UN ENFOQUE MONETARIO DE LA INFLACIÓN EN EL LARGO PLAZO

El caso de Uruguay (1870-2010)*

Conrado Brum, Carolina Román y Henry Willebald**

RESUMEN

El objetivo de este artículo es explicar el comportamiento de la inflación en Uruguay durante el largo plazo (1870-2010). Se utiliza un modelo de inflación monetaria, pues se entiende que la trayectoria de largo plazo de la inflación debería estar determinada por las condiciones de equilibrio en el mercado de dinero. Se estima una curva de Phillips del tipo *forward-looking*, que incluye como variable explicativa de las expectativas de inflación el crecimiento del núcleo monetario (definido como la tasa de crecimiento tendencial de la oferta nominal de dinero que excede

* Artículo recibido el 5 de junio de 2014 y aceptado el 23 de abril de 2015. Los autores agradecen las observaciones recibidas de parte de los asistentes al Seminario del Instituto de Economía (2013) y a las IV Jornadas Académicas de la Facultad de Ciencias Económicas y de Administración de la Universidad de la República (2014), al Seminario de Investigación del Programa de Historia Económica y Social de la Facultad de Ciencias Sociales de la Universidad de la República (2013) y las XXVIII Jornadas Anuales de Economía del Banco Central del Uruguay (2013). Especialmente útiles les resultaron los comentarios de Luis Bértola, Patricia Carballo, Umberto Della Mea, Adriana Induni, Gerardo Licandro y Gabriel Porcile, así como los valiosos aportes de Jorge Ponce en la etapa final de este trabajo. También agradecen las valiosas sugerencias de Reto Bertoni, Gastón Díaz, Daniel Dominioni, Cecilia Lara, Rodrigo Lluberas, Cecilia Moreira y Adriana Peluffo. Además, Nicolás Bonino colaboró en la construcción de algunas variables de la base de datos. Los errores remanentes son responsabilidad exclusiva de los autores.

** Conrado Brum, Departamento de Análisis de Coyuntura, Área de Análisis Macroeconómico del Banco Central del Uruguay y Unidad Académica de Macroeconomía de la Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay (correo electrónico: cbrum@bcu. gub.uy). Carolina Román, Instituto de Economía de la Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay (correo electrónico: croman@iecon.ccee.edu.uy). Henry Willebald, Instituto de Economía de la Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay (correo electrónico: hwillebald@iecon.ccee.edu.uy).

al crecimiento de largo plazo de la demanda real de dinero, el que es guiado por la evolución del producto potencial (*output adjusted core money*, OACM). Se encuentra que el impacto del OACM en la inflación es positivo y significativo, aunque no se rechaza que en el corto plazo sea igual que otros efectos. Sin embargo, en el largo plazo, el OACM tiene un impacto unitario en la tasa de inflación. A partir de la comparación del OACM con la inflación, se construye un indicador de monetización que permite indagar sobre los procesos de desmonetización y remonetización que experimentó esta economía en los últimos 140 años.

Palabras clave: inflación, núcleo monetario, Uruguay. Clasificación JEL: E31, E51, N16.

ABSTRACT

This paper aims at explaining the long-run inflation of Uruguay (1870-2010). A monetary inflation model is used based on the assumption that the long-run inflation results from the equilibrium conditions in the money market. A forward-looking Phillips curve is estimated where the inflation expectations are explained by the core money growth, which is defined as the growth of long-lasting component of nominal money supply that exceeds the long-run increase of the real money demand, this last one determined by the change of the potential output (output adjusted core money, OACM). The results show a positive and significant impact of OACM on inflation. Although in the short run it cannot be rejected that this effect is similar than the others, in the long run OACM has a unitary impact on inflation. In addition, we compare the OACM with the effective inflation and we construct a monetization index which enables us to identify processes of "demonetization" and "monetization" that the Uruguayan economy experienced along the last 140 years.

Key words: inflation, core money, Uruguay. JEL clasificación: E31, E51, N16.

Introducción

La inflación constituye, junto con el crecimiento económico y los movimientos del mercado laboral, uno de los principales problemas macroeconómicos que enfrentan los estudiosos de la economía y los hacedores de política económica. Su evaluación y tratamiento ha sido una de las constantes del desarrollo de la disciplina durante todo el siglo xx y, no obstante, sigue siendo uno de los temas más importantes y controvertidos de la ac-

tualidad, afectando tanto a las economías industrializadas como a las de la periferia mundial. América Latina ha experimentado procesos exacerbados de inflación y ha resultado un campo de pruebas de referencia mundial en cuanto a programas antiinflacionarios, uso de instrumentos y estrategias de estabilización (desde las de carácter más ortodoxo hasta otras de corte claramente heterodoxo). Uruguay, en su carácter de economía pequeña, predominantemente abierta, con niveles de inflación sostenidamente altos (al menos desde la década de 1950) y una historia de sucesivos planes para contener la inflación, resulta un caso paradigmático para ilustrar el comportamiento de la expansión en el nivel general de precios, el papel del mercado monetario y el de las expectativas en este proceso.

El objetivo de este artículo es explicar el comportamiento de la inflación en Uruguay durante el muy largo plazo (1870-2010) como un fenómeno monetario. Para ello se utiliza un modelo de inflación monetaria, pues se entiende que la trayectoria de largo plazo de la inflación debería estar determinada por las condiciones de equilibrio en el mercado de dinero. El punto de partida es la consideración de que la relación existente entre el crecimiento de la cantidad de dinero y la tasa de inflación resulta válida bajo la aplicación de los distintos regímenes monetario-cambiarios que estuvieron vigentes durante los 140 años que cubre el análisis. Para alcanzar este propósito se estima una curva de Phillips del tipo *forward-looking*, donde la tasa de inflación depende positivamente de las expectativas de inflación, de la brecha de producto y de la inflación internacional medida en moneda local.

La formación de expectativas de inflación incorpora información del equilibrio de largo plazo del mercado monetario y, además, un componente inercial. Siguiendo el enfoque de Neumann y Greiber (2004) se incluye como variable explicativa de las expectativas de inflación al crecimiento del núcleo monetario, definido éste como la tasa de crecimiento tendencial de la oferta nominal de dinero que excede al crecimiento del componente de largo plazo de la demanda real de dinero. A su vez, el componente de largo plazo de la demanda real de dinero se supone que evoluciona en función del crecimiento del producto potencial. Con la inclusión de la brecha del producto se procura reflejar el impacto inflacionario del exceso de demanda agregada generado por las fluctuaciones cíclicas y shocks transitorios que implican desvíos del producto respecto de su potencial, mientras que con la incorporación de la inflación internacional se busca reflejar las presiones inflacionarias provenientes del exterior.

El indicador de crecimiento del núcleo monetario escogido para este trabajo es uno de los propuestos en Brum *et al.* (2013) para analizar la importancia del equilibrio del mercado monetario en el comportamiento de la inflación en Uruguay durante los últimos 30 años. En ese trabajo, el periodo de análisis es más acotado, en tanto que los indicadores utilizados para medir el crecimiento del núcleo monetario son de varios tipos. En el presente artículo sólo se utiliza el indicador que Gerlach (2004) identifica con el "crecimiento del núcleo monetario ajustado por crecimiento del producto". En Neumann y Greiber (2004) se denomina a ese mismo indicador simplemente como "crecimiento del núcleo monetario", pero Gerlach (2004) lo llama de aquel modo para distinguirlo de otros indicadores. Además, en Brum *et al.* (2013) se pretende analizar la utilidad de este indicador para proyectar la tasa de inflación en el mediano y largo plazos, algo que escapa a los objetivos del presente trabajo.

Con estos instrumentos se analizan, desde una perspectiva histórica, los distintos procesos de desmonetización y remonetización que experimentó la economía en los últimos 140 años. Para medir la intensidad de estos procesos se construye un indicador de monetización que ilustra las distintas etapas que comportó el mercado monetario en el muy largo plazo.

La estimación de la curva de Phillips especificada muestra un impacto positivo y significativo del crecimiento del núcleo monetario en la tasa de inflación. Además, se encuentra una elasticidad ingreso unitaria de la demanda real de dinero —consistente con la expectativa teórica—, sin necesidad de controlar la estimación por variables que expliquen los cambios en la demanda de dinero por motivos de portafolio. Si bien el impacto de la evolución del producto potencial (OACM, por sus siglas en inglés) sobre la inflación es positivo, no se rechaza que en el corto plazo este impacto sea similar al de otras variables. De todas maneras, en el largo plazo, el OACM tiene, efectivamente, un impacto unitario en la tasa de inflación.

A pesar de que se estimó una demanda de dinero con una elasticidadingreso unitaria, es posible identificar varios periodos de cambios de portafolio de los agentes económicos que impactaron significativamente en el grado de monetización de la economía. Tras una década inicial de desmonetización (1870-1880), cuando el sistema monetario y bancario recién se estaba constituyendo, la economía uruguaya atravesó un largo periodo de remonetización que se prolongó hasta luego de la segunda Guerra Mundial (SGM). Desde entonces, se ingresó en una fase de desmonetización que coin-

cidió con un aumento importante de la inflación; los agentes económicos se refugiaron en activos distintos al dinero (monedas extranjeras, en particular el dólar estadunidense, inmuebles, títulos, etc.) para cubrirse de la pérdida de valor de la moneda. Esta etapa se extendió hasta mediados de 1990, cuando la economía uruguaya ingresó en un nuevo periodo de remonetización.

El artículo se organiza de la siguiente manera. En la sección I se discute la inflación como problema macroeconómico, tanto desde un punto de vista teórico como de su consideración en el caso de Uruguay y contrastando con otros países del mundo. En la sección II se presenta el modelo de inflación monetaria que sirve como marco conceptual para la estimación de la curva de Phillips. En la sección III se comentan los resultados de la estimación econométrica de la curva de Phillips. En la sección IV se realiza una breve descripción de la evolución de la inflación en el largo plazo y se identifican los distintos periodos de cambio en el grado de monetización. También se propone una interpretación histórica de esas modificaciones apoyándose en intuiciones derivadas de la teoría del portafolio. Por último se presentan las conclusiones y se plantean temas de agenda para futuras investigaciones.

I. LA INFLACIÓN COMO PROBLEMA

1. Explicaciones teóricas

El mantenimiento de la estabilidad de precios es uno de los objetivos predominantes de la política monetaria en la mayoría de los países. Dicha estabilidad suele presentarse, entre otros aspectos, como una condición necesaria del crecimiento sustentable y del mantenimiento del poder de compra de la moneda doméstica. Los efectos adversos de la inflación operan a nivel micro y macroeconómico y es posible identificar seis categorías: costos de búsqueda (shoe leather costs) asociados con los incentivos de los agentes de no mantener dinero en efectivo y buscar alternativas de colocación que paguen interés o signifiquen un resguardo ante la inflación; costos de menú, relacionados con todos los inconvenientes de los empresarios de modificar frecuentemente los precios de lista en lugar de aplicar atención y recursos en actividades más productivas; cambios no intencionados en la estructura impositiva con consecuencias adversas sobre la recaudación fiscal real (tipo "efecto Olivera-Tanzi"); efectos redistributivos de la riqueza asociados con las diferentes posibilidades de cobertura que muestran los distintos

segmentos sociales; incertidumbre derivada de la inflación puede afectar la inversión y el consumo ante las dificultades de predecir ganancias e ingresos futuros; y, finalmente, una elevada variabilidad de los precios relativos puede incidir sobre la competitividad de la economía y afectar su frente externo y nivel de actividad.

