Phylogenetics

Morphological Substitution models

Rachel Warnock, Tim Brandler, Laura Mulvey

laura.l.mulvey@fau.de

June 13 2023

Bayesian Phylogenetic Analysis Components from last week

Tripartite model components

Substitution model

Clock model

Tree and tree model

Bayesian Phylogenetic Analysis Components from last week

Molecular Substitution models

JC substitution model

$$Q = \begin{pmatrix} -\mu_A & \mu_{AG} & \mu_{AC} & \mu_{AT} \\ \mu_{GA} & -\mu_G & \mu_{GC} & \mu_{GT} \\ \mu_{CA} & \mu_{CG} & -\mu_C & \mu_{CT} \\ \mu_{TA} & \mu_{TG} & \mu_{TC} & -\mu_T \end{pmatrix}$$

GTR substitution model

$$egin{array}{llll} Q = & & & \mu_{AG}\pi_G & \mu_{AC}\pi_C & \mu_{AT}\pi_T \ \mu_{GA}\pi_A & * & \mu_{GC}\pi_C & \mu_{GT}\pi_T \ \mu_{CA}\pi_A & \mu_{CG}\pi_G & * & \mu_{CT}\pi_T \ \mu_{TA}\pi_A & \mu_{TG}\pi_G & \mu_{TC}\pi_C & * \end{array}
ight)$$

 μ = substitution rate

 Π = stationary frequency

Morphological data

	Lungs	Jaws	Feathers	Gizzards	Fur
taxa A	0	0	0	0	0
taxa B	1	1	0	0	1
taxa C	1	1	1	1	0
taxa D	1	1	0	1	0
taxa E	0	1	0	0	0

Issues with Morphological data

	Conodo	nts					
taxa 1							
taxa 2					0		
taxa 4	1	1	0	1	0	1	

Often used to indicate presence absence data

Issues with Morphological data

Co	nodonts	
taxa 1 taxa 2	01012	
taxa 2	0 0 1 0 0	
taxa 4	1 1 0 1 0	1

Multistate characters can be used to represent types of a trait

Issues with Morphological data

C	onodonts
taxa 1	010121
taxa 2	121010
taxa 3	0 0 1 0 0 1
taxa 4	1 1 0 1 0 1

Trait 1		Trait 2		
0	≠	0		
1	≠	1		

Generalising morphological data is much more difficult that molecular

Differences between molecular and morphological data to consider when modelling

Molecular data has a similar biological meaning throughout the alignment.

A T in one part of the alignment represents the same biological unit as a T somewhere else in the alignment.

This is not the same for morphological data.

Becomes more **difficult to generalise** morphological data in any biologically meaningful way

What does a good model look like?

To do statistical inference we need a model What model should that be?

Our goal should be to have a model that is **complex enough** to capture the "important" variation in the data, but **not be more complex** than it needs to be

Too simple, misinterpreting the data

Too complicated, not enough information

What does a good model look like?

To do statistical inference we need a model What model should that be?

Our goal should be to have a model that is **complex enough** to capture the "important" variation in the data, but **not be more complex** than it needs to be

What assumptions might you want to incorporate into a model of morphological character evolution?

Substitution models for morphological data

Line width represents the relative rate of change between different steps.

Mk Model

Exponential rate parameter of 10 on branch lengths.

Substitution models for morphological data

^{*4} state here as an example, can be any number from 2!

Substitution models for morphological data

We can **add extensions** to the standard Mk model in a number of ways

^{*4} state here as an example, can be any number from 2!

Across Site Rate Variation (+G)

alpha = 10, the rates are similar alpha = 2 the rates differ

This approach allows faster evolving sites to evolve according to higher rates and visa versa

Ascertainment Bias (V)

Conditions on the fact that all sites are variable

	True branch length	Mk (uncorrected)	Mkv (corrected)
Percent correct	<u> </u>	74.0	99.8
Branch A	0.2	$241,750 \ (\pm 349,100)$	$0.206 (\pm 0.060)$
Branch B	0.05	$0.43210 \ (\pm 0.13756)$	$0.050\ (\pm0.018)$
Branch X	0.05	54.646 (±1,725.3)	$0.052 (\pm 0.023)$
Branch C	0.2	$143,950 (\pm 228,910)$	$0.206\ (\pm0.059)$
Branch D	0.05	$0.022~(\pm 0.054)$	$0.051\ (\pm0.019)$

Partitioning the data

Rearchers have argued that it is reasonable partition a morphological matrix by the number of character states

Taxa A 010023
Taxa B 201102
Taxa C 112131

001510010?00-100--000000000 000500010?200100--0010010000 002500010?200100--0?10010000 00?5?0010?200100?-0???010110 0015000101201000430100011111 0015000101201010440111011111 ??050?????201000440?11011111 01050?010-210000?501??010110 00020001002101003-1110010110 0002000100211001441121011111 000201111-210010?-??11011121 ?103?0?11?1001104-0000010000 1005002110100010--0?00110?20 1005002000101010540?00110020

Cambrian stalked echinoderms show unexpected plasticity of arm construction Zamora & Smith. 2012 Proc B 001510010?00-100--000000000 000500010?200100--001001000 002500010?200100--0?1001000 00?5?0010?200100?-0???010110

Can you draw the Q-matrix for an Mk

model for this data set?

01050?010-210000?501??010110 00020001002101003-1110010110 0002000100211001441121011111 000201111-210010?-??11011121 ?103?0?11?1001104-0000010000 1005002110100010--0?00110?20 1005002000101010540?00110020

Cambrian stalked echinoderms show unexpected plasticity of arm construction Zamora & Smith. 2012 Proc B

Exercise