APPENDIX B

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY RECORDS

May 31, 2022

Alan Sundquist CDW Consultants, Inc. 4 California Drive, Suite 301 Framingham, MA 01760

Project Location: 240 Beaver St., Waltham, MA

Client Job Number: Project Number: 1830.1

Laboratory Work Order Number: 22E0834

Keny K. Mille

Enclosed are results of analyses for samples as received by the laboratory on May 12, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	9
22E0834-01	9
22E0834-02	17
Sample Preparation Information	20
QC Data	22
Volatile Organic Compounds by GC/MS	22
B308386	22
Semivolatile Organic Compounds by GC/MS	27
B308526	27
Organochloride Pesticides by GC/ECD	31
B308354	31
Polychlorinated Biphenyls By GC/ECD	34
B308353	34
Herbicides by GC/ECD	35
B309280	35
Petroleum Hydrocarbons Analyses	37
B308525	37
Metals Analyses (Total)	38
B308621	38
B309067	39
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	40
B308341	40
B308429	40

Table of Contents (continued)

	B308563	4(
	B308564	40
å.	B308571	4(
Pestici	ides Degradation Report	42
Dual C	Column RPD Report	4:
Flag/Q	Qualifier Summary	54
Certifi	cations	5:
Chain	of Custody/Sample Receipt	62

CDW Consultants, Inc. 4 California Drive, Suite 301 Framingham, MA 01760 ATTN: Alan Sundquist •

REPORT DATE: 5/31/2022

PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

1830.1

22E0834

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION:

240 Beaver St., Waltham, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Comp #1 (2-10ft)	22E0834-01	Soil		SM 2540G	
				SM21-23 2510B	
				Modified	
				SW-846 1010A-B	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8081B	
				SW-846 8082A	
				SW-846 8100 Modified	
				SW-846 8151A	
				SW-846 8270E	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
GP 3-5 (4-6ft)	22E0834-02	Soil		SM 2540G	
				SW-846 8260D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report. For method 8151 samples were derivatized on 05/27/22.

For method 8151 samples analysis bracketed by LCS to monitor esterification. All recoveries in the bracketing LCS met method criteria.

SW-846 6010D

Qualifications:

M-10

The reporting limit verification for the AIHA lead program is outside of control limits for this element. Any reported result at or near the detection limit may be biased on the high side. Analyte & Samples(s) Qualified:

Lead

22E0834-01[Comp #1 (2-10ft)], B308621-SRM1

SW-846 8081B

Qualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

22E0834-01[Comp #1 (2-10ft)]

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

Analyte & Samples(s) Qualified:

Decachlorobiphenyl

22E0834-01[Comp #1 (2-10ft)]

Decachlorobiphenyl [2C]

22E0834-01[Comp #1 (2-10ft)]

Tetrachloro-m-xylene

22E0834-01[Comp #1 (2-10ft)]

Tetrachloro-m-xylene [2C]

22E0834-01[Comp #1 (2-10ft)]

SW-846 8082A

Qualifications:

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences. Analyte & Samples(s) Qualified:

Decachlorobiphenyl

22E0834-01[Comp #1 (2-10ft)]

Decachlorobiphenyl [2C]

22E0834-01[Comp #1 (2-10ft)]

Tetrachloro-m-xylene

22E0834-01[Comp #1 (2-10ft)]

Tetrachloro-m-xylene [2C]

22E0834-01[Comp #1 (2-10ft)]

SW-846 8100 Modified

Qualifications:

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

Analyte & Samples(s) Qualified:

2-Fluorobiphenyl

22E0834-01[Comp #1 (2-10ft)]

SW-846 8151A

Oualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

22E0834-01[Comp #1 (2-10ft)]

S-12

Surrogate recovery is outside of control limits on confirmatory column, but within control limits on primary column. Data validation is not

affected.
Analyte & Samples(s) Qualified:

2,4-Dichlorophenylacetic acid 22E0834-01[Comp #1 (2-10ft)]

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

MCPP

B309280-BLK1, B309280-BS1, B309280-BSD1

SW-846 8260D

Qualifications:

S-17

Surrogate recovery is outside of control limits. Data validation is not affected since all associated results are less than the reporting limit and

Analyte & Samples(s) Qualified:

1.2-Dichloroethane-d4

22E0834-02[GP 3-5 (4-6ft)]

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result. Analyte & Samples(s) Qualified:

1,4-Dioxane

B308386-BSD1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

estimated. nalyte & Samples(s) Qualified:

Bromomethane

22E0834-02[GP 3-5 (4-6ft)], B308386-BLK1, B308386-BS1, B308386-BSD1, S071520-CCV1

V-36

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

2-Butanone (MEK)

B308386-BS1, B308386-BSD1, S071520-CCV1

2-Hexanone (MBK)

B308386-BS1, B308386-BSD1, S071520-CCV1

SW-846 8270E

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

22E0834-01[Comp #1 (2-10ft)], B308526-BLK1, B308526-BS1, B308526-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Aniline

22E0834-01[Comp #1 (2-10ft)], B308526-BLK1, B308526-BS1, B308526-BSD1, S071740-CCV1

Bis(2-chloroisopropyl)ether

B308526-BLK1, B308526-BS1, B308526-BSD1, S071740-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

estimated.
Analyte & Samples(s) Qualified:

4-Chloroaniline

22E0834-01[Comp #1 (2-10ft)], B308526-BLK1, B308526-BS1, B308526-BSD1, S071740-CCV1

Bis(2-chloroisopropyl)ether 22E0834-01[Comp #1 (2-10ft)]

SW-846 8100 Modified

TPH (C9-C36) is quantitated against a calibration made with a diesel standard.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Page 9 of 64

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01
Sample Matrix: Soil

			Semivol	atile Organic C	ompounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Biphenyl	ND	4.6	0.36	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Acenaphthene	ND	1.2	0.47	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Acenaphthylene	ND	1.2	0.46	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Acetophenone Aniline	ND	2.3	0.45	mg/Kg dry	5	****	SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Anthracene	ND	2.3	0.40	mg/Kg dry	5	V-05	SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Benzo(a)anthracene	ND ND	1.2	0.47	mg/Kg dry	5 5		SW-846 8270E SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Benzo(a)pyrene	ND	1.2	0.41	mg/Kg dry mg/Kg dry	5		SW-846 8270E	5/16/22 5/16/22	5/19/22 0:08	IMR
Benzo(b)fluoranthene	ND	1.2	0.41	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08 5/19/22 0:08	IMR IMR
Benzo(g,h,i)perylene	ND	1.2	0.50	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Benzo(k)fluoranthene	ND	1.2	0.40	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Bis(2-chloroethoxy)methane	ND	2.3	0.44	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Bis(2-chloroethyl)ether	ND	2.3	0.45	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Bis(2-chloroisopropyl)ether	ND	2.3	0.62	mg/Kg dry	5	V-34	SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Bis(2-Ethylhexyl)phthalate	ND	2.3	0.46	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
4-Bromophenylphenylether	ND	2.3	0.43	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Butylbenzylphthalate	ND	2.3	0.42	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
4-Chloroaniline	ND	4.5	0.30	mg/Kg dry	5	V-34	SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2-Chloronaphthalene	ND	2.3	0.40	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2-Chlorophenol	ND	2.3	0.47	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Chrysene	ND	1.2	0.43	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Dibenz(a,h)anthracene	ND	1.2	0.46	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Dibenzofuran	ND	2.3	0.46	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Di-n-butylphthalate	ND	2.3	0.41	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
1,2-Dichlorobenzene	ND	2.3	0.42	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
1,3-Dichlorobenzene	ND	2.3	0.41	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
,4-Dichlorobenzene	ND	2.3	0.41	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
3,3-Dichlorobenzidine	ND	1.2	0.31	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2,4-Dichlorophenol	ND	2.3	0.45	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Diethylphthalate	ND	2,3	0.43	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2,4-Dimethylphenol	ND	2.3	0.59	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Dimethylphthalate	ND	2.3	0.45	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
4.4-Dinitrophenol	ND	4.5	2.0	mg/Kg dry	5	R-05	SW-846 8270E	5/16/22	5/19/22 0:08	IMR
4,4-Dinitrotoluene	ND	2.3	0.48	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
.,6-Dinitrotoluene	ND	2.3	0.51	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Di-n-octylphthalate	ND	2.3	0.67	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
,2-Diphenylhydrazine/Azobenzene	ND	2.3	0.45	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
luoranthene	ND	1.2	0.43	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
luorene	ND	1.2	0.47	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Iexachlorobenzene	0.73	2.3	0.45	mg/Kg dry	5	J	SW-846 8270E	5/16/22	5/19/22 0:08	IMR
[exachlorobutadiene	ND	2.3	0.46	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Iexachloroethane	ND	2.3	0.44	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
ndeno(1,2,3-cd)pyrene	ND	1.2	0.52	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
sophorone	ND	2.3	0.47	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

58.1

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01
Sample Matrix: Soil

p-Terphenyl-d14

			Semive	olatile Organic Co	ompounds by	GC/MS				
Analyte	Results	RL	DL	Units	Düntlon	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
2-Methylnaphthalene	ND	1.2	0.51	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2-Methylphenol	ND	2.3	0.49	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
3/4-Methylphenol	ND	2.3	0.49	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Naphthalene	ND	1.2	0.46	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Nitrobenzene	ND	2.3	0.47	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2-Nitrophenol	ND	2.3	0.49	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
4-Nitrophenol	ND	4.5	1.0	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Pentachlorophenol	ND	2.3	0.93	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Phenanthrene	ND	1.2	0.47	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Phenol	ND	2.3	0.51	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Pyrene	ND	1.2	0.45	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Pyridine	ND	2.3	0.33	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
1,2,4-Trichlorobenzene	ND	2.3	0.44	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2,4,5-Trichlorophenol	ND	2.3	0.45	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
2,4,6-Trichlorophenol	ND	2.3	0.44	mg/Kg dry	5		SW-846 8270E	5/16/22	5/19/22 0:08	IMR
Surrogates		% Reco	very	Recovery Limit	S	Flag/Qual				
2-Fluorophenol		50.9		30-130					5/19/22 0:08	
Phenol-d6		48.4		30-130					5/19/22 0:08	
Nitrobenzene-d5		47.5		30-130					5/19/22 0:08	
2-Fluorobiphenyl		61.4		30-130					5/19/22 0:08	
2,4,6-Tribromophenol		59.8		30-130					5/19/22 0:08	

30-130

5/19/22 0:08

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01
Sample Matrix: Soil

Sample Flags: RL-11			Or	ganochloride Pesti	cides by GC	ÆCD				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aldrin [1]	ND	1.4	0.12	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
alpha-BHC [1]	ND	1.4	0.58	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	ЛМВ
beta-BHC [1]	ND	1.4	0.49	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
delta-BHC [1]	ND	1.4	0.66	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
gamma-BHC (Lindane) [1]	ND	0.55	0.13	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Chlordane [1]	ND	5.5	2.1	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
4,4'-DDD [2]	34	1.1	0.099	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
4,4'-DDE [1]	3.2	1.1	0.11	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
4,4'-DDT [1]	1400	110	13	mg/Kg dry	20000		SW-846 8081B	5/13/22	5/22/22 13:57	JMB
Dieldrin [1]	7.8	1.1	0.10	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Endosulfan I [1]	ND	1.4	0.47	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Endosulfan II [1]	ND	2.2	0.47	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Endosulfan sulfate [1]	ND	2.2	0.50	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Endrin [1]	ND	2.2	0.47	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Endrin ketone [1]	ND	2.2	0.61	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Heptachlor [1]	ND	1.4	0.15	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Heptachlor epoxide [1]	ND	1.4	0.12	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
lexachlorobenzene [1]	ND	1.6	0.62	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Methoxychlor [1]	ND	14	1.7	mg/Kg dry	200		SW-846 8081B	5/13/22	5/22/22 13:30	JMB
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]			*	30-150		S-01			5/22/22 13:30	
Decachlorobiphenyl [2]			*	30-150		S-01			5/22/22 13:30	
Tetrachloro-m-xylene [1]			*	30-150		S-01			5/22/22 13:30	
Tetrachloro-m-xylene [2]			*	30-150		S-01			5/22/22 13:30	

Polychlorinated Biphenyls By GC/ECD

Project Location: 240 Beaver St., Waltham, MA

Analyte

Sample Description:

RL

Results

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01 Sample Matrix: Soil

				Date	Date/Time		
Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
mg/Kg dry	400		SW-846 8082A	5/13/22	5/19/22 8:47	JEA	
mg/Kg dry	400		SW-846 8082A	5/13/22	5/19/22 8:47	JEA	
mg/Kg dry	400		SW-846 8082A	5/13/22	5/19/22 8:47	JEA	
mg/Kg dry	400		SW-846 8082A	5/13/22	5/19/22 8:47	JEA	

0		44.00						
Aroclor-1268 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1262 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1260 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1254 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1248 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1242 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1232 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1221 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA
Aroclor-1016 [1]	ND	11	mg/Kg dry	400	SW-846 8082A	5/13/22	5/19/22 8:47	JEA

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	*	30-150	S-01	5/19/22 8:47
Decachlorobiphenyl [2]	*	30-150	S-01	5/19/22 8:47
Tetrachioro-m-xylene [1]	*	30-150	S-01	5/19/22 8:47
Tetrachloro-m-xylene [2]	*	30-150	S-01	5/19/22 8:47

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01

Sample Matrix: Soil
Sample Flags: O-32

Herbicides by GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2,4-D [2]	ND	140	12	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
2,4-DB [2]	ND	140	27	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
2,4,5-TP (Silvex) [2]	ND	14	1.5	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
2,4,5-T [2]	ND	14	1.9	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
Dalapon [2]	ND	340	21	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
Dicamba [2]	ND	14	1.9	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
Dichloroprop [2]	ND	140	26	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
MCPA [2]	ND	14000	2100	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
MCPP [2]	ND	14000	1800	μg/kg dry	4		SW-846 8151A	5/25/22	5/29/22 10:10	JMB
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
2,4-Dichlorophenylacetic acid [1]		566	*	30-150		S-12			5/29/22 10:10	
2,4-Dichlorophenylacetic acid [2]		101		30-150					5/29/22 10:10	

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01

Sample Matrix: Soil

Petroleum	Hydrocarbons Anal	yses
-----------	-------------------	------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	2600	570	mg/Kg dry	50		SW-846 8100 Modified	5/16/22	5/19/22 0:39	SFM
Surrogates		% Recovery	Recovery Limits	5	Flag/Qual				
2-Fluorobiphenyl		*	40-140		S-01			5/19/22 0:39	

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01

Sample Matrix: Soil

				Metals Analy	yses (Total)					
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony		ND	2.2	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Arsenic		9.8	4.4	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЛН
Barium		82	2.2	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Beryllium		0.36	0.22	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Cadmium		0.47	0.44	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Chromium		24	0.89	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Lead		170	0.67	mg/Kg dry	1	M-10	SW-846 6010D	5/17/22	5/21/22 21:41	МЛН
Mercury		0.40	0.035	mg/Kg dry	1		SW-846 7471B	5/23/22	5/23/22 18:15	TDK
Nickel		24	0.89	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Selenium		ND	4.4	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Silver		ND	0.44	mg/Kg dry	1		SW-846 6010D	5/17/22	5/24/22 16:57	MJH
Thallium		ND	2.2	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Vanadium		160	0.89	mg/Kg dry	ı		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН
Zinc		160	0.89	mg/Kg dry	1		SW-846 6010D	5/17/22	5/21/22 21:41	МЈН

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: Comp #1 (2-10ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	73.0		% Wt	1		SM 2540G	5/20/22	5/21/22 10:16	BLS
Flashpoint	> 212 °F		°F	1		SW-846 1010A-B	5/17/22	5/17/22 14:50	DET
pH @20.3°C	7.9		pH Units	1		SW-846 9045C	5/12/22	5/12/22 21:05	JEC
Reactive Cyanide	ND	3.9	mg/Kg	ı		SW-846 9014	5/17/22	5/18/22 17:25	EC
Reactive Sulfide	ND	19	mg/Kg	1		SW-846 9030A	5/17/22	5/18/22 16:10	EC
Specific conductance	9.7	2.0	μmhos/cm	1		SM21-23 2510B Modified	5/14/22	5/14/22 13:00	EC

