Ridge Regression Analysis on Correlates of Cars' Miles Per Gallon

Jiannan(Jeffrey) Zhang University of Texas at Austin

Introduction

- Concerns about the fuel supply and fuel efficiency have been growing a lot in recent years
- My study focuses on using ridge regression to analyze the correlations between car's MPG and seven predictor variables

Introduction

There are many factors affecting MPG such as horsepower (HP), weight, and year of the car.

Introduction

The general way to do the regression is to use Ordinary Least-Squares (OLS) Regression.

Main methods: 1. Ridge regression

Error for ridge regression is smaller!

The size of weights is controlled. Therefore model is more stable. In ridge regression, my goal is find the best ridge parameter (Lambda) that minimizes the ERROR

Main methods: 2. Cross-validation

- I used ten-fold crossvalidation
- Every time I use nine folds to train data and one fold to test data

Used to limit problems like overfitting

 Model I (data set with six features: number of cylinders, engine displacement, HP, weight, acceleration time, origin country)

Table 1. Sample weights for model I (K = Intercept, Num = Number)

Variables	K	Num of	Engine	Horsepo	Weight	Accelera	Origin
		Cylinders	displacem	wer		tion time	
Weights							
(best	0.0873	-0.1021	0.0474	-0.2682	-0.5452	-0.0365	0.1033
lambda)							
Weights	0.0842	-0.0576	-0.0204	-0.2365	-0.4796	-0.0675	0.1021
Weights	0.0843	-0.0565	-0.0160	-0.2383	-0.4864	-0.0676	0.1025

 Model II (data set with all continuous variables : engine displacement, HP, weight, acceleration time)

Table 2. Sample weights for model II (K = Intercept)

Variables	K	Engine	Horsepo	Weight	Acceleration
		displacement	wer		time
Weights	0.0919	-0.0965	-0.2072	-0.5733	-0.0369
(best lambda)					
Weights	0.0923	-0.1243	-0.2068	-0.5246	-0.0657
Weights	0.0936	-0.0841	-0.2312	-0.5807	-0.0408

 Model III (data set with all discrete variables : number of cylinders, origin country, years)

Table 3. Sample weights for model III (K = intercept)

Variables	K	Number of	Origin	Years
		Cylinders		
Weights	-0.0468	-0.5582	2.2883	0.1355
(best lambda)				
Weights	-0.0342	-0.5868	2.0849	0.1027
Weights	-0.0460	-0.5780	2.2930	0.1314

Plots of Error VS Lambda for three models

Discussion

Table 1. Sample weights for model I (K = Intercept, Num = Number)

Variables	K	Num of	Engine	Horsepo	Weight	Accelera	Origin
		Cylinders	displacem	wer		tion time	
Weights							
(best	0.0873	-0.1021	0.0474	-0.2682	-0.5452	-0.0365	0.1033
lambda)							
Weights	0.0842	-0.0576	-0.0204	-0.2365	-0.4796	-0.0675	0.1021
Weights	0.0843	-0.0565	-0.0160	-0.2383	-0.4864	-0.0676	0.1025

Variables	K	Number of	Origin	Years
		Cylinders		
Weights	-0.0468	-0.5582	2.2883	0.1355
(best lambda)			\	7 17
Weights	-0.0342	-0.5868	2.0849	0.1027
Weights	-0.0460	-0.5780	2.2930	0.1314

- Weight of the car and horsepower are best two predictors for the MPG.
- Five variables that are negative correlated with MPG. They are number of cylinders, engine displacement, HP, weight of the vehicle and acceleration time.
- Two variables that are positively correlated with MPG. They are year of the car and the country origin. Japanese cars usually have the highest MPG, followed by Germany and U.S.

Discussion

- Ridge regression is better than OLS regression in this study
- By controlling the size of coefficients, ridge regression is a good way to battle multicollinearly for a large set of predictor variables in a regression model.

Acknowledgements

Jiannan(Jeffrey) Zhang University of Texas at Austin

