.

ALGEBRA II

1995/6 - 1. termín

- A) Reprezentace konečných distributivních svazů.
- B) **Rektangulární band** je pologrupa splňující $x^2 = x$, xyz = xz. Dokažte, že $F = M \times M$ s operací $(a,b) \circ (c,d) = (a,d)$ je volným rektangulárním bandem nad množinou M vzhledem k vhodnému ι (najděte je).
 - C) Nechť $\mathcal{R} = (R, +, \cdot, 1)$ je okruh.
- a) Dokažte, že množina $\mathcal J$ všech jeho ideálů s relací \subseteq je úplný svaz.
- b) Pro $I, J \in \mathcal{J}$ určete $I \wedge J, I \vee J$.
- c) Dokažte, že pro $I, J \in \mathcal{J}$ je též

$$I \circ J = \{a_1b_1 + \dots + a_nb_n \mid n \in \mathbb{N}, \ a_i \in I, \ b_i \in J\} \in \mathcal{J} .$$

- d) Dokažte, že v $(\mathbb{Z}, +, \cdot, 1)$ jsou ideály právě tvaru $n\mathbb{Z}, n \in \mathbb{N}_0$.
- e) V okruhu z d) popište operace \land , \lor , \circ .
- f) V obecném případě uveďte všechny inkluze mezi $I,\ J,\ I\wedge J,\ I\vee J,\ I\circ J$.
- g) Dokažte, že $I \circ (J \vee K) = I \circ J \vee I \circ K$.
- h) Dokažte, že $I \wedge (J \vee K) \supseteq (I \wedge J) \vee (I \wedge K)$.
- i) Nechť $R=\mathbb{R}[x,y],\ I=(x+y),\ J=(x),\ K=(y)$; jak vypadají levá, pravá strana v h) ? Každá z položek a) i) maximálně za 3 body, max. počet bodů za úlohu C) je 20 bodů (ne 27) !

1995/6 - 2. termín

- A) Zachování platnosti identit pro homomorfní obrazy grupoidů.
- B) Popište všechny a) kongruence, b) endomorfismy, c) automorfismy,
- d) podalgebry 1-unární algebry, která je cyklem délky 6 s ocáskem délky 1.
 - C) Nechť $\mathcal{R} = (R, +, \cdot)$ je těleso.
- a) Nechť I ideál v $(R[x], +, \cdot)$. Dokažte, že I je hlavní (pro $I \neq \{0\}$ uvažujte nenulový polynom nejmenšího stupně v I).
- b) Doplňte a dokažte $(f) = \{ \dots \mid \dots \}, \ f \in R[x]$.
- c) V okruhu $(R[x,y],+,\cdot)$ najděte ideál, který není hlavní.
- d) Dokažte, že platí $(R[x,y],+,\cdot) \ / \ (x) \cong (R[x],+,\cdot)$.

1995/6 - 3. termín

A) Reprezentace konečných booleových svazů.

- B) Dokažte, že okruh $\mathbb{Z}[x,y]$ je volným komutativním okruhem nad množinou M= vzhledem ke vhodnému ι (určete je). (Okruhy uvažujeme s operacemi $+,-,0,\cdot,1$.)
- C) Pologrupa $S = (S, \cdot)$ se nazývá **pologrupou levých nul**, splňuje-li xy = x, grupou pravých nul splňuje-li xy = y, rektangulárním bandem splňuje-li

$$xx = x$$
, $xyx = x$.

Ukažte, že

- 1. Rektangulární bandy lze místo identity xyx = x zadat identitou xyz = xz.
- 2. Součin pologrupy (R,\cdot) pravých nul a pologrupy (L,\cdot) levých nul je rektangulární k
- 3. Vztah $a \rho b \Leftrightarrow a \cdot b = a$ definuje na rektangulárním bandu (S, \cdot) kongruenci; fakt struktura je pologrupa ... nul.
- 4. Duálně definujeme λ ($a \lambda b \Leftrightarrow a \cdot b = b$). Ukažte, že $\alpha : S \longrightarrow S/\rho \times S/\lambda$, $a \mapsto ([a]_{\rho}$ je izomorfismus pologrupy (S, \cdot) na součin $(S, \cdot)/\rho$ a $(S, \cdot)/\lambda$.

