

MATHEMATICS EXTENSION 2

4 UNIT MATHEMATICS

TOPIC 3: CONICS

3.3 THE RECTANGULAR HYPERBOLA

A hyperbola for which the **asymptotes** are **perpendicular is** a **rectangular hyperbola** and is also called an equilateral hyperbola or right hyperbola. This occurs when the semimajor a and semiminor b axes are equal, a = b.

equation
$$x^2 - y^2 = a^2$$
 rectangular hyperbola opening to the left and right

eccentricity
$$c^2 = a^2 + b^2$$
 $a = b$ $c = a\sqrt{2}$ $e = \frac{c}{a} = \sqrt{2}$

directrix
$$x = \pm \frac{a^2}{c} = \pm \frac{a}{\sqrt{2}}$$

asymptotes
$$y = \pm x$$

Example: Verify the information shown in the figure below

$$a = 5 \qquad b = 5 \qquad c = 7.07$$

$$P(x, y) = (7.5, 5.59)$$

$$A_1(x, y) = (-5, 0) \qquad A_2(x, y) = (5, 0)$$

$$F_1(x, y) = (-7.07, 0) \qquad F_2(x, y) = (7.07, 0)$$

$$D = (3.54, 5.59)$$

$$eccentricity \quad e = 1.41$$

$$directrices \ 1: \ x = -3.54 \qquad directrices \ 2: \ x = 3.54$$

$$slope \ tangent \ M_1 = 1.34 \qquad slope \ normal \ M_2 = -0.745$$

$$intercept \ tangent \ B_1 = -4.47 \qquad intercept \ normal \ B_2 = 11.2$$

$$T \ tangent \ cross \ X-axis: \ x_T = 3.33 \qquad N \ normal \ cross \ X-axis: \ x_N = 15$$

distances: $PF_1 = 15.6$ $PF_2 = 5.61$ $|PF_1 - PF_2| = 10$

distances: $PF_2 = 5.61$ PD = 3.96 $PF_2 / PD = 1.41$

 $x_p^2 / a^2 - y_p^2 / b^2 = 1$ asymptotes $y = 1 \times a$ asymptotes $y = -1 \times a$

Rectangular hyperbola opening in the first and third quadrants has the Cartesian equation

$$x y = \frac{a^2}{2} \qquad y = \frac{a^2/2}{x}$$

$$x^{2} - y^{2} = a^{2}$$

 $a = \sqrt{2} \implies x^{2} - y^{2} = 2 \quad y = \pm (x^{2} - 2)$

Rotate graph 45° anticlockwise to give plot on right

$$x y = \frac{a^2}{2} \quad y = \frac{a^2/2}{x}$$

$$a = \sqrt{2} \quad \Rightarrow \quad x y = 1 \quad y = 1/x$$

Rotate graph 45° iclockwise to give plot on right

Example: Verify the information shown in the figure below $(x^2 - y^2 = 2)$ $a = b = \sqrt{2}$

a = 1.41 b = 1.41 c = 2

P(x, y) = (7.5, 7.365)

$$A_1(x, y) = (-1.41, 0)$$
 $A_2(x, y) = (1.41, 0)$

$$A_2(x, y) = (1.41, 0)$$

$$F_1(x, y) = (-2, 0)$$
 $F_2(x, y) = (2, 0)$

$$F_2(x, y) = (2, 0)$$

$$D = (1, 7.365)$$

eccentricity e = 1.41

directrices 1: x = -1

directrices 2: x = 1

slope tangent $M_1 = 1.02$ slope normal $M_2 = -0.982$

intercept tangent $B_1 = -0.272$ intercept normal $B_2 = 14.7$

T tangent cross X-axis: $x_T = 0.267$ N normal cross X-axis: $x_N = 15$

distances: $PF_1 = 12$ $PF_2 = 9.19$ $|PF_1 - PF_2| = 2.83$

distances: $PF_2 = 9.19$ PD = 6.5 $PF_2 / PD = 1.41$

 $x_p^2 / a^2 - y_p^2 / b^2 = 1$ asymptotes $y = 1 \times a$ asymptotes $y = -1 \times a$

Example: Verify the information shown in the figure below $(x \ y = 1 \ y = 1/x \ a = b = \sqrt{2})$

The vertices A_1 and A_2 can be found from the solution of the equations

$$y=1/x$$
 and $y=x$ \Rightarrow $x=1$ $y=1$ and $x=-1$ $y=-1$

The Cartesian coordinates are $A_1(-1, -1)$ and $A_2(1,1)$

The parameter a is equal to the distance OA_2 $a = \sqrt{1^2 + 1^2} = \sqrt{2}$

For a rectangular hyperbola $a = b = \sqrt{2}$ $c^2 = a^2 + b^2$ \Rightarrow c = 2

The focal length is c = 2 (distance $F_1 = F_2 = 2$), therefore, the Cartesian coordinates of F_1 and F_2 are

$$F_1(-\sqrt{2}, -\sqrt{2})$$
 and $F_2(\sqrt{2}, \sqrt{2})$

The eccentricity
$$e$$
 is $e = \frac{c}{a} = \frac{2}{\sqrt{2}} = \sqrt{2}$

ROTATION OF AXES

The equation for the rectangular hyperbola $xy = a^2/2$ is the hyperbola $x^2 - y^2 = a^2$ referred to an XY coordinate system that has been rotated anticlockwise through an angle of 45°.

Suppose that a set of XY-coordinate axes has been rotated about the origin by an angle θ , where $0 < \theta < \pi/2$, to form a new set of X'Y' axes. We would like to determine the coordinates for a point P in the plane relative to the two coordinate systems.

