Математика

	21701	21702	21703	21755
A1	3	3	2	3
A2	2	4	2	2
A3	2	4	4	2
A4	4	2	3	4
A5	* 3	2	3	3
' A6	3	4	2	3
A7	5	2	3	5
A8	2	1	3	2
A9	2	4	1	2
A10	1	2	3	1
A11	3	3	4	3
A12	2	1	3	2
A13	4	2	2	4
A14	4	1	5	4
A15	3	4	5	3
A16	4	5	3	4
A17	1	4	2	1
A18	5	2	4	5
A19	3	4	2	3
A20	4	1.	2	4
B1	170	130	280	170
B2	-6	240	-64	-6
B3	-5	-14	20	-5
B4	6	-4	-10	6
B5	-5	11	2	-5
В6	-5	-3	-7	-5
B7	2	6	2	2
B8	5	5	6	5
B9	26	15	25	26
B10	25	10	20	25

Тест по математике № 21701

Инструкция для учащихся

Тест состоит из частей A и В. На его выполнение отводится 180 минут. Справочной литературой пользоваться нельзя. Рекомендуем выполнять задания по порядку. Если какое-либо задание не удается выполнить сразу, перейдите к следующему, а потом вернитесь к пропущенным заданиям.

Часть А

К каждому заданию части А дано несколько ответов, из которых только один верный. Решите задание, сравните полученный ответ с предложенными. В бланке ответов под номером задания поставьте крестик (х) в клеточке, номер которой совпадает с номером выбранного Вами ответа.

Часть В

Ответы к заданиям части В запишите на бланке ответов рядом с номером задания (В1 — В10), начиная с первого окошка. Ответом может быть только число. Каждую цифру числа, запятую и знак минус (если число отрицательное) пишите в отдельном окошке по приведенным образцам.

Задание А 1. Вычислите значение дроби $\frac{2xz+y^2-4z^2}{xy-2x^2+yz}$ при условии, что $\frac{x}{z}=-1$,

$$\frac{y}{x} = 3$$
1) -6,5
2) -5,2
3) -1,5
4) 2,5
5) 3,6

Задание А 2. Результат вычисления выражения $\frac{\log_4 20 + \log_5 20}{\log_4 20 \cdot \log_5 20}$ равен

1) 2 2) 1 3) -1 4)
$$\frac{1}{2}$$
 5) $-\frac{1}{2}$

Задание А3. Упростите выражение $\left(\cos(2\pi-\alpha)-\sin\left(\alpha-\frac{3\pi}{2}\right)+ctg\left(\frac{\pi}{2}+\alpha\right)\right):tg\left(\alpha-\pi\right)$ 1) 1 2) -1 3) $\sin\alpha$ 4) $\cos\alpha$ 5) $-ctg^2\alpha$

Задание A4. Сумма корней или корень, если он единственный, уравнения $\sqrt{x^3-x^2+2x+13} = \sqrt{x^3+4}$ принадлежит промежутку

Задание А5. Найдите $ctg\alpha$, если выполняется равенство $3ctg\alpha - 2ctg\alpha \cdot \cos\alpha - 6\cos\alpha + 9 = 0$ 1) -1 2) 2 3) -3 4) -2,5 5) -1,5

Задание Аб. Найдите среднее арифметическое всех корней уравнения $(x^2-81)(3^{\sqrt{3x+7}}-3^{x+1})=0$

1) 1 2) $3\frac{1}{3}$ 3) 6 4) $\frac{1}{4}$ 5) $-\frac{2}{3}$

Задание А7. Найдите сумму корней или корень, если он единственный, уравнения $\log_{2x-1}(5x^2-10x+6)=2$

1) 1 2) 2 3) 6 4) 4 5) 5

Задание **А8**. Сумма корней уравнения $|x^2-12| = -4x$ равна

1) 8 2) -8 3) 0 4) -4 5) 4

Задание А9. Найдите область определения функции $f(x) = \sqrt{\log_{0.5} \frac{x+1}{12-4x}}$ 1) $(-\infty; 2, 2) \cup (3; \infty)$ 2) (-1; 2, 2] 3) [2, 2; 3) 4) (-1; 3) 5) $(-\infty; 3)$

Задание A10. Уравнение геометрического места точек плоскости, равноудаленных от двух прямых y = -2x + 4 и y = -2x - 8, имеет вид

1)
$$y+2x+2=0$$
 2) $y+2x-2=0$ 3) $y-2x+2=0$
4) $y+2x-4=0$ 5) $y+2x+4=0$

Задание A11. Материальная точка движется по оси ОХ по закону $x(t) = 3t + t^2 - \frac{t^3}{3}$ (x – координата в метрах, t – время в секундах). Через сколько секунд после начала движения точка остановится?