1996/7 - 1. termín

A. Faktorové okruhy. (Definujte okruh $\mathcal{R}=(R,...)$, jeho ideál I, množinu R/I, opna ní, dokažte korektnost, co je to za strukturu ?, přirozený homomorfismus na fakt okruh. O faktorových grupách nevíme nic.)

B. Uvažujme jazyk binárního , nulárního 1 a unárního operačního symbolu $^{-1}$. $n \in \mathbb{N}$. Dokažte, že množina $F = \mathbb{Z}^n$ je vzhledem k operaci $(p_1, \ldots, p_n) \circ (q_1, \ldots, q_n)$ $(p_1 + q_1, \ldots, p_n + q_n)$ volnou komutativní grupou nad množinou $\{a_1, \ldots, a_n\}$ vzhled vhodnému ι (najděte je).

- C. a) Dokažte, že v modulárním svazu $\mathcal{L}=(L,\wedge,\vee)$ je pro libovolná nesrovna $a,b\in L$ zobrazení $\varphi:x\mapsto x\wedge a$ izomorfismem intervalu $[\ b,a\vee b\]$ na interval $[\ a\wedge b,$
 - b) Dokažte, že modulární svaz $\mathcal{L} = (L, \wedge, \vee)$ splňuje
- (P) ($\forall a, b, c \in L$) ($a \neq b, a, b$ pokrývají $c \Longrightarrow a \lor b$ pokrývá a i b) i podmínku duální (D) (formulujte ji).
 - c) Je svaz

modulární ? Splňuje (P) ? Splňuje (D) ?

Nechť \mathcal{P} značí třídu všech svazů splňujících podmínku (P).

- d) Je každý interval svazu z \mathcal{P} opět v \mathcal{P} ?
- e) Je každý podsvaz svazu z \mathcal{P} opět v \mathcal{P} ?

L. Polák, Univerzita Brno, Algebra II

1996/7 - 2. termín

ducibilní polynom, rozšíření tělesa, algebraický prvek, minimální polynom. Dokažte jeho A. Minimální polynom. (Víme co je to těleso a polynom nad okruhem. Definujte ireexistenci a jednoznačnost.) Určete minimální polynom prvku $\sqrt[6]{2} + 1$ nad tělesem $\mathbb{Q}(\sqrt[3]{2})$. (Nedokazujte, že $\sqrt[6]{2} \notin \mathbb{Q}(\sqrt[3]{2})$.)

s operací $(a,b)\circ(c,d)=(a,d)$ je volným rektangulárním bandem nad množinou M vzhledem B. Rektangulární band je pologrupa splňující $x^2 = x$, xyz = xz. Dokažte, že $F = M \times M$ k vhodnému ι (najděte je).

- C. a) ρ je kongruencí svazu $\mathcal{L} = (L, \wedge, \vee)$, platí-li ...
- b) Nechť svaz má alespoň 3 prvky. Ukažte, že v něm existují prvky p,q,r tak, že p < q < r.
 - c) V distributivním svazu $\mathcal L$ pro pevné $a\in L$ klademe

 $x \rho y \iff x \wedge a = y \wedge a, \ x \tau y \iff x \vee a = y \vee a, \ x, y \in L.$

Ukažte, že to jsou kongruence.

- d) Ukažte, že platí $\rho \cap \tau = \Delta \ (= \{(x,x) \mid x \in L\})$ a za předpokladu z b) pro a = q je
 - e) Jak vypadají relace ρ, τ na součinu řetězců u < v < w a 1 < 2 < 3 < 4 pro a = (v, 3)? f) Dokažte, že zobrazení $\alpha : x \mapsto ([x]_{\tau})$ je prostý homomorfismus \mathcal{L} do $\mathcal{L}/\rho \times \mathcal{L}/\tau$.

