Equation of molion:

2 nd order lunéar différential equation.

$$mx + kx = 0$$
 $x = e^{5t}$
 $m s^2 e^{5t} + k e^{5t} = 0$
 $m s^2 + k = 0$
 $s^2 = -k/m$
 $s = + i\sqrt{k/m}$
 $i = \sqrt{-1}$ (Imaginary number)

 $s = + i\sqrt{k/m}$
 $s = + i\sqrt{k/m}$

$$x(t) = A \cos\left(\sqrt{\frac{k}{m}}t\right)$$

$$+ B \sin\left(\sqrt{\frac{k}{m}}t\right)$$

Initial conditions 2(0), 2(0)

$$x(t) = x(0) \cos \left(\sqrt{\frac{K}{m}} t \right) + z(0) \sin \left(\sqrt{\frac{K}{m}} t \right)$$

$$\sqrt{K/m}$$

$$\frac{x(0) = X \cos \phi}{\sqrt{K_{lm}}} = X \sin \phi$$

$$\frac{x(t) = X \cos (\sqrt{\frac{K}{m}}t - \phi)}{\sqrt{K_{lm}}}$$

Where
$$X = \sqrt{\frac{x(0)^2 + \frac{x(0)}{\sqrt{k_{lm}}}^2}$$

$$0 = tan \left(\frac{x(0)}{\sqrt{\frac{x}{m}}}\right)$$

mass vibrales at a frequency of governed solely by the system.

No role of external.

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$f = \frac{\omega_n}{2\pi} H_2$$
mg

$$\frac{1}{x} = \frac{1}{x}$$

$$\frac{1}{x} = \frac{1}{x}$$

$$\bar{z} = x \cos(\omega_n t - \theta)$$

$$r = F + X \cos(w_n t - \theta)$$

e-g: Weight in the vertical objectation

$$mx + Kx = F$$

$$mx + K(x - F) = 0$$

X and p are obtained based on x(0) and x(0)

$$x_{b} = P \cos(\omega t)$$

$$x_{b} = -P \omega \sin(\omega t)$$

$$x_{b} = -P \omega^{2} \cos(\omega t)$$

$$-P \omega^{2} m \cos(\omega t) + k P \cos(\omega t)$$

$$= F_{0} \cos(\omega t)$$

$$= F_{0} \cos(\omega t)$$

$$P = \frac{F_{0}/K}{(K-m\omega^{2})} \frac{[F_{0}/K]}{[I-(\omega^{2})]}$$

$$P = \frac{[F_{0}/K]}{(K/m)} \frac{[I-(\omega^{2})]}{[U-(\omega^{2})]}$$

$$x(t) = x_h(t) + x_h(t)$$

$$x(t) = \chi(cos(\omega_n t - \phi) + (F_0/k)cos(\omega t)$$

$$\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)$$

X1 & can be oblained based on x10) and x10).

If w > wn, lken the amphibule blows and we have "RFSONANCE".

Similar process if forcing function is Fo sin (wt)

 $mxi + kx = F_{1} (os(U_{1}t))$ $+F_{2}Sis(U_{2}t)$ $x(t) = x_{h}(t) + x_{1}(t)$ $+x_{2}(t)$ mxi + kxi = 0

 $m \times i_0 + K \times k_1 = 0$ $m \times i_1 + K \times k_1 = F_1 \cos(\omega_i t)$ $m \times i_0 + K \times k_2 = F_2 \cos(\omega_i t)$

Principle of Superposition Works because governing eq'n is linear.

When (5 = 6 C > Contral damping Coefficient C2 = 4m4K Cc = \(4mK = 2\m)K we will have three a) c>c(b) c=c

c) c > c (b) c = cc(c) c < cc(d) c = cc(e) c = cc(f) c < cc(f) c < cc(f) c < cc(g) c < cc(h) c = cc(g) c = cc(g) c < cc(g) c = cc(g) c < cc(g) c

(b)
$$\xi = 1$$
 $51/2 = -\omega_n$

Repeated root.

 $2(t) = (P + t 9) = \omega_n t$
 $P_1 9$ hased on Inchal

conductors (Ics)

D Exponentially decaying

Sol'n.

(c) $\xi < 1$
 $S1/2 = \omega_n [-\xi \pm i\sqrt{1-\xi^2}]$

$$x(t) = P_{1}e^{t\omega_{n}\left[-\frac{c}{s} + i\sqrt{1-\frac{c}{s}^{2}}\right]t}$$

$$+ q e^{-\omega_{n}\left[-\frac{c}{s} - i\sqrt{1-\frac{c}{$$

$$\frac{x_{1}}{x_{2}} = e^{\omega_{n} \xi} \frac{2\pi}{\omega_{n} \xi}$$

$$= e^{\omega_{n} \xi}$$