EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado

Duração da prova: 120 minutos

2002

1.ª FASE 1.ª CHAMADA VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui quatro questões de resposta aberta, subdivididas em alíneas, num total de onze.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Grupo I

- · As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** Na figura estão representadas, num referencial o. n. xOy:
 - parte do gráfico de uma função f, de domínio \mathbb{R}^+ , definida por $f(x) = 1 + 2 \ln x$.
 - \bullet a recta $\ r$, tangente ao gráfico de $\ f$ no ponto de abcissa 1

Qual é o declive da recta r?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

2. Seja h uma função **contínua**, de domínio \mathbb{R} .

Qual dos seguintes conjuntos ${\bf n\~{a}o}$ ${\bf pode}$ ser o contradomínio de $\ h$?

- **(A)** ℝ
- **(B)** $\mathbb{R} \setminus \{0\}$
- **(C)** ℝ⁻
- **(D)**]0,1[

3. Na figura junta está representada parte do gráfico de uma função f , de domínio $\mathbb R$.

Numa das alternativas seguintes estão os quadros de sinais de $f^{\,\prime}$ e de $f^{\,\prime\prime}$, respectivamente primeira e segunda derivadas de f .

Em qual delas?

x		b	d	
f''(x)	+	0	0	+

\boldsymbol{x}	b		d	
f''(x)	0	+	0	_

x		b		d	
f''(x)	+	0	_	0	+

x		b		d	
f''(x)	_	0	+	0	_

O gráfico da função f , de domínio \mathbb{R} , definida por f(x) = 0,1 + 0 ,2 $e^{0,3\,x}$, tem 4. uma única assimptota.

Qual das condições seguintes é uma equação dessa assimptota?

(A) y = 0

(B) y = 0.1

(C) y = 0.2

- **(D)** y = 0.3
- 5. Um saco contém cinco cartões, numerados de 1 a 5.

A Joana retira sucessivamente, ao acaso, os cinco cartões do saco e alinha-os, da esquerda para a direita, pela ordem de saída, de maneira a formar um número de cinco algarismos.

Qual é a probabilidade de esse número ser par e de ter o algarismo das dezenas também par?

- (A) $\frac{{}^5C_2}{{}^5A_2}$ (B) $\frac{{}^5C_2}{5!}$ (C) $\frac{2\times 3!}{{}^5A_2}$ (D) $\frac{2\times 3!}{5!}$
- 6. A tabela de distribuição de probabilidade de uma variável aleatória X é:

x_i	1	2	3
$P(X=x_i)$	a	2a	a

Qual \acute{e} o valor de a?

- (A) $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

- 7. Qual das seguintes condições define, no plano complexo, o eixo imaginário?
 - $(A) \quad z + \overline{z} = 0$

(B) Im(z) = 1

(C) |z| = 0

(D) $z - \overline{z} = 0$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- **1.** Em $\mathbb C$, considere os números complexos: $z_1=1+i$ e $z_2=\sqrt{2}\ cis\ \frac{3}{4}\ \pi$
 - **1.1.** Verifique que z_1 e z_2 são raízes quartas de um mesmo número complexo. Determine esse número, apresentando-o na forma algébrica.
 - **1.2.** Considere, no plano complexo, os pontos A, B e O em que:
 - A é a imagem geométrica de z_1
 - B é a imagem geométrica de z_2
 - O é a origem do referencial.

Determine o perímetro do triângulo [AOB] .

- 2.
- **2.1.** Seja S o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis ($A \subset S$ e $B \subset S$). Prove que

$$P(\overline{A} \cap \overline{B}) = P(\overline{A}) - P(B) + P(A|B) \times P(B)$$

(P designa probabilidade, \overline{A} e \overline{B} designam os acontecimentos contrários de A e de B, respectivamente, e P(A|B) designa a probabilidade de A, se B).

- **2.2.** Das raparigas que moram em Vale do Rei, sabe-se que:
 - · a quarta parte tem olhos verdes;
 - · a terça parte tem cabelo louro;
 - das que têm cabelo louro, metade tem olhos verdes.
 - 2.2.1. Escolhendo aleatoriamente uma rapariga de Vale do Rei, qual é a probabilidade de ela não ser loura nem ter olhos verdes?
 Sugestão: se lhe for útil, pode utilizar a igualdade enunciada na alínea 2.1. para resolver o problema.
 - **2.2.2.** Admita agora que em Vale do Rei moram cento e vinte raparigas.

