

WECHSELSTROM

Inhalte der Kapitel 5 bis 7: Wechselstrom

7 Wechselstrom	
Wechselstrom-Messbrücken	
Wechselstromleistung – Blindstromkompensation - Leistungsanpassung	
Impedanz und Admittanz	
Darstellung im Zeitbereich	komplexe Darstellung
6 Magnetisches Feld	
Spule	
Magnetisches Feld	
5 Elektrisches Feld	
Kondensator	
Elektrisches Feld	

REVIEW ZUM ELEKTRISCHEN FELD

Begriffe

- Feldlinie
- Äquipotentiallinie

homogenes und inhomogenes Feld

- Unterschied verstehen
- Ausrichtung von Feldlinien und Äquipotentiallinien kennen
- Spannung und Feldstärke im homogenen Feld berechnen können

Influenz

- Effekt der Influenz beschreiben können
- Definition der Flussdichte kennen und anwenden können
- Anwendung der Flussdichte verstehen

Zusammenhang zwischen Q, E, D, U

- formelmäßigen Zusammenhang zwischen den Größen verstehen
- Formeln anwenden können

Permittivität

Begriff verstehen und erklären

REVIEW ZUM KONDENSATOR

Kondensator

- Aufbau und Funktionsprinzip verstehen und erklären
- Definition der Kapazität kennen:
- Kondensatorgleichung herleiten und anwenden: i =
- Reihen- und Parallelschaltung von Kondensatoren

Reihenschaltung:
$$C_S =$$

Parallelschaltung:
$$C_P =$$

- Energie im Kondensator berechnen: W =
- Kapazität eines Kondensators berechnen: C =
- Bauformen erkennen

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
- 6.7 Andere magnetische Effekte

BEGRIFFE DES MAGNETISCHEN FELDES

Magnet

Körper, der Eisenteile anzieht

Pole

Enden eines Magneten

Magnetisches Feld

Raumgebiet, in dem man magnetische Wirkungen nachweisen kann

Ursache

- magnetisches Feld entsteht durch magnetische Materialien &
- magnetisches Feld entsteht durch bewegte Ladungen &
- Zeitliche Änderung des elektrischen Feldes

Feldlinien

- geben die Richtung des Feldes an
- Dichte der Feldlinien ist ein Maß für die Stärke des Feldes

WIRBELFELD

Magnetische Feldlinien sind stets in sich geschlossen ⇒ Wirbelfeld

Strom fließt von Betrachter weg (Kreuz symbolisiert Pfeilende)

Strom fließt auf Betrachter zu (Punkt symbolisiert Pfeilspitze)

Vergleiche mit dem elektrischen Feld: Jede Feldlinie hat einen Ladungsträger als Anfang und Ende ⇒ Quellenfeld

AUFBAU DER SPULE

"rechte Hand-Regel"

links: IEC 617-4 rechts: normgerecht DIN EN 60617-4

Frage: Welche Richtung hat das Magnetfeld?

WOZU IST DIE SPULE GUT?

Frequenzabhängiger

Widerstand

→ Entstördrossel

Energiespeicher für Schwingkreise

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
- 6.7 Andere magnetische Effekte

MAGNETISCHE FLUSSDICHTE B

Magnetische Flussdichte B gibt Intensität eines magnetischen Feldes an

Ermittlung: Kraftwirkung auf einen geraden langen Leiter

Es gilt mit der Kraft F, der Stromstärke I und der Länge l:

$$B = \frac{F}{I \cdot l} \quad \text{mit } [B] = 1 \text{ Vs/m}^2 = 1 \text{ T (Tesla)}$$

MAGNETISCHER FLUSS Φ

Flussdichte *B* · Fläche *A* (senkrecht davon durchsetzt)

In einem homogenen Magnetfeld gilt:

$$\Phi = B \cdot A$$

$$mit [\Phi] = 1 T m^2 = 1 Vs = 1 Wb (Weber)$$

Frage:

Wo ist das Feld hier homogen?

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
- 6.7 Andere magnetische Effekte

LORENTZ-KRAFT

Bewegte Ladungsträger in einem Magnetfeld:

- Ladungsträger werden abgelenkt
- Kraft wirkt senkrecht zur Bewegungsrichtung
- Kraft wirkt senkrecht zur Magnetfeldrichtung

$$\vec{F} = Q \cdot (\vec{v} \times \vec{B})$$

ANWENDUNG DER LORENTZ-KRAFT

Erklären Sie die Funktion der Kathodenstrahlröhre. Was ist an der Darstellung nicht korrekt?

