Lecture 4: Optimal First Order Methods

- Unconstrained smooth convex minimization
- Analysis of classical methods in the degenerate & nondegenerate cases
- Oracle model of computation
- Optimal first order methods: degenerate/nondegenerate cases
- Lower and upper bounds on iteration complexity
- Dependence on the condition number

Unconstrained Convex Minimization: Degenerate Case

Let f be continuously differentiable with Lipschitz gradient, i.e.,

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le L\|\boldsymbol{x} - \boldsymbol{y}\|$$

L is the modulus of the Hessian (if exists): $\mathbf{0} \leq \nabla^2 f(\mathbf{x}) \leq L\mathbf{I}$.

Consider the gradient method $\mathbf{x}^{r+1} = \mathbf{x}^r - \alpha \nabla f(\mathbf{x}^r)$, with $0 < \alpha < 2/L$. Then

$$f(\boldsymbol{x}^r) - f(\boldsymbol{x}^*) \le \left(\frac{\|\boldsymbol{x}^0 - \boldsymbol{x}^*\|^2}{\alpha(2 - \alpha L)}\right) \frac{1}{r}, \quad r \ge 1.$$

- $\|x^0 x^*\|$ is the distance from the optimal solution (set).
- Only sublinear convergence rate (in the absence of strong convexity).
- Rate is dimension-independent.

Analysis of Gradient Method: Degenerate Case

Step 1. Use definition and the Lipschitz condition

$$f(\boldsymbol{x}^{i+1}) \leq f(\boldsymbol{x}^{i}) + \langle \nabla f(\boldsymbol{x}^{i}), \boldsymbol{x}^{i+1} - \boldsymbol{x}^{i} \rangle + \frac{L}{2} \|\boldsymbol{x}^{i+1} - \boldsymbol{x}^{i}\|^{2}$$
$$= f(\boldsymbol{x}^{i}) - \alpha \left(1 - \frac{\alpha L}{2}\right) \|\nabla f(\boldsymbol{x}^{i})\|^{2}$$

implying

$$\sum_{i=0}^{r} \|\nabla f(\mathbf{x}^{i})\|^{2} \leq \frac{2}{\alpha(2-\alpha L)} \left(f(\mathbf{x}^{0}) - f(\mathbf{x}^{*}) \right) \leq \frac{L \|\mathbf{x}^{0} - \mathbf{x}^{*}\|^{2}}{\alpha(2-\alpha L)}$$

Step 2. Use convexity of f to obtain

$$\|\mathbf{x}^{i+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}^i - \alpha \nabla f(\mathbf{x}^i) - \mathbf{x}^*\|^2$$

$$= \|\mathbf{x}^i - \mathbf{x}^*\|^2 - 2\alpha \langle \nabla f(\mathbf{x}^i), \mathbf{x}^i - \mathbf{x}^* \rangle + \alpha^2 \|\nabla f(\mathbf{x}^i)\|^2$$

$$\leq \|\mathbf{x}^i - \mathbf{x}^*\|^2 - 2\alpha (f(\mathbf{x}^i) - f(\mathbf{x}^*)) + \alpha^2 \|\nabla f(\mathbf{x}^i)\|^2$$

which implies

$$\sum_{i=0}^{r} (f(\boldsymbol{x}^{i}) - f(\boldsymbol{x}^{*})) \leq \frac{1}{2\alpha} \left[\|\boldsymbol{x}^{0} - \boldsymbol{x}^{*}\|^{2} + \frac{\alpha^{2}L\|\boldsymbol{x}^{0} - \boldsymbol{x}^{*}\|^{2}}{\alpha(2 - \alpha L)} \right]$$
$$= \frac{\|\boldsymbol{x}^{0} - \boldsymbol{x}^{*}\|^{2}}{\alpha(2 - \alpha L)}$$

Step 3. By monotonicity, we have

$$f(x^r) - f(x^*) \le \left(\frac{\|x^0 - x^*\|^2}{\alpha(2 - \alpha L)}\right) \frac{1}{r+1}, \quad r \ge 1.$$

Choose $\alpha = 1/L$ yields

$$f(x^r) - f(x^*) \le \frac{L||x^0 - x^*||^2}{r+1}, \quad r \ge 1.$$

This upper bound is order-tight (i.e., can construct a quadratic f for which after r gradient descent steps the gap to minimum is of order $L||x^0 - x^*||^2/r$).

