

Research and Development Technical Report

DELET TR-80-0259-1

MNOS BORAM MANUFACTURING METHODS AND TECHNOLOGY PROJECT.

J.E./Brewer J.W./Dzimianski

WESTINGHOUSE ELECTRIC CORPORATION Systems Development Division Baltimore, Maryland 21203

Interim Technical Report for Period April 1980 to May 1981

DISTRIBUTION STATEMENT

Approved for public release. Distribution unlimited. -

Prepared for:

US Army Electronics Technology and Devices Laboratory

ERADCOM

US ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703

NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not be construed as official government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the orginator.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	
DELET-TR-80-0259-1 AD-A104042	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
MNOS BORAM Manufacturing Methods and	Interim Technical
Technology Project	April 1980 to May 1981 6. PERFORMING ORG. REPORT NUMBER
1	
	81-0535 🗸
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
J.E. Brewer, J.W. Dziminski	DAAK20-80-C-0259 // 255
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Westinghouse Electric Corporation	
Systems Development Division	
Baltimore, Maryland	
11. CONTROLLING OFFICE NAME AND ADDRESS Communication Systems Procurement Branch	12. REPORT DATE
Procurement and Production Directorate	August 1981
United States Army Electronics Command	13. NUMBER OF PAGES
Fort Monmouth, New Jersey 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	38
14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Utilice)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
DISTRIBUTION PROPERTY	
Approved for public release;	
Distribution Unlimited	<u> </u>
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different fro	om Report)
18. SUPPLEMENTARY NOTES	
i	
19. KEY WORDS (Continue on reverse side if necessary and identity by block number;	<u> </u>
MNOS, Metal-Nitride-Oxide Semiconductor, BORAM	
Access Memory, Secondary Storage, Memory, Nonvo	
	olatile bemiedhadetol
Memory	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
[
A manufacturing methods project has been initi	
duction techniques for 8K-bit metal-nitride-oxid	
block-oriented random-access memory (BORAM) devi	
performance adequacy and reproducibility of such	
for military environments, and to demonstrate a	-
multicuip MNOS BORAM hybrid circuits per month.	
ing period the project has forcused on definition	n or tests, development

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED

	SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
;	Abstract (Cont)
7	of test equipment, and preparation of test programs. In particular, studies have been conducted to determine the feasibility of using an automated retention projection (RP) test as part of a manufacturing screen.

TABLE OF CONTENTS

			Page
1.	NAI	RRATIVE AND DATA	A 1-1
	1.1	CONCEPTS AND O	BJECTIVES1-1
			reening Approach1-1
			pjection Concept1-3
			ementation
	1.2	RETENTION PROJ	ECTION TEST CHARACTERISTICS 1-9
			meters
			riability1-10
		1.2.3 Repeatability	Experiment1-12
		1.2.4 Estimate of P	recision
	1.3	-	VICE OBSERVATIONS1-12
			f Interest
			dition Distribution1-18
			Effects1-18
			Time Effects1-25
		1.3.5 Endurance Ef	fects1-28
2.	CO	NCLUSIONS	2-1
3.	PR	OGRAM FOR NEXT	INTERVAL
4.	PUE	BLICATIONS AND R	EPORTS 4-1
5.	DE	VICE DATA SHEET	5-1
6.	DIS	STRIBUTION LIST .	6-1
	Ac	cession For	
	NT	IS GRA&I	
	DI	TIC TAB	
	Un	announced [
	Ju	stification	
	1		- X 1 1 2 1 3 1 3 8 1 3 1
	By		
	Di	stribution/	
	A	vailability Codes	
	-	Avail and/or	
	Dis	*	
			V
		1	

LIST OF ILLUSTRATIONS

Page

Figure

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10	Simplified Data Storage and Readout Sequence Retention Projection Program Simplified Flow Diagram Minimum Write Voltage Search Subroutine Voltage Sweep Subroutine BORAM Chip Retention Projection Post Burn-In Minimum Write Voltage Histogram Post Burn-In Slope Histogram Temperature Trend Plots for Eight Samples Erase-Write Cycles vs Minimum Write Voltage (Unbalanced Stress) Erase-Write Cycles vs Slope (Unbalanced Stress) Retention Projection vs Erase-Write Cycles	1-51-61-71-81-201-241-301-31
	LIST OF TABLES	
Table		Page
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10	Repeatability Data for RP Test Post Burn-In Minimum Write Voltages Post Burn-In Slope Temperature Test Data for Eight Samples RP Test Results for Varied Pulsewidths ANOVA for Erase and Write Time Effects on Minimum Voltage	1-141-151-161-171-171-191-211-231-251-26
1-12 1-13 1-14 1-15	ANOVA for Erase and Write Time Effects on Slope	1-27 1-28

1. NARRATIVE AND DATA

The feasibility of a nondestructive quick response screen for retention and endurance characteristics is under investigation. Specifically, tests suitable for use with MNOS BORAM devices as manufactured at Westinghouse are being considered. The approach taken is called "Retention Projection," and the term "RP" test is used below as a short notation.

This report outlines study objectives, presents preliminary results concerning the nature of the RP test, and provides some data and speculations on observed device RP characteristics under different conditions.

It should be made clear at the outset that the RP test does not provide a highly accurate, verifiable, estimate of retention time. The scheme projects short time retention observed at low-write voltages to an expected retention at nominal write voltage. For typical devices ready to be shipped, the projected times exceed 10⁹ hours or more than 10⁵ years. Numbers of this magnitude cannot be verified readily by human beings. Repeated RP tests show decades of variation in the projected time, so high precision cannot be claimed. The value expected from the test is limited to providing a general indicator or figure of merit sensitive to endurance-retention related device characteristics.

At the current stage of development, the RP test approach shows some promise of being useful as the basis for a screen to remove defective or suspect devices from the population. Some form of an RP test is visualized as being part of a comprehensive set of stresses and tests oriented toward endurance-retention phenomena.

1.1 CONCEPTS AND OBJECTIVES

The advent of nonvolatile semiconductor memory requires that methods be developed to predict device retention and endurance within a few seconds of test time. This investigation has focused on one approach to achievement of that goal, i.e., the Retention Projection or RP test. It is to be stressed that an RP test is viewed as only one part of a suitable device screen. Further, the value of the RP test lies in the prediction of device quality. It is not expected to be a numerically accurate predictor of retention.

This discussion will set forth an overall device screening approach, the RP concept, and finally will outline a specific experimental implementation of an RP test. (The BORAM device is described in the data sheet included under Section 5.)

1.1.1 Integrated Screening Approach

MNOS BORAM parts are used in a wide variety of applications where reliable operation in hostile environments is essential. Observation of individual devices and experience with similar parts indicates that the technology is capable of providing desired reliability and performance. Devices free from inherent material defects and manufacturing induced defects will perform properly.

The objective of screening during manufacture is to detect and eliminate parts which contain defects. Toward this end, the body of practice defined in Mil-M-38510 and Mil-Std-883 apply directly to MNOS BORAM.

Because MNOS BORAM offers nonvolatile data retention, the basic screening approach must be expanded. Retention is known to be a function of accumulated erase-write cycles, and this so-called "endurance" phenomena must be considered. Screens must incorporate application of stresses which will excite retention-endurance oriented failure modes, and must introduce tests which are sensitive to retention-endurance anomalies.

The primary stresses currently employed in the BORAM screen are "cycle stress" and "burn-in." After assembly, every BORAM multichip hybrid package (MHP) is subjected to 2500 erase-write cycles using a checkerboard data pattern, and then 2500 cycles using the complement of the checkerboard data pattern. The purpose of this stress is to cause defective memory cells to progress noticeably toward failure. In a similar scheme, each MHP is subjected to more than 160 hours of 125°C burn-in while operating in the read mode.

To detect endurance-retention related defects, several different kinds of tests are being used in combination. The types of tests include erase-recovery tests, low-voltage write tests, and short time observation of retention. The specific groups of tests used are somewhat experimental, and are expected to be modified as experience with the product grows.

The erase-recovery (ER) tests are intended to detect poor pulse response of memory transistors. The scheme is to erase-write the complement of a data pattern ten times, and then erase-write and read the data pattern one time. For this sequence to work properly the transistor in each two-transistor cell that was subjected to eleven erase pulses, must recover in response to one write pulse. To test the other half of each cell, the ER sequence must be repeated complementing the initial data patterns.

Low-voltage write tests are an attempt to eliminate parts which are suspect because they tend to differ from the bulk of the device population. The use of low-write voltage is somewhat related to the RP test scheme, but is relatively crude in discrimination capability. The sequence is to erase the part using nominal supply voltage, write the part using some fixed but reduced supply voltage, wait a specified time, and then read the part at nominal supply voltage.

With low-write voltage the amount of charge stored in the memory transistors is reduced, and retention times can be shortened to seconds. At present, each MHP is tested using 26 volts from VCC to VGG during write with a 2-second delay before reading.

Experiments have shown that for two seconds read delay the bulk of the MNOS BORAM population operates at write voltages on the order of 19 to 25 volts. Parts as high as 26 volts form the upper tail of the distribution. During the hybrid assembly and test sequence, the low-voltage write test is applied before and after stress applications. If a device endurance-retention related defect is excited, it is hypothesized that the 2-second reduced write-voltage characteristic will be affected. Thus the arbitrary cut-off limit of 26 volts will eliminate such parts.

In the absence of a "fool proof" quick response test, some short time observations of data retention are currently being used. Attempts to observe actual retention are useful in that very weak parts can be identified. Obviously, real-time observations cannot be said to be an adequate screen because of the necessary time restrictions.

Several forms of real-time retention tests have been used. The conditions have been a matter of equipment convenience. Parts were required to retain a checkerboard pattern for 16 hours when stored without power at 80°C. The same parts were then required to retain a complement checkerboard pattern for 16 hours at 80°C.

The burn-in stress has also provided a convenient opportunity for a retention test. In this case, the zero data pattern is written into the device before burn-in. During the 125°C stress the part is operated in the read mode. After removal and cool down (under power) the parts are read to verify data retention.

1.1.2 Retention Projection Concept

Measurements performed on small quantities of MNOS BORAM 6008 devices showed that the logarithm of retention time (tr) varied linearly with the supply voltage present during the write operation (Vw). The observed relationship was:

$$log(tr) = m Vw + b$$

The slope (m) is measured in decades per volt. Retention time (tr) is in hours, and the voltage during write (Vw) is in volts. The intercept is of course expressed as the logarithm of hours.

The straight line can readily be shown to hold over a small range of voltage where the corresponding retention times are small. The RP concept assumes that the relationship will hold when the write voltage is increased to nominal levels. Thus the slope and intercept parameters of the straight line can be defined using several low voltage measurements, and the pseudo retention at nominal voltage can be computed.

1.1.3 RP Test Implementation

Over a period of several months, experimental trials were conducted to establish an automated RP test which was suitable for conducting investigations into product characteristics and screening approaches. Figures 1-1 to 1-4 document the essential features of that implementation.

The heart of the approach is the data storage and data readout subroutine shown in figure 1-1. In the data storage routine the complement of the desired pattern is first stored using the nominal 30-volt condition. The purpose of this operation is to provide a repeatable starting point for the low-voltage test. The chip is then erased, and the voltage is set to the desired reduced value. A real-time clock is started in order to measure retention time, and the writing operation is initiated. Some time later the data readout subroutine will be entered. At that time the real-time clock will be read, and the device data will be readout.

Figure 1-2 shows the overall flow of the RP test. The program finds the reduced voltage (minV) at which the part will retain data for about 0.5 second. The details of the search procedure for minV are given in figure 1-3. The program then conducts a sweep of four additional voltage points differing from minV by increments of 50 millivolts. At each voltage a real-time measurement of retention is performed. Figure 1-4 presents the voltage sweep subroutine. After the measurements are complete, the program converts the time measurements to log time and performs a least squares fit of the data to a straight line. Various tabulations, plots or reports are then prepared depending on operator requests. Figure 1-5 is an example of the plotted results from an RP test on a BORAM 6008 device.

Figure 1-1. Simplified Data Storage and Readout Sequence

Figure 1-2. Retention Projection Program Simplified Flow Diagram

Figure 1-3. Minimum Write Voltage Search Subroutine

Figure 1-4. Voltage Sweep Subroutine

Figure 1-5. BORAM Chip Retention Projection

1.2 RETENTION PROJECTION TEST CHARACTERISTICS

The RP concept can be implemented in many different ways. To be useful the test results must be shown to be reproducible, and to be related to the product characteristics in a meaningful way. This discussion will review some of the considerations involved in defining the details of the RP test, and will present the results of some repeatability experiments.

1.2.1 RP Test Parameters

In simplified form the RP test consists of data storage under reduced supply voltage conditions, and observation of the stored data until a data failure is observed. This process must be repeated until sufficient voltage and time points have been established to allow a projection of the retention time at nominal supply voltage.

As a starting point for consideration of the elements of an RP test, a simplified model of a memory cell and of the behavior of the individual memory transistors will be reviewed.

A drain source protected (DSP) MNOS BORAM memory transistor operates by the electronic transfer of charge into and out of the gate insulator. Application of a positive gate voltage results in the threshold voltage being shifted in a positive direction. This is the erased condition or erased state. Application of a negative voltage causes a negative threshold shift, and the device is said to be in the written state.

