Propriedades de Linguagens Regulares

Propriedades de decisão Pertinência, caráter vazio, Etc. O Lema do Bombeamento

Tradução dos slides do Prof. Jeffrey D. Ullman (Stanford University)

Propriedades de Classes de Linguagens

- Uma classe de linguagem é um conjunto de linguagens.
 - Exemplo: as linguagens regulares.
- Classes de linguagens têm dois importantes tipos de propriedades:
 - 1. Propriedades de Decisão.
 - 2. Propriedades de Fechamento.

Representação de Linguagens

- Representações podem ser formal ou informal.
- Exemplo (formal): representar uma linguagem por um RE ou DFA definindo-a.
- Exemplo: (informal): uma declaração lógica sobre as strings:
 - ◆ {0ⁿ1ⁿ | n é um inteiro não-negativo}
 - "Conjunto de strings consistindo de algum número de 0's seguidos pelo mesmo número de 1's."

Propriedades de Decisão

- Uma propriedade de decisão para uma classe de linguagens é um algoritmo para responder perguntas importantes sobre autômatos.
- ◆Exemplo: > A linguagem L é vazia?
 - > Uma string w pertence à uma linguagem descrita?
 - > Dois autômatos definem a mesma linguagem?

Problemas com representaçãoes

- ◆Vamos imaginar que a linguagem é descrita informalmente, por isso, se minha descrição é "a linguagem vazia", então sim, caso contrário, não.
- Mas se representação é um DFA (ou um RE que poderá ser convertido em um DFA).
- ♦ Podemos dizer se $L(A) = \emptyset$ para um DFA A?

Por que Propriedades de Decisão?

- Quando falamos sobre protocolos representados como DFA's, notamos que importantes propriedades de um bom protocolo são relacionadas com a linguagem de um DFA.
- ◆Exemplo: "O protocolo termina?" = "A linguagem é finita?"
- ◆Exemplo: "O protocolo pode falhar?" = "A linguagem é não-vazia?"

Por que Propriedades de Decisão?

- ◆Podemos querer uma representação "mínima"para uma linguagem, ex. Um DFA com número mínimo de estados ou uma RE mais curta.
- Se não pudéssemos decidir "Estas duas linguagens são as mesmas?"
 - Ou seja, se dois DFA's definem a mesma linguagem?

Não podemos encontrar o menor.

Propriedades de Fechamento

- ◆Uma propriedade de fechamento de uma classe de linguagem diz que dada uma linguagem na classe, um operador (ex., união) produz uma outra linguagem na mesma classe.
- ◆Exemplo: as linguagens regulares são obviamente fechadas sob união, concatenação e fechamento (Kleene).
 - Use um representação RE de linguagens.

Por que Propriedades de Fechamento?

- 1. Ajuda a construir representações.
- 2. Ajuda mostrar (descrito informalmente) que linguagens não estão em uma classe.

Example: Propriedade de Fechamento

- ♦ Podemos facilmente provar que $L_1 = \{0^n1^n \mid n \ge 0\}$ não é uma linguagem regular.
- $igsplace L_2$ = conjunto de strings com um número igual de 0's e 1's também não é regular. É mais complicado provar.
- ◆Linguagens regulares são fechadas sob ∩.
- ◆Se L₂ é regular, então L₂ \cap L($\mathbf{0}*\mathbf{1}*$) = L₁ deveria ser também, mas não é.

Testar a pertinência

- Nossa primeira propriedade de decisão é a questão: "a string w está na linguagem regular L?"
- Seja L representada por um DFA A.
- ◆Simule o DFA processando o string de símbolos de entrada w.

O que fazer se a Linguagem Regular não for representada por um DFA?

Existe um ciclo de conversões de uma forma para outra:

Testar o caráter vazio

- Dada uma linguagem regular, a linguagem não contêm qualquer string.
- Suponha que a representação é um DFA.
- Construa o diagrama de transição (grafo).
- Calcule o conjunto de estados alcançáveis a partir do estado inical.
- Se qualquer estado final é alcançável, então não, senão sim.

O Problema da Infinitude

- Uma dada linguagem regular é infinita?
- Comece com um DFA para a linguagem.
- ◆Ideia: se o DFA tem n estados, e a linguagem contem algum string de comprimento n ou maior, então a linguagem é infinita.
- Caso contrário, a linguagem é finita.
 - Limitado para strings de comprimento < n.

Prova da Ideia

- Se um DFA com n-estados aceita uma string w de comprimento *n* ou maior, então deve haver um estado que aparece duas vezes no caminho rotulado por w do estado inicial até o estado final.
- ◆Uma vez que existem pelo menos n +1 estados ao longo do caminho de w.

Prova - (2)

Então xy^iz está na linguagem para todo i ≥ 0 .

Como y não é ϵ , vemos um número infinito de strings em L.

Infinitude – Continuação

- Ainda não temos um algoritmo.
- Existe um número infinito de strings de comprimento > n, e não podemos testar todas.
- ◆Segunda ideia: se existe um string de comprimento ≥ n (= número de estados) em L, então existe um string de comprimento entre n e 2n-1.

Prova da 2nd Ideia

Lembre:

- Podemos escolher y para ser o primeiro ciclo no caminho.
- \bullet Assim $|xy| \le n$; em particular, $1 \le |y| \le n$.
- ◆Portanto, se w tem comprimento 2n ou mais, existe um string mais curto em L que é ainda de comprimento pelo menos n.
- Manter encurtando para alcançar [n, 2n-1].

