AWR1xxx Radar Interface Control Document

Revision 0.97

September 13, 2018

Contents

								Pa	ige
C	ontei	nts							X
Li	st of	Figures							X
Li	st of	Tables							xvi
Re	evisi	on Histo	ry					X	viii
1	Intr 1.1 1.2		National Audience						1 1
2	2.1 2.2 2.3	Commur Commur 2.2.1 2.2.2	ommunications Overview nication Link Description nication Link configuration SPI Mailbox essage Structure SYNC MSGHDR MSGDATA CRC		 	 	 		2 2 2 2 2 4 5 5 11 12
3	Me : 3.1 3.2	Commur	ocessing nication protocol		 	 	 	 	13 14 14 15 16 17
4	Rac 4.1 4.2		race Messages Descriptions y of all messages and their associated sub-blocks	·			 		18 18 23

	4.3	AWR_NA	.CK_MSG	24
	4.4	AWR_ER	RROR_MSG	24
	4.5	AWR_RF	STATIC_CONF_SET_MSG	25
	4.6	AWR_RF	STATIC_CONF_GET_MSG	26
	4.7	AWR_RF	·INIT_MSG	26
	4.8	AWR_RF	DYNAMIC_CONF_SET_MSG	27
	4.9	AWR_RF	-DYNAMIC_CONF_GET_MSG	28
	4.10	AWR_RF	FRAME_TRIG_MSG	29
	4.11	AWR_RF	_ADVANCED_FEATURES_CONF_SET_MSG	29
	4.12	AWR_RF	-MONITORING_CONF_SET_MSG	30
	4.13	AWR_RF	:_STATUS_GET_MSG	32
	4.14	AWR_RF	-MONITORING_REPORT_GET_MSG	32
	4.15	AWR_RF	-MISC_CONF_SET_MSG	33
	4.16	AWR_RF	-MISC_CONF_GET_MSG	33
	4.17	AWR_RF	-ASYNC_EVENT_MSG1	34
	4.18	AWR_RF	-ASYNC_EVENT_MSG2	35
	4.19	AWR_DE	:V_RFPOWERUP_MSG	36
	4.20	AWR_DE	EV_CONF_SET_MSG	37
	4.21	AWR_DE	EV_CONF_GET_MSG	38
	4.22	AWR_DE	EV_FILE_DOWNLOAD_MSG	39
	4.23	AWR_DE	:V_FRAME_CONFIG_APPLY_MSG	39
	4.24	AWR_DE	:V_STATUS_GET_MSG	40
	4.25	AWR_DE	EV_ASYNC_EVENT_MSG	41
_				
5			tional APIs	42
	5.1		k related to AWR_ERROR_MSG	
		5.1.1	Sub block 0x0000 – AWR_RESP_ERROR_SB	
	5.2		ks related to AWR_RF_STATIC_CONF_SET_MSG	
		5.2.1	Sub block 0x0080 – AWR_CHAN_CONF_SET_SB	
		5.2.2	Sub block 0x0082 – AWR_ADCOUT_CONF_SET_SB	
		5.2.3	Sub block 0x0083 – AWR_LOWPOWERMODE_CONF_SET_SB	
		5.2.4	Sub block 0x0084 – AWR_DYNAMICPOWERSAVE_CONF_SET_SB	
		5.2.5	Sub block 0x0085 – AWR_HIGHSPEEDINTFCLK_CONF_SET_SB	_
		5.2.6	Sub block 0x0086 – AWR_RF_DEVICE_CFG_SB	
		5.2.7	Sub block 0x0087 – AWR_RF_RADAR_MISC_CTL_SB	
		5.2.8	Sub block 0x0088 – AWR_CAL_MON_FREQUENCY_LIMITS_SB	
		5.2.9	Sub block 0x0089 – AWR_RF_INIT_CALIBRATION_CONF_SB	
		5.2.10	Sub block 0x008A – AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS.	
		E 0.44	SB	
		5.2.11	Sub block 0x008B – AWR_CAL_DATA_RESTORE_SB	
	E 0	5.2.12	Sub block 0x008C – AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB	
	5.3		ks related to AWR_RF_STATIC_CONF_GET_MSG	ວ/
		5.3.1 5.3.2	Sub block 0x00A0 – 0x00AA – RESERVED	

	5.3.3	Sub block 0x00AC – AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB	57
5.4	Sub bloc	cks related to AWR_RF_INIT_MSG	59
	5.4.1	Sub block 0x00C0 – AWR_RF_INIT_SB	59
5.5	Sub bloo	cks related to AWR_RF_DYNAMIC_CONF_SET_MSG	59
	5.5.1	Sub block 0x0100 – AWR_PROFILE_CONF_SET_SB	59
	5.5.2	Sub block 0x0101 – AWR_CHIRP_CONF_SET_SB	66
	5.5.3	Sub block 0x0102 – AWR_FRAME_CONF_SET_SB	67
	5.5.4	Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_	<mark>SB</mark> . 69
	5.5.5	Sub block 0x0104 – AWR_CONT_STREAMING_MODE_EN_SB	72
	5.5.6	Sub block 0x0105 – AWR_ADVANCED_FRAME_CONF_SB	72
	5.5.7	Sub block 0x0106 – AWR_PERCHIRPPHASESHIFT_CONF_SB	80
	5.5.8	Sub block 0x0107 – AWR_PROG_FILT_COEFF_RAM_SET_SB	81
	5.5.9	Sub block 0x0108 – AWR_PROG_FILT_CONF_SET_SB	82
	5.5.10	Sub block 0x0109 – AWR_CALIB_MON_TIME_UNIT_CONF_SB	83
	5.5.11	Sub block 0x010A - AWR_RUN_TIME_CALIBRATION_CONF_AND_T	RIGGER.
		SB	84
	5.5.12	Sub block 0x010B - AWR_INTER_RX_GAIN_PHASE_CONTROL_SB	88
	5.5.13	Sub block 0x010C - AWR_RX_GAIN_TEMPLUT_SET_SB	89
	5.5.14	Sub block 0x010D – AWR_TX_GAIN_TEMPLUT_SET_SB	91
	5.5.15	Sub block 0x010E - AWR_LOOPBACK_BURST_CONF_SET_SB	93
	5.5.16	Sub block 0x010F – AWR_DYN_CHIRP_CONF_SET_SB	98
	5.5.17	Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_COI	NF_
		SET_SB	101
	5.5.18	Sub block 0x0111 - AWR_DYN_CHIRP_ENABLE_SB	103
	5.5.19	Sub block 0x0112 - AWR_INTERCHIRP_BLOCKCONTROLS_SB .	103
	5.5.20	Sub block 0x0113 – AWR_SUBFRAME_START_CONF_SB	106
5.6	Sub bloo	cks related to AWR_RF_DYNAMIC_CONF_GET_SB	107
	5.6.1	Sub block 0x0120 – AWR_PROFILE_CONF_GET_SB	107
	5.6.2	Sub block 0x0121 – AWR_CHIRP_CONF_GET_SB	108
	5.6.3	Sub block 0x0122 – AWR_FRAME_CONF_GET_SB	108
	5.6.4	Sub block 0x0123 – RESERVED	109
	5.6.5	Sub block 0x0124 – RESERVED	109
	5.6.6	Sub block 0x0125 – AWR_ADV_FRAME_CONF_GET_SB	109
	5.6.7	Sub block 0x0126 – RESERVED	109
	5.6.8	Sub block 0x0127 – RESERVED	109
	5.6.9	Sub block 0x0128 – RESERVED	109
	5.6.10	Sub block 0x0129 – RESERVED	109
	5.6.11	Sub block 0x012A – RESERVED	109
	5.6.12	Sub block 0x012B – RESERVED	
	5.6.13	Sub block 0x012C - AWR_RX_GAIN_TEMPLUT_GET_SB	109
	5.6.14	Sub block 0x012D – AWR_TX_GAIN_TEMPLUT_GET_SB	110
5.7	Sub bloo	cks related to AWR_FRAME_TRIG_MSG	
	5.7.1	Sub block 0x0140 – AWR_FRAMESTARTSTOP_CONF_SB	110
5.8	Sub bloc	cks related to AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG .	111

		5.8.1	Sub block 0x0180 – AWR_BPM_COMMON_CONF_SET_SB	. 111
		5.8.2	Sub block 0x0181 - AWR_BPM_CHIRP_CONF_SET_SB	. 111
5	5.9	Sub block	ks related to AWR_RF_STATUS_GET_MSG	. 112
		5.9.1	Sub block 0x0220 - AWR_RF_VERSION_GET_SB	. 112
		5.9.2	Sub block 0x0221 - AWR_RF_CPUFAULT_STATUS_GET_SB	. 114
		5.9.3	Sub block 0x0222 - AWR_RF_ESMFAULT_STATUS_GET_SB	. 116
		5.9.4	Sub block 0x0223 – AWR_RF_DIEID_GET_SB	. 118
		5.9.5	Sub block 0x0224 - AWR_RF_BOOTUPBIST_STATUS_GET_SB	. 119
5	5.10	Sub block	ks related to AWR_RF_MONITORING_REPORT_GET_MSG	. 121
		5.10.1	Sub block $0x0260 - AWR_RF_DFE_STATISTICS_REPORT_GET_SB$. 121
5	5.11	Sub block	ks related to AWR_RF_MISC_CONF_SET_MSG	. 129
		5.11.1	Sub block 0x02C0 – RESERVED	. 129
		5.11.2	Sub block 0x02C1 – RESERVED	. 129
		5.11.3	Sub block $0x02C2 - AWR_RF_TEST_SOURCE_CONFIG_SET_SB$. 129
		5.11.4	Sub block 0x02C3 - AWR_RF_TEST_SOURCE_ENABLE_SET_SB	. 131
		5.11.5	Sub block 0x02C4 – 0x02CB RESERVED	. 132
		5.11.6	Sub block 0x02CC - AWR_RF_LDO_BYPASS_SB	. 132
		5.11.7	Sub block 0x02CD - AWR_RF_PALOOPBACK_CFG_SB	. 134
		5.11.8	Sub block 0x02CE - AWR_RF_PSLOOPBACK_CFG_SB	. 134
		5.11.9	Sub block 0x02CF - AWR_RF_IFLOOPBACK_CFG_SB	. 136
		5.11.10	Sub block 0x02D0 - AWR_RF_GPADC_CFG_SET_SB	. 137
		5.11.11	Sub block 0x02D1 – RESERVED	. 139
		5.11.12	Sub block 0x02D2 – RESERVED	. 139
		5.11.13	Sub block 0x02D3 – RESERVED	. 139
5	5.12	Sub block	ks related to AWR_RF_MISC_CONF_GET_MSG	. 139
		5.12.1	Sub block 0x02E0 to 0x2E9 – RESERVED	. 139
		5.12.2	Sub block 0x02EA – AWR_RF_TEMPERATURE_GET_SB	. 139
5	5.13	Sub block	ks related to AWR_RF_ASYNC_EVENT_MSG1	. 141
		5.13.1	Sub block 0x1000 – RESERVED	
		5.13.2	Sub block 0x1001 – RESERVED	. 141
		5.13.3	Sub block 0x1002 – AWR_AE_RF_CPUFAULT_SB	. 141
		5.13.4	Sub block 0x1003 – AWR_AE_RF_ESMFAULT_SB	
		5.13.5	Sub block 0x1004 – AWR_AE_RF_INITCALIBSTATUS_SB	
		5.13.6	Sub block 0x1005 – RESERVED	. 147
		5.13.7	Sub block 0x1006 – RESERVED	
		5.13.8	Sub block 0x1007 – RESERVED	
		5.13.9	Sub block 0x1008 – RESERVED	
		5.13.10	Sub block 0x1009 – RESERVED	
		5.13.11	Sub block 0x100A – RESERVED	
		5.13.12	Sub block 0x100B - AWR_AE_RF_FRAME_TRIGGER_RDY_SB	
		5.13.13	Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB	
		5.13.14	Sub block 0x100E – RESERVED	
		5.13.15	Sub block 0x100D – RESERVED	
		5 13 16	Sub block 0x100E - RESERVED	140

	5.13.17	Sub block 0x100F – AWR_FRAME_END_AE_SB
	5.13.18	Sub block 0x1010 – AWR_ANALOGFAULT_AE_SB
	5.13.19	Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB150
	5.13.20	Sub block 0x1012 – AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_
	E 10 01	SB
	5.13.21	
	E 10 00	AE_SB
	5.13.22	Sub block 0x1014 - RESERVED
	5.13.23	Sub block 0x1015 - AWR_MONITOR_REPORT_READER_AE_SB 154 Sub block 0x1016 - AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_
	5.13.24	SB
	5.13.25	Sub block 0x1017 - AWR_MONITOR_TEMPERATURE_REPORT_AE_SB 155
	5.13.26	Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB157
	5.13.27	Sub block 0x1019 – AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_ SB
	5.13.28	Sub block 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB 160
	5.13.29	Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_SB 162
	5.13.30	Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_SB 163
	5.13.31	Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_SB 164
	5.13.32	Sub block 0x101E – AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_
	00.0_	SB
	5.13.33	
5 14	Sub bloc	ks related to AWR_RF_ASYNC_EVENT_MSG2
0.11	5.14.1	Sub block 0x1020 – AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_
	0.11.1	SB
	5.14.2	Sub block 0x1021 – AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT
	5.14.2	AE_SB
	5.14.3	Sub block 0x1022 – AWR_MONITOR_TX0_BPM_REPORT_AE_SB 170
	5.14.4	Sub block 0x1023 – AWR_MONITOR_TX1_BPM_REPORT_AE_SB 171
	5.14.5	Sub block 0x1024 – AWR_MONITOR_TX2_BPM_REPORT_AE_SB 172
	5.14.6	Sub block 0x1025 - AWR_MONITOR_SYNTHESIZER_FREQUENCY_
	3.14.0	REPORT_AE_SB
	5.14.7	Sub block 0x1026 - AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB175
	5.14.8	Sub block 0x1027 - AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB176
	5.14.9	Sub block 0x1028 - AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.10	Sub block 0x1029 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB
	5.14.11	Sub block 0x102A – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_
		REPORT_AE_SB

	5.14.12	Sub block 0x102B – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_	100
	E 4 4 4 0	SIGNALS_REPORT_AE_SB	
	5.14.13	REPORT_AE_SB	
	E 14 14	Sub block 0x102D –AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPOR	
	5.14.14	AE_SB	
	5.14.15	Sub block 0x102E – AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_	
		AE_SB	
	5.14.16	Sub block 0x1031 - AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_	
		AE_SB	. 185
5.15	Sub bloc	ks related to AWR_DEV_RFPOWERUP_MSG	. 186
	5.15.1	Sub block 0x4000 – AWR_DEV_RFPOWERUP_SB	. 186
5.16	Sub bloc	ks related to AWR_DEV_CONF_SET_MSG	. 187
	5.16.1	Sub block 0x4040 - AWR_DEV_MCUCLOCK_CONF_SET_SB	. 187
	5.16.2	Sub block 0x4041 - AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB	. 188
	5.16.3	Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB	. 189
	5.16.4	Sub block 0x4043 - AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB	. 192
	5.16.5	Sub block 0x4044 - AWR_DEV_RX_DATA_PATH_CLK_SET_SB	. 193
	5.16.6	Sub block 0x4045 – AWR_DEV_LVDS_CFG_SET_SB	. 194
	5.16.7	Sub block 0x4046 - AWR_DEV_RX_CONTSTREAMING_MODE_CONF_	
		SET_SB	. 195
	5.16.8	Sub block 0x4047 – AWR_DEV_CSI2_CFG_SET_SB	. 196
	5.16.9	Sub block 0x4048 – AWR_DEV_PMICCLOCK_CONF_SET_SB	. 198
	5.16.10	Sub block 0x4049 – AWR_MSS_PERIODICTESTS_CONF_SB	. 202
	5.16.11	Sub block 0x404A - AWR_MSS_LATENTFAULT_TEST_CONF_SB	. 203
	5.16.12	Sub block 0x404B - AWR_DEV_TESTPATTERN_GEN_SET_SB	. 205
	5.16.13	Sub block 0x404C - AWR_DEV_CONFIGURATION_SET_SB	. 208
5.17	Sub bloc	ks related to AWR_DEV_CONF_GET_MSG	. 208
	5.17.1	Sub block 0x4060 – AWR_DEV_MCUCLOCK_GET_SB	. 208
	5.17.2	Sub block 0x4061 - AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB .	. 209
	5.17.3	Sub block 0x4062 – AWR_DEV_RX_DATA_PATH_CONF_GET_SB	. 209
	5.17.4	Sub block 0x4063 - AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB	. 209
	5.17.5	Sub block 0x4064 – AWR_DEV_RX_DATA_PATH_CLK_GET_SB	. 210
	5.17.6	Sub block 0x4065 – AWR_DEV_LVDS_CFG_GET_SB	. 210
	5.17.7	Sub block 0x4066 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_	
		GET_SB	-
	5.17.8	Sub block 0x4067 – AWR_DEV_CSI2_CFG_GET_SB	
	5.17.9	Sub block 0x4068 – AWR_DEV_PMICCLOCK_CONF_GET_SB	
	5.17.10	Sub block 0x4069 – AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB	
	5.17.11	Sub block 0x406A – AWR_MSS_PERIODICTESTS_CONF_GET_SB	
		Sub block 0x406B – AWR_DEV_TESTPATTERN_GEN_GET_SB	
5.18		ks related to AWR_DEV_FILE_DOWNLOAD_MSG	
	5.18.1	Sub block 0x4080 – AWR_DEV_FILE_DOWNLOAD_SB	
5.19	Sub bloc	ks related to AWR_DEV_FRAME_CONFIG_APPLY_MSG	. 213

		5.19.1	Sub block 0x40C0 – AWR_DEV_FRAME_CONFIG_APPLY_SB	. 213
		5.19.2	Sub block 0x40C1 – AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB	. 213
	5.20	Sub bloc	ks related to AWR_DEV_STATUS_GET_MSG	. 215
		5.20.1	Sub block 0x40E0 – AWR_MSSVERSION_GET_SB	. 215
		5.20.2	Sub block 0x40E1 – AWR_MSSCPUFAULT_STATUS_GET_SB	. 217
		5.20.3	Sub block 0x40E2 – AWR_MSSESMFAULT_STATUS_GET_SB	. 218
	5.21	Sub bloc	ks related to AWR_DEV_ASYNC_EVENT_MSG	. 223
		5.21.1	Sub block 0x5000 – AWR_AE_DEV_MSSPOWERUPDONE_SB	. 223
		5.21.2	Sub block 0x5001 – AWR_AE_DEV_RFPOWERUPDONE_SB	. 225
		5.21.3	Sub block 0x5002 – AWR_AE_MSS_CPUFAULT_SB	
		5.21.4	Sub block 0x5003 – AWR_AE_MSS_ESMFAULT_STATUS_SB	. 228
		5.21.5	Sub block 0x5004 – RESERVED	
		5.21.6	Sub block 0x5005 – AWR_AE_MSS_BOOTERRORSTATUS_SB	. 231
		5.21.7	Sub block 0x5006 – AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB	
		5.21.8	Sub block 0x5007 – AWR_AE_MSS_PERIODICTEST_STATUS_SB	
		5.21.9	Sub block 0x5008 – AWR_AE_MSS_RFERROR_STATUS_SB	
		5.21.10	Sub block 0x5009 – AWR_AE_MSS_VMON_ERRORSTATUS_SB	
		5.21.11	Sub block 0x500A – AWR_AE_MSS_ADC_DATA_SB	
		5.21.12	Sub block 0x500B – RESERVED	
	5.22		es on the order of issuing API SBs	
		5.22.1	Single device mode	
		5.22.2	Cascaded device mode	
		5.22.3	Continuous streaming mode (in single device case)	
		5.22.4	Continuous streaming (CW) mode (in cascaded device case)	. 241
6	ΔΡΙ	Error C	odes	244
Ŭ	6.1		des for boot on SPI	
	0.1	21101 000		00
7	Rad	ar Moni	toring APIs	255
	7.1	Commor	Configurations and Reports	. 255
		7.1.1	Sub block 0x01C0 - AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SI	B 255
		7.1.2	Sub block 0x01C1 - AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB .	. 257
		7.1.3	Sub block 0x01C2 – AWR_MONITOR_ANALOG_ENABLES_CONF_SB	. 257
	7.2	Tempera		. 259
		7.2.1	Sub block 0x01C3 – AWR_MONITOR_TEMPERATURE_CONF_SB	. 259
	7.3		and Phase Monitor	
		7.3.1	Sub block 0x01C4 - AWR_MONITOR_RX_GAIN_PHASE_CONF_SB	
	7.4		e Monitor	
		7.4.1	Sub block 0x01C5 – AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB	
	7.5		age Monitor	
		7.5.1	Sub block 0x01C6 – AWR_MONITOR_RX_IFSTAGE_CONF_SB	
	7.6		er Monitor	
		7.6.1	Sub block 0x01C7 – AWR_MONITOR_TX0_POWER_CONF_SB	
		7.6.2	Sub block 0x01C8 – AWR_MONITOR_TX1_POWER_CONF_SB	. 268

	7.6.3	Sub block 0x01C9 – AWR_MONITOR_TX2_POWER_CONF_SB	270
7.7	TX Ball E	Break Monitor	271
	7.7.1	Sub block 0x01CA – AWR_MONITOR_TX0_BALLBREAK_CONF_SB	271
	7.7.2	Sub block 0x01CB – AWR_MONITOR_TX1_BALLBREAK_CONF_SB	272
	7.7.3	Sub block 0x01CC - AWR_MONITOR_TX2_BALLBREAK_CONF_SB	273
7.8	TX Gain	and Phase Mismatch Monitoring	274
	7.8.1	Sub block 0x01CD - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_	
		CONF_SB	274
7.9	TX BPM	Phase Monitor	
	7.9.1	Sub block 0x01CE - AWR_MONITOR_TX0_BPM_CONF_SB	277
	7.9.2	Sub block 0x01CF – AWR_MONITOR_TX1_BPM_CONF_SB	279
	7.9.3	Sub block 0x01D0 – AWR_MONITOR_TX2_BPM_CONF_SB	
7.10		izer Frequency Monitoring	282
	7.10.1	Sub block 0x01D1 - AWR_MONITOR_SYNTHESIZER_FREQUENCY_	
		CONF_SB	
7.11		Analog Signals Monitor	
	7.11.1	Sub block 0x01D2 – AWR_MONITORING_EXTERNAL_ANALOG_SIGNAL	
		CONF_SB	
7.12		Analog Signals Monitor	
	7.12.1	Sub block 0x01D3 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNAL	
	7.40.0	CONF_SB	
	7.12.2	Sub block 0x01D4 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNAL	
	7.12.3	CONF_SB	
	7.12.3	CONF_SB	
	7.12.4	Sub block 0x01D6 – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS	
	7.12.4	CONF_SB	
	7.12.5	Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_	209
	7.12.0	SIGNALS_CONF_SB	290
	7.12.6	Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGI	
	7.12.0	CONF_SB	
7.13	PLL Con	ntrol Voltage Monitor	
	7.13.1	Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNAL	
		CONF_SB	
7.14	Dual Clo	ock Comparator Based Clock Frequency Monitor	
	7.14.1	Sub block 0x01DA – AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB	
7.15	RX Satu	ration Detection Monitor	295
	7.15.1	Sub block 0x01DB - AWR_MONITOR_RX_SATURATION_DETECTOR_	
		CONF_SB	295
	7.15.2	Sub block 0x01DC - AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB .	297
7.16	RX mixe	r input power monitor	298
	7.16.1	Sub block 0x01DD - AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB	298
7.17	Sub bloc	k 0x01DE – RESERVED	299
7.18	Analog F	-ault injection	299

		7.18.1 Sub block 0x01DF – AWR_ANALOG_FAULT_INJECTION_CONF_SB :	299
8	Chi	rp Parameters (CP) and Chirp Quality (CQ) data	306
	8.1	Chirp Parameters data	306
	8.2	Chirp Quality data	307
		8.2.1 CQ1	309
		8.2.2 CQ2	312
9	Cali	ibration and monitoring durations	315
	9.1	Boot time calibration durations	315
	9.2	Run time calibration durations	315
	9.3	Monitoring duration	316
	9.4	Software overheads	318
		9.4.1 Note on idle time for clearing the watchdog	318
	9.5	Sample Application	323

List of Figures

2.1	xWR12xx Software Architecture
2.2	xWR16xx Software Architecture
2.3	Radar Message Structure
2.4	Message Header Format
2.5	OPCODE Format
2.6	MSGLEN Format
2.7	FLAGS Format
2.8	NSBC Format
2.9	Message Sub block structure
3.1	Flow Diagram (API)
3.2	Flow Diagram (Asynchronous Events)
3.3	SPI Message Sequence
5.1	Frame trigger delay in case of external hardware trigger
5.2	Dynamic chirp configuration use case timing diagram
5.3	Lane formats and the order of receiving the data from the lanes
8.1	Chirp parameter information fields
8.2	Chirp parameter information from DSS registers
8.3	CQ data start address configuration in single chirp use case
8.4	CQ data start address configuration in multi chirp use case
8.5	Time slices during RX signal and image band monitor and saturation monitor 310
8.6	CQ1 data format in memory in 16-bit mode
8.7	CQ1 data format in memory in 12-bit mode
8.8	CQ1 data format in memory in 14-bit mode
8.9	CQ2 data format in memory in 16-bit mode
8.10	CQ2 data format in memory in 12-bit mode
8.11	CQ2 data format in memory in 14-bit mode
9.1	Watchdog idle time calculation

List of Tables

2.1	Possible SYNC values and their usage	5
2.3	MSGLEN field descriptions	9
2.4	FLAGS field description	9
2.5	NSBC field description	11
2.6	Checksum computation example	11
2.7	CRC types and their polynomials	12
4.1	Summary of all Radar messages and their associated sub blocks	18
5.1	AWR_RESP_ERROR_SB contents	42
5.2	AWR_CHAN_CONF_SET_SB contents	43
5.3	AWR_ADCOUT_CONF_SB contents	46
5.4	AWR_LOWPOWERMODE_CONF_SET_SB contents	
5.5	AWR_DYNAMICPOWERSAVE_CONF_SET_SB contents	47
5.6	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents	
5.7	AWR_RF_DEVICE_CFG_SB contents	
5.8	AWR_RF_MISC_CTL_SB contents	
5.9	AWR_CAL_MON_FREQUENCY_LIMITS_SB contents	
	AWR_RF_INIT_CALIBRATION_CONF_SB contents	
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB contents	
	AWR_CAL_DATA_RESTORE_SB contents	
	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents	
	AWR_CAL_DATA_SAVE_SB contents	
	AWR_CAL_DATA_SAVE_SB response packet contents	
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents	
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents	
	AWR_RF_INIT_SB contents	
	AWR_PROFILE_CONF_SB contents	
	Note on maximum sampling rate	
	AWR_CHIRP_CONF_SET_SB contents	
	AWR_FRAME_CONF_SET_SB contents	
	AWR_CONT_STREAMING_MODE_CONF_SET_SB contents	
	AWR_CONT_STREAMING_MODE_EN_SB contents	
	AWR_ADVANCED_FRAME_CONF_SB contents	
5 26	AWR PERCHIRPPHASESHIFT CONF SR contents	81

5.27	AWR_PROG_FILT_COEFF_RAM_SET_SB contents	82
5.28	AWR_PROG_FILT_CONF_SET_SB contents	82
5.29	AWR_CALIB_MON_TIME_UNIT_CONF_SB contents	83
5.30	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB contents	84
5.31	AWR_INTER_RX_GAIN_PHASE_CONTROL_SB contents	88
5.32	AWR_RX_GAIN_TEMPLUT_SET_SB contents	89
5.33	AWR_TX_GAIN_TEMPLUT_SET_SB contents	91
5.34	AWR_LOOPBACK_BURST_CONF_SET_SB contents	94
5.35	AWR_DYN_CHIRP_CONF_SET_SB contents	98
5.36	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents	01
5.37	AWR_DYN_CHIRP_ENABLE_SB contents	03
5.38	AWR_INTERCHIRP_BLOCKCONTROLS_SB contents	04
5.39	AWR_SUBFRAME_START_CONF_SB contents	06
5.40	AWR_PROFILE_CONF_GET_SB contents	07
5.41	AWR_CHIRP_CONF_GET_SB contents	80
5.42	AWR_FRAME_CONF_GET_SB contents	80
5.43	AWR_ADV_FRAME_CONF_GET_SB contents	09
5.44	AWR_RX_GAIN_TEMPLUT_GET_SB contents	09
	AWR_TX_GAIN_TEMPLUT_GET_SB contents	
	AWR_FRAMESTARTSTOP_CONF_SB contents	
5.47	AWR_BPM_COMMON_CONF_SET_SB contents	11
	AWR_BPM_CHIRP_CONF_SET_SB contents	
	AWR_RF_VERSION_GET_SB contents	
5.50	AWR_RF_VERSION_SB response contents	13
	AWR_RF_CPUFAULT_STATUS_GET_SB response contents	
	AWR_RF_CPUFAULT_STATUS_GET_SB response contents	
5.53	AWR_RF_ESMFAULT_STATUS_GET_SB response contents	16
	AWR_RF_ESMFAULT_STATUS_SB response contents	
	AWR_RF_DIEID_GET_SB response contents	
	AWR_RF_DIEID_STATUS_SB response contents	
	AWR_RF_BOOTUPBIST_STATUS_GET_SB response contents	
5.58	AWR_RF_BOOTUPBIST_STATUS_DATA_SB response contents	20
	AWR_RF_DFE_STATISTICS_REPORT_GET_SB response contents	
	AWR_RF_DFE_STATISTICS_REPORT_SB response contents	
	AWR_RF_TEST_SOURCE_CONFIG_SET_SB contents	
5.62	AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents	32
5.63	AWR_RF_LDO_BYPASS_SB contents	32
	AWR_RF_PALOOPBACK_CFG_SB contents	
	AWR_RF_PSLOOPBACK_CFG_SB contents	
	AWR_RF_IFLOOPBACK_CFG_SB contents	
	AWR_RF_GPADC_CFG_SET_SB contents	
	AWR_RF_TEMPERATURE_GET_SB contents	
	AWR_RF_TEMPERATURE_DATA_SB contents	
		41

5./1	AWR_AE_RF_ESMFAULI_STATUS_SB response contents	143
5.72	AWR_AE_RF_INITCALIBSTATUS_SB response contents	145
5.73	AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents	147
5.74	AWR_AE_RF_GPADC_RESULT_DATA_SB response contents	147
5.75	AWR_FRAME_END_AE_SB response contents	149
	AWR_ANALOGFAULT_AE_SB response contents	
5.77	AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents	150
5.78	AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents	151
5.79	AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB response contents	153
5.80	AWR_MONITORING_REPORT_HEADER_AE_SB response contents	155
5.81	AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB contents	155
5.82	AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents	156
5.83	AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents	157
5.84	AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB contents	159
	AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents	
5.86	AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents	162
5.87	AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents	164
5.88	AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents	165
5.89	AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents	166
	AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents	
5.91	AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents	167
5.92	AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents	168
5.93	AWR_MONITOR_TX0_BPM_REPORT_AE_SB contents	170
	AWR_MONITOR_TX1_BPM_REPORT_AE_SB contents	
5.95	AWR_MONITOR_TX2_BPM_REPORT_AE_SB contents	173
5.96	AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB contents	174
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents	
5.98	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents	177
5.99	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents	177
5.100	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents	178
5.101	$AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB\ contents\ \ .$	179
5.102	AWR_MONITOR_PM_CLK_LO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB c	on-
	tents	181
5.103	BAWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB con-	
	tents	182
5.104	AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB contents	183
5.105	SAWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB contents	184
5.106	SAWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB contents	185
5.107	'AWR_DEV_POWERUP_SB contents	187
	BAWR_DEV_MCUCLOCK_CONF_SET_SB contents	
	OAWR_DEV_RX_DATA_FORMAT_CONF_SB contents	
	DAWR_DEV_RX_DATA_PATH_CONF_SB contents	
	AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contents	
	AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents	

5.113AWR_DEV_LVDS_CFG_SET_SB contents	. 194
5.114AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB contents	. 196
5.115AWR_DEV_CSI2_CFG_SET_SB contents	. 196
5.116AWR_DEV_PMICCLOCK_CONF_SET_SB contents	. 198
5.117PMIC clock frequency across chirps in chirp-to-chirp staircase mode in an exam-	
ple when PMIC clock varies from 2 MHz to 2.5 MHz in 32 chirps	. 201
5.118AWR_MSS_PERIODICTESTS_CONF_SB contents	. 202
5.119AWR_MSS_LATENTFAULT_TEST_CONF_SB contents	
5.120AWR_DEV_TESTPATTERN_GEN_SET_SB contents	
5.121 AWR_DEV_CONFIGURATION_SET_SB contents	
5.122AWR_DEV_MCUCLOCK_GET_SB contents	
5.123AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB contents	
5.124AWR_DEV_RX_DATA_PATH_CONF_GET_SB contents	
5.125AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents	. 209
5.126AWR_DEV_RX_DATA_PATH_CLK_GET_SB contents	
5.127AWR_DEV_LVDS_CFG_GET_SB contents	
5.128AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents	
5.129AWR_DEV_CSI2_CFG_GET_SB contents	
5.130AWR_DEV_PMICCLOCK_CONF_GET_SB contents	. 211
5.131 AWR_MSS_LATENTFAULT_CONF_GET_SB contents	
5.132AWR_MSS_PERIODICTESTS_CONF_GET_SB contents	. 211
5.133AWR_DEV_TESTPATTERN_GEN_GET_SB contents	. 212
5.134AWR_DEV_FILE_DOWNLOAD_SB contents	. 212
5.135AWR_DEV_FRAME_CONFIG_APPLY_SB contents	. 213
5.136AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents	. 213
5.137AWR_MSSVERSION_GET_SB contents	. 215
5.138AWR_MSSVERSION_SB contents	. 216
5.139AWR_MSSVERSION_SB contents	
5.140AWR_MSSCPUFAULT_STATUS_SB contents	. 217
5.141 AWR_MSSESMFAULT_STATUS_GET_SB contents	
5.142AWR_MSSESMFAULT_STATUS_SB contents	. 220
5.143AWR_AE_DEV_MSSPOWERUPDONE_SB contents	. 223
5.144AWR_AE_DEV_RFPOWERUPDONE_SB contents	. 225
5.145AWR_AE_MSS_CPUFAULT_STATUS_SB contents	. 227
5.146AWR_AE_MSS_ESMFAULT_STATUS_SB contents	. 228
5.147AWR_AE_MSS_BOOTERRORSTATUS_SB contents	. 231
5.148AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB contents	. 233
5.149AWR_AE_MSS_PERIODICTEST_STATUS_SB contents	. 235
5.150AWR_AE_MSS_RFERROR_STATUS_SB contents	. 235
5.151AWR_AE_MSS_VMON_ERRORSTATUS_SB contents	. 236
5.152AWR_AE_MSS_ADC_DATA_SB contents	. 237
5.153Sequence of APIs to be issued to master and slave devices in cascaded mode	
configuration for FMCW mode measurements	. 239

5.154	4Sequence of APIs to be issued to master and slave devices in cascaded mode for	0.40
	CW mode measurements	242
6.1	BSS API error codes	244
6.2	MSS API error codes (Applicable only in xWR1243)	251
6.3	Bit field describing the error status during boot on SPI	
7.1	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents	255
7.2	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents	
7.3	AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents	
7.4	AWR_MONITOR_TEMPERATURE_CONF_SB contents	
7.5	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents	
7.6	AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents	
7.7	AWR_MONITOR_RX_IFSTAGE_CONF_SB contents	265
7.8	AWR_MONITOR_TX0_POWER_CONF_SB contents	
7.9	AWR_MONITOR_TX1_POWER_CONF_SB contents	268
7.10	AWR_MONITOR_TX2_POWER_CONF_SB contents	270
7.11	AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents	272
7.12	AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents	272
7.13	AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents	273
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents	
7.15	AWR_MONITOR_TX0_BPM_CONF_SB contents	277
	AWR_MONITOR_TX1_BPM_CONF_SB contents	
	AWR_MONITOR_TX2_BPM_CONF_SB contents	
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents	
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB contents	
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents	
	DCC Clock monitor pairs	
7 28	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents	204
	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB contents	
	AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents	
	AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents	
7.32	AWR_ANALOG_FAULT_INJECTION_CONF_SB contents	299
9.1	Duration of boot time calibrations	315
9.2	Duration of run time calibrations	
9.3	Duration of analog monitors	
9.4	Duration of digital monitors	
		,

9.5	Software overheads every FTTI that should be accounted to program CALIB_	
	MON_TIME_UNIT and CALIBRATION_PERIODICITY	18

Revision History

Revision Date Description 0.97 13.09.2018

- Added a new parameter CASCADING_PINOUT_CFG in AWR_CHAN_CONF_SET_SB in Section 5.2.1 on page 43.
- Added a new parameter PA LDO disable in AWR_RF_LDO_ BYPASS_SB API in Section 5.11.6 on page 132.
- Added new APIs AWR_PHASE_SHIFTER_CAL_DATA_SAVE_ SB in page 57 and AWR_PHASE_SHIFTER_CAL_DATA_RE-STORE_SB in page 56.
- Added a new parameter LDO_SC_MONITORING_EN in AWR_ MONITOR_ANALOG_ENABLES_CONF_SB in page 257.
- 5. Fixed the length for the SBLKID AWR_DEV_CONFIGURA-TION_SET_SB in page 208.
- Added a note in AWR_CHIRP_CONF_SET_SB in page 66 that dither parameters are only additive to the programmed parameters in AWR_PROFILE_CONF_SB.
- 7. Updated the valid range of SFx_PERIOD parameter in AWR_ADVANCED_FRAME_CONF_SB in page 72 to 1.342 s.
- Added a note below AWR_SUBFRAME_START_CONF_SB on page 107 indicating that watchdog feature is not available when software based sub-frame trigger mode is used.
- 9. Added new parameters in AWR_MONITOR_PMCLKLO_IN-TERNAL_ANALOG_SIGNALS_CONF_SB in page 290 for 20 GHz sync signal monitoring. Also updated AWR_MONITOR_ PMCLKLO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_ SB in page 180 with 20 GHz monitoring report.

- Added parameters in AWR_MONITOR_TXn_BPM_CONF_SB in page numbers 170, 171 and 172 for phase shifter monitoring. Also updated AWR_MONITOR_TXn_BPM_REPORT_AE_SB in pages 170, 171 and 172 for phase shifter monitoring reports.
- 11. Added a note in page 83 indicating that programmble filter APIs should not be issued when frames are ongoing.
- 12. Updated the mapping of PGA_GAIN_INDEX numbers to gain values in AWR_RF_PSLOOPBACK_CFG_SB in page 135.
- Added a note after AWR_BPM_CHIRP_CONF_SET_SB in page 111 and AWR_PERCHIRPPHASESHIFT_CONF_SB in page 80 indicating when the BPM and phase shifters are applied.
- 14. Added TX_CAL_EN_CFG parameter in AWR_PROFILE_CONF_SET_SB in page 59.
- 15. Added a note in AWR_RF_INIT_CALIBRATION_CONF_SB in page 52 indicating that if TX boot time calibration is disabled, no other backoff other than 0 dB is supported.
- Added the monitoring duration of TX phase shifter in Table 9.3 in page 317.
- 17. Added a new API AWR_RF_DIEID_GET_SB in page 118 which reads the Die ID of the device.
- 18. Added a note in section AWR_LOOPBACK_BURST_CONF_ SET_SB in page 93 indicating that when using loopback burst, the corresponding sub-frame in advanced frame configuration should use SFx_NUM_UNIQUE_CHIRPS_PER_BURST as 1.
- 19. Corrected the sequence of issuing APIs in page 237 loop-back burst config API should be issued after profile config API.
- 20. Updated error code 49 in Table 6.1 to include the maximum sampling rate based on device variant.
- 21. Added a note in page 318 explaining the watchdog clearing window calculation by the firmware.
- 22. Added a note in page 87 indicating if user has not enabled any one time calibrations, but if calibration report is enabled, then after issuing the AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB API, the firmware will immediately sent out a calibration report.
- 23. Added the RFLDOBYPASS_EN API after AWR_ADCOUT_CONF_SET_SB in Table 5.22.1, Table 5.22.3, Table 5.153 and Table 5.154.

- 24. Added a note after AWR_FRAME_CONF_SET_SB indicating the pulse width requirements of the SYNC_IN pulse in hardware triggered mode.
- 25. Added a new parameter CHIRP_ROW_SELECT in AWR_DYN_CHIRP_CONF_SET_SB API in page 98 to enable faster configuration of chirps dynamically.
- 26. Updated the definition of REPORTING_MODE in AWR_MSS_LATENTFAULT_TEST_CONF_SB and AWR_MSS_PERI-ODICTESTS_CONF_SB APIs in pages 202 and 203.
- 27. Added new error code 159 to indicate incorrect CHIRP_ROW_ SELECT value and updated error code 135 to account for CHIRP_ROW_SELECT values.
- 28. Added new error codes 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048 and 1050 in Table 6.2 in page 251.
- 29. Added examples of PMIC clock configuration in Section 5.16.9 in page 198.
- 30. Added a note in AWR_ANALOG_FAULT_INJECTION_CONF_SB in page 299 under SUPPLY_LDO_FAULT indicating that this fault ineffective under LDO_BYPASS condition.
- 31. Added a note about when to stop the frames when using subframe trigger or hardware trigger mode in page 106.
- 32. Updated font type to Helvetica.
- 33. Added a note about usage of CW CZ mode in page 69.
- 34. Added a note about TX3 gain and phase imbalance offset wrt. TX1 and TX2 in page 274.
- 35. Added a note about inter-burst idle time requirement in page 47.
- 36. Added a note about Noise figure Values reporting in NF Monitoring report AE in page 158.
- 37. Added a note in MSS powerup done AE in page 223.
- 38. Added a note about Tx output Power backoff in profile config API in page 59.
- 39. Added a note about Tx output Power monitoring in page 162.
- 40. Added a note about Programmable filter tap start index selection in page 81.
- 41. Added a note in AWR_AE_MSS_BOOTERRORSTATUS_SB AE in page 231.
- 42. Updated runtime VCO calibration time in page 315.
- 43. Updated VCO control voltage monitor upper threshold in page 182.

1 Introduction

1.1 Scope

The xWR1243, xWR1642 and xWR1843 products are highly-integrated 77GHz CMOS automotive radar devices. The devices integrate all of the RF and Analog functionality, including VCO, PLL, PA, LNA, Mixer and ADC for multiple TX/RX channels into a single chip. The xWR1243 is an RF transceiver device and it includes 4 receiver channels and 3 transmit channels in a single chip. The xWR1243 also supports multi-chip cascading. The xWR1642/xWR1843 is a radar-on-a-chip device, which includes 4 receive channels and 2 transmit channels and additionally an integrated DSP for radar signal processing.

Both devices include a built-in BIST (Built-in Self-Test) processor, which is responsible to configure the RF/Analog and digital front-end in real-time, as well as to periodically schedule calibration and functional safety monitoring. This enables the mm-Wave front-end to be self-contained and capable of adapting itself to handle temperature and aging effects, and to enable significant ease-of-use from an external host perspective.

This document contains the Interface Control Specification for communications on the serial interface (SPI) between the Radar device and the external host processor. The same protocol is used in xWR16xx when the messages are sent to Radar Control subsystem (BIST subsystem) from the MCU subsystem (Master subsystem).

1.2 Intended Audience

The intended audience for this document is firmware, host software, and validation engineers needing to understand the format and contents of all communications between the Radar device and the host processor.

2 AWR1xxx Communications Overview

2.1 Communication Link Description

The xWR12xx radar device communicates with the external host processor using the SPI interface. The radar device is configured and controlled from the external host processor by sending commands to xWR12xx device over SPI.

The xWR16xx radar device is configured and controlled using the internal MCU (Master subsystem) and it communicates with an external ECU using the CAN interface.

This document only talks about the communication protocol between radar device and external host processor using SPI in xWR12xx. In xWR16xx, the same protocol is used to communicate between the BIST subsystem and Master subsystem.

2.2 Communication Link configuration

2.2.1 SPI

This interface is synchronous. The interface includes four signals (SPICCLK, SPICS, and Data In and Data Out) and supports clock rates up to 40 MHz. The xWR12xx radar device is always the SPI slave and the external host processor will be the SPI master.

2.2.2 Mailbox

This interface includes a SRAM and an interrupt line from Master subsystem to BIST subsystem. A reverse channel which includes a different SRAM and a different interrupt line from the BIST subsystem to Master subsystem is used for responses which originate from BIST subsystem.

Figure 2.1: xWR12xx Software Architecture

Figure 2.2: xWR16xx Software Architecture

2.3 Radar Message Structure

Figure 2.3: Radar Message Structure

Each message is sent in a message envelope, which starts with four special bytes called a sync pattern. Next, the message envelope contains the actual message and a CRC converted to a stream of bytes. Figure 2.3 defines the general form of radar messages. All communication messages between external host processor and the radar device will follow this message format. Each message consists of a 12-byte message header, variable length message data followed by a variable length CRC.

NOTE:	The CRC and all the fields in the message headers and message
	data that are larger than one byte are sent in little-endian byte order
	i.e. the least significant byte is sent first.

A message envelope contains only one message.

2.3.1 SYNC

SYNC is a unique 4 byte pattern which marks the start of the message. It can take one of the following 3 values, in memory all the bytes are stored in little endian format (least significant byte first).

Table 2.1: Possible SYNC values and their usage

SYNC word value	Description
0x43211234	Messages from master to slave indicating a new command
0x87655678	Messages from external host to device indicating the host is now ready to receive a message from the device This pattern is defined as CNYS in this document.
0xABCDDCBA	Messages from slave to master

2.3.2 MSGHDR

Figure 2.4 defines the content of the message header. Each radar message must begin with this 12 byte message header in little endian format.

OPCODE	LENGTH	FLAGS	REMCHUNKS	NSBC	CHKSUM
(16 bits)					

Figure 2.4: Message Header Format

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				MS	GID					MSG	TYPE		DIREC	CTION	

Figure 2.5: OPCODE Format

OPCODE

The OPCODE is unique for a given message type. Figure 2.5 defines the OPCODE format.

Bits	Field	Description					
[3:0]	DIRECTION	Direction of command					
		0000 Invalid					
		0001 Communication between Host to BSS					
		0010 Communication between BSS to Host					
		0011 Communication between Host to DSS					
		0100 Communication between DSS to Host					
		0101 Communication between Host to Master					
		0110 Communication between Master to Host					
		0111 Communication between BSS to Master					
		1000 Communication between Master to BSS					
		1001 Communication between BSS to DSS					
		1010 Communication between DSS to BSS					
		1011 Communication between Master to DSS					
		1100 Communication between DSS to Master					
		1101 RESERVED					
		1110 RESERVED					
		1111 RESERVED					
[5:4]	MSGTYPE	Message type					
		00 COMMAND					
		01 RESPONSE (ACK or ERROR)					
		10 NACK					
		11 ASYNC					
[15:6]	MSGID	Message ID					
		0x00 AWR_ERROR_MSG					
		0x01 RESERVED					
		0x02 RESERVED					
		0x03 RESERVED					
		0x04 AWR_RF_STATIC_CONF_SET_MSG					
		0x05 AWR_RF_STATIC_CONF_GET_MSG					
		0x06 AWR_RF_INIT_MSG					
		0x07 RESERVED					
		0x08 AWR_RF_DYNAMIC_CONF_SET_MSG					
		0x09 AWR_RF_DYNAMIC_CONF_GET_MSG					
		0x0A AWR_RF_FRAME_TRIG_MSG					
		0x0B RESERVED					

1		
	0x0C	AWR_RF_ADVANCED_FEATURES_CONF_ SET_MSG
	0x0D	RESERVED
	0x0E	AWR_RF_MONITORING_CONF_SET_MSG
	0x0F	RESERVED
	0x10	RESERVED
	0x11	AWR_RF_STATUS_GET_MSG
	0x12	RESERVED
	0x13	AWR_RF_MONITORING_REPORT_GET_MSG
	0x14	RESERVED
	0x15	RESERVED
	0x16	AWR_RF_MISC_CONF_SET_MSG
	0x17	AWR_RF_MISC_CONF_GET_MSG
	0x18	RESERVED
	0x19	RESERVED
	0x80	AWR_RF_ASYNC_EVENT_MSG1
	0x81	AWR_RF_ASYNC_EVENT_MSG2
	0x200	AWR_DEV_RFPOWERUP_MSG
	0x201	RESERVED
	0x202	AWR_DEV_CONF_SET_MSG
	0x203	AWR_DEV_CONF_GET_MSG
	0x204	AWR_DEV_FILE_DOWNLOAD_MSG
	0x205	RESERVED
	0x206	AWR_DEV_FRAME_CONFIG_APPLY_MSG
	0x207	AWR_DEV_STATUS_GET_MSG
	0x208	RESERVED
	0x209	RESERVED
	0x20A	RESERVED
	0x20B	RESERVED
	0x20C	RESERVED
	0x20D	RESERVED
	0x280	AWR_DEV_ASYNC_EVENT_MSG

LENGTH

The length field contains the length of the message in bytes including the message header, message data and CRC. Note that length field does not include the length of the sync field. The minimum length of the message is 12 bytes and maximum is 252 bytes. The message length minus CRC length must also be a multiple of 4 bytes.

15 14 13 12 11 10 9 8 7 6 5	4	4	3	2	1	0
RESERVED LEN						

Figure 2.6: MSGLEN Format

Table 2.3: MSGLEN field descriptions

Bits	Field	Description
[11:0]	LEN	Message length in bytes (It includes message header, message data and CRC)
[15:12]	RESERVED	Keep these bits as 0s

FLAGS

The FLAGS is used to control the communication between the radar device and external host

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEQ	NUM		CRC	LEN	CRC	REQ	PRO	TOCO	L VER	SION	ACQ	REQ	RET	ΓRY

Figure 2.7: FLAGS Format

Table 2.4: FLAGS field description

Bits	Field	Description			
[1:0]	RETRY	RETRY Value 00 New message			
		11	Retransmitted message		
		01	RESERVED		
		10	RESERVED		
[3:2] ACKREQ Ackn 00 11		Acknow	knowledgement Request type		
		00	Acknowledgement is requested for the current message		
		11	Acknowledgement is not requested for the current message		
		01	RESERVED		
		10	RESERVED		

Continued on next page

rable 2.4 – continued from previous page						
[7:4]	PROTOCOL VERSION	Version number of the protocol that is used to communicate with the device (4 bits)				
[9:8]	CRCREQ	CRC requ	uest type			
		00	CRC is appended to the message			
			CRC is not appended to the message			
		01	RESERVED			
		10	RESERVED			
[11:10]	CRCLEN	Length of CRC appended to the message				
		00	16-bit CRC			
		01	32-bit CRC			
		10	64-bit CRC			
		11	RESERVED			
		quence r vice boot incremen	number of the message. Senumber is reset to 0 after a deand each new message has the ted sequence number. Whenever message is retransmitted, the senumber.			

Table 2.4 – continued from previous page

NOTE:	It is recommended to always append CRC to the message to pre-
	vent any message integrity issues

quence number is not incremented.

REMCHUNKS

If the message length is larger than 256 bytes, then it is split into multiple chunks of sizes less than 256 bytes. When this field is non-zero, this field indicates the number of remaining chunks that are to be expected.

NSBC

The message may contain several configuration sub blocks with structure as defined in Figure 2.3. The NSBC field indicates the total number sub blocks inside the message data.

