

General information

Designation

Acer saccharum

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O						
Material family	Natural	Natural				
Base material	Wood (h	Wood (hardwood)				
Renewable content	100		%			
Composition detail (polymers and natura	al materials)					
Wood	100			%		
Price						
Price	* 1.34	-	2.01	USD/kg		
Physical properties						
Density	640	-	780	kg/m^3		
Mechanical properties						
Young's modulus	* 2.11	-	2.35	GPa		
Yield strength (elastic limit)	* 2.94	-	3.6	MPa		
Tensile strength	* 4.9	-	6	MPa		
Elongation	* 0.69	-	0.84	% strain		
Compressive strength	9.12	-	11.2	MPa		
Flexural modulus	1.92	-	2.14	GPa		
Flexural strength (modulus of rupture)	* 4.9	-	6	MPa		
Shear modulus	* 0.218	-	0.299	GPa		
Shear strength	* 43.5	-	53.2	MPa		
Rolling shear strength	* 1.61	-	4.83	MPa		
Bulk modulus	* 1.08	-	1.2	GPa		
Poisson's ratio	* 0.02	-	0.04			
Shape factor	5.7					
Hardness - Vickers	5.8	-	7.09	HV		
Hardness - Brinell	* 26.3	-	32.2	MPa		
Hardness - Janka	5.8	-	7.09	kN		

Mechanical loss coefficient (tan delta) Differential shrinkage (radial) Differential shrinkage (tangential)	* 0.016 0.17	-	0.021	0/
		-	0.23	0/
Differential shrinkage (tangential)	0.05		00	%
	0.25	-	0.32	%
Radial shrinkage (green to oven-dry)	4.3	-	5.3	%
Tangential shrinkage (green to oven-dry)	8.9	-	10.9	%
Volumetric shrinkage (green to oven-dry)	13.2	-	16.2	%
Work to maximum strength	* 10.2	-	12.5	kJ/m^3

Fracture toughness	* 0.533	-	0.652	MPa.m^0.5	
--------------------	---------	---	-------	-----------	--

Thermal properties

Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	0.15	-	0.17	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 31.5	-	42.2	μstrain/°C

Electrical properties

Electrical resistivity	* 8.87e14	-	1.32e15	µohm.cm
Dielectric constant (relative permittivity)	* 3.93	-	4.8	
Dissipation factor (dielectric loss tangent)	* 0.054	-	0.067	
Dielectric strength (dielectric breakdown)	* 1	-	2	MV/m

Magnetic properties

Magnetic type	Non-magnetic
---------------	--------------

Optical properties

Transparency	Opaque

Durability

= ···· ···· · · · · · · · · · · · · · ·	
Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable

UV radiation (sunlight)

Shape

	Good				
Flammability	Highly fla	Highly flammable			
Primary production energy, CO2 and water					
Embodied energy, primary production	11.6	-	12.8	MJ/kg	
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Ham MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	nmond and Jones, 2008); 1	11.6 M	J/kg (Hubba	rd and Bowe, 2010); 23.7	
CO2 footprint, primary production	0.574	-	0.633	kg/kg	
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/	/kg /Hammond and Janes	2000)	0.000 kg/kg	a (Hubbard and Pawa	
Water usage	* 665	2006), -	735	I/kg	
vvater usage	000		700	"NG	
Processing energy, CO2 footprint & water					
Coarse machining energy (per unit wt removed)	* 0.61	-	0.675	MJ/kg	
Coarse machining CO2 (per unit wt removed)	* 0.0458	-	0.0506	kg/kg	
Fine machining energy (per unit wt removed)	* 1.83	-	2.02	MJ/kg	
Fine machining CO2 (per unit wt removed)	* 0.137	-	0.152	kg/kg	
Grinding energy (per unit wt removed)	* 3.18	-	3.52	MJ/kg	
Grinding CO2 (per unit wt removed)	* 0.239	-	0.264	kg/kg	
Recycling and end of life					
Recycle	×				
Recycle fraction in current supply	8.55	-	9.45	%	
Downcycle	✓				
Combust for energy recovery	✓				
Heat of combustion (net)	* 19.8	-	21.3	MJ/kg	
Combustion CO2	* 1.69	-	1.78	kg/kg	
Landfill	✓				
Biodegrade	✓				
Notes Warning	✓				
All woods have properties which show variation; they de	pend principally on gr	owth	condition	s and moisture content	
, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , ,				
Links					
ProcessUniverse					
Reference					
Shano					