PhD Thesis

Koustuv Sinha

Acknowledgements

Abstract

Abstract in French

Contributions to Original Knowledge

Contributions of Authors

List of Figures

3.1	Dataset generation pipeline	5
3.2	Illustration of how a set of facts can split and combined in various ways	
	across sentences	5
3.3	Noise generation procedures of CLUTRR	5
3.4	Systematic generalization when train on k=2 and 3	6
4.1	Graphical representation of the Permutation Acceptance class of metrics.	8
4.2	Comparison of ω_{\max} , ω_{rand} , \mathcal{P}^c and \mathcal{P}^f with the model accuracy \mathcal{A} on	
	multiple datasets, where all models are trained on the MNLI corpus [1].	8
4.3	Average entropy of model confidences on permutations	9
4.4	BLEU-2 score versus acceptability of permuted sentences across all test	
	datasets	10
4.5	POS Tag Mini-Tree overlap score and percentage of permutations which	
	the models assigned the gold label	11
4.6	ω_x threshold for all datasets with varying x and computing the percent-	
	age of examples that fall within the threshold	11
5.1	Downstream results on scrambled pre-training	13
5.2	GLUE and PAWS task dev set performance when finetuned on naturally	
	and randomly ordered text, respectively, using pre-trained RoBERTa (base)	
	models on different versions of BookWiki corpus	13

List of Figures		
5.3	Risannen Data Analysis	14
6.1	Grammatical acceptability scores on BLiMP dataset	16

List of Tables

Contents

1	Introduction			1
2	Background			2
	2.1	Early	methods for text representation	2
	2.2	Neura	l Inductive bias of text representation	2
		2.2.1	Feed Forward Neural Networks	2
		2.2.2	Recurrent Neural Networks	2
		2.2.3	Transformer Models	2
	2.3	Pre-tr	aining and the advent of Large Language Models	2
	2.4	2.4 Systematicity and Generalization		3
		2.4.1	Definitions	3
		2.4.2	Tasks	3
3	Und	lerstan	ding semantic generalization through productivity	4
	3.1	Techn	ical Background	4
	3.2	CLUT	RR: A Diagnostic Benchmark for Inductive Reasoning in Text	4
		3.2.1	Dataset construction	6
		3.2.2	Productivity and reasoning	6
	3.3	Result	S	6
	3.4	Relate	d Work	6

Contents

	3.5	Discussion	ϵ		
	3.6	Follow-up findings in the community	6		
4	Qua	intifying syntactic generalization using word order	7		
	4.1	Technical Background	7		
	4.2	Word Order in Natural Language Inference	7		
		4.2.1 Probe Construction	7		
	4.3	Experiments & Results	7		
	4.4	Related Work	7		
	4.5	Discussion	7		
	4.6	Follow-up findings in the community	7		
5	Prol	Probing syntax understanding through distributional hypothesis			
	5.1	Technical Background	14		
	5.2	Dataset construction and pre-training	14		
	5.3	Experiments	14		
		5.3.1 Downstream reasoning tasks	14		
		5.3.2 Evaluating the effectiveness of probing syntax	14		
	5.4	Related Work	14		
	5.5	Discussion	14		
	5.6	Follow-up findings in the community	14		
6	Measuring systematic generalization by exploiting absolute positions				
	6.1	Technical Background	15		
	6.2	Systematic understanding of absolute position embeddings	15		
	6.3	Related Work	15		
	6.4	Experiments	15		
	65	Discussion	15		

Contents	xi

7	Con	clusion	17
	7.1	Summary	17
	7.2	Limitations	17
	7.3	Future Work	17
8	Bibl	iography	18
Bi	bliog	raphy	19
	Glos	sary	19
	Acro	onyms	19
9	Appendix		
	9.1	Org mode auto save	21
	9.2	Remove "parts" from report	21
	9.3	Add newpage before a heading	22
	9.4	Glossary and Acronym build using Latexmk	22
	9.5	Citation style buffer local	23
	9.6	Org latex compiler options	23

Introduction

Central Theme of the thesis: Understanding systematicity in pre-trained language models through semantic and syntactic generalization.

In this thesis I discuss my work on understanding systematicity in pre-trained language models.

Background

- 2.1 Early methods for text representation
- 2.2 Neural Inductive bias of text representation
- 2.2.1 Feed Forward Neural Networks
- 2.2.2 Recurrent Neural Networks
- 2.2.3 Transformer Models

Large Language Models (LLMs) are the state-of-the-art in language models, which are based on Transformers.

2.3 Pre-training and the advent of Large Language Models

Success of pre-training and scale

2 Background 3

2.4 Systematicity and Generalization

2.4.1 Definitions

- 1. Productivity
- 2. Word Order Sensitivity

2.4.2 Tasks

Understanding semantic generalization through productivity

- 3.1 Technical Background
- 3.2 CLUTRR: A Diagnostic Benchmark for Inductive Reasoning in Text

Paper: [2]

Figure 3.1 Dataset generation pipeline.

Figure 3.2 Illustration of how a set of facts can split and combined in various ways across sentences.

Figure 3.3 Noise generation procedures of CLUTRR.