Si bien puede plantearse una controversia sobre el origen de la inflación, existe un hecho indiscutible: no hay inflación sin dinero, por lo que la inflación es esencialmente un fenómeno monetario. Esto es aún más evidente en periodos prolongados, como el que se considera en este trabajo.

Sin perjuicio de lo anterior, la literatura maneja un amplio conjunto de condiciones que puede incidir en el nivel de la inflación y que se resume en factores de carácter institucional, fiscal, monetario y de balanza de pagos. Simplificando, las escuelas de pensamiento actualmente dominantes en la interpretación del fenómeno inflacionario pueden identificarse como la monetarista y la neokeynesiana.

En la visión monetarista, la inflación es explicada, fundamentalmente, por el crecimiento en el quantum de la oferta monetaria por encima del ritmo de aumento de la demanda real de dinero explicada por cambios en sus fundamentos.

Por su parte, los neokeynesianos identifican distintos tipos de inflación de acuerdo con los factores predominantes. La inflación tipo demand-pull ocurre cuando el exceso de demanda agregada supera a la oferta disponible. Esta brecha del producto (output gap) puede resultar por un aumento en los gastos del gobierno o del sector privado, incrementos en la demanda internacional, o la expansión en la oferta monetaria. La inflación tipo cost-push refiere a la inflación asociada con shocks de oferta (o commodity inflation) que implican caídas repentinas de ésta ante aumentos del precio/costos de los bienes/ producción y la inexistencia de alternativas en el corto plazo. Habitualmente, este tipo de inflación se relaciona con fenómenos del tipo inercia inflacionaria donde precios y salarios evolucionan en una espiral de aumento continuo.

A pesar de que, en el corto plazo, la inflación puede tener diversos orígenes, debe considerarse que cuando las presiones inflacionarias provienen de *shocks* de oferta o como resultado de excesos de demanda no originados en un aumento de la oferta monetaria, su persistencia, en última instancia, depende de la respuesta que tenga la política monetaria. Si ésta reacciona de manera acomodaticia y ratifica estas presiones con una expansión monetaria, la inflación no se detiene. Si, en cambio, la respuesta de política mone-

taria es firme y comprometida con el control de la inflación, las presiones al alza de los precios se terminan diluyendo. Por todo esto, la inflación sería, en primera o en última instancia, un fenómeno monetario y no podría atribuirse exclusivamente a factores de otro tipo. Ésta es la hipótesis fundamental que se somete a prueba en este trabajo.

2. El caso de Uruguay a lo largo de 140 años

Uruguay es una economía pequeña que ocupó lugares destacados en el ranking mundial de ingreso per cápita a finales del siglo XIX, pero que, desde la década de 1930 en adelante, no ha dejado de divergir respecto a los países industrializados. En este devenir histórico ha alternado periodos de crecimiento con otros de fuerte retracción, dando como resultado una economía volátil en sus diversos frentes —PIB, inversión, exportaciones, términos de intercambio — y de bajo crecimiento. Ese débil rendimiento se expresó en el propio sistema de precios y durante la segunda mitad del siglo XX Uruguay se transformó en una economía de alta inflación (véase el cuadro 1) hasta constituirse en uno de los problemas centrales de la política económica.¹

CUADRO 1. Tasas de inflación promedio anual (Porcentaje)

1870-1880	2.2	1940-1950	5.4
1880-1890	-1.8	1950-1960	18.2
1890-1900	-0.3	1960-1970	43.3
1900-1910	0.9	1970-1980	63.5
1910-1920	6.0	1980-1990	64.0
1920-1930	-1.9	1990-2010	30.8
1930-1940	0.9	2000-2010	8.8

FUENTE: Bertola et al. (1999) e Instituto Nacional de Estadística (www.ine.gub.uy).

Aunque no se alcanzaron niveles hiperinflacionarios como sí les sucedió a otros países de la región latinoamericana,² Uruguay experimentó un proceso de inflación crónica y alta, sostenida durante décadas y cuya resolución sólo parece ser más evidente, y no sin discusiones, desde comienzos del siglo XXI.³ Incluso, en perspectiva comparada, Uruguay ha mostrado registros de

¹ Se suele distinguir distintos tipos de inflación en función de la velocidad con la cual aumentan los precios: reptante (un dígito anual), abierta (entre 10 y 20% anual), alta (20 a 100% anual), tres dígitos (100 a 1000%), hiperinflación (mayor a 12.000% anual o 50% mensual) (Gagliardi, 2008).

² Bolivia (1984, 18 meses), Nicaragua (1987, 48 meses), Perú (1988, ocho meses), Argentina (1989, 11 meses), Brasil (1989, cuatro meses) (Dem *et al.*, 2001).

³ Los responsables actuales de la política macroeconómica (miembros del Ministerio de Economía y

60

40

20

(Porcentaje)

..... Uruguay

— América Latina y el Caribe

— Norteamérica

— OCDE

— Asia del Sur

— Mundo

GRÁFICA 1. Tasas anuales de variación del IPC en Uruguay y regiones

FUENTE: World Development Indicators, World Bank.

inflación entre los más elevados del mundo durante décadas, haciendo de la persistencia del proceso un interesante caso de estudio (véase la gráfica 1).

1985 1985

Pese a lo anterior, el fenómeno inflacionario ha sido tradicionalmente abordado con una óptica de mediano y corto plazo, sin adentrarse en análisis de largo aliento. Sólo para citar algunos ejemplos, Zunino et al. (2011) realizan una caracterización de la persistencia inflacionaria entre 1978 y 2010 testeando la existencia de quiebres estructurales. Zunino (2010) estudia la volatilidad del producto y la inflación en Uruguay entre 1985 y 2009, con el objetivo de analizar si el país formó parte del proceso de estabilización macroeconómica que caracterizó a la economía mundial durante el periodo; Domínguez et al. (2012) abordan la causalidad entre persistencia inflacionaria y la dinámica del traslado a precios de los salarios desde fines de la década de 1990. Incluso aquellos trabajos recientes que hacen uso de una curva de Phillips como marco analítico —como el de Carrasco y Rosas (2011) y Frones (2011) — recién comienzan su análisis a finales de la década de 1980 y principios de la de 1990. La única excepción en este sentido es Álvarez (2005), donde se cubre un periodo más amplio (1942-2002), aunque

Finanzas y del Banco Central) no dejan de identificar la inflación como uno de los principales problemas que enfrenta la economía.

su pregunta central es la relación entre crecimiento e inflación antes que ésta como proceso específico.

Por tanto, el presente trabajo propone realizar los primeros pasos en una dirección diferente y novedosa, utilizando el muy largo plazo como perspectiva temporal y estudiando la inflación como fenómeno estrechamente ligado con las condiciones del mercado monetario.

II. MARCO CONCEPTUAL: MODELO DE INFLACIÓN MONETARIA

Siguiendo a Neumann y Greiber (2004), se considera una curva de Phillips forward-looking con la especificación que sigue:⁴

$$\pi_{t+1} = \pi_{t+1/t}^e + \beta(y_t - \overline{y}_t) + \varepsilon_{t+1}$$
 (1)

donde π_{t+1} es la tasa de inflación efectiva, $\pi^e_{t+1/t}$ es la tasa de inflación esperada para t+1, dada la información hasta t, y_t es el logaritmo del producto, \overline{y}_t es el logaritmo del producto potencial, $y_t - \overline{y}_t$ es la brecha del producto, y ε_{t+1} es un *shock* tipo ruido blanco. La formación de expectativas de inflación de t+1 responde al siguiente proceso: $\pi_{t+1}^e = \bar{\pi}_t + (1-\alpha)(\pi_t - \bar{\pi})$ donde $\overline{\pi}_t$ es la tasa de inflación subyacente, y $0 \le \alpha < 1$. Esto implica que la inflación esperada para el periodo siguiente depende de la tasa de inflación subyacente del periodo corriente y de su desvío respecto a la inflación efectiva. La tasa de inflación subyacente es un componente inobservable y su estimación implica abstraerse del ruido de alta frecuencia. La misma puede ser definida como la tasa de inflación que prevalece en el equilibrio de largo plazo, en ausencia de shocks transitorios de oferta y demanda agregada, así como de oferta y demanda de dinero. La ecuación anterior puede expresarse de la siguiente manera: $\pi_{t+1}^e = \alpha \bar{\pi}_t + (1-\alpha)\pi_t$. De esta forma, la tasa de inflación esperada para t+1 es una combinación lineal de la tasa de inflación headline (efectiva) y de la tasa de inflación subyacente, calculadas ambas para el periodo t. La tasa de inflación subyacente es determinada por el equilibrio de largo plazo en el mercado de dinero.

Para ello, se descompone la función de demanda real de dinero en un com-

⁴ Esta especificación de la curva de Phillips *forward-looking* no es la habitual en la literatura. En este caso, el componente *forward-looking* está dado por la convicción del agente de que la inflación efectiva va a converger al nivel dado por el equilibrio de largo plazo del mercado monetario, tal como se desarrolla más adelante en este apartado.

ponente de largo plazo y en un componente de corto plazo: $m_{r,t} = m_{r,t}^l + m_{r,t}^s$ siendo $m_{r,t}$ la cantidad real de dinero expresada en logaritmos, $m_{r,t}^l$ su componente de largo plazo, y $m_{r,t}^s$ su componente de corto plazo.

Asimismo, se supone la siguiente forma funcional para el componente de corto plazo de la demanda real de dinero: $m_{r,t}^s = \lambda_s (y_t - \overline{y}_t) - \gamma_s (i_t^l - i_t^s) + v_t$ donde $i_t^l - i_t^s$ es el costo de oportunidad de mantener dinero, resultante del diferencial de la tasa de interés de largo plazo, correspondiente a un activo alternativo, respecto a la tasa de interés de corto plazo, correspondiente a los instrumentos que integran la definición de dinero; y v_t son shocks estocásticos que afectan la demanda de dinero en el corto plazo. El componente de corto plazo de la demanda de dinero responde entonces a fluctuaciones transitorias del ingreso real $(y_t - \overline{y}_t)$, a cambios en el diferencial de tasas de interés nominales $(i_t^l - i_t^s)$, y a shocks estocásticos (v_t) que afectan la demanda de dinero.

A su vez, el componente de largo plazo de la demanda real de dinero se expresa de la siguiente manera: $m_{r,t}^l = \lambda \bar{y}_t - \gamma (\bar{r}^l - \bar{r}^s)$, siendo $\bar{r}^l - \bar{r}^s$ el diferencial de tasas de interés reales de equilibrio de largo y corto plazo. Así, el componente de largo plazo de la demanda de dinero sólo incluye las respuestas de los agentes a la tendencia de mediano plazo del producto real dado que el diferencial de tasas de interés reales de equilibrio se supone constante. Las expectativas de inflación implícitas en las tasas de interés no aparecen en el componente de largo plazo de la demanda de dinero porque las mismas se igualan en equilibrio. Dado que el producto potencial cambia bastante lento, también lo hace el componente de largo plazo de la demanda de dinero.

