

What we will learn today?

- Review camera parameters
- Affine camera model
- Camera calibration
- Vanishing points and lines

Reading:

- [FP] Chapter 3
- [HZ] Chapter 7, 8.6

$$P' = \begin{bmatrix} \alpha & s & u_o & 0 \\ 0 & \beta & v_o & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

K has 5 degrees of freedom!

f = focal length u_o, v_o = offset

 α , $\beta \rightarrow$ non-square pixels θ = skew angle

$$\mathbf{P}' = \begin{bmatrix} \boldsymbol{\alpha} & -\boldsymbol{\alpha}\cot\boldsymbol{\theta} & \mathbf{u}_{o} & 0 \\ 0 & \frac{\boldsymbol{\beta}}{\sin\boldsymbol{\theta}} & \mathbf{v}_{o} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$

K has 5 degrees of freedom!

f = focal length $u_o, v_o = offset$

 α , $\beta \rightarrow$ non-square pixels θ = skew angle

$$P = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}_{4 \times 4} P_{w}$$

$$T = -R \widetilde{O}_c \quad ??? \quad \tilde{O}_c???$$

f = focal length $u_o, v_o = offset$

 α , $\beta \rightarrow$ non-square pixels θ = skew angle R,T = rotation, translation

$$P' = M \ P_{_{\!\! W}}$$

$$= K \begin{bmatrix} R & T \end{bmatrix} P_{_{\!\! W}}$$
 Internal (intrinsic) parameters
$$\text{External (extrinsic) parameters}$$

 α , $\beta \rightarrow$ non-square pixels θ = skew angle

f = focal length

 $u_o, v_o = offset$

R,T = rotation, translation

Goal of calibration

$$P' = M P_{w} = K[R T]P_{w}$$

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix}_{3 \times 4}$$

$$\mathbf{K} = \begin{bmatrix} \boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathbf{u}_{o} \\ 0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathbf{v}_{o} \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \mathbf{r}_{1}^{\mathrm{T}} \\ \mathbf{r}_{2}^{\mathrm{T}} \\ \mathbf{r}_{3}^{\mathrm{T}} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} \mathbf{t}_{x} \\ \mathbf{t}_{y} \\ \mathbf{t}_{z} \end{bmatrix}$$

Estimate intrinsic and extrinsic parameters from 1 or multiple images

How Cameras Produce Images

- Basic process:
 - photons hit a detector
 - the detector becomes charged
 - the charge is read out as brightness
- Sensor types:
 - CCD (charge-coupled device)
 - · high sensitivity
 - high power
 - cannot be individually addressed
 - blooming
 - CMOS
 - most common
 - simple to fabricate (cheap)
 - · lower sensitivity, lower power
 - can be individually addressed

Images are two-dimensional patterns of brightness values.

They are formed by the projection of 3D objects atto Computer Vision

Hierarchy of cameras

Examples of camera projections

perspective

Orthographic (parallel)

Affine cameras

Homogenous coordinates

- Our usual coordinate system is called a Euclidean or affine coordinate system
- Rotations, translations and projection in Homogenous coordinates can be expressed linearly as matrix multiplies

CSE152, Spr 07 Intro Computer Vision

Projective Geometry

- Axioms of Projective Plane
 - 1. Every two distinct points define a line
 - 2. Every two distinct lines define a point (intersect at a point)
 - 3. There exists three points, A,B,C such that C does not lie on the line defined by A and B.
- Different than Euclidean (affine) geometry
- Projective plane is "bigger" than affine plane – includes "line at infinity"

CSE152, Spr 07

Intro Computer Vision

Homogenous coordinates A way to represent points in a projective space

1. Add an extra coordinate

e.g.,
$$(x,y) \rightarrow (x,y,1) = (u,v,w)$$

2. Impose equivalence relation such that $(\lambda \text{ not } 0)$

$$(u,v,w) \approx \lambda^*(u,v,w)$$

i.e., $(x,y,1) \approx (\lambda x, \lambda y, \lambda)$

3. "Point at infinity" – zero for last coordinate

e.g.,
$$(x,y,0)$$

- Why do this?
 - Possible to represent points "at infinity"
 - Where parallel lines intersect
 - Where parallel planes intersect
 - Possible to write the action of a perspective camera as a matrix

