AUTOMATED REASONING- INFERENCE AND KNOWLEDGE PROCESSING

Reasoning in Logic

Contents

- Review of Logic and Propositional Logic Concepts
- Equivalence Laws
- Reasoning
 - Truth Tables method
 - Natural deduction method
 - Axiomatic System
 - Resolution Refutation Method
 - Semantic Tableaux System

Recall: Logic and Propositions

- Logic is a study of principles used to
 - distinguish correct from incorrect reasoning.
- Formally it deals with
 - the notion of truth in an abstract sense and is concerned with the principles of valid inferencing.
- A proposition in logic is a declarative statements which are either true or false (but not both) in a given context. For example,
 - "Nevin is a female",
 - "Nevin loves Chris" etc.

Recall: Logic and Propositions

- Given some propositions to be true in a given context,
 - logic helps in inferencing new proposition, which is also true in the same context.
- Suppose we are given a set of propositions such as
 - "It is hot today" and
 - "If it is hot it will rain", then
 - we can infer that
 - "It will rain today".
- We can translate
 - simple declarative and
 - conditional (if .. then) natural language sentences into its corresponding propositional formulae.

Recall: Well-formed formula

- Propositional Calculus (PC) is a language of propositions that basically refers
 - to set of rules used to combine the propositions to form compound propositions using logical operators often called connectives such as Λ , V, \sim , \rightarrow , \leftrightarrow
- Well-formed formula is defined as:
 - An atom is a well-formed formula.
 - If α is a well-formed formula, then $\sim\!\alpha$ is a well-formed formula.
 - If α and β are well formed formulae, then $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ are also well-formed formulae.
 - A propositional expression is a well-formed formula if and only if it can be obtained by using above conditions.

Interpretation and Truth Tables

- Truth table gives us operational definitions of important logical operators.
 - By using truth table, the truth values of well-formed formulae are calculated.
- Truth table elaborates all possible truth values of a formula.
- The meanings of the logical operators are given by the following truth table.

Р	Q	~P	PΛQ	ΡVQ	$P \rightarrow Q$	$P \leftrightarrow Q$
Т	T	F	T	T	T	Т
Т	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Equivalence Laws

Commutation

- 1. $P \Lambda Q$
- 2. P V Q

 \cong

- $Q \Lambda P$
- QVP

Association

- 1. $P \Lambda (Q \Lambda R)$
- \cong

(P Λ Q) Λ R

- 2. P V (Q V R)
- \cong

(P V Q) V R

Double Negation

 \cong

Ρ

Distributive Laws

- 1. $P \Lambda (Q V R) \cong$
- 2. $P V (Q \Lambda R)$

- $(P \Lambda Q) V (P \Lambda R)$
 - $(P V Q) \Lambda (P V R)$

De Morgan's Laws

- 1. $\sim (P \Lambda Q)$
- 2. $\sim (P \vee Q)$

 \cong

 $\sim P \ V \sim Q$ $\sim P \ \Lambda \sim Q$

Law of Excluded Middle

 $P V \sim P$

 \cong

T (true)

Law of Contradiction

 $P \Lambda \sim P$

 \cong

F (false)

Key PL Concepts

- PL deals with
 - the validity, satisfiability and unsatisfiability of a formula
 - derivation of a new formula using equivalence laws.
- Each row of a truth table for a given formula is called its interpretation under which a formula can be true or false.
- A formula α is called **tautology** if and only
 - if α is true for all interpretations.
- A formula α is also called **valid** if and only if
 - it is a tautology.

Key PL Concepts (2)

- Let α be a formula and if there exist at least one interpretation for which α is true,
 - then α is said to be **consistent** (satisfiable) i.e., if \exists a model for α , then α is said to be consistent .
- A formula α is said to be inconsistent (unsatisfiable), if and only if
 - lpha is always false under all interpretations.

