PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

51) International Patent Classification 5: C12N 1/21, 15/00, C07K 13/00	A1	(11) International Publication Number (43) International Publication Date:	: WO 93/21302 28 October 1993 (28.10.93
C07K 15/28, G01N 33/53 21) International Application Number: PCT/U 22) International Filing Date: 19 April 1993		(81) Designated States: CA, JP, EDE, DK, ES, FR, GB, G	
30) Priority data: 07/872,643 17 April 1992 (17.04.92)	•	Published With international search re	eport.
71) Applicant: DOHENY EYE INSTITUTE [US/ San Pablo Street, Los Angeles, CA 90033 (US		55	
72) Inventor: SUZUKI, Shintaro; 5501 Arvada Stance, CA 90505 (US).	reet, To	r-	
74) Agent: MARSHALL, O'TOOLE, GERSTEIN, 1 & BORUN; 6300 Sears Tower, 233 South Wad Chicago, IL 60606-6402 (US).			
·			

(54) Title: CADHERIN MATERIALS AND METHODS

(57) Abstract

DNA sequences encoding novel cadherins, designated cadherins-4 through -12, are disclosed along with methods and materials for the recombinant production of the same. Antibody substances specific for the novel cadherins and cadherin peptides are disclosed as useful for modulating the natural binding and/or regulatory activities of the cadherins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia .	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland -
BJ	Benin	1E	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK.	Slovak Republic
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Senegal
CM	Cameroon	1.1	Liechtenstein	SU	Soviet Union
CS	Czechoslovakia	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	I.U	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK.	Denmark	MG	Madagascar	US	United States of America
ES	Spain	Ml.	Mali	VN	Viet Nam
FI	Finland	MN	Mongolia	414	A 10t 149111

CADHERIN MATERIALS AND METHODS

This application is a continuation-in-part of U.S. Patent Application Serial No. 07/872,643 filed on April 17, 1992.

FIELD OF THE INVENTION

5

The present invention relates, in general, to materials and methods relevant to cell-cell adhesion. More particularly, the invention relates to novel Ca²⁺-dependent cell adhesion proteins, referred to as cadherins, and to polynucleotide sequences encoding the cadherins. The invention also relates to methods for inhibiting binding of the cadherins to their natural ligands/antiligands.

10

BACKGROUND

In vivo, cell-cell adhesion plays an important role in a wide range of events including morphogenesis and organ formation, leukocyte extravasion, tumor metastasis and invasion, and the formation of cell junctions. Additionally, cell-cell adhesion is crucial for the maintenance of tissue integrity, e.g., of the intestinal epithelial barrier, of the blood brain barrier and of cardiac muscle.

15

Intercellular adhesion is mediated by specific cell adhesion molecules. Cell adhesion molecules have been classified into at least three superfamilies including the immunoglobulin (Ig) superfamily, the integrin superfamily and the cadherin superfamily. All cell types that form solid tissues express some members of the cadherin superfamily suggesting that cadherins are involved in selective adhesion of most cell types.

20

Cadherins have been generally described as glycosylated integral membrane proteins that have an N-terminal extracellular domain that determines binding specificity (the N-terminal 113 amino acids appear to be directly involved in binding), a hydrophobic membrane-spanning domain and a C-terminal cytoplasmic domain (highly conserved among the members of the superfamily) that interacts with the cytoskeleton through catenins and other cytoskeleton-associated proteins. Some cadherins lack a cytoplasmic domain, however, and

25

5

10

15

20

25

30

appear to function in cell-cell adhesion by a different mechanism than cadherins that do have a cytoplasmic domain. The cytoplasmic domain is required for the binding function of the extracellular domain in cadherins that do have a cytoplasmic domain. Binding between members of the cadherin family expressed on different cells is mainly homophilic (i.e., a member of the cadherin family binds to cadherins of its own or a closely related subclass) and Ca²⁺-dependent. For recent reviews on cadherins, see Takeichi, *Annu. Rev. Biochem.*, 59: 237-252 (1990) and Takeichi, *Science*, 251, 1451-1455 (1991).

The first cadherins to be described (E-cadherin in mouse epithelial cells, L-CAM in avian liver, uvomorulin in the mouse blastocyst, and CAM 120/80 in human epithelial cells) were identified by their involvment in Ca²⁺-dependent cell adhesion and by their unique immunological characteristics and tissue localization. With the later immunological identification of N-cadherin, which was found to have a different tissue distribution from E-cadherin, it became apparent that a new family of Ca²⁺-dependent cell-cell adhesion molecules had been discovered.

The molecular cloning of the genes encoding mouse E- [see Nagafuchi et al., Nature, 329: 341-343 (1987)], chicken N- [Hatta et al., J. Cell Biol., 106: 873-881 (1988)], and mouse P-[Nose et al., EMBO J. 6: 3655-3661 (1987)] cadherins provided structural evidence that the cadherins comprised a family of cell adhesion molecules. Cloning of chicken L-CAM [Gallin et al., Proc. Natl. Acad. Sci. USA, 84: 2808-2812 (1987)] and mouse uvomorulin [Ringwald et al., EMBO J., 6: 3647-3653 (1987)] revealed that they were identical to E-cadherin. Comparisons of the amino acid sequences of E-, N-, and P-cadherins showed a level of amino acid similarity of about 45%-58% among the three subclasses. Liaw et al., EMBO J., 9: 2701-2708 (1990) describes the use of PCR with degenerate oligonucleotides based on one conserved region of E-, N- and P-cadherins to isolate N- and P-cadherin from a bovine microvascular endothelial cell cDNA. The Liaw et al., supra, results implied that there were only E-, N-, and P-cadherins because no new cadherins were identified. Also in 1990, it was reported in Heimark et al., J. Cell Biol., 110: 1745-1756 (1990) that

an antibody generated to bovine aortic endothelial cells recognized an intercellular junctional molecule designated V-cadherin which had a similar molecular weight to known cadherins and was able to inhibit Ca²⁺-dependent cell endothelial cell adhesion. The article did not disclose any sequence information for the protein recognized by the antibody.

5

10

15

20

25

No further cadherin genes were described until the identification of eight of the novel cadherins claimed herein was reported in Suzuki et al., Cell Regulation, 2: 261-270 (1991). Subsequently, several other cadherins were described including chicken R-cadherin [Inuzuka et al., Neuron, 7: 69-79 (1991)], mouse M-cadherin [Donalies et al., Proc. Natl. Acad. Sci. USA, 88: 8024-8028 (1991)], chicken B-cadherin [Napolitano et al., J. Cell. Biol., 113: 893-905 (1991)], and T-cadherin [chicken in Ranscht et al., Neuron, 7: 391-402 (1991) and chicken and human in Patent Cooperation Treaty (PCT) International Publication No. WO 92/08731 published on May 29, 1992].

The determination of the tissue expression of the various cadherins reveals that each subclass of cadherins has a unique tissue distribution pattern. For example, E-cadherin is found in epithelial tissues while N-cadherin is found in nonepithelial tissues such as neural and muscle tissue. The unique expression pattern of the different cadherins is particularly significant when the role each subclass of cadherins may play in vivo in normal events (e.g., the maintenance of the intestinal epithelial barrier) and in abnormal events (e.g., tumor metastatis or inflammation) is considered. Supression of cadherin function has been implicated in the progression of various cancers. See Shimoyama et al., Cancer Res., 52: 5770-5774 (1992). Different subclasses or combinations of subclasses of cadherins are likely to be responsible for different cell-cell adhesion events in which therapeutic detection and/or intervention may be desirable. Studies have also suggested that cadherins may have some regulatory activity in addition to adhesive activity. Matsunaga et al., Nature, 334, 62-64 (1988) reports that Ncadherin has neurite outgrowth promoting activity and Mahoney et al., Cell, 67,

-4-

853-868 (1991) reports that the Drosophila fat tumor supressor gene, another member of the cadherin superfamily, appear to regulate cell growth. Expression of the cytoplasmic domain of N-cadherin without its extracellular domain has been shown in Kintner et al., Cell, 69: 229-236 (1992) to disrupt embryonic cell adhesion and in Fugimori et al., Mol. Biol. Cell, 4: 37-47 (1993) to disrupt epithial cell adhesion. Thus, therapeutic intervention in the regulatory activities of cadherins expressed in specific tissues may also be desirable.

There thus continues to exist a need in the art for the identification and characterization of additional cadherins participating in cell-cell adhesion and/or regulatory events. Moreover, to the extent that cadherins might form the basis for the development of therapeutic and diagnostic agents, it is essential that the genes encoding the proteins be cloned. Information about the DNA sequences and amino acid sequences encoding the cadherins would provide for the large scale production of the proteins and for the identification of the cells/tissues naturally producing the proteins, and would permit the preparation of antibody substances or other novel binding molecules specifically reactive with the cadherins that may be useful in modulating the natural ligand/antiligand binding reactions in which the cadherins are involved.

SUMMARY OF THE INVENTION

20

25

5

10

15

The present invention provides materials and methods that are relevant to cell-cell adhesion. In one of its aspects, the present invention provides purified and isolated polynucleotide sequences (e.g., DNA and RNA, both sense and antisense strands) encoding novel cadherins, cadherin-4 through -12. Preferred polynucleotide sequences of the invention include genomic and cDNA sequences as well as wholly or partially synthesized DNA sequences, and biological replicas thereof (i.e., copies of purified and isolated DNA sequences made *in vivo* or *in vitro* using biological reagents). Biologically active vectors comprising the polynucleotide sequences are also contemplated.

- 5 -

The scientific value of the information contributed through the disclosures of the DNA and amino acid sequences of the present invention is manifest. For example, knowledge of the sequence of a cDNA encoding a cadherin makes possible the isolation by DNA/DNA hybridization of genomic DNA sequences that encode the protein and that specify cadherin-specific expression regulating sequences such as promoters, enhancers and the like. DNA/DNA hybridization procedures utilizing the DNA sequences of the present invention also allow the isolation of DNAs encoding heterologous species proteins homologous to the rat and human cadherins specifically illustrated herein.

10

5

According to another aspect of the invention, host cells, especially eucaryotic and procaryotic cells, are stably transformed or transfected with the polynucleotide sequences of the invention in a manner allowing the expression of cadherin polypeptides in the cells. Host cells expressing cadherin polypeptide products, when grown in a suitable culture medium, are particularly useful for the large scale production of cadherin polypeptides, fragments and variants; thereby enabling the isolation of the desired polypeptide products from the cells or from the medium in which the cells are grown.

20

15

The novel cadherin proteins, fragments and variants of the invention may be obtained as isolates from natural tissue sources, but are preferably produced by recombinant procedures involving the host cells of the invention. The products may be obtained in fully or partially glycosylated, partially or wholly de-glycosylated or non-glycosylated forms, depending on the host cell selected or recombinant production and/or post-isolation processing.

25

Cadherin variants according to the invention may comprise polypeptide analogs wherein one or more of the specified (i.e., naturally encoded) amino acids is deleted or replaced or wherein one or more nonspecified amino acids are added: (1) without loss, and preferably with enhancement, of one or more of the biological activities or immunological characteristics specific for a

5

10

15

20

25

cadherin; or (2) with specific disablement of a particular ligand/antiligand binding function of a cadherin.

Also contemplated by the present invention are antibody substances [e.g., monoclonal and polyclonal antibodies, chimeric and humanized antibodies, and antibody domains including Fab, Fab' and F(ab')2, single chain antibodies, and Fv or single variable domains] and other binding proteins or peptides specifically react with cadherins of the invention. Antibody substances can be developed using isolated natural, recombinant or synthetic cadherin polypeptide products or host cells expressing such products on their surfaces. The antibody substances may be utilized for purifying polypeptides of the invention, for determining the tissue expression of the polypeptides and as antagonists of the ligand/antiligand binding activities of the cadherins. Specifically illustrating antibody substances of the invention are the monoclonal antibodies produced by the hybridomas designated 30Q8A, 30Q4H, 45A5G, 30S2F and 45C6A which were all deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852 on April 6, 1993 and were respectively assigned ATCC Deposit Nos. HB11316, HB11317, HB11318, HB11319 and HB11320. Also illustrating antibody substances of the invention is the monoclonal antibody produced by the hybridoma designated 30T11G which was deposited with the ATCC on April 8, 1993 and was assigned ATCC Deposit No. HB11324.

The DNA and amino acid sequence information provided by the present invention makes possible the systematic analysis of the structure and function of the cadherins described herein and definition of those molecules with which the cadherins will interact on extracellular and intracellular levels. The idiotypes of anti-cadherin monoclonal antibodies of the invention are representative of such molecules and may mimic natural binding proteins (peptides and polypeptides) through which the intercellular and intracellular activities of cadherins are modulated. Alternately, they may represent new classes of

-7-

modulators of cadherin activities. Anti-idiotypic antibodies, in turn, may represent new classes of biologically active cadherin equivalents.

Methods for modulating cadherin activity may involve contacting a cadherin with an antibody (or antibody fragment), another polypeptide or peptide ligand (including peptides derived from cadherins or other proteins, or a novel peptide), or a small molecule ligand that specifically binds to a portion (extracellular or cytoplasmic) of the cadherin.

Numerous aspects and advantages of the present invention will be apparent upon consideration of the following detailed description thereof, reference being made to the drawing wherein:

FIGURE 1 is a bar graph illustrating the binding of polymorphonuclear neutrophils and T cells to fusion proteins comprising extracellular subdomains of cadherin-5.

DETAILED DESCRIPTION

15

20

25

5

10

The present invention is illustrated by the following examples wherein Example 1 describes the isolation of cDNA sequences encoding rat cadherins-4 through -11 and -13; Example 2 describes the isolation of cDNA sequences encoding the human homologs of rat cadherins-4, -5, -6, -8, -10, -11 and -13 and the isolation of a human cadherin not identified in rat, cadherin-12; Example 3 characterizes the relationship of cadherins of the invention to previously identified cadherins in terms of amino acid sequence and structure. The generation of polyclonal and monoclonal antibodies specific for cadherins of the invention is described in Example 4. Example 5 describes the construction of expression constructs comprising cadherin-4, -5 and -8 sequences, transfection of mammalian cells with the constructs and results of cell-cell adhesion assays performed with the transfected cells. Example 6 presents the results of assays for cadherin mRNA and protein expression in various mammalian tissues, cells and cell lines. The results of *in vitro* transendothelial migration assays involving

cadherin-5 and assays of neutrophil and T-cell binding to cadherin-5 fusion protein are described in Example 7. Example 8 describes expression of cadherin-5 in the blood-brain barrier and Example 9 describes cadherin-5 peptides that are capable of increasing endothelim permeability. Example 10 describes the association of the cytoplasmic domain of cadherin-5 with plakoglobin. The disclosures of Suzuki et al., Cell Regulation, supra; Suzuki et al., J. Cell. Biol., 115, Abstract 72a (1991); Suzuki et al., Cell. Struc. Funct., 16, 605 (1991); and Tanihara et al., Invest. Ophthalmol. Vis. Sci., 32, 1013 (1991) are incorporated by reference herein for purposes of illustrating the background of the invention.

10

15

20

25

5

Example 1

Partial cDNA clones encoding nine novel cadherins were isolated from rat brain and retina by PCR. Eight of the novel rat cadherin cDNAs were isolated using degenerate PCR primers based on highly conserved regions of the cytoplasmic domain of known cadherins and one was isolated using degenerate PCR primers based on moderately conserved regions of the extracellular domain of known cadherins.

A. Preparation of Rat cDNA

Total RNAs were prepared from rat brain by the guanidium isothiocyanate/cesium chloride method described in Maniatis et al., pp. 196 in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1982). Brain poly(A)⁺ RNAs were then isolated using an Invitrogen (San Diego, CA) FastTrack kit. Rat retina poly(A)⁺ RNA was purchased from Clonetech (Palo Alto, CA). cDNA was synthesized from the poly(A)⁺ RNA of both rat brain and retina using a cDNA synthesis kit (Boehringer Mannheim Corporation, Indianopolis, IN).

- 9 -

B. Design and Synthesis of PCR Primers

Corresponding to Cadherin Cytoplasmic Domain

A first pair of degenerate oligonucleotide primers, listed below in IUPAC nomenclature, was designed to correspond to highly conserved sequences in the cytoplasmic domain of mouse N-, E-, and P-cadherins. Underlined sequences at the end of each oligonucleotide indicate an *Eco*R1 site added to the primers to facilitate cloning of the fragments generated by PCR.

Degenerate Primer 1

5

15

20

25

TAPPYD (SEQ ID NO: 1)

10 5' GAATTCACNGCNCCNCCNTAYGA 3' (SEQ ID NO: 2)

Degenerate Primer 2

FKKLAD (SEQ ID NO: 3)

3' AARTTYTTYRANCGNCTCTTAAG 5' (SEQ ID NO: 4)

The degenerate oligonucleotides were synthesized using the Applied Biosystems model 380B DNA synthesizer (Foster City, CA).

C. Design and Synthesis of PCR Primers

Corresponding to Cadherin Extracellular Domain

A second pair of degenerate oligonucleotide primers, listed below in IUPAC nomenclature, was designed to correspond to moderately conserved sequences in the third subdomain of the extracellular domain of mouse N-, E-, and P-cadherins. The extracellular domains of the mouse N-, E- and P-cadherins have been characterized as having five internal subdomains, some of which may be involved in cadherin interaction with Ca²⁺. Underlined sequences at the end of each oligonucleotide indicate an *Eco*R1 site added to the primers to facilitate cloning of the fragments generated by PCR.

5

10

15

20

25

Degenerate Primer 3

K(P/G)(L/I/V)D(F/Y)E (SEQ ID NO: 5)

5' GAATTCAARSSNNTNGAYTWYGA 3' (SEQ ID NO: 6)

Degerenate Primer 4
(N/D)E(A/P)PXF (SEQ ID NO: 7)
3' TRCTYSGNGGNNNNAARCTTAAG 5' (SEQ ID NO: 8)

D. Cloning of cDNA Encoding Eight Novel Rat Cadherins

PCR amplification reactions of rat brain and retina cDNA were carried out either with degenerate primers 1 and 2 or with degenerate primers 3 and 4 under conditions essentially the same as those described in Saiki et al., Science, 239, 487-491 (1988). Briefly, 100 ng of brain or retina first strand cDNA was used as template for amplification by Taq DNA polymerase (International Bioltechnology, New Haven, CT) using 10 µg of each primer set PCR reactions were initiated by adding 2 units of Tag DNA per reaction. polymerase to the reaction solution, after which 35 PCR reaction cycles were carried out. Reaction cycles consisted of denaturation performed at 94°C for 1.5 minutes, oligonucleotide annealing at 45°C for 2 minutes, and elongation at 72°C for 3 minutes. The resulting PCR fragments were separated by agarose gel electrophoresis, and DNA bands of the expected size were extracted from the gel and digested with EcoR1. The fragments were then cloned into the M13 vector (Boehringer Mannheim Corp., Indianapolis, IN) and E. coli JM101 cells were transformed with the resulting constructs. Individual clones were then isolated and sequenced. Sequencing of the DNAs was carried out using a sequenase kit (United States Biochemicals, Cleveland, OH) and the resulting DNA and deduced amino acid sequences of the clones were compared to sequences of known cadherins using the Microgenie program (Beckman, Fullerton, CA).

PCT/US93/03681

5

10

15

20

25

Ten representative cDNA clones encoding cadherins were identified from the PCR reaction based on degenerate primers 1 and 2. Two clones corresponded to rat N-, and E-cadherins, but eight clones encoded previously undescribed cadherins, and were designated cadherins-4 through -11. The DNA and deduced amino acid sequences of the eight rat cytoplasmic domain cDNA clones are respectively set out in SEQ ID NOs: 9 and 10 (cadherin-4), SEQ ID NOs: 11 and 12 (cadherin-5), SEQ ID NOs: 13 and 14 (cadherin-6), SEQ ID NOs: 15 and 16 (cadherin-7), SEQ ID NOs: 17 and 18 (cadherin-8), SEQ ID NOs: 19 and 20 (cadherin-9), SEQ ID NOs: 21 and 22 (cadherin-10) and SEQ ID NOs: 23 and 24 (cadherin-11).

An additional novel cadherin was identified from the PCR reaction based on degenerate primers 3 and 4, and it was designated cadherin-13. The DNA and deduced amino acid sequences of the rat cadherin-13 fragment are respectively set out in SEQ ID NOs: 25 and 26.

The PCR reaction based on degenerate primers 3 and 4 also amplified sequences which were later determined to be fragments of the extracellular domains of rat cadherins 4, -5, -6, -8, -9, -10, -11 and -13. The DNA and amino acid sequences of these extracellular fragments are respectively set out in SEQ ID NOs: 27 and 28 (cadherin-4), SEQ ID NOs: 29 and 30 (cadherin-6), SEQ ID NOs: 31 and 32 (cadherin-8), SEQ ID NOs: 33 and 34 (cadherin-9), SEQ ID NOs: 35 and 36 (cadherin-10), SEQ ID NOs: 37 and 38 (cadherin-11), SEQ ID NOs: 39 and 40 (cadherin-13).

Larger cadherin-8 and -10 cDNAs were isolated from a rat brain cDNA library made in Uni-ZAP vector (Stratagene, La Jolla, CA) using labelled cadherin-8 extracellular domain PCR fragment (SEQ ID NO: 17) or cadherin-10 extracellular domain fragment (SEQ ID NO: 21) as probes. Two types of cadherin-8 cDNA clones were isolated. The first type encodes a full length cadherin, but the second type encodes a truncated protein the sequence of which diverges from the first type of cadherin-8 clone near the N-terminus of the fifth

- 12 -

extracellular subdomain (EC5). The truncated clone contains a short stretch of unique sequence in the N-terminus of EC5 but lacks the remainder of EC5, the transmembrane domain and the cytoplasmic domain. DNA and deduced amino acid sequences of the full length clone are respectively set out in SEQ ID NOs: 41 and 42 and the DNA and deducted amino acid sequences of the truncated cadherin-8 clone are set out in SEQ ID NOs: 43 and 44. The cadherin-10 cDNA clone that was isolated has an open reading frame which begins at a region corrsponding to the middle of the first extracellular domain (EC1) of previously identified cadherins. The DNA and deduced amino acid sequences of the cadherin-10 clone are set out in SEQ ID NOs: 45 and 46.

5

10

15

20

25

Example 2

Full length cDNAs encoding human homologs of rat cadherins-4, -8, -11 and -13 and partial cDNAs encoding human homologs of rat cadherins-6 and -10 were isolated from a human fetal brain cDNA library (λZapII vector, Stratagene). A full length cDNA encoding a human homolog of rat cadherin-5 was isolated from a human placental cDNA library (λgt11 vector, Dr. Millan, La Jolla Cancer Research Foundation, La Jolla, CA).

Probes for screening the human fetal brain and placental cDNA libraries were amplified by PCR from human brain cDNA (Dr. Taketani, Kansain Medical University, Moriguchi, Osaka, Japan) using the primers described in Example 1B-C. Probes consisting of human cadherin-4, -5, -6, -8, -10 and -11 sequences were generated using degenerate primers 1 and 2 and probes consisting of human cadherin-13 sequence were generated using degenerate primers 3 and 4. Amplification of the human fetal brain cDNA with degenerate primers 3 and 4 also generated a PCR fragment encoding a cadherin not isolated from rat, designated cadherin-12.

PCR fragments encoding human cadherins-4, -5, -6, -8, -10, -11, -12 and -13 were labelled with ³²P and used to probe the human fetal brain and

- 13 -

placental cDNA libraries according to the plaque hybridization method described in Ausubel et al., Eds., *Current Protocols in Molecular Biology*, Sections 6.1.1 to 6.1.4 and 6.2.1 to 6.2.3, John Wiley & Sons, New York (1987). Positives were plaque-purified and inserts were cut out using an *in vivo* excision method. The inserts were then subcloned into the M13 vector (Boehringer Mannheim) for sequencing.

5

10

15

20

25

Inserts consisting of full length cDNAs encoding human homologs of rat cadherins-4, -8, -11, -12 (putative) and -13 and partial cDNAs encoding human homologs of rat cadherins-6 and -10 were identified in clones from the human fetal brain cDNA library and a full length cDNA encoding a human homolog of rat cadherin-5 was identified in a clone from the human placental cDNA library. The DNA and deduced amino acid sequences of the human homologs are respectively set out in SEQ ID NOs: 47 and 48 (cadherin-4), SEQ ID NOs: 49 and 50 (cadherin-5), SEQ ID NOs: 51 and 52 (cadherin-6), SEQ ID NOs: 53 and 54 (cadherin-8), SEQ ID NOs: 55 and 56 (cadherin-10), SEQ ID NOs: 57 and 58 (cadherin-11), SEQ ID NOs: 59 and 60 (cadherin-12), and SEQ ID NOs: 61 and 62 (cadherin-13).

Example 3

Comparison of the full-length sequences of the novel human cadherins described in Examples 1 and 2 with sequences of previously described cadherins and cadherin-related proteins provides support for the proposal that cadherins can be divided into at least three subgroups based on amino acid sequence identity and/or domain structure. Identity values for one possible alignment of the sequences of the extracellular domains of selected human cadherins are presented in Table 1 below.

-	14	-
---	----	---

	Table 1						-			
•		N	E	P	4.	· 5	8	11	12	13
	N	100	45	45	68	30	34	35	33	46
	E	45	100	53	41	29	30	29	31	37
5	P	45	53	100	29	30	29	31	31	38
•	4	68	41	41	100	29	33	34	33	44
	5	30	29	30	29	100	40	41	39	32
	8	34	30	29	33	40	100	66	58	-32
	11	35	29	31	34	41	66	100	58	31
10	12	33	31	31	33	39	58	58	100	33
	13	46	37	38	44	32	32	31	-33	100

15

20

25

Based on such sequence alignments and on the fact that certain combinations of cadherin sequences seem to have conserved stretches of amino acids when aligned, one subgroup of cadherins may include E-cadherin, Ncadherin, P-cadherin and cadherin-4, while a second subgroup may include cadherin-5, cadherin-8, cadherin-11 and cadherin-12. Cadherins-6, -7, -9 and -10 may also be included with the second subgroup based on their partial amino acid sequences disclosed herein. The amino acid sequence of cadherin-4 exhibits especially high amino acid sequence identity with that of R-cadherin (92%), indicating that cadherin-4 may be the human homolog of chicken R-cadherin. All cadherins in these two subgroups have a similar structure. Following an initiation codon, each has a signal sequence, prosequence, proteolytic cleavage site of precursor protein, an extracellular domain (which comprises five subdomains EC1-5), a transmembrane sequence and a cytoplasmic domain. For cadherin-5, these sequences/domains appear to correspond to about the following amino acid positions of SEQ ID NO: 50: 1-24 (signal sequence), 25-43 (prosequence), 44-147 (EC1), 148-254 (EC2), 255-368 (EC3), 369-475 (EC4), 476-589 (EC5), 590-616 (transmembrane sequence) and 617-780 (cytoplasmic domain).

