1. (渐进一致的权重矩阵 $\widehat{\mathbf{W}}_{\mathbf{1}}$ 和 $\widehat{\mathbf{W}}_{\mathbf{2}}$) 假设 $\widehat{\mathbf{W}}_{\mathbf{1}} - \widehat{\mathbf{W}}_{\mathbf{2}} \overset{p}{\to} \mathbf{0}$. 证明 GMM 估计量

$$\sqrt{n}\widehat{\boldsymbol{\beta}}(\widehat{\mathbf{W}}_1) - \sqrt{n}\widehat{\boldsymbol{\beta}}(\widehat{\mathbf{W}}_2) \stackrel{p}{\to} \mathbf{0}$$

解:

$$\sqrt{n}\widehat{\boldsymbol{\beta}}(\widehat{\mathbf{W}}_1) - \sqrt{n}\widehat{\boldsymbol{\beta}}(\widehat{\mathbf{W}}_2) = \left[(\mathbf{S}_{\mathbf{XZ}}'\widehat{\mathbf{W}}_1\mathbf{S}_{\mathbf{XZ}})^{-1}\mathbf{S}_{\mathbf{XZ}}'\widehat{\mathbf{W}}_1 - (\mathbf{S}_{\mathbf{XZ}}'\widehat{\mathbf{W}}_2\mathbf{S}_{\mathbf{XZ}})^{-1}\mathbf{S}_{\mathbf{XZ}}'\widehat{\mathbf{W}}_2 \right] \sqrt{n}\overline{\mathbf{g}}$$

$$\tag{1}$$

其中,中括号部分依概率收敛于 0, $\sqrt{n}\bar{\mathbf{g}}$ 依分布收敛于正态分布,因此上式依概率收敛于 0.

2. 下列说法是否正确? 为什么?

即使在过度识别时, 也可用如下方法找到方程 $\mathbf{g}_n(\hat{\boldsymbol{\beta}}) \equiv \frac{1}{n} \sum_{i=1}^n \mathbf{z}_i (y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}) = \mathbf{0}$ 的解. 等式可写为

$$\mathbf{S}_{ZX}\hat{\boldsymbol{\beta}} = \mathbf{S}_{Zy},\tag{2}$$

其中 $\mathbf{S}_{ZX}=\frac{1}{n}\mathbf{z}_i\mathbf{x}_i',\,\mathbf{S}_{Zy}=\frac{1}{n}\sum_{i=1}^n\mathbf{z}_iy_i.$ 等式两边都乘以 \mathbf{S}_{XZ}' 得到

$$\mathbf{S}_{ZX}'\mathbf{S}_{ZX}\hat{\boldsymbol{\beta}} = \mathbf{S}_{ZX}'\mathbf{S}_{Zy},\tag{3}$$

因为 \mathbf{S}_{ZX} 满秩, $\mathbf{S}_{ZX}'\mathbf{S}_{ZX}$ 可逆, 因此得到

$$\hat{\beta} = (\mathbf{S}_{ZY}'\mathbf{S}_{ZY})^{-1}\mathbf{S}_{ZY}'\mathbf{S}_{Zy} \tag{4}$$

解: 有误。虽然 $\hat{\beta} = (\mathbf{S}'_{ZX}\mathbf{S}_{ZX})^{-1}\mathbf{S}'_{ZX}\mathbf{S}_{Zy}$ 是(3)式的解,但 $\hat{\beta}$ 并不是(2)式的解。

- 3. 课本 271 页习题 15.3
 - 1. 混合回归。

reg lwage exp exp2 wks ed, vce(cluster id)

. reg lwage exp exp2 wks ed, vce(cluster id)

(Std. Err. adjusted for **595** clusters in id)

lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
exp	.044675	.0054385	8.21	0.000	.0339941	.055356
exp2	0007156	.0001285	-5.57	0.000	0009679	0004633
wks	.005827	.0019284	3.02	0.003	.0020396	.0096144
ed	.0760407	.0052122	14.59	0.000	.0658042	.0862772
_cons	4.907961	.1399887	35.06	0.000	4.633028	5.182894

