1 Úkol

- 1. Změřte účiník:
 - (a) rezistoru,
 - (b) kondenzátoru ($C = 10 \ \mu F$)
 - (c) cívky.

Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost a odpor v sériovém a paralelním náhradním zapojení.

- 2. Změřte účiník sériového a paralelního zapojení rezistoru a kondenzátoru (C=1; 2; 5; 10 μ F). Z naměřených hodnot stanovte odpor rezistoru. Určete chyby měření a rozhodněte, které z obou zapojení je v daném případě vhodnější pro stanovení odporu.
- 3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
- 4. Výsledky úkolu 3. zpracujte graficky, v závislosti na zařazené kapacitě vyneste účiník, fázový posuv napětí vůči proudu a výkon.

2 Teorie

2.1 Účiník

Výkon střídavého proudu za určitý čas T je definován

$$P = \frac{1}{T} \int_0^T u(t)i(t)dt, \tag{1}$$

kde u a i jsou okamžité hodnoty proudu a napětí. Pro sinusový průběh proudu, kde φ je fázový rozdíl napětí vůči proudu získáme integrací

$$P = \frac{U_0 I_0}{2} \cos \varphi, \tag{2}$$

což můžeme pro efektivní hodnoty upravit na

$$P = UI\cos\varphi. \tag{3}$$

Účiník je $\cos \varphi$ z rovnic 2 a 3, z kterých ho snadno vypočítáme.

2.2 Resistance, kapacitance a induktance

Resistance nijak neovlivňuje velikost účiníku. V obvodu, ve kterém je pouze odpor je účiník roven jedné. Pokud je v obvodu poze kondenzátor, vzniká fázový posun napětí φ , který je v ideálním případě roven $\frac{-\pi}{2}$. Podobná situace nastane u cívky, kdy je $\varphi = \frac{\pi}{2}$. V obou případech je účiník roven nule.

Při zapojení více prvků do série pro fázový posuni napětí vůči proudu platí

$$\varphi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R},\tag{4}$$

kde L je indukčnost, C kapacita a R celkový odpor obvodu. Při paralelním zapojení platí pro fázový posun proudu vůči napětí φ'

$$\varphi' = \arctan\left(\omega RC - \frac{R}{\omega L}\right). \tag{5}$$

2.3 Výpočet L, R a C

Při zapojení cívky a odporu dá snadno vypočítat velikosti indukčnisti a odporu. Dle [1] pro sériové zapojení platí

$$R_S = \frac{U}{I} \frac{1}{\sqrt{1 + \tan^2 \varphi}} \tag{6}$$

$$L_S = \frac{U}{\omega I} \sqrt{\frac{\tan^2 \varphi}{1 + \tan^2 \varphi}} \tag{7}$$

a pro paralení platí platí

$$R_P = \frac{U}{I} \sqrt{1 + \tan^2 \varphi} \tag{8}$$

$$L_P = \frac{U}{\omega I} \sqrt{\frac{1 + \tan^2 \varphi}{\tan^2 \varphi}} \tag{9}$$

Podobné vzahy platí i pro zapojení kondenzátoru a odporu. Konkrétní rovnice jsou

$$R_S = \frac{U}{I} \frac{1}{\sqrt{1 + \tan^2 \varphi}} \tag{10}$$

$$C_S = \frac{U}{\omega I} \sqrt{\frac{1 + \tan^2 \varphi}{\tan^2 \varphi}} \tag{11}$$

$$R_P = \frac{U}{I}\sqrt{1 + \tan^2\varphi} \tag{12}$$

$$C_P = \frac{U}{\omega I} \sqrt{\frac{\tan^2 \varphi}{1 + \tan^2 \varphi}} \tag{13}$$

Obrázek 1: Schéma měření

2.4 Chyby

Při měření byla použita jak analogová, tak digitálí zařízení. Pro chybu anologových musíme znát jejich třídu přesnosti. V tomto případě se jednalo o ampérmetri resp. watmetr, který měl třídu přesnoti 1.5 resp. 0.2. Velikost aboslutní chyby získáme

$$\sigma = 1.5 \frac{R}{100},\tag{14}$$

kde R je rozsah ampérmetru resp. watmetru.

Digitální přístroje mají svou procentuální chybu naměřené hodnoty, ke které se přičte jistá hodnota v řádu poslední číslice na dipleji. Voltmetr měl konkrétně chybu $\pm 2.5\% \pm 10d$.

