Page No.:		YOUVA	
Date:		-	

Tutorial - 2.

Out what is the time complexity of bellow a how. Vold fum (in n) (=0,1,3,6,10, let say k fine) So gener form would be K(<u>k+1</u>) Z. in j=1, i=0 helile (icn) & i=i+i <u>j++;</u> Kin form n= K(K+1) = n $K^2 + K = 2h$ $K^2 = h = K = \sqrt{2}$ Time complex: 4 = 0 (Vin) n Write Recurrence relation for the hecurrion function that prints fibonacci series solue the reccurence relation to get the time conflexity of shis program and why. Rescuercine relation

int fib (int n) fint f(nx=1). (\Rightarrow) o(1)=6return n;

return f(nx=1)+f(nx=1)+f(nx=1)Recurrence relation T(n)=T(n-1)+T(n-2)+C. Now T(n-1) 5 T(n-2) T(n) = 27(n-1)+(By Backward substitution T(n-1) = & T(n-1-1) = 2 7 (n-2)+C T(n) = 2[27(n-2)+c]+c]+c = 47(n-2)+3C Now T(n-2) = 2 + (n-2-1)+C 2T (n-3) tc.

T(n) = 47(n-2) + 3(c)4(27(n-3)+()+3C T(n)= 8T(n-3)+76 Jenevralizing: 2x7(n-k)+(2x-1)c. assume n-K=0=)n-K. 8n+(0)+(2n-1)c. = 2n+12n-1)6 27+(24-1)6 Time conflexity = 0(3"). Space Complexity For Jisonaci space required is Al directly & to maximum dopth of Recurssion tree. Sice maximum depth is dix to numbe of cleme write a program uchich have lomplexin-n(dogs) (Jorlie 1; ish jitt) & for (5=1 j f == n jf=j=2) & Sum = Sun + i ; 3 forli=o; i<n; i++) { S jor(j=ojj<n;j++) 17 (K=0; K<h; K++1) Sum = Sun+K legn (logn) forli=1; i <n ; i=i*z) Jor (-K=1; K=h; K= K*2) 3 Sum = Sunt j's Will

YOUVA

Dusy solue the Recurrence helation 7(n) = T(n/y)+7(n/z)+cn² T(n/4) = T(n/2) T(n)= 27(n/2)+(n2

> azl and bzl By using master's method. T(n) = 0 T(n/s)+f(n)

(- log; a=) f(n) 7 n =) (n2 7 n c)

T(n) = o(f(n)) 0 (12)

what is its fine complexity of following from (). jut fun (juln)

for (inti=1; is n; i+1)? for(in)=1;j2n;j+=i){. Same O(1) book 333

tel gen [=1 -> 1+2+3+ -- (n+1)=n for i=2 -> 1+3+5+ --- n -> 11/2 for 1=3 -> 1+7+7+ --- n => n/3 h+n:+n+---+)

=) n(1+ 1/2 + 1/4 + - - - 1/n)

Now we know n (1+1+1--1) < n (1+1+1--1)

h (1+1+1+1) sn (1+0.5--)

Oln logn) An,

		Date:
		White our recurrence relation color queick score
	Des 7	· Write our recurren relation to mon the
		reflected will des the disposery
		recevered divides the away has difference securiore en time complexies en difference in holgest of both it extreme parts what do .
-,-		in holand of both it extreme pois
		your understand by the analysis.
- /-		
		uehen pival is wehere from from or end
		unhous pival is where from green
-,		always.
-,-,-		always. T(n) = 7(99/100) + T(n/100) + O(n).
-,		-T(n)
-,		7(4/60)
-,		7(994)
		$\frac{7(99n)}{100}$ $\frac{7(99n)}{100}$ $\frac{7(99n)}{100}$ $\frac{7(99n)}{100}$ $\frac{7(99n)}{100}$
7-7-	T	1(99) ×4) 7/99n ((100)2)
-,-,-		(Class)
	0	N = (99 1K.
		1 100)
-}-		logn = k log99
		K = log n 100
		Time conflexity: no log.
	Ou &	Astrag the following in increasing order of reale
		of growth.
	60	n,n! logn, log logn, root (n), log(n), miles
		of growth. n,n! legn, leg logn, text(n), leg(n), helegn. .27, 22, 11, n2, 100.
		log < log (logn) < logn < log2n < son < 4 2 222 n;
_~		log 2 (n2 (2) < 4" x 22" < n;

Page No.

