Unit 8B Equilibrium

What is Equilibrium? Lesson 1

EQUILIBRIUM is a dynamic [ever changing] condition where rates of opposing processes are equal.

- o Can only take place in a closed container/space
- Types of Equilibrium:
 - o Physical Equilibrium: _____ and ____ and ____
 - o Chemical Equilibrium

Phase Equilibrium

- Rate of one _____ is
 equal to the rate of the opposing phase
 change.
- Occurs when two phases exist at the same temperature.
 - o Think about those heating/cooling curves and the plateaus where Melting/Freezing and Condensing/Vaporizing took place

In an open container

All liquid molecules will eventually convert to a gas and leave the container

In a closed container

The liquid converts into a vapor but remains just above the remaining liquid (due to the closed lid of the container) creating vapor pressure.

Dynamic Equilibrium

- → Molecules initially escape from _____.
- → As the vapor builds up some vapor _____ back to a liquid.
- → Eventually the rate of the forward reaction equals that of the reverse reaction.

Vapor Pressure

→ The pressure of the above a liquid

Factors That Affect Vapor Pressure

→ Intermolecular Forces

- - The stronger the intermolecular forces the lower the vapor pressure and vice versa
- o Strong Forces such as ______ and dipole forces are harder to break creating a _____ vapor pressure
- o Weak forces such as London dispersion forces are easier to break creating a _____ vapor pressure.

ightarrow Temperature

o As temperature increase, molecules have more ______

to break their intermolecular forces between liquid molecules

ightarrow Adding a solute to a solvent

o Lowers the vapor pressure of a liquid

o This is due to the solvent not being able to convert to a gas as often

Pure Solvent

Solution

ightarrow What Factors <u>CANNOT</u> Affect Vapor Pressure?

- 1) Changing the container size
- 2) Adding more of the solvent to the container

Solution (Physical) Equilibrium

- Rate of _____ = rate of _____
 - Meaning that the rate of the compound decomposing [separating] equals the rate ions reconnecting into ionic compounds as shown in the diagram to the right.
- Occurs in saturated solutions

Equilibrium in Chemical Reactions

$$A + B \rightarrow C$$

- o Equilibrium is not reached if one of the products is withdrawn as quickly as it is produced and no new reactants are added.
- o Reaction _____ until reactants are used up.
- → BUT most chemical reactions are able to proceed in both directions under the appropriate conditions. (closed container) They are REVERSIBLE!

Example:

$$Fe_3O_{4(s)} + 4H_{2(g)} \leftrightarrow 3Fe_{(s)} + 4H_2O_{(g)}$$

→ WHEN DOES IT STOP? It doesn't.

Reversible Reactions

- ightarrow Represented by a double arrow between reactants and products \leftrightarrow
- ightarrow In a closed system, as products are produced they will react in the reverse reaction until the _____ of the forward and reverse reactions are _____.

- - o Rate depends on concentration

- The forward rate of a reaction decreases over time
- o The reverse rate of a reaction increases over time
- o Eventually the 2 rates become equal

Concentration vs Time

The Concept of Equilibrium

- → Once equilibrium is achieved, the amount of each reactant and product remains constant
- → CON CON REQUAL: Concentration of reactants and products are ______, not necessarily equal. Rates are Equal!
- → Depicting Equilibrium
 - o A ______ identifies that a reaction is in equilibrium.

Lesson 2 Writing Equilibrium Equations

- → The equilibrium expression is ratio of ______ over ____.
- → Only use _____ or ____ substances in the expression; never use pure solids or liquids

Writing an Equilibrium Expression

$$aA + bB \leftrightarrow cC + dD$$

The equilibrium expression for this reaction would be...

The lower case letter = coefficent

The upper case = **chemical formula**

K is the equilibrium constant

3. $Zn(s) + Cu^{2+}(aq) \leftrightarrow Cu(s) + Zn^{2+}(aq)$

Practice: Write Equilibrium expressions

1. $SnO_2(s) + 2CO(g) \leftrightarrow Sn(s) + 2CO_2(g)$

2. $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$

What Does the Value of K Mean?

- If K >> 1, the reaction is product-favored; product predominates at equilibrium.
- If K << 1, the reaction is reactant-favored;
 reactant predominates at equilibrium

Equilibrium Can Be Reached from Either Direction

As you can see, the ratio of $[NO_2]^2$ to $[N_2O_4]$ remains constant at this temperature no matter what the initial concentrations of NO_2 and N_2O_4 are.

