SERVICE DES CONCOURS

Concours GE2I/GMEC session 2015

Composition : **Mathématiques 4** (analyse)

Durée : 4 Heures

Partie 1: ANALYSE

<u>A)</u>

- 1) On considère la fonction Γ de Euler définie par : $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.
 - a) Déterminer son ensemble de définition.
 - b) Justifier que pour tout x>0, $\Gamma(x+1)=x$ $\Gamma(x)$. En déduire que pour tout entier naturel n on a : $\Gamma(n+1)=n$!.
 - c) Montrer que Γ est de classe C^1 sur l'intervalle]0; + ∞ [. Montrer qu'il existe un nombre réel d de l'intervalle]1; 2[tel que $\Gamma'(d) = 0$.
 - d) En déduire que la fonction Γ est strictement croissante sur l'intervalle [2 ; $+ \infty$ [.
- 2) Enoncer la formule de Taylor avec reste intégrale pour une fonction de classe C^{∞} sur un intervalle I non vide et non réduit à un point.

B) Application du développement en série entière

On rappelle que si une fonction f est développable en série entière sur l'intervalle g-a ;a g-a vec g-a lors g-a sur g-a ;a g-a serie entière est unique donné par la série de Taylor de g-a l'origine :

$$\forall \ x \in \text{]-a ;a [} \ f(x) = \textstyle \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

1) On considère la fonction f définie sur \mathbb{R} par : f(0) = 1 et, $f(x) = \frac{\sin x}{x}$, pour $x \neq 0$.

Démontrer que f est de classe C^{∞} sur \mathbb{R} .

2) Un théorème des moments.

Soit f une fonction développable en série entière sur]-R; R [avec R > 1:

$$\forall x \in]-R; R[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

On suppose, que pour tout entier naturel n, $\int_0^1 x^n f(x) dx = 0$.

- a) Démontrer que la série $\sum_{n\geq 0} \left(f(x)\frac{f^{(n)}(0)}{n!}\right)x^n$ est normalement convergente sur [0;1].
- b) A l'aide du calcul de $\int_0^1 \bigl(f(x)\bigr)^2 dx$, démontrer que la fonction f est nulle sur l'intervalle $[0\,;1]$.
- c) Démontrer que f est la fonction nulle sur l'intervalle]-R;R[.

3) <u>Un contre - exemple</u>

On considère la fonction f telle que pour tout x réel $f(x) = \int_0^{+\infty} \frac{e^{-t}}{1+tx^2} dt$. Démontrer que f est de classe C^{-1} sur \mathbb{R} . On admet que f est de classe C^{-1} sur \mathbb{R} et que l'on obtient les dérivées successives en dérivant sous le signe intégrale.

- a) Pour t $\epsilon]0$; $+\infty [$, calculer, au moyen d'une série entière, les dérivées successives en zéro de la fonction : $x \mapsto \frac{e^{-t}}{1+tx^2}$ pour en déduire l'expression de $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$.
- b) Quel est le rayon de convergence de la série entière $\sum_{n\geq 0} \left(\frac{f^{(n)}(0)}{n!}\right) x^n$? La fonction f est elle développable en série entière ?

PARTIE 2: PROBABILITES

Exercice 1:

Soit $f:\Omega\to\Gamma$ une application et A, B des événements de Σ une tribu de Γ .

- $\textbf{1)} \quad \text{Comparer } f^{-1}\left(\overline{A}\right) \text{ et } \overline{f^{-1}(A)} \text{ ; puis } f^{-1}\left(A \cup B\right) \text{ et } f^{-1}(A) \cup f^{-1}(B).$
- 2) Montrer que $f^{-1}(\Sigma) = \left\{ f^{-1}(B) \ / \ B \in \Sigma \right\}$ est une tribu d'événements de Ω .

Exercice 2:

Trois maladroits tirent sur un objectif. Chacun n'a qu'une seule balle.

Le premier a trois chances sur quatre pour atteindre l'objectif, le second deux chances sur trois et le troisième une chance sur deux seulement.

L'objectif a-t-il alors plus de chances de recevoir une seule balle ou les trois balles ?.

Exercice 3:

Déterminer la loi de probabilité, l'espérance mathématique et l'écart-type de la variable aléatoire X dont la fonction de répartition est donnée par :

$$F(t) = \begin{cases} 0 \text{ , si } t < 1 \\ 1/5 \text{ , si } 1 \le t < 2 \\ 4/5 \text{ , si } 2 \le t < 3 \\ 1 \text{ , si } t \ge 3 \end{cases}$$

Exercice 4:

Une pièce d'un équipement électronique est constituée de trois parties essentielles A,B et C. On a constaté dans le passé que la partie A tombait en panne dans 10% des cas, la partie B dans 30% des cas et la partie C dans 40% des cas.

La partie A opère indépendamment de B et de C.

Les parties B et C sont dépendantes de telle sorte que si C est défaillante, les chances sont de 1 sur 3 que B soit défaillante aussi.

Deux au moins des trois parties doivent être en état de marche pour que l'équipement fonctionne. Calculer la probabilité pour qu'il fonctionne.