Lecture 3:

Maximum Likelihood Estimation (MLE), Linear Regression, Linear Models

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Madula	Marring up Entropy and Information Days Theorem
Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	MLE, Lin Regression, Model selection: Comparing Distributions
	Module 4	Model Selection: Bayesian Signal Detection
	Module 5	Variational Bayes, Expectation Maximization
	Module 6	Stochastic Processes
	Module 7	Monte Carlo Methods
	Module 8	Markov Models, Graphs
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	TBD (GNNs)
	Module 15	TBD (RNNs and LSTMs)
	Module 16	TBD (Transformer and LLMs)

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

Bayesian:

likelihood function

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$
evidence (const wrt q)

idea

parameter θ

"Classical" approach:

Maximum Likelihood Estimation

$$x = \{x_1, x_2, \dots x_i, \dots, x_N\}$$

 $x = \{x_1, x_2, \dots x_i, \dots, x_N\}$ data set of N independent observations

 $\int P(\theta|D) \ d\theta = 1$

$$\theta = \{\theta_1, \theta_2, \dots \theta_i, \dots, \theta_M\}$$
 set of parameters θ

$$\theta = q$$
 (binomial)

$$\theta = \{\mu, \sigma^2\}$$
 (normal dist)

$$f_i(\theta, x_i)$$

distribution f_i from which x_i has been drawn

"Classical" approach:

Maximum Likelihood Estimation

idea

$$x = \{x_1, x_2, ... x_i, ..., x_N\}$$

 $x = \{x_1, x_2, \dots x_i, \dots, x_N\}$ data set of N independent observations

$$\theta = \{\theta_1, \theta_2, \dots \theta_i, \dots, \theta_M\}$$
 set of parameters θ

$$f_i(\theta, x_i)$$

distribution f_i from which x_i has been drawn

$$L(\theta, x) = \prod_{i=1}^{N} f_i(\theta, x_i)$$
 joint density

goal: finding those $\hat{\theta}$ that maximize $L(\theta, x)$

$$\hat{\theta} = \frac{argmax}{\theta} \{ L(\theta, x) \}$$

We aim to find the most likely one!

"Classical" approach:

Maximum Likelihood Estimation

idea

$$L(\theta, x) = \prod_{i=1}^{N} f_i(\theta, x_i)$$
 joint density

goal: finding those $\hat{\theta}$ that maximize $L(\theta, x)$ $\hat{\theta} = \frac{argmax}{\theta} \{L(\theta, x)\}$

$$\widehat{\theta} = \frac{argmax}{\theta} \{ L(\theta, x) \}$$

data set parameter $f_i(\theta, x_i)$: density function

- often we use $l(\theta, x) = ln[L(\theta, x)]$ for convenience note:

- we find $\hat{\theta}$ via $\frac{\partial L(\theta,x)}{\partial \theta_i} = 0$ for all θ_i

- equivalent to MAP assuming an uniform prior
- evaluate, if extreme is indeed a maximum:

Hessian matrix
$$H = \left\{ \frac{\partial^2 l(\theta, x)}{\partial \theta_i \partial \theta_j} \right\}$$
 has to be **locally** (around $\hat{\theta}$) **concave**

- we can add constrains using Lagrangian Multipliers

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

example I: binomial distribution

examples

$$x = \{HHTHTTT \dots\}$$
 $\theta = q$

$$f(q|x) = \binom{n}{k}q^k(1-q)^{n-k}$$
 equivalent to **MAP** assuming **an uniform prior** $\frac{P(D|\theta)P(\theta)}{P(D)}$

$$\frac{df}{dq} = \binom{n}{k} \left[kq^{k-1} (1-q)^{n-k} - q^k (n-k) (1-q)^{n-k-1} \right] = 0$$

ignoring
$$q = 1$$
 and $q = 0$: $k(1-q) = q(n-k)$

$$q_{best} = \frac{k}{n}$$

$$q_0 = \frac{k}{n}$$

$$q = \frac{k}{n} \pm \sqrt{\frac{q_0(1 - q_0)}{n}}$$

$$\sigma = \sqrt{\frac{q_0(1 - q_0)}{n}}$$

last time:

