

Batch details	PGPDSE-FT Offline BLR Oct22
Team members	Venkata Sai Pavan Teja Angina
	Shivaprasad G
	Akhil Anilkumar
	Arun Sv
	Sahil Kumar Meher
Domain of Project	Retail
Proposed project title	Telecom Churn
Group Number	9
Team Leader	Sahil Kumar Meher
Mentor Name	Ms. Pranita Mahajan

Table of Contents:

Topic	Page No
Project Details	4
Dataset Information	6
Data Exploration (EDA)	10
Base Model	27
	Project Details Dataset Information Data Exploration (EDA)

PROJECT DETAILS

Overview

In developed countries, the telecommunication industry has become a major player, with a large number of operators competing fiercely due to technological advancements. With this competition, companies are striving to survive and thrive by implementing various strategies. One of the major concerns in this industry is customer churn, which is the rate at which customers switch to other service providers. Predicting which customers are likely to leave early can potentially generate significant additional revenue for the company.

Industry Review

Introduction to domain:

Telecommunications involves the transmission of information electronically across long distances, including voice, data, text, images, and video. Telecommunications networks connect computer systems over remote locations, allowing for efficient communication.

In the present day, the telecommunications industry faces intense competition in satisfying its customers. Predicting customer churn has become crucial not only for accurately identifying potential churners, but also for understanding customer behavior.

To remain competitive, telecom companies must constantly improve their services, including customer support and pricing plans, and leverage the power of data analytics to gain a competitive edge in the market. By utilizing targeted data analytics, telecom companies can better understand their customers' behavior and preferences, helping them to maintain or enhance their position in the highly competitive marketplace.

Impact in Business:

Businesses rely heavily on telecommunications as a critical tool for effective communication with their customers and delivering top-quality customer service. Telecommunications facilitates seamless collaboration among employees, regardless of their location, whether they work remotely or locally.

The impact of telecommunications extends beyond individual businesses, as it influences how people connect and conduct business on a global scale. In particular, reliable and timely communication is crucial to maintaining a company's brand reputation, productivity, and overall success. By leveraging the power of telecommunications, businesses can improve their operational efficiency, streamline their processes, and enhance customer satisfaction, ultimately leading to greater success and growth.

Problem Statement:

One of the biggest challenges that large companies face is customer churn, which has a direct impact on their revenue, particularly in the telecommunications industry. As a result, companies are constantly seeking ways to predict potential churn and prevent it from happening. Identifying the factors that contribute to customer churn is crucial for taking necessary measures to reduce it.

By analyzing customer behavior and preferences, companies can gain insights into the factors that contribute to churn, such as poor service quality, pricing, or lack of customer support. Armed with this information, companies can take proactive steps to address these issues and implement measures to retain their customers. In this way, understanding the factors that increase customer churn is essential for any company that wants to remain competitive and profitable in the long term.

Dataset Information:

Target Variable:

FEATURE	DATA TYPE	DESCRIPTION
CHURN	Object	Detecting which customers are likely to leave a service or to cancel a subscription to a service

Features Understanding:

Feature	DATA	Description
	TYPE	
Customer ID	Integer	Primary key of the record.
Churn	Object	Detecting which customers are likely to leave a service or to
		cancel a subscription to a service
Monthly	Float	Revenue of each Customer
Revenue		
Monthly	Float	Number of Minutes call spoken by Customer
Minutes		
Total Recurring	Float	The Charges for the Service
Charge		
Director	Float	When we call an operator to request a telephone number
Assisted Calls		
Overage	Float	Count of Call used over duration to particular post-paid cell
Minutes		phone plan
Roaming Calls	Float	The ability to get access to the Internet when away from home
		at the price of a local call or at a charge considerably less than
		the regular long-distance charges.
Three-way	Float	A way of adding a third party to your conversation without the
Calls		assistance of a telephone operator.

Dropped Calls	Float	Count of Phone calls gets disconnected somehow from the
		cellular network.
Blocked Calls	Float	Count of Telephone call that is unable to connect to an
		intended recipient.
Un-answered	Float	Count of Calling that an individual perceives but is not
Calls		currently pursuing.

