







## IP (Internet Protocol) v4

Cisco Networking Academy® Mind Wide Open®

## **Outline**

- Characteristics of the IP Protocol
- IPv4 Packet Format
- IPv4 Addressing
- IPv4 Modes of Communication
- Address Types and Assignment
- IPv4 Limitations



#### **Characteristics of the IP protocol**

## **Connectionless**







#### **Characteristics of the IP protocol**

# **Best Effort Delivery**





As an unreliable network layer protocol, IP does not guarantee that all sent packets will be received. Other protocols manage the process of tracking packets and ensuring their delivery.



#### **Characteristics of the IP protocol**

# Media Independence





IP packets can travel over different media.



#### **IPv4 Packet**

CENTRE FOR ADVANCED INTERNET

## **IPv4 Packet Header**

### Contents of the IPv4 packet header





#### **IPv4 Packet**

CENTRE FOR ADVANCED INTERNET

## **IPv4 Packet Header**

## Contents of the IPv4 packet header







## **Header Fields**

- Ver (4bits) protocol version eg IPv4, IPv6
- IHL(4bits) Internet Header Length in 32 bit words
- Service Type (8bits) QoS, the field describes a level of throughput priority a router should use in processing a packet eg a packet containing IP voice data gets precedence over a packet containing a HTTP request
- Packet length total length of packet, including header
- Identification a sequence number used on reassembling fragments into packets
- Flags More Flag is used in fragmentation and reassembly







## **Header Fields**

- Fragment Offset a router may have to fragment a packet when forwarding it from one medium to another medium that has a smaller MTU. Offset and More Flag used in reassembling packet from fragments at the destination
- Time to Live (TTL) maximum hops a packet can take before it is considered undeliverable. Each router decrements 1, when TTL = 0 packet dropped
- Protocol upper level protocol segment encapsulated eg TCP, UDP
- Options special routing services, rarely used
- Padding used to ensure header ends on a 32 bit boundary





# IP Addressing – IP is not names

Addresses like:

www.swin.edu.au

mail.swin.edu.au

- Are not IP addresses
- The Internet uses a naming system (DNS Domain Name System) to translate names to addresses





#### **Hierarchical Addressing**

TO: Jane Doe 170 West Tasman Drive, San Jose, CA 95134, USA



At each step of delivery, the post office need only examine the next hierarchical level.





#### **IPv4 Address Structure**

# **Binary Number System**



192.168.10.10 is an IP address that is assigned to a computer.

- An IP address is 32 bits in length
- It is broken into 4 octets (or bytes)
- Each byte is represented as a decimal number (0-255) and separated by a period (.)



# IPv4 Address Structure Network Portion and Host Portion of an IPv4 Address

- To define the network and host portions of an address, a devices use a separate 32-bit pattern called a subnet mask
- The subnet mask does not actually contain the network or host portion of an IPv4 address, it just says where to look for these portions in a given IPv4 address





# Network, Host, and Broadcast Address



10.1.1.0/24

| Network Portion |         |         | Host Portion |                                  |
|-----------------|---------|---------|--------------|----------------------------------|
| 10              | 1       | 1       | 0            |                                  |
| 00001010        | 0000001 | 0000001 | 0000000      | All 0s -<br>NETWORK<br>ADDRESS   |
| 10              | 1       | 1       | 10           |                                  |
| 00001010        | 0000001 | 0000001 | 00001010     | 0s and 1s in host portion        |
| 10              | 1       | 1       | 255          |                                  |
| 00001010        | 0000001 | 0000001 | 11111111     | All 1s -<br>BROADCAST<br>ADDRESS |



## First and Last Host Addresses



10.1.1.0/24

| Network Portion |         |         | Host Portion |                                    |
|-----------------|---------|---------|--------------|------------------------------------|
| 10              | 1       | 1       | 1            | FIRST HOST                         |
| 00001010        | 0000001 | 0000001 | 0000001      | All 0s and a 1 in the host portion |
|                 |         |         |              |                                    |
| 10              | 1       | 1       | 254          | LAST HOST                          |
| 00001010        | 0000001 | 0000001 | 11111110     | All 1s and a 0 in the host portion |





# IPv4 Unicast, Broadcast, and Multicast Unicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: **Unicast**, Broadcast, and Multicast

#1 Unicast – the process of sending a packet from one host to an individual host.







