

Test Report for FCC

FCC ID: X8JGATEWAREI

Report Number		ESTRFC1805-003				
	Company name	DOALLT	ECH CO.,LTD.			
A	Address	E-601, 602, 603, 604, 605 SK V1 Center, 11, Dangsan-ro 41-gil, Yeongdeungpo-gu, Seoul, Korea 150-886				
Applicant	Telephone	+82-2-0	6121-5414			
	Contack person	Cheolho	Choi			
	Product name	GATEWA				
Product	Model No.	GATEWARE-i		Manufacturer	DOALLTECH CO.,LTD.	
	Serial No.		None	Country of origin	KOREA	
Test date	23-Apr-1	8 ~ 27-Ap	or-18	Date of issue	28-May-18	
Testing location	97-1, Hoe	eeok-ri, Ma	ESTECH ajang-myun, Ich	•	gi-do, South Korea	
Standard	F	CC PART 1	15 Subpart C (1	5.247), ANSI C 63	3.10(2013)	
Measurement	facility registration	number	659627			
Tested by	Tested by Senior Engineer H.Y. Lee (Signature)					
Reviewed by Engineering Manager I.K. Hong (Signature)						
Abbreviation	OK, Pass = Pass	ed, Fail =	Failed, N/A =	not applicable		

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used

Report Number: ESTRFC1805-003

- This test result based on a single evaluation of one sample of the above mentioned

Contents 1

Report Number: ESTRFC1805-003

1	. Laboratory Information	4
2	. Description of EUT	5
3	. Test Standards	6
4	. Measurement condition	7
5	. Carrier Frequency Separation	10
	5.1 Test procedure	10
	5.2 Test instruments and measurement setup	10
	5.3 Measurement results	10
	5.4 Trace data	12
6	. Maximum Peak Output Power ······	16
	6.1 Test procedure	16
	6.2 Measurement results	16
7	. Number of Hopping Frequency ······	17
	7.1 Test procedure	17
	7.2 Test instruments and measurement setup	17
	7.3 Measurement results	17
	7.4 Trace data	18
8	. Time of Occupancy (Dwell Time)	22
	8.1 Test procedure	22
	8.2 Test instruments and measurement setup	22
	8.3 Measurement results	22
	8.4 Trace Data ······	23
	8.5 Trace Data ·····	25

Contents 2

9. Band-edge and Out of band emissions	27
9.1 Test procedure	27
9.2 Test instruments and measurement setup	27
9.3 Measurement results of band-edge & out of emission	27
9.4 Trace data of band-edge & out of emission	28
10. Measurement of radiated emission	36
10.1 Measurement equipment	36
10.2 Environmental conditions	36
10.3 Test data (Bluetooth Basic Rate)	37
10.4 Restricted Band Edges (Bluetooth Basic Rate)	41
10.5 Test data(Bluetooth EDR)	45
10.6 Restricted Band Edges (Bluetooth Basic EDR)	49
11. Measurement of conducted emission	53
11.1 Measurement equipment	53
11.2 Environmental conditions	53
11.3 Test data (Bluetooth Basic Rate / EDR)	54
12. Photographs of test setup	56
12.1.Setup for Radiated Test $: 30 \sim 1~000~\text{MHz}$	56
12.2. Setup for Radiated Test :Above 1 000 MHz	57
12.3. Setup for Conducted Test : 0.15 \sim 30 MHz \cdots	58
12.4. Photographs of EUT······	59
Appendix 1. Special diagram	

Appendix 2. Antenna Requirement

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Suite 1015 World Meridian III, 123 Gasan Digital 2-ro, Geumcheon-gu,

Seoul 153-759, R.O. Korea

EMC/Telecom/Safety Test Lab: 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si,

Gyeonggi-do 467-811, R. O. Korea

1.3 Official Qualification(s)

Report Number: ESTRFC1805-003

MSIP: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

2. Description of EUT

2.1 Summary of Equipment Under Test (Bluetooth)

Modulation Type : GFSK(FHSS), 8DPSK

Transfer Rate : 3 Mbps

Number of Channel : DOALLTECH CO.,LTD.

