Chapitre 5 : Résolution d'équations difféentielles ordinaires

Préparé par : Unité Pédagogique de Mathématiques

Plan

- Principe général des méthodes numériques pour la résolution des problèmes de Cauchy
- 2 Le principe de la méthode d'Euler explicite
 - Méthode 1
 - Méthode 2
 - Application
- 3 Le principe de la méthode d'Euler implicite
 - Méthode 1
 - Application

Principe général des méthodes numériques pour la résolution des problèmes de Cauchy

On considère le problème de Cauchy suivant : $\begin{cases} x' = f(t,x) \\ x(t_0) = x_0. \end{cases} \quad \forall t \in [t_0,t_0+T] \subset \mathbb{R}$

- $x: [t_0, t_0 + T] \to \mathbb{R}$ de classe $\mathscr{C}^1([t_0, t_0 + T])$
- f une fonction continue sur $[t_0, t_0 + T] \times \mathbb{R}$.

Principe général des méthodes numériques pour la résolution des problèmes de Cauchy

On considère le problème de Cauchy suivant :

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0. \end{cases} \quad \forall t \in [t_0, t_0 + T] \subset \mathbb{R}$$

- $x:[t_0,t_0+T]\to\mathbb{R}$ de classe $\mathscr{C}^1([t_0,t_0+T])$
- f une fonction continue sur $[t_0, t_0 + T] \times \mathbb{R}$.

e principe général de toutes les méthodes numérique pour la résolution de ce problème de Cauchy est

Principe général des méthodes numériques pour la résolution des problèmes de Cauchy

On considère le problème de Cauchy suivant : $\begin{cases} x' = f(t,x) \\ x(t_0) = x_0. \end{cases} \forall t \in [t_0, t_0 + T] \subset \mathbb{R}$

- $x: [t_0, t_0 + T] \to \mathbb{R}$ de classe $\mathscr{C}^1([t_0, t_0 + T])$
- f une fonction continue sur $[t_0, t_0 + T] \times \mathbb{R}$.

. Le principe général de toutes les méthodes numérique pour la résolution de ce problème de Cauchy est :

• Discrétiser l'intervalle $[t_0, t_0 + T]$ en le subdivisant en N sous intervalles de longueur $h = \frac{T}{N}$, où h désigne le pas de discrétisation.

Principe général des méthodes numériques pour la résolution des problèmes de Cauchy

On considère le problème de Cauchy suivant : $\begin{cases} x' = f(t,x) \\ x(t_0) = x_0. \end{cases} \forall t \in [t_0, t_0 + T] \subset \mathbb{R}$

•
$$x:[t_0,t_0+T]\to\mathbb{R}$$

de classe $\mathscr{C}^1([t_0,t_0+T])$

• f une fonction continue sur $[t_0, t_0 + T] \times \mathbb{R}$.

Le principe général de toutes les méthodes numérique pour la résolution de ce problème de Cauchy est :

- Discrétiser l'intervalle $[t_0, t_0 + T]$ en le subdivisant en N sous intervalles de longueur $h = \frac{T}{N}$, où h désigne le pas de discrétisation.
- Trouver une valeur approchée x_n de la solution x en chaque nœud $t_n = t_0 + nh$, $n \in \{1, \dots, N\}$ (On adoptera une subdivision uniforme) et Approcher $x(t_n)$ (la valeur exacte) par x_n , $n \in \{1, \dots, N\}$ (une valeur approchée) .

Méthode 1

$$\begin{cases} x'(t) = f(t,x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in \begin{bmatrix} t_0, t_0 + T \end{bmatrix} \subset \mathbb{R} \qquad \underbrace{\begin{array}{c} \text{pour } t = t_0 \\ n \in \{1, \dots, N\} \end{array}} \quad \begin{cases} x'(t_n) = f(t_n, x(t_n)) \\ x(t_0) = x_0. \end{cases}$$