1996/7 - 3. termín

A. Reprezentace konečných distributivních svazů. (Víme co je to distributivní svaz, nic více. Definujte potřebné pojmy včetně okruhu množin, formulujte hlavní větu/věty a dokažte

B. K danému polynomu $f=x^4+tx^3+ux^2+vx+w\in\mathbb{C}[x]$ najděte polynom, jehož kořeny jsou druhé mocniny kořenů polynomu f.

- C. a) Dokažte, že množina $\mathcal{J}(\mathcal{R})$ všech ideálů okruhu $\mathcal{R}=(R,+,\cdot)$ je vzhledem k množinové inkluzi úplný svaz.
 - b) Dokažte, že pro netriviální komutativní okruh $\mathcal{R} = (R,+,\cdot)$ platí:
 - \mathcal{R} je těleso $\Longleftrightarrow \{0\}$ a R
 jsou jedinými ideály tohoto okruhu.
- c) Za předpokladů z b) a pro $J\in\mathcal{J}(\mathcal{R})$ platí:

 \mathcal{R}/J je těleso $\iff R$ pokrývá J (ve svazu z a)). (Využijte lemma o kongruencích faktorové

- d) Nechť $\mathcal{R} = (R, +, \cdot)$ je okruh, nechť $(J_i)_{i \in I}$ je neprázdný řetězec jeho ideálů. Ukažte,
 - že $\bigcup_{l\in I}J_l$ je opět ideál. e) V $\mathcal{R}=(\mathbb{Z},+,\cdot)\times(\mathbb{Z},+,\cdot)\times\ldots$ najděte posloupnost ideálů

$$J_1 \subseteq J_2 \subseteq \dots, \ J_1 \neq J_2 \neq \dots$$

f) Ukažte, že v okruhu $(\mathbb{Z}, +, \cdot)$ taková posloupnost neexistuje.

1996/7 - náhradní termín

A. Nechť svaz $\mathcal{L} = (L, \wedge, \vee)$ splňuje identitu $\sigma = \tau$ (definujte to), nechť ρ je kongr svazu \mathcal{L} (definujte to). Ukažte, že \mathcal{L}/ρ též splňuje $\sigma=\tau$. B. Uvažujme unární algebru A = (A, f), kde $A = \{1, 2, ..., 7\}$ a f(1) = 2, f(1)3, f(3) = 4, f(4) = 5, f(5) = 2, f(6) = 7, f(7) = 6.

Najděte všechny její

- a) endomorfismy,
- b) izomorfismy,
- c) podalgebry,
- d) kongruence splňující $5\rho6$.

C. 1996/7, 3. termín, úloha C.

1997/8 - 1. termín

A. Minimální polynom

Víme co je to těleso a polynom nad okruhem. Definujte ireducibilní polynom, roz tělesa, algebraický prvek, minimální polynom. Dokažte jeho existenci a jednoznačnost. U minimální polynom prvku $\sqrt[6]{2} - 1$ nad tělesem $\mathbb{Q}(\sqrt[3]{2})$. (Platí, že $\sqrt[6]{2} \notin \mathbb{Q}(\sqrt[3]{2}) - \text{nedok}$ B. Uvažujeme jazyk jediného, a to unárního, operačního symbolu f a v něm konl algebru A = (A, g), kde $A = \{a, b, c, d, 1, 2\}$ a g(a) = b, g(b) = g(d) = c, g(c) = d, g(c) = d

Popište všechny její

- a) kongruence ρ takové, že \mathcal{A}/ρ má jediný cyklus,
- b) množiny generátorů minimální mohutnosti,
- c) endomorfismy (nějakou kompaktní formou kolik je jich ?),
- d) automorfismy,
- e) podalgebry. f) Pro která $k,l\in\mathbb{N}_0$ tato algebra splňuje identitu $f^k(x)=f^l(x)$?

