Part II

1	Bas	ic Formatting	19
	1.1	Setting up a document	19
		1.1.1 new definitions	19
		1.1.2 new definitions (amstex)	19
	1.2	Format	20
		1.2.1 added	21
	1.3	Basic Braces and Parentheses	21
	1.4	Lists and Tables	21
	1.5	Labels, References and Bibliography	22
	1.6	Foreign Accents	22
	1.7	Miscellaneous	23
	1.8	Spaces	23
		1.8.1 (new tex/latex/amslatex-amsmath/amstex)	25
ว	Bog	ic Mathematical Formatting	2 4
Z	Das	ic mathematical formatting	4 4
	2.1	Equation Commands	24
		2.1.1 More Equation Commands with AMS Math	25

	2.2	Basic Displayed Equations—Examples	25
	2.3	Specialized Displayed Equations—Examples	26
	2.4	Theorem Like Environments	28
		2.4.1 AMS Math Environment Commands	28
	2.5	End of Proofs, etc.	29
		2.5.1 (qed symbol)	30
	2.6	Operator Names	30
		2.6.1 new	30
3	\mathbf{Alp}	habets and Fonts	32
3	_	habets and Fonts The letter d	
3	3.1	The letter d	32
3	3.1	The letter d	32 32
3	3.1 3.2 3.3	The letter d	$\frac{32}{32}$
3	3.1 3.2 3.3	The letter d	$\frac{32}{32}$
3	3.1 3.2 3.3 3.4	The letter d	32 32 34 34
3	3.1 3.2 3.3 3.4 3.5	The letter d	322 342 344 360

4	ALI	PHABETS AND FONTS	41
	4.1	Universal Operations	41
	4.2	Single Symbols included in \$ Signs	41
	4.3	Roots	44
	4.4	Specific Fractions	45
	4.5	Superscripts	45
	4.6	Subscripts	49
	4.7	Overcharacters	52
	4.8	Binary Operations and Relations	53
	4.9	Sized Parentheses	54
	4.10	Single Mathematical Symbols	54
	4.11	Set Theoretic Symbols	55
	4.12	Arrows and Dots	56
	4.13	Trig Functions	56
	4.14	Log-like Symbols	56
	4.15	Combinations of Mathematical Symbols	57
5	INT	EGRALS, SUMS, PRODUCTS, AND MATRICES	61
		Integrals	61

		5.1.1 Derivatives	61
	5.2	Sums, Limits, etc.	61
	5.3	Sample Matrices	62
		5.3.1 AMS Math Matrices Universal	63
6	во	XES, TABBING AND TABULAR ENVIRONMENT SAMPLES	64
	6.1	Boxes	64
	6.2	Tabbing	64
	6.3	Tabular	65
7	PIC	CTURES, DIAGRAMS, TABLES, AND FIGURES	68
	7.1	Pictures	68
	7.2	Commutative Diagrams	68
	7.3	TABLE AND FIGURE ENVIRONMENTS	72
		7.3.1 Tables	72
		7.3.2 Figures	72
		7.3.3 Epsf	72
8	TE	$\mathbf{X}\mathbf{T}$	73
	0 1	Word Vocabulary	79

9	SAI	MPLE TEMPLATES	7 4
	9.1	Paper Templates	74
		9.1.1 Paper Template Basic (with resetting)	75
		9.1.2 Paper Simple Template	77
		9.1.3 Paper Simplest Template	78
		9.1.4 Paper Simple Template with eqnwith Numbering	79
	9.2	Book Templates	80
	9.3	Letters	82
		9.3.1 Letter Template	82
		9.3.2 Letter.def Macro	84
	9.4	Miscellaneous	84
		9.4.1 Verbatim	84
		9.4.2 Comments	84

1 Basic Formatting

1.1 Setting up a document

```
tebd
                1/5 \documentstyle{article}
                                                                                      template to begin document;
tebdf
                    \documentstyle[epsf]{article}
                                                                                      template for documents using article and epsf style files
tebdy
                    \documentstyle[verbatim]{article}
                                                                                      template for documents using
tebdvf
                    \documentstyle[verbatim,epsf]{article}
                                                                                      template for documents using
te2bd
                    \documentclass{article}
                                                                                      template to begin document latex2e;
te2bdv
                    \documentclass{article}
                                                                                      template for documents using
te2bdvf
                    \documentclass{article}
                                                                                      template for documents using
temar
                    \textwidth_6.5_truein
                                                                                      template insert for changing margin size
                                                                                      template insert, changing margin size, magstep1 (not in LaTeX)
temag1
teaut
               1/13 \title{Title_of_paper}
                                                                                      template insert for title and author
                    \begin{abstract}
teabs
                                                                                      template insert for abstracts
                    \noindent{\bf_Acknowledgments}_We_thank...
teack
                                                                                      template insert for acknowldegments
                    \section*{References}
                                                                                      template insert for references
teref
tebib
                    \begin{thebibliography}{}
                                                                                      template insert for the bibliography
                     \begin{document}
                                                                                     begin text of document
bdo
                    \end{document}
                                                                                     end text of document
_{\mathrm{ed}}
                    \end{document}
                                                                                     end text of document
edo
dsu
                    \documentstyle{
                                                                                     document style universal
dsart
                    \documentstyle{article}
                                                                                     document style article
                    \documentstyle[verbatim]{article}
                                                                                     document style article
dsartv
dslet
                    \documentstyle{letter}
                                                                                     document style letter
dsrep
                     \documentstyle{report}
                                                                                     document style report
dsbook
                    \documentstyle{book}
                                                                                     document style article
```

1.1.1 new definitions

```
defu1/1\newcommand{\ldots\}{\ldots\}define a new command macroncmdu1/1\newcommand{\ldots\}{\ldots\}define a new command macrorcmdu1/1\renewcommand{\ldots\}{\ldots\}redefine a command macrordefu1/1\renewcommand{\ldots\}{\ldots\}redefine a command macrosetlnu1/1\setlength{\ldots\}{\ldots\}set length variables universal
```

1.1.2 new definitions (amstex)

magui magnification magstep universal (not in LaTeX)

mag1 nrh npgno nlg nbb pgno lhtxt rhtxt egraf chhdl tgsol tgsor	<pre>1/1 \pagestyle{empty} 1/1 \pagestyle{empty}</pre>	magnification magstep 1 (not in LaTeX) no running heads no page numbers no AmSTeX logo (not in LaTeX) hide line overflow black boxes (not in LaTeX) set page number (not in LaTeX) leftheadtext (not in LaTeX) rightheadtext (not in LaTeX) endparagraph (not in LaTeX) change headlines to be justified (not in LaTeX) tags for equations on left (not in LaTeX) tagst for equations on right (not in LaTeX)
---	--	---

1.2 Format

		\	1 1 1
sn	1/1		start a numbered section
sns	1/1	\section*{	start an unnumbered section
ssn	1/1		start a numbered subsection
ssns	1/1	\subsection*{	start an unnumbered subsection
bec	1/1	\begin{center}	begin center
ec	1/1	\end{center}	end center
eec	1/1	\end{center}	begin center
cl	1/1		centerline
hfi	1/1	\hfill	hfill
bfll	1/1	\begin{flushleft}	begin flush left
bflr	1/1	\begin{flushright}	begin flush right
efll	1/1	\end{flushleft}	end flush left
$\operatorname{efl}\mathbf{r}$	1/1	\end{flushright}	begin flush right
bqt	1/1	\begin{quotation}	begin quotation
eqt	1/1	\end{quotation}	end quotation
noi	1/1	\noindent	no indent
nl	1/1	\\	newline (double backslashes)
np	1/1	\newpage	newpage
pt	1/1	%	percent
vfi	1/1	\vfill	vfill
lbrk	1/1	\linebreak	linebreak
n lin	1/1	\newline	newline
$_{ m rlin}$	1/1		rightline
clin	1/1		centerline
	•		

```
leftline
llin
                 1/1 \leftline{...}
                     \line{...}
lin
                                                                                     line
                                                                                     reset baselineskip
blskp
                 1/1 \baselineskip
1.2.1 added
                 1/1 \begin{minipage}{\textwidth}
                                                                                     begin minipage
bmpg
                     \end{minipage}
                                                                                     end minipage
empg
                     \clearpage
                                                                                     clear page
ср
                 1/1
                    \begin{quotation}
                                                                                     begin block/quotation
bblk
                     \end{quotation}
eblk
                                                                                     end block/quotation
                     \setlength{\parindent}{0em}
                                                                                     set parindent
prind
prskp
                     \setlength{\parskip1.5ex_plus_0.5ex_minus_0.5ex}
                                                                                     set parskip
                                                                                     reset baselinestretch
blstr
                     \renewcommand{\baselinestretch}{1.5}
1.3
      Basic Braces and Parentheses
                                                                                     open (left) brace
ob
                 1/1 {
eb
                 1/1 }
                                                                                     end (right) brace
eit
                 1/1 \/}
                                                                                     end italic space and (right) brace
                                                                                     open (left) parenthesis
                 1/1 (
ор
                                                                                     end (right) parenthesis
                 1/1 )
ер
                                                                                     open (left) bracket
obk
                 1/1
                                                                                     end (right) bracket
ebk
                 1/1
llb
                 1/1 \{
                                                                                     left literal brace
_{\rm rlb}
                                                                                     right literal brace
                 1/1 \}
bgm
                     "
                                                                                     begin (left) quotation marks
                 1/1
                 1/1
                                                                                     end (right) quotation marks
eqm
lle
                 1/1 \langle
                                                                                     left angle bracket
                                                                                     right angle bracket
rle
                 1/1 \rangle
      Lists and Tables
1.4
                 1/1 \begin{enumerate}
                                                                                     begin roster; enumerate
ros
                 1/1 \begin{enumerate}
                                                                                     begin roster; enumerate
bros
                     \end{enumerate}
```

eros

ben

ee

een

\begin{enumerate}

\end{enumerate}

\end{enumerate}

end roster; enumerate

begin enumerate

end enumerate

end enumerate

bitm	$1/1$ \begin{itemize}	begin itemize
eitm	<pre>1/1 \end{itemize}</pre>	end itemize
bds	1/1 \begin{description}	begin description
eds	1/1 \end{description}	end description
itm	1/1 \item	item
itmu	1/1 \item[item entry universal
setc	<pre>1/1 \setcounter{enumi}{</pre>	set counter enumi
setcu	1/1 {}	set counter universal
btb	1/1 \begin{tabbing}	begin tabbing
etb	1/1 \end{tabbing}	end tabbing
tb	1/1 \>	tab stop
btr	1/1 \begin{tabular}{ c c }	begin tabular with vertical lines
etr	1/1 \end{tabular}	$\overline{ ext{end}}$ $\overline{ and}$ $\overline{ and}$
hlin	1/1 \hline	horizontal line
hrl	1/1 \hline	horizontal rule; line
ad	1/1 &	ampersand

1.5 Labels, References and Bibliography

ftn	1/1	footnote
citu	1/1	to cite a reference universal
cit	$1/1$ \cite{ \sqcup }	to cite a reference
citp	1/1 (\cite{ _⊔ })	to cite a reference inside parentheses
lbl	1/1	to label an equation, theorem, etc.
refr	1/1	to cross reference an equation, theorem, etc.
refp	1/1 ()	to cross reference (put cursor between the {} by hand)
biba	$1/3$ \item_Author_[year]	item description for articles
bibb	$1/3$ \item_Author_[year]	item description for books
bibia	1/4 \bibitem[]{}	bibitem for articles
bibib	1/4 \bibitem[]{}	bibitem for books
idu	1/1	use for index entries

1.6 Foreign Accents

ae	1/1 \'{e}	é	(acute e
ge	1/1 \'{e}	è	grave e
ua	1/1 \''{a}	ä	umlaut a
uo	1/1 \"{o}	ö	umlaut o
uu	1/1 \" {u}	ü	umlaut u

ace	1/1 \'{E}	É	acute E
gce	1/1 \'{E}	È	${\rm grave}\ {\rm E}$
uca	1/1 \" {A}	$\ddot{ m A}$	$\operatorname{umlaut} A$
uco	1/1 \"{0}	Ö	umlaut O
ucu	1/1 \"{U}	$\ddot{ ext{U}}$	$\operatorname{umlaut} \operatorname{U}$

1.7 Miscellaneous

ats	1/1 Q		at symbol
cprt	1/1 \copyright	©	copyright symbol
para	1/1 \P	\P	paragraph symbol
sect	1/1 \S	8	section symbol
gss	1/1 \ss	ß	german s

1.8 Spaces

csp	1/1	single character space (width em)
dsp	1/1 \qquad	double space
ssp	1/1	${ m small\ space}$
msp	1/1 \:	medium space; only in math mode
tsp	1/1 \;	thick space
nsp	1/1 \!	negative space; only in math mode
ndsp	1/1 \! _U \!	negative double space; only in math mode

$1.8.1 \quad ({\rm new~tex/latex/amslatex-amsmath/amstex})$

qd	1/1	quad space (width em)
qqd	1/1 \qquad	double quad space
bskp	1/1 \bigskip	$\operatorname{big}\operatorname{skip}$
mskp	1/1 \medskip	$\operatorname{medium} \mathbf{skip}$
sskp	1/1 \smallskip	${ m small}\ { m skip}$
hskp	_{1/1} \hskip⊔2in	horizontal skip
vskp	1/1 \vskip⊔12pt	vertical skip
tskp	1/1 \topskip⊔24pt	topskip
vglu	1/1 \vglue⊔⊔2in	vglue
nll	1/1 \null	null

2 Basic Mathematical Formatting

```
dsz 1/1 \displaystyle
dszu 1/1 {\displaystyle
tsz
tszu
tfu
```

2.1 Equation Commands

```
\operatorname{sd}
                1/1 d
d
                1/1 $
dlr
                1/2 $$
bdp
                1/1 \[
edp
                    /]
                1/1
                    \begin{equation}
beq
                1/1
beal
                    \begin{equation}\label{
                    \end{equation}
eeq
bqa
                    \begin{eqnarray}
                    \begin{eqnarray}\label{
bqal
                    \end{eqnarray}
eqa
                    \begin{eqnarray*}
bqas
                    \end{eqnarray*}
egas
bea
                    \begin{array}{ccc}
                    \end{array}
ea
                    \end{array}
eea
                1/1
ad
                    &
                1/1
ada
                1/1 & | = | &
                    \nonumber
nonu
                    \mbox{}
mbe
boxu
                    \quadu\mbox{uu}ud
                    \quadu\mbox{and}u\quad
boxa
txt
                    \quadu\mbox{uu}u\quad
                    \quad_\text{and}_\quad
txta
legu
                    \begin{eqnarray}
                    \begin{eqnarray*}
lequs
```

display size display size universal text size (not in LaTeX) text size universal (not in LaTeX) text size fraction universal (not in LaTeX)

small letter d dollar symbol: starts and terminates text in math mode double dollar begin display math: one line formula, unnumbered end display math: one line formula, unnumbered begin display math: one line formula, numbered begin display math: one line formula, numbered, with label end display math: one line formula, numbered begin multiline aligned display math array, numbered begin multiline aligned display math array, numbered with label end multiline aligned display math array, numbered begin multiline aligned display math array star, unnumbered end multiline aligned display math array star, unnumbered begin display aligned at 3 places; see also Section 5.3 end display alignedat end display alignedat ampersand for aligning = signs in some displays supress numbering on equation empty box, use at the beginning/end of a line use to put roman text within math add text "and" within math formula use to put roman text with quad spaces within math add text "and" with quad spaces within math numbered equation split over two lines, unnumbered equation split over two lines,

2.1.1 More Equation Commands with AMS Math

tag equation; label in parentheses tag equation; label not in parentheses no tag

2.2 Basic Displayed Equations—Examples

bdpex 1/3 \[

display math equation unnumbered example

$$F(b) - F(a) = \int_a^b f(x) \, dx$$

beqex 1/3 \begin{equation}

display math equation numbered example

$$F(b) - F(a) = \int_a^b f(x) dx \tag{1}$$

eqtx 1/5 \[

display math equation with text

$$\sum_{i=1}^{n} x_i^2 + y_i^2 \ge 0 \quad \text{for all real numbers } x_i \text{ and } y_i$$

bqasex 1/4 \begin{eqnarray*}

align equation star example, unnumbered

$$x^2 = y+1$$
$$x^2+1 = u+v$$

bqaex 1/4 \begin{eqnarray}

align equation example, numbered

$$x^2 = y + 1 \tag{2}$$

$$x^2 + 1 = u + v \tag{3}$$

eqng 1/6 \begin{eqnarray} aligned equations left justified; numbered as a group

$$a = b + c$$

$$d = e + f + g$$
(4)

eqsp 1/4 \begin{eqnarray*} equation split star, unnumbered

$$a = b + c + (c + d)$$
$$- e + f$$

2.3 Specialized Displayed Equations—Examples

eqbrl 1/8 \begin{equation} equation array example

eqbrc 1/8 \begin{equation} equation array example

$$\left. \begin{array}{l}
 x = y \\
 a = b^2 + b + 1
\end{array} \right\} \tag{6}$$

eqbox 1/3 \begin{equation}

equation displayed in a box

$$\frac{x^2+1}{5}=y$$
 (7)

eval 1/4 \[

evaluation of expression

$$f\left(\frac{t}{2}\right)\Big|_{t=0}$$

lequex 1/4 \begin{eqnarray}

left equation array example

$$ax^{2} + 2bxy + cy^{2} + dx + ey + f$$

$$= \alpha u + \beta v + \gamma w + \delta$$
(8)

eabb 1/12 \begin{eqnarray*}

equation array with big brackets

$$\hat{H}_c(\Delta\omega): = \int_D \left[\frac{1}{2}\Delta\omega(-\nabla^2)^{-1}\Delta\omega + \Phi(\omega_e + \Delta\omega) - \Phi(\omega_e) - \Phi'(\omega_e)\Delta\omega\right] dx dy$$

eabr 1/10 \begin{eqnarray*}

equation array with big braces

$$H_0^s(TM) = \left\{ X \in H^s(TM) \middle| \text{ there exists an } H^s\text{-extension} \right.$$

 $\tilde{X} \in H^s(\tilde{T}M) \text{ with } X \text{ zero on } \tilde{M} \backslash M \right\}.$