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \quad \forall t \in [t_0, t_0 + T] \subset \mathbb{R} \qquad \underbrace{ \begin{array}{c} \text{pour } t = t_0 \\ n \in \{1, \cdots, N\} \end{array}} \quad \begin{cases} x'(t_n) = f(t_n, x(t_n)) \\ x(t_0) = x_0. \end{cases}$$

$$\begin{cases} \bullet f(t_n, x(t_n)) \text{ par } f(t_n, x_n) \\ \bullet x'(t_n) \text{ par la Formule de différence finie progressive sur } [t_n, t_{n+1}] \end{cases}$$

$$x'(t_n) \approx \frac{x(t_{n+1}) - x(t_n)}{t_{n+1} - t_n}$$

$$\approx \frac{x_{n+1} - x_n}{h}$$

Méthode 1

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in [t_0, t_0 + T] \subset \mathbb{R}$$
 pour $t = t_n$
$$x'(t_n) = f(t_n, x(t_n))$$

$$x(t_0) = x_0. \end{cases}$$
 Nous approchons
$$\begin{cases} \bullet \ f(t_n, x(t_n)) \ \text{par } f(t_n, x_n) \end{cases}$$

$$\bullet x'(t_n) \ \text{par la Formule de différence finie progressive sur } [t_n, t_{n+1}]$$

$$x'(t_n) \approx \frac{x(t_{n+1}) - x(t_n)}{t_{n+1} - t_n}$$

$$\approx \frac{x_{n+1} - x_n}{h}$$

définissant le schéma d'Euler progressif ou explicite

$$\begin{cases} \frac{x'(t_n)}{\sum_{n=1}^{\infty} \frac{x'(t_n)}{n}} = f(t_n, x_n) \\ x(t_0) = x_0. \end{cases} \Leftrightarrow \begin{cases} x_{n+1} = x_n + hf(t_n, x_n) \\ x(t_0) = x_0. \end{cases}$$

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in \begin{bmatrix} t_0, t_0 + T \end{bmatrix} \subset \mathbb{R}$$
 pour $t = t_0$
$$\begin{cases} x'(t_n) = f(t_n, x(t_n)) \\ x(t_0) = x_0. \end{cases}$$

- $\begin{cases} \bullet \ f(t_n, x(t_n)) \ \text{par} \ f(t_n, x_n) \\ \bullet \ x'(t_n) \ \text{par} \ \text{la Formule de} \\ \text{différence finie progressive sur} \ [t_n, t_{n+1}] \end{cases}$

$$x'(t_n) \approx \frac{x(t_{n+1}) - x(t_n)}{t_{n+1} - t_n}$$
$$\approx \frac{x_{n+1} - x_n}{h}$$

Schéma d'Euler explicite (méthode 1)

$$\begin{cases} x_{n+1} = x_n + hf(t_n, x_n) \\ x(t_0) = x_0. \end{cases} \forall n \in \{0, \dots, N-1\}$$

• Méthode 2

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in [t_0, t_0 + T] \subset \mathbb{R}$$

Méthode 2

 $\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in [t_0, t_0 + T] \subset \mathbb{R} \longrightarrow \text{Lien avec l'intégration numérique}$

Méthode 2

D'une part
$$\int_{t_n}^{t_{n+1}} x'(s) ds = \int_{t_n}^{t_{n+1}} f(s, x(s)) ds$$

$$\int_{t_n}^{t_{n+1}} x'(s) ds = x(t_{n+1}) - x(t_n)$$
D'autre part
$$\int_{t_n}^{t_{n+1}} x'(s) ds = x(t_{n+1}) - x(t_n)$$

Méthode 2

$$f(t,x(t))$$
 $\forall t \in [t0,t0+T] \subset \mathbb{R}$ $T>0$

 $\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in [t0, t0 + T] \subset \mathbb{R} \longrightarrow$ Lien avec l'intégration numérique

D'une part
$$\int_{t_n}^{t_{n+1}} x'(s)ds = \int_{t_n}^{t_{n+1}} f(s,x(s))ds$$

$$D'autre part
$$\int_{t_n}^{t_{n+1}} x'(s)ds = x(t_{n+1}) - x(t_n)$$

$$\Longrightarrow \underbrace{x(t_{n+1}) - x(t_n)}_{x_{n+1} - x_n} = \underbrace{\int_{t_n}^{t_{n+1}} f(s,x(s))ds}_{t_n}$$$$

Méthode 2

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases} \forall t \in [t0, t0 + T] \subset \mathbb{R} \longrightarrow$$
 Lien avec l'intégration numérique