Received Calls	Float	Number of calls received by the customer.
Out bound Calls	Float	Call initiated by the call centre agent to customer on behalf of
		client to know the target customer behaviour and needs.
Inbound Calls	Float	In inbound calls, call-centre or customer-care receives call from
		customer with issues and questions.
Peak Calls in	Float	Amount of time period with fewer calls than are handled in a
Out		busy period.
Call Forwarding	Float	Count of CallsForwarded by user.
Calls		
Dropped	Float	Number of VM messages customer currently has on the server.
Blocked Calls		
Call Waiting	Float	Duration of call-in waiting period
Calls		
Months In	Integer	Number of months customer using service.
Service		
Unique Subs	Integer	subscription of different networks
Active Subs	Integer	subscription of the networks that are active or in usage.
Service Area	Object	Network service area
Handsets	Integer	Count of Handset with user
Handset Models	Float	Count of Handsets are used to Contact one to one.
1		

Feature name	Data Type	Description
Age HH1	Float	User aged below 45
Age HH2	Float	User aged above 45
Children in HH	Integer	Whether there are Children in House hold
Handset Refurbished	Object	Are the handsets refurbished or not
Handset Web Capable	Object	Are the handsets capable of internet connectivity
Truck Owner	Object	Is the user a Truck Owner
RV Owner	Object	Is the user an RV owner
Home Ownership	Object	Is the house the user is staying, his own
Buys Visa Mail Order	Object	Does the user buy Visa Mail order
Responds to Mail Offers	Object	Does the user respond to Mail offers
Opt-out Mailings	Object	Did he opt out of the mail offers sent to him
Non-US-Travel	Object	Does the user travel to other countries
Owns-Computer	Object	Does he have a computer or not
Has-Credit Card	Object	Does he have a credit card or not
Retention Calls	Integer	No of Retention Calls
Retention Offers Accepted	Integer	Customers accepting retaining the retaining offers given by the company.
New Cell phone User	Object	Number of customers buying new cell phone.
Not New cell phone User	Object	Number of customers uses existing cell phone
Referrals Made by Subscriber	Integer	Referrals made by the existing customer to the other customer.
Income Group	Integer	The column talks about the customer saying to which category the customer belongs to.
Adjustments To Credit Rating	Integer	Rating Scale

Handset Price	Object	Its amount paid by the customer for his cell phone.
Made call to retention team	Object	User call to Retention in same company
Credit Rating	Object	Credit card user rating (out of 7)
PrimzCode	object	Grouping of regions according to users
Occupation	Object	Occupation of User
Marital status	Object	Marital Status Indicated by Yes/No/Unknown

Dataset Information:

Data is taken from Kaggle (Telecom(churn))

No. of features: 56

No. of records: 51047

Target Column: churn

Redundant columns: Service area, Customer Id.

Understanding the Data:

Checking Shape of Data:

df.shape

(51047, 58)

As per the data we have 51047 observations and 58 variables are there

DATA EXPLORATION (EDA)

Summary of Dataset:

	count	mean	etd	min	25%	50%	75%	ma
CustomerID	51047.000000	3201966.877818	116905.561666	3000002,000000	3100632,000000	3201534,000000	3305376.000000	3399994.00000
MonthlyRevenue	50891.000000	58.834492	44.507338	-6.170000	33.610000	48.460000	71.065000	1223.38000
MonthlyMinutes	50891.000000	525.653416	529.871063	0.000000	158.000000	366,000000	723,000000	7359.00000
TotalRecurringCharge	50891.000000	46.830088	23.848871	-11.000000	30.000000	45.000000	60.000000	400.00000
DirectorAssistedCalls	50891.000000	0.896229	2.228546	0.000000	0.000000	0.250000	0.990000	159.39000
OverageMinutes	50891.000000	40.027785	98.588078	0.000000	0.000000	3.000000	41.000000	4321.00000
RoamingCalls	50891.000000	1.236244	9.818294	0.000000	0.000000	0.000000	0.300000	1112.40000
PercChangeMinutes	50680.000000	-11.547908	257.514772	-3875.000000	-83,000000	-5,000000	66.000000	5192.00000
PercChangeRevenues	50680.000000	-1.191985	39.574915	-1107.700000	-7.100000	-0.300000	1.600000	2483.50000
DroppedCalls	51047.000000	6.011489	9.043955	0.000000	0.700000	3.000000	7,700000	221.70000
BlockedCalls	51047.000000	4.085672	10,946905	0.000000	0.000000	1.000000	3.700000	384.30000
UnanaweredCalls	51047.000000	28.288981	38.876194	0.000000	5.300000	18.300000	36.300000	848.70000
CustomerCareCalls	51047.000000	1.888999	5.096138	0.000000	0.000000	0.000000	1.700000	327.30000
ThreewayCalls	51047.000000	0.296838	1.168277	0.000000	0.000000	0.000000	0.300000	66.00000
ReceivedCalls	51047.000000	114.800121	166.485896	0.000000	8.300000	52.800000	153.500000	2692.40000
OutboundCalls	51047.000000	25.377715	35.209147	0.000000	3.300000	13.700000	34.000000	644.30000
InboundCalls	51047.000000	8.178104	16.665878	0.000000	0.000000	2.000000	9.300000	519.30000
PeakCalleInOut	51047.000000	90.549615	104.947470	0.000000	23.000000	62.000000	121.300000	2090.70000
OffPeakCallsInOut	51047.000000	67.650790	92.752699	0.000000	11.000000	35.700000	88.700000	1474,70000
DroppedBlockedCalls	51047.000000	10.158003	15.555284	0.000000	1.700000	5.300000	12.300000	411.70000
CaliForwardingCalls	51047.000000	0.012277	0.594168	0.000000	0.000000	0.000000	0.000000	81,30000
CallWaltingCalls	51047.000000	1.840504	5.585129	0.000000	0.000000	0.300000	1.300000	212.70000
Monthain Service	51047.000000	18.756264	9.800138	6.000000	11.000000	18.000000	24.000000	61.00000
Unique Subs	51047.000000	1.532157	1.223384	1.000000	1.000000	1,000000	2,000000	196.00000
Active Subs	51047.000000	1.354340	0.675477	0.000000	1.000000	1,000000	2,000000	53.00000
Handeets	51046.000000	1.805648	1.331173	1.000000	1.000000	1.000000	2.000000	24.00000
HandsetModels	51046.000000	1.558751	0.905932	1.000000	1.000000	1.000000	2.000000	15.00000
CurrentEquipmentDays	51046.000000	380.545841	253.801982	-5.000000	205.000000	329.000000	515.000000	1812.00000
AgeHH1	50138.000000	31.338127	22.094635	0.000000	0.000000	36.000000	48.000000	99.00000
AgeHH2	50138.000000	21.144142	23.931368	0.000000	0.000000	0.000000	42.000000	99.00000
RetentionCalls	51047.000000	0.037201	0.206483	0.000000	0.000000	0.000000	0.000000	4.00000
RetentionOffersAccepted	51047.000000	0.018277	0.142458	0.000000	0.000000	0.000000	0.000000	3.00000
eferraleMadeBySubscriber	51047.000000	0.052070	0.307592	0.000000	0.000000	0.000000	0.000000	35.00000
IncomeGroup	51047.000000	4.324524	3.138238	0.000000	0.000000	5.000000	7.000000	9.00000
djustmentsToCreditRating	51047.000000	0.053911	0.383147	0.000000	0.000000	0.000000	0.000000	25.00000

Interpretation:

- 1. Count of all the columns are different. So we can assume that their is nullvalues
- 2. We can see difference in both mean and median. So the data is not normally distributed
- 3. Also there is presence of outliers because the difference between min and max is more

Check the Data Type:

Check the data type of each variable. If the data type is not as per the data definition, change the data type.

