

Fast R-CNN

강동규

DeepSync, South Korea

Fig1

Overview of R-CNN Structure

Fast RCNN

Problems of RCNN – 1. Warping (Crop, Resize)

Fig3

- 2000개의 Rol에 개별적으로 CNN 적용
- Rol 각각에 적용하기 때문에 시간 복잡도 상승
- Rol 각각에 대해 CNN을 적용한 특징맵 값을 Bbox, SVM에 적용하기 위해 Caching -> 공간 복잡도 상승

Problems of RCNN – 3. Multi-stage Pipeline

- 여러 단계가 개별적으로 나누어져 있어 End-to-End 학습을 할 수 없다.
- CNN을 학습하더라도 Selective Search 와 같은 다른 stage가 학습되지 않는다.

Fig4

Spatial Pyramid Pooling (SPP)

- 특징의 손실없이 고정된 길이의 표현 벡터를 생성하자
- 1. Spatial Bins 설정 (Hyperparameter, Bins = 21)
- 2. Bin의 개수에 맞는 Pooling 설정 (4x4, 2x2, 1x1)
- 3. 각 Pooling에 대해 Window Size, Stride를 adaptive하게 조정
- 4. 각 bin마다 MaxPooling 진행
- 5. Pooling 출력을 Concat, Flatten 하여 고정 길이 벡터 생성 *Rol 각각에 대해 다양한 크기의 Pooling을 적용한다.

Fig5

Feature Map

Improvements of SPPnet

- 전체 이미지에 대해 CNN을 한 번만 적용한다.
 (복잡도 감소)
- 2. 이미지, Rol의 크기, 비율에 영향을 받지 않는다.
- 3. Pyramid 방식을 통해 여러 공간적 특징을 추출해 정보의 손실을 줄이며 전달할 수 있다.

Fig4

Compare Structure of RCNN and SPPnet

- Problem of SPPnet
- 1. End-to-End 학습이 진행되지 않는다. -> FCs 가 학습되어도 CNN은 학습되지 않는다.
- 2. Bounding box regressor와 SVM이 개별적으로 처리 되기 때문에 cachin이 필요하다.

Overview of Fast R-CNN Structure

- 모델 적용 과정
- 1. 전체 입력 이미지에 Selective Search로 Rol 추출
- 2. 전체 입력 이미지를 CNN에 입력해 특징맵 추출
- 3. Rol를 특징맵 크기에 맞도록 Projection
- 4. Projection된 Rol에 Rol Pooling 적용
- 5. FC layers 통과
- 6. 출력 벡터를 Softmax, Bbox regressor에 입력

Goals of Fast R-CNN Structure

- Goals of Fast R-CNN
- End-to-End Training(Softmax, Multi-task loss)
- 1. Rol Pooling
- 2. Multi-task loss
- 3. Mini-batch Sampling

Fig7

Rol Projection & Rol Pooling

Multi-Task Loss

$$L(p, u, t^u, v) = L_{cls}(p, u) + \lambda[u \ge 1]L_{loc}(t^u, v),$$

- p : K+1 개의 Class Score(K개의 객체 + 배경)
- u: 정답 객체 Class Score
- tʰ : 예측한 K 객체에 대한 bbox 좌표 조정값
- v : 정답 bbox 좌표값
- λ : 분류 task, 객체 탐지 task 사이 가중치를 조절하는 하이퍼파라미터
- [u ≥ 1] : u ≥ 1 인 경우 u = 1, 아니면 u = 0
- $L_{cls} = -log P_u$: 분류 점수에 대한 log loss

Multi-Task Loss

$$L_{loc}(t^u, v) = \sum_{i \in \{x, y, w, h\}} smooth_{L_1}(t_i^u - v_i),$$

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise,} \end{cases}$$

- L2 Loss의 경우 너무 민감해서 학습률 조정이 어렵다.
- L1 Loss의 경우 이상치에 덜 민감하다.
- L1 Loss를 완화한 smooth L1 Loss를 사용했다.

