Relatório Trabalho Prático 1

Modelos Determinísticos de Investigação Operacional Mestrado Integrado em Engenharia Informática Braga, 14 de outubro de 2017

Grupo 33

Francisco Oliveira – 78416

Raul Vilas Boas – 79617

Vitor Peixoto - 79175

PARTE I

1. ABCDE = 79617;

As variáveis de decisão são:

 x_1 – coordenada das abcissas de D_1 .

 y_1 – coordenada das ordenadas de D_1 .

 x_2 – coordenada das abcissas de D_2 .

 y_2 – coordenada das ordenadas de D_2 .

Estas variáveis serão integradas na função objetivo e são as incógnitas deste problema.

	C_1	C_2	C_3	C_4	C_5	D_1
D_1	15	8	17	61	4	0
D_2	4	18	8	4	17	5
Custos	a	b	c	d	е	f

$$C_1 = (2.8)$$
 $C_2 = (10.7)$

$$C_3 = (1,3)$$

$$C_4 = (6,4)$$
 $C_5 = (1,7)$

Optamos por fragmentar os custos relativos a cada cliente em a, b, c, d, e e f para facilitar o raciocínio e a representação da função objetivo:

Sendo então o custo dado pela multiplicação da distância pelo número de deslocações e sendo a distância calculada por $|x_1 - x_2| + |y_1 - y_2|$:

$$a = (|x_1 - 2| + |y_1 - 8|) \times 15 + (|x_2 - 2| + |y_2 - 8|) \times 4$$
 (U.M.)

$$b = (|x_1 - 10| + |y_1 - 7|) \ge 8 + (|x_2 - 10| + |y_2 - 7|) \ge 18$$
 (U.M.)

$$c = (|x_1 - 1| + |y_1 - 3|) \times 17 + (|x_2 - 1| + |y_2 - 3|) \times 8$$
 (U.M.)

$$d = (|x_1 - 6| + |y_1 - 4|) \times 61 + (|x_2 - 6| + |y_2 - 4|) \times 4$$
 (U.M.)

$$e = (|x_1 - 1| + |y_1 - 7|) \times 4 + (|x_2 - 1| + |y_2 - 7|) \times 17$$
 (U.M.)

$$f = (|x_1 - x_2| + |y_1 - y_2|) \times 5$$
 (U.M.)

Assim sendo, podemos definir uma função objetivo com o intuito de minimizar os custos totais:

Função objetivo:
$$Min a + b + c + d + e + f$$
 (U.M.)

No entanto esta função objetivo traz-nos um problema, uma vez que o programa LPSolve não permite a introdução de módulos. Temos então de arranjar uma maneira de contornar este problema.

Após alguma pesquisa sobre o funcionamento do programa, deparamos com uma maneira de ser possível introduzir expressões de valor absoluto no LPSolve.

Neste caso, a função objetivo minimiza módulos positivos, logo esse módulo será sempre o menor valor possível. Através disso podemos criar duas restrições e uma nova variável em que essa variável será sempre maior ou igual ao valor positivo e negativo do que está dentro do módulo.

Exemplo:

Assim sendo é possível agora introduzir o modelo no programa LPSolve criando uma variável para cada módulo existente na função objetivo:

Função objetivo: Min 15 x
$$a + 15$$
 x $b + 4$ x $c + 4$ x $d + 8$ x $e + 8$ x $f + 18$ x $g + 18$ x $h + 17$ x $i + 17$ x $j + 8$ x $k + 8$ x $l + 61$ x $m + 61$ x $n + 4$ x $o + 4$ x $p + 4$ x $q + 4$ x $r + 17$ x $s + 17$ x $t + 5$ x $u + 5$ x v (U.M)

Restrições:

$$x_1 - 2 \le a;$$

 $-x_1 + 2 \le a;$
 $y_1 - 8 \le b;$
 $-y_1 + 8 \le b;$
 $x_2 - 2 \le c;$
 $-x_2 + 2 \le c;$

Nota: as variáveis x_1 , y_1 , x_2 e y_2 foram substituídas por X, Y, W e Z respetivamente, na implementação do modelo no LPSolve.