Example

- Show that "It is humid today and if it is humid then it will rain so it will rain today" is a valid argument.
- **Solution:** Let us symbolize English sentences by propositional atoms as follows:

A : It is humid

B: It will rain

Formula corresponding to a text:

$$\alpha: ((A \rightarrow B) \land A) \rightarrow B$$

• Using truth table approach, one can see that α is true under all four interpretations and hence is valid argument.

Truth Table for the Example

Truth Table for $((A \rightarrow B) \land A) \rightarrow B$							
A	В	$A \rightarrow B = X$	$X \Lambda A = Y$	$Y \rightarrow B$			
T	T	T	T	T			
Т	F	F	F	Т			
F	T	T	F	Т			
F	F	T	F	Т			

Proof and Deduction by Truth Tables (2)

- Truth table method for problem solving is
 - simple and straightforward and
 - very good at presenting a survey of all the truth possibilities in a given situation.
- It is an easy method to evaluate
 - a consistency, inconsistency or validity of a formula, but the size of truth table grows exponentially.
 - Truth table method is good for small values of n.
- For example, if a formula contains n atoms, then the truth table will contain 2ⁿ entries.
 - A formula $\alpha: (P \ \Lambda \ Q \ \Lambda \ R) \to (Q \ V \ S)$ is **valid** can be proved using truth table.
 - A table of 16 rows is constructed and the truth values of α are computed.
 - Since the truth value of α is true under all 16 interpretations, it is valid.

Proof and Deduction by Truth Tables (3)

- We notice that if P Λ Q Λ R is false, then α is true because of the definition of \rightarrow .
- Since P Λ Q Λ R is false for 14 entries out of 16, we are left only with two entries to be tested for which α is true.
 - So in order to prove the validity of a formula, all the entries in the truth table may not be relevant.

- P means "It is hot"
- Q means "It is humid"
- R means "It is raining"
- \square P $^{\wedge}$ Q => R
 - "If it is hot and humid, then it is raining"
- □ Q => P
 - "If it is humid, then it is hot"
- \square Q
 - "It is humid."
 - Show that(((P $^{\land}$ Q => R) $^{\land}$ (Q => P)) $^{\land}$ Q) | -R (show that it is raining can be proved)

Other Methods for Proof and Deduction

- Other methods which are concerned with proofs and deductions of logical formula are as follows:
 - Natural Deductive System
 - Resolution Refutation Method
 - Axiomatic System
 - Semantic Tableaux Method

Natural deduction method - ND

- ND is based on the set of few deductive inference rules.
- The name natural deductive system is given because it mimics the pattern of natural reasoning.
- It has about 10 deductive inference rules.

Conventions:

- E for Elimination.
- $P_k P_k$, $(1 \le k \le n)$ are atoms.
- α_{k} (1 \leq k \leq n) and β are formulae.

Natural Deduction Rules

Rule 1: I- Λ (Introducing Λ) (And-Introduction)

$$I-\Lambda: If P_1, P_2, ..., P_n then P_1 \Lambda P_2 \Lambda ... \Lambda P_n$$

Interpretation: If we have hypothesized or proved P_1 , P_2 , ... and P_n , then their conjunction $P_1 \wedge P_2 \wedge ... \wedge P_n$ is also proved or derived.

Rule 2: E- Λ (Eliminating Λ) (And-Elimination)

$$E-\Lambda$$
: If $P_1 \wedge P_2 \wedge ... \wedge P_n$ then P_i ($1 \le i \le n$)

Interpretation: If we have proved $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$, then any P_i is also proved or derived. This rule shows that Λ can be eliminated to yield one of its conjuncts.

Rule 3: I-V (Introducing V) (Or-Introduction)

I-V: If
$$P_i$$
 ($1 \le i \le n$) then $P_1 \lor P_2 \lor ... \lor P_n$

Interpretation: If any Pi $(1 \le i \le n)$ is proved, then $P_1 \lor ... \lor P_n$ is also proved.

Rule 4: E-V (Eliminating V) (Or-Elimination)

E-V : If
$$P_1 \vee ... \vee P_n$$
, $P_1 \rightarrow P$, ..., $P_n \rightarrow P$ then P

Interpretation: If $P_1 \vee ... \vee P_n$, $P_1 \rightarrow P$, ..., and $P_n \rightarrow P$ are proved, then P is proved.

