DECISION TREE

DECISION TREE

- Classification and Regression Tree (CART)

You are building a recommendation system and you are suppose to provide recommendations of suggesting App based on Gender and occupation

Which one you would suggest for the following people?

Recommendation System - 1

Gender	Occupation	Арр
F	Study	•
F	Work	<u>Q</u>
М	Work	
F	Work	S
М	Study	•
М	Study	-

Gender	Occupation	Арр
F	Study	-
F	Work	<u>Q</u>
М	Work	1
F	Work	<u>Q</u>
М	Study	.
М	Study	•

Quiz: Woman, works at an office.
What app do we recommend?

O Pokémon Go

WhatsApp

Snapchat

Recommendation System - 2

Gender	Occupation	Арр
F	Study	-
F	Work	<u>Q</u>
М	Work	
F	Work	<u>Q</u>
М	Study	-
М	Study	-

Quiz: Girl, goes to high school.
What app do we recommend?

O Pokémon Go
O WhatsApp
O Snapchat

Gender	Occupation	Арр
F	Study	•
F	Work	<u></u>
М	Work	
F	Work	<u>Q</u>
М	Study	•
М	Study	●

Quiz: Girl, goes to high school. What app do we recommend?

🔘 🚺 WhatsApp

O 🧘 Snapchat

That was pretty Easy right ...

That was pretty Easy right ...

But what if we had to choose between Gender and Occupation to suggest an App

Way Machine approaches

Quiz: Between Gender and Occupation, which one seems more decisive for predicting what app will the users download?

- Gender
- Occupation

Gender	Occupation	Арр
F	Study	•
F	Work	<u>Q</u>
М	Work	
F	Work	<u>Q</u>
М	Study	<u></u>
М	Study	<u></u>

Gender	Occupation	Арр
F	Study	<u>-</u>
F	Work	<u>Q</u>
М	Work	
F	Work	<u>Q</u>
М	Study	.
М	Study	<u></u>

Gender	Occupation	Арр
F	Study	•
F	Work	<u>Q</u>
М	Work	
F	Work	<u>Q</u>
М	Study	-
М	Study	-

Gender	Occupation	Арр
F	Study	<u> </u>
F	Work	<u>©</u>
М	Work	
F	Work	<u>S</u>
М	Study	<u>-</u>
М	Study	•

Quiz: Between Gender and Occupation, which one seems more decisive for predicting what app will the users download?

Gender

Occupation

Gender	Occupation	Арр
F	Study	.
F	Work	<u>Q</u>
М	Work	
F	Work	<u>S</u>
М	Study	
М	Study	-

Terminologies

Root Node
Decision node
Leaves

Supervised learning algorithm

Root Node -

Decision node -

Leaves -

Supervised learning algorithm

Root Node - Outlook

Decision node - Humidity/Wind

Leaves - Yes/No

Structure of a Tree

How do we find the Root node?

HOW TO FIND ROOT (2 WAYS)

- Information gain
- Gini index

Understand Entropy you will get to understand Information Gain

Entropy or Randomness

- The measure of uncertainty

Entropy - The measure of uncertainty

Entropy - The measure of uncertainty

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

Information Gain & **Entropy**

Information Gain -> Information theory -> Entropy
Entropy = Randomness or Uncertainty of a random variable.

There are **2 steps for calculating information gain** for each attribute:

- Calculate entropy of Target.
- Calculate the Entropy for every attribute.

Information gain = Entropy of target - Entropy of attribute

Case Study – Golf Play Dataset

Predictors

Target

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Entropy of Target

Frequency Table – 4 Attributes

		Play Golf	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3

	Play Golf		Golf
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1

		Play Golf	
		Yes	No
Humiditu	High	3	4
Humidity Normal		6	1

		Play Golf	
		Yes	No
Minds	False	6	2
Windy	True	3	3

Entropy - Outlook

		Play Golf		
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

E(PlayGolf, Outlook) = **P**(Sunny)***E**(3,2) + **P**(Overcast)***E**(4,0) + **P**(Rainy)***E**(2,3)
=
$$(5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$$

= 0.693

Activate Go to PC

Information Gain - Outlook

G(PlayGolf, Outlook) = **E**(PlayGolf) – **E**(PlayGolf, Outlook)

$$= 0.940 - 0.693 = 0.247$$

Information Gain - All Attributes

*		Play Golf	
		Yes	No
Sunny		3	2
Outlook	Overcast	4	0
	Rainy		3
Gain = 0.247			

		Play	Golf
		Yes	No
Hot		2	2
Temp.	Mild	4	2
Cool		3	1
Gain = 0.029			

		Play	Play Golf	
		Yes	No	
Umaiditu	High	3	4	
Humidity Normal		6	1	
Gain = 0.152				

		Play	Golf
		Yes	No
Mindu	False	6	2
Windy True		3	3
Gain = 0.048			

Construction of Tree

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Sunny	Mild	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Hot	High	FALSE	Yes
Overcast	Cool	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes

Overcast

Temp.	Humidity	Windy	Play Golf
Hot	High	FALSE	Yes
Cool	Normal	TRUE	Yes
Mild	High	TRUE	Yes
Hot	Normal	FALSE	Yes

Sunny

Temp	Humidity	Windy	Play Golf
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

Outlook	Temp.	Humidity	Windy	Play Golf
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Sunny	Mild	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Hot	High	FALSE	Yes
Overcast	Cool	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes

Sunny

Temp.	Humidity	Windy	Play Golf
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

