Homework No.2 for Math 3121

Deadline: Oct 9, 11pm. Late submissions will **not** be accepted.

Problem 1. Determine whether the given subset of \mathbb{C}^* is a subgroup of (\mathbb{C}^*,\cdot) (just answer "yes" or "no", no reasons needed.)

- (1) The set of positive real numbers (2). The set of positive integers
- (3) The set $\{z \in \mathbb{C}^* \mid z^{2020} = 1\}.$
- (4) The set $\{1, -1, 2, \frac{1}{2}\}$.
- (5) The set $\{3^n \mid n \in \mathbb{Z}\}.$

Problem 2. Determine whether the given subset of $GL(3,\mathbb{R})$ is a subgroup of $GL(3,\mathbb{R})$ (just answer "yes" or "no", no reasons needed.)

- (1) The set of 3×3 upper triangular matrices with all diagonal entries 1.
- (2) The set of invertible 3×3 matrices with all entries non-negative.

Problem 3. Compute the order of elements (just give the answers, no details

- (1). $-1, -i, \frac{1}{2} + \frac{\sqrt{3}}{2}i, 3$ in $G = \mathbb{C}^*$,

(2). 5, 14, 8 in
$$\mathbb{Z}_{12}$$
.
(3). $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, where $\theta = \frac{\pi}{1010}$.

Problem 4. (just give the answers, no details needed). (1) Give an example of a cyclic group with 101 elements. (2) Give an example of an infinite cyclic group. (3) Give an example of a finite group that is NOT cyclic.

Problem 5. Let $\sigma, \tau \in S_8$ be the elements

(1) Compute $\sigma \tau$ and $\tau \sigma$. (2). Compute σ^{-1} .

Problem 6. Let G be a finite group. Suppose H is a non-empty subset of G that is closed under the binary operation of G, prove that H is a subgroup.