D'une part
$$\int_{t_n}^{t_{n+1}} x'(s)ds = \int_{t_n}^{t_{n+1}} f(s,x(s))ds$$
D'autre part $\int_{t_n}^{t_{n+1}} x'(s)ds = x(t_{n+1}) - x(t_n)$

$$\Rightarrow \underbrace{x(t_{n+1}) - x(t_n)}_{x_{n+1} - x_n} = \underbrace{\int_{t_n}^{t_{n+1}} f(s,x(s))ds}_{t_n}$$

Basées sur l'approximer de / par l'une des méthodes numériques simples,

différents schémas numériques ont été développés :

- Rg : Méthode d'Euler explicite
- Rd : Méthode d'Euler implicite
- Rm : Méthode point milieu
- Trapèze : Méthode de Heun ou de Runge Kutta d'ordre 2
- 喀 Simpson : Méthode de Runge Kutta d'ordre 4

Schéma d'Euler explicite

L'intégrale *I* peut s'approcher par la méthode du rectangle à gauche :

$$\int_{t_n}^{t_{n+1}} f(s,x(s)) ds \approx (t_{n+1} - t_n).f(t_n,x(t_n))$$

Schéma d'Euler explicite

L'intégrale *I* peut s'approcher par la méthode du rectangle à gauche :

$$\int_{t_n}^{t_{n+1}} f(s,x(s)) ds \approx (t_{n+1} - t_n).f(t_n,x(t_n))$$

D'où le schéma itératif suivant:

Schéma d'Euler explicite (méthode 2)

$$\begin{cases} x_{n+1} = x_n + hf(t_n, x_n) \\ x(t_0) = x_0. \end{cases} \forall n \in \{0, \dots, N-1\}$$

L'évolution de la concentration de certaines réactions chimiques au cours du temps peut être décrite par l'équation différentielle $x'(t) = -\frac{1}{1_{1+t^2}}x(t)$.

Sachant qu'à l'instant t = 0 la concentration est x(0) = 5, déterminer la concentration à t = 2 à l'aide de la méthode d'Euler explicite avec un pas h = 0.5.

L'évolution de la concentration de certaines réactions chimiques au cours du temps peut être décrite par l'équation différentielle $x'(t) = -\frac{1}{1_{11}+2}x(t)$.

Sachant qu'à l'instant t=0 la concentration est x(0)=5, déterminer la concentration à t=2 à l'aide de la méthode d'Euler explicite avec un pas h=0.5.

•
$$t_1 = t_0 + h = \frac{1}{2}$$

 $x_1 = x_0 + h.f(t_0, x_0)$
 $= 5 - \frac{1}{2} \cdot \frac{1}{1 + t_0^2} \cdot x_0$
 $= 5 - \frac{1}{2} \cdot 5 = \frac{5}{2}$

L'évolution de la concentration de certaines réactions chimiques au cours du temps peut être décrite par l'équation différentielle $x'(t) = -\frac{1}{1_{1+t^2}}x(t)$.

Sachant qu'à l'instant t=0 la concentration est x(0)=5, déterminer la concentration à t=2 à l'aide de la méthode d'Euler explicite avec un pas h=0.5.

•
$$t_1 = t_0 + h = \frac{1}{2}$$

 $x_1 = x_0 + h.f(t_0, x_0)$
 $= 5 - \frac{1}{2} \cdot \frac{1}{1 + t_0^2} \cdot x_0$
 $= 5 - \frac{1}{2} \cdot 5 = \frac{5}{2}$

•
$$t_2 = t_1 + h = \frac{1}{2} + \frac{1}{2} = 1$$

 $x_2 = x_1 + h.f(t_1, x_1)$
 $= \frac{5}{2} - \frac{1}{2} \cdot \frac{1}{1 + t_1^2} \cdot x_1$
 $= \frac{5}{2} - \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{5}{2}$
 $= \frac{5}{2} - 1 = \frac{3}{2}$

L'évolution de la concentration de certaines réactions chimiques au cours du temps peut être décrite par l'équation différentielle $x'(t) = -\frac{1}{1+t^2}x(t)$.

