[2]:	df = pd.read_sv('/Users/SAURABH/Saurabh pati1/DATA SCIENCE/Forecasting/forestfires.csv') month day FFMC DMC DC ISI temp RH wind rain monthfeb monthjan monthjan monthjan monthjan monthjan monthmar
	4 mar sun 89.3 51.3 102.2 9.6 11.4 99 1.8 0.0 0 0 0 0 1 0 0 0 0 0 0 small
3]:	#Checking for null values & data types df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 517 entries, 0 to 516 Data columns (total 31 columns): # Column Non-Null Count Dtype</class>
	1 day 517 non-null object 2 FFMC 517 non-null float64 3 DMC 517 non-null float64 4 DC 517 non-null float64 5 ISI 517 non-null float64 6 temp 517 non-null float64 7 RH 517 non-null int64 8 wind 517 non-null float64 9 rain 517 non-null float64
	10 area 517 non-null float64 11 dayfri 517 non-null int64 12 daymon 517 non-null int64 13 daysat 517 non-null int64 14 daysun 517 non-null int64 15 daythu 517 non-null int64 16 daytue 517 non-null int64 17 daywed 517 non-null int64
	18 monthapr 517 non-null int64 19 monthaug 517 non-null int64 20 monthdec 517 non-null int64 21 monthfeb 517 non-null int64 22 monthjan 517 non-null int64 23 monthjul 517 non-null int64 24 monthjun 517 non-null int64 25 monthmar 517 non-null int64 26 monthmay 517 non-null int64
	27 monthnov 517 non-null int64 28 monthoct 517 non-null int64 29 monthsep 517 non-null int64 30 size_category 517 non-null object dtypes: float64(8), int64(20), object(3) memory usage: 119.2+ KB Since number of columns are more, let's use PCA
4]:	#Scaling the data (leaving out the target variable, and the taking only the numerical data for input) df1= df.iloc[:,2:30] from sklearn.preprocessing import StandardScaler sc = StandardScaler()
[4]:	sc.fit(df1) df_norm = sc.transform(df1) df_norm
	-4.40225453e-02, 5.78503817e+00, -7.06081245e-01],, [-1.64008316e+00, -8.46647711e-01, 4.74768113e-01,, -4.40225453e-02, -1.72859706e-01, -7.06081245e-01], [6.80956663e-01, 5.49002541e-01, 2.69382214e-01,, -4.40225453e-02, -1.72859706e-01, -7.06081245e-01], [-2.02087875e+00, -1.68591332e+00, -1.78044169e+00,, 2.27156334e+01, -1.72859706e-01, -7.06081245e-01]])
[5]:	<pre>from sklearn.decomposition import PCA pca = PCA(n_components = 28) pca_values = pca.fit_transform(df_norm) pca_values array([[3.76670947e+00, -1.32025451e+00, -8.43971398e-01,,</pre>
	3.42618601e-02, 8.61371445e-15, 4.80303413e-16], [6.90415596e-01, 1.17774562e+00, -1.22199841e+00,,
[6]: [6]:	# The amount of variance that each PCA explains is var = pca.explained_variance_ratio_ var array([1.35522746e-01, 6.85788793e-02, 6.23572652e-02, 5.32713255e-02,
[7]:	3.35447704e-02, 3.24777366e-02, 3.04490902e-02, 3.00246758e-02, 2.37167400e-02, 2.08329788e-02, 1.18357869e-02, 8.88449559e-03, 4.55347471e-03, 7.98135931e-04, 2.67271490e-32, 5.78247478e-34]) # Cumulative variance var1 = np.cumsum(np.round(var, decimals = 4)*100) var1 array([13.55, 20.41, 26.65, 31.98, 36.74, 41.42, 45.79, 50.07, 54.16,
[8]:	58.18, 62.11, 65.94, 69.58, 73.21, 76.79, 80.29, 83.64, 86.89, 89.93, 92.93, 95.3 , 97.38, 98.56, 99.45, 99.91, 99.99, 99.99]) # Variance plot for PCA components obtained plt.figure(figsize=(12,4)) plt.plot(var1,color="red");
	100 - 80 - 60 -
	40 - 20 - 5 10 15 20 25 Selecting first 24 PCAs out of total 28
9]:	<pre>finalDf = pd.concat([pd.DataFrame(pca_values[:,0:24],columns=['pc1','pc2','pc3','pc4','pc5','pc6','pc7',</pre>
	0 3.766709 -1.320255 -0.843971 -1.994738 -1.453359 0.693985 0.308104 -0.019764 0.019764 0.010161 -0.437314 -0.0197543 -0.021839 0.563603 -0.439596 -0.926619 -0.405425 1 0.390786 0.831062 -1.101365 1.400671 2.869388 0.965898 -2.795574 0.041095 -0.548879 0.104500 -2.503167 0.499649 0.563706 -0.703319 -1.535718 -0.892995 0.836590 2 0.690416 1.177746 -1.221998 2.442038 1.090630 0.390801 -1.586675 -2.159336 -0.090580 0.260888 -2.545144 -0.658411 -0.423618 0.860550 -1.195230 -0.297870 0.743648 3 3.359951 -1.161443 0.385728 -2.118328 -1.949601 1.027664 -0.179422 -0.250227 -0.620329 -1.343189 -0.040887 0.017843 0.332572 1.164745 -1.632741 -0.817618 1.523710 4 2.974329 -0.842626 1.327788 0.038086 -1.124763 </td
