Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Основы Профессиональной Деятельности Работа с БЭВМ Лабораторная работа №2 Вариант 338790

> Выполнил: Студент группы Р3116 Брагин Роман Андреевич

Проверила: Бострикова Дарья Константиновна

1.Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии			
11A	0200	CLA	Очистка аккумулятора (0 \rightarrow AC)			
11B	6114	SUB 114	Вычитание АС – 114 → АС			
11C	6118	SUB 118	Вычитание AC – 118 → AC			
11D	E12D	ST 12D	Coxpaнeние AC → 12D			
11E	A117	LD 117	Загрузка 117 → АС			
11F	212D	AND 12D	Логическое умножение 12D & AC → AC			
120	E12D	ST 12D	Coxpaнeние AC → 12D			
121	0200	CLA	Очистка аккумулятора (0 \rightarrow AC)			
122	6119	SUB 119	Вычитание AC – 119 → AC			
123	412D	ADD 12D	12D + AC → AC			
124	E12D	ST 12D	Coxpaнeние AC → 12D			
125	A116	LD 116	Загрузка 116 → АС			
126	212D	AND 12D	Логическое умножение 12D & AC → AC			
127	E12D	ST 12D	Coxpaнeниe AC → 12D			
128	0200	CLA	Очистка аккумулятора (0 \rightarrow AC)			
129	412E	ADD 12E	12E + AC → AC			
12A	612D	SUB 12D	Вычитание AC – 12D → AC			
12B	E115	ST 115	Coxpaнeние AC → 115			
12C	0100	HLT	Остановка			

2.Описание программы

1.Формула

R = H - (((-(E+A) & D) + (-F)) & C)

2.Адрес первой исполняемой команды – 11А

3.Адрес первой исполняемой команды – 12С

Адрес	Мнемоника	Значения	Комментарии					
114	A	A117	Хранение переменой А					
115	R	0200	Хранение переменой R – конечный результат					
116	С	E12D	Хранение переменой С					
117	D	6114	Хранение переменой D					
118	Е	212D	Хранение переменой D					
119	F	412E	Хранение переменой F					
12D	G	412D	Хранение переменой G – промежуточный результат					
12E	Н	6118	Хранение переменой Н					

3.Область представления и ОДЗ:

Область представления

- 1) А, Е, F, H, R знаковые 16 разрядные числа
- 2) D, C набор из 16 логических однобитовых значений
- 3) ((-(E+A) & D) + (-F)) & C) результат операции "&" трактуется как арифметический операнд, знаковое 16-ти разрядное число
- 4) (-E-A) & D) результат операции "&" трактуется как арифметический операнд, знаковое 16-ти разрядное число
- 5) (-(E+A) & D) результат операции "&" трактуется как арифметический операнд, знаковое 16-ти разрядное число

4) ((-E-A) & D) – F) – результат операции "&" трактуется как арифметический операнд [- 2^15 ; 2^15 - 1]

ОД3

$$R = H - (((-(E+A) \& D) + (-F)) \& C)$$

Для упрощения заменим скобки на буквы,

$$L = (((-(E+A) \& D) + (-F)) \& C)$$

$$B = ((-(E+A) \& D) + (-F))$$

$$G = (-(E+A) \& D)$$

$$-O = -(E+A)$$

1случай:

Для R все просто: $-2^15 < R < 2^15 - 1$

Ограничим разрядность слагаемых, чтобы не возникло переполнения

$$\begin{cases} -2^{14} \leq H, -L \leq 2^{14} - 1 \\ -2^{14} + 1 \leq L \leq 2^{14} \\ B_{15} = 0, C_{15} = 0 \end{cases}$$

$$\begin{cases} -2^{13} \leq G, -F \leq 2^{13} - 1 \\ -2^{13} + 1 \leq F \leq 2^{13} \\ O_{15} = 1, D_{15} = 0 \end{cases}$$

$$\begin{cases} -2^{12} \leq -A, -E \leq 2^{12} - 1 \\ -2^{12} + 1 \leq A \leq 2^{12} \\ -2^{12} + 1 \leq E \leq 2^{12} \end{cases}$$

