

The impact of shading on BIPV energy yield and building energy demand

Tamu Suttarwala

Objectives

To provide a more detailed estimation of building energy demand

To identify locations with high BIPV potential for maximum yield

To predict shading impact on account of potential construction in the future

Literature study

On studies of shading in literature:

- Some algorithms too simple, some too complicated
- Smaller spatial resolution
- Either PV or BES at a time, not both

Research questions

1: What is the **effect of shading** by surrounding buildings on solar potential?

2: What is the impact on building energy performance and BIPV output as a result of shading?

3: How does **shading and its impact vary**with varying certain
geometrical features of
surrounding buildings?

Shading Algorithm

Shading verification

BEM & BIPV

Case Study: Corporate Village

Façade height, length, distance, orientation, angular position

Results

Shading verification – EnergyPlus vs Algorithm M

Difference (UNSHADED): Direct = -0.43% | Sky-Diffuse = 2.91%

Difference (SHADED): Direct = 0.33% | Sky-Diffuse = -3.3%

Results

BEM verification

Difference in Annual cooling demand: 0.24%

Difference in Annual heating demand: 1.68%

Results

Corporate Village - Irradiation

	Unshaded Global Irradiation = 633.41 kWh/m2-year														
Height 30m	589.4	597.4	603.8	608.5	611.9	621.5	621.4	621.3	621.2	621.1	621	621	620.9	620.9	620.8
	572.2	581.7	588.7	594.2	598.4	613.8	613.5	613.5	613.3	613.3	613.5	613.8	614	614.3	614.5
	557.2	566.2	572.3	578.2	582.8	603.6	603.3	603.5	603.8	604.4	604.6	604.2	603.3	601.8	600.9
	539.4	547.3	554.6	560.1	564.3	590.6	590.7	590.8	590.2	589.2	588.4	588.2	588.3	587.4	586.5
	520.5	527.2	532.8	537.9	544.1	574.6	573	572.7	573.4	573.1	573.1	571.7	571	569.1	567.7
	498	505.8	511.6	516.1	521.7	556.5	555.7	555.2	554.9	554.3	552.9	551	549.7	549.2	549.6
	478.9	485.6	490.5	495.4	500.8	536.7	535.8	535.2	534.2	533	531.2	531.9	532.5	533.1	534.6
	459.5	464.1	470.5	475.6	479.7	516.1	514.5	513.5	513.5	513.7	513.4	515	517	517.1	517.8
	442.1	446.3	450.5	453.6	457.5	494.6	493.8	494.2	495.2	495.9	496.6	498	499.2	499.5	499.3
	420.8	425.9	430	434.3	437.2	475.4	476.6	476.3	477.6	479	478.6	480	481.5	482	481.9
		Façade Length 45m													

29.5% reduction

Corporate Village: BES without blinds

Corporate Village: BES with blinds

Corporate Village: BIPV

Corporate Village: BIPV partial shading

Results

3: How does shading and its impact vary with varying certain geometrical features of surrounding buildings?

Sensitivity Analysis

Decrease distance of surrounding buildings

Increase height of surrounding buildings

Sensitivity Analysis

Irradiation drops by 5 kWh/m2-year per meter increase in height

[No blinds]

Cooling demand drops
by 0.71 kWh/m2-year per
meter increase in height

[With blinds]
Cooling demand drops
by 0.06 kWh/m2-year per
meter increase in height

BIPV yield drops by1.23 kWh/year permeter increase in height

Irradiation drops by **5.5** kWh/m2-year per meter decrease in distance

[No blinds]

Cooling demand drops by

0.70 kWh/m2-year per
meter decrease in distance

[With blinds]

Cooling demand drops by

0.07 kWh/m2-year per
meter decrease in distance

BIPV yield drops by **1.60** kWh/year per meter decrease in distance

Conclusion

- For office C1 close to ground: reduction in irradiation= 29.5%; reduction in cooling demand= 27.6% w/o blinds, 7.7% w/ blinds; reduction in BIPV yield= 37.3%
- For other offices too, proportionality of energy systems to irradiation holds true

Step towards a comprehensive framework for shading impact assessment on important energy systems

Select location → Collect data → Simulate!

Possibilities for Future Work:

- Automating data collection
- Improving shading algorithm (irregular shapes, reflections)
- Assessment of Economic potential

Thank You

Tamu Suttarwala