C. Pologrupa $S = (S, \cdot)$ se nazývá pologrupou levých nul, splňuje-li xy = x, l grupou pravých nul splňuje-li xy = y, rektangulárním bandem splňuje-li

$$xx = x$$
, $xyz = xz$.

Ukažte, že

- a) Součin pologrupy (R,\cdot) pravých nul a pologrupy (L,\cdot) levých nul je rektangulární l
- b) Vztah $a \ b \ \Leftrightarrow \ a \cdot b = a$ definuje na rektangulárním bandu (S, \cdot) kongruenci; fakt struktura je pologrupa ... nul.
- c) Duálně definujeme $\lambda (a \lambda b \Leftrightarrow a \cdot b = b)$. Ukažte, že

$$\alpha: S \longrightarrow S/\rho \times S/\lambda, \ a \mapsto ([a]_\rho, [a]_\lambda)$$

je izomorfismus pologrupy (S,\cdot) na součin $(S,\cdot)/\rho$ a $(S,\cdot)/\lambda$.

1997/8 - 2. termín

A. Uvažujeme jazyk ternárního (= 3-árního) operačního symbolu f.

Definujte: a) termy, b) realizaci termu na algebře $\mathcal{A} = (A, g)$, c) identitu a kdy ji algebra \mathcal{A} splňuje, d) homomorfismus, kongruenci a faktoralgebru.

- e) Nechť $\mathcal A$ splňuje identitu p=q. Ukažte, že tato identita je splněna i v libovolné faktóralgebře algebry A.
 - f) Pro stromy (= souvislé neorientované grafy bez kružnic) definujte nějakou přírozenou (= je to definováno univerzálně pro všechny stromy a závisí to na všech 3 svých argumentech) ternární operaci na množinách jejích vrcholů.

Body: 2,2,2,3,8,3.

B. Uvažujeme jazyk dvou unárních operačních symbolů $f,\ g$ a v něm konkrétní algebru = (A, p, q), kde $A = \{1, 2, ..., 7\}$ a p(1) = q(1) = 2, p(2) = q(2) = 3, p(3) = 4, q(3) = 4

6, p(4) = 5, q(4) = 3, p(5) = 6, q(5) = 4, p(6) = 3, q(6) = 5, p(7) = q(7) = 4.

je naše algebra podpřímo nerozložitelná? – zdůvodněte, a) Popište všechny její kongruence ρ , pro něž neplatí $3\rho 4$, b) je naše algebra podpřímo nerozložitelná? – zdůvodněte

popište A/ρ pro některý atom ρ ve svazu všech kongruencí algebry A, c) popište A/ρ pro některy atom ρ ve svazu vezn. d) popište všechny její endomorfismy (s komentářem),

popište všechny její 6-ti prvkové podalgebry. (e)

f) Pro která $n \in \mathbb{N}_0$ tato algebra splňuje identitu $f^n(x) = g^n(x)$?

g) Pro které unární termy t je $t^{\mathcal{A},1}(1)=6$?
h) (zejména pro informatiky) Formulujte otázku g) v termínech konečných automatů.

Body: 3,2,2,4,3,3,3 (maximálně 20)

plementární (= libovolný jeho interval [a,b] = { $c \in L \mid a \le c \le b$ }, $a,b \in L, \ a \le b$ je C. a) Dokažte, že každý komplementární modulární svaz $\mathcal{L} = (L, \wedge, \vee)$ je relativně komkomplementární).

Návod: dokažte nejprve, že intervaly tvaru [0,p] jsou komplementární.

- b) Dejte příklad svazu, který je komplementární, ale není relativně komplementární.
- c) Dokažte, že v omezeném distributivním svazu je množina všech jeho prvků majících komplement podsvazem.
- d) Dejte příklad 8-mi prvkového omezeného distributivního svazu, v němž právě 4 prvky mají komplement.

