计算机组成原理与系统结构

第2章 计算机硬件基础

- 半导体器件的开关特性
- 2. 2 基本逻辑运算和基本门电 路
- 2.3 组合逻辑电路实例
- 2.4 时序逻辑电路
- 2. 5 计算机芯片的制造过程
 - 本章小结

2.3 组合逻辑电路实例

组合逻辑电路设计方法

二进制加法器

算术逻辑运算单元

ALU

译码器

数据选择器

一、组合逻辑电路设计方法

- 1. 组合逻辑电路的特点:
 - 当输入信号变化时,输出信号也跟着变化。
 - 在计算机 CPU 设计中,组合电路通常被用来产生控制信号,它的输入可能是指令的操作码和状态信号,而其输出则是寄存器、存储器等等的写入控制信号和数据选择信号。

一、组合逻辑电路设计方法

- 2. 组合逻辑电路的设计步骤:
 - 分析该逻辑电路的逻辑要求;
 - 根据逻辑要求确定输入变量和输出变量;
 - 将输入输出关系表示成真值表;
 - 根据真值表写出输出函数的逻辑表达式,并化 简;
 - 画出逻辑电路。

二、二进制加法器

- ❖加法器是计算机基本运 算部件之一。
- ❖一位二进制全加器:
 - 輸入变量: 3个,即加数X_n、被加数 Y_n和低位来的进位 C_n;
 - 输出变量: 2个,即本位的和 S_n、向高位的进位C_{n+1}。

一位全加器真值表

X _n	Y _n	C _n	F _n C _{n+1}
0	0	0	0 0
			1 0
0	0	1	1 0
0	1	0	0 1
0	1	1	1 0
1	0	0	0 1
1	0	1	0 1
1	1	0	1 1
1	1	1	

二、二进制加法器

❖由真值表得全加器输出 F_n和 C_{n+1}的表达

$$\overrightarrow{X}_{n} = X_{n} \overline{Y}_{n} \overline{C}_{n} + \overline{X}_{n} Y_{n} \overline{C}_{n} + \overline{X}_{n} \overline{Y}_{n} C_{n} + X_{n} Y_{n} C_{n}$$

$$C_{n+1} = X_{n} Y_{n} \overline{C}_{n} + X_{n} \overline{Y}_{n} C_{n} + \overline{X}_{n} Y_{n} C_{n} + X_{n} Y_{n} C_{n}$$

$$= X_{n} Y_{n} + X_{n} C_{n} + Y_{n} C_{n}$$

❖化简可得:

$$F_n = X_n \oplus Y_n \oplus C_n$$

$$C_{n+1} = X_n Y_n + (X_n + Y_n)C_n$$

$$= X_n Y_n + (X_n \oplus Y_n)C_n$$

一位全加器逻辑电路

四位二进制加法器

由 4 个全加器串连构成行波进位加法器

- ■特点:位间进位是串行传送(称为行波进位),即本位全加和 Fi 必须等低位进位 Ci 来到后才能得到
- ■缺点:加法时间与位数有关,速度较慢。

- ❖在行波进位加法器基础上进行改造,以便并行产生进位,构成并行进位加法器。
- ❖方法: 断开进位链

并行进位电路

引入两个辅助函数 G_i 和

则由: C_{i+1}=X_iY_i+(X_i+ Y_i)C_i

$$\begin{aligned}
& \underbrace{e_1} = \underbrace{e_1} + \underbrace{P_1 e_2} = \underbrace{e_1} + \underbrace{P_1 (G_0 + P_0 C_0)} = \underbrace{e_1 + P_1 G_0 + P_1 P_0 C_0} \\
& \underbrace{c_3} = \underbrace{G_2} + \underbrace{P_2 C_2} = \underbrace{G_2} + \underbrace{P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0} \\
& \underbrace{c_4} = \underbrace{G_3} + \underbrace{P_3 C_3} = \underbrace{G_3 + P_3 G_2} + \underbrace{P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0}
\end{aligned}$$

结论: C_{i+1} 的产生不再依赖于 C_i, 而是依赖于

 G_i 、 P_i 及 C_o ,即:进位C是参加运算的数据

■特点:采用"并行进位法"或"超前进位产生

电路"来同时形成各位的进位。

■优点:运算速度大大加快。

❖上述 4 位并行进位加法器的逻辑框图:

三、算术逻辑运算单元 ALU

- ❖ALU (Arithmetic & Logic Unit): 算 术逻辑运算单元,计算机中可以进行逻辑 运算和算术运算的部件。
 - 全加器: 只能对输入数据进行加法运算。
 - ALU 的实现: 在并行进位加法器的基础上, 再加上一些逻辑电路和功能控制信号线,可形成多功能算术逻辑运算部件 ALU。

三、算术逻辑运算单元 ALU

- ❖74LS181 芯片: 4位多功能 ALU, 内部集成了并行进位电路。
 - 5 条功能选择线: S₃S₂S₁S₀ 和 M
 - 16 种算术运算: M = 0 时,由 S₃S₂S₁S₀ 来选择, C₂ = 0 有进位, C₂ = 1 无进位。
 - 16 种逻辑运算: M = 1 时,由 S₃S₂S₁S₀ 来选择

三、算术逻辑运算单元 ALU

❖74LS181 ALU 的构成

□将输入数据 A 和 B 经过 函数发生器形成它们的 不同组合(由功能选择 线 S₃S₂S₄S₆ 决定),再 送入并行进位加法器进 行加法运算,从而使得 ALU 能够实现各种的运 算功能。

- $X = f_{S1S0} (A, B)$
- $Y = f_{S3S2}$ (A, B)

S₁S₀控制 X 的产生,S₃S₂控制 Y 的

S ₃ S ₂	Υ	S ₁ S ₀	X
0 0	0000	0 0	Α
0 1	AB —	0 1	A+B
1 0	AB	1 0	A+B
1 1	A	1 1	1111

- ❖ 功能: Fn=Xn ⊕ Yn ⊕ (M·Cn)
- ❖ 算术运算(M=0)即为: F=X 加 Y 加 Cn
- *逻辑运算(M=1):由Fn=Xn⊕Yn⊕1=Xn⊙Yn推算

0

<	选择		正逻辑			
	S ₃ S ₂ S ₁ S ₀	M=H 逻 辑运算	M=L 算术运算			
		再 心 异	Cn=H 无进位	Cn=L 有进位		
		F=A F=A+B F=A B F=0	F=A F=A+B F=A+B F=減1(-1)	F=A 加 1 F=(A+B) 加 1 F=(A+B) 加 1 F=0		
		F=B F=A F=A F=A	F=A加AB F= (A+B)加AB F=A减B减1 F=AB减1	F=A加AB加1 F=(A+B)加AB 加1 F=A减B F=AB		
		F=A+B F=A+B F=B F=AB	F=A加AB F=A加B F=(A+B)加AB F=AB减1	F=A 加 AB 加 1 F=A 加 B 加 1 F=(A+B) 加 AB 加 1 F=AB		
	H H L L H H L H	F=1 F=A+B F=A+B	F=A 加 A F=(A+B) 加 A F=(A+B) 加 A	F=A 加 A 加 1 F=(A+B) 加 A 加 1		

功能验证举例

以
$$S_3S_2S_1S_0 = 0100, M = 1$$
为例:
则 $X = A\overline{B}, Y = A$

$$F = X \oplus Y \oplus \overline{(M \bullet C\overline{n})}, 因为逻辑运算M = 1$$
所以 $F = X \oplus Y \oplus 1 = \overline{X \oplus Y} = XY + \overline{X}\overline{Y}$

$$\therefore F = \overline{AB} \oplus \overline{A} = A\overline{B} \bullet A + \overline{AB} \bullet \overline{A}$$