From the two right angle triangles shown in the figure, we can give the coordinates of the point P in Cartesian and polar coordinates for both sets of axes.

$$P(x,y)$$

$$x = R\cos(\theta + \phi) = R\cos\theta\cos\phi - R\sin\theta\sin\phi$$

$$y = R\sin(\theta + \phi) = R\sin\theta\cos\phi + R\cos\theta\sin\phi$$

$$P(x',y')$$

$$x' = R\cos(\phi)$$

$$y' = R\sin(\phi)$$

$$x = x'\cos\theta - y'\sin\theta$$

$$y = x'\sin\theta + y'\cos\theta$$

$$x\cos\theta = x'\cos^2\theta - y'\sin\theta\cos\theta$$

$$y\sin\theta = x'\sin^2\theta + y'\sin\theta\cos\theta$$

$$x' = x\cos\theta + y\sin\theta$$

$$y' = -x\sin\theta + y\cos\theta$$

Coordinate Rotation Formulas If a rectangular XY coordinate system is rotated through an angle θ to form an X'Y' coordinate system, then a point P(x, y) will have coordinates P(x', y') in the new system, where (x, y) and (x', y') are related by

$$x = x'\cos\theta - y'\sin\theta$$
 $y = x'\sin\theta + y'\cos\theta$
 $x' = x\cos\theta + y\sin\theta$ $y' = -x\sin\theta + y\cos\theta$

Example

Show that the graph of the equation $xy = a^2/2$ is a hyperbola by rotating the XY axes through an angle of $\pi/4$ rad (45°).

Solution

Denoting a point in the rotated system by (x', y'), we have

$$x = x'\cos\theta - y'\sin\theta$$
 $y = x'\sin\theta + y'\cos\theta$
 $\theta = \pi/4 \text{ rad } \sin\theta = 1/\sqrt{2} \cos\theta = 1/\sqrt{2}$

$$x y = \left(\frac{1}{\sqrt{2}}\right) (x' - y') \left(\frac{1}{\sqrt{2}}\right) (x' + y')$$
$$x y = \frac{1}{2} (x'^2 - y'^2) = \frac{a^2}{2}$$

$$x'^2 - y'^2 = a^2$$

In the X'Y' coordinate system, then, we have a standard position hyperbola whose asymptotes are $y' = \pm x'$.

The constant a is the distance from the origin O(0, 0) to one of the vertices (A₁ or A₂) of the hyperbola.

The constant c is the distance from the origin O(0, 0) to one of the focal points (F₁ or F₂).

The constant d is the length of the perpendicular line joining a point (D_1 or D_2) on one of the directrices to the origin O(0, 0).

The transformation of points and lines between the X'Y' and XY Cartesian coordinate systems is done by using the relationships

$$\theta = \pi / 4 \text{ rad} = 45^{\circ}$$

$$x = \frac{1}{\sqrt{2}} (x' - y') \qquad y = \frac{1}{\sqrt{2}} (x' + y')$$

$$x' = \frac{1}{\sqrt{2}} (x + y) \qquad y' = \frac{1}{\sqrt{2}} (-x + y)$$

Vertex A₂

X'Y' axes
$$A_2(a, 0)$$
 $x' = a$ $y' = 0$
XY axes $A_2(a / \sqrt{2}, a / \sqrt{2})$ $x = a / \sqrt{2}$ $y = a / \sqrt{2}$

Focal Point F₂
$$c = \sqrt{2} a$$

X'Y' axes F₂($\sqrt{2} a$, 0) $x' = \sqrt{2} a$ $y' = 0$
XY axes F₂(a , a) $x = a$ $y = a$

Point D₂ on directrix
$$d = a / \sqrt{2}$$

X'Y' axes $D_2(a / \sqrt{2}, 0)$ $x' = a / \sqrt{2}$ $y' = 0$
XY axes $D_2(a / 2, a / 2)$ $x = a / 2$ $y = a / 2$

Asymptotes

$$X'Y'$$
 axes $y' = x'$ $y' = -x'$

$$XY \ \ \text{axes} \qquad x = 0 \qquad \quad y = 0$$

Directrices

X'Y' axes
$$x' = -a/2$$
 $y' = 0$ $x' = a/2$ $y' = 0$

$$x' = a/2$$
 $y' = 0$

$$XY \quad axes \qquad y = -x + a$$

$$y = -x - a$$

Parametric equation for a rectangular hyperbola

The equation for the rectangular hyperbola is

$$x y = \frac{a^2}{2}$$

where a is the distance from the origin to a vertex. This equation can be expressed in parametric coordinates $\left(k\,t,\frac{k}{t}\right)$ where k is a constant and t is a variable parameter. For a point on the hyperbola

$$x y = (kt) \left(\frac{k}{t}\right) = k^2$$

Hence $x y = k^2 = \frac{a^2}{2}$ $k = \frac{a}{\sqrt{2}}$ $a = \sqrt{2} k$

The focal length c (distance from the origin to a focal point) is

$$c = \sqrt{2} a = 2k$$
 $k = \frac{c}{2}$

*** In these notes c is used exclusively to represent the focal length. However, the syllabus and in exam questions, unfortunately in some instances c is used as the focal length and at other times it is used as an arbitrary constant. The syllabus expresses the equation for the rectangular hyperbola in parametric form as $\left(ct,\frac{c}{t}\right)$ but c is just a constant and not the focal length. In my notes, I will use k for the constant and c to be the focal length. This is a much better approach.