

图神经网络推荐算法

讲师: Houye

- > 图和推荐的联系
- > 基于图神经网络的推荐算法

推荐问题:

给定用户的历史行为,预测用户与商品的交互行为(点击,购买)

注:

- (1)预测是否点击0、1
- (2)预测用于对商品评分1~5

链路预测:

给定图上的部分边,预测可能存在的边

注:

- (1)预测边是否存在边0、1
- (2)预测边的权重1~5(带权图)

模型

The Triplets of Belleville

Memento

图表示学习->推荐系统

用户U是否喜欢商品V可以用它们的向量表示的相似度来衡量。

$$\min_{U \in \mathbb{R}^{m imes d}, \; V \in \mathbb{R}^{n imes d}} \sum_{(i,j) \in \mathrm{obs}} (A_{ij} - \langle U_i, V_j
angle)^2.$$

图表示学习

推荐系统

图表示学习->推荐系统

用户、商品向量表示是推荐的基础,直接决定了推荐的效果

简单图表示学习模型(矩阵分解)

随机初始化,浅层模型进行训练,得到 U_i, V_j

$$\min_{U \in \mathbb{R}^{m imes d}, \; V \in \mathbb{R}^{n imes d}} \sum_{(i,j) \in \mathrm{obs}} (A_{ij} - \langle U_i, V_j
angle)^2.$$

深度图表示学习模型(图神经网络)

随机初始化/特征初始化,深度图神经网络进行训练(聚合邻居信息,更新节点表示),得到 U_i,V_i

$$egin{aligned} \min_{U \in \mathbb{R}^{m imes d}, V \in \mathbb{R}^{n imes d}} \sum_{(i,j) \in \mathrm{E}} (A_{ij} - \langle U_i, V_j
angle)^2 \ U_i &= GNN(i) \ V_j &= GNN(j) \end{aligned}$$

D2 基于图神经网络的推荐算法

Graph Convolutional Matrix Completion

Rianne van den Berg University of Amsterdam Thomas N. Kipf University of Amsterdam Max Welling
University of Amsterdam, CIFAR¹

Items

Users

Rating matrix M

用户表示:聚合其邻居(商品)来学习

- 用户买过的商品会有不同的打分r,分数r的高低代表了用户对商品的喜欢程度。
- 基于打分为r的商品聚合,得到的用户i的表示为 h_i^r

邻居聚合 $h_i^r = \sum_{j \in \mathcal{N}_{i,r}} W_r x_j$

其中, $\mathcal{N}_{i,r}$ 代表用户打分为r的商品集合, W_r 是针对打分r的投影矩阵。

• 考虑用户所有打过分的商品 $r=1, \dots, R$,得到R个用户i的表示。

$$h_i^1$$
, \cdots , h_i^R

• R个表示的融合(例如拼接)并进行非线性变换,得到最终用户i的表示 u_i

$$egin{aligned} h_i &= h_i^1 || \cdots || h_i^R \ u_i &= \sigma \left(W h_i
ight) \end{aligned}$$

商品表示:聚合其邻居(用户)来学习。与用户表示学习的方式相同。商品j的表示为 v_j

评分预测

用户i的表示 u_i + 商品j的表示为 v_j -> 用户i对商品j打分预测分为 \check{M}_{ij} 。

$$egin{aligned} \check{M}_{ij} &= g\left(u_i, v_j
ight) = \sum_{r \in R} r \cdot p\left(\check{M}_{ij} = r
ight) \ p\left(\check{M}_{ij} = r
ight) &= rac{e^{u_i^T Q_r v_j}}{\sum_{s \in R} e^{u_i^T Q_s v_j}} \end{aligned}$$

其中, Q_r 是针对评分r的参数矩阵。

模型训练

在已知用户i-商品j交互数据上($\Omega_{ij}=1$),计算预测评分的损失函数

$$\mathcal{L} = -\sum_{i,j;oldsymbol{\Omega}_{ij}=1} \sum_{r=1}^R I\left[r = M_{ij}
ight] \log p\left(\check{M}_{ij} = r
ight)$$

Dataset	Users	Items	Features	Ratings	Density	Rating levels
Flixster	3,000	3,000	Users/Items	26,173	0.0029	$0.5, 1, \ldots, 5$
Douban	3,000	3,000	Users	136,891	0.0152	$1,2,\ldots,5$
YahooMusic	3,000	3,000	Items	$5,\!335$	0.0006	$1, 2, \ldots, 100$
MovieLens 100K (ML-100K)	943	1,682	Users/Items	100,000	0.0630	$1,2,\ldots,5$
MovieLens 1M (ML-1M)	6,040	3,706		1,000,209	0.0447	$1,2,\ldots,5$
MovieLens 10M (ML-10M)	69,878	10,677		10,000,054	0.0134	$0.5,1,\ldots,5$

Model	ML-1M	ML-10M
PMF [20]	0.883	_
I-RBM [26]	0.854	0.825
BiasMF [16]	0.845	0.803
GC-MC (Ours)	0.832	0.777

Dataset	Users	Items	Features	Ratings	Density	Rating levels
Flixster	3,000	3,000	Users/Items	26,173	0.0029	$0.5, 1, \ldots, 5$
Douban	3,000	3,000	Users	136,891	0.0152	$1,2,\ldots,5$
YahooMusic	3,000	3,000	Items	$5,\!335$	0.0006	$1, 2, \ldots, 100$
MovieLens 100K (ML-100K)	943	1,682	Users/Items	100,000	0.0630	$1, 2, \ldots, 5$
MovieLens 1M (ML-1M)	6,040	3,706		1,000,209	0.0447	$1,2,\ldots,5$
MovieLens 10M (ML-10M)	$69,\!878$	10,677	_	10,000,054	0.0134	$0.5,1,\ldots,5$