Part I

1. Questions

Given the starter circuit, is the Reset signal a synchronous or asynchronous reset? ANS: Asynchronous

Is it active high, or active low signal? ANS: Active high

How should the Reset signal feature in the tests that you run on your FSM? ANS: It should set the FSM back to the first (A) state

2. Tables

$C \times Z = Z$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
B 0 0 1 0 0 0 0 0 1 0 0 1 FW
D 0 1 1 0 0 1 1 0 1 0 F2
C 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 1 1 1 0 1
F2 = F2F,W+F,F0+F2F,W
12 = F2F,W+F,F0+F2F,W
FoW/
F2F, 00011110 F0=F2F0W+F, F0W+F2F0W
$A \circ A \circ$
01 D 0 1

5. Tests

Basic test case, going from A to B using W=1, 1 clock cycle

Part II

2. Register Table

П																
	Clk Cycle	Id_a	ld_b	Id_c	Id_x	alu_select_a	alu_select_b	Id_alu_out	alu_op	ld_r	R_A	R_B	R_C	R_X	R_R	Flip-flop State
+	1	1	0	0	0	00	-00	0	0	0	A	0	0	0	0	0000
	2	0	1	0	0	00	00	0	0	0	A	В	0	0	0	0001
	3	0	0	1	0	00	00	0	0	0	Α	В	С	0	0	0010
	4	0	0	0	1	00	00	0	0	0	Α	В	С	x	0	0011
	5	0	1	0	0	01	11	1	1	0	Α	Bx	С	x	0	0100
	6	1	0	0	0	00	01	1	0	0	A+Bx	Bx	С	x	0	0101
	7	0	1	0	0	11	11	1	1	0	A+Bx	x^2	С	х	0	0110
	8	0	1	0	0	10	01	1	1	0	A+Bx	Cx^2	С	х	0	0111
t	9	0	0	0	0	00	01	0	0	1	A+Bx	Cx^2	С	х	Cx^2+Bx+A	1000

3. State diagram

Goes from 0000 incrementing by 1 until 1000 and repeat

5. Testing

Simple test with A,B,C,x = 2, so $Cx^2+Bx+A = 14$, starting with the 0th cycle:

