Complete the square and state the vertex and the maximum/minimum point for:

$$y = x^{2} + 2x + 3$$

$$= x^{2} + 2x + 1 - 1 + 3$$

$$= (x + 1)^{2} + 2$$

$$\text{vertex } (-1, 2)$$

ri					
Parabola	Complete	Vertex	Maximum	y'	y' = 0
	the		or		
	Square		Minimum		
			Y- Value		
$y = x^2 - 2x + 5$	y=tx-1)+1	(1,5)	min	y': 2x-2	X=
$y = -x^2 + 6x - 3$ $-(x^2 - 6x) - 3$	y(x-3)2+6	(3,6)	Max	y'= ->x+6	x=3
			min	y: 6x+6	12- 1
$y = 4x^2 - 12x + 7$ $4(x^2 - 3x) + 7$	y= 4(x-1.5)	(15, -2)	MiN	y'=8x-12	N2 3
$y = -x^2 + 2x - 2$ $-(x^2)x - 2$	y= -(x-1)2-1	<u>(1,-1)</u>	max	y'= -2x + 2	x=
$y = -5x^2 + 10x$ $-5(x^2 - 2x)$	y= -J(x-1) ² -15	(1,5)	Max	y'=-10x+10	X= 1

A max or a min occurs when f'(b)=0

Maximum

A <u>local maximum</u> occurs when an <u>increasing</u> interval is followed by a <u>decreasing</u> interval.

Minimum

A local minimum occurs when a decreasing interval is followed by an increasing interval.

Stationary Points

A stationary point occurs when f(x) = 0

Stationary points may be local maximums, local minimums or horizontal (stationary) inflections (coming up).

Example #1

The tangents at points A, O, and B are horizontal.

Classify points A, O, and B. - stationary points

b Draw a sign diagram for the gradient function f'(x) for all x.

d Draw a sign diagram for f(x) for all x.

Example #2

Find all stationary points and classify each for

$$y = x^3 - 6x^2 - 4$$

$$x=0$$
, $x=4$ $(0,-4)$, $(4,-36)$

Example #3

Find and classify all stationary points of

$$y = 3x^4 + 4x^3 - 12x^2$$

$$\frac{dy}{dx} = 12x^3 + 12x^2 - 24x$$

dy dx

$$\frac{-1}{\gamma^{-2}} \int_{0}^{+} \frac{1}{\gamma^{-2}} \chi$$

$$\min_{n \in \mathbb{N}} \min_{n \in \mathbb{N}} \frac{1}{\gamma^{-2}} \int_{0}^{+} \frac{1}{\gamma^{-2}} \chi$$

maximum point: (0,0)