Robust Ordinal Embedding from Contaminated Relative Comparisons

Ke Ma^{1,2}, Qianqian Xu³, Xiaochun Cao¹

SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
 School of Cyber Security, University of Chinese Academy of Sciences
 VIPL. Institute of Computing Technology, Chinese Academy of Sciences

November 14, 2018

Ordinal Embedding

Suppose the relative comparisons, e.g. (i,j,l,k), are consistent with a low-dimensional embedding, our goal is to associate each item with a point $x \in \mathbb{R}^p$ such that

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 < \|\mathbf{x}_I - \mathbf{x}_k\|_2.$$

Wait a minute

Actually, we only collect the contaminated relative comparisons from different annotators

Multi-stage Method

▶ The multiple-edges are aggregated, e.g. majority voting.

Condorcet's paradox!

Cons:

- pruning the right comparison direction
- leading to the well-known 'Condorcet's paradox'

Multi-stage Method

▶ Maximum acyclic subgraph approximation.

Cons:

- ► NP-complete problem
- ▶ the available data would be rare.

Preliminaries

- object set $\mathcal{O} = \{\boldsymbol{o}_1, \dots, \boldsymbol{o}_n\}$
- similarity function $\zeta: \mathcal{O}^2 \to \mathbb{R}^+$
- relative comparison set

$$C_{\mathcal{U}} = \left\{ (i,j,l,k)_{u} \middle| \begin{array}{c} i, j, l, j \in [n], u \in \mathcal{U} \\ i \neq j, l \neq k, (i,j) \neq (l,k) \end{array} \right\}$$

and the corresponded comparison graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ where $\mathcal{V} = \{v_{ij}|i,j \in [n]\}$ and $\mathcal{E} = \{\boldsymbol{e}_c^{\mathcal{U}}, \boldsymbol{e}_{\bar{c}}^{\mathcal{U}}\}.$

▶ multiple edge $e_c^{\mathcal{U}} = \{e_c^u, c_u \in \mathcal{C}_{\mathcal{U}}\}$, and the indicator y_c^u on e_c^u is $y_c^u = 1$ if e_c^u existed. Furthermore, the weight of $e_c^{\mathcal{U}}$ is

$$w_c = \sum_{u \in \mathcal{U}} [y_c^u = 1], \ c_u \in \mathcal{C}_{\mathcal{U}}$$

The Proposed Unified Framework

▶ Detecting the outliers in the edge set \mathcal{E} . A set of unknown variables $\gamma = \{\gamma_c\} \in \mathbb{R}^{|\mathcal{E}|}$ indicate whether the edge $\mathbf{e}_c^{\mathcal{U}}$ is an outlier or not. The outlier detection task in $\mathcal{C}_{\mathcal{U}}$ thus becomes the problem of estimating γ with \mathcal{G} .

▶ Obtaining an embedding $X \in \mathbb{R}^{p \times n}$. Given $e_c^{\mathcal{U}} \in \mathcal{E}$ which represents the correct relative similarity measurement, we hope the embedding X satisfies

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} < \|\mathbf{x}_{l} - \mathbf{x}_{k}\|_{2}^{2}, \ c_{u} = (i, j, l, k)_{u} \in \mathcal{C}_{\mathcal{U}}.$$

A Linear Model

▶ Given an edge $\mathbf{e}_c^{\mathcal{U}} \in \mathcal{E}$, its corresponding direction indicator y_c is modeled as

$$y_{c} = \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} - \|\mathbf{x}_{l} - \mathbf{x}_{k}\|_{2}^{2} + \gamma_{c} + \varepsilon_{c}$$

= $d_{ij}^{2} - d_{lk}^{2} + \gamma_{c} + \varepsilon_{c}$. (1)

It is known that there is a map between the distance matrix \boldsymbol{D} and the Gram matrix $\boldsymbol{G} = \{g_{ij}\} = \boldsymbol{X}^{\top}\boldsymbol{X}$ as

$$d_{ij} = g_{ii} - 2g_{ij} + g_{jj}$$

and (1) can be written as

$$\mathbf{y} = \mathbf{Z} \odot \mathbf{G} + \gamma + \varepsilon, \tag{2}$$

where

$$\mathbf{Z}\odot\mathbf{G}=\mathbf{Z}\mathbf{g}=\mathbf{Z}\cdot vec(\mathbf{G}).$$

