1. Integralność bazy danych, jakie znasz warunki integralności.

Integralność bazy danych to zestaw zasad i ograniczeń mających na celu zapewnienie dokładności, spójności i wiarygodności danych w bazie danych.

Integralność: encji, referencyjna "domeny "operacyjna "wartości null "unikalności "wyzwalaczy, warunków. 2. Co to są transakcje i jakie mają własności.

Transakcje w SQL to sekwencje operacji wykonywanych jako pojedyncza jednostka pracy, która musi być wykonana w całości lub wcale. Własności: Atomowość, Spójność, Izolacja, Trwałość.

3. Jakie uprawnienia może mieć użytkownik i jak je zmieniać.
Uprawnienia może mieć użytkownik i jak je zmieniać.
Uprawnienia: globalne, na poziomie bazy danych, na poziomie tabeli, na poziomie kolumny, na poziomie rutyn (procedury, funkcje).
Zmienianie GRANT/REVOKE "SELECT/INSERT ITP" ON "gdzie" TO/FROM "uzytkownik"

4. Integralność referencyjna i jak zapobiegać usuwaniu danych z kluczem obcym - on delete cascade.

Integralność referencyjna odnosi się do zasad, które zapewniają spójność danych pomiędzy powiązanymi tabelami w bazie danych. ON DELETE CASCADE automatycznie usuwa rekordy w tabeli zależnej, gdy rekord w tabeli nadrzędnej zostanie usunięty.

5. Co to są pojęcia wyzwalającę, do czego służą i jak się robi.

Wyzwalacze to specialne procedury składowane, które automatycznie wykonują określone akcje w odpowiedzi na zdarzenia występujące

w tabelach baz danych. Wyzwalacze są używane do utrzymania integralności danych czy też automatyzacji określonych zadań Wyzwalacz tworzy się za pomocą CREATE FUNCTION i później CREATE TRIGGER

Rodzaje: Before Triggers (Wyzwalacze przed wykonaniem akcji)/After triggers

6. Jakie warunki musi spełnić transakcja, żeby był konflikt. -Konflikt Read-Write - Występuje, gdy jedna transakcja odczytuje wartość, którą inna transakcja później modyfikuje.

-Konflikt Write-Write - Występuje, gdy dwie transakcje próbują jednocześnie modyfikować tę samą wartość. -Konflikt Read-Read - Rzadko prowadzi do niespójności, ponieważ odczytanie tej samej wartości przez dwie transakcje nie wpływa na siebie nawzajem.

-Konflikt odczytu-zapisu pośredniego (Write Skew) - Występuje, gdy dwie transakcje odczytują te same wartości i na podstawie tych odczytów wykonują zapisy, które mogą prowadzić do niespójności.

7. Relacja jedno: jednoznaczna: Każdy rekord w jednej tabeli jest powiązany z dokładnie jednym rekordem w innej tabeli, i odwrotnie.(unique)

8. Rodzaje i co to zagnieżdzenie.

o. Nouzaje i to u zginezucenie. Zapytania/instrukcje wemątrz innych zapytań/instrukcji. Zapytanie, które zwraca: pojedynczą wartość(scalar subquery), jeden wiersz(row subquery), cały zestaw wierszy(table subquery)

9. Współbieżność problemy, rozwiązania. Współbieżność w bazach danych odnosi się do sytuacji, w której wiele transakcji jest wykonywanych jednocześnie.

Brudne odczyty - Odczytanie danych, które zostały zmodyfikowane przez inną transakcję, ale jeszcze nie zostały zatwierdzone Powtarzające się odczyty - Odczytanie tej samej wartości w jednej transakcji może dać różne wyniki, jeśli inna transakcja zmodyfikowała tę wartość pomiędzy odczytami.

Fantomy - Występują, gdy nowy wiersz jest dodawany lub istniejący wiersz jest usuwany przez inną transakcję między dwoma zapytaniami SELECT w tej samej transakcji.

