

# **Course Specialist Test 1 Year 12**

| Student name: Teacher name:                                                            |                                                                                                                                                |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Task type:                                                                             | Response/Investigation                                                                                                                         |  |
| Reading time for this test: 5 mins                                                     |                                                                                                                                                |  |
| Working time allowed for this task: 40 mins                                            |                                                                                                                                                |  |
| Number of questions:                                                                   | 7                                                                                                                                              |  |
| Materials required:                                                                    | No cals allowed!!                                                                                                                              |  |
| Standard items:                                                                        | Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters                       |  |
| Special items:                                                                         | Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations |  |
| Marks available:                                                                       | 42 marks                                                                                                                                       |  |
| Task weighting:                                                                        | 13%                                                                                                                                            |  |
| Formula sheet provided: no but formulae stated on page 2                               |                                                                                                                                                |  |
| Note: All part questions worth more than 2 marks require working to obtain full marks. |                                                                                                                                                |  |

#### **Useful formulae**

# Complex numbers

| Cartesian form                                                                                                                                  |                                                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| z = a + bi                                                                                                                                      | $\overline{z} = a - bi$                                                                  |  |  |
| Mod $(z) =  z  = \sqrt{a^2 + b^2} = r$                                                                                                          | $\operatorname{Arg}(z) = \theta$ , $\tan \theta = \frac{b}{a}$ , $-\pi < \theta \le \pi$ |  |  |
| $ z_1 z_2  =  z_1   z_2 $                                                                                                                       | $\left \frac{z_1}{z_2}\right  = \frac{ z_1 }{ z_2 }$                                     |  |  |
| $arg(z_1 z_2) = arg(z_1) + arg(z_2)$                                                                                                            | $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$                               |  |  |
| $z\overline{z} =  z ^2$                                                                                                                         | $z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$                                      |  |  |
| $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$                                                                                        | $\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$                            |  |  |
| Polar form                                                                                                                                      |                                                                                          |  |  |
| $z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$                                                                     | $\overline{z} = r \operatorname{cis} (-\theta)$                                          |  |  |
| $z_1 z_2 = r_1 r_2 cis \left(\theta_1 + \theta_2\right)$                                                                                        | $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} \left(\theta_1 - \theta_2\right)$  |  |  |
| $cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$                                                                                    | $cis(-\theta) = \frac{1}{cis  \theta}$                                                   |  |  |
| De Moivre's theorem                                                                                                                             |                                                                                          |  |  |
| $z^n =  z ^n cis(n\theta)$                                                                                                                      | $(cis \theta)^n = \cos n\theta + i \sin n\theta$                                         |  |  |
| $z^{rac{1}{q}} = r^{rac{1}{q}} \left( \cos rac{	heta + 2\pi k}{q} + i \sin rac{	heta + 2\pi k}{q}  ight),  	ext{ for } k 	ext{ an integer}$ |                                                                                          |  |  |

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

#### No cals allowed!!

Q1 (2, 2, 2 & 2 = 8 marks)

If z = 3 + 4i and w = 1 - i determine the following exactly.

- a) zw
- b)  $z^2w$
- c)  $\frac{1}{7}$
- d)  $\frac{z}{w}$

Q2 (4 marks)

Determine all possible real number pairs a & b such that  $\frac{22-3i}{a+i} = 5+bi$ .

Q3 (2, 3 & 3 = 8 marks)

Consider the function  $f(z) = z^3 + 2z^2 + 9z + 18$ .

- a) Determine f(3i).
- b) Hence solve  $z^3 + 2z^2 + 9z + 18 = 0$
- c) Consider  $g(z) = (z^2 + bz + c)(z^2 + dz + e)$  where b, c, d & e are real constants and g(3+i) = 0 = g(2-3i). Determine the values of b, c, d & e.

#### Q4 (3 marks)

Use the diagram below to determine the complex number w in polar form with a principal argument.

(diagram not drawn to scale)



## Q5 (2 & 3 = 5 marks)

Sketch the following locus of points on the axes below.

a) 
$$|z-2-3i|+|z-5-7i|=5$$



b) 
$$|z-7| = |z-3i| + \sqrt{58}$$



Q6 (5, 2 & 2 = 9 marks)

a) Solve  $z^6 = 2 + 2\sqrt{3}i$  in polar form with principal arguments.

b) Plot these points on the axes below.



c) Determine the area of the polygon formed by joining the points in (b) above.

## Q7 (5 marks)

The locus of |z-a-2i|=|z-7-bi| where a&b are real constants is plotted below and can also be defined as  $6\operatorname{Im}(z)=-8\operatorname{Re}(z)+61$ . Determine the values of a&b showing full reasoning. (Not drawn to scale)



# Working out space