Performance of Turbo coded wireless link for SISO-OFDM, SIMO-OFDM, MISO-OFDM and MIMO-OFDM system

M.M.Kamruzzaman

Key Lab of Information Coding & Transmission, Southwest Jiatong University, Chengdu, Sichuan, China. E-mail: m.m.kamruzzaman@gmail.com

Abstract

In this paper, performance of a Turbo coded OFDM wireless link is evaluated in the presence of Rayleigh fading for SISO, SIMO, MISO and MIMO system. Data are encoded using turbo encoder then modulated by QPSK or 16 QAM or 64 QAM and further encoded using STBC, and the encoded data are split into n streams which are modulated by OFDM and simultaneously transmitted using n transmit antennas. It is observed that the turbo coded SISO-OFDM system provides 21 dB coding gain at 10⁻⁴, turbo coded SIMO-OFDM system provides 20 and 13 db coding gain for 2 and 4 receive antennas respectively at a BER of 10⁻⁶, turbo coded MISO-OFDM system provides 17 and 12 dB coding gain for 2 and 4 transmit antennas respectively at a BER of 10⁻⁶ and turbo coded MIMO-OFDM system provides 11 to 13 dB coding gain for different combination of transmit and receive antennas at BER 10⁻⁶ compare to uncoded SISO-OFDM, SIMO-OFDM, MISO-OFDM and MIMO-OFDM system.

Keywords: Turbo Code, Space Time Block Code, OFDM, SISO, SIMO, MISO, MIMO.

I. Introduction

The next generation wireless systems are proposed for Intelligent Transportation System (ITS). Applications of proposed ITS are intended to use for wideband digital communications such as broadband wireless internet access, digital television, audio broadcasting, video conferencing, real-time video security, communication for high-speed trains etc. One of the techniques which are proposed for next generation wireless communication system is Orthogonal Frequency Division Multiplexing (OFDM). OFDM is used to transmit data over extremely hostile channel at a comparable low complexity with high data rates [1, 2]. The combination of OFDM and single-input single-output (SISO) is referred to as SISO-OFDM. The combination of OFDM and single-nput multiple-output (SIMO) is referred to as SIMO-OFDM. The combination of OFDM and multiple-input single-output (MISO) is referred to as MISO-OFDM. And the combination of OFDM and multiple-input multiple-output (MIMO) is referred to as MIMO-OFDM.

An orthogonal space time block coding schemes for two transmit antennas was first reported by Alamouti with code rate one [4]. Tarokh proposed a space time block coding (STBC) scheme for more than two transmit antennas with the rate less than one [5]. STBC have benefits of the spatial diversity provided by multiple antennas and temporal diversity provided by time varying signal. If we concatenate STBC with OFDM, we will obtain high-rate packet transmission system suitable for high throughput application. However, only STBC can't satisfy the reliability requirement in future mobile system, so STBC should be concatenated with channel coding to provide more coding gains. Forward Error correction (FEC) coding schemes are used as channel coding in most of the digital communication systems. Turbo Codes (TC) are a class of high-performance FEC codes which were the first practical codes to closely approach the channel for the SISO system capacity[6-8] which are specified as FEC schemes for most of the wireless systems.

A combination of the STBC and the TC referred to as the space time turbo coding has been widely studied with and without OFDM [9-24]. Much attention has been paid to improve the link performance of SISO and MIMO system. Researcher published a paper from his previous research on combination of STBC and TC for SISO, SIMO, MISO and MIMO without OFDM [25]. This paper investigate the performance of SISO, SIMO, MISO and MIMO system for OFDM system with concatenation of STBC and TC for different number transmit and receive antennas with the concept of Alamouti's two transmit antennas with code rate one and Tarokh's four transmit antennas with code rate 1/2.

II. SYSTEM MODEL

We consider a system where a transmitter and a receiver are equipped with n and m antennas respectively as shown in Fig. 1 and Fig. 3 (for SISO-OFDM and SIMO-OFDM system n=1 and SISO-OFDM and MISO-OFDM system m=1). At the transmitter, the information source generates random information data bits. The information bits are then encoded by TC encoder, the output bits of TC encoder are passed to the QPSK or 16 QAM or 64 QAM modulator and the modulated symbols are mapped using STBC. These mapped data are fed into an Inverse Fast Fourier Transform (IFFT) circuit to generate an OFDM signal. This OFDM signal is fed into a cyclic prefix insertion circuit to reduce

Fig. 1Block diagram of transmitter

ISI. The receiver performs the reverse process after cyclic prefixes are removed from incoming packets.

