Ricerca operativa

Mario Petruccelli Università degli studi di Milano

A.A. 2019/2020

Sommario

1	oduzione 3				
	1.1	Tassonomia modelli			
	1.2	Programmazione matematica			
2 Modellazione di problemi					
	2.1	Problema dello zaino			
	2.2	Problema di trasporto e localizzazione di impianti			
	2.3	Problema assegnamento			
	2.4	Mix Produttivo			
		2.4.1 Vernici			
		2.4.2 Problema della dieta			
	2.5	Miscelazione			
	2.6	Turnazione personale			
	2.7	Locazione di servizi			
	2.8	Bin packing			
	2.9	Problema di assegnamento			
	2.10	Problema di sequenziamento monoprocessore			
	2.11	Problema di pianificazione della produzione			
		2.11.1 Variante lotto minimo			
		2.11.2 Variante produzione con costi fissi			
		2.11.3 Variante multiprodotto			
	2.12	Set Covering			
	2.13	Modellare vincoli logici utilizzando variabili binarie			
3	Par	se formale della ricerca operativa 20			
	3.1	Tecnica di soluzione lineare			
	3.2	Tecnica di programmazione matematica			
		3.2.1 Convessità			
	3.3	Geometria della programmazione lineare			
		3.3.1 Forma matriciale del modello			
		3.3.2 Teorema di Minkowski-Weil			
		3.3.3 Come leghiamo vertici e matrici?			

1 Introduzione

Ricerca operativa: disciplina che affronta la risoluzione di problemi decisionali complessi tramite modelli matematici e algoritmi. Si parte da un sistema organizzato e lo si formalizza in un modello matematico per poi risolverlo tramite algoritmi.

1.1 Tassonomia modelli

- **Descrittivi** \rightarrow Modelli che cercano di descrivere o simulare sistemi complessi (e.g. modellini, plastici, . . .)
- **Predittivi** → Modelli che cercano di predire dei dati (e.g. andamento mercati finanziari, previsioni, . . .)
- **Prescrittivi** \rightarrow Modelli che trovano la soluzione ottimale ad un problema (sono quelli che studieremo in questo corso).

La descrizione del problema avverrà attraverso vincoli, obiettivi.

Esempio di problemi decisionali

- Finanza (investimenti)
- Produzione (dimensionamento, organizzazione, ...)
- Logistica (gestione scorte, quanta merce, ...)
- Gestione (pianificazione, turnistica personale, ...)
- Servizi (rotte, ...)

NB Lo stesso modello può servire per risolvere problemi diversi.

Set covering Problema per la gestione di un territorio. I problemi dei sismografi e dei ripetitori sono diversi ma si ragiona allo stesso modo.

1.2 Programmazione matematica

La programmazione matematica (intesa come *pianificazione* delle azioni necessarie per individuare la soluzione ottima) è ciò che rappresenta il processo risolutivo nella ricerca operativa:

- Analisi del problema e scrittura di un modello matematico.
- Definizione e applicazione di un metodo di soluzione.

In particolar modo, la programmazione matematica si occupa di ottimizzare una funzione di più variabili, spesso soggette a dei vincoli. A seconda del tipo di modello abbiamo:

- Programmazione lineare continua.
- Programmazione lineare intera.
- Programmazione booleana.

2 Modellazione di problemi

2.1 Problema dello zaino

Ci sono n oggetti di valore p_j e ingombro w_j per $j=1,\ldots,n$ ed è data la capacità massima b di un contenitore.

Problema Quali oggetti inserire nel contenitore senza superare capacità.

Obiettivo Massimizzare il valore degli oggetti. Si tratta di un problema di ottimizzazione e va formalizzato in modello matematico. Ci sono 4 componenti fondamentali.

Dati I dati sono informazioni conosciute a priori, in questo caso sono:

- $p_j \rightarrow \text{valore dell'oggetto } j$.
- $w_j \to \text{ingombro dell'oggetto } j$.
- $b \to \text{capacità massima del contenitore.}$

Variabili Le variabili sono elementi che rappresentano una decisione.

•
$$x_j = \begin{cases} 1 \text{ se il j-esimo oggetto viene inserito} \\ 0 \text{ altrimenti} \end{cases}$$

Obiettivo L'obiettivo è la funzione che rappresenta il risultato da ottenere.

•
$$max \sum_{j=1}^{n} p_j x_j \rightarrow massimizz are il valore$$

Vincoli I vincoli sono le limitazioni che abbiamo sui dati.

- $\sum_{j=1}^n w_j x_j \le b \to \text{la somma degli ingombri degli oggetti presi non può superare la capacità del contenitore$
- $x_j \in \{0,1\}$ $j = 1, \dots, n$

2.2 Problema di trasporto e localizzazione di impianti

Ci sono n siti candidati ad ospitare unità produttive, ciascuno con capacità massima a_i con i = 1, ..., n. Vi sono m magazzini, ognuno con una domanda da soddisfare b_j con j = 1, ..., m. Indichiamo con c_{ij} il costo di trasporto di una unità di produtto dal sito i al magazzino j. L'attivazione di una unità produttiva nel sito i ha un costo fisso f_i .

Problema Dove aprire le unità produttive e come trasportare il prodotto dalle unità produttive aperte ai magazini in modo da soddisfare la domanda.

Obiettivo Minimizzare i costi di apertura e trasporto.

Dati

- $a_i \to \text{capacità di produzione del sito } i$
- $b_i \to \text{domanda del magazzino } j$
- $c_{ij} \to \text{costo}$ del trasporto di un'unità dal sito i al magazzino j.
- $f_i \to \cos$ to di attivazione unità nel sito i.

Variabili

- $y_i = \begin{cases} 1 \text{ se il sito } i \text{ ospita un'unità produttiva} \\ 0 \text{ altrimenti} \end{cases}$
- x_{ij} = numero di unità trasportata dal sito i al magazzino j.

