Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по домашней работе №1

По дисциплине Компьютерные сети (семестр 6)

Студент:

Дениченко Александр Р3212

Практик:

Тропченко Андрей Александрович

Цель работы

Изучение методов физического и логического кодирования, используемых в цифровых сетях передачи данных.

1 Формирование сообщения

Исходное сообщение: Дениченко Александр Олегович

В шестнадцатеричном коде: C4 E5 ED E8 F7 E5 ED EA EE C0 EB E5 EA F1 E0 ED E4 F0 CE EB E5 E3 EE E2 E8 F7 $11101011\ 11100101\ 11101010\ 11110001\ 11110000\ 11101000\ 11101001\ 11110000\ 00100000\ 11001110\ 11101011\ 11100101\ 11100011$ 11101110 11100010 11101000 11110111

Длина сообщения: 28 байт (224 бит)

Пропускная способность канала связи: 100 Мбит/с

$\mathbf{2}$ Физическое кодирование исходного сообщения

Манчестерский код

Длительность битового интервала: $t_b=\frac{1}{C}=\frac{1}{100}=0.01$ Верхняя граница частот: $f_{up}=\frac{1}{t_b}=\frac{1}{0.01}=100$ МГц Нижняя граница частот: $f_{down}=\frac{C}{2}=\frac{1}{0.01}=50$ МГц Спектр сигнала: $S=f_{up}-f_{down}=0.5C=50$ МГц

Среднее значение частоты в спектре передаваемого сигнала: $f_{avg} = \frac{f_{up} \cdot 252 + f_{down} \cdot 196}{448} = \frac{100 \cdot 252 + 50 \cdot 196}{448} = 78.125 \ \mathrm{MГц}$ Среднее арифметическое: $f_{1/2} = \frac{100 + 50}{2} = 75 \ \mathrm{MГц}$ В спектре сигнала незначительно преобладают высокие частоты: $f_{avg} > f_{1/2}$

Ширина полосы пропускания: $F > 50 \mathrm{M}\Gamma\mathrm{ц}$

Уровень сигнала

Потенциальный код без возврата к нулю

Верхняя граница частот: $T=2t,\,t=\frac{1}{C},\,f_{up}=\frac{C}{2}=\frac{100}{2}=50$ МГц Максимальная подпоследовательность единиц - 6 и нулей - 6, тогда

нижняя граница частот: $f_{down}=\frac{C}{12}=8.33~\mathrm{M}\Gamma$ ц Спектр сигнала: $S=f_{up}-f_{down}=50-8.33=41.67~\mathrm{M}\Gamma$ ц Среднее значение частоты: $f_{avg}=\frac{(46\cdot f_0/1+14\cdot 2\cdot f_0/2+18\cdot 3\cdot f_0/3+12\cdot 4\cdot f_0/4+6\cdot 5\cdot f_0/5+3\cdot 6\cdot f_0/6)}{224}=22.1~\mathrm{M}\Gamma$ ц, где $f_0=\frac{C}{2}$ (частота основной гармоники)

Среднее арифметическое: $f_{1/2} = \frac{50 + 8.33}{2} = 29.165 \text{ M}$ Гц

В спектре сигнала незначительно преобладают низкие частоты: $f_{avq} < f_{1/2}$

Ширина полосы пропускания: $F > 41.67 \mathrm{M}\Gamma\mathrm{ц}$

Уровень сигнала

Биполярный импульсный код (код с возвратом к нулю)

Верхняя граница частот: $f_{up}=C=100~{
m M}\Gamma$ ц Нижняя граница частот: $f_{down}=\frac{C}{4}=25~{
m M}\Gamma$ ц

Спектр сигнала: $S = f_{up} - f_{down} = 100 - 25 = 75 \text{ M}$ Гц

Среднее значение частоты: $f_{avg}=\frac{(363\cdot f_0+17\cdot f_0/2.5)}{380}=97.31~\mathrm{M}\Gamma$ ц Среднее арифметическое: $f_{1/2}=\frac{100+25}{2}=62.5~\mathrm{M}\Gamma$ ц

В спектре сигнала преобладают высокие частоты: $f_{avq} > f_{1/2}$

Ширина полосы пропускания: $F > 75 \text{ M}\Gamma$ ц

Уровень сигнала

Биполярное кодирование с чередующейся инверсией

Верхняя граница частот: $f_{up}=\frac{C}{2}=50~{
m M}\Gamma$ ц Нижняя граница частот: $f_{down}=\frac{C}{12}=8.33~{
m M}\Gamma$ ц

