Fiche méthode: Trigonométrie

I. Cercle trigonométrique

Application 1 : Points images sur le cercle trigonométrique et mesure d'angle

On se place sur le cercle trigonométrique ci-contre :

1. Quels sont les points images des réels suivants :

π	$\frac{\pi}{2}$	$\frac{\pi}{6}$	$-\frac{\pi}{3}$	$\frac{2\pi}{3}$	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{5\pi}{4}$
K	(π)	j	$\left(\frac{\pi}{2}\right)$		$A\left(\frac{\pi}{6}\right)$	C' (-	$-\frac{\pi}{3}$
D ($\left(\frac{2\pi}{3}\right)$	К	$(-\pi)$	E'	$\left(-\frac{3\pi}{4}\right)$	A(-	$\left(\frac{5\pi}{4}\right)$

2. Donner trois réels différents ayant pour image :

a.	le point J

 $\frac{\pi}{a} + 2k\pi$ avec $k \in \mathbb{Z}$

c. le point C

c. le point C $\frac{\pi}{} + 2k\pi \text{ avec } k \in \mathbb{Z}$

b. le point K $\pi + 2k\pi$ avec $k \in \mathbb{Z}$

d. le point E $\in \mathbb{Z} \qquad \frac{3\pi}{2\pi} + 2k\pi \text{ avec } k \in \mathbb{Z}$

3. Donner une mesure des angles : Soit $k \in \mathbb{Z}$,

a)
$$(\overrightarrow{OL}; \overrightarrow{OK}) = -\frac{\pi}{2}(+2k\pi)$$

b)
$$(\overrightarrow{OE'}; \overrightarrow{OL}) = \frac{\pi}{4} (+2k\pi)$$

c)
$$(\overrightarrow{OC}; \overrightarrow{OI}) = -\frac{\pi}{3}(+2k\pi)$$

Application 2: Conversion

Radian	π	$\frac{25\pi}{180} = \frac{5\pi}{36}$	$\frac{38\pi}{180} = \frac{19\pi}{90}$	$\frac{3\pi}{4}$	$\frac{5\pi}{2}$
Degré	180	25	38	$\frac{3\times180}{4} = 135$	450

Cercle trigonométrique :

Dans le plan muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$, le cercle trigonométrique est le cercle de centre 0 et de rayon 1 et sur lequel on a choisi un sens de parcours, appelé sens direct (ou positif) : c'est le sens contraire des aiguilles d'une montre

A chaque réel *x*correspond un point *M*du cercle
trigonométrique.

Réciproquement, à chaque tour de cercle effectué avec la droite des réels, on se retrouve au même point sur le cercle trigonométrique.
 Ainsi, à chaque point M du cercle trigonométrique correspond une infinité de réels, différant tous d'un multiple de 2π.

<u>Remarque</u>: 2π est le **périmètre** du cercle trigonométrique (cercle de rayon 1).

Radian:

- La mesure d'un angle en radian est égale à la longueur de l'arc de cercle que cet angle intercepte sur le cercle trigonométrique.
- Soit x un réel. Lorsque le point M' d'abscisse x sur la droite des réels se superpose au point M sur le cercle trigonométrique, l'angle IOM (pris dans le sens direct si x est positif, et dans le sens indirect si x est négatif) mesure x radians.

Radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
Degré	0	30°	45°	60°	90°	180°	360°

Mesure d'un angle

Soient \vec{u} et \vec{v} deux vecteurs. Soient A,B et C trois points tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. On définit alors une mesure de l'angle orienté $(\vec{u},\vec{v}) = (\overrightarrow{AB},\overrightarrow{AC})$ par la mesure de l'angle \overrightarrow{BAC} si on tourne dans le sens trigonométrique (sens inverse des aiguilles d'une montre) pour passer de B à C, ou par $-\overrightarrow{BAC}$ dans le cas contraire.

II. Mesure principale d'un angle orienté

Application 3: Mesure principale

Le plan est muni d'un repère orthonormé $(O;\vec{l},\vec{j})$. Sur le cercle trigonométrique, on considère les point A,B et C tels que : l'angle orienté $(\overrightarrow{Ol},\overrightarrow{OA})$ mesure $\frac{4\pi}{c}$ rad,

l'angle orienté $(\overrightarrow{Ol}, \overrightarrow{OB})$ mesure $\frac{5\pi}{3}$ rad, l'angle orienté $(\overrightarrow{Ol}, \overrightarrow{OC})$ mesure $\frac{-7\pi}{4}$ rad.

