Números naturales y números enteros

Ejercicio 1.

Encuentra los sistemas de numeración, si existe alguno, para los que se verifica cada una de las siguientes igualdades:

- 1. $3 \times 4 = 22$,
- $2.41 \times 14 = 1224$
- 3. $52 \times 25 = 1693$,
- 4. $25 \times 13 = 51$,
- 5. $13^4 = 14641$

Ejercicio 2. Da la expresión en base 8 de los naturales que en base 2 se escriben:

- 1. 1011011000100110101111,
- 2. 10001000000100110,
- 3. 1011101111011111

Ejercicio 3. Prueba que dado un número entero cualquiera m se verifica una de las siguientes posibilidades:

- 1. $m^2 \equiv 0 \pmod{8}$,
- 2. $m^2 \equiv 1 \pmod{8}$,
- 3. $m^2 \equiv 4 \pmod{8}$

Concluye que si m es impar, entonces $m^2 - 1$ es múltiplo de 8.

Ejercicio 4.

Resuelve las siguientes congruencias:

- 1. $3x \equiv 2 \pmod{5}$,
- 2. $7x \equiv 4 \pmod{10}$,
- 3. $6x \equiv 3 \pmod{4}$.

Ejercicio 5. Encuentra un número entero cuyo resto al dividirlo entre 5 sea 3 y que al multiplicarlo por 3 y dividirlo entre 4 dé resto 1.

Ejercicio 6.

Determina el número de enteros entre 1500 y 2500 tales que

(a) sus dos últimas cifras en base dos son 11,

- (b) sus dos últimas cifras en base tres son 00 y
- (c) sus dos últimas cifras en base cinco son 12.

Ejercicio 7. ¿Cuántos números naturales hay, menores que 10000, que acaben en 7, y que al dividirlos por 55 den resto 12?

Ejercicio 8. Sean $x = 48572)_{16}$ e $y = 95883)_{16}$. Expresa el valor de x + y en base 8.

Ejercicio 9.

Calcula el resto de dividir 4225¹⁸⁵⁰ entre 1234.

Ejercicio 10. En \mathbb{Z}_{300} realiza, si es posible, los siguientes cálculos:

- **25** · 60.
- 127 · (−100).
- **237**⁻¹.
- $13 50 \cdot 101^{-1}$.
- Encuentra $x \neq 0$ tal que $111 \cdot x = 0$.
- Encuentra x tal que 13x + 25 = 32x 50.
- Encuentra x tal que 11x 100 = 45x + 12.

Ejercicio 11. Calcula, si es posible, 1392^{-1} en \mathbb{Z}_{7585} .

Ejercicio 12.

Enumera los divisores positivos de 120, y calcula cuántos divisores tiene el número 118800.

Ejercicio 13. Calcula las soluciones enteras de cada una de las siguientes ecuaciones diofánticas:

- 1. 2x + 3y = 7.
- 2. 6x + 10y = 16.
- 3. 232x 341y = 17.

Ejercicio 14. ¿Cuántas soluciones tiene la ecuación diofántica

$$210x - 91y = 77$$

que verifiquen que $-500 \le x, y \le 500$?

Ejercicio 15. Demuestra que:

- 1. Un número escrito en base 10 es par si, y sólo si, su última cifra es par.
- 2. Un número escrito en base 10 es un múltiplo de 3 si, y sólo si, la suma de sus cifras es un múltiplo de 3.
- 3. Un número escrito en base 10 es múltiplo de 4 si, y sólo si, su última cifra más dos veces la penúltima es múltiplo de 4.
- 4. Un número escrito en base 10 es un múltiplo de 9 si, y sólo si, la suma de sus cifras es un múltiplo de 9.

- 5. Un número escrito en base 10 es un múltiplo de 5 si acaba en 0 o en 5.
- 6. Un número escrito en hexadecimal es multiplo de 4 si, y sólo si, termina en 0, 4, 8 ó C.
- 7. Un número escrito en base 10 es múltiplo de 11 si, y sólo si, la suma de las cifras que ocupan un lugar par menos la suma de las cifras que ocupan posiciones impares es un múltiplo de 11
- 8. Un número escrito en base 8 es un múltiplo de 7 si, y sólo si, la suma de sus cifras es un múltiplo de 7.

Ejercicio 16. Determina la factorización como producto de números primos de 10! y 15!. ¿Cuántos divisores tiene cada uno de ellos?.

Ejercicio 17. Sin realizar el cálculo, halla las cifras que faltan en los siguientes números:

1.
$$2^3 \cdot 3^2 \cdot 5^2 \cdot 7^3 = 61 - 4 - 0$$

2.
$$2^5 \cdot 3^3 \cdot 5^3 \cdot 7^3 \cdot 11 = -07 - 84 - 00$$

3.
$$17! = 35 - 6874 - 8096000$$

Ejercicio 18. Encuentra el valor máximo de n tal que 2ⁿ divide a 25!.

Ejercicio 19. Encuentra todas las parejas de números a, b tales que mcd(a,b) = 210 y mcm(a,b) = 840.