Lecture 4: Data Representation

数据的机器级表示

第4讲数值数据的表示

数值数据的表示

主 要 内 容

- ◆ 定点数的表示
 - 进位计数制
 - 定点数的二进制编码
 - 原码、补码、移码表示
 - 定点整数的表示
 - 无符号整数、带符号整数
- ◆ 浮点数格式和表示范围
- ◆ 浮点数的规格化
- ◆ IEEE754浮点数标准
 - 单精度浮点数、双精度浮点数
 - 特殊数的表示形式
- ◆ C语言程序中的整数类型、浮点数类型
- ◆ 十进制数表示

信息的二进制编码

- ◆计算机的外部信息与内部机器级数据
- ◆机器级数据分两大类:
 - 数值数据: 无符号整数、带符号整数、浮点数(实数)、十进制数
 - 非数值数据:逻辑数(包括位串)、西文字符和汉字
- ◆计算机内部所有信息都用二进制(即: **0**和**1**)进行编码
- ◆用二进制编码的原因:
 - 制造二个稳定态的物理器件容易
 - 二进制编码、计数、运算规则简单
 - 正好与逻辑命题对应,便于逻辑运算,并可方便地用逻辑电路实现 算术运算
- ◆真值和机器数

首先考虑数值数据的表示

C语言中哪些类型是数值

数据?哪些是非...?

- 机器数: 用0和1编码的计算机内部的0/1序列
- 真值: 机器数真正的值,即:现实中带正负号的数

数值数据的表示

- ◆数值数据表示的三要素
 - 进位计数制
 - 定、浮点表示
 - 如何用二进制编码

即:要确定一个数值数据的值必须先确定这三个要素。例如,机器数 01011001的值是多少? 答案是:不知道!

- ◆进位计数制
 - 十进制、二进制、十六进制、八进制数及其相互转换
- ◆定/浮点表示 (解决小数点问题)
 - 定点整数、定点小数
 - 浮点数(可用一个定点小数和一个定点整数来表示)
- ◆定点数的编码 (解决正负号问题)
 - 原码、补码、反码、移码 (反码很少用)

Sign and Magnitude (原码的表示)

Decimal	Binary	Decimal	Binary
0	0000	-0	1000
1	0001	-1	1 001
2	0 010	-2	1 010
3	0 011	-3	1 011
4	0 100	-4	1 100
5	0 101	-5	1 101
6	0 110	-6	1 110
7	0 111	-7	1 111

- ◆ 容易理解, 但是:
 - ✓ 0 的表示不唯一,不利于程序员编程
 - ✓ 加、减运算方式不统一
 - ✓ 需额外对符号位进行处理,不利于硬件设计
 - ✓ 特别当 a
b时,实现 a- b比较困难

从 **50**年代开始,整数都采用补码来表示 但浮点数的尾数用原码定点小数表示

补码特性 - 模运算(modular运算)

重要概念: 在一个模运算系统中,一个数与它除以"模"后的余数等价。

时钟是一种模-12系统

假定钟表时针指向10点,要将它拨向6点,则有两种拨法:

① 倒拨4格: 10-4=6

② 顺拨8格: 10+8 = 18 ≡ 6 (mod 12)

模12系统中: 10-4 ≡ 10+8 (mod 12)

 $-4 \equiv 8 \pmod{12}$

则,称8是-4对模12的补码。

同样有 -3 ≡ 9 (mod 12) -5 ≡ 7 (mod 12) 等

结论1: 一个负数的补码等于模减该负数的绝对值。

结论2: 对于某一确定的模,某数减去小于模的另一数,总可以用该数加上另一数负数的补码来代替。

补码 (modular运算): + and - 的统一

模运算系统举例

例1: "钟表"模运算系统

假定时针只能顺拨,从10点倒拨4格后是几点?

$$10-4=10+(12-4)=10+8=6 \pmod{12}$$

例2: "4位十进制数" 模运算系统

假定算盘只有四档, 且只能做加法, 则在算盘上计算

9828-1928等于多少?