- 1. Placer les points A, B et C sur le cercle trigonométrique.
- 2. Déterminer la mesure des angles qui appartient à l'intervalle $]-\pi$; π].

$$(\overrightarrow{OI}, \overrightarrow{OA}) = \frac{2\pi}{3}$$
$$(\overrightarrow{OI}, \overrightarrow{OB}) = -\frac{\pi}{3}$$
$$(\overrightarrow{OI}, \overrightarrow{OC}) = \frac{\pi}{4}$$

<u>Application 4:</u> Donner la mesure principale des angles orientés dont une mesure en radians est :

a)	$-\frac{\pi}{2}$	$-\frac{\pi}{2} \in]-\pi;\pi]$ ainsi la mesure principale de
	_	$-\frac{\pi}{2}$ est $-\frac{\pi}{2}$
b)	$\frac{38\pi}{5}$	$\frac{38\pi}{5} = 4 \times \frac{10\pi}{5} - \frac{2\pi}{5}$ ainsi la mesure
	5	principale de $\frac{38\pi}{5}$ est $-\frac{2\pi}{5}$.
c)	$-\frac{19\pi}{7}$	$-\frac{19\pi}{7} = 1 \times \left(-\frac{14\pi}{7}\right) - \frac{5\pi}{7}$ ainsi la mesure
	7	principale de $-\frac{19\pi}{7}$ est $-\frac{5\pi}{7}$.
d)	$-\frac{127\pi}{2}$	$-\frac{127\pi}{3} = 21 \times \left(-\frac{6\pi}{3}\right) - \frac{\pi}{3}$ ainsi la mesure
	3	principale de $-\frac{127\pi}{3}$ est $-\frac{\pi}{3}$

Application 5 : Sinus d'un angle orienté non remarquable

Soit a un réel tel que $a \in \left[0; \frac{\pi}{2}\right]$ et $\cos a = \frac{3}{8}$. Placer le point A associé au réel a sur un cercle trigonométrique puis calculer $\sin a$.

$$cos^{2}(a) + sin^{2}(a) = 1$$

$$\frac{9}{64} + sin^{2}(a) = 1$$

$$sin^{2}(a) = \frac{64}{64} - \frac{9}{64}$$

$$sin^{2}(a) = \frac{55}{64}$$

$$sin(a) = \frac{\sqrt{55}}{8} car \ a \in \left[0; \frac{\pi}{2}\right].$$

Application 6 : Cosinus et sinus d'un angle orienté

En utilisant le cercle trigonométrique et le tableau des valeurs remarquables, déterminer la valeur exacte de :

	a. quan.co, a.c.c		
a)	$\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$	b)	$\sin\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$
c)	$\sin\left(-\frac{\pi}{2}\right) = -1$	d)	$\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
e)	$\sin(2\pi) = 0$		$\cos\left(2\pi\right) = 1$
g)	$\cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$	h)	$\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$
i)	$\cos\left(\frac{3\pi}{2}\right) = 0$	j)	$\sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}$

Mesure principale d'un angle orienté

Soient \vec{u} et \vec{v} deux vecteurs. On appelle mesure principale de l'angle (\vec{u}, \vec{v}) l'unique mesure de l'angle (\vec{u}, \vec{v}) comprise dans l'intervalle $]-\pi;\pi]$.

Cosinus et sinus d'un angle orienté

Soit x une mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ où M est un point du cercle trigonométrique.

- Le cosinus de x, noté $\cos x$, est l'abscisse de M.
- Le sinus de x, noté $\sin x$, est **l'ordonnée** de M. Ainsi on a : $M(\cos(x); \sin(x))$

Valeurs remarquables du sinus et du cosinus :

x (mesure en degrés)	0°	30°	45°	60°	90°
x (mesure en radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{\overline{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Propriétés:

Pour tout réel x on a :

- $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$.
- $(\cos x)^2 + (\sin x)^2 = 1$

Soit a un nombre réel, alors :

