Name:	Student ID:

- 1. Suppose the following table shows January rainfall in Los Angeles.
 - a) Calculate the mean and the standard deviation of the rainfall. Round the values to the nearest hundredth if needed.
 - b) What is the median of rainfall?What are lower and upper quartiles?Round the values to the nearest hundredth if needed.
 - c) Draw the box plot for the rainfall. How many outliers are there?

Year	JAN
2011	3.00
2012	1.62
2013	1.12
2014	2.05
2015	1.25
2016	2.84
2017	5.92
2018	4.82
2019	3.06
2020	4.20

- d) Which measure, the mean or the median, do you think better represents the January rainfall? Why?
- 2. Use the rainfall data in Problem 1.
 - a) Suppose a rainfall of 5 inches and above issues flood warnings (2), a rainfall of 3.5 inches and above and less than 5 inches issues flood advisory (1), and a rainfall less than 3.5 inches does not issue flood (0). Draw the Venn diagram in terms of no flood (0), flood advisory (1) and flood warnings (2) with the outcomes. Are they mutually exclusive? Are they collectively exhaustive?
 - b) Construct the pmf table for flooding.

X	0	1	2
	(No Flood)	(Flood Advisory)	(Flood Warning)
P(X)			

- c) Calculate the probability that issues either flood advisory or warning (Hint: use X=0, 1, or 2)
- d) What are the expected levels of flood using the pmf in part b? (Hint: use X=0, 1, or 2) Your final expected flood levels should be either No Flood, Flood Advisory or Flood Warning.

CEE 110—Probability and Statistics Midterm April 30,2020

Name:	_ Student ID:	

- 3. A valve is given a quality score of either A, B or C. 20% of the valves were given a quality score A, 30% were given a quality score B, and 50% were given a quality score C. In addition, 3% of the valves given a quality score A eventually failed, and the failure rate was 4% for valves given quality score B, and 5% for valves given a quality score C.
 - a) Draw a tree diagram.
 - b) What is the probability that the valve will fail?
 - c) If the valve fails, what is the probability that its quality score is either B or C?
 - d) If the valve does not fail, what is the probability that its quality score is A? Round the values to the nearest hundredth if needed.
- 4. The maximum contaminant levels from water treatment plants are specified to have nitrogen concentration of 10 mg/L. From 10 days of daily monitoring, the probability of violation of the maximum contaminant level is 0.1.
 - a) What is the probability that at most 8 days of monitoring will comply (=not violate) with the maximum contaminant level?
 - b) What is the probability that at least 8 days of monitoring will comply (=not violate) with the maximum contaminant level?
 - c) What is the probability that exactly 2 days of monitoring will violate the maximum contaminant level?
 - d) Calculate expected value and standard deviation of the days with compliance (= no violation).

Table: Cumulative Binomial probabilities
$$P[X \le c] = \sum_{x=0}^{c} {n \choose x} p^{x} (1-p)^{n-x}$$

					/							
		-					p					
	c	0.05	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95
n = 1	0	0.950	0.900	0.800	0.700	0.600	0.500	0.400	0.300	0.200	0.100	0.050
	1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
n = 2	0	0.903	0.810	0.640	0.490	0.360	0.250	0.160	0.090	0.040	0.010	0.003
	1	0.998	0.990	0.960	0.910	0.840	0.750	0.640	0.510	0.360	0.190	0.098
	2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
n = 3	0	0.857	0.729	0.512	0.343	0.216	0.125	0.064	0.027	0.008	0.001	0.000
11 = 3	1	0.993	0.723	0.896	0.784	0.648	0.500	0.352	0.216	0.104	0.028	0.007
	2	1.000	0.999	0.992	0.973	0.936	0.875	0.784	0.657	0.488	0.028	0.143
	3	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		1										
n = 4	0	0.815	0.656	0.410	0.240	0.130	0.063	0.026	0.008	0.002	0.000	0.000
	1	0.986	0.948	0.819	0.652	0.475	0.313	0.179	0.084	0.027	0.004	0.000
	2	1.000	0.996	0.973	0.916	0.821	0.688	0.525	0.348	0.181	0.052	0.014
	3	1.000	1.000	0.998	0.992	0.974	0.938	0.870	0.760	0.590	0.344	0.185
	4	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
n=5	0	0.774	0.590	0.328	0.168	0.078	0.031	0.010	0.002	0.000	0.000	0.000
	1	0.977	0.919	0.737	0.528	0.337	0.188	0.087	0.031	0.007	0.000	0.000
	2	0.999	0.991	0.942	0.837	0.683	0.500	0.317	0.163	0.058	0.009	0.001
	3	1.000	1.000	0.993	0.969	0.913	0.813	0.663	0.472	0.263	0.081	0.023
	4	1.000	1.000	1.000	0.998	0.990	0.969	0.922	0.832	0.672	0.410	0.226
	5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
n = 6	0	0.735	0.531	0.262	0.118	0.047	0.016	0.004	0.001	0.000	0.000	0.000
	1	0.967	0.886	0.655	0.420	0.233	0.109	0.041	0.011	0.002	0.000	0.000
	2	0.998	0.984	0.901	0.744	0.544	0.344	0.179	0.070	0.017	0.001	0.000
	3	1.000	0.999	0.983	0.930	0.821	0.656	0.456	0.256	0.099	0.016	0.002
	4	1.000	1.000	0.998	0.989	0.959	0.891	0.767	0.580	0.345	0.114	0.033
	5	1.000	1.000	1.000	0.999	0.996	0.984	0.953	0.882	0.738	0.469	0.265
	6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
n = 7	0	0.698	0.478	0.210	0.082	0.028	0.008	0.002	0.000	0.000	0.000	0.000
	1	0.956	0.850	0.577	0.329	0.159	0.063	0.019	0.004	0.000	0.000	0.000
	2	0.996	0.974	0.852	0.647	0.420	0.227	0.096	0.029	0.005	0.000	0.000
	3	1.000	0.997	0.967	0.874	0.710	0.500	0.290	0.126	0.033	0.003	0.000
	4	1.000	1.000	0.995	0.971	0.904	0.773	0.580	0.353	0.148	0.026	0.004
	5	1.000	1.000	1.000	0.996	0.981	0.938	0.841	0.671	0.423	0.150	0.044
	6	1.000	1.000	1.000	1.000	0.998	0.992	0.972	0.918	0.790	0.522	0.302
	7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	•											