2. 随机效应模型的 FGLS 估计以及检验

xtreg lwage exp exp2 wks ed, re r
xttest0

. xtreg lwage exp exp2 wks ed, re r

Random-effects GLS regression Number of obs = 4,165 Group variable: id Number of groups = 595 R-sq: Obs per group: within = 0.63407 min = between = **0.1716** 7.0 avg = overall = **0.1830** max = 7 Wald chi2(4) 1598.50 $corr(u_i, X) = 0$ (assumed) Prob > chi2 0.0000

(Std. Err. adjusted for **595** clusters in id)

lwage	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
exp exp2 wks ed _cons	.0888609 0007726 .0009658 .1117099 3.829366	.0039992 .0000896 .0009259 .0083954	22.22 -8.62 1.04 13.31 28.71	0.000 0.000 0.297 0.000 0.000	.0810227 0009481 000849 .0952552 3.567921	.0966992 000597 .0027806 .1281647 4.090812
sigma_u sigma_e rho	.31951859 .15220316 .81505521	(fraction	of varia	nce due t	o u_i)	

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects

$$lwage[id,t] = Xb + u[id] + e[id,t]$$

Estimated results:

	Var	sd = sqrt(Var)
lwage	.2129935	. 4615122
e	.0231658	.1522032
u	.1020921	.3195186

Test:
$$Var(u) = 0$$

拒绝"不存在个体随机效应"的原假设。因此在 pooled OLS 和 RE 之间,应选择 RE。

3. 随机效应模型的 MLE 估计

xtreg lwage exp exp2 wks ed, mle

lwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
exp	.1079955	.0024806	43.54	0.000	.1031335	.1128574
exp2	0005202	.0000546	-9.53	0.000	0006272	0004132
wks	.0008365	.0006042	1.38	0.166	0003477	.0020208
ed	.1378558	.0125933	10.95	0.000	.1131735	.1625382
_cons	2.989859	.1720638	17.38	0.000	2.65262	3.327097
/sigma_u	.8509013	.0278622			.7980078	.9073006
/sigma_e	.1536109	.0018574			.1500132	.1572949
rho	.9684385	.002199			.9638788	.9725117

LR test of sigma_u=0: chibar2(01) = **4576.13**

Prob >= chibar2 = **0.000**

exp 参数估计的比上面的 FGLS 结果更大。其他的检验结果差不多。

4. 固定效应模型组内估计量。在 stata 中可看到个体虚拟变量大多数显著异于 0(未 截图), 因此可以认为个体效应存在。

xtreg lwage exp exp2 wks ed, fe vce(cluster id)

```
Number of obs =
                                                                4,165
Fixed-effects (within) regression
Group variable: id
                                           Number of groups =
                                                                    595
R-sq:
                                            Obs per group:
    within = 0.6566
                                                                     7
                                                        min =
    between = 0.0276
                                                                   7.0
                                                        avg =
    overall = 0.0476
                                                        max =
                                                                     7
                                           F(3,594)
                                                                1059.72
                                                          =
                                           Prob > F
corr(u_i, Xb) = -0.9107
                                                                 0.0000
```

(Std. Err. adjusted for 595 clusters in id)

lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
exp exp2 wks ed _cons	.1137879 0004244 .0008359 0 4.596396	.0040289 .0000822 .0008697 (omitted) .0600887	28.24 -5.16 0.96	0.000 0.000 0.337	.1058753 0005858 0008721 4.478384	.1217004 0002629 .0025439 4.714408
sigma_u sigma_e rho	1.0362039 .15220316 .97888036	(fraction	of varia	nce due t	co u_i)	

5. LSDV

reg lwage exp exp2 wks ed i.id, vce(cluster id)

. reg lwage exp exp2 wks ed i.id, vce(cluster id)

note: 595.id omitted because of collinearity

(Std. Err. adjusted for **595** clusters in id)

lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
exp	.1137879	.0043514	26.15	0.000	.1052418	.1223339
exp2	0004244	.0000888	-4.78	0.000	0005988	00025
wks	.0008359	.0009393	0.89	0.374	0010089	.0026806
ed	.1022134	.0046744	21.87	0.000	.093033	.1113938

个体的虚拟变量大多数都是显著异于 0 的,因此可以认为存在个体效应。另外可以发现 LSDV 和 FE 的估计参数是一样的。标准差不一样是因为 FE 和 LSDV 估

