EXPERIMENT 3

```
In [1]:
       import pandas as pd # for the model training which only
       requires the dataframe
       distribution plot
       import matplotlib.pyplot as plt
       import seaborn as sns # for the plotting of regression plots
       from sklearn.linear model import LinearRegression # for the
       linear model
```

```
# importing the dataset
dataset = open("csv/Concrete_Data.csv")
```

```
# counting the number of features (column) in the dataset
col_names = dataset.readline() # reading the row that contain
```

```
column name
      num_of_col = col names.count(",")+1
In [4]:
      # the raw data from which we will extract the required data
       data raw = dataset.readlines()
       # now we will get data for each column
       required data = dict() # first we create dictionary to
       seperate values of each feature
       for col in range(num of col):
           required data["col"+str(col)] = []
       seperating the values in csv )
       for row in data raw:
           row = row.rstrip("\n")
           row val = row.split(",")
           for i in range(len(row val)):
```

now seprating values of each feature
required_data["col"+str(i)].append(float(row_val[i]))

In [5]:

now we will make the Daraframe of our to train our model
required_data=pd.DataFrame(required_data)
required_data

Out[5]:		col0	col1	col2	col3	col4	col5	col6	col7	col8
	0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28.0	79.99
	1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28.0	61.89
	2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270.0	40.27
	3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365.0	41.05
	4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360.0	44.30
	1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28.0	44.28
	1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28.0	31.18
	1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28.0	23.70
	1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28.0	32.77
	1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28.0	32.40

1030 rows × 9 columns

```
In [6]:
       lm = LinearRegression()
       lm.fit(required_data[["col0","col1","col2","col3","col4","col5"
        required data["col8"])
       pred =
       lm.predict(required_data[["col0","col1","col2","col3","col4","col
       pred
Out[6]:
In [7]:
       # finding the coefficient(slope) for the linear model
```

```
In [7]: # finding the coefficient(slope) for the linear model
    slope = lm.coef_
    # finding the intercept for the linear model
    intercept = lm.intercept_
```

```
Out[8]: array([ 0.11980433,  0.10386581,  0.08793432, -0.14991842,  0.2922246 ,
```

/home/dhanola/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: Fut reWarning: `distplot` is a deprecated function and will be removed in a future version Please adapt your code to use either `displot` (a figure-level function with similar fexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

Thome/dhanola/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: Future Verbarring: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

Out[10]: <AxesSubplot:ylabel='Density'>

