ВАРИАНТЫ ЗАДАНИЙ

Вариант № 1

- 1. Найти площадь плоской фигуры, ограниченной линиями $r = p/(1-\cos \varphi), \quad \varphi = \pi/4, \quad \varphi = \pi/2.$
- 2. Найти периметр одного из криволинейных треугольников, ограниченных осью OX и линиями y = ln(cos x), y = ln(sin x).
- 3. Найти объём тела, ограниченного поверхностями
- $x^2 + y^2 = 4az$, $x^2 + y^2 = 2cx$, z = 0. 4. Найти площадь части поверхности $z^2 = 8x$, вырезанной поверхностями $y^2 = 2x$, x = 2.5.
- 5. Найти массу плоской фигуры, ограниченной линиями $y^2 = 2px$, x = p/2, если плотность $\rho = xy^2$.
- 6. Найти координаты центра масс однородного тела, ограниченного плоскостями x = 0, y = 0, z = 1, z = 3, 2x + y = 3.

Вариант № 2

- 1. Найти площадь плоской фигуры, ограниченной линиями y = /lg x/, y = 0, x = 0,1, x = 10.
- 2. Найти площадь части поверхности $y^2 = 2px$, заключённой между плоскостью XOY и поверхностью $z = \sqrt{2 px - 4x^2}$.
- 3. Найти объём тела, ограниченного поверхностями $x^{2} + y^{2} = 4z^{2}$, $x^{2} + y^{2} = 2y$, z = 0.
- 4. Найти площадь части поверхности $x^2 + y^2 = 6z$, расположенной внутри цилиндра $(x^2 + y^2)^2 = 9(x^2 - y^2)$.
- 5. Найти массу круглой пластины $x^2 + y^2 \le 4x$, если плотность

$$\rho = \sqrt{1 - \left(x^2 + y^2\right) / 16} \ .$$

6. Найти момент инерции однородного отрезка АВ длиной 9 ед. относительно оси, лежащей с ним в одной плоскости, если конец A отстоит от оси на 2 ед., а конец B на 4 ед.

- 1. Найти площадь плоской фигуры, ограниченной линиями $x^2/4 + y^2 = 1$, x = y, y = 0.
- 2. Найти длину кривой $r = 2a \sin^2(\varphi/2)$.
- 3. Найти площадь части поверхности конуса $y^2 + z^2 = x^2$, вырезанной цилиндрической поверхностью $x^2 = ay$.
- 4. Найти массу плоской области, ограниченной линиями x = 1, x = 3, $y = x^2$, $y = x + x^2$, если плотность $\rho = (x + y)^2$.
- 5. Найти момент инерции относительно оси абсцисс одной арки циклоиды $x = a(t \sin t)$, $y = a(1 \cos t)$, если плотность в каждой точке кривой пропорциональна ординате этой точки.
- 6. Найти координаты центра масс части поверхности

$$x^2 + z^2 - y^2 = 1$$
, $z \ge 0$,

вырезанной поверхностями $(x^2 + y^2)^2 = x^2 - y^2$, $y = \pm \frac{x}{\sqrt{3}}$,

если плотность $\rho = 1 / \sqrt{1 + 2y^2}$.

Вариант № 4

1. Найти площадь плоской фигуры, ограниченной линиями

$$y = x^2$$
, $xy = 8$, $x = 6$.

- 2. Найти длину петли линии $9ay^2 = x(x 3a)^2$.
- 3. Найти объём тела, ограниченного поверхностями

$$z = xy$$
, $x + y = 1$, $z = 0$.

- 4. Найти полярный момент инерции фигуры, ограниченной линией $r = a(1 + cos \varphi)$, если плотность $\rho = r/sin(\varphi/2)/$.
- 5. Найти массу дуги гиперболы xy = 1 между точками A(1; 1) и B(2; 0,5), если плотность $\rho = x^6 y$.
- 6. Найти координаты центра масс части поверхности $z=(x^2-y^2)/2$, вырезанной полуплоскостью $y=0, x\geq 0$ и цилиндрической поверхностью, у которой образующая параллельна оси OZ, а направляющей является первый виток спирали $r=2\varphi$ (лежит в плоскости XOY). Плотность $\rho=1/\sqrt{1+x^2+y^2}$.

