## **Motivation and Introduction**

Main purpose of this course is to study Galois theory — a field that arose in trying to study roots of polynomials.

Consider  $f(x) = ax^2 + bx + c$ . If we want to find a general, closed-form expression for the roots of the function, we complete the square.

$$roots = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

We found these roots by by the coefficients,  $\mathbb{Q}$ , addition, subtraction, multiplication, division, and square root (raising to the 1/2 power: see Math 310 notes, Page 104). Naturally, this leads us to ask whether we can do this for cubic polynomials with the same operations. Obviously, we have to change from 1/2 power to the 1/3 power, but Cardano showed that it was possible to solve a cubic and quartic equation using these traditional operations and radicals.

Évariste Galois invented his theory to prove there is no such closed formula by radicals for any polynomial of degree 5 or above.

For example,  $x^5 - x + 1$  does not have roots given by radicals.

### **Example: A Solvable Polynomial**

Consider the polynomial  $f(x) = x^2 - 2$ . We know that the roots of this polynomial are  $\pm \sqrt{2}$ . From this, we want to create a set K(f) that satisfies the following rules:

- $\mathbb{Q} \subseteq K(f)$ .
- K(f) must contain the roots of f.
- K(f) must be closed under the traditional operations:  $+, -, \times, /$
- K(f) must be the smallest field that satisfies the above three requirements.

Claim:  $K(f) = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$ 

- $\mathbb{Q} \subseteq K(f)$ , because we can set b = 0.
- $\sqrt{2} = 0 + (1)(\sqrt{2}), -\sqrt{2} = 0 + (-1)(\sqrt{2})$
- Let  $a + b\sqrt{2}$  and  $c + d\sqrt{2}$  be elements of K(f). Then,

$$-(a+b\sqrt{2})\pm(c+d\sqrt{2})=(a\pm c)+(b\pm d)\sqrt{2}$$

$$-(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}$$

- Set 
$$c + d\sqrt{2} \neq 0$$

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{(a+b\sqrt{2})(c-d\sqrt{2})}{c^2-2d^2}$$
$$= \frac{1}{c^2-2d^2} \left( (ac-2bd) + (bc-ad)\sqrt{2} \right)$$
$$= \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2}$$

- K(f) is indeed the smallest set.
  - Note that K(f) is a  $\mathbb{Q}$ -vector space, with basis  $\{1, \sqrt{2}\}$ . Therefore,  $\dim_{\mathbb{Q}} K(f) = 2$ . K(f) is known as the "splitting field" of f.

We want to consider a bijective function  $\varphi: K(f) \to K(f)$  with the following properties:

- $\varphi(r) = r$  for every  $r \in \mathbb{Q}$
- $\varphi(x + y) = \varphi(x) + \varphi(y)$
- $\varphi(xy) = \varphi(x)\varphi(y)$

We denote the collection of all such  $\varphi$  as  $\operatorname{Aut}(K(f)/\mathbb{Q})$ . This is a group under the operation  $\circ$  (composition). Specifically, we have

$$\varphi(a + b\sqrt{2}) = \varphi(a) + \varphi(b)\varphi(\sqrt{2})$$
$$= a + b\varphi(\sqrt{2}).$$

Notice

$$\left(\varphi(\sqrt{2})\right)^2 - 2 = \varphi\left(\left(\sqrt{2}\right)^2 - 2\right)$$
$$= \varphi(0)$$
$$= 0$$

Therefore,  $\varphi(\sqrt{2}) = \pm \sqrt{2}$ . Therefore, we have that the elements of Aut $(K(f)/\mathbb{Q})$  as the following:

$$\varphi_0: a + b\sqrt{2} \mapsto a + b\sqrt{2}$$

$$\varphi_1: a + b\sqrt{2} \mapsto a - b\sqrt{2}$$

$$\varphi_1 \circ \varphi_1 = \varphi_0$$

Thus,

$$Aut(K(f)/\mathbb{Q}) = \{\varphi_0, \varphi_1\}$$
$$\cong \mathbb{Z}/2\mathbb{Z}$$

#### **Example: A Harder Polynomial**

Let  $f(x) = (x^2 - 2)(x^2 - 3)$ . Our roots are  $\{\pm\sqrt{2}, \pm\sqrt{3}\}$ . We want to form K(f) with the same properties. Let

$$K(f) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$= \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}.$$

Just as with our previous example, K(f) is a vector space over  $\mathbb{Q}$ , with basis  $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ , so  $\dim_{\mathbb{Q}} K(f) = 4$ .

Now, we want  $\operatorname{Aut}(K(f)/\mathbb{Q})$ . If  $\varphi \in \operatorname{Aut}(K(f)/\mathbb{Q})$ , then

$$\varphi(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a+b\varphi(\sqrt{2})+c\varphi(\sqrt{3})+d\varphi(\sqrt{6})$$
$$= a+b\varphi(\sqrt{2})+c\varphi(\sqrt{3})+d\varphi(\sqrt{2})\varphi(\sqrt{3}).$$

Thus, we need to know  $\varphi(\sqrt{2})$  and  $\varphi(\sqrt{3})$ . So,

$$f(\varphi(\sqrt{2})) = \left(\left(\varphi(\sqrt{2})\right)^2 - 2\right) \left(\left(\varphi(\sqrt{2})\right)^2 - 3\right)$$

and the same is the case with  $\varphi(\sqrt{3})$ . So,

$$\varphi(\sqrt{2}) \in \{\pm\sqrt{2}, \pm\sqrt{3}\}$$

$$\varphi(\sqrt{3}) \in \{\pm\sqrt{2}, \pm\sqrt{3}\}.$$

Suppose  $\varphi(\sqrt{2}) = \sqrt{3}$ . Then,

$$\left(\left(\varphi(\sqrt{2})\right)^2\right) = (\sqrt{3}^2 - 1)$$

$$= 0$$

$$= (\varphi(2) - 3)$$

$$= -1. \perp$$

Thus,

$$\varphi(\sqrt{2}) \in \{\pm\sqrt{2}\}\$$
  
 $\varphi(\sqrt{3}) \in \{\pm\sqrt{3}\},$ 

and we have the maps as:

$$\begin{aligned} & \varphi_0 : \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \\ & \varphi_1 : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \\ & \varphi_2 : \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \\ & \varphi_3 : \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \end{aligned}$$

### **Example: A Cubic Polynomial**

Consider the function  $f(x) = x^3 - 2$ . The function has one real root,  $r_1 = \sqrt[3]{2}$ , and two complex roots. Let's examine  $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ ;  $r_2$  and  $r_3$  are not in  $Q(\sqrt[3]{2})$ . We could instead consider  $\mathbb{Q}(\sqrt[3]{2}, r_1, r_2)$ .

$$x^{3} - 2 = (x - r_{1})(x^{2} + r_{1}x + r_{1}^{2})$$

$$r_{2} = \frac{-r_{1} + \sqrt{r_{1}^{2} - 4r_{1}^{2}}}{2}$$

$$= r_{1} \frac{-1 + \sqrt{-3}}{2}$$

$$= r_{1}\zeta_{3}$$

$$r_{3} = r_{1} \frac{-1 - \sqrt{-3}}{2}$$

$$= r_{1}\zeta_{3}^{2}$$

However, including  $r_2$  and  $r_3$  is excessive — all we need is  $\mathbb{Q}(\sqrt[3]{2},\zeta_3)$ . Therefore, the basis of this vector space is  $\{1,r_1,r_1^2,\zeta_3,\zeta_3r_1,\zeta_3r_1^2\}$  (note that  $\zeta_3^2=-1-\zeta_3$ ). Therefore,  $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2},\zeta_3)=6$ , and  $\mathbb{Q}(\sqrt[3]{2},\zeta_3)=K(f)$ . Additionally, we have  $\mathrm{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})=\{\varphi_0\}$ , but  $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2})=3$ . For the full field extension, we need to find  $\varphi(\sqrt[3]{2})$  and  $\varphi(\zeta_3)$ .

$$\varphi(\sqrt[3]{2}) \in \{r_1, \zeta_3 r_1, \zeta_3^2 r_1\} 
\varphi(\zeta) \in \{\zeta_3, \zeta_3^2\} 
\varphi_0 : r_1 \mapsto r_1, \zeta_3 \mapsto \zeta_3 
\varphi_1 : r_1 \mapsto \zeta_3 r_1, \zeta_3 \mapsto \zeta_3 
\varphi_2 : r_1 \mapsto r_1, \zeta_3 \mapsto \zeta_3^2 
\varphi_3 : r_1 \mapsto \zeta_3^2 r_1, \zeta_3 \mapsto \zeta_3^2 
\varphi_4 : r_1 \mapsto \zeta_3 r_1, \zeta_3 \mapsto \zeta_3^2 
\varphi_5 : r_1 \mapsto \zeta_3^2 r_1, \zeta_3 \mapsto \zeta_3^2$$

Therefore.

$$\begin{aligned} \mathsf{Aut}(\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}) &= 6 \\ &= \dim_{\mathbb{Q}} \mathbb{Q}(\sqrt[3]{3},\sqrt[3]{2}) \end{aligned}$$

# Rings

Consider the integers under the normal operations,  $(\mathbb{Z}, +, \cdot)$ ; this will serve as the motivation for rings in the future.