3 Měření

3.1 Účiník odporu, cívky a kondenzátoru

Zapojil jsem měřící přístroje dle obrázku 1 a postupně jsem zapojoval jednotlivé součástky. Následně jsem zapojil cívku s odporem, a to jak sériově, tak paralelně. Naměřené hodnoty se spočteným účiníkem jsou v tabulce 1. Z posledních dvou jsem vypočetl odpor

	U/V	I/mA	P/W	$\cos \varphi$
R	51 ± 1	44 ± 2	2.00 ± 0.07	0.89 ± 0.09
L	51 ± 1	29 ± 2	0.50 ± 0.07	0.33 ± 0.08
C	51 ± 1	140 ± 5	0.00 ± 0.07	0.00 ± 0.08
RLs.	51 ± 1	21.0 ± 0.5	0.70 ± 0.07	0.65 ± 0.09
RLp.	51 ± 1	67 ± 2	2.55 ± 0.07	0.75 ± 0.06

Tabulka 1: Hodnoty naměřné v úkolu 1.

$C/\mu F$	U/V	I/mA	P/W	$\cos \varphi$	R/Ω
1	51 ± 1	53 ± 2	2.00 ± 0.07	0.74 ± 0.07	710 ± 70
2	51 ± 1	61 ± 2	2.05 ± 0.07	0.66 ± 0.06	550 ± 50
5	51 ± 1	100 ± 5	2.10 ± 0.07	0.41 ± 0.04	210 ± 20
10	51 ± 1	160 ± 5	2.10 ± 0.07	0.26 ± 0.02	80 ± 8

Tabulka 2: Sériové zapojení kondenzátoru a odporu

a indukčnost v náhradním zapojení

$$R_s = (1.6 \pm 0.2) k\Omega \tag{15}$$

$$L_s = (60 \pm 6)\mu H$$
 (16)

$$R_p = (1.0 \pm 0.1) \mathrm{k}\Omega \tag{17}$$

$$L_s = (3.6 \pm 0.4) \text{H}$$
 (18)

3.2 Odpor a kondenzátor

Pro sériové a paralelní zapojení odporu a kondenzátoru jsem měřil charakteristiky s různými kapacitami. Naměřené hodnoty jsou v tabulkách 2 a 3. Tato zapojení jsem také o něco hustěji proměřil digitálním měřákem, který rovnou ukazoval i velikost účiníku. Výsledky tohoto měření jsou v tabulkách 4 a 5 spolu s dopočteným odporem.

$C/\mu F$	U/V	I/mA	P/W	$\cos \varphi$	R/Ω
1	51 ± 1	15 ± 0.5	0.20 ± 0.07	0.3 ± 0.1	10000 ± 1000
2	51 ± 1	27.5 ± 0.5	0.60 ± 0.07	0.43 ± 0.07	4000 ± 400
5	51 ± 1	44 ± 2	1.50 ± 0.07	0.67 ± 0.07	1700 ± 200
10	51 ± 1	49 ± 2	1.90 ± 0.07	0.76 ± 0.07	1400 ± 100

Tabulka 3: Paralelní zapojení kondenzátoru a odporu

$C/\mu F$	U/V	I/mA	P/W	$\cos \varphi$
1	50.9 ± 0.7	15 ± 5	0.24 ± 0.01	0.31 ± 0.04
2	50.9 ± 0.7	27 ± 5	0.75 ± 0.02	0.54 ± 0.04
3	50.7 ± 0.7	35 ± 5	1.22 ± 0.02	0.69 ± 0.04
4	50.9 ± 0.7	40 ± 5	1.59 ± 0.02	0.79 ± 0.05
5	50.9 ± 0.7	43 ± 5	1.86 ± 0.03	0.85 ± 0.05
6	50.9 ± 0.7	45 ± 5	2.04 ± 0.03	0.89 ± 0.05
7	50.9 ± 0.7	46 ± 5	2.15 ± 0.03	0.91 ± 0.05
8	50.9 ± 0.7	47 ± 5	2.23 ± 0.03	0.93 ± 0.05
9	50.8 ± 0.7	48 ± 5	2.30 ± 0.03	0.95 ± 0.05
10	50.9 ± 0.7	48 ± 5	2.35 ± 0.03	0.96 ± 0.05

Tabulka 4: Sériové zapojení kondenzátoru a odporu měřeno digitální měřákem.

