Exploratory analysis of ensembles using pyFerret or Ferret

Steve Hankin
UW/JISAO
NOAA/PMEL/Sci.Dat.Integ.Grp.

Ensembles can be explored with little more effort than an individual Climate/forecast model run.

Strategy: treat a collection of model runs as a single dataset, aggregated along a new 'E' (ensemble) axis

Topic 1: creating a single model ensemble

yes? ENSEMBLE my_ensemble = my_run1.nc, my_run2.nc, my_run3 ...

```
yes? SHOW DATA
currently SET data sets:

6> my_ensemble (default) Ensemble aggregation
name title I J K L
HEIGHT height ... ... ... 1:5

TAS Air Temperature 1:256 1:128 ... 1:1140 1:5 ...
```

Ready to begin exploring the ensemble ...

yes? PLOT/ALONG=t/X=180/Y=0 tas

Topic 2: Creating a multi-model ensemble

```
yes? ! Open a set of model output datasets
yes? ! They might be OPeNDAP url's
yes? USE GFDL_CM3,
       GFDL_ESM2G,
       GFDL ESM2M,
       ACCESS10,
       BCC_CSM1m,
       CanESM2,
       CCSM4,
       CESM1_CAM5,
       CMCESM1 WACCM,\
       CNRM CM5,
```

Grids differ between models

GFDL:

yes? show grid

<u>name</u>	<u>axis</u>	# pts	<u>start</u>	<u>end</u>
LON	LONGITUDE	144mi	1.25E	1.25W
LAT	LATITUDE	90 i	89S	89N
TIME	TIME	1140 i	16-JAN-2006	16-DEC-2100

other models:

LONGITUDE	192mr	0E	1.875W
LATITUDE	145 i	90s	90N
LONGITUDE	320mr	0E	1.125W
LATITUDE	160 i	89.142S	89.142N
TIME	1128 i	16-JAN-2006	16-DEC-2099

etc ...

CF calendars include 'NOLEAP', proleptic Gregorian, and '360_day'

Ensemble member variables of the same name must share the same coordinate grid. We choose to regrid to the GFDL grid (*)

e.g. to change the grid of variable 'tas' in dataset 5 to GFDL's ('d=1')

> pyferret
 yes? SET VARIABLE/NAME=tas_orig tas[d=5]
 yes? LET/d=5 tas = tas_orig[g=tas[d=1], gt=@asn]

^(*) The default regridding is multi-linear interpolation, but TIME, where the calendars types differ, requires special treatment. For monthly data we choose to ignore the differences, and we regrid time axes by simple association ('@asn') of points.

Now, regrid all the models with these two commands^(*) ...

```
yes? REPEAT/NAME=dset/RANGE=2:12 \
    ( SET VAR/NAME=tas_orig tas[d=`dset`]; \
    LET/d=`dset` tas = tas_orig[g=tas[d=1],gt=@asn] )
```

(*) pyFerret uses 'delayed mode analysis', so this regridding loop is making definitions only. The regridding operation will be done when data is loaded, e.g. on a PLOT call.

yes? ENSEMBLE cmip = 1, 2, 3, ..., 12

We have created a 12 member multi-model ensemble, "cmip"

Begin exploring the multi-model ensemble

yes? SET REGION/X=180/Y=0 yes? PLOT/ALONG=t tas

Apply a 60 month (5 yr) running average

yes? LET tas_5yr = tas[t=@SBX:60]
yes? PLOT/ALONG=T tas_5yr

Overlay the ensemble mean

Create and overlay a weighted ensemble average

yes? LET weights = ESEQUENCE({5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})
yes? LET wgt_runs = tas_5yr * weights / weights[m=@sum]
yes? PLOT/OVER/COLOR=RED wgt_runs[m=@sum]

Plot the 12 month climatological average at a point

yes? LET tas_12mo = tas[gt=MONTH_NOLEAP@mod]
yes? PLOT/ALONG=T tas_12mo

Weak annual cycle on the equator. What about globally?

