# 6.2 Region-content description

Unlike shape description techniques, which work with regions' contours, region-content description focuses on characterizing the content of segmented regions through their distribution in the image, their textures, etc. Regarding textures, it gives us information about the spatial arrangement of color or intensities in an image or selected region of an image. Textures can be used to help in segmentation or classification of images. Notice that these methods doesn't require binary images as input.

This notebook covers different region-content description techniques:

- 2D image moments (section 6.2.1)
- Hu moments (section 6.2.2)
- Image histogram moments (section 6.2.3.1)
- Co-ocurrence matrices (section 6.2.3.2)

# **Problem context - Car plates**

In this notebook, our task is twofold!

### **Number-plate detection for UMA**



Basically, we have to continue with our number-plate detection work looking for a way to obtain a feature vector that distinguishes each character in a Spanish car plate. In this notebok we will try more advanced methods, like **image moments** or **Hu moments**.

# Identification of the State of a license plate state

An American company contacted us for developing a **texture description method** that describes **a license plate according to its State of origin** instead of the characters appearing. As you may know, USA uses a different license plates for each state in the country:





You will use some region description methods applied to this problem like **co-ocurrence matrices** or **image histogram moments**. Again, your task is to develop a method returning a feature vector that allows for the identification of the State of origin of such license plates.

```
In [1]: import numpy as np
    import cv2
    import matplotlib.pyplot as plt
    import matplotlib
    matplotlib.rcParams['figure.figsize'] = (15.0, 8.0)
    from scipy import stats

images_path = './images/'
```

# 6.2.1 Image moments

An **image moment** (2D-moment) is the weighted average (or moment) of the intensity of the pixels in the image/region, or a function combining other moments. Moments usually have some attractive property or interpretation, and they can work in both grayscale and color images. For example, when working with 1 dimension (e.g. with a histogram), the moment of order 0 represents the number of pixels in the image, while when dealing with 2 dimensions (e.g. an image) it represents its area, that is, the number of white pixels (if the image is binary).

There are 3 main types of moments:

• Non-central moments:

$$m_{ij} = \sum_{y=1}^{rows} \sum_{x=1}^{cols} x^i y^j I(y, x)$$

where I(y, x) represents the intensity of the pixel in the (y, x) coordinates of image I.

Central moments:

$$\mu_{ij} = \sum_{y=1}^{rows} \sum_{x=1}^{cols} (x - \overline{x})^i (y - \overline{y})^j I(y, x)$$

being 
$$(\overline{x}, \overline{y}) = (\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}})$$
 the centroid of the region.

When dealing with big images/regions, it is possible to save some computation time computing the central moments using the non-central ones:

$$\mu_{00} = m_{00} \equiv \mu$$

$$\mu_{01} = 0$$

$$\mu_{10} = 0$$

$$\mu_{20} = m_{20} - \mu \overline{x}^{2}$$

$$\mu_{11} = m_{11} - \mu \overline{x} \overline{y}$$

$$\mu_{02} = m_{02} - \mu \overline{y}^{2}$$

$$\mu_{30} = m_{30} - 3m_{20}\overline{x} + 2\mu \overline{x}^{3}$$

$$\mu_{21} = m_{21} - m_{20}\overline{y} - 2m_{11}\overline{x} + 2\mu \overline{x}^{2}\overline{y}$$

$$\mu_{12} = m_{12} - m_{02}\overline{x} - 2m_{11}\overline{y} + 2\mu \overline{y}^{2}\overline{x}$$

$$\mu_{03} = m_{03} - 3m_{02}\overline{y} + 2\mu \overline{y}^{3}$$

In general, the following formula can be used to retrieve an arbitrary central moment:

$$\mu_{pq} = \sum_{m}^{p} \sum_{n}^{q} {p \choose m} {q \choose n} (-\overline{x})^{(p-m)} (-\overline{y})^{(q-n)} m_{mn}$$

- Coala invariant mamanta:

### OpenCV pill

OpenCV defines a method for computing some central, non-central and scale-invariant moments called <a href="mailto:cv2.moments()">cv2.moments()</a> (<a href="https://docs.opencv.org/4.2.0/d3/dc0">https://docs.opencv.org/4.2.0/d3/dc0</a> (<a href="mailto:group imgproc">group imgproc</a> shape.html#ga556a180f43cab22649c23ada36a8a139), which gets:

- working with intensity images: a contour (array of 2D points) delimiting the segmented regions.
- working with grayscale images: the image itself.

This function returns a dictionary containing the computed moments.

