Notions de statistiques, 3ème édition - Christiane Simard Section 7.1 Mise en situation p.300

- 1. Tracez le diagramme de dispersion
- 2. Donner une interprétation de la relation entre le poids des femmes (X) et le taux d'alcool dans le sang (Y) à partir du diagramme de dispersion.
- 3. Calculer et interpréter la valeur du coefficient de corrélation (r).
- 4. Représenter graphiquement la droite de régression.
- 5. Déterminer les coefficients de la droite de régression.
- 6. Calculer et interpréter la valeur du coefficient de détermination r²

Poids des femmes en kg (X) Variable indépendante	Taux d'alcool (Y) Variable dépendante	x*y	x	(x _i - x̄)	$(x_i - \bar{x})^2$	ÿ	(y _i - ÿ)	(y _i - ÿ)
45	152	6 840	66.6	-21.60	466.56	109.70	42.30	1789.2
52	133	6 916	66.6	-14.60	213.16	109.70	23.30	542.89
57	120	6 840	66.6	-9.60	92.16	109.70	10.30	106.09
68	101	6 868	66.6	1.40	1.96	109.70	-8.70	75.69
73	99	7 227	66.6	6.40	40.96	109.70	-10.70	114.49
80	87	6 960	66.6	13.40	179.56	109.70	-22.70	515.29
91	76	6 916	66.6	24.40	595.36	109.70	-33.70	1135.6
	Σxy =	48 567			1589.7			4279.4

Propriétés du coefficient de corrélation linéaire

- Sans unités
- Compris entre -1 et 1.
- Si la valeur de r proche de 1 (>0,6) : corrélation parfaite positive forte
- Si la valeur de r proche de -1 (<-0,6): corrélation parfaite négative forte

Coefficient de corrélation linéaire

 $r = \frac{\sum xy - n\,\overline{x}\,\overline{y}}{x}$ $(n-1)s_x s_y$

 $\sum xy$ représente la somme des produits de chaque valeur de la variable X par la valeur correspondante de la variable Y

n correspond au nombre de couples (x, y)

- \overline{x} représente la moyenne des valeurs de la variable X
- \overline{y} représente la moyenne des valeurs de la variable Y
- s_x est l'écart type corrigé de la variable X
- s_v est l'écart type corrigé de la variable Y

1. Diagramme de dispersion

Lorsque le poids des femmes augmente, le taux d'alcool diminue.

3. Coefficient de corrélation (r)

d'où l'équation