

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

SEQUENCE LISTING

<110> Ashkenazi, Avi J.
Fong, Sherman
Goddard, Audrey
Gurney, Austin L.
Napier, Mary A.
Tumas, Daniel
Wood, William I.

<120> COMPOUNDS, COMPOSITIONS AND METHODS FOR
THE TREATMENT OF DISEASES CHARACTERIZED BY A-33 RELATED
ANTIGENS

<130> 39780-1216R1C1D5

<140> US 10/785,607
<141> 2004-02-24

<150> US 09/953,499
<151> 2001-09-14

<150> US 09/254,465
<151> 1999-03-05

<150> PCT/US98/24855
<151> 1998-11-20

<150> PCT/US98/19437
<151> 1998-09-17

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 299
<212> PRT
<213> Homo sapiens

<400> 1
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
1 5 10 15
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
35 40 45
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 55 60
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95
Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
100 105 110
Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
115 120 125
Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
130 135 140

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
145 150 155 160
Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
165 170 175
Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
180 185 190
Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
195 200 205
Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
210 215 220
Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
225 230 235 240
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly
245 250 255
Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
260 265 270
Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
275 280 285
Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
290 295

<210> 2
<211> 321
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val Asp
1 5 10 15
Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr Gly Pro
20 25 30
Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro Leu Gln Gly
35 40 45
Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg Gly Ser Asp Pro
50 55 60
Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp His Ile Gln Gln Ala
65 70 75 80
Lys Tyr Gln Gly Arg Leu His Val Ser His Lys Val Pro Gly Asp Val
85 90 95
Ser Leu Gln Leu Ser Thr Leu Glu Met Asp Asp Arg Ser His Tyr Thr
100 105 110
Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Val Arg Asp
115 120 125
Lys Ile Thr Glu Leu Arg Val Gln Lys Leu Ser Val Ser Lys Pro Thr
130 135 140
Val Thr Thr Gly Ser Gly Tyr Gly Phe Thr Val Pro Gln Gly Met Arg
145 150 155 160
Ile Ser Leu Gln Cys Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile
165 170 175
Trp Tyr Lys Gln Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr
180 185 190
Leu Ser Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser
195 200 205
Tyr Phe Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp
210 215 220
Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
225 230 235 240
Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser Thr
245 250 255

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr Leu Gly
260 265 270
Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe Ala Ile Ile
275 280 285
Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr Met Ala Tyr Ile
290 295 300
Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His Val Tyr Glu Ala Ala
305 310 315 320
Arg

<210> 3
<211> 390
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 3
cttcttgcca actggtatca ccttcaagtc cgtgacacgg gaagacactg ggacatacac 60
ttgtatggtc tctgaggaag gcggcaacag ctatggggag gtcaagggtca agctcatcgt 120
gcttgcct ccatccaagc ctacagttaa catcccccc tctgccacca ttgggaaccg 180
ggcagtgtcg acatgtctcg aacaagatgg ttcccccacct tctgaataca cctggttcaa 240
agatggata gtgatgccta cgaatcccaa aagcaccctgt gccttcagca actcttccta 300
tgtccatgtt cccacacag gagagctgg tttgtatccc ctgtcagcct ctgatactgg 360
agaatacagc tgtgaggcac ggaatggta 390

<210> 4
<211> 726
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 4
tctcagtccc ctcgctgttag tcgcggagct gtgttctgtt tcccaggagt cttcggcg 60
ctgttgcgtt caggtgcgcc tgatcgcat gggacaaag gcgcacgctc gagagaaac 120
tgcgtgcct cttcatattg gcgcattgtgt tctgtccctt ggcattgggc agtgttacag 180
ttgcactctt ctgaacactga agtcagaatt cctgagaata atcctgtgaa gttgtcctgt 240
gcctactcggt gctttcttc tccccgtgtg gagtggaaat ttgaccaagg agacaccacc 300
agactcggtt gctataataa caagatcaca gcttcctatg aggacccgggt gaccttcttg 360
ccaaactggta tcacccatcaa gtccgtaca cgggaagaca ctggacata cacttgtatg 420
gtctctgagg aaggccggcaa cagctatggg gaggtcaagg tcaagctcat cgtgcttgt 480
cctccatcca agcctacagt taacatcccc tcctctgcca ccattggaa ccgggcagtg 540
ctgacatgtt cagaacaaaga tggttccca cttctgtaat acacctgggtt caaagatggg 600
atagtgtatgc ctacgaatcc caaaagcacc cgtgccttca gcaactcttc ctatgtcctg 660
aatccacaa caggagagct ggtctttagt cccctgtcag cctctgatac tggagaatac 720
agctgtt 726