 $9828-1928=9828+(10^4-1928)$

取模的含义就是只留余数,高位的"1"被丢弃! 相当于只有低4位留在算盘上。

 $=7900 \pmod{10^4}$

运算器是一个模运算系统,适合用补码表示和运算

计算机中运算器只有有限位。假定为n位,则运算结果只能保留低n位, 故可看成是个只有n档的二进制算盘。所以,其模为2ⁿ。

求特殊数的补码

假定机器数有n位

①
$$[-2^{n-1}]_{\nmid k} = 2^n - 2^{n-1} = 10...0 \quad (n-1 \uparrow 0) \pmod{2^n}$$

②
$$[-1]_{\nmid k} = 2^n - 0...01 = 11...1 \quad (n \uparrow 1) \pmod{2^n}$$

③
$$[-1.0]_{3} = 2 - 1.0 = 1.00...0 \quad (n-1 \uparrow 0) \pmod{2}$$

4
$$[+0]_{\nmid h} = [-0]_{\nmid h} = 00...0 \quad (n \uparrow 0)$$

补码与真值之间的简便转换

例: 设机器数有8位,求123和-123的补码表示。

如何快速得到123的二进制表示?

解: 123 = 127- 4 = 011111111B - 100B = 01111011B - 123 = -01111011B [01111011] $_{|\uparrow|} = 2^8 + 01111011 = 100000000 + 01111011 = 01111011 (mod <math>2^8$),即 7BH。

[-01111011]_补= 2⁸ - 01111011 = 10000 0000 - 01111011 = 1111 1111 - 0111 1011 +1 = 1000 0100 +1 ← 各位取反,末位加1 = 1000 0101,即 85H。

Two's Complement (补码的表示)

◆ 正数:符号位(sign bit)为0,数值部分不变

◆ 负数: 符号位为1,数值部分"各位取反,末位加1"

变形(模4)补码:双符号,用于存放可溢出的中间结果。

Decimal	补码	变形补码	Decima	Bitwise I Inverse	补码	变形补码
	0000	00000	-0	1111	0000	00000
+ 0 和- 0 表 0 示唯一 1	0001	00001	-1	1110	1 111	11111
2	0010	00010	-2	1101	1 110	11 110
3	0011	00011	-3	1100	1 101	11 101
4	0 100	00100	-4	1011	1 100	11 100
5	0 101	00101	-5	1010	1 011	11 011
6	0 110	00110	-6	1001	1 010	11 010
7	0 111	00111	-7	1000	1 001	11 001
8	1000	01000	-8	0111	1000	11000

位太大,用4位补码无法表示,故"溢出"! 但用变形补码可保留符号位和最高数值位。

如何求补码的真值

根据补码各位上的"权",可以求出一个补码的值

8-bit 2's complement example:

$$11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1 = -128 + 64 + 16 + 4 + 2 = -42$$

当N=4时,范围为: -2³ ~ 2³ -1 (即: -8 ~ +7)

当N=32时,范围为: -2³¹~ 2³¹-1

♦: [A]_{*} = $a_{n-1}a_{n-2}$ ····· a_1a_0

则: $A = -a_{n-1} \cdot 2^{n-1} + a_{n-2} \cdot 2^{n-2} + \cdots \cdot a_1 \cdot 2^1 + a_0 \cdot 2^0$

Excess (biased) notion- 移码表示

。什么是"excess (biased) notation-移码表示"?

将每一个数值加上一个偏置常数 (Excess / bias)

°一般来说,当编码位数为 n时,bias取 2ⁿ⁻¹

Ex. n=4:
$$E_{biased} = E + 2^3$$
 (bias= $2^3 = 1000_2$)
-8 (+8) ~ 0000_2
-7 (+8) ~ 0001_2 0的移码表示惟一

 $0 (+8) \sim 1000_2$

移码和补码仅第一位不同

+7 (+8) ~ 1111₂

。为什么要用移码来表示指数(阶码)?

