INTRO TO DATA SCIENCE ENSEMBLE METHODS & RANDOM FORESTS

LAST TIME:

Table 4.1. The vertebrate data set.

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

I. DECISION TREES II. LAB ON DECISION TREES

Figure 4.4. A decision tree for the mammal classification problem.

INTRO TO DATA SCIENCE

QUESTIONS?

WHAT WAS THE MOST INTERESTING THING YOU LEARNED?

WHAT WAS THE HARDEST TO GRASP?

I. ENSEMBLE TECHNIQUES
II. BOOTSTRAP & BAGGING
III. RANDOM FORESTS

LAB:

IV. RANDOM FOREST IN SCIKIT-LEARN

So far, we have only discussed individual classifiers

What are these?

What is your favorite?

-0r-

What do you think is Justin's favorite?

How can we come up with a better predictive model?

Can we combine multiple classifiers to produce a better prediction (of class membership)?

award \$1 million to anyone who can improve movie recommendation by 10%

Supervised learning task

Training data is a set of users and ratings
 (1,2,3,4,5 stars) those users have given to movies.

Supervised learning task

- Construct a classifier that given a user and an unrated movie, correctly classifies that movie as either 1, 2, 3, 4, or 5 stars

At first, single-model methods are developed, and performances are improved

However, improvements slowed down

Later, individuals and teams merged their results, and significant improvements are observed

Leaderboard

Rar	ıĸ	ream Name		Best lest score	% improvement	Best Submit Time			
<u>Grand Prize</u> - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos									
1	-	BellKor's Pragmatic Chaos	- 1	0.8567	10.06	2009-07-26 18:18:28			
2	1	The Ensemble	- 1	0.8567	10.06	2009-07-26 18:38:22			
3	1	Grand Prize Team	- 1	0.8582	9.90	2009-07-10 21:24:40			
4	-	Opera Solutions and Vandelay Unite	ed :	0.8588	9.84	2009-07-10 01:12:31			
5	-	Vandelay Industries!	- 1	0.8591	9.81	2009-07-10 00:32:20			
6	-	<u>PragmaticTheory</u>		0.8594	9.77	2009-06-24 12:06:56			
7	-	BellKor in BigChaos	- 1	0.8601	9.70	2009-05-13 08:14:09			
8	-	<u>Dace</u>		0.8612	9.59	2009-07-24 17:18:43			
9	-	Feeds2	- 1	0.8622	9.48	2009-07-12 13:11:51			
10	- 1	RinChaos	- 1	0.8623	9.47	2009-04-07 12:33:59			

"Our final solution (RMSE=0.8712) consists of blending 107 individual results. "

<u>Progress Prize 2008</u> - RMSE = 0.8627 - Winning Team: BellKor in BigChaos								
13	-	xiangliang		0.8642		9.27	2009-07-15 14:53:22	
14	!	Gravity	!	0.8643	-	9.26	2009-04-22 18:31:32	
15	-	Ces		0.8651	!	9.18	2009-06-21 19:24:53	

"Predictive accuracy is substantially improved when blending multiple predictors. Our experience is that most efforts should be concentrated in deriving substantially different approaches, rather than refining a single technique."

<u>Progress Prize 2007</u> - Krise – 0.0725 - Willing Tealli: Kurdell

Cinematch score - RMSE = 0.9525

I. ENSEMBLE METHODS

- Q: What are ensemble techniques?
- A: Methods of improving classification accuracy by aggregating predictions over several base classifiers.

Ensembles are often much more accurate than the base classifiers that compose them.

