

Goi Eskola Politeknikoa

TRATAMIENTOS

Mondragon Goi Eskola Politeknikoa Mondragon Unibertsitatea

Goi Eskola Politeknikoa

ÍNDICE

- 1. Introducción
- 2. Definiciones
- 2. Tratamientos térmicos
- 3. Tratamientos superficiales

Introducción

1. Introducción

<u>Definición:</u> Son los procesos de calentamiento, tiempo de mantenimiento y enfriamiento que se llevan a cabo a determinadas temperaturas y condiciones, con el fin de proporcionar unas características adecuadas al material.

<u>Clasificación:</u> Dos tipos de tratamientos:

- * Tratamientos térmicos: Modifican la estructura del material, sin alterar la composición química.
- Tratamientos superficiales: Sufren cambios en la composición química.

- Obtener las características adecuadas para el uso.
- Cambiar las propiedades mecánicas dependiendo el uso.

1. Introducción

1

TRATAMIENTOS TÉRMICOS

No hay cambio en la composición química.

- 1. Temple
- 2. Revenido
- 3. Recocido
- 4. Normalización

2

TRATAMIENTOS SUPERFICIALES

La composición química de los materiales sufre cambios.

- 1. Cementación
- 2. Nitruración
- 3. Carbonitruración
- 4.Pavonado

3. Introducción

 Se pueden encontrar diferentes estructuras de átomos en materiales. Cubos, tetraedros,... Es la estructura cristalina.

- Los átomos cambian de posición dependiendo de la temperatura.
- Dependiendo del proceso de calentamiento y enfriamiento, la estructura cambiará.
- Es posible analizar estas estructuras según el diagrama Fe-C.

Definiciones

2.-Definiciones

DUREZA

El grado de resistencia que posee un material al ser rayado o penetrado por otro material. *Diamante*

• **DUCTILIDAD** (elasticidad y plasticidad)

La capacidad de un material para deformarse plásticamente. Se dice que un material que sufre grandes deformaciones antes de romperse es dúctil.

Bolsa de plástico

FRAGILIDAD

Frágil es un material que se rompe sin sufrir una deformación significativa. Cristal

TENACIDAD

La resistencia de un material a romperse, la energía que puede absorber antes de romperse. Para que el material sea rígido, debe tener alta resistencia y ductilidad. Hormigón, madera

DIAGRAMA DE TENSIÓN – DEFORMACIÓN:

Politeknikoa

Describe las propiedades mecánicas de los siguientes 3 materiales:

2.-Definiciones

Limite elástico:

La tensión máxima que un material puede soportar sin sufrir deformaciones permanentes.

Material 1:

DUCTILIDAD: MUY BAJO

FRAGILIDAD: **MUY ALTO**

TENACIDAD: **BAJO**

RESISTENCIA: ALTO

Material 2:

DUCTILIDAD: ALTO

FRAGILIDAD: BAJO

TENACIDAD: ALTO

RESISTENCIA: ALTO

Material 3:

DUCTILIDAD: MUY ALTO

FRAGILIDAD: **MUY BAJO**

TENACIDAD: BAJO

RESISTENCIA: BAJO

1

TRATAMIENTOS TÉRMICOS

Se utiliza la temperatura para cambiar la microestructura interna del material pero sin sufrir ningún cambio en la composición química.

Consiste en calentar el material a una temperatura determinada, mantenerlo durante un tiempo y luego enfriarlo.

Calentar

Mantener

Enfriar

https://www.interempresas.net/TTS/Articulos/168318-Criterios-para-elegir-el-mejor-tratamiento-termico-industrial-segun-cada-necesidad.html

- No cambia la composición química
- Cambia la estructura molecular mejorando las propiedades
- El templado crea tensiones en el material
- Las tensiones desaparecen o disminuyen mucho con el recocido, normalización y revenido.
- Aumenta la resistencia frente a la corrosión

https://www.youtube.com/watch?v=RGI1MhPCsZY&t=40s

15

TEMPLE

OBJETIVO:

- Aumentar la dureza
- Aumentar la resistencia mecánica

¿COMO?

- Calentar a muy alta temperatura (cada calidad de acero (C%) requerirá su propia temperatura y sus propios tiempos: 850°C
- Mantener a una temperatura alta por un tiempo
- Enfriar muy rápido
- ¿Cómo enfriar? Agua, aceite, aire a presión...

INCONVENIETES:

- Surgen tensiones internas y esto hace que el material sea frágil.
- Después del templado, el núcleo se ablanda y gana rigidez superficial.