$\cos(-a) = \cos(a)$	$ \sin(-a) = -\sin(a) \sin(a + \pi) = -\sin(a) \sin(\pi - a) = \sin(a) $
$\cos(a+\pi) = -\cos(a)$	$\sin(a+\pi) = -\sin(a)$
$\cos(\pi - a) = -\cos(a)$	$\sin(\pi - a) = \sin(a)$
$\cos\left(\frac{\pi}{2} + a\right) = -\sin\left(a\right)$	$\sin\left(\frac{\pi}{2} + a\right) = \cos\left(a\right)$
$\cos\left(\frac{\overline{n}}{2} - a\right) = \sin\left(a\right)$	$\sin\left(\frac{\overline{n}}{2} - a\right) = \cos\left(a\right)$

III. Fonction circulaire

Période :

Les courbes représentatives sont inchangées par la translation de vecteur $2\pi \vec{i}$

Lien entre les courbes de la fonction cos et sin :

La courbe représentative de la fonction cosinus et de la fonction sinus est une sinusoïde. La courbe de la fonction cosinus est translatée de $\frac{\pi}{2}$ vers la gauche par rapport à la courbe de la fonction sinus.

Application 7: Courbes et fonction cosinus

Dans le repère orthogonal (0, I, I) ci-dessous, on donne la courbe représentative d'une fonction f définie sur \mathbb{R} par $f(x) = A\cos(\omega x)$ où A et ω sont deux réels strictement positifs.

1. Déterminer graphiquement la valeur de A.

Le maximum de f est 2 donc A = 2.

2. a) Déterminer graphiquement la période T de f. La représentation graphique de f est invariante par la translation de vecteur $2\overrightarrow{OI}$ donc T=2

b) En déduire la valeur de ω.

$T = \frac{2\pi}{}$	ainsi :
$^{\omega}_{2\pi}$	2π
$\omega = \frac{1}{T} \approx$	${2} \approx \pi$

Fonction cosinus:

La fonction cosinus est la fonction f définie sur \mathbb{R} par : $f(x) = \cos(x)$

Période :

La fonction cosinus est périodique de **période** 2π

La fonction cosinus est

Autrement dit:

Pour tout réel x et pour tout entier relatif k, on a : $cos(x + 2k\pi) = cos(x)$

Autrement dit:

Parité:

Pour tout réel x, on a : $\cos(-x) = \cos x$

En Physique :

Soient ω et φ des réels avec $\omega \neq 0$. On utilise la fonction définie sur \mathbb{R} par :

$$f(t) = \cos\left(\omega t + \varphi\right)$$

Elle est de période :

$$T = \frac{2\pi}{\omega}$$

Application 8 : Courbes et fonction sinus

Dans le repère orthogonal (O, I, I) ci-dessous, on donne la courbe représentative d'une fonction f définie sur $\mathbb R$ par $f(x) = Asin(\omega x)$ où A et ω sont deux réels strictement positifs.

1. Déterminer graphiquement la valeur de A.

Le maximum de f est 1 donc A = 1.

2. a) Déterminer graphiquement la période T de f. La représentation graphique de f est invariante par la translation de vecteur $4\overrightarrow{OI}$ donc T=4.

b) En déduire la valeur de ω .

$$T = \frac{2\pi}{\omega}$$
 ainsi:
 $\omega = \frac{2\pi}{T} = \frac{2\pi}{4} = \frac{\pi}{2}$

Fonction sinus:

La fonction sinus est la fonction f définie sur \mathbb{R} par : $f(x) = \sin(x)$

Période :

La fonction sinus est périodique de **période** 2π

Parité:

La fonction sinus est impaire

Autrement dit:

Pour tout réel x et pour tout entier relatif k, on a : $\sin(x + 2k\pi) = \sin(x)$

Autrement dit:

Pour tout réel x, on a : $\sin(-x) = -\sin x$

En Physique :

Soient ω et φ des réels avec $\omega \neq 0$. On utilise la fonction définie sur $\mathbb R$ par :

$$f(t) = \sin(\omega t + \varphi)$$

Elle est de période :

$$T = \frac{2\pi}{\omega}$$

Formules d'additions et de duplication

Formules d'additions et de duplication :

Pour tous nombres réels a et b. on a :

1)
$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$
 | 5) $\cos(2a) = \cos^2(a) - \sin^2(a)$

2)
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$
 = $2\cos^2(a) - 1$

3)
$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$
 = 1 - 2sin²(a)

