

ALY 6980: INDIVIDUAL PROPOSAL

Week 6:

Proposal for YOLO v9 Implementation to Track Vehicle Count and Enhance Transit Signal Priority in Intelligent Transport Systems Using Big Data Techniques

Submitted To:

Prof. Chinthaka Pathum Dinesh Herath Gedara, Faculty Lecturer

Submitted By: Abhilash Dikshit

Academic Term: Winter 2024
Northeastern University, Vancouver, BC, Canada
Master of Professional Studies in Analytics

March 12, 2024

<u>Proposal for YOLO v9 Implementation to Track Vehicle Count and Enhance Transit Signal Priority in Intelligent Transport Systems Using Big Data Techniques</u>

I. Introduction:

The project aims to implement YOLO v9, an advanced Al-powered system, to track vehicle count and enhance transit signal priority (TSP) in intelligent transport systems. The rationale behind this project is to address the limitations of existing TSP systems by leveraging state-of-the-art deep learning techniques and big data analytics.

II. Background:

Current TSP systems often suffer from low accuracy and inability to adapt to changing traffic conditions. These limitations result in increased travel times, reduced productivity, and higher emissions. YOLO v9 seeks to overcome these challenges by utilizing real-time video feeds from traffic cameras and sensor data to provide accurate and timely traffic predictions.

III. Quantitative and Qualitative Data:

The project will use traffic image data from Roboflow to implement YOLOv9. The analysis will focus on measuring accuracy, precision, recall, and F1 score of the vehicle detection model. Moreover, the system will work towards improving these metrics through iterative model refinement and optimization.

IV. Plan to Use V2X Technology to Address Traffic Congestion:

The project will integrate YOLO v9 with vehicle-to-everything (V2X) technology to address traffic congestion. By leveraging real-time data from vehicles, infrastructure, and traffic management systems, the proposed solution will optimize traffic signal timings, prioritize transit vehicles, and reduce congestion at intersections.

V. Placeholder Proposal Paper Sections:

1. Abstract: A concise summary of the project objectives, methodology, and expected outcomes.

- 2. Literature Review: Review of existing literature on TSP systems, deep learning, and big data analytics in transportation.
- 3. Methodology: Detailed explanation of data collection, preprocessing, model development, and evaluation methods.
- 4. Results: Presentation and analysis of results obtained from implementing YOLO v9 for vehicle tracking and TSP optimization.
- 5. Discussion: Interpretation of findings, implications for intelligent transport systems, and potential future research directions.

VI. Analysis Approach and Overall Goal:

The project will analyze the speed and count of vehicles to calculate distance and time, enabling predictive modeling of traffic signals at intersections. By grouping intersections into clusters and employing reinforcement learning techniques, the system will address anomalies and optimize traffic flow in real-time.

!python train.py \								
•	15/19	14.26 Class all	1.10/ Images 966	0.5894 Instances 13450	1.131 P 0.484	110 R 0.563	640: mAP50 0.428	100% 165/165 [02:09<00:00, 1.281t/s] mAP50-95: 100% 31/31 [00:23<00:00, 1.30it/s] 0.299
	Epoch 16/19	GPU_mem 14.2G Class all	box_loss 1.096 Images 966	cls_loss 0.5671 Instances 13450	dfl_loss 1.116 P 0.484	Instances 93 R 0.582	Size 640: mAP50 0.436	100% 165/165 [02:08<00:00, 1.28it/s] mAP50-95: 100% 31/31 [00:23<00:00, 1.30it/s] 0.307
	Epoch 17/19	GPU_mem 14.2G Class all	box_loss 1.074 Images 966	cls_loss 0.5552 Instances 13450	dfl_loss 1.109 P 0.495	Instances 112 R 0.571	Size 640: mAP50 0.43	100% 165/165 [02:08<00:00, 1.28it/s] mAP50-95: 100% 31/31 [00:23<00:00, 1.30it/s] 0.306
	Epoch 18/19	GPU_mem 14.2G Class all	box_loss 1.062 Images 966	cls_loss 0.5386 Instances 13450	dfl_loss 1.112 P 0.491	Instances 109 R 0.598	Size 640: mAP50 0.455	100% 165/165 [02:08<00:00, 1.28it/s] mAP50-95: 100% 31/31 [00:23<00:00, 1.31it/s] 0.328
	Epoch 19/19	GPU_mem 14.2G Class all	box_loss 1.045 Images 966	cls_loss 0.5189 Instances 13450	dfl_loss 1.096 P 0.488	Instances 104 R 0.609	Size 640: mAP50 0.443	100% 165/165 [02:09<00:00, 1.28it/s] mAP50-95: 100% 31/31 [00:23<00:00, 1.30it/s] 0.318
20 epochs completed in 0.878 hours. Optimizer stripped from runs/train/exp/weights/last.pt, saved as runs/train/exp/weights/last_striped.pt, 51.5MB Optimizer stripped from runs/train/exp/weights/best.pt, saved as runs/train/exp/weights/best_striped.pt, 51.5MB Validating runs/train/exp/weights/best.pt Fusing layers								
gelan-c summary: 467 layers, 25420212 parameters, 0 gradients, 102.5 GFLOPs Class Images Instances P R mAP50 mAP50-95: 100% 31/31 [00:31<00:00, 1.00s/it]								
		all big bus big truck	966 966 966	13450 273 1162	0.493 0.758 0.829	0.596 0.413 0.438	0.456 0.757 0.637	0.328 0.567 0.427
bus-l- bus-s- car			966 966 966	8 12 8537	0.045 0.216 0.863	0.75 0.828 0.728	0.047 0.346 0.837	0.023 0.288 0.532
		mid truck small bus all truck	966 966 966	257 49 1721	0.69 0.27 0.732	0.424 0.327 0.516	0.431 0.129 0.624	0.337 0.0689 0.411
truck-l- truck-m- truck-s- truck-xl-			966 966 966 966	433 629 221 148	0.456 0.361 0.288 0.413	0.677 0.688 0.593 0.777	0.477 0.374 0.248 0.56	0.372 0.29 0.171 0.448
Results saved to runs/train/exp								

Image(filename="/content/yolov9/runs/train/exp/val_batch0_pred, jpg", width=1000)

VII. Conclusion:

The proposed YOLO v9 implementation offers a promising solution to enhance transit signal priority and improve traffic management in intelligent transport systems. By leveraging big data techniques and V2X technology, the project aims to revolutionize urban mobility, reduce congestion, and promote sustainable transportation solutions.

This draft proposal outlines the project's objectives, methodology, data analysis approach, and expected outcomes. It provides a framework for further development and refinement in preparation for submission as a full proposal.

VIII. Code File:

Google Colab Link for code