Computer Networks

Lecture on

Computer Serial Links

Plan of This Lecture

- Common computer wired interfaces
- Transmission media
- Data representations on a transmission line
- Bit error correcting code
- Framing
- Point-to-Point Protocol

Common Computer Wired Interfaces

Ethernet	Thunderbolt	USB	FireWire (IEEE 1394)			
0.1 1 10 40 100 400 Gb/s	10 20 40 Gb/s	1.5 12 480 Mb/s 5 10 20 Gb/s	100 200 400 800 Mb/s 3.2 Gb/s			
100 m - CAT5 100 km - fiber	copper 3 m fiber 30, 100 m	5 m; can be 50 m - CAT5 10 km - fiber	4.5 m; can be 100 m also fiber and coax			

- Ethernet is dominant for any distance communication
- Any older interfaces can be find in data centers
- VPN over Internet is the cheapest solution to set a new link between remote devices

Modems over PSTN are still in use for:

dialup remote control
 PSTN – Public Switched Telephone Network

- Synchronous HDLC over telephone leased lines are still in use for:
 - backup communication
 HDLC High-Level Data Link Control
- xDSL technologies are widely used
 - o DSL modem can be built in the home router
 - or connected via USB or Ethernet
 DSL Digital subscriber line

• Optical cables replace copper cables – Ethrnet interfaces are dominant

Asynchronous commuted lines

Synchronous leased lines

Transmission Media

Cable media:

• Unshielded Twisted Pair (UTP) & Shielded Twisted Pair (STP)

Category

Bandwidth

3 16 MHz 5e 100 MHz

Coaxial Cable

o Wide standards range

Higher attenuation than twisted pairs

8.2 2000 MHz

• Optical Fibre

 \circ Single-mode fibre core 8-10 μ m

No degradation of signal Manufacturing and handling is difficult

Low dispersion Higher price

Well suited for long distance | Coupling light into the fibre is difficult

Used in MANs and WANs

 \circ Multi-mode fibre core 50-200 μ m

High attenuation Manufacturing and handling is easy

High dispersion Lower price

Well suited for short distance | LED transmitters can be used

Used in LANs and inside devices

Single-mode fiber

Multi-mode fiber

Why do fibre cables replace copper ones?

- Insensible for electromagnetic noises
- Junctions are humidity resistant
- Enable much higher transmission speed which is limited by electro-optic interfaces
- Enables much longer transmission distances without signal amplifiers
- Optical cables weight less than copper cables
- Installations are less expensive

Non-cable transmission media:

- Radio waves
- Visible light
- Infrared light
- Ultrasound waves

Data Representations on a Transmission Line

There is huge number of line codes

Prominent examples are:

- Asynchronous transmission schema
- Manchester code aka. Phase Encoding
- Miller code aka. Modified Frequency Modulation
- MLT-3 Multi-Level Transmit
- 4B5B
- 8b/10b
- 64b/66b

Expected features of line codes

- clock recovery
- special symbols e.g. start of frame
- DC-balance no direct current
 - non-galvanic coupling possible
 no risk of ground loop courent
- lower bandwidth

Asynchronous Transmission

The signal carries only data bits

'0' for 20 ms it is a brake signal

Synchronous Transmission

The signal carries clock and data bits

MLT-3 encoding

Multi-Level Transmit

• cycles sequentially through -1, 0, +1, 0

Data 1 0 1 0 0 1 1 1 0 0 1 MLT-3

4B5B encoding

- Used in FDDI, Fast Ethernet and others
- There are 16 special purpose codes
 - o e.g. start of the frame
- On optical fiber is NRZI encoded
- On copper is MLT-3 encoded

•
0
1
0
1
0
1
0
1

Γ	Data						
(Hex)	(Binary)	code					
8	1000	10010					
9	1001	10011					
A	1010	10110					
В	1011	10111					
С	1100	11010					
D	1101	11011					
Е	1110	11100					
F	1111	11101					

8b/10b encoding

• Used in DVI, HDMI, USB 3.0 and others

64b/66b encoding

• Used in 10, 100 Gigabit Ethernet and others

Cyclic Redundancy Check (CRC)

Bit error-detecting code

- is based on the remainder of a polynomial division
- has proved efficiency of detecting strength
- is simple to implement in binary hardware

A binary polynomial:

$$X=10011011 \rightarrow w(X)=x^7+x^4+x^3+x+1$$

Popular divisors

```
CRC-16 (BISYNC) x^{16} + x^{15} + x^2 + 1

SDLC (IBM, CCITT) x^{16} + x^{12} + x^5 + 1

CRC-16 reverse x^{16} + x^{14} + x + 1

SDLC reverse x^{16} + x^{11} + x^4 + 1

LRCC-16 x^{16} + 1

CRC-12 x^{12} + x^{11} + x^3 + x^2 + x + 1

LRCC-8 x^8 + 1

ETHERNET CRC x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
```

How it works:

```
frame s(x) = w(x).FCS - Frame Check Sequence

FCS = reminder of polynomials division 2^G * w(x) : g(X)
s(x) = 2^G * w(x) : g(X) + r(x)
CRC \text{ code}
e.g. G=3 w(x)= 0111

\frac{2^3 * w(x)}{0111000} : 1011 = 0110 \qquad \leftarrow \text{'0' if shift, '1' if subtraction modulo-2}
\frac{1011}{1010} \leftarrow \text{exor}
\frac{1011}{0010} \leftarrow \text{exor}
010 = r(x) \implies s(x) = 0111 \ 010
CRC
```

