Task 1: Control the Mountain-Car-v0 Gym env using your webcam

• Workflow:

- 1. Getting familiarized with Open AI gym
- 2. Understanding the environment 'Mountain car v0'
- 3. Running 'Mountain car v0' environment with random actions
- 4. Gesture selection
- 5. Dataset creation
- 6. Preprocess dataset and dataflow from directory
- 7. Model creation and optimization
- 8. Improving dataset
- 9. Controlling 'Mountain car v0' with real-time hand-gesture using laptop webcam

• Gesture Selection:

No Push -

Push Left -

Push Right-

• Dataset creation

- 1. For creating the dataset the process used:
 - Webcam video feed
 - Tagging dataset through keyboard
 - Saving the tagged frame in specified label folders
- 2. The first dataset performed **very poorly** with the model as it was:
 - 1. raw image
 - 2. small size : [train, test, validation] = [1111, 300, 75]
 - 3. unmasked
 - 4. without applying any filters
- 3. The next dataset performed much better with the model as:
 - 1. Increased size [train, test, validation] = [2100, 303, 75]
 - 2. ROI
 - 3. Thresholding
 - 4. Masking
 - 5. Blurring
- 4. Performance of the dataset is described with models in model selection summary

• Preprocess dataset and dataflow from directory

- Normalization
- Shearing (only for training data)
- zooming (only for training data)
- horizontal flip (only for training data)
- I have used ImageDataGenerator.flow_from_directory for reading the data from the directory as labelled

• Model creation and optimization (also comparing dataset)

Data used - Dataset1:

- 1. raw image
- 2. small size : [train, test, validation] = [1111, 300, 75]
- 3. unmasked
- 4. without applying any filters

Comment: Since changing different hyper-parameters of the model is not improving the accuracy, it could be concluded that we need to take care of the dataset:

- **A.** Increase the number of images in the dataset (not done as that will be computational expensive)
- **B.** Preprocess the video to create the dataset

Data used - Dataset2:

- 1. Increased size [train, test, validation] = [2100, 303, 75]
- 2. Region of Interest
- 3. Thresholding
- 4. Masked
- 5. Blurred with Gaussian Blur

Comment: The preprocessed dataset works pretty well

• Controlling 'Mountain car v0' with real-time hand-gesture using laptop webcam

———-Pseudo code	
1. initializing the environment	
2. load model	
3. loop for each episode	
a. resetting env	
b.video processing	
i. open video	

- ii. image processing
- iii. interpreting result using model
- iv. print output on screen
- v. close video

-----end-----

Analysis of the challenge solution

- 1. Gesture: selected keeping in mind the similarity of these gestures with traffic signs
- 2. Dataset:
 - 1. Choice:
 - 1. compared on different models to check its performance
 - 2. preprocessed dataset(the one with thresholding, masking, blurring) to reduce the computational expense
 - 3. Dataset2
 - 2. Performance:
 - 1. the dataset does a decent job to train the model efficiently
 - 3. Scope of improvement
 - 1. The masking is done on the basis of colour
 - 2. performs poorly if having a complicated background
 - can be improved by changing the masking strategy or increasing the size of the dataset
- 3. Model:
 - 1. Choice:
 - 1. comparing accuracies
 - 2. Model 7
 - 2. Performance:
 - good accuracy: Epoch 30 loss: 0.0296 accuracy: 0.9886 val_loss: 0.2186 val_accuracy: 0.9241
 - 3. Scope of improvement
 - 1. Can be compared by changing few more hyper-parameters like the activation function, optimizer, batch size

4. Environmental Control

- 1. Performance:
 - 1. Works well because of decently trained model
- 2. Scope of improvement
 - If the model could be trained with huge dataset, the control can me seamless

References

- 1. https://github.com/chasinginfinity/number-sign-recognition/blob/master/collect-data.py
- 2. Udemy Course 'Autonomous Cars: Deep Learning and Computer Vision in Python'
- 3. Udemy Course 'Machine Learning A-Z™: Hands-On Python & R In Data Science'