

Introducción a PyTorch

Alfons Juan, Jorge Civera

Departament de Sistemes Informàtics i Computació

Índice

1	Introducción	1
2 2.1 2.2 2.3	Atributos de un tensor	3 4 7 8
3.1 3.2 3.3 3.4	Conjuntos de datos y carga Carga de un conjunto de datos Iteración y visualización Conjunto de datos definido por el usuario Preparación de los datos para entrenamiento	15 16 18 20 21
4	Transformaciones	23
5.1 5.2 5.3 5.4	Construcción de la red neuronal Obtención del dispositivo para entrenamiento Definición de la clase Capas del modelo Parámetros del modelo	26 27 28 31 37
6 6.1	Diferenciación automática Tensores, funciones y grafo computacional	39 40

6.2 6.3 6.4	Cálculo de gradientes Inhabilitación del seguimiento de gradientes Más sobre grafos computacionales	42 43 44
7 7.1 7.2 7.3 7.4 7.5 7.6	Optimización de parámetros del modelo Código previo Hiperparámetros Bucle de optimización Función de pérdida Optimizador Implementación completa	45 46 47 48 49 50 51
8 8.1 8.2	Grabación y carga del modelo Grabación y carga de los pesos del modelo	53 54 55

1. Introducción

- ► PyTorch: librería de aprendizaje automático de código abierto basada en la librería Torch, usada en aplicaciones de visión artificial y procesamiento de lenguaje natural
- Desarrollada por Facebook Al Research (FAIR) bajo una interfaz Python, también se ofrece a través de un frontend C++ para la construcción de sistemas computacionalmente optimizados
- ► *Tensores:* ofrece la clase *torch.Tensor* para operar con arrays multidimensionales similares a los de *NumPy* en (CPU y) *GPU*
- Redes neuronales profundas: facilita su construcción mediante módulos de diferenciación automática (torch.autograd), optimización (torch.optim) y construcción de redes (torch.nn).
- ► Presentación basada en el *tutorial para principiantes oficial:* https://pytorch.org/tutorials/beginner/basics/intro.html
- ► Polilabs: pythonpath=\$pythonpath:~/asigDSIC/ETSINF/apr/mlp/pylib

- Reproducción del tutorial: por cada sección, se recomienda inciar el intérprete y copiar-pegar los ejemplos enmarcados
 - El código de algunos ejemplos se proporciona en fichero.py para ejecutarse con exec (open ("fichero.py").read())

2. Tensores

► Tutorial oficial: cuaderno jupyter tensorqs_tutorial

https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

Importación de las librerías torch y numpy:

```
import torch
import numpy as np
```

Escribe torch.h seguido de tabulador:

```
torch.h # y Tab
```

```
torch.half
                       torch.has mkldnn
                                                     torch.histogramdd(
torch.hamming_window(
                       torch.has mlc
                                                     torch.hsmm(
torch.hann window(
                       torch.has_openmp
                                                     torch.hsplit(
torch.hardshrink(
                       torch.has spectral
                                                     torch.hspmm(
                       torch.heaviside(
torch.has cuda
                                                     torch.hstack(
torch.has cudnn
                       torch.hinge_embedding_loss(
                                                     torch.hub
torch.has_lapack
                       torch.histc(
                                                     torch.hypot(
                       torch.histogram(
torch.has mkl
```

2.1. Inicialización de un tensor

Creación a partir de datos:

Creación a partir de un array NumPy:

► A partir de otro tensor, reteniendo shape y dtype:

```
x_ones = torch.ones_like(x_data); x_ones
tensor([[1, 1],
        [1, 1]])
x_data.shape; x_ones.shape
torch.Size([2, 2])
torch.Size([2, 2])
x_data.dtype; x_ones.dtype
torch.int64
torch.int64
Crea un tensor de zeros, x_zeros, como x_data
tensor([[0, 0],
```

[0, 0]]

A partir de otro tensor, cambiando el dtype:

Con valores constantes o aleatorios:

[1., 1., 1.]])

