

CMOS-Free Magnetic Domain Wall Leaky Integrateand-Fire Neurons with Intrinsic Lateral Inhibition

Naimul Hassan, Wesley. H. Brigner, Xuan Hu, Otitoaleke G. Akinola, Christopher H. Bennett, Matthew. J. Marinella, Felipe Garcia-Sanchez, Jean Anne C. Incorvia, Joseph S. Friedman

Electrical and Computer Engineering, University of Texas at Dallas Electrical and Computer Engineering, University of Texas at Austin Sandia National Laboratories

Departamento de Fisica Aplicada, Universidad de Salamanca

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Automated Cognitive Reasoning

1 - 4

Brain
~ 20 W
~ 10⁻³ m³

<u>Cluster</u> > 10⁵ W > 1 m³

Credit: A. F. Vincent, IMS Bordeaux

- I. Background
- II. LIF Neurons
- III. Lateral Inhibition
- IV. Fabrication Analysis
- V. Conclusions

- I. Background
- II. LIF Neurons
- III. Lateral Inhibition
- IV. Fabrication Analysis
- V. Conclusions

Background: DW-MTJ Logic

J. A. C. Incorvia, S. Siddiqui, S. Dutta, E. R. Evarts, J. Zhang, D. Bono, C. A. Ross, M. A. Baldo, *Nature Communications*, 2016

Background: Leaky-Integrate & Fire Neuron

Background: Previous Neuron Proposals

A. Sengupta, Y. Shim, K. Roy, IEEE TBioCAS, 2016

A. Sengupta, S. H. Choday, Y. Kim, and K. Roy, *Applied physics letters*, 2015

- Requires external circuitry for leaking and firing
- Extra layer for inhibition

- I. Background
- II. LIF Neurons
- III. Lateral Inhibition
- IV. Fabrication Analysis
- V. Conclusions

Dipolar Coupling Field Neuron: Structure

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, *Journal of Applied Physics*, 2018

Dipolar Coupling Field: Leaking & Integrating

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, *Journal of Applied Physics*, 2018

Anisotropy Gradient Neuron: Structure

W. H. Brigner, X. Hu, N. Hassan, C. H. Bennett, J. A. C. Incorvia, F. Garcia-Sanchez, J. S. Friedman, *IEEE JxCDC*, 2019

Anisotropy Gradient: Leaking & Integrating

W. H. Brigner, X. Hu, N. Hassan, C. H. Bennett, J. A. C. Incorvia, F. Garcia-Sanchez, J. S. Friedman, IEEE JxCDC, 2019

Shape Gradient: Leaking

W. H. Brigner, N. Hassan, L. Jiang-Wei, X. Hu, D. Saha, C. H. Bennett, M. J. Marinella, J. A. C. Incorvia, F. Garcia-Sanchez, J. S. Friedman, IEEE Trans. Electron Devices 66:6, 2817-2821 (2019).

Shape Gradient: Leaking & Integrating

W. H. Brigner, N. Hassan, L. Jiang-Wei, X. Hu, D. Saha, C. H. Bennett, M. J. Marinella, J. A. C. Incorvia, F. Garcia-Sanchez, J. S. Friedman, *IEEE Trans. Electron Devices* **66**:6, 2817-2821 (2019).

- I. Background
- II. LIF Neurons
- III. Lateral Inhibition
- IV. Fabrication Analysis
- V. Conclusions

Lateral Inhibition

- DW tracks produce B-fields
 - Can therefore interact with nearby DW tracks
- Integration in one track produces effective leaking force in nearby tracks
 - More advanced integration results in larger effective leaking force

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, *Journal of Applied Physics*, 2018

Output Layer with Digit Recognition

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, Journal of Applied Physics, 2018

- I. Background
- II. LIF Neurons
- III. Lateral Inhibition
- IV. Fabrication Analysis
- V. Conclusions

Comparison of Fabrication Approaches

	Dipolar Field
Fabrication Approach	Additional ferromagnet provides dipolar coupling field
Pros	Simple fabrication of each layer
Cons	Requires additional material layers

- I. Background
- II. LIF Neurons
- III. Lateral Inhibition
- IV. Fabrication Analysis
- V. Conclusions

Conclusions

- Demonstrated first spintronic neuron capable of leaking and integrating without any external circuitry
- Intrinsic lateral inhibition capabilities allow for improved biomimicry
- Use of spintronics will significantly reduce power consumption
- New devices will markedly decrease area overhead, which will, in turn, decrease fabrication complexity

Thank You

Naimul Hassan

Joseph Friedman

1910800 1910997

Graduate Research Fellowship
Program (GRFP)
Award No. 1746053

Award No. 202001

Jean Anne Incorvia

Otitoaleke Akinola

Sandia National Laboratories

Christopher Bennett

Matthew Marinella

VNiVERSiDAD DSALAMANCA

Felipe Garcia-Sanchez

UTDALLAS