SIMG-716 Linear Imaging Mathematics I, Handout 06

1 2-D Special Functions

- Function of two independent spatial variables specifies amplitude ("brightness") at each spatial coordinate in a plane
 - fulfill usual definition of "image".
- Three categories:
 - 1. Cartesian separable functions
 - represented as products of 1-D special functions along orthogonal Cartesian axes
 - 2. Circularly symmetric functions
 - product of 1-D functions in radial direction and unit constant in orthogonal ("azimuthal") direction
 - 3. General functions
 - includes pictorial scenes and 2-D stochastic functions.

2 2-D Separable Functions

• "orthogonal multiplication" of two 1-D functions $f_x[x]$ and $f_y[y]$:

$$f[x,y] = f_x[x] \times f_y[y]$$

• General expression for separable function in terms of scaled and translated 1-D functions is:

$$f[x,y] = f_x \left[\frac{x - x_0}{a} \right] \times f_y \left[\frac{y - y_0}{b} \right]$$

- a and b are real-valued scale factors
- $-x_0$ and y_0 are real-valued translation parameters
- Consider those which have general application to imaging problems.
- Volume of 2-D separable function is product of areas of component 1-D functions:

$$\iint_{-\infty}^{+\infty} f[x,y] \ dx \ dy = \iint_{-\infty}^{+\infty} f_x \left[\frac{x - x_0}{a} \right] \ f_y \left[\frac{y - y_0}{b} \right] \ dx \ dy$$
$$= \left(\int_{-\infty}^{+\infty} f_x \left[\frac{x - x_0}{a} \right] \ dx \right) \left(\int_{-\infty}^{+\infty} f_y \left[\frac{y - y_0}{b} \right] \ dy \right)$$

2.1 Rotations of 2-D Separable Functions

- Example: square centered at origin with sides parallel to the x- and y-axes rotated by $\pm \frac{\pi}{4}$ to generate "baseball diamond" with vertices on x- and y-axes
- Rotation of function about origin is an "imaging system" with 2-D input function f[x, y] and 2-D output g[x, y]
 - Amplitude g of rotated function at [x, y] is original amplitude f at location [x', y']:

$$\mathcal{O}\{f[x,y]\} = g[x,y] = f[x',y']$$

- Rotation specified completely by mapping that relates coordinates [x, y] and [x', y'].
 - Illustrated by considering location with Cartesian coordinates $[x_0, y_0]$ and polar coordinates (r_0, θ_0)
 - $* r_0 = \sqrt{x_0^2 + y_0^2}$
 - $* \theta_0 = \tan^{-1} \left[\frac{y_0}{x_0} \right].$
 - * Radial coordinate r_0 unchanged by rotation
 - * Azimuthal angle becomes $\theta' = \theta_0 \phi$.
 - * Cartesian coordinates of original location in rotated coordinates $[x'_0, y'_0]$ in terms of original coordinates $[x_0, y_0]$:

$$x'_0 = |\underline{\mathbf{r}}_0| \cos [\theta_0 - \phi] = |\underline{\mathbf{r}}_0| (\cos [\theta_0] \cos [\phi] + \sin [\theta_0] \sin [\phi])$$

$$= x_0 \cos [\phi] + y_0 \sin [\phi]$$

$$y'_0 = r_0 \sin [\theta_0 - \phi] = r_0 (\sin [\theta_0] \cos [\phi] - \cos [\theta_0] \sin [\phi])$$

$$= -x_0 \sin [\phi] + y_0 \cos [\phi]$$

The Cartesian coordinates of a particular location $[x_0, y_0]$ is evaluated in the rotated coordinate system [x', y'] from the polar coordinates $(|\mathbf{r}_0|, \theta_0 - \phi)$:

$$x_0' = |\underline{\mathbf{r}}_0| \cos\left[\theta_0 - \phi\right] = x_0 \cos\left[\phi\right] + y_0 \sin\left[\phi\right], y_0' = |\underline{\mathbf{r}}_0| \sin\left[\theta_0 - \phi\right] = -x_0 \sin\left[\phi\right] + y_0 \cos\left[\phi\right]$$

2.2 Rotated Coordinates as Scalar Products

• Rotated x-coordinate written as scalar product of position vector $\underline{\mathbf{r}} \equiv [x, y]$ and unit vector directed along azimuth angle ϕ , which has Cartesian coordinates $[\cos [\phi], \sin [\phi]]$, denoted by $\widehat{\mathbf{p}}$:

$$x' = x \cos{[\phi]} + y \sin{[\phi]} = \begin{bmatrix} x \\ y \end{bmatrix} \bullet \begin{bmatrix} \cos{[\phi]} \\ \sin{[\phi]} \end{bmatrix} \equiv \underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}$$

- Notation for x' may seem "weird" because rotated 1-D argument x' is function of both x and y through scalar product of two vectors.
 - rotated argument x' defines a set of points $\underline{\mathbf{r}} = [x, y]$ that fulfill same conditions as coordinate x in original function.
 - Rotated coordinate x' evaluates to 0 for all vectors $\underline{\mathbf{r}} \perp \widehat{\underline{\mathbf{p}}}$, (equivalent to $\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}} = 0$).
 - Vectors $\underline{\mathbf{r}}$ specified by condition $\underline{\mathbf{r}} \bullet \widehat{\mathbf{p}} = 0$ include coordinates on "both" sides of origin
 - Complete set of possible azimuth angles specified by angles ϕ in interval spanning π radians, e.g., $-\frac{\pi}{2} \le \phi < +\frac{\pi}{2}$. This means that the set of possible rotations is specified by unit vectors $\hat{\mathbf{p}}$ in the first and fourth quadrants.
- Polar form of position vector $\underline{\mathbf{r}} = (|\underline{\mathbf{r}}|, \theta) = (r, \theta)$ substituted into scalar product in terms of magnitudes of vectors and included angle:

$$\underline{\mathbf{r}} \bullet \widehat{\mathbf{p}} = |\underline{\mathbf{r}}| \ |\widehat{\mathbf{p}}| \cos [\theta - \phi] = r \cos [\theta - \phi] \text{ because } |\widehat{\mathbf{p}}| = 1.$$

• y-coordinate of rotated function written in same way as scalar product of position vector $\underline{\mathbf{r}}$ and unit vector directed along azimuth angle $\phi + \frac{\pi}{2}$; call it $\widehat{\mathbf{p}}^{\perp}$:

$$y' = x \cos\left[\phi + \frac{\pi}{2}\right] + y \sin\left[\phi + \frac{\pi}{2}\right]$$
$$= -x \sin\left[\phi\right] + y \cos\left[\phi\right] = \begin{bmatrix} x \\ y \end{bmatrix} \bullet \begin{bmatrix} -\sin\left[\phi\right] \\ \cos\left[\phi\right] \end{bmatrix} \equiv \underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}$$

• Polar form for rotated y-axis is:

$$\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} = |\underline{\mathbf{r}}| |\widehat{\underline{\mathbf{p}}}| \cos \left[\theta - \left(\phi + \frac{\pi}{2}\right)\right]$$
$$= r \cos \left[\theta - \phi - \frac{\pi}{2}\right] = r \sin \left[\theta - \phi\right]$$

$$g[x,y] = f_x[x'] \ f_y[y'] = f_x \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}\right] \ f_y \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}\right]$$

• Formula is applicable to any 2-D separable special function

3 Definitions of 2-D Separable Functions

3.1 2-D Constant

•

$$\begin{split} 1 \left[x, y \right] &= 1 \left[x \right] \ 1 \left[y \right] \\ \iint_{-\infty}^{+\infty} 1 \left[x, y \right] \ dx \ dy &= \infty \\ 0 \left[x, y \right] &= 0 \left[x \right] \ f_y \left[y \right] \\ \iint_{-\infty}^{+\infty} 0 \left[x, y \right] \ dx \ dy &= 0 \end{split}$$

• Neither translations nor rotations affect amplitude of a 2-D constant function at any coordinate.

