Topics: Descriptive Statistics and Probability

1. Look at the data given below. Plot the data, find the outliers and find out μ, σ, σ^2

Name of company	Measure X
Allied Signal	24.23%
Bankers Trust	25.53%
General Mills	25.41%
ITT Industries	24.14%
J.P.Morgan & Co.	29.62%
Lehman Brothers	28.25%
Marriott	25.81%
MCI	24.39%
Merrill Lynch	40.26%
Microsoft	32.95%
Morgan Stanley	91.36%
Sun Microsystems	25.99%
Travelers	39.42%
US Airways	26.71%
Warner-Lambert	35.00%

- → From Boxplot----> Morgan Stanley = 91.36% is outlier
- → Mean = 33.27
- → Std = 16.94
- → Var = 287.14

2.

Answer the following three questions based on the box-plot above.

- (i) What is inter-quartile range of this dataset? (please approximate the numbers) In one line, explain what this value implies.
 - \rightarrow Q3 = 12, Q1 = 5, IQR = Q3 Q1 => 12 5 = 7
- (ii) What can we say about the skewness of this dataset?
 - → As the box plot lies towards the left, we can say that it is positively skewed
- (iii) If it was found that the data point with the value 25 is actually 2.5, how would the new box-plot be affected?
 - → There won't be significant difference in the boxplot. There won't be any outlier in the plot.

Answer the following three questions based on the histogram above.

- (i) Where would the mode of this dataset lie?
 - → Between 4 8
- (ii) Comment on the skewness of the dataset.
 - → It is positively skewed
- (iii) Suppose that the above histogram and the box-plot in question 2 are plotted for the same dataset. Explain how these graphs complement each other in providing information about any dataset.
 - → In both the graphs, there is a positive skewness of the data.
 - → According to the boxplot the mean is 7
 - → Both the plots have an outlier as 25

- 4. AT&T was running commercials in 1990 aimed at luring back customers who had switched to one of the other long-distance phone service providers. One such commercial shows a businessman trying to reach Phoenix and mistakenly getting Fiji, where a half-naked native on a beach responds incomprehensibly in Polynesian. When asked about this advertisement, AT&T admitted that the portrayed incident did not actually take place but added that this was an enactment of something that "could happen." Suppose that one in 200 long-distance telephone calls is misdirected. What is the probability that at least one in five attempted telephone calls reaches the wrong number? (Assume independence of attempts.)
 - → Probability of misdirected = 1/200=0.005
 - \rightarrow Probability of not misdirected = 1-1/200=0.995
 - → Probability of atleast one out of 5 number
 - = 1- Probability of all 5 numbers are not misdirected
 - = 1 [(1 .005)power5]
 - = 1-[(1-.005)(1-.005)(1-.005)(1-.005)]
 - = 1-0.9752
 - = .02475
 - =2.475
 - =2.5%
- 5. Returns on a certain business venture, to the nearest \$1,000, are known to follow the following probability distribution

Х	P(x)
-2,000	0.1
-1,000	0.1
0	0.2
1000	0.2
2000	0.3
3000	0.1

- (i) What is the most likely monetary outcome of the business venture?
 - → Most likely monetary outcome will be 2000 with probability of 0.3
- (ii) Is the venture likely to be successful? Explain
 - → Yes, Because probability of profit is higher than the loss
- (iii) What is the long-term average earning of business ventures of this kind? Explain
 - \rightarrow Long term avg = x * P(x) = 800
- (iv) What is the good measure of the risk involved in a venture of this kind? Compute this measure
 - \rightarrow Probability of risk = (-2000*.1) + (-1000*.1) = 0.2 = 20% risk