Research Project: Retrieval of plant biophysical and biochemical variables from remote sensing data using a hybrid machine learning method

Zavud Baghirov
Environmental Sciences
University of Trier

Summer Semester 2021

Abstract

This will be the abstract at the end [TO BE UPDATED] $\,$

Contents

Li	st of Figures	iv
Li	st of Tables	V
Li	st of Abbreviations	vi
1	Methods	1
	1.1 Local sensitivity analysis	1
\mathbf{R}_{0}	eferences	3

List of Figures

List of Tables

1.1	INFORM Parameters varied in local sensitivity analysis (each pa-	
	rameter were varied 15 times)	1
1.2	INFORM Parameters that were kept constant while one parameter	
	was varied at a time	2

List of Abbreviations

3D Three-dimensional

INFORM . . . Invertable Forest Reflectance Model

RTM Radiative Transfer Model

SAIL Scattering by Arbitrary Inclined Leaves

PROSAIL . . The combination of PROSPECT and SAIL models

FLIM Forest Light Interaction Model

LAI Leaf Area Index

MLRA Machine Learning Regression Algorithms

ML Machine Learning

 \mathbf{DT} Decision Trees

ANN Artificial Neural Networks

KBMLRM . . Kernel-Based Machine Learning Regression Methods

RF Random Forest

RFR Random Forest Regression

 ${f LUT}$ Look-Up-Table

 \mathbf{NN} Neural Networks

SVR Support Vector Regression

SVM Support Vector Machines

GPR Gaussian Process Regression

GP Gaussian Process

VI Vegetation Index

DR Dimensionality Reduction

WT Wavelet Tranform

 \mathbf{PCA} Principal Component Analysis

AL Active Learning

1 Methods

This section explains the methods used in this research.

1.1 Local sensitivity analysis

Local sensitivity analysis was performed to assess the effect of each of the main 6 plant biochemical and biophysical variables on the PRISMA image bands. In the local sensitivity analysis simulation is performed by keeping all the variables constant at their determined fixed or default values except the parameter of interest. This way the effect of a specific parameter on the simulated spectra can be assessed. In this research the plant parameters C_{ab} , C_w , C_m , LAI_s , CD and SD were varied each 15 times (Table (1.1)), while keeping the rest of the variables at their default values (Table (1.2)). The default and varied values were chosen based on the literature (e.g. Darvishzadeh et al. (2019); Laurent et al. (2011); Schlerf and Atzberger (2012)) where similar RTM method used to simulate reflectance for Spruce trees.

Table (1.1) show the 6 parameters that were varied, their units, minimum and maximum values. Each parameter was varied 15 times, meaning 15 different spectra were simulated for each variable.

Table 1.1: INFORM Parameters varied in local sensitivity analysis (each parameter were varied 15 times)

Parameter	Abbrev	. Unit	Min	Max
Chlorophyll content Equivalent water thickness Leaf dry matter content Leaf area index (single)	C_{ab} C_{w} C_{m} LAI_{s}	$\begin{array}{c} \frac{\mu g}{cm^2} \\ \frac{g}{cm^2} \\ \frac{g}{cm^2} \\ \frac{m^2}{m^2} \\ ha^{-1} \end{array}$	20 0.0035 0.008 0	60 0.035 0.03 7
Stem density Crown diameter	SD CD	m	200 1.5	5000 8.5

1. Methods

Table (1.2) show the determined default values for each INFORM parameter that were kept during the sensitivity simulation while one of the parameter was varied (Table (1.1)).

Table 1.2: INFORM Parameters that were kept constant while one parameter was varied at a time

Parameter	Abbr	Unit	Value
Leaf structure parameter Chlorophyll content Leaf cartenoid content Brown Pigment Content Equivalent water thickness	$N \\ C_{ab} \\ C_{ar} \\ C_{brown} \\ C_w$	$-\frac{\mu g}{cm^2}$ $\frac{\mu g}{cm^2}$ $-\frac{g}{cm^2}$	3 40 8 0.001 0.0117
Leaf dry matter content Average leaf inclination angle Leaf area index (single) Leaf area index (understorey) Hot spot parameter	C_m $ALIA$ LAI_s LAI_u Hot	$\begin{array}{c} \frac{g}{cm^2} \\ \circ \\ \\ \\ \frac{m^2}{m^2} \\ \frac{m^2}{m} \\ \\ \\ m \end{array}$	0.03 65 6 0.5 0.02
Solar zenith angle Observer zenith angle Sun-sensor azimuth angle Soil brightness Stem density	tts tto psi $lpha_{soil}$ SD	。。。。 。 — ha ⁻¹	45.43 0 181.41 0.5 700
Crown diameter Mean Height Fraction of diffuse incoming Soil reflectance spectrum	$CD \\ H \\ skyl \\ B_g$	m m - -	5 20 0.1 default

Solar zenith angle and Sun-sensor azimuth angle were calculated based on the PRISMA image acquisition parameters (date, lat/long etc.) using the website https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html.

RTM models PROSPECT5, 4SAIL and FLIM were coupled (INFORM) in order to simulate canopy reflectance. Simulations were carried out using the ccrtm package (Visser, 2021) in R (R Core Team, 2021). The default soil spectra provided by the the ccrtm package (Visser, 2021) was used for the simulations.

References

- Darvishzadeh, R., Skidmore, A., Abdullah, H., Cherenet, E., Ali, A., Wang, T., Nieuwenhuis, W., Heurich, M., Vrieling, A., O'Connor, B., et al. Mapping leaf chlorophyll content from sentinel-2 and rapideye data in spruce stands using the invertible forest reflectance model. *International Journal of Applied Earth Observation* and Geoinformation, 79:58–70, 2019.
- Laurent, V. C., Verhoef, W., Clevers, J. G., and Schaepman, M. E. Inversion of a coupled canopy—atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study. Remote Sensing of Environment, 115(10):2603–2612, 2011.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.
- Schlerf, M. and Atzberger, C. Vegetation structure retrieval in beech and spruce forests using spectrodirectional satellite data. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 5(1):8–17, 2012.
- Visser, M. D. ccrtm: Coupled Chain Radiative Transfer Models, 2021. URL https://CRAN.R-project.org/package=ccrtm. R package version 0.2.