	Comp. 1	Comp. 2
	Modéliser des systèmes à l'aide des lois et des équations de l'ÉM	Résoudre de façon analytique des
Évaluation du rapport de S3-GE APP2 - Électromag.		
	60	30
Total:	60	30
Partie 1 Montrer que le couple N que subit par rapport à son centre un moment magnétique m (considéré comme un petit anneau circulaire de courant) plongé dans un champ magnétique B est donné par N = m x B	4	4
Partie 2 Détailler dans le rapport les calculs qui permettent de trouver l'équation qui régit l'évolution d'un moment magnétique dans un champ magnétique	4	
quelconque, soit dm/dt =γ m x B		
Partie 3 Calculs pour lien de proportionalité entre moment magnétique du proton et son moment cinétique; déterminer constante de proportionnalité et consigner calculs et résultats dans le rapport		
i) Calculer le vecteur moment magnétique du proton	2	3
ii) Calculer le moment cinétique du proton		3
iii) Faire le lien entre le moment magnétique et le moment cinétique pour arriver à la bonne équation et écrire le bon rapport gyromagnétique	1	
Partie 4 i) Comparer valeur de la constante de proportionalité (rapport gyromagnétique) obtenue à celle de la littérature	2	
ii) Brève explication de la non-correspondance entre rapport gyromagnétique classique et la bonne valeur (v.~Internet)	2	
Partie 5		
Déterminer comment l'éq.1 prédit mathématiquement la précession en présence d'un champ magnétique statique (calculs dans le rapport)		5
Partie 6 Pour la précession (à consigner dans le rapport): A) déterminer		
i) autour de quel axe elle s'effectue	2	
ii) à quelle fréquence autour de l'axe celui-ci	2	
iii) dans quel sens	2	
B) interpréter la solution obtenue à l'aide d'un schéma	2	
C) expliquer pourquoi plus le champ statique est intense plus la fréquence de précession est rapide	2	

Partie 7		
Tenir compte de l'excitation radiofréquence dans l'éq.1		
 i) Écrire une formule pour le champ magnétique B1(t) correspondant à une excitation radiofréquence 	2	
ii) Ajouter le terme qui correspond à B1(t) dans l'éq.1	2	
Partie 8 Déduire le premier terme dans l'équation de Bloch (consigner le développement dans le rapport)	2	
Partie 9 Déterminer approximativement combien de fois le champ magnétique terrestre représente un champ de 1 T	2	
Partie 10 Trouver une expression analytique pour le champ magnétique sur l'axe d'un solénoïde de longueur finie L en fonction de z	2	5
Partie 11		
i) Afficher sur un même graphique pour les longueurs de solénoïde de 20, 40, 60 et 100~cm l'expression analytique normalisée du champ magnétique en fonction de z dans la zone d'intérêt à l'aide d'un logiciel	2	
ii) Calculer avec l'expression analytique du champ selon l'axe le rapportB_z_max,axe / B_z=0,axe en % pour chacune des longueurs de solénoïde		2
Partie 12		
 i) Calculer le nombre de tours de fil requis pour avoir l'intensité de champ voulue (7 T) au centre du solénoïde pour chacune des longueurs envisagées du solénoïde 	5	
ii) Évaluer longueur totale de fil nécessaire pour chacune des longueurs de solénoïde	1	
Partie 13 Calculer la puissance totale dissipée dans la longueur du fil de cuivre	3	
Partie 14 Discuter la faisabilité de réaliser un système avec du fil de cuivre	1	
Partie 15 i) Écrire une expression analytique pour le champ magnétique sur l'axe produit par une paire de Maxwell sur l'axe	3	1

ii) Montrer que le champ produit par la paire de Maxwell donne en bonne approximation un gradient linéaire croissant selon z (c.à.d. une fonction linéaire croissante de z) et utilisant un développement de Taylor et lorsque leur espacement et les sens des courants dans les spires sont bien choisis	3	6
Partie 16		
Déterminer le courant nécessaire dans chacune des spires de la paire de Maxwell		
pour un gradient de 10 mT/mètre	2	1
Partie 17		
Afficher sur un graphique à l'aide d'un logiciel l'expression exacte du gradient de		
champ ainsi que son approximation linéaire pour les comparer	3	
Partie 18		
Proposer deux approches possibles pour améliorer la linéarité et les discuter		
brièvement	2	