1) 1 2) 2 3) 3 4) 4 5) 5

Задание A12. Найдите количество точек экстремума функции $y = \frac{2x^3 - 3x^2 + 1}{8x^3}$

1) 1 2) 2 3) 3 4) 4 5) 0

Задание А13. В цилиндре сечение площадью $16\sqrt{3}cм^2$, параллельное оси, отсекает от окружности основания дугу в 120°. Найдите площадь (в кв. см) боковой поверхности цилиндра.

1) 18π 2) 24π 3) 28π 4) 32π 5) 36π

Задание А14. Составьте уравнение касательной к графику функции $y = 3x^3 - 12x - 15$ в точке с абсциссой x = -2.

1)
$$y = 24 - 33x$$

2)
$$y = 33x + 24$$

3)
$$y = 33x - 24$$

4)
$$y = 24x + 33$$

5)
$$y = 24x - 33$$

Задание А15. Уравнение окружности с центром в точке пересечения графиков функций $y = \log_2 x$ и y = 6 - x и радиусом r = 2 имеет вил

1)
$$(x+4)^2 + (y+2)^2 = 2$$

2)
$$(x+4)^2 + (y+2)^2 = 4$$
 3) $(x-4)^2 + (y-2)^2 = 4$

3)
$$(x-4)^2 + (y-2)^2 = 6$$

5) 2.5 часа

4)
$$(x-4)^2 + (y-2)^2 = 2$$
 5) $(x-4)^2 + (y+2)^2 = 4$

5)
$$(x-4)^2 + (y+2)^2 = 4$$

Задание А16. На одном станке партию деталей можно изготовить за 5 часов, а на другом - за 4 часа. Сколько времени нужно для изготовления 90% деталей этой партии, если включены оба станка?

- 1) 1,5 часа
- 2) 50 минут
- 3) 1,2 часа
- 4) 2 yaca

Залание A17. Укажите количество корней уравнения $2\sin\left(\frac{\pi}{2}+x\right)\cos\left(\frac{\pi}{2}-x\right)=\sin(x+\pi)$ принадлежащих интервалу (90°;500°)

- 2)3
- 3)4
- 4) 6
- 5) 2

Задание А18. Из вершины прямого угла прямоугольного треугольника с катетами 3 см и 4 см на гипотенузу опущена высота. Найдите модуль разности длин двух отрезков, на которые эта высота делит гипотенузу 3) 1,1

- 1) 1,2
- 2) 1,8
- 5) 1,4

Задание A19. Даны точки A(2;-1;4), B(-2;3;1), C(-2;-3;7). Найдите сумму координат точки D(x; y; z), если $\overrightarrow{AB} + 2\overrightarrow{AC} - 3\overrightarrow{BD} = \vec{0}$

- 1)6
- 2)8

- 4) -4
- 5) -8

Задание А20. Вершина конуса и окружность, ограничивающая его основание, находятся на сфере. Высота конуса равна 5 см. а радиус его основания равен 2 см. Найдите радиус сферы

- 1) 2,6
- 2) 2,7 3) 2,8

3) -1

- 4) 2,9
- 5) 3,0

Задание В 1. Укажите наименьший общий знаменатель дробей $\frac{3}{17}$, $\frac{7}{34}$ и $\frac{9}{85}$.

Задание В 2. В знакочередующейся геометрической прогрессии первый член равен 2, а сумма третьего и пятого членов равна 180. Найдите второй член прогрессии.

