Final Examination

Statistics 200C

T. Ferguson June 9, 2008

1. (a) Give an example of independent two-valued random variables, X_n , such that $X_n \xrightarrow{a.s.} 0$, but not $X_n \xrightarrow{q.m.} 0$.

- (b) Give an example of independent Bernoulli random variables, X_n , such that $X_n \xrightarrow{q.m.} 0$ but not $X_n \xrightarrow{a.s.} 0$.
- 2. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a sample from a bivariate population such that EX = 1, Var(X) = 1, $E(Y|X) = \theta X$, and $E(Y^2|X) = 1 + \theta^2 X^2$, for some number θ .
 - (a) Show $EY = \theta$, $Var(Y) = 1 + \theta^2$, and $Cov(X, Y) = \theta$.
 - (b) Assuming this, what is the asymptotic distribution of $(\overline{X}_n, \overline{Y}_n)$.
 - (c) Take $\theta = 1$ and find the asymptotic joint distribution of $(\overline{X}_n \overline{Y}_n, \overline{X}_n^2 + \overline{Y}_n^2)$.
- 3. A population consists of N = 3m objects of which m have value 1, m have value 0, and m have value -1. From this population a sample of size n is taken and the sum of the sampled values is denoted by S_N .
- (a) Show that S_N is a linear rank statistic of the form $S_N = \sum_{1}^{N} z_j a(R_j)$ where a(j) = 1 if $1 \leq j \leq n$ and a(j) = 0 if n < j < N; that is, find z_j for $j = 1, \ldots, N$.
 - (b) Find ES_N and $Var(S_N)$.
- (c) Show that $(S_N \mathrm{E}S_N)/\sqrt{\mathrm{Var}(S_N)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$ as $N \to \infty$, provided also that $N/(n(N-n)) \to 0$.
- 4. Suppose X_1, \ldots, X_n are i.i.d. from a distribution on $(0, x_0)$ with density f(x) continuous at x_0 and $f(x_0) = c$, where $0 < c < \infty$.
 - (a) Show that $1 F(x) \sim (x_0 x)c$ as $x \to x_0$.
 - (b) Find the asymptotic distribution of $M_n = \max\{X_1, \dots, X_n\}$.
- 5. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a sample from a bivariate population with unknown unknown means, μ_x, μ_y , variances σ_x^2 , σ_y^2 , and covariance σ_{xy} . Let $\theta = \mu_y/\mu_x$ and $\tilde{\theta}_n = \overline{Y}_n/\overline{X}_n$.
 - (a) Find the asymptotic distribution of $\tilde{\theta}_n$, assuming $\mu_x \neq 0$.
- (b) Find the asymptotic efficiency of $\tilde{\theta}_n$ when the true population distribution has density

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-(y-\theta x)^2/2} e^{-x}$$
 for $x > 0$ and $-\infty < y < \infty$

where θ is unknown. (Note: the distribution of X is exponential mean 1 and variance 1, and the conditional distribution of Y given X = x is $\mathcal{N}(\theta x, 1)$, so $\theta = \mathrm{E}Y/\mathrm{E}X$. You may use problem 2(a) above.)

- 6. Suppose $X_1, ..., X_n$ is a sample from a Poisson distribution with mean λ (density $e^{-\lambda}\lambda^x/x!$ for x = 0, 1, ...) and $Y_1, ..., Y_n$ is an independent sample from a Poisson distribution with mean μ . We wish to test the hypothesis $H_0: \mu = 2\lambda$.
 - (a) Find the likelihood ratio statistic for testing H_0 .
 - (b) Describe how to carry out the test of H_0 for large samples.
- 7. Consider a multinomial distribution with c cells and probabilities $(p_1(\theta), \ldots, p_c(\theta))$, for $\theta \in \Theta$, some open set on the real line. Assume $p'_i(\theta)$ and $p''_i(\theta)$ exist and are continuous for all $\theta \in \Theta$.
- (a) Find Fisher information, $\mathcal{I}(\theta)$. (Take sample size 1, so that $f(n_1, \ldots, n_c | \theta) = \prod_{i=1}^{c} p_i(\theta)^{n_i}$, for exactly one of the n_i equal to one and the rest equal to zero.)
- (b) What is the approximate distribution of the minimum chi-square estimate of θ , given a large sample from this distribution? (Assume you answered part (a) correctly.)
- 8. A sample of size n is taken in a multinomial experiment with IJ cells denoted (i, j), i = 1, ..., I and j = 1, ..., J. Let p_{ij} denote the probability of cell (i, j), and let n_{ij} denote the number falling in cell (i, j), so that $\sum \sum p_{ij} = 1$ and $\sum \sum n_{ij} = n$.
- (a) Let H_1 denote the hypothesis of independence, that $p_{ij} = p_i \pi_j$ for some probability vectors, (p_1, \ldots, p_I) and (π_1, \ldots, π_J) . What is the chi-square test of H_1 against all alternatives? How many degrees of freedom does it have?
- (b) Let H_0 denote the hypothesis that p_{ij} is independent of j (that is, that $p_{ij} = \theta_i$ for some vector, $(\theta_1, \ldots, \theta_I)$, such that $\sum \theta_i = 1/J$). Find the chi-square test of H_0 against all alternatives. How many degrees of freedom?
- (c) What, then, is the chi-square test of H_0 against H_1 , and how many degrees of freedom does it have?

