CONTADORES

Métodos para implementar un contador para distintos códigos.

- Modulo
- Tipo de Flip-Flop con el que esta implementado

Ascendente, descendente o a eleccion según algun accionador

Asincronicos:

Observar que es un diviror de frecuencias según su modulo M

Diseñar un contador binario asincronico que sea de modulo 5 de flanco descendente.

El circuito "RC-serie" actuando en régimen transistorio nos asegura que el circuito arranque en el estado 000. El circuito comienza a operar una vez que el capacitor está lo suficientemente cargado. Este tiempo se regula según los valores de R y C. Los eventos de reloj serán ingnorados antes de dicho tiempo. Las entradas de Clear son asincrónicas.

Q_3	Q_2	Q_1	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	101
0	0	0,	101

Estado transitorio, solo se pasa por el estado 101 un lapso muy breve de tiempo Ejercicio: Diseñar un contador sincronico codigo binario de modulo 8 con FF-T.

Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	T_2	T ₁	T _o
0	0	0	0	0	1			
0	0	1						
0	1	0						
0	1	$\mid 1 \mid$						
1	0	0						
1	Q	1						
$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	1	0						
1	T	1						

Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	T ₂	T_1	T ₀
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	$\mid 1 \mid$			
$\mid 1 \mid$	1	1	0	0	0			

Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	T ₂	T ₁	T ₀
0	0	0	0	0	1	0		
0	0	1	0	1	0	0		
0	1	0	0	1	1	0		
0	1	1	1	0	0	1		
1	0	0	1	0	1	0		
1	0	1	1	1	0	0		
1	1	0	1	1	1	0		
1	1	1	0	0	0	1		

Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	T ₂	T ₁	T _o
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Diseñar un contador sincrónico binario que permita contar a elección de forma ascendente o descendente. Debe ser de modulo 5 (rango 0,1,2,3,4) y estar implementado con FF-JK.

¿Cuántas variables de entrada hay?

Volcamos esta descripción en diagrama de estados a la siguiente tabla donde indicamos para cada valor de estado presente, el valor futuro (o valor que se tendrá luego de un pulso de reloj).

Up	Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	J ₂	K ₂	J_1	K ₁	J _o	K ₀	Q ⁿ	Q^{n+1}	J	K	
000000011111111	00001111000011111	001100110011	010101010101	10000	000111xxx011100xxx	00101 x x x 10100 x x x	1000 x x x x x 000 1 x x x x	X X X X 1 X X X X X X X X X X X X X X X	00 x x 1 x x x 0 1 x x 0 x x x	X X 1 0 X X X X X X O 1 X X X X			0 0 1 1	0 1 0 1	0 1 X X	X X 1 0	

Up	Q_2	Q_1	Q_0	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	J_2	K ₂	J_1	K ₁	J _o	K ₀	Q ⁿ	Q ⁿ⁺¹	J	K	
000000001111111	000011110000111	001100110011001	0101010101010	10000 x x x x 00010 x x	00011 x x x 01100 x x	00101 x x x 10100 x x	1000 x x x x x 000 1 x x	X	00 x x 1 x x x 0 1 x x 0 x x	X X 1 0 X X X X X X X 0 1 X X	0 x 1 x x x x x x 1 x 1 x 0 x	X1 X11 X X X X X X X X X X X X X X X X	0 0 1 1	0 1 0 1	0 1 X X	X X 1 0	
1	1	1	1	X X	×	X	X X	X	X X	X	X	X					

Se resuelven los mapas de Karnaugh correspondientes al FF-JK numero 2

Recuerden que en este paso las redundancias son definidas a conveniencia. Una vez definidas podría conocer los estados futuros de TODOS los estados presentes!

Estas ecuaciones ya nos indican como realizar nuestro circuito

• diseñar un contador sincrónico de modulo 13 que cuente en código binario.

			¹¹ 5	U D.	ш																
	Q_4	Q_3	Q_2	Q_1	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	J_4	K ₄	J ₃	K ₃	J ₂	K ₂	J_1	K ₁	D_1	D_2	D ₃	D ₄	_
0 1 2 3 4 5 6 7 8 9 10 11	Q ₄ 0 0 0 0 0 0 1 1 1 1 1 1	000011110000	001100110011	0101010101	Q ₄ 0000001 1111	0 0 0 1 1 1 1 0 0 0 1	0 1 1 0 0 1 1 0 0 1 1 0	1010101010	0 0 0 0 0 0 1 0 0 0	x x x x x x x x x 0 0 0 0	0 1 1 0 x x x 0 1 1 0	0110 x x x x 0000	0 1 x x 0 1 x x 0 1 x x	x x 0 1 x x 0 1 x x 0 1	1 x 1 x 1 x 1 x 1 x 1 x	X 1 X 1 X 1 X 1 X 1	1 0 1 0 1 0 1 0 1 0	0 1 1 0 0 1 1 0 0 1 1 0	00011100001	0 0 0 0 0 0 0 1 1 1 1	-
12 13	1	1	0	0	0	0	0	0 X	X	1 X	X	1	0	X	0	X	0	0	0	0	
14	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	0 1	1 0	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	
15	1	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	x	
										ا											

Q ⁿ	Q^{n+1}	J	K	
0	0	0	X	
0	\mid 1 \mid	1	X	
1	0	X	1	
1	$\mid 1 \mid$	X	0	

Q_2 Q_4Q_3	$Q_1 \\ 00$	01	11	10	
¥4¥3 00	0	1	0	1	
01	×	х	x	Х	
11	×	0	0	0	
10	0	1	0	1	
					1
$J_3 = \overline{C}$	$\overline{Q}_3.\overline{Q}$	₂ .Q	$Q_1 + \overline{Q}$.Q	$_{2}.\overline{\mathbb{Q}}_{1}$

Q_2	Q_1			
Q_4Q_3	Q ₁ 00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	X	X	Х
10	X	X	Х	X

$$J_4 = Q_3.Q_2.Q_1$$

Resolver los demás mapas de Karnaugh y completar el resto del circuito

¿Qué pasa si se cae en los estados prohibidos?¿Como se sale de eso y a que costo?

Q_4	Q_3	Q_2	Q_1
1	1	0	1
1	1	1	0
1	1	1	1
0	0	0	0