2.4 Theorem Like Environments

mcor	1/1	\newtheorem{cor}{Corollary}	to make a new series of Corollaries
mdfn	1/1	\newtheorem{dfn}{Definition}	to make a new series of Definitions
mlem	1/1	\newtheorem{lem}{Lemma}	to make a new series of Lemmas
mprop	1/1	\newtheorem{prop}{Proposition}	to make a new series of Propositions
mthm	1/1	\newtheorem{thm}{Theorem}	to make a new series of Theorems
bcor	1/1	\begin{cor}	to begin a Corollary environement
ecor	1/1	\end{cor}	to end a Corollary environement
blem	1/1	\begin{lem}	to begin a Lemma environement
elem	1/1	\end{lem}	to end a Lemma environement
bprop	1/1	\begin{prop}	to begin a Proposition environement
eprop	1/1	\end{prop}	to end a Proposition environement
$_{ m bthm}$	1/1	\begin{thm}	to begin a Theorem environement
bthmt	1/1	\begin{thm}[Gauss'⊔Theorem]	to begin a Theorem, with title, environement
ethm	1/1	\end{thm}	to end a Theorem environement
bdfn	1/1	\begin{dfn}	to begin a Definition environement
bdfn	1/1	\begin{definition}	begin definition environment;
edfn	1/1	$\ensuremath{\mbox{dfn}}$	to end a Definition environement
edfn	1/1	\end{definition}	end definition environment;
exa	1/1	$\noindent{\large_{\sqcup}\bf_{\sqcup}Example}$	Example (title in large bold)
rmk	1/1	\noindent{\large_\bf_Remarks}	Remarks (title in bold)
prf	1/1	\noindent{\bf⊔Proof}	Proof (title in bold)
sol	1/1	$\noindent{\bf_{\square}Solution\}$	Solution (title in bold)

2.4.1 AMS Math Environment Commands

bdmu edmu		
bprf	1/1	\noindent{\bf⊔Proof}
eprf		
bpf f	1/1	\noindent{\bf_Proof}
epf thmsty	1/6	\newtheorem{thm}{Theorem}[section]
balg	1/0	\begin{algorithm}

```
to begin demo environement (not in LaTeX) to end demo universal environement (not in LaTeX) to begin a Proof environement to end a Proof environement (not in LaTeX) to begin a Proof environement to end a Proof environement to end a Proof environement (not in LaTeX) theoremstyle commands with abbreviated names begin algorithm environment;
```

ealg	1/1	\end{algorithm}
benj	1/1	\begin{conjecture}
ecnj	1/1	ecnj
bcrit	1/1	\begin{criterion}
ecrit	1/1	\end{criterion}
bqst	1/1	\begin{question}
eqst	1/1	\end{question}
bend	1/1	\begin{condition}
ecnd	1/1	\end{condition}
bprob	1/1	\begin{problem}
eprob	1/1	\end{problem}
brmk	1/1	\begin{Remark} _□
ermk	1/1	\end{Remark}_
bnote	1/1	\begin{note}
enote	1/1	\end{note}
bnota	1/1	\begin{notation}
enota	1/1	\end{notation}
bcase	1/1	\begin{case}
ecase	1/1	\end{case}
bclm	1/1	\begin{claim}
eclm	1/1	\end{claim}
bsum	1/1	\begin{summary}
esum	1/1	\end{summary}
bcncl	1/1	\begin{conclusion}
ecncl	1/1	\end{conclusion}
bac	1/1	\begin{acknowledgment}
eac	1/1	\end{acknowledgment}
bsol	1/1	\begin{solution}
esol	1/1	\end{solution}
bpf	1/1	\noindent{\bf_Proof}
epf		
bxca		
exca		
bxcb		
excb		

2.5 End of Proofs, etc.

blackl 1/1 \quadu\blacklozenge

end algorithm environment; begin conjecture environment; end conjecture environment; begin criterion environment; end criterion environment; begin question environment; end question environment; begin condition environment; end condition environment; begin problem environment; end problem environment; begin remark environment; end remark environment; begin note environment; end note environment; begin notation environment; end notation environment; begin case environment; end case environment; begin claim environment; end algorithm environment; begin summary environment; end summary environment; begin conclusion environment; end conclusion environment; begin acknowledgment environment; end acknowledgment environment; begin solution environment; end solution environment; to begin a Proof environement to end a Proof environement (not in LaTeX) begin Exercise—body of text; (not in LaTeX) end Exercise in body of text; (not in LaTeX) begin Exercises—end chpt. monographs; (not in LaTeX) end Exercises—end chpt. monographs; (not in LaTeX)

black lozenge (math mode)

dblack	l 1/1 _{\usin} \$\blacklozenge\$	♦	dollar black lozenge (text mode)
epr	1/1 _⊔ \blacksquare		black square/end proof (math mode)
$_{ m dep}$	1/1 ⊔\$\blacksquare\$		dollar black square/end proof (text mode)
esq	1/1 _⊔ \square		empty square (math mode)
desq	1/1 ⊔\$\square\$		dollar empty square (text mode)
etd	$1/1$ _{\sqcup} \bigtriangledown	∇	empty triangle down (math mode)
$\det d$	1/1 ⊔\$\bigtriangledown\$	∇	dollar empty triangle down (text mode)
btd	$1/1$ $_{\sqcup}$ \blacktriangledown	▼	black triangle down (math mode)
dbtd	1/1 ⊔\$\blacktriangledown\$	▼	dollar black triangle down (text mode)
9 5 1	(-11)		
2.5.1	(qed symbol)		
qed	1/1 _⊔ \square		qed symbol or empty square (math mode)
rqed	1/1 \null\hfill\$\square\$		right justified qed symbol

2.6 Operator Names

The following abbreviated names should be considered as "operator names" (See AMS-TEX, and AMS-IFTEX). seh

1/1 \mbox{\rm_usech} sech (in

\mathbf{seh}	1/1 \mbox{\rm⊔sech}	sech	sech (m roman)
so3	$1/1 \ \mbox{\rm}_{\sqcup}so(3)$	so(3)	so(3) (in roman)
dso3	$1/1$ \$\mbox{\rm\so(3)}\$	so(3)	so(3) (in roman) with dollar signs around
$\cos 3$	$1/1 \ \mbox{\rm}_{\sqcup}SO(3)$	SO(3)	SO(3) (in roman)
dcso3	$1/1$ \$\mbox{\rm_\SO(3)}\$	SO(3)	SO(3) (in roman) with dollar signs around
divg	$1/1 \ \mbox{\rm_idiv}\$	div	divergence, div (in roman)
au	1/1 \mbox{\rm⊔Aut}($\operatorname{Aut}($	Automorphism universal (in roman)
difu	$1/1 \ \mbox{\mbox{}}($	Diff(Diffeomorphism universal (in roman)
imu	$1/1 \ \mbox{\rm} [m] ($	Im(imaginary part universal
imz	$1/1 \ \mbox{\rm Lm}(z)$	$\operatorname{Im}(z)$	imaginary part of z
reu	$1/1 \ \mbox{\rm NE}($	Re(real part universal
rez	$1/1 \ \mbox{\rm NE}(z)$	$\mathrm{Re}(z)$	real part of z

2.6.1 new

rom 1/1 $\mbox{\rm}_{\square}$ make text roman romu 1/1 $\mbox{\rm}_{\square}$ make text roman

txtu	1/1 \rm_		text inside math mode
intxtu	$1/1 \mbox{\mbox{}}$		interline text
fldtu			folded text inside math (not in LaTeX)
tfldtu			top folded text inside math (not in LaTeX)
opndef	1/1 $\newcommand{\dots}{\mbox{\rm}_{\mbox}}$		operatorname macro definition
opnu	1/1 \rm		operatorname universal
opad	1/1 \mbox{\rm_ad}	ad	operatorname ad
opcaut	1/1 \mbox{\rm_Aut}	${f Aut}$	operatorname Aut
opccard	1/1 \mbox{\rm_Card}	Card	operatorname Card
opchar	1/1 \mbox{\rm_char}	char	operatorname char
opccorr	1/1 \mbox{\rm_Corr}	Corr	operatorname Corr
opcext	1/1 \mbox{\rm_Ext}	$\mathbf{E}\mathbf{x}\mathbf{t}$	operatorname Ext
opcfcl	1/1 \mbox{\rm_LFL}	${ m FL}$	operatorname FL
opegel	1/1 \mbox{\rm_UGL}	GL	operatorname GL
opchom	$1/1 \mbox{\rm_UHom}$	Hom	operatorname Hom
opcjac	1/1 \mbox{\rm_Jac}	\mathbf{Jac}	operatorname Jac
opclie	1/1 \mbox{\rm_Lie}	Lie	operatorname LIe
opcnm	$1/1 \mbox{\rm} \$	Nm	operatorname Nm
opcpcgcl	1/1 \mbox{\rm_\PGL}	PGL	operatorname PGL
opcpic	1/1 \mbox{\rm_\Pic}	Pic	operatorname Pic
opcprym	1/1 \mbox{\rm_Prym}	Prym	operatorname Prym
opcram	1/1 \mbox{\rm_Ram}	Ram	operatorname Ram
opcrank	1/1 \mbox{\rm_Rank}	Rank	operatorname Rank
oprank	1/1 \mbox{\rm_rank}	rank	operatorname rank
opreg	1/1 \mbox{\rm_reg}	reg	operatorname reg
operes	1/1 \mbox{\rm_Res}	Res	operatorname Res
opres	1/1 \mbox{\rm_res}	res	operatorname res
opsl	$1/1 \mbox{\mbox{}}$	${f sl}$	operatorname sl
opcscl	$1/1 \mbox{\mbox{\L}}$	SL	operatorname SL
opcsco	$1/1 \mbox{\mbox{}}$	SO	operatorname SO
opcscp	$1/1 \mbox{\mbox{}}$	SP	operatorname SP
opcsp	$1/1 \mbox{\mbox{}}$	Sp	operatorname Sp
opsq	$1/1 \mbox{\mbox{}}$	sq	operatorname sq
opescu	1/1 \mbox{\rm_SU}	SU	operatorname SU
opcsym	$1/1 \mbox{\rm_Sym}$	Sym	operatorname Sym
opctr	$1/1 \mbox{\rm}_{\mbox{Tr}}$	Tr	operatorname Tr

3 Alphabets and Fonts

3.1 The letter d

sd	1/1 d	small letter d
cd	1/1 D	capital D

3.2 Greek Letters

3.4	Greek Lett	ers		
xa	1/1	\alpha	lpha greek	alpha
xb	1/1	\beta	eta greek	beta
\mathbf{XC}	1/1	\chi	χ greek	chi
xcd	1/1	\Delta	Δ greek	Delta
xcg	1/1	\Gamma	Γ greek	Gamma
xcl	1/1	\Lambda		Lambda
XCO	1/1	\Omega		Omega
xcp	1/1	\Pi	Π greek	
xcph	1/1	\Phi	Φ greek	
xcps	1/1	\Psi	Ψ greek	
XCS	1/1	\Sigma		Sigma
xcth	1/1	\Theta		Theta
xcu	1/1	\Upsilon		Upsilon
XCX	1/1	\Xi	Ξ greek	
xd	1/1	\delta	δ greek	
$\mathbf{x}\mathbf{e}$	1/1	\epsilon		epsilon
xet	1/1	\eta	η greek	
xg	1/1	\gamma		gamma
Хì	1/1	\iota	ι greek	
xk	1/1	\kappa		kappa
xl	1/1	\lambda	-	lambda
xm	1/1	\mu	μ greek	
xn	1/1	\nu	u greek	
XO	1/1	\omega		omega
xp	1/1	\pi	π greek	
xph	1/1	\phi	ϕ greek	
xps	1/1	\psi	ψ greek	_
\mathbf{xr}	1/1	\rho	ho greek	
XS	1/1	\sigma	σ greek	sıgma

$\mathbf{x}\mathbf{t}$	1/1	\tau	au	greek tau
xth	1/1	\theta	θ	greek theta
xu	1/1	\upsilon	v	greek upsilon
xve	1/1	\varepsilon	arepsilon	greek varepsilon
xvp	1/1	\varpi	$\overline{\omega}$	greek varpi
xvph	1/1	\varphi	arphi	greek varphi
xvr	1/1	\varrho	ϱ	greek varrho
xvs	1/1	\varsigma	ς	greek varsigma
xvth	1/1	\vartheta	ϑ	greek vartheta
XX	1/1	\xi	$\xi \ \zeta$	greek xi
XZ	1/1	\zeta	ζ	greek zeta
dxa	1/1	\$\alpha\$	lpha	dollar greek alpha
dxb	1/1	\$\beta\$	eta	dollar greek beta
dxc	1/1	<pre>\$\chi\$</pre>	χ	dollar greek chi
dxcd	1/1	\$\Delta\$	Δ	dollar greek Delta
dxcg	1/1	\$\Gamma\$	Γ	dollar greek Gamma
dxcl	1/1	\$\Lambda\$	Λ	dollar greek Lambda
dxco	1/1	\$\Omega\$	Ω	dollar greek Omega
dxcp	1/1	\$\Pi\$	Π	dollar greek Pi
dxcph	1/1	\$\Phi\$	Φ	dollar greek Phi
dxcps	1/1	\$\Psi\$	Ψ	dollar greek Psi
dxcs	1/1	\$\Sigma\$	Σ	dollar greek Sigma
dxcth	1/1	\$\Theta\$	Θ	dollar greek Theta
dxcu	1/1	\$\Upsilon\$	Υ	dollar greek Upsilon
dxcx	1/1	\$\Xi\$	Ξ	dollar greek Xi
dxd	1/1	<pre>\$\delta\$</pre>	δ	dollar greek delta
dxe	1/1	<pre>\$\epsilon\$</pre>	ϵ	dollar greek epsilon
dxet	1/1	\$\eta\$	η	dollar greek eta
dxg	1/1	\$\gamma\$	$\dot{\gamma}$	dollar greek gamma
dxio	1/1	\$\iota\$	$\dot{\iota}$	dollar greek iota
dxk	1/1	\$\kappa\$	κ	dollar greek kappa
dxl	1/1	\$\lambda\$	λ	dollar greek lambda
dxm	1/1	\$\mu\$	μ	dollar greek mu
dxn	1/1	\$\nu\$	$\stackrel{'}{ u}$	dollar greek nu
dxo	1/1	\$\omega\$	ω	dollar greek omega
dxp	1/1	\$\pi\$	π	dollar greek pi
dxph	1/1	\$\phi\$	ϕ	dollar greek phi
dxps	1/1	\$\psi\$	$\dot{\psi}$	dollar greek psi
dxr	1/1	\$\rho\$	$\stackrel{'}{\rho}$	dollar greek rho
	•		•	O

dxs	1/1	\$\sigma\$	σ	dollar greek sigma
dxt	1/1	\$\tau\$	au	dollar greek tau
dxth	1/1	\$\theta\$	θ	dollar greek theta
dxu	1/1	\$\upsilon\$	v	dollar greek upsilon
dxve	1/1	<pre>\$\varepsilon\$</pre>	arepsilon	dollar greek varesilon
dxvp	1/1	<pre>\$\varpi\$</pre>	$\overline{\omega}$	dollar greek varpi
dxvph	1/1	\$\varphi\$	φ	dollar greek varphi
dxvr	1/1	\$\varrho\$	ϱ	dollar greek varrho
dxvs	1/1	\$\varsigma\$	ς	dollar greek varsigma
dxvth	1/1	<pre>\$\vartheta\$</pre>	ϑ	dollar greek vartheta
dxx	1/1	\$\xi\$	ξ	dollar greek xi
dxz	1/1	\$\zeta\$	ζ	dollar greek zeta

3.3 Font Definition, Italics, Bold, etc.

nfntu	1/1	$\newfont{\dots}{\dots}$		new font definition
nfnttbi	1/1	<pre>\newfont{\tenbi}{cmbxti10}</pre>		new font ten point bold italic
itu	1/1	{\it	Example	start italic type; "eit" to finish
biu	1/1	{\tenbi	${\it Example}$	start bold italic type; "eit" to finish
rmu	1/1	{\rm	$\mathbf{Example}$	roman type
bfu	1/1	{\bf	${f Example}$	boldface type
slu	1/1	{\sl	Example	slanted type "eit" to finish
ttu	1/1	{\tt	Example	$\verb"typewriter" type"$
emu	1/1	{\em	Example	start emphasized type; "eb" to finish
scu	1/1	{\sc	EXAMPLE	start Small Caps type; "eb" to finish
sfu	1/1	{\sf	Example	start sans serif type; "eb" to finish
bxu	1/1	$\mbox{\boldmath$$_{\sqcup\sqcup\sqcup}$}$	ψ	boldmath universal
cau	1/1	{\cal	${\cal A}$	calligraphic univeral; math mode, capital letters only
gmu	1/1	\frak _⊔	${\mathfrak g}$	german universal; only in math mode
opu	1/1	{\Bbb⊔	$rac{\mathfrak{g}}{\mathbb{R}}$	open letter universal
bbu	1/1	{\Bbb⊔	$\mathbb C$	blackboard bold universal
3.4 Bolo	lface L	etters		

