Additional Problems to L^p Spaces*

Yung-Hsiang Huang[†]

Abstract

As an appendix to Folland [5, Chapter 6], those exercises are related to the L^p Spaces, collected from Jones [6, Chapter 10], Rudin [11, Chapter 3], Stein-Shakarchi [12, Chapter 1], Wheeden-Zygumnd [14, Chapter 8-10]. The order of sections follows from Folland's book.

6.1 Basic Theory of L^p Spaces

1. (Separability of L^p Spaces, Wheeden-Zygumnd [14, Exercise 10.9])

Let $1 \leq p < \infty$, and (X, \mathcal{M}, μ) be a positive measure space. Define a function $\rho(A, B) = \mu(A\Delta B)$ on $\mathcal{M} \times \mathcal{M}$. Show that (i) (\mathcal{M}, ρ) is a metric space; (ii) $L^p(X, \mu)$ is separable if (\mathcal{M}, ρ) is; (iii) if μ is finite, then (\mathcal{M}, ρ) is separable provided $L^p(X, \mu)$ is.

Proof. (i) We only check the triangle inequality: Given $E_1, E_2, E_3 \in \mathcal{M}$. Since

$$E_1 \setminus E_2 = [(E_1 \setminus E_2) \cap E_3] \cup [(E_1 \setminus E_2) \setminus E_3] = [(E_1 \cap E_3) \setminus E_2] \cup [E_1 \setminus (E_2 \cup E_3)]$$
$$\subseteq (E_3 \setminus E_2) \cup (E_1 \setminus E_3)$$

$$E_2 \setminus E_1 = [(E_2 \setminus E_1) \cap E_3] \cup [(E_2 \setminus E_1) \setminus E_3] = [(E_2 \cap E_3) \setminus E_1] \cup [E_2 \setminus (E_1 \cup E_3)]$$
$$\subseteq (E_3 \setminus E_1) \cup (E_2 \setminus E_3),$$

we see

$$E_1 \Delta E_2 \subseteq (E_1 \Delta E_3) \cup (E_3 \Delta E_2)$$

which implies the desired triangle inequality.

(ii)Let $\mathscr{A} := \{A_n\}$ be a countable dense subset of \mathscr{M} . Since the algebra generated by \mathscr{A} is also countable, we may assume \mathscr{A} is an algebra. Let S be the family of simple function whose

^{*}Last Modified: 2016/08/16.

 $^{^\}dagger \mbox{Department}$ of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

coefficients are rational and sets are in \mathscr{A} , then S is countably many. Since the family of all simple functions with rational coefficients is dense in L^p , we will show S is dense in this set.

Let $g = \sum_k c_k \chi_{E_k}$ for some $c_k \in \mathbb{Q}$ and $E_k \in \mathscr{M}$ with $\bigcup E_k = X$. Let $c = \max_k |c_k|$, we may assume c > 0. Given $\epsilon > 0$, there exist $A_1, \dots A_n \in \mathscr{A}$ such that $\mu(E_k \Delta A_k) < \frac{1}{2n} \frac{\epsilon^p}{(2c)^p}$ for all k. Since \mathscr{A} is an algebra, $A_k \supset B_k := A_k \setminus \bigcup_{j=1}^{k-1} A_j \in \mathscr{A}$ for each $k, \bigcup_j B_j = \bigcup_j A_j$, and those B_j are mutually disjoint.

Let
$$f(x) = \sum_{k} c_k \chi_{B_k} \in S$$
, then

$$\mu(\{x: f \neq g\}) = \mu(\cup_k \{x \in B_k \subset A_k: f \neq g\} \cup \{x \not\in \cup_k B_k = \cup_k A_k: f \neq g\}) \le n \frac{1}{2n} \frac{\epsilon^p}{(2c)^p} 2.$$

So, $\int_X |f-g|^p d\mu \leq (2c)^p \frac{\epsilon^p}{(2c)^p} = \epsilon^p$. Therefore S is dense in L^p , and hence L^p is separable.