Euclidean -> Homogenous-> Euclidean

In 2-D

- Euclidean -> Homogenous: (x, y) -> k(x,y,1)
- Homogenous -> Euclidean: (u,v,w) -> (u/w, v/w)

In 3-D

- Euclidean -> Homogenous: (x, y, z) -> k(x,y,z,1)
- Homogenous -> Euclidean: (x, y, z, w) -> (x/w, y/w, z/w)

CSE152, Spr 07

Projective geometry provides an elegant means for handling these different situations in a unified way and homogenous coordinates are a way to represent entities (points & lines) in projective spaces.

CSE152, Spr 07

CSE152, Spr 07

http://www.sanford-artedventures.com/create/tech_1pt_perspective.html

CSE152, Spr 07

Weak Perspective Projection

If the relative distance δz (scene depth) between two points of a 3D object along the optical axis is much smaller than the average distance \bar{z} ($\delta z < \frac{\bar{z}}{20}$),

then

$$u = f\frac{x}{z} \approx \frac{fx}{\bar{z}}$$
 $v = f\frac{y}{z} \approx \frac{fy}{\bar{z}}$

We have linear equations since all projections have the same scaling factor.

Perspective projection geometry Learning Traine C. timage plane focal length P. timage frame C. timage plane row-column frame C. timage plane perspective center row-column frame C. timage plane C. timage frame C. timage frame C. timage plane C. timage plane C. timage frame C. timage plane C. timage plane C. timage frame C. timage frame C. timage plane C. timage frame C. timage frame C. timage frame C. timage plane C. timage frame C. timage frame C. timage frame C. timage plane C. timage plane C. timage plane C. timage frame C. timage plane C. tima

Figure 1: Perspective projection geometry

Orthographic Projection

As a special case of the weak perspective projection, when $\frac{f}{z}$ factor equals 1, we have u=x and v=y, i.e., the lins (rays) of projection are parallell to the optical axis. This leads to the sizes of image and the object are the same. This is called orthgraphic projection.

Affine Camera Model

A further simplification from weak perspective camera model is the affine camera model, which is often assumed by computer vision researchers due to its simplicity. The affine camera model assumes that the object frame is located on the centroid of the object being observed. As a result, we have $\bar{z}_c \approx t_z$, the affine perspective projection matrix is

$$P_{affine} = \begin{pmatrix} s_x f r_1 & s_x f t_x + c_0 t_z \\ s_y f r_2 & s_y f t_y + r_0 t_z \\ 0 & t_z \end{pmatrix}$$

$$(11)$$

Affine camera model represents the first order approximation of the full perspective projection camera model. It still only gives an approximation and is no longer useful when the object is close to

Weak perspective projection

$$\begin{cases} x' = -mx \\ y' = -my \end{cases} \text{ where } m = -\frac{f'}{z_0} = \text{magnification}$$

Relative scene depth is small compared to its distance from the camera

Orthographic (affine) projection

Distance from center of projection to image plane is infinite

Affine cameras

$$P' = K[R \quad T]P$$

Affine case

$$K = \begin{bmatrix} \pmb{\alpha}_x & s & 0 \\ 0 & \pmb{\alpha}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$
Parallel projection matrix

Compared to

Projective case

$$K = \begin{bmatrix} \boldsymbol{\alpha}_{x} & s & x_{o} \\ 0 & \boldsymbol{\alpha}_{y} & y_{o} \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

Remember....