 Pretende-se formar uma comissão de cinco raparigas, para organizar um baile.

Quantas comissões diferentes se podem formar com exactamente duas raparigas louras?

3. Doses terapêuticas iguais de um certo antibiótico são administradas, pela primeira vez, a duas pessoas: a Ana e o Carlos.

Admita que, durante as doze primeiras horas após a tomada simultânea do medicamento pela Ana e pelo Carlos, as concentrações de antibiótico, medidas em miligramas por litro de sangue, são dadas, respectivamente, por

$$A(t) = 4t^3 e^{-t}$$
 e $C(t) = 2t^3 e^{-0.7t}$

A variável t designa o tempo, medido em **horas**, que decorre desde o instante em que o medicamento é tomado ($t \in [0, 12]$).

- **3.1.** Recorrendo a métodos analíticos e utilizando a calculadora para efectuar cálculos numéricos, resolva as duas alíneas seguintes.
 - 3.1.1. Determine o valor da concentração deste antibiótico no sangue da Ana, quinze minutos depois de ela o ter tomado. Apresente o resultado, em miligramas por litro de sangue, arredondado às centésimas.

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

3.1.2. No instante em que as duas pessoas tomam o medicamento, as concentrações são iguais (por serem nulas). Determine quanto tempo depois as concentrações voltam a ser iguais. Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

- **3.2.** Considere as seguintes questões:
 - 1. Quando a concentração ultrapassa 7,5 miligramas por litro de sangue, o medicamento pode ter efeitos secundários indesejáveis. Esta situação ocorrerá, neste caso, com alguma destas duas pessoas? Caso afirmativo, com quem? E em quantos miligramas por litro o referido limiar será ultrapassado?
 - 2. Depois de atingir o nível máximo, a concentração começa a diminuir. Quando fica inferior a 1 miligrama por litro de sangue, é necessário tomar nova dose do medicamento. Quem deve tomá-la em primeiro lugar, a Ana ou o Carlos? E quanto tempo antes do outro?

Utilize as capacidades gráficas da sua calculadora para investigar estas duas questões.

Numa pequena composição, com cerca de dez linhas, explicite as conclusões a que chegou, justificando-as devidamente. Apresente, na sua resposta, os elementos recolhidos na utilização da calculadora: gráficos e coordenadas de alguns pontos (coordenadas arredondadas às décimas).

4. Na figura está representado um quadrado [ABCD], de lado 1.

O ponto E desloca-se sobre o lado [AB], e o ponto F desloca-se sobre o lado [AD], de tal forma que se tem sempre $\overline{AE} = \overline{AF}$.

Para cada posição do ponto E, seja x a amplitude do ângulo BEC $\left(x\in\left]\frac{\pi}{4}\,,\frac{\pi}{2}\right[\right)$.

Recorrendo a métodos exclusivamente analíticos, resolva as três alíneas seguintes:

- **4.1.** Mostre que o **perímetro** do quadrilátero [CEAF] é dado, em função de x, por $f(x) = 2 \frac{2}{\lg x} + \frac{2}{ \sec x}$
- **4.2.** Calcule $\lim_{x \to \frac{\pi}{2}^-} f(x)$ e interprete geometricamente o valor obtido.
- **4.3.** Mostre que $f'(x) = \frac{2 2\cos x}{\sin^2 x}$ e estude a função f quanto à monotonia.

FIM

COTAÇÕES

Grupo	l		63
	Cada resposta certa	3	
	Nota: um total negativo neste grupo vale 0 (zero) pontos.		
Grupo	II		137
	1.	21	
	2.1. 11 2.2. 21 2.2.1. 11 2.2.2. 10	32	
	3.1. 27 3.1.1. 13 3.1.2. 14	43	
	3.2. 16 4. 13 4.2. 12	41	
ΤΩΤΔΙ	4.3. 16		200

Formulário

Áreas de figuras planas

$${\bf Losango:} \ \, \frac{Diagonal maior \times Diagonal menor}{2}$$

Trapézio:
$$\frac{Basemaior + Basemenor}{2} \times Altura$$

Polígono regular:
$$Semiperímetro \times Apótema$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

(r – $raio da base; g – $geratriz$)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r - raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r-raio)$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen} a \cdot \cos b + \operatorname{sen} b \cdot \cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^{n} = \rho^{n} \operatorname{cis}(n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2k\pi}{n}, k \in \{0, \dots, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 imes \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$