## Chap 1 - Estimateurs et Intervalles de confiance

Jordy Palafox

September 28, 2023

## Statistiques Inférentielles

CY Tech - Ing 2 GSI 2023-2024



### Motivations

- On s'intéresse à la caractéristique d'une population modélisée par une variable X donc on connaît la loi (binomiale, exponentielle, gaussienne etc...)
- Cette loi dépend d'un paramètre :
  - ① p pour la loi binomiale,
  - $oldsymbol{2}$   $\lambda$  pour la loi de Poisson,
  - $\odot$   $\theta$  pour la loi exponentielle,
  - $oldsymbol{\Phi}$   $\mu$  et  $\sigma$  pour la loi normale,
    - **⑤** ...

#### Problème

Ce paramètre est **inconnu**, on va devoir l'évaluer, l'approcher, l'estimer à partir d'un échantillon de la population :

- soit par une valeur estimée (approché)  $\hat{\theta}$ , on parle d'estimation ponctuelle,
- soit on se donne un intervalle de valeurs dont on est "sûr" avec un certain niveau de confiance qu'il contient  $\theta$ , on parle d'intervalle de confiance .

### En résumé



### **Estimateurs**

#### Exemple

On s'intéresse au temps d'attente entre deux atterrissages sur un aéroport, modélisé par une variable aléatoire X qui suit une loi exponentielle :  $X \sim \mathcal{E}(\theta)$ .

On dispose des 9 observations suivantes :

| x <sub>1</sub> |   |     |     |     |     |     |     |     |
|----------------|---|-----|-----|-----|-----|-----|-----|-----|
| 0.4            | 1 | 0.5 | 0.3 | 0.1 | 0.2 | 1.4 | 0.2 | 0.5 |

Comment estimer  $\theta$  (qui est inconnu !) ?

### Estimateurs

#### Définition

Soit X une variable aléatoire et  $X_1, \ldots, X_n$  une échantillon i.i.d. de X (i.e  $\mathcal{L}_{X_i} \sim \mathcal{L}_{X}$ ).

- Une **statistique** T est une v.a. fonction de  $(X_1, ..., X_n)$  i.e  $T = T(X_1, ..., X_n)$  dont on observe une réalisation  $t = T(x_1, ..., x_n)$ .
- Une statistique utilisée pour estimer un paramètre  $\theta$  est appelée **estimateur**, notée souvent  $\hat{\theta}_n$ .

## Application à notre exemple

### Exemple suite

Une loi exponentielle  $\mathcal{E}(\theta)$  admet pour espérance et variance (théorique) :

$$\mathbb{E}(\mathsf{X}) = rac{1}{ heta}$$
 et  $\mathbb{V}\mathit{ar}(\mathsf{X}) = rac{1}{ heta^2}$ 

On peut donc estimer  $\theta$  de deux manières :

• soit par l'espérance empirique (estimateur de l'espérance)

$$\bar{X}_n = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$
, on a donc :

$$\frac{1}{9}(0.4 + 1 + 0.5 + 0.3 + 0.1 + 0.2 + 1.4 + 0.2 + 0.5) = 0.51111$$

• soit par la variance empirique (estimateur de la variance)

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 ce qui nous donne (avec  $R$ ) 0.181111.

Pourtant à la main on trouve 0.1609877!



## Application à notre exemple

### Exemple suite

- ullet On trouve  $ar{x}=0.511111$  , on trouve  $\hat{ heta}=rac{1}{ar{x}}\simeq 1.96$
- Avec la variance empirique, on trouve  $\hat{\theta} = \frac{1}{\bar{x}^2} \simeq 2.35$

### Questions

- Pourquoi la valeur de la variance est différente avec R du calcul à la main ?
- Quelle est la valeur de  $\hat{\theta}$  à retenir ?

On va évaluer la qualité des estimateurs !



## Qualité d'un estimateur

Soit  $\hat{\theta}$  un estimateur du paramètre  $\theta$ , notre objectif est de reduire l'erreur d'estimateur  $|\hat{\theta} - \theta|$ .