APLICACIONES:

- Aleaciones del acero: Se mejora la dureza
- Rodamientos: Resistencia al desgaste + dureza
- Piezas de unión
- Arranque de viruta
- Casquillos para pistones
- Engranajes
- •

https://www.youtube.com/watch?v=eYLO_j9I2Mc

Es un proceso complementario del temple, esto es, se aplica sobre materiales que se sometieron a un proceso de temple.

OBJETIVO:

- Aumentar la tenacidad
- Aumentar la ductilidad
- Reducir tensiones internas
- Aumentar la capacidad de absorber la energía de choque

¿CÓMO?

- Calentar a una temperatura más baja que la utilizada en el temple
- Mantener a esa temperatura por un tiempo
- Enfriamiento controlado

- Disminuir la dureza.
- Reducir las tensiones internas
- Aumentar la capacidad de deformarse plásticamente
- Lograr regularidad en las propiedades mecánicas

A CONSIDERAR DURANTE EL PROCESO:

- Estado inicial de la pieza
- Temperatura de revenido
- Duración de revenido
- Tamaño de la pieza (el tiempo está directamente relacionado)

TIPOS:

- Baja temperatura (160-300°C): Acero para herramientas de trabajo en frio 60HRC (Rockwell C)
- En temperaturas entre 300-500°C: Aceros para muelles 45HRC
- >500°C: Aceros para herramientas de trabajo en caliente 300HB-65HRC

Tornillos, tuercas, arandelas...

Goi Eskola Politeknikoa

REVENIDO

Grado	Cont. de C, %	Dureza HRC después del revenido durante 2 h, para diferentes temperaturas (°C)									Tratamiento térmico
		205	260	315	370	425	480	540	595	650	
Acero a	carbono	templ	ado en	agua	0	•	di 1		ŽII.	. 7	150
1030	0.30	50	45	43	39	31	28	25	22	15	Normalizado a 900°C temple en agua 830-845 °C promedio punto de rocío t,16 °C
1040	0.40	51	48	46	42	37	30	27	22	14	
1050	0.50	52	50	46	44	40	37	31	29	12	
1060	0.60	56	55	50	42	38	37	35	33	26	Normalizado 885 °C temple agua 830-855 °C Promedio punto de rocío,7 °C
1080	0.80	57	55	50	43	41	40	39	38	32	
1095	0.95	58	57	52	47	43	42	41	40	33	
1137	0.40	44	42	40	37	33	30	27	31	21	Normalizado 900 °C temple en agua desde (830-855 °C);promedio punto de rocío,13°C
1141	0.40	49	46	43	41	38	34	28	23	14	
1144.	0.40	55	50	47	45	39	32	29	25	17	
Acero a	leado ten	nplado	en agu	a		0	0.		800	· ·	20
1330	0.30	47	44	42	38	35	32	26	22	16	Normalizado a 900 °C templado en agua desde 800-815 °C; promedio punto de rocio, 16 °C
2330	0.30	47	44	42	38	35	32	26	22	16	
3130	0.30	47	44	42	38	35	32	26	22	16	
4130	0.30	47	45	43	42	38	34	32	26	22	Normalizado a 885 °C templado en agua desde 800-855 °C Promedio punto de rocío.16 °C
5130	0.30	47	45	43	42	38	34	32	26	22	
8630	0.30	47	45	43	42	38	34	32	26	22	
Acero a	leado ten	nplado	en ace	ite			de e	•	02		
1340	0.40	57	53	50	46	44	41	38	35	31	Normalizado a 870 °C Templado en aceite desde (830-845) °C ; Promedio punto de rocío,16 °C
3140	0.40	55	52	49	47	41	37	33	30	26	
4140	0.40	57	53	50	47	45	41	36	33	29	
4340	0.40	55	52	50	48	45	42	39	34	31	Normalizado a 870 °C Templado en aceite desde (830-845) °C Promedio punto de rocio,13 °C
4640	0.40	52	51	50	47	42	40	37	31	27	
8740	0.40	57	53	50	47	44	41	38	35	22	
4150	0.50	56	55	53	51	47	46	43	39	35	Normalizado a 870 °C Templado en aceite desde (830-870) °C Promedio punto de rocío, 13 °C
5150	0.50	57	55	52	49	35	39	34	31	28	
6150	0.50	58	57	53	50	46	42	40	36	31	
8650	0.50	55	54	52	49	45	41	37	32	28	Normalizado a 870 ° Templado en aceite desde (815-845) °C Promedio punto de rocío 13 °C
8750	0.50	56	55	52	51	46	44	39	34	32	
9850	0.50	54	53	51	48	45	41	36	33	30	

Se aplica sobre materiales que se sometieron a un proceso de temple.

OBJETIVO:

- Disminuir la dureza, para facilitar la maquinabilidad
- Aumentar la ductilidad

¿CÓMO?

