 900 1 704 700	1 767 100 1 903 000 2 045 700 2 195 300	2 114 500	2 325 900	2 378 800 2 557 100	2 537 400 2 727 600	2 643 100 2 841 200	101	
11 114 112 113	99.402 103.869	2 096 800	2 352 100 2 516 100 2 687 600 2 866 700	2 795 700	3 075 200	3 145 100	3 354 800 3 583 500	3 494 600 3 732 800	1111	
12	113.097	2 544 700	3 053 600	3 392 900	3 732 200	3 817 000	4 071 500	4 241 200	12	

TABLE 99.

LONG PILOT NUTS.

AMERICAN BRIDGE COMPANY'S STANDARDS.

Pilot Nuts are made from Special Hard Steel and finished all over.

Screw, 6 Threads per Inch.

Diam.	w Diam. of Screw.	Diam. of Rough Hole.	Length of Thread.	F Length over All.	Straight F Portion Inside.	Diam. Inside.	Straight O Portion Outside.	P	Radius.	F	Z Clear. for Nut.	Diam. P of Hole.	m Diam. of Holes.	Weight in Pounds.	Diam.
$ \begin{array}{c} 2'' \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \end{array} $	1½" 2 "	$I_{\frac{16}{16}}^{\frac{5}{16}}$	2"	5″ 6 "	2" " " " " " " " " " " " " " " " " " "		3" 4 1 4 1 1 16	I"	18½" " 20½	I" " " " " " " " " " " " " " " " " " "		1/2 " 5/00"	3//	1.5 2. 3. 4.	2" 2 ¹ / ₄ 2 ¹ / ₂ 2 ³ / ₄
3 3 4 3 2 3 3	2½ · · · · · · · · · · · · · · · · · · ·	2 \frac{5}{16} \tag{6} \tag{7} \tag{13} \tag{16} \tag{6} \tag{7} \tag{13} \tag{6} \tag{6} \tag{7} \tag{7} \tag{6} \tag{7} \tag{7} \tag{6} \tag{7} \tag{7} \tag{7} \tag{6} \tag{7} \tag	46 46 238 66	8	21/2		I 16 11 16 5 16 15 I 16	1 1 4 66 66 1 1 2 66	66	1 1 4 66 66 66 66 66 66 66 66 66 66 66 66 6		## CC	66 88 66	5. 7. 9. 11.	3 1 3 1 3 2 3 3 4 ×
4 4 4 1 2 3 4	3 ¹ / ₄	3 16 4	ee ,	9	66		15 16 17 8 12 16	134 66	27 "	66 66	I ½"	1 "	66	12. 14. 16. 19.	4 41 42 43 44
5 14 123 14 5 5 5 5	4 4 1 2 4	$3\frac{13}{16}$ $4\frac{5}{16}$	66	10 " 11½	ee		I 18 34 I 18 58	2 3 4	40	2 1/2 (6	$1\frac{5}{8}$	1 1 2 66	66	24. 30. 33. 40.	5 5 5 5 5 8
6 61 62 63	5 5 5 ¹ 5 ²	$4\frac{13}{16}$ $5\frac{5}{16}$	2 7 8 66 66 66 66 66 66 66 66 66 66 66 66 6	13 14 ¹ / ₂	2½ 3 "		$\begin{array}{c} \frac{3}{16} \\ I_{\frac{5}{16}}^{\frac{5}{16}} \\ I_{\frac{7}{2}}^{\frac{1}{2}} \end{array}$	66	43	66	66 66	66 66	66	45. 49. 58. 64.	6 6 6 6 6 6 3 6 3
7 7 7 7 7 7 3 7	"	" " 5 ¹³ / ₁₆	66	"	66		1 1 8 3 4 3 8 9 1 1 6	66	66	66	66	66	66	70. 77. 85. 95.	7 7 1 7 1 7 2 7 3
8 1 2 3 4 8 3 4 8 3 4 8 8 4 8 8 4 8 8 8 8 8 8	66	66	21/2	" 17½	66	61"	1 3 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	3	" 52 "	" 234	" " 2 1 " "	"	ee .	102. 110. 92. 99.	81 81 82 84
9 94 94 93 94	66	66	3	" 19½ "		714 66	$1\frac{3}{8}$ $1\frac{3}{4}$ $1\frac{3}{8}$ $1\frac{1}{16}$	66	66	66 66	66	66 66 66	11/2 66	107. 119. 130. 142.	9 9 1 9 1 9 1 9
10 10 10 10 10 10 11	66 66 66 66	66	66 66 66 66	2 I ½		66 66 66	1 1 1 2 1 3 1 6 1 3 1 6 1 2 2	66	57 	66	66	« « «	66 66 66 66	156. 160. 172. 186. 203.	10 10 ¹ / ₄ 10 ¹ / ₂ 10 ³ / ₄

TABLE 100 SHORT PILOT NUTS AND DRIVING NUTS. AMERICAN BRIDGE COMPANY'S STANDARDS.

	1	Dimens	ions in	Inches	3.		
Diam. of Nut.	to Diam. of Screw.	Diam. of F. Rough Hole.	r Length over All.	A Straight	A Radius.	Weight in Pounds.	
2" 21 21 21 21 23	1½" " 2 "	I 13 16 16	2"	I 4 "	44/1	5. I. I.	
3 3 3 3 3 3 3 3	21/3	2 5 16 · · ·	••	66	66	I.5 I.3 2. 3.	
4	3 "	213	21/2	66	66	3·,	
41 42 43 44	3 2	3 16	66	66	66	3. 4. 5.	-
5 5 5 5 6 6 6 6 6 6 6	43	3 18 4 18 4 18	66	66	66	5. 6. 5. 6.	
6.61	5.	413 416	3	114 66	66	8. 9.	
63 63 7 74	5½ "	5 16	"	"	"	11. 10. 12.	
7½ 7½	6	513 516	66	" " 1 2	61/2	14. 16. 14.	
8 81 81 83 83	66 66 66	66 66	66	66	66	16. 19. 21.	
9 9 9 9 9 9 9 9	66 66	66	3 1 3 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66	7.	24. 28. 33. 36.	
94 10 101	"	66	66 66	66	66	40. 45. 48.	
101	66	"	66	"	"	51. 55.	

			Di	mensio	ns in I	nches.				
U Diam. of Nut.	w Diam. of Screw.	Diam. of Hough Hole.	→ Length of Thread.	F Length over All.	Straight	z Inside Radius.	G	P	a Diam. of Holes.	Weight in Pounds.
28" 2855 38	$ \begin{array}{c} 1\frac{1}{2}'' \\ 2 \\ 2\frac{1}{2} \end{array} $	$ \begin{array}{c} I_{\overline{16}}^{5}''\\I_{\overline{16}}^{13}\\2_{\overline{16}}^{5} \end{array} $	2"	4" 4 ³ / ₈ 5	2 ¹ / ₄ 2 ⁵ / ₈	$\frac{21}{32}''$ $\frac{29}{32}$ $1\frac{5}{32}$	$2'' \\ 2\frac{1}{16} \\ 2\frac{3}{8}$	$2\frac{9}{16}''$ $2\frac{3}{4}$ $3\frac{3}{16}$	3"	4 5 8
4 1 8 4 7 8 5 8 5 8	3 3 ¹ / ₂ 4	$ \begin{array}{r} 2\frac{13}{16} \\ 3\frac{5}{16} \\ 3\frac{13}{16} \end{array} $	238	51 58 58 68	66	1 33 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 ½ 46 2 5 8	3 1 3 2 3 3 4	ee I	11 17 22
$6\frac{1}{4}$ $6\frac{3}{4}$ $7\frac{3}{4}$	4½ 5 5½	$4\frac{5}{16} \\ 4\frac{13}{16} \\ 5\frac{5}{16}$	2 7 8 44	63 78 78 78	3	$2\frac{5}{32} \\ 2\frac{13}{32} \\ 2\frac{21}{32}$	2 \frac{3}{4} \\ 3 \frac{3}{8} \\ \(\)	3 7 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	66	27 37 56
8½ 9¼ 10¼ 11¼	6 "	513 16 "	3	7.8 8.8 66	3 1/2 cc	2 ²⁹ / ₃₂	4	4 ⁷ / ₈ 5 ¹ / ₂	1 1 2 46	67 86 120 150

Pilot Nuts and Driving Nuts are made from special hard steel. Pilot nuts are finished all over.

Screws 6 threads per inch.

When short pilot nuts are needed on bottom chord pins, long pilot nuts are to be sent for all other pins, in addition.

TABLE 101.

SCREW THREADS.

AMERICAN BRIDGE COMPANY STANDARD.

BOLTS, RODS, EYE BARS, TURNBUCKLES, SLEEVE NUTS, AND CLEVISES.

Di	ameter.	Ar	ea.	Number	Dia	meter.	Ar	ea.	Number
Total d, In.	Net, c, In.	Total Dia., d, Sq. In.	Net Dia., c, Sq. In.	Threads per Inch.	Total, d, In.	Net, c, In.	Total Dia., d, Sq. In.	Net Dia., c, Sq. In.	of Threads per Inch.
기(세종)(B 기(245)(B 종)(세주)(B	.185 .294 .400	.049 .110 .196	.027 .068 .126	20 16 13	· 2½ 25834 2478	2.175 2.300 2.425 2.550	4.909 5.412 5.940 6.492	3.716 4.156 4.619 5.108	4 4 4 4
1	.620 .731 .838 .939 1.064	.442 .601 .785 .994	.302 .419 .551 .693	9 8 7	3 14 123 3 4 3 3 3 4 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.629 2.879 3.100 3.317	7.069 8.296 9.621 11.045	5.428 6.509 7.549 8.641	3½ 3½ 3½ 3¼ 34
I I I I I I I I I I I I I I I I I I I	1.004 1.158 1.283 1.389 1.490	1.227 1.485 1.767 2.074 2.405 2.761	.890 1.054 1.294 1.515 1.744 2.049	7 6 5 5 5	4 44 42 43 44	3.567 3.798 4.028 4.255	12.566 14.186 15.904 17.721	9.993 11.330 12.741 14.221	3 7/83/45/8 2 2/45/8
2 2 1/8 2 1/4 2 3/8	1.711 1.836 1.961 2.086	3.142 3.547 3.976 4.430	2.300 2.649 3.021 3.419	4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2	5 5 5 5 5 5 6	4.480 4.730 4.953 5.203 5.423	19.635 21.648 23.758 25.967 28.274	15.766 17.574 19.268 21.262 23.095	2121258383814 22583814

BOLT HEADS AND NUTS.

AMERICAN BRIDGE COMPANY STANDARD.

Rough N	ıt.	Finishe	ed Nut.	Rough H	ead.	Finishe	d Head.
f	g	f	g	f *	h	ř	ħ
1.5d + ½"	d	$1.5d + \frac{1}{16}$ "	$d - \frac{1}{16}''$	1.5d + ½"	0.5f	$1.5d + \frac{1}{16}$ "	$0.5f - \frac{1}{16}''$

For Screw Threads, Bolt Heads and Nuts, the American Bridge Company has adopted the Franklin Institute Standard, commonly known as United States Standard.

TABLE 102.

BOLT HEADS AND NUTS, DIMENSIONS IN INCHES.

AMERICAN BRIDGE COMPANY STANDARD.

			HEAD.						NUT	,	
lolt,	Hexa	gonal.	Hex. or Square.	Squ	are.	Bolt,	Hexa	gonal.	Hex. or Square.	Squ	are.
Diameter of Bolt, Inches.		gonal.	Hex. or Square.	Square, Diameter,		Diameter of B Inches.		gonal.	Hex. or Square.	Square, Diameter.	
A	Dian	neter.	-	Dian	eter.	Ω	Dian	neter.		Dian	neter.
	Long.	Short.	Height.	Long.	Short.		Long.	Short.	Height.	Long.	Short.
1 4	ž.	1	1 .	116	1 2	1 4	5 8	1/2	14	116	1/2
3 8	13	11	-	1	116	3 8	13	116	3 8	1	11
1	I	7	7 16	114	7	1/2	1	7 8	1/2	114	7 8
5	114	116	76	11/2	116	- 8	114	116	1 3 5 8	$1\frac{1}{2}$	$1\frac{1}{16}$
3	1 7 16	11	5 8 3 4	I 13	11	. 3	1 7 16	114	34	$1\frac{13}{16}$	114
ž	$1\frac{11}{16}$	17/16	3	$2\frac{1}{16}$	176	7 8	$1\frac{11}{16}$	I 7/16	7/8	$2\frac{1}{16}$	$1\frac{7}{16}$
1	178	15	13 16	2 16	15	1	1 7 8	I 5	I	$2\frac{5}{16}$	15
1 1 6	2 18	I 13	$\frac{15}{16}$	2 9 16	I 13	1 1 8	2 1/8	I 13	I 1/8	$2\frac{9}{16}$	$1\frac{13}{16}$
11	2 16	2	I	$2\frac{13}{16}$	2	$1\frac{1}{4}$	$2\frac{5}{16}$	2	$I_{\frac{1}{4}}^{\frac{1}{4}}$	$2\frac{13}{16}$	2
18	2 16	$2\frac{3}{16}$	1 1 8	3 18	2 3 16	18	2 9 16	$2\frac{3}{16}$	I 3	3 1 8	2 3 16
$1\frac{1}{2}$	23	2 3 8	$1\frac{3}{16}$	3 8	2 3 8	$1\frac{1}{2}$	23/4	23/8	11/3	3 3	2 3 6
1 5	3	2 9 16	I 16	3 8	2 9 16	15	3	2 9 16	1 5	3 5	2 9 16
14	316	$2\frac{3}{4}$	1 3 6	3 7 8	$2\frac{3}{4}$	134	3 1 6	2 3	I 3	3 7 8	2 3 4
1 7	316	215	11/2	416	2 15 16	17/8	3 7 16	$2\frac{15}{16}$	I 7/8	$4\frac{3}{16}$	215
2	3 5	3 18	$1\frac{9}{16}$	476	31/8	2	3 5	3 18	2	$4\frac{7}{16}$	3 18
24	416	31/2	$1\frac{3}{4}$	415	3 1/2	21/4	416	3 1/2	21/4	416	$3\frac{1}{2}$
21/2	41/2	3 7 8	$1\frac{18}{16}$	51/2	3 7 8	$2\frac{1}{2}$	41/2	3 7 8	$2\frac{1}{2}$	51/2	3 7 8
24	415	41	2 1/8	6	44	$2\frac{3}{4}$	415	41	$2\frac{3}{4}$	6	41/4
3	5 3 8	45	$2\frac{5}{16}$	6 9 16	45	3	5 8	4 8	3	$6\frac{9}{16}$	4 5
3,4	513	5	$2\frac{1}{2}$	$7\frac{1}{16}$	5	31/4	5 1 6	5	$3\frac{1}{4}$	$7\frac{1}{16}$	5
31/2	61	58	$2\frac{11}{16}$	75	58	$3\frac{1}{2}$	614	5 8	$3\frac{1}{2}$	7 \$	5 3

BOLT THREADS, LENGTH IN INCHES.

Length,				Di	ameter, Inc	hes.			
Inches.	ł	1	i	1	3 4	- 1	r	11	11
I to I_2^1	34	3	I	11					
15 to 2	3	3 4	I	11	11/2	$1\frac{1}{2}$			
2 to 2 1	3	3	I	114	112	13	13		
25 to 3	7 8	7 8	I	114	$1\frac{1}{2}$	13	13	21	
3 to 4	7 8	7 8	$1\frac{1}{4}$	114	$I\frac{1}{2}$	13	13	21/4	21/2
41 to 8	I	I	11	$1\frac{1}{2}$	13/4	2	21/4	$2\frac{1}{2}$	23
81 to 12	I	I	$1\frac{1}{2}$	13	2	21/4	$2\frac{1}{2}$	3	3
121 to 20	I	I	1 1/2	2	2	21/4	21/2	3	3

Bolts not listed are threaded about 3 times the diameter; in no case are standard bolts threaded closer to the head than $\frac{1}{4}$ inch.

TABLE 103.

BOLTS WITH HEXAGON HEADS AND NUTS.

AMERICAN BRIDGE COMPANY STANDARD.

WEIGHT IN POUNDS PER 100 BOLTS.

Length Under		Diamete	er of Bol	t, Inches		Length Under		Diamete	r of Bolt	, Inches.	
Head, Inches.	1/2	50	3 4	7	I	Head, Inches.	š	4	2	1	r
I	19	33	52			8	58	92	137	194	264
I 1/4	20	34	54			8 1 / ₂	60	96	143	202	274
I 1/2	22	36	57			9	63	100	149	210	285
1 3/4	23	38	60		:	91/2	66	105	156	219	296
2	24	40	63	93	132	10	68	109	162	227	307
21/4	26	43	66	97	137	101	71	114	168	236.	318
$2\frac{1}{2}$	27	45	69	101	143	11	74	118	174	244	329
$2\frac{3}{4}$	29	47	72	105	148	1112	77	122	181	253	34I
3	30	49	75	109	154	12	80	127	187	261	352
31/4	31	51	78	114	160	$12\frac{1}{2}$	82	131	193	270	363.
3 ½	33	54	82	118	165	13	85	135	199	278	374
3 4	34	56	85	122	171	13½	88	139	206	287	385
4	35	58	88	126	176	14	91	144	212	295	396
41/4	37	60	90	130	180	141/2	93	148	218	304	407
$4\frac{1}{2}$	38	62	94	134	186	15	96	152	225	312	418
$4\frac{3}{4}$	39	64	97	138	191	151	99	157	231	321	430
5 *	41	66	100	143	197	16	102	161	237	329	44I
51/4	42	68	103	147	202	16½	105	165	243	338	452
$5\frac{1}{2}$	44	71	106	151	208	17	107	170	250	346	463
$5\frac{3}{4}$	45	73	109	156	213	171/2	110	174	256	355	474
6	46	75	112	160	219	18	113	177	262	364	485
61/4	48	77	115	164	225	$18\frac{1}{2}$	116	183	268	372	496
$6\frac{1}{2}$	49	79	119	168	230	19	119	187	275	381	507
$6\frac{3}{4}$	51	81	122	173	236	19½	121	191	281	389	519
7	52	84	125	177	241	20	124	196	287	398	530
$7\frac{1}{4}$	53	86	128	181	247						
$7\frac{1}{2}$	55	88	131	185	252						
· 7 ³ / ₄	56	90	134	190	258						
Per Inch						Per Inch					
Additional	5.6	8.7	12.5	17.0	22.3	Additional	5.6	8.7	12.5	17.0	22.3

HEXAGON NUTS AND BOLT HEADS. WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT.

Diameter of Bolt, Inches.	11	11/2	13	2	21	3
Hexagon Head and Nut	1.73	2.95	4.61	6.79	13.0	22.0
Weight of Shank per Inch	-3479	.5007	.6815	.8900	1.391	2.003

TABLE 104.

BOLTS WITH SQUARE HEADS AND NUTS.

AMERICAN BRIDGE COMPANY STANDARD.

WEIGHT IN POUNDS PER 100 BOLTS.

Length Under		Diameter of Bolt, Inches.													
Length Under Head, Inches.	ŧ	A	ł	¥ 16	1	ł	Et.	I	I						
1	4	7	II	15	22	37	56								
114	4	7	11	16	23	39	59								
11	5	8	12	17	24	41	62								
12	5	8	13	18	26	43	64								
2	5	9	14	19	27	45	67	101	144						
21	6	9	15	20	28	47	71	104	150						
21/3	6	10	15	21	30	49	74	109	155						
2 4	6	10	16	22	31	51	77	113	161						
3	7	11	17	24	33	54	80	117	167						
31/2	7	12	18	25	35	58	86	126	178						
4	8	13	20	28	38	62	92	134	189						
41/2	9	14	21	30	41	66	98	142	198						
5	10	15	23	32	43	71	104	151	209						
51	10	16	25	34	46	75	111	159 .	220						
6	11	17	26	36	49	79	117	168	232						
61			28	38	52	84	123	176	243						
7			29	40	55	88	129	185	254						
71			31	42	57	92	136	193	265						
8			32	45	60	97	142	202	276						
9			34	49	65	105	154	218	298						
10				53	71	114	167	235	320						
12				61	82	131	192 .	269	364						
14					93	148	217	303	409						
Per Inch Additional	1.4	2.2	3.1	4-3	5.6	8.7	12.5	17.0	22.3						

Square Nuts and Bolt Heads. Weights in Pounds for One Head and One Nut.

Diameter of Bolt, Inches.	11	x 1/2	12	2	21	3
		3.51	5.48	8.08	15.5	26.2
Weight of Shank per Inch	-3477	.5007	.6815	.8900	1.391	2.003

TABLE 105.

LENGTHS OF BOLTS AND TIE RODS.

TABLE 106. STRUCTURAL RIVETS.

AMERICAN BRIDGE COMPANY STANDARD.

WEIGHT IN POUNDS PER 100 RIVETS WITH BUTTON HEADS.

Length Under			Diam	eter of	Rivet	Inche	8.		Length Under			Diam	eter of	Rivet,	Inche	в.	
Head, Inches.		4	1	ŧ	i	ī	11	11	Head, Inches.	ŧ	i	1	1	i	I	11	11
									5	18	33	53	78	109	146	190	252
									1	18	34	54	80	111	149	193	256
11	6	12							1	19	34	55	82	113	152	197	260
1	7	13							3 8	19	35	56	83	115	155	200	265
3	7	13	23	35	50	68	91	130	1/2	20	36	57	85	118	157	204	269
4	7	14	24	36	52	71	95	134	5 8	20	36	58	86	120	160	207	273
1	8	15	25	37	54	74	98	139	3 4	20	37	60	88	122	163	211	278
7 8	8	15	26	39	56	77	102	143	7 8	21	38	61	89	124	166	214	282
2	9	16	27	41	58	80	105	148	6	21	38	62	91	126	169	218	287
1	9	17	28	43	60	82	109	152	1 8	22	39	63	93	128	171	222	291
1	9	18	29	44	62	85	112	156	1	22	40	64	94	130	174	225	295
1 8	10	18	30	46	64	88	116	161	38	22	40	65	96	132	177	229	300
1	10	19	31	47	67	91	119	165	$\frac{1}{2}$	23	4 I	66	97	135	180	232	304
5 8	11	20	32	49	69	93	123	169	<u>5</u> 8	23	42	67	99	137	182	236	308
3	11	20	34	50	71	96	126	174	34	24	43	68	100	139	185	239	313
*	11	21	35	52	73	99	130	178	7 8	24	43	69	102	141	188	243	317
3	12	22	36	54	75	102	133	182	7	24	44	70	104	143	191	246	321
1 8	12	22	37	55	77	105	137	187	1/8	25	45	71	105	145	194	250	326
1	13	23	38	57	79	107	141	191	1/4	25	45	73	107	147	196	253	330
1	13	24	39	58	81	110	144	195	38	26	46	74	108	149	199	257	334
1/2	13	24	40	60	84	113	148	200	1/2	26	47	75	110	152	202	260	339
1	14	25	41	6 1	86	116	151	204	<u>5</u> 8	26	47	76	111	154	205	264	343
3	14	26	42	63	88	118	155	208	3 4	27	48	77	113	156	207	267	347
· 7	15	27	43	64	90	121	158	213	7 8	27	49	78	114	158	210	271	352
4	15	27	44	66	92	124	162	217	В	27	50	79	116	160	213	274	356
i i	15	28	45	68	94	127	165	22 I	18	28	50	80	118	162	216	278	360
1	16	29	47	69	96	130	169	226	1	28	51	81	119	164	219	281	365
1	16	29	48	71	98	132	172	230	3 8	29	52	82	121	166	221	285	369
1/2	16	30	49	72	101	135	176	234	1/2	29	52	83	122	169	224	288	373
5	17	31	50	74	103	138	179	239	<u>5</u>	29	53	84	124	171	227	292	378
3	17	31	51	75	105	141	183	243	34	30	54	86	125	173	230	295	382
7 8	18	32	52	77	107	143	186	247	7 8	30	54	87	127	175	232	299	386

Button Heads.		•	Dian	eter of I	Rivets, I	nches.		
	ŧ	•	ŧ	ŧ	ŧ	x	11	11
100 Heads as made on rivets, Pounds 100 Heads as driven in work, Pounds	2.4 1.9	5.0 4.0	9·7 7·5	16.0 12.5	24.0 18.5	35.0 27.0	49.0 37.5	78.0 51.0

TABLE 107.

LENGTHS OF FIELD RIVETS AND BOLTS FOR BEAM FRAMING.

,		*						<u>3</u> ′′	' Rivet	8.				•	4		*	3
	Sing Bolt In.		24"	20"	18"	15"	12"	10"	9"	8"	7''	6"	5"	4"	3"	Dou Riv. In.	Bolt In.	
	I ½	21/8										12.25	9.75	7·5 8.5	5·5 6.5	21/2	2	
	I 3/4	21/8						25	2I 25	18 20.5	15 17.5	14.75	12.25	9.5	7.5	2 5 8	21/4	
	-	$2\frac{1}{4}$				42	31.5			23		17.25		10.5		23/4		
MS		238	80	65	55 60	45 50 60	35 40	30 35	35 30	25	20		14.75			23		4S
BEAMS	2	21/2	85 90	70 75 80 85	65 75 80	55 65	45									3	21/2	BEAMS
	21/4	2 ⁵ / ₈	95 100 115	90 95	70 85	70 75 80	50 55 60	40								3 18		
	-	$2\frac{3}{4}$		100	90	85	65									3 8	-3	
		2 7/8				90										31/2	23/4	-
	$2\frac{1}{2}$	3 1/8				95 100										3 8	3	
	1 1/2	2										8.00	6.50	5.25	4.00	28		
		21/8					20.5	15	13.25	11.25	9.75			6.25	5.00	21/2	2	
Ś	I 3/4	2 1/8							15.00		12.25	10.50	9.00	7.25	6.00	25/8		3
CHANNELS	14	21/4				33	25	20	20	16.25 18.75	14.75		11.50			2 5 8		CHANNELS
AN		$2\frac{1}{4}$				40		25				13				234	21/4	HA
CH	2	2 3/8					30 35		25	21.25	17.25 19.75	15.50				24		O
		$2\frac{1}{2}$				45 50	40	30					-			3	21/2	
	$2\frac{1}{4}$	$2\frac{5}{8}$				55		35					1			3 18	24	
											all	all	all	all	all	21/4	13/4	
Ta	n 4=	gle				42 to	31.5	all	all	all						28	2	
10	p An = \{'' .	/I				55	35									21/2		SI
		#			55 to 70		40 to									2 5 8	21	BEAMS
	-1		80 to	65 to 75		60 to 75										23/4	~4	
			115	80 to		80 to										3	21/2	
	1														all	21/8	134	
	4	7								all	all	all	all	all		21/4		N
	-						20.5 25 30	all	all							2 3 8	2	CHANNELS
gle	tom	An- ".				all	35 40									$2\frac{1}{2}$		CH
			24"	20"	18"	15"	12"	10"	9"	8"	7"	6"	5"	4"	3"	Riv.	Bolt.	

TABLE 108

STRUCTURAL RIVETS.

AMERICAN BRIDGE COMPANY STANDARD.

LENGTHS OF FIELD RIVETS FOR VARIOUS GRIPS. Dimensions in Inches.

TABLE 109. STANDARDS FOR RIVETS AND RIVETING.

	9>		AGE	9/> 	92)		×308	-a	b >	Z.		Y-V	h>	•
_		in	inch	<i>es</i>					<u> </u>	7				1 ×	
Leg	6age g	Max. Rivet	Leg	Gage gi	6age 92	Max. Rivet		PA	ROPOF	RTION in i			RIV	ET5	
8	4 1/2	78	8	3	3	78	Diamet		/	ull H	'eo	d		Coun	tersunk
7	4	78	7	$2\frac{1}{2}$	3	78	of Shan		Diamet	-	-		dii		
6	3/2	78	6	2/2	24	7/8	d		viamei a	er Heig		C	a11 e	Diamei g	ter Depth h
5	3	78	5	2	13/4	78	/		$/\frac{5}{8}$	11/16		11/16	1/3/2	12/16	1/2
4	2 1/2	78	Whe	n6"Le	xceed	15 3"	78		17/16	3º	2	<u>39</u> 64	<u>59</u> 64	13/8	7/6
3/2	2	78	6	21/2	2	78	3/4		14	17 32		17 32	<u>51</u> 64	13/16	38
3	13	78		1////			5 8		1/16	29	2	29 64	43	1	5/16
23/4	15	3/4		T 51 Rivet			1/2		78	3		318	9 16	25 32	4
$2\frac{l}{2}$	13/8	34		ches		isiance hes	38		11/16	19		19	7	<u>19</u> 32	3/16
24	14	58	,	,	3			/N/	MUM	5TA	66	ER	FOR	RIVE	
2	/ <u>/</u> 8	<u>5</u>	É	7	2	<u>5</u> 8	100	=		8	7			Ь	
13/4	1	1/2	4			1/4	* &)	/()		inst	-	in inc	hes For a River
$1\frac{1}{2}$.	78	38	A S		2		>	6	× 0×		_	11161	C	$\chi = l \frac{1}{8}$	$\alpha = l \frac{1}{4}$
13/8	78	58			1	<u>5</u>			Ь		_	1/6		1/6	15/16
14	3 4	3 8	12	5		1/4	inchas	Face	in inc		21.4	18		15 16	14:
1	58	1/4	4		1	-	iriaries	C	4 NIVET 1= =	a=14	iver I II	17	7	78	13/16
	NIM	UM	T	5TAI	VDAP	₽ <i>D</i>	1/8		14	11/2		1/2		<u>3</u>	1/8
	and	SET.		CLEA OR RI			1 16		13/16	17		176		9 16	1
1	-24	>	//	, ,	A		14		1 1/8	13		18		3 8	15 16
tor Ri	vets le.	ss than	4	afri	7/		RIVET.	5 1/	V CRIM	PED L	5	176		0	<u>13</u> 16
1				-		φ <u> </u>		4.	76	*		13			<u>5</u>
			For	g River	15> 1/1	4	Distance	bs	hould = i	15 7 2×11	hick	1/10			7/6
		7		3 Rivets	/	" +	ness chai				- 44	17/8			0

TABLE 110. STANDARDS FOR RIVETING.

DISTANCE	¢ TO	¢	OF	- 0	9T	90	GE.	RE	D	RI	VE	T3	ì.		
,	VAL	UES	5 01	FX	FOR	e VA	<i>ARY</i>	ING	VA	LUE	30	FA	AN	ID E	}.
	VALUES				4	VA	91.0	ES .	OF F	7					
	OF B	78	/	1/8	14	13/8	$\frac{1}{2}$	18	13/4	17/8	2	2/8	24	23	$2\frac{1}{2}$
	1/8	17/16	1/2	19/16	1/16	13/4	1/8	2	2/6	$2\frac{3}{16}$	25/6	23/8	$2\frac{1}{2}$	2 5 8	$2\frac{3}{4}$
ا ۱۹۵۱	14	19/16	15/8	1/1/6	13/4	17	1/5	2/6	2/8	24	23	27/6	29	2/1/16	2 <u>/3</u>
4	13/8		1/1/6	13/4	17	1/5	2	2/8	23	25/6	27/16	2/2	2 5	23/4	$2\frac{7}{8}$
	1/2	13/4	1/13	17/8	15	2	2/8	23/16	25/16	23/8	$2\frac{1}{2}$	2 5	2/1	2/3	2/5
1	15/8	17/8	17/8	2	2/16	2/8	23/16	25/16	2 3	$2\frac{1}{2}$	276	2/1/6	23	27/8	$\overline{}$
₩-++- 2	13/4	15/16	2	2/6	2/8	23/6			27			23		2/5	
Φ	17/8	2/6	2/8	23	24	25	_	$\overline{}$	29		23/4	2/3	_	_	34
	2	$2\frac{3}{16}$	2/4	25/6	23/8	27/6		276	25/8	23/4	2/3		_	3 <u>/</u>	3 <u>3</u>
	2/8	$2\frac{5}{16}$	25/16	2 3	27/6	2/2	2 5		23/4	2/3		3	3/6	33/6	3/4
→ A -	2/4	27/6	27/6		29	25	2/1/6	_	27			3/6	33/6		3 3 8
	23/8	2/2	29		2/1/6	_	2/3	$\overline{}$	2/5		3/8	33/6		_	37/6
	$2\frac{l}{2}$		2/1/6	23			2/5	-	_		3/6	3/4	33		39
MOTE: VI II			-	-										- 4	
NOTE:-Values below or	to the r	ignt "		uppi secol	,	igza	ag //	ine a n	ire k "	arge "	eno	ugh	ror	8 K	IV.
, , ,		,	,	owe		,		,	"			"	1 2	7 11	
4 4 4	* *		" /	owe	~			*	"	"		"	" ह	7 W	

TABLE 111. Standards for Riveting.

	OF STAGGE SIN ANGLES				GGER OF RIVE PAINTAIN NET		•	D
- × 9 ×		7 inche 3/4 riv. 1/4 1/3 1/6 1/6 1/5 1/6 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 3/4 1/6 1/6 3/4 1/6 1/6 3/4 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6		ONL	EHOLE OUT $b \leftarrow b$ $y = diam.of.riv. + \frac{1}{8}$ $a - y = \sqrt{a^2 + b^2 - 2y}$ $b = \sqrt{2ay + y^2}$ $b = \sqrt{2ay + y^2}$	Sumof bages a I I I I I I I I I	5ize of 3/4" b 18 216 216 216 216 316 34 38	Rivet 7/8" C 134 2 14 2 15 2 15 3 15
a=1 for 5 invets; 15 l	/8	rivets i	rivets	table.	y=diam.ofrix.+ \frac{1}{6}" a-2y=\a^2+b^2-3y b=\abla 2ay+y^2 for \frac{2}{5}"ivets take b	6½ 7 7½ 8 8½ 8½	3½ 3½ 3½ 3¾ 3¼ 4	3 ³ / ₄ 3 ⁷ / ₈ 4 4 ¹ / ₄ 01 ³ / ₄ .

TABLE 112. STANDARDS FOR RIVETING.

TABLE 113. STANDARDS FOR RIVETING.

STANDARD RIVET SPACING FOR CAULKING

THICKNESS	3/8	"RIV	ET	5	1/2	RIV	E7.	5	<u>5</u> 8	"RIV	ET.	5	3	"PIL	VE7	5	78	"RI	VE7	3
OF PLATE	A	В	C	D	Д	В	C	D	A	В	C	D	A	B	C	0	A	B	C	D
<u>/</u> "	14	<u>5</u> 8	2	/																
3"	1/2	34	24	14	15/8	3/4	24	13/8												
1"	1/2	<u>3</u> 4	24	1/4	13/4	78	2/2	1/2	18	/	2 <u>5</u>	/ <u>\$</u>	2	1/8	$2\frac{3}{4}$	13/4				
5 " 10					13/4	78	$2\frac{1}{2}$	1/2	2	/	23/4	13/4	2 <u>/</u> 8	1/8	$2\frac{7}{8}$	17/8				
<u>3</u> "					17/8	/	$2\frac{5}{8}$	1/2	2	/	$2\frac{3}{4}$	13/4	2/4	1/8	3	2	$2\frac{3}{8}$	14	3 <u>/</u> 8	2/8
3" 8 7" 16									$2\frac{I}{B}$	/	$2\frac{7}{8}$	13/4	24	1/8	3	2	2 3	13/8	34	24
1/2"									24	1/8	3	17/8	$2\frac{3}{8}$	14	3/8	2/8	2/2	1/2	34	24
<u>5</u> "													$2\frac{1}{2}$	14	34	2/8	2 <u>5</u>	1/2	3 3	24
3/																				

TABLE 114

SHEARING AND BEARING VALUE OF RIVETS

Values above or to right of upper zigzag lines are greater than double shear.

Values below or to left of lower zigzag lines are less than single shear.

