Deuxième principe de la thermodynamique

Définition : Réversibilité

L'évolution observée d'un système *S* isolé d'un état 1 à un état 2 est réversible si l'évolution dite *inverse*, de 2 à 1 en suivant le *même chemin*, est également observable.

Cas d'un système non isolé

Pour un système \mathscr{S} *non isolé*, on étudiera la réversibilité des transformations de l'*univers*, formé de la réunion de \mathscr{S} et de l'extérieur, qui est toujours *isolé*.

Limite idéale

Un transformation réversible ne peut être que la *limite idéale* d'une transformation réelle. Quand elle est physiquement réalisable, elle est nécessairement *infiniment lente*, s'effectue *sans frottement solide*, *sans déséquilibre thermique* et dans un système *uniforme* à chaque instant.

Il n'est pas nécessaire de pouvoir réaliser *expérimentalement* une transformation réversible pour pouvoir calculer les variations de fonctions d'états sur un chemin réversible entre deux états plutôt que sur le véritable chemin entre ces deux états.

Énoncé

Deuxième principe de la thermodynamique (énoncé de Clausius)

On peut définir pour tout système \mathscr{S} fermé une fonction d'état additive non conservative, nommée entropie et notée S dont la variation élémentaire dS, au cours de toute transformation au cours de laquelle \mathscr{S} reçoit le transfert thermique élémentaire δQ d'un thermostat à la température T_{th} , est :

$$dS \ge \frac{\delta Q}{T_{th}}$$

d'où l'on déduit, pour une transformation finie :

$$\Delta S \geqslant \frac{Q}{T_{\text{th}}}.$$

l'égalité étant réalisée si la transformation est réversible.

Entropie d'échange et entropie crée

Définition : Entropie d'échange et entropie crée

On définit l'*entropie d'échange* $S_e \equiv \frac{Q}{T_{\text{th}}}$ et l'*entropie créée* $S_c = \Delta S - S_e$. On a ansi :

$$\begin{cases} \Delta S = S_e + S_c & \text{transformation finie} \\ \mathrm{d}S = \delta S_e + \delta S_c & \text{transformation élémentaire} \end{cases}$$

Critère de réversibilité

L'entropie *créée* est toujours *positive ou nulle*. Elle est *nulle* si la transformation est *réversible*.

Sources idéales et situations réelles

Sources idéales

Aucune entropie n'est *créée* dans une source idéale de température ou de travail.

Établissement

Identité thermodynamique

Pour un système thermoélastique, on a :

$$dU = T dS - P dV$$
.

Transformations mécaniquement réversibles

Transformation mécaniquement réversible

Un système $\mathscr S$ subit une transformation *mécaniquement réversible* si $\mathscr S$ est à chaque instant en *équilibre mécanique* avec l'extérieur.

Pour une telle transformation, on a:

$$dS = \frac{\delta Q}{T}.$$

Évolution d'un système isolé

Croissance de l'entropie d'un système isolé

L'entropie d'un système *isolé* est *croissante*. Elle est :

- strictement croissante si l'évolution est irréversible
- constante si l'évolution est réversible

Un système *isolé* évolue spontanément, au relâchement d'une contrainte, vers l'état d'*entropie maximale* compatible avec les contraintes extérieures.

Formule de Boltzmann

Pour un système fermé dont l'énergie $\mathscr E$ et le volume $\mathscr V$ sont fixés, on définit, en *physique* statistique l'entropie statistique par la formule :

$$S = k_B \ln \Omega$$
,

avec Ω le nombre d'états $\emph{microscopiques}$ conduisant à l'énergie \mathscr{E} .

On admet que cette définition permet de retrouver celle de l'entropie thermodynamique.

Exemple

On considère un système de 5 éléments discernables pouvant chacun posséder une énergie nulle ou égale à E_0 .

- 1. Déterminer les différentes valeurs possibles de l'énergie.
- 2. En déduire les nombres d'états microscopiques distincts pour chacune de ces valeurs d'énergie.
- 3. En déduire l'entropie de chacun de ces états d'énergie. Quels sont les états d'entropie minimale, maximale ? Interpréter en termes de désordre.

Troisième principe de la thermodynamique

Principe de Nernst

Quand sa température tend vers 0, l'entropie de tout système à l'équilibre thermodynamique tend vers une constante indépendante des autres paramètres du système. On attribue la valeur 0 à cette limite par convention.

