Johns Hopkins Engineering 625.464 Computational Statistics

Linear Smoothers

Module 12 Lecture 12B

Linear Smoothers

biven p-Rdata (xi,yi) we want to find est. $\hat{S}_{x}(x) = \text{ave } \{Y_{i} \mid x_{i} \in N(X)\}$

For a linear smoother, the prediction at any point x, Saw, will be a linear (1mb. of the response values. We focus on est the smooth at obs. values xi and then we will obtain the smooth at all x values by using interpolation

Linear Smoothers

Given $x = (X_1, ..., X_n)^T$ and y- (y,,.,,yn), then $S = (S(X_1), ..., S(X_n))^T$ can be expressed as S = SWhere Is an nxn smoothing matrix that does not depend on y,

Constant Span Running Mean

Basic Idea; Take the sample mean of
of k near by points.
$$\hat{S}_{k}(X_{i}) = \underbrace{\sum_{i=1}^{k} i_{k} k}_{\{j:x_{i} \in N(X_{i})\}}$$
where $X_{i} \in \mathbb{R}^{d}$ and $X_{i} \in \mathbb{R}^{d}$ and $X_{i} \in \mathbb{R}^{d}$.

where Kisold and N(Xi) is Xi along with

the (X-1) values nearly above and below

if xi are sorted: $S_{L}(X_{i}) = \text{mean}[Y_{j}]$ for $\text{max}(\frac{1}{2}, \frac{1}{2})] \leq j$ $\leq \min_{K} (\frac{1}{2}, \frac{1}{2}) = S_{K}(X_{i}) - \frac{1}{2}(K-1) \leq j$

Smoothing Matrix and Example
How to door w/ the edges. K=5

DShrink the neighborhood

Constant Span Running Mean Example

$$N=200$$
 $N_{i}=5(x_{i})+\epsilon_{i}$ $\epsilon_{i} \sim N(0,1.5^{2})$
 $S(x)=x^{3}sin(\frac{x+3.4}{2})$ $K=13$

Effect of Span on the Smooth

$$\lambda = K$$

$$M SPER(\hat{S}_{k}(X_{i})) = Var(Y|X=k_{i}) + MSE_{k}(\hat{S}_{k}(X_{i}))$$

$$= (1+||K|)(2+||bias(\hat{S}_{k}(X_{i}))|^{2})$$

$$As span & goes up$$

Effect of Span

How to select the span for linear smoothers? MINIMIZE W.r.L K + he ressidual MSE $RSS_{K}(\hat{S}_{K})/n = \frac{1}{n} \stackrel{\circ}{\underset{i=1}{\stackrel{\circ}{=}}} (Y_{i} - \hat{S}_{k}(X_{i}))^{2}$ E[RSS(S))- TS(OV), F(S) To Find K you can minimizE CYRSS_K(\hat{S}_{x}) = $\frac{1}{N}$ \hat{S}_{z} ($\frac{1}{N}$ - \hat{S}_{x} ($\frac{1}{N}$)²
whole \hat{S}_{x} (-i)(\hat{S}_{x}) is the value of smooth smitting (\hat{S}_{x}).

CVRSS Example

Speeding Up Cross Validation

1) Leave out groups of data not just 1 point.

2) Recall that in the original smoother

$$\hat{S}_{K}(X_{i}) = \hat{S}_{i} = \hat{S}_{i} \hat{S}_{i} \quad \text{when } \hat{S}_{i} = \hat{S}_{K}$$

- Smooth with (Xi, yi) oliminated

$$\hat{S}_{k}^{(-i)}(X_{i}) = \sum_{j=1}^{3} \frac{y_{j} S_{ij}}{1 - S_{ik}}$$