After being written, the threshold voltage can be observed to decay in a positive direction. For a defect free device to a first order model, the threshold voltage changes as a linear function of the logarithm of the elapsed time after writing for times of interest in BORAM applications.

For an erased device, the threshold voltage will decay in a negative direction. For nominal BORAM operating conditions, the transistor threshold voltage immediately after erase will be determined primarily by the nonmemory portion of the drain source protected transistor. Only a very slight decay will be observed. After an elapsed time on the order of one hour the memory portion of the DSP transistor will dominate the decay. To a first order model, the threshold will be observed to change as a linear function of the logarithm of time where the slope in volts per decade of time is greater than the slope for times less than one hour.

A simplified concept of reading a two-transistor memory cell is that of a sense amplifier comparing the threshold voltages of the two memory transistors. As long as the threshold voltage difference is greater than the minimum discrimination voltage of the sense amplifier, the data can be reliably readout. One transistor is decaying from the erased state, and the other transistor is decaying from the written state.

It is convenient to speak of the difference between the threshold voltages as being the "window." The window voltage plotted against the logarithm of elapsed time tends to exhibit linear segments. At short times the decay or window closure rate is determined primarily by the written transistor. After about one hour the closure rate is affected by both transistors.

The initial window and the rate of decay is affected by the voltages and pulsewidths used for erase and for write. The two transistors are not necessarily decaying toward the same end-point threshold.

A bit of reflection on the various aspects of this simplified model will lead to an obvious conclusion. It is not possible to use a reduced voltage erase and/or write and simulate the "normal" end of retention condition. The DSP structure, and the dependence of decay rates on voltage levels, will not allow the short time (seconds) reduced voltage conditions to duplicate the long time (years) nominal voltage conditions.

It follows then that predictions of retention time based on low-voltage observations cannot reasonably be expected to coincide with actual nominal voltage real-time retention. On the other hand, the low-voltage predicted retention is derived from the memory cell operation under a specific set of conditions, and should be related in some manner to real-time retention. Thus it is reasonable to expect that projected retention may be a useful figure of merit.

A retention projection test thus need not attempt to simulate any particular aspect of nominal cell operation. It simply must be based on a repeatable scheme. A convenient arrangement is to use a nominal supply voltage during erase and a reduced supply voltage during write. The erase condition will make it easier to establish a reproducible initial condition.

Test time is an important consideration. The fastest time can be achieved if the first reduced write voltage point is taken at the shortest read delay time the test system can resolve. For the initial RP test implementation that time was 559 milliseconds.

Again, test time will be minimized if additional data points are taken as close to the initial 559-millisecond point as possible. Because of the characteristics of the programmable power supply used to provide the voltage, the smallest possible increment is 0.05 volt.

The simple-minded model of the memory cell given above can be used to visualize the RP test situation. A sense amplifier acts to compare the threshold voltages of the two-memory transistor which form the cell. One transistor is in the erased state as a consequence of having been erased using nominal operating voltages. The other transistor has been moved slightly in the direction of the written state by operating in the write mode with reduced supply voltage.

The sense amplifier is in effect comparing the nonmemory threshold of the erased memory transistor with the written transistor threshold. Thus the write voltage to achieve any given fixed retention time (e.g., 2 seconds) will be a function of the nonmemory threshold.

1.2.2 Sources of Variability

The premise of the RP test is a relationship between retention time t and the supply voltage during write V. The most obvious implications of this relationship for variation in test results will be examined, and the most common sources of experimental error will be identified.

Using a simplified notation, the basic equation is of the form:

$$log t = A + B V$$

$$t = a10^{BV} (where a = 10^A)$$

The partial derivatives of interest would be:

$$\frac{\partial \log t}{\partial V} = \frac{\partial}{\partial V} (A + BV) = B$$

$$\frac{\partial t}{\partial V} = \frac{\partial}{\partial V} a10^{BV} = Ba10^{BV} = Bt$$

Error in t resulting from error in V would be expressed as:

$$\Delta \log t = \left[\frac{\partial}{\partial V} (\log t)\right] \Delta V = B \Delta V$$

$$\Delta t = \left[\frac{\partial t}{\partial V}\right] \Delta V = B t \Delta V$$

$$\frac{\Delta t}{t} = B \Delta V$$

Errors in V are amplified by the slope factor B in the computation of log t. The resulting error in t is even greater, and is proportional to Bt.

Looking at the relationship from the point of view of attempting to estimate the equation, errors in V are more important than errors in t.

The experimental situation during the RP test consists of two parts. First, five data points are established where voltage and retention are observed. Second, that data is used to compute a slope in decades per volt and a retention projection in hours.

The primary uncertainty in measured time values results from the amount of time required to write and read the 256 addresses in the BORAM 6008 chip. Ideally, the read delay time should be related to single memory cells. It should be the time from the end of cell write to the time when the sense amplifier sets up. In practice, single cells cannot be conveniently distinguished.

The RP test allows the operator to enter write pulsewidth into the control computer before initiating a run. Given a 200-microsecond write pulse, the chip write time would be about 60 milliseconds. Chip read time is about 10 milliseconds. Thus from the viewpoint of individual cell read delay times, a difference of 50 milliseconds exists from address 0 to address 255.

Time is measured by a real-time crock associated with the control computer. Readout resolution is one millisecond. The clock is started at the beginning of the write operation, and is readout at the beginning of the read operation.

The first data point is taken at a clock time of about 559 milliseconds. This time is accurate for the first address. For address 255 the actual delay time would be about 509 milliseconds, or about 9 percent lower.

The fixed 50-millisecond uncertainty would also be present for the next four data points. In these cases the read delay time would be larger, and the percentage uncertainty would be reduced for each succeeding point.

Supply voltages during write are not measured. Voltages are set by the computer via software commands. The resolution of the programmable power supply on the required range is 50 millivolts.

To establish the first data point, a search procedure is used to find the voltage on a 50-millivolt increment which just allows data to be retained for 559 milliseconds. Thus the uncertainty in the first voltage point is approximately 50 millivolts.

The criterion for the first data point is that the device holds data for more than 559 milliseconds. The 50-millivolt resolution causes an uncertainty in time as well as voltage. For a typical slope of three decades per volt and a nominal time of 0.56 second, the time uncertainty approaches $B\Delta Vt = 3 \times 0.05 \times 0.56 = 0.084$ second.

Additional error enters into the voltage because of line drops between the supply and the device under test. The impact of this source of error depends on how many devices are being tested and how the devices are connected. When long cables are used to reach devices located in temperature chambers this matter must be given careful consideration.

For data points number two to five, the voltage can be considered to be fixed and the time is the quantity to be measured. In this case, the 50-millivolt resolution of the supply does not introduce error.

In summary, it would seem that the primary source of variability in an RP test would be deviations in supply voltage. It is most likely that line drops between the programmable supply and the device under test will be the major problem.

1.2.3 Repeatability Experiment

For an RP test to be useful it must be shown to be repeatable. Two different experiments have been performed to examine this issue. This discussion will first describe the two experimental approaches, and then will discuss each set of observations.

1.2.3.1 Description of Experiments

The approach taken in both experiments was simply to execute the automated RP test several times for a given set of samples. Selected measured and computed quantities were then examined for repeatability by computing a number of elementary statistics.

One test employed two sample devices which were subjected to the RP test 50 times. Since each device was measured using two data patterns, four sets of data were obtained. Tables 1-1 to 1-4 summarize this information. The entire test sequence and data collection was automated. The control computer was programmed to execute the test 50 times, and to store the resulting data on a disc file. After the test was complete, additional programs were employed to prepare data summaries.

The other experiment employed six sample devices that were tested six different times. Tests were initiated manually over a period of a few days. Tables 1-5 and 1-6 give a partial summary of the results.

1.2.4 Estimate of Precision

For the present version of an RP test there are three parameters of immediate interest: the minimum write voltage, the slope, and the retention projection.

The definition of the minimum write voltage is limited by the power supply resolution of 50 millivolts. It appears that the short time repeatability of a minV measurement is ± 50 mV. Over a period of several days this interval can expand to ± 100 mV.

The slope measured in decades per volt exhibits a standard deviation that is on the order of 0.2 to 0.4 for short time repeatability. Over a period of several days the standard deviation can grow to about 0.5. It is perhaps more meaningful to speak in terms of the coefficient of variation (standard deviation divided by the mean). The short run coefficient is about 9 percent, and over a period of days it grows to about 10 percent.

The retention projection can of course vary broadly. Coefficients of variation for the log of time were 9.2, 8.1, 11.1, and 8.8 percent for the cases given in tables 1-1 to 1-4. Thus the variability of log t is on the order of 10 percent. The variability of t however depends on the magnitude of the mean value for t. At high mean values of t, a 10 percent deviation for log t can mean a change of two decades for t.

1.3 MNOS BORAM DEVICE OBSERVATIONS

The utility of the RP test depends on how sensitive it is to conditions within a device. A series of exploratory tests have been started to examine this issue. Data reported here is very preliminary, and has served primarily as a learning vehicle to allow formulation of more complete investigations.

Table 1-1. Repeatability Data for RP Test

80RAM 6008 Chip	Serial #100	ð 1			19 MAY 81
Checkerboard fa	ttern, (Erase Ch	ip Mode,	Erase/Write	1000/200 microseconds
Inial Number	Write	Delay	Slope	Correlation	Projected Projected
	Voltage	Time	decades	Coefficient	Petention Retention
	Minimum	(msec)	per volt		log(t) hours
01	21.35	559	2.8052	0.9991	20.450312 2.820E 20
02	21.35	559	2.7287	0.9993	19.784703 6.091E 19
03	21.35	559	2.4933	0.9993	17.757061 5.716E 17
04	21.35	559	2.3962	0.9995	16.914434 8.212E 16
05	21.40	559	2.9589	0.9945	21.667984 4.656E 21
96	21.35	559	2.4093	0.9964	17.011820 1.028E 17
97	21.40	559	2.8956	0.9974	21.112776 1.297E 21
08	21.40	559	2.7447	0.9915	19.831494 6.784E 19
09	21.40	559	2.8494	0.9978	20.713280 5.167E 20
10	21.40	559	2.7119	0.9926	19.545051 3.508E 19
11	21.40	559	2.7368	0.9970	19.747963 5.597E 19
12	21.40	559	2.6854	0.9963	19.308222 2.033E 19
13	21.40	559	2.6360	0.9954	18.885760 7.687E 18
14	21.40	559	2.5838	0.9952	18.434973 2.723E 18
15	21.40	559	2.6007	0.9946	18.582085 3.820E 18
16	21.40	559	2.6970	0.9975	19.398566 2.504E 19
17	21.40	559	2.6088	0.9989	18.638134 4.346E 18
18	21.40	559	2.5576	0.9986	18.195505 1.569E 18
19	21.40	559	2.5560	0.9980	18.186791 1.537E 18
20	21.40	559	2.4675	0.9987	17.423498 2.652E 17
21	21.40	559	2.5203	0.9991	17.875137 7.501E 17
22	21.40	559	2.4294	0.9976	17.090393 1.231E 17
23	21.40	559	2.4648	0.9971	17.405043 2.541E 17
24	21.40	559	2.4103	0.9977	16.934 5 92 8.602E 16
25	21.40	559	2.4082	0.9976	16.916517 8.251E 16
26	21.40	5 59	2.4669	0.9987	17.418090 2.619E 17
27	21.40	559	2.4357	0.9990	17.140130 1.381E 17
28	21.40	559	2.3715	0.9981	16.600307 3.984E 16
29	21.40	559	2.3725	0.9981	16.609 0 31 4.065E 16
30	21.40	559	2.3701	0.9977	16.583809 3.835E 16
31	21.40	559	2.3495	0.9959	16.414191 2.595E 16
32	21.40	559	2.3708	0.9981	16.594482 3.931E 16
33	21.40	559	2.3358	1.0000	16.278392 1.898E 16
34	21.40	559	2.3759	0.9994	16.623220 4.200E 16
35	21.40	559	2.3757	0.9994	16.622264 4.190E 16
36	21.40	559	2.2738	0.9972	15.757977 5.728E 15
37	21.40	559	2.3379	1.0000	16.296450 1.979E 16
38	21.40	559	2.2757	0.9998	15.764269 5.811E 15
39	21.40	559	2.2764	0.9998	15.770362 5.893E 15
40	21.40	559	2.3366	1.0000	16.285345 1.929E 16
41	21.40	559	2.2752	0.9998	15.760374 5.759E 15
42	21.40	559	2.3380	1.0000	16.297502 1.984 E 16
43	21.40	559	2.3391	1.0000	16.306438 2.02 5E 16
44	21.40	559	2.2778	0.9998	15.782975 6.067E 15
45	21.40	559	2.2757	0.9984	15.758941 5.740E 15
46	21.40	559	2.3380	1.0000	16.297502 1.984E 16
47	21.40	559	2.3174	0.9983	16.123374 1.329E 16
48	21.40	559	2.2342	0.9991	15.407796 2.557E 15
49	21.40	559	2.2745	0.9998	15.754281 5.679E 15
50	21.40	559	2,3780	0.9994	16.641188 4.377E 16
ie an		559.0	2.4746	0.9980	17.494016
std deviation		0.0		0.0019	1.610024
oef of variati		0.0	0.0750	0.0019	0.092033
oef of skewnes		0.0			0.857679
oef of kurtosi	118.971	*****	2.6879	8.8584	2.665467