4)
$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$
 | 6) $\sin(2a) = 2\sin(a)\cos(a)$

Application 9: Formule d'addition

La tension u (exprimée en volt) aux bornes d'un dipôle en fonction du temps t (exprimé en seconde) est donnée par :

$$u(t) = \frac{11}{4}\cos(200t) + \frac{11\sqrt{3}}{4}\sin(200t)$$

a. Montrer que pour tout t appartenant à $[0; +\infty[, u(t) = \frac{22}{4}\cos(200t - \frac{\pi}{2})]$

1ère méthode :

$$\frac{22}{4}\cos\left(200t - \frac{\pi}{3}\right) = \frac{22}{4}\left(\cos(200t)\cos\left(\frac{\pi}{3}\right) + \sin(200t)\sin\left(\frac{\pi}{3}\right)\right) \\
= \frac{22}{4}\left(\cos(200t)\frac{1}{2} + \sin(200t)\frac{\sqrt{3}}{2}\right) \\
= \frac{11}{4}\cos(200t) + \frac{11\sqrt{3}}{4}\sin(200t)$$

2ème méthode:

$$u(t) = \frac{11}{4}cos(200t) + \frac{11\sqrt{3}}{4}sin(200t)$$
 ϕ est tel que :

$$a = \frac{11}{4} \text{ et } b = \frac{11\sqrt{3}}{4}$$

$$A = \sqrt{\left(\frac{11}{4}\right)^2 + \left(\frac{11\sqrt{3}}{4}\right)^2}$$

$$A = \sqrt{\left(\frac{11}{4}\right)^2 + 3\left(\frac{11}{4}\right)^2}$$

$$A = \sqrt{4\left(\frac{11}{4}\right)^2}$$

$$A = 2 \times \frac{11}{4}$$

$$A = 2 \times \frac{11}{4}$$

$$\begin{cases}
\cos(\phi) = \frac{a}{A} = \frac{\frac{11}{4}}{\frac{22}{4}} = \frac{11}{4} \times \frac{4}{22} = \frac{11}{22} = \frac{1}{2} \\
\sin(\phi) = \frac{-b}{A} = \frac{-\frac{11\sqrt{3}}{4}}{\frac{22}{4}} = -\frac{11\sqrt{3}}{4} \times \frac{4}{22} = -\frac{\sqrt{3}}{2}
\end{cases}$$

Par lecture du cercle trigo on a :
$$\phi = -\frac{\pi}{3}$$

$$u(t) = A\cos(\omega t + \phi)$$

$$u(t) = \frac{22}{4}\cos\left(200t - \frac{\pi}{3}\right)$$

b. En déduire la fréquence $=\frac{\omega}{2\pi}$, exprimée en Hz, délivrée par le dipôle, où ω désigne la pulsation. On arrondira le résultat à l'unité.

$$f = \frac{200}{2\pi} \approx 32 \text{ Hz}$$

V. Formules de linéarisation

Application 10: Linéarisation

Linéariser
$$\cos^2\left(2t+\frac{\pi}{6}\right)$$
 et $\sin^2\left(2t+\frac{\pi}{6}\right)$

$$\cos^{2}\left(2t + \frac{\pi}{6}\right) = \frac{\frac{1+\cos\left(4t + \frac{\pi}{3}\right)}{2}}{\frac{2}{2}} = \frac{1}{2} + \frac{1}{2}\cos\left(4t + \frac{\pi}{3}\right)$$
$$\sin^{2}\left(2t + \frac{\pi}{6}\right) = \frac{\frac{1-\cos\left(4t + \frac{\pi}{3}\right)}{2}}{\frac{2}{3}} = \frac{1}{2} - \frac{1}{2}\cos\left(4t + \frac{\pi}{3}\right)$$

Formule de linéarisation :

Pour tous nombres réels a et b, on a :

1)
$$\cos^2(a) = \frac{1 + \cos(2a)}{a} = \frac{1}{a} + \frac{1}{a}\cos(2a)$$

1)
$$\cos^{2}(a) = \frac{1 + \cos(2a)}{2} = \frac{1}{2} + \frac{1}{2}\cos(2a)$$

2) $\sin^{2}(a) = \frac{1 - \cos(2a)}{2} = \frac{1}{2} - \frac{1}{2}\cos(2a)$