Obiettivo

• $min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i=1}^{n} f_{i} y_{i} \rightarrow minimizzare il costo di attivazione di un unità nei vari siti e il costo dei trasporti delle unità.$

Vincoli

- $\sum_{j=1}^{m} x_{ij} \leq a_i y_i$ $i = 1, ..., n \rightarrow \text{le unità trasportate da un sito i non possono superare la capacità <math>a_i$ di quel sito i.
- $\sum_{i=1}^{n} x_{ij} \ge b_j$ $j = 1, ..., m \to \text{Le unità inviate ad un magazzino } j$ dai vari siti deve soddisfare la domanda di quel magazzino.
- $x_{ij} \ge 0$ i = 1, ..., n j = 1, ..., m
- $y_i \in \{0,1\}$ $i = 1, \dots, n$

2.3 Problema assegnamento

Ci sono n lavoratori e n attività. Indichiamo con t_{ij} il tempo impiegato dal lavoratore i per svolgere l'attività j.

Problema Assegnare a ciascun lavoratore una sola attività, così che tutte le attività siano svolte.

Obiettivo Minimizzare il tempo richiesto a svolgere l'attività j.

Dati

• $t_{ij} \to \text{tempo impiegato dal lavoratore } i \text{ per svolgere l'attività } j$.

Variabili

•
$$x_{ij} = \begin{cases} 1 \text{ se il lavoratore } i \text{ svolge l'attività } j \\ 0 \text{ altrimenti} \end{cases}$$

Obiettivo

• $min \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij} \rightarrow minimizzare$ il tempo speso per svolgere tutte le attività dei vari lavoratori.

Vincoli

- $\sum_{j=1}^{n} x_{ij} = 1$ $\forall i \to \text{a ogni lavoratore è associata una sola attività.}$
- $\sum_{i=1}^{n} x_{ij} = 1$ $\forall j \to \text{a ogni attività è associata nn solo lavoratore.}$
- $x_{ij} \in \{0,1\} \quad \forall i,j$

2.4 Mix Produttivo

Si hanno m risorse produttive con disponibilità b_i . Si possono produrre n prodotti diversi. Per produrre una unità di un prodotto j-esimo si utilizzano a_{ij} unità della risorsa i-esima. Ciascun prodotto ha un profitto unitario c_j .

Dati

- $b_i \to \text{disponibilità risorsa } i\text{-}esima.$
- $\bullet \ a_{ij} \rightarrow$ unità della risorsa i-esimausate per produrre un prodotto j-esimo.
- $c_i \to \text{profitto di un unità del prodotto } j$.

Variabili

• $x_i = \text{unità prodotte del prodotto } j\text{-}esimo.$

Obiettivo

• $max \sum_{j=1}^{n} c_j x_j \to \text{massimizzare il profitto tra i vari prodotti.}$

Vincoli

- $\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \forall i \to \text{le risorse usate nella produzione non possono superare la disponibilità di ciascuna risorsa.}$
- $x_j \ge 0 \quad \forall j$

2.4.1 Vernici

L'azienda produce due tipi di vernici, una vernice per interni (I) e una venrice per esterni (E), usando due materie prime indicate con A e B. La disponibilità al giorno di materia prima A è pari a 6 ton, mentre quella di materia prima B è di 8 ton. La quantità di A e B consumata per produrre una ton di vernice E ed I è riportata nella seguente tabella.

Si ipotizza che tutta la vernice prodotta venga venduta. Il prezzo di vendita per tonnellata è 3K\$ per E e 2Ks per I. L'azienda ha effettuato un'indagine di mercato con i seguenti esisti:

- La domanda giornaliera di vernice I non super mai di più di 1 ton quella di vernice E.
- La domanda massima giornaliera di vernice I è di 2 ton.

Dati

- 3k\$ per E.
- 2k\$ per I.
- Disponibilità A 6 tonnellate.
- Disponibilità B 8 tonnellate.

Variabili

- x_E Tonnellate vernice E.
- x_I Tonnellate vernice I.

Obiettivo

• $\max 3x_E + 2x_I$

Vincoli

- $x_E + 2x_I \le 6$
- $\bullet \ 2x_E + x_I \le 8$
- $x_I x_E \le 1$
- $x_I \leq 2$
- $x_E, x_I \ge 0$

2.4.2 Problema della dieta

Un determinato mangime per animali deve contenere in ogni dose almeno 2hg di proteine, 4hg di carboidrati e 3hg di grasso. Si possono miscelare 4 ingredienti con le seguenti caratteristiche (in hg per ogni kg).

Ingrediente	Proteine	Carboidrati	Grasso	Costo euro/kg
1	1	4	3	3
2	3	4	2	6
3	2	3	3	5
4	2	2	4	6

Problema Determinare quali ingredienti ed in quale quantità miscelare in modo da minimizzare il costo del mangime.

Dati

• Ogni dose deve contenere *almeno* 2hg di proteine, 4hg di carboidrati, 3hg di grasso.

Variabili

• $x_i = \text{quantità di ingredienti } j \text{ in kg.}$

• $min \sum_{j=1}^{4} c_j x_j \to minimizzare il costo.$

Vincoli

- $\bullet \ \min 3x_1 + 6x_2 + 5x_3 + 6x_4$
- $x_1 + 3x_2 + 2x_3 + 2x_4 \ge 2hg$ proteine
- $4x_1 + 4x_2 + 3x_3 + 2x_4 \ge 4hg$ carboidrati
- $3x_1 + 2x_2 + 3x_3 + 4x_4 \ge 3hg$ grasso
- $x_j \ge 0$ $j = 1 \dots 4$

2.5 Miscelazione

Due tipi di benzina si ottengono miscelando 3 tipi di materie grezze. Le due benzine sono vendute rispettivamente a 40 cent/l e a 30 cent/l. Le materie grezze sono vendute a 10 cent/l, 16 cent/l, 14 cent/l e sono disponibili in quantità giornaliere pari a 100000 l, 70000 l, 120000 l.

