Machine Learning Practice 2

Quan Minh Phan & Ngoc Hoang Luong

University of Information Technology (UIT)

April 7, 2021

Table of contents

Perceptron

2 Linear Regression

3 Adaptive Linear Neuron (Adaline)

4 Logistic Regression

Figure: The general concept of the perceptron

Recall

Problem

Using the perceptron model to classify the species of flowers ('setosa' or 'versicolor') based on the sepal and petal width.

- 2 features: the sepal width x_1 ; the petal width x_2 $x = [x_1, x_2]$
- 2 labels: 'setosa' \leftarrow -1; 'versicolor' \leftarrow 1
- $w = [w_1, w_2]$
- Net input function (z) $z = w_1 * x_1 + w_2 * x_2$
- Unit step function $(\phi(\cdot))$

$$\phi(z) = egin{cases} 1 & \text{if } z \geq \theta, \\ -1 & \text{otherwise.} \end{cases}$$

Recall (next)

- $w = [w_0, w_1, w_2]$
- Net input function (z) $z = w_0 + w_1 * x_1 + w_2 * x_2 = w^T x$
- Unit step function $(\phi(\cdot))$

$$\phi(z) = \begin{cases} 1 & \text{if } z \geq 0, \\ -1 & \text{otherwise.} \end{cases}$$

Unit Step Function

$$f(x) = egin{cases} 1 & x \geq 0, \ -1 & otherwise. \end{cases}$$

$$f(x) = \left\{egin{array}{ll} 0.5 & x \geq 1, \ -1 & otherwise. \end{array}
ight.$$

Figure: The general concept of the perceptron

Training process

Algorithm 1 Pseudocode for the training process

- 1: Initialize the weights, w
- 2: while Stopping Criteria is not satisfied do
- 3: for $x \in X$ do
- 4: Compute the output value, \hat{y}
- 5: Updates the weights
- 6: end for
- 7: end while

Updating the weights

- $w = w + \Delta w$
- $\Delta w_i = \eta * (y \hat{y}) * x_i$ where:
 - \triangleright η : learning rate
 - y: the true class label
 - \triangleright \hat{y} : the predicted class label

Examples

$$\Delta w_0 = \eta * (y - \hat{y})$$

$$\Delta w_1 = \eta * (y - \hat{y}) * x_1$$

$$\Delta w_2 = \eta * (y - \hat{y}) * x_2$$

Components

Hyperparameters

- ullet eta o the learning rate
- max_iter → the maximum number of epochs
- ullet random_state o to make the reproducible results

Parameters

- \bullet w \rightarrow the weights of model
- ullet errors ightarrow to store the error in each epoch

Methods

- $fit(X, y) \rightarrow to train the model$
- predict(X) \rightarrow to predict the output value
- $net_input(X) \rightarrow to$ combine the features with the weights

Implement (code from scratch)

```
class Peceptron_:
    def __init__(self, eta = 0.01, max_iter = 20, random_state = 1):
        self.eta = eta
        self.max_iter = max_iter
        self.random_state = random_state
        self.w = None
        self.errors = [ ]
```

```
def net_input(self, X):
    return np.dot(X, self.w[1:]) + self.w[0]
```

```
def predict(self, X):
return np.where(self.net_input(X) \geq 0.0, 1, -1)
```

```
def fit(self, X, y):
  rgen = np.random.RandomState(self.random_state)
  self.w = rgen.normal(loc = 0.0, scale = 0.01, size = 1 + X.shape[1])
  self.errors = []
  for n_iter in range (self.max_iter):
     n_{\text{wronglabels}} = 0
     idx = rgen.permutation(len(y))
     X, y = X[idx], y[idx]
     for xi, yi in zip(X, y):
       error = yi - self.predict(xi)
       self.w[1:] += self.eta * error * xi
       self.w[0] += self. eta * error
       n_{\text{wronglabels}} += int(error != 0.0)
     self.errors.append(n_wronglabels)
```

Implement (library)

from sklearn.linear_model import Perceptron

Hyperparameters

- eta
- max_iter
- random_state

Parameters

- coef_
- intercept_

Methods

- fit(*X*, *y*)
- predict(X)

Practice

- Using 'iris.csv' dataset
- How can we use the 'sepal length' and 'sepal width' to classify the speices of flower?

