Chapter 1

Series

Theorem 1.1. A series s_n is convergent if and only if for each $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that:

$$m, n \ge N \implies \left| \sum_{i=n} m a_m \right| \le \epsilon$$

Proof. Obviously any convergent sequence is Cauchy. Furthermore, due to completeness of \mathbb{R} every Cauchy sequence is convergent.

Corollary 1.2. The series s_n is convergent if $a_n \to 0$.

Theorem 1.3.

- 1. If $|a_n| < b_n$ for all n > N for a sufficiently large N then convergence of $\sum b_n$ implies the convergence $\sum a_n$.
- 2. If $0 < b_n < a_n$ for all n > N for a sufficiently large N then divergence of $\sum b_n$ implies the divergence $\sum a_n$.

Corollary 1.4. Absolute convergence implies convergence.

Theorem 1.5 (Integral Test). Consider the improper integral $\int_0^\infty f$ and the series $\sum_{i=1}^\infty a_i$

- 1. $0 \le a_k \le f(x)$ for sufficiently large k and each $x \in [k-1,k]$, then the convergence of integral implies the convergence of the series.
- 2. Similarly if $0 \le f(x) \le a_k$ for sufficiently large k and each $x \in [k, k+1[$, then the divergence of integral implies the divergence of the series.

Definition: The exponential growth rate of the series $\sum a_n$

$$\alpha = \limsup_{k \to \infty} \sqrt[k]{a_k}$$

Theorem 1.6 (Root test). If $\alpha < 1$ the series is convergent and if $\alpha > 1$ it is divergent. If $\alpha = 1$ the test is inconclusive.

Theorem 1.7 (Ratio test). Let the ratio between successive terms of the series a_k be $r_k = \left|\frac{a_{k+1}}{a_k}\right|$

$$\rho = \limsup r_k \qquad \lambda = \liminf r_k$$

If $\rho < 1$ then the series converges, if $\lambda > 1$ then the series diverges, and otherwise the ratio test is inconclusive.

2 1. Series

Theorem 1.8. Let $a_1 \ge a_2 \ge \cdots \ge 0$ be a decreasing non-negative sequence then the alternating series

$$\sum_{n=1}^{\infty} a_n (-1)^n \tag{1.1}$$

is convergent.

Theorem 1.9. Suppose $\sum c_k x^k$ is a power series. Its radius of convergence R is unique and is such that for |x| < R the power series converges and for |x| > R diverges.

$$R = \frac{1}{\limsup \sqrt[k]{c_k}}$$