Computer Vision – TP6 Spatial Filters

Miguel Coimbra, Hélder Oliveira

Outline

- Spatial filters
- Frequency domain filtering
- Edge detection
- Morphological filters

Topic: Spatial filters

- Spatial filters
- Frequency domain filtering
- Edge detection
- Morphological filters

Images are Discrete and Finite

$$g(i, j) = \sum_{m=1}^{M} \sum_{n=1}^{N} f(m, n)h(i - m, j - n)$$

Fourier Transform

$$F(u,v) = \sum_{m=1}^{M} \sum_{n=1}^{N} f(m,n) e^{-i2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)}$$

Inverse Fourier Transform

$$f(k,l) = \frac{1}{MN} \sum_{u=1}^{M} \sum_{v=1}^{N} F(u,v) e^{i2\pi \left(\frac{ku}{M} + \frac{lv}{N}\right)}$$

Spatial Mask

- Simple way to process an image
- Mask defines the processing function
- Corresponds to a multiplication in frequency domain

Example

- Each mask position has weight w
- The result of the operation for each pixel is given by:

1	2	1
0	0	0
-1	-2	-1

2	2	2
4	4	4
4	5	6

Mask

Image

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{s=-at=-b}^{b} w(s,t) f(x+s,y+t)$$

$$= 1*2+2*2+1*2+...$$

$$= 8+0-20$$

$$= -12$$

Definitions

Spatial filters

- Use a mask (kernel) over an image region
- Work directly with pixels
- As opposed to: Frequency filters

Advantages

- Simple implementation: convolution with the kernel function
- Different masks offer a large variety of functionalities

Averaging

Let's think about averaging pixel values

For *n*=2, convolve pixel values with

Which is faster?
$$(a) O(2(n+1)) \quad (b) O((n+1)^2)$$

2D images:

(a) use 1 2

then

1 2 1

or (b) use

1 2 1 *

* $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 4 & 2 & 4 \end{bmatrix}$

Averaging

The convolution kernel

Repeated averaging ≈ Gaussian smoothing

Gaussian Smoothing

Gaussian kernel

$$h(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2}\left(\frac{i^2+j^2}{\sigma^2}\right)}$$

Filter size $N \propto \sigma$...can be very large (truncate, if necessary)

 $g(i,j) = \frac{1}{2\pi\sigma^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} e^{-\frac{1}{2}\left(\frac{m^2 + n^2}{\sigma^2}\right)} f(i-m, j-n)$

2D Gaussian is separable!

$$g(i,j) = \frac{1}{2\pi\sigma^2} \sum_{m=1}^{\infty} e^{-\frac{1}{2}\frac{m^2}{\sigma^2}} \sum_{n=1}^{\infty} e^{-\frac{1}{2}\frac{n^2}{\sigma^2}} f(i-m,j-n)$$

Use two 1D Gaussian Filters!

Gaussian Smoothing

 A Gaussian kernel gives less weight to pixels further from the center of the window

$$H[u,v]$$
 1 2 1 16 2 4 2 1 1 2 1

This kernel is an approximation of a Gaussian function:

$$F[x, y]$$

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

Mean Filtering

- We are degrading the energy of the high spatial frequencies of an image (low-pass filtering)
 - Makes the image 'smoother'
 - Used in noise reduction
- Can be implemented with spatial masks or in the frequency domain

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Median Filter

(a)

(b)

- Smoothing is averaging
 - (a) Blurs edges
 - (b) Sensitive to outliers
- Median filtering
 - Sort N values around the pixel (including itself)
 - Select middle value (median)

Non-linear (Cannot be implemented with convolution)

Border Problem

What a computer sees

Border Problem

- Ignore
 - Output image will be smaller than original
- Pad with constant values
 - Can introduce substantial 1st order derivative values
- Pad with reflection
 - Can introduce substantial 2nd order derivative values

Topic: Frequency domain filtering

- Spatial filters
- Frequency domain filtering
- Edge detection
- Morphological filters

Image Processing in the Fourier Domain

Magnitude of the FT

Does not look anything like what we have seen

Convolution in the Frequency Domain

Low-pass Filtering

Original image

Low-pass image

FFT of original image

FFT of low-pass image

Low-pass filter

Lets the low frequencies pass and eliminates the high frequencies.