### **Definition of a Ring**

Let R be a nonempty set with operations  $(+,\cdot)$ , with the following properties:

- (1) (R, +) is an abelian group:
  - Closed:  $r_1 + r_2 \in R$ ,  $\forall r_1, r_2 \in R$
  - Identity:  $\exists 0_R$ ,  $r + 0_R = 0_R + r = r$
  - Associativity:  $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$
  - Inverse:  $\forall r \in R, \exists -r \in R, r + (-r) = 0_R$
  - Commutativity:  $r_1 + r_2 = r_2 + r_1$
- (2) Closure under Multiplication:  $r_1 \cdot r_2 \in R$ ,  $\forall r_1, r_2 \in R$
- (3) Associativity under Multiplication:  $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$
- (4) Distributivity:  $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_2 \cdot r_3$ ,  $(r_1 + r_2) \cdot r_3 = r_1 \cdot r_3 + r_2 \cdot r_3$

We say  $(R, +, \cdot)$  is a ring if it satisfies all these properties.

If  $\exists 1_R \in R$  such that  $r \cdot 1_R = 1_R \cdot r = r$ , then we say R is a ring with identity, and  $1_R$  is the multiplicative identity. If multiplication is commutative, then R is known as a commutative ring.

#### **Examples**

- (1)  $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$  are commutative rings with identity value of 1.
- (2)  $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$  is a commutative ring with identity  $1_R = [1]_n$ .
- (3)  $(\mathbb{R}[x], +, \cdot)$ , where  $\mathbb{R}[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{R} \right\}$ , is a commutative ring with identity.
- (4)  $(2\mathbb{Z}, +, \cdot)$  is a commutative ring *without* identity.
- (5)  $(\operatorname{Mat}_n(\mathbb{R}), +, \cdot)$ , where  $\operatorname{Mat}_n(\mathbb{R})$  refers to  $n \times n$  matrices with real entries, is a *non*commutative ring with identity.

# **Division Rings and Fields**

Let R be a ring with identity. We say R is a division ring if  $\forall r \in R \setminus \{0_R\}$ ,  $\exists r^{-1} \in R$  with  $r \cdot r^{-1} = 1_R = r^{-1} \cdot r$ . If R is also commutative, then R is a field.

#### **Examples**

- (1)  $(\mathbb{Q}, +, \cdot)$ ,  $(\mathbb{R}, +, \cdot)$ , and  $(\mathbb{C}, +, \cdot)$  are all fields.
- (2) Let p be prime, and set  $F = \mathbb{Z}/p\mathbb{Z}$ . Then, F is a field; we denote this  $\mathbb{F}_p$ .
- (3) Define

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik\}.$$

Then,  $\mathbb H$  is a division ring, known as the Hamiltonian quaternions. Note that  $\mathbb C\subset\mathbb H$ .

### **Properties of Rings**

**Proposition 4.1:** Let *R* be a ring.

- (1)  $0_R a = a0_r = 0 \ \forall a \in R$
- (2)  $(-a)b = a(-b) = -(ab) \ \forall a, b \in R$
- (3)  $(-a)(-b) = ab \ \forall a, b \in R$
- (4) If  $\exists 1_R \in R$ , then  $1_R$  is unique, and  $-a = (-1_R)a$ .

**Proof of (1):** Let  $a \in R$ . Then,

$$0_R a = (0_R + 0_R)a$$
 Additive Inverse  $0_R a = 0_R a + 0_R a$  Distributivity  $0_R a + (-0_R a) = 0_R a + 0_R a(-0_R a)$  Additive Inverse  $0_R a = 0_R a$ .

**Proof of (2):** Let  $a, b \in R$ . Note that -(ab) is the unique inverse such that  $ab + (-(ab)) = 0_R$  via group theory. We have

$$ab + (-a)b = (a + (-a))b$$
 Distributivity  
=  $(0_R)b$  Additive Inverse  
=  $0_R$ . By Property (1)

Thus, (-a)b = -(ab).

## Zero Divisor and Units in Rings

Let  $a \in R$ ,  $a \neq 0_R$ . If  $\exists b \in R$  with  $b \neq 0_R$  such that  $ab = 0_R = ba$ , then we say a is a zero divisor.

If  $1_R \in R$ , we say  $u \in R$  is a unit if  $\exists v \in R$  (can be equal to u) with  $uv = 1_R = vu$ . The collection of units in R is denoted  $R^{\times}$ .

**Exercise:** Show that  $R^{\times}$  is a group under multiplication.

#### **Examples**

- (1) Let  $R = \mathbb{Z}/6\mathbb{Z}$ . Note that  $[2]_6[3]_6 = [6]_6 = [0]_6$ , so both  $[2]_6$  and  $[3]_6$  are both zero divisors. Additionally,  $[4]_6[3]_6 = [6]_6 = [0]_6$ . Meanwhile, since  $(\mathbb{Z}/6\mathbb{Z})^{\times} = \{[1]_6, [5]_6\}$ , those are the two units of  $\mathbb{Z}/6\mathbb{Z}$ .
- (2)  $\mathbb{Z}$  has no zero divisors.  $\mathbb{Z}^{\times} = \{\pm 1\}$ .
- (3)  $\mathbb{Q}$  has no zero divisors.  $\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$ .
- (4)  $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}, i^2 = -1\}$  has no zero divisors (as  $\mathbb{C}$  is a field).  $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$ .

# **Subrings**

Let  $(R, +, \times)$ . If  $S \subseteq R$  is a nonempty subset, and  $(S, +, \cdot)$  is a ring, then S is a subring of R. To see S is a subring, it is enough to show:

- S ≠ ∅.
- *S* is closed under subtraction.
- S is closed under multiplication of elements in S.

### **Examples**

(1)

$$\underbrace{\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}}_{\text{subrings}}$$

- (2)  $\mathbb{R} \subseteq \mathbb{R}[x]$  is a subring.
- (3)  $S = \{[0]_4, [2]_4\} \subseteq \mathbb{Z}/4\mathbb{Z}$  is a subring.

# **Integral Domains**

Let R be a commutative ring with identity. We say R is an integral domain if R has no zero divisors.

#### **Examples**

- (1)  $\mathbb{Z}$ , the integers, is an integral domain, that is not a field.
- (2) All fields are integral domains.
- (3)  $\mathbb{Z}/6\mathbb{Z}$  is *not* an integral domain, as it has zero divisors.
- (4)  $\mathbb{Z}/n\mathbb{Z}$  is not an integral domain if n is composite.

Integral domains are nice due to allowance of cancellations. For example, if 2m = 2n in  $\mathbb{Z}$ , then we find 2(m-n) = 0, and since  $\mathbb{Z}$  has no zero divisors, it must be the case that m = n.

However, in a ring that is not an integral domain, such as  $\mathbb{Z}/6\mathbb{Z}$ , we cannot use the same technique to find the solution to a similar equation. For example,  $3 \cdot 2 = 0 = 3 \cdot 4$ , but  $2 \neq 4$ .

#### **Proposition: Equations in Integral Domains**

Let R be an integral domain. If  $a, b, c \in R$  with  $a \neq 0_R$ , and ab = ac, then b = c.

#### **Proof:**

Since  $a \neq 0$ ,

$$ab = ac$$

$$a(b - c) = 0_R$$

$$b - c = 0_R$$

b = c.

#### Theorem: Finite Integral Domains and Fields

If R is an integral domain, and  $card(R) < \infty$ , then R is a field.

**Proof:** Let  $a \in R$ ,  $a \neq 0_R$ . Note  $ab \neq 0_R$  for all  $b \in R$ ,  $b \neq 0_R$ .

Define  $\varphi_a: R \setminus \{0_R\} \to R \setminus \{0_R\}$ ,  $b \mapsto ab$ . If  $\varphi_a(b) = \varphi_a(c)$ , then ab = ac, and by our previous result, b = c — therefore,  $\varphi_a$  is injective.

Since  $R \setminus \{0_R\}$  is finite, and  $\varphi_a$  is injective, then  $\varphi_a$  is surjective. In particular, this means  $\exists b \in R \setminus \{0_R\}$  with  $\varphi_a(b) = 1_R$ ; therefore,  $ab = 1_R$ . Since R is commutative,  $ba = 1_R$ , so  $b = a^{-1}$ .

### **Examples of Abstract Rings**

#### Ring of Integers in a Field

Let  $d \in \mathbb{Z}$ , d is square-free (there is no square that divides d). Set  $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$ . This is a field (can be verified as a subfield of  $\mathbb{C}$ ).

We can define

$$\mathcal{O}_{\mathbb{Q}\left(\sqrt{d}\right)} = \begin{cases} \mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\right\} & d \equiv 2, 3 \mod 4 \\ \mathbb{Z}\left[\frac{1 + \sqrt{d}}{2}\right] = \left\{a + b\left(\frac{1 + \sqrt{d}}{2}\right) \mid a, b \in \mathbb{Z}\right\} & d \equiv 1 \mod 4 \end{cases}.$$

Then,  $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$  is a subring of  $\mathbb{Q}(\sqrt{d})$ . This is known as the ring of integers of  $\mathbb{Q}(\sqrt{d})$ . This set behaves in  $\mathbb{Q}(\sqrt{d})$  the same say that  $\mathbb{Z}$  does inside  $\mathbb{Q}$ . The set  $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$  is the collection of all roots in  $\mathbb{Q}(\sqrt{d})$  of monic (coefficient of highest degree is 1) polynomials with coefficients in  $\mathbb{Z}$ .

