Claims

- insulation 1. An material which comprises an inorganic, porous matrix and is obtainable by 5 shaping а composition comprising a) comprising nanoparticles and/or polycondensates or precursors thereof as binder and b) solid pore formers or applying this composition substrate and curing the composition to form the 10 porous matrix and additional pores formed by means of the pore former.
- The insulation material as claimed in claim 1, characterized in that the mean pore diameter of the additional pores is greater than that of the porous matrix.
- The insulation material as claimed in claim 1 or
 characterized in that the porous matrix is a
 microporous or mesoporous matrix.
- 4. insulation material as claimed in anv claims 1 to 3, characterized in that organic compounds or organic groups which can be burned 25 out to produce the inorganic matrix are present in the composition.
- 5. The insulation material as claimed in any of claims 1 to 4, characterized in that the additional pores are macropores.
- 6. The insulation material as claimed in any to 5, characterized in that nanoparticles comprise at least one metal oxide, 35 preferably SiO₂, Al₂O₃, AlOOH, Ta₂O₅, TiO₂ and/or ZrO2, with particular preference being given to at least part of or all nanoparticles being composed of SiO2.

- insulation material as claimed in 7. any The characterized that in to 6. composition comprises a nanocomposite composed of nanoparticles which have been surface-modified by means of organic compounds or compounds containing 5 the organic binder and as groups components of the nanocomposite are burned out to form the matrix.
- The insulation material as claimed in claim 7, 10 8. the nanocomposite is characterized in that surface the modifying the obtained by nanoparticles by means of one or more compounds selected from among hydrolyzable silanes having at 15 one nonhydrolyzable, organic group, least anhydrides, amides, amine carboxylic acids, compounds, imines, β -diketones, amino acids and proteins.
- 20 9. The insulation material as claimed in any of claims 1 to 7, characterized in that the nanocomposite is obtained by modifying the surface of the nanoparticles by means of one or more silanes of the general formula
- 25 $R_n SiX_{4-n}$ (I) where the groups X are identical or different and are hydrolyzable groups or hydroxyl groups, the radicals R are identical or different and are each alkyl, alkenyl, alkynyl, aryl, aralkyl or alkylaryl and n is 0, 1, 2 or 3, with n preferably being greater than 0 for at least one silane.
- as claimed in claim 9, The insulation material 10. characterized in that the nanocomposite modifying surface of the obtained by the 35 nanoparticles by means of at least one silane of the formula

where n = 1 or 2, and at least one silane of the formula

 SiX_4 (II)

where X is as defined in formula (I).

5

10

- 11. insulation material as claimed in any 10, characterized claims 1 to in that the composition comprises hydrolysis products condensation products of one or more hydrolyzable compounds of glass- or ceramic-forming metals as polycondensates or precursors thereof.
- 12. The insulation material as claimed in claim 11, characterized in that at least one hydrolyzable compound has at least one nonhydrolyzable substituent.
- 13. The insulation material as claimed in claim 11 or 12, characterized in that at least one 20 hydrolyzable compound is selected from among Si, Al, B, Sn, Ti, Zr, Mg, V and Zn compounds.
- 14. The insulation material as claimed in any of claims 1 to 13, characterized in that the binder sol comprises polycondensates or a precursor thereof and surface-modified nanoparticles.
- 15. insulation material as claimed in claims 1 to 14, characterized in that 30 composition comprises at least one refractory component.
- 16. The insulation material as claimed in any of claims 1 to 15, characterized in that particles which are hollow and/or comprise a thermally decomposable or vaporizable material or are an intumescent agent are used as pore formers.

- 17. The insulation material as claimed in claim 16, characterized in that the composition comprises hollow bodies as pore formers.
- 5 18. The insulation material as claimed in claim 17, characterized in that the hollow body is composed of glass or plastic.
- 19. insulation material as claimed in any 10 characterized claims 1 to 17. in that the composition comprises thermally decomposable or vaporizable particles which are thermally decomposed or vaporized to form the additional pores.
- 20. The insulation material as claimed in claim 19, characterized in that thermally decomposable or vaporizable particles composed of a metal nitrate, an organic salt, NH₄Cl, carbon black, flour, wood flour, wax, protein, polysaccharide, silicone resin or plastic are used.
- 21. The insulation material as claimed in claim 19 or 20, characterized in that the thermally decomposable or vaporizable particles are hollow.
- 22. insulation material claimed The as in any of claims 1 to 21, characterized in that the shaped applied composition is heat-treated or 30 of least 40°C to cure the temperature at composition.
- 23. The insulation material as claimed in any of claims 1 to 22, characterized in that the shaped or applied composition is heat-treated in at least two stages having different temperatures.
 - 24. The insulation material as claimed in claim 22 or 23, characterized in that the composition is heat-

treated at a temperature of at least 100°C, preferably at least 150°C, to effect intermediate curing or curing.

- 5 25. The insulation material as claimed in any of claims 22 to 24, characterized in that the composition is cured at a temperature of at least 300°C, preferably at least 350°C.
- insulation material as claimed in any of 10 26. The claims to 25. characterized in that the composition comprises at least one organic monomer, oligomer polymer as additive or control the viscosity and/or the binding strength 15 of the molding.
 - 27. The insulation material as claimed in any of claims 1 to 26, characterized in that it is in the form of a molding or a coating on a substrate.
- A process for producing an insulation material 28. comprising an inorganic, porous matrix, which comprises shaping a composition comprising a) a nanoparticles comprising 25 polycondensates or precursors thereof as binder solid pore formers or applying b) to substrate and curing the composition a porous matrix and composition to form the additional pores formed by means of the pore 30 former.

20

29. The use of an insulation material as claimed in any of claims 1 to 27 for insulation against heat and cold, for a combination of insulation and fire protection or for thermal encapsulation of heat-sensitive components.