$$t_{H} = 20 \text{ ms}$$

 $t_{L} = 20 \text{ ms}$
 $T = 40 \text{ ms}$

$$t_{H} = 20 \text{ ms}$$

$$t_{L} = 20 \text{ ms}$$

$$T = 40 \text{ ms}$$

$$F = \frac{1}{40 \times 10^{-9}} = \frac{10^{9}}{40} = \frac{10^{3}}{40} \times 10^{6} = 25 \times 10^{6} \text{ Hz} = 25 \text{ MHz}$$

$$duty cycle = \frac{20}{40} \times 100\% = 50\%$$

Fig. 1 – Functional behavior of a D latch and a positive-edge-triggered D flip-flop.

Fig. 3 – A timing diagram of a positive edge-triggered flip-flop to complete.

Fig. 4 – A circuit based on a D flip-flop and its timing diagram.

Valores do Clh
$$T = 60 \text{ ms}$$

$$T = 120 \text{ ms}$$

$$T = 3000 \approx 36,7 \text{ MHz}$$

$$T = \frac{5000}{120} \approx 8$$

$$T = 40 \text{ ms}$$

$$T = 40 \text{ ms}$$

$$T = \frac{60}{120} \approx 8$$

$$T = \frac{60}{120} \approx 8$$

$$T = \frac{1000}{120} \approx 8$$

$$T = \frac{1500}{120} \approx 8$$

$$T = \frac{1500}{120} \approx 8$$

Valores do Clh

$$T = 60 \text{ ms}$$
 $T = 3000 \approx 36,7 \text{ MHz}$
 $T = \frac{3000}{60} \approx 8$
 $T = 40 \text{ ms}$
 $T = \frac{60}{120} \approx 8$
 $T = \frac{60}{120} \approx 8$

O cincuito duplica o período do Clack.

e) Tabela de transição saídas

			1		
Q	Qo	re	Q3+	Qo	y
0	0	0	0	0	0
0	0	3	0	S	0
0	S	0	3	0	0
0	3	8	0	S	0
3	0	0	0	0	0
8	0	3	0	2	2
1	S	0	1	0	0
1	3	1	0	2	3

$$\frac{1}{20} \text{ MHz} = \frac{1000}{\pi} = \frac{1000}{20} = 3000 = 3000$$

Máquima de Mealy porque a saída depende da emtrada $T_{max} = 15125 + 0 = 40 \text{ ms}$ $T = \frac{1000}{40} = 25 \text{ MHz}$

Este diagrama pode estar errado.