Representations of the 2-D unit constant function in "image" format, where the amplitude is represented by shades of gray according the the scale, and in "surface" format, where the amplitude is the "height" of a 3-D surface.

3.2 2-D Rectangle

$$\begin{array}{ccc} RECT\left[\frac{x}{a},\frac{y}{b}\right] & = & RECT\left[\frac{x}{a}\right] \ RECT\left[\frac{y}{b}\right] \\ RECT\left[\frac{x-x_0}{a},\frac{y-y_0}{b}\right] & = & RECT\left[\frac{x-x_0}{a}\right] \ RECT\left[\frac{y-y_0}{b}\right] \end{array}$$

Example of the 2-D rectangle function $f\left[x,y\right]=RECT\left[\frac{x}{2},\frac{y}{2}\right]$.

 \bullet Volume obviously is finite when both a and b are finite:

$$\begin{split} & \iint_{-\infty}^{+\infty} RECT \left[\frac{x - x_0}{a}, \frac{y - y_0}{b} \right] \, dx \, dy \\ & = \int_{-\infty}^{+\infty} RECT \left[\frac{x - x_0}{a} \right] \, dx \int_{-\infty}^{+\infty} RECT \left[\frac{y - y_0}{b} \right] \, dy = |ab| \end{split}$$

- 2-D *RECT* often modulates functions that have larger domains of support.
- Rotated rectangle by substituting rotated coordinates into definition

$$RECT [x', y'] = RECT \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}, \underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] = RECT \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}} \right] RECT \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right]$$
$$= RECT \left[x \cos \left[\phi \right] + y \sin \left[\phi \right] \right] RECT \left[-x \sin \left[\phi \right] + y \cos \left[\phi \right] \right]$$

– Transition" locations [x, y] where $RECT[x, y] = \frac{1}{2}$ by substitution:

$$x' = x\cos\left[\phi\right] + y\sin\left[\phi\right] = \pm \frac{1}{2} \Longrightarrow y = \left(-\cot\left[\phi\right]\right) x \pm \frac{1}{2\sin\left[\phi\right]}$$
$$y' = -x\sin\left[\phi\right] + y\cos\left[\phi\right] = \pm \frac{1}{2} \Longrightarrow y = \left(\tan\left[\phi\right]\right) x \pm \frac{1}{2\cos\left[\phi\right]}$$

- Conditions define slopes and y-intercepts of two pairs of parallel lines in 2-D plane
- slopes + tan $[\phi]$ and cot $[\phi]$ = tan $[\phi + \frac{\pi}{2}]$
- Dashed lines enclose support of rectangle

The loci of points that satisfy the conditions $y = x \left(-\cot \left[\phi \right] \right) \pm \frac{1}{2\sin[\phi]}$ and $y = x \tan \left[\phi \right] \pm \frac{1}{2\cos[\phi]}$.

3.3 2-D Triangle

$$\begin{split} TRI\left[\frac{x}{a},\frac{y}{b}\right] &= TRI\left[\frac{x}{a}\right] \ TRI\left[\frac{y}{b}\right] \\ &= \left(1 - \frac{|x|}{a}\right) \ \left(1 - \frac{|y|}{b}\right) \ RECT\left[\frac{x}{2a},\frac{y}{2b}\right] \\ &= \left(1 - \frac{|x|}{a} - \frac{|y|}{b} + \frac{|xy|}{ab}\right) \ RECT\left[\frac{x}{2a},\frac{y}{2b}\right] \end{split}$$

- Profiles of 2-D TRI function are straight lines only parallel to x- or y-axes.
- Shape of edge profile along other radial line includes quadratic function of radial distance ==> parabola.
- \bullet Volume of 2-D TRI is product of 1-D areas:

$$\iint_{-\infty}^{+\infty} TRI\left[\frac{x}{a}, \frac{y}{b}\right] \ dx \ dy = \left(\int_{-\infty}^{+\infty} TRI\left[\frac{x}{b}\right] \ dx\right) \left(\int_{-\infty}^{+\infty} TRI\left[\frac{y}{b}\right] \ dy\right) = |ab|$$

2-D triangle function TRI[x, y], showing the parabolic character along profiles that do not coincide with the coordinate axes.

3.4 2-D Signum and Step

- Encountered rarely
- Possible definition based on "convention":

$$SGN[x, y] = SGN[x] SGN[y]$$

- +1 in first & third quadrants
- -1 in second & fourth quadrants
- 0 along coordinate axes
- Volume is zero due to cancellation of positive and negative regions.
- Another possible definition:

$$\begin{split} f\left[x,y\right] &= STEP\left[x\right] \ 1\left[y\right] \\ f\left[x,y\right] &= STEP\left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}\right] \ 1\left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}\right] \end{split}$$

- Notation for unit constant may seem weird
 - think of 1-D unit constant as having same unit amplitude everywhere in the 1-D domain
 - when applied in 2-D domain, 1-D unit constant takes amplitude of $STEP\left[\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}\right]$ at $\underline{\mathbf{r}}_0$ along direction of $\widehat{\underline{\mathbf{p}}}$ and assigns it to all points $\underline{\mathbf{r}}$ along line perpendicular to $\widehat{\underline{\mathbf{p}}}$, i.e., in direction of $\widehat{\mathbf{p}}^{\perp}$
 - Action of unit constant is to "spread" or "smear" amplitude of 1-D $\it STEP$ along perpendicular direction
 - use "rotated" form for 1-D unit constant only to produce 2-D functions by orthogonal
- volume $= \infty$.

2-D SGN and STEP functions: (a) $SGN[x] \cdot SGN[y]$, (b) $SGN[x] \cdot 1[y]$, (c) $STEP[x] \cdot STEP[y]$.

3.5 2-D *SINC*

$$SINC\left[\frac{x}{a},\frac{y}{b}\right] = SINC\left[\frac{x}{a}\right] \ SINC\left[\frac{y}{b}\right] = \frac{\sin\left[\frac{\pi x}{a}\right] \ \sin\left[\frac{\pi y}{b}\right]}{\left(\frac{\pi x}{a}\right) \ \left(\frac{\pi y}{b}\right)}$$

- Amplitude> 0 in regions where both of 1-D functions are positive or both are negative
- Amplitude < 0 where either (but not both) is negative.
- "checkerboard-like" pattern of positive and negative regions
- volume is product of the areas of the individual functions:

$$\iint_{-\infty}^{+\infty} SINC\left[\frac{x}{a}, \frac{y}{b}\right] dx dy = \left(\int_{-\infty}^{+\infty} SINC\left[\frac{x}{a}\right] dx\right) \left(\int_{-\infty}^{+\infty} SINC\left[\frac{y}{b}\right] dy\right)$$
$$= |a| |b| = |ab|$$

3.6 2-D $SINC^2$

•

$$SINC^{2} \left[\frac{x}{a}, \frac{y}{b} \right] = SINC^{2} \left[\frac{x}{a} \right] SINC^{2} \left[\frac{y}{b} \right]$$
$$= \frac{\sin^{2} \left[\frac{\pi x}{a} \right] \sin^{2} \left[\frac{\pi y}{b} \right]}{\left(\frac{\pi x}{a} \right)^{2} \left(\frac{\pi y}{b} \right)^{2}}$$

- $SINC^2$ function is everywhere nonnegative
- volume same as that of $SINC\left[\frac{x}{a}, \frac{y}{b}\right]$

$$\iint_{-\infty}^{+\infty} SINC^2 \left[\frac{x}{a}, \frac{y}{b} \right] dx dy = \left(\int_{-\infty}^{+\infty} SINC^2 \left[\frac{x}{a} \right] dx \right) \left(\int_{-\infty}^{+\infty} SINC^2 \left[\frac{y}{b} \right] dy \right) = |a| \ |b| = |ab|$$

$$SINC^{2}\left[x,y\right] =SINC\left[x\right] \cdot SINC\left[y\right]$$

3.7 2-D Gaussian

$$\begin{aligned} GAUS\left[\frac{x}{a}, \frac{y}{b}\right] &= GAUS\left[\frac{x}{a}\right] \ GAUS\left[\frac{y}{b}\right] = e^{-\frac{\pi x^2}{a^2}} \ e^{-\frac{\pi y^2}{b^2}} \\ &= e^{-\pi \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)} \end{aligned}$$