3.4 Boldface Letters

b0	1/1 {\bf⊔0}	0	bold 0
b1	1/1 {\bf⊔ 1 }	1	bold 1
b10	1/1 {\bf⊔ 10 }	10	bold 10

1.0		_	1 11 0
b2	1/1 {\bf _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	2	bold 2
b3	1/1 {\bf _{\\\\} 3}	3	bold 3
b4	1/1 {\bf _⊔ 4}	4	bold 4
b5	1/1 {\bf _{\upsilon} 5}	5	bold 5
b6	1/1 {\bf _{\(\Disp\)6}}	6	bold 6
b7	$1/1 \{ bf_{\sqcup}7 \}$	7	bold 7
b8	1/1 {\bf _{_} 8}	8	bold 8
b9	1/1 {\bf _{\\\} 9}	9	bold 9
ba	$1/1 \{ bf_{\sqcup}a \}$	a	bold a
bb	1/1 {\bf _⊔ b}	b	bold b
bc	1/1 {\bf _{\(\Disp\c\)} }	\mathbf{c}	bold c
bca	1/1 {\bf _\ A}	\mathbf{A}	bold A
bcb	1/1 {\bf _{\\\} B}	В	bold B
bcc	1/1 {\bf _{\(\D\C\)} }	\mathbf{C}	bold C
bcd	1/1 {\bf_D}	D	bold D
bce	1/1 {\bf _\ E}	${f E}$	bold E
bcf	1/1 {\bf⊔F}	${f F}$	bold F
bcg	1/1 {\bf _U G}	\mathbf{G}	bold G
bch	$1/1 {bf_{L}H}$	H	bold H
bci	$1/1 \ \{ bf_{\sqcup}I \}$	I	bold I
bcj	$1/1 \{ bf_{\sqcup}J \}$	J	$\operatorname{bold} \mathbf{J}$
bck	1/1 {\bf _\ K}	K	bold K
bcl	$1/1$ {\bf _U L}	${f L}$	bold L
bcm	1/1 {\bf _\ M}	M	bold M
bcn	1/1 {\bf _{\(\D} N\)}	\mathbf{N}	bold N
bco	1/1 {\bf _U 0}	O	bold O
bcp	1/1 {\bf _\ P}	P	bold P
bcq	1/1 {\bf _⊔ Q}	\mathbf{Q}	bold Q
bcr	1/1 {\bf _{\\\} R}	${f R}$	bold R
bcs	1/1 {\bf _{\\\\} S}	\mathbf{S}	bold S
bct	$1/1 \{ bf_{\sqcup}T \}$	${f T}$	bold T
bcu	1/1 {\bf _{\up} U}	\mathbf{U}	bold U
bcv	1/1 {\bf _{\up} V}	${f V}$	bold V
bcw	1/1 {\bf _u \}	\mathbf{W}	bold W
bcx	1/1 {\bf _{\up} X}	\mathbf{X}	bold X
bcy	1/1 {\bf _{_\} Y}	\mathbf{Y}	bold Y
bcz	$1/1 \{ bf_{\sqcup}Z \}$	${f Z}$	bold Z
bd	$1/1 \{ bf_{\sqcup}d \}$	\mathbf{d}	bold d
bee	$1/1$ {\bf _{\upsilon} e}	\mathbf{e}	bold e; (note the extra e)
			, ,

bel1	1/1 {\bf _\ e}_1	\mathbf{e}_1	bold e subscript 1
bel2	1/1 {\bf⊔e}_2	\mathbf{e}_2	bold e subscript 2
bel3	_{1/1} {\bf _⊔ e}_3	\mathbf{e}_3	bold e subscript 3
beln	1/1 {\bf⊔e}_n	\mathbf{e}_n	bold e subscript n
bff	1/1 {\b f ⊔ f }	${f f}$	bold f; (note the extra f)
bg	_{1/1} {\bf _⊔ g}	${f g}$	bold g
bh	1/1 {\b f ⊔ h }	${f h}$	bold h
bi	1/1 {\b f ⊔ i }	i	bold i
bj	1/1 {\b f ⊔ j }	j	bold j
bk	$1/1 \{ bf_{\perp}k \}$	\mathbf{k}	bold k
bl	1/1 {\b f ⊔ 1 }	1	bold l
bm	1/1 {\bf _{\\} m}	\mathbf{m}	bold m
bn	$1/1 \{ bf_{\sqcup}n \}$	${f n}$	bold n
bo	1/1 {\b f ⊔o}	О	bold o
bp	_{1/1} {\b f ⊔ p }	p	bold p
bq	1/1 {\b f ⊔ q }	${f q}$	bold q
br	1/1 {\b f ⊔ r }	${f r}$	bold r
bs	1/1 {\bf _U s}	\mathbf{s}	$\operatorname{bold} \mathbf{s}$
$_{ m bt}$	1/1 {\b f ⊔ t }	t	bold t
bu	1/1 {\b f ⊔ u }	\mathbf{u}	bold u
bv	1/1 {\bf _{\up} v}	${f v}$	bold v
$\mathbf{b}\mathbf{w}$	1/1 {\b f ⊔ w }	\mathbf{w}	bold w
bx	1/1 {\b f ⊔ x }	x	bold x
bуу	1/1 {\b f ⊔ y }	${f y}$	bold y; (note the extra y)
bz	1/1 {\bf _{Ll} z}	${f z}$	bold z
3.5	Boldmath Symbols		
ა.ა	Dolumath Symbols		
bxu	$1/1 \ \mbox{\boldmath$$_{\sqcup \sqcup \sqcup}$}$	ψ	boldmath universal
bxo	$1/1$ \mbox{\boldmath\$\omega\$}	ω	boldmath omega
bxx	1/1 \mbox{\boldmath\$\xi\$}	ξ	boldmath xi
3.6	Calligraphic Letters		
cau	1/1 {\cal	${\cal A}$	calligraphic univeral; math mode, capital letters only
cca	1/1 {\cal_A}	\mathcal{A}	calligraphic A
ccb	1/1 {\cal_B}	\mathcal{B}	calligraphic B
COD	1/1 (\OGT D)	\mathcal{L}	contigrating D

ccc	1/1 {\cal _U C}	${\mathcal C}$	calligraphic C
ccd	1/1 {\cal_D}	${\cal D}$	calligraphic D
cce	1/1 {\cal_E}	${\cal E}$	calligraphic E
ccf	1/1 {\cal_F}	${\cal F}$	calligraphic F
ccg	1/1 {\cal_G}	${\cal G}$	calligraphic G
cch	1/1 {\cal_H}	${\cal H}$	calligraphic H
cci	1/1 {\cal_I}	${\mathcal I}$	calligraphic I
ccj	1/1 {\cal_J}	${\cal J}$	calligraphic J
cck	1/1 {\cal_K}	$\bar{\mathcal{K}}$	calligraphic K
ccl	1/1 {\cal_L}	${\cal L}$	calligraphic L
ccm	1/1 {\cal_M}	${\cal M}$	calligraphic M
ccn	1/1 {\cal_N}	$\mathcal N$	calligraphic N
cco	1/1 {\cal_0}	$\mathcal O$	calligraphic O
сср	1/1 {\cal_P}	${\cal P}$	calligraphic P
ccq	1/1 {\cal_Q}	$\mathcal Q$	calligraphic Q
ccr	1/1 {\cal_\R}	${\cal R}$	calligraphic R
ccs	1/1 {\cal _⊔ S}	${\cal S}$	calligraphic S
cct	1/1 {\cal _⊔ T}	${\mathcal T}$	calligraphic T
ccu	1/1 {\cal _⊔ U}	\mathcal{U}	calligraphic U
CCV	1/1 {\cal _⊔ V}	${\mathcal V}$	calligraphic V
CCW	1/1 {\cal _⊔ \}	${\mathcal W}$	calligraphic W
CCX	1/1 {\cal _⊔ X}	\mathcal{X}	calligraphic X
ccy	1/1 {\cal _⊔ Y}	${\cal Y}$	calligraphic Y
CCZ	1/1 {\cal _⊔ Z}	${\mathcal Z}$	$\operatorname{calligraphic} \mathbf{Z}$
dcca	1/1 \${\cal _⊔ A}\$	$\mathcal A$	dollar calligraphic A
dccb	1/1 \${\cal _⊔ B}\$	${\cal B}$	dollar calligraphic B
dccc	1/1 \${\cal_\C}\$	$\mathcal C$	dollar calligraphic C
dccd	1/1 \${\cal_D}\$	${\cal D}$	dollar calligraphic D
dcce	1/1 \${\cal _⊔ E}\$	${\cal E}$	dollar calligraphic E
dccf	1/1 \${\cal_F}\$	${\mathcal F}$	dollar calligraphic F
dccg	1/1 \${\cal _⊔ G}\$	${\cal G}$	dollar calligraphic G
dcch	1/1 \${\cal_H}\$	${\cal H}$	dollar calligraphic H
dcci	1/1 \${\cal_I}\$	${\mathcal I}$	dollar calligraphic I
dccj	1/1 \${\cal _⊔ J}\$	${\cal J}$	dollar calligraphic J
dcck	$1/1$ ${\left\langle k\right\rangle }$	\mathcal{K}	dollar calligraphic K
dccl	$_{1/1}$ $\{\cal_{\sqcup}L\}$ \$	${\cal L}$	dollar calligraphic L
dccm	1/1 \${\cal_M}\$	$\mathcal M$	dollar calligraphic M
dccn	1/1 \${\cal_\N}\$	$\mathcal N$	dollar calligraphic N
dcco	1/1 \${\cal_0}\$	\mathcal{O}	dollar calligraphic O

dccp 1,	1 \${\cal_P}\$	${\cal P}$	dollar calligraphic P
dccq 1,	1 \${\cal _U Q}\$	$\mathcal Q$	dollar calligraphic Q
dccr 1,	1 \${\cal_R}\$	$\mathcal R$	dollar calligraphic R
dccs 1,	1 \${\cal_S}\$	$\mathcal S$	dollar calligraphic S
dcct 1,	1 \${\cal _{\\\\} T}\$	${\mathcal T}$	dollar calligraphic T
dccu 1,	1 \${\cal_U}\$	\mathcal{U}	dollar calligraphic U
dccv 1,	1 \${\cal_UV}\$	\mathcal{V}	dollar calligraphic V
dccw 1,	1 \${\cal _⊔ ₩}\$	\mathcal{W}	dollar calligraphic W
dccx 1,	1 \${\cal_X}\$	\mathcal{X}	dollar calligraphic X
dccy 1,	1 \${\cal_Y}\$	\mathcal{Y}	dollar calligraphic Y
dccz 1,	1 \${\cal _U Z}\$	$\mathcal Z$	dollar calligraphic Z

3.7 German (Fraktur) Letters

gmu	1/1	\frak _⊔
gmb	1/1	∖frak⊔b
gmg	1/1	\frak⊔g
gmh	1/1	\frak _⊔ h
gmk	1/1	\frak _⊔ k
gmp	1/1	\frak _⊔ p
gmt	1/1	\frak _⊔ t
gmca	1/1	\frak _⊔ A
gmcg	1/1	\frak⊔G
gmch	1/1	\frak⊔H
gmck	1/1	\frak⊔K
gmct	1/1	\frak _⊔ T
gmcx	1/1	\frak _⊔ X
${ m gmgs}$		$\frac{g_{\sqcup}^{\hat{t}}}{ast}$
${ m gmhs}$	1/1	$\frac{h_{\sqcup}^{\lambda}}{ast}$
${ m gmks}$	1/1	$\frac{k_{\perp}^{\cdot}}{ast}$
gmso3	1/1	$frak{so}(3)$
dgmca	1/1	\$\frak⊔A\$
dgmcg	1/1	\$\frak⊔G\$
dgmch	1/1	\$\frak⊔H\$
dgmck	1/1	\$\frak⊔K\$
dgmct	1/1	\$\frak _⊔ T\$
dgmcx	1/1	\$\frak _⊔ X\$
dgmu	1/1	\$\frak _{⊔⊔} \$

g	german universal; only in math mode
б	german b
\mathfrak{g}	german g
h	german h
ŧ	german k
p	german p
t	german t
21	german A
\mathfrak{G}	${ m german} { m G}$
S K X g* h*	H
R	german K
$\mathfrak T$	german T
\mathfrak{X}	$\operatorname{german} X$
\mathfrak{g}^*	german g star
	german h star
₽*	${ m german} \ { m k} \ { m star}$
$\mathfrak{so}(3)$	german so(3)
21	dollar german A
G	dollar german G
H	dollar german H
R T	dollar german K
	dollar german T
\mathfrak{X}	dollar german X
p	dollar german universal; only in text mod

dgmb	1/1	\$\frak⊔b\$	в	dollar german b
dgmg	1/1	\$\frak⊔g\$	\mathfrak{g}	dollar german g
dgmh	1/1	\$\frak⊔h\$	h	dollar german h
dgmk	1/1	\$\frak⊔k\$	ŧ	dollar german k
dgmp	1/1	\$\frak⊔p\$	p	dollar german p
dgmt	1/1	\$\frak⊔t\$	ŧ	dollar german t
dgmgs	1/1	\$\frak_g^{\ast}\$	\mathfrak{g}^*	dollar german g star
dgmhs	1/1	\$\frak_h_^{\ast}\$	\mathfrak{h}^*	dollar german h star
dgmks	1/1	$\frac{L_{L}^{\lambda_{l}}}{$	ŧ*	dollar german k star

3.8 Open/Blackboard Bold Letters

bbu	1/1 {\Bbb⊔	$\mathbb R$	blackboard bold universal
bbca	1/1 \Bbb⊔A	A	blackboard bold A
bbcb	1/1 \Bbb⊔B	${\mathbb B}$	blackboard bold B
bbcc	1/1 \Bbb⊔C	$\mathbb C$	blackboard bold C
bbcd	1/1 \Bbb⊔D	\mathbb{D}	blackboard bold D
bbce	1/1 \Bbb⊔E	$\mathbb E$	blackboard bold ${f E}$
bbcf	1/1 \Bbb⊔F	\mathbb{F}	blackboard bold F
bbcg	1/1 \Bbb⊔G	\mathbb{G}	blackboard bold G
bbch	1/1 \Bbb⊔H	IHI	blackboard bold H
bbci	1/1 \Bbb⊔I	\mathbb{I}	blackboard bold I
bbcj	_{1/1} ∖Bbb⊔J	J	blackboard bold ${f J}$
bbck	1/1 \Bbb⊔K	\mathbb{K}	blackboard bold ${f K}$
bbcl	1/1 \Bbb⊔L	${\mathbb L}$	blackboard bold L
bbcm	1/1 \Bbb⊔M	\mathbb{M}	blackboard bold M
bbcn	1/1 \Bbb⊔N	N	blackboard bold N
bbco	1/1 \Bbb⊔O	0	blackboard bold O
bbcp	1/1 \Bbb⊔P	\mathbb{P}	blackboard bold P
bbcq	1/1 \Bbb⊔Q	$\mathbb Q$	blackboard bold Q
bbcr	1/1 \Bbb⊔R	\mathbb{R}	blackboard bold R
bbcs	1/1 \Bbb⊔S	S	blackboard bold ${f S}$
bbct	1/1 \Bbb⊔T	${\mathbb T}$	blackboard bold T
bbcu	1/1 \Bbb⊔U	$\mathbb U$	blackboard bold ${ m U}$
bbcv	1/1 \Bbb⊔V	\mathbb{V}	blackboard bold ${ m V}$
bbcw	1/1 \Bbb⊔₩	\mathbb{W}	blackboard bold W
bbcx	1/1 \Bbb⊔X	\mathbb{X}	blackboard bold X
bbcy	1/1 \Bbb _L Y	\mathbb{Y}	blackboard bold Y

bbcz 1,	./1 \Bbb⊔Z	$\mathbb Z$	blackboard bold Z
	/1 {\Bbb _{Ll} R}^1	\mathbb{R}^1	blackboard bold R to power 1
	./1 {\Bbb R}^2	\mathbb{R}^{2}	blackboard bold R to power 2
bbcr3	. _{/1} {\Bbb _{Ll} R}^3	\mathbb{R}^3	blackboard bold R to power 3
	/1 {\Bbb _L R}^m	\mathbb{R}^m	blackboard bold R to power m
	./1 {\Bbb _{Ll} R}^n	\mathbb{R}^n	blackboard bold R to power n
22.2	/1 \${\Bbb _L R}^1\$	\mathbb{R}^1	dollar blackboard bold R to power 1
	/1 \${\Bbb _L R}^2\$	\mathbb{R}^2	dollar blackboard bold R to power 2
	/1 \${\Bbb _{Ll} R}^3\$	\mathbb{R}^3	dollar blackboard bold R to power 3
dbbcrm 1,	. _{/1}	\mathbb{R}^m	dollar blackboard bold R to power m
dbbcrn 1,	. _{/1}	\mathbb{R}^n	dollar blackboard bold R to power n
opu 1,	./1 {\Bbb⊔	$\mathbb Z$	open letter universal
=	./1 {\Bbb _U C}	\mathbb{C}	open letter C
opci 1,	./1 {\Bbb _U I}	I	open letter I
oper 1,	./1 {\Bbb⊔R}	\mathbb{R}	open letter R
opct 1,	./1 {\Bbb⊔T}	\mathbb{T}	open letter T
opcz 1,	/1 {\Bbb _⊔ Z}	$\mathbb Z$	open letter Z
opcr1 1,	/1 {\Bbb⊔R}^1	\mathbb{R}^1	open letter R to power 1
opcr2	/1 {\Bbb⊔R}^2	\mathbb{R}^{2}	open letter R to power 2
opcr3 1,	/1 {\Bbb⊔R}^3	\mathbb{R}^3	open letter R to power 3
opcrm 1,	./1 {\Bbb⊔R}^m	\mathbb{R}^m	open letter R to power m
opcrn 1,	./1 {\Bbb⊔R}^n	\mathbb{R}^n	open letter R to power n
dopcc 1,	./1 \${\Bbb⊔C}\$	\mathbb{C}	dollar open letter C
dopci 1,	./1	${\mathbb I}$	dollar open letter I
dopcr 1,	./1	\mathbb{R}	dollar open letter R
dopct 1,	./1 \${\Bbb⊔T}\$	\mathbb{T}	dollar open letter T
dopcz 1,	./1 \${\Bbb⊔Z}\$	$\mathbb Z$	dollar open letter Z
dopcr1 1,	./1	\mathbb{R}^1	dollar open letter R to power 1
dopcr2 1,	/1 \${\Bbb _L R}^2\$	\mathbb{R}^{2}	dollar open letter R to power 2
dopcr3 1,	./1	\mathbb{R}^3	dollar open letter R to power 3
dopcrm 1,	./1	\mathbb{R}^m	dollar open letter R to power m
-	./1	\mathbb{R}^n	dollar open letter R to power n
ir3 1,	/1 \int_{{\Bbb _L R}^3}	$\int_{\mathbb{R}}$ з	integral R to power 3

4 ALPHABETS AND FONTS

4.1 Universal Operations

fu	1/1		start fraction
fof	1/1 }{		function of; "fu fof eb" gives {}
squ	1/1	\checkmark	square root universal
hu	1/1 ^{	·	superscript universal
lu	1/1 _{		subscript universal
limu	1/1 	$\lim \{$	limit universal
ovu	1/1 	$ec{a}$	over vector universal
olu	<pre>1/1 </pre>	\overline{a}	overline universal
obu	1/1	$ar{a}$	overbar universal
ocu	1/1	ă	over check universal
odu	1/1	\dot{a}	over dot universal
oddu	1/1	\ddot{a}	over double dot universal
ohu	1/1	\hat{a}	over hat universal
otu	1/1	$ ilde{a}$	over tilde universal
${f setu}$	1/1 \{_UUUU\mid_UUUU\}	{ }	in-line set universal
setlu	$_{1/2} \ \left \left \left \left \left \right \right \right \right \right $	{ }	sized set; for large displays
disu	1/1 {\displaystyle		display style; for larger math mode forumlas

