Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Licence ST-A, USTL - API2

26 octobre 2009

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

- 1 Introduction
- 2 Les listes
 - Structure de liste
 - Opérations primitives
- 3 Implémentation des listes
 - Représentation contigüe
 - Représentation chaînée
- 4 Réalisation des opérations primitives
 - Constructeurs
 - Sélecteurs
 - Prédicat
 - Opérations modificatrices
- 5 Utilisation de ces primitives

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Contract

Implémentation

des listes

des opérations primitives

Utilisation de ces primitives

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

Objectif:

■ Trouver une représentation de la structure linéaire de liste

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

- Trouver une représentation de la structure linéaire de liste
- à l'aide de listes chaînées par des pointeurs

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opération primitives

Utilisation de ces primitives

- Trouver une représentation de la structure linéaire de liste
- à l'aide de listes chaînées par des pointeurs
- et implémenter les opérations primitives à l'aide de cette représentation

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

- Trouver une représentation de la structure linéaire de liste
- à l'aide de listes chaînées par des pointeurs
- et implémenter les opérations primitives à l'aide de cette représentation
- de telle sorte que toute autre opération sur les listes puisse être implémentée à l'aide de ces opérations primitives sans manipulation explicite des pointeurs.

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations

Utilisation de

Définition (1)

liste = suite finie, éventuellement vide, d'éléments

■ exemple : (3, 1, 4, 1, 5, 9, 2) est une liste d'entiers de longueur 7

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Définition (1)

- exemple : (3, 1, 4, 1, 5, 9, 2) est une liste d'entiers de longueur 7
- une liste non vide possède

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations

primitives

Utilisation de ces primitives

Définition (1)

- exemple : (3, 1, 4, 1, 5, 9, 2) est une liste d'entiers de longueur 7
- une liste non vide possède
 - 1 un élément de tête : 3

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Définition (1)

- exemple : (3, 1, 4, 1, 5, 9, 2) est une liste d'entiers de longueur 7
- une liste non vide possède
 - 1 un élément de tête : 3
 - **2** et un <u>reste</u> qui est une liste : (1, 4, 1, 5, 9, 2)

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Définition (1)

- exemple: (3, 1, 4, 1, 5, 9, 2) est une liste d'entiers de longueur 7
- une liste non vide possède
 - 1 un élément de tête : 3
 - **2** et un <u>reste</u> qui est une liste : (1, 4, 1, 5, 9, 2)
- () est la liste vide, de longueur 0

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Définition (1)

- exemple: (3, 1, 4, 1, 5, 9, 2) est une liste d'entiers de longueur 7
- une liste non vide possède
 - 1 un élément de tête : 3
 - 2 et un <u>reste</u> qui est une liste : (1, 4, 1, 5, 9, 2)
- () est la liste vide, de longueur 0
- (2) est une liste de longueur 1 dont le reste est ()

Structure récursive des listes

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de

Toute liste non vide peut être vue comme un couple < tete; reste >.

Par exemple:

$$(3,1,4,1,5,9,2) = \langle \underbrace{3}_{\text{tete}}; \underbrace{(1,4,1,5,9,2)}_{\text{reste}} \rangle$$

Structure récursive des listes

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

Toute liste non vide peut être vue comme un couple < tete; reste >.

Par exemple:

$$(3,1,4,1,5,9,2) \ = \ < \underbrace{3}_{\rm tete}; \underbrace{(1,4,1,5,9,2)}_{\rm reste}>$$

et en poursuivant sur les différents restes :

$$=$$
 < 3; < 1; (4, 1, 5, 9, 2) >>

:

$$=$$
 < 3; < 1; < 4; < 1; < 5; < 9; < 2; () >>>>>>

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

Définition (2)

Une <u>liste</u> est donc

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation

primitives

Utilisation de ces primitives

Définition (2)

Une liste est donc

1 soit la liste vide ();

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

des listes

des opérations primitives

Utilisation de ces primitives

Définition (2)

Une liste est donc

- soit la liste vide ();
- **2** soit un couple < tete; $\underline{\text{liste}} >$.

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de

Définition (2)

Une liste est donc

- soit la liste vide ();
- **2** soit un couple < tete; <u>liste</u> >.