Table 1-2. Repeatability Data for RP Test

BORAM 6008 Chip Se	1 . 44 (%)			200	
Checkerboard Bar P			in Mada	Emanadinia	19 MAY 81
onecker board bar i	ascern, i	crass (n	ip mode,	trase/write	1000/200 microseconds
Trial Number	Write	Delay	Slope	Correlation	Projected Projected
	Voltage	Time	decades	Coefficient	Retention Retention
	Minimum	(msec)	per volt	000111010	log(t) hours
01	20.50	559	2.8458	0.9997	23.227255 1.688E 23
02	20.50	558	2.6815	0.9997	21.661549 4.587E 21
03	20.55	559	3.1972	0.9939	26.439922 2.754E 26
04	20.55	5 59	3.1822	0.9963	26.289156 1.946E 26
05	20.55	559	3.0744	0.9945	25.274894 1.883E 25
96	20.55	559	3.0024	0.9952	24.592630 3.914E 24
07	20.55	559	2.9850	0.9964	24.418635 2.622E 24
ଡ ଃ	20.55	558	2.8404	0.9942	23.059515 1.147E 23
09	20.55	559	2.9257	0.9972	23.8 584 11 7.218E 23
10	20.55	559	2.8293	0.9971	22.943034 8.771E 22
11	20.55	559	2.7699	0.9973	22.387127 2.439E 22
12	20.55	559	2.7142	0.9976	21.850613 7.089E 21
13	20.55	559	2.6961	0.9992	21.678089 4.765E 21
14	20.55	559	2.7476	0.9997	22.161756 1.451E 22
15	20.55	559	2.7286	0.9986	21.971987 9.375E 21
16	20.55	559	2.6264	0.9986	21.014499 1.034E 21
17	20.55	559	2.6425	0.9995	21.155939 1.432E 21
18	20.55	559	2.5734	0.9991	20.516330 3.283E 20
19	20.55	559	2.5866	0.9996	20.630402 4.270E 20
20	20.55	559	2.5876	0.9996	20.639477 4.360E 20
21	20.55	559	2.5475	0.9988	20.256377 1.8 05E 20
22	20.55	559	2.4921	0.9993	19.740636 5.503E 19
23	20.55	559	2.3965	0.9995	18.834 45 3 6.831E 18
24	20.55	559	2.4928	0.9995	19.741923 5.520E 19
25	20.55	5 59	2.3950	0.9995	18.820458 6.614 E 18
26	20.55	559	2.4688	0.9965	19.503839 3.190E 19
27	20.60	559	2.9153	0.9936	23.627277 4.239E 23
28	20.60	559	2.9138	0.9935	23.613451 4.106E 23
29	20.55	559 553	2.4079	0.9964	18.926004 8.433E 18
30	20.55	559 550	2.4671	0.9956	19.482228 3.035E 19
31	20.55	559 550	2.3668	0.9961	18.537768 3.45 0E 18
3\$ 33	20.60 20.60	559 559	2.8834 2.8961	0.9929 0.9975	23.327780 2.127E 23
34	20.60	559	2.8682	0.9939 0.9939	23.433920 2.716E 23 23.183659 1.526E 23
3 5	20.60	559	2.8945	0.9975	23.418873 2.623E 23
36	20.60	559	2.8161	0.9881	22.703856 5.057E 22
37	20.60	559	2.7926	0.9930	22.474724 2.983E 22
38	20.60	559	2.8491	0.9978	22.990176 9.776E 22
39	20.60	559	2.8494	0.9978	22.992685 9.833E 22
40	20.60	559	2.7701	0.9974	22.250183 1.779E 22
41	20.60	559	2.7948	0.9930	22.495388 3.129 E 22
42	20.60	559	2.7721	0.9954	22.273137 1.876E 22
43	20.60	559	2.8499	0.9966	23.002102 1.005E 23
44	20.60	559	2,8171	0.9979	22,689910 4,897E 22
45	20.60	559	2.7381	0.9969	21.949550 8.903E 21
46	20.60	559	2.8179	0.9979	22.697635 4.985E 22
47	20.60	559	2.8035	0.9953	22.568796 3.705E 22
48	20.60	559	2.7132	0.9912	21.731365 5.387E 21
49	20.60	559	2.8497	0.9966	23.000365 1.001E 23
50	20.60	559	2.7131	0.9913	21.729616 5.366E 21
Me an	20.569	559.0	2.7518	0.9966	22.155387
atd deviation	0.028	0.2	0.1930	0.0026	1.815877
coef of Pariation.	0.001	0.0	0.0701	0.0027	0.081961
coef of skewness	-0.184	-4.6	-0.0975	-0.9066	0.042046
coef of Furtosis	ϵ .171	0.0	2.7448	3.4587	2.838843
					81-0535-TA-7

Table 1-3. Repeatability Data for RP Test

B0004						
BORAM 6008 Chip S				F	1000.000	19 MAY 81
Checkerboard Patt	ern, t	rase in	ip Mode,	Erase/Write	1888/288 m	icroseconds
Trial Number	Write	Delay	Slope	Correlation	Projected	Projected
	Voltage	Time	decades	Coefficient	•	Retention
	Minimum	(msec)	per volt		log(t)	hours
19	20.80	559	4.4355	0.9975	36.969737	9.327E 36
02	20.80	559	4.1596	0.9960	34.423904	2,654E 34
03	20.80	559	4.0305	0.9966		1.739E 33
94	20.85	55 9	4.8155	0.9998		1.832E 40
95	20.85	559	4.7286	0.9989		3.010E 39
96	20.85	559	4.6634	0.9996		7.480E 38
07	20.85	5 5 9	4.5842	0.9994		1.420E 38
08 09	20.85 20.85	559 559	4.4944 4.4520	0.9999 0.9999		2.086E 37
10	20.85	559	4.4730	0.9999		8.548E 36 1.330E 37
ii	20.85	559	4.4410	0.9999		6.605E 36
12	20.85	5 59	4.2962	0.9998		3.229E 35
13	20.85	559	4.3047	0.9999		3.753E 35
14	20.85	559	4.3294	0.9999		6.302E 35
15	20.85	559	4.1844	1.0000		3.010E 34
16	20.85	559	4.1608	0.9999	34.262457	1.830E 34
17	20.85	559	4.2347	1.0000	34.936240	8.635E 34
18	20.85	559	4.0883	0.9999		3. 969E 33
19	20.85	559	3.9363	0.9993		1.615E 32
20	20.85	559	3.9155	0.9991		1.013E 32
21	20.85	559 550	3.9904	0.9997		4.935E 32
22 23	20.85 20.85	559 550	3.9596	0.9998		2.590E 32
23 24	20.85	559 559	3.8775 3.9326	0.9996 0.9972		4.582E 31 1.402E 32
25	20.85	559	3.8915	0.9977		5.926E 31
26	20.85	5 59	3.7931	0.9998		7.796E 30
27	20.85	559	3.7666	0.9987		4.331E 30
28	20.85	559	3.7974	0.9985		8.255E 30
29	20.85	559	3.7975	0.9974		8.199E 30
30	20.85	559	3.7399	0.9987		2.466E 30
31	20.85	559	3.7137	0.9984	30.152191	1.420E 30
32	20.85	559	3.6812	0.9980	29.852630	7.122E 29
33	20.85	559	3.6805	0.9987		7.088E 29
34	20.85	559	3.6458	0.9984		3.392E 29
3 5	20.85	559	3.5880	0.9985		1.008E 29
36 27	20.85	559 850	3.6824	0.9980		7.295E 29
37 38	20.85 20.85	559 864	3.6479	0.9984		3.544E 29
39	20.05 20.85	559 559	3.5541 3.4896	0.9988 0.9977		4.944E 28 1.266E 28
40	20.85	559	3.5251	0.9984		2.690E 28
41	20.85	559	3.5547	0.9988		5.009E 28
42	20.85	559	3.5271	0.9983		2.802E 28
43	20.85	559	3.5578	0.9959		5.159E 28
44	20.85	559	3.5205	0.9963	28.373592	2.364E 28
45	20.35	559	3.4544	0.9982	27.781283	6.043E 27
46	20.85	559	3.5206	0.9978	28.385766	2.431E 28
47	20.85	559	3.5571	8.9959		5.092E 28
48	20.85	559	3.4925	0.9977		1.343E 28
49 50	20.85	559 650	3.4560	0.9992		6.316E 27
50 	20.85 70.847	559 554 0	3.4547	0.9992		6.149E 27
mean		559.0 0.0		0.9987 0.0012	32.165195	
coef of wariation		0.0		0.0012	3.584924 0.111454	
coef of slewness.		0.0		-0.7619	0.569146	
coef of turtosis.		*****		5.1138	2.082879	
	_				= · ·	81-0636-TA-8
			4.45			

Table 1-4. Repeatability Data for RP Test

BORAM 6008 Chip Ser	^ial #106	32			19 MAY 81
Checkerboard Bar Pa	attern, E	Erase Ch	ip Mode,	Erase/Write	1000/200 microseconds
	drite	Delay	Slope	Correlation	Projected Projected
	voltage	Time	decades	Coefficient	Retention Retention
	1inimum	(msec)	per volt		log(t) hours
01	20.55	559	5.4202	0.9998	47.403751 2.534E 47
Ø2	20.55	558 550	5.2400	0.9999	45.705437 5.075E 45
03 04	20.55	559 550	5.0268	0.9998	43.685068 4.842E 43
9 4 95	20.55 20.55	559 559	5.0266 4.9234	0.9998 0.9996	43.682532 4.814E 43 42.707403 5.098E 42
95 86	20.55	559	4.7460	0.9993	41.027501 1.065E 41
Ø7	20.55	559	4.6724	0.9994	40.329810 2.137E 40
08	20.55	559	4.5318	0.9992	39.005245 1.012E 39
9	20.55	559	4.5101	0.9991	38.797277 6.270E 38
10	20.55	559	4.5625	0.9986	39.283105 1.919E 39
11	20.55	559	4.3351	0.9967	37.142969 1.3 90 E 37
12	20.55	559	4.2935	0.9985	36.742938 5.533E 36
13	20.55	559	4.2739	0.9983	36.557892 3.613 E 36
14	20.55	559	4.2497	0.9975	36.326439 2.121 E 36
15	20.55	559	4.2120	0.9953	35.956486 9.047 E 35
16	20.55	559	4.2088	0.9970	35.931955 8.550E 35
17	20.55	559	4.1612	0.9971	35.482969 3.041E 35
18	20.55	559	4.0305	0.9966	34.247897 1.770E 34
19	20.55	559 553	3.9201	0.9974	33.209045 1.618E 33
20	20.55	559 550	3.9196	0.9960	33.200845 1.588E 33
21	20.60	559 550	4.8488	0.9994	41.782053 6.054E 41 32.457251 2.866E 32
22	20.55 20.55	559 559	3.8423 3.7784	0.9930 0.9940	31.856752 7.190E 31
23 24	20.60	559	4.6856	0.9996	40.244537 1.756E 40
25	20.55	559	3.7841	0.9931	31.908878 8.107E 31
26	20.60	559	4.7342	0.9999	40.691477 4.914E 40
27	20.60	559	4.6819	0.9995	40.213652 1.636E 40
28	20.55	559	3.6860	0.9947	30.986940 9.704E 30
29	20.60	559	4.6939	0.9999	40.314568 2.063E 40
30	20.60	559	4.6159	1.0000	39. 58 3713 3.8 35E 39
31	20.60	559	4.5501	0.9994	38. 971338 9.361E 38
32	20.60	559	4.5847	0.9995	39.2 99925 1.995E 39
33	20.60	559	4.5114	0.9997	38.605513 4.032E 38
34	20.60	559	4.5989	0.9999	39.420323 2.632E 39
35	20.60	559	4.4929	0.9999	38.429084 2.686E 38
36	20.60	559	4.4733	0.9999	38.245516 1.760E 38
37	20.60	559	4.4546	0.9998	38.066429 1.165E 38
38	20.60	559 550	4.4122	0.9997	37.662311 4.595E 37 38.333247 2.154E 38
39	20.60	559 559	4.4837 4.3224	0.9997 0.9998	36.828920 6.744E 36
40	20.60 20.60	559	4.4168	0.9999	37.704496 5.064E 37
41 42	20.60	559	4.3224	0.9998	36.828336 6.73 5 E 36
43	20.60	559	4.3206	0.9996	36.814342 6.521E 36
44	20.60	559	4.3412	0,9998	37.005549 1.013E 37
45	20.60	559	4.3952	0.9997	37.499061 3.155E 37
46	20.60	559	4.3053	0.9999	36.656387 4.533 F 36
47	20.60	559	4.3457	0.9997	37.039607 1. 095E 37
48	20.60	559	4.2815	1.0000	36.434135 2.717E 36
49	20.60	559	4.2807	1.0000	36.425954 2.667E 36
59	20.60	559	4.2773	0.9998	36.39 581 9 2.488 E 36
me ar		559.0		0.9987	37 .982654
and devication		0.1		0.0019	3.349657
coef of Martation.		0.0		0.0019	0.088189 0.048837
coef of skewness		-6.4		-1,6514 5 (504	0.340837 3.490897
coef of Furtosis	400	0.6	3,4167	3,1534	81-0535-TA-9

