Assignment-Regression Algorithm

1. Problem statement:

• Client wants to predict the insurance charges based on Age, BMI, Sex, No. of children and smoking criteria in the client's dataset.

2. Basic information about dataset:

Machine Learning \rightarrow Supervised learning \rightarrow Regression \rightarrow Support vector Machine \rightarrow "poly", C=3000 \rightarrow Highest value \mathbf{r}^2 value = 0.839

- > Rows=1338
- ➤ Columns=6

3. Pre-processing method:

Nominal data – String to number

- ✓ Sex if male means true, female means false.
- ✓ Smoker if yes means true, No means false.

4. Final model:

5. The research values $(r^2 \text{ score})$ is documented as tabulation as below:

- ✓ **MULTIPLE LINEAR REGRESSION**: (r² value),
 - When (random_state= 42) is **0.69**
 - When (random_state= 0) is **0.71**

✓ **SUPPORT VECTOR MACHINE**: (r² value),

SI.NO	HYPER	RBF (NON	LINEAR	POLY	SIGMOID
	PARAMETER	LINEAR)	(r² value)	(r ² value)	(r ² value)
		(r ²value)			
1.	NIL(without	-314	-10.7	-147	-280
	standardization)				
2.	NIL(with	-500	-328	-163	-121
	standardization)				
3.	C10	-481	-1.5	-149	-108
4.	C100	-4.4	0.03	-0.34	-0.79
5.	C500	0.124	0.71	0.73	-0.26
6.	C1000	0.68	0.74	0.81	-0.05
7.	C2000	0.79	0.74	0.833	-0.04
8.	C3000	0.81	0.74	<mark>0.839</mark>	-0.005

The SVM Regression use r^2 value Poly (with standardization) and hyper parameter is (C=3000) = 0.839

✓ **DECISION TREE**: (r² value),

SI.NO	CRITERION	MAX FEATURES	SPLITTER	With Random_state=42 (r² value)
1.	()	()	()	0.76
2.	Mse	None	Best	0.768
3.	Mse	None	Random	0.725
4.	Mse	Sqrt	Best	0.725
5.	Mse	Sqrt	Random	0.55
6.	Mse	Log2	best	0.69
7.	Mse	Log2	random	0.55
8.	<mark>Mae</mark>	None None	<mark>Best</mark>	<mark>0.78</mark>
9.	Mae	None	Random	0.74
10.	Mae	Sqrt	Best	0.68
11.	Mae	Sqrt	random	0.64
12.	Mae	Log2	Best	0.68
13.	Mae	Log2	Random	0.64
14.	friedman_mse	None	Best	0.76
15.	friedman_mse	None	Random	0.727
16.	friedman_mse	Log2	Best	0.69
17.	friedman_mse	Log2	random	0.55
18.	friedman_mse	Sqrt	Best	0.69
19.	friedman_mse	Sqrt	Random	0.55

The Decision Tree Regression use r^2 value (Mean absolute_value_None_best) with (random_state as 42) = $\frac{0.78}{100}$

✓ **RANDOM FOREST**: (r² value),

SI.NO	CRITERION	MAX FEATURES	N-ESTIMATORS	r² value
1.	MSE	None	50	0.835
2.	MSE	<mark>None</mark>	<mark>100</mark>	<mark>0.838</mark>
3.	MSE	Sqrt	50	0.834
4.	MSE	Sqrt	100	0.831
5.	MSE	Log2	50	0.834
6	MSE	Log2	100	0.831
7.	MAE	None	50	0.832
8.	MAE	None	100	0.836
9.	MAE	Sqrt	50	0.825
10.	MAE	Sqrt	100	0.826
11.	MAE	Log2	50	0.825
12.	MAE	Log2	100	0.826

The Random Forest Regression r² value (Mse_None_100) = 0.838

6. Final model justification:

The final model of the Insurance charges predicting project is Machine Learning as supervised learning by regression method and Support vector Machine with hyper-tuning by "poly" and C=3000, based on the selection of highest r²_score that is **0.839**.

Import pickle

loaded_model=pickle.load(open('finalized_assignment_svmcharges.sav','rb'))
result=loaded_model.predict([[]])

result

Github: https://github.com/DrAjitha1AI/Regression-Assignment