MATH 580 Notes

Jiantong Liu

January 17, 2024

1 Jan 17, 2024

To start with, we have several basic principles:

- 1. sum principle: suppose $B_1 \dot{\cup} \cdots \dot{\cup} B_k$, then $|A| = \sum |B_i|$. Here $\dot{\cup}$ denote the disjoint union of sets.
- 2. product rule: suppose $A = B_1 \times \cdots \times B_k$, then $|A| = \prod_i |B_i|$, i.e., the product of the number of choices of each coordinate of A gives the number of elements of A. This is true even if we choose element one by one, such that later choices depend on the earlier ones.
- 3. method of double counting (Fubini's theorem): given a set, suppose we have two ways of counting it, then the two formulas are the same.

Example 1.1. Consider $\sum_{i=1}^{n-1} i$. Note that the number is just the size of the set $\{(a,b): a < b\}$, so this is just $\binom{n}{2}$.

Alternatively, we can partition the set into subsets $B_{i+1} := \{(a,b) : a < b, b = i+1\}$, then this is just $\sum_{i=0}^{n-1} |B_{i+1}|$.

4. bijection principle: let A and B be (finite) sets, and we hope to check that they have the same size, then it suffices to check that there exists a bijection $f: A \to B$.

Example 1.2. Let A be the collection of k-set, i.e., subsets of size k, of $[n] = \{1, \ldots, n\}$, then it has $\binom{n}{k}$ elements. Let B be the (n-k)-set of [n]. To find a bijection, we take

$$f: A \to B$$
$$X \mapsto \lceil n \rceil \backslash X.$$

In particular, this proves that $\binom{n}{k} = \binom{n}{n-k}$.

Sometimes it may be hard to find a bijection, so we have the following trick: suppose $f:A\to B$ and $g:B\to A$ are both injections, then we know both are bijections, hence the two sets have the same size.

- 5. pigeonhole principle: given a set of numbers, then the maximal number should be no less than the average number.
- 6. polynomial principle: let p(x) and q(x) be polynomials of degree at most d, and that they agree at d+1 places, then the two polynomials coincide.

Definition 1.3. • A *k*-word is an ordered tuple of *k* elements from the given alphabets.

- A simple word is a word where the letters are not repeated.
- A k-set is a k-element subset. Given a parentset [n] with $n \ge k$, a k-set is denoted $\binom{[n]}{k}$, with size $\binom{n}{k}$.

Remark 1.4. Given a k-set, it is called a simple k-word or a permutation if it is ordered with no repetition; it is called a k-word if it is ordered with repetition allowed; it is a subset if it is unordered with no repetition allowed; it is a multiset if it is an unordered set with repetitions allowed.

1

MATH 580 Notes Jiantong Liu

Notation. We denote $n \cdot (n-1) \cdot \cdots \cdot (n-k+1)$ to be both $n_{(k)}$ and $(n-k+1)^{(k)}$.

Example 1.5. For instance, $n_{(n)} = n!$, and $n_{(0)} = n^{(0)} = 1$. Also, we have $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n_{(k)}}{k!}$.

Remark 1.6. To conclude,

k-sets of $[n]$	no repetition	with repetition
ordered	simple k -words/permutations, size $n_{(k)}$	k -words, size n^k
unordered	k -subsets, size $\binom{n}{k}$	multisets, size $\binom{k+n-1}{k}$, c.f., Theorem 1.7

7. binomial theorem: let \mathbb{N} be the set of natural numbers containing 0, then for all $n \in \mathbb{N}$, for all x, y, we have $(x+y)^n = \sum\limits_k \binom{n}{k} x^k y^{n-k}$. Note that the summation can be understood as over $k \in \mathbb{Z}$.

Theorem 1.7. The number of k-element multisets from [n] is the number of non-negative integer solutions of $\sum_{i=1}^{n} x_i = k$, which is just $\binom{k+n-1}{n-1} = \binom{k+n-1}{k}$.

Proof. Consider x_i as the number of times the element i is chosen, this proves the first part. To prove the second part, we need to count the number of solutions, which is done by considering a tuple (x_1, \ldots, x_n) as a classic star-and-bar problem.

Definition 1.8. A composition of $k \in \mathbb{Z}^+ = \mathbb{N} \setminus \{0\}$ is an ordered list of positive integers summing to k.

Example 1.9. 1+2=3=2+1 gives two different compositions (1,2) and (2,1) as ordered lists.

Theorem 1.10. The number of compositions of k with n parts is $\binom{k-1}{n-1}$.

Proof. Consider the number of solutions of $y_1 + \cdots + y_n = k$ for $y_i \ge 1$ for all i.