3.2.1 Dataset construction

3.2.2 Productivity and reasoning

3.3 Results

Figure 3.4 Systematic generalization when train on k=2 and 3.

3.4 Related Work

3.5 Discussion

3.6 Follow-up findings in the community

Quantifying syntactic generalization using word order

Paper [3]

- 4.1 Technical Background
- 4.2 Word Order in Natural Language Inference
- **4.2.1 Probe Construction**
- 4.3 Experiments & Results
- 4.4 Related Work
- 4.5 Discussion
- 4.6 Follow-up findings in the community

Figure 4.1 Graphical representation of the Permutation Acceptance class of metrics.

Figure 4.2 Comparison of ω_{max} , ω_{rand} , \mathcal{P}^c and \mathcal{P}^f with the model accuracy \mathcal{A} on multiple datasets, where all models are trained on the MNLI corpus [1].

Figure 4.3 Average entropy of model confidences on permutations..

Figure 4.4 BLEU-2 score versus acceptability of permuted sentences across all test datasets.

Figure 4.5 POS Tag Mini-Tree overlap score and percentage of permutations which the models assigned the gold label.

Figure 4.6 ω_x threshold for all datasets with varying x and computing the percentage of examples that fall within the threshold.

Probing syntax understanding through distributional hypothesis

Paper: [4]

Figure 5.1 Downstream results on scrambled pre-training.

Figure 5.2 GLUE and PAWS task dev set performance when finetuned on naturally and randomly ordered text, respectively, using pre-trained RoBERTa (base) models on different versions of BookWiki corpus.

Figure 5.3 Risannen Data Analysis.

5.1 Technical Background

5.2 Dataset construction and pre-training

5.3 Experiments

- 5.3.1 Downstream reasoning tasks
- **5.3.2** Evaluating the effectiveness of probing syntax

5.4 Related Work

5.5 Discussion

5.6 Follow-up findings in the community

Measuring systematic generalization by exploiting absolute positions

- 6.1 Technical Background
- 6.2 Systematic understanding of absolute position embeddings
- 6.3 Related Work
- 6.4 Experiments
- 6.5 Discussion

Figure 6.1 Grammatical acceptability scores on BLiMP dataset.

Conclusion

- 7.1 Summary
- 7.2 Limitations
- 7.3 Future Work

Bibliography

Bibliography

- [1] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
- [2] Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text. In *Empirical Methods in Natural Language Processing (EMNLP)* 2019, September 2019.
- [3] Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, and Adina Williams. Un-Natural Language Inference. In *Association for Computational Linguistics (ACL)* 2021, June 2021.
- [4] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela. Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little. In *Empirical Methods in Natural Language Processing (EMNLP)*, April 2021.

Glossary

Transformers A class of models first derived by Vaswani et al. 2017. 2

Acronyms 20

Acronyms

LLMs Large Language Models. 2

Appendix

9.1 Org mode auto save

Run the following snippet to auto save and compile in org mode.

9.2 Remove "parts" from report

9 Appendix 22

```
("\\section{%s}" . "\\section*{%s}")
("\\subsection{%s}" . "\\subsection*{%s}")
("\\subsubsection{%s}" . "\\subsubsection*{%s}")))
```

9.3 Add newpage before a heading

9.4 Glossary and Acronym build using Latexmk

```
Add the following snippet in the file "~/.latexmkrc": (Source: https://tex.stackexchange.com/a/44316)

add_cus_dep('glo', 'gls', 0, 'run_makeglossaries');

add_cus_dep('acn', 'acr', 0, 'run_makeglossaries');
```

9 Appendix 23

```
sub run_makeglossaries {
    my ($base_name, $path) = fileparse( $_[0] ); #handle -outdir param by
    pushd $path; # ... cd-ing into folder first, then running makeglossarie
    if ($silent) {
        system "makeglossaries -q '$base_name'"; #unix
        # system "makeglossaries", "-q", "$base_name"; #windows
    }
    else {
        system "makeglossaries '$base_name'"; #unix
        # system "makeglossaries", "$base_name"; #windows
    };
    popd; # ... and cd-ing back again
}
push @generated_exts, 'glo', 'gls', 'glg';
push @generated_exts, 'acn', 'acr', 'alg';
$clean_ext .= ' %R.ist %R.xdy';
```

9.5 Citation style buffer local

9.6 Org latex compiler options

```
(setq org-latex-pdf-process (list "latexmk -f -pdf -%latex -interaction=no:
```

9 Appendix 24

Original value

```
(setq org-latex-pdf-process (list "latexmk -f -pdf %f"))
  Let us try Fast compile https://gist.github.com/yig/ba124dfbc8f63762f222.
(setq org-latex-pdf-process (list "latexmk-fast %f"))
```

- Doesn't seem to work from Emacs.
- I need to change the save function to only export in tex. Then, have a separate process run latexmk.
- Using the python package when-changed to watch the thesis.tex file for change.
- Usage:

```
when-changed thesis.tex latexmk -f -pdf -interaction=nonstopmode -output-d
```

- The pdf does not update. It seems to but not always? No it does. For some reason, compilation takes ages.
- Works with when-changed!