[0., 0., 0.11)

tensor([[0., 0., 0.],

2.2. Atributos de un tensor

► shape, dtype y device:

```
tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
```

```
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu
```

2.3. Operaciones sobre tensores

Más de 100 operaciones disponibles:

https://pytorch.org/docs/stable/torch.html

► Copia de un tensor (creado en CPU) a GPU:

```
if torch.cuda.is_available():
   tensor = tensor.to('cuda')
tensor.device
```

```
device(type='cuda', index=0)
```

► Indexación y troceado al estilo numpy:

```
tensor = torch.ones(4, 4)
print('First row: ', tensor[0])
print('First column: ', tensor[:, 0])
print('Last column:', tensor[..., -1])
tensor[:,1] = 0
print(tensor)
```

Extrae la última fila de tensor:

```
.....
```

```
tensor([1., 0., 1., 1.])
```

► Concatenación de tensores en una dimensión dada:

Concatena tensor consigo mismo por filas (en vertical):

► Producto matricial: y1, y2, y3 tendrán el mismo valor

► Producto elemental: z1, z2, z3 tendrán el mismo valor

► Tensores de un único elemento: conversión a número python

```
agg = tensor.sum()
print(agg, type(agg))
agg_item = agg.item()
print(agg_item, type(agg_item))

tensor(12.) <class 'torch.Tensor'>
12.0 <class 'float'>

Obtén la media de tensor como número python:
```

0.75

► Operaciones en línea con el sufijo "_":

[6., 5., 6., 6.]])

► Réstale 5 a tensor:

► Memoria compartida entre tensores en CPU y arrays numpy:

```
t = torch.ones(5); n = t.numpy(); t; n
tensor([1., 1., 1., 1., 1.])
array([1., 1., 1., 1., 1.], dtype=float32)
t.add_(1); n # la modificación de t afecta a n
tensor([2., 2., 2., 2., 2.])
array([2., 2., 2., 2., 2.], dtype=float32)
n = np.ones(5)
t = torch.from_numpy(n)
np.add(n, 1, out=n); t # la modificación de n afecta a t
array([2., 2., 2., 2., 2.])
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
```

3. Conjuntos de datos y carga

► Tutorial oficial: cuaderno jupyter data_tutorial

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

- Dos clases destacadas:
 - torch.utils.data.Dataset: conjuntos de datos pre-cargados y definidos por el usuario
 - → *lmágenes:* https://pytorch.org/vision/stable/datasets.html
 - → *Texto:* https://pytorch.org/text/stable/datasets.html
 - → Audio: https://pytorch.org/audio/stable/datasets.html
 - b torch.utils.data.DataLoader: iterable sobre conjunto de datos
- ► API torch.utils.data:

https://pytorch.org/docs/stable/data.html

3.1. Carga de un conjunto de datos

Librerías:

```
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
```

- ► Consulta el repositorio oficial de Fashion-MNIST:

 - ¿Cuál es la precisión humana?
 - ¿Cuál es la mejor precisión reportada?

- ► Carga de un conjunto de datos: FashionMNIST con
 - root: directorio donde guardar los datos de train/test
 - ▶ train: training o test
 - ▷ download=True: descarga de internet si no está en root
 - transform y target_transform: transformaciones a aplicar a las características y etiquetas

```
training_data = datasets.FashionMNIST(root="data", train=True,
    download=True, transform=ToTensor()); training_data

Dataset FashionMNIST
    Number of datapoints: 60000
    Root location: data
    Split: Train
    StandardTransform
Transform: ToTensor()

test_data = datasets.FashionMNIST(root="data", train=False,
    download=True, transform=ToTensor()); test_data
Dataset FashionMNIST
```

Number of datapoints: 10000

Root location: data

Split: Test

StandardTransform

Transform: ToTensor()

3.2. Iteración y visualización

```
\_ exec(open("data3.2.py").read()) \_
labels map = {
  0: "T-Shirt",
  1: "Trouser",
  2: "Pullover",
  3: "Dress",
  4: "Coat",
  5: "Sandal",
  6: "Shirt",
  7: "Sneaker",
  8: "Baq",
  9: "Ankle Boot",
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
torch.manual seed(23)
for i in range(1, cols * rows + 1):
  index = torch.randint(len(training_data), size=(1,)).item()
  img, label = training data[index]
  figure.add subplot(rows, cols, i)
  plt.title(labels map[label])
  plt.axis("off")
  plt.imshow(img.squeeze(), cmap="gray")
plt.savefig('data3.2.pdf')
plt.show()
```