Análogamente, el logaritmo de la oferta nominal de dinero (m_t) puede descomponerse en un componente permanente (tendencial, \overline{m}) y un componente transitorio (s): $m_t = \overline{m}_t + s_t$. El componente transitorio (s) refleja la respuesta del banco central a eventos de corto plazo, por ejemplo el ajuste parcial o total a *shocks* sobre la demanda de dinero (v), así como innovaciones discrecionales. A su vez, el nivel del componente permanente en un cierto periodo puede expresarse como aquel del periodo anterior más un crecimiento tendencial $(\Delta \overline{m}_t)$: $\overline{m}_t = \overline{m}_{t-1} + \Delta \overline{m}_t$. La tasa de variación del componente permanente de la oferta monetaria $(\Delta \overline{m})$ puede ser interpretado como la tasa de crecimiento tendencial deseada por la autoridad monetaria, más cualquier respuesta sistemática a desvíos de la tasa de inflación subyacente respecto a la meta. Entonces, la oferta nominal de dinero queda expresada de la siguiente forma: $m_t = \overline{m}_{t-1} + \Delta \overline{m}_t + s_t$.

En el equilibrio de largo plazo del mercado de dinero se igualan los componentes de largo plazo de la oferta y demanda de dinero: $\overline{m}_t = m_{r,t}^l + \overline{p}_t$ siendo \overline{p}_t el nivel de precios subyacente, definido como aquel que equilibra los componentes permanentes de oferta nominal y demanda real de dinero. De este modo, despejando y sustituyendo por la forma funcional de la demanda real de dinero se llega a la siguiente expresión: $\overline{p}_t = \overline{m}_t - \lambda \overline{y}_t + \gamma (\overline{r}^l - \overline{r}^s)$ y tomando diferencias resulta: $\overline{\pi}_t = \Delta \overline{m}_t - \lambda \Delta \overline{y}_t$. Entonces, la tasa de inflación subyacente mantiene una relación unitaria con el crecimiento del componente permanente de la cantidad nominal de dinero que excede al crecimiento del componente permanente de la demanda real de dinero. Este indicador se denomina crecimiento del núcleo monetario. Operando y reemplazando en la ecuación (1) se llega a la solución para la tasa de inflación:

$$\pi_{t+1} = \alpha(\Delta \bar{m}_t - \lambda \Delta \bar{y}_t) + (1 - \alpha)\pi_t + \beta(y_t - \bar{y}_t) + \varepsilon_{t+1}$$
 (2)

De esta manera, la tasa de inflación futura depende del crecimiento del núcleo monetario, de la tasa de inflación efectiva y de la brecha del producto del periodo corriente. La curva resultante, definida por la ecuación (2), es conocida en la literatura como curva de Phillips de dos pilares. Ésta proporciona dos canales potenciales por medio de los cuales la política monetaria puede afectar la inflación. Uno opera por medio de las expectativas de inflación y el otro lo hace mediante la brecha del PIB. El primer canal, que vincula la inflación observada con el crecimiento monetario, es el dominante en el largo plazo. El segundo canal, correspondiente a la brecha del PIB, implica una fuente transitoria de inflación generada por el impacto que tienen sobre la demanda agregada ciertos shocks monetarios y reales, pero no afecta la tendencia inflacionaria dado que en promedio la brecha es nula. Este trabajo se focaliza en el crecimiento monetario como motor de las expectativas de inflación, esto es, trabaja sobre el primero de esos canales pues su perspectiva es de muy largo plazo. La brecha del PIB, por su parte, es tratada como una variable predeterminada respecto de la inflación.

En el equilibrio de largo plazo la tasa de inflación es igual a la tasa de inflación subyacente ($\pi = \overline{\pi}$) y el producto se ubica en su nivel potencial ($y = \overline{y}$). A continuación se sustituye en la ecuación (2) las variables que intervienen en la curva de Phillips por los valores de equilibrio de largo plazo de: $\overline{\pi} = \alpha(\Delta \overline{m} - \gamma \Delta \overline{y}) + (1 - \alpha)\overline{\pi}$. Entonces, $\alpha \overline{\pi} = \alpha(\Delta \overline{m} - \lambda \Delta \overline{y})$ y despejando $\overline{\pi}$ se llega a la solución de largo plazo: $\overline{\pi} = \Delta \overline{m} - \lambda \Delta \overline{y}$.

La solución del modelo indica que en el equilibrio de largo plazo el impacto del crecimiento del núcleo monetario en la inflación es unitario (desaparece el efecto de la brecha del producto). Sin embargo, debido al proceso de formación de expectativas adaptativas en el corto plazo, el crecimiento del núcleo monetario afecta la tasa de inflación del periodo siguiente con un coeficiente menor que la unidad. De esta forma, el impacto del crecimiento del núcleo monetario sobre la inflación se materializa sólo al cabo de un tiempo, dependiendo de la magnitud del parámetro α . Adicionalmente, la brecha del producto representa una potencial fuente de inflación transitoria.

A la curva de Phillips que surge del modelo monetario de inflación se le incorpora la variación de precios internacionales (medida en moneda local) como una de las variables explicativas que pueden incidir en la dinámica inflacionaria de corto plazo. El índice de precios internacionales elegido, así como una descripción detallada de las variables utilizadas en la estimación, aparecen en la siguiente subsección. La incorporación de esta variable contempla el grado de apertura de la economía y la importancia del tipo de cambio en la determinación del componente transable del nivel general de precios. En este marco, si se cumple la versión relativa de la paridad de poderes de compra (PPC), la tasa de la inflación local de los bienes transables (π_{Tr}) puede representarse como la suma de la tasa de inflación internacional (π^*) y la tasa de variación del tipo de cambio nominal (e): (π_{Tr}) = π^* + e. Teniendo en cuenta lo anterior, se llega a la siguiente formulación final de la curva de Phillips:

$$\pi_t = \alpha \left(\Delta \bar{m}_{t-1} - \lambda \Delta \bar{y}_{t-1} \right) + \beta \left(y_{t-1} - \bar{y}_{t-1} \right) + \left(1 - \alpha - \delta \right) \pi_{t-1} + \delta \left(\pi_t^* + e_t \right) + \varepsilon_t \tag{3}$$

donde $\pi^* + e$ corresponde a la tasa de inflación internacional medida en moneda nacional.

En síntesis, en la sección siguiente se contrastan empíricamente varias hipótesis. En primer lugar, se estima la curva de Phillips forward-looking según la formulación de la ecuación (3) y se testea la significatividad de las distintas variables explicativas de la inflación. Al analizar la magnitud y la significatividad estadística del coeficiente asociado a la brecha del producto se está testeando la hipótesis keynesiana de inflación de demanda, mientras que al testear la significatividad de los coeficientes asociados a la inflación inercial y a la internacional se están contrastando las hipótesis keynesianas de inflación de costos (para economías cerradas y abiertas, respectivamen-

te). Finalmente, se testea la hipótesis de que en el equilibrio de largo plazo el impacto del crecimiento del núcleo monetario en la inflación es unitario, lo que permite no rechazar la hipótesis de que, en tendencia, la trayectoria general de la inflación está determinada por las condiciones de equilibrio del mercado monetario y, concomitantemente, caracterizar las presiones originadas en la demanda y en los costos como fuentes transitorias de inflación. Para esto último, se contrasta que la suma de los coeficientes asociados a la variable OACM, inflación internacional e inercial sea igual a la unidad, algo que ya está establecido en el modelo teórico planteado.

III. Modelos, base de datos y resultados

1. Modelo de análisis

La ecuación (3) conduce a la consideración del siguiente modelo de análisis empírico para estimar la curva de Phillips del tipo *forward-looking*, donde la tasa de inflación depende de las expectativas de inflación — medidas a partir del crecimiento del núcleo monetario en el periodo anterior—; de la tasa de inflación efectiva del periodo anterior; de la brecha de actividad rezagada un periodo, y de la inflación internacional medida en moneda local. La siguiente ecuación presenta el modelo a estimar a partir de series anuales entre 1870 y 2010.

$$\begin{split} Dlog(IPC)_t &= c_1 + c_2 * \left[Dlog M2(tend)_{t-1} - c_3 * Dlog PIB(tend)_{t-1} \right] \\ &+ c_4 * \left[log PIB_{t-1} - log PIB(tend)_{t-1} \right] + c_5 * Dlog(IPMEUA_t * TC_t) \end{aligned} \tag{4} \\ &+ c_6 * Dlog(IPC)_{t-1} + \varepsilon_t \end{split}$$

donde la variable a explicar, $Dlog(IPC)_t$ es la tasa de inflación medida como la primera diferencia del logaritmo del índice de precios al consumo (IPC). La expresión $[DlogM2(tend)_{t-1} - c_3*DlogPIB(tend)_{t-1}]$ representa el crecimiento del núcleo monetario (OACM) del periodo anterior. Esta variable se define como la tasa de crecimiento tendencial de la oferta nominal de dinero (DlogM2(tend)) que excede al crecimiento del componente permanente de la demanda real de dinero $c_3*DlogPIB(tend)$. Los valores de largo plazo de cada variable fueron calculados a partir de la extracción de la tendencia mediante la aplicación del filtro Hodrick-Prescott a las series.

La brecha del producto del periodo anterior, $logPIB_{t-1} - logPIB(tend)_{t-1}$ definida como la desviación del producto respecto a su tendencia de largo plazo. La tasa de inflación en el periodo anterior, $Dlog(IPC)_{t-1}$, es medida como la primera diferencia del logaritmo del IPC. La variación de precios internacionales expresada en moneda local, $Dlog(IPMEUA_t*TC_t)$ se mide por la primera diferencia logarítmica del producto de un índice ponderado de precios mayoristas de los Estados Unidos que incluye textiles, metales, maquinaria, materiales de construcción, productos químicos y farmacéuticos (IPMEUA), y el tipo de cambio (TC). El shock estocástico se representa por ε_t ; c_i son los coeficientes de la ecuación con i=1,2,...6.

Del análisis de los residuos del modelo propuesto —ecuación (4)— fue posible reconocer valores atípicos (outliers) que son representados por cuatro variables dummy (D_i con i = 1, 2, 3, 4) que corresponden a cuatro periodos de marcada inestabilidad en los precios: 1889-1890, 1902, 1967-1969 y 1990.6 En primer lugar, se identifica el fuerte empuje especulativo que tuvo al Banco Nacional y a la actividad del financista Emilio Reus a finales de los años ochenta del siglo XIX como protagonistas (1889 y 1890) (D₁). En segundo lugar, pueden asociarse los tiempos de las últimas revoluciones armadas de la campaña uruguaya y los levantamientos del caudillo del Partido Blanco Aparicio Saravia (1902) como un periodo de marcada inestabilidad (D_2) . En tercer lugar, se hace referencia a los años previos al congelamiento de precios y salarios dispuesto en el gobierno de Jorge Pacheco Areco, candidato del Partido Colorado, como el primer momento en el que la economía mostró signos de muy alta inflación (1967 y 1969) (D₃). Finalmente, se identifica 1990, quinto año del primer gobierno del también miembro del Partido Colorado, Julio María Sanguinetti y primero de Luis Lacalle (del Partido Blanco), como el último periodo del siglo XX en el cual los registros de inflación alcanzaron niveles muy elevados y oscilantes (D_4) . A fines de ese mismo año se instrumentó un nuevo plan de estabilización basado en ancla cambiaria. El modelo a estimar incluye estas cuatro variables dummies -ecuación (5)-:

⁵ En Brum *et al.* (2013) la inflación internacional se aproximó mediante la variación de los precios internacionales del petróleo (West Texas) y de un índice de precios externos relevante para Uruguay. En el caso de este trabajo histórico de muy largo plazo se utilizó el índice de precios mayoristas de los Estados Unidos que, además, suele ser el manejado en la literatura (véase Blattman *et al.*, 2004, 2007).