Figure 2.8: NSBC Format

Table 2.5: NSBC field description

Bits Field		Description			
[10:0]	NSBC	Number of sub blocks in the message			
[15:11]	RESERVED	Keep these bits as 0s			

CHKSUM

The message header is protected by a 16-bit checksum to enable the receiver to check the integrity of the message header. The checksum is computed on MSGHDR only (MSGID, MSGLEN, FLAGS, REMCHUNKS and NSBC fields). Note that SYNC field is not included in checksum calculation.

Checksum is 16-bit one's complement of the one's complement sum of all 16-bit words in the message header (Ref. https://tools.ietf.org/html/rfc1071).

For e.g., suppose the message header contents looks like this

Table 2.6: Checksum computation example

Field	Value
OPCODE	0x0281
MSGLEN	0x080x0
FLAGS	0x040C
REMCHUNKS	0x0000
NSBC	0x0001
CHKSUM	0xF171

The receiver will compute the checksum as follows 0x0281 + 0x0800 = 0x0A81.

Then, 0x0A81 + 0x040C = 0x0E8D.

Then, 0x0E8D + 0x0000 = 0x0E8D.

Then, 0x0E8D + 0x0001 = 0x0E8E.

Ones complement of 0x0E8E is 0xF171 which matches with the received checksum.

2.3.3 MSGDATA

The message data contains the actual message specific data for the message. The message data contains sub blocks with structure as defined in Figure 2.9. More than one sub block can be appended in the MSGDATA to reduce the overall communication latency. The total number of sub blocks in MSGDATA is indicated in the NSBC field in the MSGHDR.

All data fields are aligned so that their offset in message is a multiple of the field size in bytes. For e.g. a 32 bit field in the message will be aligned to a 4 byte boundary and a 16 bit field will be aligned to a 2 byte boundary. This makes it possible to create a structure definition for the message for easy data access in most environments.

Any reserved (currently unused) fields in the messages should be always set as 0 when sent and ignored when received. This way those fields may be taken to use in later interface versions without modifying all old software.

All data structure in sub-blocks assumed to be in little endian format. For big endian Host system byte swap is required to match with defined protocol.

MSGDATA					
SBLKID	SBLKLEN	SBLKDATA			
(16 bits)	(16 bits)	(Variable length)			

Figure 2.9: Message Sub block structure

SBLKID Unique ID of the sub block

SBLKLEN Length of the sub block in bytes

SBLKDATA Data corresponding to the sub block

2.3.4 CRC

This is a CRC which is appended to the message data to protect the integrity of the message. The CRC is computed on all the bytes in the MSGHDR and MSGDATA. Note that SYNC is not included in CRC calculation.

3 different types of CRCs can be used – 16 bit, 32 bit or 64 bit. The choice of the CRC type is indicated in the FLAGS field in the MSGHDR.

The polynomials used for each type of CRC calculation are

Table 2.7: CRC types and their polynomials

CRC type	Polynomial	Remarks
16 bit	$x^{16} + x^{12} + x^5 + 1$	16-bit CRC-CCITT
32 bit	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$	CRC-32 (used in Ethernet)
64 bit	$x^{64} + x^4 + x^3 + x + 1$	CRC-64-ISO (HDLC)

3 Message Processing

3.1 Communication protocol

When requested by the message transmitter, all correctly formatted radar messages are acknowledged by the receiver. This request for an acknowledgement is specified in FLAGS field of the MSGHDR (message header) field (see Section 2.3.2). A correctly formatted message is one that is formatted properly with a SYNC, MSGHDR, MSGDATA and CRC and that passes the CRC test when received. If an incorrectly formatted message is received, the radar device responds with a NACK message (MSGTYPE field in the MSGHDR set to NACK response). If a correctly formatted message is received, and after processing the message no errors are encountered, the radar device responds with an ACK response. In case of errors on a correctly formatted message, the radar device responds with an ERROR response.

The ACK response is a radar message which contains SYNC, MSGHDR, MSGDATA and CRC. In case the MSGTYPE was COMMAND_GET the MSGDATA for ACK response will contain the parameter values read by the radar device.

The NACK response is a radar message with only SYNC, MSGHDR and CRC. It does not contain MSGDATA.

For most commands the radar device prepares the acknowledgments and response packets immediately on reception. In certain cases, higher priority events in the system delay the execution of external communication function. The response time to command is a function of:

- Speed of the selected communication channel
- Although typical radar command/response occurs within a few hundreds of microseconds, it is recommended that host software wait up to 1 millisecond for response or acknowledgment before timing out on nonresponse.

The radar communication protocol is defined as follows

- 1. The host sends a message to the radar device requesting an acknowledgement. Host sets a timeout period of 1 ms for a response from the radar device.
- The radar device checks the CHKSUM field for Message header validity and checks the MSGDATA field for correctness and also computes the CRC of the message and compares it with the received CRC.
 - If the computed CHKSUM does not match the received CHKSUM, the radar device does not send any response. The transmitter will timeout and eventually resend the command again with RETRY flag set

- If the CRC matches and all parameters are valid/correct, the radar device sends an ACK to the host
- If the CRC matches, but any parameter in the message is invalid/incorrect, then the radar device sends an ERROR response to the host
- If the CRC does not match, the radar device sends a NACK response to the host
- 3. On reception of the ACK, the host can send the next command to the radar device.
- 4. If the host receives a NACK from the radar device within the timeout period, it sends the message again without the RETRY flag set.
- 5. If the host does not receive any response from the radar device within the timeout period then it sends the same command with the RETRY flag set.

3.2 Communication Sequence

3.2.1 Command/Response Sequence (Host)

- 1. Host prepares the message as defined by protocol in Section 2.3
- 2. Host writes the message to the communication channel and starts Retry Timer (∼1 ms)
- 3. Host then waits for HOST IRQ high Interrupt
 - a. If IRQ is received, go to Step 4
 - b. If Retry Time expires, Enable Retry Flag and go to Step 2
- 4. Host writes CNYS (SYNC word = 0x5678 0x8765) and Dummy bytes (0xFFFF 0xFFFF 0xFFFF 0xFFFF) on communication channel
- 5. Host waits for low on Host IRQ line
 - a. If Host IRQ line is low, go to Step 6
 - b. If Retry Time expires, Flag Error
- 6. Host reads the header from communication channel
- 7. Host checks the validity of header (verify checksum)
 - a. If header is valid, parse the header and go to Step 8
 - b. If header is invalid, ignore the header and go to Step 3
- 8. Host reads the payload from communication channel
- 9. Host checks the validity of the message (verify CRC)
 - a. If message is valid, process the message
 - b. If message is invalid, go to Step 2

3.2.2 Flow Diagram (Host) - Command/Response

Figure 3.1: Flow Diagram (API)

3.2.3 Flow Diagram (Host) - Bootup/ Asynchronous Event

Figure 3.2: Flow Diagram (Asynchronous Events)

3.2.4 SPI Message Sequence – Command/Response

Figure 3.3: SPI Message Sequence

NOTE: 1	. Host should ensure that there is a delay of at least 2 SPI clocks between CS going low and start of SPI clock
2	. Host should ensure that CS is toggled for every 16 bits of transfer via SPI
3	. There should be a delay of at least 2 SPI Clocks between consecutive CS
4	. SPI needs to be operated at Mode 0 (Phase 0, Polarity 0)
5	. SPI word length should be 16 bit (Half word)

4 Radar Interface Messages Descriptions

This section describes all the radar interface messages that are used in communication with the radar transceiver.

4.1 Summary of all messages and their associated sub-blocks

Table 4.1: Summary of all Radar messages and their associated sub blocks

Radar Messages	Associated sub-blocks
AWR_ACK_MSG	NA
AWR_NACK_MSG	NA
AWR_ERROR_MSG	AWR_RESP_ERROR_SB
	AWR_CHAN_CONF_SET_SB
	AWR_ADCOUT_CONF_SET_SB
	AWR_LOWPOWERMODE_CONF_SET_SB
	AWR_DYNAMICPOWERSAVE_CONF_SET_SB
	AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
AWR_RF_STATIC_CONF_SET_MSG	AWR_RF_DEVICE_CFG_SB
	AWR_RF_RADAR_MISC_CTL_SB
	AWR_CAL_MON_FREQUENCY_LIMITS_SB
	AWR_RF_INIT_CALIBRATION_CONF_SB
	AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
	AWR_CAL_DATA_RESTORE_SB
	AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB
AWR_RF_STATIC_CONF_GET_MSG	AWR_CAL_DATA_SAVE_SB
	AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB
AWR_RF_INIT_MSG	AWR_RF_INIT_SB
AWR_RF_DYNAMIC_CONF_SET_ MSG	AWR_PROFILE_CONF_SET_SB
	AWR_CHIRP_CONF_SET_SB
	AWR_FRAME_CONF_SET_SB
	AWR_CONT_STREAMING_MODE_CONF_SET_SB
	AWR_CONT_STREAMING_MODE_EN_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_ADVANCED_FRAME_CONF_SB
	AWR_PERCHIRPPHASESHIFT_CONF_SB
	AWR_PROG_FILT_COEFF_RAM_SET_SB
	AWR_PROG_FILT_CONF_SET_SB
	AWR_CALIB_MON_TIME_UNIT_CONF_SB
	AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB
	AWR_INTER_RX_GAIN_PHASE_CONTROL_SB
	AWR_RX_GAIN_TEMPLUT_SET_SB
	AWR_TX_GAIN_TEMPLUT_SET_SB
	AWR_LOOPBACK_BURST_CONF_SET_SB
	AWR_DYN_CHIRP_CONF_SET_SB
	AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB
	AWR_DYN_CHIRP_ENABLE_SB
	AWR_INTERCHIRP_BLOCKCONTROLS_SB
	AWR_SUBFRAME_START_CONF_SB
AWR_RF_DYNAMIC_CONF_GET_ MSG	AWR_PROFILE_CONF_GET_SB
	AWR_CHIRP_CONF_GET_SB
	AWR_FRAME_CONF_GET_SB
	AWR_ADVANCED_FRAME_CONF_GET_SB
	AWR_RX_GAIN_TEMPLUT_GET_SB
	AWR_TX_GAIN_TEMPLUT_GET_SB
AWR_RF_FRAME_TRIG_MSG	AWR_FRAMESTARTSTOP_CONF_SB
AWR_RF_ADVANCED_FEATURES_	AWR_BPM_COMMON_CONF_SET_SB
CONF_SET_MSG	AWR_BPM_CHIRP_CONF_SET_SB
AWR_RF_MONITORING_CONF_ SET_MSG	AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB
	AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
	AWR_MONITOR_ANALOG_ENABLES_CONF_SB
	AWR_MONITOR_TEMPERATURE_CONF_SB
	AWR_MONITOR_RX_GAIN_PHASE_CONF_SB
	AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
	AWR_MONITOR_RX_IFSTAGE_CONF_SB
	AWR_MONITOR_TX0_POWER_CONF_SB
	AWR_MONITOR_TX1_POWER_CONF_SB
	AWR_MONITOR_TX2_POWER_CONF_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
nauai wessages	
	AWR_MONITOR_TX0_BALLBREAK_CONF_SB
	AWR_MONITOR_TX1_BALLBREAK_CONF_SB
	AWR_MONITOR_TX2_BALLBREAK_CONF_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
	AWR_MONITOR_TX0_BPM_CONF_SB
	AWR_MONITOR_TX1_BPM_CONF_SB
	AWR_MONITOR_TX2_BPM_CONF_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
	AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB
	AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
	AWR_ANALOG_FAULT_INJECTION_CONF_SB
AWR_RF_MONITORING_REPORT_ GET_MSG	AWR_RF_DFE_STATISTICS_REPORT_GET_SB
AWR_RF_STATUS_GET_MSG	AWR_RF_VERSION_GET_SB
	AWR_RF_CPUFAULT_STATUS_GET_SB
	AWR_RF_ESMFAULT_STATUS_GET_SB
	AWR_RF_DIEID_GET_SB
	AWR_RF_BOOTUPBIST_STATUS_GET_SB
	AWR_RF_TEST_SOURCE_CONFIG_SET_SB
	AWR_RF_TEST_SOURCE_ENABLE_SET_SB

Continued on next page

 $AWR_RF_MISC_CONF_SET_MSG$

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_RF_LDO_BYPASS_SB
	AWR_RF_PALOOPBACK_CFG_SB
	AWR_RF_PSLOOPBACK_CFG_SB
	AWR_RF_IFLOOPBACK_CFG_SB
	AWR_RF_GPADC_CFG_SET_SB
AWR_RF_MISC_CONF_GET_MSG	AWR_RF_TEMPERATURE_GET_SB
	AWR_AE_RF_CPUFAULT_SB
	AWR_AE_RF_ESMFAULT_SB
	AWR_AE_RF_INITCALIBSTATUS_SB
	AWR_AE_RF_FRAME_TRIGGER_RDY_SB
	AWR_AE_RF_GPADC_RESULT_DATA_SB
	AWR_FRAME_END_AE_SB
	AWR_ANALOGFAULT_AE_SB
	AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB
	AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_SB
	AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB
AWR_RF_ASYNC_EVENT_MSG1	AWR_MONITOR_REPORT_HEADER_AE_SB
	AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB
	AWR_MONITOR_TEMPERATURE_REPORT_AE_SB
	AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB
	AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB
	AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB
	AWR_MONITOR_TX0_POWER_REPORT_AE_SB
	AWR_MONITOR_TX1_POWER_REPORT_AE_SB
	AWR_MONITOR_TX2_POWER_REPORT_AE_SB
	AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB
	AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_REPORT_AE_ SB
	AWR_MONITOR_TX0_BPM_REPORT_AE_SB
	AWR_MONITOR_TX1_BPM_REPORT_AE_SB
	AWR_MONITOR_TX2_BPM_REPORT_AE_SB
	AWR_MONITOR_SYNTHESIZER_FREQUENCY_REPORT_AE_SB

AWR_RF_ASYNC_EVENT_MSG2

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_ AE_SB
	AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_RE-PORT_AE_SB
	AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_RE-PORT_AE_SB
	AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_RE-PORT_AE_SB
	AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_RE-PORT_AE_SB
	AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB
	AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB
	AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB
	AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB
AWR_DEV_RFPOWERUP_MSG	AWR_DEV_RFPOWERUP_SB
AWR_DEV_CONF_SET_MSG	AWR_DEV_MCUCLOCK_CONF_SET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_CONF_SET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB
	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
	AWR_DEV_LVDS_CFG_SET_SB
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
	AWR_DEV_CSI2_CFG_SET_SB
	AWR_DEV_PMICCLOCK_CONF_SET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_SB
	AWR_MSS_PERIODICTESTS_CONF_SB
	AWR_DEV_TESTPATTERN_GEN_SET_SB
	AWR_DEV_CONFIGURATION_SET_SB
AWR_DEV_CONF_GET_MSG	AWR_DEV_MCUCLOCK_GET_SB
	AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB
	AWR_DEV_RX_DATA_PATH_CONF_GET_SB
	AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB
	AWR_DEV_RX_DATA_PATH_CLK_GET_SB
	AWR_DEV_LVDS_CFG_GET_SB

Table 4.1 – continued from previous page

Radar Messages	Associated sub-blocks
	AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_SB
	AWR_DEV_CSI2_CFG_GET_SB
	AWR_DEV_PMICCLOCK_CONF_GET_SB
	AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB
	AWR_MSS_PERIODICCONF_GET_SB
	AWR_DEV_TESTPATTERN_GEN_GET_SB
AWR_DEV_FILE_DOWNLOAD_MSG	AWR_DEV_FILE_DOWNLOAD_SB
AWR_DEV_FRAME_CONFIG_	AWR_DEV_FRAME_CONFIG_APPLY_SB
APPLY_MSG	AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB
	AWR_MSSVERSION_GET_SB
AWR_DEV_STATUS_GET_MSG	AWR_MSSCPUFAULT_STATUS_GET_SB
	AWR_MSSESMFAULT_STATUS_GET_SB
	AWR_AE_DEV_MSSPOWERUPDONE_SB
	AWR_AE_DEV_RFPOWERUPDONE_SB
	AWR_AE_MSS_CPUFAULT_SB
	AWR_AE_MSS_ESMFAULT_SB
AMD DEV ASYNC EVENT MSC	AWR_AE_MSS_BOOTERRORSTATUS_SB
AWR_DEV_ASYNC_EVENT_MSG	AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB
	AWR_AE_MSS_PERIODICTEST_STATUS_SB
	AWR_AE_MSS_RFERROR_STATUS_SB
	AWR_AE_MSS_VMON_ERRORSTATUS_SB
	AWR_AE_MSS_ADC_DATA_SB

4.2 AWR_ACK_MSG

The AWR_ACK_MSG is sent by the radar transceiver on a successful reception of a command after its CRC check.

Field Name	Number of bytes	Descrip	otion	
SYNC	4	Value =	0xABCDDCBA	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	01
		b15:6	MSGID	Same as MSGID in the command
MSGLEN	2	Length length)	of the message in	bytes (do not include sync
FLAGS	2	See See	ction 2.3.2	
REMCHUNKS	2	Value =	0	
NSBC	2	Number	of sub blocks conta	ined in the message
CHKSUM	2	See See	ction 2.3.2	
CRC	Variable	Based o	on CRCLEN field in F	FLAGS

4.3 AWR_NACK_MSG

The AWR_NACK_MSG is sent by the radar transceiver if the CRC check of the command fails.

Field Name	Number of bytes	Description
SYNC	4	Value = 0xABCDDCBA
OPCODE	2	Bits Variable name Value
		b3:0 DIRECTION See Table 2.2
		b5:4 MSGTYPE 10
		b15:6 MSGID Same as MSGID in the command
MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
CRC	Variable	Based on CRCLEN field in FLAGS

4.4 AWR_ERROR_MSG

The AWR_RF_ERROR_MSG is sent by the radar transceiver on finding errors in the command send by host.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0xABCDDCBA	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.2	
		b5:4 MSGTYPE 01	
		b15:6 MSGID 0x00	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_RESP_ERROR_SB	
CRC	Variable	Based on CRCLEN field in FLAGS	

4.5 AWR_RF_STATIC_CONF_SET_MSG

Field Name	Number of bytes	Description	
SYNC	4	Value = 0x43211234	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.2	
		b5:4 MSGTYPE 00	
		b15:6 MSGID 0x04	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_CHAN_CONF_SET_SB	
		AWR_ADCOUT_CONF_SET_SB	

		AWR_LOWPOWERMODE_CONF_SET_SB
		AWR_DYNAMICPOWERSAVE_CONF_SET_SB
		AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
		AWR_RF_DEVICE_CFG_SB
		AWR_RF_RADAR_MISC_CTL_SB
		AWR_CAL_MON_FREQUENCY_LIMITS_SB
		AWR_RF_INIT_CALIBRATION_CONF_SB
		AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB
		AWR_CAL_DATA_RESTORE_SB
		AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.6 AWR_RF_STATIC_CONF_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x05
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_CAL_DATA_SAVE_SB		
		AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.7 AWR_RF_INIT_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x06		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_INIT_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.8 AWR_RF_DYNAMIC_CONF_SET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x08		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_PROFILE_CONF_SET_SB		
		AWR_CHIRP_CONF_SET_SB		

CRC	Variable	Based on CRCLEN field in FLAGS
		AWR_SUBFRAME_START_CONF_SB
		AWR_INTERCHIRP_BLOCKCONTROLS_SB
		AWR_DYN_CHIRP_ENABLE_SB
		AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB
		AWR_DYN_CHIRP_CONF_SET_SB
		AWR_LOOPBACK_BURST_CONF_SET_SB
		AWR_TX_GAIN_TEMPLUT_SET_SB
		AWR_RX_GAIN_TEMPLUT_SET_SB
		AWR_INTER_RX_GAIN_PHASE_CONTROL_SB
		AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_ SB
		AWR_CALIB_MON_TIME_UNIT_CONF_SB
		AWR_PROG_FILT_CONF_SET_SB
		AWR_PROG_FILT_COEFF_RAM_SET_SB
		AWR_PERCHIRPPHASESHIFT_CONF_SB
		AWR_ADVANCED_FRAME_CONF_SB
		AWR_CONT_STREAMING_MODE_EN_SB
		AWR_CONT_STREAMING_MODE_CONF_SET_SB
		AWR_FRAME_CONF_SET_SB

4.9 AWR_RF_DYNAMIC_CONF_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x09		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		

CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_PROFILE_CONF_GET_SB		
		AWR_CHIRP_CONF_GET_SB		
		AWR_FRAME_CONF_GET_SB		
		AWR_ADVANCED_FRAME_CONF_GET_SB		
		AWR_RX_GAIN_TEMPLUT_GET_SB		
		AWR_TX_GAIN_TEMPLUT_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.10 AWR_RF_FRAME_TRIG_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x0A		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_FRAMESTARTSTOP_CONF_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.11 AWR_RF_ADVANCED_FEATURES_CONF_SET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x0C		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_BPM_COMMON_CONF_SET_SB		
		AWR_BPM_CHIRP_CONF_SET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.12 AWR_RF_MONITORING_CONF_SET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x0E		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB		

	I	AMB MONITOR RE DIO RESIGNIC COME CO
		AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB
		AWR_MONITOR_ANALOG_ENABLES_CONF_SB
		AWR_MONITOR_TEMPERATURE_SONF_SB
		AWR_MONITOR_RX_GAIN_PHASE_CONF_SB
		AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB
		AWR_MONITOR_RX_IFSTAGE_CONF_SB
		AWR_MONITOR_TX0_POWER_CONF_SB
		AWR_MONITOR_TX1_POWER_CONF_SB
		AWR_MONITOR_TX2_POWER_CONF_SB
		AWR_MONITOR_TX0_BALLBREAK_CONF_SB
		AWR_MONITOR_TX1_BALLBREAK_CONF_SB
		AWR_MONITOR_TX2_BALLBREAK_CONF_SB
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB
		AWR_MONITOR_TX0_BPM_CONF_SB
		AWR_MONITOR_TX1_BPM_CONF_SB
		AWR_MONITOR_TX2_BPM_CONF_SB
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB
		AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB
		AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB
		AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB
		AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB
		AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB
		AWR_ANALOG_FAULT_INJECTION_CONF_SB
CRC	Variable	Based on CRCLEN field in FLAGS
	I.	

4.13 AWR_RF_STATUS_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x11		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_VERSION_GET_SB		
		AWR_RF_CPUFAULT_STATUS_GET_SB		
		AWR_RF_ESMFAULT_STATUS_GET_SB		
		AWR_RF_DIEID_GET_SB		
		AWR_RF_BOOTUPBIST_STATUS_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.14 AWR_RF_MONITORING_REPORT_GET_MSG

Field Name	Number of bytes	Descrip	otion	
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x13

MSGLEN	2	Length of the message in bytes (do not include sync length)
FLAGS	2	See Section 2.3.2
REMCHUNKS	2	Value = 0
NSBC	2	Number of sub blocks contained in the message
CHKSUM	2	See Section 2.3.2
MSGDATA	Variable	Supported sub blocks
		AWR_RF_DFE_STATISTICS_REPORT_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.15 AWR_RF_MISC_CONF_SET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x16		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_TEST_SOURCE_CONFIG_SET_SB		
		AWR_RF_TEST_SOURCE_ENABLE_SET_SB		
		AWR_RF_LDO_BYPASS_SB		
		AWR_RF_PALOOPBACK_CFG_SB		
		AWR_RF_PSLOOPBACK_CFG_SB		
		AWR_RF_IFLOOPBACK_CFG_SB		
		AWR_RF_GPADC_CFG_SET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.16 AWR_RF_MISC_CONF_GET_MSG

Field Name	Number of bytes	Description		
SYNC	4	Value = 0x43211234		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x17		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_RF_TEMPERATURE_GET_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.17 AWR_RF_ASYNC_EVENT_MSG1

The AWR_RF_ASYNC_EVENT_MSG1 is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 11		
		b15:6 MSGID 0x80		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		

		AWR_AE_RF_CPUFAULT_SB
		AWR_AE_RF_ESMFAULT_SB
		AWR_AE_RF_INITCALIBSTATUS_SB
		AWR_AE_RF_FRAME_TRIGGER_RDY_SB
		AWR_AE_RF_GPADC_RESULT_DATA_SB
		AWR_FRAME_END_AE_SB
		AWR_ANALOGFAULT_AE_SB
		AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB
		AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_ AE_SB
		AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_ SB
		AWR_MONITOR_REPORT_HEADER_AE_SB
		AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB
		AWR_MONITOR_TEMPERATURE_REPORT_AE_SB
		AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB
		AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB
		AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB
		AWR_MONITOR_TX0_POWER_REPORT_AE_SB
		AWR_MONITOR_TX1_POWER_REPORT_AE_SB
		AWR_MONITOR_TX2_POWER_REPORT_AE_SB
		AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB
		AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.18 AWR_RF_ASYNC_EVENT_MSG2

The AWR_RF_ASYNC_EVENT_MSG2 is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value =	0xABCDDBCA	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	11
		b15:6	MSGID	0x81

MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB		
		AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_RE-PORT_AE_SB		
		AWR_MONITOR_TX0_BPM_REPORT_AE_SB		
		AWR_MONITOR_TX1_BPM_REPORT_AE_SB		
		AWR_MONITOR_TX2_BPM_REPORT_AE_SB		
		AWR_MONITOR_SYNTHESIZER_FREQUENCY_RE- PORT_AE_SB		
		AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSRE-PORT_AE_SB		
		AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB		
		AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB		
		AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB		
		AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB		
		AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB		
		AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB		
		AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB		
		AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB		
		AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_ SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.19 AWR_DEV_RFPOWERUP_MSG

The AWR_DEV_RFPOWERUP_MSG is sent by the host to the MSS. This message indicates that BSS can now be powered up.

Field Name	Number of bytes	Description		
SYNC	4	Value = 0xABCDDBCA		
OPCODE	2	Bits Variable name Value		
		b3:0 DIRECTION See Table 2.2		
		b5:4 MSGTYPE 00		
		b15:6 MSGID 0x200		
MSGLEN	2	Length of the message in bytes (do not include sync length)		
FLAGS	2	See Section 2.3.2		
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DEV_RFPOWERUP_SB		
CRC	Variable	Based on CRCLEN field in FLAGS		

4.20 AWR_DEV_CONF_SET_MSG

The AWR_DEV_CONF_SET_MSG is sent by the host to the radar transceiver. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description		
SYNC	4	Value =	0x43211234	
OPCODE	2	Bits	Variable name	Value
		b3:0	DIRECTION	See Table 2.2
		b5:4	MSGTYPE	00
		b15:6	MSGID	0x202
MSGLEN	2	Length length)	of the message in	bytes (do not include sync
FLAGS	2	See Sec	ction 2.3.2	
REMCHUNKS	2	Value = 0		
NSBC	2	Number of sub blocks contained in the message		
CHKSUM	2	See Section 2.3.2		
MSGDATA	Variable	Supported sub blocks		
		AWR_DI	EV_MCUCLOCK_CC	ONF_SET_SB

		AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
		AWR_DEV_RX_DATA_PATH_CONF_SET_SB
		AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB
		AWR_DEV_RX_DATA_PATH_CLK_SET_SB
		AWR_DEV_LVDS_CFG_SET_SB
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
		AWR DEV CSI2 CFG SET SB
		AWR_DEV_PMICCLOCK_CONF_SET_SB
		AWR_MSS_LATENTFAULT_TEST_CONF_SB
		AWR_MSS_PERIODICTESTS_CONF_SB
		AWR_DEV_TESTPATTERN_GEN_SET_SB
		AWR_DEV_CONFIGURATION_SET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.21 AWR_DEV_CONF_GET_MSG

The AWR_DEV_CONF_GET_MSG is sent by the host to the radar transceiver to read back the configuration values.

Field Name	Number of bytes	Description	
SYNC	4	Value = 0x43211234	
OPCODE	2	Bits Variable name Value	
		b3:0 DIRECTION See Table 2.2	
		b5:4 MSGTYPE 00	
		b15:6 MSGID 0x203	
MSGLEN	2	Length of the message in bytes (do not include sync length)	
FLAGS	2	See Section 2.3.2	
REMCHUNKS	2	Value = 0	
NSBC	2	Number of sub blocks contained in the message	
CHKSUM	2	See Section 2.3.2	
MSGDATA	Variable	Supported sub blocks	
		AWR_DEV_MCUCLOCK_GET_SB	
		AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB	
		AWR_DEV_RX_DATA_PATH_CONF_GET_SB	

CRC	Variable	Based on CRCLEN field in FLAGS
		AWR DEV TESTPATTERN GEN GET SB
		AWR_MSS_PERIODICCONF_GET_SB
		AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB
		AWR_DEV_PMICCLOCK_CONF_GET_SB
		AWR_DEV_CSI2_CFG_GET_SB
		AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_ SB
		AWR_DEV_LVDS_CFG_GET_SB
		AWR_DEV_RX_DATA_PATH_CLK_GET_SB
		AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB

4.22 AWR_DEV_FILE_DOWNLOAD_MSG

The AWR_DEV_FILE_DOWNLOAD_MSG is sent by the host to MSS. This message sends a file to be written into the device.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.2			
		b5:4 MSGTYPE 00			
		b15:6 MSGID 0x204			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_DEV_FILE_DOWNLOAD_SB			
CRC	Variable	Based on CRCLEN field in FLAGS			

4.23 AWR_DEV_FRAME_CONFIG_APPLY_MSG

The AWR_DEV_FRAME_CONFIG_APPLY_MSG is sent by the host to MSS. This message indicates to MSS to apply all the regular framing mode configurations related to ADC buffer and CBUFF.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.2			
		b5:4 MSGTYPE 00			
		b15:6 MSGID 0x206			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_DEV_FRAME_CONFIG_APPLY_SB			
		AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB			
CRC	Variable	Based on CRCLEN field in FLAGS			

4.24 AWR_DEV_STATUS_GET_MSG

The AWR_DEV_STATUS_GET_MSG is sent by the host to MSS to get some status information from the device.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.2			
		b5:4 MSGTYPE 00			
		b15:6 MSGID 0x207			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			

		AWR_MSSVERSION_GET_SB
		AWR_MSSCPUFAULT_STATUS_GET_SB
		AWR_MSSESMFAULT_STATUS_GET_SB
CRC	Variable	Based on CRCLEN field in FLAGS

4.25 AWR_DEV_ASYNC_EVENT_MSG

The AWR_DEV_ASYNC_EVENT_MSG is sent by the radar transceiver to the host. This message indicates that specific events have occurred within the device.

Field Name	Number of bytes	Description			
SYNC	4	Value = 0x43211234			
OPCODE	2	Bits Variable name Value			
		b3:0 DIRECTION See Table 2.2			
		b5:4 MSGTYPE 11			
		b15:6 MSGID 0x280			
MSGLEN	2	Length of the message in bytes (do not include sync length)			
FLAGS	2	See Section 2.3.2			
REMCHUNKS	2	Value = 0			
NSBC	2	Number of sub blocks contained in the message			
CHKSUM	2	See Section 2.3.2			
MSGDATA	Variable	Supported sub blocks			
		AWR_AE_DEV_MSSPOWERUPDONE_SB			
		AWR_AE_DEV_RFPOWERUPDONE_SB			
		AWR_AE_MSS_CPUFAULT_SB			
		AWR_AE_MSS_ESMFAULT_SB			
		AWR_AE_MSS_BOOTERRORSTATUS_SB			
		AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB			
		AWR_AE_MSS_PERIODICTEST_STATUS_SB			
		AWR_AE_MSS_RFERROR_STATUS_SB			
		AWR_AE_MSS_VMON_ERRORSTATUS_SB			
		AWR_AE_MSS_ADC_DATA_SB			
CRC	Variable	Based on CRCLEN field in FLAGS			

5 Radar Functional APIs

This section describes all the radar interface sub blocks that are used in messages for communicating with the radar transceiver. Some of the sub blocks are status responses from the radar device.

5.1 Sub block related to AWR_ERROR_MSG

5.1.1 Sub block 0x0000 - AWR_RESP_ERROR_SB

This sub block contains the error response for an API command. Table 5.1 describes the contents of this sub block.

Table 5.1: AWR_RESP_ERROR_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0000
SBLKLEN	2	Value = 8
API₋RESP	2	0x0001 ERROR_CMD: Incorrect MSGID
		0x0002 ERROR_CMD: No Sub block found in the MSG
		0x0003 ERROR_CMD: Incorrect Sub block ID
		0x0004 ERROR_CMD: Incorrect Sub block Length
		0x0005 ERROR_CMD: Incorrect Sub block data
		0x0006 ERROR_PROC: Error in processing the command
		0x0007 ERROR_FILECRCMISMATCH: File CRC mismatched
		0x0008 ERROR_FILETYPEMISMATCH: File type mismatched w.r.t. magic number
		0x0009 See Section 6 for details on error codes from each - API
		0xFFFF

API_RESP_ER-	2	0x0000 Sub-Block ID in which Error Occurred for sub
ROR_SBC_ID		 block related errors
		0xFFFF

5.2 Sub blocks related to AWR_RF_STATIC_CONF_SET_MSG

5.2.1 Sub block 0x0080 - AWR_CHAN_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - how many RX and TX channels are needed for operation. It also defines static configurations related to whether the sensor uses a single xWR1xxx or multiple xWR1xxx chips to realize a larger antenna array (multiple is applicable only in xWR12xx). Table 5.2 describes the contents of this sub block.

Table 5.2: AWR_CHAN_CONF_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value	= 0x008	80
SBLKLEN	2	Value	= 12	
RX_CHAN_EN	2	This fie	eld spe	cifies which RX channels are to be enabled
		Bit	Descr	iption
		b0	RX_CI	HAN0_EN
			0	Disable RX Channel 0
			1	Enable RX Channel 0
		b1 RX_CHAN1_EN		
			0	Disable RX Channel 1
		1 Enable RX Channel 1		
		b2 RX_CHAN2_EN		
			0	Disable RX Channel 2
			1	Enable RX Channel 2
		b3 RX_CHAN3_EN		
			0	Disable RX Channel 3
			1	Enable RX Channel 3
		b15:4 RESERVED		
			0b000	00000000

Table 5.2 – continued from previous page

TX_CHAN_EN	2	This field	d speci	fies which TX channels are to be enabled
		Bit	Desc	cription
		b0	TX_C	CHANO_EN
			0	Disable TX Channel 0
			1	Enable TX Channel 0
		b1	TX_C	CHAN1_EN
			0	Disable TX Channel 1
			1	Enable TX Channel 1
		b2	TX_C	CHAN2_EN
			0	Disable TX Channel 2
			1	Enable TX Channel 2
		b15:3	RES	ERVED
			0b00	000000000
CASCADING_	2	This field	d speci	fies the cascading configuration.
CFG		Value	Descr	ription
		0x0000	SING	LECHIP: Single xWR1xxx sensor application
		0x0001	applic gener	TICHIP_MASTER: Multiple xWR12xx sensor reation. This xWR12xx is the master chip and rates LO and conveys to other xWR12xx's in rensor. This is applicable only in xWR12xx.
		0x0002	plicati LO co senso	TICHIP_SLAVE: Multiple xWR12x sensor apon. This AWR12xx is a slave chip and uses proveyed to it by the master xWR12xx in the part of the control of the cont
		referred	to as N	ASTER and MULTICHIP_SLAVE are in general MULTICHIP applications, where larger antenna e possible in comparison with SINGLECHIP

Table 5.2 – continued from previous page

			5 13
		Bit	Description
		b0	FM_CW_CLKOUT_MASTER_DIS Applicable only in MUTICHIP_MASTER device. Default value is 0 0 Enable FM_CW_CLKOUT on master
			1 Disable FM_CW_CLKOUT on master
		b1	FM_CW_SYNCOUT_MASTER_DIS Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Enable FM_CW_SYNCOUT on master
			1 Disable FM_CW_SYNCOUT on master
		b2	FM_CW_CLKOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE device. Default value is 0 0 Disable FM_CW_CLKOUT on slave
			1 Enable FM_CW_CLKOUT on slave
CASCADING_ PINOUTCFG	2	b3	FM_CW_SYNCOUT_SLAVE_EN Applicable only in MULTICHIP_SLAVE device. Default value is 0 0 Disable FM_CW_SYNCOUT on slave
			1 Enable FM_CW_SYNCOUT on slave
		b4	INTLO_MASTER_EN Applicable only in MULTICHIP_MASTER device. Default value is 0 0 Use externally looped back LO
			1 Use internal LO in master Note that the externally looped-back LO mode is useful when length-matching the 20 GHz path between master and slave device.
		b5	OSCCLKOUT_MASTER_DIS Applicable only in MULTICHIP_MASTER device. Default value is 0
			0 Enable OSCCLKOUT in master
			1 Disable OSCCLKOUT in master
		b15:6	RESERVED

5.2.2 Sub block 0x0082 - AWR_ADCOUT_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding the data format of the ADC output (including the digital filtering).

Table 5.3 describes the contents of this sub block.

Table 5.3: AWR_ADCOUT_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0082		
SBLKLEN	2	Value = 12		
NUM_ADC_BITS	1	Bit Description		
		b1:0 Value Definition		
		00 12 bits		
		01 14 bits		
		10 16 bits		
		Other RESERVED		
		b7:2 RESERVED		
		0b000000		
FULL_SCALE_ REDUCTION_ FACTOR	1	Number of bits to reduce ADC full scale by Valid range: 0 to (16 — Number of ADC bits) For e.g. for 12 bit ADC output, this field can take values 0, 1, 2 or 3 For 14 bit ADC output, this field can take values 0, 1 or 2 For 16 bit ADC output, this field can take only value 0 Example: If the user desires 12 bit ADC output, then the digital front end (DFE) chain drops 4 LSBs before placing the data in ADC buffer (DFE output is 16 bits wide). If the user sets FULL_SCALE_REDUCTION_FACTOR as 1, then the DFE will drop only 3 LSBs but still restricting the data in ADC buffer to be within $\pm 2^{12}$. This allows wider ADC swings in smaller signal conditions.		
ADC_OUT_FMT	2	Bits Description		
		b1:0 Value Definition		
		00 Real		
		01 Complex 1x (image band filtered out)		
		10 Complex 2x (image band visible)		
		11 Pseudo Real		
		b15:2 RESERVED		
		0b0000000000000		
RESERVED	2	0x0000		
RESERVED	2	0x0000		

5.2.3 Sub block 0x0083 - AWR_LOWPOWERMODE_CONF_SET_SB

This sub block contains static device configurations (applicable for this power cycle) - Sigma Delta ADC root sampling clock rate (reducing rate to half to save power in small IF bandwidth applications).

Table 5.4 describes the contents of this sub block.

Table 5.4: AWR_LOWPOWERMODE_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0083	
SBLKLEN	2	Value = 8	
RESERVED	2	0x0000	
LP_ADC_MODE	2	Value Definition	
		0x00 Regular ADC mode	
		0x01 Low power ADC mode	

NOTE: Low power ADC mode is mandatory on a 5 MHz part variant (for e.g. xWR1642).

5.2.4 Sub block 0x0084 - AWR_DYNAMICPOWERSAVE_CONF_SET_SB

This sub block defines static device configuration - whether to enable dynamic power saving during inter-chirp IDLE times by turning off various circuits e.g. TX, RX, LO Distribution blocks. If Idle time + Tx start time < 10us or Idle time < 3.5us then inter-chirp dynamic power save option will be disabled, in that case, 15us of inter-burst idle time will be utilized to configure sequencer LO, TX and RX signal timings by firmware.

Table 5.4 describes the contents of this sub block.

Table 5.5: AWR_DYNAMICPOWERSAVE_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0084
SBLKLEN	2	Value = 8

Table 5.5 – continued from previous page

BLOCK_CFG	2	Bits	Definition
		b0	Enable power save by switching off TX during inter-chirp IDLE period 0 Disable
			1 Enable Default value: 1 (power saving is enabled)
		b1	Enable power save by switching off RX during inter-chirp IDLE period
			0 Disable
			1 Enable
			Default value: 1 (power saving is enabled)
		b2	Enable power save by switching off LO Distribution blocks during inter-chirp IDLE period
			0 Disable
			1 Enable
			Default value: 1 (power saving is enabled)
		b15:3	RESERVED
			0b000000000000
RESERVED	2	0x000	0

5.2.5 Sub block 0x0085 - AWR_HIGHSPEEDINTFCLK_CONF_SET_SB

This sub block contains static device configurations (applicable for the given power cycle) - regarding high speed interface clock rates which are related to sending the ADC data from AWR device to the host in either LVDS or CSI2 format.

Table 5.6 describes the contents of this sub block.

Table 5.6: AWR_HIGHSPEEDINTFCLK_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0085
SBLKLEN	2	Value = 8

Table 5.6 – continued from previous page

HSICLKRATE_ 2 CODE 2	2	rate, need times the and $N = 10^{-10}$ Bit 15:5 =	ded by the L	VDS or CS data rate, wode.	I2 module. where $N=2$	ce input clock It should be A In DDR mode
			b1:0 00	b1:0 01	b1:0 10	b1:0 11
		b3:2 00	Reserved	800 MHz	400 MHz	200 MHz
		b3:2 01	Reserved	900 MHz	450 MHz	225 MHz
		b3:2 10	Reserved	1200 MHz	600 MHz	300 MHz
		b3:2 11	Reserved	1800 MHz	Reserved	Reserved
		choose B	•	1, and for	•	te with DDR output rate with
RESERVED	2	0x0000				

5.2.6 Sub block 0x0086 - AWR_RF_DEVICE_CFG_SB

This sub block configures the direction of async event from BSS. Typically async events are sent to MSS. With this API, the user can configure the destination of async event.

Table 5.7 describes the contents of this sub block.

Table 5.7: AWR_RF_DEVICE_CFG_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0086
SBLKLEN	2	Value = 16

Table 5.7 – continued from previous page

DE AE DIDEO			Definition		
RF_AE_DIREC- TION	4	Bits Definition			
TION		b1:0			
			00 BSS to MSS		
			01 BSS to HOST		
			10 BSS to DSS		
			11 RESERVED		
			The ASYNC_EVENT_DIR controls the direction for following ASYNC_EVENTS		
			1. CPU_FAULT		
			2. ESM_FAULT		
			3. ANALOG_FAULT		
			All other ASYNC_EVENTs are sent to the subsystem which issues the API		
			Default value: 0b00		
		b3:2	MONITORING_ASYNC_EVENT_DIR		
			00 BSS to MSS		
			01 BSS to HOST		
			10 BSS to DSS		
			11 RESERVED		
			Default value: 0b00		
		b31:4	RESERVED		
			0x0000000		
AE_CONTROL	1	Bits	Definition		
		b0	FRAME_START_ASYNC_EVENT_DIS		
			0 Frame Start async event enable		
			1 Frame Start async event disable		
			Default value: 0		
		b1	FRAME_STOP_ASYNC_EVENT_DIS		
			0 Frame Stop async event enable		
			1 Frame Stop async event disable		
			Default value: 0		
		b7:2	RESERVED		
			0b000000		
RESERVED	2	0x0000			

Table 5.7 – continued from previous page

BSS_DIG_CTRL	1	Bits Definition			
		b0	WDT_DISABLE		
			0 Keep watchdog disabled		
			1 Enable watch dog		
		b7:1	RESERVED		
			0b0000000		
ASYNC_EVENT_ 1 CRC_CONFIG	1	Value	Description		
	0 1 2	0	16 bit CRC for BSS async events		
		1	32 bit CRC for BSS async events		
		2	64 bit CRC for BSS async events		
RESERVED	3	0x000	000		

5.2.7 Sub block 0x0087 - AWR_RF_RADAR_MISC_CTL_SB

This sub block controls miscellaneous global RF controls for e.g. per-chirp phase shifter global control.

Table 5.8 describes the contents of this sub block.

Table 5.8: AWR_RF_MISC_CTL_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0087		
SBLKLEN	2	Value = 12		
		Bits Definition		
		b0 PERCHIRP_PHASESHIFTER_EN		
		0 Per chirp phase shifter is disabled		
RF_MISC_CTL		 Per chirp phase shifter is enabled 		
	4	This control is applicable only in devices which support phase shifter (refer data sheet). For other devices, this is a RESERVED bit and should be set to 0.		
		Default value: 0		
		b31:1 RESERVED		
		0b000_0000_0000_0000_0000_0000_0000		
RESERVED	4	0x00000000		

5.2.8 Sub block 0x0088 - AWR_CAL_MON_FREQUENCY_LIMITS_SB

This sub block sets the limits for RF frequency transmission. Table 5.9 describes the contents of this sub block.

Table 5.9: AWR_CAL_MON_FREQUENCY_LIMITS_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0088	
SBLKLEN	2	Value = 16	
FREQ_LIMIT_ LOW	2	The sensor's lower frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 100 MHz Valid range: 760 to 810 Default value: 760	
FREQ_LIMIT_ HIGH	2	The sensor's higher frequency limit for calibrations and monitoring is encoded in 2 bytes (16 bit unsigned number) 1 SB = 100 MHz	
		Valid range: 760 to 810	
		Default value: 810	
		NOTE: FREQ_LIMIT_HIGH should be strictly greater than FREQ_LIMIT_LOW	
		Examples: For an LRR device deployed in the US, one might typically configure FREQ_LIMIT_LOW to 760 and FREQ_LIMIT_HIGH to 770.	
RESERVED	8	RESERVED	
		0x0000_0000_0000	

5.2.9 Sub block 0x0089 - AWR_RF_INIT_CALIBRATION_CONF_SB

This sub block configures device to perform boot time calibration. Table 5.10 describes the contents of this sub block.

Table 5.10: AWR_RF_INIT_CALIBRATION_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0089
SBLKLEN	2	Value = 16

Normally, upon receiving RF INIT message, the BSS performs all relevant initial calibrations. This step can be disabled by the host by setting the corresponding calibration bit in this field to 0x0. If disabled, the host needs to send the INJECT CALIB DATA message so that the BSS can operate using the calibration data thus injected. Internal/Debug use: Each of these calibrations can be selectively disabled by issuing this message before RF INIT message.	
dependent	
hen backoff	
0x0000000	
0x0000000	

5.2.10 Sub block 0x008A - AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB

This sub block sets the limits for RF frequency transmission for each TX and also TX power limits.

 $\textbf{Table 5.11:} \ AWR_CAL_MON_FREQUENCY_TX_POWER_LIMITS_SB\ contents$

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008A
SBLKLEN	2	Value = 28
FREQ_LIMIT_ LOW_TX0	2	The sensor's lower frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		Valid range: 7600 to 8100
		Default value: 7600
FREQ_LIMIT_ LOW_TX1	2	The sensor's lower frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		Valid range: 7600 to 8100
		Default value: 7600
FREQ_LIMIT_ LOW_TX2	2	The sensor's lower frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number)
		1 LSB = 10 MHz
		Valid range: 7600 to 8100
		Default value: 7600
FREQ_LIMIT_ HIGH_TX0	2	The sensor's higher frequency limit for calibrations and monitoring for TX0 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz Valid range: 7600 to 8100 Default value: 8100 NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
FREQ_LIMIT_ HIGH_TX1	2	The sensor's higher frequency limit for calibrations and monitoring for TX1 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz Valid range: 7600 to 8100 Default value: 8100 NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn

Table 5.11 – continued from previous page

FREQ_LIMIT_ HIGH_TX2	2	The sensor's higher frequency limit for calibrations and monitoring for TX2 is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 MHz Valid range: 7600 to 8100 Default value: 8100 NOTE: FREQ_LIMIT_HIGH_TXn should be strictly greater than FREQ_LIMIT_LOW_TXn
TX0_POWER_ BACKOFF	1	TX0 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX1_POWER_ BACKOFF	1	TX1 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
TX2_POWER_ BACKOFF	1	TX2 output power back off 1 LSB = 1 dB Valid values: 0, 3, 6, 9 Default value: 0
RESERVED	1	0x00
RESERVED	2	0x0000

5.2.11 Sub block 0x008B - AWR_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_CAL_DATA_SAVE_SB command. The async event AWR_AE_RF_INITCALIBSTATUS_SB will be issued after this API indicating that the calibration data is applied.

Table 5.12: AWR_CAL_DATA_RESTORE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x008B
SBLKLEN	2	Value = 232
RESERVED	2	0x0000
CHUNK_ID	2	Index of the current chunk

Table 5.12 -	 continued fror 	n previous page

CAL_DATA	224	Calibration data which was stored in non-volatile memory
----------	-----	--

5.2.12 Sub block 0x008C - AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB

This sub block restores the calibration data which was stored previously using the AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB command.

Table 5.13: AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value	Value = 0x008C	
SBLKLEN	2	Value	= 136	
TX₋INDX	1		Index of the transmit channel for which the following data applies	
CAL_APPLY	1	Set this to 1 after applying calibration data from all transmitters. This bit will indicate to the firmware to start the correction process.		
OBS_PHSHIFT_ DATA	128	Observed phase shift corresponding to each desired phase shift. Index n corresponds to desired phase shift of $n\times 5.625^\circ$. For e.g.		
		n	Desired phase shift	Observed phase shift is injected in the following bytes
		0	0.000°	byte[1], byte[0]
		1	5.625°	byte[3], byte[2]
		2	11.250°	byte[5], byte[4]
		3	16.875°	byte[7], byte[6]
		:	:	
		63	354.375°	byte[127], byte[126]
		1 LSB	$=360^{\circ}/2^{10}$	
RESERVED	2	0x000	0	

5.3 Sub blocks related to AWR_RF_STATIC_CONF_GET_MSG

5.3.1 Sub block 0x00A0 - 0x00AA - RESERVED

5.3.2 Sub block 0x00AB - AWR_CAL_DATA_SAVE_SB

This sub block reads the calibration data from the device which can be injected later using the AWR_CAL_DATA_RESTORE_SB command.

Table 5.14: AWR_CAL_DATA_SAVE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AB
SBLKLEN	2	Value = 8
RESERVED	2	0x0000
CHUNK_ID	2	Index of the requested chunk
		Valid values: 0 to NUM_CHUNKS - 1

Response to the above command will contain the calibration data which is formatted as shown below

 Table 5.15:
 AWR_CAL_DATA_SAVE_SB response packet contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AB
SBLKLEN	2	Value = 232
NUM_CHUNKS	2	Total number of calibration data chunks
CHUNK_ID	2	Current chunk number
CAL_DATA	224	Calibration data

5.3.3 Sub block 0x00AC - AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB

This sub block reads the phase shifter calibration data from the device which can be injected later using the AWR_PHASE_SHIFTER_CAL_DATA_RESTORE_SB command.

Table 5.16: AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00AC
SBLKLEN	2	Value = 8
TX₋INDX	1	Index of the transmitter channel for which the phase shift is desired
RESERVED	3	0x000000

Response to the above command will contain the phase shifter calibration data which is formatted as shown below

Table 5.17: AWR_PHASE_SHIFTER_CAL_DATA_SAVE_SB response packet contents

Field Name	Number	Descri	intion			
Tield Haille	of bytes	Descri	ption			
SBLKID	2	Value =	Value = 0x00AC			
SBLKLEN	2	Value =	= 136			
TX_INDX	1		of the transmitter char shift values applies	nnel for which the following		
RESERVED	1	0x00				
OBS_PHSHIFT_ DATA	128	Observed phase shift corresponding to each desired phase shift. Index n corresponds to desired phase shift of $n \times 5.625^{\circ}$. For e.g. Desired phase shift Observed phase shift is read in the following bytes				
		0	0.000°	byte[1], byte[0]		
		1	5.625°	byte[3], byte[2]		
		2	11.250°	byte[5], byte[4]		
		3	16.875°	byte[7], byte[6]		
		:	:			
		63	354.375°	byte[127], byte[126]		
		1 LSB	$=360^{\circ}/2^{10}$			
RESERVED	2	0x0000)			

5.4 Sub blocks related to AWR_RF_INIT_MSG

5.4.1 Sub block 0x00C0 - AWR_RF_INIT_SB

This sub block, needed to be initially issued, triggers one time calibrations such as those related to APLL and synthesizer. The BSS processor is woken up upon receiving this sub block, the RF analog and digital baseband sections are initialized.

