PMATH 450/650 Assignment 1

1. Let $X = \mathbb{N}$ and $A = P(\mathbb{N})$. Find all measures on A.

- 2. (a) Let $f: X \to Y$ be a function and let (X, \mathcal{A}) be a measurable space. Let $\mathcal{F} \subseteq P(Y)$ be such that $f^{-1}(F) \in \mathcal{A}$ for all $F \in \mathcal{F}$. Prove that $f^{-1}(B) \in \mathcal{A}$ for every $B \in \sigma(\mathcal{F})$.
 - (b) Let (X,d) and (Y,d') be metric spaces. Suppose $f:X\to Y$ is a function such that $f^{-1}(A)\in\mathcal{B}(X)$ for every open set $A\subseteq Y$. Prove that $f^{-1}(A)\in\mathcal{B}(X)$ for every $A\in\mathcal{B}(Y)$.

- 3. Let (X, \mathcal{A}, μ) be a measure space and let $A_k \in \mathcal{A}$ for every $k \in \mathbb{N}$.
 - (a) Prove that

$$\limsup A_k := \{x \in X : x \in A_k \text{ for infinitely many } k\} \in \mathcal{A}$$

and

$$\liminf A_k := \{x \in X : x \in A_k \text{ for all but finitely many } k\} \in \mathcal{A}.$$

(b) Prove that

$$\mu(\liminf A_k) \le \liminf \mu(A_k).$$

(c) If $\mu(\cup A_k) < \infty$, prove that

$$\mu(\limsup A_k) \ge \limsup \mu(A_k).$$

(d) Suppose $\sum \mu(A_k) < \infty$. Prove that $\mu(\limsup A_k) = 0$.

- 4. Let (X, \mathcal{A}) be a measurable space. A measure μ on \mathcal{A} is called σ -finite if there exists $A_i \in \mathcal{A}$, $i \in \mathbb{N}$, such that $\mu(A_i) < \infty$ and $X = \cup A_i$. A measure μ on \mathcal{A} is called semifinite if whenever $A \in \mathcal{A}$ such that $\mu(A) = \infty$, there exists $F \in \mathcal{A}$ with $F \subseteq A$ and $0 < \mu(F) < \infty$.
 - (a) Prove that every σ -finite measure is semifinite.
 - (b) Give an example of a measure which is semifinite but not σ -finite.
 - (c) Let (X, \mathcal{A}, μ) be a measure space, where μ is semifinite. Prove that for $A \in \mathcal{A}$,

$$\mu(A) = \sup \{ \mu(B) : B \in \mathcal{A}, B \subseteq A, \mu(B) < \infty \}.$$