#### Définition

Le **biais** d'un estimateur  $\hat{\theta}$  du paramètre  $\theta$  est défini par :

$$b(\hat{\theta}) = \mathbb{E}(\hat{\theta} - \theta) = \mathbb{E}(\hat{\theta}) - \theta$$

Un estimateur est dit **sans biais** si  $b(\hat{\theta}) = 0$ , l'erreur moyenne est nulle i.e  $\mathbb{E}(\hat{\theta}) = \theta$ .

### Suite de l'exemple

L'estimateur de la variance  $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$  est biaisé, vérifiez-le!

On préfèrera la variance empirique non biaisée

$$v^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{n}{n-1} s^2$$
, qui est sur  $R$  (cf data explo!).



## Qualité d'un estimateur

#### Définition

Le **risque quadratique** d'un estimateur  $\hat{\theta}$  du paramètre  $\theta$  est défini par :

$$R(\hat{\theta}) = \mathbb{E}\left((\hat{\theta} - \theta)^2\right).$$

On l'appelle aussi **erreur quadratique moyenne** et on trouvera aussi la notation  $EQM(\hat{\theta})$ .

#### Décomposition biais-variance

$$R(\hat{\theta}) = \mathbb{V}ar(\hat{\theta}) + b(\hat{\theta})^2.$$



## Qualité d'un estimateur

Notion de convergence : a-t-on  $\lim_{n\to +\infty} \hat{\theta}_n = \theta$  ?

#### Définition

Un estimateur est dit **convergent** si  $\lim_{n\to+\infty} R(\hat{\theta}_n) = 0$ .

Il existe d'autres types de convergences : en probabilité ou presque-sûre qui découlent des lois des grands nombres, **gardez-les** à **l'esprit**!

### Comment choisir entre deux estimateurs?

- On garde celui sans biais,
- 2 Puis on garde celui qui a la plus petite variance!



## Exemple de comparaison d'estimateurs

### Application

On considère  $X \sim \mathcal{U}_{[0,\theta]}$  avec  $\theta > 0$  un paramètre inconnu et un échantillon de taille n de  $X: X_1, ..., X_n$ . Soit les trois estimateurs:

$$T_n = 2\bar{X}_n, \quad T'_n = \max(X_1, ..., X_n) \quad \text{et} \quad T''_n = \frac{n+1}{n} T'_n.$$

On rappelle que  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ .

- $oldsymbol{0}$  Rappeler l'espérance de X.
- ② Donner la fonction de répartition de T', sa densité, l'espérance et la variance.
- Calculer le biais des estimateurs, que se passe-t-il pour n grand ?
- Calculer le risque quadratique .
- **5** Conclure sur le meilleur estimateur de  $\theta$ .



## Estimateur d'une proportion

Dans le cas d'une **proportion**, on va distinguer une catégorie spécifique parmis la population étudiée. Soit on vérifie le critère soit non : "abimé ou non", "neuf ou non", "jeune ou non" ... C'est donc modélisé par une épreuve de Bernouilli :  $X \sim \mathcal{B}(p)$ . Ici p est le paramètre à estimer.

L'estimateur usuel d'une proportion est la fréquence empirique :

$$F_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- Biais :  $b(p) = \mathbb{E}(F_n) p = \mathbb{E}(\frac{1}{n} \sum_{i=1}^n X_i) p = \frac{1}{n} np p = 0.$ C'est un estimateur sans biais !
- Risque empirique :  $R(F_n) = \mathbb{V}ar(F_n) = \frac{\mathbb{V}ar(X)}{n} = \frac{p(1-p)}{n}$  qui tend vers 0 en  $n\infty$ , donc **convergent**.



## Estimateur d'une moyenne

On a déjà fait le travail ! Résumons : Soit X une variable aléatoire de variance  $\sigma^2$  avec  $\mathbb{E}(X)=\mu$  le paramètre à estimer.