Affinities:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_a \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projectivities:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ v & b \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_p \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\det(AB) = \det(A)\det(B). \quad \det(A^{-1}) = \frac{1}{\det(A)}.$$

System of linear equations, Homogeneous systems http://en.wikipedia.org/wiki/System_of_linear_equations

Affine cameras

We can obtain a more compact formulation than: $P' = K \begin{bmatrix} R & T \end{bmatrix} P$

$$K = \begin{bmatrix} \alpha_x & 0 & 0 \\ 0 & \alpha_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 \times 3 \text{ affine} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \times 4 \text{ affine} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$P' = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{A}P + \mathbf{b} = M_{Euc} \begin{bmatrix} P \\ 1 \end{bmatrix}$$

$$\mathbf{M}_{Euc} = \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

Affine cameras

- Weak perspective much simpler math.
 - Accurate when object is small and distant.
 - Most useful for recognition.
- Pinhole perspective much more accurate for scenes.
 - Used in structure from motion.

- $\bullet P_1$... P_n with known positions in $[O_w, i_w, j_w, k_w]$
- •p₁, ... p_n known positions in the image

Goal: compute intrinsic and extrinsic parameters

How many correspondences do we need?

•M has 11 unknown • We need 11 equations • 6 correspondences would do it

In practice: user may need to look at the image and select the n>=6 correspondences

$$\begin{bmatrix} \mathbf{u}_i \\ \mathbf{v}_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_1 P_i}{\mathbf{m}_3 P_i} \\ \frac{\mathbf{m}_2 P_i}{\mathbf{m}_3 P_i} \end{bmatrix}$$

$$u_i = \frac{\mathbf{m}_1 P_i}{\mathbf{m}_3 P_i} \rightarrow u_i(\mathbf{m}_3 P_i) = \mathbf{m}_1 P_i \rightarrow u_i(\mathbf{m}_3 P_i) - \mathbf{m}_1 P_i = 0$$

$$\mathbf{v_i} = \frac{\mathbf{m_2} \ \mathbf{P_i}}{\mathbf{m_3} \ \mathbf{P_i}} \rightarrow \mathbf{v_i}(\mathbf{m_3} \ \mathbf{P_i}) = \mathbf{m_2} \ \mathbf{P_i} \rightarrow \mathbf{v_i}(\mathbf{m_3} \ \mathbf{P_i}) - \mathbf{m_2} \ \mathbf{P_i} = 0$$

$$\begin{cases} u_{1}(\mathbf{m}_{3} P_{1}) - \mathbf{m}_{1} P_{1} = 0 \\ v_{1}(\mathbf{m}_{3} P_{1}) - \mathbf{m}_{2} P_{1} = 0 \end{cases}$$

$$\vdots$$

$$u_{i}(\mathbf{m}_{3} P_{i}) - \mathbf{m}_{1} P_{i} = 0$$

$$\vdots$$

$$v_{i}(\mathbf{m}_{3} P_{i}) - \mathbf{m}_{2} P_{i} = 0$$

$$\vdots$$

$$u_{n}(\mathbf{m}_{3} P_{n}) - \mathbf{m}_{1} P_{n} = 0$$

$$v_{n}(\mathbf{m}_{3} P_{n}) - \mathbf{m}_{2} P_{n} = 0$$

Block Matrix Multiplication

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}$$

What is AB?

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

$$\begin{cases} -u_1(\mathbf{m}_3 P_1) + \mathbf{m}_1 P_1 = 0 \\ -v_1(\mathbf{m}_3 P_1) + \mathbf{m}_2 P_1 = 0 \\ -u_n(\mathbf{m}_3 P_n) + \mathbf{m}_1 P_n = 0 \\ -v_n(\mathbf{m}_3 P_n) + \mathbf{m}_2 P_n = 0 \end{cases}$$
Homogenous linear system
$$\begin{cases} -u_1(\mathbf{m}_3 P_1) + \mathbf{m}_1 P_1 = 0 \\ -v_n(\mathbf{m}_3 P_n) + \mathbf{m}_2 P_n = 0 \end{cases}$$

