F 1	Kontrola měřícího přístroje:	3D2
4. 12. 2017	ampérmetr, voltmetr	Meinlschmidt

ZADÁNÍ:

- 1. Vysvětlete pojmy: konstanta měřícího přístroje, citlivost, vnitřní odpor, spotřeba
- 2. Proveďte kontrolu předloženého ampérmetru a voltmetru
- 3. Vypočítejte chyby přístroje
- 4. Určete třídu přesnosti (zaokrouhlenou dle ČSN) a porovnejte s třídou přesnosti uvedenou na přístroji
- 5. Sestrojte korekční křivky přístrojů
- 6. Zakreslete značky na stupnicích přístrojů a vysvětlete význam jednotlivých značek

POKYNY

Ampérmetr		Voltmetr		
Rozsah	300 mA	Rozsah	30 V	
	stejnosměrný		stejnosměrný	
Unap	24 V	Unap	48 V	
Rp1	500 Ω	P1	500 Ω	
Rp2	1450 Ω	P2	1450 Ω	
Ro	105 Ω	Rp	105 Ω	

ODPOVĚDI NA OTÁZKY:

- a) Vysvětlete pojmy: konstanta měřícího přístroje, citlivost, vnitřní odpor, spotřeba
 - Konstanta měřícího přístroje číslo, kterým je třeba násobit údaj přístroje v dílcích, abychom dostali hodnotu měřené veličiny.
 - Citlivost udává na "jak malý podnět" dokáže přístroj reagovat
 - Vnitřní odpor elektrický odpor multimetru, bývá často uváděn pomocí kvality
 - Spotřeba při měření elektrické veličiny může odebírat přístroj energii z měřeného obvodu
- b) Zakreslete značky na stupnicích přístrojů a vysvětlete význam jednotlivých značek
 Poloha číselníku vodorovná

Zkouška elektrické pevnosti – napětí 2 kV

Měřící ústrojí – magnetoelektrické s usměrňovačem

Druh proudu s třídou přesnosti

TEORIE:

Kontrola spočívá v překontrolování přístroje kontrolovaného (M) přístrojem správnějším (S). Na kontrolovaném nastavujeme celé dílky a odečítáme na správnějším.

Hodnota ochranného odporu $R_o = \frac{U}{I_m \cdot 1,2}$

Vyjádření chyb

Absolutní chyba: $\Delta m = M - S$

Korekce: $K = -\Delta m$

Relativní chyba: $\delta_m = \frac{\Delta m}{M} \cdot 100\%$

Chyba přístroje: $\delta_p = \frac{\Delta m}{M_n} \cdot 100\%$

Třída přesnosti: $\Delta p = \frac{\Delta m_{max}}{M_n} \cdot 100\%$

M ... veličina z kontrolovaného přístroje (popř. štítku, stupnice)

S ... veličina z přístroje přesnějšího

 M_n ... rozsah přístroje

 Δm_{max} ... maximální chyba

SCHÉMA ZAPOJENÍ:

Kontrola ampérmetru

Kontrola voltmetru

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Ampérmetr kontrolovaný	F 164	4631/20
Ampérmetr správnější	UNI-T UT803	947/16
Voltmetr kontrolovaný	F 200	3499
Voltmetr správnější	TYP DLL 1609 408	
Rezistory	IP 00 1456 Ω	4631/19
	ΙΡ 00 500 Ω	
	IP 00 105 Ω	

POPIS PRÁCE:

Před samotným měřením jsem si připravil potřebné pomůcky a součástky – například zdroj elektrické energie, osciloskop, panely s usměrňovači a reostat. Jejich typové značky, evidenční čísla a jiné nutné údaje jsem řádně zapsal do protokolu o měření. Sestrojil jsem nakreslené schéma a na něm provedl měření oběma přístroji. Pro kontrolu voltmetru byl postup shodný.

TABULKY:

Ampérmetr

Třída přesnosti naměřená – 24. Při ignorování pravděpodobně špatně odečtené hodnoty a využití Δm_{max2} je třída přesnosti 5,7. Pro stejnosměrný proud je na přístroji uvedena třída přesnosti 1.

