مدارهای منطقی

فصل دوم

گیت مای منطقی و مبر بول

سرفصل مطالب

- O معرفی گیتهای منطقی
- ٥ معرفي جبر بول و لصول موضوعه و لتعادهای آن
 - O منطق کامل

AND/NAND Gates

Α	В	A.B	A.B
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

OR/NOR Gates

Α	В	A+B	A+B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

XOR/XNOR Gates

Α	В	A⊕B	A⊕B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Buffer / NOT Gate

Α	Α	Ā
0	0	1
1	1	0

Boolean Algebra

- An algebra that deals with
 - binary variables (A, B, x, y, ...)
 - logic operations
 - AND (.)
 - o OR (+)
 - Complement (')
- A Boolean Function F is defined as:
 - $F(x_1, x_2, ..., x_n): \{0,1\}^n \to \{0,1\}$

χ	Ч	毛	Ŧ
D	D	O	D
D	D	1	1
D	1	D	D
D	1	1	D
1	D	D	1
1	D	1	1
1	1	D	1
1	1	1	1

نمودار منطقی (Logic diagram)

اتمادها و اصول موضوعه مهم در جبر بول

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x+y)'=x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Digital Design: Table 2.1 - Postulates and Theorems of Boolean Algebra.

کاربرد اتمادهای مبر بول

کاربرد

قانون دمرگان

NOR gate
$$(A + B)' = A' \cdot B'$$
Bubbled AND gate
$$(A + B)' = A' \cdot B'$$
Circuit Global

NAND gate

Bubbled OR gate

Circuit Globe

$$(A \cdot B)' = A' + B'$$

$$F = A \cdot (B' + C \cdot D)' + A' \cdot B$$

معادل است با:

$$F = A \cdot (B' + C \cdot D)' + A' \cdot B$$

معادل است با:

$$F = A'.B + B.C' + B.D'$$

تعمیم قانون دمرگان

$$(a_1 + a_2 + ... + a_n)' = a_1' \cdot a_2' \cdot ... \cdot a_n'$$

 $(a_1 \cdot a_2 \cdot ... \cdot a_n)' = a_1' + a_2' + ... + a_n'$

The complement of an expression F is obtained by interchanging AND & OR operations and complementing each individual variable

منطق كامل

- مجموعه کاملی از اعمال منطقی که میتوان هر تابع منطقی را با آنها
 سافت، منطق کامل مینامیم.
- O در درسهای آینده نشان نواهیم داد مجموعه {AND, OR, NOT} یک منطق کامل است.
- برای (ثبات لینکه یک مجموعه منطق کامل لست، کافی لست نشان دهیم تابع صفر (یا یک) و یک منطق کامل دیگر از روی آن قابل سافت لست.
 لست.

منطق كامل (مثالها)

- o {NOT, OR}
 - 1 = (a' + a)
 - $a \cdot b = (a' + b')'$
- o {NOT, AND}
 - 0 = (a' . a)
 - a + b = (a' . b')'
- - $0 = (a \downarrow a')$
 - a' = a ↓ a
 - $a + b = ((a + b)')' = (a \downarrow b) \downarrow (a \downarrow b)$
 - a.b = $(a' + b')' = ((a \downarrow a) \downarrow (b \downarrow b))$
- o {NAND} ?

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
AND	Х — F	F = XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	$X \longrightarrow F$	F = X + Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1
NOT (inverter)	х — F	$F = \overline{X}$	X F 0 1 1 0
NAND	х F	$F = \overline{X \cdot Y}$	X Y F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	х — F	$F = \overline{X + Y}$	X Y F 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive-OR (XOR)	$X \longrightarrow F$	$F = X\overline{Y} + \overline{X}Y$ $= X \oplus Y$	X Y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR (XNOR)	х ү — Б	$F = X\underline{Y} + \overline{X}\overline{Y}$ $= X \oplus Y$	X Y F 0 0 1 0 1 0 1 0 0 1 1 1

گیتهای منطقی متداول

