

INTEGRAÇÃO DE SISTEMAS OPERACIONAIS E BLOCKCHAIN

Participantes:

rafaelmelo@discente.ufg.br ferreiraguilherme@discente.ufg.br guilhermesilva@discente.ufg.br sergionatan@discente.ufg.br correiacorreia@discente.ufg.br

1. Resumo

Sistemas operacionais desempenham um papel fundamental na gestão de hardware e software em dispositivos computacionais. Eles fornecem interfaces e recursos que permitem a execução eficiente de aplicativos e a interação do usuário. A integração de sistemas operacionais com blockchain envolve a adaptação desses ambientes para incorporar funcionalidades específicas da tecnologia de contabilidade distribuída. Essa integração pode ser implementada de várias maneiras, desde a criação de sistemas operacionais dedicados para suportar nativamente transações baseadas em blockchain até a incorporação de módulos e APIs que facilitam a interação entre sistemas operacionais convencionais e redes blockchain.

2. Palayras-Chave

Sistema, blockchain, transações, criptografia, integrado.

3. Seção I. Introdução e revisão bibliográfica

Descrição do problema (em que contextos ele se aplica?) e proposta de solução. Incluir referências usadas na pesquisa (materiais online, posts, reels, artigos, blogs, vídeos, livros, etc.).

A integração de sistemas operacionais e blockchain tem potencial para revolucionar diversas indústrias, oferecendo soluções inovadoras e melhorando a eficiência, transparência e segurança em processos de negócios. Ou seja, o principal problema seria obter segurança e integridade nos processos de negócio, não somente para transações, mas podendo também ser aplicado em diversos setores e contextos.

Abaixo iremos falar sobre alguns desses cenários:

3.1. Supply Chain e Logística:

- Rastreabilidade de Produtos: Empresas podem integrar sistemas operacionais com blockchain para rastrear a jornada de produtos ao longo da cadeia de suprimentos. Isso permite uma visibilidade completa, reduzindo fraudes, minimizando atrasos e melhorando a autenticidade de produtos.
- Contratos Inteligentes na Logística: Contratos inteligentes podem automatizar acordos contratuais em toda a cadeia de fornecimento, facilitando pagamentos automáticos quando certas condições são atendidas, economizando tempo e reduzindo custos operacionais.

3.2. Saúde:

- Histórico Médico Eletrônico Seguro: A integração de sistemas operacionais e blockchain pode ser usada para criar registros médicos eletrônicos seguros e interoperáveis. Os pacientes teriam controle sobre quem pode acessar seus dados, melhorando a privacidade e a segurança.
- Rastreamento de Medicamentos: A rastreabilidade na cadeia de distribuição de medicamentos pode ser aprimorada, ajudando a evitar a distribuição de produtos falsificados e garantindo a autenticidade dos medicamentos.

3.3. Finanças e Pagamentos:

- Transferências Internacionais e Remessas: Sistemas operacionais integrados com blockchain podem facilitar transferências de dinheiro internacionais mais rápidas e eficientes, reduzindo custos e intermediários.
- Contratos Financeiros Descentralizados (DeFi): A integração permite a execução de contratos financeiros descentralizados, proporcionando acesso a serviços financeiros como empréstimos, seguros e trocas sem a necessidade de intermediários tradicionais.

3.4. Educação e Certificações:

- Verificação de Credenciais: Instituições educacionais podem usar blockchain para emitir certificados digitais e diplomas, garantindo a autenticidade dos registros acadêmicos.
- Micro Credenciais e Aprendizado Contínuo: A integração pode viabilizar sistemas que registram micro credenciais em blockchain, permitindo que os alunos compartilhem e validem suas conquistas em um formato seguro e imutável.

3.5. Gestão de Identidade:

- Autenticação e Identidade Digital: A integração de sistemas operacionais com blockchain pode criar soluções de identidade digital mais seguras, permitindo que os usuários controlem o acesso aos seus dados pessoais.
- Prevenção de Fraudes e Ataques Cibernéticos: Sistemas de segurança baseados em blockchain podem ser integrados aos sistemas operacionais para proteger contra ataques cibernéticos, fornecendo uma camada adicional de segurança.