Table 1-5. Repeatability Data for RP Test

TO. 4.		WRITE	VOLTAGE	MINIMUM (VOLTS)	
TRIAL NUMBER	DEVICE 1	DEVICE 2	DEVICE 3	DEVICE 4	DEVICE 5	DEVICE 6
1	22.65	21,95	22.25	24.75	23.55	25.55
2	22.65	21.95	22.20	24.75	23.65	25.60
3	22.65	21.95	22.20	24.75	23.70	25.65
4	22.65	21.95	22.25	24.75	23.65	25.55
5	22.65	21.95	22.25	24.80	23.70	25.65
6	22.65	21.95	22.20	24.80	23.70	25.70
MEAN	22.65	21.95	22.23	24.77	23.66	25.62
STD DEVIATION	0.00	0.00	0.03	0.03	0.06	0.06
COEF OF VARIATION %	0.00	0.00	0.13	0.12	0.25	0.23
COEF OF SKEWNESS	_	i -	-0.00	0.55	-0.88	0.04
COEF OF KURTOSIS	_		-7.11	0.00	2.06	0.74

81-0535-TA-16

Table 1-6. Repeatability Data for RP Test

70.4.		COMPUTE	D SLOPE (C	ECADES P	ER VOLTS)	
TRIAL NUMBER	DEVICE 1	DEVICE 2	DEVICE 3	DEVICE 4	DEVICE 5	DEVICE 6
1	5.4616	3.6171	6.3666	3.0174	1.8791	2.1725
2	5.8175	3.5470	5.5047	2.8456	1.9476	1.8744
3	6.0778	3.6456	5.5072	2.6619	1.8726	1.7451
4	5.3582	3.2061	6.3395	2.6425	2.0623	2.0634
5	5.5339	3.1870	6.3727	2.9155	1.9504	2.2099
6	5.8143	3.2314	5.4339	2.8177	1.9954	1.8274
MEAN	5.6772	3.4057	5.9208	2.8168	1.9512	1.9821
STD DEVIATION	0.2712	0.2192	0.4816	0.1450	0.0717	0.1931
COEF OF VARIATION %	4.7770	6.4363	8.1340	5.1477	3,6747	9.7422
COEF OF SKEWNESS	0.2021	0.0375	-0.0057	0.0031	0.2692	0.0229
COEF OF KURTOSIS	1.2149	0.7583	0.7046	1.2102	1.3974	0.9484

1.3.1 Parameters of Interest

The minimum write voltage (0.5-second retention), the slope, and the retention projection are the major RP test parameters. The purpose of these exploratory tests is to learn about these parameters in two different ways. First, what is the natural distribution of each parameter for product in process? Distribution data is essential to planning intelligent screens. Second, how do the RP parameters change when a device is subjected to temperature, to varied erase and/or write timing, and to erase-write cycling.

In these first tests the emphasis has been on the mechanics involved. Gross issues of test adequacy and data interpretation were the primary focus.

1.3.2 Nominal Condition Distribution

Acceptance tests which may include some variation of an RP test should consider the natural distribution of the RP parameters for product which is ready for delivery.

A population of nine BORAM multichip hybrid packages (MHP) were subjected to the RP test. These devices had completed the cycle stress and burn-in required before delivery.

Table 1-7 lists the minimum write voltages observed for the 144 chips in the nine MHP's. Because checkerboard and checkerboard bar observations were required, a total of 288 write voltages were measured. Figure 1-6 gives a histogram of the results, and lists the basic statistics of the population.

Slope data was treated in a similar fashion in table 1-8 and figure 1-7. Use of the RP test gave some new information concerning these particular parts. The existence of the distribution tails was previously unknown. Follow-up investigations are planned to see if the behavior of the extreme devices is deficient.

1.3.3 Temperature Effects

In an attempt to explore the nature of RP characteristics over the temperature range, a set of eight sample devices were evaluated. Table 1-9 presents the major parameters for -55°C, 25°C, and 125°C. Data for the checkerboard pattern was plotted in figure 1-8 to see if any visual trends existed.

A trend toward longer projected retention at higher temperatures seems to exist. Individual devices do not always follow the trend, so some questions exist. The normal change of threshold voltage with temperature would cause a shift in the minimum write voltage in the direction shown. But the observed magnitude of change is greater than can be accounted for by this mechanism alone.

The devices were connected to the test system through relatively long cables. The error in write voltage because of the cables is a function of cable resistance and of the current demand of the devices under test. The current drawn by a BORAM device varies considerably with temperature. It appears that further work should be done to evaluate the "cable effect" before temperature test results are interpreted.

81-0535-TA-14

Table 1-7. Post Burn-In Minimum Write Voltages

нувал						POS	POST BURN-IN MINIMUM WRITE VOLTAGE (VOLTS)	IN WIN	IIMUM V	VRITE	OLTAG	E (VOL	15)				
CIRCUIT	PATTERN	CHIP	CHIP 2	CHIP 3	GH 4	CHIP	GHP 6	CHIP	CHIP 8	CHIP 9	CH 02	CHIP	CHIP 12	CHIP 13	g ₹	CHIP 15	CHIP 16
202	CKBO	26.30	22.20	19.80	19.15	18.75	19.75	19.50	20.40	19.90	25.00	22.00	21.20	18.60	19.00	25.90	24.90
202	CKBD	25.15	20.70	20.85	18.80	18.50	19.80	19.95	18.50	20.20	25.30	22.05	21.25	19.35	00.61	26.40	25.05
231	CKBD	24.35	25.65	24.00	22.00	23.20	23.30	23.85	23.65	21.60	25.90	25.80	26.20	25.70	25.40	24.60	24.60
231	CKBD	23.95	25.65	24.00	22.10	22.90	23.15	24.70	22.40	22.25	25.90	25.25	26.35	24.70	24.75	24.10	24.15
243		27 26	00 70		75 CC	- 6	5	22.25	74.76	03.00	2	5	30.00	- 0	5	900	3
247	S IS	23.80	23.70	23.90	23.80	21.75	22.55	22.90	23.40	23.00	20.35	20.95	20.90	22.65	22.80	20.70	22.30
				_													
526	CKBD	23.95	22.55	23.25	23.05	20.70	22.15	20.70	21.55	21.80	22.15	25.85	23.85	21.40	20.45	21.70	21.55
256	СКВО	25.00	23.05	23.40	23.20	21.30	23.05	21.25	20.00	22.50	22.40	24.85	22.75	20.55	20.80	20.65	21,55
250	3	24.00	22.46	,	טנ כנ	3,	30.00	30.65	24.46	32.25	0000	00	30.00	20.00	09 01	09 06	23.65
657		24.00	20.00	2	22.72	23.05		20.03	24.45	62.22	20.00	00.00	00.00	25.43	00.61	20.00	60.15
ÃC 7	ראשט	24.30	3	27.15	22.U3	22. 7.	70.80	22.85	74.45	26.57 27	67.12	€ 2	2.2	22.05	20.00	<u>s</u>	06.12
208	CKBD	21.90	21.55	24.65	20.45	20.25	22.15	21.95	21.20	20.40	23.30	22.45	20.50	21.80	20.65	21.65	20.00
208	CKBD	22.25	22.25	24.70	20.40	20.65	23.20	21.60	22.45	21.80	23.60	21.60	19.80	20.85	21.10	21.70	23.00
919	2	22.25	36 96	אר אנ	00.75	26 26	22.40	37 66	32 25		7.	30 00	26.36	32.00	33 66	٥٢ ٢٠	90
519	CK BC	24.45	26.90	26.35	23.40	24.90	24.60	22.75	26.25	25.70	23.85	26.70	24.95	22.65	23.80	24.85	26.05
												_					
522	CKBD	20 75	21.80	21.50	23.00	20.50	21.50	21.55	22.05	20.30	22.75	21.95	20.15	21.00	21.40	20.40	20.75
525	CKBD	21.15	22.40	20.90	22.80	21.10	21.20	21.35	21.40	20.35	22.55	20.10	19.75	21.00	21.60	20.05	20.05
529	CKBD	19.95	19 15	20.05	22.85	21.15	19 15	20.65	19 65	19.85	20.00	19.85	20 R5	20 50	20 90	20.86	21.25
529	CK80	20.65	19.80	2000	21.30	19.90	21.10	23.90	21.15	20.65	21.50	21.60	21.00	20.10	20.95	20.15	18.70

WRITE	VOLTA	GE	(VO	LTS)										FF	EQUI	ENCY
28.00																0
27.50																0
27.00																0
26.50	xxx															3
26.00	xxxx	XXX	кхх													9
25.50	xxxx	XXX	(XXX	ίX												11
25.00	xxxx	xxx	(X													8
24.50	xxxx	XXX	(XXX	(XXX	xxxx											17
24.00	xxxx	XXX	(XXX	(XXX	×											14
23.50	xxxx	XXX	(XXX	(XXX	xxxx											17
23.00	xxxx	XXX	(XXX	(XXX	xxxx	xxxx										21
22.50	xxxx	XXX	(XXX	(XXX	xxxx	хх										19
22.00	xxxx	XXX	(XXX	(XXX	xxxx	xxxx.	xxxx	×								26
21.50					XXXX											28
21.00	xxxx	XXX	(XXX	(XXX	xxxx	xxxx:	xxxx	Κ								26
20.50	xxxx	XXX	(XXX	(XXX	xxxx	xxxx	xxxx	xxxx	(XXXX	<						34
20.00	xxxx	xxx	(XXX	(XXX	xxxx	xxxx	xxxx	<								26
19.50	xxxx	xxx	(XXX	(XXX	xxxx											17
19.00	xxxx	хx														6
18.50	xxxx	хx														6
18.00																
17.50					DATA	ОВТ	AINE	FRC	M NII	VE HY	BRID	CIRC	CUITS			
17.00					SERI	AL 20	2, 231	, 247,	256,	259, 5	08, 51	9, 52	2, 529			
16.50																
16.00					NUM	BERS	AMPL	.ES		283	3					
15.50					MEA	V				22.	2727					
15.00					MEDI	AN				22.	00					
14.50					MIDE	ANG	Ε			22.	70					
14.00					VARI	ANCE	:			3.8	451					
13.50					STAN	DARI	DEV	IATIO	ON	1.9	609					
13.00					COEF	OF V	'ARIA	TION		8.8	041%					
12.50					RANG	GE				8.4						
12.00																
11.50																
11.00												•				
11,00 10.50																

81-81-0535-TA-12

Figure 1-6. Post Burn-In Minimum Write Voltage Histogram

Table 1-8. Post Burn-In Slope

	CHIP	91	4.27	3.88	153	3.66		90.4	3.77	,	3.49	2.88	3.17	2.95		2.70	2.00		9.89	8.44		2.85	2.85		3.13	4.48
	СНІР	51	8.	2.77	6,4	5.85		3.63	3.69		2.4	2.50	 3.39	3.62		4.40	3.75		3.26	2.50		3.54	3.13		4.13	4.76
	CHIP	7	5.78	12.43	٤	4.19		86.	3.75		1.93	2.11	3.32	3.13		4.72	5.56		5.54	6.12		3.75	2.78		3.33	4.25
	СНІР	13	3.47	3.47	4 31	3.74		6.12	3.92		2.73	2.28	2.82	2.91		2.93	4.39		15.	4.71	-	2.97	3.14		2 00	4.63
	CHIP	12	5.17	7.80	7 25	7.18		3.24	4.17		8.91	6.38	4.35	80.		2.41	1.62		5.74	4.75		3.19	2.87		4.70	3.91
	CHIP	Ξ	3.59	4.00	3 80	3.62		3.46	3.74		4.32	5.12	2.85	3.84		3.15	3.56		3.51	4.95	•	89.	2.50		4.41	3.20
VOLT)	СНІР	9	5.81	4.14	11 45	9.52		4.54	4.20	,	2.64	2.28	3.90	3.88	·	3.93	3.62		3.69	7.44		3.76	2.99		2.08	4.03
SLOPE (DECADES PER VOLT)	СНІР	6	2.93	2.50	3 45	3.07		5.19	4.14	ļ	2.67	3.13	2.80	3.16		3.35	2.64		6.51	3.82		3.48	3.32		2.00	3.52
DECAD	СНІР	x	2.43	2.77	1 06	4.42		3.62	6.90		2.63	3.01	11.07	12.64		1.80	3.78	•	4.12	2.93		3.10	2.80		4.01	3.38
SLOPE (CHIP	7	3.08	2.86	191	5.34	,	4.8	4.30		2.15	2.28	3.65	2.96		3.19	3.19		3.86	9.4	•	2.90	2.95	_	4.27	3.28
	CHIP	9	17.48	2.89	287	2.57		3.13	3.08		4.31	5.04	3.83	3.26		2.95	2.44		2.72	2.20		2.87	3.69		2.00	3.29
	CHIP	ro.	3.49	3.22	3.54	4.02		3.24	3.61		6 6 6 7	2.68	1.95	2.66		2.32	2.41		3.80	3.32		2.80	2.67		3.58	4.44
	CHIP	4	2.31	3.05	3.50	3.46		4.20	3.79		3.20	3.62	2.96	2.82		2.14	2.53		3.20	3.07	•	2.52	3.17	_	4.36	3.86
	СНІР	၉	2.91	2.34	0.58	5.26	,	3.25	3.62	,	4.12	4.63	 6.54	5.05		6.14	5.47		4.14	2.71		2.87	3.07		4.55	4.03
	СНІР	2	3.21	3.99	3 44	3.60		3.26	4.70		7.43	6.73	3.55	3.49		3.36	2.88		6.14	5.86		3.85	3.20		3.92	4.72
	CHIP	-	7.89	8.09	4.57	4.32		3.92	4.34	Č	3	4.73	5.02	5.02		4.62	4.64		3.83	4.13		2.69	3.00		4.16	4.36
	PATTERN		CKBD	СКВО	CKBD	CKBD		CKBO	CKBD		CKBD	CKBD	CKBD	СКВО		CKBD	CKBD		CKBD	CKBD		CKBD	CKBD		CKBD	СКВО
HYBRID	CIRCUIT	SERIAL	202	202	231	231		247	247	Š	256	526	529	529		208	208		519	519		522	522		529	529