Спектр сигнала: $S = f_{up} - f_{down} = 41.67 \text{ M}$ Гц

Среднее значение частоты: $f_{avg} = \frac{(160 \cdot f_0/1 + 16 \cdot f_0/2 + 21 \cdot f_0/3 + 15 \cdot f_0/5 + 12 \cdot f_0/6)}{224} = 40.17 \ \mathrm{M}\Gamma$ ц Среднее арифметическое: $f_{1/2} = \frac{50 + 8.33}{2} = 29.165 \ \mathrm{M}\Gamma$ ц В спектре сигнала преобладают высокие частоты: $f_{avg} > f_{1/2}$

Ширина полосы пропускания: $F > 41.67 \text{ M}\Gamma$ ц

Уровень сигнала

2.5 Сравнительный анализ

Таблица 1: Сравнительный анализ методов кодирования

Кодирование	Самосинхронизация	Пост. состав	Обнаружение ошибок	Стоимость	Спектр	Частоты
AMI (2.4)	-	+	+	3	41.67	Высокие
RZ (2.3)	+	-	+	3	75	Высокие
NRZ (2.2)	-	+	-	1	41.67	Низкие
M2 (2.1)	+	-	+	2	50	Высокие

2.6Выбор оптимального кодирования

Наилучшим методом кодирования в нашем случае является Манчестерский код, так как он обладает следующими преимуществами:

- Хорошая самосинхронизация.
- Отсутвие постоянной составляющей, отсюда и преобладание высоких частот.
- Относительно умеренная ширина полосы (50 МГц) по сравнению с RZ (75 МГц).
- Преобладают высокие частоты, что помогает увеличить качество передачи сигнала.
- Простота реализации и высокая надежность при передаче данных (обнаружение ошибок).
- 2 уровня сигнала.

Второй хороший метод для кодирования данного сообщения выбран - Биполярный импульсный код. Обладает широкой полосой пропускания (75) и высокой средней частотой (97.31), что делает его эффективным для скоростной передачи данных. Он также поддерживает обнаружение ошибок.

Логическое (избыточное) кодирование исходного сообщения 3

Результат кодирования:

 $11010010\ 10111000\ 101111110\ 011011111\ 100$ 100101110101111111110001011111100110111110010110111001110010100111101101011110111001011111110001011111100101101110101001111100111110111001101111110001010111011111101010011111011010111100111001011111110001011111100101011111001110011100101001111001001011110101111

Pезультат в 16cc: d2b8be6f92ebf8be6f96e729ed7b97e2f96ea79ee6f8aefa9ed7397e2f95e7394e4baf

Длина сообщения полученного при помощи 4В/5В: 35 байт (280 бит)

Избыточность: 0.25

AMI кодирование

Уровень сигнала

Верхняя граница частот: $f_{up} = \frac{C}{2} = 50 \ \mathrm{M}\Gamma\mathrm{ц}$ (не изменилась)

Нижняя граница частот: $f_{down} = \frac{f_{up}}{3} = 16.67 \text{ МГц (увеличилась)}$ Спектр сигнала: $S = f_{up} - f_{down} = 33.33 \text{ МГц (уменьшилось)}$

Среднее значение частоты: $f_{avg} = \frac{25 \cdot f_0 + 4 \cdot f_0 / 2 + 3 \cdot f_0 / 3}{32} = 43.75$ МГц (увеличилось) Среднее арифметическое: $f_{1/2} = \frac{50 + 16.66}{2} = 33.33$ МГц (увеличилось) В спектре сигнала преобладают высокие частоты: $f_{avg} > f_{1/2}$ (осталось)

Ширина полосы пропускания: F > 33.33 MГц (уменьшилось)