Solutions to the Final Examination, Stat 200C, Spring 2008.

- 1. (a) $X_n = n$ with probability $1/n^2$ and $X_n = 0$ otherwise. Then $EX_n^2 = 1 \not\to 0$, but $X_n \xrightarrow{a.s.} 0$ since $\sum_{1}^{\infty} 1/n^2 < \infty$.
- (b) $X_n = 1$ with probability 1/n and zero otherwise. Then $EX_n^2 = 1/n \to 0$ and X_n does not converge to zero almost surely since $\sum_{1}^{\infty} 1/n = \infty$.
- 2. (a) $E(Y) = E(E(Y|X)) = E(\theta X) = \theta$, $E(Y^2) = E(E(Y^2|X)) = E(1 + \theta^2 X^2) = 1 + 2\theta^2$, so $Var(Y) = 1 + 2\theta^2 \theta^2 = 1 + \theta^2$, and $E(XY) = E(E(XY|X)) = E(XE(Y|X)) = E(\theta X^2) = 2\theta$, so $Cov(X, Y) = 2\theta \theta = \theta$.
 - (b) By the CLT $\sqrt{n}((\overline{X}_n, \overline{Y}_n) (1, \theta)) \xrightarrow{\mathcal{L}} \mathcal{N}((0, 0), \begin{pmatrix} 1 & \theta \\ \theta & 1 + \theta^2 \end{pmatrix}).$
- (c) Make the change of variable $g(x,y)=(x-y,x^2+y^2)$, with $\dot{g}(x,y)=\begin{pmatrix} 1 & -1 \\ 2x & 2y \end{pmatrix}$, for which g(1,1)=(0,2) and $\dot{g}(1,1)=\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$. Therefore,

$$\sqrt{n}((\overline{X}_n - \overline{Y}_n, \overline{X}_n^2 + \overline{Y}_n^2) - (0, 2)) \xrightarrow{\mathcal{L}} \mathcal{N}((0, 0), \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix})$$

$$= \mathcal{N}((0, 0), \begin{pmatrix} 1 & -2 \\ -2 & 20 \end{pmatrix})$$

- 3. (a) We may take $z_j = \begin{cases} -1 & \text{for } 1 \leq j \leq m \\ 0 & \text{for } m < j \leq 2m \\ 1 & \text{for } 2m < j \leq N \end{cases}$
- (b) $\bar{z}_N = 0$ and $\bar{a}_N = n/N$, so $ES_N = 0$. $\sigma_z^2 = 2m/N = 2/3$ and $\sigma_a^2 = n(N-n)/N^2$, so $Var(S_N) = (N^2/(N-1))(2/3)(n(N-n)/N^2) = 2n(N-n)/(3(N-1))$.
- (c) $\max_j \{(a(j) \bar{a}_N)^2\} \le 1$, and $\max_j \{(z_j \bar{z}_N)^2\} = 1$, so $(S_N \mathbf{E}S_N)/\sqrt{\operatorname{Var}(S_N)} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$ provided

$$\frac{1}{N} \frac{N^2}{n(N-n)} \frac{3}{2} \to 0$$

that is, provided $N/(n(N-n)) \to 0$, or equivalently, both $n \to \infty$ and $N-n \to \infty$.

- 4. (a) $(1 F(x))/(x x_0) = (F(x_0) F(x)/(x_0 x)) \to F'(x_0) = f(x_0) = c$.
- (b) $nc(M_n x_0) \xrightarrow{\mathcal{L}} G_{2,1}$ the exponential distribution on the negative axis.
- 5. (a) $\sqrt{n}(\overline{X}_n, \overline{Y}_n) (\mu_x, \mu_y) \xrightarrow{\mathcal{L}} \mathcal{N}((0,0), \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix})$. Let g(x,y) = y/x; then $\dot{g}(x,y) = (-y/x^2, 1/x)$ and $\dot{g}(\mu_x, \mu_y) = (-\mu_y/\mu_x^2, 1/\mu_x)$. Therefore,

$$\sqrt{n}(\tilde{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \frac{\mu_y^2 \sigma_x^2}{\mu_x^4} - 2\frac{\mu_y \sigma_{xy}}{\mu_x^3} + \frac{\sigma_y^2}{\mu_x^2})$$

