# Mathematics for Computer Science Linear Algebra

Lecture 12: Eigenvalues and eigenvectors

Andrei Krokhin

April 18, 2021

#### Reminder from the last lecture

• Let V and W be vector spaces. A function  $T:V\to W$  is called a linear map, or a linear transformation, from V to W if, for all  $\mathbf{u},\mathbf{v}\in V,k\in\mathbb{R}$ ,

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(k\mathbf{u}) = k \cdot T(\mathbf{u}).$$

If V = W then T is called a linear operator.

- If A is an  $m \times n$  matrix then the matrix transformation  $T_A : \mathbb{R}^n \to \mathbb{R}^m$  is defined by  $T_A(\mathbf{x}) = A\mathbf{x}$ .
- Linear maps from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  and matrix transformations are the same things.

### Contents for today's lecture

- Eigenvalues and eigenvectors of matrices and linear maps;
- Characteristic polynomial and characteristic equation of a matrix;

## Eigenvalues and eigenvectors

#### **Definition**

Let A be an  $n \times n$  matrix. A non-zero vector  $\mathbf{x} \in \mathbb{R}^n$  is called an eigenvector of A (or, equivalently, of the operator  $T_A : \mathbb{R}^n \to \mathbb{R}^n$ ) if, for some scalar  $\lambda$ ,

$$A\mathbf{x} = \lambda \mathbf{x}$$
 (or, equivalently,  $T_A(\mathbf{x}) = \lambda \mathbf{x}$ .)

In this case,  $\lambda$  is called an eigenvalue of A (and of  $T_A$ ), and  $\mathbf{x}$  is an eigenvector corresponding to  $\lambda$ .

- The assumption  $\mathbf{x} \neq \mathbf{0}$  is necessary to avoid the case  $A\mathbf{0} = \lambda \mathbf{0}$  which always holds.
- The meaning of the notion is that  $T_A$  does not change the direction of  $\mathbf{x}$  (up to reversal), it only scales  $\mathbf{x}$  by  $\lambda$ .

Example: vector  $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  is an eigenvector of  $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$  corresponding to eigenvalue 3. Indeed,

$$A\mathbf{x} = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 3\mathbf{x}.$$

Consider linear operators  $T_A$  on  $\mathbb{R}^2$  where A is one of the following matrices:

$$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

They correspond to reflections of  $\mathbb{R}^2$  about y-axis, x-axis, and line x=y, resp.



- **1** The eigenvectors are all non-zero vectors (x, 0) and (0, y), corresponding to eigenvalues -1 and 1, respectively.
- **②** The eigenvectors are all non-zero vectors (x,0) and (0,y), corresponding to eigenvalues 1 and -1, respectively.
- **3** The eigenvectors are all non-zero vectors (x, x) and (-x, x), corresponding to eigenvalues 1 and -1, respectively.

Consider linear operators  $T_A$  on  $\mathbb{R}^2$  where A is one of the following matrices:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

They correspond to orthogonal projections of  $\mathbb{R}^2$  onto x-axis and y-axis, resp.



- **1** The eigenvectors are all non-zero vectors (x, 0) and (0, y), corresponding to eigenvalues 1 and 0, respectively.
- **②** The eigenvectors are all non-zero vectors (x,0) and (0,y), corresponding to eigenvalues 0 and 1, respectively.

Consider the linear operator  $T_A$  on  $\mathbb{R}^2$  where A is the following matrix:

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right).$$

The corresponding linear map  $T_A$  satisfies

$$T_A(x,y) = (x',y') = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta).$$

This corresponds to the rotation of  $\mathbb{R}^2$  by angle  $\theta$  counterclock-wise.



**1** This linear map has no eigenvectors for any  $0 < \theta < 180^{\circ}$ .

Consider linear operators  $T_A$  on  $\mathbb{R}^2$  where A is the following matrix:

$$\left(\begin{array}{cc} k & 0 \\ 0 & k \end{array}\right).$$

This is contraction (if k < 1) or dilation (if k > 1) of  $\mathbb{R}^2$ .



lacktriangle The eigenvectors are all non-zero vectors, corresponding to eigenvalue k.

Consider linear operators  $T_A$  on  $\mathbb{R}^2$  where A is the following matrix:

$$\left(\begin{array}{cc} k & 0 \\ 0 & 1 \end{array}\right).$$

They correspond to compressions (if k < 1) and expansions (if k > 1) of  $\mathbb{R}^2$  along x-axis.



• The eigenvectors are all non-zero vectors (x, 0) and (0, y), corresponding to eigenvalues k and 1, respectively.

Consider the transformation  $T_A$  on  $\mathbb{R}^2$  where A is the following matrix:

$$\left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right).$$

The transformation  $T_A$  satisfies  $T_A(x,y) = (x + ky, y)$ . For  $k \neq 0$ , it corresponds to shear of  $\mathbb{R}^2$  in the *x*-direction with factor *k*.



**1** The eigenvectors are all non-**0** vectors (x,0), corresponding to eigenvalue 1.

## Characteristic equation of a matrix

#### **Theorem**

If A is an  $n \times n$  matrix then  $\lambda$  is an eigenvalue of A iff it satisfies  $det(\lambda I - A) = 0$ .

The equation  $det(\lambda I - A) = 0$  is called the characteristic equation of A.

