2021 Fall AMC 10B Problems/Problem 9

Contents

- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Video Solution by Interstigation
- 5 See Also

Problem

The knights in a certain kingdom come in two colors. $\frac{2}{7}$ of them are red, and the rest are blue. Furthermore, $\frac{1}{6}$ of the knights are magical, and the fraction of red knights who are magical is 2 times the fraction of blue knights who are magical. What fraction of red knights are magical?

(A)
$$\frac{2}{9}$$

(B)
$$\frac{3}{13}$$

(A)
$$\frac{2}{9}$$
 (B) $\frac{3}{13}$ (C) $\frac{7}{27}$ (D) $\frac{2}{7}$ (E) $\frac{1}{3}$

(D)
$$\frac{2}{7}$$

(E)
$$\frac{1}{3}$$

Solution 1

Let k be the number of knights: then the number of red knights is $\frac{2}{7}k$ and the number of blue knights is $\frac{5}{7}k$.

Let b be the fraction of blue knights that are magical - then 2b is the fraction of red knights that are magical. Thus we can write the equation $b \cdot \frac{5}{7}k + 2b \cdot \frac{2}{7}k = \frac{k}{6} \implies \frac{5}{7}b + \frac{4}{7}b = \frac{1}{6} \implies \frac{9}{7}b = \frac{1}{6} \implies b = \frac{7}{54}$

We want to find the fraction of red knights that are magical, which is $2b=\frac{7}{27}=\boxed{C}$

~KingRavi

Solution 2

We denote by \mathcal{P} the fraction of red knights who are magical.

Hence,

$$\frac{1}{6} = \frac{2}{7}p + \left(1 - \frac{2}{7}\right)\frac{p}{2}.$$

By solving this equation, we get $p=rac{\ell}{27}$.

Therefore, the answer is $|\mathbf{(C)}| \frac{\cdot}{27}$

~Steven Chen (www.professorchenedu.com)

Video Solution by Interstigation

See Also

2021 Fall AMC 10B (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community /c13))	
Preceded by Problem 8	Followed by Problem 10
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25	
All AMC 10 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_Fall_AMC_10B_Problems/Problem_9&oldid=166461"

Copyright © 2022 Art of Problem Solving