A. Encoding

At first the information are encoded by a binary turbo encoder. The turbo encoder consists of two relatively simple recursive systematic convolutional (RSC) encoders. concatenated in parallel via a pseudorandom (turbo) interleaver [1-3]. The size and structure of interleaver of turbo code affect the code error performance considerably; but no attempt was made to optimize the design of turbo code. The QPSK or 16 QAM or 64 QAM modulator modulates the turbo encoded bits. STBC encoder encodes the modulated symbols according to number of transmit antennas as shown in Table I and Table II. To understand the encoding of STBC, consider Alamouti code [4]. The STBC encoder splits the data into number of orthogonal streams according to system. Each stream is fed to the IFFT modulator. Suppose modulator is 64 points long and out of 64 points, 48 bits are used for data. So, the data stream with 48 points creates a block as shown in Fig. 2. Four pilot signals are attached with 48 points for carrier phase locking. To make an OFDM symbol of 64 subcarriers, these 52 subcarriers are padded with zeros. These 64 subcarriers can

Table I: The encoding and transmission sequence for two transmit antennas of Alamouti with code rate one [4].

	Antenna-I	Antenna-II
Time slot-I	x_1	x_2
Time slot-II	*	*
	-x ₂	<i>x</i> ₁

Table II The encoding and transmission sequence for four transmit antennas of Tarokh with code rate ½ [5]

Antenna-I	Antenna-II	Antenna-III	Antenna-IV	
<i>x</i> 1	x 2	x 3	X 4	
-x ₂	<i>x</i> 1	-x ₄	<i>x</i> ₃	
-x ₃	x 4	<i>x</i> 1	-x 2	
-x ₄	-x ₃	<i>x</i> ₂	<i>x</i> 1	
*	*	*	*	
<i>x</i> 1	x_2	<i>x</i> ₃	x 4	
*	*	*	*	
$-x_2$	x_1	-x ₄	x 3	
*	*	*	*	
-x ₃	x 4	<i>x</i> 1	-x ₂	
*	*	*	*	
-x ₄	-x ₃	x_2	x 1	

Tx1	x_1	$-x_{2}^{*}$	x_3	$-x_{4}^{*}$		<i>x</i> ₄₇	$-x_{48}^{*}$
Tx2	x_2	x_1^*	x_4	x_3^*	:	x ₄₈	x ₄₇
	One block						

Fig. 2 Space Time Block Coding over Subcarriers

be considered as 64 symbols. Then, it is converted from parallel to serial using multiplexer and finally append the CP of 16 points before transmitting. In this manner packets of 80 symbols are transmitted from each antenna.

B. Channel

In this paper a wireless OFDM based spatial multiplexing system in broadband fading environments is considered where the channel is unknown at the transmitter and perfectly known at the receiver. Each antenna transmits statistically independent symbols from different antennas and different tones. These symbols will choose a delay path across the channel depending on their frequency. It is assumed that the environment is ideally a rich scattering environment for space time coding and paths are mutually independent because of orthogonality between the data streams. In this analysis, the number of delay paths across the channel is denoted by L where each path being considered a scatterer cluster and each of the paths emanating from within the same scatterer cluster experiencing the same delay. Let s[n] be the $M_T \times 1$ transmitted signal vector and r[n] the $M_R \times 1$ received signal vector. Then,

$$r[n] = \sum_{l=0}^{L-1} H_l s[n-l]$$
 (1)

where $M_R \times M_T$ the complex valued random matrix H_l represents the l th tap of the discrete-time MIMO fading channel impulse response. The channel model (1) is based on the assumption that there are L resolvable paths, where $L = [B\tau]$ with B and τ denoting the signal bandwidth and delay spread, respectively. The individual H_l , are (possibly correlated) zero mean circularly symmetric complex Gaussian (ZMCSCG). Different scatterer clusters are uncorrelated, that is,

$$\in [vec\{H_l\}vec^H\{H_{l'}\}] = 0_{M_RM_T} forl \neq l'$$
 (2)

where \in denotes the expectation operator and superscript H stands for conjugate transposition and where