$C/\mu F$	U/V	I/mA	P/W	$\cos \varphi$
1	50.7 ± 0.7	54 ± 5	2.58 ± 0.03	0.94 ± 0.05
2	50.7 ± 0.7	61 ± 5	2.58 ± 0.03	0.84 ± 0.05
3	50.7 ± 0.7	71 ± 5	2.58 ± 0.03	0.72 ± 0.04
4	50.7 ± 0.7	83 ± 5	2.58 ± 0.03	0.62 ± 0.04
5	50.8 ± 0.7	96 ± 5	2.58 ± 0.03	0.53 ± 0.04
6	50.8 ± 0.7	110 ± 5	2.58 ± 0.03	0.46 ± 0.04
7	50.8 ± 0.7	125 ± 6	2.58 ± 0.03	0.41 ± 0.04
8	50.8 ± 0.7	140 ± 6	2.59 ± 0.03	0.36 ± 0.04
9	50.8 ± 0.7	155 ± 6	2.59 ± 0.03	0.33 ± 0.04
10	50.8 ± 0.7	171 ± 6	2.59 ± 0.03	0.30 ± 0.04

Tabulka 5: Paralelně zapojení kondenzátoru a odporu měřeno digitální měřákem.

Obrázek 2: Graf závislosti výkonu, účiníku a fázového posunu napětí vůči proudu na kapacitě.

3.3 Sériový RLC obvod

Do série jsem zapojil rezistor, cívku a kondenzátor a měřil jsem závislost proudu a výkonu na kapacitě. Následně jsem dopočítal účiník a fázový posun napětí vůči proudu. Výsledky měření jsou v tabulce 6 zaneseny do grafu na obrázku 2. Pro názornost jsou data proložené křivkou.

4 Diskuze

Při měření účiníku byla konečné chyba okolo 10 %. To bylo způsobeno zejména vysokou relativní chybou na wattmetru. Ač bylo toto zařízení velice přesné, na chybě se výrazně podepsalo to, že jsem měřil ve spodní části stupnice. V tomto případě by pomohla změna rozsahu.

Jako nejideálnější prvek se jevil kondenzátor. Pouze u něj odpovídala velikost účiníku teorii. Cívka rozhodně neměla zanedbatelný odpor, čemuž odpovídal i výrazně vyšší účiník, než by měl být. Rezistor v rámci chyby odpovídá teorii. Dopočítané hodnoty, jak odporu, tak indukčnosti cívky mi nepříjdou příliš reálné, chybu ve výpočtu se mi však najít nepodařilo. Dle mého názoru by k určení charakteristik součástek mělo být zapojení sériové.

Použití digitálního přístroje se ukázalo být mnohem rychlejší a přesnější. Celková chyba je dokonce řádově odlišná. Navíc nebylo nutné přepočítávat naměřené hodnoty na účiník.