• Volume is product of individual areas:

$$\iint_{-\infty}^{+\infty} GAUS\left[\frac{x}{a}, \frac{y}{b}\right] dx dy = \left(\int_{-\infty}^{+\infty} GAUS\left[\frac{x}{a}\right] dx\right) \left(\int_{-\infty}^{+\infty} GAUS\left[\frac{y}{b}\right] dy\right)$$
$$= |a| \quad |b| = |ab|$$

• Rotated version:

$$GAUS\left[\frac{x'}{a}, \frac{y'}{b}\right] = GAUS\left[\frac{\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}}{a}, \frac{\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}}{b}\right]$$
$$= e^{-\pi \left[\left(\frac{\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}}{a}\right)^{2} + \left(\frac{\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}}{b}\right)^{2}\right]}$$

• Circularly symmetric function generated with equal width parameters:

$$GAUS\left[\frac{x}{d}, \frac{y}{d}\right] = e^{-\pi \frac{x^2 + y^2}{d^2}} = e^{-\pi \left(\frac{r}{d}\right)^2}$$

Example of 2-D separable Gaussian function $GAUS\left[x,\frac{y}{2}\right] = GAUS\left[x\right] \cdot GAUS\left[\frac{y}{2}\right]$

3.8 2-D Sinusoid

• "meaningful" definition varies along one direction but is constant in the orthogonal direction

$$f[x,y] = A_0 \cos [2\pi \xi_0 x + \phi_0] \ 1[y]$$

= $A_0 \cos [2\pi \xi_0 x + \phi_0] \cos [2\pi \times 0 \times y]$

- Gaskill suggests image of field plowed with sinusoidal furrows
- Rotated:

$$f[x', y'] = A_0 \cos(2\pi \xi_0 x' + \phi_0) \ 1[y'] = A_0 \cos\left[2\pi \xi_0 \left(\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}\right) + \phi_0\right] \ 1\left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^\perp\right]$$
$$= A_0 \cos\left[2\pi \left(\xi_0 \cos\left[\theta\right] \ x + \left(\xi_0 \sin\left[\theta\right]\right) \ y\right) + \phi_0\right] \ 1\left[-x \sin\left[\theta\right] + y \cos\left[\theta\right]\right]$$
$$\equiv A_0 \cos\left[2\pi \left(\xi_1 x + \eta_1 y\right) + \phi_0\right] \ 1\left[-x \sin\left[\theta\right] + y \cos\left[\theta\right]\right]$$

- Spatial frequencies of rotated function along "new" $\xi\text{-}$ and $\eta\text{-}\mathrm{axes}$ are ξ_1 and η_1

$$\xi_1 \equiv +\xi_0 \cos [\theta]$$

 $\eta_1 \equiv +\xi_0 \sin [\theta]$

- specify rates of sinusoidal variation along x- and y-axes
- specify periods of 2-D sinusoid along x- and y-directions, respectively:

$$f[x,y] = A_0 \cos \left[2\pi \left(\xi_1 x + \eta_1 y\right) + \phi_0\right]$$

$$= A_0 \cos \left[2\pi \left(\frac{x}{X_1} + \frac{y}{Y_1}\right) + \phi_0\right]$$

$$X_1 = \frac{1}{\xi_0 \cos [\theta]}$$

$$Y_1 = \frac{1}{\xi_0 \sin [\theta]}$$

- 2-D sinusoid oscillating along arbitrary direction recast into form where 2-D spatial coordinate is 2-D radius vector $\underline{\mathbf{r}} \equiv [x, y]$.
- phase $[\xi_0 x + \eta_0 y]$ is scalar product of $\underline{\mathbf{r}}$ with "polar spatial frequency vector" $\underline{\boldsymbol{\rho}}_0 \equiv \begin{bmatrix} \xi_0 \\ \eta_0 \end{bmatrix}$
- Polar representation of vector is $\underline{\boldsymbol{\rho}}_0 = (\rho_0, \psi_0)$

$$\left|\underline{oldsymbol{
ho}}_0
ight|=\sqrt{\xi_0^2+\eta_0^2}$$

$$\psi_0 = \tan^{-1} \left[\frac{\eta_0}{\xi_0} \right]$$

$$f(\underline{\mathbf{r}}) = A_0 \cos \left[2\pi \left(\underline{\mathbf{r}} \bullet \underline{\boldsymbol{\rho}}_0 \right) + \phi_0 \right]$$
$$= A_0 \cos \left[2\pi \left(|\underline{\mathbf{r}}| \ |\underline{\boldsymbol{\rho}}_0| \ \cos \left[\theta - \psi_0 \right] \right) + \phi_0 \right]$$

$$\begin{array}{rcl} \xi_0 & = & \left| \underline{\boldsymbol{\rho}}_0 \right| \cos \left[\psi_0 \right] \\ \eta_0 & = & \left| \underline{\boldsymbol{\rho}}_0 \right| \sin \left[\psi_0 \right] \end{array}$$

 $\bullet\,$ spatial period is reciprocal of magnitude of spatial frequency vector:

$$R_0 = \frac{1}{\left|\underline{\rho}_0\right|} = \frac{1}{\sqrt{\xi_0^2 + \eta_0^2}}$$

2-D sinusoid function rotated in azimuth about the origin by $\theta=-\frac{\pi}{6}$ radians.

4 2-D Dirac Delta Function and its Relatives

- Several flavors of 2-D Dirac delta function possible
 - different separable versions of 2-D Dirac delta function defined in Cartesian and polar coordinates
- Properties:

$$\delta [x - x_0, y - y_0] = 0 \text{ for } x - x_0 \neq 0 \text{ or } y - y_0 \neq 0$$
$$\iint_{-\infty}^{+\infty} \delta [x - x_0, y - y_0] \ dx \ dy = 1$$

- Expressed as limit of sequence of 2-D functions, each with unit volume
- May be generated from 2-D RECT, TRI, GAUS, SINC, and SINC² in Cartesian coordinates
- Separability of functions ensures that corresponding representation of $\delta\left[x,y\right]$ is separable
- Most common representation of $\delta[x,y]$ based on 2-D RECT function of unit volume in the limit of infinitesimal area:

$$\begin{split} \delta\left[x,y\right] &= \lim_{b \to 0} \lim_{d \to 0} \left\{ \frac{1}{bd} \; RECT\left[\frac{x}{b}, \frac{y}{d}\right] \right\} \\ &= \lim_{b \to 0} \left\{ \frac{1}{b} RECT\left[\frac{x}{b}\right] \right\} \times \lim_{d \to 0} \left\{ \frac{1}{d} RECT\left[\frac{y}{d}\right] \right\} \end{split}$$

4.1 Properties of Separable 2-D Dirac Delta Function, Cartesian Coordinates

$$\delta[x, y] = \delta[x] \delta[y]$$

2-D separable Dirac delta function $\delta\left[x-1,y-1\right]=\delta\left[x-1\right]\cdot\delta\left[y-1\right].$

• 2-D Dirac delta function may be synthesized by summing unit-amplitude 2-D complex linearphase exponentials with all spatial frequencies.

$$\delta[x] \times \delta[y] = \left(\int_{-\infty}^{+\infty} e^{+2\pi i \xi x} d\xi \right) \left(\int_{-\infty}^{+\infty} e^{+2\pi i \eta y} d\eta \right)$$
$$= \iint_{-\infty}^{+\infty} e^{+2\pi i \xi x} e^{+2\pi i \eta y} d\xi d\eta$$
$$= \iint_{-\infty}^{+\infty} e^{+2\pi i (\xi x + \eta y)} d\xi d\eta = \delta[x, y]$$

