Comunicação de Computadores Trabalho Prático Nº1 - - Protocolos da Camada de Transporte Universidade do Minho

Vasco Marques Ivo Baixo e-mail: {a89592,a86579}@alunos.uminho.pt

16 de março de 2021

Conte'udo

1	Que	estão 1	3		
	1.1	1- Inclua no relatório uma tabela em que identifique, para cada comando executado, qual o protocolo de aplicação, o protocolo			
		de transporte, porta de atendimento e overhead de transporte. $$.	3		
2	Que	estão 2	6		
	2.1	2- Uma representação num diagrama temporal das transferências da file1 por FTP e TFTP respetivamente. Se for caso disso, identifique as fases de estabelecimento de conexão, transferência de dados e fim de conexão. Identifica também claramente os tipos de segmentos trocados e os números de sequência usados			
		quer nos dados como nas confirmações	6		
3	Questão 3				
	3.1	3- Com base nas experiências realizadas, distinga e compare sucintamente as quatro aplicações de transferência de ficheiros que usou nos seguintes pontos (i) uso da camada de transporte; (ii)	0		
		eficiência na transferência; (iii) complexidade; (iv) segurança	9		
4	Que	estão 4	10		
	4.1	4- As características das ligações de rede têm uma enorme influência nos níveis de Transporte e de Aplicação. Discuta, relacionando a resposta com as experiências realizadas, as influências das situações de perda ou duplicação de pacotes IP no desempenho global de Aplicações fiáveis (se possível, relacionando com alguns dos mecanismos de transporte envolvidos)	10		
5	C -	nclusões	11		
	(in	161115065			

Questões e Respostas

1 Questão 1

1.1 1- Inclua no relatório uma tabela em que identifique, para cada comando executado, qual o protocolo de aplicação, o protocolo de transporte, porta de atendimento e overhead de transporte.

Comando da Aplicação	Protocolo de Aplicação	Protocolo de Transporte	Porta de Atendimento	Overhead de transporte em bytes
Ping	não aplicável	não aplicável	não aplicável	não aplicável
traceroute	DNS	UDP	Várias Portas	8
telnet	TELNET	TCP	23	20
ftp	FTP	TCP	21	20
Tftp	TFTP	UDP	69	8
browser/http	НТТР	TCP	80	20
nslookup	DNS	UDP	53	8
ssh	SSH	TCP	22	20

É de notar que no traceroute o protocolo UDP envia cada pacote para uma porta diferente, incrementado o número da porta.

Figura 1: Ping.

Figura 2: Traceroute.

Figura 3: Telnet.

	1 0.000000000	127.0.0.1	127.0.0.53	DNS	88	Standard guery 0x56c7 A cc2021.ddns.net OPT	
	2 0.000220023	127.0.0.53	127.0.0.1	DNS	104	Standard query response 0x56c7 A cc2021.ddns.net A 193.136.9	
	3 0.000359699	127.0.0.1	127.0.0.53	DNS	88	▼ Wireshark · Packet 9 · any	- + ×
	4 0.000526346	10.0.2.15	192.168.1.254	DNS	77	Wileshalk - Facket 5 - ally	
	5 0.017368066	192.168.1.254	10.0.2.15	DNS	137	▶ Frame 9: 56 bytes on wire (448 bits), 56 bytes captured (448 bits) on interface any, id 0	
	6 0.017686789	127.0.0.53	127.0.0.1	DNS	88		1
	7 0.017923124	10.0.2.15	193.136.9.183	TCP	76	Internet Protocol Version 4, Src: 10.0.2.15, Dst: 193.136.9.183	
4	8 0.035651508	193.136.9.183	10.0.2.15	TCP	62	Transmission Control Protocol, Src Port: 38362, Dst Port: 21, Seq: 1, Ack: 1, Len: 0	
	9 0.035699443	10.0.2.15	193.136.9.183		56	Source Bort: 20262	
	10 0.072817592	193.136.9.183	10.0.2.15	FTP	76	Destination Port: 21	
	11 0.072845162	10.0.2.15	193.136.9.183	TCP	56	[Stream index: 0]	
	12 3.077567354	10.0.2.15	193.136.9.183	FTP	65	[TCP Segment Len: 0]	
	13 3.078336468	193.136.9.183	10.0.2.15	TCP	62	Sequence number: 1 (relative sequence number)	
	14 3.099770396	193.136.9.183	10.0.2.15	FTP	90	Sequence number (raw): 1249444173	
	15 3.099791981	10.0.2.15	193.136.9.183	TCP	56	[Next sequence number: 1 (relative sequence number)]	
	16 6.888188810	10.0.2.15	193.136.9.183	FTP	69	Acknowledgment number: 1 (relative sequence number)	
	17 6.888722377	193.136.9.183	10.0.2.15	TCP	62	Acknowledgment number: 1 (relative ack number) Acknowledgment number (raw): 633600002	
	18 6.982123813	193.136.9.183	10.0.2.15	FTP	76 56 65 62 90 56 69 62 79	0101 = Header Length: 20 bytes (5)	
	10 6 0821/15560	10 0 2 15	103 136 0 183	TCD	56	elel = Header Length: 20 bytes (5)	

