# Feuille d'exercice n° 15 : Espace vectoriels préhilbertiens et euclidiens

I. Produits vectoriels et normes

**Exercice 1** ( $^{\circ}$ ) Soit  $a, b \in \mathbb{R}$  et  $\varphi : \mathbb{R}^2 \to \mathbb{R}$  définie par :

$$\varphi((x_1, x_2), (y_1, y_2)) = x_1y_1 + 4x_1y_2 + bx_2y_1 + ax_2y_2$$

Déterminer une CNS portant sur a, b pour que  $\varphi$  définisse un produit scalaire sur  $\mathbb{R}^2$ .

**Exercice 2** ( $\circlearrowleft$ ) Soit E un espace euclidien et  $f: E \to E$  tel que f(0) = 0 et :

$$\forall (x,y) \in E^2, ||f(x) - f(y)|| = ||x - y||.$$

Montrer que f préserve la norme, puis le produit scalaire, puis enfin que f est linéaire.

**Exercice 3** Soit E un ev euclidien de dimension  $n \ge 2$ , et  $u_1, \dots, u_n$  n vecteurs unitaires de E tels que pour tous  $i, j \in [\![1, n]\!]$  tels que  $i \ne j$ , on ait  $||u_i - u_j|| = 1$ . L'objectif est de montrer que  $(u_1, \dots, u_n)$  est une base de E.

- 1) Pour tout  $i, j \in [1, n]$ , calculer  $\langle u_i | u_j \rangle$ .
- 2) Soit  $\lambda_1, \dots, \lambda_n$  tels que  $\sum_{i=1}^n \lambda_i u_i = 0$ .

Posons 
$$M = \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 1 & \cdots & 1 & 2 \end{pmatrix}$$

et 
$$\Lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Montrer que  $M\Lambda = 0$ .

- 3) Montrer que 1 est valeur propre de M de multiplicité au moins (n-1), et en déduire que M a une dernière valeur propre réelle dont on donnera la valeur.
- 4) Conclure

## Exercice 4 (A)

1) Soit  $(E, \langle ., . \rangle)$  un espace euclidien et  $\|.\|$  la norme associée à son produit scalaire. Montrer que pour tous  $x, y \in E$ ,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

2) Soit  $(E, \|.\|)$  un ev réel de dimension finie tel que pour tous  $x, y \in E$ ,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Montrer que la norme  $\|.\|$  est euclidienne.

Exercice 5 ( ) Montrer que

$$\forall (x_1, ..., x_n) \in \mathbb{R}^n, \sum_{i=1}^n x_i \leq \sqrt{n} \left( \sum_{i=1}^n x_i^2 \right)^{\frac{1}{2}}.$$

Étudier le cas d'égalité.

**Exercice 6 (** Majorer  $\int_0^1 \sqrt{x} e^{-x} dx$  en utilisant l'inégalité de Cauchy-Schwarz.

**Exercice 7** (**D**) Soient x, y et z trois réels tels que  $x^2 + 2y^2 + 3z^2 \le 1$ . Montrer l'inégalité :  $(x + y + z)^2 \le \frac{11}{6}$ .

## II. Orthogonalité

**Exercice 8** ( $^{\circ}$ ) Soit E un espace euclidien et f un endomorphisme de E, tel que :

$$\forall (x,y) \in E^2, (x|y) = 0 \Rightarrow (f(x)|f(y)) = 0.$$

Soit  $(e_1, \ldots, e_n)$  une base orthonormale de E.

- 1) Montrer que pour tous  $i, j, e_i e_j$  et  $e_i + e_j$  sont orthogonaux.
- **2)** Montrer que pour tous  $i, j, ||f(e_i)|| = ||f(e_j)||$ .
- 3) Montrer que :  $\exists \alpha \in \mathbb{R}^+, \forall (x,y) \in E^2, (f(x)|f(y)) = \alpha(x|y).$

#### Exercice 9

Soient  $n \in \mathbb{N}^*$  et  $E = \mathbb{R}_n[X]$ . On note  $\mathscr{P}$  (respectivement  $\mathscr{I}$ ) le sous-espace vectoriel de E constitué des polynômes pairs (respectivement impairs). Pour tous  $P,Q \in E$ , on pose :

$$(P|Q) = \int_{-1}^{1} P(t)Q(t) dt$$

- 1) Montrer que (.|.) définit sur E un produit scalaire.
- **2)** Démontrer que  $\mathscr{P} \oplus \mathscr{I} = E$ .
- 3) Montrer que  $\forall P \in \mathscr{P}$ ,  $\forall Q \in \mathscr{I}$ , (P|Q) = 0.
- 4) Déterminer une famille orthogonale  $(P_1, P_2, P_3, P_4)$  de E, sans vecteur nul.
- 5) Montrer, en utilisant le produit scalaire (.|.), que :

$$\forall a, b, c, d \in \mathbb{R}, \ \left(\frac{ac}{3} + bd\right)^2 \leqslant \left(\frac{a^2}{3} + b^2\right) \times \left(\frac{c^2}{3} + d^2\right).$$