Natural Deduction Rules (2)

```
Rule 5: I- \rightarrow (Introducing \rightarrow)
     1- \rightarrow : \text{If from } \alpha_1, \ldots, \alpha_n \text{ infer } \beta \text{ is proved then } \alpha_1 \wedge \ldots \wedge \alpha_n \rightarrow \beta \text{ is}
     proved
Interpretation: If given \alpha_1, \alpha_2, ... and \alpha_n to be proved and from these we
     deduce \beta then \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \rightarrow \beta is also proved.
Rule 6: E- \rightarrow (Eliminating \rightarrow) - Modus Ponen
E- \rightarrow : If P_1 \rightarrow P, P_1 \text{ then } P
Rule 7: I \rightarrow (Introducing \leftrightarrow)
I \rightarrow : If P_1 \rightarrow P_2, P_2 \rightarrow P_1 \text{ then } P_1 \leftrightarrow P_2
Rule 8: E-\leftrightarrow (Elimination \leftrightarrow)
     E-\leftrightarrow : If P_1 \leftrightarrow P_2 then P_1 \rightarrow P_2, P_2 \rightarrow P_1
Rule 9: I- ∼ (Introducing ∼)
     I- \sim : If from P infer P<sub>1</sub> \Lambda \sim P<sub>1</sub> is proved then \simP is proved
Rule 10: E- \sim (Eliminating \sim)
     E- \sim : If from \sim P infer P<sub>1</sub> \Lambda \sim P<sub>1</sub> is proved then P is proved
```

Natural Deduction ystem

- If a formula β is derived / proved from a set of premises / hypotheses $\{\alpha_1, ..., \alpha_n\}$,
 - then one can write it as **from** α_1 , ..., α_n **infer** β .
- In natural deductive system,
 - a theorem to be proved should have a form from $\alpha 1, ..., \alpha n$ infer β .
- Theorem **infer** β means that
 - there are no premises and β is true under all interpretations i.e., β is a tautology or valid.
- If we assume that $\alpha \to \beta$ is a premise, then we conclude that β is proved if α is given i.e.,
 - if 'from α infer β ' is a theorem then $\alpha \to \beta$ is concluded.
 - The converse of this is also true.

Deduction Theorem: To prove a formula α_1 Λ α_2 Λ ... Λ $\alpha_n \rightarrow \beta$, it is sufficient to prove a theorem from α_1 , α_2 , ..., α_n infer β .

Examples

Example 1: Prove that $P\Lambda(QVR)$ follows from $P\Lambda Q$

Solution: This problem is restated in natural deductive system as "from P Λ Q infer P Λ (Q V R)". The formal proof is given as follows:

{Theorem}	from P Λ Q infer P Λ (Q V R)	
{ premise}	PΛQ	(1)
$\{ E-\Lambda$, (1) $\}$	Р	(2)
$\{E-\Lambda$, (1) $\}$	Q	(3)
{ I-V , (3) }	QVR	(4)
$\{ I-\Lambda, (2, 4) \}$	PΛ(Q V R)	Conclusion

Cont...

Example2: Prove the following theorem:

infer
$$((Q \rightarrow P) \land (Q \rightarrow R)) \rightarrow (Q \rightarrow (P \land R))$$

Solution:

- In order to prove **infer** ((Q \rightarrow P) Λ (Q \rightarrow R)) \rightarrow (Q \rightarrow (P Λ R)), prove a theorem **from** {Q \rightarrow P, Q \rightarrow R} **infer** Q \rightarrow (P Λ R).
- Further, to prove $\mathbf{Q} \to (\mathbf{P} \ \Lambda \ \mathbf{R})$, prove a sub theorem from \mathbf{Q} infer $\mathbf{P} \Lambda$ \mathbf{R}

```
{Theorem} from Q \rightarrow P, Q \rightarrow R infer Q \rightarrow (P \land R)
```

Resolution Refutation in PL

- Resolution refutation: Another simple method to prove a formula by contradiction.
- Here negation of goal is added to given set of clauses.
 - If there is a refutation in new set using resolution principle then goal is proved
- During resolution we need to identify two clauses,
 - one with positive atom (P) and other with negative atom (\sim P) for the application of resolution rule.
- Resolution is based on modus ponen inference rule.