Algoritmo de Infinitude

- ◆Teste a pertinência de todos strings de comprimento entre n e 2n-1.
 - Se alguma for aceita, então L é infinita, senão finita.
- Um algoritmo terrível.
- Melhor: encontrar ciclos entre o estado inicial e um estado final.

Encontrando Ciclos

- 1. Elimine os estados que não podem ser alcançadas a partir do estado inicial.
- 2. Elimine os estados que não atingem um estado final.
- 3. Testar se o grafo de transição restante tem algum ciclo.

O Lema do Bombeamento

- Provou-se (quase acidentalmente) uma afirmação que é muito útil para mostrar que certas linguagens não são regulares.
- Chamado lema do bombeamento para linguagens regulares.

Teorema do Lema do bombeamento

Para toda linguagem regular L

Número de estados do DFA para L

Existe um inteiro n, tal que

Para todo string w em L de comprimento \geq n Podemos dividir w = xyz tal que:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. Para todo i \geq 0, xyⁱz está em L.

Exemplo: Lema do bombeamento

- Nós afirmamos quw {0^k1^k | k ≥ 1} não é uma linguagem regular.
- ◆Vamos supor que fosse. Então haveria uma constante n satisfazendo às condições do lema.
- ◆Seja w = 0^n1^n . Podemos escrever w = xyz, onde x e y consiste de 0's, e y $\neq \epsilon$.
- Mas então xz estaria em L, e esta string tem menos 0's que 1's.

Lema do bombeamento como um jogo de competição

- Para todas linguagens regulares L <u>existe</u> n tal que, <u>para todo</u> w em L com $|w| \ge n$ <u>existe</u> xyz igual a w tal que y≠ε, $|xy| \le n$ e <u>para todo</u> i≥0, xy^iz também está em L.
 - O jogador 1 escolhe a linguagem
 - O jogador 2 escolhe n, mas não o revela
 - O jogador 1 escolhe w ($|w| \ge n$)
 - O jogador 2 divide w em x, y e z (mas não revela)
 - O jogador 1 ganha escolhendo i, tal que xyiz não está em L

- Quando dois estados distintos p e q podem ser substituídos por um único estado que se comporte como p e q? p e q são equivalentes se:
 - Para todos os strings de entrada w, $\delta(p,w)$ é um estado de aceitação se e somente se $\delta(q,w)$ é um estado de aceitação.

- ◆Informal: Não exigimos que $\delta(p,w)$ e $\delta(q,w)$ sejam o mesmo estado, apenas que ambos sejam de aceitação ou ambos sejam de não-aceitação.
- Se dois estados não são equivalentes, então são distinguíveis.
- \bullet p é distinguível de q se existe pelo menos um string w tal que $\delta(p,w)$ ou $\delta(q,w)$ é de aceitação, e o outro é de não-aceitação.

- Para encontrar estados que sejam equivalentes, dedicaremos o melhor de nosso esforço a encontrar pares de estados que sejam distinguíveis.
 - Qualquer par de estados que não sejam distinguíveis serão equivalentes
 - Algoritmo de preenchimento de tabela
 Descoberta recursiva de pares distinguíveis em um DFA

Algoritmo de preenchimento de tabela

Tabela de não equivalência de estados

Algoritmo de preenchimento de tabela

Tabela de não equivalência de estados

В	X						
С	X	Х					
D	X	Х	X				
E		Х	X	Х			
F	X	X	X		X		
G	X	X	X	X	X	X	
Н	X		X	X	X	X	X
	Α	В	С	D	E	F	G

Testar a equivalência de linguagens regulares

- Suponha que cada uma das linguagens L e M seja representada de algum modo.
- Converta cada representação em um DFA.
- ◆Imagine um DFA cujos estados sejam a união dos estados dos DFA's de L e M.
- ◆Teste se os estados iniciais dos dois DFA's originais são equivalentes, usando o algoritmo de preenchimento de tabela.
 - Se eles forem equivalentes, então L = M e,
 - Em caso contrário, então L ≠ M.

- ◆Para cada DFA podemos encontrar um DFA equivalente que tem tão poucos estados quanto qualquer DFA que aceita a mesma linguagem.
 - Esse DFA de número mínimo de estados é único para a linguagem.

Algoritmo:

- Elimine qualquer estado que não possa ser acessado a partir do estado inicial.
- Particione os estados restantes em blocos, de forma que todos os estados no mesmo bloco sejam equivalentes, e que nenhum par de estados de blocos diferentes seja eequivalentes.

- A equivalência de estados é transitiva
 - Se *p* e *q* são equivalentes, e *q* e *r* são equivalentes, então *p* e *r* também são equivalentes.

- Se criarmos para cada estado q de um DFA um bloco consistindo em q e em todos os estados equivalentes a q, então os diferentes blocos de estados formarão uma partição do conjunto de estados.
 - Cada estado está exatamente em um bloco
 - Todos os elementos de um bloco são equivalentes
 - Nenhum par de estados escolhidos de diferentes blocos é equivalente

Exercícios

- Desenhe a tabela de distinções para esse autômato.
- Construa o DFA com o número mínimo de estados equivalente.

	0	1
\longrightarrow A	В	Α
В	Α	С
С	D	В
* D	D	Α
Ε	D	F
F	G	Е
G	F	G
Н	G	D

Exercícios

Desenhe a tabela de distinções para esse autômato.

Construa o DFA com o número mínimo de estados equivalente.

	0	1
→ A	В	Е
В	С	F
* C	D	Н
D	Е	Н
Е	F	1
* F	G	В
G	Н	В
Н	1	С
*	Α	Ε