# ASSIGNMENT 1: Computing image moments

What to do? Your first tasks is to complete the method <code>image\_moments()</code>, which applies the previously mentioned <code>cv2.moments()</code> (https://docs.opencv.org/4.2.0/d3/dc0 /group imgproc shape.html#ga556a180f43cab22649c23ada36a8a139) to a binary image, for example a thresholded image containing the numbers of a plate.

```
In [2]: # Assignment 1
def image_moments(region):
    """ Compute moments of the region in a binary image.

Args:
    region: Binary image

    Returns:
        moments: dictionary containing all moments of the region

"""
# Compute moments
moments = cv2.moments(region)
return moments
```

You can use the next code to **test if the results are correct**, rounding the output of your <code>image\_moments()</code> function to have 2 decimals:

```
{'m00': 4335.0, 'm10': 9945.0, 'm01': 8160.0, 'm20': 32895.0, 'm11': 20655.0, 'm02': 2499 0.0, 'm30': 115515.0, 'm21': 68595.0, 'm12': 65535.0, 'm03': 83130.0, 'mu20': 10080.0, 'mu11': 1935.0, 'mu02': 9630.0, 'mu30': -6199.41, 'mu21': -2203.24, 'mu12': 920.29, 'mu03': -164.12, 'nu20': 0.0, 'nu11': 0.0, 'nu02': 0.0, 'nu30': -0.0, 'nu21': -0.0, 'nu12': 0.0, 'nu03': -0.0}
```

#### **Expected output**

```
{'m00': 4335.0, 'm10': 9945.0, 'm01': 8160.0, 'm20': 32895.0, 'm11': 20655.0, 'm02': 24990.0, 'm30': 115515.0, 'm21': 68595.0, 'm12': 65535.0, 'm03': 83130.0, 'mu20': 10080.0, 'mu11': 1935.0, 'mu02': 9630.0, 'mu30': -6199.41, 'mu21': -2203.24, 'mu12': 920.29, 'mu03': -164.12, 'nu20': 0.0, 'nu11': 0.0, 'nu02': 0.0, 'nu30': -0.0, 'nu21': -0.0, 'nu12': 0.0, 'nu03': -0.0}
```

The next code illustrates the moments retrieved from two toy images containing a square, a corner and a line. As you can see, they show differences, so these moments postulate as good descriptors for differentiating them.

Recall some interesting facts:

- Number of white pixels in the image (if binary):  $m_{00} = \sum_{y=1}^{rows} \sum_{x=1}^{cols} I(y,x)$
- Centroid:  $(\overline{x}, \overline{y}) = (\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}})$
- Excentricity:  $e = \frac{(\mu_{20} \mu_{02})^2 + 4\mu_{11}^2}{(\mu_{20} + \mu_{02})^2}$  (Ratio of the longest chord and longest perpendicular chord)

```
In [4]: def print_features(moments):
                       print('\n'+'Some features:')
                       # Excentricity
                       e = ((moments['mu20']-moments['mu02'])**2+4*(moments['mu11']**2))/((moments['mu20']+moments['mu20'])**2+4*(moments['mu11']**2))/((moments['mu20']+moments['mu20'])**2+4*(moments['mu11']**2))/((moments['mu20']+moments['mu20'])**2+4*(moments['mu11']**2))/((moments['mu20']+moments['mu20']+moments['mu20'])**2+4*(moments['mu11']**2))/((moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+moments['mu20']+
                       print('Centroid (x,y) = (',moments['m10']/moments['m00'],',',
                        moments['m01']/moments['m00'],')')
                       print('Excentricity e = ', round(e,2), '\n')
               im_square = np.array([[0,0,0,0],[0,255,255,255],[0,255,255],[0,255,255],255]], dtype=np
               im_corner = np.array([[0,255,255,255],[0,255,0,0],[0,255,0,0],[0,255,0,0]], dtype=np.uint8)
               im_line = np.array([[0,255,0,0],[0,255,0,0],[0,255,0,0],[0,255,0,0]], dtype=np.uint8)
               moments_square = image_moments(im_square)
               moments_corner = image_moments(im_corner)
               moments_line = image_moments(im_line)
               for k, v in moments square.items():
                       moments\_square[k] = round(v,2)
               for k, v in moments corner.items():
                       moments\_corner[k] = round(v,2)
               for k, v in moments_line.items():
                       moments_line[k] = round(v, 2)
               plt.subplot(131)
               plt.imshow(im_square,cmap='gray')
               plt.title('Square image')
               print('Moments square image: ' + str(moments_square))
               print_features(moments_square)
               plt.subplot(132)
               plt.imshow(im_corner,cmap='gray')
               plt.title('Corner image')
               print('Moments corner image: ' + str(moments_corner))
               print_features(moments_corner)
               plt.subplot(133)
               plt.imshow(im_line,cmap='gray')
               plt.title('Line image')
               print('Moments line image: ' + str(moments_line))
               print features(moments line)
               Moments square image: {'m00': 2295.0, 'm10': 4590.0, 'm01': 4590.0, 'm20': 10710.0, 'm11
                ': 9180.0, 'm02': 10710.0, 'm30': 27540.0, 'm21': 21420.0, 'm12': 21420.0, 'm03': 27540.
               0, 'mu20': 1530.0, 'mu11': 0.0, 'mu02': 1530.0, 'mu30': 0.0, 'mu21': 0.0, 'mu12': 0.0, 'm
                u03': 0.0, 'nu20': 0.0, 'nu11': 0.0, 'nu02': 0.0, 'nu30': 0.0, 'nu21': 0.0, 'nu12': 0.0,
                'nu03': 0.0}
               Some features:
               Centroid (x,y) = (2.0, 2.0)
               Excentricity e = 0.0
               Moments corner image: {'m00': 1530.0, 'm10': 2295.0, 'm01': 1530.0, 'm20': 4335.0, 'm11':
               1530.0, 'm02': 3570.0, 'm30': 9945.0, 'm21': 1530.0, 'm12': 3570.0, 'm03': 9180.0, 'mu20
                ': 892.5, 'mu11': -765.0, 'mu02': 2040.0, 'mu30': 765.0, 'mu21': -510.0, 'mu12': -255.0,
                'mu03': 1530.0, 'nu20': 0.0, 'nu11': -0.0, 'nu02': 0.0, 'nu30': 0.0, 'nu21': -0.0, 'nu12
                ': -0.0, 'nu03': 0.0}
```