<210> 5
<211> 1503
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 5

gcaggcaaag taccaggccc gcctgcgtg gagccacaag gttccaggag atgtatccct 60
 ccaattggc accctggaga tggatgaccg gagccactac acgtgtgaag tcacctggca 120
 gactcctgat gcacaaccaag tcgtgagaga taagattact gagctccgtg tccagaaact 180
 ctctgtctcc aagcccacag tgacaactgg cagcggttat ggcttcacgg tgccccaggg 240
 aatgagggtt agccttcaat gccagggttc ggggttctcc tcccatcagt tatatttgg 300
 ataagcaaca gactaataac cagggAACCC atcaaagtag caaccctaag taccttactc 360
 ttcaaggctg cggtgatagc cgactcaggc tcctatttct gcactgcca gggccaggtt 420
 ggctctgaggc acgacagcga catttgtgaag tttgtgtca aagactcctc aaagctactc 480
 aagaccaaga ctgaggcacc tacaaccatg acataccct tgaaagcaac atctacagt 540
 aagcagtctt gggactggac cactgacatg gatggctacc ttggagagac cagtgtggg 600
 ccagggaaaga gcctgcctgt ctggccatc atcctcatca tctccttgc ctgtatggg 660
 gttttacca tggcttatcatgtctgt cggaagacat cccaaacaaga gcatgtctac 720
 gaagcagcca gggcacatgc cagagaggcc aacgactctg gaaaaaccat gagggtggcc 780
 atcttcgcaa gtggctgctc cagtgtatg ccaacttccc agaatctggg gcaacaacta 840
 ctctgtatgag ccctgcata gacaggatcc cagatcatc gcccagatca atggcaacta 900
 cggccgcctg ctggacacag ttccctctgga ttatgagttt ctggccactg agggcaaaaag 960
 tgtctgttaa aaatgccccca tttaggccagg atctgctgac ataattgcct agtcagtcct 1020
 tgcctctgc atggccttct tccctgtac ctcttcttct ggatagccccca aagtgtccgc 1080
 ctaccacac tggagccctg gggagtcact ggcttgcgg tggaaatttgc cagatgcata 1140
 tcaagtaagc cagctgtctgg attttggctt gggcccttct agtatctctg ccgggggctt 1200
 ctggtaactcc tctctaaata ccagagggaa gatgcccata gcactaggac ttggtcatca 1260
 tgcctacaga cactattcaa ctggccatc ttggccacca gaaacccgag gggaggtca 1320
 gctctgcctg ctcagaggac cagctatata caggatcatt tctcttctt cagggccaga 1380
 cagcttttaa tggaaatttgc tatttcacag gccagggttc agttctgctc ctccactata 1440
 agtctaattgt tctgactctc tcctgggtct caataaataat ctaatcataa cagcaaaaaaa 1500
 aaa 1503

