WHAT IS CLAIMED IS:

10

30

- 1. A method of detecting and locating noise sources each emitting respective signals S_j where j=1 to M, detection being provided by means of acoustic wave or vibration sensors each delivering a respective time-varying electrical signal s_i with i varying from 1 to N, the method consisting:
- · in taking the time-varying electrical signals delivered by the sensors, each signal $s_i(t)$ delivered by a sensor being the sum of the signals S_j emitted by the noise sources;
- · in amplifying and filtering the taken time-varying electrical signals;
 - · in digitizing the electrical signals;
- 15 · in calculating the functional

$$f(\boldsymbol{n}_1, \ldots, \boldsymbol{n}_j, \ldots, \boldsymbol{n}_N) = \sum_{k \neq 1} R_{k1}$$

with the coefficients R_{kl} being a function of the vectors \mathbf{n}_j giving the directions of the noise sources; and

- · in minimizing the functional f in such a manner as to determine the directions n_i of the noise sources.
 - 2. A method according to claim 1, wherein, in order to minimize the functional f, the method consists in:
- calculating the Fourier transforms of the signals $s_i(t)$ delivered by the sensors;
 - · formally calculating the coefficients R_{ij} :

$$R_{ij} = \frac{\int_{-\infty}^{+\infty} |\hat{S}_{i}(\omega)|^{2} \cdot |\hat{S}_{i}(\omega)|^{2} d\omega}{\int_{-\infty}^{+\infty} |\hat{S}_{i}(\omega)|^{2} d\omega \cdot \int_{-\infty}^{+\infty} |\hat{S}_{j}(\omega)|^{2} d\omega}$$

- \cdot and minimizing the functional f in order to determine the directions \boldsymbol{n}_j of the selected noise sources.
- 3. A detection method according to claim 1, wherein, in order to minimize the functional f, the method consists:
- · in formally calculating the correlation coefficient R_{ij} :

$$R_{ij} = \frac{\int_{-\infty}^{+\infty} \Gamma_{ij}^{2}(\tau) d\tau}{\Gamma_{ii}(0) . \Gamma_{jj}(0)}$$

where Γ_{ij} is the cross-correlation function between the signals S_i and S_j .

4. A detection method according to claim 1, wherein, after performing the minimization operation, the method consists in calculating the source vector:

$$S(w) = (tT^*.T)^{-1}.tT^*.s(\omega)$$

in order to find the characteristics of the noise

10 sources.