Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Escuela de Ciencias Exactas y Naturales

Departamento de Matemática

Álgebra y Geometría Analítica I

LCC - LF - LM - PF - PM - Año 2018

Práctica Nº4: Funciones

1.	Determinar	si cada	una de	las siguien	tes rela	$ciones \epsilon$	es una	función.	En	caso	que l	lo sea,	determina	r su
	imagen.													

- (a) $\mathcal{R} = \{(x,y): x,y \in \mathbb{Z}; y = x^2 + 7\}, \mathcal{R}$ es una relación de \mathbb{Z} en \mathbb{Z} .
- (b) $\mathcal{R} = \{(x,y): x,y \in \mathbb{R}; y^2 = x\}, \mathcal{R}$ es una relación de \mathbb{R} en \mathbb{R} .
- (c) $\mathcal{R} = \{(x,y): x,y \in \mathbb{R}; y = 3x + 1\}, \mathcal{R}$ es una relación de \mathbb{R} en \mathbb{R} .
- (d) $\mathcal{R} = \{(x,y): x,y \in \mathbb{Q}; x^2 + y^2 = 1\}, \mathcal{R}$ es una relación de \mathbb{Q} en \mathbb{Q}
- 2. Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{2, 4, 6, 8, 10, 12\}$. Sea $f: A \to B$ la función dada por

$$f = \{(1,2), (2,6), (3,6), (4,8), (5,6), (6,8), (7,12)\}.$$

Determinar la preimagen de B_1 mediante f en cada uno de los siguientes casos:

(a) $B_1 = \{2\}$

- (e) $B_1 = \{6, 8, 10, 12\}$ (f) $B_1 = \{10, 12\}.$

(b) $B_1 = \{6\}$

- (c) $B_1 = \{6, 8\}$ (d) $B_2 = \{6, 8, 10\}$

3. Para cada una de las siguientes funciones, determinar Im(f), f(A) y $f^{-1}(B)$ para los subconjuntos $A \vee B$ indicados.

- (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1, $A = \{1, 2, 3\}$, $B = \{7, 8, 9\}$.
- (b) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^3 x, A = \{-2, -1, 0, 1, 2\}, B = \{-5, -4, -3\}.$
- (c) $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \operatorname{sen} x. \ A = \left[0, \frac{\pi}{2}\right], B = \left[-1, 0\right].$
- (d) $f: \mathbb{Q} \to \mathbb{Q}, f(x) = 2x, A = \{2^{-n} : n \in \mathbb{N}\}, B = \{4^n : n \in \mathbb{N}\}.$
- (e) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2, A = [1, +\infty), B = [4, 9].$
- 4. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x+7, & x \le 0 \\ -2x+5, & 0 < x < 3 \\ x-1, & 3 \le x \end{cases}$$

Determinar la preimagen mediante f de cada uno de los siguientes intervalos:

- (a) [-5, -1],
- (b) [-5,0], (c) [-2,4],
- (d) (5,10),
- (e) [11, 17).
- 5. Dar un ejemplo de una función $f: A \to B$ y de dos subconjuntos A_1, A_2 de A de modo que $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$.
- 6. Determinar para cada uno de los ítems del ejercicio 3 si la función f es inyectiva y/o sobreyectiva.
- 7. Dar, en cada caso, un ejemplo de conjuntos finitos A y B con |A|, $|B| \ge 4$, y una función f tal que:
 - a) f no sea inyectiva ni sobre;
 - b) f sea invectiva pero no sobre;
 - c) f sea sobre pero no invectiva;
 - d) f sea sobre e inyectiva.
- 8. Sea $f:A\to B$ una función y sean $A_1,A_2\subseteq A$. Demostrar que si f es inyectiva, entonces $f(A_1\cap A_2)=$ $f(A_1) \cap f(A_2)$.

- 9. Determinar si cada una de las siguientes funciones $f: \mathbb{Z} \to \mathbb{Z}$ es inyectiva y/o sobreyectiva. En caso de que no sea sobre, determinar su imagen.
 - (a) f(x) = x + 7
- (c) f(x) = 2x 3(d) f(x) = -x + 5
- (e) $f(x) = x^2 + x$ (f) $f(x) = x^3$.

