Q1 part (a)

Bisection Method

Enter the non-linear equation in x: x-cos(x)

Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3.Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 1

Enter the maximum approximate error in percentage: 0.01 Enter the maximum number of iteration you want: 50

Enter first guess value: 0 Enter second guess value: 1

e_a =

33.3333

e_a =

20

e_a =

9.0909

e_a =

4.3478

e_a =

2.1277

e_a =

0.5291

e_a =

0.2639

e_a =

0.1321

e_a =

0.0661

e_a =

0.0330

e_a =

0.0165

e_a =

0.0083

Root= 0.739075

False-position

Enter the non-linear equation in x: x-cos(x)

Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 2

Enter the maximum approximate error in percentage: 0.01

Enter the maximum number of iteration you want: 50

Enter first guess value: 0 Enter second guess value: 1

e_a =

6.9572

e_a =

0.3581

e_a =

0.0180

e_a =

8.9997e-04

Root= 0.739085

Fixed point iteration

Enter the non-linear equation in x: x

Enter the number corresponding to the method you wish to use. 1.Bisection 2.False-position 3.Fixed Point Iteration 4.Newton-Raphson 5.Secant choice: 3 Enter the maximum approximate error in percentage: 0.01 Enter the maximum number of iteration you want: 50 Enter first guess value: 0 Enter the second non-linear equation in x: cos(x)
e_a =
100
e_a =
85.0816
e_a =
36.9949
e_a =
31.0663
e_a =
17.5418
e_a =
13.1331

e_a =

5.7966

e_a =

3.7733

e_a =

2.5996

e_a =

1.7244

e_a =

1.1735

e_a =

0.7850

e_a =

0.5313

e_a =

0.3567

e_a =

0.1620

e_a =

0.1092

e_a =

0.0735

e_a =

0.0495

e_a =

0.0334

e_a =

0.0225

e_a =

0.0151

e_a =

Root= 0.739106

Newton Raphson:

Enter the non-linear equation in x: x-cos(x)

Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4. Newton-Raphson
- 5.Secant

choice: 4

Enter the maximum approximate error in percentage: 0.01

Enter the maximum number of iteration you want: 50

Enter first guess value: 0

Enter the derivative of non-linear equation in x: 1+sin(x)

e_a =

100

e_a =

33.2687

e_a =

1.5222

e_a =

Root= 0.739085

Secant

```
Enter the non-linear equation in x: x-cos(x)
```

Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 5

Enter the maximum approximate error in percentage: 0.01 Enter the maximum number of iteration you want: 50

Enter first guess value: 0
Enter second guess value: 1

e_a =

6.9572

e_a =

0.3816

e a =

0.0046

Root= 0.739085

Q1 part (b)

>> Bisection

Enter the non-linear equation in x: exp(-x)-x Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 1

Enter the maximum approximate error in percentage: 0.05

Enter the maximum number of iteration you want: 50

Enter first guess value: 0

Enter second guess value: 1

```
e_a =
```

33.3333

e_a =

20

e_a =

11.1111

e_a =

0.0430

Root= 0.567139

>> False Position

Enter the non-linear equation in x: exp(-x)-x

Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4. Newton-Raphson
- 5.Secant

choice: 2

Enter the maximum approximate error in percentage: 0.05

Enter the maximum number of iteration you want: 50

Enter first guess value: 0

Enter second guess value: 1

e_a =

100

100

e_a =

100

100

e_a =

100

e_a =

100

e_a =

1.9576e-14

Root= 0.567143

>> Fixed Point Iteration

Enter the non-linear equation in x: x

Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 3

Enter the maximum approximate error in percentage: 0.05 Enter the maximum number of iteration you want: 50 Enter first guess value: 0 Enter the second non-linear equation in x: exp(-x)

e_a =

100

e_a =

171.8282

e_a =

46.8536

e_a =

38.3091

e_a =

17.4468

e_a =

11.1566

e_a =

5.9034

e_a =

1.9308

e_a =

1.1089

e_a =

0.6244

e_a =

0.3556

e_a =

0.2012

e_a =

0.1143

e_a =

0.0648

Root= 0.567068

>>

>> Newton-Raphson

Enter the non-linear equation in x: exp(-x)-x Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 4

Enter the maximum approximate error in percentage: 0.05

Enter the maximum number of iteration you want: 50

Enter first guess value: 0

Enter the derivative of non-linear equation in x: -exp(-x)-1

e_a =

100

e_a =

11.7093

2.2106e-05

Root= 0.567143

>> Secant

Enter the non-linear equation in x: exp(-x)-x Enter the number corresponding to the method you wish to use.

- 1.Bisection
- 2.False-position
- 3. Fixed Point Iteration
- 4.Newton-Raphson
- 5.Secant

choice: 5

Enter the maximum approximate error in percentage: 0.05

Enter the maximum number of iteration you want: 50

Enter first guess value: 0

Enter second guess value: 1

e_a =