In order for an ensemble classifier to outperform a single base classifier, the following conditions must be met:

1) the bc's must be accurate: they must outperform random guessing

2) the bc's must be diverse: their misclassifications must occur on different training examples

- Q: How do you generate several base classifiers?
- A: There are several ways to do this:

- manipulating the training set
- manipulating the learning algorithm itself

- Reasons for using ensemble based systems:
 - Improved prediction accuracy, better generalization (committee)
 - Too little data (resampling)
 - Too much data (downsampling)
 - Complex decision boundary

ENSEMBLE METHODS

BIAS AND VARIANCE

- Reduce bias
- Reduce variance

- Aggregation methods averaging of independent estimators
 - Bagging (bootstrap aggregation) [Brieman, 1996]
 - Random Forest [Brieman, 2001]

Reduce variance

- Boosting methods sequentially combined weak estimators
 - AdaBoost [Freud and Schapire, 1995]
 - Gradient Tree Boosting (GBDT, GBM) [Friedman, 1999]

Reduce bias

Figure 5.31. A logical view of the ensemble learning method.

II. BOOTSTRAP AND BAGGING

Bootstrapping — is a random sampling with replacement (select N samples from N data points uniformly with replacement)

63.2% of unique examples per bootstrapped sample on average

when drawing with replacement n' values out of a set of n (different and equally likely), the expected number of unique draws is

$$n(1 - e^{-n'/n})$$

Idea: resample the sample data, sample becomes "population"

In statistics it is used to obtain standard errors on an estimate and confidence intervals

Bagging = bootstrap aggregating

We learn k base classifiers on k different bootstraped samples of training data.

These samples are independently created by resampling the training data using uniform weights (eg, a uniform sampling distribution).

The final prediction is made by taking a majority vote across bc's.

- N iid random variables: X_1, X_2, \ldots, X_n .
- Mean and variance:

$$E(X_i) = \mu \quad Var(X_i) = \sigma^2$$

• Average of N random variables:

$$\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n}$$

Mean and variance of average:

$$E(\bar{X}) = \frac{1}{n}E(X_1 + X_2 + \dots + X_n) = \left(\frac{1}{n}\right)(n\mu) = \mu$$
$$Var(\bar{X}) = \left(\frac{1}{n}\right)^2 Var(X_1 + X_2 + \dots + X_n) = \left(\frac{1}{n}\right)^2 (n\sigma^2) = \frac{\sigma^2}{n}$$

'n

Bagging reduces the variance in our generalization error by aggregating multiple base classifiers together (provided they satisfy our earlier requirements).

If the base classifier is stable, then the ensemble error is primarily due to be bias, and bagging may not be effective.

Since each sample of training data is equally likely, bagging is not very susceptible to overfitting with noisy data.

Variance of average of B correlated trees:

$$\rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

III. RANDOM FORESTS

- A random forest is an ensemble of uncorrelated decision trees:
 - Build a number of decision trees on bootstrapped training samples
 - When building decision trees a random selection of m out of p predictors considered for every split in a tree.

• Variance of average of B correlated trees : $\rho\sigma^2 + \frac{1-\rho}{R}\sigma^2$.

