Chapter 1

Homework #2. Rakhmatulin Viktor

1.1 Task#1

Find minimum of function with respect to parameters a,b,c : $f(x) = ax^2 + bx + c$ Solution:

Minimum could lie at the point where f'(x)=0, so 2ax+1=0 thus $x^*=-\frac{1}{2a}$

If a > 0: f'(x) > 0 when $x > x^*$ and f'(x) < 0 when $x > x^*$. Thus, x^* is the minimum point and

 $f(x^*) = \frac{a}{4a^2} - \frac{b}{2a} + c = \frac{1}{4a} - \frac{b}{2z} + c$

Answer: $a > 0, x^* = -\frac{1}{2a}, f(x^*)\frac{1}{4a} - \frac{b}{2z} + c$

1.2 Task#2

What are dimensions of gradient of a function h(x) = f(Ax), constructed of function $f: R^m \to R$ and matrix $A \in R^{m \times k}$. Find the dimensions of $\nabla_x h(x)$

Solution:

 $\nabla h(x) = A^T \nabla_y f(y)$ where y = Ax

Answer: $\nabla h_{k \times 1}(x)$

1.3 Task#3

Prove that for a strongly convex function with parameter μ holds,

$$\frac{\mu}{2}||x - x^*||^2 \le f(x) - f(x^*)$$

Solution: For strong convex functions stands: $f(y) \geq f(x) + (\nabla f(x), y - x) + \frac{\mu}{2}||x - y||^2$ $\forall x, y \in dom f$. For extremal point also stands that $\nabla f(x^*) = 0$. From substitution $x = x^*$ we get: $f(x) \geq f(x^*) + \frac{\mu}{2}||x^* - x||^2$ or $f(x) - f(x^*) \geq \frac{\mu}{2}||x^* - x||^2$ Q.E.D.

1.4 Task#4

Derive a) gradient $\nabla f(x)$ and b) Hessian matrix $\nabla^2 f(x)$ (both in vector form) for the function $f(x)=(x,c)^2; x\in R^n$

Solution:

Lets assign y = (x, c)

Figure 1.1: Task #4: Solution

1.5 Task#5

Derive Hessian matrix $\nabla^2 f(x)$ for the function f(x) = g(Ax + b), assuming differentiable $g: R^m \to R$, with dimensions $A \in R^{(m \times n)}; b \in R^m; x \in R^n$.

Figure 1.2: Task #5: Solution

1.6 Task#6

Solve optimal step-size problem for the quadratic function, with symmetric positive definite matrix $A > \in \mathbb{R}^{n \times n}$, and $x, b, d \in \mathbb{R}^n$. Your goal is to find optimal $\gamma forgiven A, b, d, x$. The resulting expression must be written in terms of inner products(...,...)

$$f(\gamma) = (A(x + \gamma d), x + \gamma d) + (b, x + \gamma d) \rightarrow min\gamma \in R$$

$$f(x) = (A \times + A \times d, X + X d) + (b, \alpha + X d) =$$

$$(A \times , \times) + (A \times , X d) + (A \times d, \times) + (A \times d, X d) + (b \times) +$$

$$+ (b, X d)$$

$$df = b + (A \times , d) + (A d, \times) + 2X(A d, d) + 0 + (b, d)$$

$$f(x) = 0 \Rightarrow AX = -(A \times , d) + (A d, X) + (b, d)$$

$$f(x) = 0 \Rightarrow AX = -(A \times , d) + (A d, X) + (b, d)$$

Figure 1.3: Task #6: Solution

1.7 Task#7

Derive subgradient (subdifferential) for the function $f(x) = [x2-1]+, x \in R$.

Figure 1.4: Task #7: Solution

1.8 Task#8

Let $f: R^n \to R$ be given by f(x) = 12x > Qx - x > b, where $b \in R^n$ and Q is a real symmetric matrix positive definite n×n matrix. Suppose that we apply steepest descent (or gradient descent) method to this function with $x^0 \neq Q^{-1}b$. Show that method converges in one step that is $x^1 = Q^{-1}b$, if and only if x^0 is chosen such that $g^0 = Qx^0 - b$ is an eigenvector of Q.

