

PHI Applied Research Fellows 2023 Intro to Demography

Jessica Godwin

June 23, 2023

Introduction

The Demographic Transistion Theory

Population Size

Fertility

Mortality

Migration

Introduction

What is Demography?

$$P_{t+1} = P_t + B_t - D_t + IM_t - OM_t$$

- Fertility, mortality, migration, population size
 - The balancing equation
- How these processes work together in a population
- Break it all down by age and sex and ...

Why is Demography?

- Understand a population's make up today
- Targeted intervention

Introduction

- Projections allow planning for future population
- Historical demography
- Social demography

- Demography: Measuring and Modeling Population Processes
 - Samuel Preston, Patrick Heuveline, Michel Guillot
- Essential Demographic Methods
 - Kenneth Wachter

Introduction

- Tools for Demographic Estimation
 - IUSSP (many prominent world demographers)

- Mortality begins to decrease \rightarrow
- Fertility begins to decrease \rightarrow
- In countries that have already experienced the transition, to below "replacement level" ≈ 2.1 children per parents \rightarrow rise to and fluctuation around this point
- behind model in WPP (Alkema et al., 2011)
- Is this true in places where TFR remains high? Is all "high" fertility a result of unmet family planning needs?
- This really succinct amazing graphic on Wikipedia

N Africa & West Asia: 1950-1955 to 2015-2020

Sub-Saharan Africa: 1950-1955 to 2015-2020

Central & South Asia: 1950-1955 to 2015-2020

East & South-Eastern Asia: 1950-1955 to 2015-2020

Latin America & the Caribbean: 1950-1955 to 2015-2020

Australia, New Zealand, Oceania: 1950-1955 to 2015-2020

Europe & North America: 1950-1955 to 2015-2020

Population Size

Population Pyramids: Latin America & Caribbean, 2015 Male Female

Population Pyramids: Asia, 2015

Population Pyramids: Africa, 2015

Population Pyramids: WA, 2011

Over time from WA OFM

Fertility

Age-specific Fertility Rates

Mortality

Age-specific Mortality 1995–2000

Age-specific Mortality **2015–2020**

The Lexis Diagram: Age-Period-Cohort

Migration

Migration is notoriously hard to measured or estimate, and even harder to project into the future.

- **Migration flows**: between each pair $i \neq j$ of geographic or political regions, we know who traveled $i \rightarrow j$ and $j \rightarrow i$ between time t and t+1
- Migration stock: the number of individuals residing in geographic or political region i from all other region $i \neq i$ at time t
- **Net migration** or the **residual method**: we know the population in region i at time t and t+1, as well as the births and deaths that occurred in region i between time t and t+1

$$P_{t+1} - [P_t + B_t - D_t] = I_t - O_t$$

- Migration flows: require sharing of information between all regions i and j, which
 may be unreasonable or impossible
- **Migration stock**: doesn't necessarily capture in-migration or out-migration (it's cross-sectional), require sharing of information between all regions *i* and *j*, which may be unreasonable or impossible
- Net migration: often the most accessible, but does not help to quantify in-migration and out-migration as two separate population processes
- What are regions i and j? Nations? States? Counties? Neighborhoods?
 - The answer to this question will determine the extend to which systems even exist to observe and record migration
- For calculating rates or probabilities what is the denominator for in-migration?