A _M [mA]	$A_S[mA]$	$\Delta m [mA]$	K [mA]	$\boldsymbol{\delta_m}\left[\% ight]$	$oldsymbol{\delta_p}\left[\% ight]$
45,000	44,500	0,500	-0,500	1,111	0,833
55,000	55,000	0,000	0,000	0,000	0,000
65,000	65,600	-0,600	0,600	0,923	1,000
75,000	75,200	-0,200	0,200	0,267	0,333
85,000	85,800	-0,800	0,800	0,941	1,333
95,000	96,300	-1,300	1,300	1,368	2,167
105,000	106,600	-1,600	1,600	1,524	2,667
115,000	117,400	-2,400	2,400	2,087	4,000
125,000	126,600	-1,600	1,600	1,280	2,667
135,0000	136,800	-1,800	1,800	1,333	3,000
145,000	147,000	-2,000	2,000	1,379	3,333
180,000	136,800	43,200	-43,200	24,000	72,000
195,000	183,900	11,100	-11,100	5,692	18,500

Voltmetr

Třída přesnosti naměřená – 3,3. Pro stejnosměrný proud je na přístroji uvedena třída přesnosti 1,5.

$U_{M}[V]$	$U_{S}[V]$	∆ m [V]	K [V]	δ_m [%]	$\delta_p [\%]$
0,500	0,200	0,300	-0,300	60,000	0,500
2,000	2,800	-0,800	0,800	40,000	1,333
4,000	4,800	-0,800	0,800	20,000	1,333
6,000	6,800	-0,800	0,800	13,333	1,333
8,000	8,800	-0,800	0,800	10,000	1,333
10,000	10,800	-0,800	0,800	8,000	1,333
12,000	12,800	-0,800	0,800	6,667	1,333
14	14,800	-0,800	0,800	5,714	1,333
16	16,8	-0,800	0,800	5,000	1,333
18,000	18,8	-0,800	0,800	4,444	1,333
20,000	20,800	-0,800	0,800	4,000	1,333
22,000	22,800	-0,800	0,800	3,636	1,333
24,000	24,800	-0,800	0,800	3,333	1,333

GRAFY

Korekční křivka ampérmetru F 164, i. č. 463/20

Korekční křivka voltmetru F 200, i. č. 3499

VÝPOČTY:

Absolutní chyba:

$$\Delta m = M - S$$

$$\Delta m = 45,000 \cdot 10^{-3} - 44,500 \cdot 10^{-3}$$

$$\Delta m = 0,500 \cdot 10^{-3} \text{ A}$$

Korekce:

$$K = -\Delta m$$

$$K = -0.500 \cdot 10^{-3} A$$

Relativní chyba [%]:

$$\delta_m = \frac{\Delta m}{M} \cdot 100\%$$

$$\delta_m = \frac{0,500 \cdot 10^{-3}}{45,000 \cdot 10^{-3}} \cdot 100\%$$

$$\delta_m = 1,111\%$$

Chyba přístroje:

$$\delta_p = \frac{\Delta m}{M_n} \cdot 100\%$$

$$\delta_p = \frac{0.500 \cdot 10^{-3}}{60} \cdot 100\%$$

$$\delta_p = 0.833 \cdot 10^{-3} \%$$

Třída přesnosti:

$$\Delta p = \frac{\Delta m_{max}}{M_n} \cdot 100\%$$

$$\Delta p = \frac{43,200}{180,000} \cdot 100\%$$

$$\Delta p = 24$$

SPOLUPRACOVALI:

Kutnohorský, Němeček

ZÁVĚR:

Všechny úkoly se zadání byly splněny. V měření jsem si nevšiml žádných nesrovnalostí, až na výkyv naměřených hodnot při měření ampérmetru přibližně v oblasti, která následuje po 150 mA. Pokud nebylo chybně změřeno, tak dle mého by byl v této oblasti přístroj nepoužitelný k měření. Byla potvrzena teorie, že přístroje hůře měří hodnoty na začátku rozsahu.