External Sorting

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Why Sort?

- A classic problem in computer science!
- Data requested in sorted order
 - e.g., find students in increasing gpa order
- Sorting is first step in bulk 18 ading B+ tree index.
- Sorting useful fortpstimpinating dupplicate copies in a collection of records (Why?)
 Add WeChat powcoder
 Sort-merge join algorithm involves sorting.
- Problem: sort 1Gb of data with 1Mb of RAM.
- What is the minimum number of buffer pages needed to sort a file with arbitrary size?
 - Three.

2-Way Sort: Requires 3 Buffers

- Pass 1: Read a page, sort it, write it.
 - only one buffer page is used
- Pass 2, 3, ..., etc.: Assignment Project Exam Help
 - three buffer pages used.

Two-Way External Merge Sort

- Each pass we read + write each page in file.
- N pages in the file signment Project Figure I number of passes

$$= \lceil \log_2 N \rceil + 1$$
 https://powcoder.com

So toal cost is:

$$2N(\lceil \log_2 N \rceil + 1)$$

Idea: Divide and conquer: sort subfiles and merge

General External Merge Sort

- **►** More than 3 buffer pages. How can we utilize them?
- To sort a file with N pages using B buffer pages:
 - Pass 0: use *B* buffer pages. Produce $\lceil N/B \rceil$ sorted runs of *B* pages each.
 - Assignment Project Exam Help etc.: merge *B-1* runs.

Assignment Project Exam Help

https://powcoder.com
Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

23/3/20

Cost of External Merge Sort

- Number of passes:
- Cost = 2N * (# of passes) $1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil$
- E.g., with 5 buffer pages, to sort 108 page file: Assignment Project Exam Help
 Pass 0: \[108 / 5 \] = 22 sorted runs of 5 pages each
 - Pass 0: $\lceil 108 / 5 \rceil = 22 \text{ sorted runs of 5 pages each}$ (last run is of 5 pages) (last run
 - Pass 1: 「22 Add ₩66brtteplorwoschefr20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages

Number of Passes of External Sort

N	B=3	B=5	B=9	B=17	B=129	B=257
100 As	si <mark>7</mark> nme	n t Proj	ect Exa	am <mark>2</mark> Hel	p 1	1
1,000	10	5	4 oder.co	3	2	2
10,000	13	/	9	4	2	2
100,000	And	W geCha	it powc	oder	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

Speed-up: Internal Sort Algorithm

Quicksort is a fast way to sort in memory.

An alternative is "tournament sort" (a.k.a. "heapsort"): average run length is 2B.

- Top: Ressignment Project Exam Help
 - Output: move smallest record to output buffer
 - Read in a newhetpest//powcoder.com
 - insert r into "heap"
 - if r not smalles Add WeChat powcoder
 - then GOTO Output
 - else
 - remove *r* from "heap"
 - output "heap" in order; GOTO Top (next run)

This can be only effectively used in the first pass. Virtually, make B be 2B.

I/O for External Merge Sort

- ... longer runs often means fewer passes!
- Actually, do I/O a page at a time
- In fact, readignalent pfipages as quentially!
- Suggests weishould make each buffer (input/output) be a block of pages.

 Add WeChat powcoder

 – But this will reduce fan-out during merge passes!

 - In practice, most files still sorted in 2-3 passes.

Number of Passes of Optimized Sort

N	B=1,000	B=5,000	B=10,000
100	$1_{\mathbf{p}}$.	1	1
1,000 Assign	ıment Proje	ct Exam He	^{21p} 1
10,000 ht	tps://powco	der.20m	1
100,000	dd WeChat	2	2
1,000,000	dd wechat	powcoder	2
10,000,000	4	3	3
100,000,000	5	3	3
1,000,000,000	5	4	3

 \blacksquare Block size = 32, initial pass produces runs of size 2B.

Double Buffering

To reduce wait time for I/O request to complete, can *prefetch* into `shadow block'.

Potentially, more passes; in practice, most files
 <u>still</u> systighineht Project Exam Help

B main memory buffers, k-way merge

Sorting Records!

- Sorting has become a blood sport!
 - Parallel sorting is the name of the game ...
- Datamation: Sort 1 M records of Fize 100 bytes
 - Typical DBMS: several minutes minutes https://powcoder.com
 World record: several seconds
 - - 12-CPU SGI Machine, betaken 200 RAM
- New benchmarks proposed:
 - Minute Sort: How many can you sort in 1 minute?

Using B+ Trees for Sorting

- Scenario: Table to be sorted has B+ tree index on sorting column(s).
- Idea: Can retrieve records in order by traversing leaf pages.

https://powcoder.com

* Is this a good idea?

• Cases to consider: Add WeChat powcoder

 B+ tree is clustered Good idea!

 B+ tree is not clustered Could be a very bad idea!

Clustered B+ Tree Used for Sorting

Cost: root to the left-most leaf, then retrieve all leaf pages (Alternatives) ment Project Exam Help (Directs search)
 If Alternative 2 is used?://powcoder.com Additional cost of retrieving data records: WeChat powcoder each page fetched just once.

Data Entries ("Sequence set")
Data Records

► Always better than external sorting!

Unclustered B+ Tree Used for Sorting

Alternative (2) for data entries; each data entry contains *rid* of a data record. In general, one I/O per data record!

Data Records

External Sorting vs. Unclustered Index

N	Sorting	p=1	p=10	p=100
100	200 Assignm	100 ent Project	1,000 Exam Help 10,000	10,000
1,000	2,000	1,000	10,000	100,000
10,000	40,000 http:	si/powcode	160,000	1,000,000
100,000	600,000 <mark>Add</mark>	We,Obat po	1yddd 600	10,000,000
1,000,000	8,000,000	1,000,000	10,000,000	100,000,000
10,000,000	80,000,000	10,000,000	100,000,000	1,000,000,000

p: # of records per page

 \blacksquare B=1,000 and block size=32 for sorting

 \Rightarrow p=100 is the more realistic value.

Summary

- External sorting is important; DBMS may dedicate part of buffer pool for sorting!
- External merge sort minimizes disk 1/0 cost:
 - Pass 0: Produtes:someocodos.cofisize B (# buffer pages). Later passes: **merge** runs.

 Add WeChat powcoder

 – # of runs merged at a time depends on **B**, and **block**
 - size.
 - Larger block size means less I/O cost per page.
 - Larger block size means smaller # runs merged.
 - In practice, # of passes rarely more than 2 or 3.

Summary, cont.

- Choice of internal sort algorithm may matter:
 - Quicksort: Quick!
 - Heap/tournament sort: slower (2x), longer runs
 Assignment Project Exam Help
- The best sorts are wildly fast:

 https://powcoder.com
 Despite 40+ years of research, we're still
 - Despite 40+ years of research, we're still improving! Add WeChat powcoder
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.