Name:	
	<u> </u>

Advanced Calculus 2 Instructor Piotr Hajłasz Final Exam

Due on May 1, 2020

Problem	Possible points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	

You need 100 points so 2 problems is a bonus.

Problem 1. Suppose $f: \mathbb{R}^2_+ \to \mathbb{R}$ is a continuous function defined on

$$\mathbb{R}^2_+ = \{ (x, y) : x \in \mathbb{R}, \ y > 0 \}.$$

Assume also that the limits

$$g(u,v) = \lim_{t \to 0} \frac{f((u+t)\cos v, (u+t)\sin v) - f(u\cos v, u\sin v)}{t},$$

and

$$h(u,v) = \lim_{t \to 0} \frac{f(u\cos(v+t)), u\sin(v+t)) - f(u\cos v, u\sin v)}{t},$$

exist and define continuous functions q, h on the domain

$$D = \{(u, v) : u > 0, 0 < v < \pi\}.$$

Prove that the function f is differentiable on \mathbb{R}^2_+ .

Proof. WRITE YOUR SOLUTION HERE.

Problem 2. Let $f \in C^1(\mathbb{R})$ be a continuously differentiable function such that $|f'(x)| \le 1/2$ for all $x \in \mathbb{R}$. Define $g : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$g(x,y) = (x + f(y), y + f(x)).$$

Prove that

- (1) g is a diffeomorphism,
- (2) $g(\mathbb{R}^2) = \mathbb{R}^2$,
- (3) the area $|g([0,1]^2)|$ of the image of the unit square belongs to the interval [3/4,5/4].

Hint: Among other tools use the contraction principle.

Proof. WRITE YOUR SOLUTION HERE.

Problem 3. Prove that the tangent planes to the surface S defined by $x^2 + y^2 - z^2 = 1$ at the points $(x, y, 0) \in S$ are parallel to the z-axis.

Proof. WRITE YOUR SOLUTION HERE.

Problem 4. Prove that if $f:[0,1] \to [0,1]$ is a continuous function then its graph as a subset of \mathbb{R}^2 has measure zero.

Proof. WRITE YOUR SOLUTION HERE.

Problem 5. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a continuous function. Let $K \subset \mathbb{R}^3$ be a compact set such that $|f(x) - f(y)| \le 2012|x - y|^2$ for all $x, y \in K$. Prove that the set $f(K) \subset \mathbb{R}^2$ has measure zero as a subset of \mathbb{R}^2 .

Proof. WRITE YOUR SOLUTION HERE.

Problem 6. Assume that $f:[0,1] \to [0,1]$ is a continuous function such that the set $\{x \in [0,1]: f(x)=1\}$ has measure zero. Prove directly (without using any results like monotone or dominated convergence theorem) that

$$\lim_{n \to \infty} \int_0^1 f(x)^n \, dx = 0.$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 7. Let $\gamma: \mathbb{R} \to \mathbb{R}^n$ and $\mathbf{v}_i: \mathbb{R} \to \mathbb{R}^n$, i = 1, 2, ..., n-1, be C^{∞} smooth functions such that for any $t \in \mathbb{R}$ the vectors

$$\gamma'(t), \mathbf{v}_1(t), \ldots, \mathbf{v}_{n-1}(t)$$

form an orthonormal basis of \mathbb{R}^n (here we differentiate γ but **do not** differentiate \mathbf{v}_i , $i = 1, 2, \dots, n-1$).

Consider the mapping $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\Phi(x_1,\ldots,x_n) = \gamma(x_n) + \sum_{i=1}^{n-1} x_i \mathbf{v}_i(x_n).$$

- (a) Find the derivative $D\Phi(x_1,\ldots,x_n)$;
- (b) Prove that Φ is a diffeomorphism in a neighborhood of and point of the form $(0, \ldots, 0, x_n)$;
- (c) Find the limit

$$\lim_{r \to 0} \frac{|\Phi(B^n(0,r))|}{|B^n(0,r)|} \,,$$

where $B^n(0,r)$ denotes the ball of radius r centered at the origin and |A| stands for the volume of the set A.

Proof. WRITE YOUR SOLUTION HERE.

Problem 8. Prove that if $K \in C^1(\mathbb{R}^2 \setminus \{(0,0)\})$ satisfies the estimate

$$|\nabla K(x)| \le \frac{1}{|x|^3}$$
 for all $x \ne (0,0)$

then there is a constant C > 0 such that

$$\iint_{\{x \in \mathbb{R}^2: |x| > 2|y|\}} |K(x - y) - K(x)| \, dx \le C$$

for all $y \in \mathbb{R}^2$.

Hint: Use the mean value theorem to estimate |K(x - y) - K(x)| and then integrate in polar coordinates.

Proof. WRITE YOUR SOLUTION HERE.

Problem 9. Use Green's theorem to prove the following result: If the vertices of a polygon, in counterclockwise order, are $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, then the area of the polygon is

$$A = \frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i),$$

where we use notation $x_{n+1} = x_1$, $y_{n+1} = y_1$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 10. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with C^1 boundary and let $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi(x,y) = (u(x,y),v(x,y))$, be a C^2 diffeomorphism. Prove that

$$\int_{\partial\Omega} uv_x \, dx + uv_y \, dy = \pm |\Phi(\Omega)|,$$

where $|\Phi(\Omega)|$ denotes the area of $\Phi(\Omega)$ and $\partial\Omega$ has positive orientation. Show on examples that both cases $+|\Phi(\Omega)|$ and $-|\Phi(\Omega)|$ are possible.

Proof. WRITE YOUR SOLUTION HERE.

Problem 11. Let f be a polynomial of total degree at most three in $(x, y, z) \in \mathbb{R}^3$. Prove that:

$$\int_{x^2+y^2+z^2 \le 1} f(x,y,z) \, dx \, dy \, dz = \frac{4\pi f((0,0,0))}{3} + \frac{2\pi \left(\Delta f\right) ((0,0,0))}{15}.$$

Here $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian operator on \mathbb{R}^3 .

Proof. WRITE YOUR SOLUTION HERE.

Problem 12. Suppose that $K \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$ and

$$K(x) = \frac{K(x/||x||)}{||x||} \quad \text{for all } x \in \mathbb{R}^2 \setminus \{0\}.$$

- (a) Prove that $\nabla K(tx) = t^{-2} \nabla K(x)$ for $x \neq 0$ and t > 0.
- (b) Use the divergence theorem to prove that (on both sides we integrate vector valued functions)

$$\int_{\{1 \le ||x|| \le 2019\}} \nabla K(x) \, dx = \int_{\partial \{1 \le ||x|| \le 2019\}} K(x) \vec{\mathbf{n}} \, d\sigma(x).$$

(c) Prove that

$$\int_{\{1 \le ||x|| \le 2019\}} \nabla K(x) \, dx = 0.$$

Hint. Show first that $K(tx) = t^{-1}K(x)$ for $x \neq 0$, t > 0. In (a) differentiate K(tx). Part (a) is not needed for parts (b) and (c).

Proof. WRITE YOUR SOLUTION HERE. □