

Fundamento de Banco de Dados

Aula 01 – Introdução aos Sistemas de Banco de Dados

Fabiano Romeu Henry Passos fabiano.passos@faculdadeimpacta.com.br

Objetivo e Tópicos

Objetivo

 Apresentar uma perspectiva histórica do surgimento dos SGBD, sua importância para as empresas e os principais conceitos e características envolvidas na área de Banco de Dados.

Principais tópicos

- Importância dos Bancos de Dados
- Uma perspectiva histórica
- Arquivos versus SGBD's
- Quando usar e quando não usar SGBD
- Principais Características dos SGBDs

Objetivo e Tópicos

- Principais tópicos (continuação)
 - Arquitetura "Three-schema"
 - Modelagem de Dados
 - Modelos de Dados (Conceituais, Lógicos e Físicos)
 - Síntese dos conceitos
 - Questões de Estudo

Importância do Banco de Dados

- A competitividade das empresas depende de dados precisos e atualizados.
- Conforme a empresa cresce, aumenta a sua dependência de grande quantidade de dados e alta complexidade.
- Assim, ferramentas de gerenciamento, extração rápida e precisa de informações é fundamental.
- Solução: SGBD (Sistema Gerenciador de Banco de Dados).

Importância do Banco de Dados

- Entramos em contato diariamente com Bancos de dados:
 - Quando fazemos compras em um supermercado
 - Quando sacamos dinheiro no caixa eletrônico
 - Quando compramos um livro online
 - Quando nos matriculamos em um curso
- Os bancos de dados possuem dados sobre vários aspectos:
 - Preferências de consumo
 - Histórico de créditos
 - Hábitos ao assistir TV
- Os bancos de dados:
 - Consolidam a massa de dados

- No início da computação os programas tinham um único objetivo: armazenar e manipular dados
- Esses programas gravavam seus dados em disco, segundo estruturas próprias.
- Somente programas que conheciam a estrutura dos dados podiam utilizar esses dados.

 Logo, se vários programas precisassem compartilhar os mesmos dados, eles teriam que conhecer e manipular as mesmas estruturas.

- Se algum programa precisasse realizar alguma mudança na estrutura de dados:
 - Todos os programas que acessavam esse mesmo arquivo tinham que ser alterados.
- Isso gerava um grande problema:
 - Garantir a unicidade das estruturas de dados entre os diversos programas devido à existência de redundâncias.

- Para evitar esse problema, colocou-se um sistema intermediário:
 - Que conhece a estrutura de dados do arquivo.
 - Fornece apenas dados que cada programa precisa.
 - Armazena adequadamente os dados de cada programa.

- Agora, com esse sistema intermediário:
 - Os programas "verão" apenas os dados que lhes interessam.
 - Os programas não precisam conhecer os detalhes de como seus dados estão gravados fisicamente.
 - Os programas não precisam ser modificados se a estrutura de dados que utilizam não for modificada.
 - As alterações ficam concentradas nesse sistema intermediário.

- Com o tempo, esse sistema intermediário passou a gerenciar vários arquivos.
- À essa coleção de arquivos foi dado o nome de Banco de Dados e o sistema intermediário recebeu o nome de Sistema Gerenciador de Banco de Dados (SGBD).

- O primeiro SGBD comercial surgiu em 1960.
- Com o tempo, surgiram padrões para descrever as Estruturas de Dados: os modelos de dados.
- A Estrutura de Dados do BD, segundo um modelo de dados é chamada de metadados.

Primeiro Data Center em 1960

DataCenter Google em Council Bluffs

DataCenter Google em Council Bluffs

DataCenter Google em Council Bluffs

- O DB-Engines Ranking classifica os sistemas de gerenciamento de banco de dados de acordo com sua popularidade.
- A classificação é atualizada mensalmente

350 systems in ranking, February 2020

Rank					Score		
Feb 2020	Jan 2020	Feb 2019	DBMS	Database Model	Feb 2020	Jan 2020	Feb 2019
1.	1.	1.	Oracle 🖪	Relational, Multi-model 👔	1344.75	-1.93	+80.73
2.	2.	2.	MySQL 🖽	Relational, Multi-model 🛐	1267.65	-7.00	+100.36
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🛐	1093.75	-4.80	+53.69
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 👔	506.94	-0.25	+33.38

- Hoje, um banco de dados:
 - É uma coleção de dados coerente e logicamente relacionados, com algum significado associado para atender a um propósito e audiência específicos.
 - Representa algum aspecto do mundo real, chamado de minimundo.

Exemplo: Uma indústria farmacêutica quer desenvolver um banco de dados para registrar os medicamentos que ela produz, bem como vírus tratados por estes medicamentos.

Para o medicamento devem ser armazenados o nome científico....etc

Arquivos versus SGBD's

Processamento Tradicional de Arquivos	SGBD Vantagens do SGB	
Definição dos dados é parte do código do programa	Meta Dados	Eliminação de Redundância
Dependencia entre aplicações e dados	Independencia entre aplicações e dados	Eliminação de Redundância e facilidade de manutenção
Representação de dados em nível físico	Representação conceitual através de dados e programas	Facilidade de manutenção
Cada visão é implementada por módulos específicos	Permite múltiplas visões	Facilidade de consultas

Arquivos versus SGBD's

Quando usar SGBD	Quando não Usar SGBD
- Controle redundância	- Dados e aplicações simples e estáveis
- Controle consistência e integridade	- Requisitos de tempo-real não puderem ser atendidos
- Acesso multiusuário	
- Compartilhamento de dados	
- Controle acesso e segurança	
- Controle de recuperação e restauração	
- Consultas eficientes	

Principais Características dos SGBDs

Tem por objetivo separar as aplicações do usuário do banco de dados.

Arquitetura
"Three-schema"

- Nível interno: Descreve a estrutura do armazenamento físico do banco de dados.
- Nível conceitual: Descreve o nível de abstração de dados.
- Nível externo: Apoio a múltiplas visões de dados

Arquitetura "Three-schema"

Independência Lógica de Dados:

É a capacidade de alterar o esquema conceitual sem ter que mudar os esquemas externos ou programas de aplicação.

Independência Física de Dados:

É a capacidade de alterar o esquema interno sem ter que alterar o esquema conceitual e externo.

Modelo de Dados

- Existem modelos para diferentes níveis de abstração de representação de dados
 - modelos conceituais
 - modelos lógicos
 - modelos físicos
 - Referem-se:
 - organização dos arquivos de dados em disco
 - não são manipulados por usuários ou aplicações que acessam o BD
 - decisões de implementação são de cada SGBD

Projeto de Banco de Dados

Modelo de Dados Conceituais

- Representação com alto nível de abstração
 - modelam de forma mais natural os fatos do mundo real, suas propriedades e seus relacionamentos
 - são independentes de BD
 - preocupam-se apenas com a semântica da aplicação
 - exemplo:
 - modelo entidade-relacionamento

Modelo de Dados Lógicos

- Representa os dados em alguma estrutura (lógica) de armazenamento de dados
 - também chamados de modelos de BD
 - dependente de BD
 - exemplos
 - modelo relacional (tabelas)
 - modelos hierárquico

Professor

<u>IDENTIFICADOR</u>	NOME

Aluno

MATRICULA	NOME

Modelos de BD (Físico)

Apoiam:

- na especificação dos dados do modelo (DDL)
 - dados, seus domínios e restrições
- na especificação de como manipular os dados (DML)

Possuem foco na:

- Indexação e estrutura de arquivos
- Transações e controle de concorrência
- Otimização
- Recuperação em casos de falhas
- Mecanismos de proteção (segurança)
- Partição e agrupamento de dados