		Play Golf	
		Yes	No
Toma	Mild	2	1
Temp.	Cool	1	1
Gain = 0.02			

		Play Golf	
		Yes	No
11	High	1	1
Humidity	Normal	2	1
Gain = 0.02			

*		Play Golf	
		Yes	No
Marin also	False	3	0
Windy	True	0	2
Gain = 0.97			

Construction of Tree

Temp	Humidity	Windy	Play Golf
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Mild	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	High	TRUE	No

Rainy

Temp.	Humidity	Windy	Play Golf
Hot	High	FALSE	No
Hot	High	TRUE	No
Mild	High	FALSE	No
Cool	Normal	FALSE	Yes
Mild	Normal	TRUE	Yes

		Play Golf	
		Yes	No
	Hot	0	2
Temp.	Mild	1	1
	Cool	1	0
Gain = 0.57			

*		Play Golf	
		Yes	No
U i alita	High	0	3
Humidity	Normal	2	0
Gain = 0.97			

		Play Golf	
		Yes	No
Martin also	False	1	2
Windy	True	1	1
Gain = 0.02			

Final Tree Structure

Predict the Play – D15?

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Cool	Normal	FALSE	

Predict the Play – D15?

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Cool	Normal	FALSE	Yes

Decision Rules - Traditional approach

R₁: **IF** (Outlook=Sunny) AND (Windy=FALSE) **THEN** Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Finding Root using Gini Index

Gini Index =
$$1 - \sum_{j} p_j^2$$

- 1. The steps to build the tree using **Gini Index** approach is same as the Entropy with the only change in the Formula.
- In Gini the attribute with the lowest Gini score is used as the ROOT
- Gini Index is the default method of building the Decision Tree

Continuous Data

Quiz: Between grades and test, which one determines student acceptance better?

Or

Quiz: Between a horizontal and a vertical line, which one would cut the data better?

- Horizontal
- O Vertical

Horizontal vs Vertical

Construction of a Tree

Decision Tree – Manual Structure

Problem with Trees

Problem with Trees

How will a tree structure look if there are N columns

Problem with Trees

How will a tree structure look if there are N columns

Problem with Trees - Overfitting

How will a tree structure look if there are 30 columns

When to stop splitting?

Pruning -

To Avoid Overfitting

Pruning

- 1. Pre-pruning
- 2. Post-pruning

Ensemble

Ensemble

- 1. Bagging
- 2. Boosting

Ensemble

Machine learning paradigm which combine weak learners to become a strong learner

Model1	Model2	Model3	VotingPrediction
1	0	1	1

Random Forest (Most used algorithm)

Random Forest (Most used algorithm)

- Bagging Technique (Bootstrap aggregating - Bagging)

Why Random Forest?

No overfitting

Use of multiple trees reduce the risk of overfitting

Training time is less

High accuracy

Runs efficiently on large database

For large data, it produces highly accurate predictions

Estimates missing data

Random Forest can maintain accuracy when a large proportion of data is missing

HOW THE RANDOM FOREST ALGORITHM WORKS IN MACHINE LEARNING

- Supervised learning algorithm
- Regression and classification problems

Bagging

Random Forest pseudocode

Randomly select "k" features from total "m" features.
 Where k << m

For classification a good default is: k = sqrt(m)For regression a good default is: k = m/3

- Among the "k" features, calculate the node "d".
- Split the node into daughter nodes.
- Repeat 1 to 3 steps
- Build forest by repeating steps 1 to 4 for "n" number times to create "n" number of trees.

Key Points

- Majority voting.
- Higher the number of trees in the forest = High accuracy.
- When we have more trees in the forest, random forest classifier won't overfit the model.
- For each bootstrap sample taken from the training data, there will be samples left behind that were not included.
 These samples are called Out-Of-Bag samples or OOB.
- The performance of each model on its left out samples when averaged can provide an estimated accuracy of the bagged models. This estimated performance is often called the OOB estimate of performance.

Random Forest - Skeleton

Boosting

AdaBoost (Adaptive Boosting)

Apply pattern 2 on the Input Data from pattern 1

Input Data

Apply pattern 3 on the Input Data from pattern 2

Input Data

AdaBoost - Pattern 1

Weights after applying pattern 1

Correct: 7 Incorrect: 3

Correct: 7 Incorrect: 7

AdaBoost - Pattern 2

Weights after applying pattern 2

Correct: 11 Incorrect: 3

Correct: 11 Incorrect: 11

AdaBoost - Pattern 3

Weights after applying pattern 3

Correct: 19 Incorrect: 3

AdaBoost - 3 Models

Weightage of a Model

```
weight = \ln\left(\frac{\#correct}{\#incorrect}\right)
```

Weight of Model 1

Weight of Model 2

Weight of Model 3

Weight of 3 Models

Assinging weights to 2 categories

+0.84	-0.84	-0.84
+0.84	-0.84	-0.84

+0.84	-0.84	-0.84
+1.3	+1.3	+1.3
+0.84	-0.84	-0.84
-1.3	-1.3	-1.3

+0.84	-0.84	-0.84
+1.3	+1.3	+1.3
+1.84	+1.84	-1.84
+0.84	-0.84	-0.84
-1.3	-1.3	-1.3
+1.84	+1.84	-1.84

3.98	2.3	-1.38
1.38	-0.3	-3.98

3.98	2.3	-1.38
1.38	-0.3	-3.98

3.98	2.3	-1.38
1.38	-0.3	-3.98

Final Model