- 1. Найти площадь фигуры, ограниченной линией $r^2 = a^2 \cos 2\varphi$.
- 2. Найти периметр фигуры, ограниченной линиями $v^3 = x^2$. $v = \sqrt{2 x^2}$.
- 3. Найти объем тела, ограниченного поверхностями $z = y^2$, x + 3y = 9, z = 0, x = 0, y = 0.
- 4. Найти площадь части поверхности $x^2 + y^2 + z^2 = a^2$, вырезанной поверхностями x = 0, y = 0, z = 0, x + y = a.
- 5. Найти момент инерции относительно оси абсцисс плоской фигуры, ограниченной линиями $y=2\sqrt{x}$, x+y=3, y=0, если плотность $\rho=x+y$.
- 6. Найти массу контура треугольника *OAB* с вершинами в точках O(0;0), A(1;0), B(0;1), если плотность $\rho = x^2 + y$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $x^2 = 4y$, $y = 8/(x^2 + 4)$.
- 2. Найти длину дуги кривой $r = \sin^3(\varphi/3)$, если полярный угол изменяется от θ до $\pi/2$.
- 3. Найти объем тела, ограниченного поверхностями $x^2/4 + y^2 = 1$, z = 12 3x 4y, z = 0.
- 4. Найти площадь части поверхности цилиндров $x^2 + y^2 = \pm ax$, расположенной внутри сферы $x^2 + y^2 + z^2 = a^2$.
- 5. Найти массу плоской фигуры, ограниченной линиями x = 2, y = x, xy = 1, если плотность $\rho = (x/y)^2$.
- 6. Найти координаты центра масс однородного тела, ограниченного плоскостями x = 0, y = 0, z = 0, x = 1, y = 1, x + y + z = 3.

- 1. Найти площадь фигуры, ограниченной линией $r = a\cos 5\varphi$.
- 2. Найти длину дуги линии $x = e^{-t} cos t$, $y = e^{-t} sin t$, $z = e^{-t}$ от точки A(1;0;1) до точки O(0;0;0).
- 3. Найти объем тела, ограниченного поверхностями $x^2 + y^2 = 4x$, z = x, z = 2x.
- 4. Найти координаты центра масс дуги кривой $x = 8 \sin t + 6 \cos t$, $y = 6 \sin t 8 \cos t$, $0 \le t \le \pi/2$, если плотность ρ пропорциональна абсциссе точки.
- 5. Найти массу тела, ограниченного поверхностями $z = \sqrt{x^2 + y^2}$, z = I, если плотность $\rho = x + y + z$.
- 6. Найти полярный момент инерции части поверхности $z^2 = x^2 + y^2$, $z \ge 0$, вырезанной полуплоскостью y = 0, $x \ge 0$ и цилиндрической поверхностью, у которой образующая параллельна оси OZ, а направляющей является первый виток спирали $r = 3\varphi$ (в плоскости XOY). Плотность $\rho = 1/(x^2 + y^2)$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $y = 2^x$, $y = 2x x^2$, x = 0, x = 2.
- 2. Найти длину дуги кривой $\varphi = \sqrt{r}$, если полярный радиус изменяется от 0 до 5.
- 3. Найти объем тела, ограниченного поверхностями $x^2 + y^2 = 5x$, y = x, y = 0, $z = \sqrt{25 x^2 y^2}$, z = 0.
- 4. Найти площадь части поверхности $x^2/4 + z^2/2 = 1$, заключенной внутри поверхности $x^2/4 + y^2 = 1$.
- 5. Найти массу плоской фигуры, ограниченной эллипсом $x^2/a^2 + y^2/b^2 = 1$, если плотность $\rho = |xy|$.
- 6. Найти координаты центра масс однородного тела, ограниченного поверхностями x + y = 1, $x^2 + y^2 = z$ и координатными плоскостями.

