Regressão Linear Múltipla

Prof. Dr. Leandro Balby Marinho

Aprendizagem de Máquina

Regressão Polinomial

Em muitos casos o grafo de dispersão sugere uma relação não linear entre x e y.

A equação do modelo quadrático, por exemplo, é dada por

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \epsilon_i$$

Regressão Polinomial

Em muitos casos o grafo de dispersão sugere uma relação não linear entre x e y.

A equação do modelo quadrático, por exemplo, é dada por

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \epsilon_i$$

Regressão Polinomial

Modelo:

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \ldots + w_p x_i^p + \epsilon_i$$

$$ightharpoonup$$
 atributo $1 = 1$ (constante)

parâmetro
$$1 = w_0$$

$$ightharpoonup$$
 atributo $2 = x$

parâmetro
$$2 = w_1$$

$$ightharpoonup$$
 atributo $3 = x^2$

parâmetro
$$3 = w_2$$

▶ atributo
$$p + 1 = x^p$$

parâmetro
$$p+1=w_d$$

Atributos como funções

Modelo:

$$y_{i} = w_{0}h_{0}(x_{i}) + w_{1}h_{1}(x_{i}) + w_{2}h_{2}(x_{i}) + \ldots + w_{p}h_{p}(x_{i}) + \epsilon_{i}$$

$$= \sum_{j=0}^{D} w_{j}h_{j}(x_{i}) + \epsilon_{i}$$

- ▶ atributo $1 = h_0(x)$...geralmente 1 (constante)
- ightharpoonup atributo $2 = h_1(x) \dots e.g., x$
- ightharpoonup atributo $3 = h_2(x) \dots e.g., x^2$
- ▶ ...
- ► atributo p+1 = $h_p(x)$... e.g., x^p

Atributos como funções

Roteiro

Regressão Múltipla

Como usar as outras variáveis disponíveis no modelo de regressão?

Notação

```
Saída: y (escalar)

Entradas: \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d) \in \mathbb{R}^d

\blacktriangleright \mathbf{x}^{(i)} = i-ésima observação (vetor)

\blacktriangleright \mathbf{x}_j^{(i)} = j-ésima entrada da i-ésima observação (escalar)

\blacktriangleright h_j(\mathbf{x}) = j-ésimo atributo (escalar)
```

► # observações (x, y): N

► # entradas x_j : d► # atributos $h_i(x)$: D

Regressão Linear Múltipla

Modelo:

$$y^{(i)} = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \ldots + w_d x_d^{(i)} + \epsilon_i$$

- ightharpoonup variável 1 = 1
- ▶ variável $2 = x_1 \dots e.g.$, investimento em TV
- ightharpoonup variável 3 = $x_2 \dots$ e.g., investimento em Rádio
- ▶ ...
- ▶ variável $d + 1 = x_d \dots e.g.$, investimento em redes sociais

Modelo de Regressão como Hiperplano

Modelo de Regressão como uma Curva D-dimensional

Modelo:

$$y^{(i)} = w_0 + w_1 h_0(x^{(i)}) + w_2 h_1(x^{(i)}) + \dots + w_D h_D(x^{(i)}) + \epsilon_i$$

= $\sum_{j=0}^d w_j h_j(x^{(i)}) + \epsilon_i$

- ightharpoonup atributo $1 = h_0(x) \dots e.g., 1$
- ▶ atributo $2 = h_1(x) \dots e.g., x_1 = investimento em TV$
- ightharpoonup atributo 3 = $h_2(x)$... e.g., $\log (x_2)x_1$
- ▶ ...
- ▶ atributo $D + 1 = h_D(x) \dots$ alguma outra função de x_1, \dots, x_D

Interpretando os coeficientes: dois atributos

Fixando x_1 a intepretação é a mesma da regressão linear simples.

Interpretando os coeficientes: dois atributos

Fixando x_1 a intepretação é a mesma da regressão linear simples.

Interpretando os coeficientes: múltiplos atributos

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x_1 + \ldots + \hat{w}_i x_i + \ldots + \hat{w}_d x_d$$

Fixando todas as variáveis menos uma a intepretação é a mesma da regressão linear simples.

Usando notação de vetores: uma observação

Usando notação de vetores: uma observação

Para a observação i:

$$y^{(i)} = \sum_{j=0}^{D} w_j h_j(\mathbf{x}^{(i)}) + \epsilon^{(i)}$$
$$= \mathbf{w}^T \mathbf{h}(\mathbf{x}^{(i)}) + \epsilon^{(i)}$$

Usando notação de matrizes: todas as observações

Custo de uma curva D-dimensional

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}^{(i)})^T \mathbf{w})^2$$
$$= (\mathbf{y} - H\mathbf{w})^T (\mathbf{y} - H\mathbf{w})$$

Gradiente do RSS

$$\nabla RSS(w) = \nabla [(y - Hw)^{T} (y - Hw)]$$
$$= -2H^{T} (y - Hw)$$

Calculando parâmetros de forma fechada

$$\nabla$$
RSS(w) = $-2H^T(y - Hw) = 0$

Resolvendo para w:

$$\begin{aligned} -2\mathsf{H}^T\mathsf{y} + 2\mathsf{H}^T\mathsf{H}\hat{\mathsf{w}} &= 0 \\ -\mathsf{H}^T\mathsf{y} + \mathsf{H}^T\mathsf{H}\hat{\mathsf{w}} &= 0 \quad \text{(divide ambos os lados por 2)} \\ \mathsf{H}^T\mathsf{H}\hat{\mathsf{w}} &= \mathsf{H}^T\mathsf{y} \\ (\mathsf{H}^T\mathsf{H})^{-1}\mathsf{H}^T\mathsf{H}\hat{\mathsf{w}} &= (\mathsf{H}^T\mathsf{H})^{-1}\mathsf{H}^T\mathsf{y} \\ \hat{\mathsf{w}} &= (\mathsf{H}^T\mathsf{H})^{-1}\mathsf{H}^T\mathsf{y} \end{aligned}$$

