ĐỀ THI THỬ CUỐI KỲ MÔN GIẢI TÍCH 2 - Học kì 20212 Nhóm ngành 1 Thời gian làm bài: 90 phút

Chú ý: Thí sinh không được sử dụng tài liêu và giám thị phải kí xác nhân số đề vào bài thi.

Câu 1. (1 điểm) Viết phương trình tiếp tuyến và pháp diện của đường
$$\begin{cases} x=t+\cos t\\ y=t+\sin t\\ z=t \end{cases}$$

tai điểm A(1;0;0).

Câu 2. (1 điểm) Tính đạo hàm theo hướng của hàm $u = 2x^3 + 4z^2 + xyz$ theo hướng $\vec{l} = (3; 4; 0) \text{ tai } A(1; 1; 1)$

Câu 3. (1 **điểm**) Tính
$$I = \iint\limits_{D} 2x dx dy$$
 với D là miền giới hạn bởi
$$\begin{cases} 0 \leq x + y \leq 1 \\ y \leq x \leq y + 1 \end{cases}.$$

Câu 4. (1 điểm) Tính
$$I=\iiint\limits_V\sqrt{x^2+y^2}dxdydz$$
, V là miền giới hạn bởi $\begin{cases} x^2+y^2=4z^2\\z=2 \end{cases}$.

Câu 5. (1 điểm) Tính
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin^{7} x \cos^{5} x} dx.$$

Câu 6. (1 điểm) Tính
$$\int\limits_C (x^3+y^3)ds$$
 với C là đường cong thỏa mãn: $x^2+y^2=2x+2y-1$.

Câu 6. (1 điểm) Tính
$$\int\limits_C^0 (x^3+y^3)ds$$
 với C là đường cong thỏa mãn: $x^2+y^2=2x+2y-1$.

Câu 7. (1 điểm) Tính $I=\iint\limits_S z^2(x^2+y^2)dS$ với S là phần mặt cầu: $x^2+y^2+z^2=1$ với $x\geq 0, y\geq 0$.

Câu 8. (1 điểm) Tính tích phân:

$$I = \int_{Am\widehat{O}nB} (e^x \sin y + 2y + \frac{1}{4x^2 + 1}) dx + (e^x \cos y + 5x + \frac{3}{4y^2 + 1}) dy$$

với cung $\stackrel{\frown}{AmO}$ là phần nửa đường tròn $x^2 + y^2 = 4x$ nằm phía trên trục Ox từ điểm A(4,0) đến điểm O(0,0) và cung $\stackrel{\frown}{OnB}$ là phần đường tròn $x^2+y^2=2x$ nằm phía trên trục Ox từ O(0,0) đến B(2,0).

Câu 9. (1 điểm) Cho trường vector $\vec{F}=(x^3+y)\vec{i}+(y^3+2z)\vec{j}+(x+y+z)\vec{k}$. Tính thông lượng của \vec{F} qua nửa mặt cầu $x^2+y^2+z^2=1$ nằm phía trên mặt phẳng Oxy hướng lên phía trên.

Câu 10. (1 điểm) Tính tích phân:

$$\int_C (x^2 + y^2 + z^2 + yz)dx + (x^2 + y^2 + z^2 + xz)dy + (x^2 + y^2 + z^2 + xy)dz$$

trong đó C là giao của mặt cầu $x^2+y^2+z^2=4$ và mặt $z=x^2+(y-1)^2$ có hướng cùng chiều kim đồng hồ khi nhìn từ gốc O.