Channel Spacing : 1 MHz

PEAK Output Power : GFSK: 0.76 mW 8DPSK: 0.33 mW

Rating : Cheolho Choi

Receipt Date : 29-Jun-17

2.2 General descriptions of EUT

CPU	Quad Cortex A53 @1.2 GHz	GPIO	40
RAM	1 GB SDRAM	USB Ports	Quad USB 2.0 Port
SoC	BCM2837	Camera	15 pin MIPI Camera serial interface(CSI-2)
Instruction	ARMv8-A	Display Connector	HDMI/DSI
GPU	GPU 400MHz VideoCore IV		Signal Out Relay x 2
Storage	Micro-SD	AC Power	AC(100 ~ 240) V ~0.62 A, 50/60 Hz
Ethernet	10/100	LED	Color LED x 3
Wireless	802.11n/Bluetooth 4.0	Operating Temperature	−10°C ~ +50°C
Video Output	HDMI/Composite		
Audio Output	HDMI/Headphone		

3. Test Standards

Test Standard: FCC PART 15 Subpart C (15.247)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.10 (2013)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

Report Number: ESTRFC1805-003

Appli	ed Satandard : 47 CFR Part 15 Su	ıbpart C		remark
FCC Standard	Test Type	Result	Remark	Limit
15.207	AC Power Conducted Emission	AC Power Conducted Emission Pass Meet the requirement		
15.205 & 15.209	Intentional Radiated Emission	Pass	Meet the requirement	
15 047(-)(1)	Carrier Frequency Separation &	Pass	Meet the requirement	>25 kHz
15.247(a)(1)	20 Bandwidth ,99% Bandwidth			
15.247(b)	Maximum Peak ouput power	Pass	Meet the requirement	30dBm(1W)
15.247(a)(1)(ii)	Number of Hopping Frequency	Pass	Meet the requirement	>75
15.247(c)	Transmitter Radiated Emission	Pass	Meet the requirement	
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Pass	Meet the requirement	<400ms
15.247(d)	Band Edge Measurement	Pass	Meet the requirement	

4. Measurement Condition

4.1 EUT Operation

a. Channel

Ch.	Frequency	Ch.	Frequency
0	2402 MHz	40	2442 MHz
1	2403 MHz	41	2443 MHz
2	2404 MHz	42	2444 MHz
3	2405 MHz	43	2445 MHz
4	2406 MHz		
		78	2480 MHz
38	2440 MHz		

b. Measurement Channel: Low (2402 MHz), Middle (2440 MHz), High (2480 MHz)

c. Test Mode: 8DPSK, GFSK (worst case)

d. Test rate: 3 Mbps

Report Number: ESTRFC1805-003

4.2 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to emission
- * Execute a RF test program to enable EUT under transmission/receiving condition continuously at specific channel frequency.
- * Transmit mode was each test. Each channel (low, middle, high), also set the test after
- * The EUT was measured up to tenth harmonic or 40 GHz of the highest operating frequencies.

4.3 Configuration and Peripherals

4.4 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
GATEWARE-i	GATEWARE-i	None	DOALLTECH CO.,LTD.	EUT
	***************************************	***************************************		
***************************************	MATERIAL DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR			

	***************************************)
)

4.5 Cable Connecting

Start Equipment		End Equip	End Equipment		Cable Standard		
Name	I/O port	Name	I/O port	Length Shielded		Remark	
GATEWARE-i	Power	-	-	2.0	Unshielded		

5. Carrier Frequency Separation

5.1 Test procedure

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

5.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 30 KHz
- . VBW= 300 KHz
- . Span= 3 MHz
- . Sweep= suitable duration based on the EUT specification.

20dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2018-12-27
-Spectrum Analyzer <=> EUT	Loss: 0.5dB	-	

5.3 Measurement results

EUT	GATEWARE -i	MODEL	GATEWARE-i
MODE	GFSK,8DPSK	ENVIRONMENTAL CONDITION	22 ℃, 40 % R.H .
INPUT POWER	AC 120 V		

CHANNEL	Channel Frequency (MHz)	Bandwidth at 99% (kHz)	Bandwidth at 20dB below(kHz)	Channel Separation (kHz)	Limit (kHz)	PASS/FAIL
0	2402	913	995	1000	663	PASS
38	2440	913	995	1000	663	PASS
78	2480	908	983	1000	655	PASS

Report Number: ESTRFC1805-003

(8DPSK)

CHANNEL	Channel Frequency (MHz)	Bandwidth at 99% (MHz)	Bandwidth at 20dB below(kHz)	Channel Separation (kHz)	Limit (kHz)	PASS/FAIL
0	2402	1.248	1401	1000	934	PASS
38	2440	1.239	1389	1000	926	PASS
78	2480	1.243	1386	1000	924	PASS

5.4 Trace data (GFSK)

Channel Separation

20dB bandwidth(CH 38)

20dB bandwidth(CH 78)

(8DPSK)

Channel Separation

Report Number: ESTRFC1805-003

20dB bandwidth(CH 38)

20dB bandwidth(CH 78)

6. MAXIMUM PEAK OUTPUT POWER

6.1 Test procedure

The transmitter antenna terminal is connected to the input of a Power Sensor. Measurement is made while EUT is operating in transmission mode at the appropriate center frequency. The maximum peak output power measurement is 30 dBm.