Problema Produrre benzina con le quantità di materie a disposizione.

Obiettivo Massimizzare il profitto tenendo conto del costo delle materie.

Dati

- $r_i \to \text{ricavo benzina } j\text{-}esima.$
- $c_i \to \text{costo petrolio } i\text{-}esimo.$
- $a_i \rightarrow$ quantità giornaliera di petrolio *i-esimo*.
- $\%_{ij}^{m/M} \rightarrow$ percentuale minima e massima di petrolio *i-esimo* da avere all'interno della benzina *j-esima*.

- p_{ij} = percentuale di petrolio i in benzina j.
- $b_j = \text{litri di benzina } j\text{-}esima \text{ prodotti.}$
- $p_i = \text{litri di petrolio } i\text{-}esimo \text{ usati.}$

• $x_{ij} := p_{ij}b_j \rightarrow \text{litri di petrolio } i\text{-}esimo \text{ usato per produrre i litri di benzina } j\text{-}esima (ciò permette di ottenere un modello lineare).}$

Obiettivo

• max[$\sum_{j=1}^{n} (\sum_{i=1}^{m} x_{ij})r_{j}$ - $\sum_{i=1}^{m} (\sum_{j=1}^{n} x_{ij})c_{i}$] \rightarrow massimizzare il

litri prodotti di benzina *j-esima* litri di petrolio *i-esimo utilizzati* ricavo netto della produzione.

Vincoli

- $\sum_{j=1}^{n} x_{ij} \leq a_i \quad \forall i \to i$ litri di petrolio *i-esimo* utilizzati non possono superare i litri disponibili giornalmente.
- $\%_{ij}^m(\sum_{k=1}^m x_{kj}) \leq x_{ij} \leq \%_{ij}^M(\sum_{k=1}^m x_{kj}) \quad \forall i,j \to i$ litri di petrolio *i-esimo* all'interno della miscela per benzina *j-esima* deve essere compresa tra gli estremi di percentuale dati dalla tabella.
- $x_{ij} \ge 0 \quad \forall i, j$

2.6 Turnazione personale

Ci sono 3 turni lavorativi (mattina, pomeriggio, notte). Sono presenti n lavoratori che svolgono 5 turni settimanali, dopo un turno lavorativo per un lavoratore ce ne devono essere almeno 2 di riposo. Ogni lavoratore propone 5 turni in ordine di preferenza.

Problema Organizzare turni in modo tale che ognuno si coperto.

Obiettivo Minimizzare il grado di soddisfacibilità globale.

Dati

- $p_{gt}^j \to \text{grado di soddisfacibilità del lavoratore } j\text{-}esimo a lavorare il giorno } g$ nel turno t.
- $r_{gt} \rightarrow$ numero lavoratori necessari il giorno g al turno t.

Variabili

• $x_{gt}^{j} = \begin{cases} 1 \text{ se il lavoratore } j\text{-}esimo \text{ lavora il giorno } g \text{ al turno } t \\ 0 \text{ altrimenti} \end{cases}$

• $min \sum_{j=1}^{n} \sum_{g \in G} \sum_{t \in T} p_{gt}^{j} x_{gt}^{j}$

Vincoli

- $\sum_{j=1}^{n} x_{gt}^{j} \ge r_{gt} \quad \forall g, t \to \text{per ogni turno giornaliero ci devono essere tanti lavoratori quanti sono richiesti.}$
- $\sum_{g \in G} \sum_{t \in T} x_{gt}^j \geq 5 \quad \forall j \to \text{ogni lavoratore deve lavorare per almeno 5 turni.}$

•

$$x_{l,m}^j + x_{l,p}^j + x_{l,s}^j \leq 1$$

$$x_{l,p}^j + x_{l,s}^j + x_{ma,m}^j \leq 1$$

$$\dots$$

$$x_{d,m}^j + x_{d,p}^j + x_{d,s}^j \leq 1$$

$$\forall j \to \text{ogni lavoratore deve avere almeno 2 turni di riposo dopo un turno di lavoro.}$$

2.7 Locazione di servizi

Abbiamo un insieme $N = \{1, ..., n\}$ di potenziali localizzazioni di servizi ed un insieme $I = \{1, ..., m\}$ di clienti. Ogni località j ha una capacità u_j e costo di attivazione c_j . Ogni cliente i ha una richiesta b_i . Il costo da sostenere per servire il cliente i dalla località j è h_{ij} e ogni cliente è servito da una sola località.

Problema Determinare la localizzazione di servizi così da soddisfare ogni cliente.

Obiettivo Minimizzare il costo di attivazione e di servizio complessivo.

Dati

- $u_i \to \text{capacità località } j\text{-}esima.$
- $c_i \to \cos to$ attivazione località *j-esima*.
- $b_i \rightarrow \text{richiesta cliente } i\text{-}esimo.$
- $h_{ij} \to \text{costo per servire il cliente } i \text{ dalla località } j$.

•
$$y_j = \begin{cases} 1 \text{ se è attivo un servizio nella località } j\text{-}esima \\ 0 \text{ altrimenti} \end{cases}$$

•
$$x_{ij} = \begin{cases} 1 \text{ se il cliente } i \text{ viene servito dalla località } j \\ 0 \text{ altrimenti} \end{cases}$$

• $min[\sum_{j\in N}\sum_{i\in I}h_{ij}x_{ij}+\sum_{j\in N}c_jy_j]\to minimizzare$ il costo di attivazione di servizio tra i vari siti e clienti.