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
- 6.7 Andere magnetische Effekte

MAGNETISCHE FELDSTÄRKE H

Magnetische Flussdichte eines stromdurchflossenen Leiters:

$$B = \mu \cdot \frac{I}{2\pi \cdot r}$$

Strom

- $\mu = \mu_0 \mu_r$ Permeabilität
- $\mu_{\rm r}$: relative Permeabilität
- Permeabilität des Vakuums (magn. Feldkonstante):

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$$

Flussdichte ist materialabhängig

 \Rightarrow man definiert die material**un**abhängige magn. Feldstärke H

$$H = \frac{B}{\mu}$$

$$H = \frac{B}{\mu}$$
 mit $[H] = 1 \text{ Vs/m}^2 \cdot \text{Am/Vs} = \text{A/m}$

$$\varepsilon_0 = \frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}}$$

AUFGABE

Wie groß ist die magnetische Feldstärke und die Flussdichte im Abstand von 10 mm von einem langen Draht, der von einem Strom von 1 A durchflossen wird? (Luft verhält sich hier wie Vakuum)

$$H =$$

$$B =$$

DURCHFLUTUNG ⁽¹⁾

Summe, der durch einen Ring fließenden Ströme

$$\Theta = I_1 + I_2 + \dots$$
 mit $[\Theta] =$

Beispiel:

$$\Theta =$$

DURCHFLUTUNGSGESETZ

Verallgemeinerung des Falles für einen stromdurchflossenen Leiter:

$$H = \frac{I}{2\pi \cdot r} \Rightarrow I = 2\pi \cdot r \cdot H$$

Durchflutungsgesetz:

Für einen beliebigen geschlossenen Weg gilt, wenn die Feldstärke konstant über ein Teilstück ist:

Durchflutung = Σ Feldstärke auf Teilstück · Länge des Teilstücks

Allgemeine Form:
$$\Theta = \oint \vec{H} \cdot d\vec{s}$$

Frage: Wozu ist das gut?

ANWENDUNGSBEISPIEL

Beispiel Zylinderspule = Draht um zylindrischen Körper

Annahmen:

- Außenraum:
- Innenraum:
- → Durchflutung (des rot umrandeten Bereiches):

N: Windungszahl

I: Strom

l: Länge der Spule

A: Spulenquerschnittsfläche

Durchflutungssatz (entlang des roten Weges):

 \Rightarrow Feldstärke in Zylinderspule H =

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
- 6.7 Andere magnetische Effekte

MATERIE IM MAGNETFELD

 $B = \mu_0 H$ gilt nur im Vakuum, befindet sich im Raum ein Material, so gilt:

$$\Rightarrow$$
 $B = \mu H$ mit $\mu = \mu_r \mu_0$

mit:

 μ : Permeabilität

 μ_0 : Permeabilität des Vakuums

 μ_r : relative Permeabilität

Man unterscheidet:

- $\mu_r < 1$ als **diamagnetisch** (Silber, Blei)
- $\mu_r > 1$ als **paramagnetisch** (Aluminium, Platin)
- $\mu_r >> 1$ als **ferromagnetisch** (Eisen, Nickel, Kobalt)

FERROMAGNETISCHE STOFFE

Magnetisierungskurve = Hysteresekurve

• B = f(H) ist nichtlinear

Ummagnetisieren kostet Energie. Je höher die Frequenz, desto höher der Verlust.

H_s: Sättigungsfeldstärke

 B_r : Remanzflussdichte oder Remanenz (verbleibende Flussdichte bei H=0)

 H_c : Koerzitivfeldstärke (bei der das Material wieder entmagnetisiert ist)

FERROMAGNETISCHE STOFFE

Erklärung der Magnetisierungskurve über Elementarmagnete

Ferromagnetische Eigenschaften verschwinden oberhalb der Curie-Temperatur (770°C bei Eisen).

