What do real life Hadoop workloads look like?

Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads

Yanpei Chen, Sara Alspaugh, Randy Katz

Background

Hadoop use cases spread beyond tech industry

"The Alot is Better Than You at Everything", http://hyperboleandahalf. blogspot.com/2010/04/alot-is-better-than-you-at-everything.html.

- How do we design Hadoop to target real life use cases?
- This talk seven workloads across several industry sectors

MapReduce Examples Established and New

- Established, automated, e.g. reverse web link graph
 - map: input web page content, output (target, source)
 - reduce: input [$\langle \text{ target, *} \rangle$], output $\langle \text{target, list(source)} \rangle$

- New, human assisted, e.g. media outlet track audience behavior
 - compute most watched media items (automated)
 - demographic analysis on audiences (ad hoc exploration)
 - talk with producers, reflect on nature of content (human)
 - feed back into planning for new content

Workload Characterization Important

- Design better, more efficient systems
- Workload-specific info creates new design opportunities
 - auto tune/config. Hadoop ecosystem for performance
 - per-job or per-workflow dynamic optimization
 - per-dataset auto format and layout over time
 - build hybrid systems of Hadoop + RDMBS + others
- Understand how systems are used in real life

This Talk: Seven Hadoop Deployments

	Trace	Date	Length	# machines	# jobs
ecommerce, telecomm, media, retail growth over a year	Cloudera customer A	2011	I month	<100	5759
	Cloudera customer B	2011	9 days	300	22974
	Cloudera customer C	2011	I month	700	21030
	Cloudera customer D	2011	2 months	450	13283
	Cloudera customer E	2011	9 days	100	10790
	Facebook	2009	6 months	600	1129193
	Facebook	2010	1.5 months	3000	1169184
non-trivial	Total		~ I year	>5000	2372213

Key Questions to Ask

typical data set size?
uniform or skewed access?
temporal locality? regular cycles over time?bursts in workload? compute patterns
 common job types?
 query-like frameworks (Hive/Pig)? variations between workloads?
 representative characteristics?

 typical data set size?
 uniform or skewed access?
 temporal locality? arrival patterns - regular cycles over time?bursts in workload? compute patterns
 common job types?
 query-like frameworks (Hive/Pig)? variations between workloads?
 representative characteristics?

Typical Data Set Size

Most jobs have KB to TB data size

Typical Data Set Size, Year-to-Year

Output selectivity increase 100,000x

Typical Data Set Size

- Most jobs KB to TB
- Output decrease 100x, input increase 1000x over a year
 - people ask better questions over time?

 typical data set size?
 uniform or skewed access? • temporal locality? arrival patterns - regular cycles over time?bursts in workload? compute patterns = common job types?
 query-like frameworks (Hive/Pig)? variations between workloads?
 representative characteristics?

Access Skew

Zipf distribution \rightarrow cache!! Same slope \rightarrow Zipf distributions with the same skew!!

80-10-or-less Rule in Bytes

80% of jobs read files of less than 100s GB

Files less than 100s GB form <10% of bytes stored

Access Skew

- Same Zipf distributed skew across industry sectors
 - time based analysis?
 - human analyst mental capacity?
 - consumer dictate pace of business evolution?
- 80% of jobs access 1-8% of bytes
 - skew increasing due to ever more raw data?

typical data set size?
uniform or skewed access?
temporal locality? arrival patterns - regular cycles over time?bursts in workload? compute patterns = common job types?
 query-like frameworks (Hive/Pig)? variations between workloads?
 representative characteristics?

Temporal Locality

How often is data read or written re-read by later jobs?

20-80%, depends on workload

Temporal Locality

How much time before subsequent jobs re-read existing data?

80% of re-accesses are within 3 hours

Temporal Locality

- 20-80% of jobs re-access pre-existing input
- 80% of re-accesses are within ~3hrs
 - attention span of professionals?
 - different reaction time for different industries?

typical data set size?uniform or skewed access? • temporal locality? arrival patterns - regular cycles over time?bursts in workload? compute patterns = common job types?
 query-like frameworks (Hive/Pig)? variations between workloads?
 representative characteristics?

Hadoop versus Hive/Pig/Other

Hadoop versus Hive/Pig/Other

- Two frameworks make up most jobs in each workload
 - human learning capacity?
 - preference for "mature" frameworks?
- 20-80% of hive/pig/oozie in each workload
 - human analysts move to higher level abstractions?
 - abstractions higher than hive/pig?

typical data set size?uniform or skewed access? • temporal locality? arrival patterns - regular cycles over time?bursts in workload? compute patterns

common job types?

query-like frameworks (Hive/Pig)?

variations between workloads?

representative characteristics?

Cross-Workload Comparison

- Every workload is different
 - different distributions of data size
 - 80-1 to 80-8 rule
 - 20-80% jobs re-access existing data
 - 20-80% jobs from Hive and/or Pig and/or Oozie
 - etc.

• Should be cautious to declare "representative" behavior

Summary

 80% jobs have < TB data sizes
 Zipf-skew, 80-1 to 80-8 rule
 re-accesses within 3 hrs
 unpredictable variation over time
 9:1 to 260:1 peak-to-avg. load ratio small jobs are > 90% of all jobs
 hive/pig/oozie form 20-80% of jobs wide variation between workloads
 hard to say what is "representative"

What's Next?

- Better performance measurement tools
 - limits of terasort-style tools should be self-evident
 - Statistical Workload Injector for MapReduce (SWIM),
 able to replay real workloads, used at Cloudera
 - similar tools for Hive/Pig/HBase/Oozie/others?
- Insights feeds into system design
 - Cloudera Distribution with Apache Hadoop (CDH)
 - Cloudera Enterprise
 - Invite the community to contribute