4.2 Single Symbols included in \$ Signs

d0	1/1	\$0\$	0	dollar 0
d1	1/1	\$1\$	1	dollar 1
d10	1/1	\$10\$	10	dollar 10
d2	1/1	\$2\$	2	dollar 2
d3	1/1	\$3\$	3	dollar 3
d4	1/1	\$4\$	4	dollar 4
d5	1/1	\$5\$	5	dollar 5
d6	1/1	\$6\$	6	dollar 6
d7	1/1	\$7\$	7	dollar 7
d8	1/1	\$8\$	8	dollar 8
d9	1/1	\$9\$	9	dollar 9
dca	1/1	\$A\$	A	$\operatorname{dollar} A$
dcb	1/1	\$B\$	B	dollar B

dcc	1/1	\$C\$	C	dollar C
dcd	1/1	\$D\$	$\stackrel{\circ}{D}$	dollar D
dce	1/1	\$E\$	E	dollar E
dcf	1/1	\$F\$	F	dollar F
dcg	1/1	\$G\$	G	dollar G
dch	1/1	\$H\$	H	dollar H
dci	1/1	\$1\$	I	dollar I
dcj	1/1	\$J\$	J	$\operatorname{dollar} \mathbf{J}$
dck	1/1	\$K\$	K	$\operatorname{dollar} \mathbf{K}$
dcl	1/1	\$L\$	L	$\operatorname{dollar} L$
dcm	1/1	\$M\$	M	dollar M
dcn	1/1	\$N\$	N	dollar N
dco	1/1	\$0\$	O	dollar O
dcp	1/1	\$P\$	P	dollar P
dcq	1/1	\$Q\$	Q	dollar Q
dcr	1/1	\$R\$	\ddot{R}	dollar R
dcs	1/1	\$ S\$	S	dollar S
\det	1/1	\$T\$	T	dollar T
dcu	1/1	\$U\$	U	dollar U
dcv	1/1	\$V\$	V	$\operatorname{dollar} V$
dcw	1/1	\$W\$	W	$\operatorname{dollar} \mathbf{W}$
dcx	1/1	\$X\$	X	$\operatorname{dollar} \mathbf{X}$
dcy	1/1	\$Y\$	Y	$\operatorname{dollar} \mathbf{Y}$
dcz	1/1	\$Z\$	Z	$\operatorname{dollar} \mathbf{Z}$
da	1/1	\$a\$	a	dollar a
db	1/1	\$b\$	b	dollar b
dc	1/1	\$c\$	c	dollar c
$\mathrm{d}\mathrm{d}$	1/1	\$d\$	d	dollar d
de	1/1	\$e\$	e	dollar e
df	1/1	\$f\$	f	dollar f
dg	1/1	\$g\$	g	dollar g
dh	1/1	\$h\$	h	dollar h
di	1/1	\$i\$	i	dollar i
dj	1/1	\$j\$	j	dollar j
$\mathrm{d}\mathbf{k}$	1/1	\$k\$	k	dollar k
dl	1/1	\$1\$	l	dollar l
dm	1/1	\$m\$	m	dollar m
dn	1/1	\$n\$	n	dollar n
doo	1/1	\$0\$	0	dollar o

dp	1/1	\$p\$	p	dollar p
dq	1/1	\$q\$	\overline{q}	dollar q
$\mathrm{d}\mathbf{r}$	1/1	\$r\$	$\overset{ ext{-}}{r}$	dollar r
ds	1/1	\$s\$	s	dollar s
dt	1/1	\$t\$	t	dollar t
du	1/1	\$u\$	u	dollar u
$d\mathbf{v}$	1/1	\$v\$	v	dollar v
dw	1/1	\$w\$	w	dollar w
$d\mathbf{x}$	1/1	\$x\$	x	dollar x
dy	1/1	\$y\$	y	dollar y
dz	1/1	\$z\$	z	dollar z
db0	1/1	\${\bf _⊔ 0}\$	0	dollar bold 0; use in text mode
db1	1/1	\${\bf _□ 1}\$	1	dollar bold 1; use in text mode
db10	1/1	\${\bf _□ 10}\$	10	dollar bold 10; use in text mode
db2	1/1	\${\bf _□ 2}\$	2	dollar bold 2; use in text mode
db3	1/1	\${\bf _⊔ 3}\$	3	dollar bold 3; use in text mode
db4	1/1	\${\bf _⊔ 4}\$	4	dollar bold 4; use in text mode
db5	1/1	\${\bf _⊔ 5}\$	5	dollar bold 5; use in text mode
db6	1/1	\${\bf _⊔ 6}\$	6	dollar bold 6; use in text mode
db7	1/1	\${\bf _□ 7}\$	7	dollar bold 7; use in text mode
db8	1/1	\${\bf _⊔ 8}\$	8	dollar bold 8; use in text mode
db9	1/1	\${\bf _⊔ 9}\$	9	dollar bold 9; use in text mode
dbca	1/1	\${\bf _\ A}\$	\mathbf{A}	dollar bold A; use in text mode
dbcb	1/1	\${\bf⊔B}\$	${f B}$	dollar bold B; use in text mode
dbcc	1/1	\${\bf _{\\\} C}\$	\mathbf{C}	dollar bold C; use in text mode
dbcd	1/1	\${\bf _U D}\$	D	dollar bold D; use in text mode
dbce	1/1	\${\bf _U E}\$	${f E}$	dollar bold E; use in text mode
dbcf	1/1	\${\bf⊔F}\$	\mathbf{F}	dollar bold F; use in text mode
dbcg	1/1	\${\b f ⊔ G }\$	\mathbf{G}	dollar bold G; use in text mode
dbch	1/1	\${\bf⊔H}\$	H	dollar bold H; use in text mode
dbci	1/1	\${\bf _{_} I}\$	Ι	dollar bold I; use in text mode
dbcj	1/1	\${\bf _\ J}\$	J	dollar bold J; use in text mode
dbck	1/1	\${\bf _{\\} K}\$	K	dollar bold K; use in text mode
dbcl	1/1	\${\bf _{_} L}\$	${f L}$	dollar bold L; use in text mode
dbcm	1/1	\${\bf _\ M}\$	M	dollar bold M; use in text mode
dbcn	1/1	\${\bf _\ N}\$	\mathbf{N}	dollar bold N; use in text mode
dbco	1/1	\${\bf _□ 0}\$	O	dollar bold O; use in text mode
$_{ m dbcp}$	1/1	\${\bf _\ P}\$	P	dollar bold P; use in text mode
dbcq	1/1	\${\bf _\ Q}\$	\mathbf{Q}	dollar bold Q; use in text mode

dbcr	1/1 \${\bf_\R}\$	${f R}$	dollar bold R; use in text mode
dbcs	1/1 \${\bf _U S}\$		dollar bold S; use in text mode
dbct	1/1 \${\bf _U T}\$		dollar bold T; use in text mode
dbcu	-		dollar bold U; use in text mode
dbcv	·		dollar bold V; use in text mode
dbcw	-		dollar bold S
dbcx	<u> </u>		dollar bold W; use in text mode
dbcy			dollar bold X; use in text mode
dbcz			dollar bold Y; use in text mode
dba	1/1 \${\bf _{\\\\} a}\$		dollar bold a; use in text mode
dbb	1/1 \${\bf _{\\\} b}\$		dollar bold b; use in text mode
$_{ m dbc}$	1/1 \${\bf _{\\\\} c}\$		dollar bold c; use in text mode
dbd	1/1 \${\bf _u d}\$		dollar bold Z; use in text mode
$_{ m dbe}$	1/1 \${\bf _{\\} e}\$		dollar bold e; use in text mode
dbf	1/1 \${\bf _{\\\} f}\$		dollar bold f; use in text mode
dbg	1/1 \${\bf _{\\\} g}\$		dollar bold g; use in text mode
$^{ m dbh}$	1/1 \${\bf _⊔ h}\$		dollar bold h; use in text mode
dbi	1/1 \${\bf _{\\} i}\$		dollar bold i; use in text mode
dbj	1/1 \${\bf _\ j} \$		dollar bold j; use in text mode
dbk	1/1 \${\bf _{Ll} k}\$		dollar bold k; use in text mode
dbl	1/1 \${\bf _L 1}\$		dollar bold l; use in text mode
dbm	1/1 \${\bf_Lm}\$		dollar bold m; use in text mode
dbn	1/1 \${\bf _L n}\$		dollar bold n; use in text mode
dbo	1/1 \${\bf _U o}\$		dollar bold o; use in text mode
dbp	1/1 \${\bf _u p}\$		dollar bold p; use in text mode
dbq	1/1 \${\bf _U q}\$		dollar bold q; use in text mode
dbr	_{1/1}		dollar bold r; use in text mode
dbs	1/1 \${\bf _s}\$	${f s}$	dollar bold s; use in text mode
dbt	1/1 \${\bf ut}\$	t	dollar bold t; use in text mode
dbu	1/1 \${\bf⊔u}\$	\mathbf{u}	dollar bold u; use in text mode
dbv	1/1 \${\bf _U v }\$	${f v}$	dollar bold v; use in text mode
dbw	1/1 \${\bf⊔w}\$		dollar bold w; use in text mode
dbx	1/1 \${\bf _L x}\$	\mathbf{x}	dollar bold x; use in text mode
dby	1/1 \${\bf ⊔ y}\$	\mathbf{y}	dollar bold y; use in text mode
dbz	1/1 \${\bf _U z}\$		dollar bold z; use in text mode
4.3	Roots		
sq10	1/1 \sqrt{10}	$\sqrt{10}$	square root of 10

sq2 sq3 sq5 sq7 squ sqxp cr2 nr2	<pre>1/1 \sqrt{2} 1/1 \sqrt{3} 1/1 \sqrt{5} 1/1 \sqrt{7} 1/1 \sqrt{ 1/1 \sqrt{\pi} 1/1 \sqrt{\pi} 1/1 \sqrt[3]{2} 1/1 \sqrt[n]{2}</pre>	$ \sqrt{2} $ $ \sqrt{3} $ $ \sqrt{5} $ $ \sqrt{7} $ $ \sqrt{\pi} $ $ \sqrt[3]{2} $ $ \sqrt[7]{2} $	square root of 2 3 square root of 5 square root of 7 square root universal square root of greek pi third root of 2 nth root of 2
4.4 Spe	ecific Fractions 1/1 \frac{1}{2}	$\frac{1}{2}$	fraction half

haf	1/1	\frac{1}{2}
f12	1/1	\frac{1}{2}
f13	1/1	\frac{1}{3}
f14	1/1	\frac{1}{4}
fddt	1/1	\frac{d}{dt}
fdudt	1/1	\frac{du}{dt}
fdxdt	1/1	\frac{dx}{dt}
fdydt	1/1	\frac{dy}{dt}
fdzdt	1/1	\frac{dz}{dt}
fpx	1/1	\frac{\partial}{\partial_x}
fpy	1/1	\frac{\partial}{\partial _⊔ y}
fpzx	1/1	$\frac{partial_{z}{partial_{x}}}$
fps	1/2	\frac{\partial^2}
$_{ m fpt}$	1/2	\frac{\partial^3}

fraction half
fraction half
fraction 1 over 3
fraction 1 over 4
fraction d over dt
fraction du over dt
fraction dx over dt
fraction dy over dt
fraction dz over dt
fraction partial over partial x
fraction partial over partial y
fraction partial z over partial x
fraction partial squared over partial x partial y
fraction partial squared over partial x partial y partial z

4.5 Superscripts

ha	1/1	^a
hb	1/1	^b
hc	1/1	^c
hd	1/1	^d
hee	1/1	^e
hf	1/1	^f

```
a superscript (higher) a
b superscript (higher) b
c superscript (higher) c
d superscript (higher) d
e superscript (higher) e
f superscript (higher) f
```

hg	1/1 ^g	5	g	${\it superscript}$	(higher)	g
hh	1/1 ^h	1	h	${\it superscript}$	(higher)	h
hi	1/1 ^i		i	${\it superscript}$	(higher)	i
hj	1/1 ^ j		j	${\it superscript}$	(higher)	j
hk	1/1 ^k	•	k	${\it superscript}$	(higher)	k
hl	1/1 ^1	<u>.</u>	l	superscript	(higher)	1
hm	1/1 ^m	1	m	${\it superscript}$	(higher)	m
hn	1/1 ^n		n	${\it superscript}$	(higher)	n
ho	1/1 ^0		0	${\it superscript}$	(higher)	О
hp	1/1 ^p		p	${\it superscript}$	/	_
hq	1/1 ^q		q	${\it superscript}$	/	
hr	1/1 ^r		r	${\it superscript}$, ,	
hs	1/1 ^ S		8	${\it superscript}$	` _ /	
ht	1/1 ^t		t	superscript		
huu	1/1 ^u		u	${\it superscript}$		
hv	1/1 ~V		v	${\it superscript}$		
hw	1/1 ~W		w	${\it superscript}$		
hx	1/1 x		x	${\bf superscript}$		
hy	1/1 y		$egin{smallmatrix} y \ z \end{bmatrix}$	superscript	` _ /	•
hz	1/1 ^Z		A A	superscript		
hca	1/1 ^A			superscript	` _ /	
hcb	1/1 ^B		B	${\it superscript}$		
hcc	1/1 ^C		C _	${\it superscript}$		
hcd	1/1 ^D		D	${\it superscript}$		
hce	1/1 ^E		E	${\it superscript}$	(higher)	\mathbf{E}
hcf	1/1 ^F	,	F	${\it superscript}$	(higher)	\mathbf{F}
hcg	1/1 ^G	}	G	${\it superscript}$	(higher)	G
hch	1/1 ~H	I	H	superscript	(higher)	Η
hci	1/1 ^I		I	superscript	(higher)	I
hcj	1/1 ^ J		J	superscript		
hck	1/1 ^K		K	superscript		
hcl	1/1 ^ L		L	superscript	()	
hcm	1/1 ^M		M	superscript	` ` '	
hcn	1/1 N		N	superscript	/	
hco	1/1 ^0		0	superscript		
hcp	1/1 °P		P	superscript	/	
-			Q	superscript	` _ /	
hcq	1/1 ^Q	l e e e e e e e e e e e e e e e e e e e	•	superscript	(mgner)	Q

hcr	1/1 ^R	R	superscript (higher) R
hcs	1/1 ^ S	S	superscript (higher) S
hct	1/1 ^T	T	superscript (higher) T
hcu	1/1 ^U	U	superscript (higher) U
hcv	1/1 ^V	V	superscript (higher) V
hcw	1/1 ~ W	W	superscript (higher) W
hcx	1/1 ^X	X	superscript (higher) X
hcy	1/1 ^Y	Y	superscript (higher) Y
hcz	1/1 ^Z	Z	superscript (higher) Z
h0	1/1 ^0	0	superscript (higher) 0
h1	1/1 ^1	1	superscript (higher) 1
h10	, 1/1 ^{10}	10	superscript (higher) 10
h2	1/1 ^2	2	superscript (higher) 2
h3	1/1 ^3	3	superscript (higher) 2
h4	1/1 ^4	4	superscript (higher) 4
h5	1/1 ^5	5	superscript (higher) 5
h6	1/1 ^6	6	superscript (higher) 6
h7	1/1 ^7	7	superscript (higher) 7
h8	1/1 ^8	8	superscript (higher) 8
h9	1/1 ^9	9	superscript (higher) 9
sq	1/1 ^2	2	$\operatorname{squared}$
cu	1/1 ^3	3	cubed
xq	1/1 x^2	x_{2}^{2}	x squared
yq	1/1 y^2	$egin{array}{c} y^2 \ z^2 \end{array}$	y squared
zq	1/1 z^2	z^2	z squared
hmo	1/1 ^{-1}	_1 	superscript (higher) -1
hij	1/1 ^{ij }	ij	superscript (higher) ij
hijk	1/1 ^{ijk}	ijk	superscript (higher) ijk
hjk	1/1 ^{jk}	jk	superscript (higher) jk
hdg	1/1 ^\dagger	t	superscript (higher) dagger
hflt	1/1 ^\flat	þ	superscript (higher) flat
$_{ m hpr}$	1/1 ^\prime	,	superscript (higher) prime
hprp	1/1 ^\perp	Т	superscript (higher) perp
hshp	1/1 ^\sharp	Д	superscript (higher) sharp
hst^1	1/1 ^\ast	*	superscript (higher) asterisk
hvst	1/1 ^\star	*	superscript (higher) star
hxa	1/1 ^\alpha	α	superscript (higher) greek alpha

hxb	1/1 ^\beta	β	superscript (higher) greek beta
hxc	1/1 ^\chi	Χ	superscript (higher) greek chi
hxcd	1/1 ^\Delta	Δ	superscript (higher) greek Delta
hxcg	1/1 ^\Gamma	Γ	superscript (higher) greek Gamma
hxcl	1/1 ^\Lambda	Λ	superscript (higher) greek Lambda
hxco	1/1 ^\Omega	Ω	superscript (higher) greek Omega
hxcp	1/1 ^\Pi	П	superscript (higher) greek Pi
hxcph	1/1 ^\Phi	Φ	superscript (higher) greek Phi
hxcps	1/1 ^\Psi	Ψ	superscript (higher) greek Psi
hxcs	1/1 ^\Sigma	Σ	superscript (higher) greek Sigma
hxcth	1/1 ^\Theta	Θ	superscript (higher) greek Theta
hxcu	1/1 ^Upsilon	Υ	superscript (higher) greek Upsilon
hxcx	1/1 ^\Xi	Ξ	superscript (higher) greek Xi
hxd	1/1 ^\delta	δ	superscript (higher) greek delta
hxe	1/1 ^\epsilon	ϵ	superscript (higher) greek epsilon
hxet	1/1 ^\eta	η	superscript (higher) greek eta
hxg	1/1 ^\gamma	γ	superscript (higher) greek gamma
hxio	1/1 ^\iota	L	superscript (higher) greek iota
hxk	1/1 ^\kappa	κ	superscript (higher) greek kappa
hxl	1/1 ^\lambda	λ	superscript (higher) greek lambda
hxm	1/1 ^\mu	μ	superscript (higher) greek mu
hxn	1/1 ^\nu	ν	superscript (higher) greek nu
hxo	1/1 ^\omega	ω	superscript (higher) greek omega
hxp	1/1 ^\pi	π	superscript (higher) greek pi
hxph	1/1 ^\phi	ϕ	superscript (higher) greek phi
hxps	1/1 ^\psi	ψ	superscript (higher) greek pis
hxr	1/1 ^\rho	ρ	superscript (higher) greek rho
hxs	1/1 ^\sigma	σ	superscript (higher) greek sigma
hxt	1/1 \tau	au	superscript (higher) greek tau
hxth	1/1 ^\theta	θ	superscript (higher) greek theta
hxu	1/1 ^\upsilon	v	superscript (higher) greek upsilon
hxve	1/1 ^\varepsilon	ε	superscript (higher) greek varepsilon
hxvp	1/1 ^\varpi	$\overline{\omega}$	superscript (higher) greek varpi
hxvph	1/1 ^\varphi	φ	superscript (higher) greek varphi
hxvr	1/1 ^\varrho	ę s	superscript (higher) greek varrho
hxvs	1/1 ^\varsigma	v	superscript (higher) greek varsigma
hxvth	1/1 ^\vartheta	v	superscript (higher) greek vartheta

