EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

05129473

PUBLICATION DATE

25-05-93

APPLICATION DATE

06-11-91

APPLICATION NUMBER

03289882

APPLICANT: SONY CORP;

INVENTOR: FUKAZAWA HIROYUKI;

INT.CL.

: H01L 23/28 H01L 23/12 H01L 23/50

TITLE

: RESIN-SEALED SURFACE-MOUNTING

SEMICONDUCTOR DEVICE

B

ABSTRACT :

PURPOSE: To reduce the size and thickness of the title semiconductor device while a mechanism which prevents the deformation of external electrodes or fluctuation of the electrodes at the machining time is secured by using the rear sections of inner leads connected to internal wiring as external electrodes at the time of directly mounting the semiconductor device.

CONSTITUTION: A semiconductor chip 1 is placed on the die pad 2 of a lead frame. After electrically connecting the chip 1 to inner leads 6, the rear of which become external electrodes 8, through bonding wires 3, the upper part is sealed with a resin. Similarly, the chip 1 is electrically connected to the leads through bumps 4. In other words, the rear of the electrically connected inner leads 6 are used as the electrical connecting sections 8 of the semiconductor device to the outside. Therefore, the size of the semiconductor device can be reduced to nearly the same size as that of the chip 1. In addition, the thickness of the semiconductor device can also be reduced.

COPYRIGHT: (C)1993.JPO&Japio

		•
		•
		•
•		

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-129473

(43) 至高日 平成 5年(1993) 5 号 5日

			-	-	
(51) Int.CL ³		識別記号	序码整理事号	FI	技術表示箇所
H 0 1 L	23728		8617 - 1M		
	23/12				
	23/28	Α	8617 - 4M		
	23750	V	9272 — 4 M		
			7352 - 4M	H01L	23/12
				審查請求 未請求	対 請求項の数3(全 6 頁) 最終頁に続く
(21)出願番号		特願平3-289882	- Andrews	(71)出願人	000002185
					ソニー株式会社
(22) 出願自		平成3年(1991)11月	169		東京都品川区北品川6丁目7番35号
				(72)発明者	深澤・博之
					東京都品川区北品川6丁目7番35号ソニー
					株式会社内
				(74)代理人	弁理士 高橋 光男

(54)【発明の名称】 樹脂封止表面実装型半導体装置

(57)【要約】

【目的】 小型化、薄型化可能な半導体装置を提供す 5.

【構成】 内部導出「一ド6とダイバッド2つ洞一平面 にあるり一ドフレームを用い、半導体チップ1とポンデ ィングワイヤ3あるいはバンブ4により竈気的に接続さ れている内部導出リード6の裏面を、半導体装備の外部 との電気的接続部分として機能する外部電極8とする。

(2)

【特許請求の範囲】

【請求項1】 半導体素子を搭載し、その素子表面の電 極を内部導出リードに配線し、その配線部および前記半 導体素子部を樹脂封止してなる樹脂封止表面実装型半導 体装置において、

前記内部配線の接続される円部導出リードの裏面部が、 直接半導体装置を実装する際の外部電極となることを特 徴とする樹脂封止表面実装型半導体装置。

【請求項2】 半導体素子の裏面が直接あるいは封止樹 ていることを特徴とする請求項1記載の樹脂封止表面実 装型半導体装置。

【請求項3】 半導体素子の裏面部あるいは封止樹脂以 外の樹脂材料を介した面が、外部電極の面よりも一段高 く形成されていることを特徴とする請求項1記載の樹脂 封止表面実装型半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は樹脂封止された表面実 装型半導体装置に関するものである。

[0002]