Sachant qu'à l'instant t = 0 la concentration est x(0) = 5, déterminer la concentration à t = 2 à l'aide de la méthode d'Euler explicite avec un pas h = 0.5.

•
$$t_1 = t_0 + h = \frac{1}{2}$$

 $x_1 = x_0 + h.f(t_0, x_0)$
 $= 5 - \frac{1}{2} \cdot \frac{1}{1 + t_0^2} \cdot x_0$
 $= 5 - \frac{1}{2} \cdot 5 = \frac{5}{2}$

•
$$t_2 = t_1 + h = \frac{1}{2} + \frac{1}{2} = 1$$

 $x_2 = x_1 + h \cdot f(t_1, x_1)$
 $= \frac{5}{2} - \frac{1}{2} \cdot \frac{1}{1 + t_1^2} \cdot x_1$
 $= \frac{5}{2} - \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{5}{2}$
 $= \frac{5}{2} - 1 = \frac{3}{2}$

•
$$t_3 = t_2 + h = 1 + \frac{1}{2} = \frac{3}{2}$$

 $x_3 = x_2 + h.f(t_2, x_2)$
 $= \frac{3}{2} - \frac{1}{2} \cdot \frac{1}{1+1^2} \cdot \frac{3}{2}$
 $= \frac{3}{2} - \frac{3}{8}$
 $= \frac{9}{8}$

L'évolution de la concentration de certaines réactions chimiques au cours du temps peut être décrite par l'équation différentielle $x'(t) = -\frac{1}{1+t^2}x(t)$.

Sachant qu'à l'instant t = 0 la concentration est x(0) = 5, déterminer la concentration à t = 2 à l'aide de la méthode d'Euler explicite avec un pas h = 0.5.

•
$$t_1 = t_0 + h = \frac{1}{2}$$

 $x_1 = x_0 + h.f(t_0, x_0)$
 $= 5 - \frac{1}{2} \cdot \frac{1}{1 + t_0^2} \cdot x_0$
 $= 5 - \frac{1}{2} \cdot 5 = \frac{5}{2}$

•
$$t_2 = t_1 + h = \frac{1}{2} + \frac{1}{2} = 1$$

• $x_2 = x_1 + h \cdot f(t_1, x_1)$
• $\frac{5}{2} - \frac{1}{2} \cdot \frac{1}{1 + t_1^2} \cdot x_1$
• $\frac{5}{2} - \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{5}{2}$
• $\frac{5}{2} - 1 = \frac{3}{2}$

•
$$t_3 = t_2 + h = 1 + \frac{1}{2} = \frac{3}{2}$$

 $x_3 = x_2 + h.f(t_2, x_2)$
 $= \frac{3}{2} - \frac{1}{2} \cdot \frac{1}{1+1^2} \cdot \frac{3}{2}$
 $= \frac{3}{2} - \frac{3}{8}$
 $= \frac{9}{8}$

•
$$t_4 = t_3 + h = \frac{3}{2} + \frac{1}{2} = 2$$

$$x_4 = x_3 + h.f(t_3, x_3)$$

$$= \frac{9}{8} - \frac{1}{2} \cdot \frac{1}{1 + (\frac{3}{2})^2} \cdot \frac{9}{8}$$

$$= \frac{9}{8} - \frac{9}{52}$$

$$= \frac{396}{416}$$

Étant donné que la solution analytique de ce problème est donnée par:

$$x(t) = 5 \exp(-\arctan(t)),$$
 pour $t \ge 0$

Calculer l'erreur commise par la méthode d'Euler explicute au point 2.

Étant donné que la solution analytique de ce problème est donnée par:

$$x(t) = 5 \exp(-\arctan(t)),$$
 pour $t \ge 0$

Calculer l'erreur commise par la méthode d'Euler explicute au point 2.