Data visualization

- >> import matplotlib.pyplot as plt
- >> idx_setosa = y_train == -1 idx_versicolor = y_train != -1
- >> plt.scatter(X_train[idx_setosa, 0], X_train[idx_setosa, 1], color='red',
 marker='s', label='setosa')
 plt.scatter(X_train[idx_versicolor, 0], X_train[idx_versicolor, 1],
 color='blue', marker='x', label='versicolor')
 plt.xlabel('sepal length [cm]')
 plt.ylabel('sepal width [cm]')
 plt.legend(loc='upper left')
 plt.show()

Data visualization

Practice

- >> ppn = Perceptron_(eta = 0.001, max_iter = 30, random_state = 1) ppn.fit(X_train, y_train)
- >> from sklearn.linear_model import Perceptron
- >> ppn_ = Perceptron(eta = 0.001, max_iter = 30, random_state = 1) ppn_.fit(X_train, y_train)

Plotting the errors

```
>> plt.plot(range(1, len(ppn.errors) + 1), ppn.errors, marker='o')
plt.xlabel('Epochs')
plt.ylabel('# Missifications')
plt.show()
```

Plotting the errors

Practice

```
>> w_ppn = ppn.w
w_ppn
>> [-0.01575655  0.06508244  -0.11108172]
>> w_ppn_ = np.append(ppn_.intercept_, ppn_.coef_)
w_ppn_
>> [-0.006  0.0196  -0.0325]
```

Visualization

```
>> plot_decision_regions(X_train, y_train, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('sepal width [cm]')
plt.legend(loc='upper left')
plt.show()
```

Visualization

Practice (next)

• Create a new model and train it on data after standardizing

Data visualization

Plotting the costs

Plotting the results

Table of contents

Perceptron

2 Linear Regression

3 Adaptive Linear Neuron (Adaline)

4 Logistic Regression

Figure: The general concept of Linear Regression

Minimizing cost functions with gradient descent

Cost function:

$$J(w) = \frac{1}{2} \sum_{i} (y^{(i)} - \phi(z^{(i)}))^{2}$$

Update the weights:

$$w := w + \Delta w$$

$$\Delta w = -\eta \nabla J(w)$$

$$\frac{\partial J}{\partial w_j} = -\sum_i (y^{(i)} - \phi(z^{(i)})) x_j^{(i)}$$

$$\Delta w_j = -\eta \frac{\partial J}{\partial w_j} = \eta \sum_i (y^{(i)} - \phi(z^{(i)})) x_j^{(i)}$$

Minimizing cost functions with gradient descent

$$w_j = \begin{cases} w_j + \eta * X^T.dot((y - \phi(z)) & j \in [1, \dots, n] \\ w_j + \eta * sum(y - \phi(z)) & j = 0 \end{cases}$$

Pseudocode of Training process

Algorithm 2 Gradient Descent

- 1: Initialize the weights, w
- 2: while Stopping Criteria is not satisfied do
- 3: Compute the output value, \hat{y}
- 4: Updates the weights
- 5: end while

Components

Hyperparameters

- eta
- max_iter
- random_state

Parameters

- W
- costs

Methods

- fit(*X*, *y*)
- predict(X)
- net_input(X)

Implement (code from scratch)

```
class LinearRegression_GD:
    def __init__(self, eta = 0.001, max_iter = 20, random_state = 1):
        self.eta = eta
        self.max_iter = max_iter
        self.random_state = random_state
        self.w = None
        self.costs = [ ]
```

```
def net_input(self, X):
    return np.dot(X, self.w[1:]) + self.w[0]
```

```
def predict(self, X):
    return self.net_input(X)
```

```
def fit(self, X, y):
    rgen = np.random.RandomState(self.random_state)
    self.w = rgen.normal(loc = 0.0, scale = 0.01, size = 1 + X.shape[1])
    self.costs = []
    for n_iters in range (self.max_iter):
        errors = y - self.predict(X)
        self.w[1:] += self.eta * X.T.dot(error)
        self.w[0] += self.eta * error.sum()
        cost = (error**2).sum() / 2
        self.costs.append(cost)
```