Table 5.18 describes the content of this sub block.

Table 5.18: AWR_RF_INIT_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x00C0
SBLKLEN	2	Value = 4

NOTE:	This sub block will be acknowledged immediately but an async
	event AWR_AE_RF_INITCALIBSTATUS_SB from BSS will indicate
	that the RF initialization is complete. No commands shall be sent
	to BSS till the async event is received.

5.5 Sub blocks related to AWR_RF_DYNAMIC_CONF_SET_MSG

5.5.1 Sub block 0x0100 - AWR_PROFILE_CONF_SET_SB

This sub block contains FMCW radar chirp profiles or properties (FMCW slope, chirp duration, TX power etc.). Since the device supports multiple profiles, each profile is defined in this sub block. Internal RF and analog calibrations may be triggered upon receiving this sub block and ASYNC_EVENT response sent once completed.

NOTE:	This API can be issued dynamically to change profile parameters. Few parameters which cannot be changed are
	1. PF_NUM_ADC_SAMPLES
	2. PF_DIGITAL_OUTPUT_SAMPLING_RATE
	3. Programmable filter coefficients in xWR1642 or xWR1843

Table 5.19 describes the contents of this sub block.

Table 5.19: AWR_PROFILE_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x0100			
SBLKLEN	2	Value	Value = 48		
PF_INDX	2	The p	profile index for which the rest of the fields are applifor		
PF_VCO_SE-	1	Bit Description			
LECT		b0	FORCE_VCO_SEL		
			0 Use internal VCO selection		
			1 Forced external VCO selection		
		b1	VCO_SEL		
			0 VCO1 (76 - 78 GHz)		
			1 VCO2 (77 – 81 GHz)		
		NOTE: There is an overlap region of 77-78 GHz in which any of the VCOs can be used, for other regions use only the VCO which can work in that region. For e.g. for 76-77 GHz use only VCO1 and for 78-81GHz use only VCO2, for 77-78 GHz, any VCO can be used. Also note that users should not inter-mix chirps from different VCOs within the same frame.			
		b7:2	RESERVED		
			0b000000		
PF_CALLUT_	1	Bit	Description		
UPDATE		b0	RETAIN_TXCAL_LUT		
			0 Update TX calibration LUT		
			1 Do not update TX calibration LUT		
		b1	RETAIN_RXCAL_LUT		
			0 Update RX calibration LUT and update RX IQMM correction		
		1 Do not update RX calibration LUT			
		b7:2	RESERVED (set it to 0b000000)		
		If PF_TX_OUTPUT_POWER_BACKOFF is changed the set RETAIN_TXCAL_LUT to 0, else set it to 1 and if PF RX_GAIN or if sweep bandwidth is changed, then set RE TAIN_RXCAL_LUT to 0 else set them to 1			

PF_FREQ_ START_CONST	4	Start frequency for this profile 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0x5471C71B to 0x5A000000		
PF_IDLE_TIME_ CONST	4	Idle time for each profile 1 LSB = 10 ns Valid range: 0 to 524287		
PF_ADC_START_ TIME_CONST	4	Time of starting of ADC capture relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 4095		
PF_RAMP_END_ TIME	4	End of ramp time relative to the knee of the ramp 1 LSB = 10 ns Valid range: 0 to 500000 Ensure that the total frequency sweep is either within 76-78 GHz or 77-81 GHz		
PF_TX_OUT-	4	Bits Description		
PUT_POWER_		b7:0 TX0 output power back off		
BACKOFF		b15:8 TX1 output power back off		
		b23:16 TX2 output power back off		
		b31:24 RESERVED (set it to 0x00)		
		This field defines how much the transmit power should be reduced from the maximum.		
		1 LSB = 1 dB NOTE: For best inter-TX channel matching performance, same chirp profile and same TX backoff value should be used for all the TXs that are used in beam-forming		
PF_TX_PHASE_	4	Bits Description		
SHIFTER		b1:0 RESERVED (set it to 0b00)		
		b7:2 TX0 phase shift value		
		1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b9:8 RESERVED (set it to 0b00)		
		b15:10 TX1 phase shift value		
		1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b17:16 RESERVED (set it to 0b00)		
		b23:18 TX2 phase shift value		
		1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$		
		b31:24 RESERVED		
		0x00		
		This field defines the additional phase shift to be introduced on each transmitter output.		

				promote par	J -
PF_FREQ_ SLOPE_CONST	2		Frequency slope for each profile is encoded in 2 bytes (16 bit signed number)		
		1 LSB = $3.6e9 \times 900/2^{26}$ Hz ≈ 48.279 kHz/ μ s			
		Valid range: -2072 to 2072			
PF_TX_START_ TIME	2	Time of start of transmitter relative to the knee of the ramp			e to the knee of the ramp
		1 LSB	= 10 ns		
		Valid r	ange: -40	96 to 4095	
		Positive numbers refer to start of TX after knee of the ramp and negative numbers refer to start of TX before the knee of the ramp			
PF_NUM_ADC_ SAMPLES	2	Numb	er of ADC	samples to capti	ure in a chirp for each RX
		Valid range: 2 to MAX_NUM_SAMPLES, where MAX_NUM_SAMPLES is such that all the enabled RX channels' data fits into 16 kB memory in xWR1243/xWR1443 or 32 kB memory in xWR1642/xWR1843, with each sample consuming 2 bytes for real ADC output case and 4 bytes for complex 1x and complex 2x ADC output cases. For example in xWR1243/xWR1443 when the ADC buffer size is 16 kB			
		_	ber of	ADC format	MAX_NUM_ SAMPLES
			4	Complex	1024
			4	Real	2048
			2	Complex	2048
			2	Real	4096
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	ADC Sampling rate for this profile is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 1 ksps Valid range 2000 to 37500			
PF_HPF1_COR- NER_FREQ	1	HPF1 byte	corner fi	equency for each	n profile is encoded in 1
		Value	HPF1 co	rner frequency de	finition
		0x00	175 kHz	2	
		0x01	235 kHz	2	
		0x02	350 kHz	2	
		0x03	700 kHz	<u>.</u>	
PF_HPF2_COR- NER_FREQ	1	0x03 700 kHz HPF2 corner frequency for each profile is encoded in 1 byte			

Table 5.19 – continued from previous page

		19 – Continued Irom previous page		
		Value HPF2 corner frequency definition		
		0x00 350 kHz		
		0x01 700 kHz		
		0x02 1.4 MHz		
		0x03 2.8 MHz		
TX_CAL_EN_CFG	2	Number of transmitters to turn on during TX power calibration. During actual operation, if more than 1 TXs are enabled during the chirp, then enabling the same TXs during calibration will have better TX output power accuracy Bit Definition b2:0 TX enabled during TX0 calibration b0 - TX0, b1 - TX1, b2 - TX2		
		b5:3 TX enabled during TX1 calibration b3 - TX0, b4 - TX1, b5 - TX2		
		b8:6 TX enabled during TX2 calibration b6 - TX0, b7 - TX1, b8 - TX2		
		b14:9 RESERVED		
		b15 Enable multi TX enable during TX power calibration If this bit is not set, only 1 TX is enabled during the TX power calibration. For e.g. during TX0 calibration, only TX0 will be enabled; during TX1 calibration, only TX1 will be enabled and so on		
PF_RX_GAIN	2	Bit Definition		
		b5:0 RX_GAIN		
		This field defines RX gain for each profile.		
		1 LSB = 1 dB		
		Valid values: all even values from 24 to 52		
		b7:6 RF_GAIN_TARGET		
		Value RF gain target		
		00 30 dB		
		01 34 dB		
		10 RESERVED		
		11 26 dB		
		b15:8 RESERVED (set it to 0x00)		

		The total RX gain is achieved as a sum of RF gain and IF amplifiers gain. The RF Gain target (30 dB, 34 dB and 26 dB) allows the user to control the RF gain independently from the total RX gain, thus giving flexibility to the user to trade-off linearity vs. noise figure. Out of multiple gain settings for the RF stages, the firmware calibration algorithm uses the one that makes the RF gain as close as possible to the user programmed RF Gain Target.
RESERVED	2	0x0000

Table 5.20: Note on maximum sampling rate

NOTE:

The maximum sampling rate supported is limited based on the information in the table below

When device supports 15 MHz IF bandwidth (refer device data sheet)

	Real/Pseudo Real	Complex1x	Complex2x
Regular ADC mode	37.5 Msps	18.75 Msps	37.5 Msps
Low power ADC mode	18.75 Msps	9.375 Msps	18.75 Msps

When device supports 10 MHz IF bandwidth (refer device data sheet)

	Real/Pseudo Real	Complex1x	Complex2x
Regular ADC mode	25 Msps	12.5 Msps	25 Msps
Low power ADC mode	18.75 Msps	9.375 Msps	18.75 Msps

When device supports 5 MHz IF bandwidth (refer device data sheet)

	Real/Pseudo Real	Complex1x	Complex2x
Regular ADC mode	12.5 Msps	6.25 Msps	12.5 Msps
Low power ADC mode	12.5 Msps	6.25 Msps	12.5 Msps

- The IF bandwidth here refers to the IF frequency of the farthest reflection desired to be detected
- ullet Typically, the IF frequency range preserved well in the receiver baseband is 0.9 imes Sampling Rate in Complex 1x and 0.45 imes Sampling Rate in Complex 2x and Real/Pseudo Real.
- The maximum sampling rates are also subject to restrictions from LVDS/CSI2 interface rate and ADC bits configurations.
 Typically in Complex2x mode, the maximum sampling rate would be 25 Msps

5.5.2 Sub block 0x0101 - AWR_CHIRP_CONF_SET_SB

This sub block contains chirp to chirp variations on top of the chirp profiles defined in the AWR_PROFILE_CONF_SET_SB. E.g. which profile is to be used for each chirp in a frame, and small dithers in FMCW start frequency and idle time for each chirp are possible to be defined here. The dithers used in this configuration sub block are only additive on top of programmed parameters in AWR_PROFILE_CONF_SET_SB.

Table 5.21 describes the contents of this sub block.

Table 5.21: AWR_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0101		
SBLKLEN	2	Value = 24		
CHIRP_START_ INDX	2	Valid range 0 to 511		
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511		
PROFILE_INDX	2	Valid range 0 to 3		
RESERVED	2	0x0000		
CHIRP_FREQ_ START_VAR	4	1 LSB = $3.6e9/2^{26} \approx 53.644$ Hz Valid range: 0 to 8388607		
CHIRP_FREQ_ SLOPE_VAR	2	1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279$ kHz Valid range: 0 to 63		
CHIRP_IDLE_ TIME_VAR	2	Idle time of each chirp is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 ns Valid range: 0 to 4095		
CHIRP_ADC_ START_TIME_ VAR	2	ADC start time of each chirp is encoded in 2 bytes (16 bit unsigned number) 1 LSB = 10 ns Valid range: 0 to 4095		
CHIRP_TX_EN	2	TX enable selection Bit Definition b0 TX0 Enable b1 TX1 Enable b2 TX2 Enable b15:3 RESERVED 0b0_0000_0000_0000 NOTE: Maximum number of TXs that can be turned on in a chirp depends on the device data sheet specification		

5.5.3 Sub block 0x0102 - AWR_FRAME_CONF_SET_SB

This sub block defines a frame, i.e. a sequence of chirps to be transmitted subsequently, the no. of frames to be transmitted, frame periodicity and how to trigger them.

Table 5.22 describes the contents of this sub block.

Table 5.22: AWR_FRAME_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0102	
SBLKLEN	2	Value = 28	
RESERVED	2	May use to indicate Frame mode or Continuous chirping mode of operation.	
CHIRP_START_ INDX	2	Valid range 0 to 511	
CHIRP_END_ INDX	2	Valid range CHIRP_START_INDX to 511	
NUM_LOOPS	2	Number of times to repeat from CHIRP_START_INDX to CHIRP_END_INDX in each frame Valid range 1 to 255	
NUM_FRAMES	2	Number of frames to transmit This field is ignored and internally assumed as 1 if thi xWR1xxx is configured as MULTICHIP_SLAVE in AWR CHAN_CONF_SB. 16 bit unsigned number Valid range: 0 to 65535 (0 for infinite frames)	
RESERVED	2	0x0000	
FRAME_PERIOD-ICITY	4	1 LSB = 5 ns Valid range: 40000 + (1 chirp duration) to 268400000 This is the frame repetition period.	

TRIGGER_SE-	2	Value	Definition
LECT		0x0001	SWTRIGGER (Software API based triggering): Frame is triggered upon receiving AWR_FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in triggering. This mode is not applicable if this xWR1xx is configured as MULTICHIP_SLAVE in AWR_CHAN_CONF_SB.
		0x0002	HWTRIGGER (Hardware SYNC_IN based triggering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_FRAMESTARTSTOP_CONF_SB (this is to prevent spurious transmission). W.r.t. the SYNC_IN pulse, the actual transmission has 5ns uncertainty in SINGLECHIP and only a 300 ps uncertainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB.
RESERVED	2	0x0000	
FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the occurrence of frame chirps. Applicable only in SINGLECHIF sensor applications, as defined in AWR_CHAN_CONF_SB. It is recommended only for staggering the transmission of multiple radar sensors around the car for interference avoidance, if needed. Typical range is 0 to few tens of micro seconds. Units: 1 LSB = 5 ns	

NOTE1:	If hardware triggered mode is used, the SYNC_IN pulse width should be less than the ON time of the frame (in case of legacy frame config mode) or the ON time of the burst (in case of advanced frame config mode). Also, the minimum pulse width of SYNC_IN should be 25 ns.
NOTE2:	If frame trigger delay is used with hardware triggered mode, then external SYNC_IN pulse periodicity should take care of the configured frame trigger delay and frame periodicity. The external pulse should be issued only after the sum total of frame trigger delay and frame periodicity. See figure below

Figure 5.1: Frame trigger delay in case of external hardware trigger

NOTE:	The inter-frame blank time should be at least 250 μ s. (100 μ s
	for frame preparation and 150 $\mu { m s}$ for any calibration updates to
	hardware)
	Add 150 μs to inter-frame blank time for test source configuration if
	test source is enabled.

5.5.4 Sub block 0x0103 - AWR_CONT_STREAMING_MODE_CONF_SET_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

Table 5.23 describes the contents of this sub block.

Table 5.23: AWR_CONT_STREAMING_MODE_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0103	
SBLKLEN	2	Value = 24	
PF_FREQ_ START_CONST	4	Frequency start for each profile is encoded in 4 bytes (32 bit unsigned number) 1 LSB = $3.6e9/2^{26}$ Hz ≈ 53.644 Hz Valid range: 0 to 0x7FFFFFFF	

			p p-3-
PF_TX_OUT-	4	Bits	Description
PUT_POWER_		b7:0	TX0 output power back off
BACKOFF		b15:8	TX1 output power back off
		b23:16	TX2 output power back off
			d defines how much the transmit power should be from the maximum.
PF_TX_PHASE_	4	Bits	Description
SHIFTER		b1:0	RESERVED (set it to 0b00)
		b7:2	TX0 phase shift value 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b9:8	RESERVED (set it to 0b00)
		b15:10	TX1 phase shift value 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b17:16	RESERVED (set it to 0b00)
		b23:18	TX2 phase shift value 1 LSB = $360^{\circ}/2^{6} \approx 5.625^{\circ}$
		b31:24	RESERVED 0x00
			d defines the additional phase shift to be introneach transmitter output.
PF_DIGITAL_ OUTPUT_SAM- PLING_RATE	2	(16 bit u 1 LSB =	Impling rate for each profile is encoded in 2 bytes insigned number) 1 ksps inge 2000 to 37500
PF_HPF1_COR- NER_FREQ	1	HPF1 c	orner frequency for each profile is encoded in 1
		Value	HPF1 corner frequency definition
		0x00	175 kHz
		0x01	235 kHz
		0x02	350 kHz
		0x03	700 kHz

PF_HPF2_COR- NER_FREQ	1	HPF2 corner frequency for each profile is encoded in		
NEN_FREQ		byte Value	HPE2 core	ner frequency definition
		0x00	350 kHz	ner rrequerity definition
		0x00	700 kHz	
			1.4 MHz	
		0x02		
		0x03	2.8 MHz	
PF_RX_GAIN	1			X gain for continuous streaming mode.
		Bit	Definition	
		5:0	RX_GAIN	defines RX gain for each profile.
			1 LSB = 1	
			Valid value	es: all even values from 24 to 52
		7:6	RF_GAIN.	TARGET
			Value F	RF gain target
			00 3	30 dB
			01 3	34 dB
			10 F	RESERVED
			11 2	26 dB
		amplifie dB) allo from the trade-of tings for uses the	rs gain. The ws the use total RX g f linearity vs the RF sta e one that n	s achieved as a sum of RF gain and IF e RF Gain target (30 dB, 34 dB and 26 or to control the RF gain independently gain, thus giving flexibility to the user to so noise figure. Out of multiple gain setages, the firmware calibration algorithm makes the RF gain as close as possible named RF Gain Target.
VCO_SELECT	1	Bit	Descriptio	on
		b0	FORCE_V	/CO_SEL
			0 (Use internal VCO selection
			1 F	Forced external VCO selection
		b1	VCO_SEL	
			0 \	VCO1 (76 - 78 GHz)
			1 \	VCO2 (77 - 81 GHz)
		b7:2	RESERVE	
RESERVED	2	0x0000		

NOTE:	Continuous streaming (CW) mode is useful for RF lab characteri-
	zation and debug. In this mode, the device is configured to transmit
	a single continuous wave (CW - 0 slope) tone at a specific RF fre-
	quency continuously.

5.5.5 Sub block 0x0104 - AWR_CONT_STREAMING_MODE_EN_SB

This sub block contains configuration needed to enable continuous streaming mode from the device.

Table 5.24 describes the contents of this sub block.

Table 5.24: AWR_CONT_STREAMING_MODE_EN_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0104		
SBLKLEN	2	Value = 8		
CONT_STREAM- ING_EN	2	Value Definition 0x0000 Disable continuous streaming mode 0x0001 Enable continuous streaming mode		
RESERVED	2	0x0000		

5.5.6 Sub block 0x0105 - AWR_ADVANCED_FRAME_CONF_SB

This sub block contains advanced frame configuration options.

Table 5.25 describes the contents of this sub block.

Table 5.25: AWR_ADVANCED_FRAME_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0105	
SBLKLEN	2	Value = 152	
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4	

FORCE_SINGLE_	1	Value	Definition	
PROFILE		0x0	The profile index set in Chirp Config API message governs which profile is used when that chirp is transmitted	
		0x1	The profile index indicated in Chirp Config message is ignored and all the chirps in each subframe use a single profile as indicated by that subframe's profile index set in this message.	
LOOPBACK_CFG	1	Bit	Definition	
		b0	LOOPBACK_CFG_EN 0 Disable	
			1 Enable	
		b2:1	SUB_FRAME_ID Sub frame ID for which the loopback configuration applies	
		b7:3	RESERVED	
SUB_	1	0	Disabled (default)	
FRAMETRIG- GER		1	Enabled (Need to trigger each sub-frame either by SW in software triggered mode or HW in hardware triggered mode)	
SF1_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3 Not applicable for loop-back sub-frame		
SF1_CHIRP_	2		dex of the first chirp for the first burst in sub frame 1	
START_INDX	_	Valid range: 0 to 511 Not applicable for loop-back sub-frame		
SF1_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512 Not applicable for loop-back sub-frame		
SF1_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255		

SF1_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST \times (Sum total of all unique chirp times per burst) + InterBurst-BlankTime, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 100 μ s With loopback enabled, InterBurstBlankTime \geq 350 μ s NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns Valid range: 100 μ s to 1.342 s
SF1_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET × BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts). Not applicable for loop-back sub-frame
SF1_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512 Not applicable for loop-back sub-frame
SF1_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64 Not applicable for loop-back sub-frame
RESERVED	2	0x0000

SF1_PERIOD	4	PERIOD \geq Sum total time of all bursts + InterSubFrame-BlankTime, where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration/monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 100 μ s With loopback enabled, InterSubFrameBlankTime \geq 350 μ s Add 150 μ s to InterSubFrameBlankTime for test source configuration if test source is enabled. 1 LSB = 5 ns Valid range 100 μ s to 1.342 s
RESERVED	4	0x00000000
RESERVED	4	0x00000000
SF2_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF2_CHIRP_ START_INDX	2	Start index of the first chirp for the first burst in sub frame 2 Valid range: 0 to 511
SF2_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512
SF2_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255
SF2_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + InterBurstBlank-Time, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 100 μ s With loopback enabled, InterBurstBlankTime \geq 350 μ s NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns

		o - continuca from previous page
SF2_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts).
SF2_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512
SF2_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64
RESERVED	2	0x0000
SF2_PERIOD	4	PERIOD \geq Sum total time of all bursts + InterSubFrame-BlankTime, Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 100 μ s With loopback enabled, InterSubFrameBlankTime \geq 350 μ s Add 150 μ s to InterSubFrameBlankTime for test source configuration if test source is enabled. 1 LSB = 5 ns Valid range: 100 μ s to 1.342 s
RESERVED	4	0x0000000
RESERVED	4	0x0000000
SF3_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF3_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511
SF3_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512

SF3_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255
SF3_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + InterBurst-BlankTime, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 100 μ s With loopback enabled, InterBurstBlankTime \geq 350 μ s NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns
SF3_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts).
SF3_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512
SF3_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64
RESERVED	2	0x0000

SF3_PERIOD	4	PERIOD \geq Sum total time of all bursts + InterSubFrame-BlankTime, Where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 100 μ s With loopback enabled, InterSubFrameBlankTime \geq 350 μ s Add 150 μ s to InterSubFrameBlankTime for test source configuration if test source is enabled. 1 LSB = 5 ns Valid range: 100 μ s to 1.342 s
RESERVED	4	0x00000000
RESERVED	4	0x00000000
SF4_PROFILE_ INDX	2	This is applicable only if FORCE_SINGLE_PROFILE is set to 1. Please refer to that field for description. Valid range: 0 to 3
SF4_CHIRP_ START_INDX	2	Start index of the first chirp in this sub frame Valid range: 0 to 511
SF4_NUM_ UNIQUE_ CHIRPS_PER_ BURST	2	Number of unique chirps per burst Valid range: 1 to 512
SF4_NUM_ LOOPS_PER_ BURST	2	Number of times to loop through the unique chirps in each burst, without gaps, using HW. Valid range: 1 to 255
SF4_BURST_ PERIOD	4	BURST_PERIOD \geq (NUM_LOOPS_PER_BURST)*(Sum total of all unique chirp times per burst) + InterBurst-BlankTime, where InterBurstBlankTime is primarily for sensor calibration / monitoring, thermal control, and some minimum time needed for triggering next burst. InterBurstBlankTime \geq 100 μ s With loopback enabled, InterBurstBlankTime \geq 350 μ s NOTE: Across bursts, if the value (Sum total of all unique chirp times per burst), is not a constant, then the actual available blank time can vary and needs to be accounted for. 1 LSB = 5 ns

SF4_CHIRP_ START_INDX_ OFFSET	2	The chirp start index for each burst is determined as the chirp start index of the previous burst plus SFx_START_INDX_OFFSET * BURST_INDX i.e. CHIRP_START_INDX = SFx_CHIRP_START_INDX + (SFx_CHIRP_START_INDX_OFFSET × BURST_INDEX) Valid range: 0 to 511 A value of 0 can be used to repeat the same set of unique chirps across bursts. Non-zero values allow spanning a larger number of unique chirps (across bursts).
SF4_NUM_ BURSTS	2	Number of bursts constituting this sub frame Valid range: 1 to 512
SF4_NUM_ OUTER_LOOPS	2	Number of times to loop over the set of above defined bursts, for this sub frame. Valid range: 1 to 64
RESERVED	2	0x0000
SF4_PERIOD	4	SF_PERIOD \geq Sum total time of all bursts + InterSub-FrameBlankTime, where, Sum total time of all bursts = Num Outer Loops * Num Bursts * Burst Period. InterSubFrameBlankTime is primarily for sensor calibration / monitoring, thermal control, transferring out any safety monitoring data if requested, hardware reconfiguration for next sub frame, retriggering of next SF. InterSubFrameBlankTime \geq 100 μ s With loopback enabled, InterSubFrameBlankTime \geq 350 μ s Add 150 μ s to InterSubFrameBlankTime for test source configuration if test source is enabled. 1 LSB = 5 ns Valid range: 100 μ s to 1.342 s
RESERVED	4	0x00000000
RESERVED	4	0x00000000
NUM_FRAMES	2	Number of frames to transmit (1 frame = all enabled sub frames). If set to 0, frames are transmitted endlessly till Frame Stop message is received. Valid range: 0 to 65535

TRIGGER_SE- LECT	2	0x0001 SWTRIGGER (Software API based triggering): Frame is triggered upon receiving AWR_FRAMESTARTSTOP_CONF_SB. There could be several tens of micro seconds uncertainty in triggering. This mode is not applicable if this xWR1xx is configured as MULTICHIP_SLAVE in AWR_CHAN_CONF_SB.
		0x0002 HWTRIGGER (Hardware SYNC_IN based triggering): Each frame is triggered by rising edge of pulse in SYNC_IN pin, after receiving AWR_FRAMESTARTSTOP_CONF_SB (this is to prevent spurious transmission). w.r.t. the SYNC_IN pulse, the actual transmission has 5ns uncertainty in SINGLECHIP and only a 300 ps uncertainty (due to tight inter-chip synchronization needed) in MULTICHIP sensor applications as defined in AWR_CHAN_CONF_SB.
FRAME_TRIG- GER_DELAY	4	Optional time delay from the SYNC_IN trigger to the occurrence of frame chirps. Applicable only in SINGLECHIP sensor applications, as defined in AWR_CHAN_CONF_SB. It is recommended only for staggering the transmission of multiple radar sensors around the car for interference avoidance, if needed. Typical range is 0 to few tens of micro seconds. Units: 1 LSB = 5 ns
RESERVED	4	0x00000000
RESERVED	4	0x00000000

NOTE:	If hardware trigger mode is used with advanced frame configuration with SUBFRAMETRIGGER = 0, then the trigger should be issued
	for each burst. With SUBFRAMETRIGGER = 1, then the trigger needs to be issued for each sub-frame.

5.5.7 Sub block 0x0106 - AWR_PERCHIRPPHASESHIFT_CONF_SB

This sub block defines static phase shift configurations per chirp in each of the TXs. The API is applicable only in xWR1243P. This API will be honored after enabling PERCHIRP_PHASESHIFTER_EN in AWR_RF_RADAR_MISC_CTL_SB.

Table 5.26 describes the contents of this sub block.

Table 5.26: AWR_PERCHIRPPHASESHIFT_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0106
SBLKLEN	2	Value = 12
CHIRP_START_ INDX	2	Start index of the chirp for configuring the phase shifter Valid range 0 to 511
CHIRP_END_ INDX	2	End index of the chirp for configuring the phase shifter Valid range 0 to 511
TX0_PHASE_	1	TX0 phase shift value
SHIFTER		Bits TX0 phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 TX0 phase shift value $ \text{1 LSB} = 360^{\circ}/2^{6} = 5.625^{\circ} $ Valid range: 0 to 63
TX1_PHASE_	1	TX1 phase shift value
SHIFTER		Bits TX1 phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 TX1 phase shift value $ \text{1 LSB} = 360^{\circ}/2^{6} = 5.625^{\circ} $ Valid range: 0 to 63
TX2_PHASE_	1	TX2 phase shift value
SHIFTER		Bits TX2 phase shift definition
		b1:0 RESERVED (set it to 0b00)
		b7:2 TX2 phase shift value $ \text{1 LSB} = 360^{\circ}/2^{6} = 5.625^{\circ} $ Valid range: 0 to 63
RESERVED	1	0x00

NOTE: Phase shifters are applied at the knee of the ramp.

5.5.8 Sub block 0x0107 - AWR_PROG_FILT_COEFF_RAM_SET_SB

This sub block can be used to program the coefficients for the external programmable filter. The API is applicable only in xWR1642 or xWR1843.

Note that the programmable filter is applicable in Complex 1X and Real-only output modes for sampling rates under 6.25 Msps (Complex 1X) and under 12.5 Msps (Real). This is to allow for a trade-off between digital filter chain setting time and close-in anti-alias attenuation. A real-coefficient FIR with up to 26 taps (16-bit coefficients) is supported in the Complex 1X output

mode, and a real-coefficient FIR with up to 20 taps (16-bit coefficients) in supported in the Real output mode

NOTE: This API should be issued before AWR_PROFILE_CONF_SET_SB.

Table 5.27 describes the contents of this sub block.

Table 5.27: AWR_PROG_FILT_COEFF_RAM_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0107
SBLKLEN	2	Value = 212
COEFF_ARRAY	208	The array of coefficients for the programmable filter, across all profiles, to be stored in the coefficient RAMS. Each tap is a 16-bit signed <1.15, s> number. The exact set of taps to be used for a given profile can be specified through AWR_PROG_FILT_CONF_SB NOTE: All the filter taps across profiles are to be provided in one shot. There is a HW constraint that each profile's filter taps should start at four 32-bit word aligned address (i.e., the coefficients corresponding to any profile should start at array index which is a multiple of 8). Unused coefficients shall be initialized to zero.

5.5.9 Sub block 0x0108 - AWR_PROG_FILT_CONF_SET_SB

This sub block can be used to configure the coefficients for the external programmable filter and associate them to a certain profile. The API is applicable only in xWR1642 or xWR1843. This API should be issued before AWR_PROFILE_CONF_SET_SB.

Table 5.28 describes the contents of this sub block.

Table 5.28: AWR_PROG_FILT_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0108
SBLKLEN	2	Value = 8
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies.

Table 5.28 – continued from previous page

PROG_FILT_ COEFF_START_ INDEX	1	The index of the first coefficient of the programmable filter taps corresponding to this profile in the coefficient RAM programmed using AWR_PROG_FILT_COEFF_SET_SB NOTE: The profile's filter tap start index shall be 8 tap aligned (four 32-bit word aligned address).
PROG_FILT_ LENGTH	1	The length (number of taps) of the filter corresponding to this profile. Together with the previous field, this determines the set of coefficients picked up from the coefficient RAM to form the filter taps for this profile. NOTE: This has to be an even number. For odd-length filters, a 0 (zero) tap needs to be appended at the end to make the length even. This is a HW constraint.
PROG_FILT_ FREQ_SHIFT_ FACTOR	1	Relevant only for the Complex 1x output mode with the programmable filter. Determines the magnitude of the frequency shift do be done before filtering using the real-coefficient programmable filter. 1 LSB = 0.01 × Fs shift, where Fs is the output sampling rate, specified as PF_DIGITAL_OUTPUT_SAMPLING_RATE in AWR_PROFILE_CONF_SET_SB

NOTE1:	PROG_FILT_COEFF_START_INDEX should be 8 tap aligned (four 32-bit word aligned address)
NOTE2:	Programmable filter APIs (AWR_PROG_FILT_COEFF_RAM_SET_SB and AWR_PROG_FILT_CONF_SET_SB) should not be issued when frames are ongoing.

5.5.10 Sub block 0x0109 - AWR_CALIB_MON_TIME_UNIT_CONF_SB

This API sub block is used to set calibration and monitoring time unit.

Table 5.29: AWR_CALIB_MON_TIME_UNIT_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0109
SBLKLEN	2	Value = 12

Table 5.29 - continued from previous page

CALIB_MON_ TIME_UNIT	2	Defines the basic time unit, in terms of which calibration and/or monitoring periodicities are to be defined.
		If any monitoring functions are desired and enabled, the monitoring infrastructure automatically inherits this time unit as the period over which the various monitors are cyclically executed; so this should be set to the desired FTTI.
		For calibrations, a separate CALIB_PERIODICITY can be specified, as a multiple of this time unit, in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB NOTE: Even though calibrations many not be desired every time unit, every time unit shall be made long enough to include active chirping time, time required for all enabled calibrations and monitoring functions.
		1 LSB = Duration of one frame Recommendation: See examples in Section 9 Default value: 100
NUM_OF_CAS- CADED_DEV	1	Applicable only in cascaded mode. In non-cascaded mode set this to 1 Default value: 1
DEVICE_ID	1	Applicable only in cascaded mode. In non-cascaded mode set this to 0 Default value: 0
RESERVED	4	0x0000_0000

5.5.11 Sub block 0x010A - AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_ SB

This API is used to trigger one time calibrations instantaneously or schedule periodic run time time calibrations which will be scheduled by the firmware while framing during any available idle slot of 200 μ s.

Table 5.30: AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010A
SBLKLEN	2	Value = 24

ONE_TIME_ CALIB_ENABLE_ MASK	4	of various sponding the form calibratic of any results the asynchronic APLL an irrespect	ceiving this trigger message, one time calibration is RF/analog aspects are triggered if the corregibits in this field are set to 1. The response is in of an asynchronous event sent to the host. The ons, if enabled, are performed after the completion ongoing calibration cycle, and the calibration aske effect from the frame that begins after the onous event response is sent from the BSS. In d SYNTH calibrations are done always internally live of bits are enabled or not, the time required for librations must be allocated.
		Bit	Definition
		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	RESERVED
		b4	LODIST_CALIBRATION_EN
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD_CALIBRATION_EN
		b9	TX_POWER_CALIBRATION_EN
		b10	RX_GAIN_CALIBRATION_EN
		b11	RESERVED
		b12	RESERVED
		b31:13	RESERVED
		Dofoult	0b0000_0000_0000_0000
		Default v	raiue: U

PERIODIC_	4	Automati	c periodic triggering of calibrations of various
CALIB_ENABLE_			ng aspects can be set up by the host issuing this
MASK		message	e with corresponding bits in this field set to 1.
		Bit	Definition
		b0	RESERVED
		b1	RESERVED
		b2	RESERVED
		b3	RESERVED
		b4	LODIST_CALIBRATION_EN
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD_CALIBRATION_EN
		b9	TX_POWER_CALIBRATION_EN
		b10	RX_GAIN_CALIBRATION_EN
		b11	RESERVED
		b12	RESERVED
		b31:13	RESERVED
		APLL an	d SYNTH calibrations are done always internally
			eriodicity of 1 second) irrespective of bits are
			or not, the time required for these calibrations
			allocated. Refer to Table 9.2 for the duration of
			calibrations
		Default v	alue: 0

CALIBRATION_ PERIODICITY	4	This field is applicable only for those calibrations which are enabled to be done periodically in the PERIODIC_CALIB_ENABLE_MASK field. This field indicates the desired periodicity of calibrations. If this field is set to N, the results of the first calibration (based on ONE_TIME_CALIB_ENABLE_MASK) are applicable for the first N CALIB_MON_TIME_UNITs. The results of the next calibration are applicable for the next N CALIB_MON_TIME_UNITs, and so on. Recommendation: Set CALIBRATION_PERIODIC-ITY such that frequency of calibrations is greater than or equal to 1 second. 1 LSB = 1 CALIB_MON_TIME_UNIT, as specified in AWR_CALIB_MON_TIME_UNIT_CONF_SB. If the user does not wish to receive calibration reports when periodic calibrations are not enabled, then the user should set CALIBRATION_PERIODICITY to 0 Default value: 0
ENABLE_CAL_	1	Bit Definition
ENABLE_CAL_ REPORT	1	Bit Definition b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled
_	1	b0 ENABLE_SUMMARY_REPORT
_	1	b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled 1 Summary reports are enabled Default value: 0 b7:1 RESERVED
_	1	b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled 1 Summary reports are enabled Default value: 0 b7:1 RESERVED NOTE1: If calibration reports are enabled, the reports will be sent every 1 second whenever internal calibrations (APLL and SYNTH) are triggered and at every CALIBRA- TION_PERIODICITY when the user enabled calibrations are triggered.
_	1	b0 ENABLE_SUMMARY_REPORT 0 Summary reports are disabled 1 Summary reports are enabled Default value: 0 b7:1 RESERVED NOTE1: If calibration reports are enabled, the reports will be sent every 1 second whenever internal calibrations (APLL and SYNTH) are triggered and at every CALIBRA- TION_PERIODICITY when the user enabled calibrations

Table 5.30 - continued from previous page

TX_POWER_	1	Bit	Definition
CAL_MODE		b0	TX_POWER_CAL_MODE 0
			1 Update TX gain settings from LUT only (OLPC only) OLPC: Open Loop Power Control. In this mode the TX stage codes are set based on a coarse measurement and a LUT generated for every temperature and the stage codes are picked from the LUT CLPC: Closed Loop Power Control. In this mode the TX stage codes are picked from the coarse LUT as generated in OLPC step. Later the TX power is measured and the TX stage codes are corrected to achieve the desired TX power accuracy. Default value: 0
		b7:1	RESERVED
RESERVED	1	0x00	
RESERVED	4	0x00000	000

NOTE:	The API AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_
	SB should be issued when the device is not framing

5.5.12 Sub block 0x010B - AWR_INTER_RX_GAIN_PHASE_CONTROL_SB

This API can be used to induce different gain/phase offsets on the different RXs, for inter-RX mismatch compensation.

Table 5.31: AWR_INTER_RX_GAIN_PHASE_CONTROL_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010B
SBLKLEN	2	Value = 28
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies.
RESERVED	3	0x000000

Table 5.31 – continued from previous page

DIGITAL_GAIN	4	One byte per RX (8-bit signed number)
		Bits Assignment
		b7:0 RX0 digital gain
		b15:8 RX1 digital gain
		b23:16 RX2 digital gain
		b31:24 RX3 digital gain
		1 LSB = 0.1 dB
		Valid Range: -120 to 119
DIGITAL_PHASE_	8	Two bytes per RX
SHIFT		Bits Assignment
		b15:0 RX0 digital phase shift
		b31:16 RX1 digital phase shift
		b47:32 RX2 digital phase shift
		b63:48 RX3 digital phase shift
		1 LSB = $360^{\circ}/2^{16} \approx 0.0055^{\circ}$
		Valid Range: 0 to 65535
		NOTE: This field is NOT applicable when ADC_OUT_FMT
		is 00 (real output)
RESERVED	8	0x00000000

5.5.13 Sub block 0x010C - AWR_RX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the RX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Table 5.32: AWR_RX_GAIN_TEMPLUT_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010C
SBLKLEN	2	Value = 28
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies.
RESERVED	1	0x00

Table 5.32 – continued from previous page

RX_GAIN_CODE	19	Byte0:	RX gain	code for temperature <-30 °C
		Byte1:	RX gain	code for temperature [-30, -20) °C
		Byte2:	RX gain	code for temperature [-20, -10) °C
		Byte3:	RX gain	code for temperature [-10, 0) °C
		Byte4:	RX gain	code for temperature [0, 10) °C
		Byte5:	RX gain	code for temperature [10, 20) °C
		Byte6:	RX gain	code for temperature [20, 30) °C
		Byte7:	RX gain	code for temperature [30, 40) °C
		Byte8:	RX gain	code for temperature [40, 50) °C
		Byte9:	RX gain	code for temperature [50, 60) °C
		Byte10:	RX gain	code for temperature [60, 70) °C
		Byte11:	RX gain	code for temperature [70, 80) °C
		Byte12:	RX gain	code for temperature [80, 90) °C
		Byte13:	RX gain	code for temperature [90, 100) °C
		Byte14:	RX gain	code for temperature [100, 110) °C
		Byte15:	RX gain	code for temperature [110, 120) °C
		Byte16:	RX gain	code for temperature [120, 130) °C
		Byte17:	RX gain	code for temperature [130, 140) °C
		Byte18:		code for temperature ≥140 °C
		1		led as follows
		Bits	Definition	
		b4:0	IF_GAIN.	_CODE s IF_GAIN_CODE ×2 - 6 dB
				ues: 0 to 17
			1 LSB =	2 dB
		b7:5	RF₋GAIN Value	N_CODE RF Gain
			0	Maximum RF gain
			1	Maximum RF gain — 2 dB
			2	Maximum RF gain — 4 dB
			3	Maximum RF gain — 6 dB
			4	Maximum RF gain — 8 dB
RESERVED	1	0x00		
RESERVED	2	0x0000		
-				

5.5.14 Sub block 0x010D - AWR_TX_GAIN_TEMPLUT_SET_SB

This API can be used to overwrite the TX gain temperature LUT used in firmware. This API should be issued after profile configuration API.

Table 5.33: AWR_TX_GAIN_TEMPLUT_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010D
SBLKLEN	2	Value = 68
PROFILE_INDX	1	This field indicates the profile Index for which this configuration applies
RESERVED	1	0x00
TX0_GAIN_CODE	19	Byte0: TX0 gain code for temperature <-30 °C
		Byte1: TX0 gain code for temperature [-30, -20) °C
		Byte2: TX0 gain code for temperature [-20, -10) °C
		Byte3: TX0 gain code for temperature [-10, 0) °C
		Byte4: TX0 gain code for temperature [0, 10) °C
		Byte5: TX0 gain code for temperature [10, 20) °C
		Byte6: TX0 gain code for temperature [20, 30) °C
		Byte7: TX0 gain code for temperature [30, 40) °C
		Byte8: TX0 gain code for temperature [40, 50) °C
		Byte9: TX0 gain code for temperature [50, 60) °C
		Byte10: TX0 gain code for temperature [60, 70) °C
		Byte11: TX0 gain code for temperature [70, 80) °C
		Byte12: TX0 gain code for temperature [80, 90) °C
		Byte13: TX0 gain code for temperature [90, 100) °C
		Byte14: TX0 gain code for temperature [100, 110) °C
		Byte15: TX0 gain code for temperature [110, 120) °C
		Byte16: TX0 gain code for temperature [120, 130) °C
		Byte17: TX0 gain code for temperature [130, 140) °C
		Byte18: TX0 gain code for temperature ≥140 °C Each byte is encoded as follows
		Bits Definition
		b5:0 STG_CODE Higher values for higher gain
		b7:6 RESERVED
RESERVED	1	0x00

Table 5.33 – continued from previous page

TX1_GAIN_CODE	19	Byte0:	TX1 gain code for temperature $<$ -30 $^{\circ}$ C
		Byte1:	TX1 gain code for temperature [-30, -20) $^{\circ}\text{C}$
		Byte2:	TX1 gain code for temperature [-20, -10) $^{\circ}\text{C}$
		Byte3:	TX1 gain code for temperature [-10, 0) $^{\circ}$ C
		Byte4:	TX1 gain code for temperature [0, 10) $^{\circ}$ C
		Byte5:	TX1 gain code for temperature [10, 20) °C
		Byte6:	TX1 gain code for temperature [20, 30) $^{\circ}$ C
		Byte7:	TX1 gain code for temperature [30, 40) °C
		Byte8:	TX1 gain code for temperature [40, 50) °C
		Byte9:	TX1 gain code for temperature [50, 60) °C
		Byte10:	TX1 gain code for temperature [60, 70) °C
		Byte11:	TX1 gain code for temperature [70, 80) °C
		Byte12:	TX1 gain code for temperature [80, 90) °C
		Byte13:	TX1 gain code for temperature [90, 100) °C
		Byte14:	TX1 gain code for temperature [100, 110) °C
		Byte15:	TX1 gain code for temperature [110, 120) $^{\circ}$ C
		Byte16:	TX1 gain code for temperature [120, 130) $^{\circ}$ C
		Byte17:	TX1 gain code for temperature [130, 140) $^{\circ}$ C
		Byte18:	TX1 gain code for temperature \geq 140 $^{\circ}$ C
		Each byt	e is encoded as follows
		Bits	Definition
		b5:0	STG_CODE
			Higher values for higher gain
		b7:6	RESERVED
RESERVED	1	0x00	

Table 5.33 - continued from previous page

TX2_GAIN_CODE	19	Byte0:	TX2 gain code for temperature $<$ -30 $^{\circ}\text{C}$
		Byte1:	TX2 gain code for temperature [-30, -20) $^{\circ}$ C
		Byte2:	TX2 gain code for temperature [-20, -10) $^{\circ}$ C
		Byte3:	TX2 gain code for temperature [-10, 0) °C
		Byte4:	TX2 gain code for temperature [0, 10) °C
		Byte5:	TX2 gain code for temperature [10, 20) °C
		Byte6:	TX2 gain code for temperature [20, 30) °C
		Byte7:	TX2 gain code for temperature [30, 40) °C
		Byte8:	TX2 gain code for temperature [40, 50) °C
		Byte9:	TX2 gain code for temperature [50, 60) °C
		Byte10:	TX2 gain code for temperature [60, 70) °C
		Byte11:	TX2 gain code for temperature [70, 80) °C
		Byte12:	TX2 gain code for temperature [80, 90) °C
		Byte13:	TX2 gain code for temperature [90, 100) °C
		Byte14:	TX2 gain code for temperature [100, 110) °C
		Byte15:	TX2 gain code for temperature [110, 120) °C
		Byte16:	TX2 gain code for temperature [120, 130) °C
		Byte17:	TX2 gain code for temperature [130, 140) $^{\circ}$ C
		Byte18:	TX2 gain code for temperature \geq 140 $^{\circ}$ C
		Each byt	e is encoded as follows
		Bits	Definition
		b5:0	STG_CODE
			Higher values for higher gain
		b7:6	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	

5.5.15 Sub block 0x010E - AWR_LOOPBACK_BURST_CONF_SET_SB

This API can be used to introduce loopback chirps within the functional frames. This loopback chirps will be introduced only if advanced frame configuration is used where user can define which sub-frame contains loopback chirps. The following loopback configuration will apply to one burst and user can program up to 16 different loopback configurations in 16 different bursts of a given sub-frame. User has to ensure that the corresponding sub-frame is defined in AWR_ADVANCED_FRAME_CONF_SB and sufficient time is given to allow the loopback bursts to be transmitted.

NOTE1:	If user desires to enable loopback chirps within functional frames, then this API should be issued after AWR_PROFILE_CONF_SET_SB
NOTE2:	Only profile based phase shifter is supported in loopback configuration. Per-chirp phase shifter if enabled will not be reflected in loopback chirps.
NOTE3:	For the sub-frame in which loopback is desired, user should set SFx_NUM_UNIQUE_CHIRPS_PER_BURST as 1 and can use SFx_NUM_LOOPS_PER_BURST for multiple chirps in the burst.

Table 5.34: AWR_LOOPBACK_BURST_CONF_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x010E		
SBLKLEN	2	Value = 48		
LOOPBACK_SEL	1	Value Definition		
		0 No loopback		
		1 IF loopback		
		2 PS loopback		
		3 PA loopback		
		Others RESERVED		
BASE_PROFILE_	1	Base profile used for loopback chirps		
INDX		Valid values 0 to 3		
BURST₋INDX	1	Indicates the index of the burst in the loopback sub-frame for which this configuration applies		
		Valid values 0 to 15		
RESERVED	1	0x00		
FREQ_CONST	4	Start frequency for loopback. The start frequency configured here should be within profile's sweep bandwidth.		
		1 LSB = $3.6e9/2^{26}$ Hz \approx 53.644 Hz Valid range: 0x5471C71B to 0x5A000000		
SLOPE_CONST	2	Frequency slope for loopback burst (32 bit signed number) 1 LSB = $3.6e9 \times 900/2^{26} \approx 48.279 \text{ kHz}/\mu\text{s}$		
		Valid range: -2072 to 2072		
RESERVED	2	0x0000		

Table 5.34 – continued from previous page

TX_BACKOFF	4	Bits	Definition
		b7:0	TX0 back off
			1 LSB = 1 dB
		b15:8	TX1 back off
			1 LSB = 1 dB
		b23:16	TX2 back off
			1 LSB = 1 dB
		b31:24	RESERVED
RX_GAIN	2	Bits	Definition
		b5:0	RX_GAIN
			This field defines RX gain for each profile
			1 LSB = 1 dB
			Valid values: all even values from 24 to 52
		b7:6	RF_GAIN_TARGET
			Value RF gain target
			00 30 dB
			01 34 dB
			10 RESERVED
			11 26 dB
		b15:8	RESERVED
TX_ENABLE	1	Bits	Definition
		b0	TX0 Enable
		b1	TX1 Enable
		b2	TX2 Enable
		b7:3	RESERVED
RESERVED	1	0x00	

Table 5.34 – continued from previous page

DDM CONFIG	2	Bit	Definition		
BPM_CONFIG	SFINI_CONFIG 2		Definition CONST_BPM_VAL_T	X0 OFF	
		b0	Value of Binary Phas		llue for TX0, during
		b1	CONST_BPM_VAL_T Value of Binary Phas chirp		llue for TX0, during
		b2	CONST_BPM_VAL_T For TX1	X1 ₋ OFF	
		b3	CONST_BPM_VAL_T For TX1	X1 ₋ ON	
		b4	CONST_BPM_VAL_T For TX2	X2_OFF	
		b5	CONST_BPM_VAL_T For TX2	X2_ON	
		b15:6	RESERVED		
DIGITAL_COR-	2	Bits	Digital corrections		
RECTION_DIS- ABLE		b0	IQMM correction dis loopback, for IF loop firmware) 0 - Enable, 1 - Disable	pback IQI	•
		b1	Inter-RX Gain and PI 0 - Enable, 1 - Disable		ection disable
		b15:2	RESERVED		
IF_LOOPBACK_ FREQ	1	Value	IF Loopback frequency	Value	IF Loopback frequency
		0	180 kHz	8	4.02 MHz
		1	240 kHz	9	5 MHz
		2	360 kHz	10	6 MHz
		3	720 kHz	11	8.03 MHz
		4	1 MHz	12	9 MHz
		5	2 MHz	13	10 MHz
		6	2.5 MHz	255-14	RESERVED
		7	3 MHz		
IF_LOOPBACK_ MAG	1	1 LSB = Valid rar	10 mV nge: 1 to 63		

Table 5.34 – continued from previous page

PS1_PGA_GAIN_ INDEX	1	Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C)FF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	ED
		14	-4 dB				
PS2_PGA_GAIN_ INDEX	1	Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C)FF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	ED
		14	-4 dB				

Table 5.34 - continued from previous page

PS_LOOPBACK_ FREQ	4	Phase shifter loop back frequency in kHz 1 LSB = 1 kHz Bits Definition b15:0 TX0 Loopback Frequency [b31:16] TX1 Loopback Frequency
RESERVED	4	RESERVED
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100MHz/LOOPBACK_FREQ is an integer multiple of bin width For e.g. if user choses 25Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage
RESERVED	2	0x0000
RESERVED	2	0x0000
RESERVED	2	0x0000

5.5.16 Sub block 0x010F - AWR_DYN_CHIRP_CONF_SET_SB

This API can be used to dynamically change the chirp configuration while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Table 5.35: AWR_DYN_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x010F
SBLKLEN	2	Value = 200

Table 5.35 – continued from previous page

				ili previous page
CHIRP_ROW_	1	Bits	Descript	ion
SELECT		b3:0	RESER\	/ED
		b7:4	rows, the configuration the use effective CHIRP API part CHIRP are mean CI	does not wish to reconfigure all 3 chirp en the following mode can be used to e only one row per chirp which enables r to configure 48 chirps in one API, ly saving on the reconfiguration time. If ROW_SELECT[7:4] is non-zero, then the ameters CHIRP x _R1, CHIRP x _R2 and x _R3 for x _R4 in this API would HIRP x _R4 where x _R5 are the below table
			Value	Definition
			0b0000	Enables all 3 chirp rows to be reconfigured
			0b0001	Enables only chirp row 1 to be reconfigured
			0b0010	Enables only chirp row 2 to be reconfigured
			0b0011	Enables only chirp row 3 to be reconfigured
			Others	RESERVED
CHIRP_SEG- MENT_SELECT	1		•	31. Indicates the segment of the chirp chirp definitions in this sub block map to
PROGRAM_	2	Bits	Descript	ion
MODE		b0	Value	Definition
			0	Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued
			1	Program the new configuration immediately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping
		b15:1	RESER\	/ED

Table 5.35 – continued from previous page

CHIRP1_R1	4	Bits	Definition	on
		b3:0	PROFIL	.E_INDX nge 0 to 3
		b7:4	RESERVED	
		b13:8	1 LSB =	SLOPE_VAR $: 3.6e9 \times 900/2^{26} \approx \text{48.279 kHz}$ nge: 0 to 63
		b15:14	RESER	VED
		b18:16	TX_ENA	ABLE
			Bit	Definition
			b0	TX0 Enable
			b1	TX1 Enable
			b2	TX2 Enable
		b23:19	RESER	VED
		b29:24	BPM_C0 Bit	ONSTANT_BITS Definition
			b0	CONST_BPM_VAL_TX0_OFF Value of Binary Phase Shift value for TX0, during idle time
			b1	CONST_BPM_VAL_TX0_ON Value of Binary Phase Shift value for TX0, during chirp
			b2	CONST_BPM_VAL_TX1_OFF For TX1
			b3	CONST_BPM_VAL_TX1_ON For TX1
			b4	CONST_BPM_VAL_TX2_OFF For TX2
			b5	CONST_BPM_VAL_TX2_ON For TX2
		b31:30	RESER	VED
CHIRP1_R2	4	Bits	Definition	on
		b22:0	FREQ_START_VAR $ \mbox{1 LSB} = 3.6e9/2^{26} \approx \mbox{53.644 Hz} $	
		b31:23	RESER	VED

Table 5.35 – continued from previous page

CHIRP1_R3	4	Bits	Definition
		b11:0	IDLE_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095
		b15:12	RESERVED
		b27:16	ADC_START_TIME_VAR 1 LSB = 10 ns Valid range: 0 to 4095
		b31:28	RESERVED
CHIRP2_R1	4	See des	cription for CHIRP1_R1
CHIRP2_R2	4	See des	cription for CHIRP1_R2
CHIRP2_R3	4	See des	cription for CHIRP1_R3
CHIRP16_R1	4	See des	cription for CHIRP1_R1
CHIRP16₋R2	4	See des	cription for CHIRP1_R2
CHIRP16_R3	4	See des	cription for CHIRP1_R3

5.5.17 Sub block 0x0110 - AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SET_SB

This API can be used to dynamically change the per-chirp phase shifter configuration (applicable only in xWR1243P) while frames are on-going. The configuration will be stored in software and the new configuration will be applied after receiving the AWR_DYN_CHIRP_ENABLE_SB API.