Задание В 3. Найдите сумму целых решений неравенства $\frac{x^2 + x - 2}{\sqrt{4 - 3x - x^2}} \ge 0$

Задание В 4. Найдите произведение корней уравнения $\frac{x^3 + 4x^2 - x - 22}{x^2 + 3x - 10} = 1$

Задание В 5. Найдите сумму $x_0 + y_0$, где x_0, y_0 - решение системы $\int 2y + x^2 = 20 - 3x$ $\text{if } x_0 \cdot y_0 < -1$

Задание В 6. Найдите наименьший корень уравнения (x+3)(|x|-3)=-4

Задание В 7. Найдите число целых решений неравенства $\log_{5}|x-2|<1$

Задание В 8. Найдите количество целых значений аргумента х. принадлежащих области определения функции f(g(x)), если $f(x) = \lg \frac{2x+1}{5x+1}$ и $g(x) = \frac{1}{x^2}$

Задание В 9. Найдите площадь четырехугольника с вершинами в точках А (-1; 1), B (3;5), C (7;5) H D (8;1)

Задание В 10. Укажите целое значение параметра а (если оно единственное) или сумму целых значений из промежутка (4;16), при которых уравнение $(\log_2(x-6)-3)\cdot(x-a)=0$ имеет единственное решение.

Тест по математике № 21702

Инструкция для учащихся

Тест состоит из частей A и В. На его выполнение отводится 180 минут. Справочной литературой пользоваться нельзя. Рекомендуем выполнять задания по порядку. Если какое-либо задание не удается выполнить сразу, перейдите к следующему, а потом вернитесь к пропущенным заданиям.

Часть А

К каждому заданию части А дано несколько ответов, из которых только один верный. Решите задание, сравните полученный ответ с предложенными. В бланке ответов под номером задания поставьте крестик (x) в клеточке, номер которой совпадает с номером выбранного Вами ответа.

Часть В

Ответы к заданиям части В запишите на бланке ответов рядом с номером задания (B1 – B10), начиная с первого окошка. Ответом может быть только число. Каждую цифру числа, запятую и знак минус (если число отрицательное) пишите в отдельном окошке по приведенным образцам.

Задание **A** 1. Вычислите значение дроби $\frac{4x^2+xy-2xz}{3y^2+2xz-z^2}$ при условии, что $\frac{y}{z}=2$,

$$\frac{x}{y} = 3$$
1) $3\frac{8}{27}$
2) 4,5
3) $6\frac{6}{23}$
4) $6\frac{2}{9}$
5) 7,2

Задание A 2. Результат вычисления выражения $-\log_3\Bigl(\log_2\sqrt[q]{\sqrt[q]{2}}\Bigr)$ равен

1)
$$-\frac{1}{3}$$
 2) $\frac{1}{3}$ 3) -3 4) 3 5) 2
ЗаданиеАЗ. Упростите выражение $2\sin\left(\alpha - \frac{\pi}{2}\right) \cdot \cos(2\pi + \alpha) - 2\cos\left(\frac{3\pi}{2} - \alpha\right) \cdot \sin(3\pi - \alpha) + 2\cos^2\alpha$
1) 1 2) $\cos 2\alpha$ 3) $\sin 2\alpha$ 4) $2\sin^2\alpha$ 5) $\cos^2\alpha$

Задание A4. Сумма корней или корень, если он единственный, уравнения $\sqrt{x^3 + 2x^2 - 7x + 2} = \sqrt{x^3 - 4}$ принадлежит промежутку

Задание A5. Найдите $tg\alpha$, если выполняется равенство $4tg\alpha - 2tg\alpha \cdot \cos\alpha - 5\cos\alpha + 10 = 0$

Задание Аб. Найдите среднее арифметическое всех корней уравнения $(x^2-1)(2^x-2^{\sqrt{3x+10}-2})=0$

1) -1,0 2)
$$-\frac{1}{4}$$
 3) 0 4) $\frac{2}{3}$ 5) 1,5

Задание А7. Найдите сумму корней или корень, если он единственный, уравнения $\log_{x+6} (2x^2+2) \cdot \log_2 (x+6) = \log_2 (3x^2+3x-8)$

Задание A8. Сумма корней уравнения $|x^2 - 19| = -18x$ равна

Заданне A9. Найдите область определения функции $f(x) = \sqrt{\log_6(x+2) - \log_6(2x-8)}$ 1) (-2;10] 2) (-2;4) 3) (-2;4) \cup {10} 4) (4;10] 5) [10; ∞)

Задание A10. Уравнение геометрического места точек плоскости, равноудаленных от двух прямых
$$y = 7x + 7$$
 и $y = 7x - 21$, имеет вид