<210> 6

<211> 319

<212> PRT

<213> Homo sapiens

<400> 6

Met	Val	Gly	Lys	Met	Trp	Pro	Val	Leu	Trp	Thr	Leu	Cys	Ala	Val	Arg
1				5				10				15			
Val	Thr	Val	Asp	Ala	Ile	Ser	Val	Glu	Thr	Pro	Gln	Asp	Val	Leu	Arg
					20			25				30			
Ala	Ser	Gln	Gly	Lys	Ser	Val	Thr	Leu	Pro	Cys	Thr	Tyr	His	Thr	Ser
					35			40			45				
Thr	Ser	Ser	Arg	Glu	Gly	Leu	Ile	Gln	Trp	Asp	Lys	Leu	Leu	Leu	Thr
					50			55			60				
His	Thr	Glu	Arg	Val	Val	Ile	Trp	Pro	Phe	Ser	Asn	Lys	Asn	Tyr	Ile
					65			70			75			80	
His	Gly	Glu	Leu	Tyr	Lys	Asn	Arg	Val	Ser	Ile	Ser	Asn	Asn	Ala	Glu
					85			90			95				
Gln	Ser	Asp	Ala	Ser	Ile	Thr	Ile	Asp	Gln	Leu	Thr	Met	Ala	Asp	Asn
					100			105			110				
Gly	Thr	Tyr	Glu	Cys	Ser	Val	Ser	Leu	Met	Ser	Asp	Leu	Glu	Gly	Asn
					115			120			125				
Thr	Lys	Ser	Arg	Val	Arg	Leu	Leu	Val	Leu	Val	Pro	Pro	Ser	Lys	Pro
					130			135			140				
Glu	Cys	Gly	Ile	Glu	Gly	Glu	Thr	Ile	Ile	Gly	Asn	Asn	Ile	Gln	Leu
					145			150			155			160	
Thr	Cys	Gln	Ser	Lys	Glu	Gly	Ser	Pro	Thr	Pro	Gln	Tyr	Ser	Trp	Lys
					165			170			175				
Arg	Tyr	Asn	Ile	Leu	Asn	Gln	Glu	Gln	Pro	Leu	Ala	Gln	Pro	Ala	Ser
					180			185			190				
Gly	Gln	Pro	Val	Ser	Leu	Lys	Asn	Ile	Ser	Thr	Asp	Thr	Ser	Gly	Tyr
					195			200			205				

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys Asn Ile
210 215 220
Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr Val Gly
225 230 235 240
Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Ile Gly Ile Ile Ile
245 250 255
Tyr Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp Lys Glu
260 265 270
Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro Pro Glu Gln Leu
275 280 285
Arg Glu Leu Ser Arg Glu Arg Glu Glu Asp Asp Tyr Arg Gln Glu
290 295 300
Glu Gln Arg Ser Thr Gly Arg Glu Ser Pro Asp His Leu Asp Gln
305 310 315

