Mateusz Bieliński, s26752

1 Zadania teoretyczne

Zadanie 1

- Krzywa ROC ilustruje skuteczność klasyfikatora binarnego. Jest to wykres, który przedstawia stosunek wartości TPR (czułość) do FPR przy różnych progach decyzyjnych.

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

gdzie:

TP – prawdziwie pozytywne,

FN - fałszywie negatywne,

FP - fałszywie pozytywne,

TN – prawdziwie negatywne.

_

Próg	TP	FP	TN	FN	TPR	FPR
1.0	0	0	44	56	0	0
0.9	8	2	42	48	0,143	0,045
0.8	23	7	37	33	0,411	0,159
0.7	35	15	29	21	0,625	0,341
0.6	44	26	18	12	0,786	0,591
0.5	53	37	7	3	0,946	0,841
0.4	56	44	0	0	1	1

Zadanie 2

Root Mean Square Error (RMSE) to miara używana do oceny jakości modelu predykcyjnego w kontekście regresji. RMSE mierzy średnią wielkość błędów pomiędzy wartościami przewidywanymi przez model a rzeczywistymi wartościami.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

gdzie:

n – liczba obserwacji,

y_i – rzeczywista wartość obserwacji i

 \hat{y}_i – przewidywana wartość obserwacji *i*.

Mean Absolute Error (MAE) to również miara używana do oceny jakości modelu predykcyjnego w kontekście regresji. Jest to średnia wartość bezwzględnych różnic między przewidywanymi a rzeczywistymi wartościami.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

gdzie:

n – liczba obserwacji,

y_i – rzeczywista wartość obserwacji i

 \hat{y}_i – przewidywana wartość obserwacji *i*.

Relative Absolute Error (RAE) tak jak w pozostałych przypadkach to miara stosowana w ocenie jakości modeli predykcyjnych w kontekście regresji. Pozwala ona na ocenę modelu poprzez porównanie błędów modelu do błędów modelu bazowego (najczęściej średniej arytmetycznej z wartości rzeczywistych).

$$RAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{\sum_{i=1}^{n} |y_i - \bar{y}|}$$

n – liczba obserwacji,

y, – rzeczywista wartość obserwacji i,

ŷ_i – przewidywana wartość obserwacji i,

ÿ - to średnia z rzeczywistych wartości y.

2 Model regresji

```
Zadanie 1
```

c) Integer, 22-8714

b) 731 rekordów, 16 atrybutów, instant – liczba porządkowa, dteday - data wypożyczenia roweru, season – pora roku, yr – rok, mnth - miesiąc, holiday – czy dzień jest swiętem, weekday – dzień tygodnia, workingday – czy dzień jest dniem roboczym, weathersit - sytuacja pogodowa, temp - znormalizowana temperatura, atemp - znormalizowana odczuwalna temperatura, hum – znormalizowana wilgotność, windspeed – znormalizowana prędkość wiatru, casual – liczba wypożyczonych rowerów przez użytkowników niezarejestrowanych, registered – liczba wypożyczonych rowerów przez użytkowników zarejestrowanych, cnt – łączna liczba wypożyczeń (suma casual i registered).

Największy popyt jest w okresie od wiosny (koniec kwietnia w 2011 i połowa marca w 2012) do końca października.

Zadanie 2

root_mean_squared_error: 233.953 +/- 0.000
relative_error: 4.49% +/- 5.79%

Zadanie 3

_

root_mean_squared_error: 226.368 +/- 0.000
relative error: 17.52% +/- 205.75%

-

root_mean_squared_error: 198.963 +/- 0.000
relative_error: 4.39% +/- 6.18%

-

root_mean_squared_error: 162.833 +/- 0.000
relative error: 3.03% +/- 3.10%

root_mean_squared_error: 165.854 +/- 0.000
relative error: 18.88% +/- 230.44%

Zadanie 4

a)

root_mean_squared_error: 732.768 +/- 0.000
relative error: 99.11% +/- 1,174.47%

b)

root_mean_squared_error: 1.807 +/- 0.000
relative error: 0.06% +/- 0.09%

c)

Parameters	×						
Additive Regression							
iterations	10		(i)				
shrinkage	0.5		(i)				

 $\begin{tabular}{ll} root_mean_squared_error: 10.684 +/- 0.000 \\ relative error: 1.88\% +/- 39.88\% \end{tabular}$

Zadanie 5

- a) Predykcje można przeprowadzić bez selekcji cech, ale selekcja cech powinna być użyta w takim zadaniu ze względu na to, że wyniki dzięki niej są lepsze.
- b) Jeśli chodzi o selekcję cech to najlepsza okazała się selekcja na podstawie korelacji między atrybutami. Mniejsze błędy RMSE i RAE względem zwykłego DT i korelacji z decyzją. Jeśli uwzględnimy także redukcję wymiarów to wtedy najlepsze okazuje się PCA – najmniejsze błędy.
- c) Najmniejsze wartości błędów były w przypadku Polynomial, jednak mam wątpliwości czy nie wynikają one z przetrenowania lub jakiegoś błędu. Jeśli tak to wtedy najlepsze jest Additive Regression (z Decision Tree).