3.6. Setor Público:

- Votação Eletrônica Segura: A integração pode viabilizar sistemas de votação eletrônica mais seguros e transparentes, garantindo a integridade do processo democrático.

- Gestão de Registros de Terra e Propriedade: A blockchain pode ser usada para registrar e gerenciar de forma transparente e eficiente registros de propriedade e transações imobiliárias.

A proposta de solução giraria em torno da utilização de algoritmos e técnicas associadas a tecnologia Blockchain, integrada a um sistema operacional, para propiciar as funções mostradas anteriormente, resolvendo problemas de um ramo específico de negócio ou produto a partir das propriedades relacionadas a rede Blockchain, que são: Transparência, Imutabilidade, Segurança Criptográfica, Descentralização, Contratos Inteligentes, Interoperabilidade, Rastreabilidade e Autenticidade.

Referências:

- 1. Blockchain at Microsoft
- 2. Integrating Blockchain with IoT: A Systematic Review
- 3. Medium Blockchain

4. Seção II. Fundamentos teóricos

Descrição dos principais mecanismos, técnicas, algoritmos com os quais se chegará numa possível solução ao problema.

Nesta seção, serão apresentados os fundamentos teóricos essenciais que sustentam a proposta de integração entre sistemas operacionais e blockchain, visando resolver desafios nos diversos setores mencionados na Seção I. Os principais mecanismos, técnicas e algoritmos são descritos abaixo:

4.1. Blockchain e Criptografia:

- Algoritmos de Consenso: A proposta se baseia na implementação de algoritmos de consenso robustos, como Proof of Work (PoW) ou Proof of Stake (PoS), garantindo a validade e imutabilidade das transações na blockchain.
- Assinaturas Digitais: Utilização de assinaturas digitais para assegurar a autenticidade das transações, reforçando a segurança da blockchain.

4.2. Segurança Criptográfica:

- Hash Functions: Incorporação de funções de hash para garantir a integridade dos dados na blockchain, promovendo confiabilidade nos registros.
- Criptografia de Chave Pública e Privada: Adoção de criptografia de chave pública e privada para garantir a segurança das transações e identidade dos participantes.

4.3. Interoperabilidade:

- Protocolos de Comunicação: Implementação de protocolos de comunicação que favorecem a interoperabilidade entre sistemas operacionais e blockchain, facilitando a troca eficiente de informações.

4.4. Rastreabilidade e Autenticidade:

- Uso de Identificadores Únicos: Introdução de identificadores únicos na blockchain para assegurar a rastreabilidade de produtos e autenticidade dos registros.

4.5. Gestão de Identidade:

- Self-Sovereign Identity (SSI): Incorporação de SSI para criar soluções de identidade digital seguras, permitindo que os usuários controlem o acesso aos seus dados pessoais.

4.6. Contratos Financeiros Descentralizados (DeFi):

- Protocolos DeFi: Implementação de protocolos DeFi para possibilitar a execução descentralizada de contratos financeiros, oferecendo serviços sem a necessidade de intermediários tradicionais.

4.8. Algoritmos para Prevenção de Fraudes e Ataques Cibernéticos:

- Consensus Fault Tolerance: Utilização de algoritmos que asseguram a tolerância a falhas no consenso da rede, fortalecendo a resistência contra ataques cibernéticos.

4.9. Integração com Internet das Coisas (IoT):

- Protocolos de Comunicação IoT-Blockchain: Caso aplicável, a proposta inclui a implementação de protocolos que facilitam a integração eficaz entre blockchain e IoT, ampliando as possibilidades de aplicação.

4.10 Transparência:

- Registro Transparente: Todas as transações são registradas de maneira transparente em blocos que estão disponíveis para todos os participantes da rede, proporcionando um nível de transparência.

4.11 Resiliência em Situações de Crise:

- Continuidade Operacional: A descentralização da blockchain contribui para a continuidade operacional, mesmo em situações de desastres ou interrupções.
- Recuperação Rápida: A redundância dos dados em vários nós da rede torna a recuperação mais rápida após falhas.