<210> 7

<211> 2181

<212> DNA

<213> Homo sapiens

<400> 7

cccacgcgtc cggccacgcg tccgcccacg ggtccgcaca cgctgccgg ccaccagaag 60
tttggcgttc tttggtagca ggaggctgga agaaaggaca gaagtagctc tggctgtat 120
ggggatctta ctgggcctgc tactcctgg gcacctaaca gtggacactt atggccgtcc 180
catcctggaa gtgccagaga gtgtAACAGG accttggaaa gggatgtga atcttcctg 240
cacctatgac cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300
ctcagaccct gtcaccatct ttctacgtga ctcttctgg gaccatattcc agcaggcaaa 360
gtaccaggcgc cggctgtcat tgagccacaa ggttccagga gatgtatccc tccaattttag 420
caccctggag atggatgacc ggagccacta cacgtgtgaa gtcacctggc agactctgt 480
tggcaaccaa gtctgtgagag ataagattac tgagctccgt gtccagaaac tctctgtctc 540
caagccccaca gtgacaactg gcagcggtt tggcttcacg gtgccccagg gaatgaggat 600
tagccttcaa tgccaggcgc ggggttctcc tcccatcagt tatatttggt ataagcaaca 660
gactaataac caggaaccca tcaaaatgtc aaccctaagt accttactct tcaagctgc 720
gggtatagcc gactcaggct cctatttctg cactgccaag ggccagggtt gctctgagca 780
gcacagcgac attgtgaagt ttgtggtcaa agactcctca aagctactca agaccaagac 840
tgaggcacct acaaccatga cataccccctt gaaagcaaca tctacagtga agcagtctg 900
ggacttggacc actgacatgg atggctacct tggagagacc agtctggc caggaagag 960
cctgcctgtc tttggccatca tcctccatcat ctccttgc tttatgttgg ttttaccat 1020
ggcctatatac atgctctgtc ggaagacatc ccaacaagag catgtctacg aagcagccag 1080
gtaagaaatgt ctctcctttt ccattttga ccccgccctt gcctcaatt ttgattactg 1140
gcaggaaatg tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccctc 1200
agggtcagga catagctgcc ttccctctt cagggcacctt ctgagggtt tttggccctc 1260
tgaacacaaa ggataattta gatccatctg cttctgtttt ccagaatccc tgggtggtag 1320
gatccgtata attaatttgc aagaatttgg gcaaaagggt gggaaaccag gaccacagcc 1380
ccaagtccct tcttatgggt ggtggctct tggccatag ggcacatgcc agagaggcca 1440
acgactctgg agaaaccatg agggtggcca tcttcgcaag tggctgtcc agtctgtgagc 1500
caactccca gaatctggc aacaactact ctgatgagcc ctgcatacg caggagttacc 1560
agatcatcgc ccagatcaat ggcaactacg cccgcctgtc ggacacagtt cctctggatt 1620
atgagtttctt ggcactgtg ggcacaaatgt tctgttaaaa atgccccatt aggccaggat 1680
ctgctgacat aattgccttag tcagtccttgc cttctgtcat gccttcttc cctgtctacct 1740
ctttccctgg atagcccaa gtgtccgcct accaacactg gagccgtgg gagtctgtgg 1800
ctttggccctg gaatttggca gatccatctc aagtaaggca gctgctggat ttggctctgg 1860
gccttcttag tatctctgtc gggggcttct ggtactctc tctaaatacc agagggaaaga 1920
tgcccatagc actaggactt ggtcatcatg cttacagaca ctattcaact ttggcatctt 1980
gccaccagaa gaccggaggagg aggctcagct ctgcccgtc agaggaccag ctatatccag 2040
gatcatttctt ctttctttag ggcacagacag cttttaattt aaatttggat ttgcacaggcc 2100
agggttcagt tctgctcctc cactataagt ctaatgttctt gactctctcc tggctcaat 2160
taaatatcta atcataacag c 2181

<210> 8
<211> 1295
<212> DNA
<213> *Homo sapiens*

```

<400> 8
cccagaagtt caaggcccc cggcctcctg cgctccgtcc gcccggaccc tcgacccct 60
cagagcagcc ggctgccgccc cccggaaagat ggcgaggagg agccggcacc gcctccctcct 120
gctgctgctg cgctacccctgg tggtcgcctt gggctatcat aaggccatcg gttttctgc 180
cccaaaagac caacaaggtag tcacagcagt agagttccaa gaggctattt tagcctgcaa 240
aaccggaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
cttgcgtcac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataaga 360
tttcaatatc cggatcaaaaa atgtgacaag aagtgtatcg gggaaatatc gttgtgaagt 420
tagtgccccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaaagtatt 480
agtggctcca gcagttccat catgtgaagt accctttctc gctctgatgt gaactgttgt 540
agagctacga tgtcaagaca aagaaggaa tccagctctt gaatacacat gtttaaggaa 600
tggcatccgt ttgctagaaaa atcccgact tggctcccaa agcaccaaaa gctcatacac 660
aatgaataaca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattccctgt gaagccccca attctgttgg atatcgccagg tgcctggaa aacgaatgca 780
agtagatgtat ctcacataaa gtggcatcat agcagccgtt gtatgttgtt ctttagtgt 840
ttccgtttgt ggccttggtg tatgctatgc tcaagggaaa ggctactttt caaaaagaaac 900
ctccctccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagt 960
gctcacgcct gtaatcccg cactttggaa ggccggccggc ggcggatcac gaggtcagga 1020
gttcttagacc agtctggcca atatggtggaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agtgcgttgg gagacaggag aatcacttga 1140
acccggggagg cggaggttgc agtgagctga gatcacgcca ctgcagttcc ggcctggtaa 1200
cagagcaaga ttccatctca aaaaataaaaaa taaaataata aataaataact gtttttacc 1260
tgtagaatttca tatacaataaaa tatacggttga tattc 1295