移码主要用来表示 浮点数阶码!

便于浮点数加减运算时的对阶操作

例: 1.01 x2 ⁻¹+1.11 x2³

补码: 1111< 0011?

(-1) (3)

简化比较

 $1.01 \times 2^{-1+4} + 1.11 \times 2^{3+4}$

移码: 0011< 0111

(3) (7)

Unsigned integer(无符号整数)

- ◆ 机器中字的位排列顺序有两种方式: (例: 32位字: 0...01011₂)
 - 高到低位从左到右: 0000 0000 0000 0000 0000 0000 1011

 - MIPS采用高到低从左往右排列
 - Leftmost和rightmost这两个词有歧义,故用LSB(Least Significant Bit)来表示最低有效位,用MSB来表示最高有效位
- ◆ 一般在全部是正数运算且不出现负值结果的场合下,可使用无符号数表示。例如,地址运算
- ◆ 无符号数的编码中没有符号位
- ◆ 在字长相同的情况下,它的表示范围大于有符号数
- ◆ 无符号数总是整数,所以很多时候就简称为"无符号数"
- ◆ 最大8位无符号整数是1111111B, 其值为255

Signed integer (带符号整数)

- ◆ 计算机必须能处理正数(positive) 和负数(negative), MSB表示数符
- ◆ 有三种表示方式
 - Signed magnitude (原码)
 用来表示浮点(实)数的尾数
 - One's complement (反码)
 现已不用
 - Two's complement (补码)
 50年代以来,所有计算机都用补码来表示定点(整)数
- ◆ 为什么用补码表示带符号整数?
 - 补码运算系统是模运算系统,加、减运算统一
 - 数0的表示惟一,方便使用
 - 比原码和反码多表示一个最小负数
 - 与移码相比,其符号位和真值的符号对应关系清楚

带符号数和无符号数的比较

- ◆ 扩充操作有差别
 - 例如,MIPS提供了两种加载指令
 - 无符号数: Ibu \$t0, 0(\$s0);\$t0高24位补0 (称为0扩展)
 - 带符号整数: lb \$t0, 0(\$s0); \$t0高24位补符 (称为符号扩展)
- ◆ 数的比较有差异
 - 无符号数: MSB为1的数比MSB为0的数大
 - 带符号整数: MSB为1的数比MSB为0的数小
 - 例如,MIPS中提供了不同的比较指令,如:
 - 无符号数: sltu \$t0, \$s0, \$s1 (set less than unsigned)
 - 带符号整数: slt \$t1, \$s0, \$s1 (set less than)

则: \$t0和\$t1分别为多少? 答案: \$t0和\$t1分别为0和1。

- ◆溢出判断有差异(无符号数根据最高位是否有进位判断溢出,通常不判)
 - MIPS规定: 无符号数运算溢出时, 不产生"溢出异常"

C语言程序中的整数

无符号数: unsigned int (short / long); 带符号整数: int (short / long) 常在一个数的后面加一个"u"或"U"表示无符号数 若同时有无符号数和带符号整数,则C编译器隐含将带符号整数强制转换为无符号数

假定以下关系表达式在32位用补码表示的机器上执行,结果是什么?

关系表达式	运算类	结果	说明
0 = 0U	型		
-1 < 0			
-1 < 0U			
2147483647 > -2147483647-1			
2147483647U > -2147483647-1			
2147483647 > (int) 2147483648U			
-1 > -2			
(unsigned) -1 > -2			

C语言程序中的整数

关系 表达式	类型	结 果	说明
$0 = 0\mathbf{U}$	无	1	000B = 000B
-1 < 0	带	1	111B (-1) < 000B (0)
-1 < 0U	无	0*	$111B (2^{32}-1) > 000B(0)$
2147483647 > -2147483647 - 1	带	1	$0111B (2^{31}-1) > 1000B (-2^{31})$
2147483647U > -2147483647 - 1	无	0*	$0111B (2^{31}-1) < 1000B(2^{31})$
2147483647 > (int) 2147483648U	带	1*	$0111B (2^{31}-1) > 1000B (-2^{31})$
-1 > -2	带	1	111B (-1) > 1110B (-2)
(unsigned) -1 > -2	无	1	$111B (2^{32}-1) > 1110B (2^{32}-2)$

带*的结果与常规预想的相反!