【従来の技術】従来、表面実装型半導体装置は閏10に その一例の断面図で示すように、金属(例えば、42% Ni \nearrow Fe台金で、板厚0、 $1\sim 0$ 、3mm)でできた リードフレームのダイベッド2に半導体チップ1を搭載 し、図10Aに示すように、ポンディングフィヤ3によ り内部導出リード6に電気的に接続するか、あるいは団 10日に示すように、バンプ4と呼ばれる接続電極によ って直接内部導出リード6に電気的に接続する。そし て、これらをエポキシ樹脂などの封止材をで封止した。30 後、外部導出リードでおよび外部電極8を所要の形状に 曲げ死成している。

【0003】そして、図11Aに側面図で示すように、 基板12のパターンに手田ベースト13を、あるいは図 11日に示すように、基板12に接着剤14を鉱布して おき、これに表面実装型半導体装置を位置合わせして載 せる。この基板10を、図11Aのように半田ペースト 13を使用した場合には、熱風あるいは赤外線などによ り加熱し丰田付けする。一方、図11Bのように接着剤 1/4を使用した場合には、半田槽に浸漬して半田付けを-40行う。

【0004】しかしながら、前述した表面実装型半導体 装置は、図10A。Bに示す封止材5の外側において、 外部導出リードでおよび外部電極8を曲げ加工している。 ため、この加工精度のバラビキおよび成形後の外部から の力により、図10Aの斜視図に示すように、半導体装 置の封止材をの底面に対する外部電極80下面の向され 向の位置のバラッキおよび図128の平面図に示すよう に、横方向への外部導出リードで表よび外部電桶8の変 時、好適な表面実装ができなくなる。または、電気的に 導通できなくなるという課題が発生した。

【0005】そこで、この課題を解消するため、巡18 に示した特開平3-3354号四報に開示されている半 導体装置のように、外部電極をを封止材をの底面と同一 面で、かつ底面と並行に導出した形状が提案されてい

[0006]

【発明が解決しようとする課題】ところで、近年、電子 脂以外の樹脂材料を介して、半導体装置の外側に露出し、10、機器が小型化、規型化されるにしたっがって、使用され る半導体装置もできるだけ小型化、薄型化をはかるよう に要求され、現在では封止材の大きさが内部に搭載され ている丰海体チップの大きさと近くなってきており、ま た、厚みも1.0mm以下の薄割半導体装置が実用化さ れてきている。しかし、このような小型、海型半導体装 置にむいて、前述の図13に示す特開平3~3354号 公報に記載されているような形状では、大きさも半導体 チャブサイズよりはるかに大きくなってしまうばかり か、厚さも厚くなってしまうという課題が発生した。こ 20 の発明は、外部電極の変形あるいは加工時のバラツキを 防止する機構を保ちながら、しかも、小型化、薄型化可 能な樹脂封止表面実装型半導体装置を提供することを目 的とする。

[0007]

【課題を解決するための手段】先に述べたような課題を 解決するために、この発明は、内部導出(一ドとダイバ - ルトが同一平面にあるリードフレームを用い、半導体チ シブとボンディングワイヤあるいはバンプにより電気的 に接続される内部導出リードの裏面を、半導体装置の外 部上の電気的接続部分すなわち外部電極とした。

[9008]

【作用】したがってこの発明の樹脂封止表面実装型半導 体装置は、内部導出、一ドとダイバードが同一平面にあ るりードフレームを用い、半導体チャプとポンディング ワイヤあるしはバンブにより電気的に接続される内部導 出り一ドの裏面を半導体装置の外部との電気的接続部分 すなわち外部電視と、たので、半導体装置の大きさを半 導体チップの大きさとはぼ同じ出きさまで小さくするこ とができる。また、主導体装備の厚みを薄くすることが できる。

[0009]