SLOP	E (DECADES/VO	OLT)							FR	EQUE	NCY
17.5		DAT	A OBTAIN	NED FRO	M NIN	HYBRI	D CIR	CUITS	S		0
17.0	×	SER	IAL 202,	231, 247,	256, 25	9, 508, 5	19, 52	2, 529	•		1
16.5											0
16.0		NUN	BER SAN	MPLES		288					0
15.5		MEA	N			4.0015					0
15.0		MED	NAI			3.6174					0
14.5		VAR	IANCE			3.2599					0
14.0		STA	NDARD D	EVIATIO	N	1.8055					C
13.5		COE	F OF VAF	RIATION		45.1209	6				0
13.0											C
12.5	x										1
12.0	x										1
11.5											(
11.0	xx										2
10.5											(
10.0											(
9.5	xx										2
9.0											(
8.5	×										1
8.0	xx										2
7.5	××										2
7.0	xxxx										4
6.5	xxx										3
6.0	xxxxxx										6
5.5	xxxxxx										7
5.0	xxxxxxxxx	CXXXX									14
4.5	xxxxxxxxx										21
4.0	xxxxxxxxx										38
3.5	xxxxxxxxx										53
3.0	xxxxxxxxx									XX	56
2.5	xxxxxxxxx		xxxxxx	XXXXXX	XXXXX	xxxxx:	XXXXX	XXXX	:		50
2.0	XXXXXXXXX	(XXXXXX									16
1.5	xxxxxx										7
1.0											(
0.5	×										1
0.0											C
	0 4 8	12 16	20 24	28	32 3	6 40	44	48	52	56	

Figure 1-7. Post Burn-In Slope Histogram

81-0535-TA-15

Table 1-9. Temperature Test Data for Eight Samples

TEMPERATURE MIN V SLOPE LOGTH TR MIN V SLOPE CADES/V LOG HRS HOURS VOLTS DECADES/V LOG HRS HOURS LAGOR	200	AMBIENT		CHECKERBOARD PATTERN	RD PATTERN		S	CHECKERBOARD BAR PATTERN) BAR PATTE	RN
-55 24 05 6.9816 37 8052 6.386e37 24.10 +25 23.55 7.0754 41.8687 7.391e41 23.25 +125 22.30 8.2270 59.5976 3.959e59 24.10 +25 24.00 5.6158 29.8971 7.891e29 24.10 +25 23.55 8.1541 48.8358 6.852e48 23.40 +125 22.30 6.8249 48.8358 6.852e48 22.30 +125 22.45 4.3325 28.9173 8.267e28 22.70 +125 22.45 4.3325 28.9173 8.267e28 22.70 +125 24.30 3.2489 14.6940 4.943e14 24.50 +125 24.50 4.8651 33.6957 4.963e32 21.35 +125 24.50 5.0429 27.4093 25.66e32 21.36 +125 23.00 6.9403 49.7595 9.45te18 22.55 +125 24.55 5.7769 27.6869	SERIAL	TEMPERATURE °C	MIN V	SLOPE DECADES/V	LOG TR LOG HRS	TR HOURS	MIN V	SLOPE DECADES/V	LOG TR LOG HRS	TR HOURS
+25 23.55 7.0754 41.8687 7.391e41 23.25 +125 22.30 8.2270 59.5976 3.959e59 24.10 +25 24.00 5.6158 29.8971 7.891e29 24.10 +25 23.55 8.1541 48.8358 6.852e48 23.40 +125 22.30 6.8249 48.7845 6.089e48 22.35 +25 22.45 3.6667 20.2119 1.629e20 23.50 +25 22.45 4.2864 32.4093 2.566e32 21.35 +125 21.55 4.2864 32.4093 2.566e32 21.35 +125 22.460 3.2489 14.8940 4.943e14 24.60 +125 22.36 5.0429 23.4902 3.092e3 22.56 +125 22.30 6.9403 44.7795 6.018e44 22.85 +125 23.00 6.9403 44.7795 6.018e44 22.86 +125 22.60 3.9807 25.6445	129	99-	24.05	6.9816	37.8052	6.386e37	24.10	5.1326	26.5357	3.433e26
+125 22.30 8.2270 59.5976 3.959e59 23.35 -55 24.00 5.6158 29.8971 7.891e29 24.10 +25 23.55 8.1541 48.8358 6.852e48 23.40 +125 22.30 6.8249 48.7845 6.089e48 22.35 +25 22.45 4.3325 28.9773 8.267e28 22.36 +125 22.45 4.2864 32.4093 2.566e32 21.35 +125 24.50 3.2499 14.6940 4.943e14 24.60 +25 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.60 5.0429 27.8869 4.863e27 24.55 +25 24.60 5.0429 27.8869 4.863e27 24.65 +25 24.60 5.0429 27.8869 4.863e27 24.65 +25 22.00 6.9403 44.795 6.08e48 4.840e19 22.66 +125 22.60 4.4723		+25	23.55	7.0754	41.8687	7.391e41	23.25	5.2510	31.6418	4.383e31
-55 24.00 5.6158 29.8971 7.891629 24.10 +25 23.55 8.1541 48.8388 6.85248 23.40 +125 22.30 6.8249 48.7845 6.08948 22.35 +25 22.45 3.3667 20.2119 1.629e20 23.50 +25 22.45 4.3325 28.9173 8.267e28 22.70 +25 22.45 4.2864 32.4093 2.566e32 21.35 +25 23.45 4.2864 32.4093 2.566e32 21.35 +125 22.30 4.8651 33.6957 4.963e3 22.56 +25 24.60 5.0429 27.6889 4.863e27 24.65 +25 24.55 5.7769 27.6889 4.863e27 24.65 +25 24.55 5.7769 27.6889 4.870e19 23.16 +25 22.60 5.0429 27.6889 4.870e19 23.65 +125 23.15 3.4273 31.665 5.841e33 21.60 +125 24.60 2.8980 11.8556		+125	22.30	8.2270	59.5976	3.959e59	23.35	5.1781	35.8042	6.371e35
+25 23.55 8.1541 48.8358 6.852e48 23.40 +125 22.30 6.8249 48.7845 6.089e48 22.35 -55 23.45 3.6667 20.2119 1.629e20 23.50 +125 22.45 4.2864 32.4093 2.566e32 21.35 +125 21.55 4.2864 32.4093 2.566e32 21.35 +125 22.30 4.8651 33.6957 4.963e33 22.55 +125 22.30 4.8651 33.6957 4.963e33 22.55 +125 24.60 5.0429 27.6869 4.863e27 24.65 +125 22.60 5.0429 27.6869 4.863e27 22.85 +125 23.00 6.9403 44.7795 6.018e44 22.85 +125 22.60 3.9807 25.6645 4.619e25 22.60 +125 22.60 3.9807 25.645 4.619e25 22.80 +125 24.60 2.8980 11.8556	130	-55	24.00	5.6158	29.8971	7.891e29	24.10	5.1466	26.6177	4.147e26
+125 22.30 6.8249 48.7845 6.089e48 22.35 -55 23.45 3.6667 20.2119 1.629e20 23.50 +25 22.45 4.3325 28.913 8.267e28 22.70 +125 21.55 4.2864 32.4093 2.566e32 21.35 +25 24.30 3.2449 14.6940 4.943e14 24.60 +25 23.45 3.4829 18.9755 9.451e18 23.80 +125 22.30 4.8651 33.6957 4.963e33 22.55 +25 24.60 5.0429 27.6869 4.863e27 24.65 +25 24.55 5.7769 27.6869 4.863e27 22.85 +125 23.00 6.9403 44.7795 6.018e44 22.85 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 +25 24.15 3.9499 19.389		+25	23.55	8.1541	48.8358	6.852e48	23.40	6.2485	37.4376	2.739e37
-55 23.45 3.6667 20.2119 1.629e20 23.50 +25 22.45 4.3325 28.9173 8.267e28 22.70 +125 21.55 4.2864 32.4093 2.566e32 21.35 -55 24.30 3.2449 14.6940 4.943e14 24.60 +25 23.45 3.4829 18.9755 9.451e18 23.80 +125 22.30 4.8651 33.6957 4.963e33 22.55 +25 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.65 5.0429 27.6899 4.863e27 24.65 +25 24.65 5.0429 27.6899 4.863e27 22.85 +125 23.00 6.9403 44.7795 6.018e44 22.85 +125 22.60 3.9807 25.6445 4.619e25 22.85 +125 24.60 4.4723 33.7665 5.841e33 21.60 +25 24.15 3.9499 19.3393		+125	22.30	6.8249	48.7845	6.089e48	22.35	5.2522	36.3895	2.452e36
+25 22.45 4.3325 28.9173 8.267e28 22.70 +125 21.55 4.2864 32.4093 2.566e32 21.35 -55 24.30 3.2449 14.6940 4.943e14 24.60 +25 23.45 3.4829 18.9755 9.451e18 23.80 +25 22.30 4.8651 33.6957 4.963e33 22.55 +25 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.55 5.7769 27.6869 4.863e27 24.55 +125 23.00 6.9403 44.7795 6.018e44 22.85 +125 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 24.60 4.4723 33.7665 5.841e33 21.60 +25 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393	132	-55	23.45	3.6667	20.2119	1.629e20	23.50	3.6272	19.8061	6.399e19
+125 21.55 4.2864 32.4093 2.566e32 21.35 -55 24.30 3.2449 14.6940 4.942e14 24.60 +25 23.45 3.4829 18.9755 9.451e18 23.80 +125 22.30 4.8651 33.6957 4.963e33 22.55 +25 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.55 5.7769 27.6869 4.863e27 24.55 +125 23.00 6.9403 44.7795 6.018e44 22.85 +125 22.60 3.9807 25.6445 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 +25 24.6 2.8980 11.8556 7.17te11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +25 22.90 4.1683 25.8334 6.814e25 21.30 +25 22.95 4.1683 26.6974		+25	22.45	4.3325	28.9173	8.267e28	22.70	4.1855	26.7845	6.088e26
-55 24.30 3.2449 14.6940 4.943e14 24.60 +25 23.45 3.4829 18.9755 9.451e18 23.80 +125 22.30 4.8651 33.6957 4.963e33 22.55 -55 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.55 5.7769 27.6869 4.863e27 24.20 +125 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 +125 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +25 22.90 4.1683 25.8334 6.814e25 21.30 +25 22.35 4.1683 22.1035 1.275e22 24.90 +25 22.50 5.132 34.22e34 4.982e26 24.30 +25 22.55 5.1132 34.22e34 <th></th> <th>+125</th> <th>21.55</th> <th>4.2864</th> <th>32.4093</th> <th>2.566e32</th> <th>21.35</th> <th>3.7971</th> <th>29.0414</th> <th>1.100e29</th>		+125	21.55	4.2864	32.4093	2.566e32	21.35	3.7971	29.0414	1.100e29
+25 23.45 3.4829 18.9755 9.451e18 23.80 +125 22.30 4.8651 33.6957 4.963e33 22.55 -55 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.55 5.7769 27.6869 4.863e27 24.55 +125 23.00 6.9403 44.7795 6.018e44 22.85 +25 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +126 21.60 4.4723 33.7665 5.841e33 21.60 +25 24.15 3.9499 11.8556 7.171e11 22.65 +25 22.90 4.1683 25.8334 6.814e25 21.30 +25 22.35 4.1683 22.1035 1.275e22 24.90 +25 22.50 4.1683 22.6974 4.982e26 24.90 +25 22.50 5.1132 34.22e34	133	-55	24.30	3.2449	14.6940	4.943e14	24.60	2.9917	12.3318	2.147e12
+125 22.30 4.8651 33.6957 4.963e33 22.55 -55 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.55 5.7769 27.6869 4863e27 24.65 +125 23.00 6.9403 44.7795 6.018e44 22.85 -55 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 +25 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.18e19 24.65 +25 22.90 4.1683 25.8334 6.814e25 21.30 +25 22.35 4.1683 22.1035 1.275e22 24.90 +25 22.50 5.132 34.22e34 3422e34 23.40		+25	23.45	3.4829	18.9755	9.451e18	23.80	3,9998	21.0179	1.042e21
-55 24.60 5.0429 23.4902 3.092e23 24.65 +25 24.55 5.7769 27.6869 4.863e27 24.65 +125 23.00 6.9403 44.7795 6.018e44 22.85 -55 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 +25 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 +25 22.35 4.3325 26.6974 4.982e26 24.30 +25 22.50 5.1132 34.22e34 23.40		+125	22.30	4.8651	33.6957	4.963e33	22.55	3.9013	25.2463	1.763e25
+25 24.55 5.7769 27.6869 4.863e27 24.20 +125 23.00 6.9403 44.7795 6.018e44 22.85 -55 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 -55 24.60 2.8980 11.8556 7.171e11 22.65 +125 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 -55 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.50 5.1132 3.422e34 4.982e26 24.30	134	-55	24.60	5.0429	23.4902	3.092e23	24.65	4.4540	20.0611	1,151e20
+125 23.00 6.9403 44.7795 6.018e44 22.85 -55 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 -55 24.60 2.8980 11.8556 7.171e11 22.65 +125 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 -55 22.95 4.3325 26.6974 4.982e26 24.30 +125 22.95 5.1132 3.422e34 23.40		+25	24.55	5.7769	27.6869	4.863e27	24.20	4.9691	25.0390	1.094e25
-55 23.15 3.4273 19.6848 4.840e19 23.10 +25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 -55 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 +25 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.55 4.3325 26.6974 4.982e26 24.30 +125 22.50 5.1132 3.422e34 3.342e34 23.40		+125	23.00	6.9403	44.7795	6.018e44	22.85	5.5222	35.6366	4.331e35
+25 22.60 3.9807 25.6645 4.619e25 22.60 +125 21.60 4.4723 33.7665 5.841e33 21.60 -55 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 -55 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.55 4.3325 26.6974 4.982e26 24.30 +125 22.50 5.1132 3.422e34 23.40	136	-55	23.15	3.4273	19.6848	4.840e19	23.10	3.2035	18.2918	1.958e18
+125 21.60 4.4723 33.7665 5.841e33 21.60 -55 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 -55 23.35 3.8937 22.1035 1.275e22 24.90 +125 22.50 5.1132 34.5343 3.422e34 23.40		+25	22.60	3.9807	25.6645	4.619e25	22.60	4.0052	25.8335	6.815e25
-55 24.60 2.8980 11.8556 7.171e11 22.65 +25 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 -55 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.95 4.3325 26.6974 4.982e26 24.30 +125 22.50 5.1132 34.5343 3.422e34 23.40		+125	21.60	4.4723	33.7665	5.841e33	21.60	5.1127	39.1386	1.376e39
+25 24.15 3.9499 19.3393 2.184e19 24.65 +125 22.90 4.1683 25.8334 6.814e25 21.30 -55 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.95 4.3325 26.6974 4.982e26 24.30 +125 22.50 5.1132 34.5343 3.422e34 23.40	137	-55	24.60	2.8980	11.8556	7.171e11	22.65	4.2161	27.2198	1.659e27
+125 22.90 4.1683 25.8334 6.814e25 21.30 -55 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.95 4.3325 26.6974 4.982e26 24.30 +125 22.50 5.1132 34.5343 3.422e34 23.40		+25	24.15	3.9499	19.3393	2.184e19	24.65	3.2013	13.3269	2,123e13
-55 23.35 3.8937 22.1035 1.275e22 24.90 +25 22.95 4.3325 26.6974 4.982e26 24.30 +125 22.50 5.1132 34.5343 3.422e34 23.40		+125	22.90	4.1683	25.8334	6.814e25	21.30	5.2844	42.1726	1.488e42
22.95 4.3325 26.6974 4.982e26 24.30 22.50 5.1132 34.5343 3.422e34 23.40	138	-55	23.35	3.8937	22.1035	1.275e22	24.90	3.7298	15.2103	1.623e15
22.50 5.1132 34.5343 3.422e34 23.40		+25	22.95	4.3325	26.6974	4.982e26	24.30	4.4320	21.4588	2.876e21
		+125	22.50	5.1132	34.5343	3.422e34	23.40	4.7344	. 27.4739	2.978e27