科学计数法(Scientific Notation)与浮点数

Example:

mantissa (尾数) exponent(阶码、指数) 6.02 x 10 ²¹ decimal point radix (base, 基)

- ° Normalized form(规格化形式): 小数点前只有一位非0数
- ° 同一个数有多种表示形式。例:对于数 1/1,000,000,000
 - Normalized (唯一的规格化形式): 1.0 x 10⁻⁹
 - Unnormalized(非规格化形式不唯一): 0.1 x 10⁻⁸, 10.0 x 10⁻¹⁰

for Binary Numbers:

只要对尾数和指数分别编码,就可表示一个浮点数(即:实数)

浮点数(Floating Point)的表示范围

例: 画出下述32位浮点数格式的表数范围。

0	1 8	9 3	1
S	阶码E	尾数M	

第0位数符S;第1~8位为8位移码表示阶码E(偏置常数为128);第9~31位为24位二进制原码小数表示的尾数M。规格化尾数的第一位总是1,故规定第一位默认的"1"不明显表示出来。这样可用23个数位表示24位尾数。

最大正数: $0.11...1 \times 2^{11...1} = (1-2^{-24}) \times 2^{127}$ 最小正数: $0.10...0 \times 2^{00...0} = (1/2) \times 2^{-128}$ 因为原码是对称的,所以其表示范围是关于原点对称的。

机器0: 阶码为0 或 落在下溢区中的数

浮点数范围比定点数大,但数的个数没变多,故数之间更稀疏,且不均匀

浮点数的表示

。Normal format(规格化数形式):

+/-1.xxxxxxxxxxx_{two} x 2^{Exponent}

小数点前面总是"1", 故可隐含表示

。 32-bit 规格化数:

31
S Exponent Significand
1 bit ? bits ? bits

S 是符号位(Sign)

Exponent用 <u>excess (or biased) notation</u>(移码/增码)来表示

Significand 表示 xxxxxxxxxxxxxxxxxx 尾数部分

(基可以是 2/4/8/16,约定信息,无需显式表示)

。 早期的计算机,各自定义自己的浮点数格式

问题: 浮点数表示不统一会带来什么问题?

"Father" of the IEEE 754 standard

直到80年代初,各个机器内部的浮点数表示格式还没有统一因而相互不兼容,机器之间传送数据时,带来麻烦

1970年代后期, IEEE成立委员会着手制定浮点数标准

1985年完成浮点数标准IEEE754的制定

现在所有计算机都采用IEEE754来表示浮点数

This standard was primarily the work of one person, UC Berkeley math professor William Kahan.

1989 ACM Turing Award Winner!

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Prof. William Kahan

IEEE 754 Floating Point Standard

Single Precision: (Double Precision is similar)

```
S Exponent Significand

1 bit 8 bits 23 bits
```

- 。 Sign bit: 1 表示negative ; 0表示 positive
- °Exponent(阶码 / 指数): 全0和全1用来表示特殊值!
 - •SP规格化数阶码范围为0000 0001 (-126) ~ 1111 1110 (127)
 - •bias为127 (single), 1023 (double) 为什么用127? 若用128, Significand (尾数): 则阶码范围为多少?
 - 规格化尾数最高位总是1, 所以隐含表示, 省1位
 - 1 + 23 bits (single), 1 + 52 bits (double)
- SP: $(-1)^S$ x (1 + Significand) x $2^{(Exponent-127)}$ 0000 0001 (-127)
- DP: (-1)^S x (1 + Significand) x $2^{(Exponent-1023)}$ $\sim 1111 \ 1110 \ (126)$