$$vec\{H_{l}\} = [h_{l,0}^{T} \ h_{l,1}^{T} \ \dots \ h_{l,M_{T}-1}^{T}]^{T}$$
(3)

with $h_{l,k}$ being column vectors of the matrix H_l and $0_{M_RM_T}$ denoting the all zero matrix of size $M_RM_T \times M_RM_T$. Each scatterer cluster has a mean angle of arrival at the Base Transceiver Station (BTS) denotes as $\overline{\theta}_l$, a cluster angle spread δ_l (proportional to the scattering radius of the cluster), and a path gain σ_l^2 (derived from the power delay profile of the channel).

Fig. 3 Block diagram of receiver

It is considered that both the BTS and subscriber unit (SU) having uniform linear array (ULA) with identical antenna elements. It is possible to extend out results to nonuniform arrays. The relative antenna spacing is denoted as $\Delta = d/\lambda$ where d is the absolute antenna spacing and $\lambda = c/f_c$ is the wavelength of a narrowband signal with center frequency f_c .

It is assumed that $h_{l,k}(l = 0,1,...,L-1; k = 0,1,...$..., $M_T - 1$) have zero mean (i.e., pure Rayleigh fading) and that the $M_R \times M_R$ correlation matrix $R_l = \{h_{l,k} \ h_{l,k}^H\}$ is independent of k or, equivalently, the fading statistics are the same for all transmit antennas. It is assigned that $p_l(s\Delta, \overline{\theta}_l, \delta_l) = \{h_{l,k}^r (h_{l,k}^{(r+s)})^*\}$ $l = 0,1,..., L-1; k = 0, 1,..., M_T-1$ where fading correlation between two BTS antenna elements spaced $s\Delta$ wavelengths apart. The correlation matrix R_l , can then be written as

$$[R_l]_{m,n} = \sigma_l^2 \rho_l((n-m)\Delta, \overline{\theta}_l, \delta_l)$$
 (4)

The correlation matrixes already take into account the power delay profile of the channel and factor the $M_{\scriptscriptstyle R} \times M_{\scriptscriptstyle R}$ correlation matrix R_l according to $R_l = R_l^{1/2} R_l^{1/2}$, where $R_l^{1/2}$ is of size $M_R \times M_R$, the $M_R \times M_T$ matrix H_l can be written as

$$H_l = R_l^{1/2} H_{wl}, l = 0,1,...L-1$$
 (5)

where, H_{wl} is an uncorrelated matrix of size $M_R \times M_T$ with independent identically distributed CN(0,1) entries. We have essentially decomposed the l th tap of the stochastic MIMO channel impulse response into the product of a deterministic matrix $R_1^{1/2}$, taking into account the spatial fading correlation at the BTS and a stochastic matrix of i.i.d complex Gaussian random variables H_{wl} .

It is also assumed that the angle of arrival for the l th (l = 0,1,...,L-1) path cluster at the BTS is Gaussian distributed around the mean angle of arrival θ_l , [i.e., the actual angle of arrival is given by $\theta_l = \overline{\theta}_l + \hat{\theta}_l$, with $\hat{\theta}_l \sim N(0, \sigma_{\theta_l}^2)$]. The variance $\sigma_{\theta_l}^2$ is proportional to the angular spread δ_i and, hence, the scattering radius of the l th path cluster. For small angular spread the correlation function can be approximated as [20]

$$\rho_l(s\Delta, \overline{\theta}_l, \delta_l) \approx e^{-j2\pi s\Delta\cos(\overline{\theta}_l)} e^{-\frac{1}{2}(2\pi s\Delta\sin(\overline{\theta})\sigma_d)^2}$$

This approximation is accurate for small angular spread, but it does indicate a trend for large angular spreads, such as uncorrelated spatial fading. Note that if $\sigma_{\theta} = 0$, the correlation matrix R_1 collapses to a rank-1 matrix and can be written $R_l = \sigma_l^2 a(\overline{\theta}_l) a^H(\overline{\theta}_l)$ with the array response vector of the ULA given by $a(\theta) = \begin{bmatrix} 1 & e^{j2\pi\Delta\cos(\theta)} & \dots & e^{j2\pi(M_R-1)\Delta\cos(\theta)} \end{bmatrix}^T$

$$a(\theta) = \begin{bmatrix} 1 & e^{j2\pi\Delta\cos(\theta)} & \dots & e^{j2\pi(M_R-1)\Delta\cos(\theta)} \end{bmatrix}^T$$
 (7)