Some features:

```
Excentricity e = 0.43

Moments line image: {'m00': 1020.0, 'm10': 1020.0, 'm01': 1530.0, 'm20': 1020.0, 'm11': 1530.0, 'm02': 3570.0, 'm30': 1020.0, 'm21': 1530.0, 'm12': 3570.0, 'm03': 9180.0, 'mu20': 0.0, 'mu11': 0.0, 'mu02': 1275.0, 'mu30': 0.0, 'mu21': 0.0, 'mu12': 0.0, 'mu03': 0.0, 'nu20': 0.0, 'nu11': 0.0, 'nu02': 0.0, 'nu30': 0.0, 'nu21': 0.0, 'nu12': 0.0, 'nu03': 0.0}
```

```
Some features:
Centroid (x,y) = ( 1.0 , 1.5 )
Excentricity e = 1.0
```

Centroid (x,y) = (1.5, 1.0)



### Invariance analysis

Image moments could be good descriptors for addressing the problem posed by UMA. We could compute the moments of a segment region and use them as feature vector  $\mathbf{x} = [x_1, \dots, x_n]^T$ . Also, as i and j in the previous equations can take any integer, we could have a feature vector of any desired length. For example, if you design a region descriptor system that considers the first three non-central, central, and scale invariant moments, you will use:  $\mathbf{x} = [m_{00}, m_{10}, m_{01}, \mu_{20}, \mu_{11}, \mu_{02}, \eta_{20}, \eta_{11}, \eta_{02}]^T$ .

In the context of the number-plate detection problem, the results have to be (at least) position and scale invariants, because a car could stop closer or further away from the camera and in different positions (rotation is not that important).

To check if these moments have such invariances, you are going to compute the moments of a region, as well as of a scaled and rotated versions of it. To visually check the results, we are going to use bar charts, showing the moments for the original, rotated and scaled images, which should look like this:





## ASSIGNMENT 2: Checking invariances

Complete the method compare\_moments(), which takes:

- · a list of labels for the bar chart, and
- three lists containing the moments of a region, and its rotated and scaled versions. These methods, using said arguments, plots the chart bar previously showed.

For the plot you can use plt.bar(labels, values), where labels is a list of strings (e.g. keys of the dictionary of moments) and values a list of numbers (e.g. values of such dictionary).

```
In [5]: # Assignment 2
        def compare_moments(labels, moments, moments_rotated, moments_scaled):
            """ Plot a bar chart comparing the three input moment arrays
                Args:
                    labels: Labels of the bar chart
                    moments: list containing moments of a original region
                    moments_rotated: list containing moments of the original region, but previously
                    moments scaled: list containing moments of the original region, but previously
            0.00
            # Show original moments
            plt.subplot(131)
            plt.title("Original")
            plt.bar(labels, moments)
            # Show rotated moments
            plt.subplot(132)
            plt.title("Rotated")
            plt.bar(labels, moments_rotated)
            # Show scaled moments
            plt.subplot(133)
            plt.title("Scaled")
            plt.bar(labels, moments_scaled)
```

We are going to separately analyze the invariance of:

- the **non-central** (first 10 values of moment dictionary),
- central (following 7), and
- scale-invariant (last 7) moments.

