tags: FromStatCheatsheet

NOTE:

field: CDF of Geometric (p)

field: $1 - (1 - p)^x$

NOTE:

field: CDF of Exponential(β)

field: $1 - e^{-\frac{x}{\beta}}$

NOTE:

field:

- $P(\varnothing) =$
- $B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$
- $P(A^c) =$
- \bullet P(B) =
- $P(\Omega) = P(\varnothing) =$
- $(\bigcup_n A_n) = (\bigcap_n A_n) = DEMORGAN$

field:

- $P(\varnothing) = 0$
- $\bullet \ B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$
- $P(A^c) = 1 P(A)$
- $P(B) = P(A \cap B) + P(A^c \cap B)$
- $P(\Omega) = 1$ $P(\emptyset) = 0$
- $(\bigcup_n A_n) = \bigcap_n A_n$ $(\bigcap_n A_n) = \bigcup_n A_n$ DEMORGAN

field: Probability Set intersection

•
$$P(\bigcup_n A_n) = 1 - P(\bigcap_n A_n^c)$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \implies P(A \cup B) \le P(A) + P(B)$$

•
$$P(A \cup B) =$$

•
$$P(A \cap B^c) =$$

field: Probability Set intersection

•
$$P(\bigcup_n A_n) = 1 - P(\bigcap_n A_n)$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $\implies P(A \cup B) \le P(A) + P(B)$

•
$$P(A \cup B) = P(A \cap B^c) + P(A^c \cap B) + P(A \cap B)$$

•
$$P(A \cap B^c) = P(A) - P(A \cap B)$$

NOTE:

field: $P(A \cap B) =$ when A and Bindependent

field: $P(A \cap B) = P(A)P(B)$ when A and Bindependent

NOTE:

field:

$$P(A|B) =$$

field:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

field: Law of total probability

field: Law of total probability

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i) \quad \Omega = \bigcup_{i=1}^{n} A_i$$

$$P(B) = P(A \cup B) + P(A^c \cup B)$$

NOTE:

field: Bayes Theorem

field: Bayes Theorem

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j)P(A_j)} \quad \Omega = \bigcup_{i=1}^{n} A_i$$

NOTE:

field: CDF Laws

field: CDF Laws

- 1. Nondecreasing: $x_1 < x_2 \implies F(x_1) \le F(x_2)$
- 2. Limits: $\lim_{x\to-\infty} = 0$ and $\lim_{x\to\infty} = 1$
- 3. Right-Continuous $\lim_{y\to x^+} F(y) = F(x)$

field:

$$f_{y|x}(y|x) =$$

field:

$$f_{y|x}(y|x) = \frac{f(x,y)}{f_x(x)}$$

NOTE:

field: X, Y independent

- $P(X \le x, Y \le y) =$
- $\bullet \ f_{x,y}(x,y) =$

field: X, Y independent

- $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$
- $f_{x,y}(x,y) = f_x(x)f_y(y)$

NOTE:

field: Transformations $Z = \phi(X)$

- Discrete: $f_Z(z) =$
- Continuous: $F_Z(z) =$
- Cont, ϕ strictly monotone: $f_z(z)$

field: Transformations $Z = \phi(X)$

• Discrete:

$$f_Z(z) = P(\phi(X) = z) = P(X \in \phi^{-1}(z)) = \sum_{x \in \phi^{-1}(z)} f_x(x)$$

• Continuous (Method of CDF):

$$F_Z(z) = P(\phi(X) \le z) = \int_{x:\phi(x) \le z} f(x)dx$$

• Cont, ϕ strictly monotone: (Method of PDF) $f_z(z) = f_x(\phi^{-1}(z)) |\frac{d}{dz}\phi^{-1}(z)|$

NOTE:

field: Rule of the Lazy Statistician: E[g(x)] =

field: Rule of the Lazy Statistician: $E[g(x)] = \int g(x)f_x(x)dx$

NOTE:

field: Expectation rules

- \bullet E(c) =
- E(cX) =
- $\bullet \ E(X+Y) =$
- $E(\phi(X)) =$

field: Expectation rules

- $\bullet \ E(c) = c$
- $\bullet \ E(cX) = cE(X)$
- $\bullet \ E(X+Y) = E(X) + E(Y)$
- $E(\phi(X)) \neq \phi(E(X))$

field: Conditional expectation

- \bullet E(Y|X=x)=
- \bullet E(X) =
- E(Y+Z|X) =
- $E(Y|X) = c \implies$

field: Conditional expectation

- $E(Y|X=x) = \int yf(y|x)dy$
- E(X) = E(E(X|Y))
- E(Y+Z|X) = E(Y|X) + E(Z|X)
- $E(Y|X) = c \implies Cov(X,Y) = 0$