Solution is on the Figure 1.5 (next page):

1.9 Task#9

Find the minimizer of $f(x,y) = x^2 + xy + 10y^2 - 22y - 5x$ numerically by steepest descent

- 1. For each iteration, record the values of x,y and f and include in a table.
- 2. Plot the values on a contour plot.
- 3. Explore different starting values, such as (1,10),(10,10),(10,1). Does the number of steps depend significantly on the starting guess?

Solution: The code is in the repository.

3. Amount of steps depends significantly on the starting point:

$$x0 = ([1.0,10.0]) = 5$$
 iterations

$$x0 = ([10.0, 10.0]) = 8$$
 iterations

Figure 1.5: Task #8: Solution

Figure 1.6: Task #9: Solution to point 1 and 2

x0 = ([10.0, 1.0]) = 36 iterations

On the picture "Task #9: comments on point 3" demonstrated the case when x0 = ([10.0, 1.0]). The steepest descent moves very slowly when the function values become flat

Figure 1.7: Task #9: comments on point 3

1.10 Task#10

Let the cost function of the unconstrained optimization problem of interest be

$$f(x) = \frac{1}{4}(x_1 - 1)^2 + \sum_{i=2}^{n} (2 * x_{i-1} - x_i - 1)^2$$

Consider two different scenarios, first n= 3, and then n= 10. Using $x^0 = [-1.5, 1, ..., 1]^T$ write out the first iteration of the steepest descent algorithm and obtain the optimum value for α^0 . What is the value of x^1 if you implement α^0 ? Verify that $f(x_1) < f(x_0)$

- 2. Write a code to find the minimizer of f(x) using steepest descent algorithm with starting point of $x^0 = [-1.5, 1, ..., 1]$ and using 1) $x^1 = argminf(x^k \alpha \nabla f(x^k))$.
- 2) constant $\alpha = 0.1$.
- 3) constant $\alpha = 0.5$.
- 4) constant $\alpha = 1.0$.

(Use $||x^{k+1}-x^k|| \le 10^{-6}$ the stopping condition for your algorithm)

- 3. How many steps it takes for the algorithm to converge for each choices of the step sizes above?
- 4. Use fminbnd from Matlab or an equivalent function from the programming language of your-choice to solve the problem. How many steps this algorithm takes to converge?

Solution:

4. Comment: Gradient norm in n = 10 faster converges to eps.

In python only conjugate gradient is available as a part of scipy library.

Output from the library solver n = 3:

Optimization terminated successfully.

	f(x0) = 7.8125			
n	step	x1	f(x1)	f(x1) < f(x0)
3	0.01588745	[-1.00351715 1.07943726 1.]	1.1169341	TRUE
10	0.01588745	[-1.00351715 1.07943726 1.1.1.1.1. 1.1.1.]	1.116934129	TRUE

Figure 1.8: Task #10: point 1 solution

n	alpha	iterations	f(xn)
3	argmin	43836	7.24E-08
3	0.1	doesn't converge	undefined
3	0.5	doesn't converge	undefined
3	1	doesn't converge	undefined
10	argmin	15	0.9830311985
10	0.1	doesn't converge	undefined
10	0.5	doesn't converge	undefined
10	1	doesn't converge	undefined

Figure 1.9: Task #10: point 2 and 3 solution

Current function value: 0.000000

Iterations: 132

Function evaluations: 1275 Gradient evaluations: 255

x: [0.9998953 0.99957355 0.99829311]

Output from the library solver n = 10:

Optimization terminated successfully.

Current function value: 0.983031

Iterations: 13

Function evaluations: 336 Gradient evaluations: 28

x: [0.9998953 0.99957355 0.99829311]

Conclusion: conjugate gradient method from the library requires less iterations compare to steepest gradient descent