Take a look at the result of the previous assignment to check this!

First, let's compute the moments from an initial image, a rotated version of it (90 degrees), and a scaled version (by a factor of 2 in both horizontal and vertical axes). Finally show those images.

Hint: You can rotate a numpy array using <a href="np.rot90()">np.rot90()</a> (<a href="https://docs.scipy.org/doc/numpy/reference/generated/">https://docs.scipy.org/doc/numpy/reference/generated/</a> (<a href="https://docs.opencv.org/4.2.0/da/d54">https://docs.opencv.org/4.2.0/da/d54</a> (<a href="https://docs.opencv.org/4.2.0/da/d54">https://docs.openc

options.

```
In [6]: # Read binary image and compute moments
        region = cv2.imread(images_path + 'region_6.png',0)
        moments = image_moments(region)
        # Rotate image and compute moments
        region_rotated = np.rot90(region)
        moments_rotated = image_moments(region_rotated)
        # Resize image and compute moments
        region_scaled = cv2.resize(region, dsize=None, fx=2, fy=2) # keep the dsize=None
        moments_scaled = image_moments(region_scaled)
        # Show the initial image
        plt.subplot(131)
        plt.title('Initial image')
        plt.imshow(region, cmap='gray')
        # Show the rotated version
        plt.subplot(132)
        plt.title('Rotated version')
        plt.imshow(region_rotated, cmap='gray')
        # Show the scaled version
        plt.subplot(133)
        plt.title('Scaled version')
        plt.imshow(region_scaled, cmap='gray');
```



Now, let's start comparing the **Non-central moments** of the three images! *Hint: pay special attention to the scale of the axes in the plot!* 

```
In [7]: # Compare results for non-central moments
labels = list(moments.keys())[:10]

non_central_moments = list(moments.values())[:10]

non_central_rotated = list(moments_rotated.values())[:10]

non_central_scaled = list(moments_scaled.values())[:10]

print(non_central_moments)
print(non_central_rotated)
print(non_central_scaled)
compare_moments(labels,non_central_moments, non_central_rotated, non_central_scaled)
```

[669630.0, 21258075.0, 35594430.0, 836651685.0, 1154038200.0, 2355800160.0, 37247600865.0, 46411945650.0, 78104356980.0, 173149604790.0]
[669630.0, 35594430.0, 24946395.0, 2355800160.0, 1301977470.0, 1091145765.0, 173149604790.0, 84445854060.0, 56619755280.0, 52289694375.0]
[2678520.0, 171403860.0, 286094700.0, 13559175332.0, 18692690850.0, 37980241772.0, 1212517418328.0, 1510711773450.0, 2536964553506.0, 5598185854500.0]



# Thinking about it (1)

Now, answer the following questions:

- Are these moments invariant to rotation?
   Claramente no (excepto para m<sub>00</sub>), pero podemos observar una correspondecia tal que original\_m<sub>ii</sub> ≈ rotada\_m<sub>ii</sub> (no son iguales)
- Are these moments invariant to scale?
   No, aunque los momentos siguen una distribución similar pero con sus valores escalados

```
In [8]: # Compare results for central moments

labels = list(moments.keys())[10:17]
    central_moments = list(moments.values())[10:17]
    central_rotated = list(moments_rotated.values())[10:17]
    central_scaled = list(moments_scaled.values())[10:17]
    print(np.abs(central_moments))
    print(np.abs(central_rotated))
    print(np.abs(np.array(central_scaled)*central_moments[0]/central_scaled[0]))
    print(np.abs(np.array(central_scaled)*central_moments[6]/central_scaled[6]))
    compare_moments(labels, central_moments, central_rotated, central_scaled)
```

```
[1.61792804e+08 2.40573710e+07 4.63765085e+08 4.14706015e+08 4.11965616e+08 7.59564628e+08 1.37703175e+09]
[4.63765085e+08 2.40573710e+07 1.61792804e+08 1.37703175e+09 7.59564628e+08 4.11965616e+08 4.14706015e+08]
[1.61792804e+08 2.40386676e+07 4.63530317e+08 8.28767203e+08 8.23290666e+08 1.51794821e+09 2.75192234e+09]
[8.09593438e+07 1.20286855e+07 2.31945485e+08 4.14706015e+08 4.11965616e+08 7.59564628e+08 1.37703175e+09]
```



# Thinking about it (2)

Now, answer the following questions:

- Are these moments invariant to rotation?
   Tampoco son invariantes, como en el caso anterior. También observamos que |original\_\(\mu\_{ii}\)| = |rotada\_\(\mu\_{ji}\)|
- Are these moments invariant to scale?