(iii)Since μ is finite, the family C of all characteristic functions of measurable sets is a subset of $L^p(X, \mathcal{M}, \mu)$. Let d be the metric induced by L^p norm on L^p , since (L^p, d) is separable, (S, d) is separable. (You need some trick to prove this, and realize it's not true in general topological spaces.)

Since the map $T: (\mathcal{M}, \rho) \to (S, d)$ defined by $A \mapsto \chi_A$ is an isometry, (\mathcal{M}, ρ) is separable. \square

2. In [10] L.A.Rubel gives a complex-variable proof for Hölder's inequality, which is very similar to the proof of Riesz-Thorin theorem. We present his proof here.

3. Related to Exercise 6.3 and 6.4, we are going to prove a set equality due to Alvarez [1]:

Theorem 1. Let $L_q^p := L^p + L^q$. Then (a) $L_q^p + L_s^r = L_{\max(q,s)}^{\min(p,r)}$ (b) $L_q^p \cdot L_s^r = L_v^u$, where $u^{-1} = p^{-1} + r^{-1}$; $v^{-1} = q^{-1} + s^{-1}$ (c) $L_q^p(L_{q_0}^{p_0} + L_{q_1}^{p_1}) = L_q^p \cdot L_{q_0}^{p_0} + L_q^p \cdot L_{q_1}^{p_1}$.

Remark 2. L_q^p is a special case of Orlicz spaces. Their duality results are given in Stein-Shakarchi [12, Exercise 1.24, 1.26 and Problem 1.5].

4. Related to Exercise 6.5, A. Villani [13] simplified Romero's previous work [9] and show that,

Theorem 3. Let (Ω, Σ, μ) be the measure space and $0 . The followings are equivalent: (i) <math>L^p(\mu) \subseteq L^q(\mu)$ for some p < q; (ii) $L^p(\mu) \subseteq L^q(\mu)$ for all p < q; (iii) $\inf\{\mu(E) : \mu(E) > 0\} > 0$.

In the case q < p, condition (iii) is replaced by (iii) $\sup\{\mu(E) : \mu(E) < \infty\} < \infty$.

This is then generalized by Miamee [7] to the more geneal relation $L^p(\mu) \subseteq L^q(\nu)$.

Theorem 4. Let μ and ν be positive measures defined on a measurable space (Ω, Σ) and $0 . The inclusion <math>L^p(\mu) \subseteq L^q(\nu)$ holds iff ν is absolutely continuous with respect to μ and there exists a constant C(p,q) such that $||f||_{L^q(\nu)} \le C(p,q)||f||_{L^p(\mu)}$ for all $f \in L^p(\mu)$.

proof of Theorem 3.
$$\Box$$

proof of Theorem 4.
$$\Box$$

5. This result is related to Exercise 6.10 and 6.20.

Theorem 5. (Brezis-Lieb lemma[4])

Suppose $f_n \to f$ a.e. and $||f_n||_p \le C < \infty$ for all n and for some 0 . Then

$$\lim_{n \to \infty} ||f_n||_p^p - ||f_n - f||_p^p = ||f||_p^p.$$

Proof.

Remark 6.

6. This is another related result to Exercise 6.10. Note that it's weaker than the Schur's property in additional exercise 6.2.2.

Theorem 7. (Radon-Riesz Property)

Let
$$p \in (1, \infty)$$
. Suppose $f_k \rightharpoonup f$ in $L^p(X, \mu)$ and $||f_n||_p \rightarrow ||f||_p$, then $||f_n - f||_p \rightarrow 0$.

Although there is Schur's property for l^1 , this theorem is not true, for example $L^1(\mathbb{R}, m)$. This can be seen by considering $f_n(x) = 1 + \sin(nx)$.

Another classical example to Radon-Riesz property is Hilbert space, whose proof is relatively easy! Actually we have:

Theorem 8. (Uniform Convexity \Rightarrow Radon-Riesz Property, Brezis [3, Theorem 3.32])

Let X be a uniformly convex Banach space, Suppose $f_k \rightharpoonup f$ in X and $||f_n||_X \rightarrow ||f||_X$, then $||f_n - f||_X \rightarrow 0$.

proof of Theorem 8. If $f \equiv 0$, then it's done. So assume $f \not\equiv 0$, we may assume $f_n \not\equiv 0$ for all n by deleting the first N terms. Set $g_n = \frac{f_n}{\|f_n\|}$ and $g = \frac{f}{\|f\|}$, then $g_n \rightharpoonup g$.

By the Hahn-Banach Theorem, there exists a functional $x^* \in X^*$ with $||x^*|| = 1$ and such that $x^*(g) = ||g|| = 1$. Then as $n \to \infty$,

$$1 \ge \|\frac{g_n + g}{2}\| \ge |x^*(\frac{g_n + g}{2})| \to 1.$$

If $||g_n - g|| \neq 0$ as $n \to \infty$, then there exists $\epsilon > 0$ and sequences $n_K \in \mathbb{N}$ such that for each $K \in \mathbb{N}$, $n_K > K$ and $||g_{n_K} - g|| > \epsilon$. By uniform convexity, there exists $\delta = \delta(\epsilon) > 0$ such that $||\frac{g_{n_K} + g}{2}|| \leq 1 - \delta$, which contradicts to $||\frac{g_{n+g}}{2}|| \to 1$ as $n \to \infty$.

Therefore $\|\frac{f_n}{\|f_n\|} - \frac{f}{\|f\|}\| = \|g_n - g\| \to 0$ which implies $\|f_n - f\| \to 0$ by triangle inequality and the fact $\|f_n\| \to \|f\|$.

Due to the above proof uses the Hahn-Banach Theorem and Uniform Convexity, which seems unnecessary in the case of L^p spaces $(1 , we prove the <math>L^p$ case without using them.

proof of Theorem 7. (Taken from Riesz-Nagy [8, p.78-80])

7. Exercise 6.11 on essential range is extended in Rudin [11, Exercise 3.19].

Let R_f be the essential range of $f \in L^{\infty}(X, \Sigma, \mu)$. Let A_f be the set of all averages

$$\frac{1}{\mu(E)} \int_{E} f \, d\mu$$

where $E \in \Sigma$ and $\mu(E) > 0$. What relations exist between A_f and R_f ? Is A_f always closed?? Are there measures μ such that A_f is convex for every $f \in L^{\infty}(\mu)$? Are there measures μ such that A_f fails to be convex for some $f \in L^{\infty}$?

How about these results affected if $L^{\infty}(\mu)$ is replaced by $L^{1}(\mu)$, for instance?

- 8. (Exercise 6.15, Vitali Convergence Theorem) These remarks come from Rudin [11, Ex 6.10-11].
 - (a) Show that we can not omit the tightness condition (iii): for every $\epsilon > 0$ there exists $E \subset X$ such that $\mu(E) < \infty$ and $\int_{E^c} |f_n|^p < \epsilon$ for all n, even if $\{||f_n||_1\}$ is bounded.

Proof. Consider the Lebesgue measure on $(-\infty, \infty)$ with $f_n = \chi_{(n,n+1)}$.

(b) To apply Vitali's theorem in finite measure space, sometimes we see $|f(x)| < \infty$ a.e. is automatically true, but sometimes it's not. Give examples.

Proof. (i) Consider the Lebesgue measure on [0,1], by the uniform integrability we know there exist nonoverlapping closed intervals $I_1, \dots I_k$ whose union is [0,1], and for all $j=1,\dots k$ and $n \in \mathbb{N}$, $\int_{I_j} |f_n| < 1$. (It's easy to show it's equivalent to use $|\int f|$ and $\int |f|$ in the definition of uniform integrability.) By Fatou's Lemma,

$$\int_{[0,1]} |f| \le \liminf_n \int_{[0,1]} |f_n| < k.$$

(ii) We need to find out a finite measure space (X, \mathcal{M}, μ) and an uniformly integrable sequence of L^1 functions f_n with $f_n \to f$ a.e., f(x) is not finite a.e. and $f_n \nrightarrow f$ in L^1 .

On \mathbb{R} , let \mathscr{M} is the σ -algebra of countable or co-countable sets. $\mu(E) := 0$ if E is countable, $\mu(E) := 1$ if E is co-countable, which is easy to check μ is a measure on \mathscr{M} . Consider $f_n \equiv n$, which is the desired example.

- (c) It's easy to see Vitali's Theorem implies Lebesgue Dominated Convergence Theorem in finite measure space. The sequence $f_n(x) = \frac{1}{x}\chi_{(\frac{1}{n+1},\frac{1}{n})}(x)$ is an example in which Vitali's theorem applies although the hypothesis of Lebesgue's theorem do not hold.
- (d) The sequence $f_n = n\chi_{(0,1/n)} n\chi_{(1-\frac{1}{n},1)}$ on [0,1] shows the assumption that $f_n \geq 0$ is sometimes important in some applications. Note that $f_n(x) \to 0$ for every $x \in [0,1]$, $\int f_n(x) dx = 0$, but f_n is not uniformly integrable.
- (e) However, the following converse of Vitali's theorem is true:

Theorem 9. If $\mu(X) < \infty$, $f_n \in L^1(\mu)$, and $\lim_{n\to\infty} \int_E f_n d\mu$ exists for every $E \in \mathcal{M}$, then $\{f_n\}$ is uniformly integrable.

Proof. As hint by Rudin, we define $\rho(A,B) = \int |\chi_A - \chi_B d\mu$. Then (\mathcal{M}, ρ) is a complete metric space (modulo sets of measure zero), and $E \mapsto \int_E f_n d\mu$ is continuous for each n, (denote this map by F_n .) If $\epsilon > 0$, consider $A_N = \{E : |F_n(E) - F_m(E)| < \epsilon$, if $n, m \ge N\}$. Since $X = \cup A_N$ by hypothesis, Baire Category theorem implies that some A_N has nonempty interior, that is, there exist $E_0 \in \mathcal{M}, \delta > 0, N \in \mathbb{N}$ so that

$$\left| \int_{E} (f_n - f_N) \, d\mu \right| < \epsilon \text{ if } \rho(E, E_0) < \delta, \ n > N.$$
 (1)

If $\mu(A) < \delta$, (1) holds with $B = E_0 \setminus A$ and $C = E_0 \cup A$ in place of E. Thus,

$$\left| \int_{A} (f_n - f_N) d\mu \right| = \left| \int_{C} - \int_{B} (f_n - f_N) d\mu \right| < 2\epsilon.$$

By considering $\{f_1, \dots f_N\}$, there exists $\delta' > 0$, such that

$$\left| \int_{A} f_{n} d\mu \right| < 3\epsilon \text{ if } \mu(A) < \delta', \ n = 1, 2, 3, \cdots$$

	(f) The Dunford-Pettis theorem: [3, p.467-472]	
9.	Proof.	
6	.2 The Dual of L^p	
1.	Proof. Rudin Ex6.4?	
2.	In the content of Proposition 6.13, show that for every measure space (X, Σ, μ) which is resemifinite, there is a $g \in L^{\infty}$ such that $\ \phi_g\ < \ g\ _{\infty}$.	10t
	Proof. Let (X, Σ, μ) be our nonsemifinite measure space. Then there is a measurable substance A of X with $\mu(A) = \infty$ that does not have a measurable subset with nonzero finite measure. Consider the function $g = \chi_A \in L^{\infty}$, given $f \in L^1$, then on A , there is a sequence of simple functions $f_n = \sum_i c_{n,i} \chi_{E_{n,i}}$ such that $c_{n,i} \in \mathbb{R}$, $E_{n,i} \subseteq A$ and $0 \le f_n \nearrow f $ a.e	re.
	By MCT, $0 \le \int fg \le \int_A f = \lim_n \int_A f_n = \lim_n \sum_i c_{n,i} \mu(E_{n,i})$. Since $ f \in L^1$, $\mu(E_{n,i}) <$ for each n, i and therefore $\mu(E_{n,i}) = 0$. So $ \int fg = 0$.	∞
	In particular, $\phi_g = \sup\{ \int fg : f _1 = 1\} = 0 < 1 = g _{\infty}.$	
3.	Schur's property	
	Proof.	
4.	Uniform convexity and Reflexivity (Brezis [3, Theorem 3.31] Milman-Pettis)	
	Proof.	
5.	Eberlein- \check{S} mulian theorem, Brezis [3, Theorem 3.19]	
	Proof.	
6.	Almost decomposable \Leftarrow semifinite.	
	Proof.	

7. From Bogachev [2, 1.12.134], we know μ is semifinite $\Rightarrow \mu$ is decomposable.

	Proof.	
8.	Stein [12, Exercise 1.18]. Mixed norm and its dual space.	
	Proof.	
9.	Proof.	
10.	Proof.	
6	.3 Some Useful Inequalities	
1.	Hanner's inequality uniform convexity	
	Proof.	
2.	Proof.	
3.	Proof.	
4.	Proof.	
5.	Proof.	
6.	Proof.	
7.	Proof.	
8.	Proof.	
9.	Proof.	
10.	Proof.	
11.	Proof.	
12.	Proof.	

6.4 Distribution Functions and Weak L^p

1. Normability of weak L^p spaces	
Proof.	
2. Proof.	
3. Proof.	
4. Proof.	
5. Proof.	
6. Proof.	
7. Proof.	
8. Proof.	
9. Proof.	
10. Proof.	
6.5 Interpolation of L^p Spa	aces
1. The $L^p(\mathbb{R}^d;\mathbb{R})$ case in Riesz-Thorin's the	eorem.
Proof.	
2. Proof.	
3. Proof.	
4. Proof.	
5. Proof.	

References

- [1] Sergio A Alvarez. L^p arithmetic. The American mathematical monthly, 99(7):656–662, 1992.
- [2] Vladimir I Bogachev. Measure theory, volume 1. Springer Science & Business Media, 2007.
- [3] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.
- [4] Haïm Brézis and Elliott Lieb. A relation between pointwise convergence of functions and convergence of functionals. Proceedings of the American Mathematical Society, 88(3):486– 490, 1983.
- [5] Gerald B Folland. Real analysis: Modern Techniques and Their Applications. John Wiley & Sons, 2nd edition, 1999.
- [6] Frank Jones. Lebesgue Integration on Euclidean Space. Jones & Bartlett Learning, revised edition, 2001.
- [7] AG Miamee. The inclusion $L^p(\mu) \subset L^q(\nu)$. The American Mathematical Monthly, 98(4):342–345, 1991.
- [8] Frigyes Riesz and Béla Sz Nagy. Functional Analysis. Dover Publications, 1990.
- [9] Juan L. Romero. When is $L^p(\mu)$ contained in $L^q(\mu)$? 90(3):203–206, 1983.
- [10] LA Rubel. A complex-variables proof of hölders inequality. *Proceedings of the American Mathematical Society*, 15(6):999, 1964.
- [11] Walter Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, 3rd edition, 1987.
- [12] Elias M Stein and Rami Shakarchi. Functional analysis: Introduction to Further Topics in Analysis, volume 4. Princeton University Press, 2011.
- [13] Alfonso Villani. Another note on the inclusion $L^p(\mu) \subset L^q(\mu)$. The American Mathematical Monthly, 92(7):485–487, 1985.
- [14] Richard L Wheeden. *Measure and Integral: An Introduction to Real Analysis*, volume 308. CRC Press, 2nd edition, 2015.