	6. 1.<
.0]:	516 4.075907 -0.367441 -0.247152 0.979966 6.792273 5.943666 -1.639583 8.121827 -0.627980 4.953722 10.467443 -7.333036 0.377340 8.870354 -1.074288 2.382433 1.042850 517 rows × 25 columns array = finalDf.values X = array[:,0:24] Y = array[:,24]
	Selecting the model validation technique Trial 1 : Train Test split approach from sklearn.model_selection import train_test_split
	<pre>import numpy as np test_size = 0.3 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) model = LogisticRegression() model.fit(X_train, Y_train) result = model.score(X_test, Y_test) np.round(result, 4)</pre>
	Trial 2 : Cross Validation approach from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score import numpy as np
	<pre>num_folds = 10 seed = 7 kfold = KFold(n_splits=num_folds, random_state=seed) model = LogisticRegression(max_iter=400) results = cross_val_score(model, X, Y, cv=kfold) print('Result:',np.round(results.mean(),4),'\n','\n','Standard dev:',np.round(results.std(),4)) Result: 0.8664</pre>
	Standard dev: 0.1336 Standard dev: 0.1336 Trial 3: Leave One Out Cross Validation approach from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import cross_val_score
	<pre>loocv = LeaveOneOut() model = LogisticRegression(max_iter=400) results = cross_val_score(model, X, Y, cv=loocv) print('Result:',np.round(results.mean(),4),'\n','\n','standard dev:',np.round(results.std(),4)) Result: 0.8723 Standard dev: 0.3337</pre>
	Though the accuracy of LOOCV is marginally higher than Cross Validation approach, but sinc it's std is thrice that of Cross Validation approach, Hence, wise decision would be to use Cross Validation approach as our model vaidation
	technique here, so we'll proceed with that. KNN Classification Let's use Grid search CV to find out best value for K # Grid Search for Algorithm Tuning
	<pre>import numpy from pandas import read_csv from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV n_neighbors = numpy.array(range(1,100)) param_grid = dict(n_neighbors=n_neighbors)</pre>
	<pre>model = KNeighborsClassifier() grid = GridSearchCV(estimator=model, param_grid=param_grid) grid.fit(X, Y) print(grid.best_score_) print(grid.best_params_) 0.7369492158327111 {'n_neighbors': 32}</pre>
.5]:	<pre>import matplotlib.pyplot as plt %matplotlib inline # choose k between 1 to 40 k_range = range(1, 40) k_scores = [] # use iteration to caclulator different k in models, then return the average accuracy based on the cross validation for k in k_range: knn = KNeighborsClassifier(n_neighbors=k)</pre>
	<pre>scores = cross_val_score(knn, X, Y, cv=5) k_scores.append(scores.mean()) # plot to see clearly plt.figure(figsize=(15,7)) plt.plot(k_range, k_scores) plt.axhline(y=0.7369492158327111, color='r', linestyle='') plt.axvline(x=32, color='r', linestyle='') plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy') plt.show()</pre>
	0.70
	0.65 - Validated Accuracy 0.65 - Validated Accuracy 0.60 - Validated A
	0.55 - 0.55 - 0 5 10 15 20 25 30 35 40
17]:	Value of K for KNN Hence K=32 is the best value, so we'll make the model using that. #KNN Classification num_folds = 10 kfold = KFold(n_splits=10) model = KNeighborsClassifier(n_neighbors=32) receibte = errors value corre(model = X = X = corre(model = X = X = corre(model = X = X = x = X = X = X = X = X = X = X
	results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 0.7346530920060331 SVM Classification
18]:	<pre># SVM Classification import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn import svm from sklearn.svm import SVC</pre>
