Detector de proximidade ultrassônico para acessibilidade locomotora de deficientes visuais

Ana Beatriz Freires Ferreira
Universidade de Brasília – Faculdade do Gama
Programa de Engenharia Eletrônica
Brasília, Brasil
beatriz.ana2108@gmail.com

Priscilla Costa de Souza
Universidade de Brasília – Faculdade do Gama
Programa de Engenharia Eletrônica
Brasília, Brasil
priscillacostadesouza@gmail.com

I. Introdução

Com a evolução da tecnologia é necessário que cada vez mais a engenharia humana trabalhe e melhore no acesso de pessoas com deficiência. De acordo com o censo realizado pelo IBGE (Instituto Brasileiro de Geografia e Estatística) em 2016, 45,6 milhões de brasileiros possuem deficiência, sendo a deficiência visual a declarada mais comum, atingindo 3,6% da população. No entanto, apesar dos números significantes, há pouca difusão da tecnologia na acessibilidade.

Neste contexto, o já utilizado bastão guia para auxílio de locomoção de pessoas visualmente deficientes se tornou obsoleto diante da diversidade tecnológica atual. De acordo com Lugli et. al (2016), o bastão é em sua maioria rejeitada por seus usuários, por motivos estéticos e de ordem prática.

Buscando a inovação, a praticidade e melhoria da situação locomotora para acessibilidade de pessoas visualmente deficientes, a proposta é desenvolver um detector de proximidade ultrassônico em um calçado. Assim, o sistema aplicado ao vestuário do portador melhorará até mesmo o processo psicológico de aceitação, adaptação e imersão social do usuário. O sapato detector de proximidade permitiria a adaptação com o ambiente externo, pois seria mais confortável por seu algo usual, do cotidiano, e mais prático por ser algo que pode ser facilmente conciliado com a rotina do portador.

Segundo dados do World Report on Disability 2010 e do Vision 2020, a cada 5 segundos, 1 pessoa se torna cega no mundo. Considerando isso, o dispositivo é planejado e pensado para não apenas pessoas que nasceram com deficiência ocular, mas também as que adquiriram a deficiência durante a vida.

Considerando as possibilidades de desenvolvimento tecnológico foi escolhido o microcontrolador MSP430, por

possibilitar a aplicação da solução de forma mais barata e com menor gasto de energia.

O calçado detector de proximidade ultrassônico aplicado à realidade de deficientes visuais tornará a locomoção de seu usuário mais eficiente, segura e com menos imprevistos. A medição de distância é uma velocidade muito rápida, aproximadamente de 1540 m/s. Isso evitaria alguns acidentes que podem ocorrer com o uso apenas do bastão, pois ele é limitado a avisar o usuário de objetos inertes no espaço em sua maioria, não podendo prever a entrada de uma pessoa, animais, elementos que se movimentam no ambiente. O uso do calçado com o detector de proximidade ultrassônico tornaria o caminho do portador mais seguro em que pisos táteis, que eventualmente se desgastam antes mesmo do deficiente visual se acostumar com o novo relevo, não esperando pela mudança com o uso apenas do bastão. A pessoa pode não perceber a mudança e acabar se ferindo, tropeçando e caindo.

II. Objetivos

A. Projetar um detector de proximidade utilizando MSP430

Utilizando um transdutor que emite uma série de pulsos ultrassônicos de curta duração que refletem no obstáculo cuja distância se deseja medir e a tecnologia digital do microcontrolador escolhido para controle e operação do sistema, a proposta é detectar obstáculos na locomoção do usuário.

B. Tornar o dispositivo útil para o contexto de deficientes visuais

Considerando a usabilidade e aplicação no cotidiano do usuário, para melhor adaptação do dispositivo, o sistema será aplicado ao seu calçado com um vibrador feito por um motor

de passo. As vibrações emitidas por ele serão sentidas pelo seu portador de forma a avisá-lo que há um obstáculo a frente.

III. Reouisitos

Os requisitos de um projeto se dividem em:

A. Necessidade (Que pode ser aliado à utilidade do produto)

A utilidade do detector de proximidade vem de sua função: Tornar o trajeto de portadores de deficiência visual mais eficaz, com menos riscos de acidentes com o uso de um dispositivo tecnológico e útil.

B. Expectativa (O que o usuário espera do produto)

Espera-se que o produto sirva como um auxílio ao portador, para que ao sentir a vibração ele possa processar o comando de desviar do obstáculo. Assim, automatizando o ato de tatear o ambiente com o bastão para auxílio de pessoas com deficiência visual.

C. Restrição (As limitações do produto)

- O modo como será aplicado, em um sapato, tornará inacessível para ambientes com água ou muito úmidos, podendo degradar o circuito do produto.
- A programação necessária para diferenciar o obstáculo do chão ao caminhar exigirá um grande risco de erro pela precisão e funcionamento do sensor utilizado.

D. Interface (Relação do usuário com o produto)

Para tornar a adaptação mais prática, será adicionado um botão de iniciar/ desligar no circuito no calçado com o sensor ultrassônico acoplado na dianteira. Dentro do solado estará um placa de circuito impresso (PCB) com o restante do circuito acoplado com o microcontrolador MSP430.

IV. DESCRIÇÃO

O projeto utilizará os seguintes componentes para sua montagem:

1) Sensor ultrassônico HC-SR04

De acordo com o datasheet, esse sensor utiliza sinais ultrassônicos (40 Khz, acima da capacidade de audição do ouvido humano, que é de 20 Khz), para determinar a distância entre o sensor e o obstáculo. Ele pode medir distâncias entre 2 cm e 4 m, com precisão de 3mm. Seu ângulo de detecção é de aproximadamente 15 graus. Ele possui 4 pinos: Vcc (alimentação 5V), Trigger, Echo e GND.