⁶ Esta estrategia de identificación de valores atípicos no consideró la presencia de otros valores derivados de hechos históricos específicos o de la inspección gráfica de las variables.

$$Dlog(IPC)_{t} = c_{1} + c_{2} * \left[DlogM2(tend)_{t-1} - c_{3} * DlogPIB(tend)_{t-1} \right]$$

$$+ c_{4} * \left[logPIB_{t-1} - logPIB(tend)_{t-1} \right] + c_{5} * Dlog(IPMEUA_{t} * TC_{t})$$

$$+ c_{6} * Dlog(IPC)_{t-1} + c_{7} * D_{1} + c_{8} * D_{2} + c_{9} * D_{3} + c_{10} * D_{4} + \varepsilon_{t}$$

$$(5)$$

2. Datos y fuentes

La definición de las variables utilizadas y las fuentes de datos se detallan en esta sección. En todos los casos son datos anuales que cubren el periodo 1870-2010.

Cantidad de dinero: definida como el agregado monetario que incluye al circulante en poder del público y los depósitos a la vista y a plazo (en moneda nacional) realizados por el público en los bancos comerciales, M_2 . Las series son tomadas de Román y Willebald (2015) donde se utilizaron varias fuentes. A partir de 1912 se dispone de series monetarias que permiten construir el agregado M2 mientras que para la primera década del siglo XX y para el siglo XIX la información es bastante limitada. Se recurrió, entonces, a fuentes diversas, indicadores indirectos y otra información para completar las series de dinero en circulación y depósitos.

Inflación: variación logarítmica anual del IPC (comparando los niveles de diciembre de cada año para los datos de 1937 en adelante). Los datos del IPC provienen de Bértola *et al.* (1999) para el periodo 1870-1936, y a partir de 1937 son del Instituto Nacional de Estadística (INE) (www.ine.gub.uy).

Inflación importada: es un índice ponderado de precios de textiles, metales, maquinaria, materiales de construcción, químicos y farmacéuticos. Los precios para el periodo 1870-1950 fueron tomados de Blattman et al. (2004). Para cubrir los años a partir de 1950, la información de precios de manufacturas se obtuvo del United States Department of Commerce Historical Statistics and Bureau of Labour Statistics. Para construir el índice se consideraron ponderaciones variables, de cada una de estas cinco categorías, a partir de la participación relativa en las importaciones (se agruparon rubros de importación para construir categorías que fueran lo más consistentes posibles entre sí). Los ratios fueron calculados a partir de las cifras de importaciones según el siguiente detalle: 1872-1874 (Dirección General de Estadística, cuaderno núm. 8, 1877: 199-203); 1891-1893 (Anuario Estadístico, 1893: 181-199); 1898-1903 (Anuario Estadístico, 1902-1903: 395-411);

CUADRO 2. Curva de Phillips forward-looking (datos anuales 1870-2010) Variable dependiente: Dlog(IPC) Modelo 3

Modelo 2

Modelo 1

	MCO (18	MCO (1872-2010)	MCO (18	MCO (1872-2010)	MC2E (18	MC2E (1874-2010)
Variable	Coeficiente	Probabilidad	Coeficiente	Probabilidad	Coeficiente	Probabilidad
Constante (c ₁)	0.014	0.443				
Núcleo monetario (OACM) $(t-1)$ (c_2)	0.486	0.000	0.502	0.000	0.438	0.000
Variación del producto potencial (c_3)	1.749	0.113	1.018	0.037		
Brecha del producto $(t-1)$ (c_4)	0.004	0.968				
Inflación internacional expresada en moneda nacional (c ₅)	0.225	0.000	0.228	0.000	0.24	0.000
$Dlog(IPC)(t-1)$ (c_6)	0.295	0.000	0.294	0.000	0.333	0.000
$D_1(c_7)$	0.333	0.000	0.334	0.000	0.332	0.000
D_2 (c ₈)	0.282	0.000	0.282	0.000	0.288	0.000
D_3 (c_9)	(0.266)	0.001	(0.259)	0.001	(0.259)	0.001
D_4 (c_{10})	0.256	0.002	0.251	0.002	0.248	0.003
Observaciones	139		139		137	
R^2	0.875		0.874		0.874	
Akaike	(2.164)		(2.188)			
Durbin-Watson	2.025		2.02		2.122	
SE regresión	0.079		0.079		0.079	
^a D_1 , D_2 , D_3 y D_4 son dummies.						

1920-1921 (Anuario Estadístico, 1921: 309-368); 1931-1932 (Anuario Estadístico, 1931-1932 y 1933: 218-494); 1950-1967 (Instituto de Economía, 1969: cuadros 36 y 38); 1970-2000 (Álvarez y Falkin, 2008), y 2000-2010 (Banco Central del Uruguay). Para obtener series continuas anuales de los ponderadores se calcularon interpolaciones lineales.

Producto Interno Bruto (PIB): la series están expresadas en pesos a precios constantes de 2005 y fueron tomadas de Bonino et al. (2012).

Tipo de cambio: se trata de la cantidad de pesos uruguayos por dólar estadunidense. Durante los años comprendidos entre 1870 y 1929 se tomó el tipo de cambio presentado en Bonino et al. (2015), que considera las cotizaciones libra esterlina en relación con el peso de Uruguay de la Bolsa de Valores de Montevideo publicados en los anuarios estadísticos, y utiliza la conversión libra-dólar de Officer (2014) como medida de arbitraje. Los datos para el periodo 1929-1975 se tomaron de Maubrigades (2003); los de 1975-1980 de Vaz (1984), y los correspondientes a 1980-2010 son publicados por el Banco Central del Uruguay.

3. Resultados

En una primera instancia se estimó la ecuación (5), incluyendo las correspondientes variables *dummy*, utilizando Mínimos Cuadrados Ordinarios (MCO). Los resultados de la estimación de la curva de Phillips se resumen en la cuadro 2 (modelo 1). En una segunda instancia se repitió la estimación excluyendo la constante y la brecha del producto que no resultaron estadísticamente significativas para explicar la tasa de inflación (véase el cuadro 2, modelo 2). Los resultados de esta última estimación de la curva de Phillips muestran un impacto positivo y significativo del crecimiento del núcleo monetario en la tasa de inflación (el coeficiente del núcleo monetario presenta una significatividad estadística al nivel de 1%). Además, se encuentra una elasticidad ingreso unitaria y significativa (a 5%) de la demanda real de dinero, sin necesidad de controlar la estimación por variables que expliquen los cambios en la demanda por motivos de portafolio. Se realizó un test de Wald sobre el coeficiente que multiplica al crecimiento del producto

⁷ El coeficiente correspondiente a la brecha del producto resultó no significativo. Este resultado podría explicarse por la existencia de multicolinealidad entre el núcleo monetario (que por definición incluye el PIB potencial) y la brecha de producto (que también incluye el PIB potencial). Brum *et al.* (2013) plantean esta interpretación para explicar la falta de significación de la brecha del producto para datos trimestrales en el periodo 1981-2011.

potencial en la demanda real de dinero, c_3 , testeando si su valor era estadísticamente igual a uno y no se rechaza la hipótesis nula. De la estimación de la ecuación (5) por MCO se obtuvieron residuos bien comportados, es decir, incorrelacionados, normales y homoscedásticos.⁸

El crecimiento del núcleo monetario, que en principio se supone exógeno, podría ser endógeno en la medida que el diseño de la política monetaria tome en cuenta la trayectoria esperada para la tasa de inflación. Esta última puede expresarse como la suma de la tasa efectiva de inflación y un error $\pi_{t/t-1}^e = \pi_t + \varepsilon_t$. En un contexto de política monetaria activa, el crecimiento del núcleo monetario podría expresarse como una función de la evolución esperada para la tasa de inflación, la que a su vez puede formularse como la suma de la tasa de inflación efectiva y el error de predicción: $\Delta \overline{m}_{t-1} - \lambda \Delta \overline{y}_{t-1} = f(\pi_{t/t-1}^e) = f(\pi_t + \varepsilon_t)$. En este caso extremo, donde la política reacciona de manera automática a las expectativas de inflación, el crecimiento del núcleo monetario (en t-1) sería endógeno a la tasa de inflación futura (del periodo t).

De lo expuesto surge que los modelos a estimar son entonces los siguientes:

Modelo 1: ecuación (5)

$$\begin{split} Dlog(IPC)_t &= c_1 + c_2 * \left[Dlog M 2(tend)_{t-1} - c_3 * Dlog PIB(tend)_{t-1} \right] \\ &+ c_4 * \left[log PIB_{t-1} - log PIB(tend)_{t-1} \right] + c_5 * Dlog(IPM EUA_t * TC_t) \\ &+ c_6 * Dlog(IPC)_{t-1} + c_7 * D_1 + c_8 * D_2 + c_9 * D_3 + c_{10} * D_4 + \varepsilon_t \end{split}$$

Modelo 2: ecuación (5')

$$\begin{split} Dlog(IPC)_t &= c_2 * \left[Dlog M 2(tend)_{t-1} - c_3 * Dlog PIB(tend)_{t-1} \right] \\ &+ c_5 * Dlog(IPMEUA_t * TC_t) + c_6 * Dlog(IPC)_{t-1} \\ &+ c_7 * D_1 + c_8 * D_2 + c_9 * D_3 + c_{10} * D_4 + \varepsilon_t \end{split}$$

Modelo 3: ecuación (5")

⁸ Se realizó el test de autocorrelación multiplicadores de Lagrange de Breusch-Godfrey (dos rezagos); el test de heteroscedasticidad de White y el test de normalidad Jarque-Bera. En todos los casos no se rechaza la hipótesis nula correspondiente.

$$\begin{split} Dlog(IPC)_{t} &= c_{2}^{*} \left[DlogM2(tend)_{t-1} - c_{3}^{*} DlogPIB(tend)_{t-1} \right] \\ &+ c_{5}^{*} Dlog(IPMEUA_{t}^{*}TC_{t}) + c_{6}^{*} Dlog(IPC)_{t-1} \\ &+ c_{7}^{*} D_{1} + c_{8}^{*} D_{2} + c_{9}^{*} D_{3} + c_{10}^{*} D_{4} + \varepsilon_{t} \end{split}$$

Variables instrumentales:

$$[Dlog M2(tend)_{t-3} - 1.018*Dlog M2(tend)_{t-3}];$$

 $Dlog (IPC)_{t-1}; Dlog (IPMEUA_t*TC_t); D_1; D_2; D_3; D_4$

Ante la presencia de regresores estocásticos, los estimadores MCO son inconsistentes. Por esta razón, se procedió a estimar nuevamente la ecuación (5) por Variables Instrumentales (VI) utilizando el método de Mínimos Cuadrados en Dos Etapas (MC2E). La variable $OACM_{t-1}$, fue instrumentada con su segundo rezago. Este instrumento tiene la característica de estar altamente correlacionado con la variable potencialmente endógena.9 Además, resulta factible suponer que el instrumento esté incorrelacionado con las perturbaciones del modelo, ya que difícilmente la tasa de inflación del periodo t esté muy correlacionada con el crecimiento del núcleo monetario correspondiente a tres periodos atrás, tres años en nuestro caso (t-3). Para contrastar la hipótesis de exogeneidad, se aplicó el contraste de Hausman que compara los estimadores de MCO y MC2E y permite decidir qué método utilizar. 10 Los resultados del test permiten rechazar la hipótesis nula de exogeneidad de la variable en cuestión, lo que indica que sería más adecuado utilizar MC2E para asegurar la consistencia de los estimadores de los parámetros del modelo. Los residuos de esta última estimación están bien comportados, es decir, que son incorrelacionados, normales y homoscedásticos.¹¹

 $^{^9}$ El coeficiente de correlación entre $OACM_{t-1}$ y $OACM_{t-3}$ es de 0.96 y estadísticamente significativo.