- 1. Найти площадь фигуры, ограниченной линией $r = 3 + 2\cos\varphi$.
- 2. Найти длину дуги трактрисы $x = a(cost + lntg \frac{t}{2})$, y = asint, если параметр t изменяется от $\pi/2$ до $5\pi/6$.
- 3. Найти площадь части поверхности $y = \sqrt{x^2 + z^2}$, вырезанной поверхностью $x^2 + y^2 = I$.
- 4. Найти координаты центра масс однородной цепной линии

$$y = \frac{a}{2} (e^{x/a} + e^{-x/a}), /x/ \le a.$$

- 5. Найти массу тела, ограниченного поверхностями x = 0, y = 0, z = 0, z = 1, $x^2 + y^2 = 4$, $x^2 + y^2 = 9$, если плотность $\rho = x^2 + y^2$.
- 6. Найти момент инерции относительно оси ординат части поверхности $y^2-x^2-z^2=1$, вырезанной поверхностью $x^2+z^2=8$, если плотность $\rho=1/\sqrt{1+2(x^2+z^2)}$.

- 1. Найти площадь фигуры, ограниченной линией $y^2 = x^2(a^2 x^2)$.
- 2. Найти длину контура, образованного линиями $y^2 = (x+1)^3$, x = 4.
- 3. Найти объем тела, ограниченного поверхностями $z = x^2 + y^2$, $y^2 = 4x$, x = 1, z = 0.
- 4. Найти координаты центра масс фигуры, ограниченной линиями $y = x^2$, $y = 2x^2$, x = 1, x = 2, если плотность $\rho = y/x$.
- 5. Найти массу дуги кривой x=at, $y=at^2/2$, $z=at^3/3$ между точ-ками O(0;0;0) и A(a;a/2;a/3), если плотность $\rho=\sqrt{2y/a}$.
- 6. Найти момент инерции однородной конической оболочки

$$0 \le z \le \sqrt{5}$$
 , $\frac{x^2}{4} + \frac{y^2}{4} = \frac{z^2}{5}$ относительно прямой $\frac{x}{1} = \frac{y}{0} = \frac{z - \sqrt{5}}{0}$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $x^2 + y^2 = 8$, $y = x^2/2$.
- 2. Найти длину дуги кривой, заданной уравнением

$$y = \int_{-\pi/2}^{x} \sqrt{\cos t} dt$$
, если абсцисса точки изменяется от 0 до $\pi/2$.

Указание: применить теорему Барроу.

- 3. Найти объем тела, ограниченного поверхностями $y^2 + z^2 = 4ax$, $y^2 = ax$, x = 3a (внутри цилиндра).
- 4. Найти координаты центра масс фигуры, ограниченной линиями $\sqrt{x} + \sqrt{y} = \sqrt{a}$, x = 0, y = 0, если плотность $\rho = x$.
- 5. Найти массу части эллипса x = acost, y = bsint, лежащей в первой четверти, если плотность $\rho = xy$.
- 6. Найти момент инерции шара $x^2 + y^2 + z^2 \le R^2$ относительно его диаметра, если плотность $\rho = \sqrt{x^2 + y^2 + z^2}$.

- 1. Найти площадь фигуры, ограниченной линиями $xy = a^2$, x + y = 5a/2.
- 2. Найти длину линии $(y arcsinx)^2 = 1 x^2$.
- 3. Найти площадь части поверхности $x^2/a + y^2/b = 2z$, расположенной внутри цилиндра $x^2/a^2 + y^2/b^2 = 1$.
- 4. Найти момент инерции относительно оси ординат фигуры, ограниченной линиями $y = x^2$, $x = y^2$, если плотность $\rho = 1 + y$.
- 5. Найти массу контура, образованного линиями y = lnx, y = 0, x = 3, если плотность $\rho = x^2$.
- 6. Найти координаты центра масс однородного тела, ограниченного поверхностями $x^2+y^2=a^2$, $z=\frac{h}{a}\sqrt{x^2+y^2}$, z=0.

