84. Алгоритм AKS. Верхняя оценка на r (б/д). Обоснование неравенства $p > r > \log_2^2 n$ для подходящего делителя p числа n. Вывод тождества $(X+a)^{n/p} = X^{n/p} + a \pmod{X^r}$ 1, p). Определение перестановочности многочлена и числа. Утверждения о свойствах перестановочности.

Обоснование неравенства: Рассматриваем корректность последнего шага. Мы знаем, что $(r,n)=1 \Rightarrow (r,p)=1$ (p - делитель n, который мы выбрали в билете 83). Также p > r, в противном случае мы бы останавились на 3 или 4 шаге алгоритма. Тогда $p > r > \varphi(r) \ge \operatorname{ord}_r n > \log_2^2 n$ (последнее неравенство следует из построения r). **Тождество:** $(x+a)^{n/p} = x^{n/p} + a \pmod{x^r-1,p}$

 $(x+a)^p = x^p + a \pmod{x^r - 1, p}$ при $a = 0 \dots l \pmod{42}$

 $(x+a)^n = x^n + a \, (\text{mod } x^r - 1, n)$ при $a = 0 \dots l \, (\text{следствие того}, \, \text{что мы прошли шаг } 5)$

Второе выражение так же выполняется, если мы заменим mod n на mod p, так как pделитель n (в дальнейшем будем часто переходить к делителям таким образом). Дальше все тождества рассматриваем для $a = 0 \dots l$.

Предположим, что $(x+a)^{n/p} \neq x^{n/p} + a \pmod{x^r-1,p}$. Возведем обе части в степень p. Получаем $(x+a)^n \neq (x^{n/p}+a)^p \pmod{x^r-1}$, p). По первому тождеству правая часть распишется как $x^n + a$. Получили, что $(x+a)^n \neq x^n + a \pmod{x^r-1,p}$ - противоречие со вторым тождеством ⇒ тождество верно ■

Определение: Пусть f(x) - многочлен, m - число. Считаем, что f(x) и m перестановочны, если $(f(x))^m = f(x^m) \pmod{x^r - 1, p}$

Утверждение 1: Если f перестановочно с m и g перестановочно с m, то $f \cdot g$ перестановочно сm

Замечание: $x^{mr} - 1 \vdots x^r - 1$

 $x^{r} - 1 = (x - 1)(1 + x + \dots + x^{r-1})$ $x^{mr} - 1 = (x - 1)(1 + x + \dots + x^{r-1} + x^{r+1} + \dots + x^{mr-1}) =$ $= (x-1)(1 \cdot (1+\ldots+x^{r-1}) + x^r(1+\ldots+x^{r-1}) + \ldots + x^{(m-1)r}(1+\ldots+x^{r-1})) =$ $= (x-1)(1+\ldots+x^{r-1})(1+\ldots+x^{(m-1)r}) \vdots x^r - 1 \blacksquare$

Утверждение 2: Если f перестановочно с m и m', то f перестановочно с mm'

$$(f(x))^{mm'} = (f(x^m))^{m'} \pmod{x^r - 1, p}$$

Пусть $y = x^m$. Тогда

$$f(y)^{m'} = f(y^{m'}) \pmod{y^r - 1, p}$$

 $y^{r}-1=x^{mr}-1 \Rightarrow y^{r}-1$: $x^{r}-1$ (по замечанию) \Rightarrow тождество верно и по модулю $x^{r}-1$ (перешли к делителю). Получаем

$$(f(x))^{mm'} = f(y^{m'}) = f(x^{mm'}) \pmod{x^r - 1, p}$$