General Back Propagation

Sargur N. Srihari srihari@buffalo.edu

Topics (Deep Feedforward Networks)

- Overview
- 1.Example: Learning XOR
- 2. Gradient-Based Learning
- 3. Hidden Units
- 4. Architecture Design
- 5.Backpropagation and Other Differentiation Algorithms
- 6. Historical Notes

Topics in Backpropagation

- Forward and Backward Propagation
- 1. Computational Graphs
- 2. Chain Rule of Calculus
- 3. Recursively applying the chain rule to obtain backprop
- 4. Backpropagation computation in fully-connected MLP
- 5. Symbol-to-symbol derivatives
- 6. General backpropagation
- 7. Ex: backpropagation for MLP training
- 8. Complications
- 9. Differentiation outside the deep learning community
- 10. Higher-order derivatives

General Backpropagation

- To compute gradient of scalar z wrt one of its ancestors x in the graph
 - Begin by observing that gradient wrt z is $\frac{dz}{dz}$ =1
 - Then compute gradient wrt each parent of z
 by multiplying current gradient by Jacobian
 of: operation that produced z
 - We continue multiplying by Jacobians traveling backwards until we reach x

$$oxed{
abla_x}z = egin{pmatrix} \partial oldsymbol{y} \ \partial oldsymbol{x} \end{pmatrix}^T
abla_y z$$

X

 For any node that can be reached by going backwards from z through two or more paths sum the gradients from different paths at that node

Formal Notation for backprop

- Each node in the graph G corresponds to a variable
- Each variable is described by a tensor V
 - Tensors have any no. of dimensions
 - They subsume scalars, vectors and matrices

Each variable V is associated with the following subroutines:

- get_operation (V)
 - Returns the operation that computes V represented by the edges coming into V in G
 - Suppose we have a variable that is computed by matrix multiplication *C=AB*
 - Then get_operation (V) returns a pointer to an instance of the corresponding C++ class

Other Subroutines of V

- get_consumers (V, G)
 - Returns list of variables that are children of V in the computational graph G
- get_inputs (V, G)
 - Returns list of variables that are parents of V in the computational graph G

bprop operation

- Each operation op is associated with a bprop operation
- bprop operation can compute a Jacobian vector product as described by $\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$
- This is how the backpropagation algorithm can achieve great generality
 - Each operation is responsible for knowing how to backpropagate through the edges in the graph that it participates in

Example of bprop

- Suppose we have
 - a variable computed by matrix multiplication C=AB
 - the gradient of a scalar z wrt C is given by G
- The matrix multiplication operation is responsible for two back propagation rules
 - One for each of its input arguments
 - If we call bprop to request the gradient wrt A given that the gradient on the output is G
 - Then bprop method of matrix multiplication must state that gradient wrt A is given by GB^T
 - If we call bprop to request the gradient wrt B
 - Then matrix operation is responsible for implementing the bprop and specifying that the desired gradient is A^TG

Inputs, outputs of bprop

- Backprogation algorithm itself does not need to know any differentiation rules
 - It only needs to call each operation's bprop rules with the right arguments
- Formally op.bprop (inputs X, G) must return

$$\sum_{i} \left(\nabla_{x} \text{op.f(inputs)}_{i} \right) G_{i}$$

which is just an implementation of the chain rule

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{T} \nabla_{\mathbf{y}} z$$

- inputs is a list of inputs that are supplied to the operation,
 op.f is a math function that the operation implements,
- X is the input whose gradient we wish to compute,
- G is the gradient on the output of the operation

Computing derivative of x^2

- Example: The mul operator is passed to two copies of x to compute x²
- The ob.prop still returns x as derivative wrt to both inputs
- Backpropagation will add both arguments together to obtain 2x

Software Implementations

- Usually provide both:
 - 1. Operations
 - 2. Their bprop methods
- Users of software libraries are able to backpropagate through graphs built using common operations like
 - Matrix multiplication, exponents, logarithms, etc
- To add a new operation to existing library must derive ob.prop method manually

