Petriho sítě

PES 2007/2008

Prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

Doc. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

Sazba: Ing. Petr Novosad, Doc. Ing. Tomáš Vojnar, Ph.D.

(verze 27.2.2008)

FIT, VUT v Brně, Božetěchova 2, CZ-612 66 Brno

Procesy C/E systémů

Problém reprezentace procesů:

- 1. Prostřednictvím případového grafu jako cesta v grafu (není zcela adekvátní)
- 2. Výskytová síť (Occurrence net) jednoznačný, explicitní záznam výskytů událostí a změn podmínek systému

Příklad 1: Výskytová síť

Reprezentace procesu při provádění sítě z příkladu 3 (kapitola C/E Systémy) odpovídající posloupnosti:

$$\{b_1\}[e_1\rangle\{b_2,b_3\}[e_4\rangle\{b_2,b_5\}[e_3\rangle\{b_4,b_5\}[e_5\rangle\{b_1\}[e_1\rangle\{b_2,b_3\}[e_2\rangle\{b_1\}[e_1\rangle\{b_2,b_3\}[e_3\rangle\{b_4,b_3\}]e_2\rangle\{b_1\}[e_1\rangle\{b_2,b_3\}[e_3\rangle\{b_4,b_3\}]e_2\}$$
 Atributy této reprezentace:

- ohodnocená síť
- částečně uspořádaná síť

1. Částečně uspořádané množiny

Definice 1.1: Nechť M je množina. Relace $\rho\subseteq M\times M$ se nazývá *částečné uspořádání* , jestliže $\forall a,b,c\in M$

Částečné uspořádání ρ budeme zapisovat symbolem < (bez ohledu na nosič). Dále $a \leq b \iff a < b \lor a = b$

Ukážeme nyní některé vlastnosti relace, která popisuje vztah "kauzální závislosti a nezávislosti".

Definice 1.2: Nechť A je množina. Relace $\rho \subseteq A \times A$ se nazývá *relací podobnosti* (similarity relation), jestliže

Podmnožina $B\subseteq A$ se nazývá *oblastí relace podobnosti* ρ , jestliže

- **Tvrzení 1.1**: Nechť ρ je relace podobnosti na A.
 - 1. Každý prvek $a \in A$ patří alespoň do jedné oblasti relace ρ
 - 2. Žádná oblast není vlastní podmnožinou jiné oblasti
 - 3. Je-li ρ zároveň ekvivalence, pak její oblasti jsou shodné s třídami rozkladu generovaného touto ekvivalencí

- **Grafická reprezentace relace podobnosti**: Neorientovaným grafem, kde A je množina vrcholů a $K = \{(a,b)|\ a \neq b \ \land \ a\rho b\}$ je množina hran.
- Příklad 2: Relace podobnosti a její oblasti

- ❖ Definice 1.3: Nechť A je částečně uspořádaná množina.
 - 1. Nechť $\underline{II} \subseteq A \times A$ je binární relace

$$a \underline{li} b \Leftrightarrow a < b \lor b < a \lor a = b$$

2. Nechť $\underline{co} \subseteq A \times A$ je binární relace

$$tzn. \ a \ \underline{co} \ b \Leftrightarrow \neg (a < b) \land \neg (b < a) \lor a = b$$

- **Tvrzení 1.2**: Nechť A je částečně uspořádaná množina a nechť $a,b\in A$.
 - 1. $a \underline{li} b \lor a \underline{co} b$
 - **2.** $a \underline{li} b \wedge a \underline{co} b \Leftrightarrow a = b$
- ❖ Theorem 1.1: Pro každou částečně uspořádanou množinu jsou binární relace <u>li</u> a <u>co</u> relacemi podobnosti.

Důkaz.

❖ Příklad 3:

Uvažujme poset:

Odpovídající grafická reprezentace relací \underline{li} a \underline{co} :

 \underline{li}

- **Definice 1.4**: Necht' A je poset a $B \subseteq A$.
 - 1. B se nazývá řetězcem (line), je-li oblastí <u>li</u>
 - 2. B se nazývá řezem (cut), je-li oblastí <u>co</u>
- **Příklad 4**: Částečné uspořádání z příkladu 3 má 3 řetězce: $\{a,b,c\}, \{e,f,g\}$ a $\{a,b,d,f,g\}$

