Section 11

16 Are the groups $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ and $\mathbb{Z}_4 \times \mathbb{Z}_6$ isomorphic? Why or why not? slu.

$$\begin{split} \mathbb{Z}_2 \times \mathbb{Z}_{12} &\simeq \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \text{ Since gcd}(4,3) = 1 \\ &\simeq \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \text{ By rearrangement} \\ &\simeq \mathbb{Z}_4 \times \mathbb{Z}_6 \qquad \text{Since gcd } (2,3) = 1 \quad \blacklozenge \end{split}$$

18 Are the groups $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ and $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$ isomorphic? Why or why not? slu.

$$\begin{split} \mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24} &\simeq \mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \quad \text{Since } \gcd(2,5) = 1 \text{ and } \gcd(8,3) = 1 \\ &\simeq \mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_{40} \times \mathbb{Z}_3 \text{ Since } \gcd(8,5) = 1 \\ &\simeq \mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{40} \text{ By rearrangement} \\ &\text{and} \\ \mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40} &\simeq \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_{40} \quad \text{Since } \gcd(4,3) = 1 \\ &\text{but} \\ \\ \text{lcm}(8,2) = 8 \text{ and } |\text{cm}(4,4) = 4 \implies |\mathbb{Z}_8 \times \mathbb{Z}_2| = 8 \text{ and } |\mathbb{Z}_4 \times \mathbb{Z}_4| = 4 \\ &\Longrightarrow \mathbb{Z}_8 \times \mathbb{Z}_2 \not\simeq \mathbb{Z}_4 \times \mathbb{Z}_4 \end{split}$$

So, no ♦

24 Are the groups $\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15}$ and $\mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}$ isomorphic? Why or why not? $\underline{\mathbb{Slu}}$.

$$\begin{split} 4 = 2^2, 18 = 2 \cdot 3^2, 15 = 3 \cdot 5 \text{ and } 3 = 3, 36 = 2^2 \cdot 3^2, 10 = 2 \cdot 5 \\ \Longrightarrow \\ \mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15} &\simeq \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \times \mathbb{Z}_3 \times \mathbb{Z}_5 \\ &\simeq \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \times \mathbb{Z}_{3^2} \times \mathbb{Z}_2 \times \mathbb{Z}_5 \\ &\simeq \mathbb{Z}_3 \times \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^2} \times \mathbb{Z}_2 \times \mathbb{Z}_5 \\ &\simeq \mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10} \end{split}$$

So, yes ♦

49 Find a counterexample of Exercise 47 with the hypotheses of that *G* is abelian omitted.

slu.

$$S_3 = \{\iota, (2\ 3), (1\ 2), (1\ 2\ 3), (1\ 3\ 2), (1\ 3)\}$$

If you square each element you get

$$(2\ 3)^2 = \iota$$
, $(1\ 2)^2 = \iota$, $(1\ 2\ 3)^2 = (1\ 3\ 2)$, $(1\ 3\ 2)^2 = (1\ 2\ 3)$, $(1\ 3)^2 = \iota$.

Then the set of squares and ι is, $S = {\iota, (23), (12), (13)}.$

$$(2\ 3)(1\ 2)=(1\ 3\ 2)\notin S\implies S$$
 is not closed $\implies S$ is not a subgroup of S_4 $\triangleright \triangleleft$

I did the previous by brute force with the computer.

However, I found the smallest example up to isomorphism, consider D_3 :

D_3	1	ΙA	В	С	D	Ε
1	1	Α	В	С	D	Ε
Α	А	В	1	D	ΙE	С
В	В	1	Α	Е	С	D
С	С	E	D	1	В	Α
D	D	С	¦Ε	Α	1	В
E	Е	D	С	В	Α	1

$$\implies S = \{1, C, D, E\} \land CD = B \notin S \implies S \nleq D_3 \triangleright \triangleleft$$

Ok, this is annoying. $D_3 \simeq S_3...$ Looking at the table I've realized they are the same thing. I wanted to consider a smaller example so I googled what is the smallest non-abelian group. So, I had already found the smallest example.