• Because odd imaginary parts cancel:

$$\delta[x,y] = \iint_{-\infty}^{+\infty} \cos[2\pi (\xi x + \eta y)] d\xi d\eta$$

• Scaling property of $\delta[x] \Longrightarrow$

$$\begin{array}{lcl} \delta\left[\frac{x}{b},\frac{y}{d}\right] & = & \delta\left[\frac{x}{b}\right] \ \delta\left[\frac{y}{d}\right] \\ & = & |b| \ \delta\left[x\right] \ |d| \ \delta\left[y\right] \\ & = & |bd| \ \delta\left[x\right] \ \delta\left[y\right] = |bd| \ \delta\left[x,y\right] \end{array}$$

• Translat by shifting separable components:

$$\delta\left[\frac{x-x_0}{b}, \frac{y-y_0}{d}\right] = |bd| \delta\left[x-x_0\right] \delta\left[y-y_0\right]$$

• Sifting property evaluates amplitude at a specific location

$$\iint_{-\infty}^{+\infty} f[x,y] \ \delta[x-x_0, y-y_0] \ dx \, dy = f[x_0, y_0]$$

4.2 Properties of 2-D Dirac Delta Function, Polar Coordinates

- 2-D Dirac delta function located on x-axis at distance $\alpha > 0$ from origin
 - polar coordinates are $r_0 = \alpha$ and $\theta_0 = 0$.

$$\delta[x - \alpha, y] = \delta[x - \alpha] \delta[y]$$

- Polar representation easy to derive because radial coordinate directed along x-axis
- Azimuthal displacement due to angle parallel to y-axis.
- Identify $x \to r$, $\alpha \to r_0$, and $y \to r_0\theta$ and substitute directly, use 1-D scaling property

$$\begin{split} \delta \left[x - \alpha \right] \, \delta \left[y \right] &= \delta \left[r - r_0 \right] \, \delta \left[r_0 \theta \right] \\ &= \delta \left[r - r_0 \right] \, \left(\frac{1}{|r_0|} \, \delta \left[\theta \right] \right) = \frac{\delta \left[r - r_0 \right]}{r_0} \, \delta \left[\theta \right] \end{split}$$

- last step follows from observation that polar radial coordinate $r_0 \geq 0$
- Domain of azimuthal coordinate θ is a continuous interval of 2π radians, e.g., $-\pi \leq \theta < +\pi$
- Generalize for a 2-D Dirac delta function located at same radial distance r_0 from the origin but at different azimuth θ_0
 - Cartesian coordinates $x_0 = r_0 \cos [\theta_0], y_0 = r_0 \sin [\theta_0]$

$$\delta [x - x_0, y - y_0] = \delta [x - r_0 \cos [\theta_0]] \delta [y - r_0 \sin [\theta_0]]$$
$$= \frac{\delta [r - r_0]}{r_0} \delta [\theta - \theta_0] \equiv \delta (\underline{\mathbf{r}} - \underline{\mathbf{r}}_0)$$

- Polar form is product of 1-D Dirac delta functions in the radial and azimuthal directions
- Amplitude scaled by reciprocal of the radial distance.
- Confirm that expression satisfies criteria for 2-D Dirac delta function.
- Easy to show that support is infinitesimal
- Volume is evaluated easily:

$$\iint_{-\infty}^{+\infty} \delta\left[\underline{\mathbf{r}} - \underline{\mathbf{r}}_{0}\right] d\underline{\mathbf{r}} = \int_{-\pi}^{+\pi} d\theta \int_{0}^{+\infty} \left(\frac{\delta\left[r - r_{0}\right]}{r_{0}} \delta\left[\theta - \theta_{0}\right]\right) r dr$$

$$= \left(\int_{-\pi}^{+\pi} \delta\left[\theta - \theta_{0}\right] d\theta\right) \cdot \left(\int_{0}^{+\infty} \frac{\delta\left[r - r_{0}\right]}{r_{0}} r dr\right) \text{ where } r_{0} > 0$$

$$= 1 \cdot \int_{0}^{+\infty} \frac{\delta\left[r - r_{0}\right]}{r_{0}} r_{0} dr = 1 \cdot \int_{0}^{+\infty} \delta\left[r - r_{0}\right] dr = 1$$

• Extend derivation of polar form of 2-D Dirac delta function to $r_0 = 0$

$$\delta \left[\mathbf{r} - \mathbf{0} \right]$$

- Domain of r is semiclosed single-sided interval $[0, +\infty)$
 - 1-D radial part $\delta(r-r_0)$ at origin cannot be symmetric
 - $-\theta_0$ is indeterminate at origin

- not valid for $\underline{\mathbf{r}}_0 = \underline{\mathbf{0}}$
- 2-D Dirac delta function at the origin must be circularly symmetric and therefore a function of r only
- No dependence on azimuth angle θ :

$$\delta(\underline{\mathbf{r}} - \underline{\mathbf{0}}) = \alpha \delta[|\underline{\mathbf{r}}|] \times 1[\theta]$$
$$= \alpha \delta[r] \times 1[\theta]$$

- * α is scaling parameter ensures that $\delta(\underline{\mathbf{r}})$ has unit volume
- Domains of polar arguments are $0 \le r < +\infty$ and $-\pi \le \theta < +\pi$.
- Modify domains
 - * Radial variable over domain $(-\infty, +\infty)$
 - * Azimuthal domain constrained to interval of π radians, e.g., $[0, +\pi)$ or $\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$.

$$\begin{split} 1 &= \int_{-\pi}^{+\pi} \int_{0}^{+\infty} \alpha \; \delta \left[r\right] \; 1 \left[\theta\right] \; r \; dr \; d\theta = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{-\infty}^{+\infty} \alpha \; \delta \left[r\right] \; 1 \left[\theta\right] \; r \; dr \; d\theta \\ &= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} 1 \left[\theta\right] \; d\theta \int_{-\infty}^{+\infty} \alpha \; \delta \left[r\right] \; r \; dr = \int_{-\infty}^{+\infty} \alpha \; \delta \left[r\right] \; \pi r \; dr \end{split}$$

– Area of $\delta(r)$ over $(-\infty, +\infty)$ is unity

*
$$\alpha = (\pi r)^{-1}$$
.

$$\begin{array}{rcl} \delta\left(\underline{\mathbf{r}}-\underline{\mathbf{0}}\right) & = & \delta\left(\underline{\mathbf{r}}\right) \\ & = & \left(\frac{1}{\pi r}\right) \; \delta\left(r\right) \; \mathbf{1}\left[\theta\right] \\ & = & \frac{\delta\left(r\right)}{\pi r} \end{array}$$

(a)

- 1-D Radial Function
- 2-D Function

- (b) 1-D Radial Function
- 2-D Function

2-D "radial" representation of Dirac delta function.

4.3 2-D Separable Comb Function

$$\begin{split} COMB\left[x,y\right] &= & COMB\left[x\right] \ COMB\left[y\right] \\ &= & \left(\sum_{n=-\infty}^{+\infty} \delta\left[x-n\right]\right) \ \left(\sum_{\ell=-\infty}^{+\infty} \delta\left[y-\ell\right]\right) \end{split}$$

- Gaskill's "bed of nails"
- Volume is infinite.
- \bullet Most important application is to model 2-D sampled functions.

