Y Note minor changes of syllabus and notation between 2003 and 2004. These southers use The old notation.

Linear Algebra I exam 2003 solutions F. J. Wight, 26 March 2004.

SECTION A

A1. U is a subspace of V if $O_v \in U$ and $au_1 + bu_2 \in U$ $\forall u_1, u_2 \in U$, $a, b \in \mathbb{F}$.

(a) Any plane through the origin of \mathbb{R}^3 is a subspace, eg the (x,y)-plane $\{(x,y,z)\in\mathbb{R}^3\mid z=0\}$.

(b) $O_v = \{0,0\}\in U$.

If $u_1, u_1 \in U$ then $u_1 = u_2 = \{0,0\}$ and $au_1 + bu_2 = a\{0,0\} + b\{0,0\} = \{0,0\} \in U$. $\forall a, b \in \mathbb{R}$. Therefore U is a subspace of V.

A2. (a) Spanning set but not linearly independent Es clearly contains The standard Sasis for R³ but 4 vectors in R³ cannot be lin. ind. I (b) Not spanning and not linearly independent. I (2,0,4) + +(0,1,0) = 2(1,2,2). I (c) Not spanning but linearly independent. I 2 vectors cannot span R³. I

A3. (a) Lineally independent if $x = (2+a, 1, 3) + \beta = (6, 6, -1) + \delta = 0$, $x = \beta = \delta = 0$, $x = \beta = \delta = 0$; i.e. $x = (2+a) + \beta = 0$ $x = \beta = 3 = 0$ Hence x = (2+a+3b) = 0 $x = (1+3b) + \delta = 0$ If x = (2+a+3b) = 0 Then $x = 0 \Rightarrow \beta = 0$ and if x = 0 Then x = 0.

Hence the vectors are linearly dependent if 2 + a + 3b = 0 or a = 0.

(b) Linearly independent if (1, a, b, c) + (0, 0, 0, 2, d) + (0, 0, 0, 3) = 0, (1, a, b, c) + (0, 0, 0, 2, d) + (0, 0, 0, 3) = 0, (1, a, b, c) + (1, a,

A4. $x: U \rightarrow V is linear iff$ $<math>x(au_1 + bu_2) = ax(u_1) + bx(u_2)$ $\forall u_1, u_1 \in U \text{ and } \forall a, b \in \mathbb{F}.$ (a) $x(a(x_1, y_1, x_1) + b(x_2, y_2, x_2))$ $= x(ax_1 + bx_2, ay_1 + by_2, ax_1 + bx_2)$ $= (ax_1 + bx_2, ax_1 + bx_2, ay_1 + by_2)$ $= a(x_1, x_1, y_1) + b(x_2, x_2, y_2, x_2)$ $= a(x_1, x_1, y_1, x_1) + bx(x_2, y_2, x_2)$ $\forall (x_1, y_1, x_1), (x_2, y_2, x_2) \in \mathbb{R}^3, a, b \in \mathbb{R}.$ Hence x is linear.

(b) x((1,0,0) + (1,0,0)) = x((0,0,0) = 0) $\Rightarrow x(1,0,0) + x(1,0,0) = 1 + 1 = 2.$ Hence x is not linear.

A5. rank (x) + nullity (x) = dim U. Ker (x) has $x_1 + x_2 = 0$, $x_1 = 0$, $x_2 = 0$ $\Rightarrow x_2 = 0$, x_4 unconstrained. Thus Ker (x) is the x_4 -axis with $x_1 = x_2 = x_3 = 0$. Im (x): Map the standard basis to give as a spanning set $\{(0,1,1,0),(0,1,0,0),(0,0,0)\}$. $\{(0,0,0,1),(0,0,0,0)\}$. Hence a basis for $\{(0,0,0,1)\}$ and a basis for $\{(0,0,0,1)\}$ and $\{(0,1,1,0),(0,1,0,0),(0,0,0,1)\}$, so nullity $\{(x)\} = 1$ and $\{(x)\} = 3$.