Section 13

In Exercises 1 through 15, determine whether the given map ϕ is a homomorphism. [Hint: the straightforward way to proceed is to check whether $\phi(ab) = \phi(a)\phi(b)$ for all a and b in the domain of ϕ . However, if we should happen to notice that $\phi^{-1}[\{e'\}]$ is not a subgroup whose left and right cosets coincide, or that ϕ does not satisfy the properties given in Exercises 44 or 45 for finite groups, then we can say at once that ϕ is not a homomorphism.]

2 Let $\phi: \mathbb{R} \to \mathbb{Z}$ under addition be given by $\phi(x) =$ the greatest integer $\leq x$.

sly. No,
$$\phi(1.5+1.5) = \phi(3) = 3 \neq 2 = 1+1 = \phi(1.5) + \phi(1.5)$$

12 Let M_n be the additive group of all $n \times n$ matrices with real entries, and let $\mathbb R$ be the additive group of real numbers. Let $\phi(A) = \det(A)$

$$\underbrace{\text{slu.}} \text{ No, } \det \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) = \det \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) = 1 \neq 0 = 0 + 0 = \det \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right) + \det \left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) \qquad \blacklozenge$$

2

13 Let M_n and R be as in Exercise 12. Let $\phi(A) = \operatorname{tr}(A)$ for $A \in M_n$, where the **trace** of A is the sum of the elements on the main diagonal of A from the upper-left to the lower-right corner. slu. Yes,

$$\begin{split} \operatorname{tr}(A+B) &= \operatorname{tr}((A_{ij}) + (B_{ij})) \\ &= \operatorname{tr}((A_{ij} + B_{ij})) \\ &= \sum_{i=1}^n A_{ii} + B_{ii} \\ &= \sum_{i=1}^n A_{ii} + \sum_{i=1}^n B_{ii} \\ &= \operatorname{tr}((A_{ij})) + \operatorname{tr}((B_{ij})) \\ &= \operatorname{tr}(A) + \operatorname{tr}(B) \quad \blacklozenge \end{split}$$

14 Let $GL(n,\mathbb{R})$ be the multiplicative group of invertible $n\times n$ matrices, and let \mathbb{R} be the additive group of real numbers. Let $\phi:GL(n,\mathbb{R})\to\mathbb{R}$ be given by $\phi(A)=\operatorname{tr}(A)$, where $\operatorname{tr}(A)$ is defined as in Exercise 13. $\underline{\operatorname{slu}}$. No,

$$\operatorname{tr}\left(\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right) = \operatorname{tr}\left(\begin{pmatrix}0 & 0 \\ 0 & 0\end{pmatrix}\right) = 0 \neq 2 = 1 + 1 = \operatorname{tr}\left(\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\right) + \operatorname{tr}\left(\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right) \quad \spadesuit$$

In Exercises 16 through 24, compute the indicated quantities for the given homomorphism ϕ . (See Exercise 46.)

21 Ker (ϕ) and $\phi(14)$ for $\phi:\mathbb{Z}_{24}\to S_8$ where $\phi(1)=(2,5)(1,4,6,7)$ slu.

$$\phi(2) = [(1\ 4\ 6\ 7)(2\ 5)]^2 = (1\ 6)(4\ 7), \\ \phi(3) = [(1\ 4\ 6\ 7)(2\ 5)]^3 = (1\ 7\ 6\ 4)(2\ 5), \\ \phi(4) = [(1\ 4\ 6\ 7)(2\ 5)]^4 = \iota.$$

We can see from the computation that, multiples of 4 give us the identity. So, $Ker(\phi) = \{0, 4, 8, 12, 16, 20\}$

$$\begin{split} \phi(14) &= [(1\ 4\ 6\ 7)(2\ 5)]^{14} = [(1\ 4\ 6\ 7)(2\ 5)]^{12+2} \\ &= ([(1\ 4\ 6\ 7)(2\ 5)]^4)^3[(1\ 4\ 6\ 7)(2\ 5)]^2 = \iota^3[(1\ 4\ 6\ 7)(2\ 5)]^2 = (1\ 6)(4\ 7) \quad \blacklozenge \end{split}$$

In Exercises 33 through 43, give an example of a nontrivial homomorphism ϕ for the given groups, if an example exists. If no such homomorphism exists explain why that is so. You may use Excercises 44 and 45.