2-D separable COMB function $COMB\left[x,y\right]=COMB\left[x\right]\cdot COMB\left[y\right].$

4.4 2-D "Line Delta" Function

•

$$m_1[x, y] = \delta[x] \cdot 1[y]$$

- \bullet a "line" or "wall" of 1-D Dirac delta functions along y-axis
- "line delta function", "line mass", or "straight-line impulse"
- Most authors delete explicit unit constant 1[y]
 - do not distinguish 1-D Dirac delta function and 2-D line delta function along the y-axis.
- Volume is infinite:

$$\iint_{-\infty}^{+\infty} \delta\left[x\right] \, 1\left[y\right] \, dx \, dy = \int_{-\infty}^{+\infty} \delta\left[x\right] \, dx \, \int_{-\infty}^{+\infty} 1\left[y\right] \, dy = 1 \times \infty$$

• Useful to define Radon transform (mathematical basis for medical computed tomography and magnetic resonance imaging)

- 2-D line Dirac delta function $\delta[x] \cdot 1[y]$ produces a "wall" of Dirac delta functions along the y-axis.
- Product of arbitrary function f[x, y] with line delta function
 - apply sifting property:

$$\begin{array}{lcl} f\left[{x,y} \right] \;\; \left({\delta \left[x \right]\;1\left[y \right]} \right) &=& \left({f\left[{x,y} \right]\;\delta \left[x \right]} \right)\;1\left[y \right] \\ &=& \left({f\left[{0,y} \right]\;\delta \left[x \right]} \right)\;1\left[y \right] \\ &=& f\left[{0,y} \right]\;\left({\delta \left[x \right]\;1\left[y \right]} \right) \end{array}$$

• Volume of product of functions is:

$$\begin{split} \iint_{-\infty}^{+\infty} f\left[x,y\right] \; \delta\left[x\right] \; 1\left[y\right] \; dx \; dy &= \iint_{-\infty}^{+\infty} f\left[0,y\right] \; \delta\left[x\right] \; 1\left[y\right] \; dx \; dy \\ &= \int_{-\infty}^{+\infty} f\left[0,y\right] \; 1\left[y\right] \; dy \; \int_{-\infty}^{+\infty} \delta\left[x\right] \; dx \\ &= \int_{-\infty}^{+\infty} f\left[0,y\right] \; dy \end{split}$$

- Line delta function $\delta[x]$ 1 [y] "sifts out" area of f[x,y] evaluated along the y-axis
- Line delta functions oriented along arbitrary azimuth angle:

$$m_{2}[x,y] = \delta \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}\right] 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}\right]$$
$$= \delta \left[x \cos \left[\phi\right] + y \sin \left[\phi\right]\right] 1 \left[-x \sin \left[\phi\right] + y \cos \left[\phi\right]\right]$$

- Line delta function oriented along the y-axis obtained by setting $\phi = 0$
- Notation for 1-D Dirac delta function may seem "weird" because the argument is the scalar product of two vectors.
- Argument of Dirac delta function is zero for all vectors $\underline{\mathbf{r}}$ in 2-D plane for which $\underline{\mathbf{r}} \bullet \underline{\hat{\mathbf{p}}} = 0$, for all $\underline{\mathbf{r}} \perp \widehat{\mathbf{p}}$.
- Complete set of line delta functions at all possible azimuth angles by selecting all angles ϕ in interval $-\frac{\pi}{2} \le \phi < +\frac{\pi}{2}$
- \bullet Defining unit vector $\widehat{\mathbf{p}}$ lies in first or fourth quadrants.
- Action of unit constant is to "spread" or "smear" amplitude of 1-D Dirac delta function along $\hat{\mathbf{p}}$.

The rotated form of the line delta function $m_2[x,y] = \delta[\underline{\mathbf{r}} \cdot \underline{\widehat{\mathbf{p}}}] \cdot 1[\underline{\mathbf{r}} \cdot \underline{\widehat{\mathbf{p}}}^{\perp}]$, where $\underline{\widehat{\mathbf{p}}} = (\cos[\phi], \sin[\phi])$. Three cases of $\underline{\mathbf{r}}$ are shown: $\underline{\mathbf{r}}_1$ and $\underline{\mathbf{r}}_3$ lie upon the line delta function and $\underline{\mathbf{r}}_2$ does not.

• Use polar form of radius vector $\underline{\mathbf{r}} = (r, \phi)$, where $0 \le r < +\infty$ and $-\pi \le \phi < +\pi$

$$m_{2}[x,y] = \delta \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}\right] 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}\right]$$

$$= \delta \left[|\underline{\mathbf{r}}| |\widehat{\underline{\mathbf{p}}}| \cos \left[\theta - \phi\right]\right] 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}\right]$$

$$= \delta \left[|\underline{\mathbf{r}}| \cos \left[\theta - \phi\right]\right] 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp}\right]$$

$$= \delta \left[r \cos \left[\phi - \theta\right]\right]$$

- Expression determines the set of values of (r, θ) on radial line through origin perpendicular to azimuthal angle ϕ .
- Write as function of azimuthal angle ϕ by recasting into more convenient form
 - Apply expression for Dirac delta function with a functional argument

$$\begin{split} \delta \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}} \right] & 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] &= \delta \left[r \cos \left[\theta - \phi \right] \right] \ 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] \\ &= \delta \left[g \left[\phi \right] \right] \ 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] \\ &= \frac{1}{\left| g' \left(\phi_0 \right) \right|} \ \delta \left[\phi - \phi_0 \right] \ 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] \\ &= \frac{1}{r \left| \sin \left[\theta - \phi_0 \right] \right|} \ \delta \left[\phi - \phi_0 \right] \ 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] \end{split}$$

 $-\phi_0$ is angle that satisfies condition $\cos [\theta - \phi_0] = 0 \Longrightarrow \phi_0 = \theta \pm \frac{\pi}{2}$

$$\delta \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}} \right] 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] = \frac{1}{r \left| \sin \left[\mp \frac{\pi}{2} \right] \right|} \delta \left[\phi - \left(\theta \pm \frac{\pi}{2} \right) \right]$$
$$= \frac{1}{r} \delta \left[\phi - \left(\theta \pm \frac{\pi}{2} \right) \right]$$

- Line delta function through origin lying along radial line perpendicular to azimuthal angle ϕ is equivalent to amplitude-weighted 1-D Dirac delta function of angle ϕ that is nonzero only for $\phi = \theta \pm \frac{\pi}{2}$
- Sign selected to ensure that ϕ lies within usual domain of polar coordinates: $-\pi \leq \phi < +\pi$.
- Each unit increment of radial distance along y-axis contributes same unit volume.
- This expression seems to indicate otherwise for rotated function
- Contribution to volume affected by factor r^{-1} .
- o resolve apparent conundrum, substitute expression for Dirac delta function as limit of rectangle function

$$\delta\left[\phi - \left(\theta \pm \frac{\pi}{2}\right)\right] = \lim_{b \to 0} \left\{\frac{1}{b} \ RECT \left[\frac{\phi - \left(\theta \pm \frac{\pi}{2}\right)}{b}\right]\right\}$$

- * b measured in radians
- * Function consists of two symmetric "wedges" of fixed amplitude b^{-1} .
 - · Second "wedge" about the angle $\phi = -\frac{\pi}{2}$ results from convention that domain of azimuth angle is $-\frac{\pi}{2} \le \phi < +\frac{\pi}{2}$.
- * In limit $b \to 0$, the angular "spread" of wedges decreases while amplitude increases.

- * Contribution of segments of wedges with unit radial extent increases in proportion to radial distance r from origin.
- * Factor of r^{-1} compensates for increase in volume to ensure that contributions to volume of segments with equal radial extent remain constant.

"Angular" delta function as limit of rectangle, $\lim_{d\phi \to 0} \left\{ \frac{1}{d\phi} RECT \left[\frac{\phi - \frac{\pi}{2}}{d\phi} \right] \right\}$.