For example, if d = -1, defining  $\mathbb{Q}(i)$ , then we can verify that  $\mathbb{Z}[i]$  is a root of a monic polynomial with coefficients in  $\mathbb{Z}$ .

#### Ring of Matrices

Let R be a ring. Then,

$$Mat_n(R) = \{n \times n \text{ matrices with entries in } R\}$$

is a ring under matrix addition and multiplication.

#### Ring of Functions

Let  $L^1(\mathbb{R})$  be all functions  $f: \mathbb{R} \to \mathbb{R}$  such that

$$\int_{\mathbb{R}} |f(x)| dx$$

exists. The set  $L^1(\mathbb{R})$  is a ring under pointwise addition and convolution, where convolution is defined as

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy.$$

This is a commutative ring without identity.

#### **Group Ring**

Let K be a field and G a group. Set K[G] to be all formal linear combinations of the form

$$\alpha = \sum_{x \in G} a_x x,$$

with  $a_x \in K$ ,  $x \in G$ , with  $a_x = 0$  for all but finitely many x.

Given

$$\alpha = \sum_{x \in G} a_x x$$
$$\alpha = \sum_{y \in G} b_y y,$$

define

$$\alpha + \beta = \sum_{x \in G} (a_x + b_x)x$$

$$\alpha \beta = \sum_{x \in G} \sum_{y \in G} a_x b_y xy$$

$$= \sum_{x \in G} \left( \sum_{xy = z} a_x b_y \right) z.$$

This is a ring under these operations, known as the group ring. It is commutative if and only if G is abelian.

#### Polynomials under a Ring

Let R be a ring. Set

$$R[x] = \left\{ \sum_{i=1}^{n} a_i x^i \mid a_i \in R, n \in \mathbb{Z}_{\geq 0} \right\}$$

to be the all polynomials with coefficients in R. This is a ring under polynomial addition and multiplication. If R is commutative, then R[x] is commutative.

### **Proposition: Polynomial Properties**

Let R be an integral domain, with p(x),  $q(x) \in R[x] \setminus \{0\}$ . Then:

- $(1) \deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$
- (2)  $R[x]^{\times} = R^{\times}$
- (3) R[x] is an integral domain.

#### Proof of (1): Let

$$p(x) = a_m x^m + \dots + a_1 x + a_0$$
  
 $q(x) = b_n x^n + \dots + b_1 x + b_0$ 

with  $a_m, b_n \neq 0$  —  $\deg(p) = m$  and  $\deg(q) = n$ . Then,

$$p(x)q(x) = a_m b_n x^{m+n} + \text{lower degree terms},$$

and since  $a_m b_n \neq 0$  as R is an integral domain with  $a_m, b_n \neq 0$ ,  $\deg(pq) = m + n$ .

# **Ring Homomorphism**

Let R and S be rings. A ring homomorphism between R and S is a map  $\varphi: R \to S$  that satisfies the following properties for all  $r_1, r_2 \in R$ :

(1) 
$$\varphi(r_1 +_R r_2) = \varphi(r_1) +_S \varphi(r_2)$$

(2) 
$$\varphi(r_1 \cdot_R r_2) = \varphi(r_1) \cdot_S \varphi(r_2)$$

The kernel of a ring homomorphism  $\varphi$  is given by

$$ker(\varphi): \{r \in R \mid \varphi(r) = 0_S\}$$

A bijective ring homomorphism is called an isomorphism. If there exists such a bijection between R and S, we say R and S are isomorphic.

If  $\varphi$  is an isomorphism, we write

$$\varphi: R \xrightarrow{\simeq} S$$

# **Examples: Ring Homomorphisms**

#### Not a Ring Homomorphism

Let  $R = \mathbb{Z}$  and  $S = 2\mathbb{Z}$ . Define

$$\varphi: \mathbb{Z} \to 2\mathbb{Z}$$
$$n \mapsto 2n.$$

Let  $m, n \in \mathbb{Z}$ . We have

$$\varphi(m+n) = 2(m+n)$$

$$= 2m + 2n$$

$$= \varphi(m) + \varphi(n).$$

However,

$$\varphi(mn) = 2(mn)$$
$$\varphi(m)\varphi(n) = 4(mn).$$

# Homomorphism between Integers and Integers Modulo $\it n$

Consider  $R = \mathbb{Z}$  and  $S = \mathbb{Z}/n\mathbb{Z}$ . Define

$$\varphi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
$$a \mapsto [a]_n.$$

Let  $a, b \in \mathbb{Z}$ . We have

$$\varphi(a+b) = [a+b]_n$$

$$= [a]_n + [b]_n$$

$$= \varphi(a) + \varphi(b).$$

Additionally, we have

$$\varphi(ab) = [ab]_n$$

$$= [a]_n[b]_n$$

$$= \varphi(a)\varphi(b).$$

So,  $\varphi$  is a ring homomorphism. Note that

$$\ker(\varphi) = \{ a \in \mathbb{Z} \mid \varphi(a) = [0]_n \}$$
$$= \{ a \in \mathbb{Z} \mid [a]_n = [0]_n \}$$
$$= \{ a \in \mathbb{Z} \mid n | a \}$$
$$= n\mathbb{Z}.$$

### Homomorphism Between the Polynomials and Reals

Let  $S = \mathbb{R}[x]$  and  $T = \mathbb{R}$ . Define

$$\varphi_a: \mathbb{R}[x] \to \mathbb{R}$$

$$f \mapsto f(a)$$

Let f(x),  $g(x) = \mathbb{R}[x]$ . Then,

$$\varphi_{a}(f(x) + \varphi(g)(x)) = \varphi_{a}((a_{0} + b_{0}) + \dots + (a_{m} + b_{m})x^{m} + b_{m+1}x^{m+1} + \dots + b_{n}x^{n})$$

$$= (a_{0} + b_{0}) + \dots + (a_{m} + b_{m})a^{m} + b_{m+1}a^{m+1} + \dots + b_{n}a^{n}$$

$$= \varphi_{a}(f(x)) + \varphi_{a}(g(x)).$$

Similarly, we can verify that  $\varphi_a(f(x)g(x)) = \varphi_a(f(x))\varphi_a(g(x))$ . So,  $\varphi_a$  is a ring homomorphism. Note that

$$\ker(\varphi_a) = \{ f(x) \in \mathbb{R}[x] \mid f(a) = 0 \}$$
$$= \{ f(x) \in \mathbb{R}[x] \mid (x - a) \mid f(x) \}$$
$$= (x - a) \mathbb{R}[x]$$

### Homomorphism between Matrices

Define

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in \mathsf{Mat}_2(\mathbb{R}) \right\}$$
$$S = \mathbb{R}.$$

and

$$\varphi: R \to S$$

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mapsto a.$$

Then,

$$\begin{split} \varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right) &= \varphi\left(\begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & d_1 + d_2 \end{bmatrix}\right) \\ &= a_1 + a_2 \\ &= \varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix}\right) + \varphi\left(\begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right), \end{split}$$

and

$$\varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right) = \varphi\left(\begin{bmatrix} a_1 a_2 & a_1 b_2 + b_1 d_2 \\ 0 & d_1 d_2 \end{bmatrix}\right)$$

$$= a_1 a_2$$

$$= \varphi\left(\begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix}\right) \varphi\left(\begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix}\right).$$

So  $\varphi$  is a ring homomorphism that is surjective but not injective. Note

$$\ker(\varphi) = \left\{ \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} \mid b, d \in \mathbb{R} \right\}.$$

#### **Proposition: Fundamental Theorem of Ring Homomorphisms**

Let  $\varphi: R \to S$  be a ring homomorphism.

- (1) The image of  $\varphi$ ,  $\varphi(R) = \{s \in S \mid s = \varphi(r) \text{ for some } r \in R\}$ , is a subring of S.
- (2) The kernel,  $ker(\varphi)$ , is a subring of R.

Additionally, for any  $r \in R$ , and  $a \in \ker(\varphi)$ ,  $ar \in \ker(\varphi)$  and  $ra \in \ker(\varphi)$ .

**Proof of (2):** To show  $\ker(\varphi)$  is a subring, we must show that  $\ker(\varphi)$  is non-empty, closed under subtraction, and closed under multiplication.

First, since  $\varphi(0_R) = 0_S$  (verify this),  $\ker(\varphi)$  is non-empty.

Let  $a, b \in \ker(\varphi)$ . We have

$$\varphi(a-b) = \varphi(a+(-b))$$

$$= \varphi(a) + \varphi(-b)$$

$$= \varphi(a) - \varphi(b)$$

$$= 0_S - 0_S$$

$$= 0_S.$$
check  $\varphi(-b) = -\varphi(b)$ 

Thus,  $a - b \in \ker(\varphi)$ , and  $\ker(\varphi)$  is closed under subtraction.

To show  $\ker(\varphi)$  is closed under multiplication, we will prove the general case. Let  $a \in \ker(\varphi)$  and  $r \in R$ . We have

$$\varphi(ra) = \varphi(r)\varphi(a)$$
$$= \varphi(r)0_S$$
$$= 0_S.$$

Similarly,  $\varphi(ar) = 0_S$ . So,  $ar, ra \in \ker(\varphi)$ .