NOTE:

field: Variance

- $V(X) = \sigma_x^2 =$
- V(X+Y) =
- $V\left[\sum_{i=1}^{n} X_i\right] =$

field: Variance

- $V(X) = \sigma_x^2 = E[(X E(X))^2] = E(X^2) E(X)^2$
- V(X+Y) = V(X) + V(Y) + Cov(X,Y)
- $V\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} V(X_i) + \sum_{i \neq j} Cov(X_i, X_j)$

field: Covariance

- Cov(X,Y) =
- Cov(X,c) =
- Cov(Y,X) =
- Cov(aX, bY) =
- Cov(X + a, Y + b) =
- $Cov\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) =$

field: Covariance

- Cov(X,Y) = E[(X E(X)(Y E(Y)))] = E(XY) E(X)E(Y)
- Cov(X,c) = 0
- Cov(Y, X) = Cov(X, Y)
- Cov(aX, bY) = abCov(X, Y)
- Cov(X + a, Y + b) = Cov(X, Y)
- $Cov\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$

NOTE:

field: Correlation: $\rho(X,Y)$

field: Correlation: $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$

field: Conditional Variance

$$\bullet V(Y|X) =$$

$$\bullet$$
 $V(Y) =$

field: Conditional Variance

•
$$V(Y|X) = E[(Y - E(Y|X))^2|X] = E(Y^2|X) - E(Y|X)^2$$

$$\bullet \ V(Y) = E(V(Y|X)) + V(E(Y|X))$$

tags: UndergradTextbook

NOTE:

field: Law of total probability k = 2 (using conditional probability)

field: $P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$

NOTE:

field: Bayes formula in terms of law of total probability,

field: $P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$

NOTE:

field: P(A and B)

field: P(A and B) = P(A|B)P(B) = P(B|A)P(A)

NOTE:

field: Events A and B are independent if

field: P(A|B) = P(A) equivalently P(A and B) = P(A)P(B)

field: Poisson setting

field: The Poisson setting arises in the context of discrete counts of events that occur over space or time with the small probability and where successive events are independent

Eg: 2 on average calls a minute, X is number of calls a minute, $X \sim Pois$

NOTE:

field: Poisson approximation of binomial distribution

field: Suppose $X \sim Binom(n,p)$, $Y \sim Pois(\lambda)$. If $n \to \infty$, and $p \to 0$, in such a way that $np \to \lambda > 0$, then for all k, $P(X = k) \to P(Y = k)$. The Poisson distribution with parameter $\lambda = np$ serves as a good approiximation for the binomial distribution when n is large and p is small.

NOTE:

field: E(f(X,Y)) when X,Y are discrete

field: $E(f(X,Y)) = \sum_{x} \sum_{y} f(x,y) P(X=x,Y=y)$

NOTE:

field: If X, Y are independent, then f(X), g(Y)

field: are also independent

NOTE:

field: If X, Y independent, E(XY) = E(f(X)g(Y)) =

field: If X, Y independent, E(XY) = E(X)E(Y), E(f(X)g(Y)) = E(f(X))E(g(Y))

field: Sum of independent discrete random variables X, Y: P(X + Y = k)

field:
$$P(X+Y=k) = \sum_{i} P(X=i)P(Y=k-i)$$

NOTE:

field:
$$V(X) = 0$$

field: If and only if X is a constant

NOTE:

field: $E(I_A) = V(I_A)$ Where I_A is an indicator function

field: $E(I_A) = P(A), V(I_A) = P(A)P(A^c)$

NOTE:

field: For discrete jointly distributed random variables,

$$P(X = y | X = x) =$$

field: For discrete jointly distributed random variables,

$$P(X = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

NOTE:

field: For discrete random variables E(Y|X=x) =

field: For discrete random variables $E(Y|X=x) = \sum_y y P(Y=y|X=x)$

NOTE:

field: Problem solving strategy for expected value of counting

field: Use indicator functions for each trial , where $X = \sum I$ and use linearity of expectation

NOTE:

field: P(X > s + t | X > t) for geometric, exponential

field: P(X > s + t | X > t) = P(X > s)

NOTE:

field: Distribution for: A bag of N balls which conatins r red balls and N-r blue balls, X is number of red balls in a sample of size n taken without replacement.

field: Hypergeometric.

