CS5200 Homework 4 Graphs Adam McNeil Question 1

		A	.	В	(7 1	D	Е					A	Ι	3	С	1)	E
$D(0) = \frac{1}{2}$	Α	0		4	1	∞		\propto)		A		nil	Α	1	Α	n	il	nil
	В	\propto		0	\propto	∞ ∞		\propto	_ 	(0) —	Е	3	nil	n	il	nil r		il	nil
	С	\propto	0	-5	C) ∞		2	— 71	(0) = -	C	7	nil	(7	nil	n	il	$\overline{\mathbf{C}}$
	D	\propto	0	∞	6	;	0)	•	Γ)	nil	n	il	D	n	il	nil
	Е	3		4	\propto	o -	4	0		•	F		Е	I	E	nil]	E	nil
			A	A	В	C])	\mathbf{E}				A		В	C	;	D	E
		A	()	4	1		∞	∞	∞		A	ni	l	A	A		nil	nil
D(1)		В	0	0	0	∞		∞	$\frac{\infty}{2}$	$-\pi(1) =$	_	B C	ni		nil	ni	1	nil	nil
D(1)		С	0	0	-5	0		∞	2				ni		С	ni	1	nil	C
		D	0		∞	6		0	∞			D	ni	l	nil	D)	nil	nil
		Е	Ç	3	4	4	-	4	0			\mathbf{E}	E		\mathbf{E}	A		\mathbf{E}	nil
D(2)	_		Α	1	В	С])	Ε	$\frac{\frac{\infty}{\infty}}{\frac{2}{\infty}}\pi(2)$	_		A		В	C	,	D	E
		A	()	4	1		∞	∞			Α	ni	- 1	Α	A		nil	nil
		В	0	0	0	∞	C	∞	∞		= -	В	ni	- 1	nil	ni		nil	nil
			0	0	-5	0	C	∞	2				ni		С	ni		nil	С
		D	0	0	∞	6		0	∞			D	ni	l	nil	D		$_{ m nil}$	nil
		Е	Ş	3	4	4	-	$4 \mid$	0			Е	E		\mathbf{E}	A		\mathbf{E}	nil
D(3)			A	1	В	\mathbf{C}	I)	\mathbf{E}				A		В	C	!	D	E
	_	A	()	-4	1	0	0	3			Α	nil		С	A		nil	С
	_	В	0	0	0	∞	0	0	$\frac{\infty}{2}$	$-\pi(3) =$		В	nil		nil	ni		nil	nil
	, —	С	0	0	-5	0	0	0	2	- n(3) -		С	nil		С	ni	1	nil	С
		D	0	0	1	6	()	8	-		D	nil	L	С	D	١	nil	С
	_	Ε	9	3	-1	4	-	4	0	=	_	Е	Е		С	A		\mathbf{E}	nil

		A	В	\mathbf{C}	D	E			A	В	\mathbf{C}	D	\mathbf{E}
$D(4) = \frac{1}{2}$	A	0	-4	1	∞	3	$\pi(4) = -$	A	nil	С	A	nil	С
	В	∞	0	∞	∞	∞		В	nil	nil	nil	nil	nil
	С	∞	-5	0	∞	2		С	nil	С	nil	nil	С
	D	∞	1	6	0	8		D	nil	С	D	nil	С
	Е	3	-3	2	-4	0		Е	Е	D	D	Е	nil
		A	В	\mathbf{C}	D	E			A	В	С	D	\mathbf{E}
	Α.										_		
	Α	0	-4	1	-1	3		A	nil	С	A	Е	C
D(5) =	B	$\frac{0}{\infty}$	-4 0	$\frac{1}{\infty}$	-1 ∞	$\frac{3}{\infty}$	- - π(5) —	В	nil nil	C nil		E nil	
$D(5) = \frac{1}{2}$							$\pi(5) = 0$			_	A		С
$D(5) = \frac{1}{2}$	В	∞	0	∞	∞	∞	$\pi(5) = \frac{1}{2}$	В	nil	nil	A nil	nil	C nil

Question 2

Step 1

Step 2

Step 3

Step 4

Question 3

Strategy A: 5 different paths are needed until the final answer is reached

$$s - > v1 - > v2 - > v$$

$$\begin{array}{l} s - > v1 - > v2 - > t \\ s - > v6 - > v3 - > t \\ s - > v5 - > v4 - > t \end{array}$$

$$\begin{array}{l} s->v1->v3->t\\ s->v5->v4->v3->t \end{array}$$

Strategy B: 4 different paths are need until the final answer is reached

$$s->v5->v4->v3->t$$

$$s->v1->v2->t$$

$$s - > v5 - > v6 - > v3 - > v4 - > t$$

$$s - > v6 - > v3 - > t$$

Strategy A is always worse or equal to Strategy B.

Question 4

1) For a given cut (S, T), the net flow from S to T can be greater than capacity of S and T.

False

2) For any (S, T) cut, if the net flow equals to the capacity of S and T, then we cannot find any augmenting path in the residual graph.

True

3) The Floyd-Warshall algorithm belongs to the greedy algorithm, as it is more efficient than the dynamic programming solution.

False

4) The Dijksta's algorithm can be used to find the all-pairs shortest paths in a weighted directed graph, and it is more efficient than some dynamic programming solution.

True

Bonus: