Programmering og Problemløsning Datalogisk Institut, Københavns Universitet Arbejdsseddel 6 - gruppeopgave

Jon Sporring

9. - 25. oktober. Afleveringsfrist: onsdag d. 25. oktober kl. 22:00

I denne periode skal I arbejde i grupper. Formålet er at arbejde med:

• Rekursion

Opgaverne er delt i øve- og afleveringsopgaver.

Øveopgaver

- 6ø.0 Skriv en funktion, fac : n:int -> int, som udregner fakultetsfunktionen $n! = \prod_{i=1}^{n} i$ vha. rekursion.
- 6ø.1 Skriv en funktion, sum : n:int -> int, som udregner summen $\sum_{i=1}^{n} i$ vha. rekursion. Lav en tabel som i Opgave 3i.0 og sammenlign denne implementation af sum med while-implementation og simpleSum.
- 6ø.2 Skriv en funktion, sum: int list -> int, som tager en liste af heltal og returnerer summen af alle tallene. Funktionen skal traversere listen vha. rekursion.
- 6ø.3 Den største fællesnævner mellem 2 heltal, t og n, er det største heltal c, som går op i både t og n med 0 til rest. Euclids algoritme¹ finder den største fællesnævner vha. rekursion:

$$\gcd(t,0) = t,\tag{1}$$

$$\gcd(t, n) = \gcd(n, t \% n), \tag{2}$$

hvor % er rest operatoreren (som i F#).

(a) Implementer Euclids algoritm, som den rekursive funktion

¹https://en.wikipedia.org/wiki/Greatest_common_divisor

- (b) lav en white- og black-box test af den implementerede algoritme,
- (c) Lav en håndkøring af algoritmen for gcd 8 2 og gcd 2 8.
- 6ø.4 Lav dine egen implementering af List.fold og List.foldback ved brug af rekursion.
- 6ø.5 Benyt List.fold og List.foldback og dine egne implementeringer til at udregne summen af listen [0 .. n], hvor n er et meget stort tal, og sammenlign tiden, som de fire programmer tager. Diskutér forskellene.

Afleveringsopgaver

I denne opgave skal I regne med fortsatte brøker (continued fractions)². Fortsatte brøker er en liste af heltal, som repræsenterer reelle tal. Listen er endelig for rationelle og uendelig for irrationelle tal.

En fortsat brøk skrives som: $x = [q_0; q_1, q_2, \ldots]$, hvilket svarer til tallet,

$$x = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \dots}}. (3)$$

F.eks. listen [3; 4, 12, 4] evaluerer til

$$x = 3 + \frac{1}{4 + \frac{1}{12 + \frac{1}{4}}}\tag{4}$$

$$= 3 + \frac{1}{4 + \frac{1}{12.25}}$$

$$= 3 + \frac{1}{4.081632653}$$
(5)

$$= 3 + \frac{1}{4.081632653} \tag{6}$$

$$= 3.245.$$
 (7)

Omvendt, for et givet tal x kan den fortsatte brøk $[q_0; q_1, q_2, \ldots]$ udregnes ved følgende algoritme: For $x_0 = x$ og $i \ge 0$ udregn $q_i = \lfloor x_i \rfloor$, $r_i = x_i - q_i$ og $x_{i+1} = 1/r_i$ indtil $r_i = 0$. Nedenfor ses en udregning for tallet x = 3.245:

i	x_i	q_i	r_i	$1/r_i$
0	3.245	3	0.245	4.081632653
1	4.081632653	4	0.081632653	12.25
2	12.25	12	0.25	4
3	4	4	0	_

Resultatet aflæses i anden søjle: [3; 4, 12, 4].

Fortsatte brøker af heltalsbrøkker t/n er særligt effektive at udregne vha. Euclids algoritme for største fællesnævner. Algoritmen i 6ø.3 regner rekursivt på relationen

²https://en.wikipedia.org/wiki/Continued_fraction

mellem heltalsdivision og rest: Hvis a = t div n er heltalsdivision mellem t og n, og b=t% n er resten efter heltalsdivision, så er t=an+b. Man kan nu forestille sig $t, n \text{ og } b \text{ som en sekvens af heltal } r_i, \text{ hvor }$

$$r_{i-2} = q_i r_{i-1} + r_i, (8)$$

$$r_i = r_{i-2} \% r_{-1}$$
 (rest ved heltalsdivision), (9)

$$q_i = r_{i-2} \text{ div } r_{i-1} \quad \text{(heltals division)},$$
 (10)

