

DATA MINING AND ANALYSIS

The fundamental algorithms in data mining and analysis form the basis for the emerging field of data science, which includes automated methods to analyze patterns and models for all kinds of data, with applications ranging from scientific discovery to business intelligence and analytics. This textbook for senior undergraduate and graduate data mining courses provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include exploratory data analysis, pattern mining, clustering, and classification. The book lays the basic foundations of these tasks and also covers cutting-edge topics such as kernel methods, high-dimensional data analysis, and complex graphs and networks. With its comprehensive coverage, algorithmic perspective, and wealth of examples, this book offers solid guidance in data mining for students, researchers, and practitioners alike.

Key Features:

- Covers both core methods and cutting-edge research
- Algorithmic approach with open-source implementations
- Minimal prerequisites, as all key mathematical concepts are presented, as is the intuition behind the formulas
- Short, self-contained chapters with class-tested examples and exercises that allow for flexibility in designing a course and for easy reference
- Supplementary online resource containing lecture slides, videos, project ideas, and more

Mohammed J. Zaki is a Professor of Computer Science at Rensselaer Polytechnic Institute, Troy, New York.

Wagner Meira Jr. is a Professor of Computer Science at Universidade Federal de Minas Gerais, Brazil.

DATA MINING AND ANALYSIS

Fundamental Concepts and Algorithms

MOHAMMED J. ZAKI

Rensselaer Polytechnic Institute, Troy, New York

WAGNER MEIRA JR.

Universidade Federal de Minas Gerais, Brazil

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521766333

© Mohammed J. Zaki and Wagner Meira Jr. 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Zaki, Mohammed J., 1971–

Data mining and analysis: fundamental concepts and algorithms / Mohammed J. Zaki, Rensselaer Polytechnic Institute, Troy, New York, Wagner Meira Jr.,

Universidade Federal de Minas Gerais, Brazil.

pages cm

Includes bibliographical references and index. ISBN 978-0-521-76633-3 (hardback)

1. Data mining. I. Meira, Wagner, 1967– II. Title.

QA76.9.D343Z36 2014 006.3'12-dc23 2013037544

ISBN 978-0-521-76633-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Preface			page ix
1	Data	a Mining and Analysis	1
	1.1	Data Matrix	1
	1.2	Attributes	3
	1.3	Data: Algebraic and Geometric View	4
	1.4	Data: Probabilistic View	14
	1.5	Data Mining	25
	1.6	Further Reading	30
	1.7	Exercises	30
PAR	T ONE	: DATA ANALYSIS FOUNDATIONS	
2	Nun	neric Attributes	33
	2.1	Univariate Analysis	33
	2.2	Bivariate Analysis	42
	2.3	Multivariate Analysis	48
	2.4	Data Normalization	52
	2.5	Normal Distribution	54
	2.6	Further Reading	60
	2.7	Exercises	60
3	Cate	egorical Attributes	63
	3.1	Univariate Analysis	63
	3.2	Bivariate Analysis	72
	3.3	Multivariate Analysis	82
	3.4	Distance and Angle	87
	3.5	Discretization	89
	3.6	Further Reading	91
	3.7	Exercises	91
4	Gra	ph Data	93
	4.1	Graph Concepts	93
	4.2	Topological Attributes	97

vi			Contents
	4.3	Centrality Analysis	102
	4.4	Graph Models	112
	4.5	Further Reading	132
	4.6	Exercises	132
5	Kern	el Methods	. 134
	5.1	Kernel Matrix	138
	5.2	Vector Kernels	144
	5.3	Basic Kernel Operations in Feature Space	148
	5.4	Kernels for Complex Objects	154
	5.5	Further Reading	161
	5.6	Exercises	161
6	High-dimensional Data		
	6.1	High-dimensional Objects	163
	6.2	High-dimensional Volumes	165
	6.3	Hypersphere Inscribed within Hypercube	168
	6.4	Volume of Thin Hypersphere Shell	169
	6.5	Diagonals in Hyperspace	171
	6.6	Density of the Multivariate Normal	172
	6.7	Appendix: Derivation of Hypersphere Volume	175
	6.8	Further Reading	180
	6.9	Exercises	180
7	Dime	ensionality Reduction	. 183
	7.1	Background	183
	7.2	Principal Component Analysis	187
	7.3	Kernel Principal Component Analysis	202
	7.4	Singular Value Decomposition	208
	7.5	Further Reading	213
	7.6	Exercises	214
PART	TWO	: FREQUENT PATTERN MINING	
8		set Mining	. 217
	8.1	Frequent Itemsets and Association Rules	217
	8.2	Itemset Mining Algorithms	221
	8.3	Generating Association Rules	234
	8.4	Further Reading	236
	8.5	Exercises	237
9		marizing Itemsets	. 242
	9.1	Maximal and Closed Frequent Itemsets	242
	9.2	Mining Maximal Frequent Itemsets: GenMax Algorithm	245
	9.3	Mining Closed Frequent Itemsets: Charm Algorithm	248
	9.4	Nonderivable Itemsets	250
	9.5	Further Reading	256
	9.6	Exercises	256

