Exam Folder: School of Computing\Computer Science\AY 2024-2025 SEM1\CS4226

Question #: 1

Consider the scenario where two flows F_1 and F_2 traverse through the same link, which is modelled by an M/M/1 queueing model.

The arrival rates of the two flows are λ_1 =1 and λ_2 =2, respectively. The service rate of the link is μ =5.

Suppose flow F₁ has a higher priority such that the system behaves as follows:

- 1. if there are packets from flow F₁ in the system, they are served first in a FIFO manner,
- 2. if no packets from flow ${\bf F_1}$, then packets from flow ${\bf F_2}$ are served in a FIFO manner, and
- 3. if a packet from F_1 arrives when a packet from F_2 is being served, the server will stop processing F_2 's packet immediately and process the packets from F_1 ; the server will resume to the unfinished packet of F_2 after all packets from F_1 are served.

What is the average queueing time $E[Q_1]$ for all the packets from flow F_1 ?

A. 0.05

B. 0.125

C. 0.25

D. 0.5

E. 0.625

Question #: 2

Consider the scenario where two flows F_1 and F_2 traverse through the same link, which is modelled by an M/M/1 queueing model.

The arrival rates of the two flows are λ_1 =1 and λ_2 =2, respectively. The service rate of the link is μ =5.

Suppose flow F₁ has a higher priority such that the system behaves as follows:

- 1. if there are packets from flow F₁ in the system, they are served first in a FIFO manner,
- 2. if no packets from flow F_1 , then packets from flow F_2 are served in a FIFO manner, and
- 3. if a packet from F_1 arrives when a packet from F_2 is being served, the server will stop processing F_2 's packet immediately and process the packets from F_1 ; the server will resume to the unfinished packet of F_2 after all packets from F_1 are served.

What is the average sojourn time E[W] for all the packets from both flows?

A. 0.05

B. 0.125

C. 0.25

D. 0.5

E. 0.625

Question #: 3

Consider the scenario where two flows F_1 and F_2 traverse through the same link, which is modelled by an M/M/1 queueing model.

The arrival rates of the two flows are λ_1 =1 and λ_2 =2, respectively. The service rate of the link is μ =5.

Suppose flow F₁ has a higher priority such that the system behaves as follows:

- 1. if there are packets from flow F₁ in the system, they are served first in a FIFO manner,
- 2. if no packets from flow ${\bf F_1}$, then packets from flow ${\bf F_2}$ are served in a FIFO manner, and
- 3. if a packet from F_1 arrives when a packet from F_2 is being served, the server will stop processing F_2 's packet immediately and process the packets from F_1 ; the server will resume to the unfinished packet of F_2 after all packets from F_1 are served.

What is the average sojourn time $E[W_2]$ for all the packets from flow F_2 ?

A. 0.05

B. 0.125

C. 0.25

D. 0.5

E. 0.625

Question #: 4

Consider a variation of the M/M/1 model where there are two servers serving a single infinity-sized queue. The service times of the two servers are IID exponential random variables. The average service times of the two servers are $E[S_1]=1$ second and $E[S_2]=4$ seconds, respectively. Suppose when you make a random observation at the system and find that both servers are busy.

How long (in units of seconds) on average do you need to wait until you see a customer is fully served by a server, i.e., a customer's departure from one of the servers?

A. 0.2

B. 0.25

C. 0.5

D. 0.75

E. 0.8

Question #: 5

Consider a variation of the M/M/1 model where there are two servers serving a single infinity-sized queue. The service times of the two servers are IID exponential random variables. The average service times of the two servers are $E[S_1]=1$ second and $E[S_2]=4$ seconds, respectively. Suppose when you make a random observation at the system and find that both servers are busy.

What is the probability that the customer from server 1 complete the service first?

A. 0.2

B. 0.25

C. 0.5

D. 0.75

E. 0.8

Question #: 6

Consider the above Jackson network.

When p=0.8 and μ_2 is large enough to ensure the system stability, which of the following equals the effective arrival rate λ_1 to the first server?

A. 1.2

B. 1.25

C. 1.5

D. 1.75

E. 1.8

Question #: 7

Consider the above Jackson network.

When p=0.8, which of the following equals the maximum service rate of the second server μ_2 such that the system is still unstable?

- B. 1.25
- C. 1.5
- D. 1.75
- E. 1.8

Question #: 8

Consider the above Jackson network.

When μ_2 =3, which of the following equals the maximun value of p which will still make the system unstable?

- A. 1/4
- B. 3/8
- C. 1/2
- D. 5/8
- E. 3/4

Question #: 9

Consider the above Jackson network.

When μ_2 =15, which of the following equals the maximun value of p which will still make the system unstable?

- A. 1/4
- B. 3/8

- C. 1/2
- D. 5/8
- E. 3/4

Question #: 10

Consider the above Jackson network.

When p=0.6 and $\mu_2=10$, which of the following equals the average sojourn time E[W] of the packets?

