College Management System

Group Members

BT21CSE194

GYANBARDHAN

BT21CSE198

HIMANSHU SINGH

BT21CSE195

M AZEEM KHAN

BT21CSE202

YASH PATIDAR

Problem Statement

A college contains many departments. Each department can offer any number of courses. Many instructors can work in a department, but an instructor can work only in one department. For each department, there is a head, and an instructor can be head of only one department. Each instructor can take any number of courses, and a course can be taken by only one instructor. A student can enroll for any number of courses and each course can have any number of students. Requirements other than the above can be added.

Requirement Analysis

1 Admin

The admin has overall control and can perform all administrative tasks, including editing, deleting, and updating information across the entire system. This role is responsible for managing user accounts, overseeing departments, instructors, courses, students, and person details.

2 College Departments

The college consists of multiple departments, each with a unique department number and name.

Instructors and Courses

Instructors work in a single department and can offer multiple courses within their department.

4 Students and Courses

Students can enroll in multiple courses, and each course can have multiple students.

5 Person Details

Each person has a first name, last name, date of birth, and gender.

Assumptions

- Every department has a unique Department Number and Department Name.
- Every course has a globally unique Course ID and Course Name.
- A person in general (instructor or student) has a First Name, Middle Name (optional), Last Name (optional), Date of Birth, and Gender.
- A person may have one or more Phone Numbers.
- Every instructor, in addition, has a unique Instructor ID and Pay Scale.
- Every student, in addition, has a unique Student ID.
- O Both instructors and students have a saved Password Hash required for login.
- Every course has a count of the Hours per Week it is taken by its instructor.
- Every course associated with a student has a record of the Attendance and
 Marks obtained by the student in that course.

ER Diagram

Relational Schema Diagram

College Management System

Exam Schedule Academic Calender

Notice

- Notice of Implementation of Y Break Protocol and Installation of Namaste Yoga App
- NOTICE FOR WRITTEN TEST FOR NON-TEACHING POSITIONS (Ref: Advt. No.: IIITN/ADMIN/NTSR/2023-24/Rec-01 dated 15/04/2023)
- Chandrayaan-3 Maha Quiz
- 3rd CONVOCATION NOTICE
- Circular of Har Ghar Tiranga
- Report on NIRMAN Youth Program
- Short Video Competition on Implementation of NEP 2020
- 'YUVA PRATIBHA Singing and Painting Talent Hunt'

College Management System

PASSWORD

LOGIN

□ Remember Me

INSTRUCTOR

Computer Science

EDIT DEPARTMENT COURSES

Tausif Diwan

1001

CS103 Data Structures with Applications

5 students

25 classes

HEAD

Computer Science

SUBMIT

CS101	IT Workshop-I	1010	~
CS102	Application Programming	1002	~
CS103	Data Structures with Applications	1001	~
CS104	Object Oriented Programming	1005	v
CS105	Computer System Organisation	1008	~
CS106	Design and Analysis of Algorithms	1007	v
CS107	Software Engineering	1006	~
CS108	Operating Systems	1003	~
CS109	Design Principles of Programming	1010	~

STUDENT

LOGOUT X

Gyanbardhan

2001

Computer Sci	Computer Science		IT Workshop-I	
Total Classes: 25	Classes Attended: 2	24	Attendance: (96%
Internal Marks: 25	Paper Marks: 68		Total: 93	Grade Point: 10
Computer Sci	ence	CS103	Data Struct	ures with Applications
Total Classes: 25	Classes Attended: 2	14	Attendance:	56%
Internal Marks: 24	Paper Marks: 65		Total: 89	Grade Point: 9
Computer Sci	Computer Science		Object Ori	ented Programming
Total Classes: 25	Classes Attended: 2	24	Attendance:	96%
Internal Marks: 30	Paper Marks: 60		Total: 90	Grade Point: 10

INSTRUCTOR

LOGOUT X

BACK

Computer Science

Mayuri A. Digalwar

1005

CS104	Object Oriented Programming	Programming		25 classes	
CS110	Database Management Systems		5 students	25 classes	

INSTRUCTOR

Computer Science

SUBMIT

CS104	Object Oriented Programming	-	25 classes	+	
		, ()			

		Classes	Paper	Internal
2001	Gyanbardhan	24	60	30
2002	Azeem Khan	22	55	26
2003	Himanshu Singh	23	50	20
2004	Yash Patidar	12	60	22
2005	Abhishek Kumar Rana	16	65	24

Normalization

FIRST NORMAL FORM

In all tables, every attribute is atomic and takes only one value from its domain. Hence all are in their First Normal Form (1NF).

SECOND NORMAL FORM

Table	Super Key
DEPARTMENT	DeptNo
PERSON	PersonID
PHONE	PersonID
INSTRUCTOR	InstructorID
COURSE	CourseID
STUDENT	StudentID
UNDERTAKES	StudentID, Coursel

In all but the last table, there is only one attribute forming the super key. Hence, in all such tables, the super key is the candidate key. Therefore, the relations are in their Second Normal Form (2NF).

In table UNDERTAKES, the functional dependencies are:

(StudentID, CourseID) → Attendance

(StudentID, CourseID) → Marks

Removing either StudentID or CourseID cannot identify the Attendance and Marks uniquely. Hence, the super key is the candidate key. Therefore, the relation is in its Second Normal Form (2NF).

Third Normal Form

DEPARTMENT:

DeptNo →DeptNo

DeptNo → DeptName

DeptNo → Head

DeptName → Head

We can remove the transitive dependency

DeptNo →DeptName → Head.

Hence, new FDs are:

DeptNo → DeptNo

DeptNo →DeptName

DeptNo → Head

PERSON:

PersonID →PersonID

PersonID → FirstName

PersonID → MiddleName

PersonID → LastName

PersonID → DOB

PersonID → Gender

There are no transitive dependencies; relation is in

its Third Normal Form (3NF).

PHONE:

PersonID →PersonID

PersonID → PhNo

There are no transitive dependencies; relation is in

its Third Normal Form (3NF).

Third Normal Form

INSTRUCTOR:

InstructorID →InstructorID

InstructorID → PassHash

InstructorID → PersonID

InstructorID → PayScale

InstructorID → DeptNo

There are no transitive dependencies; relation is in its Third Normal Form (3NF).

COURSE:

CourseID →CourseID

CourseID → CourseName

CourseID → DeptNo

CourseID → InstructorID

CourseID → HrPerWeek

There are no transitive dependencies; relation is in its Third Normal Form (3NF).

STUDENT:

StudentID → StudentID

StudentID → PassHash

StudentID → PersonID

There are no transitive dependencies; relation is in its Third Normal Form (3NF).

UNDERTAKES:

(StudentID, CourseID)→StudentID, CourseID

(StudentID, CourseID)→ Attendance

(StudentID, CourseID)→ Marks

There are no transitive dependencies; relation is in its Third Normal Form (3NF).