Body: 7,3,7,3.

1997/8 - 3. termín

- A. a) Definuțte distributivní svaz.
- b) Definujte spojově ireducibilní prvky daného svazu. Jaké zde uvažujeme uspořádání ?
- c) Definujte dědičné množiny dané uspořádané množiny. Jaké zde uvažujeme uspořádání ?
 - d) Doplňte a dokažte:

Pro libovolný ... svaz \mathcal{L} platí $\mathcal{L}\cong$

e) Ukažte, že libovolný ... svaz je izomorfní s podsvazem součinu vhodného počtu exemplářů svazu $(\{0,1\},\leq)$

L. Polák, Univerzita Brno, Algebra II

- f) Demonstrujte větu z d) na svazu $(\{0,1\}, \leq)^3$. Body: 1,2,2,9,3,3.
- B. Uvažujeme jazyk binárního operačního symbolu · a v něm konkrétní algebru $\mathcal A =$ kde $A = \{0, 1, 2, a, b\}$ a operace · je dána tabulkou

	0	Η	2	a	q
0	0	T	2	0	0
1	1	2	0	1	1
2	2	0	I	2	2
a	0	T	2	a	0
q	0	1	2	0	q

- a) Najděte všechny atomy ve svazu všech kongruencí algebry \mathcal{A} .
- Rozložte algebru ${\mathcal A}$ na podpřímý součin dvou algeber s menším počtem prvků než n
- c) Naše operace je asociativní nedokazujte to. Najděte všechny podgrupy algebry ${\mathcal A}$
 - e) Najděte všechny její endomorfismy α splňující $\alpha(1)=2,\ \alpha(a)=b.$ d) Najděte všechny její podalgebry, které nejsou podgrupami.
 - f) Najděte všechny její automorfismy.
- g) Pro která $n, d \in \mathbb{N}$ naše algebra splňuje identitu $x^{n+d} = x^n$? Je mezi těmito ident taková, že všechny ostatní jsou její důsledky?

Body: 3,2,3,3,3,3,3.

- B'. Uvažujeme jazyk dvou unárních operačních symbolů $f,\ g$ a v něm konkrétní al
- $\mathcal{A} = (A, p, q)$, kde $A = \{1, 2, ..., 7\}$ a p(1) = q(1) = 2, p(2) = q(2) = 3, p(3) = q. 4, p(4) = 5, q(4) = 3, p(5) = q(5) = 6, p(6) = 3, q(6) = 5, p(7) = q(7) = 5.
 - a) Popište všechny atomy ve svazu všech kongruencí algebry A.
- b) Rozložte algebru A na podpřímý součin dvou algeber s menším počtem prvk
- c) Popište všechny její endomorfismy (s komentářem).
 - d) Popište všechny její 6-ti prvkové podalgebry.
- e) Pro která $n \in \mathbb{N}_0$ tato algebra splňuje identitu $f^n(x) = g^n(x)$?
 - f) Pro které unární termy t je $t^{A,1}(1) = 6$?

Body: 4,3,4,3,3,3.

- C. Nechť $\mathcal{R} = (R, +, \cdot)$ je netriviální komutativní okruh.
- a) Nechť I je ideál okruhu \mathcal{R} . Jaký je vztah mezi ideály okruhu \mathcal{R}/I a ideály okruh Formulujte to a dokažte.
- b) Ideál I je maximální, platí-li $I \neq R$ a pro libovolný ideál J platí: $I \subseteq J \subseteq R$ imp $J=\bar{I}$ neboJ=R. Dokažte: ide
álIje maximální $\Longleftrightarrow \mathcal{R}/I$ je těleso.
 - c) Popište všechny ideály okruhu (
 $\mathbb{Z},+,\cdot).$ Které z nich jsou maximální ?
- d) Ukažte, že množina všech ideálů okruhu $\mathcal R$ je vzhledem k inkluzi úplným svazem vypadá $I \wedge J$, $I \vee J$?