Optimal First Order Methods?

- Let P(D, L) denote the class of smooth unconstrained convex optimization problems with $\|x^0 x^*\| \le D$ and $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$.
- Consider the oracle model Ω for the first order algorithms:
 - * at iteration r, the algorithm takes any linear combination of $\mathbf{x}^0, \mathbf{x}^1, ..., \mathbf{x}^r$ and $\nabla f(\mathbf{x}^0), \nabla f(\mathbf{x}^1), ..., \nabla f(\mathbf{x}^r)$ to generate \mathbf{x}^{r+1} .
 - \star given any $oldsymbol{x}^r$, the oracle returns $abla f(oldsymbol{x}^r)$
 - \star the complexity of an algorithm $\mathcal{A} \in \Omega$ is

$$C_{\epsilon}(\mathcal{A}) = \sup_{f \in P(D,L)} \min\{r \mid f(\boldsymbol{x}^r) - f(\boldsymbol{x}^*) \le \epsilon\}$$

Bounds on the complexity (interesting only for problems with large dimensions):

$$O(1)\min\{n, \sqrt{LD^2\epsilon^{-1}}\} \le \inf_{A \in \Omega} C_{\epsilon}(A) \le \sqrt{4LD^2\epsilon^{-1}}$$

Thus, the classical gradient descent method is not order-optimal!

An Optimal First Order Method

Nesterov (1983) proposed an order-optimal first order method. Define two sequences $\{x^r\}$ and $\{y^r\}$ (test points) satisfying, for all $r \geq 1$,

$$A_r f(\boldsymbol{x}^r) \leq \min_{\boldsymbol{y}} \left\{ \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}^0\|^2 + \sum_{i=0}^r a_i \left(f(\boldsymbol{y}^i) + \langle \nabla f(\boldsymbol{y}^i), \boldsymbol{y} - \boldsymbol{y}^i \rangle \right) \right\}, \tag{1}$$

where $A_r = \sum_{i=0}^r a_i$, with $a_i \ge 0$. Denote the minimizer of (1) by z^r (explicit formula?). Define $\theta^r = a_{r+1}/A_{r+1}$ and update using

$$\begin{cases}
\mathbf{y}^{r+1} = (1 - \theta^r)\mathbf{x}^r + \theta^r \mathbf{z}^r, \\
\mathbf{x}^{r+1} = \mathbf{y}^{r+1} - \frac{1}{L}\nabla f(\mathbf{y}^{r+1}),
\end{cases} \quad r \ge 1.$$
(2)

Iteration Complexity: For any continuously differentiable $f \in P(L, D)$, if (1) holds for all r, then after r steps,

$$f(x^r) - f(x^*) \le \frac{LD^2}{2A_r}, \quad r \ge 1.$$

Prove using (1) (set $y = x^*$ and use convexity).

Choose Optimal Parameters

Claim: if $a_0 \in (0,1]$, and $a_r^2 \leq A_r$ for $r \geq 1$, then by induction (1) holds.

• If $a_r^2 = A_r$, then

$$a_r^2 - a_r = a_{r-1}^2 \implies a_r = \frac{1}{2} \left(1 + \sqrt{4a_{r-1}^2 + 1} \right)$$

- A specific choice: $a_r = \frac{(r+1)}{2}$, then $A_r = \frac{(r+1)(r+2)}{4}$ and $\theta^r = \frac{2}{(r+3)}$.
- The iteration bound becomes

$$f(x^r) - f(x^*) \le \frac{2LD^2}{(r+2)(r+1)}, \quad r \ge 1.$$

which is order-optimal.

