Factorización LU general (otra manera)

Factorización LU general (otra manera) (cont.)

$$a_{ij} = \sum_{s=1}^{n} l_{is} u_{sj} = \sum_{s=1}^{\min(i,j)} l_{is} u_{sj}$$
 (14)

Fijamos i=j=k en la ecuación (14) $a_{kk} = \sum_{s=1}^{k-1} l_{ks} u_{sk} + l_{kk} u_{kk}$ (15) (elemento en la diagonal)

Supongamos que se han calculado los elementos de U hasta la fila k-1 y los elementos de L hasta la columna k-1, de (15) se tiene la relación

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ & u_{22} & u_{23} & \cdots & u_{2n} \\ & & u_{33} & \cdots & u_{3n} \\ & & & \ddots & \vdots \\ & & & & u_{nn} \end{pmatrix} \quad L = \begin{pmatrix} l_{11} & & & & \\ l_{21} & l_{22} & & & & \\ l_{31} & l_{32} & l_{33} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{pmatrix} \quad l_{kk} u_{kk} = a_{kk} - \sum_{s=1}^{k-1} l_{ks} u_{sk} \quad (16)$$

$$\operatorname{caso} k=3$$

La relación (16) permite calcular u_{kk} o I_{kk} a partir del otro.

 $U = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ & u_{22} & u_{23} & \cdots & u_{2n} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ &$

 $L = \begin{pmatrix} l_{11} & & & \\ l_{21} & l_{22} & & & \\ l_{31} & l_{32} & l_{33} & & \\ \vdots & \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn} \end{pmatrix}$

(17)

Sistemas de Ecuaciones Lineales

Factorización LU general (otra manera) (cont.)

A continuación con I_{kk} y u_{kk} calculados, procedemos a ubicar

- la fila *k* de *U* (*i=k*)
- la columna k de L (j=k)

Usando la ecuación (14) se tiene

$$a_{kj} = \sum_{s=1}^{k-1} l_{ks} u_{sj} + l_{kk} u_{kj} \quad \text{para } k+1 \le j \le n$$

$$a_{ik} = \sum_{s=1}^{k-1} l_{is} u_{sk} + l_{ik} u_{kk} \quad \text{para } k+1 \le i \le n$$

es decir, si
$$l_{kk} \neq 0 \qquad \text{y} \qquad u_{kk} \neq 0$$

$$u_{kj} = \left(a_{kj} - \sum_{s=1}^{k-1} l_{ks} u_{sj}\right) / l_{kk} \quad \text{para } k+1 \leq j \leq n$$

$$l_{ik} = \left(a_{ik} - \sum_{s=1}^{k-1} l_{is} u_{sk}\right) / u_{kk} \quad \text{para } k+1 \leq i \leq n$$

$$(18)$$

Factorización LU general (otra manera) (cont.)

Obs. Es importante notar que los cálculos en (18) pueden realizarse en paralelo, lo cual puede representar un gran ahorro en tiempo de CPU.

Obs. El algoritmo basado en las fórmulas precedentes (16) y (18)

$$l_{kk}u_{kk} = a_{kk} - \sum_{s=1}^{k-1} l_{ks}u_{sk}$$

$$u_{kj} = \left(a_{kj} - \sum_{s=1}^{k-1} l_{ks}u_{sj} + l_{kk}\right) / l_{kk} \quad \text{para } k+1 \le j \le n$$

$$l_{ik} = \left(a_{ik} - \sum_{s=1}^{k-1} l_{is}u_{sk} + l_{kk}\right) / u_{kk} \quad \text{para } k+1 \le i \le n$$

se conoce como

- factorización LU de Doolittle cuando L es una matriz triangular inferior con 1 en la diagonal principal
- factorización LU de Crout cuando U es una matriz triangular superior con 1 en la diagonal principal
- factorización LU de Cholesky cuando $u_{kk} = I_{kk}$

Factorización LU general (otra manera) (cont.)

Leer $A=(a_{ij})$, nPara k=1 hasta nEspecificar un valor no cero para I_{kk} o u_{kk} y calcular el otro de

$$l_{kk}u_{kk} = a_{kk} - \sum_{s=1}^{k-1} l_{ks}u_{sk}$$

Para j = k+1 hasta n

$$u_{kj} = \left(a_{kj} - \sum_{s=1}^{k-1} l_{ks} u_{sj}\right) / l_{kk}$$

Fin para

Para i = k+1 hasta n

$$l_{ik} = \left(a_{ik} - \sum_{s=1}^{k-1} l_{is} u_{sk}\right) / u_{kk}$$

Prof. Saúl Buitrago

Algoritmo

Factorización LU general (otra manera) (cont.)

Para resolver el sistema lineal Ax = b usando la descomposición LU general de la matriz A, debemos resolver LUx = b, el cual lo operamos en 2 pasos (realizando el cambio y = Ux)

Ejercicio: Calcular el número de operaciones básicas para resolver un sistema lineal de ecuaciones usando el método de descomposición *LU* general.

Prof. Saúl Buitrago