Figure 1-8. Temperature Trend Plots for Eight Samples

1.3.4 Erase-Write Time Effects

An experiment was performed to examine the effect of erase mode, erase time and write time on the RP test parameters minimum write voltage, slope and projected retention. One BORAM 6008 device in a DIP package was subjected to a series of 18 RP tests. The conditions and results for each test are summarized in table 1-10.

In effect, a three-factor experiment was performed where three different response variables existed. The factors and levels were:

	<u>Factor</u>	No. Levels
a.	Erase Mode	2
b.	Erase Time	3
c.	Write Time	3

The model for means is:

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + e_{ijkl}$$

 $i = 1 \text{ to } 2; j = 1 \text{ to } 3; k = 1 \text{ to } 3; l = 1 \text{ to } 2$

The issue at hand is whether any of the factors affect RP test results. In other words, test the hypothesis that the mean values associated with each level of a factor are equal.

Table 1-10. RP Test Results for Varied Pulsewidths

ERASE	ERASE	WRITE	(CHECKERB	OARD	СНІ	CKERBOA	RD BAR
MODE	TIME μSEC	TIME µSEC	minV VOLTS	SLOPE DEC/V	RETENTION HOURS	minV VOLTS	SLOPE DEC/V	RETENTION HOURS
	1000	200 100 20	21.40 22.40 25.35	2.3913 2.6184 2.2686	5 682e16 1 251e16 5.177e06	20 60 21 55 24 50	3.0345 2.6579 2.7225	5.550e24 4.247e18 1.335e11
CHIP	400	200 100 20	21.45 22.45 25.35	2 3732 2 6719 2 1860	3 146e16 2 357e16 2 054e06	20.60 21.60 24.55	2.4950 2.8414 2.9066	4.348e19 1.152e20 1.044e12
	200	200 100 20	21 45 22 45 25 40	2 1726 2 5290 2 4759	5.865e14 1 967e15 3.660e07	20 65 21 60 24 55	2 8196 2 7061 2 7993	3.780e22 8.435e18 2.637e11
-	1000	200 100 20	21.40 22.40 25.35	2 2982 2 5652 2 4367	8.926e15 4 961e15 3 201e07	20.60 21.55 24.50	2 8519 2 5634 2 7225	1 040e23 6.716e17 1.344e11
WORD	400	200 100 20	21 45 22 40 25 35	2.4293 2.3418 2.2252	9.429e16 9.401e13 3.334e06	20 60 21 60 24 50	2 4945 2 8909 2 6524	4.301e19 3.015e20 5.673e10
	200	200 100 20	21 45 22 45 25 35	2 4374 2 8056 2 2905	1.079e17 2.405e17 6.657e06	20 60 21 60 24.50	2.5507 3.0480 2.7990	1.443e20 6.227e21 3.628e11

Analysis of variance computations were carried out for each of the response variables, and are presented in tables 1-11 to 1-13. The computed F numbers show that erase mode and erase time do not significantly modify RP test results. Write time did not significantly affect slope. Write time was shown to significantly affect the minimum write voltage and the log time projection.

Given that write voltage and the log of projected retention are functions of write time, the data for each data pattern was subjected to regression analysis.

Pattern	Equation	Correlation Coef
CKBD	$V = 30.491 - 3.972 \log tp$	0.9985
CKBD	$V = 29.629 - 3.985 \log tp$	0.9985
CKBD	$\log t_r = -5.669 + 10.0047 \log tp$	0.9532
CKBD	$\log t_{\rm r} = -2.208 + 10.5684 \log tp$	0.9496

These findings seem to be consistent with current understanding as to how the RP test works. The use of nominal voltage during erase forces the DSP memory transistors into what is essentially the fixed threshold state. Thus, erase mode and erase time should not strongly affect RP test response variables.

Table 1-11. ANOVA for Erase and Write Time Effects on Minimum Voltage

SOURCE OF VARIATION	SUM OF SQUARES	DEGREES OF FREEDOM	MEAN SQUARE	F
MAIN EFFECT				
ERASE MODE	0.002	1	0.002	0.005
ERASE TIME	0.009	2	0.004	0.013
WRITETIME	99.647	2	49.823	142.437
TWO FACTOR INTERACTION				
ERASE MODE X ERASE TIME	0.001	2	0.000	0.001
ERASE MODE × WRITE TIME	0.001	2	0.000	0.001
ERASE TIME × WRITE TIME	0.001	4	0.000	0.001
THREE FACTOR INTERACTION				
ERASE MODE × ERASE TIME × WRITE TIME	0.001	4	0.000	0.001
ERROR	6.296	18	0.350	
TOTAL	105.957	35	_	-

 $F_{0.01}$ (2, 18) = 6.01, $F_{0.05}$ (2, 18) = 3.55

Table 1-12. ANOVA for Erase and Write Time Effects on Slope

SOURCE OF VARIATION	SUM OF SQUARES	DEGREES OF FREEDOM	MEAN SQUARE	F
MAIN EFFECT	}			
ERASE MODE	0.0020	1	0.0020	0.0241
ERASE TIME	0.0371	2	0.0186	0.2268
WRITE TIME	0.1854	2	0.0927	1.1330
TWO FACTOR INTERACTION ERASE MODE × ERASE TIME ERASE MODE × WRITE TIME ERASE TIME × WRITE TIME	0.0349 0.0097 0.1246	2 2 4	0.0175 0.0049 0.0311	0.2133 0.0595 0.3806
THREE FACTOR INTERACTION ERASE MODE × ERASE TIME × WRITE TIME	0.1212	4	0.0303	0.3703
ERROR	1.4727	18	0.0818	-
TOTAL	1.9876	35	-	_

 $F_{0.01}$ (2, 18) = 6.01, $F_{0.05}$ (2, 18) = 3.55

Table 1-13. ANOVA for Erase and Write Time Effects on Log (Time) Projection

SOURCE OF VARIATION	SUM OF SQUARES	DEGREES OF FREEDOM	MEAN SQUARE	F
MAIN EFFECT				
ERASE MODE	0.047	1	0.047	0.004
ERASE TIME	2.004	2	1.002	0.086
WRITE TIME	690.336	2	345.168	29.489
TWO FACTOR INTERACTION				
ERASE MODE X ERASE TIME	2.691	2	1.346	0.115
ERASE MODE × WRITE TIME	0.684	2	0.342	0.029
ERASE TIME × WRITE TIME	9.862	4	2.465	0.211
THREE FACTOR INTERACTION	<u> </u>			
ERASE MODE X ERASE TIME X WRITE TIME	6.249	4	1.562	0.133
ERROR	210.690	18	11.705	
TOTAL	922.564	35	-	

 $F_{0.07}$ (2, 18) = 6.01, $F_{0.05}$ (2, 18) = 3.55

1.3.5 Endurance Effects

A preliminary investigation as to how the RP test reflects device changes associated with endurance has been initiated. Four unscreened BORAM 6008 chips were cycled in the unbalanced mode with the checkerboard bar pattern using chip erase. The erase time was 1000 microseconds, and the write time was 200 microseconds. A normal 30-volt supply level was applied.

The checkerboard bar pattern used for cycle stress caused one transistor in each two-transistor cell to be erase-write cycled. The other transistor in each cell was subjected to repeated erase pulses. The cycled transistors would be expected to show changes as the cycle stress accumulates. The transistors which are erased over and over would be enjoying a relatively low stress environment, and would not be expected to change characteristics.

It is of interest to see whether the RP test results reflect these expectations. The checkerboard bar RP test should be primarily a function of the stressed transistors. The checkerboard RP test should reflect the unstressed transistors.

In table 1-14, the minimum write voltage shows changes of 1 to 3 volts from initial to 1e7 cycles for the checkerboard bar pattern. Changes from 0.25 to 0.60 volts were observed for the checkerboard pattern. The data above 1e6 cycles was plotted in figure 1-9. The unstressed side of the devices changed very slightly. The stress side shows a linear shift toward lower voltages. Curve fits of the form Voltage = Slope × Log (Cycles) for the stressed side data yields correlation coefficients of 0.9972 to 0.9999.

Table 1-14. Minimum Write Voltage vs Erase-Write Cycles

			MINIMU	M WRITE V	OLTAGE (VOLTS)	·	
ERASE WRITE	СН	ECKERBOA	ARD PATTE	RN	CHEC	KERBOARI	D BAR PAT	TERN
CYCLES	SERIAL 101	SERIAL 102	SERIAL 103	SERIAL 104	SERIAL 101	SERIAL 102	SERIAL 103	SERIAL 104
INITIAL	22.10	21.85	22.55	24.60	23.85	21.00	22.85	22.00
1e6	22.35	21.95	22.80	24.30	23.35	20.65	22.65	20.70
3e6	22.50	22.00	22.80	24.10	22.65	19.95	22.25	19.70
1e7	22.65	22.10	22.90	24.00	21,65	19.30	21.80	18.80
MAX	22.65	22.10	22.90	24.60	23.85	21.00	22.85	22.00
MIN	22.10	21.85	22.55	24.00	21,65	19.30	21.80	18.80
DELTA	0.55	0.25	0.35	0.60	2.20	1.70	1.05	3.20

Table 1-15 shows the computed slopes. The data above 1e6 cycles is plotted in figure 1-10. Trends are not as clear cut as for the voltage data. The expectation was that transistor changes would become noticeable at 1e7. The RP test showed two of four samples with a marked increase in slope at this stress level.

Figure 1-11 presents the retention projection data for stressed and unstressed memory cells. The results were highly variable with unstressed cells shifting for the most part toward lower retention, and stressed cells toward higher retention.

