

Inferring network relations from affiliation data

## **AFFILIATION NETWORKS**



#### Goals

- Understand sources and structure of affiliation data
- Demonstrate how to perform 1-mode and 2-mode network analysis of affiliation data
- Explore scientific collaboration data as an example of an affiliation network



#### Overview

- Networks derived from special data structures
- Affiliation networks networks of actors and/or groups based on affiliation of actors within groups, shared events
  - Corporate interlocks
  - Structure and processes of legislative/judicial bodies



### Social structure through affiliations

- Sociological interest in collectivities
- Social circles groups of people that gather around one or more organizations/events. Provide conditions for development of interpersonal connections
- Affiliations express institutional arrangements fundamental societal structuring
- Well known example corporate interlocks
  - A corporate interlock is formed when one person sits on more than one corporate board
  - That person serves as a bridge between two (or more) corporations opportunity for intercorporate communication
  - www.theyrule.net



#### Affiliations as indirect relations

- Previous network relations have all been direct e.g,
  friendship, money lending, marriage tie, etc.
- Affiliations are indirect relations relationship is inferred from opportunity to connect by actors being involved in the same organization, event, etc.



#### Rationale for studying affiliation networks

- Individuals' affiliations with events provide direct linkages between the actors or the events
- Actors involvement with events provides the conditions for development of direct links between actors
- The interaction between actors and events as a social system that can be studied in and of itself.



#### Affiliation networks as 2-mode networks

- One-mode networks relations among one set (type) of nodes (actors)
- Two-mode networks relations between two different sets of nodes, e.g., actors and events
- Many traditional network techniques must be adapted to be used in two-mode affiliation networks
  - For example, density must be calculated differently
  - The maximum no. of connections from an actor in a two-mode network is equal to the number of events, not the total number of nodes



## Bipartite graphs

 Two-mode networks (and affiliation networks) are a special type of bipartite graph





(From Naud, et al, 2007. doi: 10.3389/neuro.11/007.2007)

## 2-mode network representation

| Actor     | PHS-601 | Network | Epi |  |
|-----------|---------|---------|-----|--|
| Jenine    | 1       | 1       | 0   |  |
| Leslie    | 0       | 1       | 1   |  |
| Ratna     | 0       | 1       | 0   |  |
| Stavroula | 0       | 1       | 0   |  |
| Nancy     | 1       | 0       | 0   |  |
| Byron     | 1       | 0       | 0   |  |
| Erin      | 0       | 0       | 1   |  |
| Ryan      | 0       | 0       | 1   |  |



## 1-mode 'co-affiliation' representation

|         | PHS601 | Network | Epi |
|---------|--------|---------|-----|
| PHS601  | 3      | 1       | 0   |
| Network | 1      | 4       | 1   |
| Epi     | 0      | 1       | 3   |

Class co-affiliation

Student co-affiliation

|   |   | J | L | ĸ | 3 | IV | D | E | ĸ |
|---|---|---|---|---|---|----|---|---|---|
|   | J | 2 | 1 | 1 | 1 | 1  | 1 | 0 | 0 |
|   | L | 1 | 2 | 1 | 1 | 0  | 0 | 1 | 1 |
| * | R | 1 | 1 | 1 | 1 | 0  | 0 | 0 | 0 |
|   | S | 1 | 1 | 1 | 1 | 0  | 0 | 0 | 0 |
|   | N | 1 | 0 | 0 | 0 | 1  | 1 | 0 | 0 |
|   | В | 1 | 0 | 0 | 0 | 1  | 1 | 0 | 0 |
|   | E | 0 | 1 | 0 | 0 | 0  | 0 | 1 | 1 |
| , | R | 0 | 1 | 0 | 0 | 0  | 0 | 1 | 1 |
|   |   |   |   |   |   |    |   |   |   |



## How to Analyze Affiliation Data

- Data preparation
- Analysis of 2-mode network
- Create two 1-mode projections
- Analyze each 1-mode network on their own, keeping in mind that the 1-mode networks represent indirect relationships



### 2-mode to 1-mode example





# Transforming two-mode networks to one-mode networks

- Two possible one-mode networks
  - Network of actors actors are connected if they attend the same event (belong to the same organization, etc.). Co-attendance or comembership.
  - Network of events events interlock if they share the same actor.
    Overlapping or interlocking events.
- Derived one-mode networks can be analyzed using traditional network techniques, and are usually easier to interpret than the two-mode networks.



#### Portion of Scotland 2-mode network





## Hubs & authorities (10 each)





# Firm (1-mode) network





#### Firm 'islands'





## **Example - WU ICTS Evaluation**



