1. Face Recognition

주제									
O. Introduction	강의 커리큘럼 소개								
	1-1. Face Recognition 이론 소개								
	1-2. Face Detection - <mark>대표 모델 및 코드 소개</mark>								
	1-3. [실습 1] Dlib 및 Retina Face 코드 구현								
1. Face Recognition	1-4. Face Alignment - 대표 모델 및 코드 소개								
	1-5. [실습 2] 황금비율 계산								
	1-6. Face Recognition - 대표 모델 및 코드 소개								
	1-7. [실습3] 그룹 가수 사진에서 각각 멤버 인식하기								
	2-1. Object Detection 이론 소개								
	2-2. 대표 모델 – Yolov8 소개								
2 Object Detection	2-3. [실습 1] 마스크 착용 유무 프로젝트								
2. Object Detection	2-4. [실습 2] Tensor-RT 기반의 Yolov8, 표지판 신호등 검출								
	2-5. 대표 모델 - Complex-Yolov4								
	2-6. [실습 3] Lidar Data 기반의 차량 Detection								

CONTENT

01

02

03

04

Face Recognition Face Recognition 의 활용

Face Recognition Face Detection Diagram

05

06

80

Face Alignment

Face Normalization **Embedding**

Face Recognition

모델

CONTENT

09

10

11

Loss Function

Face Recognition Dlib Library Dataset

Face Recognition

Face Recognition

얼굴을 포함하는 입력 정지 영상 또는 비디오에 대해 얼굴 영역의 자동적인 검출 및 분석을 통해 해당 얼굴이 어떤 인물인지 판별해 내는 기술

- 얼굴 검증 (Face Verification)
- 얼굴 식별 (Face Identification)

References

https://wiki.st.com/stm32mpu/wiki/TFLite_Cpp_face_recognition

https://wikidocs.net/151311

얼굴 검증 (Face Verification) vs 얼굴 식별 (Face Identification)

References

http://lacienciadelcafe.com.ar/kids-jbl-headphones/parka-arm%C3%A9e-de-l//iproov-on-twitter-what-s-the-difference-between-face-pp-24027720

Face Recognition의 활용

Application of Face Recognition

References

(Left) https://www.iphonetricks.org/2-tricks-to-make-face-id-unlock-the-iphone-x-even-faster/ (Middle) https://news.nate.com/view/20230728n23619 (Right) http://www.monews.co.kr/news/articleView.html?idxno=209395

Face Recognition Diagram

Face Recognition Diagram

References

http://what-when-how.com/face-recognition/introduction-to-face-recognition-part-1/

전처리

Face Recognition Diagram

References https://tech.kakaoenterprise.com/63

Face Detection

Face Detection

The most basic task on Face Recognition is of course, "Face Detecting". Before anything, you must "capture" a face in order to recognize it, when compared with a new face captured on future.

References

https://www.liip.ch/en/blog/face-detection-an-overview-and-comparison-of-different-solutions-part1

Face Detection

The most basic task on Face Recognition is of course, "Face Detecting". Before anything, you must "capture" a face in order to recognize it, when compared with a new face captured on future.

References

https://search.pstatic.net/common/?src=http%3A%2F%2Fimgnews.naver.net%2Fimage%2F5526%2F2021%2F03%2F17%2F0000277472_001_20210611182813796.jpg&type=sc9 -60_832

Face Landmark Detection

Face Landmark Detection

Detecting and localizing specific points or landmarks on a face, such as the eyes, nose, mouth, and chin.

사람의 상태를 파악할 수 있음 (표정, 고개의 기울어짐 등)

References

(Left) https://prlabhotelshoe.tistory.com/4

(Middle) https://www.plugger.ai/blog/the-top-7-use-cases-for-facial-landmark-detection

(Right) http://blog.dlib.net/2018/01/correctly-mirroring-datasets.html

https://paperswithcode.com/task/facial-landmark-detection

Face Landmark Detection

Detecting and localizing specific points or landmarks on a face, such as the eyes, nose, mouth, and chin.