L'estimateur de l'espérance est la moyenne empirique :

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- Biais :  $b(\mu) = \mathbb{E}(\bar{X}_n) \mu = \mathbb{E}(\frac{1}{n}\sum_{i=1}^n X_i) \mu = 0$ . C'est un estimateur sans biais !
- Risque quadratique :  $R(\bar{X}_n) = \mathbb{V}ar(\bar{X}_n) = \frac{\sigma^2}{n}$  qui est aussi convergent.



### Estimateur d'une variance

Soit X une variable aléatoire telle que  $\mathbb{V}ar(X) = \sigma^2$  est le paramètre à estimer.

• L'estimateur usuel de la variance est la variance empirique

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - (\bar{X}_{n})^{2}.$$

qui est **biaisé** :  $b(S^2) = \frac{-1}{n+1}\sigma^2$ .

 On utilisera souvent la variance empirique corrigée, qui est sans biais :

$$S^{*2} = \frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Les deux estimateurs **convergent presque sûrement** mais en moyenne quadratique seulement **dans le cas gaussien**.



### Passons aux intervalles de confiance

#### Motivation

On vient de voir comment déterminer une valeur explicite et approchée  $\hat{\theta}$  du paramètre  $\theta$  d'une loi permettant de modéliser un phénomène.

Plutôt que de déterminer une seule valeur  $\hat{\theta}$  on va chercher un ensemble de valeur (intervalle de confiance) dont on est presque sûr (niveau de confiance) qu'il contient la valeur théorique !



**Intérêt**: l'intervalle de confiance permet de quantifier la probabilité d'erreur dans le choix de l'estimateur.

### Plus concrètement ...

- **1** On a un paramètre (théorique)  $\theta$  d'une loi à estimer.
- ② On va se fixer un **risque** noté  $\alpha$  qui nous dit : "mon intervalle a 95% de chance de contenir le paramètre".
- **3** On va chercher donc les extrémités A et B d'un intervalle tel que  $\mathbb{P}(\theta \in [A,B]) = 1 \alpha$ .

#### Vocabulaire:

- $\alpha$  désigne le **risque**,
- $1 \alpha$  désigne le **niveau de confiance**.



## Procédure générale

### En pratique

- On choisit un estimateur  $\hat{\theta}$  de  $\theta$  et on va construire un intervalle **symétrique** en  $\hat{\theta}$  i.e  $A = \hat{\theta} \ell$  et  $B = \hat{\theta} + \ell$ .
- On se fixe un niveau de risque  $\alpha$  (en général 1, 2.5, 5%)
- On a donc :

$$\mathbb{P}(\hat{\theta} - \ell \le \theta \le \hat{\theta} + \ell) = \mathbb{P}(\theta - \ell \le \hat{\theta} \le \theta + \ell)$$
$$= 1 - \alpha.$$

• On détermine alors  $\ell$  grâce à la table de la loi de l'estimateur  $\hat{\theta}$ .

### Les cas rencontrés



IDC d'une proportion

X suit une loi de Bernouilli et n grand (n>30)

IDC d'une moyenne

Variance connue : X est gaussien ou n grand

#### Variance inconnue :

- X gaussien et n petit (<= 30)
- X non gaussien et n assez grand (>30)

IDC d'une variance

Moyenne connue

Moyenne inconnue

## IDC d'une proportion p

Supposons que  $X \sim \mathcal{B}(p)$  et que l'échantillon est suffisament grand i.e n > 30. On va utiliser l'estimateur empirique de la fréquence  $F_n = \frac{1}{n} \sum_{i=1}^n X_i$  pour approcher p:

#### Procédure

- ① On commence par remarquer que comme n>30, on peut utiliser le TCL :  $Z=\frac{\bar{X}-\mu}{\sigma}\sqrt{n}=\frac{F_n-p}{\sqrt{p(1-p)}}\sqrt{n}\sim\mathcal{N}(0,1).$
- ② On se fixe un risque  $\alpha$  tel que  $\mathbb{P}(-t_{\alpha} \leq Z \leq t_{\alpha}) = 1 \alpha$
- 3 Il suffit de lire le quantile  $t_{\alpha}$  associé à la probabilité  $1-\alpha$  dans la table de la loi  $\mathcal{N}(0,1)$ .
- **1** Bien remarquer que on a un IDC sur Z, il faut donc isoler p:

$$1 - \alpha = \mathbb{P}(-t_{\alpha} \le Z \le t_{\alpha})$$

$$= \mathbb{P}\left(-t_{\alpha} \le \frac{F_{n} - p}{\sqrt{p(1-p)}}\sqrt{p} \le t_{\alpha}\right)$$