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: GP 3-5 (4-6ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-02
Sample Matrix: Soil

Volatile	Organic	Compounds	by CC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	0.038	0.14	0.013	mg/Kg dry	1	J	SW-846 8260D	5/13/22	5/13/22 10:35	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0014	0.00050	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Benzene	0.0011	0.0027	0.00075	mg/Kg dry	1	J	SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Bromobenzene	ND	0.0027	0.00050	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Bromochloromethane	ND	0.0027	0.0012	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Bromodichloromethane	ND	0.0027	0.00067	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Bromoform	ND	0.0027	0.00085	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Bromomethane	ND	0.014	0.0022	mg/Kg dry	1	V-34	SW-846 8260D	5/13/22	5/13/22 10:35	MFF
2-Butanone (MEK)	ND	0.055	0.0078	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
n-Butylbenzene	ND	0.0027	0.00080	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
sec-Butylbenzene	ND	0.0027	0.0013	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
tert-Butylbenzene	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0014	0.00068	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Carbon Disulfide	0.017	0.014	0.0096	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Carbon Tetrachloride	ND	0.0027	0.0012	mg/Kg dry	I		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Chlorobenzene	ND	0.0027	0.00081	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Chlorodibromomethane	ND	0.0014	0.00078	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Chloroethane	ND	0.027	0.0017	mg/Kg dry	I		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Chloroform	ND	0.0055	0.00080	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Chloromethane	ND	0.014	0.0014	mg/Kg dry	t		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
2-Chlorotoluene	ND	0.0027	0.00068	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
4-Chlorotoluene	ND	0.0027	0.00057	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
i,2-Dibromo-3-chloropropane (DBCP)	ND	0.0027	0.0012	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2-Dibromoethane (EDB)	ND	0.0014	0.00092	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Dibromomethane	ND	0.0027	0.0010	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2-Dichlorobenzene	ND	0.0027	0.00060	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,3-Dichlorobenzene	ND	0.0027	0.00068	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
I,4-Dichlorobenzene	ND	0.0027	0.00073	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.027	0.0014	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1-Dichloroethane	ND	0.0027	0.00095	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2-Dichloroethane	ND	0.0027	0.00090	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1-Dichloroethylene	ND	0.0055	0.00097	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
cis-1,2-Dichloroethylene	ND	0.0027	0.00077	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
rans-1,2-Dichloroethylene	ND	0.0027	0.00092	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2-Dichloropropane	ND	0.0027	0.00077	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
3-Dichloropropane	ND	0.0014	0.00071	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
2,2-Dichloropropane	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1-Dichloropropene	ND	0.0027	0.0013	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
sis-1,3-Dichloropropene	ND	0.0014	0.00069	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
rans-1,3-Dichloropropene	ND	0.0014	0.00068	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Diethyl Ether	ND	0.027	0.00098	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Diisopropyl Ether (DIPE)	ND	0.0014	0.00078	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
,4-Dioxane	ND	0.14	0.049	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Ethylbenzene	ND	0.0027	0.00074	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
									Page 17	

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: GP 3-5 (4-6ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-02 Sample Matrix: Soil

			Volat	ile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0027	0.0010	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
2-Hexanone (MBK)	ND	0.027	0.0078	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Isopropylbenzene (Cumene)	ND	0.0027	0.00097	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
p-Isopropyitoluene (p-Cymene)	ND	0.0027	0.00077	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0055	0.00049	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Methylene Chloride	ND	0.027	0.0020	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.027	0.0057	mg/Kg dry	I		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Naphthalene	ND	0.0055	0.00074	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
n-Propylbenzene	ND	0.0027	0.00065	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Styrene	ND	0.0027	0.00057	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1,1,2-Tetrachloroethane	ND	0.0027	0.00077	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1,2,2-Tetrachloroethane	ND	0.0014	0.00071	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Tetrachioroethylene	ND	0.0027	0.00091	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Tetrahydrofuran	ND	0.014	0.0046	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Toluene	ND	0.0027	0.00071	mg/Kg dry	ı		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2,3-Trichlorobenzene	ND	0.0027	0.00074	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2,4-Trichlorobenzene	ND	0.0027	0.00066	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1,I-Trichloroethane	ND	0.0027	0.0011	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,1,2-Trichloroethane	ND	0.0027	0.00063	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Trichloroethylene	ND	0.0027	0.00090	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Trichlorofluoromethane (Freon 11)	ND	0.014	0.00066	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2,3-Trichloropropane	ND	0.0027	0.0014	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,2,4-Trimethylbenzene	ND	0.0027	0.00091	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
1,3,5-Trimethylbenzene	ND	0.0027	0.00072	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Vinyl Chloride	ND	0.014	0.00088	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
m+p Xylene	ND	0.0055	0.0018	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
o-Xylene	ND	0.0027	0.00059	mg/Kg dry	1		SW-846 8260D	5/13/22	5/13/22 10:35	MFF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		134	*	70-130		S-17			5/13/22 10:35	

Project Location: 240 Beaver St., Waltham, MA

Sample Description:

Work Order: 22E0834

Date Received: 5/12/2022

Field Sample #: GP 3-5 (4-6ft)

Sampled: 5/12/2022 12:00

Sample ID: 22E0834-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		73.0		% Wt	1		SM 2540G	5/20/22	5/25/22 12:36	ЛC

Sample Extraction Data

Lab Number [Field ID]	Batch			Date	
2E0834-01 [Comp #1 (2-10ft)]	B308891			05/20/22	
2E0834-02 [GP 3-5 (4-6ft)]	B308891			05/20/22	
M21-23 2510B Modified					
Lab Number [Field ID]	Batch	Initial [g]		Date	
2E0834-01 [Comp #1 (2-10ft)]	B308429	1.00		05/14/22	
SW-846 1010A-B					
ab Number [Field ID]	Batch	Initial [g]	Final (mL)	Date	
22E0834-01 [Comp #1 (2-10ft)]	B308571	50.0	50.0	05/17/22	
Prep Method: SW-846 3050B Analytical Met	hod: SW-846 6010D				
Lab Number (Field ID)	Batch	Initial [g]	Final [mL]	Date	
22E0834-01 [Comp #1 (2-10ft)]	B308621	1.54	50.0	05/17/22	
ep Method: SW-846 7471 Analytical Metho	od: SW-846 7471B				
Lab Number [Field ID]	Batch	Initial [g]	Final (mL)	Date	
22E0834-01 [Comp #1 (2-10ft)]	B309067	0.581	50.0	05/23/22	
Prep Method: SW-846 3546 Analytical Metho	od: SW-846 8081B				
ab Number [Field ID]	Batch	Initial [g]	Final (mL)	Date	
2E0834-01 [Comp #1 (2-10ft)]	B308354	10.0	10.0	05/13/22	
Prep Method: SW-846 3546 Analytical Metho	od: SW-846 8082A				
ab Number [Field ID]	Batch	Initial [g]	Final (mL)	Date	
2E0834-01 [Comp #1 (2-10ft)]	B308353	10.0	10.0	05/13/22	
rep Method: SW-846 3546 Analytical Metho	od: SW-846 8100 Modified				
ab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
2E0834-01 [Comp #1 (2-10ft)]	B308525	30.0	1.00	05/16/22	
rep Method: SW-846 8151 Analytical Metho	od: SW-846 8151A				
•					
ab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	

Sample Extraction Data

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
22E0834-02 [GP 3-5 (4-6ft)]	B308386	5.00	10.0	05/13/22	· · · · · · · · · · · · · · · · · · ·

Prep Method: SW-846 3546

Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial (g)	Final [mL]	Date
22E0834-01 [Comp #1 (2-10ft)]	B308526	30.1	1.00	05/16/22

SW-846 9014

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
22E0834-01 [Comp #1 (2-10ft)]	B308564	25.7	250	05/17/22

SW-846 9030A

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
22E0834-01 [Comp #1 (2-10ft)]	B308563	25.7	250	05/17/22

SW-846 9045C

.ab Number [Field ID]	Batch	Initial [g]	Date
22E0834-01 [Comp #1 (2-10ft)]	B308341	20.0	05/12/22

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308386 - SW-846 5035										
Blank (B308386-BLK1)			1	Prepared &	Analyzed: 05	/13/22				
Acetone	ND	0.10	mg/Kg wet							
ert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
romodichloromethane	ND	0.0020	mg/Kg wet							
romoform	ND	0.0020	mg/Kg wet							
romomethane	ND	0.010	mg/Kg wet							V-34
-Butanone (MEK)	ND	0.040	mg/Kg wet							
-Butylbenzene	ND	0.0020	mg/Kg wet							
ec-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.010	mg/Kg wet							
Carbon Tetrachloride	ND	0.0020	mg/Kg wet							
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chlorodibromomethane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.020	mg/Kg wet							
hioroform	ND	0.0040	mg/Kg wet							
Chloromethane	ND	0.010	mg/Kg wet							
Chlorotoluene	ND	0.0020	mg/Kg wet							
-Chlorotoluene	ND	0.0020	mg/Kg wet							
,2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	mg/Kg wet							
,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
Dibromomethane	ND	0.0020	mg/Kg wet							
2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
,3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
ichlorodifluoromethane (Freon 12)	ND	0.020	mg/Kg wet							
1-Dichloroethane	ND	0.0020	mg/Kg wet							
2-Dichloroethane	ND	0.0020	mg/Kg wet							
1-Dichloroethylene	ND	0.0040	mg/Kg wet							
s-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
ans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
2-Dichloropropane	ND	0.0020	mg/Kg wet							
3-Dichloropropane	ND	0.0010	mg/Kg wet							
2-Dichloropropane	ND	0.0020	mg/Kg wet							
1-Dichloropropene	ND	0.0020	mg/Kg wet							
s-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
ans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
iethyl Ether	ND	0.020	mg/Kg wet							
iisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
4-Dioxane	ND	0.10	mg/Kg wet							
hylbenzene	ND	0.0020	mg/Kg wet							
exachlorobutadiene	ND	0.0020	mg/Kg wet							
Hexanone (MBK)	ND	0.020	mg/Kg wet							
opropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
ethyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
ethylene Chloride	ND	0.020	mg/Kg wet							
Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
aphthalene	ND	0.0040	mg/Kg wet							

Апаlyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B308386 - SW-846 5035											_
Blank (B308386-BLK1)				Prepared & A	Analyzed: 05/	13/22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
n-Propylbenzene	ND	0.0020	mg/Kg wet								
Styrene	ND	0.0020	mg/Kg wet								
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet								
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet								
Tetrachloroethylene	ND	0.0020	mg/Kg wet								
Tetrahydrofuran	ND	0.010	mg/Kg wet								
Toluene	ND	0.0020	mg/Kg wet								
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet								
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet								
Trichlere Guaranthane (France 11)	ND	0.0020	mg/Kg wet								
Trichlorofluoromethane (Freon 11) 1,2,3-Trichloropropane	ND	0.010 0.0020	mg/Kg wet								
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet mg/Kg wet								
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet								
Vinyl Chloride	ND ND	0.010	mg/Kg wet								
n+p Xylene	ND	0.0040	mg/Kg wet								
p-Xylene	ND	0.0020	mg/Kg wet								
'urrogate: 1,2-Dichloroethane-d4	0.0549		mg/Kg wet	0.0500		110	70-130				
rrogate: Toluene-d8	0.0488		mg/Kg wet	0.0500		97.6	70-130				
Surrogate: 4-Bromofluorobenzene	0.0486		mg/Kg wet	0.0500		97.3	70-130				
LCS (B308386-BS1)				Prepared & A	Analyzed: 05/	13/22					
Acetone	0.228	0.10	mg/Kg wet	0.200		114	40-160				
ert-Amyl Methyl Ether (TAME)	0.0225	0.0010	mg/Kg wet	0.0200		113	70-130				
Benzene	0.0202	0.0020	mg/Kg wet	0,0200		101	70-130				
Bromobenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
Bromochloromethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Bromodichloromethane	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
Bromoform	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Bromomethane	0.0225	0.010	mg/Kg wet	0.0200		113	40-160			V-34	
2-Butanone (MEK)	0.247	0.040	mg/Kg wet	0.200		124	40-160			V-36	
a-Butylbenzene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130				
ec-Butylbenzene	0.0203	0.0020	mg/Kg wet	0.0200		101	70-130				
ert-Butylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.3	70-130				
ert-Butyl Ethyl Ether (TBEE)	0.0189	0.0010	mg/Kg wet	0.0200		94.3	70-130				
Carbon Disulfide	0.218	0.010	mg/Kg wet	0.200		109	70-130				
Carbon Tetrachloride	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
Chlorobenzene	0.0196	0.0020	mg/Kg wet	0.0200		97.8	70-130				
Chlorodibromomethane	0.0211	0.0010	mg/Kg wet	0.0200		105	70-130				
Chloroethane	0.0212	0.020	mg/Kg wet	0.0200		106	70-130				
Chloroform Chloromethane	0.0206	0.0040 0.010	mg/Kg wet	0.0200		103	70-130				
nioromemane -Chlorotoluene	0.0211	0.010	mg/Kg wet mg/Kg wet	0.0200		106	40-160 70-130				
-Chlorotoluene	0.0208	0.0020	mg/Kg wet	0.0200 0.0200		104 104	70-130 70-130				
,2-Dibromo-3-chloropropane (DBCP)	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130				
,2-Dibromoethane (EDB)	0.0216 0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
bromomethane	0.0211	0.0020	mg/Kg wet	0.0200		104	70-130				
,2-Dichlorobenzene	0.0198	0.0020	mg/Kg wet	0.0200		98.9	70-130				
3-Dichlorobenzene	0.0198	0.0020	mg/Kg wet	0.0200		97.8	70-130				
	0.0190			0.0200							

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B308386 - SW-846 5035											
LCS (B308386-BS1)				Prepared & A	Analyzed: 05/	13/22					
Dichlorodifluoromethane (Freon 12)	0.0176	0.020	mg/Kg wet	0.0200		88.1	40-160			J	
1,1-Dichloroethane	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130				
1,2-Dichloroethane	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130				
1,1-Dichloroethylene	0.0207	0.0040	mg/Kg wet	0.0200		103	70-130				
cis-1,2-Dichloroethylene	0.0199	0.0020	mg/Kg wet	0.0200		99.6	70-130				
trans-1,2-Dichloroethylene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
1,2-Dichloropropane	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130				
1,3-Dichloropropane	0.0211	0.0010	mg/Kg wet	0.0200		105	70-130				
2,2-Dichloropropane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
1,1-Dichloropropene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130				
cis-1,3-Dichloropropene	0.0210	0.0010	mg/Kg wet	0.0200		105	70-130				
trans-1,3-Dichloropropene	0.0185	0.0010	mg/Kg wet	0.0200		92.6	70-130				
Diethyl Ether	0.0199	0.020	mg/Kg wet	0.0200		99.5	70-130			J	
Diisopropyl Ether (DIPE)	0.0201	0.0010	mg/Kg wet	0.0200		101	70-130				
1,4-Dioxane	0.200	0.10	mg/Kg wet	0.200		100	40-160				,
Ethylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130				
Hexachlorobutadiene	0.0189	0.0020	mg/Kg wet	0.0200		94.5	70-130				
2-Hexanone (MBK)	0.242	0.020	mg/Kg wet	0.200		121	40-160			V-36	1
Isopropylbenzene (Cumene)	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
p-Isopropyltoluene (p-Cymene)	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130				
sthyl tert-Butyl Ether (MTBE)	0.0199	0.0040	mg/Kg wet	0.0200		99.4	70-130				
Aethylene Chloride	0.0200	0.020	mg/Kg wet	0.0200		100	70-130				
4-Methyl-2-pentanone (MIBK)	0.235	0.020	mg/Kg wet	0.200		118	40-160				,
Naphthalene	0.0206	0.0040	mg/Kg wet	0.0200		103	70-130				
n-Propylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		103	70-130				
Styrene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
1,1,1,2-Tetrachloroethane	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130				
1,1,2,2-Tetrachloroethane	0.0210	0.0010	mg/Kg wet	0.0200		105	70-130				
Tetrachloroethylene	0.0198	0.0020	mg/Kg wet	0.0200		99.1	70-130				
Tetrahydrofuran	0.0205	0.010	mg/Kg wet	0.0200		102	70-130				
Toluene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130				
1,2,3-Trichlorobenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.5	70-130				
1,2,4-Trichlorobenzene	0.0182	0.0020	mg/Kg wet	0.0200		90.8	70-130				
1,1,1-Trichloroethane	0.0215	0.0020	mg/Kg wet	0.0200		108	70-130				
1,1,2-Trichloroethane	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130				
richloroethylene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130				
Trichlorofluoromethane (Freon 11)	0.0218	0.010	mg/Kg wet	0.0200		109	70-130				
,2,3-Trichloropropane	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130				
,2,4-Trimethylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
,3,5-Trimethylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		103	70-130				
/inyl Chloride	0.0214	0.010	mg/Kg wet	0.0200		107	70-130				
n+p Xylene	0.0420	0.0040	mg/Kg wet	0.0400		105	70-130				
-Xylene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130				
urrogate: 1,2-Dichloroethane-d4	0.0505		mg/Kg wet	0.0500		101	70-130				
urrogate: Toluene-d8	0.0506		mg/Kg wet	0.0500		101	70-130				
Surrogate: 4-Bromofluorobenzene	0.0488		mg/Kg wet	0.0500		97.6	70-130				