Ex: Converting Binary FP to Decimal

BEE00000H is the hex. Rep. Of an IEEE 754 SP FP number

10111 1101 110 0000 0000 0000 0000 0000

$$(-1)^S \times (1 + Significand) \times 2^{(Exponent-127)}$$

- Sign: 1 => negative
- ° Exponent:
 - 0111 1101 $_{two}$ = 125 $_{ten}$
 - Bias adjustment: 125 127 = -2
- ° Significand:

$$1 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5} + \dots$$

=1+2⁻¹ +2⁻² = 1+0.5 +0.25 = 1.75

° Represents: $-1.75_{ten} \times 2^{-2} = -0.4375$ (= -4.375×10^{-1})

Ex: Converting Decimal to FP

$$-1.275 \times 10^{1}$$

- 1. Denormalize: -12. 75
- 2. Convert integer part:

$$12 = 8 + 4 = 1100_2$$

3. Convert fractional part:

$$.75 = .5 + .25 = .11_{2}$$

4. Put parts together and normalize:

$$1100.11 = 1.10011 \times 2^3$$

5. Convert exponent: $127 + 3 = 128 + 2 = 1000 \ 0010_2$

The Hex rep. is C14C0000H

Normalized numbers (规格化数)

前面的定义都是针对规格化数(normalized form)

How about other patterns?

Exponent	Significand	Object
1-254	anything	Norms
in	nplicit leading 1	
0	0	?
0	nonzero	?
255	0	?
255	nonzero	?

Representation for 0

How to represent 0?

exponent: all zeros

significand: all zeros

What about sign? Both cases valid.

Representation for $+\infty/-\infty$ ∞ : infinity

In FP, 除数为0的结果是 +/- ∞ , 不是溢出异常.

为什么要这样处理?

• 可以利用 $+\infty$ / $-\infty$ 作比较。 例如:X/0>Y可作为有效比较

How to represent $+\infty/-\infty$?

- Exponent : all ones (111111111 = 255)
- Significand: all zeros

Operations

$$5/0 = +\infty$$
, $-5/0 = -\infty$
 $5+(+\infty) = +\infty$, $(+\infty)+(+\infty) = +\infty$
 $5-(+\infty) = -\infty$, $(-\infty)-(+\infty) = -\infty$ etc

Representation for "Not a Number"

Sqrt
$$(-4.0) = ?$$
 $0/0 = ?$

Called Not a Number (NaN) - "非数"

How to represent NaN

Exponent = 255

Significand: nonzero

NaNs can help with debugging

Operations

sqrt (-4.0) = NaN
$$0/0$$
 = NaN $+\infty+(-\infty)$ = NaN $+\infty-(+\infty)$ = NaN ∞/∞ = NaN etc.

Representation for Denorms(非规格化数)

What have we defined so far? (for SP)

Exponent	Significand	Object Used to represent
0	0	+/-0 Denormalized numbers
0	nonzero	Denorms
1-254 i	anything mplicit leading 1	Norms
255	0	+/- infinity
255	nonzero	NaN

Representation for Denorms

Questions about IEEE 754

What's the range of representable values?

```
The largest number for single: +1.11...1X 2^{127} \cancel{\cancel{5}} +3.4 X \cancel{10}^{38} How about double? \cancel{\cancel{5}} +1.8 X \cancel{10}^{308}
```

What about following type converting: not always true!

```
if ( i == (int) ((float) i) ) {
    printf ("true");
}
if ( f == (float) ((int) f) ) {
    printf ("true");
}
How about Not always
double?
true!
```

How about FP add associative? FALSE!

```
x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, z = 1.0

(x+y)+z = (-1.5\times10^{38}+1.5\times10^{38})+1.0 = 1.0

x+(y+z) = -1.5\times10^{38}+(1.5\times10^{38}+1.0) = 0.0
```