$$= A\overline{B} + \overline{(A + B)} \bullet \overline{A}$$

$$= A\overline{B} + \overline{A} \quad (\overline{W} \Psi)$$

$$= \overline{A} + \overline{B} \quad (\overline{h} W \Psi)$$

$$= \overline{AB} \quad (\overline{h} W \Psi)$$

由 74LS181 构成 16 位 ALU

- ❖用 4 片 74LS181 构成 16 位 ALU
 - 74LS181 片内: 并行进位
 - 片间:串行进位。

由 74LS181 构成片间并行进位的 16 位

- ❖用 4 片 74LS181 和 1 片 74LS182 构成
 - ❖ 74LS181 片内:并行进位;片间:并行进位。

四、译码器

1. 译码器功能:

■把输入编码译成相应的控制电位,作为芯片的 片选信号或其他操作控制信号。

2. 特点:

- 有 n 个输入变量, 2ⁿ 条输出变量 (n 2ⁿ);
- 输入信号的 2ⁿ 个编码对应于 2ⁿ 条输出线输出 : 当输入为某一编码时,对应仅有一根输出为 "0" (或为"1"),其余输出均为"1" (或为"0")。

3. 常用的译码器芯片:

- 74LS139: 双2-4译码器 (n = 2)
- 74LS138: 3 8 译码器 (n = 3)

74LS139

- ❖内部集成了两个 2
 - 一 4 译码器;
- ❖功能表:
 - "使能"控制端E
 : 用来控制端器是
 否工作,当 E#端为
 " 1" 计 禁止译码
 器工作,此时译码器
 的所有输出线均为无
 效即" 1"。

输入			输出			
E	В	A	Y ₀	Y ₁	Y ₂	$\overline{Y_3}$
H L L L L	X H L	X L L H H	T = 7/L/T	= 1 /-/= =		1111/

X:指可以取值1或者0

74LS139

❖按照真值表,四个输出的逻辑代数式为:

$$\overline{Y_0} = \overline{E} \overline{B} \overline{A}$$

$$\overline{Y_1} = \overline{E} \overline{B} A$$

$$\overline{Y_2} = \overline{E} B \overline{A}$$

$$\overline{Y_3} = \overline{E} B A$$

❖2 - 4 译码器逻辑电路:

74LS138

❖3输入8 输出的译 输出。 码器: 3 一8译码 器;

◇ 功能表:
 当 G₁G₂₄G₂₃ =
 HLL 时,译码器才工作。

输入		输出		
$G_1\overline{G_{2A}}\overline{G_{2B}}$	СВА	Y_7 Y_6 Y_5 Y_4 Y_3 Y_2 Y_1 Y_0		
100	000	1 1 1 1 1 1 0		
100	0 0 1	1 1 1 1 1 0 1		
100	010	1 1 1 1 1 0 1 1		
100	0 1 1	1 1 1 1 0 1 1 1		
100	100	1 1 1 0 1 1 1		
100	101	1 1 0/1 1/1 1		
100	110	1 0 1 1 1 1 1		
100	111	0 1 1 1 1 1 1		
0 X X	XXX	1 1 1 1 1 1 1		
X 1 X	XXX	1 1 1 1 1 1 1		
X X 1	XXX	1 1 1 1 1 1 1		

五、数据选择器

- 1. 数据选择器也称多路选择开关。
- 数据选择器是从 2ⁿ 个输入数据中选择一个送到输出端,选择哪一个输入数据由 n 位地址输入来选择决定。Y = (\overline{S_0}\overline{S_1}D_0 + S_0\overline{S_1}D_1 + \overline{S_0}S_1D_2 + S_0S_1D_3\overline{E}}

表2-7 四选一选择器功能表

Ē	Sı S.	D, D, D, D,	Y
1	хх	x x x x	0
0	1 1	D, × × ×	D,
0	1 0	× D ₁ × ×	D ₂
0	0 1	× × D ₁ ×	D1
0	0 0	x x x D,	D.

The Engl