2. Segue-se o input no LPSolve:

```
1 //Função Objetivo
2 min: 15*a+15*b+4*c+4*d+8*e+8*f+18*q+18*h+17*i+17*j
3 +8*k+8*l+61*m+61*n+4*o+4*p+4*q+4*r+17*s+17*t+5*u+5*v;
4
5 //Restrições
6 X-2 <= a;
7 - x + 2 <= a;
8 Y-8 <= b;
9 -Y+8 <= b;
10 W-2 <= c;
11 - W + 2 <= c;
12 Z-8 <= d;
13 -Z+8 <= d;
14 X-10 <= e;
15 - x + 10 <= e;
16 Y-7 <= f;
17 - Y + 7 <= f;
18 W-10 <= q;
19 -W+10 <= q;
20 Z-7 <= h;
21 -Z+7 <= h;
22 X-1 <= i;
23 -X+1 <= i;
24 Y-3 <= j;
25 -Y+3 <= j;
26 W-1 <= k;
27 -W+1 <= k;
28 Z-3 <= 1;
29 -Z+3 <= 1;
30 X-6 <= m;
31 - X + 6 <= m;
32 Y-4 \le n;
33 - Y + 4 <= n;
34 W-6 <= o;
35 -W+6 <= o;
36 Z-4 <= p;
37 - Z + 4 \le p;
38 X-1 <= q;
39 -X+1 <= q;
40 \text{ Y}-7 <= r;
41 -Y+7 <= r;
42 W-1 <= s;
43 -W+1 <= s;
44 Z-7 <= t;
45 - Z + 7 <= t;
46 X-W <= u;
47 -X+W <= u;
48 Y-Z <= v;
49 -Y+Z <= V;
```

3. Segue-se o *output* no LPSolve:

Variables	result
	578
a	4
ь	4
С	0
d	1
е	4
f	3
g	8
h	0
i	5
i	1
k	1
I	4
m	0
n	0
0	4
Р	3
q	5
Г	3
s	1
t	0
u	4
٧	3
X Y W Z	6
Υ	4
W	2
Z	7

4. Sendo X e Y as coordenadas de D₁ e W e Z as coordenadas de D₂, podemos então concluir que as posições das instalações são:

$$D_1 = (6,4)$$
 $D_2 = (2,7)$

Sendo que a solução ótima apresenta um custo mínimo de 578 U.M.

5. De modo a poder validar o modelo, vamos calcular os custos de transporte de cada cliente para cada instalação e entre instalações:

Custo C₁ - D₁:
$$(|6-2| + |4-8|) \times 15 = 120 \text{ U.M.}$$

Custo C₁ - D₂:
$$(|2-2| + |7-8|) \times 4 = 4 \text{ U.M.}$$

Custo C₂ - D₁:
$$(|6-10| + |4-7|) \times 8 = 56 \text{ U.M.}$$

Custo C₂ - D₂:
$$(|2-10| + |7-7|) \times 18 = 144 \text{ U.M.}$$

Custo C₃ - D₁:
$$(|6-1| + |4-3|) \times 17 = 102 \text{ U.M.}$$

Custo C₃ - D₂:
$$(|2-1| + |7-3|) \times 8 = 40 \text{ U.M.}$$

Custo C₄ - D₁:
$$(|6-6| + |4-4|) \times 61 = 0 \text{ U.M.}$$

Custo C₄ - D₂:
$$(|2-6| + |7-4|) \times 4 = 28 \text{ U.M.}$$

Custo C₅ - D₁:
$$(|6-1| + |4-7|) \times 4 = 32 \text{ U.M.}$$

Custo C₅ - D₂:
$$(|2-1| + |7-7|) \times 17 = 17 \text{ U.M.}$$

Custo
$$D_1 - D_2$$
: $(|6-2| + |4-7|) \times 5 = 35 \text{ U.M.}$

Custo total: 578 U.M.

