Una v.a. X è detta Gaussiana o normale di parametri (η, σ^2) , e si indica con $X \in \mathcal{N}(\eta, \sigma^2)$, se la sua ddp è:

$$f_{X}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\eta}{\sigma}\right)^{2}\right] = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x-\eta)^{2}}{2\sigma^{2}}\right]$$

$$\cot \sigma > 0$$

$$Z \in \mathcal{N}(0,1)$$
 v.a. Gaussiana (o normale) standard

$$f_z(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$

$$\frac{\Phi(z)}{=} \triangleq F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{\alpha^2}{2}\right) d\alpha$$

Non valutabile in forma chiusa; si trova tabulata o si calcola numericamente

Funzione Q:
$$Q(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{+\infty} \exp\left(-\frac{\alpha^2}{2}\right) d\alpha = 1 - \Phi(z)$$

Funzione Q

$$Q(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{+\infty} \exp\left(-\frac{\alpha^{2}}{2}\right) d\alpha = 1 - \Phi(z)$$

$$Q(-z) = 1 - Q(z)$$

x	Q(x)
.0	.5000
.1	.4602
.2	.4207
.3	.3821
.4	.3446
.5	.3085
.6	.2743
.7	.2420
.8	.2119
.9	.1841
1.0	.1587
1.1	.1357
1.2	.1151
1.3	.0968
1.4	.0808
1.5	.0668
1.6	.0548
1.7	.0446
1.8	.0359
1.9	.0287
2.0	.0228
2.1	.0179
2.2	.0139
2.3	.0107
2.4	.0082
2.5	.0062
2.6	.0047
2.7	.0035
2.8	.0026
2.9	.0019
3.0	.0013

Se $X \in \mathcal{N}(\eta, \sigma^2)$, la funzione di distribuzione si ricava da quella de la normale standard mediante la seguente relazione:

$$\begin{aligned}
& \left[F_{X}(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} \exp\left[-\frac{(\alpha - \eta)^{2}}{2\sigma^{2}} \right] d\alpha \right] \\
& \left[\text{ponendo: } y = \frac{\alpha - \eta}{\sigma} \Rightarrow dy = \frac{d\alpha}{\sigma} \right] \quad \text{for all } y \\
& = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x-\eta)/\sigma} \exp\left(-\frac{y^{2}}{2} \right) dy = \Phi\left(\frac{x - \eta}{\sigma} \right) = 1 - Q\left(\frac{x - \eta}{\sigma} \right) \end{aligned}$$

quindi:
$$P(X > \lambda) = 1 - F_X(\lambda) = Q\left(\frac{\lambda - \eta}{\sigma}\right)^{\lambda}$$

In generale, data una v.a. Gaussiana di parametri (η , σ^2), la probabilità associata ad un qualunque evento di interesse può essere calcolata mediante la funzione $\Phi(\cdot)$ oppure equivalentemente mediante la funzione $Q(\cdot)$:

$$P(|X-\eta| > n\sigma) = \int_{-\infty}^{\eta-n\sigma} f_X(\alpha) d\alpha + \int_{n+n\sigma}^{+\infty} f_X(\alpha) d\alpha = 2Q(n), \quad n = 1, 2, 3, \dots$$

$$P(|X-\eta| \le n\sigma) = 1 - 2Q(n)$$

$$P(|X - \eta| \le \sigma)$$

$$\cong 0.683$$

$$P(|X - \eta| \le 2\sigma)$$

$$\approx 0.956$$

$$P(|X - \eta| \le 3\sigma)$$

$$\cong 0.997$$

162

Valor medio e varianza di una v.a. Gaussiana

Esercizio:

Si dimostri che i due parametri della Gaussiana coincidono rispettivamente con il valore medio e con la varianza

