Name: Luca Cordes, 444900 Name: Max Cierna, 434603

Höhere Mathematik III (WS 2023/2024)

Übung 9

Tutorium: 1 Abgabe: 17.12.2023

Aufgabe 1:

Sei

$$g_n(x) := n^2 x^n (1 - x).$$

Man untersuche g_n auf punktweise Konvergenz, gleichmäßige Konvergenz und auf Konvergenz im quadratischen Mittel.

.....

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} n^2 x^n (1 - x) = \begin{cases} \text{undefiniert}, & \text{für } x \in (-\infty, -1] \\ 0, & \text{für } x \in (-1, 1] \\ 0, & \text{für } x = 1 \\ -\infty, & \text{für } x \in (1, \infty) \end{cases}$$

Da das Limit von g_n für $n \to \infty$ nicht auf ganz \mathbb{R} definiert ist, kann es auch keine Funktion f geben, für die $\lim_{n\to\infty} |f_n(x)-f(x)|=0$ auf ganz \mathbb{R} erfüllt ist. Damit ist g_n nicht auf \mathbb{R} punktweise Konvergent, wohl aber auf $(-1,\varepsilon] \cup 1$, für ein beliebiges aber festes $\varepsilon \in (-1,1)$, mit f(x)=0.

Ohne punktweise Konvergenz kann g_n auch nicht gleichmäßig Konvergent oder Konvergent im quadratischen Mittel auf \mathbb{R} sein.

$$0 = \frac{\mathrm{d}}{\mathrm{d}x_0} n^2 x_0^n (1 - x_0)$$

$$= -n^2 x_0^n + n^3 x_0^{n-1} (1 - x_0)$$

$$= -x_0 + n(1 - x_0)$$

$$x_0 = \frac{n}{n+1} \in [0, 1)$$

$$g_n(x_0) = n^2 \left(\frac{n}{n+1}\right)^2 \left(1 - \frac{n}{n+1}\right)$$

$$\geq n^2 \left(1 - \frac{n}{n+1}\right)$$

$$= \frac{n^2}{n+1}$$

$$\stackrel{n \to \infty}{=} 2n \text{ , l'Hospital}$$

$$= \infty$$

Es seien $I := \left[-\frac{1}{2}, \frac{1}{2}\right]$ und $(f_n)_{n \in \mathbb{N}}$ gegeben durch

$$f_n: I \to \mathbb{R}, \quad f_n(x) := \frac{1}{n} \cos x^n \cdot e^{-n(x+1)}, \quad n \in \mathbb{N}.$$

Man zeige, dass die Funktionsreihe $\sum_{\infty}^{n=1} f_n$ im Intervall I

(a) gleichmäßig konvergiert.

$$|f_n(x)| = \left| \frac{1}{n} \cos x^n \cdot e^{-n(x+1)} \right|$$

$$\leq |e^{-n/2}|$$

$$= \left| \frac{1}{\sum_k \frac{(n/2)^k}{k!}} \right|$$

$$\leq \left| \frac{1}{n^2/8} \right| = M_n$$

$$\sum_n M_n = 8 \cdot \sum_n \frac{1}{n^2} < \infty$$

 $\sum_n f_n(x)$ konvergiert gleichmäßig nach dem Weierstraßschem M-Test.

(b) eine stetig differenzierbare Funkton f darstellt mit $f'(x) = \sum_{\infty}^{n=1} f'_n(x)$. Man berechne f'(0).

$$f_n(x) = \frac{1}{n} \cos x^n \cdot e^{-n(x+1)}$$

$$|f'_n(x)| = \left| \frac{1}{n} \left(-n x^{n-1} \sin x^n - n \cos x^n \right) e^{-n(x+1)} \right|$$

$$= \left| \left(x^{n-1} \sin x^n + \cos x^n \right) e^{-n(x+1)} \right|$$

$$\leq \left| 2 e^{-n(x+1)} \right|$$

$$\leq 2 \left| e^{-n/2} \right|$$

$$\implies \sum_{n} f'_{n}$$
 konvergiert gleichmäßig (siehe (a))

