Теория принятия решений НГУ

Факультет информационных технологий 3 курс, 2 семестр

Лектор: Кочетов Юрий Андреевич

http://www.math.nsc.ru/LBRT/k5/or.html

Теория принятия решений

Исследование операций — теория математических моделей и методов принятия решений.

- 1. Наличие некоторого процесса
- 2. Наличие управляющих воздействий
- 3. Наличие цели, ради которой проводится операция
- 4. **Выбор наилучшего (оптимального) управления**, при котором достигается цель

Операция — система действий, объединенная единым замыслом и направленная на достижение определенной цели.

Основная задача теории оптимальных решений состоит в представлении обоснованных количественных данных и рекомендаций для принятия оптимальных решений.

Лекция 1. Исследование операций. Динамическое программирование

Математическая модель

Математическая модель — объективная схематизация основных аспектов решаемой задачи или ее описание в математических терминах.

Математическая модель описывает исследуемую систему и позволяет выразить ее эффективность в виде *целевой функции*

$$W = f(X,Y),$$

где $X = (x_1, ..., x_n)$ — управляемые переменные,

 $Y = (y_1, ..., y_m)$ — неуправляемые переменные (исходные данные).

Связь между переменными X и исходными данными Y выражается с помощью ограничений

$$\varphi(X, Y) \leq 0.$$

Модели принятия решений

- 1. Долгосрочное стратегическое планирования: задачи размещения производства, развитие нефтяной и газовой промышленности
- 2. Среднесрочное планирование: транспортные задачи, задачи маршрутизации, задачи календарного планирования с ограниченными ресурсами
- 3. Оперативное управление: задачи теории расписаний, задачи раскроя и упаковки

Задачи размещения производства

Системы сотовой связи, филиалы банков, производство продукции

Минимизировать затраты на перевозку продукции

Лекция 1. Исследование операций. Динамическое программирование

Задачи теории расписаний

Графики движения поездов, рабочие бригады, ремонт составов

Задачи раскроя и упаковки

Раскрой пиломатериала, листового железа, станки с ЧПУ

Матричные игры

Системы поддержки решений

Лекция 1. Исследование операций. Динамическое программирование

Распределительная задача

Имеем

n — число предприятий;

Y — количество единиц некоторого ресурса;

 $f_k(x)$ — количество продукции, которое будет произведено на k-м предприятии, если в него будет вложено x единиц ресурса (монотонно неубывающая функция).

Требуется: максимизировать объем продукции

$$f_1(x_1) + \ldots + f_n(x_n) \to \max \tag{1}$$

$$x_1 + \ldots + x_n \le Y \tag{2}$$

$$x_i \ge 0$$
, целые, $i = 1, ... n$. (3)

Идея динамического программирования (ДП)

Метод ДП (Р. Беллман, В.С. Михалевич, Н.З. Шор) можно трактовать как алгоритмическую версию рассуждений по индукции.

Пусть $s_k(y)$, $1 \le k \le n$, $0 \le y \le Y$, — оптимальное значение целевой функции задачи (1) - (3), где n заменено на k, Y заменено на y.

Требуется найти $s_n(Y)$ и набор переменных, на котором достигается это значение.

ТЕОРЕМА 1. Пусть $f_1, ..., f_n$ — монотонно неубывающие функции.

Тогда справедливы следующие рекуррентные соотношения:

$$s_1(y) = f_1(y), \ 0 \le y \le Y;$$
 (4)

$$s_k(y) = \max \{s_{k-1}(y-x) + f_k(x) \mid 0 \le x \le y\}, \ 2 \le k \le n, \ 0 \le y \le Y,$$
 (5)

Доказательство: Соотношение (4) очевидно. По определению

$$s_k(y) \ge \max \{s_{k-1}(y-x) + f_k(x) \mid 0 \le x \le y\}.$$

Пусть теперь $(x_1^*,...,x_k^*)$ — такой вектор, что $x_1^*+...+x_k^* \le y$ и

$$s_k(y) = f_1(x_1^*) + \dots + f_k(x_k^*).$$

Поскольку $s_{k-1}(y-x_k^*) \ge f_1(x_1^*) + ... + f_{k-1}(x_{k-1}^*)$, имеем

$$s_k(y) = f_1(x_1^*) + \dots + f_k(x_k^*) \le s_{k-1}(y - x_k^*) + f_k(x_k^*).$$

Алгоритм ДП вычисляет множество $S_k = \{s_k(y) \mid 0 \le y \le Y\}, k = 1,...,n$ с помощью соотношений (4) и (5), где на каждом шаге оптимизируется ровно одна переменная.

Процесс вычисления $S_1,...,S_n$ называется **прямым ходом** алгоритма.