							p					
	c	0.05	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95
n = 8	0	0.663	0.430	0.168	0.058	0.017	0.004	0.001	0.000	0.000	0.000	0.000
	1	0.943	0.813	0.503	0.255	0.106	0.035	0.009	0.001	0.000	0.000	0.000
	2	0.994	0.962	0.797	0.552	0.315	0.145	0.050	0.011	0.001	0.000	0.000
	3	1.000	0.995	0.944	0.806	0.594	0.363	0.174	0.058	0.010	0.000	0.000
	4	1.000	1.000	0.990	0.942	0.826	0.637	0.406	0.194	0.056	0.005	0.000
	5	1.000	1.000	0.999	0.989	0.950	0.855	0.685	0.448	0.203	0.038	0.006
	6	1.000	1.000	1.000	0.999	0.991	0.965	0.894	0.745	0.497	0.187	0.057
	7	1.000	1.000	1.000	1.000	0.999	0.996	0.983	0.942	0.832	0.570	0.337
	8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		•										
n = 9	0	0.630	0.387	0.134	0.040	0.010	0.002	0.000	0.000	0.000	0.000	0.000
	1	0.929	0.775	0.436	0.196	0.071	0.020	0.004	0.000	0.000	0.000	0.000
	2	0.992	0.947	0.738	0.463	0.232	0.090	0.025	0.004	0.000	0.000	0.000
	3	0.999	0.992	0.914	0.730	0.483	0.254	0.099	0.025	0.003	0.000	0.000
	4	1.000	0.999	0.980	0.901	0.733	0.500	0.267	0.099	0.020	0.001	0.000
	5	1.000	1.000	0.997	0.975	0.901	0.746	0.517	0.270	0.086	0.008	0.001
	6	1.000	1.000	1.000	0.996	0.975	0.910	0.768	0.537	0.262	0.053	0.008
	7	1.000	1.000	1.000	1.000	0.996	0.980	0.929	0.804	0.564	0.225	0.071
	8	1.000	1.000	1.000	1.000	1.000	0.998	0.990	0.960	0.866	0.613	0.370
	9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		r										
n = 10	0	0.599	0.349	0.107	0.028	0.006	0.001	0.000	0.000	0.000	0.000	0.000
	1	0.914	0.736	0.376	0.149	0.046	0.011	0.002	0.000	0.000	0.000	0.000
	2	0.988	0.930	0.678	0.383	0.167	0.055	0.012	0.002	0.000	0.000	0.000
	3	0.999	0.987	0.879	0.650	0.382	0.172	0.055	0.011	0.001	0.000	0.000
	4	1.000	0.998	0.967	0.850	0.633	0.377	0.166	0.047	0.006	0.000	0.000
	5	1.000	1.000	0.994	0.953	0.834	0.623	0.367	0.150	0.033	0.002	0.000
	6	1.000	1.000	0.999	0.989	0.945	0.828	0.618	0.350	0.121	0.013	0.001
	7	1.000	1.000	1.000	0.998	0.988	0.945	0.833	0.617	0.322	0.070	0.012
	8	1.000	1.000	1.000	1.000	0.998	0.989	0.954	0.851	0.624	0.264	0.086
	9	1.000	1.000	1.000	1.000	1.000	0.999	0.994	0.972	0.893	0.651	0.401
	10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	_	I										
n = 11	0	0.569	0.314	0.086	0.020	0.004	0.000	0.000	0.000	0.000	0.000	0.000
	1	0.898	0.697	0.322	0.113	0.030	0.006	0.001	0.000	0.000	0.000	0.000
	2	0.985	0.910	0.617	0.313	0.119	0.033	0.006	0.001	0.000	0.000	0.000
	3	0.998	0.981	0.839	0.570	0.296	0.113	0.029	0.004	0.000	0.000	0.000
	4	1.000	0.997	0.950	0.790	0.533	0.274	0.099	0.022	0.002	0.000	0.000
	5	1.000	1.000	0.988	0.922	0.753	0.500	0.247	0.078	0.012	0.000	0.000
	6	1.000	1.000	0.998	0.978	0.901	0.726	0.467	0.210	0.050	0.003	0.000
	7	1.000	1.000	1.000	0.996	0.971	0.887	0.704	0.430	0.161	0.019	0.002
	8	1.000	1.000	1.000	0.999	0.994	0.967	0.881	0.687	0.383	0.090	0.015
	9	1.000	1.000	1.000	1.000	0.999	0.994	0.970	0.887	0.678	0.303	0.102
	10	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.980	0.914	0.686	0.431
	11	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000