Quiz 2

TOTAL POINTS 15

1.	Which of the following nuclei cannot be used for MRI?	1 point
	○ ¹⁷ O	
	$igodentum ^{12}C$	
	\bigcirc ^{23}Na	
	\bigcirc ^{19}F	
2.	When protons are placed in a strong external magnetic field, their magnetic moments rotate around the axis of the magnetic field (wobbling). What is this process called?	1 point
	Precession	
	Gyroscope	
	Spin	
	○ Spin excess	
3.	The gyromagnetic ratio of ^{31}P is known as $108.291 \times 10^6 rad \cdot s^{-1} \cdot T^{-1}$ or $17.235 \times 10^6 Hz \cdot T^{-1}$. By what factor are the two units related?	1 point
	\bigcirc 4π	
	\bigcirc π	
	\odot 2π	
	\bigcirc 3π	
4.	When protons are placed in a steady magnetic field B_0 , in which axis does the net magnetization $(m{M})$ exist?	1 point
	There is no net magnetization.	
	x-axis	
	o z-axis	
	O y-axis	
5.	What is the gyromagnetic ratio of 1H in 1 T MRI?	1 point
	○ 58.42 MHz	
	● 42.58 MHz	
	○ 127.74 MHz	
	○ 48.25 MHz	

6. Clinical MRI scanners typically operate at magnetic field strength of 3T. What is the Larmor frequency of 1H at 3T? (Gyromagnetic Ratio of 1H is $267.513 \times 10^6 rad \cdot s^{-1} \cdot T^{-1}$)

1 point

- $\bigcirc ~802.54 \times 10^6 Hz$
- \bigcirc 127.74 × 10⁶ Hz
- $\bigcirc ~63.87 \times 10^6 Hz$
- \bigcirc 401.27 × 10⁶Hz
- 7. The following picture depicts magnetic resonance, the tipping of initial magnetization (M_0) vector with a flip angle (α) . Which of the following is a correct expression for the resulting transverse magnetization (M_{xy}) ?

1 point

- $\bigcirc M_0 \cdot tan \alpha$
- \bigcirc $M_0 \cdot \sin \alpha$
- \bigcirc $M_0 \cdot \cos \alpha$
- \bigcirc M_0

- \bigcirc M_0
- \bigcirc $M_0 \cdot \cos \alpha$
- $\bigcirc M_0 \cdot \sin \alpha$
- $\bigcap M_0 \cdot tan \alpha$
- 9. Which of the following statements is correct regarding magnetic resonance phenomenon (as shown in the picture)?

1 point

- O In rotating reference frame, the net magnetization vector follows a spiral trajectory.
- The excess spins pick up energy and move from parallel to anti-parallel state.
- The protons start to precess out-of-phase, leading to disappearance of net magnetization.
- Only longitudinal magnetization can be detected and used for imaging.

10.	Which of the following refer to the relaxation mechanism in the transverse direction? $(Choose\ all\ that\ apply)$	1 point
	Spin-spin relaxation	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	Spin-lattice relaxation	
	$ ightharpoonup T_2$ relaxation	
11.	Which of the following refer to the relaxation mechanism in the longitudinal direction? (Choose all that apply)	1 point
	$ ightharpoonup T_1$ relaxation	
	Spin-lattice relaxation	
	$\ \ \ \ \ T_2$ relaxation	
	Spin-spin relaxation	
12.	The normal human brain at 3 T has tissue T_1 and T_2 times. Which of the following shows the correct tissue-longitudinal magnetization pair after 30° flip angle and 400 ms time delay if the initial magnetization $M_0=1$? (At 3 T, T_1 and T_2 values of ${\bf gray\ matter}$ are 1331ms and 80ms respectively. T_1 and T_2 values of ${\bf white\ matter}$ are 832ms and 110ms)	1 point
	$igcup$ Gray Matter, $M_z=0.55$	
	$igcup$ White Matter, $M_z=0.74$	
	$igcup$ White Matter, $M_z=0.36$	
	$lacksquare$ Gray Matter, $M_z=0.90$	
13.	The normal human brain at 3 T has tissue T_1 and T_2 times. Which of the following shows the correct tissue-transverse magnetization pair after 60° flip angle and 50 ms time delay if the initial magnetization $M_0=1$? (At 3 T, T_1 and T_2 values of $\mathbf{gray\ matter}$ are 1331ms and 80ms respectively. T_1 and T_2 values of $\mathbf{white\ matter}$ are 832ms and 110ms)	1 point
	$lacktriangle$ White Matter, $M_z=0.55$	
	$igcup$ Gray Matter, $M_z=0.36$	
	\bigcirc Gray Matter, $M_z=0.67$	
	\bigcirc White Matter, $M_z=0.74$	

14. Which statement is not true?	1 point
\bigcirc The free induction decay (FID) signal is maximized when the netmagnetization is excited with a 90° RF pulse.	
The receiver RF coil can detect signals from the transversemagnetization but not from the longitudinal magnetization.	
The net transverse magnetization does not rotate when represented in the rotating reference frame.	
The energy in the transmission RF coil should be applied parallel to B0.	
15. Relaxation due to T_2 is a reversible process.	1 point
O •	