## IDC pour une proportion

#### Procédure

4

$$= \mathbb{P}\left(F_n - t_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}} \le p \le F_n + t_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

On obtient l'IDC :

$$[A,B] = \left[F_n - t_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}}, F_n + t_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right]$$

• On remarque que l'IDC de p dépend de p lui-même, on va donc estimer  $F_n$  sur l'échantillon et on remplace par la valeur estimée  $f_n$  dans l'IDC :

$$[a,b] = \left[ f_n - t_\alpha \frac{\sqrt{f_n(1-f_n)}}{\sqrt{n}}, f_n + t_\alpha \frac{\sqrt{f_n(1-f_n)}}{\sqrt{n}} \right]$$



## Exercice d'application

#### Enoncé

On dispose d'un échantillon de 503 pommes mais 47 sont abîmées. Déterminer un intervalle de confiance de la porportion de pommes aîmées sur l'ensemble du verger.



### Correction

- ① On considère  $X \sim \mathcal{B}(p)$  où X modélise : la pomme est-elle abimée ou non. De plus l'échantillon est assez grand (503 > 30) donc on est dans les hypothèses de la procédure.
- ② On va commencer par calculer le proportion de pommes abîmées observée  $f_n = \frac{47}{503} \simeq 0.09343936 = 9.343936\%$ .
- **3** Fixons nous un risque  $\alpha = 5\%$ . Ainsi le quantile  $t_{\alpha} = 1.96$  d'après la table de la loi  $\mathcal{N}(0,1)$ .
- Alors l'IDC de p est :

$$[a, b] = [6.800412\%, 11.88746\%]$$

#### Conclusion

La proportion de pommes abîmées dans le verger est donc est 6.8% et 11.88% avec un risque d'erreur de 5% (ou une confiance de 95%)



## IDC pour une moyenne, variance $\sigma^2$ connue

X suit une loi gaussienne  $\mathcal{N}(\mu,\sigma^2)$  ou n grand (n>30)

On utilise l'estimateur  $\bar{X}_n$  estimateur de  $\mu$  et  $\sigma^2$  est connue (on a une valeur explicite).

#### Procédure

- On considère  $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$  ou de manière équivalente  $\frac{\overline{X_n} \mu}{\sigma} \sqrt{n} \sim \mathcal{N}(0,1) \text{ (Démontrer le)}$
- ② Il suffit de lire sur la table de  $\mathcal{N}(0,1)$  le quantile  $t_{\alpha}$  tel que  $\mathbb{P}(-t_{\alpha} \leq Z \leq t_{\alpha}) = 1 \alpha$ .
- 3 On a ainsi:

$$1 - \alpha = \mathbb{P}(-t_{\alpha} \le Z \le t_{\alpha})$$
$$= \mathbb{P}\left(-t_{\alpha} \le \frac{\overline{X_n} - \mu}{\sigma} \sqrt{n} \le t_{\alpha}\right)$$



# IDC pour une moyenne, variance $\sigma^2$ connue

#### Procédure

Ainsi:

$$1 - \alpha = \mathbb{P}\left(\overline{X_n} - t_\alpha \frac{\sigma}{\sqrt{n}} \le \mu \le + t_\alpha \frac{\sigma}{\sqrt{n}}\right)$$

On obtient finalement l'IDC :

$$[a,b] = \left[\bar{x}_n - t_\alpha \frac{\sigma}{\sqrt{n}}, \bar{x}_n + t_\alpha \frac{\sigma}{\sqrt{n}}\right]$$

## Exercice d'application

#### Exercice

Une sociète fabrique des câbles d'acier dont on souhaite étudier la résistance moyenne de rupture. Au vue de l'utilisation des câbles, la résistance doit avoir un écart-type  $\sigma=25{\rm kg}$ .