Table 1-15. Slope vs Erase-Write Cycles

EDASE			MINIMU	M WRITE V	OLTAGE (VOLTS)						
ERASE WRITE	СН	ECKERBOA	RD PATTE	RN	CHEC	KERBOAR	D BAR PAT	TERN			
CYCLES	SERIAL 101	SERIAL 102	SERIAL 103	SERIAL 104	SERIAL 101	SERIAL 102	SERIAL 103	SERIAL 104			
INITIAL	6.4259	3.9931	3.7897	2.2980	3.4366	3.8420	4.7723	9.3165			
1e6	3.7805	3.7058	3.4876	2.5823	1.8718	2.6101	2.8958	3.2116			
3e6	3.8019	3.6773	3.2535	2.6118	1.9234	2.9916	2.5509	3.3209			
1e7	3.0549	3.3547	2.7443	2.2738	2.2097	4.1769	2.5512	4.6639			
MAX	6.4259	3.9931	3.7897	2.6118	3.4366	4.1769	4.7723	9.3165			
MIN	3.0549	3.3547	2.7443	2.2738	1.8718	1.6101	2.5509	3.2116			
DELTA	3.3710	0.6384	1.0454	0.3380	1.5648	1.5668	2.2214	6.1049			

Figure 1-9. Erase-Write Cycles vs Minimum Write Voltage (Unbalanced Stress)

Figure 1-10. Erase-Write Cycles vs Slope (Unbalanced Stress)

Figure 1-11. Retention Projection vs Erase-Write Cycles

2. CONCLUSIONS

At the current stage of development, the RP test shows some promise of being useful as the basis for a screen to remove defective or suspect devices from the population. Some form of an RP test is visualized as being a part of a comprehensive set of stresses and tests oriented toward endurance-retention characteristics.

The RP test cannot be assumed to provide an accurate estimate of real-time retention. It does, however, appear to provide information directly related to endurance-retention properties of devices. Further work is required to quantitatively define such relationships.

3. PROGRAM FOR NEXT INTERVAL

The primary tasks during the next period are the performance of the pilot run, the demonstration of throughput capability, and the continued investigation of the utility of the RP test.

4. PUBLICATIONS AND REPORTS

During the reporting period there were no publications derived directly from this contract effort.

- 8,192-bit block-oriented RAM
- Two DSP transistors per cell
- · Fast Read and Write
- 128-bit or 8, 192-bit erase
- High endurance/retention characteristics
- < 400 milliwatts power dissipation per chip

The 6008 chip is an 8,192-bit memory intended for use in block-oriented random-access memory systems. It is normally packaged in multichip hybrid form to achieve high density, but can also be packaged in leadless carriers, flat packages or dual-in-line packages. Use of the MNOS (metal-nitride-oxide semiconductor) technology allows nonvolatile information storage and low power operation. The circuit design uses p-channel metal gate transistors on bulk silicon. Reliable drain source protected (DSP) memory transistors form the memory array. The die measures 139 by 192 mils, and features a 1.26 mil³ two-transistor cell. A glass overcoat guards against scratches due to handling. All inputs have protective voltage limiting devices to avoid damage by static charge.

- 15-volt CMOS compatible
- · Fully decoded and buffered
- Tristate output
- Military temperature range
- Low pin count -- only 15 pads
- Static charge protected

The 6008 contains a fully decoded 256-word by 32-bit RAM and a 32-bit dynamic two-phase shift register. All 1 O is accomplished serially through the shift register. Parallel bidirectional data transfer between the RAM and the shift register takes place via an internal 32-bit latch. The RAM and shift register can operate independently. Data stored in the latch may be written into the RAM while new data is shifted into the register.

The address input signals are multiplexed to reduce the pin count. Four bits of the eight-bit address are placed on the address inputs and are latched internal to the chip. Then the last four bits are placed on the address lines and are held steady.

Westinghouse Defense and Electronic Systems Center . Baltimore, Maryland

June 1981

page 1 of 10

Transistor and Cell Operation

MNOS Device Structure

The 6008 device is manufactured using conventional silicon integrated circuit processing. Basic element in the circuit is the metal-nitride-oxide semiconductor (MNOS) transistor. The use of a dual-dielectric insulator composed of silicon nitride and silicon oxide enhances reliability and makes possible the non-volatile storage of data.

When the oxide layer is made very thin (~20A), electrical signals may be used to insert or remove charge from traps in the nitride close to the nitride-oxide interface. Changes in the insulator charge cause the threshold voltage of the transistor to shift in value. When power is removed the charge in the insulator will be retained for long periods of time. If the oxide layer is made thick (~800A), charge cannot be moved in the insulator, and a nonmemory device results.

DSP Memory Transistor

A reliable memory transistor structure has been achieved by using thick oxide close to the source and drain diffusions to protect the thin memory oxide from electrical fields and/or material imperfections in that region. The so-called "drain-source protected" transistor can be visualized schematically as a memory transistor in series with two nonmemory transistors. An arrow is shown on the gate of a memory transistor symbol to indicate the variable nature of the transistor threshold voltage.

Two-Transistor Storage Cell

Two memory transistors arranged in a balanced differential configuration are used to store one data bit. Storage is a two-step process. First, both transistors in the cell are pulsed into the erased state. Then as a function of the data one or the other of the two transistors is pulsed into the written state. On read out, the sense circuit effectively compares the threshold voltages of the two transistors to determine whether a logic one or logic zero was stored. The difference between the threshold voltages is called the logic window voltage.

Erase-Write Operation

Application of a positive gate to source and substrate potential will cause a positive shift in the threshold voltage of a memory transistor. This most positive threshold level is called the "erased" state. Similarly, application of a negative gate voltage will shift the threshold negative into the "written" state.

Repeated erase-write cycles cause changes in the characteristics of the memory transistor. The magnitude and importance of these changes is a function of the applied voltage levels, waveshapes, and duration. For a given set of operating conditions, the net effect of transistor changes is an alteration of the expected nonvolatile retention time.

Absolute Maximum Chip Ratings

Temperature Range

Operating -55°C to +125°C Storage -65°C to +150°C

Voltage Range Voltages Referenced to VCC

CS +0.5V to -37V VGG +0.5V to -32V Other Inputs +0.5V to -20V

Endurance and Retention

As the transistors in a memory cell accumulate erasewrite cycles, the number of hours the cell can be expected to retain data is reduced. A rule of thumb observation for cells stressed using standard operating conditions is that

retention > 10¹² hours accumulated erase-write cycles

Prospective users should do an analysis of the expected number of erase-write cycles over the life time of the memory system. System specifications should be selected to be well within the rule of thumb guideline, and should also consider the practical aspects of verifying a specific retention requirement.

Standard Operating Conditions

VCC +15V VGG -15V \overline{CS} +15V to -20V Erase Time 1000 μ sec Write Time 200 μ sec

> 1 YEAR 8 766 HOURS 3 YEAR 26 298 HOURS 5 YEAR 43830 HOURS EPASE 125 VOLTS 1 MINE WASTE 14 LOLTS 0.7 MIN

Westinghouse Defense and Electronic Systems Center e Baltimore, Maryland

June 1961

page 3 of 18

BORAM Multichip Hybrid Microcircuit Westinghouse Part 647R527G02

Weight 16.5 grams Thermal Resistance θ_{1C} 5°C Watt

Hybrid Circuit Capacitance

Clock Inputs	PH1, PH2	135 pf
Chip Select Inputs	CSO to CS7	35 pf
Control Inputs	ĀĒ, MW, TR	80 pf
Clear Input	CL	160 pf
Aldress Inputs	A0 to A3	90 pf
Write Data Inputs	DWA, DWB	40 pf
Read Data Outputs	DRA, DRB	60 pt

Memory Card Layout Data

Leads: 0.015-in, wide, 0.010-in, thick, 0.400-in centers. Pin I to 2 and 23 to 24 spaced 0.200 inches. Package height: 0.125 in, maximum. On 0.100-in, grid the package tootprint is 1.3 x 2.0 in.

Alternative Packages

This data sheet is restricted to a description of the 6008 device mounted in a multichip hybrid circuit. The device can be mounted in other types of package Dual-in-line, flat package and leadless carrier configurations have been used.

Westinghouse Defense and Electronic Systems Center . Baltimore, Maryland

June 1981

page 4 of 10

Circuit Operating Concepts

To store data two operations must be performed. First, the memory cells must be erased or cleared using the clear (CL) signal. Second, the data must be written into the cell using the memory write (MW) signal. The 6008 design allows erasure of the entire 8,192 cells with one pulse, or optionally allows erasure of 128 cells as a function of address inputs and control signal sequence. Writing takes place in 32-bit words as a function of address inputs and control signal sequence.

Sinteen BORAM 6008 devices are packaged in one hybrid microcircuit. Half of the 24 pins of the hybrid are bused to all chips. This includes the power supply inputs, control signals and address inputs. Chips are enabled in pairs, and eight chip select signals are provided. Only one of the chip select signals is allowed to be active at any given time.

The data lines for the odd numbered chips in a hybrid are bused. Similarly, the even numbered chip data lines are on a separate bus. These two data buses (DRA and DRB) are tristate. When all chip select lines (CSO to CS7) are high, all eight shift register outputs (DR) on each bus are in the high impedance state. When one chip select line is low, one chip on each bus becomes active and drives the bus.

Each BORAM 6008 chip consists of a 256-word by 32-bit RAM and a 32-bit shift register. All input signals except chip select (\overline{CS}) swing from +15 volts to ground. The high level chip select signal swings from +15 to -20 volts. Address inputs to the RAM are multiplexed and latched internally to reduce the device pin count. The data output line (DR) is tristate, and will enter the high impedance state if \overline{CS} is high.

A first principle of BORAM system design is to exploit the memory nonvolatility. Individual chips should be power switched by controlling VGG. Devices should be powered up only for the duration of a data transaction. At the beginning of an operation, the VGG level is applied and then the $\overline{\text{CS}}$ is applied. The chip select signal acts as an "on chip" power switch, and enables the functional elements of the device.

To read out data, the addresses are set up and the access enable (\overline{AE}) signal is used to enable and initiate the data sense process. When the data is stable in the 32-bit latch, it is moved in parallel to the shift register using the transfer (\overline{TR}) signal. Data is then taken out of the data read (DR) terminal using the two-phase clocks PH1 and PH2 to empty the register.

Bused Connection

Hybrid Circuit Operation

Normally some type of microprogram.med controller will be used to operate the BORAM hybrid circuit. Typical waveform sequences for accomplishing read and write are shown below. A logic flow chart keyed to the waveforms illustrates the software or firmware subroutine structure. The examples treat the case of reading or writing sequentially through the entire address range of the hybrid circuit.

To start operation without disturbing the contents of the memory chips the clear (CL) signal must be held at ground before any chip select (CS) is enabled. During device operation only one CS signal should be selected at any given time. The sequence for one pass through the hybrid is shown in the figure.

Chip Select Sequence

Simplified Clock and Data Timing

The individual functions required to operate the BORAM hybrid are quite simple, and do not involve any critical timing. The block diagram should be used to help visualize the events. Operation of the shift register is accomplished using conventional nonoverlapping two-phase clocking. The register will operate from 1 kHz to 1 MHz. Clock pulsewidths of 250 nanoseconds work well over the temperature range. Input data must become valid before and during PH1. Output data will become valid within 250 nanoseconds of the leading edge of PH2. A simplified trouble-free approach to timing is to setup write data on the leading edge of PH2, and to sample read data on the leading edge of PH1.

Signal Amplitude Requirements

Signal Symbol	Worst Waveform Levels (VCC = +15V, VGG = -15V)			
	High Level Volts	Low Level Voits		
AE, TR, MW, DWA, DWB, AO, A1, A2, A3	≥ 14.00	≤ 3.00		
PH1, PH2, CL	≥ 14.00	≤ 0.75		
CSO, CS1, CS2, CS3, CS4, CS5, CS6, CS7	≥ 14.00	≤ -19.65		

Westinghouse Defense and Electronic Systems Center • Baltimore, Maryland

June 1981

page 6 of 10

Westinghouse Defense and Electronic Systems Center e Baltimore, Maryland

June 1981

page 7 of 10

June 1981

page 8 of 10

Westinghouse Defense and Electronic Systems Center • Baltimore, Maryland

Hybrid Circuit DC Electrical Parameters

	PARAMETER VALUE									
ELECTRICAL TEST PARAMETER	55°C		25°C			125 ^U C		UNITS		
	min	typ	max	witi	typ	max	m _d .	typ	Max	•
INPUT TERMINAL LEAKAGE (Vin 5 V)		0.01	20	-	0.01	20	<u> </u>	(17)5	20	μ Δ
CHIP SELECT LEAKAGE (Vin 22 5 V)	ļ	02	40		0 1	40		1	40	۵ پر
OUTPUT TRISTATE LEAKAGE LOW (Vout 5 V)		02	10		0.1	10		0.2	10	μ Δ
OUTPUT TRISTATE LEAKAGE HIGH (Vout +15V)	1	0.2	10		0 1	16		02	10	Αبي
OUTPUT VOLTAGE LOW (lout +5 mA)		16	25		2 2	3.2		3 0	4.0	V-, 1,
OUTPUT VOLTAGE HIGH (lout - 5 mA)	130	138		125	135		12.0	130		
SUPPLY CURRENT DESELECT STANDBY		3.0	40		20	40		60	40	μ Δ
SUPPLY CURRENT SELECTED STANDBY	Ì	26	35		20	28		14	20	σA
SUPPLY CURRENT READ STATE		66	110		48	70		33	55	пД
SUPPLY CURRENT WRITE STATE (TR HIGH)	Ì	50	70		37	52		27	40	~ Д
SUPPLY CURRENT WRITE STATE (TR LOW)		26	36		20	28		14	20	Д
SUPPLY CURRENT CHIP ERASE STATE	1	26	36		20	28		14	20	и.Д
SUPPLY CURRENT WORD ERASE STATE		26	36		20	28	ĺ	14	20	~.A

Power Dissipation

The nonvolatility of MNOS BORAM is exploited by employing power switching. The hybrid circuit should be turned on only during data transactions. Power analysis thus involves consideration of duty cycles. Even during the period of time that the hybrid is energized it is switched through operating states which have varied levels of power dissipation.