Disjunctive & Conjunctive Normal Forms

- Disjunctive Normal Form (DNF): A formula in the form (L_{11} Λ Λ L_{1n}) \vee \vee (L_{m1} Λ Λ L_{mk}), where all L_{ij} are literals.
 - Disjunctive Normal Form is disjunction of conjunctions.
- Conjunctive Normal Form (CNF): A formula in the form (L_{11} V V L_{1n}) Λ Λ (L_{p1} V V L_{pm}), where all L_{ij} are literals.
 - CNF is conjunction of disjunctions or
 - CNF is conjunction of clauses
- Clause: It is a formula of the form $(L_1 V ... V L_m)$, where each L_k is a positive or negative atom.

Conversion of a Formula to its CNF

- Each PL formula can be converted into its equivalent CNF.
- Use following equivalence laws:

$$- P \rightarrow Q \cong \sim P \vee Q$$

 $- P \leftrightarrow Q \cong (P \rightarrow Q) \wedge (Q \rightarrow P)$

Double Negation

$$-\sim\sim P\cong P$$

(De Morgan's law)

$$- \sim (P \land Q) \cong \sim P \lor \sim Q$$

 $- \sim (P \lor Q) \cong \sim P \land \sim Q$

(Distributive law)

$$- P V (Q \Lambda R) \cong (P V Q) \Lambda (P V R)$$

Resolvent of Clauses

- If two clauses C_1 and C_2 contain a complementary pair of literals $\{L, \sim L\}$,
 - then these clauses may be resolved together by deleting L from C_1 and \sim L from C_2 and constructing a new clause by the disjunction of the remaining literals in C_1 and C_2 .
- The new clause thus generated is called resolvent of C₁ and C₂.
 - Here C1 and C2 are called parents of resolved clause.
- Inverted binary tree is generated with the last node (root)
 of the binary tree to be a resolvent.
 - This is also called resolution tree.

Example

• Find resolvent of the following clauses:

-
$$C_1 = P \vee Q \vee R$$
; $C_2 = \sim Q \vee W$; $C_3 = P \vee \sim W$

Inverted Resolution Tree

Resolvent(C1,C2, C3) = P V R

Logical Consequence

- **Theorem 1:** If C is a resolvent of two clauses C_1 and C_2 , then C is a *logical consequence* of $\{C_1, C_2\}$.
 - A deduction of an empty clause (or resolvent as contradiction) from a set S of clauses is called a *resolution refutation* of S.
- **Theorem2:** Let S be a set of clauses. A clause C is a logical consequence of S iff the set $S' = S \cup \{ \sim C \}$ is unsatisfiable.
 - In other words, C is a logical consequence of a given set S iff an empty clause is deduced from the set S'.

Example

- Show that C V D is a logical consequence of
 - $S = \{AVB, \sim AVD, C V \sim B\}$ using resolution refutation principle.
- First we will add negation of logical consequence
 - i.e., \sim (C V D) \cong \sim C Λ \sim D to the set S.
 - Get S' = $\{A \lor B, \sim A \lor D, C \lor \sim B, \sim C, \sim D\}$.
- Now show that S' is unsatisfiable by deriving contradiction using resolution principle.