hxx	1		~\ ·	ξ	(1.1) 1 .
1.6 Subscripts Subscript Subscript		·			\ 9 / 9
la	hxz	1/1	~\zeta	Ç	superscript (higher) greek zeta
la					
	4.6	Subscripts			
	la	1/1	_a	a	subscript (lower) a
d	lb	1/1	_b	b	subscript (lower) b
Second S	lc	1/1	_c	c	subscript (lower) c
If	ld	1/1	_d	d	subscript (lower) d
Second S	le	1/1	_e	e	subscript (lower) e
1	lf	1/1	_f	f	subscript (lower) f
Ih	lg	1/1	_g		subscript (lower) g
1	lh	1/1			subscript (lower) h
1	li	1/1	_i	i	subscript (lower) i
1	lj	1/1	_j	j	
Im 1/1 _m m subscript (lower) m In 1/1 _n n subscript (lower) n lo 1/1 _0 o subscript (lower) o lp 1/1 _p p subscript (lower) p lq 1/1 _q q subscript (lower) p lr 1/1 _r r subscript (lower) r ls 1/1 _s s subscript (lower) r ls 1/1 _s s subscript (lower) s lt 1/1 _t u subscript (lower) t luu 1/1 _u u subscript (lower) u lv 1/1 _v u subscript (lower) w lx 1/1 _w u subscript (lower) w lx 1/1 _v u subscript (lower) w lx 1/1 _y u subscript (lower) x ly 1/1 _y u u subscript (lower) x lca 1/1 _A A subscript (lower) B lcb 1/1 _B B subscript (lower) C lcd 1/1 _D D subscript (lower) E <td></td> <td>1/1</td> <td>_k</td> <td></td> <td></td>		1/1	_k		
In	11	1/1	_1	l	subscript (lower) l
1	lm	1/1	_m	m	subscript (lower) m
1/1 _ 0	\ln	1/1	_n	n	subscript (lower) n
1/1	lo				subscript (lower) o
lq 1/1 _q q subscript (lower) q lr 1/1 _r r subscript (lower) r ls 1/1 _s s subscript (lower) s lt 1/1 _t t subscript (lower) t luu 1/1 _u u subscript (lower) u lv 1/1 _v u subscript (lower) v lw 1/1 _w u subscript (lower) w lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) Z lca 1/1 _A A subscript (lower) B lcc 1/1 _B B subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	lp	1/1		p	subscript (lower) p
lr 1/1 _r _r subscript (lower) r ls 1/1 _s _s subscript (lower) s lt 1/1 _t _t subscript (lower) t luu 1/1 _u _u subscript (lower) u lv 1/1 _v _v subscript (lower) v lw 1/1 _w _w subscript (lower) w lx 1/1 _x _x subscript (lower) x ly 1/1 _y _y subscript (lower) y lz 1/1 _z _z subscript (lower) z lca 1/1 _A _A subscript (lower) A lcb 1/1 _B _B subscript (lower) B lcc 1/1 _C _c subscript (lower) C lcd 1/1 _D _D subscript (lower) D lce 1/1 _E _subscript (lower) E					subscript (lower) q
ls 1/1 _s s subscript (lower) s lt 1/1 _t t subscript (lower) t luu 1/1 _u u subscript (lower) u lv 1/1 _v v subscript (lower) v lw 1/1 _w v subscript (lower) w lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C C subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E					subscript (lower) r
lt 1/1 _t t subscript (lower) t luu 1/1 _u u subscript (lower) u lv 1/1 _v v subscript (lower) v lw 1/1 _w w subscript (lower) w lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C c subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	ls				subscript (lower) s
luu 1/1 _u u subscript (lower) u lv 1/1 _v v subscript (lower) v lw 1/1 _w w subscript (lower) w lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C C subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	lt				
lv 1/1 _v v subscript (lower) v lw 1/1 _w w subscript (lower) w lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C C subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	luu	1/1		u	
lw 1/1 _w w subscript (lower) w lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C c subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	lv				
lx 1/1 _x x subscript (lower) x ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C c subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	lw	1/1		w	
ly 1/1 _y y subscript (lower) y lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C C subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E E subscript (lower) E	lx				
lz 1/1 _z z subscript (lower) z lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C C subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E subscript (lower) E	ly				
lca 1/1 _A A subscript (lower) A lcb 1/1 _B B subscript (lower) B lcc 1/1 _C C subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E E subscript (lower) E					- \ / -
lcb 1/1 _B B subscript (lower) B lcc 1/1 _C c subscript (lower) C lcd 1/1 _D D subscript (lower) D lce 1/1 _E E subscript (lower) E	lca				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					= \ /
lce 1/1 $_$ E subscript (lower) \to					-
					-
lcg 1/1 G subscript (lower) G					= \ /

lch	1/1 _H	H	subscript (lower) H
lci	1/1 _I	I	subscript (lower) I
lcj	1/1 _J	J	subscript (lower) J
lck	1/1 _K	K	subscript (lower) K
lcl	1/1 _L	L	subscript (lower) L
lcm	1/1 _M	M	subscript (lower) M
lcn	1/1 _ N	N	subscript (lower) N
lco	1/1 _0	0	subscript (lower) O
lcp	1/1 _P	P	subscript (lower) P
lcq	1/1 _Q	Q	subscript (lower) Q
lcr	1/1 _R	R	subscript (lower) R
lcs	1/1 _S	S	subscript (lower) S
lct	1/1 _T	T	subscript (lower) T
lcu	1/1 _ U	U	subscript (lower) U
lcv	1/1 _ V	V	subscript (lower) V
lcw	1/1 _W	W	subscript (lower) W
lcx	1/1 _X	X	subscript (lower) X
lcy	1/1 _Y	Y	subscript (lower) Y
lcz	1/1 _Z	Z	subscript (lower) Z
10	1/1 _0	0	subscript (lower) 0
11	1/1 _1	1	subscript (lower) 1
110	1/1 _{10}	10	subscript (lower) 10
12	1/1 _2	2	subscript (lower) 2
13	1/1 _3	3	subscript (lower) 3
14	1/1 _4	4	subscript (lower) 4
15	1/1 _5	5	subscript (lower) 5
16	1/1 _6	6	subscript (lower) 6
17	1/1 _7	7	subscript (lower) 7
18	1/1 _8	8	subscript (lower) 8
19	1/1 _9	9	subscript (lower) 9
lij	1/1 _{ij}	ij	subscript (lower) ij
lijk	1/1 _{ijk}	ijk	subscript (lower) ijk
ljk	1/1 _{jk}	jk	subscript (lower) jk
gij	1/1 g_{ij}	g_{ij}	g subscript (lower) ij
lxa	1/1 _\alpha	α	subscript (lower) greek alpha
lxb	1/1 _\beta	β	subscript (lower) greek beta
lxc	1/1 _\chi	χ	subscript (lower) greek chi
lxcd	1/1 _\Delta	Δ	subscript (lower) greek Delta
lxcg	1/1 _\Gamma	Γ	subscript (lower) greek Gamma

lxcl	1/1 _\Lambda		subscript (lower) greek Lambda
lxco	1/1 _\Omega	Λ Ω	subscript (lower) greek Omega
lxcp	1/1 _\Pi	П	subscript (lower) greek Pi
lxcph	1/1 _\Phi	Φ	subscript (lower) greek Phi
lxcps	1/1 _\Psi	Ψ	subscript (lower) greek Psi
lxcs	1/1 _\Sigma		subscript (lower) greek Sigma
lxcth	1/1 _\Theta	Σ	subscript (lower) greek Figure subscript (lower) greek Theta
lxcu	1/1 _\Upsilon	Υ	subscript (lower) greek Upsilon
lxcx	1/1 _\Xi	Ξ	subscript (lower) greek Xi
lxd	1/1 _\delta	<u>-</u> δ	subscript (lower) greek Ar subscript (lower) greek delta
lxe	1/1 _\epsilon		subscript (lower) greek epsilon
lxet	1/1 _\eta	ϵ	subscript (lower) greek epsnen subscript (lower) greek eta
lxg	1/1 _\gamma	η	subscript (lower) greek gamma
lxio	1/1 _\iota	γ	subscript (lower) greek gamma subscript (lower) greek iota
lxk	1/1 _\kappa	L	subscript (lower) greek kappa
lxl		κ	subscript (lower) greek lambda
lxm		λ	subscript (lower) greek mu
lxn		μ	subscript (lower) greek nu
		ν	- \ / 9
lxo	1/1 _\omega	ω	subscript (lower) greek omega
lxp	1/1 _\pi	π	subscript (lower) greek pi
lxph	1/1 _\phi	ϕ	subscript (lower) greek phi
lxps	1/1 _\psi	ψ	subscript (lower) greek psi
lxr	1/1 _\rho	ρ	subscript (lower) greek rho
lxs	1/1 _\sigma	σ	subscript (lower) greek sigma
lxt	1/1 _\tau	au	subscript (lower) greek tau
lxth	1/1 _\theta	θ	subscript (lower) greek theta
lxu	1/1 _\upsilon	v	subscript (lower) greek upsilon
lxve	1/1 _\varepsilon	ε	subscript (lower) greek varepsilon
lxvp	1/1 _\varpi	ϖ	subscript (lower) greek varpi
lxvph	1/1 _\varphi	φ	subscript (lower) greek varphi
lxvr	1/1 _\varrho	ϱ	subscript (lower) greek varrho
lxvs	1/1 _\varsigma	ς	subscript (lower) greek varsigma
lxvth	1/1 _\vartheta	θ	subscript (lower) greek vartheta
lxx	1/1 _\ xi	ξ	subscript (lower) greek xi
lxz	1/1 _\zeta	ζ	subscript (lower) greek zeta
xln	1/1 x_n	x_n	x subscript (lower) n
yln	1/1 y_n	y_n	y subscript (lower) n
zln	1/1 z_n	z_n	z subscript (lower) n
lst	1/1 _\ast	*	subscript (lower) asterisk?

4.7 Overcharacters

obp	1/1 \bar{p}	$ar{p}$	over bar p
obq	1/1 \bar{q}	$ar{q}$	over bar q
obr	1/1 \bar{r}	$ar{r}$	over bar r
obs	1/1 \bar{s}	$ar{s}$	over bar s
obx	1/1 \bar{x}	$ar{x}$	over bar x
oby	1/1 \bar{y}	$ar{y}$	over bar y
obz	1/1 \bar{z}	$ar{z}$	over bar z
obxa	1/1 \bar{\alpha}	$ar{lpha}$	over bar greek alpha
obxb	1/1 \bar{\beta}	$ar{eta}$	over bar greek beta
obxg	1/1 \bar{\gamma}	$ar{\gamma}$	over bar greek gamma
odp	1/1 \dot{p}	\dot{p}	over dot p
odq	$1/1 \cdot \det{q}$	\dot{q}	over dot q
odr	$1/1 \cdot \det\{r\}$	\dot{r}	over dot r
ods	1/1 \dot{s}	\dot{s}	over dot s
odx	1/1 \dot{x}	\dot{x}	over dot x
ody	$1/1 \cdot \det\{y\}$	\dot{y}	over dot y
odz	1/1 \dot{z}	\dot{z}	over dot z
odxa	1/1 \dot{\alpha}	\dot{lpha}	over dot greek alpha
odxb	<pre>1/1 \dot{\beta}</pre>	$\dot{oldsymbol{eta}}$	over dot greek beta
odxg	1/1 \dot{\gamma}	$\dot{\gamma}\ \ddot{p}\ \ddot{q}\ \ddot{r}$	over dot greek gamma
oddp	1/1 \ddot{p}	\ddot{p}	over double dot p
oddq	1/1 \ddot{q}	\ddot{q}	over double dot q
oddr	1/1 \ddot{r}		over double dot 4
odds	1/1 \ddot{s}	\ddot{s}	over double dot s
oddx	1/1 \ddot{x}	\ddot{x}	over double dot x
oddy	1/1 \ddot{y}	\ddot{y}	over double dot y
oddz	1/1 \ddot{z}	\ddot{z}	over double dot z
oddxa	1/1 \ddot{\alpha}	\ddot{lpha}	over double dot greek alpha
oddxb	<pre>1/1 \ddot{\beta}</pre>	\ddot{eta}	over double dot greek beta
oddxg	1/1 \ddot{\gamma}	̈́γ̈	over double dot greek gamma
olp	1/1 \overline{p}	$egin{array}{c} \ddot{eta} \ \ddot{\gamma} \ \overline{p} \ \overline{q} \ \overline{r} \end{array}$	over line p
olq	1/1 \overline{q}	\overline{q}	over line q
olr	1/1 \overline{r}	\overline{r}	over line r
ols	<pre>1/1 \overline{s}</pre>	\overline{s}	over line s

olx	1/1 \overline{x}	\overline{x}	over line x
oly	1/1 \overline(x) 1/1 \overline(y)	$\frac{x}{y}$	over line y
olz	1/1 \overline{z}	$\frac{g}{\overline{z}}$	over line y
olxa	1/1 \overline(\(\frac{1}{2}\) 1/1 \overline\\alpha\	$\frac{\tilde{\alpha}}{\overline{\alpha}}$	over line z
olxb		$\frac{a}{eta}$	over line greek beta
olxg	1/1 \overline{\gamma}	$\frac{\overline{\gamma}}{\hat{x}}$	over line greek gamma
ohp	1/1 \hat{p}	\hat{p}	over hat p
ohq	1/1 \hat {q}	\hat{q}	over hat q
ohr	1/1 \hat{r}	\hat{r}	over hat r
ohs	1/1 \hat{s}	\hat{s}	over hat s
ohx	1/1 \hat{x}	$\hat{m{x}}$	over hat x
ohy	1/1 \hat{y}	\hat{y}	over hat y
ohz	1/1 \hat{z}	\hat{z}	over hat z
ohxa	1/1 \hat{\alpha}	\hat{lpha}	over hat greek alpha
ohxb	<pre>1/1 \hat{\beta}</pre>	$\hat{oldsymbol{eta}}$	over hat greek beta
ohxg	1/1 \hat{\gamma}	$\hat{m{\gamma}}$	over hat greek gamma
ova	1/1 \vec{a}	$ec{a}$	over vector a
ovb	1/1 \vec{b}	$ec{b}$	over vector b
ovc	1/1 \vec{c}	$ec{c}$	over vector c
ovv	1/1 \vec{v}	$ec{v}$	over vector v
ovw	1/1 \vec{w}	$ec{w}$.	over vector w
vcpp	$1/2$ \textstyle	\overrightarrow{PP}	vector arrow above PP (math mode)
vcpq	1/2 \textstyle	$\overrightarrow{\overline{PQ}}$	vector arrow above PQ (math mode)
dvcpp	1/2 \$\textstyle	\xrightarrow{PP}	vector arrow above PP with dollar signs (text mode)
dvcpq	1/2 \$\textstyle	$\overrightarrow{\mathrm{PQ}}$	vector arrow above PQ with dollar signs (text mode)

4.8 Binary Operations and Relations

pl	1/1 +	+	$_{ m plus}$
mi	1/1 -	-	minus
$_{ m plm}$	1/1 \pm	土	plus-minus
$_{ m mip}$	1/1 \mp	干	minus-plus
divi	1/1 \div	÷	divide
cir	1/1 \circ	0	composite (small circle)
blt	1/1 \bullet	•	bullet

opl omi ti oti sdp wed eq ez gte lte ne iso	1/1 1/1 1/1 1/1 1/1	=_U0 \geq \leq \neq \cong	⊕	oplus: direct sum ominus: direct difference times otimes semi direct product: (circled S) wedge product equals equals zero greater than or equal less than or equal not equal isomorphic; conjugate
eqv mlt	1/1 1/1	\equiv	≡ ≪	equivalent much less than
mgt	1/1	\ \gg	≫	much greater than
apx	1/1	\approx	÷ ≈	approximately
4.9 lep	Sized Parer	ntheses	(left parenthesis
$_{ m rip}$	1/1	\right)		right parenthesis
lebk	1/1	\left[,	left bracket
$_{ m ribk}$	1/1	\right]	j	right bracket
lebr	1/1	\left\{	{	left brace
$_{ m ribr}$	1/1	\right\}	}	right brace
lel	1/1	\left\langle	<	large left-angle
lld	1/1	$\left \left \left \left \left \right \right \right \right \right $	<u> </u>	large left angle doubled
rir	1/1	\right\rangle	<u>)</u>	large right-angle
rrd	1/1	\right\rangle _□ \! _□ \right\rangle	>>	large right-angle doubled
ldo	1/1	\left.		left followed by dot
rdo	1/1	\right.		right followed by dot
4.10	Single Ma	thematical Symbols		
ale	1/1	\aleph	Ж	aleph
${ m hba}$	1/1	\hbar	\hbar	Planck's constant; hbar
prm	1/1	\prime	<u>/</u>	prime; use "hpr" for superscript
flt	1/1	\flat	b	flat; use "hpr" for superscript

shp 1/1	1 \sharp	#	sharp; use "hfs" for superscript
sh 1/1	1 \heartsuit	\Diamond	(sweet)heart suit
ppt 1/1	1 \propto	\propto	proportional to
nrm 1/1	1 \		norm; double vertical bars
lied 1/1	1 \pounds	\pounds	Lie derivative; pounds
trv 1/1	1 \pitchfork	ψ	transversal; pitchfork
scl 1/1	1 \ell	ℓ	script l
na 1/1	1 \nabla	∇	nabla
pd 1/1	1 \partial	∂	partial derivative
infi 1/1	1 \infty	∞	infinity
wpf 1/1	1 \wp	P	Weierstrass p -function
rea 1/1	1 \Re	\Re	real part alternative
ima 1/1	1 \Im	3	imaginary part alternative
angl 1/1	1 \angle	∠	angle