A6. $\dim (U+W) = \dim U + \dim W - \dim (U \cap W)$. $U = \{(x, y, -\infty - y) \mid x, y \in \mathbb{R} \}$ $= \{x(1,0,-1) + y(0,1,-1) \mid x, y \in \mathbb{R} \}$ Hence a basis for U is $\{(1,0,+1), (0,1,+1) \}$ $W = \{(x, y, \infty) \mid x, y \in \mathbb{R} \}$ $= \{x(1,0,1) + y(0,1,0) \mid x \in \mathbb{R} \}$ Hence a basis for W is $\{(1,0,1), (0,1,0) \}$ $U+W = \{(1,0,-1), (0,1,-1), (1,0,1), (0,1,0) \}$ $= \{(1,0,0), (0,1,0), (0,0,1) \}$ i.e. a basis for U+W is $\{(1,0,0), (0,1,0), (0,0,1) \}$ dim U = 2, dim W = 2, dim $\{(1,0,0), (0,1,0), (0,0,1) \}$ Hence dim $\{(1,0,0), (1,0), (1,0,1), (1,0,1), (1,0,1), (1,0,1) \}$ $= \{(1,0,0), (1,0), (1,0,1), (1,$

A7. $\alpha(1,0,0) = (1,0,0) = 1(1,0,0) + 0(0,1,0) + 0(0,0,1)$ $\alpha(0,1,0) = (-1,1,0) = -1(1,0,0) + 1(0,1,0) + 0(0,0,1)$ $\alpha(0,0,1) = (0,-1,1) = 0(1,0,0) - 1(0,1,0) + 1(0,0,1)$ Hence $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

Let
$$x(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_3, x_3) = (y_1, y_2, y_3)$$

Solve for x_1 as functions of y_1 :
 $x_1 - x_2 = y_1$ $\Rightarrow x_1 = y_1 + y_2 + y_3$
 $x_2 - x_3 = y_2$ $\Rightarrow x_2 = y_2 + y_3$
Thus $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (x_1, x_2, x_3) = (y_1 + y_2 + y_3, y_2 + y_3, y_3)$
 $p(y_1, y_2, y_3) = (y_1, y_2, y_3) = (y_1, y_2, y_3)$
 $p(y_1, y_2, y_3) = (y_1, y_3, y_3)$
 $p(y_1, y_2, y_3) = (y$

AB must be the identity matrix.

A8. The identity map Id maps every element of V to itselfine. Id (v) = v V v e V.

P is the matrix of Id, whe ordered Sasis B in its coolongin. in its domain and ordered Sasis B in its coolongin. i.e. $P = (Id_v, B, B)$.

$$Id(1,3) = (1,3) = 1(1,0) + 3(0,1)$$

$$Id(2,-1) = (2,-1) = 2(1,0) - 1(0,1)$$

Hence
$$P = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$
, $P^{-1} = \frac{1}{7} \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$.

B1. (a) Solve for
$$x, \beta, \delta$$
:

(i) $x(1,2,3) + \beta(4,5,6) + \delta(7,8,9) = (3c,y,z)$
 $x + 4\beta + 7\delta = x \Rightarrow x + \beta + \delta = y - x$
 $2x + 5\beta + 8\delta = y \Rightarrow x + \beta + \delta = z - y$

Therefore a solution for $x, \beta, \delta = x$ only

if $y - x = z - y$ and not $\delta = x, y, z$.

Hence the vectors do not span $\delta = x$.

(ii)
$$\times (1,2,3) + \beta (4,5,6) + \delta (7,8,10) = (x,y,z)$$

 $\times + 4\beta + 7\delta = 5c \Rightarrow x + \beta + \delta = y - x$
 $2x + 5\beta + 8\delta = y \Rightarrow x + \beta + 2\delta = z - y$
 $3x + 6\beta + 10\delta = z \Rightarrow x + \beta + 2\delta = z - y$
 $3x + 6\beta + 10\delta = z \Rightarrow x + \beta + 2\delta = z - y$
 $3x + 6\beta + 10\delta = z \Rightarrow x + \beta + 2\delta = z - y$
 $3x + 6\beta + 10\delta = z \Rightarrow x + \beta + 2\delta = z - y$
 $3x + \beta = 2(y - 5c) - (y - x) = z - 2y + x$
 $x + \beta = 2(y - 5c) - (z - y) = 3y - 2x - z$
 $x + 4\beta = 5c = 7(z - 2y + x) = -7z + 14y - 6x$
 $3\beta = (-7z + 14y - 6x) - (3y - 2x - z)$
This leads to a solution for $x, \beta, \delta \neq x, y, z$.
Hence the vectors span in.

(iii) Reduce the set to a linearly modependent set by elementary now operations. The result must be a basis for the span of the vectors.

These three vectors span R3, therefore so did the original set.