The stronger condition that we found for  $ker(\varphi)$  (closed under multiplication of all elements of the ring, not merely those from the subring) forms what we call an ideal.

### **Quotient Rings**

#### Defining an Equivalence Relation on a Ring

Set  $K = \ker(\varphi)$ . We will define a relation on R,  $\sim$ , where  $r_1 \sim r_2$  if  $r_1 - r_2 \in K$ . We want to see if  $\sim$  is an equivalence relation:

- Reflexive:  $r \sim r$  since  $r r = 0_R \in K$ .
- Symmetric:  $r_1 \sim r_2$  implies  $r_1 r_2 = k$  for some  $k \in K$ . Since k is a subring,  $-k \in K$ , so  $r_2 r_1 \in K$ .

• Transitive: suppose  $r_1 \sim r_2$  and  $r_2 \sim r_3$ . This means there are elements  $k_1, k_2 \in K$  with  $r_1 - r_2 = k_1$  and  $r_2 - r_3 = k_2$ . Since K is a subring,  $(r_1 - r_2) + (r_2 - r_3) = r_1 - r_3 = k_1 + k_2 \in K$ . Thus,  $r_1 \sim r_3$ .

Since  $\sim$  is reflexive, symmetric, and transitive,  $\sim$  is an equivalence relation on R.

Since  $\sim$  is an equivalence relation on R, we will want to examine equivalence classes of R under  $\sim$ . Specifically, for  $r \in R$ , we have

$$[r]_{K} = \{ \tilde{r} \in R \mid r - \tilde{r} \in K \}$$

$$= \{ \tilde{r} \in R \mid r - \tilde{r} = k \text{ for some } k \in K \}$$

$$= \{ r + k \mid k \in K \}$$

$$= r + K.$$

We will define the set

$$R/K = \{r + K \mid r \in R\}$$

to be the set of all equivalence classes.

**Example:** Let  $\varphi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ ,  $a \mapsto [a]_n$ . Then,  $\ker(\varphi) = n\mathbb{Z}$ . Then,  $R/K = \mathbb{Z}/n\mathbb{Z}$ .

Let  $r_1 + K$ ,  $r_2 + K \in R/K$ . The new question is whether or not we can define addition and multiplication on R/K. Suppose that the following are the definition of multiplication and addition on R/K.

$$(r_1 + K) + (r_2 + K) = (r_1 + r_2) + K$$
  
 $(r_1 + K)(r_2 + K) = (r_1r_2) + K.$ 

Suppose  $r_1 + K = \tilde{r_1} + K$  and  $r_2 + K = \tilde{r_2} + K$ . This means there are  $k_1, k_2 \in K$  with  $r_1 - \tilde{r_1} = k_1, r_2 - \tilde{r_2} = k_2$ , or that  $r_1 = \tilde{r_1} + k_1, r_2 = \tilde{r_2} + k_2$ .

To see if the map is well-defined, we have

$$(r_1 + K) + (r_2 + K) = (r_1 + r_2) + K$$
  
=  $(\tilde{r_1} + k_1 + \tilde{r_2} + k_2) + K$   
=  $(\tilde{r_1} + k_1) + K + (\tilde{r_2} + k_2) + K$   
=  $(\tilde{r_1} + K) + (\tilde{r_2} + K)$ 

since  $\tilde{r}_1 + k_1 - \tilde{r}_1 = k \in K$ .

Thus, our addition is well-defined.

Examining multiplication, we see that

$$(r_{1} + K)(r_{2} + K) = r_{1}r_{2} + K$$

$$= (\tilde{r}_{1} + k_{1})(\tilde{r}_{2} + k_{2}) + K$$

$$= \tilde{r}_{1}\tilde{r}_{2} + \underbrace{k_{1}\tilde{r}_{2} + \tilde{r}_{1}k_{2} + k_{1}k_{2} + K}_{\in K \text{ since } K = \ker(\varphi)}$$

$$= \tilde{r}_{1}\tilde{r}_{2} + K.$$

Therefore, our multiplication is well-defined.

We can show that R/K is a ring (verify for yourself).

Note: This construction would not have worked if K was merely a subring, as multiplication would not be well-defined.

#### Ideals

Let  $I \subseteq R$  be a subring.

- (1) If  $ra \in I$  for every  $r \in R$ , we say I is a left-ideal of R.
- (2) If  $ar \in I$  for every  $r \in R$ , then we say I is a right-ideal of R.
- (3) If I is a left-ideal and a right-ideal of R, then we say I is an ideal of R.

If  $I \subseteq R$  is an ideal, we define  $r_1 \sim_I r_2$  if  $r_1 - r_2 \in I$ , and  $R/I = \{r + I \mid r \in I\}$ . Addition and multiplication in R/I are defined as

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$
  
 $(r_1 + I)(r_2 + I) = r_1r_2 + I$ .

#### **Examples of Ideals**

- (1)  $n\mathbb{Z} \subseteq \mathbb{Z}$  is an ideal; if  $nk \in n\mathbb{Z}$ , and  $m \in \mathbb{Z}$ , then  $m(nk) = n(mk) \in n\mathbb{Z}$ .
- (2) Let  $R = \mathbb{Z}[x]$ . Set  $\langle x^2 \rangle = \{ f(x)x^2 \mid f(x) \in \mathbb{Z}[x] \}$ . This is an ideal.
- (3) Let *R* be a ring. If  $r \in R$ , we define  $\langle r \rangle = \{ar \mid a \in R\}$ .
- (4) Set  $I = \{(2n,0) \mid n \in \mathbb{Z}\}$  in  $\mathbb{Z} \times \mathbb{Z}$ . Let  $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ . Then,  $(a,b)(2n,0) = (2an,0) \in I$ , meaning I is an ideal
- (5) Define  $R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in \operatorname{Mat}_2(\mathbb{R}) \right\}$ . Consider  $I = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$ . Then,

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} = \begin{bmatrix} as & bt \\ 0 & dt \end{bmatrix}$$
$$\begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} = \begin{bmatrix} sa & sb \\ 0 & td \end{bmatrix}.$$

Therefore, I is a subring but not an ideal.

(6) Let  $R = \mathbb{Z}[x]$ . Consider  $I = \langle 2, x \rangle = \{2f(x) + g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\}$ . Then,

$$(2f_1(x) + xg(x))(2f_2(x) + xg_2(x)) = 2(f_1(x)(2f_2(x) + xg_2(x))) + x(g_1(x)(2f_2(x) + xg_2(x)))$$
$$h(x)(2f(x) + xg(x)) = 2(f(x)h(x)) + x(g(x)h(x)),$$

meaning I is an ideal.

#### **Examples of Quotient Rings**

- (1) Let  $R = \mathbb{Z}$ ,  $I = n\mathbb{Z}$ . Then,  $R/I = \mathbb{Z}/n\mathbb{Z}$ .
- (2) Let  $R = \mathbb{R}[x]$ ,  $I = \langle x^2 \rangle$  as defined earlier. Then,

$$R/I = \mathbb{R}[x]/\langle x^2 \rangle$$
$$= f(x) + \langle x^2 \rangle.$$

Other examples include

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{R}[x]$$

$$f(x) + \langle x^2 \rangle = a_1 x + a_0 + \langle x^2 \rangle \in \mathbb{R}[x] / \langle x^2 \rangle$$

$$\mathbb{R}[x] / \langle x^2 \rangle = \{ a + bx + \langle x^2 \rangle \mid a, b \in \mathbb{R} \}.$$

$$(a + bx + \langle x^2 \rangle)(c + dx \langle x^2 \rangle) = ac + adx + bcx + bdx^2 + \langle x^2 \rangle$$

$$= (ac) + (ad + bc)x + \langle x^2 \rangle$$

$$(x + \langle x^2 \rangle)^2 = x^2 + \langle x^2 \rangle$$

$$= \langle x^2 \rangle.$$

(3) Let  $R = \mathbb{Z} \times \mathbb{Z}$ ,  $I = \{(2n, 0) \mid n \in \mathbb{Z}\}$ . Then,

$$R/I = \{(a, b) + I \mid a, b \in \mathbb{Z}\}.$$
  
 $(a, b) + I = ([a]_2, b) + I$  where  $[a]_2$  is a modulo 2.

We would expect that  $\varphi: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} \to R/I$ , ([a]<sub>2</sub>, b)  $\to$  (a, b) + I is an isomorphism (verify for yourself).