Lesson 3: Le Chatelier's Principle

- o Whenever a ______ is applied to a reaction at equilibrium, the reaction will _____ its point of equilibrium to offset the stress.
- o Stresses include:
 - Change Temperature
 - Change Pressure
 - Changes concentrations [product or reactant]

Change in Concentrations [of a Reactant or Product] ADD AWAY, TAKE TOWARDS

- Adding a reactant or product shifts the equilibrium away from the ______
 - o Increase product makes more reactant
 - o Increase reactant makes more product
- Removing a reactant or product shifts the equilibrium towards the ________.
 - o Decrease product makes more product
 - o Decrease reactant makes more reactant

Example: The Haber process [Change in Concentration]

$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$

If H₂ is added while the system is at equilibrium, the system must respond to counteract the added H₂

• That is, the system must consume the H_2 and produce products until a new equilibrium is established. Therefore, $[H_3]$ and $[N_3]$ will decrease and $[NH_3]$ increases.

Effects of Volume & Pressure on Gaseous Equilibrium.

- → Volume & pressure have a inverse relationship
- → Increasing pressure (decrease in ______) favors the direction that has fewer moles of gas.
- → Decreasing _____ (increase in volume) favors the direction that has greater moles of gas.
- → In a reaction with the same number of products and reactant moles of gas, pressure has no effect.

Example: Increase Volume Change to Pressure and ADD AWAY, TAKE TOWARDS MORE MOLES

$$N_2O_L(g) \leftrightarrow 2NO_2(g)$$

If the volume of the container increases while the system is at equilibrium (pressure of the gas decreases), the system must respond to counteract the decreased pressure

- That is, the system will shift to the right; more moles of product will form until a new equilibrium is established.- this raises the pressure back to where it originally was
- Therefore, [NO₂] will increase and [N₂O₂] decreases.

Example: Increase Pressure -ADD AWAY TAKE TOWARDS MORE MOLES

$$N_2O_4(g) \leftrightarrow 2NO_2(g)$$

An increase in pressure (by decreasing the volume) favors the formation of colorless N₂O₄.

- The instant the pressure increases, the system is not at equilibrium and the concentration of both gases has increased.
- The system moves to reduce the number moles of gas: shifts left
- A new equilibrium is established!

Effects of Temperature Change=

Add the word "heat" to the correct side Then ADD AWAY, TAKE TOWARDS

- ightarrow The equilibrium constant is temperature dependent.
 - o For an _____ reaction, ΔH > or ΔH is positive (+); heat can be considered as a reactant.
 - o For an _____ reaction, $\Delta H <$ o or ΔH is negative (-); heat can be considered as a product.
- → Removing heat (i.e. cooling the vessel), favors towards the decrease:
 - o if _____, cooling favors the reverse reaction,
 - o If ______, cooling favors the forward reaction.
- → Adding heat (i.e. heating the vessel) favors away from the increase:
 - o If _____, adding heat favors the forward reaction,
 - o If _____, adding heat favors the reverse reaction.

Example:

 $\Delta H = +50$ KJ; If the temperature is lowered, the reaction will shift to the left and the solution will change to pink making more $Co(H_2O)_6^{2^+}$

$$\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6(aq) + 4\operatorname{Cl}^*(aq) \Longrightarrow \operatorname{CoCl}_4^{2-}(aq) + 6\operatorname{H}_2\operatorname{O}(l)$$

Example: The Haber process	N2 (g) + 3H:	$N_2(g) + _3H_2(g) \leftrightarrow _2NH_3(g)$		
Stress Added	Shift	Stress Added	Shift	
[a] Increase [N ₂]	·	[e] Increase pressure		
[b] Decrease [H2]		[f] Increase volume		
[c] Increase [NH3]	<u> </u>	[g] Increase temperature		
[d] Decrease [NH ₃]		[h] Decrease temperature		
OVERVIEW: Equilibrium shifts due to stresses: - Concentration increase from increase - Concentration decrease shift toward decrease - Increase [↑] in pressure shifts in direction of - Decrease [↓] in pressure shifts in direction of more gas molecules - Increase [↑] in temperature favors endothermic reaction from heat - Decrease [↓] in temperature favors exothermic reaction shift towards heat				
Effect of Catalyst: → Addition of increases the rate of both the forward and reverse reactions.				
o There is no change in concentrations but equilibrium is reached more rapidly.				
→ Does not the value of K [aka no shift to reaffirm equilibrium]				
The Haber Process: Industrial Productio				
→ Application of Le Chatelier's Principl	e:	$N_{2(g)} + 3 H_{2(g)} = 2 NH_{3(g)} + 92 kJ$		
Increase pre	ssure	Shift Right		
Decrease Te		Shift Right		
Remove NH	$_{_3}$ add N $_{_2}$ and H $_{_2}$	Shift Right		

Maximum yields of NH_3 occurs under high pressures, low temperatures and by constantly removing NH_3 and adding $N_2 \& H_2$