PassengerId Surv	vived Pclass	Name Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3 Braund, Mr. Owen Harris	male	22	2	1	0 A/5 21171	7.25	1	S
2	1	1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	3	1	0 PC 17599	71.2833	C85	С
3	1	3 Heikkinen, Miss. Laina	female	26	i	0	0 STON/O2. 3	1 7.925	,	S
4	1	1 Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	5	1	0 113803	53.1	C123	S
5	0	3 Allen, Mr. William Henry	male	35	5	0	0 373450	8.05		S
6	0	3 Moran, Mr. James	male			0	0 330877	8.4583	i .	Q
7	0	1 McCarthy, Mr. Timothy J	male	54	l I	0	0 17463	51.8625	E46	S
8	0	3 Palsson, Master. Gosta Leonard	male	2	2	3	1 349909	21.075	i	S
9	1	3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	,	0	2 347742	11.1333	3	S
10	1	2 Nasser, Mrs. Nicholas (Adele Achem)	female	14	l .	1	0 237736	30.0708	}	С
11	1	3 Sandstrom, Miss. Marguerite Rut	female	4	1	1	1 PP 9549	16.7	G6	S
12	1	1 Bonnell, Miss. Elizabeth	female	58	В	0	0 113783	26.55	C103	S
13	0	3 Saundercock, Mr. William Henry	male	20)	0	0 A/5. 2151	8.05	j i	S
14	0	3 Andersson, Mr. Anders Johan	male	39		1	5 347082	31.275	j i	S
15	0	3 Vestrom, Miss. Hulda Amanda Adolfina	female	14	l .	0	0 350406	7.8542		S
16	1	2 Hewlett, Mrs. (Mary D Kingcome)	female	55	5	0	0 248706	16	5	S
17	0	3 Rice, Master. Eugene	male	2	2	4	1 382652	29.125	j i	Q
18	1	2 Williams, Mr. Charles Eugene	male			0	0 244373	13	š	S
19	0	3 Vander Planke, Mrs. Julius (Emelia Maria Vandemoor	te female	31		1	0 345763	18	3	S
20	1	3 Masselmani, Mrs. Fatima	female			0	0 2649	7.225	j i	С
21	0	2 Fynney, Mr. Joseph J	male	35	5	0	0 239865	26	ز	S
22	1	2 Beesley, Mr. Lawrence	male	34	l .	0	0 248698	13	3 D56	S
23	1	3 McGowan, Miss. Anna "Annie"	female	15	5	0	0 330923	8.0292	1	Q
24	1	1 Sloper, Mr. William Thompson	male	28	3	0	0 113788	35.5	A6	S
25	0	3 Palsson, Miss. Torborg Danira	female	8	3	3	1 349909	21.075	i	S
26	1	3 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johan	ns female	38	3	1	5 347077	31.3875	i	S
27	0	3 Emir, Mr. Farred Chehab	male			0	0 2631	7.225	i	С
28	0	1 Fortune, Mr. Charles Alexander	male	19)	3	2 19950	263	C23 C25 C27	S
29	1	3 O'Dwyer, Miss. Ellen "Nellie"	female			0	0 330959	7.8792		Q
30	0	3 Todoroff, Mr. Lalio	male			0	0 349216	7.8958	i	S
31	0	1 Uruchurtu, Don. Manuel E	male	40)	0	0 PC 17601	27.7208	i	С
32	1	1 Spencer, Mrs. William Augustus (Marie Eugenie)	female			1	0 PC 17569	146.5208	B78	С
33	1	3 Glynn, Miss. Mary Agatha	female			0	0 335677	7.75)	Q
34	0	2 Wheadon, Mr. Edward H	male	66	6	0	0 C.A. 24579	10.5	j i	S
35	0	1 Meyer, Mr. Edgar Joseph	male	28	В	1	0 PC 17604	82.1708	i	С
36	0	1 Holverson, Mr. Alexander Oskar	male	42	2	1	0 113789	52	2	S
37	1	3 Mamee, Mr. Hanna	male			0	0 2677	7.2292	:	С
										-

21

18

14

2

1

0 A./5. 2152

0

345764

2651

8.05

11.2417

18

S

S

С

male

female

female

C

3 Cann, Mr. Ernest Charles

3 Nicola-Yarred, Miss. Jamila

3 Vander Planke, Miss. Augusta Maria

38

39

40

0

1

D

- For b = 1 to B:
 - (a) Draw a bootstrap sample Z* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- Output the ensemble of trees {T_b}^B₁.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \{\hat{C}_b(x)\}_1^B$.

- Tuning parameters for Random Forest:
 - Number of predictors per split m (recommended sqrt(p))
 - Number of trees in the forest 100-1000

- Grow complete trees:
 - Low bias for every tree (can overfit)
 - Low variance for ensemble through averaging

RANDOM FORESTS

- Each observation is used in 62.3% trees (bootstrapping)
- For each observation (x,y) construct its random forest predictor by averaging only those trees in which (x,y) does not appear
- Very close to N-fold cross validation
- Random forest can be fit with entire data and perform 00B/CV performed along the way

- For each tree compute relative improvement of split criteria due to every variable over all splits where it is used
- Accumulate over all trees
- Sort variables by importance

LAB: RANDOM FOREST IN SCIKIT-LEARN