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B308386 - SW-846 5035											
LCS Dup (B308386-BSD1)				Prepared &	Analyzed: 05	/13/22					
Acetone	0.229	0.10	mg/Kg wet	0.200		115	40-160	0.534	20		
tert-Amyl Methyl Ether (TAME)	0.0227	0.0010	mg/Kg wet	0.0200		114	70-130	0.972	20		
Benzene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	0.794	20		
Bromobenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	0.964	20		
Bromochloromethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130	0.00	20		
Bromodichloromethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130	1.34	20		
Bromoform	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130	1.89	20		
Bromomethane	0.0223	0.010	mg/Kg wet	0.0200		112	40-160	0.891	20	V-34	
2-Butanone (MEK)	0.254	0.040	mg/Kg wet	0.200		127	40-160	2.83	20	V-36	•
n-Butylbenzene	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130	0.571	20		
sec-Butylbenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	0.495	20		
tert-Butylbenzene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	1.40	20		
tert-Butyl Ethyl Ether (TBEE)	0.0185	0.0010	mg/Kg wet	0.0200		92.6	70-130	1.82	20		
Carbon Disulfide Carbon Tetrachioride	0.214	0.010	mg/Kg wet	0.200		107	70-130	2.06	20		
Chlorobenzene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	0.497	20		
Chlorodibromomethane	0.0197	0.0020	mg/Kg wet	0.0200		98.6	70-130	0.815	20		
Chloroethane	0.0210	0.0010 0.020	mg/Kg wet	0.0200		105	70-130	0.0950	20		
Chloroform	0.0210	0.020	mg/Kg wet	0.0200		105	70-130	0.853	20		
Chloromethane	0.0205	0.0040	mg/Kg wet mg/Kg wet	0.0200		102 104	70-130	0.487	20		
Chlorotoluene	0.0208 0.0209	0.0020	mg/Kg wet	0.0200 0.0200		104	40-160 70-130	1.53 0.481	20 20		
4-Chlorotoluene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130	0.0966	20		
1,2-Dibromo-3-chloropropane (DBCP)	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130	1.10	20		
1,2-Dibromoethane (EDB)	0.0218	0.0010	mg/Kg wet	0.0200		104	70-130	0.288	20		
Dibromomethane	0.0215	0.0020	mg/Kg wet	0.0200		107	70-130	1.60	20		
1,2-Dichlorobenzene	0.0198	0.0020	mg/Kg wet	0.0200		98.8	70-130	0.101	20		
1,3-Dichlorobenzene	0.0194	0.0020	mg/Kg wet	0.0200		97.0	70-130	0.821	20		
1,4-Dichlorobenzene	0.0193	0.0020	mg/Kg wet	0.0200		96.4	70-130	0.104	20		
Dichlorodifluoromethane (Freon 12)	0.0174	0.020	mg/Kg wet	0.0200		87.2	40-160	1.03	20	J	1
1,1-Dichloroethane	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130	0.0956	20	•	
1,2-Dichloroethane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	0.494	20		
1,1-Dichloroethylene	0.0204	0.0040	mg/Kg wet	0.0200		102	70-130	1.07	20		
cis-1,2-Dichloroethylene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130	1.21	20		
trans-1,2-Dichloroethylene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130	3.48	20		
1,2-Dichloropropane	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	1.48	20		
1,3-Dichloropropane	0.0213	0.0010	mg/Kg wet	0.0200		107	70-130	1.32	20		
2,2-Dichloropropane	0.0194	0.0020	mg/Kg wet	0.0200		97.0	70-130	4.24	20		
, I-Dichloropropene	0.0198	0.0020	mg/Kg wet	0.0200		99.1	70-130	1.30	20		
sis-1,3-Dichloropropene	0.0211	0.0010	mg/Kg wet	0.0200		106	70-130	0.380	20		
rans-1,3-Dichloropropene	0.0186	0.0010	mg/Kg wet	0.0200		93.0	70-130	0.431	20		
Diethyl Ether	0.0200	0.020	mg/Kg wet	0.0200		100	70-130	0.701	20		
Diisopropyl Ether (DIPE)	0.0197	0.0010	mg/Kg wet	0.0200		98.7	70-130	1.91	20		
,4-Dioxane	0.236	0.10	mg/Kg wet	0.200		118	40-160	16.2	20	V-16	•
thylbenzene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	0.587	20		
1exachlorobutadiene	0.0185	0.0020	mg/Kg wet	0.0200		92.3	70-130	2.36	20		
-Hexanone (MBK)	0.247	0.020	mg/Kg wet	0.200		123	40-160	2.04	20	V-36	1
sopropylbenzene (Cumene)	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	0.0992	20		
-Isopropyltoluene (p-Cymene)	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	1.68	20		
ethyl tert-Butyl Ether (MTBE)	0.0198	0.0040	mg/Kg wet	0.0200		99.2	70-130	0.201	20		
viethylene Chloride	0.0199	0.020	mg/Kg wet	0.0200		99.5	70-130	0.501	20	J	
-Methyl-2-pentanone (MIBK)	0.240	0.020	mg/Kg wet	0.200		120	40-160	2.20	20		1
Naphthalene	0.0205	0.0040	mg/Kg wet	D.0200		102	70-130	0.584	20		

Page 25 of 64

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308386 - SW-846 5035										
LCS Dup (B308386-BSD1)				Prepared & A	Analyzed: 05/	/13/22				
n-Propylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130	0.290	20	
Styrene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130	0.381	20	
1,1,1,2-Tetrachloroethane	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130	0.970	20	
1,1,2,2-Tetrachloroethane	0.0216	0.0010	mg/Kg wet	0.0200		108	70-130	3.19	20	
Tetrachloroethylene	0.0195	0.0020	mg/Kg wet	0.0200		97.7	70-130	1.42	20	
Tetrahydrofuran	0.0206	0.010	mg/Kg wet	0.0200		103	70-130	0.682	20	
l'oluene	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130	10.1	20	
1,2,3-Trichlorobenzene	0.0186	0.0020	mg/Kg wet	0.0200		93.0	70-130	0.536	20	
1,2,4-Trichlorobenzene	0.0180	0.0020	mg/Kg wet	0.0200		89.9	70-130	0.996	20	
,1,1-Trichloroethane	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	1.50	20	
1,1,2-Trichloroethane	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	1.66	20	
Trichloroethylene	0.0199	0.0020	mg/Kg wet	0.0200		99.6	70-130	0.800	20	
Trichlorofluoromethane (Freon 11)	0.0219	0.010	mg/Kg wet	0.0200		109	70-130	0.550	20	
,2,3-Trichloropropane	0.0215	0.0020	mg/Kg wet	0.0200		108	70-130	1.87	20	
,2,4-Trimethylbenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	1.86	20	
,3,5-Trimethylbenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	0.675	20	
Vinyl Chloride	0.0212	0.010	mg/Kg wet	0.0200		106	70-130	0.563	20	
n+p Xylene	0.0420	0.0040	mg/Kg wet	0.0400		105	70-130	0.143	20	
o-Xylene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	0.195	20	
Surrogate: 1,2-Dichloroethane-d4	0.0495		mg/Kg wet	0.0500		99.0	70-130			
rrogate: Toluene-d8	0.0503		mg/Kg wet	0.0500		101	70-130			
urrogate: 4-Bromofluorobenzene	0.0489		mg/Kg wet	0.0500		97.9	70-130			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308526 - SW-846 3546										
Blauk (B308526-BLK1)				Prepared: 05	/16/22 Analy	zed: 05/18/2	2			
Biphenyl	ND	0.67	mg/Kg wet							
Acenaphthene	ND	0.17	mg/Kg wet							
Acenaphthylene	ND	0.17	mg/Kg wet							
Acetophenone	ND	0.34	mg/Kg wet							
Aniline	ND	0.34	mg/Kg wet							V-05
Anthracene	ND	0.17	mg/Kg wet							
Benzo(a)anthracene	ND	0.17	mg/Kg wet							
Benzo(a)pyrene	ND	0.17	mg/Kg wet							
Benzo(b)fluoranthene	ND	0.17	mg/Kg wet							
Senzo(g,h,i)perylene	ND	0.17	mg/Kg wet							
Benzo(k)fluoranthene Bis(2-chloroethoxy)methane	ND	0.17	mg/Kg wet							
Bis(2-chloroethyl)ether	ND	0.34 0.34	mg/Kg wet mg/Kg wet							
Bis(2-chloroisopropyl)ether	ND	0.34	mg/Kg wet mg/Kg wet							17.00
Bis(2-Ethylhexyl)phthalate	ND	0.34	mg/Kg wet							V-05
-Bromophenylphenylether	ND	0.34	mg/Kg wet							
Butylbenzylphthalate	ND ND	0.34	mg/Kg wet							
-Chloroaniline	ND	0.66	mg/Kg wet							V-34
-Chloronaphthalene	ND	0.34	mg/Kg wet							V-3**
-Chlorophenol	ND	0.34	mg/Kg wet							
rysene	ND	0.17	mg/Kg wet							
Dibenz(a,h)anthracene	ND	0.17	mg/Kg wet							
Dibenzofuran	ND	0.34	mg/Kg wet							
Pi-n-butylphthalate	ND	0.34	mg/Kg wet							
,2-Dichlorobenzene	ND	0.34	mg/Kg wet							
,3-Dichlorobenzene	ND	0.34	mg/Kg wet							
,4-Dichlorobenzene	ND	0.34	mg/Kg wet							
,3-Dichlorobenzidine	ND	0.17	mg/Kg wet							
4-Dichlorophenol	ND	0.34	mg/Kg wet							
liethylphthalate	ND	0.34	mg/Kg wet							
4-Dimethylphenol	ND	0.34	mg/Kg wet							
imethylphthalate	ND	0.34	mg/Kg wet							
4-Dinitrophenol	ND	0.66	mg/Kg wet							R-05
4-Dinitrotoluene	ND	0.34	mg/Kg wet							
6-Dinitrotoluene	ND	0.34	mg/Kg wet							
i-n-octylphthalate	ND	0.34	mg/Kg wet							
2-Diphenylhydrazine/Azobenzene	ND	0.34	mg/Kg wet							
uoranthene	ND	0.17	mg/Kg wet							
uorene	ND	0.17	mg/Kg wet							
exachlorobenzene	ND	0.34	mg/Kg wet							
exachlorobutadiene	ND	0.34	mg/Kg wet							
exachloroethane	ND	0.34	mg/Kg wet							
deno(1,2,3-cd)pyrene	ND	0.17	mg/Kg wet							
ophorone	ND	0.34	mg/Kg wet							
Methylnaphthalene	ND	0.17	mg/Kg wet							
Methylphenol	ND	0.34	mg/Kg wet							
4-Methylphenol	ND	0.34	mg/Kg wet							
aphthalene	ND	0.17	mg/Kg wet							
trobenzene	ND	0.34	mg/Kg wet							
Nitrophenol	ND	0.34	mg/Kg wet							
Nitrophenol	ND	0.66	mg/Kg wet							

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308526 - SW-846 3546										
llank (B308526-BLK1)			1	Prepared: 05	/16/22 Analy	/zed: 05/18/2	2			
henanthrene	ND	0.17	mg/Kg wet					,		
henol	ND	0.34	mg/Kg wet							
yrene	ND	0.17	mg/Kg wet							
yridine	ND	0.34	mg/Kg wet							
,2,4-Trichlorobenzene	ND	0.34	mg/Kg wet							
4,5-Trichlorophenol	ND	0.34	mg/Kg wet							
4,6-Trichlorophenol	ND	0.34	mg/Kg wet							
urrogate: 2-Fluorophenol	3.57		mg/Kg wet	6.67		53.5	30-130			
urrogate: Phenol-d6	3.50		mg/Kg wet	6.67		52.5	30-130			
urrogate: Nitrobenzene-d5	1.76		mg/Kg wet	3.33		52.8	30-130			
errogate: 2-Fluorobiphenyl	2.31		mg/Kg wet	3.33		69.2	30-130			
arrogate: 2,4,6-Tribromophenol	4.96		mg/Kg wet	6.67		74.4	30-130			
arrogate: p-Terphenyl-d14	2.09		mg/Kg wet	3.33		62.8	30-130			
CS (B308526-BS1)					/16/22 Analy					
phenyl	1.15	0.67	mg/Kg wet	1.67		69.3	40-140			
cenaphthene	1.02	0.17	mg/Kg wet	1.67		61.1	40-140			
cenaphthylene	1.06	0.17	mg/Kg wet	1.67		63.8	40-140			
cetophenone	0.935	0.34	mg/Kg wet	1.67		56.1	40-140			
niline	0.822	0.34	mg/Kg wet	1.67		49.3	40-140			V-05
nthracene	1.15	0.17	mg/Kg wet	1.67		69.1	40-140			
nzo(a)anthracene	1.09	0.17	mg/Kg wet	1.67		65.5	40-140			
enzo(a)pyrene	1.13	0.17	mg/Kg wet	1.67		68.1	40-140			
enzo(b)fluoranthene	1.16	0.17	mg/Kg wet	1.67		69.3	40-140			
enzo(g,h,i)perylene	1.11	0.17	mg/Kg wet	1.67		66.9	40-140			
enzo(k)fluoranthene	1.26	0.17	mg/Kg wet	1.67		75.6	40-140			
s(2-chloroethoxy)methane	0.958	0.34	mg/Kg wet	1.67		57.5	40-140			
s(2-chloroethyl)ether	0.727	0.34	mg/Kg wet	1.67		43.6	40-140			
s(2-chloroisopropyl)ether	0.713	0.34	mg/Kg wet	1.67		42.8	40-140			V-05
s(2-Ethylhexyl)phthalate	0.998	0.34	mg/Kg wet	1.67		59.9	40-140			
Bromophenylphenylether	1.17	0.34	mg/Kg wet	1.67		70.5	40-140			
ıtylbenzylphthalate	0.946	0.34	mg/Kg wet	1.67		56.8	40-140			
Chloroaniline	0.941	0.66	mg/Kg wet	1.67		56.5	15-140			V-34
Chloronaphthalene	0.955	0.34	mg/Kg wet	1.67		57.3	40-140			
Chlorophenol	0.943	0.34	mg/Kg wet	1.67		56.6	30-130			
nrysene	1.12	0.17	mg/Kg wet	1.67		67.2	40-140			
benz(a,h)anthracene	1.14	0.17	mg/Kg wet	1.67		68.5	40-140			
benzofuran	1.19	0.34	mg/Kg wet	1.67		71.2	40-140			
-n-butylphthalate	1.00	0.34	mg/Kg wet	1.67		60.0	40-140			
2-Dichlorobenzene	0.935	0.34	mg/Kg wet	1.67		56.1	40-140			
3-Dichlorobenzene	0.901	0.34	mg/Kg wet	1.67		54.1	40-140			
l-Dichlorobenzene	0.926	0.34	mg/Kg wet	1.67		55.6	40-140			
-Dichlorobenzidine	0.961	0.17	mg/Kg wet	1.67		57.7	40-140			
-Dichlorophenol	1.07	0.34	mg/Kg wet	1.67		64.4	30-130			
ethylphthalate	0.965	0.34	mg/Kg wet	1.67		57.9	40-140			
-Dimethylphenol	1.02	0.34	mg/Kg wet	1.67		61.4	30-130			
methylphthalate	1.06	0.34	mg/Kg wet	1.67		63.7	40-140			
-Dinitrophenol	0.572	0.66	mg/Kg wet	1.67		34.3	15-140			R-05, J
-Dinitrotoluene	1.16	0.34	mg/Kg wet	1.67		69.4	40-140			
-Dinitrotoluene	1.20	0.34	mg/Kg wet	1.67		71.9	40-140			
-n-octylphthalate	0.958	0.34	mg/Kg wet	1.67		57.5	40-140			
	0.550									