Riv		Shear ooo ads		Bear	ing Val	ue for D	Different	Thickne	esses of	Plate at	12 000	Lbs. Per	Square	Inch.	
Diam., In.	Area, Sq. In.	Single Shear at 6 000 Pounds	ł"	3 " 16"	3"	16"	½"	9 //	5′′	##"	3′′	13"	7''	15"	1''
1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.307 .442 .601	1 180 1 840 2 650 3 610 4 710	1 880 2 250 2 630	2 340 2 810 3 280	2 810 3 380 3 940	3 280 3 940 4 590	3 750 4 500 5 250	4 220 5 060 5 910	5 630 6 560	6 190 7 220	7 880	8 530		9 840 11 250	12 000
Riv	ret	Shear 500 ds		Bear	ing Va	lue for I	Different	Thickn	esses of	Plate at	15 000	Lbs. Pe	r Square	Inch	
Diam., In.	Area, Sq. In.	Single Shear at 7 500 Pounds	1"	5 "	3"	7/16	1/'	916	5′′	11"	3"	13"	7''	15" 16"	1"
12 58 34 18	.307 .442 .601	1 470 2 300 3 310 4 510 5 890	2 340 2 810 3 280	2 930 3 520 4 100	3 520 4 220 4 920	4 100 4 920 5 740	4 690 5 630	6 330 7 380	7 030 8 200	7 730	9 840	10 660			
Riv	et	Shear 000 nds		Bear	ring Va	lue for I	Different	Thick r	esses of	Plate at	t 20 000	Lbs. Pe	r Squar	e Inch	
Diam., In.	Area, Sq. In.	Single Shear at ro ooo Pounds	<u>1</u> "	5 "	3"	7/16	1/'	9//	5//	11''	3"	13''	7''	15"	1"
12 558 34 78	.307 .442 .601	1 960 3 070 4 420 6 010 7 850	3 130 3 750 4 380	3 910 4 690 5 470	4 690 5 630 6 560	5 479 6 560 7 660	6 250 7 500 8 750	7 030 8 440 9 840	9 380 10 940	10 310 12 030 13 750	13 130	14 220			
·Riv	ret	Shear 000 ids		Bear	ring Va	lue for I	Different	Thickn	esses of	Plate a	t 22 000	Lbs. Pe	r Squar	e Inch	
Diam., In.	Area, Sq. In.	Single Shear at 11 000 Pounds	1"	8 "	3''	7 16	1/2"	9//	5"	11"	3''	13'' 16	7''	15" 16"	I"
12 55 5 3 4 7 8 I	.307 .442 .601	4 860	3 440 4 130 4 810	4 300 5 160 6 020	5 160 6 190 7 220	6 020 7 220 8 420	6 880 8 250 9 630	7 730 9 280 10 830	12 030	11 340 13 230 15 130	14 440	15 640			
Riv	ret	shear ooo ds		Bear	ring Va	due for l	Differen	t Thicks	esses of	Plate at	t 24 000	Lba. Pe	r Square	Inch	
Diam., In.	Area, Sq. In.	Single Shear at 12 000 Pounds	1"	5 "	3"	7/16	1/2	9/1	5''	11''	3"	13"	7''	15"	1"
12 N 34 7 8	.307 .442 .601	5 300 7 220	3 750 4 500 5 250	4 690 5 630 6 560	5 630 6 750 7 880	6 560 7 880 9 190	9 000 10 500	8 440 10 130 11 810	11 250 13 130	12 380 14 440 16 500	15 750	17 060			24 000

TABLE 115
Multiplication Table for Rivet Spacing

80						Pi	itch of	Rivets	in Inch	e8						2
Spaces	$I^{\frac{1}{8}}$	$I_{\frac{1}{4}}^{\frac{1}{4}}$	I 3	$I^{\frac{1}{2}}$	$I^{\frac{5}{8}}$	$I_{\frac{3}{4}}^{\frac{3}{4}}$	I 7/8	2	21/8	21/4	2 ³ / ₈	$2\frac{1}{2}$	25	21	27	Spaces
I																I
2	$-2\frac{1}{4}$	$-2\frac{1}{2}$	$-2\frac{3}{4}$	- 3	$-3\frac{1}{4}$	$-3\frac{1}{2}$	$-3\frac{3}{4}$	- 4	$-4^{\frac{1}{4}}$	- 41/2	$-4\frac{3}{4}$	- 5	$-5\frac{1}{4}$	$-5^{\frac{1}{2}}$	$-5\frac{3}{4}$	2
3	$-3\frac{3}{8}$	$-3\frac{3}{4}$	$-4^{\frac{1}{8}}$	$-4^{\frac{1}{2}}$	$-4^{\frac{7}{8}}$	$-5^{\frac{1}{4}}$	$-5\frac{5}{8}$	- 6	- 63	$-6\frac{3}{4}$	$-7^{\frac{1}{8}}$	$-7^{\frac{1}{2}}$	$-7^{\frac{7}{8}}$	-8^{1}_{4}	- 85	3
4	$-4^{\frac{1}{2}}$	- 5	$-5^{\frac{1}{2}}$	- 6	$-6\frac{1}{2}$	- 7	$-7^{\frac{1}{2}}$	- 8	$-8\frac{1}{2}$	- 9	$-9^{\frac{1}{2}}$	-10	$-10\frac{1}{2}$	-11	$-11\frac{1}{2}$	4
5	$-5\frac{5}{8}$	- 6½	$-6\frac{7}{8}$	$-7^{\frac{1}{2}}$	$-8\frac{1}{8}$	$-8\frac{3}{4}$	$-9\frac{3}{8}$	-10	$-10\frac{5}{8}$	-111	$-11\frac{7}{8}$	$I - O_2^{\frac{1}{2}}$	I- I 1 8	I- 1 ³ / ₄	I- 23	5
6	$-6\frac{3}{4}$	$-7^{\frac{1}{2}}$	$-8\frac{1}{4}$	- 9	$-9\frac{3}{4}$	$-10\frac{1}{2}$	$-11\frac{1}{4}$	I- 0	I- 0 ³ / ₄	$1-1\frac{1}{2}$	I- 21/4	I- 3	I- 3 ³ / ₄	I- 4½	I- 5½	6
7	- 78	$-8\frac{3}{4}$	- 95	$-10^{\frac{1}{2}}$	$-11\frac{3}{8}$	I- 01/4	I- I 1 8	I- 2	I- 27/8	$1 - 3\frac{3}{4}$	I- 45/8	$1-5\frac{1}{2}$	$1 - 6\frac{3}{8}$	I- 74	I- 81/8	7
8	- 9	-10	-11	r- o	ı- ı	I- 2	1- 3	I- 4	1- 5	ı- 6	1-7	r- 8	1-9	1-10	1-11	8
9	$-10\frac{1}{8}$	$-11\frac{1}{4}$	I- 03/8	$I - I^{\frac{1}{2}}$	I- 25/8	$1 - 3\frac{3}{4}$	I- 47/8	1 - 6	I- 7\frac{1}{8}	I- 8 ¹ / ₄	I- 9 ³ / ₈	I-101	1-115	2- 0 ³ / ₄	2- 178	9
10	$-11\frac{1}{4}$	$I- O_2^{\frac{1}{2}}$	$1-1\frac{3}{4}$	1- 3	I- 4 ¹ / ₄	I- 5½	$1-6\frac{3}{4}$	ı- 8	I- 91/4	$1-10\frac{1}{2}$	I-113	2- I	$2-2\frac{1}{4}$	2- 3 1/2	2- 44	10
$_{II}$	I- 03	I- I 3/4	I- 3\frac{1}{8}	ı- 4½	I- 57	I- 71	I- 85	1-10	I-II 3	2- 03	2- 21/8	$2-3\frac{1}{2}$	2- 47	2- 61	2- 75	II
				r- 6		1										
1 1				$1 - 7\frac{1}{2}$							1	1			1	
14	I- 3 ³ / ₄	$1 - 5\frac{1}{2}$	I- 7 ¹ / ₄	ı- 9	I-10 ³ / ₄	2- O ¹ / ₂	2- 21/4	2- 4	$2-5\frac{3}{4}$	2- 71/2	2- 91	2-II	3- 0 ³ / ₄	3- 21/2	3- 41	14
15	I- 478	$1-6\frac{3}{4}$	$1 - 8\frac{5}{8}$	$1-10\frac{1}{2}$	2- 0 ³ / ₈	$2-2\frac{1}{4}$	2- 41/8	2- 6	2- 7 7 8	2- 94	2-II 5	3- 11/2	$3-3\frac{3}{8}$	3- 54	3- 78	15
16	ı– 6	ı– 8	1-10	2- 0	2- 2	2- 4	2- 6	2- 8	2-10	3- o	3- 2	3- 4	3- 6	3- 8	3-10	16
17	I- 7\frac{1}{8}	I- 9 ¹ / ₄	I-118	$2-1\frac{1}{2}$	2- 3 \frac{5}{8}	2- 5 4	2- 7 8	2-10	3- 01	3- 21/4	3- 48	$3-6\frac{1}{2}$	3- 85	3-104	4- 07	17
18	ı- 8½	$1-10\frac{1}{2}$	2- 0 ³ / ₄	2- 3	2- 54	$2-7\frac{1}{2}$	2- 93/4	3-0	$3-2\frac{1}{4}$	$3-4\frac{1}{2}$	$3-6\frac{3}{4}$	3-9	3-114	4- 11	4- 34	18
19	I- 9\frac{3}{8}	I-1I 3	2- 21/8	$2-4\frac{1}{2}$	$2-6\frac{7}{8}$	2- 94	2-115	3- 2	3- 48	3- 63	3- 98	3-112	4- 17/8	4- 41	4- 68	19
20	I-10½	2- I	$2-3\frac{1}{2}$	2- 6	2- 8½	2-II	3- 11/2	3- 4	3- 61/2	3-9	3-112	4- 2	4- 42	4- 7	4- 92	20
21	I-II 5	2- 21/4	2- 4\frac{7}{8}	$2-7\frac{1}{2}$	2-10 ¹ / ₈	3- 0 ³ / ₄	3- 3 8	3- 6	3- 8 5 8	3-114	4- 17	4- 41/2	4- 71/8	4- 91	5- 08	21
22	$2-0\frac{3}{4}$	$2-3\frac{1}{2}$	2- 6 ¹ / ₄	2- 9	$2-11\frac{3}{4}$	$3-2\frac{1}{2}$	3- 51/4	3- 8	3-104	4- 12	4- 44	4-7	4- 94	5- 01	5- 31	22
23	2- I ⁷ / ₈	$2-4\frac{3}{4}$	$2-7\frac{5}{8}$	$2-10\frac{1}{2}$	3- 1 ³ / ₈	3- 41	3- 71	3-10	4- 08	4- 34	4- 65	4- 92	5- 0 ³ / ₈	5- 31	5- 61	23
24	2- 3	2- 6	2- 9	3-0	3- 3	3-6	3-9	4-0	4- 3	4-6	4-9	5-0	5- 3	5-6	5- 9	24
25	2- 4\frac{1}{8}	$2-7\frac{1}{4}$	2-108	3- I ¹ / ₂	3- 48	$3-7\frac{3}{4}$	3-1078	4- 2	4- 51	4- 81	4-118	5- 21/2	5- 5 8	5- 84	5-118	25
26	$2-5\frac{1}{4}$	2- 8 ¹ / ₂	2-II 3	3- 3	3- 61	3- 91/2	4- 04	4- 4	4- 74	4-101	5- 13/4	5- 5	5- 81	5-112	6- 24	26
27	$2-6\frac{3}{8}$	2- 94	3- I 1 8	3- 4 ¹ / ₂	1			1				•	5-107	6- 21	6- 58	27
28	-		$3-2\frac{1}{2}$	1			1					1	6- 1½			1
29	2- 8 5	3- 04	3- 378	$3-7\frac{1}{2}$	3-11 8	4- 24	4- 63	4-10	5- I 5	5- 54	5- 878	6- 01/2	6- 41/8	6- 74	6-118	29
30	2- 94	$3-1\frac{1}{2}$	3- 51	3- 9	4- 0 ³ / ₄	4- 41/2	4- 81	5- 0	5- 34	$5-7^{\frac{1}{2}}$	5-114	6- 3	6- 63	6-102	7- 21	30
Spaces	$I^{\frac{1}{8}}$	$I_{\frac{1}{4}}^{\frac{1}{4}}$	13/8	$I^{\frac{1}{2}}$	I 5/8	13/4	17/8	2	21/8	21	2 3 8	21/2	25/8	2 3/4	2 7/8	Spaces
Spa						F	Pitch of	Rivets	in Inch	nes						Sp

TABLE 115.—Continued

Multiplication Table for Rivet Spacing

20							Pito	h of Riv	ets in In	iches						Sec.
Spaces	3	31	31	38	31	31	4	41/4	$4\frac{1}{2}$	41	5	51	51/2	51	6	Spaces
I																1
2	-6	- 61	- 61	- 63	- 7	$-7^{\frac{1}{2}}$	-8	$-8\frac{1}{2}$	- 9	- 91	-10	$-10\frac{1}{2}$	-11	$-11\frac{1}{2}$	1-0	2
3	-9	- 98	- 94	-108	-103	$-11\frac{1}{4}$	1-0	$1 - 0\frac{3}{4}$	I- I ½	I- 21/4	1 - 3	I- 3 ³	I- 4½	I- 5 ¹	1 –6	3
4	1-0	I- 03	ı- 1	I- 1½	I- 2	1- 3	1-4	1 - 5	1 - 6	I- 7	I 8	I - 9	1-10	1-11	2-0	4
5	1-3	I- 3 5	I- 414	I- 47	I- 5½	I- 63	1-8	I- 94	1-103	1-113	2- 1	2- 24	2- 3 1/2	2- 44	2-6	5
6	1 –6	ı- 63	r- 7½	ı- 81	I- 9	I-10 ¹	2-0	$2-1\frac{1}{2}$	2- 3	2- 41/2	2- 6	$2-7\frac{1}{2}$	2- 9	$2-10\frac{1}{2}$	3-0	6
7	1-9	1- 97	1-104	1-115	2- 01/2	2- 24	2-4	$2-5\frac{3}{4}$	2- 71/2	2- 94	2-11	3- 0 ³	3- 21/2	3- 44	3-6	7
8	2-0	2- I	2- 2	2- 3	2- 4	2- 6	2-8	2-10	3-0	3- 2	3- 4	3-6	3-8	3-10	4-0	8
9	2-3	2- 41	2- 51	$2-6\frac{3}{8}$	2- 71/2	2- 94	3-0	3- 24	3- 41/2	$3-6\frac{3}{4}$	3- 9	3-114	4- 11/2	4- 34	4-6	9
10	2-6	2- 71	$2-8\frac{1}{2}$	2- 94	2-11	3- I ¹ / ₂	3-4	$3-6\frac{1}{2}$	3-9	3-1112	4- 2	4^{-} $4^{\frac{1}{2}}$	4- 7	4- 91/2	5-0	10
II	2-9	2-108	2-11 ³	3- 11	3- 21/2	3- 51	3-8	3-103	4- 11/2	4- 41	4- 7	4- 94	5- 0½	5- 31	5-6	II
12	3-0	3- I ¹ / ₂	3- 3	3- 41/2	3-6	3-9	4-0	4-3	4-6	4-9	5- o	5- 3	5- 6	5- 9	6-0	12
13	3-3	3- 45	3- 61	3- 78	3- 91	4- 0 ³	4-4	4- 74	4-101	5- 1 ³ / ₄	5- 5	5- 81	5-112	6- 24	6-6	13
14	3–6	3- 74	3- 91/2	3-114	4- ī	4- 41/2	4-8	4-II ¹ / ₂	5- 3	5- 61/2	5-10	6- I ¹ ₂	6- 5	6- 81/2	7-0	14
15	3-9	3-107	4- 0 ³	4- 2 5/8	4- 41/2	4- 84	5-0	$5-3\frac{3}{4}$	5- 71/2	5-114	6- 3	6- 63	6-101	7- 24	7-6	15
16	4-0	4- 2	4- 4	4-6	4-8	5-0	5-4	5- 8	6- o	6-4	6-8	7- 0	7 ⁻ 4	7- 8	8-0	16
17	4-3	4- 518	4- 74	4- 98	4-11½	5- 34	5-8	6- o ₄	6- 41/2	6- 84	7- I	7- 54	7- 9½	8- 13	8-6	17
18	4-6	4- 84	4-101	5- 0 ³ / ₄	5- 3	5- 71/2	6-0	6- 41/2	6-9	7- I ¹ / ₂	7- 6	$7-10\frac{1}{2}$	8- 3	8- 71/2	9-0	18
19	4-9	4-11 ³	5- 14	5- 48	5- 61/2	5-114	6-4	$6-8\frac{3}{4}$	7- I ¹ / ₂	7- 61	7-11	8- 34	8- 81/2	9- 11	9-6	19
20	5-0	5- 21/2	5- 5	5- 71/2	5-10	6-3	6–8	7- I	7-6	7-11	8- 4	8- 9	9- 2	9- 7	10-0	20
21	5-3	5- 5 5	5- 81	5-10%	6- 1½	6- 63	7-0	7- 51	7-101	8- 34	8-9	9- 24	9- 71/2	10- 0 ³ / ₄	10-6	21
22	5-6	5- 83	5-112	6- 21	6- 5	6-10½	7-4	$7-9^{\frac{1}{2}}$	8- 3	8- 81/2	9- 2	9- 71/2	10- I	10- 6½	11-0	22
23	5-9	5-117	6- 24	6- 5 8	6- 81	7- 24	7-8	8- 13	8- 71/2	9- 114	9- 7	10- 0 ³ / ₄	10- 61/2	II- 01	11-6	23
				6-9	1		8-0	8- 6	9-0	9-6	10- 0	10-6	11-0	11-6	12-0	24
25	6-3	6- 61	6- 91	7- 08	7- 3½	7- 9 ³	8-4	8-104	9- 41/2	9-10 ⁴	10- 5	10-114	11- 51	1 I-1 I 3	12-6	25
26	6-6	6- 91	7- 0½	7- 34	7- 7	8- 1½	8-8	9- 21/2	9-9	10- 31/2	10-10	II- 4½	11-11	12- 51/2	13-0	26
27	6-9	7- 08	7- 34	7- 78	7-102	8- 51	9-0	9- 63	10- 12	10- 81	11- 3	11- 94	12- 42	12-114	13-6	27
28	7-0	7- 31/2	7- 7	7-101	8- 2	8-9	9-4	9-11	10-6	11-1	11- 8	12- 3	12-10	13- 5	14-0	28
			1			9- 0 ³	-			11- 54	12- I	12- 81	13- 32	13-104	14-6	29
30	7-6	7- 94	8- 11/2	8- 51	8- 9	9- 41/2	10-0	10- 7½	11-3	11-102	12- 6	13- 12	13- 9	14- 41/2	15-0	30
88	3	31/8	31	3 8	31/2	34	4	414	$4^{\frac{1}{2}}$	41	5	51	51/2	53	6	893
Spaces							Pitch	of Riv	ets in In	ches						Spaces

TABLE 116.

Areas to be Deducted for Rivet Holes, Maximum Rivets, and Rivet Spacing.

Areas I	n Sqt	JARE 1	INCHE	s, to	BE I	EDUC	TED F	ROM]	Rivet	ED PL	ATES	OR S	НАРВ	s To	о Овт	AIN NI	ET ARE	AS.
Thickness of Plates.					Di	amete	r of H	ole in	Inche	s (Dia	am. of	Rive	t + i	ļ″).				
Inches.	à	16 16	3 8	7 18	1/2	9 16	Ř	118	1	18	1	18		1	116	11	1 3	11
14	.06	.08	.09	.11	.13	.14	.16	.17	.19	.20	.22	.2		.25	.27	.28	.30	.31
5 16	.08	.10	.12	.14	.16	.18	.20	.21	.23	.25	.27	.2		31	-33		-37	-39
14 5 16 3 8 7	.09	.12 .14	.14 .16	.19	.22	.25	.23	.30	.33	.36	·33	-3		38	.40 .46		·45	·47
	.13	.16	.19	.22	.25	.28	.31	-34	.38	.41	-44	-4	7	.50	.53 .60	.56	-59	.63
16 5	.14	.18 -20	.2I .23	.25	.28	.32	·35	·39 ·43	-42 -47	.46 .51	•49	-5	3	56 63	.60 .66	.63	.67	.78
129 16 58 11	.17	.21	.26	.30	-34	·35 ·39	•43	.47	.52	.56	.55 .60	.6	4	.69	.73		·74	.86
3 4 1 2	.19	.23	.28	-33	.38	.42	-47	.52	.56	.61	.66	.7		75	.80		.89	.94
16	.20	.25	.30	.36	.4I .44	.46 .49	.51	.56	.61	.66	.71 .77	.8		88	.86	1	1.04	1.00
34 136 78 16	.23	.29	·35	.41	.47	-53	.59	.64	.70	.76	.82	.8	-	94	1.00		1.11	1.17
I .	.25	.31	.38	-44	.50	.56	.63 .66	.69	.75 .80	.81 .86	.88	.9		.00	1.06	9	1.19	1.25
$\begin{array}{c} I\frac{1}{16} \\ I\frac{1}{8} \end{array}$.27	·33	.40	.46	·53	.63	.70	·73	.84	.91	.93 .98	1.0		.06	1.13			1.33
1 3 16	.30	.37	· 4 5	.52	.59	.67	.74	.82	.89	.96	1.04	1.1		19	1.26		1.41	1.48
114	.31	-39	.47	-55	.63	.70	.78	.86	-94	1.02	1.09	1.1		.25	1.33			1.56
$1\frac{5}{16}$ $1\frac{3}{8}$	·33	.41 .43	·49	·57	.66	·74	.82	.90	.98	1.07	1.15	I.2		31	1.39		1.56	1.64
1 16	.36	.45	.54	.63	.72	.81	.90	.99	1.08	1.17	1.26	1.3	- 1	44	1.53		1.71	1.80
I ½	.38	.47	.56	.66	·75	.84	.94	1.03	1.13	1.22	1.31	1.4		50	1.59		1.78	1.88
I 29 I 16 I 8	.39 .41	.49°	.59 .61	.71	.81	.00	.98 1.02	1.07	I.17 I.22	I.27 I.32	I.37 I.42	I.4 I.5		56	1.66		1.86	2.03
111	.42	-53	.63	-74	.84	.95	1.05	1.16	1.27	1.37	1.47	1.5		.69	1.79		2.00	2.11
$1\frac{3}{4}$ $1\frac{13}{16}$	·44 ·45	·55	.66	·77	.88	.98 1.02	1.09	I.20 I.25	1.31	I.42 I.47	1.53	1.6		75 81	1.86	1	2.08	2.19
17/8	.47	.59	.70	.82	.94	1.05	1.17	1.29	1.41	1.52	1.64	1.7	- 1	88	1.99		2.23	2.34
1 1 5	.48	.61	.73	.85	.97	1.09	1.21	1.33	1.45	1.57	1.70	1.8		94	2.06	1	2.30	2.42
2	.50	.63	·75	.88	1.00	1.13	1.25	1.38	1.50	1.63	1.75	1.8	8 2.	.00	2.13	2.25	2.38	2.50
		MAXI	MUM	RIVET	IN L	EG OF	ANG	LES O	R FLA	NGE (OF BE.	AMS	AND	Сна	NNEL	s.		
Leg of Ar Max. Riv				3 4 1 4	I	11/4	1 3 3 8	I 1/2	I 3/4	2 5	$2\frac{1}{2}$	3 7 8	3½ 78		4 7 8	5 6		8
Depth of		n			4	5	6	7	8	5 8 Q	10 -	12	- 8 Y C	I		7 3 0 24		18
Max. Riv	et			3 3 8	4 1 2	$\frac{1}{2}$	5	5 8	34	9 3 4	34	34	15 3 4			7 8		
Depth of Max. Riv		Channel 3 4 5				5	6 5 8	7 5 8	8	9 3 4	10	12 7 8	15					
		1 1 1				VET S	PACIN	G IN	INCHE	s.			-				1	
	M	[inimu	m Pi	tch.		Ma	x. Pit	ch in	Line o	of Stre	88.		Mi	n. E	dge I	Dist		
Size of Rivet.	Allowed. Preferred. At Ends of Comp.Men					of m.	Bridg	es.	В	ld'gs.		Shear	red.	R	olled.		. Edge	
1// 22// 25/8 3// 4 7//	1 2			1 \frac{3}{4} 2 2 \frac{1}{2} 3		2 2 ¹ / ₂ 3 3 ¹ / ₃		4 4½ 5 6	to x thick- ness of	thinnest outside plate.	6 "		I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			78 I I 18 I 14	8 x thick-	ness of plate.

TABLE 117.

OLD STANDARD CONNECTIONS FOR BEAMS AND CHANNELS.

AMERICAN BRIDGE COMPANY.

Size	TWO ANGLE CONNECTIONS	ONE ANGLE CONNECTIONS
24"	2 L5 4 x 4 x 7 6 x l '5 7 7 Weight 36 pounds	IL 6%6%元%1-5元 Weight 30 pounds
20 ["]	2 \(\frac{4}{x} \) 4 \(\frac{7}{6} \) \(\frac{1}{6} \) \(\frac	IL 6x6x7fx1-2ff Weight 25 pounds
15"	2½6 x4x2"1"x10" Weight 27pounds	₩eight l7pounds
12"	2 6 % 4 % 7 ½ 7 ½ 7 ½ Weight 20 pounds	IL 6x6x 7½ Veight 13 pounds
10" 9" 8" 7"	212 6x4x7x7x5" Weight 14 pounds	IL 6x6x7x5x5" Weight 9 pounds
6" 5" 4" 3"	6	6"&5" IL 6"x6"x16"x22 = " 6"&5" Weight 5 pounds 21 21
We	ights of connections include gross weight	s of angles and weights of $\frac{3}{4}$ shop rivets

LIMITING VALUES OF BEAM CONNECTIONS.

I Be	ama	Value of Web	Valu	ues of Outstandi	ng Le	gs of Connection	Angles.	
1 De	ams.	Connection.	Fie	ld Rivets.		Field	Bolts.	
Depth, Inches.	Weight, Lb. Per Foot.	Shop Rivets in Enclosed Bearing, Pounds.	34" Rivets or Turned Bolts, Single Shear, Pounds.	Min. Allow- able Span in Feet, Uniform Load.	t, In.	34" Rough Bolts, Single Shear, Pounds.	Min. Allowable Span in Feet, Uniform Load.	t, In
27	83	66,800	61,900	18.4	5	49,500	23.1	590
24	80	67,500	53,000	. 17.5	10000000000000000000000000000000000000	42,400	21.9	do for co for co for co for
24	69 1	52,700	53,000	16.3	58	42,400	20.2	5
21	572	40,200	44,200	15.5	16	35,300	17.6	l delca
20	65	45,000	35,300	17.6	<u>5</u>	28,300	22.I	15
18	55	41,400	35,300	13.3	5/8	28,300	16.7	najeonajeonajeo gi Tusies
18	46	29,000	35,300	15.0	1 2	28,300	15.4	color
15	42	36,900	35,300	8.9	5 8 7 16 9 16	28,300	II.I	certes
15	36	26,000	35,300	II.I	16	28,300	11.1	1
12	$31\frac{1}{2}$	23,600	26,500	8.1	16	21,200	9.0	onlen
12	$27\frac{1}{2}$	17,200	26,500	10.3	16	21,200	10.3	1 2
10	25	27,900	17,700	7.4	8	.14,100	9.2	9
10	22	20,900	17,700	6.9	90	14,100	8.6	piec
9 8	21	26,100	17,700	5.7	8	14,100	7.1	9
8	18	24,300	17,700	4.3	8	14,100	5.4	1 8
8	$17\frac{1}{2}$	18,900	17,700	4.4	8	14,100	5.5	8
7	15	11,300	8,800	6.2	7 6 oje oje ope oje oje oje oje oje	7,100	7.8	980
	$12\frac{1}{4}$	10,400	8,800	4.4	8	7,100	5.5	980
5	93	9,500	8,800	2.9	8	7,100	3.6	oleo

ALLOWABLE UNIT STRESS IN POUNDS PER SQUARE INCH.

	Rivets			Bearing	Rivets—enclosed Shop Rivets—one side Shop Rivets and Turned Bolts Field Rough Bolts Field	24,000
--	--------	--	--	---------	---	--------

t=Web thickness, in bearing, to develop max. allowable reactions, when beams frame opposite.

Connections are figured for bearing and shear (no moment considered).

The above values agree with tests made on beams under ordinary conditions of use. Where web is enclosed between connection angles (enclosed bearing), values are greater

because of the increased efficiency due to friction and grip.

Special connections shall be used when any of the limiting conditions given above are exceeded—such as end reaction from loaded beam being greater than value of connection; shorter span with beam fully loaded; or a less thickness of web when maximum allowable reactions are used.

TABLE 119.

STANDARD BEVELED BEAM CONNECTIONS, AMERICAN BRIDGE COMPANY.

BEVELED BEAM CONNECTIONS — RIVET SPACING & CLEARANCES

3" or less | 12" | $W = \frac{5}{8}$ " or less, use Standard connection angles (bent). $W = \frac{5}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$, use Special connection angles (bent). $|\frac{1}{16}$ " to $|\frac{1}{3}$ " to $|\frac{1}{3}$ " to $|\frac{1}{3}$ " or less and connection angles (bent).

	6	Max.	Max-	D	E	Н	Lenge	hoft	Bent P.	lates	L	- 1	>
а	0	c	W			//	PI	PZ	Ps	P4		F=upto3	"F=3"to4
/" 2 3	12"	9 17 16 9 16 9 16	/8" /8	23/4 23/4		56	e not	es ab			12/2 13/4 2	12" 13 24 24	
5	12	9/6 2/6	18	3/2	31/2	23"	10"	1/2"	12"	14	2 / 4		
5	12	9/6	1/8	4	4	3	//	12 ½	10" 10½	12	1/2	2/2	3
6	12	76	18	4/2	4 / 2	3	12	13%	//	12	1/2 3/4	2 3/4 3	2½ 3 3½ 3½ 4
7	12	76 9	18	5 5½	5 5½	3½ 3½	12½	14 %	11/2	12	13	34	2
9	12	16 9 16	18	22	1 2	34	15	132	12	12	13/4 3/4 2	3%	4 ½
10	12	9/6	18			3/2				12/2		4	5
12	12	16 26 26 96 96 96 96	18			3½ 3¾				12/2	2 2 ¹ / ₄	4½ 4½	4½ 5 5½ 5½ 5½
12	//	4	2			2 ³ / ₄ 3 3				12	14	4 ½	5%
12 12	10	- 4 - 4 - 4 - 4	2/3			3				12 12	1/2	5 5½	6
12	8	4	up we we we we we we we			34				12	13	6	6½ 7½
<i>12 12</i>	6	#	2		·	32				12/2	2	6/2	8%
12	5	14-14-14	2 /			3 ³ / ₄				12 1/2	2 ½ 2 ½	7/2	10
12	4	4	1/2			43				13%	34	//	14

TABLE 120.

STANDARD SWAY ROD AND LATERAL CONNECTIONS. AMERICAN BRIDGE COMPANY.

		7	H-E		-5/0	t							`~*/	4-	7	Slot	
Sketch	Rou		Upset	A	В	С	D	E	F	G	Н	L	R	Х	K	Size of Slot in Plate	_
A	7"	/"	None	$2\frac{1}{8}^{n}$ $2\frac{5}{8}$	18 15	!" !\frac{1}{2}	9" 16 13 16	9 N 16 13 16	7"				13/1	4" 5	<u> </u> " <u>5</u>		1·8 2·6
В	78	18	None	2 1/8	.,	1	16 9 16	16 9 16	3 4	1/4	1/8	4 / 2	2	4 <u>/</u>	18 13/4	/3 ×34 /8 ×31	2.3
В	/	18	13/2	$2\frac{5}{8}$	15/8	1/2	13 16	<u>13</u> 16	34	17/8	3%	6	$2\frac{5}{8}$	6	$2\frac{5}{8}$	13 × 54	3.8

For rods above I diam use clevis connections.

TABLE 121.

STANDARD LATERAL CONNECTIONS FOR HIGHWAY BRIDGES. AMERICAN BRIDGE COMPANY.

SKEWBACK "A", Weight 6.8 lbs.

Skewback "A" for rods up to l_{4}^{\perp} " round or l_{8}^{\perp} " square (upset to l_{8}^{\perp} " round); For upsets l_{8}^{\perp} " diam or less, angle of rod may vary from $32^{\circ}(7\frac{1}{2}$ " in 12") to $60^{\circ}(12$ " in $6\frac{15}{8}$ ").

For upsets greater than l_g^{\prime} " diam up to l_g^{ξ} " diam, angle of rod may vary from $4l_z^{\prime}$ ° ($l0_g^{\xi}$ " in l2") to 60° (l2" in $6\frac{l5}{l6}$ "). Standard slot in beam $3\frac{1}{2}$ " × 6".

SKEWBACK B", Weight 17 lbs.

Skewback B for rods $l_{\overline{a}}^{+}$ " round or $l_{\overline{a}}^{+}$ " square (upset to $l_{\overline{a}}^{+}$ " round); up to $\{l_{\overline{a}}^{+}$ " round (upset to $l_{\overline{a}}^{+}$ " round) or $l_{\overline{a}}^{+}$ " square (upset to $l_{\overline{a}}^{+}$ " round) or For upsets $l_{\overline{a}}^{+}$ " diam or less, angle of rod may vary from $33\frac{2}{3}$ " (8" in $l_{\overline{a}}^{+}$ ") to 60" ($l_{\overline{a}}^{+}$ ") for upsets greater than $l_{\overline{a}}^{+}$ " diam up to 2" diam, angle of rod may vary from $38\frac{2}{3}$ " ($9\frac{l_{\overline{a}}}{l_{\overline{a}}}$ " in $l_{\overline{a}}^{+}$ ") to 60" ($l_{\overline{a}}^{+}$ " in $l_{\overline{a}}^{+}$ ") Standard slot in beam $4\frac{l_{\overline{a}}}{l_{\overline{a}}}$ " $6\frac{l_{\overline{a}}}{l_{\overline{a}}}$ ".

SKEWBACK C, Weight 23 lbs.

Skewback ${}^{6}C^{7}$ for rods l_{6}^{7} round or l_{16}^{7} square (upset to 2 round); up to $\begin{cases} l_{4}^{3}$ round (upset to $2l_{4}^{2}$ round) or l_{2}^{2} square (upset to $2l_{4}^{2}$ round) Angle of rod may vary from $l_{2}^{2}C^{2}(10l_{4}^{1})$ in $l_{2}^{2}C^{2}(10l_{4}^{1})$ for all rods.

Standard slot in beam $4\frac{3}{4}$ " $6\frac{1}{2}$ " Where upset end of rod is greater than $2\frac{1}{6}$ " diam., hole in washer will be drilled to fit upset.

TABLE 122.

STANDARD LATERAL CONNECTIONS AND STUB ENDS. AMERICAN BRIDGE COMPANY.

TABLE 123.

Standard Lag Screws, Hook Bolts and Washers.

Agerican Bridge Company,

		LAG S	CREWS	3				BEAM CLAMP
	*	ingth Million Ameter		5	ength Screw	of Lag & Head Length of Head	Torred Ho	Beam A B C D E in lbs 18" 12" 24 7 35 16 0.4 2" 12 12 24 7 35 16 0.4 2" 12 12 24 7 35 16 0.4
DIAM 1	Min- Length	Max · Length 6 "	No-Thre per inc		2 2/2 3 3/2 4	14/23/42 1	D 1/6 E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
महाराह्य अधिया अधिया अधिय	12 12 2 2 2 2 3 3 ½	8 10 12 12 12 12 12	5 4 3		45 5 6 7 8 9	22233 33475	5 4 7	Recess for nail lock E
	5 6 8 ds are t	12 12 12 12 the sam			10 11 12 are head	5 5 d bolts.	Bolt A I	nsions of Washer Weight $\frac{3}{4}$ $\frac{11}{16}$ $\frac{2}{34}$ $\frac{3}{4}$ $\frac{13}{5}$ $\frac{3}{4}$ $\frac{13}{5}$ $\frac{3}{4}$ $\frac{13}{5}$ $\frac{3}{4}$ $\frac{13}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ 3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			KEWBA				R	HOOK BOLTS, \$\frac{3}{4}" or \$\frac{7}{6}" Square, \[\begin{align*} & & & & & & & & & & & & & & & & & & &
Used	14		sions of		-	_	Weight	Unless otherwise specified, "5" will be made $\frac{3}{4}$ ". Hex. nuts furnished.
Kewback A Sewback A	M 23/4"	N 31/4 33/4	C 14 1 2 1 3 4	D 15"	8	R 3 13/16 3 13/16 3 13/16	1.2 1.8 2.5	CAST IRON CUP WASHERS 5" 16
Skewback B.	33"	4" 4½	13" 2 24	28	/ / ⁿ /	4 15 16 4 15 4 15 4 15 4 15 16	2·7 3·0 3·9	7" Wt.1.3 lbs. 8, 11, 32

TABLE 124.
Weights of Washers and Track Bolts.

					Pour			s of L lred. (t-book	.)				
Diam.						,	Length	ı, Unde	r Head	i, in In	iches.					
In.	I ½	1 3	2_	21	21/2	3	31/2	4	41	5	51	6	7	8	9	10
3 8 7								13.31								
3 867 66		16.88	17.18	18.07	19.18	22.00	24,00	26.82	28.25	30.37	33.88	35.37	38.04	44.37	77.00 108.75	90.00
34								64.00	67.88	71.37	79-37	86.62	92.75	97.50	108.75	124.75

WROUGHT IRON OR STEEL PLATE ROUND WASHERS.

Diam.	Hole.	Thick- ness B.W.G.	Bolt.	Num- ber in 200 Lb.	Diam.	Hole.	Thick- ness B.W.G.	Bolt.	Num- ber in 200 Lb.	Diam.	Hole.	Thick- ness B.W.G.	Bolt.	Num- ber in 200 Lb.
In.	In.	No.	In.	200 20.	In.	In.	No.	In.	200 120.	In.	In.	No.	In.	200 25.
9 13 4 7 8 1 14 13 18	14 55 16 388 7 16 12 9	18 16 16 14 14 12	3 16 15 16 3 87 16	85200 34800 26200 14400 8400 5800	1½ 1¾ 2 2¼ 2½ 2¾ 2¼	58 116 116 116 116 116 116 116	12 10 10 9 9	9 140 655 47 8 1 148	4600 2600 2200 1600 1200 888	3 3 4 3 3 3 3 4 4 4	144 181 181 181 181 171 18	9 8 8 8 8	144 151 125 153 178	900 600 570 460 432 366

STANDARD CAST, O G WASHERS.

-												
	Diam. of Bolt.	Bottom Diam.	Top Diam.	Hole.	Thick- ness.	Weight.	Diam. of Bolt.	Bottom Diam.	Top Diam.	Hole.	Thick- ness.	Weight.
-	In.	In.	In.	In.	In.	Lb.	In.	In.	In.	In.	In.	Lb.
		2 5 8 3 1 4 3 4 4 4 4	13478 1818 21234	9 16 11 16 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16	5 600 41 87 87 81 8	1284 144 1212 213	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 ³ 4 6 61 7 ¹ 4 8 ¹ 4	2 ³ 4 3 3 ¹ 4 3 ³ 4 4 ⁴ 4	1 16 1 5 1 5 1 5 1 7 1 8 2 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 ³ 6 9 ¹ / ₂ 17 ¹ / ₄

TRACK BOLTS.

With United States Standard Hexagon Nuts.

Wt. of Rail per Yd.	Bolts.	Nuts. To. in Keg, 200 Lb. Kegs	Wt. of Rail, per Yd.	Bolts.	Nuts. o. in Keg, 200 Lb.	Wt. of Rail, per Yd.	Bolts.	Nuts.	o. in Keg, 200 Lb.	Kegs per Mile.
Lb.	ľn.	In. S	Lb.	In.	In. Z ~	Lb.	In.	In.	No	Δ.
45 to 85	3 X 4 1 4 3 X 4 3 4 X 3 1 4 X 3 1 2 3 4 X 3 1	I ½ 230 6.3 I ½ 240 6.0 I ½ 254 5.7 I ½ 260 5.5 I ½ 266 5.4	30 to 40	34X3 58X3 2 58X3 58X3 58X2 3 88X2 3	1 1 283 5 1 16 375 4 1 16 410 3 1 16 435 3 1 16 465 3	.0 .7 .3	½X3 ½X2½ ½X2¼ ½X2¼ ½X2	* 01- 01- 01- 00	715 760 800 820	2

TABLE 125.

WEIGHTS OF STEEL WIRE NAILS AND SPIKES. AMERICAN STEEL AND WIRE CO.

					Sizes,					/IRE oxim											
Size.	Length.	Common Nails and Brads.	Flooring Brads.	Finishing.	Casing and Smooth or Barbed Box.	Slating.	Shingle.		right.	Heavy.	Light.	Fence.	Clinch.	Fine.	Lining.	Barbed Roof- ing.	Barrel.	Wire Spikes.	Length.	Si	ze.
d Ex. Fin 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	876 568 316 271 181 106 96 63 49 31 24 18 11	157 157 139 99 90 69 54 43 31	1351 807 584, 500 309 238 189 172 121 113 90 62	1010 635 473 406	411	568 274 235 204 139 1125 1114 83	165 1118 103 76 69 54 52 35 26 24 18 13	274 142 124 92 62 57 50 43 31 28 21 17 15	50 38 30 12 11 10 9	82 62 50 25 23 22 19	142 124 92 82 62 50 40 30 23	710 429 274 235 157 139 90 69 69 62 49 37	1560 1351 1015 778 473	1558	714 469	1615 1346 906 775 700 568 400 357	41 38 30 23 17 13 10 8 7 6 5 4	In.	3d Ex	2d Fir 3d 5d 6d 7d 8d 9d 9d 9d 9d 9d 9d 9d 9d 9d
Washburn & Moen Gauge.	Diameter in Inches.			ı	1			oxim		STEI Numb	er p	er P		•	4	41	5	6	7 1	3 9	10
	362	-		-	·	_	-	8	23	20	17	14	12	10	9	8	7	6		4	3

Washburn & Moen Gauge.	Diameter in Inches.							Le	ngth	in I	nche	s.								
\$. 8.30	D iii	i	ı	ŧ	ı	11	13	11	2	21	3	31	4	41	5	6	7	8	9	10
000	.362					28	23	20	17	14	12	10	9	8	7	6	5	41	4	31
00	.331					33	27	23	20	16	14	12	10	9	8	7	5	5	41	4
0	.307					38	32	27	24	19	16	14	12	10	9	8	7	6	5	41
1	.283				57	45	38	32	28	23	19	16	14	13	II	10	8	7	6	5
2	.263		ļ		65	52	44	37	32	26	22	19	16	14	13	II	9	8	7	6
3	.244			100	76	60		43	38	30	25	22	19	17	15	13	II	10	8	71
4	.225			120	90	72	60	51	45	36	30	26	23	20	18	15	13	II	10	9
5	.207	211	169	141	106	85	71	60	53	42	35	30	26	24	21	18	15			
6	.192	247	197	164	123	99	82	71	62	50	41	35	31	28	25	21	18			
7	.177	299	239	200	149	120	100	85	75	60	50	43	37	33	30	25				
8	.162	345	275	229	172	137	115	98	86	69	57	49	43	39	35	29				
9	.148	414	331	276	207	165	138	118	103	82	69	59	52	46	41					
11	.135	496 628	397	333 418	248	198	165	142	124	99	83	71	62	55	50					
12	.105	822	502 658	548	314	251	209	179	204	125	105	90	79 103	70				[
13	.002	1072	857	714	411 536	329 420	274 357	235 306	268	214	137	153								,
14	.080	1420	1136	947	710	568	473	406	350		236							1		8 84 84 84
15	.072	1752	1402	1168	876	701	584	500		350	230					W. 8	M.			
16	.063	2280	1828	1523	1143	913	761	653	571	330						Gau		11	1	13
17	.054	3116	2495	2077	1558	1246	1038	800	779							-			_ _	
18	.047	4138	3310	2758	2060	1655	1379	1182	113							00	0	31		3
19	.041	5334	4267	3556	2667	2133	1778									0	0	3		3 1
20	.035	7500	0000	5000	3750	3000											0	41		4
21	.032	8888	7111	5926	4444				****								1	5		41
22	.028	11428	9143	7618													2	6		51

These approximate numbers are an average only, and the figures given may be varied either way, by changes in the dimensions of heads or points. Brads and no-head nails will have more to the pound than table shows, and large or thick-headed nails will have less.

