Aprendizagem de Máquina

Regressão Logística

Prof. Leandro B. Marinho lbmarinho@dsc.ufcg.edu.br

Análise de Sentimento

Almoco do Dia das Maes

Sofrivel. Um pedido foi feito e nada de ser atendido. 2 vez que acontece isso. Uma lasqueira. Nota zero.

Publicada em 18 de março de 2020 🔲 via dispositivo móvel

Maravilhosa, ótimo atendimento

Maravilhosa, ótimo atendimento Márcio Diego. Excelente atendimento Antencioso, colaborativo, educado

Classificador de Sentimento

Acomida estavarotima.
$$f()$$
 $+,-$

Análise de Sentimento

A comida estava boa e o ambiente é ótimo.

A carne estava horrível e a conta veio errada, simplesmente horrível.

Esse restaurante é ótimo!

	#ótimo	#horrível	sentimento
	1	0	+
	0	2	-
,	1	0	+

Atributo	Coeficiente
x_1	1.0
x_2	-1.5

 $Score(\mathbf{x}) = 1.0 * x_1 - 1.5 * x_2$

Notação

- $(x, y): x \in \mathbb{R}^{n_x}, y \in \{0, 1\}$
- n_x : número de atributos.
- m exemplos de treino: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- $X \in \mathbb{R}^{n_X \times m}$, $Y \in \mathbb{R}^{1 \times m}$

- Modelo: $\hat{y}^{(i)} = \delta(Score(x^{(i)}))$
- $Score(\mathbf{x}^{(i)}) = b + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_{n_x} x_{n_x}^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + b$

- Dado x, queremos $\hat{y} = P(y = 1 | x)$.
- Parâmetros: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$
- Saída: $\hat{y} = \sigma(w^T x + b)$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Se z for grande, $\sigma(z) \approx \frac{1}{1+0} = 1$
- Se z for um número negativo grande,

$$\sigma(z) = \frac{1}{1 + e^{-z}} \approx \frac{1}{1 + NumGrande} \approx 0$$

- Modelo: $\hat{y}^{(i)} = \sigma(Score(x^{(i)}))$
- $Score(x^{(i)}) = b + w_1 x_1^{(i)} + w_1 x_2^{(i)} + \dots + w_1 x_{n_x}^{(i)} = w^T x^{(i)} + b$

Função de Custo

- Dado $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$, queremos $\hat{y}^{(i)} \approx y^{(i)}$.
- Função de Perda: $\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} + (1 y) \log(1 \hat{y}))$
- Se y = 1: $\mathcal{L}(\hat{y}, y) = -\log \hat{y}$

Função de Custo

- Dado $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$, queremos $\hat{y}^{(i)} \approx y^{(i)}$.
- Função de Perda: $\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} + (1 y) \log(1 \hat{y}))$
- Se y = 0: $\mathcal{L}(\hat{y}, y) = -\log(1 \hat{y})$

Função de Custo

- Dado $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$, queremos $\hat{y}^{(i)} \approx y^{(i)}$.
- Função de Perda: $\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} + (1 y) \log(1 \hat{y}))$
- Função de Custo:

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Referências

- Especialização em Machine Learning da Universidade de Washington:https://www.coursera.org/specializations/machine-learning
- Especialização em Deep Learning do Andrew Ng: https://www.coursera.org/specializations/deep-learning?