41 $\phi: D_4 \rightarrow S_3$

slu.

From problem 49 we can see $S_3 \simeq D_3$

$$\begin{split} D_n &= \langle r, s | r^n = s^2 = e, srs = r^{-1} \rangle \\ &\Longrightarrow \\ D_4 &= \langle r, s | r^4 = s^2 = e, srs = r^{-1} \rangle \\ \text{and} \\ D_3 &= \langle a, b | a^3 = b^2 = e', bab = a^{-1} \rangle \end{split}$$

So, let's check,

$$\nu(r) = a \implies \nu(e) = \nu(r^4) = \nu(r)^4 = \nu(r)^3 \nu(r) = a^3 \phi(r) = e'^3 a = a \neq e'$$

. So, $\nu(r) \neq a$. Check,

$$\nu(r) = b \implies \nu(e) = \nu(r^4) = \nu(r)^4 = b^4 = (b^2)^2 = e'^2 = e'$$

. So,
$$\nu(s)b\nu(s) = \nu(s)\nu(r)\nu(s) = \nu(srs) = \nu(r^{-1}) = \nu(r)^{-1} = b^{-1} = b$$
. So, $\nu(s) = e'$.

Since, all the elements of D_4 are, $e, r, r^2, r^3, s, sr, sr^2, sr^3$. Then define ψ by,

$$\psi(e) = e',$$

$$\psi(r) = b$$
,

$$\psi(r^2) = b^2 = e',$$

$$\psi(r^3) = be' = b,$$

$$\psi(s) = e'$$
,

$$\psi(sr) = e'b = b,$$

$$\psi(sr^2) = e'b^2 = e',$$

$$\psi(sr^3) = e'b = b,$$

Now construct an isomorphism μ from D_3 to S_3 like so,

$$\mu(e) = \iota$$
,

$$\mu(a) = (123),$$

$$\mu(a^2) = (132)$$

$$\mu(b) = (23)$$

$$\mu(ba) = (12)$$

$$\mu(ba^2) = (13).$$

 μ is a bijection from D_3 to S_3 . It satisfies the homomorphism property by construction, because I just looked at the tables of D_3 and S_3 to write it.

Now, put $\phi = \psi \circ \mu$ which gives,

$$\phi(r) = \phi(r^3) = \phi(sr) = \phi(sr^3) = (23), \, \phi(e) = \phi(r^2) = \phi(s) = \phi(sr^2) = e'$$

Which is nontrivial ♦

47 Show that any group homomorphism $\phi: G \to G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.

pf.

|G| is prime $\implies G$ has no proper nontrivial subgroups.

$$\operatorname{Ker}(\phi) \leq G \implies \operatorname{Ker}(\phi) = \{e\} \vee \operatorname{Ker}(\phi) = G$$

 $Ker(\phi) = \{e\} \implies \phi \text{ is injective.}$

$$Ker(\phi) = G \implies \phi \text{ is trivial} \quad \blacksquare$$

49 Show that if G, G', and $G^{''}$ are groups and if $\phi:G\to G'$ and $\gamma:G'\to G''$ are homomorphisms, then the composite map $\gamma\phi:G\to G^{''}$ is a homomorphism.

pf.

WTS
$$\forall x, y \in G : \gamma \phi(xy) = \gamma \phi(x) \gamma \phi(y)$$

Let $x, y \in G$ be arbitrary.

