Exercices de colles

- Schéma cinématique

Sciences
Industrielles de

l'Ingénieur

Colle 01

Schéma cinématique

Exercice 1 – Borne réglable **
B2-13

Pas de corrigé pour cet exercice.

Soit la borne réglable suivante.

La nomenclature est la suivante.

Rep	Désignation	Quantité
1	Coulisseau	1
2	Borne	1
3	Corps	1
4	Vis de guidage	1
5	Couvercle	1
6	Vis de couvercle	2
7	Socle	1
8	Vis de socle	4
10	Molette	1
12	Vis	1
13	Goupille fendue	1

Question 1 Colorier le dessin de définition en utilisant la même couleur pour une même classe d'équivalence.

Question 2 Lister les classes classes d'équivalence.

Question 3 Donner le graphe de liaisons en précisant rigoureusement les liaisons. Justifier le choix des liaisons.

Question 4 Réaliser le schéma cinématique.

Corrigé voir 1.

Exercice 2 – Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Corrigé voir 2.

Schéma cinématique

Exercice 3 - Robot de toit **

B2-13

Pas de corrigé pour cet exercice.

Sit le mécanisme donné au verso. La nomenclature est la suivante.

Rep	Nb	Désignation
1	1	Carter inférieur fixe
2	1	Carter supérieur pivotant
3	2	Ecrou hexagonal ISO 4032 - M10
4	1	Rondelle plate ISO 10673 – Type N - 10
5	1	Axe fileté à tête fendu
6	1	Plat de fermeture
7	7	Rondelle plate ISO 10673 – Type N - 5
8	1	Bride de liaison support coussinets
9	1	Bride de liaison gauche
10	2	Coussinet
11	1	Tube carter
12	1	Bride de liaison droite
13	1	Carter cylindrique
14	1	Axe excentré
15	4	Vis à tête cylindrique à six pans creux
16	1	Chape mâle
17	2	Goupille cylindrique
18	1	Bielle rotule
19	1	Cale de réglage
20	1	Fermeture rotule
21	1	Bielle à portée sphérique
22	3	Vis à tête cylindrique à six pans creux
		ISO 4762 - M5-30
23	1	Goupille cylindrique ISO 8734 - 3x30
24	1	Chape femelle
25	1	Axe de chape
26	1	Anneau élastique pour arbre, 4 x 0,4
27	2	Coussinet à collerette
28	1	Bielle

	3.71	D
Rep	Nb	Désignation
29	3	Vis à tête cylindrique à six pans creux
30	1	Axe d'articulation
31	1	Axe de sortie
32	1	Support d'axe de sortie
33	1	Ecrou hexagonal
34	1	Rondelle plate
35	2	Coussinet à collerette
36	1	Plateau support excentrique
37	1	Vis à tête moletée
38	1	Doigt de réglage
39	1	Coussinet
40	1	Entretoise
41	2	Anneau élastique pour arbre, 6 x 0,7
42	1	Anneau élastique pour alésage, 32 x 1,5
43	1	Anneau élastique pour arbre, 12 x 1
44	1	Arbre d'entrée
45	2	Roulement à une rangée de
		billes à contact radial
46	1	Support roulements
47	1	Carter
48	1	Vis sans fin Z48 = 2 filets
49	2	Boitier
50	2	Roulement à une rangée de
		billes à contact radial
51	2	Joint à deux lèvres
52	1	Arbre Creux
53	1	Vis à tête hexagonale ISO 4014-M6
54	1	Arbre
55	1	Roue dentée Z55= 60 dents

Question 1 Colorier le dessin de définition en utilisant la même couleur pour une même classe d'équivalence.

Question 2 Lister les classes classes d'équivalence.

Question 3 Donner le graphe de liaisons en précisant rigoureusement les liaisons. Justifier le choix des liaisons.

Question 4 Réaliser le schéma cinématique.

Corrigé voir 1.

Exercice 4 - Pompe à pistons radiaux **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Corrigé voir 4.

Colle 03

Schéma cinématique

Exercice 5 - Pompe ENSIETA **

B2-13

Pas de corrigé pour cet exercice.

Le plan joint format A4 représente l'ensemble monté d'une pompe hydraulique manuelle.

La pompe est fixée sur un support vertical au moyen de 3 trous filetés (1). Une série de trois trous filetés est usinée sur chaque coté du corps (2), permettant ainsi de fixer indifféremment la pompe sur l'une ou l'autre de ses faces. L'admission de l'huile est effectuée par l'orifice (3), le refoulement par l'orifice (4).

Le pompage s'effectue en actionnant un levier placé dans l'alésage cannelé du maneton (5). Le mouvement alternatif est, par l'intermédiaire de la biellette articulée, transmis au piston coulissant (6).

Lors du mouvement de droite à gauche du piston coulissant, un volume d'huile est aspiré à travers (3) et vient s'emmagasiner dans l'alésage à droite de la tête du piston, simultanément l'huile qui se trouve à gauche de la tête du piston est refoulée par l'orifice (4).

Lors du mouvement de gauche à droite du piston coulissant s'effectue le transfert, à travers de la tête du piston, de l'huile emmagasinée à sa droite (celle-ci passant côté tige). Simultanément une partie de l'huile transférée est refoulée dans (4).

Un clapet anti-retour est constitué d'une bille et d'un ressort. Sur la pompe étudiée ils sont au nombre de trois. Le passage du fluide dans un sens, par action sur la bille provoque l'écrasement du ressort et libère le passage. Dans le sens contraire l'action du fluide se conjugue avec celle du ressort et interdit le passage.

Question 1 Le diamètre nominal de la bille contenue dans le clapet anti-retour situé sur l'orifice (4) est identique à celui de l'alésage qui la guide. Est-ce fonctionnellement correct? Justifier votre réponse. L'observation de la pièce (7) du clapet situé sur l'orifice (3) peut vous aider pour la réponse.

Question 2 L'alésage du corps contenant l'extrémité du raccord orifice (4) et l'alésage sur lequel le piston (6) coulisse doivent-ils être réalisés avec le même type d'état de surface? Justifier votre réponse.

Question 3 Entre la tige du piston et l'alésage du corps, quel ajustement choisir? Préciser s'il s'agit d'un ajustement avec jeu, avec serrage ou ajusté.

Question 4 D'après la représentation du dessin d'ensemble, un des composants de la pompe ne peut pas être monté. Quel est-il (donner son numéro)? Pourquoi? Que faudrait-il faire pour le rendre montable?

Question 5 Dans le mouvement de droite à gauche du piston, le volume aspiré dans (3) à droite de la tête de piston est-il le même que celui refoulé à gauche de la tête de piston dans (4)? Justifier votre réponse.

On donne les dimensions suivantes :

- tête de piston = 29 mm;
- tige de piston = 18 mm;
- course du piston = 31 mm.

Question 6 *Quel est le volume d'huile envoyé à la sortie (4) :*

- lors de la course droite gauche du piston?
- lors de la course gauche droite du piston?

Schéma cinématique

On considère la pompe sans aucun clapet. Seule la transformation de mouvement permettant le déplacement du piston nous intéresse.

Question 7 Faire le schéma cinématique de la pompe.

Exercice 6 - Système bielle manivelle ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, R = 10 mm et L = 20 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 4 En déduire la course de la pièce 3.

Corrigé voir 6.