5

10

15

20

Cadherin-13, T-cadherin and V-cadherin may be representative of Cadherin-13 consists of a cadherin-like a third subgroup of cadherins. extracellular domain, but has no domains that would correspond to the typical transmembrane or cytoplasmic domains of other cadherins. Even though about 10% of the clones obtained by PCR using degenerate primers 3 and 4 were cadherin-13 clones, none of the clones included sequences corresponding to a cytoplasmic domain. An attempt to isolate a cDNA that contained this region by PCR using a primer corresponding to the most C-terminal region of cadherin-13 available and a mixed oligonucleotide primer corresponding to a well-conserved amino acid sequence of the cytoplasmic domain of cadherins failed to generate any product with the anticipated molecular weight. A similar protein, T-cadherin, has been identified in chicken which also lacks the typical cadherin cytoplasmic domain. The amino acid sequence identity between the two molecules is about 80%. Cadherin-13 may be the human homologue of chicken T-cadherin or may be a closely related molecule. Human cadherin-13 and avian T-cadherin may also both be closely related to V-cadherin. A 29-amino acid amino terminal sequence of bovine V-cadherin is similar to the start of the precursor region of cadherin-13 (93%) and T-cadherin (79%). V-cadherin is a 135 KD protein which appears to be restricted in tissue distribution to endothelium. In constrast, mature T-cadherin has a molecular weight of 95 KD and shows a wide tissue distribution. Both Vcadherin and T-cadherin are linked to the cell membrane through phosphoinositiol.

Example 4

Polyclonal and/or monoclonal antibodies specific for cadherins of the invention were generated.

25 A. Generation of Polyclonal Antibodies

Bacterial fusion proteins consisting of maltose binding protein fused to portions of cadherin extracellular subdomains (either human cadherin-4, -5 or

-11, or rat cadherin-8) were generated and subsequently used for the generation of polyclonal antibodies.

A cDNA fragment corresponding to a 40 KD portion of the extracellular domain of human cadherin-5 (nucleotides 535 to 1527 of SEQ ID NO: 49) was synthesized by PCR from the full-length human cadherin-5 cDNA described in Example 2. The fragment was subcloned into the multicloning site (EcoR1-XbaI) of the pMAL-RI plasmid vector [New England Biolabs Inc. (NEB), Beverly, MA]. The resulting construct encodes maltose binding protein fused to the extracellular domain of cadherin-5. Constructs encoding maltose binding protein fused to the three N-terminal subdomains of human cadherin-4, rat cadherin-8 and human cadherin-11 were generated by similar methods.

5

10

15

20

25

E. coli NM522 cells (Stratagene) were then transformed with one of the fusion protein constructs and grown in quantity. After disruption of E. coli cells, the individual fusion proteins were purified by affinity column chromatography using amylose resin (NEB) according to the instructions of the manufacturer. When subjected to SDS-PAGE, the purified fusion proteins each showed essentially one band of the expected size.

A total of five hundred μg of a fusion protein in Freund's complete adjuvant was injected into rabbits at four subcutaneous sites. Subsequent injections were carried out at three week intervals using 100 μg of the fusion protein in Freund's incomplete adjuvant also at four subcutaneous sites. The resulting polyclonal sera generated from immunization of rabbits with cadherin-4, -5 or -8 fusion protein were collected and tested for specificity on L cells transfected with the appropriate cadherin sequence (see Example 5). Polyclonal serum generated from immunization of rabbits with cadherin-11 was also collected.

Immunoblotting of various cell types showed that the The anti-cadherin-4 polyclonal serum reacts with protein of about 130 KD in L cells transfected with full length cadherin-4 cDNA and in rat brain. Cadherin-5-specific serum reacts with a protein of about 135 KD in L cells transfected with

- 17 -

a full length cadherin-5 DNA and with a protein of about 135 KD in human umbilical vein endothelial cells (HUVEcs). The serum does not react with MDCK cells that expressed high levels of E-cadherin. In bovine aortic endothelial cells, the anti-cadherin-5 serum reacts with a protein of about 120 KD. Additionally, the anti-cadherin-5 serum reacts with a protein which has the same molecular weight in rat brain endothelial cells in culture. The cadherin-8 polyclonal antibody detected a strong band of about 90 KD and a weak band of about 130 KD in rat brain.

B. Generation of Monoclonal Antibodies Specific for Human Cadherin-5

10

15

5

Monoclonal antibodies to cadherin-5 were prepared using bacterial fusion proteins containing subdomains of the extracellular domain of human cadherin-5 as immunogens. The fusion proteins prepared included maltose binding protein and the extracellular subdomains 1-2 (EC1-2) or extracellular subdomains 2-4 (EC2-4) of cadherin-5 in the bacterial expression vector pMAL (NEB). The two fusion proteins were expressed in bacteria and purified on amylose-sepharose as described in foregoing section on generation of polyclonal antibodies. The purified fusion proteins were used separately to immunize mice at two subcutaneous sites (100 μ g of fusion protein per mouse in Freund's complete adjuvant). The mice then were subcutaneously immunized with Freund's incomplete adjuvant.

20

25

The spleen from each mouse was removed sterility and treated in the same manner. Briefly, a single-cell suspension was formed by grinding the spleen between the frosted ends of two glass microscope slides submerged in serum free RPMI 1640 supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin and 100 mg/ml streptomycin (RPMI) (Gibco, Canada). The cell suspension was filtered through a sterile 70-mesh cell strainer, and washed twice by centrifuging at 200 g for 5 minutes and resuspending the pellet in 20 ml serum free RPMI. Thymocytes taken from 3 naive Balb/c mice were prepared in a similar manner. NS-1 myeloma cells, kept in log phase in

RPMI with 11% fetal bovine serum (FBS) (Hyclone Laboratories, Inc., Logan, UT) for three days prior to fusion, were centrifuged at 200 g for 5 minutes, and the pellet was washed twice as described for the mouse spleen cells.

5

10

15

20

25

After washing, the spleen cells and myeloma cells were brought to a final volume of 10 ml in serum free RPMI, and 10 µl of that final volume was diluted 1:100 in serum free RPMI. Twenty μ l of each dilution was removed, mixed with 20 μ l 0.4% trypan blue stain in 0.85% saline, loaded onto a hemacytometer and Two x 10⁸ spleen cells were combined with 4 x 10⁷ NS-1 cells, centrifuged and the supernatant was aspirated. The cell pellets were dislodged by tapping the tube and 2 ml of 37°C PEG 1500 (50% in 75 mM Hepes, pH 8.0) (Boehringer Mannheim) was added with stirring over the course of 1 minute, followed by adding 14 ml of serum free RPMI over 7 minutes. An additional 16 ml RPMI was added and the cells were centrifuged at 200 g for 10 minutes. After discarding the supernatant, the pellet was resuspended in 200 ml RPMI containing 15% FBS, 100 mM sodium hypoxanthine, 0.4 mM aminopterin, 16 mM thymidine (HAT) (Gibco), 25 units/ml IL-6 (Boehringer Mannheim) and 1.5 x 10⁶ thymocytes/ml (plating medium). The suspension was dispensed into ten 96-well flat bottom tissue culture plates at 200 ml/well. Cells in plates were fed on days 2, 4, and 6 days post-fusion by aspirating approximately 100 ml from each well with an 18 G needle, and adding 100 ml/well plating medium described above except containing 10 units/ml IL-6 and lacking thymocytes.

Fusions 30 (from a mouse immunized with EC2-4) and 45 (from a mouse immunized with EC1-2) were screened initially by antibody capture ELISA, testing for presence of mouse IgG. Secondary screening of fusions 30 and 45 consisted of assays using plates coated with a monolayer of fixed endothelial cells for ELISAs. HUVEcs, Lewis rat brain endothelial cells (LeBCE), and bovine aortic endothelial cells (BAE) were allowed to grow in 96-well flat bottom tissue culture microtiter plates until the bottom of well was completely covered with a monolayer of cells. Plates were washed twice with

100 μ l/well of Ca²⁺/Mg²⁺ free PBS (CMF-PBS) and aspirated completely. Cells were then fixed with 100 μ l/well of 3% ρ -Formaldehyde, 1% Sucrose in CMF-PBS at room temperature for 30 minutes. Cells were then permeablized with approximately 250 µl/well of CSK buffer (0.5% Triton 100, 100mM NaCl, 10mM PIPES, 2mM MgCl) and incubated at room temperature for 30 minutes. Plates were blocked with 250 µl/well of 2% BSA in 1X CMF-PBS (blocking solution) and incubated at 37°C for 60 minutes. Blocking solution was aspirated and 50 to 100 μ l/well of supernatant from fusion plates was added. Plates were incubated at room temperature for 60 minutes and then were washed one time with 250 µl/well of 0.5% BSA in CMF-PBS (wash solution 1) and two times with 250 μ l/well of CMF-PBS (wash solution 2). One hundred fifty μ l of horseradish peroxidase conjugated goat anti-mouse IgG(fc) (Jackson ImmunoResearch, West Grove, PA) diluted 1:3500 in PBST was added and plates were incubated at room temperature for 60 minutes. Plates were washed as before and 150 μ l substrate consisting of 1mg/ml o-phenylene diamine (Sigma) and 0.1 ml/ml 30% H₂O₂ in 100mM Citrate, pH 4.5 was added. The color reaction was stopped after 30 minutes with the addition of 50 μ l of 15% H₂SO₄. A₄₉₀ was read on a plate reader (Dynatech). About 20 positive wells were identified for each fusion and were subsequently cloned.

20

25

5

10

15

Hybridomas were screened in cloning steps in an ELISA assay by testing for reactivity of monoclonals to the cadherin-5 EC2-4 fusion protein and excluding maltose binding protein reactive monoclonals. Immulon 4 plates (Dynatech, Cambridge, MA) were coated at 4°C with 50 μ l/well fusion protein diluted to 0.1 μ g/well (for fusion protein) and to 0.2 μ g/well (for maltose binding protein alone) in 50mM carbonate buffer, pH 9.6. Plates were washed 3 times with PBS, 0.05% Tween 20 (PBST) and 50 μ l hybridoma culture supernatant was added. After incubation at 37°C for 30 minutes, and washing as above, 50 μ l of horseradish peroxidase conjugated goat anti-mouse IgG(fc) (Jackson ImmunoReseach, West Grove, PA) diluted 1:3500 in PBST was added. Plates

5

10

15

20

25

were incubated at 37°C for 30 minutes and washed 4 times with PBST. One hundred μ l substrate consisting of 1 mg/ml o-phenylene diamine (Sigma Chemical Co., St. Louis, MO) and 0.1 μ l 30% H₂O₂ in 100 mM citrate, pH 4.5 was added. The color reaction was stopped after 5 minutes with the addition of 50 μ l of 15% H₂SO₄. Absorbance at 490 nm was determined using a plate reader.

The hybridomas designated 30Q8A (ATCC HB11316), 30Q4H (ATCC HB11317), 45A5G (HB11318), 30S2F (HB11319), 45C6A (HB11320), 30T11G (ATCC HB11324), 30M8G, 30O6E and 30R1A] were identified as reactive with endothelial cells and with the cadherin-5 EC2-4 fusion protein. The hybridomas were cloned twice by limiting dilution and grown in ascites. The monoclonal antibodies produced by the hybridomas were isotyped in an ELISA assay. The results of the assay are presented in Table 2 below.

C. Subdomain Specificity of C5 Specific Monoclonal Antibodies

To determine if the hybridomas produced monoclonal antibodies reactive with unique epitopes of the extracellular domain of C5, the monoclonal antibodies were purified, biotinylated, and tested in a cross competition ELISA. Immulon IV 96-well plates were coated with either EC1-2 or EC2-4 cadherin-5 fusion protein at 0.2 μ g/ml in 50 μ l 50mM NaCO₃, pH 9.6 overnight at 4°C. The wells were aspirated and washed three times with PBS/0.05% Tween 20. The plate was then blocked with 50 µl/well PBS, 2% BSA (Sigma) for 30 minutes at 37°C. Monoclonal antibodies were purified from hybridoma supernatants over a protein A-Sepharose column and the eluted antibody was dialyzed against 0.1M NaCO₃ pH 8.2. One mg/ml of antibody was reacted with 60 μ l of a 1 mg/ml stock solution in DMSO of NHS-biotin (Pierce Chemical Co., Rockford, IL) for 1 hour at room temperature and the reaction was stopped by dialysis overnight at 4°C against CMF/PBS. The biotinylated antibodies in PBS/0.05% Tween 20 were then added as primary antibody (50 μ I/well) to a plate coated with fusion protein and incubated for 30 minutes at 37°C. The plate was then aspirated and washed three times with PBS/0.05% Tween 20. Peroxidase-conjugated

strepavidin in PBS/Tween was added 50 μ l/well and incubated for 30 minutes at 37°C. The plate was aspirated and washed three times in PBS/0.05% Tween 20, and o-phenylenediamine in 100mM citrate buffer and hydrogen peroxide was added at 100 μ l/well. The plate was developed at room temperature for 5-15 minutes. The reaction was stopped with 50 μ l/well 15% sulfuric acid and the plate was read on a plate reader. Results of the assay are presented in Table 2 below.

5

10

25

To confirm subdomain specificity, the cadherin-5 fusion proteins EC1-2 and EC2-4 were run on SDS-PAGE (10%) and immunoblotted with the cadherin-5 specific monoclonal antibodies.

Table 2 below set outs the domain specificity and isotype of the cadherin-5 specific monoclonal antibodies.

Table 2

	Monoclonal Antibody	C5 Subdomain	<u>Isotype</u>
15	30Q4H	2	IgG_{2b}
	45A5G	2	$Ig\dot{G}_1$
	45C6A	. 2	IgG_1
	30S2F	3-4	IgG_1
	30Q8A	3-4	IgG_{2b}
20	30T11G	3-4	IgG_1

Competition assays were carried out as described above for assays for binding to cadherin-5 EC2-4 fusion protein except that unlabelled primary cadherin-5 specific monoclonal antibodies (or mouse IgG) were added 30 minutes prior to addition of biotinylated cadherin-5 specific monoclonal antibodies. Monoclonal antibodies produced by the hybridomas 30M8G, 30O6E and 30RIA compete for a site that is near or identical to the binding site of the antibody produced by hybridoma 30Q4H.

- 22 -

Example 5

Human cadherins-4 and -5 and rat cadherin -8 were expressed in mouse fibroblast L cells (ATCC CCL1.3) which do not normally express cadherins.

A. Construction of Expression Vectors

The cDNA sequences encoding human cadherins-4 and -5 which are described in Example 2 and the cDNA sequence encoding rat cadherin-8 which is described in Example 1 were subcloned into the multicloning site of expression vector pRC/RSV (Invitrogen).

10

5

Cadherin-4 DNA sequences were isolated by an *in vivo* excision procedure from the λ ZapII clone (described in Example 2) containing the entire coding sequence of cadherin-4. Using a helper virus, the sequences were excised from λ ZapII in the form of Bluescript plasmid. The plasmid was then cut with *Hind*III and blunt-ended with T4 polymerase. The resulting DNA fragment was redigested with *Spe*I to generate a cadherin-4 cDNA fragment having a blunt end and a *Spe*I sticky end. The fragment was purified by agarose gel electrophoresis and subcloned into the pRC/RSV expression vector that had been previously digested with *Spe*I and *Xba*I (the *Xba*I end was blunt-ended with T4 polymerase).

20

15

The \(\lambda\)gt11 clone containing the entire coding sequence of cadherin-5 (described in Example 2) was cut with \(Eco\)RI and the resulting fragment containing the cadherin-5 sequences was purified by agarose gel electrophoresis. The purified fragment was then subcloned into the \(Eco\)RI site of the Bluescript plasmid. Cadherin-5 sequences were cut from the resulting construct with \(Hinc\)II and \(Xba\)I and subcloned into the \(Not\)I-Xba\)I site of the \(p\)RC/RSV vector.

25

The full length cDNA encoding rat cadherin-8 was excised from the Uni-ZAP clone described in Example 1 by digestion with KpnI, followed by blunt-ending and re-digestion with SpeI. The cadherin-8 encoding fragment was purified by agarose gel electrophoresis and was subcloned into the pRC/RSV vector which had been digested with XbaI, blunt-ended and redigested with SpeI.

- 23 -

B. Transfection of L Cells

5

10

15

20

25

Mouse fibroblast L cells were transfected with the human cadherin-4 and -5 and rat cadherin-8 expression constructs by a Ca²⁺ phosphate precipitation method and stable transfectants were obtained by G418 selection. Cadherin-4 and -8 transfectant cells showed a morphology similar to that of parental L cells (fibroblastic), but cadherin-5 transfectant cells exhibited a flattened morphology. Neuro 2a cells (ATCC CCL131) were also transfected by a Ca²⁺ phosphate precipitation procedure with the cadherin-4 and cadherin-8 expression constructs. Cadherin-4 transfectants showed epithelial structure, suggesting that cadherin-4 has activity in epithelial structure formation and may be involved in the neural tissue development.

C. Northern and Western Blot Assays of Cadherin mRNA

and Protein Expression in Transfected Cells

Both cadherin-4, -5 and -8 transfectants showed mRNA of the expected size of 3.5 kb, 3.2 kb and 3 kb, respectively, in Northern blot analysis using the appropriate full length human cDNAs as a probe. (See Example 6A for a description of the Northern blot assay.)

For Western blots, cadherin-4, -5 and -8 transfectants were washed with PBS and SDS-PAGE sample buffer was added directly to the cells. SDS-PAGE (Laemmli) was carried out and and gels were blotted electrophoretically onto PVDF membrane. The membranes were incubated in TBS containing 5% skim milk for 2 hours at room temperature and then were incubated with the appropriate polyclonal antibody in TBS containing 0.05% Tween 20 for 1 hour at room temperature. After four washes (of 5 minutes each) with TBS containing 0.05% Tween 20, the membranes were incubated with alkaline phosphatase conjugated anti-rabbit IgG antibody (Promega Corp., Madison, WI) in TBS containing 0.05% Tween 20 for 1 hour at room temperature. The membranes were then washed again four times with TBS containing 0.05% Tween 20 at room temperature and developed by using Promega Western blue. Cadherin-4, -5 and

-8 polyclonal antibodies each reacted with a band of about 130 KD.

D. Calcium Protection from Trypsin Digestion

Since cadherins have been shown to be protected from trypsin digestion by Ca²⁺, the effect of Ca²⁺ on trypsin treatment (0.01% soybean trypsin for 30 minutes at 37°C) of human cadherin-4 and -5 and rat cadherin-8 expressed on the surface of transfected L cells was examined. Two mM Ca²⁺ protected the cadherin-4 from the trypsin digestion, but cadherin-5 and cadherin-8 were digested easily even in the presence of 1-5 mM of Ca²⁺.

E. Cell-Cell Adhesion Assay

10

15

20

25

5

The cell-cell adhesion activity of the transfected cells was assayed by a re-aggregation assay as described in Yoshida-Noro et al., Devel. Biol., 101, 19-27 (1984). Briefly, transfectants were grown to near confluency and then dispersed into single cells with mild trypsin treatment (0.01% for 15 minutes) in the presence of 2mM Ca²⁺. After washing, the trypsinized cells were incubated in Hepes buffered saline (HBS) containing 2mM CaCl₂, 1% BSA and 20 µg/ml deoxynuclease on a rotary shaker at 50 rpm for 30 to 60 minutes and then cell aggregation was monitored. Cadherin-4 transfectant cells aggregated within 30 minutes and formed relatively large aggregates, whereas cadherin-5 transfectant cells did not aggregate under the same conditions. However, cadherin-5 transfectants gradually re-aggregated and formed relatively small aggregate after prolonged incubation (4-5 hours or more). Similarly, cadherin-8 transfectants did not show significant cell adhesion activity. Parental L cells did not show cell adhesion under the same conditions. The sensitivity of cadherin-5 and cadherin-8 to trypsin digestion may account for the reduced cell adhesion seen in the reaggregation assay because the transfected L cells are initially dispersed with trypsin in the assay.

The expression of mRNAs encoding cadherins of the invention was examined in rat brain, kidney, liver, lung and skin and in various human cells by Northern blot analysis. The expression of cadherin protein was also examined in endothelial cells and leukocytes by immunofluorescence or immunoblotting.

A. Northern Blot Assays of Rat Tissue and Human Cells

5

10

15

20

25

Poly(A)⁺ RNA from rat brain, kidney, liver, lung and skin was prepared as described in Example 1 for rat brain. The RNA preparations were then electrophoresed in an 0.8% agarose gel under denaturing conditions and transferred onto a nitrocellulose filter. Northern blot analyses were carried out according to a method described in Thomas, *Proc. Natl. Acad. Sci. USA*, 77, 5201-5202 (1980). Filters were hybridized with rat cadherin PCR fragments (described in Example 1) labeled with ³²P, including fragments corresponding to cadherins-4 through -11. The final hybridization wash was in 0.2X standard saline citrate containing 0.1% sodium dodecyl sulfate at 65°C for 10 minutes.

Cadherin-4 and cadherin-8 through -10 mRNAs were detected only in rat brain. The cadherin-8 PCR fragment hybridized to a major band of about 3.5 kb and a minor band of about 4.5 kb in rat brain. The mRNAs detected may be alternative splicing products and may correspond to the truncated and full length cadherin-8 clones described in Example 1. Cadherin-6 and -7 probes gave weak signals on rat brain mRNA even after prolonged exposure. Cadherins-5, -6 and -11 mRNAs were detected in rat brain and other rat tissues including cadherin-5 mRNA in lung and kidney, cadherin-6 mRNA in kidney, and cadherin-11 mRNA in liver.

The expression of cadherin-8 and -11 in cultured human SK-N-SH neuroblastoma cells (ATCC HTB11), U251MG glioma cells and Y79 retinoblastoma cells (ATCC HTB18) was also assayed by Northern blot. Human cDNAs encoding cadherins-8 and -11 (described in Example 2) were labelled with ³²P and used as probes of poly(A)⁺ RNA prepared from the cells using an Invitrogen FastTrack kit.

5

10

15

20

25

The Northern blot procedure detected cadherin-8 RNA in the neuroblastoma and retinoblastoma cell lines, while cadherin-11 RNA was detected only in neuroblastoma cells. These results indicate that at least some of the cadherins of the invention are expressed in neurons and glial cells and/or their precursor cells.

Cadherin-5 RNA was detected by Northern blot assay of HUVECs (Clonetics), but was not detected in A431 human epidermoid carcinoma cells (ATCC CRL1555) or IMR90 human fibroblast cells (ATCC CCL186).

B. Immunoflourescence of Endothelial Cells and Immunoblotting of Leukocytes

Cultured endothelial cells isolated from bovine aorta, bovine brain microvasculature and human umbilical vein were subjected to immunofluorescence microscopy using anti-C5 polyclonal antibodies. Cadherin-5 protein at the cell junctions which was in close association with the peripheral actin microfilaments was labelled.

In contrast, when freshly isolated leukocytes (human PMN, lymphocytes and monocytes) or the monocyte-like cell line U937 were analyzed for the expression of cadherin-5 by immunoblotting using polyclonal antibodies and a monoclonal antibody (3006E) to cadherin-5, no cadherin-5 was detected. Furthermore, using a pan-cadherin antibody [Geiger et al., J. Cell Science, 97: 607-614 (1990)] specific for the cytoplasmic tail, no other cadherins were detected in these cell populations.

Example 7

Three *in vitro* transendothelial migration assays were utilized to show that cadherin-5 may participate in the movement of leukocytes across the intercellular junctions of endothelium.

- 27 -

A. Transmigration Assays

The migration of leukocytes (either human polymorphonuclear neutrophils or rat T cells) was followed for specific periods of time (15 minutes for PMNs and 2 hours for T cells). Immunofluorescent labeling of leukocytes using antibodies to specific cellular markers was used distinguish between leukocytes and endothelium. The polyclonal antibodies described in Example 4 were used to measure changes in the distribution of cadherin-5. An antibody (Novocastra Laboratories Ltd., United Kingdom) to PE-CAM1 (CD31) which is an intercellular junction molecule in endothelium was used as a control.

10

15

5

3

The role of cadherin-5 in the transmigration of polymorphonuclear neutrophils (PMNs) across HUVEcs was analyzed. The system utilized, which is described in Furie et al., J. Immunol., 143: 3309-3317 (1989), has been characterized with regard to electrical resistance of the endothelium and the adhesion molecules used in transmigration. HUVEcs were isolated in the absence of growth factor and cultured on human amniotic connective tissue in a two-chamber system. PMN migration on IL1 β -treated HUVEcs has previously been shown to involve E-selectin and β_2 integrins (CD11/CD18). See Furie et al., J. Immunol., 148: 2395-2484 (1992).

20

25

In the first assay, transmigration of PMNs was followed as an 11 minute time course on HUVEcs pretreated for four hours with IL1 β (1.5 U/ml) (Collaborative Research Inc., Beford, MA). Prior to addition of neutrophils, antibodies to cadherin-5 heavily labelled the cell junctions of the HUVEcs in a continuous pattern. Pretreatment of the endothelial monolayer with IL1 β had no effect on the distribution of cadherin-5 in the HUVEc monolayer compared to a control untreated culture. In the second assay, chemotaxis of PMNs across HUVEcs was stimulated by leukotriene B₄ (LTB₄) (Sigma) which was placed in the bottom chamber at 10⁷M while neutrophils were added to the upper chamber. Chemotaxis of PMNs to LTB₄ across the endothelial monolayer was previously shown to be blocked by antibodies to CD11a, CD11b and ICAM-1. [See Furie

et al., Blood, 78: 2089-2097 (1991)] In both assays, PMNs were identified with anti-CD45 antibody (Becton Dickinson, San Jose, CA).

In both assays during the 11-minute time course, the majority of the PMNs that adhered also transmigrated. Addition of neutrophils caused a rapid redistribution and regional loss of cadherin-5 even at the earliest time point (3 minutes). CD31 was also lost at sites of disruption of the monolayer, but in general appeared to be more stable during the transmigration process. The loss of cadherin-5 is probably the result of proteases released from the neutrophils during transmigration.

10

15

20

25

5

In a third assay, CD4 antigen activated rat T cells were utilized instead of PMNs (for a two-hour time course). Rat brain microvascular endothelium was grown on Transwell 5 micron polycarbonate membranes (Costar, Cambridge, MA). T cells were identified using an anti-CD4 antibody (Serotec, Indianapolis, IN). In this assay, the loss of cadherin-5 immunolabeling did not occur during transendothelial migration even though 10% of the T cells had crossed the endothelium after two hours. These results demonstrate differential effects of PMN versus T cells on intercellular junctions during transendothelial migration. Analysis by confocal microscopy suggests that CD4 antigen-activated T cells and PMNs have a ligand that is able to interact with cadherin-5 on the endothelium during transmigration. Photomicrographs from confocal analysis show that during leukocyte transendothelial migration leukocytes can be found spanning the intercellular junction. The leukocyte separates the cell junction and cadherin-5 remains on adjacent cells even though the endothelial cells are not in contact.

B. Adhesion of PMNs and T Cells to Cadherin-5

To quantitate the binding of PMNs and activated T-cells to cadherin-5, a cell-substrate adhesion assay was developed. This assay utilized plate-bound fusion proteins containing various extracellular subdomains of cadherin-5 (EC1-2 or EC2-4, see Example 4) and measured the binding of dye-

labelled leukocytes to cadherin-5 protein using a cytofluor 2300 (Millipore, Bedford, MA).

