ACCELEROMETERS IN THE CONTEXT OF INTAKE-BALANCE ASSESSMENTS

FINDINGS, STRATEGIES, AND RESOURCES

Paul R. Hibbing, PhD University of Illinois Chicago

WHAT'S AHEAD

- Overview of the intake-balance method
- Intro to accelerometer-based intake-balance methods
 - Validation methods
 - Prior findings
- Strategies and resources for implementing accelerometerbased intake-balance methods

OVERVIEW OF THE INTAKE-BALANCE METHOD

INTRO TO ACCELEROMETER-BASED INTAKE-BALANCE ASSESSMENTS

ACCELEROMETRY FOR INTAKE-BALANCE

British Journal of Nutrition (2023), 130, 344–352

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

doi:10.1017/S0007114522003312

Predicting energy intake with an accelerometer-based intake-balance method

Paul R. Hibbing¹*, Robin P. Shook^{1,2}, Satchidananda Panda³, Emily N. C. Manoogian³, Douglas G. Mashek⁴ and Lisa S. Chow⁴

DOI: <u>10.1017/S0007114522003312</u>

ACCELEROMETRY FOR INTAKE-BALANCE

Hibbing et al. Int J Behav Nutr Phys Act (2023) 20:115 https://doi.org/10.1186/s12966-023-01515-0

International Journal of Behavioral Nutrition and Physical Activity

METHODOLOGY

Open Access

Criterion validity of wrist accelerometry for assessing energy intake via the intake-balance technique

Paul R. Hibbing^{1,2*}, Gregory J. Welk³, Daniel Ries⁴, Hung-Wen Yeh^{5,6} and Robin P. Shook^{2,6}

DOI: 10.1186/s12966-023-01515-0

BIGGER PICTURE

- Accelerometer methods can be improved over time
- Accelerometers can measure and record continuously

RESEARCH-GRADE (ACCELEROMETER) TECHNOLOGY: ROADMAP

- (Choose a device and protocol; collect data)
- Pick and apply an EE algorithm
 - https://sites.google.com/view/accelerometerrepository
- Account for non-wear time (and sleep?)
- Determine final EE
- Then proceed to ES data and calculation of EI

TWO VIGNETTES

- paulhibbing.com/TREaccel (basic)
- <u>paulhibbing.com/IntakeBalance</u> (enhanced)

APPLYING EE ALGORITHMS

- Read files into R
 - Helpful packages: read.qt3x, GENEAread, GGIRread, AGread
- Pre-process data (format it according to algorithm's demands), apply the algorithm, and (if applicable) post-process the data, e.g., by averaging estimates every minute
 - For a number of algorithms, this can be done in one big step using the accelEE package

ACCOUNTING FOR NON-WEAR

- Run a non-wear detection algorithm
 - Useful packages are Physical Activity (Choi algorithm) and GGIR
 - Ahmadi et al. have also tested some useful algorithms for raw acceleration
- Overlay non-wear data on EE data, and exclude EE estimates from non-wear periods
- If desired, use imputation to compensate for the lost data (e.g., by assigning resting EE to non-wear periods as a conservative measure)
 - The <u>PAutilities</u> package has functions to estimate basal/resting EE using, e.g., Harris-Benedict and Schofield equations, etc.

DETERMINE FINAL EE

Date	total_minutes	total_hildebrand_linear	total_is_Sleep	total_is_NonWear
9/18/2019	1440	2.536927	828	490
9/19/2019	1440	2.512302	816	500

ZOOMING BACK OUT

- (Choose a device and protocol; collect data)
- Pick and apply an EE algorithm
 - https://sites.google.com/view/accelerometerrepository
- Account for non-wear time (and sleep?)
- Determine final EE
- Then proceed to ES data and calculation of EI

CONCLUSION

- Accelerometer-based intake-balance methods are one of several ways to assess EI, and suitability may vary by study
- Limitations apply
- Teamwork advised
- Lots of questions still to be answered!

