2 Groups

2.3 Subgroups and Direct Products

2.3.2 Direct Products

Problem 2.63 (Subgroups of \mathbb{Z} and \mathbb{Z}_n). Complete the following:

- (a) If $H \neq \{0\}$ is a subgroup of \mathbb{Z} , let k be the minimal element of $\mathbb{N} \cap H$. Show k exists and that $H = \langle k \rangle$. Hint: If $m \in H$, use the Euclidean Algorithm to write m = kq + r with $0 \le r < k$ and show $kq \in H$ so that $r \in H$.
- (b) Conclude that the set of subgroups of \mathbb{Z} is $\{\langle k \rangle = k\mathbb{Z} \mid k \in \mathbb{Z}_{\geq 0}\}.$
- (c) For $n \in \mathbb{N}$, show that every subset of \mathbb{Z}_n is of the form $\langle [k] \rangle$ for $0 \leq k < n$.
- (d) Show $\langle [k] \rangle = \langle [(k,n)] \rangle$. Hint: For \subseteq , use $(k,n) \mid k$. For \supseteq , write (k,n) = kx + ny.
- (e) Conclude that the set of subgroups of \mathbb{Z}_n is $\{\langle [k] \rangle \mid k \in \mathbb{N} \text{ and } k \mid n \}$.
- (f) Find all subgroups of \mathbb{Z}_{15} .

For part (a), we'll first show that $\langle k \rangle \subseteq H$ and then show that $H \subseteq \langle k \rangle$. For $\langle k \rangle \subseteq H$, we know that $k \in H$. Because $H \leqslant \mathbb{Z}$, we can say H contains all integer multiples of k: thus $\langle k \rangle \subseteq H$. Next, for $H \subseteq \langle k \rangle$, we write any element $m \in H$ as kq + r. We then can say $m, kq \in H \Rightarrow r \in H$. However, because k is defined as the minimal non-zero element, r must be 0; therefore $H \subseteq \langle k \rangle$. Finally, $H \subseteq \langle k \rangle$ and $\langle k \rangle \subseteq H$ imply $\langle k \rangle = H$.

For part (b), we know from part (a) that any subgroup H is equal to the subgroup generated by the minimal positive element k. Because this minimal element can be any $k \in \mathbb{N}$, the comprehensive set of subgroups is simply the set of $\langle k \rangle \ \forall k \in \mathbb{Z}_{>0}$. This definition also includes the trivial case as $\langle 0 \rangle$ is built by $0\mathbb{Z}$, which is simply $\{0\}$. Therefore the comprehensive set of subgroups is the set of $\langle k \rangle \ \forall k \in \mathbb{Z}_{\geq 0}$.

For part (c), we know that any subgroup of \mathbb{Z}_n is a subgroup operating on one of the equivalence classes represented by

2.4 Morphisms

2.4.1 Definitions and Examples

Problem 2.92. Show the following maps are homomorphisms:

- (b) For $m \in \mathbb{Z}$ and $n \in \mathbb{N}$, $\varphi : \mathbb{Z}_n \to \mathbb{Z}_n$ given by $\varphi([k]) = m[k]$.
- (d) For $m \in \mathbb{Z}$ and $n \in \mathbb{N}$, $\varphi: U_n \to U_n$ given by $\varphi([k]) = [k]^m$.
- (e) $\varphi: \mathbb{R} \to \mathbb{R}^+$ given by $\varphi(x) = e^x$.
- (g) $\theta: GL(n, \mathbb{F}) \to GL(n, \mathbb{F})$ given by $\theta(g) = (g^{-1})^T$.

Answer here..

Problem 2.93. Show the following maps are not homomorphisms:

- (a) $\varphi: \mathbb{Z} \to \mathbb{Z}$ given by $\varphi(k) = k + 1$.
- (b) $\varphi : \mathbb{R} \to \mathbb{R}$ given by $\varphi(x) = x^2$.
- (c) $\varphi : \mathbb{R} \to \mathbb{R}^{\times}$ given by $\varphi(x) = 2x$.

Answer here...

Problem 2.94. Show the following groups are isomorphic.

(a) $\mathbb{Z} \cong 2\mathbb{Z}$.

- (e) $U_7 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$.
- (c) For $n \in \mathbb{N}$, $\{z \in \mathbb{C} \mid z^n = 1\} \cong \mathbb{Z}_n$.
- (d) $\mathbb{R} \cong \mathbb{R}^+$. Hint: e^x .

 $(g) \ \mathbb{R} \cong U(2,\mathbb{R}) = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x, y \in \mathbb{R}^{\times} \}.$

Answer here...

Problem 2.95. Show the following groups are not isomorphic.

- (a) $\mathbb{Z}_4 \not\cong \mathbb{Z}_5$.
- (b) $S_3 \not\cong \mathbb{Z}_6$.
- (c) $\mathbb{Z}_4 \ncong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (d) $R^{\times} \ncong \mathbb{R}$. Hint: Count the solutions to $x^2 = 1$ in \mathbb{R}^{\times} and to 2x = 0 in \mathbb{R} .
- (e) $\mathbb{Z} \ncong \mathbb{Q}$.

Answer here...

2.4.2 Basic Properties

Problem 2.96. Calculate the kernels and images of the following homomorphisms.

- (a) $\varphi: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ by $\varphi([k]) = 2[k]$.
- (b) $\varphi: U_{10} \to U_{10} \ by \ \varphi([k]) = [k]^2$.
- (c) $\varphi: D_n \to \{\pm 1\}$ by $\varphi(R_i) = 1$ and $\varphi(W_i) = -1$.

Answer here...

Problem 2.99 (Homomorphisms from \mathbb{Z}). Complete the following:

- (a) If G is a group and $\varphi: \mathbb{Z} \to G$ is a homomorphism, show $\varphi(k) = \varphi(1)^k$ for $k \in \mathbb{Z}$.
- (b) If $\varphi': \mathbb{Z} \to G$ is another homomorphism, show $\varphi = \varphi'$ if and only if $\varphi(1) = \varphi'(1)$.
- (c) If $g \in G$ show the map $\varphi : \mathbb{Z} \to G$ given by $\varphi(k) = g^k$ is a homomorphism.

(d) Conclude that the set of homomorphisms from \mathbb{Z} to G is in bijection with the set of elements of G.

Answer here...

Problem 2.104. Suppose G is a group with $S \subseteq G$ and $G = \langle S \rangle$. If $\varphi, \varphi : G \to H$ are homomorphisms satisfying $\varphi(s) = \varphi'(s)$ for all $s \in S$, show $\varphi = \varphi'$.

Answer here...