Churn MonthlyRevenue MonthlyMinutes TotalRecurringCharge DirectorAssistedCalls OverageMinutes RoamingCalls PercChangeMinutes PercChangeRevenues DroppedCalls BlockedCalls UnansweredCalls CustomerCareCalls ThreewayCalls ReceivedCalls OutboundCalls InboundCalls InboundCalls InboundCalls InboundCalls CallForwardingCalls CallForwardingCalls CallWaitingCalls MonthsInService UniqueSubs ActiveSubs Handsets HandsetModels CurrentEquipmentDays AgeHH1 AgeHH2 ChildrenInHH	object float64 int64 int64 int64 int64 int64 float64 float64 float64 float64 float64 float64 float64	HandsetRefurbished HandsetWebCapable TruckOwner RVOwner Homeownership BuysViaMailOrder RespondsToMailOffers OptOutMailings NonUSTravel OwnsComputer HasCreditCard RetentionCalls RetentionOffersAccepted NewCellphoneUser NotNewCellphoneUser ReferralsMadeBySubscriber IncomeGroup OwnsMotorcycle AdjustmentsToCreditRating HandsetPrice MadeCallToRetentionTeam CreditRating PrizmCode Occupation MaritalStatus dtype: object	object object object object object object object object object int64 int64 object int64 object
	-		

Drop unnecessary columns

```
df.drop(['ServiceArea', 'CustomerID'], axis=1, inplace=True)

df.shape
(51047, 56)
```

Data Cleaning

Missing Values Treatment:

Missing values plays a prominent role in the dataset. Generally, we can drop the columns or rows depending the percentage of missing values. We can also replace the missing values with optimum values. In order to perform such operations, we will first look into the overall missing values in each column using the below python code.

t = (df.isnull() mg_data = pd.conc mg_data				raines(ascending=True) eys = ['Data type','Total', 'Percentage of Missing Values'
	Data type	Total	Percentage of Missing Values	
	0	0	1	
Churn	abject	0	0.000000	
MonthlyRevenue	float64	156	0.305801	
MonthlyMinutes	float64	156	0.305601	
TotalRecurringCharge	float64	156	0.305601	
DirectorAssistedCalls	float64	156	0.305601	
OverageMinutes	float64	156	0.305601	
RoamingCalla	float64	156	0.305801	
PercChangeMinutes	float64	367	0.718945	
PercChangeRevenues	float64	367	0.718945	
DroppedCalls	float64	0	0.000000	
BlockedCalls	float64	0	0.000000	
UnansweredCalls	float64	.0	0.000000	
CustomerCareCalls	float64	0	0.000000	
ThreewayCalls	float64	0	0.000000	
ReceivedCalls	float64	0	0.000000	
OutboundCalls	float64	0	0.000000	
InboundCalls	float64	0	0.000000	
PeakCallsInOut	float64	0	0.000000	
OffPeakCallsInOut	float64	0	0.000000	
DroppedBlockedCalls	float64	0	0.000000	
CaliforwardingCalls	float64	0	0.000000	
CallWaltingCalls	float64	0	0.000000	
Monthein Service	int/64	0	0.000000	
Unique Subs	int64	0	0.000000	
Active Subs	int64	0	0.000000	
Handsets	float64	1	0.001959	
HandsetModels	float64	1	0.001959	
CurrentEquipmentDays	float64	1	0.001959	
AgeHH1	float64	909	1.780712	
AgeHH2	float64	909	1.780712	
ChildreninHH	abject	0	0.000000	
HandsetRefurblahed	abject	0	0.000000	

We shall replace the missing values with median value.

