Phase Diagrams & Phase Tranformation

Basic Definitions

- Alloy: A metallic substance that is composed of two or more elements.
- <u>Component</u>: A chemical constituent (element or compound) of an alloy, which may be used to specify its composition.
- <u>Phase</u>: A homogeneous portion of a system that has uniform physical and chemical characteristics.
- <u>Equilibrium</u>: The state of a system where the phase characteristics remain constant over indefinite time periods.
 - At equilibrium the free energy is a minimum.

When we combine two elements • What equilibrium state do we get? • If we specify... -a composition (e.g., wt% Cu - wt% Ni), and -a temperature (T) then... How many phases do we get? What is the composition of each phase? How much of each phase do we get? Phase A Phase B

Phase Diagram

- Three externally controllable parameters that affect phase fraction and composition
 - Temperature
 - Pressure
 - · Composition
- Phase diagram is constructed when various combinations of these parameters are plotted against one another

Phase Equilibria

Simple solution system (e.g., Ni-Cu solution)

	Crystal Structure	electroneg	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally miscible in all proportions.

Few Principles about Phase Diagrams

- One phase regions may touch each other only at single points (point of congruent transformation), never along a boundary
- Adjacent one phase regions are seperated from each other by 2 phase regions involving the same 2 phases
- Three 2 phase regions must originate upon three phase isotherm
- 4. Two three phase isotherms may be connected by a 2 phase region provided that there are 2 phases which are common to both of the three phase equilibria
- 5. All boundaries of 2 phase fields must project into 2 phase fields when they join a three phase isotherm

Class Work/ Class Test Do it now on your own notebook

For an alloy, Fe-0.40 wt% C at a temperature just below the eutectoid, determine the following

- a) composition of Fe₃C and ferrite (α)
- b) the amount of carbide (cementite) in grams that forms per 100 g of steel
- c) the amount of pearlite and proeutectoid ferrite (α)

Phase Transformation

Phase transformations (change of the microstructure) can be divided into three categories:

- Diffusion-dependent with no change in phase composition or number of phases present (e.g. melting, solidification of pure metal, allotropic transformations, recrystallization, etc.)
- Diffusion-dependent with changes in phase compositions and/or number of phases (e.g. eutectic or eutectoid transformations)
- Diffusionless phase transformation by cooperative small displacements of all atoms in structure, (e.g. martensitic transformation)

Diffusion-dependent phase transformations can be rather slow and the final structure often depend on the rate of cooling/heating.

Next class onwards Prof. Sumantra Mandal will teach at the same class timings

Solidification of pure metal:

- Cooling curve
- Concept of supercooling
- Homogeneous and heterogeneous nucleation processes,
- Microstructure of pure metals

