Espaces Vectoriels de Dimension finie Existance de bases MPSI 2

Définition 0.0.1

Soit E un espace vectoriel.

On dit que E est de dimension finie si E admet un système générateur fini.

Propriété 0.0.1

Caractérisation de bases

Soit S un système de vecteurs de E.

On a équivalence entre:

- S est une base de E.
- S est un système générateur minimal.
- ullet S est un système libre maximal.

Utilisation des définitions et des axiomes.	

Propriété 0.0.2

Soient A et B deux systèmes finis de E tels que A soit libre et B générateur. Alors il existe un système S de E tel que:

- $A \subset \mathcal{S} \subset B$
- S est une base de E.

On pose \mathcal{S} le plus grand élément de $\{A' \subset E, A' | \text{libre et } A \subset A' \subset B\}$ au sens du cardinal.

On montre ensuite que ce système est générateur en montrant que B est CL de S. \square

Théorème d'existance de base

Soit E un \mathbb{K}_{EV} de dimension finie.

Alors il existe un système fini d'éléments de E qui soit une base de E.

On applique la propriété précédente, avec 1_E et le système générateur fini. Par convention, $\{\varnothing\}$ est la base de $\{0_E\}$
Théorème de l'échange $Soit \ A = \{a_1, \ldots, a_r\} \ une \ partie \ libre \ de \ E.$ $Soit \ A' = \{a'_1, \ldots, a'_p\} \ une \ partie \ génératrice \ de \ E.$ $Alors \ on \ peut \ remplacer \ r \ éléments \ de \ A' \ par \ des \ éléments \ de \ A \ pour \ obtenir \ un \ système \ générateur \ de \ E.$
On exprime les éléments de A comme CL d'éléments de A' , et on remplace un élément exprimant par l'exprimé. \Box Conséquences en dimension finie
Corollaire 0.0.1 Soit E un \mathbb{K}_{EV} de dimension finie. Tout système libre de E a au plus autant d'éléments qu'un système générateur de E .
Application du théorème de l'échange.
Corollaire 0.0.2 Si E est un \mathbb{K}_{EV} de dimension finie, alors deux bases de E ont le même nombre d'éléments.
Application du théorème de l'échange.

Définition 0.0.2

Soit E un \mathbb{K}_{EV} de dimension finie. On appelle <u>dimension de E</u> le cardinal d'une base de E.

Corollaire 0.0.3

Soit E un \mathbb{K}_{EV} de dimension finie.

Soit B une base de E de cardinal n.

Soit A une partie de E.

Alors on a:

- $\dim(E) = n$
- Si A est libre, alors $card(A) \leq n$
- Si A est générateur de E, alors $card(A) \ge n$

Corollaire 0.0.4

Soit E un \mathbb{K}_{EV} de dimension n.

Soit A une partie de E de cardinal n.

Alors on a équivalence entre :

- A est une base de E.
- A est libre.
- A est générateur de E.

Systèmes libres maximaux et générateurs minimaux.

Théorème de la base incomplète

Soit E un \mathbb{K}_{EV} de dimension n.

Soit $A = \{a_1, ..., a_r\}$ un système libre de E.

Soit $A' = \{a'_1, \dots, a'_p\}$ un système générateur de E.

Alors on peut compléter A avec n-r éléments de A' pour obtenir une base de E.

 $\exists S \in \mathcal{P}(E), \ A \subset S \subset A \cup A', \ S$ générateur En particulier, $\operatorname{card}(S) = n$