





Semester –VI Professional Elective – IV

CS3239-Data Warehousing and Mining

CIE-3 Mini Project 15/04/2025



# Visual Data Mining for Health Analytics: Heart Disease Prediction and COVID-19 Trends

Team Number: 05

Team Members:

Aditya Sinha – 1RVU22BSC005

Mohammed Ikram – 1RVU22BSC054

Niyanthri R Sridhar – 1RVU22BSC065

#### Introduction



Visual data mining is transforming healthcare by making complex medical data more interpretable and actionable.

This project integrates two major components using orange:

- Heart Disease Prediction
- COVID-19 Trend Analysis

#### Objective:

To use visual tools to analyze large, complex health datasets for predictive insights and public health decision-making.

# Relevance / Importance of the Chosen Topic



Heart disease remains the leading cause of death worldwide, accounting for approximately 17.9 million deaths annually.

COVID-19 has had a global impact, causing widespread disruption to health systems and societies.

The combination of these topics highlights the value of data-driven tools in:

- Early disease detection
- Monitoring health trends
- Supporting evidence-based public health decisions

# Description of the Project & tool



#### Heart Disease Module

- Tool: Orange 3.36
- Dataset: UCI Heart Disease Dataset
- Techniques: Data cleaning, visualization, classification
- Algorithms: Random Forest

#### COVID-19 Module

- Tool: Orange 3.36
- Dataset: Global COVID-19 data (WHO)
- Techniques: Time-series analysis, trend visualization, comparison

# Implementation



## Heart Disease Prediction (Orange)

- Load dataset
- Preprocess: handle missing values, normalize attributes
- Visualize features
- Apply classification models
  Evaluate model using Test & Score

#### COVID-19 Trend Analysis (Orange)

- Load dataset
- Clean and aggregate data
- Visualize trends using line plots and bar charts
- Identify waves and analyze patterns