Table 5.36: AWR_DYN_PERCHIRP_PHASESHIFTER_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x0110	
SBLKLEN	2	Value = 56	
RESERVED	1	0x00	
CHIRP_SEG- MENT_SELECT	1	Indicates the segment of the chirp RAM that the 16 chirp definitions in this sub block map to. Valid range 0 to 31	
CHIRP1_TX0_ PHASE_SHIFTER	1	TX0 phase shift value Bits TX0 phase shift definition b1:0 RESERVED (set it to 0b00) b7:2 TX0 phase shift value 1 LSB = $360^{\circ}/2^{6} = 5.625^{\circ}$ Valid range: 0 to 63	

Table 5.36 – continued from previous page

				m providuo page
CHIRP1_TX1_	1	TX1 pha	ase shift v	alue
PHASE_SHIFTER		Bits	TX1 pha	ase shift definition
		b1:0	RESER'	VED (set it to 0b00)
		b7:2	1 LSB =	ase shift value $360^{\circ}/2^{6}=5.625^{\circ}$
				nge: 0 to 63
CHIRP1_TX2_	1		ase shift v	ralue
PHASE_SHIFTER		Bits	TX1 pha	ase shift definition
		b1:0	RESER	VED (set it to 0b00)
		b7:2	1 LSB =	ase shift value $360^{\circ}/2^{6}=5.625^{\circ}$ age: 0 to 63
CHIRP2_TX0_ PHASE_SHIFTER	1	See des	scription fo	or CHIRP1_TX0_PHASE_SHIFTER
CHIRP2_TX1_ PHASE_SHIFTER	1	See des	scription fo	or CHIRP2_TX1_PHASE_SHIFTER
CHIRP2_TX2_ PHASE_SHIFTER	1	See des	scription fo	or CHIRP3_TX2_PHASE_SHIFTER
CHIRP16_TX0_ PHASE_SHIFTER	1		scription fo	or CHIRP1_TX0_PHASE_SHIFTER
CHIRP16_TX0_		See des		or CHIRP1_TX0_PHASE_SHIFTER or CHIRP2_TX1_PHASE_SHIFTER
CHIRP16_TX0_ PHASE_SHIFTER CHIRP16_TX1_	1	See des	cription fo	
CHIRP16_TX0_ PHASE_SHIFTER CHIRP16_TX1_ PHASE_SHIFTER CHIRP16_TX2_	1	See des	cription fo	or CHIRP2_TX1_PHASE_SHIFTER or CHIRP3_TX2_PHASE_SHIFTER
CHIRP16_TX0_ PHASE_SHIFTER CHIRP16_TX1_ PHASE_SHIFTER CHIRP16_TX2_ PHASE_SHIFTER	1 1 1	See des	scription fo	or CHIRP2_TX1_PHASE_SHIFTER or CHIRP3_TX2_PHASE_SHIFTER
CHIRP16_TX0_ PHASE_SHIFTER CHIRP16_TX1_ PHASE_SHIFTER CHIRP16_TX2_ PHASE_SHIFTER PROGRAM_	1 1 1	See des See des See des	scription for scription for Description	or CHIRP2_TX1_PHASE_SHIFTER or CHIRP3_TX2_PHASE_SHIFTER
CHIRP16_TX0_ PHASE_SHIFTER CHIRP16_TX1_ PHASE_SHIFTER CHIRP16_TX2_ PHASE_SHIFTER PROGRAM_	1 1 1	See des See des See des	scription for scription for Description Value	or CHIRP2_TX1_PHASE_SHIFTER or CHIRP3_TX2_PHASE_SHIFTER tion Definition Program the new configuration when AWR_DYN_CHIRP_ENABLE API is issued Program the new configuration immediately NOTE: User has to ensure that the chirps which are being reconfigured are not the ones which are currently in use for chirping

5.5.18 Sub block 0x0111 - AWR_DYN_CHIRP_ENABLE_SB

This API can be used to trigger the copy of chirp configuration from software to hardware. The copy will be performed at the end of the ongoing frame.

Table 5.37: AWR_DYN_CHIRP_ENABLE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0111
SBLKLEN	2	Value = 8
RESERVED	4	0x00000000

NOTE: HW reconfiguration time (as shown in the figure below) is around 200 μ s. User has to ensure that AWR_DYN_CHIRP_ENABLE_SB API is issued at least 200 μ s before the start of the next frame

Figure 5.2: Dynamic chirp configuration use case timing diagram

5.5.19 Sub block 0x0112 - AWR_INTERCHIRP_BLOCKCONTROLS_SB

This API can be used to program the inter-chip turn on and turn off times or various RF blocks.

 Table 5.38:
 AWR_INTERCHIRP_BLOCKCONTROLS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0112
SBLKLEN	2	Value = 44
RX02_RF_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX0 and RX2 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_RF_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX1 and RX3 RF stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_BB_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX0 and RX2 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_BB_TURN_ OFF_TIME	2	Time to wait after ramp end before turning off RX1 and RX3 baseband stages. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX0 and RX2 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_RF_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_BB_PRE_ ENABLE_TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be put in fast-charge state. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_RF_TURN_ ON_TIME	2	Time before TX Start Time when RX1 and RX3 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023

Table 5.38 – continued from previous page

RX13_RF_TURN_ ON_TIME	2	Time before TX Start Time when RX2 and RX4 RF stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RX02_BB_TURN_ ON_TIME	2	Time before TX Start Time when RX1 and RX3 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RX13_BB_TURN_ ON_TIME	2	Time before TX Start Time when RX2 and RX4 baseband stages are to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RX_LO_CHAIN_ TURN_OFF_TIME	2	Time to wait after ramp end before turning off RX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023
TX_LO_CHAIN_ TURN_OFF_TIME	2	Time to wait after ramp end before turning off TX LO chain. 1 LSB = 10 ns Valid range: -1024 to 1023
RX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the RX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
TX_LO_CHAIN_ TURN_ON_TIME	2	Time before TX Start Time when the TX LO chain is to be enabled. 1 LSB = 10 ns Valid range: -1024 to 1023
RESERVED	4	0x00000000
RESERVED	4	0x00000000

NOTE:	The minimum inter-chirp time should be greater than maximum of the following
	1. abs(RX02_RF_TURN_OFF_TIME) + max(abs(RX02_RF_PRE_ENABLE_TIME), abs(RX02_RF_TURN_ON_TIME))
	2. abs(RX13_RF_TURN_OFF_TIME) + max(abs(RX13_RF_PRE_ENABLE_TIME), abs(RX13_RF_TURN_ON_TIME))
	3. abs(RX02_BB_TURN_OFF_TIME) + max(abs(RX02_BB_PRE_ENABLE_TIME), abs(RX02_BB_TURN_ON_TIME))
	4. abs(RX13_BB_TURN_OFF_TIME) + max(abs(RX13_BB_PRE_ENABLE_TIME), abs(RX13_BB_TURN_ON_TIME)
	 abs(RX_LO_TURN_OFF_TIME) + abs(RX_LO_TURN_ON_ TIME)
	6. abs(TX_LO_TURN_OFF_TIME) + abs(TX_LO_TURN_ON_TIME)

5.5.20 Sub block 0x0113 - AWR_SUBFRAME_START_CONF_SB

This API can be used to trigger each sub-frame individually in software triggered mode. This API takes effect only when the advanced frame configuration indicates that each sub-frame needs to be individually triggered by the user.

Table 5.39: AWR_SUBFRAME_START_CONF_SB contents

Field Name	Number of bytes	Descrip	tion		
SBLKID	2	Value =	0x0113		
SBLKLEN	2	Value =	Value = 8		
START_CMD	2	Bits	Definitio	n	
		b15:0	Value	Definition	
			0x0000	No effect	
			0x0001	Trigger next sub-frame in software triggered sub-frame mode	
RESERVED	2	0x0000			

NOTE1:	If the user wishes to trigger each sub-frame independently, then after advanced frame config, the FRAME START command should be issued once using AWR_FRAMESTARTSTOP_CONF_SB. This does not start any sub-frames but it will prepare the hardware for sub-frame trigger. Next any subsequent sub-frame trigger will start the sub-frames
NOTE2:	If the user wishes to use sub-frame trigger, he has to ensure that sub-frame trigger command is issued $k \cdot N$ times where k is the number of sub-frames in each frame and N is the number of frames. If the user wishes to stop frames in between, then he has to issue the FRAME STOP command (using AWR_FRAMESTARTSTOP_CONF_SB) only after $k \cdot M$ triggers of sub-frame trigger command (where M is an integer). i.e. FRAME STOP command can be issued only at frame boundaries
NOTE3:	If software based sub-frame trigger mode is chosen by the user, watchdog feature will not be available. User has to ensure that the watchdog is disabled before enabling the software based sub-frame trigger mode.
NOTE4:	If sub-frame trigger or hardware trigger mode is used to trigger the frames/sub-frames and if frames need to be stopped before the specified number of frames, then the FRAME_STOP command using AWR_FRAMESTARTSTOP_CONF_SB API should be issued while the frame is on-going. If the frames are stopped while the device is idle, it can lead to errors.

5.6 Sub blocks related to AWR_RF_DYNAMIC_CONF_GET_SB

5.6.1 Sub block 0x0120 - AWR_PROFILE_CONF_GET_SB

This sub block reads the parameters of a given profile. The profile details are available as part of the acknowledgment. The structure is same as AWR_PROFILE_CONF_SET_SB Table 5.40 describes the contents of this sub block.

Table 5.40: AWR_PROFILE_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0120
SBLKLEN	2	Value = 8

Table 5.40 –	continued f	rom	previous	page

PROFILE_INDX	2	Valid range 0 to 3 Index of the profile which is to be read
RESERVED	2	0x0000

5.6.2 Sub block 0x0121 - AWR_CHIRP_CONF_GET_SB

This sub block reads the parameters of a given chirp. The profile details are available as part of the acknowledgement. The structure is same as AWR_CHIRP_CONF_SET_SB Table 5.41 describes the contents of this sub block.

Table 5.41: AWR_CHIRP_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0121
SBLKLEN	2	Value = 8
CHIRP_START_ INDX	2	Valid range 0 to 511 Starting index of the chirp which is to be read
CHIRP_END_ INDX	2	Valid range 0 to 511 Ending index of the chirp which is to be read

5.6.3 Sub block 0x0122 - AWR_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_FRAME_CONF_SET_SB Table 5.42 describes the contents of this sub block.

Table 5.42: AWR_FRAME_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0122
SBLKLEN	2	Value = 4

- 5.6.4 Sub block 0x0123 RESERVED
- 5.6.5 Sub block 0x0124 RESERVED

5.6.6 Sub block 0x0125 - AWR_ADV_FRAME_CONF_GET_SB

This sub block reads the parameters of the configured frame. The profile details are available as part of the acknowledgement. The structure is same as AWR_ADVANCED_FRAME_CONF_SET_SB

Table 5.43 describes the contents of this sub block.

Table 5.43: AWR_ADV_FRAME_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0125
SBLKLEN	2	Value = 4

- 5.6.7 Sub block 0x0126 RESERVED
- 5.6.8 Sub block 0x0127 RESERVED
- 5.6.9 Sub block 0x0128 RESERVED
- 5.6.10 Sub block 0x0129 RESERVED
- 5.6.11 Sub block 0x012A RESERVED
- 5.6.12 Sub block 0x012B RESERVED

5.6.13 Sub block 0x012C - AWR_RX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based RX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_RX_GAIN_LUT_SET_SB.

Table 5.44: AWR_RX_GAIN_TEMPLUT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012C
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the RX gain LUT is desired
RESERVED	3	0x000000

5.6.14 Sub block 0x012D - AWR_TX_GAIN_TEMPLUT_GET_SB

This API is issued to read the temperature based TX gain LUT used by the firmware. This API should be issued after the profile configuration API. The acknowledgement packet sent in response to this API will contain the LUT. The structure is same as AWR_TX_GAIN_LUT_SET_SB.

Table 5.45: AWR_TX_GAIN_TEMPLUT_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x012D
SBLKLEN	2	Value = 8
PROFILE_INDX	1	Profile index for which the TX gain LUT is desired
RESERVED	3	0x000000

5.7 Sub blocks related to AWR_FRAME_TRIG_MSG

5.7.1 Sub block 0x0140 - AWR_FRAMESTARTSTOP_CONF_SB

This sub block starts or stops transmission of frames.

Table 5.46 describes the contents of this sub block.

Table 5.46: AWR_FRAMESTARTSTOP_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0140
SBLKLEN	2	Value = 8
START_STOP_	2	Value Definition
CMD		0x0000 Stop the transmission of frames after the current frame is over
		0x0001 Trigger a frame in software triggered mode. In hardware SYNC_IN triggered mode, this command allows subsequent SYNC_IN trigger to be honored
RESERVED	2	0x0000

5.8 Sub blocks related to AWR_RF_ADVANCED_FEATURES_CONF_ SET_MSG

5.8.1 Sub block 0x0180 - AWR_BPM_COMMON_CONF_SET_SB

This API sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs. E.g. the source of the BPM pattern (one constant value for each chirp as defined, or intra-chirp pseudo random BPM pattern as found by a programmable LFSR or a programmable sequence inside each chirp), are defined here.

Table 5.47 describes the contents of this sub block.

Table 5.47: AWR_BPM_COMMON_CONF_SET_SB contents

Field Name	Number of bytes	Descrip	tion	
SBLKID	2	Value =	0x0180	
SBLKLEN	2	Value =	20	
BPM_MODE_CFG	2	Bits Description		tion
		b1:0	BPM_S	RC_SEL (select source of BPM pattern)
			Value	Definition
			00	CHIRP_CONFIG_BPM (refer to AWR_BPM_CHIRP_CONF_SB)
			01	RESERVED
			10	RESERVED
			11	RESERVED
		b15:2	RESER	VED
RESERVED	2	0x0000		
RESERVED	2	0x0000		
RESERVED	2	0x0000		
RESERVED	4	0x00000	0000	
RESERVED	4	0x00000	0000	

5.8.2 Sub block 0x0181 - AWR_BPM_CHIRP_CONF_SET_SB

This sub block defines static configurations related to BPM (Binary Phase Modulation) feature in each of the TXs.

Table 5.48 describes the contents of this sub block.

Table 5.48: AWR_BPM_CHIRP_CONF_SET_SB contents

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value =	0x0181
SBLKLEN	2	Value =	12
CHIRP_START_ INDX	2		dex of the chirp for configuring the constant BPM nge 0 to 511
CHIRP_END_ INDX	2		ex of the chirp for configuring the constant BPM nge 0 to 511
CONST_BPM_	2	Bit	Definition
VAL		b0	CONST_BPM_VAL_TX0_TXOFF Value of Binary Phase Shift value for TX0, when during idle time
		b1	CONST_BPM_VAL_TX0_TXON Value of Binary Phase Shift value for TX0, during chirp
		b2	CONST_BPM_VAL_TX1_TXOFF For TX1
		b3	CONST_BPM_VAL_TX1_TXON For TX1
		b4	CONST_BPM_VAL_TX2_TXOFF For TX2
		b5	CONST_BPM_VAL_TX2_TXON For TX2
		b15:6	RESERVED
RESERVED	2	0x0000	

NOTE: BPM values are applied at TX_START_TIME.

5.9 Sub blocks related to AWR_RF_STATUS_GET_MSG

5.9.1 Sub block 0x0220 - AWR_RF_VERSION_GET_SB

This sub block reads RF HW and FW versions. The information returned by the device will be in the format as given in AWR_RFVERSION_SB.

Table 5.49 describes the contents of the request sub block

Table 5.49: AWR_RF_VERSION_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0220
SBLKLEN	2	Value = 4

Response to AWR_RFVERSION_GET_SB

AWR_RFVERSION_SB sub block is sent by the radar device in response to AWR_RFVERSION_GET_SB. Note that SBLKID for both AWR_RFVERSION_GET_SB and AWR_RFVERSION_SB are same.

Table 5.50 describes the contents of the response sub block.

Table 5.50: AWR_RF_VERSION_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0220
SBLKLEN	2	Value = 20
HW_VARIANT	1	HW variant number
HW_VERSION_ MAJOR	1	HW version major number
HW_VERSION_ MINOR	1	HW version minor number
BSS_FW_VER- SION_MAJOR	1	BSS FW version major number
BSS_FW_VER- SION_MINOR	1	BSS FW version minor number
BSS_FW_VER- SION_BUILD	1	BSS FW version build number
BSS_FW_VER- SION_DEBUG	1	BSS FW version debug number
BSS_FW_VER- SION_YEAR	1	Year of BSS FW version release
BSS_FW_VER- SION_MONTH	1	Month of BSS FW version release
BSS_FW_VER- SION_DAY	1	Day of BSS FW version release
BSS_FW_VER- SION_PATCH_ MAJOR	1	BSS FW version patch major number

Table 5.50 - continued from previous page

BSS_FW_VER- SION_PATCH_ MINOR	1	BSS FW version patch minor number
BSS_FW_VER- SION_PATCH_ YEAR	1	Year of BSS FW patch release
BSS_FW_VER- SION_PATCH_ MONTH	1	Month of BSS FW patch release
BSS_FW_VER- SION_PATCH_ DAY	1	Day of BSS FW patch release
BSS_FW_PATCH_ BUILD_DEBUG_ VERSION	1	Bit Definition b3:0 DEBUG version number b7:4 BUILD version number

5.9.2 Sub block 0x0221 - AWR_RF_CPUFAULT_STATUS_GET_SB

This sub block provides the RF BSS CPU fault information.

Table 5.51 describes the content of this sub block.

 Table 5.51:
 AWR_RF_CPUFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 4

AWR_RF_CPUFAULT_STATUS_SB is sent in response to AWR_RF_CPUFAULT_STATUS_GET_SB.

Table 5.52 describes the content of AWR_RF_CPUFAULT_STATUS_SB

 Table 5.52:
 AWR_RF_CPUFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0221
SBLKLEN	2	Value = 36

Table 5.52 – continued from previous page

	14510 010		ed Irom previous page
FAULT_TYPE	1	Value	Definition
		0	RF Processor Undefined Instruction Abort
		1	RF Processor Instruction pre-fetch Abort
		2	RF Processor Data Access Abort
		3	RF Processor Firmware Fatal Error
		0x4 - 0xFE	RESERVED
		0xFF	No fault
RESERVED	1	0x00	
LINE_NUM	2	,	in case of FAULT type is 0x3, provides the number at which fatal error occurred.
FAULT_LR	4	The instruc	tion PC address at which Fault occurred
FAULT_PREV_LR	4		address of the function from which fault function alled (Call stack LR)
FAULT_SPSR	4	The CPSR	register value at which fault occurred
FAULT_SP	4	The SP reg	gister value at which fault occurred
FAULT_CAUSE_ ADDRESS	4	The address	ss access at which Fault occurred (valid only for x0 to 0x2)
FAULT_ERROR_ STATUS	2	type 0x0 to	of Error (Error Cause type – valid only for fault 0x2) ACKGROUND_ERR
		0x001 Al	LIGNMENT_ERR
		0x002 D	EBUG_EVENT
		0x00D PI	ERMISSION_ERR
		0x008 S	YNCH_EXTER_ERR
		0x406 A	SYNCH_EXTER_ERR
		0x409 S	YNCH_ECC_ERR
		0x408 A	SYNCH_ECC_ERR
FAULT_ERROR_ SOURCE	1	The Source fault type 0	e of the Error (Error Source type - valid only for x0 to 0x2)
		0x0 E	RR_SOURCE_AXI_MASTER
		0x1 E	RR_SOURCE_ATCM
		0x2 E	RR_SOURCE_BTCM
FAULT_AXI_ER- ROR_TYPE	1	type 0x0 to	•
		0x0 A	XI_DECOD_ERR
		0x1 A	XI_SLAVE_ERR

Table 5.52 –	continued 1	from	previous	page

FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 UNRECOVERY 0x1 RECOVERY
RESERVED	2	0x0000

5.9.3 Sub block 0x0222 - AWR_RF_ESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional RF sub system faults. Table 5.53 describes the content of this sub block.

 Table 5.53:
 AWR_RF_ESMFAULT_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_ESMFAULT_STATUS_SB. Table 5.54 describes the contents of AWR_RF_ESMFAULT_STATUS_SB.

 Table 5.54:
 AWR_RF_ESMFAULT_STATUS_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0222
SBLKLEN	2	Value = 12

Table 5.54 – continued from previous page

			maca nom providao page
ESM_GROUP1_	4	Bit	Error Information
ERRORS		b0	RAMPGEN_SB_ERROR
		b1	RESERVED
		b2	GPADC_RAM_SB_ERROR
		b3	VIM_RAM_SB_ERROR
		b4	DFE_SELFTEST_ERROR
		b5	VIM_SELFTEST_ERRROR
		b6	B0TCM_SB_ERROR
		b7	B1TCM_SB_ERROR
		b8	CCMR4_SELFTEST_ERROR
		b9	ATCM_SB_ERROR
		b10	RAMPGEN_SELFTEST_ERROR
		b11	RAMPGEN_PAR_SELFTST_ERROR
		b12	SEQ_EXT_SELFTEST_ERROR
		b13	SEQ_EXT_SB_ERROR
		b14	RESERVED
		b15	AGC_RAM_SB_ERROR
		b16	B1TCM_PAR_CHK_ERROR
		b17	B0TCM_PAR_CHK_ERROR
		b18	ATCM_PAR_CHK_ERROR
		b19	MB_MSS2BSS_SB_ERROR
		b20	MB_BSS2MSS_SB_ERROR
		b31:21	RESERVED

Table 5.54 – continued from previous page

ESM_GROUP2_	4	Bit	Error Information
ERRORS		b0	DFE_STC_ERROR
		b1	CR4_STC_ERROR
		b2	CCMR4_COMP_ERROR
		b3	B0TCM_DB_ERROR
		b4	B1TCM_DB_ERROR
		b5	ATCM_DB_ERROR
		b6	DCC_ERROR
		b7	SEQ_EXT_ERROR
		b8	SYNT_FREQ_MON_ERROR
		b9	DFE_PARITY_ERROR
		b10	RAMPGEN_DB_ERROR
		b11	BUBBLE_CORRECTION_FAIL
		b12	RAMPGEN_LOCSTEP_ERROR
		b13	RTI_RESET_ERROR
		b14	GPADC_RAM_DB_ERROR
		b15	VIM_COMP_ERROR
		b16	CR4_LIVE_LOCK_ERROR
		b17	WDT_NMI_ERROR
		b18	VIM_RAM_DB_ERROR
		b19	RAMPGEN_PAR_ERROR
		b20	SEQ_EXT_DB_ERROR
		b21	DMA_MPU_ERROR
		b22	AGC_RAM_DB_ERROR
		b23	CRC_COMP_ERROR
		b24	WAKEUP_STS_ERROR
		b25	SHORT_CIRCUIT_ERROR
		b26	B1TCM_PAR_ERROR
		b27	B0TCM_PAR_ERROR
		b28	ATCM_PAR_ERROR
		b29	MB_MSS2BSS_DB_ERROR
		b30	MB_BSS2MSS_DB_ERROR
		b31	CCC_ERROR

5.9.4 Sub block 0x0223 - AWR_RF_DIEID_GET_SB

This sub block provides the information regarding the Die ID of the device.

Table 5.55: AWR_RF_DIEID_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 4

The response to above request is given in the AWR_RF_DIEID_STATUS_SB. Table 5.56 describes the contents of AWR_RF_DIEID_STATUS_SB.

Table 5.56: AWR_RF_DIEID_STATUS_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0223
SBLKLEN	2	Value = 36
LOT_NO	4	Lot number
WAFER_NO	4	Wafer number
DEV_X	4	X cordinate of the die in the wafer
DEV_Y	4	Y cordinate of the die in the wafer
RESERVED	4	0x00000000

5.9.5 Sub block 0x0224 - AWR_RF_BOOTUPBIST_STATUS_GET_SB

This sub block provides the information regarding boot up self-test status. Table 5.57 describes the content of this sub block.

 Table 5.57:
 AWR_RF_BOOTUPBIST_STATUS_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0224
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_BOOTUPBIST_STATUS_DATA_SB with content as shown in Table 5.58

 $\textbf{Table 5.58:} \ \, \textbf{AWR_RF_BOOTUPBIST_STATUS_DATA_SB} \ \, \textbf{response contents} \\$

Field Name	Number	Descrip	tion	
SBLKID	of bytes	Value	0,0004	
	2	Value = 0x0224		
SBLKLEN		Value = 20		
RF_POWERUP_ BIST_STATUS_	4	Bit	S, 0 - FAIL Status Information	
FLAGS		b0	ROM CRC check	
		b1	CR4 and VIM lockstep test	
		b2	RESERVED	
		b3	VIM test	
		b4	STC test of diagnostic	
		b5	CR4 STC	
		b6	CRC test	
		b7	RAMPGEN memory ECC test	
		b8	DFE Parity test	
		b9	DFE memory ECC	
		b10	RAMPGEN lockstep test	
		b11	FRC lockstep test	
		b12	DFE memory PBIST	
		b13	RAMPGEN memory PBIST	
		b14	PBIST test	
		b15	WDT test	
		b16	ESM test	
		b17	DFE STC	
		b18	RESERVED	
		b19	ATCM, BTCM ECC test	
		b20	ATCM, BTCM parity test	
		b21	RESERVED	
		b22	RESERVED	
		b23	RESERVED	
		b24	FFT test	
		b25	RTI test	
		b26	PCR test	
		b31:27	RESERVED	
POWERUP_TIME	4	RF BIST 1 LSB =	SS power up time 5 ns	

Table 5.58 –	continued t	from	previous	page

RESERVED	4	0x00000000
RESERVED	4	0x00000000

5.10 Sub blocks related to AWR_RF_MONITORING_REPORT_GET_ MSG

5.10.1 Sub block 0x0260 - AWR_RF_DFE_STATISTICS_REPORT_GET_SB

Table 5.59 describes the content of this sub block.

 Table 5.59:
 AWR_RF_DFE_STATISTICS_REPORT_GET_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 4

The response of this sub block will be AWR_RF_DFE_STATISTICS_REPORT_SB with content as shown in Table 5.60

 Table 5.60:
 AWR_RF_DFE_STATISTICS_REPORT_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x0260
SBLKLEN	2	Value = 196
PF0_RX0_ICH	2	Residual DC value in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX0_QCH	2	Residual DC value in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX0_ISQ	2	RMS power in I chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

Table 5.60 – continued from previous page

		o continuou nom provious page
PF0_RX0_QSQ	2	RMS power in Q chain for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC input$
PF0_RX1_ICH	2	Residual DC value in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX1_QCH	2	Residual DC value in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX1_ISQ	2	RMS power in I chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX1_QSQ	2	RMS power in Q chain for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1\; LSB = 1V^2/2^{30} \; referred \; to \; ADC \; input$
PF0_RX2_ICH	2	Residual DC value in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX2_QCH	2	Residual DC value in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input
PF0_RX2_ISQ	2	RMS power in I chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input

Table 5.60 – continued from previous page

		- continuou nom provious page
PF0_RX2_QSQ	2	RMS power in Q chain for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF0_RX3_ICH	2	Residual DC value in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX3_QCH	2	Residual DC value in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF0_RX3_ISQ	2	RMS power in I chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX3_QSQ	2	RMS power in Q chain for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF0_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 0, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input
PF1_RX0_ICH	2	Residual DC value in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX0_QCH	2	Residual DC value in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1\ LSB = 1\ V/2^{15}\ referred to\ ADC\ input$
PF1_RX0_ISQ	2	RMS power in I chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input

PF1_RX0_QSQ	2	RMS power in Q chain for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF1_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1\ LSB = 1V^2/2^{30}\ referred to\ ADC\ input$
PF1_RX1_ICH	2	Residual DC value in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX1_QCH	2	Residual DC value in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX1_ISQ	2	RMS power in I chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input
PF1_RX1_QSQ	2	RMS power in Q chain for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input
PF1_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1\ LSB = 1V^2/2^{30}\ referred to\ ADC\ input$
PF1_RX2_ICH	2	Residual DC value in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input
PF1_RX2_QCH	2	Residual DC value in Q chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = 1V/2 ¹⁵ referred to ADC input
PF1_RX2_ISQ	2	RMS power in I chain for profile 1, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15} \text{ referred to ADC input}$

PF1_RX2_QSQ	2	RMS power in Q chain for profile 1, RX channel 2 (pos DC and IQ mismatch correction) represented by a 16 bi unsigned number $ \text{1 LSB} = \text{1V}^2/2^{15} \text{ referred to ADC input} $			
PF1_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, F channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{V}^2/2^{30} \text{ referred to ADC input}$			
PF1_RX3_ICH	2	Residual DC value in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF1_RX3_QCH	2	Residual DC value in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1 \text{ LSB} = 1 \text{V}/2^{15} \text{ referred to ADC input}$			
PF1_RX3_ISQ	2	RMS power in I chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF1_RX3_QSQ	2	RMS power in Q chain for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $1 \text{ LSB} = 1 \text{V}^2/2^{15} \text{ referred to ADC input}$			
PF1_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 1, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input			
PF2_RX0_ICH	2	Residual DC value in I chain for profile 2 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF2_RX0_QCH	2	Residual DC value in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input			
PF2_RX0_ISQ	2	RMS power in I chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input			

		o continuou nom provious page			
PF2_RX0_QSQ	2	RMS power in Q chain for profile 2, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF2_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, R channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ \text{LSB} = 1 \ \text{V}^2 / 2^{30} \ \text{referred to ADC input}$			
PF2_RX1_ICH	2	Residual DC value in I chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF2_RX1_QCH	2	Residual DC value in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF2_RX1_ISQ	2	RMS power in I chain for profile 2, RX channel 1 (post I and IQ mismatch correction) represented by a 16 bit u signed number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF2_RX1_QSQ	2	RMS power in Q chain for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF2_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$			
PF2_RX2_ICH	2	Residual DC value in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF2_RX2_QCH	2	Residual DC value in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input			
PF2_RX2_ISQ	2	RMS power in I chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			

		o continuou nom provious page			
PF2_RX2_QSQ	2	RMS power in Q chain for profile 2, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF2_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, Richannel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ \text{LSB} = 1 \ \text{V}^2/2^{30} \ \text{referred to ADC input}$			
PF2_RX3_ICH	2	Residual DC value in I chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF2_RX3_QCH	2	Residual DC value in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF2_RX3_ISQ	2	RMS power in I chain for profile 2, RX channel 3 (post I and IQ mismatch correction) represented by a 16 bit u signed number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF2_RX3_QSQ	2	RMS power in Q chain for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF2_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 2, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \ LSB = 1V^2/2^{30} \ referred to \ ADC \ input$			
PF3_RX0_ICH	2	Residual DC value in I chain for profile 3 RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF3_RX0_QCH	2	Residual DC value in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1V/2^{15}$ referred to ADC input			
PF3_RX0_ISQ	2	RMS power in I chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			

		o continuou nom provious page			
PF3_RX0_QSQ	2	RMS power in Q chain for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF3_RX0_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 0 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input			
PF3_RX1_ICH	2	Residual DC value in I chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF3_RX1_QCH	2	Residual DC value in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF3_RX1_ISQ	2	RMS power in I chain for profile 3, RX channel 1 (post I and IQ mismatch correction) represented by a 16 bit u signed number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF3_RX1_QSQ	2	RMS power in Q chain for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			
PF3_RX1_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 1 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1\; LSB = 1V^2/2^{30} \; referred \; to \; ADC \; input$			
PF3_RX2_ICH	2	Residual DC value in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input			
PF3_RX2_QCH	2	Residual DC value in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit signed number $1\ LSB = 1\ V/2^{15}\ referred to\ ADC\ input$			
PF3_RX2_ISQ	2	RMS power in I chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input			

PF3_RX2_QSQ	2	RMS power in Q chain for profile 3, RX channel 2 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1V^2/2^{15}$ referred to ADC input				
PF3_RX2_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RN channel 2 (post DC and IQ mismatch correction) represented by a 32 bit signed number $1 \text{ LSB} = 1 \text{V}^2 / 2^{30} \text{ referred to ADC input}$				
PF3_RX3_ICH	2	Residual DC value in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input				
PF3_RX3_QCH	2	Residual DC value in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit signed number 1 LSB = $1\text{V}/2^{15}$ referred to ADC input				
PF3_RX3_ISQ	2	RMS power in I chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number 1 LSB = $1\text{V}^2/2^{15}$ referred to ADC input				
PF3_RX3_QSQ	2	RMS power in Q chain for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 16 bit unsigned number $ 1 \ LSB = 1 V^2 / 2^{15} \ referred to \ ADC input $				
PF3_RX3_IQ- CORR	4	Cross correlation between I and Q chains for profile 3, RX channel 3 (post DC and IQ mismatch correction) represented by a 32 bit signed number 1 LSB = $1V^2/2^{30}$ referred to ADC input				

5.11 Sub blocks related to AWR_RF_MISC_CONF_SET_MSG

- 5.11.1 Sub block 0x02C0 RESERVED
- 5.11.2 Sub block 0x02C1 RESERVED

5.11.3 Sub block 0x02C2 - AWR_RF_TEST_SOURCE_CONFIG_SET_SB

This sub block is used to configure the test source of BSS Table 5.61 describes the content of this sub block.

 $\textbf{Table 5.61:} \ \, \text{AWR_RF_TEST_SOURCE_CONFIG_SET_SB contents} \\$

Field Name	Number of bytes	Description				
SBLKID	2	Value = 0x02C2				
SBLKLEN	2	Value = 72				
POSITION_VEC1	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 0 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cm				
VELOCITY_VEC1	[2+2+2]	Relative velocity in Cartesian coordinate, similar to position vector (all signed) Object 0 1 LSB = 1 cm/s Valid Range = +/- 5000 (i.e. +/-180 kmph)				
SIG_LEV_VEC1	[2]	Reflecting objects' signal level at ADC output, relative ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to emulate enable/disaleach object by programming appropriate levels.				
BOUNDARY_ MIN_VEC1	[2+2+2]	Boundary minimum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y & z: ±32767 cm				
BOUNDARY_ MAX_VEC1	[2+2+2]	Boundary maximum limit for each of x, y, z. When the current position crosses this boundary, the emulator returns the corresponding coordinate to the originally programmed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y & z: ±32767 cm				
POSITION_VEC2	[2+2+2]	Relative position in Cartesian coordinate from radar to objects, [x, y, z] (all signed, though for y, only unsigned makes sense if forward looking: our radar is on y=0 plane). Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: y: 0 to 32767 cm, x & z: ±32767 cm				

VELOCITY VECO [0.0.0] Deletive velocity in Control of	Table 5.01 – Continued from previous page					
vector (all signed) Object 1 1 LSB = 1 cm/s	Object 1					
SIG_LEV_VEC2 [2] Reflecting objects' signal level at ADC Full Scale 1 LSB = -0.1 dBFS Valid range: 0 to 950 The same field may be used to each object by programming appr	emulate enable/disable					
BOUNDARY_ MIN_VEC2 [2+2+2] Boundary minimum limit for each When the current position crosses lator returns the corresponding coprogrammed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y	s this boundary, the emu- pordinate to the originally					
BOUNDARY_ MAX_VEC2 Boundary maximum limit for each When the current position crosses lator returns the corresponding coprogrammed value. Object 1 [x,y,z] 1 LSB = 1 cm Valid Range: x: 0 to 32767 cm, y	s this boundary, the emu- pordinate to the originally					
RX_ANT_POS_XZ Receiver Antenna positions to be The radar is on y=0 plane. Only x provided. LSB = Wavelength/8 Valid range = ±15 wave lengths Byte 0: RX0 X coordinate (may be Byte 1: RX0 Z (may be 0 as refere Byte 2: RX1 X Byte 3: RX1 Z Byte 4: RX2 X Byte 5: RX2 Z	and z coordinates to be e 0 as reference)					
Byte 6: RX3 X Byte 7: RX3 Z						

5.11.4 Sub block 0x02C3 - AWR_RF_TEST_SOURCE_ENABLE_SET_SB

This sub block is used to enable test source of BSS

Table 5.62 describes the content of this sub block.

Table 5.62: AWR_RF_TEST_SOURCE_ENABLE_SET_SB contents

Field Name	Number of bytes	Descrip	tion			
SBLKID	2	Value =	0x02	C3		
SBLKLEN	2	Value =	8			
TS_EN	2	Bit Definition				
		b0	0	Disable (revert to normal functionality)		
			1	Enable (enter test source functionality)		
		b15:1	RES	SERVED		
RESERVED	2	0x0000				

5.11.5 Sub block 0x02C4 - 0x02CB RESERVED

5.11.6 Sub block 0x02CC - AWR_RF_LDO_BYPASS_SB

This sub block enables LDO bypass option within BSS.

CAUTION:	Do not enable RF LDO bypass option when the PMIC is configured
	to supply 1.3V to VIN_13RF1 and VIN_13RF2 analog and RF power
	supply inputs. This may damage the device. Typically in TI EVMs,
	PMIC is configured to supply 1.3V to the RF supplies.

Table 5.63 describes the content of this sub block.

Table 5.63: AWR_RF_LDO_BYPASS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02CC
SBLKLEN	2	Value = 8

RFLDO_BYPASS_	2	Bit	Descrip	tion			
EN		b0	Value	Description			
			0	RF LDO not	bypassed		
		1 RF LDO byp			passed		
		b1	Value	Description			
			0	PA LDO ena	abled		
			1	PA LDO dis			
			package	e reliability iss Γ PA on the be	sues, VIN ₋ 13F	used, to avoid RF2 is shorted PA LDO should	
		b15:2	RESER				
		The usa	ge of thes	se configuration	ons is as per t LDO _	he table below PA_LDO_	
		USECA	SE		BYPASS	DISABLE	
		1.3V VII 13RF2 s		and VIN_	0	0	
		1.0V VII 13RF2 s		and VIN₋	1	0	
		13RF2	supplies	and VIN_ and VIN_ to VOUT_	1	1	
SUPPLY_MONI- TOR_IRDROP	1	device processin percesthreshold	oin. The entage ur ds for me	user should nits which wil easuring the e	program the	output to the voltage drop adjusting the es.	
		Value	Descrip				
		0	IR drop				
		1	IR drop				
		2	IR drop				
IO OLIDENY		3	IR drop				
IO_SUPPLY_ INDICATOR	1	IO supply indicator for correct monitoring of IO supply					
		Value	Descrip				
		0	3.3 V IC				
		1	1.8 V IC	supply			

5.11.7 Sub block 0x02CD - AWR_RF_PALOOPBACK_CFG_SB

This sub block enables/disables PA loopback for all enabled profiles. This is used to debug both the TX and RX chains are working correctly.

Table 5.64 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD,
	0x02CE, 0x02CF), then loopback will not work after montoring is
	complete. To use loopback with monitoring, use AWR_ADVANCED_
	FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Table 5.64: AWR_RF_PALOOPBACK_CFG_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02CD
SBLKLEN	2	Value = 8
PA_LOOPBACK_ FREQ	2	This value is a 100 MHz divider which sets the loopback frequency For e.g. for a 1 MHz frequency, set this to 100 For a 2 MHz frequency, set this to 50 NOTE: To ensure no leakage of signal power, user has to ensure that 100 MHz/LOOPBACK_FREQ is an integer multiple of bin width For e.g. if user choses 25 Msps sampling rate and 2048 samples/chirp, then LOOPBACK_FREQ of 64 (=1.5625 MHz) will ensure no leakage
PA_LOOPBACK_	1	Value Description
EN		0 PA loopback is not enabled
		1 PA loopback is enabled
RESERVED	1	0x00

5.11.8 Sub block 0x02CE - AWR_RF_PSLOOPBACK_CFG_SB

This sub block enables/disables PS (phase shifter) loopback for all enabled profiles. This is used to debug the TX (before the PA) and RX chains.

Table 5.65 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD,
	0x02CE, 0x02CF), then loopback will not work after montoring is
	complete. To use loopback with monitoring, use AWR_ADVANCED_
	FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

 ${\bf Table~5.65:~AWR_RF_PSLOOPBACK_CFG_SB~contents}$

Field Name	Number of bytes	Description					
SBLKID	2	Value = 0x02CE					
SBLKLEN	2	Value =	12				
PS_LOOPBACK_ FREQ	2	Loop ba	ck frequer 1 kHz	ncy in k	Hz		
RESERVED	2	0x0000					
PS_LOOPBACK_	1	Value	Definition	า			
EN		0	PS loopb	ack is	not enabl	ed	
		1	PS loopb	ack is	enabled		
PS_LOOPBACK_	1	Bit	Definition	า			
TXID		b0	TX0 is us	sed for	loopback		
		b1	TX1 is us	sed for	loopback		
		b7:2	RESERV	/ED			
PGA_GAIN_	1						
INDEX		Value	PGA value	gain	Value	PGA value	gain
		0	PGA is C	DFF	15	-3 dB	
		1	-22 dB		16	-2 dB	
		2	-16 dB		17	-1 dB	
		3	-15 dB		18	0 dB	
		4	-14 dB		19	1 dB	
		5	-13 dB		20	2 dB	
		6	-12 dB		21	3 dB	
		7	-11 dB		22	4 dB	
		8	-10 dB		23	5 dB	
		9	-9 dB		24	6 dB	
		10	-8 dB		25	7 dB	
		11	-7 dB		26	8 dB	
		12	-6 dB		27	9 dB	
		13	-5 dB		255-28	RESERV	'ED
		14	-4 dB				
RESERVED	1	0x00					

5.11.9 Sub block 0x02CF - AWR_RF_IFLOOPBACK_CFG_SB

This sub block enables/disables IF loopback for all enabled profiles. This is used to debug the RX IF chain.

Table 5.66 describes the content of this sub block.

NOTE:	If monitoring is enabled with the loopback APIs (subblock 0x02CD,
	0x02CE, 0x02CF), then loopback will not work after montoring is
	complete. To use loopback with monitoring, use AWR_ADVANCED_
	FRAME_CONF_SB with AWR_LOOPBACK_BURST_CONF_SB.

Table 5.66: AWR_RF_IFLOOPBACK_CFG_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02CF		
SBLKLEN	2	Value =	8	
IF_LOOPBACK_	2	Value	IF Loopback frequency value	
FREQ		0	180 kHz	
		1	240 kHz	
		2	360 kHz	
		3	720 kHz	
		4	1 MHz	
		5	2 MHz	
		6	2.5 MHz	
		7	3 MHz	
		8	4.017857 MHz	
		9	5 MHz	
		10	6 MHz	
		11	8.035714 MHz	
		12	9 MHz	
		13	10 MHz	
		65535- 14	RESERVED	
IF_LOOPBACK_	1	Value	Definition	
EN		0	IF loopback is not enabled	
		1	IF loopback is enabled	
RESERVED	1	0x00		

5.11.10 Sub block 0x02D0 - AWR_RF_GPADC_CFG_SET_SB

This sub block enables the GPADC reads for external inputs (available only in xWR1642 or xWR1843).

Table 5.67 describes the content of this sub block.

Table 5.67: AWR_RF_GPADC_CFG_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x02D0		
SBLKLEN	2	Value = 32		
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC signals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored. Bit Definition 0 ANALOGTEST1 1 ANALOGTEST2 2 ANALOGTEST3 3 ANALOGTEST4 4 ANAMUX 5 VSENSE		
SIGNAL_ BUFFER_EN- ABLES	1	Others RESERVED This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. Bit SIGNAL 0 ANALOGTEST1 1 ANALOGTEST2 2 ANALOGTEST3 3 ANALOGTEST4 4 ANAMUX Others RESERVED		

	10010010	- Continued from previous page
ANATEST1_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.
ANATEST2_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $ 1 \text{ LSB} = 0.8 \ \mu \text{s} $ Valid range: 0 to 12 μs Valid programming condition: all the signals that are enabled should take a total of $<$ 100 μs including the programmed settling times and measurement time per enabled signal.
ANATEST3_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.
ANATEST4_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are en-
		abled should take a total of $<$ 100 μ s including the programmed settling times and measurement time per enabled signal.

Table 5.67 - continued from previous page

		. communa nom providuo pago
ANAMUX_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.
VSENSE_CFG	2	Bit Definition
		b7:0 Number of samples to collect 1 sample takes 1.6 μ s
		b15:8 Settling time $1 \text{ LSB} = 0.8 \ \mu\text{s}$ $\text{Valid range: 0 to 12 } \mu\text{s}$ $\text{Valid programming condition: all the signals that are enabled should take a total of < 100 } \mu\text{s}$ including the programmed settling times and measurement time per enabled signal.
RESERVED	2	0x0000
RESERVED	4	0x00000000
RESERVED	4	0x00000000
RESERVED	4	0x00000000

The response to the AWR_RF_GPADC_CFG_SET_SB is an async event AWR_AE_RF_GPADC_RESULT_DATA_SB which contains the measured values for each of the enabled channels.

- 5.11.11 Sub block 0x02D1 RESERVED
- 5.11.12 Sub block 0x02D2 RESERVED
- 5.11.13 Sub block 0x02D3 RESERVED

5.12 Sub blocks related to AWR_RF_MISC_CONF_GET_MSG

- 5.12.1 Sub block 0x02E0 to 0x2E9 RESERVED
- 5.12.2 Sub block 0x02EA AWR_RF_TEMPERATURE_GET_SB

This sub block provides the device temperature sensor information. Table 5.68 describes the content of this sub block.

Table 5.68: AWR_RF_TEMPERATURE_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 4

AWR_RF_TEMPERATURE_DATA_SB sub block is sent by the radar device in response to AWR_RF_TEMPERATURE_GET_SB.

Table 5.69: AWR_RF_TEMPERATURE_DATA_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x02EA
SBLKLEN	2	Value = 28
TIME	4	BSS local Time from device power up 1 LSB = 1 ms
TEMP_RX0_ SENS	2	RX0 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX1_ SENS	2	RX1 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX2_ SENS	2	RX2 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_RX3_ SENS	2	RX3 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX0_ SENS	2	TX0 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX1_ SENS	2	TX1 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_TX2_ SENS	2	TX2 temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_PM_SENS	2	PM temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_DIG1_ SENS	2	Digital temperature sensor reading (signed value) 1 LSB = 1°C
TEMP_DIG2_ SENS	2	Digital temperature sensor reading (signed value) [Applicable only in xWR1642 or xWR1843] 1 LSB = 1°C

5.13 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG1

- 5.13.1 Sub block 0x1000 RESERVED
- 5.13.2 Sub block 0x1001 RESERVED
- 5.13.3 Sub block 0x1002 AWR_AE_RF_CPUFAULT_SB

This sub block indicates CPU fault status of BIST SS. Table 5.70 describes the content of this sub block.

Table 5.70: AWR_AE_RF_CPUFAULT_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1002
SBLKLEN	2	Value = 36
FAULT_TYPE	1	Value Definition
		0 RF Processor Undefined Instruction Abort
		1 RF Processor Instruction pre-fetch Abort
		2 RF Processor Data Access Abort
		3 RF Processor Firmware Fatal Error
		0x4 - RESERVED 0xFE
		0xFF No fault
RESERVED	1	0x00
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.
FAULT_LR	4	The instruction PC address at which Fault occurred
FAULT_PREV_LR	4	The return address of the function from which fault function has been called (Call stack LR)
FAULT_SPSR	4	The CPSR register value at which fault occurred
FAULT_SP	4	The SP register value at which fault occurred
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)

		o communa nom provious page		
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type – valid only for fault type 0x0 to 0x2)		
		0x000 BACKGROUND_ERR		
		0x001 ALIGNMENT_ERR		
		0x002 DEBUG_EVENT		
		0x00D PERMISSION_ERR		
		0x008 SYNCH_EXTER_ERR		
		0x406 ASYNCH_EXTER_ERR		
		0x409 SYNCH_ECC_ERR		
		0x408 ASYNCH_ECC_ERR		
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)		
		0x0 ERR_SOURCE_AXI_MASTER		
		0x1 ERR_SOURCE_ATCM		
		0x2 ERR_SOURCE_BTCM		
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)		
		0x0 AXI_DECOD_ERR		
		0x1 AXI_SLAVE_ERR		
FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR		
		0x1 WRITE_ERR		
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 UNRECOVERY		
		0x1 RECOVERY		
RESERVED	2	0x0000		

5.13.4 Sub block 0x1003 - AWR_AE_RF_ESMFAULT_SB

This sub block indicates the status of any other faults in the BIST SS. Table 5.71 describes the content of this sub block.

