

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION	ÉPREUVE ÉCRITE	
MATHEMATIQUES I	В	Durée de l'épreuve :	3 heures
		Date de l'épreuve :	04 juin 2018

Question I (4 + 6 + 2 + 3 = 15 points)

- 1. On donne le polynôme à variable complexe $P(z) = z^4 z^3 + az^2 + b$ avec a, b réels.
 - a) Déterminez a et b sachant que 1+i est une racine du polynôme P.
 - b) Vérifiez que 1-i est aussi une racine du polynôme P.
 - c) Résolvez l'équation P(z) = 0.
- 2. a) Calculez les racines carrées complexes de $Z = \sqrt{2} + i\sqrt{2}$ sous forme algébrique.
 - b) Mettez $Z = \sqrt{2} + i\sqrt{2}$ sous forme trigonométrique et déduisez-en les formes trigonométriques des racines carrées complexes de Z.
 - c) Déduisez-en les valeurs exactes de $\cos \frac{9\pi}{8}$ et de $\sin \frac{9\pi}{8}$.
- 3. Soit z un nombre complexe. Dans le plan de Gauss, déterminez l'ensemble $E = \{M(z) | (z-1-3i)(\overline{z}-1+3i) = 5\}$.
- 4. Quelles sont les rotations r de centre O et d'angle α qui, appliquées cinq fois consécutivement à P d'affixe 2+4i, donnent P' d'affixe $-3\sqrt{2}-\sqrt{2}i$ comme image ?

Question II (3 + 7 + 5 = 15 points)

- 1. Calculez le terme constant de l'expression $\left(2x^4 \frac{3}{x^7}\right)^{11}$.
- 2. On place dans un sac 5 billets de 5 €, 7 billets de 10 € et 10 billets de 20 €. On choisit au hasard une poignée de 8 billets, chaque billet ayant la même probabilité d'être attrapé.
 - a) Quelle est la probabilité de n'avoir obtenu aucun billet de 5 €?
 - b) Quelle est la probabilité d'avoir obtenu uniquement des billets de 20 €?
 - c) Quelle est la probabilité d'avoir obtenu des billets de deux valeurs exactement ?
 - d) Quelle est la probabilité d'avoir obtenu au moins un billet de chaque valeur ?
- 3. Pour un jeu, on utilise un dé à quatre faces numérotées 0, 2, 3 et 5. On dispose aussi d'une urne contenant trois billes numérotées 1, 3 et 5.

On procède de la façon suivante : on lance le dé puis on tire une bille.

Si le dé donne 0, on ne gagne rien.

Si le dé et la bille portent le même numéro, on gagne 5 €.

Dans tous les autres cas, on gagne 1 €.

Soit X la variable aléatoire correspondant au gain du joueur.

- a) Etablissez la loi de probabilité de X.
- b) Calculez l'espérance mathématique E(X).
- c) Quel gain devrait-on fixer dans le cas où le dé et la bille portent le même numéro, pour que l'espérance soit égale à 10 € ?

Question III (4+6+6=16 points)

On suppose que le plan est muni d'un repère orthonormé $(0,\vec{i},\vec{j})$.

- 1. Déterminez une équation cartésienne d'une conique à centre O(0;0), d'excentricité 0,8 dont une directrice a pour équation y = 10.
- 2. Identifiez la courbe $\Gamma \equiv y = -3 \sqrt{x^2 2x + 10}$, puis représentez-la.
- 3. On donne l'ellipse $E \equiv x^2 + 3y^2 = 48$.
 - a) Déterminez les tangentes à E passant par le point P(4,4), ainsi que les points de contact de ces tangentes avec E.
 - b) Tracez E et les tangentes.

Question IV (14 points)

ABCD est un carré et d est la droite qui coupe [AD] en son milieu E et [BC] en son milieu F. Une droite d' variable parallèle à (AD) et (BC) coupe [AB] en G et [CD] en H. Recherchez et représentez le lieu L des points d'intersection des droites (EH) et (GF).