

Recipe Site Traffic

Zean Ni Zhehan

Contents Table

- 1. Background
- 2. Goals
- 3. Project Summary
- 4. Key Findings & Results
- 5. Conclusion & Recommendation

01

Online recipes

Tasty Bytes, an online recipe startup features new recipes on their homepage website every day

03

Challenge

However, it is difficult to predict ahead of time which recipes have high traffic

02

Traffic boost

On days that they feature a popular recipe, traffic increases by as much as 40%

04

Traffic

A typical binary classification problem

Background

Backgro und

01

About me

You can describe the topic of the section here

03

Experience

You can describe the topic of the section here

02

Studies

You can describe the topic of the section here

04

My work

You can describe the topic of the section here

Predict whether a recipe will receive a high traffic based on the data collected from previously published recipes. The criterion for success was the correct classification of **75%** of the recipes.

RangeIndex: 947 entries, 0 to 946 Data columns (total 8 columns): Column Non-Null Count Dtype recipe 947 non-null int64 calories 895 non-null float64 carbohydrate 895 non-null float64 sugar 895 non-null float64 protein 895 non-null float64 category 947 non-null object servings 947 non-null object high_traffic 947 non-null int64 dtypes: float64(4), int64(2), object(2) memory usage: 59.3+ KB

No of missing values in calories is: 52 No of missing values in carbohydrate is: 52 No of missing values in sugar is: 52 No of missing values in protein is: 52

Statistical Test

```
calories: t = -2.29, p = 0.0225
carbohydrate: t = -2.42, p = 0.0156
sugar: t = 2.22, p = 0.0269
protein: t = -1.35, p = 0.1761
```

Statistical Test

```
contingency_table = pd.crosstab(df['category'], df['high_traffic'])
   chi2, p, dof, expected = chi2_contingency(contingency_table)
   chi2, p
(320.22296286253834, 8.182067546493786e-63)
   contingency table = pd.crosstab(df['servings'], df['high traffic'])
   chi2, p, dof, expected = chi2 contingency(contingency table)
   chi2, p
(2.7369889309788054, 0.4339779666711946)
```


Feature Engineering

health?

Complex?

Logistic Reg

confussion matrix: [[45 32]

[11 102]]

accuarcy: 0.7736842105263158 precision: 0.7611940298507462 recall: 0.9026548672566371 f1: 0.8259109311740891

Modeling

Random Forest

confussion matrix: [[45 32]

[11 102]]

accuarcy: 0.7736842105263158 precision: 0.7611940298507462 recall: 0.9026548672566371

f1: 0.8259109311740891

DNN

confussion matrix: [[42 35]

[16 97]]

accuarcy: 0.7315789473684211 precision: 0.7348484848484849 recall: 0.8584070796460177 f1: 0.7918367346938775

Thanks!