En notant Liste(E) l'ensemble des listes dont les éléments sont pris dans un ensemble E, on a

$$Liste(E) = \{()\} \cup (E \times Liste(E))$$

Ajout d'un élément en tête de liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

ajouteEnTete :
$$E \times Liste(E) \longrightarrow Liste(E)$$

 $e, l \longmapsto \langle e, l \rangle$

Ajout d'un élément en tête de liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

ajouteEnTete :
$$E \times Liste(E) \longrightarrow Liste(E)$$

 $e, l \longmapsto \langle e; l \rangle$

Exemple

ajouteEnTete(3, (1, 4, 1, 5, 9, 2)) = (3, 1, 4, 1, 5, 9, 2)

Ajout d'un élément en tête de liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de

Spécification

ajouteEnTete :
$$E \times Liste(E) \longrightarrow Liste(E)$$

 $e, l \longmapsto \langle e; l \rangle$

Exemple

$$ajouteEnTete(3, (1, 4, 1, 5, 9, 2)) = (3, 1, 4, 1, 5, 9, 2)$$

C'est une opération de construction de liste.

Accès à la tête d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

tete : $Liste(E) \longrightarrow E$ $\langle e; l \rangle \longmapsto e$

CU : La liste passée en paramètre ne doit pas être vide.

Accès à la tête d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroduction

Les listes

Implémentation

des opérations primitives

Utilisation de ces primitives

Spécification

tete :
$$Liste(E) \longrightarrow E$$

 $\langle e; l \rangle \longmapsto e$

CU : La liste passée en paramètre ne doit pas être vide.

Exemple

$$tete((3,1,4,1,5,9,2)) = 3$$

Accès à la tête d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroductio

Les listes

Implémentation

des opérations primitives

Utilisation de ces primitives

Spécification

tete :
$$Liste(E) \longrightarrow E$$

 $\langle e; l \rangle \longmapsto e$

CU : La liste passée en paramètre ne doit pas être vide.

Exemple

$$tete((3,1,4,1,5,9,2)) = 3$$

C'est un sélecteur.

Accès au reste d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de

Spécification

reste :
$$Liste(E) \longrightarrow Liste(E)$$

 $\langle e; l \rangle \longmapsto l$

CU : La liste passée en paramètre ne doit pas être vide.

Accès au reste d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroductio

Les listes

Implémentation

Réalisation des opérations

primitives
Utilisation de

Spécification

reste :
$$Liste(E) \longrightarrow Liste(E)$$

 $\langle e; l \rangle \longmapsto l$

CU : La liste passée en paramètre ne doit pas être vide.

Exemple

$$reste((3,1,4,1,5,9,2)) = (1,4,1,5,9,2)$$

Accès au reste d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

reste :
$$Liste(E) \longrightarrow Liste(E)$$

 $\langle e; l \rangle \longmapsto l$

CU : La liste passée en paramètre ne doit pas être vide.

Exemple

$$reste((3,1,4,1,5,9,2)) = (1,4,1,5,9,2)$$

C'est un sélecteur.

Test de vacuité d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentatio

Réalisation des opération primitives

Utilisation de ces primitives

Spécification

Test de vacuité d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

des listes

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

estListeVide :
$$\textit{Liste}(E) \longrightarrow \textit{Booleen}$$

$$\textit{I} \longmapsto \begin{cases} \text{Vrai si } \textit{lest vide} \\ \text{Faux sinon} \end{cases}$$

Exemples

Test de vacuité d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

des listes

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

Exemples

C'est un prédicat.

Changer la tête d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

modifierTete : $Liste(E), E \longrightarrow Liste(E)$

 $< e'; l>, e \longmapsto < e; l>$

CU : La liste passée en paramètre ne doit pas être vide.

Changer la tête d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introductio

Les listes

Implémentation

Réalisation des opérations

Utilisation de ces primitives

Spécification

modifierTete : $Liste(E), E \longrightarrow Liste(E)$ $< e'; l >, e \longmapsto < e; l >$

CU : La liste passée en paramètre ne doit pas être vide.

Exemple

modifierTete((5, 1, 4, 1, 5, 9, 2), 3) = (3, 1, 4, 1, 5, 9, 2)

Changer la tête d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroductio

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

modifierTete : $Liste(E), E \longrightarrow Liste(E)$ $< e': l >, e \longmapsto < e: l >$

CU : La liste passée en paramètre ne doit pas être vide.

