AL-Hausarbeit Aufgabe X

Gruppe: 0395694, 678901, 234567

WiSe 24/25

Aufgabe 1

Hausaufgabe 2

- (i) Äquivalente Formeln für $(Y \wedge Z)$ und $r_5\langle Y, Z \rangle$
 - Eine äquivalente Formel $\psi \in AL_{6,1,5}$ für $(Y \wedge Z)$ ist:

$$r_5\langle Y, Z, \top, \top, \bot \rangle$$

Diese Formel repräsentiert die Konjunktion, da r_5 die Modulo-Semantik nutzt, um zu garantieren, dass nur die Belegungen (1,1) wahr sind.

• Eine äquivalente Formel $\psi \in AL$ für $r_5\langle Y, Z \rangle \in AL_{6,1,5}$ ist:

$$(Y \lor Z) \land \neg (Y \land Z)$$

Diese Formel entspricht der Modulo-Definition von r_5 für die Semantik, in der der Rest 1 erfüllt sein muss.

(ii) Formeln χ_1 und χ_2 und ihre Äquivalenz

• Eine Formel $\chi_1 \in AL_{2,2,4} \setminus AL_{5,0,3}$ ist:

$$r_4\langle X,Y\rangle$$

Diese Formel ist in $AL_{2,2,4}$ definiert, da sie modulo 4 arbeitet, was in $AL_{5,0,3}$ nicht erlaubt ist.

• Eine Formel $\chi_2 \in AL_{5,0,3} \setminus AL_{2,2,4}$ ist:

$$r_3\langle X, Y, Z\rangle$$

Diese Formel ist in $AL_{5,0,3}$ definiert, da sie auf Modulo 3 basiert, was in $AL_{2,2,4}$ nicht zulässig ist.

• Die Äquivalenz kann durch die Semantik der jeweiligen Modulo-Operationen gezeigt werden: Beide Formeln bewirken eine spezifische Auswahl der Werte basierend auf der Restklassenarithmetik, jedoch in unterschiedlichen Systemen (Modulo 4 vs. Modulo 3).

(iii) Beweis, dass nicht jede Formel in AL äquivalent zu einer in $AL_{2,2,4}$ ist

Angenommen, es gäbe für jede Formel $\phi \in AL$ eine äquivalente Formel $\psi \in AL_{2,2,4}$. Nehmen wir eine Formel $\phi = r_5\langle X, Y \rangle$. Diese Formel nutzt Modulo 5, welches nicht in $AL_{2,2,4}$ unterstützt wird (nur Modulo 4 ist erlaubt). Da die Modulo-Arithmetik nicht äquivalent dargestellt werden kann, ist ϕ nicht durch eine Formel in $AL_{2,2,4}$ ausdrückbar.

(iv) Beweis durch strukturelle Induktion für $AL_{5.0.3}$

Wir zeigen, dass jede Formel $\phi \in AL$ äquivalent zu einer Formel in $AL_{5,0,3}$ ist, indem wir strukturelle Induktion auf die Syntax von AL anwenden.

Induktionsanfang: Für atomare Formeln $X \in AL$ ist X direkt in $AL_{5,0,3}$ enthalten.

Induktionsannahme: Sei $\phi_1, \phi_2 \in AL$ und seien sie äquivalent zu Formeln $\psi_1, \psi_2 \in AL_{5.0.3}$.

Induktionsschritt: Für zusammengesetzte Formeln gilt:

- $\neg \phi_1$: Da $\phi_1 \in AL_{5,0,3}$, ist auch $\neg \phi_1 \in AL_{5,0,3}$.
- $(\phi_1 \wedge \phi_2)$: Da $\phi_1, \phi_2 \in AL_{5,0,3}$, ist auch $(\phi_1 \wedge \phi_2) \in AL_{5,0,3}$.
- $r_3\langle\phi_1,\phi_2\rangle$: Diese Formel ist in $AL_{5,0,3}$ durch Definition der Modulo-Semantik enthalten.

Somit ist jede Formel in AL äquivalent zu einer Formel in $AL_{5.0.3}$.