sistemas electrónicos

OpAmp: exercícios

1. - Para os circuitos abaixo considere: $R_1=1k\Omega$; $R_2=10k\Omega$. Para cada um dos casos obtenha a expressão do ganho de tensão Av=Vo/Vi. Com Vi=100mV, calcule Vo para as 3 configurações.

Considere: R1=R3=2.2kΩ; R2=R4=22kΩ.
Obtenha a expressão do ganho Av=Vo/Vi.
Com Vi=1V, calcule Vo.
Sugestão: sobreposição (aplicar Vi a R1 e depois a R3).

3. - Para este circuito a tensão Vo é dada por:

a)
$$V_o = V_1 + \frac{V_2}{2} + \frac{V_3}{4} + \frac{V_4}{8}$$

b) $V_o = V_4 + \frac{V_3}{2} + \frac{V_2}{4} + \frac{V_1}{8}$
c) $V_o = -V_1 - \frac{V_2}{2} - \frac{V_3}{4} - \frac{V_4}{8}$
d) $V_o = -V_4 - \frac{V_3}{2} - \frac{V_2}{4} - \frac{V_1}{8}$

4. - Considere: $R1{=}25k\Omega \; ; \; R2{=}50k\Omega \; ; \; R3{=}5k\Omega \; ; \; R4{=}70k\Omega.$ Determine Vo em função de Vi1 e Vi2.

Calcule Vo quando Vi1=Vi2=400mV

5. - Para o circuito abaixo obtenha v_O em função de v_{I1} e de v_{I2} . Calcule v_O quando v_{I1} =5mV e v_{I2} =50-50cos ωt mV.

sistemas electrónicos

- 6. Para o circuito à direita:
 - a) obtenha $A_{V1}=v_{O1}/v_I$ e $A_{V2}=v_{O2}/v_I$;
 - b) qual a relação entre as 2 saídas ?
 - c) com R₁=20k Ω , R₂=R=60k Ω , v_I =-0,5V, calcule v_{O1} e v_{O2} ;
 - d) considere v_I =0,8V, calcule v_{O1} - v_{O2} .

8. - Suponha o condensador inicialmente descarregado e que aplica uma tensão de entrada de -5V. Com *R*1=22kΩ e *C*2=100nF, calcule o tempo necessário para se obter +5V na saída.

Considere R₁=5kΩ, R₂=20kΩ, R_A=10kΩ, R_B=20kΩ.
O amplificador satura a uma tensão ±Vp=±10V.
Com VREF=3V, calcule as tensões de comparação inferior (VTL) e superior (VTH) e a histerese do comparador (VH).

- 10. Considere R₁=12k Ω , R₂=12k Ω . O amplificador satura a uma tensão ±Vp=±10V. Com Vref=2V, calcule:
 - a) a tensão de comparação (VT);
 - b) o *duty cycle* e o valor médio do sinal de saída, quando à entrada é aplicada uma onda triangular de ±5V e frequência 50Hz.

