Fall 2018 STSCI 5080 Discussion 4 (9/21)

Problems

1. (Rice 2.5.67) The Weibull cdf is

$$F(x) = 1 - e^{-(x/\alpha)^{\beta}}, \ x \ge 0$$

where $\alpha, \beta > 0$.

- (a) Find the pdf of F.
- (b) Show that if W follows a Weibull distribution, then $X = (W/\alpha)^{\beta}$ follows an exponential distribution.
- (c) How could Weibull random variables be generated from a uniform random number generator?
- 2. (Rice 3.8.17) Let (X,Y) be a random point chosen uniformly on the region $R = \{(x,y) \mid |x| + |y| \le 1\}$.
 - (a) Sketch the region R.
 - (b) Find the marginal pdfs of X and Y.
 - (c) Find the conditional pdf of Y given X.

Solutions

- 1. (**Rice 2.5.67**)
 - (a) For $x \le 0$, f(x) = 0, and for x > 0,

$$f(x) = F'(x) = \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta - 1} e^{-(x/\alpha)^{\beta}}.$$

(b) The variable X is positive. For x > 0,

$$F_X(x) = P(X \le x) = P((W/\alpha)^{\beta} \le x) = P(W \le \alpha x^{1/\beta}) = F_W(\alpha x^{1/\beta}).$$

Differentiating both sides, we have

$$f_X(x) = \frac{\alpha}{\beta} x^{1/\beta - 1} f_W(\alpha x^{1/\beta}) = \dots = e^{-x}.$$

Hence, $X \sim Ex(1)$.

(c) By (b), $W = (X/\alpha)^{1/\beta}$ where $X \sim Ex(1)$ has cdf F. We can generate X as $X = -\log(1-U)$ where $U \sim U[0,1]$, and so

$$W = \left(\frac{-1}{\alpha}\log(1-U)\right)^{1/\beta}$$

has $\operatorname{cdf} F$.

Alternatively, the quantile function F^{-1} is

$$F^{-1}(u) = \left(\frac{-1}{\alpha}\log(1-u)\right)^{1/\beta}, \ 0 < u < 1,$$

and so

$$W = F^{-1}(U) = \left(\frac{-1}{\alpha}\log(1-U)\right)^{1/\beta}$$

has $\operatorname{cdf} F$.

- 2. (Rice 3.8.17)
 - (a) Skip.
 - (b) The area of the region R is 2 and so the joint pdf is

$$f(x,y) = \begin{cases} \frac{1}{2} & \text{if } (x,y) \in R \\ 0 & \text{otherwise} \end{cases}.$$

For $0 \le x \le 1$, the marginal pdf of X is

$$f_X(x) = \frac{1}{2} \int_{x-1}^{1-x} dy = 1 - x.$$

For $-1 \le x < 0$, we have

$$f_X(x) = \frac{1}{2} \int_{-x-1}^{1+x} dy = 1 + x.$$

In summary,

$$f_X(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1 \\ 0 & \text{otherwise} \end{cases}$$
.

By symmetry, the marginal pdf of Y is

$$f_Y(y) = \begin{cases} 1 - |y| & \text{if } |y| \le 1\\ 0 & \text{otherwise} \end{cases}$$
.

(c) The conditional pdf of Y given X is

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{2(1-|x|)}$$

for $|y| \le 1 - |x|$ and |x| < 1, and $f_{Y|X}(y \mid x) = 0$ elsewhere.