$$\mathcal{P} \stackrel{\text{def}}{=} \begin{pmatrix} \mathbf{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \mathbf{P}_{1}^{T} \\ \mathbf{0}^{T} & \mathbf{P}_{1}^{T} & -v_{1} \mathbf{P}_{1}^{T} \\ \dots & \dots & \dots \\ \mathbf{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \mathbf{P}_{n}^{T} \\ \mathbf{0}^{T} & \mathbf{P}_{n}^{T} & -v_{n} \mathbf{P}_{n}^{T} \end{pmatrix}_{2n \times 12}$$

$$\mathbf{m} \stackrel{\text{def}}{=} \begin{pmatrix} \mathbf{m}_{1}^{T} \\ \mathbf{m}_{1}^{T} \\ \mathbf{m}_{2}^{T} \\ \mathbf{m}_{3}^{T} \end{pmatrix}_{12}$$

$$\boldsymbol{m} = \begin{pmatrix} \mathbf{m}_{1}^{\mathsf{T}} \\ \mathbf{m}_{2}^{\mathsf{T}} \\ \mathbf{m}_{3}^{\mathsf{T}} \end{pmatrix}_{12\times 1}$$

Homogeneous M x N Linear Systems

M=number of equations N=number of unknown

Rectangular system (M>N)

- 0 is always a solution
- · To find non-zero solution

Minimize $|Ax|^2$ under the constraint $|x|^2 = 1$

$$\mathcal{P}\boldsymbol{m}=0$$

How do we solve this homogenous linear system?

Singular Value Decomposition (SVD)

Calibration Problem

Last column of V gives m \downarrow \downarrow M $P_i \rightarrow p_i$

Hartley & Zisserman

Extracting camera parameters

$$\underline{\mathcal{M}} = \begin{pmatrix}
\alpha \boldsymbol{r}_{1}^{T} - \alpha \cot \theta \boldsymbol{r}_{2}^{T} + u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x} - \alpha \cot \theta t_{y} + u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T} + v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y} + v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{pmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}$$

$$\underline{A} \qquad \mathbf{b} \qquad \mathbf{b} \qquad \mathbf{k} = \begin{bmatrix} \alpha & -\alpha \cot \theta & \mathbf{u}_{0} \\ 0 & \frac{\beta}{\sin \theta} & \mathbf{v}_{0} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \mathbf{a}_3^T \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}$$

Estimated values

Intrinsic

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1}^{\mathsf{T}} \\ \mathbf{a}_{2}^{\mathsf{T}} \\ \mathbf{a}_{3}^{\mathsf{T}} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}_{3} \end{bmatrix}$$

$$\rho = \frac{\pm 1}{|\mathbf{a}_{3}|} \quad \mathbf{u}_{o} = \boldsymbol{\rho}^{2} (\mathbf{a}_{1} \cdot \mathbf{a}_{2})$$

$$\mathbf{v}_{o} = \boldsymbol{\rho}^{2} (\mathbf{a}_{2} \cdot \mathbf{a}_{3})$$

$$\cos \boldsymbol{\theta} = \frac{(\mathbf{a}_{1} \times \mathbf{a}_{3}) \cdot (\mathbf{a}_{2} \times \mathbf{a}_{3})}{|\mathbf{a}_{1} \times \mathbf{a}_{3}| \cdot |\mathbf{a}_{2} \times \mathbf{a}_{3}|}$$
Estimated values

Theorem (Faugeras, 1993)

$$M = K[R \quad T] = [KR \quad KT] = [A \quad b]$$

Let $\mathcal{M} = (\mathcal{A} \ \mathbf{b})$ be a 3×4 matrix and let \mathbf{a}_i^T (i = 1, 2, 3) denote the rows of the matrix \mathcal{A} formed by the three leftmost columns of \mathcal{M} .