5 řezů: $\{e,a\}$, $\{e,b\}$, $\{e,d,c\}$, $\{f,c\}$ a $\{g,c\}$

- **Tvrzení 1.3**: Nechť A je poset a $B \subseteq A$.
 - 1. B je řetězcem, právě když
 - (a) $\forall a, b \in B : a < b \lor b < a \lor a = b$
 - (b) $\forall a \in A \setminus B \ \exists b \in B : \ \neg (a < b \lor b < a)$
 - 2. B je řezem, právě když
 - (a) $\forall a, b \in B : \neg (a < b \lor b < a)$
 - (b) $\forall a \in A \setminus B \ \exists b \in B \colon (a < b \lor b < a)$

- **Definice 1.5**: Necht' A je poset a $B, C \subseteq A$.
 - 1. Množina A se nazývá *omezená* (ohraničená), jestliže existuje $n \in N$ takové, že prokaždý řetězec množiny A platí $|L| \le n$
 - 2. B předchází C (píšeme $B \leq C$), jestliže $\forall b \in B \ \forall c \in C \colon b < c \ \lor \ b \ \underline{co} \ c$ (B < C značí $B \leq C$ a $B \neq C$)
 - 3. Nechť $B^- = \{a \in A | \{a\} \leq B\}$ a $B^+ = \{a \in A | B \leq \{a\}\}$
 - 4. Nechť ${}^{\circ}B=\{b\in B|\ \forall b'\in B\colon\ b\ \underline{co}\ b'\ \lor\ b< b'\}$ a $B^{\circ}=\{b\in B|\ \forall b'\in B\colon\ b\ \underline{co}\ b'\ \lor\ b'< b\}.$ Zřejmě ${}^{\circ}A$ obsahují "minimální prvky" množiny A a A° pak "maximální prvky" množiny A.

Theorem 1.2: Je-li A omezená částečně uspořádaná množina, pak $^{\circ}A$ a A° jsou řezy.

Důkaz: Nechť a,b jsou libovolné prvky ${}^{\circ}A$. Pak a \underline{co} b, protože $\neg(a < b \lor b < a)$. Nechť $c \in A \setminus {}^{\circ}A$ a nechť L je řetězec a $c \in L$. Protože L je konečná množina, existuje $d \in L \cap {}^{\circ}A$, a proto d < c. Podle Tvrzení 1.3 (2) je ${}^{\circ}A$ řezem. Pro A° analogicky. \square

❖ Tvrzení 1.4: Nechť A je poset, L řetězec a D řez množiny A. Pak

$$|L \cap D| \le 1$$

Důkaz: Nechť $a,b \in L \cap D$. Pak $a \underline{li} b$, protože $a,b \in L$. Avšak $a \underline{co} b$, protože $a,b \in D$. Podle Tvrzení 1.2 (2) je a = b.

Definice 1.6: Poset A se nazývá K-hustým (K-dense), jestliže každý řetězec má neprázdný průnik s každým řezem.

❖ Příklad 4: Poset, který není K-hustý

$$\{c,b\} \cap \{a,d\} = \emptyset$$

2. Výskytové sítě (Occurrence Nets)

- **Definice 2.1**: Síť $K = (S_K, T_K, F_K)$ se nazývá *výskytová síť* (occurrence net), jestliže
 - 1. $\forall a,b \in K \colon aF_K^+b \Rightarrow \neg (bF_K^+a)$, tj. K nemá cykly
 - 2. $\forall s \in S_K : | {}^{\bullet} \! s | \leq 1 \wedge | s^{\bullet} | \leq 1$, tj. místa sítě nejsou větvena
- **Tvrzení 2.1**: Nechť K je výskytová síť. Relace < definována: $a < b \iff aF_K^+b$ pro všechna $a,b \in K$ je částečné uspořádání na K (tj. $S_K \cup T_K$)

Poznámka: To znamená, že pro K jsou definovány dříve zavedené pojmy řetězce, řezy, omezenost a K-hustota.

Definice 2.2: S- \check{r} ezem (slice) nazýváme řez, který obsahuje pouze místa. Označme $\underline{sl}(K)$ množinu všech S-řezů sítě K.

Příklad 5:

Tato síť má 3 řetězce, 11 řezů a z toho 5 S-řezů.

Příklad řetězce: $\{s_3, t_2, s_4, t_3, s_6\}$

Příklad řezu: $\{t_1, s_4, s_5\}$ Příklad S-řezu: $\{s_1, s_3\}$

- ❖ Theorem 2.1: Každá omezená neprázdná výskytová síť je K-hustá.
- ❖ Příklad 6: Síť, která není K-hustá

$$\{s_0, t_1, s_1, \ldots\} \cap \{s'_1, s'_2, \ldots\} = \emptyset$$

Pokud by tato síť byla konečná: $|\{s_0,t_1,s_1,\ldots,t_n,s_n'\}\ \cap\ \{s_1',\ldots,s_n'\}|=1$