2 случай:

$$\begin{cases} \begin{cases} 2^{14} \leq H \leq 2^{15} - 1 \\ -2^{15} \leq L \leq 0 \end{cases} \\ B_{15} = 1, C_{15} = 1 \end{cases} \\ \begin{cases} -2^{14} \leq G, -F \leq 0 \\ 0 \leq F \leq 2^{14} \end{cases} \\ O_{15} = 0, D_{15} = 1 \\ \begin{cases} -2^{13} \leq -A, -E \leq 0 \\ 2^{13} \leq A \leq 0 \\ 2^{13} \leq E \leq 0 \end{cases} \end{cases}$$

3 случай:

$$-2^{15}$$
 -2^{14} -1 0 2^{14} -1 2^{15} -1

$$\begin{cases} \begin{cases} -2^{15} \leq H \leq -2^{14} - 1 \\ 0 \leq L \leq 2^{15} - 1 \\ B_{15} = 0, C_{15} = 0 \end{cases} \\ \begin{cases} B_{15} = 1, C_{15} = 0 \\ B_{15} = 0, C_{15} = 1 \end{cases} \\ \begin{cases} 0 \leq G, -F \leq 2^{14} - 1 \\ -2^{14} + 1 \leq F \leq 0 \\ O_{15} = 1, D_{15} = 0 \\ O_{15} = 0, D_{15} = 0 \\ O_{15} = 1, D_{15} = 1 \end{cases} \\ \begin{cases} 0 \leq -A, -E \leq 2^{13} - 1 \\ 2^{13} \leq A \leq 0 \\ 2^{13} \leq E \leq 0 \end{cases} \end{cases}$$

4.Упрощенная программа

Адрес	Код команды	Мнемоника	Комментарии
11B	6114	SUB 114	Вычитание АС – 114 → АС
11C	6118	SUB 118	Вычитание АС – 118 → АС
11F	212D	AND 117	Логическое умножение 117 & АС → АС
123	412D	SUB 119	AC – 119 → AC
126	212D	AND 116	Логическое умножение 116 & АС → АС
129	0280	NOT	^AC → AC
12A	612D	ADD 12E	Сумма 12E +AC → AC
12C	0100	HLT	Остановка

5.Трассировка

Выполняемая команда		Содержимое регистров процессора после выполнения команды							Ячейка, содержимое которой изменилось после выполнения команды		
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
11A	A114	11B	A114	114	FFFF	0	011A	FFFF	1000		
11B	0200	11C	0200	11B	0200	0	011B	000	0100		
11C	6114	11D	6114	114	FFFF	0	011C	0001	0000		
11D	6118	11E	6118	118	0066	0	011D	FF9B	1000		
11E	E12D	11F	E12D	12D	FF9B	0	011E	FF9B	1000	12D	FF9B
11F	A117	120	A117	117	FFFA	0	011F	FFFA	1000		
120	E12D	121	E12D	12D	FFFA	0	0120	FFFA	1000	12D	FFFA
121	A117	122	A117	117	FFFA	0	0121	FFFA	1000		
122	212D	123	212D	12D	FFFA	0	0122	FFFA	1000		
123	E12D	124	E12D	12D	FFFA	0	0123	FFFA	1000	12D	FFFA
124	0200	125	0200	124	0200	0	0124	0000	0100		
125	6119	126	6119	119	FF00	0	0125	0100	0000		
126	412D	127	412D	12D	FFFA	0	0126	00FA	0001		
127	E12D	128	E12D	12D	00FA	0	0127	00FA	0001	12D	00FA
128	A116	129	A116	116	0012	0	0128	0012	0001		
129	212D	12A	212D	12D	00FA	0	0129	0012	0001		
12A	E12D	12B	E12D	12D	0012	0	012A	0012	0001	12D	0012
12B	0200	12C	0200	12B	0200	0	012B	0000	0101		
12C	412E	12D	412E	12E	E115	0	012C	E115	1000		
12D	0012	12E	0012	12D	12	0	012D	E115	1000		

Вывод:

В ходе лабораторной работы я узнал о БЭВМ, и ее компонентах. Полученные знания я применил на практике, выполнив данную лабораторную работу.