Topics in Computer Graphics Chap 14: Tensor Product Patches fall, 2011

University of Seoul School of Computer Science Minho Kim

Table of contents

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Bilinear Interpolation

- ▶ Let $\mathbf{b}_{0,0}, \mathbf{b}_{0,1}, \mathbf{b}_{1,0}, \mathbf{b}_{1,1} \in \mathbb{E}^3$.
- ▶ The set of all points $\mathbf{x} \in \mathbb{E}^3$ of the form

$$\mathbf{x}(u,v) = \sum_{i=0}^{1} \sum_{j=0}^{1} \mathbf{b}_{i,j} B_{i}^{1}(u) B_{j}^{1}(v)$$

is called a *hyperbolic paraboloid* through the four points $\{\mathbf{b}_{i,j}\}$.

In matrix form:

$$\mathbf{x}(u,v) = \begin{bmatrix} 1 - u & u \end{bmatrix} \begin{bmatrix} \mathbf{b}_{00} & \mathbf{b}_{01} \\ \mathbf{b}_{10} & \mathbf{b}_{11} \end{bmatrix} \begin{bmatrix} 1 - v \\ v \end{bmatrix}.$$

• $\mathbf{x}(u, v)$ is linear in both u and v• \mathbf{x} is called the *bilinear interpolant*.

Bilinear Interpolation (cont'd)

- ► Can be viewed as a map of the unit square $0 \le u, v \le 1$ in the u, v-plane. \rightarrow domain
- A line parallel to one of the axes in the domain corresponds to a curve in the range. (Equivalent to fixing either u or v.)
 → isoparametric curve
- Every isoparametric curve of the hyperbolic paraboloid is a straigt line.
 - → ruled surface
- Evaluation

$$\mathbf{b}_{0,0}^{0,1} = (1-v)\mathbf{b}_{0,0} + v\mathbf{b}_{0,1}$$

$$\mathbf{b}_{1,0}^{0,1} = (1-v)\mathbf{b}_{1,0} + v\mathbf{b}_{1,1}$$

$$\mathbf{x}(u,v) = \mathbf{b}_{0,0}^{1,1}(u,v) = (1-u)\mathbf{b}_{0,0}^{0,1} + u\mathbf{b}_{1,0}^{0,1}$$

Equivalent to computing the coefficients of the isoparametric line v = const first and then evaluating this parametric line at u. (or vice versa)

Bilinear Interpolation (cont'd)

- Why "hyperbolic paraboloid"?
 - The (nonparametric) surface z = xy can be considered as the bilinear interpolant to the four points (Why?)

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

- The intersection of the surface and a plane parallel to the xy-plane is a hyperbola.
- The intersection of the surface and a plane containing the *z*-axis is a parabola.

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

The Direct de Casteljau Algorithm

- Higher degree surfaces can be obtained by repeated application of bilinear interpolation.
- Given points $\{\mathbf{b}_{i,j}\}_{i,j=0}^n$ and parameter values $(u,v)\in\mathbb{R}^2$, set

$$\mathbf{b}_{i,j}^{r,r} = \begin{bmatrix} 1 - u & u \end{bmatrix} \begin{bmatrix} \mathbf{b}_{i,j}^{r-1,r-1} & \mathbf{b}_{i,j+1}^{r-1,r-1} \\ \mathbf{b}_{i+1,j}^{r-1,r-1} & \mathbf{b}_{i+1,j+1}^{r-1,r-1} \end{bmatrix} \begin{bmatrix} 1 - v \\ v \end{bmatrix},$$

$$i, j = 0, \dots, n-r$$

and $\mathbf{b}_{i,j}^{0,0} = \mathbf{b}_{i,j}$. Then $\mathbf{b}_{0,0}^{n,n}(u,v)$ is the point with parameter values (u,v) on the *Bézier surface* $\mathbf{b}^{n,n}$.

- $\{\mathbf{b}_{i,i}\}$: Bézier points or control points
- The net of $\{\mathbf{b}_{i,j}\}$: Bézier net or control net of the surface $\mathbf{b}^{n,n}$
- What if the degrees in u and v are different? $(\{\mathbf{b}_{i,j}\}_{i=0,\dots,m,j=0,\dots,n})$

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

The Tensor Product Approach

- "A surface is the locus of a curve that is moving through space and thereby changing its shape."
- Formulation
 - 1. Given the initial Bézier curve of degree *m*:

$$\mathbf{b}^m(u) = \sum_{i=0}^m \mathbf{b}_i B_i^m(u)$$

Let each control point b_i traverses a Bézier curve of degree
 n:

$$\mathbf{b}_i = \mathbf{b}_i(v) = \sum_{j=0}^n \mathbf{b}_{i,j} B_j^n(v).$$

3. Combining these two, we obtain the point $\mathbf{b}^{m,n}(u,v)$ on the surface $\mathbf{b}^{m,n}$ as

$$\mathbf{b}^{m,n}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{b}_{i,j} B_{i}^{m}(u) B_{j}^{n}(v).$$

The Tensor Product Approach (cont'd)

For a fixed $\hat{v} = const$, its Bézier points are obtained by

$$\mathbf{b}_{i,0}^{0,n}(\hat{v}) = \sum_{j=0}^{n} \mathbf{b}_{ij} B_{j}^{n}(\hat{v}), \quad i = 0, \dots, m.$$

• Other straight lines in the domain (i.e. diagonals) are mapped to higher-degree (generally m+n) curves on the patch.