 ${\bf Table~5.71:~AWR_AE_RF_ESMFAULT_STATUS_SB~response~contents}$

Field Name	Number of bytes	Description			
SBLKID	2	Value =	Value = 0x1003		
SBLKLEN	2	Value =	12		
ESM_GROUP1_	4	Bit	Error Information		
ERRORS		b0	RAMPGEN_SB_ERROR		
		b1	RESERVED		
		b2	GPADC_RAM_SB_ERROR		
		b3	VIM_RAM_SB_ERROR		
		b4	DFE_SELFTEST_ERROR		
		b5	VIM_SELFTEST_ERRROR		
		b6	B0TCM_SB_ERROR		
		b7	B1TCM_SB_ERROR		
		b8	CCMR4_SELFTEST_ERROR		
		b9	ATCM_SB_ERROR		
		b10	RAMPGEN_SELFTEST_ERROR		
		b11	RAMPGEN_PAR_SELFTST_ERROR		
		b12	SEQ_EXT_SELFTEST_ERROR		
		b13	SEQ_EXT_SB_ERROR		
		b14	RESERVED		
		b15	AGC_RAM_SB_ERROR		
		b16	B1TCM_PAR_CHK_ERROR		
		b17	B0TCM_PAR_CHK_ERROR		
		b18	ATCM_PAR_CHK_ERROR		
		b19	MB_MSS2BSS_SB_ERROR		
		b20	MB_BSS2MSS_SB_ERROR		
		b31:21	RESERVED		

Table 5.71 – continued from previous page

	1		nada nom providuo pago
ESM_GROUP2_	4	Bit	Error Information
ERRORS		b0	DFE_STC_ERROR
		b1	CR4_STC_ERROR
		b2	CCMR4_COMP_ERROR
		b3	B0TCM_DB_ERROR
		b4	B1TCM_DB_ERROR
		b5	ATCM_DB_ERROR
		b6	DCC_ERROR
		b7	SEQ_EXT_ERROR
		b8	SYNT_FREQ_MON_ERROR
		b9	DFE_PARITY_ERROR
		b10	RAMPGEN_DB_ERROR
		b11	BUBBLE_CORRECTION_FAIL
		b12	RAMPGEN_LOCSTEP_ERROR
		b13	RTI_RESET_ERROR
		b14	GPADC_RAM_DB_ERROR
		b15	VIM_COMP_ERROR
		b16	CR4_LIVE_LOCK_ERROR
		b17	WDT_NMI_ERROR
		b18	VIM_RAM_DB_ERROR
		b19	RAMPGEN_PAR_ERROR
		b20	SEQ_EXT_DB_ERROR
		b21	DMA_MPU_ERROR
		b22	AGC_RAM_DB_ERROR
		b23	CRC_COMP_ERROR
		b24	WAKEUP_STS_ERROR
		b25	SHORT_CIRCUIT_ERROR
		b26	B1TCM_PAR_ERROR
		b27	B0TCM_PAR_ERROR
		b28	ATCM_PAR_ERROR
		b29	MB_MSS2BSS_DB_ERROR
		b30	MB_BSS2MSS_DB_ERROR
		b31	CCC_ERROR

5.13.5 Sub block 0x1004 - AWR_AE_RF_INITCALIBSTATUS_SB

This sub block indicates the initial calibrations of RF BIST SS are complete.

Table 5.72 describes the content of this sub block.

 Table 5.72:
 AWR_AE_RF_INITCALIBSTATUS_SB response contents

Number of bytes	Description		
2	Value = 0x1004		
2	Value = 24		
4	This field indicates the status of each calibration (0 – FAIL, 1 – PASS). If a particular calibration was not enabled, then its corresponding field should be ignored. Bit Definition (0 – FAIL, 1 – PASS) bo RESERVED b1 APLL tuning b2 SYNTH VCO1 tuning b3 SYNTH VCO2 tuning b4 LODIST calibration b5 RX ADC DC offset calibration b6 HPF cutoff calibration b7 LPF cutoff calibration b7 LPF cutoff calibration b8 Peak detector calibration b9 TX Power calibration b10 RX gain calibration b11 TX Phase calibration b12 RX IQMM calibration b31:13 RESERVED		
	of bytes 2 2		

CALIBRATION_ UPDATE	4	This field indicates if a particular calibration data has been updated in hardware. (0 – no update, 1 – updated)		
		Bit Definition		
		b0 RESERVED		
		b1 APLL tuning		
		b2 SYNTH VCO1 tuning		
		b3 SYNTH VCO2 tuning		
		b4 LODIST calibration		
		b5 RX ADC DC offset calibration		
		b6 HPF cutoff calibration		
		b7 LPF cutoff calibration		
		b8 Peak detector calibration		
		b9 TX Power calibration		
		b10 RX gain calibration		
		b11 TX Phase calibration		
		b12 RX IQMM calibration		
		b31:13 RESERVED		
TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = 1°C		
RESERVED	2	0x0000		
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		
RESERVED	4	0x00000000		

5.13.6 Sub block 0x1005 - RESERVED

5.13.7 Sub block 0x1006 - RESERVED

5.13.8 Sub block 0x1007 - RESERVED

5.13.9 Sub block 0x1008 - RESERVED

5.13.10 Sub block 0x1009 - RESERVED

5.13.11 Sub block 0x100A - RESERVED

5.13.12 Sub block 0x100B - AWR_AE_RF_FRAME_TRIGGER_RDY_SB

This sub block indicates that the slave device is now ready to receive the external sync in for frame triggers. In SW triggered mode, this async event indicates that frames are triggered. Table 5.73 describes the content of this sub block.

Table 5.73: AWR_AE_RF_FRAME_TRIGGER_RDY_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100B
SBLKLEN	2	Value = 4

5.13.13 Sub block 0x100C - AWR_AE_RF_GPADC_RESULT_DATA_SB

This sub block indicates that GPADC measurement is complete and it also contains the measured data of each of the enabled channels. The data for channels which are not enabled can be ignored.

Table 5.74 describes the content of this sub block.

Table 5.74: AWR_AE_RF_GPADC_RESULT_DATA_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100C
SBLKLEN	2	Value = 76
ANATEST1_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024
ANATEST1_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024

		4 - continued from previous page	
ANATEST1_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST1 input 1 LSB = 1.8V/1024	
ANATEST2_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024	
ANATEST2_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024	
ANATEST2_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST2 input 1 LSB = 1.8V/1024	
ANATEST3_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024	
ANATEST3_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024	
ANATEST3_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST3 input 1 LSB = 1.8V/1024	
ANATEST4_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024	
ANATEST4_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024	
ANATEST4_AVG_ DATA	2	Average GPADC reading across the captured samples for ANATEST4 input 1 LSB = 1.8V/1024	
ANAMUX_MIN_ DATA	2	Minimum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024	
ANAMUX_MAX_ DATA	2	Maximum GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024	
ANAMUX_AVG_ DATA	2	Average GPADC reading across the captured samples for ANAMUX input 1 LSB = 1.8V/1024	
VSENSE_MIN_ DATA	2	Minimum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024	

Table 5 74.	 continued 	from	nravious	nana
1able 5.74 -	– conunuea	IIOIII	previous	baue

VSENSE_MAX_ DATA	2	Maximum GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024
VSENSE_AVG_ DATA	2	Average GPADC reading across the captured samples for VSENSE input 1 LSB = 1.8V/1024
RESERVED	2	0x0000
RESERVED	4	0x00000000
RESERVED	4	0x00000000
RESERVED	4	0x0000000
RESERVED	4	0x00000000

- 5.13.14 Sub block 0x100E RESERVED
- 5.13.15 Sub block 0x100D RESERVED
- 5.13.16 Sub block 0x100E RESERVED
- 5.13.17 Sub block 0x100F AWR_FRAME_END_AE_SB

This sub block indicates end of the frames.

Table 5.75 describes the content of this sub block.

Table 5.75: AWR_FRAME_END_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x100F
SBLKLEN	2	Value = 4

5.13.18 Sub block 0x1010 - AWR_ANALOGFAULT_AE_SB

This sub block indicates fault in analog supplies or LDO short circuit condition. Once a fault is detected the functionality cannot be resumed from then on and the sensor needs to be re-started.

 Table 5.76:
 AWR_ANALOGFAULT_AE_SB response contents

Field Name	Number of bytes	Description	
SBLKID	2	Value =	0x1010
SBLKLEN	2	Value =	16
FAULT_TYPE	1	Value	Definition
		0	NO FAULT
		1	ANALOG_SUPPLY_FAULT
		Others	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	
FAULT_SIG	4	Bit	Definition
		b0	1.8V BB ANA supply fault detected
		b1	13V/1.0V RF supply fault detected
		b2	Synth VCO LDO short circuit detected
		b3	PA LDO short circuit detected
		b31:4	RESERVED
RESERVED	4	0x00000	0000

5.13.19 Sub block 0x1011 - AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB

This sub block indicates any timing failure related to calibration or monitoring. Table 5.77 describes the content of this sub block.

Table 5.77: AWR_CAL_MON_TIMING_FAIL_REPORT_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1011
SBLKLEN	2	Value = 8

Table 5.77 - continued from previous page

TIMING_FAIL- URE_CODE	2	Bit	Defi	nition
		b0	RES	SERVED
		b1	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_UNIT in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER when ONE_TIME_CALIB is enabled
		b2	0	No Failure
			1	Total monitoring and calibration time do not fit in one CALIB_MON_TIME_UNIT in AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER when PERIODIC_CALIB is enabled
		b3	0	No Failure
			1	Runtime timing violation: Monitoring functions or calibrations could not be completed in one CALIB_MON_TIME_UNIT
		b15:4	RES	SERVED
RESERVED	2	0x0000		

5.13.20 Sub block 0x1012 - AWR_RUN_TIME_CALIB_SUMMARY_REPORT_AE_SB

This sub block indicates the calibration status (one time or run time) if the calibration reports are enabled in the AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB.

NOTE:	The calibration report is sent if the calibrations are triggered due to
	temperature change or whenever the internal calibratons are trig-
	gered i.e. every 1 s

Table 5.78: AWR_RUN_TIME_CALIB_SYMMARY_REPORT_AE_SB response contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1012	
SBLKLEN	2	Value = 24	

Table 5.78 – continued from previous page

			naca nom previous page
CALIBRATION_ ERROR_FLAG	4	1 - calib	d indicates the status of each calibration. oration is passed, 0 - calibration is failed or not performed at least once. Definition
		b0	RESERVED
		b1	APLL tuning
		b2	SYNTH VCO1 tuning
		b3	SYNTH VCO2 tuning
		b4	LODIST calibration
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD calibration
		b9	TX power calibration
		b10	RX gain calibration
		b11	RESERVED
		b12	RESERVED
		b31:13	RESERVED
CALIBRATION_ UPDATE_STATUS	4	calibration by a value 0 – Anal	corresponding to a calibration indicates if each on resulted in a reconfiguration of RF is indicated upon the respective bit in this field. og/RF is not updated og/RF is updated after a respective calibration
		Bit	Definition
		b0	RESERVED
		b1	APLL tuning
		b2	SYNTH VCO1 tuning
		b3	SYNTH VCO2 tuning
		b4	LODIST calibration
		b5	RESERVED
		b6	RESERVED
		b7	RESERVED
		b8	PD calibration
		b9	TX power calibration
		b10	RX gain calibration
		b11	RESERVED
		b12	RESERVED
		b31:13	RESERVED

Table 5.78 – continued	l from	previous	page
------------------------	--------	----------	------

TEMPERATURE	2	Measured temperature, based on average of temperature sensors near all enabled TX and RX channels at the time of calibration. 1 LSB = 1°C
RESERVED	2	RESERVED
TIME_STAMP	4	This field indicates time stamp at the time of performing calibration updates. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)
RESERVED	4	0x00000000

5.13.21 Sub block 0x1013 – AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_ SB

This async event contains the status of digital monitoring for latent faults.

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1013
SBLKLEN	2	Value = 8

Table 5.79 – continued from previous page

DIG_MON_LA-	4		S, 0 – FAIL
TENT_FAULT_		Bit	Definition
STATUS		b0	RESERVED
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	RESERVED
		b5	RESERVED
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE Parity test
		b9	DFE memory ECC test
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	PCR test
		b31:27	RESERVED

5.13.22 Sub block 0x1014 - RESERVED

5.13.23 Sub block 0x1015 - AWR_MONITOR_REPORT_HEADER_AE_SB

The report header includes common information across all enabled monitors like current FTTI number and current temperature.

Table 5.80: AWR_MONITORING_REPORT_HEADER_AE_SB response contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1015
SBLKLEN	2	Value = 12
FTTI_COUNT	4	FTTI free running counter value, incremented every CAL_MON_TIME_UNIT
AVG_TEMPERA- TURE	2	Average temperature at which was monitoring performed
RESERVED	2	0x0000

5.13.24 Sub block 0x1016 - AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB

This async event is sent periodically to indicate the status of periodic digital monitoring tests.

Table 5.81: AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1016	
SBLKLEN	2	Value = 12	
RF_DIG_MON_ PERIODIC_STA- TUS	4	1 – PASS, 0 – FAIL Bit Monitoring type b0 PERIODIC_CONFG_REGISTER_READ b1 ESM_MONITORING b2 DFE_STC b3 FRAME_TIMING_MONITORING b31:4 RESERVED This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)	
TIMESTAMP	4		

5.13.25 Sub block 0x1017 - AWR_MONITOR_TEMPERATURE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured temperature near various RF analog and digital modules. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

 Table 5.82:
 AWR_MONITORING_TEMPERATURE_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1017	
SBLKLEN	2	Value = 36	
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_ANA_TEMP_MIN	
		b1 STATUS_ANA_TEMP_MAX	
		b2 STATUS_DIG_TEMP_MIN	
		b3 STATUS_DIG_TEMP_MAX	
		b4 STATUS_TEMP_DIFF_THRESH	
		b15:5 RESERVED 0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
TEMP_VALUES	20	The measured onchip temperature is reported here. Byte numbers corresponding to different temperature sensors reported in this field are here: Bytes Temperature sensor 1:0 TEMP_RX0 3:2 TEMP_RX1 5:4 TEMP_RX2 7:6 TEMP_RX3 9:8 TEMP_TX0 11:10 TEMP_TX1 13:12 TEMP_TX1 13:12 TEMP_DIG1 19:18 TEMP_DIG1 19:18 TEMP_DIG2 (Applicable only in xWR1642 or xWR1843) 1 LSB = 1°C, signed number	
RESERVED	4	0x00000000	

TIME_STAMP	4	This field indicates when the last monitoring in the enabled
		set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

5.13.26 Sub block 0x1018 - AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB

This sub block is a monitoring report which the AWR device sends to the host, containing the measured RX gain and phase values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.83: AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1018
SBLKLEN	2	Value = 72
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_RX_GAIN_ABS
		b1 STATUS_RX_GAIN_MISMATCH
		b2 STATUS_RX_GAIN_FLATNESS
		b3 STATUS_RX_PHASE_MISMATCH
		b15:4 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies.
RESERVED	3	0x000000

Table 5.83 - continued from previous page

RX_GAIN_VALUE	24	The measured RX gain for each enabled channel, at each enabled RF frequency (i.e., lowest, center and highest in the profile's RF band) is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22 1 LSB = 0.1 dB
		Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RX_PHASE_ VALUE	24	The measured RX phase for each enabled channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different RX and RF, in this field are here: RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22
		1 LSB = $360^{\circ}/2^{16}$ Only the entries of enabled RF Frequencies and enabled RX channels are valid. NOTE: These phases include an unknown bias common to all RX channels.
RESERVED	4	0x00000000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.27 Sub block 0x1019 - AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX noise figure values corresponding to the full IF band of a profile. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.84: AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1019
SBLKLEN	2	Value = 52
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_RX_NOISE_FIGURE
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies.
RESERVED	3	0x000000
RX_NOISE_FIG- URE_VALUE	24	The measured RX input referred for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different RX and RF, in this field are here:
		RF1 RF2 RF3
		RX0 1:0 9:8 17:16
		RX1 3:2 11:10 19:18
		RX2 5:4 13:12 21:20
		RX3 7:6 15:14 23:22 1 LSB = 0.1 dB Only the entries of enabled RF Frequencies and enabled RX channels are valid.
RESERVED	4	0x00000000
RESERVED	4	0x00000000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

NOTE:	The noise monitor reports the real receivers' noise figure. In com-
	plex receiver modes (i.e., complex 1x, complex 2x and pseudo
	real), the system noise figure is 3dB lower (better) than the reported
	number

5.13.28 Sub block 0x101A - AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX IF filter attenuation values at the given IF frequencies. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.85: AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB contents

Field Name	Number	Description		
	of bytes			
SBLKID	2	Value = 0x101A		
SBLKLEN	2	Value = 48		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_RX_HPF_ERROR		
		b1 STATUS_RX_LPF_ERROR		
		b2 STATUS_RX_IFA_GAIN_ERROR		
		b15:3 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies.		
RESERVED	3	0x000000		

Table 5.85 – continued from previous page

HPF_CUTOFF_ FREQ_ERROR_ VALUE	8	The deviations of RX IFA HPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here.
		HPF_CUTOFF_FREQ_ERROR = 100*(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the HPF region.
		Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here:
		I channel Q channel
		RX0 0 4
		RX1 1 5
		RX2 2 6
		RX3 3 7
		1 LSB = 1%, signed number
		Applicable only for the enabled channels.
LPF_CUTOFF_ FREQ_ERROR_ VALUE	8	The deviations of RX IFA LPF cutoff frequency from the ideally expected values for all the enabled RX channels are reported here.
		LPF_CUTOFF_FREQ_ERROR = 100×(Measured Cutoff Frequency / Expected Cutoff Frequency) – 100, for RX IF filter in the LPF region.
		Byte numbers corresponding to measured cutoff frequency error on different RX channels, in this field are here:
		I channel Q channel
		RX0 0 4
		RX1 1 5
		RX2 2 6
		RX3 3 7
		1 LSB = 1%, signed number Applicable only for the enabled channels.

Table 5.85 – continued from previous page

RX_IFA_GAIN_ ERROR_VALUE	8				he ideally expected are reported here.
		quency error on this field are here	differen e:	•	easured cutoff fre- ls and HPF/LPF, in
		RX0 0		4	
		RX1 1		5	
		RX2 2		6	
		RX3 3		7	
		1 LSB = 0.1 dB,	•		_
		Applicable only for	or the er	abled channe	els.
IFA_GAIN_EXP	1	Expected IFA ga 1 LSB = 1 dB	in		
RESERVED	3	0x000000			
RESERVED	4	0x00000000			
TIME_STAMP	4	set was performe	ed. econd (tir		oring in the enabled

5.13.29 Sub block 0x101B - AWR_MONITOR_TX0_POWER_REPORT_AE_SB

NOTE: The TX[0:2] power monitoring accuracy degrades at high TX backoffs and is unreliable for backoffs higher than 20dB.

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.86: AWR_MONITOR_TX0_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101B
SBLKLEN	2	Value = 24

Table 5.86 – continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_ABS_ERR
		b1 STATUS_FLATNESS_ERR
		b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here:
		RF1 RF2 RF3
		TX0 1:0 3:2 5:4
		(other bytes are reserved) 1 LSB = 0.1 dBm, signed number
		Only the entries of enabled RF Frequencies and enabled
		RX channels are valid.
RESERVED	2	0x0000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.30 Sub block 0x101C - AWR_MONITOR_TX1_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.87: AWR_MONITOR_TX1_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x101C	
SBLKLEN	2	Value = 24	
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_ABS_ERR	
		b1 STATUS_FLATNESS_ERR	
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies	
RESERVED	3	0x000000	
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX1 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.	
RESERVED	2	0x0000	
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)	

5.13.31 Sub block 0x101D - AWR_MONITOR_TX2_POWER_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX power values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.88: AWR_MONITOR_TX2_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x101D	
SBLKLEN	2	Value = 24	
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.	
		Bit STATUS_FLAG for monitor	
		b0 STATUS_ABS_ERR	
		b1 STATUS_FLATNESS_ERR	
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS	
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error	
PROFILE_INDX	1	Profile Index for which this monitoring report applies	
RESERVED	3	0x000000	
TX_POWER_ VALUE	6	The measured TX power for each enabled channel, at each enabled RF frequency is reported here. Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3 TX2 1:0 3:2 5:4 (other bytes are reserved) 1 LSB = 0.1 dBm, signed number Only the entries of enabled RF Frequencies and enabled RX channels are valid.	
RESERVED	2	0x0000	
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)	

5.13.32 Sub block 0x101E - AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.89: AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101E
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED
		0 – FAIL or check wasn't done
		1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO-	2	The TX reflection coefficient's magnitude for this channel
EFF_VALUE		is reported here.
		1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.13.33 Sub block 0x101F - AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.90: AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x101F
SBLKLEN	2	Value = 20

Table 5.90 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x0000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14 Sub blocks related to AWR_RF_ASYNC_EVENT_MSG2

5.14.1 Sub block 0x1020 - AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX reflection coefficient's magnitude values, meant for detecting TX ball break. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.91: AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1020
SBLKLEN	2	Value = 20

Table 5.91 – continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BALLBREAK
		b15:1 RESERVED 0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
TX_REFL_CO- EFF_VALUE	2	The TX reflection coefficient's magnitude for this channel is reported here. 1 LSB = 0.1 dB, signed number
RESERVED	2	0x0000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.2 Sub block 0x1021 - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX gain and phase mismatch values during an explicit monitoring chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.92: AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1021
SBLKLEN	2	Value = 60

Table 5.92 – continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX_GAIN_MISMATCH
		b1 STATUS_TX_PHASE_MISMATCH
		b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
TX_GAIN_VALUE	18	The measured TX PA loopback tone power at the RX ADC input, for each enabled TX channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here:
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16 1 LSB = 0.1dBm, signed number
		Only the entries of enabled RF Frequencies and enabled TX channels are valid.
TX_PHASE_ VALUE	18	The measured TX phase for each enabled channel, at each enabled RF frequency is reported here.
		Byte numbers corresponding to different TX and RF, in this field are here: RF1 RF2 RF3
		TX0 1:0 7:6 13:12
		TX1 3:2 9:8 15:14
		TX2 5:4 11:10 17:16
		1 LSB = $360^{\circ}/2^{16}$
		Only the entries of enabled RF Frequencies and enabled TX channels are valid.
		NOTE: these phases include an unknown bias common to all TX channels.
RESERVED	4	0x00000000
	1	

Table 5.92 - continued from previous page

RESERVED	4	0x00000000
TIMESTAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.3 Sub block 0x1022 - AWR_MONITOR_TX0_BPM_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX0 BPM error values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.93: AWR_MONITOR_TX0_BPM_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1022
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX0_BPM_PHASE
		b1 STATUS_TX0_BPM_AMPLITUDE
		b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring
		Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
PH_SHIFTER_ MON_VAL2_MSB	1	MSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0
		When combined with PH_SHIFTER_MON_VAL2_LSB, this represents the phase shift value in 16 bits.
		$\begin{array}{lll} {\sf PH_SHIFTER_MON_VAL2} &=& {\sf PH_SHIFTER_MON_VAL2_MSB} \times 2^8 + {\sf PH_SHIFTER_MON_VAL2_LSB} \end{array}$
PH_SHIFTER_ MON_VAL1	2	Monitored phase shift for PH_SHIFTER_MON1 for TX0 1 LSB = $360^{\circ}/2^{16}$

Table 5.93 - continued from previous page

TX_BPM_PHASE_ DIFF_VALUE	2	The TX output phase difference between the two BPM settings (phase for TX BPM setting 0 – phase for TX BPM setting 1) is reported here. 1 LSB = $360^\circ/2^{16}$
TX_BPM_AM- PLITUDE_DIFF_ VALUE	1	The deviation of the TX output amplitude difference between the two BPM settings (amplitude for TX BPM setting 0 – amplitude for TX BPM setting 1) from the ideal 0dB is reported here. 1 LSB = 0.1 dB, signed number
PH_SHIFTER_ MON_VAL2_LSB	1	LSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0 When combined with PH_SHIFTER_MON_VAL2_MSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB 1 LSB = $360^\circ/2^{16}$
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.4 Sub block 0x1023 - AWR_MONITOR_TX1_BPM_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX1 BPM error values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.94: AWR_MONITOR_TX1_BPM_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1023
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor. Bit STATUS_FLAG for monitor b0 STATUS_TX1_BPM_PHASE b1 STATUS_TX1_BPM_AMPLITUDE b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS

Table 5.94 – continued from previous page

ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
PH_SHIFTER_ MON_VAL2_MSB	1	MSB of the monitored phase shift for PH_SHIFTER_MON2 for TX1 When combined with PH_SHIFTER_MON_VAL2_LSB, this represents the phase shift value in 16 bits. $ PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB \times 2^8 + PH_SHIFTER_MON_VAL2_LSB $
PH_SHIFTER_ MON_VAL1	2	Monitored phase shift for PH_SHIFTER_MON1 for TX1 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_PHASE_ DIFF_VALUE	2	The TX output phase difference between the two BPM settings (phase for TX BPM setting 0 – phase for TX BPM setting 1) is reported here. 1 LSB = $360^\circ/2^{16}$
TX_BPM_AM- PLITUDE_DIFF_ VALUE	1	The deviation of the TX output amplitude difference between the two BPM settings (amplitude for TX BPM setting 0 – amplitude for TX BPM setting 1) from the ideal 0dB is reported here. 1 LSB = 0.1 dB, signed number
PH_SHIFTER_ MON_VAL2_LSB	1	LSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0 When combined with PH_SHIFTER_MON_VAL2_MSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB 1 LSB = $360^\circ/2^{16}$
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.5 Sub block 0x1024 - AWR_MONITOR_TX2_BPM_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured TX2 BPM error values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.95: AWR_MONITOR_TX2_BPM_REPORT_AE_SB contents

Field Name	Number	Description
	of bytes	
SBLKID	2	Value = 0x1024
SBLKLEN	2	Value = 20
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_TX2_BPM_PHASE
		b1 STATUS_TX2_BPM_AMPLITUDE
		b15:2 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
PH_SHIFTER_ MON_VAL2_MSB	1	MSB of the monitored phase shift for PH_SHIFTER_MON2 for TX2 When combined with PH_SHIFTER_MON_VAL2_LSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB
PH_SHIFTER_ MON_VAL1	2	Monitored phase shift for PH_SHIFTER_MON1 for TX2 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_PHASE_ DIFF_VALUE	2	The TX output phase difference between the two BPM settings (phase for TX BPM setting 0 – phase for TX BPM setting 1) is reported here. 1 LSB = $360^{\circ}/2^{16}$
TX_BPM_AM- PLITUDE_DIFF_ VALUE	1	The deviation of the TX output amplitude difference between the two BPM settings (amplitude for TX BPM setting 0 – amplitude for TX BPM setting 1) from the ideal 0dB is reported here. 1 LSB = 0.1 dB, signed number
PH_SHIFTER_ MON_VAL2_LSB	1	LSB of the monitored phase shift for PH_SHIFTER_MON2 for TX0 When combined with PH_SHIFTER_MON_VAL2_MSB, this represents the phase shift value in 16 bits. PH_SHIFTER_MON_VAL2 = PH_SHIFTER_MON_VAL2_MSB $\times 2^8$ + PH_SHIFTER_MON_VAL2_LSB 1 LSB = $360^\circ/2^{16}$

Table 5.95 – continued from previous page

TIME_STAMP	4	This field indicates when the last monitoring in the enabled
		set was performed.
		1 LSB = 1 millisecond (time stamp rolls over upon exceed-
		ing allotted bit width)

5.14.6 Sub block 0x1025 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information related to measured frequency error during the chirp. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.96: AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x1025
SBLKLEN	2	Value = 32
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.
		Bit STATUS_FLAG for monitor
		b0 STATUS_SYNTH_FREQ_ERR
		b15:1 RESERVED
		0 – FAIL or check wasn't done 1 – PASS
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error
PROFILE_INDX	1	Profile Index for which this monitoring report applies
RESERVED	3	0x000000
MAX_FRE- QUENCY_ER- ROR_VALUE	4	This field indicates the maximum instantaneous frequency error measured during the chirps for which frequency monitoring has been enabled in the previous monitoring period. Bits Parameter
		b31:0 Maximum frequency error value, signed number. 1 LSB = 1 kHz.

Table 5.96 – continued from previous page

FREQUENCY_ FAILURE_ COUNT	4	This field indicates the number of times during chirping in the previous monitoring period in which the measured frequency error violated the allowed threshold. Frequency error threshold violation is counted every 10 ns. Bits Parameter b31:19 RESERVED b18:0 Failure count, unsigned number
RESERVED	4	0x00000000
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.7 Sub block 0x1026 – AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the external signal voltage values measured using the GPADC. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.97: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1026	
SBLKLEN	2	Value = 28	

Table 5.97 - continued from previous page

	1			
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit Definition		
		b0 STATUS_ANALOGTEST1		
		b1 STATUS_ANALOGTEST2		
		b2 STATUS_ANALOGTEST3		
		b3 STATUS_ANALOGTEST4		
		b4 STATUS_ANAMUX		
		b5 STATUS_VSENSE		
		b15:6 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
EXTERNAL_ANA-	12	MEASURED_VALUE		
LOG_SIGNAL_ VALUES		Bytes SIGNAL		
VALUES		1:0 ANALOGTEST1		
		3:2 ANALOGTEST2		
		5:4 ANALOGTEST3		
		7:6 ANALOGTEST4		
		9:8 ANAMUX		
		11:10 VSENSE		
		1 LSB = 1.8V/1024		
RESERVED	4	0x0000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.8 Sub block 0x1027 - AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX0 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.98: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x1027		
SBLKLEN	2	Value = 16		
STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_SUPPLY_TX0		
		b1 STATUS_DCBIAS_TX0		
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.9 Sub block 0x1028 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX1 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.99: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1028	
SBLKLEN	2	Value = 16	

Table 5.99 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_SUPPLY_TX1			
		b1 STATUS_DCBIAS_TX1			
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies			
RESERVED	3	0x000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)			

5.14.10 Sub block 0x1029 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal TX2 internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.100: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1029	
SBLKLEN	2	Value = 16	

Table 5.100 - continued from previous page

STATUS_FLAGS	2	Status flag indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_SUPPLY_TX2			
		b1 STATUS_DCBIAS_TX2			
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies			
RESERVED	3	0x000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)			

5.14.11 Sub block 0x102A – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_ REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal RX internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.101: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x102A	
SBLKLEN	2	Value = 16	

Table 5.101 - continued from previous page

STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit	STATUS_FLAG for monitor	
		b0	STATUS_SUPPLY_RX0	
		b1	STATUS_SUPPLY_RX1	
		b2	STATUS_SUPPLY_RX2	
		b3	STATUS_SUPPLY_RX3	
		b4	STATUS_DCBIAS_RX0	
		b5	STATUS_DCBIAS_RX1	
		b6	STATUS_DCBIAS_RX2	
		b7	STATUS_DCBIAS_RX3	
		b8	STATUS_PWRDET_RX0	
		b9	STATUS_PWRDET_RX1	
		b10	STATUS_PWRDET_RX2	
		b11	STATUS_PWRDET_RX3	
			RESERVED or check wasn't done	
		1 – PAS		
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error		
PROFILE_INDX	1	Profile Index for which this monitoring report applies		
RESERVED	3	0x000000		
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)		

5.14.12 Sub block 0x102B - AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about Internal PM, CLK and LO subsystems' internal analog signals. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.102: AWR_MONITOR_PM_CLK_LO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x102B			
SBLKLEN	2	Value = 16			
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_SUPPLY_PMCLKLO			
		b1 STATUS_DCBIAS_PMCLKLO			
		b2 STATUS_LVDS_PMCLKLO (Use this status bit only if LVDS is used, else ignore this)			
		b3 STATUS_SYNC_20G			
		b15:4 RESERVED 0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
PROFILE_INDX	1	Profile Index for which this monitoring report applies			
SYNC_20G_ POWER	1	Monitored 20 GHz signal power, signed number Unit: 1 LSB = 0.5 dBm			
RESERVED	2	0x000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)			

5.14.13 Sub block 0x102C - AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_REPORT_AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing information about the measured value of the GPADC input DC signals whose measurements were enabled. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.103: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value = 0x102C			
SBLKLEN	2	Value = 20			
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.			
		Bit STATUS_FLAG for monitor			
		b0 STATUS_GPADC_REF1			
		b1 STATUS_GPADC_REF2			
		b15:2 RESERVED 0 – FAIL or check wasn't done 1 – PASS			
ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error			
GPADC_REF1_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF1, expected level 0.45V) is reported here. 1 LSB = 1.8V/1024			
GPADC_REF2_ VALUE	2	The measured GPADC outputs corresponding to internal DC signal (GPADC_REF2, expected level 1.2V) is reported here. 1 LSB = 1.8V/1024			
RESERVED	4	0x00000000			
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)			

5.14.14 Sub block 0x102D - AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_ AE_SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured PLL control voltage values during explicit monitoring chirps. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.104: AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB contents

Field Name	Number	Description				
	of bytes					
SBLKID	2	Value =	0x102D			
SBLKLEN	2	Value =	32			
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.				
		Bit	STATUS_FLAG for monitor			
		b0	STATUS_APLL_VCTRL			
		b1	STATUS_SYNTH_VCO1_VCTRL_	MAX_FREQ		
		b2	STATUS_SYNTH_VCO1_VCTRL_	MIN_FREQ		
		b3	STATUS_SYNTH_VCO1_SLOPE			
		b4	STATUS_SYNTH_VCO2_VCTRL_	MAX_FREQ		
		b5	STATUS_SYNTH_VCO2_VCTRL_	MIN_FREQ		
		b6	STATUS_SYNTH_VCO2_SLOPE			
		b15:7 RESERVED 0 – FAIL or check wasn't done 1 – PASS				
ERROR_CODE	2		Indicates any error reported during monitoring Value of 0 indicates no error			
PLL_CONTROL_ VOLTAGE_VAL- UES	16		The measured values of PLL control voltage levels and Synthesizer VCO slopes are reported here.			
OLG		Byte numbers corresponding to different control voltage values reported in this field are here:				
		Bytes	SIGNAL	1 LSB		
		1:0	APLL_VCTRL	1 mV		
		3:2	SYNTH_VCO1_VCTRL_MAX_ FREQ	1 mV		
		5:4	SYNTH_VCO1_VCTRL_MIN_ FREQ	1 mV		
		7:6	SYNTH_VCO1_SLOPE	1 MHz/V		
		9:8	SYNTH_VCO2_VCTRL_MAX_ FREQ	1 mV		
		11:10	SYNTH_VCO2_VCTRL_MIN_ FREQ	1 mV		
		13:12	SYNTH_VCO2_SLOPE	1 MHz/V		
		15:14	RESERVED	RESERVED		

Table 5.104 – continued from	m previous page
------------------------------	-----------------

		Only the fields corresponding to the enabled monitors are valid. The failure thresholds are based on the following: Valid VCTRL values are [140 to 1400] mV. Valid VCO1_SLOPE values are [1760 to 2640] MHz/V. Valid VCO2_SLOPE values are [3520 to 5280] MHz/V. NOTE: The VCOx_SLOPE should be ignored when synth fault is injected.
RESERVED	4	0x00000000
TIME_STAMP	4	This field indicates when the last monitoring in the enabled set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)

5.14.15 Sub block 0x102E - AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_ SB

This API is a monitoring report API which the AWR device sends to the host, containing information about the relative frequency measurements. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.105: AWR_MONITOR_DUAL_CLOCK_COMP_REPORT_AE_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value =	0x102E	
SBLKLEN	2	Value =	32	
STATUS_FLAGS	2	Status flags indicating pass fail results corresponding to various threshold checks under this monitor.		
		Bit STATUS_FLAG for monitor		
		b0 STATUS_CLK_PAIR0		
		b1 STATUS_CLK_PAIR1		
		b2 STATUS_CLK_PAIR2		
		b3 STATUS_CLK_PAIR3		
		b4	STATUS_CLK_PAIR4	
		b5	STATUS_CLK_PAIR5	
		b15:6 RESERVED		
		0 – FAIL or check wasn't done 1 – PASS		

Table 5.105 - continued from previous page

ERROR_CODE	2	Indicates any error reported during monitoring Value of 0 indicates no error					
FREQ_MEAS_ VALUES	16	The measured clock frequencies from the enabled clock pair measurements are reported here.					
		-	•	nding to different frequency rted in this field are here:			
		Bytes	CLOCK PAIR	MEASURED CLOCK FREQUENCY			
		1:0 0 BSS_600M					
		3:2 1 BSS_200M 5:4 2 BSS_100M					
		7:6	3	GPADC ₋ 10M			
		9:8	4	RCOSC_10M			
		11:10	5	RAMPGEN_100M			
		15:12	RESERVED	RESERVED			
		1 LSB = 0.1 MHz, unsigned number					
RESERVED	4	0x00000000					
TIME_STAMP	4	This field indicates when the last monitoring in the enabled					
		set was performed. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)					

5.14.16 Sub block 0x1031 - AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_ SB

This API is a Monitoring Report API which the AWR device sends to the host, containing the measured RX mixer input voltage swing values. The AWR device sends this to host at the programmed periodicity or when failure occurs, as programmed by the configuration API SB.

Table 5.106: AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x1031	
SBLKLEN	2	Value = 24	

Table 5.106 - continued from previous page

STATUS_FLAGS	2	Bit	STATUS_FLAG for monitor		
		b0	STATUS_MIXER_IN_POWER_RX0		
		b1	STATUS_MIXER_IN_POWER_RX1		
		b2	STATUS_MIXER_IN_POWER_RX2		
		b3	STATUS_MIXER_IN_POWER_RX3		
		b15:4	RESERVED		
			or check wasn't done		
		1 – PAS	S		
ERROR_CODE	2	Value =	sanity check violations are reported here. 0: No error		
		Other va	alues: Error (see error code definition matrix)		
PROFILE_INDX	1	Profile In	Profile Index for which this monitoring report applies		
RESERVED	3	0x00000	0x000000		
RX_MIXER_IN_ VOLTAGE_VALUE	4	The measured RX mixer input voltage swing values are reported here. The byte location of the value for each receivers is tabulated here:			
		Receive	er Byte Location		
		RX0	0		
		RX1	1		
		RX2	2		
		RX3	3		
		1 LSB =	: 1800 mV/256, unsigned number		
		Only the	e entries of enabled RX channels are valid.		
RESERVED	4	0x00000	0000		
TIME_STAMP	4	When this monitoring began is indicated here. 1 LSB = 1 millisecond (time stamp rolls over upon exceeding allotted bit width)			

5.15 Sub blocks related to AWR_DEV_RFPOWERUP_MSG

5.15.1 Sub block 0x4000 - AWR_DEV_RFPOWERUP_SB

This sub block is a command to power up the BSS 5.107 describes the content of this sub block.

Table 5.107: AWR_DEV_POWERUP_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4000	
SBLKLEN	2	Value = 4	

5.16 Sub blocks related to AWR_DEV_CONF_SET_MSG

5.16.1 Sub block 0x4040 - AWR_DEV_MCUCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the MCU Clock that is output from the device.

Table 5.108 describes the contents of this sub block.

Table 5.108: AWR_DEV_MCUCLOCK_CONF_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x4040		
SBLKLEN	2	Value = 8		
MCUCLOCK_ CTRL	1	This field controls the enable-disable of the MCU clock. Value Description		
		0x0 Disable MCU clock		
		0x1 Enable MCU clock		
MCUCLOCK_ SRC	1	This field specifies the source of the MCU clock. Applicable only in case of MCU clock enable. Else ignored Value Description		
		0x0 XTAL (as connected to the device)		
		0x2 600MHz PLL divided clock		
SRCCLOCK_DIV	1	This field specifies the division factor to be applied source clock. Applicable only in case of MCU clock enable. Else ignore Value Description		
		0x0 Divide by 1		
		0x1 Divide by 2		
		0xFF Divide by 256		
RESERVED	1	0x00		

5.16.2 Sub block 0x4041 - AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

This sub block contains the configuration of the data format of the samples received over the receive chain to be transferred out to an external host over the configured data path (LVDS or CSI2).

Table 5.109 describes the content of this sub block.

Table 5.109: AWR_DEV_RX_DATA_FORMAT_CONF_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value =	Value = 0x4041		
SBLKLEN	2	Value =	16		
RX_CHAN_EN	2	Bits Def			
		b0	RX_CF 0	IAN0_EN Disable RX Channel 0	
			1	Enable RX Channel 0	
		b1	RX₋C⊦ 0	HAN0_EN Disable RX Channel 1	
			1	Enable RX Channel 1	
		b2	RX₋C⊦ 0	HAN0_EN Disable RX Channel 2	
			1	Enable RX Channel 2	
		b3	RX_CH	HANO_EN	
			0 Disable RX Channel 3		
			1	Enable RX Channel 3	
		b15:4	RESE	RVED	
NUM_ADC_BITS	2	Bits	Definit	ion	
		b1:0	00	12 bits	
			01	14 bits	
			10	16 bits	
			Other	Reserved	
		b15:2	RESE	RVED	
ADC_OUT_FMT	2	Bits	Bits Definition		
		b1:0	00	Real	
			01	Complex	
			Other	Reserved	
		b15:2	RESE	RVED	

Table 5.109 - continued from previous page

IQ_SWAP_SEL	1	Bits	Definition		
		b1:0	To swap the IQ samples (if complex format)		
			00 Sample interleave mode – I first		
			01 Sample interleave mode – Q first		
			Other Reserved		
		b7:2	RESERVED		
CHAN_INTER-	1	Bits	Definition		
LEAVE		b1:0	Channel interleaving of the samples stored in the ADC buffer to be transferred out on the data path. On Interleaved mode of storage		
			01 Non-interleaved mode of storage		
			Other Reserved		
		b7:2	RESERVED		
RESERVED	4	0x00000	00000		

5.16.3 Sub block 0x4042 - AWR_DEV_RX_DATA_PATH_CONF_SET_SB

This sub block contains the configurations of the data path to transfer the captured ADC samples received over the receive chain to be transferred out to an external host.

Table 5.110 describes the content of this sub block.

Table 5.110: AWR_DEV_RX_DATA_PATH_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4042	
SBLKLEN	2	Value = 12	
DATA_INTF_SEL	1	This field specifies the data path selected to transfer the Radar info. Value Description 0x0 CSI2 interface select 0x1 LVDS interface select 0x2 SPI interface selected (applicable when a large inter-frame time is provided to transfer the data over the SPI)	

Table 5.110 – continued from previous page

DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT0		b5:0	Packet 0 Value	content selection Definition
			000001	ADC
			000110	CP_ADC (See note at the bottom of this table)
			001001	ADC_CP
			110110	CP_ADC_CQ (See note at the bottom of this table)
		b7:6	Packet (virtual channel number (valid only for
			Value	Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3
DATA_TRANS_	1	Bits	Descript	ion
FMT_PKT1		b5:0	Packet 1 Value	content selection Definition
			000000	Suppress packet 1 transmission
			001110	CP_CQ (See note at the bottom of this table)
			001011	CQ_CP (See note at the bottom of this table)
		b7:6	Packet ber Value	1 virtual channel num- (valid only for CSI2) Definition
			00	Virtual channel number 0 (Default)
			01	Virtual channel number 1
			10	Virtual channel number 2
			11	Virtual channel number 3

Table 5.110 – continued from previous page

1	This specifies the data s	izo of CO	camples on the lance
1	·		Definition
	Dits Description of		
		00	12 bit
		01	14 bit
		10	16 bit
		11	RESERVED
	b7:2 RESERVED		
	ADC data is sent in sep	arate pack	ets. When ADC and CQ
	ADC data size.		
1	transferred. Valid range Value 0 = Disabled. NOTE: Ensure that the	[32 halfwo	ords to 128 halfwords] f halfwords specified are
1	transferred. Valid range Value 0 = Disabled.	[32 halfwo	ords to 128 halfwords]
		number o	nanwords specified are
	a multiple of the number	of lanes	selected.
1	Number of samples (in transferred. Valid range Value 0 = Disabled.	16 bit halfv [32 halfwo	vords) of CQ2 data to be ords to 128 halfwords]
1	Number of samples (in transferred. Valid range Value 0 = Disabled.	16 bit halfv [32 halfwo	words) of CQ2 data to be ords to 128 halfwords] f halfwords specified are
		b7:2 RESERVED NOTE: The CQ size of ADC data is sent in separate in the same pace ADC data size. 1 Number of samples (in transferred. Valid range Value 0 = Disabled. NOTE: Ensure that the a multiple of the number of samples (in transferred. Valid range Value 0 = Disabled.	Bits Description b1:0 Value 00 01 10 11 b7:2 RESERVED NOTE: The CQ size can be cor ADC data is sent in separate pack is sent in the same packet, then 0 ADC data size. 1 Number of samples (in 16 bit halfw transferred. Valid range [32 halfwo Value 0 = Disabled. NOTE: Ensure that the number of a multiple of the number of lanes size. 1 Number of samples (in 16 bit halfw transferred. Valid range [32 halfwo

NOTE1:	CP is C follows	Chirp Parameter information which is defined for each RX as		
	Bit	Description		
	b11:0	Chirp number		
		In legacy frame configuration, chirp number		
		for starts from 1 and increments for each		
		chirp within the frame and resets to 0 for the		
		next frame.		
		In advanced frame configuration chirp num-		
		ber starts from 1 and increments for each		
		chirp within the burst and resets to 0 for the next burst. RESERVED Channel number		
	b15:12			
	b17:16			
		The receive channel number which is en-		
		coded as		
		00 RX0		
		01 RX1		
		10 RX2		
		11 RX3		
	b21:18	Profile number		
		The profile number to which the chirp belongs		
	b31:22	RESERVED		
NOTE2:	CQ is C	hirp Quality information which is defined in Section 8		

5.16.4 Sub block 0x4043 - AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

This sub block contains the configurations to enables the lanes of the LVDS/CSI2 path to transfer Radar information to an external host.

Table 5.111 describes the content of this sub block.

Table 5.111: AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4043
SBLKLEN	2	Value = 8

Table 5.111 - continued from previous page

LANE_EN	2	Bits	s Description	
		b0	LANEO_EN	
			0 Disable lane 0	
			1 Enable lane 0	
		b1	LANE1_EN	
			0 Disable lane 1	
			1 Enable lane 1	
		b2	LANE2_EN	
			0 Disable lane 2	
			1 Enable lane 2	
		b3	LANE3_EN	
			0 Disable lane 3	
			1 Enable lane 3	
		b15:4	RESERVED	
RESERVED	2	0x0000		

5.16.5 Sub block 0x4044 - AWR_DEV_RX_DATA_PATH_CLK_SET_SB

This sub block contains the clock configurations for data transfer on the LVDS/CSI2 lanes. Table 5.112 describes the content of this sub block.

Table 5.112: AWR_DEV_RX_DATA_PATH_CLK_SET_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x4044		
SBLKLEN	2	Value = 8		
LANE_CLK_CFG (Selection valid only for LVDS. For CSI2, DDR is used always)	1	Bits b0 b7:1	Description BIT_CLK_SEL 0 SDR clock 1 DDR clock (Only valid value for CSI2) RESERVED	

Table 5.112 - continued from previous page

DATA_RATE	1	Data rate selection Value Description	
		0000b	900 Mbps (DDR only)
		0001b	600 Mbps (DDR only)
		0010b	450 Mbps (SDR, DDR)
		0011b	400 Mbps (DDR only)
		0100b	300 Mbps (SDR, DDR)
		0101b	225 Mbps (DDR only)
		0110b	150 Mbps (DDR only)
		Others	RESERVED
RESERVED	2	0x0000	

5.16.6 Sub block 0x4045 - AWR_DEV_LVDS_CFG_SET_SB

This sub block contains the configurations of the LVDS lanes. Table 5.113 describes the content of this sub block.

Table 5.113: AWR_DEV_LVDS_CFG_SET_SB contents

Field Name	Number of bytes	Description			
SBLKID	2	Value =	Value = 0x4045		
SBLKLEN	2	Value =	8		
LANE_FMT_MAP	2	LANE0 Format Map. The mapping of the data on the lanes is depicted in the figure below 0x0000 Format map 0			
		0x0001 Format map 1		map 1	
LANE_PARAM_ CFG	2	Bit Description b0 MSB_FIRST 0 Disable (LSB First)		RST	
			1	Enable (MSB First)	
		b1	Packet I	End Pulse Enable Disable Enable	
		b2	CRC Er 0		
		b15:3	RESERVED		

The mapping of the 8 sample (8*16 = 128 bit) information onto the serial interface lanes is determined by the LANE_FMT_MAP parameter. The choice of format map translating to the transfer of data on the lanes is depicted in the image below (the x axis represents time – hence the samples are as available on the lanes in time and the receiver will receive the samples in the reverse order as depicted below).

Figure 5.3: Lane formats and the order of receiving the data from the lanes

5.16.7 Sub block 0x4046 – AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_ SB

This sub block contains the configurations of the data path to transfer the captured ADC samples continuously without any break to an external host.

Table 5.114 describes the content of this sub block.

Table 5.114: AWR_DEV_RX_CONTSTREAMING_MODE_CFG_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4046
SBLKLEN	2	Value = 8
CONT_STREAM-ING_MODE	2	Continuous streaming mode enable Value Description 0x0 Continuous streaming mode data transfer disable 0x1 Continuous streaming mode data transfer enable
RESERVED	2	0x0000

5.16.8 Sub block 0x4047 - AWR_DEV_CSI2_CFG_SET_SB

This sub block contains the various configurations of the parameters of the CSI2 module. Table 5.115 describes the content of this sub block.

Table 5.115: AWR_DEV_CSI2_CFG_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4047
SBLKLEN	2	Value = 12

Table 5.115 – continued from previous page

LANE_POS_POL_	4	Bits	Definition
SEL		b2:0	DATA_LANEO_POS Valid values (Should be a unique position if lane 0 is enabled, ignored if lane 0 is not enabled): 000b - Unused, 001b - Position 1 (default), 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5
		b3	DATA_LANE0_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b6:4	DATA_LANE1_POS Valid values (Should be a unique position if lane 1 is enabled, ignored if lane 1 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2 (default), 011b - Position 3, 100b - Position 4, 101b - Position 5
		b7	DATA_LANE1_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b10:8	DATA_LANE2_POS Valid values (Should be a unique position if lane 2 is enabled, ignored if lane 2 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4 (default), 101b - Position 5
		b11	DATA_LANE2_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b14:12	DATA_LANE3_POS Valid values (Should be a unique position if lane 3 is enabled, ignored if lane 3 is not enabled): 000b - Unused, 001b - Position 1, 010b - Position 2, 011b - Position 3, 100b - Position 4, 101b - Position 5 (default)
		b15	DATA_LANE3_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b18:16	CLOCK_POS Valid values (Should be a unique position): 0000b – Unused, 001b – Unused, 010b – Position 2, 011b – Position 3 (default), 100b – Position 4
		b19	CLOCK_POL 0b - PLUSMINUS pin order, 1b - MINUSPLUS pin order
		b31:20	RESERVED

Table 5.115 -	continued	from	previous	page

RESERVED	4	0x00000000
----------	---	------------

5.16.9 Sub block 0x4048 - AWR_DEV_PMICCLOCK_CONF_SET_SB

This sub block contains the configurations to setup the desired frequency of the PMIC Clock that is output from the device. The configurations also allow setting up the dither values for the clock. Table 5.116 describes the contents of this sub block.