Compute,

$$\begin{split} \gamma\phi(xy) &= \gamma(\phi(xy)) \\ &= \gamma(\phi(x)\phi(y)) \\ &= \gamma(\phi(x))\gamma(\phi(y)) \\ &= \gamma\phi(x)\gamma\phi(y) \end{split}$$

Additional Exercises

- **1** Let $\phi: G \to G'$ be a homomorphism of groups and suppose $g \in G$ is an element of finite order.
- (a) Prove that $|\phi(g)|$ divides |g|.

pf.

Let
$$|g| = n$$
, $g^n = e \implies \phi(g)^n = \phi(g^n) = g(e) = e'$.

Now, $\phi(g)^n = e'$ doesn't mean $|\phi(g)| = n$.

But, it does mean that $\exists k, m \in \mathbb{Z}^+ : n = mk \land g^m = e'$, where m is the order of $\phi(g)$.

So, the order of $\phi(g)$ divides the order of g

(b) Prove that $|\phi(g)| = |g|$ if ϕ is injective.

pf.

$$\phi(q)^n = \phi(q^n) = \phi(e) = e'.$$

Since, ϕ is injective no power smaller than n maps g^n to e' under ϕ .

So, the smallest power you need to raise $\phi(g)$ to get e' is n.

So, ϕ is a bijection. So $|\phi(g)| = |g|$

2** Let G and G' be groups. Prove that a homomorphism $\phi:G\to G'$ is an isomorphism if and only if there exists some homomorphisms $\psi:G'\to G$ such that $\psi\circ\phi=\mathrm{id}_G$ and $\phi\circ\psi=\mathrm{id}_{G'}$.

nf.

$$(\Longrightarrow)$$
 Ass. $\phi:\langle G,\bullet\rangle\to\langle G',*\rangle$ is an isomorphism

Then ϕ is bijective, and

$$\forall x, y \in G : \phi(x \bullet y) = \phi(x) * \phi(y)$$

 ϕ is bijective, so it has an inverse mapping ϕ^{-1} .

That is $\phi\circ\phi^{-1}=1_G$ and $\phi^{-1}\circ\phi=1_G'$

So, for all $x, y \in G$ we can write $x = \phi^{-1}(\phi(x))$ and $y = \phi^{-1}(\phi(y))$. Let $\phi(x) = x'$ and $\phi(y) = y'$.

$$\begin{split} \phi^{-1}(\phi(x \bullet y)) &= \phi^{-1}(\phi(x) * \phi(y)) \\ x \bullet y &= \phi^{-1}(\phi(x) * \phi(y)) \\ \phi^{-1}(\phi(x)) \bullet \phi^{-1}(\phi(y)) &= \phi^{-1}(\phi(x) * \phi(y)) \\ \phi^{-1}(x') \bullet \phi^{-1}(y') &= \phi^{-1}(x' * y') \end{split}$$

So, ϕ^{-1} satisfies the homomorphism property, thus is a homomorphism as in the theorem.

($\ \ \, =\ \,)$ Ass. \exists homomorphisms $\phi,\psi:\phi\circ\psi=1_{G'}$ and $\psi\circ\phi=1_G$

$$\psi \circ \phi = 1_G \implies \psi = \phi^{-1} \implies \phi$$
 is bijective.

 ϕ is a homomorphism, so ϕ is an isomorphism.

Thus, proven. This holds for binary algebraic structures, so it holds for groups.

3 Show that $SL_n(\mathbb{R})$ is a normal subgroup of $GL_n(\mathbb{R})$ for all $n\in\mathbb{Z}^+.$

pf.

The determinant $\det : GL_n(\mathbb{R}) \to \mathbb{R}^*$ is a homomorphism.

 $\det^{-1}[\{1\}]=SL_n(\mathbb{R}) \text{ by definition of } SL_n(\mathbb{R}). \text{ So, Ker(det)=} SL_n(\mathbb{R}).$

By $13.20~SL_n(\mathbb{R})$ is normal for each $n\in\mathbb{Z}^+$