Cor	ntents		vii
10	Com	rongo Mining	250
10	•	Rence Mining	259
	10.1 10.2	Frequent Sequences Mining Frequent Sequences	259 260
	10.2	Substring Mining via Suffix Trees	267
	10.3	Further Reading	277
		Exercises	277
	10.5	LACICISCS	211
11	Grap	oh Pattern Mining	280
	11.1	Isomorphism and Support	280
	11.2	Candidate Generation	284
	11.3	The gSpan Algorithm	288
	11.4	Further Reading	296
	11.5	Exercises	297
12	Patte	ern and Rule Assessment	301
	12.1	Rule and Pattern Assessment Measures	301
	12.2	Significance Testing and Confidence Intervals	316
	12.3	Further Reading	328
	12.4	Exercises	328
DA DT	г тырг	EE: CLUSTERING	
			222
13	-	resentative-based Clustering	333
	13.1	K-means Algorithm	333
		Kernel K-means	338
	13.3	Expectation-Maximization Clustering	342
	13.4	Further Reading Exercises	360
	13.5	Exercises	361
14	Hier	archical Clustering	364
	14.1	Preliminaries	364
	14.2	Agglomerative Hierarchical Clustering	366
	14.3	Further Reading	372
	14.4	Exercises and Projects	373
15	Den	sity-based Clustering	375
	15.1	The DBSCAN Algorithm	375
	15.2	Kernel Density Estimation	379
	15.3	Density-based Clustering: DENCLUE	385
	15.4	Further Reading	390
	15.5	Exercises	391
16	Snec	tral and Graph Clustering	394
10	-		
	16.1	Graphs and Matrices	394
	16.2	Clustering as Graph Cuts	401
	16.3 16.4	Markov Clustering Further Panding	416
		Further Reading Exercises	422
	10.5	EXCICISES	423

viii		Conten	ts
17	Clustering Validation		25
	17.1 External Measures	42	25
	17.2 Internal Measures	44	40
	17.3 Relative Measures	44	48
	17.4 Further Reading	46	61
	17.5 Exercises	46	52
PART	RT FOUR: CLASSIFICATION		
18	Probabilistic Classification		57
	18.1 Bayes Classifier	46	57
	18.2 Naive Bayes Classifier	47	73
	18.3 K Nearest Neighbors Classifier	47	77
	18.4 Further Reading	47	79
	18.5 Exercises	47	79
19	Decision Tree Classifier		31
	19.1 Decision Trees	48	33
	19.2 Decision Tree Algorithm	48	35
	19.3 Further Reading	49	96
	19.4 Exercises	49	96
20	Linear Discriminant Analysis		98
	20.1 Optimal Linear Discriminant	49	98
	20.2 Kernel Discriminant Analysis	50)5
	20.3 Further Reading	51	11
	20.4 Exercises	51	12
21	Support Vector Machines		4
	21.1 Support Vectors and Margins	51	14
	21.2 SVM: Linear and Separable Case	52	20
	21.3 Soft Margin SVM: Linear and Non	separable Case 52	24
	21.4 Kernel SVM: Nonlinear Case	53	30
	21.5 SVM Training Algorithms	53	34
	21.6 Further Reading	54	15
	21.7 Exercises	54	46
22	Classification Assessment		18
	22.1 Classification Performance Measur	es 54	48
	22.2 Classifier Evaluation	56	52
	22.3 Bias-Variance Decomposition	57	72
	22.4 Further Reading	58	31
	22.5 Exercises	58	32
Inde	ex	58	₹5

Preface

This book is an outgrowth of data mining courses at Rensselaer Polytechnic Institute (RPI) and Universidade Federal de Minas Gerais (UFMG); the RPI course has been offered every Fall since 1998, whereas the UFMG course has been offered since 2002. Although there are several good books on data mining and related topics, we felt that many of them are either too high-level or too advanced. Our goal was to write an introductory text that focuses on the fundamental algorithms in data mining and analysis. It lays the mathematical foundations for the core data mining methods, with key concepts explained when first encountered; the book also tries to build the intuition behind the formulas to aid understanding.