Vincoli

- $\sum_{i \in N} x_{ij} = 1 \quad \forall i \in I \to \text{ogni cliente } i \text{ è servito da una sola località } j$.
- $\sum_{i \in I} x_{ij} b_i \leq u_j \quad \forall j \in N \to \text{ogni località } j$ attiva deve soddisfare la domanda b_i del cliente i associato.
- $x_{ij} \le y_j \quad \forall i \in I, j \in N$
- $x_{ij} \in \{0,1\} \quad \forall i,j$
- $y_j \in \{0,1\} \quad \forall j$

Gli ultimi 3 sono vincoli opzionali (ma non troppo). Il simplesso risolve il modello nel continuo, da cui tira poi fuori la soluzione intera.

2.8 Bin packing

Ci sono n oggetti, ciascuno con ingombro w_i . Sono dati dei contenitori di capacità b.

Problema Assegnare gli oggetti ai contenitori rispettando le capacità.

Obiettivo Minimizzare il numero di contenitori usati.

Dati

- $w_j \to \text{ingombro oggetto } j\text{-}esimo.$
- ullet b capacità contenitori.

•
$$x_{ij} = \begin{cases} 1 \text{ se il contenitore } i\text{-}esimo \text{ accetta l'oggetto } j\text{-}esimo \\ 0 \text{ altrimenti} \end{cases}$$

•
$$y_i = \begin{cases} 1 \text{ se uso il contenitore } i\text{-esimo} \\ 0 \text{ altrimenti} \end{cases}$$

Objettivo

• $min \sum_{i=1}^{n} y_i \rightarrow$ minimizzare il numero di contenitori usati.

Vincoli

- $\sum_{j=1}^{n} x_{ij} w_j \leq b y_i \quad \forall i \to \text{tutti gli oggetti contenuti in ogni contenitore } i$ -esimo non devono superare la capacità b.
- $\sum_{i=1}^{n} x_{ij} = 1$ $\forall j \to \text{ogni oggetto può essere messo in un unico contenitore.}$
- $x_{ij} \in \{0,1\} \quad \forall i,j$
- $y_i \in \{0, 1\} \quad \forall i$

2.9 Problema di assegnamento

Ci sono m macchine identiche e n lavorazioni. Ogni lavorazione j richiede di essere processata da una qualsiasi delle m macchine per una durata ininterrotta p_j . Ogni macchina processa una sola lavorazione alla volta.

Problema Come assegnare le lavorazioni alle macchine.

Obiettivo Minimizzare l'istante di completamento della macchina che termina per ultima.

Dati

• $p_j \to \text{durata della lavorazione } j\text{-}esima.$

- $x_{ij} = \begin{cases} 1 \text{ se la macchina } i\text{-esima effettua la lavorazione } j \\ 0 \text{ altrimenti} \end{cases}$
- $T \ge 0 \to \text{istante di completamento della macchina che termina per ultima.}$

• $min\ max \sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}p_{j} \to minimizzare$ l'istante di completamento della macchina che termina per ultima.

Vincoli

- $\sum_{j=1}^{m} x_{ij} p_j \leq T \quad \forall i \to \text{ogni macchina termina le lavorazioni al più in contemporanea con la macchna che termina per ultima.$
- $\sum_{i=1}^{n} x_{ij} = 1$ $\forall j \to \text{ogni lavorazione } i\text{-}esima$ è effettuata da na e una sola macchina.
- $x_{ij} \in \{0,1\} \quad \forall i,j$

2.10 Problema di sequenziamento monoprocessore

C'è una macchina e ci sono n lavorazioni. Ogni lavorazione j ha un tempo di processamento p_j , è disponibile a partire dall'istante r_j e deve essere completata entro la data d_j . La macchina può processare una sola lavorazione alla volta.

Problema In quale ordine processare le lavorazioni sulla macchina.

Obiettivo Minimizzare la somma degli istanti di completamento di tutte le lavorazioni.

Dati

- $p_i \rightarrow$ tempo di processamento della lavorazione *j-esima*.
- $r_j \rightarrow$ istante minimo di inizio della lavorazione j-esima.
- $d_j \rightarrow$ istante massimo di completamento della lavorazione *j-esima*.

Variabili

- $x_{ij} = \begin{cases} 1 \text{ se la lavorazione } i \text{ precede la lavorazione } j \\ 0 \text{ altrimenti} \end{cases}$
- c_i = istante di completamento del lavoro *j-esimo*.

Obiettivo

• $min \sum_{j=1}^{n} c_j \rightarrow minimizzare$ la somma degli istanti di completamento delle

lavorazioni.

Vincoli

- $c_j \le c_k p_k + M(1 x_{jk})$ $1 \le j < k \le n$ $M \in R \to \text{se } j$ precede k, il suo istante di completamento al più coincide con quello di inizio di k.
- $c_k \le c_j p_j + Mx_{jk}$ $1 \le j < k \le n$ $M \in R \to \text{vincolo ridondante, poichè tiene conto del caso opposto } (k \text{ precede } j).$
- $0 \le p_j + r_j \le c_j \le d_j \quad \forall j = 1, \dots, n \to l$ 'istante minimo di fine processo j $(p_j + r_j)$ al più coincide con il suo istante di completamento effettivo, ed al più coincide con l'istante massimo di completamento.
- $x_{jk} \in \{0, 1\}$ $1 \le j < k \le n$

2.11 Problema di pianificazione della produzione

Determiniamo un piano di produzione di un prodotto specifico nell'arco di n periodi. Per ciascun periodo conosciamo la domanda da soddisfare d_t , il costo di produzione c_t e il costo di magazzino i_t per unità di prodotto. La capacità massima di produzione è c.

Problema Pianificare la produzione così da soddisfare la domanda per ogni periodo.