TABLE 126.

WEIGHTS OF NAILS AND SPIKES.

FROM CAMBRIA STEEL.

		Cur	STEEL	NAILS	AND	Spikes.	
Sizes	т	enoths.	and An	nroxim:	ate N	Jumber per Pound	1

Sizes.	Length. Inches.	Com- mon.	Clinch.	Finish- ing.	Casing and Box.	Fencing.	Spikes.	Barrel.	Light Barrel.	Slating.	Sizes.	Length. Inches.	Flat Grip.	Edge Grip. Fine.
	5/8							750				1	146	2
	3							600				7	130	0
	7 8							500			2d	I	110	0 960
2d	I	740	400	1100				450		340	3d	11	80	0 750
	I 1/8							310	400		4d	1 🖁	65	0 600
3d	11	460	260	880				280	304	280	_		Ì	
	1 8							210			To-		ads.	Shingle.
4d	1 1	280	180	530	420			190	224	220	Dacce	<u>'</u>		
5d	12	210	125	350	300	100				180	130			
6d	2	160	100	300	210	80					• 97	I:	20	
7d	21	120	80	210	180	60					85	9	94	
8d	21/2	88	68	168	130	52					68	1	74	90
9d	21	73	52	130	107	38					58		52	72
rod	3	60	48	104	88	26					48		50	60
12d	31	46	40	96	70	20						4	10	**********
16d	3 2	33	34	86	52	18	17					3	27	
20d	4.	23	24	76	38	16	14							
25d	41	20												
30d	41/2	161			30		II							**********
40d	5	12			26		9							
50d	5 1	10			20		71							
6od	6	8			16		6							
	61						51						•••••	
***********	7	***************************************					5						*****	

SQUARE BOAT SPIKES.

Approximate Number in a Keg of 200 Pounds.

Length of Spike-Inches.

Size.	3	4	5	6	7	8	9	10	Size.	6	7	8	9	10	11	12	14	16
ł"	3000		2050	-	1				16"	600								
16"	1000	1360	1230	1175	990	880			1//	450	375	335	300	275	260	240		
₹″	1320	1140	940	800	650	600	525	475	5//			260	240	220	205	190	175	160

RAILROAD SPIKES.

Size Under Head.	Average Number per Keg of 200 Lb.	Single Ties 2 Ft	r Mile of Track. . c. to c., per Tie.	Rail Used. Weight per Yard.	Size Under Head.	Average Number per Keg of 200 Lb.	Single	. c. to c.,	Rail Used. Weight per Yard.
Inches.	01 200 250	Pounds.	Kegs.	Pounds.	Inches.	01 200 Eb.	Pounds.	Kegs.	Pounds.
5½×½ 5½×½ 5½×½ 5 ×½ 5 ×½ 4½×½ 4½×½ 4 ×½	300 375 400 450 530 600	7040 5870 5170 4660 3960 3520	35½ 29⅓ 26 23⅓ 20 17⅔	75 to *00 45 " 75 40 " 56 35 " 40 30 " 35 25 " 35	$\begin{array}{c} 4\frac{1}{2} \times \frac{7}{16} \\ 4 \times \frac{7}{16} \\ 3\frac{1}{2} \times \frac{7}{16} \\ 4 \times \frac{3}{8} \\ 3\frac{1}{2} \times \frac{3}{8} \\ 3 \times \frac{3}{8} \end{array}$	680 720 900 1000 1190 1240	3110 2910 2350 2090 1780 1710	15½ 14¾ 11 10⅓ 9 8½	20 to 30 20 " 30 16 " 25 16 " 25 16 " 20 16 " 20

TABLE 127 PIPE-BLACK AND GALVANIZED. NATIONAL TURE COMPANY STANDARD.

STANDARD PIPE.

	Diameter	rs, Inches.	Thick-		per Foot, unds.	Threads		Couplings.	
Size, In.	External.	Internal.	ness, Inches.	Plain Ends.	Threads and Couplings.	per Inch.	Diameter, Inches.	Length, Inches.	Weight Pounds
1 8	.405	.269	.068	.244	.245	27	.562	7 8	.029
1	.540	.364	.088	.424	.425	18	.685	I	.043
-	.675	-493	.091	.567	.568	18	.848	I 1/8	.070
$\frac{1}{2}$.840	.622	.109	.850	.852	14	1.024	1 3	.116
3	1.050	.824	.113	1.130	1.134	14	1.281	I 5	.209
1	1.315	1.049	.133	1.678	1.684	$II\frac{1}{2}$	1.576	I 7/8	-343
11	1.660	1.380	.140	2.272	2.281	$11\frac{1}{2}$	1.950	2 1/8	-535
$1\frac{1}{2}$	1.900	1.610	.145	2.717	2.731	I I ½	2.218	23/8	-743
2	2.375	2.067	.154	3.652	3.678	$II\frac{1}{2}$	2.760	2 5 8	1.208
21/2	2.875	2.469	.203	5.793	5.819	8	3.276	2 7/8	1.720
3	3.500	3.068	.216	7-575	7.616	8	3.948	3 1	2.498
$3\frac{1}{2}$	4.000	3.548	.226	9.109	9.202	В	4.591	3 8	4.241
4	4.500	4.026	.237	10.790	10.889	8	5.091	3 5	4.741
41/2	5.000	4.506	.247	12.538	12.642	8	5.591	3 5 8	5.241
5	5.563	5.047	.258	14.617	14.810	8	6.296	$4\frac{1}{8}$	8.091
6	6.625	6.065	.280	18.974	19.185	8	7.358	$4\frac{1}{8}$	9.554
7	7.625	7.023	.301	23.544	23.769	8	8.358	4 1 8	10.932
8	8.625	8.071	.277	24.696	25.000	8	9.358	4 5 8	13.905
8	8.625	7.981	.322	28.554	28.809	8	9.358	4 5 8	13.905
9	9.625	8.941	-342	33.907	34.188	8	10.358	518	17.236
10	10.750	10.192	.279	31.201	32.000	8	11.721	61/8	29.877
10	10.750	10.136	.307	34.240	35.000	8	11.721	618	29.877
10	10.750	10.020	.365	40.483	41.132	8	11.721	$6\frac{1}{8}$	29.877
11	11.750	11.000	-375	45.557	46.247	8	12.721	618	32.550
12	12.750	12.090	.330	43.773	45.000	8	13.958	6 1	43.098
12	12.750	12.000	-375	49.562	50.706	8	13.958	61	43.098
13	14.000	13.250	-375	54.568	55.824	8	15.208	61/8	47.152
14	15.000	14.250	-375	58.573	60.375	8	16.446	61	59-493
15	16.000	15.250	-375	62.579	64.500	8	i7.446	61	63.294

The permissible variation in weight is 5 per cent above and 5 per cent below.

Furnished with threads and couplings and in random lengths unless otherwise ordered.

Taper of threads is \(\frac{4}{3}\)'' diameter per foot length for all sizes.

The weight per foot of pipe with threads and couplings is based on a length of 20 feet including the coupling, but shipping lengths of small sizes will usually average less than 20 feet.

All weights and dimensions are nominal. On sizes made in more than one weight, weight desired must be accepted.

desired must be specified.

TABLE 127 —Continued.

PIPE-BLACK AND GALVANIZED-Concluded.

NATIONAL TUBE COMPANY STANDARD.

EXTRA STRONG PIPE.

DOUBLE EXTRA STRONG PIPE.

Size,		neters,	Thick- ness,	Weight per Foot, Pounds.	Size, In.	Diam Inc	neters, hes.	Thick- ness,	Weight per Foot, Pounds.
1	External.	Internal.	Inches.	Plain Ends.	111,	External.	Internal.	Inches.	Plain Ends.
10014000012	.405 .540 .675 .840	.215 .302 .423 .546	.095 .119 .126 .147	.314 .535 .738 1.087	1 1 1 1	.840 1.050 1.315 1.660	.252 •434 •599 .896	.294 .308 .358 .382	1.714 2.440 3.659 5.214
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.050 1.315 1.660 1.900	.742 .957 1.278 1.500	.154 .179 .191 .200	1.473 2.171 2.996 3.631	$1\frac{1}{2}$ 2 $2\frac{1}{2}$ 3	1.900 2.375 2.875 3.500	1.100 1.503 1.771 2.300	.400 .436 .552 .600	6.408 9.029 13.695 18.583
$\begin{array}{c} 2 \\ 2\frac{1}{2} \\ 3 \\ 3\frac{1}{2} \end{array}$	2.375 2.875 3.500 4.000	1.939 2.323 2.900 3.364	.218 276 .300 .318	5.022 7.661 10.252 12.505	3½ 4 4½ 5	4.000 4.500 5.000 5.563	2.728 3.152 3.580 4.063	.636 .674 .710 .750	22.850 27.541 32.530 38.552
4 4 ¹ / ₂ 5 6	4.500 5.000 5.563 6.625	3.826 4.290 4.813 5.761	·337 ·355 ·375 ·432	14.983 17.611 20.778 28.573	6 7 8	6.625 7.625 8.625	4.897 5.875 6.875	.864 .875 .875	53.160 63.079 72.424
7 8 9 10	7.625 8.625 9.625 10.750	6.625 7.625 8.625 9.750	.500 .500 .500	38.048 43.388 48.728 54.735	unless oth Permiss pipe, 5 pe	hed with planerwise ordesible variate cent about the contraction of th	ered. tion in weig ve and 5 pe	ght, for ext er cent belo	tra strong
11 12 13 14	11.750 12.750 14.000 15.000	10.750 11.750 13.000 14.000	.500 .500 .500	60.075 65.415 72.091 77.431		er cent belo ghts and di		re nominal	•
15	16.000	15.000	.500	82.771					

LARGE O. D. PIPE.

In.				W	eight per F	oot, Pound	s.			
Size,]					Thicknes	s, Inches.				
Ø	ž	# 28	ł	16	1	18	5 8	1	1	I
14	36.713	45.682	54.568	63.371	72.091	80.726	89.279	106.134	122.654	138.842
15	39.383	49.020	58.573	68.044	77.431	86.734	95.954	114.144	132.000	149.522
16	42.053	52.357	62.579	72.716	82.771	92.742	102.629	122.154	141.345	160.202
17	44.723	55.695	66.584	77.389	88.111	98.749	109.304	130.164	150.690	170.882
18	47-393	59.032	70.589	82.061	93.451	104.757	115.979	138.174	160.035	181.562
20		65.708	78.599	91.407	104.131	116.772	129.330	154.194	178.725	202.923
2 I		69:045	82.604	96.079	109.471	122.780	136.005	162.204		
22		72.383	86.609	100.752	114.811	128.787	142.680	170.215		
24			94.619	110.097	125.491	140.802	156.030	186.235		
26			102.629	119.442	136.172	152.818	169.380	202.255		
28				128.787	146.852	164.833	182.730	218.275		
30	1			138.132	157.532	176.848	196.081	234.296		

Furnished with plain ends and in random lengths, unless otherwise ordered. All weights and dimensions are nominal.

TABLE 128.
Standard Gages. Comparative Table.
Carnegie Steel Co.

			Thickness in	Decimals of	an Inch.		
Gage Number.	Birmingham Wire (B. W. G.) also known as Stubs Iron Wire.	United States Standard for Sheet and Plate Iron and Seed.	American Wire or Browne & Sharpe.	American Steel & Wire Co. formerly Washburth & Moen.	Trenton from	British Imperial Standard Wire (S. W. G.).	Standard Birmingham Sheet and Hoop (B. G.).
0000000		.500		.4900		.500	
0000000		.46875	.580000	.4615		.464	
00000	.500	-4375	.516500	.4305	.450	.432	
0000	-454	.40625	.460000	.3938	.400	.400	
000	.425	·375	.409642	.3625	.360	.372	.5000
00	.380	·34375	.364796	.3310	.330	.348	-4452
0	.340	.3125	.324861	.3065	.305	.324	.3964
I	.300	.28125	.289297	.2830	.285	.300	.3532
2	.284	.265625	.257627	.2625	.265	.276	-3147
3 4 5 6 7 8	.259	.25	.229423	.2437	.245	.252	.2804
4	.238	-234375	.204307	.2253	.225	.232	.2500
5	.220	.21875	.181940	.2070	.205	.212	.2225
0	.180	.203125	.162023	.1920	.190	.192	.1981
7	.165	.1875	.144285	.1770	.175	.176 .160	.1764
		.171875	.128490	.1620	.160		.1570
9	.148	.15625	.114423	.1483	:145	.144	.1398
10	.134	.140625	.101897	.1350	.130	.128 .116	.1250
12	.120	.125 .109375	.090742	.1205	.1175	.104	.0991
13	.095	.09375	.071962	.1055	.105	.092	.0882
14	.083	.078125	.064084	.0800	.0806	.080	.0785
1.5	.072	.0703125	.057068	.0720	.070	.072	.0699
15 16	.065	.0625	.050821	.0625	.061	.064	.0625
17	.058	.05625	.045257	.0540	.0525	.056	.0556
17 18	.049	.05	.040303	.0475	.045	.048	.0495
19	.042	.04375	.035890	.0410	.040	.040	.0440
20	.035	.0375	.031961	.0348	.035	.036	.0392
21	.032	.034375	.028462	.03175	.031	.032	.0349
22	.028	.03125	.025346	-0286	.028	.028	.03125
23	.025	.028125	.022572	.0258	.025	.024	.02782
24	.022	.025	.020101	.0230	.0225	.022	.02476
25 26	.020	.021875	.017900	.0204	.020	.020	.02204
26	.018	.01875	.015941	.0181	.018	.018	.01961
27	.016	.0171875	.014195	.0173	.017	.0164	.01745
28	.014	.015625	.012641	.0162	.016	.0148	.015625
29	.013	.0140625	.011257	.0150	.015	.0136	.0139
30	.012	.0125	.010025	.0140	.014	.0124	.0123
31	.010	.0109375	.008928	.0132	.013	.0116	.0110
32	.009	.01015625	.007950	.0128	.012	.0108	.0098
33	.008	.009375	.007080	.0118	110.	.0100	.0087
34	.007	.00859375	.006305	.0104	.010	.0092	.0077
35 36	.005	.0078125	.005615	.0095	.0095	.0084	.0069
30	.004	.00703125	.005000	.0090	.009	.0076	.0061
37 38		.006640625	.004453	.0085	.0085	.0068	.0054
30		.00625	.003965	.0080	.008	.0060	.0048
39 40		**************	.003531	.0075	.0075	.0052	
40			.003144	.0070	.00/	.0048	

Unless otherwise specified, all orders in gages will be executed to Birmingham Wire Gage.

TABLE 129.

STANDARD GAGES AND WEIGHTS OF SHEET STEEL.

CARNEGIE STEEL CO.

UNITED STATES STANDARD GAGE

SHEET AND PLATE STEEL.

Gage Number.	Thickness in Fractions of an Inch.	Thickness in Decimals of an Inch.	Weight per Square Foot, in Pounds, Steel.	Gage Number.	Thickness in Fractions of an Inch.	Thickness in Decimals of an Inch.	Weight per Square Foot, in Pounds, Steel.
000000 00000 00000	1 15 33 16	-5 -46875 -4375	20.4 19.125 17.85	17 18 19 20	180 20 180 80	.05625 .05 .04375 .0375	2.295 2.04 1.785 1.53
0000 000 00 0	## ## ##	.40625 .375 .34375 .3125	16.575 15.3 14.025 12.75	21 22 23 24	3 7 0 3 3 3 7 0 3 7 0 4 0	.034375 .03125 .028125	1.4025 1.275 1.1475 1.02
1 2 3 4	32 19 84 15	.28125 .265625 .25 .234375	11.475 10.8375 10.2 9.5625	25 26 27 28	380 180 180 840 84	.021875 .01875 .0171875 .015625	.8925 .765 .70125 .6375
5 6 7 8	### 64 16 16 16	.21875 .203125 .1875 .171875	8.925 8.2875 7.65 7.0125	29 30 31 32	80 80 840 1980	.0140625 .0125 .0109375	.57375 .51 .44625
9 10 11 12	5 53 9 64 1 7 84	.15625 .140625 .125 .109375	6.375 5.7375 5.1 4.4625	33 34 35 36	1280 1280 840 840	.009375 .00859375 .0078125	.3825 .350625 .31875 .286875
13 14 15 16	7.6 1.5.8 6.4 8.3 8.3	.09375 .078125 .0703125 .0625	3.825 3.1875 2.86875 2.55	37 38	1280 2860 160	.006640625	.2709375 -255

BIRMINGHAM WIRE GAGE.

Equivalents in Inches.

CORRESPONDING WEIGHTS OF FLAT ROLLED STEEL.

Gage Number.	Thickness, Inches.	Pounds per Square Foot.	Gage Number.	Thickness, Inches.	Pounds per Square Foot
0000	.454	18.5232	17	.058	2.3664
000	.425	17.34	18	.049	1.0002
*****	********		19	.042	1.7136
00	.380	15.504	20	.035	1.428
O	-340	13.872)		
			21	.032	1.3056
I	.300	12.24	22	.028	1.1424
2	.284	11.5872	23	.025	1.02
3	.259	10.5672	24	.022	0.8976
****	###****	\$10.000 for many			
4	.238	9.7104	25	.020	0.816
			26	.018	0.7344
5	.220	8.976	27 28	.016	0.6528
5 6 7 8	.203	8.2824	28	.014	0.5712
7	.180	7.344			
8	.165	6.732	29	.013	0.5304
			30	.012	0.4896
9	.148	6.0384	31 32	.010	0.408
10	.134	5.4672	32	.009	0.3672
II	.120	4.896			
12	.109	4.4472	33	.008	0.3264
			34	.007	0.2856
13	.095	3.876	35	.005	0.2040
14	.083	3.3864	34 35 36	.004	0.1632
15 16	.072	2.9376			
16	.065	2.651			

TABLE 130.

CLEARANCE DIMENSIONS AND WHEEL LOADS, ELECTRIC CRANES.

McClintic-Marshall Construction Co.

TABLE 131.

CLEARANCE DIMENSIONS AND WHEEL LOADS, ELECTRIC CRANES

McCLINTIC-MARSHALL CONSTRUCTION Co.

TABLE 132. CRANE GIRDER SPECIFICATIONS. McClintic-Marshall Construction Co.

Weight of	Weight of Rail Splices	Weight of	Weight of	Cran	e Stop.	Amon of	Height	Web of	Width of
Rail per Yard.	per Pair with Bolts.	Rail Clamp.	Hook Bolts.	Plates.	Cast Iron.	Area of Rail.	and Width of Base of Rail.	Rail.	Head of Rail.
Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Sq. In.	In.	In.	In.
16	5		.5			1.6	21/4	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	5		-5			. 2.0	21/2	17	I 3
25	5	2.7	-5			2.5	23	19 64	$I^{\frac{1}{2}}$
30	5	2.7	-5		***********	3.0	3	21 64	I 5/8
35	5	2.7	•5			3-4	31/4	23	1 4
40	13	2.7	.9	56	35	3.9	3 2	. 25	I 7/8
45	13	3.2	.9	56	35	4.4	316	37	2
50	15	"	.9	56	35	4.9	3 8	15	2 1/8
55 60	15	"	1.3	57	35	5.4	416	12	21/4
	14	66	1.3	57	35	5.9	44	64	28
65	14	66	1.3	57	35	6.4	416	2	$2\frac{1}{3}\frac{3}{2}$
70	22	66	1.4	74	50	6.9	48	64	$2\frac{7}{16}$
75 80	22	"	1.4	74	50	7.4	413	17 32	2 3 2
	22	"	1.5	74	50	7.8	5	64	2 1/2
85	23	66	1.5	74	50	8.3	516	16	2 1 6
90	79.2		1.5	75	50	8.8	5 8	16	2 8
95	86.2	"	1.5	75	50	9.3	516	35 64 9 16 9 16 9 16 9	2 11 6
100	92.4		1.5	75	50	9.8	5 3	16	2 3 4

Crane Rails: Crane Rails are attached to the girder by means of clips or hook bolts, the latter being used chiefly for I-Beams, the flange being too narrow for a clip, and has the advantage of saving punching in the top flange. Clips and hook bolts provide for adjusting slight inaccuracies in the alignment of the rails. Rail Splices should consist of a flat bar fish plate or a rolled fish plate as angle splices are apt to interfere with the flange of the crane wheels. Provide our standard crane stop at the end of the rail. Dimensions: In preparing design indicate clearly distances A, R, J, E, G and distances of floor line to top of rail. These dimensions should be submitted to owners with design, but before ordering or manufacturing any material for the work the owner's approval should be obtained for same.

TABLE 133.

Typical Hand Cranes.

McClintic-Marshall Construction Co.

Capacity.	Span.	Wheel Base.	Max. Wheel Load.	Vertical Clearance.	Side Clearance.	I-Beams.	Plate Girders.	Capacity.	.Span.	Wheel Base.	Max. Wheel Load.	Vertical Clearance.	Side Clearance.	I-Beams.	Plate Girders.
Tons.	Ft.	Ft.	Lb.	Ft.	In.	Lb. p	er Yd.	Tons.	Ft.	Ft.	Lb.	Ft.	In.	Lb. p	er Yd.
2	30	4	3100	4	7	30	30	10	30	7	13000	5	10	40	40
2	50	5	4000	4	7	30	30	10	50	8	14400	5	10	40	40
4	30	4	5400	$4\frac{1}{2}$	8	30	30	I 2	30	7	20700	$5\frac{1}{2}$	10	45	45
4	50	5	6500	$4\frac{1}{2}$	8	30	30	12	50	8	22300	$5\frac{1}{2}$	10	45	45
6	30	6	8000	5	9	30	35	14	30	7	26000	$5\frac{1}{2}$	10	50	50
6	50	7	9200	5	9	30	35	14	50	8	28000	$5\frac{1}{2}$	10	50	50
8	30	6	10500	5	01	35	40	16	30	7	32300	6	12	50	55
8	50	•7	11800	5	01	35	40	16	50	8	35000	6	12	50	55

DIAGRAM FOR STRESS IN EYE-BARS DUE TO WEIGHT.

Problem.—Required stress due to weight of a 4 in. x I in. eye-bar, 20 ft. long, which has a

direct tension of 56,000 lb.

Then, h = 4 in.; L = 20 ft., and $f_2 = 14,000$ lb. per sq. in. The stress due to weight, f_1 , is found from the diagram as follows: On the bottom of the diagram, find h = 4 in.; follow up the vertical line to its intersection with inclined line marked, L = 20 ft., then follow the horizontal line passing through the point of intersection out to the left margin and find, y2 = 3.3 tens of thousandths; then follow vertical line, h = 4 in., up to its intersection with inclined line marked, $f_2 = 14,000$, and then follow the horizontal line passing through the point of intersection to left margin and find, $y_1 = 7.2$ tens of thousandths. Now $y_1 + y_2 = 7.2 + 3.3 = 10.5$. Find $y_1 + y_2 = 10.5$ on lower edge of diagram, follow vertical line to its intersection with line marked "Line of Reciprocals" and find on right margin, $f_1 = 950$ lb. sq. in.

For a bar inclined at an angle θ with a vertical line multiply the fiber stress calculated for a horizontal bar as above, of the same length, and multiply the fiber stress thus obtained by $\sin \theta$.

For example if the bar above is inclined at an angle of 45 degrees with the vertical; the fiber stress due to weight is, $f_1 = 950 \times \sin \theta = 950 \times 0.707 = 672$ lb.

Every intersection of the inclined f_2 and L lines has for its abscissa a value of h, which will have a maximum fiber stress, f_1 , for the given values of f_2 and L. For example for L = 30 ft.; $f_2 = 12,000$ lb., we find h = 8.3 in., and $f_1 = 1,700$ lb. A deeper or shallower bar will give a smaller value of f_1 .

253

TABLE 135.

DIAGRAM FOR STRESSES IN SQUARE PLATES.

Safe Loads on Square Plates.—The safe loads on square plates for a fiber stress of 10,000 pounds per square inch may be obtained from the diagram. As an example, required the safe load for a \(\frac{1}{4}\)-in, plate 3 feet square. Begin at 3 on the bottom of the diagram, follow upward to the line marked \(\frac{1}{4}\)-in, plate, from the intersection follow to the left edge and find 280 lb. per sq. ft. For any other fiber stress multiply the safe load found from the diagram by the ratio of the fiber stresses. To use the diagram for a rectangular plate take a square plate having the same area.

For formulas for strength of plates, see page 313, Chapter VIII.

TABLE 136.

TABLE 137.
DETAILS OF A STEEL STAIR.

TABLE 151
PROPERTIES OF BETHLEHEM I BEAMS

of Beam	Weight per Foot	Area	Thickness of Web	Width of Flange	Increase of Web and Flange for Each Pound Increase in Weight	2			2	Section Modulus	Maximum Safe Shear on Web	Maximum Bending Moment @ 16,000 Lbs. per Sq. In.	Add for Each Pound In- crease in Weight	Spacing Center to Center to Produce Equal Radii of Gyration About Each Axis
Depth of	Weight	. A	hickne	Width	of We	Moment	of Inertia	Radius of ration		- ×	um Saf	imum 16,000	id for I	pacing Produ ration
			T		ach Po	Axis I-I	Axis	Axis 1-1	Axis	Axis I-I	Макіш			\$ \$ \$ \$ \$ \$ \$
					西田	Iı	I 2	r ₁	r ₂	Sı		M ₁	m	77
In.	Lb.	In.º	In.	In.	In.	In.4	In.4	In.	In.	In.8	Lb.	FtLb.	Ft Lb.	In.
30	120	35.30	.540	10.500	.010	5 239.6	165.0	12.18	2.16	349-3	103 800	465 740	1 960	23.98
28	105	30.88	.500	10.000	110.	4 014.1	131.5	11.40	2.06	286.7	89 000	382 300	1 830	22.43
26	90	26.49	.460	9.500	110.	2 977.2	101.2	10.60	1.95	229.0	75 300	305 350	1 700	20.84
24	84 83 73	24.80 24.59 21.47	.520	9.130	.012 .012	2 381.9 2 240.9 2 091.0	91.1 78.0 74.4	9.80 9.55 9.87	1.92 1.78 1.86	198.5 186.7 174.3	93 100	264 660 248 980 232 340	I 570	18.76
20	82 72	24.17 21.37	.570		.015	1 559.8 1 466.5	79.9 75.9	8.03 8.28	1.82		102 400	207 980	1 307	
	69 64	20.26 18.86	.520 .450	8.145 8.075	.015	I 268.9 I 222.I	51.2 49.8	7.91 8.05	1.59 1.62	126.9 122.2	88 200 69 400	169 190 162 950	I 307 I 307	15.51
•	59	17.36		8.000	.015	1 172.2	48.3	8.22	1.66	117.2		156 290		
18	59 54 52 48.5	17.40 15.87 15.24 14.25	.410 ·375	7.675 7.590 7.555 7.500	016. 016. 016. 016.	883.3 842.0 825.0 798.3	39.1 37.7 37.1 36.2	7.12 7.28 7.36 7.48	1.50 1.54 1.56 1.59	98.1 93.6 91.7 88.7	57 500 49 200	130 860 124 740 122 220 118 260	I 177	14.24
15	71 64 54 46	20.95 18.81 15.88 13.52	.605 .410	7.500 7.195 7.000 6.810	.020 .020 .020	796.2 664.9 610.0 484.8	61.3 41.9 38.3 25.2	6.16 5.95 6.20 5.99	1.71 1.49 1.55 1.36	106.2 88.6 81.3 64.6	93 900	141 540 118 200 108 450 86 180	980 980	11.85 11.51 12.00 11.66
	41 38	12.02 11.27	-340	6.710 6.660	.020 .020	456.7 442.6	24.0 23.4	6.16 6.27	1.41 1.44	60.9 59.0	39 900 30 100			12.00
12	36 32 28.5	10.61 9.44 8.42	.335		.025 .025 .025	269.2 228.5 216.2	21.3 16.0 15.3	5.04 4.92 5.07	I.42 I.30 I.35	44.9 38.1 36.0	32 200 35 800 22 200	50 770	785 785 785	9.49
10	28.5 23.5	8.34 6.94		5.990 5.850	.029 .029	134.6 122.9	12.I 11.2	4.02 4.21	1.21	26.9 24.6	39 800 21 000		654 654	
9	24 20	7.04 6.01		5.555 5.440	.033	92. I 85. I	8.8 8.2	3.62 3.76	I.I2 I.I7	20.5 18.9	33 900 20 100		590 590	
8	19.5	5.78 5.18	.325	5.325 5.250	.037	60.6 57 4	6. ₇ 6. ₄	3·24 3·33	1.08	15.1	26 900 18 900		522 522	

TABLE 152
PROPERTIES OF BETHLEHEM GIRDER BEAMS

Depth of Beam	per Foot	g	of Web	Flange	Web and Flange for I Increase in Weight	2	\ \	1		2	Section Modulus	Mentioner Cofe Change on Wok	Shear on web	Bending	o In.	Took Dound	Increase in Weight	Spacing Center to Center to Produce Equal Radii of Gyration About Each Axis
epth o	Weight per	Area	Fhickness	Width of	Increase of Web and Each Pound Increase	M	oment o	of Inertia	Radius of ration	Gy-	Sect	Caro.	III Salle	faximu	Sq.	44 600	Increas	spacing ter to I Radii Abou
H	5		Th	Wi	rease c	Az	ds I-I	Axis 2-2	Axis 1-1	Axis 2-2	Axis 1-1		n mrx		Moment	_	q —	
					Inc		I1	I ₂	r ₁	r ₂	Sı		- TAT	N	11		m	11
In.	Lb.	In.º	In.	In.	In.		In.4	In.4	In.	In.	In.3	L	b.	Ft.	Lb.		∂t.− Lb.	In.
30	200 180	58.71 53.00	.750 .690	15.00 13.00	.010.	9	150.6 194.5	630.2 433.3	12.48	3.28 2.86	610.0 546.3	189 165	300 200	813 728	390 400		960 960	24.09 24.20
28	180 165			14.35 12.50		7 6	264.7 562.7	533-3 371.9	11.72 11.64	3.18 2.77	518.9 468.8	161 150	500 300	691 625	880 020		830 830	
26	160 150			13.60 12.00		5	620.8 153.9	435.7 314.6	10.95	3.05 2.68	432.4 396.5		900 900		490 600		700 700	
24				13.00 12.00			201.4 607.3	346.9 249.4	10.10	2.90 2.66	350.1 300.6	121 98	700 500	466 400	820 820		570 570	
20	140 112			12.50 12.00			934·7 342.I	348.9 239.3	8.44 8.45		293.5 234.2				280 290	I	307 307	15.85
18	92	27.12	.480	11.50	.016	I	591.4	182.6	7.66	2.59	176.8	76	100	235	760	r	177	14.41
15	140 104 73	30.50	.600	11.75 11.25 10.50	.020	I	592.7 220.1 883.4	331.0 213.0 -123.2	6.21 6.32 6.41	2.83 2.64 2.39	212.4 162.7 117.8		300	216	150 910 080		980 980 980	
12	70 55	20.58 16.18		10.00 9.75			538.8 432.0	114.7 81.1	5.12 5.17	2.36	89.8 72.0		200 300		730 000		785 785	* 9.08 * 9.31
10	44	12.95	.310	9.00	.030		244.2	57-3	4.34	2.10	48.8	29	800	65	130		654	* 7.60
9	38	11.22	.300	8.50	.033		170.9	44.1	3.90	1.98	38.0	26	700	50	630		590	* 672
8	32.5	9.54	.290	8.00	.037		114.4	32.9	3.46	1.86	28.6	23	600	38	140		522	* 5.85

^{*}Denotes that the distance given is less than the distance center to center of beams placed close together with flanges in contact.

TABLE 153
PROPERTIES OF BETHLEHEM H COLUMNS

C Depth	Weight per Foot	Nominal Flange Thickness	width of Flange	S Thickness of Web	M M	T	G	L	Area of Section	Axis 1-1	ent of cruia Axis 2-2 I2	Axis I-I r ₁	us of ation Axis 2-2 r ₂	Axis 1-1 S ₁	tion dulus Axis 2-2 S ₂
In.	Lb.	In.	In.	In.	In.	In.	In.	In.	In.2	In.4	In.4	In.	In.	In.3	In.3
_	1 1		1		1		14"	H Cor	UMINS					1	
13 ³ / ₄ 13 ⁷ / ₈	83.5 91.0	116	13.92 13.96	·43 ·47	.620 .683	·755	19 ⁵ / ₄		24.46 26.76	884.9 97 6.8	294.5 325.4	6.01 6.04	3·47 3·49	128.7	42.3 46.6
14 14 14 14 14 14 14 14 14 14 15 15 14 15 15 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	99.0 106.5 114.5 122.5 130.5 138.0 146.0 154.0 162.0 170.5 186.5 195.0 203.5 211.0 211.0 219.5 227.5 236.0 244.5 253.0 261.5 270.0 278.5 287.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.00 14.04 14.08 14.12 14.16 14.19 14.23 14.27 14.31 14.47 14.51 14.58 14.66 14.70 14.74 14.78 14.86 14.79	.51 -55 -59 .63 .67 .70 -74 .78 .82 .90 -94 .98 1.05 1.05 1.13 1.17 1.21 1.21 1.21 1.21 1.21 1.21	.745 .808 .870 .933 .995 I.058 I.120 I.183 I.245 I.370 I.433 I.433 I.458 I.620 I.683 I.745 I.808 I.870 I.995 2.058 2.120 2.183	.880 .942 1.005 1.067 1.130 1.192 1.255 1.317 1.380 1.442 1.505 1.567 1.630 1.630 1.755 1.817 1.880 1.942 2.005 2.067 2.130 2.192 2.255 2.317	19 130 19 130 19 130 19 130 19 130 20 13 20 13 20 13 20 20 20 20 20 20 20 20 20 20 20 20 20	L is constant = 11.06"	29.06 31.38 33.70 36.04 38.38 40.59 42.95 45.33 47.71 50.11 52.51 54.92 57.35 59.78 62.07 64.52 66.98 69.45 71.94 74.43 76.93 79.44 81.97 84.50	I 070.6 I 166.6 I 264.5 I 364.6 I 364.6 I 466.7 I 783.3 I 894.0 2 007.0 2 122.3 2 239.8 2 359.7 2 481.9 2 603.3 2 730.2 2 859.6 2 991.5 3 125.8 3 262.7 3 402.1 3 544.1 3 688.8 3 836.1	356.9 387.8 420.3 453.4 486.9 519.7 554.4 589.5 626.1 662.3 699.0 736.3 774.2 812.6 889.3 929.4 970.0 1 011.3 1 095.6 1 138.7 1 182.4 1 226.7	6.07 6.10 6.13 6.18 6.21 6.24 6.27 6.30 6.36 6.39 6.41 6.48 6.51 6.53 6.59 6.65 6.65 6.65 6.65 6.71 6.74	3.50 3.52 3.53 3.56 3.56 3.59 3.61 3.62 3.65 3.67 3.69 3.71 3.73 3.74 3.75 3.76 3.77 3.79 3.80 3.81	153.0 165.2 177.5 189.9 202.3 214.5 227.1 239.8 252.5 265.4 278.3 291.4 304.5 317.7 330.6 344.0 357.5 371.0 384.7 398.5 412.4 440.5 454.7	51.0 55.2 59.7 64.2 68.8 73.3 77.9 82.6 87.5 92.3 97.2 102.1 107.0 112.0 122.0 127.1 132.3 137.6 142.9 148.3 153.7 159.1 164.7
	1		1 1		1		12"	H Co	LUMNS						
113478 121478 121478 121478 121478 12178 12178 12178 12178 12178	64.5 71.5 78.0 84.5 91.5 98.5 105.0 112.0 118.5 125.5 132.5	58 116 34 116 78 116 116 116 116 116 116 116 116	11.92 11.96 12.00 12.04 12.08 12.12 12.16 12.20 12.23 12.27 12.31	·39 ·43 ·47 ·51 ·55 ·59 ·63 ·67 ·70 ·74 ·78	.567 .630 .692 .755 .817 .880 .942 1.005 1.067 1.130	683 .745 .808 .870 .933 .995 I.058 I.120 I.183 I.245 I.308	163 167 17 173 173 1716 1716 1716 1716 1	L is constant = 9.21"	19.00 20.96 22.94 24.92 26.92 28.92 30.94 32.96 34.87 36.91 38.97	499.0 556.6 615.6 676.1 738.1 801.7 866.8 933.4 1 000.0 1 069.8 1 141.3	168.6 188.2 208.1 228.5 249.2 270.1 291.7 313.6 335.0 357.7 380.7	5.13 5.15 5.18 5.21 5.24 5.27 5.30 5.33 5.36 5.38 5.41	2.98 3.00 3.01 3.03 3.04 3.06 3.07 3.08 3.10 3.11 3.13	84.9 93.7 102.6 111.5 120.5 129.6 138.6 147.9 156.9 166.2 175.6	28.3 31.5 34.7 37.9 41.3 44.6 48.0 51.4 54.8 58.3 61.9

TABLE 153.—Continued
PROPERTIES OF BETHLEHEM H COLUMNS

U Depth	Weight per Foot	Nominal Flange Thickness	Width of Flange	Zhickness of Web	M M	T	W	L	Area	Mome Ine Axis I-I	ent of rria Axis 2-2 I2		ius of ation Axis 2-2 r ₂		tion dulus Axis 2-2 S ₂
In.	Lb.	In.	In.	In.	In.	In.	In.	In.	In.2	In.4	In.4	In.	In.	In.ª	In.3
	' '					-	12"	H Cor					1		
13½ 13¼ 13½ 13½	139.5 146.5 153.5 161.0	$ \begin{array}{c} I \frac{5}{16} \\ I \frac{3}{8} \\ I \frac{7}{16} \\ I \frac{1}{2} \end{array} $	12.35 12.39 12.43 12.47	.82 .86 .90	I.255 I.317 I.380 I.442	I.370 I.433 I.495 I.558	18 18 ¹ / ₈ 18 ¹ / ₄ 18 ³ / ₈	L is constant Stant Co	41.03 43.10 45.19 47.28	I 214.5 I 289.4 I 366.0 I 444.3	404.1 428.0 452.2 477.0	5·44 5·47 5·50 5·53	3.14 3.15 3.16 3.18	185.0 194.6 204.3 214.0	65.4 69.1 72.8 76.5
	ı		· I				10"	н со	LUMINS				1		
9 ⁷ / ₈	49.0 54.0	9 16 8	9.97 10.00	.36	.514	.611	14 ¹ / ₁₆		14.37 15.91	263.5 296.8	89.1 100 4	4.28	2.49 2.51	53·4 59·4	17.9 20.1
1014 1043 1043 1058 1042 1064 1078 11	59.5 65.5 71.0 77.0 82.5 88.5 94.0 99.5	5 8 1 1 6 1 5 6 1 1 6 1 1 8 1 1 8 1 8 1 1 8 1 8 1 8 1	10.04 10.08 10.12 10.16 10.20 10.24 10.28 10.31	.43 .47 .51 .55 .59 .63 .67	.639 .702 .764 .827 .889 .952 I.014	.736 .798 .861 .923 .986 I.048 I.III I.173	1416 1438 1445 1447 1447 148 15	L is constant = $7.67''$	17.57 19.23 20.91 22.59 24.29 25.99 27.71 29.32	331.9 368.0 405.2 443.6 483.0 523.5 565.2 607.0	112.2 124.2 136.5 149.1 162.0 175.1 188.6 201.7	4.35 4.37 4.40 4.43 4.46 4.49 4.52 4.55	2.53 2 54 2.56 2.57 2.59 2.60 2.61 2.62	65.6 71.8 78.1 84.5 90.9 97.4 103.9 110.4	22.3 24.6 27.0 29.4 31.8 34.2 36.7 39.1
$11\frac{1}{4}$ $11\frac{3}{8}$	105.5 111.5 117.5 123.5	$1\frac{3}{16}$ $1\frac{1}{4}$ $1\frac{5}{16}$ $1\frac{3}{8}$	10.35 10.39 10.43 10.47	.74 .78 .82 .86	1.139 1.202 1.264 1.327	1.236 1.298 1.361 1.423	$ \begin{array}{c} 15\frac{3}{16} \\ 15\frac{5}{16} \\ 15\frac{7}{16} \\ 15\frac{9}{16} \end{array} $		31.06 32.80 34.55 36.32	651.0 696.2 742.7 790.4	215.6 229.9 244.4 259.3	4.58 4.61 4.64 4.67	2.64 2.65 2.66 2.67	117.0 123.8 130.6 137.5	41.7 44.3 46.9 49.5
							8"	H Cor	UMNS						
7 8	32.0	7 16	8.00	.31	-399	.476	1114		9.17	105.7	35.8	3.40	1.98	26.9	8.9
1691/45/001/315/05/417/0	34.5 39.0 43.5 48.0 53.0 57.5 62.0 67.0 71.5	1(29 16 16 5)6 5)6 110(8145)4117-8541	8.00 8.04 8.08 8.12 8.16 8.20 8.24 8.28 8.32	.31 .35 .39 .43 .47 .51 .55 .59	.462 .524 .587 .649 .712 .774 .837 .899	.538 .601 .663 .726 .788 .851 .913 .976 1.038	$\begin{array}{c} 11\frac{3}{6} \\ 11\frac{7}{16} \\ 11\frac{9}{16} \\ 11\frac{16}{16} \\ 11\frac{13}{16} \\ 12\frac{1}{16} \\ 12\frac{1}{16} \\ 12\frac{1}{4} \\ \end{array}$	s constant = 6.14"	10.17 11.50 12.83 14.18 15.53 16.90 18.27 19.66 21.05	121.5 139.5 158.3 177.7 197.8 218.6 240.2 262.5 285.6	41.1 47 2 53.4 59.8 66.3 73.1 80.0 87.1 94.4	3.46 3.48 3.51 3.54 3.57 3.60 3.63 3.65 3.68	2.01 2.03 2.04 2.05 2.07 2.08 2.09 2.11 2.12	30.4 34.3 38.4 42.4 46.5 50.7 54.9 59.2 63.5	10.3 11.7 13.2 14.7 16.3 17.8 19.4 21.0 22.7
9 ¹ / ₈ 9 ¹ / ₄ 9 ³ / ₈ 9 ¹ / ₂	76.5 81.0 85.5 90.5	$ \begin{array}{c} I\frac{1}{16} \\ I\frac{1}{8} \\ I\frac{3}{16} \\ I\frac{1}{4} \end{array} $	8.36 8.39 8.43 8.47	.67 .70 .74 .78	1.087	1.101 1.163 1.226 1.288	$ \begin{array}{c} 12\frac{3}{8} \\ 12\frac{1}{2} \\ 12\frac{5}{8} \\ 12\frac{3}{4} \end{array} $		22.46 23.78 25.20 26.64	309.5 333.5 359.0 385.3	101.9 109.2 117.2 125.1	3.71 3.75 3.77 3.80	2.13 2.14 2.16 2.17	67.8 72.1 76.6 81.1	24.4 26.0 27.8 29.6

TABLE 154.