Implement (library)

Stochastic Gradient Descent

from sklearn.linear_model import SGDRegressor

Hyperparameters

- eta0
- max_iter
- random_state

Parameters

- intercept_
- coef

Methods

- fit(X, y)
- predict(X)

Implement (library)

Normal Equation

from sklearn.linear_model import LinearRegression

Parameters

- intercept_
- coef_

Methods

- fit(X, y)
- predict(X)

Differences

Gradient Descent

- $w := w + \Delta w$
- $\Delta w = \eta \sum_{i} (y^{(i)} \phi(z^{(i)}) x^{i}$

Stochastic Gradient Descent

- $w := w + \Delta w$
- $\Delta w = \eta(y^{(i)} \phi(z^{(i)})x^i$

Normal Equation

• $w = (X^T X)^{-1} X^T y$

- Using 'housing.csv' dataset
- How can we use the 'average number of rooms' (RM) to estimate the 'price' of houses (MEDV)?

Plotting data

```
>> plt.scatter(X_train, y_train, c='steelblue', edgecolor='white', s=70) plt.xlabel('Average number of rooms [RM] (standardized)') plt.ylabel('Price in $1000s [MEDV] (standardized)') plt.show()
```


Gradient Descent

```
>> reg_GD = LinearRegression_GD(eta=0.001, max_iter=20, random_state=1) reg_GD.fit(X_train, y_train)
```

Stochastic Gradient Descent

```
>> reg_SGD = SGDRegressor(eta0=0.001, max_iter=20, random_state=1, l1_ratio=0, tol=None, learning_rate='constant') reg_SGD.fit(X_train, y_train)
```

Normal Equation

```
>> reg_NE = LinearRegression() reg_NE.fit(X_train, y_train)
```

Plotting the cost

```
>> plt.plot(range(1, len(reg_GD.costs) + 1), reg_GD.costs)
plt.xlabel('Epochs')
plt.ylabel('Cost')
plt.title('Gradient Descent')
plt.show()
```



```
>> w_GD = reg_GD.w
w_GD
>> [0.00767139  0.64623542]
```

```
>> w_SGD = np.append(reg_SGD.intercept_, reg_SGD.coef_) w_SGD
```

- >> [0.00783841 0.64551218]
- $>> w_NE = np.append(reg_NE.intercept_, reg_NE.coef_) w_NE$
- >> [0.00773059 0.64638912]

Plotting the results

```
>> plt.scatter(X_train, y_train, c='steelblue', edgecolor='white', s=70)
    plt.plot(X_train, reg_GD.predict(X_train), color='red', lw=10,
    label='Gradient Descent')
    plt.plot(X_train, reg_SGD.predict(X_train), color='blue', lw=6,
    label='Stochastic Gradient Descent')
    plt.plot(X_train, reg_NE.predict(X_train), color='black', lw=2,
    label='Normal Equation')
    plt.xlabel('Average number of rooms [RM] (standardized)')
    plt.ylabel('Price in $1000s [MEDV] (standardized)')
    plt.legend()
    plt.show()
```

Plotting the results

$$>> y_pred_1 = reg_GD.predict(X_test)$$

$$>> y_pred_2 = reg_SGD.predict(X_test)$$

$$>> y_pred_3 = reg_NE.predict(X_test)$$

Performance Evaluation

>> from sklearn.metrics import mean_absolute_error as MAE from sklearn.metrics import mean_squared_error as MSE from sklearn.metrics import r2_score as R2

Mean Absolute Error

```
>> print('MAE of GD:', round(MAE(y_test, y_pred_1), 6))
print('MAE of SGD:', round(MAE(y_test, y_pred_2), 6))
print('MAE of NE:', round(MAE(y_test, y_pred_3), 6))
```

Mean Squared Error

```
>> print('MSE of GD:', round(MSE(y_test, y_pred_1), 6))
print('MSE of SGD:', round(MSE(y_test, y_pred_2), 6))
print('MSE of NE:', round(MSE(y_test, y_pred_3), 6))
```

R^2 score

```
>> print('R2 of GD:', round(R2(y_test, y_pred_1), 6))
print('R2 of SGD:', round(R2(y_test, y_pred_2), 6))
print('R2 of NE:', round(R2(y_test, y_pred_3), 6))
```

Learning rate too large

Polynominal Regression

Example

```
X = [258.0, 270.0, 294.0, 320.0, 342.0, 368.0, 396.0, 446.0, 480.0, 586.0] y = [236.4, 234.4, 252.8, 298.6, 314.2, 342.2, 360.8, 368.0, 391.2, 390.8]
```

```
>> X = np.array([258.0, 270.0, 294.0, 320.0, 342.0, 368.0, 396.0, 446.0, 480.0, 586.0])[;, np.newaxis]
y = np.array([236.4, 234.4, 252.8, 298.6, 314.2, 342.2, 360.8, 368.0, 391.2, 390.8])
```

```
>> plt.scatter(X, y, label='Training points')
    plt.xlabel('X')
    plt.ylabel('y')
    plt.legend()
    plt.show()
```

Plotting data

Polynominal Regression

>> from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X, y)

Polynominal Regression

Syntax

from sklearn.preprocessing import PolynomialFeatures

```
>> from sklearn.preprocessing import PolynomialFeatures
pr = LinearRegression()
quadratic = PolynomialFeatures(degree=2)
X_quad = quadratic.fit_transform(X)
pr.fit(X_quad, y)
```

```
>> X_fit = np.arange(250, 600, 10)[:, np.newaxis]
```

```
>> y_fit_linear = Ir.predict(X_fit)
y_fit_quad = pr.predict(quadratic.fit_transform(X_fit))
```

```
>> plt.scatter(X, y, label='Training points')
    plt.xlabel('X')
    plt.ylabel('y')
    plt.plot(X_fit, y_fit_linear, label='Linear fit', linestyle='-')
    plt.plot(X_fit, y_fit_quad, label='Quadratic fit')
    plt.legend()
    plt.tight_layout()
    plt.show()
```


Linear regression

```
>> Ir = LR()
Ir.fit(X_train, y_train)
```

Polynominal regression (quadratic)

```
>> quadratic = PolynomialFeatures(degree=2) 
 X_{quad} = quadratic.fit_transform(X_train)  pr_{quad} = LR() pr_{quad} = pr_{quad.fit}(X_{quad}, y_train)
```

Polynominal regression (cubic)

```
>> cubic = PolynomialFeatures(degree=3)

X_cubic = cubic.fit_transform(X_train)

pr_cubic = LR() pr_cubic = pr_cubic.fit(X_cubic, y_train)
```

```
>> X_{fit} = np.arange(X_{train.min}(), X_{train.max}(), 0.1)[:, np.newaxis]
```

```
>> y_linear_fit = lr.predict(X_fit)
y_quad_fit = pr_quad.predict(quadratic.fit_transform(X_fit))
y_cubic_fit = pr_cubic.predict(cubic.fit_transform(X_fit))
```

Plotting the results

```
>> plt.scatter(X_train, y_train, c='steelblue', edgecolor='white', s=70)
    plt.plot(X_fit, y_lin_fit, label='Linear (d=1)', color='blue', lw=2,
    linestyle=':')
    plt.plot(X_fit, y_quad_fit, label='Quadratic (d=2)', color='red', lw=2,
    linestyle='-')
    plt.plot(X_fit, y_cubic_fit, label='Cubic (d=3)', color='green',
    lw=2.linestyle='-')
    plt.xlabel('Average number of rooms [RM] (standardized)')
    plt.ylabel('Price in $1000s [MEDV] (standardized)')
    plt.legend()
    plt.show()
```


Table of contents

Perceptron

2 Linear Regression

3 Adaptive Linear Neuron (Adaline)

4 Logistic Regression

Figure: Differences between Perceptron and Adaline

Training process

Algorithm 3 Pseudocode for the training process

- 1: Initialize the weights, w
- 2: while stopping criteria is not satisfied do
- 3: for $x \in X$ do
- 4: Compute the output value, \hat{y}
- 5: Updates the weights
- 6: end for
- 7: end while

Updating the weights

- $w = w + \Delta w$
- $\Delta w_i = \eta * (y \hat{y}) * x_i$ where:
 - \triangleright η : learning rate
 - ▶ y: the true class label
 - \triangleright \hat{y} : the predicted class label

Examples

$$\Delta w_0 = \eta * (y - \hat{y})$$

$$\Delta w_1 = \eta * (y - \hat{y}) * x_1$$

$$\Delta w_2 = \eta * (y - \hat{y}) * x_2$$

Components

Hyperparameters

- eta
- max_iter
- random_state

Parameters

- W
- costs

Methods

- fit(*X*, *y*)
- predict(X)
- net_input(X)
- activation(X)

Implement (code from scratch)

```
class Adaline:
    def __init__(self, eta = 0.01, max_iter = 50, random_state = 1):
        self.eta = eta
        self.max_iter = max_iter
        self.random_state = random_state
        self.w = None
        self.costs = [ ]
```

```
def activation(self, X):
    return self.net_input(X)
```

```
def predict(self, X):
return np.where(self.activation(X) \geq 0.0, 1, -1)
```

```
def fit(self, X, y):
  rgen = np.random.RandomState(self.random_state)
  self.w = rgen.normal(loc = 0.0, scale = 0.01, size = 1 + X.shape[1])
  self.costs = []
  for n_iter in range (self.max_iter):
     idx = rgen.permutation(len(y))
    X, y = X[idx], y[idx]
    cost = 0
     for xi, yi in zip(X, y):
       error = yi - self.predict(xi)
       self.w[1:] += self.eta * error * xi
       self.w[0] += self.eta * error
       cost += error**2
    cost /= 2
    self.costs.append(cost)
```

Table of contents

Perceptron

2 Linear Regression

3 Adaptive Linear Neuron (Adaline)

4 Logistic Regression

Figure: Differences between Adaline and Logistic regression

Components

Hyperparameters

- eta
- max_iter
- random_state

Parameters

- W
- costs

Methods

- fit(*X*, *y*)
- predict(X)
- net_input(X)
- activation(X)

Implement (code from scratch)

```
class LogisticRegression:
    def __init__(self, eta = 0.01, max_iter = 50, random_state = 1):
        self.eta = eta
        self.max_iter = max_iter
        self.random_state = random_state
        self.w = None
        self.costs = [ ]
```

```
def activation(self, X):
    return 1. / (1. + np.exp(-np.clip(self.net_input(X), -250, 250)))
```

```
def predict(self, X):
return np.where(self.activation(X) \geq 0.5, 1, 0)
```

```
def fit(self, X, y):
  rgen = np.random.RandomState(self.random_state)
  self.w = rgen.normal(loc = 0.0, scale = 0.01, size = 1 + X.shape[1])
  self.costs = []
  for n_iter in range (self.max_iter):
    output = self.activation(X)
    errors = y - output
    self.w[1:] += self.eta * X.T.dot(errors)
    self.w[0] += self.eta * errors.sum()
    cost = (-y.dot(np.log(output)) - ((1 - y).dot(np.log(1 - output))))
    self.costs.append(cost)
```

Implement (library)

Syntax (import)

from sklearn.linear_model import LogisticRegression

Examples

- >> from sklearn.linear_model import LogisticRegression as LogisticRegression_
- >> y_pred_lib1 = clf_LR_lib.predict(X_test)