- Calentar a temperatura muy alta
- Mantener en temperatura alta
- Enfriar lento, controladamente dentro del horno
- En el recocido normal, el material se calienta 2-3h entre 750-980ºC dependiendo del porcentaje de carbono.
- Dependiendo del grosor de la pieza el tiempo se puede acortar o alargar.

APLICACIONES:

Piezas para mecanizar, engranajes, ejes...

NORMALIZACIÓN

OBJETIVO:

- Disminuir la dureza
- Aumentar la ductilidad
- Devolver las piezas trabajadas a su estado original (por ejemplo, después de pasar por la forja)
- Eliminar tensiones internas
- Afinar el grano
- El proceso se lleva a cabo en las piezas antes del templado, como preparación de la pieza

¿CÓMO?

- Calentar a temperatura muy alta 800ºC (50ºC por encima de la temperatura crítica)
- Mantener en temperatura alta
- Enfriar a una velocidad "media" (siempre al aire)
 (Vtemple > Vnormalización > Vrecocido)

Politeknikoa

4

Tratamientos superficiales

TRATAMIENTOS SUPERFICIALES

Las reacciones químicas modifican la composición química de los materiales.

Son tratamientos que se utilizan cuando se requiere una elevada dureza superficial y una buena dificultad o rigidez (tenacidad).

TIPOS DE TRATAMIENTOS SUPERFICIALES

- CEMENTACIÓN
- NITRURACIÓN
- PAVONADO
- GALVANIZADO

CEMENTACIÓN

OBJETIVO:

- Aumentar la dureza superficial en aceros de menos de 0,2%C.
- Buena resistencia al desgaste (por ejemplo, en algunos tipos de engranajes, ej. motor de arranque coche)
- Núcleo con bajo %C y superficie dura

¿CÓMO?

- Aumentando el número de C en la superficie y dejando la composición interna tal y como está.
- Dos procesos: carburación superficial y temple +revenido
- Se usa cementante: una materia rica en carbono
- Después de la cementación, siempre se aplica el templado y revenido

Temperatura de mantenimiento de los procesos se realiza por tamaño muestral (900ºC aprox):

Normalmente 0,2-1,5 mm

1-8h

https://www.youtube.com/watch?v=Md62LmCAcCO

CEMENTACIÓN

APLICACIONES:

En piezas que transmiten mucho esfuerzo y sufren mucho desgaste:

- En elementos de motor y máquina.
- En piezas de automóviles.

Engranajes, levas, coronas, ruedas dentadas, articulaciones en carda, tallos de cilindro...

NITRURACIÓN

Consiste en introducir nitrógeno en la superficie de la pieza.

OBJETIVO:

- En materiales con C% normalmente alto
- Se consigue una superficie muy dura
- Aumentar la resistencia a la corrosión
- Reducir el coeficiente de fricción
- Aumentar la resistencia al desgaste
- Resistencia a la fatiga

¿CÓMO?

- Calentar 500-580°C
- Introducir nitrógeno. Atmósfera de amoniaco que al descomponerse desprende nitrógeno.
- Mantener a alta temperatura
- Enfriar

NITRURACIÓN

APLICACIÓN:

- En piezas sometidas a fuerte fricción y carga.
- Pistas de rodamiento, árboles de lava, sinfín engranajes, camisas cilindro, herramientas de forja (moldes)

https://www.youtube.com/watch?v=XsWoJLAhUiU

Crear una capa controlada de óxido, capa protectora contra la corrosión

OBJETIVO:

Aumentar la resistencia a la corrosión

¿CÓMO?

2 formas:

- En frío:
 - o Meterlo en ácido. La más utilizada pero no la más adecuada.
- En caliente:
 - Calentar 450°C
 - Meter en aceites especiales
 - Crear una capa más fuerte y dura más.

GALVANIZADO

OBJETIVO:

Aumentar la resistencia a la corrosión

¿CÓMO?

Recubrimiento de la pieza con membranas de zinc.

- 1 Calentar 440-460°C metiendo en zinc fundido
 - Se consiguen capas más sólidas
- 2 Zincado: añadir el zinc electrolíticamente

https://www.youtube.com/watch?v=yFElu7SuV2s

5

Ejemplo

ENGRANAJE

1. Comprar la barra de acero **RECOCIDO.**

Facilita el mecanizado.

2. Mecanizar +
TEMPLE + REVENIDO
Aumentar la dureza

3. CEMENTACIÓNAumentar la dureza superficial

Olatz Insausti
oinsausti@mondragon.edu
Iraitz Ferreira
iferreira@mondragon.edu
Aitor Urzelai

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 info@mondragon.edu Eskerrik asko Muchas gracias Thank you