No lo son, igual que antes tienen una distribución similar, pero escalada (lo podemos ver con últimos dos prints en los que usamos el ratio de  $\mu_{20}$  y  $\mu_{03}$  respectivamente.

```
In [9]: # Compare results for scale-invariant moments

labels = list(moments.keys())[17:]
  invariant_moments = list(moments.values())[17:]
  invariant_rotated = list(moments_rotated.values())[17:]
  invariant_scaled = list(moments_scaled.values())[17:]

print(invariant_moments)
  print(invariant_rotated)
  print(invariant_scaled)

compare_moments(labels, invariant_moments, invariant_rotated, invariant_scaled)
```

[0.00036081899828984115, 5.365106673107028e-05, 0.0010342564672223692, 1.1301942129080341 e-06, 1.1227258299811014e-06, 2.0700339900859505e-06, -3.7528110392254016e-06] [0.0010342564672223692, -5.3651066731070416e-05, 0.00036081899828984115, -3.7528110392254 016e-06, -2.0700339900859234e-06, 1.1227258299810957e-06, -1.1301942129080426e-06] [0.00036109973570614334, 5.365106673107028e-05, 0.0010345372046386713, 1.130194212908034e -06, 1.1227258299811012e-06, 2.0700339900859505e-06, -3.7528110392254016e-06]



# Thinking about it (3)

Now, answer the following questions:

- Are these moments invariant to rotation?

  No son invariantes. Aunque igual que antes  $|\eta_{ij}| = |\eta_{ji}|$
- Are these moments invariant to scale?
   Como era de esperar, estos momentos sí que son invariantes a a la escala (dan exáctamente los mismos valores salvo por un error negligible.

# 6.2.2 Hu moments

The **Hu moments** (published in 1962 by Ming-Kuei Hu) are a set of 7 particular moments showing **interesting invariance properties**. They are calculated using scale-invariant ones:

$$v_{1} = \eta_{20} + \eta_{02}$$

$$v_{2} = (\eta_{20} - \eta_{02}) + 4\eta_{11}^{2}$$

$$v_{3} = (\eta_{20} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$v_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$v_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{02}) - (\eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} - \eta_{03})^{2} + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})]$$

$$v_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{30} + \eta_{12})^{2}] + (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2}]$$

$$u_{1} = \frac{\rho + \eta_{12}}{2} + \frac{1}{2}$$

### OpenCV pill

OpenCV provides a method to retrieve the Hu moments, called (wait for it...) <a href="mailto:cv2.HuMoments()">cv2.HuMoments()</a> <a href="mailto:(https://docs.opencv.org/4.2.0/d3/dc0">(https://docs.opencv.org/4.2.0/d3/dc0</a>

<u>/group imgproc shape.html#gab001db45c1f1af6cbdbe64df04c4e944)</u>!. This method takes as input the dictionary of moments returned by cv2.moments. Recall that the scale-invariant moments used for their computation are the nuij moments in the dictionary.

### ASSIGNMENT 3: Exploring Hu moments invariances

Previously, we tested the invariances of non-central, central and scale-invariant moments. Now, **we are interested in checking the invariances of the Hu moments**, so we can verify if they are more suitable for the UMA parking problem.

For that, use your brand-new compare\_moments() function in the same way as in the previous exercises.

```
In [10]: # Assignment 3
         # Read binary image and compute Hu moments
         region = cv2.imread(images_path + 'region_J.png',0)
         moments = image_moments(region)
         hu = cv2.HuMoments(moments)
         # Rotate image and compute Hu moments
         region rotated = np.rot90(region)
         moments_rotated = image_moments(region_rotated)
         hu_rotated = cv2.HuMoments(moments_rotated)
         # Resize image and compute Hu moments
         region_scaled = cv2.resize(region, dsize=None, fx=2, fy=2) # keep the dsize=None
         moments scaled = image moments(region scaled)
         hu_scaled = cv2.HuMoments(moments_scaled)
         # Compare results for Hu moments
         labels = ["hu1","hu2","hu3","hu4","hu5","hu6","hu7"]
         hu moments = hu.flatten()
         hu_rotated = hu_rotated.flatten()
         hu_scaled = hu_scaled.flatten()
         compare moments(labels, hu moments, hu rotated, hu scaled)
         print('hu_moments:' + str(hu_moments))
         print('hu_rotated:' + str(hu_rotated))
         print('hu_scaled: ' + str(hu_scaled))
```





### Thinking about it (4)

Now, answer the following questions:

- Are these moments invariant to rotation?
   Sí que lo son. Los valores son exactamente iguales, con una precisión 26 decimales (o más).
- Are these moments invariant to scale?
   También sin invariantes a la escala de la misma manera que lo son para rotaciones.
- Now that you can deal with different ways to describe a binary region, what descriptor would you use for the UMA parking problem? Why?

