SLOVENSKÁ TECHNICKÁ UNIVERZITA FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Meteo-stanica

(Tehnická dokumentácia) Pokročilé informačné technológie

<u>I1-AME</u> <u>LS 2019/2020</u>

Autor: Botka Libor

Zadanie:

Cieľom zadania je monitorovať signály získané z reálnych senzorov. Monitorovanie je uskutočnené prostredníctvom web serveru, aby bola naplnená koncepcia IoT.

Ako hardvér a softvér je využitá platforma Raspberry Pi 1 B+ na ktorú je napojený pomocou káblikov teplotný senzor DHT11 a pre komunikáciu je využitý Ethernet, programovací jazyk Python a Java script pre webové rozhranie. Na vytvorenie rozhrania webserveru snímania hodnôt v reálnom čase je využitý program Node-Red.

1. Potrebné komponenty na projekt:

1.1.Hardvér

a) Raspberry Pi

Pre spustenie Raspberry Pi je potrebné napájanie zo zrdoja, USB prepojenie klávesnice a myši, SD karta s nainštalovaným softvérom a HDMI pripojenie obrazovky.

b) Teplotný senzor DHT11 + kábliky

Teplotný senzor DHT11 je malý modul, ktorý poskytuje digitálne údaje o teplote a vlhkosti. Má jednoduché nastavenie a pre dátový signál je potrebný iba jeden vodič. Tieto senzory sú populárne pre použitie vo vzdialených meteorologických staniciach, monitorovaní pôdy a domácich automatizačných systémoch.

Hardvérová časť je zahrnutá v <u>dokumente architektúry systému</u>. (Potrebné piny daných komponentov, schéma zapojenia, UML diagram)

1.2.Softvér

c) Raspbian

Na programovú časť projektu využijeme nainštalovaný Raspbian, v ktorom využijeme:

- Python získanie dát zo senzora DHT11 + výpis do textového súbora Python
- Python Javascript (klient server) tvorba serveru (HTTP)
- Node-RED získanie dát zo senzora DHT11 + tvorba užívateľského rozhrania (HTTP : 1880) + vykreslenie aktuálnych hodnôt na web-server (HTTP : 1880/ui) vo forme text-graf-cíferník.

2. Získanie dát zo senzora DHT11

Ak máme správne zapojený senzor, pre získanie dát zo senzora je potrebné nainštalovať knižnicu Adafruit_DHT pre daný snímač.

Po nainštalovaní potrebných knižníc vytvoríme nový textový dokument, kde budeme zapisovať hodnoty vo forme stringov zo snímača pre vytvorenie histórie na serveri.

Vytvoríme si kód v pythone na získavanie potrebných hodnôt zo snímača, ktorý je zobrazený na Obr.1:

```
import Adafruit_DHT
import time
senzor = Adafruit_DHT.DHT11
                                          #Senzory pre vyuzitie(DHT_11/22)
#senzor = Adafruit DHT.DHT22
senzor pin = 4
                                     #DHT data pin pripojeny na GPIO4
cyklus = True
                                     #premenna pre while cyklus
dataList = []
while cyklus:
                                     #nekonecny while cyklus
    try:
        vlh, tep = Adafruit_DHT.read_retry(senzor, senzor_pin) #nacitanie hodnot zo senzora do premennych
        tep f = tep * 9/5.0 + 32
                                                #teplota f prevedena na fahrenheity
        dataDict = {
         "t": time.strftime('%H:%M:%S %d/%m/%Y'),
        "x": tep,
        "y": tep_f,
"z": vlh,}
        dataList.append(dataDict)
        if vlh is not None and tep is not None and len(dataList)>0:
                                                                               #podmienky pre premenne k 0
            print('TEPLOTA = ' + str(tep) +' *C,'+ 'TEPLOTA Fahrenheit = ' + str(tep_f) +' F,' + 'VLHKOST = ' + str(vlh) +' %.') #vypisanie hodnot hod = str(dataList).replace("'","\"")
            fo = open("hodnoty.txt","w")
            fo.write("%s\r\n" %hod)
                                                  #ukladanie premennych do subora
            time.sleep(1800)
            # if len(dataList)>0:
            print('CHYBA! Skus znova!')
            time.sleep(1)
    except KeyboardInterrupt:
                                                          #zastavenie cyklusu klavesou CTRL+C
        print ('Program zastaveny!')
                                                              #ako ked koncime server v termialy
        cyklus = False
        fo.close()
        dataList = [];
```

