



EXPRESS MAIL NO. EV055479816US

1

RECEIVED  
APR 04 2003  
TECH CENTER 1600/2900

## SEQUENCE LISTING

<110> Chiron Corporation  
Kyoto University  
Itoh, Nobuyuki  
Kavanaugh, Michael W.

<120> HUMAN FGF-20 GENE AND GENE EXPRESSION  
PRODUCTS

<130> 60219-6/16770.001

<140> 09/692,945  
<141> 2000-10-20

<160> 17

<170> FastSEQ for Windows Version 4.0

<210> 1  
<211> 648  
<212> DNA  
<213> Rattus norvegicus

<400> 1  
ccttccatgg ctcccttgac cgaagtcggc gccttcttgg gcggccttgg gggcttggc 60  
cagcagggtgg ggtcgactt cttgctgcct cctgcagggg agcgaccggcc gctgctaggg 120  
gagcggcggg ggcgttggc gcggggcgcc cgccggggc cgggttcggc ggagctggcg 180  
cacctgcacg gcatcctgcgc cccggcggcag ctctactgcc gcacccggc ttccacctgcag 240  
atcctgcccgc acggcagtgt gcaggggcacc cggcaggatc acaggcctt cggtatccctg 300  
gaattcatca gtgtggcggt ggggctggc agtatacgag gtgtggacag cggcctgtac 360  
cttggcatga atggcaaagg agagctttat ggctcagaga aattgacttc tgaatgcata 420  
ttcaggaaac aatttgaaga gaactgttat aatacctatt catccaacat atacaacac 480  
ggagacacag gtcgcaggta tttttagca cttaaacaaag acgggactcc aaggggacgg 540  
gccagggtcca aaagacacca aaagtttacc cattttttac ccagaccagg ggacccagag 600  
agagtccccag agttatacaa agacctaactg gtgtacactg gatgaacc 648

<210> 2  
<211> 212  
<212> PRT  
<213> Rattus norvegicus

<400> 2  
Met Ala Pro Leu Thr Glu Val Gly Ala Phe Leu Gly Gly Leu Glu Gly  
1 5 10 15  
Leu Gly Gln Gln Val Gly Ser His Phe Leu Leu Pro Pro Ala Gly Glu  
20 25 30  
Arg Pro Pro Leu Leu Gly Glu Arg Arg Gly Ala Leu Glu Arg Gly Ala  
35 40 45  
Arg Gly Gly Pro Gly Ser Val Glu Leu Ala His Leu His Gly Ile Leu  
50 55 60  
Arg Arg Arg Gln Leu Tyr Cys Arg Thr Gly Phe His Leu Gln Ile Leu  
65 70 75 80  
Pro Asp Gly Ser Val Gln Gly Thr Arg Gln Asp His Ser Leu Phe Gly  
85 90 95  
Ile Leu Glu Phe Ile Ser Val Ala Val Gly Leu Val Ser Ile Arg Gly  
100 105 110

Val Asp Ser Gly Leu Tyr Leu Gly Met Asn Gly Lys Gly Glu Leu Tyr  
 115 120 125  
 Gly Ser Glu Lys Leu Thr Ser Glu Cys Ile Phe Arg Glu Gln Phe Glu  
 130 135 140  
 Glu Asn Trp Tyr Asn Thr Tyr Ser Ser Asn Ile Tyr Lys His Gly Asp  
 145 150 155 160  
 Thr Gly Arg Arg Tyr Phe Val Ala Leu Asn Lys Asp Gly Thr Pro Arg  
 165 170 175  
 Asp Gly Ala Arg Ser Lys Arg His Gln Lys Phe Thr His Phe Leu Pro  
 180 185 190  
 Arg Pro Val Asp Pro Glu Arg Val Pro Glu Leu Tyr Lys Asp Leu Leu  
 195 200 205  
 Val Tyr Thr Gly  
 210

<210> 3  
 <211> 636  
 <212> DNA  
 <213> Homo sapiens

<400> 3  
 atggctccct tagccgaagt cgggggcttt ctggggggcc tggagggcgtt gggccagcag 60  
 gtggggttcgc atttcctgtt gcctcctgccc ggggagcgcc cgccgctgtt gggcgagcgc 120  
 aggagcgcgg cggagcggag cgccgcgcgc gggccgggggg ctgcgcagctt ggcgcacctg 180  
 cacggcatcc tgcgcgcgcgc gcagcttat tgcgcgcaccg gcttccaccc gcagatcctg 240  
 cccgacggca gcgtgcaggg caccggcag gaccacagcc tcttcggat ctttggattc 300  
 atcagtgtgg cagtggact ggtcagttt agaggtgtgg acagtggctt ctatcttgg 360  
 atgaatgaca aaggagaact ctatggatca gagaaactta cttccgaatg catctttagg 420  
 gagcaggttt aagagaactg gtataaacacc tattcatcta acatataataa acatggagac 480  
 actggccgca ggtatttgtt ggcacttaac aaagacggaa ctccaagaga tggcgccagg 540  
 tccaagaggc atcagaaatt tacacatttc ttaccttagac cagtggatcc agaaagagtt 600  
 ccagaattgt acaaggaccc actgtatgtac acttga 636