#### Isomorphisms to Quotient Rings

Let 
$$R = \mathbb{Z}[x]$$
,  $I = \langle 2, x \rangle$ ,  $J = \langle 2 \rangle = \{2f(x) \mid f(x) \in \mathbb{Z}[x]\}$ .

$$R/J = \{ f(x) + \langle 2 \rangle \mid f(x) \in \mathbb{Z}[x] \}$$
$$f(x) + \langle 2 \rangle = g(x) + \langle 2 \rangle$$

if 2|(f(x)-g(x)), meaning all coefficients of f(x)-g(x) are divisible by 2. Therefore,

$$f(x) + \langle 2 \rangle = 5 + 4x + 7x^{2} - 5x^{3} \langle 2 \rangle$$

$$= (1 + (2)(2)) + 2(2x) + x^{2} + 2(3x^{2}) - x^{3} - 2(2x^{3}) + \langle 2 \rangle$$

$$= 1 + x^{2} - x^{3} + \langle 2 \rangle$$

$$= 1 + x^{2} - 2(x^{3}) + x^{3} + \langle 2 \rangle$$

$$= 1 + x^{2} + x^{3} + \langle 2 \rangle$$

$$= 1 + x^{2} + x^{3} + \langle 2 \rangle$$

$$(1 + x + x^{2} + \langle 2 \rangle) + (x + \langle 2 \rangle) = 1 + 2x + x^{2} + \langle 2 \rangle$$

$$= 1 + x^{2} + \langle 2 \rangle$$

Therefore, we can consider

$$\mathbb{Z}[x]/\langle 2 \rangle = \mathbb{Z}[x]/2\mathbb{Z}[x]$$
  
 $\cong \mathbb{Z}/2\mathbb{Z}.$ 

$$R/I = \mathbb{Z}[x]/\langle 2, x \rangle$$

$$f(x) + \langle 2, x \rangle = a_n x^n + \dots + a_1 x + a_0 + \langle 2, x \rangle$$

$$= a_0 + \langle 2, x \rangle$$

$$= \begin{cases} 0 & 2|a_0 \\ 1 & 2 \not|a_0 \end{cases},$$

So, we can consider

$$\mathbb{Z}[x]/\langle 2, x \rangle \cong \mathbb{Z}/2\mathbb{Z}.$$

#### Isomorphism Example: Complex Numbers to Matrices

Consider the set

$$R = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \in \mathsf{Mat}_2(\mathbb{R}) \right\}.$$

We can verify that R is a ring.

Define

$$\varphi: \mathbb{C} \to R$$

$$a + bi \mapsto \begin{bmatrix} a & b \\ -b & a \end{bmatrix}.$$

We can verify that  $\varphi$  is a bijective map.

Let a + bi,  $c + di \in \mathbb{C}$ . Then,

$$\varphi((a+bi) + (c+di)) = \varphi((a+c) + (b+d)i)$$

$$= \begin{bmatrix} a+c & b+d \\ -(b+d) & a+c \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$$

$$= \varphi(a+bi) + \varphi(c+di),$$

and

$$\varphi((a+bi)(c+di)) = \varphi((ac-bd) + (ad+bc)i)$$

$$= \begin{bmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{bmatrix}$$

$$\varphi(a+bi)\varphi(c+di) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$$

$$= \begin{bmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{bmatrix}.$$

Therefore,  $\mathbb{C} \cong R$ .

# First Isomorphism Theorem

Let  $\varphi: R \to S$  be a homomorphism. We have  $R/\ker \varphi \cong \varphi(R)$ .

### **Proof of the First Isomorphism Theorem**

We want to show that  $R/\ker(\varphi)\cong\varphi(R)$ . Without loss of generality, assume  $\varphi$  is surjective. Let  $K=\ker(\varphi)$ .

We define  $\Phi: R/K \to S$ ,  $r+K \mapsto \varphi(r)$ . We must show that  $\Phi$  is a well-defined map. Let  $r_1+K=r_2+K$  (meaning  $r_1-r_2 \in K$ ). This means  $r_1=r_2+k$  for some  $k \in K$ . Applying  $\Phi$ , we have

$$\Phi(r_1 + K) = \varphi(r_1)$$

$$= \varphi(r_2 + k)$$

$$= \varphi(r_2) + \varphi(k)$$

$$= \varphi(r_2)$$

$$= \Phi(r_2 + K).$$

Let  $r_1 + K$ ,  $r_2 + K \in R/K$ . Observe

$$\Phi((r_1 + K) + (r_2 + K)) = \Phi((r_1 + r_2) + K)$$

$$= \varphi(r_1 + r_2)$$

$$= \varphi(r_1) + \varphi(r_2)$$

$$= \Phi(r_1 + K) + \Phi(r_2 + K),$$

and

$$\Phi((r_1 + K)(r_2 + K)) = \Phi(r_1 r_2 + K) 
= \varphi(r_1 r_2) 
= \varphi(r_1)\varphi(r_2) 
= \Phi(r_1 + K)\Phi(r_2 + K),$$

meaning  $\Phi$  is a homomorphism.

Let  $s \in S$ . Since  $\varphi$  is surjective, there exists  $r \in R$  with  $\varphi(r) = s$ . So,  $\Phi(r + K) = \varphi(r) = s$ . Thus,  $\Phi$  is surjective.

Let  $r + K \in \ker(\Phi)$ . Then,

$$\Phi(r+k) = 0_S \\
= \varphi(r),$$

meaning  $r \in \ker(\varphi) = K$ . So,  $r + K = 0_R + K = 0_{R/K}$ . Thus,  $\Phi$  is injective.

#### Using the First Isomorphism Theorem: Example 1

Let 
$$\varphi : \mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z}$$
,  $a_0 + a_1x + \cdots + a_nx^n \mapsto [a_0]_2$ .

To apply the first isomorphism theorem, we must check that this is a ring homomorphism. Let

$$f = a_0 + a_1 x + \dots + a_m x^m$$
  
 $q = b_0 + b_1 x + \dots + b_m x^m$ 

be elements in  $\mathbb{Z}[x]$ . Note that

$$\varphi(f+g) = \varphi((a_0 + b_0) + \cdots)$$

$$= [a_0 + b_0]_2$$

$$= [a_0]_2 + [b_0]_2$$

$$= \varphi(f) + \varphi(g)$$

and

$$\varphi(fg) = \varphi((a_0b_0) + \cdots)$$

$$= [a_0b_0]_2$$

$$= [a_0]_2 + [b_0]_2$$

$$= \varphi(f)\varphi(g).$$

So  $\varphi$  is a homomorphism. Note that  $\varphi(0) = [0]_2$  and  $\varphi(1) = [1]_2$ . The first isomorphism theorem gives that  $\mathbb{Z}[x]/\ker \varphi \cong \mathbb{Z}/2\mathbb{Z}$ .

We claim that  $\ker \varphi = \langle 2, x \rangle$ .

If  $2f(x) + xg(x) \in (2, x)$ , and we write  $f(x) = a_0 + a_1x + \cdots + a_nx^n$ , then

$$\varphi(2f(x) + g(x)) = \varphi(2)\varphi(f(x)) + \varphi(x)\varphi(g(x))$$
  
=  $[0]_2[a_0]_2 + [0]_2\varphi(g(x))$   
=  $[0]_2$ ,

so  $\langle 2, x \rangle \subseteq \ker \varphi$ .

Let  $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \ker(\varphi)$ , meaning

$$[0]_2 = \varphi(f(x))$$
$$= [a_0]_2.$$

Therefore,  $a_0 = 2k$ . So,

$$f(x) = 2kx(a_1 + a_2x + \dots + a_nx^{n-1})$$
  
  $\in \langle 2, x \rangle.$ 

Thus,  $\ker(\varphi) \subseteq \langle 2, x \rangle$ , meaning  $\ker(\varphi) = \langle 2, x \rangle$ .

By the first isomorphism theorem,  $\mathbb{Z}[x]/\langle 2, x \rangle \cong \mathbb{Z}/2\mathbb{Z}$ .

### Using the First Isomorphism Theorem: Example 2

We want to find the ring that is isomorphic to  $(\mathbb{Z} \times \mathbb{Z})/(2\mathbb{Z} \times 5\mathbb{Z})$ . We define

$$\varphi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$
$$(m, n) \mapsto ([m]_2, [n]_5).$$

We will start by showing homomorphism as follows:

$$\varphi((m_1, n_1) + (m_2, n_2)) = \varphi((m_1 + m_2, n_1 + n_2)) 
= ([m_1 + m_2]_2, [n_1 + n_2]_5) 
= ([m_1]_2 + [m_2]_2, [n_1]_5 + [n_2]_5) 
= ([m_1]_2, [n_1]_5) + ([m_2]_2, [n_2]_5) 
= \varphi((m_1, n_1)) + \varphi((m_2, n_2)),$$

and similarly for multiplication

$$\varphi((m_1, n_1)(m_2, n_2)) = \varphi((m_1 m_2, n_1 n_2))$$

$$= ([m_1 m_2]_2, [n_1 n_2]_5)$$

$$\vdots$$

$$= \varphi((m_1, n_1))\varphi((m_2, n_2))$$

Let  $([a]_2, [b]_5) \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ . Then,  $\varphi((a, b)) = ([a]_2, [b]_5)$ . Thus,  $\varphi$  is surjective.

Finally, we have  $(m, n) \in \ker(\varphi)$  if and only if  $[m]_2 = [0]_2$  and  $[n]_5 = [0]_5$ , meaning  $m \in 2\mathbb{Z}$  and  $n \in 5\mathbb{Z}$ . Therefore,  $\ker(\varphi) = 2\mathbb{Z} \times 5\mathbb{Z}$ .