3. Procesy

Proces definujeme jako zobrazení z omezené výskytové sítě do bezkontaktního C/E systému, které splňuje 2 požadavky:

- 1. Každý S-řez sítě je injektivně zobrazen na nějaký případ C/E systému
- Zobrazení přechodů výskytové sítě na události C/E systému respektuje okolí události
- **Definice 3.1**: Nechť K je omezená výskytová síť a nechť Σ je bezkontaktní C/E systém. Zobrazení $p\colon K\to \Sigma$ se nazývá proces systému Σ , jestliže pro každý S-řez D sítě K a každý přechod $t\in T_K$ platí:
 - 1. p|D je injektivní a $p(D) \in C_{\Sigma}$
 - 2. $p(^{\bullet}t) = ^{\bullet}p(t) \wedge p(t^{\bullet}) = p(t)^{\bullet}$

Grafická reprezentace procesů $p: K \to \Sigma$:

Každý prvek x sítě K je označen (labeled) svým obrazem p(x).

Síť z příkladu 1 je procesem C/E systému z příkladu 3 kapitoly C/E systémy.

- *** Theorem 3.1**: Pro každý proces $p: K \to \Sigma$ platí:
 - 1. $p(S_K) \subseteq B_{\Sigma} \wedge p(T_K) \subseteq E_{\Sigma}$, tj. p zachovává druhy
 - 2. $\forall x,y \in K : xF_Ky \Rightarrow p(x)F_\Sigma p(y)$, tj. p zachovává relaci toku
 - 3. $\forall x,y \in K\colon p(x)=p(y) \Rightarrow x \underline{li} y$, tj. podmínky a události nejsou vzájemně paralelní
 - 4. $\forall t \in T_K : \ ^\bullet t \neq \emptyset \ \land \ t^\bullet \neq \emptyset$, tj. události mají antecendenty a konsekventy
 - 5. pro každý řez D sítě $K\colon p|D$ je injektivní

*** Theorem 3.2**: Nechť $p: K \to \Sigma$ je proces, nechť pro $T \subseteq T_K$ platí $\forall t_1, t_2 \in T \colon t_1 \ \underline{co} \ t_2$. Pak $\exists c_1, c_2 \in C_\Sigma \colon c_1[p(T)\rangle c_2$.

Důkaz: Zřejmě $\forall s_1, s_2 \in {}^{\bullet}T \colon s_1 \ \underline{co} \ s_2$. Pak tedy existuje $D \in \underline{sl}(K)$, pro který ${}^{\bullet}T \subseteq D$. Podle definice 3.1 $p(D) \in C_{\Sigma}$ a ${}^{\bullet}p(T) = p({}^{\bullet}T) \subseteq p(D)$. Dále $\forall s \in T^{\bullet} \ \exists s_1 \in D$ takové, že $s_1 < s$. Proto $T^{\bullet} \cap D = \emptyset$ a také $p(D) \cap p(T^{\bullet}) = p(D) \cap p(T)^{\bullet} = \emptyset$. Tudíž p(T) je p(D)-proveditelný krok.

Poznámka: Izomorfizmus výskytových sítí - nepojmenovávají se prvky sítě

- **Věta 3.1**: Každý bezkontaktní C/E systém je plně charakterizován množinou svých procesů. Proces $p\colon K\to \Sigma$ je skutečně reprezentován množinou dvojic $\{(x,p(x))|\ x\in K\}.$
- **Theorem 3.3**: Nechť Σ_1, Σ_2 jsou dva bezkontaktní C/E systémy a nechť P_i jsou množiny procesů systému Σ_i (i=1,2). Pak $P_1=P_2 \Leftrightarrow \Sigma_1=\Sigma_2$.

Důkaz: Nechť $\Sigma_i = (B_i, E_i, F_i, C_i)$, i = 1, 2 a nechť $\Sigma_1 \neq \Sigma_2$. Pak existuje $b \in B_1 \cup B_2$ nebo $e \in E_1 \cup E_2$ nebo $c \in C_1 \cup C_2$ takový, že $b \in B_1 \backslash B_2$ nebo $e \in E_1 \backslash E_2$ nebo $(b, e) \in F_1 \backslash F_2$ nebo $(e, b) \in F_1 \backslash F_2$ nebo $c \in C_1 \backslash C_2$. Pak ale existuje krok $c_1[e' \rangle c_2 \vee \Sigma_1$, který není možný v Σ_2 (vyber $b \in c_1 \cup c_2$ nebo e' = e nebo $c = c_1$ nebo $c = c_2$). Pro $K = (S, \{t\}, F)$ nechť $p \colon K \to \Sigma_1$ je proces, pro který $p(\circ K) = c_1$ a $p(K^\circ) = c_2$ a p(t) = e'. Pak $p \in P_1 \backslash P_2$.

4. Kompozice procesů

Za předpokladu, že proces p_1 končí ve stejném případu (stavu), ve kterém proces p_2 začíná, definujeme kompozici

$$p_1 \circ p_2$$

Lemma 4.1: Je-li $p: K \to \Sigma$ proces, pak ${}^{\circ}K$ a K° jsou S-řezy množiny K.

Důkaz: Podle theoremu 1.2 jsou ${}^{\circ}K$ a K° řezy množiny K. Protože Σ je bezkontaktní, pak pro každé $e \in E_{\Sigma}$ je ${}^{\bullet}e \neq \emptyset$ a $e^{\bullet} \neq \emptyset$. Z definice 3.1 (2) plyne ${}^{\circ}K \cup K^{\circ} \subseteq S_K$.

Lemma 4.2: Nechť $p_i \colon K_i \to \Sigma$, i = 1, 2, jsou dva procesy, pro které $p_1(K_1^\circ) = p_2(^\circ K_2)$. Pak existuje právě jedna (až na izomorfizmus) výskytová síť K a S-řez D této sítě a proces $p \colon K \to \Sigma$ takový, že

$$p|D^{-} = p_1$$
 a $p|D^{+} = p_2$

Důkaz: Nechť $K_i=(S_i,T_i,F_i)$, i=1,2 a nechť $(S_1\cup T_1)\cap (S_2\cup T_2)=K_1^\circ={}^\circ K_2$. Pak síť $K=(S_1\cup S_2,T_1\cup T_2,F_1\cup F_2)$, $D=K_1^\circ={}^\circ K_2$ a proces p definovaný předpisem $p(x)=p_i(x) \iff x\in K_i, i=1,2$ splňuje tvrzení lemmy.

Definice 4.1: Nechť p_1, p_2, p jsou procesy splňující Lemma 4.2. Proces p se nazývá *kompozicí* procesů p_1 a p_2 . Kompozici procesů zapisujeme $p = p_1 \circ p_2$

* Příklad 7: Kompozice procesů

- **Tvrzení 4.1**: Nechť $p\colon K\to \Sigma$ je proces a nechť D je S-řez množiny K. Nechť $p^-=p|D^-$ a $p^+=p|D^+$. Pak p^- a p^+ jsou procesy a $p=p^-\circ p^+$.
- * Tvrzení 4.2: Nechť p_1, p_2, p_3 jsou procesy, pro které jsou definovány $p_1 \circ p_2$ a $p_2 \circ p_3$. Pak $p_1 \circ (p_2 \circ p_3) = (p_1 \circ p_2) \circ p_3$.
- **Definice 4.2**: Proces $p: K \to \Sigma$ je *elementární*, jestliže $S_K = {}^{\circ}K \cup K^{\circ}$

Poznámka: Proces se nazývá elementární, jestliže popisuje jednoduchý krok. Procesy jsou rozložitelné na konečně mnoho elementárních procesů.

Příklad 8: Kompozice procesu p užitím elementárních procesů p_3, p_4, p_5 nebo p_6, p_7

Tvrzení 4.3:

- 1. $p: K \to \Sigma$ je elementární proces $\Leftrightarrow p({}^{\circ}K) [p(T_K)\rangle p(K^{\circ})$ je krok
- 2. Jestliže $p: K \to \Sigma$ je elementární, pak $\forall t_1, t_2 \in T_K : t_1 \ \underline{co} \ t_2$
- **Definice 4.3**: Proces $p: K \to \Sigma$ se nazývá *prázdný*, jestliže $T_K = \emptyset$.

❖ Tvrzení 4.4:

- 1. Každý prázdný proces je elementární
- 2. Je-li p' prázdný proces a je-li definováno $p \circ p'$ (resp. $p' \circ p$), pak $p = p \circ p'$ (resp. $p = p' \circ p$)

Tvrzení 4.5: Je-li $p: K \to \Sigma$ proces, pak existuje konečně mnoho elementárních procesů p_1, p_2, \ldots, p_n takových, že

$$p = p_1 \circ p_2 \circ \ldots \circ p_n$$

Důkaz: Existuje celé číslo m ohraničující počet přechodů každého řetězce množiny K. Je-li m=0, pak p je prázdný. Jestliže nejdelší řetězec má $m\neq 0$ přechodů, pak p je rozložitelný na p' a p'' tak, že $p=p'\circ p''$, p' obsahuje (m-1) přechodů a p'' je elementární neprázdný proces. Dále indukcí.