Exercice 10 (%) – Inégalité de Bessel –

Soit  $(E, \langle \cdot, \cdot \rangle)$  un espace préhilbertien réel, soit F un sev de E de dimension finie, soit  $(e_1, \ldots, e_n)$  une b.o.n. de F. Montrer que pour tout  $x \in E$ ,

$$\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \leqslant ||x||^2,$$

avec égalité si et seulement si  $x \in F$ .

**Exercice 11** (Še) Soit  $E = \mathbb{R}_n[X]$ . À tout couple (P,Q) de E, on associe  $\langle P,Q \rangle = \int_0^\pi P(\cos t)Q(\cos t)dt$ . On appelle  $k^{\rm e}$  polynôme de Tchebychev le polynôme défini par :

$$\forall \theta \in \mathbb{R}, \ P_k(\cos \theta) = \cos(k\theta).$$

- 1) Montrer que  $\langle \cdot, \cdot \rangle$  définit un produit scalaire sur E.
- **2)** Montrer que les polynômes de Tchebychev  $P_0, \ldots, P_n$  constituent une base orthogonale de E.

Bonus : si cela n'est pas clair, montrez l'existence et l'unicité de ces polynômes, déterminer le degré et le coefficient dominant de chacun.

**Exercice 12** (**A**) Soit  $(E, \langle \cdot, \cdot \rangle)$  un espace préhilbertien réel. Soit  $(u_n)_{n \in \mathbb{N}}$  une suite de vecteurs de E. On dit qu'elle converge faiblement dans E s'il existe  $u \in E$  tel que pour tout  $v \in E, \langle u_n, v \rangle \underset{n \to +\infty}{\longrightarrow} \langle u, v \rangle$ . On notera alors  $u_n \rightharpoonup u$  pour signifier que  $(u_n)$  converge faiblement vers u dans E.

- 1) Montrer l'unicité de la limite au sens faible d'une suite  $(u_n)_{n\in\mathbb{N}}$ .
- 2) Montrer que la convergence pour la norme euclidienne implique la convergence faible.
- 3) Montrer que si E est de dimension finie, la réciproque est vraie.
- 4) Soit  $(e_n)_{n\in\mathbb{N}}$  une famille orthonormée de vecteurs de E. Montrer que pour tout  $x\in E$ ,

$$\sum_{n=0}^{+\infty} \langle x, e_n \rangle^2 \leqslant ||x||^2 \quad \text{(inégalité de Bessel)}.$$

- 5) En déduire que la suite  $(e_n)_{n\in\mathbb{N}}$  converge faiblement vers 0.
- **6)** On se propose maintenant de montrer que la réciproque de la question 2 n'est pas vraie en général. Considérons l'espace  $E = \mathscr{C}^0([0, 2\pi], \mathbb{R})$ , muni du produit scalaire

$$\langle f, g \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t)g(t)dt.$$

Montrer que la suite  $(f_n)_{n\geqslant 1}$  (où  $f_n:t\mapsto\sin(nt)$ ) converge faiblement vers 0, mais pas pour la norme euclidienne.

**Exercice 13 ( )** Soit  $(E, \langle \cdot, \cdot \rangle)$  un espace euclidien, F et G deux sous-espaces vectoriels de E. Montrer les égalités suivantes.

1) 
$$F \subset G \Rightarrow$$
 2)  $(F+G)^{\perp} =$  3)  $(F \cap G)^{\perp} =$   $F^{\perp} \cap G^{\perp}$   $F^{\perp} + G^{\perp}$ 

**Exercice 14** ( $^{\circ}$ ) Soit F le sous-espace de  $\mathbb{R}^4$  engendré par u = (1, 2, 3, -1) et v = (2, 4, 7, 2). Trouver une base de l'orthogonal  $F^{\perp}$  de F.

Exercice 15 ( ) Dans  $E = \mathbb{R}_4[X]$ , on note:

$$\langle P, Q \rangle = \sum_{k=0}^{4} P(k-2)Q(k-2)$$

Montrer qu'il s'agit d'un produit scalaire, et déterminer une base orthonormée de E pour ce produit scalaire.

