Al Tools Assignment — Part 3: Ethics & Optimization

Name: Njambi Hinga

Course: Al for Software Engineering — Power Learn Project

Date: October 2025

A. Reflection on Al Bias and Fairness

Bias in AI systems often originates from **imbalanced or unrepresentative datasets**, where certain classes or groups dominate the training data.

In my Scikit-learn Iris classifier, for example, the dataset was balanced, but in real-world datasets, skewed samples can lead to **overfitting** toward majority classes.

For the MNIST CNN model, bias may occur if certain handwriting styles are underrepresented, causing poor generalization.

In NLP tasks with spaCy, sentiment models may inherit **linguistic bias** if the training corpus overrepresents specific demographics or writing tones.

Mitigation strategies include:

- Data rebalancing using **SMOTE** or class weights
- Using Fairness Indicators or IBM AI Fairness 360 to evaluate model bias
- Applying LIME or SHAP for interpretability and transparency

Responsible AI means continuously auditing both the data and model decisions to ensure **fairness, accountability, and transparency**.

B. Debugging and Optimization Task

Below is an example of a faulty TensorFlow model.

The model fails to train because it lacks activation functions and uses an incorrect loss function.

```
import tensorflow as tf

# Buggy Modet
model = tf.keras.Sequential([
    tf.keras.layers.Dense(10, input_shape=(784,)),
    tf.keras.layers.Dense(10)
])
```

```
model.compile(optimizer='sgd', loss='mse', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
```

Problems:

- 1. Missing activation functions → model can't learn non-linear features
- 2. Wrong loss function \rightarrow mse is not suitable for classification
- 3. Output layer missing softmax activation

✓ Fixed Code:

Model compiled successfully!

C. Fairness and Optimization Techniques

Category	Example Techniques
Model Optimization	Learning rate tuning, early stopping, dropout regularization
Performance Monitoring	TensorBoard, Keras callbacks
Fairness Tools	TensorFlow Fairness Indicators, IBM AI Fairness 360

Category	Example Techniques
Explainability	LIME, SHAP
Data Quality	Remove duplicates, normalize, augment minority classes

Ethical optimization ensures that AI systems perform well **without compromising fairness or transparency**.

Conclusion

Through this exercise, I explored ethical considerations, fairness, and optimization strategies for AI systems.

Building responsible AI models requires balancing accuracy with fairness and explainability.