EIGENVALUES AND EIGENVECTORS

- 1. **Definition 3.5** §**5.2.3:** An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$. A scalar λ is called an **eigenvalue** of A if there exists a nontrivial solution to the equation $A\vec{x} = \lambda \vec{x}$. In this case, we say \vec{x} is an eigenvector associated with eigenvalue λ . * quick check: $\left(\begin{array}{c} 1 & 6 \\ 5 & 2 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1+6 \\ 5+2 \end{array}\right) = \left(\begin{array}{c} 7 \\ 7 \end{array}\right)$
- 2. Example 1: Let $A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$.
 - (a) Show that $\vec{v} = \begin{pmatrix} 3 \\ -5/2 \end{pmatrix}$ is an eigenvector but $\vec{w} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$ is not.

$$\vec{A}\vec{v} = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ -5/2 \end{pmatrix} = \begin{pmatrix} 3 & -15 \\ 15 & -5 \end{pmatrix} = \begin{pmatrix} -12 \\ 10 \end{pmatrix} = -4\begin{pmatrix} 3 \\ -5/2 \end{pmatrix} = -4\vec{v}$$

$$A\vec{w} = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 - 30 \\ 15 - 10 \end{pmatrix} = \begin{pmatrix} -27 \\ 5 \end{pmatrix} \stackrel{?}{=} k \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$
 Then $-27 = k \cdot 3$

$$5 = k \cdot 5$$

(b) Show that 7 is an eigenvalue of *A*.

 $\overrightarrow{A}\overrightarrow{v} = \overrightarrow{7}\overrightarrow{v}$ or $\overrightarrow{A}\overrightarrow{v} = \overrightarrow{7}\cdot\overrightarrow{I_2}\overrightarrow{v}$ or $\overrightarrow{A}\overrightarrow{v} - \overrightarrow{7}\overrightarrow{I_2}\overrightarrow{v} = \overrightarrow{0}$ Find V so that

or
$$(A - 7I_2)\vec{v} = \vec{0}$$
. Now, $A - 7I_2 = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -6 & 6 \\ 5 & -5 \end{pmatrix}$.

Solve
$$\begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
. So $-x+y=0$. or $x=y$.
So $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigen

So $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector $\vec{w}/associated$ eigenvalue 7. \vec{x}

3. **Definition 3.1.2** §**5.2.3:** For $n \times n$ matrix A. The set of all eigenvectors associated with eigenvalue λ forms a subspace of \mathbb{R}^n and is called the **eigenspace** associated with eigenvalue λ .

4. Example 2: Let $A = \begin{pmatrix} -1 & -2 & 5 \\ 2 & -5 & 5 \\ 2 & -2 & 2 \end{pmatrix}$, a matrix with eigenvalue -3. Find a basis for the correspond-

Find a basis for all V so that AV = -3V. OR Find Solution set for $(A+3I_3)\vec{x}=\vec{0}$, $N_{0}\omega$ $A+3I_3=\begin{pmatrix} -1&-2&5\\2&-5&5\\2&-2&2 \end{pmatrix}+\begin{pmatrix} 3&0&0\\0&3&0\\0&0&3 \end{pmatrix}=\begin{pmatrix} 2-2.5\\2&-2.5\\2&-2.5 \end{pmatrix}$.

Soln.
$$=$$
 $\begin{cases} \left(\frac{y-5}{2}z \right) \\ y \end{cases}$; $y, z \in \mathbb{R}$

$$= \begin{cases} y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -5/2 \\ 0 \\ 1 \end{pmatrix} : y \neq \mathcal{R} \end{cases}$$

$$= span \left(\left\{ \left(\frac{1}{0} \right), \left(\frac{-5}{2} \right) \right\} \right)$$

$$A = \begin{pmatrix} -1 & -2 & 5 \\ 2 & -5 & 5 \\ 2 & -2 & 2 \end{pmatrix}$$

$$A \cdot {\binom{1}{0}} = {\binom{-1}{2}} \cdot {\binom{-2}{5}} \cdot {\binom{1}{0}} = {\binom{-1-2}{2-5}} = {\binom{-3}{3}} = {-3} \cdot {\binom{1}{0}}$$

$$A \cdot \begin{pmatrix} -5/2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & -2 & 5 \\ 2 & -5 & 5 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} -5/2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -5/2 \\ 2 \\ -5 & +5 \\ -5 & +2 \end{pmatrix} = \begin{pmatrix} -15 \\ 2 \\ 0 \\ -3 \end{pmatrix} = -3 \begin{pmatrix} -5/2 \\ 0 \\ 1 \end{pmatrix} \mathcal{V}$$

- 5. **Theorem:** If *A* is triangular, then its eigenvalues are the entries on its main diagonal.
- 6. Example: Construct a 3×3 matrix A with eigenvalues 0, -1, and 5 and find an eigenvector associated with each eigenvalue.

- 7. Theorem 3.18 §5.2.3: Let A be an $n \times n$ matrix with eigenvectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}$ associated with distinct eigenvalues $\lambda_1, \lambda_2 \cdots, \lambda_k$. Then the set of eigenvectors $\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}\}$ is linearly independent. Why? $V_1 = C_2 \vec{v_2} + C_3 \vec{v_3} + ... + C_k \vec{v_k}$, what is $A\vec{v_1}$?
- 8. Question: Does the previous theorem really need the eigenvalues to be distinct? 745. V, and 24.
- 9. Question: If \vec{v} is an eigenvector of matrix A associated with eigenvalue λ , can you draw any conclusions about eigenvectors and/or eigenvalues for matrix A^2 ?

$$A\vec{v} = \lambda\vec{v}$$
.
 $A^2\vec{v} = A(A\vec{v}) = A \cdot (\lambda\vec{v}) = \lambda(\lambda\vec{v}) = \lambda(\lambda\vec{v}) = \lambda^2\vec{v}$.
So \vec{v} is an eigenvector of A assoc. ω / eigenvalue λ^2 .

10. Question: How would you go about finding *all* eigenvalues associates with matrix *A*.?

Find all ∂_{y} so that $(A - \lambda I_{n})\vec{v} = \vec{0}$ has a non-trivial Soln. So we need $A - \lambda I_{n}$ to be singular. So we need $\det(A - \lambda I_{n}) = 0$. (!!)