M. Bivert

September 8, 2022

Exercise 1.

Show that the inner product defined by Eq. 1.2 satisfies all the axioms of inner products.

Let us recall the two axioms in question:

Axiom 1.

$$\langle C|\Big(|A\rangle + |B\rangle\Big) = \langle C|A\rangle + \langle C|B\rangle$$

Axiom 2.

$$\langle B|A\rangle = \langle A|B\rangle^*$$

Where z^* is the complex conjugate of $z \in \mathbb{C}$

And let us recall Eq. 1.2 of the book:

$$\langle B|A\rangle = \begin{pmatrix} \beta_1^* & \beta_2^* & \beta_3^* & \beta_4^* & \beta_5^* \end{pmatrix} \begin{pmatrix} \alpha_1\\ \alpha_2\\ \alpha_3\\ \alpha_4\\ \alpha_5 \end{pmatrix}$$
$$= \beta_1^*\alpha_1 + \beta_2^*\alpha_2 + \beta_3^*\alpha_3 + \beta_4^*\alpha_4 + \beta_5^*\alpha_5$$

For the first axiom, considering $\langle C|=(\gamma_i^*)$:

$$\langle C| \left(|A\rangle + |B\rangle \right) = \begin{pmatrix} \gamma_1^* & \gamma_2^* & \gamma_3^* & \gamma_4^* & \gamma_5^* \end{pmatrix} \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \alpha_3 + \beta_3 \\ \alpha_4 + \beta_4 \\ \alpha_5 + \beta_5 \end{pmatrix}$$

$$= \gamma_1^* (\alpha_1 + \beta_1) + \gamma_2^* (\alpha_2 + \beta_2) + \gamma_3^* (\alpha_3 + \beta_3) + \gamma_4^* (\alpha_4 + \beta_4) + \gamma_5^* (\alpha_5 + \beta_5)$$

$$= \left(\gamma_1^* \alpha_1 + \gamma_2^* \alpha_2 + \gamma_3^* \alpha_3 + \gamma_4^* \alpha_4 + \gamma_5^* \alpha_5 \right) + \left(\gamma_1^* \beta_1 + \gamma_2^* \beta_2 + \gamma_3^* \beta_3 + \gamma_4^* \beta_4 + \gamma_5^* \beta_5 \right)$$

$$= \left(\gamma_1^* & \gamma_2^* & \gamma_3^* & \gamma_4^* & \gamma_5^* \right) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} + \left(\gamma_1^* & \gamma_2^* & \gamma_3^* & \gamma_4^* & \gamma_5^* \right) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{pmatrix}$$

$$= \langle C|A\rangle + \langle C|B\rangle \quad \Box$$

Before diving into the second axiom, let us observe that for $(a,b) = (x_a + iy_a, x_b + iy_b) \in \mathbb{C}^2$:

$$(ab)^* = ((x_a + iy_a) \times (x_b + iy_b))^*$$

$$= (x_a x_b - y_a y_b + i(x_b y_a + x_a y_b))^*$$

$$= x_a x_b - y_a y_b - i(x_b y_a + x_a y_b)$$

$$= (x_a - iy_a) \times (x_b - iy_b)$$

$$= a^* b^*$$

Or, perhaps more simply using complex numbers' exponential's form:

$$(ab)^* = \left(r_a r_b e^{i(\theta_a + \theta_b)}\right)^*$$
$$= r_a r_b e^{-i(\theta_a + \theta_b)}$$
$$= a^* b^*$$

Hence, regarding the second axiom:

$$\langle B|A\rangle = \left(\left(\langle B|A\rangle \right)^* \right)^*$$

$$= \left(\left(\beta_1^* \alpha_1 + \beta_2^* \alpha_2 + \beta_3^* \alpha_3 + \beta_4^* \alpha_4 + \beta_5^* \alpha_5 \right)^* \right)^*$$

$$= \left(\beta_1 \alpha_1^* + \beta_2 \alpha_2^* + \beta_3 \alpha_3^* + \beta_4 \alpha_4^* + \beta_5 \alpha_5^* \right)^*$$

$$= \left(\alpha_1^* \beta_1 + \alpha_2^* \beta_2 + \alpha_3^* \beta_3 + \alpha_4^* \beta_4 + \alpha_5^* \beta_5 \right)^*$$

$$= \left(\left(\alpha_1^* \quad \alpha_2^* \quad \alpha_3^* \quad \alpha_4^* \quad \alpha_5^* \right) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{pmatrix} \right)^*$$

$$= \langle A|B\rangle^* \quad \Box$$