Spectral Clustering Algorithms

Three basic stages:

- 1) Pre-processing
 - Construct a matrix representation of the graph
- 2) Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- 3) Grouping
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

1) Pre-processing:

Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

Decomposition:

0.0 1.0 3.0 3.0 4.0

5.0

	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
v _	0.4	0.3	0.1	0.6	-0.4	0.5
\ =	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	0.6	0.4	-0.4	-0.4	0.0

Find eigenvalues λ
and eigenvectors x
of the matrix $m{L}$

Map vertices to

components of λ_2

corresponding

How do we now find the clusters?

Spectral Partitioning

- 3) Grouping:
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0 or median value
 - More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

Split at 0:

Cluster A: Positive points

Cluster B: Negative points

1	0.3
2	0.6
3	0.3

4	-0.3
5	-0.3
6	-0.6

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral Partitioning

k-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...