МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №1

по дисциплине «Вычислительная математика»

Тема: Особенность машинной арифметики, точность вычисления на ЭВМ

Студент гр. 8304

Преподаватель

Николаева М. А.

Попова Е. В.

Санкт-Петербург 2019

Вариант 10.

Цель работы.

Изучить особенности вычислений с плавающей точкой.

Основные теоретические положения.

В фундаменте математического анализа прочно утвердилась система действительных чисел. Однако, как бы она не упрощала анализ, практические вычисления вынуждены обходиться без нее.

Обычным способом аппроксимации системы действительных чисел в ЭВМ посредством конкретных математических представлений являются числа с плавающей точкой. Множество F чисел с плавающей точкой характеризуется четырьмя параметрами: основанием b, точностью t и интервалом показателей [L,M]. Каждое число с плавающей точкой, принадлежащее F, имеет значение

$$x = \pm \left(\frac{d_1}{b} + \frac{d_2}{b^2} + \dots + \frac{d_t}{b^t}\right) b^n,$$

где целые числа $d_1, d_2, ..., d_t$ удовлетворяют неравенствам $0 \leqslant d_j < b \ (j=\overline{1,t})$ $L \leqslant n \leqslant M$. Если для каждого ненулевого х из F справедливо $d_1 \neq 0$, то система F называется нормализованной. Целое число п называется показателем, а число $f = \sum\limits_{j=1}^t d_j/b^j$ — дробной частью. Обычно целое число b_n хранится по той или иной схеме представления, принятой для целых чисел, например, величины со знаком, дополнения до единицы или дополнения до двух. Если принять $-N \leqslant n < N$, где $N = 2^{m-1}$ то переходим к общепринятой терминологии, при которой t - p разрядность мантиссы, m - p разрядность порядка.

Действительная машинная реализация представлений чисел с плавающей точкой может отличатся в деталях от рассматриваемой идеальной, однако различия несущественны, и на практике их почти всегда можно игнорировать, анализируя основные проблемы ошибок округления. Величина b^{-t} является оценкой относительной точности плавающей арифметики, которая характеризуется посредством машинного эпсилон, т.е. наименьшего числа с плавающей точкой є,

такого, что $1+\varepsilon>1$. Точное значение машинного эпсилон зависит не только то указанных выше параметров, но и от принятого способа округления.

В вычислительных машинах используются различные системы чисел с плавающей точкой, причем в некоторых ЭВМ несколько систем. Так, для современных ПЭВМ характерно применение двух систем, которые называются обычной точностью и удвоенной точностью.

Рассматриваемое множество F не является континуумом или даже бесконечным множеством. Оно содержит ровно $2(b-1)b^t(M-L+1)+1$ чисел, которые расположены неравномерно (равномерность расположения имеет место лишь при фиксированном показателе). В силу того, что F – конечное множество, не представляется возможным сколь-нибудь детально отобразить континуум действительных чисел. Например, действительные числа модулей, большим максимального элемента из F, вообще не могут быть отображены, причем последнее справедливо также в отношении ненулевых действительных чисел, меньших по абсолютной величине по сравнению с наименьшим положительным числом из F, и, наконец, каждое число из F должно представлять целый интервал действительных чисел, для которой, как и для любой модели, присущи допущения и ограничения.

На множестве F определены арифметические операции в соответствии с тем, как они выполняются ЭВМ. Эти операции, в свою очередь моделируются в машине посредством приближений, называемых плавающими операциями. Для плавающих операций сложения, вычитания, умножения и деления существует возможность возникновения ошибок округления, переполнения и появления машинного нуля. Следует отметить, что операции плавающего сложения и умножения коммутативны, но не ассоциативны, и дистрибутивный закон для них также не выполняется. Невыполнение указанных алгебраических законов, имеющих фундаментальное значение для математического анализа, приводит к сложности анализа плавающих вычислений и возникающих при этом ошибок.

Постановка задачи.

Используя ряд специально разработанных программ, выполнить исследования машинной арифметики и точности вычислений на ПЭВМ. Порядок выполнения работы следующий:

- 1) Исследование распределения нормализованных чисел с плавающей точкой на вещественной оси для различных значений параметров b, m, t.
- 2) Вычисление значения величины машинного эпсилон при различных значениях константы c.
- 3) Исследование абсолютных и относительных ошибок округления при вычислениях с плавающей точкой сумм чисел при различных значениях шага суммирования
- 4) Исследование проявления ошибок округления, возникающих при вычислении показательной функции e^x , для чисел с плавающей точкой для двух вариантов алгоритма вычислений, а также скорости сходимости обоих вариантов
 - 5) Исследование округления Truncate.