Robust Ordinal Embedding

minimize
$$\mathcal{L}_{\boldsymbol{w}}(\boldsymbol{G}, \boldsymbol{\gamma}) + \lambda \|\boldsymbol{\gamma}\|_{1, \boldsymbol{w}}$$

subject to $\operatorname{rank}(\boldsymbol{G}) = p, \ \boldsymbol{G} \succeq 0$

where

$$\mathcal{L}_{\boldsymbol{w}}(\boldsymbol{G}, \boldsymbol{\gamma}) = \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{Z} \odot \boldsymbol{G} - \boldsymbol{\gamma}\|_{2, \boldsymbol{w}}^{2}$$

$$= \frac{1}{2} \sum_{\boldsymbol{e}_{c}^{\mathcal{U}} \in \mathcal{E}} w_{c}^{2} (y_{c} - \gamma_{c} - d_{ij} + d_{lk})^{2}$$

$$= \frac{1}{2} \|\boldsymbol{W}\boldsymbol{y} - (\boldsymbol{W}\boldsymbol{Z}) \odot \boldsymbol{G} - \boldsymbol{W}\boldsymbol{\gamma}\|_{2}^{2}$$
(4)

and

$$\|\boldsymbol{\gamma}\|_{1,\boldsymbol{\mathsf{w}}} = \sum_{\boldsymbol{\mathsf{e}}^{\mathcal{U}} \in \mathcal{E}} w_{\boldsymbol{c}} |\gamma_{\boldsymbol{c}}| = \|\boldsymbol{W}\boldsymbol{\gamma}\|_{1}$$
 (5)

Optimization

$$\mathcal{L}_{\boldsymbol{w}}(\boldsymbol{G}, \boldsymbol{\gamma}) = \frac{1}{2} \|\boldsymbol{y}_{\boldsymbol{w}} - \boldsymbol{W}\boldsymbol{Z} \cdot \boldsymbol{g} - \boldsymbol{W}\boldsymbol{\gamma}\|_{2}^{2}$$

$$= \frac{1}{2} \|\boldsymbol{y}_{\boldsymbol{w}} - \begin{bmatrix} \boldsymbol{W}\boldsymbol{Z} \\ \boldsymbol{w} \end{bmatrix} \begin{pmatrix} \boldsymbol{g} \\ \boldsymbol{\gamma} \end{pmatrix} \|_{2}^{2}$$

$$= \frac{1}{2} \|\boldsymbol{y}_{\boldsymbol{w}} - \boldsymbol{A} \cdot \boldsymbol{\beta}\|_{2}^{2} := f(\boldsymbol{\beta})$$
(6)

$$\lambda \|\gamma\|_{1,\mathbf{w}} = \lambda \left\| \begin{bmatrix} \mathbf{0} & \mathbf{g} \\ \gamma \end{pmatrix} \right\|_{1} = \lambda \|\mathbf{B} \cdot \boldsymbol{\beta}\|_{1} := g(\boldsymbol{\beta}).$$
 (7)

With (6), (7) and ignoring the constraints on \boldsymbol{G} , (3) is equivalent to a *LASSO* formulation

$$\underset{\beta}{\text{arg min }} F(\beta) := f(\beta) + g(\beta) \tag{8}$$

Let $\mathcal F$ be the feasible set of (8) and suppose $\mathbf G^*$ is a optimal solution of (3), it holds that $\mathbf G^* \in \mathcal F$. As a consequence, we come to a semi-definite programming with rank equality constraint

find
$$\boldsymbol{G}$$
, γ
subject to \boldsymbol{G} , $\gamma \in \mathcal{F}$, $\boldsymbol{G} \succeq 0$, rank $(\boldsymbol{G}) = p$.

- Solving a SDP with rank equality constraints like (9) is notoriously difficult.
- Here we adopt the ran-reduction for semi-definite programming.

Solving the SDP

First, we solve the following optimization problem

find
$$\boldsymbol{G},\ \gamma$$
 subject to $\boldsymbol{G},\ \gamma\in\mathcal{F},\ \boldsymbol{G}\succeq0.$

For any L > 0, consider the following quadratic approximation of $F(\beta) := f(\beta) + g(\beta)$ at a given point β_0 :

$$Q_L(\beta, \beta_0) = f(\beta_0) + \langle \beta - \beta_0, \nabla f(\beta_0) \rangle + \frac{L}{2} \|\beta - \beta_0\|^2 + g(\beta)$$
(11)

which admits a unique minimizer

$$P_L(\beta) = \operatorname*{arg\,min}_{\beta} \left\{ g(\beta) + \frac{L}{2} \left\| \beta - \left(\beta_0 - \frac{1}{L} \nabla f(\beta_0) \right) \right\|^2 \right\}.$$

$$\boldsymbol{G}_{t+1} = \Pi_{\mathcal{S}_{+}^{n}} \left(\boldsymbol{G}_{t} - \frac{1}{L} \nabla_{\boldsymbol{G}} f(\boldsymbol{\beta}_{t}) \right)$$
 (12a)

$$\gamma_{t+1} = \mathcal{T}_{\mu} \left(\gamma_t - \frac{1}{L} \nabla_{\gamma} f(\beta_t) \right)$$
 (12b)

Rank Reduction

Here we reformulate (10) as a standard SDP

minimize
$$\|\gamma\|_{1,\mathbf{w}}$$

subject to $\langle \mathbf{G}, \mathbf{A}_c \rangle + \gamma_c = y_c, \ \mathbf{e}_c^{\mathcal{U}} \in \mathcal{E},$ (13)
 $\mathbf{G} \succeq 0,$