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
 - Induktionsgesetz
 - Induktivität
 - Strom und Spannung der Spule
 - Reihen- und Parallelschaltung
 - Energie in der Spule
 - Bauformen
- 6.7 Andere magnetische Effekte

INDUKTIONSGESETZ

Verändert sich ein magnetisches Feld in einer Spule, so wird eine

Spannung induziert.

$$u = N \cdot \frac{d\Phi}{dt}$$

Lenzsche Regel

Ein durch Induktion erzeugter Strom fließt stets so, dass er ein magnetisches Feld erzeugt, das der verursachenden Flussänderung entgegenwirkt.

Frage:

Welcher zeitliche Verlauf der Spannung ergibt sich, wenn man eine Spule in ein räumlich begrenztes Magnetfeld schiebt?

MAGNETISCHES FELD "KOMPAKT"

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
 - Induktionsgesetz
 - Induktivität
 - Strom und Spannung der Spule
 - Reihen- und Parallelschaltung
 - Energie in der Spule
 - Bauformen
- 6.7 Andere magnetische Effekte

INDUKTIVITÄT L

Ein Strom durch eine Spule erzeugt ein magnetisches Feld

Frage:

 Wie verhält sich das magnetische Feld in Abhängigkeit des Stromes durch die Spule?

 \Rightarrow Proportionalitätskonstante: Induktivität L

Es gilt bei einer Spule mit N Windungen:

$$N \cdot \Phi = L \cdot I$$
 mit $[L] = 1 \text{ Vs/A} = 1 \text{ Henry} = 1 \text{ H}$

INDUKTIVITÄT DER ZYLINDERSPULE

Aus dem Durchflutungssatz folgt:

N: Windungszahl

I: Strom

l: Länge der Spule

A: Spulenquerschnittsfläche

Wir erhalten aus $H = N \cdot I / l$:

$$(1) B =$$

(2)
$$\Phi =$$

Substitution von *B* in (2) durch (1):

(3)
$$\Phi =$$

Aus der Definition von *L* folgt:

$$(4) L =$$

$$\Rightarrow L =$$

INDUKTIVITÄT DER ZYLINDERSPULE

$$L = N^2 \cdot \mu_r \mu_0 \frac{A}{\ell}$$

$$L = N^2 \cdot \mu_r \cdot \mu_0 \cdot \frac{A}{1}$$

 $A = \frac{D^2 \cdot \pi}{4}$

LInduktivität
NWindungsanzahl

μ Permeabilitätszahl des Spulenkerns

μ...... Magnetische Feldkonstante

A Spulenquerschnitt 1 Spulenlänge

D Spulendurchmesser

vergleiche:
$$C = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

Hohe Induktivität erfordert:

- *A* ↑ Abmessung hoch, aber Platzbedarf
- l ↓
 so dicht wie möglich wickeln
- N 1
 aber: Platzbedarf, Verlustwiderstand
- μ_r ↑

Luft: 1

Ferrite: 2000 ... 3000

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
 - Induktionsgesetz
 - Induktivität
 - Strom und Spannung der Spule
 - Reihen- und Parallelschaltung
 - Energie in der Spule
 - Bauformen
- 6.7 Andere magnetische Effekte

STROM UND SPANNUNG IN DER SPULE

Für eine Spule mit *N* –Windungen gilt: (1)

Das Induktionsgesetz besagt:

(2)

Substitution von Φ in (2) durch (1):

$$u(t) = L \frac{di(t)}{dt}$$

Interpretation:

- es liegt nur dann eine Spannung an, wenn der Strom sich ändert
- · liegt eine konstante Spannung an, so nimmt der Strom stetig zu

ANALOGIE SPULE UND WASSERKREISLAUF

geschwindigk $\overline{\text{eit}} v$

Analogie Spule

Strom:

Spannung:

• Induktivität:

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
 - Induktionsgesetz
 - Induktivität
 - Strom und Spannung der Spule
 - · Reihen- und Parallelschaltung
 - Energie in der Spule
 - Bauformen
- 6.7 Andere magnetische Effekte

REIHENSCHALTUNG VON SPULEN

Durch beide Spulen fließt derselbe Strom.