See: http://www.ee.unb.ca/cgi-bin/tervo/calc.pl

Mathematically proved efficiency

e.g. for CRC-16 and frame length \leq 32 767 bits

- All detected errors
 - o single bit
 - o two bit
 - o three bit
 - o all odd bits
- Probability of detection of serial bit errors
 - \circ 100% for ≤ 16 consecutive bits
 - o 99,997 % for 17 consecutive bits
 - \circ 99,998 % for 18 consecutive bits

Bit Error Correction Codes

There are many such correction codes

Hamming codes are widely used

- simple implementation
- can correct one-bit error

m – message length

r – number of parity bits

n – number of transmitted bits

ted bits n = m + r

Condition of one bit correction

 $m+r+1\leq 2^r$

m	16	32	64	128	
r	5	6	7	8	

How it works:

Bit posit	ion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Encoded of bits	data	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	d11	p16	d12	d13	d14	d15	
	p1	X		X		X		X		X		X		X		X		X		X		
Parity	p2		X	X			X	X			X	X			X	X			X	X		
bit	p4				X	X	X	X					X	X	X	X					X	
coverage	p8								X	X	X	X	X	X	X	X						
	p16																X	X	X	X	X	

P = 0 then no error, otherwise P is the number of bit to be corrected

Hamming codes with additional parity allow

- to detect and correct a single error
- and at the same time detect (but not correct) a double error

Framing – Protocols Using Asynchronous Links

• BISYNC (IBM) - based on ASCII characters

SYNC	SOH	Header	STX	Payload	ETX	CRC	SYNC	SOH	
------	-----	--------	-----	---------	-----	-----	------	-----	--

- Other methods:
 - o SOH and ESC injection
 - o min/max delays between frames and characters in a frame
- DDCMP (DEC) for binary data
 - o fixed length header carries payload counter

Protocols Using Synchronous Links

- SDLC (IBM)
 - o synchronization byte: 01111110
 - o after every 5 ones a zero bit is injected/removed
 - o silence byte: 11111111
 - o ring release byte: 11111110
- Token Ring (IBM)
 - o coding disturbance: J and K symbols in Manchester code
- HDLC High Level Data Link Control (ISO) for binary data
- HDLC subsets:
 - o LAP Link Access Procedure X.25
 - o LAPB Link Access Procedure Balanced, X.25
 - o LAPD Link Access Procedure, D-channel, ISDN
 - o LAPX LAPB extended, teletex
 - o LAPM ITU V.24 for modems
 - LLC LOGICAL Link Control IEEE 802

Serial Line IP (SLIP)

• RFC 1055 A Nonstandard for Transmission of IP Datagrams over Serial Lines

```
"SLIP END" = 192 (219 220) \rightarrow 192 "SLIP ESC" = 219 (219 221) \rightarrow 219
```

- o no means for control information
- o no bit error detection, correction, nor compression mechanisms
- o no means for dynamic IP address assignment
- o no authorization mechanisms
- o can carry bytes of any protocol (up to 1006 octets)
- CSLIP Compressed SLIP RFC 1144 IP header 20 B + TCP header 20 B \rightarrow 3-5 octets
 - o can handle up to 16 connections

Point-to-Point Protocol (PPP)

RFC 1171, RFC 1172,

Set of protocols organized in 3 layers

- Physical layer any ANSI standard
- Data link layer modified HDLC
- LCP Link Control Protocol

Reliable data transfer!

It can link routers!

Idle detect carrier

fail Establishing

success

Networking

PPP General Features

- Control of connection parameters
- Flow control
- Means for diagnostic mechanisms
- Means for authentication mechanisms
- Compression possibilities
- Max. datagram size = 1500 octets

PPP Support Many Authentication Mechanisms

- PAP Password Authentication Protocol
 - o name & password plain text transfer easy to sniff
 - o confirmation plain text transfer
- CHAP Challenge Handshake Authentication Protocol
 - o No password transfer!

- RADIUS Remote Authentication Dial-In User Service
- IPSec

PPP Network Control Protocols

They work at networking state of LCP

Different instances for divers 3rd layer protocols

i.e.: DECNET, IP, OSI NP, IPX, AppleTalk

IPCP

- It provides IP addresses for: host, network mask, DNS servers
- Support header compression

• ...

PPP Usage

Over asynchronous or synchronous serial links
 see: man pppd

• Over broadband connections:

o PPPoE Point-to-Point Protocol over Ethernet

o PPPoATM Point-to-Point Protocol over ATM

o PoS Packet over SONET/SDH

o PPTP Point-to-Point Tunneling Protocol

between two hosts via IP

Summary

- Common computer wired interfaces
- Transmission media
- Data representations on a transmission line
 - o asynchronous transmission
 - o synchronous transmission
- Cyclic redundancy check
- Hamming codes
- Framing on
 - o asynchronous links
 - o synchronous links
- Point-to-Point Protocol
 - o general features
 - o authentication mechanisms
 - o IP Network Control Protocol
 - o usage

Questions

- 1. What for we use modems over PSTN in today network applications?
- 2. What for we use synchronous links over leased telephone lines in today network applications?
- 3. What is the difference between multi-mode and single-mode optical fibres?
- 4. Why do fibre cables replace copper ones?
- 5. What are the expected features of line codes?
- 6. What is the principle of asynchronous serial communication?
- 7. What is the principle of Manchester encoding?
- 8. What is the principle of MLT-3 encoding?
- 9. What is it CRC and what for is it used?
- 10. How many parity bits are needed to correct one bit in a frame of 256-bit length?
- 11. How frame synchronization can be done in serial asynchronous links?
- 12. How frame synchronization can be done in serial synchronous links?
- 13. Give an example of the SLIP (Serial Line IP) protocol usage.
- 14. Give an example of PPP (Point-to-Point Protocol) usage.
- 15. Why PPP is better than SLIP?
- 16. How can be done authentication in PPP?