Let us now consider each variable separately for missing value treatment.

```
# As we can see their is no null values
df['HandsetPrice'].unique() # Checking unique values
array(['30', 'Unknown', '10', '80', '150', '300', '40', '200', '100', '130', '60', '400', '240', '250', '180', '500'], dtype=object)
df['HandsetPrice'] = df['HandsetPrice'].replace('Unknown',np.nan)
df['HandsetPrice'].unique()
array(['30', nan, '10', '80', '150', '300', '40', '200', '100', '130',
        '60', '400', '240', '250', '180', '500'], dtype=object)
median_price = df['HandsetPrice'].median()
median_price
60.0
df['HandsetPrice'] = df['HandsetPrice'].fillna(median price)
#Here we replace the word unknown from the 'HandsetPrice' column by using median. Because their is outliers, so we didn't
#use the mean
# convert numerical variables to categorical (object)
# use astype() to change the data type
# change the data type of 'HandsetPrice'
df['HandsetPrice'] = df['HandsetPrice'].astype(int)
```

Interpretation: Now, all the variables have the correct data type

Duplicate Values Check:

```
#checking for duplicate values
print(df1.duplicated().sum())
print(' ')
print(f'Dataset have {df1.duplicated().sum()} duplicate values.')
0
```

Dataset have 0 duplicate values.

Outlier Analysis:

Inference: By Visualizing above boxplot, we can see that all the Features have potential outliers and some features there are extreme values as well.

Outliers: Outliers is an observation which deviates so much from the other observations, that it become suspicious that it was generated by different mechanism or simply by error

Extreme Values: Extreme Values is an observation with value at the boundaries of the domain

Reason for outliers exist in the data:

- 1. Variability in the Data
- 2. An experimental measurement errors

Impact of outliers on Dataset:

- 1. It causes various problem during statistical analysis.
- 2. It effects the mean and standard deviation.

Skewness Before Transformation:

Inference: Here by visualizing dist plot we can see that the Features plotted in Teal colour are positively skewed and Features plotted in red colour are Negatively Skewed.

--: To reduce the impact of skewness we can use various transformation techniques here we are using box cox transformation

Descriptive Analysis (EDA)

Univariate Analysis:

Numerical Columns Visualization:

Categorical Columns Visualization:

```
def annot_percent(axes):
    for p in plot.patches:
        total = sum(p.get_height() for p in plot.patches)/100
        percent = round((p.get_height()/total),2)
        x = p.get_x() + p.get_width()/2
        y = p.get_height()
        plot.annotate(f'{percent}%', (x, y), ha='center', va='bottom')
```


Obeservations

- 1) Churn Over 27 percent of people in the data have churned.
- 2) Handseter capable More than 90 percent of the people in the data have internet support on their phone.
- 3) More than 65 percent of them don't have a credit card
- 4) Less than 2 percent of them own a motorcycle
- 5) More than half of the people's handset price is unknown
- 6) Over 70 percent of the data has occupations other than the ones mentioned.
- 7) Martial status of 60 percent of the data is known out of which, 26 percent are not married. The rest are unknown.
- 6) Over 70 percent of the data has occupations other than the ones mentioned.
- 7) Martial status of 60 percent of the data is known out of which, 25 percent are not married. The rest are unknown.

Bivariate Analysis:

Bivariate Analysis on Categorical - Categorical

observation:

- 1. In Handset web capability over 25% of people who have churned has more than 90% of Internet capability on their phone.
- 2. Less than 6% of people who own new phone have churned.
- 3. Data shows that people who have Credit Cards are more likely to Churn
- 4. Marital Status of people churning is independent
- 5. People who have responded mail offer are less likely to churn

Multivariate Analysis:

Observation:

According to plot, as Monthly Revenue Increases, then number of Monthly Minutes increases, but we could not draw any conclusion on churn.

Observation:

As the number of handset Increases, with this certain percentage peoples are more likely to churn.