NOTE:

field: Distribution for modeling arrival time

field: Exponential

NOTE:

field: E(g(X,Y)) = (continuous)

field: $E(g(X,Y)) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x,y) f(x,y) dx dy$

field:
$$Cov(X, Y) = (integration)$$

field:
$$Cov(X,Y) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} (x - E(X))(y - E(Y)) dx dy$$

NOTE:

field: Problem solving strategies for functions of random variables

field:

- Methods of cdf: Y=g(X), find cdf $P(Y\leq y)=P(g(X)\leq y)=P(X\leq g^{-1}(y))$
- For finding P(X < Y), set up integrals that cover
- For finding probabilities of independent uniform random variables, use geometric (area) properties

NOTE:

field: Quantile

field: If X is a continuous random variable, then the pth quantile is is the number q that satisfies $P(X \le q) = p/100$

NOTE:

field: Poisson process

field: Times between arrivals are modeled as iid exponential random variables with parameter $\lambda = 1/\beta$. Let N_t be the number of arrivals up to time t. Then $N_t \sim Pois(\lambda t)$

field: Conditional density function $f_{Y|X}(y|x) =$

field: $f_{Y|X}(y|x) = \frac{f(x,y)}{f_x(x)}$

NOTE:

field: Continuous bayes formula

field: $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_x(x)}{\int_{t=-\infty}^{\infty} f_{Y|X}(y|t)f_x(t)dt}$

NOTE:

field: Conditional expectation for continuous random variables E(Y|X=x)

field: $E(Y|X=x) = \int_y y f_{Y|X}(y|x) dy$

NOTE:

field: Law of total expectation

 $\mathbf{field:} \quad E(Y) = E(E(Y|X))$

NOTE:

field: Properties of conditional expectation

- $\bullet \ E(aY + bZ|X) =$
- $\bullet \ E(g(Y)|X=x) =$
- If X, Y independent, E(Y|X) =
- If Y = g(X), then E(Y|X) =

field: Properties of conditional expectation

•
$$E(aY + bZ|X) = aE(Y|X) + bE(Z|X)$$

•
$$E(g(Y)|X = x) = \int_y g(y) f_{Y|X}(y|x) dy$$

• If
$$X, Y$$
 independent, $E(Y|X) = E(Y)$

• If
$$Y = g(X)$$
, then $E(Y|X) = Y$

NOTE:

field: Law of total probability, continuous

field:
$$P(A) = \int_{-\infty}^{\infty} P(A|X=x) f_x(x) dx$$

NOTE:

field: Conditional variance V(Y|X=x)

field:

$$V(Y|X = x) = \sum_{y} (y - E(Y|X = x))^{2} P(Y = y|X = x)$$

discrete

$$V(Y|X = x) = \int_{y} (y - E(Y|X = x))^{2} f_{Y|X}(y|x) dy$$

continuous

NOTE:

field: Properties of conditional variance

$$\bullet \ V(Y|X=x) =$$

$$\bullet \ V(aY + b|X = x) =$$

• If
$$Y, Z$$
 independent, $V(Y + Z|X = x) =$

field: Properties of conditional variance

•
$$V(Y|X = x) = E(Y^2|X = x) - (E(Y|X = x))^2$$

•
$$V(aY + b|X = x) = a^2V(Y|X = x)$$

• If
$$Y, Z$$
 independent, $V(Y + Z|X = x) = V(Y|X = x) + V(Z|X = x)$

NOTE:

field: $P(X \ge \epsilon)$

field: $P(X \ge \epsilon) \le E(X)/\epsilon$ (Markov's Inequality)

NOTE:

field: $P(|X - \mu| \ge \epsilon)$

field: $P(|X-\mu| \ge \epsilon) \le \sigma^2/\epsilon^2$ (Chebyshev's inequality, if mean and variance finite)

NOTE:

field: $P(\lim_{n\to\infty} S_n/n = \mu) =$

field: $P(\lim_{n\to\infty} S_n/n = \mu) = 1$ (Strong law of large numbers)

tags: Calculus

NOTE:

field: $\int_0^\infty e^{-x^2/2} =$

field: $\int_0^\infty e^{-x^2/2} = \sqrt{\pi/2}$

field:
$$\int_0^\infty x^{a-1} e^{-x/b} =$$

field:
$$\int_0^\infty x^{a-1}e^{-x/b} = \Gamma(a)b^a$$

field:
$$\int_0^1 x^{a-1} (1-x)^{b-1} =$$

field:
$$\int_0^1 x^{a-1} (1-x)^{b-1} = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

