Асимптотика числа максимумов произведения линейных функций двух переменных

Ю.В. Чеканов

1986

1 Оценки отношения чисел максимумов и минимумов

Назовём вещественный многочлен степени d от двух переменных невырожденным, если он имеет наибольшее возможное (равное $(d-1)^2$) число вещественных критических точек. При больших d асимптотически половина этих точек будет сёдлами. Это вытекает из теоремы Эйлера и того, что индекс градиента многочлена на бесконечности не превышает O(d).

Мы будем исследовать асимптотическое распределение остальных $\sim d^2/2$ критических точек на максимумы и минимумы в случае, когда многочлен распадается в произведение линейных.

Теорема 1 Число максимумов невырожеденного произведения линейных функций асимптотически не превосходит удвоенного числа минимумов:

$$M \leqslant 2m + O(d), \qquad d \to \infty,$$
 (1)

причем оценка (1) асимптотически достигается в том смысле, что для некоторой последовательности примеров

$$M \geqslant 2m - O(d), \qquad d \to \infty.$$
 (2)

Эквивалентная формулировка:

Теорема 2 Раскрасим области, на которые д прямых общего положения делят плоскость, в два цвета: белый и чёрный (соседние области окрашиваем в разные цвета). Тогда число чёрных областей асимптотически не превосходит удвоенного числа белых, и эта оценка асимптотически достигается.

2 Доказательство оценки сверху

Пусть d>1 и n_i число чёрных областей с i сторонами. Тогда $2n_2+3n_3+\ldots=d^2$, так как d прямых общего положения делятся точками пересечения на d^2 частей. Поскольку $n_2\leqslant d$, имеем для числа чёрных областей оценку $n_2+n_3+\ldots\leqslant d(d+1)/3$, доказывающую оценку теоремы (2) (ибо всех областей $\sim d^2/2$).

3 Пример, в котором чёрных областей почти вдвое больше, чем белых

В п. 4 доказана принадлежащая Сильвестру 1

Лемма 1 На плоскости можно расположить p точек так, чтобы асимптотически $\sim p^2/6$ прямых $(p \to \infty)$ проходили ровно через три точки.

Проективно-двойственное расположение состоит из p прямых, пересекающихся по три в $\sim p^2/6$ точках. Выберем достаточно малое ϵ и заменим каждую прямую двумя прямыми, отстоящими от неё на ϵ . Это — искомая конфигурация d=2p прямых.

Раскрасим получившиеся области в черный и белый цвета. Каждой из $\sim p^2/3$ областей исходной конфигурации p прямых соответствует черная область, каждому из $\sim p^2/2$ отрезков — белая, и каждой точке тройного пересечения соответсвуют шесть черных треугольницов и один белый шестиугольник (топологически расположение в окрестности тройного пересечения стандартно, так как внутренний шестиугольник описан вокруг окружности радиуса ϵ).

Всего мы построили $\sim p^2/3 + 6p^2/6 = d^2/3$ чёрных и $\sim p^2/2 + p^2/6 = d^2/6$ белых областей, что и требовалось $(d^2/3 + d^2/6 = d^2/2)$, поэтому число неучтённых областей есть O(d).

4 Доказательство леммы

Искомую конфигурацию образуют p точек вещественной циклической подгруппы плоской вещественной эллиптической кривой. Точнее, параметризуем нечётную ветвь вещественной эллиптической кривой интегралом первого рода, выбрав начало интегрирования в точке перегиба. По теореме Абеля три точки эллиптической кривой лежат на одной прямой,

 $^{^{1}}$ См.: Барр С. Как сажать деревья. — В кн.: Математический цветник. М., 1983.

если и только если сумма значений интеграла (по модулю периодов) равна нулю. Точки, отвечающие значениям параметра $k\omega/p$ ($0\leqslant k< p$), где ω — период (интеграл по всей ветви), образуют циклическую подгруппу \mathbb{Z}_p эллиптической кривой.

Число неупорядоченных троек элементов группы \mathbb{Z}_p , в сумме равных нулю, асимптотически $\sim p^2/6$. Действительно, упорядоченная тройка определяется парой элементов, и число разных упорядочений тройки отлично от шести лишь для O(p) троек. Поэтому построенные p точек лежат на $\sim p^2/6$ прямых, что и требовалось.

Автор приносит благодарность В.И. Арнольду за постановку задачи и внимание к работе, а также Д.Б. Фрадкину за полезные замечания.