Exemple

$$modifierTete((5, 1, 4, 1, 5, 9, 2), 3) = (3, 1, 4, 1, 5, 9, 2)$$

C'est une opération de modification de liste.

Changer le reste d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de

Spécification

modifierReste :
$$Liste(E), Liste(E) \longrightarrow Liste(E)$$

 $< e; l' >, l \longmapsto < e; l >$

CU : La première liste passée en paramètre ne doit pas être vide.

Changer le reste d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

Spécification

modifierReste :
$$Liste(E), Liste(E) \longrightarrow Liste(E)$$

 $< e; l' >, l \longmapsto < e; l >$

CU : La première liste passée en paramètre ne doit pas être vide.

Exemple

modifierReste((3,2),(1,4,1,5,9,2)) = (3,1,4,1,5,9,2)

Changer le reste d'une liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

ntroductio

Les listes

Implémentation

des listes

des opérations primitives

Utilisation de ces primitives

Spécification

modifierReste :
$$Liste(E), Liste(E) \longrightarrow Liste(E)$$

 $< e; l' >, l \longmapsto < e; l >$

CU : La première liste passée en paramètre ne doit pas être vide.

Exemple

$$modifierReste((3,2),(1,4,1,5,9,2)) = (3,1,4,1,5,9,2)$$

C'est une opération de modification de liste.

Représentation contigüe par tableaux

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Loc lictor

Implémentation

des listes

des opérations primitives

Représentation contigüe par tableaux

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

des listes

des opérations primitives

Inconvénients

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Loc lictor

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

réservation mémoire qui peut être inutilisée

Inconvénients

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

- réservation mémoire qui peut être inutilisée
- ou insuffisante

Inconvénients

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

- réservation mémoire qui peut être inutilisée
- ou insuffisante
- les opérations primitives sont coûteuses.

Objectifs

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introductio

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de

Objectifs

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

occuper juste ce qu'il faut de mémoire

Objectifs

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations

- occuper juste ce qu'il faut de mémoire
- avoir des opérations primitives aussi peu coûteuses que possible

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

■ Utiliser l'allocation dynamique de mémoire

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation

des opérations primitives

- Utiliser l'allocation dynamique de mémoire
- Une liste est un pointeur

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation des listes

Réalisation des opérations

- Utiliser l'allocation dynamique de mémoire
- Une liste est un pointeur
 - vers rien pour la liste vide (NIL)

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

des listes

des opérations primitives

- Utiliser l'allocation dynamique de mémoire
- Une liste est un pointeur
 - vers rien pour la liste vide (NIL)
 - vers un couple < tete; reste > que l'on nommera $\underline{\mathsf{cellule}}$

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

■ La liste vide est un pointeur vers rien

$$\mathbf{L} = \, \, \bigsqcup$$

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

1000

LCS HStCS

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

■ La liste vide est un pointeur vers rien

$$L = \square$$

Une liste non vide est un pointeur vers une cellule< tete; reste >

Exemple de représentation chaînée

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

l es liste

Implémentation des listes

Réalisation des opérations primitives

Utilisation de

Fig.: Représentation chaînée de la liste L = (3, 1, 4, 1, 5, 9, 2)

Déclaration en Pascal

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

des listes

des opérations primitives

Utilisation de ces primitives

```
LISTE = ^CELLULE;
CELLULE = record
   info : ELEMENT;
   suivant : LISTE;
end {CELLULE};
const
   LISTEVIDE : LISTE = NIL;
```

Le type ELEMENT doit être déclaré par ailleurs.

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

La fonction ajouteEnTete

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Loc lictor

Implémentation

Réalisation des opérations primitives

```
// ajouteEnTete(e,1) = <e;1>
function ajouteEnTete(e : ELEMENT;
                        1 : LISTE) : LISTE;
var
   11 : LISTE;
begin
   new(11);
   11^{\cdot}.info := e;
   11^.suivant := 1;
   ajouteEnTete := 11;
end {ajouteEnTete};
```

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

F 100 C

LCS HSCCS

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

■ indépendant de la longueur de la liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Lec licted

Implémentation

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Réalisation

des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste
- indépendant de la valeur de l'élément ajouté

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

des listes

Réalisation des opérations primitives

Utilisation de ces primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste
- indépendant de la valeur de l'élément ajouté

Conclusion

coût constant : $\Theta(1)$

La fonction tete

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

1.....17.......

