Using Impala For Variant Pipelines

Summer Elasady and Denise Mauldin 11-19-2015

Connect!

GitHub tutorials and PowerPoint:

https://github.com/summerela/impala training/

Agenda

- I. What is Impala?
 - I. Use Cases
 - II. System Structure
 - III. What's available?
- II. Connecting to Impala
 - I. Hue Web Interface
 - II. Impala Shell
 - III. R
 - IV. Python
- III. Creating Queries
- IV. Sample Pipelines
- V. Getting Help

Use Cases: Impala in the real world

- Locate and annotate variants based on:
 - Pathogenicity
 - Gene region
 - Allele frequency
- Clarity2 Challenge
 - ACMG actionable genes
 - Pathogenic
- Candidate Script
 - Centralized annotation of candidate variants
- Newborn Screening Genes
 - Rare variants
 - Pathogenic

Revolutionizing Science. Enhancing Life.

Store Files:

- Variants
- Reference DB's
- Analysis results

Raw VCF file transformed and uploaded to HDFS:

```
##tıletormat=VCFv4.1
##fileDate=20150819
 ##source=bin/makeVCF.pl
 ##reference=file:///proj/famgen/resources/Kaviar-150812-ISB/bin/../tabixedRef/hg19.gz
##version=<Kaviar-150812 (hg19)>
##kaviar_url=<http://db.systemsbiology.org/kaviar>
 #publication=<Glusman G, Caballero J, Mauldin DE, Hood L and Roach J (2011) KAVIAR: an accessible system for testing SNV novelty. Bi
oinformatics, doi: 10.1093/bioinformatics/btr540>
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele Count">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in data sources">
##INFO=<ID=END, Number=., Type=Integer, Description="End pumber of alleles in data sources">
##INFO=<ID=END, Number=., Type=Integer, Description="End pumber of alleles in data sources">
##INFO=<ID=DS,Number=A,Type=String,Description="Data Sources containing allele">
 #CHROM POS
                                                                 FILTER INFO
                                 REF
                                           ALT
          10001
                                                                            AF=0.0000384:AC=1:AN=26028:DS=SS6004475
          10002
                                           C,T
                                                                            AF=0.0001153.0.0000384:AC=3.1:AN=26028:DS=HGDP00927|HGDP00998|HGDP01284.HGDP0
1029
          10002
                                                                            AF=0.0000384; AC=1; AN=26028; DS=HGDP00521
           10003
                                                                            AF=0.0000384,0.0000768;AC=1,2;AN=26028;DS=HGDP01284,HGDP00521|HGDP00927
                                           C,T
           10004
                                                                            AF=0.0000384:AC=1:AN=26028:DS=HGDP01284
           10018
                                                                            AF=0.0000384:AC=1:AN=26028:DS=HGDP00998
           10019
                     rs775809821
                                                                                       AF=0.0000384; AC=1; AN=26028; END=10020; DS=Malay
```


Read as a table by impala:

Data sample for kaviar

☑ View in Metastore Browser

dhrom	♦ pos	♦ stop	♦ rs_id	♦ ref	♦ alt	♦ qual	♦ filter	allele_freq	allele_cnt	allele_num	sources
10	98917931	None	rs75578462	С	T	None	None	0.053711399436	1398	26028	ADNIJGMIAK9JGS000009930JGS000011
10	98917981	None	rs545362632	С	T	None	None	0.000230499994359	6	26028	phase3-MSL
10	98917985	None	rs17112469	Т	С	None	None	0.106577500701	2774	26028	!Gubi ADNI Desmond Tutu GMIAK6 GMI
10	98918018	None	rs746271737	G	A	None	None	3.84000013582e-05	1	26028	UK10K
10	98918073	None	rs756450057	T	С	None	None	3.84000013582e-05	1	26028	UK10K

SQL – Structured query language

SELECT columns FROM database.table_name WHERE parameters

Interact with impala to:

- Filter
- Locate
- Annotate

Database Structure

Platform Reference **Variants** •Illumina Gene Based •CGI Methylation Data **Region Based RNAseq Position Based ETL** log **Custom Sets**

Product

Metadata

- •ITMI
- File
- Subject

Benefits

- Consistency
 - Normalized Data
 - 1-based coordinates
 - Universal Column Names
- Speed
 - Quickly run queries across thousands of genomes

What's Available: Variants

Reference Sources

Duplications

Revolutionizing Science. Enhancing Life

Pros:

- Easy, web based, quick
- Easy to do query testing and EXPLAIN plan

Cons:

- Cuts off results inconsistently at 100,000 rows
- AJAX connection issues:
 - Connection drops
 - Canceling queries

Pros:

- Fast
- Efficient

Cons:

• Less intuitive and friendly interface

ODBC driver

ODBC driver

RODBC

Impyla Ibis

Hue Interface

ISB Impala Login:

Login to your impala web interface

Hue Tutorial:

https://github.com/summerela/ impala training/blob/master/using hue.pdf

Connecting with impala-shell

Tutorial:

https://github.com/summerela/impala_training/blob/master/impala_shell.ipynb

Connecting with Python

Python:

https://github.com/summerela/impala training

Click on the 'launch binder' icon

```
launch binder
```

– Click on connect_python.ipynb

Connecting with R

- R:
 - Launch R:
 - Launch your R web interface
 - Tutorial:

https://github.com/summerela/impala training/blob/master/connect with R.md

– Script:

https://github.com/summerela/impala_training/blob/master/connect_R.R

Building Queries

- Choose your interface
- Follow along (and copy/paste queries):
 https://github.com/summerela/impala_training/blob/master/building_queries.md

Basic Pipeline

- 1. Connect to impala
- 2. Input genes of interest
- 3. Input subject id's of interest
- 4. Annotate
- 5. Filter
- 6. Export results

https://github.com/summerela/impala training/blob/master/variant pipeline python.ipynb