#### Proof.

By definition,  $\lambda$  is an eigenvalue of A iff  $A\mathbf{x} = \lambda \mathbf{x}$  for some  $\mathbf{x} \neq \mathbf{0}$ . We have

$$A\mathbf{x} = \lambda \mathbf{x} \quad \Leftrightarrow \quad A\mathbf{x} = \lambda I \mathbf{x} \quad \Leftrightarrow \quad (\lambda I - A)\mathbf{x} = \mathbf{0}.$$

By theorem about invertible matrices, the last equation has a solution  $\mathbf{x} \neq \mathbf{0}$  iff  $det(\lambda I - A) = 0$ .

### **Examples**

Example: find eigenvalues of the matrix  $A=\left(\begin{array}{cc} 2 & -1 \\ 10 & -9 \end{array}\right)$  . We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ -10 & \lambda + 9 \end{vmatrix} = (\lambda - 2) \cdot (\lambda + 9) - 1 \cdot (-10) = \lambda^2 + 7\lambda - 8.$$

So, the characteristic equation of A is  $\lambda^2 + 7\lambda - 8 = 0$ .

Its solutions  $\lambda_1 = 1$  and  $\lambda_2 = -8$  are the eigenvalues of A.

Example: find eigenvalues of the matrix  $B=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$  . We have

$$det(\lambda I - B) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1.$$

The characteristic equation of B is  $\lambda^2 + 1 = 0$ , so B has no (real) eigenvalues.

### Characteristic polynomial of a matrix

• In general, the expression  $det(\lambda I - A)$  is a polynomial

$$p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \ldots + c_{n-1} \lambda + c_n.$$

where n is the order of A. It is called the characteristic polynomial of A.

- Solving the equation  $p(\lambda) = 0$  is difficult in general there is no closed formula or exact algorithm.
- There are numerical algorithms for computing eigenvalues approximately.
  (See e.g. Chapter "Numerical Methods" in the textbook).
- If all coefficients of  $p(\lambda)$  are integers and the equation  $p(\lambda) = 0$  has an integer solution  $\lambda = k$  then  $k|c_n$ . This can be used to find some eigenvalues.

### Example

Example: find eigenvalues of 
$$A=\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{array}\right)$$
 . We have

$$det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0.$$

If A has an integer eigenvalue then it is a divisor of -4, i.e.,  $\pm 1, \pm 2, \pm 4$ . Checking these numbers in turn, we find that  $\lambda = 4$  is a solution.

Divide 
$$\lambda^3 - 8\lambda^2 + 17\lambda - 4$$
 by  $\lambda - 4$  to get

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = (\lambda - 4)(\lambda^2 - 4\lambda + 1).$$

Solving the equation  $\lambda^2 - 4\lambda + 1 = 0$ , we get that the eigenvalues of A are

$$\lambda_1 = 4, \lambda_2 = 2 + \sqrt{3}, \text{ and } \lambda_3 = 2 - \sqrt{3}.$$

### Eigenspaces and their bases

- Let  $\lambda_0$  be an eigenvalue of A and consider the equation  $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$ .
- The null space of  $\lambda_0 I A$  is called the eigenspace of A corresponding to  $\lambda_0$ .
- The non- ${f 0}$  vectors in this space are the eigenvectors of A corresponding to  $\lambda_0$ .
- To find a basis in this subspace, use the algorithm for finding a basis in the null space of a matrix.

Find (a basis of) the eigenspace of  $A = \begin{pmatrix} 2 & -1 \\ 10 & -9 \end{pmatrix}$  corresponding to  $\lambda = -8$ . **Solution.** Form the equation  $(-8I - A)\mathbf{x} = \mathbf{0}$ , or

$$\begin{pmatrix} -10 & 1 \\ -10 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{or} \quad \begin{array}{c} -10x_1 + x_2 & = & 0 \\ -10x_1 + x_2 & = & 0 \end{array}$$

The subspace consists of all vectors of the form (x, 10x). One basis is  $\{(1, 10)\}$ .

**Exercise:** Find the eigenspace of *A* corresponding to eigenvalue  $\lambda = 1$ .

## Multiplicities of an eigenvalue

Let  $\lambda_0$  be an eigenvalue of a matrix A.

- The algebraic multiplicity of  $\lambda_0$  is the power k with which  $(\lambda \lambda_0)$  appears as a factor of  $det(\lambda I A)$  the characteristic polynomial of A.
  - E.g. if  $det(\lambda I A) = (\lambda 2)^3 \cdot (\lambda + 5)^2 \cdots$ , then it's 3 for 2 and 2 for -5
- The geometric multiplicity of  $\lambda_0$  is the dimension of the eigenspace corresponding to  $\lambda_0$ .

#### **Theorem**

Let A be any square matrix. For every eigenvalue of A, its algebraic multiplicity is greater than or equal to its geometric multiplicity. (Proof omitted)

**Exercise:** Find an example of *A* and its eigenvalue where the inequality in the theorem is strict.

## What we learnt today

- Eigenvalues and eigenvectors of matrices
- Examples in  $\mathbb{R}^2$
- Characteristic equation of a matrix how to find eigenvalues
- Eigenspaces and how to find their bases

#### Next time:

Diagonalisation of matrices.