- 1. Найти площадь плоской фигуры, ограниченной линиями $y = 1/x^{3/2}$, y = 0, x = 1.
- 2. Найти площадь части поверхности $x^2 + y^2 = R^2$, заключенной между плоскостью XOY и поверхностью $z = R + x^2/R$.
- 3. Найти объем тела, ограниченного поверхностями $x^2 + y^2 = z$, y = 5x, x = 1, z = 0, y = 0.
- 4. Найти площадь части поверхности $z = \sqrt{x^2 + y^2}$, расположенной внутри цилиндра $\left(x^2 + y^2\right)^2 = 2xy$.
- 5. Найти массу дуги кривой $x = ln(1 + t^2)$, $y = 2arctg\ t t + 3$, если абсцисса точки изменяется от 0 до $ln\ 2$, а плотность $\rho = ye^{-x}$.
- 6. Найти момент инерции относительно оси *OZ* однородного тела, ограниченного поверхностями $x+y+z=2, \ x^2+y^2=2, \ z=0$.

- 1. Найти площадь фигуры, ограниченной линиями $y = a^3/(a^2 + x^2)$, y = 0.
- 2. Найти площадь части поверхности y = 0.5x 2, $x \ge 0$, ограниченной поверхностями z = 0, $z = 16 x^2 y^2$.
- 3. Найти объем тела, ограниченного поверхностями $z = x^2 + y^2$, $z = x^2 2y^2$, y = x, y = 2x, x = 1.
- 4. Найти площадь части поверхности az = xy, расположенной внутри цилиндра $(x^2 + y^2)^2 = 2a^2xy$.
- 5. Найти момент инерции однородного контура треугольника PQR с вершинами (в полярной системе координат) P(a;0), $Q(a;2\pi/3)$, $R(a;4\pi/3)$ относительно полюса.
- 6. Найти координаты центра масс части поверхности $x^2+z^2=y^2,\ y\ge 0\,,\ z\ge 0\,,$ вырезанной цилиндром $x^2+y^2=9\,,$ если плотность $\rho=\sqrt{y^2-x^2}$.

- 1. Найти площадь плоской фигуры, ограниченной линиями 3x + 2y 6 = 0, $3x^2 2y = 0$, y = 0.
- 2. Найти длину кривой $r = a \sin \varphi$.
- 3. Найти площадь части поверхности конуса $y^2 + z^2 = x^2$, расположенной внутри цилиндра $x^2 + y^2 = a^2$.
- 4. Найти массу треугольника ABC, где A(2;3), B(7;2), C(4;5), если плотность $\rho = x$.
- 5. Найти момент инерции относительно начала координат однородной дуги эвольвенты окружности $x = a(\cos t + t \sin t)$, $y = a(\sin t t \cos t)$, $t \in [0,2\pi]$.
- 6. Найти координаты центра масс однородного тела, ограниченного поверхностями $x^2 + z^2 = a^2$, $y^2 + z^2 = a^2$ ($z \ge 0$).

- 1. Найти площадь плоской фигуры, ограниченной линиями $y = \arcsin x, x 1 = 0, y = 0.$
- 2. Найти длину дуги пространственной кривой $z^2 = 2ax$, $9y^2 = 16xz$ от точки O(0;0;0) до точки A(2a;8a/3;2a).
- 3. Найти площадь части поверхности $z = (x^2 y^2)/2$, вырезанной цилиндром $x^2 + y^2 = 3$.
- 4. Найти декартовы координаты центра масс фигуры, ограниченной линиями $r = a \varphi$, $\varphi = \pi$, если плотность $\rho = \varphi$.
- 5. Найти момент инерции относительно плоскости XOZ однородной пирамиды, ограниченной плоскостями x + y + z = 1, x = 0, y = 0, z = 0.
- 6. Найти массу полной поверхности конуса $\sqrt{x^2 + y^2} \le z \le 1$, если плотность $\rho = x^2 + y^2$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $y = \sin x$, $y = (tg \ x)/2 \ (|x| < \pi/2)$.
- 2. Найти длину кривой $r = p/(1 + \cos \varphi)$, если $|\varphi| \le \pi/2$.
- 3. Найти площадь части поверхности $z^2 = 2xy$ при $z \ge 0$, $0 \le x \le 5$, $0 \le y \le 10$.
- 4. Найти массу плоской фигуры, ограниченной линиями $y = x^2$, $y^2 = x$, если плотность $\rho = x^2 + y$.
- 5. Найти момент инерции относительно оси *OZ* одного витка однородной винтовой линии $x = acos\ t,\ y = asin\ t,\ z = \frac{h}{2\pi}t$.
- 6. Найти координаты центра масс однородного тела, ограниченного поверхностями $x^2 + y^2 = 2z$, x + y = z.