A Recursive Description

Define a scalar sequence $\{a_r\}$ satisfying

$$a_r = \frac{1}{2} \left(1 + \sqrt{1 + 4a_{r-1}^2} \right)$$
, with $a_0 = 0$.

Then $a_r \geq (r+1)/2$ for all $r \geq 1$. Let

$$t^r := (a_r - 1)/a_{r+1}, \text{ for } r \ge 1.$$

An optimal first order method (Nesterov)

- 1. Initialization: $x^0 = x^1 = 0$.
- 2. Iteration $r \geq 1$: first generate a test point using extrapolation $\mathbf{y}^{r+1} = (1+t^r)\mathbf{x}^r t^r\mathbf{x}^{r-1}$. Then let $\mathbf{x}^{r+1} = \mathbf{y}^{r+1} \frac{1}{L}\nabla f(\mathbf{y}^{r+1})$.

Remarks: fixed step size; non-monotone. Both can be easily corrected.

Recursion

A simple recursion:

$$[a_{r+1}\mathbf{y}^{r+1} - (a_{r+1} - 1)\mathbf{x}^r] = [a_r\mathbf{y}^r - (a_r - 1)\mathbf{x}^{r-1}] - a_r\mathbf{g}^r$$

implying (for $r \geq 1$)

$$\mathbf{y}^{r+1} = (a_{r+1} - 1)(\mathbf{x}^r - \mathbf{y}^{r+1}) - \sum_{i=0}^r a_i \mathbf{g}^i = (a_{r+1} - 1)(\mathbf{x}^r - \mathbf{y}^{r+1}) + \mathbf{z}^r.$$
 (3)

or

$$\mathbf{y}^{r+1} = (1 - a_{r+1}^{-1})\mathbf{x}^r + (a_{r+1}^{-1})\mathbf{z}^r$$

which corresponds to the nonrecursive version (2) with $\theta_r = a_{r+1}/A_{r+1} = a_{r+1}^{-1}$.

Iteration Complexity Analysis

Denote $e^r = f(x^r) - f(x^*)$. Use Taylor expansion of $f(x^{r+1})$ at y^{r+1} and the definition of x^{r+1}

$$|f(\boldsymbol{x}^{r+1}) - f(\boldsymbol{x})| \le L\langle \boldsymbol{g}^{r+1}, \boldsymbol{y}^{r+1} - \boldsymbol{x} \rangle - \frac{L}{2} ||\boldsymbol{g}^{r+1}||^2$$

Choose $x = x^r$ to obtain a "sufficient decrease" estimate

$$e^{r+1} - e^r = f(\boldsymbol{x}^{r+1}) - f(\boldsymbol{x}^r) \le L\langle \boldsymbol{g}^{r+1}, \boldsymbol{y}^{r+1} - \boldsymbol{x}^r \rangle - \frac{L}{2} \|\boldsymbol{g}^{r+1}\|^2.$$
 (4)

Also, choose $x=x^*$ and use (3) to obtain a estimate of the "cost-to-go"

$$e^{r+1} \leq L\langle \boldsymbol{g}^{r+1}, \boldsymbol{y}^{r+1} - \boldsymbol{x}^* \rangle - \frac{L}{2} \|\boldsymbol{g}^{r+1}\|^2$$

$$= L\langle \boldsymbol{g}^{r+1}, \boldsymbol{z}^r - \boldsymbol{x}^* \rangle + L(a_{r+1} - 1)\langle \boldsymbol{g}^{r+1}, \boldsymbol{x}^r - \boldsymbol{y}^{r+1} \rangle - \frac{L}{2} \|\boldsymbol{g}^{r+1}\|^2$$
(5)

Multiply (4) by $(a_{r+1}-1)$ and add it to (5) to obtain

$$a_{r+1}e^{r+1} - (a_{r+1} - 1)e^r \le L\langle \boldsymbol{g}^{r+1}, \boldsymbol{z}^r - \boldsymbol{x}^* \rangle - \frac{L}{2}a_{r+1}\|\boldsymbol{g}^{r+1}\|^2$$

Multiplying both sides by a_{r+1} and noting $\mathbf{z}^{r+1} = \mathbf{z}^r - a_{r+1}\mathbf{g}^{r+1}$ gives

$$a_{r+1}^2 e^{r+1} - a_{r+1}(a_{r+1} - 1)e^r \le -L\langle a_{r+1}g^{r+1}, x^* \rangle - \frac{L}{2}(\|z^{r+1}\|^2 - \|z^r\|^2)$$

If $a_{r+1}(a_{r+1}-1)=a_r^2$ (which is equivalent to $a_r^2=A_r$), then

$$a_{r+1}^2 e^{r+1} - a_r^2 e^r \le -L\langle a_{r+1} \boldsymbol{g}^{r+1}, \boldsymbol{x}^* \rangle - \frac{L}{2} (\|\boldsymbol{z}^{r+1}\|^2 - \|\boldsymbol{z}^r\|^2), \quad r \ge 1.$$

Summing over r and using $z^{r+1} = -\sum_{i=0}^{r+1} a_i g^i$, $z^1 = 0$, gives

$$a_{r+1}^2 e^{r+1} - a_0^2 e^0 \le L\langle \boldsymbol{z}^{r+1}, \boldsymbol{x}^* \rangle - \frac{L}{2} \|\boldsymbol{z}^{r+1}\|^2 \le \frac{L \|\boldsymbol{x}^*\|^2}{2},$$

implying $e^{r+1} \le (L \|\boldsymbol{x}^*\|^2)/(2a_{r+1}^2) = LD^2/(2A_{r+1})$.

Optimal First Order Methods for Strongly Convex Problems

Suppose f is strongly convex s.t. $f(x) - f(x^*) \ge \sigma ||x - x^*||^2$. The condition number $\kappa = L/\sigma$. An ϵ -relative optimal solution x^r satisfies

$$f(x^r) - f(x^*) \le \epsilon (f(x^0) - f(x^*)).$$

Running Nesterov's method with restart can yield an ϵ -relative optimal solution with an iteration complexity of

$$O(1)\sqrt{\kappa}\ln(1/\epsilon).$$
 (6)

Strategy: Start from x^0 , run Nesterov's method for $i=\sqrt{2\kappa}$ iterations. Set $x^0=x^i$ and restart, etc.

Each round has $\sqrt{2\kappa}$ iterations. After the r-th round, we have

$$f(\boldsymbol{x}^{ir}) - f(\boldsymbol{x}^*) \le \frac{L\|\boldsymbol{x}^{i(r-1)} - \boldsymbol{x}^*\|^2}{i^2} \le \frac{1}{2}(f(\boldsymbol{x}^{i(r-1)}) - f(\boldsymbol{x}^*)).$$

This implies (6).

Impact of Condition Number

- For strongly convex problems, Nesterov's method (with multi-start) has a complexity that is the same as any linearly convergent method (e.g., **gradient descent**), with a factor of $\sqrt{\kappa}$ improvement.
- In practice, $\ln(1/\epsilon)$ is small (less than 20), but κ can be large (e.g., $10^3 10^6$). A removal of a $\sqrt{\kappa}$ factor is significant.
- Lower bound:

$$\inf_{\mathcal{A}\in\Omega} C_{\epsilon}(\mathcal{A}) \ge O(1) \min\{n, \sqrt{\kappa} \ln(1/2\epsilon)\}$$

So for strongly convex problems Nesterov's method is order-optimal with respect to κ .

• Nesterov's method, without restart, is linearly convergent, with iteration complexity $O(1)\sqrt{\kappa}\ln(1/\epsilon)$. [The sequence $\{a_r\}$ depends on κ .]