# 國立臺北大學

# 光通訊 Optical Communication (期末報告)

組別:第六組

姓名:劉家瑋、林義守

學號: 411086030、411086031

一、實驗原理

光纖通訊的核心在於光在光纖內部的高效傳輸,光訊號在進入光纖後會受到折

射率差異的影響進行全內反射。本次實驗利用 TracePro 軟體模擬光纖在不同位

移條件下插入損耗(Insertion Loss, IL)的變化,分析位移對光纖耦合效率的

影響。

插入損耗(IL)的定義如下:

 $IL = -10log_{10}(P_{out}/P_{in})$ 

其中:

P<sub>in</sub>:光纖輸入端的光功率(入射功率),單位為瓦特(W)。

Pout:光纖輸出端的光功率(傳輸功率),單位為瓦特(W)。

插入損耗即用來描述光纖或光學元件引入的光功率損失,單位為分貝(dB)。

它是一個用對數刻度表示的值,反映了訊號從輸入到輸出的功率損耗,損耗越

小,表示光纖或光學系統的傳輸效率越高。我們透過 Tracepro 模擬觀察不同位

移量的光通量變化,能直觀了解偏移對系統性能的影響。

二、系統設計

1. 光纖規格

✓ 光纖長度:100mm

✓ 纖殼直徑:96um

✓ 纖殼折射率:1.46

✓ 纖核直徑:23um

✓ 纖核折射率:1.48

### 2. 光源設定

✓ 光源類型:格點光源

✓ 波長:1.55um

✓ 格點光源與測試光纖的距離:1mm

## 3. 位移條件

- ✓ 待測光纖與測試光纖在 Z 軸上的間距: 20um、30um、40um
- ✓ 待測光纖在 Y 軸上的偏移量:從 0um 至 16um,觀察 IL 與偏移量的關係



圖一:纖殼材料參數



圖二:纖核材料參數



圖三:格點光源參數中的格點設置



圖四:格點光源參數中的光束設置



圖五:格點光源參數中的波長設定



圖六:格點光源入射至測試光纖之纖核(光源與纖核的距離為 1mm)



圖七:測試光纖(左)與待測光纖(右)在Z軸上的間距



圖八:待測光纖的分析接收面(黑色圓面積=纖核大小)

# 三、模擬結果

測試光纖與待測光纖在 Z 軸上的間距為 20um 下的模擬結果:



圖九:待測光纖向 Y 軸偏移 0um 下的光通量為 0.83228(W)



圖十: 待測光纖向 Y 軸偏移 6um 下的光通量為 0.70362(W)



圖十一: 待測光纖向 Y 軸偏移 16um 下的光通量為 0.10201(W)

# 測試光纖與待測光纖在 Z 軸上的間距為 30um 下的模擬結果:



圖十二: 待測光纖向 Y 軸偏移 0um 下的光通量為 0.83254(W)



圖十三: 待測光纖向 Y 軸偏移 6um 下的光通量為 0.71078(W)



圖十四: 待測光纖向 Y 軸偏移 16um 下的光通量為 0.1085(W)

# 測試光纖與待測光纖在 Z 軸上的間距為 40um 下的模擬結果:



圖十五:待測光纖向 Y 軸偏移 0um 下的光通量為 0.83254(W)



圖十六: 待測光纖向 Y 軸偏移 6um 下的光通量為 0.71227(W)



圖十七: 待測光纖向 Y 軸偏移 16um 下的光通量為 0.10858(W)

#### TracePro模擬



Fiber-Fiber Lateral Displacement (um)

圖十八:位移量與 IL 之關係圖 (完整數據如下表,單位 dB)

| 位移   | 0       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      | 14      | 15      | 16      |
|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|      | 0.83228 | 0.85807 | 0.8511  | 0.81793 | 0.79739 | 0.74982 | 0.70362 | 0.68442 | 0.66202 | 0.59968 | 0.53504 | 0.37813 | 0.2759  | 0.19067 | 0.16414 | 0.11517 | 0.10201 |
| 20um | 0.797   | 0.665   | 0.7     | 0.873   | 0.983   | 1.25    | 1.527   | 1.647   | 1.791   | 2.221   | 2.716   | 4.224   | 5.592   | 7.197   | 7.848   | 9.387   | 9.914   |
|      | 0.83254 | 0.85122 | 0.85223 | 0.85021 | 0.80449 | 0.76236 | 0.71078 | 0.6749  | 0.65755 | 0.64753 | 0.49571 | 0.40156 | 0.25962 | 0.23023 | 0.13479 | 0.11517 | 0.1085  |
| 30um | 0.796   | 0.7     | 0.694   | 0.705   | 0.945   | 1.178   | 1.483   | 1.708   | 1.821   | 1.887   | 3.048   | 3.962   | 5.857   | 6.378   | 8.703   | 9.387   | 9.646   |
|      | 0.83254 | 0.84444 | 0.84363 | 0.84109 | 0.81317 | 0.76537 | 0.71227 | 0.67747 | 0.66421 | 0.60379 | 0.51694 | 0.38115 | 0.28843 | 0.19403 | 0.17181 | 0.11506 | 0.10858 |
| 40um | 0.796   | 0.734   | 0.738   | 0.752   | 0.898   | 1.161   | 1.474   | 1.691   | 1.777   | 2.191   | 2.866   | 4.189   | 5.4     | 7.121   | 7.65    | 9.391   | 9.643   |

# 四、結果討論

從模擬結果中可以觀察到光線經過光纖結構的折射和內部反射情況,隨著光纖偏移量(Y軸)增加,部分光束未能進入纖核,導致能量損耗,Insertion Loss增大。

仔細觀察**圖十八**及數據表,可以發現我們要分析的接收面光通量會隨著 Y 軸偏移增加而逐漸減少,因此 IL 變大。理論上來說,待測光纖與測試光纖的距離愈遠,光線的發散角度加大,會進一步降低光耦合效率,對應的損耗增加會更為顯著,但在我們的實驗結果中,此狀況較不那麼明顯,推測是模擬過程中可能

未完全考慮折射率的不均勻性、纖核表面粗糙度或光纖中微小的幾何偏差等實際情況,這些皆可能導致模擬結果與理論有所差距。



圖十九:兩條光纖間距 40um 下向 Y 軸偏移 0um 之光線接收情形



圖二十:兩條光纖間距 40um 下向 Y 軸偏移 6um 之光線接收情形



圖二十一:兩條光纖間距 40um 下向 Y 軸偏移 16um 之光線接收情形

從圖十九、圖二十一中可以觀察到,當偏移量增加,部分光束未能集中在纖核,會發散至纖殼中,因此分析接收面的光通量就會逐漸減少。IL 與偏移量呈正相關,要讓IL 降到最低就須嚴格控制偏移量及光纖間距,才能大幅提升光纖耦合效率。