These last two equations can also be written in the form

$$\mathbf{A} = \sum_{i=1}^{M} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$
 (A.45)

$$\mathbf{A}^{-1} = \sum_{i=1}^{M} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}. \tag{A.46}$$

If we take the determinant of (A.43) and use (A.12), we obtain

$$|\mathbf{A}| = \prod_{i=1}^{M} \lambda_i. \tag{A.47}$$

Similarly, taking the trace of (A.43), and using the cyclic property (A.8) of the trace operator together with $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}$, we have

$$Tr(\mathbf{A}) = \sum_{i=1}^{M} \lambda_i. \tag{A.48}$$

We leave it as an exercise for the reader to verify (A.22) by making use of the results (A.33), (A.45), (A.46), and (A.47).

A matrix $\bf A$ is said to be *positive definite*, denoted by $\bf A \succ 0$, if $\bf w^T A \bf w > 0$ for all non-zero values of the vector $\bf w$. Equivalently, a positive definite matrix has $\lambda_i > 0$ for all of its eigenvalues (as can be seen by setting $\bf w$ to each of the eigenvectors in turn and noting that an arbitrary vector can be expanded as a linear combination of the eigenvectors). Note that having all positive elements does not necessarily mean that a matrix is that positive definite. For example, the matrix

$$\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right)$$
(A.49)

has eigenvalues $\lambda_1 \simeq 5.37$ and $\lambda_2 \simeq -0.37$. A matrix is said to be *positive semidefinite* if $\mathbf{w}^T \mathbf{A} \mathbf{w} \geqslant 0$ holds for all values of \mathbf{w} , which is denoted $\mathbf{A} \succeq 0$ and is equivalent to $\lambda_i \geqslant 0$.

The condition number of a matrix is given by

$$CN = \left(\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}\right)^{1/2} \tag{A.50}$$

where $\lambda_{\rm max}$ is the largest eigenvalue and $\lambda_{\rm min}$ is the smallest eigenvalue.