Réponse:

L'erreur commise par la méthode d'Euler explicite au point t = 2 est donnée par:

$$E(t=2) = |x(2) - x_4|$$

or
$$x(2) = 5 \exp(-\arctan(2)) = 1.652499838$$
 donc

$$E(2) = |1.652499838 - 0.951923|$$

= 0.70057

On aurait également pu approcher l'intégrale *I* par la méthode du rectangle à droite :

$$\int_{t_n}^{t_{n+1}} f(s, x(s)) ds \approx (t_{n+1} - t_n) . f(t_{n+1}, x(t_{n+1}))$$

On aurait également pu approcher l'intégrale *I* par la méthode du rectangle à droite :

$$\int_{t_n}^{t_{n+1}} f(s, x(s)) ds \approx (t_{n+1} - t_n) . f(t_{n+1}, x(t_{n+1}))$$

D'où le schéma itératif suivant:

Schéma d'Euler implicite

$$x_{n+1} = x_n + hf(t_{n+1}, x_{n+1})$$

$$\forall n \in \{0, \dots, N-1\}$$

$$x(t_0) = x_0.$$

On considère le problème de Cauchy suivant:

$$(P.C): \begin{cases} x'(t) = -\frac{1}{1+t^2}x(t), & t \ge 0 \\ x(0) = 5 \end{cases}$$

• pour $h = \frac{1}{2}$, montrer que la solution numérique x_{n+1} du problème de Cauchy (P.C) trouvée par la méthode d'Euler implicite vérifie la relation suivante :

$$x_{n+1} = x_n \cdot \frac{4 + (2t_n + 1)^2}{6 + (2t_n + 1)^2}, \qquad n \ge 0$$

On considère le problème de Cauchy suivant:

$$(P.C): \begin{cases} x'(t) = -\frac{1}{1+t^2}x(t), & t \ge 0 \\ x(0) = 5 \end{cases}$$

• pour $h = \frac{1}{2}$, montrer que la solution numérique x_{n+1} du problème de Cauchy (P.C) trouvée par la méthode d'Euler implicite vérifie la relation suivante :

$$x_{n+1} = x_n \cdot \frac{4 + (2t_n + 1)^2}{6 + (2t_n + 1)^2}, \qquad n \ge 0$$

pour
$$h = \frac{1}{2}$$
, on a $x_{n+1} = x_n + \frac{1}{2} \cdot f(t_{n+1}, x_{n+1})$ avec $f(t, x(t)) = -\frac{1}{1+t^2} x(t)$.

On considère le problème de Cauchy suivant:

$$(P.C): \begin{cases} x'(t) = -\frac{1}{1+t^2}x(t), & t \ge 0 \\ x(0) = 5 \end{cases}$$

• pour $h = \frac{1}{2}$, montrer que la solution numérique x_{n+1} du problème de Cauchy (P.C) trouvée par la méthode d'Euler implicite vérifie la relation suivante :

$$x_{n+1} = x_n \cdot \frac{4 + (2t_n + 1)^2}{6 + (2t_n + 1)^2}, \qquad n \ge 0$$

pour
$$h = \frac{1}{2}$$
, on a $x_{n+1} = x_n + \frac{1}{2} \cdot f(t_{n+1}, x_{n+1})$ avec $f(t, x(t)) = -\frac{1}{1+t^2} x(t)$.

$$x_{n+1} = x_n - \frac{1}{2} \cdot \frac{1}{1 + t_{n+1}^2} \cdot x_{n+1}$$

$$= x_n - \frac{1}{2(1 + (t_n + \frac{1}{2})^2)} \cdot x_{n+1}$$

$$= x_n - \frac{1}{2\frac{(4 + (2t_n + 1)^2)}{4}} \cdot x_{n+1}$$

$$= x_n - \frac{2}{4 + (2t_n + 1)^2} \cdot x_{n+1}$$

On considère le problème de Cauchy suivant:

$$(P.C): \begin{cases} x'(t) = -\frac{1}{1+t^2}x(t), & t \ge 0 \\ x(0) = 5 \end{cases}$$

• pour $h = \frac{1}{2}$, montrer que la solution numérique x_{n+1} du problème de Cauchy (P.C) trouvée par la méthode d'Euler implicite vérifie la relation suivante :

$$x_{n+1} = x_n \cdot \frac{4 + (2t_n + 1)^2}{6 + (2t_n + 1)^2}, \qquad n \ge 0$$

d'où

pour $h = \frac{1}{2}$, on a $x_{n+1} = x_n + \frac{1}{2} \cdot f(t_{n+1}, x_{n+1})$ avec $f(t, x(t)) = -\frac{1}{1+t^2} x(t)$.