Con il valore medio e con la varianza
$$\mathcal{Z} \in \mathcal{N}(0,1)$$

$$\exists \{Z\} = \int_{\mathbb{Z}} Z \cdot f_{\ell}(z) \, dz = \int_{-\infty}^{\mathbb{Z}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = 0 = 0$$

$$\bullet \times \in \mathcal{A}\left(0, \frac{1}{\alpha}\right) \rightarrow \mathcal{J}_{\times}(x) = \sqrt{\frac{\alpha}{2\pi}} \cdot e^{-\alpha \frac{2\pi}{2}}$$

$$\int_{3}^{+\infty} \int_{x}^{+\infty} (x) dx = 1 = \sqrt{\frac{\alpha}{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{2\pi}{2}} dx \longrightarrow \int_{\infty}^{+\infty} \int_{\infty}^{+\infty} e^{-\frac{2\pi}{2}} dx = 0$$

DERIVO AUSO I TETUMA RISPETTO ADX

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (-\frac{\pi^2}{2}) \cdot e^{-\frac{\pi^2}{2}} d\pi = (-\frac{1}{2}) \propto^{-\frac{3}{2}}$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \pi^2 e^{-\frac{\pi^2}{2}} d\pi = \mathbb{E}\left\{Z^2\right\} = 1$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \pi^2 e^{-\frac{\pi^2}{2}} d\pi = \mathbb{E}\left\{Z^2\right\} = 1$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \pi^2 e^{-\frac{\pi^2}{2}} d\pi = \mathbb{E}\left\{Z^2\right\} = 1$$

$$X \in \mathcal{N}\left(\eta_{X_1}\sigma_{X}^2\right) \longrightarrow X = \sigma_{X}Z + \eta_{X}$$

$$\mathbb{E}\left\{z\right\} + \eta_{X} = \eta_{X}$$

$$= 0$$

$$\mathbb{E}\left\{z\right\} = \sigma_{X} \cdot \mathbb{E}\left\{z\right\} = \sigma_{X}^2$$

$$\left\{ \left(X - \eta_{X} \right)^{2} \right\} = \sigma_{X}^{2} \cdot \left\{ \left\{ Z^{2} \right\} \right\} = \sigma_{X}^{2}$$

Proprietà della varianza

Teorema di Tchebycheff

Data una qualsiasi variabile aleatoria X con

varianza finita, per ogni
$$k>1$$
 si ha: $P(|X-\eta_X| \ge k\sigma_X) \le \frac{1}{k^2}$

$$P(\eta_X - k\sigma_X \le X \le \eta_X + k\sigma_X) \ge 1 - \frac{1}{k^2}$$

Il teorema stabilisce un <u>limite inferiore</u> alla probabilità che la v.a. X stia entro un intervallo centrato attorno al valore medio e di ampiezza pari a 2k volte la deviazione standard, <u>indipendentemente dalla densità di probabilità</u>

Proprietà della varianza

Esempio:

Scelgo $k=5 \rightarrow$ La prob. che X stia entro ± 5 volte la deviazione standard rispetto al valor medio è *almeno* 1-1/25=0.96

Nota la deviazione standard, possiamo determinare l'intervallo centrato sul valor medio di ampiezza 2ε in cui, con probabilità molto elevata, cadrà il valore osservato della v.a. X:

$$\varepsilon = k\sigma_X \implies \frac{1}{k^2} = \frac{\sigma_X^2}{\varepsilon^2}$$

$$P(|X - \eta_X| \le \varepsilon) = P(\eta_X - \varepsilon \le X \le \eta_X + \varepsilon) \ge 1 - \frac{\sigma_X^2}{\varepsilon^2}$$

mette in evidenza che la prob. che X sia compresa in $(\eta_X - \varepsilon, \eta_X + \varepsilon)$ è prossima all'unità per $\sigma_X \ll \varepsilon$

Proprietà della varianza

Esempio:

Si consideri una v.a. Gaussiana con valor medio η e varianza σ^2 .