Lagrange approximation from BPE

example II: normal distribution

examples

$$x = \{x_1, x_2, \dots x_i, \dots, x_N\}$$
 $\theta = \{\mu, \sigma^2\}$

$$f_i(\theta, x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x_i - \mu)^2}{\sigma^2}}$$

$$L(\theta, x) = \prod_{i=1}^{N} f_i(\theta, x_i) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2}$$

$$l(\theta, x) = \ln[L(\theta, x)] = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\frac{\partial l(\theta, x)}{\partial \sigma} = -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 = 0$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

example II: normal distribution

$$x = \{x_1, x_2, \dots x_i, \dots, x_N\}$$
 $\theta = \{\mu, \sigma^2\}$

$$f_i(\theta, x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}}$$

$$L(\theta, x) = \prod_{i=1}^{N} f_i(\theta, x_i) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2}$$

$$l(\theta, x) = \ln[L(\theta, x)] = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\frac{\partial l(\theta, x)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0 \qquad \qquad \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

examples

example II: normal distribution

idea

examples

$$x = \{x_1, x_2, \dots x_i, \dots, x_N\}$$
 $\theta = \{\mu, \sigma^2\}$

$$f_i(\theta, x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x_i - \mu)^2}{\sigma^2}}$$

$$L(\theta, x) = \prod_{i=1}^{N} f_i(\theta, x_i) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2}$$

$$l(\theta, x) = \ln[L(\theta, x)] = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - \frac{1}{N} \sum_{i=1}^{N} x_i \right)^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \frac{1}{N^2} \sum_{i=1}^{N} \sum_{i=1}^{N} x_i x_j$$

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

idea: data point y_k in N dimensional feature space

classical model regularizations extensions

$$y_k = f(x_1, ... x_n, ... x_N) + \epsilon_k$$
 for each data point k

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon_k$$

y: response
 x: regressors (assumed to be independent)
 β: factors (how a regressor contributes to the response)
 β0: intercept
 error (stochasticity of the data, assumed to be normally dist.)

$$\begin{pmatrix} y_1 \\ \dots \\ y_k \\ \dots \\ y_K \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1n} & \dots & x_{1N} \\ \dots & & & & & & \\ 1 & x_{k1} & & & & \\ 1 & \dots & & & & \\ 1 & x_{K1} & x_{K2} & \dots & x_{Kn} & \dots & x_{KN} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_n \\ \dots \\ \beta_N \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_k \\ \dots \\ \varepsilon_K \end{pmatrix}$$

$$Y = X\beta + \varepsilon$$

$$Y = X\beta + \varepsilon$$

response

x: regressors (assumed to be independent)

β: factors (how a regressor contributes to the response)

 β_0 : intercept

ε: error (stochasticity of the data, assumed to be

normally dist.)

classical model

regularization extensions

fitting: finding the best β in terms of minimizing the errors

$$(Y - X\beta)^T (Y - X\beta) = \sum_{k} \varepsilon_k^2$$

$$\frac{\partial}{\partial \beta} \sum_{k} \varepsilon_{k}^{2} = 0$$

$$\beta_{best} = \hat{\beta} = (X^T X)^{-1} X^T Y$$

the model

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^TY$$

X and Y are all observables

hat matrix
$$\mathbf{H} \coloneqq \mathbf{X} \big(\mathbf{X}^T \mathbf{X} \big)^{-1} \mathbf{X}^T$$

$$H = H^T$$
 (symmetry)
 $HH = H \rightarrow H^n = H$ (idempotency)

$$Y = X\beta + \varepsilon$$

: response

x: regressors (assumed to be independent)

β: factors (how a regressor contributes to the response)

 β_0 : intercept

ε: error (stochasticity of the data, assumed to be

normally dist.)