Podemos também comprovar a validade deste modelo através do suplemento Solver do Microsoft Excel. Criamos para isso duas tabelas, uma com o custo de cada viagem entre cliente-instalação e instalação-instalação e outra com as coordenadas, deixando em branco os dados que queremos preencher.

	C1	C2	C3	C4	C5	D1
D1	15	8	17	61	4	0
D2	4	18	8	4	17	5

	Х	Υ	Função Objetivo
C1	2	8	
C2	10	7	
C3	1	3	
C4	6	4	
C5	1	7	
D1			
D2			

Na célula da função objetivo vamos inserir a fórmula da função objetivo usando os valores das células correspondentes:

- = (ABS(C13-C8)+ABS(D13-D8))*C4 + (ABS(C14-C8)+ABS(D14-D8))*C5
- + (ABS(C13-C9)+ABS(D13-D9))*D4 + (ABS(C14-C9)+ABS(D14-D9))*D5
- + (ABS(C13-C10)+ABS(D13-D10))*E4 + (ABS(C14-C10)+ABS(D14-D10))*E5
- + (ABS(C13-C11)+ABS(D13-D11))*F4 + (ABS(C14-C11)+ABS(D14-D11))*F5
- + (ABS(C13-C12)+ABS(D13-D12))*G4 + (ABS(C14-C12)+ABS(D14-D12))*G5
- + (ABS(C13-C14)+ABS(D13-D14))*H5

No Solver definir o objetivo como a célula da função objetivo e as células variável como as quatro células referentes às coordenadas de D_1 e D_2 .

Ao clicar em Resolver iremos obter nas células as coordenadas de D_1 e D_2 e o custo mínimo. Valores que coincidem com os obtidos no LPSolve.

	C1	C2	C3	C4	C5	D1
D1	15	8	17	61	4	0
D2	4	18	8	4	17	5

	X	Υ	Função Objetivo	
C1	2	8	578	
C2	10	7	576	
C3	1	3		
C4	6	4		
C5	1	7		
D1	6	4		
D2	2	7		

PARTE II

1. As variáveis de decisão são:

x – coordenada das abcissas de D₃.

y – coordenada das ordenadas de D_3 .

$$C_1 = (2.8)$$
 $C_2 = (10.7)$ $C_3 = (1.3)$

$$C_4 = (6,4)$$
 $C_5 = (1,7)$

Neste problema temos como objetivo minimizar a distância entre o cliente mais longe da instalação D₃. Para facilitar vamos obter as distâncias entre D₃ e os clientes:

Distância
$$C_1 - D_3 = |x - 2| + |y - 8|$$
 (U.C.)

Distância
$$C_2 - D_3 = |x - 10| + |y - 7|$$
 (U.C.)

Distância C₃ - D₃ =
$$|x - 1| + |y - 3|$$
 (U.C.)

Distância
$$C_4 - D_3 = |x - 6| + |y - 4|$$
 (U.C.)

Distância
$$C_5 - D_3 = |x - 1| + |y - 7|$$
 (U.C.)

Sendo que a maior distância é maior ou igual a todas as distâncias, mas não sabemos qual delas é a maior, podemos definir uma variável "M" como a maior distância. Variável essa que é maior ou igual a todas as distâncias. Podemos assim definir uma função objetivo e cinco restrições:

Função objetivo: Min M; (U.C.)

Restrições:
$$M \ge |x - 2| + |y - 8|$$
 (U.C.)

$$M \ge |x - 10| + |y - 7|$$
 (U.C.)

$$M \ge |x - 1| + |y - 3|$$
 (U.C.)

$$M \ge |x - 6| + |y - 4|$$
 (U.C.)

$$M \ge |x - 1| + |y - 7|$$
 (U.C.)

Iremos também adicionar restrições relacionadas com o facto de o LPSolve não aceitar módulos (ver página 3).