Ē

5

10

15

20

25

The purified fusion proteins were absorbed to styrene plates and the binding of dye-labeled leukocytes to the fusion proteins was compared to binding to maltose binding protein and heat denatured bovine serum albumin (BSA) which was used to block nonspecific binding. The fusion proteins were dissolved in PBS containing Ca²⁺ and Mg²⁺, diluted into coating buffer and incubated overnight at 4°C. The plates were blocked with heat denatured BSA and then incubated with calcien (Molecular Probes, Eugene, OR)-labelled cells for 1 hour at 37°C. Results of the assay are presented in FIGURE 1 wherein the relative fluorescence values reported are the mean value of three samples.

PMNs bound to fusion proteins comprising the EC2-4 of cadherin-5, but preferentially bound to fusion proteins comprising EC1-2. These results are consistent with presence of cadherin subdomain 2 sequences in both fusion proteins. CD4 antigen activated T cells bound EC2-4 fusion protein. All these results, which indicate that PMNs interact with a more terminal or exposed subdomain of cadherin-5, are consistent with the rate that these cell types cross the endothelium, PMNs transmigrate in a few minutes and T cells require 30-60 minutes. The binding of U937 cells could be blocked in a dose dependent manner by polyclonal antisera made to the cadherin-5 EC2-4 subdomains.

The results presented in the foregoing paragraph in combination with the results presented in Example 6B that leukocytes do not express cadherins suggests that the counter ligand to which cadherin-5 binds on leukocytes is a distantly related cadherin or is not a cadherin. Cadherin binding has previously been thought to be homotypic.

- 30 -

Example 8

Expression of cadherin-5 in the blood-brain barrier in the endothelium of the cerebral cortex was assayed by Western blot and immunocytochemistry.

5

A SDS lysate was prepared by boiling bovine or macaque capillaries in SDS sample buffer for 2 minutes and then drawing the extract through a 25 G syringe needle. The extract was centrifuged in a microfuge for 15 minutes at 4°C. Protein concentration in the supernatant was determined by the BCA method (Pierce) using bovine serum albumin as a standard. Samples of the supernatent (75μg) were separated by SDS-PAGE (Laemmli) and electrophoretically transferred to nitrocellulose. The nitrocellulose was blocked with 5% milk and 10% FBS in Tris-buffered saline, pH 8.0, containing 0.05% Tween 20. Cadherin-5 specific monoclonal antibodies (30Q4H and 45C6A) were added. After washing to remove unbound antibody, the filters were incubated with alkaline phosphatase-conjugated anti-mouse IgG (Promega, Madison, WI). Reactive bands were visualized by addition of NBT/BCIP (Sigma, St. Louis, MO). Expression of cadherin-5 was detected in the freshly isolated bovine and macaque capillaries.

15

20

10

The Western blot results were confirmed by immunocytochemistry using the cadherin-5 antibodies 30Q4H and 45C6A. Macaque cerebral cortex was incubated in 15% sucrose in PBS for 30 minutes at 4°C and embedded in OCT compound (Tissue-Tek, Elkhart, IN) in cryomolds and quickly frozen. Six micron sections were cut and placed on glass slides. The slides were washed with PBS and fixed in 3% p-formaldehyde for 5 minutes. To permeabilize the tissue sections the slides were immersed in -20°C acetone for 10 minutes and air dried. The sections were blocked with 2% goat serum and 1% BSA in PBS for 30 minutes and then incubated with the primary antisera for 1 hour at room temperature. The sections were rinsed 3 times in PBS containing 0.1% BSA and incubated with biotinylated anti-rabbit or anti-mouse IgG (Vector Laboratories,

25

- 31 -

Burlingame, CA) in 1% BSA in PBS for 30 minutes. After rinsing 3 times, strepavidin-conjugated with horseradish peroxidase (Vector Laboratories) was added for 30 minutes and washed 3 times. Immunolabeling was detected by reaction with diaminobenzoic acid in the presence of NiCl₂. The monoclonal antibody 45C6A only appeared to label larger vessels and the monoclonal antibody 30Q4H labeled both large and microvessels. The cell junctions of cerebral capillaries were labelled with the anti-cadherin-5 antibodies in a localized site.

5

10

15

20

25

These results and the results presented in Example 7 suggest cadherin-5 is involved in maintenance of the blood-brain barrier and that cadherin-5 peptides or cadherin-5 specific monoclonal antibodies may be able to open the blood-brain barrier.

Example 9

Patent Cooperation Treaty (PCT) International Publication No. WO 91/04745 discusses fragments of cell adhesion molecules and antibodies to cell adhesion molecules which are purported to disrupt microvascular and endothelial cell tight junctions.

Three cadherin-5 peptides corresponding to the cell binding domain [HAV region, Blaschuk et al., Devel. Biol., 139: 227-229 (1990)], the calcium binding region A1 and the calcium binding region B1 of E-cadherin [Ringwald et al., EMBO J., 6: 3647-3653 (1987)] were tested for the ability to affect the permeability of brain endothelium. The peptides utilized had the following sequences:

Peptide 1 (Amino acids 114 to 128 of SEQ ID NO: 50) LTAVIVDKDTGENLE,

Peptide 2 (Amino acids 132 to 145 of SEQ ID NO: 50) SFTIKVHDVNDNWP, and

Peptide 3 (Amino acids 168 to 178 of SEQ ID NO: 50) SVTAVDADDPT, respectively.

5

Permeability was measured using a two-chamber culture system (Costar). Rat brain microvascular endothelium was grown on 12 mm Transwell filters with 3 micron pores (Costar) in the culture system. When the monolayers were confluent, two weeks after plating, 3 H-inulin (201 mCi/g) (New England Nuclear, Boston, MA) was added to the upper chamber. Cadherin-5 peptide at 100 μ g/ml was added to both the upper and lower chambers. Radioactivity appearing in the bottom chamber was measured at 15 minute intervals over a two hour time course carried out at 37°C and was compared to the radioactivity appearing in the bottom chamber of cultures where no peptide was added or where no endothelial cells were present.

15

10

Both peptides 1 and 3 increased endothelium permeability in comparison to control cultures. The increase in permeability obtained with peptide 3 was 2.5-fold and the increase with peptide 1 was 1.5-fold over the controls. Peptide 2 had no effect on permeability.

Example 10

20

25

The functional properties of cadherins involve not only specific intercellular interactions, but also involve intracellular interactions with the cytoskeleton. Immunoprecipitation experiments utilizing the cadherin-5-specific rabbit polyclonal antibodies and the monoclonal antibody 30Q8A (see Example 4) were performed to determine with which proteins cadherin-5 interacts on an intracellular level.

Endothelial cells were metabolically labeled overnight with 50 μ Ci/ml of [35S]-methionine and were then extracted with 0.5% Triton X-100 in 10mM HEPES pH 7.4, 0.15M NaCl, 2mM EDTA, 2mM EGTA, 1mM phenanthroline and protease inhibitors. The inhibitors included 1mM PMSF, 10 μg/ml aprotinin, leupeptin, pepstatin A, antipain, soybean trypsin inhibitor, 100 μ g/ml chymostatin and TPCK, 40 μ g/ml of TPCK and bestatin, 50 μ g/ml of benzamidine, 1mM o-vanidate and 20mM NaF. After 20 minutes on ice, the cells were scraped and centrifuged in a microfuge for 30 minutes at 4°C. supernatant was precleared and either polyclonal anti-cadherin-5 or normal rabbit serum was added and incubated overnight at 4°C. Protein A-sepharose (Pharmacia, Piscataway, NJ) was added for 2 hours at 4°C and centrifuged. A first low stringency wash with 10mM HEPES pH 7.4, 0.15M NaCl, 2mM EDTA and 2mM EGTA containing 1% Triton X-100, 0.5% DOC and 0.2% SDS was performed. A second high stringency wash was performed with the same buffer containing 2% SDS. A final wash was then performed with Tris-buffered saline, and the samples were boiled and analyzed on SDS/PAGE (7%). Three bands with molecular weights of 104 KD, 95 KD, and 82 KD were identified as associated with cadherin-5.

5

10

15

20

25

Three intracellular proteins, termed catenins, have previously been identified by their ability to bind to the cytoplasmic domain of E-cadherin. These proteins have been designated α , β , and γ catenins and have molecular weights of 102 KD, 88 KD and 80 KD, respectively [Ozawa et al., EMBO J. 8: 1711-1717 (1989)]. The association of catenins with E-cadherin seem to be required for E-cadherin function because deletion of the cytoplasmic domain of E-cadherin results in loss of cell adhesion function and catenin binding. The molecular cloning of α -catenin has shown it to be a vinculin-like protein [Nagafuki et al., Cell, 65: 849-857 (1991); Herrenkenecht et al., Proc. Natl. Acad. Sci. USA, 88: 9156-9160 (1991)]. The amino acid sequence of the Xenopus β -catenin [McCrea et al., Science, 254: 1359-1361 (1991)] exhibits 63% similarity to the human

- 34 -

protein plakoglobin [Franke et al., Proc. Natl. Acad. Sci. USA, 86: 4027-4031 (1989)]. Plakoglobin has been localized to both the cytoplasmic region of desmosome and adherens junctions in epithelial cells. The desmonsomal component desmoglein I interacts with plakoglobin and is a member of the cadherin superfamily [Koch et al., Eur. J. Cell. Biol., 53: 1-12 (1990)]. Plakoglobin has a molecular weight of 82 KD and may be the γ-catenin [Peifer et al., J. Cell Biol., 118: 681-691 (1992)]. Even though endothelial cells lack desmosome, they have been shown to contain plakoglobin-associated with intercellular junctions [Franke et al., Biol. of the Cell, 59: 205-218 (1987)]. Other cytoskeletal elements associated with cadherins are ankyrin and fodrin [Nelson et al., J. Cell Biol., 110: 349-357 (1990)].

5

10

15

20

25

To identify whether plakoglobin was one of the proteins complexed to cadherin-5, an unlabeled lysate of bovine aortic endothelial cells was made and immunoprecipitation was carried out as described above using anti-cadherin-5 antibody. The unlabelled immunoprecipitates were separated by SDS/PAGE and then electrophoretically transferred to nitrocellulose. The membrane was blocked with 5% milk in Tris-buffered saline, pH 8.0, containing 0.05% Tween 20 (TBST) and then was incubated with the murine monoclonal antibody PG5.1 (IBI Research Products, Cambridge, MA) to plakoglobin in blocking solution (1:20) for 1 hour at room temperature. The membrane was washed with TBST and then incubated with goat anti-mouse IgG conjugated to alkaline phosphatase. An 82 KD protein was identified using NBT/BCIP under both low and high stringency wash conditions. These results demonstrate that plakoglobin is tightly associated with the cytoplasmic domain of cadherin-5 in endothelium. Immunofluorescence studies of regenerated endothelium show that cadherin-5 and plakoglobin are localized to the cell junctions and are coordinately regulated.

The interation of cadherin-5 with plakoglobin may be a target for modulation of cadherin-5 activity.

- 35 -

While the present invention has been described in terms of preferred embodiments, it is understood that variations and improvements will occur to those skilled in the art. Thus, only such limitations as appear in the appended claims should be placed on the scope of the invention.

SEQUENCE LISTING.

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Suzuki, Shintaro
 - (ii) TITLE OF INVENTION: CADHERIN MATERIALS AND METHODS
 - (iii) NUMBER OF SEQUENCES: 62
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun
 - (B) STREET: 6300 Sears Tower, 233 S. Wacker Drive
 - (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: USA
 - (F) ZIP: 60606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/872,643
 - (B) FILING DATE: 17 APR 1992
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Noland, Greta E.
 - (B) REGISTRATION NUMBER: 35,302
 - (C) REFERENCE/DOCKET NUMBER: 31340
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (312) 474-6300
 - (B) TELEFAX: (312) 474-0448
 - (C) TELEX: 25-3856
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Thr Ala Pro Pro Tyr Asp 5 .

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

-37-

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATTCACNG CNCCNCCNTA YGA

23

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Phe Lys Lys Leu Ala Asp

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAATTCTCNG CNARYTTYTT RAA

23

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /note= "The amino acid at this position is a proline or a glycine."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /note= "The amino acid at this... position is a leucine, an isoleucine or a valine."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 5
 - (D) OTHER INFORMATION: /note= "The amino acid at this position is a phenylalanine or a tyrosine."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Lys Xaa Xaa Asp Xaa Glu

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCAARS SNNTNGAYTW YGA

23

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /note= "The amino acid at this position is an asparagine or an aspartic acid."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /note= "The amino acid at this position is an alanine or a proline."
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Xaa Glu Xaa Pro Xaa Phe

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

PCT/US93/03681

WO 93/21302

		-39-

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(2) INFORMATION FOR SEQ ID NO:9:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TCCCTGCTGG TCTTCGACTA CGAAGGCAGC GGTTCTACTG CAGGCTCTGT CAGCTCCCTG AACTCCTCCA GCTCCGGGGA TCAAGATTAC GACTACTTGA ATGACTGGGG GCCCCGG 117

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ser Leu Leu Val Phe Asp Tyr Glu Gly Ser Gly Ser Thr Ala Gly Ser

Val Ser Ser Leu Asn Ser Ser Ser Gly Asp Gln Asp Tyr Asp Tyr

Leu Asn Asp Trp Gly Pro Arg 35

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ACACTGCACA TCTACGGCTA CGAGGGCACA GAGTCCATCG CAGAGTCCCT CAGCTCCCTG 60 AGCACCAATT CCTCCGACTC TGACATCGAC TATGACTTCC TCAATGACTG GGGACCCAGG 120

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

Thr Leu His Ile Tyr Gly Tyr Glu Gly Thr Glu Ser Ile Ala Glu Ser

Leu Ser Ser Leu Ser Thr Asn Ser Ser Asp Ser Asp Ile Asp Tyr Asp

Phe Leu Asn Asp Trp Gly Pro Arg 35

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TCCTTGGCCA CCTATGCCTA CGAAGGAACT GGCTCGCTGG CCGACTCCCT GAGCTCACTA GAATCAGTGA CCACAGATGG AGACCAAGAT TATGACTATT TGAGTGACTG GGGCCCTCGA

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Ser Leu Ala Thr Tyr Ala Tyr Glu Gly Thr Gly Ser Val Ala Asp Ser

Leu Ser Ser Leu Glu Ser Val Thr Thr Asp Gly Asp Gln Asp Tyr Asp

Tyr Leu Ser Asp Trp Gly Pro Arg

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

	-	-	
_	•	7	_

								•	-41-								
	(xi)	SEQU	JENCI	E DE	SCRI	PTIO	N: S	EQ I	D NO	:15:							
TCGC	rtca(GA CI	TAT	GCAT	T TG	AAGG	AAAT	GGC	TCAG	TAG	CTGA	ATCT	ст с	AGTT	CTTT	A	60
GATT	CTAA	CA GO	CTCG	AACT	C TG	ATCA	GAAT	TAT	GACT.	ACC	TTAG	TGAC	TG G	GGTC	CTCT	С	120
(2)	INFO	RMATI	ON I	FOR	SEQ :	ID N	0:16	:									
	(i)	(B)	LEI	NGTH PE:	ARAC' : 40 amin GY:	ami o ac	no a id										
((ii)	MOLE	CULE	E TY	PE: 1	prot	ein										
((xi)	SEQU	ENCE	E DE	SCRI	PTIO	N: S	EQ I	ои о	:16:							
	Ser 1	Leu	Gln	Thr	Tyr 5	Ala	Phe	Glu	Gly	Asn 10	Gly	Ser	Val	Ala	Glu 15	Ser	
	Leu	Ser	Ser	Leu 20	Asp	Ser	Asn	ser	Ser 25	Asn	Ser	Asp	Gln	Asn 30	Tyr	Asp	
	Tyr	Leu	Ser 35	Asp	Trp	Gly	Pro	Arg 40									
(2) 1	NFO	ITAMS	ON F	OR :	SEQ 1	D NO	0:17:	:									
	(i)	(B) (C)	LEN TYP STR	GTH: PE: 1 LANDI	ARACT : 120 nucle EDNES SY: 1) bas eic a ss: s	se pa acid sing:	airs									
(ii)	MOLE	CULE	TYI	?E: c	-DNA									•		
(xi)	SEQU	ENCE	DES	CRIE	PTIO	N: SI	EQ II	NO:	:17:							
TCCAT	TCAC	A TT	TATG	GCT	A TGF	AAGG	CCGA	GGG	CTG	rgg (CTGG	CTCT	CT C	AGCT	CGTT	3	60
GAGTO	CACC	CA CA	TCAG	ACT	AGA	ACCA	SAAT	TTTC	ACT	ACC 1	TCAG	rgac	rg go	GGTC	CCGG	2	120
(2) I	NFOF	ITAM	ON F	OR S	SEQ 1	D NO):18:	:									
	(i)	(B)	LEN TYP	GTH:	ARACI 40 amino	amir aci	no ad id										
(ii)	MOLE	CULE	TYE	PE: p	rote	∍in										
. (xi)	SEQU	ENCE	DES	CRIE	PTION	1: SE	EQ II	NO:	18:							
	Ser 1	Ile	Gln	Ile	Tyr 5	Gly	Tyr	Glu	Gly	Arg 10	Gly	Ser	Val	Ala	Gly 15	Ser	
	Leu	Ser	Ser	Leu 20	Glu	Ser	Thr	Thr	Ser 25	Asp	Ser	Asp	Gln	Asn 30	Phe	Asp	

Tyr	Leu	Ser	Asp	Trp	Gly	Pro	Arg
_		35	_		. –		40

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TCCTTGGCCA CTTACGCCTA TGAAGGGAAT GATTCTGTAG CCAATTCTCT CAGCTCCTTA 60 GAATCTCTCA CAGCTGATTG TACCCAGGAT TATGACTACC TTAGTGACTG GGGGCCACGC

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ser Leu Ala Thr Tyr Ala Tyr Glu Gly Asn Asp Ser Val Ala Asn Ser

Leu Ser Ser Leu Glu Ser Leu Thr Ala Asp Cys Asn Gln Asp Tyr Asp

Tyr Leu Ser Asp Trp Gly Pro Arg 35

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TCGCTGGCTA CCTATGCCTA TGAAGGAAAC GACTCTGTTG CTGAATCTCT GAGCTCCTTA 60 GAATCAGGTA CCACTGAAGG AGACCAAAAC TACGATTACC TTCGAGAATG GGGGCCTCGG 120

PCT/US93/03681

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Ser Leu Ala Thr Tyr Ala Tyr Glu Gly Asn Asp Ser Val Ala Glu Ser

Leu Ser Ser Leu Glu Ser Gly Thr Thr Glu Gly Asp Gln Asn Tyr Asp 30

Tyr Leu Arg Glu Trp Gly Pro Arg

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TCCATCCAAA TCTATGGTTA TGAGGGCAGG GGTTCCGTGG CTGGGTCCCT GAGCTCCTTG 60 GAGTCTGCCA CCACAGATTC GGACCTGGAC TACGACTATC TACAGAACTG GGGACCTCGG 120

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Ser Ile Gln Ile Tyr Gly Tyr Glu Gly Arg Gly Ser Val Ala Gly Ser

Leu Ser Ser Leu Glu Ser Ala Thr Thr Asp Ser Asp Leu Asp Tyr Asp 30 25

Tyr Leu Gln Asn Trp Gly Pro Arg

(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:25	:				٠	•	-			
	(i)	(B (C) LE) TY) ST	NGTH PE: RAND	: 15 nucl EDNE	TERI 0 ba eic SS: line	se p acid sing	airs		*							
	(ii)	MOL	ECUL	E TY	PE:	cdna	, .							,			
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	:25:			٠.	`.			•
AAG	CGGTT	TG A	TTAC	GAGA	T CT	CTGC	CTTT	CAC	ACCC'	TGC	TGAT	CAAA	GT G	GAGA	ATGA	3	60
GAC	CCATT	GG T	ACCC	GACG'	T CT	CCTA:	rggc	CCC	AGCT	CCA	CGGC	CACT	GT C	CACA	TCAC	3	120
GTC	etgga	TG T	CAAC	GAGG	G AC	CAGT	CTTC		•			-					150
(2)	INFO	RMAT:	ION 1	FOR :	SEQ	ID N	26	•		٠							
	(i _.)	(B)	LEI	NGTH PE: a	: 50 amin	TERIS amin o ac: lines	no a id			. •							
	(ii)	MOLI	CULI	E TYI	PE: 1	prote	ein .									-	-
	(xi)	SEQU	JENCI	E DES	SCRII	PTIO	N: SI	EQ II	O NO	:26:			· · <u>·</u>				
	Lys 1	Arg	Phe	Asp	Tyr 5	Glu	Ile	Ser	Ala	Phe 10	His	Thr	Leu	Leu	Ile 15	Lys	
	Val	Glu	Asn	Glu 20	Asp	Pro	Leu	Val	Pro 25	Asp	.Val	Ser	Tyr	Gly 30	Pro	Ser	
	Ser	Thr	Ala 35	Thr	Val	His	Ile	Thr 40	Val	Leu	Asp	Val	Asn 45	Glu	Gly	Pro	
	Val	Phe 50			-					· X			. 1	. ·			
(2)	INFO	RMATI	ON I	OR S	SEQ I	ED NO	27:										•
	(i)	(B) (C)	TYI STI	IGTH: PE: 1 RANDE	: 150 nucle EDNES	TERIS D bas eic a SS: s Linea	se pa cid singl	airs Le	٠.	:				-		-	
	(ii)	MOLE	CULE	TYI	PE: 0	DNA		•		ż							
	(xi)	SEQU	ENCE	DES	SCRIE	TION	l: SF	EO TT	NO.	27•							
AAGG	GTAT										ССАТ	\ATG(ዓጥ ርብ	የሮሮ ኔ ፣	ACC AC	<u>.</u>	60
	CCCI				-			-			-		•				120
						CTAC			٠.								150

								-	45-								
(2)	INFO	RMAT	ION	FOR S	SEQ :	ID N	0:28	:									
	(i)	(A (B) LE:	E CHI NGTH PE: 3	: 50 amino	amin ac:	no ao id										
	(ii)	MOL	ECUL	E TYI	PE: 1	prote	ein										
	(xi)	SEQ	UENC	E DES	SCRII	PTIO	N: 51	EQ II	о ио	:28:							
	Lys 1	Gly	Met	Asp	Tyr 5	Glu	Leu	Asn	Arg	Ala 10	Ser	Met	Leu	Thr	Ile 15	Met	
	Val	Ser	Asn	Gln 20	Ala	Pro	Leu	Ala	Ser 25	Gly	Ile	Gln	Met	Ser 30	Phe	Gln	
	Ser	Thr	Val 35	Gly	Val	Thr	Ile	Ser 40	Val	Thr	Asp	Val	Asn 45	Glu	Ala	Pro	
	Tyr	Phe 50															
(2)	INFO	RMAT:	ION I	FOR S	SEQ 1	D NO):2 9:	3									
	(i)	(A (B (C) LEI) TYI) STI	E CHA NGTH: PE: 1 RANDI POLOC	: 153 nucle EDNES	B bas eic a SS: s	se pa acid sing:	airs									
	(ii)	MOLI	ECUL	E TYI	PE: c	DNA											
	(xi)	SEQ	UENC	E DES	SCRIE	OITS	N: SI	EQ II	NO:	:29:							
AAA	CGACTO	G A	TTTT	GAACI	CAT	CCAC	GCAG	TAC	ACGT	rcc 1	ACATO	CGAGO	GC C	ACAG	ACCC		60
ACT	ATCAG	AC TO	CGGA	TACCI	r GAC	CAG	CACT	GCGG	GCA	AAA A	ACAA	AGCC	AA G	ATCA:	CAT	2	120
AATO	TCCT	AG A	r g tg(GATG!	A GCC	ccc	rgtt	TTC									153
(2)	INFO	RMAT	ION 1	FOR S	SEQ I	D NO	30:30	:									•
	(i)	(A)	LEI	E CHANGTH: PE: &	: 51 amino	amin aci	no ad id										
*	(ii)	MOLI	ECULI	E TYI	PE: p	prote	∍in										
	(xi)	SEQ	UENC	E DES	SCRIE	OIT	V: SI	EQ II	NO:	:30:							

Lys Arg Leu Asp Phe Glu Leu Ile Gln Gln Tyr Thr Phe His Ile Glu 1 5 10 15

Ala Thr Asp Pro Thr Ile Arg Leu Gly Tyr Leu Ser Ser Thr Ala Gly 20 25 30

Lys Asn Lys Ala Lys Ile Ile Ile Asn Val Leu Asp Val Asp Glu Pro 35 40 45

Pro	Val	Phe
	50	

(2) I	NFORMATION	FOR	SEO	ID	NO:31:
-------	------------	-----	-----	----	--------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 base pairs(B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

AAGGGTTTGG ATTTTGAAAA GAAGAAAGTG TATACCCTTA AAGTGGAAGC CTCCAATCCT 60 TATGTTGAGC CACGATTTCT CTACTTGGGG CCTTTCAAAG ATTCAGCCAC GGTTAGAATT 120 GTGGTGGAGG ATGTAGATGA ACCTCCTGCC TTC 153

- (2) INFORMATION FOR SEQ ID NO:32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Lys Gly Leu Asp Phe Glu Lys Lys Lys Val Tyr Thr Leu Lys Val Glu

Ala Ser Asn Pro Tyr Val Glu Pro Arg Phe Leu Tyr Leu Gly Pro Phe 20 25

Lys Asp Ser Ala Thr Val Arg Ile Val Val Glu Asp Val Asp Glu Pro 45

Pro Ala Phe 50

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

AAGCCTCTGG ACTTTGAGAC CAAAAAATCC TATACTCTGA AGGTGGAGGC AGCCAATATC 60 CACATCGACC CACGTTTCAG TGGCAGGGGA CCCTTTAAAG ATACAGCAAC AGTCAAAATT 120 GTTGTAGAGG ATGCTGATGA GCCTCCGGTC TTC 153

-47-

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Asp Ala Leu Asp Phe Glu Thr Lys Lys Ser Tyr Thr Leu Lys Val Glu

Ala Ala Asn Ile His Ile Asp Pro Arg Phe Ser Gly Arg Gly Pro Phe

Lys Asp Thr Ala Thr Val Lys Ile Val Val Glu Asp Ala Asp Glu Pro 40

Pro Val Phe 50

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

AAGGGGGTGG ACTATGAAGC CAAAACAAGT TATACCCTGC GCATAGAAGC TGCAAATCGA 60 GATGCTGATC CCCGGTTTCT GAGCTTGGGT CCATTCAGTG ACACAACAAC AGTTAAGATA 120 ATTGTGGAAG ACGTGGATGA ACCCCCGTACT C 152

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Lys Gly Val Asp Tyr Glu Ala Lys Thr Ser Tyr Thr Leu Arg Ile Glu 10