Si determini attraverso il teorema di Tchebycheff il limite superiore per la probabilità che X non appartenga all'intervallo $(\eta - 4\sigma, \eta + 4\sigma)$. $\kappa = 4$ Si confronti quindi il risultato con il valore vero di tale probabilità.

$$P(|X - \eta_X| \ge k\sigma) \le \frac{1}{k^2} = 6.25 \cdot 10^{-2}$$
 Tchebycheff

$$P(|X - \eta_X| \ge k\sigma) = 2 \int_{\frac{\eta + 4\sigma}{4}}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{(x - \eta)^2}{2\sigma^2}\right] dx$$

$$= 2 \int_{\frac{\pi}{4}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\alpha^2}{2}\right) d\alpha = 2Q(4) \cong 6.3 \cdot 10^{-5}$$
esatto

La **funzione di distribuzione** della v.a. X condizionata all'evento C è definita come:

$$F_{X|C}(x|C) = P(X \le x|C) = \frac{P(X \le x, C)}{P(C)}$$

dove l'evento $\{X \leq x, C\}$ rappresenta tutti i punti dello spazio campione per cui $\{X(\omega) \leq x\}$ e $\{\omega \in C\}$, cioè l'evento $\{X \leq x\} \cap C$

Si definisce densità di probabilità della v.a. X condizionata all'evento C:

$$f_{X|C}(x \mid C) = \frac{\mathrm{d}F_{X|C}(x \mid C)}{\mathrm{d}x}$$

Teorema della probabilità totale

Se l'insieme dei C_i (con i=1,2,...,N) rappresenta una partizione dello spazio campione Ω , dal **teorema della probabilità totale** si ha:

$$P(X \le x) = \sum_{i=1}^{N} P(X \le x \mid C_i) P(C_i)$$
ovvero:
$$F_X(x) = \sum_{i=1}^{N} F_{X|C}(x \mid C_i) P(C_i)$$

dove:
$$\sum_{i=1}^{N} P(C_i) = 1$$

Esempio 8.6 Luise-Vitetta: tempo di guasto dopo rodaggio

- Supponiamo di effettuare il collaudo di una partita di lampadine, lasciandole accese fino allo spegnimento per guasto (bruciatura del filamento)
- In prima approssimazione, il tempo di guasto è una variabile aleatoria esponenziale unilatera, avente densità di probabilità

$$f_X(x) = \frac{1}{\eta} \exp\left(-\frac{x}{\eta}\right) u(x)$$

dove η è il tempo medio di guasto (MTBF, Mean Time Before Failure)

Alteriamo adesso la modalità di collaudo: attendiamo un tempo fisso x₀
dall'accensione, scartiamo le lampadine che a tale istante risultano già
guaste, e ripetiamo il collaudo come in precedenza sulle sole lampadine che
a x₀ risultano funzionanti. Questa operazione di rodaggio avrà influenza
sulla densità di probabilità del tempo di guasto delle lampadine rimaste?

• Identifichiamo l'evento B condizionante la variabile aleatoria X: $\mathbf{B} = \frac{1}{2} \cdot \mathbf{X} > \infty$

$$F_{XIB}(x|B) \triangleq \frac{P(\{X \leq n\}, B)}{P(B)}$$

$$P\{B\}$$
 \leftarrow \sim \sim \sim \sim

$$P(B) = P\{X > x_o\} = 1 - P\{X \leq x_o\} = 1 - F_X(x_o)$$

$$P(\beta) = P\{x > x_0\} = P(\{x < x, x > x_0\}) = \begin{cases} O, x < x_0 \\ F_x(x) - F_x(x_0), x > x_0 \end{cases}$$

$$= [F_x(x) - F_x(x_0)] \cdot \mu(x - x_0)$$

$$= [F_x(x) - F_x(x_0)] \cdot \mu(x - x_0)$$

$$F_{XIB}(xIB) = \frac{F_{x}(x) - F_{x}(x_{0})}{1 - F_{x}(x_{0})} \cdot \mu(x_{0} - x_{0}) \qquad \int_{XIB}(xIB) = \frac{\int_{XIB}(xIB)}{dx} = \frac{\int_{X}(x)}{1 - F_{x}(x_{0})} \mu(x_{0} - x_{0})$$

• Perché dal punto di vista del fabbricante non c'è alcuna convenienza a effettuare il rodaggio in fabbrica per il caso particolare delle lampadine con tempo di guasto esponenziale?