#### **IPv4 Unicast, Broadcast, and Multicast**

## **Broadcast Transmission**

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, **Broadcast**, and Multicast.

#2 Broadcast – the process of sending a packet from one host to all hosts in the network.

**NOTE**: Routers do not forward a limited broadcast!







## **Multicast Transmission**

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, Broadcast, and **Multicast.** 

#3 Multicast – The process of sending a packet from one host to a selected group of hosts, possibly in different networks.

- Reduces traffic
- Reserved for addressing multicast groups 224.0.0.0 to 239.255.255.255.
- Link local 224.0.0.0 to 224.0.0.255 (Example: routing information exchanged by routing protocols)
- Globally scoped addresses 224.0.1.0 to 238.255.255.255 (Example: 224.0.1.1 has been reserved for Network Time Protocol)



#### **Types of IPv4 Address**

### Public and Private IPv4 Addresses

#### Private address blocks are:

- Hosts that do not require access to the Internet can use private addresses
  - 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
  - 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
  - 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

#### **Shared address space addresses:**

- Not globally routable
- Intended only for use in service provider networks
- Address block is 100.64.0.0/10





## Special Use IPv4 Addresses

- Network and Broadcast addresses within each network the first and last addresses cannot be assigned to hosts
- Loopback address 127.0.0.1 a special address that hosts use to direct traffic to themselves (addresses 127.0.0.0 to 127.255.255.255 are reserved)
- Link-Local address 169.254.0.0 to 169.254.255.255
   (169.254.0.0/16) addresses can be automatically assigned to the local host
- **TEST-NET addresses** 192.0.2.0 to 192.0.2.255 (192.0.2.0/24) set aside for teaching and learning purposes, used in documentation and network examples
- Experimental addresses 240.0.0.0 to 255.255.255.254 are listed as reserved





#### **Types of IPv4 Address**

# **Legacy Classful Addressing**

#### **IP Address Classes**

| Address<br>Class | 1st octet<br>range<br>(decimal) | 1st octet bits<br>(green bits do<br>not change) | Network(N) and<br>Host(H) parts of<br>address | Default subnet<br>mask (decimal<br>and binary) | Number of possible networks and hosts per network      |
|------------------|---------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| A                | 1-127**                         | 00000000-<br>01111111                           | N.H.H.H                                       | 255.0.0.0                                      | 128 nets (2^7)<br>16,777,214 hosts per<br>net (2^24-2) |
| В                | 128-191                         | 10000000-<br>10111111                           | N.N.H.H                                       | 255.255.0.0                                    | 16,384 nets (2^14)<br>65,534 hosts per net<br>(2^16-2) |
| С                | 192-223                         | 11000000-<br>11011111                           | N.N.N.H                                       | 255.255.255.0                                  | 2,097,150 nets<br>(2^21) 254 hosts per<br>net (2^8-2)  |
| D                | 224-239                         | 11100000-<br>11101111                           | NA (multicast)                                |                                                |                                                        |
| E                | 240-255                         | 11110000-<br>11111111                           | NA (experimental)                             |                                                |                                                        |



#### **Types of IPv4 Address**

ARCHITECTURES

# **Assignment of IP Addresses**

# Regional Internet Registries (RIRs)



#### **Looking to the Future**

## **Limitations of IPv4**

- 4 thousand million is a lot of addresses
- Consider:
  - Each router on the Internet often has many IP addresses
  - Each network connected device (printers, servers, PC's) needs an address
  - All the people in India and China
- 4 thousand million is not enough
- NAT
  - Lack of end-to-end connectivity







# Summary

In this lecture, we covered:

- Characteristics of the IP Protocol
- IPv4 Packet Format
- IPv4 Addressing
- IPv4 Modes of Communication
- Address Types and Assignment
- IPv4 Limitations

