CS 4072 - Topics in CS Process Mining

Lecture # 08

March 08, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

Today's Topics

- ► Alpha algorithm
 - ► Activities ordering relation
 - ► Footprint matrix

Event log

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

► An event log is a multiset of traces (same trace may appear multiple times).

▶ A **trace** is a sequence of activity names ordered by a timestamp.

Goal of Alpha algorithm

 $L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$

Another Example

 $L_2 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle]__$

Generalization: event log contains only subset of all possible traces of model.

Notation is less relevant

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

Process Discovery

Definition 6.2 (Specific process discovery problem) A *process discovery algorithm* is a function γ that maps a log $L \in \mathbb{B}(\mathcal{A}^*)$ onto a marked Petri net $\gamma(L) = (N,M)$.

Ideally, N is a *sound WF-net* and all traces in L correspond to possible firing sequences of (N,M).

Note that it is not necessary that an event log contains all firing sequences of (N,M).

Challenge for Process Discovery

 $L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$

Fitness

(ability to explain observed behavior)

Precision

(avoiding underfitting)

Generalization

(avoiding overfitting)

Simplicity

(Occam's razor principle)

Alpha Algorithm

Process discovery from event log

Log-based ordering relations $(>, \rightarrow)$, ||, #)

▶ Let *L* be an event log over \mathcal{A} , i.e., $L \in \mathbb{B}(\mathcal{A}^*)$. Let a, b ∈ \mathcal{A}

- **a** >L b if and only if there is a trace $\sigma = \langle t_1, t_2, t_3, ..., t_n \rangle$ and i ∈ $\{1, ..., n-1\}$ such that $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$
- ▶ $a \rightarrow L b$ if and only if a > L b and b > L a
- ► a#Lb if and only if a >/L b and b >/L a
- ► $a\parallel Lb$ if and only if a>Lb and b>La

Log-based ordering relations:

$$(>, \rightarrow, ||, \#)$$

- Direct succession: x > y
 - Iff for some case x is directly followed by y
- ightharpoonup Causality: $x \rightarrow y$
 - Iff x > y and not y > x
- ► Parallel: x | | y
 - Iff x > y and y > x
- Choice: x # y
 - Iff not x > y and not y > x

 $L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$

Footprint of a log

► A matrix capturing relations between all the activities

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

	а	b	С	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
c	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

Answer

Create a footprint matrix for this log.

 $L_2 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle]$

Table 6.2 Footprint of

$$L_2 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle]$$

	a	b	c	d	e	f	
a	#	\rightarrow	\rightarrow	#	#	#	
b	\leftarrow	#		\rightarrow	\rightarrow	\leftarrow	
\boldsymbol{c}	\leftarrow		#	\rightarrow	\rightarrow	\leftarrow	
d	#	\leftarrow	\leftarrow	#	#	#	
e	#	\leftarrow	\leftarrow	#	#	\rightarrow	
f	#	\rightarrow	\rightarrow	#	\leftarrow	#	

Answer

Create a footprint matrix for this log.

$$L_3 = \langle a,b,c,d,e,f,b,d,c,e,g \rangle$$
, $\langle a,b,d,c,e,g \rangle 2$, $\langle a,b,c,d,e,f,b,c,d,e,f,b,d,c,e,g \rangle$

Table 6.3 Footprint of L_3

	а	b	С	d	e	f	g
a	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
c	#	\leftarrow	#	II	\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

Reading Material

► Chapter 6: Aalst