Phenomic Selection Workshop

Tuesday September 20th 2022

Renaud Rincent & Vincent Segura

Genomic BLUP (Van Raden, 2008)

$$\mathbf{y} = \mu + \mathbf{Z}\mathbf{g} + \epsilon$$

$$\mathbf{g} \sim \mathcal{N}(0, \sigma_g^2 \mathbf{K})$$

$$\mathbf{K} = \mathbf{X_c} \mathbf{X_c^T} / (2\sum_i p_i (1 - p_i))$$

Estimating kinship with other molecular variants

- Other kind of omic data (metabolites, sRNA, mRNA...) have been proposed to capture genetic variability / estimate relatedness (Fu et al. 2012, Schrag et al. 2018)
- Molecular (endo) phenotypes are expressed phenotypes
- These variants capture **non additive effects** (G×G,G×E), which can be an **advantage** (fixed material) or a **drawback** (parental selection)
- Has the same limit as classic GS: it is expensive

NIRS

- Characterize the molecular composition of a sample (Beer-Lambert law)
- High-throughput / Low-cost / (Non destructive)
- Often routinely collected in (plant) breeding programs
- Has been proposed for barcoding like a (DNA) marker

Editorial

It's barcoding Jim, but not as we know it

ROBERT H. CRUICKSHANK1 & LARS MUNCK2

Article

Barcoding without DNA? Species identification using near infrared spectroscopy

JAIME I. RODRÍGUEZ-FERNÁNDEZ^{1,2}, CLAUDIO J. B. DE CARVALHO¹, CELIO PASQUINI³, KÁSSIO MICHELL GOMES DE LIMA⁴, MAURICIO O. MOURA¹ & GREGORIO G. CARBAJAL ARÍZAGA⁵

Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar

Renaud Rincent,* Jean-Paul Charpentier,*,* Patricia Faivre-Rampant,§ Etienne Paux,* Jacques Le Gouis,* Catherine Bastien,† and Vincent Segura*,1

Proof of concept - material

- Wheat: A panel of 228 French elite varieties of winter wheat evaluated in Clermont-Ferrand under two hydric treatments and a subset of 161 varieties in 6 independent trials (other years/locations/treatments)
 - Genotyping: TaBW280K genotyping array → 84,259 SNPs (Rimbert et al. 2018)
 - NIRS: Grain & Leaves; FOSS spectrometers (visible and NIR)
 - Phenotyping: Yield and Heading date
- <u>Poplar:</u> An association population of 1,160 cloned genotypes evaluated in two common garden experiments at two locations (Orléans and Savigliano)
 - Genotyping: Illumina Infinium BeadChip array → 7,918 SNPs for 858 genotypes (Faivre-Rampant et al. 2016)
 - NIRS: Wood; PerkinElmer Spectrum400 (FT-IR NIR) (Gebreselassie et al. 2017)
 - Phenotyping: Growth, Phenology, Rust resistance

Variance partition along spectra

Phenomic & Genomic prediction accuracies

Phenomic & Genomic prediction accuracies

Species	Trait	S1 environment	S2 environment					
			Cle13N+	Cle13N-	Mon12N+	Mon12N-	Mon13N+	Mon13N-
Wheat	GY	IRR	0.40	0.40	0.26	0.16	0.32	0.26
Wheat	GY	DRY	0.36	0.30	0.31	0.31	0.35	0.38
Wheat	HD	IRR	0.84	0.84	0.85	0.86	0.87	0.87
Wheat	HD	DRY	0.84	0.84	0.88	0.87	0.86	0.86

Theoretical increase in genetic gain (%) when using PS instead of GS

Given a total budget of 200 k€ for genotyping or NIRS acquisition, but varying GS and PS reliabilities, and genotyping and NIRS costs.

PS definition / use of NIRS in breeding (other than chemistry)

Chapter 14

Phenomic selection: a new and efficient alternative to genomic selection

Running title: Phenomic Selection

Authors: Pauline Robert^{1,2*}, Charlotte Brault^{3,4,5,*}, Renaud Rincent^{1,2,#}, Vincent Segura^{3,5,#}

- NIRS is a proxy of yield
- NIRS is a secondary trait
- Phenomic Selection (\$1)
- GLOB (Genomic-Like Omics Based)
 prediction (S2)

Individual / plot level

Variety / genotype level

Recent literature (PS & GLOB)

Charlotte Brault^{1,2,3}, Juliette Lazerges^{1,2}, Agnès Doligez^{1,2}, Miguel Thomas^{1,2}, Martin Ecarnot¹, Pierre Roumet¹. Yves Bertrand^{1,2}, Gilles Berger^{1,2}, Thierry Pons^{1,2}, Pierre François^{1,2}, Loïc Le Cunff^{1,2,3}, Patrice This^{1,2} and Vincent Segura^{1,2*}

Renaud Rincent^{1,2}

Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat

Margaret R. Krause,* Lorena González-Pérez,† José Crossa,† Paulino Pérez-Rodríguez,†
Osval Montesinos-López,[§] Ravi P. Singh,† Susanne Dreisigacker,† Jesse Poland,** Jessica Rutkoski,††
Mark Sorrells,* Michael A. Gore,* and Suchismita Mondal†,†

Theoretical and Applied Genetics (2021) 134:1409–1422 https://doi.org/10.1007/s00122-021-03779-1

ORIGINAL ARTICLE

Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material

Rodrigo José Galán¹ · Angela-Maria Bernal-Vasquez² · Christian Jebsen² · Hans-P Patrick Thorwarth^{1,2} · Philipp Steffan⁴ · Andres Gordillo⁴ · Thomas Miedaner¹ ·

Phenomic selection and prediction of maize grain yield from near-infrared reflectance spectroscopy of kernels

nt Phenome Journal

Phenomic Selection: A New and Efficient Alternative to Genomic Selection

Pauline Robert, Charlotte Brault, Renaud Rincent, and Vincent Segura

Conclusion

- NIRS capture some G & G×E variance
- PS works for different tissues and traits, and it can be as accurate as GS
- NIRS is much cheaper than genotyping → PS can yield a higher genetic gain than GS even when less accurate

Limits:

- PS do not predict BVs, but phenotypic values → advantage & drawback !
- GxE → advantage & drawback! How to combine NIRS collected in different environments on different varieties?