C. Decoding

At the receiver, the each received signals are passed through OFDM demodulators for further decoding. The transmitted data can be shown as frequency vectors $s_k = [s_k^0 \ s_k^1 \ \dots \ s_k^{M_T-1}]^T$ with s_k^i denoting the data symbol transmitted from the i th antenna on the k th

tone and defining
$$H(e^{j2\pi\theta}) = \sum_{l=0}^{L-1} H_l e^{-j2\pi l\theta} (0 \le \theta \le 1)$$
, it can be shown that

$$\hat{s}_k = H(e^{j2\pi \frac{k}{N}})s_k + n_k$$

where \hat{s}_k is the received data vector for the k th tone, Nis the total number of OFDM tones, and n_k is additive white Gaussian noise satisfying

$$\in \{n_k n_l^H\} = \sigma_n^2 I_{M_p} \delta[k-l] \tag{9}$$

where $I_{{\cal M}_{\cal R}}$ is the identity matrix of size ${\cal M}_{\cal R}$. It is observed from (9) that equalization requires the inversion of a constant matrix for each tone k = 0,1,...,N-1, we stack the vector \hat{s}_k , s_k and n_k according to [14]

$$\hat{s} = [\hat{s}_0^T \ \hat{s}_1^T \dots \hat{s}_{N-1}^T]^T, s = [s_0^T \ s_1^T \dots s_{N-1}^T]^T, n = [n_0^T \ n_1^T \dots n_{N-1}^T]^T$$

Where \hat{s}_k and n are $M_R N \times 1$ vectors and s is an $M_R N \times 1$ vector. We note that based on (8) we can infer that the noise vector n is white, that is,

$$\in \{nn^H\} = \sigma_n^2 I_{M_nN}$$

H is now a block-diagonal matrix of size $NM_R \times NM_T$,

that is,
$$H = diag \left\{ H \left(e^{j2\pi \frac{k}{N}} \right) \right\}_{k=0}^{N-1}$$

We now rewrite (8) as[3],
 $\hat{s} = Hs + n$ (10)

these symbols are decoded using STBC decoder[4,5] and demodulated by QPSK or 16QAM or 64QAM demodulator and send to turbo decoder to get the output. The turbo decoding is performed by a suboptimal iterative algorithm. The decoder consists of two identical concatenated decoders of the component codes separated by the same interleaver. The component decoders are based on a maximum a posteriori (MAP) algorithm or a soft output Viterbi algorithm (SOVA) generating a weighted soft estimate of the input sequence. However researcher uses the MAP decoder to decode the Turbo code [6-8].

III. **SIMULATION RESULTS**

In this section, computer simulation is carried out to show the BER performance of the proposed system. The results are evaluated for several combinations of Tx and Rx antennas with and without Turbo coding with the parameters shown in Table III. For the uncoded system, researcher used STBC for OFDM system without turbo code and for the coded system researcher used STBC for OFDM system with turbo code

Researcher presents the BERs to compare the performance of coded SISO-OFDM system with uncoded SISO-OFDM system in Fig. 4. it is observed that the coded

Table III: Simulation parameters for simulation of Turbo coded OFDM-SISO, OFDM-SIMO, OFDM-MISO AND OFDM-MIMO system

Parameters	Values		
Channel Coding	Turbo		
Turbo Coding Rate	1/3		
Number of iterations	2		
Modulation	QPSK		
Space- time Coding	G2 and G4		
Guard interval	800 ns (16 samples)		
OFDM symbol duration	64(size of FFT)+16(guard		
	band)=80		
Number of subcarrier	64		
Channel model	Rayleigh		
Bandwidth	20 MHz		
Delay time	200 ns(Maximum)		
channel estimation	LSE		
method			

SISO-OFDM system provides 21 dB coding gain compared to uncoded SISO-OFDM at 10⁻⁴.