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308526 - SW-846 3546			,		 					
LCS (B308526-BS1)				Prepared: 05	i/16/22 Analy	yzed: 05/18/2	.2			
Fluoranthene	1.11	0.17	mg/Kg wet	1.67		66.4	40-140			
Fluorene	1.15	0.17	mg/Kg wet	1.67		69.1	40-140			
Hexachlorobenzene	1.24	0.34	mg/Kg wet	1.67		74.I	40-140			
Hexachlorobutadiene	1.08	0.34	mg/Kg wet	1.67		64.9	40-140			
-lexachloroethane	0.828	0.34	mg/Kg wet	1.67		49.7	40-140			
ndeno(1,2,3-cd)pyrene	1.15	0.17	mg/Kg wet	1.67		68.8	40-140			
sophorone	0.962	0.34	mg/Kg wet	1.67		57.7	40-140			
-Methylnaphthalene	1.17	0.17	mg/Kg wet	1.67		70.1	40-140			
-Methylphenol	0.972	0.34	mg/Kg wet	1.67		58.3	30-130			
/4-Methylphenol	0.990	0.34	mg/Kg wet	1.67		59.4	30-130			
Taphthalene	1.02	0.17	mg/Kg wet	1.67		61.3	40-140			
litrobenzene	0.872	0.34	mg/Kg wet	1.67		52.3	40-140			
-Nitrophenol	0.978	0.34	mg/Kg wet	1.67		58.7	30-130			
-Nitrophenol	0.907	0.66	mg/Kg wet	1.67		54.4	15-140			
entachlorophenol	0.917	0.34	mg/Kg wet	1.67		55.0	30-130			
henanthrene	1.15	0.17	mg/Kg wet	1.67		68.9	40-140			
henol	0.918	0.34	mg/Kg wet	1.67		55.1	15-140			
yrene	1.07	0.17	mg/Kg wet	1.67		64.1	40-140			
yridine	0.514	0.34	mg/Kg wet	1.67		30.9	30-140			
,2,4-Trichlorobenzene	1.05	0.34	mg/Kg wet	1,67		63.I	40-140			
1,5-Trichlorophenol	1.17	0.34	mg/Kg wet	1.67		70.1	30-130			
4,6-Trichlorophenol	1.13	0,34	mg/Kg wet	1.67		67.7	30-130			
urrogate: 2-Fluorophenol	4.20		mg/Kg wet	6.67		62.9	30-130			
urrogate: Phenol-d6	4.14		mg/Kg wet	6.67		62,1	30-130			
urrogate: Nitrobenzene-d5	1.86		mg/Kg wet	3.33		55.7	30-130			
urrogate: 2-Fluorobiphenyl	2.49		mg/Kg wet	3.33		74.8	30-130			
urrogate: 2,4,6-Tribromophenol	5.52		mg/Kg wet	6.67		82.9	30-130			
urrogate: p-Terphenyl-d14	2.34		mg/Kg wet	3.33		70.2	30-130			
CS Dup (B308526-BSD1)			1	Prepared: 05	i/16/22 Analy	yzed: 05/18/2	22			
iphenyl	1.21	0.67	mg/Kg wet	1.67		72.5	40-140	4.54	20	
cenaphthene	1.05	0.17	mg/Kg wet	1.67		63.3	40-140	3.57	30	
cenaphthylene	1.09	0.17	mg/Kg wet	1.67		65,2	40-140	2.26	30	
cetophenone	1.02	0.34	mg/Kg wet	1.67		61.0	40-140	8.33	30	
niline	0.745	0.34	mg/Kg wet	1.67		44.7	40-140	9.83	30	V-05
nthracene	1.17	0.17	mg/Kg wet	1.67		70.3	40-140	1.78	30	
enzo(a)anthracene	1.11	0.17	mg/Kg wet	1.67		66.5	40-140	1.52	30	
enzo(a)pyrene	1.13	0.17	mg/Kg wet	1.67		67.7	40-140	0.560	30	
enzo(b)fluoranthene	1.16	0.17	mg/Kg wet	1.67		69.7	40-140	0.604	30	
enzo(g,h,i)perylene	1.15	0.17	mg/Kg wet	1.67		69.2	40-140	3.35	30	
enzo(k)fluoranthene	1.25	0.17	mg/Kg wet	1.67		74.8	40-140	1.06	30	
s(2-chloroethoxy)methane	1.00	0.34	mg/Kg wet	1.67		60.3	40-140	4.72	30	
s(2-chloroethyl)ether	0.799	0.34	mg/Kg wet	1.67		47.9	40-140	9.44	30	
s(2-chloroisopropyl)ether	0.829	0.34	mg/Kg wet	1.67		49.7	40-140	15.0	30	V-05
s(2-Ethylhexyl)phthalate	1,05	0.34	mg/Kg wet	1.67		63.3	40-140	5.55	30	
Bromophenylphenylether	1.19	0.34	mg/Kg wet	1.67		71.5	40-140	1.52	30	
ıtylbenzylphthalate	0.937	0.34	mg/Kg wet	1.67		56.2	40-140	1.03	30	
Chloroaniline	0.869	0.66	mg/Kg wet	1.67		52.1	15-140	7.96	30	V-34
Chloronaphthalene	1.01	0.34	mg/Kg wet	1.67		60.8	40-140	5.86	30	7-3-
Chlorophenol		0.34	mg/Kg wet	1.67		59.7	30-130	5.37	30	
hrysene	0.995	0.17	mg/Kg wet	1.67		68.8	40-140	2.32	30	
m Junio	1.15	0.17	THE THE	1.07		00.0	70-170	e34	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B308526 - SW-846 3546											
LCS Dup (B308526-BSD1)				Prepared: 05	/16/22 Analy	yzed: 05/18/2	2				
Dibenzofuran	1.21	0.34	mg/Kg wet	1.67		72.8	40-140	2.25	30		
Di-n-butylphthalate	1.06	0.34	mg/Kg wet	1.67		63.3	40-140	5.42	30		
1,2-Dichlorobenzene	1.02	0.34	mg/Kg wet	1.67		61.0	40-140	8.40	30		
1,3-Dichlorobenzene	1.01	0.34	mg/Kg wet	1.67		60.4	40-140	11.1	30		
1,4-Dichlorobenzene	1.02	0.34	mg/Kg wet	1.67		60.9	40-140	9.17	30		
3,3-Dichlorobenzidine	0.867	0.17	mg/Kg wet	1.67		52.0	40-140	10.3	30		
2,4-Dichlorophenol	1.09	0.34	mg/Kg wet	1.67		65.4	30-130	1.54	30		
Diethylphthalate	1.01	0.34	mg/Kg wet	1.67		60.5	40-140	4.46	30		
2,4-Dimethylphenol	1.06	0.34	mg/Kg wet	1.67		63.5	30-130	3.36	30		
Dimethylphthalate	1.05	0.34	mg/Kg wet	1.67		63.1	40-140	0.977	30		
2,4-Dinitrophenol	0.367	0.66	mg/Kg wet	1.67		22.0	15-140	43.6	* 30	R-05, J	
2,4-Dinitrotoluene	1,17	0.34	mg/Kg wet	1.67		70.4	40-140	1.37	30		
2,6-Dinitrotoluene	1.20	0.34	mg/Kg wet	1.67		72.0	40-140	0.167	30		
Di-n-octylphthalate	0.985	0.34	mg/Kg wet	1.67		59.1	40-140	2.71	30		
,2-Diphenylhydrazine/Azobenzene	1.00	0.34	mg/Kg wet	1.67		60.2	40-140	4.03	30		
Fluoranthene	1.16	0.17	mg/Kg wet	1.67		69.6	40-140	4.73	30		
Fluorene	1.18	0.17	mg/Kg wet	1.67		70.7	40-140	2.23	30		
Hexachlorobenzene	1.24	0.34	mg/Kg wet	1.67		74.6	40-140	0.699	30		
Hexachlorobutadiene	1.15	0.34	mg/Kg wet	1.67		68.9	40-140	6.01	30		
Hexachloroethane	0.958	0.34	mg/Kg wet	1.67		57.5	40-140	14.6	30		
deno(1,2,3-cd)pyrene	1.11	0.17	mg/Kg wet	1.67		66.5	40-140	3.40	30		
sophorone	1.08	0.34	mg/Kg wet	1.67		64.5	40-140	11.2	30		
2-Methylnaphthalene	1.24	0.17	mg/Kg wet	1.67		74.1	40-140	5.49	30		
2-Methylphenol	1.03	0.34	mg/Kg wet	1.67		61.9	30-130	5.89	30		
3/4-Methylphenol	1.01	0.34	mg/Kg wet	1.67		60.9	30-130	2.46	30		
Naphthalene	1.09	0.17	mg/Kg wet	1.67		65.5	40-140	6.56	30		
Nitrobenzene	0.969	0.34	mg/Kg wet	1.67		58.1	40-140	10.5	30		
-Nitrophenol	1.07	0.34	mg/Kg wet	1.67		63.9	30-130	8.61	30		
-Nitrophenol	0.904	0.66	mg/Kg wet	1.67		54.3	15-140	0.258	30		
Pentachlorophenol	0.924	0.34	mg/Kg wet	1.67		55.4	30-130	0.760	30		
henanthrene '	1.17	0.17	mg/Kg wet	1.67		70.2	40-140	1.75	30		
Phenol	0.952	0.34	mg/Kg wet	1.67		57.1	15-140	3.64	30		
yrene	1.11	0.17	mg/Kg wet	1.67		66.7	40-140	4.07	30		
yridine	0.667	0.34	mg/Kg wet	1.67		40.0	30-140	25.8	30		
,2,4-Trichlorobenzene	1.14	0.34	mg/Kg wet	1.67		68.6	40-140	8.29	30		
,4,5-Trichlorophenol	1.17	0.34	mg/Kg wet	1.67		70.5	30-130	0.455	30		
,4,6-Trichlorophenol	1.14	0.34	mg/Kg wet	1.67		68.6	30-130	1.35	30		
urrogate: 2-Fluorophenol	4.36		mg/Kg wet	6.67		65.4	30-130				
urrogate: Phenol-d6	4.26		mg/Kg wet	6.67		63.8	30-130				
urrogate: Nitrobenzene-d5	2.08		mg/Kg wet	3.33		62.5	30-130				
urrogate: 2-Fluorobiphenyl	2.55		mg/Kg wet	3.33		76.6	30-130				
urrogate: 2,4,6-Tribromophenol	5.38		mg/Kg wet	6.67		80.8	30-130				
urrogate: p-Terphenyl-d14	2.34		mg/Kg wet	3.33		70.3	30-130				

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308354 - SW-846 3546										
Blank (B308354-BLK1)			1	Prepared: 05	5/13/22 Anal	yzed: 05/18/2	2			
Aldrin	ND	0.0050	mg/Kg wet							
Aldria [2C]	ND	0.0050	mg/Kg wet							
alpha-BHC	ND	0.0050	mg/Kg wet							
alpha-BHC (2C)	ND	0.0050	mg/Kg wet							
peta-BHC	ND	0.0050	mg/Kg wet							
peta-BHC [2C]	ND	0.0050	mg/Kg wet							
lelta-BHC	ND	0.0050	mg/Kg wet							
lelta-BHC [2C]	ND	0.0050	mg/Kg wet							
gamma-BHC (Lindane)	ND	0.0020	mg/Kg wet							
gamma-BHC (Lindane) [2C]	ND	0.0020	mg/Kg wet							
Chlordane	ND	0.020	mg/Kg wet							
Chlordane [2C]	ND	0.020	mg/Kg wet							
4,4'-DDD	ND	0.0040	mg/Kg wet							
1,4'-DDD [2C]	ND	0.0040	mg/Kg wet							
,4'-DDE	ND	0.0040	mg/Kg wet							
1,4'-DDE [2C]	ND	0.0040	mg/Kg wet							
,4'-DDT	ND	0.0040	mg/Kg wet							
,4'-DDT [2C]	ND	0.0040	mg/Kg wet							
Dieldrin	ND	0.0040	mg/Kg wet							
Dieldrin [2C]	ND	0.0040	mg/Kg wet							
dosulfan I	ND	0.0050	mg/Kg wet							
endosulfan I [2C]	ND	0.0050	mg/Kg wet							
indosulfan II	ND	0.0080	mg/Kg wet							
indosulfan II [2C]	ND	0.0080	mg/Kg wet							
Endosulfan Sulfate	ND	0.0080	mg/Kg wet							
Endosulfan Sulfate [2C]	ND	0.0080	mg/Kg wet							
endrin endrin	ND	0.0080	mg/Kg wet							
Indrin [2C]	ND	0.0080	mg/Kg wet							
indrin Aldehyde	ND	0.0080	mg/Kg wet							
indrin Aldehyde [2C]	ND	0.0080	mg/Kg wet							
Endrin Ketone	ND	0.0080	mg/Kg wet							
indrin Ketone [2C]	ND	0.0080	mg/Kg wet							
Ieptachlor	ND	0.0050	mg/Kg wet							
[eptachlor [2C]	ND	0.0050	mg/Kg wet							
Ieptachlor Epoxide	ND	0.0050	mg/Kg wet							
Teptachlor Epoxide [2C]	ND	0.0050	mg/Kg wet							
[exachlorobenzene	ND	0.0060	mg/Kg wet							
[exachlorobenzene [2C]	ND	0.0060	mg/Kg wet							
fethoxychlor		0.050	mg/Kg wet							
fethoxychlor [2C]	ND	0.050	mg/Kg wet							
Oxaphene	ND	0.10	mg/Kg wet							
oxaphene [2C]	ND ND	0.10	mg/Kg wet							
urrogate: Decachlorobiphenyl	0.156		mg/Kg wet	0.200		77.8	30-150			
urrogate: Decachlorobiphenyl [2C]	0.144		mg/Kg wet	0.200		71.9	30-150			
urrogate: Tetrachloro-m-xylene	0.133		mg/Kg wet	0.200		66.5	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.127		mg/Kg wet	0.200		63.7	30-150			