References

(Left) https://www.openads.co.kr/content/contentDetail?contsld=6879 (Right, Top) https://www.hankyung.com/article/201911275620Y

(Right, Bottom) Startupbeat

https://paperswithcode.com/task/facial-landmark-detection

Face Normalization

Face Normalization

검출된 얼굴 영역을 동일한 크기와 형태로 만드는 과정

References

https://www.researchgate.net/figure/Face-localization-and-normalization_fig4_333700124

Embedding

Embedding

컴퓨터가 처리할 수 있도록 정보를 벡터로 변환하는 것 고차원의 정보를 필요한 정보를 보존하면서 저차원으로 변환하여 벡터로 표현하는 것

N차원 [0.87, - **0.03, 0.121, 0.365, ... , 0.007,** -0.217]

References 서경경제스타DB

Feature Extraction

References

https://www.analyticsvidhya.com/blog/2022/04/face-recognition-system-using-python/#h-understand-the-working-of-face-recognition

Face Recognition 모델

Face Recognition

References

(Fig. 1) 서경스타DB (Fig. 2) YG엔터테인먼트 **인물 Database** (Fig. 3) 검용준인스타그램캡처

- (Fig. 5) https://m.sports.khan.co.kr/view.html?art_id=202207291714003&sec_id=540101

Face Recognition Model

Rank	Model	Accuracy †	Extra Training Data	Paper	Code	Result	Year	Tags
1	ArcFace + MS1MV2 + R100,	99.83%	1	ArcFace: Additive Angular Margin Loss for Deep Face Recognition	0	Ð	2018	
2	FaceNet	99.63%	~	FaceNet: A Unified Embedding for Face Recognition and Clustering	0	Ð	20 1 5	
3	Dlib	99.38%	~	Dlib-ml: A Machine Learning Toolkit	0	Ð	2009	
4	VGG-Face	98.78%	~	Deep Face Recognition	0	€	2015	
5	DeepFace	98.37%	×	DeepFace: Closing the Gap to Human-Level Performance in Face Verification	0	Ð	2014	
6	DeepID	97.05%	×	Deep Learning Face Representation from Predicting 10,000 Classes	0	Ð	2014	
7	OpenFace	92.92%	×	OpenFace: A general-purpose face recognition library with mobile applications	0	Ð	2016	

References

https://paperswithcode.com/sota/face-verification-on-labeled-faces-in-the

Loss Function

Softmax

Cross Entropy를 이용하여 Softmax 출력값과 정답 사이의 오차를 계산

대표적인 모델

- AlexNet
- ResNet
- DeepFace
- DeepID

거리기반

특징 벡터 간의 거리를 활용하여, 동일한 클래스의 특징 벡터는 가깝게 동일하지 않은 클래스의 특징은 멀게 학습

대표적인 Loss Function

- Contrastive Loss Function
- Triplet Loss Function

References https://tech.kakaoenterprise.com/63

Angular margin

소프트맥스 기반의 손실함수에 Angular Margin을 적용

대표적인 손실함수

- CosFace
- ArcFace
- SphereFace

References

https://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_AdaptiveFace_Adaptive_Margin_and_Sampling_for_Face_Recognition_CVPR_2019_paper.pdf

Face Recognition Dataset

Face Recognition Dataset

References https://paperswithcode.com/task/face-recognition

Dlib

Dlib

Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

공식 사이트 : http://dlib.net/

공식 Github : https://github.com/davisking/dlib

References http://blog.dlib.net/

Dlib Face Detector

HOG (Histogram of Oriented Gradients) feature를 이용하여 SVM (Support Vector Machine)의 Sliding Window로 검출

References

https://medium.com/@jongdae.lim/%EA%B8%B0%EA%B3%84-%ED%95%99%EC%8A%B5-machine-learning-%EC%9D%80-%EC%A6%90%EA%B2%81%EB%8B%A4-part-4-63ed781eee3c

Dlib Face Detector

HOG (Histogram of Oriented Gradients) feature를 이용하여 SVM (Support Vector Machine)의 Sliding Window로 검출

Dlib landmark predictor

Regression Tree의 Ensemble 모델로 iBUG-300W데이터셋을 학습한 모델

References

(Left) https://prlabhotelshoe.tistory.com/4

(Right) https://pyimagesearch.com/2019/12/16/training-a-custom-dlib-shape-predictor/

Dlib landmark predictor

Regression Tree의 Ensemble 모델로 iBUG-300W데이터셋을 학습한 모델

dlib.shape_predictor() is a tool that takes in an image region containing some object and outputs a set of point locations that define the pose of the object.

```
import dlib
predictor_file = './model_data/shape_predictor_68_face_landmarks.dat'
face_detector = dlib.get_frontal_face_detector()
shape_predictor = dlib.shape_predictor(predictor_file)
```

```
face_detection = face_detector(test_img)
for f in face_detection:
    shape = shape_predictor(test_img, f)
```

References http://dlib.net/imaging.html#shape_predictor

Thank You.