Los momentos de Hu son mejores ya que son invariantes tanto por rotaciones como por ecala. Sin embargo para nuestro uso, la invarianza de rotación no es imprescindible y podemos usar los momento  $\eta$  invariantes a escala, puesto que computacionalmente serían menos costosos (para calcular Hu tenemos que calcular los momentos habituales).

### 6.2.3 Texture

The previous techniques are useful for describing the distribution of the regions over the image. There is another brunch of algorithms that pursuit the description of regions by **characterizing the texture of the pixels they enclose**. Such methods measure the spatial arrangement of the colors/intensities in a region, providing information about their smoothness, coarseness, and regularity. In this way, if a region does not present changes in intensity, we say that it is a untextured region.

Examples of different textures









Usually, texture descriptors have spatial (position, orientation and scale) and radiometric (contrast and brightness) invariance. We are going to explore two of these descriptors:

- 1D moments of the histogram, and
- Gray Level Co-Occurrence Matrix (GLCM)

# 6.2.3.1 1D moments of histogram

The **central moments of the histogram** of the pixels within a region statistically describes the frequency of their intensities. They permit us to compactly describe the region through a feature vector containing a few features. They are computed using the equation:

$$\mu_n = \sum_{i=0}^{255} (z_i - \overline{z})^n h(z_i)$$

where  $h(z_i)$  represents the value stored in the histogram  $h(\cdot)$  for the intensity  $z_i$ . Keep in mind that:

 $\mu_0 = \mu_1 = 0$ 

μ<sub>2</sub>: variance (contrast)
 μ<sub>3</sub>: histogram (skew)
 μ<sub>4</sub>: histogram uniformity

However, they have a serious drawback: they don't encode pattern structures, so different textures may have similar histograms:







All these patterns have the same histogram → same moments

## ASSIGNMENT 4: Analyizing histograms

In order to play a bit with these moments, we move to our second application: the state recognition in USA car plates. Two examples of such license plates:





Two examples of USA car plates

As we can see, the main difference between them is the texture in the plate background, as each state has a different one. Let's try 1D moments of the histogram for describing those textures!

Your first task is to plot the histogram of the previous images: nevada.jpg and hawaii.jpg, and check if the shape of the histograms is enough to differentiate them. Hint: recall the <a href="majorage-np-ravel">np.ravel()</a> (https://numpy.org/doc/stable/reference/generated/numpy.ravel.html) function

```
In [11]: # Assignment 4

# Read images
nevada = cv2.imread(images_path + 'nevada.jpg',0)
hawaii = cv2.imread(images_path + 'hawaii.jpg',0)

# Show first one histogram
plt.subplot(121)
plt.title("Nevada plate")
plt.hist(nevada.ravel(),256,[0,256])

# And the second one!
plt.subplot(122)
plt.title("Hawaii plate")
plt.hist(hawaii.ravel(),256,[0,256])
plt.show()
```



Now, let's complete the method <code>histogram\_moments()</code> that implements the retrieval of the central moments of the histogram shown above. This method takes as input:

- an image, and
- the number of moments to be calculated

and returns an array containing those moments of the image's histogram.

```
In [12]: def histogram_moments(image,k):
             """ Compute central moments of the histogram of an image.
                 Args:
                     image: input image
                     k: number of moments to compute
                 Returns:
                     histogram_moments: array containing the histogram moments
             # Compute histogram
             hist = cv2.calcHist([image],[0],None,[256],[0,256]) # Keep the None in this function!
             # Compute mean average intensity/brightness of the image
             z_mean = np.dot(hist[hist.nonzero()[0]].flatten(),hist.nonzero()[0].flatten())/hist[hist]
             # Compute moments
             histogram_moments = np.zeros(k)
             for i in range(k):
                 moment = 0.0
                 for z in range(1,256):
                     moment += float(z-z_mean)**i * float(hist[z])
                 histogram_moments[i] = moment/hist.sum()
                 # The previous code could be replaced by just one line!
                 # histogram_moments[i] = np.average((np.arange(1,256) - z_mean)**i, weights = hist[
             return(histogram_moments)
```

You can use the next code to test if the results are correct:

```
In [13]: image = np.array([[10,60,20],[60,22,74],[72,132,2]], dtype=np.uint8)
moments = histogram_moments(image,6)
print(moments)
```

```
[1.00000000e+00 0.00000000e+00 1.50795062e+03 3.83609108e+04 6.08670794e+06 3.62329032e+08]
```

#### **Expected output:**

```
[1.00000000e+00 0.00000000e+00 1.50795062e+03 3.83609108e+04 6.08670794e+06 3.6232 9032e+08]
```

#### Invariance analysis

Now that we can obtain the first k moments of an image histogram, we are going to see if this method is invariant to scale and rotation. As in the UMA parking problem, our solution must be scale invariant, so let's check if it is.