Fig. 5 shows the performance of SIMO-OFDM system. Coded SIMO-OFDM system(1 Tx and 2 Rx) provides 20 dB coding gain over uncoded SIMO-OFDM system with same diversity and Coded SIMO-OFDM system(1 T_x and 4 R_x) provides 13 dB coding gain over uncoded SIMO-OFDM system with same diversity at a BER of 10⁻⁶. And there is around 7 dB gain for increasing R_x antenna from 2 to 4 of coded SIMO-OFDM system

Fig. 6 shows the performance of MISO-OFDM system. Coded MISO-OFDM system (2 T_x and 1 R_x) provides 17 dB coding gain over uncoded MISO-OFDM system with same diversity and Coded MISO-OFDM system (4 T_x and 1 R_x) provides 12 dB coding gain over uncoded MISO-OFDM system with same diversity at BER of 10⁻⁶. And there is around 6 dB gain for increasing T_x antenna from 2 to 4 of coded MISO-OFDM system.

Fig. 7 shows the performance of MIMO-OFDM system with 2 T_x and 2 or 4 R_x . Coded MIMO-OFDM system (2 T_x and 2 R_x) provides 13 dB coding gain compared to uncoded MIMO-OFDM system with same diversity and Coded MIMO-OFDM system (2 T_x and 4 R_x) provides 12 dB coding gain over uncoded MIMO-OFDM system with same diversity at BER of 10⁻⁶. And there is around 6 dB gain for

Fig. 4 BER performance comparision of coded SISO-OFDM and uncoded SISO-OFDM system

Fig. 5 BER performance comparision of coded SIMO-OFDM and uncoded SIMO-OFDM system

increasing R_x antenna from 2 to 4 of coded MISO-OFDM system.

Fig. 8 shows the performance of MIMO-OFDM system with 4 T_x and 2 or 4 R_x . Coded MIMO-OFDM system (4 T_x and 2 R_x) provides 11 dB coding gain compared to uncoded MIMO-OFDM system with same diversity and Coded MIMO-OFDM system (4 T_x and 4 R_x) provides 13 dB coding gain compared to uncoded MIMO-OFDM system with same diversity at BER of 10^{-6} . And there is around 1 dB gain for increasing R_x antenna from 2 to 4 of coded MISO-OFDM system.

IV. CONCLUSION

From the simulations results, researcher observes that coded SISO-OFDM, SIMO-OFDM, MISO-OFDM and MIMO-OFDM systems make a significant difference over uncoded SISO-OFDM, SIMO-OFDM, MISO-OFDM and MIMO-OFDM systems and coded MIMO-OFDM systems have best performance. And coded MIMO-OFDM system with 2 $\rm T_x$ and $\rm 4R_x$ or with 4 $\rm T_x$ and $\rm 2R_x$ or with 4 $\rm T_x$ and 4R_x has same performance.

Fig. 6 BER performance comparision of coded MISO-OFDM and uncoded MISO-OFDM system

ACKNOWLEDGMENT

The authors would like to thank the reviewers for the suggestions which help to improve the quality of this paper.

