Ciencia y analítica de datos

Dra. María de la Paz Rico Fernández.

Presentación

- PhD. María de la Paz Rico Fdz.
- Doctorado en ciencias en Robótica y Manufactura avanzada con especialidad en visión por computadora e inteligencia artificial, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional.
- Al Data Engineer por ANCUD IT, Berlin, Alemania.
- Instructora Certificada de NVIDIA.
- Trabajos:
 - Computer Vision Research Engineer en AIFI Inc, Sillicon Valley.
 - Chief Knoledge Officer en Centro de Innovación Industrial en Inteligencia Artificial.
 - City lead Monterrey Women in Al

■ ¿Qué necesitamos para ml?

ml pipeline

Entender el problema, identificar fuentes de datos (etiquetados) y resaltar posibles problemas con los datos.

PASOS CLAVE PARA ML PROJECT (ML PIPELINE)

Adquisición de datos

Ejemplos de bases de datos

Home prices

size of house	# of	# of	newly	price
(square feet)	bedrooms	bathrooms	renovated	(1000\$)
523 645 708 1034 2290 2545	1 1 2 3 4 4	2 3 1 3 4 5	N N N Y N	

image	label
	cat
	not cat
	cat
6 6	not cat

TIPOS DE DATOS

are integers:

- age
- no of students

can take on any value, usually within a range:

- temperature
- weight

between categories:

- gender
- states / districts
- color names

categories:

- T-shirt size (S, M, L)
- grades (A, B, C)
- time of the day (morning, afternoon, evening)

Tipos de datos

- time series (time order)
- sequences of strings (text data)

PASOS CLAVE PARA ML PROJECT (ML PIPELINE)

Adquisición de datos

Podemos adquirir las bases de datos por:

1) Etiquetado manual:

2) De datos observados

user ID	time	price (\$)	purchased
4783	Jan 21 08:15.20	7.95	yes
3893	March 3 11:30.15	10.00	yes
8384	June 11 14:15.05	9.50	no
0931	Aug 2 20:30.55	12.90	yes

machine	temperature (°C)	pressure (psi)	machine fault
17987	60	7.65	N
34672	100	25.50	N
08542	140	75.50	Y
98536	165	125.00	Y

3) Descargandola de paginas web o partners.

PASOS CLAVE PARA ML PROJECT (ML PIPELINE)

- Adquisición de datos y sus problemas
 - 1) Si entran datos ruidosos, estimaciones ruidosas saldr

- 2) Problemas en los datos
- Etiquetas incorrectas
- Datos faltantes

given: 5 corrected: 3

given: cat corrected: frog

given: lobster corrected: crab

- Estructurados: Tablas de datos.
- No estructurados: imágenes, audio, video, texto

3) Varios tipos

Challenges of Machine Learning

High-bias models: consistent but wrong predictions, prone to underfitting.

High-variance models: prone to overfitting.

PASOS CLAVE PARA ML PROJECT

(ML PIPELINE)

Unsupervised Learning

Principal Component Analysis (PCA)

- **Dimensionality reduction**: when there are many features (e.g. thousands or millions) for each training instance it makes training slow and it could be hard to find a good solution.

- PCA:

- identifies the hyperplane that lies closest to the data
- projects the data onto the hyperplane
- selects the projection that preserves the maximum amount of variance

Dimensionality Reduction

- When there are many features (e.g. thousands or millions) for each training instance it makes training slow and it could be hard to find a good solution.
- Reducing dimensionality of the training set before training a model speeds up training.
- Reducing dimensionality does reduce information.
- It is useful for data visualization.

The Curse of Dimensionality

- High-dimensional datasets are risk of being very **sparse**: most training instances are **far** away from each other making predictions less reliable since they will be based on larger extrapolations.
- **Sparsity** is a problem for statistical significance, the amount of data needed to support the result often grows exponentially with the dimensionality.

Figure 1 - One-dimension scenario

Figure 3 – Three-dimension scenario

Figure 2- Two-dimension Scenario

Approaches for Dimensionality Reduction

1- Projection

- In real world-problems, training instances are not spread out uniformly across all dimensions.
- Then, training instances lie within a lower-dimensional subspace of the high-dimensional space.

- Unsupervised method for dimensionality reduction of the data
- Identifies the hyperplane that lies closest to the data.
- Then, it projects the data onto it.
- Selects the projection that preserves the maximum amount of variance (the axis that minimizes the mean squared distance between the original dataset and its projection onto that axis).

$$X_{dproj} = X.W_d$$

X: matrix training set W_d: matrix containing the first *d* principal components

This projects the training set onto the space defined by the principal components.

Principal Components

- PCA identifies the axis that accounts for the largest amount of variance in the training set.
- PCA finds a second axis, **orthogonal** to the first one, that accounts for the largest amount of remaining variance.
- PCA would also find a third axis, orthogonal to the both previous axis, etc.
- The unit vector that identifies the ith axis is called **principal component**.
- PCA assumes that the dataset is centered around the origin. Scikit-Learn's PCA classes centers the data.

Scikit-Learn

- After fitting PCA transformer to the dataset, the principal components can be accessed using components_ variable (the first one: pca.components_T[:, 0]).
- Explained variance ratio of each principal component: the proportion of the dataset's variance that lies along the axis of each principal component, *explained_variance_ratio_* variable.

PCA (Principal Component Analysis)

Choosing the Right Number of Dimensions

- It is generally useful to choose the number of dimensions that add up to a large proportion of the variance (i.e. 95%).
- In case of data visualization the dimensionality is usually reduced to 2 or 3 dimensions.
- **Scikit_Learn**: set n_components to a float between 0.0 and 1.0, indicating the ratio of variance to preserve, *PCA*(n-components=0.95).
- Plot the explained variance as a function of the number of dimensions.

PCA for Compression

- After dimensionality reduction, the training set takes up less space.
- Speeds up an algorithm like SVM.
- It's possible to decompress the reduced dataset by applying the inverse transformation of the PCA.

PCA (Principal Component Analysis)

Disadvantages

- PCA tends to be highly affected by **outliers** in the data.
- PCA assumes that the principle components are a linear combination of the original features.
- PCA assumes that the principle components are orthogonal.
- PCA uses variance as the measure of how important a particular dimension is.
- High variance axes are treated as principle components.
- Low variance axes are treated as noise.