# ASSIGNMENT 5: Checking the invariance of 1D moments

What to do? Check if the first six 1D moments of the histogram of an image, a rotated version of it, and a scaled version, are the same. Use <a href="mailto:np.array\_equal()\_(https://docs.scipy.org/doc/numpy/reference">np.array\_equal()\_(https://docs.scipy.org/doc/numpy/reference</a>

```
In [14]: # Assignment 5
         # Read image and compute histogram moments
         image = cv2.imread(images_path + 'hawaii.jpg',0)
         moments = histogram_moments(image,6)
         # Rotate image and compute histogram moments
         image_rotated = np.rot90(image)
         moments_rotated = histogram_moments(image_rotated,6)
         # Resize image and compute histogram moments
         image_scaled = cv2.resize(image, dsize=None, fx=2, fy=2) # keep the dsize=None
         moments_scaled = histogram_moments(image_scaled,6)
         print(np.abs(moments))
         print(np.abs(moments_scaled))
         # Compare results
         print("Rotation invariance: ", np.array_equal(moments,moments_rotated))
         print("Scale invariance: ", np.array_equal(moments,moments_scaled))
         # Show the initial image
         plt.subplot(131)
         plt.title('Initial image')
         plt.imshow(image, cmap='gray')
         # Show the rotated version
         plt.subplot(132)
         plt.title('Rotated version')
         plt.imshow(image_rotated, cmap='gray')
         # Show the scaled version
         plt.subplot(133)
         plt.title('Scaled version')
         plt.imshow(image_scaled, cmap='gray');
         [9.99591206e-01 6.81706909e-02 4.30071523e+03 3.50608706e+05
          5.67654299e+07 7.15741922e+09]
         [1.00000000e+00 1.04709523e-14 4.18470000e+03 3.35435456e+05
          5.37745376e+07 6.69601062e+09]
```



Rotation invariance: True Scale invariance: False







### Now, answer the following questions:

- Is it invariant to rotation? If not, how can we turn this method into it?
   Lo es, el vector de características es exáctamente igual.
- Is it invariant to scale? If not, how can we turn this method into it?
   No es invariante. Observamos que |original\_µ<sub>i</sub>| ≈ |escalada\_µ<sub>i</sub>| para i ≥ 2. Así pues, podríamos contemplar solor los valores absolutos, dentro de un rango de precisión para comprobar si dos regiones de distinto tamaño son similares (en contenido).

#### 6.2.3.2 Co-ocurrence matrix

Another technique also obtaining a statistical representation of the texture within a region is the **co-ocurrence matrix**, a square matrix A(i, j) in which:

- *i* and *j* represent intensity values (e.g. 0 to 255).
- The entry  $a_{ij}$  indicates how many times the intensity i co-occurs with intensity j in some designated spatial relationships P (texture pattern).
- P is given by a displacement vector d = [dr, dc], where dr and dc are the displacement in rows and columns, respectively.

# Example: P= "below and to the right 1 pixel" $\rightarrow$ d=[1,-1]



The issue with this approach is how to select the appropriate displacement d. Once the co-ocurrence matrix of a region has been computed, a number of features can be extracted from it:

• Maximum probability: gives us the strongest response to the texture pattern P

$$max_{ij} c_{ij}$$

• **Energy:** minimum when all the entries  $c_{ij}$  are identical (maximum uniformity)

$$\sum_{i=0}^{255} \sum_{j=0}^{255} c_{ij}^2$$

• **Entropy:** measure randomness. Maximum value when all the entries  $c_{ij}$  are identical (maximum entropy  $\rightarrow$  minimum energy)

$$-\sum_{i=0}^{255} \sum_{j=0}^{255} c_{ij} \log c_{ij}$$

• Order k central moment

255 255

# ASSIGNMENT 6: Computing co-ocurrence matrices

Let's implement the method co\_ocurrence\_matrix\_features(), which has to compute the normalized co-ocurrence matrix of image using the displacement vector [dr,dc] and normalizes it, obtaining C(i,j). Note that dr and dc may take positive or negative values. Thereby, it takes as inputs:

- an image,
- a 2-size displacement vector, and
- a number of central moments to compute.