For (i), The set span The plane with equation y-x=z-y or x-2y+z=0

(b) Reduce to echelon form 1700 1700 0170 0 1 7 0 0017 0011 0 0 7001 0 7 0 1 007 → 1 + 0 o Hence only 3 dinearly modependent vectors, 10 The set does not span Rt. 0 1 7 0

0000

Alternative solution to part (a) (i).

Reduce to row echelon form:

1 2 3 \rightarrow 1 2 3 \rightarrow 1 2 3

4 5 6 0 -3 -6 0 -3 -6

7 8 9 0 -6 -12 0 0 0

Hence the set does not span R³.

But a basis for the space spanned is $\{(1,2,3),(0,1,2)\}$. The general vector in this subspace of R³ has the form $\{(1,2,3),(0,1,2)\}$. The general vector in this subspace of R³ has the form $\{(1,2,3),(0,1,2)\}$. $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$, $\{(1,2,3)\}$ + $\{(0,1,2)\}$,

7/

B2. A vector space has dimension n if any Sasis for The vector space contains n vectors.

Let $N = \alpha_1 N_1 + \dots + \alpha_n N_n = \beta_1 N_1 + \dots + \beta_n N_n$ Then $(\alpha_1 - \beta_1)N_1 + \dots + (\alpha_n - \beta_n)N_n = 0$ But $\{N_1, \dots, N_n\}$ is a sasis and therefore linearly independent. Therefore $\alpha_1 - \beta_1 = \dots = \alpha_n - \beta_n = 0$ so the expansion of N is unique.

The standard basis for R" is the ordered list of n-tuples e, ez, in, en where e. ER" and every element of e. is zero except for the ith element, which is one.

A basis is a linearly independent spanning set. Let $(x,y,z) = x (2,1,0) + \beta(3,0,1) + \delta(0,1,1)$. $\Rightarrow x = 2x + 3\beta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ $y = x + \delta$ Solve for x,β,δ $y = x + \delta$ Solve for x,β,δ Thus, for any x,β,δ Solve for x,β,δ Solve for x,β,δ Solve for x,β,δ Solve for x,β,δ Thus, for any x,β,δ Thus, for any x,β,δ Thus, for any x,β,δ Solve for x,β

Setting x = y = z = 0 => x = B = 8 = 0 uniquely Thus B is also a linearly independent set, and so B is a basis. Let v= (2, -1, -1) = x(2,1,0) + B(3,0,1) + 8(0,1,1).

Then setting = = 2, y=1, z=1 in The previous solution gives 5x = 2 - 3 + 3 = 2 5p = 2 + 2 - 2 = 2

58 = -2-2-3

Thus the coordinates of v wit B are (2/5, 2/5, - 7/s).

Mod 5 The equations above reduce to The single equation x + 3y + 2z = 0, so The vectors span The subspace satisfying thes equation and not #5.

Let $(x,y,z) = x(2,1,0) + \beta(3,0,1) + \delta(1,0,1) \mod 5$ $\Rightarrow x = 2x + 3\beta + \delta$ $\Rightarrow x + 3y = 3\beta + \delta$

 $\Rightarrow \beta = 3x + 4y + 2z \mod 5$ $8 = 2 - \beta = 2 - (3x + 4y + 2z)$ $= -3x - 4y - z = 2x + y + 4z \mod 5$

R = 3x + 4y + 2z mod 5. 8 = 2x + y + 4z

sizy=z=0 => x=B=8=0 uniquely therefore the set is a basis for #53.

