

Hausübung Ebener 3R Manipulator Teil 1/2

ausgegeben von: zuletzt geändert: 21. Dezember 2022

1 Allgemeines

Für einen ebenen 3R-Manipulator soll ein dynamisches Simulationsmodell erstellt und implementiert, sowie die Roboterkinematik analysiert werden. Verwenden Sie ein Computeralgebraprogramm für symbolische Berechnungen und Matlab / Python / Octave zur Simulation.

2 Modellbildung

Abb. 1 - 3R-Manipulator

In Abb.1 ist ein ebener 3R-Manipulator dargestellt. Die drei Armsegmente mit den Längen l_i , $i=1\ldots 3$, besitzen die Massen m_i und auf den jeweiligen Massenmittelpunkt bezogene Trägheitsmomente J_i . Die Rotationsgelenke mit den zugehörigen Gelenkswinkeln q_i werden über permanenterregte Gleichstrommotoren mit Ankerwiderstand R_{a_i} , Motorkonstanten K_{ω_i} und K_{m_i} , (Ankerinduktivität L_{a_i} kann vernachlässigt werden), mit nachgeschaltetem Getriebe mit Übersetzungsverhältnis r_i angetrieben. Die Trägheitsmomente der Antriebe seien mit J_{m_i} bezeichnet, die Reibung motorseitig wird mittels dem Parameter B_{r_i} modelliert. Erstellen Sie ein dynamisches Modell eines ebenen 3R-Manipulators (samt Antrieb in den jeweiligen Gelenken) in der Form

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + B\dot{q} + g(q) = u.$$

Legen Sie das Basiskoordinatensystem mit Ursprung im ersten Rotationsgelenk des Manipulators und x-Achse in horizontaler Richtung fest und benutzen Sie die aus der Vorlesung bekannte Vorgangsweise, indem Sie folgende Schritte durchführen:

- Berechnen Sie die Jacobimatrix für die Massenmittelpunkte der drei Armsegmente.
- Stellen Sie, unter Verwendung der Jacobimatrizen, die Gleichung für die Kinetische Energie der drei Armsegmente auf und berechnen Sie die Massenmatrix D(q).
- Berechnen Sie aus den Einträgen der Matrix D(q) über die Christoffel Symbole die Einträge der Matrix $C(q, \dot{q})$.
- Stellen Sie die Gleichung für die Potentielle Energie auf und berechnen Sie den Gravitationsvektor g(q).
- Geben Sie die Gleichung des rein mechanischen Teilsystems in der Form $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + q(q) = \tau$ an.
- Erweitern Sie das mechanische System um das elektrische Teilsystem samt Reibung, berechnen Sie die Matrizen M(q) und B(q).

3 Kinematik

Mit Hilfe des Endeffektors des ebenen 3R Manipulators können Positionen im Arbeitsraum mit gewünschter Orientierung angefahren werden. Diese Positionen sollen mittels des Vektors $X = [x, y, \Phi]^T$ beschrieben werden, wobei x die horizontale Position, y die vertikale Position und Φ die Orientierung des Endeffektors im ortsfesten Koordinatensystem relativ zur x-Achse beschreiben.

- Geben Sie die Vorwärtskinematik X = f(q) an.
- Bestimmen Sie die inverse Kinematik $q = f^{-1}(X)$.
- Berechnen Sie die analytische Jacobimatrix J_a und deren Ableitung nach der Zeit \dot{J}_a .

4 Simulation

- Implementieren Sie die Bewegungsgleichungen des Robotersystems und wählen Sie realistische Systemparameter. Das Programm muss so aufgebaut sein, dass die Systemparameter ohne großen Aufwand angepasst/geändert werden können.
- Schreiben Sie eine Funktion, mit deren Hilfe die Bewegung der Armsegmente des 3R Manipulators in der Ebene graphisch dargestellt werden kann und testen Sie die Simulation, indem Sie für *u* verschiedene Werte vorgeben.