The main parts of the book include exploratory data analysis, frequent pattern mining, clustering, and classification. The book lays the basic foundations of these tasks, and it also covers cutting-edge topics such as kernel methods, high-dimensional data analysis, and complex graphs and networks. It integrates concepts from related disciplines such as machine learning and statistics and is also ideal for a course on data analysis. Most of the prerequisite material is covered in the text, especially on linear algebra, and probability and statistics.

The book includes many examples to illustrate the main technical concepts. It also has end-of-chapter exercises, which have been used in class. All of the algorithms in the book have been implemented by the authors. We suggest that readers use their favorite data analysis and mining software to work through our examples and to implement the algorithms we describe in text; we recommend the R software or the Python language with its NumPy package. The datasets used and other supplementary material such as project ideas and slides are available online at the book's companion site and its mirrors at RPI and UFMG:

- http://dataminingbook.info
- http://www.cs.rpi.edu/~zaki/dataminingbook
- http://www.dcc.ufmg.br/dataminingbook

Having understood the basic principles and algorithms in data mining and data analysis, readers will be well equipped to develop their own methods or use more advanced techniques.

Suggested Roadmaps

The chapter dependency graph is shown in Figure 0.1. We suggest some typical roadmaps for courses and readings based on this book. For an undergraduate-level course, we suggest the following chapters: 1–3, 8, 10, 12–15, 17–19, and 21–22. For an undergraduate course without exploratory data analysis, we recommend Chapters 1, 8–15, 17–19, and 21–22. For a graduate course, one possibility is to quickly go over the material in Part I or to assume it as background reading and to directly cover Chapters 9–22; the other parts of the book, namely frequent pattern mining (Part II), clustering (Part III), and classification (Part IV), can be covered in any order. For a course on data analysis the chapters covered must include 1–7, 13–14, 15 (Section 2), and 20. Finally, for a course with an emphasis on graphs and kernels we suggest Chapters 4, 5, 7 (Sections 1–3), 11–12, 13 (Sections 1–2), 16–17, and 20–22.

Acknowledgments

Initial drafts of this book have been used in several data mining courses. We received many valuable comments and corrections from both the faculty and students. Our thanks go to

- Muhammad Abulaish, Jamia Millia Islamia, India
- Mohammad Al Hasan, Indiana University Purdue University at Indianapolis
- Marcio Luiz Bunte de Carvalho, Universidade Federal de Minas Gerais, Brazil
- Loïc Cerf, Universidade Federal de Minas Gerais, Brazil
- Ayhan Demiriz, Sakarya University, Turkey
- Murat Dundar, Indiana University Purdue University at Indianapolis
- Jun Luke Huan, University of Kansas
- Ruoming Jin, Kent State University
- Latifur Khan, University of Texas, Dallas

Preface xi

- Pauli Miettinen, Max-Planck-Institut f
 ür Informatik, Germany
- Suat Ozdemir, Gazi University, Turkey
- Naren Ramakrishnan, Virginia Polytechnic and State University
- Leonardo Chaves Dutra da Rocha, Universidade Federal de São João del-Rei, Brazil
- Saeed Salem, North Dakota State University
- Ankur Teredesai, University of Washington, Tacoma
- Hannu Toivonen, University of Helsinki, Finland
- Adriano Alonso Veloso, Universidade Federal de Minas Gerais, Brazil
- Jason T.L. Wang, New Jersey Institute of Technology
- Jianyong Wang, Tsinghua University, China
- Jiong Yang, Case Western Reserve University
- Jieping Ye, Arizona State University

We would like to thank all the students enrolled in our data mining courses at RPI and UFMG, as well as the anonymous reviewers who provided technical comments on various chapters. We appreciate the collegial and supportive environment within the computer science departments at RPI and UFMG and at the Qatar Computing Research Institute. In addition, we thank NSF, CNPq, CAPES, FAPEMIG, Inweb – the National Institute of Science and Technology for the Web, and Brazil's Science without Borders program for their support. We thank Lauren Cowles, our editor at Cambridge University Press, for her guidance and patience in realizing this book.

Finally, on a more personal front, MJZ dedicates the book to his wife, Amina, for her love, patience and support over all these years, and to his children, Abrar and Afsah, and his parents. WMJ gratefully dedicates the book to his wife Patricia; to his children, Gabriel and Marina; and to his parents, Wagner and Marlene, for their love, encouragement, and inspiration.