Summary

- Review of Propositional Logic (PL) Formula
 - WFF, Interpretation, Tautology, and Validity
- Deduction and Proofs in PL
 - Truth tables
 - Natural deduction
 - Axiomatic systems
 - Resolution refutation
 - Semantic tableaux

Reasoning in FOL

Steps for Resolution Refutation proofs

- Put the premises or axioms into clause form
- Add the negation of what is to be proved, in clause form, to the set of axioms
- Resolve these clauses together, producing new clauses that logically follow from them
- Produce a contradiction by generating the empty clause
- The substitutions used to produce the empty clause are those under which the opposite of the negated goal is true

Putting sentences into clause form

- □ 1. Eliminate \rightarrow using $a \rightarrow b \equiv \neg a \lor b$
- 2. Reduce the scope of negations. Transformations include:

$$\neg$$
 (\neg a) \equiv a

- $\square \neg (\exists X) a(X) \equiv (\forall X) \neg a(X)$
- $\square \neg (\forall X) a(X) \equiv (\exists X) \neg a(X)$
- $\neg \neg (a \lor b) \equiv \neg a \land \neg b$
- $\Box \neg (a \land b) \equiv \neg a \lor \neg b$

Putting sentences into clause form (cont'd)

- 3. Standardize variables apart: rename all variables so that variables bound by different quantifiers have unique names
- 4. Move all quantifiers to the left without changing their order
- 5. Eliminate all existential quantifiers using Skolemization.
- It's the process of giving a name to an object that must exist.
- 6. Drop all universal quantifiers (allright to do so now)

Putting sentences into clause form (cont'd)

- □ 7. Convert the expression into a conjunct of disjuncts form
- □ Eventually each part of an ∧'ed sentence will be separated, and we want the separated sentences to be disjuncts. So,

$$a \wedge (b \vee c)$$

is fine, whereas

 $a \lor (b \land c)$ must be distributed to form $(a \lor b) \land (a \lor c)$

Putting sentences into clause form (cont'd)

- 8. Call each conjunct a separate clause.
- 9. Standardize the variables apart again.

- Using this procedure, <u>any</u> set of statements can be converted to the canonical form.
- Resolution refutation is complete, i.e., if a sentence can be entailed (proven) it will be.

More on Skolemization

 It is a simple matter to replace every existentially quantified variable with a unique, new constant and drop the quantifier:

```
∃X (happy (X)) may be replaced by any of the following:

happy(no-name)
happy(X#123)
happy(k1)
```

no-name, X#123, and k1 are Skolem constants. They should not appear in any other sentence in the KB.

Example

- All people who are graduating are happy.
 All happy people smile.
 John-doe is graduating.
 Goal is to prove:
 Is John-doe smiling?
- First convert to predicate logic
 ∀X graduating(X) → happy(X)
 ∀X happy(X) → smiling(X)
 graduating (john-doe)
 - smiling(john-doe) negate this: smiling(john-doe)
- Then convert to canonical form

- □ 1. $\forall X$ graduating(X) \rightarrow happy(X)
 - 2. $\forall X \text{ happy}(X) \rightarrow \text{smiling}(X)$
 - 3. graduating (john-doe)
 - 4. ¬ smiling(john-doe)
- Then convert to canonical form:
- \square Step 1. Eliminate \rightarrow
- □ 1. \forall X \neg graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. graduating (john-doe)
 - 4. ¬ smiling (john-doe)

- □ 1. \forall X ¬ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. graduating (john-doe)
 - 4. ¬ smiling (john-doe)
- \square Step 2. Reduce the scope of \neg
- Step 3. Standardize variables apart
- □ 1. \forall X \neg graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. graduating (john-doe)
 - 4. ¬ smiling (john-doe)

- \square 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. graduating (john-doe)
 - 4. ¬ smiling (john-doe)
- Step 4. Move all quantifiers to the left
- □ Step 5. Eliminate ∃
- \square Step 6. Drop all \forall
- \square 1. \neg graduating (X) \lor happy (X)
 - 2. \neg happy (Y) \lor smiling (Y)
 - 3. graduating (john-doe)
 - 4. ¬ smiling (john-doe)

- □ 1. \neg graduating (X) \lor happy (X)
 - 2. \neg happy (Y) \lor smiling (Y)
 - 3. graduating (john-doe)
 - 4. ¬ smiling (john-doe)
- Step 7. Convert to conjunct of disjuncts form
- Step 8. Make each conjunct a separate clause.
- Step 9. Standardize variables apart again.
- Ready for resolution!

```
4. \neg smiling (john-doe) 2. \neg happy (Y) \lor smiling (Y)
                                    {john-doe/Y}
    5. ¬ happy (john-doe)
                           1. \neg graduating (X) \lor happy (X)
                                      {john-doe/X}
           6. ¬ graduating (john-doe)
                           3. graduating (john-doe)
```