Obiettivo minimizzare i costi.

Dati

- $d_t \to \text{domanda del periodo } t\text{-}esimo.$
- $c_t \to \cos$ to di produzione di un'unità nel periodo t-esimo.
- $i_t \to \cos to \ di \ magazzino \ di \ un \ unità nel periodo \ t-esimo.$
- $c \to \text{capacità massima di produzione.}$

- $x_t = \text{unità del prodotto nel periodo } t\text{-}esimo.$
- m_t = unità del prodotto immagazzinate al termine del periodo t-esimo

• $min \sum_{t=1}^{n} c_t x_t + \sum_{t=1}^{n} i_t m_t \to minimizzare$ il costo di produzione e di magazzino.

Vincoli

- $m_{t-1} + x_t = d_t + m_t$ $t = 1, ..., n \rightarrow$ le unità immagazzinate dal periodo precedente insieme alle unità prodotte nel periodo t attuale devono coincidere con la domanda nel periodo t sommati ai prodotti rimanenti immagazzinati.
- $x_t \leq c$ $t=1,\ldots,n \rightarrow$ le unità prodotte non possono superare la capacità produttiva.

Questo problema è rappresentabile tramite un modello di flusso:

Modello di flusso

A ogni periodo la produzione deve soddisfare la domanda (e non superare la capacità) e le unità rimaste vanno in magazzino.

2.11.1 Variante lotto minimo

Ogni periodo il lotto minimo è pari a L.

Variabili
$$y_t = \begin{cases} 1 \text{ se produco un lotto al periodo } t\text{-}esimo \\ 0 \text{ altrimenti} \end{cases}$$

Vincoli

- $x_t \ge Ly_t$ $t = 1, \dots, n$
- $x_t \le cy_t$ $t = 1, \dots, n$

2.11.2 Variante produzione con costi fissi

Se in un periodo è stata prodotta almeno una unità di prodotto si aggiunge un costo fisso k.

Obiettivo $min \sum_{t=1}^{n} c_t x_t + \sum_{t=1}^{n} i_t m_t + \sum_{t=1}^{n} k y_t \rightarrow \text{aggiungo il costo fisso nel caso in cui produco qualcosa.}$

2.11.3 Variante multiprodotto

Possono essere fabbricati più prodotti durante gli n periodi.

Variabili

- $x_t^j \rightarrow$ unità di prodotto j fabbricate nel peridodo t.
- $m_t^j \rightarrow$ unità di prodotto j immagazzinate nel periodo t.

Obiettivo
$$min \sum_{j} (\sum_{t=1}^{n} c_{t}^{j} x_{t}^{j} + \sum_{t=1}^{n} i_{t}^{j} m_{t}^{j} + \sum_{t=1}^{n} k y_{t}^{j})$$

2.12 Set Covering

È dato un insieme $M = \{1, 2, ..., m\}$ ed una famiglia di n suoi sottoinsiemi $S_j \subseteq M$. Ogni sottoinsieme ha un costo c_j

Problema Trovare un insieme $T \subseteq N = \{1, ..., n\}$ tale che l'unione degli S_j , con $j \in T$ sia uguale a M.

Obiettivo Minimizzare i costi dei sottoinsiemi scelti.

Dati

- $\bullet~M \rightarrow$ insieme di partenza.
- $S_j \to \text{sottoinsieme di } M$.
- $c_j \to \text{costo del sottoinsieme } j\text{-}esimo.$

•
$$y_j = \begin{cases} 1 \text{ se scelgo il sottoinsieme } j\text{-}esimo \ S_j. \\ 0 \text{ altrimenti.} \end{cases}$$

• $min \sum_{j \in N} c_j y_j \to minimizzare$ il costo dei sottoinsiemi scelti per coprire M.

Vincoli

• $\bigcup_{j \in T} S_j = M \to$ l'unione dei sottoinsiemi scelti coincide con M. Tuttavia S_j è rappresentabile come un vettore di m elementi:

•
$$S_j = \begin{pmatrix} a_{1,j} \\ a_{2,j} \\ \dots \\ a_{m,j} \end{pmatrix} \rightarrow a_{ij} = \begin{cases} 1 \text{ se l'elemento } i\text{-esimo appartiene al sottoinsieme } S_j \\ 0 \text{ altrimenti.} \end{cases}$$

Inoltre, il sottoinsieme S_j viene viene scelto se la rispettiva variabile y_j è uguale a 1, quindi utilizziamo un vettore di n elementi, costituito da y_j .

$$\underline{\underline{Y}} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

Ora rappresentiamo anche a_i, j sotto forma matriciale:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$$

Se effettuiamo il prodotto matriciale tra A e \underline{Y} otteniamo un sistema, in cui ogni riga rappresenta quante volte il valore $i \in M$ compare tra tutti i sottoinsiemi scelti.

$$A\underline{Y} \ge 1 \to \begin{cases} a_{1,1}y_1 + a_{1,2}y_2 + \dots + a_{1,n}y_n \ge 1\\ \dots\\ a_{m,1}y_1 + a_{m,2}y_2 + \dots + a_{m,n}y_n \ge 1 \end{cases}$$

• $y_j \in \{0,1\} \quad \forall j \to \underline{Y} \in \{0,1\}^n$

2.13 Modellare vincoli logici utilizzando variabili binarie

In primo luogo associamo una variabile binaria a ciascuna variabile logica. Ad esempio alla variabile logica X ="attivare l'impianto di produzione" associamo la variabile bi-

naria x nel seguente modo: $x = \begin{cases} 1$ "attivazione dell'impianto di produzione" 0 "non attivazione dell'impianto di produzione"