- A necessary and sufficient condition for M to be a perspective projection matrix is that Det(A) ≠ 0
- A necessary and sufficient condition for M to be a zero-skew perspective projection matrix is that Det(A) ≠ 0 and

$$(\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0.$$

 A necessary and sufficient condition for M to be a perspective projection matrix with zero skew and unit aspect-ratio is that Det(A) ≠ 0 and

$$\begin{cases} (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0, \\ (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_1 \times \boldsymbol{a}_3) = (\boldsymbol{a}_2 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3). \end{cases}$$

$$A = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix}$$

$$K = \begin{bmatrix} \alpha & s & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\alpha = f k;$$

$$\beta = f 1$$

Extracting camera parameters

$$\underline{\mathcal{M}} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}$$

$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \mathbf{a}_3^T \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \begin{aligned} \mathbf{a} &= \mathbf{\rho}^2 |\mathbf{a}_1 \times \mathbf{a}_3| \sin \mathbf{\theta} \\ \mathbf{\beta} &= \mathbf{\rho}^2 |\mathbf{a}_2 \times \mathbf{a}_3| \sin \mathbf{\theta} \end{aligned} \longrightarrow \mathbf{f}$$

Estimated values

$$\alpha = \rho^2 |\mathbf{a}_1 \times \mathbf{a}_3| \sin \theta$$

$$\beta = \rho^2 |\mathbf{a}_2 \times \mathbf{a}_3| \sin \theta$$

Extracting camera parameters

$$\underline{\mathcal{M}} = \begin{pmatrix}
\alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\
\boldsymbol{r}_3^T & t_z
\end{pmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \mathbf{a}_3^T \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}$$

$$\mathbf{r}_1 = \frac{(\mathbf{a}_2 \times \mathbf{a}_3)}{|\mathbf{a}_2 \times \mathbf{a}_3|} \quad \mathbf{r}_3 = \frac{\pm 1}{|\mathbf{a}_3|}$$

$$\mathbf{r}_2 = \mathbf{r}_3 \times \mathbf{r}_1 \quad T = \boldsymbol{\rho} \mathbf{K}^{-1} \mathbf{b}$$
Estimated values

$$\mathbf{r}_1 = \frac{\left(\mathbf{a}_2 \times \mathbf{a}_3\right)}{\left|\mathbf{a}_2 \times \mathbf{a}_3\right|} \qquad \mathbf{r}_3 = \frac{\pm 1}{\left|\mathbf{a}_3\right|}$$

$$\mathbf{r}_2 = \mathbf{r}_3 \times \mathbf{r}_1 \qquad \mathbf{r} = \boldsymbol{\rho} \, \mathbf{K}^{-1} \mathbf{b}$$

Camera Calibration Toolbox for Matlab J. Bouguet - [1998-2000]

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Switch to world-centered view

Properties of Projection

- Points project to points
- Lines project to lines

Properties of Projection

Lines in a 2D plane

Lines in a 2D plane

Intersecting lines

$$x = 1 \times 1'$$

Proof

$$1 \times 1' \perp 1 \longrightarrow (1 \times 1') \cdot 1 = 0 \longrightarrow x \in l$$

$$1 \times 1' \perp 1' \longrightarrow (1 \times 1') \cdot 1' = 0 \longrightarrow x \in l'$$

 \rightarrow x is the intersecting point

Points at infinity (ideal points)

Agree with the general idea of two lines intersecting at infinity

Lines at infinity 1_{∞}

Set of ideal points lies on a line called the line at infinity How does it look like?

$$\mathbf{1}_{\infty} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Indeed:
$$\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}^T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0$$

Projective projections of lines at infinity (2D)

$$\mathbf{H} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v} & \mathbf{b} \end{bmatrix}$$

$$1' = H^{-T} 1$$

is it a line at infinity?

$$\mathbf{H}_{\mathbf{A}}^{-\mathsf{T}} \ \mathbf{1}_{\infty} = ? \quad = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix}^{-\mathsf{T}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} A^{-\mathsf{T}} & 0 \\ -t^{\mathsf{T}} A^{-\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{H}^{-\mathrm{T}} \mathbf{1}_{\infty} = ? = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v} & \mathbf{b} \end{bmatrix}^{-\mathrm{T}} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_{\mathrm{x}} \\ \mathbf{t}_{\mathrm{y}} \\ \mathbf{b} \end{bmatrix} \quad \dots \mathsf{no!}$$

Projective projections of lines at infinity (2D)

Are these two lines parallel or not?