On dispose d'un échantillon de 100 câbles sur lequel on observe une résistance moyenne  $\bar{x}$  de 2630 kg.

Déterminons un intervalle de confiance de la résistance moyenne de rupture  $\mu$  avec un risque 2.5%.

## Correction

- ① L'échantillon est assez grand (n>30). On considère donc  $\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$  donc  $\frac{\overline{X_n} \mu}{\sigma} \sqrt{n} \sim \mathcal{N}(0, 1)$ .
- **2** On cherche  $t_{\alpha}$  tel que :

$$0.975 = \mathbb{P}(-t_{\alpha} \le Z \le t_{\alpha})$$
$$= F_{Z}(t_{\alpha}) - F_{Z}(-t_{\alpha})$$
$$= 2F_{Z}(t_{\alpha}) - 1.$$

D'où  $F_Z(t_\alpha)=0.9875$  et par la table  $\mathcal{N}(0,1)$  on a  $t_\alpha=2.241403$ .

On peut maintenant déterminer l'IDC.



## IDC pour une moyenne, variance $\sigma^2$ inconnue, n petit

$$X$$
 suit une loi gaussienne  $\mathcal{N}(\mu,\sigma^2)$  et  $n$  petit  $(n\leq 30)$ 

On a toujours  $\frac{1}{n}\sum_{i=1}^{n}X_{i}$  estimateur de  $\mu=\mathbb{E}(X)$  et  $\sigma^{2}=\mathbb{V}ar(X)$ .

### Procédure (c'est toujours la même chose)

- On utilise  $S^{*2}$  (la variance empirique non biaisée) au lieu de  $\sigma^2$  (inconnue !),
- ② On pose  $Y = \frac{X_n \mu}{S^*} \sqrt{n}$  telle que  $Y \sim \mathcal{T}_{n-1}$  loi de Student à n-1 degré de liberté.
- $lacksquare{1}{3}$  La table de  $\mathcal{T}_{n-1}$  donne  $t_{lpha}$  tel que  $\mathbb{P}(-t_{lpha} \leq Y \leq t_{lpha}) = 1 lpha$ ,
- $\ensuremath{\bullet}$  En transformant l'expression de sorte à encadrer  $\mu$  on obtient l'IDC :

$$[a,b] = \left[\bar{x}_n - t \frac{s^*}{\sqrt{n}}, \ \bar{x}_n + t \frac{x^*}{\sqrt{n}}\right]$$



# IDC pour une moyenne, variance $\sigma^2$ inconnue, n grand

$$X$$
 est non gaussien et  $n$  assez grand ( $n > 30$ )

On a encore et toujours  $\frac{1}{n}\sum_{i=1}^{n}X_{i}$  estimateur de  $\mu=\mathbb{E}(X)$  et  $\sigma^{2}=\mathbb{V}ar(X)$ .

### Procédure (c'est toujours la même chose)

- On utilise  $S^{*2}$  (la variance empirique non biaisée) au lieu de  $\sigma^2$  (inconnue !),
- ② On pose  $Y = \frac{\overline{X_n} \mu}{S^*} \sqrt{n}$  telle que  $Y \sim \mathcal{N}(0,1)$  .
- **3** La table de  $\mathcal{N}(0,1)$  donne  $t_{\alpha}$  tel que  $\mathbb{P}(-t_{\alpha} \leq Y \leq t_{\alpha}) = 1 \alpha$ ,
- $\ensuremath{\bullet}$  En transformant l'expression de sorte à encadrer  $\mu$  on obtient l'IDC :

$$[a,b] = \left[\bar{x}_n - t \frac{s^*}{\sqrt{n}}, \ \bar{x}_n + t \frac{x^*}{\sqrt{n}}\right]$$



## IDC pour une variance, $\mu$ connue ou inconnue

$$X$$
 suit une loi  $\mathcal{N}(\mu, \sigma^2)$ 

### Espérance $\mu$ connue

- **1** On utilise l'estimateur  $\mathbb{V}ar_1 = \frac{1}{n}\sum_{i=1}^n (X_i \mu)^2$ .