- 1. Найти площадь фигуры, ограниченной линией $r = asin 3 \varphi$.
- 2. Найти длину линии $x = a\cos^5 t$, $y = a\sin^5 t$.
- 3. Найти объем тела, ограниченного поверхностями $y^2 + z^2 = 4x$, $y^2 = 4 4x$.
- 4. Найти площадь части поверхности $\,z^2 = 2xy\,$ при $\,0 \le z \le 5\,$, $\,1 \le y \le 10\,$.
- 5. Найти координаты центра масс однородной плоской фигуры, ограниченной линией $y^2 = x^2 x^4$, $x \ge 0$.
- 6. Найти массу части поверхности $x^2 = 2z$, вырезанной поверхностями $y^2 = 8z$, z = 1,5, если плотность $\rho = z$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $x^2 + y^2 = 1,25$, y = 1/(2x) и лежащей в первой четверти.
- 2. Найти длину линии $\mathbf{x} = \int\limits_{1}^{t} \frac{\cos u}{u} du$, $y = \int\limits_{1}^{t} \frac{\sin u}{u} du$ при $1 \le t \le \frac{\pi}{2}$.
- 3. Найти объем тела, ограниченного поверхностями z = 0, $(x-a)^2 + (y-b)^2 = R^2$, z = xy, если $a \ge R$, $b \ge R$, R > 0.
- 4. Найти координаты центра масс фигуры, ограниченной линиями $y = \sqrt{2x x^2}$, y = 0, если плотность $\rho = \sqrt{x^2 + y^2}$.
- 5. Найти момент инерции относительно плоскости XOZ однородного тела, ограниченного поверхностями $z = \sqrt{x^2 + y^2}$, z = h.
- 6. Найти массу части поверхности $x^2/9+z^2/4=1$, вырезанной поверхностью $x^2/9+y^2=1$, если $\rho=|x|/\sqrt{81-5x^2}$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $ax = y^2$, $ay = x^2$.
- 2. Найти площадь цилиндрической поверхности $y = \sqrt{2px}$, $0 \le x \le 8p/9$, заключенной между плоскостями XOY и z = y.
- 3. Найти объем тела, ограниченного поверхностями $x^2 + y^2/4 = z/3$, x + z/3 = 2.
- 4. Найти массу дуги параболы $y^2 = 2px$, $0 \le x \le p/2$, если плотность $\rho = |y|$.
- 5. Найти момент инерции относительно начала координат однородного тела, ограниченного поверхностями $z = x^2 + y^2$, z = 4.
- 6. Найти координаты центра масс части поверхности $2x = y^2 + z^2$, вырезанной поверхностями $y = \pm x$, x = 2, если плотность $\rho = \sqrt{2x y^2}$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $y = 2^x$, y = 2, x = 0.
- 2. Найти длину линии $y = \sqrt{x x^2} + \arcsin \sqrt{x}$.
- 3. Найти объем тела, ограниченного поверхностями $z^2 = x^2 + y^2$, z = 2, z = 3.
- 4. Найти площадь части поверхности $z^2 = 4y$, вырезанной поверхностями $x^2 = 8y$, y = 6.
- 5. Найти момент инерции относительно оси OX прямолинейного отрезка, соединяющего точки A(1;1) и B(2;3), если плотность $\rho = xy$.
- 6. Найти массу тела, ограниченного поверхностями $x^2 + z^2 = 1$, y = 0, y = 1, если плотность $\rho = (x^2 + y^2 + z^2)^3$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $x^2 + y^2 = 2ax$, $x^2 + y^2 = 2ay$.
- 2. Найти длину кривой $x = a\cos t$, $y = a\sin t$, $z = a\ln \cos t$, если ордината изменяется от 0 до $a/\sqrt{2}$.
- 3. Найти объем тела, ограниченного поверхностями $z=\sqrt{x^2+y^2} \ , \ x^2+y^2-4x-4y=0 \ , x=0, \ y=0, \ z=0.$
- 4. Найти декартовы координаты центра масс однородной дуги логарифмической спирали $r = ae^{\varphi}$, если $\pi/2 \le \varphi \le \pi$.
- 5. Найти массу тела $x^2 + y^2 + z^2 \le x$, если $\rho = \sqrt{x^2 + y^2 + z^2}$.
- 6. Найти момент инерции относительно оси *OZ* части поверхности $x^2+y^2=6z$, вырезанной поверхностью $x^2+y^2=2y$, если плотность $\rho=1/\sqrt{9+x^2+y^2}$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $r = 3 + \cos 4\varphi$, $r = 2 \cos 4\varphi$ и не включающей полюс.
- 2. Найти длину дуги линии $y = (x^2 2)/2$ между точками пересечения линии с осью OX.
- 3. Найти объем тела, лежащего в I октанте и ограниченного поверхностями z = xy, $x^2 + y^2 = 4$, z = 0.
- 4. Найти площадь части поверхности $y^2 + z^2 = 4ax$, вырезанной цилиндром $y^2 = ax$ и плоскостью x = 3a.
- 5. Найти момент инерции относительно оси абсцисс фигуры, ограниченной линиями $\frac{|x|}{a} + \frac{y}{h} = 1$, y = 0, если $\rho = |xy|$.
- 6. Найти массу части окружности $x^2+y^2+z^2=R^2$, $x^2+y^2=R^2/4$, лежащей в 1-м октанте, если плотность $\rho=xyz$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $r = atg \ \varphi, \ \varphi = \pi/4.$
- 2. Найти длину дуги полукубической параболы $y^2 = \frac{4}{9}(x-1)^3$, заключенной внутри параболы $y^2 = 2x/9$.
- 3. Найти объем тела, ограниченного поверхностями $x^2 + y^2 = 2z$, x + y + z = I.
- 4. Найти площадь части поверхности $z^2 = 2x$, вырезанной поверхностями $y^2 = x$, x = 4.
- 5. Найти массу фигуры, ограниченной линиями x = 0, y = 1.5x, $y = 4 (x 1)^2$ (x > 0), если плотность $\rho = x + y$.
- 6. Найти моменты инерции однородного контура прямоугольника со сторонами a и b ($a \neq b$) относительно осей симметрии прямоугольника.