# Screen Shot







| Info                                                  |    | liameter narrowing | age |       | gender | chest pain   | rest SBP | cholesterol | ing blood sugar > | rest ECG      | max HR | exerc ind ang | ST by exercise | slope peak ex |
|-------------------------------------------------------|----|--------------------|-----|-------|--------|--------------|----------|-------------|-------------------|---------------|--------|---------------|----------------|---------------|
| 303 instances                                         | 1  | 0                  |     | 33 m  | nale   | typical ang  | 145      | 233         | 1                 | left vent hyp | 150    | 0             | 2.3            | downsloping   |
| 13 features (0.2 % missing data) Target with 2 values | 2  | 1                  |     | 67 m  | nale   | asymptomatic | 160      | 286         | 0                 | left vent hyp | 108    | 1             | 1.5            | flat          |
| No meta attributes.                                   | 3  | 1                  |     | 67 m  | nale   | asymptomatic | 120      | 229         | 0                 | left vent hyp | 129    | 1             | 2.6            | flat          |
|                                                       | 4  | 0                  |     | 37 m  | nale   | non-anginal  | 130      | 250         | 0                 | normal        | 187    | 0             | 3.5            | downsloping   |
| Variables                                             | 5  | 0                  |     | 41 fe | emale  | atypical ang | 130      | 204         | 0                 | left vent hyp | 172    | 0             | 1.4            | upsloping     |
| Show variable labels (if present)                     | 6  | 0                  |     | 56 m  | nale   | atypical ang | 120      | 236         | 0                 | normal        | 178    | 0             | 0.8            | upsloping     |
| Visualize numeric values                              | 7  | 1                  | )   | 62 fe | emale  | asymptomatic | 140      | 268         | 0                 | left vent hyp | 160    | 0             | 3.6            | downsloping   |
| Color by instance classes                             | 8  | 0                  |     | 57 fe | emale  | asymptomatic | 120      | 354         | 0                 | normal        | 163    | 1             | 0.6            | upsloping     |
| Selection                                             | 9  | 1                  | )   | 33 m  | nale   | asymptomatic | 130      | 254         | 0                 | left vent hyp | 147    | 0             | 1.4            | flat          |
| Select full rows                                      | 10 | 1                  | )   | 53 m  | nale   | asymptomatic | 140      | 203         | 1                 | left vent hyp | 155    | 1             | 3.1            | downsloping   |
| Societ fair forms                                     | 11 | 0                  |     | 57 m  | nale   | asymptomatic | 140      | 192         | 0                 | normal        | 148    | 0             | 0.4            | flat          |
| >                                                     | 12 | 0                  |     | 56 fe | emale  | atypical ang | 140      | 294         | 0                 | left vent hyp | 153    | 0             | 1.3            | flat          |
|                                                       | 13 | 1                  | ļ   | 56 m  | nale   | non-anginal  | 130      | 256         | 1                 | left vent hyp | 142    | 1             | 0.6            | flat          |
|                                                       | 14 | 0                  |     | 14 m  | nale   | atypical ang | 120      | 263         | 0                 | normal        | 173    | 0             | 0.0            | upsloping     |
|                                                       | 15 | 0                  |     | 52 m  | nale   | non-anginal  | 172      | 199         | 1                 | normal        | 162    | 0             | 0.5            | upsloping     |
|                                                       | 16 | 0                  |     | 57 m  | nale   | non-anginal  | 150      | 168         | 0                 | normal        | 174    | 0             | 1.6            | upsloping     |
|                                                       | 17 | 1                  |     | 18 m  | nale   | atypical ang | 110      | 229         | 0                 | normal        | 168    | 0             | 1.0            | downsloping   |
|                                                       | 18 | 0                  | 1   | 54 m  | nale   | asymptomatic | 140      | 239         | 0                 | normal        | 160    | 0             | 1.2            | upsloping     |
|                                                       | 19 | 0                  |     | 18 fe | emale  | non-anginal  | 130      | 275         | 0                 | normal        | 139    | 0             | 0.2            | upsloping     |
|                                                       | 20 | 0                  |     | 19 m  | nale   | atypical ang | 130      | 266         | 0                 | normal        | 171    | 0             | 0.6            | upsloping     |
|                                                       | 21 | 0                  |     | 64 m  | nale   | typical ang  | 110      | 211         | 0                 | left vent hyp | 144    | 1             | 1.8            | flat          |
|                                                       | 22 | 0                  | ,   | 58 fe | emale  | typical ang  | 150      | 283         | 1                 | left vent hyp | 162    | 0             | 1.0            | upsloping     |
|                                                       | 23 | 1                  |     | 58 m  | nale   | atypical ang | 120      | 284         | 0                 | left vent hyp | 160    | 0             | 1.8            | flat          |
|                                                       | 24 | 1                  |     | 58 m  | nale   | non-anginal  | 132      | 224         | 0                 | left vent hyp | 173    | 0             | 3.2            | upsloping     |
|                                                       | 25 | 1                  |     | 60 m  | nale   | asymptomatic | 130      | 206         | 0                 | left vent hyp | 132    | 1             | 2.4            | flat          |
|                                                       | 26 | 0                  |     | 50 fe | emale  | non-anginal  | 120      | 219         | 0                 | normal        | 158    | 0             | 1.6            | flat          |
|                                                       | 27 | 0                  | )   | 58 fe | emale  | non-anginal  | 120      | 340         | 0                 | normal        | 172    | 0             | 0.0            | upsloping     |
|                                                       | 28 | 0                  |     | 66 fe | emale  | typical ang  | 150      | 226         | 0                 | normal        | 114    | 0             | 2.6            | downsloping   |
|                                                       | 29 | 0                  |     | 13 m  | nale   | asymptomatic | 150      | 247         | 0                 | normal        | 171    | 0             | 1.5            | upsloping     |
|                                                       | 30 | 1                  |     | 10 m  | nale   | asymptomatic | 110      | 167         | 0                 | left vent hyp | 114    | 1             | 2.0            | flat          |
|                                                       | 31 | 0                  |     | 69 fe | emale  | typical ang  | 140      | 239         | 0                 | normal        | 151    | 0             | 1.8            | upsloping     |
|                                                       | 32 | 1                  |     | 30 m  | nale   | asymptomatic | 117      | 230         | 1                 | normal        | 160    | 1             | 1.4            | upsloping     |
|                                                       | 33 | 1                  |     | 64 m  | nale   | non-anginal  | 140      | 335         | 0                 | normal        | 158    | 0             | 0.0            | upsloping     |
|                                                       | 34 | 0                  |     | 59 m  | nale   | asymptomatic | 135      | 234         | 0                 | normal        | 161    | 0             | 0.5            | flat          |
|                                                       | 35 | 0                  |     | 14 m  | nale   | non-anginal  | 130      | 233         | 0                 | normal        | 179    | 1             | 0.4            | upsloping     |
|                                                       | 36 | 0                  |     | 12 m  | nale   | asymptomatic | 140      | 226         | 0                 | normal        | 178    | 0             | 0.0            | upsloping     |
|                                                       | 37 | 1                  |     | 13 m  | nale   | asymptomatic | 120      | 177         | 0                 | left vent hyp | 120    | 1             | 2.5            | flat          |
|                                                       | 38 | 1                  | 3   | 57 m  | nale   | asymptomatic | 150      | 276         | 0                 | left vent hyp | 112    | 1             | 0.6            | flat          |
| Restore Original Order                                | 39 | 1                  |     | 55 m  | nale   | asymptomatic | 132      | 353         | 0                 | normal        | 132    | 1             | 1.2            | flat          |
|                                                       | 40 | 0                  |     | 61 m  | nale   | non-anginal  | 150      | 243         | 1                 | normal        | 137    | 1             | 1.0            | flat          |
| Send Automatically                                    |    | 1                  |     | 35 fe |        | asymptomatic | 150      | 225         |                   | left vent hyp | 114    |               |                | flat          |
| ②                                                     |    |                    |     |       |        |              |          |             |                   |               |        |               |                |               |
| 1 E   1 303 F 300 1 303                               |    |                    |     |       |        |              |          |             |                   |               |        |               |                |               |

















# **Applications**

- Supports early diagnosis and risk prediction of heart disease
- Helps monitor COVID-19 infection patterns
- Assists public health decision-making and planning
- Useful for educational purposes in data science and epidemiology
- Demonstrates practical application of visual data mining techniques



# Limitations / Challenges

- Datasets used are static and not updated in real-time
- Orange has limited capabilities for advanced modeling and parameter tuning
- Model performance depends heavily on data quality and completeness
- COVID-19 analysis focuses on visualization rather than prediction
- Generalizability of the models may be limited across diverse populations

#### Conclusion



This project demonstrates the utility of visual data mining in health analytics through practical applications in heart disease prediction and COVID-19 trend analysis. Orange provides an intuitive platform for building machine learning models.

#### Future enhancements could include:

- Real-time data integration
- Predictive modeling for COVID-19
- Deployment of insights in interactive dashboards or mobile apps



#### References

- UCI ML Repository Heart Disease Dataset
- WHO COVID-19 Dashboard
- Orange Data Mining https://orangedatamining.com



# Thank you