### Using the First Isomorphism Theorem: Example 3

Consider the map  $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ ,  $n \mapsto ([n]_2, [n]_5)$ . Note

$$\varphi(m+n) = ([m+n]_2, [m+n]_5)$$

$$= ([m]_2 + [n]_2, [m]_5 + [n]_5)$$

$$= ([m]_2, [m]_5) + ([n]_2, [n]_5)$$

$$= \varphi(m) + \varphi(n),$$

and

$$\varphi(mn) = \varphi(m)\varphi(n).$$

We want to find if this map is surjective. Let  $([a]_2, [b]_5) \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ . We are trying to find  $n \in \mathbb{Z}$  such that  $[n]_2 = [a]_2$  and  $[n]_5 = [b]_5$ , or  $n \equiv a$  modulo 2 and  $n \equiv b$  modulo 5.

$$n-a \equiv 2k$$
 for some  $k \in \mathbb{Z}$   
 $n \equiv a+2k$   
 $a+2k \equiv b \mod 5$   
 $2k = b-a \mod 5$   
 $k = 3(b-a) \mod 5$   
 $n = a+2(3(b-a))$   
 $= a+6(b-a)$ .

So  $\varphi(a+6(b-a))=([a]_2,[b]_5)$ . Thus,  $\varphi$  is surjective.

Finally, we desire  $ker(\varphi)$ . Observe that

$$\ker(\varphi) = \{ n \in \mathbb{Z} \mid [n]_2 = [0]_2, [n]_5 = [0]_5 \}$$

$$= \{ n \in \mathbb{Z} \mid 2|n, 5|n \}$$

$$= \{ n \in \mathbb{Z} \mid 10|n \}$$

$$= 10\mathbb{Z}.$$

Thus, the first isomorphism theorem gives  $\mathbb{Z}/10\mathbb{Z} \equiv \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ .

#### **Proposition: Ring Homomorphisms and Ideals**

Let R be a ring and  $I \subseteq R$  be an ideal. The map

$$\varphi: R \to R/I$$
$$r \mapsto r + I$$

is a surjective ring homomorphism with  $ker(\varphi) = I$ . The proof is left as an exercise to the reader.

### Using the First Isomorphism Theorem: Example 3

Let A be a ring and X be any non-empty set. Let R be the set of functions from X to A.

We have R is a ring.

$$(f+g)(x) = f(x) +_A g(x)$$
$$(fg)(x) = f(x) \cdot_A g(x).$$

Fix  $x_0 \in X$ . We define  $E_{x_0} : R \to A$  by

$$E_{x_0}(f) = f(x_0).$$

We have

$$E_{x_0}(f+g) = (f+g)(x_0)$$
  
=  $f(x_0) + g(x_0)$   
=  $E_{x_0}(f) + E_{x_0}(g)$ 

and

$$E(x_0)(fg) = (fg)(x_0)$$
  
=  $f(x_0)g(x_0)$   
=  $E_{x_0}(f)E_{x_0}(g)$ .

Therefore,  $E_{x_0}$  is a homomorphism. Additionally,  $E_{x_0}$  is surjective, since we can find  $f_a: X \to A$ ,  $x \mapsto a$ , meaning  $E_{x_0}(f_a) = f_a(x_0) = a$ .

If  $f \in \ker(E_{x_0})$ , then  $E_{x_0}(f) = 0_A$ . However,  $E_{x_0}(f) = f(x_0)$ . Then,

$$\ker(\varphi) = \{ f : X \to A \mid f(x_0) = 0_A \}$$
$$= \mathcal{M}_{x_0}.$$

By the first isomorphism theorem, we can see that  $R/\mathcal{M}_{x_0} \cong A$ .

# Other Isomorphism Theorems

Let R be a ring.

**Diamond Isomorphism Theorem:** Let A be a subring of R and I an ideal of R. Define  $A+I=\{a+i\mid a\in A,i\in I\}$ . This is an ideal of R. We also have that  $A\cap I$  is an ideal in A, and  $(A+I)/I\equiv A/A\cap I$ .



**Third Isomorphism Theorem:** Let I, J be ideals of R with  $I \subseteq J$ . Then, J/I is an ideal of R/I with  $(R/I)/(J/I) \cong R/J$ .

**Lattice Isomorphism Theorem:** Let  $I \subseteq R$  be an ideal. The correspondence  $A \leftrightarrow A/I$  is an inclusion-preserving bijection between the subrings A of R that contain I and the subrings of R/I. Moreover, A is an ideal if and only if A/I is an ideal.

#### Using the Third Isomorphism Theorem

Let  $R=\mathbb{Z}$ ,  $I=12\mathbb{Z}$ , and  $J=4\mathbb{Z}$ . By the third isomorphism theorem,  $J/I=4\mathbb{Z}/12\mathbb{Z}$  is an ideal of  $R/I=\mathbb{Z}/12\mathbb{Z}$ , and

$$(R/I)/(J/I) = (\mathbb{Z}/12\mathbb{Z})/(4\mathbb{Z}/12\mathbb{Z})$$
  
 $\cong \mathbb{Z}/4\mathbb{Z}.$ 

#### **Applying the Isomorphism Theorems**

Consider the rings  $3\mathbb{Z}$  and  $12\mathbb{Z}$ . We have that  $12\mathbb{Z} \subseteq 3\mathbb{Z}$  as an ideal. Therefore, we can form the quotient ring  $3\mathbb{Z}/12\mathbb{Z}$ . We might ask how it's related to other  $\mathbb{Z}/n\mathbb{Z}$ , or to  $\mathbb{Z}/12\mathbb{Z}$ .

Note that  $3\mathbb{Z}/12\mathbb{Z}$  starts with elements in  $3\mathbb{Z}$  and examines elements in  $12\mathbb{Z}$ . We might ask whether or not  $3\mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z}$ . However,

$$3\mathbb{Z}/12\mathbb{Z} = \{a + 12\mathbb{Z} \mid a \in 3\mathbb{Z}\}\$$
$$= \{3b + 12\mathbb{Z} \mid b \in \mathbb{Z}\}.$$

We can define

$$\varphi: 3\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$$

$$0 + 12\mathbb{Z} \mapsto [0]_4,$$

$$3 + 12\mathbb{Z} \mapsto [3]_4,$$

$$6 + 12\mathbb{Z} \mapsto [2]_4,$$

$$9 + 12\mathbb{Z} \mapsto [1]_4.$$

which we look at by aiming for  $12\mathbb{Z}$  to be the kernel of  $\varphi$ . Then, by the first isomorphism theorem,  $3\mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z}$ .

If we want to examine  $3\mathbb{Z}/12\mathbb{Z}$  in relation to  $\mathbb{Z}/12\mathbb{Z}$ , we see that  $3\mathbb{Z}/12\mathbb{Z} \cong \langle [3]_{12} \rangle \subseteq \mathbb{Z}/12\mathbb{Z}$ .

# **Further Examination of Ideals**

Let  $I, J \subseteq R$  be ideals. We define

- (1) the sum,  $I + J = \{i + j \mid i \in I, j \in J\}$ ,
- (2) the product, IJ, the collection of finite sums of elements of the form xy, where  $x \in I$  and  $y \in J$ , and
- (3) The *n*th power of *I*, denoted  $I^n$ , which is the collection of finite sums of elements of the form  $x_1, \ldots, x_n \in I$ .

#### **Exercises:**

- (1) I + J is the smallest ideal containing I and J.
- (2)  $IJ \subseteq I \cap J$ .

Let R be a ring with  $1_R \neq 0_R$ . Let  $A \subseteq R$ .

- (1) Let  $\langle A \rangle$  be the smallest ideal that contains A. It is called the ideal *generated* by A.
- (2) We set  $RA = \{r_1 a_1 + \dots + r_n a_n \mid r_i \in R, a_i \in A\}$  for any  $n \in \mathbb{Z}_{\geq 0}$ . Additionally, AR is analogous to RA. We set  $RAR = \{r_1 a_1 \tilde{r_1} + \dots + r_n a_n \tilde{r_n} \mid r_i, \tilde{r_i} \in R, a_i \in A\}$ .
- (3) If A is a single element a, we write  $\langle a \rangle$  to denote the ideal generated by A and refer to this as a principal ideal. If A is finite, then we say  $\langle A \rangle$  is a finitely generated ideal.

For example, if  $R = \mathbb{Z}[x_1, x_2, ...]$ , then  $I = \langle x_1, x_2, ... \rangle$  is not finitely generated.

**Note:** If R is commutative, then  $\langle a \rangle = Ra$  and if R is not commutative,  $\langle a \rangle = RaR$ . For R commutative, we say that for  $b \in \langle a \rangle$ , b = ra for some  $r \in R$ . We say a divides b — if a divides b, then  $\langle b \rangle \subseteq \langle a \rangle$ .

### Principal Ideal: Example 1

Every ideal in  $\mathbb{Z}$  is a principal ideal.

Let  $I \subseteq \mathbb{Z}$  be a nonzero ideal (the zero ideal is generated by 0). Let  $m \in I$ ,  $m \neq 0$ . Since I is an ideal, if  $m \in I$ , so too is  $-m \in I$ . Therefore, we know there is a positive integer in I.

By the well-ordering principle, let  $n \in I$  be the smallest positive integer in I. Let  $a \in I$ ,  $a \neq 0$ . Write a = nq + r for  $q, r \in \mathbb{Z}$ , and  $0 \leq r < n$ . Then, we have r = a - nq. Since  $a \in I$  and  $n \in I$ ,  $r \in I$ . Therefore, r = 0, and  $n \mid a$ . Thus,  $I = n\mathbb{Z}$ .

### Principal Ideal: Example 2

Let  $R = \mathbb{Z}[x]$ . Consider  $I = \langle 2, x \rangle$ . We claim that I is not a principal ideal.