$C/\mu F$	U/V	I/mA	P/W	$\cos \varphi$	φ
0.1	51 ± 1	1.6 ± 0.2	0.00 ± 0.07	0.0 ± 0.2	2 ± 1
0.2	51 ± 1	3.3 ± 0.2	0.00 ± 0.07	0.0 ± 0.2	2 ± 1
0.3	51 ± 1	5.1 ± 0.2	0.00 ± 0.07	0.0 ± 0.2	2 ± 1
0.4	51 ± 1	6.9 ± 0.2	0.10 ± 0.07	0.2 ± 0.2	1 ± 1
0.5	51 ± 1	8.8 ± 0.2	0.10 ± 0.07	0.2 ± 0.2	1 ± 1
0.6	51 ± 1	11.0 ± 0.5	0.10 ± 0.07	0.2 ± 0.1	1.4 ± 1
0.7	51 ± 1	13.5 ± 0.5	0.20 ± 0.07	0.3 ± 0.1	1.3 ± 0.5
0.8	51 ± 1	16.0 ± 0.5	0.30 ± 0.07	0.47 ± 0.1	1.2 ± 0.3
0.9	51 ± 1	18.5 ± 0.5	0.40 ± 0.07	0.42 ± 0.09	1.1 ± 0.3
1.0	51 ± 1	20.5 ± 0.5	0.50 ± 0.07	0.48 ± 0.09	1.1 ± 0.2
1.1	51 ± 1	23.0 ± 0.5	0.70 ± 0.07	0.60 ± 0.08	0.9 ± 0.1
1.2	51 ± 1	24.5 ± 0.5	0.80 ± 0.07	0.64 ± 0.08	0.9 ± 0.1
1.3	51 ± 1	26.5 ± 0.5	0.90 ± 0.07	0.67 ± 0.08	0.8 ± 0.1
1.4	51 ± 1	27.5 ± 0.5	1.00 ± 0.07	0.71 ± 0.08	0.78 ± 0.08
1.5	51 ± 1	28.5 ± 0.5	1.10 ± 0.07	0.76 ± 0.08	0.71 ± 0.07
1.6	51 ± 1	29.0 ± 0.5	1.10 ± 0.07	0.74 ± 0.07	0.73 ± 0.07
1.7	51 ± 1	29.5 ± 0.5	1.20 ± 0.07	0.80 ± 0.08	0.65 ± 0.06
1.8	51 ± 1	30.0 ± 0.5	1.20 ± 0.07	0.78 ± 0.07	0.67 ± 0.06
1.9	51 ± 1	30.0 ± 0.5	1.20 ± 0.07	0.78 ± 0.07	0.67 ± 0.06
2.0	51 ± 1	30.0 ± 0.5	1.20 ± 0.07	0.78 ± 0.07	0.67 ± 0.06
2.5	51 ± 1	29.5 ± 0.5	1.20 ± 0.07	0.80 ± 0.08	0.65 ± 0.06
3.0	51 ± 1	29.0 ± 0.5	1.10 ± 0.07	0.74 ± 0.07	0.73 ± 0.07
3.5	51 ± 1	28.5 ± 0.5	1.00 ± 0.07	0.69 ± 0.07	0.81 ± 0.09
4.0	51 ± 1	27.5 ± 0.5	1.00 ± 0.07	0.71 ± 0.08	0.78 ± 0.08
4.5	51 ± 1	27.5 ± 0.5	1.00 ± 0.07	0.71 ± 0.08	0.78 ± 0.08
5.0	51 ± 1	27.0 ± 0.5	1.00 ± 0.07	0.73 ± 0.08	0.76 ± 0.08
5.5	51 ± 1	26.5 ± 0.5	0.90 ± 0.07	0.67 ± 0.08	0.8 ± 0.1
6.0	51 ± 1	26.5 ± 0.5	0.90 ± 0.07	0.67 ± 0.08	0.8 ± 0.1
6.5	51 ± 1	26.5 ± 0.5	0.90 ± 0.07	0.67 ± 0.08	0.8 ± 0.1
7.0	51 ± 1	26.0 ± 0.5	0.90 ± 0.07	0.68 ± 0.08	0.8 ± 0.1
8.0	51 ± 1	25.5 ± 0.5	0.90 ± 0.07	0.69 ± 0.08	0.81 ± 0.09
9.0	51 ± 1	25.5 ± 0.5	0.80 ± 0.07	0.62 ± 0.08	0.9 ± 0.1
10.0	51 ± 1	25.5 ± 0.5	0.80 ± 0.07	0.62 ± 0.08	0.9 ± 0.1

Tabulka 6: Závislost výkonu, účiníku a fázového posunu napětí vůči proudu na kapacitě.

V charakteristice RLC obvodu je dobře vidět místo, kdy dochází k rezonanci. Závislosti se mi však nepodařilo proložit rozumným polynomem, a proto je křivka namalovaná pouze rukou. Hlavním příspěvek chyby opět způsobil wattmetr.

5 Závěr

Změřil jsem účiník rezistoru, cívky a kondenzátoru, jehož velikosti jsou v tabulce 1. Změřil jsem účiník pro sériové i paralelní zapojení rezistoru a kondenzátoru. Výsledky jsou v tabulkách 2 a 3.

Změřil jsem závislost proudu, účiníku a fázového posunu napětí vůči proudu v sériovém RLC obvodu. Výsledky jsou v tabulce 6 a na obrázku 2.

Reference

- [1] Studijní text na praktikum II http://physics.mff.cuni.cz/vyuka/zfp/txt_206.pdf (22. 11. 2011)
- [2] J. Englich: Zpracování výsldků fyzikálních měření LS 1999/2000