计的夹心估计量的表达式中的数据矩阵 X 不一样,从而最终的对角线上的元素 (参数估计的方差) 不一样。一般在短面板中,个体的固定效应选择 FE。

6. 带时间效应的固定效应模型

xtreg lwage exp exp2 wks ed i.t, fe r

Fixed-effects (within) regression Group variable: id	Number of obs Number of groups		4,165 595
R-sq:	Obs per group:		
within = 0.6599	min	=	7
between = 0.0275	avg	=	7.0
overall = 0.0480	max	=	7
	F(8,594)	=	412.33
corr(u_i, Xb) = -0.9089	Prob > F	=	0.0000

(Std. Err. adjusted for **595** clusters in id)

lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
exp	.1119927	.0041184	27.19	0.000	.1039043	.1200812
exp2	0004051	.0000834	-4.86	0.000	0005688	0002413
wks	.00068	.0008812	0.77	0.441	0010506	.0024105
ed	0	(omitted)				
t						
2	0083984	.0049321	-1.70	0.089	0180849	.0012881
3	.0259652	.0084359	3.08	0.002	.0093974	.0425329
4	.0289134	.0078093	3.70	0.000	.0135762	.0442506
5	.0239406	.0065275	3.67	0.000	.0111208	.0367604
6	.0069955	.0064617	1.08	0.279	0056949	.019686
7	0	(omitted)				
_cons	4.618339	.0599451	77.04	0.000	4.500609	4.736069
sigma_u	1.0268811					
sigma_e	.15159041					
rho	.97867247	(fraction	of varia	nce due t	o u i)	

7. 一阶差分估计量。也可以用课本中提到的 xtserial

reg d.(lwage exp exp2 wks ed), noconst vce(cluster id)

. reg d.(lwage exp	exp2 wks ed), noconst vce(cluster id)
note: D.ed omitted	because of collinearity
Linear regression	Number of obs =

F(3, 594) = 1035.19 Prob > F = 0.0000 R-squared = 0.2209 Root MSE = .18156

3,570

(Std. Err. adjusted for **595** clusters in id)

D.lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
exp						
D1.	.1170654	.0040974	28.57	0.000	.1090182	.1251126
exp2						
D1.	0005321	.0000808	-6.58	0.000	0006908	0003734
wks						
D1.	0002683	.0011783	-0.23	0.820	0025824	.0020459
ed						
D1.	0	(omitted)				

8. 组间估计量

xtreg lwage exp exp2 wks ed, be

|. xtreg lwage exp exp2 wks ed, be Between regression (regression on group means) Number of obs = 4,165 Group variable: id Number of groups = 595 R-sq: Obs per group: within = **0.1357** 7 min = between = 0.3264avg = 7.0 overall = **0.2723** max = F(**4,590**) 71.48 sd(u_i + avg(e_i.))= .324656 Prob > F 0.0000 t P>|t| [95% Conf. Interval] Std. Err. lwage Coef. .038153 .0056967 6.70 0.000 .0269647 .0493412 exp -.0006313 .0001257 -5.02 0.000 exp2 -.0008781 -.0003844 .0051048 .0130903 .0040659 wks 3.22 0.001 .0210757 .0641632 .0737838 .0048985 15.06 0.000 .0834044 ed 4.683039 .2100989 0.000 _cons 22.29 4.270407 5.095672

9. Hausman 检验。检验结果: 拒绝 u_i 和 \mathbf{x}_{it} , \mathbf{z}_i 不相关。应当选择固定效应模型。

xtreg lwage exp exp2 wks ed, fe
estimates store FE
xtreg lwage exp exp2 wks ed, re
estimates store RE
hausman FE RE, constant sigmamore

. hausman FE RE, constant sigmamore

	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
exp	.1137879	.0888609	.0249269	.0012778
exp2	0004244	0007726	.0003482	.0000285
wks	.0008359	.0009658	0001299	.0001108
cons	4.596396	3.829366	.7670299	

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 1374.55

Prob>chi2 = **0.0000**

(V_b-V_B is not positive definite)

10. 稳健 Hausman 检验

xtreg lwage exp exp2 wks ed, re r xtoverid

. xtoverid

Test of overidentifying restrictions: fixed vs random effects Cross-section time-series model: xtreg re robust cluster(id) Sargan-Hansen statistic 1792.412 Chi-sq(3) P-value = 0.0000

