

SICCVOCTOBER 11-17

Md Amirul Islam*1,6

Matthew Kowal*2,6

Konstantinos G. Derpanis^{2,5,6} Neil D. B. Bruce^{3,6}

¹Ryerson University, ²York University, ³University of Guelph, ⁴LG Electronics, ⁵Samsung Al Centre Toronto, ⁶Vector Institute

Motivation

- > We challenge the common assumption that collapsing the spatial dimensions of a 3D tensor into a vector via global pooling removes all spatial information.
- > How can a CNN contain positional information in the representations if there exists a global average pooling layer in the forward pass?
- > We hypothesize that the position information is encoded within the ordering of the channel dimensions.

Learning Positions with a GAP Layer

- > GAPNet transforms the latent representation to a representation where number of channels matches with the number of locations in the grid and outputs the location of the image patch placed on a black canvas.
- > PermuteNet follows the structure of a standard classification network and applies a single random **permutation** of the channels between the GAP and the prediction layer.

Channel-wise Position Encoding

Network	Loc. Classification		Image Classification	
	3x3	7x7	3x3	7x7
GAPNet	100	/100	82.6	82.1
PermuteNet	78.8	21.4,	73.6	69.9/

- ➤ **GapNet** achieves 100% location accuracy while **PermuteNet** fails to correctly classify locations.
- The order of the channel dimensions is the main representational capacity which allows for the GAP layer to admit absolute position information.

Translation Invariance in CNNs

Minimize the distance between two globally pooled latent representations of **different shifts** of the same image

Network	CIFAR-10		CIFAR-100	
	Тор-1 Асс.	Consistency	Тор-1 Асс.	Consistency
ResNet-18	93.1	90.8	72.6	70.1
Blurpool	92.5	92.5	72.4	78.2
AugShift (Ours)	92.1	94.8	72.6	85.6

AugShift improves the overall classification performance and the shift consistency on CIFAR-10 and CIFAR-100.

Attacking the Position Encoding Channels: Overall & Region-Specific

- Region-specific: Highly activated when an object is in a particular location, and **Identifying Position Specific Neurons**
 - has a low activation otherwise.

Targeting Overall Position Specific Neurons: Semantic Segmentation

Gradually removing the position-specific neurons **hurts** the overall mIoU significantly more than random neurons

Targeting Region-Specific Neurons

Segmentation results when top N region specific channels are removed during inference

Left-encoding channels should harm the mIoU on the **left half** more than the right-encoding channels.

Conclusions

- > Position information is encoded based on the ordering of the channels while semantic information is largely not.
- ➤ Introduced a simple data augmentation strategy to improve translation invariance of CNNs.
- Introduced a intuitive technique to identify the position-specific channels in a network's latent representation.