【実施例】以下、この発明の実施例の樹脂封止表面実装 型車導体装置を関面とともに詳述する。図1に第1の実 施例の断面区を示す、まず、図1Aは、厚さ3、1~ o. 3 mmでリードコレームのダイバッド2に半導体デ ップ1を載聞し、半導体チップ1と裏面が外部電極8と なる内部導出り一ドらとをポンディングロイヤ3で電気 的に接続させて、その上部を樹脂封止した構造となって いる。図1gは、同様に半導体チップ1と内部導出リー 形が生じやすい。これらが原因となって前述の基拡実装。30、ドミとをバンブ4で電気的に接続をさせている例を示 す。ポンディングワイヤ3による電気的接続法よりバン ブ4による概気的接続の方が、その構造上封止材5の大 きさをさらに小さくできるという利点があるが、リード フレームの板厚が薄い、ど半導体チップエの下面の樹脂 の厚みも薄くなるため、樹脂耳止時のポイド(気泡)な どの不具合が発生しつすくなる。

【3010】第1の実施例の半導体装置の作成方法を図 2、図3の断面図を用いて簡単に説明する。まず、第1 の作成方法を図2の断面図で説明する。図2Aに示すよ うに、従来と同様の方法でダイバッド2と内部導出リー 下6が同一平面上にあるリードフレームを用い、半導体 チップ1を載置後その半導体チップ1と内部導出リード 6 とをポンディングワイヤ3 により電気的に接続を行 う。つぎに、エポキシ樹脂などの封止材をを用いて封止 する。そして、半導体装置の裏面樹脂部を削り取り図2 Bに示す形状にする。その後、基板実装を行う際の半田 付け性をよくするために、外部電極8の露出した部分に 半田などの外装メッキ9を施すことにより図20のよう になる。こうしてできた半導体装置の外部導出リードで の外側の争分な部分を金型などを用いて切断すると図2 20 Dに示す本実施例の半導体装置が得られる。つぎに、第 2の作成方法を図3の断面図で説明する。第1の作成方 法と同様に、半導体チップ1を載置して電気的に接続し た後、上面にのみキャビディ(堀り混み)のある金型で 樹脂封止を行うことにより、図3Aに示す形状となる。 この後、第1の作成方法と同様に、外装メッキ9および 外部導出:一ドアの切断を行うことにより、図3Bに示 す本実施例の半導体装置が得られる。この作成方法の場 合、樹脂封止時のパリなどが外装メッキ9を施そうとし 9を施す前に高圧水などによるパリ取りという前処理が 必要となるが、第1の作成方法のような硬い封止樹脂を 削り取るという作業は省略できる。

【0011】図4に第2の実施例の断面図を示す。構造。 的には第1の実施3例とほどんど変わらないが、半導体 チップを載置するダイバッド2および外部電極8の厚み が銅箔などの非常に薄い(約10~30mm)導体で構 成されている。本実施例の構造は第1の実施例に比べ半 導体装置の厚みを数百止mも薄くすることが可能とな る。また、半導体チャプンの裏面が、直接あるいは金属。や 部分を介して外部に露出している構造となっているの

5011 T 1.56 年でるび、本実施例では図る点にかざような部分形式 の関いたポーイミドなどのアメルム1つは観路などの薄 い導体を示えネートしてダイヤードの「内部導出」 ート

新建二字法 (1944) 医鼻体炎 (1965) 医**截**桨

て電気的に接続を行い、樹脂封止および外装メッキ9を 施すと図5Bにその断面図を示す構造になる。さらに、 加熱なごを施しながらフ・ルム10を剥離すると図5C に示りような本実施例の構造となる。なお、本実施例に 用いられる外部電極8の外側に、フィルム10を剥離す る際に導体の余分な部分が同時に切断してしまうよう に、図るDの平面図に示したように外部電極に接続され る外部配約11をあらかじめ細くしておくとよい。