Tutorial 3

M T W T F B B
Page Ne.1
Pate:

VOUVA

white diesar search psudacode to search anchemous as U in a sorted array with minimum comparteions. Vold Riman Search (in A & I , in In, in Key Je int flag = 0; for(instac) ich; ital ij (A[1] == Koy 18 glag=1; brock; is (Jag = = 0) con << "Not found"; Cost << " found": white pseudo code for iterative - algorism has been in Cusa. Therative jar (i=1 ton=1) & t = ACi] j=i-1i uchice (jz=0 & A[;]>t) [CALS+1] = ALI] 4 A Si + 13 = e; Recursi u you'd insurtion sons (int awor [], int n) & iy (n <= 1) section j

					M T W T F S S
					Date: YOUVA
-	Λ. 2	T/ 1 00/	10/102		
-	Ous 3	T(n) = 37($\log_2 3 = n$	1.5	
		n.	10g 2 - 17	h	
	*	· · · · ·	ution Sort	(av, h-1)	01/
		ins	Part = axon	[n-1], j=h-2,	,
-				(taptast)	
-3			our Sit	1) = aron (i)	
-			[]		
~		av	1 (i+1) = lo		
~		3			
~		Insertion So	I is called	douling sorting	a jugent
~ ~:		clement pe	er iteration	and produces	a partial
		Solution	without &	equeire acres +	affin algorith
~					
~_ :-;	lus 3	complexity	og all sor		· woust.
			Bist	· surrage	0(n2)
-:-		Bulable Sort	$O(n)$ $O(u^2)$	0(n ²)	6(n ²)
-;		Selection sort	0(n)	b(n²)	0 (n2)
`- _{:-} -		answellon Sort	o(n+k)	O(n+K)	O(n+k)
-,-		Count Sout	O(n.logn)	o(ndogn)	0(n2)
		Quick Sort	O(n dogn)	O(n logn)	O(nlogn)
~		Heap Sort	o(nlogn)	o(ndogn)	oln legn)
7		Tunplace Stee	ble instal		264100911)
		Algoritm	Implace	Stable	Online
		Bubble		V	X X
		Selection	V	X	*
		Insulion		V	V
		Court	X	V	~
		Merge	X	V	×
		Owick	1/	×	×
		Heaf.	V	×	X
		10-9			10
				1 1	

which pseudo codo for blooms spance de lun spar Dus ! pocumenties a first Henory (int annis), ins &, ins m, ins key) e 14(1750) ¿ in mid = 14(21-0)/2; if (aun Emid] = = Koy) scotum mid; if (our Emid) = Key) scelum binary (aus, mid-1, key) 3 realway binary (au, mid+1, 21, Key) binary searces (intarer, int D, int 81, int Key) in m = 2+(21-2)/2; y (aus Em) = = Key) outwom; ig (over Em Je Koy) ; 1- meulose find two indies such that Ali)+Ali]=kin minimum Void cum (In ALZ, ins K, ins M) & Sous (A, Ata) jub (=0 j=h-1 while (ics) Y (ACI) + ACI) = = E) break; class (A Gi)+ALid>K) priore (iji)

	1.4	T	W	T	F	6	1
	Page No.:				YOUVA		
	Date:						
- 1		.1	194	,1,		. L	1
	2 5	6	01	ai	1		
0	-	COL		24			
1	bes	1	10	2	V	01	u
manufacture 7		-					U
y	0	1	ne	H	91	0	low

Du 8 which sensing best for paractical us For practical uses, no it would be large date. Further, time complexis is same in all lases, that is oln (logh).