Credit Card Risk Classification: Logistic Regression vs. Ensemble Learning

Aleksandar Dimitrov October 12, 2023

Table of Contents:

- Introduction
- Ensemble Learning: A look at the Landscape
- Ensemble Learning: Definition and Types
- Ensemble Methods: Structure and Operating Principles
- Exploring Ensemble Methods
- Logistic Regression: Definition and Limitation
- Model Outcome and Risk Segmentation
- Application Models vs. Behavioral Models for Credit Risk
- Models Performance Evaluating: Key Measures
- Application
- Questions and Discussion

Introduction:

- In the context of our analysis, we have conducted an empirical comparison based on the following GitHub project:
 <u>Credit Card Risk Classification: Logistic Regression vs. Ensemble Learning</u>
- The empirical comparison is structured around the specific GitHub project, aiming to evaluate its performance and functionality
- The empirical comparison serves as a critical component of our evaluation process

Ensemble Learning: A look at the Landscape:

Multiple Perspectives

- Ensemble Methods utilize multiple models, not just a single one, to make predictions
- They lead to better generalization performance
- By aggregating predictions from diverse models, they can capture underlying patterns in the data more effectively

Increased Security and Reliability

Achieving greater security through assessment from various angles

Reduced Subjectivity

Avoiding biases associated with a single model

Robustness to Model Variability

 Even if some of the individual models have variations in their performance, the ensemble as a whole can still provide reliable predictions

Error Reduction (Improving Accuracy)

- Ensemble Methods reduce errors in predictions by combining multiple models
- Improvement in the accuracy of predictions
- Diversity of models compensates for common errors in individual models
- Ensemble Methods can reduce the impact of noise or outliers in the data, leading to more stable and reliable predictions

Boosting in Machine Learning

Ensemble Learning:

Definition and Types

Decision Trees

Root Node Leaf Node Leaf Node Leaf Node Leaf Node

- Hierarchical Questioning: Forms a tree structure with input-related questions
- Classification Focus: Primarily for classifying data
- Visual Clarity: Easy-to-visualize structure
- Interactive Decision Path: Users answer questions for classification

Random Forest

- Decision Tree Ensemble: It's a combination of multiple decision trees
- Result Combining: The final result is based on averaging or majority voting from the trees
- Bootstrap Aggregating: It creates diverse datasets and assigns them to trees
- Accuracy Enhancement: Its aim is to improve accuracy and mitigate overfitting

XGBoost

- Sparse Data Handling: XGBoost excels with sparse data
- Weighted Trees: It employs weighted trees for better predictions
- Scalable: Efficient with large datasets
- Auto Feature Selection: Automatically selects essential features

Decision Trees:

Structure and Operating Principles

Decision Trees Model

Gini Impurity =
$$\sum p_i(1-p_i) = 1 - \sum (p_i)$$

$Entropy = \sum p_i \log_2(p_i)$

Structure and Operating Principles

Construction:

- Build Node by Node
- Nodes selected for the best data split

Gini Impurity:

- Measures misclassification in a node
- Lower Gini impurity indicates better split

Information Gain (Entropy):

- Measures information in child node
- DT aim to maximize information gain

Pruning to prevent Overfitting:

- DT tend to overfit
- Pruning reduces complexity by removing branches

Random Forest:

Structure and Operating Principles

Random Forest Model

Structure and Operating Principles

Collective wisdom:

- Ensemble of multiple decision trees
- Combining different learning algorithms

Majority Voting:

- With multiple DT, we get multiple answers
- Selecting the most common outcome

Bootstrapping:

- Randomly sampling the original dataset with replacement
- Feature subsets are chosen randomly for each tree

Random Forest:

- Bootstrap Aggregated decision trees
- Bootstrapping is type of regularization

XGBoost:

Structure and Operating Principles

XGBoost Model

Structure and Operating Principles

Boosting:

- Predictive accuracy by combining different models
- Model optimizing by trial and error

Gradient Boosting:

- Gradient boosting algorithm implementation
- Employing DT with limited depth as weak learners

Iterative Model Construction:

- XGBoost is build iteratively
- Each iteration improving upon the errors of the previous ones

Objective Function and Regularization (for Regression only):

- Objective function defining
- L1(Lasso) and L2(Ridge) incorporating

Exploring Ensemble Methods:

Decision Trees

Exploring Ensemble Methods:

Random Forest

Applications and Use Cases Prune the individual trees Regression Used **Avoid** Classification For Overfitting? Numerical Categorical Performs well with large dataset 58 Input **Pros** Lots of hyperparameters to control Most recent characteristics Relatively better results than decision trees **Small Dataset Handles** Large Dataset Less interpretable than decision trees 23 Sparse data Doesn't solve regression problems well Cons **Hight Dimensions** Outperformed by gradient-boosted trees No preprocessing required **Preprocess** Credit card fraud detection **Application** Credit card application and behave models Medical diagnoses Algorithm Speed **Training: Fast Testing: Fast**

Exploring Ensemble Methods:

XGBoost

Logistic Regression:

Definition and Limitation

Logistic Model

The logistic regression predicts the probability of an event occurring

Logistic regression model

$$\log (\text{odds}) = \beta_0 + \beta_1 x + \cdots + \beta_k x_k$$

Logistic Regression Constraints

- Assumes Linearity: Logistic regression assumes a linear relationship, which can't capture complex non-linear patterns
- Binary Classification Bias: May need modifications for multi-class problems
- Overfitting Risk: Susceptible to overfitting
- Independence Assumption: Assumes observations are independent, which may not hold in time series or spatial data
- Outlier Sensitivity: Outliers can strongly influence results
- Handling Missing Data: Logistic regression struggles with missing data and imputation can introduce bias

Model Outcome and Risk Segmentation:

Application Models vs. Behavioral Models for Credit Risk:

ML models leverage data and automation to improve decision-making and efficiency in various contexts

Application Models

- **Assessing New Customers**
- Using External Sources: Credit Bureaus, Open Banking
- **Application Form**

- **Assessing Existing Customers**
- **Behavioral Analysis**
- **Payment History Evaluation**
- Portfolio History

Comprehensive Credit Assessment with Application and Behavioral Models:

For Individuals

Models Performance Evaluation:

KEY Measures

What numbers tell us...

Confusion Matrix and Classification Report

CM is **critical tool** in model evaluation. CR includes metrics like precision, recall, F1-score, and support for each class

AUC (Area under the Curve)

Intuitive Interpretation: A higher AUC means better client classification by the model

Gini Coefficient

Gini is calculated as
Gini = 2*AUC - 1

It's Working...

For Credit Risk models, higher Gini values are preferred

75%+

For Application models
Gini > 50% implies effective
model, correctly identifies
~75% clients

1

For Application models
Gini > 50% is desirable

30%

For Behave models
Gini > 60% is desirable, for
even higher accuracy

Application:

Performance Measure

Description

$$Accuracy = (TN + TP) / TN + FN + FP + TP$$

The ratio between the number of all correctly predicted samples and the number of all samples

$$Precision = TP / TP + FP$$

The ratio between the number of true positives and the number of all samples classified as positive

$$Recall = TP / TP + FN$$

The ratio between the number of true positives and the number of all samples whose true class is the positive one

$$F_1$$
Score = 2 / (1/precision + 1/recall)

The harmonic mean of precision and recall

THANK YOU!