Description	Model	Serial Number	Cal. Due Date
Power Meter	NRVS	849622/045	2018-11-01
Power Sensor	NRV-251	325948/013	2018-11-01
Power Meter <=> EUT	Loss: 0.5dB	ı	

6.2 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	GFSK,8DPSK	ENVIRONMENTAL CONDITION	23 °C, 41 % R.H.
INPUT POWER	AC 120 V		

GFSK

CHANNE	Channel	Peak Power Output(dBm)			PASS/
CHANNEL	Frequency (MHz)	(dBm)	(mW)	Limit[mW]	FAIL
0	2402	-2.58	0.55	125	PASS
38	2440	-1.17	0.76	125	PASS
78	2480	-1.87	0.65	125	PASS

8DPSK

Report Number: ESTRFC1805-003

CHANNE	Channel	reak rewer earpar(abin)		Limit[mW]	PASS/
CHANNEL	Frequency (MHz)	(dBm)	(mW)		FAIL
0	2402	-5.60	0.28	125	PASS
38	2440	-4.77	0.33	125	PASS
78	2480	-4.77	0.33	125	PASS

Note: 8DPSK mode is max power in three different modulations.

7. Number of Hopping Frequency

7.1 Test procedure

According to $\S15.247(a)(1)(ii)$, Frequency hopping systems operating in the 2 400 MHz - 2 483.5 MHz bands shall use at least 15 hopping frequencies.

7.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 100 KHz
- . VBW= 100 KHz
- . Span= the frequency band of operation
- . Sweep= suitable duration based on the EUT specification.

The Number of Hopping Frequency Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2018-12-27
-Spectrum Analyzer <=> EUT	Loss: 0.5dB		

7.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	GFSK,8DPSK	ENVIRONMENTAL CONDITION	23 ℃, 42 % R.H.
INPUT POWER	AC 120 V		
Number of CH		Limit (Number of CH)	PASS/FAIL

>15

79

PASS

7.4 Trace data(GFSK)

7.4 Trace data(8DPSK)

8. Time of Occupancy (Dwell Time)

8.1 Test procedure

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2 400 MHz - 2 483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

8.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 1 MHz
- . VBW= 1 MHz
- . Span= zero span, centered on a hoppong channel
- . Sweep = as necessary to capture the entire dwell time per hoppong channel
- . Detector function = Peak
- . Trace = Max hold

The Time of Occupancy Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2018-12-27
-Spectrum Analyzer <=> EUT	Loss: 0.5dB		

8.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	GFSK,8DPSK	ENVIRONMENTAL CONDITION	23 °C, 43 % R.H.
INPUT POWER	AC 120 V		

A. DH1 Mode

One peiod for each particular channel: 0.38 ms X 320.1 = 121.64 ms

Channel	Pulse Time(ms)	Limit(ms)	PASS/FAIL
39	121.64	400	PASS

Calculation:The Bluetooth system hops at a rate of 1600 times per second. This means there are 1600 timeslots in one second, the DH1 data rate operates on a one-slot transmission and one-slot receiving basis. Thus there are 1600/(1+1)=800 transmissions per second. In one period for each particular channel there are 10.13x31.6=320.1 times of transmissions.

B. DH5 Mode

One peiod for each particular channel: 2.882 ms X 106.81 = 307.83 ms

Channel	Pulse Time(ms)	Limit(ms)	PASS/FAIL
39	307.83	400	PASS

Calculation: The Bluetooth system hops at a rate of 1600 times per second. This means there are 1600 timeslots in one second, the DH5 data rate operates on a five-slot transmission and one-slot receiving basis. Thus there are 1600/(5+1)=266.7 transmissions per second. In one period for each particular channel there are 3.38x31.6=106.81 times of transmissions.

8.4 Trace data

DH1

Report Number: ESTRFC1805-003

8DPSK

A. 1DH5 Mode

One peiod for each particular channel: 0 ms X 320.1 = 124.84 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
39	124.84	400	PASS

B. 3DH5 Mode

One peiod for each particular channel: 0 ms X 106.81 = 307.93 ms

Channel	Pulse Time(ms)	Limit (ms)	PASS/FAIL
39	307.93	400	PASS

8.5 Trace data

1DH5

Report Number: ESTRFC1805-003

8DPSK <u>3DH5</u>

9. band-edge and out of band emissions.

9.1 Test procedure

The radio frequecy power at 20dB down from the highest inband power level is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The band edge&out of band emission shall be at least 20dB below of the highest inband power level.

9.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW= 100 KHz
- . VBW= >100 KHz
- . Span= suitable frequency span
- . Sweep= suitable duration based on the EUT specification.