Custo da inversão de matrizes (quando inversível): $O(D^3)$

Equações Normais como Sistemas de Equações Lineares

► As equação normais podem ser dadas por:

$$H^T H \hat{w} = H^T y$$

► A equação acima pode ser representada por um sistema de equações lineares da forma:

$$\underbrace{\mathsf{H}^{\mathsf{T}}\mathsf{H}}_{A}\underbrace{\mathsf{w}}_{\mathsf{x}}=\underbrace{\mathsf{H}^{\mathsf{T}}\mathsf{y}}_{\mathsf{h}}$$

Vários métodos de resolução:

- ► Eliminação Gaussiana
- ► Fatoração de Cholesky
- ► Fatoração QR

Exemplo 1

Use um modelo de regressão linear múltipla para estimar o valor de y para $x_1 = 3$ e $x_2 = 4$ considerando os dados abaixo.

<i>x</i> ₁	<i>X</i> ₂	у
1	2	3
2	3	2
4	1	7
5	5	1

Exemplo 1 cont.

Modelo regressão múltipla:

$$y_i = w_0 + w_1 x_1 + w_2 x_2 + \epsilon_i$$

$$H = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 4 & 1 \\ 1 & 5 & 5 \end{bmatrix}, \quad y = \begin{bmatrix} 3 \\ 2 \\ 7 \\ 1 \end{bmatrix}$$

$$\mathsf{H}^{T}\mathsf{H} = \begin{bmatrix} 4 & 12 & 11 \\ 12 & 46 & 37 \\ 11 & 37 & 39 \end{bmatrix}, \quad \mathsf{H}^{T}\mathsf{y} = \begin{bmatrix} 13 \\ 40 \\ 24 \end{bmatrix}$$

Exemplo 1 cont.

Estimando os parâmetros por Eliminação Gaussiana:

$$\begin{bmatrix} 4 & 12 & 11 & 13 \\ 12 & 46 & 37 & 40 \\ 11 & 37 & 39 & 24 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2.75 & 3.25 \\ 0 & 10 & 4 & 1 \\ 0 & 4 & 8.75 & -11.75 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 4 & 12 & 11 & 13 \\ 0 & 1 & 0.4 & 0.1 \\ 0 & 0 & 7.15 & -12.15 \end{bmatrix}$$

$$\mathbf{w} \approx \begin{bmatrix} 5.583 \\ 0.779 \\ -1.699 \end{bmatrix}$$

Exemplo 1 cont.

$$\hat{y}(x_1 = 3, x_2 = 4) = 5.583 + 0.779x_1 - 1.699x_2 = 1.124$$

Gradiente Descendente

Gradient-Descent

1 while not converged

$$2 \qquad \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \underbrace{\nabla \mathsf{RSS}(\mathbf{w}^{(t)})}_{-2\mathsf{H}^T(\mathsf{y}-\mathsf{Hw})}$$

Gradiente Descendente

Gradient-Descent

1 while not converged

$$2 \qquad \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + 2\alpha \mathbf{H}^{T} (\mathbf{y} - \underbrace{\mathbf{H}_{\mathbf{w}}^{(t)}}_{\hat{\mathbf{y}}})$$

Derivada parcial de um parâmetro

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})^2$$
$$= \sum_{i=1}^{N} (y^{(i)} - w_0 h_0(\mathbf{x}^{(i)}) - w_1 h_1(\mathbf{x}^{(i)}) - \dots - w_D h_D(\mathbf{x}^{(i)}))$$

Derivada parcial em relação a wj

$$= \sum_{i=1}^{N} 2(y^{(i)} - w_0 h_0(x^{(i)}) - w_1 h_1(x^{(i)}) - \dots - w_D h_D(x^{(i)})(-h_j(x^{(i)}))$$

$$= -2 \sum_{i=1}^{N} h_j(x^{(i)})(y^{(i)} - h(x^{(i)})^T w)$$

Algoritmo do Gradiente Descendente

```
GradientDescent(\alpha, \epsilon)

1 initialize \mathbf{w}, t = 1

2 while ||\nabla RSS(\mathbf{w}^{(t)})|| \ge \epsilon

3 for j = 0, \dots, D

4 partial[j] = -2\sum_{i=1}^{N} h_j(\mathbf{x}^{(i)})(y^{(i)} - \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w})

5 \mathbf{w}_j^{(t+1)} = \mathbf{w}_j^{(t)} - \alpha \cdot \text{partial}[j]

6 t = t+1

7 return \mathbf{w}
```

Gradiente Descendente vs. Equações Normais

- ► Gradiente Descendente
 - ightharpoonup Precisa escolher α .
 - ► Pode precisar de muitas iterações.
 - ► Relativamente eficiente para *D* grande.
- ► Equações Normais
 - ▶ Não precisa escolher α .
 - ► Não precisa iterar.
 - Métodos de resolução de sistemas de equações lineare podem ser caros (e.g. fatoração de Cholesky $\in O(D^3)$).
 - ► Lento para *D* muito grande.

Referências

Emily Fox and Carlos Guestrin. Machine Learning

Specialization. Curso online disponível em

https://www.coursera.org/specializations/machine-learning

Último acesso: 04/09/2017.