Probability and Measure - Tutorial 7

1. Let (Ω, \mathcal{A}) be a measurable space. Assume we have functions

$$f_n: \Omega \to \overline{\mathbb{R}}, \ n \in \mathbb{N}, \qquad J: \Omega \to \mathbb{N}.$$

- (a) Show that J is $(A, P(\mathbb{N}))$ -measurable if and only if $J^{-1}(k) \in A$ for every $k \in \mathbb{N}$.
- (b) Assume that J is $(A, P(\mathbb{N}))$ -measurable and all the f_n are (A, \mathcal{B}) -measurable. Prove that the following function is measurable:

$$g(\omega) = f_{J(\omega)}(\omega).$$

- 2. (a) Let $f : \mathbb{R} \to \mathbb{R}$ be $(\mathcal{B}, \mathcal{B})$ -measurable. Assume $g : \mathbb{R} \to \mathbb{R}$ is equal to f except for countably many points in the domain. Show that g is $(\mathcal{B}, \mathcal{B})$ -measurable.
 - (b) Assume $f_n : \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{N}$ are $(\mathcal{B}, \mathcal{B})$ -measurable, $f : \mathbb{R} \to \mathbb{R}$ is a function such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all but countably many $x \in \mathbb{R}$. Show that f is $(\mathcal{B}, \mathcal{B})$ -measurable. Hint: use part (a).
 - (c) Prove that any right-continuous function $f: \mathbb{R} \to \mathbb{R}$ is $(\mathcal{B}, \mathcal{B})$ -measurable. Hint: for each $n \in \mathbb{N}$ define

$$f_n = \sum_{z \in \mathbb{Z}} f((z+1)2^{-n}) \cdot \mathbb{1}_{(z2^{-n},(z+1)2^{-n})}$$

and use part (b).

3. (a) Assume (Ω, \mathcal{A}) is a measurable space and $f: \Omega \to \mathbb{R}^d$, $g: \Omega \to \mathbb{R}^k$ are measurable. Show that the function $h: \Omega \to \mathbb{R}^{d+k}$ given by

$$h(\omega) = (f(\omega), g(\omega))$$

is measurable.

(b) Prove that the function $\psi: \mathbb{R}^{2d} \to \mathbb{R}^d$ defined by

$$\psi(x_1,\ldots,x_{2d})=(x_1+x_{d+1},x_2+x_{d+2},\ldots,x_d+x_{2d})$$

is $(\mathcal{B}(\mathbb{R}^{2d}), \mathcal{B}(\mathbb{R}^d))$ -measurable.

- (c) Using parts (a) and (b), give a new proof of the statement that if $f, g: \Omega \to \mathbb{R}^d$ are measurable, then f + g is measurable.
- 4. Let $(\Omega, \mathcal{A}, \mu)$ be a complete measure space.
 - (a) Show that, if $f, g: \Omega \to \overline{\mathbb{R}}$, f is measurable and f = g almost everywhere, then g is measurable.
 - (b) Show that, if $f_n: \Omega \to \overline{\mathbb{R}}$, $n \in \mathbb{N}$, $f: \Omega \to \overline{\mathbb{R}}$, the f_n are measurable and $f_n(\omega) \to f(\omega)$ for almost every ω , then f is measurable.