Band Edge&Out of Emission Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	2018-12-27
-Spectrum Analyzer <=> EUT	Loss: 0.5 dB		

9.3 Measurement results of band-edge & out of emission

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	GFSK,8DPSK	ENVIRONMENTAL CONDITION	23 °C, 42 % R.H.
INPUT POWER	AC 120 V		

* Refer to attach spectrum analyzer data chart.

9.4 Trace data of band-edge & Out of Emission

CH₀

CH₀

8DPSK CH 0

CH 0

10. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC PART 15.205, 15.209. The test setup was made according to ANSI C 63.10 (2013) Semi-anechoic chamber, which allows a 3 m distance measurement. The EUT was placed in the center of styrofoam turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESPI7	ROHDE & SCHWARZ	100916	31-Oct-18
Logbicon Antenna	VULB 9168	SCHWARZBECK	193	12-Oct-18
Turn Table	DT3000-2t	Innco System GmbH	N/A	_
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	_
PREAMPLIFIER	8449B	AGILENT	3008A00581	31-Oct-18
Horn Antenna	BBHA9120D	SCHWARZBECK	469	25-Aug-18
Test Receiver	ESPI7	ROHDE & SCHWARZ	100185	31-Oct-18
Spectrum Analyzer	R3273	ADVANTEST	121200664	10-Oct-18
Turn Table	DT1500-S	Innco System GmbH	N/A	_
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Pyramidal Horn Antenna	3160-09-01	EST-LINDGREN	102642	25-Aug-18
Antenna Master & Turn table controller	C02000-P	Innco System GmbH	CO2000/642 /28051111/L	-

10.2 Environmental Condition

Below 1 GHz -Test Place : 10 m Semi-anechoic chamber

BT Basic Rate Mode

Temperature (°C) : 21.4 °C Humidity (% R.H.) : 42.5 % R.H.

BT EDR Mode

Temperature (°C) : 21.4 °C Humidity (% R.H.) : 43.0 % R.H.

Above 1 GHz-Test Place : 3 m Semi-anechoic chamber

BT Basic Rate Mode

Temperature (°C) : 20.1 °C Humidity (% R.H.) : 53.0 % R.H.

BT EDR Mode

Temperature (°C) : 20.4 °C Humidity (% R.H.) : 51.5 % R.H.

Report Number: ESTRFC1805-003

10.3 Test Data for Bluetooth (Basic Rate)

Test Date: 24-Apr-18 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correctio	n Factor	f	Result Value	;
(MHz)	neading (dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB≠V/m)	Margin (dB)
324.00	24.44	Н	1.4	14.02	3.06	46.00	41.52	4.48
416.70	18.96	V	1.3	16.00	3.47	46.00	38.43	7.57
472.20	20.00	V	1.2	17.28	3.71	46.00	40.99	5.01
527.80	16.91	V	1.0	18.36	3.91	46.00	39.19	6.81
805.60	11.19	V	1.0	22.49	4.87	46.00	38.55	7.45
861.10	12.59	V	1.0	23.16	5.09	46.00	40.84	5.16

H: Horizontal, V: Vertical Bluetooth (Basic Rate, 38 CH, 2 440 MHz)

Remark

Report Number: ESTRFC1805-003

^{*}CL = Cable Loss (In case of below 1 000 MHz)

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}Margin = Limit - Result

10.3-1 Test Data for Bluetooth(Basic Rate)

Test Date: 25-Apr-18 Measurement Distance: 3 m

	'											
Frequency	Reading	Position	Height	Correction	n Factor	Duty Cycle	F	Result Value				
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)			
			PEAK	(RBW:1 MF	lz VBW	':3 MHz)						
2390.00												
2390.00	22.78	V	1.5	26.01	6.02		74.00	54.81	19.19			
4804.00	45.12	Н	1.5	30.93	-27.04		74.00	49.01	24.99			
4804.00	43.25	V	1.5	30.93	-27.04		74.00	47.14	26.86			
			Averag	e (RBW:1 I	MHz VE	W:1 kHz)						
2390.00	11.84	Н	1.5	26.01	6.02	1.15	54.00	45.02	8.98			
2390.00	11.79	V	1.5	26.01	6.02	1.15	54.00	44.97	9.04			
4804.00	33.42	Н	1.5	30.93	-27.04	1.15	54.00	38.46	15.54			
4804.00	32.16	V	1.5	30.93	-27.04	1.15	54.00	37.20	16.80			
	H : Horizon	tal, V:Verti	cal TES	T MODE : Bluet	tooth Basic	Rate-CH0 (2 402	MHz)					
	11.110112011	iai, v verti	cai iES	i wort blue	lootii DasiC	11ate 0110 (2 402	. IVII I <i>L J</i>					

^{*}The TX signal wasn't detected from 3th harmonics.