Mini-Batch Sampling

과정

- Softmax, Bbox Regressor로 전달

- 특징맵에 Rol Projection
- Rol Pooling

- Selective Search -> Rol 추출
- Rol를 Mini-Batch로 전달

Fig7

Result

method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
SPPnet BB [11] [†]	07 \ diff	73.9	72.3	62.5	51.5	44.4	74.4	73.0	74.4	42.3	73.6	57.7	70.3	74.6	74.3	54.2	34.0	56.4	56.4	67.9	73.5	63.1
R-CNN BB [10]	07	73.4	77.0	63.4	45.4	44.6	75.1	78.1	79.8	40.5	73.7	62.2	79.4	78.1	73.1	64.2	35.6	66.8	67.2	70.4	71.1	66.0
FRCN [ours]	07	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	67.9	79.6	79.2	73.0	69.0	30.1	65.4	70.2	75.8	65.8	66.9
FRCN [ours]	07 \ diff	74.6	79.0	68.6	57.0	39.3	79.5	78.6	81.9	48.0	74.0	67.4	80.5	80.7	74.1	69.6	31.8	67.1	68.4	75.3	65.5	68.1
FRCN [ours]	07+12	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4	70.0

Table 1. **VOC 2007 test** detection average precision (%). All methods use VGG16. Training set key: **07**: VOC07 trainval, **07** \ **diff**: **07** without "difficult" examples, **07+12**: union of **07** and VOC12 trainval. † SPPnet results were prepared by the authors of [11].

method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
BabyLearning	Prop.	77.7	73.8	62.3	48.8	45.4	67.3	67.0	80.3	41.3	70.8	49.7	79.5	74.7	78.6	64.5	36.0	69.9	55.7	70.4	61.7	63.8
R-CNN BB [10]	12	79.3	72.4	63.1	44.0	44.4	64.6	66.3	84.9	38.8	67.3	48.4	82.3	75.0	76.7	65.7	35.8	66.2	54.8	69.1	58.8	62.9
SegDeepM	12+seg	82.3	75.2	67.1	50.7	49.8	71.1	69.6	88.2	42.5	71.2	50.0	85.7	76.6	81.8	69.3	41.5	71.9	62.2	73.2	64.6	67.2
FRCN [ours]	12	80.1	74.4	67.7	49.4	41.4	74.2	68.8	87.8	41.9	70.1	50.2	86.1	77.3	81.1	70.4	33.3	67.0	63.3	77.2	60.0	66.1
FRCN [ours]	07++12	82.0	77.8	71.6	55.3	42.4	77.3	71.7	89.3	44.5	72.1	53.7	87.7	80.0	82.5	72.7	36.6	68.7	65.4	81.1	62.7	68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16. Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07 trainval, VOC07 test, and VOC12 trainval.

method	train set	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
BabyLearning	Prop.	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6	63.2
NUS_NIN_c2000	Unk.	80.2	73.8	61.9	43.7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3	63.8
R-CNN BB [10]	12	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3	62.4
FRCN [ours]	12	80.3	74.7	66.9	46.9	37.7	73.9	68.6	87.7	41.7	71.1	51.1	86.0	77.8	79.8	69.8	32.1	65.5	63.8	76.4	61.7	65.7
FRCN [ours]	07++12	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44,2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2	68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS_NIN_c2000 use networks based on [17]. All other methods use VGG16. Training set key: see Table 2, Unk.: unknown.

Conclusion

- RCNN, SPPnet 보다 더 높은 탐지 성능을 갖는다.
- Multi-Task Loss를 사용해 End-to-End 훈련을 진행할 수 있다.
- End-to-End 훈련을 통해 모든 층을 훈련할 수 있고, 더 통합적인 훈련을 할 수 있다.
- 특징을 저장(Caching)하기 위한 공간이 필요하지 않다.

Reference

- Fig1 https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
- Fig2 https://www.arxiv-vanity.com/papers/1908.03673/
- Fig3, Fig4, Fig6, Fig7 https://cseweb.ucsd.edu/classes/sp17/cse252C-a/CSE252C 20170426.pdf
- Fig5 https://arxiv.org/pdf/1406.4729.pdf
- Fig8 https://herbwood.tistory.com/8
- Fig9 https://arxiv.org/pdf/1504.08083.pdf

Thank you for your time