REFERENCES

- [1] Van Nee, R., and R. Prasad, OFDM for Wireless Multimedia communication, Norwood, MA: Artech House, 2000.
- [2] Prasad, R., Universal Wireless Personal Communication, Norwood, MA: Artech House. 1998.
- [3] Mohinder Jankiraman, Space time codes and MIMO systems, Norwood, MA: Artech House, 2004.
- [4] S.M. Alamouti, "A simple transmit diversity scheme for wireless communications," IEEE J. Selected. Areas Commu., vol 16, no. 8, pp. 1451-1458, Oct. 1998.
- [5] Vahid Tarokh, Hamid Jafarkhani and A. Robert Calderbank, "Space time block coding for wireless communication: performance result," IEEE J. Select Areas Commun., vol. 17, pp. 451-460, Mar. 1999.
- [6] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes(1)," ICC'93, pp 1064-1074, 1993.
- [7] C. Berrou and A. Giavieux, "Near optimum error correcting coding and decoding: Turbo-codes," IEEE Trans. Commun., vol 44, no. 10, Oct, 1996: 1261-1271 p.
- [8] C. Berrou and A. Giavieux. Refections on the prize paper:, " near optimum error correcting coding and decoding turbo codes," IEEE Inform. Theory Society Newsletter, vol. 48, no.2. June, 1998:23-31 P.
- [9] A. Stefanov and T.M. Duman, "Turbo-coded modulation for systems with trasmit and receive antenna diversity over block fading channels: system model, decoding approaches and practical consideration," IEEE journal on selected areas in communication, vol.19, no. 5, May 2001.
- [10] Christian Schlegel and Alex Grant, "Differential space-time turbo codes," IEEE Trans. Inform. Theory, vol. 49, no.9, September 2003
- [11] Ezio Biglieri, Alessandro Nordio, Giorgio Taricco, "Doubly iterative decoding of space time turbo codes with a large number of antennas," IEEE Trans. On Commun., vol. 53, no. 5, May 2005
- [12] Gerhard Bauch and Naofal Al- Dhahir, "Reduce-complexity space time turbo equalization for frequency selective mimo channel," IEEE Trans. On Commun., vol. 1, no.4, Oct 2002
- [13] Ging, Y., and K.B. Letaief, "Performance Evaluation and Analysis of Space-Time Coding in Unequalized Multipath Fading Links," IEEE Trans. On Commun., Vol 48, No.11 Nov 2000
- [14] Bolcskei, H., D. Gesbert, and A.J. Paulraj, "On the Capacity of OFDM- Based Spatial Multiplexing System," IEEE Trans. On Commun., Vol 50, N. 2, February 2002.
- [15] Hassibi, B., and B. Hochwald, "High- Rate Codes that are Linear in Space and Time," IEEE Trans. Inf. Theory, vol. 48, No. 7, pp. 1804-1824.
- [16] Liew, T.H., Choi, B.J.; Hanzo, L., "Comparative study of concatenated turbo coded and space time block coded as well as space time trellis coded OFMD,: VTC, IEEE VTS, 53rd page(s): 781-785, vol. 2, Spring 2001
- [17] Ben Lu; Xiaodong Wang; Ye Li, "Iterative receivers for space-time block coded OFDM systems in dispersive fading channels," GLOBECOM, Page(s): 514 - 518 vol.1 2001
- [18] Alias, M.Y.; Guo, F.; Ng, S.X.; Liew, T.H.; Hanzo, L., "LDPC and turbo coding assisted space-time block coded OFDM," VTC 2003-Spring, Page(s): 2309 - 2313 vol.4
- [19] Hangjun Chen; Xinmin Deng; Haimovich, A., "Layered Turbo Space-Time Coded MIMO-OFDM Systems for Time Varying Channels," GLOBECOM, Page(s): 1831 - 1836 vol.4, 2003
- [20] Ng, S.X.; Liew, T.H.; Hanzo, L., "Space-time block coded and IQ-interleaved TCM, TTCM, BICM AND BICM-ID assisted OFDM," VTC 2003-Fall, Page(s): 1492 - 1496 Vol.3, 2003
- [21] Sumei Sun; Tjeng Thiang Tjhung; Yuan Li, "An iterative receiver for groupwise bit-interleaved coded QAM STBC OFDM," VTC 2004-Spring- 2004, Page(s): 1256 - 1260 Vol.3

Fig. 7 BER performance comparision of coded MIMO-OFDM system($2T_x$ & 2/4 R_x) and uncoded MIMO-OFDM system with same diveristy.

- [22] Yantao Qiao; Yue Wang; Songyu Yu; Donghua Wang, "Robust progressive image transmission based on multi-rate turbo code and space-time OFDM," Consumer Electronics, 2005. (ISCE 2005), Page(s): 128 – 133
- [23] Yejun He; Guangxi Zhu; Bijun Zhang; Zhenming Zhang; Xia Li, "The performance of STBC coded MIMO-OFDM system based on turbo product codes," Wireless Communications, Networking and Mobile Computing, 2005. Page(s): 653 – 656 Vol.1

Fig. 8 BER performance comparision of coded MIMO-OFDM system(4T $_{\rm x}$ & 2/4 R $_{\rm x}$) and uncoded MIMO-OFDM system with same diveristy

- [24] Loskot, P.; Beaulieu, N.C., "Approximate performance analysis of coded OSTBC-OFDM systems over arbitrary correlated generalized ricean fading channels," Communications, IEEE Transactions on Volume: 57, Issue: 8, Page(s): 2235 2238, 2009
- [25] M.M.Kamruzzaman, "Performance of Turbo coded wireless link for SISO, SIMO, MISO and MIMO system," proceeding of 4th IEEE ICCSIT, vol. 3 Page 559-564, Jun 2011.