3.3. Conjunto de datos definido por el usuario

► Subclase de Dataset con tres funciones:

- ▷ __init__: se ejecuta una vez al instanciar un objeto Dataset
- ▷ __len__: devuelve el número de muestras del dataset
- __getitem__: devuelve la muestra de un índice dado
- ► El tutorial incluye un ejemplo genérico para imágenes

3.4. Preparación de los datos para entrenamiento

DataLoader: en lugar de indexar los datos uno a uno, DataLoader los procesa en minibatches con posible barajado

```
from torch.utils.data import DataLoader
torch.manual_seed(23)
train_dataloader = DataLoader(training_data, batch_size=64,
    shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64,
    shuffle=True)
train_dataloader.dataset; test_dataloader.dataset
```

```
Number of datapoints: 60000
Root location: data
Split: Train
StandardTransform
Transform: ToTensor()
Dataset FashionMNIST
Number of datapoints: 10000
Root location: data
Split: Test
StandardTransform
Transform: ToTensor()
```

► Iteración mediante DataLoader: un minibatch por iteración

```
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.savefig('data3.4.pdf'); plt.show()
print(f"Label: {label}")
```

Feature batch shape: torch.Size([64, 1, 28, 28])
Labels batch shape: torch.Size([64])
Label: 0

4. Transformaciones

► Tutorial oficial: cuaderno jupyter transforms_tutorial

```
https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html
```

- Objetivo: procesar datos en bruto (raw) dejándolos en un formato adecuado (processed) para entrenamiento y test de modelos
- ► Conjuntos torchvision: dos parámetros
 - > transform: transforma las características
 - target_transform: transforma las etiquetas
- ► Módulo torchvision.transforms:
 - Deran sobre imágenes PIL, tensor o ambas
 - ▷ Encadenables mediante Compose
 - ▶ La mayoría de clases transform tienen funciones equivalentes
 - ▷ Info: https://pytorch.org/vision/stable/transforms.html

► FashionMNIST: transform pasa de formato PIL a tensor y target_transform de entero a tensor one-hot

- ▶ Lambda aplica una función de usuario que crea un tensor nulo de talla 10 y llama a scatter_ para asignar 1 en la posición y

▷ Lista los atributos y métodos de ds:

```
['__add__', '__class__', '__class_getitem__', '__delattr__',
    ' dict ', ' dir ', ' doc ', ' eq ', ' format ',
 \hookrightarrow
     '__ge__', '__getattribute__', '__getitem__', '__gt__',
 \hookrightarrow
 \hookrightarrow '_hash__', '__init__', '__init_subclass__', '__le__',
 \hookrightarrow ' len ', ' lt ', ' module ', ' ne ', ' new ',

→ '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',

 \hookrightarrow ' slots ', ' str ', ' subclasshook ', ' weakref ',

→ ' check exists', ' check legacy exist',

    '_format_transform_repr', '_is_protocol', '_load_data',

    '_load_legacy_data', '_repr_indent', 'class_to_idx',

 → 'processed_folder', 'raw_folder', 'resources', 'root',
 → 'target_transform', 'targets', 'test_data', 'test_file',
 → 'test labels', 'train', 'train data', 'train labels',
 → 'training file', 'transform', 'transforms']
¿Cuál es la etiqueta de ds.data[0]?
```

tensor(9)

5. Construcción de la red neuronal

Tutorial oficial: cuaderno jupyter buildmodel_tutorial

https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

- ► torch.nn.Module: clase base para todos los módulos de redes
- Librerías:

```
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
```

5.1. Obtención del dispositivo para entrenamiento

Entrenaremos en GPU si puede ser; si no, en CPU:

```
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using {device} device')
```

Using cuda device

- Consulta brevemente, si no te suena:
 - ▶ Graphics processing unit (GPU)
 - ▶ Tensor Processing Unit (TPU)
 - Compute Unified Device Architecture (CUDA)