```

<210> 9
<211> 312
<212> PRT
<213> *Homo sapiens*

```

<400> 9
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
      1          5          10          15
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
      20          25          30
Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
      35          40          45
Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
      50          55          60
Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
      65          70          75          80
Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
      85          90          95
Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
      100         105         110
Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
      115         120         125
Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
      130         135         140
Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
      145         150         155         160
Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
      165         170         175
Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
      180         185         190
Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp

```

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

195 200 205
Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
210 215 220
Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
225 230 235 240
Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
245 250 255
Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
260 265 270
Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
275 280 285
Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
290 295 300
Gly Gly Ser Arg Gly Gln Glu Phe
305 310

<210> 10
<211> 300
<212> PRT
<213> Mus musculus

<400> 10
Met Gly Thr Glu Gly Lys Ala Gly Arg Lys Leu Leu Phe Leu Phe Thr
1 5 10 15
Ser Met Ile Leu Gly Ser Leu Val Gln Gly Lys Gly Ser Val Tyr Thr
20 25 30
Ala Gln Ser Asp Val Gln Val Pro Glu Asn Glu Ser Ile Lys Leu Thr
35 40 45
Cys Thr Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Val
50 55 60
Gln Gly Ser Thr Thr Ala Leu Val Cys Tyr Asn Ser Gln Ile Thr Ala
65 70 75 80
Pro Tyr Ala Asp Arg Val Thr Phe Ser Ser Ser Gly Ile Thr Phe Ser
85 90 95
Ser Val Thr Arg Lys Asp Asn Gly Glu Tyr Thr Cys Met Val Ser Glu
100 105 110
Glu Gly Gln Asn Tyr Gly Glu Val Ser Ile His Leu Thr Val Leu
115 120 125
Val Pro Pro Ser Lys Pro Thr Ile Ser Val Pro Ser Ser Val Thr Ile
130 135 140
Gly Asn Arg Ala Val Leu Thr Cys Ser Glu His Asp Gly Ser Pro Pro
145 150 155 160
Ser Glu Tyr Ser Trp Phe Lys Asp Gly Ile Ser Met Leu Thr Ala Asp
165 170 175
Ala Lys Lys Thr Arg Ala Phe Met Asn Ser Ser Phe Thr Ile Asp Pro
180 185 190
Lys Ser Gly Asp Leu Ile Phe Asp Pro Val Thr Ala Phe Asp Ser Gly
195 200 205
Glu Tyr Tyr Cys Gln Ala Gln Asn Gly Tyr Gly Thr Ala Met Arg Ser
210 215 220
Glu Ala Ala His Met Asp Ala Val Glu Leu Asn Val Gly Gly Ile Val
225 230 235 240
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Leu Leu Ile Phe Gly
245 250 255
Val Trp Phe Ala Tyr Ser Arg Gly Tyr Phe Glu Thr Thr Lys Lys Gly
260 265 270
Thr Ala Pro Gly Lys Lys Val Ile Tyr Ser Gln Pro Ser Thr Arg Ser
275 280 285
Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val

