Warshall算法解释

梁润泽 2021.3.26

Warshall算法

•问题:给定一个关系R,求它的传递闭包t(R)

关系R,关系矩阵B

R的传递闭包t(R)

Warshall算法

观察

- $< 2,1 > \in R$,因此 $< 2,1 > \in t(R)$
- < 2,4 > ∉ R,但2通过1作为桥梁到达了4,因此< 2,4 > ∈ t(R)

• Warshall算法:从R开始,依次考虑1、2、3、4、5的桥梁作用,逐步迭代到t(R)

关系R,关系矩阵 B_0

中间结果矩阵 B_1

- $B_0[2, 1] = 1$, $B_0[1, 4] = 1$, $B_1[2, 4] = 1$

中间结果矩阵 B_1

中间结果矩阵 B_2

- $B_1[3, 2] = 1$, $B_1[2, 1] = 1$, $B_1[3, 1] = 1$
- $B_1[3,2] = 1$, $B_1[2,4] = 1$, 因此 $B_2[3,4] = 1$ (2→4为第一步扩充)

中间结果矩阵 B_2

中间结果矩阵 B_3

观察

• 节点3没有桥梁作用

Warshall算法伪代码

令B[j,i]表示矩阵B第j行第i列的元素,

- (1) 令矩阵B = M(R);
- (2) 令 i=1, n=|A|; **外循环对列进行**
- (3) for j = 1 to nif $B[j, \underline{i}] = 1$ then for k = 1 to n $B[j, k] = B[j, k] \vee B[\underline{i}, k]$
 - **将第i行的元素加到第j行上(逻辑加)**
- (4) i=i+1;
- (5) if i \leq n then go to (3) else stop \coprod M (R^+) = B

代码运行示例

- (2) i=4
- (3) j=1 to 5(以j=1为例) if B[1,4]=1 then for k=1 to 5(以k=5为例) B[1,5]=B[1,5]VB[4,5]

- Warshall算法给出了正确的结果
- Warshall算法为什么正确?
- B_1 、 B_2 、 B_3 、 B_4 、 B_5 各代表什么含义?

Warshall算法: Step $2中 B_2$ 的含义

中间结果矩阵 B_1

中间结果矩阵 B_2

- $B_2[3,4] = 1$, 是因为3在 B_0 中能以 $\{1, 2\}$ 为桥梁到达4
- $B_2[3,5] = 0$, 是因为3在 B_0 中不能以 $\{1, 2\}$ 为桥梁到达5
- 注:为了简便,我们也称3在 B_0 中能以 $\{1\}$ 为桥梁到达2

Warshall算法: Step $2中 B_2$ 的含义的猜想

 $B_1[i,j]=1$ ⇔i在 B_0 中以 {1}为桥梁到达了j

 $B_2[i,j]=1⇔i在B_1中以{2}为桥梁到达了j$

结论

- $B_2[i, j]=1 \Leftrightarrow i \in B_0$ 中以 $\{1, 2\}$ 为桥梁到达了j
- i在B₀中以 {1}为桥梁到达了j

- $B_0[i, 2]=1$,且2在 B_0 中以 {1}为桥梁到达了j
- 或i在 B_0 中以 {1}为桥梁到达了2,且 B_0 [2,j]=1

Warshall算法: Step 5中 B_5 的含义

 $B_4[i, j]=1$ ⇔i在 B_0 中以 {1, 2, 3, 4} 为桥梁到达了j

 $B_5[i, j]$ =1⇔i在 B_4 中以 {5}为桥梁到达了j

性质

 $B_5[i, j]=1 \Leftrightarrow i 在 B_0$ 中以 $\{1, 2, 3, 4, 5\}$ 为桥梁到达了 $f \Leftrightarrow \langle i, j \rangle \in t(R)$

Warshall算法:文字版

- 设有限集合A中有n个元素,分别为 $\{a_1, a_2, ..., a_n\}$,关系R
- 我们说,以下情况, a_i 能通过 $\{a_1\}$ 作为中间节点到达 a_k :
 - (1) $\langle a_j, a_k \rangle \in R($ 不需要中间节点, a_j 直接能到达 a_k);
 - (2) $\langle a_j, a_1 \rangle \in R$,且 $\langle a_1, a_k \rangle \in R$,此时 a_1 作为联通 a_j 和 a_k 的中间节点
- •我们说,以下情况, a_j 能通过 $\{a_1,a_2\}$ 作为中间节点到达 a_k :
 - (1) a_i 能通过 $\{a_1\}$ 作为中间节点到达 a_k ,即
 - $(1.1) < a_i, a_k > \in R$
 - (1.2) $< a_j, a_1 > \in R, \underline{\square} < a_1, a_k > \in R$
 - (2) a_i 能通过 $\{a_1\}$ 作为中间节点到达 a_2 ,并且 a_2 能通过 $\{a_1\}$ 作为中间节点到达 a_k
 - (2.1) $\langle a_i, a_2 \rangle \in R, \langle a_2, a_k \rangle \in R$
 - (2.2) $\langle a_j, a_2 \rangle \in R$, $\langle a_2, a_1 \rangle \in R$, $\langle a_1, a_k \rangle \in R$
 - (2.3) $\langle a_i, a_1 \rangle \in R$, $\langle a_1, a_2 \rangle \in R$, $\langle a_2, a_k \rangle \in R$

Warshall算法:文字版

- 一般地,我们说,以下情况, a_j 能通过 $\{a_1, a_2, ..., a_{i-1}, a_i\}$ 作为中间节点到达 a_k :
 - a_j 能通过 $\{a_1, a_2, \dots, a_{i-1}\}$ 作为中间节点到达 a_k
 - a_j 能通过 $\{a_1, a_2, ..., a_{i-1}\}$ 作为中间节点到达 a_i ,且 a_i 能通过 $\{a_1, a_2, ..., a_{i-1}\}$ 作为中间节点到达 a_k
- 并且, $< a_j, a_k > \in t(R)$,当且仅当 a_j 能通过 $\{a_1, a_2, ..., a_{n-1}, a_n\}$ 作为中间节点到达 a_k
- 于是,我们把上述过程设计为递归算法,这就是Warshall算法

Warshall算法:文字版

令B[j,i]表示矩阵B第j行第i列的元素,

- (1) 令矩阵B=M(R);
- (2) 令 i=1, n=|A|; **外循环对列进行**
- (3) for j =1 to n if B[j, i]=1 then for k=1 to n B[j, k]=B[j, k] \vee B[i, k]

将第i行的元素加到第j行上(逻辑加)

- $(4) \quad \underline{i}=i+1;$
- (5) if i \leq n then go to (3) else stop \coprod M (R^+) = B

第(1)步时,仅当 $< a_i, a_k > \in R$ 时B[j,k]=1

第(3)步开始时,如果 a_j 能通过 $\{a_1, a_2, ..., a_{i-1}\}$ 作为中间节点到达 a_k ,则B[j,k]=1

第(3)步结束时,如果 a_j 能通过 $\{a_1,a_2,...,a_i\}$ 作为中间节点到达 a_k ,则B[j,k]=1