TD 3 - Dualité

Exercice 1. Soit $E = \mathbb{R}^3$,

- 1. Soit $f \in E^*$ telle que f(4,2,0) = 2, f(1,2,-3) = -7 et f(0,2,5) = -1, déterminer f(x,y,z).
- 2. Montrer que le formes linéaires $f_1(x, y, z) = 2x + 4y + 3z$, $f_2(x, y, z) = y + z$, $f_1(x, y, z) = 2x + 2y z$ forment une base de E^* , quelle est sa base antéduale?

Exercice 2. Soit E un k-espace vectoriel de dimension finie et $\alpha, \beta \in E^* \setminus \{0\}$, montrer que Ker $\alpha = \text{Ker } \beta$ si et seulement si il existe $\lambda \in \mathbb{k} \setminus \{0\}$ tel que $\beta = \lambda \alpha$.

Exercice 3. Soit \mathbbm{k} un corps de caractéristique 0, et $\alpha \in \mathbbm{k}$. Montrer que la famille $1, (X - \alpha), (X - \alpha)^2, \cdots, (X - \alpha)^n$ forme une base de $E_n := \mathbbm{k}_n[X]$. Déterminer sa base duale.

Exercice 4. Soient E un \mathbb{k} -espace vectoriel, $\varphi_1, \dots, \varphi_r$ des formes linéaires sur E, et $\varphi : E \to \mathbb{k}^p$ définie par $\varphi(x) = (\varphi_1(x), \dots, \varphi_p(x))$. Montrer que φ est surjective si et seulement si les formes linéaires $\varphi_1, \dots, \varphi_p$ sont linéairement indépendantes.

Exercice 5. On considère $E := \mathcal{M}_n(\mathbb{k})$ l'espace des matrices carrées de taille n sur un corps \mathbb{k} .

- 1. Montrer que l'application $f: E \times E \to \mathbb{k}$ envoyant (A, B) sur $\operatorname{tr}(AB)$ est une forme bilinéaire symétrique.
- 2. Montrer que f est non dégénérée.
- 3. En déduire que toute forme linéaire sur E s'écrit sous la forme $M \mapsto \operatorname{tr}(AM)$ pour une certaine matrice A.

Exercice 6. Soient M, N deux R-modules et $\varphi : M \to N$ un morphisme de modules. On définit une application (dite $transpos\acute{e}e$ de f):

$$\begin{array}{cccc} {}^tf: & N^* & \longrightarrow & M^* \\ & \varphi & \longmapsto & {}^tf(\varphi) = \varphi \circ f \end{array}$$

- 1. Montrer que tf est bien une application de N^* vers M^* , et qu'il s'agit d'un morphisme de modules.
- 2. Vérifier les relations suivantes :
 - a) t(f+g) = tf + tg.
 - b) t(rf) = r t f pour $r \in \mathbb{R}$.
 - c) ${}^{t}(f \circ g) = {}^{t}g \circ {}^{t}f$.
 - d) Si f est bijective (i.e f est un isomorphisme), tf l'est également et on a ${}^t(f^{-1})=({}^tf)^{-1}$.
- 3. On suppose que $R = \mathbb{k}$ est un corps, et que E, F sont des espaces vectoriels de dimensions finies, munis de bases respectives $\{e_i\}_{i \in [\![1,n]\!]}$ et $\{\varepsilon_j\}_{j \in [\![1,m]\!]}$. On note $\{\varphi_i\}$ et $\{\psi_j\}$ leurs bases duales. On note $A = M(f)_{e_i,\varepsilon_j}$, montrer que

$$M({}^tf)_{\psi_i,\varphi_i} = {}^tA$$

4. En déduire les relations sur les matrices :

$${}^{t}(AB) = {}^{t}B^{t}A \text{ et } {}^{t}(A^{-1}) = ({}^{t}A)^{-1}$$

† Orthogonalité au sens des formes linéaires

Exercice 7. Soit E un k-espace vectoriel, on rappelle que pour $A \subset E$ et $F \subset E^*$, on note

$$A^{\perp} = \{ \varphi \in E^* \mid \forall x \in A, \varphi(x) = 0 \} \text{ et } F^o = \{ x \in E \mid \forall \varphi \in F, \varphi(x) = 0 \}$$

- 1. Montrer que A^{\perp} (resp. F^{o}) est un sous-espace vectoriel de E^{*} (resp. de E).
- 2. Montrer les assertions suivantes :
 - a) Si $A \subset A' \subset E$, alors $A'^{\perp} \subset A^{\perp}$.
 - b) Si $B \subset B' \subset E^*$, alors $B'^o \subset B^o$.
 - c) Si $A \subset E$, alors $A^{\perp} = (\operatorname{Vect} A)^{\perp}$.
 - d) Si $B \subset E^*$, alors $B^o = (\text{Vect } B)^o$.
- 3. On suppose que E est de dimension finie, et que $A \leq E$ est un sous-espace vectoriel de E, montrer que $\dim A + \dim A^{\perp} = \dim E$ et que $A^{\perp o} = A$.

(Remarque, on a de même si E est de dimension finie, et que $B \leqslant E^*$ est un sous-espace vectoriel de E^* , dim $B + \dim B^o = \dim E^*$ et $B^{o\perp} = B$).

Exercice 8. Soient E et F deux k-espaces vectoriels (pas forcément de dimension finie) et $f: E \to F$ une application linéaire.

