Notation and Math

Probability

- If A and B are independent then p(A and B) = p(A)p(B)
- If A, B, C are independent then p(A, B, C) = p(A)p(B)p(C)
- $\log (p(A)p(B)p(C)) = \log p(A) + \log p(B) + \log p(C)$

Conditional probability

- Suppose you have 3 coins:
 - $^{\circ}$ The first coin c_1 has a 0.4 prob of landing on heads
 - $^{\circ}$ The second coin c_2 has a 0.7 prob of landing on heads
 - $^{\circ}$ The third coin c_3 has a .2 prob of landing on heads
- If you tossed the first coin twice, the second coin once and the third coin once (in that order). What is the probability of seeing HTHT?

$$p(H \mid c_1)p(T \mid c_1)p(H \mid c_2)p(T \mid c_3)$$

$$(0.4)(1 - 0.4)(0.7)(1 - 0.2)$$

$$p(H \mid c_1)(1 - p(H \mid c_1))p(H \mid c_2)(1 - p(H \mid c_3))$$

Pair share

argmax

Which argument maximizes the function

- Suppose you have 3 coins.
 - o c_1 has a $p(H \mid c_1) = \theta_1 = 0.4$
 - o c_2 has a $p(H \mid c_2) = \theta_2 = 0.7$
 - o c_3 has a $p(H \mid c_3) = \theta_3 = 0.2$
- If you randomly chose one of the three coins and tossed it 100 times, receiving 71 heads and 29 tails what do you think is the probability of heads?

$$\theta^* = \arg \max_{\theta \in \{\theta_1, \theta_2, \theta_3\}} \theta^{71} (1 - \theta)^{29}$$

MLE!

If I didn't know it was one of 3 coins... how would I estimate the prob of heads for the coin?

Data → Estimation

- T, H, T, H, T,
- If we want to predict θ (the probability of heads), how can we estimate (learn) θ

Which θ makes observing the data $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}$ most likely?

change as we change θ ?

How does the likelihood of

seeing the data

• One measure of goodness is the θ that most <u>likely</u> generated the data

What value of θ maximizes $(1 - \theta)\theta(1 - \theta)(\theta)(1 - \theta)$?

0	$0^2(1-0)^3$
0.1	$0.1^2(1-0.1)^3$
0.2	$0.2^2(1-0.2)^3$
0.3	$0.3^2(1-0.3)^3$
0.4	$0.4^2(1-0.4)^3$
0.5	$0.5^2(1-0.5)^3$
0.6	$0.6^2(1-0.6)^3$
0.7	$0.7^2(1-0.7)^3$
0.8	$0.8^2(1-0.8)^3$
	$0.9^2(1-0.9)^3$
1	$1^2(1-1)^3$ 6

$$L(\theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

$$L(\theta; D) = p(D; \theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

Data → Estimation

the likelihood of seeing the data change as we change θ ?

How does

• T, H, T, H, T,

Which θ makes observing the data $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}$ most likely?

• If we want to predict θ (the probability of heads), how can we estimate (learn) θ

One measure of goodness is the θ that most <u>likely</u> ger the data

What value of θ maximizes $(1 - \theta)\theta(1 - \theta)(\theta)(1 - \theta)$

Likelihood is always relative to some model - In this example the model is Bernoulli

$$\begin{array}{c|c} \mathbf{0.1} & 0.1^2 (1 - 0.1)^3 \\ \mathbf{0.2} & 0.2^2 (1 - 0.2)^3 \end{array}$$

Typically we view the distribution θ as fixed, and the examples as parameters. We are turning this idea "on its head". Here the examples are fixed and we are considering different choices for the parameter values

$$1 | 1^2 (1-1)^3 | 7$$

$$L(\theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

$$L(\theta; D) = p(D; \theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

Maximum likelihood estimation (MLE)

- Flip a (unfair?) coin 100 times and if N_H=55 and N_{https://upload.wikimedia.org/wikipedia/commons/3/3}
- What is p(H)?
- Likelihood function $L(\theta)$ is the probability of the observed data as a function of θ . For this example: $L(\theta) = p(D \mid \theta) = \theta^{N_H} (1 \theta)^{N_T}$
- Log-likelihood function $\mathcal{C}(\theta) = \log L(\theta)$
- Maximum likelihood criterion the most likely parameter is the one that maximizes $\mathcal{E}(\theta)$
- How to maximize $\ell(\theta)$?

Extremely small value

8

If θ was 0.5, then $L(0.5) = 0.5^{100} \approx 7.9 \times 10^{-31}$

If θ was 0.5, then $\ell(0.5) = \log 0.5^{100} = 100 \log 0.5 = -69.31$

Maximum likelihood estimation (MLE)

Coin flips are conditionally independently p(Heads)= θ and identically distributed (i.i.d.)

- Flip a (unfair?) coin 100 times and if $N_H=55$ and $N_T=45$
- What is p(H)?
- Likelihood function $L(\theta)$ is the probability of the observed data as a function of θ .

For this example:
$$L(\theta) = n(D \mid \theta) = \theta^{N_H} (1 - \theta)^{N_T}$$
 In computer science log is always base 2.... In Machine $\log L(\theta)$

 Log-like always base 2.... In Machine learning log is always base e

L is a function of the model parameters, not the data

> Maximizing $\ell(\theta)$ is the same as maximizing $L(\theta)$. Why?

• Maximum member circeron the most likely parameter is the one that maximizes $\ell(\theta)$

How to maximize $\mathcal{L}(A)$ Extremely small value

If
$$\theta$$
 was 0.5, then $L(0.5) = 0.5^{100} \approx 7.9 \times 10^{-31}$

If
$$\theta$$
 was 0.5, then $\ell(0.5) = \log 0.5^{100} = 100 \log 0.5 = -69.31$

What if we had 100 coin tosses, 40 heads and 60 tails

Which is the right likelihood function? θ will be your estimated probability of flipping a coin and getting heads.

A)
$$L(\theta) = (0.4)^{40}(1 - 0.4)^{60}$$

B)
$$L(\theta) = (\theta)^{40} (1 - \theta)^{60}$$

C)
$$L(\theta) = (0.4)^{\theta} (1 - 0.4)^{1-\theta}$$

D)
$$L(\theta) = (0.8)^{60}(1 - 0.8)^{100}$$

What if we had 100 coin tosses, 40 he and 60 tails

Which is the right likelihood function? θ will be your estimated probability of flipping a coin and getting heads.

A)
$$L(\theta) = (0.4)^{40}(1 - 0.4)^{60}$$

B)
$$L(\theta) = (\theta)^{40} (1 - \theta)^{60}$$

C)
$$L(\theta) = (0.4)^{\theta} (1 - 0.4)^{1-\theta}$$

D)
$$L(\theta) = (0.8)^{60}(1 - 0.8)^{100}$$