$$x_{n+1} = x_n - \frac{1}{2} \cdot \frac{1}{1 + t_{n+1}^2} \cdot x_{n+1}$$

$$= x_n - \frac{1}{2(1 + (t_n + \frac{1}{2})^2)} \cdot x_{n+1}$$

$$= x_n - \frac{1}{2\frac{(4 + (2t_n + 1)^2)}{4}} \cdot x_{n+1}$$

$$= x_n - \frac{2}{4 + (2t_n + 1)^2} \cdot x_{n+1}$$

$$x_{n+1} \cdot \left(1 + \frac{2}{4 + (2t_n + 1)^2}\right) = x_n$$
$$x_{n+1} \cdot \left(\frac{6 + (2t_n + 1)^2}{4 + (2t_n + 1)^2}\right) = x_n$$

$$x_{n+1} = x_n \cdot \frac{4 + (2t_n + 1)^2}{6 + (2t_n + 1)^2}$$

• Appliquer ce schéma itératif pour résoudre numériquement (*P.C*) sur l'intervalle [0,2].

Appliquer ce schéma itératif pour résoudre numériquement (P.C) sur l'intervalle [0,2].

•
$$t_1 = t_0 + h = \frac{1}{2}$$

$$x_1 = x_0 \cdot \frac{4 + (2t_0 + 1)^2}{6 + (2t_0 + 1)^2}$$

$$= \frac{25}{7}$$

Appliquer ce schéma itératif pour résoudre numériquement (P.C) sur l'intervalle [0,2].

•
$$t_1 = t_0 + h = \frac{1}{2}$$

 $x_1 = x_0 \cdot \frac{4 + (2t_0 + 1)^2}{6 + (2t_0 + 1)^2}$
 $= \frac{25}{7}$

•
$$t_2 = t_1 + h = \frac{1}{2} + \frac{1}{2} = 1$$

$$x_2 = x_1 \cdot \frac{4 + (2t_1 + 1)^2}{6 + (2t_1 + 1)^2}$$

$$= \frac{20}{7}$$

Appliquer ce schéma itératif pour résoudre numériquement (P.C) sur l'intervalle [0,2].

•
$$t_1 = t_0 + h = \frac{1}{2}$$

$$x_1 = x_0 \cdot \frac{4 + (2t_0 + 1)^2}{6 + (2t_0 + 1)^2}$$

$$= \frac{25}{7}$$

•
$$t_2 = t_1 + h = \frac{1}{2} + \frac{1}{2} = 1$$

$$x_2 = x_1 \cdot \frac{4 + (2t_1 + 1)^2}{6 + (2t_1 + 1)^2}$$

$$= \frac{20}{7}$$

•
$$t_3 = t_2 + h = 1 + \frac{1}{2} = \frac{3}{2}$$

 $x_3 = x_2 \cdot \frac{4 + (2t_2 + 1)^2}{6 + (2t_2 + 1)^2}$
 $= \frac{52}{7}$

Appliquer ce schéma itératif pour résoudre numériquement (P.C) sur l'intervalle [0,2].

•
$$t_1 = t_0 + h = \frac{1}{2}$$

 $x_1 = x_0 \cdot \frac{4 + (2t_0 + 1)^2}{6 + (2t_0 + 1)^2}$
 $= \frac{25}{7}$

•
$$t_2 = t_1 + h = \frac{1}{2} + \frac{1}{2} = 1$$

$$x_2 = x_1 \cdot \frac{4 + (2t_1 + 1)^2}{6 + (2t_1 + 1)^2}$$

$$= \frac{20}{7}$$

•
$$t_3 = t_2 + h = 1 + \frac{1}{2} = \frac{3}{2}$$

 $x_3 = x_2 \cdot \frac{4 + (2t_2 + 1)^2}{6 + (2t_2 + 1)^2}$
 $= \frac{52}{7}$

•
$$t_4 = t_3 + h = \frac{3}{2} + \frac{1}{2} = 2$$

$$x_4 = x_3 \cdot \frac{4 + (2t_3 + 1)^2}{6 + (2t_3 + 1)^2}$$

$$= \frac{520}{231}$$