1. Montrer que

$$(\operatorname{Im} f)^{\perp} = \operatorname{Ker}(^t f)$$

- 2. En déduire que si E et F sont de dimension finie, f et tf ont même rang et que par conséquent, pour $A \in \mathcal{M}_{p,n}(\mathbb{k})$, A a le même rang que sa transposée.
- 3. Contre exemple en dimension infinie : Considérons $\mathbb{k}[X]$, et $\partial : \mathbb{k}[X] \to \mathbb{k}[X]$ envoyant P(X) sur le polynôme dérivé P'(X).
 - a) Soit $\varphi \in \mathbb{k}[X]^*$ une forme linéaire, montrer que Ker $^t\partial(\varphi)$ contient les polynômes constants.
 - b) En déduire que ∂ est surjective et pas ${}^t\partial$.

† Dualité et dimension

Exercice 9. Soit $E = \mathbb{k}^{\mathbb{N}}$ l'espace vectoriel des suites à valeurs dans \mathbb{k} , et $F = \mathbb{k}^{(\mathbb{N})}$ le sous espace formé des suites nulles à partir d'un certain rang.

- 1. On considère, pour $i \in \mathbb{N}$, la suite e^i définie par $(e^i)_j = \delta_{i,j}$ (le symbole de Kronecker). Montrer que la famille $\{e^i\}_{i\in\mathbb{N}}$ forme une base de F, pourquoi ne forme-t-elle pas une base de E?
- 2. Montrer que F^* est isomorphe à E.

Exercice 10. (Dimension du dual)

Soit E un \mathbb{K} -espace vectoriel, muni d'une base $\{b_i\}_{i\in I}$ (une telle base existe toujours grâce à l'axiome du choix, quitte à avoir $|I| = \infty$ si E est de dimension infinie). Par définition, tout élément x de E s'écrit de manière unique sous la forme

$$x = \sum_{i \in I} \lambda_i b_i$$

où les λ_i sont nuls sauf pour $i \in I' \subset I$ un sous-ensemble fini.

- 1. Montrer que l'application b_k^* envoyant x sur λ_k est une forme linéaire.
- 2. Montrer que les $\{b_i^*\}_{i\in I}$ forment une famille libre de E^* .
- 3. Si E est de dimension finie, en déduire que les $\{b_i^*\}_{i\in I}$ forment une base de E^*

4. Si E est de dimension infinie, montrer que la somme infinie $\varphi := \sum_{i \in I} b_i^*$ est encore une forme linéaire bien définie sur E. En déduire que dim $E^* > \dim E$, et que ces deux espaces ne peuvent pas être isomorphes (indication : montrer que φ n'appartient pas à $\operatorname{Vect}(\{b_i\}_{i \in I})$).

Exercice 11. (Bidual)

Soit E un k-espace vectoriel

1. Pour $x \in E$, on définit $ev_x : E^* \to \mathbb{k}$ par

$$\forall \varphi \in E^*, \ ev_x(\varphi) := \varphi(x)$$

 $(ev_x$ est l'évaluation en x des formes linéaires). Montrer que ev_x est une forme linéaire sur E^* (donc un élément du bidual E^{**}).

- 2. Montrer que l'application $ev: E \to E^{**}$ envoyant x sur ev_x est une application linéaire.
- 3. Montrer que ev est injective.
- 4. Si E est de dimension finie, en déduire que ev est un isomorphisme de E vers son bidual.
- 5. Si E est de dimension infinie, montrer que ev n'est jamais surjective (on pourra utilser la conclusion de l'exercice 10).

(Bonus : Si E et F sont de dimension finie, montrer que les isomorphisme $E \simeq E^{**}$ et $F \simeq F^{**}$ permettent d'identifier f à $^t(^tf)$ pour une application linéaire $f:E \to F$)

† Une application

Exercice 12. (Algèbre linéaire à la rescousse de l'analyse numérique!)

Considérons l'espace $E := \mathcal{C}^0([-1,1],\mathbb{R})$ des fonctions continues sur [-1,1], il s'agit d'un \mathbb{R} -espace vectoriel, de dimension infinine, dont il est inenvisageable d'exhiber une base.

On considère la forme linéaire ϕ définie sur E par

$$\phi(f) = \int_{-1}^{1} f(t)dt$$

Dans un monde parfait, on pourrait exprimer cette forme linéaire sur une base convenable de E^* , mais nous ne sommes pas dans un monde parfait.

Restreignons notre étude au sous espace F de E formé des polynômes de degré au plus 2 (que l'on voit comme des fonctions continues sur [-1,1]).

1. Montrer que les formes linéaires

$$\begin{cases} \varphi_{-1} : P \mapsto P(-1) \\ \varphi_0 : P \mapsto P(0) \\ \varphi_1 : P \mapsto P(1) \end{cases}$$

Forment une base de F^* (indication : on pourra penser à l'interpolation de Lagrange). En calculer la base antéduale P_{-1}, P_0, P_1 .

2. Calculer $\phi(P_{-1}), \phi(P_0), \phi(P_1)$ et en déduire la formule suivante :

$$\forall P \in F, \int_{-1}^{1} P(t)dt = \frac{1}{3} \left(P(-1) + 4P(0) + P(1) \right)$$

Autrement dit, $\phi = \frac{1}{3}(\varphi_{-1} + 4\varphi_0 + \varphi_1)$ sur F, cette formule peut-être ensuite étendue en une forme linéaire sur E, donc on espère qu'elle est "assez proche" de la forme ϕ (vu qu'elles coïncident sur le sous-espace F).