

Calibration example with OpenStudio

Brian Ball, PhD Nicholas Long Katherine Fleming, PhD Larry Brackney, PhD

Questions: Brian.Ball -at- nrel.gov

DOE'S Energy Modeling Ecosystem

OpenStudio is an open source platform that bridges the gap between capable but complex engines and the easy-to-use applications that drive energy savings.

The Technology
Performance Exchange
(TPEx) and Building
Component Library (BCL)
provide raw data that
powers the ecosystem.

OpenStudio Measures

OpenStudio Measures are small scripts that transform building models quickly and easily

Sample Measures

The Building Component Library

- An Internet-connected source of building energy modeling data:
 - Enables drag-and-drop modeling for quick technology evaluation
 - Provides consistent, detailed inputs to drive decision-making
 - Searchable readily available within applications
 - The BCL is key to OpenStudio's extensibility

Setting Up An Analysis: using the spreadsheet

This is the "Improve Fan Belt Efficiency" Measure

	This is the improver an beit Efficiency ivicasure											
1		Inputs		Continuous Variable Description Discrete Variable Description							cription	
2	Measure Display Name	Measure Class Name	-		v	¥	v	~	~	▼	▼	
		/										
		/										
		Parameter Display Name (will nake	Variable	Static/Default				Std		Discrete	Discrete	
3	type	machine name)	Туре	Value	Min	Max	Mean	Dev	Delta X	Values	Weights	Distribution
29	Reduce Electric Equipment Loads by	ReduceElectricEquipmentLoadsByPercentage										
	argument	Apply the Measure to a Specific Space Type of	Choice	*Entire Building*								
31	variable	Electric Equipment Power Reduction	Double	0	-80	80	0	26.667	1			uniform_uncertain
39	Set Gas Burner Efficiency	SetGasBurnerEfficiency										
	argument	Choose an Air Loop with a two speed DX Coo	Choice	*All Air Loops*								
	variable	Burner Efficiency (fractional)	Double	0.8	0.78	0.98	0.8	0.0333	1			uniform_uncertain
50	Set COP for Single Speed DX Cooling	SetCOPforSingleSpredDXCoolingUnits										
	argument	Choose an Air Loop with a single speed DX C		*All Air Loops*								
	variable	Rated COP	Double	4	2	5	4	0.5	0.25			uniform_uncertain
	Change Electric Baseboard	ChangeElectricBaseboard										
	argument	Baseboard Officiency %	Double	1	0.9	1		0.0167	0.1			uniform_uncertain
_	variable	Baseboard Nominal Capacity (W)	Double	1450	0	3000	1450	500	10			uniform_uncertain
	Improve Fan Belt Efficiency	ImproveFanBeltEfficiency										
	argument	Choose an Air Loop to Alter.	Choice	*All Air Loops*								_
	variable	Motor Efficiency Change(%).	Double	0	-20	14		5.6667	1			uniform_uncertain
	variable	Fan Efficiency Change(%).	Double	0	-20	30	0	8.3333	1			uniform_uncertain
	argument	Remove Baseline Costs From Effected Coolin	1	FALSE								
	argument	Increase in Material and Installation Cost for		0								
	argument .	Increase in Demolition Costs for Electric Equi		0								
_	argument	Years Until Costs Start	Integer	0								
	argument	Demolition Costs Occur During Initial Constr		FALSE 15								
	argument	Expected Life	Integer									
	argument argument	Increase O & M Costs for Electric Equipment O & M Frequency	Integer	0								
			integer	1								
70	Adjust Thermostat Satraints by Dea	Calibratic nReports										
₩ 4	Instructions Setup Vari	ables 0 tputs BCL Measure Data Look	۳۴۰۱۵۰	maacura	hac	ala	VOD	no	ccih	la innu	+c	
			11112 1	neasure	11aS	כוכ	VEI	i po	ววเท	ie ilihu	LS	

The other nine are held to default values

In this analysis we let two vary

Setting Up An Analysis

This is where we specify default values and distributions

- The Fan Efficiency will change from -20% to 30% uniformly
- There's LOTS of flexibility to add measures and vary their inputs

Setting Up and Running an Analysis

Other tabs in the spreadsheet let you:

- Pick the baseline model
- Select the algorithm sampling, optimization, etc.
- Specify how many Amazon resources (aka \$) you want to throw at the problem

Once the spreadsheet is set up, a simple command:

- Fires up an Amazon cluster;
- Automatically configures it with EnergyPlus, OpenStudio, etc;
- And starts assigning individual simulations to worker CPUs

Your web browser lets you:

- Monitor progress,
- Interact with results as they come in,
- And download data for further analysis