NB: The only finite field considered from 2003-4 onwards is $F_2 = \{0,1\}$, in which the arithmetic is slightly simpler in particular 1 is its own inverse under both addition and multiplication.

```
B3. \operatorname{Ker}(\alpha) = \left\{ v \in V \mid \chi(v) = 0 \right\}
\operatorname{Im}(\alpha) = \left\{ w \in W \mid \exists w' \in V \text{ st } \chi(w') = w \right\}
      O_V \in Ker(\alpha) since \alpha(O_V) = O_W.
      Let u, v & Ker (x). Then x(u) = x(v) =0.
      x (au + bv) = ax(u) + 6x(v) =0 Ya, be K
      where IK is the field of scalars.
Hence an + bor & Ker (x) & y, v & Ker (x)
      and & q, b & IK.
     Therefore Ker (x) is a vector susspace of V.
      OWE Im (x) since x(Ov) = Ow.
      Let u, v & Im(x). Then I u, v'eU st.
      \times (u') = u, \times (v') = v.
        \propto (au' + bv') = a \propto (u') + b \propto (v') = au + bv \in Im(x)
        V u,v ∈ Im (x) and Va, S ∈ IK.
   Therefore Im(x) is a vector subspace of W.
     Formula: dim V = dim Ker (x) + dim Im (x).
   Proof: Let {vi, ... vm} be a basis for Ker(x)
   and extend it to a basis \{v_1, ..., v_m, v_{m+1}, ..., v_{m+n}\} for V. Then \{x(v_{m+1}), ..., x(v_{m+n})\} is a basis
   for Im (x)
    Span: For any WE Im (x) I w' EV st x (w') = w.
    Let w' = a, vi + ··· + a m+n vm+n
  Then w = \propto (w') = q_i \propto (v_i) + \dots + q_{m+n} \times (v_{m+n})
              = a_{m+1} \times (v_{m+1}) + \dots + a_{m+n} \times (v_{m+n})
  smce x(v_i) = \dots = x(v_m) = 0 smce v_i, v_m \in \text{Ker}(x).
  Lin Ind: Suppose a_{m+1} \times (\nabla_{m+1}) + \dots + a_{m+n} \times (\nabla_{m+n}) = 0

Then \times (a_{m+1} + \dots + a_{m+n} + \dots + a_{m+n}) = 0

\Rightarrow a_{m+1} + \dots + a_{m+n} + \dots + a_
```

10/

i.e. 9 mt1 mt1 + ... + 9 mtn mtn - by - ... - b m m = 0

But {vi, ... vm, vm+1, ... vm+n} are a basis (for v) and so are linearly independent.

Therefore am+1 = ... = a = 0 (and b = ... = b = 0).

Given the bases defined above, dim V = m + n where $m = \dim Ker(x)$ and $n = \dim Im(x)$.

Im (α) : map the standard basis for \mathbb{R}^3 to give $\{(2,3), (1,1), (0,-2)\}$ as a spanning set. This clearly contains $\{(1,0), (0,1)\}$, which is therefore a basis for $\mathrm{Im}(\alpha)$.

[NB: dim domain = 3, dim Ker = 1, dim In = 2 and diniension Theorem is satisfied.]

Now inverte
$$S^{-1}$$
. $det(S^{-1}) = 1-2 = -1$.

Matrix of minors of S^{-1} is $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ -2 & -1 & -2 \end{pmatrix}$

Hence $S^{-1} = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 0 & 1 \\ 1 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 0 & 1 \\ 1 & 0 & -2 \end{pmatrix}$

[Can check that $SAS^{-1} = diag(2,3,5)$.]

(b)
$$|1-\lambda| 2\sqrt{2} | = 0 \Rightarrow -(1-\lambda)(1+\lambda) - 8 = 0$$

 $|2\sqrt{2} - 1-\lambda| \Rightarrow 1-\lambda^2 + 8 = 0$
 $|2\sqrt{2} - 9 \Rightarrow \lambda^2 - 9 \Rightarrow \lambda = \pm 3$.

 $\lambda = 3: \left(-2 \ 2\sqrt{2}\right) \left(x\right) = 0$ $2\sqrt{2} \ -4\right) \left(y\right)$ $\Rightarrow -2x + 2\sqrt{2}y = 0 \Rightarrow x = \sqrt{2}y$ An eigenvector is $(\sqrt{2}, 1)$. Normalized this is $(\sqrt{2}, 1)/\sqrt{3}$.

 $\Rightarrow 2\sqrt{2} \times + 2y = 0 \Rightarrow y = -\sqrt{2} \times$ An eigenvector is $(1, -\sqrt{2})$.

Normalized this is $(1, -\sqrt{2})/\sqrt{3}$.

Hence $P^T = \frac{1}{13} \left(\frac{12}{1} \right) \lambda P = \frac{1}{13} \left(\frac{12}{1} \right)$

Check: $PAP^{T} = \frac{1}{3} \begin{pmatrix} \overline{12} & 1 \\ 1 & -\overline{12} \end{pmatrix} \begin{pmatrix} 1 & 2\overline{12} \\ 2\overline{12} & -1 \end{pmatrix} \begin{pmatrix} \overline{12} & 1 \\ 1 & -\overline{12} \end{pmatrix}$

$$=\frac{1}{3}\left(\frac{1}{1-\sqrt{2}}\right)\left(\frac{3\sqrt{2}}{3}-\frac{3}{3\sqrt{2}}\right)=\frac{1}{3}\left(\frac{9}{0}-\frac{9}{9}\right)=\left(\frac{3}{0}-\frac{9}{3}\right)$$