Formal Backpropagation Algorithm

- Algorithm 5: Outermost skeleton of backprop
- This portion does simple setup and cleanup work, Most of the important work happens in the build_grad subroutine of Algorithm 6
- Require: T, Target set of variables whose gradients must be computed
- Require: G, the computational graph
 - 1. Let G' be G pruned to contain only nodes that are ancestors of z and descendants of nodes in **T**
 - 2. for V in T do

 build-grad (V,G, G', grad-table)

 endfor
 - 4. Return grad-table restricted to **T**

Inner Loop: build-grad

- **Algorithm 6:** Innerloop subroutine **build-grad**(V,G,G',**grad-table**) of the back-propagation algorithm, called by Algorithm 5
- Require: V, Target set of variables whose gradients to be computed; G, the graph to modify; G', the restriction of G to modify; grad-table, a data structure mapping nodes to their gradients

```
if V is in grad-table, then return grad-table [V] endif i \leftarrow 1
 for C in get-customers(V,G') do
        op \leftarrow get-operation(C)
        D \leftarrow build-grad(C,G,G',grad-table)
        G(i) \leftarrow ob.bprop(get-inputs(C,G'),V,D)
         i \leftarrow i+1
  endfor
  G \leftarrow \Sigma_i G^{(i)}
  grad-table[V] = G
  Insert G and the operations creating it into G
Return G
```

7. Ex: general backprop for MLP

Ex: backprop for MLP training

- As an example, walk through back-propagation algorithm as it is used to train a multilayer perceptron
- We use Minibatch stochastic gradient descent
- Backpropagation algorithm is used to compute the gradient of the cost on a single minibatch
- We use a minibatch of examples from the training set formatted as a design matrix X, and a vector of associated class labels y

Ex: details of MLP training

- Network computes a layer hidden features
 H=max{0,XW⁽¹⁾}
 - No biases in model
- Graph language has relu to compute max {0,Z}
- Prediction: log-probs(unnorm) over classes: *HW*⁽²⁾
- Graph language includes cross-entropy operation
 - computes cross-entropy between targets y and probability distribution defined by log probs
 - Resulting cross-entropy defines cost JMLE
 - We include a regularization term

Forward propagation graph

Computational Graph of Gradient

- It would be large and tedious for this example
- One benefit of back-propagation algorithm is that it can automatically generate gradients that would be straightforward but tedious manually for a software engineer to derive

Tracing behavior of Backprop

- Looking at forward prop graph
- To train we wish to compute both $\nabla_{w^{(1)}} J$ and $\nabla_{w^{(2)}} J$
- There are two different paths leading backward from J to the weights:

- one through weight decay cost
 - It will always contribute $2\lambda W^{(i)}$ to the gradient on $W^{(i)}$
- other through cross-entropy cost
 - · It is more complicated

Cross-entropy cost

- Let G be gradient on unnormalized log probabilities $U^{(2)}$ given by cross-entropy op.
- Backprop needs to explore two branches:
 - On shorter branch adds H^TG to the gradient on $W^{(2)}$
 - Using the backpropagation rule for the second argument to the matrix multiplication operation
 - Other branch: longer descending along network
 - First backprop computes $\nabla_H J = GW^{(2)T}$
 - Next relu operation uses backpropagation rule to zero out components of gradient corresponding to entries of $U^{(1)}$ that were less than 0. Let result be called G'
 - Use backpropagation rule for the second argument of matmul to add X^TG to the gradient on $W^{(1)}$

After Gradient Computation

 It is the responsibility of SGD or other optimization algorithm to use gradients to update parameters

8. Complications

Complications

- 1. Returning more than a single tensor
- 2. Memory consumption
 - Backprop requires summing many tensors together
 - Instead of computing tensors separately add to a buffer
- 3. Need to handle various data types
 - 32-bit floating point, 64-bit floating point and integer
- 4. Determine whether gradient is undefined
- Various technicalities make real-world differentiation more complicated
 - But not unsurmountable