TRIUMPHS PSPs Available for Testing in Spring 2019

Descriptions of all PSPs available at:

http://webpages.ursinus.edu/nscoville/(Numbered)%20IUSE%20Project%20Descriptions.pdf

Complete versions of most of the PSPs listed below are available at:

http://webpages.ursinus.edu/nscoville/studentprojects.html

The Notes to Instructors section at the end of each PSP includes further information about its goals and design.

To obtain a preliminary copy of any PSP not yet posted on the TRIUMPHS website, contact: janet.barnett@csupueblo.edu

^{*} indicates a PSP that is suitable for use in History of Mathematics Courses and/or Capstone Courses for Pre-service Secondary Teachers.

Full-length PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
F 01. A Genetic Context for Understanding the Trigonometric Functions	Pre-calculus, Trigonometry*	Danny Otero
F 02. Determining the Determinant	Linear Algebra	Danny Otero
F 03. Solving a System of Linear Equations Using Elimination	Linear Algebra *	Mary Flagg
F 04. Investigating Difference Equations	Discrete Mathematics	Dave Ruch
F 05. Quantifying Certainty: the p-value	Statistics	Dominic Klyve
F 06. Pythagorean Theorem and Exigency of Parallel Postulate	Geometry *	Jerry Lodder
F 07. Failure of the Parallel Postulate	Geometry *	Jerry Lodder
F 08. Dedekind and the Creation of Ideals	Abstract Algebra	Janet Barnett
F 09. Primes, Divisibility & Factoring	Number Theory *	Dominic Klyve
F 10. The Pell Equation in Indian Mathematics	Number Theory *	Toke Knudsen & Keith Jones
F 11. Greatest Common Divisor: Algorithm and Proof	Intro.to Proof / Number Theory Discrete / Abstract Algebra	Mary Flagg
F 13. Bolzano's Definition of Continuity, his Bounded Set Theorem, and an Application to Continuous Functions	Introductory Analysis	Dave Ruch
F 14. Rigorous Debates over Debatable Rigor in Analysis: Monster Functions in Introductory Analysis	Introductory Analysis	Janet Barnett
F 15. An Introduction to Algebra and Geometry in the Complex Plane	Complex Analysis	Diana White & Nick Scoville
F 16. Nearness without distance	Topology	Nick Scoville
F 17. Connectedness- its evolution and applications	Topology	Nick Scoville
F 18. Construction of Figurate Numbers	General Education *	Jerry Lodder
F 19. Pascal's Triangle and Mathematical Induction	General Education *	Jerry Lodder
F 20. Investigations Into d'Alembert's Definition of Limit	Introductory Analysis	Dave Ruch
F 21. An Introduction to a Rigorous Definition of Derivative	Introductory Analysis	Dave Ruch
F 23. The Mean Value Theorem	Introductory Analysis	Dave Ruch
F 24. Abel and Cauchy on a Rigorous Approach to Infinite Series	Introductory Analysis	Dave Ruch
F 25. The Definite Integrals of Cauchy and Riemann	Introductory Analysis	Dave Ruch
F 26. Gaussian Integers and Dedekind Ideals: A Number Theory Project	Number Theory *	Janet Barnett
F 27. Otto Hölder's Formal Christening of the Quotient Group Concept	Abstract Algebra	Janet Barnett
F 28. Roots of Early Group Theory in the Works of Lagrange	Abstract Algebra *	Janet Barnett
F 29. Radius of Curvature According to Christiaan Huygens	Calculus III	Jerry Lodder

See next page for the list of available mini-PSPs.

Mini-	PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
M 01.	Babylonian Numeration	Gen. Ed / Elem. Ed. Courses *	Dominic Klyve
M 03.	Derivatives of The Sine and Cosine Function	Calculus I *	Dominic Klyve
M 04.	Beyond Riemann Sums	Calculus I *	Dominic Klyve
M 05.	The Origin of the Prime Number Theorem	Number Theory	Dominic Klyve
M 09.	How to Calculate π : Machin's Inverse Tangents	Calculus 2 *	Dominic Klyve
M 10.	How to calculate π: Buffon	Geometry / Courses for Middle School Teachers *	Dominic Klyve
M 13.	Gaussian Guesswork: Elliptic Integrals and Integration by Substitution	Calculus 2	Janet Barnett
M 14.	Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve	Calculus 2	Janet Barnett
M 15.	Gaussian Guesswork: Sequences & the Arithmetic-Geometric Mean	Calculus 2	Janet Barnett
M 16.	The logarithm of –1	Complex Analysis	Dominic Klyve
M 17.	Why be so critical? Origins of Analysis in 19 th Century Mathematics	Introductory Analysis *	Janet Barnett
M 18.	Topology from Analysis: Making the Connection	Topology / Introductory Analysis	Nick Scoville
M 19.	Connecting Connectedness	Topology	Nick Scoville
M 20.	The Cantor Set before Cantor	Topology	Nick Scoville
M 21.	A Compact Introduction to a Generalized Extreme Value Theorem	Topology	Nick Scoville
M 22.	From Sets to Metric Spaces to Topological Spaces	Topology	Nick Scoville
M 23.	The Closure Operation as the Foundation of Topology	Topology	Nick Scoville
M 24.	Euler's Rediscovery of <i>e</i>	Introductory Analysis / Calculus 2	Dave Ruch
M 25.	Henri Lebesgue and the Integral Concept	Introductory Analysis	Janet Barnett
M 26.	Generating Pythagorean Triples via Gnomons (two versions available)	Number Theory / Elem. Ed. Courses	Janet Barnett
M 27.	Seeing and Understanding Data	Statistics *	Beverly Wood & Charlotte Bolche

^{*} indicates a PSP that is suitable for use in History of Mathematics Courses and/or Capstone Courses for Pre-service Secondary Teachers.