Properties of Bethlehem Compound Columns.

	Specia Section	8 Lb. d H on.	H	G M N		Ď *_	_A	B			nforced vith r Plates	
	Total	Section,		Dime	nsions.		Moment	of Inertia.		of Gyra-		Modu-
Depth.	Weight.	Area.	H Section.	Cover Width.	Plates. Thick-ness.	G	Axis A-A	Axis B-B.	Axis A-A.	Axis B-B.	Axis A-A.	Axis B-B.
н				С	P		IA	IB	rA	r _B	SA	SB
In.	Lb.	In.º	In.	In.	In,	In	In.4	In.4	In.	In.	In.8	In.8
16161618 17 17161478 17717 17717 1771 178 1881884 188188 188188	284.0 290.8 297.6 304.4 311.2 318.0 324.8 331.6 338.4 345.2 350.3 357.5 364.7 372.0 379.2 386.4 393.6 400.9 408.1 415.3	83.52 85.52 87.52 89.52 91.52 93.52 95.52 97.52 101.52 103.02 107.27 109.40 111.52 113.65 115.79 117.90 120.02 122.15	D 1418 T 7 8 B 14.90 W 1.41 M 0.808	16 16 16 16 16 16 16 16 17 17 17 17 17 17	$\begin{array}{c} \mathbf{I} & $	$\begin{array}{c} 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 23 \frac{1}{16} \\ 24 \frac{1}{16} \\ 24 \frac{1}{16} \\ 24 \frac{1}{16} \\ 25 \frac{1}{1$	3737.7 3876.9 4018.2 4161.7 4307.2 4454.9 4604.8 4756.8 4911.0 5067.5 5132.5 5298.7 5467.2 5538.1 5811.5 5987.2 6165.4 6345.9 6529.0 6714.5	1321.9 1364.6 1407.3 1449.9 1492.6 1535.3 1577.9 1620.6 1663.3 1705.9 1901.6 1952.8 2003.9 2055.1 2106.3 2157.5 2208.7 2259.8 2311.0 2362.2	6.69 6.73 6.78 6.86 6.86 6.90 6.94 6.98 7.02 7.07 7.06 7.10 7.14 7.12 7.22 7.26 7.34 7.38 7.41	3.98 3.99 4.01 4.02 4.04 4.05 4.06 4.09 4.10 4.30 4.31 4.32 4.33 4.35 4.36 4.37 4.38 4.39 4.40	449.6 462.9 476.2 489.6 503.0 516.5 530.0 543.6 557.3 571.0 582.4 597.0 611.7 626.5 641.3 656.1 671.1 716.2	165.2 170.6 175.9 181.2 186.6 191.9 197.2 202.6 207.9 213.2 223.7 225.7 235.8 241.8 247.8 259.8 265.9 271.9
18 5 18 4 18 19 19 19 19 19 19 19 19 19 19 19 19 19	423.4 431.0 438.7 446.3 454.0 461.6 469.3 476.9 484.6	124.52 126.77 129.02 131.27 133.52 135.77 138.02 140.27 142.52	N 0.942 L 11.06	18 18 18 18 18 18 18	2 4 5 6 2 8 7 6 2 1 1 5 6 2 1 1 1 5 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 25\frac{7}{8} \\ 26 \\ 26\frac{1}{16} \\ 26\frac{3}{16} \\ 26\frac{3}{8} \\ 26\frac{7}{16} \\ 26\frac{9}{16} \\ 26\frac{5}{8} \end{array} $	6832.6 7029.0 7228.1 7429.8 7634.2 7841.3 8051.1 8263.6 8478.9	2655.6 2716.4 2777.1 2837.9 2898.6 2959.4 3020.1 3080.9 3141.6	7.41 7.45 7.48 7.52 7.56 7.60 7.64 7.68 7.71	4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70	733.7 749.8 765.9 782.1 798.3 814.7 831.1 847.6 864.1	295.I 301.8 308.6 315.3 322.I 328.8 335.6 342.3 349.I

Columns composed of a $14'' \times 148$ lb. Special Column Section, reënforced with cover plates of width and thickness given in table. The total thickness, P, may be made of two or more plates, each of punchable thickness.

TABLE 155.
ELEMENTS OF BETHLEHEM I-BEAMS AND GIRDER BEAMS.

TABLE 156.

Standard Connection Angles for Bethlehem I-Beams.

Minimum Spans on which the Above Connection Angles may be Used for Greatest Safe Uniformly Distributed Loads.

				Le	ast Span	, in Feet	, for Vari	ous Conc	litions.	
Depth of	Weight per	Rivets	s: Sheari	ng 10,000	Lbs., B	earing 20	,000 Lbs.	per Squa	are In.	Field Connection.
Beam, Inches.	Foot, Lbs.	Con- nection to Web	Field Con-	When T Beam o	rwo Bear r Girder	ns Frame with a W	Opposite eb Thick	Each O	ther to a	Rivet Shear, 8,000 Lbs. per Square Inch.
		of Beam.	nection.	18"	≟″	7"	∄‴	B"	ł"	Equate then,
30	120.0	23.0	21.1	22.I	24.8	28.4	33.1	39-7	49.7	26.3
28	105.0	22.7	19.2	20. I	22.7	25.9	30.2	36.2	45-3	24.0
26	90.0	22.I	17.3	18.1	20.4	23.3	27.1	32.6	40.7	21.6
24	84.0	21.9	17.1	17.9	20.2	23.1	26.9	32.2	40.3	21.4
24	73.0	22.7	15.0	15.7	17.7	20.2	23.6	28.3	35-4	18.8
20	72.0	20.2	14.7	15.4	17.4	19.9	23.2	27.8	34.8	18.4
20	59.0	18.5	11.8	12.3	13.9	15.9	18.5	22.2	27.8	14.7
18	48.5	16.4	10.7	11.2	12.6	14.4	16.8	20.2	25.2	13.4
15	71.0	12.1	16.0	16.8	18.9	21.6	25.1	30.2	37.7	20.0
15	54.0	8.11	12.3	12.8	14.5	16.5	19.3	23.I	28.9	15.3
15	38.0	12.1	8.9	9.3	10.5	12.0	14.0	16.8	21.0	11.1
12	36.0	10.3	9.0	9.5	10.6	12.2	14.2	17.0	21.3	11.3
12	28.5	10.3	7.2	7.6	8.5	9.8	11.4	13.7	17.1	9.1
10	23.5	8.7	7.4	7.8	8.7	10.0	11.6	14.0	17.5	9-3
9	20.0	6.7	5.7	6.0	6.7	7.7	9.0	10.8	13.5	7.1
8	17.5	5.1	4-3	4.5	5.1	5.8	6.8	8.2	10.2	5-4

The greatest value given of the least span for any of the governing conditions is the minimum span for which the connection may be used.

TABLE 157.

STANDARD CONNECTION ANGLES FOR BETHLEHEM GIRDER BEAMS.

Minimum Spans on which the Above Connection Angles May be Used for Greatest Safe Uniformly Distributed Loads.

				Le	ast Span,	, in Feet,	for Varie	ous Cond	itions.	
Depth of Beam,	Weight per	Riv	et: Shea	ring 10,00	o Lbs., I	Bearing 2	0,000 Lbs	. per Sq.	In.	Field Connection.
Inches.	Foot, Lbs.	Con- nection to Web	Field Con-	When T Beam or	wo Bean Girder	ns Frame with a W	Opposite eb Thick	Each Oness as F	ther to a 'ollows :	Rivet Shear, 8,000 Lbs. per Square Inch.
		of Beam.	nection.	18"	1/1	7/1	3//	8" 16"	1"	e diare men.
30 30	200.0 180.0	24.5 22.0	24.5 22.0	25.7 23.0	28.9 25.9	33.I 29.6	38.6 34·5	46.3 41.4	57.8 51.8	30.7 27.5
28 28	180.0 165.0	24.I 21.8	24.I 21.8	25.2 22.8	28.4 25.6	32.4 29.3	37.8 34.2	45·4 41.0	56.8 51.3	30.I 27.2
26 26	160.0 150.0	20.I 18.4	20.I 18.4	21.0	23.7 21.7	27.0 24.8	31.5 28.9	37.8 34.7	47·3 43·4	25.1 23.0
24 24	140.0 120.0	19.2 18.3	19.2 16.5	20.I 17.3	22.6 19.4	25.9 22.2	30.2 25.9	36.2 31.1	45·3 38.9	24.0 20.6
20 20	140.0 112.0	19.7 16.8	19.7 15.7	20.6 16.4	23.2 18.5	26.5 21.1	30.9 24.7	37.1 29.6	46.4 37.0	24.6 19.6
18	92.0	14.6	11.9	12.4	14.0	16.0	18.6	22.3	27.9	14.8
15 15 15	140.0 104.0 73.0	18.3 14.0 13.9	18.3 14.0 10.2	19.2 14.7 10.6	21.6 16.5 12.0	24.7 18.9 13.7	28.8 22.0 16.0	34·5 26·4 19·1	43.I 33.I 23.9	22.9 17.5 12.7
12 12	70.0 55.0	11.6	10.8 8.7	11.4 9·1	12.8	14.6 11.7	17.0 13.7	20.4 16.4	25.5 20.5	13.5
10	44.0	9.3	5.9	0.2	6.9	7.9	9.3	11.1	13.9	7-4
9	38.0	11.3	7.6	8.0	9.0	10.3	12.0	14.4	18.0	9.5
8	32.5	8.8	5.8	6.0	6.8	7.7	9.0	10.8	13.6	7.2

The greatest value given of the least span for any of the governing conditions is the minimum span for which the connection may be used.

TABLE 158.

CAST IRON SEPARATORS FOR BETHLEHEM GIRDER BEAMS AND I-BEAMS.

	I I	ors for	TCXCY	5			5	etal.		5.6 5.6	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	S for	18"E	0 30	bean	ms are	5 700	etal.	6
В	Beam.	Dista	nces.	Во	lts.		Weig	hts.		В	eam.	Dista	nces.	В	olts.		Wei	ghts.	
Depth.	Weight per Foot.	C, to C. of Beams.	Width S.	C. to C.	Length.	For Width S. Sadas	For Each I' of Increase in S. sa	For Width S.	For Each 7" st Increase in S.	Depth.	Weight per Foot.	C. to C. of Beams.	Width S.	C. to C.	Length.	For Width S.	For Each 1" standard Increase in S.	For Width S. gg	For Each 1". Increase in S.
In.	Lb.	In.	In.	In.	In.	Lb.	Lb.	Lb.	Lb.	In.	Lb.	In.	In.	In.	In.	Lb.	Lb.	Lb.	Lb.
	S	epara	tors	witl	h Th	ree I	Bolts.				S	ерага	tors	wit	h Th	ree B	olts.		
30 30 28 28 28 26 26	200.0 180.0 180.0 165.0 160.0 150.0	15 ³ / ₄ 13 ³ / ₄ 15 13 ¹ / ₄ 14 ¹ / ₄ 12 ³ / ₄	15 13 14 ¹ / ₄ 12 ¹ / ₈ 13 ¹ / ₈ 12 ¹ / ₈	7 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	15½ 16¾ 15 16	73.0 64.5 65.0 59.1 59.0 53.0	4.50 4.15 4.15 3.85	7·7 7·0 7·4 6.8 7·1 6.6	-375 -375 -375 -375 -375 -375	30 28 26	120.0 105.0 90.0	1111 105 108	10 ³ / ₄ 10 ¹ / ₈ 9 ⁵ / ₈	71/2	12 ³ / ₄ 12 11 ¹ / ₂		4.50 4.15 3.85	6.0 5.7 5.5	-375 -375 -375
	S	epara	ators	wit	h T	wo B	olts.				S	epara	tors	wit	h Tw	o Bo	lts.		
24 24 20 20 18 15 15 15 12	140.0 120.0 140.0 112.0 92.0 140.0 104.0 73.0 70.0 55.0	13 ³ / ₄ 12 ³ / ₄ 13 12 ¹ / ₂ 12 12 11 ¹ / ₄ 11 10 ¹ / ₂ 10 ³ / ₈ Separ	12\frac{1}{4} 12\frac{3}{8} 12 11\frac{1}{2} 11\frac{3}{8} 11\frac{1}{8} 10\frac{1}{2} 10	12½ 10 10 10 7½ 7½ 7½ 5	$ \begin{array}{c} 14\frac{1}{4} \\ 14\frac{1}{4} \\ 14 \\ 13\frac{1}{2} \\ 14 \\ 13\frac{1}{2} \\ 12\frac{1}{2} \\ 12 \end{array} $	17.5	3.50 2.80 2.80 2.60 1.50 1.60 1.30 1.30	4.6 4.3 4.5 4.3 4.2 4.3 4.2 4.0 3.8 3.8	.25 .25 .25 .25 .25 .25 .25 .25 .25	24 24 20 20 18 15 15 15 12	84.0 73.0 72.0 59.0 48.5 71.0 54.0 38.0 36.0 28.5	945/83/85/88 988/88 88 872/44 64/64 64/2	$\begin{array}{c} 9 \\ 8\frac{1}{4} \\ 7\frac{5}{8} \\ 7\frac{1}{2} \\ 7 \\ 6\frac{3}{8} \\ 6\frac{1}{4} \end{array}$	12½ 12½ 10 10 10 7½ 7½ 7½ 5 5	1114 11 1034 10 914 92 9 812 8 734		3.65 3.00 3.00 2.70 1.65 1.65 1.80 1.30	3.6 3.5 3.4 3.2 3.1 3.0 2.8 2.8	.25 .25 .25 .25 .25 .25 .25 .25 .25
	1	· .	1	l		1	1 1	- 0				1				1			
9 8	38.0 32.5	9½ 9 8½ 8½	98 83 81		104	11.0	1.00	1.8 1.7 1.7	.125 .125 .125	9 8	23.5 20.0 17.5	61 53 58	5 1 2 3 5 8		7½ 7 6¾	7.5 6.4 5.5	1.10	I.4 I.3 I.3	.125 .125 .125
	Separat Separat All bolt	ors fo	or 8	to I	5 inc	ch be													

TABLE 159.
SAFE LOADS, IN TONS, AND DEFLECTIONS, IN INCHES, BETHLEHEM I-BEAMS.

Depth.	Weight.								Lei	igth o	f Span	in Fe	eet.						
In.	Lb.	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
	120						103	93	85	78	72	67	62	58	55	52	49	47	44
30	*						•44	<u>·39</u>	.36	<u>·33</u>	.30	.28	.26	.25	.23	.22	.21	.20	.19
	Def.						.18	.22	.27	.32	<u>-37</u>	<u>-43</u>	.50	<u>.57</u>	.64	.7 <i>I</i>	.80	.88	-97
	105						85	76	70	64	.28	.26	51	48	45	42	40	38	36
28							.4I	·37	-33	-31	.40	.46	.24	$\frac{.23}{.61}$.22	.20	.19	.19	.18 1.04
	Def.						68	61	.29 56	<u>⋅34</u> 51	47	44	<u>-53</u> 41	38	<u>.78</u>	<u>-77</u> 34	.85	<u>.95</u> 31	29
26	90						.38	.34	.31	.28	.26	.24	.23	.21	.20	.19	.18	.17	.16
	Def.						.21	.25	.31	-37	•43	.50	-57	.65	.74	.83	.92	I.02	I.I2
	84			88	76	66	59	53	48	44	41	38	35	33	31	29	28	26	
24	73			77	66	58	52	46	42	39	36 .24	.22	31	29	27	26	24	.16	
•	Def.			.52 .10	·45	.18	.22	.31	.29	.26 .40	.47	.54	.62	.20	.19	.17	1.00	1.10	
	$\frac{D_{\ell j}}{82}$			69	59	52	46	42	<u>⋅33</u>	35	32	30	28	.7 <i>I</i>	24	23	22	21	
	72			65	56	49	43	39	36	33	30	28	26	24	23	22	2 I	20	
	69			56	48	42	38	34	31	28	26	24	23	21	20	19	18	17	
20	64			54	47	41	36	33	30	27	.25	23 22	22	20	19	18	17	16	
	5 9 ∗			52 ·44	·37	39 ·33	.29	31 .26	.24	.26	.20	.19	.17	.16	.15	.17	.14	.13	
	Def.			.12	.16	.21	.27	-33	.40	.48	.56	.65	.74	.85	.96	1.07	I.IQ	1.32	
	59			44	37	33	29	26	24	22	20	19	17	16	15	15	14	13	
	54			42	36	3 I	28	25	23	21	19	18	17	16	15	14	13	12	
18	48.5 *			39	34	.29	26 .26	24	21	20	.18	.17	.16	15	14	13	12	.12	
	Def.			·39 ·13	.18	.24	.30	·24 ·37	.21	.20	.62	.72	.83	.15	1.06	1.19	.12 1.33	1.47	
	7I			47	40	35	31	28	26	24	22	20	19	18	17	16	15	14	
	54			36	31	27	24	22	20	18	17	15	14	14	13	12	II	11	
	46			29	25	22	19	17	16	14	13	12	Ιİ	11	10	10	9	9	
15	41			27 26	23	20	18	16	15	14	12	I2	11	10	10	9	9	8	
	38 *			.33	.28	.26	.22	.20	.18	.16	.15	.14	.13	.12	.12	.11	.10	.10	
	Def.			.16	.22	.28	.36	.44	-53	.64	-75	.87	.99	1.13	1.28	1.43	1.60	1.76	
	36		24	20	17	15	13	12	II	IO		9	8		7 6				
	32		20	17	15	13	11	10	9	8	9	7	7 6	6					
12	28.5		.31	.26	.22	.20	.17	.16	.14	.13	.12	.11	11.	.10	.09				
	Def.		.14	.20	.27	•35	-45	.55	.67	.79	.93	1.08	1.24	1.41	1.59				
	28.5		14	12	10	9	-45	7		6	6	5	5	1.41	1.59				
**	23.5		13	II	9	8	7	7	7 6	5	5	5	4						
10	. *		.26	.22	.19	.16	.15	.13	.12	.11	.10	.09	.09						
	Def.		.17	.24	.32	.42	.54	.66	.80	.95	I.I2	1.30	1.49						
	24	14	II	9	8	7	6	5	5	5	4	4	4						
9	20 *	.29	.24	.20	.17	.15	.13	.12	.11	.10	.00	.09	.08						
	Def.	.12	.18	.27	.36	.47	.60	.74	.80	1.06	1.24	1.44	1.66						
	19.5	10	8		6	5.0	4.5	4.0	3.7	3.4		77							
8	17.5	10	8	7 6	5	4.8	4.2	3.8	3.5	3.2									
	*	.26	.21	.17	.15	.13	.12	.II	.10	.09									
	Def.	.13	.21	.30	.41	-53	.67	.83	1.00	1.19									

The figures give the safe uniform load, in tons of 2000 lb., based on an extreme fiber stress of 16000 lb. per sq. in., or end reactions for safe uniform load in thousands of lb.

Figures for deflection in inches.

For loads concentrated at center, use one half of figures given for allowable load, and four-fifths of deflections.

For figures to right of heavy lines, deflections are excessive for plastered ceilings. Figures given apply only when beams are secured against lateral deformation.

^{*}Increase of safe load in tons for each pound increase in weight of I-Beam.

TABLE 160.

SAFE LOADS, IN TONS, AND DEFLECTIONS IN INCHES, BETHLEHEM GIRDER BEAMS.

Depth.	Weight.								Le	ngth o	f Spar	n in F	eet.						
In.	Lb.	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44
	200					181	163	148	136	125	116	108	102	96	90	86	81	77	74
	180					162	146	132	121	112	104	97	91	86	81	77	73	69	66
30	*					-44	.39	.36	33	.30	.28	.26	.25	.23	.22	.21	.20	.19	.18
	Def.					.18	.22	.27	.32	-37	.43	.50	-57	.64	.71	.80	.88	.97	1.06
	180					154	138	126	115	106	99	92	86	81	77	73	69	-66	63
28	165					139	125	114	104	96	89	83	78	74	69	66	62	60	57
20	*					.4I	<u>-37</u>	-33	.3 I	.28	.26	.24	.23	.22	.20	.19	.18	17	17
	Def.					.19	.24	.29	-34	.40	.46	<u>-53</u>	.61	.78	.77	.85	-95	1.04	1.14
	160					128	115	105	96	89	82	77	72	68	64	61	58	55	52
26	150					117	106	96	88	81	76	70	66	62	59	56	53	50	48
	*					.38	-34	3 I	.28	.26	.24	.23	.21	.20	.19	.18	.17	.16	.15
	Def.					.21	.25	.31	-37	-43	.50	-57	.65	<u>.74</u>	.83	.92	1.02	1.12	1.23
	140		156		117	104	93	85	78	72	67	62	58	55	52	49	47		
24	120		134	115	100	89	80	73	67	62	57	53	50	47	45	42	40		
•			.52	<u>.45</u>	.39	<u>·35</u>	-31	.29	.26	.24	.22	.21	.20	.18	-17	.17	.16		
	Def.		.IO	.14	.18	.22	.28	-33	.40	.47	-54	.62	.71	.80	.89	1.00	I.IO		
	140		130	112	98	87	78	71	65	60	56	52	49	46	43	41	39		
20	112		104	89	78	69	.26	57	52	.20	45	.17	.16	37	35	33	31		
	Def.		<u>.44</u>	•37	-33	.29		.24	.22		.19		.85	.15	.15	.14	.13		
			.12	.16	.21	.27	-33	.40	.48	.56	.65	-74		.96	1.07	1.19	1.32	1	
18	92		79	67	.29	52	47	43	39	36 .18	.17	.16	.15	.14	26	.12	.12		
10	Def.		.13	.18	.24	.26	.24		-53	.62	.72	.83	.94	1.06	.13 I.IO	1.33	1.47		
				81	<u> </u>	.30	-37	.44			40	38	35		1.19	1.33	1.4/		
	140 104	113 87	94 72	62	71 54	63 48	57 43	51 39	47 36	33	31	29	27	33 26					
15	73	63	52	45	39	35	31	29	26	24	22	21	20	18					
-3	*	.39	.33	.28	.25	.22	.20	.18	.16	.15	.14	.13	.12	.12					
	Def.	.II	.16	.22	.28	.36	.44	.53	.64	.75	.87	.99	1.13	1.28					
	70	48	40	34	30	27	24	22	20	18	17	16	15	14					
	55 *	38	32	27	24	21	19	17	16	15	14	13	12	II					
12	*	.31	.26	.22	.20	.18	.16	.14	.13	.12	.II.	.10	.10	.09			ļ		
	Def.	.14	.20	.27	-35	.45	-55	.67	.79	-93	1.08	1.24	1.41	1.59					
•	44	26	22	10	16	15	13	12	11	10	9	9	8	8					
10	* ·	.26	.22	.19	.16	.15	.13	.12	.II	.IO	.09	.09	.08	.08					
	Def.	.17	.24	.32	.42	.54	.66	.80	.95	I.I2	1.30	1.49	1.69	I.91					
	38	20	17	14	13	II	10	9	8	8	7	7							
9	*	.23	.20	.17	.15	.13	.12	.11	.10	.09	.08	.07		1					
-	Def.	.18	.27	.36	.47	.60	.74	.89	1.06	1.24	1.44	1.66							
	321	15	13	11	10	8	8	7	6										
8	*	.21	.17	.15	.13	.12	.10	.09	.08								1	1	
	Def.	.21		.41	.53	.67	.83	1.00	1.10					1					
	Dej.		.50	14.1	.55	/				1			,			1			

The figures give the safe uniform load in tons, of 2000 lb., based on extreme fiber stress of 16000 lb. per sq. in., or end reactions for safe uniform load in thousands of pounds.

Figures for deflections are given in inches.

For load concentrated at center, use one-half of figures given for allowable load and four-fifths values given for deflection.

For figures at right of heavy zigzag lines deflections are considered excessive for plastered ceilings.

Figures given apply only when beams are secured against lateral deformation.

^{*}Increase of safe load in tons for each pound increase in weight of Girder Beams.

TABLE 161
DECIMAL PARTS OF A FOOT AND INCH

				Di	ECIMAL	Parts	of a Fo	от					Docis	nal Parts
Ins.	o''	ı"	2"	. 3"	4''	5''	6''	7"	8''	9"	10"	ıı"	of a	an Inch
	.0	.0833	.1667	.2500	•3333	.4167	.5000	.5833	.6667	.7500	.8333	.9167		
$\frac{1}{32}$.0026	.0859	.1693	.2526	•3359	.4193	.5026	.5859	.6693	.7526	.8359	.9193	32	.0313
16	.0052	.0885	.1719	.2552	.3385	.4219	.5052	.5885	.6719	•7552	.8385	.9219	16	.0625
3 2	.0078	.0911	.1745	.2578	.3411	.4245	.5078	.5911	.6745	-7578	.8411	.9245	3 3 2	.0938
1/8	.0104	.0938	.1771	.2604	-3438	.4271	.5104	.5938	.6771	.7604	.8438	.9271	1 8	.125
5 32	.0130	.0964	.1797	.2630	.3464	.4297	.5130	.5964	.6797	.7630	.8464	.9297	32	.1563
3 16	.0156	.0990	.1823	.2656	.3490	.4323	.5156	.5990	.6823	.7656	.8490	.9323	3 16	.1875
$\frac{7}{32}$.0182	.1016	.1849	.2682	.3516	·4349	.5182	.6016	.6849	.7682	.8516	.9349	32	.2188
1/4	.0208	.1042	.1875	.2708	.3542	·4375	.5208	.6042	.6875	.7708	.8542	-9375	1	.25
32	.0234	.1068	.1901	.2734	.3568	.4401	.5234	.6068	.6901	-7734	.8568	.9401	32	.2813
5 16	.0260	.1094	.1927	.2760	-3594	-4427	.5260	.6094	.6927	.7760	.8594	.9427	16	.3125
11 32	.0286	.1120	.1953	.2786	.3620	-4453	.5286	.6120	.6953	.7786	.8620	-9453	11 32	.3438
38	.0313	.1146	.1979	.2813	.3646	-4479	.5313	.6146	.6979	.7813	.8646	.9479	2/8	-375
$\frac{13}{32}$.0339	.1172	.2005	.2839	.3672	.4505	-5339	.6172	.7005	.7839	.8672	.9505	13 32	.4063
7	.0365	.1198	.203 I	.2865	.3698	.453I	.5365	.6198	.7031	.7865	.8698	.9531	7 16	-4375
15 32	.0391	.1224	.2057	.2891	-3724	· 4 557	.5391	.6224	.7057	.7891	.8724	-9557	15 32	. 4688
$\frac{1}{2}$.0417	.1250	.2083	.2917	.3750	.4583	.5417	.6250	.7083	.7917	.8750	.9583	1/2	•5
$\frac{17}{32}$.0443	.1276	.2109	· 2 943	.3776	.4609	-5443	.6276	.7109	-7943	.8776	.9609	17 32	.5313
9 16	.0469	.1302	.2135	.2969	.3802	.4635	.5469	.6302	.7135	.7969	.8802	.9635	9 16	.5625
19 32	.0495	.1328	.2161	.2995	.3828	.4661	-5495	.6328	.7161	-7995	.8828	.9661	19 32	.5938
58	.0521	.1354	.2188	.3021	.3854	.4688	.5521	.6354	.7188	.8021	.8854	.9688	5 8	.625
3 1 3 2	.0547	.1380	.2214	.3047	.3880	.4714	-5547	.6380	.7214	.8047	.8880	-9714	3 1	.6563
11 16	.0573	.1406	.2240	.3073	.3906	.4740	-5573	.6406	.7240	.8073	.8906	.9740	11 16	.6875
23 32	.0599	.1432	.2266	.3099	.3932	.4766	•5599	.6432	.7266	.8099	.8932	.9766	23 32	-7188
34	.0625	.1458	.2292	.3125	.3958	4792	.5625	.6458	.7292	.8125	.8958	.9792	3	·75
25 32	.0651	.1484	.2318	.3151	.3984	.4818	.5651	.6484	.7318	.8151	-8984	.9818	35	.7813
13 16	.0677	.1510	-2344	.3177	.4010	.4844	.5677	.6510	-7344	.8177	.9010	.9844	13 16	.8125
37	.0703	.1536	.2370	-3203	.4036	.4870	.5703	.6536	.7370	.8203	.9036	.9870	32	.8438
7 8	.0729	.1563	.2396	.3229	.4063	.4896	-5729	.6563	.7396	.8229	.9063	.9896	7 8	.875
32	.0755	.1589	.2422	.3255	.4089	.4922	-5755	.6589	.7422	.8255	.9089	-9922	32	.9063
15 16	.0781	.1615	.2448	.3281	.4115	.4948	.5781	.6615	.7448	.8281	.9115	.9948	15 16	-9375
31	.0807	.1641	.2474	.3307	.4141	4974	.5807	.6641	.7474	.8307	.9141	-9974	31 32	.9688

TABLE 162
TABLE OF BEVELS

AMERICAN BRIDGE COMPANY STANDARDS

	12"																							
nce a	Ang		Angl		Ang		Ang	_	Angl		Ang		Ang		Ang	le V	Ang	le V	Ang		Ang		Ang	ı le V
Distance	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.	Deg.	Min.
0	0	00	4	46	9	28	14	02	18	26	22	37	26	34	30	15	33	41	36	52	39	48	42	31
16 33	0	18	5	55 04	9	36 45	14	19	18	34 42	22	45 52	26 26	48	30	22	33	48 54	36 37	58 04	39 39	54 59	42	40
133	0	27 36	5	12 21	9	03	14	²⁷ 36	18	58	23	08	26 27	55 02	30	35 42	34	06	37	15	40	04	42	45 50
33 16 32	0	45 54	5	39	10	20	14	53	19	06	23	23	27	17	30	49 55	34	18	37	26	40	20	42	55
1	I	12	5	48 57	10	37	15	09	19	30	23	30 38	27 27	31	31	08	34	31	37	38	40	30 30	43	04
35 16 11	I	30 38	6 6	06 15 23	10	46 54 03	15 15	18 26 34	19 19	38 46 54	23 23 24	45 53 00	27 27 27	38 45 52	31 31 31	15 21 28	34 34 34	37 43 49	37 37 37	43 49 54	40 40 40	35 41 46	43 43 43	14 19 23
1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	I	47 56	6	32	11	12	15	43	20	02	24	08	27 28	59 06	31	34 41	34	55 OI	38 38	00	40	51 56	43	28
7 16 15 33	2	05	6	50	11	29 38	15	59 07	20	18 26	24	23	28	13	31	47	35	07	38. 38	11	4I 4I	01 06	43	38
. 1/2	2 2	23 32	7	08 16	11	46 55	16 16	16	20 20	33 41	24 24	37 45	28 28	27 34	32 32	00	35	19 25	38 38	22 28	4I 4I	11 16	43	47 52
16 19 32	2 2	4I 50	7 7	25 34	12 12	03	16 16	32 40	20 20	49 57	24 25	52 00	28 28	40 47	32 32	13 20	35 35	31 37	38 38	33 39	41 41	21 26	43 44	56 01
8 21 32	3	59 o8	7 7	43 52	12 12	20 29	16 16	49 57	2 I 2 I	05	25 25	07 14	28 29	54 01	32 32	25 32	35 35	42 48	38 38	44 49	4I 4I	31 36	44 44	05 10
118 233	3	17 26	8	00 09	12	37 46	17	05	2 I 2 I	20 28	25 25	22 29	29 29	08	32 32	39 45	35 36	54 00	38 39	55 ∞	4I 4I	41 46	44 44	15
75 82	3	35 44	8	18	12	54 03	17 17	21	2 I 2 I	36 43	25 25	36 43	29 29	21 28	32 32	51 58	36 36	12	39 39	06	41 41	51 56	44 44	24 28
18 37 7	3 4	52 01	8	35 44	13	20	17	38 46	21	59	25	51 58	29 29	35 42	33	10	36 36	18 23	39 39	16	42 42	06	44 44	33 37
39 32 15	4	19	9	53	13	37	18	54 02	22	07	26 26	12	29	49 55	33	17 23	36 36	35	39 39	32	42	16	44 44	42 47
18 31	4	28 37	9	19	13	45 54	18 18	18	22	30 30	26 26	20 27	30 30	02 09	33 33	29 35	36 36	41 46	39 39	38 43	42 42	21 26	44 44	51 56

TABLE 163
ORDINATES FOR 16'-0" CHORDS
AMERICAN BRIDGE COMPANY STANDARDS

On all drawings for curved work where radius exceeds facilities of Templet Shop Floor, make a sketch as shown giving ordinates from table.