<210> 4  
 <211> 211  
 <212> PRT  
 <213> Homo sapiens

A  
 CM<sup>1</sup>  
 <400> 4  
 Met Ala Pro Leu Ala Glu Val Gly Gly Phe Leu Gly Gly Leu Glu Gly  
 1 5 10 15  
 Leu Gly Gln Gln Val Gly Ser His Phe Leu Leu Pro Pro Ala Gly Glu  
 20 25 30  
 Arg Pro Pro Leu Leu Gly Glu Arg Arg Ser Ala Ala Glu Arg Ser Ala  
 35 40 45  
 Arg Gly Gly Pro Gly Ala Ala Gln Leu Ala His Leu His Gly Ile Leu  
 50 55 60  
 Arg Arg Arg Gln Leu Tyr Cys Arg Thr Gly Phe His Leu Gln Ile Leu  
 65 70 75 80  
 Pro Asp Gly Ser Val Gln Gly Thr Arg Gln Asp His Ser Leu Phe Gly  
 85 90 95  
 Ile Leu Glu Phe Ile Ser Val Ala Val Gly Leu Val Ser Ile Arg Gly  
 100 105 110  
 Val Asp Ser Gly Leu Tyr Leu Gly Met Asn Asp Lys Gly Glu Leu Tyr  
 115 120 125  
 Gly Ser Glu Lys Leu Thr Ser Glu Cys Ile Phe Arg Glu Gln Phe Glu  
 130 135 140  
 Glu Asn Trp Tyr Asn Thr Tyr Ser Ser Asn Ile Tyr Lys His Gly Asp

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 145                                                             | 150 | 155 | 160 |
| Thr Gly Arg Arg Tyr Phe Val Ala Leu Asn Lys Asp Gly Thr Pro Arg |     |     |     |
| 165                                                             | 170 | 175 |     |
| Asp Gly Ala Arg Ser Lys Arg His Gln Lys Phe Thr His Phe Leu Pro |     |     |     |
| 180                                                             | 185 | 190 |     |
| Arg Pro Val Asp Pro Glu Arg Val Pro Glu Leu Tyr Lys Asp Leu Leu |     |     |     |
| 195                                                             | 200 | 205 |     |
| Met Tyr Thr                                                     |     |     |     |
| 210                                                             |     |     |     |

&lt;210&gt; 5

&lt;211&gt; 14

&lt;212&gt; PRT

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Oligopeptides for raising antibodies

&lt;400&gt; 5

|                                                         |   |    |
|---------------------------------------------------------|---|----|
| Arg Asp Gly Ala Arg Ser Lys Arg His Gln Lys Phe Thr His |   |    |
| 1                                                       | 5 | 10 |

&lt;210&gt; 6

&lt;211&gt; 15

&lt;212&gt; PRT

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Oligopeptides for raising antibodies

&lt;400&gt; 6

|                                                             |   |    |
|-------------------------------------------------------------|---|----|
| Gln Leu Ala His Leu His Gly Ile Leu Arg Arg Arg Gln Leu Tyr |   |    |
| 1                                                           | 5 | 10 |
|                                                             |   | 15 |

&lt;210&gt; 7

&lt;211&gt; 10

&lt;212&gt; PRT

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> Residues which can be incorporated into FGF-20 to  
allow myc monoclonal antibody-based affinity  
purification.

&lt;400&gt; 7

|                                         |   |    |
|-----------------------------------------|---|----|
| Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu |   |    |
| 1                                       | 5 | 10 |

&lt;210&gt; 8

&lt;211&gt; 5

&lt;212&gt; PRT

&lt;213&gt; Artificial Sequence

&lt;220&gt;

&lt;223&gt; Preferred thrombin cleavage site.

&lt;400&gt; 8

Leu Val Pro Arg Gly

a  
cont

1 5

<210> 9  
<211> 10  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Sequence which can be incorporated to allow for purification of FGF-20 because of its ability to bind to paramagnetic streptavidin beads.

<400> 9  
Ser Ala Trp Arg His Pro Gln Phe Gly Gly  
1 5 10

<210> 10  
<211> 6  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Consensus amino acid sequences used to create sense and anti-sense PCR primers.

<400> 10  
Phe Glu Glu Asn Trp Tyr  
1 5

<210> 11  
<211> 6  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Consensus amino acid sequences used to create sense and anti-sense PCR primers.