- 1. Найти длину дуги линии $y = (x^2 2 \ln x)/4$, если абсцисса меняется от 1 до е.
- 2. Найти объем тела, ограниченного поверхностями $z = 4 y^2$, $y = x^2/2$, x = 0, z = 0.
- 3. Найти площадь части поверхности цилиндра $x^2 + y^2 = a^2$, вырезанной плоскостями x + z = 0, x z = 0 ($x \ge 0$, $y \ge 0$).
- 4. Найти полярный момент инерции квадрата $0 \le x \le a$, $0 \le y \le a$, если плотность $\rho = y$.
- 5. Найти массу контура, образованного линиями r=2, $\varphi=0, \ \varphi=\pi/4, \ \text{если плотность} \ \ \rho=e^r$.
- 6. Найти координаты центра масс части поверхности $y^2 = 2xz$, лежащей в области $0 \le x \le 4$, $0 \le z \le 9$, $y \ge 0$, если $\rho = 1/(x+z)$.

- 1. Найти площадь плоской фигуры, ограниченной линиями $y = 2x x^2$, x + y = 0.
- 2. Найти длину дуги гиперболической спирали $r\varphi = 1$, если φ изменяется от 3/4 до 4/3.
- 3. Найти площадь части поверхности $x^2 + y^2 = 2az$, заключенной внутри цилиндра $(x^2 + y^2)^2 = 2a^2xy$.
- 4. Найти массу плоской фигуры, ограниченной линиями y = 0.5x, y = 2x, xy = 2 ($x \ge 0$), если плотность $\rho = x^2 + y$.
- 5. Найти момент инерции относительно оси ординат дуги эллипса $x = 4\sqrt{2}\cos t$, $y = 3\sqrt{2}\sin t$, $0 \le t \le \pi/4$, если $\rho = y/x$.
- 6. Найти координаты центра масс части поверхности $x^2 + y^2 + z^2 = a^2$, ограниченной плоскостями $x + y = \pm a$, $x y = \pm a$ ($z \ge 0$), если плотность $\rho = |y|$.