¹⁰ Para aplicar el test de Hausman, primero se estimó la ecuación reducida en donde la variable dependiente es el regresor posiblemente endógeno y como variables independientes se incluyen los regresores exógenos y el instrumento (el tercer rezago). En la medida que los regresores exógenos y el instrumento de esta ecuación auxiliar no están correlacionados con ε_t el término de perturbación de la ecuación original, la variable $OACM_{t-1}$ no estará correlacionada con $OACM_{t-1}$ (y será un regresor exógeno), si y sólo si las perturbaciones ε_t y μ_t no están correlacionadas (siendo μ_t la perturbación de la ecuación auxiliar). Éste es el supuesto que se contrasta con el test de Hausman y se observa que el coeficiente resulta significativo a 1% y por tanto se rechaza la hipótesis de exogeneidad y se utiliza el estimador MC2E para obtener estimaciones consistentes.

¹¹ Se realizó el test de autocorrelación multiplicadores de Lagrange de Breusch-Godfrey (dos

Los resultados de la estimación por MC2E (cuadro 2, modelo 3) muestran un impacto positivo y significativo del crecimiento del núcleo monetario en la tasa de inflación (el coeficiente del núcleo monetario presenta un significatividad estadística al nivel de 1%).

Para contrastar la hipótesis referida a que la suma de los coeficientes asociados a OACM (c_2) , inflación internacional (c_5) e inflación inercial (c_6) es igual a la unidad, se aplicó un test de Wald. El resultado no permite rechazar la hipótesis nula con 1% de significatividad, lo cual es consistente con la expectativa teórica.¹²

El coeficiente asociado a la brecha del producto no dio significativo (modelo 1), lo cual deja fuera una de las explicaciones de origen keynesiano. Las otras dos variables vinculadas también con la hipótesis keynesiana son la inflación internacional y la inflación inercial, las cuales resultaron con signos positivos y significativos (modelo 3). Se realizaron dos contrastes de restricciones lineales, aplicando el test de Wald, para comparar la magnitud de cada uno de estos efectos en relación con el de OACM. Los resultados permiten, por un lado, rechazar a 10% de significatividad que la inflación internacional (c_5) tenga el mismo impacto que el OACM (c_2) (aunque este resultado no se mantiene a 5%);¹³ y, en segundo lugar, no se puede rechazar que la inflación inercial tenga el mismo impacto que el OACM.¹⁴

En síntesis, en el largo plazo, el efecto de OACM es el más importante para explicar el comportamiento de la inflación; pero, en el corto plazo, no se puede descartar el impacto que tienen variables vinculadas a explicaciones de origen keynesiano, en particular, aquellas vinculadas a la inflación de costos.

IV. Interpretación: panorámica histórica y factores explicativos

La historia inflacionaria de Uruguay comporta, desde una perspectiva de muy largo plazo, dos patrones claramente diferenciados (véase la gráfica 2). Si se toma como referencia el último registro negativo de inflación (o defla-

rezagos); el test de heteroscedasticidad de White y el test de normalidad Jarque-Bera. En todos los casos no se rechaza la hipótesis nula correspondiente.

 $^{^{12}}$ La hipótesis nula es $c_2 + c_5 + c_6 = 1$, el valor del estadístico F correspondiente al test de Wald es 0.1156854 y la probabilidad 0.7341.

 $^{^{13}}$ La hipótesis nula es $c_2 - c_5 = 0$, el valor del estadístico F correspondiente al test de Wald es 3.730234 y la probabilidad 0.0556.

 $^{^{14}}$ La hipôtesis nula es $c_2 - c_6 = 0$, el valor del estadístico F correspondiente al test de Wald es 0.559854 y la probabilidad 0.4557.

1980 1975 1976 1976 1965 1966 1966 1966 1967 1976 1976 1976

(Porcentaie) 160 Inflación 140 Inflación_tendencia 120 100 80 60 40 20 0 -20-40

GRÁFICA 2. Inflación. Tasas anuales de variación del índice de precios al consumo

1925 FUENTE: Instituto Nacional de Estadística (www.ine.gub.uy); Bértola et al. (1999).

1920 1915 1910

ción) del siglo XX - de 1949 - la economía pasó de un régimen de baja inflación en 1870-1949 con un promedio anual de 2%, a otro de alta inflación con guarismos que promediaron 45% anual en la segunda mitad del siglo y 39% entre 1950 y 2010. Esta última reducción del promedio se procesa luego de la década de 1990 en lo que parece insinuarse como un nuevo cambio de régimen, similar al de la primera mitad del siglo XX, y promediar tasas menores a 10% (2000-2010). ¹⁵ El patrón de alta inflación presentó periodos de fuerte aceleración inflacionaria con picos en 1959 (49%), 1967 (136%), 1974 (107%), 1979 (83%) y 1990 (129%) que en general fueron contemplados con planes de estabilización de carácter más o menos heterodoxo. Al menos cuatro planes de estabilización son fácilmente identificables en el periodo (Banda, 1994).16

La Reforma Monetaria y Cambiaria de diciembre de 1959 se propuso lograr la estabilidad interna y externa del dinero y reiniciar el crecimiento económico; el fin del plan se suele fechar hacia 1963 y la devaluación de mayo de ese año.

El plan de 1968 estuvo caracterizado por perseguir la detención de la inercia inflacionaria utilizando instrumentos de shock y política de ingresos

¹⁵ Este comportamiento no es excepcional y es compartido por un conjunto amplio de países. La literatura denomina "gran moderación" a este proceso de desaceleración inflacionaria generalizada (véanse Bernanke, 2004, y Rogoff, 2003).

¹⁶ En estos casos, se calculan las tasas de inflación como es habitual en la disciplina (hay que recordar que en la modelización se trabajan con tasas calculadas a partir de variaciones logarítmicas).

(la "congelación de precios y salarios") para alinear rápidamente expectativas; hacia 1972 puede darse como agotado el plan, lo cual estuvo acompañado de una importante crisis bancaria y devaluación.

El plan de estabilización de 1978 acompañó a la estrategia más general de liberalización financiera vigente en Uruguay desde 1973 y significó el establecimiento de un *crawling-peg* activo ("tablita"); en un contexto de muy elevado déficit fiscal y fuga de capitales, el plan colapsó en noviembre de 1982, trayendo consigo una crisis financiera de carácter sistémico.

Hacia fines de 1990 se implementó un nuevo plan de estabilización de precios, de carácter gradualista, basado en un *crawling-peg* activo, pero no formalizado en una "tablita" sino que, primero, podía inferirse de variables presupuestadas y, luego, de anuncios a periódicos de las autoridades y del establecimiento de una banda de flotación cambiaria. De hecho, el plan siguió un derrotero similar al de sus antecesores y con la devaluación de junio de 2002 se habría llegado a un nuevo fracaso en la historia de los planes de estabilización de Uruguay. Sin embargo, la fuerte devaluación no significó, como en el pasado, una nueva y descontrolada escalada inflacionaria.

Desde entonces, los hacedores de la política monetaria no volvieron a hablar de "plan de estabilización" y, en su lugar, se remitieron a los objetivos de todo banco central; es decir, preservar el valor de la moneda, mantener la estabilidad de precios y crear las condiciones necesarias para la estabilidad del sistema financiero. Para ello, ha habido un traslado en el uso del ancla nominal pasando, primero, del tipo de cambio hacia agregados monetarios y, luego, a la propia tasa de inflación —dentro de una lógica tipo *inflation targeting* — con la tasa de interés inicialmente, y los agregados monetarios después, como instrumento de política. Los resultados han sido auspiciosos. Desde una perspectiva de mediano plazo para atender los resultados de las décadas recientes, el plan aplicado en la década de 1990 parece haber rendido, finalmente, sus frutos posicionando a la economía en una senda desconocida en los últimos 60 años.

Los resultados obtenidos de la estimación permiten construir indicadores interpretativos de la dinámica seguida por el mercado monetario durante el periodo.

Como fuera conceptualizado en la sección I, el núcleo monetario ajustado por el producto (OACM) mide cuánto difiere el crecimiento de la cantidad nominal de dinero del crecimiento de la demanda real de dinero, explicada esta última por el aumento del producto potencial. Este desalineamiento

GRÁFICA 3. Inflación y OACM

FUENTE: Véase la subsección 2 de la sección III..

es el componente de largo plazo de la inflación y representa las presiones inflacionarias provenientes del mercado monetario. En general, el OACM resulta positivo porque es una medida de inflación subyacente, entendida como el componente más firme de la inflación (véase la gráfica 3). En este artículo, se utiliza este indicador y se le compara con la inflación efectiva para captar los procesos de remonetización y desmonetización que experimentó la economía en el largo plazo. El indicador de monetización (IM) se define como sigue

$$IM = \frac{1 + OACM}{1 + infla}$$

En cuanto a los niveles del indicador, cuando la variable IM se ubica por encima de 1, es decir, cuando la tasa de inflación subyacente medida por medio del OACM es mayor que la tasa de inflación efectiva, es porque hay fundamentos que están haciendo aumentar la demanda de dinero de largo plazo por encima de lo que crece el PIB potencial. Dicho de otro modo, están operando motivos distintos a los transaccionales que presionan al alza la demanda de dinero. En estos casos se habla de "remonetización" de la economía. En tanto, cuando la variable IM se ubica por debajo de 1, es porque la inflación efectiva está superando al OACM y ello indica la contracción de la demanda de dinero. Hay motivos por los cuales la gente "huye" del dinero (usualmente por motivos de portafolio) y ello se asocia con un proceso de "desmonetización" de la economía.

El otro aspecto que hay que tener en cuenta hace al movimiento del indicador. Periodos de remonetización —con valores de IM mayores a 1— pueden mostrar registros cada vez más próximos a 1 y, en consecuencia, se podrá hablar de un proceso de remonetización que se agota. Por el contrario, valores de IM menores a 1, pero que tienden a este valor, pueden interpretarse como el cierre de una etapa de desmonetización. ¿Qué nos dice la evidencia respecto a estos procesos en Uruguay? En la gráfica 4 se presenta la serie del indicador IM, el nivel 1 donde no ocurre remonetización ni desmonetización (monetización nula) y un cálculo de la tendencia de IM para obviar las fluctuaciones y sólo interpretar el comportamiento de la trayectoria de largo plazo (de acuerdo con sus valores tendenciales). La variabilidad del IM se la da la inflación efectiva que está en el denominador y, por ello, es necesario calcular una tendencia del propio indicador a efectos de hacer el análisis histórico.¹⁷

GRÁFICA 4. Indicador de monetización (IM)*

FUENTE: Véase la subsección 2 de la sección III.

