VISCOSÍMETRO CAPILAR DE TUBOS DESCARTÁVEIS (*)

G.Massarani Escola de Química e COPPE/UFRJ

I. A combinação do frasco de Mariotte com tubos flexíveis con duz a um viscosímetro capilar de custo reduzido e de operação extrema mente simples. A montagem indicada na figura (1) foi sugerido por Mas cotti¹ que vem se servindo de sistema análogo, com engenhosas variações, como bomba de fluxo controlado.

A precisão da medida reológica em viscosímetro capilar depende fundamentalmente do controle de temperatura do fluido e da qualidade dos tubos.

Visando o controle de temperatura foi construido um frasco de Mariotte capaz de abrigar, submerso no próprio fluído da experiência, a maior parte do tubo capilar, como indica a figura (2). Esta nova versão do frasco clássico consiste de um vidro de conserva no qual a tampa, modificada, sustenta a serpentina de termoregulação (conectada a um banho termostático), o termômetro, o tubo de alimentação de ar e o selo de graxa por onde passa o tubo capilar. A agitação no interior do frasco pode ser feita magneticamente.

O "espaguete" de PVC vendido em diferentes bitolas pela Cia. Industrial de Plásticos CIPLA, de Joinville, constitui-se num excelente tubo capilar para medidas reológicas. Mostramos, através das fotografias da figura (3), a excepcional circularidade do perímetro interno do tubo e a boa uniformidade da seção transversal interna do mesmo. A flexibilidade do tubo permite que seja enovelado sem se deformar e seu custo (**) é tão reduzido que, depois de usado, pode ser descartado, evitando-se o longo e tedioso processo da limpeza dos capilares de vidro clássicos.

II. Os cuidados que devem ser tomados na viscometria capilar clássica estão relatados em Van Wazer et al.², p.201. Em adição a estes cuidados, tivemos a preocupação de verificar o efeito da curvatura dos tubos na perda de carga: pelo menos nos níveis de vazão ensaia

^(*) Apresentado no IV Congresso Brasileiro de Engenharia Química, Be lo Horizonte, julho de 1980.

^(**) Preço em outubro de 1979, no Rio de Janeiro: Cr\$ 1,00/m, em emb<u>a</u> lagem de 100m.

dos, este efeito parece ser relevante somente no caso do escoamento de gases.

Cumpre ainda assinalar que os efeitos de tensão superficial verificados em nosso sistema são bem mais pronunciados do que aqueles mencionados na literatura², p.210. Independente das dimensões do fras co de Mariotte, do diâmetro do tubo de alimentação de ar e do tubo ca pilar, a correção para soluções e suspensões aquosas é da ordem de lom de líquido (negativo) na carga de altura do sistema. A adição de tensoativo ao fluido faz com que esta correção se torne praticamente nula.

A relação entre a taxa de deformação, λ , e a tensão cisalhante, S, pode ser estabelecida através da medida da vazão mássica no tubo capilar para diferentes desníveis do sistema 2 , p.192:

$$S = \frac{D \Delta P}{4L} \tag{1}$$

$$y = \frac{32W}{\rho\pi D^3}$$
(2)

$$\lambda = \frac{3}{4} y + \frac{1}{4} y \frac{d \ln y}{d \ln S}^*$$
 (3)

onde

D - diâmetro do tubo;

ΔP = Hpg - queda de pressão piezométrica;

H - desnível entre a extremidade inferior do tubo de alimentação de ar e a extremidade inferior do tubo capilar, como indicado na figura (1);

L - comprimento do tubo capilar;

W - vazão mássica do fluido no capilar.

Quando o fluido é newtoniano, recaimos na equação de Poiseuille,

$$\mu = \frac{S}{\lambda} = \frac{\pi \left(\Delta \dot{\phi}\right) D^{4} \rho}{128 \text{ LW}}, \qquad (4)$$

sendo os coeficientes determinados pelo método dos Mínimos Quadrados.

^{*} No programa de computador disponível é feita a aproximação

sendo µ a viscosidade do fluido.