Obr. 1 Kód v jazyku Python pre zaznamenávanie meraných hodnôt zo snímača

- dataDict vytvorenie stringu zo želaných premenných do prázdného poľa dataList
- vzorky berieme po pol hodine time.sleep(1800)

Výpis hodnôt do terminálu, Obr. 2.:

Obr. 2 Výpis zosnímaných hodnôt priamo do terminálu

Výpisom overíme, že kód funguje správne. Skontrolujeme aj textový dokument, Obr.3, a môžeme pokračovať na tvorbu serveru.

Obr. 3 Textový dokument - zapisovanie hodnôt zo senzora

3. Tvorba serveru

Na tvorbu serveru, konkrétne histórie zobrazovania nameraných údajov využijeme náš pripravený textový dokument zo získaných hodnôt zo snímača. Pre stranu serveru využijeme opäť kód v Pythone a na stranu klienta vyžijeme JavaScript.

Server

Vytvoríme ako app a spustíme server ako localhost – cez IP, kde zapíšeme kde konkrétne bude náš server prebiehať, Obr.4.

```
from threading import Lock
from flask import Flask, render_template, session, request, jsonify, url_for
import time

app = Flask(__name__)
app.config['DEBUG'] = 'True'

@app.route('/')
def hello():
    return render_template('tabs.html')

@app.route('/read/<string:num>')
def readmyfile(num):
    fo = open("static/files/hodnoty.txt","r")
    rows = fo.readlines()
    return rows[int(num)-1]

if __name__ == '__main__':
    app.run(host="0.0.0.0", port=80, debug=True)
```

Obr. 4 Kód v pythone pre stranu serveru

• Klient

Stranu klienta realizujeme pomocou "templates,, v JavaScripte, kde si najskôr zadefinujeme potrebné kódovanie, skripty a záhlavie serveru, Obr.5.

Obr. 5 Kód pre stranu klienta

Vytvoríme si kód pre vykreslenie grafu – Príklad, zobrazený na Obr.6.:

```
$(document).ready(function(){
      layout = {
  title: 'TEPLOTA [°C]',
  xaxis: {
    title: 'Čas',
           range: [0,48]
           title: 'T',
range: [5,25]
     };
$('form#rec').submit(function(event) {
  var $link = "/read/"+$('#value').val();
  console.log($link);
type: "GET",
url: $link,
success:function(data)
      console.log(data);
data = JSON.parse(data);
console.log(data);
      n = Object.keys(data).length;
console.log(n);
      for (var i=0; i< n; i++){
    xl.push(data[i].t);</pre>
       yl.push(data[i].x); }
let trace = [{
      x: x1,
y: y1 }];
Plotly.newPlot($('#plotdiv')[0], trace,layout);
}).done(function( o ) {
   // do something
  return false;});
```

Obr. 6 Kód pre vykreslenie grafov na strane klienta

Kde načítavame hodnoty z uložených súborov v stringu a následne ich vieme podľa dní vykresliť na stránke, pomocou vytvoreného formulára.

Príklad vytvorenia tela stránky, ako bude vyzerať, zobrazuje Obr.7.:

Obr. 7 Kód pre usporiadanie divízií na strane klienta

V tejto sekcií vytvárame divízie (bloky textu) ,<div>, a názvy odrážok na stránke a v nich konkrétne názov na stránke <h>. Vkladáme aj formulár,<form> pre výpis daného dňa - ,,stringu,, hodnôt z textového súboru. Vykreslenie grafu <div id> a následne ukončenie divízie </div>. Takto pokračujeme až po posledný graf, ktorý chceme vykresliť na stránku a tak si dokážeme vytvoriť históriu snímaných hodnôt na web-server.

