Inside of a Mouse's Brain

Reducing Dimensions of Neural Recordings using Seq-to-Seq Modeling

Dimensional Data Diggers

The experiment set-up

Neuropixels probes recorded approximately 30,000 neurons in 42 brain regions while performing a visual discrimination task.

Recorded brain regions

Question

- Can we find similarities in activities in different brain areas during a certain process?
- Can activity of one area of the brain be predicted from activity of other areas?
- Can activity of a subset of neurons be predicted by another subset in the same region?

Goal

Learning about brain connectivity;

Shedding light on how information from one brain area can be used to predict activity of another region

Project steps

What information does Which variables ML network selection the dataset include? should be modelled and considered? Planning the Literature Model Preprocess Data analysis the input variables model review How others approach Make the input ready similar for modelling questions/goals?

Raster plot for all neurons in session 31

Implementation Steps

Model architecture

Predicting motor cortex based on other areas

Input: 453 other area neurons

Output: 69 motor cortex neurons

15 neurons in fully connected layer, tested on 20% of data Learning rate 0.001; weight decay 0.0001

Poisson loss function value 0.0873

Poisson loss function value 0.0914

Plotting some latents of LSTM (2/15 latents)

Predicting activity of MOs within 1 brain area

Input: 34 motor cortex neurons

Output: 34 motor cortex neurons

Poisson loss function value 0.1019

LSTM Test set 6 Predicted mean Firing Rate Real mean Firing Rate Mean Firing Rate (Hz) 0.5 1.0 1.5 2.0 2.5 0.0 Time (s)

Poisson loss function value 0.1024

Conclusion

By employing DL methods it is possible to receive an embedding for a set of neurons which
would contain information about their spiking activity in different trials, with different
actions being performed. This basis of their spiking activity contains less noise and can
more easily be used to analysis activity.

References

Steinmetz, N. A., Zatka-Haas, P., Carandini, M., & Harris, K. D. (2019). Distributed coding of choice, action and engagement across the mouse brain. *Nature*, *576*(7786), 266-273.

Thank you for your attention

TA: Ali Bavafa

Project TA: Mina Rezaie

Mentor: Haran Shani-Narkiss

Group:

Amirhossein Ghorbanpour Anna Manaseryan

Mark Zakharzhevsky

mark2999792@gmail.com

Omid Amir Atashani

omidamiratashani@gmail.com

Pooya Yousef

Sepehr Kalanaki

Seyed Mehdi YaghoubNejad:

s.mehdi.yaghoubnejad@gmail.com

Vaibhav Chaudhary

vaibhavchaudhary144@gmail.com