Generates image with overall shading, but not much detail

High-pass Filtering

Original image

High-pass image

FFT of original image

FFT of high-pass image

High-pass filter

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

Boosting High Frequencies

Original image

High boosted image

FFT of original image

FFT of high boosted image

High-boost filter

The Ringing Effect

Topic: Edge detection

- Spatial filters
- Frequency domain filtering
- Edge detection
- Morphological filters

Edge Detection

- Convert a
 2D image into a set of curves
 - Extractssalientfeatures ofthe scene
 - More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

How can you tell that a pixel is on an edge?

Edge Types

Real Edges

Noisy and Discrete!

We want an **Edge Operator** that produces:

- Edge Magnitude
- Edge Orientation
- High Detection Rate and Good Localization

Gradient

- Gradient equation: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$
- Represents direction of most rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$abla f = \left[0, \frac{\partial f}{\partial y}\right]$$

- Gradient direction: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$
- The *edge strength* is given by the gradient magnitude $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Theory of Edge Detection

Unit step function:

$$u(t) = \begin{cases} 1 & \text{for } t > 0 \\ \frac{1}{2} & \text{for } t = 0 \\ 0 & \text{for } t < 0 \end{cases} \qquad u(t) = \int_{-\infty}^{t} \delta(s) ds$$

Image intensity (brightness):

$$I(x, y) = B_1 + (B_2 - B_1)u(x \sin \theta - y \cos \theta + \rho)$$

Theory of Edge Detection

Partial derivatives (gradients):

$$\frac{\partial I}{\partial x} = +\sin\theta (B_2 - B_1)\delta(x\sin\theta - y\cos\theta + \rho)$$
$$\frac{\partial I}{\partial y} = -\cos\theta (B_2 - B_1)\delta(x\sin\theta - y\cos\theta + \rho)$$

Squared gradient:

$$s(x,y) = \left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2 = \left[\left(B_2 - B_1\right)\delta(x\sin\theta - y\cos\theta + \rho)\right]^2$$

Edge Magnitude: $\sqrt{s(x, y)}$

Edge Orientation: $\arctan\left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x}\right)$ (normal of the edge)

Rotationally symmetric, non-linear operator

Theory of Edge Detection

Laplacian:
$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2} = (B_2 - B_1) \delta'(x \sin \theta - y \cos \theta + \rho)$$
Rotationally symmetric, linear operator

Discrete Edge Operators

How can we differentiate a *discrete* image?

Finite difference approximations:

$$\begin{split} \frac{\partial I}{\partial x} &\approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i,j+1} \right) + \left(I_{i+1,j} - I_{i,j} \right) \right) \\ \frac{\partial I}{\partial y} &\approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i+1,j} \right) + \left(I_{i,j+1} - I_{i,j} \right) \right) \end{split}$$

Convolution masks:

$$\frac{\partial I}{\partial x} \approx \frac{1}{2\varepsilon} \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix} \qquad \frac{\partial I}{\partial y} \approx \frac{1}{2\varepsilon} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}$$

$$\frac{\partial I}{\partial y} \approx \frac{1}{2\varepsilon} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}$$

Discrete Edge Operators

Second order partial derivatives:

• Second order partial derivatives:
$$\frac{\partial^2 I}{\partial x^2} \approx \frac{1}{\varepsilon^2} \left(I_{i-1,j} - 2I_{i,j} + I_{i+1,j} \right)$$
• Laplacian :
$$\frac{\partial^2 I}{\partial y^2} \approx \frac{1}{\varepsilon^2} \left(I_{i,j-1} - 2I_{i,j} + I_{i,j+1} \right)$$

$$\frac{\partial^2 I}{\partial y^2} \approx \frac{1}{\varepsilon^2} \left(I_{i,j-1} - 2I_{i,j} + I_{i,j+1} \right)$$

$$egin{array}{c|c} I_{i-1,\,j+1} & I_{i,\,j+1} & I_{i+1,\,j+1} \ \hline I_{i-1,\,j} & I_{i,\,j} & I_{i+1,\,j} \ \hline I_{i-1,\,j-1} & I_{i,\,j-1} & I_{i+1,\,j-1} \end{array}$$