Radius R			for 16'		Radius R		dinates emplet			Radius R		dinates emplet		
Ft. In.	a	b	с	đ	Ft. In.	п	ь	c.	d	Ft. In.	a	ь	c	đ
16'- 6'' 16- 8 16-10 17- 0 17- 2	$ \begin{array}{c} 11\frac{1}{4} \\ 11\frac{1}{8} \\ 11 \\ 10\frac{7}{8} \\ 10\frac{3}{4} \end{array} $	$ \begin{array}{c} 18\frac{7}{8} \\ 18\frac{3}{4} \\ 18\frac{1}{2} \\ 18\frac{1}{4} \\ 18\frac{1}{8} \end{array} $	238 238 238 228 228 228	$ \begin{array}{r} 24\frac{7}{8} \\ 24\frac{1}{2} \\ 24\frac{1}{4} \\ 24 \\ 23\frac{3}{4} \end{array} $	24'-8" 25-0 25-4 25-8 26-0	7 ¹ 8 7 6 ⁷ 8 6 ³ 4 6 ³ 4 6 ³ 4	128 118 113 113 113 113	15 148 148 148 144	$ \begin{array}{c} 16 \\ 15\frac{3}{4} \\ 15\frac{1}{2} \\ 15\frac{3}{8} \\ 15\frac{1}{8} \end{array} $	51'-6" 53-0 54-6 56-0 58-0	314 314 38 378	556-1236-18 5555-5555	7 6 ⁷ / ₈ 6 ⁵ / ₈ 6 ¹ / ₂ 6 ¹ / ₄	714 714 716 716 716 716 716 716 716 716 716 716
17- 4 17- 6 17- 8 17-10 18- 0	$ \begin{array}{c} 10\frac{5}{8} \\ 10\frac{1}{2} \\ 10\frac{3}{8} \\ 10\frac{1}{4} \\ 10\frac{1}{8} \end{array} $	17 ⁷ / ₈ 17 ⁵ / ₈ 17 ¹ / ₂ 17 ¹ / ₄ 17 ¹ / ₈	22\frac{1}{8} 21\frac{7}{8} 21\frac{3}{8} 21\frac{1}{8}	$ \begin{array}{c} 23\frac{1}{2} \\ 23\frac{1}{4} \\ 23 \\ 22\frac{3}{4} \\ 22\frac{1}{2} \end{array} $	26-4 26-8 27-0 27-6 28-6	658 621 621 638 64	$ \begin{array}{c} 11\frac{1}{4} \\ 11\frac{1}{8} \\ 11 \\ 10\frac{3}{4} \\ 10\frac{1}{2} \end{array} $	14 13 ⁷ / ₈ 13 ⁸ / ₈ 13 ⁸ / ₈	14 ⁷ / ₈ 14 ³ / ₄ 14 ¹ / ₂ 14 ¹ / ₄	60-0 626 650 676 700	2 2 3 4 5 10 2 3 to 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	48 45 41 41 44 48	5 34 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	685 1007 100 14 150 15 15 150 150 150 150 150 150 150 1
18- 2 18- 4 18- 6 18- 8 18-10	9 ⁷ / ₈ 9 ⁷ / ₈ 9 ³ / ₄ 9 ⁵ / ₈	$16\frac{7}{8}$ $16\frac{3}{4}$ $16\frac{5}{8}$ $16\frac{3}{8}$ $16\frac{1}{4}$	2I 20 ³ / ₄ 20 ¹ / ₂ 20 ³ / ₈ 20 ¹ / ₈	$ \begin{array}{c} 22\frac{1}{4} \\ 22 \\ 21\frac{7}{8} \\ 21\frac{5}{8} \\ 21\frac{3}{8} \end{array} $	28-6 29-0 29-6 30-0 30-6	618 6 578 534 58	10 ³ / ₈ 10 ¹ / ₈ 10 9 ⁷ / ₈ 9 ⁵ / ₈	$12\frac{7}{8}$ $12\frac{5}{8}$ $12\frac{1}{2}$ $12\frac{1}{4}$ 12	13 ³ / ₄ 13 ¹ / ₂ 13 ¹ / ₄ 13 12 ⁷ / ₈	72-6 75-0 77-6 80-0 84-0	238 24 24 28 28 28	4 33458 31458 31458	5 78 58 4 4 4 4 4 4 4 4	555 5 5 4 4 5 6 6 4 5 6 6 6 6 6 6 6 6 6
19- 0 19- 2 19- 4 19- 6 19- 8	9 ¹ / ₂ 9 ³ / ₈ 9 ³ / ₈ 9 ¹ / ₄ 9 ⁸ / ₈	16 1 5 7 8 1 5 3 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	$19\frac{7}{8}$ $19\frac{3}{4}$ $19\frac{1}{2}$ $19\frac{3}{8}$ $19\frac{1}{8}$	$ 2I\frac{1}{4} 2I 2O\frac{3}{4} 2O\frac{5}{8} 2O\frac{3}{8} $	31-0 31-6 32-0 32-9 33-6	5812381418 5 5 5 5 5 5 5	91238 938 98 934	1178 1158 1112 1118 1078	125 123 121 121 115 115	88-0 92-0 96-0 100-0 105-0	178 178 134 158 158	3 1/8 3 7/8 3/4 2 2 3/4	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 7 8 5 5 8 3 5 8
19-10 20- 0 20- 3 20- 6 20- 9	9 ¹ / ₈ 9 8 ⁷ / ₈ 8 ³ / ₄ 8 ⁵ / ₈	158 158 15 143 1458	19 18 $\frac{7}{8}$ 18 $\frac{5}{8}$ 18 $\frac{3}{8}$ 18 $\frac{1}{8}$	20 ¹ / ₄ 20 19 ³ / ₄ 19 ¹ / ₂ 19 ¹ / ₄	34-3 35-0 35-9 36-6 37-3	5 78 4 3 4 4 5 8 4 5 8	812388 818 878	$10\frac{5}{8}$ $10\frac{3}{8}$ $10\frac{1}{4}$ 10	1138 1118 1058 108	110-0 115-0 120-0 130-0 140-0	12 123 123 14 14 14	25/81/22/3/80 2/2/3/80 2/4	3 3 3 4 5 8 2 2 2 2 2 3	3 1 3 3 3 3 4 3 3 4 3 3 4 4 3 3 4 4 4 4
2I- 0 2I- 3 2I- 6 2I- 9 22- 0	812 838 814 818 8818	14 ³ / ₈ 14 ¹ / ₄ 14 13 ⁷ / ₈ 13 ⁵ / ₈	17 ⁷ / ₈ 17 ³ / ₈ 17 ¹ / ₄ 17	$ \begin{array}{c} 19 \\ 18\frac{3}{4} \\ 18\frac{1}{2} \\ 18\frac{1}{4} \\ 18\frac{1}{8} \end{array} $	38-0 38-9 39-6 40-3 41-0	425 425 441 44 48	758 723 714 7418 78	958 938 94 97 88	101 10 95 95 91 92	150-0 160-0 180-0 200-0 225-0	1 7 8 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	178 134 158 121 14	2 3 4 2 1 4 1 5 6 1 5 6	2 ¹ / ₂ 2 ³ / ₂ 2 ¹ / ₂ 2 ¹ / ₂ 1 ³ / ₄
22- 3 22- 6 22- 9 23- 0	.8 783 745 78	$ \begin{array}{c} 13\frac{1}{2} \\ 13\frac{3}{8} \\ 13\frac{1}{8} \end{array} $	$16\frac{3}{4}$ $16\frac{5}{8}$ $16\frac{3}{8}$ $16\frac{1}{4}$	17 ⁷ / ₈ 17 ⁵ / ₈ 17 ³ / ₈ 17 ¹ / ₄	42-0 43-0 44-0 45-0	4 4 3 8 3 3 3 4	$ 6\frac{7}{8} \\ 6\frac{3}{4} \\ 6\frac{5}{8} \\ 6\frac{1}{2} $	858 812 814 818 818	9 ¹ / ₄ 9 8 ³ / ₄ 8 ⁵ / ₈	250-0 300-0 350-0 400-0	5012121330	1 1 8 1 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 ½ 1 ¼ 1 ½	1½ 1¼ 1½ 1
23- 4 23- 8 24- 0 24- 4	7½ 7½ 7½ 7½ 7½ 7½	$12\frac{7}{8}$ $12\frac{5}{8}$ $12\frac{1}{2}$ $12\frac{1}{4}$	16 15 ³ / ₄ 15 ¹ / ₂ 15 ¹ / ₄	$ \begin{array}{c c} 17 \\ 16\frac{3}{4} \\ 16\frac{1}{2} \\ 16\frac{1}{4} \end{array} $	46-3 47-6 48-9 50-0	35/85/85/85/33/8 33/8	$6\frac{1}{4}$ $6\frac{1}{8}$ 6 $5\frac{3}{4}$	785812171717171	838 818 783 74	500-0 625-0 750-0 1000-0	30141418	5)00 4(24 50)00 4(48	soje sojec mjersojes	5)4-5)6-1(24-5)80

TABLE 164
Natural Tangents

4 2	0'	50	10'	15"	20'	25'	30'	35'	40'	45'	50'	55'	60'	48
De- grees			10				30		40		30	33		De
0 1 2 3 4	.0000 .0175 .0349 .0524 .0699	.0015 .0189 .0364 .0539	.0029 .0204 .0378 .0553 .0729	.0044 .0218 .0393 .0568 .0743	.0058 .0233 .0407 .0582 .0758	.0073 .0247 .0422 .0597 .0772	.0087 .0262 .0437 .0612 .0787	.0102 .0276 .0451 .0626 .0802	.0116 .0291 .0466 .0641 .0816	.0131 .0306 .0480 .0655	.0146 .0320 .0495 .0670 .0846	.0160 .0335 .0509 .0685 .0860	.0175 .0349 .0524 .0699	0 1 2 3 4
5	.0875	.0890	.0904	.0919	.0934	.0948	.0963	.0978	.0992	.1007	.1022	.1036	.1051	5
6	.1051	.1066	.1080	.1095	.1110	.1125	.1139	.1154	.1169	.1184	.1198	.1213	.1228	6
7	.1228	.1243	.1257	.1272	.1287	.1302	.1317	.1331	.1346	.1361	.1376	.1391	.1405	7
8	.1405	.1420	.1435	.1450	.1 ₄ 65	.1480	.1495	.1509	.1524	.1539	.1554	.1569	.1584	8
9	.1584	.1599	.1614	.1629	.1644	.1658	.1673	.1688	.1703	.1718	.1733	.1748	.1763	9
10	.1763	.1778	.1793	.1808	.1823	.1838	.1853	.1868	.1883	.1899	.1914	.1929	.1944	10
11	.1944	.1959	.1974	.1989	.2004	.2019	.2035	.2050	.2065	.2080	.2095	.2110	.2126	11
12	.2126	.2141	.21 ₅ 6	.2171	.2186	.2202	.2217	.2232	.2247	.2263	.2278	.2293	.2309	12
13	.2309	.2324	.2339	.2355	.2370	.2385	.2401	.2416	.2432	.2447	.2462	.2478	.2493	13
14	.2493	.2509	.2524	.2540	.2555	.2571	.2586	.2602	.2617	.2633	.2648	.2664	.2679	14
15	.2679	.2695	.2711	.2726	.2742	.2758	.2773	.2789	.2805	.2820	.2836	.2852	.2867	15
16	.2867	.2883	.2899	.2915	.2931	.2946	.2962	.2978	.2994	.3010	.3026	.3041	.3057	16
17	.3057	.3073	.3089	.3105	.3121	.3137	.3153	.3169	.3185	.3201	.3217	.3233	.3249	17
18	.3249	.3265	.3281	.3298	.3314	.3330	.3346	.3362	.3378	.3395	.3411	.3427	.3443	18
19	.3443	.3460	.3476	.3492	.3508	.3525	-3541	.3558	.3574	.3590	.3607	.3623	.3640	19
20	.3640	.3656	.3673	.3689	.3706	.3722	·3739	.3755	-3772	.3789	.3805	.3822	.3839	20
21	.3839	.3855	.3872	.3889	.3906	.3922	·3939	.3956	-3973	.3990	.4006	.4023	.4040	21
22	.4040	.4057	.4074	.4091	.4108	.4125	·4142	.4159	-4176	.4193	.4210	.4228	.4245	22
23	.4245	.4262	.4279	.4296	.4314	.4331	·4348	.4365	-4383	.4400	.4417	.4435	.4452	23
24	.4452	.4470	.4487	.4505	.4522	.4540	·4557	.4575	-4592	.4610	.4628	.4645	.4663	24
25	.4663	.4681	.4699	.4716	.4734	.4752	.4770	.4788	.4806	.4823	.4841	.4859	.4877	25
26	.4877	.4895	.4913	.4931	.4950	.4968	.4986	.5004	.5022	.5040	.5059	.5077	.5095	26
27	.5095	.5114	.5132	.5150	.5169	.5187	.5206	.5224	.5243	.5261	.5280	.5298	.5317	27
28	.5317	.5336	.5354	.5373	.5392	.5411	.5430	.5448	.5467	.5486	.5505	.5524	.5543	28
29	.5543	.5562	.5581	.5600	.5619	.5639	.5658	.5677	.5696	.5715	.5735	.5754	.5774	29
30	.5774	.5793	.5812	.5832	.5851	.5871	.5890	.5910	.5930	.5949	.5969	.5989	.6009	30
31	.6009	.6028	.6048	.6068	.6088	.6108	.6128	.6148	.6168	.6188	.6208	.6228	.6249	31
32	.6249	.6269	.6289	.6310	.6330	.6350	.6371	.6391	.6412	.6432	.6453	.6473	.6494	32
33	.6494	.6515	.6536	.6556	.6577	.6598	.6619	.6640	.6661	.6682	.6703	.6724	.6745	33
34	.6745	.6766	.6787	.6809	.6830	.6851	.6873	.6894	.6916	.6937	.6959	.6980	.7002	34
35	.7002	.7024	.7046	.7067	.7089	.7111	.7133	.7155	.7177	.7199	.7221	.7243	.7265	35
36	.7265	.7288	.7310	.7332	.7355	•7377	.7400	.7422	.7445	.7467	.7490	.7513	.7536	36
37	.7536	.7558	.7581	.7604	.7627	•7650	.7673	.7696	.7720	.7743	.7766	.7789	.7813	37
38	.7813	.7836	.7860	.7883	.7907	•7931	.7954	.7978	.8002	.8026	.8050	.8074	.8098	38
39	.8098	.8122	.8146	.8170	.8195	•8219	.8243	.8268	.8292	.8317	.8342	.8366	.8391	39
40	.8391	.8416	.8441	.8466	.8491	.8516	.8541	.8566	.8591	.8617	.8642	.8667	.8693	40
41	.8693	.8718	.8744	.8770	.8796	.8821	.8847	.8873	.8899	.8925	.8952	.8978	.9004	41
42	.9004	.9030	.9057	.9083	.9110	.9137	.9163	.9190	.9217	.9244	.9271	.9298	.9325	42
43	.9325	.9352	.9380	.9407	.9435	.9462	.9490	.9517	·9545	.9573	.9601	.9629	.9657	43
44	.9657	.9685	.9713	.9742	.9770	.9798	.9827	.9856	.9884	.9913	.9942	.9971	1.0000	44
De- grees	o'	5'	10'	15'	20'	25'	30'	35'	40'	45'	50'	55'	60'	De- grees

TABLE 165.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 1 TO 99.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
1 2 3 4 5 6 7 8	1 4 9 16 25 36 49 64	1 8 27 64 125 216 343 512	1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284	1.0000 1.2599 1.4422 1.5874 1.7100 1.8171 1.9129 2.0000	50 51 52 53 54 55 56 57	2500 2601 2704 2809 2916 3025 3136 3249	125000 132651 140608 148877 157464 166375 175616 185193	7.0711 7.1414 7.2111 7.2801 7.3485 7.4162 7.4833 7.5498	3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 3.8485
9	100	729 1000	3.0000	2.0801 2.1544	58	3364 3481	195112 205379	7.6158 7.6811	3.8709 3.8930
11 12 13 14 15 16 17 18 19	121 144 169 196 225 256 289 324 361 400	1331 1728 2197 2744 3375 4096 4913 5832 6859 8000	3.3166 3.4641 3.6056 3.7417 3.8730 4.0000 4.1231 4.2426 4.3589 4.4721	2.2240 2.2894 2.3513 2.4101 2.4662 2.5198 2.5713 2.6207 2.6684 2.7144	60 61 62 63 64 65 66 67 68 69	3600 3721 3844 3969 4096 4225 4356 4489 4624 4761	216000 226981 238328 250047 262144 274625 287496 300763 314432 328509	7.7460 7.8102 7.8740 7.9373 8.0000 8.0623 8.1240 8.1854 8.2462 8.3066	3.9149 3.9365 3.9579 3.9791 4.0000 4.0207 4.0412 4.0615 4.0817 4.1016
21 22 23 24 25 26 27 28 29 30	441 484 529 576 625 676 729 784 841 900	9261 10648 12167 13824 15625 17576 19683 21952 24389 27000	4.5826 4.6904 4.7958. 4.8990 5.0000 5.0990 5.1962 5.2915 5.3852 5.4772	2.7589 2.8020 2.8439 2.8845 2.9240 2.9625 3.0000 3.0366 3.0723 3.1072	70 71 72 73 74 75 76 77 78 79	4900 5041 5184 5329 5476 5625 5776 5929 6084 6241	343000 357911 373248 389017 405224 421875 438976 456533 474552 493039	8.3666 8.4261 8.4853 8.5440 8.6023 8.6603 8.7178 8.7750 8.8318 8.8882	4.1213 4.1408 4.1602 4.1793 4.1983 4.2172 4.2358 4.2543 4.2727 4.2908
31 32 33 34 35 36 37 38 39 40	961 1024 1089 1156 1225 1296 1369 1444 1521	29791 32768 35937 39304 42875 46656 50653 54872 59319 64000	5.5678 5.6569 5.7446 5.8310 5.9161 6.0000 6.0828 6.1644 6.2450 6.3246	3.1414 3.1748 3.2075 3.2396 3.2711 3.3019 3.3322 3.3620 3.3912 3.4200	80 81 82 83 84 85 86 87 88	6400 6561 6724 6889 7056 7225 7396 7569 7744 7921	512000 531441 551368 571787 592704 614125 636056 658503 681472 704969	8.9443 9.0000 9.0554 9.1104 9.1652 9.2195 9.2736 9.3274 9.3808 9.4340	4.3089 4.3267 4.3445 4.3621 4.3795 4.3968 4.4140 4.4310 4.4480 4.4647
41 42 43 44 45 46 47 48 49	1681 1764 1849 1936 2025 2116 2209 2304 2401	68921 74088 79507 85184 91125 97336 103823 110592 117649	6.4031 6.4807 6.5574 6.6332 6.7823 6.7823 6.8557 6.9282 7.0000	3.4482 3.4760 3.5034 3.5303 3.5569 3.5830 3.6088 3.6342 3.6593	90 91 92 93 94 95 96 97 98	8100 8281 8464 8649 8836 9025 9216 9409 9604	729000 753571 778688 804357 830584 857375 884736 912673 941192 970299	9.4868 9.5394 9.5917 9.6437 9.6954 9.7468 9.7980 9.8489 9.8995 9.9499	4.4814 4.4979 4.5144 4.5307 4.5468 4.5629 4.5789 4.5947 4.6104 4.6261

TABLE 165.—Continued.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 100 TO 199.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
100	10000	10000000	10.0000	4.6416	150	22500	3375000	12.2474	5.3133
101	10201	1030301	10.0499	4.6570	151	22801	3442951	12.2882	5.3251
102	10404	1061208	10.0995	4.6723	152	23104	3511808	12.3288	5.3368
103	10609	1092727	10.1489	4.6875	153	23409	3581577	12.3693	5.3485
104	10816	1124864	10.1980	4.7027	154	23716	3652264	12.4097	5.3601
105	11025	1157625	10.2470	4.7177	155	24025	3723875	12.4499	5.3717
106	11236	1191016	10.2956	4.7326	156	24336	3796416	12.4900	5.3832
107	11449	1225043	10.3441	4.7475	157	24649	3869893	12.5300	5.3947
108	11664	1259712	10.3923	4.7622	158	24964	3944312	12.5698	5.4061
100	11881	1295029	10.4403	4.7769	159	25281	4019679	12.6095	5.4175
109	11001	1293029	10.4403	4.//09	*39	25201	4019079	12.0095	3.41/3
110	12100	1331000	10.4881	4.7914	160	25600	4096000	12.6491	5.4288
111	12321	1367631	10.5357	4.8059	161	25921	4173281	12.6886	5.4401
112	12544	1404928	10.5830	4.8203	162	26244	4251528	12.7279	5.4514
113	12769	1442897	10.6301	4.8346	163	26560	4330747	12.7671	5.4626
114	12996	1481544	10.6771	4.8488	164	26896	4410944	12.8062	5.4737
115	13225	1520875	10.7238	4.8629	165	27225	4492125	12.8452	5.4848
116	13456	1560896	10.7703	4.8770	166	27556	4574296	12.8841	5.4959
			10.8167		167	27889			
117	13689	1601613		4.8910	168		4657463	12.9228	5.5069
118	13924	1643032	10.8628	4.9049		28224	4741632	12.9615	5.5178
119	14161	1685159	10.9087	4.9187	169	28561	4826809	13.0000	5.5288
120	14400	1728000	10.9545	4.9324	170	28900	4913000	13.0384	5.5397
121	14641	1771561	11.0000	4.9461	171	29241	5000211	13.0767	5.5505
122	14884	1815848	11.0454	4.9597	172	29584	5088448	13.1149	5.5613
	15129	1860867	11.0905						
123				4.9732	173	29929	5177717	13.1529	5.5721
124	15376	1906624	11.1355	4.9866	174	30276	5268024	13.1909	5.5828
125	15625	1953125	1	5.0000	175	30625	5359375	13.2288	5.5934
126	15876	2000376	11.2250	5.0133	176	30976	5451776	13.2665	5.6041
127	16129	2048383	11.2694	5.0265	177	31329	5545233	13.3041	5.6147
128	16384	2097152	11:3137	5.0397	178	31684	5639752	13.3417	5.6252
129	16641	2146689	11.3578	5.0528	179	32041	5735339	13.3791	5.6357
130	16900	2197000	11.4018	5.0658	180	32400	5832000	13.4164	5.6462
131	17161	2248091	11.4455	5.0788	181	32761	5929741	13.4536	5.6567
132	17424	2299968	11.4891	5.0916	182	33124	6028568	13.4530	5.6671
	17689	2352637	11.5326		183		6128487		5.6774
133				5.1045		33489		13.5277	
134	17956	2406104	11.5758	5.1172	184	33856	6229504	13.5647	5.6877
135	18225	2460375	11.6190	5.1299	185	34225	6331625	13.6015	5.6980
136	18496	2515456	11.6619	5.1426	186	34596	6434856	13.6382	5.7083
137	18769	2571353	11.7047	5.1551	187	34969	6539203	13.6748	5.7185
138	19044	2628072	11.7473	5.1676	188	35344	6644672	13.7113	5.7287
139	19321	2685619	11.7898	5.1801	189	35721	6751269	13.7477	5.7388
140	19600	2744000	11.8322	5.1925	190	36100	6859000	13.7840	5.7489
141	19881	2803221	11.8743	5.2048	191	36481	6967871	13.8203	5.7590
	20164	2863288	11.9164	5.2171	191	36864	7077888	13.8564	5.7690
142									
143	20449	2924207	11.9583	5.2293	193	37249	7189057	13.8924	5.7790
144	20736	2985984	12.0000	5.2415	194	37636	7301384	13.9284	5.7890
145	21025	3048625	12.0416	5.2536	195	38025	7414875	13.9642	5.7989
146	21316	3112136	12.0830	5.2656	196	38416	7529536	14.0000	5.8088
147	21609	3176523	12.1244	5.2776	197	38809	7645373	14.0357	5.8186
148	21904	3241792	12.1655	5.2896	198	39204	7762392	14.0712	5.8285
149	22201	3307949	12.2066	5.3015	199	39601	7880599	14.1067	5.8383

TABLE 165.—Continued.

Souares, Cubes, Square Roots and Cube Roots of Numbers from 200 to 299.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
200	40000	8000000	14.1421	5.8480	250	62500	15625000	15.8114	6.2996
201	40401	8120601	14.1774	5.8578	251	63001	15813251	15.8430	6.3080
202	40804	8242408	14.2127	5.8675	252	63504	16003008	15.8745	6.3164
203	41209	8365427	14.2478	5.8771	253	64009	16194277	15.9060	6.3247
204	41616	8489664	14.2829	5.8868	254	64516	16387064	15.9374	6.3330
205	42025	8615125	14.3178	5.8964	255	65025	16581375	15.9687	6.3413
206	42436	8741816	14.3527	5.9059	256	65536	16777216	16.0000	6.3496
207	42849	8869743	14.3875	5.9155	257	66049	16974593	16.0312	6.3579
208	43264	8998912	14.4222	5.9250	258	66564	17173512	16.0624	6.3661
						67081			
209	43681	9129329	14.4568	5.9345	259	0,001	17373979	16.0935	6.3743
210	44100	9261000	14.4914	5.9439	260	67600	17576000	16.1245	6.3825
211	44521	9393931	14.5258	5.9533	261	68121	17779581	16.1555	6.3907
212	44944	9528128	14.5602	5.9627	262	68644	17984728	16.1864	6.3988
213	45369	9663597	14.5945	5.9721	263	69169	18191447	16.2173	6.4070
214	45796	9800344	14.6287	5.9814	264	69696	18399744	16.2481	6.4151
215	46225	9938375	14.6629	5.9907	265	70225	18609625	16.2788	6.4232
216	46656	10077696	14.6969	6.0000	266	70756	18821096	16.3095	6.4312
				6.0002					
217	47089	10218313	14.7309		267	71289	19034163	16.3401	6.4393
218	47524	10360232	14.7648	6.0185	268	71824	19248832	16.3707	6.4473
219	47961	10503459	14.7986	6.0277	269	72361	19465109	16.4012	6.4553
220	48400	10648000	14.8324	6.0368	270	72900	19683000	16.4317	6.4633
221	48841	10793861	14.8661	6.0459	271	73441	19902511	16.4621	6.4713
222	49284	10941048	14.8997	6.0550			20123648	16.4924	
				6.0641	272	73984			6.4792
223	49729	11089567	14.9332	6.0041	273	74529	20346417	16.5227	6.4872
224	50176	11239424	14.9666	6.0732	274	75076	20570824	16.5529	6.4951
225	50625	11390625	15.0000	6.0822	275	75625	20796875	16.5831	6.5030
226	51076	11543176	15.0333	6.0912	276	76176	21024576	16.6132	6.5108
227	51529	11697083	15.0665	6.1002	277	76729	21253933	16.6433	6.5187
228	51984	11852352	15.0997	6.1091	278	77284	21484952	16.6733	6.5265
229	52441	12008989	15.1327	6.1180	279	77841	21717639	16.7033	6.5343
220	£2000	12167000	15.1658	6.1269	280	78400	27072000	76 7000	6 = 107
230	52900						21952000	16.7332	6.5421
231	53361	12326391	15.1987	6.1358	281	78961	22188041	16.7631	6.5499
232	53824	12487168	15.2315	6.1446	282	79524	22425768	16.7929	6.5577
233	54289	12649337	15.2643	6.1534	283	80089	22665187	16.8226	6.5654
234	54756	12812904	15.2971	6.1622	284	80656	22906304	16.8523	6.5731
235	55225	12977875	15.3297	6.1710	285	81225	23149125	16.8819	6.5808
236	55696	13144256	15.3623	6.1797	286	81796	23393656	16.9115	6.5885
237	56169	13312053	15.3948	6.1885	287	82369	23639903	16.9411	6.5962
238	56644	13481272	15.4272	6.1972	288	82944	23887872	16.9706	6.6039
239	57121	13651919	15.4596	6.2058	289	83521	24137569	17.0000	6.6115
				-					-
240	57600	13824000	15.4919	6.2145	290	84100	24389000	17.0294	6.6191
241	58081	13997521	15.5242	6.2231	291	84681	24642171	17.0587	6.6267
242	58564	14172488	15.5563	6.2317	292	85264	24897088	17.0880	6.6343
243	59049	14348907	15.5885	6.2403	293	85849	25153757	17.1172	6.6419
244	59536	14526784	15.6205	6.2488	294	86436	25412184	17.1464	6.6494
245	60025	14706125	15.6525	6.2573	295	87025	25672375	17.1756	6.6569
246	60516	14886936	15.6844	6.2658	296	87616	25934336	17.2047	6.6644
247	61009	15069223	15.7162	6.2743	297	88200	26198073	17.2337	6.6719
248	61504	15252992	15.7480	6.2828	298	88804	26463592	17.2627	6.6794
249	62001	15438249	15.7797	6.2912	299	89401	26730899	17.2916	6.6869
.,		373-77	-3.1131		-,,	- 77	1377	1,	

TABLE 165.—Continued.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 300 TO 399.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
300	90000	27000000	17.3205	6.6943	350	122500	42875000	18.7083	7.0473
	90601	27270901	17.3494	6.7018	351	123201	43243551	18.7350	7.0540
301				6.7092					
302	91204	27543608	17.3781		352	123904	43614208	18.7617	7.0607
303	91809	27818127	17.4069	6.7166	353	124609	43986977	18.7883	7.0674
304	92416	28094464	17.4356	6.7240	354	125316	44361864	18.8149	7.0740
305	93025	28372625	17.4642	6.7313	355	126025	44738875	18.8414	7.0807
306	93636	28652616	17.4929	6.7387	356	126736	45118016	18.8680	7.0873
307	94249	28934443	17.5214	6.7460	357	127449	45499293	18.8944	7.0940
308	94864	292,18112	17.5499	6.7533	358	128164	45882712	18.9209	7.1006
309	95481	29503629	17.5784	6.7606	359	128881	46268279	18.9473	7.1072
310	96100	29791000	17.6068	6.7679	36 o	129600	46656000	18.9737	7.1138
311	96721	30080231	17.6352	6.7752	36I	130321	47045881	19.0000	7.1204
312	97344	30371328	17.6635	6.7824	362	131044	47437928	19.0263	7.1269
313	97969	30664297	17.6918	6.7897	363	131769	47832147	19.0526	7.1335
	98596	30959144	17.7200	6.7969	364	132496	48228544	19.0788	7.1400
314				6.8041					
315	99225	31255875	17.7482		365	133225	48627125	19.1050	7.1466
316	99856	31554496	17.7764	6.8113	366	133956	49027896	19.1311	7.1531
317	100489	31855013	17.8045	6.8185	367	134689	49430863	19.1572	7.1596
318	101124	32157432	17.8326	6.8256	368	135424	49836032	19.1833	7.1661
319	101761	32461759	17.8606	6.8328	369	136161	50243409	19.2094	7.1726
1									
320	102400	32768000	17.8885	6.8399	370	136900	50653000	19.2354	7.1791
321	103041	33076161	17.9165	6.8470	371	137641	51064811	19.2614	7.1855
322	103684	33386248	17.9444	6.8541	372	138384	51478848	19.2873	7.1920
323	104329	33698267	17.9722	6.8612	373	139129	51895117	19.3132	7.1984
324	104976	34012224	18.0000	6.8683	374	139876	52313624	19.3391	7.2048
325	105625	34328125	18.0278	6.8753	375	140625	52734375	19.3649	7.2112
	106276	34645976	18.0555	6.8824	376	141376	53157376	19.3907	
326									7.2177
327	106929	34965783	18.0831	6.8894	377	142129	53582633	19.4165	7.2240
328	107584	35287552	18.1108	6.8964	378	142884	54010152	19.4422	7.2304
329	108241	35611289	18.1384	6.9034	379	143641	54439939	19.4679	7.2368
	********	4 10 4 7000	18.1659	6.9104	380	7.4.400	54872000	TO 1026	F 2422
330	108900	35937000				144400		19.4936	7.2432
331	109561	36264691	18.1934	6.9174	381	145161	55306341	19.5192	7.2495
332	110224	36594368	18.2209	6.9244	382	145924	55742968	19.5448	7.2558
333	110889	36926037	18.2483	6.9313	383	146689	56181887	19.5704	7.2622
334	111556	37259704	18.2757	6.9382	384	147456	56623104	19.5959	7.2685
335	112225	37595375	18.3030	6.9451	385	148225	57066625	19.6214	7.2748
336	112896	37933056	18.3303	6.9521	386	148996	57512456	19.6469	7.2811
337	113569	38272753	18.3576	6.9589	387	149769	57960603	19.6723	7.2874
338	114244	38614472	18.3848	6.9658	388	150544	58411072	19.6977	7.2936
339	114921	38958219	18.4120	6.9727	389	151321	58863869	19.7231	7.2999
340	115600	39304000	18.4391	6.9795	390	152100	59319000	19.7484	7.3061
341	116281	39651821	18.1662	6.9864	391	152881	59776471	19.7737	7.3124
342	116964	40001688	18.4932	6.9932	392	153664	60236288	19.7990	7.3186
343	117649	40353607	18.5203	7.0000	393	154449	60698457	19.8242	7.3248
344	118336	40707584	18.5472	7.0068	394	155236	61162984	19.8494	7.3310
345	119025	41063625	18.5742	7.0136	395	156025	61629875	19.8746	7.3372
	119716	41421736	18.6011	7.0203		156816	62099136	19.8740	
346			18.6279		396				7:3434
347	120409	41781923		7.0271	397	157609	62570773	19.9249	7.3496
348	121104	42144192	18.6548	7.0338	398	158404	63044792	19.9499	7.3558
349	121801	42508549	18.6815	7.0406	399	159201	63521199	19.9750	7.3619
		1		·					

TABLE 165.—Continued.

Souares, Cubes, Square Roots and Cube Roots of Numbers from 400 to 499.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square,	Cube.	Sq. Root.	Cu. Root.
1				60-					-'00
400	160000	64000000	20.0000	7.3681	450	202500	91125000	21.2132	7.6631
401	160801	64481201	20.0250	7.3742	45 I	203401	91733851	21.2368	7.6688
402	161604	64964808	20.0499	7.3803	452	204304	92345408	21.2603	7.6744
403	162409	65450827	20.0749	7.3864	453	205209	92959677	21.2838	7.6801
404	163216	65939264	20.0998	7.3925	454	206116	93576664	21.3073	7.6857
405	164025	66430125	20.1246	7.3986	455	207025	94196375	21.3307	7.6914
406	164836	66923416	20.1494	7.4047	456	207936	94818816	21.3542	7.6970
407	165649	67419143	20.1742	7.4108	457	208849	95443993	21.3776	7.7026
408	166464	67917312	20.1990	7.4169	458	209764	96071912	21.4009	7.7082
409	167281	68417929	20.2237	7.4229	459	210681	96702579	21.4243	7.7138
410	168100	68921000	20.2485	7.4290	460	211600	97336000	21.4476	7.7194
411	168921	69426531	20.2731	7.4350	461	212521	97972181	21.4709	7.7250
412	169744	69934528	20.2978	7.4410	462	213444	98611128		7.7306
413	170569	70444997	20.3224	7.4470	463	214369	99252847	21.5174	7.7362
414	171396	70957944	20.3470	7.4530	464	215296	99897344		7.7418
415	172225	71473375	20.3715	7.4590	465	216225	100544625		
416	173056	71991296	20.3961	7.4650	466	217156	101194696		7.7473
	173889		20.4206			21/150			7.7529
417		72511713		7.4710	467	/	101847563		7.7584
418	174724	73034632	20.4450	7.4770	468	219024	102503232		7.7639
419	175561	73560059	20.4695	7.4829	469	219961	103161709	21.6564	7.7695
420	176400	74088000	20.4939	7.4889	470	220900	103823000	21.6795	7.7750
42 I	177241	74618461	20.5183	7.4948	471	221841	104487111	21.7025	7.7805
422	178084	75151448	20.5426	7.5007	472	222784	105154048	21.7256	7.7860
423	178929	75686967	20.5670	7.5067	473	223729	105823817		7.7915
424	179776	76225024	20.5913	7.5126	474	224676	106496424		7.7970
425	180625	76765625	20.6155	7.5185	475	225625	107171875		7.8025
426	181476	77308776	20.6398	7.5244	476	226576	107850176		7.8079
427	182329	77854483	20.6640	7.5302	477	227529	108531333	21.8403	7.8134
428	183184	78402752	20.6882	7.5361	478	228484	109215352		7.8188
429	184041	78953589	20.7123	7.5420		229441	109902239		
4~9	204041	70933309	20.7123	7.5420	479	229441	109902239	21.0001	7.8243
	-0.000			0	.0-				
430	184900	79507000	20.7364	7.5478	480	230400	110592000		7.8297
43 I	185761	80062991	20.7605	7.5537	481	231361	111284641	21.9317	7.8352
432	186624	80621568	20.7846	7.5595	482	232324	111980168	7515	7.8406
433	187489	81182737	20.8087	7.5654	483	233289	112678587	1 /// 5	7.8460
434	188356	81746504	20.8327	7.5712	484	234256	113379904		7.8514
435	189225	82312875	20.8567	7.5770	485	235225	114084125		7.8568
436	190096	82881856	20.8806	7.5828	486	236196	114791256	22.0454	7.8622
437	190969	83453453	20.9045	7.5886	487	237169	115501303	22.0681	7.8676
438	191844	84027672	20.9284	7.5944	488	238144	116214272	22.0907	7.8730
439	192721	84604519	20.9523	7.6001	489	239121	116930169		7.8784
440	193600	85184000	20.9762	7.6059	490	240100	117649000	22.1359	7.8837
441	194481	85766121	21.0000	7.6117	491	241081	118370771	22.1585	7.8891
442	195364	86350888	21.0238	7.6174	492	242064	119095488		7.8944
443	196249	86938307	21.0476	7.6232	493	243049	119823157		7.8998
444	197136	87528384	21.0713	7.6289		244036	120553784		
445	198025	88121125	21.0950	7.6346	494	245025		22.2486	7.9051
	198025	88716536		7.6403	495	245025	121287375		7.9105
446	199809		21.1187		496		122023936	22.2711	7.9158
447		89314623	21.1424	7.6460	497	247009	122763473	22.2935	7.9211
448	200704 201601	89915392	21.1660	7.6517	498	248004	123505992	22.3159	7.9264
449	201001	90518849	21.1896	7.6574	499	249001	124251499	22.3383	7.9317
							 		

TABLE 165.—Continued.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 500 TO 599.