Statistics (Stats)

	Feature	Statistical Test	P-Value	Inference
0	MonthlyRevenue	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
1	MonthlyMinutes	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
2	TotalRecurringCharge	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
3	DirectorAssistedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
4	OverageMinutes	kruskal wallis test	0.000009	Dependent numerical variable found after H-tes
5	RoamingCalls	kruskal wallis test	0.922785	Independent numerical variable found after H-t
6	PercChangeMinutes	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
7	PercChangeRevenues	kruskal wallis test	0.308102	Independent numerical variable found after H-t
8	DroppedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
9	BlockedCalls	kruskal wallis test	0.000650	Dependent numerical variable found after H-tes
10	UnansweredCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
11	CustomerCareCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
12	ThreewayCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
13	ReceivedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
14	OutboundCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
15	InboundCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
16	PeakCallsInOut	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
17	OffPeakCallsInOut	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
18	DroppedBlockedCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
19	CallForwardingCalls	kruskal wallis test	0.311887	Independent numerical variable found after H-t
20	CallWaitingCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
21	MonthsInService	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
22	UniqueSubs	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
23	ActiveSubs	kruskal wallis test	0.000003	Dependent numerical variable found after H-tes
24	Handsets	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
25	HandsetModels	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
26	CurrentEquipmentDays	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
27	AgeHH1	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
28	AgeHH2	kruskal wallis test	0.000383	Dependent numerical variable found after H-tes
29	RetentionCalls	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
30	RetentionOffersAccepted	kruskal wallis test	0.000000	Dependent numerical variable found after H-tes
31	ReferralsMadeBySubscriber	kruskal wallis test	0.024863	Dependent numerical variable found after H-tes
32	IncomeGroup	kruskal wallis test	0.026027	Dependent numerical variable found after H-tes
33	AdjustmentsToCreditRating	kruskal wallis test	0.000646	Dependent numerical variable found after H-tes
34	HandsetPrice	kruskal wallis test	0.242433	Independent numerical variable found after H-t
35	ChildrenInHH	Chi-Square Test for Independence	0.030195	Dependent categorical variable found after Chi
36	HandsetRefurbished	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
37	HandsetWebCapable	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
38	TruckOwner	Chi-Square Test for Independence	0.324832	Independent categorical variable found after C
39	RVOwner	Chi-Square Test for Independence	0.500851	Independent categorical variable found after C
40	Homeownership	Chi-Square Test for Independence	0.004931	Dependent categorical variable found after Chi

	Feature	Statistical Test	P-Value	Inference
41	BuysViaMailOrder	Chi-Square Test for Independence	0.000002	Dependent categorical variable found after Chi
42	RespondsToMailOffers	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
43	OptOutMailings	Chi-Square Test for Independence	0.837419	Independent categorical variable found after C
44	NonUSTravel	Chi-Square Test for Independence	0.562279	Independent categorical variable found after C
45	OwnsComputer	Chi-Square Test for Independence	0.810924	Independent categorical variable found after C
46	HasCreditCard	Chi-Square Test for Independence	0.071275	Independent categorical variable found after C
47	NewCellphoneUser	Chi-Square Test for Independence	0.141394	Independent categorical variable found after C
48	NotNewCellphoneUser	Chi-Square Test for Independence	0.106749	Independent categorical variable found after C
49	OwnsMotorcycle	Chi-Square Test for Independence	0.089071	Independent categorical variable found after C
50	MadeCallToRetentionTeam	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
51	CreditRating	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi
52	PrizmCode	Chi-Square Test for Independence	0.000295	Dependent categorical variable found after Chi
53	Occupation	Chi-Square Test for Independence	0.253384	Independent categorical variable found after C
54	MaritalStatus	Chi-Square Test for Independence	0.000000	Dependent categorical variable found after Chi

We have used Chi-Square Test for Independence to test whether the categorical variables are independent or not.

*H***0** : The variables are independent.

H1: The variables are not independent (i.e., variables are dependent).

We have used Jarque-bera test to check the normality of data

*H***0** : The data is normally distributed.

*H*1: The data is not normally distributed.

We found that data is not normal therefore we use Kruskal Wallis test to check its dependency on the target variable

Class Imbalance and its Treatment:

```
# Create count plot
plt.figure(figsize=(8,6))
sns.countplot(x='Churn', data=df)

# Add percentage text to each bar
total = len(df['Churn'])
for p in plt.gca().patches:
    percentage = '{:.1f}%'.format(100 * p.get_height()/total)
    x = p.get_x() + p.get_width() / 2 - 0.1
    y = p.get_y() + p.get_height()
    plt.gca().annotate(percentage, (x, y), size=12)

# Show plot
plt.show()
```


Here we can see that our target variable is slightly imbalanced, and we are not going to use oversampling techniques like smote.

