

Letzte Woche: Weight Vectors? Was ist das?

On the interpretation of weight vectors of linear models in multivariate neuroimaging

Stefan Haufe ^{a,b,*}, Frank Meinecke ^{c,a}, Kai Görgen ^{d,e,f}, Sven Dähne ^a, John-Dylan Haynes ^{d,e,b}, Benjamin Blankertz ^{f,b}, Felix Bießmann ^{g,a,*}

Often it is desired to interpret the outcome of these methods with respect to the **cognitive processes under study**. Here we discuss **which methods allow for such interpretations** [...].

- What are "forward" and "backward" models?
 - What are key concepts?
- How can we **interpret** the parameters (results) of these models?
- What is the **problem** with the interpretation?

Raum vs. Zeit

EEG: zeitlich hoch auflösend, räumlich begrenzt

fMRI: zeitlich begrenzt, räumlich hoch auflösend

MRI

MRI

- 1. Protonen am Magnetfeld ausrichten
- 2. Kalibrieren über Gradient Coil
- 3. Anregen über Radio Coil

Strukturelles MRI

Christian-Albrechts-Universität zu Kiel

Energie wird frei, wenn Protonen wieder am Magnetfeld ausgerichtet werden

- -> Detektion der emittierten Radiowellen
- -> Messung der "Relaxationszeit"

Christian-Albrechts-Universität zu Kiel

T1 vs. T2 MRI

Hohe Räumliche Auflösung, niedrige zeitliche Auflösung

• Kompromiss zwischen Größe des Messbereiches und Mess-Dauer

Erweiterung der Blutgefäße Deoxy./Oxy-Verhältnis nimmt ab

Optical Imaging

Diese Woche: Gedankenlesen?

Decoding mental states from brain activity in humans

John-Dylan Haynes * * \$ and Geraint Rees \$

Recent advances in human neuroimaging have shown that it is possible to accurately **decode a person's conscious experience** based only on non-invasive measurements of their brain activity. [...] Such applications raise important **ethical issues** concerning the privacy of personal thought.

- Review: What is the idea of "decoding"?
- What current technical challenges exist?
- What ethical issues arise from this?

Nächste Woche: Gedankenlesen im Schlaf?

Neural Decoding of Visual Imagery During Sleep

T. Horikawa, 1,2 M. Tamaki, 1 Y. Miyawaki, 3,1 Y. Kamitani 1,2 ‡

Visual imagery during sleep has long been a topic of persistent speculation, but its **private nature** has hampered objective analysis. [...] Our findings demonstrate that specific visual experience during sleep is represented by brain activity patterns shared by stimulus perception, **providing a means to uncover subjective contents of dreaming** using objective neural measurement.

- How is neural activity related to subjective experience here?
- How is subjective experience decoded?
- Is perception and imagery the same?

Literatur

- Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87(C), 96–110. http://doi.org/10.1016/j.neuroimage.2013.10.067
- Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523–534. http://doi.org/10.1038/nrn1931
- Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science (New York, NY), 340(6132), 639–642. http://doi.org/10.1126/science.1234330