Ala Ala Asn Arg Asp Ala Asp Pro Arg Phe Leu Ser Leu Gly Pro Phe

Ser Asp Thr Thr Val Lys Ile Ile Val Clu Asp Val Asp Glu Pro

120

153

-48 -	-
Pro Tyr Ser 50	
(2) INFORMATION FOR SEQ ID NO:37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
AAGCCACTTG ACTATGAGAA CCGAAGACTA TATACACTGA AGGTGGAGGC AGAAAATACC	60
CATGTGGATC CACGTTTTTA CTATTTAGGG CCATTCAAAG ATACAACAAT TGTAAAAATC	120
TCCATAGAAG ACGTGGATGA GCCACCCCC TTT	153
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
Lys Pro Leu Asp Tyr Glu Asn Arg Arg Leu Tyr Thr Leu Lys Val Glu	
1 5 10 150 150 150 150 150 150 150 150 1	
Ala Glu Asn Thr His Val Asp Pro Arg Phe Tyr Tyr Leu Gly Pro Phe 20 25 30	
Lys Asp Thr Thr Ile Val Lys Ile Ser Ile Glu Asp Val Asp Glu Pro 35 40 45	
Pro Pro Phe 50	
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39: AGGGGTGTGG ATTATGAAAC CAAAAGAGCA TATAGCTTGA AGGTAGAGGC GGCCAATGTA	60

GCAGTAGAAG ATGCCAATGA GCCCCCTCCC TTC

PCT/US93/03681 WO 93/21302

-49-

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids

 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Arg Gly Val Asp Tyr Glu Thr Lys Arg Ala Tyr Ser Leu Lys Val Glu

Ala Ala Asn Val His Ile Asp Pro Lys Phe Ile Ser Asn Gly Pro Phe

Lys Asp Thr Val Thr Val Lys Ile Ala Val Glu Asp Ala Asn Glu Pro 40

Pro Pro Phe 50

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3136 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GGCACGAGCG	CAAGCCGGGG	AGCGCTCGGC	CCAGAATTAG	TGGATGGATT	TGGAATCTCC	60
CTGCCTCCTC	CAAGCTCCGC	CACTGCCACT	TTAGGCAGAG	ACCTGAGCGT	CAACACGCGA	120
GCCGTACTTT	TAGGCTGCGG	ACACTGAGCC	CAGCGCGCCA	GCTTCGCATC	TCCGCACCAG	180
GCTCCACAGC	TCGGAGAGGC	ATGAACGCGA	TCCGGAGGAG	ACTACCCTGC	GCGCGGGGAT	240
CCGTGGACAT	TAGCCGCTCT	CGGGAACTGA	CCCCAGCTC	CTTCAGCCAT	TTATGAATCC	300
AGAGGCTTGA	GATTTTTTC	CGCATCCCGG	AGCCCGACCT	GAGAAATTTC	AATGAAAAGG	360
AAAGTCAATG	GATCGTGGTC	TTGGAAAAGC	TGCTTAGACA	TGTCTGTTTC	CCGGCTCTCT	420
GAACCCGTGG	CAGAGCTGTA	AGTAAGCGCT	TCACAGTGCG	TGATGAATTG	GATGGCTTCG	480
GACCCGAGGC	AAAAAAAATA	ATTGTCTCAT	TTTCGTGCTG	ATTTGCTTAA	CTGGTGGGAC	540
CATGCCAGAA	AGGCTAGCTG	AGACGCTTTT	GGACCTCTGG	ACTCCATTAA	TAATATTATG	600
GATTACTCTT	CCCTCTTTTG	TGTACATGGC	TCCGATGAAT	CAGGCTCACG	TTTTAACTAC	660
TGGATCCCCT	TTGGAACTAA	GCAGGCAGAG	TGAAGAAATG	CGGATTTTGA	ACCGCTCCAA	720
AAGAGGTTGG	GTTTGGAATC	AAATGTTTGT	TCTGGAAGAA	TTTTCTGGAC	CTGAACCGAT	780
TCTCGTTGGC	CGGTTACACA	CAGATCTGGA	TCCTGGGAGC	AAAAAAATCA	AGTATATCCT	840

	•					
ATCGGGTGAT	GGAGCCGGCA	CAATCTTTCA	AATAAACGAT	ATAACTGGAG	ACATCCATGC	9.00
TATCAAAAGA	CTTGACCGAG	AGGAAAAGGC	TGAGTATACG	TTAACAGCTC	AGGCAGTGGA	960
CTGGGAGACA	AACAAACCTC	TCGAGCCTCC	TTCTGAATTT	ATTATTAAGG	TTCAAGACAT	1020
CAACGACAAT	GCCCCGAGT	TTCTCAATGG	ACCTTACCAT	GCTACTGTTC	CAGAGATGTC	1080
CATCTTGGGT	ACATCTGTCA	CTAATGTAAC	GGCCACTGAT	GCTGACGATC	CAGTTTATGG	1140
aaacagtgca	AAGTTGGTTT	ACAGTATCTT	GGAGGGACAG	CCGTATTTTT	CCATTGAGCC	1200
TGAAACAGCT	ATTATAAAA	CTGCCCTTCC	TAACATGGAC	AGAGAGGCCA	AGGAGGAATA	1260
CCTGGTTGTA	ATTCAAGCCA	AAGATATGGG	TGGGCATTCC	GGTGGTCTGT	CTGGAACCAC	1320
GACACTCACA	GTGACGCTTA	CCGATGTGAA	TGACAATCCT	CCAAAATTTG	CTCAAAGTTT	1380
GTATCACTTC	TCAGTACCAG	AAGATGTGGT	CCTTGGCACT	GCAATAGGAA	GGGTTAAAGC	1440
CAATGACCAG	GATATTGGTG	AAAATGCACA	ATCTTCCTAT	GACATCATTG	ATGGAGATGG	1500
GACAGCACTA	TTTGAAATCA	CTTCTGATGC	CCAGGCACAG	GATGGTGTTA	TAAGACTAAG	1560
AAAGCCTCTG	GACTTTGAGA	CCAAAAAATC	CTATACTCTG	AAGGTGGAGG	CAGCCAATAT	1620
CCACATCGAC	CCACGTTTCA	GTGGCAGGGG	ACCCTTTAAA	GATACAGCAA	CAGTCAAAAT	1680
TGTTGTAGAG	GATGCTGATG	AGCCTCCGGT	CTTCTCTTCA	CCGACTTACC	TCCTTGAAGT	1740
TCATGAAAAT	GCTGCCTTGA	ACTCTGTGAT	TGGCCAAGTG	ACAGCTCGTG	ACCCTGATAT	1800
CACTTCCAGC	CCAATAAGGT	TTTCCATTGA	CCGCCACACT	GACTTGGAGA	GACAGTTCAA	1860
CATCAATGCA	GATGATGGGA	AGATAACACT	GGCGACCCCA	CTGGACAGAG	AACTAAGTGT	1920
GTGGCACAAC	ATCTCCATCA	TTGCTACTGA	GATCAGGAAC	CACAGTCAGA	TATCGCGAGT	1980
GCCTGTTGCT	ATTAAAGTGC	TGGATGTCAA	TGACAACGCC	CCTGAATTCG	CGTCCGAATA	2040
TGAGGCATTT	TTATGTGAAA	ATGGAAAACC	CGGCCAAGTC	ATTCAAACAG	TAAGCGCCAT	2100
GGACAAAGAC	GATCCCAAAA	ATGGACATTT	TTTCTTGTAC	AGTCTTCTTC	CAGAAATGGT	2160
CAACAACCCA	AATTTCACCA	TCAAGAAAA	CGAAGATAAT	TCCCTGAGCA	TTCTGGCAAA	2220
ACATAATGGA	TTCAACCGCC	AGAAGCAAGA	AGTCTACCTT	CTGCCTATCG	TGATCAGTGA	2280
CAGTGGGAAC	CCCCCTCTGA	GTAGCACCAG	TACCCTGACC	ATCCGCGTCT	GTGGCTGTAG	2340
CAATGACGGC	GTGGTTCAGT	CGTGCAATGT	CGAAGCTTAT	GTCCTTCCTA	TTGGGCTCAG	2400
TATGGGCGCG	TTAATTGCTA	TATTAGCCTG	CATCATTTTG	CTGCTCGTCA	TTGTGGTTCT	2460
GTTCGTTACC	CTGAGGCGGC	ATAAAAATGA	ACCACTAATA	ATCAAAGATG	ATGAAGACGT	2520
TCGAGAAAAC	ATCATTCGCT	ACGACGACGA	AGGAGGCGGG	GAGGAGGACA	CAGAGGCTTT	2580
TGACATTGCA	ACTTTGCAAA	ACCCAGATGG	AATTAATGGA	TTTTTACCCC	GTAAGGATAT	2640
TAAACCAGAT	TTGCAGTTTA	TGCCAAGGCA	AGGGCTTGCT	CCAGTTCCAA	ATGGTGTTGA	2700
TGTCGATGAA	TTTATAAATG	TAAGGCTTCA	TGAGGCAGAT	AATGACCCCA	CGGCCCCACC	2760
ATATGACTCC	ATTCAGATTT	ATGGCTATGA	AGGCCGAGGG	TCTGTGGCTG	GCTCTCTCAG	2820
CTCGTTGGAG	TCCACCACAT	CAGACTCAGA	CCAGAATTTT	GACTACCTCA	GTGACTGGGG	2880

-51-

TCCCCGCTTT	AAGAGACTGG	GCGAACTCTA	CTCTGTTGGT	GAAAGTGACA	AAGAAACTTG	2940
ACAGTGGATT	ACATAAATAA	TCAATGGAAC	TGAGCATTCT	GTAATATTCT	AGGGTCACTC	3000
CCCTTAGATG	CAACAAATGT	GGCTATTTGT	TTTAGAGGCA	AGTTTAGCAC	CAATCATCTA	3060
TAAACTCAAC	CACATTTTAA	TGTTGAACCA	AAAAAATAA	TAAAAAATAA	AAAGTATATG	3120
TTAGGAGGTG	AAAAA					3136

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: Met Pro Glu Arg Leu Ala Glu Thr Leu Leu Asp Leu Trp Thr Pro Leu Ile Ile Leu Trp Ile Thr Leu Pro Ser Phe Val Tyr Met Ala Pro Met Asn Gln Ala His Val Leu Thr Thr Gly Ser Pro Leu Glu Leu Ser Arg Gln Ser Glu Glu Met Arg Ile Leu Asn Arg Ser Lys Arg Gly Trp Val Trp Asn Gln Met Phe Val Leu Glu Glu Phe Ser Gly Pro Glu Pro Ile Leu Val Gly Arg Leu His Thr Asp Leu Asp Pro Gly Ser Lys Lys Ile 85 90 95 Lys Tyr Ile Leu Ser Gly Asp Gly Ala Gly Thr Ile Phe Gln Ile Asn Asp Ile Thr Gly Asp Ile His Ala Ile Lys Arg Leu Asp Arg Glu Glu Lys Ala Glu Tyr Thr Leu Thr Ala Gln Ala Val Asp Trp Glu Thr Asn 135 Lys Pro Leu Glu Pro Pro Ser Glu Phe Ile Ile Lys Val Gln Asp Ile Asn Asp Asn Ala Pro Glu Phe Leu Asn Gly Pro Tyr His Ala Thr Val Pro Glu Met Ser Ile Leu Gly Thr Ser Val Thr Asn Val Thr Ala Thr Asp Ala Asp Asp Pro Val Tyr Gly Asn Ser Ala Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr Phe Ser Ile Glu Pro Glu Thr Ala Ile

Ile Lys Thr Ala Leu Pro Asn Met Asp Arg Glu Ala Lys Glu Glu Tyr

235

240

230

Leu Val Val Ile Gln Ala Lys Asp Met Gly Gly His Ser Gly Gly Leu 245 Ser Gly Thr Thr Leu Thr Val Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe Ala Gln Ser Leu Tyr His Phe Ser Val Pro Glu Asp 280 Val Val Leu Gly Thr Ala Ile Gly Arg Val Lys Ala Asn Asp Gln Asp Ile Gly Glu Asn Ala Gln Ser Ser Tyr Asp Ile Ile Asp Gly Asp Gly 310 315 Thr Ala Leu Phe Glu Ile Thr Ser Asp Ala Gln Ala Gln Asp Gly Val Ile Arg Leu Arg Lys Pro Leu Asp Phe Glu Thr Lys Lys Ser Tyr Thr Leu Lys Val Glu Ala Ala Asn Ile His Ile Asp Pro Arg Phe Ser Gly Arg Gly Pro Phe Lys Asp Thr Ala Thr Val Lys Ile Val Val Glu Asp Ala Asp Glu Pro Pro Val Phe Ser Ser Pro Thr Tyr Leu Leu Glu Val 395 390 His Glu Asn Ala Ala Leu Asn Ser Val Ile Gly Gln Val Thr Ala Arg Asp Pro Asp Ile Thr Ser Ser Pro Ile Arg Phe Ser Ile Asp Arg His 425 Thr Asp Leu Glu Arg Gln Phe Asn Ile Asn Ala Asp Asp Gly Lys Ile Thr Leu Ala Thr Pro Leu Asp Arg Glu Leu Ser Val Trp His Asn Ile 455 Ser Ile Ile Ala Thr Glu Ile Arg Asn His Ser Gln Ile Ser Arg Val Pro Val Ala Ile Lys Val Leu Asp Val Asn Asp Asn Ala Pro Glu Phe Ala Ser Glu Tyr-Glu Ala Phe Leu Cys Glu Asn Gly Lys Pro Gly Gln Val Ile Gln Thr Val Ser Ala Met Asp Lys Asp Asp Pro Lys Asn Gly His Phe Phe Leu Tyr Ser Leu Leu Pro Glu Met Val Asn Asn Pro Asn Phe Thr Ile Lys Lys Asn Glu Asp Asn Ser Leu Ser Ile Leu Ala Lys 550 555 His Asn Gly Phe Asn Arg Gln Lys Gln Glu Val Tyr Leu Leu Pro Ile 570 Val Ile Ser Asp Ser Gly Asn Pro Pro Leu Ser Ser Thr Ser Thr Leu 585 590

-53-

Thr	Ile	Arg 595	Val	Cys	Gly	Cys	ser 600	Asn	Asp	Gly	Val	Val 605	Gln	Ser	Cys
Asn	Val 610	Glu	Ala	Tyr	Val	Leu 615	Pro	Ile	Gly	Leu	Ser 620	Met	Gly	Ala	Leu
Ile 625	Ala	Ile	Leu	Ala	Cys 630	Ile	Ile	Leu	Leu	Leu 635	Val	Ile	Val	Val	Leu 640
Phe	Va1	Thr	Leu	Arg 645	Arg	His	Lys	Asn	Glu 650	Pro	Leu	Ile	Ile	Lys 655	Asp
Asp	Glu	Asp	Val 660	Arg	Glu	Asn	Ile	Ile 665	Arg	Tyr	Asp	Asp	Glu 670	Gly	Gly
Gly	Glu	Glu 675	Asp	Thr	Glu	Ala	Phe 680	Asp	Ile	Ala	Thr	Leu 685	Gln	Asn	Pro
Asp	Gly 690	Ile	Asn	Gly		Leu 695	Pro	Arg	Lys	Asp	Ile 700	Lys	Pro	Asp	Leu
Gln 705	Phe	Met	Pro	Arg	Gln 710	Gly	Leu	Ala	Pro	Val 715	Pro	Asn	Gly	Val	Asp 720
Val	Asp	Glu	Phe	Ile 725	Asn	Val	Arg	Leu	His 730	Glu	Ala	Asp	Asn	Asp 735	Pro
Thr	Ala	Pro	Pro 740	Tyr	Asp	Ser	Ile	Gln 745	Ile	Tyr	Gly	Tyr	Glu 750	Gly	Arg
Gly	Ser	Val 755	Ala	Gly	Ser	Leu	Ser 760	Ser	Leu	Glu	Ser	Thr 765	Thr	Ser	Asp
Ser	Asp 770	Gln	Asn	Phe	Asp	Tyr 775	Leu	Ser	Asp	Trp	Gly 780	Pro	Arg	Phe	Lys
Arg 785	Leu	Gly	Glu	Leu	Tyr 790	Ser	Val	Gly	Glu	Ser 795	Asp	Lys	Glu	Thr	
								_							

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3043 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GGCACGAGCG	CAAGCCGGGG	AGCGCTCGGC	CCAGAATTAG	TGGATGGATT	TGGAATCTCC	60
CTGCCTCCTC	CAAGCTCCGC	CACTGCCACT	TTAGGCAGAG	ACCTGAGCGT	CAACACGCGA	120
GCCGTACTTT	TAGGCTGCGG	ACACTGAGCC	CAGCGCGCCA	GCTTCGCATC	TCCGCACCAG	180
GCTCCACAGC	TCGGAGAGGC	ATGAACGCGA	TCCGGAGGAG	ACTACCCTGC	GCGCGGGAT	240
CCGTGGACAT	TAGCCGCTCT	CGGGAACTGA	CCCCCAGCTC	CTTCAGCCAT	TTATGAATCC	300
AGAGGCTTGA	GATTTTTTC	CGCATCCCGG	AGCCCGACCT	GAGAAATTTC	AATGAAAAGG	360
AAAGTCAATG	GATCGTGGTC	TTGGAAAAGC	TGCTTAGACA	TGTCTGTTTC	CCGGCTCTCT	420

GAACCCGTGG CAGAGCTG	TA AGTAAGCGCT	TCACAGTGCG	TGATGAATTG	GATGGCTTCG	480
GACCCGAGGC AAAAAAA	PA ATTGTCTCAT	TTTCGTGCTG	ATTTGCTTAA	CTGGTGGGAC	540
CATGCCAGAA AGGCTAGC	rg agacgetttt	GGACCTCTGG	ACTCCATTAA	TAATATTATG	600
GATTACTCTT CCCTCTTT	rg tgtacatggc	TCCGATGAAT	CAGGCTCACG	TTTTAACTAC	660
TGGATCCCCT TTGGAACT	AA GCAGGCAGAG	TGAAGAAATG	CGGATTTTGA	ACCGCTCCAA	720
AAGAGGTTGG GTTTGGAA	CC AAATGTTTGT	TCTGGAAGAA	TTTTCTGGAC	CTGAACCGAT	780
TCTCGTTGGC CGGTTACA	CA CAGATCTGGA	TCCTGGGAGC	AAAAAAATCA	AGTATATCCT	840
ATCGGGTGAT GGAGCCGG	CA CAATCTTTCA	AATAAACGAT	ATAACTGGAG	ACATCCATGC	900
TATCAAAAGA CTTGACCG	AG AGGAAAAGGC	TGAGTATACG	TTAACAGCTC	AGGCAGTGGA	960
CTGGGAGACA AACAAACC	C TCGAGCCTCC	TTCTGAATTT	ATTATTAAGG	TTCAAGACAT	1020
CAACGACAAT GCCCCCGA	TTCTCAATGG	ACCTTACCAT	GCTACTGTTC	CAGAGATGTC	1080
CATCTTGGGT ACATCTGT	CA CTAATGTAAC	GCCCACTGAT	GCTGACGATC	CAGTTTATGG	1140
AAACAGTGCA AAGTTGGT	T ACAGTATCTT	GGAGGGACAG	CCGTATTTTT	CCATTGAGCC	1200
TGAAACAGCT ATTATAAA	A CTGCCCTTCC	TAACATGGAC	AGAGAGGCCA	AGGAGGAATA	1260
CCTGGTTGTA ATTCAAGC	A AAGATATGGG	TGGGCATTCC	GGTGGTCTGT	CTGGAACCAC	1320
GACACTCACA GTGACGCT	A CCGATGTGAA	TGACAATCCT	CCAAAATTTG	CTCAAAGTTT	1380
GTATCACTTC TCAGTACC	G AAGATGTGGT	CCTTGGCACT	GCAATAGGAA	GGGTTAAAGC	1440
CAATGACCAG GATATTGG	G AAAATGCACA	ATCTTCCTAT	GACATCATTG	ATGGAGATGG	1500
GACAGCACTA TTTGAAAT	CA CTTCTGATGC	CCAGGCACAG	GATGGTGTTA	TAAGACTAAG	1560
AAAGCCTCTG GACTTTGAG	A CCAAAAAATC	CTATACTCTG	AAGGTGGAGG	CAGCCAATAT	1620
CCACATCGAC CCACGTTT	CA GTGGCAGGGG	ACCCTTTAAA	GATACAGCAA	CAGTCAAAAT	1680
TGTTGTAGAG GATGCTGA	G AGCCTCCGGT	CTTCTCTTCA	CCGACTTACC	TCCTTGAAGT	1740
TCATGAAAAT GCTGCCTTC	A ACTCTGTGAT	TGGCCAAGTG	ACAGCTCGTG	ACCCTGATAT	. 1800
CACTTCCAGC CCAATAAG	T TTTCCATTGA	CCGCCACACT	GACTTGGAGA	GACAGTTCAA	1860
CATCAATGCA GATGATGG	A AGATAACACT	GGCGACCCCA	CTGGACAGAG	AACTAAGTGT	1920
GTGGCACAAC ATCTCCAT	CA TTGCTACTGA	GATCAGGAAC	CACAGTCAGA	TATCGCGAGT	1980
GCCTGTTGCT ATTAAAGT	C TGGATGTCAA	TGACAACGCC	CCTGAATTCG	CGTCCGAATA	2040
TGAGGCATTT TTATGTGA	A ATGGAAAACC	CGGCCAAGTA	AATATCTCCA	TGTTGTTAAT	2100
ACTGAATATG TTTGTATA	A ACTGTTTCCT	AGTTAATTAA	CCTGCATTAC	TTCCTGATTT	2160
TGCATTGGTT GGATTTAC	A AGTCACAGGC	AGGAAACTCC	TCCAAGCGGT	AACAGAAGGG	2220
AATATTTGTC TTTCTCAG	T GTTAATTCTC	TTCTAACTTA	GGAACCAATT	GGCTCAGAAA	2280
GTGTGATGAT CTGCTCTG	T CTGACCCCAG	CCAAATCACT	GTCTTAAAAT	ACATCACATA	2340
TGGGTGATGG CTGGGGAC	G TCTTACAGTG	CAGAAGGTTG	AAATCGCCAT	CAATTGGCAA	2400
GAATCTAAAG AATAGCTC	T GGGAAGCATG	CATTTTTGTT	TTATGTTGAA	AAGAAGATTA	2460

-55-

ATGCACAAAT	GTGGAATGCA	AAAAAACACA	GTAGTTTATA	GAAAGCTCTA	TGTAGTGGTA	2520
CTTATGTCTG	TACACATATT	TGCAAGTTTA	GTAAACATAA	TGTAGACATC	AAATTGTTAG	2580
ATATGCCCCT	AAGGCATTTC	AATATGTAGA	GGTAAGACTC	CTAAGGCATA	GATGGGGATA	2640
atgaagacaa	AAATAAAGGG	CAGAAAAATG	TATAAAATAG	AACAGACAGA	AATACACTAA	2700
AGATCTAAAG	ATAGAAGCAG	GAAAGAGGGG	AGGGAGGGAG	GGAGACAGGG	CTGGAAGAAG	2760
ATAGGGTGGG	AGGGAGGGAA	GGAGAGTCAA	GGCTCAGGGT	GTGGGGGGGA	AGGTAAAATG	2820
CAAAACAAAA	TCTACAGAAA	CCACTATACT	CTGAATGTCA	AAATGCAACT	AACCTATGTA	2880
aaatcaccca	ACCACATGTG	TAATAGATTT	ATTTTAACGA	GGTGCCGGAG	TACTGTATGT	2940
TTAAGAAATT	TATCATTTTT	CAACTTCCTA	ATTTATTTCT	GGATGGTGAC	ATTTAATTT	3000
AAATAAACAG	CAGCTGACAG	CATGAAAAAA	ААААААААА	AAA		3043

(2) INFORMATION FOR SEQ ID NO:44:

180

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 532 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

 Met
 Pro
 Glu
 Arg
 Leu 5
 Ala
 Glu
 Thr
 Leu 10
 Asp
 Leu
 Thr
 Pro
 Leu 10
 Asp
 Leu Trp
 Thr
 Leu 5
 Pro
 Ser
 Phe
 Val
 Tyr
 Met
 Ala 23
 Pro
 Met

 Asn
 Gln
 Ala His
 Val
 Leu
 Thr
 Thr
 Gly
 Ser
 Pro
 Leu Gly
 Leu Gly
 Ser
 Leu Gly
 Arg
 Gly
 Pro
 Gly
 Pro
 Gly
 Pro
 Ile 80
 Pro
 Ile 80
 Arg
 Ile 80
 Pro
 Ile 80
 Ile 90
 Pro
 Ile 80
 Ile 90
 Ile 80
 Ile 80

185

530

Asp Ala Asp Asp Pro Val Tyr Gly Asn Ser Ala Lys Leu Val Tyr Ser 195 200 205 Ile Leu Glu Gly Gln Pro Tyr Phe Ser Ile Glu Pro Glu Thr Ala Ile Ile Lys Thr Ala Leu Pro Asn Met Asp Arg Glu Ala Lys Glu Glu Tyr 230 Leu Val Val Ile Gln Ala Lys Asp Met Gly Gly His Ser Gly Gly Leu Ser Gly Thr Thr Leu Thr Val Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe Ala Gln Ser Leu Tyr His Phe Ser Val Pro Glu Asp 280 Val Val Leu Gly Thr Ala Ile Gly Arg Val Lys Ala Asn Asp Gln Asp Ile Gly Glu Asn Ala Gln Ser Ser Tyr Asp Ile Ile Asp Gly Asp Gly Thr Ala Leu Phe Glu Ile Thr Ser Asp Ala Gln Ala Gln Asp Gly Val 330 Ile Arg Leu Arg Lys Pro Leu Asp Phe Glu Thr Lys Lys Ser Tyr Thr Leu Lys Val Glu Ala Ala Asn Ile His Ile Asp Pro Arc Phe Ser Gly 360 . Arg Gly Pro Phe Lys Asp Thr Ala Thr Val Lys Ile Val Val Glu Asp 375 Ala Asp Glu Pro Pro Val Phe Ser Ser Pro Thr Tyr Leu Leu Glu Val 390 His Glu Asn Ala Ala Leu Asn Ser Val Ile Gly Gln Val Thr Ala Arg Asp Pro Asp Ile Thr Ser Ser Pro Ile Arg Phe Ser Ile Asp Arg His 425 Thr Asp Leu Glu Arg Gln Phe Asn Ile Asn Ala Asp Asp Gly Lys Ile 440 Thr Leu Ala Thr Pro Leu Asp Arg Glu Leu Ser Val Trp His Asn Ile Ser Ile Ile Ala Thr Glu Ile Arg Asn His Ser Gln Ile Ser Arg Val 475 Pro Val Ala Ile Lys Val Leu Asp Val Asn Asp Asn Ala Pro Glu Phe Ala Ser Glu Tyr Glu Ala Phe Leu Cys Glu Asn Gly Lys Pro Gly Gln Val Asn Ile Ser Met Leu Leu Ile Leu Asn Met Phe Val Tyr Asn Cys 520 Phe Leu Val Asn