290

295

300

<210> 11
<211> 1842
<212> DNA
<213> *Homo sapiens*

<400> 11
gtctgttccc aggagtccctt cggcggctgt tgggttcagtg gcctgatcgc gatggggaca 60
aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat tggcgatcct gttgtgtcc 120
ctggcattgg qcagtgttac agtgcactct tctgaacctg aagtcaagaat tcctgagaat 180
aatcctgtga agttgtcctg tgcctactcg ggctttctt ctccccgtgt ggagtggaaag 240
tttggccaag gagacaccac cagactcggt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgacccctt gccaactggg atcacccctca agtccgtgac acgggaagac 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
gtcaagctca tcgtgtttgt gcctccatcc aagcctacag ttaacatccc ctccctgtcc 480
accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacaccttgt tcaaagatgg gatagtgtat cctacgaatcc caaaaagcac ccgtgccttc 600
agcaacttcc cctatgtcct gaatcccaca acaggagac tggttttga tccccgtc 660
gcctctgata ctggagaata cagctgtgag gcacggaaatg ggtatggac acccatgact 720
tcaaattgtg tgcgcatggg agctgtggag cggaatgtgg gggatcatcg ggcagccgtc 780
cttgcataccc tgattctcct gggaatctt gttttggca tctgggttgc ctatagccga 840
ggccactttg acagaacaaa gaaaggact tcgagtaaga aggtgattta cagccagcct 900
agtgcggaa gtgaaggaga attcaaaacag acctcgatcat tcctgggtg agcctggtcg 960
gctcaccgccc tattcatctgc atttgcctt ctcagggtgtc accggactct ggccccctgat 1020
gtctgttagtt tcacaggatg ctttatttgc cttctacacc ccacagggcc ccctacttt 1080
tcggatgtgt ttttataataat gtcagctatg tgccccatcc tccttcatgc cctccctccc 1140
tttgcctacca ctgctgagtg gcctggaaact tgtttaaagt gtttattccc catttcttg 1200
agggatcagg aaggaatccct gggatcgca ttgacttccc ttctaagtag acagaaaaaa 1260
tggcgggggt cgcaaggaaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320
aggatcttg agcttggttc tgggctctt cttgtgtac tgacgaccag gcccagctgt 1380
tctagagcgg gaattagagg cttagagcggc tgaatgggtt gtttgggtat gacactgggg 1440
tccttcatc tctggggccc actctttct gtctcccat gggaaatgcc actgggatcc 1500
ctctgcctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt gaaaaatggg 1560
agctttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaaagaaaaag aaaactggag gctgggcgcga gtggctcacg cctgtatacc 1680
cagaggctga ggcaggcggg tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740
ggagaaaaacc tactggaaat acaaagttt ccaggcatgg tggtgatgc ctgttagtccc 1800
agctgctcag gaggctggca acaagagca aactccagct ca 1842

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 12
tcgcggagct gtgttctgtt tccc

