Nernst Equasion

03/26/2024 Ilana Berlin

Partner: Gina Dazzo

Purpose:

- Determine equalibrium constant for two equalibrium reactions $Ag^+ + 2NH_3 \leftrightarrows [Ag(NH_3)_2]$ and $Ag^+ + 2S_2O_3^2 \leftrightarrows [Ag(S_2O_3)_2]^3$.
- Evalutate accurracy of determine constants with percent error

-

Reference: Kateley, L. J., *Introduction to Chemistry in the Laboratory*, 20th Ed., Lake Forest College, **2021**, Experiment xx, Appendix xx.

Equalibrium One

 $Ag^+ + 2NH_3 \leftrightarrows [Ag(NH_3)_2]$

- $K_f = [Ag(NH_3)_2]/[Ag^+][NH_3]^2 =$
- Assume:
 - o The reaction shifts almost completely to the right and has a large K_f
 - The reaction reaches equalibrium quickly
 - o The limiting reagent is Ag⁺ and there is a large excess of NH₃ ligand

Equalibrium Two

 $Ag^+ + 2S_2O_3^{2-} \leftrightarrows [Ag(S_2O_3)_2]^{3-}$

 $K_f = [Ag(S_2O_3)_2]^{3-}/[Ag^+][S_2O_3]^2$

-

Standardization of pH Meter as voltmeter

- Probe calculated using a 1.61 +/-0.05V
- Battery registered as 1.56 V which is within the range noted on the battery

Set Up and Validation of a Voltic Cell

- Glassware cleaned to prevent source of error
- Seven strips of filter paper soaked in 1M KNO₃ to form salt bridge
- Black and red claws each attatched to silver wire

a)

- 10mL of 10.0mM Ag $^+$ placed in 20mL beaker for cathod
- 5mL of 10.0mM Ag⁺ places in 30mL beaker for anode
- Wire attacked to black claw placed in anode and wire attached to red claw places in cathode
- Meter read 0.002V

b)

- Silver wires washed with deionized water
- Anode replaced with a solution of 1.00mL 10.0mM Ag+ and 4.00mL of deionized water
- Salt bridge relapces with fresh 1M KNO₃ soaked strip of filter paper
- Meter read 0.036V

c)

- Silver wires washed with deionized water
- Anode replaced with a solution of 0.500mL of 10.0mM Ag⁺ and 4.500mL of deionized water
- Salt bridge replaced with fresh 1.0M KNO₃ soaked strip of filter paper
- Meter reads .0.050V

TABLE 1: VALIDATION OF THE NERNST EQUATION

Cathode	Anode	Anode	mM conc	mM conc	Conc ratio:	Theoretic	Observed
(red)	(black)	(black)	Ag^+	Ag^+	$[\mathrm{Ag^+_{dil}}] \div$	al	voltage
vol 10.0 mM	vol 10.0 mM	H_2O	anode	cathode	$[Ag^{+}_{conc}]$	voltage	(E_{cell})
Ag^+	$\mathrm{Ag}^{\scriptscriptstyle +}$					(E _{cell})	
10 mL	5 mL	0	10.0	10.0	1.00		
10 mL	1000 μL	4000 μL	2.00	10.0	0.200		
10 mL	500 μL	4500 μL	1.00	10.0	0.100		

Determine Formation Constants Using Nernst Equation

- Cathod of 10mL of 10.0mM Ag⁺ solution

TABLE 2. ANODE CELL VOLUMES AND MILLIMOLES

ligand	volume	volume	total	mmol	mmol	mmol	mmol ligand at
	10.0 mM	100 mM	volume	Ag^+	ligand	complex at	equilibrium
	Ag^+	ligand	(mL)	initia lly	initially	equilibrium	
NH_3	5000 μL	5000 μL	10.00	0.0500	0.500	0.0500	0.400
NH ₃	7500 µL	2500 μL	10.00	0.0750	0.250	0.0750	0.100
$S_2O_3^{2-}$	5000 μL	5000 μL	10.00	0.0500	0.500	0.050	0.400
$S_2O_3^{2-}$	7500 µL	2500 μL	10.00	0.0750	0.250	0.0750	0.100

TABLE 3: DETERMINATION OF FORMATION CONSTANTS USING THE NERNST EQUATION

ligand	M _{complex}	M_{ligand}	M _{Ag+dilute}	E _{cell} volts	K_{f}
NH ₃	0.00500	0.0400		0.099	
NH ₃	0.00750	0.0100		0.220	
$S_2O_3^{2-}$	0.0050	0.040		0.606	
$S_2O_3^{2-}$	0.00500	0.0100		0.654	

Conclusion:

- Silver ion is very low and hard to measure in moles per liter
- True values: 1.7×10^7 and 2.9×10^{13}
- Posible source of error from touching the filter paper

-