-57-

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2490 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GGCACGAGGG	CCAGTTGAGC	CAGAGTCAGA	ATTTGTGATC	AAAATTCACG	ATATCAACGA	60
CAATGAGCCT	ACATTCCCAG	AAGAAATTTA	TACAGCCAGC	GTTCCTGAAA	TGTCTGTTGT	120
AGGTACTTCT	GTGGTGCAAG	TCACAGCTAC	AGATGCCGAT	GACCCTTCAT	ATGGAAACAG	180
CGCCAGAGTC	ATTTACAGCA	TACTTCAAGG	GCAGCCTTAT	TTCTCTGTGG	AACCAGAAAC	240
AGGTATCATA	AGGACAGCTC	TACCAAACAT	GAACAGAGAG	AACAAGGAAC	AGTACCAGGT	300
GGTTATTCAA	GCCAAGGACA	TGGGCGGTCA	GATGGGGGGT	CTGTCTGGAA	CCACCACAGT	360
GAACATCACT	CTCACAGATG	TCAACGACAA	TCCTCCTCGC	TTCCCCCAAA	ACACCATCCA	420
TCTGCGAGTT	CTTGAATCCT	CTCCAGTTGG	CACAGCTGTG	GGAAGTGTAA	AAGCCACCGA	480
TGCTGACACG	GGGAAAAATG	CCGAAGTGGA	TTACCGCATT	ATTGATGGAG	ATGGCACAGA	540
TATGTTTGAC	ATTATAACTG	AGAAGGACAC	ACAGGAAGGC	ATCATCACTG	TGAAAAAGCC	600
ACTTGACTAT	GAGAACCGAA	GACTATATAC	TCTGAAGGTG	GAGGCAGAAA	ATACCCATGT	660
GGATCCACGT	TTTTACTATT	TAGGGCCATT	CAAAGATACA	ACAATTGTAA	AAATCTCCAT	720
AGAAGACGTG	GATGAGCCTC	CAGTTTTCAG	TCGATCCTCC	TATCTGTTTG	AGGTTCATGA	780
GGATATTGAA	GTGGGCACAA	TCATCGGTAC	TGTAATGGCA	AGAGACCCAG	ATTCTACTTC	840
CAGTCCCATC	AGATTTACTT	TAGATCGCCA	TACTGATCTT	GACAGGATCT	TTAACATTCA	900
TTCTGGAAAC	GGATCACTTT	ATACATCAAA	GCCACTTGAT	CGTGAACTAT	CTCAATGGCA	960
CAACCTTACC	GTCATAGCTG	CCGAGATCAA	TAATCCTAAA	GAAACAACTC	GTGTGTCTGT	1020
TTTTGTGAGG	ATTTTGGATG	TTAATGACAA	CGCTCCACAA	TTTGCTGTGT	TTTATGACAC	1080
ATTTGTATGT	GAAAATGCCA	GACCAGGACA	GCTGATACAG	ACAATAAGTG	CAGTTGACAA	1140
AGATGACCCC	TTAGGTGGAC	AGAAGTTCTT	CTTCAGTTTG	GCTGCTGTGA	ATCCTAACTT	1200
CACAGTGCAA	GACAATGAAG	ACAACACTGC	CAGAATTTTA	ACCAGAAAGA	ATGGCTTCAA	1260
CCGTCATGAA	ATAAGCACCT	ACCTACTGCC	GGTAGTGATA	TCTGATAATG	ACTACCCCAT	1320
TCAGAGCAGC	ACTGGCACCC	TGACGATCCG	TGTTTGCGCC	TGTGACAGCC	AGGGCAACAT	1380
GCAGTCCTGC	AGTGCCGAAG	CCCTGCTCCT	TCCTGCTGGC	CTCAGCACTG	GCGCCTTGAT	1440
CGCCATTCTT	CTCTGCATCA	TCATTCTGCT	GGTTATAGTA	GTCCTCTTTG	CAGCCCTGAA	1500
AAGGCAACGG	AAGAAAGAGC	CTCTGATTTT	ATCCAAAGAA	GACATCAGAG	ACAACATTGT	1560
GAGCTATAAC	GACGAAGGTG	GCGGAGAGGA	GGACACCCAA	CCCTTTGATA	TTGGAACCCT	1620

GAGGAATCCT	GCAGCTATCG	AGGAGAAAA	GCTGCGGCGA	GATATCATTC	CTGAAACGTT	1680
ATTTATACCG	CGGCGGACTC	CTACGGCCCC	GGATAACACG	GATGTCCGGG	ATTTCATTAA	1740
TGAGCGCCTC	AAAGAGCACG	ACTTGGACCC	CACTGCGCCT	CCCTACGACT	CGCTGGCTAC	1800
CTATGCCTAT	GAAGGAAACG	ACTCTGTTGC	TGAATCTCTG	AGCTCCTTAG	AATCAGGTAC	1860
CACTGAAGGA	GACCAAAACT	ACGATTACCT	TCGAGAATGG	GGGCCTCGGT	TTAATAAACT	1920
AGCAGAAATG	TACGGTGGTG	GTGAGAGCGA	CAAAGACGCT	TAGCCTGGCC	CCTGAGCTCT	1980
GTTCAACGAG	ATACGTAACT	TTGCAGACAT	TGTCTCCACT	TCACAATATT	TGATATTCAG	2040
GAGAAAAAT	TCCTGCCACT	CAGCACAAGT	TTCCCACCTA	TTTCTTAATT	TGTTCATTAA	2100
TTATATTAAT	TCCTTCCTGT	AGAATGTCTC	ATGGGATATA	TACGACATTT	TATTTAATCA	2160
CTTCCAAGAG	CCAAAGCTAT	GGAAATTCAA	TGTTGCCCAT	CTTAGTAAAT	AAAAGAAACC	2220
CGAGCAGGAT	AGTTCTCCCT	TAAGCAACCT	CACGAACAAG	TCGCTTCTGT	TAGATACACG	2280
TCTTGCCCTT	GCAAATGAAG	CTTTGAAAAG	ACGAAGAAAA	CATTTAAGAT	GTATCCTGTT	2340
CTGTACATTA	AGTTTAAAAA	AAAAAGTCCA	TGTGGTGTTA	GTAGGTGTGA	TATGCAGCCT	2400
GGTATACGAG	CATTCGTGCA	ATTTCATTTC	ATCAAATTCT	ATCTGCTAAT	GTTTTATATT	2460
TATATTTTTG	TATTTATTTT	TTAAAAAAA			•	2490

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 653 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Ala Arg Gly Pro Val Glu Pro Glu Ser Glu Phe Val Ile Lys Ile His 1 5 10 15

Asp Ile Asn Asp Asn Glu Pro Thr Phe Pro Glu Glu Ile Tyr Thr Ala 20 25 30

Ser Val Pro Glu Met Ser Val Val Gly Thr Ser Val Val Gln Val Thr 35 40 45

Ala Thr Asp Ala Asp Asp Pro Ser Tyr Gly Asn Ser Ala Arg Val Ile 50 55 60

Tyr Ser Ile Leu Gln Gly Gln Pro Tyr Phe Ser Val Glu Pro Glu Thr 65 70 75 80

Gly Ile Ile Arg Thr Ala Leu Pro Asn Met Asn Arg Glu Asn Lys Glu 85 90 95

Gln Tyr Gln Val Val Ile Gln Ala Lys Asp Met Gly Gln Met Gly 100 105 110

Gly Leu Ser Gly Thr Thr Thr Val Asn Ile Thr Leu Thr Asp Val Asn 115 120 125

Asp Asn Pro Pro Arg Phe Pro Gln Asn Thr Ile His Leu Arg Val Leu 130 140

Glu Ser Ser Pro Val Gly Thr Ala Val Gly Ser Val Lys Ala Thr Asp 150 Ala Asp Thr Gly Lys Asn Ala Glu Val Asp Tyr Arg Ile Ile Asp Gly Asp Gly Thr Asp Met Phe Asp Ile Ile Thr Glu Lys Asp Thr Gln Glu Gly Ile Ile Thr Val Lys Lys Pro Leu Asp Tyr Glu Asn Arg Arg Leu Tyr Thr Leu Lys Val Glu Ala Glu Asn Thr His Val Asp Pro Arg Phe Tyr Tyr Leu Gly Pro Phe Lys Asp Thr Thr Ile Val Lys Ile Ser Ile Glu Asp Val Asp Glu Pro Pro Val Phe Ser Arg Ser Ser Tyr Leu Phe Glu Val His Glu Asp Ile Glu Val Gly Thr Ile Ile Gly Thr Val Met Ala Arg Asp Pro Asp Ser Thr Ser Ser Pro Ile Arg Phe Thr Leu Asp 280 Arg His Thr Asp Leu Asp Arg Ile Phe Asn Ile His Ser Gly Asn Gly Ser Leu Tyr Thr Ser Lys Pro Leu Asp Arg Glu Leu Ser Gln Trp His Asn Leu Thr Val Ile Ala Ala Glu Ile Asn Asn Pro Lys Glu Thr Thr Arg Val Ser Val Phe Val Arg Ile Leu Asp Val Asn Asp Asn Ala Pro Gin Phe Ala Val Phe Tyr Asp Thr Phe Val Cys Glu Asn Ala Arg Pro Gly Gln Leu Ile Gln Thr Ile Ser Ala Val Asp Lys Asp Asp Pro Leu Gly Gly Gln Lys Phe Phe Phe Ser Leu Ala Ala Val Asn Pro Asn Phe Thr Val Gln Asp Asn Glu Asp Asn Thr Ala Arg Ile Leu Thr Arg Lys Asn Gly Phe Asn Arg His Glu Ile Ser Thr Tyr Leu Leu Pro Val Val Ile Ser Asp Asn Asp Tyr Pro Ile Gln Ser Ser Thr Gly Thr Leu Thr Ile Arg Val Cys Ala Cys Asp Ser Gln Gly Asn Met Gln Ser Cys Ser 455 Ala Glu Ala Leu Leu Pro Ala Gly Leu Ser Thr Gly Ala Leu Ile Ala Ile Leu Leu Cys Ile Ile Ile Leu Leu Val Ile Val Val Leu Phe 490

Ala	Ala	Leu	Lys 500	Arg	Gln	Arg	Lys	505	Glu	Pro	Leu	Ile	Leu 510	Ser	Lys
Glu	Asp	Ile 515	Arg	Asp	Asn	Ile	Val 520	Ser	Tyr	Asn	Asp	Glu 525	Gly	Gly	Gly
Glu	Glu 530	Asp	Thr	Gln	Pro	Phe 535	Asp	Ile	Gly	Thr	Leu 540	Arg	Asn	Pro	Ala
Ala 545	Ile	Glu	Glu	Lys	Lys 550	Leu	Arg	Arg	Asp	Ile 555		Pro	Glu	Thr	Leu 560
Phe	Ile	Pro	Arg	Arg 565	Thr	Pro	Thr	Ala	Pro 570	Asp	Asn	Thr	Авр	Val 575	Arg
Asp	Phe	Ile	Asn 580	Glu	Arg	Leu	Lys	Glu 585	His	Asp	Leu	Asp	Pro 590	Thr	Ala
Pro	Pro	Tyr 595	Asp	Ser	Leu	Ala	Thr 600	Tyr	Ala	Tyr	Glu	Gly 605	Asn	Asp	Ser
Val	Ala 610	Glu	Ser	Leu	Ser	Ser 615	Leu	Glu	Ser	Gly	Thr 620	Thr	Glu	Gly	Asp
Gln 625	Asn	Tyr	Asp		Leu 630	Arg	Glu	Trp	Gly	Pro 635	Arg	Phe	Asn	Lys	Leu 640
Ala	Glu	Met	Tyr	Gly 645	Gly	Gly	Glu	Ser	Asp 650	Lys	Asp	Ala			

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3048 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CGCCGGCGG	GAAGATGACC	GCGGGCGCCG	GCGTGCTCCT	TCTGCTGCTC	TCGCTCTCCG	60
GCGCGCTCCG	GGCCCATAAT	GAGGATCTTA	CAACTAGAGA	GACCTGCAAG	GCTGGGTTCT	120
CTGAAGATGA	TTACACGGCA	TTAATCTCCC	AAAATATTCT	AGAAGGGGAA	AAGCTACTTC	180
AAGTCAAGTT	CAGCAGCTGT	GTGGGGACCA	AGGGGACACA	ATATGAGACC	AACAGCATGG	240
ACTTCAAAGT	TGGGGCAGAT	GGGACAGTCT	TCGCCACCCG	GGAGCTGCAG	GTCCCCTCCG	300
AGCAGGTGGC	GTTCACGGTG	ACTGCATGGG	ACAGCCAGAC	AGCAGAGAAA	TGGGACGCCG	360
TGGTGCGGTT	GCTGGTGGCC	CAGACCTCGT	CCCCGCACTC	TGGACACAAG	CCGCAGAAAG	420
GAAAGAAGGT	CGTGGCTCTG	GACCCCTCTC	CGCCTCCGAA	GGACACCCTG	CTGCCGTGGC	480
CCCAGCACCA	GAACGCCAAC	GGGCTGAGGC	GGCGCAAACG	GGACTGGGTC	ATCCCACCCA	· 540
TCAACGTGCC	CGAGAACTCG	CGCGGGCCCT	TCCCGCAGCA	GCTCGTGAGG	ATCCGGTCCG	600
ACAAAGACAA	TGACATCCCC	ATCCGGTACA	GCATCACGGG	AGTGGGTGCC	GACCAGCCCC	660
CCATGGAGGT	CTTCAGCATT	AACTCCATGT	CCGGCCGGAT	GTACGTCACA	AGGCCCATGG	720

ACCGGGAGGA	GCACGCCTCT	TACCACCTCC	GAGCCCACGC	TGTGGACATG	AATGGCAACA	780
AGGTGGAGAA	CCCCATCGAC	CTGTACATCT	ACGTCATCGA	CATGAATGAC	AACCACCCTG	840
AGTTCATCAA	CCAGGTCTAC	AACTGCTCCG	TGGACGAGGG	CTCCAAGCCA	GGCACCTACG	900
TGATGACCAT	CACGGCCAAC	GATGCTGACG	ACAGCACCAC	GGCCAACGGG	ATGGTGCGGT	960
ACCGGATCGT	GACCCAGACC	CCACAGAGCC	CGTCCCAGAA	TATGTTCACC	ATCAACAGCG	1020
AGACTGGAGA	TATCGTCACA	GTGGCGGCTG	GCTGGGACCG	AGAGAAAGTT	CAGCAGTACA	1080
CAGTCATCGT	TCAGGCCACA	GATATGGAAG	GAAATCTCAA	CTATGGCCTC	TCAAACACAG	1140
CCACAGCCAT	CATCACGGTG	ACAGATGTGA	ATGACAACCC	GTCAGAATTT	ACCGCCAGCA	1200
CGTTTGCAGG	GGAGGTCCCC	GAAAACAGCG	TGGAGACCGT	GGTCGCAAAC	CTCACGGTGA	1260
TGGACCGAGA	TCAGCCCCAC	TCTCCAAACT	GGAATGCCGT	TTACCGCATC	ATCAGTGGGG	1320
ATCCATCCGG	GCACTTCAGC	GTCCGCACAG	ACCCCGTAAC	CAACGAGGGC	ATGGTCACCG	1380
TGGTGAAGGC	AGTCGACTAC	GAGCTCAACA	GAGCTTTCAT	GCTGACAGTG	ATGGTGTCCA	1440
ACCAGGCGCC	CCTGGCCAGC	GGAATCCAGA	TGTCCTTCCA	GTCCACGGCA	GGGGTGACCA	1500
TCTCCATCAT	GGACATCAAC	GAGGCTCCCT	ACTTCCCCTC	AAACCACAAG	CTGATCCGCC	1560
TGGAGGAGGG	CGTGCCCCC	GGCACCGTGC	TGACCACGTT	TTCAGCTGTG	GACCCTGACC	1620
GGTTCATGCA	GCAGGCTGTG	AGATACTCAA	AGCTGTCAGA	CCCAGCGAGC	TGGCTGCACA	1680
TCAATGCCAC	CAACGGCCAG	ATCACCACGG	TGGCAGTGCT	GGACCGTGAG	TCCCTCTACA	1740
CCAAAAACAA	CGTCTACGAG	GCCACCTTCC	TGGCAGCTGA	CAATGGGATA	CCCCGGCCA	1800
GCGGCACCGG	GACCCTCCAG	ATCTATCTCA	TTGACATCAA	CGACAACGCC	CCTGAGCTGC	1860
TGCCCAAGGA	GGCGCAGATC	TGCGAGAGGC	CCAACCTGAA	CGCCATCAAC	ATCACGGCGG	1920
CCGACGCTGA	CGTGCACCCC	AACATCGGCC	CCTACGTCTT	CGAGCTGCCC	TTTGTCCCGG	1980
CGGCCGTGCG	GAAGAACTGG	ACCATCACCC	GCCTGAACGG	TGACTATGCC	CAACTCAGCT	2040
TGCGCATCCT	GTACCTGGAG	GCCGGGATGT	ATGACGTCCC	CATCATCGTC	ACAGACTCTG	2100
GAAACCCTCC	CCTGTCCAAC	ACGTCCATCA	TCAAAGTCAA	GGTGTGCCCA	TGTGATGACA	2160
ACGGGGACTG	CACCACCATT	GGCGCAGTGG	CAGCGGCTGG	TCTGGGCACC	GGTGCCATCG	2220
TGGCCATCCT	CATCTGCATC	CTCATCCTGC	TGACCATGGT	CCTGCTGTTT	GTCATGTGGA	2280
TGAAGCGGCG	AGAGAAGGAG	CGCCACACGA	AGCAGCTGCT	CATTGACCCC	GAGGACGACG	2340
TCCGCGAAAA	GATCCTCAAG	TATGACGAGG	AAGGCGGTGG	CGAGGAGGAC	CAGGACTACG	2400
ACCTCAGCCA	GCTGCAGCAG	CCGGAAGCCA	TGGGGCACGT	GCCAAGCAAA	GCCCTGGCG	2460
TGCGTCGCGT	GGATGAGCGG	CCGGTGGGCC	CTGAGCCCCA	GTACCCGATC	AGGCCCATGG	2520
TGCCGCACCC	AGGCGACATC	GGTGACTTCA	TCAATGAGGG	ACTCCGCGCT	GCTGACAACG	2580
ACCCCACGGC	ACCCCCTAT	GACTCCCTGC	TGGTCTTCGA	CTACGAGGGG	AGCGGCTCCA	2640
CCGCAGGCTC	CGTCAGCTCC	CTGAACTCAT	CCAGTTCCGG	GGACCAAGAC	TACGATTACC	2700
TCAACGACTG	GGGCCCCAGA	TTCAAGAAGC	TGGCGGACAT	GTATGGAGGT	GGTGAAGAGG	2760

TGTCTTCACT	TGAATTTCCT	AGAACAGAAG	CACTGTTTTT	AAAAAAAG		3048
TGCACCCGGC	CGCTGCCCAG	CACCGCGCTG	GCTGGCACTG	AAGGACAGCA	AGAGGCACTC	3000
GGAGGCCCCC	CAATCCCCAC	GTTGAGCTGT	CTAGCATGAG	CACCCACCCC	CACAGCGCCC	2940
GCACTGAGCA	GAGGCGGCCG	GTCTTCCCGA	CTCCCTGCGG	CTGTGTCCTT	AGTGCTGTTA	28,80
ATTGACTGAC	CTCGCATCTT	CGGACCGAAG	TGAGAGCCGT	GCTCGGACGC	CGGAGGAGCA	2820

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 916 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Met Thr Ala Gly Ala Gly Val Leu Leu Leu Leu Ser Leu Ser Gly 10 Ala Leu Arg Ala His Asn Glu Asp Leu Thr Thr Arg Glu Thr Cys Lys 25 Ala Gly Phe Ser Glu Asp Asp Tyr Thr Ala Leu Ile Ser Gln Asn Ile Leu Glu Gly Glu Lys Leu Leu Gln Val Lys Phe Ser Ser Cys Val Gly Thr Lys Gly Thr Gln Tyr Glu Thr Asn Ser Met Asp Phe Leu Val Gly Ala Asp Gly Thr Val Phe Ala Thr Arg Glu Leu Gln Val Pro Ser Glu Gln Val Ala Phe Thr Val Thr Ala Trp Asp Ser Gln Thr Ala Glu Lys Trp Asp Ala Val Val Arg Leu Leu Val Ala Gln Thr Ser Ser Pro His Ser Gly His Lys Pro Gln Lys Gly Lys Lys Val Val Ala Leu Asp Pro Ser Pro Pro Pro Lys Asp Thr Leu Leu Pro Trp Pro Gln His Gln Asn 150 155 Ala Asn Gly Leu Arg Arg Arg Lys Arg Asp Trp Val Ile Pro Pro Ile Asn Val Pro Glu Asn Ser Arg Gly Pro Phe Pro Gln Gln Leu Val Arg Ile Arg Ser Asp Lys Asp Asn Asp Ile Pro Ile Arg Tyr Ser Ile Thr
195 200 205 200 205 Gly Val Gly Ala Asp Gln Pro Pro Met Glu Val Phe Ser Ile Asn Ser 215 Met Ser Gly Arg Met Tyr Val Thr Arg Pro Met Asp Arg Glu Glu His

Ala Ser Tyr His Leu Arg Ala His Ala Val Asp Met Asn Gly Asn Lys Val Glu Asn Pro Ile Asp Leu Tyr Ile Tyr Val Ile Asp Met Asn Asp Asn His Pro Glu Phe Ile Asn Gln Val Tyr Asn Cys Ser Val Asp Glu Gly Ser Lys Pro Gly Thr Tyr Val Met Thr Ile Thr Ala Asn Asp Ala Asp Asp Ser Thr Thr Ala Asn Gly Met Val Arg Tyr Arg Ile Val Thr Gln Thr Pro Gln Ser Pro Ser Gln Asn Met Phe Thr Ile Asn Ser Glu Thr Gly Asp Ile Val Thr Val Ala Ala Gly Trp Asp Arg Glu Lys Val Gln Gln Tyr Thr Val Ile Val Gln Ala Thr Asp Met Glu Gly Asn Leu Asn Tyr Gly Leu Ser Asn Thr Ala Thr Ala Ile Ile Thr Val Thr Asp 375 Val Asn Asp Asn Pro Ser Glu Phe Thr Ala Ser Thr Phe Ala Gly Glu Val Pro Glu Asn Ser Val Glu Thr Val Val Ala Asn Leu Thr Val Met Asp Arg Asp Gln Pro His Ser Pro Asn Trp Asn Ala Val Tyr Arg Ile 425 Ile Ser Gly Asp Pro Ser Gly His Phe Ser Val Arg Thr Asp Pro Val Thr Asn Glu Gly Met Val Thr Val Val Lys Ala Val Asp Tyr Glu Leu Asn Arg Ala Phe Met Leu Thr Val Met Val Ser Asn Gln Ala Pro Leu Ala Ser Gly Ile Gln Met Ser Phe Gln Ser Thr Ala Gly Val Thr Ile 490 Ser Ile Met Asp Ile Asn Glu Ala Pro Tyr Phe Pro Ser Asn His Lys Leu Ile Arg Leu Glu Glu Gly Val Pro Pro Gly Thr Val Leu Thr Thr Phe Ser Ala Val Asp Pro Asp Arg Phe Met Gln Gln Ala Val Arg Tyr Ser Lys Leu Ser Asp Pro Ala Ser Trp Leu His Ile Asn Ala Thr Asn 550 555 Gly Gln Ile Thr Thr Val Ala Val Leu Asp Arg Glu Ser Leu Tyr Thr Lys Asn Asn Val Tyr Glu Ala Thr Phe Leu Ala Ala Asp Asn Gly Ile

Pro Pro Ala Ser Gly Thr Gly Thr Leu Gln Ile Tyr Leu Ile Asp Ile Asn Asp Asn Ala Pro Glu Leu Leu Pro Lys Glu Ala Gln Ile Cys Glu 615 Arg Pro Asn Leu Asn Ala Ile Asn Ile Thr Ala Ala Asp Ala Asp Val His Pro Asn Ile Gly Pro Tyr Val Phe Glu Leu Pro Phe Val Pro Ala Ala Val Arg Lys Asn Trp Thr Ile Thr Arg Leu Asn Gly Asp Tyr Ala 660 665 Gin Leu Ser Leu Arg Ile Leu Tyr Leu Glu Ala Gly Met Tyr Asp Val 680 Pro Ile Ile Val Thr Asp Ser Gly Asn Pro Pro Leu Ser Asn Thr Ser Ile Ile Lys Val Lys Val Cys Pro Cys Asp Asp Asn Gly Asp Cys Thr 710 715 Thr Ile Gly Ala Val Ala Ala Gly Leu Gly Thr Gly Ala Ile Val Ala Ile Leu Ile Cys Ile Leu Ile Leu Leu Thr Met Val Leu Leu Phe Val Met Trp Met Lys Arg Arg Glu Lys Glu Arg His Thr Lys Gln Leu Leu Ile Asp Pro Glu Asp Asp Val Arg Glu Lys Ile Leu Lys Tyr Asp Glu Glu Gly Gly Glu Glu Asp Gln Asp Tyr Asp Leu Ser Gln Leu 785 790 795 800 Gln Gln Pro Glu Ala Met Gly His Val Pro Ser Lys Ala Pro Gly Val 810 Arg Arg Val Asp Glu Arg Pro Val Gly Pro Glu Pro Gln Tyr Pro Ile Arg Pro Met Val Pro His Pro Gly Asp Ile Gly Asp Phe Ile Asn Glu Gly Leu Arg Ala Ala Asp Asn Asp Pro Thr Ala Pro Pro Tyr Asp Ser 855 Leu Leu Val Phe Asp Tyr Glu Gly Ser Gly Ser Thr Ala Gly Ser Val 875 Ser Ser Leu Asn Ser Ser Ser Ser Gly Asp Gln Asp Tyr Asp Tyr Leu Asn Asp Trp Gly Pro Arg Phe Lys Lys Leu Ala Asp Met Tyr Gly Gly 905 Gly Glu Glu Asp

