```
x = [2 \ 2.2 \ 2.4 \ 2.6 \ 2.8]';
y = [0.5103757 \ 0.5207843 \ 0.5104147 \ 0.4813306 \ 0.4359160]';
n=2.5;
P= zeros(length(y));
P(:,1)=y';
k=1;
for i=2 : length(y)
     for j=i : length(y)
           P(j,i)=((x(j)-n)*y(j-1)-(x(j-k)-n)*y(j))/(x(j)-x(j-k));
     end
    k=i;
   y=P(:,i);
   У
end
y = 5 \times 1
         0
    0.5364
    0.5052
    0.4959
    0.5040
y = 5 \times 1
         0
         0
    0.4974
    0.4982
    0.4979
y = 5 \times 1
         0
         0
         0
    0.4981
    0.4981
y = 5 \times 1
         0
         0
         0
         0
    0.4981
```

```
P
```

```
P = 5 \times 5
    0.5104
                               0
                                         0
                                                    0
                    0
              0.5364
    0.5208
                               0
                                         0
                                                    0
                         0.4974
                                                     0
    0.5104
              0.5052
                                          0
              0.4959
                         0.4982
    0.4813
                                    0.4981
                                                     0
    0.4359
               0.5040
                         0.4979
                                    0.4981
                                               0.4981
```

array2table(P)

ans = 5×5 table

	P1	P2	P3	P4	P5
1	0.5104	0	0	0	0
2	0.5208	0.5364	0	0	0

	P1	P2	P3	P4	P5
3	0.5104	0.5052	0.4974	0	0
4	0.4813	0.4959	0.4982	0.4981	0
5	0.4359	0.5040	0.4979	0.4981	0.4981

PROBLEMA N°1

 $x = [-1 \ 0 \ 1 \ 3]';$

 $y = [0 \ 1 \ -2 \ 4]';$

PROBLEMA N°2

x =[2 2.2 2.4 2.6 2.8]';

 $y = [0.5103757\ 0.5207843\ 0.5104147\ 0.4813306\ 0.4359160]';$

	x	f(x)
x_0	2.0	0.5103757
x_1	2.2	0.5207843
x_2	2.4	0.5104147
x_3	2.6	0.4813306
x_4	2.8	0.4359160

Solución:

La tabla de Neville es

	0.5103757				
2.2	0.5207843	0.5363972	$\hookleftarrow P_{0,1}$		
2.4	0.5104147	0.5052299	0.4974380		
2.6	0.4813306	0.4958726	0.4982119	0.4980829	
2.8	0.4359160	0.5040379	0.4979139	0.4980629	0.49807047