Table 5.116: AWR_DEV_PMICCLOCK_CONF_SET_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4048	
SBLKLEN	2	Value = 16	
PMICCLOCK_ CTRL	1	This field controls the enable-disable of the PMIC clock. Value Description	
		0x0 Disable PMIC clock	
		0x1 Enable PMIC clock	
PMICCLOCK_ SRC	1	This field specifies the source of the PMIC clock. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 XTAL (as connected to the device)	
		0x2 600 MHz PLL divided clock	
SRCCLOCK_DIV	1	This field specifies the division factor to be applied to source clock. Applicable only in case of PMIC clock enable. Else ignored.	
		Value Description	
		0x0 Divide by 1	
		0x1 Divide by 2	
		0xFF Divide by 256	

Table 5.116 – continued from previous page

MODE_SELECT	1	This field specifies the mode of operation for the PMIC clock generation. Applicable only in case of PMIC clock enable. Else ignored.		
		Value Description		
		0x0 Continuous mode (free running mode where the frequency change/jump is triggered based on configured number of PMIC clock ticks)		
		0x1 Chirp-to-Chirp staircase mode (frequency change/jump is triggered at every chirp boundary)		
FREQ_SLOPE	4	Applicable only in case of PMIC clock enable. Else ignored.		
		Bit Description		
		b25:0 Frequency slope value to be applied in [7.18] unsigned format 1 LSB = $1/2^{18}$		
		b31:26 RESERVED		
		In continuous mode this value is accumulated every PMIC clock tick with the seed as MIN_NDIV_VAL till MAX_NDIV_VAL is reached		
		In the stair case mode this value is accumulated every chirp with the seed as MIN_NDIV_VAL till MAX_NDIV_VAL is reached		
MIN_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ignored.		
		Minimum allowed divider value (depends upon the highest desired clock frequency)		
MAX_NDIV_VAL	1	Applicable only in case of PMIC clock enable. Else ig-		
		nored. Maximum allowed divider value (depends upon the lowest desired clock frequency)		
CLK_DITHER_EN	1	Applicable only in case of PMIC clock enable and frequency slope is non-zero. Else ignored. This field controls the enable-disable of the clock dithering. Adds a pseudo random real number (0 or 1) to the accumulated divide value. Hence it brings a random dithering of 1 LSB. Value Description		
		0x0 Clock dithering disabled		
		0x1 Clock dithering enabled		
RESERVED	1	0x00		

Example 1. PMIC clock with no slope in continuous mode

Objective: To configure the PMIC clock at frequency of 2 MHz with no slope. Configurations:

- 1. PMICCLK_SRC = 0x2 (600 MHz PLL divided clock)
- 2. $SRCCLOCK_DIV = 29$, Reference clock = 600 MHz /(29 + 1) = 20 MHz
- 3. MIN_NDIV_VAL = MAX_NDIV_VAL = 10 (Computed as 20 MHz/2.0 MHz)
- 4. FREQ_SLOPE = 0

With the above configuration, the PMIC clock frequency would be PMIC clock = (20 MHz / 10) = 2 MHz

Example 2. Dithered PMIC clock with slope in chirp-to-chirp staircase mode Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 32 chirps. Configurations:

- 1. PMICCLK_SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 2, Reference clock = 600 MHz /(2 + 1) = 200 MHz
- 3. MODE_SELECT = 1
- 4. FREQ_SLOPE = 169125 (Computed as $(MAX_NDIV_VAL MIN_NDIV_VAL) \times 2^{18}/31$)
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be vary between (200 MHz / 80) and (200 MHz / 100) in steps of ($200 \text{ MHz}/|(80 + (N \times \text{FREQ_SLOPE}/2^{18} + X))|)$ where

- N = Chirp number
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider value which starts with a value of 100, providing a PMIC clock of 2 MHz for the $1^{\rm st}$ chirp, decrementing the divider by FREQ_SLOPE/ 2^{18} = 0.64516 every chirp and finally reaching a value of 20 for the $32^{\rm nd}$ chirp providing a PMIC clock of 2.5 MHz.

Table 5.117: PMIC clock frequency across chirps in chirp-to-chirp staircase mode in an example when PMIC clock varies from 2 MHz to 2.5 MHz in 32 chirps

Chirp Number	PMIC Clock Frequency (MHz)	Calculation
1	2.50000	$200/(80 + 0 \times 169125/2^{18})$
2	2.48000	$200/(80+1\times169125/2^{18})$
3	2.46032	$200/(80 + 2 \times 169125/2^{18})$
4	2.44094	$200/(80 + 3 \times 169125/2^{18})$
5	2.42188	$200/(80 + 4 \times 169125/2^{18})$
6	2.40310	$200/(80 + 5 \times 169125/2^{18})$
7	2.38462	$200/(80+6\times169125/2^{18})$
8	2.36641	$200/(80+7\times169125/2^{18})$
9	2.34848	$200/(80 + 8 \times 169125/2^{18})$
10	2.33083	$200/(80+9\times169125/2^{18})$
11	2.31343	$200/(80+10\times169125/2^{18})$
12	2.29630	$200/(80 + 11 \times 169125/2^{18})$
13	2.27941	$200/(80 + 12 \times 169125/2^{18})$
14	2.26277	$200/(80 + 13 \times 169125/2^{18})$
15	2.24638	$200/(80 + 14 \times 169125/2^{18})$
16	2.23022	$200/(80 + 15 \times 169125/2^{18})$
17	2.21429	$200/(80 + 16 \times 169125/2^{18})$
18	2.19858	$200/(80 + 17 \times 169125/2^{18})$
19	2.18310	$200/(80 + 18 \times 169125/2^{18})$
20	2.16783	$200/(80 + 19 \times 169125/2^{18})$
21	2.15278	$200/(80 + 20 \times 169125/2^{18})$
22	2.13793	$200/(80 + 21 \times 169125/2^{18})$
23	2.12329	$200/(80 + 22 \times 169125/2^{18})$
24	2.10884	$200/(80 + 23 \times 169125/2^{18})$
25	2.09459	$200/(80 + 24 \times 169125/2^{18})$
26	2.08054	$200/(80 + 25 \times 169125/2^{18})$
27	2.06667	$200/(80 + 26 \times 169125/2^{18})$
28	2.05298	$200/(80 + 27 \times 169125/2^{18})$
29	2.03947	$200/(80 + 28 \times 169125/2^{18})$
30	2.02614	$200/(80 + 29 \times 169125/2^{18})$
31	2.01299	$200/(80 + 30 \times 169125/2^{18})$
32	2.00000	$200/(80 + 31 \times 169125/2^{18})$

Example 3. Dithered PMIC clock with slope in continuous mode

Objective: To configure a dithered PMIC clock at frequencies ranging from 2 MHz to 2.5 MHz over 100 μ s.

Configurations:

- 1. PMICCLK_SRC = 0x2 (600 MHz PLL divided clock)
- 2. SRCCLOCK_DIV = 2, Reference clock = 600 MHz /(2 + 1) = 200 MHz
- 3. MODE_SELECT = 0
- 4. FREQ_SLOPE = 23302 (Computed as (MAX_NDIV_VAL-MIN_NDIV_VAL) $\cdot 2^{18}/(100~\mu s \cdot (2.5~\mathrm{MHz} + 2~\mathrm{MHz})/2)$)
- 5. MIN_NDIV_VAL = 80 (Computed as 200 MHz/2.5 MHz)
- 6. MAX_NDIV_VAL = 100 (Computed as 200 MHz/2.0 MHz)
- 7. CLK_DITHER_EN = 1

With the above configuration, the PMIC clock frequency would be PMIC clock would vary between = (200 MHz / 80) to (200 MHz / 100) in steps of $(200~\mathrm{MHz}/\lfloor(80+(N\times23302/2^{18}+X))\rfloor$ where

- N = Iteration count that ticks every PMIC clock. The average value of PMIC clock here is \sim 2.25 MHz. Hence the iteration count ticks every (1/2.25 MHz) \sim 0.444 μ s.
- X = random fractional value in the range (0, 1) that adds the dither

The PMIC clock frequency is determined by the clock divider which starts with a value of 100, on the 1st PMIC clock period, providing a PMIC clock of 2 MHz, decrementing the divider value by $23303/2^{18}$ = 0.08889 every PMIC clock period of 1/2.25 MHz $\sim 0.444~\mu s$, finally reaching a value of 80 on 225th PMIC clock period, providing a PMIC clock of 2.5 MHz. Hence, the frequency varies from [2 MHz, 2.5 MHz] over 225 PMIC clock periods or $225 \times 0.444~\mu s$ or $\sim 100~\mu s$.

5.16.10 Sub block 0x4049 - AWR_MSS_PERIODICTESTS_CONF_SB

This sub block is used to trigger the periodic tests in MSS.

Table 5.118 describes the content of this sub block.

Table 5.118: AWR_MSS_PERIODICTESTS_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x4049	
SBLKLEN	2	Value = 16	

Table 5.118 - continued from previous page

PERIODICITY	4	Periodicity at which tests need to be run 1 LSB = 1 ms Minimum value is 40 ms	
TEST_EN	4	1 - Enable, 0 - Disable Bit Monitoring type b0 PERIODIC_CONFG_REGISTER_READ_EN b1 ESM_MONITORING_EN b31:2 RESERVED	
REPORTING_ MODE	1	Controls when the AWR device sends the report corresponding to the periodic tests to the host. A report generically refers to both success/failure status flags. Value Definition 0 Report is sent every monitoring period 1 Report is sent only on a failure	
RESERVED	3	0x000000	

5.16.11 Sub block 0x404A - AWR_MSS_LATENTFAULT_TEST_CONF_SB

This sub block is used to trigger the periodic tests in MSS.

Table 5.119 describes the content of this sub block.

Table 5.119: AWR_MSS_LATENTFAULT_TEST_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x404A	
SBLKLEN	2	Value = 16	

Table 5.119 – continued from previous page

TEST_EN_1	4	Bits	Definition
I LOI _LIN_I	 	b0	MibSPI self-test
		b0 b1	DMA self-test
		_	
		b2	RESERVED
		b3	RTI self-test
		b4	ESM self-test
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	RESERVED
		b9	Mailbox self-test
		b10	LVDS pattern generation test
		b11	CSI2 pattern generation test
		b12	Generating NERROR
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error
		b16	TCMA RAM single bit errors
		b17	TCMB RAM single bit errors
		b18	TCMA RAM double bit errors
		b19	TCMB RAM double bit errors
		b20	TCMA RAM parity errors.
		b21	TCMB RAM parity errors.
		b22	RESERVED
		b23	RESERVED
		b24	DMA MPU Region tests
		b25	MSS Mailbox single bit errors
		b26	MSS Mailbox double bit errors
		b27	BSS Mailbox single bit errors
		b28	BSS Mailbox double bit errors
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test
		551	OOIL parity toot

Table 5.119 – continued from previous page

TEST_EN_2	4	Bits	Definition
		b0	DCC self-test
		b1	DCC fault insertion test
		b2	PCR fault generation test
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
REPORTING_	1	Value	Definition
MODE		0	Report is sent after test completion
		1	Report is send only upon a failure
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting
RESERVED	2	0x0000	

5.16.12 Sub block 0x404B - AWR_DEV_TESTPATTERN_GEN_SET_SB

This sub block contains the configurations to setup the test pattern to be generated and transferred over the selected high speed interface (LVDS/CSI2). This command has to be issued after the data path configurations commands are issued. This can be used to perform a sanity test of the high speed interface connectivity and correct reception.

Table 5.120 describes the contents of this sub block.

Table 5.120: AWR_DEV_TESTPATTERN_GEN_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x404B
SBLKLEN	2	Value = 48
TESTPATTERN_ GEN_CTRL	1	This field controls the enable-disable of the generation of the test pattern. Value Description 0x0 Disable test pattern generation 0x1 Enable test pattern generation

Table 5.120 – continued from previous page

TESTPATTERN_ GEN_TIMING	1	samples	for the	test pattern gen.	MHz) between successive pattern enable. Else ig
TESTPATTERN_ PKT_SIZE	2	Number of ADC samples to capture for each RX Valid range: 64 to MAX_NUM_SAMPLES, Where MAX_NUM_SAMPLES is such that all the enabled RX channels' data fits into 16 kB memory, with each sample consuming 2 bytes for real ADC output case and 4 bytes for complex 1x and complex 2x ADC output cases. For example in xWR1243/xWR1443 when the ADC buffer size is 16 kB			
		Numb RX ch		ADC format	MAX_NUM_ SAMPLES
		4		Complex	1024
		4		Real	2048
		2		Complex	2048
		2		Real	4096
NUM_TESTPAT- TERN_PKTS	4	1		pattern packets to kets set it to 0	send
TESTPATTERN_ RX0_ICFG	4	1	ole only		Rx0, I channel. t pattern enable. Else
		b15:0		offset value to be test pattern data	used for the first sample
		b31:16		to be added for ea st pattern data	ach successive sample fo
TESTPATTERN_ RX0_QCFG	4	1	ole only	fies the values for	Rx0, Q channel. t pattern enable. Else
		Bits	Descr	iption	
		b15:0		offset value to be test pattern data	used for the first sample
		b31:16		to be added for ea st pattern data	ach successive sample fo

Table 5.120 – continued from previous page

TESTPATTERN_ RX1_ICFG	4		d specifies the values for Rx1, I channel. ble only in case of test pattern enable. Else Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX1_QCFG	4		d specifies the values for Rx1, Q channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX2_ICFG	4	Application ignored.	
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX2_QCFG	4		d specifies the values for Rx2, Q channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
TESTPATTERN_ RX3_ICFG	4		d specifies the values for Rx3, I channel. ble only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data

Table 5.120 - continued from previous page

TESTPATTERN_ RX3_QCFG	4		d specifies the values for Rx3, Q channel. ole only in case of test pattern enable. Else
		Bits	Description
		b15:0	Start offset value to be used for the first sample for the test pattern data
		b31:16	Value to be added for each successive sample for the test pattern data
RESERVED	4	0x00000	0000

NOTE: This test pattern can be used only in LVDS testing and bring-up

5.16.13 Sub block 0x404C - AWR_DEV_CONFIGURATION_SET_SB

This API is used to configure the CRC type for the async events from MSS. The default is 16 bit CRC if this API is not issued. The first async event after MSS powerup will have a 16 bit CRC.

Table 5.121: AWR_DEV_CONFIGURATION_SET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x404C
SBLKLEN	2	Value = 16
ASYNC_EVENT_	1	Value Description
CRC_CFG		0 16 bit CRC for MSS async events
		1 32 bit CRC for MSS async events
		2 64 bit CRC for MSS async events
RESERVED1	1	0x00
RESERVED2	2	0x0000
RESERVED3	4	0x00000000
RESERVED4	4	0x00000000

5.17 Sub blocks related to AWR_DEV_CONF_GET_MSG

5.17.1 Sub block 0x4060 - AWR_DEV_MCUCLOCK_GET_SB

This API is used to read the MCU clock configuration. Response packet structure will be same as AWR_DEV_MCUCLOCK_SET_SB

Table 5.122: AWR_DEV_MCUCLOCK_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4060
SBLKLEN	2	Value = 4

5.17.2 Sub block 0x4061 - AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB

This API is used to read the RX data format configuration. Response packet structure will be same as AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB

Table 5.123: AWR_DEV_RX_DATA_FORMAT_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4061
SBLKLEN	2	Value = 4

5.17.3 Sub block 0x4062 - AWR_DEV_RX_DATA_PATH_CONF_GET_SB

This API is used to read the RX data path configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CONF_SET_SB

Table 5.124: AWR_DEV_RX_DATA_PATH_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4062
SBLKLEN	2	Value = 4

5.17.4 Sub block 0x4063 - AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB

This API is used to read the RX data path lane enable configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_LANEEN_SET_SB

Table 5.125: AWR_DEV_RX_DATA_PATH_LANEEN_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4063
SBLKLEN	2	Value = 4

5.17.5 Sub block 0x4064 - AWR_DEV_RX_DATA_PATH_CLK_GET_SB

This API is used to read the RX data path clock configuration. Response packet structure will be same as AWR_DEV_RX_DATA_PATH_CLK_SET_SB

Table 5.126: AWR_DEV_RX_DATA_PATH_CLK_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4064
SBLKLEN	2	Value = 4

5.17.6 Sub block 0x4065 - AWR_DEV_LVDS_CFG_GET_SB

This API is used to read the LVDS configuration. Response packet structure will be same as AWR_DEV_LVDS_CFG_SET_SB

Table 5.127: AWR_DEV_LVDS_CFG_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4065
SBLKLEN	2	Value = 4

5.17.7 Sub block 0x4066 - AWR_DEV_RX_CONTSTREAMING_MODE_CONF_GET_ SB

This API is used to read the continuous streaming mode configuration. Response packet structure will be same as AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB

Table 5.128: AWR_DEV_RX_CONTSTREAMING_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4066
SBLKLEN	2	Value = 4

5.17.8 Sub block 0x4067 - AWR_DEV_CSI2_CFG_GET_SB

This API is used to read the CSI2 configuration. Response packet structure will be same as AWR_DEV_CSI2_CFG_SET_SB

Table 5.129: AWR_DEV_CSI2_CFG_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4067
SBLKLEN	2	Value = 4

5.17.9 Sub block 0x4068 - AWR_DEV_PMICCLOCK_CONF_GET_SB

This API is used to read the PMIC clock configuration. Response packet structure will be same as AWR_DEV_PMICCLOCK_CONF_SET_SB

Table 5.130: AWR_DEV_PMICCLOCK_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4068
SBLKLEN	2	Value = 4

5.17.10 Sub block 0x4069 - AWR_MSS_LATENTFAULT_TEST_CONF_GET_SB

This API is used to read the MSS latent fault test configuration. Response packet structure will be same as AWR_MSS_LATENTFAULT_TEST_CONF_SET_SB

Table 5.131: AWR_MSS_LATENTFAULT_CONF_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4069
SBLKLEN	2	Value = 4

5.17.11 Sub block 0x406A - AWR_MSS_PERIODICTESTS_CONF_GET_SB

This API is used to read the MSS periodic tests configuration. Response packet structure will be same as AWR_MSS_PERIODICTESTS_CONF_SET_SB

Table 5.132: AWR_MSS_PERIODICTESTS_CONF_GET_SB contents

	Field Name	Number of bytes	Description
L			

SBLKID	2	Value = 0x406A
SBLKLEN	2	Value = 4

5.17.12 Sub block 0x406B - AWR_DEV_TESTPATTERN_GEN_GET_SB

This API is used to read the test pattern generation configuration. Response packet structure will be same as AWR_DEV_TESTPATTERN_GEN_SET_SB

Table 5.133: AWR_DEV_TESTPATTERN_GEN_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x406B
SBLKLEN	2	Value = 4

5.18 Sub blocks related to AWR_DEV_FILE_DOWNLOAD_MSG

5.18.1 Sub block 0x4080 - AWR_DEV_FILE_DOWNLOAD_SB

This sub block is used to send the file in chunks/parts for download into RAM. Table 5.134 describes the content of this sub block.

Table 5.134: AWR_DEV_FILE_DOWNLOAD_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x4080
SBLKLEN	2	Value = Variable
FILE_TYPE	4	Value Description
		0x0 FILETYPE_BSS_BUILD
		0x1 FILETYPE_CALIB_DATA
		0x2 FILETYPE_CONFIG_INFO
		0x3 FILETYPE_MSS_BUILD
FILE_LENGTH	4	Length of File
FILE_CONTENT	Variable	Content of File, may split into multiple chunks.

NOTE:	In the first chunk of file, FILE_TYPE and FILE_LENGTH is available
	and then first chunk onward these two fields will not be part of SB
	content

5.19 Sub blocks related to AWR_DEV_FRAME_CONFIG_APPLY_MSG

5.19.1 Sub block 0x40C0 - AWR_DEV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the device configurations in the hardware. Table 5.135 describes the content of this sub block.

Table 5.135: AWR_DEV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C0
SBLKLEN	2	Value = 12
NUM_CHIRPS	4	Number of chirps per frame
HALF_WORDS_ PER_CHIRP	2	Number of half words in ADC buffer per chirp Example 1: In real mode, if number of ADC samples per chirp is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp is 256 then this value will be 512
RESERVED	2	0x0000

5.19.2 Sub block 0x40C1 - AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB

This sub block is used to indicate to MSS to apply all the advanced frame configuration configurations in the hardware.

Table 5.136 describes the content of this sub block.

Table 5.136: AWR_DEV_ADV_FRAME_CONFIG_APPLY_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40C1
SBLKLEN	2	Value = 40
NUM_SUB- FRAMES	1	Number of sub frames enabled in this frame Valid range: 1 to 4
RESERVED	3	0x00
SF1_TOT_NUM_ CHIRPS	4	Number of chirps in sub frame 1

Table 5.136 – continued from previous page

SF1_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of half words (16 bits) of ADC samples per data packet in sub-frame 1 Example 1: In real mode, if number of ADC samples per chirp in subframe1 is 256 then this value will be 256 Example 2: In complex1x or complex2x modes, if number of ADC samples per chirp in subframe1 is 256 then this value will be 512 In xWR12xx: Program this as the same as number of ADC samples in each chirp of this sub frame (required to be the same) Exception: Can do #chirps based ping-pong as in xWR16xx (see below), if CP/CQ are not needed. Useful for chirp stitching use case. In xWR16xx: The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the number of half words of ADC samples per packet. Ensure that in one sub frame, there is integer number of such packets. Maximum size of a data packet: (16384 - 1) half words.
SF1_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 1. In xWR12xx: Program this as 1. Exception: Can be > 1 as in 16xx if CP/CQ is not needed. Useful for chirp stitching use case. In xWR16xx: The ADC samples corresponding to one or more chirps can be grouped and sent to the DSP as a single packet. Program this as the corresponding number of chirps per packet. Maximum value = 8. Note on maximum size: 8 chirps for CP and BPM.
RESERVED	1	0x00
SF2_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame 2
SF2_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC Samples per data packet in sub-frame 2 Same conditions apply as in sub-frame 1.
SF2_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 2 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00
SF3_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame3

Table 5.136 - continued from previous page

SF3_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 3 Same conditions apply as in sub-frame 1.
SF3_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 3 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00
SF4_TOT_NUM_ CHIRPS	4	Number of chirps in sub-frame4
SF4_NUM_ADC_ SAMPLES_PER_ DATA_PKT	2	Number of ADC samples per data packet in sub-frame 4 Same conditions apply as in sub-frame 1.
SF4_PROC_ NUM_CHIRPS_ PER_DATA_PKT	1	Number of chirps per data packet to process at a time in sub-frame 4 Same conditions apply as in sub-frame 1.
RESERVED	1	0x00

5.20 Sub blocks related to AWR_DEV_STATUS_GET_MSG

5.20.1 Sub block 0x40E0 - AWR_MSSVERSION_GET_SB

This sub block reads MSS FW version. The information returned by the device will be in the format as given in AWR_MSSVERSION_SB.

Table 5.137 describes the contents of the request sub block

Table 5.137: AWR_MSSVERSION_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E0
SBLKLEN	2	Value = 4

Response to AWR_MSSVERSION_GET_SB

AWR_MSSVERSION_SB sub block is sent by the radar device in response to AWR_MSSVERSION_GET_SB. Note that SBLKID for both AWR_MSSVERSION_GET_SB and AWR_MSSVERSION_SB are same.

Table 5.138 describes the contents of the response sub block.

Table 5.138: AWR_MSSVERSION_SB contents

Field Name	Number	Description
	of bytes	
SBLKID	2	Value = 0x40E0
SBLKLEN	2	Value = 20
HW_VARIANT	1	HW variant number
HW_VERSION_ MAJOR	1	HW version major number
HW_VERSION_ MINOR	1	HW version minor number
MSS_FW_VER- SION_MAJOR	1	MSS FW version major number
MSS_FW_VER- SION_MINOR	1	MSS FW version minor number
MSS_FW_VER- SION_BUILD	1	MSS FW version build number
MSS_FW_VER- SION_DEBUG	1	MSS FW version debug number
MSS_FW_VER- SION_YEAR	1	Year of MSS FW version release
MSS_FW_VER- SION_MONTH	1	Month of MSS FW version release
MSS_FW_VER- SION_DAY	1	Day of MSS FW version release
MSS_FW_VER- SION_PATCH_ MAJOR	1	MSS FW version patch major number
MSS_FW_VER- SION_PATCH_ MINOR	1	MSS FW version patch minor number
MSS_FW_VER- SION_PATCH_ YEAR	1	Year of MSS FW patch release
MSS_FW_VER- SION_PATCH_ MONTH	1	Month of MSS FW patch release
MSS_FW_VER- SION_PATCH_ DAY	1	Day of MSS FW patch release

MSS_FW_PATCH_	1	Bit	Definition
BUILD_DEBUG_		b3:0	DEBUG version number
VERSION		b7:4	BUILD version number

5.20.2 Sub block 0x40E1 - AWR_MSSCPUFAULT_STATUS_GET_SB

This sub block provides the MSS CPU fault information.

Table 5.139 describes the content of this sub block.

Table 5.139: AWR_MSSVERSION_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E1
SBLKLEN	2	Value = 4

Response to AWR_MSSCPUFAULT_STATUS_GET_SB

AWR_MSSCPUFAULT_STATUS_SB is sent in response to AWR_MSSCPUFAULT_STATUS_GET_SB.

Table 5.140 describes the content of AWR_MSSCPUFAULT_STATUS_SB

Table 5.140: AWR_MSSCPUFAULT_STATUS_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x40	E1	
SBLKLEN	2	Value = 36		
FAULT_TYPE	1	Value	Definition	
		0	MSS Processor Undefined Instruction Abort	
		1	MSS Processor Instruction pre-fetch Abort	
		2	MSS Processor Data Access Abort	
		3	MSS Processor Firmware Fatal Error	
		0x4-0xFF	Reserved	
RESERVED	1	0x00		
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.		
FAULT_LR	4	The instruction PC address at which Fault occurred		

Table 5.140 – continued from previous page

FAULT_PREV_LR	4	The return address of the function from which fault function has been called (Call stack LR)		
FAULT_SPSR	4	The CPSR register value at which fault occurred		
FAULT_SP	4	The SP register value at which fault occurred		
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)		
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)		
		0x000 BACKGROUND_ERR		
		0x001 ALIGNMENT_ERR		
		0x002 DEBUG_EVENT		
		0x00D PERMISSION_ERR		
		0x008 SYNCH_EXTER_ERR		
		0x406 ASYNCH_EXTER_ERR		
		0x409 SYNCH_ECC_ERR		
		0x408 ASYNCH_ECC_ERR		
FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2)		
		0x0 ERR_SOURCE_AXI_MASTER		
		0x1 ERR_SOURCE_ATCM		
		0x2 ERR_SOURCE_BTCM		
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2)		
		0x0 AXI_DECOD_ERR		
		0x1 AXI_SLAVE_ERR		
FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2)		
		0x0 READ_ERR		
		0x1 WRITE_ERR		
FAULT_RECOV-	1	The Error Recovery type (Error Recovery type - Valid only		
ERY_TYPE		for fault type 0x0 to 0x2) 0x0 UNRECOVERY		
DECEDVED.	0	0x1 RECOVERY		
RESERVED	2	0x0000		

5.20.3 Sub block 0x40E2 - AWR_MSSESMFAULT_STATUS_GET_SB

This sub block provides the information regarding additional Master sub system faults. Table 5.141 describes the content of this sub block.

Table 5.141: AWR_MSSESMFAULT_STATUS_GET_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E2
SBLKLEN	2	Value = 4

The Response to above request is given in the AWR_MSSESMFAULT_STATUS_SB. Table 5.142 describes the contents of AWR_MSSESMFAULT_STATUS_SB.

Table 5.142: AWR_MSSESMFAULT_STATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x40E2
SBLKLEN	2	Value = 20

Table 5.142 – continued from previous page

ESM_GROUP1_	4	Bits	Definition
ERRORS		b0	NERROR in sync
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	CSI TX FIFO Parity Err
		b8	TPCC parity error
		b9	CBUF ECC single bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	ECC error on CBUFF
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB RAM single bit errors
		b27	STC error
		b28	TCMB RAM single bit errors
		b29	TPTC0 read to protected memory
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

Table 5.142 – continued from previous page

ESM_GROUP2_	4	Bits	Definition
ERRORS		b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	TPTC0 write to protected memory
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
		b8	RESERVED
		b9	RESERVED
		b10	RESERVED
		b11	RESERVED
		b12	QSPI not able to perform the Write to FLASH
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	RESERVED
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	0000
RESERVED	4	0x00000000	

5.21 Sub blocks related to AWR_DEV_ASYNC_EVENT_MSG

5.21.1 Sub block 0x5000 - AWR_AE_DEV_MSSPOWERUPDONE_SB

This sub block indicates that Master SS power up is now complete. It also indicates the status of boot up tests done by Master SS. This async event is sent when host IRQ is enabled. Table 5.143 describes the contents of this sub block

Table 5.143: AWR_AE_DEV_MSSPOWERUPDONE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5000
SBLKLEN	2	Value = 24
MSS_POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_POWERUP_ STATUS	8	Refer to Table 6.3 for bit map details

Table 5.143 – continued from previous page

BOOTTEST_	8		S, 0 – FAIL
STATUS		Bit	Definition
		b0	MibSPI self-test
		b1	DMA self-test
		b2	Watchdog self-test
		b3	RTI self-test
		b4	ESM self-test
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	MPU self-test
		b9	Mailbox self-test
		b10	LVDS pattern generation test
		b11	CSI2 pattern generation test
		b12	NERROR generation test
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error test
		b16	TCMA RAM single bit error test
		b17	TCMB RAM single bit error test
		b18	TCMA RAM double bit error test
		b19	TCMB RAM double bit error test
		b20	TCMA RAM parity error test
		b21	TCMB RAM parity error test
		b22	VIM lockstep test
		b23	CCM R4 lockstep test
		b24	DMA MPU region test
		b25	MSS Mailbox single bit error test
		b26	MSS Mailbox double bit error test
		b27	BSS Mailbox single bit error test
		b28	BSS Mailbox double bit error test
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test
		b32	PBIST (VIM RAM/TCM RAM/MibSPI SRAM/Mailbox/EDMA/DMA/CSI2)
		b33	LBIST (VIM/CR4)
		b63:34	RESERVED

NOTE:	The functional APIs shall be sent to radar device only after receiving AWR_AE_DEV_MSSPOWERUPDONE_SB Async-event af-
	ter power cycle.

5.21.2 Sub block 0x5001 - AWR_AE_DEV_RFPOWERUPDONE_SB

This sub block indicates that BIST SS power up is now complete. Table 5.144 describes the contents of this sub block

Table 5.144: AWR_AE_DEV_RFPOWERUPDONE_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5001
SBLKLEN	2	Value = 20

Table 5.144 – continued from previous page

BSS_POWERUP_	4	1 – PAS	S, 0 – FAIL
BIST_STATUS_		Bit	Status Information
FLAGS		b0	ROM CRC check
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	STC test of diagnostic
		b5	CR4 STC
		b6	CRC test
		b7	RAMPGEN memory ECC test
		b8	DFE Parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test
		b12	DFE memory PBIST
		b13	RAMPGEN memory PBIST
		b14	PBIST test
		b15	WDT test
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	PCR test
		b31:27	RESERVED
POWERUP_TIME	4	RF BIST SS Power up time	
		1 LSB = 5 ns	
RESERVED	4	0x00000000	
RESERVED	4	0x00000000	

5.21.3 Sub block 0x5002 - AWR_AE_MSS_CPUFAULT_SB

This sub block indicates CPU fault status of Master SS. Table 5.145 describes the content of this sub block.

Table 5.145: AWR_AE_MSS_CPUFAULT_STATUS_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5002	
SBLKLEN	2	Value = 36	
FAULT_TYPE	1	0 MSS Processor Undefined Instruction Abort	
		1 MSS Processor Instruction pre-fetch Abort	
		2 MSS Processor Data Access Abort	
		3 MSS Processor Firmware Fatal Error	
		0x4- Reserved 0xFF	
RESERVED	1	0x00	
LINE_NUM	2	Valid only in case of FAULT type is 0x3, provides the firmware line number at which fatal error occurred.	
FAULT_LR	4	The instruction PC address at which Fault occurred	
FAULT_PREV_LR	4	The return address of the function from which fault function has been called (Call stack LR)	
FAULT_SPSR	4	The CPSR register value at which fault occurred	
FAULT_SP	4	The SP register value at which fault occurred	
FAULT_CAUSE_ ADDRESS	4	The address access at which Fault occurred (valid only for fault type 0x0 to 0x2)	
FAULT_ERROR_ STATUS	2	The status of Error (Error Cause type - valid only for fault type 0x0 to 0x2)	
		0x000 BACKGROUND_ERR	
		0x001 ALIGNMENT_ERR	
		0x002 DEBUG_EVENT	
		0x00D PERMISSION_ERR	
		0x008 SYNCH_EXTER_ERR	
		0x406 ASYNCH_EXTER_ERR	
		0x409 SYNCH_ECC_ERR	
		0x408 ASYNCH_ECC_ERR	

Table 5.145 – continued from previous page

FAULT_ERROR_ SOURCE	1	The Source of the Error (Error Source type - valid only for fault type 0x0 to 0x2) 0x0
FAULT_AXI_ER- ROR_TYPE	1	The AXI Error type (Error Source type - valid only for fault type 0x0 to 0x2) 0x0
FAULT_ACCESS_ TYPE	1	The Error Access type (Error Access type - valid only for fault type 0x0 to 0x2) 0x0 READ_ERR 0x1 WRITE_ERR
FAULT_RECOV- ERY_TYPE	1	The Error Recovery type (Error Recovery type - Valid only for fault type 0x0 to 0x2) 0x0 UNRECOVERY 0x1 RECOVERY
RESERVED	2	0x0000

5.21.4 Sub block 0x5003 - AWR_AE_MSS_ESMFAULT_STATUS_SB

This sub block indicates any other faults inside the MSS.

Table 5.146 describes the content of this sub block.

Table 5.146: AWR_AE_MSS_ESMFAULT_STATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5003
SBLKLEN	2	Value = 12

Table 5.146 – continued from previous page

ESM_GROUP1_	4	Bits	Definition
ERRORS		b0	NERROR in sync
		b1	RESERVED
		b2	DMA MPU Region tests
		b3	DMA Parity error
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	CSI TX FIFO Parity Err
		b8	TPCC parity error
		b9	CBUF ECC single bit error
		b10	RESERVED
		b11	RESERVED
		b12	RESERVED
		b13	Error response from the Peripheral when a DMA transfer is done
		b14	RESERVED
		b15	VIM RAM double bit errors
		b16	RESERVED
		b17	MibSPI double bit error test
		b18	ECC error on CBUFF
		b19	RESERVED
		b20	VIM RAM single bit errors
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	MibSPI single bit error test
		b26	TCMB RAM single bit errors
		b27	STC error
		b28	TCMB RAM single bit errors
		b29	TPTC0 read to protected memory
		b30	DCC compare error
		b31	CR4F self-test error.(test of error path by error forcing)

Table 5.146 – continued from previous page

ESM_GROUP2_	4	Bits	Definition
ERRORS		b0	TCMA RAM single bit errors
		b1	RESERVED
		b2	RESERVED
		b3	TPTC0 write to protected memory
		b4	RESERVED
		b5	RESERVED
		b6	Access error interrupt from FFT ACC
		b7	VIM Self-Test Error
		b8	RESERVED
		b9	RESERVED
		b10	RESERVED
		b11	RESERVED
		b12	QSPI not able to perform the Write to FLASH
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	RESERVED
		b17	RESERVED
		b18	RESERVED
		b19	RESERVED
		b20	RESERVED
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	RESERVED
		b25	RESERVED
		b26	BSS Mailbox single bit errors
		b27	BSS Mailbox double bit errors
		b28	MSS Mailbox single bit errors
		b29	MSS Mailbox double bit errors
		b30	RESERVED
		b31	RESERVED
RESERVED	4	0x00000	0000

5.21.5 Sub block 0x5004 - RESERVED

5.21.6 Sub block 0x5005 - AWR_AE_MSS_BOOTERRORSTATUS_SB

This sub block indicates error status of MSS when booted over SPI. This async event is sent after the bootup over SPI is complete.

Table 5.147 describes the content of this sub block.

Table 5.147: AWR_AE_MSS_BOOTERRORSTATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5005
SBLKLEN	2	Value = 24
MSS_POWERUP_ TIME	4	Master SS power up time 1 LSB = 5 ns
MSS_POWERUP_ STATUS	8	Refer to Table 6.3 for bit map details

Table 5.147 – continued from previous page

BOOTTEST_	8	1 – PAS	S, 0 – FAIL
STATUS		Bit	Definition
		b0	MibSPI self-test
		b1	DMA self-test
		b2	Watchdog self-test
		b3	RTI self-test
		b4	ESM self-test
		b5	EDMA self-test
		b6	CRC self-test
		b7	VIM self-test
		b8	MPU self-test
		b9	Mailbox self-test
		b10	LVDS pattern generation test
		b11	CSI2 pattern generation test
		b12	NERROR generation test
		b13	MibSPI single bit error test
		b14	MibSPI double bit error test
		b15	DMA Parity error test
		b16	TCMA RAM single bit error test
		b17	TCMB RAM single bit error test
		b18	TCMA RAM double bit error test
		b19	TCMB RAM double bit error test
		b20	TCMA RAM parity error test
		b21	TCMB RAM parity error test
		b22	VIM lockstep test
		b23	CCM R4 lockstep test
		b24	DMA MPU region test
		b25	MSS Mailbox single bit error test
		b26	MSS Mailbox double bit error test
		b27	BSS Mailbox single bit error test
		b28	BSS Mailbox double bit error test
		b29	EDMA MPU test
		b30	EDMA parity test
		b31	CSI2 parity test
		b32	PBIST (VIM RAM/TCM RAM/MibSPI SRAM/Mailbox/EDMA/DMA/CSI2)
		b33	LBIST (VIM/CR4)
		b63:34	RESERVED

Table 5.147 – continued from previous page					
NOTE:	The functional APIs shall be sent to radar device only after receiving AWR_AE_MSS_BOOTERRORSTATUS_SB Async-event af-				
	ter power-cycle.				

5.21.7 Sub block 0x5006 - AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB

This sub block indicates the test status report of the latent fault tests. Table 5.148 describes the content of this sub block.

Table 5.148: AWR_AE_MSS_LATENTFAULT_TESTREPORT_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5006
SBLKLEN	2	Value = 16

Table 5.148 – continued from previous page

TEST_STATUS_ 4 1 – PASS, 0 - FAIL				
FLAG1	-	Bits	Definition	
		b0	MibSPI self-test	
		b1	DMA self-test	
		b2	Reserved	
		b3	RTI self-test	
		b4	ESM self-test	
		b5	EDMA self-test	
		b6	CRC self-test	
		b7	VIM self-test	
		b8	Reserved	
		b9	Mailbox self-test	
		b10	LVDS pattern generation test	
		b11	CSI2 pattern generation test	
		b12	Generating NERROR	
		b13	MibSPI single bit error test	
		b14	MibSPI double bit error test	
		b15	DMA Parity error	
		b16	TCMA RAM single bit errors	
		b17	TCMB RAM single bit errors	
		b18	TCMA RAM double bit errors	
		b19	TCMB RAM double bit errors	
		b20	TCMA RAM parity errors.	
		b21	TCMB RAM parity errors.	
		b22	Reserved	
		b23	Reserved	
		b24	DMA MPU Region tests	
		b25	MSS Mailbox single bit errors	
		b26	MSS Mailbox double bit errors	
		b27	BSS Mailbox single bit errors	
		b28	BSS Mailbox double bit errors	
		b29	EDMA MPU test	
		b30	EDMA parity test	
		b31	CSI2 parity test	

Table 5.148 - continued from previous page

TEST_STATUS_	4	Bits	Definition
FLAG2		b0	DCC self-test
		b1	DCC fault insertion test
		b2	PCR fault generation test
		b3	VIM RAM parity test
		b4	SCI boot time test
		b31:5	RESERVED
RESERVED	4	0x0000000	

5.21.8 Sub block 0x5007 - AWR_AE_MSS_PERIODICTEST_STATUS_SB

This sub block indicates test status of the periodic tests.

Table 5.149 describes the content of this sub block.

Table 5.149: AWR_AE_MSS_PERIODICTEST_STATUS_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x5007	
SBLKLEN	2	Value = 12	
TEST_STATUS_ FLAG	4	1 – PASS, 0 – FAIL Bits Definition b0 Periodic read back of static registers b1 ESM self-test b31:2 RESERVED	
RESERVED	4	0x00000000	

5.21.9 Sub block 0x5008 - AWR_AE_MSS_RFERROR_STATUS_SB

This sub block indicates the RF error status.

Table 5.150 describes the content of this sub block.

Table 5.150: AWR_AE_MSS_RFERROR_STATUS_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x5008

Table 5.150 - continued from previous page

SBLKLEN	2	Value = 12	
ERROR_STATUS_	4	Value	Definition
FLAG		0	No fault
		1	BSS FW assert
		2	BSS FW abort
		3	BSS ESM GROUP1 ERROR
		4	BSS ESM GROUP2 ERROR
		Others	RESERVED
RESERVED	4	0x00000	0000

5.21.10 Sub block 0x5009 - AWR_AE_MSS_VMON_ERRORSTATUS_SB

This sub block indicates fault in analog supplies or LDO short circuit condition. Once a fault is detected the functionality cannot be resumed from then on and the sensor needs to be re-started.

Table 5.151: AWR_AE_MSS_VMON_ERRORSTATUS_SB contents

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x5009
SBLKLEN	2	Value =	16
FAULT_TYPE	1	Value	Definition
		0	NO FAULT
		1	ANALOG_SUPPLY_FAULT
		Others	RESERVED
RESERVED	1	0x00	
RESERVED	2	0x0000	
FAULT_SIG	4	Bit	Definition
		b0	VDDIN under voltage indication
		b1	VDDIN over voltage indication
		b2	VIN_18CLK supply fault
		b3	VIOIN supply fault (Unable to resolve between 1.8V and 3.3V)
		b4	VIN_SRAM under voltage indication
		b5	VIOIN_18 supply fault
		b6	APLL_VCO_LDO short circuit
		b31:7	RESERVED

RESERVED	4	0x00000000
----------	---	------------

5.21.11 Sub block 0x500A - AWR_AE_MSS_ADC_DATA_SB

This async event is in response to the command which indicates ADC data needs to be transferred over SPI. This async event contains the ADC data followed by more such async events for additional data.

Table 5.152: AWR_AE_MSS_ADC_DATA_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x500A
SBLKLEN	2	Value = Variable (max = 226)
REMCHUNKS	2	Number of remaining chunks expected. (Remaining length / 220 bytes)
ADC_DATA	Variable (4 - 220 bytes)	ADC data captured by the MMIC

5.21.12 Sub block 0x500B - RESERVED

5.22 Brief notes on the order of issuing API SBs

5.22.1 Single device mode

This section briefly describes in which order to issue the various API SBs defined in this document for a single device.

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB
- 3. AWR_DEV_RFPOWERUP_SB
- 4. Wait for AWR_AE_RFPOWERUPDONE_SB
- 5. AWR_RF_MISC_CONF_SET_MSG
- 6. AWR_RF_STATIC_CONF_SET_MSG
 - a. AWR_CHAN_CONF_SET_SB
 - b. AWR_ADCOUT_CONF_SET_SB

- c. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0 V
- d. AWR_LOWPOWERMODE_CONF_SET_SB
- e. AWR_DYNAMICPOWERSAVE_CONF_SET_SB

7. Data path configurations

- a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
- b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
- c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
- d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
- e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
- f. AWR DEV LVDS CFG SET SB / AWR DEV CSI2 CFG SET SB

8. AWR RF INIT MSG

- a. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
- b. Wait for AWR_AE_RF_INITCALIBSTATUS_SB

9. AWR_RF_DYNAMIC_CONF_SET_MSG

- a. AWR_PROG_FILT_COEFF_RAM_SET_SB (Applicable only in xWR1642 or xWR1843)
- b. AWR_PROG_FILT_CONF_SET_SB (Applicable only in xWR1642 or xWR1843)
- c. AWR_PROFILE_CONF_SET_SB
- d. AWR_CHIRP_CONF_SET_SB
- e. AWR_LOOPBACK_BURST_CONF_SET_SB
- f. AWR_FRAME_CONF_SET_SB or AWR_ADVANCED_FRAME_CONF_SB (if using loop-back burst)
- g. AWR_CALIB_MON_TIME_UNIT_CONF_SB with CALIB_MON_TIME_UNIT value set to a value such that the total frame idle time across multiple CALIB_MON_TIME_UNITs is sufficient for all calibrations and monitoring. See Section 9 for details on calibration and monitoring durations.
- h. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all ONE_TIME_CALIB_ ENABLE_MASK and set ENABLE_CAL_REPORT = 1)
- i. Wait for AWR_RUN_TIME_CALIBRATION_SUMMARY_REPORT_AE_SB
- j. AWR_RUN_TIME_CALIBRATION_CONF_AND_TRIGGER_SB (set all RUN_TIME_CALIB_ ENABLE_MASK and set ENABLE_CAL_REPORT = 0 to avoid receiving periodic async events)
- k. AWR_DEV_FRAME_CONFIG_APPLY_MSG

10. AWR_RF_FRAME_TRIG_MSG

a. AWR_FRAMESTARTSTOP_CONF_SB in Start mode: after this, frames get transmitted

11. AWR_RF_FRAME_TRIG_MSG

a. AWR_FRAMESTARTSTOP_CONF_SB in Stop mode: after this, frames are stopped The AWR_RF_FRAME_TRIG_MSG may be issued multiple times for multiple sets of frames.

5.22.2 Cascaded device mode

This section briefly describes in which order to issue the various API SBs defined in this document for master and slave devices in a cascaded configuration.

When using cascaded devices, the reference clock is provided by master to slave. So unless master is powered-up and clock is available from master to slave, the slave device cannot be powered up.