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3164 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CTCCACTCAC	GCTCAGCCCT	GGACGGACAG	GCAGTCCAAC	GGAACAGAAA	CATCCCTCAG	60
CCCACAGGCA	CGATCTGTTC	CTCCTGGGAA	GATGCAGAGG	CTATGATGCT	CCTCGCCACA	120
TCGGGCGCCT	GCCTGGGCCT	GCTGGCAGTG	GCAGCAGTGG	CAGCAGCAGG	TGCTAACCCT	180
GCCCAACGGG	ACACCCACAG	CCTGCTGCCC	ACCCACCGGC	GCCAAAAGAG	AGATTGGATT	240
TGGAACCAGA	TGCACATTGA	TGAAGAGAAA	AACACCTCAC	TTCCCCATCA	TGTAGGCAAG	300
ATCAAGTCAA	GCGTGAGTCG	CAAGAATGCC	AAGTACCTGC	TCAAAGGAGA	ATATGTGGGC	360
AAGGTCTTCC	GGGTCGATGC	AGAGACAGGA	GACGTGTTCG	CCATTGAGAG	GCTGGACCGG	. 420
GAGAATATCT	CAGAGTACCA	CCTCACTGCT	GTCATTGTGG	ACAAGGACAC	TGGCGAAAAC	480
CTGGAGACTC	CTTCCAGCTT	CACCATCAAA	GTTCATGACG	TGAACGACAA	CTGGCCTGTG	540
TTCACGCATC	GGTTGTTCAA	TGCGTCCGTG	CCTGAGTCGT	CGGCTGTGGG	GACCTCAGTC	600
ATCTCTGTGA	CAGCAGTGGA	TGCAGACGAC	CCCACTGTGG	GAGACCACGC	CTCTGTCATG	660
TACCAAATCC	TGAAGGGGAA	AGAGTATTTT	GCCATCGATA	ATTCTGGACG	TATTATCACA	720
ATAACGAAAA	GCTTGGACCG	AGAGAAGCAG	GCCAGGTATG	AGATCGTGGT	GGAAGCGCGA	780
GATGCCCAGG	GCCTCCGGGG	GGACTCGGGC	ACGGCCACCG	TGCTGGTCAC	TCTGCAAGAC	840
ATCAATGACA	ACTTCCCCTT	CTTCACCCAG	ACCAAGTACA	CATTTGTCGT	GCCTGAAGAC	900
ACCCGTGTGG	GCACCTCTGT	GGGCTCTCTG	TTTGTTGAGG	ACCCAGATGA	GCCCCAGAAC	960
CGGATGACCA	AGTACAGCAT	CTTGCGGGGC	GACTACCAGG	ACGCTTTCAC	CATTGAGACA	1020
AACCCCGCCC	ACAACGAGGG	CATCATCAAG	CCCATGAAGC	CTCTGGATTA	TGAATACATC	1080
CAGCAATACA	GCTTCATAGT	CGAGGCCACA	GACCCCACCA	TCGACCTCCG	ATACATGAGC	1140
CCTCCCGCGG	GAAACAGAGC	CCAGGTCATT	ATCAACATCA	CAGATGTGGA	CGAGCCCCCC	1200
ATTTTCCAGC	AGCCTTTCTA	CCACTTCCAG	CTGAAGGAAA	ACCAGAAGAA	GCCTCTGATT	1260
GGCACAGTGC	TGGCCATGGA	CCCTGATGCG	GCTAGGCATA	GCATTGGATA	CTCCATCCGC	1320
AGGACCAGTG	ACAAGGGCCA	GTTCTTCCGA	GTCACAAAAA	AGGGGGACAT	TTACAATGAG	1380
AAAGAACTGG	ACAGAGAAGT	CTACCCCTGG	TATAACCTGA	CTGTGGAGGC	CAAAGAACTG	1440
GATTCCACTG	GAACCCCCAC	AGGAAAAGAA	TCCATTGTGC	AAGTCCACAT	TGAAGTTTTG	1500
GATGAGAATG	ACAATGCCCC	GGAGTTTGCC	AAGCCCTACC	AGCCCAAAGT	GTGTGAGAAC	1560
GCTGTCCATG	GCCAGCTGGT	CCTGCAGATC	TCCGCAATAG	ACAAGGACAT	AACACCACGA	1620

AACGTGAAGT	TCAAATTCAT	CTTGAATACT	GAGAACAACT	TTACCCTCAC	GGATAATCAC	1680
GATAACACGG	CCAACATCAC	AGTCAAGTAT	GGGCAGTTTG	ACCGGGAGCA	TACCAAGGTC	1740
CACTTCCTAC	CCGTGGTCAT	CTCAGACAAT	GGGATGCCAA	GTCGCACGGG	CACCAGCACG	1800
CTGACCGTGG	CCGTGTGCAA	GTGCAACGAG	CAGGGCGAGT	TCACCTTCTG	CGAGGATATG	1860
GCCGCCCAGG	TGGGCGTGAG	CATCCAGGCA	GTGGTAGCCA	TCTTACTCTG	CATCCTCACC	1920
ATCACAGTGA	TCACCCTGCT	CATCTTCCTG	CGGCGGCGGC	TCCGGAAGCA	GGCCGCGCG	1980
CACGGCAAGA	GCGTGCCGGA	GATCCACGAG	CAGCTGGTCA	CCTACGACGA	GGAGGGCGGC	2040
GGCGAGATGG	ACACCACCAG	CTACGATGTG	TCGGTGCTCA	ACTCGGTGCG	CCGCGGCGGG	2100
GCCAAGCCCC	CGCGGCCCGC	GCTGGACGCC	CGGCCTTCCC	TCTATGCGCA	GGTGCAGAAG	2160
CCACCGAGGC	ACGCGCCTGG	GGCACACGGA	GGGCCCGGGG	AGATGGCAGC	CATGATCGAG	2220
GTGAAGAAGG	ACGAGGCGGA	CCACGACGGC	GACGGCCCCC	CCTACGACAC	GCTGCACATC	2280
TACGGCTACG	AGGGCTCCGA	GTCCATAGCC	GAGTCCCTCA	GCTCCCTGGG	CACCGACTCA	2340
TCCGACTCTG	ACGTGGATTA	CGACTTCCTT	AACGACTGGG	GACCCAGGTT	TAAGATGCTG	2400
GCTGAGCTGT	ACGGCTCGGA	CCCCCGGGAG	GAGCTGCTGT	ATTAGGCGGC	CGAGGTCACT	2460
CTGGGCCTGG	GGACCCAAAC	CCCCTGCAGC	CCAGGCCAGT	CAGACTCCAG	GCACCACAGC	2520
CTCCAAAAAT	GGCAGTGACT	CCCCAGCCCA	GCACCCCTTC	CTCGTGGGTC	CCAGAGACCT	2580
CATCAGCCTT	GGGATAGCAA	ACTCCAGGTT	CCTGAAATAT	CCAGGAATAT	ATGTCAGTGA	2640
TGACTATTCT	CAAATGCTGG	CAAATCCAGG	CTGGTGTTCT	GTCTGGGCTC	AGACATCCAC	2700
ATAACCCTGT	CACCCACAGA	CCGCCGTCTA	ACTCAAAGAC	TTCCTCTGGC	TCCCCAAGGC	2760
TGCAAAGCAA	AACAGACTGT	GTTTAACTGC	TGCAGGGTCT	TTTTCTAGGG	TCCCTGAACG	2820
CCCTGGTAAG	GCTGGTGAGG	TCCTGGTGCC	TATCTGCCTG	GAGGCAAAGG	CCTGGACAGC	2880
TTGACTTGTG	GGGCAGGATT	CTCTGCAGCC	CATTCCCAAG	GGAGACTGAC	CATCATGCCC	2940
TCTCTCGGGA	GCCCTAGCCC	TGCTCCAACT	CCATACTCCA	CTCCAAGTGC	CCCACCACTC	3000
CCCAACCCCT	CTCCAGGCCT	GTCAAGAGGG	AGGAAGGGC	CCCATGGCAG	CTCCTGACCT	3060
	-			CTGTGCTGTA	CTGAGCACTG	3120
AACCACATIC	AGGGAAATGG	CTTATTAAAC	TTTGAAGCAA	CTGT		3164

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 780 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Met Met Leu Leu Ala Thr Ser Gly Ala Cys Leu Gly Leu Leu Ala Val 1 5 10 15

Ala Ala Val Ala Ala Ala Gly Ala Asn Pro Ala Gln Arg Asp Thr His Ser Leu Leu Pro Thr His Arg Arg Gln Lys Arg Asp Trp Ile Trp Asn Gln Met His Ile Asp Glu Glu Lys Asn Thr Ser Leu Pro His His Val Gly Lys Ile Lys Ser Ser Val Ser Arg Lys Asn Ala Lys Tyr Leu Leu Lys Gly Glu Tyr Val Gly Lys Val Phe Arg Val Asp Ala Glu Thr Gly Asp Val Phe Ala Ile Glu Arg Leu Asp Arg Glu Asn Ile Ser Glu Tyr His Leu Thr Ala Val Ile Val Asp Lys Asp Thr Gly Glu Asn Leu Glu Thr Pro Ser Ser Phe Thr Ile Lys Val His Asp Val Asn Asp Asn Trp Pro Val Phe Thr His Arg Leu Phe Asn Ala Ser Val Pro Glu Ser Ser 155 Ala Val Gly Thr Ser Val Ile Ser Val Thr Ala Val Asp Ala Asp Asp 170 Pro Thr Val Gly Asp His Ala Ser Val Met Tyr Gln Ile Leu Lys Gly 185 Lys Glu Tyr Phe Ala Ile Asp Asn Ser Gly Arg Ile Ile Thr Ile Thr Lys Ser Leu Asp Arg Glu Lys Gln Ala Arg Tyr Glu Ile Val Val Glu Ala Arg Asp Ala Gin Gly Leu Arg Gly Asp Ser Gly Thr Ala Thr Val Leu Val Thr Leu Gln Asp Ile Asn Asp Asn Phe Pro Phe Thr Gln Thr Lys Tyr Thr Phe Val Val Pro Glu Asp Thr Arg Val Gly Thr Ser 265 Val Gly Ser Leu Phe Val Glu Asp Pro Asp Glu Pro Gln Asn Arg Met Thr Lys Tyr Ser Ile Leu Arg Gly Asp Tyr Gln Asp Ala Phe Thr Ile 295 Glu Thr Asn Pro Ala His Asn Glu Gly Ile Ile Lys Pro Met Lys Pro Leu Asp Tyr Glu Tyr Ile Gln Gln Tyr Ser Phe Ile Val Glu Ala Thr Asp Pro Thr Ile Asp Leu Arg Tyr Met Ser Pro Pro Ala Gly Asn Arg 345 Ala Gln Val Ile Ile Asn Il Thr Asp Val Asp Glu Pro Pro Ile Phe 360

Gln Gln Pro Phe Tyr His Phe Gln Leu Lys Glu Asn Gln Lys Lys Pro 375 Leu Ile Gly Thr Val Leu Ala Met Asp Pro Asp Ala Ala Arg His Ser Ile Gly Tyr Ser Ile Arg Arg Thr Ser Asp Lys Gly Gln Phe Phe Arg Val Thr Lys Lys Gly Asp Ile Tyr Asn Glu Lys Glu Leu Asp Arg Glu 425 Val Tyr Pro Trp Tyr Asn Leu Thr Val Glu Ala Lys Glu Leu Asp Ser 440 Thr Gly Thr Pro Thr Gly Lys Glu Ser Ile Val Gln Val His Ile Glu Val Leu Asp Glu Asn Asp Asn Ala Pro Glu Phe Ala Lys Pro Tyr Gln 475 Pro Lys Val Cys Glu Asn Ala Val His Gly Gln Leu Val Leu Gln Ile 490 Ser Ala Ile Asp Lys Asp Ile Thr Pro Arg Asn Val Lys Phe Lys Phe 505 Ile Leu Asn Thr Glu Asn Asn Phe Thr Leu Thr Asp Asn His Asp Asn Thr Ala Asn Ile Thr Val Lys Tyr Gly Gln Phe Asp Arg Glu His Thr 535 Lys Val His Phe Leu Pro Val Val Ile Ser Asp Asn Gly Met Pro Ser Arg Thr Gly Thr Ser Thr Leu Thr Val Ala Val Cys Lys Cys Asn Glu Gln Gly Glu Phe Thr Phe Cys Glu Asp Met Ala Ala Gln Val Gly Val Ser Ile Gln Ala Val Val Ala Ile Leu Cys Ile Leu Thr Ile Thr 600 Val Ile Thr Leu Leu Ile Phe Leu Arg Arg Leu Arg Leu Gln Ala 615 Arg Ala His Gly Lys Ser Val Pro Glu Ile His Glu Gln Leu Val Thr 630 635 Tyr Asp Glu Glu Gly Gly Glu Met Asp Thr Thr Ser Tyr Asp Val Ser Val Leu Asn Ser Val Arg Arg Gly Gly Ala Lys Pro Pro Arg Pro Ala Leu Asp Ala Arg Pro Ser Leu Tyr Ala Gln Val Gln Lys Pro Pro 680 Arg His Ala Pro Gly Ala His Gly Gly Pro Gly Glu Met Ala Ala Met Ile Glu Val Lys Lys Asp Glu Ala Asp His Asp Gly Asp Gly Pro Pro Tyr Asp Thr Leu His Ile Tyr Gly Tyr Glu Gly Ser Glu Ser Ile Ala 725 730 735

Glu Ser Leu Ser Ser Leu Gly Thr Asp Ser Ser Asp Ser Asp Val Asp
740 745 750

Tyr Asp Phe Leu Asn Asp Trp Gly Pro Arg Phe Lys Met Leu Ala Glu
755 760 765

Leu Tyr Gly Ser Asp Pro Arg Glu Glu Leu Leu Tyr 770 775 780

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1369 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TGTAGATGAG CCACCTGTCT TCAGCAAACT GGCCTACATC TTACAAATAA GAGAAGATGC 60 TCAGATAAAC ACCACAATAG GCTCCGTCAC AGCCCAAGAT CCAGATGCTG CCAGGAATCC 120 TGTCAAGTAC TCTATAGATC GACACAGA TATGGACAGA ATATTCAACA TTGATTCTGG 180 AAATGGTTCG ATTTTTACAT CGAAACTTCT TGACCGAGAA ACACTGCTAT GGCACAACAT 240 TACAGTGATA GCAACAGAGA TCAATAATCC AAAGCAAAGT AGTCGAGTAC CTCTATATAT 300 TAAAGTTCTA GATGTCAATG ACAACGCCCC AGAATTTGCT GAGTTCTATG AAACTTTTGT 360 CTGTGAAAAA GCAAAGGCAG ATCAGTTGAT TCAGACCTTG CATGCTGTTA GCAAGGATGA 420 CCCTTATAGT GGGCACCAAT TTTCGTTTTC CTTGGCCCCT GAAGCAGCCA GTGGCTCAAA 480 CTTTACCATT CAAGACAACA AAGACAACAC GGCGGGAATC TTAACTCGGA AAAATGGCTA 540 TAATAGACAC GAGATGAGCA CCTATCTCTT GCCTGTGGTC ATTTCAGACA ACGACTACCC 600 AGTTCAAAGC AGCACTGGGA CAGTGACTGT CCGGGTCTGT GCATGTGACC ACCACGGGAA 660 CATGCAATCC TGCCATGCGG AGGCGCTCAT CCACCCCACG GGACTGAGCA CGGGGGCTCT 720 GGTTGCCATC CTTCTGTGCA TCGTGATCCT ACTAGTGACA GTGGTGCTGT TTGCAGCTCT 780 GAGGCGGCAG CGAAAAAAAG AGCCTTTGAT CATTTCCAAA GAGGACATCA GAGATAACAT 840 TGTCAGTTAC AACGACGAAG GTGGTGGAGA GGAGGACACC CAGGCTTTTG ATATCGGCAC 900 CCTGAGGAAT CCTGAAGCCA TAGAGGACAA CAAATTACGA AGGGACATTG TGCCCGAAGC 960 CCTTTTCCTA CCCGACGGA CTCCAACAGC TCGCGACAAC ACCGATGTCA GAGATTTCAT 1020 TAACCAAAGG TTAAAGGAAA ATGACACGGA CCCCACTGCC CCGCCATACG ACTCCCTGGC 1080 CACTTACGCC TATGAAGGCA CTGGCTCCGT GGCGGATTCC CTGAGCTCGC TGGAGTCAGT 1140 GACCACGGAT GCAGATCAAG ACTATGATTA CCTTTAGTGA CTGGGACCTC GATTCAAAAA 1200 GCTTGCAGAT ATGTATGGAG GAGTGGACAG TGACAAAGAC TCCTAATCTG TTGCCTTTTT 1260 CATTITCCAA TACGACACTG AAATATGTGA AGTGGCTATT TCTTTATATT TATCCACTAC 1320
TCCGTGAAGG CTTCTCTGTT CTACCCGTTC CAAAAGCCAA TGGCTGCAG 1369

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 414 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Val Asp Glu Pro Pro Val Phe Ser Lys Leu Ala Tyr Ile Leu Gln Ile 1 5 10 15

Arg Glu Asp Ala Gln Ile Asn Thr Thr Ile Gly Ser Val Thr Ala Gln
20 25 30

Asp Pro Asp Ala Ala Arg Asn Pro Val Lys Tyr Ser Ile Lys Arg His 35 40 45

Thr Asp Met Asp Arg Ile Phe Asn Ile Asp Ser Gly Asn Gly Ser Ile 50 55 60

Phe Thr Ser Lys Leu Leu Lys Arg Glu Thr Leu Leu Trp His Asn Ile 65 70 75 80

Thr Val Ile Ala Thr Glu Ile Asn Asn Pro Lys Gln Ser Ser Arg Val 85 90 95

Pro Leu Tyr Ile Lys Val Leu Asp Val Asn Asp Asn Ala Pro Glu Phe 100 105 110

Ala Glu Phe Tyr Glu Thr Phe Val Cys Glu Lys Ala Lys Ala Asp Gln 115 120 125

Leu Ile Gln Thr Leu His Ala Val Asp Lys Asp Asp Pro Tyr Ser Gly - 130 140

His Gln Phe Ser Phe Ser Leu Ala Pro Glu Ala Ala Ser Gly Ser Asn 145 150 155 160

Phe Thr Ile Gln Asp Asn Lys Asp Asn Thr Ala Gly Ile Leu Thr Arg 165 170 175

Lys Asn Gly Tyr Asn Arg His Glu Met Ser Thr Tyr Leu Leu Pro Val 180 185 190

Val Ile Ser Asp Asn Asp Tyr Pro Val Gln Ser Ser Thr Gly Thr Val 195 200 205

Thr Val Arg Val Cys Ala Cys Asp His His Gly Asn Met Gln Ser Cys 210 220

His Ala Glu Ala Leu Ile His Pro Thr Gly Leu Ser Thr Gly Ala Leu 225 230 235 240

Val Ala Ile Leu Leu Cys Ile Val Ile Leu Leu Val Thr Val Val Leu 245 250 255

Phe Ala Ala Leu Arg Arg Gln Arg Lys Lys Glu Pro Leu Ile Ile Ser 260 265 270

PCT/US93/03681 WO 93/21302

-71-

Lys	Glu	Asp 275	Ile	Arg	yab	Asn	11e 280	Val	ser	Tyr	Asn	Asp 285	Glu	Gly	Gly
Gly	Glu 290	Glu	Asp	Thr	Gln	Ala 295	Phe	Asp	Ile	Gly	Thr 300	Leu	Arg	Asn	Pro
Glu 305	Ala	Ile	Glu	Asp	Asn 310	Lys	Leu	Arg	Arg	Asp 315	Ile	Val	Pro	Glu	Ala 320
Leu	Phe	Leu	Pro	Arg 325	Arg	Thr	Pro	Thr	Ala 330	-	Asp	Asn	Thr	Asp 335	Val
Arg	Asp	Phe	Ile 340	Asn	Gln	Arg	Leu	Lys 345	Glu	Asn	Asp	Thr	Asp 350	Pro	Thr
Ala	Pro	Pro 355	Tyr	Asp	Ser	Leu	Ala 360	Thr	Tyr	Ala	Tyr	Glu 365	Gly	Thr	Gly
Ser	Val 370	Ala	Asp	Ser	Leu	Ser 375	Ser	Leu	Glu	Ser	Val 380	Thr	Thr	Asp	Ala
Asp 385	Gln	Asp	Tyr	Asp	Tyr 390	Leu	Ser	Asp	Trp	Gly 395	Pro	Arg	Phe	Lys	Lys 400
Leu	Ala	yab	Met	Tyr 405	Gly	Gly	Val	Asp	Ser 410	Asp	Lys	Asp	Ser		

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2550 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CAGGAAATGC	TCTTGGATCT	CTGGACTCCA	TTAATAATAT	TATGGATTAC	TCTTCCCCCT	60
TGCATTTACA	TGGCTCCGAT	GAATCAGTCT	CAAGTTTTAA	TGAGTGGATC	CCCTTTGGAA	120
CTAAACAGTC	TGGGTGAAGA	ACAGCGAATT	TTGAACCGCT	CCAAAAGAGG	CTGGGTTTGG	180
AATCAAATGT	TTGTCCTGGA	AGAGTTTTCT	GGACCTGAAC	CGATTCTTGT	TGGCCGGCTA	240
CACACAGACC	TGGATCCTGG	GAGCAAAAAA	ATCAAGTATA	TCCTATCAGG	TGATGGAGCT	300
GGGACCATAT	TTCAAATAAA	TGATGTAACT	GGAGATATCC	ATGCTATAAA	AAGACTTGAC	360
CGGGAGGAAA	AGGCTGAGTA	TACCCTAACA	GCTCAAGCAG	TGGACTGGGA	GACAAGCAAA	420
CCTCTGGAGC	CTCCTTCTGA	ATTTATTATT	AAAGTTCAAG	ACATCAATGA	CAATGCACCA	480
GAGTTTCTTA	ATGGACCCTA	TCATGCTACT	GTGCCAGAAA	TGTCCATTTT	GGGTACATCT	540
GTCACTAACG	TCACTGCGAC	CGACGCTGAT	GACCCAGTTT	ATGGAAACAG	TGCAAAGTTG	600
GTTTATAGTA	TATTGGAAGG	GCAGCCTTAT	TTTTCCATTG	AGCCTGAAAC	AGCTATTATA	660
AAAACTGCCC	TTCCCAACAT	GGACAGAGAA	GCCAAGGAGG	AGTACCTGGT	TGTTATCCAA	720
GCCAAAGATA	TGGGTGGACA	CTCTGGTGGC	CTGTCTGGGA	CCACGACACT	TACAGTGACT	780

CTTACTGATG TI	AATGACAA	TCCTCCAAAA	TTTGCACAGA	GCCTGTATCA	CTTCTCAGTA	840
CCGGAAGATG TG	GTTCTTGG	CACTGCAATA	GGAAGGGTGA	AGGCCAATGA	TCAGGATATT	900
GGTGAAAATG CA	CAGTCATC	ATATGATATC	ATCGATGGAG	ATGGAACAGC	ACTTTTTGAA	960
ATCACTTCTG AT	GCCCAGGC	CCAGGATGGC	ATTATAAGGC	TAAGAAAACC	TCTGGACTTT	1020
GAGACCAAAA AA	TCCTATAC	GCTAAAGGAT	GAGGCAGCCA	ATGTCCATAT	TGACCCACGC	1080
TTCAGTGGCA GG	GGGCCCTT	TAAAGACACG	GCGACAGTCA	AAATCGTGGT	TGAAGATGCT	1140
GATGAGCCTC CG	GTCTTCTC	TTCACCGACT	TACCTACTTG	AAGTTCATGA	AAATGCTGCT	1200
CTAAACTCCG TG	ATTGGGCA	AGTGACTGCT	CGTGACCCTG	ATATCACTTC	CAGTCCTATA	1260
AGGTTTTCCA TO	GACCGGCA	CACTGACCTG	GAGAGGCAGT	TCAACATTAA	TGCAGACGAT	1320
GGGAAGATAA CG	CTGGCAAC	ACCACTTGAC	agagaa ttaa	GTGTATGGCA	CAACATAACA	1380
ATCATTGCTA CT	GAAATTAG	GAACCACAGT	CAGATATCAC	GAGTACCTGT	TGCTATTAAA	1440
GTGCTGGATG TO	AATGACAA	CGCCCTGAA	TTCGCATCCG	AATATGAGGC	ATTTTTATGT	1500
GAAAATGGAA AA	CCCGGCCA	AGTCATTCAA	ACTGTTAGCG	CCATGGACAA	AGATGATCCC	1560
AAAAACGGAC AT	TATTTCTT	ATACAGTCTC	CTTCCAGAAA	TGGTCAACAA	TCCGAATTTC	1620
ACCATCAAGA AA	AATGAAGA	TAATTCCCTC	AGTATTTTGG	CAAAGCATAA	TGGATTCAAC	1680
CGCCAGAAGC AA	GAAGTCTA	TCTTTTACCA	ATCATAATCA	GTGATAGTGG	AAATCCTCCA	1740
CTGAGCAGCA CT	AGCACCTT	GACAATCAGG	GTCTGTGGCT	GCAGCAATGA	CGGTGTCGTC	1800
CAGTCTTGCA AT	GTCGAAGC	TTATGTCCTT	CCAATTGGAC	TCAGTATGGG	CGCCTTAATT	1860
GCCATATTAG CA	TGCATCAT	TTTGCTGTTA	GTCATCGTGG	TGCTGTTTGT	AACTCTACGG	1920
CGGCATCAAA AA	AATGAACC	ATTAATTATC	AAAGATGATG	AAGACGTTCG	AGAAAACATC	1980
ATTCGCTACG AT	GATGAAGG	AGGAGGGGAG	GAGGACACAG	AGGCTTTTGA	CATTGCAACT	2040
TTACAAAATC CA	GATGGAAT	TAATGGATTT	TTACCCCGTA	AGGATATTAA	ACCAGATTTG	2100
CAGTTTATGC CA	AGGCAAGG	GCTTGCTCCA	GTTCCAAATG	GTGTTGATGT	CGATGAATTT	2160
ATAAATGTAA GG	CTGCATGA	GGCAGATAAT	GATCCCACAG	CCCCGCCATA	TGACTCCATT	- 2220
CAAATATATG GC	TATGAAGG	CCGAGGGTCA	GTGGCTGGCT	CCCTCAGCTC	CTTGGAGTCC	2280
ACCACATCAG AC	TCAGACCA	GAATTTTGAC	TACCTCAGTG	ACTGGGGTCC	CCGCTTTAAG	2340
AGACTGGGCG AA	CTCTACTC	TGTTGGTGAA	AGTGACAAAG	AAACTTGACA	GTGGATTATA	2400
AATAAATCAC TG	GAACTGAG	CATTCTGTAA	TATTCTAGGG	TCACTCCCCT	TAGATACAAC	2460
CAATGTGGCT AT	TTGTTTAG	AGGCAAGTTT	AGCACCAGTC	ATCTATAACT	CAACCACATT	2520
TAATGTTGAC AA	AAAGATAA	TAAATAAAA	•.	•		2550

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 793 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54: Met Leu Leu Asp Leu Trp Thr Pro Leu Ile Ile Leu Trp Ile Thr Leu Pro Pro Cys Ile Tyr Met Ala Pro Met Asn Gln Ser Gln Val Leu Met Ser Gly Ser Pro Leu Gln Leu Asn Ser Leu Gly Glu Glu Gln Arg Ile Leu Asn Arg Ser Lys Arg Gly Trp Val Trp Asn Gln Met Phe Val Leu Glu Glu Phe Ser Gly Pro Glu Pro Ile Leu Val Gly Arg Leu His Thr Asp Leu Asp Pro Gly Ser Lys Lys Ile Lys Tyr Ile Leu Ser Gly Asp Gly Ala Gly Thr Ile Phe Gln Ile Asn Asp Val Thr Gly Asp Ile His 105 Ala Ile Lys Arg Leu Asp Arg Glu Glu Lys Ala Glu Tyr Thr Leu Thr Ala Gln Ala Val Asp Trp Glu Thr Ser Lys Pro Leu Glu Pro Pro Ser Glu Phe Ile Ile Lys Val Gln Asp Ile Asn Asp Asn Ala Pro Glu Phe Leu Asn Gly Pro Tyr His Ala Thr Val Pro Glu Met Ser Ile Leu Gly 165 170 175 Thr Ser Val Thr Asn Val Thr Ala Thr Asp Ala Asp Asp Pro Val Tyr Gly Asn Ser Ala Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr Phe Ser Ile Glu Pro Glu Thr Ala Ile Ile Lys Thr Ala Leu Pro Asn Met Asp Arg Glu Ala Lys Glu Glu Tyr Leu Val Val Ile Gln Ala Lys Asp Met Gly Gly His Ser Gly Gly Leu Ser Gly Thr Thr Leu Thr Val Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe Ala Gln Ser Leu Tyr His Phe Ser Val Pro Glu Asp Val Val Leu Gly Thr Ala Ile Gly Arg Val Lys Ala Asn Asp Gln Asp Ile Gly Glu Asn Ala Gln Ser Ser Tyr Asp Ile Ile Asp Gly Asp Gly Thr Ala Leu Phe Glu Ile Thr