(b) $f(x) = x^2$

- 10. Sea $f:A\to B$ una función y $A_1\subseteq A$. Se denomina restricción de f a A_1 a la función $f_{|A_1}:A_1\to B$ definida por $f_{|A_1}(x) = f(x)$ para cada $x \in A_1$.
 - (a) Sea $f: \mathbb{R} \to \mathbb{Z}$, f(x) = |x| la función parte entera. Probar que $f_{|\mathbb{Z}} = 1_{\mathbb{Z}}$, donde $1_{\mathbb{Z}}$ es la función identidad en \mathbb{Z} .
 - (b) Sea $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos(2\pi x)$. Probar que $f_{|\mathbb{Z}}$ es la función constante igual a 1.
- 11. Sea $f:A\to B$ una función y $A_1\subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas, justificando adecuadamente la respuesta.
 - (a) Si f es inyectiva, entonces $f_{|A_1}$ es inyectiva.
 - (b) Si $f_{|A_1}$ es inyectiva, entonces f es inyectiva.
 - (c) Si f es sobre, entonces $f_{|A_1}$ es sobre.
 - (d) Si $f_{|A_1}$ es sobre, entonces f es sobre.
- 12. Si $f:A\to B$ y $g:C\to D$ son funciones, definimos $h:A\times C\to B\times E$ por h(a,c)=(f(a),g(b)). Demostrar que h es biyectiva si y sólo si f y g son biyectivas.
- 13. Sean $f, g, h : \mathbb{Z} \to \mathbb{Z}$ definidas por f(x) = x 1, g(x) = 3x y

$$h(x) = \begin{cases} 0 & \text{si } x \text{ es par;} \\ 1 & \text{si } x \text{ es impar.} \end{cases}$$

Determinar:

- (a) $f \circ g$ (b) $g \circ f$ (c) $g \circ h$ (d) $f \circ (g \circ h)$ (e) $(f \circ g) \circ h$
- 14. Sea $g: \mathbb{N} \to \mathbb{N}$ definida por g(n) = 2n. Si $A = \{1, 2, 3, 4\}$ y $f: A \to \mathbb{N}$ es la función dada por $f = \{(1,2), (2,3), (3,5), (4,7)\}$ encontrar $g \circ f$.
- 15. Sean S y T conjuntos (fijos) en un universo U dado. Se define $g: \mathcal{P}(U) \to \mathcal{P}(U)$ por $g(A) = T \cap (S \cup A)$. Demostrar que $g \circ g = g$.
- 16. Para cada una de las siguientes funciones $f: \mathbb{R} \to \mathbb{R}$, determinar si f es invertible y, si lo es, determinar f^{-1} .
 - (a) $f = \{(x,y) : 2x + 3y = 7\}$ (b) $f = \{(x,y) : y = x^3\}$. (c) $f = \{(x,y) : y = x^4 + x\}$.
- 17. Sean $f: \mathbb{R}_0^+ \to \mathbb{R}$, $f(x) = \sqrt{x}$, $g: \mathbb{R} \to \mathbb{R}_0^+$, $g(x) = x^2$. Demostrar que $g \circ f = 1_{\mathbb{R}}$. ¿Es $g = f^{-1}$?
- 18. Demostrar que $f: \mathbb{R}_0^{+1} \to \mathbb{R}_0^+$, $f(x) = \sqrt{x}$ es invertible y hallar su inversa.
- 19. Sea $f: \mathbb{Z} \to \mathbb{N}$ definida por

$$f(x) = \begin{cases} 2x - 1, & x > 0 \\ -2x, & x \le 0 \end{cases}$$

Demostrar que f es biyectiva y hallar su inversa.

- 20. Sean $f: A \to B$ y $g: B \to C$. Demostrar que
 - a) $g \circ f : A \to C$ sobre $\Rightarrow g$ sobre.
 - b) $g \circ f : A \to C$ invectiva $\Rightarrow f$ invectiva.