Name:	Elle	Na	ш	en

Daniel B. Szyld

30 August 2023

Due Tueday 5 September 2023, 11 AM

Linear Algebra, Math 2101-003 Homework set #1

- **1.** Explain why the set $H^{n \times n} = \{n \times n \text{ symmetric matrices }\}$ is a subspace of $\mathbb{R}^{n \times n}$.
- **2.** (a) Let A be a matrix in $\mathbb{R}^{n \times n}$. Show that $A + A^T$ is symmetric and $A A^T$ is skew-symmetric.
- (b) Prove that any matrix $A \in \mathbb{R}^{n \times n}$ can be written as A = H + S, where H is symmetric, and S is skew-symmetric.
- (c) Show that H, S, in part (b) are unique.
- **3.** Show that the set $\{\mathbf{x} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1\}$ is an affine space.
- To show the set H^{nxn} to be a subspace of 1R^{nxn}, it must satisfy 3 properties

(i) The zero vector is in the set (0EV)

definition of transposition

- $\cdot\cdot$ nxn zero matrix (all entries 0) is symmetric $\cdot\cdot$ 0 \in \vee
- (ii) The set is closed under addition

Suppose A and B are nxn symmetric matrices, need to show that (A+B) is also symmetric

$$(A + B)^{T}_{ij} = (A + B)_{ji} = A_{ji} + B_{ji} = (A^{T} + B^{T})_{ij}$$
definition of transposition

definition of transposition definition of (A+B)

- \cdot (A+B) is symmetric
- (iii) The set is closed under scalar multiplication suppose & is a scalar, A is an nxn symmetric matrix; need to show that (αA) is also symmetric

definition of transposition commutative law definition of transposition $(\alpha A)^{T}_{ij} = (\alpha A)_{ji} = \alpha A_{ji} = \alpha (A^{T})_{ij}$ · (XA) is symmetric

Since the set H nxn satisfies all 3 properties above, QED!

(a) A is a matrix in
$$\mathbb{R}^{n\times n}$$
 (square matrix)
$$(A + A^T)^T_{ij} = (A^T)_{ij} + (A^T)^T_{ij} \quad \text{by transpose property: } (A+B)^T = A^T + B^T$$

$$= (A^T)_{ij} + A_{ij} \quad \text{by definition of } ij$$

$$= (A + A^T)_{ij} \quad \text{by commutative law}$$

 \therefore (A + A^T) is symmetric QED!

$$(A - A^T)^T ij = (A^T)ij - (A^T)^T ij$$
 by transpose property: $(A - B)^T = A^T - B^T$
 $= (A^T)ij - Aij$ by transpose property: $(A^T)^T = A$
 $= (A^T - A)ij$ by definition of ij

.. (A – A^T) is skew-symmetric QED!

(b) By part (a), for any square matrix $A \in \mathbb{R}^{n \times n}$, $(A + A^T)$ is symmetric and $(A - A^T)$ is skew-symmetric.

Let
$$H = \frac{1}{2}(A + A^T) \longrightarrow H^T = \left[\frac{1}{2}(A + A^T)\right]^T = \frac{1}{2}(A + A^T)^T = \frac{1}{2}(A + A^T) = H$$

transpose property proven in (a)

.. H is symmetric

Let
$$S = \frac{1}{2}(A - A^T) \longrightarrow S^T = \left[\frac{1}{2}(A - A^T)\right]^T = \frac{1}{2}(A - A^T)^T = \frac{-1}{2}(A - A^T) = -S$$

transpose property proven in (a)

:. S is skew-symmetric

:
$$H+S=\frac{1}{2}(A+A^{T})+\frac{1}{2}(A-A^{T})=\frac{1}{2}(A+A^{T}+A-A^{T})=\frac{1}{2}(2A)=A$$

 \therefore A = H+S where H is symmetric and S is skew-symmetric QED!

(c) Proof by contradiction: Suppose such combination of H and S in part (b) is not unique. Hence, we can construct X and Y that:

(i)
$$A = X + Y$$

(ii) X is symmetric
$$\therefore X = X^T$$
 by definitions (iii) Y is skew-symmetric $\therefore Y = -Y^T$ or $Y^T = -Y$

(iii) Y is skew-symmetric :
$$Y = -Y^T$$
 or $Y^T = -Y$

Thus,
$$A^{T} = (X + Y)^{T}$$
 by assumption
$$= X^{T} + Y^{T}$$
 by transpose property
$$= X - Y$$
 by definitions above

.. A+ A^T = (X+Y)+(X-Y) = 2X
$$\rightarrow$$
 X = $\frac{A+A^{T}}{2}$ = H(from (b))

$$A - A^{T} = (X + Y) - (X - Y) = X + Y - X + Y = 2Y \rightarrow Y = \frac{A - A^{T}}{2} = S$$
(from (b))

This is a contradiction to such assumption that Hand Sare not unique . Such assumption is invalid

- : Hand S are unique QED!
- 3 To show that the set $A = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1\}$ is an affine space, need to show that $A = p + X = \{v \in V \mid v = p + x, x \in X, X \subseteq V = |R^3y\}$

(i) Take point p = (1,0,0) then $p_1 + p_2 + p_3 = 1 + 0 + 0 = 1$

.. p∈ V or 0 € V .. A does not contain vector 0

(ii) Define
$$X = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$

Let $v_1, w \in X$, $A \in \mathbb{R}$; wish to show that $(Av + w) \in X$
 $v \in X \rightarrow v_1 + v_2 + v_3 = 0$
 $w \in X \rightarrow w_1 + w_2 + w_3 = 0$

Consider $\alpha v + w : (\alpha v + w)_1 + (\alpha v + w)_2 + (\alpha v + w)_3$ $= \alpha V_1 + W_1 + \alpha V_2 + W_2 + \alpha V_3 + W_3$ $= \propto (\vee_1 + \vee_2 + \vee_3) + (w_1 + w_2 + w_3)$

 $= \alpha.0 + 0 = 0$

 $\therefore (\alpha v + w) \in X$ \therefore B is a subspace

Can express A as $A = p + X = \{(1,0,0) + \{x \in \mathbb{R}^3 | x_1 + x_2 + x_3 = 0\}$

Need to verify:

- (a) A is non-empty (proven in (i))
- (b) A is closed under affine combinations
 - i.e. For any point $q \in A$ and any vector $v \in X$, the point $(q + v) \in A$

Let $q \in A \rightarrow q_1 + q_2 + q_3 = 1$ $V \in X \rightarrow V_1 + V_2 + V_3 = 0$

$$(q+v) = (q_1 + v_1) + (q_2 + v_2) + (q_3 + v_3)$$

$$= (q_1 + q_2 + q_3) + (v_1 + v_2 + v_3) = 1 + 0 = 1 \in A$$

- $\therefore (q+v) \in A$
- .. A is non-empty and closed under affine combinations
 .. A is an affine space QED!