- Uma transação define uma unidade de execução que pode acessar e atualizar vários itens de dados.
- Uma transação executa vários comandos como se fossem apenas um comando indivisível (atômico).
- Os vários comandos são delimitados pelas declarações begin transaction e (commit ou rollback):
 - begin transaction(x)
 - Update(a)
 - Delete(b)
 - Insert(c)
 - commit(x)

- Exemplos:
 - Retirar dinheiro em um caixa eletrônico
 - Fazer uma reserva de passagem em uma companhia aérea
 - Matricular em um curso
 - Marcar uma consulta

- Um SGBD deve controlar a execução concorrente de transações para assegurar que o estado do banco de dados permaneça consistente.
- A seriação é uma propriedade que garante que independente da ordem dos acessos aos dados feitos pelas transações, o resultado final será o mesmo.

• Execução das transações T1 e T2 em seqüência:

	Α	В		Α	В
	150	150		0	300
	T1			T2	
1	Lê (A)	Lê (A);		Lê (A);	
2	A:=A-	A:=A-50;		A:=A-150;	
3	Escre	Escreve(A);		Escrev	e(A);
4	Lê(B)	Lê(B);		Lê(B);	
5	B:=B+	B:=B+50;		B:=B+150;	
6	Escre	Escreve(B);		Escreve (B);	

• Problema que ocorre sem a seriação no controle de transação:

	Α	В		Α	В
	150	150		50	300
	T1			T2	
1	Lê (A);	3	Lê (A);	
2	A:=A-	A:=A-50;		A:=A-150;	
6	Escre	Escreve(A);		Escrev	e(A);
7	Lê(B)	Lê(B);		Lê(B);	
8	B:=B+	B:=B+50;		B:=B+150;	
9	Escre	Escreve(B);		Escreve(B);	

	T1		T2
1	Lê (A);	7	Lê (A);
2	A:=A-50;	8	A:=A-150;
3	Escreve(A);	9	Escreve(A);
4	Lê(B);	10	Lê (B);
5	B:=B+50;	11	B:=B+150;
6	Escreve(B);	12	Escreve(B);

	T1		T2
1	Lê (A);	3	Lê (A);
2	A:=A-50;	4	A:=A-150;
6	Escreve(A);	5	Escreve(A);
7	Lê(B);	10	Lê(B);
8	B:=B+50;	11	B:=B+150;
9	Escreve(B);	12	Escreve(B);

- Transação devem possuir um conjunto de propriedades que é normalmente referido como propriedades ACID:
 - Atomicidade: uma transação não pode ser dividida e tratada em partes
 - Consistência: uma transação interrompida não deixa vestígios
 - Isolamento: uma transação nunca interage com outra até terminar
 - Durabilidade: se algo der errado, o banco saberá voltar as alterações

Atomicidade

- Garante que todas as operações na transação serão executadas ou nenhuma será.
- Isto evita que falha ocorridas, possam deixar o banco de dados inconsistentes.

Consistência

- Possui dois aspectos: A consistência do banco dados e a consistência da própria transação.
- Uma transação não deve violar as restrições de integridade definidas para o banco de dados.
- Por exemplo, se for feita uma tentativa de inserir um registro em uma tabela de vendas referente a venda de um produto que não esteja presente em uma tabela de produtos, a transação falhará.

Transações

Isolamento

- Significa que, mesmo no caso de transações executadas concorrentemente, o resultado final é igual ao obtido com a execução isolada de cada uma delas.
- A observância desta propriedade das transações pelos SGBDs impede a ocorrência dos problemas de acesso a dados.
- Por exemplo, imagine dois clientes tentando comprar o último exemplar de um produto em estoque, simultaneamente. O primeiro a finalizar a compra fará com que a transação do outro seja interrompida, sofrendo rollback.

Transações

Durabilidade

 Significa que os resultados de uma transação, caso ela seja concluída com sucesso, devem ser persistentes. Mesmo se depois houver falha no sistema.

