Incorporating treatment-outcome conditional mutual-information in estimating individual treatment effect

Ron Teichner

097400 - Introduction to causal inference Final project

 Estimating ITE based on observational data (assumptions and notations as in [Shalit et al., 2017])

- Estimating ITE based on observational data (assumptions and notations as in [Shalit et al., 2017])
- Learn a model $\hat{y} \sim p_{\theta}(\hat{y} \mid t, x)$

- Estimating ITE based on observational data (assumptions and notations as in [Shalit et al., 2017])
- Learn a model $\hat{y} \sim p_{\theta}(\hat{y} \mid t, x)$
- Prediction errors might arise in regions where $\{x, t\}$ is sparse

- Estimating ITE based on observational data (assumptions and notations as in [Shalit et al., 2017])
- Learn a model $\hat{y} \sim p_{\theta}(\hat{y} \mid t, x)$
- Prediction errors might arise in regions where $\{x, t\}$ is sparse
- Resulting in ITE estimating errors

- Estimating ITE based on observational data (assumptions and notations as in [Shalit et al., 2017])
- Learn a model $\hat{y} \sim p_{\theta}(\hat{y} \mid t, x)$
- Prediction errors might arise in regions where $\{x, t\}$ is sparse
- Resulting in ITE estimating errors
- [Shalit et al., 2017] introduce a representation function $\Phi: X \to R$ and a balancing-regulation loss

- Estimating ITE based on observational data (assumptions and notations as in [Shalit et al., 2017])
- Learn a model $\hat{y} \sim p_{\theta}(\hat{y} \mid t, x)$
- Prediction errors might arise in regions where $\{x, t\}$ is sparse
- Resulting in ITE estimating errors
- [Shalit et al., 2017] introduce a representation function
 Φ : X → R and a balancing-regulation loss
- We suggest the conditional mutual-information $I(\hat{Y}, T \mid X)$ as an alternative regulation

Loss function

The loss function incorporates negative log-likelihood and mutual-information:

$$L = L_o(\hat{y}, y) - \gamma I(\hat{y}; t \mid X) \tag{1}$$

The mutual-information:

$$I(\hat{y}; t \mid X) = H(\hat{y} \mid X) - H(\hat{y} \mid t, X)$$

$$= \mathsf{E}_{x, t \sim p_{data}(x, t)} \, \mathsf{E}_{\hat{y} \sim p_{\theta}(\hat{y} \mid x, t)} \, [\log p_{\theta}(\hat{y} \mid t, x)]$$

$$- \, \mathsf{E}_{x \sim p_{data}(x)} \, \mathsf{E}_{t \sim p_{data}(t)} \, \mathsf{E}_{\hat{y} \sim p_{\theta}(\hat{y} \mid x, t)} \, \left[\log \sum_{t} p_{\theta}(\hat{y} \mid x, t) p(t) \right]$$

$$(2)$$

• Prediction error in *y*:

- Prediction error in *y*:
 - The model ignores t: The Loss L_o is amplified by the low value of $I(\hat{y}; t \mid X)$

- Prediction error in y:
 - The model ignores t: The Loss L_o is amplified by the low value of I(ŷ; t | X)
 - $I(\hat{y}; t \mid X)$ has a high value that masks a high value of L_o

- Prediction error in y:
 - The model ignores t: The Loss L_o is amplified by the low value of I(ŷ; t | X)
 - $I(\hat{y}; t \mid X)$ has a high value that masks a high value of L_o
- Correct prediction of y:
 - Although the Neural-Net correctly predicts y it is motivated in increasing I which will result in wrong-prediction. To avoid this we need L_o to rise quicker than $I(\hat{y}; t \mid X)$.

Preliminary results

Consider the next example:

ldx	Х	t	у	nRepetitions
1	0	1	1	3
2	1	1	0	3
3	0	0	0	3
4	1	0	1	1

Preliminary results

Consider the next example:

ldx	Х	t	у	nRepetitions
1	0	1	1	3
2	1	1	0	3
3	0	0	0	3
4	1	0	1	1

We set $p_{\theta}(\hat{y} \mid t, x)$ as a Bernoulli distribution and we choose a model with parameters $\{a, b_x\}$:

$$p_{\theta}(\hat{y} \mid t, x) = \theta \hat{y} + (1 - \theta)(1 - \hat{y})$$

$$\theta = \sigma(a + \text{ReLU}(f_{b_x}(x, t)) + \text{ReLU}(g_{b_x}(x, t)))$$
(3)

Preliminary results

Model predictions:

ldx	Х	t	у	$p_{\theta}(\hat{y}=1\mid x,t); \gamma=0$	$p_{\theta}(\hat{y}=1\mid x,t); \gamma=0.55$
1	0	1	1	0.9499	0.8656
2	1	1	0	0.1391	0.1715
3	0	0	0	0.1391	0.1715
4	1	0	1	0.3155	0.4692

ITE errors:

X	ITE(x=0) error; $\gamma = 0$	$ \text{ITE}(\text{x}=1) \text{ error; } \gamma = 0.55 $
0	19%	30%
1	82%	70%

Project goals

- Develop a theoretical basis for the suggested approach (enabling or disabling)
- On a nominal dataset identify inputs x for which the model ignores t
- Run the proposed method and analyze the obtained results

References I

Shalit, U., Johansson, F. D., and Sontag, D. (2017). Estimating individual treatment effect: generalization bounds and algorithms.

In Precup, D. and Teh, Y. W., editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 3076–3085, International Convention Centre, Sydney, Australia. PMLR.