Hasta los primeros años de la década de 1880, cuando el sistema monetario uruguayo estaba aún en conformación, primó un proceso de desmonetización que, paulatinamente, tendió a revertirse (se supera por primera vez el valor de 1 en 1882) para ingresar en un largo periodo de remonetización. Este proceso, en el cual la demanda de dinero aumentaba por motivos distintos a los transaccionales, coincidió —en su mayor parte— con el

¹⁷ Por construcción el OACM ya es un indicador tendencial.

periodo de "crecimiento hacia fuera", de raíz agroexportadora y fundado en la ortodoxia monetaria que significaba el patrón oro. Este último estuvo legalmente vigente hasta 1914 aunque, luego de la primera Guerra Mundial, las acciones de los hacedores de política lo mantuvieron como esquema de referencia para el funcionamiento del mercado monetario (Bertino *et al.*, 2005).

La remonetización mantuvo su firmeza hasta mediados de la década de 1930. Hacia 1938-1939 se hace evidente una trayectoria descendente de IM (una desaceleración de la remonetización) para alcanzar un valor inferior a 1 en 1945 y abrir una nueva etapa en la historia inflacionaria que se extendería hasta comienzos de la década de 1970. Es notorio cómo el indicador recoge el periodo de represión financiera de esa década como una etapa de intensa desmonetización (el indicador de tendencia IM hace un mínimo en 1957, año previo al que comenzó a discutirse la instrumentación del primer plan de estabilización). Entre 1976 y 1981 - años dominados por la administración del tipo de cambio y la vigencia de "la tablita" - pareció consolidarse una nueva etapa de remonetización que comenzó a quebrarse hacia 1982-1983 para no volver a adoptar valores mayores a 1 hasta 1996. 18 Fue recién hacia principios de la década de 1990 cuando comenzó a moderarse la trayectoria de desmonetización —en vísperas del nuevo plan fundado en bandas cambiarias - y la economía se incorporó a un proceso de remonetización en la segunda mitad de esa década, la cual no se ha interrumpido hasta el presente. Un factor que a lo largo del tiempo puede alterar la demanda de dinero, en particular en etapas más recientes, tiene que ver con los cambios tecnológicos (uso de tarjetas de crédito, cajeros automáticos, etc.). De todas maneras, estos cambios no habrían afectado la elasticidad ingreso (que sigue siendo unitaria), aunque quizás sí pueden haber generado transitoriamente valores de IM diferentes a la unidad.

¿Condice esta evolución histórica con la seguida por variables que pueden ser consideradas claves en la explicación del proceso?

Una vía para responder esta pregunta es recurrir a las principales intuiciones derivadas de la teoría del portafolio para contrastar evoluciones. Tres son las relaciones fundamentales que se consideran en este trabajo y que inciden directamente en la demanda de dinero y, por tanto, en el grado de

¹⁸ Una visión de la inflación durante este periodo y complementaria a la que aquí se presenta se realiza en Azar *et al.* (2009: 53-63). Su enfoque desde las finanzas públicas permite realizar consideraciones sobre señoreaje y financiamiento fiscal que conformará futuras hipótesis de trabajo.

monetización de una economía: *i)* la evolución de la tasa de inflación; *ii)* la volatilidad de la tasa de inflación; y *iii)* la covarianza entre las tasas de devaluación e inflación.

En cuanto a la evolución de la tasa de inflación, cabe señalar que como el dinero es un activo de renta fija, su rendimiento real se ve negativamente afectado por el alza de precios, por lo que, ante una mayor tasa de inflación es de esperar, *ceteris paribus*, una menor demanda de los activos que integran la definición adoptada de dinero. ¹⁹ Los mayores niveles de la tasa de inflación registrados entre comienzo de la década de 1950 y mediados de la de 1990 (véase la gráfica 1) coinciden con la sostenida desmonetización que experimentó la economía uruguaya en ese periodo.

A su vez, una mayor volatilidad de la tasa de inflación genera una mayor varianza en la rentabilidad real del dinero. Esto implica que, ante un aumento de la varianza de la tasa de inflación, también se reduce la demanda de medios de pago (ceteris paribus). La volatilidad de la tasa de inflación (véase la gráfica 5) es creciente hasta la primera mitad de la década de 1890, cayendo desde entonces hasta la década de 1930, cuando comienza una franca trayectoria ascendente con picos muy significativos en 1963 y 1983, y otros no despreciables a principios de la década de 1990. Por tanto, se aprecia que luego de un periodo de baja volatilidad que abarcó las décadas de 1920 y 1930, los años de la década de 1940 presentaron un aumento de la volatilidad que se consolidaría en la década siguiente, junto con la profundización de la desmonetización.

Finalmente, respecto a la tercera de aquellas relaciones, en Brum *et al.* (2013) se adoptó un enfoque de portafolio para estimar un modelo de demanda de dinero en una economía con alto grado de dolarización, como ha sido la uruguaya de las últimas décadas. De dicho estudio resulta que la demanda de dinero transaccional depende positivamente de la varianza de la tasa de devaluación y negativamente de la covarianza entre las tasas de inflación y devaluación.²⁰ Una elevada varianza de la tasa de devaluación aumenta la

 20 Debe considerarse que los activos financieros que se incluyen en la definición de dinero utilizada en Brum *et al.* (2013) son el circulante en poder del público, los depósitos a la vista y los saldos de algunas cajas de ahorro. Estas últimas fueron incorporadas al agregado monetario transaccional que se utiliza en la estimación (M'_1) de acuerdo con el Índice de Dinerabilidad de las Cajas de Ahorro (IDCA)

¹⁹ El agregado monetario *M*2 está integrado por el circulante en poder del público que paga una tasa nominal nula, los depósitos transaccionales (cuentas corrientes y cajas de ahorro) que pagan tasas nominales muy reducidas o directamente cero, y los depósitos a plazo (que pagan una tasa nominal positiva). Todos estos instrumentos son activos financieros de renta fija. Los depósitos en unidades indexadas, que se incluyen dentro del agregado *M*2 y pagan un interés variable (ajustado por inflación), no representaban una proporción significativa al finalizar el periodo de estudio de este trabajo.

GRÁFICA 5. Volatilidad de la inflación. Desviación estándar del componente cíclico de la inflación (1870-2010)^a

FUENTE: Instituto Nacional de Estadística (www.ine.gub.uy); Bértola et al. (1999).

volatilidad relativa de los rendimientos reales de los activos nominados en dólares, lo que determina una mayor demanda de dinero. Sin embargo, si esa mayor volatilidad de la tasa de devaluación está acompañada por una elevada covarianza entre las tasas de inflación y devaluación, los agentes económicos podrían posicionarse en activos nominados en dólares con el propósito de defender el valor real de sus activos.

En la gráfica 6 se analiza lo que sucedió con la covarianza de estas dos variables clave en el periodo de estudio del presente trabajo. El enfoque de portafolio utilizado para explicar analíticamente esta relación es similar al que se utiliza en Brum *et al.* (2013) con una modificación, la cual es suponer que el dinero tiene rendimiento distinto de cero, aunque es conocido y fijo.

El cálculo de la covarianza entre las tasas de variación del tipo de cambio (unidades de moneda nacional por dólar) y del IPC adquiere mayor sentido una vez abandonado el patrón oro luego de la PGM. Hasta ese momento, tanto la moneda uruguaya, como la de los Estados Unidos tenía por ley una paridad fija frente al oro, si bien con cierta variabilidad en el mercado, pero

elaborado por Fried y Trujillo (2006). Todos los instrumentos considerados en ese trabajo también forman parte del agregado monetario M2 que se considera en el presente estudio (que también incorpora a las cajas de ahorro, aun cuando no eran un instrumento transaccional, y a los depósitos a plazo). En definitiva, el agregado monetario que se considera comprende tanto la función transaccional del dinero como su papel de instrumento de ahorro.

^a La volatilidad se calculó a partir del desvío estándar del componente cíclico de la inflación (previamente se aplicó el filtro de Hodrick-Prescott para extraer la tendencia). La serie de volatilidad es el resultado de calcular el desvió estándar en periodos de cinco años móviles centrados.

GRÁFICA 6. Covarianza entre inflación y devaluación^a

(Covarianza entre inflación y devaluación)

FUENTE: Véase la subsección 2 de la sección III.

que dio pauta a una relativa estabilidad. No obstante ello, la covarianza se mantuvo en niveles reducidos —y con signo cambiante— durante toda la primera mitad del siglo XX. Desde la segunda mitad de la década de 1950 ese carácter cambia y la covarianza se hace positiva y muy alta hasta, al menos, la década de 1990 (con marcadas irregularidades). Este periodo estuvo caracterizado por una fuerte huida del dinero, el desarrollo de un sistema parabancario durante la década de 1960, fuga de capitales y creciente dolarización de la economía desde principios de la siguiente década.

A partir de 2005 es cuando la covarianza se hace insignificante.²¹ Los mayores niveles de la covarianza coinciden con el sostenido periodo de desmonetización que, aunque con las discrepancias temporales ya mencionadas, experimentó la economía durante casi toda la segunda mitad del siglo xx. A juzgar por el indicador de tendencia de la gráfica 4, el proceso de desmonetización habría mostrado señales de estar ocurriendo desde la segunda mitad de la década de 1940 y se habría instalado definitivamente —y hasta la década de 1990— en la década de 1950, que es el momento en el cual la correlación se hace más evidente.

El análisis propuesto debería, además, tener correlato con otras mediciones más convencionales de la monetización de la economía, como aquellas que relacionan cantidad de dinero con producto. Por ello, en la gráfica 7

^a La covarianza se calculó para periodos de cinco años móviles centrados.

²¹ 0.0001 en el promedio 2005-2010.

GRÁFICA 7. Cantidad de dinero, monetización y producto Índice de Monetización y ratio M2/PIB (1870-2010)

FUENTE: Véase la subsección 2 de la sección III.

se presenta la evolución del Índice de Monetización (en tendencia) (eje izquierdo) y del ratio M2/PIB (promedios quinquenales) (eje derecho).

Evaluar la evolución de este último indicador (ratio M2/PIB) conduce a argumentar sobre la existencia de una monetización creciente de la economía hasta 1943-1944, momento en el cual el índice de monetización deja de ser mayor a 1 y, precisamente, abre un periodo de desmonetización sostenido hasta finales del siglo XX. Este proceso es solamente interrumpido en la segunda mitad de la década de 1970 y primeros años de la década de 1980 cuando, por otra parte, el ratio muestra señales de recuperación. Esta recuperación vuelve a repetirse desde comienzos del siglo XXI cuando, coincidentemente, el IM retoma una trayectoria por encima de 1. Se constata, por tanto, que el índice propuesto recoge consideraciones similares a las que se realizarían con otros indicadores, lo que refuerza las conclusiones anteriores.

Conclusiones

El objetivo de este trabajo es explicar el comportamiento de la inflación en Uruguay durante el muy largo plazo (1870-2010). Para ello se utiliza un modelo de inflación monetaria, bajo el entendido de que la trayectoria de

largo plazo de la inflación está determinada por las condiciones de equilibrio en el mercado de dinero.

Se estima una curva de Phillips del tipo *forward-looking*, donde la tasa de inflación depende positivamente de las expectativas de inflación, de la brecha del producto y de la inflación internacional. Dentro de este enfoque se incluye como variable explicativa de las expectativas de inflación el crecimiento del núcleo monetario, definido como la tasa de crecimiento tendencial de la oferta nominal de dinero que excede al crecimiento del componente de largo plazo de la demanda real de dinero. Del análisis se derivan dos conclusiones principales.