							1		
No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
500	250000	125000000	22.3607	7.9370	550	302500	166375000	23.4521	8.1932
501	251001	125751501	22.3830	7.9423	551	303601	167284151	23.4734	8.1982
	_	126506008	22.4054	7.9423	552		168196608		8.2011
502	252004	127263527				304704		23.4947	8.2031
503	253009		22.4277	7.9528	553	305809	169112377	23.5160	
504	254016	128024064	22.4499	7.9581	554	306916	170031464		8.2130
505	255025	128787625	22.4722	7.9634	555	308025	170953875	23.5584	8.2180
506	256036	129554216	22.4944	7.9686	556	309136	171879616		8.2229
507	257049	130323843	22.5167	7.9739	557	310249	172808693	23.6008	8.2278
508	258064	131096512	22.5389	7.9791	558	311364	173741112	23.6220	8.2327
509	259081	131872229	22.5610	7.9843	559	312481	174676879	23.6432	8.2377
410	260100	*******	22 5822	7.9896	760	272600	***6*6000	00 6610	9 0 4 0 6
510		132651000	22.5832 22.6053		560 561	313600	175616000	23.6643	8.2426
511	261121	133432831		7.9948	562	314721	176558481	23.6854	8.2475
512	262144	134217728	22.6274	8.0000		315844	177504328		8.2524
513	263169	135005697	22.6495	8.0052	563	316969	178453547		8.2573
514	264196	135796744	22.6716	8.0104	564	318096	179406144		8.2621
515	265225	136590875	22.6936	8.0156	565	319225	180362125	23.7697	8.2670
516	266256	137388096		8.0208	566	320356	181321496		8.2719
517	267289	138188413	22.7376	8.0260	567	321489	182284263		8.2768
518	268324	138991832	22.7596	8.0311	568	322624	183250432	23.8328	8.2816
519	269361	139798359	22.7816	8.0363	569	323761	184220009	23.8537	8.2865
			0	0			.0	0	0
520	270400	140608000		8.0415	570	324900	185193000		8.2913
521	271441	141420761	22.8254	8.0466	571	326041	186169411		8.2962
522	272484	142236648		8.0517	572	327184	187149248		8.3010
523	273529	143055667		8.0569	573	328329	188132517	0 ,01	8.3059
524	274576	143877824	22.8910	8.0620	574	329476	189119224	23.9583	8.3107
525	275625	144703125	22.9129	8.0671	575	330625	190109375	23.9792	8.3155
526	276676	145531576	22.9347	8.0723	576	331776	191102976	24.0000	8.3203
527	277729	146363183	22.9565	8.0774	577	332929	192100033	24.0208	8.3251
528	278784	147197952	22.9783	8.0825	578	334084	193100552	24.0416	8.3300
529	279841	148035889		8.0876	579	335241	194104539	24.0624	8.3348
530	280900	148877000		8.0927	580	336400	195112000		8.3396
53 I	281961	149721291	23.0434	8.0978	581	337561	196122941		8.3443
532	283024	150568768		8.1028	582	338724	197137368		8.3491
533	284089	151419437		8.1079	583	339889	198155287	24.1454	8.3539
534	285156	152273304		8.1130	584	341056	199176704		8.3587
535	286225	153130375	23.1301	8.1180	585	342225	200201625	24.1868	8.3634
536	287296	153990656	23.1517	8.1231	586	343396	201230056		8.3682
537	288369	154854153	23.1733	8.1281	587	344569	202262003	24.2281	8.3730
538	289444	155720872	23.1948	8.1332	588	345744	203297472	24.2487	8.3777
539	290521	156590819	23.2164	8.1382	589	346921	204336469	24.2693	8.3825
. //				0					
540	291600	157464000		8.1433	590	348100	205379000		8.3872
541	292681	158340421	23.2594	8.1483	591	349281	206425071		8.3919
542	293764	159220088		8.1533	592	350464	207474688		8.3967
543	294849	160103007		8.1583	593	351649	208527857		8.4014
544	295936	160989184		8.1633	594	352836	209584584		8.4061
545	297025	161878625	23.3452	8.1683	595	354025	210644875		8.4108
546	298116	162771336	23.3666	8.1733	596	355216	211708736	24.4131	8.4155
547	299209	163667323	23.3880	8.1783	597	356409	212776173		8.4202
548	300304	164566592	23.4094	8.1833	598	357604	213847192		8.4249
549	301401	165469149		8.1882	599	358801	214921799		8.4296
	1	J			L				

TABLE 165.—Continued.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 600 TO 699.

		Cuba	Ca Post	Cu. Root.	No.	Square	Cube.	Sq. Root.	Cu Pant
No.	Square.	Cube.	Sq. Root.	Cu. Root.		Square.	Cube.	Sq. Root.	Cu. Root.
600	360000	216000000	24.4949	8.4343	650	422500	274625000	25.4951	8.6624
601	361201	217081801	24.5153	8.4390	651	423801	275894451	25 5147	8.6668
602	362404	218167208	24.5357	8.4437	652	425104	277167808	25 5343	8.6713
603	363609	219256227	24.5561	8.4484	653	426409	278445077	25.5539	8.6757
604	364816	220348864	24.5764	8.4530	654	427716	279726264	25.5734	8.6801
605	366025	221445125	24.5967	8.4577	655	429025	281011375	25.5930	8.6845
606	367236	222545016	24.6171	8.4623	656	430336	282300416	25.6125	8.6890
		222545010	24.6374	8.4670	657	431649	283593393	25.6320	8.6934
607	368449	223648543		8.4716	658				
608	369664	224755712	24.6577			432964	284890312	25.6515	8.6978
609	370881	225866529	24.6779	8.4763	659	434281	286191179	25.6710	8 7022
610	372100	226981000	24.6982	8.4809	660	435600	287496000	25 6905	8.7066
611	373321	228099131	24.7184	8.4856	66 ₁	436921	288804781	25.7099	8 7110
612	374544	229220928	24.7386	8.4902	662	438244	290117528	25.7294	8.7154
613	375769	230346397	24.7588	8.4948	663	439569	291434247	25.7488	8.7198
614	376996	231475544	24.7790	8.4994	664	440896	292754944	25.7682	8.7241
615	378225	232608375	24.7992	8.5040	665	442225	294079625	25.7876	8.7285
616	379456	233744896	24.8193	8.5086	666	443556	295408296	25.8070	8.7329
617	380689	234885113	24.8395	8.5132	667	444889	296740963	25.8263	8.7373
618	381924	236029032	24.8596	8.5178	668	446224	298077632	25.8457	8.7416
619	383161	237176659	24.8797	8.5224	669	447561	299418309	25.8650	8.7460
019	303101	23/1/0039	24.0/9/	0.5224	009	44/301	299410309	25.0050	0.7400
620	384400	238328000	24.8998	8.5270	670	448900	300763000	25.8844	8.7503
621	385641	239483061	24.9199	8.5316	671	450241	302111711	25.9037	8 7547
622	386884	240641848	24.9399	8.5362	672	451584	303464448	25.9230	8.7590
623	388129	241804367	24.9600	8.5408	673	452929	304821217	25.9422	8 7634
624	389376	242970624	24.9800	8 5453	674	454276	306182024	25.9615	8.7677
625	390625	244140625	25.0000	8 5499	675	455625	307546875	25.9808	8.7721
626	391876	245314376	25.0200	8.5544	676	456976	308915776	26.0000	8.7764
627	393129	246491883	25.0400	8.5590	677	458329	310288733	26.0192	8.7807
628	394384	247673152	25.0599	8.5635	678	459684	311665752	26.0384	8 7850
629	395641	248858189	25.0799	8.5681	679	461041	313046839	26.0576	8.7893
					-				_
630	3969 00	250047000	25.0998	8.5726	680	462400	314432000	26.0768	8.7937
631	398161	251239591	25.1197	8.5772	68 I	463761	315821241	26.0960	8.7980
632	399424	252435968	25.1396	8.5817	682	465124	317214568	26.1151	8.8023
633	400689	253636137	25.1595	8.5862	683	466489	318611987		8.8066
634	401956	254840104	25.1794	8.5907	684	467856	320013504	26.1534	8.8109
635	403225	256047875	25.1992	8 5952	685	469225	321419125	26.1725	8.8152
636	404496	257259456	25.2190	8.5997	686	470596	322828856		8.8194
637	405769	258474853	25.2389	8 6043	687	471969	324242703	26.2107	8.8237
638	407044	259694072	25 2587	8 6088	688	473344	325660672		8.8280
639	408321	260917119	25.2784	8 6132	689	474721	327082769		8.8323
6	100/	660		. 0 6	6		44040000	26 26-2	00-66
640	409600	262144000	25.2982	8 6177	690	476100	328509000	26.2679	8.8366
641	410881	263374721	25.3180	8.6222	691	477481	329939371	26.2869	8.8408
642	412164	264609288	25.3377	8.6267	692	478864	331373888	26.3059	8.8451
643	413449	265847707	25.3574	8.6312	693	480249	332812557	26.3249	8.8493
644	414736	267089984	25.3772	8.6357	694	481636	334255384	26.3439	8.8536
645	416025	268336125	25 3969	8.6401	695	483025	335702375	26 3629	8.8578
646	417316	269586136	25.4165	8.6446	696	484416	337153536	26.3818	8 8621
647	418609	270840023	25 4362	8 6490	697	485809	338608873	26 4008	8.8663
648	419904	272097792	25.4558	8 6535	698	487204	340068392	26.4197	8.8706
649	421201	273359449	25.4755	8.6579	699	488601	341532099	26.4386	8.8748
						1			

TABLE 165.—Continued.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 700 TO 799.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
140.	Square.	Cube.	eq. reoct.	- Tuoti		extense:		oq. reset.	Cu. Root.
700	490000	343000000	26.4575	8.8790	750	562500	421875000	27.3861	9.0856
701	491401	344472101	26.4764	8.8833	751	564001	423564751	27.4044	9.0896
702	492804	345948408	26.4953	8.8875	752	565504	425259008	27.4226	9.0937
703	494209	347428927	26.5141	8.8917	753	567009	426957777	27.4408	9.0977
704	495616	348913664	26.5330	8.8959	754	568516	428661064	27.4591	9.1017
705	497025	350402625	26.5518	8.9001	755	570025	430368875	27.4773	9.1057
706	498436	351895816	26.5707	8.9043	756	571536	432081216		9.1098
707	499849	353393243	26.5895	8.9085	757	573049	433798093	27.5136	9.1138
708	501264	354894912	26.6083	8.9127	758	574564	435519512	27.5318	9.1178
709	502631	356400829	26.6271	8.9169	759	576081	437245479	27.5500	9.1218
1,00	3	33 ()			737	3,	13117	-7-55	,
710	504100	357911000	26.6458	8.9211	760	577600	438976000	27.5681	9.1258
711	505521	359425431	26.6646	8.9253	761	579121	440711081	27.5862	9.1298
712	506944	360944128	26.6833	8.9295	762	580644	442450728	27.6043	9.1338
713	508369	362467097	26.7021	8.9337	763	582169	444194947	27.6225	9.1378
714	509796	363994344	26.7208	8.9373	764	583696	445943744	27.6405	9.1418
715	511225	365525875	26.7395	8.9420	765	585225	447697125	27.6586	9.1458
716	512656	367061696	26.7582	8.9462	766	586756	449455096	27.6767	9.1498
717	514089	368601813	26.7769	8.9503	767	588289	451217663	27.6948	9.1537
718	515524	370146232	26.7955	8.9545	768	589824	452984832	27.7128	9.1577
719	516961	371694959	26.8142	8.9587	769	591361	454756609	27.7308	9.1617
1	3	31 71737		,,,,		3, 0	13113	7,73	,
720	518400	373248000	26.8328	8.9628	770	592900	456533000	27.7489	9.1657
721	519841	374805361	26.8514	8.9670	771	594441	458314011	27.7669	9.1696
722	521284	376367048	26.8701	8.9711	772	595984	460099648	27.7849	9.1736
723	522729	377933067	26.8887	8.9752	773	597529	461889917	27.8029	9.1775
724	524176	379503424	26.9072	8.9794	774	599076	463684824	27.8209	9.1815
725	525625	381078125	26.9258	8.9835	775	600625	465484375	27.8388	9.1855
726	527076	382657176	26.9444	8.9876	776	602176	467288576	27.8568	9.1894
727	528529	384240583	26.9629	8.9918	777	603729	469097433	27.8747	9.1933
728	529984	385828352	26.9815	8.9959	778	605284	470910952	27.8927	9.1973
729	531441	387420489	27.0000	9.0000	779	606841	472729139	27.9106	9.2012
730	532900	389017000	27.0185	9.0041	780	608400	474552000	27.9285	9.2052
731	534361	390617891	27.0370	9.0082	781	609961	476379541	27.9464	9.2091
732	535824	392223168	27.0555	90123	782	611524	478211768	27.9643	9.2130
733	537289	393832837	27.0740	9.0164	783	613089	480048687	27.9821	9.2170
734	538756	395446904	27.0924	9.0205	784	614656	481890304	28.0000	9.2209
735	540225	397065375	27.1109	9.0246	785	616225	483736625	28.0179	9.2248
736	541696	398688256	27.1293	9.0287	786	617796	485587656	28.0357	9.2287
737	543169	400315553	27.1477	9.0328	787	619369	487443403	28.0535	9.2326
738	544644	401947272	27.1662	9.0369	788	620944	489303872	28.0713	9 2365
739	546121	403583419	27.1846	9.0410	789	622521	491169069	28.0891	9.2404
	# 1 # 6 0 0	105001000	27 2020	0.0450	700	60.1700	40000000	00 1060	0.0446
740	547600	405224000	27.2029	9.0450	790	6241 00 625681	493039000	28.1069	9.2443
741	549081	406869021	27.2213	9.0491	791		494913671	28 1247	9.2482
742	550564	408518488	27 2397	9.0532	792	627264	496793088	28.1425	9.2521
743	552049	410172407	27.2580	9.0572	793	628849	498677257	28.1603	9.2560
744	553536	411830784	27.2764	9.0613	794	630436	500566184	28.1780	9.2599
745	555025	413493625	27.2947	9.0654	795	632025	502459875	28.1957	9.2638
746	556516	415160936	27.3130	9.0694	796	633616	504358336	28.2135	9.2677
747	558009	416832723	27.3313	9.0735	797	635209	506261573	28.2312	9.2716
748	559504	418508992	27.3496	9.0775	798	636804	508169592	28.2489	9.2754
749	561001	420189749	27.3679	9.0816	799	638401	510082399	28.2666	9.2793

TABLE 165.—Continued.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 800 TO 899.

No. Square. Cube. Sq. Root. Cu. Root. No. Square. Cube. Sq. Root. Ct. Root. Root. Square. Cube. Sq. Root. Ct. Root. Root. Square. Cube. Sq. Root. Ct. Root. Square. Cube. Sq. Root. Ct. Root. Square. Cube. Sq. Root. Ct. Root. Square. Cube. Sq. Root. Ct. Root. Square. Cube. Sq. Root. Ct. Root. Square. Cube. Sq. Root. Ct. Root. Sq. Square. Cube. Sq. Root. Ct. Root. Sq. Square. Cube. Sq. Root. Ct. Root. Sq. Square. Cube. Sq. Root. Ct. Root. Sq. Square. Cube. Sq. Root. Ct. Root. Sq. Square. Ct. Root. Sq. Square. Ct. Root. Sq. Square. Ct. Root. Sq. Square. Ct. Root. Sq. Square. Sq. Sq. Sq. Sq. Sq. Sq. Sq. Sq. Sq. Sq.								1		
801 641601 513922401 28.3019 9-2909 852 724201 616295051 29.1719 9-4764 802 641204 51879608 28.3196 9-2909 852 725904 618472028 29.1809 9-4801 803 644805 517781627 28.3373 9-2048 853 727609 62050477 29.2062 9-4801 804 640416 519718464 28.3473 9-2968 854 729316 622818564 29.2233 9-4801 805 649056 532606016 28.3725 9-3025 855 731025 625020375 29.22404 9-4912 806 649056 532606016 28.3901 9-3102 857 734449 627222016 29.2575 9-4908 807 651249 525575412 28.4425 9-3110 858 736164 631028712 29.2916 9-5023 808 654481 529475129 28.4425 9-31179 859 737881 63389779 29.3828 810 656100 531441000 28.4605 9-3217 860 739000 616056000 29.3228 9-5023 811 657721 533411731 28.4781 9-3325 861 741321 618277381 29.3428 9-5134 812 659344 53338738 28.4936 9-3294 862 743044 64050398 29-3508 9-5207 814 602506 533935144 28.5307 9-3347 860 74906 644972544 29.3939 9-5207 815 664225 541343375 28.5482 9-3488 865 744769 64473547 29.3939 9-5207 816 665856 543338496 28.5507 9-3447 866 74995 649461896 29-4279 9-5314 817 667489 545338731 28.6507 9-3523 868 753424 653972032 29-4618 9-5391 818 669124 547343432 28.6007 9-3523 868 753424 653972032 29-4618 9-5391 819 67761 549353259 28.6182 9-3567 872 760384 65072642 29-4788 9-5391 820 672400 55136800 28.6356 9-3507 871 758641 65076511 29-55127 9-5501 821 674041 553387661 28.6531 9-3657 872 760384 65035484 29-5296 9-5531 822 675684 555412248 28.6705 9-3675 872 760384 650762742 29-5938 9-5507 824 67866 68500 68500 68500 68500 6714767 28.680 9-3718 873 76129 66262387 9-5507 9-5501 822 67568 68567 6756552 28.7750 9-3902 878 770460 66762762 29-593 9-5501 824 67976	No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
801 641601 513922401 28.3019 9-2909 852 724201 616295051 29.1719 9-4764 802 641204 51879608 28.3196 9-2909 852 725904 618472028 29.1809 9-4801 803 644805 517781627 28.3373 9-2048 853 727609 62050477 29.2062 9-4801 804 640416 519718464 28.3473 9-2968 854 729316 622818564 29.2233 9-4801 805 649056 532606016 28.3725 9-3025 855 731025 625020375 29.22404 9-4912 806 649056 532606016 28.3901 9-3102 857 734449 627222016 29.2575 9-4908 807 651249 525575412 28.4425 9-3110 858 736164 631028712 29.2916 9-5023 808 654481 529475129 28.4425 9-31179 859 737881 63389779 29.3828 810 656100 531441000 28.4605 9-3217 860 739000 616056000 29.3228 9-5023 811 657721 533411731 28.4781 9-3325 861 741321 618277381 29.3428 9-5134 812 659344 53338738 28.4936 9-3294 862 743044 64050398 29-3508 9-5207 814 602506 533935144 28.5307 9-3347 860 74906 644972544 29.3939 9-5207 815 664225 541343375 28.5482 9-3488 865 744769 64473547 29.3939 9-5207 816 665856 543338496 28.5507 9-3447 866 74995 649461896 29-4279 9-5314 817 667489 545338731 28.6507 9-3523 868 753424 653972032 29-4618 9-5391 818 669124 547343432 28.6007 9-3523 868 753424 653972032 29-4618 9-5391 819 67761 549353259 28.6182 9-3567 872 760384 65072642 29-4788 9-5391 820 672400 55136800 28.6356 9-3507 871 758641 65076511 29-55127 9-5501 821 674041 553387661 28.6531 9-3657 872 760384 65035484 29-5296 9-5531 822 675684 555412248 28.6705 9-3675 872 760384 650762742 29-5938 9-5507 824 67866 68500 68500 68500 68500 6714767 28.680 9-3718 873 76129 66262387 9-5507 9-5501 822 67568 68567 6756552 28.7750 9-3902 878 770460 66762762 29-593 9-5501 824 67976										
801 641601 513922401 28.3019 9-2909 852 724201 616295051 29.1719 9-4764 802 641204 51879608 28.3196 9-2909 852 725904 618472028 29.1809 9-4801 803 644805 517781627 28.3373 9-2048 853 727609 62050477 29.2062 9-4801 804 640416 519718464 28.3473 9-2968 854 729316 622818564 29.2233 9-4801 805 649056 532606016 28.3725 9-3025 855 731025 625020375 29.22404 9-4912 806 649056 532606016 28.3901 9-3102 857 734449 627222016 29.2575 9-4908 807 651249 525575412 28.4425 9-3110 858 736164 631028712 29.2916 9-5023 808 654481 529475129 28.4425 9-31179 859 737881 63389779 29.3828 810 656100 531441000 28.4605 9-3217 860 739000 616056000 29.3228 9-5023 811 657721 533411731 28.4781 9-3325 861 741321 618277381 29.3428 9-5134 812 659344 53338738 28.4936 9-3294 862 743044 64050398 29-3508 9-5207 814 602506 533935144 28.5307 9-3347 860 74906 644972544 29.3939 9-5207 815 664225 541343375 28.5482 9-3488 865 744769 64473547 29.3939 9-5207 816 665856 543338496 28.5507 9-3447 866 74995 649461896 29-4279 9-5314 817 667489 545338731 28.6507 9-3523 868 753424 653972032 29-4618 9-5391 818 669124 547343432 28.6007 9-3523 868 753424 653972032 29-4618 9-5391 819 67761 549353259 28.6182 9-3567 872 760384 65072642 29-4788 9-5391 820 672400 55136800 28.6356 9-3507 871 758641 65076511 29-55127 9-5501 821 674041 553387661 28.6531 9-3657 872 760384 65035484 29-5296 9-5531 822 675684 555412248 28.6705 9-3675 872 760384 650762742 29-5938 9-5507 824 67866 68500 68500 68500 68500 6714767 28.680 9-3718 873 76129 66262387 9-5507 9-5501 822 67568 68567 6756552 28.7750 9-3902 878 770460 66762762 29-593 9-5501 824 67976	800	640000	£ 1.2000000	28.2843	0.2832	850	722500	614125000	20.1548	0.4727
802										
803 644809 \$17781627 28.3373 9.2948 853 727600 62050477 29.2062 9.4838 804 61616 \$19178464 28.3549 9.2986 854 729316 62283864 29.2362 9.4878 805 64963 523606128 28.3725 9.3025 855 731025 62302675 29.2404 9.4949 806 64963 523606616 28.3901 9.3003 856 73736 62302675 29.2404 9.4949 806 64963 523606616 28.3901 9.3003 856 737376 62302675 29.2404 9.4949 806 64963 523606616 28.3901 9.3003 856 737376 62302675 29.2404 9.4949 806 64963 52365 29.2404 9.4949 9.3006 808 652864 327514112 28.4427 9.3102 857 734449 629422793 29.2746 9.4028 808 652864 327514112 28.4429 9.3179 859 737881 633839779 29.3858 9.5006 811 657721 533411731 28.4781 9.3255 861 741321 6182732 29.2416 9.5006 811 657721 533411731 28.4781 9.3255 861 741321 6182732 29.3428 9.5181 660069 337367797 28.5132 9.332 863 744769 642735647 29.3769 9.5207 813 660269 337367797 28.5132 9.332 863 744769 642735647 29.3769 9.5207 815 664225 543143375 28.5482 9.3408 865 74825 644972544 29.3939 9.5247 815 664225 543143375 28.5482 9.3408 865 74825 644972544 29.3939 9.5247 816 66586 65856 54338496 28.5657 9.3547 866 749956 649461896 29.4279 9.5317 817 667495 9.4533513 28.5832 9.3485 867 751689 651741432 39.4449 9.5334 818 669124 547343432 28.6007 9.3523 868 753424 633972032 29.4469 9.5348 818 669124 547343432 28.6007 9.3523 868 753424 633972032 29.4618 9.5391 812 67606 4474767 28.6880 9.3713 871 758641 66076211 29.5127 9.5501 822 675684 555412248 28.7056 9.3751 874 769876 667027614 29.55127 9.5501 822 675684 555412248 28.7056 9.3751 874 769876 667027614 29.55127 9.5501 822 675684 555412248 28.7059 9.3978 879 775600 6687000 29.5879 9.5504 822 67565 3675200 29.8789 879 775641 60767611 29.55127 9.5501 822 675684 555412248 28.7059 9.3978 879 775641 607627614 29.55127 9.5501 822 675684 555412248 28.7059 9.3978 879 775641 607627613 29.5593 9.5501 82.2 675684 555412248 28.7059 9.3978 879 775641 607627613 29.5973 9.5501 82.2 675684 555412248 82.8705 9.3978 880 775400 06764543 9.5966 9.5505 8872 70792 9.5903 9.5504 882 67553 888 8779 888 878 777992 9.5903 9.5504 882 667527400 9.5000 9.8	1									
860						052				
806 649036 531606012 28.3725 9.3025 855 731025 625026375 29.2404 9.4912 807 651249 525557943 28.4077 9.3102 857 732436 620422793 29.2755 9.4986 808 652864 52754112 28.4253 9.3140 858 736164 631628712 29.2016 9.5023 809 654481 529475129 28.4429 9.3179 859 737881 6328373781 29.2016 9.5023 810 656100 531441000 28.4605 9.3217 860 739600 63605000 29.3258 9.5000 811 657721 533411731 28.4781 9.3255 861 741321 638277381 29.3218 9.5000 811 65000 537367797 28.5132 9.3323 863 744769 642735647 29.3598 9.5171 814 662596 539353144 28.3307 9.3370 864 746496 644972544 29.3399 9.5244 815 662425 541343375 28.5482 9.3408 865 749456 644972544 29.3939 9.5244 816 666742 547334342 28.6007 9.3528 867 73945 640461806 29.4279 9.5317 818 660 66742 547334342 28.6007 9.3528 867 753446 656840 29.4459 9.5328 818 669124 547343432 28.6007 9.3528 868 753424 6529022 29.4618 9.5391 819 670761 549353259 28.6182 9.3561 869 755161 660767311 29.5127 9.5501 822 675684 555412248 28.6705 9.3678 871 76084 65224 28.6705 9.3678 871 76084 65224 28.6705 9.3678 871 76084 650024 29.4789 9.5354 882 674041 553387661 28.6531 9.3637 871 872 76084 660763381 29.5127 9.5501 822 675684 555412248 28.6705 9.3678 872 76084 660763731 29.5127 9.5501 822 675684 555412248 28.6705 9.3769 877 76080 66705424 29.5094 9.5537 882 68227 5635559976 28.7024 9.3827 870 76084 667054724 29.5094 9.5501 822 675684 555412248 28.6705 9.3769 877 76084 667054724 29.5097 9.5501 822 675684 555412248 28.6705 9.3769 877 76084 667054724 29.5097 9.5501 822 675684 555412248 28.6705 9.3769 877 76084 667054724 29.5097 9.5501 882 6820 56560928 28.757 9.3827 870 77084 667054724 29.5097 9.5501 882 6820 5675655 560503704 28.8777 9.3902 878 770884 67086312 29.4611 9.5750 882 68207 57085000 28.8007 9.3827 870 77084 670900 29.8900 9.5901 883 69858 5705655 58003704 28.8771 9.4016 881 77088 6670670522 29.7903 9.5618 822 675684 5708000 28.8900 9.3901 883 770922 29.6848 9.5904 9.5904 883 700922 29.5903 9.5804 9.4901 883 700922 29.5903 9.5006 9.3909 9.5007 9.4204 883 700922 29.5839 9.5006 9.3909 9.4244 9.9000 9.3						053			-	
866 649636 523606616 28.3901 9.3063 856 732736 627222016 29.2575 9.4949 807 651249 25575943 28.4077 9.3102 857 734449 694242793 29.2766 9.4986 809 654481 529475129 28.4429 9.3179 859 737881 633839779 29.3087 9.5007 810 656100 531441000 28.4051 9.3255 861 741321 63656000 29.3258 9.507 811 657721 533411731 28.4781 9.3525 861 744304 64953928 29.3498 9.5171 812 659344 535387344 28.5307 9.3370 864 744964 64953928 29.3769 9.5207 811 666225 541343375 28.5482 9.3488 865 748225 647214695 644972544 29.3759 9.5207 816 66585 543383813 28.5657 9.3447 866 753424 669461896						854				
867						855				9.4912
886 652864 527514112 28.4253 9.3140 858 731664 631628712 29.2916 9.5023	806									9.4949
809 654481 529475129 28.4429 9.3179 859 737881 633839779 29.3087 9.5066 810 656100 531441000 28.4605 9.3217 860 739600 63656000 29.3258 9.5097 811 657721 533411731 28.4781 9.3255 861 741321 638277381 29.3428 9.5171 812 659344 535387328 28.4956 9.3294 862 743044 640503928 29.3598 9.5171 813 660505 533935144 28.5397 9.3372 864 744046 642735647 29.3769 9.5207 814 662596 533935144 28.5397 9.3372 864 746496 642735647 29.3769 9.5207 815 664225 541338496 28.5657 9.3447 866 749956 6494072544 29.9399 9.5244 816 665856 543338496 28.5657 9.3447 866 749956 6494072544 29.9399 9.5348 817 667489 543338513 28.5812 9.3485 867 751680 651714363 29.4409 9.5354 818 669124 547343432 28.6007 9.3523 868 753424 653972032 29.4618 9.5391 820 672400 553387661 28.6635 9.3598 877 75690 658394909 29.4788 9.5427 820 672400 553387661 28.6635 9.3597 871 788641 6607676314 29.5126 9.5591 821 674041 553387661 28.6755 9.3675 872 760384 660374848 29.5296 9.5537 823 677329 557441767 28.6880 9.3713 873 762129 665338617 29.5464 9.5591 824 678967 559476224 28.7054 9.3875 874 763876 667627624 29.5635 9.5507 826 682276 563559974 28.7750 9.3805 877 767376 672221376 29.5907 9.5584 826 682276 563559976 28.7750 9.3902 878 770884 676836152 29.5611 9.5756 827 683929 565609283 28.7576 9.3865 877 770400 681472000 29.6648 9.5891 828 68584 685684 57890937 28.8979 9.4106 881 770161 68177924 686128968 29.6985 9.5901 830 68800 57385619 28.8971 9.4106 881 770161 68177924 686128968 29.6985 9.5901 840 707881 598423311 29.0000 9.4348 897 770244 68614039 29.9664 9.5868 9.6084 770932288 29.9668 9.6082 9.608	807	651249	525557943	28.4077	9.3102	857		629422793	29.2746	9.4986
809 654481 529475129 28.4429 9.3179 859 737881 633839779 29.3087 9.5060 810 656100 531441000 28.4605 9.3217 860 739600 636056000 29.3258 9.5097 811 657721 533411731 28.4781 9.3255 861 741321 638277381 29.3428 9.5134 812 659344 535387328 28.4956 9.3294 862 743044 642735647 29.3769 9.5174 813 660905 537367797 28.5132 9.3332 863 744769 642735647 29.3769 9.5207 814 662596 539353144 28.5397 9.3370 864 746496 642735647 29.3769 9.5207 815 664225 541338496 28.5482 9.3408 865 748225 647214622 29.4190 9.5218 816 665856 543338496 28.5657 9.3447 866 749956 649461896 29.4279 9.5317 817 667489 545338513 28.5812 9.3485 867 751689 651714363 29.4499 9.5318 818 669124 547343432 28.6007 9.3523 868 753424 653972032 29.4618 9.5391 820 672400 553387661 28.6531 9.3697 871 788641 66375484 29.5299 9.5537 821 674041 553387661 28.6531 9.3697 871 788641 66375484 29.5299 9.5537 822 675684 555412248 28.6705 9.3675 872 760384 66393484 29.5296 9.5537 823 6777329 557441767 28.6880 9.3713 873 762129 665338617 29.5464 9.5591 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5610 825 68625 56355997 28.7950 9.3825 877 769129 667327624 29.5635 9.5610 826 682276 56355997 28.7950 9.3825 877 769129 667327624 29.5635 9.5610 828 685284 567653529 28.7920 9.3825 877 769129 667327647 29.5647 829 687241 569722789 28.8997 9.3865 877 769129 667327624 29.5935 9.5647 820 68800 57185611 28.8271 9.4016 881 777016 681472000 29.6648 9.5891 821 690561 57385071 28.8919 9.4106 881 777016 681472000 29.6648 9.5891 823 69388 578009377 28.8994 9.4106 881 779124 6661379841 29.6816 9.58	808	652864	527514112	28.4253 .	9.3140	858	736164	631628712	29.2916	9.5023
810 656100 531441000 28.4605 9.3217 860 739600 636056000 29.3258 9.5097 811 657721 533411731 88.4781 9.3255 861 741321 638277381 29.3428 9.5134 812 659344 535387328 28.4956 9.3294 862 743044 640503928 29.3598 9.5171 813 660059 537367797 28.5132 9.3332 863 744769 642735447 29.3769 9.5207 814 6605556 53935144 85.307 9.3370 864 746496 644972544 29.9393 9.5244 815 665856 543338514 28.5307 9.3370 864 746496 644972544 29.9393 9.5244 815 66585 643338496 28.5657 9.3447 866 749956 644972544 29.9393 9.5244 817 667489 545338513 28.5832 9.3488 865 748225 647214625 29.4109 9.5281 817 667489 545338513 28.5832 9.3485 867 751689 651714363 29.4449 9.5354 818 669124 547343432 28.6097 9.3353 868 753424 653972032 29.4618 9.5391 819 670761 549353259 28.6182 9.3591 869 755161 656234909 29.4788 9.5427 822 675684 555412248 28.6070 9.3591 872 760384 663054848 29.5296 9.5537 822 675684 555412248 28.6070 9.3713 873 762129 655338697 29.5501 822 675684 555412248 28.6070 9.3713 873 762129 655338697 29.5501 822 675684 555412248 28.6070 9.3713 873 762129 655338677 29.5466 9.5574 822 675684 555412248 28.6705 9.3675 872 760384 663054848 29.5296 9.5537 822 676584 555676552 28.7028 28.7054 9.3751 874 763876 667627624 29.5635 9.5514 822 675684 555676552 28.7028 28.7054 9.3751 874 763876 667627624 29.5635 9.5514 822 675684 55676552 28.7028 9.3872 876 767376 672221376 29.5616 9.5574 822 675684 55676552 28.7029 28.7029 9.3902 878 776129 674526133 29.6449 9.5792 882 68524 5656552 28.7028 28.7054 9.3924 879 772641 679151439 29.6419 9.5756 822 675684 56765552 28.7028 28.7054 9.3924 879 772641 679151439 29.6419 9.5756 822 675684 57665552 28.7028 9.3924 879 772641 679151439 29.6479 9.5792 8836 68525 561515625 28.7028 9.3924 879 772641 679151439 29.6479 9.5793 9.5937 772641 679151439 29.6479 9.5793 9.5937 772641 679151439 29.6479 9.5793 9.5937 772641 679151439 29.6479 9.5793 9.5937 772641 679151439 29.6489 9.5931 9.5937 772641 679151439 29.6489 9.5931 9.5931 9.5933 9.5931 9.4244 886 78949 9.79222 9.7958 9.5931 9.5933 9.4244 886 78949 9.79222 9.5864 9.5864	800	654481	529475129	28.4429	9.3179	859	737881	633839779	29.3087	
811 657721 533411731 28.4781 9.3255 861 741321 638277381 29.3428 9.5171 659344 535387328 28.4956 9.3294 862 743044 640503928 9.3598 9.5171 660505 539353144 28.5307 9.3370 864 740496 644972544 29.3939 9.5207 814 66225 541343375 28.5482 9.3408 867 74822 647214522 9.31939 9.5281 815 6664225 541343375 28.5482 9.3468 867 74822 64721452 9.3939 9.5281 816 665856 543338496 28.5657 9.3447 866 749956 649461806 29.4279 9.5317 817 667489 545335259 28.6182 9.3561 869 755161 656234909 29.4279 9.5317 819 670761 549353259 28.6182 9.3561 869 755161 656234909 29.4279 9.5317 819 670761 549353259 28.6182 9.3561 869 755161 656234909 29.4788 9.5427 822 675684 555412248 28.6705 9.3657 872 760384 663054848 29.5127 9.5501 822 675684 555412248 28.6705 9.3675 872 760384 663054848 29.5296 9.5537 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5959 9.5507 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5959 29.5664 8256 6682276 563559976 28.7402 9.3827 876 767376 672221376 29.5693 827 68392 9.65653552 28.7750 9.3902 878 70845 676845132 29.5647 9.3751 824 678976 573569 28.77908 28.7750 9.3902 878 770884 676856132 29.5964 9.5574 826 68329 565609283 28.7576 9.3865 877 760120 67426213 29.5933 9.5683 827 68392 9.565609283 28.7576 9.3902 878 70846 676856132 29.5933 828 685584 567663552 28.7750 9.3902 878 770884 676856132 29.5933 833 693889 57800537 28.8617 9.4016 881 776161 683707841 29.5933 834 695556 58003704 28.8791 9.4016 881 776161 683707841 29.5933 834 695556 58003704 28.8791 9.4016 881 776161 683707841 29.5933 834 695556 58003704 28.8791 9.4016 881 776161 683707841 29.5933 9.5937 834 695556 58003704 28.8931 9.4016 889 790321 70259369 29.8329 9.5937 9.5937 9.4016 889 790321 70259369 29.8329 9.5937 9.5937 9.4016 889 790321 70259369 29.8329 9.6010 9.4016 881 776161 683707841 29.5933 9.5937 9.4016 889 790321 702595369 29.8946 9.6022 29.7933 9.5937 9.4016 889 790321 702595369 29.8946 9.6022 29.7933 9.5937 9.4016 889 70321 702595369 29.8946 9.6022 29.9933 9.6068 29.6082 99.0066 9.4079 9.4065 899 80040 771734273 29.9966 9		""								, ,
811 657721 533411731 28.4781 9.3255 861 741321 638277381 29.3428 9.5171 659344 535387328 28.4956 9.3294 862 743044 640503928 9.3598 9.5171 660505 539353144 28.5307 9.3370 864 740496 644972544 29.3939 9.5207 814 66225 541343375 28.5482 9.3408 867 74822 647214522 9.31939 9.5281 815 6664225 541343375 28.5482 9.3468 867 74822 64721452 9.3939 9.5281 816 665856 543338496 28.5657 9.3447 866 749956 649461806 29.4279 9.5317 817 667489 545335259 28.6182 9.3561 869 755161 656234909 29.4279 9.5317 819 670761 549353259 28.6182 9.3561 869 755161 656234909 29.4279 9.5317 819 670761 549353259 28.6182 9.3561 869 755161 656234909 29.4788 9.5427 822 675684 555412248 28.6705 9.3657 872 760384 663054848 29.5127 9.5501 822 675684 555412248 28.6705 9.3675 872 760384 663054848 29.5296 9.5537 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5959 9.5507 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5959 29.5664 8256 6682276 563559976 28.7402 9.3827 876 767376 672221376 29.5693 827 68392 9.65653552 28.7750 9.3902 878 70845 676845132 29.5647 9.3751 824 678976 573569 28.77908 28.7750 9.3902 878 770884 676856132 29.5964 9.5574 826 68329 565609283 28.7576 9.3865 877 760120 67426213 29.5933 9.5683 827 68392 9.565609283 28.7576 9.3902 878 70846 676856132 29.5933 828 685584 567663552 28.7750 9.3902 878 770884 676856132 29.5933 833 693889 57800537 28.8617 9.4016 881 776161 683707841 29.5933 834 695556 58003704 28.8791 9.4016 881 776161 683707841 29.5933 834 695556 58003704 28.8791 9.4016 881 776161 683707841 29.5933 834 695556 58003704 28.8791 9.4016 881 776161 683707841 29.5933 9.5937 834 695556 58003704 28.8931 9.4016 889 790321 70259369 29.8329 9.5937 9.5937 9.4016 889 790321 70259369 29.8329 9.5937 9.5937 9.4016 889 790321 70259369 29.8329 9.6010 9.4016 881 776161 683707841 29.5933 9.5937 9.4016 889 790321 702595369 29.8946 9.6022 29.7933 9.5937 9.4016 889 790321 702595369 29.8946 9.6022 29.7933 9.5937 9.4016 889 70321 702595369 29.8946 9.6022 29.9933 9.6068 29.6082 99.0066 9.4079 9.4065 899 80040 771734273 29.9966 9				.0.6		06				
812 659344 535387328 28.4956 9.3294 862 743944 64953928 29.3598 9.5171 813 660569 537367797 28.5132 9.3322 863 7447696 64273542 9.3508 9.5207 814 662596 539353144 28.5307 9.3370 864 746496 644972544 29.3939 9.5244 815 664225 541343375 28.5482 9.3408 865 744956 64946182 29.4219 9.5318 816 665886 543338496 28.5657 9.3447 866 749956 64946189 29.4279 9.5317 817 667489 545338513 28.5832 9.3485 867 751689 651714369 29.4219 9.5318 818 660124 547343432 28.6007 9.3523 868 753424 65397203 29.4618 9.5391 820 672400 551368000 28.6351 9.3591 869 755161 656234909 29.4788 9.5391 821 674041 553387661 28.6531 9.3675 872 760384 665976311 29.5127 9.5501 822 675684 555441264 28.6705 9.3675 872 760384 665976311 29.5127 9.5501 822 675684 555441264 28.6705 9.3675 872 760384 665954848 29.5296 9.5537 824 678976 559476224 28.7024 9.3751 874 763876 667627624 29.5646 9.5574 824 678976 559476224 28.7024 9.3751 874 763876 667627624 29.5635 9.5617 822 668227 563559976 28.7228 9.3827 876 76525 669921873 29.5804 9.5647 822 68525 561515625 28.7228 9.3827 876 76525 669221376 29.5939 9.5683 827 668227 5653559976 28.7750 9.3902 878 7769129 674325133 29.5142 9.5792 8829 687241 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5792 8836 695525 58089579 28.8791 9.4106 881 776161 683797841 9.5792 8836 695255 58089579 28.8791 9.4106 881 776161 683797841 9.5792 8836 695255 58089579 28.8791 9.4106 881 776161 683797841 9.5792 8836 695255 58089579 28.8917 9.4204 886 784906 69550456 68367813 29.5931 9.5931 8836 695255 58089579 28.9937 9.4204 886 784906 69550456 89.5985 9.5901 883 770560 586376253 28.9137 9.4204 886 784906 69550456 89.5985 9.5901 883 770560 586376253 28.9137 9.4204 886 784906 69550456 89.5985 9.5901 883 770560 586376253 28.9137 9.4204 886 784906 69550456 89.5985 9.5901 883 770560 586376253 28.9137 9.4204 886 784906 69550456 89.5985 9.5901 889 70321 590589719 28.9655 9.4316 889 799307 7794701 79.29793 9.6618 9.6006 9.4207 9.4209 9.4209 888 779564 79073228 29.7889 9.6010 9.4241 887 790564 79073228 29.9889 9.6019 9.6224 70560 5056056 20.0								030050000		9.5097
813 660060 537367797 28.5132 9.3332 863 7.44769 642735647 29.3769 9.5207 814 662596 5339353144 28.5307 9.3370 864 7.46496 644721542 29.3939 9.5244 816 665856 543338496 28.5677 9.3447 866 7.49956 649461896 29.4279 9.5317 817 667489 543338496 28.5627 9.3485 867 7.49956 652714686 29.4429 9.5317 818 669124 547343432 28.6007 9.3523 868 7531424 653972032 29.4418 9.5391 820 672400 55136800 28.6182 9.3599 870 756900 6585000 29.4958 9.5427 820 672401 553387661 28.6351 9.3599 870 756900 6585000 29.4958 9.5427 820 672401 553387661 28.6351 9.3593 871 758641 56767411 29.	811	657721	533411731		9.3255		741321	638277381	29.3428	9.5134
813 660969 537367797 28.5132 9.3370 863 744769 642735647 29.3769 9.5207 814 662596 539353144 28.5307 9.3370 864 746496 644972544 29.3939 9.5244 816 665856 543338490 28.5657 9.3447 866 749956 649461896 29.4279 9.5317 816 665856 543338490 28.5637 9.3447 866 749956 649461896 29.4279 9.5317 818 669124 547343432 28.6007 9.3523 868 753424 653972032 29.4618 9.5391 820 672400 55136800 28.6182 9.3561 869 75560 658503000 29.4958 9.5427 820 672400 55136800 28.6356 9.3593 871 75690 658503000 29.4958 9.5427 820 672401 553464561224 28.6705 9.3675 871 758641 660776311 29.5	812	659344	535387328	28.4956	9.3294	862	743044	640503928	29.3598	9.5171
814 662296 539353144 28.5482 9.3408 864 746496 644972544 29.3939 9.5244 816 663285 541343375 28.5482 9.3498 866 748225 647214625 29.4109 9.5281 817 667489 545338513 28.5832 9.3485 867 751689 651714363 29.4449 9.5354 819 6670761 549353259 28.6027 9.3523 868 753424 653972032 29.4489 9.5354 820 672400 55136800 28.6356 9.3591 870 756900 658503000 29.4958 9.544 821 674041 553387661 28.6531 9.3675 871 758641 660776311 29.5127 9.5517 822 675684 555412248 28.6753 9.3675 872 760384 663054848 29.5296 9.5537 822 675684 555476224 28.7054 9.3781 874 763876 6672429 29.566	813	660969	537367797	28.5132	9.3332	863	744769	642735647	29.3769	
815 664225 541343375 28.5482 9.3408 865 748225 647214625 29.4709 9.5281 816 665856 543338496 28.5657 9.3447 866 749956 649461896 29.4279 9.5317 817 667489 54338513 28.5832 9.3485 867 751689 651714363 29.4479 9.5317 818 669124 547343432 28.6070 9.3523 868 753424 653972032 29.4618 9.5391 820 672400 55136800 28.6356 9.3591 87 75690 65850300 29.4958 9.5427 820 672401 553412248 28.6705 9.3673 871 758641 667076311 29.5127 9.5501 821 674041 55338761 28.6755 9.3673 871 758641 660763764 29.5127 9.5501 823 677320 55741276 28.6705 9.3751 871 763861 66702464 29.5535 <td></td> <td></td> <td></td> <td>28.5307</td> <td>9.3370</td> <td>864</td> <td>746496</td> <td></td> <td></td> <td></td>				28.5307	9.3370	864	746496			
816 665856 543338496 28 5657 9.3447 866 749956 649461896 29.4279 9.5317 667489 545338513 28.5832 9.3485 867 751689 651714363 29.4449 9.5354 818 669124 547343432 28.6007 9.3523 868 753424 653972032 29.4618 9.5391 819 670761 549353259 28.6182 9.3561 869 755161 656234900 29.4788 9.5427 820 672400 551368000 28.6531 9.3637 871 758641 660776311 29.5127 9.5501 822 675684 555412248 28.6705 9.3637 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5537 872 760384 663054848 29.5296 9.5640 9.3789 875 765625 66921875 29.5804 9.5647 882 685284 567663552 28.7750 9.3827 876 767376 672221376 29.5973 9.5683 872 687241 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5772 883 69329 56500283 28.7570 9.3902 878 770684 679151439 29.6479 9.5792 883 69389 578009537 28.8617 9.4016 881 776161 683797841 29.6816 9.5868 833 693889 578009537 28.8617 9.4016 881 776161 683797841 29.6816 9.5868 833 693889 578009537 28.8617 9.4010 884 770241 679151439 29.6479 9.5792 883 69325 586093704 28.88911 9.4016 885 783225 693154125 29.7489 9.6010 884 70024 886 784996 695506450 29.7658 9.5901 883 770244 58886472 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 884 70224 5889849 9.4279 888 788544 70222 79.7923 9.5082 89.94279 888 788544 702227072 29.7993 9.6118 889 70321 590589719 28.9655 9.4316 889 790321 702595369 29.88161 9.6154 844 712336 601211884 29.0517 9.4420 886 784996 69550645 29.7658 9.6046 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6228 844 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6228 844 710649 599077107 29.0345										
817 667489 545338513 28.5832 9.3485 867 751689 651714363 29.4449 9.5354 819 670761 549353259 28.6027 9.3523 868 753424 653972932 29.4618 9.5391 820 672400 551368000 28.6356 9.3599 870 756900 658503000 29.4958 9.5464 821 674041 553387661 28.6531 9.3637 871 758641 660776311 29.5127 9.5501 822 673684 555412248 28.6705 9.3675 872 760384 663954848 29.5296 9.5574 824 678976 559476224 28.7654 9.3751 874 763876 66338617 29.5616 9.5746 826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5804 9.5718 826 682276 563559976 28.7576 9.3865 877 760129 67426133 29.61		665856								
818 669124 547343432 28.6007 9.3523 868 753424 653972032 29.4618 9.5391 819 670761 549353259 28.6182 9.3501 869 755161 656234909 29.4788 9.5427 820 672400 551368000 28.6356 9.3599 870 756900 658503000 29.4958 9.5464 821 674041 553387661 28.6531 9.3637 871 758641 66076311 29.5527 9.5501 822 675684 555412248 28.6795 9.3675 872 760384 663054848 29.529,566 9.5537 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5610 825 680625 561515625 28.7924 9.3827 876 767376 672221376 29.5937 9.5683 827 683929 565609283 28.7576 9.3865 877 769129 674526133 2										
819 670761 549353259 28.6182 9.3561 869 755161 656234909 29.4788 9.5427 820 672400 551368000 28.6356 9.3599 870 756900 658503000 29.4958 9.55464 9.5501 553387661 28.6531 9.3637 871 758641 660776311 29.5127 9.5501 822 675684 555412248 28.6505 9.3675 872 760384 663054848 29.5296 9.5537 823 677329 557441767 28.6680 9.3713 873 762129 665338617 29.5466 9.5537 824 6768976 559476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5610 825 680625 561515625 28.7228 9.3789 875 765625 66921875 29.5804 9.5647 826 682276 5635359076 28.7402 9.3827 876 767376 672221376 29.5973 9.5683 827 683929 565609283 28.7576 9.3865 877 769129 674256133 29.6142 9.5719 828 685584 567663552 28.7750 9.3902 878 770846 676836152 29.6311 9.5756 829 687241 569722789 28.8097 9.3990 879 772641 679151439 29.64479 9.5792 8830 688900 571787000 28.8097 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 5759930368 28.8444 9.4053 882 777924 68612808 29.6985 9.5901 883 69389 578009372 28.8071 9.4016 881 776161 6683797841 29.6816 9.5865 8326 697225 582182875 28.8964 9.4166 885 779689 688465387 29.7153 9.5937 835 697225 582182875 28.8964 9.4166 885 783225 69358415 29.7489 9.6018 837 700569 586376253 28.9137 9.4204 886 784906 695506456 29.7698 9.6046 837 700269 586376253 28.9137 9.4204 886 784906 695506456 29.7689 9.6046 837 700269 586376253 28.9137 9.4204 886 784906 695506456 29.7689 9.6046 837 700269 586376253 28.9137 9.4204 886 784906 695506456 29.7689 9.6046 837 700269 586376253 28.9137 9.4204 886 784906 695506456 29.7689 9.6046 841 707281 590589719 28.9655 9.4316 889 790321 7002595369 29.8831 9.6226 843 710649 59057107 29.0345 9.4416 893 797449 712121957 29.8831 9.6226 843 710649 59057107 29.0345 9.4416 893 797449 712121957 29.89831 9.6226 843 710649 59057107 29.0345 9.4418 897 786769 69750450 29.8989 9.6344 712336 601211584 29.0517 9.4503 894 790321 7002595369 29.8831 9.6226 843 710649 59057107 29.0345 9.4466 893 797449 712121957 29.9831 9.6226 8447 710649 59057107 29.0345 9.4466 893 797449 712121957 29.9831 9.6226 8447 710649 69050452 29.0068 9.4541										
820 672400 55136800 28.6356 9.3599 870 756900 658503000 29.4958 9.5464 821 674041 553387661 28.6351 9.3675 871 758641 660776311 29.5127 9.5501 822 675684 555412248 28.6780 9.3713 873 762129 665338617 29.5969 9.5574 824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5617 826 682276 563559976 28.7422 9.3827 876 765625 667627624 29.5635 9.5618 827 683929 565609283 28.7576 9.3865 877 769129 674526133 29.6142 9.5718 828 685284 567663552 28.7750 9.3802 878 770884 67683133 29.6142 9.5718 820 687241 569722789 28.8971 9.3940 879 772641 679151439 29.64	1 .									
821 674041 553387661 28.6531 9.3637 871 758641 660776311 29.5127 9.5501 822 675684 555412248 28.6705 9.3675 872 760384 66076311 29.5296 9.5537 824 678976 5574476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5574 825 680625 561515625 28.7228 9.3789 875 765025 669921875 29.5804 9.5740 826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5804 9.5719 828 685584 567663552 28.7750 9.3805 877 769129 674526133 29.6479 9.5756 829 687241 569722789 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.	819	670761	549353259	20.0102	9.3501	809	755101	050234909	29.4700	9.5427
821 674041 553387661 28.6531 9.3637 871 758641 660776311 29.5127 9.5501 822 675684 555412248 28.6705 9.3675 872 760384 66076311 29.5296 9.5537 824 678976 5574476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5574 825 680625 561515625 28.7228 9.3789 875 765025 669921875 29.5804 9.5740 826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5804 9.5719 828 685584 567663552 28.7750 9.3805 877 769129 674526133 29.6479 9.5756 829 687241 569722789 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.	1									
821 674041 553387661 28.6531 9.3637 871 758641 660776311 29.5127 9.5501 822 675684 555412248 28.6705 9.3675 872 760384 66076311 29.5296 9.5537 824 678976 5574476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5574 825 680625 561515625 28.7228 9.3789 875 765025 669921875 29.5804 9.5740 826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5804 9.5719 828 685584 567663552 28.7750 9.3805 877 769129 674526133 29.6479 9.5756 829 687241 569722789 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.	820	672400	551368000	28.6356	0.3500	870	756900	658503000	20.4058	0.5464
822 675684 555412248 28.6705 9.3675 872 760384 663054848 29.5296 9.5537 823 677329 557441767 28.6880 9.3713 873 762129 665338617 29.5466 9.5574 824 678076 559476224 28.7054 9.3789 875 765625 66921875 29.5804 9.5610 826 682276 563559976 28.7576 9.3865 877 769129 674526133 29.5973 9.5683 827 683929 5656509283 28.7576 9.3865 877 769129 674526133 29.6142 9.5796 829 687241 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5792 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8871 9.4016 881 77924 686128968 29.6										
823 677329 557441767 28.6880 9.3713 873 762129 665338617 29.5466 9.5574 824 678976 559476224 28.7054 9.3751 874 763876 66727624 29.5635 9.5610 825 680625 561515625 28.7228 9.3789 875 76525 669921875 29.5804 9.5647 826 682276 563559976 28.7402 9.3827 876 76376 672221376 29.5933 9.5647 827 683929 565609283 28.7750 9.3865 877 769129 674526133 29.6142 9.5719 829 687241 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5792 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 681472000 29.664										
824 678976 559476224 28.7054 9.3751 874 763876 667627624 29.5635 9.5610 825 680625 561515625 28 7228 9.3789 875 765625 669921875 29.5804 9.5647 826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5973 9.5683 827 683029 565609283 28.7576 9.3865 877 769129 674526133 29.6142 9.5719 828 685584 567663552 28.7750 9.3902 878 770884 676836152 29.6311 9.5756 820 687221 569722789 28.8097 9.3978 880 774400 68147200 29.6648 9.5766 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6								665008615		
825 680625 561515625 28 7228 9.3789 875 765625 669921875 29.5804 9.5647 826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5973 9.5683 827 683929 565609283 28.7576 9.3865 877 769129 674526133 29.6142 9.5719 828 685584 567665552 28.7750 9.3902 878 770884 676836152 29.6311 9.5756 829 687241 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5792 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 777024 681472000 29.6648 9.5828 833 693889 57809379 28.8617 9.4091 882 777924 68128968 29.69						0/3			29.5400	
826 682276 563559976 28.7402 9.3827 876 767376 672221376 29.5973 9.5683 827 683929 565609283 28.7576 9.3865 877 769129 674526133 29.6142 9.5719 829 685584 567663552 28.7750 9.3902 878 770884 676836152 29.5119 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5828 833 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 834 692556 58009370 28.8791 9.4129 884 781456 690807104 29.7321 9.5937 835 697225 582182875 28.93137 9.4204 886 78496 6985636 29.7658 9.601								00/02/024		
827 683929 56569283 28.7576 9.3865 877 769129 674526133 29.6142 9.5719 828 685584 567663552 28.7750 9.3902 878 770884 676836152 29.6311 9.5756 829 687241 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5756 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 833 693889 57809537 28.8617 9.4091 883 779689 688465387 29.7153 9.5937 834 695256 580093704 28.8964 9.4129 884 781456 6908104 29.7321				_ "						
828 685584 567663552 28.7750 9.3902 878 770884 676836152 29.6311 9.5756 829 687241 569722789 28.7924 9.3940 879 772641 676836152 29.6311 9.5756 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 833 693889 578099537 28.8617 9.4091 883 779689 688465387 29.7153 9.5937 834 695556 58093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5997 835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7										9.5683
829 68741 569722789 28.7924 9.3940 879 772641 679151439 29.6479 9.5792 830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 833 693889 578009537 28.8617 9.4091 883 779689 688465387 29.7153 9.5937 834 695556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 835 697225 582182875 28.89137 9.4204 886 784996 693506456 29.7658 9.6010 837 700569 586376253 28.9310 9.4241 887 786769 697864103 29.	827	683929	565609283	28.7576	9.3865				29.6142	9.5719
830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 834 695556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 835 697225 582182875 28.9317 9.4204 886 78496 693154125 29.7489 9.6010 836 69886 584277056 28.9137 9.4204 886 78496 693154125 29.7489 9.6010 837 700569 586376253 28.93137 9.4204 886 78496 693564103 29.7825 9.6082 838 702244 598496 693564103 29.7658 9.6046 887 786766 695504450	828	685584	567663552	28.7750	9.3902	878	770884	676836152	29.6311	9.5756
830 688900 571787000 28.8097 9.3978 880 774400 681472000 29.6648 9.5828 831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 834 693556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 836 698896 584277056 28.9137 9.4204 886 784996 69354125 29.7489 9.6010 837 700569 586376253 28.9317 9.4204 886 784966 693564103 29.7825 9.6082 838 702244 598496 69355664 29.7658 9.6046 887 786769 69786410	829	687241	569722789	28.7924	9.3940	879	772641	679151439	29.6479	
831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 834 693889 578009537 28.8617 9.4091 883 779689 688465387 29.7153 9.5937 835 697255 582093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 836 698896 584277056 28.9137 9.4204 886 783225 693154125 29.7658 9.6010 837 700569 586376253 28.9137 9.4204 886 784996 695506456 29.7658 9.6026 838 702244 58480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8			3 7							, , , ,
831 690561 573856191 28.8271 9.4016 881 776161 683797841 29.6816 9.5865 832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 834 693889 578009537 28.8617 9.4091 883 779689 688465387 29.7153 9.5937 835 697255 582093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 836 698896 584277056 28.9137 9.4204 886 783225 693154125 29.7658 9.6010 837 700569 586376253 28.9137 9.4204 886 784996 695506456 29.7658 9.6026 838 702244 58480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8		600		-0.0	0	00-		0		
832 692224 575930368 28.8444 9.4053 882 777924 686128968 29.6985 9.5901 833 693889 578009537 28.8617 9.4091 883 779689 6688465387 29.7153 9.5937 834 695556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5937 835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 836 698896 584277056 28.9137 9.4204 886 784996 693506456 29.7658 9.6010 837 700569 586376253 28.9137 9.4241 887 786769 697864103 29.7825 9.6082 838 702244 58480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.										
833 693889 578009537 28.8617 9.4091 883 779689 688465387 29.7153 9.5937 834 695556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 836 698896 584277056 28.9137 9.4204 886 784996 695506456 29.7658 9.6046 837 700569 586376253 28.9310 9.4241 887 786769 697864103 29 7825 9.6082 838 702244 598480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.	831		573856191		9.4016					9.5865
834 695556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 836 698896 584277056 28.9137 9.4204 886 784996 695506456 29.7658 9.6046 837 700569 586376253 28.9310 9.4241 887 786769 697864103 29.7829 9.6082 838 702244 538480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 839 703921 590589719 28.9655 9.4316 889 790321 702595369 29.8161 9.6154 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 842 708964 596947688 29.0172 9.4391 891 793881 707347971 29.	832		575930368		9.4053				29.6985	9.5901
834 695556 580093704 28.8791 9.4129 884 781456 690807104 29.7321 9.5973 835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 836 698896 584277056 28.9137 9.4204 886 784996 695506456 29.7658 9.6046 837 700569 586376253 28.9310 9.4241 887 786769 697864103 29.7829 9.6082 838 702244 538480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 839 703921 590589719 28.9655 9.4316 889 790321 702595369 29.8161 9.6154 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 842 708964 596947688 29.0172 9.4391 891 793881 707347971 29.	833	693889	578009537	28.8617	9.4091	883	779689	688465387	29.7153	9-5937
835 697225 582182875 28.8964 9.4166 885 783225 693154125 29.7489 9.6010 836 69886 584277056 28.9137 9.4204 886 78696 695506456 29.7658 9.6046 837 700569 586376253 28.9310 9.4241 887 786766 697864103 29.7825 9.6082 838 702244 598480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 839 703921 590589719 28.9655 9.4316 889 792100 704969000 29.8329 9.6118 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 709732288 29.8664 9.6226 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.88	834	695556	580093704	28.8791	9.4129	884	781456	690807104	29.7321	9.5973
836 698896 584277056 28.9137 9.4204 886 784996 695506456 29.7658 9.6046 837 700569 586376253 28.9310 9.4241 887 786769 697864103 29.7825 9.6082 838 702244 58480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 839 703921 590589719 28.9655 9.4316 889 790321 702595369 29.8161 9.6154 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 843 710649 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6226 843 71649 599077107 29.0345 9.4466 893 797449 712121957 29.88								693154125		
837 700569 586376253 28.0310 9.4241 887 786769 697864103 29 7825 9.6082 838 702244 58480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6298 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0869 9.4578 896 801025 716917375 29.91666 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.										
838 702244 538480472 28.9482 9.4279 888 788544 700227072 29.7993 9.6118 839 703921 590589719 28.9655 9.4316 889 790321 702595369 29.8161 9.6154 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6226 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6298 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603495736 29.0861 9.4578 896 802816 719323136 29.										
839 703921 590589719 28.9655 9.4316 889 790321 702595369 29.8161 9.6154 840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6262 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6298 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603495736 29.0861 9.4578 896 802816 719323136 29.9333 9.6406 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.										
840 705600 592704000 28.9828 9.4354 890 792100 704969000 29.8329 9.6190 841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6262 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6298 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0869 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.6406 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477			10 1 11							
841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6262 843 710649 599077107 29.0345 9.4466 893 707449 712121957 29.8831 9.6228 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0869 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.4606 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.	039	703921	390509/19	20.9055	9.4310	009	790321	/02595509	29.0101	9.0154
841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6262 843 710649 599077107 29.0345 9.4466 893 707449 712121957 29.8831 9.6228 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0869 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.4606 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.										
841 707281 594823321 29.0000 9.4391 891 793881 707347971 29.8496 9.6226 842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6262 843 710649 599077107 29.0345 9.4466 893 707449 712121957 29.8831 9.6228 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0869 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.4606 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.	840	705600	592704000	28.9828	9.4354	800	792100	704969000	29.8320	9.6190
842 708964 596947688 29.0172 9.4429 892 795664 709732288 29.8664 9.6262 843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6298 844 71236 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0869 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.4605 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477										
843 710649 599077107 29.0345 9.4466 893 797449 712121957 29.8831 9.6298 844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0861 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.6406 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477					,					
844 712336 601211584 29.0517 9.4503 894 799236 714516984 29.8998 9.6334 845 714025 603351125 29.0689 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.6406 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6421 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477				, ,				1		
845 714025 603351125 29.0689 9.4541 895 801025 716917375 29.9166 9.6370 846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.6406 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477				, , ,						
846 715716 605495736 29.0861 9.4578 896 802816 719323136 29.9333 9.6406 847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477										
847 717409 607645423 29.1033 9.4615 897 804609 721734273 29.9500 9.6442 848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477										
848 719104 609800192 29.1204 9.4652 898 806404 724150792 29.9666 9.6477										
				/ 55						
849 720801 611960049 29.1376 9.4690 899 808201 720572699 29.9833 9.6513										
	849	720801	611960049	29.1376	9.4690	899	808201	726572699	29.9833	9.6513
		1	1							