Amazon Cloud Resources

			Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage			
eneral Purpos	e - Current Ge							
t2.micro	1	Variable	1	EBS Only	\$0.013 per Hour	High Frequency Intel		
t2.small	1	Variable	2	EBS Only	\$0.026 per Hour	Xeon Processors operating at 2.5GHz with		
t2.medium	2	Variable	4	EBS Only	\$0.052 per Hour	Turbo up to 3.3GHz		
m3.medium	1	3	3.75	1 x 4 SSD	\$0.070 per Hour			
m3.large	2	6.5	7.5	1 x 32 SSD	\$0.140 per Hour	High Frequency Intel Xeon		
m3.xlarge	4	13	15	2 x 40 SSD	\$0.280 per Hour	E5-2670 v2		
m3.2xlarge	8	26	30	2 x 80 SSD	\$0.560 per Hour	(Ivy Bridge) Processors		
Compute Optim	ized - Curren	t Generation						
c4.large	2	8	3.75	EBS Only	\$0.116 per Hour			
c4.xlarge	4	16	7.5	EBS Only	\$0.232 per Hour	High frequency Intel Xeon		
c4.2xlarge	8	31	15	EBS Only	\$0.464 per Hour	E5-2666 v3		
c4.4xlarge 16		62	30	EBS Only	\$0.928 per Hour	(Haswell) processors		
c4.4xlarge	16	02						
_	16 36	132	60	EBS Only	\$1.856 per Hour			
c4.4xlarge c4.8xlarge c3.large			60 3.75	EBS Only 2 x 16 SSD	\$1.856 per Hour \$0.105 per Hour			
c4.8xlarge	36	132		-	·	High Frequency Intel Xeon		
c4.8xlarge c3.large	36 2	132 7	3.75	2 x 16 SSD	\$0.105 per Hour	High Frequency Intel Xeon E5-2680 v2		
c4.8xlarge c3.large c3.xlarge	36 2 4	132 7 14	3.75 7.5	2 x 16 SSD 2 x 40 SSD	\$0.105 per Hour \$0.210 per Hour	. ,		

OpenStudio Sever Architecture

OpenStudio Optimization Capability

Multi-Objective Algorithms

NSGA2 (Non-dominated Sorting Genetic Algorithm)

- Parallel F evaluations
- Mixed Continuous or Discrete variables

SPEA2 (Strength Pareto Evolutionary Algorithm)

- Parallel F evaluations
- Continuous variables only

Single-Objective Algorithms

Rgenoud (GENetic Optimized Using Derivatives)

- Parallel F evaluations for genetic search
- Parallel gradient calculation for continuous variables

Optim (quasi-Newton method with bounds)

- Parallel gradient calculation
- Continuous variables only

Heating Natural Gas (MJ/m²)

NREL site entrance building

- Golden, CO
- 850 ft²
- Built in 1994
- 1 story, Occupied 24hrs a day by 1-4 people
- Split system DX cooler with a natural gas furnace
- Baseboard electric heater by the badging window

Variables

- Space Infiltration change (%)
- Electric Equipment Power change (%)
- Gas Burner Efficiency (%)
- DX Cooling Coil COP
- Fan Efficiency (%)
- Motor Efficiency (%)
- Electric Baseboard Capacity (W)
- Cooling Setpoint (F)
- Heating Setpoint (F)
- Wall R value
- Wall exterior solar absorptance
- Wall exterior thermal mass
- Roof R value
- Roof exterior solar absorptance
- Roof exterior thermal mass

Objective Functions

- Electric CVRMSE
- Electric NMBE
- Gas CVRMSE
- Gas NMBE

Variables

- Space Infiltration change (%)
- Electric Equipment Power change (%)
- Gas Burner Efficiency (%)
- DX Cooling Coil COP
- Fan Efficiency (%)
- Motor Efficiency (%)
- Electric Baseboard Capacity (W)
- Cooling Setpoint (F)
- Heating Setpoint (F)
- Wall R value
- Wall exterior solar absorptance
- Wall exterior thermal mass
- Roof R value
- Roof exterior solar absorptance
- Roof exterior thermal mass

Reduced problem size from 15 to 9 variables

Objective Functions

- Electric CVRMSE
- Electric NMBE
- Gas CVRMSF
- Gas NMBE

Seed model

Electricity Consumption (kWh)

CV(RMSE) = 64.58 NMBE = -62.42

	1	2	3	4	5	6	7	8	9	10	11	12
Start	1/1	2/1	3/1	4/1	5/1	6/1	7/1	8/1	9/1	10/1	11/1	12/1
End	1/29	2/27	3/30	4/29	5/30	6/29	7/30	8/30	9/29	10/30	11/29	12/30
Actual	1,562	1,395	1,279	1,347	1,363	1,691	1,852	1,983	1,650	1,385	1,347	1,524
Model	2,621	2,551	2,624	2,500	2,241	2,163	2,268	2,264	2,055	2,427	2,466	2,715
NMBE	67.77%	82.89%	105.18%	85.56%	64.41%	27.93%	22.48%	14.15%	24.53%	75.24%	83.05%	78.13%

