1								N-	-1				•	2-	4												
1)	D	∓ T:		Xc	L) :		2	,	K (1	n)	e	- J	८ग	54 K												
						,	,	h = (b																		
						^	V-1					; 2	π	5	(K-	4)											
		\ \	Kck-	· L 1	=	2		X	(n)	•	٦	•	•	`													
			,	~/		4	=6											_									
						M	-1				_	jz	πĸ	-k	+	j 2	T K	- 4									
					=	2	_	×	א		و		•				,										
																	,										
							/-1 -				•	211	n		j 2	# <u> </u>	<u>4</u>										
					=	5		X	(n)	. 6	_			e '			•										
						N=				L	~	_	/ for	L	1= (0, 1	l, 2	,									
						1/	-1			'	_ '					1	,	1									
					=							įŽπ	, <u>h</u>	-													
					-	۷:		X	(n)	<																
										:	7 -	n K	١,	*												_	
	X	* (<u>-</u>	/ \	=		N- 5	٠,	Kcnj		e d	Cu	1<															
		CK.	- 4)		1	720	,						./														
					ı	N-1 E =c			-	•	2	5	<u> </u>	 *													
				=		2	X	*		es	- 11	K															
					-	=6		• •	-																		
					'		- 1																		.		,
					,	,				(س)		5				ار د		1.	5.	b	ra	(U a	(1	. e d	(
							L)	x ((م	i	5	a	55		ا ر د		1.	Se	r	Pa	(U.	(1		(
							L)	x ((م	i	5	a	55				1.	5.	r	Pa	(Va	(,		(
				=			L)	x ((م	i	5	a	55		ه ما		1.	5.	•	Pa	(U a	le		(
				ε		/-1 	L)	x ((م	i	5	a	55				1.	5.	•	Pa	(U.	()			
				ε			L)	x ((م	i	5	a	55				1.	5.	•	Pa	(Va	()			
				ε			L)	x ((م	i	5	a	55				10	\$.	•	Pa	(Ve	(6		[
				=			L)	x ((م	i	5	a	55				10	\$.	•	Pa		U.	\(\left\)	. • •		
				ε			L)	x ((م	i	5	a	55				10	\$.	•	Pa	(\(\ell_{\omega}\)			
				ε			L)	x ((م	i	5	a	55				10	\$.	•	Pa	(\(\ell_{\omega}\)			
				E			L)	x ((م	i	5	a	55				10	5.	•	Pa			.(0			
				E			L)	x ((م	i	5	a	55				10	5.		Pa			.(0			
				E			L)	x ((م	i	5	a	55				10	5.		Pa			.(0			
				E			L)	x ((م	i	5	a	55				1.	5.		Pa			.(0			
				E			L)	x ((م	i	5	a	55				4.	5.		Pa			. ()			
				E			L)	x ((م	i	5	a	55				4.	5.		Pa			. ()			
				E			L)	x ((م	i	5	a	55				1.	5.		Pa						
				5			L)	x ((م	i	5	a	55				4.	5.		Pa						
				5			L)	x ((م	i	5	a	55				1.	S.		· Pa						

2)
$$x_{(n)} = \hat{x}$$
 $sin(2\pi f \cdot nT)$ $cik(T = \frac{1}{r})$

= 1 · $sin(2\pi \frac{440}{4000} + \frac{1}{r})$
 $x_{(0)} = 0$
 $x_{(1)} = sin(2\pi \frac{440}{4000} \cdot 2) = 0,368$
 $x_{(1)} = sin(2\pi \frac{440}{4000} \cdot 2) = 0,685$
 $x_{(1)} = sin(2\pi \frac{440}{4000} \cdot 2) = 0,685$
 $x_{(2)} = sin(2\pi \frac{440}{4000} \cdot 2) = 0,685$
 $x_{(3)} = \frac{1}{2} x_{(3)} \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{4}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{1}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{1}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{1}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{1}{3}} - 0,685 \cdot e^{-\frac{1}{2}2\pi \frac{2}{3}}$
 $x_{(4)} = 0 \cdot e^{-\frac{1}{2}2\pi \frac{0.1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{1}{3}} + 0,368 \cdot e^{-\frac{1}{2}2\pi \frac{1}{3}} + 0,368 \cdot e$

3)- AF=	1 = <u>F</u> = K =	48000 Hz = 4	16,9 Hz	
		is used became	se of: N < k	7
	: F= k. DF		1 36 10 0 11	
			for L= 1 , +1 50 Hz is and	e feguncy
(= 2	: F= 6.04	= = 93,8 Hz	30 HZ 18 and G	7.4
- ass	mig K=8:	112		
			Sc dropped =	
3)	K = 1029 =)	2-1=311	dropped	an Je

4)	Adva tages		Disadva Fages
-	very fast		- periodicity in fine down
	linea fearnes	resolution	is assured - widen factions are recessing
	inca fequecy	مل براء	ve c ?55-12
		0	
			- spectur is analyzed only
			for a set of (discrete)
			frequercies, dependis en DF
			- Cosonithnic Fegury
			vesolution e.g. for Bode
			plots or psychoacoustic
			measurements, are not
			straightfermed te
			eva linate

