Matematica e BioStatistica con Applicazioni Informatiche Esercitazione in aula del 6 dicembre 2018

Quesito 1. Una macchina è calibrata in modo da fare un taglio in un punto di altezza $\mu_0 = 20$. Se calibrata bene, l'altezza del taglio è distribuita normalmente con media μ_0 deviazione standard $\sigma = 2$.

Ogni tanto (per effetto delle vibrazioni) la macchina si sposta, va quindi fermata e ricalibrata. Idealmente vorremmo fermare la macchina quando la nuova media μ differisce più di 3 da μ_0 .

- 1. Misuriamo quindi la posizione del taglio. Chiamiamo \bar{x} la media fatta su un campione di n=5. Calibreremo la macchina se $|\mu_0 \bar{x}|$ è maggiore di un valore critico c. Quale dev'essere questo valore per non fermare inutilmente ma macchina più del 10% delle volte?
- 2. Dato il valore critico al punto 1, qual'è la probabilità di non ricalibrare una macchina che necessita di essere ricalibrata?
- 3. Dopo 500 tagli la probabilità che $|\mu \mu_0| > 3$ è del 5%. Su un campione di dimensione 5 misuriamo una distanza media $\bar{x} = 15$. Qual'è la probabilità che $|\mu \mu_0|$ sia davvero > 3?
- 4 alcune delle quantita calcolate nelle domande precedenti vengono generalmente denominate α , β , δ , e p-valore. Specificare quali.

Risposta Sia $x_{10\%}$ il valore critico. Dev'essere che

$$\Pr\left(|\bar{X} - \mu_0| \ge c_{10\%}\right) = 0.1 = \alpha$$
 dove $\bar{X} \sim N(\mu_0, \sigma^2/n)$. Risposta 4

Standardizzando

$$\Pr\left(|Z| \ge \left| \frac{c_{10\%}}{\sigma/n} \right| \right) = 2 \cdot \Pr\left(Z \le -\left| \frac{c_{10\%}}{\sigma/n} \right| \right).$$
$$= 2 \cdot \Pr\left(Z \le -c_{10\%}/0.4\right) = 0.1$$

$$c_{10\%} = - 0.4 * norm.ppf(0.05)$$

Risposta 1

Risposta

```
Formulario: se X \sim B(\mathbf{n}, \mathbf{p}) allora E(X) = np
se X \sim NB(\mathbf{n}, \mathbf{p}) allora E(X) = n(1-p)/p
```

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python

binom.pmf(k, n, p) = $\Pr(X = k)$ dove $X \sim B(n, p)$

binom.cdf(k, n, p) = $\Pr(X \leq k)$ dove $X \sim B(n,p)$

bimom.ppf(q, n, p) = k dove k è tale che $\Pr(X \leq k) \cong q \text{ per } X \sim B(n,p)$

nbinom.xxx(k, n, p), è l'analogo per $X \sim NB(n, p)$.

norm.xxx(z), è l'analogo per $Z \sim N(0,1)$.