Table 5.153: Sequence of APIs to be issued to master and slave devices in cascaded mode configuration for FMCW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	-
2	Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. This will enable the reference clock for slave device	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB
10		AWR_CHAN_CONF_SET_SB with CAS-CADING_CFG = 0x0002.
11	AWR_ADCOUT_CONF_SET_SB	AWR_ADCOUT_CONF_SET_SB
12	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V

Table 5.153 - continued from previous page

13	AWR_LOWPOWERMODE_CONF_SET_ SB	AWR_LOWPOWERMODE_CONF_SET_ SB	
14	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	
15	AWR_RF_INIT_SB	AWR_RF_INIT_SB	
16	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	
17	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	
18	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB	
19	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	
20	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	
21	AWR_DEV_RX_DATA_PATH_CLK_SET_SB	AWR_DEV_RX_DATA_PATH_CLK_SET_SB	
22	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	
23	AWR_PROFILE_CONF_SET_SB	AWR_PROFILE_CONF_SET_SB	
24	AWR_CHIRP_CONF_SET_SB	AWR_CHIRP_CONF_SET_SB	
25	AWR_FRAME_CONF_SET_SB with TRIG- GER_SELECT = 0x0001	AWR_FRAME_CONF_SET_SB with TRIG- GER_SELECT = 0x0002	
26	AWR_DEV_FRAME_CONFIG_APPLY_ MSG	AWR_DEV_FRAME_CONFIG_APPLY_ MSG	
27		AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001	
28		Wait for AWR_AE_RF_FRAME_TRIGGER_ RDY_SB	
29	AWR_FRAMESTARTSOP_CONF_SB with STARTSTOP_CMD = 0x0001		
30	Wait for AWR_AE_RF_FRAME_TRIGGER_ RDY_SB		

5.22.3 Continuous streaming mode (in single device case)

This section briefly describes in which order to issue the various API SBs defined in this document to enable continuous streaming mode on a single device

- 1. Power up the device
- 2. Wait for AWR_AE_MSSPOWERUPDONE_SB

- 3. AWR_DEV_RFPOWERUP_SB
- 4. Wait for AWR_AE_RFPOWERUPDONE_SB
- 5. AWR_RF_MISC_CONF_SET_MSG
- 6. AWR_RF_STATIC_CONF_SET_MSG
 - a. AWR_CHAN_CONF_SET_SB
 - b. AWR_ADCOUT_CONF_SET_SB
 - c. AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN set to 1 if RF supply is 1.0V
 - d. AWR_LOWPOWERMODE_CONF_SET_SB
 - e. AWR_DYNAMICPOWERSAVE_CONF_SET_SB
- 7. AWR_RF_STATIC_CONF_SET_MSG
- 8. Data path configurations
 - a. AWR_DEV_RX_DATA_FORMAT_CONF_SET_SB
 - b. AWR_DEV_RX_DATA_PATH_CONF_SET_SB
 - c. AWR_DEV_RX_DATA_PATH_LANE_EN_SB
 - d. AWR_DEV_RX_DATA_PATH_CLK_SET_SB
 - e. AWR_HIGHSPEEDINTFCLK_CONF_SET_SB
 - f. AWR_DEV_LVDS_CFG_SET_SB / AWR_DEV_CSI2_CFG_SET_SB
- 9. AWR_RF_INIT_MSG
 - a. AWR_RFINIT_SB: This triggers very basic calibrations and RF initializations
 - b. Wait for AWR_AE_RF_INITCALIBSTATUS_SB
- 10. AWR_CONT_STREAMING_MODE_CONF_SET_SB
- 11. AWR_DEV_RX_CONTSTREAMING_MODE_CONF_SET_SB
- 12. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
- 13. AWR_CONT_STREAMING_MODE_EN_SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming
- 14. Repeat steps 9-11 for a different configuration

5.22.4 Continuous streaming (CW) mode (in cascaded device case)

Table 5.154: Sequence of APIs to be issued to master and slave devices in cascaded mode for CW mode measurements

SI. No	Master device sequence	Slave device sequence
1	Power up master device	
2	Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB	
3	AWR_DEV_RFPOWERUP_SB	
4	Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB	
5	AWR_CHAN_CONF_SET_SB with CAS- CADING_CFG = 0x0001. This will enable the reference clock for slave device	
6		Power on slave device
7		Wait for AWR_AE_DEV_MSSPOWERUP-DONE_SB
8		AWR_DEV_RFPOWERUP_SB
9		Wait for AWR_AE_DEV_RFPOWERUP-DONE_SB
10		AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V
11		AWR_CHAN_CONF_SET_SB with CAS-CADING_CFG = 0x0002.
12	AWR_ADCOUT_CONF_SET_SB	AWR_ADCOUT_CONF_SET_SB
13	AWR_RF_LDO_BYPASS_SB with RFLDOBYPASS_EN = 1 if RF supply is 1.0V	
14	AWR_LOWPOWERMODE_CONF_SET_ SB	AWR_LOWPOWERMODE_CONF_SET_ SB
15	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB	AWR_DYNAMICPOWERSAVE_CONF_ SET_SB
16	AWR_RF_INIT_SB	AWR_RF_INIT_SB
17	Wait for AWR_AE_RF_INITALIBSTATUS_ SB	Wait for AWR_AE_RF_INITALIBSTATUS_ SB
18	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB	AWR_DEV_RX_DATA_FORMAT_CONF_ SET_SB
19	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB	AWR_DEV_RX_DATA_PATH_CONF_SET_ SB
20	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB	AWR_DEV_RX_DATA_PATH_LANEEN_ SET_SB

Table 5.154 – continued from previous page

21	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB	AWR_HIGHSPEEEDINTFCLK_CONF_ SET_SB
22	AWR_DEV_RX_DATA_PATH_CLK_SET_SB	AWR_DEV_RX_DATA_PATH_CLK_SET_SB
23	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB	AWR_DEV_LVDS_CFG_SET_SB/AWR_ DEV_CSI2_CFG_SET_SB
24	AWR_CONT_STREAMING_MODE_ CONF_SET_SB	
25	AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming	
26		AWR_CONT_STREAMING_MODE_ CONF_SET_SB with the same RF fre- quency configuration as in master device
27		AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0001 to start continuous streaming
28		AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x00000 to stop continuous streaming
29	AWR_CONT_STREAMING_MODE_EN_ SB with CONT_STREAMING_EN = 0x0000 to stop continuous streaming	
30	Repeat steps 24-29 for a different CW mode configuration	

6 API Error Codes

Table 6.1: BSS API error codes

	1	Incorrect API MSGID
	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
Applicable to all API sub	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_	20	Frames are already started when the FRAME_START command was issued
FRAMESTARTSTOP_ CONF_SB	21	Frames are already stopped when the FRAME_STOP command was issued
	22	No valid frame configuration API was issued and frames are started
	23	START_STOP_CMD parameter is out of range
AWR_CHAN_CONF_SET_	24	RX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
SB	25	TX_CHAN_EN parameter is out of range (Max range may vary based on device variant)
	26	CASCADING_CFG parameter is out of range [0, 2]
	282	Device variant does not allow cascading but API is issued to enable cascading mode
AND ADOCUT COME	27	NUM_ADC_BITS parameter is out of range [0, 2]
AWR_ADCOUT_CONF_ SET_SB	28	ADC_OUT_FMT parameter is out of range [0, 3]
021100	127	FULL_SCALE_REDUCTION_FACTOR is > 0 for 16 bit ADC, or > 2 for 14 bit ADC mode or > 4 for 12 bit ADC mode
AWR_LOWPOWERMODE_	29	LP_ADC_MODE parameter is out of range [0, 1]
CONF_SET_SB	156	Regular ADC mode is used on a 5 MHz part variant device
AWR_DYNAMICPOW- ERSAVE_CONF_SET_ SB	30	BLOCK_CFG parameter is out of range [0, 7]
	31	HSICLKRATECODE[1:0] is 0
$AWR_{\scriptscriptstyle{-}}$		Continued on next page

HIGHSPEEDINTFCLK_ CONF_SET_SB

Table 6.1 – continued from previous page

		parameter in the parameter
	32	RESERVED
	33	HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0] is 2
	34	HSICLKRATECODE[3:2] is 3 and HSICLKRATECODE[1:0] is 2
	35	PF_INDX is ≥ 4
	36	PF_FREQ_START_CONST is not within [76, 81] GHz
	37	PF_IDLE_TIME_CONST > 5.24 ms
	38	Maximum DFE spill time > PF_IDLE_TIME_CONST
	39	PF_ADC_START_TIME_CONST > 4095
	40	PF_RAMP_END_TIME > 524287
	41	PF_RAMP_END_TIME < PF_ADC_START_TIME_CONST + ADC_SAMPLING_TIME (ADC_SAMPLING_TIME is time taken to sample NUM_ADC_SAMPLES)
	42	PF_TX_OUTPUT_POWER_BACKOFF for TX0 > 30
	43	PF_TX_OUTPUT_POWER_BACKOFF for TX1 > 30
AWR_PROFILE_CONF_ SET_SB	44	PF_TX_OUTPUT_POWER_BACKOFF for TX2 > 30
3L1_3B	45	RESERVED
	46	Ramp end frequency is not within [76, 81] GHz
	47	Absolute value of TX_START_TIME is $>$ 38.45 μ s
	48	Number of ADC samples is not within [64, 8192]
	49	Output sampling rate is not within [2, MaxSamplingRate] Msps. See Table 5.20 for the MaxSamplingRate.
	50	HPF1 corner frequency is > 700 kHz
	51	HPF2 corner frequency is > 2.8 MHz
	52	PF_RX_GAIN is not within [24, 52] dB or PF_RX_GAIN is an odd number
	53	RESERVED
	54	RESERVED
	55	RESERVED
	56	RESERVED
	57	RESERVED
	58	RESERVED
AWR_CHIRP_CONF_SET_ SB	59	CHIRP_START_INDX ≥ 512
	60	CHIRP_END_INDX ≥ 512
	61	CHIRP_START_INDX > CHIRP_END_INDX

Table 6.1 – continued from previous page

62 PROFILE_INDX ≥ 4 63 If the profile corresponding to PROFILE_INDX is not defined 64 CHIRP_FREQ_START_VAR > 8388607 65 CHIRP_FREQ_SLOPE_VAR > 63 66 Chirp start frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet 67 CHIRP_IDLE_TIME_VAR > 4095 68 CHIRP_ADC_START_TIME_VAR > 4095 69 RAMP_END_TIME < ADC_START_TIME + ADC_SAMPLING_TIME 70 CHIRP_TX_EN > maximum simultaneous TX allowed as per device data sheet 71 CHIRP_TX_EN indicates to enable a TX which is not enabled in AWR_CHAN_CONF_SET_SB 72 CHIRP_START_INDX ≥ 512 73 CHIRP_START_INDX > 512 74 CHIRP_START_INDX > 512 75 CHIRP_END_INDX > 512 76 CHIRP_START_INDX > CHIRP_END_INDX 75 Chirp used in the frame is not configured by AWR_CHIRP_CONF_SET_SB 77 NUM_LOOPS is outside [1, 255] 78 RESERVED 79 FRAME_PERIODICITY is outside [100 μs, 1.342 s] 79 FRAME_PERIODICITY is outside [100 μs, 1.342 s] 71 RIGGER_SELECT is outside [1, 2] 71 RIGGER_SELECT is outside [1, 2] 72 FRAME_TRIGGER_DELAY > 100 μs 34 API is issued when frames are ongoing	Table 0.1 - 0	
64 CHIRP_FREQ_START_VAR > 8388607 65 CHIRP_FREQ_SLOPE_VAR > 63 66 Chirp start frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [76, 78] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet or Maximum simultaneous TX allowed as per device data sheet or Maximum simultaneous TX allowed as per device data sheet or Maximum Simultaneous TX	62	PROFILE_INDX ≥ 4
CHIRP_FREQ.SLOPE.VAR > 63 Chirp start frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO1 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet 67 CHIRP_IDLE_TIME_VAR > 4095 68 CHIRP_ADC_START_TIME_VAR > 4095 69 RAMP_END_TIME < ADC_START_TIME + ADC_SAMPLING_TIME 70 CHIRP_TX_EN > maximum simultaneous TX allowed as per device data sheet 71 CHIRP_TX_EN indicates to enable a TX which is not enabled in AWR_CHAN_CONF_SET_SB 72 CHIRP_START_INDX ≥ 512 73 CHIRP_END_INDX ≥ 512 74 CHIRP_START_INDX > CHIRP_END_INDX 75 Chirp used in the frame is not configured by AWR_CHIRP_CONF_SET_SB 76 One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB 77 NUMLLOOPS is outside [1, 255] 78 RESERVED 79 FRAME_PERIODICITY is outside [100 μs, 1.342 s] FRAME_PERIODICITY is outside [1, 2] FRAME_PERIODICITY 78 TRIGGER_SELECT is outside [1, 2] FRAME_TRIGGER_DELAY > 100 μs	63	
Chirp start frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [76, 78] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet 67 CHIRP_IDLE_TIME_VAR > 4095 68 CHIRP_ADC_START_TIME_VAR > 4095 69 RAMP_END_TIME < ADC_START_TIME + ADC_SAMPLING_TIME 70 CHIRP_TX_EN > maximum simultaneous TX allowed as per device data sheet 71 CHIRP_TX_EN indicates to enable a TX which is not enabled in AWR_CHAN_CONF_SET_SB 72 CHIRP_START_INDX ≥ 512 73 CHIRP_START_INDX ≥ 512 74 CHIRP_START_INDX > CHIRP_END_INDX 75 CHIRP_START_INDX > CHIRP_END_INDX 76 CHIRP_START_INDX > CHIRP_END_INDX 77 CHIRP_START_SET_SB 78 CHIRP_START_SET_SET_SB 79 One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB 79 FRAME_PERIODICITY is outside [100 μs, 1.342 s] 79 FRAME_PERIODICITY is outside [1, 2] 70 FRAME_PERIODICITY 71 TRIGGER_SELECT is outside [1, 2] 72 FRAME_TRIGGER_DELAY > 100 μs	64	CHIRP_FREQ_START_VAR > 8388607
VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp pandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed as per device data sheet 67 CHIRP_IDLE_TIME_VAR > 4095 68 CHIRP_ADC_START_TIME_VAR > 4095 69 RAMP_END_TIME < ADC_START_TIME + ADC_SAM- PLING_TIME 70 CHIRP_TX_EN > maximum simultaneous TX allowed as per device data sheet 71 CHIRP_TX_EN indicates to enable a TX which is not enabled in AWR_CHAN_CONF_SET_SB 72 CHIRP_START_INDX ≥ 512 73 CHIRP_START_INDX ≥ 512 74 CHIRP_START_INDX > CHIRP_END_INDX 75 Chirp used in the frame is not configured by AWR_CHIRP_ CONF_SET_SB 76 One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB 77 NUM_LOOPS is outside [1, 255] 78 RESERVED 79 FRAME_PERIODICITY is outside [100 μs, 1.342 s] 80 FRAME_ON_TIME < FRAME_PERIODICITY 81 TRIGGER_SELECT is outside [1, 2] 82 FRAME_TRIGGER_DELAY > 100 μs	65	CHIRP_FREQ_SLOPE_VAR > 63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66	VCO is VCO1 or Chirp start frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp end frequency is outside [76, 78] GHz if the selected VCO is VCO1 or Chirp end frequency is outside [77, 81] GHz if the selected VCO is VCO2 or Chirp bandwidth is greater than maximum allowed as per device data sheet or Maximum chirp frequency is greater than maximum allowed
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	CHIRP_IDLE_TIME_VAR > 4095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68	CHIRP_ADC_START_TIME_VAR > 4095
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	69	
in AWR_CHAN_CONF_SET_SB 72	70	·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72	CHIRP_START_INDX \geq 512
AWR_FRAME_CONF_SET_SB 76 One of the profiles used in the frame is not configured by AWR_CHIRP_CONF_SET_SB 77 NUM_LOOPS is outside [1, 255] 78 RESERVED 79 FRAME_PERIODICITY is outside [100 μ s, 1.342 s] 80 FRAME_ON_TIME < FRAME_PERIODICITY 81 TRIGGER_SELECT is outside [1, 2] 82 FRAME_TRIGGER_DELAY > 100 μ s	73	CHIRP_END_INDX \geq 512
AWR_FRAME_CONF_SET_SB 76 One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB 77 NUM_LOOPS is outside [1, 255] 78 RESERVED 79 FRAME_PERIODICITY is outside [100 μ s, 1.342 s] 80 FRAME_ON_TIME < FRAME_PERIODICITY 81 TRIGGER_SELECT is outside [1, 2] 82 FRAME_TRIGGER_DELAY > 100 μ s	74	CHIRP_START_INDX > CHIRP_END_INDX
AWR_PROF_CONF_SET_SB 77 NUM_LOOPS is outside [1, 255] 78 RESERVED 79 FRAME_PERIODICITY is outside [100 μ s, 1.342 s] 80 FRAME_ON_TIME < FRAME_PERIODICITY 81 TRIGGER_SELECT is outside [1, 2] 82 FRAME_TRIGGER_DELAY > 100 μ s	75	
NUM_LOOPS is outside [1, 255] RESERVED FRAME_PERIODICITY is outside [100 μ s, 1.342 s] FRAME_ON_TIME < FRAME_PERIODICITY TRIGGER_SELECT is outside [1, 2] FRAME_TRIGGER_DELAY > 100 μ s	76	
FRAME_PERIODICITY is outside [100 μ s, 1.342 s] 80 FRAME_ON_TIME < FRAME_PERIODICITY 81 TRIGGER_SELECT is outside [1, 2] 82 FRAME_TRIGGER_DELAY > 100 μ s	77	NUM_LOOPS is outside [1, 255]
 FRAME_ON_TIME < FRAME_PERIODICITY TRIGGER_SELECT is outside [1, 2] FRAME_TRIGGER_DELAY > 100 μs 	78	RESERVED
TRIGGER_SELECT is outside [1, 2] 82 FRAME_TRIGGER_DELAY > 100 μ s	79	FRAME_PERIODICITY is outside [100 μ s, 1.342 s]
FRAME_TRIGGER_DELAY $> 100 \mu s$	80	FRAME_ON_TIME < FRAME_PERIODICITY
· ·	81	TRIGGER_SELECT is outside [1, 2]
83 API is issued when frames are ongoing	82	FRAME_TRIGGER_DELAY $>$ 100 μ s
	83	API is issued when frames are ongoing

Table 6.1 – continued from previous page

AWR_ADVANCED_ FRAME_CONF_SET_ SB	84	NUM_SUBFRAMES is outside [1, 4]
	85	FORCE_SINGLE_PROFILE is outside [0, 1]
	86	FORCE_SINGLE_PROFILE ≥ 4
	87	Profile defined by FORCE_SINGLE_PROFILE is not defined
	88	SFx_CHIRP_START_INDX ≥ 512
	89	SFx_NUM_UNIQUE_CHIRPS_PER_BURST is outside the range [1, 512]
	90	Chirp used in the frame is not configured by AWR_CHIRP_CONF_SET_SB
	91	One of the profiles used in the frame is not configured by AWR_PROF_CONF_SET_SB
	92	SFx_NUM_LOOPS_PER_BURST is outside the range [1, 255]
	93	SFx_BURST_PERIOD is outside the range [100 μ s, 1.342 s]
	94	Burst ON time is > BURST_PERIOD
	95	SFx_CHIRP_START_INDX_OFFSET \geq 512
	96	$ \begin{array}{ll} SFx_CHIRP_START_INDX \ \geq \ 512 \ \ or \ \ SFx_CHIRP_START_INDX + SFx_NUM_UNIQUE_CHIRPS_PER_BURST - 1 \ is \ \geq \\ 512 \end{array} $
	97	SFx_NUM_BURSTS is outside the range [1, 512]
	98	SFx_NUM_OUTER_LOOPS is outside the range [1, 64]
	99	SFx_PERIOD is outside the range [100 μ s, 1.342 s]
	100	Subframe on time $>$ SFx_PERIOD or when TESTSOURCE is enabled, SubFrame Idle time is $<$ 150 $\mu \rm{s}$
	101	RESERVED
	102	TRIGGER_SELECT is outside the range [1, 2]
	103	FRAME_TRIGGER_DELAY is $>$ 100 μ s
	104	API is issued when frames are on going
AWR_RF_TEST_SOURCE_ CONFIG_SET_SB	105	POSITION_VECx[y] < 0
	106	RESERVED
	107	$\label{eq:VELOCITY_VECx[x]} $VELOCITY_VECx[y] > 5000 $ or $VELOCITY_VECx[z] > 5000 $ \\ VELOCITY_VECx[z] > 5000 $ \\ \\ \end{tabular}$
	108	SIG_LEV_VECx > 950
	109	RX_ANT_POS_XZ[Bytex] > 120
	110	RESERVED

Table 6.1 – continued from previous page

AWR_PROG_FILT_CONF_ SET_SB	111	PROG_FILT_COEFF_START_INDEX is an odd number
	112	$PROFILe_INDX \geq 4$
	126	DFE mode is pseudo real
AWR_PROG_FILT_COEFF_ RAM_SET_SB	113	API is issued for a non xWR1642/xWR1843 device
	126	DFE mode is pseudo real
AWR_RF_RADAR_MISC_ CTL_SB	114	API is issued for a non xWR1243 device
AWR_	115	CHIRP_START_INDX ≥ 512
PERCHIRPPHASESHIFT_	116	CHIRP_END_INDX ≥ 512
CONF_SB	117	CHIRP_START_INDX > CHIRP_END_INDX
AWR_RUN_TIME_CALI- BRATION_CONF_AND_ TRIGGER_SB	118	Boot time calibrations are not done so cannot run runtime calibrations
AWR_CAL_MON_FREQUENCY_LIMITS_SB	119	FREQ_LIMIT_HIGH < 76 GHz or FREQ_LIMIT_HIGH > 81 GHz or FREQ_LIMIT_LOW > FREQ_LIMIT_HIGH
AWR_CALIB_MON_TIME_ UNIT_CONF_SB	120	CALIB_MON_TIME_UNIT ≤ 0
	121	CALIBRATION_PERIODICITY = 0
AWR_RUN_TIME_	122	API is issued when continuous streaming mode is on
CALIBRATION_CONF_ AND_TRIGGER_SB	123	RX gain run time calibration was requested but boot time calibration was not performed
	124	LO distribution run time calibration was requested but boot time calibration was not performed
	125	TX power run time calibration was requested but boot time calibration was not performed
AVAID I CODDACI	132	LOOPBACK_SEL is > 3
AWR_LOOPBACK_ BURST_CONF_SET_SB	133	BURST_INDX ≥ 16
20.1012001112021200	134	Burst is not valid but loopback is enabled for this burst
AWR_DYN_CHIRP_CONF_ SET_SB	135	CHIRP_SEGMENT_SELECT > 31 if CHIRP_ROW_SELECT = 0 or CHIRP_SEGMENT_SELECT > 11 if CHIRP_ROW_SELECT != 0
	159	CHIRP_ROW_SELECT > 3
AWR_DYN_PER_CHIRP_ PHASESHIFTER_CONF_ SB	136	CHIRP_SEGMENT_SELECT > 31

Table 6.1 – continued from previous page

AWR_CAL_DATA_RE- STORE_SB	137	CHUNK_ID ≥ NUM_CHUNKS
	138	CAL_DATA is invalid
AWR_INTERCHIRP_ BLOCKCONTROLS_SB	139	RX02_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	140	RX13_RF_TURN_OFF_TIME is not within the range [-1024, 1023]
	141	RX02_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	142	RX13_BB_TURN_OFF_TIME is not within the range [-1024, 1023]
	143	RX02_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	144	RX13_RF_PREENABLE_TIME is not within the range [-1024, 1023]
	145	RX02_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	146	RX13_BB_PREENABLE_TIME is not within the range [-1024, 1023]
	147	RX02_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	148	RX13_RF_TURN_ON_TIME is not within the range [-1024, 1023]
	149	RX02_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	150	RX13_BB_TURN_ON_TIME is not within the range [-1024, 1023]
	151	RX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
	152	TX_LO_TURN_OFF_TIME is not within the range [-1024, 1023]
		1023]
	153	RX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
	153 154	RX_LO_TURN_ON_TIME is not within the range [-1024,
AWR_SUBFRAME_ START_CONF_SB		RX_LO_TURN_ON_TIME is not within the range [-1024, 1023]
	154	RX_LO_TURN_ON_TIME is not within the range [-1024, 1023] TX_LO_TURN_ON_TIME is not within the range [-1024, 1023] Sub-frame start command is issued but the frame is not con-
	154 155	RX_LO_TURN_ON_TIME is not within the range [-1024, 1023] TX_LO_TURN_ON_TIME is not within the range [-1024, 1023] Sub-frame start command is issued but the frame is not configured for sub frame trigger mode

configuration APIs

Table 6.1 – continued from previous page

	145.5 511	continued from previous page
	253	Configured profile ID is not within [0, 3]
	254	Monitoring profile ID is not configured yet
	260	Invalid RF bit mask
	281	Analog monitoring is not supported
	290	Monitoring chirp error
AWR_MONITOR_RF_DIG_ LATENTFAULT_CONF_SB	251	API is issued when frames are on-going
AWR_MONITORING_ EXTERNAL_ANALOG_ SIGNALS_CONF_SB	255	Settling time is configured is more than 12 μ s
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	256	None of the RXs are enabled
AWR_MONITOR_TX0_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	257	TX0 is not enabled
AWR_MONITOR_TX1_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	258	TX1 is not enabled
AWR_MONITOR_TX2_ INTERNAL_ANALOG_ SIGNALS_CONF_SB	259	TX2 is not enabled
-	261	RESERVED
-	262	RESERVED
AWR_MONITOR_TXn_ BALLBREAK_CONF_SB	263	Monitored TX channel is not enabled
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	264	Monitored RX channel is not enabled
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB		
AWR_MONITOR_RX_	265	TX selected for RX gain phase monitor is TX2 (Only TX0 or TX1 is allowed)
GAIN_PHASE_CONF_SB	291	PD power level is less than -40dBm (Used for RX Gain Monitor)
	295	PGA Gain used for monitoring is incorrect
	266	SAT_MON_SEL is not in [0, 3]
AWR_MONITOR_RX_ SATURATION_ DETECTOR_CONF_SB	267	SAT_MON_PRIMARY_TIME_SLICE_DURATION is less than 0.64 μs or greater than ADC sampling time
DETECTOR COUNT SO	268	SAT_MON_NUM_SLICES is 0 or greater than 127

Table 6.1 – continued from previous page

	283	RX saturation monitor is not supported
AWD MONITOR CIC MAC	269	SIG_IMG_MON_NUM_SLICES is 0 or greater than 127
AWR_MONITOR_SIG_IMG_ MONITOR_CONF_SB	270	NUM_SAMPLES_PER_PRIMARY_TIME_SLICE is odd, or less than 4 in Complex1x mode or less than 8 in non-Complex1x modes or greater than NUM_ADC_SAMPLES
	280	Signal and image band monitor is not supported
AWR_ANALOG_FAULT_ INJECTION_CONF_SB	279	LDO fault inject is requested but LDOs are bypassed
AWR_MONITOR_TXn_ POWER_CONF_SB	294	PD Reading incorrect (RF OFF reading higher than RF ON reading)
AWR_MONITOR_TXn_ BALLLBREAK_CONF_SB		
AWR_MONITOR_RX_ INTERNAL_ANALOG_ SIGNALS_CONF_SB		
AWR_MONITOR_RX_ GAIN_PHASE_CONF_SB	292	ADC power level higher than +7 dBm or lower than -9.5 dBm
AWR_MONITOR_TX_ GAIN_PHASE_CONF_SB		
AWR_MONITOR_TXn_ BPM_CONF_SB		
AWR_MONITOR_RX_ NOISE_FIGURE_CONF_ SB	293	Low RX noise figure (Noise Figure is less than 0 dB)

Table 6.2: MSS API error codes (Applicable only in xWR1243)

	1	Incorrect API MSGID
	2	Sub block not found in the MSG
	3	Incorrect Sub block ID
Applicable to all API sub	4	Incorrect Sub block length
blocks	5	Incorrect Sub block data
	6	Error in processing the command
	7	Binary file CRC mismatch error
	8	Binary file type mismatch w.r.t. magic number
AWR_DEV_RX_DATA_ FORMAT_CONF_SET_SB	1001	RX_CHAN_EN > 0xF
	1002	NUM_ADC_BITS > 2
	1003	ADC_OUT_FMT > 1

Table 6.2 – continued from previous page

1004	IQ_SWAP_SEL > 1
1005	CHAN_INTERLEAVE > 1
1006	DATA_INTF_SEL > 1
1007	DATA_TRANS_FMT_PKT0 [5:0] not a valid value. Valid set {0x1, 0x6, 0x9, 0x36}
1008	DATA_TRANS_FMT_PKT1 [5:0] not a valid value. Valid set {0x0, 0xD, 0xB}
1050	CQ_CONFIG is out of range
1009	LANE_EN > 0xF
1010	Reserved
1011	LANE_CLK_CFG > 1
1012	LANE_CLK_CFG != 1 for CSI2
1013	DATA_RATE - Invalid combination of data rate and DDR or SDR operation
1014	LANE_FMT_MAP > 1
1015	LANE_PARAM_CFG > 7
1016	CONT_STREAMING_MODE > 1
1017	CONT_STREAMING_MODE already in requested mode
1018	LANE_POS_POL_SEL [DATA_LANE0_POS] >5
1019	LANE_POS_POL_SEL [DATA_LANE1_POS] >5
1020	LANE_POS_POL_SEL [DATA_LANE2_POS] >5
1021	LANE_POS_POL_SEL [DATA_LANE3_POS] >5
1022	LANE_POS_POL_SEL [CLOCK_POS] is outside the range [2,4]
1023	HALF_WORDS_PER_CHIRP is outside the range [64, 8192]
1024	NUM_SUBFRAMES is outside the range [1,4]
1025	SF1_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF]
1026	SF1_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192]
1027	SF1_PROC_NUM_CHIRPS_PER_DATA_PKT != 1
	1005 1006 1007 1008 1050 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

Table 6.2 – continued from previous page

	1028	SF2_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES \geq 2
	1029	SF2_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 2
	1030	SF2_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_SUBFRAMES \geq 2
	1031	SF3_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES \geq 3
	1032	SF3_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES \geq 3
	1033	SF3_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_SUBFRAMES \geq 3
	1034	SF4_TOT_NUM_CHIRPS is outside the range [1, 0xFFFF], if NUM_SUBFRAMES == 4
	1035	SF4_NUM_ADC_SAMPLES_PER_DATA_PKT is outside the range [64, 8192], if NUM_SUBFRAMES == 4
	1036	SF4_PROC_NUM_CHIRPS_PER_DATA_PKT != 1, if NUM_ SUBFRAMES == 4
AWR_DEV_MCUCLOCK_ CONF_SET_SB	1040	MCUCLOCK_CTRL is out of range
	1041	MCUCLOCK_SRC is out of range
AWR_DEV_PMICCLOCK_ CONF_SET_SB	1042	PMICCLOCK_CTRL is out of range
	1043	PMICCLOCK_SRC is out of range
	1044	MODE_SELECT is out of range
	1045	FREQ_SLOPE is out of range
	1046	CLK_DITHER_EN is out of range
AWR_DEV_TESTPAT- TERN_GEN_SET_SB	1047	TESTPATTERN_GEN_CTRL is out of range
	1048	DATA_INTF_SEL (Data interface selected in AWR_DEV_RX_DATA_PATH_CONF_SET_SB) is SPI

6.1 Error codes for boot on SPI

Table 6.3: Bit field describing the error status during boot on SPI $\,$

Error description	Error code	Error code bit position
CERT_AUTH_FAILURE	0x0000001	BIT0
CERT_PARSER_FAILURE	0x00000002	BIT1
RPRC_IMG1_AUTH_FAILURE	0x00000004	BIT2
RPRC_IMG2_AUTH_FAILURE	0x00000008	BIT3
RPRC_IMG3_AUTH_FAILURE	0x0000010	BIT4
RPRC_HDR_NOT_FOUND	0x00000020	BIT5
METAHEADER_NOT_FOUND	0x00000040	BIT6
SW_ANTIROLLBACK_CHK_FAILURE	0x00000080	BIT7
EFUSE_INTEGRITY_FAILURE	0x00000100	BIT8
CERT_FIELD_VALIDITY_FAILURE	0x00000200	BIT9
CERT_FIELD_INVALID_AUTH_KEY_INDEX	0x00000400	BIT10
CERT_FIELD_INVALID_HASH_TYPE	0x00000800	BIT11
CERT_FIELD_INVALID_SUBSYSTEM	0x00001000	BIT12
CERT_FIELD_INVALID_DECRYPT_KEY_INDEX	0x00002000	BIT13
CERT_FIELD_CEK_EFUSE_MISMATCH	0x00004000	BIT14
CERT_FIELD_CEK1_EFUSE_MISMATCH	0x00008000	BIT15
CERT_FIELD_CEK2_EFUSE_MISMATCH	0x00010000	BIT16
CERT_FIELD_INVALID_SUBSYSTEM_BANK_ALLO-CATION	0x00020000	BIT17
CERT_FIELD_INVALID_TOTAL_BANKS_ALLOCATION	0x00040000	BIT18
RPRC_PARSER_FILE_LENGTH_MISMATCH	0x00080000	BIT19
RPRC_PARSER_MSS_FILE_OFFSET_MISMATCH	0x00100000	BIT20
RPRC_PARSER_BSS_FILE_OFFSET_MISMATCH	0x00200000	BIT21
RPRC_PARSER_DSS_FILE_OFFSET_MISMATCH	0x00400000	BIT22
CERT_FIELD_INVALID_DECRYPT_KEY	0x00800000	BIT23
CERT_FIELD_INVALID_AUTH_KEY	0x01000000	BIT24
HS_DEVICE_CERT_NOT_PRESENT	0x02000000	BIT25
TEST_PORT_ENABLING_FAILED	0x04000000	BIT26
SHARED_MEM_ALLOC_FAILED	0x08000000	BIT27
MSSIMAGE_NOT_FOUND	0x10000000	BIT28
METAHEADER_NUMFILES_ERROR	0x20000000	BIT29
METAHEADER_CRC_FAILURE	0x40000000	BIT30

7 Radar Monitoring APIs

AWR monitoring can be configured through a set of API sub blocks defined in this section. Note that these APIs cover the RF/Analog related monitoring mechanisms. There are separate monitoring mechanisms for the digital logic (including the processor, memory, etc.) which are internal to the device and not explicitly enabled through these APIs.

The monitoring APIs are structured as follows. There are common configuration APIs that control the overall periodicity of monitoring, as well as, enable/disable control for each monitoring mechanism. Then, for each monitoring mechanism there is an individual API to allow the customer to set an appropriate threshold for declaring failure from that monitoring. Also, for each monitoring mechanism, there is an individual API to report soft (raw) values from that monitoring.

NOTE:	Each monitor can perform monitoring on only one profile at a time. Though it is possible that different monitors can monitor different
	profiles simultaneously.

7.1 Common Configurations and Reports

This section covers the APIs corresponding to the common configurations and reports.

monitor, any monitor described in this section is not applicable an IWR device	NOTE:	Except for RX saturation monitor and RX signal and image band
		monitor, any monitor described in this section is not applicable for an IWR device

7.1.1 Sub block 0x01C0 - AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB

This API SB contains the consolidated configuration of all digital monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed when the API is issued. The scheduling of these monitoring should be handled in the external application. Report of these monitoring will be available in the async event AWR_MONITOR_RF_DIG_LATENTFAULT_REPORT_AE_SB.

Table 7.1: AWR_MONITOR_RF_DIG_LATENTFAULT_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C0

Table 7.1 – continued from previous page

SBLKLEN	2	Value =	16
DIG_MONITOR-	4	1 - Enable, 0 - Disabled	
ING_ENABLES		Bit	Definition
		b0	RESERVED
		b1	CR4 and VIM lockstep test
		b2	RESERVED
		b3	VIM test
		b4	RESERVED
		b5	RESERVED
		b6	CRC test
		b7	RAMPGEN memory ECC
		b8	DFE Parity test
		b9	DFE memory ECC
		b10	RAMPGEN lockstep test
		b11	FRC lockstep test of diagnostic
		b12	RESERVED
		b13	RESERVED
		b14	RESERVED
		b15	RESERVED
		b16	ESM test
		b17	DFE STC
		b18	RESERVED
		b19	ATCM, BTCM ECC test
		b20	ATCM, BTCM parity test
		b21	RESERVED
		b22	RESERVED
		b23	RESERVED
		b24	FFT test
		b25	RTI test
		b26	PCR test
		b31:27	RESERVED
TEST_MODE	1	Value	Definition
		0	Production mode. Latent faults are tested and any failures are reported
		1	Characterization mode. Faults are injected and failures are reported which allows testing of the failure reporting path

Table 7.1 –	CONTINUED	trom	nrevious	nage

RESERVED	3	0x000000
RESERVED	4	0x00000000

7.1.2 Sub block 0x01C1 - AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB

This API SB contains the consolidated configuration of all periodic digital monitoring within radar sub-system. This is issued by the host to the AWR device.

The enabled monitoring functions are executed periodically and reports are sent based on reporting mode. Report of these monitoring will be available in the async event AWR_MONITOR_RF_DIG_PERIODIC_REPORT_AE_SB.

Table 7.2: AWR_MONITOR_RF_DIG_PERIODIC_CONF_SB contents

Field Name	Number of bytes	Descrip	tion
SBLKID	2	Value =	0x01C1
SBLKLEN	2	Value =	16
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period
		1	Report is sent only on a failure
		2	RESERVED
RESERVED	3	0x000000	
PERIODIC_DIG_	4	1 - Enable, 0 - Disable	
MON_EN		Bit	Monitoring type
		b0	PERIODIC_CONFG_REGISTER_READ_EN
		b1	ESM_MONITORING_EN
		b2	DFE_STC_EN
		b3	FRAME_TIMING_MONITORING_EN
		b31:4	RESERVED
RESERVED	4	0x00000	0000

7.1.3 Sub block 0x01C2 - AWR_MONITOR_ANALOG_ENABLES_CONF_SB

This API SB contains the consolidated configuration of all analog monitoring. This is issued by the host to the AWR device.

The enabled monitoring functions are executed with a periodicity of CAL_MON_TIME_UNITS number of logical frames. The host should ensure that all the enabled monitors can be completed in the available inter-frame times, based on the monitoring durations (to be provided separately).

Table 7.3: AWR_MONITOR_ANALOG_ENABLES_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01C2		
SBLKLEN	2			
ANA_MONITOR- ING_ENABLES	4	Value = 12 If any bit in this field is set to 1, the associate monitors are enabled. The configurations and reports of each monitors are described in respective sub sections.		
		Bit	Definition	
		b0	TEMPERATURE_MONITOR	
		b1	RX_GAIN_PHASE_MONITOR	
		b2	RX_NOISE_FIGURE_MONITOR	
		b3	RX_IFSTAGE_MONITOR	
		b4	TX0_POWER_MONITOR	
		b5	TX1_POWER_MONITOR	
		b6	TX2_POWER_MONITOR	
		b7	TX0_BALLBREAK_MONITOR	
		b8	TX1_BALLBREAK_MONITOR	
		b9	TX2_BALLBREAK_MONITOR	
		b10	TX_GAIN_PHASE_MISMATCH_MONITOR	
		b11	TX0_BPM_MONITOR	
		b12	TX1_BPM_MONITOR	
		b13	TX2_BPM_MONITOR	
		b14	SYNTH_FREQ_MONITOR	
		b15	EXTERNAL_ANALOG_SIGNALS_MONITOR	
		b16	INTERNAL_TX0_SIGNALS_MONITOR	
		b17	INTERNAL_TX1_SIGNALS_MONITOR	
		b18	INTERNAL_TX2_SIGNALS_MONITOR	
		b19	INTERNAL_RX_SIGNALS_MONITOR	
		b20	INTERNAL_PMCLKLO_SIGNALS_MONITOR	
		b21	INTERNAL_GPADC_SIGNALS_MONITOR	
		b22	PLL_CONTROL_VOLTAGE_MONITOR	
		b23	DCC_CLOCK_FREQ_MONITOR	
		b24	RX_SATURATION_DETECTOR_MONITOR	
		b25	RX_SIG_IMG_BAND_MONITOR	
		b26	RX_MIXER_INPUT_POWER_MONITOR	
		b31:27	RESERVED	

LDO_SC_MONI- TORING_EN	4	If any bit in this field is set to 1, the associated monitors are enabled. There are no reports for
		these monitors. If there is any fault, the async
		event AWR_ANALOGFAULT_AE_SB will be sent. Bit Description
		b0 APLL LDO short circuit monitoring enable 0 - disable, 1 - enable
		b1 SYNTH VCO LDO short circuit monitoring enable 0 – disable, 1 – enable
		b2 PA LDO short circuit monitoring enable

0 - disable, 1 - enable

RESERVED

Table 7.3 – continued from previous page

7.2 Temperature Monitor

This section contains API SBs that configure the on chip temperature monitors and report the soft results from the monitor. The corresponding monitors are collectively named TEMPERATURE_ MONITOR. These monitors observe the temperature near various RF analog and digital modules using temperature sensors and GPADC and compare them against configurable thresholds. The report is sent as an async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

7.2.1 Sub block 0x01C3 - AWR_MONITOR_TEMPERATURE_CONF_SB

b31:3

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to temperature monitoring. Report of this monitoring will be available in the async event AWR_MONITOR_TEMPERATURE_REPORT_AE_SB.

Table 7.4: AWR_MONITOR_TEMPERATURE_CONF_SB contents

Field Name	Number of bytes	Descrip	otion		
SBLKID	2	Value =	0x01C3		
SBLKLEN	2	Value =	Value = 24		
REPORTING_	1	Value	Definition		
MODE		0	Report is sent every monitoring period without threshold check		
		1	Report is send only upon a failure (after checking for thresholds)		
		2	Report is sent every monitoring period with threshold check		

Table 7.4 – continued from previous page

RESERVED	1	0x00
ANA_TEMP_ THRESH_MIN	2	The temperatures read from near the sensors near the RF analog modules are compared against a minimum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
ANA_TEMP_ THRESH_MAX	2	The temperatures read from near the sensors near the RF analog modules are compared against a maximum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
DIG_TEMP_ THRESH_MIN	2	The temperatures read from near the sensor near the digital module are compared against a minimum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
DIG_TEMP_ THRESH_MAX	2	The temperatures read from near the sensor near the digital module are compared against a maximum threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range). 1 LSB = 1°C, signed number Valid range: -99°C to 199°C
TEMP_DIFF_ THRESH	2	The maximum difference across temperatures read from all the enabled sensors is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measured difference exceeds this field). 1 LSB = 1°C, unsigned number Valid range: 0°C to 100°C
RESERVED	4	0x00000000
RESERVED	4	0x00000000

7.3 RX Gain and Phase Monitor

This section contains API SBs that configure the monitors of receiver gain and phase. The corresponding monitors are collectively named RX_GAIN_PHASE_MONITOR. The report is sent

as an async event AWR_MONITOR_RX_GAIN_PHASE_REPORT_AE_SB.

7.3.1 Sub block 0x01C4 - AWR_MONITOR_RX_GAIN_PHASE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX gain and phase monitoring.

Table 7.5: AWR_MONITOR_RX_GAIN_PHASE_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x0	1C4	
SBLKLEN	2	Value = 72		
PROFILE_INDX	1		licates the profile Index for which ation applies.	this monitor-
RF_FREQ_BIT- MASK	1	RF band at When each	dicates the RF frequencies inside which to measure the required bit in this field is set, the measure RF frequency is enabled w.r.t. RF frequency Lowest RF frequency in pro-	parameters. ement at the
		b1	file's sweep bandwidth Center RF frequency in pro- file's sweep bandwidth	RF2
			Highest RF frequency in pro- file's sweep bandwidth ne column is mentioned here to he purpose of reporting and deso ackets.	
RESERVED	1	0x00		
TX_SEL	1	0 TX	finition 0 is used for generating loopback n measurement 1 is used for generating loopback	
		-	n measurement	Signal IUI AX

Table 7.5 – continued from previous page

RX_GAIN_ ABS_ERROR_ THRESH	2	The magnitude of difference between the programmed and measured RX gain for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)
RX_GAIN_MIS- MATCH_THRESH	2	The magnitude of difference between measured RX gains across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)
RX_GAIN_FLAT- NESS_ERROR_ THRESH	2	The magnitude of measured RX gain flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured gains for each RF and RX are adjusted by subtracting the offset given in the RX_GAIN_MISMATCH_OFFSET_VALUE field. 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Frequencies are enabled, i.e., RF_FREQ_BITMASK has bit numbers 0,1,2 set.

Table 7.5 – continued from previous page

					<u> </u>
RX_PHASE_MIS- MATCH_THRESH	2	The magnitude of measured RX phase mismatch across the enabled channels at each enabled RF frequency is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). Before the comparison, the measured phases for each RF and RX are adjusted by subtracting the offset given in the RX_PHASE_MISMATCH_OFFSET_VALUE field. $1\ \text{LSB} = 360^\circ/2^{16}.$ Valid range: corresponding to 0° to $20^\circ.$			
RX_GAIN_MIS- MATCH_OFF- SET_VALUE	24	for each isons are	RX and given habers con	RF before ere.	ed from the measured RX gain the relevant threshold compar- ng to different RX and RF, in this RF3
		RX0	1:0	9:8	17:16
		RX1	3:2	11:10	19:18
		RX2	5:4	13:12	21:20
		RX3	7:6	15:14	23:22
		Only the	entries	signed nur of enabled considere	d RF Frequencies and enabled
RX_PHASE_ MISMATCH_ OFFSET_VALUE	24		RX and	RF before	d from the measured RX phase the relevant threshold compar- RF3
		RX0	1:0	9:8	17:16
		RX1	3:2	11:10	19:18
		RX2	5:4	13:12	21:20
		RX3	7:6	15:14	23:22
		Only the	entries		ed number d RF Frequencies and enabled ed.
RESERVED	4	0x00000	000		
RESERVED	4	0x00000	000		

7.4 RX Noise Monitor

This section contains API SBs that configure the monitor of receiver noise, and report the soft results from the monitor. The corresponding monitor is named RX_NOISE_FIGURE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_NOISE_FIGURE_REPORT_AE_SB.

7.4.1 Sub block 0x01C5 - AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to RX noise monitoring of a profile.

Table 7.6: AWR_MONITOR_RX_NOISE_FIGURE_CONF_SB contents

Field Name	Number of bytes	Description	on		
SBLKID	2	Value = 0x	Value = 0x01C5		
SBLKLEN	2	Value = 16	3		
PROFILE_INDX	1		ndicates the profile Index for which a profile Index for which a polies.	this monitor-	
RF_FREQ_BIT- MASK	1	file's RF b ters. Wher the corres file's RF ba Bit number b0 b1 b2 The RF na	Lowest RF frequency in pro- file's sweep bandwidth Center RF frequency in pro- file's sweep bandwidth Highest RF frequency in pro- file's sweep bandwidth ame column is mentioned here to a the purpose of reporting and desc	red parametersurement at an art. the pro-	
RESERVED	2	0x0000			
REPORTING_	1	Value D	Definition		
MODE	MODE	0 Report is sent every monitoring period withou threshold check			
			Report is send only upon a failure (af or thresholds)	ter checking	
			Report is sent every monitoring nreshold check	period with	
RESERVED	1	0x00			

T. I. I				
Table 7.6 –	continuea	trom	previous	page

RX_NOISE_FIG- URE_THRESH- OLD	2	The measured RX input referred noise figure at the enabled RF frequencies, for all channels, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 300
RESERVED	4	0x00000000

7.5 RX IF Stage Monitor

This section contains API SBs that configure the monitors of receiver IF filter attenuation, and report the soft results from the monitor. The corresponding monitor is named RX_IFSTAGE_MONITOR. The report is sent as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB.

7.5.1 Sub block 0x01C6 - AWR_MONITOR_RX_IFSTAGE_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX IF filter attenuation monitoring. The report is sent as as an async event AWR_MONITOR_RX_IFSTAGE_REPORT_AE_SB.

Table 7.7: AWR_MONITOR_RX_IFSTAGE_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01C6		
SBLKLEN	2	Value = 20		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.		
REPORTING_	1	Value Definition		
MODE	O Report is sent every monitoring period without threshold check			
		Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RESERVED	2	0x0000		
RESERVED	2	0x0000		

T				
lable (./	continued	trom	previous	page

HPF_CUTOFF_ FREQ_ERROR_ THRESH	2	The absolute values of RX IF HPF cutoff percentage frequency errors are compared against the corresponding thresholds given in this field. The comparison results are part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 1%, unsigned number Valid range: 1% to 99%
LPF_CUTOFF_ FREQ_ERROR_ THRESH	2	The absolute values of RX IF LPF cutoff percentage frequency errors are compared against the corresponding thresholds given in this field. The comparison results are part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 1%, unsigned number Valid range: 1% to 99%
IFA_GAIN_ER- ROR_THRESH	2	The absolute deviation of RX IFA Gain from the expected gain for each enabled RX channel is compared against the thresholds given in this field. The comparison result is part of the monitoring report message (Error bit is set if the absolute value of the errors exceeds respective thresholds). 1 LSB = 0.1 dB, unsigned number Valid range: 0 to 60 (0 to 6dB)
RESERVED	4	0x00000000

7.6 TX Power Monitor

This section contains API SBs that configure the monitors of transmitter output power, and report the soft results from the monitor. The corresponding monitors are collectively named TXn_POWER_MONITOR where n is the TX channel number.

7.6.1 Sub block 0x01C7 - AWR_MONITOR_TX0_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX0_POWER_REPORT_AE_SB.

Table 7.8: AWR_MONITOR_TX0_POWER_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01C7
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band.
		Bit number RF frequency RF name
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.
RESERVED	2	0x0000
REPORTING_ MODE	1	Value Definition
		O Report is sent every monitoring period without threshold check
		Report is send only upon a failure (after checking for thresholds)
		2 Report is sent every monitoring period with threshold check
RESERVED	1	0x00
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dBm Valid range: 0 to 60 (0 to 6dB)

Table 7.8 – continued from previous page

TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Frequencies are enabled.
RESERVED	2	0x0000
RESERVED	4	0x00000000

7.6.2 Sub block 0x01C8 - AWR_MONITOR_TX1_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX1_POWER_REPORT_AE_SB.

Table 7.9: AWR_MONITOR_TX1_POWER_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01C8	
SBLKLEN	2	Value = 20	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.	

Table 7.9 – continued from previous page

RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band. Bit number RF frequency RF name		
		b0 Lowest RF frequency in pro- RF1 file's sweep bandwidth		
		b1 Center RF frequency in pro- RF2 file's sweep bandwidth		
		b2 Highest RF frequency in pro- RF3 file's sweep bandwidth		
		The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many monitoring packets.		
RESERVED	2	0x0000		
REPORTING_	1	Value Definition		
MODE		Report is sent every monitoring period without threshold check		
		Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RESERVED	1	0x00		
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed and measured TX power for each enabled channel at each enabled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dBm Valid range: 0 to 60 (0 to 6dB)		
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Frequencies are enabled.		
RESERVED	2	0x0000		
	1			

Table 7.9 –	continued	from	previous	page
	00		p. 0 u u u	P~90

RESERVED	4	0x00000000
----------	---	------------

7.6.3 Sub block 0x01C9 - AWR_MONITOR_TX2_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 power monitoring. Absolute TX power and flatness across RF frequencies are monitored here. The report is sent as an async event AWR_MONITOR_TX2_POWER_REPORT_AE_SB.

Table 7.10: AWR_MONITOR_TX2_POWER_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01C9		
SBLKLEN	2	Value = 20		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.		
RF_FREQ_BIT-MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band. Bit number RF frequency RF name b0 Lowest RF frequency in profile's sweep bandwidth b1 Center RF frequency in profile's sweep bandwidth b2 Highest RF frequency in profile's sweep bandwidth The RF Name column is mentioned here to set the convention for the purpose of reporting and describing many		
		monitoring packets.		
RESERVED	2	0x0000		
REPORTING_	1	Value Definition		
MODE		O Report is sent every monitoring period without threshold check		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		

Table 7.1	0 – continued from previous page
	0×00

RESERVED	1	0x00		
TX_POWER_ ABSOLUTE_ER- ROR_THRESH	2	The magnitude of difference between the programmed ar measured TX power for each enabled channel at each e abled RF frequency, is compared against this threshold. The comparison result is part of the monitoring report me sage (Error bit is set if any measurement is above the threshold). 1 LSB = 0.1 dBm Valid range: 0 to 60 (0 to 6dB)		
TX_POWER_ FLATNESS_ER- ROR_THRESH	2	The magnitude of measured TX power flatness error, for each enabled channel, is compared against this threshold. The flatness error for a channel is defined as the peak to peak variation across RF frequencies. The comparison result is part of the monitoring report message (Error bit is set if any measurement is above this threshold). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB) This flatness check is applicable only if multiple RF Frequencies are enabled.		
RESERVED	2	0x0000		
RESERVED	4	0x00000000		

7.7 TX Ball Break Monitor

This section contains API SBs that configure the monitors of transmitter balls and impedance matching. The corresponding monitors are collectively named TXn_BALLBREAK_MONITOR where n is the TX channel number.

TX ball break detection is performed through measurement of TX reflection coefficient's magnitude. The breakage of a TX ball is detected by observing high reflection magnitude.

7.7.1 Sub block 0x01CA - AWR_MONITOR_TX0_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX0_BALLBREAK_REPORT_AE_SB.

Table 7.11: AWR_MONITOR_TX0_BALLBREAK_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CA	
SBLKLEN	2	Value = 16	
REPORTING_ MODE	1	Value Definition O Report is sent every monitoring period without threshold check 1 Report is send only upon a failure (after checking for thresholds) 2 Report is sent every monitoring period with threshold check	
RESERVED	1	0x00	
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -90 to -250	
RESERVED	4	0x00000000	
RESERVED	4	0x00000000	

7.7.2 Sub block 0x01CB - AWR_MONITOR_TX1_BALLBREAK_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX1_BALLBREAK_REPORT_AE_SB.

Table 7.12: AWR_MONITOR_TX1_BALLBREAK_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CB	
SBLKLEN	2	Value = 16	

Table 7.12 - continued from previous page

REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	
TX_REFL_CO- EFF_THRESH	2	channel compari sage (Ei threshol 1 LSB =	reflection coefficient's magnitude for each enabled is compared against the threshold given here. The son result is part of the monitoring report mestror bit is set if the measurement is higher than this d, with the units of both quantities being the same). • 0.1 dB, signed number nge: -90 to -250
RESERVED	4	0x00000	0000
RESERVED	4	0x00000	0000

7.7.3 Sub block 0x01CC - AWR_MONITOR_TX2_BALLBREAK_CONF_SB

This API is a monitoring monfiguration API which the host sends to the AWR device, containing information related to TX ball break detection.

This API SB controls the thresholds for the reflection coefficient magnitude check and the parameters for the reflection coefficient error distance check (variation from values at the time of factory calibration). The report is sent as an async event AWR_MONITOR_TX2_BALLBREAK_REPORT_AE_SB.

Table 7.13: AWR_MONITOR_TX2_BALLBREAK_CONF_SB contents

Field Name	Number of bytes	Descrip	otion	
SBLKID	2	Value =	0x01CC	
SBLKLEN	2	Value =	Value = 16	
REPORTING_	1	Value	Definition	
MODE		0	Report is sent every monitoring period without threshold check	
		1	Report is send only upon a failure (after checking for thresholds)	
		2	Report is sent every monitoring period with threshold check	

		1 1 3
RESERVED	1	0x00
TX_REFL_CO- EFF_THRESH	2	The TX reflection coefficient's magnitude for each enabled channel is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB, signed number Valid range: -90 to -250
RESERVED	4	0x00000000
RESERVED	4	0x00000000

Table 7.13 – continued from previous page

7.8 TX Gain and Phase Mismatch Monitoring

This section contains API SBs that configure the monitors of transmitter gain and phase mismatches, and report the soft results from the monitor. The corresponding monitors are collectively named TX_GAIN_PHASE_MISMATCH_MONITOR.

This monitor needs the operation of at least one RX channel. It also needs to use the RX in complex mode. Therefore, if all channels are disabled as per AWR_CHAN_CONF_SET_SB, this monitor automatically enables one RX channel. Further, this monitor automatically uses both I and Q channels of the receiver, irrespective of the ADC settings given by AWR_ADCOUT_CONF_SET_SB.

7.8.1 Sub block 0x01CD - AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX gain and phase mismatch monitoring. The report is sent as an async event AWR_MONITOR_TX_GAIN_PHASE_REPORT_AE_SB.

Table 7.14: AWR_MONITOR_TX_GAIN_PHASE_MISMATCH_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CD
SBLKLEN	2	Value = 56
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.