- Other forms may be derived by manipulating argument
- Slope-intercept form of a line in the 2-D plane

$$\begin{split} \delta \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}} \right] \ 1 \left[\underline{\mathbf{r}} \bullet \widehat{\underline{\mathbf{p}}}^{\perp} \right] &= \delta \left[+ \sin \left[\phi \right] \left(y + \frac{x \cos \left[\phi \right]}{\sin \left[\phi \right]} \right) \right] \ 1 \left[x \ \sin \left[\phi \right] - y \ \cos \left[\phi \right] \right] \\ &= \left| \frac{1}{\sin \left[\phi \right]} \right| \delta \left[\left(y - \left(\cot \left[-\phi \right] \ x + 0 \right) \right) \right] \ 1 \left[x \ \sin \left[\phi \right] - y \ \cos \left[\phi \right] \right] \end{split}$$

- ullet Dirac delta function evaluates to zero except at [x,y] that satisfy slope-intercept form of straight line
- y-intercept is zero
- Slope is $s = \cot [-\phi] = -\cot [\phi]$

Two examples of rotated line delta functions as 1-D rectangle functions of width b. In both cases, the amplitude of the gray area is b^{-1} . (a) The rectangle is a function of x with width b measured on the x-axis and "perpendicular width" $b\cos(\phi)$; (b) the rectangle is a function of y with "perpendicular width" $b\sin[\phi]$.

Three examples of line delta functions:

Different "flavors" of line delta functions: (a) $\delta \left[\underline{\mathbf{r}} \cdot \widehat{\underline{\mathbf{p}}}\right] 1 \left[\underline{\mathbf{r}} \cdot \widehat{\underline{\mathbf{p}}}^{\perp}\right]$ through the origin perpendicular to $\underline{\hat{\mathbf{p}}}$; (b) $\delta \left[p_0 - \underline{\mathbf{r}} \cdot \widehat{\underline{\mathbf{p}}}\right] 1 \left[\underline{\mathbf{r}} \cdot \widehat{\underline{\mathbf{p}}}^{\perp}\right]$ perpendicular to $\underline{\hat{\mathbf{p}}}$ at a distance $p_0 < 0$ from the origin; (c) $\delta \left[\underline{\mathbf{r}} \cdot \widehat{\underline{\mathbf{p}}}\right] 1 \left[\underline{\mathbf{r}} \cdot \widehat{\underline{\mathbf{p}}}\right]$ through the origin parallel to $\underline{\hat{\mathbf{p}}}$.

- Sum of two orthogonal line delta functions.
- Simplest version defined with "lines" coincident with Cartesian axes:

$$CROSS[x, y] = \delta[x] \ 1[y] + 1[x] \ \delta[y]$$

- $CROSS[0,0] = 2 \delta[x,y]$
- Cross function with "arms" oriented along the vectors $\underline{\widehat{\mathbf{p}}}$ and $\underline{\widehat{\mathbf{p}}}^{\perp}$ by substituting $\underline{\mathbf{r}} \bullet \underline{\widehat{\mathbf{p}}}$ for x and $\underline{\mathbf{r}} \bullet \underline{\widehat{\mathbf{p}}}^{\perp}$ for y:

$$CROSS\left[\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}},\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}^{\perp}\right] = \delta\left[\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}\right] \ 1\left[\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}^{\perp}\right] + 1\left[\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}\right] \ \delta\left[\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}^{\perp}\right]$$

 $CROSS\left[x,y\right] = \delta\left[x\right] \; 1\left[y\right] + 1\left[x\right] \; \delta\left[y\right]. \text{ Note that } CROSS\left[0,0\right] = 2 \, \delta\left[x,y\right].$

4.5 2-D "Corral" Function

- Superpose truncated line delta functions to construct rectangular "stockade" of Dirac delta functions
- Sum of four sections:

$$\begin{split} COR\left[\frac{x}{b},\frac{y}{d}\right] &\equiv \delta\left[x+\frac{b}{2}\right] \ RECT\left[\frac{y}{d}\right] + RECT\left[\frac{x}{b}\right] \ \delta\left[y+\frac{d}{2}\right] \\ &+ \delta\left[x-\frac{b}{2}\right] \ RECT\left[\frac{y}{d}\right] + RECT\left[\frac{x}{b}\right] \ \delta\left[y-\left(-\frac{d}{2}\right)\right] \\ &= \left(\delta\left[x+\frac{b}{2}\right] + \delta\left[x-\left(-\frac{b}{2}\right)\right]\right) \ RECT\left[\frac{y}{d}\right] + RECT\left[\frac{x}{b}\right] \ \left(\delta\left[y-\frac{d}{2}\right] + \delta\left[y-\frac{d}{2}\right]\right) \end{split}$$

• Volume computed from separable parts:

$$\iint_{-\infty}^{+\infty} COR\left[\frac{x}{b}, \frac{y}{d}\right] dx dy = \int_{-\infty}^{+\infty} \left(\delta\left[x + \frac{b}{2}\right] + \delta\left[x - \frac{b}{2}\right]\right) dx \int_{-\infty}^{+\infty} RECT\left[\frac{y}{d}\right] dy + \int_{-\infty}^{+\infty} RECT\left[\frac{x}{b}\right] dx \int_{-\infty}^{+\infty} \left(\delta\left[y - \frac{d}{2}\right] + \delta\left[y - \frac{d}{2}\right]\right) dy = 2d + 2b = 2\left(b + d\right)$$

5 2-D Functions with Circular Symmetry

- Vary along radial direction
- Constant in azimuthal direction
- All profiles along radial lines are identical
- Important in optics
- Optical systems are constructed from lenses with circular cross sections.
- Same amplitude at all points on circle of radius r_0 centered at origin
- Amplitude of radial function $f_r\left(r_0\right)$ replicated for [x,y] that satisfy $x^2+y^2=r_0^2$.
- Circularly symmetric function expressed as orthogonal product of 1-D radial profile and unit constant in azimuthal direction:

$$f[x,y] \Longrightarrow f(\underline{\mathbf{r}}) = f_r(r) \ 1[\theta], \ 0 \le r < +\infty, \ -\pi \le \theta < +\pi$$

- Rotation about origin has no effect on amplitude
- Symmetric with respect to the origin
 - Domains of radial and azimuthal variables may be recast wiht symmetric radial interval $-\infty < r < +\infty$
 - Azimuthal domain $-\frac{\pi}{2} \le \theta < +\frac{\pi}{2}$.
- Volume calculated in polar coordinates
- area element dx dy replaced by area element in polar coordinates $r dr d\theta$:

$$\iint_{-\infty}^{+\infty} f[x, y] dx dy = \int_{\theta = -\pi}^{\theta = +\pi} \int_{r=0}^{r=+\infty} f(\underline{\mathbf{r}}) r dr$$
$$= 2\pi \int_{0}^{+\infty} f_r(r) r dr$$

• Center of symmetry relocated to $[x_0, y_0]$ by adding vector to argument:

$$\begin{array}{rcl} f\left(\underline{\mathbf{r}} - \underline{\mathbf{r}}_{0}\right) & = & f\left[x, y\right] \\ & = & f\left[\left|\underline{\mathbf{r}}\right| & \cos\left[\theta\right] - \left|\underline{\mathbf{r}}_{0}\right| & \cos\left[\theta_{0}\right], \left|\underline{\mathbf{r}}\right|\right] \end{array}$$

5.1 Cylinder (Circle) Function

- \bullet Unit amplitude inside radius r_0
- $\bullet\,$ Null amplitude outside
- Circularly symmetric version of 2-D rectangle

$$CYL\left(\frac{r}{d_0}\right) = \begin{cases} 1 & \text{for } r < \frac{d_0}{2} \\ \frac{1}{2} & \text{for } r = \frac{d_0}{2} \\ 0 & \text{for } r < \frac{d_0}{2} \end{cases}$$

- Area of enclosed circle of unit diameter is $\frac{\pi}{4} \simeq 0.7854 <$ unit area of RECT[x,y].
- Volume of $CYL\left(\frac{r}{d_0}\right)$:

$$\int_{-\pi}^{+\pi} d\theta \int_0^{+\infty} CYL\left(\frac{r}{d_0}\right) \ r \ d_0 r = \frac{\pi d_0^2}{4}$$

Example of 2-D cylinder function $CYL\left(\frac{r}{2}\right)$.