4.11 Set Theoretic Symbols

$_{ m imp}$	1/1 \Rightarrow	\Rightarrow	implies; long Right arrow
$_{ m impb}$	1/1 \Leftarrow	⇐	implied by; long Left arrow
olra	1/1 \Leftrightarrow	\Leftrightarrow	open Left-right arrow; equivalent to
eqvt	1/1 \Leftrightarrow	\Leftrightarrow	equivalent to; open Left-right arrow
emp	1/1 \varnothing	Ø	empty set; varnothing
empa	1/1 \emptyset	Ø	empty set alternative; emptyset
eo	1/1 \in	€	element of
neo	1/1 \not\in	∉	not an element of
reo	1/1 \ni	∋	reverse element of
setm	1/1 \setminus	\	set difference; set-minus
subs	1/1 \subset	\subset	susbset
${f sube}$	1/1 \subseteq	\subseteq	subet or equals
sups	1/1 \supset	\supset	superset
supe	1/1 \supseteq	⊇	superset of equals
ints	1/1 \cap	\cap	intersection
bints	1/1 \bigcap	\cap	big intersection; cap
uni	1/1 \cup	U	union
buni	1/1 \bigcup	U	big intersection; cup
${ m vbar}$	1/1 \mid		vertical bar with spacing
te	1/1 \exists	Ξ	there exists
fa	1/1 \forall	\forall	for all

4.12 Arrows and Dots

$\operatorname{art} \operatorname{l}$	1/1 \mapsto	\mapsto	arrow with tail; maps to
ra	1/1 \rightarrow	\rightarrow	right arrow
lora	1/1 \longrightarrow	\longrightarrow	longrightarrow
lra	1/1 \leftrightarrow	\leftrightarrow	leftrightarrow
lea	1/1 \leftarrow	\leftarrow	uparrow
upa	1/1 \uparrow	\uparrow	uparrow
uhr	1/1 \upharpoonright	1	upharpoonright
sur	1/1 \nearrow	7	slanted up right arrow; northeast arrow
sdr	1/1 \searrow	\searrow	slanteddown right arrow; southeast arrow
cdo	1/1 \cdot		centered dot
cds	1/1 \cdots		centered dots
dds	1/1 \ddots	٠	diagonal dots
lds	1/1 \ldots	• • •	lower dots
vds	1/1 \vdots	÷	vertical dots

4.13 Trig Functions

CO	1/1	\cos	cos	cosine
coh	1/1	\cosh	\cosh	hyperbolic cosine
coq	1/1	\cos^2	\cos^2	cosine squared
\coth	1/1	\cos_{\sqcup} theta	$\cos \theta$	cosine of theta
coph	1/1	\cos _⊔ \phi	$\cos \phi$	cosine of phi
si	1/1	\sin	\sin	sine
\sin	1/1	\sinh	\sinh	hyperbolic sine
\sin	1/1	\sin^2	\sin^2	sine squared
sith	1/1	$\sin_{\sqcup}\$ theta	$\sin \theta$	sine of theta
\sinh	1/1	\sin _⊔ \phi	$\sin \phi$	sine of phi
tn	1/1	\tan	tan	tanent
$ \operatorname{tnh} $	1/1	\tanh	tanh	hyperbolic tangent

4.14 Log-like Symbols

ex	1/1 \exp	\exp	exponential
logg	1/1 \log	log	logarithm

lgn	1/1	\ln	\ln	natural logarithm
supr	1/1	\sup	\sup	supremum
\inf m	1/1	\inf	\inf	infimum
mx	1/1	\max	max	maximum
mn	1/1	\min	min	minimum
limu	1/12		$\lim \{$	lim
\lim	1/1	\lim	lim	limit
limi	1/1	\liminf	lim inf	limit inferior
\lim s	1/1	\limsup	\limsup	limit superior
dtt	1/1	\det	\det	determinant
kr	1/1	\ker	\ker	kernel
dmn	1/1	\dim	dim	dimension
ag	1/1	\arg	arg	${f arument}$
gc	1/1	\gcd	gcd	greatest common denominator

4.15 Combinations of Mathematical Symbols

mo	1/1 -1	- 1	minus 1
ava	1/1 a	a	absolute value of a
avb	1/1 b	b	absolute value of b
avc	1/1 c	c	absolute value of c
avx	1/1 x 	x	absolute value of x
avy	1/1 y	y	absolute value of y
avz	1/1 z 	z	absolute value of z
shl	1/1 A^i_{\;a}	$A^i_{\ a}$	staggered high and low (superscript subscript-group)
lam	1/1 L_A{}^\mu	$L_{A}{}^{\mu}$	staggered varation 1; (subscript-group superscript)
van	1/1 v^A{}_\nu	$v^A{}_ u$	staggered variation 2; (superscript-group subscript)
tsq	1/1 T^\ast⊔Q	T^*Q	T superscript-asterisk Q
tsqq	1/1 T^{\ast}_{q}_U	T_q^*Q	T superscript-asterisk subscript-q Q
dtsq	1/1 \$T^\ast⊔Q\$	T^*Q	dollar T superscript-asterisk Q
dtsqq	$_{1/1}$ \$T^{\ast}_{q}_\Q\$	T_q^*Q	dollar T superscript-asterisk subscript-q Q
00p	1/1 (0,0)	(0,0)	0,0 in parentheses
03p	$1/1 \ (0, 0, 0)$	(0,0,0)	0,0,0 in parentheses
0p	1/1 (0)	(0)	0 in parentheses
d00p	1/1 \$(0,0)\$	(0,0)	dollar 0,0 in parentheses
d03p	1/1 \$(0, _{\(\pi\)} 0) \$	(0,0,0)	dollar 0,0,0 in parentheses
d0p	1/1 \$(0)\$	(0)	dollar 0 in parentheses
triap	$1/1$ (a_1, $_{\sqcup}$ a_2, $_{\sqcup}$ a_3)	(a_1,a_2,a_3)	triad in parentheses

dtriap	1/1 \$(a_1, ⊔ a_2, ⊔ a_3)\$	(a_1,a_2,a_3)	dollar triad in parentheses;
хур	1/1 (x, uy)	(x,y)	x,y in parentheses
xyzp	$1/1 (\mathbf{x}, \mathbf{y}, \mathbf{z})$	(x, y, z)	x,y,z in parentheses
xpyq	$1/1 x^2 \cup y^2$	$\hat{x}^2 + y^2$	x squared + y squared
dxyp	1/1 \$(x,_y)\$	(x,y)	dollar x,y in parentheses
dxyzp	1/1 \$(x,_y,_z)\$	(x,y,z)	dollar x,y,z in parentheses
dxpyq	1/1 \$x^2 _+ _y^2\$	$x^2 + y^2$	$dollar \times squared + y squared$
dxdy	$1/1 \setminus dx \setminus dy$	$dx \dot dy$	derivatives x y
dxdydz	1/1 dx,dy,dz	dxdydz	derivatives x y z
$\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{t}$	1/1 dx/dt	dx/dt	derivatives x over t
dydt	1/1 dy/dt	dy/dt	derivatives y over t
dzdt	1/1 dz/dt	dz/dt	derivatives z over t
pdzy	1/1 \partial⊔z/\partial⊔y	$\partial z/\partial y$	partial derivatives z over y
dpdzy	1/1 \$\partial_z/\partial_y\$	$\partial z/\partial y$	dollar partial derivatives z over y
00	1/1 (0)	(0)	of 0
o1	1/1 (1)	(1)	of 1
o2	1/1 (2)	(2)	of 2
03	1/1 (3)	(3)	of 3
o4	1/1 (4)	(4)	of 4
o5	1/1 (5)	(5)	of 5
06	1/1 (6)	(6)	of 6
07	1/1 (7)	(7)	of 7
08	1/1 (8)	(8)	of 8
о9	1/1 (9)	(9)	of 9
oa	1/1 (a)	(a)	of a
oeb	1/1 (b)	(b)	of b
OC	1/1 (c)	(c)	of c
od	1/1 (d)	(d)	of d
oe	1/1 (e)	(e)	e
oef	1/1 (f)	(f)	of f (note: ef)
og	1/1 (g)	(g)	of g
oh	1/1 (h)	(h)	of h
oi	1/1 (i)	(i)	of i
oj	1/1 (j)	(j)	of j
ok	1/1 (k)	(k)	of k
ol	1/1 (1)	(l)	of l
om	1/1 (m)	(m)	of m
oen	1/1 (n)	(n)	of n (note: en)
00	1/1 (0)	(o)	of o

oep	1/1 (p)	(p)	of p (note: ep)
oq	1/1 (q)	(q)	of q
oer	1/1 (r)	(r)	of r (note: er)
os	1/1 (s)	(s)	of s
ot	1/1 (t)	(t)	of t
ou	1/1 (u)	(u)	of u
ov	1/1 (v)	(v)	of v
OW	1/1 (w)	(w)	of w
OX	1/1 (x)	(x)	of x
oy	1/1 (y)	(y)	of y
OZ	1/1 (z)	(z)	of z
oca	1/1 (A)	(A)	of A
ocb	1/1 (B)	(B)	of B
OCC	1/1 (C)	(C)	of C
ocd	1/1 (D)	(D)	of D
oce	1/1 (E)	(E)	of E
ocf	1/1 (F)	(F)	of F
ocg	1/1 (G)	(G)	of G
och	1/1 (H)	(H)	of H
oci	1/1 (I)	(I)	of I
ocj	1/1 (J)	(J)	of J
ock	1/1 (K)	(K)	of K
ocl	1/1 (L)	(L)	of L
ocm	1/1 (M)	(M)	of M
ocn	1/1 (N)	(N)	of N
OCO	1/1 (0)	(O)	of O
ocp	1/1 (P)	(P)	of P
ocq	1/1 (Q)	(Q)	of Q
ocr	1/1 (R)	(R)	of R
ocs	1/1 (S)	(S)	of S
oct	1/1 (T)	(T)	of T
ocuu	1/1 (U)	(U)	of u (note: ocuu)
OCV	1/1 (V)	(V)	of V
ocw	1/1 (W)	(W)	of W
OCX	1/1 (X)	(X)	of X
ocy	1/1 (Y)	(Y)	of Y
OCZ	1/1 (Z)	(Z)	of Z

nrbu	1/1 \ {\bf _\ u}\	$ \mathbf{u} $	norm bold u
aplb	$1/1 \{ bf_{\sqcup}a \}_{\sqcup} + \{ bf_{\sqcup}b \}$	$\mathbf{a} + \mathbf{b}$	bold a plus bold b
atib	$1/1 \ {\big\backslash bf_{\sqcup}a\big\rbrace_{\sqcup} \setminus times_{\sqcup} \{\big\backslash bf_{\sqcup}b\big\rbrace}$	$\mathbf{a} imes \mathbf{b}$	bold a times bold b
atibp	$_{1/1}$ ({\bf _{\upper} a} _{\upper} \times _{\upper} {\bf _{\upper} b})	$(\mathbf{a} imes \mathbf{b})$	(bold a times bold b)

5 INTEGRALS, SUMS, PRODUCTS, AND MATRICES

5.1 Integrals

intu	1/1 \int	\int	integral universal; add limits with "hu", "lu"
intd	$1/1 \cdot \inf_{\square} \cdot \cdot \cdot \cdot \cdot \cdot$	ſſ	double integral
intt	$1/1 \cdot \left(\frac{1}{1} \cdot \frac{1}{$	\iiint	triple integral
intc	1/1 \oint	∮	contour integral
i10	1/1 \int^1_0	\int_0^1	integral superscript 1 subscript 0
iba	1/1 \int^b_a	\int_{a}^{b}	integral superscript b subscript a
ilcd	1/1 \int_D	$\int_{C_{\infty}}^{x}$	integral lower capital D (subscript D)
iinf	$1/1 \cdot \inf^{\int_{-1} \left(- \right)}$	$\int_{-\infty}^{\infty}$	integral infinity: superscript (+infinity) subscript (-infin
i2xp0	_{1/1} \int^{2 _{\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	$\int_0^{2\pi}$	integral superscript (2 pi) subscript 0

5.1.1 Derivatives

sds	1/1 ds	ds	spave derivative s
sdt	1/1 dt	dt	space derivative t
sdu	1/1 du	du	space derivative u
sdv	1/1 dv	dv	space derivative v
sdw	1/1 dw	dw	space derivative w
sdx	1/1 dx	dx	$_{ m space}$ derivative x
sdy	1/1 dy	dy	space derivative y
sdz	1/1 dz	dz	space derivative z

5.2 Sums, Limits, etc.

sumu	1/1 \sum	\sum	sum universal
sni1	$1/1 \sum_{n} \sum_{i} 1$	$\sum_{i=1}^{n}$	sum superscript n subscript i=1
pni1	$1/1 \operatorname{prod^{n}_{i}=_{l}1}$	$\prod_{i=1}^{n}$	product superscript n subscript i=1
ini1	1/1 \bigcap^{n}_{i_{\square}}	$\bigcap_{i=1}^{\tilde{n}}$	intersection superscript n subscript i=1
uni1	$1/1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\bigcup_{i=1}^{n}$	union superscript n subscript i=1
li00	$_{1/1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\lim_{(x,y)\to(0,0)}$	limit subscript (x,y) to $(0,0)$
liai	$_{1/1}$ \lim_{a _{\underline} \rightarrow _{\underline} \infty}	$\lim_{a \to \infty}$	limit subscript a to infinity
lixl0	$1/1 \cdot \lim_{x_{\square}} x_{\square} $	$\lim_{x\to x_0}$	limit subscript x to x subscript 0

5.3 Sample Matrices

	L L	
mxc	1/5 $\left(\left \right \right)$	$\left(egin{array}{c} x_1 \ x_2 \ x_3 \end{array} ight) \qquad \qquad ext{matrix column}$
mxcb	1/4 \left[$_{\sqcup}$ \begin{array}{c}	$\left[egin{array}{c} x \\ y \end{array} ight]$ matrix column alternate (with square brackets
mx2p	1/4 \left($_{\sqcup}$ \begin{array}{cc}	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ matrix 2x2 with parentheses
mx2i	1/4 \left[$_{\sqcup}$ \begin{array}{cc}	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \hspace{1cm} \text{matrix } 2\text{x} 2 \text{ identity}$
mx2b	1/4 \left[$_{\sqcup}$ \begin{array}{cc}	$\left[egin{array}{cc} a & b \\ c & d \end{array} \right] \hspace{1cm} ext{matrix } 2 ext{x} 2 ext{ with brackets}$
mx2s	1/4 \left[$_{\sqcup}$ \begin{array}{cc}	$\left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] \qquad \text{matrix } 2\text{x} 2 \text{ symplectic}$
mx3i	1/5 $\left(\left \left \right \right \right)$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{matrix 3x3 identity}$
mx3d	1/5 $\left \left \right \right $	$\left egin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right \qquad { m matrix \ 3x3 \ determinant}$
mx3p	1/5 $\left(\ \ \right) = 1/5$	$\left(egin{array}{ccc} a & b & c \ d & e & f \ g & h & i \end{array} ight) ext{matrix } 3 ext{x}3$
mx3b	1/5 \left[$_{\sqcup}$ \begin{array}{ccc}	$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{matrix } 3\text{x} 3 \text{ with square brackets}$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 matrix 3x3 with square brackets

5.3.1 AMS Math Matrices Universal

J.J.I	AWIS Math	watrices Universal
mxu	1/4	\begin{array}{cc}
mxpu	1/6	\left(
mxbu	1/6	\left[
mxvu	1/6	\left
mxcvu	1/6	\left\Vert
mxsu	1/5	\small
mxspu	1/6	\small\left(
mxsbu	1/6	\small\left[

	matrix 2x2 universal-no delimiters
$\begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$	matrix 2x2 universal—with parentheses
[]	matrix 2x2 universal—with brackets
	matrix 2x2 universal—single vertical bar
··· ··	matrix 2x2 universal-double vertical bars
	small matrix 2x2 matrix universal-no delimiters
$\left(\begin{array}{ccc} \dots & \dots \\ \dots & \dots \end{array}\right)$	small matrix 2x2 universal—with parentheses
[]	small matrix 2x2 universal—with brackets

6 BOXES, TABBING AND TABULAR ENVIRONMENT SAMPLES

6.1 Boxes

frboxn 1/1 \fbox{\parbox{2.0in}{{\large_\bf_\Note:_\,}\text_\}} framed box note with in line text; edit its size

Note: text

frbox 1/1 \fbox{\parbox{2.0in}{\centerline{\large_\bf_\type_header}_\text{extre}} box with header and text; edit its size

type header

dfrbox 1/2 \fbox{\parbox{2.0in}{ double framed box with header and text; edit its size

type header

framed box with header, topfolded text (not in LaTeX)

6.2 Tabbing

tbex 1/5 \begin{tabbing} tabbing example

items for row one items for row two

6.3Tabular

1/13 \begin{center} tabex1

tabular example 1 (5 columns)

Definition of derivative

Partials exist and \implies Differentiable \implies Partials exist are continuous

1/26 \begin{center} tabex2

tabular example 2 (2 columns within a frame)

Box 2.1.1 Summary of Important Formulas for §2.1 Box 2.1.1 Summary of Important Polynomials $V = \frac{\partial \phi}{\partial t}$ $V^a = \frac{\partial \phi^a}{\partial t}$ $v_t = V_t \circ \phi_t^{-1}$ $v_t^a = V_t^a \circ \phi_t^{-1}$ Covariant Derivative $\mathbf{D} v \cdot w = \nabla_w v \qquad (\nabla_w v)^a = \frac{\partial v^a}{\partial x^b} w^b + \gamma_{bc}^a w^b v^c$

$$V = \frac{\partial \phi}{\partial t}$$

$$V^a = \frac{\partial \phi^a}{\partial t}$$

$$v_t = V_t \circ \phi_t^{-1}$$

$$v_t^a = V_t^a \circ \phi_t^{-1}$$

$$\mathbf{D}v \cdot w = \nabla_w v$$

$$(\nabla_w v)^a = \frac{\partial v^a}{\partial x^b} w^b + \gamma^a_{bc} w^b v^c$$

1/39 \begin{center} tabex3

tabular example 3 (3 columns without a frame)