O diâmetro do tubo capilar pode ser determinado a partir da equação (4), uma vez conhecida a viscosidade do fluido. Torna-se interessante realizar estas medidas com ar pois, não molhando o tubo, permite que o mesmo seja usado diretamente nas medidas reológicas. As experiências com gases exigem, no entanto, uma montagem a parte com manômetro e rotâmetro.

III. Os resultados que passamos a analisar permitem avaliar a qualidade das medidas obtidas no sistema proposto.

Na tabela (1) comparamos os resultados para a viscosidade da água recém-destilada com os dados da literatura³, p.F-45. O desvio médio, em valor absoluto, constatado é inferior a 2,3%, na faixa de temperaturas entre 11°C e 39°C. Desvios bem mais acentuados foram ver<u>i</u> ficados em um viscosímetro de Stokes comercial (Haake).

A figura (4) nos dá conta do efeito da temperatura sobre a viscosidade de líquidos newtonianos. Verifica-se a dependência conhecida", p.3-240

$\mu = A e^{B/T}$

onde T é a temperatura absoluta do fluido.

A figura (5) mostra a coerência dos resultados obtidos com tubos capilares de diferentes diâmetros em experiências com solução aquosa de Tylose 4000 MH (metilcelulose).

. A figura (6) mostra a coerência dos resultados obtidos com tubos capilares de diferentes comprimentos em experiências com solução aquosa de Calgon 454 (poliacrilamida).

A figura (7) evidencia o fato bem conhecido de que as suspensões se comportam frequentemente como fluidos de Bingham. A bentonita utilizada é um dos constituintes da lama de perfuração empregada pela Petrobrás. A suspensão de minério de ferro é a mesma daquela bombeada no mineroduto da Samarco.

REFERENCIAS

- Mascotti, J.N.V., Departamento de Engenharia Bioquímica, Escola de Química da UFRJ, Comunicação Pessoal, Agosto, 1979.
- Van Wazer, J.R., Lyons, J.W., Kim, K.Y., e Colwell, R.E., "Viscosity and flow measurement - A laboratory handbook of Rheology", Interscience Publishers, 1966.
- 3. Weast,R.C., (Ed.), "CRC-Handbook of Chemistry and Physics", CRC

- Press, Ohio, 54ª edição, p.F-45, 1974.
- 4. Perry,R.H. e Chilton, C.H., (Eds.), "Manual de Engenharia Química", Guanabara II, 5ª edição, 1980.

Agradecemos aos engenheiros Celia Maria Barreira Campos e Lair Pereira de Carvalho pelas experiências realizadas com as suspensões de bentonita e solução de Calgon.

Tabela (1) : Influência da temperatura na viscosidade da água.

(°C)	μ* (cp)	µ ** (cp)
11,5	1,214	1,249
17,0	1,053	1,080
19,2	0,948	1,001
23,2	0,914	0,927
26,2	0,841	0,867
29,0	0,799	0,815
29,5	0,803	0,806
32,1	0,780	0,763
33,2	0,744	0.746
35,2	0,721	0.717
39,2	0,696	0,663

^{*} Medidas com tubo de 1,676 mm de diâmetro e 300 cm de comprimento (65 cm fora do frasco de Mariotte).

^{**} Dados fornecidos por Weast³, p.F-45.

Fig. 1 - Montagem do viscosimetro capilar com alimentação atraves de frasco de Mariotte

do fluido

Circuito de Termoregulação de or Tubo Capilar Selo de graxa

Figura 3a - Seção transversal de tubo plástico CIPLA de aproximadamente lmm de diâmetro interno. A boa circularidade do perímetro interno foi também verificada em tubos de outras bitolas (fotografia obtida em microscópio ótico).

Figura 3b - Seção longitudinal de um tubo de plástico CIPLA de aproximadamente 1mm de diâmetro interno (fotografia obtida em microscópio de varredura com aumento X 45).

Fig. 4 - Influência da temperatura sobre a viscosidade (soluções newtonianas de Karo em água)

Fig. 5 - Curva reciágica para solução aquosa de Tylose 4000 MH (0,5% em peso) obtida com capilares de diferentes diâmetros, a 28°C

