LAB 5: Data Graphics

Elements of data graphics

Visual cues

position, length, area, etc.

Coordinate system

how are the data points organized?

Context

o in relation to what?

Coordinate	Position	Length	Angle	Direction	Shapes	Area or Volume	Color
systems Cartesian].]. _			·*·		
Polar		漈		*			
Geographic							

What kind of data are we plotting?

The type of variables/data we are trying to visualize will influence the type of graphic we will use.

Example: Type of variables

class(dat\$x)
sapply(dat,class)

```
data("Loblolly")
names(Loblolly)
sapply(Loblolly, class)
                                 [1] "height" "age"
                       "Seed"
$height
[1] "numeric"
$age
[1] "numeric"
$Seed
    "ordered" "factor"
```

Scales

Along with coordinate systems, they dictate where the shapes are placed and how objects are shaded.

Discrete placement in bins

Ordinal Categories where order matters

Horrible

Good

Great

FIGURE 3-15

100%

Representing parts of a whole

Boxplot

Boxplot to show the distribution of a numerical variable split

by a categorical variable.

R-code:

boxplot(InsectSprays\$count ~ InsectSprays\$spray)

Histogram

Histograms to show distribution of a numerical variable.

Example R-code:

hist(cats\$Bwt,probability=TRUE)

abline(v=mean(cats\$Bwt),col = "red")

Scatter-plot

Scatter-plots show the relationship between 2 numerical variables

X-axis = explanatory variable

<u>Y-axis = Response Variable</u>

plot(x=x, y=y,main= "example: x predicting y")

Linear regression

```
y= mx + b + error

Line of best fit (least squares)

\hat{y}= mx + b
```

Example

ŷ= 1.89436x + 3.04541

plot(x,y, main= "example: x predicting y") abline(3.04541,1.89436, col="blue")