Classical Tensor Analysis

Tensor Analysis on Manifolds

$$\{x^a\}$$

Coordinates

$$e_a = \frac{\partial z^i}{\partial x^a} i_i$$

coordinate basis vectors

$$\frac{\partial}{\partial x^a} = e_a$$

 $\{x^a\}$

$$\bar{e}_a = \frac{\partial x^b}{\partial \bar{x}^a} e_b$$

$$\bar{e}^a = \frac{\partial \bar{x}^a}{\partial \bar{x}^b} e^b$$

change of coordinates
$$\begin{cases} \frac{\partial}{\partial \bar{x}^a} = \frac{\partial x^b}{\partial \bar{x}^a} \frac{\partial}{\partial x^b} \\ d\bar{x}^a = \frac{\partial \bar{x}^a}{\partial x^b} dx^b \end{cases}$$

tabex4

1/23 \begin{center}

tabular example 4 (2 columns with lines)

Classical Mechanics	Quantum Mechanics
immersed Lagrangian manifold	element of $L^2(Q)$ or $\mathcal{D}'(Q)$
$\Lambda \to (T^*Q, \Omega)$	
$\Lambda = \text{graph of } \mathbf{d}S$	$\psi = \exp(iS/\hbar)$
T^*Q	Hilbertspace
Lagrangian manifold	(possibly unbounded)
$\Omega \subset (T^*Q, \Omega_Q) \times (T^*R, -\Omega_R)$	$L^2(R)$ to $L^2(Q)$
composition of canonical relations	composition of operators

tabex51/22 \begin{center} tabular example 5 (2 columns with lines within a framed box)

Classical Mechanics	Quantum Mechanics
immersed Lagrangian manifold	element of $L^2(Q)$ or $\mathcal{D}'(Q)$
$\Lambda \to (T^*Q, \Omega)$	
$\Lambda = \text{graph of } \mathbf{d}S$	$\psi = \exp(iS/\hbar)$
T^*Q	Hilbertspace
Lagrangian manifold	(possibly unbounded)
$\underline{\qquad} \Omega \subset (T^*Q, \Omega_Q) \times (T^*R, -\Omega_R)$	$L^2(R)$ to $L^2(Q)$
composition of canonical relations	composition of operators

tabex6 1/25 \begin{center}

tabular example 6 (3 columns with lines)

Case	Conditions	Connection
Unconstrained	$\mathcal{D}_q = T_q Q$	$\mathcal{A}^{\text{sym}}(\dot{q}) = \mathbb{I}^{-1}J(\dot{q})$
Purely Kinematic	$\mathcal{D}_q \cap T_q(\operatorname{Orb}(q)) = \{0\}$	$\mathcal{A}^{\mathrm{kin}}(\dot{q}) = 0$
Horizontal symmetries	$\mathcal{D}_q \cap T_q(\operatorname{Orb}(q))_G = T_q(\operatorname{Orb}(q))_H$	$\mathcal{A}^{\text{sym}}(\dot{q}) + \mathcal{A}^{\text{kin}}(\dot{q}) = \mathbb{I}^{-1}J_H(\dot{q})$
General principal bundle case	$\mathcal{D}_q + T_q(\operatorname{Orb}(q)) = T_q Q$	$\mathcal{A}^{\text{sym}}(\dot{q}) + \mathcal{A}^{\text{kin}}(\dot{q}) = \mathbb{I}^{-1}J^{\text{nhc}}(\dot{q})$

7 PICTURES, DIAGRAMS, TABLES, AND FIGURES

7.1 Pictures

fig 1/4 \begin{figure} general figure space allocation;

pict 1/6 \begin{figure} special picture: mac special illustration: mac

7.2 Commutative Diagrams

scd1 1/17 \begin{picture}(150,100)(-70,0) square commutative diagram 1

scd2 1/16 \begin{picture}(150,100)(-70,0) square commutative diagram 2

scd3 1/16 \begin{picture}(150,100)(-70,0) square commutative diagram 3

 scdw

rectangular CD (same as scd2 with variable width; not in LaTeX)

tcd1 1/13 \begin{picture}(150,100)(-70,0)

triangular commutative diagram 1

tcd2

1/13 \begin{picture}(150,100)(-70,0)

triangular commutative diagram 2

ecd1

exact commutaive diagram 1

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \stackrel{h}{\longrightarrow} C/g(B) \longrightarrow 0$$

dcd1

1/19 \begin{picture}(150,160)(-80,5)

double commutative diagram 1

dcd2

1/21 \begin{picture}(150,160)(-80,5)

double commutative diagram 2

cxcd1 1/35 \begin{picture}(150,180)(-70,10)

complex commutative diagram 1

7.3 TABLE AND FIGURE ENVIRONMENTS

7.3.1	Tables		
btab	1	<u> </u>	begin table environment
etab	1		end table environment
tabl	1,	\circ \begin{table}[t]_\[\u0000\u000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u000\u0000\u	_i b _□ or _□ h]; template for table environment
7.3.2	Figures		
bfig	1	\begin{figure}	begin figure environment
efig	1	\end{figure}	end figure environment
tinf	1	. 0 - 0	topinsert figure
$\min f$	1	. 0 - 0	midinsert figure
einf	1		end insert figure
cap	1		caption
tcap	1		top caption
bcap	1		bottom caption
vsp	1	•	vertical space
hsp	1	hspace{0.2in}	horizontal space
7.3.3	Epsf		
epsfv	1	\epsfverbosetrue	epsf verbose true command
epsff		begin{figure}[t]	epsffile figure template
epsfb		begin{figure}[t]	epsfbox figure template
epsfbb			epsfbox(with bounding box) figure template
epsfbb			epsfbox two figure side by side template
-	,	5 5	

8 TEXT

8.1 Word Vocabulary

wace	1/1 accelerate	wneg	1/1 negative
wacn	1/1 acceleration	wnl	1/1 nonlinear
wacs	1/1 accelerates	wnly	1/1 nonlinearity
1	Demontrary of Mathematica		
wcdm	1/1 Department_of_Mathematics	wpos	1/1 positive
wedp	$1/1$ Department $_{\sqcup}$ Of $_{\sqcup}$ Physics	wprp	1/1 perpendicular
wcle	1/1 calculate	wrel	1/1 relative
wcln	1/1 calculation	wrln	1/1 relation
wcls	1/1 calculates	wrtg	$_{1/1}$ rotating
	,	wrtn	1/1 rotation
wder	1/1 derivative	wrtns	$_{1/1}$ rotations
wders	1/1 derivatives		,
wdm	$_{1/1}^{\prime}$ department $_{\sqcup}$ of $_{\sqcup}$ mathematics	wsn	1/1 solution
wdp	$_{1/1}$ department $_{\sqcup}$ of $_{\sqcup}$ physics	wsns	1/1 solutions
1	, 1 2 21 3		,
wep	1/1 Euler-Poincar\'e	${ m wtm}$	1/1 theorem
weqn	1/1 equation	${ m wtms}$	1/1 theorems
weqns	1/1 equations	wty	1/1 theory
wex	1/1 example		
		wun	1/1 university
wfun	1/1 function		
wfuns	1/1 functions	$\mathbf{w}\mathbf{v}\mathbf{e}$	1/1 vector
		$\mathbf{w}\mathbf{v}\mathbf{e}\mathbf{l}$	1/1 velocity
wgm	1/1 geometry	wvs	1/1 vectors
wgmc	1/1 geometric		
wie	1/1 i.e.,		
wig	1/1 integral		
wigb	1/1 integrable		
wign	1/1 integration		
wigs	1/1 integrals		
wiie	1/1 {\it _⊔ i.e.,\/}		
wlig	$1/1$ line \sqcup integral		
wligs	$1/1$ line \sqcup integrals		
wmx	1/1 matrix	73	

9 SAMPLE TEMPLATES

9.1 Paper Templates

9.1.1 Paper Template Basic (with resetting)

tepaper

1/64 %%latex2.09

Title of paper Author1 * Author2 †
Department of Mathematics Department of Physics
University of ...

Author2 †
Department of Physics
State University of ... put in custom date; delete this line for today's date Abstract

This template is called paper/templateles. It numbers equations, figures, tables and theorems within each section. Figures are placed automatically following the paragraph in which they are circl, or at the top of the next page if there is not room on the page of circlairs. Introduction 1 First Section Title Text goes here $\mathbf{A}\mathbf{cknowledgm}$ ents We thank ... References Author, U. N. O., ...

tepaper latex2.09 paper template

9.1.2 Paper Simple Template

tepapersimple	1/59	%%latex2.09⊔⊔⊔	$_{\sqcup\sqcup}$ tepaper $_{\sqcup}$ simple		tepapersimple
				Title of paper Author2 * Department of Mathematics University of State University of put in custom date; delete this line for today's date Abstence This back is called poper/ample/templeto-lea. It numbers equations and theorems within each section, but you are remained to insert counters; it does not require any special style files. Introduction Text goes here 1 First Section Title Text goes here Admoved-dynamics We thank References Author, U. N.,	
				*Remarch partially supported by *Remarch partially supported by 1	

9.1.3 Paper Simplest Template

tepapersimplest 1/47 %%latex209--tepaper_usimplest

tepapersimplest

9.1.4 Paper Simple Template with eqnwith Numbering

tepapereqnwith 1/67 %latex2.09--tepaperueqnwith

tepaper.eqnwith; paper simple numbering equations with theorems

Title of paper	
	Author2 †
	Author2 † ment of Physics
University of State	University of
put in custom date; delete this line fo	r today's date
AL.	
Abstract This brick is called noner/countly it emplated ex-	It numbers equations
This bick is called paper/equath/template.tex. and theorems within each section, but you are respii it does not respiin any special style files.	ed to insert counters;
ic does not require any special style mes.	
Introduction	
Text goes here	
1 First Section Title	
Text goes here	
Acknowledgments We thank	
References	
Author, U. N.,	
*Bannerh antially wounded by	
*Research partially supported by Research partially supported by	
1	
·	

9.2 Book Templates

tebook

1/45 %latex2.09te	book tebook
	Title of Book
	Author1 ¹ Author2 ² Department of Mathematics Department of Physics University of State University of put in custom date; delete this line for today's date
	¹ Research partially supported by ² Research partially supported by

Title of Book

Author1 ¹ Author2 ²
Department of Mathematics Department of Physics University of ...

put in custom date; delete this line for today's date

¹Besearch partially supported by ... ²Besearch partially supported by ...

9.3 Letters

9.3.1 Letter Template

teletter 1/1	3 % &latex2.09 _{⊔⊔⊔}	$_{ ext{ iny LL}}$ teletter		teletter
			May 10, 198	δ
			Addressee Address More Address More and more lines separated by double backslashes	
			Dear Whoever, The Text Sincerely yours,	
			yourName	
			phone (ITT) EEE-LLI	ı

te2letter1/18 %&latex2e_UUUUUUte2letter te2letter

May 10, 1996

Addressee Address More Address More and more lines separated by double backslashes

The Text Sincerely yours,

phone (TTT) EEE-LLLL

9.3.2 Letter.def Macro

letterdef

letter.def; macro for letters; undefined use std letter.sty

9.4 Miscellaneous

9.4.1 Verbatim

bcmnt	1/1 \begin{comment}	begin comment environment
ecmnt	<pre>1/1 \end{comment}</pre>	end commend enviornment
${ m vrb}$	1/1 \verb	verbatim: usage \verb"phrase in tt font"
bvrb	1/1 \begin{verbatim}	begin the verbatim environment
evrb	<pre>1/1 \end{verbatim}</pre>	end the verbatim environment
vrbinp		verbatim input file (not in LaTeX)
verbatimdef		macro verbatim.def for AmSTeX (not in LaTeX)

9.4.2 Comments

cbx	1/4 %=======%
cld	1/2 %
cldd	1/2 %====================================
cpct	1/2 //0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
crlr	1/5 %====================================
csd	1/2 %
csdd	1/2 %====================================

\mathbf{Index}

00p, 57 03p, 57 0p, 57	
ace, 23 ad, 22, 24 ada, 24 ae, 22 ag, 57 ale, 54 angl, 55	
aplb, 60 apx, 54 artl, 56 atib, 60 atibp, 60 ats, 23 au, 30	
ava, 57 avb, 57 avc, 57 avx, 57 avy, 57 avz, 57	
b0, 34 b1, 34 b10, 34 b2, 35 b3, 35 b4, 35 b5, 35	
b6, 35 b7, 35 b8, 35 b9, 35 ba, 35 bac, 29	

balg, 28
bb. 35
bbca, 39
bbcb, 39
bbca, 39 bbcb, 39 bbcc, 39
bbcd, 39
bbcd, 39 bbce, 39
bbcf, 39
bbcg, 39
bbch, 39
bbci, 39
bbcj, 39
bbck, 39
bbcl, 39
bbcm, 39
bbcn, 39
bbco, 39
bbcp, 39
bbcq, 39
bbcr, 39
bbcr1, 40
bbcr2, 40
bbcr3, 40 bbcrm, 40
bbcrm, 40
bbcrn, 40
bbcs, 39 bbct, 39
bbct, 39
bbcu, 39 bbcv, 39
bbcv, 39
bbcw, 39
bbcx, 39
bbcy, 39
bbcz, 40
bblk, 21
bbu, 34, 39
bc, 35
bca, 35

bcap, 72		
bcase, 29		
bcb, 35		
bcc, 35		
bcd, 35		
bce, 35		
bcf, 35		
bcg, 35		
bch, 35		
bci, 35		
bcj, 35		
bck, 35		
bcl, 35		
bclm, 29		
bcm, 35		
bcmnt, 84		
bcn, 35		
benel, 29		
bend, 29		
bcnj, 29		
bco, 35		
bcor, 28		
bcp, 35		
bcq, 35		
bcr, 35		
bcrit, 29		
bcs, 35		
bct, 35		
bcu, 35		
bcv, 35		
bcw, 35		
bcx, 35		
bcy, 35		
bcz, 35		
bd, 35		
bdfn, 28		
bdmu, 28		
bdo, 19		
bdp, 24		

bdpex, 25
bds, 22
bds, 22 $bea, 24$
bec, 20
bee, 35
bell, 36
bel2, 36
bel3, 36
bel2, 36 bel3, 36 beln, 36
ben, 21
beq, 24
beqex, 25
beql, 24
bff, 36
bfig, 72 bfll, 20
bfll, 20
bflr, 20
bfu, 34
bg, 36
bh, 36
bi, 36
biba, 22
bibb, 22
bibia, 22
bibib, 22
bints, 55
$\mathrm{bitm},22$
biu, 34
bj, 36
bk, 36
bl, 36
blackl, 29
blem, 28 blskp, 21
blskp, 21
blstr, 21
blt, 53
bm, 36
bmpg, 21
bn, 36

bnota, 29	bxca, 29
bnote, 29	bxcb, 29
bo, 36	bxo, 36
boxa, 24	bxu, 34, 36
boxu, 24	bxx, 36
bp, 36	byy, 36
bpf, 28, 29	bz, 36
bprf, 28	,
bprob, 29	cap, 72
bprop, 28	cau, 34, 36
bq, 36	cbx, 84
bqa, 24	cca, 36
bqaex, 25	ccb, 36
bqal, 24	ccc, 37
bqas, 24	$\operatorname{ccd}, 37$
bqasex, 25	cce, 37
bqm, 21	ccf, 37
bqst, 29	ccg, 37
bqt, 20	cch , 37
br, 36	cci, 37
brmk, 29	ccj, 37
bros, 21	cck , 37
bs, 36	ccl, 37
bskp, 23	ccm, 37
bsol, 29	ccn, 37
bsum, 29	cco, 37
bt, 36	ccp, 37
btab, 72	ccq, 37
btb, 22	ccr, 37
btd, 30	ccs, 37
bthm, 28	$\cot, 37$
bthmt, 28	ccu, 37
btr, 22	ccv, 37
bu, 36	ccw, 37
buni, 55	ccx, 37
bv, 36	ccy, 37
byrb, 84	ccz, 37
bw, 36	cd, 32
bx, 36	cdo, 56

cds, 56 chhdl, 20 cir, 53 cit, 22 citp, 22 citp, 22 citp, 22 cl, 20 cld, 84 cldd, 84 cldd, 20 co, 56 coh, 56 coph, 56 cop, 56 coth, 56 cp, 21 cpct, 84 cprt, 23 cr2, 45 crlr, 84 csd, 84 csdd, 84 csdd, 84 csdd, 84 csdd, 87 csopp, 23 cu, 47 cxcd1, 71 d, 24 d0, 41 d00p, 57 d1, 41 d10, 41 d2, 41 d3, 41 d4, 41 d4, 41 d5, 41	d7, 41 d8, 41 d9, 41 da, 42 db, 42 db0, 43 db1, 43 db10, 43 db2, 43 db3, 43 db4, 43 db5, 43 db6, 43 db7, 43 db8, 44 dbbc1, 40 dbbcr1, 40 dbbcr2, 40 dbbcr3, 40 dbbcrm, 40 dbbcrm, 40 dbc, 44 dbca, 43 dbcb, 43 dbc
d6, 41	dbco, 43

dbcp, 43		
dbcq, 43		
dbcr, 44		
dbcs, 44		
dbct, 44		
dbcu, 44		
dbcv, 44		
dbcw, 44		
dbcx, 44		
dbcy, 44		
dbcz, 44		
dbd, 44		
dbe, 44		
dbf, 44		
dbg, 44		
dbh, 44		
dbi, 44		
dbj, 44		
dbk, 44		
dbl, 44		
dblackl, 30		
dbm, 44		
dbn, 44		
dbo, 44		
dbp, 44		
dbq, 44		
dbr, 44		
dbs, 44		
dbt, 44		
dbtd, 30		
dbu, 44		
dbv, 44		
dbw, 44 dbx, 44		
dby, 44		
dbz, 44		
upz, TT		
dc, 42		

dcc, 42dcca, 37dccb, 37dccc, 37dccd, 37 dcce, 37 dccf, 37dccg, 37dcch, 37dcci, 37 dccj, 37dcck, 37 dccl, 37 dccm, 37dccn, 37dcco, 37dccp, 38dccq, 38dccr, 38dccs, 38dcct, 38dccu, 38dccv, 38dccw, 38 dccx, 38dccy, 38 dccz, 38dcd, 42dcd1,70dcd2, 70dce, 42 dcf, 42dcg, 42dch, 42dci, 42dcj, 42dck, 42dcl, 42dcm, 42