Aus der Kirchhoffschen Maschenregel folgt:

Mit der Spulengleichung
$$u=L\cdot \frac{di}{dt}$$
 folgt:
$$\Rightarrow \quad L_S=L_1+L_2$$

"Reihenschaltung von Spulen wie bei Widerständen"

PARALLELSCHALTUNG VON SPULEN

Aus der Kirchhoffschen Knotenregel folgt:

Aus
$$i = \frac{1}{L} \cdot \int u \, dt$$
 folgt damit:

$$\Rightarrow \frac{1}{L_P} = \frac{1}{L_1} + \frac{1}{L_2}$$

⇒ "Parallelschaltung von Spulen wie bei Widerständen"

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
 - Induktionsgesetz
 - Induktivität
 - Strom und Spannung der Spule
 - Reihen- und Parallelschaltung
 - Energie in der Spule
 - Bauformen
- 6.7 Andere magnetische Effekte

ENERGIE IN DER SPULE

Spannung an Spule:

Leistung:

$$p(t) = u(t) \cdot i(t)$$

$$mit: \quad u(t) = L \frac{di(t)}{dt}$$

$$\Rightarrow p(t) = L \cdot \frac{di(t)}{dt} \cdot i(t)$$

$$\Rightarrow W = \int p(t) dt = \int L \cdot \frac{di(t)}{dt} \cdot i(t) dt = \int L \cdot \frac{d}{dt} \left(\frac{1}{2}i(t)^2\right) \cdot dt = \int \frac{d}{dt} \left(\frac{1}{2}L \cdot i(t)^2\right) \cdot dt$$

⇒ In der Spule gespeicherte Energie:

$$W = \frac{1}{2}L \cdot i^2$$

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
 - Induktionsgesetz
 - Induktivität
 - Strom und Spannung der Spule
 - Reihen- und Parallelschaltung
 - Energie in der Spule
 - Bauformen
- 6.7 Andere magnetische Effekte

BAUFORMEN VON FERRITSPULEN

offene Spule mit (Schraub-)kern

Schraubkern eindrehbar → L variabel

geschlossene Spule

Feldlinien im Kern geführt → geringe Streuverluste

Schalenkernspule

Feldlinien geführt +
Schraubkern
eindrehbar

→ L variabel

Ringkernspule

sehr geringes Streufeld Entstördrosseln

ANWENDUNGEN

Abb. 1.15 Darstellung verschiedener Anwendungen für die Zylinderspule

Abb. 1.16 Darstellung verschiedener Anwendungen für weitere Spulenarten

- 6.1 Einführung
- 6.2 Flussdichte und Fluss
- 6.3 Lorentz-Kraft
- 6.4 Magnetische Feldstärke und Durchflutungsgesetz
- 6.5 Permeabilität
- 6.6 Spulen
- 6.7 Andere magnetische Effekte

TRANSFORMATOR

- zwei magnetisch gekoppelte Spulen
- Primärspule mit *N*₁ Wicklungen
- Sekundärspule mit N₂ Wicklungen
- Wechselspannung an einer Spule
- ⇒ Energie wird von der einen auf die andere übertragen

Bei einem idealen Transformator gilt:

$$\frac{\hat{\mathbf{u}}_2}{\hat{\mathbf{u}}_1} = \frac{N_2}{N_1}$$

ANDERE MAGNETISCHE EFFEKTE

Wirbelstromverluste

- innerhalb eines Metalls werden Ströme induziert
- ⇒meist unerwünschte Verluste
- ⇒Nutzung: Wirbelstrombremse, Induktionskochfeld

Skineffekt

- Wirbelströme im Leiter verdrängen Strom an die Oberfläche
- nur die Oberfläche des Leiters leitet bei hohen Frequenzen
- ⇒Widerstand steigt, Verluste
- ⇒bei HF werden Rohre statt Volleiter verwendet

Hall-Effekt

- Ablenkung von Ladungsträgern in Halbleiter führen zu messbarer Spannung ⇒ Messung eines Magnetfeldes möglich

WAS SIE MITNEHMEN SOLLEN...

- Begriffe des magnetischen Feldes kennen und verstehen
- Unterschiede zum elektrischen Feld kennen und verstehen
- Definition der magnetischen Größen kennen und anwenden
 - Flussdichte
 - Fluss
 - Feldstärke
 - Durchflutung
 - Permeabilität und Magnetisierungskurve
- Durchflutungsgesetz kennen und anwenden
- Induktionsgesetz kennen und anwenden
- Spulen verstehen und berechnen können
 - Induktivität, Strom und Spannung, Reihen- und Parallelschaltung, Energie
- Transformator, Wirbelstromverluste, Skin- und Halleffekt kennen