5.2 Circularly Symmetric Gaussian

• Circularly symmetric Gaussian function identical to separable Gaussian function if scale parameters $a=b\equiv d$

$$e^{-\frac{\pi x^2}{d^2}} e^{-\frac{\pi y^2}{d^2}} = e^{-\pi \frac{x^2 + y^2}{d^2}}$$

$$= e^{-\pi \left(\frac{r}{d}\right)^2}$$

$$\equiv GAUS\left(\frac{r}{d}\right)$$

• Volume by integrating over polar coordinates after making appropriate change of variable:

$$\iint_{-\infty}^{+\infty} GAUS\left(\frac{r}{d}\right) dx dy = \int_{-\pi}^{+\pi} \int_{0}^{+\infty} GAUS\left(\frac{r}{d}\right) r dr d\theta$$
$$= 2\pi \int_{0}^{+\infty} r e^{-\pi \left(\frac{r}{d}\right)^{2}} dr$$

• Define new integration variable $\alpha \equiv \pi \left(\frac{r}{d}\right)^2$

$$\iint_{-\infty}^{+\infty} GAUS\left(\frac{r}{d}\right) dx dy = 2\pi \int_{0}^{+\infty} \frac{d^2}{2\pi} e^{-\alpha} d\alpha = d^2$$

Example of 2-D circularly symmetric Gaussian $f\left(r\right)=e^{-\pi\left(\frac{r}{2}\right)^{2}}$.

5.3 Circularly Symmetric Bessel Function, Zero Order

$$J_0 [2\pi r \rho_0] \ 1[\theta] = J_0 \left(2\pi \sqrt{x^2 + y^2} \ \rho_0 \right)$$

- Selectable parameter ρ_0 analogous to spatial frequency of sinusoid
 - Larger $\rho_0 \Longrightarrow$ shorter interval between successive maxima of Bessel function
- Appears in several imaging applications.
- $J_0[2\pi r \rho_0]$ 1 [θ] generated by summing 2-D cosine functions with the same period "directed" along all azimuthal directions.
- Constituent functions have form $\cos \left[2\pi \left(\eta x + \eta y\right)\right]$, where $\sqrt{\xi^2 + \eta^2} = \rho_0^2$

$$J_0 [2\pi r \rho_0] \ 1 [\theta] = \int_{-\pi/2}^{+\pi/2} \cos \left[2\pi (\xi x + \eta y) \right] \ d\phi \text{ where } \xi^2 + \eta^2 = \rho_0^2$$

• Symmetry of integrand used to evaluate integral over domain of 2π radians:

$$J_0 [2\pi r \rho_0] = \frac{1}{2} \int_{-\pi}^{+\pi} \cos \left[2\pi (\xi x + \eta y) \right] d\phi, \text{ where } \xi^2 + \eta^2 = \rho_0^2$$
$$= \frac{1}{2} \int_{-\pi}^{+\pi} \cos \left[2\pi (r\xi \cos [\phi] + r\eta \sin [\phi]) \right] d\phi$$

• Rewrite integrals by substituting corresponding linear-phase complex exponential for cosine function

$$J_{0} [2\pi r \rho_{0}] 1 [\theta] = \frac{1}{\pi} \int_{-\pi/2}^{+\pi/2} e^{\pm 2\pi i (\xi x + \eta y)} d\phi$$

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{\pm 2\pi i (\xi x + \eta y)} d\phi$$

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} \cos [2\pi r (\xi \cos [\phi] + \eta \sin [\phi])] d\phi, \text{ where } \xi^{2} + \eta^{2} = \rho_{0}^{2}$$

• Profile along the x-axis by setting $\eta = 0$. Spatial frequency ξ along x-axis becomes $\xi = \rho_0$:

$$\begin{split} J_0 \left[2\pi r \rho_0 \right] \; 1 \left[\theta \right] |_{\eta = 0} &= J_0 \left[2\pi x \rho_0 \right] \\ &= \frac{1}{\pi} \int_{-\pi/2}^{+\pi/2} \cos \left[2\pi r \rho_0 \; \cos \left[\phi \right] \right] \; d\phi \\ &= \frac{1}{2\pi} \int_{-\pi}^{+\pi} \cos \left[2\pi r \rho_0 \; \cos \left[\phi \right] \right] \; d\phi \\ &= J_0 \left[2\pi x \xi \right] |_{r = x, \xi = \rho_0} = J_0 \left[2\pi r \rho_0 \right] \end{split}$$

- $\rho_0 \cos [\phi]$ is spatial frequency of constituent 1-D cosines of Bessel function
 - Suggests alternate interpretation that 1-D J_0 Bessel function is sum of 1-D cosines with spatial frequencies in interval $-\rho_0 \le \xi \le +\rho_0$ but weighted in "density" by $\cos [\phi]$
 - Largest spatial frequency exists when $\phi = 0$, while the cosine is the unit constant when $\phi = \pm \frac{\pi}{2}$.

- Equivalent expressions for 1-D Bessel function obtained by setting $\xi=0$ so that $\eta=\rho_0$
 - equivalent to projecting argument onto y-axis:

$$\begin{split} J_0 \left[2\pi y \eta \right] \ 1 \left[\theta \right] \big|_{\xi=0} &= \frac{1}{\pi} \int_{-\pi/2}^{+\pi/2} \cos \left[2\pi r \left(\rho_0 \sin \left[\phi \right] \right) \right] \ d\phi \\ &= \frac{1}{2\pi} \int_{0}^{+\frac{\pi}{2}} \cos \left[2\pi r \left(\rho_0 \sin \left[\phi \right] \right) \right] \ d\phi \\ &= J_0 \left[2\pi y \eta \right] \big|_{r=y,\eta=\rho_0} = J_0 \left[2\pi r \rho_0 \right] \end{split}$$

- Projection of complex-valued formulations onto x-axis is:

$$(J_0 [2\pi y \rho_0] \ 1 [\theta])|_{\xi=0} = \frac{1}{\pi} \int_{-\pi/2}^{+\pi/2} e^{\pm 2\pi i r \rho_0 \cos[\phi]} \ d\phi \text{ where } \xi^2 + \eta^2 = \rho_0^2$$

- May be used as an equivalent definition of the Bessel function.

Circularly symmetric function $J_0\left(2\pi\rho_0 r\right)$ for $\rho_0=\frac{1}{2}$.

5.4 "Sombrero" (Besinc) Function

- ullet Circularly symmetric analogue to SINC function
- Ratio of two functions with null amplitude at origin
 - numerator is Bessel function of the first kind of order unity $J_{1}\left(\pi r\right)$
 - denominator is factor proportional to r.