• Webserver - výsledok:

Výsledkom tvorby serveru je história nameraných hodnôt zo snímača, ktoré je zobrazená na následných obrázkoch, Obr.8 a Obr.9 v podaní webovej stránky:

Celková história údajov:

Obr. 8 Webserver - zobrazenie celkovej histórie

Príklad: teplota - história údajov:

Obr. 9 Webserver - zobrazenie teploty z dňa č.2

4. Node-Red

Na vykreslenie aktuálnych hodnôt na web-server zvolíme Node-Red, kde dokážeme jednoducho naprogramovať časť pre klient-server pomocou prepojenia "blok+kód,, a vytvoriť prúdy vďaka ktorým spojazdníme server. Opäť je potrebné nainštalovať Node-Red a k nemu aj ďalšie knižnice či skripty. Po inštalácií otvoríme prostredie Node-Red a otvoríme v prostredí Chrome na lokálnej IP:1880, viditeľné na Obr.10:

Obr. 10 Prostredie Node-Red pre tvorbu serveru

V prostredí pracujeme z blokmi, tzv. nody, a skladáme prúdy. Pre získanie reálnych hodnôt priamo zo senzora potrebujeme stiahnuť v manage palete node pre DHT a nainštalovať do programu. Podobne inštalujeme aj dashboard, ktorý nám poslúži na grafiku, v našom prípade ide o grafy a cíferníky.

Prúdy pozostávajú zo:

- **Vstupov** timestap, kde sme nastavili nekonečný cyklus zo vzorkovaním každú sekundu.
- Senzora nainštalovaný DHT balík, nastavený na data PIN
- Funkcie každá veličina má svoju funkciu, kde sú nastavené hodnoty aké majú byť vykreslené na výstupe
- Výstupov v podobe výpisu do systému (kontrola nevidí používateľ), gauge ciferníkov, grafov nastavené priamo v blokoch na požadované hodnoty.
- Tlačidiel tlačidla na vypnutie raspberry pi, pomocou sudo príkazu do terminálu

Dôležité je vytvoriť si karty, ktoré budú na stránku na výber v ponuke a vieme si prehľadne preklikať, čo potrebujeme vidieť. V nich si ešte vytvoríme skupiny do ktorých budeme zaraďovať potrebné bloky, ktoré chceme vykresliť na stránke, aby sme zabezpečili lepší vzhľad a prehľadnosť stránky. Následne si ukážeme ošetrenie START/STOP tlačidla v jednotlivých kartách, ktoré sme ošetrili pomocou bloku GATE, zobrazené na Obr.11/12:

START – gate open:

Obr. 11 Ošetrenie tlačidla START - Gate open

STOP – gate close:

Obr. 12 Ošetrenie tlačidla STOP - Gate close

Prietok dát v prúdoch ošetríme vďaka funkcií toggle, teda prepínaniu open/close hodnôt. Vďaka bloku status – výpis, vypíšeme stav brán na web – open/close.

• Webserver - výsledok:

Výsledkom tvorby prúdov v programe Node-Red je aktuálne zobrazovanie hodnôt zo senzora, pričom vytvorené užívateľské prostredie je zobrazené na následných Obr. 13,14,15:

Voľba menu na stránke:

Obr. 13 Zobrazenie ponuky v hlavnom menu stránky

Meteo-stanica celkovo:

Obr. 14 Náhľad rozhrania meteo-stanice pre celkové snímané hodnoty

Vykreslenie teploty pomocou mobilu:

Obr. 15 Náhľad rozhrania pre jednotlivý blok - [Teplota] zobrazený pomocou mobilu

5. Záver

Výsledkom práce je snímanie teploty a vlhkosti vzduchu, kde si vďaka platforme Raspberry pi a senzoru DHT11 dokážeme vytvoriť jednoduchú meteo-stanicu a online sledovať na web-serveri namerané veličiny.

V projekte sme si jednoduchým kódom získali hodnoty zo snímača a nechali ich vypísať do súboru. Následne sme použili hodnoty zo súboru využili na archiváciu údajov a vykreslenie histórie priamo na server cez klienta, kde sme využili kód v Pythone a Javascript.

Nakoniec sme si vyskúšali aj vytvoriť užívateľské prostredie na serveri pomocou programu Node-Red, kde sledujeme aktuálne hodnoty teplôt či vlhkosti vzduchu. Tento program bol vybraný pre rozšírenie vedomostí v rámci predmetu pokročilé informačné technológie a skúške aj niečoho iného ako bolo využité na cvičeniach.

Prílohy

DOKUMENT ARCHITEKTÚRY APLIKÁCIE : Architektúra RPi.pdf

LINK:

Všetky podklady sú nahrané na verzionovaci systém: https://github.com/Libko99/POIT2020