### Espérance $\mu$ inconnue

- ① On utilise l'estimateur  $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X_n})^2$  ou  $S^{*2} = \frac{n}{n-1} S^2$
- ② On a  $n \frac{S^2}{\sigma^2} = (n-1) \frac{S^{*2}}{\sigma^2} \sim \chi_{n-1}^2$ .

Dans les deux cas, c'est la lecture de la table bien choisie qui donne les valeurs de  $t_{\alpha}$  et donc de définir l'IDC.



## **Application**

#### Exercice

On s'intéresse à la taille des étudiants de CY Tech, sur le campus palois. Mais on ne connait ni l'espérance théorique ni la variance, seulement que la taille X suit une loi gaussienne ! Un échantillon de 25 personnes parmis les ING2 GSI donne les mesures suivantes :

$$\bar{x} = 177.1$$
cm et  $s^* = 3.8$ 

Donner un IDC à 95% de confiance de la variance  $\sigma^2$ .

## Correction

- ① D'après ce qu'il précède,  $(n-1)\frac{S^{*2}}{\sigma^2} \sim \chi^2_{n-1}$  donc  $Y = 24\frac{S^{*2}}{\sigma^2} \sim \chi^2_{24}$ .
- ② D'après la table de la loi  $\chi^2_{24}$  on a  $t_1=12.4$  tel que  $0.025=\mathbb{P}(Y\leq t_1)$ ,
- **3** La même table donne  $t_2 = 39.36$  tel que  $0.975 = \mathbb{P}(Y \le t_2)$ .
- **•** On en déduit  $0.95 = \mathbb{P}(12.4 \le Y \le 39.36)$ .
- **③** Après quelques étapes on obtient finalement  $0.95 = \mathbb{P}(8.8 \le \sigma^2 \le 27.9)$ . Autrement dit l'IDC est [8.8, 27.9].

## Mais pourquoi ?



D'où viennent toutes ces lois et les choix de n ou n-1 ? Ces choix de lois découlent du **théorème de Cochran** 

## Enoncé du théorème de Cochran et conséquences

#### Théorème de Cochran

Soit  $X=(X_1,...,X_n)^t$  un vecteur gaussien centré réduit. POur F un sous-espace vectoriel de  $\mathbb{R}^n$  de dimension p, on note  $P_F$  (resp  $P_{F^{\perp}}$ ) la projection orthogonale sur F (resp  $F^{\perp}$ ).

Alors les vecteurs  $P_FX$  et  $P_{F^{\perp}}X$  sont gaussiens, indépendants, de lois :

$$P_F X \sim \mathcal{N}(0, P_F)$$
 et  $P_{F^{\perp}} X \sim \mathcal{N}(0, P_{F^{\perp}})$ .

De plus, les variables  $||P_FX||^2$  et  $||P_{F^{\perp}}X||^2$  sont gaussiens, indépendants, de lois :

$$\|P_FX\|^2 \sim \chi_p^2$$
 et  $\|P_{F^\perp}X\| \sim \chi_{n-p}^2$ .

#### Corollaire de Cochran

On a : 
$$\overline{X_n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$
,  $(n-1)\frac{S^2}{\sigma^2} \sim \chi^2_{n-1}$  et  $\sqrt{n}\frac{\overline{X_n} - \mu}{\sigma} \sim \mathcal{T}_{n-1}$ .



### Commentaires

- Le corollaire de Cochran se démontre en utilisant des manipulations proches de celles réalisées en data explo! Voir https://perso.univ-rennes1.fr/jean-christophe. breton/agreg/AGREG/COURS/cochran.pdf
- Cela explique à la fois le choix des lois et les degrés de liberté.
- Non, ce n'est pas à connaître, c'est pour votre culture.

#### A retenir

Si on remplace une valeur théorique par sa valeur estimée sur l'échantillon, on perd un degré de liberté par valeur.