【0012】図6に第3の実施例の断面図を示す。第3 10 の実施例では半導体チップ1を戴置するダイバッド2の 下にポリイミドなどのフィルム10を有する。その外に は前述してきた実施例と変わるところはないが、本実施 例の場合、基板実装時の接続部分となる外部電極8の底 面の高さに対し、外部電極8の厚さの分だけ高いところ にフィルム10があるため、基板実装後のフラックスの **洗浄効果があるという利点がある。また、半導体装置の** 中央に半導体チップ』の裏面と電気的に接続される部分 がないので、基板実装時に発生するショートなどの不具 台をまねかないという利点もある。なお、本実施例では ダイパッド2が存在する図で説明してきたが、実施に際 しては必ずしも必要とは限らない。第3の実施例の半導 体装置の作成方法を図70断面図を用いて簡単に説明す る。第3の実施例では、ビアムに示すような部分的に穴 の関いたポリイミドなどのフィルム10に銅箔などの薄 い導体をラミネートしてダイパッド 2、内部導出リード 6 起よび外部配線11を形成し、この導体の付いたフィ ルム10に、前述の方法と同様に半導体チップ:を載置 して電気的に接続を行い、樹脂封止および外装メッキ9 を施すと図7Bにその断面を示す構造になる。さらに、 ている部分に付着していることがあるため、外装メーキー30 加熱などを施しながら半導体装置周辺のフィルム10を **利離すると図りに示すような本実施例の構造となる。** なお、第2の実施例と同様に外部電極8の外側の外部配 綴11を、ニュルム1(を剥離する跡、切断しやすいよ うにあらかじめ細くしておくとよい。

> 【0013】さらに、第4および第5の実施例として、 図8に断面図を示すように、外部電極8を2重に配置し た構造も、前述してきた実施例より容易に作成される。 本実施例の構造の場合、前述の実施例より半導体装置の 大きさは少し大きくなるが、外部電極8同士の間隔が出 - 住できるために基板実装時の半田によるブリッジ (電極) 腊ミュート) が発生したとした利点がある

支流されていた カーキ海体です - 三嚢面部のよい。 |封正材で以外の樹脂材料を介した面が、外部電極との下 前よりさらに高いてきるので、第3の実施例のところで サールが整定装飾の物理が出げまりまがらり、デモディ

(4)

【発明の効果】以上の説明から明らかなように、この発明の半導体装置では内部導出リードの接続点の裏面を半導体装置の外部電極としたので、半導体チップの大きさに近い寸法の半導体装置を提供できる。また、導みに関しても、約0.5mm前後の厚みの半導体装置を提供できる。

5

【図面の簡単な説明】

【図1】この発明の第1の実施例の断面図。

【図 2】 第 3 の実施例の半導体装置の第 1 の作成方法を 説明する断面図。

【日3】第1の実施例の半導体装置の第2の作成方法を 説明する断面図。

【図4】この発明の第2の実施例の断面図。

【閏5】第2の実施例の半導体装置の作成方法を説明する断面図。

【図6】この発明の第3の実施例の断面図。

【閏7】第3の実施例の半導体装置の作成方法を説明する 所面図。

【図8】この発明の第4および第5の実施例の断面図で、Aは第4の実施例、Bは第5の実施例である。

【図9】この発明の第6の実施例の断面図。

【閏10】従来例の表面実装型半導体装置の断面図。

【図11】従来例の表面実装型半導体装置を基板に実装 した状態の断面図。

【図 1 2 】 従来例の表面実装型半導体装置の外部導出サードの変形状態を示した説明圏で、A は斜視圏、B は平面図である。

【図13】従来例の表面実装型半導体装置の断面図である。

【符号の説明】

10 1 斗導体チップ

2 ダイバッド

3 ポンディングワイヤ

4 707

5 封止村

6 内部導出リート

7 外部導出リート

8 外部電極

9 外装メッキ

10 77724

20 11 外部配線

[[图1]

A 2 3 5 6 B A 3 5 6 B A 3 5 6 B A 4 B A 5 C A 5

[图2]

フロントページの続き

 (51) Int. Cl. 3
 識別記号
 序內整理番号
 F I
 技術表示證明

 H 0 1 L 23/50
 G 9272-4M

 R 9272-4M