Life Table

Md. Moyazzem Hossain
Professor,
Department of Statistics and Data Science
Jahangirnagar University

1

Life Table

Life tables are a fundamental tool in survival analysis used to summarize the survival patterns of a population. They provide a method for estimating survival probabilities over discrete time intervals.

2

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

	Mortality rate Of 100,000 Males b		iles born alive	Total no. of years lived by each generation of 100,000 males		Average future lifetime
Year of age	No. dying per 1000 alive at beginning of year of age	No. living at beginning of year of age	No. dying during year of age	In year of age	In year of age and all later years	Average no. of years of life remaining at beginning of year of age
(1)	(2)	(3)	(4)	(5)	(6)	(7)
x to x+1	1000q _x	1 x	d_x	Lx	T_x	o e_x
O-1	46.99	100,000	4,699	96,254	6,148,198	61.48
1-2	3.77	95,301	321	95,141	6,051,944	63.50
2-3	1.97	94,980	187	94,887	5,956,803	62.72
3-4	1.34	94,793	127	94,729	5,861,916	61.84
4-5	1.02	94,666	96	94,618	5,767,187	60.92
5-6	.87	94,570	83	94,528	5,672,569	59.98
6-7	.76	94,487	72	94,451	5,578,041	59.03
7-8	.68	94,415	64	94,383	5,483,590	58.08
8-9	.63	94,351	60	94,321	5,389,207	57.12
9-10	.60	94,291	57	94,263	5,294,886	56.15
10-11	.60	94,234	57	94,206	5,200,623	55.19
20-21	2.36	93,108	219	92,998	4,262,592	45.78
30-31	3.89	90,270	351	90,094	3,344,751	37.05
40-41	7.49	85,744	643	85,423	2,462,516	28.72
50-51	15.65	77,239	1,208	76,636	1,643,592	21.28
60-61	31.37	61,669	1,934	60,702	943,071	15.29
70-71	56.90	39,914	2,271	38,778	431,391	10.81
75-76	66.73	29,064	1,939	28,095	259,534	8.93
810Hd8.1M	oyaz zen Hossa	ain, Prof??Dept.	of 1,767	19,110	137,352	6.87
Statist	ics and and so	cience! 500	1,427	10,906	58,993	5.08
90-91	203.04	5,174	1,050	4,650	17,697	3.42

3

Life table

- The Life table method is very useful for a large sample, but the estimated results will depend on the chosen interval length.
- The larger the interval, the poorer the estimations.
- You should apply the Kaplan-Meier method if the sample is small.

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Life Table

To construct a life table, two things are required

- Population living at all individuals ages in a selected year
- Number of deaths that occurred in these ages during the selected year

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science. JU

5

Life Table

Person Years

- It is the sum of the number of years that each member in the study population is under observation
- The individuals are observed for different periods of time, the unit used for counting the observation time is person-year

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Key Components of Life Table

 l_x : Number of individuals surviving to the start of the age interval x.

 d_x : Number of individuals dying during the age interval x.

 q_x : Probability of dying during the age interval x.

 p_x : Probability of surviving through the age interval x.

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

7

Life table

- observed data:
- mortality rates:
- mortality probabilities:
- survival probabilities:
- number surviving:
- number dying:

- D_x and P_x
- $M_x = D_x/P_x$
- $q_x = M_x/(1 + 0.5 M_x)$
- $p_x = 1 q_x$
- $l_{x} = l_{x-1} p_{x-1}$
- $\mathbf{d}_{\mathbf{x}} = \mathbf{l}_{\mathbf{x}} \mathbf{l}_{\mathbf{x}+1}$

8

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Given data

Age	Deaths	Population
X	D_x	P _x
0	D_0	P ₀
1	D ₁	P ₁
2	D_2	P ₂
:	:	:
99	D ₉₉	P ₉₉
100 (=100+)	D ₁₀₀	P ₁₀₀

9

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

9

Life table, step 1: UK males 1998, numbers

Λαο	Dootho	Donulation
Age	Deaths	Population
X	D_{x}	P_{x}
0	2327	364800
1	190	375100
2	117	369000
:	:	:
99	215	561
100	319	678

10

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Life table, step 2: compute observed mortality rates by age, M_x

Mortality rate at age x

= Deaths at age x/Population at risk at age xDeaths are recorded in period-age age-time spaces

Population at risk

either mid-year population aged x or average of start and end of year population aged x

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

11

Life table, step 2: compute observed mortality rates by age, M_x , variables

		X	
Age	Death	Population	Mortality rates
	S		
X	D_{x}	P_{x}	$M_x = D_x/P_x$
0	D_0	P_0	$M_0 = D_0/P_0$
1	D ₁	P_1	$M_1 = D_1/P_1$
2	D_2	P_2	$M_2 = D_2/P_2$
:	:	••	:
99	D ₉₉	P ₉₉	M ₉₉ =D ₉₉ /P ₉₉
100 (=100+) Md. Moyazzem Hossain, P Statistics and Data Science		P ₁₀₀	$M_{100} = D_{100} / P_{100}$

Life table, step 2: compute observed mortality rates by age, M_x , UK males 1998, numbers

Age	Deaths	Population	Mortality
			rate
X	D_{x}	P_{x}	M_x
0	2327	364800	0.006379
1	190	375100	0.000507
2	117	369000	0.000317
:	:	:	:
99	215	561	0.382851
100 Md. Moyazzem Hossain	Prof Dept of	678	0.469674