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Convolution masks:

$$\nabla^2 I \approx \frac{1}{\varepsilon^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 or $\frac{1}{6\varepsilon^2} \begin{bmatrix} 1 & 4 \\ 4 & -20 \\ 1 & 4 \end{bmatrix}$

or
$$\frac{1}{6\varepsilon^2}$$
 $\begin{vmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{vmatrix}$

(more accurate)

The Sobel Operators

- Better approximations of the gradients exist
 - The Sobel operators below are commonly used

Υ_	0	1		
-2	0	2		
1	0	1		
$\overline{s_x}$				

1	2	1		
0	0	0		
-1	-2	1		
s_y				

Comparing Edge Operators

Gradient:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Good Localization
Noise Sensitive
Poor Detection

Roberts (2 x 2):

0	1
-1	0

Sobel (3 x 3):

-1	0	1
-2	0	2
-1	0	1

Sobel (5 x 5):

1	2	3	2	1
2	3	5	3	2
0	0	0	0	0
-2	-3	-5	-3	-2
-1	-2	-3	-2	-1

Poor Localization
Less Noise Sensitive
Good Detection

Effects of Noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Solution: Smooth First

Where is the edge?

Look for peaks in
$$\frac{\partial}{\partial x}(h\star f)_{43}$$

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

...saves us one operation.

Laplacian of Gaussian (LoG)

Where is the edge?

Zero-crossings of bottom graph!

2D Gaussian Edge Operators

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$$
 De Gaussian

Laplacian of Gaussian Mexican Hat (Sombrero)

• ∇^2 is the **Laplacian** operator: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

Canny Edge Operator

- Smooth image / with 2D Gaussian: G * I
- Find local edge normal directions for each pixel

$$\overline{\mathbf{n}} = \frac{\nabla(G * I)}{|\nabla(G * I)|}$$

Compute edge magnitudes

$$\left|\nabla\left(G*I\right)\right|$$

 Locate edges by finding zero-crossings along the edge normal directions (non-maximum suppression)

$$\frac{\partial^2 (G * I)}{\partial \overline{\mathbf{n}}^2} = 0$$

Non-maximum Suppression

- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

Canny Edge Operator

- The choice of σ depends on desired behavior
 - large σ detects large scale edges
 - small σ detects fine features

Difference of Gaussians (DoG)

 Laplacian of Gaussian can be approximated by the difference between two different Gaussians

DoG Edge Detection

Unsharp Masking

Topic: Morphological Filters

- Spatial filters
- Frequency domain filtering
- Edge detection
- Morphological filters

Mathematical Morphology

- Provides a mathematical description of geometric structures
- Based on sets
 - Groups of pixels which define an image region

- What is this used for?
 - Binary images
 - Can be used for postprocessing segmentation results!
- Core techniques
 - Erosion, Dilation
 - Open, Close

Tumor Segmentation using Morphologic Filtering

Dilation, Erosion

Two sets:

- Image
- Morphological kernel
- Dilation (D)
 - Union of the kernel with the image set
 - Increases resulting area
- Erosion (E)
 - Intersection
 - Decreases resulting area

$$E(A,B) = A\Theta(-B) = \bigcap_{\beta \in B} (A - \beta)$$

Dilation

Example using a 3x3 morphological kernel

Erosion

Example using a 3x3 morphological kernel

Opening, Closing

Opening

- Erosion, followed by dilation
- Less destructive than an erosion
- Adapts image shape to kernel shape

Closing

- Dilation, followed by erosion
- Less destructive than a dilation
- Tends to close shape irregularities

Opening

Example using a 3x3 morphological kernel

Closing

Example using a 3x3 morphological kernel

Core morphological operators

Erosion

Opening

Example: Opening

Example: Closing

Connected Component Analysis

- Define 'connected'
 - 4 neighbors.
 - 8 neighbors.
- Search the image folion
 seed points
- Recursively obtain all connected points of the seeded region