Proving an existentially quantified sentence

- All people who are graduating are happy.
 All happy people smile.
 Someone is graduating.
 Goal is prove:
 Is someone smiling?
- First convert to predicate logic
 ∀X graduating(X) → happy(X)
 ∀X happy(X) → smiling(X)
 ∃ X graduating (X)
 - \exists X smiling(X) negate this: \neg \exists X smiling(X)
- Then convert to canonical form

Example

- □ 1. $\forall X$ graduating(X) \rightarrow happy(X)
 - 2. $\forall X \text{ happy}(X) \rightarrow \text{smiling}(X)$
 - 3. ∃ X graduating (X)
 - $4. \neg \exists X \text{ smiling } (X)$
- Then convert to canonical form:
- \square Step 1. Eliminate \rightarrow
- □ 1. \forall X \neg graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. ∃ X graduating (X)
 - $4. \neg \exists X \text{ smiling } (X)$

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. ∃ X graduating (X)
 - $4. \neg \exists X \text{ smiling } (X)$
- Step 2. Reduce the scope of negation.
- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. ∃ X graduating (X)
 - 4. \forall X \neg smiling (X)

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. ∃ X graduating (X)
 - 4. \forall X \neg smiling (X)
- Step 3. Standardize variables apart
- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. ∃ Z graduating (Z)
 - 4. \forall W \neg smiling (W)

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. ∃ Z graduating (Z)
 - 4. \forall W \neg smiling (W)
- Step 4. Move all quantifiers to the left
- □ Step 5. Eliminate ∃
- □ 1. \forall X \neg graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. graduating (no-name 1)
 - 4. \forall W \neg smiling (W)

- \square 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. graduating (no-name 1)
 - 4. \forall W \neg smiling (W)
- \square Step 6. Drop all \forall
- \square 1. \neg graduating (X) \lor happy (X)
 - 2. \neg happy (Y) \lor smiling (Y)
 - 3. graduating (no-name 1)
 - 4. \neg smiling (W)
- Step 7. Convert to conjunct of disjuncts form
- Step 8. Make each conjunct a separate clause.
- Step 9. Standardize variables apart again.

Proving a universally quantified sentence

- All people who are graduating are happy.
 All happy people smile.
 Everybody is graduating.
 Goal is to prove:
 Is everybody smiling?
- First convert to predicate logic
 ∀X graduating(X) → happy(X)
 ∀X happy(X) → smiling(X)
 ∀X graduating (X)
 - $\forall X \text{ smiling}(X)$ negate this: $\neg \forall X \text{ smiling}(X)$
- Then convert to canonical form

Example

- \square 1. $\forall X$ graduating(X) \rightarrow happy(X)
 - 2. $\forall X \text{ happy}(X) \rightarrow \text{smiling}(X)$
 - 3. $\forall X$ graduating (X)
 - 4. $\neg \forall X \text{ smiling } (X)$
- Then convert to canonical form:
- \square Step 1. Eliminate \rightarrow
- \square 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. $\forall X$ graduating (X)
 - 4. $\neg \forall X \text{ smiling } (X)$

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. $\forall X$ graduating (X)
 - 4. $\neg \forall X \text{ smiling}(X)$
- □ Step 2. Reduce the scope of negation.
- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. \forall X graduating (X)
 - 4. $\exists X \neg smiling(X)$

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. \forall X graduating (X)
 - 4. $\exists X \neg smiling(X)$
- Step 3. Standardize variables apart
- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. \forall Z graduating (Z)
 - 4. \exists W \neg smiling (W)

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. \forall Z graduating (Z)
 - 4. \exists W \neg smiling (W)
- Step 4. Move all quantifiers to the left
- □ Step 5. Eliminate ∃
- □ 1. \forall X \neg graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. \forall Z graduating (Z)
 - 4. \neg smiling (no-name 1)

