The exam is composed of 6 questions in one page.

Part (1): Answer TWO questions only (Each question of 20 marks)

- 1) a) Show that the function: $u(x,y) = 2x + 3y + \sin x chy$ is harmonic and find the function v(x,y), such that f(z) = u + iv, is an analytic function. Find f'(z).
 - b) Find all values of z such that: $(5)e^{3z-3} = 6 + 6i$, $(i)z = (4 4i)^{3i} = 5$
- 2) a) Find all Laurent series that represent the function $f(z) = \frac{13z-44}{z^2-3z-10}$ in different domains.
 - b) Evaluate the following integrals: $i) \oint \frac{z+1}{z(z-i)^2} dz; \text{ where C is} \quad a. |z| = \frac{1}{2}$ $ii) \oint_C (2z^3 + 3z^2 + 12) e_z^{\frac{1}{2}} dz \text{ where } c \text{ is} |z| = \frac{1}{2}$ c.|z| = 3
 - iii) $\int_0^\infty \frac{dx}{(x^2+1)(x^2+4)}$
- 3) a) Under the mapping $W = \frac{1}{z}$, Find and Sketch the image of i) $x^2 + y^2 2y = 0$, ii) y = 2xDiscuss how the point (0,0) exchange with $\pm \infty$.
 - b) i) If $G(z_0) = \oint_C \frac{z^4 + 3z^2 + 5}{(z z_0)^2} dz$ where c is the circle |z| = 4 Find a) G(1 + i) , b) G(1 5i)ii) $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 9)} \frac{dx}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 + 9)} \frac{2}{\sqrt{1 + 10}(x^2 + 9)} \frac{x x}{\sqrt{1 + 10}(x^2 +$
 - iii) $\oint_C (z^4 + 3z^2 + 6z + 10) \sin \frac{1}{z} dz$

Part (2): Answer TWO questions only (Each question of 20 marks)

- 4) a) Evaluate the following integral $\int_0^\infty x^{-\frac{5}{2}} (2 e^{-3x}) dx$. (Hint: In the first step use integration by parts)
 - b) Sketch the function: $f(t) = \begin{cases} \cos(4t) & \text{; } 0 \le t \le \pi \\ 0 & t \ge \pi \end{cases}$ and find it's **LaPlace Transform**.
 - c) Solve the integral equation: $y' = 1 \sin(t) \int_0^t y(u) du$, given that: y(0) = 1.
- 5) a) Find the arc length of the curve: $r = a[1 + \cos(\theta)]$, where $dL = \sqrt{r^2 + r'^2}$; $r' = \frac{dr}{d\theta}$ (Hint: use Beta function)
 - b) Find and sketch the function: $f(t) = L^{-1} \left[\frac{3}{s} \frac{4e^{-s}}{s^2} + \frac{4e^{-3s}}{s^2} \right]$.
 - c) Sketch and find LaPlace Transform of the periodic function $f(t) = \begin{cases} \sin(t) & 0 < t < \pi \\ 0 & \pi < t < 2\pi \end{cases}$, $f(t + 2\pi) = f(t)$
- 6) a) Find the value of $\Gamma\left(\frac{5}{3}\right)\Gamma\left(\frac{-5}{3}\right)$.
 - b) Solve the IVP: $y'' 2y' + 4y = \cos(t)$, given that: y(0) = 0 & y'(0) = 0, using LaPlace Transform.
 - c) Find the series solution of: $(x^2 + 1)y'' + xy' y = 0$, near the ordinary point x = 0.

GOOD LUCK