- 4. 考察 Stata 的 abdata 数据 (在 Stata 中输入 webuse abdata 即可获得数据)。数据中 n 为企业雇员数, w 是企业工资水平, k 为公司总资本, ys 为公司所在行业的总产出。所有变量均取了 log。变量名称后缀 L1, L2 表示滞后 1 阶,2 阶。以 n 为因变量,nL1, nL2, w, wL1, k, kL1, kL2, ys, ysL1, ysL2, 以及时间虚拟变量 yr1976, ... , yr1984 为自变量,做如下回归并比较和讨论结果:
 - 1. OLS 回归。注意 nL1 的系数估计大于 1, 从理论上来讲,滞后项系数应当小于 1, 否则 n 会越来越大,不符合常识。由于未考虑到 fixed effect, n 和 nL1 之间的相关性被放大了。也就是说, nL1 的系数估计偏大。

reg n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*

Source	SS	df	MS		er of obs	=	751
Model	1343.31797	16	83.9573732		i, 734) i > F	=	8136.58 0.0000
Residual	7.57378164	734			-	=	0.9944
Residuat	7.57378164	734	.010318504		uared	=	0.9944
Total	1350.89175	750	1.801189		R-squared MSE	=	.10158
Total	1350.091/5	750	1.001109	, KOOL	MSE	=	.10156
n	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
nL1	1.044643	.0336647	31.03	0.000	.9785523	3	1.110734
nL2	0765426	.0328437	-2.33	0.020	1410214	1	0120639
W	5236727	.0487799	-10.74	0.000	6194374	ı	427908
wL1	.4767538	.0486954	9.79	0.000	.381155	5	.5723527
k	.3433951	.0255185	13.46	0.000	.2932972	2	.3934931
kL1	2018991	.0400683	-5.04	0.000	2805613	3	123237
kL2	1156467	.0284922	-4.06	0.000	1715826	6	0597107
y s	.4328752	.1226806	3.53	0.000	.1920285	5	.673722
ysL1	7679125	.1658165	-4.63	0.000	-1.093444	ļ	4423813
ysL2	.3124721	.111457	2.80	0.005	.0936596	6	.5312846
yr1976	0	(omitted)					
yr1977	0	(omitted)					
yr1978	0153956	.0230101	-0.67	0.504	060569)	.0297779
yr1979	.0004932	.0219057	0.02	0.982	0425121	L	.0434986
yr1980	.0065977	.0222523	0.30	0.767	0370881	L	.0502835
yr1981	0375487	.0231813	-1.62	0.106	0830582	2	.0079608
yr1982	0304299	.0218943	-1.39	0.165	0734128	3	.0125529
yr1983	0080024	.0214113	-0.37	0.709	0500371	L	.0340323
yr1984	0	(omitted)					
_cons	.2901212	.3418808	0.85	0.396	3810596	6	.9613019

2. 固定效应回归。固定效应把 u_i 去掉了,但此时 $y_{i,t-1}-\overline{Ly_i}$ 会和 $\varepsilon_{it}-\overline{\varepsilon}_i$ 相关。 nL1 的系数此时小于 1。侧面印证之前 OLS 的估计过大。