- 1. Найти площадь фигуры, ограниченной линией $r = a(1 + \cos \varphi)$.
- 2. Найти длину дуги линии $y = \ln(1-x^2)$, если $x \in [0; 0,5]$.
- 3. Найти площадь части поверхности $x^2 y^2 = z^2$, расположенной в первом октанте и ограниченной плоскостью y + z = a.
- 4. Найти момент инерции относительно оси абсцисс круга радиуса R с центром в точке (0;R), если плотность $\rho = |x|$.
- 5. Найти расстояние до плоскости *XOY* центра масс конической винтовой линии $x = tcos\ t,\ y = tsin\ t,\ z = t,$ если аппликата изменяется от 0 до 1, а плотность $\rho = z$.
- 6. Найти массу параболической оболочки $z = 0.5(x^2 + y^2)$ ($0 \le z \le 1$), если плотность $\rho = z$.

- 1. Найти площадь фигуры, ограниченной линией $\left(x^2+y^2\right)^2=a^2xy\ .$
- 2. Найти длину дуги кривой $x = e^t \cos t$, $y = e^t \sin t$, если $t \in [0, n\pi]$.
- 3. Найти объем тела, ограниченного поверхностями $z = 4 x^2$, 2x + y = 4, x = 0, y = 0, z = 0.
- 4. Найти площадь части поверхности $x^2 + z^2 = 4y$, вырезанной поверхностями $x^2 = y$ и y = 3.
- 5. Найти координаты центра масс однородной плоской фигуры, ограниченной линией $y^2 = ax^3 x^4$.
- 6. Найти момент инерции относительно оси OY однородного тела, ограниченного поверхностями $x^2+y^2+z^2=2$, $x^2+z^2=y^2$ (y>0).

- 1. Найти площадь фигуры, ограниченной первым и вторым витками спирали Архимеда $r=a\varphi$ и полярной осью.
- 2. Найти длину дуги кривой $x = (t^2 2)\sin t + 2t\cos t$, $y = (2-t^2)\cos t + 2t\sin t$, если t изменяется от 0 до π .
- 3. Найти площадь части поверхности $x^2 + y^2 z^2 = 1$, вырезанной поверхностью $4y^2 z^2 = 1$ и плоскостями $z = \pm 1$.
- 4. Однородная дуга окружности радиуса R стягивает центральный угол 2α . Найти расстояние от центра масс дуги до центра окружности.
- 5. Найти момент инерции относительно начала координат однородного тела, ограниченного поверхностями $x^2 + y^2 + z^2 = 2z$, $z = 1 \ (0 \le z \le 1)$.
- 6. Найти массу части конической оболочки $z = \sqrt{x^2 + y^2}$, вырезанной поверхностью $x^2 + y^2 = 2ax$, если $\rho = xy + yz + zx$.

- 1. Найти площадь фигуры, ограниченной линией $(x^2 + y^2)^2 = a^2 x^3$.
- 2. Найти периметр фигуры, лежащей в первой четверти и ограниченной кривой $x = \frac{t^6}{6}$, $y = 2 \frac{t^4}{4}$ и осями координат.
- 3. Найти объем тела, ограниченного поверхностями $2z = 4 x^2 y^2$, z = 2 x y, x = 0, y = 0, z = 0.
- 4. Найти координаты центра масс первого полувитка однородной винтовой линии x = acos t, y = asin t, z = bt.
- 5. Найти массу тела, ограниченного поверхностями $x^2+y^2+z^2=r^2, \, x^2+y^2+z^2=R^2 \, (z\geq 0,\, R>r),$ если плотность $\rho=x^2+y^2.$
- 6. Найти полярный момент инерции однородной боковой поверхности цилиндра $x^2 + y^2 = R^2$, $0 \le z \le H$.