DEFINITION: Let A be a ring. An A-algebra is a ring R equipped with a ring homomorphism $\phi: A \to R$; we call ϕ the **structure morphism** of the algebra¹. A **homomorphism** of A-algebras is a ring homomorphism that is compatible with the structure morphisms; i.e., if $\phi: A \to R$ and $\psi: A \to S$ are A-algebras, then $\alpha: R \to S$ is an A-algebra homomorphism if $\alpha \circ \phi = \psi$.

UNIVERSAL PROPERTY OF POLYNOMIAL RINGS: Let² A be a ring, and $T = A[X_1, \ldots, X_n]$ be a polynomial ring. For any A-algebra R, and any collection of elements $r_1, \ldots, r_n \in R$, there is a unique A-algebra homomorphism $\alpha: T \to R$ such that $\alpha(X_i) = r_i$.

DEFINITION: Let A be a ring, and R be an A-algebra. Let S be a subset of R. The **subalgebra generated** by S, denoted A[S], is the smallest A-subalgebra of R containing S.

DEFINITION: Let R be an A-algebra. Let $r_1, \ldots, r_n \in R$. The ideal of A-algebraic relations on r_1, \ldots, r_n is the set of polynomials $f(X_1, \ldots, X_n) \in A[X_1, \ldots, X_n]$ such that $f(r_1, \ldots, r_n) = 0$ in R. Equivalently, the ideal of A-algebraic relations on r_1, \ldots, r_n is the kernel of the homomorphism $\alpha : A[X_1, \ldots, X_n] \to R$ given by $\alpha(X_i) = r_i$. We say that a set of elements in an A-algebra is algebraically independent over A if it has no nonzero A-algebraic relations.

DEFINITION: A **presentation** of an A-algebra R consists of a set of generators r_1, \ldots, r_n of R as an A-algebra and a set of generators $f_1, \ldots, f_m \in A[X_1, \ldots, X_n]$ for the ideal of A-algebraic relations on r_1, \ldots, r_n . We call f_1, \ldots, f_m a set of **defining relations** for R as an A-algebra.

PROPOSITION: If R is an A-algebra, and f_1, \ldots, f_m is a set of defining relations for R as an A-algebra, then $R \cong A[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$.

- (1) Let R be an A-algebra and $r_1, \ldots, r_n \in R$.
 - (a) Explain why $A[r_1, \ldots, r_n]$ is the image of the A-algebra homomorphism $\alpha : A[X_1, \ldots, X_n] \to R$ such that $\alpha(X_i) = r_i$.
 - (b) Discuss the following: $A[r_1, \ldots, r_n]$ is the set of elements of R that can be written as "polynomial expressions in r_1, \ldots, r_n with coefficients from $\phi(A)$ " (if the structure map is ϕ).
 - (c) Suppose that $R = A[r_1, \dots, r_n]$ and let f_1, \dots, f_m be a set of generators for the kernel of the map α . Explain why $R \cong A[X_1, \dots, X_n]/(f_1, \dots, f_m)$, i.e., why the Proposition above is true.
 - (d) Suppose that R is generated as an A-algebra by a set S. Let I be an ideal of R. Explain why R/I is generated as an A-algebra by the image of S in R/I.
 - (e) Let $R = A[X_1, \dots, X_n]/(f_1, \dots, f_m)$, where $A[X_1, \dots, X_n]$ is a polynomial ring over A. Find a presentation for R.
- (2) Presentations of some subrings:
 - (a) Consider the \mathbb{Z} -subalgebra of \mathbb{C} generated by $\sqrt{2}$. Write the notation for this ring. Is there a more compact description of the set of elements in this ring? Find a presentation.
 - **(b)** Same as (a) with $\sqrt[3]{2}$ instead of $\sqrt{2}$.
 - (c) Let K be a field, and T = K[X,Y]. Come up with a concrete description of the ring $R = K[X^2, XY, Y^2] \subseteq T$, (i.e., describe in simple terms which polynomials are elements of R), and give a presentation as a K-algebra.

²Note: the same R with different ϕ 's yield different A-algebras. Despite this we often say "Let R be an A-algebra" without naming the structure morphism.

²This is equally valid for polynomial rings in infinitely many variables $T = A[X_{\lambda} \mid \lambda \in \Lambda]$ with a tuple of elements of $\{r_{\lambda}\}_{{\lambda} \in \Lambda}$ in R in bijection with the variable set. I just wrote this with finitely many variables to keep the notation for getting too overwhelming.

- (3) Infinitely generated algebras:
 - (a) Show that $\mathbb{Q} = \mathbb{Z}[1/p \mid p \text{ is a prime number}].$
 - (b) True or false: It is a direct consequence of the conclusion of (a) and the fact that there are infinitely many primes that \mathbb{Q} is not a finitely generated \mathbb{Z} -algebra.
 - (c) Given p_1, \ldots, p_m prime numbers, describe the elements of $\mathbb{Z}[1/p_1, \ldots, 1/p_m]$ in terms of their prime factorizations. Can you ever have $\mathbb{Z}[1/p_1, \ldots, 1/p_m] = \mathbb{Q}$ for a finite set of primes?
 - (d) Show that \mathbb{Q} is not a finitely generated \mathbb{Z} -algebra.
 - (e) Show that, for a field K, the algebra $K[X, XY, XY^2, XY^3, \dots] \subseteq K[X, Y]$ is not a finitely generated K-algebra.
 - (f) Show that, for a field K, the algebra $K[X,Y/X,Y/X^2,Y/X^3,\dots]\subseteq K(X,Y)$ is not a finitely generated K-algebra.
- (4) Give two different nonisomorphic $\mathbb{C}[X]$ -algebra structures on \mathbb{C} .
- (5) Let K be a field. Describe which elements are in the K-algebra $K[X,X^{-1}]\subseteq K(X)$, and find an element of K(X) not in $K[X,X^{-1}]$. Then compute³ a presentation for $K[X,X^{-1}]$ as a K-algebra.
- (6) Let K be a field, and T=K[X,Y]. Let $R\subseteq T$ be the ring of polynomials that only have terms whose degree is a multiple of three (e.g., $X^3+\pi X^5Y+5$ is in while $X^3+\pi X^4Y+5$ is out). Show that R is generated by X^3,X^2Y,XY^2,Y^3 , with defining relations $X_2^2-X_1X_3,X_3^2-X_2X_4,X_1X_4-X_2X_3$.
- (7) Jacobian criterion for algebraic independence: Let K be a field of characteristic zero, $R = K[X_1, \ldots, X_n]$ be a polynomial ring, and $f_1, \ldots, f_n \in R$ be n polynomials. Show that f_1, \ldots, f_n are algebraically independent over K if and only if

$$\det \begin{bmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial X_n} & \cdots & \frac{\partial f_n}{\partial X_n} \end{bmatrix} \neq 0.$$

Use this to show that the 2×2 minors of a 2×3 matrix of indeterminates are algebraically independent.

³Hint: Note that Division does not apply. Say $X_1 \mapsto X$ and $X_2 \mapsto Y$. Show that the top X_2 -degree coefficient of an algebraic relation is a multiple of X_1 , and use this to set an induction on the top X_2 -degree.