Rappresentiamo	con
$\neg X$	(1-x)
$X \vee Y$	(x+y)
$X \to Y$	$x \le y$
$X_1 \vee X_2 \vee \cdots \vee X_n \to Y$	$\sum_{1}^{n} x_{i} \le ny$
$X \to Y_1 \vee Y_2 \vee \cdots \vee Y_n$	$x \leq \sum_{1}^{n} y_i$
$X \to Y_1 \wedge Y_2 \wedge \cdots \wedge Y_n$	$nx \leq \sum_{1}^{n} y_i$

Esempi

$$\begin{array}{lll} X \to (\neg Y \vee \neg Z) & \text{diviene} & x \leq (1-y) + (1-z) & \text{cioè} & x+y+z \leq 2 \\ (X \vee Y) \to (\neg Z) & \text{diviene} & x+y \leq 2(1-z) \\ (X \vee Y) \wedge (\neg Z \vee Y) & \text{diviene} & x+y \geq 1, (1-z) + y \geq 1 \\ \text{Almeno due fra } X, Y, Z & \text{diviene} & x+y+z \geq 2 \\ \text{Al più } k \text{ fra } X_1, X_2, \dots, X_n & \text{diviene} & \sum_{1}^{n} x_i \leq k \end{array}$$

3 Parte formale della ricerca operativa

3.1 Tecnica di soluzione lineare

Prendiamo un esempio che abbiamo già visto, il problema delle vernici.

Obiettivo

 $\bullet \ \max 3x_E + 2x_I \le 6$

Vincoli

- $x_E + 2x_I \le 6$
- $2x_E + x_I \le 8$
- $x_I x_E \le 1$
- $x_I \leq 2$
- $x_E, x_I \ge 0$

1. Disegnamo lo spazio delle soluzioni di x_E e x_I che soddisfano tutti i vincoli.

- (a) Consideriamo nel primo vincolo solamente l'uguaglianza $x_E + 2x_I = b$
- (b) Inseriamo i punti sul piano in base alle soluzioni del vincolo per una delle 2 variabili fissate.

i.
$$x_E = 0 \to x_I = 3$$

ii.
$$x_I = 0 \rightarrow x_E = 6$$

- (c) Traccia la retta tra i 2 punti.
- (d) Ripeti per ogni vincolo.

- 2. Ora cerchiamo di evidenzialre la regione ammissibile
 - (a) Rappresentiamo i vettori **gradienti** per ogni vincolo, ciascuno rappresentato dai coefficienti del vincolo. $x_E + 2x_I \le 6 \to \binom{1}{2}$
 - (b) Nel caso di vincoli con il \geq il **gradiente** indica la parte dei punti soddisfatta dal vincolo, altrimenti l'opposto.
 - (c) L'intersezione tra tutti gli spazi da la regione ammissibile

- 3. Ora troviamo il punto che da la soluzione ottima.
 - (a) Si genera un punto generico nella regione ammissibile.
 - (b) Sul punto si disegna il gradiente della funzione obiettivo.
 - (c) Poi la retta ortogonale al gradiente (**retta di Isocasto**) in cui tutti i punti hanno lo stesso costo.
 - (d) Il gradiente indica la direzione e il verso da seguire per aumentare il valore della funzione, quindi, dovendo massimizzare la funzione, spostiamo la retta in quella direzione fino a che la retta rimane nella regione ammissibile.
 - (e) Per verificarlo, dobbiamo essere sicuri che il **gradiente** della funzione obiettivo sia nel cono tra il gradiente del primo vincolo incontrato e del secondo.

3.2 Tecnica di programmazione matematica

Formalizziamo ora un problema come problema di programmazione matematica: Problema (f, X) con

- $f: \mathbb{R}^n \to \mathbb{R}$ funzione obiettivo.
- $X \subseteq \mathbb{R}^n$ regione ammissibile

Quindi un problema per noi diventa $minf(\underline{x})$ $\underline{x} \in X$.

Con
$$\underline{x}$$
 definita: $\underline{x} \in X \iff \underline{x} \text{ soddisf } a \begin{cases} g_1(\underline{x}) \leq 0 \\ \dots \\ g_m(\underline{x}) \leq 0 \\ h_1(\underline{x}) = 0 \\ \dots \\ h_k(\underline{x}) = 0 \end{cases}$

3.2.1 Convessità

Dati \underline{x} e $\underline{y} \in \mathbb{R}^n$ e lo scalare $\lambda \in [0,1]$, un vettore $\underline{z} \in \mathbb{R}^n$ è una combinazione convessa di \underline{x} e \underline{y} se:

$$\underline{z} = \lambda \underline{x} + (1 - \lambda)y$$

Insieme convesso Un insieme $S \subseteq \mathbb{R}^n$ è convesso se ogni combinazione convessa di una qualunque coppia $\underline{x}, \underline{y} \in S$ appartiene ad S stesso. L'intersezione di un qualunque numero di insiemi convessi è un insieme convesso.

Funzione convessa Una funzione $f: X \to R$ definita su di un insieme convesso $X \subseteq R^n$ si dice **convessa** se $\forall \underline{x}, y \in X$ e $\forall \lambda \in [0, 1]$ si ha che

$$f(\underline{z}) \le \lambda f(\underline{x}) + (1 - \lambda)f(\underline{y}) \text{ con } \underline{z} = \lambda \underline{x} + (1 - \lambda)\underline{y}$$

Funzione concava La funzione g è concava (sull'insieme convesso $X \subseteq \mathbb{R}^n$) se -g è convessa in X:

$$g(\underline{z}) = g(\lambda \underline{x} + (1 - \lambda)y) \ge \lambda g(\underline{x}) + (1 - \lambda)g(y) \quad \forall \underline{x}, \underline{y} \in X$$

Minimo locale $\underline{x} \in X$ è un minimo locale se esiste un intorno $N(\underline{x}) \subseteq X$ tale che $f(\underline{z}) \geq f(\underline{x})$ per ogni $\underline{z} \in N(\underline{x})$.

$$N(\underline{x}) = \{\underline{z} : \underline{z} \in X \in ||\underline{x} - \underline{z}|| \le \epsilon\}$$

Teorema Dato un problema di ottimizzazione convessa (X, f) ogni **minimo locale** è anche **minimo globale.**

Dimostrazione La tesi da dimostrare è: $\forall y \in X$ risulta $f(y) \geq f(\underline{x})$.

- Il teorema vale se $\underline{y} \equiv \underline{z} \in N(\underline{x})$.
- $\bullet\,$ Metto in relazione $\underline{x},\underline{z},y$ e i corrispondenti valori della f.o.:
- 1. Per trovare un controesempio, basta prendere un vettore \underline{y} non appartenente all'interno di $N(\underline{x})$, che sia minore di \underline{x} (minimo locale).

$$\underline{y} \notin N(x) \quad f(\underline{x}) \le f(\underline{y})$$

2. Prendiamo qundi uno \underline{z} che sia combinazione convessa di \underline{x} e \underline{y} e che appartenga all'interno.

$$f(\underline{z}) = f(\lambda \underline{x} + (1 - \lambda)\underline{y}) \le \lambda f(\underline{x}) + (1 - \lambda)f(\underline{y})$$

- 3. $f(\underline{x}) \leq f(\underline{z})$ perchè \underline{x} è minimo locale.
- 4. $f(\underline{x}) \le \lambda f(\underline{x}) + (1 \lambda)f(y)$

- $f(\underline{x}) \lambda f(\underline{x}) \le (1 \lambda)$
- $(1-\lambda)f(\underline{x}) \leq (1-\lambda)f(\underline{y})$ ma, essendo \underline{x} e \underline{y} diversi, $\lambda \neq 1$ e $\lambda \neq 0$, quindi:
- $f(\underline{x}) \le f(y)$ \square

Noi ci interesseremo al mondo della **programmazione lineare**. (f, X) è detto problema di programmazione lineare se e solo se la funzione obiettivo f e tutte le funzioni che definiscono la regione ammissibile X $(g_1(\underline{x}), \ldots, g_m(\underline{x}), h_1(\underline{x}), \ldots, h_k(\underline{x})$ sono **lineari**, ossia sono concave e convesse contemporaneamente. Di conseguenza X è convesso perchè intersezioni di insiemi (disuguaglianze) convessi.

Perchè X è definito da un insieme di disuguaglianze, il cui sistema genera una intersezione convessa, dimostriamo che un insieme definito in questo modo è a sua volta convesso.

Dimostrazione $X = \{\underline{x} \in \mathbb{R}^n : f(\underline{x}) \leq 0\}$ f convessa

- 1. Consideriamo 2 punti \underline{x} e \underline{y} tali che: $f(\underline{x}) \leq 0$ e $f(y) \leq 0$
- 2. Preso \underline{z} come **combinazione convessa** di \underline{x} e \underline{y} ($\underline{z} = \lambda \underline{x} + (1 \lambda)\underline{y}$) vale che $f(\underline{z}) \leq 0$:

$$f(\underline{z}) \leq \underbrace{\frac{\lambda}{\geq 0}}_{\leq 0} \underbrace{\frac{f(\underline{x})}{\leq 0}}_{\leq 0} + \underbrace{\frac{(1-\lambda)}{\leq 0}}_{\leq 0} \underbrace{\frac{f(\underline{y})}{\leq 0}}_{\leq 0} \to \text{poichè } f \text{ è funzione convessa}$$

Quindi ogni combinazione convessa di 2 punti che soddisfano la disuguaglianza, soddisfa a sua volta la disuguaglianza $\to X$ insieme convesso. \square

Ovviamente la programmazione lineare è solo un caso specifico di quella convessa.

3.3 Geometria della programmazione lineare

Iperpiano (di supporto di un vincolo) $\{\underline{x} \in R^n : \underline{\alpha}^T \underline{x} = \alpha_0\}$

Semispazio $\{\underline{x} \in R^n : \underline{a}^T \underline{x} \le \alpha_0\}$

Con \underline{a} vettore dei coefficienti, \underline{x} vettore delle variabili e α_0 valore reale $\to \underline{a}^T \underline{x}$ prodotto scalare tra a e x (a^T trasposta di a).

Iperpiano e semispazio **insiemi convessi** \rightarrow la loro intersezione genera un insieme convesso.

Poliedro intersezione di un numero finito di iperpiani e semispazi.

Politopo poliedro P limitato, ossia: $\exists M > 0 : ||\underline{x}|| \leq M \quad \forall \underline{x} \in P$

Vertice punto x di un poliedro P che non può essere espresso come combinazione convessa stretta ($\lambda \neq 0, 1$) di altri 2 punti del poliedro

$$\nexists \underline{y}, \underline{z} \in P, \underline{y} \neq \underline{z}, \lambda \in (0,1) : \underline{x} = \lambda \underline{y} + (1 - \lambda) \underline{z}$$

Ogni politopo ha un numero finito di vertici.

3.3.1 Forma matriciale del modello

Obiettivo $max 3x_1 + 2x_2$

Vincoli

- $8x_1 + 4x_2 \le 64$
- $4x_1 + 6x_2 \le 54$
- $x_1 + x_2 \le 10$
- $x_{1,2} \ge 0$

Vettore dei coefficienti dei costi $\underline{c}^T = (3, 2)$ vettore che contiene i coefficienti della funzione obiettivo

Vettore dei termini noti $\underline{b} = \begin{pmatrix} 64 \\ 54 \\ 10 \end{pmatrix}$ vettore che contiene i termini noti posti dopo le disuguaglianze nei vincoli.

Matrice dei coefficienti tecnologici $A = \begin{pmatrix} 8 & 4 \\ 4 & 6 \\ 1 & 1 \end{pmatrix}$ matrice che contiene i coefficienti moltiplicativi delle variabili nei vincoli.

Con A_i indichiamo la colonna *i-esima* di A, con \underline{a}_i^T indichiamo la riga *i-esima* di A.

Vettore delle variabili $\underline{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ vettore contenente tutte le variabili del modello. Quindi il problema è riformulabile in questi termini:

Funzione obiettivo $max \ \underline{c}^T \underline{x}$

Vincoli

- $A\underline{x} \leq \underline{b}$
- $x \ge 0$

 $\underline{P} = \{\underline{x} \in R^n | A | vx \leq b \land \underline{x} \geq 0\} \rightarrow \text{insieme dei punti che soddisfano i vincoli, ossia la regione ammissibile (politopo o poliedro).}$

Inoltre, in funzione della regione ammissibile \underline{P} , distinguiamo 3 tipi di problemi:

- Soluzione ottima finita la cui regione ammissibile è un politopo (ossia una regione di spazio limitata), in cui quindi il numero di souzioni ottime è finito $(\underline{P} \neq \emptyset)$
- Problema illimitato la cui regione ammissibile è un poliedro (ossia una regione di spazio illimitata)
- Problema inammissibile la cui regione ammissibile è vuota, non ammettendo quindi soluzioni ($\underline{P} = \emptyset$).

Nel primo caso, si possono verificare 3 diverse situazioni:

- Soluzione unica \rightarrow esiste un unico punto (vertice) che è soluzione ottima.
- Ottimo multiplo → l'insieme delle soluzioni ottime non è finito, poichè corrisponde una faccia del politopo.
- Soluzione degenere → la soluzione del problema è un vertice definito da più di 2 iperpiani (per definire un vertice è necessaria l'intersezione di soli 2 iperpiani) quindi quel punto nasconde più vertici (a causa dell'intersezione di tutte le coppie di iperpiani possibili).

3.3.2 Teorema di Minkowski-Weil

Ogni punto di un politopo si può ottenere come combinazione convessa dei suoi vertici.

Teorema Se $\underline{P} = \{\underline{x} \in R^n | A\underline{x} \leq b \land \underline{x} \geq 0\}$ è un politopo allora esiste almeno un vertice di \underline{P} ottimo per il problema $min \{c^T\underline{x} | \underline{x} \in \underline{P}\}$

Dimostrazione

1. Siano $\underline{y}_1, \ldots, \underline{y}_k$ i vertici del politopo \underline{P} e sia $z^* = \{min \ \underline{c}^T \underline{y}_j \ \text{con} \ j = 1, \ldots, k\}$ (z^* non è nient'altro che il valore minimo della funzione obiettivo calcolata in tutti i vertici \underline{y}_i .)

- 2. Sia $\underline{x} \in \underline{P}$ un punto qualsiasi del politopo, non vertice. Per Minkwoski-Weil questo punto è generabile come combinazione convessa di k vertici di P.
- 3. $\exists \underline{\lambda} \in [0,1]^n \mid \underline{x} = \sum_{j=1}^k \lambda_j \underline{y}_j \text{ con } \sum_{j=1}^k \lambda_j = 1$
- 4. Quindi la funzione obiettivo per il punto generico \underline{x} è esprimibile

$$\underline{c}^T\underline{x} = \underline{c}^T(\sum_{j=1}^k \lambda_j \underline{y}_j) = \sum_{j=1}^k \lambda_j \underbrace{\underline{c}^T\underline{y}_j}_{\substack{\geq z^* \\ \text{perchè} \\ \text{sono} \\ \text{i valori} \\ \text{di } f \\ \text{per i} \\ \text{vertici}}^{k} \geq \sum_{j=1}^k \lambda_j z^* = z^* \underbrace{\sum_{j=1}^j \lambda_j}_{=1} = z^* \qquad \forall \underline{x} \in \underline{P} \quad \underline{c}^T\underline{x} \geq z^* \quad \Box$$

3.3.3 Come leghiamo vertici e matrici?

La **forma standard** è la forma usata dagli algoritmi:

Funzione obiettivo $min c^T x$

Vincoli $A\underline{x} = \underline{b}, \quad x \ge 0$

Ma come passiamo da una forma generica a quella standard?

- 1. Per trasformare un vincolo generico caratterizzato da una disuguaglianza a uno con uguaglianza usiamo una **variabile aggiuntiva** (detta di scarto, slack o di surplus):
 - $\underline{a}^T \underline{x} \le b \to \underline{a}^T \underline{x} + s = b \text{ con } s \ge 0$
 - Per tutti i punti \underline{x} per cui $\underline{a}^T\underline{x}=b$ (vincolo attivo), s=0.
 - Per tutti i punti \underline{x} per cui $\underline{a}^T\underline{x} < b$ (vincolo NON attivo), s > 0.
 - $\underline{a}^T \underline{x} \ge b \to \underline{a}^T \underline{x} s = b \text{ con } s \ge 0$
- 2. Se abbiamo una variabile $x_j \leq 0$ che quindi non soddisfa il vincolo di non negatività, usiamo una variabile differente:
 - $x_j \le 0 \to \overline{x_j} = -x_j \quad (-x_j \ge 0)$
 - x_j libera $\to x_i^+ x_i^- = x_j \quad (x_i^+, x_i^- \ge 0)$
 - $-x_j$ non ha vincoli sul segno (può essere sia positiva che negativa).
- 3. Nel casi di funzioni obiettivo con massimo, la possiamo trasformare in funzione di minimo: $\max \underline{c}^T \underline{x} = -\min -\underline{c}^T \underline{x}$

Ora vediamo perchè è utile usare la **forma standard**: