Recursion Problems

W.R. Casper

Problem Solving Seminar

Department of Mathematics California State University Fullerton

September 22, 2023

Recursive definition

Recursive definitions involves two things:

- a base case where the thing is defined explicitly
- a recursive step a rule which relates the next case to previous cases

Putnam 1990 A1

Let
$$T_0 = 2$$
, $T_1 = 3$, $T_2 = 6$, and for $n \ge 3$,

$$T_n = (n+4)T_{n-1} - 4nT_{n-2} + (4n-8)T_{n-3}.$$

The first few terms are

Find, with proof, a formula for T_n of the form $T_n = A_n + B_n$, where (A_n) and (B_n) are well-known sequences.

Putnam 1990 A1

Let
$$T_0 = 2$$
, $T_1 = 3$, $T_2 = 6$, and for $n \ge 3$,
$$T_n = (n+4)T_{n-1} - 4nT_{n-2} + (4n-8)T_{n-3}.$$

The first few terms are

Find, with proof, a formula for T_n of the form $T_n = A_n + B_n$, where (A_n) and (B_n) are well-known sequences.

Hint: compare to the first few terms of the sequence *n*!

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

Fibonacci Sequence

Base case:

$$F_1 = 1, F_2 = 1,$$

Recursive step:

$$F_{n+1} = F_n + F_{n-1}, n \ge 2$$

$$F_3=2,\ F_4=3,\ F_5=5,\ F_6=8,\ldots...$$

A closed form

Show that

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\varphi + \varphi^{-1}},$$

where here φ is the **golden ratio**

$$\varphi = \frac{1 + \sqrt{5}}{2}.$$

Practice again

Suppose that $u_0 = 0$, $u_1 = 1$ and

$$u_{n+2}=4u_{n+1}-4u_n.$$

Determine the value of u_{16} .

Generalization

Suppose that u_0 , u_1 , and u_2 are three real numbers. Define recursively

$$u_{n+2}=\frac{u_{n+1}+u_n+u_{n-1}}{3}.$$

Determine the limit of u_n .

Putnam 2015 A2

Suppose that
$$a_0 = 1, a_1 = 2$$
, and

$$a_n = 4a_{n-1} - a_{n-2}, \ n \geq 2.$$

Determine an odd prime divisor of a_{2015} .

Nonlinear recursion

Determine the value of the sequence x_n satisfying $x_0 = 1$ and

$$x_n = 1 + 1/x_{n-1}$$
, for $n > 0$

Doex x_n converge? If so, to what?

Putnam 1993 A2

Let z_0 and z_1 be real numbers. Determine an explicit formula in terms of z_0 and z_1 for the value of

$$z_n^2-z_{n+1}z_{n-1}=1,\ n\ge 1.$$