Engineering/Art Synergy: Photopolymerization

February 14, 2012

Clint Cook, Brian Dillman, Hajime Kitano, and Kristan Sorenson

What is a Polymer?

Polymer

Polymers

What is photopolymerization?

 Light energy, instead of heat, is used to form macromolecules

Photopolymerization

UV/EB radiation

Advantages of Photopolymerization

- Increased productivity
 - High speed reactions, high production rates
 - Control of initiation
 - Spatial
 - Temporal
- Environmental Benefits
 - Lower energy costs
 - Room temperature reactions
 - Low or no VOC (solventless formulations)

Disadvantages of Photopolymerization

- Polymerization induced shrinkage, high speed reactions, high production rates (can be as high as 25%)
 - e.g. Coatings
 - Buckling, wrinkling
 - e.g. Dental fillings
 - Cracking of tooth or filling, microleakage
- O₂ inhibition
 - Sticky surface
 - N₂ purge might be required
- Difficult to cure thick samples
 - Optical path limitation

Why thickness is limited....

Application: Printing

Application: Coatings & Adhesives

Application: Biomaterials

Application: Lithography (2D, 3D)

Summary

Although the definition can be subjective, sustainable manufacturing processes have the following characteristics:

- 1. Improve efficiency
- 2. Reduce waste
- 3. Conserve natural resources
- 4. Save energy
- **5.** Avoid toxic or other emissions
- 6. Contribute to a safe and healthy working environment
- 7. Use renewable energy and resources
- 8. Use products made from salvaged, remanufactured or recycled material

End

Water born coating vs. photopolymer coating

Applications

the next few years for UV/EB:	
3D Inkjet/Stereolithography	21%
■ Field Applied UV	18%
Photovoltaics	16%
Structural Adhesives	15%
■ Inkjet	15%
Sprayable Coatings for 3D	15%
Plastic Coatings	14%
Aerospace	12%
■ Food Packaging	10%
■ Waterbased UV	10%

Motivations for using UV/EB

- 1. Increase Productivity (1)
- 2. Lower Energy Costs (5)
- 3. Improve Physical Properties (2)
- 4. Environmental Benefits (3)
- 5. Enabling Technology (4)

UV/EB Formulated Product Usage North America

(Metric Tons)