Число операций $\approx Y^2 n$ Память $\approx Y n$

y	$S_1(y)$	$S_2(y)$	•••	$S_n(y)$
0				
1				
2				
•				
Y				$S_n(Y)$

При *обратном ходе* алгоритма вычисляются значения $(x_n^*,...,x_1^*)$, с учетом того, что уже известны $S_k(y)$. Например, x_n^* определяется из уравнения $s_n(Y) = f_n(x_n^*) + s_{n-1}(Y - x_n^*)$ и так далее.

Число операций $\approx Yn$. Память $\approx Yn$.

Характеристики алгоритмов

Для оценки качества алгоритмов будем использовать два параметра:

 T_{A} — *трудоемкость* (число элементарных операций алгоритма A);

 Π_A — требуемый *объем памяти*.

Элементарная операция — одна из арифметических операций: сложение, вычитание, умножение, деление или логическая операция сравнение двух чисел.

Нас будет интересовать зависимость параметров алгоритма от длины записи исходных данных задачи с точностью до порядка величин.

Пример: При $T = 3/2 \ n^2$, будем писать $T = O(n^2)$ или $T \approx n^2$.

Полиномиальные алгоритмы

Определение. Алгоритм A называют *полиномиальным*, если его трудоемкость T_A ограничена полиномом от длины записи исходных данных, то есть существует константа c>0 и натуральное число k такие, что $T_A \le cL^k$, где L — длина записи исходных данных.

Пример: Пусть
$$f_i(x_i) = a_i x_i$$
, тогда $L = \sum_{i=1}^n \log a_i + \log Y$,

но $T_{\Pi\Pi} = O(Y^2 n)$, то есть алгоритм ДП не является полиномиальным.

Обобщим задачу (1)–(3):

$$f_1(x_1) + \ldots + f_n(x_n) \to \max \tag{1'}$$

$$h_1(x_1) + \ldots + h_n(x_n) \le Y$$
 (2')

$$a_i \ge x_i \ge 0$$
, целые, $i = 1, ...n$. (3')

Если $h_i(x)$ — целочисленные монотонно неубывающие функции, то вместо (4)—(5) можно использовать следующие рекуррентные соотношения:

$$s_1(y) = f_1(x^*)$$
, где $x^* = \max\{x \le a_1 \mid h_1(x) \le y\}$, $0 \le y \le Y$; (4')

$$s_k(y) = \max_{\{x \le a_k \mid h_k(x) \le y\}} \{ f_k(x) + s_{k-1}(y - h_k(x)) \}, \ 2 \le k \le n, \ 0 \le y \le Y.$$
 (5')

Упражнение 1. Доказать справедливость соотношений (4')–(5').

Обратная задача — поиск наименьших затрат на получение заданного количества продукции:

$$h_1(x_1) + \ldots + h_n(x_n) \to \min \tag{6}$$

$$f_1(x_1) + \ldots + f_n(x_n) \ge D$$
 (7)

$$a_i \ge x_i \ge 0$$
, целые, $i = 1, ...n$. (8)

Если $f_k(x)$ — целочисленные монотонно неубывающие функции, то для решения задачи (6)—(8) можно использовать идеи динамического программирования.

Пусть $f_i^{-1}(d) = \min\{0 \le x \le a_i \mid f_i(x) \ge d\}.$

Для $1 \le k \le n$, $0 \le d \le D$ обозначим через $t_k(d)$ — оптимальное решение задачи (6)–(8), в которой n заменено на k, а D заменено на d.

Требуется найти $t_n(D)$.

Рекуррентные соотношения

$$t_1(d) = \begin{cases} \infty, & \text{если } f_1(a_1) < d, \\ h_1(f_1^{-1}(d)), & \text{если } f_1(a_1) \ge d, \end{cases} \qquad 0 \le d \le D, \tag{9}$$

$$t_k(d) = \min\{t_{k-1}(d - f_k(x)) + h_k(x) | 0 \le x \le a_k, x \le f_k^{-1}(d)\},\$$

$$k \ge 2, \ 0 \le d \le D.$$
(10)

Упражнение 2. Доказать справедливость соотношений (9)–(10).

ТЕОРЕМА 2: Предположим, что D — наибольшее число, для которого оптимальное значение целевой функции задачи (6)—(8) не превосходит Y. Тогда оптимальное значение целевой функции задачи (1')—(3') равно D.

Доказательство: Пусть D удовлетворяет условию теоремы и $(x_1^*,...,x_n^*)$ — соответствующее решение задачи (6)–(8). Значит

$$f_1(x_1^*) + ... + f_n(x_n^*) \ge D$$
 и $h_1(x_1^*) + ... + h_n(x_n^*) \le Y$.

Следовательно, D не превосходит оптимального решения D_1 задачи (1')–(3'). Если бы D_1 было больше D, то решение задачи (6)–(8), в которой D заменено на D_1 , тоже не превышало бы Y, что противоречит максимальности D.