Project Name: Photo Caption Generation

The model architecture is as below. The model has three parts.

1. Part 1: CNN which is used for image feature extraction. This is a 16-layer VGG model excluding the last prediction layer. Hence for feature extraction only the first 15 layers are used. The output is a feature matrix (1x4096) for each of the input images.

Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	(None, 224, 224, 3)	0	
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792	
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928	
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0	
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856	
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584	
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0	
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168	
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080	
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080	
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0	
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160	
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808	
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808	
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0	
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808	
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808	
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808	
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0	
flatten (Flatten)	(None, 25088)	0	
fc1 (Dense)	(None, 4096) 102764544		
fc2 (Dense)	(None, 4096) 16781312		
	134,260,544		
	134,260,544		
	0		

2. Part 2: RNN which is used for caption generation.

Layer (type)	Output Shape	Param #	Connected to
input_2 (InputLayer)	(None, 34)	0	
input_1 (InputLayer)	(None, 4096)	0	
embedding_1 (Embedding)	(None, 34, 256)	1940224	input_2[0][0]
dropout_1 (Dropout)	(None, 4096)	0	input_1[0][0]
dropout_2 (Dropout)	(None, 34, 256)	0	embedding_1[0][0]
dense_1 (Dense)	(None, 256)	1048832	dropout_1[0][0]
lstm_1 (LSTM)	(None, 256)	525312	dropout_2[0][0]
add_1 (Add)	(None, 256)	0	dense_1[0][0], lstm_1[0][0]
dense_2 (Dense)	(None, 256)	65792	add_1[0][0]
dense_3 (Dense)	(None, 7579)	1947803	dense_2[0][0]
Total params:		5,527,963	
Trainable params:		5,527,963	
Non-trainable params:		0	

3. Part 3: Part 1 and Part 2 are merged to make a final prediction i.e. to generate a caption for any new image.

Model Architecture Diagram:

Figure 1: CNN

Figure 2: Caption Model with Image feature input

Model Training (CPU Only): Dropout probability=0.5

Model Training (CPU+ GPU): Dropout probability=0.5

The execution time of 12 epochs drops from 25.6 hours (CPU only) to 5.6 hours (with GPU) which is a 4.57 times improvement. Below graph shows execution time over the epochs for CPU (only) and GPU.

Loss variation with Dropout Probability (CPU+ GPU):

As expected the training loss is found to be increasing with increase in dropout probability.

Test Results:

The prediction is done using model from epoch 11[model_10.h5]. We observed the Loss to stabilize after 11th epoch hence used the same model.

Dropout Probability: 0.5

True Captions:

- 1. the dogs are in the snow in front of fence
- 2. the dogs play on the snow
- 3. two brown dogs playfully fight in the snow
- 4. two brown dogs wrestle in the snow
- 5. two dogs playing in the snow

Predicted Caption:

dog is running through the snow

BLEU Score:

BLEU-1: 0.520361

BLEU-2: 0.264667

BLEU-3: 0.179006

BLEU-4: 0.077796

Dropout Probability: 0.2

Predicted Caption:

dog is jumping over hurdle

BLEU Score:

BLEU-1: 0.515793

BLEU-2: 0.272046

BLEU-3: 0.182864

BLEU-4: 0.082574

Details to execute the code:

Please access the below path to execute and verify the code. The required permission is provided to the folder. The input files and models generated are present in the folder.

/home/students/kollive/Project