dcn, 42	
dco, 42	
dcp, 42	
dcq, 42	
dcr, 42	
dcs, 42	
dcso3, 30	
\det , 42	
dcu, 42	
dev, 42	
dcw, 42	
dcx, 42	
dcy, 42	
dcz, 42	
dd, 42	
dds, 56	
de, 42	
defu, 19	
dep, 30	
desq, 30	
$\det d$, 30	
df, 42	
dfrbox, 64	
dg, 42	
dgmb, 39	
dgmca, 38	
dgmcg, 38	
dgmch, 38	
dgmck, 38	
dgmct, 38	
dgmcx, 38	
dgmg, 39	
dgmgs, 39	
dgmh, 39	
dgmhs, 39	
dgmk, 39	
dgmks, 39	
dgmp, 39	
dgmt, 39	

dgmu, 38 dh, 42di, 42difu, 30 disu, 41 divg, 30divi, 53 dj, 42 dk, 42 dl, 42 dlr, 24 dm, 42 dmn, 57dn, 42doo, 42 dopcc, 40dopci, 40 doper, 40 dopcr1, 40 dopcr2, 40dopcr3, 40dopcrm, 40 dopern, 40 dopct, 40 dopcz, 40dp, 43dpdzy, 58 dq, 43dr, 43 ds, 43dsart, 19 dsartv, 19 dsbook, 19 dslet, 19 dso3, 30dsp, 23dsrep, 19dsu, 19dsz, 24

dszu, 24	
dt, 43	
dtriap, 58	
dtsq, 57	
dtsqq, 57	
dtt, 57	
du, 43	
dv, 43	
dvcpp, 53	
dvcpq, 53	
dw, 43	
dx, 43	
dxa, 33	
dxb, 33	
dxc, 33	
dxcd, 33	
dxcg, 33	
dxcl, 33	
dxco, 33	
dxcp, 33	
dxcph, 33	
dxcps, 33	
dxcs, 33	
dxcth, 33	
dxcu, 33	
dxcx, 33	
dxd, 33	
dxdt, 58	
dxdy, 58	
dxdydz, 58	
dxe, 33	
dxet, 33	
dxg, 33	
dxio, 33	
dxk, 33	
dxl, 33	
dxm, 33	
dxn, 33	
dxo, 33	

dxp, 33 $\mathrm{dxph},\,33$ dxps, 33dxpyq, 58dxr, 33dxs, 34 dxt, 34 dxth, 34 dxu, 34 dxve, 34 dxvp, 34 dxvph, 34 dxvr, 34 dxvs, 34 dxvth, 34 dxx, 34 dxyp, 58dxyzp, 58dxz, 34 dy, 43dydt, 58dz, 43dzdt, 58 ea, 24 eabb, 27eabr, 27 eac, 29 ealg, 29 eb, 21 ebk, 21 eblk, 21ec, 20ecase, 29 ecd1, 70eclm, 29 ecmnt, 84 ecncl, 29 ecnd, 29

ecor, 28 ecrit, 29 eq. 19 edfn, 28 edmu, 28 edo, 19 edy, 24 edo, 22 ee, 21 eec, 20 een, 21 eeq, 24 effig, 72 effi, 20 egraf, 20 einf, 72 eit, 21 eitm, 22 elem, 28 emp, 55 empa, 55 emp	psfv, 72 q, 54 qa, 24 qas, 24 qbox, 27 qbrc, 26 qbrl, 26 qm, 21 qng, 26 qsp, 26 qst, 29 qt, 20 qtx, 25 qv, 54 qvt, 55 rmk, 29 ros, 21 sol, 29 sq, 30 sum, 29 tab, 72 tb, 22 td, 30 thm, 28 tr, 22 val, 27 vrb, 84 x, 56 xa, 28 xca, 29 xcb, 29 z, 54
eprob, 29 f12 eprop, 28 f13 epsfb, 72 epsfbb, 72 fa, epsfbb2, 72 fdd	12, 45 13, 45 14, 45 a, 55 ddt, 45 dudt, 45

fdxdt, 45	gss, 23
fdydt, 45	gte, 54
fdzdt, 45	8,3,31
fig, 68	h0, 47
fldtu, 31	h1, 47
· ·	h10, 47
flt, 54	h2, 47
fof, 41	
fps, 45	h3, 47
fpt, 45	h4, 47
fpx, 45	h5, 47
fpy, 45	h6, 47
fpzx, 45	h7, 47
frbox, 64	h8, 47
frboxn, 64	h9, 47
frboxt, 64	ha, 45
ftn, 22	haf, 45
fu, 41	$\mathrm{hb}, 45$
,	hba, 54
gc, 57	hc, 45
gce, 23	hca, 46
ge, 22	hcb, 46
gij, 50	hcc, 46
gmb, 38	hcd, 46
gmca, 38	hce, 46
gmcg, 38	hcf, 46
gmch, 38	hcg, 46
gmck, 38	hch, 46
gmct, 38	hci, 46
gmcx, 38	
	hcj, 46
gmg, 38	hck, 46
gmgs, 38	hcl, 46
gmh, 38	hcm, 46
gmhs, 38	hcn, 46
gmk, 38	hco, 46
gmks, 38	hcp, 46
gmp, 38	hcq, 46
gmso3, 38	hcr, 47
gmt, 38	hcs, 47
gmu, 34, 38	hct, 47

hcu, 47		
hcv, 47		
hcw, 47		
hcx, 47		
hcy, 47		
hcz, 47		
hd, 45		
hdg, 47		
hee, 45		
hf, 45		
hfi, 20		
hflt, 47		
hg, 46		
hh, 46		
hi, 46		
hij, 47		
hijk, 47		
hj, 46		
hjk, 47		
hk, 46		
hl, 46		
hlin, 22		
hm, 46		
hmo, 47		
hn, 46		
ho, 46		
hp, 46		
hpr, 47		
hprp, 47		
hq, 46		
hr, 46		
hrl, 22		
hs, 46		
hshp, 47		
hskp, 23		
hsp, 72		
hst, 47		
ht, 46		
hu, 41		

huu, 46 hv, 46 hvst, 47 hw, 46 hx, 46 hxa, 47 hxb, 48 hxc, 48 hxcd, 48 hxcg, 48 hxcl, 48 hxco, 48 hxcp, 48 hxcph, 48 hxcps, 48 hxcs, 48 hxcth, 48 hxcu, 48 hxcx, 48 hxd, 48 hxe, 48 hxet, 48 hxg, 48 hxio, 48 hxk, 48 hxl, 48 hxm, 48 hxn, 48 hxo, 48 hxp, 48 hxph, 48 hxps, 48 hxr, 48 hxs, 48 hxt, 48 hxth, 48 hxu, 48 hxve, 48 hxvp, 48

hxvph, 48 hxvr, 48 hxvs, 48 hxvth, 48 hxx, 49 hxz, 49 hy, 46 hz, 46 i10, 61 i2xp0, 61 iba, 61 idu, 22 iinf, 61 illed, 61 illus, 68 ima, 55 imp, 55 impb, 55 impb, 55 impl, 55 infin, 57 ini1, 61 intc, 61 intd, 61 ints, 55 intt, 61 intt, 61 intt, 61 intt, 61 intx, 40	110, 50 12, 50 13, 50 14, 50 15, 50 16, 50 17, 50 18, 50 19, 50 1a, 49 1am, 57 1b, 49 1bl, 22 1brk, 20 1c, 49 1ca, 49 1cb, 49 1cd, 49 1cd, 49 1cd, 49 1cf, 49 1cf, 49 1cf, 49 1cf, 50 1ci, 50 1ci, 50 1ci, 50 1ch, 50
ir3, 40 iso, 54	lcp, 50 $lcq, 50$
itm, 22 itmu, 22 itu, 34	lcr, 50 lcs, 50 lct, 50
kr, 57 10, 50	lcu, 50 lcv, 50 lcw, 50
11, 50	lcx, 50

lcy, 50	
lcz, 50	
ld, 49	
ldo, 54	
lds, 56	
le, 49	
lea, 56	
lebk, 54	
lebr, 54	
lel, 54	
lep, 54	
lequ, 24	
lequex, 27	
lequs, 24	
letterdef, 84	
lf, 49	
lg, 49	
lgn, 57	
lh, 49	
lhtxt, 20	
li, 49	
li00, 61	
liai, 61	
lied, 55	
lij, 50	
lijk, 50	
limi, 57	
limm, 57	
lims, 57	
limu, 41	
lin, 21	
lixl0, 61	
lj, 49	
ljk, 50	
lk, 49	
11, 49	
llb, 21	
lld, 54	
lle, 21	

llin, 21 lm, 49 ln, 49 lo, 49 logg, 56 lora, 56 lp, 49 lq, 49 lr, 49 lra, 56 ls, 49 lst, 51lt, 49 lte, 54 lu, 41 luu, 49 lv, 49 lvst, 52 lw, 49 lx, 49 lxa, 50 lxb, 50 lxc, 50 lxcd, 50 lxcg, 50 lxcl, 51 lxco, 51 lxcp, 51 lxcph, 51 lxcps, 51 lxcs, 51 lxcth, 51 lxcu, 51 lxcx, 51 lxd, 51 lxe, 51 lxet, 51 lxg, 51 lxio, 51

lxk, 51	$\mathrm{msp},23$
lxl, 51	$\mathrm{mthm}, 28$
lxm, 51	mx, 57
lxn, 51	mx2b, 62
lxo, 51	mx2i, 62
lxp, 51	mx2p, 62
lxph, 51	mx2s, 62
lxps, 51	mx3b, 62
lxr, 51	mx3b35pt, 63
lxs, 51	mx3d, 62
lxt, 51	mx3i, 62
lxth, 51	mx3p, 62
lxu, 51	mxbu, 63
lxve, 51	mxc, 62
lxvp, 51	mxcb , 62
lxvph, 51	mxcvu, 63
lxvr, 51	mxpu, 63
lxvs, 51	mxsbu, 63
lxvth, 51	mxspu, 63
lxx, 51	mxsu, 63
lxz, 51	$\max $, 63
ly, 49	mxvu, 63
lz, 49	,
,	na, 55
mag1, 20	nbb, 20
magu, 19	ncmdu, 19
mbe, 24	ndsp, 23
mcor, 28	ne, 54
mdfn, 28	neo, 55
mgt, 54	nfnttbi, 34
mi, 53	nfntu, 34
minf, 72	nl, 20
mip, 53	nlg, 20
mlem, 28	nlin, 20
mlt, 54	$_{ m nll,23}$
mn, 57	noi, 20
mo, 57	nonu, 24
mprop, 28	np, 20
mskp, 23	npgno, 20
1 7	FO , 5

nr2, 45	och, 59
nrbu, 60	oci, 59
$\operatorname{nrh}, 20$	ocj [°] , 59
nrm, 55	ock, 59
nsp, 23	ocl, 59
ntg, 25	ocm, 59
6, -	ocn, 59
00, 58	oco, 59
01,58	оср, 59
02, 58	ocq, 59
03, 58	ocr, 59
04, 58	ocs, 59
05, 58	oct, 59
06, 58	ocu, 41
07, 58	ocuu, 59
08, 58	ocv, 59
09, 58	ocw, 59
oa, 58	ocx, 59
ob, 21	ocy, 59
obk, 21	ocz, 59
obp, 52	od, 58
obq, 52	oddp, 52
$\mathrm{obr},52$	oddq, 52
obs, 52	oddr, 52
obu, 41	odds, 52
obx, 52	oddu, 41
obxa, 52	oddx, 52
obxb, 52	oddxa, 52
obxg, 52	oddxb, 52
oby, 52	oddxg, 52
obz, 52	oddy, 52
oc, 58	oddz, 52
oca, 59	odp, 52
ocb, 59	odq, 52
occ, 59	odr, 52
ocd, 59	ods, 52
oce, 59	odu, 41
ocf , 59	odx, 52
ocg, 59	odxa, 52

odxb, 52			
odxg, 52			
ody, 52			
odz, 52			
oe, 58			
oeb, 58			
oef, 58			
oen, 58			
oep, 59			
oer, 59			
og, 58			
oh, 58			
ohp, 53			
ohq, 53			
ohr, 53			
ohs, 53			
ohu, 41			
ohx, 53			
ohxa, 53			
ohxb, 53			
ohxg, 53			
ohy, 53			
ohz, 53			
oi, 58			
oj, 58			
ok, 58			
ol, 58			
olp, 52			
olq, 52			
olr, 52			
olra, 55			
ols, 52			
olu, 41			
olx, 53			
olxa, 53			
olxb, 53			
olxg, 53			
oly, 53			
olz, 53			

om, 58omi, 54 00,58op, 21 opad, 31 opcaut, 31 opcc, 40 opccard, 31 opccorr, 31 opcext, 31 opcfcl, 31 opcgcl, 31 opchar, 31 opchom, 31 opci, 40 opcjac, 31 opclie, 31 opcnm, 31 opcpcgcl, 31 opcpic, 31 opcprym, 31 opcr, 40 opcr1, 40 opcr2, 40opcr3, 40 opcram, 31 opcrank, 31 operes, 31 opcrm, 40 opcrn, 40 opcscl, 31 opcsco, 31 opcscp, 31 opcscu, 31 opcsp, 31 opcsym, 31 opct, 40 opctr, 31 opcz, 40

opl, 54 opndef, 31 opnu, 31 oprank, 31 opreg, 31 opres, 31	prskp, 21 pt, 20 qd, 23 qed, 30 qqd, 23
opsl, 31 opsq, 31 opu, 34, 40 oq, 59 os, 59 ot, 59 oti, 54 otu, 41	ra, 56 rcmdu, 19 rdefu, 19 rdo, 54 rea, 55 refp, 22 refr, 22
ou, 59 ov, 59 ova, 53 ovb, 53 ovc, 53 ovu, 41 ovv, 53	reo, 55 reu, 30 rez, 30 rhtxt, 20 ribk, 54 ribr, 54 rip, 54
ovw, 53 ow, 59 ox, 59 oy, 59 oz, 59 para, 23	rir, 54 rlb, 21 rle, 21 rlin, 20 rmk, 28 rmu, 34 rom, 30
pd, 55 pdzy, 58 pgno, 20 pict, 68 pl, 53 plm, 53	romu, 30 ros, 21 rqed, 30 rrd, 54 scd1, 68
pni1, 61 ppt, 55 prf, 28 prind, 21 prm, 54	scd2, 68 scd3, 68 scdw, 69 scl, 55 scu, 34 sd, 24, 32

sdp, 54	squ, 41, 45
sdr, 56	sqxp, 45
sds, 61	sskp, 23
sdt, 61	ssn, 20
sdu, 61	ssns, 20
sdv, 61	ssp, 23
sdw, 61	sube, 55
sdx, 61	subs, 55
sdy, 61	
	sumu, 61
sdz, 61	$\sup_{-\infty} 55$
sect, 23	supr, 57
seh, 30	sups, 55
setc, 22	sur, 56
setcu, 22	4-11 <i>e</i> g
setlnu, 19	tabex1, 65
setlu, 41	tabex2, 65
setm, 55	tabex3, 65
setu, 41	tabex4, 66
sfu, 34	tabex5, 66
$\mathrm{sh}, 55$	tabex6, 67
shl, 57	tabl, 72
shp, 55	$\mathrm{tb},22$
$\sin, 56$	tbex, 64
\sinh , 56	tcap, 72
siph, 56	tcd1, 69
siq, 56	tcd2, 69
sith, 56	te, 55
slu, 34	te2bd, 19
sn, 20	te2bdv, 19
sni1, 61	te2bdvf, 19
sns, 20	te2book, 81
so3, 30	te2letter, 83
sol, 28	te2paper, 76
sol, 26 sq, 47	teabs, 19
	teack, 19
sq10, 44	teaut, 19
sq2, 45	tebd, 19
sq3, 45	tebdf, 19
$\operatorname{sq5}$, $\operatorname{45}$	
sq7, 45	tebdv, 19

4-1 1-1 10	l 5 <i>c</i>
tebdyf, 19	uhr, 56
tebib, 19	uni, 55
tebook, 80	uni1, 61
teletter, 82	uo, 22
temag1, 19	upa, 56
temar, 19	uu, 22
tepaper, 75	57
tepapereqnwith, 79	van, 57
tepapersimple, 77	vbar, 55
tepapersimplest, 78	vcpp, 53
teref, 19	vcpq, 53
tfldtu, 31	vds, 56
tfu, 24	verbatimdef, 84
tg, 25	vfi, 20
tgs, 25	vglu, 23
tgsol, 20	$\mathrm{vrb},84$
tgsor, 20	vrbinp, 84
thmsty, 28	vskp, 23
ti, 54	vsp, 72
tinf, 72	=0
$\mathrm{tn}, 56$	wace, 73
tnh, 56	$\operatorname{wacn}, 73$
triap, 57	wacs, 73
${ m trv}, 55$	$\operatorname{wcdm}, 73$
tskp, 23	$\operatorname{wcdp}, 73$
tsp, 23	wcle, 73
tsq, 57	$\operatorname{wcln}, 73$
tsqq, 57	wcls, 73
tsz, 24	wder, 73
tszu, 24	wders, 73
ttu, 34	wdm, 73
txt, 24	wdp, 73
txta, 24	wed, 54
txtu, 31	wep, 73
	weqn, 73
ua, 22	weqns, 73
uca, 23	wex, 73
uco, 23	wfun, 73
ucu, 23	wfuns, 73

wgm, 73 wgmc, 73 wie, 73 wie, 73 wig, 73 wigh, 73 wigs, 73 wie, 73 wie, 73 wie, 73 wing, 73 wing, 73 wmx, 73 wmx, 73 wnl, 73 wnl, 73 wnl, 73 wprp, 73 wrel, 73 wrln, 73 wrtn, 73	xcp, 32 xcph, 32 xcps, 32 xcs, 32 xcth, 32 xcu, 32 xd, 32 xe, 32 xd, 32 xe, 32 xi, 32 xi, 32 xl, 32 xl, 51 xm, 32 xn, 32 xp, 32
wun, 73 wve, 73	xu, 33 xve, 33
wvel, 73 wvs, 73	xvp, 33 xvph, 33 xvr, 33
xa, 32 xb, 32 xc, 32 xcd, 32 xcg, 32 xcl, 32 xco, 32	xvs, 33 xvth, 33 xx, 33 xyp, 58 xyzp, 58 xz, 33

yln, 51 yq, 47

zln, 51 zq, 47