Utracone aktualizacje - Występują, gdy dwie transakcje odczytują tę samą wartość i obie wykonują na niej operację zapisu, co powoduje utratę jednej z aktualizacji. Rozwiazania: poziomy izolacji, zamki(dzielony/wyłączny), kontrola wersji

10. Jakie są operacje na relacjach. SELECT, INSERT, UPDATE, DELETE, COUNT, SUM, AVG, MIN, MAX, GROUP BY, CREATE, ALTER, DROP

INNER JOIN: Zwraca wiersze, które mają dopasowania w obu tabelach. LEFT JOIN: Zwraca wszystkie wiersze z lewej tabeli, oraz dopasowania z prawej tabeli

RIGHT JOIN: Zwraca wszystkie wiersze z prawej tabeli, oraz dopasowania z lewej tabeli WHERE: zwraca wiersze zgodne z regułą

11. Rozkład otwracalny tw. Heatha. Niech R będzie schematem relacji. Załóżmy, że R = $\alpha \cup \beta \cup \gamma$, gdzie

 γ = R \ (α \cup β). Jeśli w R spełniona jest zależność α \rightarrow β , to R m bezstratnie rozłożyć na (α \cup β , α \cup γ).

13. Zastosowania perspektyw (podobno są trzy) Ułatwienie dostępu do danych(zastepuja skomplikowane zapytanai)

Ochrona danych(mozna ograniczyc widocznosc kolumn/wierszy)

Zarzadzanie złożonościa(gdy dane przechowywane sa w złożonych strukturach, perspektywy umożliwiaja tworzenie prostych widoków)

Agregacje i raportowanie(Można w nich zawrzeć zapytania, które grupują, sumują lub obliczają statystyki)

Integracja danych (Mogą łączyć dane z różnych baz danych lub różnych części tej samej bazy danych w jednym miejscu)

14. Wartość Null, do czego się używa.

NULL jest specjalną wartością, która oznacza brak wartości lub nieokreśloność danej. Ulatwienie dodawania nowych rekordow, aktualizacji wartości, porownywania wartości, pomijanie w funkcjach agregujacych

15. Co to jest integralność referencyjna.

Utrzymywania spójności relacji między różnymi tabelami poprzez zastosowanie ograniczeń referencyjnych. Gwarantuje, że wartości

w kolumnach, które są kluczami obcymi, zawsze odwołują się do istniejących wartości w odpowiadających kolumnach jako klucze główne. Ograniczenia referencyjne: ON DELETE/UPDATE CASCADE/RESTRICT

16. Integralność tabeli.

Zapewnienia poprawności danych w ramach pojedynczej tabeli poprzez zastosowanie różnych technik i ograniczeń.

Aspekty integralności: klucz główny/obcy, unikalność, ograniczenia NOT NULL 17. Co to normalizacja. Postacie normalizacji.

Procesu organizacji danych w tabelach w taki sposób, aby zminimalizować powtarzające się dane i zapewniać integralność danych. 1NF: każda komórka w tabeli zawiera pojedynczą wartość, każda kolumna jest atomowa, wszystkie wartości są unikalne

2NF: tabela jest w 1NF, każda ni-kluczowa kolumna zależy od całego klucza głównego, unikanie częściowej zależności
3NF: tabela jest w 2NF, każda ni-kluczowa kolumna jest zależna tylko od klucza głównego tabeli, a nie od innych ni-kluczowych kolumn, unikanie zależności przejściowych

BCNF(Boyce a-Codda): każda ni-kluczowa kolumna jest zależna tylko od klucza głównego, dotyczy to sytuacji, gdy każdy determinant jest kluczem kandydackim.

4NF: tabela jest w BCNF, eliminuje wieloznaczność wieloznaczności, która występuje, gdy tabela ma więcej niż jedno niezależne, multivalued zależności. 5NF: tabela jest w 4NF, eliminuje zależności losowe, które występują, gdy pewne atrybuty niezależne są zależne od innych atrybutów niezależnych.

18. Zakleszczenie, jak rozwiązać.

Sytuacja, gdy dwa lub więcej wątków lub procesów wzajemnie blokują się nawzajem, oczekując na zasoby, które są już zajęte przez inne procesy w grupie. Rozwiązania:

monitorowanie i wykrywanie, zastosowanie timeoutów, hierarchiczne blokowanie, unikanie zakleszczeń, przerwanie transakcji, detekcja i restartowanie, optymalizacja zapytań i transakcji 19. Jak realizowane są transakcje wieloznaczne i 1:1.