Hvis man starter sekvensen med $r_{-2} = t$ og $r_{-1} = n$ og beregninger resten iterativt indtil $r_{i-1} = 0$, så vil største fællesnævner mellem t og n være lig r_{i-2} , og $[q_0; q_1, \ldots, q_i]$ vil være t/n som fortsat brøk. Til beregning af største fællesnævner regner algoritmen i 6ø.3 udelukkende på r_i som transformationen $(r_{i-2}, r_{i-1}) \rightarrow$ $(r_{i-1}, r_i) = (r_{i-1}, r_{i-2} \% r_{-1})$ indtil $(r_{i-2}, r_{i-1}) = (r_{i-2}, 0)$. Tilføjer man beregning af q_i i rekursionen, har man samtidigt beregnet brøkken som fortsat brøk. Nedenfor ses en udregning for brøken 649/200:

i	r_{i-2}	r_{i-1}	$r_i = r_{i-2} \% r_{-1}$	$q_i = r_{i-2} \text{ div } r_{i-1}$
0	649	200	49	3
1	200	49	4	4
2	49	4	1	12
3	4	1	0	4
4	1	0	_	-

Den fortsatte brøk aflæses som højre søjle: [3, 4, 12, 4].

Omvendt, approksimationen af en fortsat brøk som heltalsbrøken $\frac{t_i}{n_i}$, $i \geq 0$ fås ved

$$t_i = q_i t_{i-1} + t_{i-2}, (11)$$

$$n_i = q_i n_{i-1} + n_{i-2}, (12)$$

$$t_{-2} = n_{-1} = 0, (13)$$

$$t_{-1} = n_{-2} = 1, (14)$$

Alle approximationerne for [3; 4, 12, 4] er givet ved,

$$\frac{t_0}{n_0} = \frac{q_0 t_{-1} + t_{-2}}{q_0 n_{-1} + n_{-2}} = \frac{3 \cdot 1 + 0}{3 \cdot 0 + 1} = \frac{3}{1} = 3,\tag{15}$$

$$\frac{t_1}{n_1} = \frac{q_1 t_0 + t_{-1}}{q_1 n_0 + n_{-1}} = \frac{4 \cdot 3 + 1}{4 \cdot 1 + 0} = \frac{13}{4} = 3.25,\tag{16}$$

$$\frac{t_2}{n_2} = \frac{q_2 t_1 + t_0}{q_2 n_1 + n_0} = \frac{12 \cdot 13 + 3}{12 \cdot 4 + 1} = \frac{159}{49} = 3.244897959..., \tag{17}$$

$$\frac{n_0}{n_1} = \frac{q_0 n_{-1} + n_{-2}}{q_1 n_0 + n_{-1}} = \frac{3 \cdot 0 + 1}{4 \cdot 1 + 0} = \frac{13}{4} = 3.25,$$

$$\frac{t_1}{n_1} = \frac{q_1 t_0 + t_{-1}}{q_1 n_0 + n_{-1}} = \frac{4 \cdot 3 + 1}{4 \cdot 1 + 0} = \frac{13}{4} = 3.25,$$

$$\frac{t_2}{n_2} = \frac{q_2 t_1 + t_0}{q_2 n_1 + n_0} = \frac{12 \cdot 13 + 3}{12 \cdot 4 + 1} = \frac{159}{49} = 3.244897959...,$$

$$\frac{t_3}{n_3} = \frac{q_3 t_2 + t_1}{q_3 n_2 + n_1} = \frac{4 \cdot 159 + 13}{4 \cdot 49 + 4} = \frac{649}{200} = 3.245.$$
(18)

Bemærk at approximationen nærmer sig 3.245 når i vokser.

Denne opgave omhandler implementation, dokumentation og afprøvning af de fire ovenstående algoritmer:

6g.0 Skriv en rekursiv funktion

```
cfrac2float : lst:int list -> float
```

som tager en liste af heltal som fortsat brøk og udregner det tilsvarende reelle tal

6g.1 Skriv en rekursiv funktion

```
float2cfrac : x:float -> int list
```

som tager et reelt tal og udregner dens repræsentation som fortsat brøk.

6g.2 Skriv en rekursiv funktion

```
frac2cfrac : t:int -> n:int -> int list
```

som tager tæller og nævner i brøken t/n og udregner dens repræsentation som fortsat brøk udelukkende ved brug af heltalstyper.

6g.3 Skriv en rekursiv funktion

```
cfrac2frac : lst:int list -> i:int -> int * int
```

som tager en fortsat brøk og et index og returnerer t_i/n_i approximationen som tuplen (ti, ni).

6g.4 Skriv en white- og black-box test af de ovenstående funktioner.

Afleveringsopgaven skal afleveres som et antal f
sx tekstfiler navngivet efter opgaven, som f.eks. 6g0.fsx. Tekstfilerne skal kunne oversættes med f
sharpc, og resultatet skal kunne køres med mono. Funktioner skal dokumenteres ifølge dokumentationsstandarden, og udover selve programteksten skal besvarelserne indtastes som kommentarer i de fsx-filer, de hører til. Det hele skal samles i en zip fil og uploades på Absalon.

Til øvelserne forventer vi at I arbejder efter følgende skema:

Mandag 9/10: Afslut 5i og start på øvelsesopgaverne fra 6g

Tirsdag 10/10: Arbejd med øvelses- og afleveringsopgaverne

Fredag 13/10: Arbejd med afleveringsopgaverne