$$f_{xis}(n|s) = \frac{1}{m} e^{-\frac{n-n_0}{m}} u(n-n_0)$$

$$\int_{X} (x) = \frac{1}{\eta} e^{-\frac{x}{\eta}} u(x)$$

Assenza di memoria delle v.a. esponenziali

$$X \in Exp(\lambda) \rightarrow f_X(x) = \frac{1}{\lambda}e^{-\frac{x}{\lambda}}u(x);$$
 $F_X(x) = \left[1 - e^{-\frac{x}{\lambda}}\right]u(x)$
• Siano $s, t \ge 0$. Consideriamo gli eventi $\{X > t + s\}$ e $\{X > s\}$

•
$$P\{X > t + s | X > s\} = \frac{P\{(X > t + s) \cap (X > s)\}}{P\{X > s\}} = \frac{P\{X > t + s)\}}{P\{X > s\}} = \frac{1 - F_X(t + s)}{1 - F_X(s)} = \frac{1 - F_X(t + s)}{1 - F_X(s)}$$

Nota:

 $X \in Exp(\lambda)$ rappresenta il tempo di guasto di un dispositivo: se ha funzionato per un tempo s, la probabilità che sopravviva un tempo addizionale t dipende solo da t (e non da s) ed è identica alla probabilità di funzionamento per un tempo t di un dispositivo nuovo \rightarrow Il dispositivo «non ricorda» che è stato in esercizio per un tempo s (non accade per altre v.a. continue non negative!)

1/2

Sistemi di variabili aleatorie

Sistema di due variabili aleatorie

- Siano X e Y due v.a. definite **sullo stesso sistema** di probabilità $S=(\Omega, F, P)$
- Esse costituiscono un sistema di 2 v.a. (vettore aleatorio bidimensionale) che trasforma gli elementi dell'insieme Ω in punti nel piano (x, y)

I / Z

Sistema di due variabili aleatorie

- Poiché X e Y sono v.a., gli insiemi $\{X \le x\}$ e $\{Y \le y\}$ costituiscono due eventi; la probabilità ad essi associata rappresenta la funzione di distribuzione di X e Y, rispettivamente
- La loro intersezione:

$$\{X \le x\} \cap \{Y \le y\} = \{X \le x, Y \le y\}$$

è un evento e la probabilità ad esso associata è nota come **Funzione distribuzione di probabilità congiunta** delle due v.a.:

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

Funzione distribuzione di probabilità congiunta

$$F_{XY}(-\infty, -\infty) = F_{XY}(-\infty, y) = F_{XY}(x, -\infty) = 0$$

$$\underbrace{\{X \le -\infty, Y \le -\infty\}}_{\text{one}} = \emptyset$$

$$\forall_{\text{o}} \quad \underbrace{\{X \le -\infty, Y \le y\}}_{\text{one}} \subset \{X \le -\infty\} = \emptyset$$

$$\forall_{\text{o}} \quad \{X \le x, Y \le -\infty\} \subset \{Y \le -\infty\} = \emptyset$$

$$F_{XY}(\infty,\infty) = 1$$

$$\{X \le \infty, Y \le \infty\} = \Omega$$

Funzioni distribuzione marginali

Le funzioni di distribuzione di ciascuna delle due v.a. X e Y si ottengono dalle **regole marginali**:

$$F_{X}(x) = F_{XY}(x, \infty)$$

$$F_{Y}(y) = F_{XY}(\infty, y)$$

quindi:

$$F_{XY}(x,\infty) = P(X \le x, Y \le \infty) = P(X \le x) = F_X(x)$$

Funzione densità di probabilità congiunta

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$$

(è richiesta la derivabilità fino al secondo ordine)

$$P[(X,Y) \in D] = \iint_D f_{XY}(x,y) dxdy$$

Agx (u,y)

Sistema di due v.a. continue

Dalla relazione:

$$P[(X,Y) \in D] = \iint_D f_{XY}(x,y) dxdy$$

si ricava:

Condizione di

$$P(X \le \infty, Y \le \infty) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dxdy = 1$$

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} f_{XY}(x, y) dxdy$$

FD marginale di X:
$$F_X(x) = P(X \le x, Y \le \infty) = \int_{-\infty}^{\infty} \int_{-\infty}^{x} f_{XY}(\zeta, y) d\zeta dy$$

FD marginale di
$$\underline{Y}$$
: $F_Y(y) = P(X \le \infty, Y \le y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{XY}(x, \eta) d\eta dx$

Sistema di due v.a. continue

$$F_X(x) = F_{XY}(x, \infty) \longrightarrow F_X(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{x} f_{XY}(\zeta, y) d\zeta dy$$

Derivando rispetto ad x si ottiene:

$$\underbrace{f_X(x)}_{-\infty} = \int_{-\infty}^{\infty} f_{XY}(x,y) \, \mathrm{d}y$$

ddp marginale della v.a. x

Analogamente si ricava:

$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx$$

ddp marginale della v.a. y

180

Sistema di due v.a. indipendenti

Le variabili X e Y si dicono statisticamente indipendenti se gli eventi $\{X \le x\}$ e $\{Y \le y\}$ sono indipendenti, ovvero:

$$F_{XY}(x,y) = P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

$$= F_X(x)F_Y(y)$$

Da cui segue che anche la ddp congiunta si fattorizza nel prodotto delle due ddp marginali:

$$f_{XY}(x,y) \triangleq \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y} = \underbrace{\frac{\partial F_X(x)}{\partial x} \cdot \frac{\partial F_Y(y)}{\partial y}}_{\text{form}} = f_X(x) f_Y(y)$$

Osservazione: nel caso di v.a. indipendenti le ddp marginali sono sufficienti per descrivere statisticamente il sistema

ME DICAL VALUE

Trasformazione di un sistema di due v.a.

Sia (X,Y) un sistema di v.a. definite per un esperimento di modello di probabilità assegnato; associando ad ogni coppia di valori (x,y) delle due v.a. il valore della funzione z=g(x,y), risulta definita la nuova v.a. Z funzione del sistema (X,Y) e che indicheremo con:

$$Z = g(X,Y)$$

Problema: determinare la legge di distribuzione di Z nota la legge di distribuzione congiunta delle v.a. X e Y

Trasformazione di un sistema di 2 v.a. continue

Se X e Y sono v.a. continue, la **funzione** di **distribuzione** di Z è data dalla seguente espressione:

$$F_{Z}(z) = P(Z \le z) = P[g(X,Y) \le z]$$

$$= \iint_{D(z)} f_{XY}(x,y) dxdy$$

$$dove: D(z) = \{(x,y) : g(x,y) \le z\}$$

Trasformazione di un sistema di 2 v.a. continue

Per il calcolo del valore atteso η_Z della v.a. Z = g(X,Y), si può utilizzare il teorema dell'aspettazione:

$$\eta_Z = E(Z) = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dxdy$$

Somma di due variabili aleatorie

Esempio:
$$Z = X + Y$$
 $F_Z(z)$, $f_Z(z)$, $E(z)$, $\sigma_Z^2 = ?$

$$D(z) = \{(x, y) : x + y \le z\}$$
$$= \{(x, y) : y \le z - x\}$$

$$F_{Z}(z) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-x} \underbrace{f_{XY}(x,y)} dy \right] dx$$

Derivando rispetto a z si ottiene la ddp della v.a. Z:

$$\underbrace{f_Z(z)} = \int_{-\infty}^{\infty} \underbrace{f_{XY}(x, z-x)} dx$$

Somma di due v.a. indipendenti: ddp

Se X e Y sono v.a. <u>indipendenti</u>:

$$f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$$

$$\underbrace{f_Z(z)}_{-\infty} = \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(z - x) dx = f_X(z) \otimes f_Y(z)$$

operatore "integrale di convoluzione"

