Distributed Coordination in Swarms of Autonomous Mobile Robots

Franck Petit

Based on materials by:

- Giuseppe Prencipe, University of Pisa
- Nicola Santoro. Carlton University
- Paola Focchini,
- P. Widmayer,
- D. Peleg,
- X. Défago, JAIST
- Y. Katayama
- V. Gervasi

Setting and Motivations

Robot Swarms

Swarm: Collection of independent, autonomously operating mobile robots

Robot Swarms

Swarm: Collection of independent, autonomously operating mobile robots

Typically, the robots in a swarm are

- Very small
- Very simple
- Very limited in capabilities:
 - Weak energy resources
 - Limited means of communication
 - Limited processing power

Why Multiple Robot Systems?

- Low cost: use several cheap & simple robots rather than single expensive one
- Can solve tasks impossible for a single robot (e.g., sweep large regions)
- Can perform risky / hard tasks in hazardous / harsh environments
- Can tolerate destruction of some robots
- Applications:
 - Military operations
 - > Space explorations
 - > Search&rescue missions
 - Toxic spill cleanups
 - > Fire fighting
 - Risky area surrounding or surveillance
 - > Exploration of awkward environments
 - Large-scale construction
 - Environmental monitoring

Specific Tasks for Swarms

- Movement management
 - Movement limitation
 - Collision avoidance
 - 2D/3D settings
- Complex coordination operations
- Global control
 Most previous work: Centralized control,
 suitable for small robot team, inadequate for large
 swarms
 - → Distributed control:
 - No central coordination
 - Scalability
 - Dynamicity

Setting

Distributed System whose Entities are Simple units (robots) equipped with:

- Motorial Capabilities
 - Preely move on a 2 (or 3) dimensional environment
- Sensorial Capabilities
 - Sense the positions of the others in the environment

Why study oblivious (& relatively dumb) robots?

Algorithms will work in a dynamic environment (where robots join/ leave the system)

The system can start in (almost) any configuration

Algorithms that work correctly for weaker robots will work for stronger robots

However....

- Few complex specialized units
 - Expensive
 - Not fault tolerant

- Many simple units
 - Not expensive
 - Modular
 - Fault tolerant

General Problem

General aim of the study

- Which are the elementary tasks that can be achieved deterministically?
- What are the minimal conditions for this?
- Given a task, what kind of local coordination is necessary so that the robots can accomplish it (deterministically)?

Analyze from an algorithmic point of view the **distributed** control of a set of autonomous mobile robots

? Plane

? Plane

? Discrete

Cooperative Primitives over the Plane

Gathering

? Alignment

Circle Formation (n-gon)

Other Patterns

? Election

Cooperative Primitive Tasks in discrete environment

? Rendezvous

Covering

Exploration(s)

Approaches

Previous and Related Work

- Fukuda et al, 1989 (CEBOT)
- Brooks, 1985
- Mataric, 1994
- Cao at al, 1995 (survey)
- Durfee, 1995
- Balch and Arkin, 1998

Previous Work

Tipically...

? Heuristic solutions

? Convergence to solution

(Robotics, AI)

Previous Work

Tipically...

Very few works ...

- ? Heuristic solutions
- Provably correct solutions

? Convergence to solution

? Termination in finite time

(Robotics, AI)

(Algorithmic approaches)

The Algorithmic Approach

Study under what conditions on the robots' capabilities a given global task is solvable in finite time.

? Find **Algorithmic** solutions

(Yamashita et al., SIROCCO 1996)

- Homogeneous ? Sensors
- Anonymous
- No explicit communication
- Autonomous
- Mobile
- Deaf and Dumb

(Yamashita et al., SIROCCO 1996)

(Yamashita et al., SIROCCO 1996)

(Yamashita et al., SIROCCO 1996)

Homogeneous ? Sensors No explicit Anonymous communication Autonomous Unit Mobile Deaf and Algorithm: Dumb

Assumptions on Robots' power -No Agreement

Assumptions on Robots' power -No Agreement

Models of Orientation

- Full-compass: Axes and polarities of both axes.
- ? Half-compass: Both axes known, but positive polarity of only one axis (in other axis, robots may have different views of positive direction).
- Direction-only: Both axes, but not polarities.
- ? Axes-only: Both axes, but not polarities. In addition, robots disagree on which axis is x and which is y.
- No-compass: No common orientation information.

