

Frideman: Graphical Lasso
Solve Lasso problem on each variable separately
until convergence.

Lasso Problem: N. D.

Lasso Problem:
$$N$$

$$\beta = \underset{i=1}{\text{arg min}} \sum_{i=1}^{p} (y_i - \sum_{j=1}^{p} x_{ij} \beta_{j})^2$$
Subject to $\sum_{j=1}^{p} |\beta_j| \le t$

by equivalently $f(\beta) = \sum_{j=1}^{N} (y_i - \sum_{j=1}^{n} n_{ij} \beta_j) + \lambda \sum_{j=1}^{n} |\beta_j|$

How Lasso enforce spareity?

Grap	shical Lasso: Estim	ate sparseness a	of the
grap	shieal Lasso: Estimo	Granssian), i.e.	. Model
0			
3616	Ction.		
•	,		

Elastic Net: Regularization term is linear combination of L1 and L2 penalty.

Pa (B) = (1- α) ||B||₂ + α ||B||₄,

min $\left[\frac{1}{N}\sum_{i=1}^{N}(y_{i}-x_{i}^{T}\beta)^{2}+\lambda\beta_{x}(\beta)\right]$

· Elastic Net can be used to estimate graph Sparseness just like Lasso.

Extention Lasso to multi-subjects of fMRI Group Lasso:

X: NXP observation matrix

Y: NXI response variable.

P features are grouped into B, ... Bj ... Bj

into	J groups
Grov	plasso try to minimize y-\(\Sigma\) x; \(\beta\) \(\frac{1}{j=1}\) \(\beta\) \(\beta\) \(\beta\) \(\beta\)
χ; :	de sign matrix for P; feature in group j
βj :	for group j.
all mode	B in Bj are removed or added into the together. 1 together. 1 together.
Bu and	d Biz in same Group 1
Br IV	group 2 B12
	B ₁₁
Relect	subject in a group
Fach	subject in a group

arc s	trough & B
* di	sregard temporal correlation (same with linear
6770	(Wildy)
* >	independent regression problem = potential to
	rakel
•	100 se à (spatseness), cross validation.
	parcity should be smooth
	l
^ (lse network as regressor for regression
	clinical variable?
	legative correlation?
* (can Lasso replace the regression on white ther and CSF?
Ma	Her and CSF?
. 1	se flow-cust to analyze network?
* 1	tow to gre ne rate synthetic data
gel	remete graph first?
.	30 => generate sample?
	Jo Jo Jerneral Salaysia

2. also estimate the spareity of edges.
$\Delta \ \beta \ _{\kappa} = (\beta' k \beta)^{\frac{1}{2}}$
DII into prior
DTI into prior 9
a Post processing on the network snall-coorlanges u.
snoll-loorlaness u.
1 Multi-task Learning in ML Community.