Ser Asp Ala Gln Ala Gln Asp Gly Ile Ile Arg Leu Arg Lys Pro Leu Asp Phe Glu Thr Lys Lys Ser Tyr Thr Leu Lys Asp Glu Ala Ala Asn Val His Ile Asp Pro Arg Phe Ser Gly Arg Gly Pro Phe Lys Asp Thr Ala Thr Val Lys Ile Val Val Glu Asp Ala Asp Glu Pro Pro Val Phe Ser Ser Pro Thr Tyr Leu Leu Glu Val His Glu Asn Ala Ala Leu Asn 395 Ser Val Ile Gly Gln Val Thr Ala Arg Asp Pro Asp Ile Thr Ser Ser Pro Ile Arg Phe Ser Ile Asp Arg His Thr Asp Leu Glu Arg Gln Phe 425 Asn Ile Asn Ala Asp Asp Gly Lys Ile Thr Leu Ala Thr Pro Leu Asp Arg Glu Leu Ser Val Trp His Asn Ile Thr Ile Ile Ala Thr Glu Ile 455 Arg Asn His Ser Gln Ile Ser Arg Val Pro Val Ala Ile Lys Val Leu Asp Val Asn Asp Asn Ala Pro Glu Phe Ala Ser Glu Tyr Glu Ala Phe 485 Leu Cys Glu Asn Gly Lys Pro Gly Gln Val Ile Gln Thr Val Ser Ala 505 Met Asp Lys Asp Asp Pro Lys Asn Gly His Tyr Phe Leu Tyr Ser Leu Leu Pro Glu Met Val Asn Asn Pro Asn Phe Thr Ile Lys Lys Asn Glu 535 -Asp Asn Ser Leu Ser Ile Leu Ala Lys His Asn Gly Phe Asn Arg Gln 555 Lys Gln Glu Val Tyr Leu Leu Pro Ile Ile Ile Ser Asp Ser Gly Asn Pro Pro Leu Ser Ser Thr Ser Thr Leu Thr Ile Arg Val Cys Gly Cys 585 Ser Asn Asp Gly Val Val Gln Ser Cys Asn Val Glu Ala Tyr Val Leu 600 Pro Ile Gly Leu Ser Met Gly Ala Leu Ile Ala Ile Leu Ala Cys Ile Ile Leu Leu Val Ile Val Val Leu Phe Val Thr Leu Arg Arg His 625 630 635 Gln Lys Asn Glu Pro Leu Ile Ile Lys Asp Asp Glu Asp Val Arg Glu 645 650 Asn Ile Ile Arg Tyr Asp Asp Glu Gly Gly Glu Glu Asp Thr Glu WO 93/21302 PCT/US93/03681

-	7	5	-
---	---	---	---

	Ala	Phe	Asp 675		Ala	Thr	Leu	Gln 680		Pro	Asp	Gly	1le 685		Gly	Phe	
	Leu	Pro 690		Lys	Asp	Ile	Lys 695		Asp	Leu	Gln	Phe 700		Pro	Arg	Gln	
	Gly 705		Ala	Pro	Val	Pro 710	Asn	Gly	Val	Asp	Val 715	-	Glu	Phe	Ile	Asn 720	
	Val	. Arg	Leu	His	Glu 725	Ala	Asp	Asn	Asp	730		Ala	Pro	Pro	Tyr 735	Asp	
	Ser	: Ile	Gln	Ile 740		Gly	туг	Glu	Gly 745	_	Gly	Ser	Val	Ala 750	Gly	Ser	
	Leu	Ser	Ser 755		Glu	Ser	Thr	Thr 760		Asp	Ser	Asp	Gln 765		Phe	Asp	
	Tyr	Leu 770		Asp	Trp	Gly	Pro 775		Phe	Lys	Arg	Leu 780		Glu	Leu	Tyr	
	Ser 785	. Val	Gly	Glu	Ser	Asp 790	Lys	Glu	Thr								
(2)	INFO	RMAT	ION	FOR .	SEQ :	ID NO	o: 55	:									
	(i)	(B (C	UENC) LE) TY) ST) TO	NGTH PE: : RAND:	: 730 nuclo EDNE:	0 bas eic a SS: s	se pacid	airs									
	(ii)	MOL	ECUL	E TY	PE: (CDNA											
	(ix)		TURE) NA) LO	ME/K			30										
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	V: S	EQ I	D NO	:55:							
	AT TO sn Se 1			r Va					o Le					s Se			. 46
	GAA Glu																94
	ATC Ile																142
	GCT Ala																190
	GAT Asp 65																238
GAG Glu 80	GAG Glu	GAC Asp	ACC Thr	CAG (GCC S Ala S 85	TTT (Phe 1	Asp	ATC 11	GGC Gly	ACC Thr 90	CTG Leu	AGG Arg	TAA Asn	CCT Pro	GCA Ala 95		28 6

							CGG Arg									334
							ACA Thr									382
							AAA Lys 135									430
							ACC Thr									478
ATT Ile 160	GCT Ala	GAA Glu	TCT Ser	CTG Leu	AGT Ser 165	TCA Ser	TTA Leu	GAA Glu	TCA Ser	GGT Gly 170	ACT Thr	ACT Thr	GAA Glu	GGA Gly	GAC Asp 175	526
							GAA Glu									574
GCA Ala	GAA Glu	ATG Met	TAT Tyr 195	GGT Gly	GGT Gly	GGG Gly	GAA Glu	AGT Ser 200	GAC Asp	AAA Lys	GAC Asp	TCT Ser	TAA * 205	CGT Arg	AGG Arg	622
ATA Ile	TAT Tyr	GTT Val 210	CTG Leu	TTC Phe	AAA Lys	CAA Gln	GAG Glu 215	TA8 TA8	GTA Val	ACT Thr	CTA Leu	CCC Prc 220	ATG Met	CTG Leu	TCT Ser	670
					*		TCA Ser									718
		TTC Phe									٠					730

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Asn Ser Ser Ser Val Pro Gly Asp Pro Leu Glu Ser Thr Cys Ser Ala

Glu Ala Leu Leu Pro Ala Gly Leu Ser Thr Gly Ala Leu Ile Ala

Ile Leu Leu Cys Ile Ile Ile Leu Leu Val Ile Val Val Leu Phe Ala 40 45

Ala Leu Lys Arg Gln Arg Lys Lys Glu Pro Leu Ile Leu Ser Lys Glu

Asp Ile Arg Asp Asn Ile Val Ser Tyr Asn Asp Glu Gly Gly Glu

PCT/US93/03681 WO 93/21302

-77-

Glu	Asp	Thr	Gln	Ala 85	Phe	Asp	Ile	Gly	Thr 90	Leu	Arg	Asn	Pro	Ala 95	Ala
Ile	Glu	Glu	Lys 100	Lys	Leu	Arg	Arg	Asp 105	Ile	Ile	Pro	Glu	Thr 110	Leu	Phe
Ile	Pro	Arg 115	Arg	Thr	Pro	Thr	Ala 120	Pro	Asp	Asn	Thr	Asp 125	Val	Arg	Asp
Phe	Ile 130	Asn	Glu	Arg	Leu	Lys 135	Glu	His	Asp	Leu	Asp 140	Pro	Thr	Ala	Pro
Pro 145	Tyr	Asp	Ser	Leu	Ala 150	Thr	Tyr	Ala	Tyr	Glu 155	Gly	Asn	Asp	Ser	11e 160
Ala	Glu	Ser	Leu	ser 165	Ser	Leu	Glu	Ser	Gly 170	Thr	Thr	Glu	Gly	Asp 175	Gln
Asn	Tyr	Asp	Tyr 180	Leu	Arg	Glu	Trp	Gly 185	Pro	Arg	Phe	Asn	Lув 190	Leu	Ala
Glu	Met	Tyr 195	Gly	Gly	Gly	Glu	ser 200	yab	Lys	Asp	Ser	Arg 205	Arg	Ile	Tyr
Val	Leu 210	Phe	Lys	Gln	Glu	Lys 215	Val	Thr	Leu	Pro	Met 220	Leu	Ser	Pro	Leu
His 225	Asn	Ile	Tyr	Ser	Gly 230	Ala	Phe	Pro	Ala	Val 235	Ser	Thr	Ile	Phe	Phe 240
Ser	-														

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2625 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

CGGCAGCCCT	GACGTGATGA	GCTCAACCAG	CAGAGACATT	CCATCCCAAG	AGAGGTCTGC	60
GTGACGCGTC	CGGGAGGCCA	CCCTCAGCAA	GACCACCGTA	CAGTTGGTGG	AAGGGGTGAC	120
AGCTGCATTC	TCCTGTGCCT	ACCACGTAAC	CAAAAATGAA	GGAGAACTAC	TGTTTACAAG	180
CCGCCCTGGT	GTGCCTGGGC	ATGCTGTGCC	ACAGCCATGC	CTTTGCCCCA	GAGCGGCGGG	240
GGCACCTGCG	GCCCTCCTTC	CATGGGCACC	ATGAGAAGGG	CAAGGAGGGG	CAGGTGCTAC	300
AGCGCTCCAA	GCGTGGCTGG	GTCTGGAACC	AGTTCTTCGT	GATAGAGGAG	TACACCGGGC	360
CTGACCCCGT	GCTTGTGGGC	AGGCTTCATT	CAGATATTGA	CTCTGGTGAT	GGGAACATTA	420
AATACATTCT	CTCAGGGGAA	GGAGCTGGAA	CCATTTTTGT	GATTGATGAC	AAATCAGGGA	480
ACATTCATGC	CACCAAGACG	TTGGATCGAG	AAGAGAGAGC	CCAGTACACG	TTGATGGCTC	540
AGGCGGTGGA	CAGGGACACC	AATCGGCCAC	TGGAGCCACC	GTCGGAATTC	ATTGTCAAGG	600

TCCAGGACAT	TAATGACAAC	CCTCCGGAGT	TCCTGCACGA	GACCTATCAT	GCCAACGTGC	. 660
CTGAGAGGTC	CAATGTGGGA	ACGTCAGTAA	TCCAGGTGAC	AGCTTCAGAT	GCAGATGACC	720
CCACTTATGG	AAATAGCGCC	AAGTTAGTGT	ACAGTATCCT	CGAAGGACAA	CCCTATTTTT	780
CGGTGGAAGC	ACAGACAGGT	ATCATCAGAA	CAGCCCTACC	CAACATGGAC	AGGGAGGCCA	840
AGGAGGAGTA	CCACGTGGTG	ATCCAGGCCA	AGGACATGGG	TGGACATATG	GGCGGACTCT	900
CAGGGACAAC	CAAAGTGACG	ATCACACTGA	CCGATGTCAA	TGACAACCCA	CCAAAGTTTC	960
CGCAGAGGCT	ATACCAGATG	TCTGTGTCAG	AAGCAGCCGT	CCCTGGGGAG	GAAGTAGGAA	1020
GAGTGAAAGC	TAAAGATCCA	GACATTGGAG	AAAATGGCTT	AGTCACATAC	AATATTGTTG	1080
ATGGAGATGG	TATGGAATCG	TTTGAAATCA	CAACGGACTA	TGAAACACAG	GAGGGGGTGA	1140
TAAAGCTGAA	AAAGCCTGTA	GATTTTGAAA	CCGAAAGAGC	CTATAGCTTG	AAGGTAGAGG	1200
CAGCCAACGT	GCACATCGAC	CCGAAGTTTA	TCAGCAATGG	CCCTTTCAAG	GACACTGTGA	1260
CCGTCAAGAT	CTCAGTAGAA	GATGCTGATG	AGCCCCCTAT	GTTCTTGGCC	CCAAGTTACA	1320
TCCACGAAGT	CCAAGAAAAT	GCAGCTGCTG	GCACCGTGGT	TGGGAGAGTG	CATGCCAAAG	1380
ACCCTGATGC	TGCCAACAGC	CCGATAAGGT	ATTCCATCGA	TCGTCACACT	GACCTCGACA	1440
GATTTTTCAC	TATTAATCCA	GAGGATGGTT	TTATTAAAAC	TACAAAACCT	CTGGATAGAG	1500
AGGAAACAGC	CTGGCTCAAC	ATCACTGTCT	TTGCAGCAGA	AATCCACAAT	CGGCATCAGG	1560
AAGCCCAAGT	CCCAGTGGCC	ATTAGGGTCC	TTGATGTCAA	CGATAATGCT	CCCAAGTTTG	1620
CTGCCCCTTA	TGAAGGTTTC	ATCTGTGAGA	GTGATCAGAC	CAAGCCACTT	TCCAACCAGC	1680
CAATTGTTAC	AATTAGTGCA	GATGACAAGG	ATGACACGGC	CAATGGACCA	AGATTTATCT	1740
TCAGCCTACC	CCCTGAAATC	ATTCACAATC	CAAATTTCAC	AGTCAGAGAC	AACCGAGATA	1800
ACACAGCAGG	CGTGTACGCC	CGGCGTGGAG	GGTTCAGTCG	GCAGAAGCAG	GACTTGTACC	1860
TTCTGCCCAT	AGTGATCAGC	GATGGCGGCA	TCCCGCCCAT	GAGTAGCACC	AACACCCTCA	1920
CCATCAAAGT	CTGCGGGTGC	GACGTGAACG	GGGCACTGCT	CTCCTGCAAC	GCAGAGGCCT	1980
ACATTCTGAA	CGCCGGCCTG	AGCACAGGCG	CCCTGATCGC	CATCCTCGCC	TGCATCGTCA	2040
TTCTCCTGGT	CATTGTAGTA	TTGTTTGTGA	CCCTGAGAAG	GCAAAAGAAA	GAACCACTCA	2100
TTGTCTTTGA	GGAAGAAGAT	GTCCGTGAGA	ACATCATTAC	TTATGATGAT	GAAGGGGGTG	2160
GGGAAGAAGA	CACAGAAGCC	TTTGATATTG	CCACCCTCCA	GAATCCTGAT	GGTATCAATG	2220
GATTTATCCC	CCGCAAAGAC	ATCAAACCTG	AGTATCAGTA	CATGCCTAGA	CCTGGGCTCC	2280
GGCCAGCGCC	CAACAGCGTG	GATGTCGATG	ACTTCATCAA	CACGAGAATA	CAGGAGGCAG	2340
ACAATGACCC	CACGGCTCCT	CCTTATGACT	CCATTCAAAT	CTACGGTTAT	GAAGGCAGGG	2400
GCTCAGTGGC	CGGGTCCCTG	AGCTCCCTAG	AGTCGGCCAC	CACAGATTCA	GACTTGGACT	2460
ATGATTATCT	ACAGAACTGG	GGACCTCGTT	TTAAGAAACT	AGCAGATTTG	TATGGTTCCA	2520
AAGACACTTT	TGATGACGAT	TCTTAACAAT	AACGATACAA	ATTTGGCCTT	AAGAACTGTG	2580
TCTGGCGTTC	TCAAGAATCT	AGAAGATGTG	TAACAGGTAT	TTTTT		2625

WO 93/21302 PCT/US93/03681

-79-

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 796 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Met Lys Glu Asn Tyr Cys Leu Gln Ala Ala Leu Val Cys Leu Gly Met Leu Cys His Ser His Ala Phe Ala Pro Glu Arg Arg Gly His Leu Arg Pro Ser Phe His Gly His His Glu Lys Gly Lys Glu Gly Gln Val Leu Gln Arg Ser Lys Arg Gly Trp Val Trp Asn Gln Phe Phe Val Ile Glu 50 55 60 Glu Tyr Thr Gly Pro Asp Pro Val Leu Val Gly Arg Leu His Ser Asp Ile Asp Ser Gly Asp Gly Asn Ile Lys Tyr Ile Leu Ser Gly Glu Gly Ala Gly Thr Ile Phe Val Ile Asp Asp Lys Ser Gly Asn Ile His Ala Thr Lys Thr Leu Asp Arg Glu Glu Arg Ala Gln Tyr Thr Leu Met Ala Gln Ala Val Asp Arg Asp Thr Asn Arg Pro Leu Glu Pro Pro Ser Glu Phe Ile Val Lys Val Gln Asp Ile Asn Asp Asn Pro Pro Glu Phe Leu 155 His Glu Thr Tyr His Ala Asn Val Pro Glu Arg Ser Asn Val Gly Thr 165 Ser Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Thr Tyr Gly Asn Ser Ala Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr Phe Ser Val Glu Ala Gln Thr Gly Ile Ile Arg Thr Ala Leu Pro Asn Met Asp Arg Glu Ala Lys Glu Glu Tyr His Val Val Ile Gln Ala Lys Asp Met Gly Gly His Met Gly Gly Leu Ser Gly Thr Thr Lys Val Thr Ile Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Lys Phe Pro Gln Arg Leu Tyr Gln Met Ser Val Ser Glu Ala Ala Val Pro Gly Glu Glu Val Gly Arg Val Lys Ala Lys Asp Pro Asp Ile Gly Glu Asn Gly Leu Val Thr

Tyr 305	Asn	Ile	Va1	Asp	Gly 310	Asp	Gly	Met	Glu	Ser 315	Phe	Glu	Ile	Thr	Thr 320
Asp	Tyr	Glu	Thr	Gln 325	Glu	Gly	Val	Ile	Lys 330	Leu	Lys	Lys	Pro	Val 335	Asp
Phe	Glu	Thr	Glu 340	Arg	Ala	Tyr	Ser	Leu 345	Lys	Val	Glu	Ala	Ala 350	Asn	Val
His	Ile	Asp 355	Pro	Lys	Phe	Ile	Ser 360	Asn	Gly	Pro	Phe	Lys 365	Asp	Thr	Val
Thr	Val 370	Lys	Ile	Ser	Val	Glu 375	Asp	Ala	Asp	Glu.	Pro 380	Pro	Met	Phe	Leu
Ala 385	Pro	ser	Tyr	Ile	His 390	Glu	Val	Gln	Glu	Asn 395	Ala	Ala	Ala	Gly	Thr 400
Val	Val	Gly	Arg	Val 405	His	Ala	Lys	Asp	Pro 410	Asp	Ala	Ala	Asn	Ser 415	Pro
Ile	Arg	Tyr	Ser 420	Ile	Авр	Arg	His	Thr 425	Asp	Leu	Asp		Phe 430		Thr
Ile	Asn	Pro 435	Glu	yab	Gly	Phe	Ile 440	ŗàs	Thr	Thr	Lys	Pro 445	Leu	Asp	Arg
Glu	Glu 450	Thr	Ala	Trp	Leu	Asn 455	Ile	Thr	Val	Phe	Ala 460	Ala	Glu	Ile	Hís
Asn 465	Arg	His	Gln	Glu	Ala 470	Gln	Val	Pro		Ala 475	Ile	Arg	Val	Leu	Asp 480
Val	Asn	Asp	Asn	Ala 485	Pro	Lys	Phe	Ala	Ala 490	Pro	Tyr	Glu	Gly	Phe 495	Ile
Сув	Glu	Ser	Asp 500	Gln	Thr	Lys	Pro	Leu 505	Ser	Asn	Gln	Pro	Ile 510	Val	Thr
Ile	Ser	Ala 515	Asp	Asp	Lys	Asp	Asp 520	Thr	Ala	Asn	Gly	Pro 525	Arg	Phe	Ile
Phe	Ser 530	-Leu	Pro	Pro	Glu	Ile 535	Ile	His	Asn	Pro	Asn 540	Phe	Thr	Val	Arg
Asp 545	Asn	Arg	Asp	Aśn	Thr 550	Ala	Gly	Val	Tyr	Ala 555	Arg	Arg	Gly	Gly	Phe 560
Ser	Arg	Gln	Lys	Gln 565	Asp	Leu	Tyr	Leu	Leu 570		Ile	Val	Įle	Ser 575	Asp
Gly	Gly	Ile	Pro 580	Pro	Met	Ser	Ser	Thr 585	Asn	Thr	Leu	Thr	Ile 590	Lys	Val
Сув	Gly	Cys 595	Asp	Val	Asn	Gly	Ala 600	Leu	Leu	Ser		Asn 605	Ala	Glu	Ala
Tyr	Ile 610	Leu	Asn	Ala	Gly	Leu 615	Ser	Thr	Gly	Ala	Leu 620	Ile	Ala	Ile	Leu
Ala 625	.Cys	·Ile	Val	Ile	Leu 630	Leu	Val	Ile	Val	Val 635	Leu	Phe	Val	Thr	Leu 640
Arg	Arg	Gln	Lys	Lys 645	Glu	Pro	Leu		Val	Phe	Glu	Glu	Glu	Asp	Val

PCT/US93/03681

Arg	Glu	Asn	Ile 660	Ile	Thr	Tyr	Asp	Asp 665	Glu	Gly	Gly	Gly	Glu 670	Glu	Asp
Thr	Glu	Ala 675	Phe	Asp	Ile	Ala	Thr 680	Leu	Gln	Asn	Pro	Asp 685	Gly	Ile	Asn
Gly	Phe 690	Ile	Pro	Arg	Lys	Asp 695	Ile	Lys	Pro	Glu	Tyr 700	Gln	Tyr	Met	Pro
Arg 705	Pro	Gly	Leu	Arg	Pro 710	Ala	Pro	Asn	Ser	Val 715	Asp	Val	Asp	Asp	Phe 720
Ile	Asn	Thr	Arg	Ile 725	Gln	Glu	Ala	Asp	Asn 730	Asp	Pro	Thr	Ala	Pro 735	Pro
Tyr	Asp	Ser	11e 740	Gln	Ile	Tyr	Gly	Tyr 745	Glu	Gly	Arg	Gly	Ser 750	Val	Ala
Gly	Ser	Leu 755	Ser	Ser	Leu	Glu	Ser 760	Ala	Thr	Thr	Asp	Ser 765	Asp	Leu	Asp
Tyr	Asp 770	Tyr	Leu	Gln	Asn	Trp 775	Gly	Pro	Arg	Phe	Lys 780	Lys	Leu	Ala	Asp
Leu 785	Tyr	Gly	Ser	Lys	Asp 790	Thr	Phe	Asp	Asp	Asp 795	Ser				

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2521 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

CGGTGGAGGC	CACAGACACC	TCAAACCTGG	ATTCCACAAT	TCTACGTTAA	GTGTTGGAGT	60
TTTTATTACT	CTGCTGTAGG	AAAGCCTTTG	CCAATGCTTA	CAAGGAACTG	TTTATCCCTG	120
CTTCTCTGGG	TTCTGTTTGA	TGGAGGTCTC	CTAACACCAC	TACAACCACA	GCCACAGCAG	180
ACTTTAGCCA	CAGAGCCAAG	AGAAAATGTT	ATCCATCTGC	CAGGACAACG	GTCACATTTC	240
CAACGTGTTA	AACGTGGCTG	GGTATGGAAT	CAATTTTTTG	TGCTGGAAGA	ATACGTGGGC	300
TCCGAGCCTC	AGTATGTGGG	AAAGCTCCAT	TCCGACTTAG	ACAAGGGAGA	GGGCACTGTG	360
AAATACACCC	TCTCAGGAGA	TGGCGCTGGC	ACCGTTTTTA	CCATTGATGA	AACCACAGGG	420
GACATTCATG	CAATAAGGAG	CCTAGATAGA	GAAGAGAAAC	CTTTCTACAC	TCTTCGTGCT	480
CAGGCTGTGG	ACATAGAAAC	CAGAAAGCCC	CTGGAGCCTG	AATCAGAATT	CATCATCAAA	540
GTGCAGGATA	TTAATGATAA	TGAGCCAAAG	TTTTTGGATG	GACCTTATGT	TGCTACTGTT	600
CCAGAAATGT	CTCCTGTGGG	TGCATATGTA	CTCCAGGTCA	AGGCCACAGA	TGCAGATGAC	660
CCGACCTATG	GAAACAGTGC	CAGAGTCGTT	TACAGCATTC	TTCAGGGACA	ACCTTATTTC	720
TCTATTGATC	CCAAGACAGG	TGTTATTAGA	ACAGCTTTGC	CAAACATGGA	CAGAGAAGTC	780

			•	•		
AAAGAACAAT	ATCAAGTACT	CATCCAAGCC	AAGGATATGG	GAGGACAGCT	TGGAGGATTA	840
GCCGGAACAA	CAATAGTCAA	CATCACTCTC	ACCGATGTCA	ATGACAATCC	ACCTCGATTC	900
CCCAAAAGCA	TCTTCCACTT	GAAAGTTCCT	GAGTCTTCCC	CTATTGGTTC	AGCTATTGGA	960
agaataagag	CTGTGGATCC	TGATTTTGGA	CAAAATGCAG	AAATTGAATA	CAATATTGTT	1020
CCAGGAGATG	GGGGAAATTT	GTTTGACATC	GTCACAGATG	AGGATACACA	AGAGGGAGTC	1080
ATCAAATTGA	AAAAGCCTTT	AGATTTTGAA	ACAAAGAAGG	CATACACTTT	CAAAGTTGAG	1140
GCTTCCAACC	TTCACCTTGA	CCACCGGTTT	CACTCGGCGG	GCCCTTTCAA	AGACACAGCT	1200
ACGGTGAAGA	TCAGCGTGCT	GGACGTAGAT	GAGCCACCGG	TTTTCAGCAA	GCCGCTCTAC	1260
ACCATGGAGG	TTTATGAAGA	CACTCCGGTA	GGGACCATCA	TIGGCGCTGT	CACTGCTCAA	1320
GACCTGGATG	TAGGCAGCGG	TGCTGTTAGG	TACTTCATAG	ATTGGAAGAG	TGATGGGGAC	1380
AGCTACTTTA	CAATAGATGG	AAATGAAGGA	ACCATCGCCA	CTAATGAATT	ACTAGACAGA	1440
GAAAGCACTG	CGCAGTATAA	TTTCTCCATA	ATTGCGAGTA	AAGTTAGTAA	CCCTTTATTG	1500
ACCAGCAAAG	TCAATATACT	GATTAATGTC	TTAGATGTAA	ATGAATTTCC	TCCAGAAATA	1560
TCTGTGCCAT	ATGAGACAGC	CGTGTGTGAA	AATGCCAAGC	CAGGACAGAT	AATTCAGATA	1620
GTCAGTGCTG	CAGACCGAGA	TCTTTCACCT	GCTGGGCAAC	AATTCTCCTT	TAGATTATCA	1680
CCTGAGGCTG	CTATCAAACC	AAATTTTACA	GTTCGTGACT	TCAGAAACAA	CACAGCGGGG	1740
ATTGAAACCC	GAAGAAATGG	ATACAGCCGC	AGGCAGCAAG	AGTTGTATTT	CCTCCCTGTT	1800
GTAATAGAAG	ACAGCAGCTA	CCCTGTCCAG	AGCAGCACAA	ACACAATGAC	TATTCGAGTC	1860
TGTAGATGTG	ACTCTGATGG	CACCATCCTG	TCTTGTAATG	TGGAAGCAAT	TTTTCTACCT	1920
GTAGGACTTA	GCACTGGGGC	GTTGATTGCA	ATTCTACTAT	GCATTGTTAT	ACTCTTAGCC	1980
ATAGTTGTAC	TGTATGTAGC	ACTGCGAAGG	CAGAAGAAAA	AGCACACCCT	GATGACCTCT	2040
AAAGAAGACA	TCAGAGACAA	CGTCATCCAT	TACGATGATG	AAGGAGGTGG	GGAGGAAGAT	2100
ACCCAGGCTT	TCGACATCGG	GGCTCTGAGA	AACCCAAAAG	TGATTGAGGA	GAACAAAATT	2160
CGCAGGGATA	TAAAACCAGA	CTCTCTCTGT	TTACCTCGTC	AGAGACCACC	CATGGAAGAT	2220
AACACAGACA	TAAGGGATTT	CATTCATCAA	AGGCTACAGG	AAAATGATGT	AGATCCAACT	2280
GCCCCACCAA	TCGATTCACT	GGCCACATAT	GCCTACGAAG	GGAGTGGGTC	CGTGGCAGAG	2340
TCCCTCAGCT	CTATAGACTC	TCTCACCACA	GAAGCCGACC	AGGACTATGA	CTATCTGACA	2400
GACTGGGGAC	CCCGCTTTAA	AGTCTTGGCA	GACATGTTTG	GCGAAGAAGA	GAGTTATAAC	2460
CCTGATAAAG	TCACTTAAGG	GAGTCGTGGA	GGCTAAAATA	CAACCGAGAG	GGGAGATÍTT	2520
T					•	2521
					,	