Report Number: ESTRFC1805-003

Remark

FYI: Duty Cycle Correction Factor (79 channel hopping)

^{*}Result Value = Reading + Ant Factor + Cable loss - Amplifier Gain + Duty Cycle Correction Factor

^{*}Margin = Limit - Result

^{*}The resolution bandwidth and video bandwidth of spectrum analyzer is 1 MHz and 1 kHz for average detection at frequency above 1 GHz.

a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 296.408 ms, where τ = pulse width

b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H $^{\circ}$ =1

c. Worst Case Dwell Time = τ [ms] x H ' = 3.752ms

d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -28.514 dB

10.3-2 Test Data for Bluetooth(Basic Rate)

Test Date: 25-Apr-18 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	n Factor	Duty Cycle	F	Result Value		
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
			PEAK(RBW:1 MH	z VBW:	3 MHz)				
4880.00	43.15	Н	1.5	30.60	-26.82		74.00	46.93	27.07	
4880.00	44.01	V	1.5	30.60	-26.82		74.00	47.79	26.21	
			Average	(RBW:1 N	1Hz VB	W:1 kHz)				
4880.00	32.65 H 1.5 30.60 -26.82 1.15 54.00 37.58 16.43									
4880.00	33.70	V	1.5	30.60	-26.82	1.15	54.00	38.63	15.38	
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth Basic Rate-CH38 (2 440 MHz) *The TX signal wasn't detected from 3th harmonics. *Result Value = Reading + Ant Factor + Cable loss - Amplifier Gain + Duty Cycle Correction Factor *Margin = Limit - Result *The resolution bandwidth and video bandwidth of spectrum analyzer is 1 MHz and 1 kHz for average detection at frequency above 1 GHz. FYI: Duty Cycle Correction Factor (79 channel hopping) a. Time to cycle through all channels = Δ t = τ [ms] x 79 channels = 296.408 ms, where τ = pulse width b. 100 ms/ Δt [ms] = H → Round up to next highest integer, H ' = 1 c. Worst Case Dwell Time = τ [ms] x H ' = 3.752ms d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -28.514 dB									

10.3-3 Test Data for Bluetooth(Basic Rate)

Test Date: 25-Apr-18 Measurement Distance: 3 m

Frequency	Reading	Position	Haiaht	Correction	Factor	Duty Cycle	F	Result Value	
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction (dB)	Limit (dB#V/m)	Result (dBW/m)	Margin (dB)
			PEAK	RBW:1 MH	z VBW	:3 MHz)			
2483.50	27.68	Н	1.5	26.30	6.14		74.00	53.98	20.02
2483.50	24.02	V	1.5	26.30	6.14		74.00	56.46	17.54
4960.00	42.65	Н	1.5	30.70	-26.70		74.00	46.65	27.35
4960.00	42.34	V	1.7	30.70	-26.70		74.00	46.34	27.66
2402.52	45.40	1		e (RBW:1 M		r		10.71	
2483.50	15.13	H	1.5	26.30	6.14	1.15	54.00	48.71	5.29
2483.50	12.19	V	1.5	26.30	6.14	1.15	54.00	45.77	8.23
4960.00	33.21	Н	1.5	30.70	-26.70	1.15	54.00	38.36	15.65
4960.00	32.64	V	1.7	30.70	-26.70	1.15	54.00	37.79	16.22
Remark	*Result Value *Margin = Lir *The resoluti frequency ab FYI: Duty Cy a. Time to cy	al wasn't det = Reading + nit - Result on bandwidth ove 1 GHz. cle Correctio cle through a	ected from Ant Factor and video Factor (a 3th harmonics or + Cable loss o bandwidth of 79 channel hop	s. - Amplified spectrum a pping) x 79 chann	Rate-CH78 (2 480 r Gain + Duty Cyonalyzer is 1 MHz nels = 296.408 m H; =1	cle Correction and 1 kHz for	average detec	tion at

c. Worst Case Dwell Time = τ [ms] x H ' = 3.752ms

d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -28.514 dB

10.4 Restricted Band Edges for BT(Basic Rate)

Band Edges(CH Low)

Comment: 06041_BT_BDR_PEAK_CH0_HOR

Detector mode: Average

Polarity: Horizontal

Comment: 06041_BT_BDR_AV_CH0_HOR

Band Edges(CH Low)

Polarity: Vertical

Comment: 06041_BT_BDR_PEAK_CH0_VER

Detector mode: Average

Polarity: Vertical

Comment: 06041_BT_BDR_AV_CH0_VER

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Comment: BT_BDR_CH78_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Comment: 06041_BT_BDR_AV_CH78_HOR

Band Edges(CH High)