## III. Projecteurs et distances

**Exercice 16** Soit  $(E, \langle \cdot, \cdot \rangle)$  un espace euclidien et  $p \in \mathcal{L}(E)$  un projecteur. Montrer que p est orthogonal (c'est-à-dire  $\mathrm{Ker}(p) \perp \mathrm{Im}(p)$ ) si et seulement si  $: \forall x \in E : ||p(x)|| \leq ||x||$ .

Indication : pour montrer une des implications, avec  $k \in \operatorname{Ker} p$  et  $i \in \operatorname{Im} p$ , on pourra considérer le vecteur  $i + \lambda k$ , pour tout  $\lambda \in \mathbb{R}$ .

**Exercice 17** ( $^{\circ}$ ) Déterminer la matrice dans la base canonique de  $\mathbb{R}^4$  de la projection orthogonale sur  $\text{Vect}(v_1, v_2)$  où  $v_1 = (1, -1, 0, 0)$  et  $v_2 = (0, 1, 0, 1)$ .

**Exercice 18** ( $^{\bigcirc}$ ) Soit  $E = \mathbb{R}^3$ , muni de sa structure euclidienne usuelle, soit  $\mathscr{C} = (e_1, e_2, e_3)$  la base canonique de  $\mathbb{R}^3$ . Déterminer les matrices dans la base  $\mathscr{C}$  des transformations suivantes.

- 1) La symétrie et la projection orthogonale par rapport au plan d'équation x 2y + 3z = 0.
- 2) La symétrie et la projection orthogonale par rapport à la droite engendrée par le vecteur  $e_1 4e_3$ .

**Exercice 19** Soit  $E = \mathbb{R}^3$  muni du produit scalaire canonique, soit  $\mathscr{P}$  d'équation 2x + y - z = -2, et M le point de coordonnées (3,4,5). Calculer  $d(M,\mathscr{P})$ .

### Exercice 20

- 1) À quelle condition sur  $a_1, \ldots, a_n \in \mathbb{R}$ , l'application  $\langle P, Q \rangle = \sum_{k=0}^{n} P(a_k) Q(a_k)$  est-elle un produit scalaire sur  $\mathbb{R}_n[X]$ ?
- 2) En supposant cette condition vérifiée, trouver une base orthonormée pour ce produit scalaire, et l'orthogonal de  $F = \{P \in \mathbb{R}_n[X] \text{ t.q.} \sum_{k=0}^n P(a_k) = 0\}$ .
- **3)** Quelle est la distance de  $X^n$  à F?

**Exercice 21** Soit  $E = \mathbb{R}^3$  muni du produit scalaire canonique. Soit  $u \in \mathcal{L}(E)$  dont la matrice dans la base canonique est  $M = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$ .

- 1) Montrer que u est une projection orthogonale, sur un sous-espace F que l'on précisera.
- **2)** Calculer d((1,1,1), F).

**Exercice 22** Soit  $S_n(\mathbb{R})$  l'ensemble des matrices réelles symétriques d'ordre n. Soit  $M=(m_{ij})\in \mathscr{M}_n(\mathbb{R})$ . Calculer  $\inf_{S\in S_n(\mathbb{R})}\sum_{1\leqslant i,j\leqslant n}(m_{ij}-s_{ij})^2$  (où les  $s_{ij}$  sont les coefficients de S).

**Exercice 23** ( $\blacktriangle$ ) Soit E un espace préhilbertien. Pour  $x_1, \ldots, x_p$  des vecteurs de E, on appelle matrice de Gram la matrice de  $\mathscr{M}_p(\mathbb{R})$  définie par  $(\langle x_i, x_j \rangle)_{i,j}$ . On appelle déterminant de Gram des vecteurs  $x_1, \ldots, x_p$ , et on note  $G(x_1, \ldots, x_p)$ , le déterminant de cette matrice.

- 1) Démontrer que  $(x_1, \ldots, x_p)$  est une famille libre si et seulement si  $G(x_1, \ldots, x_p) \neq 0$ .
- 2) On suppose désormais que  $(x_1, \ldots, x_p)$  est une famille libre, et on note  $F = \text{vect}(x_1, \ldots, x_p)$ . Soit également  $x \in E$ . Démontrer que

$$d(x,F)^{2} = \frac{G(x,x_{1},\ldots,x_{p})}{G(x_{1},\ldots,x_{p})}.$$



