Data Science - Homework 2

Raymond Ogunjimi

1 February 2022

library(tidyverse)

Task 1) Add your name and the appropriate date in the header above.

Task 2) Enter the PollingReport.com data

PollingReport.com conducted a poll in 1999 in which they asked both men and women the following question: "All things considered, in our society today, do you think there are more advantages in being a man, more advantages, in being a woman, or are there no more advantages in being one than the other?" These results are labeled as man, woman, or none, respectively, in the data below. Those who did not know the answer to the question were labeled as "notknow".

Of women, 57% said man, 6% said woman, 33% said none, and 4% said notknow. Of men, 41% said man, 14% said woman, 40% said none, and 5% said notknow.

Create three variables, men which contains the four percentages listed above for men, women containing the percentages for women, and response which is a vector of character strings that state what response was given ("man", "woman", "none", and "notknow"). For the percentages, you are welcome to use either proportions or percentages, but do not include the "%" sign if you do the latter.

For this task and all others, make sure to verify that data are read in properly before moving forward

```
men = c(41, 14, 40, 5)/100
men

## [1] 0.41 0.14 0.40 0.05

women = c(57, 6, 33, 4)/100
women

## [1] 0.57 0.06 0.33 0.04

response = c("man", "woman", "none", "notknow")
response
```

"notknow"

"none"

"woman"

[1] "man"

Task 3) Explore the data and create new variables

a. Verify that the percentages in both men and women sum to 1

```
sum(men)

## [1] 1

sum(women)

## [1] 1
```

Does each one Sum to 1? Yes, they both sum to 1.

b. Create a logical vector called men_more of length 4, which is a function of both men and women, which equals TRUE if percentage of men is higher than the percentage of women and FALSE otherwise.

```
men_more = men > women
men_more

## [1] FALSE TRUE TRUE TRUE
```

c. Combine all four of the variables you created into a data frame called advantage. (Hint: You could use either cbind() or data.frame())

```
advantage = cbind(men, women, response, men_more)
advantage
```

```
## men women response men_more

## [1,] "0.41" "0.57" "man" "FALSE"

## [2,] "0.14" "0.06" "woman" "TRUE"

## [3,] "0.4" "0.33" "none" "TRUE"

## [4,] "0.05" "0.04" "notknow" "TRUE"
```

d. Use ifelse (or if_else) to create a new variable called who_more that equals "men" if men_more is TRUE and "women" if men_more if FALSE. This variable should be created directly within the advantage data frame.

```
library(tidyverse)
who_more = if_else(men_more == TRUE, "men", "women")
who_more
```

```
## [1] "women" "men" "men"
```

Task 4) Add a new chunk below this question

Explore the gapminder data to discover...

Reminder, to reference a variable within the gapminder dataset, use gapminder\$varname where varname is the name of the variable you want to explore.

- a. the earliest year (the variable is called year) in the dataset
- b. the latest year in the dataset
- c. the number of years between the latest and earliest (it's better to use the functions here rather than just subtract the previous values)
- d. the average population size (pop)
- e. the average population size (pop) in 1000s (divide by 1000)
- f. the median GDP per capita (gdpPercap)
- g. whether there are any missing values in the dataset (any variable) [hint: use the any() command]
- h. the midhinge [the average of the first and third quartile] of GDP per capita [hint: use the quantile() command]

```
library(gapminder)
min(gapminder$year)
## [1] 1952
max(gapminder$year)
## [1] 2007
diff(range(gapminder$year))
## [1] 55
mean(gapminder$pop)
## [1] 29601212
mean(gapminder$pop)/1000
## [1] 29601.21
median(gapminder$gdpPercap)
## [1] 3531.847
```

```
any(is.na(gapminder))
```

```
## [1] FALSE
```

mean(quantile(gapminder\$gdpPercap, c(0.25,0.75)))

[1] 5263.761

Task 5) Read data from external file

Many cities are publicizing their data as part of an "Open Data" initiative. Philadelphia's is located at Open Data Philly (https://www.opendataphilly.org/). Let's take a look at the cleanliness of neighborhoods around Philadelphia. I downloaded a csv file on Child Blood Lead Levels in Philadelphia from here (https://www.opendataphilly.org/dataset/philadelphia-child-blood-lead-levels). It can be found in the data section of the website. The "metadata" (information about the variables) can be found here (http://metadata.phila.gov/#home/datasetdetails/594d26988d68a4593a61bcf0/).