Transações externas

Matriz de Classificação de SGBDs*

Complexas Sonsultas **OBJETO-**RELACIONAL RELACIONAL Consultas Simples SISTEMA DE LINGUAGEM DE **ARQUIVOS PERSISTÊNCIA**

Dados Simples Dados Complexos

^{*} Baseado no livro: Object Relational DBMS by Stonebraker and Moore, Morgan Kaufmann, 1996

- Banco de dados (BD):
 - conjunto de dados integrados que por objetivo atender a uma comunidade de usuários.
- Modelo de dados:
 - descrição formal das estruturas de dados para representação de um BD; com suas respectivas restrições e linguagem para criação e manipulação de dados.
- Sistema Gerenciador de banco de dados (SGBD):
 - software que incorpora as funções de definição, recuperação e alteração de dados em um BD.

- Modelagem de dados:
 - é a ação de representar/abstrair dados do minimundo com o objetivo de criar projetos conceituais e lógicos de um BD.
 - alguns autores incluem os projetos físicos como parte da modelagem de dados, pelo fato de que as otimizações são oriundas de análises do comportamento dinâmico do BD.

- Projeto conceitual BD:
 - ação que produz o esquema de dados abstratos que descreve a estrutura de um BD de forma independente de um SGBD (esquema conceitual).
- Projeto lógico BD:
 - ação que produz o esquema lógico de dados que representa a estrutura de dados de um BD em acordo com o modelo de dados subjacente a um SGBD.

- Projeto físico BD:
 - ação que produz o esquema físico de dados a partir do esquema de lógico de dados com a adição das estratégias de otimização para manipulação das estruturas de dados. As estratégias de otimização são dependentes dos fabricantes dos SGBDs e de suas versões.

- 1. Quando faz sentido utilizar um SGBD ao invés de simplesmente utilizar o sistema de arquivos? Quando não faz sentido utilizar um SGBD?
- 2. O que é independência lógica de dados e por que esse conceito é importante?
- 3. Explique as diferenças entre independência lógica de dados e independência física de dados.
- 4. Explique as diferenças entre esquemas externos, lógico e físico. Como esses conceitos se relacionam com os conceitos de independência de dados?
- 5. Quais são as responsabilidades de um Projetista de Banco de Dados e do DBA?

- 6. O Sr. Avarento quer guardar informações de seus funcionários (nome, endereço, momentos preocupantes). O volume de dados o forçou a decidir comprar um SGBD. Para economizar, ele quer comprar um que tenha apenas as características necessárias para executar uma aplicação *stand-alone* em seu PC. O Sr. Avarento não quer compartilhar essa lista com ninguém. Indique quais das seguintes características de SGBDs o Sr. Avarento necessita? Justifique.
 - Segurança.
 - Controle de concorrência.
 - Recuperação após falhas.
 - Mecanismos de visão.
 - Linguagem de consulta.

- 7. Descreva os passos de um projeto de BD.
- 9. O que é transação?
- 10. Por que o SGBD entrelaça as ações de diferentes transações, ao invés de executá-las sequencialmente?

Referências

- 1. Elmasri, R.; Navathe, S. B. [Trad.]. **Sistemas de bancos de dados**. Traduzido do original: FUNDAMENTALS OF DATABASE SYSTEMS. São Paulo: Pearson(Addison Wesley), 2005. 724 p. ISBN: 85-88639-17-3.
- Korth, H.; Silberschatz, A. Sistemas de Bancos de Dados. 3a. Edição, Makron Books, 1998.
- 3. Raghu Ramakrishnan e Johannes Gehrke, **Database Management Systems**, Second Edition, McGraw-Hill, 2000.
- 4. Teorey, T.; Lightstone, S.; Nadeau, T. **Projeto e modelagem de bancos de dados**. Editora Campus, 2007.

Obrigado

Fabiano Romeu Henry Passos fabiano.passos@faculdadeimpacta.com.br