Suppose toward contradiction that  $\langle 2, x \rangle = \langle f(x) \rangle$  for some  $f(x) \in \mathbb{Z}[x]$ . Therefore, 2 = f(x)g(x) for some  $g(x) \in \mathbb{Z}[x]$ . Since degrees add,  $\deg(2) = \deg(f) + \deg(g)$ , or 0 = f(x)g(x). Therefore,  $f(x), g(x) \in \mathbb{Z}$ . Therefore, we must have that  $f(x) \in \{\pm 1, \pm 2\}$ .

So, we have elements of  $\langle 2, x \rangle$  of the form 2s(x) + xt(x). So we have constant term divisible by 2, meaning  $f(x) \neq \pm 1$ , so  $f(x) = \pm 2$ .

Then, x = 2h(x) for some  $h(x) \in \mathbb{Z}[x]$ . However, we have that h(x) has integer coefficients. Therefore,  $\langle 2, x \rangle \neq \langle f(x) \rangle$  for any  $f(x) \in \mathbb{Z}[x]$ .

# Proposition: Ideals in Unital Rings

Let I be an ideal of R.

- (1) I = R if and only if I contains a unit.
- (2) If R is commutative, then R is a field if and only if the only ideals in R are  $\langle 0_R \rangle$  and R.

Proof of (1): Suppose I = R. Then,  $1_R \in I$ , and  $1_R$  is a unit.

Suppose I contains a unit, u. Then, we have  $u^{-1} \in R$ . Since I is an ideal, we have  $uu^{-1} \in I$ , and  $uu^{-1} = 1_R$ . Letting  $r \in R$ , using the fact that I is an ideal,  $(r)(1_R) = r \in I$ . Thus, I = R.

Proof of (2): Suppose R is a field. Let I be any nonzero ideal. Every nonzero element in I is a unit, meaning I = R.

Suppose  $\langle 0_R \rangle$  and R are the only ideals in R. Let  $r \in R$ ,  $r \neq 0_R$ . Since  $r \neq 0$ ,  $\langle r \rangle = R$ . Thus,  $1_R \in \langle r \rangle$ . Thus,  $1_R = sr$  for some  $s \in R$ , implying every nonzero element of R has an inverse.

#### **Corollary: Field Homomorphisms**

Let F be a field, and  $\varphi: F \to R$  be a homomorphism. Then,  $\varphi$  is either the zero map  $(\varphi(f) = 0_R)$  or  $\varphi$  is injective.

Proof: Since  $\ker(\varphi)$  is an ideal in F by the first isomorphism theorem, then  $\ker(\varphi) = \langle 0_F \rangle$  or  $\ker(\varphi) = R$ . If  $\ker(\varphi) = \langle 0_F \rangle$ , then  $\varphi$  is injective, and if  $\ker(\varphi) = F$ , then  $\varphi$  is the zero map.

#### **Maximal Ideals**

- (1) An ideal  $\mathcal{M} \subseteq R$  is a maximal ideal if  $\mathcal{M} \neq R$  and the only ideals containing  $\mathcal{M}$  are  $\mathcal{M}$  and R. The collection of maximal ideals is denoted m-spec(R) or maxspec(R).
- (2) An ideal  $\mathfrak{p} \subseteq R$  with  $\mathfrak{p} \neq R$  is a prime ideal if whenever  $ab \in \mathfrak{p}$ , then  $a \in \mathfrak{p}$  or  $b \in \mathfrak{p}$ . We denote the collection of prime ideals  $\operatorname{Spec}(R)$ .

For example,  $Spec(\mathbb{Z}) = \{0\mathbb{Z}, p\mathbb{Z}\}\$  for p prime, and  $maxspec(\mathbb{Z}) = \{p\mathbb{Z}\}.$ 

**Aside:** Let R be commutative. The set Spec(R) is a topological space. Let  $A \subseteq R$  be any subset. Closed sets look like

$$V(A) = \{ \mathcal{P} \in \operatorname{Spec}(R) \mid A \subset \mathcal{P} \}$$
$$= V(I)$$
$$= \langle A \rangle$$

For example, if  $R = \mathbb{R}[x, y]$ , if  $f(x, y) = y - x^2$ , then  $V(f) = \{(a, b) \in \mathbb{R}^2 \mid f(a, b) = 0\}$ . The topology on Spec(R) is called the Zariski topology.

Let  $\varphi: R \to S$  be a ring homomorphism. If  $\mathcal{P} \in \operatorname{Spec}(S)$ , then  $\varphi^{-1}(\mathcal{P})$  is a prime ideal in R. We get a map  $\varphi^*(\operatorname{Spec}(S)) \to \operatorname{Spec}(R)$  given by  $\mathcal{P} \to \varphi^{-1}(\mathcal{P})$ .

We get a contravariant functor that takes  $R \mapsto \operatorname{Spec}(R)$ , mapping from the category of rings to the category of topological spaces.

### **Proposition: Existence of Maximal Ideals**

Let R be a ring. Every proper ideal is contained in a maximal ideal.

Let I be a proper ideal. Let S be the collection of all proper ideals that contain I. We know that S is non-empty as  $I \in S$ . Then, S has a partial ordering under inclusion.

Let  $\mathcal{C}$  be a chain of ideals (that is, totally ordered subset) in  $\mathcal{S}$ , and

$$J=\bigcup_{A\in\mathcal{C}}A.$$

Since  $C \neq \emptyset$ , there is at least one A in the union with  $0_R \in A$ . So,  $J \neq \emptyset$ . Let  $a, b \in J$ . There exists A with  $a \in A$  and b with  $b \in B$ . Since C is a chain, either  $A \subseteq B$  or  $B \subseteq A$ . So, a and b are both in either A or B. Thus, a-b and ab are in either A or B. Thus, a-b and ab are elements in J, meaning J is an ideal.

If J = R, then  $1_R \in J$ , meaning  $1_R$  is an element of some  $A \in \mathcal{C}$ . Since  $A \in \mathcal{S}$  is a proper ideal, this would be a contradiction.

Therefore, J is an upper bound for C. Since every chain in S has an upper bound in S, then, by Zorn's Lemma, there is a maximal element in S.

#### Proposition: Maximal Ideals, Quotient Rings, and Fields

An ideal  $\mathcal{M} \subseteq R$  of a commutative ring with identity is maximal if and only if  $R/\mathcal{M}$  is a field.

Suppose  $\mathcal{M}$  is maximal. Let  $x + \mathcal{M} \neq 0 + \mathcal{M}$ . We want to show that  $x + \mathcal{M}$  has an inverse.

Consider  $\langle x, \mathcal{M} \rangle$ , the ideal generated by x and  $\mathcal{M}$ . We have  $\mathcal{M} \subset \langle x, \mathcal{M} \rangle$ , as  $x \notin \mathcal{M}$ . Therefore,  $\langle x, \mathcal{M} \rangle = R$  by the definition of a maximal ideal. Therefore,  $1_R \in \langle x, \mathcal{M} \rangle$ , meaning  $1_R = xu + mv$  for some  $u, v \in R$ ,  $m \in \mathcal{M}$ . Note

$$(x + \mathcal{M})(u + \mathcal{M}) = xu + \mathcal{M}$$
$$= (1_R - mv) + \mathcal{M}$$
$$= 1_R + \mathcal{M}.$$

meaning  $x + \mathcal{M}$  has an inverse, meaning  $R/\mathcal{M}$  is a field.

Suppose  $R/\mathcal{M}$  is a field. Assume we have  $\mathcal{M} \subset I \subset R$  for some ideal I. From the third isomorphism theorem, we have  $I/\mathcal{M}$  is an ideal of  $R/\mathcal{M}$ . Specifically, by our construction,  $I/\mathcal{M}$  is a proper nonzero ideal of  $R/\mathcal{M}$ , but since  $R/\mathcal{M}$  is a field, no such proper nonzero ideal exists, meaning no such I exists.

# **Examples: Maximal Ideals**

- (1) Let  $R = \mathbb{Z}$ . Given  $m \in \mathbb{Z}$ , we know  $m\mathbb{Z}$  is a maximal ideal if and only if m is prime. If p|m and  $p \neq m$ , then  $m\mathbb{Z} \subseteq p\mathbb{Z}$ . Additionally, if p is prime, then  $\mathbb{Z}/p\mathbb{Z}$  is a field. Additionally,  $\mathbb{Z}/m\mathbb{Z}$  is not an integral domain if m is composite.
- (2) Let R = F[x] for F a field. Let  $\alpha \in F$  and consider  $\mathcal{M}_{\alpha} = \langle x \alpha \rangle$ . We claim that  $F[x]/\mathcal{M}_{\alpha} \cong \mathcal{F}$ , meaning  $\mathcal{M}$  is a maximal ideal.

