EA772 Circuitos Lógicos Circuitos integrados combinacionais: conceitos básicos

Prof. José Mario De Martino

Departamento de Engenharia de Computação e Automação Industrial Faculdade de Engenharia de Elétrica e de Computação Universidade Estadual de Campinas

Sala 317A - FEEC <u>martino@dca.fee.unicamp.br</u>

Porta Lógica

 módulo que implementa/realiza uma função booleana elementar, possuindo apenas 1 saída.

Redes de Porta Lógicas

 combinação de portas lógicas para implementar função lógica complexa envolvendo a composição de funções booleanas elementares.

Circuito Combinacional

 realização física de portas lógicas e/ou de redes de portas lógicas. Nestes circuitos a saída em um instante de tempo depende apenas da entrada naquele instante de tempo.

- Aspectos que devem ser levados em conta em projetos de circuitos:
 - Velocidade de operação
 - Consumo de potência
 - Empacotamento (tamanho)
 - Custo
 - Disponibilidade no mercado dos componentes

- Dois aspectos fundamentais norteiam a implementação (com circuitos eletrônicos) de portas lógicas:
 - Representação dos valores binários
 - Realização dos circuitos que implementam as funções booleanas

Representação dos valores binários

- Correspondência das tensões com os valores binários
 - Lógica Positiva
 - V_H ⇔ 1
 - V_L ⇔ 0
 - Lógica Negativa
 - $\bullet \quad V_H \Leftrightarrow 0$
 - V_L ⇔ 1

Representação dos valores binários

CMOS (Complementary Metal Oxide Semicondutor) 3,3V

TTL (Transistor transistor Logic) 5,0V

 V_{Hmin} 2,0 V V_{Lmin} 0 V

Transistor

- dispositivo semicondutor (é feito com material semicondutor silício, germânio ou arseneto de gálio) utilizado para amplificar e CHAVEAR (funcionar como uma chave eletrônica) sinais elétricos.
- possui três terminais, sendo que a tensão aplicada entre dois terminais controla a corrente entre o outro e o terminal comum.

- Transistor como chave
 - V > V_T conduz (chave fechada)
 - V < V_T não conduz (chave aberta)

- Tecnologia CMOS (Complementary Metal Oxide Semiconductor)
 - Dois tipos de transistores (nMOs e pMOS) (VDD = V_{Hmax})

 $V > V_{Tn}$ Chave está fechada (conduz)

V = 0 (não conduz)

$$V = VDD = "1" (conduz)$$

 $VDD - V < V_{Tp \text{ Chave está aberta (não conduz)}}$

V = 0 (conduz)

V= VDD = "1" (não conduz)

Observação: TTL (transistor transistor logic) é outra tecnologia importante.

Porta NOT

Porta NOT

$$\begin{array}{c|cccc} V_{in} & V_{out} & & & x & z \\ \hline V_L & V_H & & & & 0 & 1 \\ V_H & V_L & & & 1 & 0 \\ \end{array}$$

Porta NAND

Porta NOR

Atraso (retardo) de propagação

- A saída de uma porta não muda instantaneamente em resposta a uma mudança da entrada. Em qualquer realização física há sempre um atraso de propagação.
- Atraso de propagação é o intervalo de tempo entre variação do sinal de saída em resposta a uma transição do sinal de entrada (em geral, utiliza-se como referência 50% do valor da excursão nominal baixo para alto).
- t_{pHL} tempo de atraso de propagação de alto para baixo
- t_{pLH} tempo de atraso de propagação de baixo para alto

Atraso (retardo) de propagação

Tempo de transição

- Tempo necessário para que o sinal se modifique durante uma transição de nível (em geral, toma-se como referência 10% e 90% do intervalo nominal de excursão).
- t_r tempo de subida
- t_f tempo de descida

Efeito da carga nos tempos de chaveamento

- A carga imposta a uma saída depende da quantidade e das características das entradas das portas a ela conectadas.
- A carga influencia a voltagem do sinal de saída, bem como suas características de temporais (atraso de propagação e tempo de transição).

Efeito de carga nos tempos de chaveamento

Carga equivalente de uma entrada

- R_{in} Resistência; C_{in} Capacitância
- Para várias entradas, a carga total é calculada combinando-se as cargas de cada entrada (capacitância total aumenta; resistência total diminui)
- O aumento capacitância ocasionado pela conexão de mais entradas aumenta os tempos de chaveamento.

Efeito de carga nos tempos de chaveamento

Dissipação de potência

- Nos dispositivos CMOS as resistências internas são altas (≈ ∞)
- Apenas durante as transições (alto-baixo, baixo-alto) ocorre dissipação significativa de potência.
- Para este tipo de dispositivo, a dissipação é diretamente proporcional à frequência de operação - maior a frequência, maior a dissipação.

- Procedimento adotado (pelos fabricantes) para tratar a questão da carga em redes de portas lógicas:
 - Especificação de uma carga padrão (em geral, associada à família). Esta especificação é, em geral, dada em termos de tensões e correntes máxima e mínimas dentro da faixa de operação.
 - A característica da entrada de uma determinada porta é especificada em termos da carga padrão.
 - Para a saída é especificada a carga máxima, em quantidade de cargas padrões, suportada pela porta (*fanout*) que ainda permita o correto funcionamento da porta dentro dos limites de operação. (Obs.: *Fanout* típico CMOS = 12; *Fanout* típico TTL = 10).
 - Fanout é uma medida da capacidade de acionamento da saída da porta.
 - Fanin é o número de entradas de uma porta lógica. Portas com fanin grandes tendem a serem mais lentas do que portas com fanin menores, uma vez que o aumento da complexidade do circuito entrada da porta, em geral, está associada a um aumento da capacitância de entrada.

Margem de ruído

Medida da tolerância a ruído

Margem Ruído Sinal Alto

$$M_{H} = V_{OHmin} - V_{IHmin}$$

Margem Ruído Sinal Baixo

$$M_L = V_{ILmax} - V_{OLmax}$$

Margem de ruído

Medida da tolerância a ruído

 $M_{H} = 0.4$

Saída dreno aberto (coletor aberto)

Saída Push-Pull ou Saida Totem Pole

Saída Dreno Aberto

Saída dreno aberto (coletor aberto)

Impedância

- Generalização de resistência
- Contempla também os comportamentos capacitivos e indutivos
- V = Z . I, onde V, I e Z variam no tempo

Motivação

- Permitir a conexão das saídas de portas
- Em um determinado instante, apenas uma saída deve estar ativa e as outras em alta-impedância

 Acionadores (*drivers*) saída sempre ativa (saída *push-pull*): exemplo utilização.

Grande quantidade de módulos ⇒ OR com muitas entradas (implementação com vários ORs)

Acionadores (drivers) de três estados (tri-state)

$$y = \begin{cases} x & se \ e = 1 \\ Z & se \ e = 0 \end{cases}$$

e	X	g	h	pS	nS	у
0	0	1	0	aberto	aberto	Z
0	1	1	0	aberto	aberto	Z
1	0	1	1	aberto	fechado	0
1	1	0	0	fechado	aberto	1

Acionadores (drivers) de três estados (*tri-state*): exemplo aplicação.

Somente um s_j , j = 1, 2,..., k, pode estar ativo em um dado instante de tempo.