Organochloride Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308354 - SW-846 3546										
LCS (B308354-BS1)				Prepared: 05	/13/22 Analy	/zed: 05/18/2	2			
Aldrin	0.091	0.0050	mg/Kg wet	0.100		90.8	40-140			
Aldrin [2C]	0.081	0.0050	mg/Kg wet	0.100		81.0	40-140			
alpha-BHC	0.091	0.0050	mg/Kg wet	0.100		90.6	40-140			
alpha-BHC [2C]	0.072	0.0050	mg/Kg wet	0.100		72.3	40-140			
beta-BHC	0.087	0.0050	mg/Kg wet	0.100		86.8	40-140			
beta-BHC [2C]	0.080	0.0050	mg/Kg wet	0.100		79.5	40-140			
delta-BHC	0.089	0.0050	mg/Kg wet	0.100		89.4	40-140			
delta-BHC [2C]	0.081	0.0050	mg/Kg wet	0.100		80.8	40-140			
gamma-BHC (Lindane)	0.091	0.0020	mg/Kg wet	0.100		90.7	40-140			
gamma-BHC (Lindane) [2C]	0.076	0.0020	mg/Kg wet	0.100		76.3	40-140			
4,4'-DDD	0.096	0.0040	mg/Kg wet	0.100		96.0	40-140			
4,4'-DDD [2C]	0.092	0.0040	mg/Kg wet	0.100		91.7	40-140			
4,4'-DDE	0.095	0.0040	mg/Kg wet	0.100		95.5	40-140			
4,4'-DDE [2C]	0.090	0.0040	mg/Kg wet	0.100		90.0	40-140			
4,4'-DDT	0.094	0.0040	mg/Kg wet	0.100		93.5	40-140			
4,4'-DDT [2C]	0.087	0.0040	mg/Kg wet	0.100		86.8	40-140			
Dieldrin	0.092	0.0040	mg/Kg wet	0.100		91.6	40-140			
Dieldrin [2C]	0.088	0.0040	mg/Kg wet	0.100		87.5	40-140			
Endosulfan I	0.088	0.0050	mg/Kg wet	0.100		87.9	40-140			
Findosulfan I [2C]	0.078	0.0050	mg/Kg wet	0.100		77.5	40-140			
.dosulfan II	0.085	0.0080	mg/Kg wet	0.100		84.8	40-140			
Endosulfan II [2C] Endosulfan Sulfate	0.082	0.0080	mg/Kg wet mg/Kg wet	0.100		82.2 73.1	40-140 40-140			
Endosulfan Sulfate [2C]	0.073	0.0080	mg/Kg wet	0.100 0.100		75.1	40-140			
Endrin	0.075	0.0080	mg/Kg wet	0.100		86.5	40-140			
Endrin [2C]	0.086 0.086	0.0080	mg/Kg wet	0.100		86.0	40-140			
Endrin Ketone	0.088	0.0080	mg/Kg wet	0.100		88.4	40-140			
Endrin Ketone [2C]	0.081	0.0080	mg/Kg wet	0.100		81.2	40-140			
Heptachlor	0.094	0.0050	mg/Kg wet	0.100		94.1	40-140			
Heptachlor [2C]	0.079	0.0050	mg/Kg wet	0.100		78.7	40-140			
Heptachlor Epoxide	0.089	0.0050	mg/Kg wet	0.100		88.8	40-140			
Heptachlor Epoxide [2C]	0.082	0.0050	mg/Kg wet	0.100		81.9	40-140			
Hexachlorobenzene	0.082	0.0060	mg/Kg wet	0.100		84.4	40-140			
Hexachlorobenzene [2C]	0.073	0.0060	mg/Kg wet	0.100		73.3	40-140			
Methoxychlor	0.082	0.050	mg/Kg wet	0.100		82.0	40-140			
Methoxychlor [2C]	0.081	0.050	mg/Kg wet	0.100		81.2	40-140			
Surrogate: Decachlorobiphenyl	0.150		mg/Kg wet	0.200		75.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.123		mg/Kg wet	0.200		61.3	30-150			
Surrogate: Tetrachloro-m-xylene	0.154		mg/Kg wet	0.200		77.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.122		mg/Kg wet	0.200		60.9	30-150			
LCS Dup (B308354-BSD1)				Prepared: 05	/13/22 Analy	zed: 05/18/2	22			
Aldrin	0.082	0.0050	mg/Kg wet	0.100		82.2	40-140	9.95	30	
Aldrin [2C]	0.081	0.0050	mg/Kg wet	0.100		81.2	40-140	0.268	30	
lpha-BHC	0.078	0.0050	mg/Kg wet	0.100		78.1	40-140	14.8	30	
lpha-BHC [2C]	0.075	0.0050	mg/Kg wet	0.100		74.6	40-140	3.11	30	
eta-BHC	0.079	0.0050	mg/Kg wet	0.100		78.5	40-140	9.99	30	
eta-BHC [2C]	0.079	0.0050	mg/Kg wet	0.100		78.7	40-140	1.08	30	
'ta-BHC	0.081	0.0050	mg/Kg wet	0.100		81.2	40-140	9.66	30	
elta-BHC [2C]	0.079	0.0050	mg/Kg wet	0.100		79.2	40-140	1.94	30	
amma-BHC (Lindane)	0.079	0.0020	mg/Kg wet	0.100		79.4	40-140	13.3	30	
gamma-BHC (Lindane) [2C]	0.078	0.0020	mg/Kg wet	0.100		77.8	40-140	1.83	30	

Organochloride Pesticides by GC/ECD - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B308354 - SW-846 3546										
LCS Dup (B308354-BSD1)			I	repared: 05	/13/22 Analy	/zed: 05/18/2	2			
4,4'-DDD	0.092	0,0040	mg/Kg wet	0.100		91.9	40-140	4.35	30	
4,4'-DDD [2C]	0.088	0.0040	mg/Kg wet	0.100		87.7	40-140	4.46	30	
4,4'-DDE	0.091	0.0040	mg/Kg wet	0.100		91.1	40-140	4.65	30	
4,4'-DDE [2C]	0.086	0.0040	mg/Kg wet	0.100		86.2	40-140	4.31	30	
1,4'-DDT	0.088	0.0040	mg/Kg wet	0.100		88.3	40-140	5.70	30	
4,4'-DDT [2C]	0.082	0.0040	mg/Kg wet	0.100		81.6	40-140	6.23	30	
Dieldrin	0.086	0.0040	mg/Kg wet	0.100		86.4	40-140	5.80	30	
Dieldrin [2C]	0.083	0.0040	mg/Kg wet	0.100		83.5	40-140	4.71	30	
Endosulfan I	0.082	0.0050	mg/Kg wet	0.100		82.5	40-140	6.40	30	
Endosulfan I (2C)	0.077	0.0050	mg/Kg wet	0.100		77.3	40-140	0.324	30	
Endosulfan II	0.080	0.0080	mg/Kg wet	0.100		80.5	40-140	5.20	30	
Endosulfan II [2C]	0.078	0.0080	mg/Kg wct	0.100		78.1	40-140	5.07	30	
Endosulfan Sulfate	0.067	0.0080	mg/Kg wet	0.100		67.5	40-140	8.03	30	
Endosulfan Sulfate [2C]	0.070	0.0080	mg/Kg wet	0.100		70.0	40-140	7.35	30	
Endrin	0.083	0.0080	mg/Kg wet	0.100		82.5	40-140	4.70	30	
Endrin [2C]	0.082	0.0080	mg/Kg wet	0.100		81.7	40-140	5.12	30	
Endrin Ketone	0.085	0.0080	mg/Kg wet	0.100		84.6	40-140	4.42	30	
Endrin Ketone [2C]	0.077	0.0080	mg/Kg wet	0.100		77.i	40-140	5.25	30	
-feptachlor	0.083	0.0050	mg/Kg wet	0.100		83.4	40-140	12.0	30	
Heptachlor [2C]	0.079	0.0050	mg/Kg wet	0.100		79.3	40-140	0.799	30	
eptachlor Epoxide	0.082	0.0050	mg/Kg wet	0.100		82.1	40-140	7.86	30	
Heptachlor Epoxide [2C]	0.079	0.0050	mg/Kg wet	0.100		79.3	40-140	3.23	30	
-lexachlorobenzene	0.077	0.0060	mg/Kg wet	0.100		76.8	40-140	9.43	30	
Hexachlorobenzene [2C]	0.076	0.0060	mg/Kg wet	0.100		76.1	40-140	3.73	30	
Methoxychlor	0.077	0.050	mg/Kg wet	0.100		77.2	40-140	5.93	30	
Methoxychlor [2C]	0.077	0.050	mg/Kg wet	0.100		76.7	40-140	5.68	30	
Surrogate: Decachlorobiphenyl	0.143		mg/Kg wet	0.200		71.6	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.121		mg/Kg wet	0.200		60.4	30-150			
Surrogate: Tetrachloro-m-xylene	0.136		mg/Kg wet	0.200		68.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.129		mg/Kg wet	0.200		64.4	30-150			

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308353 - SW-846 3546										
Blank (B308353-BLK1)	Prepared: 05/13/22 Analyzed: 05/17/22									
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Aroclor-1221 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1232	ND	0.020	mg/Kg wet							
Aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Aroclor-1242 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
Aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
Aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
Aroclor-1262 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1268	ND	0.020	mg/Kg wet							
Aroclor-1268 [2C]	ND	0.020	mg/Kg wet							
Surrogate: Decachiorobiphenyl	0.194		mg/Kg wet	0.200		97.1	30-150			
urogate: Decachlorobiphenyl [2C]	0.193		mg/Kg wet	0.200		96.3	30-150			
rrogate: Tetrachloro-m-xylene	0.159		mg/Kg wet	0.200		79.5	30-150			
surrogate: Tetrachloro-m-xylene [2C]	0.141		mg/Kg wet	0.200		70.5	30-150			
.CS (B308353-BS1)			F	repared: 05	/13/22 Analy	zed: 05/17/2	2			
Aroclor-1016	0.15	0.020	mg/Kg wet	0.200		73.4	40-140			
troclor-1016 [2C]	0.15	0.020	mg/Kg wet	0.200		75.4	40-140			
troclor-1260	0.16	0.020	mg/Kg wet	0.200		81.8	40-140			
Aroclor-1260 [2C]	0.16	0.020	mg/Kg wet	0.200		80.2	40-140			
urrogate: Decachlorobiphenyl	0.196		mg/Kg wet	0.200		98.0	30-150			
urrogate: Decachlorobiphenyl [2C]	0.195		mg/Kg wet	0.200		97.5	30-150			
urrogate: Tetrachloro-m-xylene	0.166		mg/Kg wet	0.200		82.8	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.148		mg/Kg wet	0.200		74.1	30-150			
CS Dup (B308353-BSD1)			P	repared: 05/	/13/22 Analy	zed: 05/17/2	2			
roclor-1016	0.15	0.020	mg/Kg wet	0.200		73.9	40-140	0.797	30	******
roclor-1016 [2C]	0.15	0.020	mg/Kg wet	0.200		76.0	40-140	0.847	30	
roclor-1260	0.17	0.020	mg/Kg wet	0.200		83.2	40-140	1.70	30	
roclor-1260 [2C]	0.16	0.020	mg/Kg wet	0.200		82.1	40-140	2.41	30	
urrogate: Decachlorobiphenyl	0.195		mg/Kg wet	0.200		97.3	30-150			
urrogate: Decachlorobiphenyl [2C]	0.195		mg/Kg wet	0.200		97.5	30-150			
urrogate: Tetrachloro-m-xylene	0.163		mg/Kg wet	0.200		81.4	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.147		mg/Kg wet	0.200		73.5	30-150			

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B309280 - SW-846 8151										
Blank (B309280-BLK1)	Prepared: 05/25/22 Analyzed: 05/29/22									
2,4-D	ND	24	μg/kg wet							
2,4-D [2C]	ND	24	μg/kg wet							
2,4-DB	ND	24	μg/kg wet							
2,4-DB [2C]	ND	24	μg/kg wet							
2,4,5-TP (Silvex)	ND	2.4	μg/kg wet							
2,4,5-TP (Silvex) [2C]	ND	2.4	μg/kg wet							
2,4,5-T	ND	2.4	μg/kg wet							
,4,5-T [2C]	ND	2.4	μg/kg wet							
Palapon	ND	60	μg/kg wet							
Palapon [2C]	ND	60	μg/kg wet							
Dicamba	ND	2.4	μg/kg wet							
Dicamba [2C]	ND	2.4	μg/kg wet							
Pichloroprop	ND	24	μg/kg wet							
Pichloroprop [2C]	ND	24	μg/kg wet							
1CPA	ND	2400	μg/kg wet							
1CPA [2C]	ND	2400	μg/kg wet							
1CPP	ND	2400	μg/kg wet							V-06
1CPP [2C]	ND	2400	μg/kg wet							1-00
urrogate: 2,4-Dichlorophenylacetic acid	64.0		μg/kg wet	95.2		67.2	30-150			
urogate: 2,4-Dichlorophenylacetic acid	64.1		μg/kg wet	95.2		67.3	30-150			
7]			F6 6							
CS (B309280-BS1)			1	Prepared: 05	/25/22 Analy	zed: 05/29/2	2			
4-D	95.0	25	μg/kg wet	125		76.0	40-140			
4-D [2C]	102	25	μg/kg wet	125		81.2	40-140			
4-DB	73.9	25	μg/kg wet	125		59.1	40-140			
4-DB [2C]	73.7	25	μg/kg wet	125		58.9	40-140			
4,5-TP (Silvex)	9.50	2.5	μg/kg wet	12.5		76.0	40-140			
4,5-TP (Silvex) [2C]	10.3	2.5	μg/kg wet	12.5		82.8	40-140			
4,5-T	9.04	2.5	μg/kg wet	12.5		72.3	40-140			
4,5-T [2C]	9.49	2.5	μg/kg wet	12.5		75.9	40-140			
alapon	149	62	μg/kg wet	312		47.6	40-140			
alapon [2C]	148	62	μg/kg wet	312		47.5	40-140			
icamba	9.12	2.5	μg/kg wet	12.5		72.9	40-140			
icamba [2C]	9.86	2.5	μg/kg wet	12.5		78.9	40-140			
ichloroprop	100	25	μg/kg wet	125		80.2	40-140			
ichloroprop [2C]	103	25	μg/kg wet	125		82.4	40-140			
CPA.	10800	2500	μg/kg wet	12500		86.2	40-140			
CPA [2C]	9010	2500	μg/kg wet	12500		72.1	40-140			
CPP	13000	2500	μg/kg wet	12500		104	40-140			V-06
CPP [2C]	9770	2500	μg/kg wet	12500		78.1	40-140			V-U0
urrogate: 2,4-Dichlorophenylacetic acid	70.7		μg/kg wet	100		70.7	30-150			
urogate: 2,4-Dichlorophenylacetic acid	73.4		μg/kg wet	100		73.4	30-150			
C]	13.7		PRIVE MCI	100		13.7	20-120			

QUALITY CONTROL

Herbicides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B309280 - SW-846 8151										
LCS Dup (B309280-BSD1)				Prepared: 05	/25/22 Anal	yzed: 05/29/2	22			
2,4-D	95.8	25	μg/kg wet	125		76.6	40-140	0.837	30	
2,4-D [2C]	103	25	μg/kg wet	125		82.2	40-140	1.21	30	
2,4-DB	73.5	25	μg/kg wet	125		58.8	40-140	0.615	30	
2,4-DB [2C]	74.7	25	μg/kg wet	125		59.8	40-140	1.41	30	
2,4,5-TP (Silvex)	9.42	2.5	μg/kg wet	12.5		75.4	40-140	0.864	30	
2,4,5-TP (Silvex) [2C]	10.4	2.5	μg/kg wet	12.5		83.4	40-140	0.806	30	
2,4,5-T	8.96	2.5	μg/kg wet	12.5		71.7	40-140	0.842	30	
2,4,5-T [2C]	9.59	2.5	μg/kg wet	12.5		76.8	40-140	1.14	30	
Dalapon	149	62	μg/kg wet	312		47.8	40-140	0.288	30	
Dalapon [2C]	149	62	μg/kg wet	312		47.7	40-140	0.427	30	
Dicamba	9.75	2.5	μg/kg wet	12.5		78.0	40-140	6.66	30	
Dicamba [2C]	9.97	2.5	μg/kg wet	12.5		79.7	40-140	1.09	30	
Dichloroprop	101	25	μg/kg wet	125		80.9	40-140	0.908	30	
Dichloroprop [2C]	104	25	μg/kg wet	125		83.4	40-140	1.20	30	
MCPA	10800	2500	μg/kg wet	12500		86.4	40-140	0.225	30	
MCPA [2C]	9110	2500	μg/kg wet	12500		72.9	40-140	1.11	30	
MCPP	13300	2500	μg/kg wet	12500		106	40-140	1.59	30	V-06
MCPP [2C]	9870	2500	μg/kg wet	12500		78.9	40-140	0.995	30	
Surrogate: 2,4-Dichlorophenylacetic acid	71.3		μg/kg wet	100		71.3	30-150			
Surrogate: 2,4-Dichlorophenylacetic acid	74.1		μg/kg wet	100		74.1	30-150			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Petroleum Hydrocarbons Analyses - Quality Control

Aпalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308525 - SW-846 3546										
Blank (B308525-BLK1)				Prepared: 05	5/16/22 Anal	yzed: 05/18/	22			
ТРН (С9-С36)	ND	8.3	mg/Kg wet							
Surrogate: 2-Fluorobiphenyl	2.50	·	mg/Kg wet	3.33		74.9	40-140			
LCS (B308525-BS1)				Prepared: 05	5/16/22 Anal	yzed: 05/18/	22			
TPH (C9-C36)	24.2	8.3	mg/Kg wet	33.3		72.7	40-140			
Surrogate: 2-Fluorobiphenyl	2.22		mg/Kg wet	3.33		66.6	40-140			
LCS Dup (B308525-BSD1)				Prepared: 05	i/16/22 Anal	yzed: 05/18/	22			
ТРН (С9-С36)	26.6	8.3	mg/Kg wet	33.3		79.8	40-140	9.25	30	
Surrogate: 2-Fluorobiphenyl	2.41		mg/Kg wet	3.33		72.2	40-140			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308621 - SW-846 3050B										
Blank (B308621-BLK1)				Prepared: 05	/17/22 Analy	zed: 05/24/2	22			
Antimony	ND	1.7	mg/Kg wet							
Arsenic	ND	3.3	mg/Kg wet							
3arium	ND	1.7	mg/Kg wet							
Beryllium	ND	0.17	mg/Kg wet							
Cadmium	ND	0.33	mg/Kg wet							
Chromium	ND	0.66	mg/Kg wet							
_ead	ND	0.50	mg/Kg wet							
Vickel	ND	0.66	mg/Kg wet							
elenium	ND	3.3	mg/Kg wet							
lilver	ND	0.33	mg/Kg wet							
'hallium	ND	1.7	mg/Kg wet							
⁄anadium	ND	0.66	mg/Kg wet							
inc	ND	0.66	mg/Kg wet							
CS (B308621-BS1)				Prepared: 05	/17/22 Analy	zed: 05/24/	22			
antimony	85.7	4.9	mg/Kg wet	99.5		86.1	2.5-209			
rsenic	141	9.8	mg/Kg wet	140		101	82.9-117.9			
arium	212	4.9	mg/Kg wet	202		105	81.2-118.3			
eryllium	45.6	0.49	mg/Kg wet	42.6		107	81-119			
admium	95.5	0.98	mg/Kg wet	97.9		97.6	80-119.5			
romium	59.0	2.0	mg/Kg wet	60.4		97.6	80.3-119.7			
:ad	57.7	1.5	mg/Kg wet	56.7		102	82.9-116.9			
fickel	153	2.0	mg/Kg wet	151		101	79.5-121.2			
elenium	37.4	9.8	mg/Kg wet	35.5		105	77.5-122.3			
ilver	21.4	0.98	mg/Kg wet	20.4		105	79.4-121.1			
'hallium	71.8	4.9	mg/Kg wet	69.3		104	79.4-120.6			
'anadium	45.3	2.0	mg/Kg wet	44.9		101	78-121.8			
inc	182	2.0	mg/Kg wet	186		98.0	79-121			
CS Dup (B308621-BSD1)				Prepared: 05	i/17/22 Analy	/zed: 05/24/	22			
ntimony	91.0	5.0	mg/Kg wet	99.5		91.5	2.5-209	6.02	30	
rsenic	144	10	mg/Kg wet	140		103	82.9-117.9	1.83	30	
arium	215	5.0	mg/Kg wet	202		107	81.2-118.3	1.69	20	
eryllium	46.5	0.50	mg/Kg wet	42.6		109	81-119	2.06	30	
admium	99.4	1.0	mg/Kg wet	97.9		101	80-119.5	3.96	20	
hromium	61.6	2.0	mg/Kg wet	60.4		102	80.3-119.7	4.39	30	
ead	58.6	1.5	mg/Kg wet	56.7		103	82.9-116.9	1.58	30	
ickel	155	2.0	mg/Kg wet	151		102	79.5-121.2	1.10	30	
elenium	38.9	10	mg/Kg wet	35.5		109	77.5-122.3	3.75	30	
ilver	22.1	1.0	mg/Kg wet	20.4		108	79.4-121.1	3.16	30	
hallium	75.5	5.0	mg/Kg wet	69.3		109	79.4-120.6	5.01	30	
'anadium	47.2	2.0	mg/Kg wet	44.9		105	78-121.8	4.12	30	
inc	183	2,0	mg/Kg wet	186		98.4	79-121	0.384	30	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308621 - SW-846 3050B										
Reference (B308621-SRM1) MRL Check				Prepared: 05	5/17/22 Analy	yzed: 05/24	/22			
Lead	0.640	0.50	mg/Kg wet	0.498		129	80-120			M-10
Batch B309067 - SW-846 7471										
Blank (B309067-BLK1)				Prepared &	Analyzed: 05/	/23/22				
Mercury	ND	0.025	mg/Kg wet							
LCS (B309067-BS1)				Prepared &	Analyzed: 05	/23/22				
Mercury	14.4	0.73	mg/Kg wet	16.5		87.5	74.5-124.8			
LCS Dup (B309067-BSD1)				Prepared &	Analyzed: 05/	/23/22				
Mercury	14.8	0.74	mg/Kg wet	16.5		89.9	74.5-124.8	2.70	20	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch B308341 - SW-846 9045C	ANDJUL	2.mut	Onto	20101	asodus	,,,,,,,,,	ar1114d		e-	110103
LCS (B308341-BS1)				Dranged &	Analyzed: 05	/12/22				
pH	5.98		pH Units	6.00	Allalyzed: 05	99.6	90-110			····
-	3.76		priomo				30-110			
LCS (B308341-BS2)		~			Analyzed: 05/		····			
pH	5.98		pH Units	6.00		99.7	90-110			
Batch B308429 - SM21-23 2510B Modified		<u> </u>								
Blauk (B308429-BLK1)				Prepared: 05	/14/22 Analy	yzed: 05/17/	22			
Specific conductance	ND	2.0	μmhos/cm							
LCS (B308429-BS1)				Prepared &	Analyzed: 05	/14/22				
Specific conductance	140		μmhos/cm	137		104	90-122			
Duplicate (B308429-DUP1)	Sou	rce: 22E0834	-01	Prepared &	Analyzed: 05/	/14/22				
Specific conductance	11	2.0	μmhos/cm		9.7			14.3	41.4	
Batch B308563 - SW-846 9030A										
Blank (B308563-BLK1)				Prepared: 05	/17/22 Analy	yzed: 05/18/	22			
Reactive Sulfide	ND	2.0	mg/Kg							
LCS (B308563-BS1)				Prepared: 05	/17/22 Analy	yzed: 05/18/	22			
active Sulfide	. 12	2.0	mg/Kg	10.0		116	75.7-125			
Batch B308564 - SW-846 9014										
Blank (B308564-BLK1)				Prepared: 05	/17/22 Analy	yzed: 05/18/	22			
Reactive Cyanide	ND	0.40	mg/Kg					· · · · · · · · · · · · · · · · · · ·		
LCS (B308564-BS1)				Prepared: 05	/17/22 Analy	yzed: 05/18/	22			
Reactive Cyanide	9.5	0.40	mg/Kg	10.0		95.4	81.2-113			
Batch B308571 - SW-846 1010A-B										
Blank (B308571-BLK1)				Prepared & A	Analyzed: 05/	/17/22				
Flashpoint	> 212 °F		•F							
LCS (B308571-BS1)				Prepared & A	Analyzed: 05/	/17/22				
Flashpoint	81		°F	81.0	<u> </u>	99.9	98.8-101			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308571 - SW-846 1010A-B										
LCS Dup (B308571-BSD1)				Prepared &	Analyzed: 05	/17/22				
Flashpoint	RI		°F	81.0		99.9	98.8-101	0.00	5	

BREAKDOWN REPORT

Lab Sample ID:	S071717-PEM1	Analyzed: 05/17/2022
Column Number:	1	
Analyte	% Breakdown	
4,4'-DDT [1]	10.34	
Endrin [1]	9.07	
Column Number:	2	
Column Number: Analyte	I % Breakdown	

BREAKDOWN REPORT

Lab Sample ID:	S071717-PEM2	Analyzed:	05/17/2022
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	9.87		
Endrin [1]	8.21		
Columa Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	8.94		
Endrin [2]	8.13		

BREAKDOWN REPORT

Lab Sample ID:	S071717-PEM3	Analyzed:	05/18/2022
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	8.54		
Endrin [1]	9.91		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 BREAKDOWN REPORT

Lab Sample ID:	S071717-PEM3	Analyzed:	05/18/2022
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	7.76		
Endrin [2]	9.87		

BREAKDOWN REPORT

Lab Sample ID:	S071717-PEM4	Analyzed:	05/18/2022
Columa Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	8.33		
Endrin [1]	9.25		
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	7.59		
Endrin [2]	9.54		

BREAKDOWN REPORT

Lab Sample ID:	S071717-PEM5	Analyzed:	05/18/2022
Column Number:	1		
Analyte	% Breakdown		
4,4'-DDT [1]	7.27		
Endrin [1]	9.94		
Column Number:	2		
Analyte	% Breakdown		
4,4'-DDT [2]	6.53		
Endrin [2]	9.61		

BREAKDOWN REPORT

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 BREAKDOWN REPORT

Lab Sample ID:	S071799-PEM1	Analyzed: 05/22/2022
Column Number:	1	
Analyte	% Breakdown	
4,4'-DDT [1]	2.02	
Endrin [1]	1.49	
Column Number:	2	
Analyte	% Breakdown	
4,4'-DDT [2]	1.65	
Endrin [2]	2.06	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Comp.#1.(2-10ft)

Lab Sample ID:	22E0834-01		Date(s) Analyzed:	05/22/2022 05/22/2022		
Instrument ID (1):	ECD6A		Instrument ID (2):	ECD6B		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7 17 47 122 0 1 222	002		FROM	TO	001102111111111111111111111111111111111	701112
4,4'-DDD	1	7.181	0.000	0.000	28	
	2	7.190	0.000	0.000	34	15.9
4,4'-DDE	1	6.742	0.000	0.000	3.2	
	2	6.763	0.000	0.000	2.7	16.9
4,4'-DDT	_ 1	7.392	0.000	0.000	1400	
	2	7.427	0.000	0.000	1400	0.0
Dieldrin	1	6.957	0.000	0.000	7.8	
	2	6.867	0.000	0.000	7.1	9.4

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

L	.cs	

SW-846 8082A

Lab Sample ID:	B308353-BS1		Date(s) Analyzed:	05/17/2022	05/17/202	22
Instrument ID (1):	ECD1		Instrument ID (2):	ECD1		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
711712172	002		FROM	TO	001102111111111011	7,011.1
Aroclor-1016	1	0.000	0.000	0.000	0.15	
	2	0.000	0.000	0.000	0.15	0.0
Arocior-1260	1	0.000	0.000	0.000	0.16	
	2	0.000	0.000	0.000	0.16	0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

SW-846 8082A

Lab Sample ID:	B308353-BSD1	 	Date(s) Analyzed:	05/17/2022	05/17/2022
Instrument ID (1):	ECD1		Instrument ID (2):	ECD1	
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
71147121712	002	,,,	FROM	TO	CONCENTION	70111111
Aroclor-1016	1	0.000	0.000	0.000	0.15	
	2	0.000	0.000	0.000	0.15	0.0
Aroclor-1260	1	0.000	0.000	0.000	0.17	
	2	0.000	0.000	0.000	0.16	6.1

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	3	

Lab Sample ID:	B308354-BS1		Date(s) Analyzed:	05/18/2022	05/18/20)22
Instrument ID (1):	ECD2		Instrument ID (2):	ECD2		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	COL RT		NDOW	CONCENTRATION	%RPD
ANALTIE	OOL		FROM	TO	CONCENTIATION	7017
4,4'-DDD	11	7.764	0.000	0.000	0.096	
	2	7.543	0.000	0.000	0.092	4.3
4,4'-DDE	1	7.298	0.000	0.000	0.095	
	2	7.100	0.000	0.000	0.090	6.5
4,4'-DDT	1	7.978	0.000	0.000	0.094	
	2	7.784	0.000	0.000	0.087	7.7
Aldrin	1	6.608	0.000	0.000	0.091	
	2	6.331	0.000	0.000	0.081	11.6
alpha-BHC	1	5.828	0.000	0.000	0.091	
	2	5.597	0.000	0.000	0.072	23.3
beta-BHC	1	6.105	0.000	0.000	0.087	
	. 2	5.887	0.000	0.000	0.080	8.4
delta-BHC	1	6.235	0.000	0.000	0.089	
	2	6.086	0.000	0.000	0.081	9.4
Dieldrin	1	7.545	0.000	0.000	0.092	
	2	7.220	0.000	0.000	0.088	4.4
Endosulfan I	1	7.362	0.000	0.000	0.088	
	2	7.014	0.000	0.000	0.078	12.0
Endosulfan II	1	7.903	0.000	0.000	0.085	
	2	7.624	0.000	0.000	0.082	3.6
Endosulfan Sulfate	1	8.494	0.000	0.000	0.073	
	2	8.083	0.000	0.000	0.075	2.7
Endrin	1	7.729	0.000	0.000	0.086	
	2	7.452	0.000	0.000	0.086	1.2
Endrin Ketone	1	8.668	0.000	0.000	0.088	
	2	8.445	0.000	0.000	0.081	8.3
gamma-BHC (Lindane)	1	6.048	0.000	0.000	0.091	
	2	5.824	0.000	0.000	0.076	18.0
Heptachlor	1	6.387	0.000	0.000	0.094	
	2	6.110	0.000	0.000	0.079	17.3
Heptachlor Epoxide	1	7.059	0.000	0.000	0.089	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

Lab Sample ID: B308354-BS1			Date(s) Analyzed:	05/18/2022	05/18/2022	2
Instrument ID (1):	ECD2		Instrument ID (2):	ECD2		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: ((mm)

ANALYTE	COL	COL PT		COL RT RT WINDOW		CONCENTRATION	%RPD
711712	002		FROM	то	CONCENTIVATION	701112	
	2	6.731	0.000	0.000	0.082	8.2	
Hexachlorobenzene	1	5.710	0.000	0.000	0.084		
	2	5.509	0.000	0.000	0.073	14.0	
Methoxychlor	1	8.309	0.000	0.000	0.082		
	2	8.301	0.000	0.000	0.081	1.2	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup

Lab Sample ID: B308354-BSD1			Date(s) Analyzed:	05/18/2022 05/18/2022		
instrument ID (1):	ECD2		Instrument ID (2):	ECD2		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
71171111	002	1	FROM	ТО	CONCENTIATION	70111 2
4,4'-DDD	1	7.765	0.000	0.000	0.092	
	2	7.544	0.000	0.000	0.088	4.4
4,4'-DDE	1	7.299	0.000	0.000	0.091	
	2	7.101	0.000	0.000	0.086	5.7
4,4'-DDT	1	7.980	0.000	0.000	0.088	
	2	7.785	0.000	0.000	0.082	7.1
Aldrin	1	6.609	0.000	0.000	0.082	
	2	6.331	0.000	0.000	0.081	1.2
alpha-BHC	1	5.828	0.000	0.000	0.078	
	2	5.597	0.000	0.000	0.075	3.9
beta-BHC	1	6.106	0.000	0.000	0.079	
	2	5.887	0.000	0.000	0.079	0.0
delta-BHC	1	6.235	0.000	0.000	0.081	
	2	6.086	0.000	0.000	0.079	2.5
Dieldrin	1	7.547	0.000	0.000	0.086	
	2	7.221	0.000	0.000	0.083	3.6
Endosulfan I	1	7.363	0.000	0.000	0.082	
	2	7.015	0.000	0.000	0.077	7.5
Endosulfan II	1	7.904	0.000	0.000	0.080	
	2	7.625	0.000	0.000	0.078	3.8
Endosulfan Sulfate	1	8.495	0.000	0.000	0.067	
	2	8.084	0.000	0.000	0.070	2.9
Endrin	1	7.730	0.000	0.000	0.083	
	2	7.453	0.000	0.000	0.082	1.2
Endrin Ketone	1	8.669	0.000	0.000	0.085	
	2	8.446	0.000	0.000	0.077	9.9
gamma-BHC (Lindane)	1	6.048	0.000	0.000	0.079	
	2	5.825	0.000	0.000	0.078	1.3
Heptachlor	1	6.388	0.000	0.000	0.083	
	2	6.110	0.000	0.000	0.079	4.9
Heptachlor Epoxide	1	7.060	0.000	0.000	0.082	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS.	Dup		

Lab Sample ID:	B308354-BSD1		Date(s) Analyzed:	05/18/2022	05/18/2022
Instrument ID (1):	ECD2	-	Instrument ID (2):	ECD2	
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (mm)

ANALYTE	COL	COL RT		NDOW	CONCENTRATION	%RPD
		,,,,	FROM	ТО	CONCENTRATION	/61 \FD
	2	6.731	0.000	0.000	0.079	3.7
Hexachlorobenzene	1	5.711	0.000	0.000	0.077	
	2	5.509	0.000	0.000	0.076	1.3
Methoxychlor	1	8.310	0.000	0.000	0.077	
	2	8.301	0.000	0.000	0.077	0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS				

SW-846 8151A

Lab Sample ID:	B309280-BS1		Date(s) Analyzed:	05/29/2022 05/29/2022		
Instrument ID (1):	ECD 8	,	Instrument ID (2):	ECD 8	ı	_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT RT WINDOW		CONCENTRATION	%RPD
7 11 17 12 1 1 12			FROM	ТО	CONCENTION	70111 2
2,4,5-T	1	17.286	0.000	0.000	9.04	
	2	17.126	0.000	0.000	9.49	5.3
2,4,5-TP (Silvex)	1	17.057	0.000	0.000	9.50	
	2	16.745	0.000	0.000	10.3	8.1
2,4-D	1	15.583	0.000	0.000	95.0	
	2	15.013	0.000	0.000	102	7.1
2,4-DB	1	17.644	0.000	0.000	73.9	
	2	17.478	0.000	0.000	73.7	0.4
Dalapon	1	5.455	0.000	0.000	149	
	2	4.915	0.000	0.000	148	1.3
Dicamba	1	13.332	0.000	0.000	9.12	
	2	12.688	0.000	0.000	9.86	8.0
Dichloroprop	1	15.049	0.000	0.000	100	
	2	14.303	0.000	0.000	103	3.0
MCPA	1	14.195	0.000	0.000	10800	
	2	13.562	0.000	0.000	9010	19.9
MCPP	1	13.840	0.000	0.000	13000	
	2	13.033	0.000	0.000	9770	28.4

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

1.00 D	
LCS Dup	

SW-846 8151A

Lab Sample ID:	B309280-BSD1		Date(s) Analyzed:	05/29/2022	05/29/202	22
Instrument ID (1):	ECD 8	•	Instrument ID (2):	ECD 8		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
r 11 17 they r v heap	002	,,,	FROM	TO	CONCENTIATION	70111 5
2,4,5-T	1	17.286	0.000	0.000	8.96	
	2	17.126	0.000	0.000	9.59	6.4
2,4,5-TP (Silvex)	1	17.057	0.000	0.000	9.42	
	2	16.745	0.000	0.000	10.4	10.1
2,4-D	1	15.583	0.000	0.000	95.8	
	2	15.012	0.000	0.000	103	7.0
2,4-DB	1	17,644	0.000	0.000	73.5	
	2	17.479	0.000	0.000	74.7	0.9
Dalapon	1	5.455	0,000	0.000	149	
	2	4.916	0.000	0.000	149	0.7
Dicamba	1	13.332	0.000	0.000	9.75	
	2	12.688	0.000	0.000	9.97	1.7
Dichloroprop	1	15.048	0.000	0.000	101	
	2	14.303	0.000	0.000	104	3.9
MCPA	1	14.195	0.000	0.000	10800	
	2	13.562	0.000	0.000	9110	18.8
MCPP	1	13.841	0.000	0.000	13300	
	2	13.033	0.000	0.000	9870	27.4

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
M-10	The reporting limit verification for the AIHA lead program is outside of control limits for this element. Any reported result at or near the detection limit may be biased on the high side.
O-32	A dilution was performed as part of the standard analytical procedure.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-11	Elevated reporting limit due to high concentration of target compounds.
S-01	The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.
S-12	Surrogate recovery is outside of control limits on confirmatory column, but within control limits on primary column. Data validation is not affected.
S-17	Surrogate recovery is outside of control limits. Data validation is not affected since all associated results are less than the reporting limit and bias is on the high side.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side fo this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
V-36	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Analyte	Certifications	
SW-846 1010A-B in Soil		
Flashpoint	NY,NC,ME,VA	
SW-846 6010D in Soil		
Antimony	CT,NH,NY,ME,VA,NC	
Arsenic	CT,NH,NY,ME,VA,NC	
Barium	CT,NH,NY,ME,VA,NC	
Beryllium	CT,NH,NY,ME,VA,NC	
Cadmium	CT,NH,NY,ME,VA,NC	
Chromium	CT,NH,NY,ME,VA,NC	
Lead	CT,NH,NY,AIHA,ME,VA,NC	
Nickel	CT,NH,NY,ME,VA,NC	
Selenium	CT,NH,NY,ME,VA,NC	
Silver	CT,NH,NY,ME,VA,NC	
Thallium	CT,NH,NY,ME,VA,NC	
Vanadium	CT,NH,NY,ME,VA,NC	
Zinc	CT,NH,NY,ME,VA,NC	
SW-846 7471B in Soil		
Mercury	CT,NH,NY,NC,ME,VA	
SW-846 8081B in Soil		
Aldrin	CT,NC,NH,NY,ME,VA	
Aldrin [2C]	CT,NC,NH,NY,ME,VA	
alpha-BHC	CT,NC,NH,NY,ME,VA	
alpha-BHC [2C]	CT,NC,NH,NY,ME,VA	
beta-BHC	CT,NC,NH,NY,ME,VA	
beta-BHC [2C]	CT,NC,NH,NY,ME,VA	
delta-BHC	CT,NC,NH,NY,ME,VA	
delta-BHC [2C]	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindane)	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindane) [2C]	CT,NC,NH,NY,ME,VA	
Chlordane	CT,NC,NH,NY,ME,VA	
Chlordane [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDD	CT,NC,NH,NY,ME,VA	
4,4'-DDD [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDE	CT,NC,NH,NY,ME,VA	
4,4'-DDE [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDT	CT,NC,NH,NY,ME,VA	
4,4'-DDT [2C]	CT,NC,NH,NY,ME,VA	
Dieldrin	CT,NC,NH,NY,ME,VA	
Dieldrin [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan I	CT,NC,NH,NY,ME,VA	
Endosulfan I [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan II	CT,NC,NH,NY,ME,VA	
Endosulfan II [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate [2C]	CT,NC,NH,NY,ME,VA	
Endrin	CT,NC,NH,NY,ME,VA	
Endrin [2C]	CT,NC,NH,NY,ME,VA	D 65

CERTIFICATIONS

Analyte	Certifications	
SW-846 8081B in Soil		
Endrin Ketone	NC	
Endrin Ketone [2C]	NC	
Heptachlor	CT,NC,NH,NY,ME,VA	
Heptachlor [2C]	CT,NC,NH,NY,ME,VA	
Heptachlor Epoxide	CT,NC,NH,NY,ME,VA	
Heptachlor Epoxide [2C]	CT,NC,NH,NY,ME,VA	
Hexachlorobenzene	NC	
Hexachlorobenzene [2C]	NC	
Methoxychlor	CT,NC,NH,NY,ME,VA	
Methoxychlor [2C]	CT,NC,NH,NY,ME,VA	
SW-846 8081B in Water		
Aldrin	CT,NC,NH,NY,ME,VA	
Aldrin [2C]	CT,NC,NH,NY,ME,VA	
alpha-BHC	CT,NC,NH,NY,ME,VA	
alpha-BHC [2C]	CT,NC,NH,NY,ME,VA	
beta-BHC	CT,NC,NH,NY,ME,VA	
beta-BHC [2C]	CT,NC,NH,NY,ME,VA	
delta-BHC	CT,NC,NH,NY,ME,VA	
delta-BHC [2C]	CT;NC,NH,NY,ME,VA	
gamma-BHC (Lindane)	CT,NC,NH,NY,ME,VA	
gamma-BHC (Lindane) [2C]	CT,NC,NH,NY,ME,VA	
Chlordane	CT,NC,NH,NY,ME,VA	
Chlordane [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDD	CT,NC,NH,NY,ME,VA	
4,4'-DDD [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDE	CT,NC,NH,NY,ME,VA	
4,4'-DDE [2C]	CT,NC,NH,NY,ME,VA	
4,4'-DDT	CT,NC,NH,NY,ME,VA	
4,4'-DDT [2C]	CT,NC,NH,NY,ME,VA	
Dieldrin	CT,NC,NH,NY,ME,VA	
Dieldrin [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan I	CT,NC,NH,NY,ME,VA	
Endosulfan I [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan II	CT,NC,NH,NY,ME,VA	
Endosulfan II [2C]	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate	CT,NC,NH,NY,ME,VA	
Endosulfan Sulfate [2C]	CT,NC,NH,NY,ME,VA	
Endrin	CT,NC,NH,NY,ME,VA	
Endrin [2C]	CT,NC,NH,NY,ME,VA	
Endrin Ketone	NC	
Endrin Ketone [2C]	NC	
Heptachlor	CT,NC,NH,NY,ME,VA	
Heptachlor [2C]	CT,NC,NH,NY,ME,VA	
Heptachlor Epoxide	CT,NC,NH,NY,ME,VA	
Heptachlor Epoxide [2C]	CT,NC,NH,NY,ME,VA	
Hexachlorobenzene	NC	

CERTIFICATIONS

Analyte	Certifications	
SW-846 8081B in Water		
Hexachlorobenzene [2C]	NC .	
Methoxychlor	CT,NC,NH,NY,ME,VA	
Methoxychlor [2C]	CT,NC,NH,NY,ME,VA	
SW-846 8082A in Soil		
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA	
Arocior-1260	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1262	NH,NY,NC,ME,VA,PA	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA	
Aroclor-1268	NH,NY,NC,ME,VA,PA	
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA	
SW-846 8082A in Water		
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1262	NH,NY,NC,ME,VA,PA	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA	
Aroclor-1268	NH,NY,NC,ME,VA,PA	
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA	
SW-846 8151A in Soil		
2,4-D	NY,ME,NC,NH,VA,CT	
.2,4-D [2C]	NY,ME,NC,NH,VA,CT	
2,4-DB	NY,ME,NC,NH,VA,CT	
2,4-DB [2C]	NY,ME,NC,NH,VA,CT	
-, ()	a raparanga roopa raag raago a	

CERTIFICATIONS

Analyte	Certifications	
SW-846 8151A in Soil		
2,4,5-TP (Silvex)	NY,ME,NC,NH,VA,CT	
2,4,5-TP (Silvex) [2C]	NY,ME,NC,NH,VA,CT	
2,4,5-T	NY,ME,NC,NH,VA,CT	
2,4,5-T [2C]	NY,ME,NC,NH,VA,CT	
Dalapon	NY,ME,NC,NH,VA,CT	
Dalapon [2C]	NY,ME,NC,NH,VA,CT	
Dicamba	NY,ME,NC,NH,VA,CT	
Dicamba [2C]	NY,ME,NC,NH,VA,CT	
Dichloroprop	NY,ME,NC,NH,VA,CT	
Dichloroprop [2C]	NY,ME,NC,NH,VA,CT	
MCPA	NY,ME,NC,NH,VA,CT	
MCPA [2C]	NY,ME,NC,NH,VA,CT	
МСРР	NY,ME,NC,NH,VA,CT	
MCPP [2C]	NY,ME,NC,NH,VA,CT	
SW-846 8151A in Water		
2,4-D	ME,NC,NH,CT,NY,VA	
2,4-D [2C]	ME,NC,NH,CT,NY,VA	
2,4-DB	ME,NC,NH,CT,NY,VA	
2,4-DB [2C]	ME,NC,NH,CT,NY,VA	•
2,4,5-TP (Silvex)	ME,NC,NH,CT,NY,VA	
2,4,5-TP (Silvex) [2C]	ME,NC,NH,CT,NY,VA	
2,4,5-T	ME,NC,NH,CT,NY,VA	
2,4,5-T [2C]	ME,NC,NH,CT,NY,VA	
Dalapon	ME,NC,NH,CT,NY,VA	
Dalapon [2C]	ME,NC,NH,CT,NY,VA	
Dicamba	ME,NC,NH,CT,NY,VA	
Dicamba [2C]	ME,NC,NH,CT,NY,VA	
Dichloroprop	ME,NC,NH,CT,NY,VA	
Dichloroprop [2C]	ME,NC,NH,CT,NY,VA	
MCPA	NC,CT	
MCPA [2C]	NC,CT	
MCPP	NC,CT	
MCPP [2C]	NC,CT	
SW-846 8260D in Soil		
Acetone	CT,NH,NY,ME	
Benzene	CT,NH,NY,ME	
Bromobenzene	NH,NY,ME	
Bromochloromethane	NH,NY,ME	
Bromodichloromethane	CT,NH,NY,ME	
Bromoform	CT,NH,NY,ME	
Bromomethane	CT,NH,NY,ME	
2-Butanone (MEK)	CT,NH,NY,ME	
n-Butylbenzene	CT,NH,NY,ME	
sec-Butylbenzene	CT,NH,NY,ME	
tert-Butylbenzene	CT,NH,NY,ME	
Carbon Disulfide	CT,NH,NY,ME	