Check of Multicollinearity:

	VIF_Factor	Features				
0	375 668313	DroppedBlockedCalls	16	6.288748	ReceivedCalls	
- 7			17	5.418122	OutboundCalls	
1	151.715484	BlockedCalls	18	4.915881	IncomeGroup	
2	131.663762	DroppedCalls	19	4.809451	HandsetPrice	
3	30.821246	MonthlyRevenue	20	4.015448	UnansweredCalls	
4	20.151614	HandsetModels	21	3.214218	AgeHH2	
5	18.863594	TotalRecurringCharge	22	3.188755	InboundCalls	
6	14 101876	Handsets	23	2.729470	CallWaitingCalls	
-	1000000000		24	2.350160	RetentionCalls	
7	13.164124	MonthsInService	25	2.308168	RetentionOffersAccepted	
8	12.337600	MonthlyMinutes	26	1.635248	PercChangeMinutes	
9	11.787734	ActiveSubs	27	1.626432	RoamingCalls	
10	7.843933	OffPeakCallsInOut	28	1.621602	PercChangeRevenues	
11	7.803766	PeakCallsInOut	29	1.558542	DirectorAssistedCalls	
12	7.791593	OverageMinutes	30	1.517198	CustomerCareCalls	
			31	1.265618	ThreewayCalls	
13	7.023598	CurrentEquipmentDays	32	1.089253	AdjustmentsToCreditRating	
14	6.931251	AgeHH1	33	1.041547	ReferralsMadeBySubscriber	
15	6.433891	UniqueSubs	34	1.002325	CallForwardingCalls	

Transformation:

Transformation is a process that can be used to change the scale of the original data to get more accurate results. We used Power transformation, as we can see that there is large number of outliers present so we use Yeo-Johnson transformation technique to reduce the outliers and make the data more normally distributed.

Logistic Regression (Base Model)

Build a full logistic model on a training dataset.

```
# build the model on train data (x_train and y_train)
# use fit() to fit the logistic regression model
logreg = sm.Logit(y_train,x_train).fit()

# print the summary of the model
print(logreg.summary())
```

Logit Regression Results

Dep. Variable:	Churn	No. Observations:	35475
Model:	Logit	Df Residuals:	35415
Method:	MLE	Df Model:	59
Date:	Thu, 11 Aug 2022	Pseudo R-squ.:	0.03456
Time:	16:19:23	Log-Likelihood:	-20526.
converged:	False	LL-Null:	-21261.
Covariance Type:	nonrobust	LLR p-value:	2.191e-268

Interpretation: The Pseudo R-squ. obtained from the above model summary is the value of McFadden's R-squared. This value can be obtained from the formula:

McFadden's R-squared = 1-(Log-Likelihood/LL-Null)

Where.

Log-Likelihood: It is the maximum value of the log-likelihood function

LL-Null: It is the maximum value of the log-likelihood function for the model containing only the intercept

1. The LLR p-value is less than 0.05, implies that the model is significant.

Cox & Snell R-squared: The convergence of the logistic model can be determined by the R-squared value. It is one of the types of Pseudo R-square.

2. The maximum of Cox & Snell R-squared is always less than 1. By above model Cox & Snell R-squared is less than 1 i.e. (0.03456).

The AIC (Akaike Information Criterion) value:

It is a relative measure of model evaluation. It gives a trade-off between model accuracy and model complexity.

AIC: 41172.911

Confusion Matrix:

ROC Curve:

Inference:

• Interpretation: An AUC score of 0.6251 indicates that the model can correctly identify a higher proportion of positive instances than negative instances, but not by much. Therefore, the model may be biased towards the majority class, which in this case is the negative class labeled as 0. This could be due to an imbalance in the dataset, where there are more instances of the negative class than the positive class, causing the model to favor predicting the negative class more frequently.