Global average climatological cycle

yes? LET tas_xyav = tas_12mo[x=@ave,y=@ave]
yes? PLOT/ALONG=T tas_xyav

GFDL model ("m=1") temperature change over 90 years ...

```
yes? LET tas_2007 = tas[t=1-jan-2007:31-dec-2007@ave]
yes? LET tas_2097 = tas[t=1-jan-2097:31-dec-2097@ave]
yes? LET/TITLE="..." tas_90yr = tas_2097 - tas_2007
yes? FILL tas_90yr[m=1]
```


Ensemble-maximum of the other models ...

yes? FILL tas_90yr[m=2:12@max]

Anomaly of GFDL relative to ensemble max

yes? FILL tas_90yr[m=1] - tas_90yr[m=2:12@max]

Ensembles of ensembles...

Institutions may contribute ensemble runs (typ. 3-5 members) to the multi-model modeling effort, so the multi-model ensemble is actually an ensemble of ensembles

Topic 3: creating an ensemble of ensembles

Define a run-ensemble for the model FIO ESM (*)

yes? ENSEMBLE FIO_ESM_ens = SPAWN("Is FIO_ESM_run?.nc")

- ... and similarly for CanESM2 CNRM_CM5

Redefine 'tas' as the ensemble run average from FIO_ESM

 Now use the identical 3 steps to create ensemble run means of the other models

- CanESM2
- CNRM_CM5

Build the ensemble of ensembles

```
yes? ENSEMBLE ens_of_ens = GFDL_CM3, \
FIO_ESM_ens, \
CanESM2_ens, \
CNRM_CM5_ens
```


yes? SET REGION/X=180/Y=0 yes? PLOT/ALONG=t tas

Again, a 60 month (5 yr) running average smoother yes? PLOT/ALONG=T tas[t=@SBX:60]

Linear-regression trends Start with the GFDL model, [m=1] ...

yes? GO regresst

yes? LET q = tas; LET p = T[g=tas]

yes? PLOT tas[m=1]

yes? PLOT/OVER qhat[m=1]

The script 'regresst'
defines variables
'slope' and 'qhat'
in terms of variables
'p' and 'q'

The trend lines of all ensemble members at this point...

yes? PLOT/ALONG=T qhat

Slope of the 100 yr temperature trend in the GFDL model

yes? LET/title="..." slope_yr = 365*slope </br>
yes? FILL slope_yr[m=1]

Change slope units from 'per day' to 'per year'

Ensemble variability of the slope

Topic 4: ensembles of native-grid analyses

When analyzing a non-linear function

$$f(x) \neq f(x)$$

Sometimes we must compute ensemble-member variables on their native grids before defining the ensemble

Our test data includes only surface temperature, "tas". so we will calculate black body radiation.

yes? LET/TITLE="Black Body Nonsense" bbn = sigma * tas^4 yes? LET sigma = 5.67E-8

Globally-averaged Black Body Nonsense from the GFDL model:

yes? USE GFDL_CM3.nc
yes? LET/D=GFDL_CM3 bbn_ave = bbn[x=@ave,y=@ave]
yes? PLOT bbn_ave

Globally-average bbn in three models on their native coordinates. Put them onto a common time axis.

Lat-Lon coordinates differ between these models

yes? USE ACCESS10.nc, BCC_CSM.nc, CanESM2.nc

```
yes? LET/D=ACCESS10 bbn_ave = bbn[x=@ave,y=@ave,gt=time@asn] yes? LET/D=BCC_CSM bbn_ave = bbn[x=@ave,y=@ave,gt=time@asn] yes? LET/D=CanESM2 bbn_ave = bbn[x=@ave,y=@ave,gt=time@asn]
```

Create an ensemble of the results:

```
yes? SAVE/file=GFDL_bbn.nc bbn_ave[d=GFDL_CM3] ! (*)
yes? ENSEMBLE bbn_ens = GFDL_bbn, ACCESS10, BCC_CSM, CanESM2
```

Plot the native-averaged ensemble variable:

yes? PLOT/ALONG=t bbn_ave

... again apply a 5-year smoother:

yes? LET bbn_yr = bbn_ave [l=@sbx:60]
yes? PLOT/ALONG=t bbn_y5r