Transakcje wieloznaczne: Realizowane są poprzez zastosowanie tabeli pośredniej (łączącej) w bazie danych, która zawiera klucze obce do dwóch lub więcej tabel, umożliwiając mapowanie relacji wielu do wielu. Relacje 1:1: Realizowane są poprzez umieszczenie klucza obcego w jednej z tabel, który odnosi się do klucza głównego w drugiej tabeli, zapewniając jednoznaczne powiązanie między rekordami obu tabel.

21. Czym różni się perspektywa (view) od tabeli tymczasowej.
Perspektywa to logiczny widok na dane, nie przechowuje fizycznie danych i jest używana głównie do uproszczenia zapytań i kontroli dostępu.

Zabela tymczasowa jest fizyczną tabelą, która przechowuje łażyczne danych jest używana głowine do uproszczenia zapytam kontroli doscępu.
 Zabela tymczasowa jest fizyczną tabelą, która przechowuje dane tymczasowo i jest używana do przechowywania wyników tymczasowych operacji lub przetwarzania.
 Opisz jak się przenosi Diagram związków encji na język Sql.
 Identyfikacja encji i ich atrybutów, 2: Definicja tabel w SQL, 3: Ustalenie relacji między tabelami, 4: Definicja kluczy głównych i obcych, 5: Implementacja związków specjalnych
 Do jakiej postaci normalnej najłatwiej sprowadzić bazę. Opisz sytuację w jakiej się nie da sprowadzić.

(1NF). Jest to najbardziej podstawowa postać normalizacji, w której każda komorka w tabeli zawiera pojedynczą wartość, a wszystkie kolumny są atomowe (niepodzielne) Nie da sie, gdv. Kolumny zawierające wielowartościowe dane, Powiązania wielowartościowe. Dane powtarzające sie

24. Jakie są rodzaje blokad z teorii baz danych i którę z tych blokad ze sobą kolidują.

Blokada wiersza - Blokuje pojedynczy wiersz w tabeli, umożliwiając innym transakcjom dostęp do pozostałych wierszy w tej samej tabeli. Blokada strony - Blokuje całą stronę danych (zazwyczaj kilka wierszy)

Blokada tabeli - Blokuje całą tabelę Blokada kolumny - Blokuje pojedynczą kolumnę w tabeli

wiersza vs tabeli, strony vs wiersza, kolumny vs wiersza **25. Co to jest redundacja.**

Te same dane są przechowywane lub powielane w różnych miejscach w systemie. **26. Pytanie o algebre relacji.**

To matematyczny zestaw operacji używanych do manipulowania relacjami w bazach danych Selekcja - Wybiera wiersze, które spełniają określone warunki.

Projekcja - Wybiera określone kolumny z relacji.

Unia - Łączy dwie relacje, usuwając duplikaty.

Różnica - Zwraca wiersze występujące w jednej relacji, ale nie występujące w drugiej. Złączenie - Łączy wiersze dwóch relacji na podstawie określonego warunku

28. Opisz w jaki sposób w SQL realizowane są załączenia.

Inner join zwraca wiersze, które mają pasujące wartości w obu tabelach. Left join zwraca wszystkie wiersze z lewej tabeli oraz pasujące wiersze z prawej tabeli.

Right join zwraca wszystkie wiersze z prawej tabeli oraz pasujące wiersze z lewej tabeli. Full join zwraca wszystkie wiersze z obu tabel, łącząc pasujące wiersze z obu stron.

29. Co to jest klucz główny, kandydujący, czy może być null. Czy klucz obcy może być null. Klucz główny to unikalny identyfikator dla każdego rekordu w tabeli.

Klucz kandydujący jest to pole lub zestaw pól, które mogłyby być używane jako klucz główny. Klucz główny i klucz kandydujący nie mogą mieć wartości null, obcy może.

30. Jakie są poziomy izolacji. Read Uncommitted - Najniższy poziom izolacji, pozwala na odczyt niezcommitowanych danych

Read Committed - Zapewnia, że odczytywane są tylko zatwierdzone dane. Repeatable Read - Zapewnia, że dane odczytane przez transakcję nie zmienią się do końca tej transakcji.

Serializable - Najwyższy poziom izolacji, zapewnia pełną izolację transakcji, tak jakby były wykonywane sekwencyjnie.