Docker Performance Benchmarking

Bare Metal vs Hypervisor

Docker Day Duke University September 11, 2014

Why?

Because I'm Lazy

Why?

Hypervisor convenience vs Bare Metal performance

What?

Benchmark!

Based on:

KVM and Docker LXC Benchmarking on OpenStack*

- Serial Container Boot
- Steady-state Container Packing
- CPU Performance
- MySQL Transactions
- MySQL Indexing and Queries
- File I/O Operations
- Memory Performance
- Application Performance Blogbench (Simulated Blog)
- Application Performance Apache Bench (Raw Served Webpages)

What?

Hypothesis:

"Bare Metal will beat the pants off of Hypervisor"

How?

How?

Process:

- Create Docker images for tests
- Push images to Duke Docker repo
- PXE Boot CoreOS
- Pull runner scripts via CoreOS cloud-config
- Run runner scripts as root
- Collect data via ssh tunnel to external server

Results!

Hypothesis:

"Bare Me vill beat the pants of Hypervisor"

RESULTS!

Only 7 out of 12 pants conclusively beaten off

Bare Metal Wins:

- MySQL Transactions
- MySQL Indexing and Queries
- Memory Performance (all three)
- Blogbench (Writes only)
- Apache Bench

RESULTS!

Only 3 out of 12 pants tied for performance*

Hypervisor Ties Bare Metal:

- Serial Boot Tests
- Steady State Packing
- File I/O

RESULTS!

Surprise! Hypervisor Beats Bare Metal in 2 (or

4)

Hypervisor Wins:

- CPU Performance
- Blogbench (Reads only)

- Hypervisor (sort of) Wins:
 - Serial Boot Tests (I/O Wait)
 - Steady State Packing (I/O Wait)

CPU Max Prime Number Calculations

Hypervisor is faster at Prime Number calculations.

CPU Max Prime Number Calculations

Hypervisor is (slightly) more consistent at Prime Number calculations (note the scale)

Blog Bench (simulated blog) Reads

Hypervisor is faster at (simulated) blog reads.

Serial Container Boot

Negligible difference in CPU, but Hypervisor has (slightly) better I/O Wait

Steady-State Packing

Same results as Serial Container Boot;

basically the same test with more normalization

File I/O Test

Despite previous test results, the difference in File I/O here is negligible.

Tangential Learning Points

Unrelated to testing the hypothesis, I learned:

- The addition of Hypervisor has almost no effect on Docker-related tasks
 - Container Boot
 - Container Shutdown
 - Idle Containers
- Disk I/O is the largest bottleneck in Docker-related tasks
 - Considerably more than CPU or RAM
- Hypervisor gets a much larger boost in RAM performance by having more physical RAM to write to, even if the same amount is presented to the VM
- Enterprise storage arrays that detect "Hot" or active write blocks and adjust accordingly can have a HUGE impact on File I/O

Tangential Learning Points

Re: Enterprise Storage "hot block" detection

Final Thoughts

I do not trust these results

- Sample Size Too Small
- Surely missed something
- Surely misinterpreted something

Final Thoughts

I do not trust these results

Please help:

- Review my method, results
- Replicate in your own environment
- Let me know what you find out

For Science!

Info

GitHub Repo:

- Method
- Results
- Docker Images
- CoreOS Cloud-config.yml
- Benchmark running scripts

https://github.com/DockerDemos/vm-docker-bench

Info

Me:

- Chris Collins
- collins.christopher@gmail.com
- https://github.com/clcollins