Da $\sum_n f_n$ gleichmäßig konvergiert, und $\sum_n f'_n$ ebenfalls, garantiert Satz 6.8 dass f stetig diffbar ist, mit $f'(x) = \lim_{n \to \infty} \sum_{k=1}^n f'_n(x)$.

$$\begin{split} f'(0) &= \sum_n f'_n(0) \\ &= \sum_n \frac{1}{n} \left(-n \, x^{n-1} \sin x^n - n \cos x^n \right) \, e^{-n(x+1)} \bigg|_{x=0} \\ &= -\sum_n e^{-n} \\ &= 1 - \frac{1}{1 - 1/e} \; , \; \text{geom. Reihe} \end{split}$$

Aufgabe 3:

Man zeige, dass die Funktionenreihe $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}$ auf [-1,1] punktweise konvergent ist. Man beweise ferner, dass sie nicht gleichmäßig konvergiert.

......

$$f_k(x) = \sum_{n=0}^k \frac{x^2}{(1+x^2)^n}$$

$$= x^2 \sum_{n=0}^k \left(\frac{1}{1+x^2}\right)^n \text{, geom. Reihe}$$

$$f(x) = \begin{cases} 0, & \text{für } x = 0\\ x^2 \frac{1}{1-\frac{1}{1+x^2}}, & \text{sonst} \end{cases}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2x}{1 + \frac{2x}{(1+x^2)^2}}, \text{ l'Hospital}$$

$$= \lim_{x \to 0} \frac{2x}{\frac{2x}{(1+x^2)^2}}$$

$$= 1 \implies f \text{ unstetig}$$

Nach Satz 6.4 konvergiert eine gleichmäßig konvergente, stetige Funktionsfolge gegen eine stetige Funktion. Im Umkehrschluss bedeutet dies, dass wenn eine stetige Funktionfolge gegen eine unstetige Funktion konvergiert, keine gleichmäßige Konvergenz vorliegt. f_k konvergiert nicht gleichmäßig.

Aufgabe 4:

Gegeben sei die Funktionsfolge

$$f_n: [0, \infty) \to \mathbb{R}, x \mapsto \begin{cases} \frac{1}{n} - \frac{x}{n^2}, & \text{für } 0 \le x \le n \\ 0, & \text{sonst} \end{cases}$$

(a) Man zeige: f_n konvergiert gleichmäßig gegen 0.

$$\limsup_{n \to \infty} |f_n - f_{n+1}| \le \limsup_{n \to \infty} \left| \frac{1}{n} - \frac{x}{n^2} - \frac{1}{n+1} + \frac{x}{(n+1)^2} \right| = 0$$

 f_n konvergiert gleichmäßig nach dem Cauchy-Kriterium

(b) Man zeige: $\int_0^\infty f_n(x) dx$ konvergiert nicht gegen 0. Warum ist dies kein Widerspruch zur Vertauschbarkeit von Grenzprozessen?

$$\int_0^\infty f_n(x) \, \mathrm{d}x = \int_0^n \left(\frac{1}{n} - \frac{x}{n^2} \right) \, \mathrm{d}x = \left(\frac{x}{n} - \frac{x^2}{2n^2} \right) \Big|_0^n = \frac{1}{2}$$

Dieses Ergebnis steht nicht im Widerspruch zur Vertauschbarkeit von Grenzprozessen, da diese nur für eigentliche Integrale gilt.

(c) Konvergiert f_n im quadratischen Mittel? (d.h. in diesem Fall $\int_0^\infty |f_n(x) - 0|^2 dx \to 0$)

$$\int_0^\infty f_n^2(x) \, \mathrm{d}x = \int_0^n \left(\frac{1}{n} - \frac{x}{n^2} \right)^2 \mathrm{d}x = \left(\frac{x}{n^2} - \frac{x^2}{n^3} + \frac{x^3}{3n^4} \right) \Big|_0^n = \frac{1}{3n} \stackrel{n \to \infty}{=} 0$$

 f_n konvergiert im quadratischem Mittel.