

BACHELOR OF SCIENCE (HONS) IN - APPLIED COMPUTING - COMPUTER FORENSICS & SECURITY

EXAMINATION:

DISCRETE MATHEMATICS (COMMON MODULE) SEMESTER 1 - YEAR 1

DECEMBER 2023 DURATION: 2 HOURS

INTERNAL EXAMINERS: DR DENIS FLYNN DATE: 15 DEC 2023

DR KIERAN MURPHY
TIME: 11.45 AM
VENUE: MAIN HALL

EXTERNAL EXAMINER: MS MARGARET FINNEGAN

INSTRUCTIONS TO CANDIDATES

- 1. ANSWER ALL QUESTIONS.
- 2. TOTAL MARKS = 100.
- 3. EXAM PAPER (5 PAGES EXCLUDING THIS COVER PAGE), FORMULA AND PYTHON SHEETS (2 PAGES)

MATERIALS REQUIRED

- 1. NEW MATHEMATICS TABLES.
- 2. GRAPH PAPER

SOUTH EAST TECHNOLOGICAL UNIVERSITY

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 1 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 1

(a)

(i) Construct a logical expression to represent the output Y.

(4 marks)

$$Y = \neg \bigg((A \land B) \lor (\neg (\neg A \lor B) \bigg)$$

(ii) Construct a truth table for this expression and classify the logical expression as a tautology, a contradiction, or satisfiable.
 (4 marks)

A	B	$(A \wedge B)$	$\neg A \vee B$	$\neg(\neg A \lor B)$	$(A \land B) \lor (\neg(\neg A \lor B))$	Y
0	0	0	1	0	0	1
0	1	0	1	0	0	1
1	0	0	0	1	1	0
1	1	1	1	0	1	0

Expression is satisfiable, but is not a tautology.

(iii) Compare the inputs to the output and construct a shorter logical expression that is logically equivalent to the original circuit. (4 marks)

$$Y = \neg A$$

(b)

Code reports whether set A is a proper subset of set B.

So for the given sets: **True**

4 marks, justification required

(c)

(i) How many subsets are there of cardinality 4?

$$\binom{6}{4} = 15 \text{ subsets.}$$

(ii) How many subsets of S are there? That is, find $|\mathcal{P}(A)|$.

 $2^6 = 64$ subsets.

(iii) How many subsets of S are there where the sum of the elements equals 13?

The elements of the set S are the powers of 2 so the sum of different subsets of S are unique. Hence answer is 1.

4 marks = 1 + 1 + 2

OUTLINE MODEL ANSWERS & MARKING SCHEME

OUTLINE MODEL ANSWERS & MARKING SCHEME		
Course: BSc (H) in AC, in CF	Semester: 1 Pa	age 2 of 6
Subject: Discrete Mathematics	Examiner: Dr D	. Flynn, Dr K Murphy

Question 2

- (a) _____
- (i) $\vee pq$ Not well formed. Logical and, \vee is a binary operator, expected infix notation.
- (ii) $p \neg \neg r$ Not well formed. Logical not operator, \neg is a unary operator.
- (iii) $p \neg \rightarrow (q \land q)$ Not well formed. \neg applied to conditional operator
- (iv) $(p \land \neg q) \lor (q \neg \rightarrow q)$ Not well formed. Conditional operator, \rightarrow is a binary operator.

4 marks =
$$4 \times 1$$
, justification required

The completed table is

(4 marks)

char	A	В	С	D
H	False	True	True	False
i	True	False	True	False
,	False	False	False	False
	False	False	False	False
I	False	True	True	False
	False	False	False	False
a	True	False	True	False
m	True	False	True	False
	False	False	False	False
2	False	False	False	True
	False	False	False	False

(i) all([c.isupper() for c in message]) (3 marks)

False (with any valid example)

(ii) $\exists c \ [B(c) \land C(c)]$ (3 marks)

True (with any valid example)

(iii) $\forall c \ [C(c) \rightarrow (A(c) \lor B(c))]$ (3 marks)

True (with any valid reason)

(iv) any([c. isdigit () and c.isalpha() for c in message]) (3 marks)

False (with any valid reason)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 3 of 6	
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr I	K Murphy

Question 3

(a)

Partial marks for correct parsing of expression, demonstrating ability to compute logical expression, implication of satisfiability definition.

The expression is satisfiable but is not a tautology.

6 marks

(b)

The term in the loop is odd and since the range is semi-open, the total is -5.

4 marks

- (c)
- (i) Construct a recursive definition for the sequence.

$$a_n = a_{n-1} + 5$$
 with $a_1 = 7$

(ii) Construct a closed formula for the nth term of the sequence.

$$a_n = 7 + 5(n-1)$$

(iii) Is 2023 a term in the sequence? Explain.

No, since (2023 - a)/d = 2016/5 = 403.2 is not an integer.

- (iv) How many terms does the sequence $7 + 12 + 17 + 22 + 27 + \cdots + 437$ have? 87
- (v) Determine the sum: $7 + 12 + 17 + 22 + 27 + \dots + 437$ $\frac{(437+7)\times 87}{2} = 19314$

$$10 = 5 \times 2$$
 marks

OUTLINE MODEL ANSWERS & MARKING SCHEME

OCILINE MODEL MISWERS & MARKING SCHEME		
Course: BSc (H) in AC, in CF	Semester: 1	Page 4 of 6
Subject: Discrete Mathematics	Examiner: D	r D. Flynn, Dr K Murphy

Question 4

(a)

The function returns **True** iff relation is an **onto** relation from A to B.

5 marks, -2 if not stating into/onto

(b)

- (i) $5 \in C = True$
- (ii) $\{9\} \in C =$ False
- (iii) $\{3\} \subseteq A = \mathbf{True}$
- (iv) A. intersection (B). issubset (B.union(C)) = True
- (v) $B \subseteq A = True$
- (vi) B.union(C).intersection(A). is disjoint (C) = True

6 marks = 6×1 , justification required

(c)

(i)
$$\sum_{k=0}^{8} 2^{k} (k \mod 2) = \underbrace{[0]}_{k=0} + \underbrace{[2^{1}]}_{k=1} + \underbrace{[0]}_{k=2} + \underbrace{[2^{3}]}_{k=3} + \underbrace{[0]}_{k=4} + \underbrace{[2^{5}]}_{k=5} + \underbrace{[0]}_{k=6} + \underbrace{[2^{7}]}_{k=7} + \underbrace{[0]}_{k=8} = 170$$

(ii)
$$\sum_{k=1}^{5} (2k+1) = \underbrace{[3]}_{k=1} + \underbrace{[5]}_{k=2} + \underbrace{[7]}_{k=3} + \underbrace{[9]}_{k=4} + \underbrace{[11]}_{k=5} = 35$$

(iii)
$$\prod_{k=0}^{6} (k+1) = \underbrace{[1]}_{k=0} + \underbrace{[2]}_{k=1} + \underbrace{[3]}_{k=2} + \underbrace{[4]}_{k=3} + \underbrace{[5]}_{k=4} + \underbrace{[6]}_{k=5} = 21$$

9 marks = 3×3

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 5 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 5

(a)

- (i) Start with the sub-string 10. No constraints on remaining 4 bits, so $2^4 = 16$.
- (ii) Have weight 3 (i.e., contain exactly three 1's) and start with the sub-string 01. In the remaining 4 bits, two of which must be 1, so $\binom{4}{2} = 6$
- (iii) Either start with 01 or end with 11 (or both).

Start with 01: No constraints on remaining 4 bits, so $2^4 = 16$.

Ends with 11: No constraints on preceding 4 bits, so $2^4 = 16$.

Start with 01 and ends with 11: No constraints on middle 2 bits, so $2^2 = 4$.

Ans (remove double counting): $2^4 + 2^4 - 2^2 = 16 + 16 - 4 = 28$

(iv) Have weight 3, starts with 01, and ends with 11.

The middle 2 digits must have weight 0 so that the entire string has weight 3. Hence have 1 possibility.

6 marks =
$$1 + 1 + 2 + 2$$
, justification required

(b)

(i) Represent R using a digraph.

(ii) Is R reflexive? symmetric? transitive?

R is reflexive, symmetric and transitive + reason

(iii) Is R an equivalence relation? and if yes, what the resulting equivalence classes?
R an equivalence relation with classes

 $\{0, 3, 6, 9\}$ $\{1, 4, 7\}$ $\{2, 5, 8\}$

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF	Semester: 1 Page 6 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

8 marks =
$$3 + 3 + 2$$

(i)
$$f(4) = 2 \cdot 4 + 3 = 8 + 3 = 11$$

(ii)
$$g(2) = 2^3 - 1 = 8 - 1 = 7$$

(iii)
$$f(5) + g(2) - h(4) = 2 \cdot 5 + 3 + 7 - \frac{5}{4} = 10 + 3 + 7 - \frac{5}{4} = 20 - \frac{5}{4} = \frac{75}{4} = 18.75$$

(iv)
$$f(g(1)) = f(1^3 - 1) = f(0) = 2 \cdot 0 + 3 = 3$$

(v)
$$g(h(2)) = g(\frac{5}{2}) = (\frac{5}{2})^3 - 1 = \frac{125}{8} - 1 = \frac{117}{8} = 14.63$$

(vi)
$$h(f(3)) = h(2 \cdot 3 + 3) = h(9) = \frac{5}{9} = 0.556$$

6 marks =
$$6 \times 1$$