Typical Memory Card Organization

A typical operating sequence will result in an average power per hybrid circuit of about 750 milliwatts, or 375 milliwatts for each of the two active chips in the hybrid. Dissipation in the active mode is a function of temperature. As the temperature rises to 125°C the power will drop to about 600 milliwatts. If the temperature is reduced to -55°C, the power will increase to about 1.0 watt.

Westinghouse Defense and Electronic Systems Center

Baltimore, Maryland

June 1981

page 10 of 10

6. DISTRIBUTION

Defense Documentation Center ATTN: DDC-TCA Cameron Station (Bldg 5) Alexandria, VA 22314 Office of Naval Research	2	Commander U.S. Army Materiel Development and Readiness Command ATTN: DRCDE-R 5001 Eisenhower Ave Alexandria, VA 22333	1
Code 427 Arlington, VA 22217	•	NASA Scientific & Tech Info	2
Naval Ship Engineering Center ATTN: CODE 6157D Prince Georges Center Hyattsville, MD 20782	1	Facility ATTN: Acquisition Br (S-AK/DL) PO Box 33 College Park, MD 20740	
Commander Naval Ocean Systems Center ATTN: Library San Diego, CA 92152	1	Advisory Group on Electron Devices 201 Varick Street, 9th Floor New York, NY 10014	2
Commander US Naval Ordnance Lab ATTN: Technical Library White Oak	1	Director Naval Research Laboratory ATTN: Code 2627 Washington, DC 20375	1
Silver Springs, MD 20910 Rome Air Development Center ATTN: Documents Library (TILD)	1	USA Security Agency ATTN: IARDA Arlington Hall Station Arlington, VA 22212	1
Griffiss AFB, NY 13441 HQ ESD (DRI)	1	Director Defense Communications Agency	1
L. G. Hanscom Field Bedford, MA 01731	_	Technical Library Center Code 205 Washington, DC 20305	
Deputy for Science & Technology Office, Assist Sec Army (R&D) Washington, DC 20310	1	Director Naval Research Laboratory ATTN: Mr. Eliot Cohen	1
Commander US Army Missile Command Redstone Scientific Info Ctr	2	Code 5211 Washington, DC 20375	
ATTN: Chief, Documents Section Redstone Arsenal, AL 35809		Commander Harry Diamond Laboratories ATTN: Mr. Horst W. A. Gerlach	1
Commander Harry Diamond Laboratories ATTN: Library	1	2800 Powder Mill Road Adelphi, MD 20783	
2800 Powder Mill Road Adelphi, MD 20783		GIDEP Engineering & Support Dept TE Section PO Box 398 Norco, CA 91760	1

Mr. Jack S. Kilby 5924 Royal Lane Suite 150 Dallas, TX 75230	1	Commander U.S. Army Mobility Equipment Research and Development Command (USAMERADCOM) ATTN: DRDME-ZK, Dr. Karl Steinbach	1
Dr. Barry Dunbridge TRW Systems Group One Space Park Bldg. R6/Rm 2509 Redondo Beach, CA 90278 Dr. Paul E. Greene	1	Fort Belvoir, VA 22060 Director US Army Electronics Technology and Devices Laboratory (ERADCOM) ATTN: DELET-BS Mr. George W. Taylor	1
Hewlett-Packard company 10900 Wolfe Road Cupertino, CA 94014		Fort Monmouth, NJ 07703 Commander Harry Diamond Laboratories	1
Mr. Gerald B. Herzog Texas Instruments Inc. 2301 North University Avenue P. O. Box 10508 M/S 5893 Lubbock TX 79408	1	ATTN: DELHD-N-RBH Dr. Peter S. Winokur 2800 Powder Mill Road Adelphi, MD 20783	
Dr, Harvey Nathanson Westinghouse Research and Development Center 1310 Beulah Road	1	Commanding Officer US Army Research Office ATTN: Dr. Horst Wittmann P. O. Box 12211 Research Triangle Park, NC 27709	1
Pittsburg, PA 15235 Dr. George E. Smith Bell Telephone Laboratories, Inc. MOS Device Department 600 Mountain Ave. Room 2A-323	1	Commander Naval Ocean Systems Center ATTN: Mr. Charles E. Holland, Jr., Code 923 271 Cataline Boulevard San Diego, CA 92152	1
Murray Hill, NJ 07974 Dr. John L. Prince Intermedics, Inc. P. O. Box 617 Freeport, TX 77541	1	Nayal Research Laboratory ATTN: Dr. George Abraham Code 1434 4555 Overlook Ave., S.W. Washington, DC 20375	1
		Naval Air Systems Command ATTN: Mr. Charles D. Caposell Code AIR 360F Washington, DC 20361	1

Naval REsearch Laboratory ATTN: Dr. Joseph M. Killiany Code 6813	1	Air Force Weapons Laboratory ATTN: Mr. John L. Mullis, AFWL/NTYC Kirtland AFB, NM 87117	1
4555 Overlook Ave, S.W. Washington, DC 20375	•	RADC (ESR), Stop 64 ATTN: Mr. Walter Shedd	1
Commander Naval Ocean Systems Center	1	Hanscom AFB, MA 01731 NASA - George C. Marshall	1
ATTN: Dr. Isaac Lagnado Code 9251		Space Flight Center ATTN; Dr. Alvis M. Holladay	1
271 Catalina Boulevard San Diego, CA 92152		Code EC-41 Marshall Space Flight Center, AL 35812	
Commander	1	•	
Naval Ocean Systems Center ATTN: Mr. Reeve D. Peterson		NASA - Langley Research Center Langley Station	1
Code 9232 271 Catalina Boulevard		ATTN: Mr. Charles Husson, M/S 470 Hampton, VA 23665	
San Diego, CA 92152		Dimentar National Committee Assess	
Department of theNavy Naval Electronic Systems Command	1	Director, National Security Agency ATTN: Mr. Thomas Anastasio, R55 Fort George G. Meade, MD 20755	1
ATTN: Mr. Ronald A. Wade Code 30421		Director, National Security Agency	1
Washington, DC 20360		ATTN: Dr. William Bandy, \$273 9800 Savage Road	٠
Commander, ATTN: AFWAL/AADE	ī	Fort George G. Meade, MD 20755	
Mr. Stanley E. Wagner Air Force Wright Aeronautical Lab.		Director, National Secuirty Agency ATTN: Mr. Jerry L. Friedman, R133	1
Wright-Patterson AFB, OH 45433		9800 Savage Road Fort Meade, MD 20755	
Mr. Carmine J. Salveo	1	Dimenton National Committee to an	
RADC/RBRP Griffiss AFB, NY 13441		Director, National Security Agency ATTN: Mr. Paul Losleben, R15 9800 Savage Road	1
Commander, RADC	1	Fort George G. Meade, MD 20755	
ATTN: Mr. Joesph B. Brauer, RBRM Griffiss AFB, NY 13441		Commander	1
		US Army Communications R&D Command	•
Lincoln Laboratory, MIT ATTN: Dr. Donald J. Eckl, B-157	1	ATTN: DRDCO-TCS (Haratz) Fort Monmouth, NJ 07703	
P. O. Box 73		Commander, RADC	1
Lexington, MA 02173		ATTN: Mr. Joseph B. Brauer	1
Commander, AFWAL ATTN: AFWAL/AADM	1	Griffiss AFB, NY 13441	
Mr. James J. Enright		Commander	1
Wright-Patterson AFB, OH 45433		Harry Diamond Laboratories ATTN: Friedrich W. Flad Adelphi, MD 20783	

Continental Testing Lab, Inc. ATTN: Robert P. Schuster 763 U.S. Highway 17-92 Fern Park, FL 32730	1	Dr. Patrick J. Vail RADC/ETSD, Stop 30 Hansom AFB, MA 01731	1
Boeing Aerospace Co. Army System Division ATTN: Leo F. Buldhaupt P. O. Box 3999 Seattle, Washington 98124	1	Mr. F. B. Micheletti Electronics Research Division Rockwell Interntional 3370 Miraloma Ave. Anaheim, CA 92803	1
Hamilton Standard ATTN: V. Mosca M/S: 3-2-24 Windsor Locks, CT 06096	1	Mr. Merton Horne, M/S: UIX26 Sperry Univac Defense Systems Division P. O. Box 3535 St. Paul, MN 55165	1
Commander SAMSO/NCD ATTN: Cpt. Rick Bruce P. O. Box 92960 Worldway Postal Center Los Angeles, CA 90009	1	Naval Air Test Center ATTN: Frank A. Phillips Code SY43 Systems Engineering Test Directorate Patuxent River, MD 20670	1
Rockwell International Autonetics SSD ATTN: Bob Schneider (M/S: FB43) 3370 Miraloma Ave. Anaheim, CA 92803	1	Dr. Yukon Hsia M/S: 22-3 Microelectronics Systems MDAC 5301 Bolca Ave. Huntington Beach, CA 92647	1
General Instrument Corp. Microelectronics Division ATTN: Morton Kalet 600 West John Street Hicksville, NY 11372	1	Commander Air Force Avionics Lab/DHE ATTN: Charles Young Washington, DC 20375	1
Rockwell International Electronics Devices Division M/S HB15 ATTN: Dr. Moiz Beguwala 3370 Miraloma Ave. Anaheim, CA 92803	1	Harris Corp. ATTN: John L. Wolcott M/S 16005 P. O. Box 37 Melbourne, FL 32901	1
Mr. R. Weglein Hughes Research Laboratories 3011 Malibu Canyon Road Malibu, CA 09265	1	Singer Company Kearfott Division ATTN: Frank J. Crowley 1150 McBride Ave. Little Falls, NJ 07424	1
Younk D. Kin NWSC Code 3073 Crane, IN 74522	1		
Dr. Andrew Tickl Fairchild Corp. 401 Miranda Ave. Palo Alto, CA 94304	1		

Commander Naval Air Test Center ATTN: D. Waters SY-43/SETD Petuxent River, MD 20670 Commander	1	Commander US Army Electronics R&D Command Fort Monmouth, NJ 07703 2 DELSD-L-S 1 DELET-I 1 DELET-D 1 DELSD-L	
Naval Air Development Center ATTN: Mr. Roman Fedorak Code 5021	•	2 DELET-IB-D 1 DELET-IC-G (Elders) Richard Wiker	1
Warminster, PA 18974 Mr. Richard Less Rockwell International	1	Honeywell Avionics Division 13350 US Highway 19, M/S 358-3 Clearwater, FL 33516	-
400 Collins Road., N.E. M/S 108-274 Cedar Rapids, IA 52406		Reliability Analysis Center RADC/RBRAC (I. L. Krulac) Griffiss ARB, NY 13441	1
Mr. T. J. Olson, Manager Contract Administration Dalmo Victor Operations 1515 Industrial Way Belmont, CA 94002	1	Calculon Corp. ATTN: Bill Bosking 1501 Wilson Blvd. Arlington, VA 22209	1
Dr. Roger W. Pryor Pitney Bowes Corp. Advanced Technology Group 380 Main Ave. P. O. Box 6050	1	Jack A. Garrett AFWAL/MLTE Air Force Materials Lab Wright Patterson AFB, OH 45433	1
Norwalk, CT 06852 Mr. Carl A. Rehberg The Singer Company 1225 McBride Ave.	1	Commander DARCOM Hqtrs. ATTN: DRCMT (F. Michel) 5001 Eisenhower Ave. Alexandria, VA 22333	1
Richard Wegener, MTS Integrated Circuits Laboratory Hewlett-Packard Laboratory	1	Dan Berube ERADCOM DELEW-SSC Fort Monmouth, NJ 07703	1
3500 Dear Creek Road Palo Alto, CA 94304 Neol Warner	1	Dennis Sipe Conrac Corp. 43 Fairfield Place	1
DELSC-R Evans Area Fort Monmouth, NJ 07703	•	West Caldwell, NJ 07006 Dir, Industrial Base Engineering Act. IBEA: DRXIB-MT (L. Carstens)	1
Dale Cole MST 747 901 Broad St. GE-AESD Utica, NY 13501	1	Rock Island Arsenal, IL 61201	

Army Materials and Mechanics Res. Center AMMRC:DRXMR-PT (R. Farrow)	1
Watertown, MA 02172	
Commander	1
US Army Research and Technology Lab	•
(AVRADCOM)	
ATTN: DAVDL-ATL-ASV	
Mr. LeRoy T. Burrows	
Fort ustis, VA 23604	
Mr. Henry R. Ask	1
Hamilton Standard	7
Mail Stop 3-2-39	
Windsor Locks, CT 06096	