- Recognize the horizon line
- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are //

Radial Distortion

- Caused by imperfect lenses

- Deviations are most noticeable for rays that pass through the

edge of the lens

No distortion

Pin cushion

Barrel

Radial Distortion

$$\begin{bmatrix} \frac{1}{\lambda} & 0 & 0 \\ 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 1 \end{bmatrix} M P_i \rightarrow \begin{bmatrix} u_i \\ v_i \end{bmatrix} = p_i$$

$$d^2 = a u^2 + b v^2 + c u v$$

To model radial behavior

$$d^2 = a \ u^2 + b \ v^2 + c \ u \ v \qquad \lambda = 1 \pm \sum_{p=1}^3 \kappa_p d^{2p}$$
 To model radial behavior

Polynomial function

Radial Distortion

$$\begin{bmatrix} \frac{1}{\lambda} & 0 & 0 \\ 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 1 \end{bmatrix} M P_{i} \rightarrow \begin{bmatrix} u_{i} \\ v_{i} \end{bmatrix} = p_{i} \qquad Q = \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{3} \end{bmatrix}$$

Non-linear system of equations

$$p_{i} = \begin{bmatrix} u_{i} \\ v_{i} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{q}_{1} P_{i}}{\mathbf{q}_{3} P_{i}} \\ \frac{\mathbf{q}_{2} P_{i}}{\mathbf{q}_{3} P_{i}} \end{bmatrix} \longrightarrow \begin{cases} u_{i} \mathbf{q}_{3} P_{i} = \mathbf{q}_{1} P_{i} \\ v_{i} \mathbf{q}_{3} P_{i} = \mathbf{q}_{2} P \end{cases}$$

Tsai's calibration technique

1. Estimate \mathbf{m}_1 and \mathbf{m}_2 first:

$$p_i = \begin{bmatrix} u_i \\ v_i \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \frac{\mathbf{m}_1 P_i}{\mathbf{m}_3 P_i} \\ \frac{\mathbf{m}_2 P_i}{\mathbf{m}_3 P_i} \end{bmatrix}$$
 How to do that?

Hint:

$$\frac{\mathbf{u_i}}{\mathbf{v_i}} = \text{slope}$$

Tsai's calibration technique

1. Estimate \mathbf{m}_1 and \mathbf{m}_2 first:

$$\mathbf{p}_{i} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix} \quad \frac{u_{i}}{v_{i}} = \frac{\frac{(\mathbf{m}_{1} P_{i})}{(\mathbf{m}_{3} P_{i})}}{\frac{(\mathbf{m}_{2} P_{i})}{(\mathbf{m}_{3} P_{i})}} = \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{2} P_{i}}$$

$$\begin{cases} v_{1}(\mathbf{m}_{1} P_{1}) - u_{1}(\mathbf{m}_{2} P_{1}) = 0 \\ v_{i}(\mathbf{m}_{1} P_{i}) - u_{i}(\mathbf{m}_{2} P_{i}) = 0 \end{cases} \qquad \mathbf{Q} \mathbf{n} = 0 \qquad \mathbf{n} = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \end{bmatrix}$$

$$\vdots$$

$$v_{n}(\mathbf{m}_{1} P_{n}) - u_{n}(\mathbf{m}_{2} P_{n}) = 0$$

Tsai's calibration technique

2. Once that \mathbf{m}_1 and \mathbf{m}_2 are estimated, estimate \mathbf{m}_3 :

$$\mathbf{p}_{i} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix}$$

 \mathbf{m}_3 is non linear function of \mathbf{m}_1 \mathbf{m}_2 λ

There are some degenerate configurations for which m₁ and m₂ cannot be computed