xtreg n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, fe

7 1	f obs = f groups =	Number Number		ression	(within) reg e: id	xed-effects oup variable
	aroup:	Obs per				-sq:
	min =				0.7973	
5	avg =					between =
	max =					overall =
146.) =	F(16,59				
0.00	=	Prob >			= 0.5459	orr(u_i, Xb)
. Interva	[95% Conf.	P> t	t	Std. Err.	Coef.	n
.8101	. 6557563	0.000	18.65	.039304	.7329476	nL1
06086	2180867	0.001	-3.48	.040026	1394773	nL2
44773	6717551	0.000	-9.81	.057033	5597445	W
. 43475	.1952451	0.000	5.17	.0609756	.3149987	wL1
.44921	.3276256	0.000	12.55	.0309544	.3884188	k
00497	1560618	0.037	-2.09	.0384648	0805185	kL1
.0366	0922695	0.397	-0.85	.0328257	0278013	kL2
.71048	.2268481	0.000	3.81	.1231278	.468666	уs
31833	9387856	0.000	-3.98	.15796	6285587	ysL1
.32219	2062454	0.667	0.43	.1345353	.0579764	ysL2
				(omitted)	0	yr1976
				(omitted)	0	yr1977
.06331	0394862	0.649	0.46	.0261724	.0119152	yr1978
.06512	0319795	0.503	0.67	.024721	.0165714	yr1979
.07224	0259449	0.355	0.93	.0249969	.0231479	yr1980
.03765	0645623	0.605	-0.52	.0260231	013454	yr1981
.02265	0676163	0.328	-0.98	.0229812	0224821	yr1982
.02502	0572636	0.442	-0.77	.0209498	0161192	yr1983
				(omitted)	0	yr1984
2.7650	.7953734	0.000	3.55	.5014522	1.780205	_cons
					.22568151	sigma_u
					.09395847	sigma_e
				(fraction		

3. Anderson-Hsiao 两阶段最小二乘法回归。AH 回归的结果理论上来说是 consistent,但滞后项的系数变为 2.3,远大于 1。结果仍然是很奇怪的。由此可以看出,模型设定是否和真实数据情况一样,是一个很难判断的问题。

ivregress 2sls d.n (d.nL1=nL2) d.(nL2 w wL1 k kL1 kL2 ys ///
ysL1 ysL2 yr1979 yr1980 yr1981 yr1982 yr1983)

Instrumental	variables	(2SLS)	regression
--------------	-----------	--------	------------

Number of obs	=	611
Wald chi2(15)	=	89.93
Prob > chi2	=	0.0000
R-squared	=	
Root MSE	=	. 247

D.n	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nL1						
D1.	2.307626	1.973193	1.17	0.242	-1.559762	6.175013
nL2						
D1.	2240271	.179043	-1.25	0.211	5749448	.1268907
w						
D1.	8103626	.261805	-3.10	0.002	-1.323491	2972342
wL1						
D1.	1.422246	1.179492	1.21	0.228	8895156	3.734007
k						
D1.	. 2530975	.1447404	1.75	0.080	0305884	.5367835
kL1 D1.	5524613	.6154929	-0.90	0.369	-1.758805	. 6538825
kL2 D1.	2126364	.2397909	-0.89	0.375	6826179	.2573451
	12120304	.2337303	0.05	0.373	.0020173	12373431
ys D1.	.9905803	.4630105	2.14	0.032	.0830965	1 000064
Ы.	.9905003	.4630105	2.14	0.032	.0830965	1.898064
ysL1						
D1.	-1.937912	1.438225	-1.35	0.178	-4.75678	.8809566
ysL2						
D1.	.4870838	.5099415	0.96	0.339	5123832	1.486551
yr1979						
D1.	.0467148	.0448599	1.04	0.298	0412089	.1346385
yr1980						
D1.	.0761344	.0624919	1.22	0.223	0463474	.1986163
yr1981						
D1.	.022623	.0557394	0.41	0.685	0866242	.1318701
yr1982						
D1.	.0127801	.0548402	0.23	0.816	0947048	.120265
yr1983						
D1.	.0099072	.0456113 ^{Pa}	ge 1 ₀ 1 ₂₂	0.828	0794894	.0993037
_cons	.0159337	.0273445	0.58	0.560	0376605	.0695279

4. 差分 GMM 回归。n 的滞后项为 GMM 形式工具变量,其他的工具(外生)变量为常规工具变量形式。注意 nL1 的系数估计较为合理。

xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*, gmm(L.n) /// iv(w L.w L(0/2).(k ys) yr*) nolevel robust

