Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

2 de octubre de 2024

Listas

Listas

Listas

•0000000000

0.0000000000 Temas

Listas

- Listas
 - Definición recursiva
 - Definición secuencial

Implementaciones

Definición de lista

Implementaciones

Recursividad estructural

Listas

0000000000

$$\label{eq:Lista} \text{Lista vacía} \\ \text{Dato seguido de otra lista}$$

Lista recursiva en Java

Implementaciones

Código: Lista recursiva

Listas múltiples

```
public class Lista<T>
 3
        private T _dato;
        private Lista<T>? siguiente;
        public T Dato { get => dato: }
        public Lista<T>? Siguiente { get => _siguiente; set => _siguiente = value; }
        public Lista(T dato, Lista <T>? siguiente)
10
             _dato = dato;
11
             siguiente = siguiente;
12
13
14
        public static void ImprimeLista(Lista<T> 1)
15
16
             if(1 == null) return:
17
             else
18
19
                 Console.WriteLine(1.Dato):
20
                 ImprimeLista(1.Siguiente!);
21
22
23
```

Verónica E. Arriola-Rios Definición recursiva Facultad de Ciencias, UNAM

Construcción manual de listas

Implementaciones

• Ø.

Listas

00000000000

- "Perro" $\rightarrow \emptyset$.
- "Gato" \rightarrow "Perro" $\rightarrow \emptyset$.
- "Bananas" \rightarrow "Manzanas" \rightarrow "Toronjas" \rightarrow "Uvas" \rightarrow "Peras" $\rightarrow \emptyset$.

Código: Uso de listas

Verónica E. Arriola-Rios Definición recursiva Facultad de Ciencias, UNAM

Implementaciones

Listas

00000000000

Verónica E. Arriola-Rios Definición recursiva Facultad de Ciencias, UNAM Implementaciones

Construcción manual de listas

Ø.

Listas

00000000000

- "Perro" $\rightarrow \emptyset$.
- "Gato" \rightarrow "Perro" $\rightarrow \emptyset$.
- "Coneio" \rightarrow "Gato" \rightarrow "Perro" $\rightarrow \emptyset$.

Código: Uso de listas

```
public class UsoLista
         public static void Main()
             Lista < string >? vacía = null;
             Lista < string > unAnimal = new Lista < string > ("Perro", null):
             Lista < string > dos Animales = new Lista < string > ("Gato", new Lista < string > ("Perro", null));
             Lista < string > animales = new Lista < string > ("Conejo", dos Animales);
             Lista < string > . ImprimeLista (dosAnimales):
10
11
```

Verónica E. Arriola-Rios Definición recursiva Facultad de Ciencias, UNAM Listas

- Listas
 - Definición recursiva
 - Definición secuencial

Implementaciones

Definición de lista 2

Listas

 Una lista es una secuencia de cero a más elementos de un tipo determinado (que por lo general se denominará tipo-elemento). Se representa como una sucesión de elementos separados por comas:

$$a_0, a_1, ..., a_{n-1}$$
 (1)

donde $n \ge 0$ y cada a_i es del tipo **tipo-elemento**.

- Al número n de elementos se le llama longitud de la lista.
- a_0 es el *primer elemento* y a_{n-1} es el *último elemento*.
- Si n = 0, se tiene una **lista vacía**, es decir, que no tiene elementos. Aho, Hopcroft y Ullman 1983

Verónica E. Arriola-Rios Definición secuencial Facultad de Ciencias, UNAM

Lista

0000000000

Listas

Una propiedad importante de una lista es que sus elementos pueden estar ordenados en forma lineal de acuerdo con sus posiciones en la misma.

- Se dice que a_i precede a a_{i+1} para i=0,1,...,n-2 y a_i sucede a a_{i-1} para i=1,2,...,n-1.
- Se dice que el elemento α_i está en la posición i.

Verónica E. Arriola-Rios Definición secuencial Facultad de Ciencias, UNAM

Operaciones

instanciar: ∅ → ListaVacía

Implementaciones

- insertar: Lista, Posición, Elemento → Lista
- recuperar: Lista, Posición → Elemento
- borrar: Lista, Elemento → Lista
- siguiente: Lista, Posición → Elemento
- anterior: Lista, Posición → Elemento
- destruir: Lista $\rightarrow \emptyset$
- imprimir: Lista → Cadena

Verónica E. Arriola-Rios Definición secuencial Facultad de Ciencias, UNAM

Implementaciones

Listas

Implementaciones

Implementaciones
••••••

Temas

- **Implementaciones**
 - Lista ligada
 - Lista doblemente ligada
 - Lista en un arreglo

Implementaciones

Figura: Cada robot sabe quién va detrás de él. La lista define la secuencia de robots: ACEFBD.

Verónica E. Arriola-Rios Lista ligada Facultad de Ciencias, UNAM Listas

Temas

- **Implementaciones**
 - Lista ligada
 - Lista doblemente ligada

Implementaciones

• Lista en un arreglo

Referencias

Lista doblemente ligada

Figura: Cada robot sabe quién va detrás de él. La lista define la secuencia de robots: ACEFBD.

Verónica E. Arriola-Rios Lista doblemente ligada Facultad de Ciencias, UNAM

Nodo doble

Listas

• Cada elemento contiene referencias al elemento anterior y al elemento posterior.

Bibliografía

Listas

- **Implementaciones**
 - Lista ligada
 - Lista doblemente ligada

Implementaciones ○○○○○●○

• Lista en un arreglo

Lista en un arreglo

Figura: Los elementos de la lista se guardan en las posiciones correspondientes de un arreglo.

Verónica E. Arriola-Rios Lista en un arreglo Facultad de Ciencias, UNAM

Listas circulares

Listas

Listas

- 2 Implementaciones
- 3 Listas circulares
- 4 Listas múltiples
- Bibliografía

Listas circulares

Listas

• El elemento final hace referencias al elemento incial, por lo que para todo elmento existe un elemento siguiente y un elemento anterior.

Referencias

Listas múltiples

Listas

Listas

- 2 Implementaciones
- 3 Listas circulares
- 4 Listas múltiples
- Bibliografía

Listas múltiples

Listas

- Representan relaciones muchos a muchos Vargas Villazón, Lozano Moreno y Levine Gutiérrez 1998.
- Se representan con referencias.
- Casi siempre es más fácil usar tablas, pero llegan a aparecer.

Referencias

Listas múltiples. Ejemplo.

Estudiantes\Cursos	CS101	CS202	CS203
Alan			\checkmark
Alejandro	\checkmark	\checkmark	
Alicia			\checkmark
Amanda	\checkmark		
Andrés		\checkmark	\checkmark
Angélica	\checkmark		\checkmark

Bibliografía

Listas

Listas

- 2 Implementaciones
- Listas circulares
- 4 Listas múltiples
- Bibliografía

Bibliografía I

- Aho, Alfred V., John E. Hopcroft y Jeffrey D. Ullman (1983). Data Structures and Algorithms. Addison-Wesley.
- Vargas Villazón, América, Jorge Lozano Moreno y Guillermo Levine Gutiérrez, eds. (1998). Estructuras de datos y Algoritmos. John Wiley & Sons. 438 pp.

Verónica E. Arriola-Rios Facultad de Ciencias, UNAM

Licencia

Creative Commons Atribución-No Comercial-Compartir Igual

Referencias