NOTE:

field:
$$\log(x) = y, x =$$

field:
$$\log(x) = y, x = e^y$$

NOTE:

field:
$$\lim_{x\to\infty} (1+\frac{a}{x})^x =$$

field:
$$\lim_{x\to\infty} (1+\frac{a}{x})^x = e^a$$

NOTE:

field:
$$\lim_{x\to\infty} (1+\frac{a}{x})^x = e^a$$

field:
$$\lim_{x\to\infty} (1+\frac{a}{x})^x =$$

NOTE:

field:
$$\frac{d}{dx}f(g(x)) =$$

field:
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$
 (Chain rule)

field: $\frac{d}{dx} \int_a^x f(t) dt =$

field: $\frac{d}{dx} \int_a^x f(t)dt = f(x)$ (fundamental theorem of calculus)

NOTE:

field: $\int_a^b u dv =$ ex: $\int xe^{-x}$

field: $\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du$ ex: $u = x, dv = e^{-x}, du = dx, v = -e^{-x}$

 $\int xe^{-x} = -xe^{-x} + \int e^{-x}$ $= -xe^{-x} - e^{-x} + c$

NOTE:

field: $\sum_{k=0}^{\infty} \frac{x^k}{k!} =$

field: $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$

NOTE:

field: $e^x =$

field: $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$

NOTE:

field: $\sum_{k=0}^{\infty} x^k =$

field: $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ for |x| < 1

field:
$$\sum_{k=0}^{n} x^k =$$

field:
$$\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$$
 for $x \neq 1$

NOTE:

field:
$$\lim_{x\to-\infty} e^{-x} =$$

field:
$$\lim_{x\to-\infty} e^{-x} = \infty$$

NOTE:

field:
$$\lim_{x\to\infty} e^{-x} =$$

field:
$$\lim_{x\to-\infty} e^{-x} = 0$$

NOTE:

field:

$$(fg)' =$$

field:

$$(fg)' = f'g + g'f$$

(product rule)

NOTE:

field:
$$\frac{d}{dx}x^n =$$

field:
$$\frac{d}{dx}x^n = nx^{n-1}$$

field:
$$\frac{d}{dx}a^x =$$

field:
$$\frac{d}{dx}a^x = a^x ln(a)$$

field:
$$\frac{d}{dx}ln(x) =$$

field:
$$\frac{d}{dx}ln(x) = \frac{1}{x}$$

NOTE:

field:
$$\frac{d}{dx}(f(x))^n =$$

field:
$$\frac{d}{dx}(f(x))^n = n(f(x))^{n-1}f'(x)$$

NOTE:

field:
$$\frac{d}{dx}ln(f(x)) =$$

field:
$$\frac{d}{dx}ln(f(x)) = \frac{f'(x)}{f(x)}$$

NOTE:

field:
$$\frac{d}{dx}e^{f(x)} =$$

field:
$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

NOTE:

field:
$$\int x^n =$$

field:
$$\int x^n = \frac{1}{n+1}x^{n+1}$$

field:
$$\int \frac{1}{x} =$$

field:
$$\int \frac{1}{x} = ln(|x|)$$

field:
$$\int \frac{1}{ax+b} =$$

field:
$$\int \frac{1}{ax+b} = \frac{1}{a} ln(|ax+b|)$$

NOTE:

field:
$$\int e^{cx} =$$

field:
$$\int e^{cx} = \frac{1}{c}e^{cx}$$

NOTE:

field:
$$\int xe^{-cx^2} =$$

field:
$$\int xe^{-cx^2} = -\frac{1}{2c}e^{-cx^2}$$

NOTE:

field: U substitution: example; $\int_1^2 5x^2 \cos(x^3)$

field: $\int_a^b f(g(x))g'(x) = \int_{g(a)}^g (b)f(u)du$ Where u = g(x), du = g'dxEx: $u = x^3, du = 3x^2, x^2du = 1/3du \int_1^2 5x^2 \cos(x^3) = \int_1^8 5/3 \cos(u)du$

field:
$$\Gamma(a) =$$

field:
$$\int_0^\infty t^{a-1}e^{-t}dt$$

field:
$$\int_0^\infty t^{a-1}e^{-t}dt$$

field:
$$=\Gamma(a)$$

NOTE:

field:
$$\Gamma(a+1) =$$

field:
$$\Gamma(a+1) = a\Gamma(a)$$

NOTE:

field:
$$\Gamma(n) =$$

field:
$$\Gamma(n) = (n-1)!$$
 (for n an integer)

NOTE:

field:
$$\Gamma(1/2) =$$

field:
$$\Gamma(1/2) = \sqrt{\pi}$$

field:
$$\Gamma(1) =$$

field:
$$\Gamma(1) = 1$$