24

```
<210> 13  
<211> 50  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> Synthetic Oligonucleotide Hybridization Probe

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

<400> 13
tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct 50

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 14
acacacctgggtt caaagatggg 20

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 15
taggaagagt tgctgaaggc acgg 24

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 16
ttgccttaact caggtgctac 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 17
actcagcagt ggttaggaaag 20

<210> 18
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 18
tatccctcca attgagcacc ctgg 24

<210> 19
<211> 21

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 19
gtcggaagac atcccaacaa g

21

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 20
cttcacaatg tcgctgtgct gctc

24

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 21
agccaaatcc agcagctggc ttac

24

<210> 22
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Hybridization Probe

<400> 22
tggatgaccg gagccactac acgtgtgaag tcacacctggca gactcctgat

50

<210> 23
<211> 260
<212> PRT
<213> Homo sapiens

<400> 23
Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro Glu Val Arg
1 5 10 15
Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe
20 25 30
Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg
35 40 45
Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val
50 55 60
Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp
65 70 75 80
Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Asn Ser Tyr
85 90 95

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro
100 105 110
Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu
115 120 125
Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe
130 135 140
Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe
145 150 155 160
Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe
165 170 175
Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg
180 185 190
Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu Ala
195 200 205
Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val Thr Leu
210 215 220
Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala Tyr Ser Arg
225 230 235 240
Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys Lys Val Ile
245 250 255
Tyr Ser Gln Pro
260

<210> 24

<211> 270

<212> PRT

<213> Homo sapiens

<400> 24

Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro Gln Asp Val
1 5 10 15
Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys Thr Tyr His
20 25 30
Thr Ser Thr Ser Ser Arg Glu Gly Leu Ile Gln Trp Asp Lys Leu Leu
35 40 45
Leu Thr His Thr Glu Arg Val Val Ile Trp Pro Phe Ser Asn Lys Asn
50 55 60
Tyr Ile His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile Ser Asn Asn
65 70 75 80
Ala Glu Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu Thr Met Ala
85 90 95
Asp Asn Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser Asp Leu Glu
100 105 110
Gly Asn Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser
115 120 125
Lys Pro Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile
130 135 140
Gln Leu Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser
145 150 155 160
Trp Lys Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro
165 170 175
Ala Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser
180 185 190
Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys
195 200 205
Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr
210 215 220
Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Gly Ile
225 230 235 240

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp
245 250 255
Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro
260 265 270

<210> 25
<211> 263
<212> PRT
<213> Homo sapiens

<400> 25
Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro
1 5 10 15
Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr
20 25 30
Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp
35 40 45
Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu
50 55 60
Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr
65 70 75 80
Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly
85 90 95
Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro
100 105 110
Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg
115 120 125
Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr
130 135 140
Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr
145 150 155 160
Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu
165 170 175
Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys
180 185 190
Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg
195 200 205
Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu
210 215 220
Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala
225 230 235 240
Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys
245 250 255
Lys Val Ile Tyr Ser Gln Pro
260

<210> 26
<211> 273
<212> PRT
<213> Homo sapiens

<400> 26
Leu Cys Ala Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro
1 5 10 15
Gln Asp Val Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys
20 25 30
Thr Tyr His Thr Ser Thr Ser Arg Glu Gly Leu Ile Gln Trp Asp
35 40 45

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

Lys Leu Leu Leu Thr His Thr Glu Arg Val Val Ile Trp Pro Phe Ser
50 55 60
Asn Lys Asn Tyr Ile His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile
65 70 75 80
Ser Asn Asn Ala Glu Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu
85 90 95
Thr Met Ala Asp Asn Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser
100 105 110
Asp Leu Glu Gly Asn Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val
115 120 125
Pro Pro Ser Lys Pro Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly
130 135 140
Asn Asn Ile Gln Leu Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro
145 150 155 160
Gln Tyr Ser Trp Lys Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu
165 170 175
Ala Gln Pro Ala Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr
180 185 190
Asp Thr Ser Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr
195 200 205
Gln Phe Cys Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val
210 215 220
Ala Leu Tyr Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile
225 230 235 240
Ile Gly Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp Asn
245 250 255
Thr Glu Asp Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu
260 265 270
Pro

<210> 27
<211> 413
<212> DNA
<213> Artificial Sequence

<220>
<223> Consensus DNA Sequence

<400> 27
ctcgagccgc tcgagccgtc cggggaaata tcgttgtcaa gtttagtgccc catctgagca 60
aggccaaaac ctggaaagagg atacagtac tctggaaatgta tttagtggctc cagcagttcc 120
atcatgtgaa gtaccctttt ctgtctgtg tggaactgtg gtagagctac gatgtcaaga 180
caaagaagg aatccagctc ctgaatacac atggtttaag gatggcatcc gtttgctaga 240
aaatcccaga cttggctccc aaagcaccaa cagctcatac acaatgaata caaaaactgg 300
aactctgcaa tttataactg tttccaaact ggacactgga gaatattcct gtgaagcccg 360
caattctgtt ggatatcgca ggtgtcctgg ggaaacgaaat gcaagttagat gat 413

<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 28
atcgttgtga agtttagtgcc cc

39780-1216R1C1D5 SAVED NOV 17 2005.TXT

<210> 29
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Primer

<400> 29
acctgcgata tccaaacagaa ttg

23

<210> 30
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Hybridization Probe

<400> 30
ggaagaggat acagtcaactc tggaagtatt agtggctcca gcagttcc

48