Welcome to Assignment 5

There are two parts in this assignment. The conceptual questions could be answered by words, and the coding questions require some computation.

Conceptual questions

Q1. Suppose we want to build a connected network with 10 nodes and average degree 1.8, such that the heterogeneity parameter is largest. What does the graph look like?

hint: you don't have to use Networkx to construct a network and plot it. A simple description would do:)

We have ten nodes, and the average degree is 1.8. To maximize the heterogeneity parameter, we need a graph with hubs. The presence of a hub ensures that the heterogeneity parameter will be high, as they are directly correlated. Also, since the average degree is close to 2 but slightly lesser, we need nodes with degrees 2 or less than 2, except for the hub. The hub will inflate the average degree value with its high degree.

Therefore, the network will have a high-degree hub and nodes with very low degrees.

Q2. Are there networks such that the average number of neighbors of a node's neighbors match the average degree? If there are, what property must they have?

Yes, there are networks where the average number of neighbors of a node's neighbors matches the average degree. For this to hold true, we need a network where the high-degree nodes are connected to other high-degree nodes, and the low-degree nodes are connected to other low-degree nodes. This type of behavior can be observed in an assortative network. Thus, the graph needs to be an assortative network.

Coding Questions

We will be using **socfb-Northwestern25** network for the following questions. You could find it in the book's Github repository dataset folder or on Canvas. It is a snapshot of Northwestern University's Facebook network. The nodes are anonymous users and the links are friend relationships. Load this network into a NetworkX graph in order to answer the following questions. **Be sure to use the proper graph class for an undirected, unweighted network.**

 $/var/folders/_3/98b473cn1k993m8ln5gwyv6h0000gn/T/ipykernel_80631/2719763623.py: 6: DeprecationWarning: info is deprecated and will be removed in version 3.0.$

```
nx.info(G)
```

Out[2]: 'Graph with 10567 nodes and 488337 edges'

Q3. What proportion of nodes have degree 100 or greater?

hint: ratio of number of nodes having degree no less than 100 divided by the total number of nodes.

```
In [3]: 1 total_nodes = G.number_of_nodes()
2 total_nodes
```

Out[3]: 10567

```
In [4]: 1 degree_100greater = 0
2 all_degrees = dict(G.degree())
4 for node,degree in all_degrees.items():
6    if degree >= 100:
7    degree_100greater += 1
```

```
In [5]: 1 proportion = degree_100greater/total_nodes
2 print(f'Proportion of nodes have degree 100 or greater: {round(proportion, 4)}')
```

Proportion of nodes have degree 100 or greater: 0.3821

Q4. What is the maximum degree in this network?

Q5. Users in this network are anonymized by giving the nodes numerical names. Which node has the highest degree?

Highest degree: 2105 Nodes with highest degree: ['8262']

We check if there are multiple nodes/users with the highest degree. But as we observe, there is only one user: 8262 having the maximum degree.

Q6. What is 95th percentile for degree, i.e., the value such that 95% of nodes have this degree or less?

```
In [7]: 1 degrees = list(all_degrees.values())
degrees_sorted = sorted(degrees)

# 95th percentile index
index_95 = int(np.ceil(0.95 * len(degrees_sorted)))
percentile_95 = degrees_sorted[index_95 - 1]

print(f'95th percentile for degree: {percentile_95}')
```

95th percentile for degree: 244

Q7. Is the network assortative or disassortative?

```
In [8]: 1 assortativity_coef = nx.degree_assortativity_coefficient(G)
    print(round(assortativity_coef, 4))
```

0.0344

Here the assortativity coefficient is positive and thus, we can say that the network is assortative. This means high-degree nodes are connected to other high-degree nodes, and low-degree nodes are connected to other low-degree nodes

Q8. What is the mean degree for nodes in this network?

```
In [9]: 1 mean_degree = sum(degrees)/len(degrees)
2 print(f"Mean degree: {round(mean_degree, 4)}")
```

Mean degree: 92.4268

Q9. Which of the following shapes best describes the degree distribution in this network? You can obtain the answer visually using tools we have introduced such as histograms, cumulatives, or log-scale plots.

- a) Normal
- b) Poissonian
- c) Power law

Hint: 1) At least one visualization is needed 2) calent vour answer from the four options based on your visualizations

```
In [10]:
```

```
import matplotlib.pyplot as plt

plt.figure(figsize=(15, 8))
plt.hist(degrees, bins=25)
plt.title('Degree Distribution Histogram')
plt.xlabel('Degree')
plt.ylabel('Frequency')
plt.show()
```


The above plot has a peak and a skewed normal distribution. The right tail of the plot is very long and it seems like an Exponential distribution. Taking a look at the log scale plot of the same will shed more light.

In []: 1