CERTIFICATIONS

Analyte	Certifications	
W-846 8260D in Soil		
Carbon Tetrachloride	CT,NH,NY,ME	
Chlorobenzene	CT,NH,NY,ME	
Chlorodibromomethane	CT,NH,NY,ME	
Chloroethane	СТ, NH, NY, МЕ	
Chloroform	CT,NH,NY,ME	
Chloromethane	CT,NH,NY,ME	
2-Chlorotoluene	CT,NH,NY,ME	
-Chlorotoluene	CT,NH,NY,ME	
,2-Dibromo-3-chloropropane (DBCP)	NY	
,2-Dibromoethane (EDB)	NY	
Dibromomethane	NH,NY,ME	
,2-Dichlorobenzene	CT,NH,NY,ME	
,3-Dichlorobenzene	СТ, NH, NY, МЕ	
,4-Dichlorobenzene	CT,NH,NY,ME	
Dichlorodifluoromethane (Freon 12)	NY,ME	
,1-Dichloroethane	CT,NH,NY,ME	
,2-Dichloroethane	CT,NH,NY,ME	
,1-Dichloroethylene	CT,NH,NY,ME	
is-1,2-Dichloroethylene	СТ,NH,NY,МЕ	
ans-1,2-Dichloroethylene	CT,NH,NY,ME	
,2-Dichloropropane	CT,NH,NY,ME	
3-Dichloropropane	NH,NY,ME	
,2-Dichloropropane	NH,NY,ME	
1-Dichloropropene	NH,NY,ME	
s-1,3-Dichloropropene	CT,NH,NY,ME	
ans-1,3-Dichloropropene	CT,NH,NY,ME	
4-Dioxane	NY	
thylbenzene	CT,NH,NY,ME	
exachlorobutadiene	NH,NY,ME	
Hexanone (MBK)	CT,NH,NY,ME	
opropylbenzene (Cumene)	CT,NH,NY,ME	
Isopropyltoluene (p-Cymene)	ин,иу	
lethyl tert-Butyl Ether (MTBE)	NH,NY	
lethylene Chloride	CT,NH,NY,ME	
Methyl-2-pentanone (MIBK)	CT,NH,NY	
aphthalene	NH,NY,ME	
Propylbenzene	NH,NY	
tyrene	CT,NH,NY,ME	
1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,2,2-Tetrachloroethane	CT,NH,NY,ME	
trachloroethylene	CT,NH,NY,ME	
oluene	CT,NH,NY,ME	
2,3-Trichlorobenzene	NY	
2,4-Trichlorobenzene	NH,NY,ME	
1,1-Trichloroethane	CT,NH,NY,ME	
1,2-Trichloroethane	CT,NH,NY,ME	
richloroethylene	CT,NH,NY,ME	

CERTIFICATIONS

Analyte	Certifications	
SW-846 8260D in Sail		
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
o-Xylene	CT,NH,NY,ME	
SW-846 8270E in Soil		
Acenaphthene	CT,NY,NH	
Acenaphthylene	CT,NY,NH	
Acetophenone	NY,NH	
Aniline	NY,NH	
Anthracene	СТ,NY,NH	
Benzo(a)anthracene	СТ, NY, NH	
Benzo(a)pyrene	CT,NY,NH	
Benzo(b)fluoranthene	CT,NY,NH	
Benzo(g,h,i)perylene	CT,NY,NH	
Benzo(k)fluoranthene	CT,NY,NH	
Bis(2-chloroethoxy)methane	CT,NY,NH	
Bis(2-chloroethyl)ether	CT,NY,NH	
Bis(2-chloroisopropyl)ether	CT,NY,NH	
Bis(2-Ethylhexyl)phthalate	CT,NY,NH	
4-Bromophenylphenylether	CT,NY,NH	
Butylbenzylphthalate	CT,NY,NH	
4-Chloroaniline	CT,NY,NH	
2-Chloronaphthalene	CT,NY,NH	
2-Chlorophenol	СТ,NY,NH	
Chrysene	CT,NY,NH	
Dibenz(a,h)anthracene	CT,NY,NH	
Dibenzofuran	СТ, NY, NH	
Di-n-butylphthalate	CT,NY,NH	
1,2-Dichlorobenzene	NY,NH	
1,3-Dichlorobenzene	NY,NH	
1,4-Dichlorobenzene	NY,NH	
3,3-Dichlorobenzidine	CT,NY,NH	
2,4-Dichlorophenol	CT,NY,NH	
Diethylphthalate	CT,NY,NH	
2,4-Dimethylphenol	CT,NY,NH	
Dimethylphthalate	CT,NY,NH	
2,4-Dinitrophenol	CT,NY,NH	
2,4-Dinitrotoluene	CT,NY,NH	
2,6-Dinitrotoluene	CT,NY,NH	
Di-n-octylphthalate	CT,NY,NH	
1,2-Diphenylhydrazine/Azobenzene	NY,NH	
Fluoranthene	CT,NY,NH	
Fluorene	NY,NH	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270E in Soil		
Hexachlorobenzene	CT,NY,NH	
Hexachlorobutadiene	CT,NY,NH	
Hexachloroethane	CT,NY,NH	
Indeno(1,2,3-cd)pyrene	CT,NY,NH	
Isophorone	СТ, ИҮ, ИН	
2-Methylnaphthalene	СТ, ҮҮ, ИН	
2-Methylphenol	CT,NY,NH	
3/4-Methylphenol	CT,NY,NH	
Naphthalene	CT,NY,NH	
Nitrobenzene	CT,NY,NH	
2-Nitrophenol	CT,NY,NH	
4-Nitrophenol	CT,NY,NH	
Pentachlorophenol	CT,NY,NH	
Phenanthrene	CT,NY,NH	
Phenoi	CT,NY,NH	
Pyrene	CT,NY,NH	
1,2,4-Trichlorobenzene	CT,NY,NH	
2,4,5-Trichlorophenol	CT,NY,NH	
2,4,6-Trichlorophenol	CT,NY,NH	

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2024
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Public Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2023
RI	Rhode Island Department of Health	LAO00373	12/30/2022
NC	North Carolina Div. of Water Quality	652	12/31/2022
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2022
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

22E0834

Pace Analytical Phon	e: 413-525-2332			http://www.		s.com N OF CUSTO	any oren	ann		uce Street			381	Rev 5	_07/13	/2021						, ,
Fax;	413-525-6405		R	equested Torna			DI REC				w, MA 010	28									P	age of
	COC's and Support Regi		7-Day	[X]	10-Day		O		Field Filt	is Sample ered	\$	-			ANAL	YSIS F	REQUE	STE	D			
Address: Y CAL FRENCE	Carper 16:0		PFAS 10-Day		Due Dat		0		Lab to Fi						\dashv	-	1	+	+-	-	2 F	Preservation Code
Phone: 503 -075 -2	DR FRAM.	ex Horo	The state of the s	Rush-Approval	to the contract of the state					e Sample	S w				5		4			1 1	. 1	Courier Use Only
Charles and Albert and	27400		1-Day 2-Day	Н	3-Day		0		Field Filte						~		1					Total Number Of:
Project Location: 240 350-00		/Dv/\			4-Day	Data Del	0	STEEL STEEL STEEL	Lab to Fi	lter	distribution with				7	9	7.0					VIALS
Project Number: 1830.1	1		Format:	PDF	EXCEL	A	2.0		CB ON						3	W	3	1	1			GLASS
Project Manager: Q. Som Wer	TT		Other:	~		λ.Q.			CDOI	YL.I					5	7			1			PLASTIC
Pace Quote Name/Number: Invoice Recipient:			CLP Like Da	ta Pkg Required	: 🗆		SOXH	ILET		1					7	1	3	1	1 8	1		BACTERIA
(-		Email To: G	Sun day	12-	R	NON	SOXHL			_		360			1	7	1 3	2	m		ENCORE
		NAPATRAVIANI AND	Fax To #:	69-16	Obrest Woman	473.50	14014 .	SOAHL	-E1	į.		٠, ٦	3	T	4	92	१ हि	3	9 9	3		* 1.5 ** #
Ware Crose # Client Sa	mple ib / Description		Ending Date/Time	COMPTERAS	Matrix Code	conc Chice	VIALS	GLASS	PLASTIC	BACTERIA	ENCORE	785	:3	1-	K.	146	3 3	1 3	T	Ä		Glassware in the fridge? Y/N
2 (3	P # (2-10)	Slajz.	اکسد	Comp	5	U	-	41	12	-			X	λ	x ,	1	Y	4	×	×	G	lassware in freezer? Y / N
\$ P 3	2 (9-5)	1(5/27	12	GRATS	1	0	3		- 0			X	\dashv	\dashv	\dashv	\perp	_	_			Pr	repackaged Cooler? Y/N
					-	-				ļ	-	-	_	_								*Pace Analytical is not sponsible for missing samples
					-						-	_	_		_	\perp	_	$oxedsymbol{oxed}$			163	from prepacked coolers
																					420	Matrix Codes
															T						73	GW = Ground Water
																1					$\exists z$	WW = Waste Water DW = Drinking Water
												-	\dashv	-	+	+	+	-	-	-	-	A = Air S = Soil
												-	-	+	-	-	+		_		- ∮	SL = Sludge
-												-	\dashv	-		+	+		-		4	SOL = Solid O = Other (please define)
Relinquished by: (signature)	Date/Time: 78 ***	Client Comm	nents:	4 6)c \	12 116-	ø.		-67		<u> </u>						1	1			一當	² Preservation Codes:
Received by: (s/ggaylirg)	Date/Time:		ICZY	, '- 6	N.E	KIG	-	. •	ases													I = Iced
Jeger VIKT	111111111111111111111111111111111111111																				19	H = HCL
Reliperithen by: (signature)	Mate/Time: 1810		on Limit Rea	ulrements			Sp	ectal Re	quiremer	its (一章	M = Methanol
Received by (farginature)	Date/Time:	MA			10						MA MCP			Ple	se use	the fo	liowin	g code	es to i	ndicate	1 9	
PSA 317 S/12/2	1810								h	ACP Certific	cation Forn			possic	le sam	Ple co	ncentra column	ation i	within 6	the Co	1.30	N = Nitric Acid
Relinquisted by: (signature)		CI W							F	RCP Certific	CT RCP			H - H	gh; M	Media	m; L -	Low;		lean; U	ا ا	S = Sulfuric Acid
Received by: (signature)	Date/Time:												ユ				Unknov	wn				B = Sodium Bisulfate
		Other:			PWSID #					MA	State DW I	Require	ed la	Will I	Arrige.	elli linateli	na populari Profesionari		indiadire	leane (iii *4)		X = Sodium Hydroxide
Relinquished by: (signature)	Date/Time:	Project Enti	ty Sovernment			14-							177		er en Proper	Oth	er			nichtigen in fell		T = Sodium Thiosulfate
Received by: (signature)	Date/Time:		ederal	=	Municipal 21 J	lity			MWRA School			WRT	A						matog			O = Other (please
Comments:			ity	-	Brownfiel	ld			MBTA	Ė							L.J	AIHA	-LAP,	LLC.		define)
Page 63									analyse	s the lab	y is a leg oratory v	vili de	erfón	nt th	at mu nv mis	st be	form	ete a	nd ac	curate	and is	e Chain of Custody. The used to determine what ory's responsibility. Pace
of 64									Analytic	cai value	s your pa	irtner	ship i	on ea	ch pro	ject a	and wi	ll try	to as	sist wil	th miss	sing information, but will

Table of Contents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

	Over Sample	es		1/-10	IUU Doc#1	77 Rev 5 201	,	au
Login	Sample Re	ceipt Checklist	- (Rejection (I≀ Criteria Listino	g - Using Accepta			
	Staten	nent will be brou	ight to the a	tention of the	Client - State Tru	ie or False	iy i aise	
Client	CO	\mathcal{M}						
Recei	ved By	9)K		Date	5/12/22	Time	1810	
low were	the samples	In Cooler	7	No Cooler	On Ice	- T	No Ice	
rece	eived?	Direct from Sam	nling			\	-	-
		Direct from Sam			Ambient		Melted Ice	
	nples within	comp	By Gun #	_5_	Actual Ter	n <u>p- </u>		-
•	ure? 2-6°C		By Blank #		Actual Ter			
	s Custody Se		MA		Samples Tampere		NA	_
	s COC Relin		(Does C	hain Agree With Sa	amples?	1	-
	nk/ Legible?	eaking/loose caps	s on any sam				-	
	include all	Client	- 4	Analysis	es received within I		- T-	-
	formation?	Project		ID's		ler Name n Dates/Times		_
		out and legible?	7			, Dates/ I Miles		-
	ab to Filters?		=	v	Vho was notified?			
there R	ushes?		E		Vho was notified?			-
there SI	hort Holds?		7		Vho was notified?	Javic	·	-
here eno	ugh Volume	? .,«	一				;;	-
		re applicable?	7	MS	/MSD? F		- "	
	ia/Containers		ユ	İs s	plitting samples re	quired?	}	
-	anks receive		<u></u>	On	cocs <u>F</u>	_		•
	les have the	proper pH?	AV	Acid age		Base	*114	•
ik e								
p-		1 Liter Amb.		1 Liter Plas		16 oz		
L- oh-		500 mL Amb.		500 mL Pla		8oz(Am		4
ulfate-	 	250 mL Amb. Flashpoint		250 mL Pla		4oz Am		
mato		Other Glass		Col./Bacte Other Plas		2oz Am		
sulfate-		SOC Kit		Plastic Ba		Frozen:	ore	
uric-		Perchlorate		Ziplock	9	1 102017.		
				Unused Med	-			
		Partition .						
	enegradicaes a	1 Liter Amb.		1 Liter Plas		16 oz	Amb	
)-		500 mL Amb.		500 mL Pla		8oz Am		
<u>-</u>		250 mL Amb.		250 mL Pla		4oz Am		
oh-		Col./Bacteria		Flashpoin	t I	2oz Am	b/Clear	
oh- ulfate-				Flashpoin Other Glas		2oz Am Enc		
oh- ulfate- osulfate-		Col./Bacteria Other Plastic SOC Kit		Other Glas Plastic Ba	s			
o- L- oh- ulfate- osulfate- furic- nments:		Col./Bacteria Other Plastic		Other Glas	s	Enc		

0834 6860 Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes			Table of Con	tents
6860 Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes				
Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes	083	34		
Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes				
Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes				
Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes				
Perchlorate CAM VIII B () MassDEP APH CAM IX A () TO-15 VOC CAM IX B () status Yes				
CAM IX A () TO-15 VOC CAM IX B () Status Yes		Perchl		
CAM IX B () status Yes No¹				
☐ Yes ☐ No¹				
☐ Yes ☐ No¹	sta	atus		
☐ Yes ☐ No¹		☑ Yes	□No¹	
☑ Yes ☐ No¹ ☐ Yes ☐ No¹ ☐ Yes ☐ No¹		☑ Yes	□No¹	
☐ Yes ☐ No¹		☑ Yes	□No¹	
☐ Yes ☐ No¹		☑ Yes	□No¹	
		☐Yes	□No¹	
☑ Yes □No¹		□Yes	□No¹	
		☑ Yes	□No¹	

MADEP MCP Analytical Method Report Certification Form									
Lab	Laboratory Name: Con-Test, a Pace Analytical Laboratory Project #: 22E0834								
Proj	Project Location: 240 Beaver St., Waltham, MA RTN:								
This	Form provide	s certifications for t	he following data se	t: [list Laboratory San	nple ID Number(s)]				
22	E0834-01 thre	u 22E0834-02							
Matr	ices:	Soil							
С	CAM Protocol (check all that below)								
	260 VOC				6860 Perchlorate CAM VIII B ()				
	3270 SVOC 7010 Metals MassDEP VPH 8081 Pesticides 7196 Hex Cr MassDEP APH CAM II B (X) CAM III C () (GC/MS) CAM V B (X) CAM VI B () CAM IX A ()								
	Metals III A (X)	6020 Metals CAM III D ()	MassDEP EPH CAM IV B ()	8151 Herbicides CAM V C (X)	8330 Explosives CAM VIII A ()	TO-15 CAM IX	1		
	A	ffirmative response	to Questions A throu	ghF is required for "P	resumptive Certainty"	' status			
Α	A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?								
В									
С									
D									
Еa	E a VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).								
Еb	to the manufactor of the manuf								
F									
	A response to questions G, H and I below is required for "Presumptive Certainty" status								
G	G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM □ Yes □ No¹ Protocol(s)?								
<u>Data User Note:</u> Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.									
Н	Were all QC pe	rfomance standards sp	ecified in the CAM proto	col(s) achieved?		□ _{Yes}	☑ _{No¹}		
ı	I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? ☑ Yes ☑ No¹								
¹ All I	¹ All Negative responses must be addressed in an attached Environmental Laboratory case narrative.								
l, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.									
Sign	Signature: Position: Laboratory Director								
Prin	Printed Name: Tod E. Kopyscinski Date: 05/30/22								