Comment: BT_BDR_CH78_PEAK_VER

Detector mode: Average

Polarity: Vertical

Comment: 06041_BT_BDR_AV_CH78_VER

10.5 Test Data for Bluetooth (EDR)

Test Date: 24-Apr-18 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correctio	n Factor	f	Result Value	;
(MHz)	(dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB≠V/m)	Margin (dB)
324.00	23.02	Н	1.4	14.02	3.06	46.00	40.10	5.90
416.70	19.10	V	1.3	16.00	3.47	46.00	38.57	7.43
472.20	20.02	V	1.2	17.28	3.71	46.00	41.01	4.99
527.80	17.41	V	1.0	18.36	3.91	46.00	39.69	6.31
805.60	11.11	V	1.0	22.49	4.87	46.00	38.47	7.53
861.10	13.00	V	1.0	23.16	5.09	46.00	41.25	4.75

H: Horizontal, V: Vertical Bluetooth (EDR, 38 CH, 2 440 MHz)

Remark

^{*}CL = Cable Loss(In case of below 1 000 MHz)

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}Margin = Limit - Result

10.5-1 Test Data for Bluetooth(EDR)

Test Date: 26-Apr-18 Measurement Distance: 3 m

Frequency	Reading	Position	∐oiaht	Correction	n Factor	Duty Cycle	R	lesult Value			
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction (dB)	Limit (dB≠V/m)	Result (dB#V/m)	Margin (dB)		
			PEAK((RBW:1 MH	lz VBW	:3 MHz)					
2390.00 24.12 H 1.5 26.01 6.02 74.00 56.15 17.85											
2390.00	24.50	V	1.7	26.01	6.02		74.00	56.53	17.47		
4804.00	44.65	Н	1.5	30.93	-27.04		74.00	48.54	25.46		
4804.00	44.80	V	1.5	30.93	-27.04		74.00	48.69	25.31		
		,	Average	e (RBW:1 N	/IHz VB	W:1 kHz)					
2390.00	11.97	Н	1.5	26.01	6.02	1.14	54.00	45.14	8.86		
2390.00	11.89	V	1.7	26.01	6.02	1.14	54.00	45.06	8.94		
4804.00	34.12	Н	1.5	30.93	-27.04	1.14	54.00	39.15	14.85		
4804.00	33.94	V	1.5	30.93	-27.04	1.14	54.00	38.97	15.03		
		•				-					

H: Horizontal, V: Vertical TEST MODE: Bluetooth EDR-CH0 (2 402 MHz)

Remark

FYI: Duty Cycle Correction Factor (79 channel hopping)

^{*}The TX signal wasn't detected from 3th harmonics.

^{*}Result Value = Reading + Ant Factor + Cable loss - Amplifier Gain + Duty Cycle Correction Factor

^{*}Margin = Limit - Result

^{*}The resolution bandwidth and video bandwidth of spectrum analyzer is 1 MHz and 1 kHz for average detection at frequency above 1 GHz.

a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 296.25 ms, where τ = pulse width

b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H '=1

c. Worst Case Dwell Time = τ [ms] x H ' = 3.75ms

d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -28.519 dB

10.5-2 Test Data for Bluetooth(EDR)

Test Date: 26-Apr-18 Measurement Distance: 3 m

Frequency	Reading	μV) (V/H) 31 H 35 V		Correction	n Factor	Duty Cycle	F	Result Value			
(MHz)	(dB#V)		(m)	Ant Factor (dB)	Cable (dB)	Correction (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)		
			PEAK(RBW:1 MH	z VBW:	3 MHz)					
4880.00	45.31	Н	1.5	31.15	-26.82		74.00	49.64	24.36		
4880.00	44.85	V	1.7	31.15	-26.82		74.00	49.18	24.82		
			Average	e(RBW:1 M	Hz VBV	V:1 kHz)					
4880.00	34.00 H 1.5 31.15 -26.82 1.14 54.00 39.48 14.5										
4880.00	34.05	V	1.7	31.15	-26.82	1.14	54.00	39.53	14.47		
	H: Horizonta	I. V:Vertica	al TEST N	MODE : Bluetod	oth EDR-CH	38 (2 440 MHz)					
Remark	H: Horizontal, V: Vertical TEST MODE: Bluetooth EDR-CH38 (2 440 MHz) *The TX signal wasn't detected from 3th harmonics. *Result Value = Reading + Ant Factor + Cable loss - Amplifier Gain + Duty Cycle Correction Factor *Margin = Limit - Result *The resolution bandwidth and video bandwidth of spectrum analyzer is 1 MHz and 1 kHz for average detection at frequency above 1 GHz.										
	FYI: Duty Cycle Correction Factor (79 channel hopping) a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 296.25 ms, where τ = pulse width b. 100 ms/ Δt [ms] = H → Round up to next highest integer, H ' =1 c. Worst Case Dwell Time = τ [ms] x H ' = 3.75ms d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -28.519 dB										