Formule de Boltzmann

Expressions

Variations de S en coordonnées T, V

$$\begin{split} \mathrm{d}S &= nR \left(\frac{1}{\gamma - 1} \frac{\mathrm{d}T}{T} + \frac{\mathrm{d}V}{V} \right) \\ S(T_f, V_f) &= S(T_i, V_i) + nR \left(\int_{T_i}^{T_f} \frac{1}{\gamma - 1} \frac{\mathrm{d}T}{T} + \ln \frac{V_f}{V_i} \right) \\ &= S(T_i, V_i) + nR \left(\frac{1}{\gamma - 1} \ln \frac{T_f}{T_i} + \ln \frac{V_f}{V_i} \right) \end{split}$$

Les expressions intégrées en T sont valables pour $\gamma=cste$, ie gaz monoatomique, ou diatomique aux T usuelles

Variations de S en coordonnées T, P

$$\begin{aligned} \mathrm{d}S &= nR \left(\frac{\gamma}{\gamma - 1} \frac{\mathrm{d}T}{T} - \frac{\mathrm{d}P}{P} \right) \\ S(T_f, P_f) &= S(T_i, P_i) + nR \left(\int_{T_i}^{T_f} \frac{\gamma}{\gamma - 1} \frac{\mathrm{d}T}{T} - \ln \frac{P_f}{P_i} \right) \\ &= S(T_i, P_i) + nR \left(\frac{\gamma}{\gamma - 1} \ln \frac{T_f}{T_i} - \ln \frac{P_f}{P_i} \right) \end{aligned}$$

Les expressions intégrées en T sont valables pour $\gamma=cste,$ ie gaz monoatomique, ou diatomique aux T usuelles

Variations de S en coordonnées P, V

$$\begin{aligned} \mathrm{d}S &= \frac{nR}{\gamma - 1} \left(\frac{\mathrm{d}P}{P} + \gamma \frac{\mathrm{d}V}{V} \right) \\ S(P_f, V_f) &= S(P_i, V_i) + nR \left(\int_{T_i}^{T_f} \frac{1}{\gamma - 1} \frac{\mathrm{d}P}{P} + \frac{\gamma}{\gamma - 1} \frac{\mathrm{d}V}{V} \right) \\ &= S(P_i, V_i) + \frac{nR}{\gamma - 1} \left(\ln \frac{P_f}{P_i} + \gamma \ln \frac{V_f}{V_i} \right) \end{aligned}$$

Les expressions intégrées en T sont valables pour $\gamma = cste$, ie gaz monoatomique, ou diatomique aux T usuelles

Lois de Laplace

Deuxième principe de la thermodynamique

Définition: Transformation isentropique

Une transformation d'un système $\mathscr S$ est dite *isentropique* quand la variation de l'entropie de $\mathscr S$ est nulle à l'issue de la transformation :

$$\Delta S = 0$$
.

Lois de Laplace

Lors d'une transformation *isentropique* (par exemple une adiabatique réversible) d'un *gaz parfait* pour lequel $\gamma = cste$, on a :

$$\begin{cases} PV^{\gamma} &= \text{cste} & \heartsuit \\ TV^{\gamma-1} &= \text{cste} \\ T^{\gamma}P^{1-\gamma} &= \text{cste} \end{cases}$$

Expression de S

Deuxième principe de la thermodynamique

Variations de l'entropie d'une phase condensée idéale

Les variations de l'entropie d'un *corps pur* modélisé par une *phase condensée incompressible et indilatable* sont données par :

$$dS = \frac{C(T) dT}{T} \qquad S(T_f) = S(T_i) + \int_{T_i}^{T_f} \frac{C(T) dT}{T}$$

ΔS lors de l'équilibrage

Détermination de la température d'équilibre

Exercice

Un gaz parfait est contenu dans une enceinte fermée par un piston mobile verticalement et sans frottement. L'ensemble est en contact thermique avec un thermostat à la température $T_{\rm th}$. Initialement le gaz est en équilibre thermody-

namique, le piston de masse m et d'aire S étant soumis à son poids et à la force de pression exercée par l'atmosphère de pression uniforme et stationnaire P_0 . Le volume initial est V_i .

- 1. On comprime le gaz jusqu'à la pression P_f . Déterminer l'état du système à l'équilibre thermodynamique.
- 2. La compression est infiniment lente : que peut-on dire de l'entropie créée ?
 - (a) Quelle est la variation d'énergie interne du gaz?
 - (b) Calculer le travail reçu par le gaz, puis le transfert thermique Q reçu par le gaz et celui Q_{th} reçu par le thermostat.
 - (c) En déduire les variations d'entropie du gaz et du thermostat puis celle de l'univers. Commenter les signes de chacune de ces variations.
- 3. La transformation est maintenant brutale.
 - (a) Comparer les variations d'énergie interne et d'entropie du gaz à celles du cas précédent.
 - (b) Déterminer le travail et le transfert thermique reçus par le gaz et le transfert thermique reçu par le thermostat.
 - (c) En déduire les variations d'entropie du gaz, du thermostat et de l'univers. Commenter les signes de chacune de ces variations.