

Enhancing 3D Point Cloud Classification with ModelNet-R and Point-SkipNet

M. Saeid A. Salarpour Sirjan University of Technology, Iran

P. MohajerAnsari Clemson University, USA

انجمن ماشین بینایی و پردازش تصویر ایران

LiDAR

3D Points

Classifier

airplane

Autonomous Vehicles

airplane

Autonomous Vehicles

Robotics

AR/VR

Research Motivation

2021

2022

2023

2024

Datasets (3D Point Cloud Classification)

2025

https://paperswithcode.com/dataset/modelnet

Classifier airplane

Efficient Model

Research Motivation

Contributions

- •ModelNet-R (Refined dataset)
- •Point-SkipNet (Efficient model)
- •Comprehensive evaluation on ModelNet and ModelNet-R

Inst	ance	Modified Label	Label in the Dataset				
		Remove	Plant				
		Remove	Plant				
		Range hood	Vase				

Instance		Modified Label	Label in the Dataset	
	*****	Remove	Plant	
		Remove	Plant	
		Range hood	Vase	

Inst	ance	Modified Label	Label in the Dataset	
		Remove	Plant	
		Remove	Plant	
		Range hood	Vase	

Plant: Contains only plant samples

Flower Pot: Includes both the plant and the pot

Vase: Restricts objects to empty pots without plants

Cup: Consists of cups with handles

• Bowl: Encompasses wide, low-height hemispherical shapes

Class	Flower	Plant	Vase	Cup	Bowl	Removed	Total
	_Pot						
Flower_Pot	91	0	72	0	5	1	169
Plant	171	152	0	0	0	16	339
Vase	0	0	571	0	2	2	575
Cup	0	0	55	43	1	0	99
Bowl	0	0	24	0	60	0	84
Total	262	152	722	43	68	19	1266

Sample and Group Module

Point-SkipNet Architecture

Model
PointNet [30]
PointNet++ (SSG) [31]
PointNet++ (MSG) [31]
Point-NN [42]
DG-CNN [32]
CurveNet [38]
PointMLP [10]
Point-SkipNet (Proposed)

Model	Original Dataset		
	OA (%)	mAcc (%)	
PointNet [30]	89.20	86.00	
PointNet++ (SSG) [31]	-	-	
PointNet++ (MSG) [31]	90.70	-	
Point-NN [42]	81.80	-	
DG-CNN [32]	92.90	90.20	
CurveNet [38]	93.80	-	
PointMLP [10]	94.10	91.10	
Point-SkipNet (Proposed)	92.29	89.84	

Model	Origina	al Dataset	ModelNet-R		
	OA (%)	mAcc (%)	OA (%)	mAcc (%)	
PointNet [30]	89.20	86.00	91.39	88.79	
PointNet++ (SSG) [31]	-	-	94.02	92.40	
PointNet++ (MSG) [31]	90.70	-	94.06	91.80	
Point-NN [42]	81.80	-	84.75	77.65	
DG-CNN [32]	92.90	90.20	94.03	92.64	
CurveNet [38]	93.80	-	94.12	92.65	
PointMLP [10]	94.10	91.10	95.33	94.30	
Point-SkipNet (Proposed)	92.29	89.84	94.33	92.93	

Model	Original Dataset		ModelNet-R		Performance Improvement	
	OA (%)	mAcc (%)	OA (%)	mAcc (%)	Δ OA (%)	Δ mAcc (%)
PointNet [30]	89.20	86.00	91.39	88.79	+2.19	+2.79
PointNet++ (SSG) [31]	-	-	94.02	92.40	+1.91	+4.16
PointNet++ (MSG) [31]	90.70	-	94.06	91.80	+3.36	+1.80
Point-NN [42]	81.80	-	84.75	77.65	+3.95	+2.58
DG-CNN [32]	92.90	90.20	94.03	92.64	+1.13	+2.44
CurveNet [38]	93.80	-	94.12	92.65	+0.32	+2.70
PointMLP [10]	94.10	91.10	95.33	94.30	+1.23	+3.20
Point-SkipNet (Proposed)	92.29	89.84	94.33	92.93	+2.04	+3.09

Model	Original Dataset Mo		Mod	ModelNet-R Performance Improvemen		e Improvement	Parameters (M)
	OA (%)	mAcc (%)	OA (%)	mAcc (%)	Δ OA (%)	Δ mAcc (%)	
PointNet [30]	89.20	86.00	91.39	88.79	+2.19	+2.79	3.47
PointNet++ (SSG) [31]	-	-	94.02	92.40	+1.91	+4.16	1.47
PointNet++ (MSG) [31]	90.70	-	94.06	91.80	+3.36	+1.80	1.74
Point-NN [42]	81.80	-	84.75	77.65	+3.95	+2.58	0.00
DG-CNN [32]	92.90	90.20	94.03	92.64	+1.13	+2.44	1.80
CurveNet [38]	93.80	-	94.12	92.65	+0.32	+2.70	2.04
PointMLP [10]	94.10	91.10	95.33	94.30	+1.23	+3.20	12.60
Point-SkipNet (Proposed)	92.29	89.84	94.33	92.93	+2.04	+3.09	1.47

Ablation Study

TABLE V: Impact of Data Augmentation Techniques

Augmentation Mode	OA (%)	mAcc (%)
Main	93.72	92.56
All Augmentations	93.49	92.25
Anisotropic Scaling	93.76	92.59
Jitter	93.56	92.19
Rotation	93.93	92.55
Translation	93.75	92.49

TABLE VI: Effect of Skip Connection Modes

Skip Connection Mode	OA (%)	mAcc (%)
Concatenation	93.79	92.49
Addition	93.64	92.09

Limitations and Future Work

Refinement applied to only 5 of 40 ModelNet40 classes > Extend dataset refinement to
all ModelNet40 classes

• Size-related information lost in normalization > techniques that retain size-related information

Model only tested on ModelNet and ModelNet-R > ScanObjectNN

Conclusion

انجمن ماشین بینایی و

- ModelNet-R improves dataset reliability
- Point-SkipNet achieves high accuracy with lower computational cost
- High-quality datasets are crucial for improving 3D models

انجمن ماشین بینایی و پردازش تصویر ایران

Thank You! Questions and Answers