Скремблирование исходного сообщения

Исходное сообщение: 11000100 11100101 11101101 11101000

Выбран полином:

$$B_i = A_i \oplus B_{i-1} \oplus B_{i-3}$$

Произведём расчёты

i	A[i]	B[i-1]	B[i-3]	$B[i] = A[i] \oplus B[i-1] \oplus B[i-3]$
0	1	0	0	$1 \oplus 0 \oplus 0 = 1$
1	1	1	0	$1 \oplus 1 \oplus 0 = 0$
2	0	0	0	$0 \oplus 0 \oplus 0 = 0$
3	0	0	1	$0 \oplus 0 \oplus 1 = 1$
4	0	1	0	$0 \oplus 1 \oplus 0 = 1$
5	1	1	0	$1 \oplus 1 \oplus 0 = 0$
6	0	0	1	$0 \oplus 0 \oplus 1 = 1$
7	0	1	1	$0 \oplus 1 \oplus 1 = 0$
8	1	0	1	$0 \oplus 0 \oplus 0 = 1$
9	1	0	0	$1 \oplus 0 \oplus 0 = 1$
10	1	1	0	$1 \oplus 1 \oplus 0 = 0$
11	0	0	1	$0 \oplus 0 \oplus 1 = 1$
12	0	1	0	$1 \oplus 1 \oplus 1 = 0$
13	1	0	0	$1 \oplus 0 \oplus 0 = 1$
14	0	1	1	$0 \oplus 1 \oplus 1 = 0$
15	1	0	0	$1 \oplus 0 \oplus 0 = 1$
16	1	1	1	$1 \oplus 1 \oplus 1 = 1$
17	1	1	0	$1 \oplus 1 \oplus 0 = 0$
18	1	0	1	$1 \oplus 0 \oplus 1 = 0$
19	0	0	1	$0 \oplus 0 \oplus 1 = 1$
20	1	1	0	$1 \oplus 1 \oplus 0 = 0$
21	1	0	0	$1 \oplus 0 \oplus 0 = 1$
22	0	1	1	$0 \oplus 1 \oplus 1 = 0$
23	1	0	0	$1 \oplus 0 \oplus 0 = 1$
24	1	1	1	$1 \oplus 1 \oplus 1 = 1$
25	1	1	0	$1 \oplus 1 \oplus 0 = 0$
26	1	0	1	$1 \oplus 0 \oplus 1 = 0$
27	0	0	1	$0 \oplus 0 \oplus 1 = 1$
28	1	1	0	$1 \oplus 1 \oplus 0 = 0$
29	0	0	0	$0 \oplus 0 \oplus 0 = 0$
30	0	0	1	$0 \oplus 0 \oplus 1 = 1$
31	0	1	0	$0 \oplus 1 \oplus 0 = 1$

2сс код после кодирования: 10011010 11010101 10010101 10010011

16сс код после кодирования: 9аd59593

Длина сообщения не изменилась. Удалось добиться снижения наибольшего количества повторяющихся символов до 2.

AMI кодирование

Уровень сигнала

Верхняя граница частот: $f_{up} = \frac{C}{2} = 50 \text{ МГц}$ (не изменилась) Нижняя граница частот: $f_{down} = \frac{f_{up}}{2} = 25 \text{ МГц}$ (увеличилась) Спектр сигнала: $S = f_{up} - f_{down} = 25 \text{ МГц}$ (уменьшилось) Среднее значение частоты: $f_{avg} = \frac{24 \cdot f_0 + 8 \cdot f_0/2}{32} = 43.75 \text{ МГц}$ (увеличилось) Среднее арифметическое: $f_{1/2} = \frac{50 + 25}{2} = 37.5 \text{ МГц}$ (увеличилось) В спектре сигнала преобладают высокие частоты: $f_{avg} > f_{1/2}$ (осталось)

Ширина полосы пропускания: $F > 25 \ \mathrm{M}\Gamma$ ц (уменьшилось)

5 Сравнение и выводы

Таблица 2: Сравнительный анализ методов кодирования

Кодирование	Самосинхронизация	Пост. состав	Обнаружение ошибок	Стоимость	Спектр	Частоты
AMI (2.4)	-	+	+	3	41.67	Высокие
AMI (3)	-	+	+	3	33.33	Высокие
AMI (4)	-	+	+	3	25	Высокие
RZ (2.3)	+	-	+	3	75	Высокие
NRZ (2.2)	-	+	-	1	41.67	Низкие
M2 (2.1)	+	-	+	2	50	Высокие

Наилучшим способом кодирования всё же остаётся .биполярное кодирование с чередующейся инверсией. Избыточное кодирование и скремблирование позволяет разбить длинные цепочки нулей или единиц, что даёт более высокие нижние частоты и меньшую ширину спектра.