Dynamic panel-data estimation, one-step difference GMM

611	of obs =	Number			: id	Group variable
146	of groups =	Number			: year	Time variable
4	group: min =	Obs per			ruments = 41	Number of inst
4.36	avg =				= 1727.45	Wald chi2(19)
6	max =				= 0.000	Prob > chi2
				Robust		
Interval]	[95% Conf.	P> z	z	Std. Err.	Coef.	n
						n
.9696257	.4028266	0.000	4.75	.1445943	.6862261	L1.
.0244302	1951467	0.128	-1.52	.0560155	0853582	L2.
						w
2585445	9570972	0.001	-3.41	.1782055	6078208	
.7218842	.0633632	0.019	2.34	.1679931	.3926237	L1.
						*
						k
.4725233	.241168	0.000	6.05	.0590203	.3568456	
.0854284	2014308	0.428	-0.79	.0731797	0580012	L1.
.0441681	0840631	0.542	-0.61	.0327126	0199475	L2.
						уs
.9466624	.2703522	0.000	3.53	.1725313	.6085073	
2570095	-1.165321	0.002	-3.07	.2317163	7111651	L1.
.382548	1709542	0.454	0.75	.1412021	.1057969	L2.
				(omitted)	0	yr1976
				(omitted)	0	yr1977
				(omitted)	0	yr1978
.0297217	0106127	0.353	0.93	.0102896	.0095545	yr1979
.056727	0126966	0.214	1.24	.0177104	.0220152	yr1980
.04606	0696086	0.690	-0.40	.0295079	0117743	yr1981
.0303193	0844369	0.355	-0.92	.0292751	0270588	yr1982
.0383798	0810207	0.484	-0.70	.0304599	0213204	yr1983
.0538604	069267	0.806	-0.25	.0314106	0077033	yr1984

需要注意扰动项是否存在 2 阶自相关。这里的结果认为不存在 2 阶自相关。符合 差分 GMM 的假定。

Arellano-Bond test for AR(1) in first differences: z=-3.60 Pr > z=0.000 Arellano-Bond test for AR(2) in first differences: z=-0.52 Pr > z=0.606

过度识别检验。Hansen test 认为可以在 5% 水平下接受所有工具变量外生。

```
Sargan test of overid. restrictions: chi2(22) = 67.59 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(22) = 31.38 Prob > chi2 = 0.089 (Robust, but weakened by many instruments.)
```

5. 系统 GMM 回归。此时 nL1 系数符号又大于 1 了。

xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*, gmm(L.n) /// iv(w L.w L(0/2).(k ys) yr*) robust twostep

Dynamic panel-data estimation, two-step system GMM

Group variable				Number		
Time variable	-				of groups =	
Number of inst				0bs per	group: min =	
Wald chi2(19)	= 75477.28				avg =	5.36
Prob > chi2	= 0.000				max =	7
		Corrected				
n	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
n						
L1.	1.057271	.0572935	18.45	0.000	.9449778	1.169564
L2.	098028	.0368302	-2.66	0.008	1702138	0258421
W						
	537141	.1667007	-3.22	0.001	8638684	2104137
L1.	.5011521	.1765282	2.84	0.005	.1551631	.847141
k						
	.2996729	.0601121	4.99	0.000	.1818554	.4174904
L1.	1453414	.0788808	-1.84	0.065	2999449	.0092621
L2.	1194829	.0424068	-2.82	0.005	2025988	0363671
уs						
	.5180324	.1996673	2.59	0.009	.1266916	.9093731
L1.	7292613	.246855	-2.95	0.003	-1.213088	2454344
L2.	.255183	.1481775	1.72	0.085	0352395	.5456055
yr1976	0	(omitted)				
yr1977	0	(omitted)				
yr1978	.01419	.0312493	0.45	0.650	0470575	.0754374
yr1979	.0290609	.0273843	1.06	0.289	0246113	.0827332
yr1980	.0421484	.0197262	2.14	0.033	.0034857	.080811
yr1981	0	(omitted)				
yr1982	.0075506	.0178061	0.42	0.672	0273487	.0424499
yr1983	.0452061	.0240706	1.88	0.060	0019714	.0923835
yr1984	.0275589	.0279575	0.99	0.324	0272369	.0823547
_cons	0701535	.3408083	-0.21	0.837	7381255	.5978186

6. 讨论:滞后项的系数估计可以提供估计是否合理的证据。如果模型是稳定的,那么滞后项的系数估计一般应当小于 1。另外,在这组数据中,工资 w 对 n 的影响是负的,尽管在不同的模型中估计的参数不一样。k,资本的影响是正的。动态面板估计的工具变量可以调整的空间很大,不同的工具变量设置有时会带来很不一样的估计结果。有兴趣的同学可以自行设置不同的工具变量,不同的滞后阶数来观察结果的异同。