Figura 1 – Sensor ultrassônico HC-SR04.

O funcionamento do módulo consiste basicamente em enviar um sinal que, ao atingir um obstáculo, voltará para o sensor. Com base nesse tempo entre o envio e recebimento, é calculada a distância entre o sensor e o objeto utilizando a velocidade do sinal.

É enviado um sinal com duração de 10µs ao pino Trigger, indicando que a medição terá início. Automaticamente, o módulo envia oito pulsos de 40 kHz e aguarda o retorno do sinal pelo receptor. Caso haja um retorno de sinal (em nível HIGH), determina-se a distância entre o sensor e o obstáculo utilizando a seguinte equação:

Distancia =
$$\frac{(Tenpo\ em\ HIGH\ x\ velocidade\ do\ som)}{2}$$

A variável de saída deve ser a metade do produto do pulso com a velocidade por conta da ida e volta do sinal, assim adquire-se o tempo que ele percorre a distância duas vezes.

Figura 2 – Funcionamento do HC-SR04.

2) Vibracall

O vibracall possui um diâmetro de 10mm e largura de 2.7mm. Ele funciona pelo princípio da indução magnética, onde uma corrente elétrica passando por um fio, gera um campo magnético que atrai metais magnéticos. O dispositivo é uma espécie de motor, só que com o eixo fora do centro. Quando o motor começa a girar esse eixo fora do centro produz uma vibração, que é sentida fortemente. Seu funcionamento se dá em uma faixa de 3V à 5V.

Figura 3 – Mini motor Vibracall.

A partir da escolha dos componentes foi possível montar o diagrama lógico e o circuito de montagem de hardware para o projeto, considerando todos os GND iguais ao da placa:

Diagrama 1: Circuito de Montagem

Diagrama 2: Programação do MSP430

Para o funcionamento do sistema conectado ao MSP430 é necessário uma programação em linguagem C utilizando a biblioteca msp430g2553.h. A lógica é como está demonstrado no diagrama 2. Será necessário um comparador, um timer, memória em registradores e uma lógica para controle do vibracall que irá ser utilizado na interface direta com o usuário.

Para as configurações gerais do MSP, foi efetuada a função:

```
void main(void)
 BCSCTL1 = CALBC1 1MHZ;
 DCOCTL = CALDCO 1MHZ;
                                      //Ligando
submasterclock de 1mhz
 WDTCTL = WDTPW + WDTHOLD;
                                          // Desliga o
Watchdog Timer
 CCTL0 = CCIE;
                              // Setando o interrupt de
captura
 CCR0 = 1000;
                      // 1ms
 TACTL = TASSEL 2 + MC 1;
                                     // SMCLK, Modo
 P1IFG = 0x00;
                      //Limpando as flags de interrupção
```

global

Definindo os valores dos pulsos para a função trigger e echo do sensor ultrassônico:

// Enable de interrupção

```
while(1){
    P1IE &= ~0x01;
    P1DIR |= 0x02;  // P1.1 Pino de Trigger
    P1OUT |= 0x02;  // Gerando o pulso
```

BIS_SR(GIE);

```
// 10us (duração do pulso)
     delay cycles(10);
  P1OUT &= \sim 0x02;
                               // Parando o pulso
  P1DIR &= \sim 0x04;
                         //P1.2 pino do Echo
     P1IFG = 0x00;
                              // Limpando a flag por
segurança
  P1IE = 0x04;
                      // Habilitando a interrupção no pino do
echo
  P1IES &= \sim 0x04;
                         // Borda de subida do pino do echo
       delay cycles(30000);
                                  // delay de 30ms
     distance = sensor/58;
                               // Transformando o pulso em
cm
        Para a lógica de funcionamento dos vibracalls
adicionados ao circuito foi feito:
     if(distance < 20 \&\& distance != 0){
       P1DIR = BIT6;
       P1OUT |= BIT6;} //P1.6 em HIGH se a distância for
menor que 20cm e diferente de 0
    else {P1OUT &= ~BIT6;}
    if (distance >=20 && distance <=50)
       \{P1DIR \mid = BIT4;
       P1OUT |= BIT4;} //P1.4 HIGH se a distância for maior
igual a 20cm e menor igual a 50cm
    else {P1OUT &=~BIT4;}
    if (distance >50) {
       P1DIR = BIT0;
       P1OUT |= BIT0;} //P1.0 HIGH se a distância for maior
q 50
    else {P1OUT&=~BIT0;}
}
        A função obrigatória de interrupt utilizada para
checar a borda de subida e descida do timer:
#pragma vector=PORT1_VECTOR
  interrupt void Port 1(void)
  if(P1IFG&0x04) //Checa se houve interrupção
      if(!(P1IES&0x04)) // Checa se há borda de subida
```

```
TACTL|=TACLR; // Limpa o timer A
miliseconds = 0;
P1IES |= 0x04; //Borda de descida
}
else
{
sensor = (long)miliseconds*1000 + (long)TAR;
//Cálculo do tamanho do pulso do ECHO

}
P1IFG &= ~0x04; //Limpa a flag de interrupção
}

#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
miliseconds++;
}

REFERENCES
```

- [1] Swenor, Bonnielin K. et al. "Visual Impairment and Incident Mobility Limitations: The Health ABC Study." Journal of the American Geriatrics Society 63.1 (2015): 46–54. PMC. Web. 5 Sept. 2017.
- [2] LUGLI, Daniele et al. Bengala customizável para mulheres com deficiência visual. Design e Tecnologia, [S.l.], v. 6, n. 12, p. 44-53, dez. 2016. ISSN 2178-1974. Disponível em: https://www.ufrgs.br/det/index.php/det/article/view/383. Acesso em: 05 set. 2017.