Выполнение работы.

1. Проведены исследования распределения нормализованных чисел с плавающей точкой на вещественной оси для различных значений параметров b, m, t. Результаты расчетов см. в табл. 1.

Таблица 1 — числа, сгенерированные программой с разными значениями параметров b, m, t.

	b = 2,
	t=3,
	m = 1
0	0.000000
1	0.250000
2	0.312500

3	0.375000
4	0.437500
5	0.500000
6	0.625000
7	0.750000
8	0.875000
9	1.000000
10	1.250000
11	1.500000
12	1.750000

Распределение нормализованных чисел с плавающей точкой на вещественной оси неравномерно. Плотность распределения увеличивается при движении к границе диапазона.

2. Были вычислены значения ε, при разных значениях аргумента с. Результаты вычислений см. в табл. 2.

Таблица 2 — результаты вычисления є при разных значениях с

Значение с	Значение є
7	43*10 ⁻¹⁹
8	86*10-19
9	86*10 ⁻¹⁹

При маленьком значении c значение ε небольшое. Увеличение происходит в виде геометрической прогрессии со знаменателем 2, т.е. с увеличением c в два раза ε так же увеличивается в 2 раза (с точностью до 10^{-19}). График зависимости ε от c показан на рис. 1. Для построения графика были использованы дополнительные значения c и соответствующие им значения e.

Рисунок 1 — график зависимости є от с

3. Было проведено исследование абсолютных и относительных ошибок округления при вычислениях с плавающей точкой сумм чисел при различных значениях шага суммирования. Результаты вычислений см. в табл. 3.

Таблица 3 — результаты исследования абсолютных и относительных ошибок округления (N — шаг суммирования x - dx - абсолютная погрешность, (x-dx)/x - относительная погрешность)

N	x - dx	(x-dx)/x
9	0.000000596	0.00006%
97	0.000000307	0.00003%
456	0.000000987	0.000010%
863	0.0000000268	0.000003%
1290	0.000000037	0.000000%
1498	0.0000000441	0.00004%

Для каждого N абсолютная погрешность увеличивалась с шагами в ходе суммирования (происходило накопление ошибки), а относительная ошибка была постоянной (абсолютная ошибка накапливалась равномерно).

4. Было проведено исследование проявления ошибок округления, возникающих при вычислении показательной функции е^х для чисел с плавающей точкой для двух вариантов алгоритма вычислений, а также найдены скорости сходимости обоих вариантов. Результаты обработки программой введенных данных см. в табл. 4.

Таблица 4 — исследование проявления ошибок округления, возникающих при вычислении функции е^х для двух алгоритмов.

Вве	Вве-	Разложение Тейлора	Улучшенный алгоритм	Абсолютная по-	Относи-
ден-	ден-			грешность	тельная
ное	ное				погреш-
зна-	зна-				ность
че-	че-				
ние	ние				
X	3				
9	0.00	8103.083703491207420	8103.083927575379680	0.00022408417226	0.000003
	1	29 итераций	1 итерация	0	%
11	0.001	59874.141325503893300	59874.141715197780300	0.0003896938869733	0.000001%
		34 итерация	1 итерация		
31	0.001	29048849665247.4219000000000	29048849665247.3750000000000	0.046875000000000	0.000000%
		00	00		
		88 итераций	1 итерация		

При увеличении аргумента абсолютная погрешность возрастает, в то время как относительная погрешность мала и при больших значениях аргумента выходит за пределы машинного эпсилон, следовательно, не может быть посчитана. Сходимость ряда Тейлора вычисляется медленно. Так, для аргумента 31 и порядка 0.001 требуется 88 итераций, каждая из которых по объему вычислений превышает предыдущую. Улучшенный алгоритм является более рациональным вариантом, так как на целых числах дает сходимость за 1 итерацию.

5. Было проведено исследование округления функцией Truncate. Результаты см. в табл. 5.

Таблица 5 – округление с помощью Truncate.

	Значение до округления	После округления
0	0.14	0
1	5.7	5
2	1.2	1
3	-3.6	-3
4	0.98	0
5	1.45	1
6	-0.5	0

Метод Truncate округляет числа к ближайшему целому числу в сторону нуля. Исходный код программы для исследования Truncate:

Выводы.

В ходе выполнения заданий лабораторной работы, были исследованы машинная арифметика, точность вычислений на ПЭВМ, распределение нормализованных чисел на вещественной оси, абсолютные и относительные ошибки округления при вычислениях с плавающей точкой, зависимость машинного эпсилон от значения константы и округление чисел с помощью метода Truncate. Все результаты исследований были занесены в таблицы, для некоторых из них был построен график.