88 9. Funkcija

9.7 Predpis linearne funkcije

Linearna funkcija je realna funkcija realne spremenljivke, podana s predpisom

$$f(x) = kx + n; \quad k, n \in \mathbb{R},$$

kjer je k diferenčni kvocient/smerni koeficient, n pa začetna vrednost f(0) = n.

Glede na predznak smernega koeficienta k je linearna funkcija:

- naraščajoča, če je k > 0;
- konstanta, če je k=0 ali
- padajoča, če je k < 0.

Naloga 9.7. Ugotovite, ali je dana funkcija linearna. Linearnim funkcijam določite smerni koeficient in začetno vrednost.

•
$$f(x) = \frac{1}{7x} - \frac{3}{4}$$

• $g(x) = \frac{2}{3} - \pi x$
• $h(x) = \frac{8+6x}{24}$

•
$$i(x) = 0.\overline{3}x + 1$$

•
$$j(x) = \frac{x^2 - 3}{5}$$

•
$$i(x) = 0.3x + 1$$

• $j(x) = \frac{x^2 - 3}{5}$
• $k(x) = -\sqrt{2}x + \frac{2}{3}$
• $l(x) = 2$

•
$$l(x) = 2$$

Naloga 9.8. Zapišite predpis linearne funkcije f, ki ima začetno vrednost 5 in diferenčni količnik-3.

Naloga 9.9. Dana je linearna funkcija p(x) = 3x - 4. Izračunajte p(-2), p(0); p(5) in $p(\sqrt{2})$.

Naloga 9.10. Zapišite predpis linearne funkcije, za katero je u(-2) = 10 in u(0) = 2.

Naloga 9.11. Ali je funkcija naraščajoča ali padajoča?

•
$$f(x) = 3x + 5$$

•
$$g(x) = -2x + 7$$

•
$$h(x) = 10 - \frac{1}{2}x$$

•
$$h(x) = 10 - \frac{1}{2}x$$

• $i(x) = \frac{x-1}{2}$

$$i(x) = \frac{5 - 2x}{3}$$

•
$$k(x) = \frac{-\sqrt{3}x + 1}{2}$$

•
$$j(x) = \frac{5 - 2x}{3}$$

• $k(x) = \frac{-\sqrt{3}x + 1}{3}$
• $l(x) = -\frac{2 - 4x}{17}$

Naloga 9.12. Izračunajte ničlo linearne funkcije.

•
$$f(x) = 6x + 12$$

$$\bullet \quad g(x) = 5x + 2$$

•
$$h(x) = 3x - 12$$

•
$$i(x) = -4x + 8$$

•
$$j(x) = -3x + 2$$

•
$$k(x) = -x - 7$$

•
$$l(x) = \frac{3}{4}x - \frac{1}{4}$$

•
$$m(x) = -\frac{2x+3}{6}$$

• $n(x) = \frac{1-4x}{2}$
• $o(x) = \frac{\pi x + 4}{3}$
• $p(x) = \sqrt{2}x + 1$
• $r(x) = 4$

•
$$n(x) = \frac{1 - 4x}{2}$$

•
$$o(x) = \frac{\pi x + 4}{2}$$

•
$$p(x) = \sqrt{2}x + 1$$

$$\bullet \quad r(x) = 4$$

Naloga 9.13. Dana je linearna funkcija f. Zapišite predpis funkcije g(x) = kx + n.

•
$$f(x) = 2x - 6$$
, $g(x) = 3f(x)$

•
$$f(x) = 5x - 3$$
; $g(x) = f(x + 1)$

•
$$f(x) = \frac{2x-5}{3}$$
; $g(x) = f(1-x)$
• $f(x) = \frac{10-4x}{7}$; $g(x) = f(3x)$

•
$$f(x) = \frac{10-4x}{7}$$
; $g(x) = f(3x)$

Naloga 9.14. Dana je družina linearnih funkcij $f(x) = (2m-1)x + (3-m); m \in \mathbb{R}$.

- Za katero vrednost parametra m ima funkcija diferenčni količnik enak -5?
- Za katero vrednost parametra m je funkcija padajoča?
- Za katero vrednost parametra m je funkcija konstantna?
- Za katero vrednost parametra m je funkcija naraščajoča?
- Za katero vrednost parametra m je začetna vrednost enaka 2?
- Za katero vrednost parametra m ima funkcija ničlo x = -4?

Naloga 9.15. Taksist meri razdaljo, ki jo je prevozil. Vsak kilometer stane 2.5 €, startnina pa 7 €. Zapišite funkcijo, po kateri taksist izračuna znesek za plačilo, ko prebere število prevoženih kilometrov x. Izračunajte, koliko bi plačali, če bi se peljali 12 km.

Naloga 9.16. V bezenu je 12 l vode. V bazen po cevi vsako minuto pritečejo še 4 l vode. Zapišite funkcijo, s katero bomo lahko izračunali, koliko je vode v bazenu po pretečenih x minutah. Izračunajte, koliko vode je v bazenu po 9 minutah.