

One is Enough: Enabling One-shot Device-free Gesture Recognition with COTS WiFi

Leqi Zhao, Rui Xiao, *Jianwei Liu, *Jinsong Han Zhejiang University, China

INFOCOM 2024

Human Gesture Recognition

Visual Privacy
Preserving

Robust to Occlussion

Non-intrusive

Widely Deployed

WiFi-based Gesture Recognition (WGR)

Drawbacks of Existing WGR

Unseen Gestures

CoWeiEt Slignens of new gestures

Træditiontal demonsielg from scratch

Gesture Classes

Data Collection Overhead

Our Goal

A possible solution: Few-shot Learning?

A scalable WiFi-based gesture recognition system that adapts to unseen gestures with low

Data Collection Overhead & Model Training Overhead

Few-shot Learning (FSL)

Base Classes

N-way *K*-shot Tasks

Unseen Classes

Challenges

Directly using classic FSL methods such as Meta-learning

does **NOT** work well in WGR

- Require a diverse training dataset
 - **→** Laborious data collection (C1)
- Construct copious few-shot tasks
 - **→** High training overhead (C2)
- Fix the number of ways
 - **→** Inflexibility for evolving class numbers (C3)

Our Solution: OneSense

A Novel **One-shot WiFi-based** Gesture Recognition System that solves these **three challenges**

Eabonicals-dealectection data collection

Highawiting roing head (62) ad

Inflexibilityatoilityotoingadiossa whateers (Ca) bers

System Design of *OneSense*

Virtual Gesture Synthesization

Aug-meta Learning (AML)

Prototype and Settings

Laptops + Intel 5300 NIC

- Tx (one antenna) ×1
 1000 packets/s
- Rx (three antennas) ×4

40 gesture classes

- 20 base gestures (draw '1', draw '2', draw '3', ...)
- 20 unseen gestures (push & pull, sweep, slide, ...)

Overall Accuracy

Baselines:

- OneFi (Sensys'21)
 data augmentation + transfer learning
- WiGr (IoTJ'22)
 modified prototypical network

Test on 6 unseen classes

(push & pull, sweep, slide, clap, draw zig-zag, draw triangle)

OneSense achieves 93% one-shot recognition accuracy, outperforming OneFi and WiGr in one/few-shot cases

Effect of *OneSense* Modules

Virtual gesture synthesization and aug-meta learning framework are beneficial for improving few-shot recognition performance

Performance for Evolving Gestures

The **one-shot** recognition accuracy remains **85%+** for **2~9 unseen** classes

The five-shot recognition accuracy remains 91%+ for 2~20 unseen classes

After once-and-for-all training,

OneSense adapts well to evolving gestures with low-cost fine-tuning

Summary of Other Evaluation Results

- AML framework reduces the pre-training latency by 86.1%+ compared to the classic meta-learning algorithm MAML.
- OneSense performs well with only small number of base classes and receivers, showing ability in resource-intensive cases.
- OneSense shows robustness in cross-domain scenarios.

Conclusion

- We propose OneSense, a novel one-shot WGR system. Extensive experiments demonstrate its high accuracy and scalability in recognizing unseen gestures.
- We design a virtual gesture synthesization technique, significantly reducing real-world data collection overhead.
- We propose aug-meta learning, a novel one-shot learning framework to enable efficient and scalable few-shot recognition.

Thank you!