Table 7.14 – continued from previous page

	I .			
RF_FREQ_BIT- MASK	1	This field indicates the exact RF frequencies inside the profile's RF band at which to measure the required parameters. When each bit in this field is set, the measurement at the corresponding RF frequency is enabled w.r.t. the profile's RF band.		
		Bit number	RF frequency	RF name
		b0	Lowest RF frequency in profile's sweep bandwidth	RF1
		b1	Center RF frequency in pro- file's sweep bandwidth	RF2
		b2	Highest RF frequency in profile's sweep bandwidth	RF3
			e column is mentioned here to e purpose of reporting and desc ackets.	
TX_EN	1	compared for	TX Channel	ting the cor-
		b0	TX0	
		b1	TX1	
		b2	TX2	
RX_EN	1	abled for TX	icates the RX channels that st to RX loopback measurement. g bit to 1 enables that channel for t. RX Channel	Setting the
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
RESERVED	1	0x00		
RESERVED	1	0x00		

Table 7.14 – continued from previous page

TX_GAIN_MIS- MATCH_THRESH	2	ers across quency is The comp sage (Err threshold) Before the and RX and	s the end compare arison re or bit is e compa re adjust .MISMAT	abled cha ed agains esult is pa set if th rison, the red by su CH_OFF nsigned r	
TX_PHASE_MIS- MATCH_THRESH	2	the enable compared The comp sage (Errothreshold) Before the and RX at TX_PHAS 1 LSB = 3	ed chan against arison refor bit is compa reformation adjust $E_MISM.$	nels at e this thres esult is pa set if ar rison, the red by su ATCH_OF , unsigne	art of the monitoring report mes- ny measurement is above this e measured gains for each RF btracting the offset given in the FFSET_VALUE field.
TX_GAIN_MIS- MATCH_OFF- SET_VALUE	18	The offset each TX a are given Byte numb field are h TX0 TX1 TX2	s to be s and RF be here. pers corr ere: RF1 1:0 3:2 5:4 entries o	ubtracted efore the respondin RF2 7:6 9:8 11:10 f enabled	from the measured TX gain for relevant threshold comparisons by to different RX and RF, in this RF3 13:12 15:14 17:16 d RF Frequencies and enabled

Table 7.14 – continued from previous page

TX_PHASE_ MISMATCH_ OFFSET_VALUE	18	for each isons are	TX and le given he nbers co	RF before ere.	d from the measured TX phase the relevant threshold compar- ng to different RX and RF, in this
			RF1	RF2	RF3
		TX0	1:0	7:6	13:12
		TX1	3:2	9:8	15:14
		TX2	5:4	11:10	17:16
		1 LSB =	$360^{\circ}/2^{1}$	⁶ .	
		-			d RF Frequencies and enabled
		TX chan	nels are	considere	d.
RESERVED	2	0x0000			
RESERVED	4	0x00000	000		

NOTE:	The TX3 has a fixed offset of -8dB gain and -8 degree phase with
	respect to TX1 and TX2 by design, user has to compensate these
	values in the gain and phase offset fields of this API for TX3.

7.9 TX BPM Phase Monitor

This section contains API SBs that configure the monitors of transmitter binary phase modulation, and report the soft results from the monitor, for various TX channels. The corresponding monitors are collectively named TX0_BPM_MONITOR, TX1_BPM_MONITOR and TX2_BPM_MONITOR for the respective TX channels.

7.9.1 Sub block 0x01CE - AWR_MONITOR_TX0_BPM_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 BPM monitoring.

The report is sent as an async event AWR_MONITOR_TX0_BPM_REPORT_AE_SB.

Table 7.15: AWR_MONITOR_TX0_BPM_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01CE
SBLKLEN	2	Value = 20
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.

Table 7.15 – continued from previous page

PH_SHIFTER_	1	Bit Definition	
MON_CFG		b7 Phase shifter monitoring enabled	
		b6 Phase shifter monitoring increment enabled	
		b5:0 Phase shifter monitoring increment value 1 LSB = 5.625°	
PH_SHIFTER_ MON1	1	Phase1 of the phase shifter of TX0 which needs to be monitored 1 LSB = 5.625°	
PH_SHIFTER_ MON2	1	Phase2 of the phase shifter of TX0 which needs to be monitored 1 LSB = 5.625°	
REPORTING_	1	Value Definition	
MODE		O Report is sent every monitoring period without threshold check	
		Report is send only upon a failure (after checking for thresholds)	
		2 Report is sent every monitoring period with threshold check	
RX_EN	1	This field indicates the RX channels that should be enabled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for imbalance measurement. Bit number RX Channel	
		b0 RX0	
		b1 RX1	
		b2 RX2	
		b3 RX3	
TX_BPM_ PHASE_ERROR_ THRESH	2	The deviation of the TX output phase difference between the two BPM settings from the ideal 180° is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). $1 \text{ LSB} = 360^{\circ}/2^{16}.$ Valid range: corresponding to 0° to 20°.	

RESERVED

Table 7.13 – Continued from previous page			
TX_BPM_AMPLI- TUDE_ERROR_ THRESH	2	The deviation of the TX output amplitude difference between the two BPM settings is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)	
PH_SHIFTER_ THRESH_MAX	2	Maximum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°	
PH_SHIFTER_ THRESH_MIN	2	Minimum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°	

Table 7.15 – continued from previous page

7.9.2 Sub block 0x01CF - AWR_MONITOR_TX1_BPM_CONF_SB

2

0x0000

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 BPM monitoring. The report is sent as an async event AWR_MONITOR_TX1_BPM_REPORT_AE_SB.

Table 7.16: AWR_MONITOR_TX1_BPM_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01CF	
SBLKLEN	2	Value = 20	
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.	
PH_SHIFTER_	1	Bit Definition	
MON_CFG		b7 Phase shifter monitoring enabled	
		b6 Phase shifter monitoring increment enabled	
		b5:0 Phase shifter monitoring increment value $ \text{1 LSB} = 5.625^{\circ} $	
PH_SHIFTER_	1	Phase1 of the phase shifter of TX1 which needs to be mon-	
MON1		itored 1 LSB = 5.625°	
PH_SHIFTER_	1	Phase2 of the phase shifter of TX1 which needs to be mon-	
MON2	'	itored	
		1 LSB = 5.625°	

Table 7.16 – continued from previous page

DEDODTING	1	alue Definition	
REPORTING_ MODE	I		
WIODE		Report is s threshold ch	ent every monitoring period without neck
		Report is se for threshold	end only upon a failure (after checking ds)
		Report is threshold ch	sent every monitoring period with neck
RX_EN	1	bled for TX to RX I	he RX channels that should be en- oopback measurement. Setting the 1 enables that channel for imbalance
		1 RX1	
		2 RX2	
		3 RX3	
TX_BPM_ PHASE_ERROR_ THRESH	2	ne two BPM setting gainst the threshold s part of the monitor	
TX_BPM_AMPLI- TUDE_ERROR_ THRESH	2	ween the two BPM nreshold given here. nonitoring report me	
PH_SHIFTER_ THRESH_MAX	2	Maximum threshold f hase shift values LSB = 5.625°	for the difference in the 2 configured
PH_SHIFTER_ THRESH_MIN	2	finimum threshold for hase shift values LSB = 5.625°	or the difference in the 2 configured
RESERVED	2	x0000	

7.9.3 Sub block 0x01D0 - AWR_MONITOR_TX2_BPM_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 BPM monitoring. The report is sent as an async event AWR_MONITOR_TX2_BPM_REPORT_AE_SB.

Table 7.17: AWR_MONITOR_TX2_BPM_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D0		
SBLKLEN	2	Value = 20		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.		
PH_SHIFTER_	1	Bit Definition		
MON₋CFG		b7 Phase shifter monitoring enabled		
		b6 Phase shifter monitoring increment enabled		
		b5:0 Phase shifter monitoring increment value $ \mbox{1 LSB} = 5.625^{\circ} $		
PH_SHIFTER_ MON1	1	Phase1 of the phase shifter of TX2 which needs to be monitored 1 LSB = 5.625°		
PH_SHIFTER_ MON2	1	Phase2 of the phase shifter of TX2 which needs to be monitored 1 LSB = 5.625°		
REPORTING_	1	Value Definition		
MODE		O Report is sent every monitoring period without threshold check		
		Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RX_EN	1	This field indicates the RX channels that should be e abled for TX to RX loopback measurement. Setting the corresponding bit to 1 enables that channel for imbalance measurement. Bit number RX Channel		
		b0 RX0		
		b1 RX1		
		b2 RX2		
		b3 RX3		

Table 7.17 - continued from previous page

TX_BPM_ PHASE_ERROR_ THRESH	2	The deviation of the TX output phase difference between the two BPM settings from the ideal 180° is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). $1 \text{ LSB} = 360^{\circ}/2^{16}.$ Valid range: corresponding to 0° to 20°.
TX_BPM_AMPLI- TUDE_ERROR_ THRESH	2	The deviation of the TX output amplitude difference between the two BPM settings is compared against the threshold given here. The comparison result is part of the monitoring report message (Error bit is set if the measurement is higher than this threshold, with the units of both quantities being the same). 1 LSB = 0.1 dB Valid range: 0 to 60 (0 to 6dB)
PH_SHIFTER_ THRESH_MAX	2	Maximum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°
PH_SHIFTER_ THRESH_MIN	2	Minimum threshold for the difference in the 2 configured phase shift values 1 LSB = 5.625°
RESERVED	2	0x0000

7.10 Synthesizer Frequency Monitoring

This section contains API SBs that configure the monitors of synthesizer chirp frequency, and report the soft results from the monitor. The corresponding monitor is named SYNTH_FREQ_MONITOR.

7.10.1 Sub block 0x01D1 – AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to synthesizer frequency monitoring during chirping. The report is sent as an async event AWR_MONITOR_SYNTH_FREQUENCY_REPORT_AE_SB.

 Table 7.18:
 AWR_MONITOR_SYNTHESIZER_FREQUENCY_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D1		
SBLKLEN	2	Value = 16		
PROFILE_INDX	1	This field indicates the Profile Index for which this monitoring configuration applies.		
REPORTING_	1	Value Definition		
MODE		O Report is sent every monitoring period without threshold check		
		Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
FREQ_ERROR_ THRESH	2	During the chirp, the error of the measured instantaneous chirp frequency w.r.t. the desired value is continuously compared against this threshold. The comparison result is part of the monitoring report message (Error bit is set if the measurement is above this threshold, ever during the previous monitoring period). 1 LSB = 10 kHz Valid range: 0 to 10000		
MONITOR_ START_TIME	1	This field determines when the monitoring starts in each chirp relative to the start of the ramp. 1 LSB = 0.2 μ s, unsigned number Valid range: 0 to 25 μ s		
RESERVED	3	0x000000		
RESERVED	4	0x00000000		

7.11 External Analog Signals Monitor

This section contains API SBs that configure the monitors of external analog signals which are input to the device through pins ANALOGTEST1-4, ANAMUX and VSENSE (also called ADC1-6) and report the soft results from the monitor. The corresponding monitors are collectively named EXTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog signals input on the pins ADC1-6 using a GPADC and compare them against internally fixed thresholds.

7.11.1 Sub block 0x01D2 – AWR_MONITORING_EXTERNAL_ANALOG_SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to external DC signals monitoring (available only in xWR1642 or xWR1843). The report is sent as an async event AWR_MONITOR_EXTERNAL_ANALOG_SIGNALSREPORT_AE_SB.

Table 7.19 describes the content of this sub block.

Table 7.19: AWR_MONITOR_EXTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number	Description			
Tield Name	of bytes	Description			
SBLKID	2	Value = 0x01D2			
SBLKLEN	2	Value = 36			
REPORTING_	1	Value Definition			
MODE		O Report is sent every monitoring period without threshold check			
		Report is send only upon a failure (after checking for thresholds)			
		2 Report is sent every monitoring period with threshold check			
RESERVED	1	0x00			
SIGNAL_INPUT_ ENABLES	1	This field indicates the sets of externally fed DC signals which are to be monitored using GPADC. When each bit in this field is set, the corresponding signal is monitored. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.			
		Bit Location SIGNAL			
		b0 ANALOGTEST1			
		b1 ANALOGTEST2			
		b2 ANALOGTEST3			
		b3 ANALOGTEST4			
		b4 ANAMUX			
		b5 VSENSE			
		Others RESERVED			

Table 7.19 – continued from previous page

	I				
SIGNAL_ BUFFER_EN- ABLES	1	This field indicates the sets of externally fed DC signals which are to be buffered before being fed to the GPADC. When each bit in this field is set, the corresponding signal is buffered before the GPADC. The monitored signals are compared against programmed limits. The comparison result is part of the monitoring report message.			
		Bit SIGNAL			
		b0 ANALOGTEST1			
		b1 ANALOGTEST2			
		b2 ANALOGTEST3			
		b3 ANALOGTEST4			
		b4 ANAMUX			
		Others RESERVED			
SIGNAL_SET- TLING_TIME	6	After connecting an external signal to the GPADC, the amount of time to wait for it to settle before taking GPADC samples is programmed in this field. For each signal, after that settling time, GPADC measurements take place for 6.4 μ s (averaging 4 samples of the GPADC output). The byte locations of the settling times for each signal are tabulated here:			
		Byte SIGNAL Loca- tion			
		0 ANALOGTEST1			
		1 ANALOGTEST2			
		2 ANALOGTEST3			
		3 ANALOGTEST4			
		4 ANAMUX			
		5 VSENSE 1 LSB = 0.8 μ s Valid range: 0 to 12 μ s Valid programming condition: all the signals that are enabled should take a total of < 100 μ s, including the programmed settling times and a fixed 6.4 μ s of measurement time per enabled signal.			

Table 7.19 – continued from previous page

	1					
SIGNAL_ THRESH	12	pared against the comparison message (Erro	The external DC signals measured on GPADC are compared against these minimum and maximum thresholds. The comparison result is part of the monitoring report message (Error bit is set if any measurement is outside this (minimum, maximum) range).			
		Byte Location	Threshold SIGNAL			
		0	Minimum ANALOGTEST1			
		1	1 Minimum ANALOGTEST2			
		2				
		3	3 Minimum ANALOGTEST4			
		4	Minimum ANAMUX			
		5	Minimum VSENSE			
		6	Maximum ANALOGTEST1			
		7	Maximum ANALOGTEST2			
		8 Maximum ANALOGTEST3				
		9 Maximum ANALOGTEST4				
		10 Maximum ANAMUX				
		11 Maximum VSENSE				
		1 LSB = 1.8V/256				
		Valid range: 0 to 255				
RESERVED	2	0x0000				
RESERVED	4	0x00000000				
RESERVED	4	0x00000000				

7.12 Internal Analog Signals Monitor

This section contains API SBs that configure the monitors of internal analog signals in the RF analog modules and report the soft results from the monitor. The corresponding monitors are collectively named INTERNAL_ANALOG_SIGNALS_MONITOR. These monitors observe various analog nodes in the RF and analog modules using a GPADC and compare them against internally fixed thresholds.

The configuration API SBs are organized to address various analog circuits as follows:

- 1. TX0 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX0_SIGNALS_MONITOR.
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 2. TX1 Internal Analog Signals Monitoring

- a. This monitor is called INTERNAL_TX1_SIGNALS_MONITOR
- b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 3. TX2 Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_TX2_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_TX, PWRDET_TX)
- 4. RX Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_RX_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_RX, PWRDET_RX, DCBIAS_RX)
- 5. PM CLK LO Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_PMCLKLO_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (SUPPLY_PMCLKLO, PWRDET_PMCLKLO, DCBIAS_PMCLKLO)
- 6. GPADC Internal Analog Signals Monitoring
 - a. This monitor is called INTERNAL_GPADC_SIGNALS_MONITOR
 - b. Signal sets that are monitored: (GPADC_REF1, GPADC_REF2)

The results are reported in the corresponding REPORT API SBs in this section.

7.12.1 Sub block 0x01D3 – AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX0 Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.20: AWR_MONITOR_TX0_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D3
SBLKLEN	2	Value = 12
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).

Table 7.20 – continued from previous page	Table 7.20 -	continued	from	previous	page
---	--------------	-----------	------	----------	------

REPORTING_	1	Value	Definition
MODE		0	RESERVED
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	2	0x0000	
RESERVED	4	0x00000	0000

7.12.2 Sub block 0x01D4 – AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX1 Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.21: AWR_MONITOR_TX1_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01D4		
SBLKLEN	2	Value = 12		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_	1	Value Definition		
MODE		0 RESERVED		
		Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RESERVED	2	0x0000		
RESERVED	4	0x00000000		

7.12.3 Sub block 0x01D5 – AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to TX2 Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.22: AWR_MONITOR_TX2_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number	Description		
	of bytes			
SBLKID	2	Value = 0x01D5		
SBLKLEN	2	Value = 12		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_ MODE	1	Value Definition 0 RESERVED		
		1 Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
RESERVED	2	0x0000		
RESERVED	4	0x00000000		

7.12.4 Sub block 0x01D6 – AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.23: AWR_MONITOR_RX_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01D6
SBLKLEN	2	Value = 12

Table 7.23 -	– continued	trom	previous	page

PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring the enabled signals, using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_	1	Value	Definition	
MODE		0	RESERVED	
		1	Report is send only upon a failure (after checking for thresholds)	
		2	Report is sent every monitoring period with threshold check	
RESERVED	2	0x0000		
RESERVED	4	0x00000000		

7.12.5 Sub block 0x01D7 – AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to Power Management, Clock generation and LO distribution circuits' Internal Analog Signals monitoring. The report is sent as an async event AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.24: AWR_MONITOR_PMCLKLO_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Descrip	tion		
SBLKID	2	Value =	Value = 0x01D7		
SBLKLEN	2	Value =	12		
PROFILE_INDEX	1	used for	analog settings corresponding to this profile are monitoring the enabled signals, using test chirps equency, at the center of the profile's RF frequency		
REPORTING_	1	Value Definition			
MODE		0	RESERVED		
		1	Report is send only upon a failure (after checking for thresholds)		
		2	Report is sent every monitoring period with threshold check		

Table 7.24 – continued from previous page

SYNC_20G_SIG_ SEL	1	This field is relevant only in cascade configuration and applicable in single chip case			
		Value Definition			
		0x00 20 GHz SYNC monitoring disabled			
		0x01 SYNC_IN monitoring enabled			
		0x02 SYNC_OUT monitoring enabled			
		0x03 CLK_OUT monitoring enabled			
SYNC_20G_MIN_ THRESH	1	The minimum threshold value of monitoring, signed number Unit: 1 LSB = 1 dBm			
SYNC_20G_MAX_ THRESH	1	The maximum threshold value of monitoring, signed number Unit: 1 LSB = 1 dBm			
RESERVED	3	0x000000			

7.12.6 Sub block 0x01D8 – AWR_MONITOR_GPADC_INTERNAL_ANALOG_ SIGNALS_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to GPADC Internal Analog Signals monitoring. During this monitor, only the relevant circuits are ensured to be ON. The monitored signals are compared against internally chosen valid limits. The comparison result is part of the consolidated monitoring report message (Error bit for any signal set is set to 1 if any measurement in that signal set is beyond valid limits). The report is sent as an async event AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_REPORT_AE_SB.

Table 7.25: AWR_MONITOR_GPADC_INTERNAL_ANALOG_SIGNALS_CONF_SB contents

Field Name	Number of bytes	Descrip	otion
SBLKID	2	Value =	0x01D8
SBLKLEN	2	Value =	12
REPORTING_	1	Value	Definition
MODE		0	Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check

RESERVED	3	0x000000
RESERVED	4	0x00000000

7.13 PLL Control Voltage Monitor

This section contains API SBs that configure the monitors of APLL and Synthesizer VCO control voltages and report the soft results from the monitor. The corresponding monitors are collectively named PLL_CONTROL_VOLTAGE_MONITOR. These monitors observe the VCO control voltages under various conditions using the GPADC and compare them against internally fixed thresholds. The transmitters are kept in OFF state during these measurements to avoid external emission.

7.13.1 Sub block 0x01D9 – AWR_MONITOR_PLL_CONTROL_VOLTAGE_SIGNALS_CONF_SB

This is a monitoring configuration API which the host sends to the AWR device, containing information related to APLL and Synthesizer's control voltage signals monitoring. The report is sent as an async event AWR_MONITOR_PLL_CONTROL_VOLTAGE_REPORT_AE_SB.

Table 7.26: AWR_MONITOR_PLL_CONTROL_VOLTAGE_CONF_SB contents

Field Name	Number of bytes	Descrip	tion		
SBLKID	2	Value = 0x01D9			
SBLKLEN	2	Value =	Value = 12		
REPORTING_	1	Value	Definition		
MODE		0	Report is sent every monitoring period without threshold check		
		1	Report is send only upon a failure (after checking for thresholds)		
		2	Report is sent every monitoring period with threshold check		
RESERVED	1	0x00			

Table 7.26 – continued from previous page

SIGNAL_EN- ABLES	2	This field indicates the sets of signals which are to be monitored. When each bit in this field is set, the corresponding signal set is monitored using test chirps. Rest of the RF analog may not be ON during these test chirps. The APLL VCO control voltage can be monitored. The Synthesizer VCO control voltage for both VCO1 and VCO2 can be monitored, while operating at their respective minimum and maximum frequencies, and their respective VCO slope (Hz/V) can be monitored if both frequencies are enabled for that VCO. The monitored signals are compared against internally chosen valid limits. The comparison results are part of the monitoring report message.		
		Bit Location SIGNAL		
		b0 APLL_VCTRL		
		b1 SYNTH_VCO1_VCTRL		
		b2 SYNTH_VCO2_VCTRL		
		b15:3 RESERVED		
		The synthesizer VCO extreme frequencies are:		
		Synthesizer VCO Frequency Limits (Min, Max)		
		VCO1 (76GHz, 78GHz) VCO2 (77GHz, 81GHz)		
		Synthesizer measurements are done with TX switched off to avoid emissions.		
		For the failure reporting, the internally chosen valid limits are (tentative): for the measured control voltage levels: 0.15V to 1.25V; for the synthesizer VCO slope: $\pm 20\%$ of 1.1 GHz/V for VCO2 and 0.55GHz/V for VCO1.		
RESERVED	4	0x00000000		

7.14 Dual Clock Comparator Based Clock Frequency Monitor

This section contains API SBs that configure the Dual Clock Comparator based monitors of clocks in the BSS digital modules and report the soft results from the monitor. The corresponding monitors are collectively named DCC_CLOCK_FREQ_MONITOR. These monitors observe the relative frequency of various clock pairs and compare the measured relative frequency errors against internally fixed thresholds.

The various clock pairs that are monitored are defined here:

CLOCK PAIR	REFERENCE CLOCK	MEASURED CLOCK	ERROR THRESH- OLD (Tentative)	
0	XTAL	BSS_600M	±0.25%	
1	BSS_600M	BSS_200M	±0.25%	
2	BSS_600M	BSS_100M	±0.25%	
3	BSS₋600M	GPADC ₋ 10M	±2.5%	
4	BSS_600M	RCOSC_10M	±17.5%	
5	BSS₋600M	RAMPGEN_100M	±0.25%	
RSVD	RSVD	RSVD	RSVD	

The ideal frequencies of clocks involved in this monitor are given here:

Table 7.27: DCC Clock monitor pairs

CLOCK NAME	CLOCK FRE- QUENCY (MHz)	COMMENTS	
XTAL	40	Crystal clock	
BSS₋600M	600	BSS root clock	
BSS₋200M	200	BSS processor clock	
BSS_100M	100	BSS internal clock	
GPADC ₋ 10M	10	GPADC clock used in monitoring and calibrations	
RCOSC_10M 10 (±10%)		RC Oscillator clock	
RAMPGEN ₋ 100M 100		Clock for Ramp Generator (timing engine) and Digital Front End.	

7.14.1 Sub block 0x01DA - AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to the DCC based clock frequency monitoring. The report is sent as an async event AWR_MONITOR_DCC_DUAL_CLOCK_COMP_REPORT_AE_SB.

Table 7.28: AWR_MONITOR_DUAL_CLOCK_COMP_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DA

Table 7.2	8 – continued	from	previous	page

SBLKLEN	2	Value =	12
REPORTING_	1	Value	Definition
MODE	MODE		Report is sent every monitoring period without threshold check
		1	Report is send only upon a failure (after checking for thresholds)
		2	Report is sent every monitoring period with threshold check
RESERVED	1	0x00	
DCC_PAIR_EN- ABLES	2	This field indicates which pairs of clocks to monitor. When a bit in the field is set to 1, the firmware monitors the corresponding clock pair by deploying the hardware's Dur Clock Comparator in the corresponding DCC mode.	
		Bit	CLOCK PAIR
		b0	0
		b1	1
		b2	2
		b3	3
		b4 4	
		b5	5
		b15:6	RESERVED
		The comparison results are part of the monitoring remessage. The definition of the clock pairs and their thresholds for failure reporting are given in the table be the message definition.	
RESERVED	4	0x00000000	

7.15 RX Saturation Detection Monitor

This section contains API SBs that configure the monitoring of RX analog saturation detectors, and report the results from the monitor. The corresponding monitors are collectively named RX_SATURATION_DETECTOR_MONITOR and RX_SIG_IMG_BAND_MONITOR. The report is available in CQ RAM.

7.15.1 Sub block 0x01DB – AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_ SB

This API is a monitoring configuration API which the host sends to the xWR device, containing information related to RX saturation detector monitoring. The report is available as CQ2 (part

of CQ) in CQ RAM every chirp. The application should transfer the report from CQ RAM every chirp.

Table 7.29: AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01DB	
SBLKLEN	2	Value = 24	
PROFILE_INDX	1	This field indicates the profile index for which this monitoring configuration applies.	
SAT_MON_SE- LECT	1	01 – Enable only the ADC saturation monitor 11 – Enable both the ADC and IFA1 saturation monitors	
RESERVED	1	0x00	
RESERVED	1	0x00	
SAT_MON_PRI- MARY_TIME_ SLICE_DURA- TION	2	It specifies the duration of each (primary) time slice. 1 LSB = 0.16 μ s. Valid range: 4 to floor(ADC sampling time us/0.16 μ s) NOTES: The minimum allowed duration of each (primary) time slice is 4 LSBs = 0.64 μ s. Also, the maximum number of (primary) time slices that will be monitored in a chirp is 64 so the recommendation is to set this value to correspond to (ADC sampling time / 64). If the slice is smaller, such that the ADC sampling time is longer than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.	
SAT_MON_NUM_ SLICES	2	Number of (primary + secondary) time slices to monitor. Valid range: 1 to 127 NOTE: Together with SAT_MON_PRIMARY_TIME_SLICE_ DURATION, this determines the full duration of the ADC valid time that gets covered by the monitor	
SAT_MON_RX_ CHANNEL_MASK	1	Masks RX channels used for monitoring. In every slice, saturation counts for all unmasked channels are added together, and the total is capped to 127. The 8 bits are mapped (MSB->LSB) to: [RX3Q, RX2Q, RX1Q, RX0Q, RX3I, RX2I, RX1I, RX0I] 00000000 – All channels unmasked 11111111 – All channels masked	
RESERVED	1	0	
RESERVED	1	0	
RESERVED	1	0	

Table 7.29 - continued from previous page

RESERVED	4	0x00000000
RESERVED	4	0x00000000

7.15.2 Sub block 0x01DC - AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB

This API is a monitoring configuration API which the host sends to the xWR device, containing information related to signal and image band energy. The report is available as CQ1 (part of CQ) in CQ RAM. The application should transfer the report every chirp.

Table 7.30: AWR_MONITOR_RX_SIG_IMG_MONITOR_CONF_SB contents

Field Name	Number of bytes	Description	
SBLKID	2	Value = 0x01DC	
SBLKLEN	2	Value = 16	
PROFILE_INDX	1	This field indicates the profile index for which this monitoring configuration applies.	
SIG_IMG_MON_ NUM_SLICES	1	Number of (primary + secondary) slices to monitor Valid range: 1 to 127	
NUM_SAMPLES_ PER_PRIMARY_ TIME_SLICE	2	This field specifies the number of samples constituting each time slice. The minimum allowed value for this parameter is 4. Valid range: 4 to NUM_ADC_SAMPLES (see NOTE2 below)	
		NOTE1: The maximum number of (primary) time slices that will be monitored in a chirp is 64, so our recommendation is that this value should at least equal (NUM_ADC_SAMPLES / 64). If the slice is smaller, such that the number of ADC samples per chirp is larger than 64 primary slices, some regions of the valid duration of a chirp may go un-monitored.	
		NOTE2: In Complex1x mode, the minimum number of samples per slice is 4 and for other modes it is 8. Also note that number of samples should be an even number	
RESERVED	4	0x00000000	
RESERVED	4	0x00000000	

7.16 RX mixer input power monitor

7.16.1 Sub block 0x01DD - AWR_MONITOR_RX_MIXER_IN_POWER_CONF_SB

This API is a monitoring configuration API which the host sends to the AWR device, containing information related to RX mixer input power monitoring. The report is sent as an async event AWR_MONITOR_RX_MIXER_IN_POWER_REPORT_AE_SB.

Table 7.31: AWR_MONITOR_MIXER_IN_POWER_CONF_SB contents

Field Name	Number of bytes	Description		
SBLKID	2	Value = 0x01DD		
SBLKLEN	2	Value = 16		
PROFILE_INDEX	1	The RF analog settings corresponding to this profile are used for monitoring RX mixer input power using test chirps (static frequency, at the center of the profile's RF frequency band).		
REPORTING_	1	Value Definition		
MODE		O Report is sent every monitoring period without threshold check		
		Report is send only upon a failure (after checking for thresholds)		
		2 Report is sent every monitoring period with threshold check		
TX_EN	1	This field indicates if and which TX channels should be enabled while measuring RX mixer input power. Setting a bit to 1 enables the corresponding TX channel. Enabling a TX channel may help find reflection power while disabling may help find interference power.		
		Bit number TX Channel		
		b0 TX0		
		b1 TX1		
		b2 TX2		
RESERVED	1	0x00		

Table 7.31 - continued from previous page

THRESHOLDS	2	The measured RX mixer input voltage swings during this monitoring is compared against the minimum and maximum thresholds configured in this field. The comparison result is part of the monitoring report message (Status bit is cleared if any measurement is outside this (minimum, maximum) range).	
		Byte number Threshold	
		0 Minimum Threshold	
		1 Maximum Threshold Only the RX channels enabled in the static configuration APIs are monitored.	
		1 LSB = 1800 mV/256, unsigned number Valid range: 0 to 255, maximum threshold \geq minimum threshold	
RESERVED	2	0x00000000	
RESERVED	4	0x00000000	

7.17 Sub block 0x01DE - RESERVED

7.18 Analog Fault injection

7.18.1 Sub block 0x01DF - AWR_ANALOG_FAULT_INJECTION_CONF_SB

This API is a fault injection API which the host sends to the AWR device. It can be used to inject faults in the analog circuits to test the corresponding monitors. After the faults are injected, the regular monitors, when enabled will indicate the faults in their associated reports.

NOTE1: This API should be issued when no frames are on-going.

NOTE2: The fault injection should be tested by injecting one fault at a time.

Table 7.32: AWR_ANALOG_FAULT_INJECTION_CONF_SB contents

Field Name	Number of bytes	Description
SBLKID	2	Value = 0x01DF
SBLKLEN	2	Value = 24
RESERVED	1	0x00

Table 7.32 – continued from previous page

	Ι.	I		
RX_GAIN_DROP	1	Primary Fault: RX Gain This field indicates which RX RF sections should have fault injected. If the fault is enabled, the RX RF gain drops significantly. The fault can be used to cause significant gain change, inter-RX gain imbalance and an uncontrolled amount of inter-RX phase imbalance.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RX_PHASE_INV	1	Primary Fault: RX Phase This field indicates which RX channels should have fault injected. If the fault is enabled, the RX phase gets inverted. The fault can be used to cause a controlled amount (1800) of inter-RX phase imbalance.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	

Table 7.32 – continued from previous page

RX_HIGH_NOISE	1	Primary Fault: RX Noise This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA square wave loopback paths are engaged to inject high noise at RX IFA input. The fault can be used to cause significant RX noise floor elevation.		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RX_IF_STAGES_ FAULT	1	Primary Fault: Cutoff frequencies of RX IFA HPF & LPF, IFA Gain. This field indicates which RX channels should have fault injected. If the fault is enabled, the RX IFA HPF cutoff frequency becomes very high (about 15MHz). The fault can be used to cause the measured inband IFA gain, HPF and LPF attenuations to vary from ideal expectations.		
		Bit number RX Channel		
		b0 RX0		
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
		_	the execution of RX_IFSTAGE_MONITOR, IOISE faults are temporarily removed.	

Table 7.32 – continued from previous page

	1		om providuo pugo	
RX_LO_AMP_ FAULT	1	Primary Fault: RX Mixer LO input swing reduction		
		This field indicates which RX channels should have fault injected. If the fault is enabled, the RX mixer LO input swing is significantly reduced. The fault is primarily expected to be detected by RX_INTERNAL_ANALOG_SIGNALS_MONITOR (under PWRDET_RX category).		
		Bit number	RX Channel	
		b0	RX0	
		b1	RX1	
		b2	RX2	
		b3	RX3	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
TX_LO_AMP_ FAULT	1	Primary Fault: TX PA input signal generator turning off. This field indicates which TX channels should have faul injected. If the fault is enabled, the amplifier generating TX power amplifier's LO input signal is turned off. The fault is primarily expected to be detected by TX <n>_INTERNAL ANALOG_SIGNALS_MONITOR (under DCBIAS category)</n>		
		Bit number	Channel	
		b0	TX0 and TX1	
		b1	TX2 (applicable only if available in the device)	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	

Table 7.32 – continued from previous page

- V 0 4 11 :	Ι.		TV 0 1 /	
TX_GAIN_DROP	1	Primary Fault: TX Gain (power) This field indicates which TX RF sections should have fault injected. If the fault is enabled, the TX RF gain drops significantly. The fault can be used to cause significant TX output power change, inter-TX gain imbalance and an uncontrolled amount of inter-TX phase imbalance.		
		Bit number	Channel	
		b0	TX0	
		b1	TX1	
		b2	TX2	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
TX_PHASE_INV	1	Primary Fault: TX Phase This field indicates if TX channels should have fault injected, along with some further programmability. If the fault is enabled, the TX BPM polarity (phase) is forced to a constant value as programmed. The fault can be used to cause a controlled amount (180 degree) of inter-TX phase imbalance as well as BPM functionality failure.		
		Bit number	TX Channel	
		b0	TX_FAULT (Common for all TX channels)	
		b1	RESERVED	
		b2	RESERVED	
		b3 TX0_BPM_VALUE		
		b4	TX1_BPM_VALUE	
		b5	TX2_BPM_VALUE	
		Others	RESERVED	
		For each TXn_BPM_VALUE: Applicable only if TX_FAULT is enabled. Value = 0: force TX <n> BPM polarity to 0 Value = 1: force TX<n> BPM polarity to 1.</n></n>		
		NOTE: The T	Xn_BPM_VALUE takes effect only when e is changed	

Table 7.32 – continued from previous page

SYNTH_FAULT	1	Primary Fault: Synthesizer Frequency This field indicates which Synthesizer faults should be injected. SYNTH_VCO_OPENLOOP: If the fault is enabled, the synthesizer is forced in open loop mode with the VCO control voltage forced to a constant. In order to avoid out of band emissions in this faulty state, this fault is injected just before the PLL_CONTROL_VOLTAGE_MONITOR is executed and released just after its completion. SYNTH_FREQ_MON_OFFSET: If the fault is enabled, the synthesizer frequency monitor's ideal frequency ramp waveform is forced to be offset from the actual ramp waveform by a constant, causing monitoring to detect failures.	
		Bit number	Enable Fault
		b0	SYNTH_VCO_OPENLOOP
		b1	SYNTH_FREQ_MON_OFFSET
		Others	RESERVED
		For each bit, fault	1 = inject fault, 0 = remove injected
SUPPLY_LDO_ FAULT	1		cates whether some LDO output voltage e injected or not.
		Bit number	Enable Fault
		b0	SUPPLY_LDO_RX_LODIST_FAULT
		Others	RESERVED
		LO distribution changed compa	RX_LODIST_FAULT: if enabled, the RX sub system's LDO output voltage is slightly ared to normal levels to cause INTERNAL_INALS_MONITOR to detect failure (under pry).
		fault	1 = inject fault, 0 = remove injected Ilt injection is ineffective under LDO bypass

Continued on next page

Table 7.32 – continued from previous page

MISC_FAULT	1	This field indicates whether a few miscellaneous faults should be injected or not.		
		Bit number	Enable Fault	
		b0	GPADC_CLK_FREQ_FAULT	
		Others	RESERVED	
		clock frequency usage to cause detect failure.	REQ_FAULT: if enabled, the GPADC is slightly increased compared to normal e BSS DCC_CLOCK_FREQ_MONITOR to 1 = inject fault, 0 = remove injected	
MISC_THRESH_	1		patas whather faults should be forced in	
FAULT	ı	This field indicates whether faults should be forced in the threshold comparisons in the software layer of some monitors. If a fault is enabled, the logic in the min-max threshold comparisons used for failure detection is inverted, causing a fault to be reported. During these faults, no hardware fault condition is injected in the device.		
		Bit number	Enable Fault	
		b0	GPADC_INTERNAL_SIGNALS_MONITOR	
		Others	RESERVED	
		For each bit, fault	1 = inject fault, 0 = remove injected	
RESERVED	3	0x000000		
RESERVED	4	0x00000000		

8 Chirp Parameters (CP) and Chirp Quality (CQ) data

8.1 Chirp Parameters data

Chirp parameter information is always updated in the CP registers DSS_REG_VBUSM__CPREG[0-3] for single chirp use case.

NOTE: Chirp Number is always reset every burst by the hardware.

Figure 8.1: Chirp parameter information fields

	31	23 16	15 8	7 0
DSS_REG_VBUSM. CH0CPREG0	Byte 3	Byte 2	Byte 1	Byte 0
DSS_REG_VBUSM. CH0CPREG1	Byte 7	Byte 6	Byte 5	Byte 4
DSS_REG_VBUSM. CH0CPREG2	Byte 11	Byte 10	Byte 9	Byte 8
DSS_REG_VBUSM. CH0CPREG3	Byte 15	Byte 14	Byte 13	Byte 12

Figure 8.2: Chirp parameter information from DSS registers

For multichip use case, the CP data is available for up to 8 chirps in DSS_REG_VBUSM.CH[0-7]CPREG[0-3].

8.2 Chirp Quality data

Chirp quality information is divided into 3 parts

- 1. CQ0 Wideband signal and image energy information (Reserved for future use)
- 2. CQ1 RX signal and image band energy statistics
- 3. CQ2 RX ADC and IF saturation information

CQ data will be available in CQ RAM which is a ping-pong memory when the CQ monitors are enabled. Currently supported CQ monitors are AWR_MONITOR_RX_SATURATION_DETECTOR_CONF_SB for CQ2 and AWR_MONITOR_SIG_IMG_MONITOR_CONF_SB for CQ1. CQ data will be refreshed every chirp by the hardware. User has to ensure that before the next chirp finishes, the current chirps' CQ data is either processed or transferred to a local memory for further processing.

NOTE:	CQ0 is not supported by firmware currently, but the CQ RAM will
	be updated for CQ0 data. Maximum size of CQ0 data is 256 bytes.
	Users should ignore the CQ RAM for CQ0.

The starting location (on 128 bit boundary) of each CQ data within the CQ memory can be configured by programming DSS_REG.CQCFG1[12:4] for CQ0, DSS_REG.CQCFG1[21:13] for CQ1 and DSS_REG.CQCFG1[30:22] for CQ2.

Figure 8.3: CQ data start address configuration in single chirp use case

For N-chirp use case, when user wishes to process N chirps simultaneously, then CQ0 for all N chirps will be concatenated together in memory. Similarly CQ1 and CQ2 for all N chirps will also be concatenated together.

NOTE: When CQ data is concatenated in N-chirp use case, the CQ data for new chirp starts on the next 128 bit boundary.

Figure 8.4: CQ data start address configuration in multi chirp use case

The CQDATAWIDTH parameter in DSS_REG.CQCFG1 defines the packing of the CQ data in the CQ memory in either 16-bit mode, 12-bit mode or in 14-bit mode.

8.2.1 CQ1

The signal band and image band are separated using a two-channel filter bank and the ADC sampling time duration is monitored in terms of primary and secondary time slices, as shown below.

Figure 8.5: Time slices during RX signal and image band monitor and saturation monitor

For each of the two bands (signal and image), for each time slice, the input-referred average power in the slice in negative dBm is recorded as an 8-bit unsigned number, with 1 LSB = -0.5 dBm

CQ1 data is stored in memory as shown below (in 16-bit mode)

31 24	23 16	15 8	7 0
P _{i1}	P _{s1}	0	Z
P _{i2}	P _{s2}	S _{i1}	S _{s1}
P _{i3}	P _{s3}	S _{i2}	S _{s2}
			:
P _{i(N+1)/2}	P _{8(N+1)/2}	S _{(N-1)/2}	S _{8(N-1)/2}

Figure 8.6: CQ1 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_{s,i_n} indicates the power of primary slice n for {signal, image} band and S_{s,i_n} indicates the power of secondary slice n for {signal, image} band. Each power is encoded in 8 bit unsigned number with each LSB representing -0.5 dBm.

Since maximum value of N is 127, the maximum size of CQ1 data in 16-bit mode is 256 bytes

NOTE: In real output mode, since there is no image band visibility, only the signal band statistics will be meaningful.

Similarly, in 12-bit and 14-bit modes, the CQ1 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

Figure 8.7: CQ1 data format in memory in 12-bit mode

Figure 8.8: CQ1 data format in memory in 14-bit mode

8.2.2 CQ2

The analog to digital interface includes a 100 MHz bit stream indicating saturation events in the ADC/IF sections, for each channel. This one-bit indicator for each channel is monitored during the ADC sampling time duration in a time-sliced manner, as shown in Figure 8.5.

For each time slice, a saturation event count is recorded. This count is the sum of saturation event counts across all RX channels selected for monitoring, capped to a maximum count of 255 (8 bits). The saturation counts are stored in memory as shown below

31 24	23 16	15 8	7 0
P ₂	S ₁	P ₁	N
P ₄	S ₃	P ₃	S ₂
	:	:	
	P _{(N+1)/2}	S _{(N-1)/2}	P _{N/2}

Figure 8.9: CQ2 data format in memory in 16-bit mode

N indicates the total number of primary and secondary slices which are monitored (maximum value of N is 127). P_n indicates the accumulated saturation count for all enabled RX channels in primary slice n, S_n indicates the accumulated saturation count for all enabled RX channels in secondary slice n.

Since maximum value of N is 127, the maximum size of CQ2 data in 16-bit mode is 128 bytes. Similarly, in 12-bit and 14-bit modes, the CQ2 data in CQ memory will be packed as shown below. Only the relevant bits in each 16 bits of memory (either 12 bits or 14 bits) are useful and other bits and not written by hardware.

Figure 8.10: CQ2 data format in memory in 12-bit mode

Figure 8.11: CQ2 data format in memory in 14-bit mode

9 Calibration and monitoring durations

9.1 Boot time calibration durations

Table 9.1: Duration of boot time calibrations

SI. No.	Calibration	Duration (μs)
1	APLL	330
2	Synth VCO	1300
3	LO DIST	12
4	ADC DC	600
5	HPF cutoff	3500
6	LPF cut off	3200
7	Peak detector	4200
8	TX power (assumes 2 TX use-case)	6000
9	RX gain	2300
10	TX phase	40 000
11	RX IQMM	32 000

9.2 Run time calibration durations

Table 9.2 lists the duration of all run time calibrations. Note that the firmware performs calibrations in small chunks of 250 μ s. User has to ensure that the total idle time in one CAL_MON_TIME_UNIT is sufficient to fit the enabled calibrations.

To configure CALIB_MON_TIME_UNIT, user has to calculate the total available IDLE time in the frame and subtract 100 μ s for every frame to allow for preparation of frame. The duration for all the enabled calibrations should be included and following software overheads should be added to that number

Table 9.2: Duration of run time calibrations

SI. No.	Calibration	Duration (μ s)
1	APLL	150
2	Synth VCO	350
3	LO DIST	30
4	Peak detector	500
5	TX power (assumes 1 TX, 1 profile)	800
6	RX gain	30
7	Application of calibration to hardware (This needs to be included always)	150

9.3 Monitoring duration

Table 9.3 lists the duration of all analog monitors and Table 9.4 lists the duration of all digital monitors

Table 9.3: Duration of analog monitors

SI. No.	Monitors	Duration (μ s)
1	RX gain phase (assumes 1 RF frequency)	1250
2	RX noise figure (assumes 1 RF frequency)	250
3	RX IF stage (assumes 1 RF frequency)	1000
4	TX power (assumes 1 TX, 1 RF frequency)	200
5	TX ballbreak (assumes 1 TX)	250
6	TX gain phase mismatch (assumes 1 TX, 1 RF frequency)	400
7	TX BPM (assumes 1 TX)	575
	- TX phase shifter (assumes 1 TX)	525
8	Synthesizer frequency	0
9	External analog signals (all 6 GPADC channels enabled)	150
10	TX Internal analog signals (assumes 1 TX)	200
11	RX internal analog signals	1700
12	PMCLKLO internal analog signals	400
13	GPADC internal signals	50
14	PLL control voltage	210
15	Dual clock comparator (assumes 6 clock comparators)	110
16	RX saturation detector	0
17	RX signal and image band monitor	0
18	RX mixer input power	350

Table 9.4: Duration of digital monitors

SI. No.	Monitors	Duration (μ s)
1	Periodic configuration register readback	100
2	ESM monitoring	50
3	DFE LBIST monitoring	1000
4	Frame timing monitoring	10

9.4 Software overheads

When the calibrations or monitorings are enabled, the software needs certain time for reading the temperature sensors, reading the DFE statistics, preparing the calibration or monitoring reports and to clear the watch dog. All these time durations should also be accounted when computing the CALIB_MON_TIME_UNIT. The details of the software overheards are given in the Table 9.5

Table 9.5: Software overheads every FTTI that should be accounted to program CALIB_MON_TIME_UNIT and CALIBRATION_PERIODICITY

SI. No.	Software overhead	Duration (μ s)
1	Periodic monitoring of stack usage	20
2	Minimum monitoring duration (report formation, digital energy monitor at the end of FTTI, temperature read every FTTI)	1000
3	Minimum calibration duration (report formation, temperature read every CAL_MON_TIME_UNIT)+	500
4	Idle time needed per FTTI for windowed watchdog	Frame period × CALIB_MON_ TIME_UNIT/8 i.e.~12.5% of Frame period × CALIB_MON_TIME_UNIT is re- served for watchdog clearing time

9.4.1 Note on idle time for clearing the watchdog

The clearing window of the watch dog is 12.5% of total FTTI as shown in the figure below. One FTTI can have multiple frames in legacy frame configuration or in advanced frame configuration - each frame can have multiple sub-frames and each sub-frame can have multiple bursts. The required idle time for clearing watch dog is absolute 12.5% of the overall FTTI interval, this 12.5% clearing window can have multiple frames or subframes or bursts. The granularity of the required watchdog idle time calculation is limited to sub-frame period.

Example

A user has enabled advanced frame configuration where each frame consists of 3 sub-frames and each sub-frame is of 5 ms duration. FTTI is configured as 25 frames. Each sub-frame contains 100 chirps, each chirp consisting of 4 μ s idle time and 21 μ s ramp time. i.e. duty cycle is 50%. The watchdog clearing window and time for calibration and monitoring is calculated as follows

Figure 9.1: Watchdog idle time calculation

Frame duty cycle	=	50	%
Idle time per frame (50% of 15 ms)	=	7.5	ms
FTTI (15 ms $ imes$ 25 frames)	=	375	ms
Available idle time per FTTI (50% of 375 ms)	=	187.5	ms
Ideal watchdog clearing window (12.5% of 375 ms)	=	46.875	ms
The calculated watchdog clearing window in firmware is as follows			
Duration of complete frames which can be fit in watchdog		45	mo
clearing window $(\lceil 46.875/15 \rceil \times 15)$	=	40	ms
Fractional watchdog clearing time (which will be fit in the		1 075	
sub-frame idle time) $(46.875 - (15 \times 3))$	=	1.875	ms
Time available for calibration/monitoring per FTTI		100 105	
$(21 \text{ frames} \times 7.5 \text{ ms}) + (2 \text{ sub-frames} \times 2.5 \text{ ms}) + 0.625 \text{ ms})$	=	163.125	ms
,			

The following examples show how the user can budget for calibration and monitoring time and configure the FTTI correctly.

A user has enabled 2 TX, uses only 1 profile, frame configuration consists of 64 chirps, each chirp is of duration is 66 μ s (56 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 10 ms. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	42.24%
Idle time per frame (57.76% of 10 ms)	=	5.776 ms
Idle time available for calibration/monitoring per frame	_	5.676 ms
(100 μ s is for frame preparation) \int	_	3.07 0 1113
Time needed for all run time calibrations	=	2760 μ s
$150 + 300 + 30 + 500 + (800 \times 2) + 30 + 150$		
Minimum time for software overheads	=	2770 μ s
$20 + 1000 + 500 + (10000 \times 1/8)$		
Total time needed per frame for calibration	=	5530 μ s
2760 μ s + 2770 μ s \int		

Total time needed per frame for calibration is 5.530 μ s which is less than the frame idle time (5.676 ms) and hence this configuration will be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 1 and CALIBRATION_PERIODICITY as 100. With this setting calibrations are triggered once every 100 frames (i.e. once every 1 s)

Consider another example where the frame configuration remains the same as in example 1, but frame periodicity is reduced to 8 ms.

Total time needed per frame for calibration is 5.280 μ s which is more than the frame idle time (3.676 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 2 and CALIBRATION_PERIODICITY as 63. With this setting calibrations are triggered once every 126 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. User has enabled all run time calibrations. None of the analog monitoring is enabled.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame	=	3.020 ms
(100 μ s is for frame preparation) \int		
Time needed for all run time calibrations	=	4360 μ s
$150 + 300 + 30 + 500 + (800 \times 2 \times 2) + 30 + 150$		
Minimum time for software overheads	=	2270 μ s
$20 + 1000 + 500 + (6000 \times 1/8)$		
Total time needed per frame for calibration	=	6630 μ s
4360 μ s + 2270 μ s $\}$		

Total time needed per frame for calibration is 6.630 μ s which is more than the frame idle time (3.020 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 3 and CALIBRATION_PERIODICITY as 56. With this setting, minimum required time is 8.13 ms and available idle time for calibration/monitoring is 9.06 ms and calibrations are triggered once every 168 frames (i.e. once every 1.008 s)

A user has enabled 2 TX, uses 2 profiles, frame configuration consists of 32 chirps, each chirp is of duration is 90 μ s (80 μ s ramp time and 10 μ s chirp idle time) and frame periodicity is 6 ms. User has enabled all run time calibrations. Analog monitorings which are enabled are (a) TX output power monitor for TX0 and TX1 (b) TX BPM monitor for TX0 and TX1 (c) RX gain phase monitor and (d) RX noise figure monitor. Each of the monitors are configured to be run for 1 profile and 3 RF frequencies (low, mid and high) as defined by the profile.

Frame duty cycle	=	48.00%
Idle time per frame (52.00% of 6 ms)	=	3.120 ms
Idle time available for calibration/monitoring per frame	=	3.020 ms
(100 μ s is for frame preparation)		
Time needed for all run time calibrations	=	4360 μ s
$150 + 300 + 30 + 500 + (800 \times 2 \times 2) + 30 + 150$		
Time needed for all monitoring	=	6850 μ s
$(1250 \times 3) + (250 \times 3) + (200 \times 3 \times 2) + (575 \times 2)$		
Minimum time for software overheads	=	2270 μ s
$20 + 1000 + 500 + (6000 \times 1/8)$		
Total time needed per frame for calibration and monitoring	=	13480 μ s
4360 μ s + 6850 μ s + 2270 μ s		
,		

Total time needed per frame for calibration is 13.480 μ s which is more than the frame idle time (3.020 ms) and hence this configuration will **not** be honored by the MMIC device.

User can set CALIB_MON_TIME_UNIT to 6 and CALIBRATION_PERIODICITY as 28. With this setting, minimum required time for calibration and monitoring is 16.48 ms and available idle time for calibration/monitoring is 18.72 ms. Monitoring is triggered once in 6 frames and calibration is triggered once in 168 frames (i.e. once every 1.008 s)

9.5 Sample Application

For sample application please refer DFP (device firmware package) user guide document.

IMPORTANT NOTICE

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party of TI

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated