Breaking Down Multilingual Machine Translation

Ting-Rui Chiang¹ Yi-Pei Chen² Yi-Ting Yeh¹ Graham Neubig¹ Carnegie Mellon University¹, The University of Tokyo²

Background: Multilingual Training for Machine Translation

Observation

Investigation

- How does multilingual training affect the encoder/decoder?
 - o i.e. How useful are the parameters learned from multilingual training?

Experiment - Step 1: Train a Multilingual Model

Experiment - Step 3: Train with Bilingual Data

Experiment - Final Step: Compare their performance

We can infer how multilingual training benefits the encoder/decoder.

X to En - Low-resouce Languages

■ Load both
■ Load encoder
■ Load decoder
■ From scratch

Low-resource: Multilingual training benefits both the encoder and the decoder.

X to En - High-resouce Languages

Investigating Parameter Sharing

- 1. Identify important attention heads for languages.
- 2. Compute the coherence of important heads.

Investigating Parameter Sharing

200	Armenian Kazakh	 Afro-Asiatic Turkic Indo-European Constructed Uralic Language isolate
Slo	Belarusian Belarusian Japanese Macedonian Arabic Vietnamese RussiaBulgarian Persian Kurdish Greek All Polish Azerbaijani Polish Finnish Estonian Bosnian Bosnian	MongolicSino-TibetanDravidianTai-KadaiAustroasiatic
-200	Danish Dutch Gern/albanian zh_tw. Chinese zh_cn	* all

Improvement by Training with Related Languages

	J				J	
Model	az	be	gl	sk	ar	de
En-All (Aharoni et al., 2019)	5.1	10.7	26.6	24.5	16.7	30.5

1.3

3.1

7.9

6.9

4.9

7.9

7.0

7.8

Bilingual Baseline

All-All w/ f.t. on related clusters

All-All w/ f.t. on random groups

En-All w/ f.t. on related clusters

En-All w/ f.t. on random groups

Load En-All w/ f.t. on closest

All-All

En-All

1.9

6.2

12.8

13.3

9.00

13.9

13.1

15.2

3.9

20.5

27.5

22.5

24.2

21.0

23.1

28.6

13.1

18.4

24.9

24.3

21.9

26.2

24.7

15.6

12.7

15.1

16.7

27.1

24.5

30.2

27.9

30.4

he

27.6

25.4

21.1

27.0

27.5

24.1

27.1

27.6

it

35.9

32.0

30.5

35.4

35.2

33.3

35.4

35.2

Conclusion

We found that multilingual training is more useful for the encoder.

We proposed a purely data-driven way to identify related languages.

Our experiments can serve as analysis tools for future research.