En primer lugar, las distintas especificaciones de la estimación de la curva de Phillips muestran un impacto positivo y significativo del crecimiento del núcleo monetario en la tasa de inflación. Se encuentra una elasticidad ingreso unitaria de la demanda real de dinero -sin necesidad de controlar por variables que expliquen los cambios en la demanda de dinero por motivos de portafolio- que es consistente con lo que prevé la teoría económica. Además, se testeó la hipótesis de que en el equilibrio de largo plazo el impacto del crecimiento del núcleo monetario en la inflación es unitario, lo que permite no rechazar la hipótesis de que, en tendencia, la trayectoria general de la inflación está determinada por las condiciones de equilibrio del mercado monetario y, concomitantemente, caracterizar a las presiones originadas en la demanda y en los costos como fuentes transitorias de inflación. En otras palabras, este análisis permite confirmar que el proceso inflacionario es, en el largo plazo, un fenómeno esencialmente monetario aunque en el corto plazo no se descarte el impacto que puedan tener variables vinculadas con presiones de demanda o de costos.

En segundo lugar, al plantear una panorámica histórica de la inflación en Uruguay, se aprecia que, efectivamente, las distintas trayectorias de desmonetización y remonetización que experimentó la economía resultan consistentes con los procesos seguidos por sus posibles variables explicativas. En efecto, el periodo de desmonetización que vivió la economía uruguaya durante casi medio siglo coincidió con mayores niveles de inflación, un aumento en la volatilidad de esta variable, y un incremento de la covarianza entre las tasas de inflación y devaluación.

La agenda de trabajo que se propone contempla avanzar sobre dos líneas de investigación. Por un lado, considerar explícitamente las consecuencias que tienen sobre la demanda de dinero los cambios de portafolio, e incorporarlos a la especificación del modelo de análisis. Esto es, considerar las trayectorias de aquellas variables que pueden estar vinculadas con el rendimiento de activos alternativos al dinero o con la volatilidad relativa de estos rendimientos (que puede asociarse con la conformación de mercados y su caracterización de competencia) y que terminan generando cambios en el grado de monetización de la economía y, de su mano, en la dinámica de los precios. En este sentido, el desafío es más empírico que teórico, puesto que la representación del proceso requerirá de la construcción de variables específicas no disponibles actualmente en el sistema estadístico nacional (fundamentalmente, indicadores de costos de oportunidad). Por otro lado, se espera contrastar estos resultados con las interpretaciones tradicionales que se han hecho de la inflación en Uruguay y que han transitado por explicaciones de corte monetarista, estructuralista y de costos. De ese modo, se dará una visión de muy largo plazo a los análisis en la materia que, usualmente, se refieren a relaciones de corto plazo.

APÉNDICE ESTADÍSTICO

	M2	IPC	PIB	IPM_EUA	Tipo de cambio	OACM	MI
	Cantidad de dinero a precios corrientes (miles de pesos)	findice de precios en pesos al consumo $(2005 = 100)$	Producto Interno Bruto a precios constantes (miles de pesos de 2005)	Indice ponderado de precios en dólares mayoristas estadunidenses (1900 = 100)	Cantidad de pesos uruguayos por dólar estadunidense	Output adjusted core money	Indice de monetización $= (1 + oacm)/(1 + infla)$
1870	0.026	0.00000038	11 250 949	158.94	0.00000084		
1871	0.018	0.00000039	11 602 541	155.85	0.00000086	-0.073	0.886
1872	0.021	0.00000040	14 415 278	163.20	0.00000086	-0.071	0.914
1873	0.019	0.00000041	14 708 271	157.46	0.00000084	690.0-	0.905
1874	0.018	0.00000041	13 477 699	139.25	980000000	-0.068	0.938
1875	0.026	0.00000042	11 661 139	124.68	0.00000084	-0.071	906.0
1876	0.025	0.00000042	13 008 909	124.15	9800000000	-0.078	0.929
1877	0.020	0.00000043	13 536 297	120.07	0.00000092	-0.084	0.881
1878	0.016	0.00000044	14 766 870	113.95	960000000	-0.086	0.904
1879	0.013	0.00000047	13 184 705	114.19	0.00000097	-0.080	0.860
1880	0.011	0.00000047	14 532 475	128.13	0.00000097	-0.068	0.936
1881	0.010	0.00000043	14 005 087	120.15	0.00000097	-0.048	1.033
1882	600.0	0.00000043	15 704 449	119.94	9600000000	-0.023	0.979
1883	0.011	0.00000046	18 810 180	116.46	0.00000097	9000	0.955
1884	0.011	0.00000046	18 985 976	109.02	0.00000097	0.032	1.027
1885	0.014	0.00000039	21 798 713	104.19	0.00000097	0.054	1.260
1886	0.021	0.00000037	23 029 285	100.46	960000000	0.067	1.130
1887	0.030	0.00000035	20 802 535	99.61	0.00000097	990.0	1.134
1888	0.046	0.00000035	25 959 220	28.66	960000000	0.051	1.030
1889	690.0	0.00000048	23 966 864	100.63	960000000	0.026	0.793
1890	0.062	0.00000039	22 150 305	104.21	0.00000097	-0.006	1.234
1891	0.030	0.00000035	24 318 456	98.72	960000000	-0.034	1.073
1892	0.021	0.00000032	25 080 239	98.81	9600000000	-0.051	1.056
1893	0.020	0.00000028	27 717 181	97.07	0.00000097	-0.055	1.100
1894	0.019	0.00000029	30 764 312	84.15	0.00000095	-0.048	0.912
1895	0.020	0.00000031	30 588 516	81.43	0.00000095	-0.034	906.0
1896	0.022	0.00000033	32 405 076	80.18	960000000	-0.015	0.932
1897	0.022	0.00000032	31 467 497	80.17	960000000	0.003	1.031
1898	0.030	0.00000037	29 240 746	84.40	960000000	0.020	968.0
1899	0.032	0.00000034	30 236 924	91.58	0.00000095	0.032	1.128
1900	0.032	0.00000038	30 529 918	100.00	960000000	0.040	0.930

0.978 1.332 0.942 1.147 0.920 0.980 1.086 1.039 1.025 1.002 1.007 1.007 1.000 1.087 1.007 1.000 1.087 1.018 0.972 1.000 1.087 1.000 1.087 1.018 0.972 1.018	1.037 1.011 0.989 0.992 1.039 0.973 1.008 1.014 1.030 1.030 1.030 1.003 1.003 1.003
0.045 0.048 0.049 0.050 0.047 0.042 0.043 0.053 0.053 0.070 0.070 0.083 0.083 0.062 0.046	0.004 0.008 0.008 0.008 0.003 0.003 0.035 0.042 0.048 0.053
0.00000095 0.00000095 0.00000095 0.00000095 0.00000095 0.00000095 0.00000095 0.00000095 0.00000095 0.00000095 0.00000097 0.00000093 0.00000093 0.00000093 0.00000093 0.00000093 0.00000093 0.00000099 0.00000099	0.00000125 0.00000121 0.00000101 0.00000099 0.00000102 0.00000116 0.00000215 0.00000211 0.00000241 0.00000242 0.00000242 0.00000242 0.00000242 0.00000242 0.00000242
92.41 93.93 98.24 96.28 98.56 105.57 112.48 97.92 99.55 101.97 98.16 99.49 101.82 101.82 103.17 143.01 186.23 256.90 346.53 199.93 169.00	175.65 173.46 161.14 161.14 146.82 147.29 147.29 147.29 129.70 140.99 123.27 113.46 112.50 111.28
30 726 690 35 720 380 33 789 203 33 789 203 33 978 640 30 371 140 32 733 811 37 910 393 42 400 970 44 171 214 46 270 741 48 680 788 46 796 796 40 929 518 36 643 154 36 43 315 38 809 118 44 554 673 45 355 130 46 122 986 50 324 620	53 540 986 57 169 190 59 363 937 62 719 850 70 760 766 77 081 393 76 509 840 83 618 258 75 092 800 68 550 775 67 394 769 75 155 185 81 081 095 83 723 328 87 470 205 92 628 728
0.0000001 0.00000033 0.00000037 0.00000034 0.00000039 0.00000040 0.00000040 0.00000041 0.00000041 0.00000043 0.00000043 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054 0.00000054	0.0000061 0.00000061 0.00000061 0.00000059 0.00000061 0.00000061 0.00000061 0.00000067 0.00000057 0.00000059 0.00000059 0.00000059 0.00000059
0.034 0.038 0.043 0.043 0.056 0.056 0.070 0.060 0.067	0.175 0.165 0.161 0.180 0.205 0.211 0.238 0.240 0.227 0.242 0.242 0.343 0.349
1901 1902 1903 1904 1906 1908 1908 1910 1911 1916 1918 1919 1920	1923 1924 1925 1926 1927 1928 1930 1931 1933 1934 1935 1938

WI	findice de monetización = (1 + oacm)/(1 + infla)	1.063	1.074	1.040	1.028	0.999	0.947	0.941	0.955	1.018	1.057	1.011	0.867	0.936	0.955	0.973	996.0	1.021	0.943	0.958	0.828	0.904	1.104	1.123	0.935	1.001	0.817	0.969	0.742	0.925	1.239	1.191	1.096	0.866
OACM	Output adjusted core money	0.066	0.071	0.074	0.075	0.071	0.066	0.058	0.051	0.043	0.037	0.033	0.032	0.034	0.039	0.048	0.062	0.080	0.103	0.129	0.156	0.183	0.212	0.242	0.273	0.304	0.333	0.358	0.379	0.395	0.407	0.418	0.430	0.443
Tipo de cambio	Cantidad de pesos uruguayos por dólar estadunidense	0.00000266	0.00000221	0.00000190	0.00000190	0.00000190	0.00000185	0.00000184	0.00000184	0.00000211	0.00000269	0.00000260	0.00000226	0.00000267	0.00000292	0.00000319	0.00000338	0.00000405	0.00000440	0.00000634	0.00001033	0.00001126	0.00001100	0.00001098	0.00001342	0.00002027	0.00005879	0.00006740	0.00011245	0.00023702	0.00024948	0.00025672	0.00024964	0.00083008
IPM_EUA	Indice ponderado de precios en dólares mayoristas estadunidenses (1900 = 100)	144.29	152.91	168.67	178.18	186.14	191.63	211.52	266.98	299.12	315.22	345.27	367.79	357.07	351.85	360.32	376.85	390.83	406.38	407.05	414.94	414.42	417.12	414.59	416.60	428.61	427.52	437.82	446.23	414.64	421.85	503.94	504.89	510.87
PIB	Producto Interno Bruto a precios constantes (miles de pesos de 2005)	90 645 294	96 362 471	88 269 254	85 696 677	97 931 957	102 831 557	114 821 516	115 067 305	118 667 365	131 442 771	146 773 399	162 086 671	159 658 800	175 989 470	183 127 440	189 562 284	192 860 879	194 808 514	187 794 777	182 537 289	189 156 995	194 527 064	190 057 636	191 025 824	194 921 094	197 251 501	203 859 950	195 495 252	198 613 719	210 671 043	220 589 345	218 450 324	210 855 775
IPC	Indice de precios en pesos al consumo (2005 = 100)	0.00000067	0.00000067	0.00000069	0.00000072	0.00000077	0.00000088	0.00000099	0.00000110	0.00000113	0.00000111	0.00000113	0.00000137	0.00000152	0.00000166	0.00000179	0.00000198	0.00000210	0.00000248	0.00000297	0.00000441	0.00000601	0.00000663	0.00000737	0.00001059	0.00001434	0.00002696	0.00004027	0.00009500	0.00015801	0.00018095	0.00021882	0.00029684	0.00057797
M2	Cantidad de dinero a precios corrientes (miles de pesos)	0.384	0.414	0.439	0.539	0.644	0.734	0.836	0.899	0.983	1.079	1.255	1.313	1.414	1.627	1.762	1.860	1.770	1.914	2.339	2.957	3.716	4.532	4.819	6.199	8.665	14.080	18.645	36.020	59.708	89.740	108.554	140.184	219.528
		1																																