5.2. Definición de la clase

- ► Red: subclase de nn. Module

 - ▶ forward procesa la entrada

```
_{-} exec(open("buildmodelNN.py").read()) _{-}
class NeuralNetwork(nn.Module):
 def init (self):
    super(NeuralNetwork, self).__init__()
    self.flatten = nn.Flatten()
    self.linear relu stack = nn.Sequential(
     nn.Linear(28*28, 512),
     nn.ReLU(),
     nn.Linear(512, 512),
     nn.ReLU(),
     nn.Linear(512, 10),
 def forward(self, x):
   x = self.flatten(x)
    logits = self.linear_relu_stack(x)
    return logits
```

► Instanciación y transferencia al dispositivo:

```
torch.manual_seed(23)
model = NeuralNetwork().to(device)
print(model)

NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
      (0): Linear(in_features=784, out_features=512, bias=True)
      (1): ReLU()
      (2): Linear(in_features=512, out_features=512, bias=True)
      (3): ReLU()
      (4): Linear(in_features=512, out_features=10, bias=True)
    )
}
```

▶ Uso de la red: no llamamos a forward() directamente!

```
torch.manual_seed(23)
X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probab = nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
```

Predicted class: tensor([8], device='cuda:0')

▶ Repite el ejemplo con un tensor de unos como x:

```
nn.Softmax(dim=1) (model(X_ones)).argmax(1)
tensor([4], device='cuda:0')
```

5.3. Capas del modelo

► Entrada: minibatch de 3 imágenes 28x28

```
torch.manual_seed(23)
input_image = torch.rand(3,28,28)
print(input_image.size())
```

torch.Size([3, 28, 28])

Escribe la primera fila de la primera imagen del minibatch:

```
••••••
```

```
tensor([0.4283, 0.2889, 0.4224, 0.3571, 0.9577, 0.1100, 0.2933, 0.9205, 0.5876, 0.1299, 0.6729, 0.1028, 0.7876, 0.5540, 0.4653, 0.2311, 0.2214, 0.3348, 0.4541, 0.2519, 0.6310, 0.1707, 0.3122, 0.1976, 0.5466, 0.0213, 0.9049, 0.8444])
```

► nn.Flatten: convierte una imagen 28x28 en array 784D

```
flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.size())

torch.Size([3, 784])
```

Escribe las primeras 5 características de la primera imagen

```
.....
```

```
tensor([0.4283, 0.2889, 0.4224, 0.3571, 0.9577])
```

nn.Linear: transformación lineal

► nn.ReLU: activación no lineal que "apaga" negativos

```
print(f"Before ReLU:\n {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU:\n {hidden1}")
Before ReLU:
tensor([[ 4.7243, -0.3048, 0.3629, -0.3240, 0.0510, -0.3063, 0.0167, 0.2413,
        -0.1951, 0.1663, 0.1250, -0.2419, -0.1556, 0.5033, 0.1148, -0.4214,
        -0.1384, -0.2026, -0.2182, 0.2294],
       [0.0395, 4.5114, -0.1091, -0.1640, -0.0224, -0.1199, 0.3188, -0.2164,
        -0.0565, -0.0408, 0.0215, -0.3568, -0.0790, 0.2190, 0.2358, -0.6144,
        -0.1755, -0.2186, 0.0335, 0.2159],
       [0.3228, -0.4934, 4.9607, -0.4462, 0.2545, -0.2906, 0.4563, 0.0705,
        -0.3625, -0.1225, 0.0456, -0.0161, 0.0463, 0.0077, 0.3278, -0.4075,
         0.1262, -0.0512, -0.0390, 0.1706]], grad fn=<AddmmBackward0>)
After ReLU:
tensor([[4.7243, 0.0000, 0.3629, 0.0000, 0.0510, 0.0000, 0.0167, 0.2413, 0.0000,
        0.1663, 0.1250, 0.0000, 0.0000, 0.5033, 0.1148, 0.0000, 0.0000, 0.0000,
        0.0000, 0.22941,
       [0.0395, 4.5114, 0.0000, 0.0000, 0.0000, 0.0000, 0.3188, 0.0000, 0.0000,
        0.0000, 0.0215, 0.0000, 0.0000, 0.2190, 0.2358, 0.0000, 0.0000, 0.0000,
        0.0335, 0.2159],
       [0.3228, 0.0000, 4.9607, 0.0000, 0.2545, 0.0000, 0.4563, 0.0705, 0.0000,
        0.0000, 0.0456, 0.0000, 0.0463, 0.0077, 0.3278, 0.0000, 0.1262, 0.0000,
        0.0000, 0.1706]], grad fn=<ReluBackward0>)
```