13

Statistics and Data Science, JU

13

Life table, step 3: compute the probabilities of dying between age x and x+1, q_x

The equation

$$q_x = M_x/(1 + 0.5M_x)$$

14

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Life table, step 3: compute the probabilities of dying between age x and x+1, q_x , variables

Age	Mortality	Mortality probability
	rate	
X	M_{x}	q_x
0	M_0	$q_0 = M_0 / (1 + 0.5 M_0)$
1	M_1	$q_1 = M_1/(1+0.5M_1)$
2	M_2	$q_2 = M_2/(1 + 0.5 M_2)$
:	:	
99	M ₉₉	$q_{99}=M_{99}/(1+0.5M_{99})$
100 (=100+)	of Dept of	q ₁₀₀ = 1.0000

Statistics and Data Science, JU

Life table, step 3: compute the probabilities of dying between age x and x+1, q_x , UK males 1998

Age	Mortality rate	Mortality probability
X	M_x	q_x
0	0.006379	0.006342
1	0.000507	0.000506
2	0.000317	0.000317
:	:	:
99	0.382851	0.321338
1000y(221000) Prof., Dep	ot. of 0.469674	1.000000

Life table, step 4: compute the probabilities of surviving from age x to x+1, p_x

Probability of survival from age x to x+1, p_x $p_x = (1 - q_x)$

17

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

17

Life table, step 4: compute the probabilities of surviving from age x to x+1, p_x , UK males 1998

Age	Mortality rate	Mortality probability	Survival probability
		'	
X	M_{x}	q_x	p _x
0	0.006379	0.006342	0.993658
1	0.000507	0.000506	0.999494
2	0.000317	0.000317	0.999683
	:	:	
99	0.382851	0.321338	0.678662
100 Md_Moyazzem_Hossair	0.469674	1.000000	0.000000

18

Statistics and Data Science, JU

Life table, step 5: compute the numbers surviving to age x, I_x - concept

- Life tables have a radix (number base) = hypothetical constant number born each year into a stationary population
- **Usually radix** = **100000** but you can use 10000 or 1000000 or 1 (in this case the survivors variable has a probability interpretation)
- 1_x = number of survivors of birth cohort who have attained age x (exact age or birthday)
- The number surviving to age x is the number surviving to age x-1 times the probability of surviving from age x-1 to age x

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

19

Life table, step 5: compute the numbers surviving to age x, I_x - formulae

- $l_x = l_{x-1} \times p_{x-1}$ • e.g. $l_2 = l_1 p_1$
- We can include prior equations to obtain an expression for $l_{\rm x}$ which is linked to the radix
- $l_x = l_0 p_0 \times p_1 \times \ldots \times p_{x-1} = l_0 \times \prod_{y=0,x-1} p_y$
- A picture can clarify this

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Life table, step 5: compute the numbers surviving to age x, I_x , UK males 1998

Age	Survival probability	Cohort survivors
Х	p _x	l _x
0	0.993658	100000
1	0.999494	99366
2	0.999683	99315
:	:	:
99	0.678662	619
100 Md. Moyazzem Hossain, Prof. J	0.00000	420

21

Statistics and Data Science, JU

21

Life table, step 6: compute the numbers dying between ages x and x+1, d_x

- Some of the stationary birth cohort will die between the exact ages
- \bullet The number, d_x , is computed from
 - Successive cohort survivors

$$\bullet \ \mathbf{d}_{\mathbf{x}} = \mathbf{l}_{\mathbf{x}} - \mathbf{l}_{\mathbf{x}+1}$$

Multiplication of cohort survivors by mortality probability

•
$$d_x = l_x \times q_x$$

22

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Life table, step 6: compute the numbers dying between ages x and x+1, d_x

Age	Mortality probability	Cohort survivors	Cohort non- survivors
X	q_x	I _x	d _x
0	0.006342	100000	634
1	0.000506	99366	50
2	0.000317	99315	31
:	:	:	:
99	0.321338	619	199
100 Md. Moyazzem. Ho	1.000000 ssain, Prof. Dept. of	420	420

23

Statistics and Data Science, JU

23

Life table, summary of formulae

- ullet Step 1, observed data: D_x and P_x
- Step 2, mortality rates: $M_x = D_x/P_x$
- Step 3, mortality probabilities: $q_x = M_x/(1 + 0.5 M_x)$
- Step 4, survival probabilities: $p_x = 1 q_x$
- Step 5, number surviving: $l_x = l_{x-1} p_{x-1}$
- Step 6, number dying: $d_x = l_x l_{x+1}$

24

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU

Example_ Life Table

Gro (x	ge oup to +5)	Number of Deaths (Dx)	populatio n (Px)	Mortalit y rates (Mx)	Mortality probabili ty (qx)	Survival probabili ty (px)	Cohort survivor s (lx)	Cohort non- survivor s (dx)
0-	-4	2,500	36480	0.068531	0.06626	0.93374	100000	6626.027
5-	-9	1700	37510	0.045321	0.044317	0.955683	93373.97	4138.054
10-	-14	1200	36900	0.03252	0.032	0.968	89235.92	2855.549
15-	-19	700	35000	0.02	0.019802	0.980198	86380.37	1710.502
20-	-24	600	34600	0.017341	0.017192	0.982808	84669.87	1455.642
25-	-29	250	28750	0.008696	0.008658	0.991342	98280.8	850.916
5	Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data ScienceIU							

25

Thank you

26

Md. Moyazzem Hossain, Prof., Dept. of Statistics and Data Science, JU