Vaja 43: VSILJENO NIHANJE NIHAJNEGA KROGA

Jure Kozamernik

18. maj 2022

1 Uvod

Električno nihanje v nihajnem krogu spominja na nihanje nihala na vijačno vzmet. Napetost ustreza odmiku in tok hitrosti uteži. Električna energija kondenzatorja ustreza prožnostni energiji vzmeti in magnetna energija tuljave kinetični energiji uteži.

Podobno kot pri mehaničnem nihalu tudi nihanje nihajnega kroga izzveni po dovolj dolgem času, če ga samo enkrat vzbudimo in nato prepustimo samemu sebi. Če pa v njem stalno vzbujamo sinusno nihanje, lahko opazujemo vsiljeno nihanje. Nihajni krog v ta namen induktivno sklopimo z oscilatorjem in spreminjamo bodisi frekvenco vsiljene sinusne napetosti ali pa lastno frekvenco nihanjega kroga. Z osciloskopom lahko izmerimo amplitudo inducirane napetosti in fazno razliko med napetostjo na kondenzatorju nihajnega kroga in napetostjo oscilatorja.

2 Naloga

- 1. Z osciloskopom opazuj vzbujeno nihanje v nihajnem krogu, ki je induktivno vezan z oscilatorjem! Določi resonančno krivuljo pri različnih stopnjah dušenja (uporabi osciloskop kot voltmeter)!
- 2. Opazuj z osciloskopom Lissajoujeve figure in oceni fazne razlike med inducirano napetostjo in vzbujeno napetostjo!

2.1 Potrebščine

- 1. Osciloskop,
- 2. oscilator s frekvenco = 600 kHz, 3. resonančni krog,
- 4. umeritvena krivulja za vrtljivi kondenzator,
- 5. upori 5 Ω , 10 Ω in 20 Ω .

3 Meritve

Tabela 1: Meritve pri uporu R = 0 Ω

kapaciteta - C[pF]	napetost-U[mV]
50	68
65	69
87	80
111	83
145	85
185	87
207	240
217	450
226	700
234	390
244	200
254	190
274	170
286	160
445	140
650	100
860	60

Tabela 2: Meritve pri uporu R = 5 Ω

kapaciteta - C[pF]	napetost - U[mV]
31	20
87	25
185	35
217	85
226	175
230	225
244	175
254	100
274	60
286	50

Tabela 3: Meritve pri uporu R = 10 Ω

kapaciteta - C[pF]	napetost-U[mV]
31	25
87	35
185	40
217	85
226	135
240	120
274	45
445	50

Tabela 4: Meritve pri uporu R = 20 Ω

kapaciteta - C[pF]	napetost-U[mV]
31	35
111	35
185	45
217	75
222	85
230	90
240	80
274	40
445	35

4 Obdelava meritev

Za določitev resonančne krivulje najprej potrebujemo induktivnost tuljave L. Izračunamo jo lahko po enačbi $\Omega_0^2 = 1/(LC)$, tako da uporabimo vrednost C v resonanci, pri meritvi s kratko stično vezavo. V resonanci je frekvenca Ω_0 enaka frekvenci vzbujanja. Tako izračunan induktivnost je enaka $L = 1.59 \cdot 10$ 4 H.

Z uporabo induktivnosti in izmerjene kapacitete lahko sedaj za vsako meritev izračunamo lastno frekvenco, ki sledi enačbi:

$$\nu_0 = \frac{1}{2\pi (LC)^{1/2}} \tag{1}$$

Resonančno krivuljo dobimo sedaj tako, da narišemo graf odvisnosti U/U_i od ν/ν_0 , kjer je U i napetost pri največji lastni frekvenci nihajnega kroga. Tako dobljena krivulja ima maksimum pri vrednosti $\nu/\nu_0=1$, višina maksimuma pa je odvisna od stopnje dušenja nihajnega kroga. Slike 1-4 prikazujejo resonančne krivulje pri različni vrednosti upora R v nihajnem krogu.

Slika 1: Resonančna krivulja pri R=0 Ω

Da vidimo kako dušenje vpliva na resonančno krivuljo, so v sliki 5 predstavljene vse štiri resonančne krivulje na enem grafu.

Za oceno faznih zamikov, narišemo Lissajoujeve figure. Takoj lahko opazimo, da nagib elipse nakazuje na to ali je fazni zamik večji oziroma manjši od 90°,če je elipsa nagnjena levo smo pred resonanco, v resonanci je elipsa vodoravna, po resonanci pa je nagnjena v desno. Iz lastnosti elipse sledi, da je razmerje med premerom elipse na koordinatni osi in projekcijo elipse na koordinatno os

Slika 2: Resonančna krivulja pri R = 5 Ω

enako $\sin \delta$.

Razmerje med premerom in projekcijo sin Razmerje med premerom in projekcijo sin

Slika 3: Resonančna krivulja pri R $=10~\Omega$

Slika 4: Resonančna krivulja pri R $=20~\Omega$

Slika 5: Primerjava resonanc

Slika 6: Lissajoujeva figura pri C $=99 \mathrm{pF}$

Slika 7: Lissajoujeva figura pri $\mathcal{C}=101\mathrm{pF}$

Slika 8: Lissajoujeva figura pri $\mathcal{C}=103\mathrm{pF}$

Slika 9: Lissajoujeva figura pri $\mathcal{C}=104\mathrm{pF}$

Slika 10: Lissajoujeva figura pri $\mathcal{C}=105\mathrm{pF}$