TABLE 165.—Continued.

SOUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM 900 TO 999.

No.	Square.	Cube.	Sq. Root.	Cu. Root.	No.	Square.	Cube.	Sq. Root.	Cu. Root.
900	810000	729000000	30.0000	9.6549	950	902500	857375000	30.8221	9.8305
901	811801	731432701	30.0167	9.6585	951	904401	860085351	30.8383	9.8339
902	813604	733870808	30.0333	9.6620	952	906304	862801408		9.8374
903	815409	736314327	30.0500	9.6656	953	908209	865523177	30.8707	9.8408
904	817216	738763264	30.0666	9.6692	954	910116	868250664	30.8869	9.8443
	819025	741217625	30.0832	9.6727	955	912025	870983875	30.9031	9.8477
905							873722816		
906	820836	743677416	30.0998	9.6763	956	913936			9.8511
907	822649	746142643	30.1164	9.6799	957	915849	876467493		9.8546
908	824464	748613312	30.1330	9.6834	958	917764	879217912	30.9516	9.8580
909	826281	751089429	30.1496	9.6870	959	919681	881974079	30.9677	9.8614
910	828100	753571000	30.1662	9.6905	960	921600	884736000	30.9839	9.8648
110	829921	756058031	30.1828	9.6941	961	923521	887503681	31.0000	9.8683
912	831744	758550528	30.1993	9.6976	962	925444	890277128	31.0161	9.8717
913	833569	761048497	30.2159	9.7012	963	927369	893056347	31.0322	9.8751
914	835396	763551944	30.2324	9.7047	964	.929296	895841344		9.8785
915	837225	766060875	30.2490	9.7082	965	931225	898632125		9.8819
916	839056	768575296	30.2655	9.7118	966	933156	901428696		9.8854
917	840889	771095213	30.2820	9.7153	967	935089	904231063		9.8888
918	842724	773620632	30.2985	9.7188	968	937024	907039232		9.8922
919	844561	776151559	30.3150	9.7224	969	938961	909853209		9.8956
919	044501	//0131339	30.3130	9.7324	909	930901	909033209	31.1200	9.0950
920	846400	778688000	30.3315	9.7259	970	940900	912673000		9.8990
921	848241	781229961	30.3480	9.7294	971	942841	915498611	31.1609	9.9024
922	850084	783777448	30.3645	9.7329	972	944784	918330048		9.9058
923	851929	786330467	30.3809	9.7364	973	946729	921167317		9.9092
924	853776	788889024	30.3974	9.7400	974	948676	924010424		9.9126
925	855625	791453125	30.4138	9.7435	975	950625	926859375	31.2250	9.9160
926	857476	794022776	30.4302	9.7470	976	952576	929714176	31.2410	9.9194
927	859329	796597983	30.4467	9.7505	977	954529	932574833	31.2570	9.9227
928	861184	799178752	30.4631	9.7540	978	956484	935441352	31.2730	9.9261
929	863041	801765089	30.4795	9.7575	979	958441	938313739	31.2890	9.9295
930	864900	804357000	30.4959	9.7610	980	960400	941192000	31.3050	9.9329
931	866761	806954491	30.5123	9.7645	981	962361	944076141		9.9363
932	868624	809557568		9.7680	982	964324	946966168		9.9396
933	870489	812166237	30.5450	9.7715	983	966289	949862087		9.9430
934	872356	814780504		9.7750	984	968256	952763904		9.9464
935	874225	817400375	30.5778	9.7785	985	970225	955671625		9.9497
	876096	820025856		9.7819	986	972196	958585256		9.9531
936	877969	822656953			987	974169	961504803		9.9551
937	879844	825293672		9.7854	988	976144	964430272		9.9505
938	881721	827936019			989	978121	967361669		9.9596
939	001/21	02/930019	30.0431	9.7924	909	9/0121	90/301009	31.4404	9.9032
940	883600	830584000		9.7959	990	980100	970299000		9.9666
941	885481	833237621	30.6757	9.7993	991	982081	973242271		9.9699
942	887364	835896888		9.8028	992	984064	976191488		9.9733
943	889249	838561807		9.8063	993	986049	979146657		9.9766
944	891136	841232384		9.8097	994	988036	982107784		9.9800
945	893025	843908625		9.8132	995	990025	985074875		9.9833
946	894916	846590536	30.7571	9.8167	996	992016	988047936	31.5595	9.9866
947	896809	849278123	30.7734	9.8201	997	994009	991026973	31.5753	9.9900
948	898704	851971392		9.8236	998	996004	994011992		9.9933
949	900601	854670349		9.8270	999	998001	997002999		9.9967
		1	1 3	1 1		1			1

. INDEX.

REFERENCES ARE TO PAGES IN PART I.

			PAGE	PAGE	
"A" Derrick	c			Angles, Minimum 60, 142, 143, 206, 211, 223	
Abutments,	Brid	ge,	245, 250, 252, 253, 254,	Angles, Overrun of	
255, 256				Angles, Starred578	
			te241, 272	Angles in tension	
Algebraic me	omen	ts.	561, 562, 563	Annealing63, 146, 214, 217, 480	
			552, 558, 559, 560	Anthracite coal bin 300, 301, 302, 304	
			487, 495, 519	Anthracite coal, Weight of	
Alternate st	roccoc		57, 141, 206, 209	Anti-condensation lining, 28, 29, 31, 52, 53, 59,	
Allowable	Cooca		on foundations, 236, 249,		
		165	on foundations, 230, 249,	Anti condensation lining Cost of	
250, 386				Anti-condensation lining, Cost of 439	
		res	on masonry, 56, 75, 236,	Arbitration bar	
249, 379				Arch	
Allowable st	resse	s, 5	6, 57, 80, 105, 141, 209,	Arch, Masonry	
46			362, 379, 382	Arch, Roof	
44	4.6	in	bearing plates, 56, 75,	Arris	
			236, 379	Ash bin300, 301, 302, 306	
4.6	4.6	4.6	cast iron65, 104	Ashes, Weight of	
44	4.6	4.6	concrete520, 521	Ashlar	
44	4.6	8.6	highway bridges, 117, 141	Ashlar masonry	
4.6	6.6	4.4	hoisting rope, 342, 443,	Ashlar stone	
			444	Asbestos	
4.6	44	6.6	manila rope 443	Asbestos, Cost of	
44	44	6.6	mill buildings8, 57	Asbestos covered steel sheets	
1.44	4.4	6.6	office buildings79, 105	Asphalt	
4.6	44	6.6	railway bridges, 173, 205,	Asphalt paint	
			200	Auger 461	
4.6	66	4.6	rivets 370	Average cost of steel	
44	44	6.6	stand-pipes 387, 382	Tivelage cost of steel	
+ 44	4.6	66	steel	Backing267, 270, 271	
44	44	44	steel reinforcement. 521	Backing-out punch	
66	44	6.6	steel tanks 379	Ballasted floor	
6.6	4.6		timber, 58, 138, 204, 208,	Ballasted floor trestle	
- 44	4.6		298	Ballast, Weight of204, 208	
44	44	4.6	wire rope342, 443, 444	Baltimore bridge truss109, 560, 566	
			wrought-iron, 65, 104, 495	Bars	
				Bars, Lacing	
			519	Minimum	
Aluminum b	oronz	e		Shop cost of	
Anchors			62, 94, 95, 144, 212	Bases, Cast-iron column92, 93, 94, 104	
Anchors, Wa	all		105	Bases, Column	
Anchor bolt	s		105, 147, 381, 484	Base plates 62	
Anchorage.			144, 381, 484	Batten plates	
Angle of fri	ction,	, 23	6, 300, 301, 302, 311, 312	Batter249, 267, 277	
Angle of rep	oose,	236	, 300, 301, 302, 311, 312,	Batter of columns 380	
321		0		Batter pile279	
	ction	s. 6	5, 145, 404, 407, 408, 413,	Bay	
430, 574		, -	0. 10. 4-4. 4-1. 4-2. 4-0.	Beam bridges, 108, 110, 117, 118, 119, 120, 121,	
		s, C	Cost of 430	149	
			409	Beam bridges, Weight of	
				Beams	
			410, 416, 417, 418, 427	Deflection of	
			oth legs 141, 207	Details of	
883					
			0	100	

884 INDEX.

PAGE	PAGE
Beams, Flexure in 533	Bridge abutments, 245, 250, 252, 253, 254, 255
Reinforced concrete	clearances
Rolled	erection
Separators for	floors,
Shop cost of	piers245, 255, 257, 258, 259, 260
Shear in	Signal
Stresses in, 529, 536, 537, 538, 539, 540, 541,	span Length of
543, 544, 545	specifications
Bearing pile	shop cost of
Bearing plate	trusses
Bearing power of piles	trusses, Stresses in558, 569
Becket	Steel for
Bed	Timber
Bed plates	Types of
Bench wall	Waterway for
Bending moment	
Bending moment tables	Weight of 112, 150, 151, 157 Bronze 520
	D1.1
Bending moments in railway bridges, 163, 164,	Build
165, 166, 167, 171, 172	Building columns
Bending stresses in wire rope 344	Floor plan for
Bent	Foundations for94
Bent, Transverse	Height of
Bessemer pig iron	materials
Bessemer steel	paper
Bethlehem H-columns405	Buildings, Specification for55, 103, 497
Bevels	Steel office
Beveled washer	Waterproofing
Bill of castings for Howe truss 289	Weight of tall steel
material389, 425	Buckle plates 132, 138, 315, 359, 360
rivets 400	Bulb angles
timber	Built-up tension members 574
Billet-steel reinforcement 507	Bulkhead277, 297
"Bite" of a line	Bull wheel
Bin gates	Bunkers, Suspension309, 315, 316
Bins299, 319, 362	Burlap
Bins, Grain	
Bins, Cost of	Caisson 94
Bins, Cost of erection of	Cages346, 362
Blister steel487, 493	Cain's formulas for retaining walls 230
Blocks for Manila rope	Calculation of stresses in tall buildings 76
Blocks for wire rope	Calculation of stresses in highway bridges, 117,
Boiler steel431, 505	558
Bolsters144, 212	Calculation of stresses in railway bridges 164
Bolts, 65, 95, 143, 145, 211, 216, 287, 297, 458	Camber
Boits, Anchor, see "Anchor bolts"	Camel back truss109, 558, 567
Bolts, Falsework	Cant hook
Bolts, Turned	Cantilever bridge
Bond	Cantilever beam
Bond in concrete521, 526, 547	Cap277, 279, 296
Boom468, 469, 470, 471	Capacity of coal tipples355, 356
Brace, Shop details of	Car puller
Bracing, 4, 9, 18, 55, 62, 97, 98, 100, 105, 137,	Car, Push
212, 223, 361, 381	Carbon
Lateral	Carbon steel
Transverse9, 18, 62, 137, 223, 361	Card of mill extras430, 431
Weight of	Carrying hook
Wind	Cast iron65, 104, 215, 297, 384, 487, 488
Bracket	column bases
Brass	details
Brass, Weight of	separators83
Break-water	Weight of
Brick	Castings, Steel
Brick floor	Caulking
Brick, Weight of	plates
	partost i ce i ce i ce i ce i ce i ce i ce i c

PAGE	PAG
Caulking, tool	Combination highway bridge295, 43
Cement paint	Combined stresses 57, 141, 200, 531, 534, 58
Cement, Specifications for 522	Compressive stress
Center of gravity	Compression members
Centering	Compression flanges
Centrifugal force	Compression formulas 7
Centroid	Concrete
Chains	Abutment
Annealing	Aggregage24
Cost of	Details of construction of
Channels	floor
Channels, Separators for	in foundations
Chords, Upper 61	Ingredients in
Chords for railway bridge	Mixing24
Chords, Shop cost of	Proportions of
Chrome steel	Specifications for
Circular ends	Strength of
girder	Weight of
steel bin	Connection angles, 65, 145, 404, 407, 408, 413
ventilator29, 59, 423, 427	574, 505
Clamp	Conductors423, 42
Classification of bars	Connections 6
material	Connections, Clearance for412, 41
Claw bar	Connections, Field
Clearance diagram	Floorbeam183, 184, 18
for members	Strength of
standards	Shop cost of
of riveted members	Connecting bar
Clerestory	Conductors
Clevis	Contents of abutments
Clinch rivets	Contents of piers
Closing rivets	Continuous beams543, 544, 54
Coal bin300, 301, 302, 303, 304, 318 breakers361	Continuous sash
bunkers	Conventional signs for materials 39
Friction of	Conventional signs for rivets
tar paint	Conveyors
tipples339, 352, 361, 363, 436	Cooper's Conventional loading, 151, 159, 162
tipples, Cost of	163, 164, 165, 166, 167, 168, 172
tipples, Shaking equipment for. 353, 357, 358	Cooper's abutments
washers 361	Cooper's piers
Weight of 311	Cooper hitch
Coefficient of friction	Cope
Coke bins	Cope chisel
Coke, Weight of	Coping
Cold cutter	Coulomb's theory
Columns 77 67 87 02 704 776 402	Copper
Columns, 15, 61, 85, 93, 104, 176, 403, 404,	steel
405, 406, 426, 526, 547, 579, 590 Column bases92, 93, 94, 104	Weight of 6
Column bases, Pressure on	Corner finish
Column, Details of, 86, 87, 88, 89, 90, 91, 374	Cornice
Column formulas	Corrosion of iron or steel
Column, Length of	Corrugated steel, 15, 52, 56, 59, 320, 423, 427
Column, Loads on	456
Column schedule85, 94, 402, 404	plans 5
Column splices90, 91	roofing
Columns, Mill building 19, 20, 21, 54	Cost of
Columns, Office building 84, 98, 102	Details of
Columns, Shop cost of 433	door
Columns, Stresses in	fastenings
Columns, Timber	Minimum thickness of
Columns, Weight of 4	Safe loads for 2:

886 INDEX.

PAGE	PAGE
Corrugated steel, shear456, 460	Design of bearing plates 586
tools	bins313, 326
Weight of4, 25	columns
Corrugated iron floor	end-post
Cost of drafting429	floorbeam590
erection347, 436, 437, 438	I-beam
erection of tubular piers 437	lacing bars 598
erection of steel head frame 347	pins
floors	plate girders
laying corrugated steel 439	railway bridges
material428, 440	retaining walls231, 232, 234
mill extras	rollers 579
painting430, 433, 438	steel details
roofing	stand-pipes
riveting436, 437, 438	Design drawings
tar and gravel roofing32, 439	Design for flexural stress 579
tile roofing	Detail notes
steel grain elevators	Details of angle struts409
structural steel425, 428, 429	beams82, 333, 407, 408
Counters	framework85
Counterbalanced windows	bridges
Counterfort retaining wall	columns, 19, 20, 21, 86, 87, 88, 89, 90, 91
Couple	Cost of
Course	end-post
Coursed	head frames 347, 348, 349, 350
Cover plates	office buildings
Crab	roof trusses, 16, 17, 18, 390, 391, 392, 393
Crane girders	stand-pipes
Crane posts 61	top chord
Cross frame	wall construction
Cross-eyed fuller	wind bracing
Cross-grain	Diagonal stresses
Crow bar	Diagonal tension
Culvert	Diamond point
Culverts, Shop cost of 435	Dimension stone
Culverts, Waterway for	Disc pile
Cuppers	Dolly454, 455, 456, 461
Cutting to exact length	Door43, 54f 60, 329, 422, 428, 440
Cut-water	Door track
Curb	Dote
Cylinder piers	Dowel
Cylinder piers, Shop cost of 435	Draft
D 11 1	Drafting, Cost of
Dead loads, 55, 116, 139, 202, 204, 207, 208,	Drafting, Structural
361 Dead leads of office buildings	Drainage table
Dead loads of office buildings	Drainage for highway bridge floors 138 Draw, Allowance for
Dead man	Draw spans
Deck beams	Dressing stone
Deck plate girders 400	Drift bolt277, 282, 283, 284, 297
Deck truss, Stresses in	Drift pin
Deep bins311, 319, 325	Drifting
Deflection of beams, 530, 533, 536, 537, 538,	Duchemin's formula 5
539, 540, 541, 543, 544, 545	Dumping devices
Deformation	Dun's drainage table
Deformed bars508, 509	Dry masonry
Delta metal	•
Depth of bridge trusses	Earth, Weight of
Depth of plate girders	Eave strut
Depth of trusses	Eave strut, Shop cost of
Derrick car	Eccentricity
Derrick crab	Eccentric loads
Derricks	Eccentric riveted connections 595