Figura 4: FTP.

```
1 U. DECEMBER 22 (2.0.9.1 127.0.9.53 DNS 2 0.000515427 10.0.2.15 192.168.1.254 DNS 4 0.000515427 10.0.2.15 192.168.1.254 DNS 5 0.04698283 192.168.1.255 DNS 6 0.047116788 127.0.9.53 127.0.9.1 DNS 7 0.081549528 192.168.1.255 DNS 8 0.081559040 127.0.9.53 127.0.9.1 DNS 8 0.081559040 127.0.9.53 127.0.9.1 DNS 8 0.081559040 127.0.9.53 127.0.9.53 127.0.9.5 DNS 10.0005169 12.0.9.1 DNS 10.0005169 12.0.0005169 12.0.0005169 12.0.0005169 12.0.0005169 12.0.0005169 12.0.0005169 12.0.0005169 12.0.
```

Figura 5: TFTP.

Figura 6: Browser/http.

Figura 7: Nslookup.

```
4 0.00074223 10.0.2.15 192.168.1.254 DNS 77 Standard query exponse 0x6400 A cc2021.ddms.net A 193.136.9...
5 0.000078323 127.0.0.53 127.0.0.1 DNS 93 Standard query response 0x6400 A cc2021.ddms.net A 193.136.9...
8 0.00007839326 127.0.0.53 127.0.0.1 DNS 104 Standard query response 0x6207 A cc2021.ddms.net A 193.136.9...
8 0.00007839326 127.0.0.53 127.0.0.1 DNS 104 Standard query response 0x6207 A cc2021.ddms.net A 193.136.9...
9 0.000420745 10.0.2.15 193.136.9.183 1CP 8 5842 2 180.0.2.15 1 193.136.9.183 1CP 8 5842 2 180.0.2.15 1 193.136.9.183 1CP 8 5842 2 180.0.2.15 193.136.9.183 1CP 8 5842 2 180.0.2.15 193.136.9.183 1CP 8 5842 2 180.0.2.15 193.136.9.183 10.0.2.15 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.1000079 10.0.0.1000079 10.0.0.1000079 10.0.0.1000079 10.0.0.1000079 10.0.0.000079 10.0.0.000079 10.0.000079
```

Figura 8: SSh.

2 Questão 2

2.1 2- Uma representação num diagrama temporal das transferências da file1 por FTP e TFTP respetivamente. Se for caso disso, identifique as fases de estabelecimento de conexão, transferência de dados e fim de conexão. Identifica também claramente os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações.

Figura 9: Diagrama de sequência FTP (parte 1).

Figura 10: Diagrama de sequência FTP (parte 2).

Figura 11: Diagrama de sequência FTP (parte 3).

Figura 12: Diagrama de sequência TFTP.

3 Questão 3

3.1 3- Com base nas experiências realizadas, distinga e compare sucintamente as quatro aplicações de transferência de ficheiros que usou nos seguintes pontos (i) uso da camada de transporte; (ii) eficiência na transferência; (iii) complexidade; (iv) segurança.

SFTP - protocolo de transferência de ficheiros de forma segura, que corre sobre o protocolo SSH. Utiliza o TCP como protocolo da camada de transporte. Em termos de segurança, é um protocolo bastante seguro, pois todas as mensagens da conexão estabelecida entre o cliente e o servidor são encriptadas, daí o seu elevado grau de segurança. Porém, toda esta encriptação inerentes do SSH comprometem a eficiência e aumentam a complexidade.

FTP - protocolo standard de transferência de ficheiros. Também utiliza o TCP como protocolo da camada de transporte. Funciona também no modelo de servidor cliente, em que o servidor está "à escuta" e o cliente interage com o servidor fazendo um pedido de conexão. Em termos de segurança, apesar de haver autenticação no início da conexão, as mensagens entre o servidor e o cliente não são encriptadas, por isso é bastante vulnerável a ataques do exterior. A complexidade é mais baixa relativamente ao protocolo anterior, mas no geral ainda é elevada, dado o número acrescido de "handshakes" para estabelecer e manter a conexão. Relativamente à eficiência, é bastante eficiente, especialmente quando comparado ao protocolo anterior.

TFTP - Este protocolo utiliza o UDP como protocolo da camada de transporte, por isso não requer o estabelecimento de uma conexão. Disto podemos concluir que a sua complexidade é baixa, e é um protocolo bastante simples. Para além disso, também não utiliza mecanismos de encriptação nem autenticação, o que compromete um pouco ao nível da segurança. Para contrabalançar, a sua eficiência é bastante elevada, sendo de todos o protocolo mais rápido na tarefa em questão.

HTTP - É um protocolo que se assemelha bastante em termos de caraterísticas com o FTP. Também utiliza métodos de autenticação e "handshake", e tem uma complexidade, eficiência e segurança semelhante ao protocolo referido. Também utiliza o TCP como protocolo da camada de transporte.

4 Questão 4

4.1 4- As características das ligações de rede têm uma enorme influência nos níveis de Transporte e de Aplicação. Discuta, relacionando a resposta com as experiências realizadas, as influências das situações de perda ou duplicação de pacotes IP no desempenho global de Aplicações fiáveis (se possível, relacionando com alguns dos mecanismos de transporte envolvidos).

No desenvolvimento de uma aplicação fiável, é necessário ter em atenção qual o protocolo de transporte que é utilizado.

Aplicações que funcionem sobre o protocolo TCP têm a garantia que a nível de rede, não há perdas de dados e que os pacotes chegam pela ordem com que foram enviados, uma vez que há confirmação por ambas as partes de quando um pacote é recebido ou enviado. Contudo, qualquer que seja a comunição feita sobre este protocolo implica que sejam usados vários pacotes de controlo, tornando todo o processo mais lento. Este problema ainda se agrava mais se a rede for de menor qualidade, visto que são corrompidos e perdidos mais pacotes o que implica a transmissão de mensagens de erro e reenvio de vários pacotes, podendo causar um congestionamento da rede e por sua vez um atraso na aplicação.

Aplicações que funcionem sobre o protocolo **UDP** já não têm a garantia que não haja perda de dados, tendo de ser a própria aplicação a garantir que os dados são corretamente recebidos. Apesar desta desvantagem, como a quantidade de pacotes usados é significativamente menor. a carga sobre a rede de transporte é menor, evitando o congestionamento da mesma.

Assim, ambos os protocolos são viáveis, sendo a sua utilização dependente do objetivo a atingir pela aplicação.

5 Conclusões

No fim deste trabalho prático, no qual testamos vários protocolos de transferência de ficheiros, utilizando a topologia fornecida, tivemos a oportunidade de analisar e observar em funcionamento estes mesmos protocolos, e podemos concluir que terá sido uma experiência bastante vantajosa ao nível da aquisição de conhecimentos, não só ao nível teórico, mas também do ponto de vista prático.

Além dos protocolos referidos em cima, também observamos os diferentes comportamentos dos protocolos da camada de transporte, nomeadamente o UDP e o TCP, que foram estudados nas aulas teóricas, e ver estes protocolos em funcionamento em contextos reais deu-nos oportunidade de consolidação destes conhecimentos.

Fazendo uma curta autoavaliação do nosso trabalho neste TP, nós consideramos que tenhamos feito um trabalho bastante satisfatório, dado que atendemos a todos os requisitos e consolidado todos os conhecimentos que entendemos que seriam importantes.