2. Segue-se o input no LPSolve:

```
1 //Função objetivo
2 min: M;
3
4 //Restrições
5 x-2 <= a;
6 -x+2 <= a;
7 y-8 <= b;
8 - y + 8 <= b;
9 x-10 <= c;
10 -x+10 <= c;
11 y-7 <= d;
12 -y+7 <= d;
13 x-1 <= e;
14 -x+1 \le e;
15 y-3 <= f;
16 -y+3 <= f;
17 x-6 <= g;
18 -x+6 <= g;
19 y-4 <= h;
20 -y+4 <= h;
21 x-1 <= i;
22 -x+1 <= i;
23 y-7 <= j;
24 - y + 7 <= j;
25 M >= a+b;
26 M >= c+d;
27 M >= e+f;
28 M >= g+h;
29 M >= i+j;
```

3. Segue-se o output no LPSc	3.	Segue-se o	output no	LPSolve:
-------------------------------------	----	------------	-----------	----------

Variables	result
	6,5
М	6,5
×	3,5
a	1,5
у	7
ь	1
С	6,5
d	0
е	2,5
f	4
g	2,5
h	3
i	2,5
i	0

4. Sendo $x ext{ e } y$ as coordenadas de D_3 , podemos concluir que a posição é:

$$D_3 = (3.5,7)$$

Sendo que a solução ótima apresenta uma distância mínima de 6,5 U.C. para os clientes mais afastados (C_2 e C_3).

5. Distância
$$C_1$$
 - $D_3 = |3.5 - 2| + |7 - 8| = a + b = 1.5 + 1 = 2.5$ (U.C.)

Distância C₂ - D₃ =
$$|3.5 - 10| + |7 - 7| = c + d = 6.5 + 0 = 6.5$$
 (U.C.)

Distância
$$C_3 - D_3 = |3.5 - 1| + |7 - 3| = e + f = 2.5 + 4 = 6.5$$
 (U.C.)

Distância C₄ - D₃ =
$$|3.5 - 6| + |7 - 4| = g + h = 2.5 + 3 = 5.5$$
 (U.C.)

Distância
$$C_5 - D_3 = |3.5 - 1| + |7 - 7| = i + j = 2.5 + 0 = 2.5$$
 (U.C.)

Maior distância: 6.5 U.C. (entre D₃ e os clientes C₂ e C₃).

Podemos também comprovar a validade deste modelo através do suplemento Solver do Microsoft Excel. Criamos para isso duas tabelas: uma com as coordenadas sem preencher as que pretendemos obter e o valor de M; e na outra tabela colocamos as restrições (ver imagem da próxima página).

Na coluna da distância colocamos as distâncias entre cada cliente e as instalações (Exemplo para C_1 : ABS(C9-C4) + ABS(D9-D4)).

	X	Y	М
C1	2	8	
C2	10	7	
C3	1	3	
C4	6	4	
C5	1	7	
D3			

	Distância	Op.	М
R1		\ =	0,0
R2		<=	0,0
R3		<=	0,0
R4		<=	0,0
R5		\ =	0,0

Depois temos de selecionar a célula da função objetivo (célula do valor M e que também é uma variável), selecionar as células das variáveis (X, Y e M) e adicionar as restrições da tabela.

	X	Y	М
C1	2	8	
C2	10	7	
C3	1	3	
C4	6	4	
C5	1	7	
D3	5,5	5,0	6,5

	Distância	Op.	М
R1	6,5	<=	6,5
R2	6,5	<=	6,5
R3	6,5	<=	6,5
R4	1,5	<=	6,5
R5	6,5	<=	6,5

Comparando ao resultado obtido no LPSolve, reparamos que deu diferentes distâncias entre clientes e D_3 (devido às diferentes coordenadas de D_3), no entanto a maior distância é na mesma 6,5 U.C.. Isto deve-se a haver várias coordenadas em que a maior distância é 6,5 U.C. e por algum motivo o LPSolve escolheu a localização (3.5,7) e o Excel escolheu (5.5,5).