#### and returns:

• a feature vector with size 3 + n\_moments being: [max\_prob, energy, entropy, moments (optional)]

```
In [15]: # Assignment 6
         def co_ocurrence_matrix_features(image, d, n_moments):
             """ Compute features from a image using a co-ocurrence matrix.
                 Args:
                     image: Binary image
                     d: displacement vector
                     n_moments: number of moment to be computed
                 Returns:
                     features: feature vector
             .....
             (n_r, n_c) = image.shape
             co = np.zeros((256, 256))
             features = np.zeros(3+n_moments)
             # Compute image ranges to iterate from displacement vector
             if d[0] >= 0:
                 range_rows = range(0, n_r-d[0], 1)
             else:
                 range_rows = range(-d[0], n_r, 1)
             if d[1] >= 0:
                 range_columns = range(0, n_c-d[1], 1)
             else:
                 range_columns = range(-d[1], n_c, 1)
             # Compute co-ocurrence matrix
             for r in range_rows:
                 for c in range_columns:
                     i = image[r,c]
                     j = image[r+d[0],c+d[1]]
                     co[i,j] += 1
             # Normalize co-ocurrence matrix
             co = co/np.sum(co)
             # Maximum probability
             features[0] = co.max()
             # Energy
             features[1] = np.sum(np.square(co))
             # Entropy
             mask = np.where(co!=0, True, False)
             features[2] = -np.sum(co*np.log(co, where=mask))
             # Central moments
             for k in range(n_moments):
                 moment = 0
                 for i in range(co.shape[0]):
                     for j in range(co.shape[1]):
                          moment += ((i-j)**k)*co[i,j]
                 features[3+k] = moment
```

```
return np.round(features,5)
```

You can use the next code to test if the results are right:

### ASSIGNMENT 7: Studying the invariance of co-occurence matrices

Compare the results returned by co\_ocurrence\_matrix\_features() when using the original image hawaii.jpg, with those returned by a rotated or scaled version of it.

```
In [17]: # Assignment 7
         # Read image and compute co-occurence matrix features
         image = cv2.imread(images_path + 'hawaii.jpg',0)
         features = co ocurrence matrix features(image,d=[1,-2],n moments=4)
         # Rotate image and compute co-occurence matrix features
         image_rotated = np.rot90(image)
         features rotated = co ocurrence matrix features(image rotated,d=[1,-2],n moments=4)
         # Resize image and compute co-occurence matrix features
         image_scaled = cv2.resize(image, dsize=None, fx=2, fy=2) # keep the dsize=None
         features_scaled = co_ocurrence_matrix_features(image_scaled,d=[1,-2],n_moments=4)
         # Compare results
         print("Features original ", features,"\n Features rotated ", features_rotated, "\n Features
         Features original [
                                0.01232
                                            0.00135
                                                        8.25008
                                                                    1.
                                                                               -0.15981 1351.079
         67
          -3613.80618]
          Features rotated [
                                 0.01192
                                              0.00134
                                                           8.24679
                                                                        1.
                                                                                    -0.52598
            1226.84705 -12101.7668 ]
          Features scaled [ 0.01745
                                         0.00233
                                                    7.80778
                                                               1.
                                                                         -0.06358 358.81004
          -346.16178]
```

# Thinking about it (6)

Now, answer the following question:

• Compare the invariance of each feature in the feature vector and comment why it is invariant or not to rotation and scale.

- ★ Invariabilidad por Rotación (ángulo 90°):
- · Maximum probability: valores muy similares (aproximando a las milésimas), invariante
- · Energy: valor muy similar (diferencia de 0.00001). invariante
- · Entropy: invariante si aproximamos a las centésimas.
- · Central moments: no invariante, los valores difieren demasiado (aunque el momento central de orden 0 siempre es invariante)
- ★ Invariabilidad por Escala (escala 2 + pruebas con 4, 8 y 16):
- · Maximum probability: no es invariante, pero no es muy sensible a variaciones de escala (de hecho para un escalado de 2 es bastante similar)
- · Energy: no invariante, pero no varía demasiado el valor por la escala (con escalado de 16 tenemos una diferencia de 0.00653)
- · Entropy: no invariante, más sensible que el resto (pero para valores pequeños de escalado no varía mucho)
- · Central moments: no invariante, los valores son completamente diferentes (el momento central de orden 0 siempre es invariante)

## Conclusion

Awesome! This was a laborious and dense notebook, but you carried it through to the end!

In this notebook you have learned:

- how to compute non-central, central, scale-invariant and Hu moments for describing a region, and apply them to the plate number recognition problem.
- how to describe textures using 1D moments of the histogram and co-ocurrence matrices, using them in the context of the state identification problem.

## **Extra**

Usually, the co-ocurrence matrices of the image rotated 45, 90, and 135 degrees are also calculated. What do you think this is due to?

**Implement this new procedure** for co-ocurrence matrices and then, check again the invariances. **What happened?**