POLYNOMIAL IDENTITIES AUXILIARY

PETRO KOLOSOV

Abstract. Polynomial identities auxiliary

Contents

1.	Polynomial identities auxiliary	1
1.1.	Central factorial numbers	1
1.2.	Knuth's formula - approach 1 (to be verified all)	2
1.3.	Knuth's formula - approach 2 (to be verified all)	3

1. POLYNOMIAL IDENTITIES AUXILIARY

1.1. Central factorial numbers.

$$(2k-1)!T(2n,2k) = \frac{1}{k} \sum_{j=0}^{k} (-1)^{j} {2k \choose j} (k-j)^{2n}$$

$$(2k-1)!T(2n,2k) = \frac{1}{k} \sum_{j=0}^{k} (-1)^{k-j} {2k \choose k-j} j^{2n}$$

$$(2k-1)!T(2n,2k) = \frac{1}{k} 2k! \left({2n \choose 2k} - \sum_{j=k+1}^{2k} (-1)^{j} {2k \choose j} (k-j)^{2n} \right)$$

Date: July 21, 2023.

 $2010\ Mathematics\ Subject\ Classification.\ 26E70,\ 05A30.$

 $\label{eq:Keywords} \textit{Key words and phrases.} \quad \text{Polynomials, Polynomial identities, Faulhaber's formula, Cental Factorial Numbers} \; .$

1.2. Knuth's formula - approach 1 (to be verified all).

$$n^{2m-1} = \sum_{k=1}^{m} (2k-1)! T(2m, 2k) \binom{n+k-1}{2k-1} \quad checked$$

$$= \sum_{k=1}^{m} T(m, k) \binom{n+k-1}{2k-1} \quad checked \; knuth1$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{k} \binom{n+k-1}{2k-1} \binom{2k}{k-j} j^{2m} \quad checked \; knuth2$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{k} \frac{2k}{n+k} \binom{n+k}{2k} \binom{2k}{k-j} j^{2m} \quad checked \; knuth3$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{n+k} \binom{n+k}{2k} \binom{2k}{k-j} j^{2m}$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{k} \frac{2k}{n+k} \binom{n+k}{k-j} \binom{n+j}{k+j} j^{2m} \quad checked \ knuth 4$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{n+k} \binom{n+k}{k-j} \binom{n+j}{k+j} j^{2m}$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{n+k} \binom{n+k}{n+j} \binom{n+j}{k+j} j^{2m}$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{n+k} \binom{n+k}{k+j} \binom{k-j}{n-k} j^{2m}$$

1.3. Knuth's formula - approach 2 (to be verified all).

$$n^{2m-1} = \sum_{k=1}^{m} (2k-1)! T(2m,2k) \binom{n+k-1}{2k-1}$$

$$= \sum_{k=1}^{m} T(m,k) \binom{n+k-1}{2k-1}$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{k} \binom{n+k-1}{2k-1} \binom{2k}{j} (k-j)^{2m}$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{k} \frac{2k}{n+k} \binom{n+k}{2k} \binom{2k}{j} (k-j)^{2m}$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{n+k} \binom{n+k}{j} \binom{n+k-j}{2k-j} (k-j)^{2m}$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{n+k} \binom{n+k}{n+k-j} \binom{n+k-j}{2k-j} (k-j)^{2m}$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{k} \frac{2k}{n+k} \binom{n+k}{k-j} \binom{n+j}{k+j} (k-j)^{2m}$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{k} \binom{n+k}{n+k} \binom{n+j}{k-j} \binom{n+j}{k+j} (k-j)^{2m}$$

$$= 2 \sum_{k=1}^{m} \sum_{j=0}^{k} \frac{(-1)^{j}}{n+k} \binom{n+k}{k-j} \binom{n+j}{k+j} (k-j)^{2m}$$