0.454	0.466	0.468	0.467	0.463	0.455	0.445	0.435	0.430	0.431	0.438	0.447	0.457	0.465	0.470	0.470	0.461	0.441	0.411	0.373	0.331	0.287	0.243	0.203	0.168	0.140	0.120	0.108	0.103	0.104	0.107	0.111	0.116	0.119	0.122	0.123	0.124	
0.00088917	0.00240833	0.00349124	0.00472721	0.00612182	0.00789980	0.00914217	0.01085570	0.01478004	0.03445342	0.05697463	0.10269935	0.15351076	0.22929034	0.36441703	0.61669613	1.19841600	2.05040316	3.06176981	3.98084804	5.07847464	6.38318068	8.01611903	9.48273263	10.47698620	11.36000471	12.11492512	13.40885214	21.58726766	28.18360942	28.68065584	24.45357901	24.04837442	23.44603577	20.94932491	22.56797093	20.05923824	NTE: véase la subsección 2 de la sección III del texto con las descripciones de las variables y las fuentes utilizadas.
536.74 686.48	790.35	820.18	863.37	917.88	1 019.50	1 149.33	1 254.58	1 296.28	1 315.34	1 346.29	1 364.06	1 364.63	1 399.27	1 485.00	1 550.24	1 570.92	1 589.88	1 592.15	1 607.10	1 639.15	1 712.80	1 708.86	1 709.42	1 710.38	1 726.37	1 782.23	1 746.99	1 703.88	1 730.74	1 809.47	1 902.95	2 072.45	2 081.12	2 294.76	2 235.17	2 222.99	ciones de las variables
217 864 394 225 267 389	235 971 872	245 898 871	250 383 486	265 955 692	282 361 882	299 301 187	304 984 883		260 168 812	257 327 107	261 123 957	284 250 634	306 800 368	306 773 671	310 160 149	311 082 405	322 091 016	347 637 950	356 876 588	382 861 996	377 319 689	398 366 422	418 474 822	437 137 036	428 493 576	420 132 919	404 454 623	373 084 431	376 317 952	395 270 548	425 018 448	442 438 158	471 380 298	505 207 230	517 421 910	563 445 658	l texto con las descrip
0.00102615	0.00354738	0.00496503	0.00780901	0.01140199	0.02088121	0.02982275	0.03857903	0.04650022	0.07045264	0.11703969	0.21421637	0.36556023	0.57497815	0.97174970	1.83831916	4.20894456	7.63724185	12.13614968	18.55171560	26.73516633	36.20886365	45.02108226	51.84782609	56.32325142	58.67202268	61.63516068	63.84688091	80.41115312	88.60113422	95.32608696	100.0000000	106.37996219	115.42533081	126.03497164	133.47353497	142.72684310	n 2 de la sección III de
430.900 723.700	1 183.000	1 990.900	2 874.770	5 795.300	12 102.900	22 101.300	27 505.800	30 091.000	35 875.600	53 207.000	102 151.000	162 311.000	258 168.000	409 338.000	652 864.000	1 532 322.000	2 911 687.000	4 668 593.000	7 171 628.000	9 933 303.000	14 062 823.000	17 936 125.000	21 988 807.000	23 584 045.541	24 847 538.514	25 869 182.923	25 651 390.356	23 623 953.833	30 560 637.450	34 699 924.550	44 133 349.933	53 866 517.546	70 582 489.917	82 767 486.985	95 097 860.207	124 585 000.000	VTE: véase la subsecció

0.924 0.936 0.970 0.970 0.997 0.997 0.997 0.997 0.998

REFERENCIAS BIBLIOGRÁFICAS

- Acevedo, E. (1933), *Anales de la Universidad*, t. III, Casa A Barreiro y Ramos, Montevideo.
- (1934), Anales de la Universidad, t. V, Casa A Barreiro y Ramos, Montevideo.
- Álvarez, C., y L. Falkin (2008), La restricción externa como limitante al crecimiento de la economía uruguaya en el largo plazo, tesis de licenciatura, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay.
- Álvarez, L. (2005), *Inflación y crecimiento: un estudio para la economía uruguaya 1942-2002*, tesis de licenciatura, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay.
- Azar, P., M. Bertino, R. Bertoni, S. Fleitas, U. García Repetto, C. Sanguinetti, M. Sienra y M. Torrelli (2009), ¿De quiénes, para quiénes y para qué? Las finanzas públicas en el Uruguay del siglo XX, Instituto de Economía, Facultad de Ciencias Económicas y de Administración, Universidad de la República/Fin de Siglo, Uruguay.
- Banco Central del Uruguay (1971), Series estadísticas monetarias y bancarias, Departamento de Investigaciones Económicas del Banco Central del Uruguay, Montevideo.
- (2012), "Comercio Exterior-Intercambio Comercial de Bienes", puede consultarse en http://www.bcu.gub.uy
- Banda, A. (1994), "El fin de cuatro planes de estabilización", ponencia presentada en las IX Jornadas Anuales de Economía del Banco Central del Uruguay, Montevideo.
- Bernanke B. (2004), "The Great Moderation", Federal Reserve Board. Meetings of the Eastern Economic Association, Washington, D. C.
- Bertino, M., y H. Tajam (1999), El PBI de Uruguay 1900-1955, Instituto de Economía, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay.
- Bértola, L., L. Calicchio, M. Camou y G. Porcile (1999), "Southern Cone Real Wages Compared: A Purchasing Power Parity Approach to Convergence and Divergence Trends, 1870-1996", documento de trabajo, núm. 44, Programa de Historia Económica y Social, Facultad de Ciencias Sociales, Universidad de la República, Uruguay.
- —, L. Calicchio, M. Camou y L. Rivero (1998), *El PBI Uruguayo 1870-1936 y otras estimaciones*, Programa de Historia Económica, Facultad de Ciencias Sociales, Universidad de la República, Uruguay.
- Blattman, C., J. Hwang y J. G. Williamson (2004), "The Impact of the Terms of Trade on Economic Development in the Periphery, 1870-1939: Volatility and Secular Change", NBER Working Paper, 10600, National Bureau of Economic Research.
- —, J. Hwang y J. G. Williamson (2007), "Winners and Losers in the Commodity Lottery: The Impact of Terms of Trade Growth and Volatility in the Periphery 1870-1939", *Journal of Development Economics*, vol. 82, núm. 1, pp. 156-179.
- Bonino, N., A. Tena Junguito y H. Willebald (2015), "Uruguay and the First Global-

- ization. On the accuracy of export performance, 1870-1913", Working Papers in Economic History, 15-01, Universidad Carlos III, Instituto Figuerola de Historia y Ciencias Sociales.
- Bonino, N., C. Román y H. Willebald (2012), "PBI y estructura productiva en Uruguay: revisión de series históricas y propuesta metodológica", Series de Documento de Trabajo, 05/12, Instituto de Economía, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay.
- Brum, C., E. Bucacos y P. Carballo (2011), "La demanda de dinero en una economía dolarizada: una estimación para Uruguay", *Revista de Economía*, segunda época, vol. 18, núm. 2, pp. 101-127.
- —, P. Carballo y A. Induni (2013), "Inflación y núcleo monetario en la economía uruguaya", Series de Documentos de Trabajo, núm. 10, Banco Central del Uruguay, Montevideo.
- Carrasco S., y M. Rosas (2011), ¿Existe una relación no lineal entre inflación y desempleo de largo plazo que permita determinar un rango de inflación óptimo para Uruguay? Una aproximación por la curva de Phillips, tesis de licenciatura, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay.
- Dem, A., G. Mihailovici y H. Gao (2001), "Inflation and Hyperinflation in the 20th century. Causes and patterns", School of International and Public Affairs, Columbia University.
- Dirección General de Estadística (1877), Cuaderno núm 8, Montevideo.
- —, Anuarios Estadísticos, 1902-1903; 1921; 1931-1933, Montevideo.
- Domínguez, M., B. Lanzilotta, S. Rego, P. Regueira y S. Rodríguez (2012), "Persistencia inflacionaria y *pass-through* salarial: diagnóstico y causalidad", Documento de Trabajo, 11/2012, Centro de Investigaciones Económicas (CINVE).
- Fried, A., y J. M. Trujillo (2006), "Demanda de dinero en Uruguay: una nueva aproximación", ponencia presentada en las XXI Jornadas de Economía, Banco Central del Uruguay, Montevideo.
- Frones, L. (2011), Asimetrías en el pass-through de tipo de cambio a precios en Uruguay, tesis de licenciatura, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Uruguay.
- Gagliardi, E. (2008), *Macroeconomía de economías pequeñas y abiertas*, t. II, 2ª ed., Universidad ORT, Central de Impresiones, Montevideo.
- Gerlach, S. (2004), "The two pillars of the European Central Bank", en *Hong Kong Institute for Monetary Research*, Universidad de Basilea/CEPR.
- Instituto de Economía (1969), *Estadísticas Básicas*, Facultad de Ciencias Económicas y de Administración, Universidad de la República, Montevideo.
- Maubrigades, S. (2003), "Mercados de cambios en el Uruguay 1929-1975", Series Auxiliares de Investigación, núm. 1, Unidad Multidisciplinaria, Facultad de Ciencias Sociales, Universidad de la República, Montevideo.

- Neumann, M., y C. Greiber (2004), "Inflation and Core Money Growth in the Euro Area", Discussion Paper, Series 1: Studies of the Economic Research Centre, núm. 36, Volkswirtschaftliches Forschungszentrum der Deutschen Bundesbank.
- Officer, L. H. (2014), "Dollar-Pound Exchange Rate From 1791", Measuring Worth, puede consultarse en http://www.measuringworth.com/exchangepound/
- Rogoff, K. (2003), "Globalization and global desinflation", Federal Reserve Bank of Kansas City.
- Román, C., y H. Willebald (2015), "Contract Enforcement in Uruguay During the First Globalization: a Methodological Proposal and some Comparisons", *Revista Uruguaya de Historia Económica*, vol. V, núm. 7, pp. 65-80.
- United States Department of Commerce Historical Statistics and Bureau of Labour Statistics, *Manufacturing Producer Price Index*, http://www.economagic.com
- Vaz, D. E. (1984), "La evolución del tipo de cambio real en el Uruguay. Una primera aproximación", Selección de temas, núm. 22, Banco Central del Uruguay, Montevideo.
- Zunino, G. (2010), "¿Experimentó Uruguay la Gran Moderación? Un análisis de cambio estructural", Documento de Trabajo, 01/2010, Centro de Investigaciones Económicas (CINVE), Montevideo.
- —, B. Lanzilotta y A. Fernández (2011), "Persistencia inflacionaria en Uruguay", Documento de Trabajo, 09/2011, Centro de Investigaciones Económicas (CINVE), Montevideo.