Note: In general, robots do not share common unit distance or common origin point even in full-compass model

- Assumptions on Robots' Power - Radius of Visibility: Limited /Unlimited

- Assumptions on Robots' Power - Radius of Visibility: Limited /Unlimited

Assumptions on Robots' Power Oblivious/Non Oblivious

Non-Oblivious: remember the positions of all the robots since the beginning of the computation

Oblivious: otherwise

Modeling Movements

Assumption 1

The maximum distance r_i can move in one step is bounded by $\epsilon i > 0$

Assumption 2

There is a lower bound $\delta_r > 0$ on the distance a robot r can travel, unless its destination is closer than $\delta_r > 0$.

Modeling The Time

- A critical aspect in every distributed system is the time
 - Synchronous?
 - Asynchronous?
- At the beginning the proposed model for robots was basically synchronous (SYNC, SSYNC)
 - Semi-synchronous
 - Fully-synchronous

Suzuki *et al.*, 1996

Suzuki et al., 1996

Piscrete Time 0,1,...

Suzuki *et al.*, 1996

- Piscrete Time 0,1,...
 - ? At each time instant t, every robot r_i is either Active or Inactive

Suzuki et al., 1996

- Oiscrete Time 0,1,...
 - ? At each time instant t, every robot r_i is either Active or Inactive
 - ? At least one Active robot at each time instant, and every robot is Active infinitely often

Suzuki et al., 1996

Phases of an Active robot

28

Suzuki et al., 1996

Uses its sensors to observe the world.

result = SNAPSHOT of the world

Visibility: Unlimited Limited

Suzuki et al., 1996

Suzuki et al., 1996

Execute algorithm, ψ input = positions of the robots result = destination point p

Suzuki et al., 1996

Execute algorithm, ψ input = positions of the robots result = destination point p

Oblivious:

positions of the robots retrieved in the last Look

Suzuki et al., 1996

Execute algorithm, ψ input = positions of the robots result = destination point p

Oblivious:

positions of the robots retrieved in the last Look

30

Non Oblivious:

positions of the robots since the beginning

Suzuki et al., 1996

The robot moves towards the computed destination

Suzuki et al., 1996

 $p_i(t)$: Position of r_i at t

p: point returned by ψ

Suzuki et al., 1996

 $p_i(t)$: Position of r_i at t

p: point returned by ψ

For all $t \ge 0$,

 r_i Inactive $\Rightarrow p_i(t+1)=p_i(t)$

 r_i Active $\Rightarrow p_i(t+1)=p$

Suzuki et al., 1996

 $p_i(t)$: Position of r_i at t

p: point returned by ψ

For all $t \ge 0$,

 r_i Inactive $\Rightarrow p_i(t+1)=p_i(t)$

 r_i Active $\Rightarrow p_i(t+1)=p$

r_i executes L-C-M **atomically!**

Asynchronicity

- In 1999 asynchronicity was introduced in the model
 - ASync (a.k.a. CORDA)

SWARM/INTRO

point

SSync vs ASync

SSync

Instantaneous actions.

ASync

Full asynchronicity.

COMPUTE

COMPUTE

SWARM/INTRO

41

COMPUTE

COMPUTE

A robot could see other robots while they move!

A robot cannot distinguish between **moving** robots and **waiting** robots!

Timing Models

ASYNC (CORDA) - Fully asynchronous [Flocchini et. Al, 1999]

Arbitrary & varying operation rates and delays SSYNC (SYm) - Semi-synchronous [Suzuki+Yamashita, 1996]

Fixed time cycles, but robots may be active / inactive FSYNC - Fully synchronous [Suzuki+Yamashita, 1999]

Fixed time cycles, all robots active in every cycle

Timing Models

ASYNC (CORDA) - Fully asynchronous [Flocchini et. Al, 1999]

Arbitrary & varying operation rates and delays SSYNC (SYm) - Semi-synchronous [Suzuki+Yamashita, 1996]

Fixed time cycles, but robots may be active / inactive FSYNC - Fully synchronous [Suzuki+Yamashita, 1999]

Fixed time cycles, all robots active in every cycle

ASync vs. SSync

Problem p solvable in ASync

₱ solvable in SSync

ASync vs. SSync

Problem punsolvable in ASync

punsolvable in SSync