1)
$$y-7x+14=0$$
 2) $y-7x+7=0$ 3) $y-7x-14=0$
4) $y+7x+7=0$ 5) $y+7x-14=0$

Задание А11. Материальная точка движется по оси ОХ по закону $x(t) = \frac{2}{3}t^3 + t^2 - 4t$ (x — координата в метрах, t — время в секундах). Через сколько секунд после начала движения ее скорость будет равна 20 м/сек? 1) 1 2) 2 3) 3 4) 4 5) 5

Задание A12. Найдите количество точек экстремума функции $y = \frac{7x^3 - 3x^2 + 9}{5x^3}$ 1) 2 2) 3 3) 1 4) 0 5) 4

Задание A13. В усеченной пирамиде с объемом 168 см³ и высотой 18 см площади оснований относятся как 1:4. Найдите площадь большего основания пирамиды

Заданне A14. Составьте уравнение касательной к графику функции $y = 5x^2 - 8x + 1$ в точке с абсциссой x = 2.

1)
$$y=12x-19$$
 2) $y=-12x-19$ 3) $y=19x+12$
4) $y=12-19x$ 5) $y=19x-12$

Задание A15. Уравнение окружности с центром в точке пересечения графиков функций $y = \frac{2}{r}$ и $y = 2^{r}$ и радиусом r = 3 имеет вид

1)
$$(x+1)^2 + (y-2)^2 = 9$$

2) $(x+1)^2 + (y+2)^2 = 9$
3) $(x-1)^2 + (y+2)^2 = 9$
4) $(x-1)^2 + (y-2)^2 = 9$
5) $(x-1)^2 + (y-2)^2 = 3$

Задание A16. Двое рабочих, работая совместно с одинаковой производительностью, могут выполнить заказ за 5,5 часа. За сколько времени они выполнят заказ, если один из рабочих увеличит свою производительность на 20%?

Задание A17. Укажите количество корней уравнения $\sqrt{3}\cos\left(\frac{\pi}{2}+x\right)=2\sin(\pi-x)\sin(\pi+x)$ принадлежащих интервалу $\left(100^{\circ};600^{\circ}\right)$ 1) 4 2) 5 3) 3 4) 6 5) 2

Задание A18. В треугольнике ABC биссектриса угла A делит сторону BC на отрезки, длины которых равны 28 см и 12 см. Найдите (в см.) периметр треугольника ABC, если AB – AC = 18 см.

Задание А19. Даны точки A(2;2;-3), B(-2;4;2), C(3;-1;4). Найдите сумму координат точки M(x;y;z), если $2\overline{AB} - \overline{BC} + 2\overline{CM} = \overline{0}$

Задание A20. Все вершины правильной четырехугольной пирамиды с боковым ребром 3 см находятся на сфере. Площадь сферы равна 16π см². Найдите (в см) высоту пирамиды

Задание В 1. Укажите наименьший общий знаменатель дробей $\frac{5}{26}$, $\frac{2}{65}$ и $\frac{7}{10}$.

Задание В 2. В знакочередующейся геометрической прогрессии третий член равен 135, а сумма первых трех ее членов равна 195. Найдите первый член прогрессии.

Задание В 3. Найдите сумму целых решений неравенства $\sqrt{\frac{x+2}{x-4}} \cdot (x^2 + x - 20) \le 0$

Задание В 4. Найдите произведение корней уравнения $\frac{x^3 + 2x^2 - 4x - 5}{x^2 - 1} = 1$

Задание В 5. Найдите сумму $x_0 + 2y_0$, где x_0, y_0 - решение системы $\begin{cases} x^2 - 5x = 18 - 2y \\ x - y = -7 \end{cases}$ и $x_0 \cdot y_0 < 0$

Задание В 6. Найдите наименьший корень уравнения (x+2)(|x|-2)=-1

Задание В 7. Найдите число целых решений неравенства $\log_{0.5} |x-3| > -2$

Задание В 8. Найдите количество целых значений аргумента x, принадлежащих области определения функции f(g(x)), если $f(x) = \sqrt{\frac{2x+1}{4x-1}}$ и $g(x) = \frac{1}{x+2}$

Задание В 9. Найдите площадь четырехугольника с вершинами в точках А (2; 1), В (5; 2), С (5;5) и D (2;8)

Задание В 10. Укажите целое значение параметра a (если оно единственное) или сумму целых значений из промежутка (0; 9), при которых уравнение $(\sqrt{x-3}-2)\cdot(x-a)=0$ имеет единственное решение.