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Properties

Affine invariance

$$\sum_{j=0}^{n} \sum_{i=0}^{m} B_i^m(u) B_j^n(v) \equiv 1(u, v)$$

- \rightarrow $\mathbf{b}^{m,n}(u,v)$ is an affine combination of the control points.
- Convex hull property
- ▶ Boundary curves of the patch $\mathbf{b}^{m,n}(u,v)$ are polynomial curves.
- Variation diminishing property → NOT inherited

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Degree Elevation

▶ To rewrite a Bézier surface of degree (m, n) as one of degree (m + 1, n):

$$\mathbf{b}^{m,n}(u,v) = \sum_{j=0}^n \left[\sum_{i=0}^{m+1} \mathbf{b}_{i,j}^{(1,0)} B_i^{m+1}(u) \right] B_j^n(v).$$

$$\mathbf{b}_{i,j}^{(1,0)} = \frac{i}{m+1} \mathbf{b}_{i-1,j} + \left(1 - \frac{i}{m+1}\right) \mathbf{b}_{i,j}, \quad \begin{cases} i = 0, \dots, m+1 \\ j = 0, \dots, n. \end{cases}$$

• as one of degree (m+1, n+1):

$$\mathbf{b}_{i,j}^{(1,1)} = \begin{bmatrix} \frac{i}{m+1} & 1 - \frac{i}{m+1} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{i-1,j-1} & \mathbf{b}_{i-1,j} \\ \mathbf{b}_{i,j-1} & \mathbf{b}_{i,j} \end{bmatrix} \begin{bmatrix} \frac{j}{n+1} \\ 1 - \frac{j}{n+1} \end{bmatrix}$$

$$\begin{cases} i = 0, \dots, m+1, \\ j = 0, \dots, n+1. \end{cases}$$

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Derivatives

- Partial derivatives along u and v.
- Tangent vector of an isoparametric curve.

$$\frac{\partial}{\partial u} \mathbf{b}^{m,n}(u,v) = \sum_{j=0}^{n} \left[\frac{\partial}{\partial u} \sum_{i=0}^{m} \mathbf{b}_{i,j} B_i^m(u) \right] B_j^n(v)$$

$$= m \sum_{j=0}^{n} \sum_{i=0}^{m} \Delta^{(1,0)} \mathbf{b}_{i,j} B_i^{m-1}(u) B_j^n(v).$$

where $\Delta^{(1,0)}\mathbf{b}_{i,j} := \mathbf{b}_{i+1,j} - \mathbf{b}_{i,j}$.

$$\frac{\partial}{\partial v} \mathbf{b}^{m,n}(u,v) = n \sum_{i=0}^{m} \sum_{j=0}^{n} \Delta^{(0,1)} \mathbf{b}_{i,j} B_j^{n-1}(u) B_i^m(u).$$

Higher Derivatives

$$\frac{\partial^{r}}{\partial u^{r}}\mathbf{b}^{m,n}(u,v) = \frac{m!}{(m-r)!} \sum_{i=0}^{n} \sum_{i=0}^{m-r} \Delta^{(r,0)} \mathbf{b}_{i,j} B_{i}^{m-r}(u) B_{j}^{n}(v)$$

where $\Delta^{(r,0)}\mathbf{b}_{i,j}:=\Delta^{(r-1,0)}\mathbf{b}_{i+1,j}-\Delta^{(r-1,0)}\mathbf{b}_{i,j}$ and

$$\frac{\partial^{s}}{\partial v^{s}} \mathbf{b}^{m,n}(u,v) = \frac{n!}{(n-s)!} \sum_{i=0}^{m} \sum_{j=0}^{n-s} \Delta^{(0,s)} \mathbf{b}_{i,j} B_{j}^{n-s}(v) B_{i}^{m}(u).$$

where $\Delta^{(0,s)}\mathbf{b}_{i,j} := \Delta^{(0,s-1)}\mathbf{b}_{i,j+1} - \Delta^{(0,s-1)}\mathbf{b}_{i,j}$.

Mixed Partial Derivatives & Cross Boundary Derivatives

Mixed partial derivatives

$$\frac{\partial^{r+s}}{\partial u^r \partial v^s} \mathbf{b}^{m,n}(u,v) = \frac{m!n!}{(m-r)!(n-s)!} \sum_{i=0}^{m-r} \sum_{j=0}^{n-s} \Delta^{r,s} \mathbf{b}_{i,j} B_i^{m-r}(u) B_j^{n-s}(v).$$

Cross boundary derivatives

$$\frac{\partial^r}{\partial u^r} \mathbf{b}^{m,n}(0,v) = \frac{m!}{(m-r)!} \sum_{j=0}^n \Delta^{(r,0)} \mathbf{b}_{0,j} B_j^n(0).$$

 \rightarrow Important when we formulate condition for C^r continuity between adjacent patches.