- (b) When $\mu_x = 1$, $\mu_y = \theta$, $\sigma_x^2 = 1$, $\sigma_{xy} = \theta$, and $\sigma_y^2 = 1 + \theta^2$, this reduces to $\sqrt{n}(\tilde{\theta}_n \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$. The best we can do asymptotically is use the MLE with limiting variance $1/\mathcal{I}(\theta)$. Since $\Psi(x, y, \theta) = \frac{d}{d\theta} \log f(x, y|\theta) = -x(y \theta x)$ and $\mathrm{E}(\dot{\Psi}(X, Y, \theta)) = \mathrm{E}(-X^2) = -2$, Fisher information is $\mathcal{I}(\theta) = 2$. The estimate $\tilde{\theta}_n$ is 50% efficient at this distribution.
 - 6. The likelihood is $L_n = e^{-n\lambda n\mu} \lambda^{\sum x_i} \mu^{\sum y_i} / \prod x_i! y_i!$.
- (a) Under the general hypothesis, the MLE's are $\hat{\lambda}_n = \overline{X}_n$ and $\hat{\mu}_n = \overline{Y}_n$. So $\max_H L_n = e^{-n(\bar{X}_n + \bar{Y}_n)} \overline{X}_n^{n\bar{X}_n} \overline{Y}_n^{n\bar{Y}_n} / \prod x_i! y_i!$. Under H_0 , the log likelihood is proportional to $-3n\lambda + (\sum X_i + \sum Y_i) \log(\lambda)$. Setting the derivative to zero gives as the MLE, $\tilde{\lambda} = (\overline{X}_n + \overline{Y}_n)/3$. So $\max_{H_0} L_n = e^{-n(\bar{X}_n + \bar{Y}_n)} ((\overline{X}_n + \overline{Y}_n)/3)^{n(\bar{X}_n + \bar{Y}_n)} 2^{n\bar{Y}_n} / \prod x_i! y_i!$. The likelihood ratio is

$$\Lambda_n = \frac{((\overline{X}_n + \overline{Y}_n)/3)^{n(\bar{X}_n + \bar{Y}_n)} 2^{n\bar{Y}_n}}{\overline{X}_n^{n\bar{X}_n} \overline{Y}_n^{n\bar{Y}_n}}$$

- (b) We reject H_0 if $-2 \log \Lambda_n$ is too large for the chi-square distribution with 1 d.f.
- 7. (a) $\Psi(\boldsymbol{n}, \theta) = \frac{\partial}{\partial \theta} \log f(\boldsymbol{n}|\theta) = \sum_{i=1}^{c} n_i p_i'(\theta) / p_i(\theta)$, and $\dot{\Psi}(\boldsymbol{n}, \theta) = \sum_{i=1}^{c} n_i [p_i''(\theta) / p_i(\theta) p_i'(\theta)^2 / p_i(\theta)^2]$. Using $E(n_i) = p_i(\theta)$, we find

$$\mathcal{I}(\theta) = -\mathbf{E}\dot{\Psi}(\boldsymbol{n}, \theta) = -\sum_{1}^{c} \mathbf{E}(n_i) [p_i''(\theta)/p_i(\theta) - p_i'(\theta)^2/p_i(\theta)^2]$$
$$= -\sum_{1}^{c} p_i''(\theta) + \sum_{1}^{c} p_i'(\theta)^2/p_i(\theta) = \sum_{1}^{c} p_i'(\theta)^2/p_i(\theta)$$

where $\sum_{i=1}^{c} p_{i}''(\theta) = 0$ because $\sum_{i=1}^{c} p_{i}(\theta) = 1$ for all θ .

(b) Since minimum chi-square estimates are asymptotically efficient, we have for the minimum chi-square estimate, $\tilde{\theta}_n$,

$$\sqrt{n}(\tilde{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, (\sum_{i=1}^{c} p_i'(\theta)^2/p_i(\theta))^{-1}).$$

- 8. (a) This is the chi-square test of independence. We reject H_1 if $\chi^2(H_1) = \sum_i \sum_j (n_{ij} \hat{n}_{ij})^2 / \hat{n}_{ij}$ is too large for a chi-square distribution with (I-1)(J-1) d.f., where $\hat{n}_{ij} = n_{i.} n_{.j} / n_{...}$
- (b) The likelihood function is proportional to $\prod_{ij} \theta_i^{n_{ij}} = \prod_i \theta_i^{n_{ii}}$. Since the sum of the θ_i is 1/J, we have $\hat{\theta}_i = n_{i.}/(Jn_{..})$ as the MLE's. We reject H_0 if $\chi^2(H_0) = \sum_i \sum_i (n_{ij} n_{..} \hat{\theta}_i)^2/(n_{..} \hat{\theta}_i)$ is too large for a chi-square distribution with I(J-1) d.f.
- (c) We reject H_0 against H_1 if $\chi^2(H_0) \chi^2(H_1)$ is too large for a chi-square distribution with J-1 d.f.