> nn.Sequential: contenedor de módulos ordenado

```
torch.manual_seed(23)
seq_modules = nn.Sequential(
  flatten,
  layer1,
  nn.ReLU(),
  nn.Linear(20, 10))
logits = seq_modules(input_image)
print(logits)
```

```
tensor([[-0.0418, 0.4128, 0.1166, -0.7246, 0.1914, 0.8106, 1.0597, 0.5786, -0.1699, 1.1271],
[-0.3771, -0.4748, -0.8368, -0.1844, 0.5892, 0.9324, 1.0034, -0.7360, -0.6787, -0.5469],
[-0.0884, -0.1937, -0.4910, 0.5475, -0.8520, 0.1503, -0.9129, -1.0010, -0.3887, 0.2054]], grad_fn=<AddmmBackward0>)
```

Clasifica el minibatch input_image por máximo logit:

```
•••••••••••
```

```
tensor([9, 6, 3])
```

nn.Softmax: convierte logits [-infty,infty] en probabilidades [0,1]

```
softmax = nn.Softmax(dim=1)
pred_probab = softmax(logits)
print(pred_probab)
```

► Clasifica el minibatch input_image por máxima probabilidad:

.....

tensor([9, 6, 3])

5.4. Parámetros del modelo

▶ La estructura del modelo revela las capas parametrizadas:

```
print("Model structure: ", model, "\n\n")
Model structure: NeuralNetwork(
  (flatten): Flatten(start dim=1, end dim=-1)
  (linear relu stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
¿Dada una entrada, de qué dependerá la salida de la red?
```

▶ Podemos acceder a ellos con parameters ():

```
for param in model.parameters():
  print(f"Size: {param.size()}")
Size: torch.Size([512, 784])
Size: torch.Size([512])
Size: torch.Size([512, 512])
Size: torch.Size([512])
Size: torch.Size([10, 512])
Size: torch.Size([10])
También podemos usar named_parameters():
for name, param in model.named_parameters():
  print(f"Layer: {name} | Size: {param.size()}")
Layer: linear relu stack.0.weight | Size: torch.Size([512, 784])
Layer: linear_relu_stack.0.bias | Size: torch.Size([512])
Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512])
Layer: linear relu stack.2.bias | Size: torch.Size([512])
Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512])
Layer: linear relu stack.4.bias | Size: torch.Size([10])
```

6. Diferenciación automática

Tutorial oficial: cuaderno jupyter autogradqs_tutorial

https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

- autograd: cálculo automático del gradiente de la función de pérdida con respecto a los parámetros del modelo
 - ▶ Backprop: usa el gradiente para entrenar la red
 - Grafo computacional: representación de la red

6.1. Tensores, funciones y grafo computacional

▶ Ejemplo: red de una capa, con entrada x, parámetros w y b, y pérdida entropía cruzada binaria

```
import torch
x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
torch.manual_seed(23)
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
```


- ► requires_grad: propiedad de tensores-parámetro a optimizar
- ► Función de cálculo: una función aplicada a tensores para construir un grafo computacional es un objeto de la clase Function
 - Permite el cálculo de la función hacia adelante (forward)
 - Permite el cálculo del gradiente de la pérdida con respecto a los parámetros
- ▶ grad_fn: propiedad de tensor con la función gradiente

```
print('Gradient function for z =', z.grad_fn)
print('Gradient function for loss =', loss.grad_fn)
```

Gradient function for z = <AddBackward0 object at 0x7f0ad92954b0> Gradient function for loss =

- → <BinaryCrossEntropyWithLogitsBackward0 object at
 </p>
- \rightarrow 0x7f0ad939f5b0>