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Blossoms

$$\mathbf{b}[u_1,\ldots,u_m|v_1,\ldots,v_n]$$

- 1. Compute the (curve) blossom value $\mathbf{b}_i[u_1, \dots, u_m]$ of all rows of control points, using the same values for each row.
- 2. Then use those values as input to the (curve) blossom $b[v_1, \ldots, v_n]$.
 - $\mathbf{b}[u^{< m>}|v^{< n>}]$ is the point on the surface.
 - The order of evaluation does not matter.
 - Multiaffinity in both u and v.

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Curves on a Surface

- 1. Let $\mathbf{p} = (\mathbf{p}_u, \mathbf{p}_v)$ and $\mathbf{q} = (\mathbf{q}_u, \mathbf{q}_v)$ be u, v-coordinates of two points \mathbf{p} and \mathbf{q} in the domain of a tensor product patch of degree (n, n).
- 2. A line through p and q:

$$\mathbf{u}(t) = (1-t)\mathbf{p} + t\mathbf{q}.$$

3. A point on the curve is given by

$$\mathbf{b}[((1-t)\mathbf{p}_u + t\mathbf{q}_u)^{< n>}|((1-t)\mathbf{q}_v + t\mathbf{q}_v)^{< n>}].$$

4. Applying the Leibniz formula to the *u*-part,

$$\sum_{i+j=n} {n \choose i,j} (1-t)^i t^j \mathbf{b} [\mathbf{p}_u^{< i>} \mathbf{q}_u^{< j>} | ((1-t)\mathbf{p}_v + t\mathbf{q}_v)^{< n>}]$$

Curves on a Surface (cont'd)

 \rightarrow A curve of degree 2n

5. Applying the Leibniz formula to the v-part,

$$\sum_{i+j=n} \sum_{r+s=n} \binom{n}{i,j} \binom{n}{r,s} (1-t)^i t^j (1-t)^r t^s \mathbf{b} [\mathbf{p}_u^{< i>}, \mathbf{q}_u^{< j>} | \mathbf{p}_v^{< r>}, \mathbf{q}_v^{< s>}]$$

6. Equivalently,

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} (1-t)^{2n-i-j} t^{i+j} \mathbf{b} [\mathbf{p}_{u}^{< n-i>}, \mathbf{q}_{u}^{< i>} | \mathbf{p}_{v}^{< n-j>}, \mathbf{q}_{v}^{< j>}]$$

$$= \sum_{k=0}^{2n} \sum_{i+j=k} \frac{\binom{n}{i} \binom{n}{j}}{\binom{2n}{k}} B_{k}^{2n}(t) \mathbf{b} [\mathbf{p}_{u}^{< n-i>}, \mathbf{q}_{u}^{< i>} | \mathbf{p}_{v}^{< n-j>}, \mathbf{q}_{v}^{< j>}]$$

$$= \sum_{k=0}^{2n} \left(\sum_{i+j=k} \frac{\binom{n}{i} \binom{n}{j}}{\binom{2n}{k}} \mathbf{b} [\mathbf{p}_{u}^{< n-i>}, \mathbf{q}_{u}^{< i>} | \mathbf{p}_{v}^{< n-j>}, \mathbf{q}_{v}^{< j>}] \right) B_{k}^{2n}(t)$$

$$=: \sum_{k=0}^{2n} \mathbf{c}_{k} B_{k}^{2n}(t)$$

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Normal Vectors

- Required for lighting computation.
- Can be obtained by cross product of any two tangent vectors at the given point on the surface.

$$\mathbf{b}(u,v) = \frac{\frac{\partial}{\partial u} \mathbf{b}^{m,n}(u,v) \wedge \frac{\partial}{\partial v} \mathbf{b}^{m,n}(u,v)}{\|\frac{\partial}{\partial u} \mathbf{b}^{m,n}(u,v) \wedge \frac{\partial}{\partial v} \mathbf{b}^{m,n}(u,v)\|}$$

Degenerate cases?

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch

The Matrix Form of a Bézier patch

$$\mathbf{b}^{m,n}(u,v) = \begin{bmatrix} B_0^m(u) & \cdots & B_m^m(u) \end{bmatrix} \begin{bmatrix} \mathbf{b}_{00} & \cdots & \mathbf{b}_{0n} \\ \vdots & \ddots & \vdots \\ \mathbf{b}_{n0} & \cdots & \mathbf{b}_{nn} \end{bmatrix} \begin{bmatrix} B_0^n(v) \\ \vdots \\ B_n^n(v) \end{bmatrix}$$

√ {b_{ij}}: Geometry matrix of the patch

Bilinear Interpolation

The Direct de Casteljau Algorithm

The Tensor Product Approach

Properties

Degree Elevation

Derivatives

Blossoms

Curves on a Surface

Normal Vectors

Twists

The Matrix Form of a Bézier patch