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 794 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

WO 93/21302 PCT/US93/03681

-83-

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: Met Leu Thr Arg Asn Cys Leu Ser Leu Leu Leu Trp Val Leu Phe Asp Gly Gly Leu Leu Thr Pro Leu Gln Pro Gln Pro Gln Gln Thr Leu Ala Thr Glu Pro Arg Glu Asn Val Ile His Leu Pro Gly Gln Arg Ser His Phe Gln Arg Val Lys Arg Gly Trp Val Trp Asn Gln Phe Phe Val Leu Glu Glu Tyr Val Gly Ser Glu Pro Gln Tyr Val Gly Lys Leu His Ser 65 70 75 80 Asp Leu Asp Lys Gly Glu Gly Thr Val Lys Tyr Thr Leu Ser Gly Asp Gly Ala Gly Thr Val Phe Thr Ile Asp Glu Thr Thr Gly Asp Ile His Ala Ile Arg Ser Leu Asp Arg Glu Glu Lys Pro Phe Tyr Thr Leu Arg Ala Gln Ala Val Asp Ile Glu Thr Arg Lys Pro Leu Glu Pro Glu Ser Glu Phe Ile Ile Lys Val Gln Asp Ile Asn Asp Asn Glu Pro Lys Phe Leu Asp Gly Pro Tyr Val Ala Thr Val Pro Glu Met Ser Pro Val Gly
165 170 175 Ala Tyr Val Leu Gln Val Lys Ala Thr Asp Ala Asp Asp Pro Thr Tyr Gly Asn Ser Ala Arg Val Val Tyr Ser Ile Leu Gln Gly Gln Pro Tyr Phe Ser Ile Asp Pro Lys Thr Gly Val Ile Arg Thr Ala Leu Pro Asn Met Asp Arg Glu Val Lys Glu Gln Tyr Gln Val Leu Ile Gln Ala Lys Asp Met Gly Gly Gln Leu Gly Gly Leu Ala Gly Thr Thr Ile Val Asn Ile Thr Leu Thr Asp Val Asn Asp Asn Pro Pro Arg Phe Pro Lys Ser Ile Phe His Leu Lys Val Pro Glu Ser Ser Pro Ile Gly Ser Gly Ile 275 280 Gly Arg Ile Arg Ala Val Asp Pro Asp Phe Gly Gln Asn Ala Glu Ile Glu Tyr Asn Ile Val Pro Gly Asp Gly Gly Asn Leu Ph Asp Ile Val

Thr Asp Glu Asp Thr Gln Glu Gly Val Il Lys Leu Lys Lys Pro Leu Asp Phe Glu Thr Lys Lys Ala Tyr Thr Phe Lys Val Glu Ala Ser Asn Leu His Leu Asp His Arg Phe His Ser Ala Gly Pro Phe Lys Asp Thr Ala Thr Val Lys Ile Ser Val Leu Asp Val Asp Glu Pro Pro Val Phe Ser Lys Pro Leu Tyr Thr Met Glu Val Tyr Glu Asp Thr Pro Val Gly 390 Thr Ile Ile Gly Ala Val Thr Ala Gln Asp Leu Asp Val Gly Ser Gly Ala Val Arg Tyr Phe Ile Asp Trp Lys Ser Asp Gly Asp Ser Tyr Phe Thr Ile Asp Gly Asn Glu Gly Thr Ile Ala Thr Asn Glu Leu Leu Asp Arg Glu Ser Thr Ala Gln Tyr Asn Phe Ser Ile Ile Ala Ser Lys Val Ser Asn Pro Leu Leu Thr Ser Lys Val Asn Ile Leu Ile Asn Val Leu 470 Asp Val Asn Glu Phe Pro Pro Glu Ile Ser Val Pro Tyr Glu Thr Ala 490 Val Cys Glu Asn Ala Lys Pro Gly Gln Ile Ile Gln Ile Val Ser Ala Ala Asp Arg Asp Leu Ser Pro Ala Gly Gln Gln Phe Ser Phe Arg Leu Ser Pro Glu Ala Ala Ile Lys Pro Asn Phe Thr Val Arg Asp Phe Arg 535 540 Asn Asn Thr Ala Gly Ile Glu Thr Arg Arg Asn Gly Tyr Ser Arg Arg 555 Gln Glu Leu Tyr Phe Leu Pro Val Val Ile Glu Asp Ser Ser Tyr 570 Pro Val Gln Ser Ser Thr Asn Thr Met Thr Ile Arg Val Cys Arg Cys 580 585 Asp Ser Asp Gly Thr Ile Leu Ser Cys Asn Val Glu Ala Ile Phe Leu 600 Pro Val Gly Leu Ser Thr Gly Ala Leu Ile Ala Ile Leu Leu Cys Ile Val Ile Leu Leu Ala Ile Val Val Leu Tyr Val Ala Leu Arg Arg Gln 630 635 Lys Lys Lys His Thr Leu Met Thr Ser Lys Glu Asp Ile Arg Asp Asn Val Ile His Tyr Asp Asp Glu Gly Gly Glu Glu Asp Thr Gln Ala

WO 93/21302 PCT/US93/03681

-85-

Phe	Asp	11e 675	Gly	Ala	Leu	Arg	Asn 680	Pro	Lys	Val	Ile	Glu 685	Glu	Asn	Lys
Ile	Arg 690	Arg	Asp	Ile	Lys	Pro 695	Asp	Ser	Leu	Сув	Leu 700	Pro	Arg	Gln	Arg
Pro 705	Pro	Met	Glu	Asp	Asn 710	Thr	Asp	Ile	Arg	Asp 715	Phe	Ile	His	Gln	Arg 720
Leu	Gln	Glu	Asn	Авр 725	Val	Asp	Pro	Thr	Ala 730	Pro	Pro	Ile	Asp	Ser 735	Leu
Ala	Thr	Tyr	Ala 740	Tyr	Glu	Gly	Ser	Gly 745	Ser	Val	Ala	Glu	Ser 750	Leu	Ser
Ser	Ile	Asp 755	Ser	Leu	Thr	Thr	Glu 760	Ala	Asp	Gln	Asp	Tyr 765	Asp	Tyr	Leu
Thr	Asp 770	Trp	Gly	Pro	Arg	Phe 775	Lys	Val	Val	Ala	Asp 780	Met	Phe	Gly	Glu
Glu 785	Glu	Ser	Tyr	Asn	Pro 790	Asp	Lys	Val	Thr						

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2690 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CTTCAAGGTT	TTGCTGACTC	AGTCTGGTAG	TCAGAGTCTG	CAGGAGAAGA	CAGTTCAAGG	60
CAGGGCCTGG	AGGATTGGAT	CAGTTTAGGG	ACAGGTCAAA	GGCTGGCTTA	GAGACCTTAG	120
AGGCAGGTTG	CTTGGGTCGT	TGAATGCTAG	TCTGGTCCTG	AGAGCCCTTT	TCTCTGGCAA	180
CTGTGGACTC	AGAGCTAACC	AATTGTAGTT	GGCAGTGGGG	GTGAAGGGTG	ATCCAGAGGC	240
CTGAGCTGCA	GAGGGCACAA	GAGAGAAAAG	ATGTCTTAGA	AAGAGCTTTG	AGAACATGCC	300
TTGGCTGCTG	GCAGGGACCT	TGGATGGGGT	AGTCTACACC	CGGAAGTGCC	TGCCTGCCAT	360
CCTCTAGTGG	CTGCCTTGCA	AAATATGCTC	AGTGCAGCCG	CGTGCATGAA	TGAAAACGCC	420
GCCGGGCGCT	TCTAGTCGGA	CAAAATGCAG	CCGAGAACTC	CGCTCGTTCT	GTGCGTTCTC	480
CTGTCCCAGG	TGCTGCTGCT	AACATCTGCA	GAAGATTTGG	ACTGCACTCC	TGGATTTCAG	540
CAGAAAGTGT	TCCATATCAA	TCAGCCAGCT	GAATTCATTG	AGGACCAGTC	AATTCTAAAC	600
TTGACCTTCA	GTGACTGTAA	GGGAAACGAC	AAGCTACGCT	ATGAGGTCTC	GAGCCCATAC	660
TTCAAGGTGA	ACAGCGATGG	CGGCTTAGTT	GCTCTGAGAA	ACATAACTGC	AGTGGGCAAA	· 720
ACTCTGTTCG	TCCATGCACG	GACCCCCCAT	GCGGAAGATA	TGGCAGAACT	CGTGATTGTC	780
GGGGGGAAAG	ACATCCAGGG	CTCCTTGCAG	GATATATTTA	AATTTGCAAG	AACTTCTCCT	840
GTCCCAAGAC	AAAAGAGGTC	CATTGTGGTA	TCTCCCATTT	TAATTCCAGA	GAATCAGAGA	900

CAGCCTTTCC	CAAGAGATGT	TGGCAAGGTA	GTCGATAGTG	ACAGGCCAGA	AAGGTCCAAG	960
TTCCGGCTCA	CTGGAAAGGG	AGTGGATCAA	GAGCCTAAAG	GAATTTTCAG	AATCAATGAĞ	1020
AACACAGGGA	GCGTCTCCGT	GACACGGACC	TTGGAÇAĞAG	AAGTAATCGC	TGTTTATCAA	1080
CTATTTGTGG	AGACCACTGA	TGTCAATGGC	AAAACTCTCG	AGGGCCGGT	GCCTCTGGAA	1140
GTCATTGTGA	TTGATCAGAA	TGACAACCGA	CCGATCTTTC	GGGAAGGCCC	CTACATCGGC	1200
CACGTCATGG	AAGGGTCACC	CACAGGCACC	ACAGTGATGC	GGATGACAGC	CTTTGATGCA	1260
GATGACCCAG	CCACCGATAA	TGCCCTCCTG	CGGTATAATA	TCCGTCAACA	GACGCCTGAC	1320
AAGCCATCTC	CCAACATGTT	CTACATCGAT	CCTGAGAAAG	GAGACATTGT	CACTGTTGTG	1380
TCACCTGCGC	TGCTGGACCG	AGAGACTCTG	GAAAATCCCA	AGTATGAACT	GATCATCGAG	1440
GCTCAAGATA	TGGCTGGACT	GGATGTTGGA	TTAACAGGCA	CGGCCACAGC	CACGATCATG	1500
ATCGATGACA	AAAATGATCA	CTCACCAAAA	TTCACCAAGA	AAGAGTTTCA	AGCCACAGTC	1560
GAGGAAGGAG	CTGTGGGAGT	TATTGTCAAT	TTGACAGTTG	AAGATAAGGA	TGACCCCACC	1620
ACAGGTGCAT	GGAGGGCTGC	CTACACCATC	ATCAACGGAA	ACCCCGGGCA	GAGCTTTGAA	1680
ATCCACACCA	ACCCTCAAAC	CAACGAAGGG	ATGCTTTCTG	TTGTCAAACC	ATTGGACTAT	1740
GAAATTTCTG	CCTTCCACAC	CCTGCTGATC	AAAGTGGAAA	ATGAAGACCC	ACTCGTACCC	1800
GACGTCTCCT	ACGGCCCCAG	CTCCACAGCC	ACCGTCCACA	TCACTGTCCT	GGATGTCAAC	1860
GAGGGCCCAG	TCTTCTACCC	AGACCCCATG	ATGGTGACCA	GGCAGGAGGA	CCTCTCTGTG	1920
GGCAGCGTGC	TGCTGACAGT	GAATGCCACG	GACCCCGACT	CCCTGCAGCA	TCAAACCATC	1980
AGGTATTCTG	TTTACAAGGA	CCCAGCAGGT	TGGCTGAATA	TTAACCCCAT	CAATGGGACT	2040
GTTGACACCA	CAGCTGTGCT	GGACCGTGAG	TCCCCATTTG	TCGACAACAG	CGTGTACACT	2100
GCTCTCTTCC	TGGCAATTGA	CAGTGGCAAC	CCTCCCGCTA	CGGGCACTGG	GACTTTGCTG	2160
ATAACCCTGG	AGGACGTGAA	TGACAATGCC	CCGTTCATTT	ACCCCACAGT	AGCTGAAGTC	2220
TGTGATGATG	CCAAAAACCT	CAGTGTAGTC	ATTTTGGGAG	CATCAGATAA	GGATCTTCAC	2280
CCGAATACAG	ATCCTTTCAA	ATTTGAAATC	CACAAACAAG	CTGTTCCTGA	TAAAGTCTGG	2340
AAGATCTCCA	AGATCAACAA	TACACACGCC	CTGGTAAGCC	TTCTTCAAAA	TCTGAACAAA	2400
GCAAACTACA	ACCTGCCCAT	CATGGTGACA	GATTCAGGGA	AACCACCCAT	GACGAATATC	2460
ACAGATCTCA	GGGTACAAGT	GTGCTCCTGC	AGGAATTCCA	AAGTGGACTG	CAACGCGGCG	2520
GGGGCCCTGC	GCTTCAGCCT	GCCCTCAGTC	CTGCTCCTCA	GCCTCTTCAG	CTTAGCTTGT	2580
CTGTGAGAAC	TCCTGACGTC	TGAAGCTTGA	CTCCCAAGTT	TCCATAGCAA	CAGGAAAAAA	2640
AAAAAATCTA	TCCAAATCTG	AAGATTGCGG	TTTACAGCTA	TCGAACTTCG		2690
	•				•	

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 713 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Met Gln Pro Arg Thr Pro Leu Val Leu Cys Val Leu Leu Ser Gln Val Leu Leu Thr Ser Ala Glu Asp Leu Asp Cys Thr Pro Gly Phe Gln Gln Lys Val Phe His Ile Asn Gln Pro Ala Glu Phe Ile Glu Asp Gln Ser Ile Leu Asn Leu Thr Phe Ser Asp Cys Lys Gly Asn Asp Lys Leu Arg Tyr Glu Val Ser Ser Pro Tyr Phe Lys Val Asn Ser Asp Gly Gly Leu Val Ala Leu Arg Asn Ile Thr Ala Val Gly Lys Thr Leu Phe Val His Ala Arg Thr Pro His Ala Glu Asp Met Ala Glu Leu Val Ile Val 105 Gly Gly Lys Asp Ile Gln Gly Ser Leu Gln Asp Ile Phe Lys Phe Ala Arg Thr Ser Pro Val Pro Arg Gln Lys Arg Ser Ile Val Val Ser Pro Ile Leu Ile Pro Glu Asn Gln Arg Gln Pro Phe Pro Arg Asp Val Gly 150 Lys Val Val Asp Ser Asp Arg Pro Glu Arg Ser Lys Phe Arg Leu Thr Gly Lys Gly Val Asp Gln Glu Pro Lys Gly Ile Phe Arg Ile Asn Glu Asn Thr Gly Ser Val Ser Val Thr Arg Thr Leu Asp Arg Glu Val Ile 200 Ala Val Tyr Gln Leu Phe Val Glu Thr Thr Asp Val Asn Gly Lys Thr Leu Glu Gly Pro Val Pro Leu Glu Val Ile Val Ile Asp Gln Asn Asp 225 Asn Arg Pro Ile Phe Arg Glu Gly Pro Tyr Ile Gly His Val Met Glu Gly Ser Pro Thr Gly Thr Thr Val Met Arg Met Thr Ala Phe Asp Ala Asp Asp Pro Ala Thr Asp Asn Ala Leu Leu Arg Tyr Asn Ile Arg Gln 275 280 Gln Thr Pro Asp Lys Pro Ser Pro Asn Met Phe Tyr Ile Asp Pro Glu

295

Lys Gly Asp Ile Val Thr Val Val S r Pro Ala Leu Leu Asp Arg Glu

Thr Leu Glu Asn Pro Lys Tyr Glu Leu Ile Ile Glu Ala Gln Asp Met Ala Gly Leu Asp Val Gly Leu Thr Gly Thr Ala Thr Ala Thr Ile Met Ile Asp Asp Lys Asn Asp His Ser Pro Lys Phe Thr Lys Lys Glu Phe Gin Ala Thr Val Glu Glu Gly Ala Val Gly Val Ile Val Asn Leu Thr Val Glu Asp Lys Asp Asp Pro Thr Thr Gly Ala Trp Arg Ala Ala Tyr 385 Thr Ile Ile Asn Gly Asn Pro Gly Gln Ser Phe Glu Ile His Thr Asn 410 Pro Gln Thr Asn Glu Gly Met Leu Ser Val Val Lys Pro Leu Asp Tyr 425 Glu Ile Ser Ala Phe His Thr Leu Leu Ile Lys Val Glu Asn Glu Asp Pro Leu Val Pro Asp Val Ser Tyr Gly Pro Ser Ser Thr Ala Thr Val His Ile Thr Val Leu Asp Val Asn Glu Gly Pro Val Phe Tyr Pro Asp Pro Met Met Val Thr Arg Gln Glu Asp Leu Ser Val Gly Ser Val Leu 490 Leu Thr Val Asn Ala Thr Asp Pro Asp Ser Leu Gln His Gln Thr Ile Arg Tyr Ser Val Tyr Lys Asp Pro Ala Gly Trp Leu Asn Ile Asn Pro Ile Asn Gly Thr Val Asp Thr Thr Ala Val Leu Asp Arg Glu Ser Pro Phe Val Asp Asn Ser Val Tyr Thr Ala Leu Phe Leu Ala Ile Asp Ser 555 550 Gly Asn Pro Pro Ala Thr Gly Thr Gly Thr Leu Leu Ile Thr Leu Glu Asp Val Asn Asp Asn Ala Pro Phe Ile Tyr Pro Thr Val Ala Glu Val Cys Asp Asp Ala Lys Asn Leu Ser Val Val Ile Leu Gly Ala Ser Asp 600 Lys Asp Leu His Pro Asn Thr Asp Pro Phe Lys Phe Glu Ile His Lys 615 Gln Ala Val Pro Asp Lys Val Trp Lys Ile Ser Lys Ile Asn Asn Thr 625 630 · ·His Ala Leu Val Ser Leu Leu Gln Asn Leu Asn Lys Ala Asn Tyr Asn 650 Leu Pro Ile Met Val Thr Asp Ser Gly Lys Pro Pro Met Thr Asn Ile 665

WO 93/21302 PCT/US93/03681

-89-

Thr Asp Leu Arg Val Gln Val Cys Ser Cys Arg Asn Ser Lys Val Asp 675 680 685

Cys Asn Ala Ala Gly Ala Leu Arg Phe Ser Leu Pro Ser Val Ile Leu 690 700

Leu Ser Leu Phe Ser Leu Ala Cys Leu 705 710

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism reference on page 6, line s 12-	
B. IDENTIFICATION OF DEPOSIT	XXXXXXX deposits are identified on an additional sheet XX
Name of depositary institution	
AMERICAN TYPE CULTURE COLLECTION	
Address of depositary institution (including postal code and country)	
12301 Parklawn Drive Rockville, MD 20852 UNITED STATES OF AMERICA	
Date of deposit	Accession Number
See attached sheet	See attached sheet
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet
publication of the mention of the grant the date on which the application has be deemed to be withdrawn, only by the issu nominated by the person requesting the s D. DESIGNATED STATES FOR WHICH INDICATION	een refused or withdrawn or is see of such a sample to an expert sample (Rule 23(4) EPC)."
EP	
	•
P. CURL D. MY WITH THE P. C.	
E. SEPARATE FURNISHING OF INDICATIONS (leave	· ·
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications e.g., "Accession
For receiving Office use only This sheet was received with the international application	For International Bureau use only This sheet was received by the International Bureau on:
Authorized officer Holen Bell	Authorized officer

Hybridoma Cell Line	Deposit Date	ATCC Accession No.
30Q8A	April 6, 1993	HB11316
30Q4H	April 6, 1993	HB11317
45A5G	April 6, 1993	HB11318
30S2F	April 6, 1993	HB11319
45C6A	April 6, 1993	HB11320
30T11G	April 8, 1993	HB11324

What is claimed is:

- 1. A purified and isolated polynucleotide encoding a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10.
 - 2. The polynucleotide of claim 1 which is a DNA sequence.
- 3. The polynucleotide of claim 2 which is a cDNA sequence or biological replica thereof.
 - 4. The polynucleotide of claim 3 which is SEQ ID NO: 51.
 - 5. The polynucleotide of claim 3 which is SEQ ID NO: 15.
- 6. The polynucleotide of claim 3 which is SEQ ID NO: 19 or SEQ ID NO: 33.
 - 7. The polynucleotide of claim 3 which is SEQ ID NO: 55.
- 8. The polynucleotide of claim 2 which is a genomic DNA or a biological replica thereof.
- 9. The DNA of claim 2 which is a wholly or partially chemically synthesized DNA or a biological replica thereof.
- 10. A biologically functional DNA vector comprising a DNA according to claim 2.

- 11. The vector of claim 10 wherein said DNA is operatively linked to an expression control DNA sequence.
- 12. A host cell stably transformed or transfected with a DNA according to claim 2 in a manner allowing the expression in said host cell of the cadherin polypeptide encoded thereby.
- 13. A method for producing a cadherin polypeptide comprising the steps of growing a host cell according to claim 12 in a suitable nutrient medium and isolating the cadherin from said cell or from the medium of its growth.
- 14. A purified and isolated full length cadherin polypeptide selected from the group consisting of cadherin-6 polypeptide (SEQ ID NO: 52), cadherin-7 polypeptide (SEQ ID NO: 16), cadherin-9 polypeptide (SEQ ID NO: 20 or 34) and cadherin-10 polypeptide (SEQ ID NO: 56).
- 15. A hybridoma cell line producing a monoclonal antibody specific for a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10.
- 16. A hybridoma cell line producing a monoclonal antibody specific for cadherin-5 selected from the group consisting of 30Q8A (ATCC HB11316), 30Q4H (ATCC HB11317), 45A5G (ATCC HB11318), 30S2F (ATCC HB11319), 45C6A (ATCC HB11320) and 30T11G (ATCC 11324).
- 17. A monoclonal antibody produced by the hybridoma cell line of claim 16.

- 18. An antibody substance specific for a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10.
- 19. A method for modulating the binding capability of a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10 comprising contacting the cadherin with an antibody substance specific for said cadherin according to claim 18.
- 20. A method for modulating the binding capability of a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10 comprising contacting the cadherin with a polypeptide or peptide ligand of the cadherin.
- 21. A method for modulating the binding capability of a cadherin selected from the group consisting of cadherin-6, cadherin-7, cadherin-9 and cadherin-10 comprising contacting the cadherin with a peptide of said cadherin.

FIGURE 1

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/03681

A. CLASSIFICATION OF SUBJECT MATTER IPC(5) :C12N 1/21, 15/00; C07K 13/00, 15/28; G01N 33/53 US CL :530/350, 388.1; 536/23.1; 435/7.1, 69.1, 240.1 According to International Patent Classification (IPC) or to both national classification and IPC								
	DS SEARCHED							
Minimum d	ocumentation searched (classification system followed	by classification symbols)						
U.S. : :	530/350, 388.1; 536/23.1; 435/7.1, 69.1, 240.1							
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d	lata base consulted during the international search (na	me of data base and, where practicable,	search terms used)					
	APS, Dialog, WPI ms: neural cadherin, cloning, antibodies							
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
Y	The Journal of Cell Biology, Volume Hatta et al, "Cloning and Expression Calcium-dependent Cell Adhesion M Cadherin Gene Family", pages 873-88	of cDNA Encoding a Neural lolecule: Its Identity in the	1-21					
Y	Y Science, Volume 245, issued 11 August 1989, S. Miyatani et al, "Neural Cadherin: Role in Selective Cell-Cell Adhesion", pages 631-635, see abstract.							
	·							
X Furth	ner documents are listed in the continuation of Box C	. See patent family annex.						
-	ecial categories of cited documents:	"T" later document published after the inte- date and not in conflict with the applica						
	cument defining the general state of the art which is not considered be part of particular relevance	principle or theory underlying the inve						
	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone						
cit	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other social reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be					
O do	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to a person skilled in th	step when the document is a documents, such combination					
	cument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent	family					
Date of the	actual completion of the international search 1993	Date of mailing of the international search report 2 1 JUL 1993						
	nailing address of the ISA/US	Authorized officer Chan Kung kn						
Box PCT	n, D.C. 20231	SALLY P. TENG	X J J J					
_	O NOT APPLICABLE	Telephone No. (703) 208 0196						

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/03681

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No
Category*	Citation of document, with indication, where appropriate, of the relevant passages	
Y	Journal of Cell Science, Volume 97, issued December 1990, B. Geiger et al., "Broad Spectrum Pan-Cadherin Antibodies, Reactive with the C-Terminal 24 Amino Acid Residues of N-Cadherin", pages 607-614, see abstract	/e 1-21
Y	The Journal of Cell Biology, Volume 113, Number 4, issued Ma 1991, E. W. Napolitano et al, "Molecular Cloning and Characterization of B-Cadherin, a Novel Chick Cadherin", pages 893-905, see abstract.	
X	Cell Regulation, Volume 2, issued April 1991, S. Suzuki et al, "Diversity of the Cadherin Family: Evidence for eight new Cadherins in nervous Tissue", pages 261-270, see entire	1-21
	document.	
٠.		

			7
			ă.
			·