6.2. Cálculo de gradientes

▶ Cálculo de gradientes: loss.backward() calcula las derivadas de la pérdida con respecto a los parámetros, $\frac{\partial loss}{\partial w}$ y $\frac{\partial loss}{\partial b}$, bajo ciertos valores fijos de x e y, en w.grad y b.grad

6.3. Inhabilitación del seguimiento de gradientes

► Inhabilitación del seguimiento de gradientes: para "congelar" parámetros en fine-tuning o acelerar cálculos en inferencia, evitando que tensores con requires_grad=True hagan seguimiento de su historia computacional a fin de calcular gradientes

▷ torch.no_grad():

```
z = torch.matmul(x, w) +b
print(z.requires_grad)
with torch.no_grad():
   z = torch.matmul(x, w) +b
print(z.requires_grad)
```

True False

detach():

```
z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)
```

False

6.4. Más sobre grafos computacionales

- ▶ DAG: autograd mantiene un registro de datos (tensores) y todas las operaciones ejecutadas (junto con los tensores resultantes) en un grafo acíclico (DAG) de objetos Function
- Cálculo automático de gradientes: recorriendo el DAG desde las raíces (tensores de salida) a las hojas (tensores de entrada)
- Forward: autograd hace dos cosas simultáneamente
 - ▷ ejecuta la operación para calcular un tensor resultante
 - mantiene la función gradiente de la operación en el DAG
- Backward: tras .backward() en la raíz del DAG, autograd
 - b calcula los gradientes de cada .grad_fn
 - mantiene la función gradiente de la operación en el DAG
 - retropropaga el error a los tensores hoja (regla de la cadena)

7. Optimización de parámetros del modelo

► Tutorial oficial: cuaderno jupyter optimization_tutorial

https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html

- ► Entrenamiento: proceso iterativo tal que, en cada época:
 - ▷ el modelo predice la salida;
 - ▷ calcula el error o pérdida (*loss*) de su predicción;
 - ▷ obtiene las derivadas del error con respecto a sus parámetros;
 - ⊳ y *optimiza* los parámetros mediante descenso por gradiente.
- ► Vídeo recomendado sobre el algoritmo Backprop:

https://www.youtube.com/watch?v=tIeHLnjs5U8

7.1. Código previo

```
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
training data = datasets.FashionMNIST(root="data", train=True,
   download=True, transform=ToTensor())
test data = datasets.FashionMNIST(root="data", train=False,
   download=True, transform=ToTensor())
train dataloader = DataLoader(training data, batch size=64)
test dataloader = DataLoader(test data, batch size=64)
class NeuralNetwork(nn.Module):
 def init (self):
   super(NeuralNetwork, self). init ()
   self.flatten = nn.Flatten()
   self.linear relu stack = nn.Sequential(
     nn.Linear(28*28, 512), nn.ReLU(),
     nn.Linear(512, 512), nn.ReLU(),
     nn.Linear(512, 10))
 def forward(self, x):
   x = self.flatten(x)
   logits = self.linear_relu_stack(x)
   return logits
torch.manual seed(23)
model = NeuralNetwork()
```

7.2. Hiperparámetros

► Número de épocas: número de veces a iterar sobre los datos

```
epochs = 5
```

► Tamaño del batch: número de muestras propagadas a través de la red antes de actualizar parámetros

```
batch_size = 64
```

Factor de aprendizaje: magnitud de la actualización de parámetros en cada batch/época

```
learning_rate = 1e-3
```

- Demasiado pequeño: aprendizaje lento
- Demasiado grande: aprendizaje impredecible

7.3. Bucle de optimización

- Bucle de entrenamiento: itera sobre el conjunto de entrenamiento tratando de converger a parámetros óptimos
- ▶ Bucle de validación/test: itera sobre el conjunto de test para comprobar si el rendimiento del modelo está mejorando

7.4. Función de pérdida

- ► Mean Square Loss: nn.MSELoss, para regresión
- ► Negative Log Likelihood: nn.NLLLoss, para clasificación
- ► Cross Entropy: nn.CrossEntropyLoss, combina nn.LogSoftmax y nn.NLLLoss

```
loss_fn = nn.CrossEntropyLoss()
```