PAGE	PAG
Economic design	Eye-bars, Tests147, 218, 50
Edges, Planed	Weight of
Edge distances of rivets60, 143, 210	Eye-bar hook
Edge plates	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Efficiency of tackle	Fabrication of steel, Inspection 518
Elasticity	Face
Elastic limit	Facing
Electric railway bridges	Factor of safety52
Electric light pole	Factory ribbed glass
Elevators for grain bins	Fall line ball
Elevated tanks	Fall lines
Ellipse of stress	Falsework
Elongation of steel	Cost of erection of
Elongation of wrought iron491, 492, 496	Falsework piles
Engine service	Falsework plans
	Falsework bolts
Engineering materials	Fastoning angles
End bracing	Fastening angles
End connections for I-beams 595	Fence Shap cost of
End connections for top chord 593	Fence, Shop cost of
End-post, Bending in	Felloe guard
Design of	Felt and asphalt.
Details of	Field bolts
End shears	Field connections
Equivalent uniform loads	paint
Erection diagram	rivets58, 66, 146, 217, 400, 46
plan for mill buildings	rivets, Number of
plan	riveting
Erection of armory	Filler plates65, 144, 145, 211, 210
bridges 147, 437, 438, 441, 483	Filler rings
corrugated steel439	Final set 268
head frames	Fink trusses9, 10
plate girders	Firebox steel
stand-pipes	Fireproofing
steel	Fireproof construction 66
steel frame buildings 436	Fish plate
tubular piers 437	Fixed beam54
Erection, Specifications for	bearings14
Instructions for	sash41, 42
Inspection of bridge	Flange plates60, 143
Erection tools	rivets142, 210, 22
Estimates	splices
Examples of abutments, 250, 252, 253, 254,	steel
255, 256	Flashing, Stack
bins	Flashing
coal tipples	Flat plates313, 53
head frames	Flemish bond
grain elevators	Flexure 526
highway bridges, 127, 128, 129, 130, 131	in beams 53.
office buildings	Flexure, Members in
plate girders184, 189, 190	Flexure and direct stress
railway bridges, 185, 191, 192, 193, 194,	Floors
196, 197, 198, 199	Cost of
retaining walls	Highway bridge112
steel mill buildings, 48, 49, 50, 51, 52, 53, 54	Live loads for
Expansion, 104, 133, 144, 206, 211, 212, 423,	Plank
434	for railway bridges 176, 194, 204, 204
Expansion joints	Shop.
Expansion rollers 579	Specifications for
Experiments on grain pressure 325	Timber
Extrados	Waterproofing bridge, 133, 178, 179, 180
Eye-bars, 62, 66, 144, 145, 207, 213, 216, 217,	181, 182
222, 571, 573	Floor panels99
Eye-bars, Shop cost of 434	Floor plans
Stresses in	Flooring, steel plate

PAGE	PAGE
Floorbeam connection 590	Gusset plate219
Floorbeam reactions	Gutters23, 26, 59, 423, 427
Floorbeam, Design of 590	Guy derrick
Floorbeams	Ouy defficient
	Hacked bolt95
Floorbeams for highway bridge 113, 138	Handle gouge
Floorbeams for railway bridges 183, 184, 185	Hammer 452, 462
Floorbeams, Shop cost of	Hammer
Weight of	Hand holes
Flush	Hand gouge452
Footing	Handrailing
Footwalks 137	Head frames339, 346, 436
Forces 527	Head sheaves 363
Forked ends211	Head works for mines
Forms237, 241, 243, 268, 274	Heart wood
Foundations, 53, 54, 56, 75, 95, 100, 104, 268,	Heating shop buildings 8
334, 372, 386	Highway bridges 107
Foundations, Pressure on, 232, 234, 236, 247,	Highway bridge abutments
248, 249, 250	Highway bridges, Allowable stresses in, 115, 141
Foundation plan	Classes of
Frame trestle	Combination
Framework of steel frame buildings, 9, 49, 53	Examples of. 122, 127, 128, 129, 130, 131
Framework of office buildings85	Erection of
Freezing weather, Placing concrete in, 240, 243,	Shop cost of
	Field rivets in 437
274 Encicht	Floors for
Freight	Floors for
Friction, Coefficient of	Headroom for
Friction on bin walls	Impact for
Friction of wheat	Joists and stringers for
Frost-proofing	Loads for
Fuller	Painting146, 147
	Diam for
Fuller's rule	Piers for
C-11 (Plate girder
Gallows frame	Railing for
Gantry traveler472, 474, 475	Sidewalks for
Garners	Rollers for
Gaspipe, Cost of	Spacing of trusses for
Gates, Bin	Specifications for
Gin pole	Stresses in
Girders, Beam	Timber
Circular	Types of
Crane	Weight of
Plate	Header268, 270
Riveted400, 403	Hoist
Girder hook	Hoisting
Girts3, 9, 14, 50, 56, 62, 277, 297	Hoisting blocks 446, 447, 448, 449, 450
Spacing of	Hoisting engine
Weight of 4	Hoisting rope 341, 350, 360, 443, 444, 480
Glass	Hooks, Stresses in
Glass roof tile	Hopper bins
Glass, Weight of 69	Hot twisted bars 509
Glazing 41	Howe truss 10, 109, 286, 287, 290, 291
Grain elevator319, 337, 433, 434	Howe truss, Cost of metal in
Grain bins319, 325	Hub guard134, 135, 136
Grain shovel	Hutton's formula for wind pressure 5
Goose neck471, 480	Hyperbolic logarithms
Gordon's formula80	
Graphic moments 561	I-Beams427, 580
Graphic resolution	Impact
Graphite paint	Impact on office buildings
Grillage 94	Impact formulas
Grout	Impact on highway bridges117, 141
Guard rail177, 277, 281, 284, 287, 297	Impact on railway bridges 161, 204, 205, 208
Guard timbers	Impact on timber

PAGE	PAGI
Impact tests	Linseed oil
Indirect splices	Live loads
Initial set	Live loads on columns74, 104
Initial stress	floors
Inspection of steel at mill	highways bridges
	nighways bridges
bridge erection	office-buildings
bridge material217	railway bridges202, 205, 208
steel	Live load stresses
Instructions for erection of structural steel, 479	Loads55, 70, 73, 36
estimating	Minimum
inspection of steel	Snow
Intermediate sill	Wind
Intrados	Loads on bin walls
Invoices	columns74, 104
Iron, Corrosion of	foundations 56, 75, 104, 236, 249
Iron oxide 514	highway bridges 112d, 112g, 139, 140
Iron details for Howe truss, 286, 287, 289, 291	masonry 56
	office buildings
Tack stringers277, 297	piles
lacks	railway bridges
lanssen's solution for stresses in bins 319	roofs
	stand since
Joints	stand-pipes382, 382
Joints in concrete	timber floors
Joists for highway bridges	Lock
	Locks
Ketchum's modified saw tooth roof, 9, 11, 44, 48	Logarithms, Hyperbolic
Key wrench	Locomotives, Heaviest
Knee brace 97	Locomotives, Weight of154, 203
Knot	Long rivets143, 21
Knots in manila rope444, 445	Longitudinal braces
	forces
Lacing bars, 61, 65, 143, 145, 211, 216, 414, 598	strut
Lacing bars, Design of	X-brace
Ladder373, 374, 376, 377, 378, 381, 383	Loop bars
Lagging	Louvres, 3, 12, 24, 43, 44, 52, 59, 423, 427
Laitance	
Lampblack	Machinery loads
Landing stage	Manhole
Laps of corrugated steel 59	Malleable castings487, 488
Lateral bracing	Manila rope
connections	Manganese
plate. 571 pressure. 321	Manganese Bronze
pressure	Manufacture of cast-iron 488
Laterals 137	steel
Lattice bars, see "Lacing bars"	wrought-iron
Lead	Marking diagram
Lead, Red 514	Maul
Lead, Weight of	Masonry
Leads	abutments, 245, 246, 250, 252, 253, 254, 255
Leg bridge 108	256
Lengths of angles417, 418	Classification of
channels418	Dressing of
I-Beams418, 430, 431, 432	piers
plates	plan
Length of columns79, 80	Pressure on, 56, 75, 104, 141, 209, 236, 542
compression members, 61, 141, 209, 363,	retaining walls
379	Specifications for
span	Weight of 90
Lettering shop drawings	Mast468, 469, 471
Lewis	Mastic, Asphalt 181, 182
Lifting capacity of tackle	Material, Classification of 426
List of drawings 380	Conventional signs for 399
erection tools463, 464, 465, 466, 467	Engineering 48;
rivets	Estimating 426

PAGE	PAGE
Material, Ordering415, 416, 417	Office buildings, Erection of 105, 441
Weight of	Estimates for
Maximum bending moments in beam, 160, 542	Floorbeams for
	Floor plans of
Maximum bending moments in bridges, 163,	Foundations for
164, 165	Toods on
Maximum length of member, 61, 141, 209, 363,	Loads on
379	Spandrel sections for100
diameter of rivet	Specifications for
stresses	Oil paint
Merchandise, Weight of	Oil tanks
Metal, Minimum thickness of142, 210	Old man
Mill building columns	Open-hearth steel, 62, 487, 494, 497, 499, 502,
Mill buildings, Cost of details of 429	505, 507
Cost of	Ordering material415, 416, 417
Design drawings for	Ore bins
Erection plans for	noolkota and
	pockets
Erection of	Weight of
Estimates for	Out of wind
Walls for	Overrun of angles221, 222, 411
Mill extras, Cost of	
Mill inspection of steel	Packing block
Mill orders	pins
Milling plates	spool
Minimum angles 8, 60, 143, 206, 211, 223	Paint
bar	Paint, Amount of
loads	Cost of
thickness of corrugated steel	Proportions of
thickness of metal, 8, 105, 142, 210, 363, 380,	Painting, 31, 67, 146, 147, 217, 329, 363, 386,
382, 387	1 ameng, 31, 07, 140, 147, 217, 329, 303, 300,
	387, 430, 484, 515
	Painting, Cost of
Mine buildings	Panel. 3
Misfits	Paneis, Floor
Mixing concrete	Panel, Length of
Modulus of elasticity 528	Parapet
Moments in continuous beams 544	Paving
Moments of forces	Pedestals, 135, 144, 184, 186, 187, 188, 189,
Moments in railway bridges, 163, 164, 165,	190, 191, 193, 194, 197, 423, 424
171, 172, 174	Petit bridge truss 100, 558, 562, 564, 568
Moment of inertia, 530, 535, 548, 549, 550, 551	Phosphorus
Moment splices	Phosphor bronze
Moment table	Piers, Bridge245, 248, 268
Monitor ventilator3, 41, 43, 59	Pig iron
Mortar	
	Piles
Muntin	Piles, Bearing power of
N. H. C. L. f.	Specifications for
Nails, Cost of	Pile driver279, 477
Naperian logarithms322	foundations94
Natural bed	trestles
Natural cement	Pipe, Design of532, 534, 575
Net sections 60, 61, 141, 206, 210, 220	Pilot nuts
Neutral axis	Pilot points146, 217, 467, 484
Neutral surface	Pins. 58, 61, 62, 66, 143, 146, 210, 211, 217, 219
Newel posts	Pins. Cost of
Nickel	Design of
Nickel steel 149, 152, 173, 495, 496, 502	Pin holes
Nigger head	packing
Nuts, Pilot	plates
	Pin-connected trusses,
Oblong steel pier	
	197, 402, 435 Pin maul
Office buildings	Dia 1.
Calculation of stresses in	Pitch
Columns for, 98, 102, 104, 402, 403, 404,	Pitch of roof
405, 406	Pitch of rivets
Cost of	Pitch pockets 278

PAGE	PAGI
Pitch streaks	Purchase ring
	Purlin, 3, 4, 9, 26, 27, 49, 50, 53, 54, 55, 56
Pitched	1 111111, 3, 4, 9, 20, 27, 49, 50, 53, 54, 55, 50,
Pivoted windows	59, 62 Purk 201
Pivoted sash	Push car
Placing concrete	Outstand
Plans	Quicksand249
Plans, Shop	D. P. at any time and a second
Plans of structures	Radius of gyration 548, 549, 550, 551
Planing	Rafter
Planing edges	Rail jack
Planing metal400	Rails, Cost of
Plan, Floor 85	Rails, Fastenings for
Plank, Floor	Rail steel reinforcement 509
Plastered ceiling, Weight of4, 69	Railway bridges, Allowable stresses in, 173, 209
Plaster walls	Clearances of 200
Plates 416, 419, 420, 421, 422, 426	Design of
Batten	Details of
Base62, 144, 146, 586	Examples of
Buckle	Field rivets in 438
Flat	Floors for
Floor	Impact on
Fillers	Loads on
Minimum thickness of	Painting
Pin	Piers for 255, 257, 258, 259, 260, 265
Sheared415, 419, 420, 422	Piles
Splice	Shop cost
Tie	Specifications for
Universal mill 415, 420, 421, 422	Steel trestle
Wall105, 144, 212	Types of
Web	Weight of
Plate girders, 54, 57, 58, 110, 142, 149, 206,	Rankine's theory
210, 212, 433, 435, 534, 581	Ratchet
Cost of	Rate of hoisting350, 360
Design of	Reaming65, 66, 145, 363, 435, 484
Erection of	Ream wrench
Examples 184	Red heart
Field rivets in	Red lead-paint, 67, 207, 438, 439, 514, 515, 516
Flanges in	Reinforced concrete
Plate girder highway bridges, 122	Reinforced concrete floor, 34,112h,179, 180, 266
railway bridges173, 174, 175, 203, 400	retaining walls239
weight of 150, 151, 152, 153, 155, 158	Specifications for
Pleisner's experiments	Stresses in
Pointing	walls 53
Poisson's ratio	Resilience
Pole, Electric light	Resisting moment
Pony trusses	Resisting shear
Portals97, 149, 193, 198, 212	Retaining walls
	Reversal of stress
Portland assess in	Didge well
Portland cement	Ridge roll24, 52, 59, 427
Amount of 240	Rigid bracing
paint 516	Rigid members
Specifications for	Rigging
Posts	Ring
Cost of	Ring dolly 455
Newel	shake 279
Pratt truss 10, 107, 108, 109, 121, 122, 565	stones
Pressure on bin walls	Riprap 268
Pressure on foundations	Rivet buster452, 462, 463
Pressure of grain	clamp
Pressure on masonry	clearance412, 413
Pressure on retaining walls	hammer452, 456, 462
Product of inertia 535	heads427
Proportions of concrete240, 273	holes
Punching	list

PAGE	PAGI
Rivet pitching tongs 456	Safe bearing of soils56, 75, 236, 249, 386
snaps452, 456, 462, 467	Safe loads on corrugated steel. 22 floors 33
spacing	floors
steel	Dues
sticking tongs	slabs
	Safety hooks346, 362
Rivets	Safety hooks
Clinch	Sag rod. 52 Sand, Amount in concrete. 240
Conventional signs for	Sand, Amount in concrete 240
Diameter of 60	Sand bin300, 301, 302, 305
Field55, 66, 141, 146, 217, 363, 400	Sand blast
Flange	Sand, Friction of
Maximum diameter of 60, 143	Sand, Weight of
Pitch of 60, 142, 143	Sandstone, Weight of
Size of	Sandwich door44, 60
	Sandwich door44, or
Riveting	Sapwood
Cost of	Sash
bins332, 333	Sash brace
stand pipes	Saw tooth roof
tanks373, 375	Section modulus
Riveted bridges, Examples of, 119, 120, 127,	Segmental rollers
128, 151, 194, 401	Segmental bottom
Riveted bridges, Field rivets in437, 438	Separators83, 277, 297, 430, 580
Directed pringes, Field fivets in437, 430	Set Direct 450, 450, 460
Riveted connections219, 595	Set, Rivet
joints370, 378, 380, 532, 597	Schneider, C. C
girders 403	Scale hoppers
tension members	Screens
Road rollers	Screw bolt 95
Rods	pile
Rods, Anchor94, 95	thread
Minimum size of	Shackle
	Shackle bar
Rollers, 55, 57, 63, 66, 133, 134, 141, 144, 146,	Chafe Tanian in
184, 186, 188, 189, 191, 193, 194, 19 7, 206,	Shaft, Torsion in
209, 212, 217, 434, 534, 579	Shake
Rolling loads542	Shaking screen
Roof covering, 4, 7, 15, 18, 26, 56, 71, 74	Shallow bins 290
Roof, Pitch, see pitch of roof	Shear
Roof trusses, 7, 11, 15, 16, 17, 18, 46, 49, 53,	Shear in beams
	Shear in bridges
54, 55, 105, 354, 359, 433, 441 Roof trusses, Erection of	Shear in concrete
	Shear, Elastic deformation due to 532
Spacing of	Shear in lacing bars
Stresses in	Shear in facing bars.
Types of	Shear in plate girder 173, 174
Weight of	Shear in rivets
Root for steel bin	Shear, Corrugated steel
steel tank	Shear legs
steel stand-pipe 382	Sheared plates419, 420, 422
Roofing23, 28, 29, 51, 423, 428, 439	Sheathing
Corrugated steel28, 29, 51	Sheaves 346, 348, 350, 360, 363, 443, 444
Cost of	Sheet pile
	Shipping invoice
Slate 29	Snipping invoice
Tar and gravel	Shim 277
Tile31, 54m	Shoes133, 184, 186, 187, 188, 279, 423, 424
Tin	Shop bills 399
Rooster	Shop coat of paint 516
Rope, Cost of	Shop cost of bins433, 434
Rope, Hoisting341, 443, 444	bridges
Rot	columns433
Rubbed	combination bridges
Rubble	culverts 435
Rubble concrete	eave struts
Rubble stone	floorbeams434
Rules for shop drawings 391	eye-bars 434
Rupture strength528	grain bins433, 434
Rust 512	Howe truss metal

PAGE	PAGE
Shop cost of office buildings 433	Specifications for steel, mill buildings 55
plate girders	office buildings
pins	railway bridges188, 208
posts	reinforcement272, 507, 509
roof trusses	stand-pipes379, 386
stand-pipes433, 434	tanks
steel mill buildings 433	tar and gravel roof32
steel head frame	timber bridges 292
structural steel 429	timber piles
tanks433, 434	tubular piers
towers	wrought-iron215, 297, 491
tubular piers	Spikes
Shops, Design of	Splices 61, 90, 91, 211, 363, 584
Shop details55, 396, 397	Splices, Indirect
Shop doors	Splices in plate girder220, 583, 596
Shop drawings138, 389, 400, 401, 402, 403 Shop drawings, Cost of	Splice plates .145, 216 Split bolt .95
Shop drawings, Cost of	Spool
Shop floors	Spouts
Shop plans 105 106 218	Spud
Shop plans	Stack collars
Shutters 59	Stack flashing
Sidewalks	Stand-pipes
Signal bridges	Allowable stresses in
Silicon	Design of
Sill	Erection of
Skeleton construction	Painting
Skew bridge	Shop cost of
Skips346, 348, 362	Standard angle connections 595
Skylight4, 8, 11, 38, 54, 60, 428, 440	Stark-weather
Slabs, Safe loads on	Starred angles
Slate, Weight of	Steamboat jack
Slate roofing	Steamboat ratchet
Slate roofing, Cost of	Steel bins
Sleeve nut	castings63, 66, 146, 213, 217, 487, 510
Sliding door43, 46, 48, 60	coal tipples
Sliding sash	column bases94
Slope wall 268	columns
Snap, Rivet	Corrosion of
Snatch block	cylinder piers
Spacing columns 98	details 571
girts 59	door
plate girders	erection
purlins	estimates
trusses	grain elevators
Spall	head frames339, 348, 352, 355, 359, 361
Spandrel sections96, 100, 268	highway bridges
Span, Length of 55	joist
Snow loads	Steel mill buildings, Allowable stresses in, 8, 57
Snow, Weight of	Cost of
Specifications for cast iron, 215, 297, 384, 488	Design of
coal tipples 361	Erection plan of
concrete floor. 32	Estimates for
erection	Examples
painting	Examples
Portland cement	Steel office buildings 69, 70, 81, 103
retaining walls	Erection
shop floors	Specifications for
stone	Weight of
steel 62, 105, 213, 272, 363, 383	Steel plate flooring
steel castings	Steel railway bridges
head frames	Specifications for
highway bridges	Weight of
- 01	

PAGE	PAGE
Steel reinforcement272, 507, 509	Stresses in, suspension bunker 309
Specifications for, 62, 105, 213, 272, 363,	timber floors
383	transverse bent
Steel stand-pipe	transverse bent
Steel, Strength of	trestle bent
Steel tank	wire rope
Steel tank	Stretcher
trestle	Stringers, 138, 177, 199, 212 216, 222, 277,
tubular piers255, 262, 263, 264, 265, 478	283, 284, 297, 434
Stiffeners, 58, 61, 65, 142, 145, 207, 212, 216,	Strut 593
221, 423	Strut, Single angle
Stiffeners in bins327, 333	Structural drawing
Stile38 to 43	Structural mechanics
Stirrups 547	Structural steel, Cost of
Stiff-leg derrick468 469, 470, 471, 478	Erection of
Stone, Amount of	Estimates of
Stone bins	Specifications for, 62, 105, 213, 497, 499,
Stone masonry	502, 505
Straight	Structural timber, Defects of 277
Strain	Structural timber, Definitions of 278
Strength of cast-iron	Stub abutment
chains	Sub-purlin
concrete	Sub-purini
masonry	Sub-sill
Portland cement	Sulphur62, 213, 488, 494, 497, 499, 502, 505
Fortiand cement	Summer wood
steel	Suspension bunker
steel castings496, 511	Sway bracing149, 223, 277, 296
timber 298	Swing door 43
wire rope34I, 443, 444	Swedge bolt95
wrought iron65, 491, 492, 496	
Stress	T Abutment245, 246
Stress diagram	Tackle449, 450
Stress due to weight	Talbot, A. N., Formula for waterway by, 250
Stresses	Tank details
Alternate 57	Erection of
Allowable, 8, 62, 80, 105, 115, 205, 209, 362,	Painting 387
379, 382, 387	Shop cost of433, 434
Diagram for	Taper plates431, 432
Impact	Tar and gravel roofing, 4, 29, 32, 60, 74, 440
Maximum 160	Tar paint
Stresses in beams529, 536 to 545	Tees417, 418
bins 299	Templet shop
bridge trusses558, 559 to 569	Tension
circular girder	Test of cast-iron
columns	Tests, Impact
deep bins	Tests of steel, 62, 63, 67, 105, 214, 272, 384,
elevated tanks	386, 497, 500, 503, 504, 507, 509
end-post	Tests of wrought iron491, 493
eye-bar 586	Theorem of three moments 543
flat plates	Thickness of walls
framed structures	Thickness of walls. 75 Three-hinged arch. 13, 14
grain bins	Through traveler472, 474, 475
hooks533	Tie plates
lacing bars	Tie rods
masonry	Ties, 117, 138, 177, 179, 180, 199, 202, 204,
office buildings	208, 277, 282, 283, 297, 593
pins	Tile roof4, 18, 31, 56, 428, 440
pipes	Timber
portal	Wimber, Allowable stresses in
riveted joint366, 370, 532	Timber ballasted floor
rollers 534	block floor
roof trusses	bridges, 277, 285, 286, 287, 290, 291, 293,
shallow bins	294, 295
stand-pipes	buggy
steel buildings 57	columns

PAGE	PAGE
Timber, Defects in	Waterproofing, Cost of
doors	Waterproofing floors, 35, 76, 112n, 178, 179, 180,
floors 8, 33, 34, 35, 126, 176, 177	181, 182
hook	retaining walls
Howe truss	Watertight joints 370
joist	Waterway for bridges
piles	Web plates 58, 65, 142, 145, 216, 220, 432
purlins	splice
Stresses in	stiffeners, 58, 61, 65, 145, 207, 212, 216, 221
Specifications for	Wedge
travelers	Welds
Weight of	ballast
Tin roofing	bars
Tobin bronze	beam bridge
Tongs	bracing 4
Tools for erection of steel, 67, 105, 463, 464,	building materials 69
465, 466, 467	cast iron
Top chord	coal tipples
Torsion in shafts	columns4
Towers	concrete
Tower struts	conductors
Translucent fabric 41	corrugated steel
Transverse bent, 3, 7, 9, 12, 14, 17, 18, 49, 54,	covering56
77, 556, 590	draw spans
Transverse bracing	electric railway bridges
Traveler468, 470, 472, 478	girts 4
Traveling crane	gutters
Trestle 150, 277, 282, 283, 284, 441, 563, 569	head frames 347, 348, 350
Trestle towers	highway bridges
Trestles, Weight of steel	hoisting engines
Trimmers 453	locomotives
True stress	louvres
Truss, see under bridge, roof, etc.	masonry
Tubular piers255, 435, 437	materials4, 69, 73, 146, 311
Turnbuckle	office buildings
Turned bolts	plate girders, 112, 150, 151, 152, 153, 155,
Two-hinged arch	158 purlins4, 56
U abutment245, 246	rails and fastenings139, 204, 208
Ultimate deformation	railway bridges, 150, 151, 152, 153, 154,
Ultimate stress	155, 156, 157, 158
Uniform loads	railway viaduct
Unit stress	ridge roll24
Universal mill plates 415, 420, 421, 422	roof arches
Upsets for bars	roof covering
Upset rods	roof trusses
•	roofing
Ventilators3, 12, 29, 43, 44, 59, 423, 425	sheathing56
Ventilator, Monitor3, 11	slate4, 30, 56
Ventilating buildings	skylight glass 4
Viaducts, Erection of	signal bridges
Voussoirs	skips
377 11 1 seed	snow4, 69
Wall anchors	steel
Wall plates	tiles 31
Walls, Details of	tile roofing 56
Mill building	timber204, 208
Wane	trestle towers
Warren truss	tin 4
Washers	wrought-iron69
Water jet	Weight, Stress due to 57, 142, 222, 589
Water, Weight of	Wheel guards
,	0 . ,,

PAGE	PAGE
Wheel loads, 153, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172	Wooden doors43, 45, 60
Whipple truss	floor
White lead	Work528, 535
Wind bracing97, 98, 100, 101, 102	Winch442, 443
loads, 5, 56, 71, 72, 103, 140, 205, 209, 379	Wrench
shake	Wrought-iron, 65, 69, 215, 297, 487, 489, 491,
stresses, 76, 78, 141, 209, 327, 379, 553, 556,	492
589	
Width of angles 411	X-brace
Windows, 8, 36, 37, 38, 60, 96, 329, 422, 427,	•
440, 481, 54b	Yellow pine
Wing abutment245, 246	Yield point
Wing wall	
netting	Zees417, 418, 514
rope341, 440, 443, 444, 480	Zinc
Wood sash	Zinc paint
	P 9-4

THE DESIGN OF STEEL MILL BUILDINGS

AND THE CALCULATION OF STRESSES IN FRAMED STRUCTURES

THIRD EDITION ENLARGED.

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.

Professor-in-Charge of Civil Engineering, University of Pennsylvania: Sometime Dean of College Engineering and Professor of Civil Engineering. University of Colorado: Consulting Engineer

Cloth, 61/x9 ins., pp. 562+xiii, 66 tables and 270 illustrations Price. \$5.00 net, postpaid.

TABLE OF CONTENTS

PART I.-Loads. Chapter I. Dead Loads. II. Snow Loads. III. Wind Loads. IV. Miscellaneous Loads.

PART II.-Stresses. Chapter V. Graphic Statics. VI. Stresses in Framed Structures. VII. Stresses in Simple Roof Trusses. VIII. Simple Beams. IX. Moving Loads on Beams. X. Stresses in Bridge Trusses. XI. Stresses in a Transverse Bent. XII. Stresses in Portals. XIII. Stresses in Three-Hinged Arch. XIV. Stresses in Two-Hinged Arch. XV. Combined and Eccentric Stresses. XVA. Graphic Methods for Calculating the Deflection of Beams.

PART III. Design of Mill Buildings. Chapter XVI. Framework. XVII. Corrugated Steel. XVIII. Roof Coverings. XIX. Side Walls and Masonry Walls. XX. Foundations, XXI. Floors, XXII. Windows and Skylights, XXIII. Ventilators, XXIV. Doors. XXV. Shop Drawing and Rules. XXVI. Paints and Painting. XXVII. Estimate of Weight and Cost.

PART IV .- Miscellaneous Structures.

APPENDIX I. Specifications for Steel Frame Mill Buildings.
APPENDIX II. Calculation of 22 Problems in Algebraic and Graphic Statics.

APPENDIX III. Structural Drawings, Estimates and Designs.

COMMENTS OF THE PRESS.

COMMENTS OF THE PRESS ON FIRST EDITION.

Professor Ketchum's work is the first book on the design of steel frame mill buildings; in thoroughness and clearness it does full justice to its subject. It is the result of both theoretical and practical acquaintance with the type of structure treated. It will prove of value as well to the designing engineer as to teachers and students.—Engineering News, Oct. 15, 1903.

It covers a broader field than its title indicates, as it is in reality a treatise on framed structures .- Railroad Gazette, Nov. 21, 1903.

The book is new and presents the best modern practice and should be found valuable to architects as well as engineers .- Architects and Builder's Magazine, Jan., 1904.

COMMENTS OF PRESS ON SECOND EDITION.

This is the second edition of a well known treatise, which has already met with well deserved appreciation among engineers.—Engineering and Mining Journal, Nov. 17, 1906.

The main impression we have derived from a survey of the contents of this book is

that it is of a sound practical character.—Mechanical Engineer (London).

The first edition of this book was issued in 1903. It was promptly received with favor by engineers because it supplied for the first time a systematic treatment of the details of American steel mill buildings. Valuable information was published regarding cost analysis of such structures that is not generally available to engineers, especially to the younger ones outside the estimating departments of bridge works.-Professor H. S. Jacoby in Engineering News.

DESIGN OF WALLS, BINS AND GRAIN ELEVATORS

THIRD EDITION, ENLARGED

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.

Professor-in-Charge of Civil Engineering, University of Pennsylvania; Sometime Dean of College of Engineering and Professor of Civil Engineering,
University of Colorado; Consulting Engineer

Cloth, 6½x9 ins., pp. 556+xix, 40 tables, 304 illustrations and 2 folding plates. Price, \$5.00 net, postpaid.

TABLE OF CONTENTS

PART I.—Design of Retaining Walls. Chapter I. Rankine's Theory. IA. Rankine's Theory Modified. II. Coulomb's Theory. III. Design of Masonry Retaining Walls. IV. Design of Reinforced Concrete Retaining Walls. IVA. Effect of Cohesion; Stresses in Bracing of Trenches; Stresses in Tunnels. V. Experiments on Retaining Walls. VI. Examples of Retaining Walls. VII. Methods of Construction and Cost of Retaining Walls.

PART II.—The Design of Coal Bins, Ore Bins, etc. Chapter VIII. Types of Coal Bins, Ore Bins, etc. IX. Stresses in Bins. X. Experiments on Pressure on Bin Walls. XI. The Design of Bins. XII. Examples and Details of Bins. XIII. Cost of Bins. XIV. Methods of Handling Materials.

PART III.—Design of Grain Bins and Elevators. Chapter XV. Types of Grain Elevators. XVI. Stresses in Grain Bins. XVII. Experiments on the Pressure of Grain in Deep Bins. XVIII. The Design of Grain Bins and Elevators. XIX. Examples of Grain Elevators. XX. Cost of Grain Bins and Elevators.

APPENDIX I.—Concrete, Plain and Reinforced. Chapter I. Concrete. II. Data for Design of Reinforced Concrete Structures. III. Formulas for Design of Reinforced Concrete. IV. Specifications for Reinforced Concrete Construction.

APPENDIX II. Definitions of Masonry Terms; Specifications for Stone Masonry.

APPENDIX III. Specifications for Material and Workmanship of Steel Structures.

COMMENTS OF THE PRESS.

Those familiar with Professor Ketchum's book on Steel Mill Buildings will welcome this pioneer treatise on bin design, which is characterized by the same thoroughness, clearness and logical and systematic arrangement displayed in the former volume. . . . A valuable feature of the book is to be found in the tables of costs of actual structures which are included wherever possible and analyzed so thoroughly as to be of the greatest assistance and value. For practical data and scientific and theoretical accuracy, Prof. Ketchum's book can be recommended to the student and practicing engineer alike.—*The Engineering Magazine*, November, 1907.

This book will be welcomed by the constructing engineer as the first authoritative and elaborate contribution to technical literature on the perplexing subject of the design and construction of coal and ore bins. . . . The portion of the book which relates to coal and ore bins is the largest, and this will make it appeal especially to mining and metalurgical engineers. They will find the admirable study of retaining walls to be scarcely less useful.

Professor Ketchum is well known as the author of "The Design of Steel Mill Buildings," which won high appreciation because of its eminently practical character. His present work is one of the same order, and will take a high place.—The Engineering and Mining Journal, June 8, 1907.

THE DESIGN OF HIGHWAY BRIDGES

AND THE CALCULATION OF STRESSES IN BRIDGE TRUSSES

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.

Dean of College of Engineering and Professor of Civil Engineering, University of Colorado; Consulting Engineer

Cloth, 6½x9 ins., pp. 544+xvi, 77 tables, 300 illustrations in the text and 8 folding plates. Price, \$4.00 net, postpaid.

TABLE OF CONTENTS

PART I.—Stresses in Steel Bridges. Chapter I. Types of Steel Bridges. II. Loads and Weights of Highway Bridges. III. Methods for the Calculation of Stresses in Framed Structures. IV. Stresses in Beams. V. Stresses in Highway Bridge Trusses. VII. Stresses in Railway Bridge Trusses. VII. Stresses in Lateral Systems. VIII. Stresses in Pins; Eccentric and Combined Stresses; Deflection of Trusses; Stresses in Rollers, and Camber. IX. The Solution of 24 Problems in the Calculation of Stresses in Bridge Trusses.

PART II.—The Design of Highway Bridges. Chapter X. Short Span Highway Bridges. XI. High Truss Steel Highway Bridges. XII. Plate Girder Bridges. XIII. Design of Truss Members, XIV. The Details of Highway Bridge Members. XV. The Design of Abutments and Piers. XVI. Stresses in Solid Masonry Arches. XVII. Design of Masonry Bridges and Culverts. XVIII. The Design of Timber and Combination Bridges. XIX. Erection, Estimates of Weight and Cost of Highway Bridges. XX. General Principles of Design of Highway Bridges.

PART III.—A Problem in Highway Bridge Details. Calculation of Weight and Cost of a 160-ft. Span Steel Pratt Highway Bridge. The Calculation of the Efficiencies of the Members of a 160-ft. Span Steel Pin-connected Highway Bridge.

APPENDIX I. General Specifications for Steel Highway Bridges.

COMMENTS OF THE PRESS.

Professor Ketchum has done the profession a real service in presenting to civil engineers and students this masterly and complete work on highway bridges. The author has a plain way of getting his ideas before the mind of the reader.—Ernest McCollough, in *The Contractor*, Dec. 1, 1908.

The reputation for practical book writing established by the author in "The Design of Steel Mill Buildings" and "The Design of Walls, Bins and Grain Elevators" is upheld in his most recent work. Altogether we do not know where bridge designers can find elsewhere so much good practical information as is given them in this book.—Engineering Contracting, Dec. 2, 1908.

Altogether the work embodies a fortunate blending of the rational with the thoroughly practical.—Journal of the Franklin Institute, Jan., 1909.

THE DESIGN OF MINE STRUCTURES

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.

Professor-in-Charge of Civil Engineering, University of Pennsylvania; Sometime Dean of College of Engineering and Professor of Civil Engineering,
University of Colorado; Consulting Engineer

Cloth, 6½x9 inches, pp. 460+xvi, 65 tables, 265 i lustrations in the text and 7 folding plates. Price \$5.00 net, postpaid.

TABLE OF CONTENTS

PART I.—Design of Head Works. Chapter I. Types of Head Works. II. Hoisting from Mines. III. Stresses in Simple Head Frames. IV. Stresses in Statically Indeterminate Structures. V. Stresses in Statically Indeterminate Head Frames. VI. The Design of Head Frames. VII. The Design of Coal Tipples.

PART II.—The Design of Mine Buildings. Chapter VIII. Stresses in Roof Trusses and Frame Structures. IX. The Design of Roof Trusses and Steel Frame Structures. X. The Design of Bins and Retaining Walls. XI. The Design of Coal Washers. XII. The Design of Coal Breakers. XIII. Miscellaneous Structures.

PART III.—Details of Design and Cost of Mine Structures. Chapter XIV. Details of the Design of Steel Structures. XV. Estimate of Weight and Cost of Mine Structures.

APPENDIX I.—Specifications for Steel Mine Structures. Part I. Steel Frame Buildings. Part II. Steel Head Frames and Coal Tipples, Washers and Breakers.

APPENDIX II.—Specifications for Timber Mine Structures.

APPENDIX III.—Reinforced Concrete Structures. Chapter I. Data for the Design of Reinforced Concrete Structures. III. Formulas for the Design of Reinforced Concrete Structures. III. Specifications for Plain and Reinforced Concrete Structures.

COMMENTS OF THE PRESS

It is a pleasure to record the publication of another book by Professor Ketchum. His books are always examples of what technical treatises should be, and this volume is no exception to the rule. This volume is a self-contained, concise and valuable textbook for the student or structural engineer who wishes to become familiar with the design of mine structures.—Canadian Engineer, July 4, 1912.

This is a new book in a field never previously covered in a satisfactory manner. The various subjects described and illustrated are based on good practical working plants and make them particularly valuable for reference. The author is to be highly commended for producing so useful a book.—Mining and Scientific Press, July 6, 1912.

So far as we are aware this book has no counterpart in recent technical literature.

-Mines and Minerals, July, 1912.

SURVEYING MANUAL

A MANUAL OF FIELD AND OFFICE METHODS FOR THE USE OF STUDENTS IN SURVEYING

FOURTH EDITION

By Professors WILLIAM D. PENCE AND MILO S. KETCHUM

Leather, $4\frac{1}{2}$ x7 ins., pp. 388 + xii, 10 plates and 140 illustrations in the text, and 130 pages of tables. Price, \$2.50 net.

TABLE OF CONTENTS

Chapter I. General Instructions. II. The Chain and Tape. III. The Compass. IV. The Level. V. The Transit. VI. Topographic Surveying. VII. Land Surveying. VIII. Railroad Surveying. IX. Errors of Surveying. X. Methods of Computing. XI. Freehand Lettering, Logarithmic and Trigonometric Tables.

COMMENTS OF THE PRESS.

The object of the authors as stated in the preface, is first "to provide a simple and comprehensive text, designed to anticipate, rather than replace, the usual elaborate treatise; second, to bring the student into immediate familiarity with approved surveying methods; third, to cultivate the student's skill in the rare art of keeping good field notes and making reliable calculations."

In this the authors have succeeded admirably. As a pocket guide to field practice for students, probably nothing better has been produced. Especially are the instructions in regard to keeping field notes to be commended. Many engineers have found that it has taken years to obtain this art, so generally neglected in the work of engineering schools.—Journal of Western Society of Engineers.

The scope of the book is large, and the various subjects included are treated not in a descriptive but in a critical manner. The book is well arranged and is written in a clear concise manner, which should make its study easy and pleasant.—Engineering News.

It gives the student just the information he needs. The book is a gratifying indication of the importance attached to the cultivation of habits of neatness and celerity in the authors' methods of instruction.—Engineering Record.

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

S&M

A 267