Somma di due v.a. indipendenti: ddp

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

Somma di due variabili aleatorie: valor medio

$$\mathbb{E}[Z] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \underbrace{(x,y)}_{-\infty} \cdot \underbrace{\int_{xy}^{(x,y)} (x,y)}_{-\infty} dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X,Y}(x,y) dx dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{X,Y}(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} x f_{X}(x) dx + \int_{-\infty}^{\infty} y f_{Y}(y) dy$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

Risultato previsto, vista la linearità dell'operatore aspettazione

Correlazione e covarianza

- Il comportamento statistico di una variabile aleatoria X può essere caratterizzato in maniera incompleta ma talvolta sufficiente da alcuni parametri caratteristici, come il valor medio e la varianza
- Per una coppia di variabili aleatorie (X,Y) possiamo determinare alcuni parametri statistici semplificati che forniscono utili indicazioni per la comprensione del loro comportamento statistico congiunto

Correlazione:

$$\underline{r_{XY}} = \underline{E\{XY\}} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \, y \, f_{XY}(x, y) \, dx \, dy$$

$$C_{xy} = C_{xy} - M_x M_y$$

Covarianza:

$$c_{XY} = E\{(X - \eta_X)(Y - \eta_Y)\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - \eta_X)(y - \eta_Y) f_{XY}(x, y) dx dy = r_{XY} - \eta_X \eta_Y$$

Somma di due variabili aleatorie: varianza

$$Var(X+Y) = Var(X) + Var(Y) + 2c_{XY}$$

$$Infatti:$$

$$\nabla_{\lambda}^{2} = Var(X+Y) = E[(X+Y)^{2}] - E^{2}(X+Y)$$

$$= E(X^{2}) + E(Y^{2}) + 2E(XY) - E^{2}(X) - E^{2}(Y) - 2E(X)E(Y)$$

$$= E(X^{2}) - E^{2}(X) + E(Y^{2}) - E^{2}(Y) + 2(E(XY) - E(X)E(Y))$$

$$\nabla_{\lambda}^{2} = Var(X) + Var(Y) + 2c_{XY}$$

Nota: se due v.a. sono tali che $c_{XY}=0$, cioè sono <u>incorrelate</u>, la varianza della somma è la somma delle varianze

Correlazione e covarianza

- La covarianza c_{XY} è un parametro statistico molto importante \rightarrow Accerta se tra le due variabili χ e χ esiste una relazione di dipendenza di tipo <u>lineare</u>, e che comunque misura la tendenza di variazione congiunta (covarianza) delle due
- Se la covarianza è grande e positiva, le due variabili aleatorie X e Y tendono a discostarsi dal rispettivo valor medio *nella stessa direzione*, cioè le due quantità $X-\eta_X$ e $Y-\eta_Y$ tendono ad avere lo stesso segno
- Se la covarianza tra due v.a. è nulla $(c_{XY}=0)$, le variabili si dicono incorrelate
- Se la correlazione tra due v.a. è nulla ($r_{\chi \gamma}=0$), le variabili si dicono **ortogonali**
- Il medesimo significato della covarianza ha il coefficiente di correlazione (o covarianza normalizzata) fra le variabili aleatorie X e Y:

$$\underline{\underline{\rho_{XY}}} = E\left\{\frac{X - \eta_X}{\sigma_X} \cdot \frac{Y - \eta_Y}{\sigma_Y}\right\} = \frac{c_{XY}}{\sigma_X \sigma_Y} = \frac{r_{XY} - \eta_X \eta_Y}{\sigma_X \sigma_Y}$$

Coefficiente di correlazione

$$\rho_{XY} = \frac{c_{XY}}{\sigma_X \sigma_Y}$$

Coefficiente $\rho_{XY} = \frac{c_{XY}}{\sigma_X \sigma_Y}$ di correlazione (covarianza normalizzata)

Proprietà:

- Poiché $c_{xy}^2 \le \sigma_x^2 \sigma_y^2$ si ha: $|\rho_{xy}| \le 1$
- Se le v.a sono incorrelate: $\rho_{xy} = 0$
- Se Y=a X+b (con a \neq 0): $|\rho_{XY}|=1$