- \square 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. \forall Z graduating (Z)
 - 4. \neg smiling (no-name 1)
- \square Step 6. Drop all \forall
- \square 1. \neg graduating (X) \lor happy (X)
 - 2. \neg happy (Y) \lor smiling (Y)
 - 3. graduating (Z)
 - 4. \neg smiling (no-name 1)
- Step 7. Convert to conjunct of disjuncts form
- Step 8. Make each conjunct a separate clause.
- Step 9. Standardize variables apart again.

```
4. \neg smiling (no-name1) 2. \neg happy (Y) \lor smiling (Y)
                                      {no-name/Y}
    5. \neg happy (no-name1)
                             1. \neg graduating (X) \lor happy (X)
                                       {no-name1/X}
             6. ¬ graduating (no-name1)
                            3. graduating (Z)
                                   {no-name1/Z}
```

Exercise

- All people who are graduating are happy.
 All happy people smile.
- Prove that all people who are graduating smile.

More on Skolemization (cont'd)

• If the existentially quantified variable is in the scope of universally quantified variables, then the existentially quantified variable must be a function of those other variables. We introduce a new, unique function called Skolem function.

```
∀X ∃Y (loves (X,Y)) may be replaced with any of the following:
∀X loves (X, no-name(X))
∀X loves (X, loved-one(X))
∀X loves (X, k1(X))
```

no-name, loved-one, k1 are Skolem functions. They should not appear in any other sentence in the KB. They should also not have any other parameter than X.

Resolution refutation algorithm

- \square Resolution-refutation (KB, α)
- \square KB \leftarrow KB U $\{ \neg \alpha \}$
- repeat until the null clause is derived
- find two sentences to resolve (should have opposite terms under the mgu)
- \square KB \leftarrow KB U $\{$ the result of resolution $\}$

Example

- All people who are graduating are happy.
 All happy people smile.
 John-doe is graduating.
 Goal:
 Who is smiling?
- First convert to predicate logic
 ∀X graduating(X) → happy(X)
 ∀X happy(X) → smiling(X)
 graduating (john-doe)
 - $\exists X \text{ smiling}(X)$ negate this: $\neg \exists X \text{ smiling}(X)$
- Then convert to canonical form

- \square 1. $\forall X$ graduating(X) \rightarrow happy(X)
 - 2. $\forall X \text{ happy}(X) \rightarrow \text{smiling}(X)$
 - 3. graduating (john-doe)
 - 4. $\neg \exists X \text{ smiling}(X)$
- Then convert to canonical form:
- \square Step 1. Eliminate \rightarrow
- □ 1. \forall X \neg graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. graduating (john-doe)
 - 4. $\neg \exists X \text{ smiling}(X)$

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. graduating (john-doe)
 - 4. $\neg \exists X \text{ smiling}(X)$
- □ Step 2. Reduce the scope of ¬
- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. graduating (john-doe)
 - 4. $\forall X \neg smiling(X)$

- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall X \neg happy (X) \lor smiling (X)$
 - 3. graduating (john-doe)
 - 4. $\forall X \neg smiling(X)$
- Step 3. Standardize variables apart
- □ 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. graduating (john-doe)
 - 4. $\forall Z \neg smiling (Z)$

- \square 1. $\forall X \neg$ graduating (X) \lor happy (X)
 - 2. $\forall Y \neg happy (Y) \lor smiling (Y)$
 - 3. graduating (john-doe)
 - 4. $\forall Z \text{smiling } (Z)$
- Step 4. Move all quantifiers to the left
- □ Step 5. Eliminate ∃
- □ Step 6. Drop all ∀
- \square 1. \neg graduating (X) \lor happy (X)
 - 2. \neg happy (Y) \lor smiling (Y)
 - 3. graduating (john-doe)
 - 4. \neg smiling (Z)
- Ready for resolution.

The substitution for Z is the answer. John-doe is smiling!