



Klimaatconferentie Parijs 2015

Akkoord van Parijs:

→ Beperk opwarming tot 2°C



# **Planning**

- 1. Klimaatveranderingen gevolgen
- 2. Klimaatmodellen algemeen
- 3. Klimaatmodellen simpele voorbeelden
- 4. Waarom is voorspellen zo moeilijk?

#### Robbin Bastiaansen

tot 2019:

PhD @ Universiteit Leiden

→ verwoestijning

nu:

PostDoc @ Universiteit Utrecht

→ klimaatgevoeligheid





# Temperatuurmetingen - 2019

Temperature difference between Jan-Oct 2019 and 1981-2010



opernicus

#### Temperatuurmetingen – sinds 1850





#### Voorbeelden uit 2019

Noodtoestand in deel Australië wegens extreme hitte en talrijke



Regen, regen maar dat lost droogteprobleem (nog) niet

Zeespiegel stijgt steeds sneller

deVolkskrant

# Voorspellingen

- Meer zware neerslag
- Langere perioden van droogte
- Meer en intensere bosbranden
- Zeespiegelstijging
- Verzilting van water
- Meer stormen en orkanen
- Hogere landbouwopbrengsten

#### The Rodnen & Otamatea Times

WAITEMATA & KAIPARA GAZETTE.

PRICE—10s per annum in advance
WARKWORTH, WEDNESDAY, AUGUST 14, 1912.
3d per Copy.

#### Science Notes and News.

#### COAL CONSUMPTION AFFECT-ING CLIMATE.

The furnaces of the world are now burning about 2,000,000,000 tons of coal a year. When this is burned, uniting with oxygen, it adds about 7,000,000,000 tons of carbon dioxide to the atmosphere yearly. This tends to make the air a more effective blanket for the earth and to raise its temperature. The effect may be considerable in a few centuries.



# Wiskundige modellen

x: toestand van het systeem

**Dynamisch systeem:** 

$$\frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), t)$$

# Type modellen

(beoogd)
niveau
van
realisme

#### **GCMs** (Global Circulation Models)

- veel effecten
- kwantitatieve uitspraken
- moeilijk te doortasten

#### Conceptuele modellen

- alleen essentiële effecten
- kwalitatieve uitspraken
- (vaak) analytisch handelbaar
- geeft inzicht in essentie



# Niet-lineaire terugkoppeling



- veel ijs/sneeuw
- veel weerkaatsing zonlicht



- weinig ijs/sneeuw
- weinig weerkaatsing zonlicht

#### Andere voorbeelden

- Opname/afgifte CO<sub>2</sub> door oceanen
- Ontbossing
- Verwoestijning
- Wolken
- Blackbody radiation



#### Dynamische systemen – de basis

$$x \in \mathbb{R}$$

$$\frac{dx}{dt} = f(x, t)$$

# Dynamische systemen – de basis

$$x \in \mathbb{R}$$

$$\frac{dx}{dt} = f(x, t)$$

f alleen afhankelijk van t

$$\frac{dx}{dt} = f(t)$$

$$\int_{x(0)}^{x(t)} dx' = \int_{0}^{t} f(t') dt'$$

$$\Rightarrow x(t) = x(0) + \int_{0}^{t} f(t') dt'$$

# Dynamische systemen – de basis

$$x \in \mathbb{R}$$

$$\frac{dx}{dt} = f(x, t)$$

f alleen afhankelijk van t

f alleen afhankelijk van x

$$\frac{dx}{dt} = f(t)$$

$$\int_{x(0)}^{x(t)} dx' = \int_{0}^{t} f(t') dt'$$

$$\Rightarrow x(t) = x(0) + \int_{0}^{t} f(t') dt'$$

$$\frac{dx}{dt} = f(x)$$

$$\int_{x(0)}^{x(t)} \frac{dx'}{f(x')} = \int_{0}^{t} dt'$$

$$\Rightarrow x(t) = \dots$$
?

