# Distance to an ellipse

#### Robert Estalella

#### 2012 December

## 1 Distance of a point to an ellipse

Let us consider a centered ellipse with its axes along the x and y axes. The parametric equations of a point  $(x_e, y_e)$  of the ellipse are

$$x_e = a\cos\varphi,$$

$$y_e = b\sin\varphi,$$
(1)

where a is the semimajor and b the seminimor axis, and  $\varphi$  is the angle defined in Fig. 1,

Figure 1: Geometry of the ellipse.



The distance l of a given point of the plane  $(x_p, y_p)$  to a point of the ellipse  $(x_e, y_e)$  is given by

$$l^{2}(\varphi) = (x_{p} - x_{e})^{2} + (y_{p} - y_{e})^{2} = (x_{p} - a\cos\varphi)^{2} + (y_{p} - b\sin\varphi)^{2},$$
(2)

which is a function of the angle  $\varphi$ . The distance of the point  $(x_p, y_p)$  to the ellipse is the minimum value of l, which occurs for a value of  $\varphi$  such that  $dl^2/d\varphi = 0$ . The derivative of the last equation gives

$$2(x_p - a\cos\varphi)a\sin\varphi - 2(y_p - b\sin\varphi)b\cos\varphi = 0,$$
(3)

which can be written as

$$x_p a \sin \varphi - y_p b \cos \varphi = (a^2 - b^2) \sin \varphi \cos \varphi.$$
 (4)

This is an equation in  $\varphi$  that has to be solved to find the value of  $\varphi$  for which the distance is minimum. Once  $\varphi$  is found, the distance of the point  $(x_p, y_p)$  to the ellipse is given by

$$d = \sqrt{(x_p - a\cos\varphi)^2 + (y_p - b\sin\varphi)^2}.$$
 (5)

### 2 Alternative derivation of Eq. 4

The equation in  $\varphi$  that gives the point of the ellipse nearest to the point  $(x_p, y_p)$  can be also derived from the fact that the straight line defined by the point  $(x_p, y_p)$  and the ellipse point  $(x_e, y_e)$  nearest to it is perpendicular to the ellipse at  $(x_e, y_e)$ . Thus,

$$\frac{y_p - y_e}{x_p - y_e} = -\left(\frac{dx}{dy}\right)_e. \tag{6}$$

where  $(dy/dx)_e$  is the slope of the ellipse at  $(x_e, y_e)$ . From Eq. 1, we derive

$$\frac{dx}{dy} = \frac{dx/d\varphi}{dy/d\varphi} = \frac{-a\sin\varphi}{b\cos\varphi},\tag{7}$$

and substituting into Eq. 6 we obtain

$$\frac{y_p - b\sin\varphi}{x_p - a\cos\varphi} = \frac{a\sin\varphi}{b\cos\varphi},\tag{8}$$

which is the same equation as Eq. 4.

### 3 Solution of Eq. 4 through a 4th degree polinomial

Eq. 4 can be written as

$$\frac{x_p a}{\cos \varphi} - \frac{y_p b}{\sin \varphi} = c^2,\tag{9}$$

where  $c^2 \equiv a^2 - b^2$ . The change to the new variable  $t = \tan(\varphi/2)$ , with

$$\cos \varphi = \frac{1 - t^2}{1 + t^2},$$

$$\sin \varphi = \frac{2t}{1 + t^2},$$
(10)

transforms the last equation in  $\varphi$  into an incomplete 4th degree polynomial in t,

$$y_p b t^4 + (2x_p a + 2c^2)t^3 + (2x_p a - 2c^2)t - y_p b = 0.$$
(11)

Two of the four possible roots of the polynomial will give the points of the ellipse nearest to, and farthest from, the given point  $(x_p, y_p)$ .

### 4 Iterative solution of Eq. 4

A simple iterative scheme to solve Eq. 4 is to write it in the form

$$\tan \varphi = \frac{(a^2 - b^2)\sin \varphi + y_p b}{x_p a},\tag{12}$$

begin with an initial value for  $\varphi$  (for instance  $\varphi_0 = 0$ ), and iterate

$$\varphi_{i+1} = \arctan\left[\frac{(a^2 - b^2)\sin\varphi_i + y_p b}{x_p a}\right]. \tag{13}$$

In order to avoid the indetermination in  $\varphi$  ( $\tan \varphi = \tan(\varphi + \pi)$ ), it is best to consider that the distance from the points  $(x_p, y_p)$  and  $(|x_p|, |y_p|)$  to the ellipse are the same, and modify slightly the last equation, to force that  $0 \le \varphi \le \pi/2$ ,

$$\varphi_{i+1} = \arctan\left[\frac{(a^2 - b^2)\sin\varphi_i + |y_p|b}{|x_p|a}\right],\tag{14}$$

and calculate the distance as

$$d = \sqrt{(|x_p| - a\cos\varphi)^2 + (|y_p| - b\sin\varphi)^2}.$$
 (15)

This iterative scheme has been tested to converge for a large sample of random ellipses and points. However, it could not converge for some pathological cases.

### 5 General case for a non-centered, non-aligned ellipse

Let us consider that, in general, the ellipse is centered on a point  $(x_0, y_0)$ , and its major axis is at an angle  $\theta$  from the x axis ( $\theta$  growing from x to y). Let us call (x', y') the coordinates with origin at the ellipse center, and aligned along the ellipse axes. The coordinates of a point of the plane  $(x_p, y_p)$  in the new coordinate system are

$$x'_{p} = (x_{p} - x_{0})\cos\theta + (y_{p} - y_{0})\sin\theta, y'_{p} = -(x_{p} - x_{0})\sin\theta + (y_{p} - y_{0})\cos\theta,$$
(16)

while the inverse transformation is

$$x_p = x_0 + x'_p \cos \theta - y'_p \sin \theta,$$
  

$$y_p = y_0 + x'_p \sin \theta + y'_p \cos \theta.$$
(17)

The distance of the point  $(x_p, y_p)$  to the non-centered, non-aligned ellipse is thus that of the point  $(x'_p, y'_p)$  to a centered and aligned ellipse, which can be computed as shown earlier.