Lecture 5

Vectors

Vectors

We generally distinguish between scalars and vectors.

A scalar quantity is characterized only by magnitude. e.g. mass, temperature, time, speed etc

A vector quantity is characterized by both magnitude and direction. e.g. force, velocity etc

For scalars, we use a plain (usually lower case) letter such as a.

For vectors, in typewritten text we use a boldface (and again usually lower case) letter such as 'a'. In handwritten text, there we usually underline the letter with a tilde, i.e. $\stackrel{a}{\sim}$.

Geometric representation:

a is also written as $\stackrel{
ightarrow}{PQ}$.

The magnitude or length of a vector a is denoted by ||a|| or |a|.

If ||u|| = 1 for a given vector u, then we say that u is a unit vector.

The zero vector, denoted by $\mathbf{0}$, is defined to be a vector which has no particular direction and zero length.

We say a=b if they have the same length and direction.

Vector Operations

The sum of two vectors a and b is written as

$$a+b$$

and we can use either the triangle law or parallelogram law:

Special rule for addition with the zero vector: for any $oldsymbol{u}$,

$$u + 0 = 0 + u = u$$
.

Also, it is clear from the workings of the parallelogram law that

$$a+b=b+a$$

The negative of a vector u is denoted by -u and it is simply the vector which has the same length as u but is opposite in direction, *i.e.*

Scalar Multiplication. Given a scalar c and a vector a, the scalar multiple ca is a vector such that

- (i) it has the same direction as a if c > 0;
- (ii) its direction is opposite to that of a if c < 0.

In either case, the length of ca is |c| times the length of a, i.e. $||ca|| = |c| \, ||a||$.

Note that (0)u = 0 for any vector u.

For any vector $a \neq 0$, the unit vector in the direction of a is denoted by \hat{a} and $\hat{a} = \frac{a}{||a||}$.

Finally, notice that a and b are parallel if and only if a = cb for some scalar c.

Analytic Representation

Consider the Cartesian plane with origin O. For any $P(a_1, a_2)$, we can write down its position vector as

$$\overrightarrow{OP} = [a_1, a_2] = a.$$

Note how we use square brackets when writing out the vector.

Next we look at the addition of two vectors $a = [a_1, a_2]$ and $b = [b_1, b_2]$.

We have,

$$a + b = [a_1 + b_1, a_2 + b_2].$$

Similarly, for two vectors $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$ in 3 space,

$$a + b = [a_1 + b_1, a_2 + b_2, a_3 + b_3].$$

Suppose we have $a = [a_1, a_2]$. We find that $c\mathbf{a} = [ca_1, ca_2]$.

Similarly, for $a = [a_1, a_2, a_3]$ in 3 space,

$$ca = [ca_1, ca_2, ca_3].$$

Given $a = [a_1, a_2]$, we have

$$||a|| = \sqrt{a_1^2 + a_2^2}.$$

Similarly, for $a = [a_1, a_2, a_3]$ in 3 space,

$$||a|| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Ex: Find a+2b, ||a|| and \hat{a} if a=[2,-1,-2] and b=[1,4,-2].

What are the components of a vector joining two points $A(a_1,a_2)$ and $B(b_1,b_2)$ in the plane?

$$\overrightarrow{AB} = [b_1, b_2] - [a_1, a_2] = [b_1 - a_1, b_2 - a_2],$$

In 3 space, the same applies: for points $A(a_1,a_2,a_3)$ and $B(b_1,b_2,b_3)$,

$$\overrightarrow{AB} = [b_1 - a_1, b_2 - a_2, b_3 - a_3].$$

 $\underline{\overset{\textbf{Ex:}}{\rightarrow}}$ Given A(4,-1,0) and B(1,3,-2), find BA.

Standard Unit Basis Vectors

The vectors

$$i = [1, 0]$$
 and $j = [0, 1]$

in 2 space and

$$i=[1,0,0], \quad j=[0,1,0]$$
 and $k=[0,0,1]$ in 3 space are known as the standard unit basis vectors.

Clearly, for any $a = [a_1, a_2, a_3]$ in 3 space,

$$a = [a_1, a_2, a_3]$$

 $= [a_1, 0, 0] + [0, a_2, 0] + [0, 0, a_3]$
 $= a_1[1, 0, 0] + a_2[0, 1, 0] + a_3[0, 0, 1]$
 $= a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k},$

e.g.
$$[3, 2, -4] = 3i + 2j - 4k$$
.

Similarly, for any $a = [a_1, a_2]$ in 2 space,

$$a = [a_1, a_2] = a_1 i + a_2 j.$$

Note how the component notation and the standard unit basis vector notation is interchangeable.

Ex: Given a = -2i + 3j + k and b = i + j - 4k, find a - 2b and ||b||.

The Dot Product

The dot product (or scalar product) of $a = [a_1, a_2, a_3]$ and $b = [b_1, b_2, b_3]$ is

$$a.b = a_1b_1 + a_2b_2 + a_3b_3$$

e.g.
$$[1,2,3]$$
. $[-2,0,1] = (1)(-2) + (2)(0) + (3)(1) = 1$.

Note the following:

- (i) a.b is clearly a scalar quantity and a.b = b.a.
- (ii) For vectors in 2 space, if $a = [a_1, a_2]$, $b = [b_1, b_2]$, then $a.b = a_1b_1 + a_2b_2$.

Consider a and b with an angle θ between them, $0^{\circ} \leq \theta \leq 180^{\circ}$. Suppose we locate both vectors with their initial points at the origin.

$$a.b = ||a|| \, ||b|| \cos \theta$$

i.e. the dot product between two vectors (be it in 2 space or in 3 space) is equal to the product of the lengths times the cosine of the angle between them.

It follows that if $a \neq 0$ and $b \neq 0$, then

$$\cos \theta = \frac{a.b}{||a|| \, ||b||}$$

Ex: Find the angle between the vectors a = [3, 2, -1] and b = [-2, 2, 4].

We say that a and b are orthogonal (or perpendicular) if the angle between them is 90° . In this case,

$$\frac{a.b}{||a||\,||b||} = \cos(90^\circ) = 0 \longrightarrow a.b = 0.$$

In fact, the only way in which to vectors can be orthogonal is if a.b = 0.

e.g. [1,-2,3].[2,1,0]=0, so vectors are orthogonal.

Projection and Component of a Vector

The scalar projection of \boldsymbol{a} on \boldsymbol{b} is $p = ||\overrightarrow{OB}||$,

scalar projection =
$$p = a.\hat{b}$$

where $\hat{b} = \frac{b}{||b||}$ is the unit vector in the direction of b.

The vector projection of a on b is then just p, *i.e.*

vector projection
$$= p = p\hat{b}$$
,

where p is the scalar projection defined above and \hat{b} is the unit vector in the direction of b.

Ex: Find the vector projection of b = [3, 1, 1] on a = [4, -2, -1].

Work Done by a Force

Work = force \times displacement = magnitude of F in direction of $s \times ||s||$ = scalar projection of F on $s \times ||s||$ = $||F|| \cos \theta ||s||$ = F.s

$$Work = F.s$$

Ex: A force F = 5i + 3j - 2k is applied to an object which moves it from the point A(1,1,1) to the point B(5,-1,2). Determine the work done by the force F.