7.5. Optimizador

optimizer: usamos SGD

```
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
```

► Tres pasos:

- ▷ optimizer.zero_grad() reinicializa a cero los gradientes de los parámetros (y así evita sumas duplicadas)
- ▶ loss.backward() retropropaga la pérdida de la predicción calculando sus gradientes respecto a los parámetros
- ▷ optimizer.step() ajusta los parámetros mediante los gradientes hallados en retropropagación

7.6. Implementación completa

```
_ exec(open("optim7.6.py").read()) ____
def train loop(dataloader, model, loss_fn, optimizer):
  size = len(dataloader.dataset)
  for batch, (X, y) in enumerate(dataloader):
   pred = model(X); loss = loss_fn(pred, y)
    optimizer.zero grad(); loss.backward(); optimizer.step() # backprop
    if batch % 100 == 0:
      loss, current = loss.item(), batch * len(X)
     print(f"trloss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test loop(dataloader, model, loss fn):
  size = len(dataloader.dataset); nbatches = len(dataloader)
 teloss, correct = 0, 0
 with torch.no_grad():
    for X, y in dataloader:
     pred = model(X); teloss += loss_fn(pred, y).item()
      correct += (pred.argmax(1) == y).type(torch.float).sum().item()
 teloss /= nbatches; correct /= size
 print(f"teacc: {(100*correct):>0.1f}%, teloss: {teloss:>8f} \n")
loss fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD (model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
 print (f"Epoch {t+1}\n-----")
 train loop(train dataloader, model, loss fn, optimizer)
 test loop(test dataloader, model, loss fn)
print ("Done!")
```

Epoch 1	Epoch 5	Epoch 9
trloss: 2.311403 [0/60000] trloss: 2.290950 [6400/60000] trloss: 2.274235 [12800/60000] trloss: 2.260890 [19200/60000] trloss: 2.250175 [25600/60000] trloss: 2.219779 [32000/60000] trloss: 2.239611 [38400/60000] trloss: 2.202065 [44800/60000] trloss: 2.203018 [51200/60000] trloss: 2.171447 [57600/60000] teacc: 29.8%, teloss: 2.160771	trloss: 1.354618 [0/60000] trloss: 1.330229 [6400/60000] trloss: 1.184364 [12800/60000] trloss: 1.269096 [19200/60000] trloss: 1.137335 [25600/60000] trloss: 1.170170 [32000/60000] trloss: 1.193289 [38400/60000] trloss: 1.127051 [44800/60000] trloss: 1.166408 [51200/60000] trloss: 1.072755 [57600/60000]	trloss: 0.888783 [0/60000] trloss: 0.941961 [6400/60000] trloss: 0.729432 [12800/60000] trloss: 0.900020 [19200/60000] trloss: 0.793433 [25600/60000] trloss: 0.806567 [32000/60000] trloss: 0.887255 [38400/60000] trloss: 0.831703 [44800/60000] trloss: 0.858814 [51200/60000] trloss: 0.804780 [57600/60000] teacc: 69.7%, teloss: 0.815984
Epoch 2	Epoch 6	Epoch 10
Epoch 2 trloss: 2.177448 [0/60000] trloss: 2.162522 [6400/60000] trloss: 2.114367 [12800/60000] trloss: 2.127496 [19200/60000] trloss: 2.073345 [25600/60000] trloss: 2.013937 [32000/60000] trloss: 2.058795 [38400/60000] trloss: 1.974498 [44800/60000] trloss: 1.974498 [44800/60000] trloss: 1.993499 [51200/60000] trloss: 1.921251 [57600/60000] teacc: 52.6%, teloss: 1.915133	Epoch 6	trioss: 0.862242 [19200/60000] trioss: 0.762120 [25600/60000] trioss: 0.766526 [32000/60000] trioss: 0.853988 [38400/60000] trioss: 0.804405 [44800/60000] trioss: 0.824825 [51200/60000]
Epoch 3	Epoch 7	Done!
trloss: 1.819419 [12800/60000] trloss: 1.857720 [19200/60000] trloss: 1.733476 [25600/60000] trloss: 1.690374 [32000/60000] trloss: 1.727686 [38400/60000]	trloss: 1.046596 [0/60000] trloss: 1.063737 [6400/60000] trloss: 0.880441 [12800/60000] trloss: 1.018553 [19200/60000] trloss: 0.895659 [25600/60000] trloss: 0.929185 [32000/60000] trloss: 0.984901 [38400/60000]	
trloss: 1.620707 [44800/60000] trloss: 1.655109 [51200/60000] trloss: 1.544735 [57600/60000] teacc: 59.6%, teloss: 1.560143	trloss: 0.922667 [44800/60000] trloss: 0.961700 [51200/60000] trloss: 0.893683 [57600/60000]	
trloss: 1.655109 [51200/60000] trloss: 1.544735 [57600/60000] teacc: 59.6%, teloss: 1.560143 Epoch 4	trloss: 0.922667 [44800/60000] trloss: 0.961700 [51200/60000] trloss: 0.893683 [57600/60000] teacc: 67.3%, teloss: 0.910060	