- A. 4
- B. 4.5
- C. 5
- D. 5.5
- E. 6

Question #: 11

Consider a network path with four links 1, 2, 3 and 4 that have capacities $C_1 = 12$, $C_2 = 9$, $C_3 = 6$ and $C_4 = 3$ (Mbps), respectively. There are four traffic flows: flow $\mathbf{f_1}$ traverses links 1 and 2; flow $\mathbf{f_2}$ traverses links 1 and 4; flow $\mathbf{f_3}$ traverses links 2 and 3; flow $\mathbf{f_4}$ traverses links 3 and 4. Suppose the demand of the four flows are \mathbf{d}

 $_1$ = 3, d_2 = 6, d_3 = 9 and d_4 = 12 (Mbps), respectively.

Calculate the weighted max-min fair allocation $\mathbf{x}=(x_1,x_2,x_3,x_4)$ for the four flows, where the weights of the four flows are $\phi=(\phi_1,\phi_2,\phi_3,\phi_4)=(1,2,3,4)$.

$$x_1 = 1$$
 (Mbps).

$$x_2 = 2$$
 (Mbps).

$$x_3 = 3$$
 (Mbps)

$$x_4 = 4$$
 (Mbps).

- 1.
- 2.
- 3.
- 4. _____

Question #: 12

Consider a network path with four links 1, 2, 3 and 4 that have capacities C_1 = 12, C_2 = 9, C_3 = 6 and C_4 = 3 (Mbps), respectively. There are four traffic flows: flow $\mathbf{f_1}$ traverses links 1 and 2; flow $\mathbf{f_2}$ traverses links 1 and 4; flow $\mathbf{f_3}$ traverses links 2 and 3; flow $\mathbf{f_4}$ traverses links 3 and 4. Suppose the demand of the four flows are $\mathbf{d_1}$ = 3, $\mathbf{d_2}$ = 6, $\mathbf{d_3}$ = 9 and $\mathbf{d_4}$ = 12 (Mbps), respectively.

Under the weighted max-min fair allocation, where the weights of the four flows are $\phi = (\phi_1, \phi_2, \phi_3, \phi_4) = (1,2,3,4)$, which of the following includes all the bottleneck links for flow $\mathbf{f_1}$?

- A. C₁ only.
- B. C_2 only.
- $C. C_1$ and C_2 only.

Question #: 13

Consider a network path with four links 1, 2, 3 and 4 that have capacities $C_1 = 12$, $C_2 = 9$, $C_3 = 6$ and $C_4 = 3$ (Mbps), respectively. There are four traffic flows: flow $\mathbf{f_1}$ traverses links 1 and 2; flow $\mathbf{f_2}$ traverses links 1 and 4; flow $\mathbf{f_3}$ traverses links 2 and 3; flow $\mathbf{f_4}$ traverses links 3 and 4. Suppose the demand of the four flows are $\mathbf{d_1} = 3$, $\mathbf{d_2} = 6$, $\mathbf{d_3} = 9$ and $\mathbf{d_4} = 12$ (Mbps), respectively.

Under the weighted max-min fair allocation, where the weights of the four flows are $\phi=(\phi_1,\phi_2,\phi_3,\phi_4)$ =(1,2,3,4), which of the following includes all the bottleneck links for flow $\mathbf{f_2}$?

- A. C₁ only.
- ${\rm B.\ C_4}$ only.
- $C. C_1$ and C_4 only.
- D. None.

Question #: 14

Consider a network path with four links 1, 2, 3 and 4 that have capacities $C_1 = 12$, $C_2 = 9$, $C_3 = 6$ and $C_4 = 3$ (Mbps), respectively. There are four traffic flows: flow $\mathbf{f_1}$ traverses links 1 and 2; flow $\mathbf{f_2}$ traverses links 1 and 4; flow $\mathbf{f_3}$ traverses links 2 and 3; flow $\mathbf{f_4}$ traverses links 3 and 4. Suppose the demand of the four flows are $\mathbf{d_1} = 3$, $\mathbf{d_2} = 6$, $\mathbf{d_3} = 9$ and $\mathbf{d_4} = 12$ (Mbps), respectively.

Under the weighted max-min fair allocation, where the weights of the four flows are $\phi=(\phi_1,\phi_2,\phi_3,\phi_4)$ =(1,2,3,4), which of the following includes all the bottleneck links for flow $\mathbf{f_2}$?

- A. C₂ only.
- B. C₃ only.
- C. C₂ and C₃ only.
- D. None.

Question #: 15

Consider a network path with four links 1, 2, 3 and 4 that have capacities $C_1 = 12$, $C_2 = 9$, $C_3 = 6$ and $C_4 = 3$ (Mbps), respectively. There are four traffic flows: flow $\mathbf{f_1}$ traverses links 1 and 2; flow $\mathbf{f_2}$ traverses links 1 and 4; flow $\mathbf{f_3}$ traverses links 2 and 3; flow $\mathbf{f_4}$ traverses links 3 and 4. Suppose the demand of the four flows are $\mathbf{d_1} = 3$, $\mathbf{d_2} = 6$, $\mathbf{d_3} = 9$ and $\mathbf{d_4} = 12$ (Mbps), respectively.

Under the weighted max-min fair allocation, where the weights of the four flows are $\phi = (\phi_1, \phi_2, \phi_3, \phi_4) = (1,2,3,4)$, which of the following includes all the bottleneck links for flow $\mathbf{f}_{\mathbf{A}}$?

A. C₃ only.

- $\begin{array}{l} {\rm B.~C_4~only.} \\ {\rm C.~C_3~and~C_4~only.} \\ {\rm D.~None.} \end{array}$