10.5-3 Test Data for Bluetooth(EDR)

Test Date: 26-Apr-18 Measurement Distance: 3 m

Pooding	Position	Uoiaht	Correction	n Factor	Duty Cycle	F	Result Value				
reading (dB≠V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction (dB)	Limit (dB₩/m)	Result (dB≠V/m)	Margin (dB)			
		PEAK(RBW:1 MH	z VBW:	3 MHz)						
2483.50 27.08 H 1.5 26.30 6.20 74.00 59.58 14.42											
24.33	V	1.7	26.30	6.20		74.00	56.83	17.17			
41.12	Н	1.5	31.38	-26.70		74.00	45.80	28.20			
41.52	V	1.7	31.38	-26.70		74.00	46.20	27.80			
		Average	e (RBW:1 N	/Hz VB\	N:1 kHz)						
16.21	Н	1.5	26.30	6.20	1.14	54.00	49.85	4.15			
11.91	V	1.7	26.30	6.20	1.14	54.00	45.55	8.45			
31.59	Н	1.5	31.19	-26.70	1.14	54.00	37.23	16.77			
32.01	V	1.7	31.19	-26.70	1.14	54.00	37.65	16.35			
	27.08 24.33 41.12 41.52 16.21 11.91 31.59	(dB,W) (V/H) 27.08 H 24.33 V 41.12 H 41.52 V 16.21 H 11.91 V 31.59 H	(dB \(\mu \) (V/H) (m) PEAK(27.08	Reading (dBμW) Position (V/H) Height (m) Ant Factor (dB) PEAK(RBW:1 MH) 27.08 H 1.5 26.30 24.33 V 1.7 26.30 41.12 H 1.5 31.38 41.52 V 1.7 31.38 41.52 V 1.7 26.30 16.21 H 1.5 26.30 11.91 V 1.7 26.30 31.59 H 1.5 31.19	(dB \(\mu \)) (V/H) (m) Ant Factor (dB) Cable (dB) PEAK(RBW:1 MHz VBW: 27.08 H 1.5 26.30 6.20 24.33 V 1.7 26.30 6.20 41.12 H 1.5 31.38 -26.70 41.52 V 1.7 31.38 -26.70 Average (RBW:1 MHz VB) 16.21 H 1.5 26.30 6.20 11.91 V 1.7 26.30 6.20 31.59 H 1.5 31.19 -26.70	Reading (dB,W) Position (V/H) Height (m) Ant Factor (dB) Correction (dB) PEAK(RBW:1 MHz VBW:3 MHz) 27.08 H 1.5 26.30 6.20 24.33 V 1.7 26.30 6.20 41.12 H 1.5 31.38 -26.70 41.52 V 1.7 31.38 -26.70 Average (RBW:1 MHz VBW:1 kHz) 16.21 H 1.5 26.30 6.20 1.14 11.91 V 1.7 26.30 6.20 1.14 31.59 H 1.5 31.19 -26.70 1.14	Reading (dB, W)	Reading (dB,W) Position (V/H) Height (m) Cable (dB) Correction (dB) Limit (dB,W/m) Result (dB,W/m) PEAK(RBW:1 MHz VBW:3 MHz) 27.08 H 1.5 26.30 6.20 74.00 59.58 24.33 V 1.7 26.30 6.20 74.00 56.83 41.12 H 1.5 31.38 -26.70 74.00 45.80 41.52 V 1.7 31.38 -26.70 74.00 46.20 Average (RBW:1 MHz VBW:1 kHz) 16.21 H 1.5 26.30 6.20 1.14 54.00 49.85 11.91 V 1.7 26.30 6.20 1.14 54.00 45.55 31.59 H 1.5 31.19 -26.70 1.14 54.00 37.23			

H: Horizontal, V: Vertical TEST MODE: Bluetooth EDR-CH78 (2 480 MHz)

*The resolution bandwidth and video bandwidth of spectrum analyzer is 1 MHz and 1 kHz for average detection at

Remark frequency above 1 GHz.

FYI: Duty Cycle Correction Factor (79 channel hopping)

- a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 296.25 ms, where τ = pulse width
- b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
- c. Worst Case Dwell Time = τ [ms] x H $^{\circ}$ = 3.75ms
- d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -28.519 dB

^{*}The TX signal wasn't detected from 3th harmonics.