classical model

regularizations extensions

evaluating the result:

$$\hat{\varepsilon} = Y - X\hat{\beta} = Y - \hat{Y} = (I - H)Y$$

$$\hat{\varepsilon}^T \hat{\varepsilon} = [(I - H)Y]^T (I - H)Y = Y^T (I - H)^T (I - H)Y = Y^T (I - H)Y$$

hat matrix
$$H := X(X^TX)^{-1}X^T$$

sum of squared errors (SSE)

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

$$\hat{\beta} = \frac{argmin}{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 \right\}$$

classical model regularizations extensions

λ Lagrangian Multiplier

$$\beta^{\hat{}} = \frac{argmin}{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 + \lambda \|\beta\|^1 \right\}$$
the Loss Function
$$L(X, Y, \lambda)$$

L1 or Least absolute shrinkage and selection operator

- encourages **sparsity** of β
- reduces **overfitting**

$$\beta = \frac{argmin}{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 + \lambda \|\beta\|^2 \right\}$$

L2 or Ridge

- penalizes large β

$$\beta = \frac{argmin}{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 + \lambda \max(\mathbf{0}, -\beta) \right\} - \text{penalizes negative } \beta$$

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

extensions

general: linear refers to the factors

$$y_k = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

2D plane in 3D space

$$y_k = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2^2$$

2D parabolic

$$y_k = \beta_0 + \beta_1 x_1^2 - \beta_2 x_2^2$$
 2D hyperbolic

...and many more...

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon_k$$
 the classical model is very limiting

extensions

Linear Models

general: linear refers to the factors

- x_n can be subject to any basis function $\varphi_n(x_n)$
- the matrix X is then called **design matrix** $\phi_{i,j} = \varphi_i(x_i)$

$$-\widehat{\beta} = (X^T X)^{-1} X^T Y \rightarrow (\phi^T \phi)^{-1} \phi^T Y$$
 is called **normal equations**

most textbooks: rows = number of observations/samples (here K) columns = number of features (here N) \rightarrow one φ_i per column j

- 1D curve fit
$$\rightarrow$$
 one feature x : $y_k = \beta_0 + \sum_{n=1}^N \beta_n \, \varphi_n(x_n) + \epsilon_k$ polynomial fit $y_k = \beta_0 + \sum_{n=1}^N \beta_n x_{k,n}^n + \epsilon_k$

Outline

Maximum Likelihood Estimation (MLE)

- idea
- examples

Linear Models

- classical model
- regularization
- extensions

We now want to apply MLE to our problem and see how it leads to the same structure for $\hat{\beta}$

$$Y = X\beta + \varepsilon$$

function $y(x, \beta)$

arepsilon: additive gaussian noise around $\mu=0$

we aim to predict a target value \hat{y}

$$\widehat{\mathbf{y}} = \mathbf{y}(\mathbf{x}, \boldsymbol{\beta}) + \varepsilon$$

for each data point k

$$p(\hat{y}|\beta,\sigma) = \prod_{k=1}^{K} N(\hat{y}_k|\beta^T \phi(x_k),\sigma)$$

note: we assume $\sigma_k = const = \sigma$ for simplification

$$\ln[p(\hat{y}|\beta,\sigma)] = -\frac{K}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=1}^{K} [\hat{y}_k - \beta^T \phi(x_k)]^2$$

We want to find $\hat{\beta}$ via MLE: gradient of $\ln[p(\hat{y}|\beta,\sigma)]$ wrt β

$$grad\{\ln[p(\hat{y}|\beta,\sigma)]\}_{\beta} = \frac{1}{\sigma^2} \sum_{k=1}^{K} [\hat{y}_k - \beta^T \phi(x_k)] \phi(x_k)^T$$

setting the gradient to zero:

$$\widehat{\boldsymbol{\beta}} = (\phi^T \phi)^{-1} \phi^T \widehat{y}$$

as before

for different
$$\sigma_k$$
 we find

$$\chi^2 = \sum_{k=1}^K \left(\frac{\hat{y}_k - \beta^T \phi(x_k)}{\sigma_i} \right)^2$$

Berkeley Naive Bayes, Bayesian Parameter Estimation, MAP

Thank you very much for your attention!