$$SOMB\left(r\right) = \frac{2\ J_1\left(\pi r\right)}{\pi r}$$

• Amplitude of SOMB(r) at origin obtained via l'Hôspital's rule:

$$SOMB(0) = 2 \lim_{r \to 0} \left\{ \frac{\frac{d}{dr} (J_1 [\pi r])}{\frac{d}{dr} (\pi r)} \right\}$$

$$= 2 \frac{\frac{d}{dr} \left(\frac{\pi r}{2} - \frac{(\pi r)^3}{16} + \frac{(\pi r)^5}{384} - \frac{(\pi r)^7}{18,432} + \cdots \right) \Big|_{r=0}}{\frac{d}{dr} (\pi r) \Big|_{r=0}}$$

$$= 2 \frac{\left(\frac{\pi}{2} \right)}{\pi} = 1$$

• Asymptotic form of $J_1[x]$ for large x used to derive expression for SOMB(r) in limit of large r:

$$\lim_{r \to +\infty} \left\{ SOMB\left(r\right) \right\} = \frac{\sqrt{\frac{2}{\pi r}} \sin\left[\pi r - \frac{\pi}{4}\right]}{\pi r}$$

$$\propto r^{-\frac{3}{2}} \sin\left[\pi r - \frac{\pi}{4}\right]$$

- Compare x-axis profiles of $J_0[\pi x]$, SINC[x], and SOMB[x]
 - All have unit amplitude at origin
 - Product of periodic or pseudoperiodic oscillation and decaying function of x
 - Peak amplitudes of J_0 decay most slowly with increasing $x\left(|J_0[\pi x]| \propto x^{-\frac{1}{2}}\right)$;
 - -SINC[x] decreases as x^{-1}
 - -SOMB[x] as $x^{-\frac{3}{2}}$
 - Differences in locations of zeros
 - * zeros of $SINC\left[x\right]$ located at integer values of x
 - * First two zeros of $J_0\left[\pi x\right]$ located at $x_1\simeq\frac{2.4048}{\pi}\simeq0.7654$ and $x_2\simeq\frac{5.5201}{\pi}\simeq1.7571$
 - \cdot interval slightly less than unity
 - * Interval between successive pairs of zeros of $J_0[\pi x]$ decreases and asymptotically approaches unity as $x \to \infty$
 - * First two zeros of $J_1\left[\pi x\right]$ (and therefore of $SOMB\left(r\right)$) located at $x\simeq 1.2197$ and $x\simeq 2.2331$
 - · Interval between zeros of $SOMB\left(r\right)$ decreases with increasing r
 - · asymptotically approaches unity as $r \to \infty$.

$$\int_{-\pi}^{+\pi} d\theta \int_{0}^{+\infty} SOMB\left(\frac{r}{d}\right) r \ dr = \frac{4d^2}{\pi}$$

Comparison of profiles of BSINC[x], SINC[x], and $J_0[\pi x]$ (a) for $0 \le x \le 8$ and (b) magnified view for $0 \le x \le 2$. BSINC[x] and $J_0[\pi x]$ "fall off" at the most rapid and slowest rates, respectively.

5.5 Circular Triangle Function

- Circularly symmetric analogue of 2-D triangle function
- Most easily constructed as a 2-D autocorrelation
- Describes spatial response of optical imaging systems constructed from elements with circular cross sections.

 $CTRI\left(r\right) \equiv \frac{2}{\pi} \left(\cos^{-1}\left[r\right] - r\sqrt{1 - r^2}\right) CYL\left(\frac{r}{2}\right)$

- Amplitude decreases approximately linearly until $r \simeq 0.8$ where slope "flattens out" slightly
- \bullet Profiles of both 2-D CTRI and 2-D TRI are not straight lines.

Circularly symmetric "triangle" function $CTRI\left(r\right)$.

5.6 Ring Delta Function

• Circularly symmetric analogue of rectangular "corral":

$$f(\underline{\mathbf{r}}) = \delta(|\underline{\mathbf{r}}| - |\underline{\mathbf{r}}_0|)$$

$$\equiv \delta(r - r_0)$$

$$= \delta(r - r_0) \mathbf{1}[\theta]$$

- Resembles polar representation of 2-D Dirac delta function
- Radial arguments r and r_0 are scalars
- Volume evaluated in polar coordinates by applying sifting property of 1-D Dirac delta function:

$$\int_{-\pi}^{+\pi} \int_{0}^{+\infty} \delta(r - r_{0}) \ 1 [\theta] \ r \ dr \ d\theta = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \int_{-\infty}^{+\infty} \delta(r - r_{0}) \ 1 [\theta] \ r \ dr \ d\theta$$
$$= \pi \int_{-\infty}^{+\infty} \left[\delta(r + r_{0}) + \delta(r - r_{0}) \right] \ r \ dr = \pi (2r_{0}) = 2\pi r_{0}$$

• Scaled difference of two cylinder functions with diameters $2r_0 + \Delta$ and $2r_0 - \Delta$:

$$f\left(r\right) = \lim_{\Delta \to 0} \left\{ \frac{1}{\Delta} \left[CYL\left(\frac{r}{2r_0 + \Delta}\right) - CYL\left(\frac{r}{2r_0 - \Delta}\right) \right] \right\}$$

• Volume:

$$\int_{-\pi}^{+\pi} \int_{0}^{+\infty} f(r) r dr d\theta = \lim_{\Delta \to 0} \left\{ \frac{1}{\Delta} \left[\frac{\pi (2r_0 + \Delta)^2}{4} - \frac{\pi (2r_0 - \Delta)^2}{4} \right] \right\}$$

$$= \lim_{\Delta \to 0} \left\{ \frac{\pi}{4\Delta} \left[(2r_0 + \Delta)^2 - (2r_0 - \Delta)^2 \right] \right\}$$

$$= \lim_{\Delta \to 0} \left\{ \frac{\pi}{4\Delta} \left[8r_0 \Delta \right] \right\} = \lim_{\Delta \to 0} \left\{ 2\pi r_0 \right\} = 2\pi r_0$$

2-D "ring" Dirac delta function $f\left(r\right)=\delta\left(r-r_{0}\right)$.

6 Complex-Valued 2-D Functions

6.1 Complex 2-D Sinusoid

$$\begin{split} f\left[x,y\right] &= A_0 \left(\cos\left[2\pi\xi_0 x + \phi_0\right] + i \sin\left[2\pi\xi_0 x + \phi_0\right]\right) \times 1\left[y\right] \\ &= A_0 \left(\cos\left[2\pi\xi_0 x + \phi_0\right] + i \cos\left[2\pi\xi_0 x + \phi_0 - \frac{\pi}{2}\right]\right) \times 1\left[y\right] \\ f\left[x,y\right] &= A_0 e^{i(2\pi\xi_0 x + \phi_0)} 1\left[y\right] \end{split}$$

Azimuth may be oriented in an arbitrary direction:

$$\begin{split} f\left[x,y\right] &= \cos\left[2\pi\xi_0\left(\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}\right)\right] + i \ \cos\left[2\pi\xi_0\left(\underline{\mathbf{r}}\bullet\widehat{\underline{\mathbf{p}}}\right) - \frac{\pi}{2}\right] \\ &= \cos\left[2\pi\left(\xi_0x + \eta_0y\right)\right] + i \ \sin\left[2\pi\left(\xi_0x + \eta_0y\right)\right] = e^{+2\pi i\left(\xi_0x + \eta_0y\right)} \end{split}$$

Real and imaginary parts of 2-D sinusoid.

6.2 2-D Complex Quadratic-Phase Sinusoid ("Chirp")

- Important in describing Fresnel diffraction
- 2-D complex "chirp" function:

$$f[x,y] = Ae^{\pm i\pi \left(\frac{x}{a}\right)^2} 1[y]$$

$$= A_0 \left(\cos \left[\frac{\pi x^2}{a^2}\right] \pm i \sin \left[\frac{\pi x^2}{a^2}\right]\right) \times 1[y]$$

$$f[x,y] = A_0 e^{\pm i\pi \left(\frac{x}{a}\right)^2} B_0 e^{\pm i\pi \left(\frac{y}{b}\right)^2}$$
$$= A_0 B_0 e^{\pm i\pi \left(\left(\frac{x}{a}\right)^2 \pm \left(\frac{y}{b}\right)^2\right)}$$

- Magnitude of second function is not constant
 - Contours of constant magnitude are elliptical
- \bullet Set a and b to d to obtain circularly symmetric complex chirp function:

$$f[x,y] = A_0 e^{\pm i\pi \left(\frac{x}{d}\right)^2} B_0 e^{\pm i\pi \left(\frac{y}{d}\right)^2}$$
$$= A_0 B_0 e^{\pm i\pi \frac{\left(x^2 + y^2\right)}{d^2}}$$

Real and imaginary parts of 2-D circularly symmetric chirp function $f(r) = e^{+i\pi\left(\frac{r}{2}\right)^2}$.