*A*  
*cont*  
<400> 11  
Thr His Phe Leu Pro Arg  
1 5

<210> 12  
<211> 6  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> Consensus amino acid sequences used to create sense and anti-sense PCR primers.

<400> 12  
Glu Asn Trp Tyr Asn Thr  
1 5

<210> 13  
<211> 6  
<212> PRT

<213> Artificial Sequence

<220>

<223> Consensus amino acid sequences used to create  
sense and anti-sense PCR primers.

<400> 13

His Gln Lys Phe Thr His  
1 5

<210> 14

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> E-tag

<400> 14

Gly Ala Pro Val Pro Tyr Pro Asp Pro Leu Glu Pro Arg  
1 5 10

<210> 15

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> His tag

<400> 15

His His His His His His  
1 5

*a*  
*cont*

<210> 16

<211> 208

<212> PRT

<213> Rattus norvegicus

<400> 16

Met Ala Pro Leu Gly Glu Val Gly Ser Tyr Phe Gly Val Gln Asp Ala  
1 5 10 15

Val Pro Phe Gly Asn Val Pro Val Leu Pro Val Asp Ser Pro Val Leu  
20 25 30

Leu Ser Asp His Leu Gly Gln Ser Glu Ala Gly Gly Leu Pro Arg Gly  
35 40 45

Pro Ala Val Thr Asp Leu Asp His Leu Lys Gly Ile Leu Arg Arg Arg  
50 55 60

Gln Leu Tyr Cys Arg Thr Gly Phe His Leu Glu Ile Phe Pro Asn Gly  
65 70 75 80

Thr Ile Gln Gly Thr Arg Lys Asp His Ser Arg Phe Gly Ile Leu Glu  
85 90 95

Phe Ile Ser Ile Ala Val Gly Leu Val Ser Ile Arg Gly Val Asp Ser  
100 105 110

Gly Leu Tyr Leu Gly Met Asn Glu Lys Gly Glu Leu Tyr Gly Ser Glu  
115 120 125

Lys Leu Thr Gln Glu Cys Val Phe Arg Glu Gln Phe Glu Glu Asn Trp  
130 135 140

Tyr Asn Thr Tyr Ser Ser Asn Leu Tyr Lys His Val Asp Thr Gly Arg  
 145 150 155 160  
 Arg Tyr Tyr Val Ala Leu Asn Lys Asp Gly Thr Pro Arg Glu Gly Thr  
 165 170 175  
 Arg Thr Lys Arg His Gln Lys Phe Thr His Phe Leu Pro Arg Pro Val  
 180 185 190  
 Asp Pro Asp Lys Val Pro Glu Leu Tyr Lys Asp Ile Leu Ser Gln Ser  
 195 200 205

<210> 17  
 <211> 207  
 <212> PRT  
 <213> Rattus norvegicus

<400> 17  
 Met Ala Glu Val Gly Gly Val Phe Ala Ser Leu Asp Trp Asp Leu Gln  
 1 5 10 15  
 Gly Phe Ser Ser Ser Leu Gly Asn Val Pro Leu Ala Asp Ser Pro Gly  
 20 25 30  
 Phe Leu Asn Glu Arg Leu Gly Gln Ile Glu Gly Lys Leu Gln Arg Gly  
 35 40 45  
 Ser Pro Thr Asp Phe Ala His Leu Lys Gly Ile Leu Arg Arg Arg Gln  
 50 55 60  
 Leu Tyr Cys Arg Thr Gly Phe His Leu Glu Ile Phe Pro Asn Gly Thr  
 65 70 75 80  
 Val His Gly Thr Arg His Asp His Ser Arg Phe Gly Ile Leu Glu Phe  
 85 90 95  
 Ile Ser Leu Ala Val Gly Leu Ile Ser Ile Arg Gly Val Asp Ser Gly  
 100 105 110  
 Leu Tyr Leu Gly Met Asn Glu Arg Gly Glu Leu Phe Gly Ser Lys Lys  
 115 120 125  
 Leu Thr Arg Glu Cys Val Phe Arg Glu Gln Phe Glu Glu Asn Trp Tyr  
 130 135 140  
 Asn Thr Tyr Ala Ser Thr Leu Tyr Lys His Ser Asp Ser Glu Arg Gln  
 145 150 155 160  
 Tyr Tyr Val Ala Leu Asn Lys Asp Gly Ser Pro Arg Glu Gly Tyr Arg  
 165 170 175  
 Thr Lys Arg His Gln Lys Phe Thr His Phe Leu Pro Arg Pro Val Asp  
 180 185 190  
 Pro Ser Lys Leu Pro Ser Met Ser Arg Asp Leu Phe Arg Tyr Arg  
 195 200 205