8. Grabación y carga del modelo

► Tutorial oficial: cuaderno jupyter saveloadrun_tutorial

https://pytorch.org/tutorials/beginner/basics/saveloadrun_tutorial.html

torchvision.models: subpaquete de torchvision con definiciones de modelos para diferentes tareas de visión

```
import torch
import torchvision.models as models
dir(models)
```

```
['AlexNet', 'ConvNeXt', 'DenseNet', 'EfficientNet', 'GoogLeNet', 'GoogLeNetOutputs', 'Inception3',

→ 'InceptionOutputs', 'MNASNet', 'MobileNetV2', 'MobileNetV3', 'RegNet', 'ResNet',

→ 'ShuffleNetV2', 'SqueezeNet', 'VGG', 'VisionTransformer', '_GoogLeNetOutputs',

→ '_InceptionOutputs', '_builtins__', '_cached__', '_doc__', '_file__', '_loader__',

→ '_name__', '_package__', '_path__', 'spec__', 'utils', 'alexnet', 'convnext',

→ 'convnext_base', 'convnext_large', 'convnext_small', 'convnext_tiny', 'densenet',

→ 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'detection', 'efficientnet',

→ 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4',

→ 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'feature_extraction', 'googlenet',

→ 'inception', 'inception_v3', 'mnasnet', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0',

→ 'mnasnet1_3', 'mobilenet', 'mobilenet_v2', 'mobilenet_v3_large', 'mobilenet_v3_small',

→ 'mobilenetv2', 'mobilenetv3', 'optical_flow', 'quantization', 'regnet_', 'regnet_x_16gf',

→ 'regnet_x_16gf', 'regnet_x_32gf', 'regnet_x_32gf', 'regnet_x_400mf', 'regnet_y_2gf',

→ 'regnet_x_8gf', 'regnet_y_128gf', 'regnet_y_16gf', 'regnet_y_16gf', 'regnet_y_16gf', 'regnet_y_2gf',

→ 'regnet_y_3_2gf', 'regnet_y_400mf', 'regnet_y_800mf', 'regnet_y_8gf', 'resnet', 'resnet101',

→ 'resnet152', 'resnet18', 'resnet34', 'resnet50', 'resnext101_32x8d', 'resnext50_32x4d',

→ 'segmentation', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5',

→ 'shufflenet_v2_x2_0', 'shufflenetv2', 'squeezenet1_0', 'squeezenet1_1', 'vgg',

→ 'vgg11', 'vgg11_bn', 'vgg13_bn', 'vgg16_bn', 'vgg16_bn', 'vgg19_bn', 'video',

→ 'wide resnet50_2']
```

8.1. Grabación y carga de los pesos del modelo

torch.save: para grabar los parámetros de un modelo en su diccionario de estado state_dict

```
model = models.vgg16(pretrained=True)
torch.save(model.state_dict(), 'model_weights.pth')
```

► *load_state_dict():* carga los pesos de un modelo ya instanciado

8.2. Grabación y carga del modelo completo

torch.save: para graba el modelo completo y no solo su diccionario de estado

```
torch.save(model, 'model.pth')
```

torch.load: para cargar el modelo completo

```
model = torch.load('model.pth')
```