$$\frac{dx}{dt} = f(x) \coloneqq \mu - x^2$$

$$\frac{dx}{dt} = f(x) \coloneqq \mu - x^2$$

1. Vaste Punten

1. Vaste Punten
$$\frac{dx_*}{dt} = 0 = f(x_*) = \mu - x_*^2$$

$$\Rightarrow x_* = \pm \sqrt{\mu}$$

$$\frac{dx}{dt} = f(x) \coloneqq \mu - x^2$$

1. Vaste Punten

$$\frac{dx_*}{dt} = 0 = f(x_*) = \mu - x_*^2$$

$$\Rightarrow x_* = \pm \sqrt{\mu}$$
2. Stabiliteit

$$\frac{dt}{dt} = f(x) \coloneqq \mu - x^2$$
1. Vaste Punten

dx

$$\frac{dx_*}{dt} = 0 = f(x_*) = \mu - x_*^2$$

$$\Rightarrow x_* = \pm \sqrt{\mu}$$
2. Stabiliteit

Kleine verstoring  $x = x_* + y$ 

$$\Rightarrow \frac{d(x_* + y)}{dt} = f(x_* + y)$$

$$\Rightarrow \frac{dy}{dt} = f(x_*) + f'(x_*)y + \mathcal{O}(y^2)$$

$$\Rightarrow \frac{dy}{dt} = f'(x_*)y$$

$$-x^{2}$$

$$\frac{d}{dt} = 0 = f(x_*)$$

$$\Rightarrow x_* = \pm \sqrt{\mu}$$

Stabiel (aantrekkend)  $\Leftrightarrow \lambda \coloneqq f'(x_*) < 0$ 

Instable (afstotend)  $\Leftrightarrow \lambda \coloneqq f'(x_*) > 0$ 

 $f'(x_*) = -2 x_* = \mp 2\sqrt{\mu}$ 

$$\frac{dx_*}{dt} = 0 = f(x_*) = \mu - x_*^2$$

$$= f(x_*) = \mu - x_*^2$$
= +  $\sqrt{\mu}$ 

$$\frac{dx}{dt} = f(x) \coloneqq \mu - x^2$$

# VOORBEELD 1: ICE-ALBEDO FEEDBACK

# Global Energy Model

$$\frac{dT}{dt} = (1 - \alpha(T)) - \epsilon(T)T^4 + \mu$$

opwarming door zon

uitstraling warmte

Effect van CO<sub>2</sub>

 $\frac{1}{dt} = f(T) := 1 + T - T^5 + \mu$ 

$$f'(T_*) = 1 - 5 T_*^4$$
"snowball ear

1. vaste punten

2. stabiliteit

 $\mu = T_*^5 - T_* - 1$ 







weinig ijs

# VOORBEELD 2: VERWOESTIJNING

#### 'uniform Klausmeier' model

$$\begin{cases} \frac{dW}{dx} = A - W - WV^2 \\ \frac{dV}{dx} = -MV + WV^2 \end{cases}$$

#### 'uniform Klausmeier' model

$$\begin{cases} \frac{dW}{dx} = A - W - WV^2 \\ \frac{dV}{dx} = -MV + WV^2 \end{cases}$$

#### Vaste punten:

1. 
$$V_* = 0$$
,  $W_* = A$ 

2. 
$$V_* = \frac{1}{2M} (A + \sqrt{A^2 - 4M^2}), U_* = \frac{M}{V_*}$$

2. 
$$V_* = \frac{1}{2M} (A + \sqrt{A^2 - 4M^2}), U_* = \frac{M}{V_*}$$
  
3.  $V_* = \frac{1}{2M} (A - \sqrt{A^2 - 4M^2}), U_* = \frac{M}{V_*}$ 

#### Stabiliteit:

Via eigenwaardes van Jacobiaan  $Df(V_*, U_*)$ .

#### 'uniform Klausmeier' model

$$\begin{cases} \frac{dW}{dx} = A - W - WV^2 \\ \frac{dV}{dx} = -MV + WV^2 \end{cases}$$

#### Vaste punten:

1. 
$$V_* = 0$$
,  $W_* = A$ 

2. 
$$V_* = \frac{1}{2M} (A + \sqrt{A^2 - 4M^2}), U_* = \frac{M}{V_*}$$

2. 
$$V_* = \frac{1}{2M} (A + \sqrt{A^2 - 4M^2}), U_* = \frac{M}{V_*}$$
  
3.  $V_* = \frac{1}{2M} (A - \sqrt{A^2 - 4M^2}), U_* = \frac{M}{V_*}$ 

#### Stabiliteit:

Via eigenwaardes van Jacobiaan  $Df(V_*, U_*)$ .



lege grond













 $\mu$ 





#### Voorspellen van bifurcaties

Kleine verstoring  $x = x_* + y$  volgt

$$\frac{dy}{dt} = f'(x_*)y = \lambda y$$

$$\Rightarrow y(t) = y(0) e^{\lambda t}$$

#### Dus:

Dicht bij een bifurcatie doven verstoringen langzamer uit! (jargon: 'Critical slowing down')

# Voorbeeld critical slowing down



# Voorbeeld critical slowing down

Critical slowing down



## Voorspelstrategieën

- Data
  - van geavanceerde modellen
  - uit historische metingen
- Ontwikkeling nieuwe 'early warning signals'
- Procesbegrip door conceptuele modellen



## Complicerende factoren

- Ruis
- Heel snelle veranderingen



# Complicerende factoren

- Ruis
- Heel snelle veranderingen
- Aanwezigheid andere alternatieve toestanden

#### Complicerende factoren

- Ruis
- Heel snelle veranderingen
- Aanwezigheid andere alternatieve toestanden
- Ruimtelijke effecten





# IS TWEE GRADEN TE VEEL?

#### Twee graden Celsius



Klimaatconferentie Parijs 2015:

stijging 2°C: beperkte gevolgen



#### Gevonden kantelpunten

- koraalriffen
- tropische regenwouden
- infectieziekten
- smeltend landijs
- verwoestijning
- mariene ecosystemen

locatie kantelpunten onduidelijk

# Waarom zo moeilijke vraag?

- kantelpunten vaak pas achteraf duidelijk
- aarde is erg complex
  - veel processen
  - alle schalen van belang
- huidige situatie is uniek
  - snelle verandering