Read the data file into R. Run a str() command to make sure it was read in properly. Verify that there are 46 observations and 5 variables.

```
phl_chld_bld_lvls = read.csv(url("https://phl.carto.com/api/v2/sql?q=SELECT+*+FROM+child
_blood_lead_levels_by_zip&filename=child_blood_lead_levels_by_zip&format=csv&skipfields=
cartodb_id,the_geom,the_geom_webmercator"))
phl_chld_bld_lvls
```

)1/22, 11. 4 0 F	111			Data Science - H	onie work 2
##	zip_code	data_redacted	num_bll_5plus	num_screen	perc_5plus
## 1	19102	true	NA	51	_ NA
## 2	19103	true	NA	224	NA
## 3	19107	true	NA	139	NA
## 4	19104	false	28	805	3.5
## 5	19106	true	NA	118	NA
## 6	19111	false	33	1071	3.1
## 7	19114	true	NA	294	NA
## 8	19123	false	8	374	2.1
## 9	19115	true	NA	397	NA
## 10	19125	false	20	577	3.5
## 11	19116	true	NA	330	NA
## 12	19126	false	21	302	7.0
## 13	19118	true	NA	121	NA
## 14	19134	false	131	2235	5.9
## 15	19119	false	27	534	5.1
## 16	19135	false	14	698	2.0
## 17	19120	false	95	1940	4.9
## 18	19121	false	68	1181	5.8
## 19	19122	false	11	475	2.3
## 20	19124	false	104	2124	4.9
## 21	19127	false	0	54	0.0
## 22	19128	false	18	631	2.9
## 23	19136	false	6	575	1.0
## 24	19129	false	8	226	
## 25	19130	false	14	503	
## 26	19131	false	36	886	4.1
## 27	19132	false	104		
## 28	19133	false	54		
## 29	19137	true	NA		NA
## 30	19138	false	34	739	4.6
## 31	19139	false	43	1272	3.4
## 32	19140	false	173	2026	8.5
## 33	19141	false	62	770	8.1
## 34	19146	false	24	1094	2.2
## 35	19142	false	35	1054	3.3
## 36	19143	false	109	1884	5.8
## 37	19147	false	7	897	0.8
## 38	19144	false	100	1088	9.2
## 39	19145	false	23	1045	2.2
## 40	19150	false	6	308	1.9
## 41	19151	false	27	651	4.1
## 42	19148	false	34	1349	2.5
## 43	19149	false	37	1348	2.7
## 44	19152	false	7	468	1.5
## 45	19153	true	NA	276	NA
## 46	19154	false	0	298	0.0

str(phl_chld_bld_lvls)

```
## 'data.frame': 46 obs. of 5 variables:
## $ zip_code : int 19102 19103 19107 19104 19106 19111 19114 19123 19115 19125
...
## $ data_redacted: chr "true" "true" "false" ...
## $ num_bll_5plus: int NA NA NA 28 NA 33 NA 8 NA 20 ...
## $ num_screen : int 51 224 139 805 118 1071 294 374 397 577 ...
## $ perc_5plus : num NA NA NA 3.5 NA 3.1 NA 2.1 NA 3.5 ...
```

Task 6) Explore the Lead Level data

- a. Verify the following. Unless otherwise stated, feel free to use whatever functions you wish.
 - i. There are 10 values missing for num bll 5plus and for perc 5plus.
 - ii. These 10 missing values (see above) are the ones that have data_redacted equal to TRUE.

```
sum(is.na(phl_chld_bld_lvls$num_bl1_5plus))

## [1] 10

sum(is.na(phl_chld_bld_lvls$perc_5plus))

## [1] 10

all(is.na(phl_chld_bld_lvls$num_bl1_5plus) == if_else(phl_chld_bld_lvls$data_redacted == "true", TRUE, FALSE))

## [1] TRUE

all(is.na(phl_chld_bld_lvls$perc_5plus) == if_else(phl_chld_bld_lvls$data_redacted == "true", TRUE, FALSE))

## [1] TRUE
```

b. Which zip code has the highest percent of kids with a high lead level? Which zip code has the lowest? Use the perc 5plus variable to determine these.

```
phl_chld_bld_lvls$zip_code[which.max(phl_chld_bld_lvls$perc_5plus)]

## [1] 19144
```

```
phl_chld_bld_lvls$zip_code[which.min(phl_chld_bld_lvls$perc_5plus)]
```

```
## [1] 19127
```

c. Use the hist() function to show the distribution of perc_5plus. Comment on what you see.

hist(phl_chld_bld_lvls\$perc_5plus)

Histogram of phl_chld_bld_lvls\$perc_5plus

Based on the metadata and the histogram above it seems that most of the children have a blood lead level between 2 and 5 $\mu g/dL$.