	<pre>from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.model_selection import train_test_split, cross_val_score Let's use Grid search CV to find out best value for params</pre>
L9]:	<pre>clf = SVC() param_grid = [{'kernel':['rbf'], 'gamma':[0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1], 'C':[1,10,100,1000] },</pre>
19]:	<pre>({'C': 100, 'kernel': 'linear'}, 0.9650075414781296) #SVM Clasification clf = SVC(C=100, kernel='linear') results = cross_val_score(clf, X, Y, cv=kfold) print(results.mean())</pre> 0.9688914027140221
	Now, let's try some Ensemble methods to see if we can further increase the accuracy of the model Trial-1: Bagging
21]:	# Bagged Decision Trees for Classification from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier seed = 7 cart = DecisionTreeClassifier()
	<pre>num_trees = 100 model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=seed) results = cross_val_score(clf, X, Y, cv=kfold) print(results.mean()) 0.9688914027149321</pre>
22]:	<pre>Trial-2: Random Forest # Random Forest Classification from sklearn.ensemble import RandomForestClassifier num_trees = 100 max_features = 3 model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features)</pre>
	<pre>model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(clf, X, Y, cv=kfold) print(results.mean()) 0.9688914027149321 Trial-3: Boosting</pre>
24]:	<pre># AdaBoost Classification from sklearn.ensemble import AdaBoostClassifier num_trees = 100 seed=7 model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) results = cross_val_score(clf, X, Y, cv=kfold)</pre>
25]:	<pre>print(results.mean()) 0.9688914027149321 Trial-4: Stacking # Stacking Ensemble for Classification</pre>
26]:	<pre>from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import VotingClassifier # create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model))</pre>
	<pre>model = DecisionTreeClassifier() estimators.append(('cart', model)) model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators) results = cross_val_score(ensemble, X, Y, cv=kfold)</pre>
7]:	<pre>print(results.mean()) 0.831447963800905 # create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = DecisionTreeClassifier()</pre>
	<pre>estimators.append(('cart', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('Boosting', model)) # create the ensemble model ensemble = VotingClassifier(estimators) results = cross_val_score(ensemble, X, Y, cv=kfold)</pre>
8]:	<pre>print(results.mean()) 0.8180618401206636 # create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('boosting', model))</pre>
	<pre>estimators.append(('boosting', model)) model = SVC() estimators.append(('svm', model)) # create the ensemble model ensemble = VotingClassifier(estimators) results = cross_val_score(ensemble, X, Y, cv=kfold) print(results.mean())</pre>
9]:	<pre>print(results.mean()) 0.8141779788838612 # create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) estimators.append(('boosting', model))</pre>
	<pre># create the ensemble model ensemble = VotingClassifier(estimators) results = cross_val_score(ensemble, X, Y, cv=kfold) print(results.mean())</pre>
80]:	<pre># create the sub models estimators = [] model = LogisticRegression(max_iter=500) estimators.append(('logistic', model)) model = SVC() estimators.append(('svm', model))</pre> # areata the creata the creatal
	# create the ensemble model ensemble = VotingClassifier(estimators) results = cross_val_score(ensemble, X, Y, cv=kfold) print(results.mean()) 0.864441930618401 Hence we can say that \$\frac{\text{NM/Ragging/Random Forest_any of them is the equally best}}{\text{Pance}}
	Hence, we can say that SVM/Bagging/Random Forest- any of them is the equally best predicting model for this dataset