^{*}Result Value = Reading + Ant Factor + Cable loss - Amplifier Gain + Duty Cycle Correction Factor

^{*}Margin = Limit - Result

10.6 Restricted Band Edges for BT(EDR)

Band Edges(CH Low)

Detector mode:Peak

Polarity: Horizontal

Comment: BT_EDR_CH0_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Comment: 06041_BT_EDR_AV_CH0_HOR

Band Edges(CH Low)

Detector mode:Peak

Polarity: Vertical

Comment: BT_EDR_CH0_PEAK_VER

Detector mode: Average

Polarity:Vertical

Comment: 06041_BT_EDR_AV_CH0_VER

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Comment: BT_EDR_CH78_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Comment: 06041_BT_EDR_AV_CH78_HOR

Band Edges(CH High)

Detector mode:Peak

Polarity: Vertical

Comment: BT_EDR_CH78_PEAK_VER

Detector mode: Average

Polarity: Vertical

Comment: 06041_BT_EDR_AV_CH78_VER

11. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC PART 15.207. The test setup was made according to ANSI C 63.4 (2009) in a shielded room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
TEST RECEIVER	ESPI	Rohde & Schwarz	100005	31-Oct-18
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	31-Oct-18
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	31-Oct-18

11.2 Environmental Condition

Test Place : Shielded Room

BT Basic Mode

Temperature (°C) : 23.5 ℃

Humidity (% R.H.) : 41.6 % R.H.

BT EDR Mode

Temperature (°C) : 23.3 ℃

Report Number: ESTRFC1805-003

Humidity (% R.H.) : 42.1 % R.H.

11.3-1 Test Data for Bluetooth (Basic Rate)

Test Date: 24-Apr-17

Frequency	Correction	on Factor	Line	Qu	asi-peak Va	lue	F	Average Valu	е
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB≠V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.20	0.10	0.20	N	63.69	57.29	57.59	53.69	42.57	42.87
0.26	0.10	0.20	Н	61.59	57.21	57.51	51.59	45.13	45.43
0.32	0.10	0.20	Н	59.60	48.53	48.83	49.60	35.94	36.24
0.39	0.11	0.22	N	58.00	42.31	42.64	48.00	29.13	29.46
0.47	0.11	0.22	Н	56.55	42.66	42.99	46.55	28.55	28.88
0.52	0.11	0.22	Н	56.00	40.51	40.84	46.00	28.72	29.05
	H: Hot L	ine, N:N	eutral Line	e TEST M	10DE : Blu	ietooth Ba	ısic Rate (CH38 (2 44	40 MHz)
Remark	*Correction Factor = Lisn + Cable *Result = Correction Factor + Reading								

Report Number: ESTRFC1805-003

11.3-2 Test Data for Bluetooth (EDR)

Test Date: 24-Apr-18

Frequency	Correction	on Factor	Line	Qu	ıasi-peak Va	llue	P	Average Valu	е
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.20	0.10	0.19	N	63.61	54.64	54.93	53.61	36.94	37.23
0.23	0.10	0.19	Н	62.45	51.78	52.07	52.45	39.98	40.27
0.26	0.10	0.20	Н	61.43	55.42	55.72	51.43	42.74	43.04
0.34	0.10	0.21	N	59.20	44.74	45.05	49.20	30.12	30.43
0.40	0.11	0.21	Н	57.85	43.94	44.26	47.85	29.87	30.19
0.47	0.11	0.22	Н	56.51	43.23	43.56	46.51	28.85	29.18
0.59	0.11	0.22	Н	56.00	39.83	40.16	46.00	28.83	29.16
	H: Hot L	ine, N:N	leutral Line	E TEST N	MODE : Blu	uetooth EC	R-CH38	(2 440 MH	lz)
Remark	*Correction Factor = Lisn + Cable *Result = Correction Factor + Reading								

Report Number: ESTRFC1805-003

12. Photographs of test setup

12.1. Setup for Radiated Test : (30 \sim 1 000) MHz

Report Number: ESTRFC1805-003

12.2. Setup for Radiated Test : Above 1 000 MHz

[Rear]

12.3. Setup for Conducted Test : (0.15 \sim 30) MHz

[Front]

[Rear]

12.4. Photographs of EUT

Report Number: ESTRFC1805-003

[Front]

[Rear]

Appendix 1. Special diagram for Bluetooth (Basic Rate)

Bluetooth - CH 38 *HOT

Comment: 06041_BDR_HOT

Special diagram for Bluetooth (Basic Rate)

Bluetooth - CH 38
*NEUTRAL

Comment: 06041 BDR NEUTRAL

Special diagram for Bluetooth EDR

Comment: 06041_EDR_HOT

Special diagram for Bluetooth EDR

Comment: 06041_EDR_NEUTRAL

Appendix 2. Antenna Requirement

1. Antenna Requirement

1.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.24

1.2 Antenna Connected Construction

The antenna types used in this product are Intergrated Sandwich antenna. The maximum Gain of this antenna is 4.5 dBi.