Réalisation des opérations

des opérations primitives

```
//tete(l)=le premier element de la liste l
//CU : l non vide
function tete(l : LISTE) : ELEMENT;
begin
   tete := l^.info;
end {tete};
```

Coût de l'accès à la tête

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

■ indépendant de la longueur de la liste

Coût de l'accès à la tête

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

atroduction

Loc lictor

Implémentation

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Coût de l'accès à la tête

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Conclusion

coût constant : $\Theta(1)$

La fonction reste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentatio

Réalisation des opérations primitives

```
// reste(l) = la liste qui suit le premier
// element de l
// CU : l non vide
function reste(l : LISTE) : LISTE;
begin
  reste := l^.suivant;
end {reste};
```

Coût de l'accès au reste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

■ indépendant de la longueur de la liste

Coût de l'accès au reste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

l es listes

Implémentation

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Coût de l'accès au reste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Conclusion

coût constant : $\Theta(1)$

Le prédicat estListeVide

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Introduction

Les listes

Implémentation

Réalisation des opérations primitives

```
// estListeVide(1) \( \infty \) l est vide
function estListeVide(1: LISTE):BOOLEAN;
begin
    estListeVide := l=NIL;
end {estListeVide};
```

Coût du test de vacuité

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

■ indépendant de la longueur de la liste

Coût du test de vacuité

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Lec licted

Implémentation

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Coût du test de vacuité

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

l es listes

Implémentation des listes

Réalisation des opérations primitives

Utilisation de ces primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Conclusion

coût constant : $\Theta(1)$

La procédure modifierTete

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Loc lictor

Implémentation

des listes

Réalisation des opérations primitives

La procédure modifierTete

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Remarque : le paramètre / est constant car c'est un pointeur.

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentatio

Réalisation des opérations primitives

Utilisation de ces primitives

■ indépendant de la longueur de la liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Lec licted

Implémentatio

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Land Barrier

LCD HDCCD

des listes

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste
- indépendant de la nouvelle valeur de la tête

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implément

Réalisation des opérations

primitives

Utilisation de ces primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste
- indépendant de la nouvelle valeur de la tête

Conclusion

coût constant : $\Theta(1)$

La procédure modifierReste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

La procédure modifierReste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

Utilisation de ces primitives

Remarque : le paramètre / est constant car c'est un pointeur.

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Lan Bakas

Implémentati

Réalisation

des opérations primitives

Utilisation de ces primitives

■ indépendant de la longueur de la liste

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implémentation

Réalisation des opérations primitives

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste à modifier

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

des listes

Réalisation des opérations primitives

Utilisation de

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste à modifier
- indépendant de la valeur des éléments du nouveau reste.

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Les listes

Implément

Réalisation des opérations

Utilisation de

- indépendant de la longueur de la liste
- indépendant de la valeur des éléments de la liste à modifier
- indépendant de la valeur des éléments du nouveau reste.

Conclusion

coût constant : $\Theta(1)$

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

والمراجع والمراجع

l es listes

Implémentatio

Réalisation des opérations primitives

```
{ L une liste qque, e est un element qque}
L1 := ajouteEnTete(e, L) ;
{ L1 = <e; L> }
```

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

troduction

Loc lictor

Implémentation

des listes

des opérations primitives

```
{ L une liste qque, e est un element qque}
L1 := ajouteEnTete(e, L);
{ L1 = <e; L> }

{ L = <t; R> une liste non vide}
e := tete(L);
{ e = t et L est inchangee }
```

{ L1 = R et L est inchangee }

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

atroduction

Les listes

Implémentation

Réalisation des opérations primitives

```
{ L une liste qque, e est un element qque}
L1 := ajouteEnTete(e, L);
\{ L1 = \langle e; L \rangle \}
{ L = <t; R> une liste non vide}
e := tete(L) :
{ e = t et L est inchangee }
{ L = <t; R> une liste non vide}
L1 := reste(L) :
```

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation des opérations

Les listes

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

ntroduction

Les listes

Implémentation

Réalisation

des opérations primitives