Stație Locală Meteo

Proiectare cu microprocesoare

Student: Pântea Marius-Nicușor

Grupa: 30232

Cuprins

1.Prezentare Generală	3
2.Componente Hardware Necesare	4
3.Configurare Pini	5
4.Funcționalități	6
5.Ecrane de Afișare	7
6.Funcții Sistem	7
7.Procesul de Calibrare	8

1. Prezentare Generală

Acest proiect implementează o stație meteo folosind Arduino care măsoară temperatura, umiditatea și nivelul de lumină. Sistemul folosește mai mulți senzori și afișează informațiile pe un ecran LCD, dar si in serial.

2.Componente Hardware Necesare

- Placă Arduino Uno R3

- Breadbord

- Ecran LCD (16x2)

- Senzor DHT11 pentru temperatură și umiditate

- Senzor analogic de temperatură (LM35)

LM35 Temperature Sensor Pinout:

VCC: Supply Voltage (4V - 30V)

Out: It gives analog output voltage which is proportional to the temperature (in degree Celsius).

- Senzori de lumină (analogic și digital)

3. Configurare Pini

Senzor DHT11: Pin 13

Senzor Temperatură Analogic: Pin A5

Senzor Lumină Digital: Pin 12

Senzor Lumină Analogic: Pin A1

Ecran LCD: Pini 7, 6, 5, 4, 3, 2

Breadboard

S-a realizat alimentarea breadboard-ului:

• Linie VCC (alimentare pozitivă) si linie Ground (alimentare negativă)

Conectare Senzor DHT11

- Pin $1 \rightarrow VCC$ (breadboard)
- Pin 2 \rightarrow Pin Digital 13 (Arduino)
- Pin 3 → Ground (breadboard)

Conectare Senzor de Lumină

- Pin 1 → Pin Digital 12 (Arduino) și Pin Analogic A1 (Arduino)
- Pin $2 \rightarrow$ Ground (breadboard)
- Pin $3 \rightarrow VCC$ (breadboard)

Conectare Senzor Analogic de Temperatură

- Pin 1 \rightarrow VCC (breadboard)
- Pin 2 \rightarrow Pin Analogic A5 (Arduino)
- Pin $3 \rightarrow$ Ground (breadboard)

4. Funcționalități

Monitorizare Temperatură

- Măsurare duală a temperaturii (DHT11 și senzor analogic)
- Sistem de calibrare integrat
- Calculare temperatură medie
- Constante de calibrare:

$$TEMP_OFFSET = -2.5$$
°C
 $TEMP_SCALE = 1.1$

Detectare Nivel Lumină

Clasificare nivel lumină bazată pe praguri:

SCĂZUT: < 500MEDIU: 500-800RIDICAT: > 800

Detectare tip lumină:

- Power Light (artificială)
- Normal Light (naturală)

Monitorizare Umiditate

- Măsurare umiditate relativă folosind DHT11
- Gestionare erori pentru citiri invalide

5. Ecrane de Afișare

Sistemul afiseaza pe display între trei ecrane de afișare, la fiecare 3 secunde:

Ecran 1 - Temperatura Medie

- Afișează temperatura medie calculată
- Format: "Temp Media: XX.X°C"

Ecran 2 - Temperaturi Individuale

- Afișează ambele citiri de temperatură
- Format: "T1:XX.X T2:XX.X"
- Indică tipurile de senzori (Analog & DHT11)

Ecran 3 - Umiditate și Lumină

- Afișează procentul de umiditate
- Arată statusul și tipul luminii
- Format: "Umid:XX.X%" și "Lumina:STATUS"

6.Funcții Sistem

Funcții Principale

readSensors()

- Citește toate datele senzorilor
- Aplică calibrarea temperaturii
- Actualizează statusul luminii
- Gestionează erorile senzorilor

calculateAverageTemp()

- Calculează temperatura medie
- Folosește doar temperatura analogică dacă DHT11 eșuează

calibrateSensor()

- Face 10 citiri consecutive
- Calculează sugestii de calibrare

- Trimite date prin Serial Monitor
- Specificații de Timp
- Interval rotație afișaj: 3000ms
- Întârziere informații debug: 500ms
- Întârziere inițială setup: 2000ms
- Întârziere tranziție ecrane: 100ms

7. Procesul de Calibrare

Utilizarea funcției calibrateSensor():

- Face mai multe citiri
- Compară senzorii DHT11 și analogic
- Sugerează offset de calibrare
- Trimite rezultate prin Serial Monitor

Ajustarea calibrării:

- Modificare TEMP_OFFSET pentru ajustare fixă
- Modificare TEMP SCALE pentru ajustare proporțională
- Valorile pot fi ajustate în funcție de rezultatele calibrării