Natural Gas Consumption (therms)

CV(RMSE) = 118.50 NMBE = -95.49

	1	2	3	4	5	6	7	8	9	10	11
Start	1/18	2/19	3/19	4/18	5/17	6/18	7/18	8/19	9/17	10/16	11/14
End	2/17	3/17	4/16	5/15	6/16	7/16	8/17	9/15	10/14	11/12	12/16
Actual	52	54	41	14	1	_	_	_	1	19	51
Model	76	82	74	37	5	1	1	1	14	42	102
NMBE	45.83%	51.92%	81.07%	167.65%	389.45%	_	_	_	1,345.08%	121.37%	99.22%

Calibrated model

Electricity Consumption (kWh)

CV(RMSE) = 6.96 NMBE = 0.82

Model

Actual

	1	2	3	4	5	6	7	8	9	10	11	12
Start	1/1	2/1	3/1	4/1	5/1	6/1	7/1	8/1	9/1	10/1	11/1	12/1
End	1/29	2/27	3/30	4/29	5/30	6/29	7/30	8/30	9/29	10/30	11/29	12/30
Actual	1,562	1,395	1,279	1,347	1,363	1,691	1,852	1,983	1,650	1,385	1,347	1,524
Model	1,363	1,273	1,401	1,374	1,512	1,743	1,909	1,894	1,586	1,418	1,359	1,408
NMBE	-12.76%	-8.76%	9.52%	2.01%	10.93%	3.05%	3.1%	-4.48%	-3.86%	2.37%	0.9%	-7.58%

Natural Gas Consumption (therms)

CV(RMSE) = 26.93 NMBE = -2.83

	1	2	3	4	5	6	7	8	9	10	11
Start	1/18	2/19	3/19	4/18	5/17	6/18	7/18	8/19	9/17	10/16	11/14
End	2/17	3/17	4/16	5/15	6/16	7/16	8/17	9/15	10/14	11/12	12/16
Actual	52	54	41	14	1	_	_	_	1	19	51
Model	42	46	41	20	1	_	_	_	6	21	61
NMBE	-19.05%	-14.62%	0.33%	41.77%	11.44%	_	_	_	473.48%	12.97%	19.83%

Each model took around 40 seconds to run Computer used was 24 core 2.7GHZ workstation

Rgenoud ran 1489 simulations in 1.4 hrs NSGA2 ran 1408 simulations in <1 hr

Approx Cost to run on AWS EC2: \$3.36

\$1.68

"Best" variable values were:

Field Name	Field Value
Degrees Fahrenheit to Adjust Cooling Setpoint By	-2.94643457641175
Degrees Fahrenheit to Adjust heating Setpoint By	-1.54769680521238
Baseboard Nominal Capacity (W)	205.95356118088
Wall total R-value multiplier	3.15853308649533
Fan Efficiency Change(%).	14.6328726489339
Electric Equipment Power Reduction	41.6787823386049
Space Infiltration Reduction	49.0936344864588
Rated COP	2.59119407956713
Burner Efficiency (fractional)	0.979999593097956

Putting All the Pieces Together...

Conclusions

- OpenStudio measure based workflow is a powerful way to leverage both model creation and model optimization / calibration capabilities.
- Genetic based algorithms provide good insight into the sensitivity of the variable space.
- Better calibration results could possibly be had by varying schedule parameters.

Bibliography

- "Incorporating Uncertainty Analysis into a Building Retrofit Analysis Using Openstudio and Energyplus." Hayes Zirnhelt, Ellen Franconi, Nicholas Long and Brian Ball. ASHRAE 2013 IBPSA-USA, Atlanta, GA
- "Scaling Building Energy Modeling Horizontally in the Cloud with Openstudio." Nicholas Long, Brian Ball, Katherine Fleming and Daniel Macumber. ASHRAE 2013 IBPSA-USA, Atlanta, GA
- "A Graphical Tool for Cloud-Based Building Energy Simulation." Daniel Macumber, Brian Ball and Nicholas Long. ASHRAE 2013 IBPSA-USA, Atlanta, GA
- "Genetic Optimization Using Derivatives: The rgenoud package for R." Walter Mebane and Jasjeet Sekhon. Journal of Statistical Software, 42(11): 1-26. 2011
- "A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II." Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan. Lecture notes in computer science 1917 (2000): 849-858.
- https://github.com/NREL/OpenStudio-analysis-spreadsheet
- https://bcl.nrel.gov/
- https://www.openstudio.net/
- http://nrel.github.io/OpenStudio-user-documentation/comparative_analysis/large_scale_analysis/