Let  $\varphi: F[x] \to F$ ,  $x \mapsto \alpha$ ,  $f(x) \mapsto f(\alpha)$ . Let  $f(x), g(x) \in F[x]$ . Then,

$$\varphi(f+g) = (f+g)(\alpha)$$
$$= f(\alpha) + g(\alpha)$$
$$= \varphi(f) + \varphi(g)$$

and

$$\varphi(fg) = (fg)(\alpha)$$
$$= f(\alpha)g(\alpha)$$
$$= \varphi(f)\varphi(g).$$

Let  $\beta \in F$ . Then,

$$\varphi(\beta + (x - \alpha)) = \beta + (\alpha - \alpha)$$
$$= \beta.$$

Thus,  $\varphi$  is surjective. Finally, we have  $f(x) \in \ker(\varphi)$  if and only if  $f(\alpha) = 0$ . However,  $f(\alpha) = 0$  if and only if  $(x - \alpha)|f(x)$ . Therefore,  $\ker(\varphi) = \langle x - \alpha \rangle$ .

- (3) Let  $R = \mathbb{Z}[x]$ . Let  $\mathcal{M} = \langle 2, x \rangle$ . We saw that  $\mathbb{Z}[x]/\langle 2, x \rangle \cong \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ . Therefore, we know that  $\mathcal{M}$  is a maximal ideal by the above categorization.
- (4) Let  $R = \mathbb{F}_2[x]$ . Consider the ideal  $\mathcal{M} = \langle x^2 + x + 1 \rangle$ .

$$R/\mathcal{M} = \left\{ f(x) + \langle x^2 + x + 1 \rangle \mid f(x) \in \mathbb{F}_2[x] \right\}$$

$$f(x) = \left\{ (x^2 + x + 1)q(x) + r(x) \mid q(x), r(x) \in \mathbb{F}_2[x], \ r(x) = 0 \text{ or } \deg r(x) < 2 \right\}.$$

So.

$$f(x) + \mathcal{M} = r(x) + \mathcal{M}$$
.

meaning

$$R\mathcal{M} = \{0 + \mathcal{M}, 1 + \mathcal{M}, x + \mathcal{M}, 1 + x + \mathcal{M}\}.$$

This is a field.

| +                                              | $0+\mathcal{M}$   | $1+\mathcal{M}$           | x + M             | x + 1 + M                   |
|------------------------------------------------|-------------------|---------------------------|-------------------|-----------------------------|
| $0+\mathcal{M}$                                | 0                 | 1                         | X                 | x + 1                       |
| $1+\mathcal{M}$                                | 1                 | 0                         | 1 + x             | X                           |
| $x + \mathcal{M}$                              | X                 | 1 + x                     | 0                 | 1                           |
| x + 1 + M                                      | 1+x               | X                         | 1                 | 0                           |
|                                                |                   |                           |                   |                             |
| ×                                              | $0+\mathcal{M}$   | $1+\mathcal{M}$           | $x + \mathcal{M}$ | x + 1 + M                   |
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | $0 + \mathcal{M}$ | $\frac{1+\mathcal{M}}{0}$ | $x + \mathcal{M}$ | $\frac{x+1+\mathcal{M}}{0}$ |
|                                                |                   |                           |                   |                             |
| $0+\mathcal{M}$                                | 0                 | 0                         | 0                 | 0                           |

Specifically, this is a field of order 4. Note that  $\mathbb{F}_2 \hookrightarrow R/\mathcal{M}$ . We say  $R/\mathcal{M} \cong \mathbb{F}_4$ .

**Note:** For every p prime and every  $n \in \mathbb{Z}$  positive, there is exactly one field of order  $p^n$  up to isomorphism.

(5) Let  $R = \mathbb{Z}[i]$ . Set  $\mathcal{M} = \langle 3 \rangle$ . This is a maximal ideal, and  $|\mathbb{Z}[i]/\langle 3 \rangle| = 9$ .

# Proposition: Prime Ideals, Quotient Rings, and Integral Domains

Let R be a commutative ring with identity. An ideal  $\mathfrak{p} \subseteq R$  is a prime ideal if and only if  $R/\mathfrak{p}$  is an integral domain.

Let  $\mathfrak{p} \subseteq R$  be a prime ideal. Let  $x, y \in R$  with  $(x + \mathfrak{p})(y + \mathfrak{p}) = 0 + \mathfrak{p}$ . We have

$$xy + \mathfrak{p} = 0 + \mathfrak{p}$$

meaning

$$xy \in \mathfrak{p}$$
,

so, since p is prime,

$$x \in \mathfrak{p}$$

or

$$y \in \mathfrak{p}$$

so 
$$x + \mathfrak{p} = 0 + \mathfrak{p}$$
 or  $y + \mathfrak{p} = 0\mathfrak{p}$ .

In the reverse direction, assume  $R/\mathfrak{p}$  is an integral domain. Let  $xy \in \mathfrak{p}$ . Then,

$$(x + \mathfrak{p})(y + \mathfrak{p}) = xy + \mathfrak{p}$$
  
= 0 + \mathbf{p},

implying that  $x + \mathfrak{p}$  or  $y + \mathfrak{p}$  is equal to  $0 + \mathfrak{p}$ , or  $x \in \mathfrak{p}$  or  $y \in \mathfrak{p}$ .

### **Examples: Prime Ideals**

(1) If  $R = \mathbb{Z}[x]$ , then  $\mathfrak{p} = \langle x \rangle$  is a prime ideal that is not a maximal ideal, as  $\mathbb{Z}[x]/\langle x \rangle \cong \mathbb{Z}$ .

### Corollary: Maximal Ideals and Prime Ideals

Let R be a commutative ring with identity. Then,  $maxspec(R) \subseteq Spec(R)$ .

#### **Direct Products**

Let R and S be rings. The set

$$R \times S = \{(r, s) \mid r \in R, s \in S\}$$

is a ring under component-wise multiplication and addition.

**Exercise:** Let  $R_1, \ldots, R_n$  be rings. Let

$$\varphi: R \to R_1 \times \cdots \times R_n$$

be a map. Define

$$\pi_j: R_1 \times \cdots \times R_n \to R_j$$
  
 $(r_1, \dots, r_n) \mapsto r_j.$ 

Show  $\varphi$  is a homomorphism if and only if  $\pi_j \circ \varphi$  is a homomorphism for each j.

### **Comaximal Ideals**

Recall that  $a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$ . If  $\gcd(a, b) = 1$ , then  $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$ . Conversely, if  $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$ , then am + bn = 1 for some  $m, n \in \mathbb{Z}$ . Thus,  $\gcd(a, b) = 1$ .

Let I, J be ideals in a commutative ring R. We say I and J are comaximal if I + J = R.

#### **Chinese Remainder Theorem**

Let  $I_1, \ldots, I_n$  be ideals in a commutative ring R. The map

$$\varphi: R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n$$
$$r \mapsto (r + I_1, r + I_2, \dots, r + I_n)$$

is a ring homomorphism with kernel  $I_1 \cap \cdots \cap I_n$ . If  $I_i, I_j$  are comaximal for all  $1 \le i, j \le n$  with  $i \ne j$ , then  $\varphi$  is surjective, and  $I_1 \cap \cdots \cap I_n = (I_1)(I_2) \cdots (I_n)$ , so

$$R/((I_1)(I_2)\cdots(I_n))\cong R/(I_1\cap\cdots\cap I_n)\cong R/I_1\times\cdots\times R/I_n.$$

#### Corollary to the Chinese Remainder Theorem (1)

Let 
$$n = p_1^{e_1} \cdots p_r^{e_r} \in \mathbb{Z}$$
. Then,

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{e_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_r^{e_r}\mathbb{Z}.$$

Moreover,

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{e_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_r^{e_r}\mathbb{Z})^{\times}.$$

### Corollary to the Chinese Remainder Theorem (2)

Let  $n_1, \ldots, n_k$  be positive integers that are pairwise relatively prime. Then, for any  $a_1, \ldots, a_k \in \mathbb{Z}$ , there is a  $x \in \mathbb{Z}$  satisfying

$$x \equiv a_1 \mod n_1$$

$$\vdots$$

$$x \equiv a_k \mod n_k$$

This solution is unique modulo  $n_1, \ldots, n_k$ . If we set

$$m_i = n_1 \cdots \hat{n_i} \cdots n_k$$
,

and  $y_i$  as the inverse of  $m_i \mod n_i$ . The solution x is given by

$$x = a_1 y_1 m_1 + \dots + a_k y_k m_k.$$

We will prove the Chinese Remainder Theorem by induction, with the base case of n = 2:

$$\varphi: R \to R/I_1 \times R/I_2$$
$$r \mapsto (r + I_1, r + I_2).$$

We can verify that this is a homomorphism, with  $\ker(\varphi) = I_1 \cap I_2$ . Assume  $I_1$  and  $I_2$  are comaximal:  $I_1 + I_2 = R$ . In particular, there exist  $x \in I_1$  and  $y \in I_2$  such that  $x + y = 1_R$ . Note that

$$\varphi(x) = (x + I_1, x + I_2)$$

$$= (0 + I_1, 1_R - y + I_2)$$

$$= (0 + I_1, 1_R + I_2)$$

and

$$\varphi(y) = (1_R + I_1, 0 + I_2).$$

Let  $(r_1 + I_1, r_2 + I_2) \in R/I_1 \times R/I_2$ . Set  $z = r_2x + r_1y$ . Then,

$$\varphi(z) = (r_2x + r_1y + l_1, r_2x + r_1y + l_2)$$
  
=  $(r_1 + l_1, r_2 + l_2)$ .

So,  $\varphi$  is surjective, and we get  $R/I_1 \cap I_2 \cong R/I_1 \times R/I_2$ .

We also have that  $(I_1)(I_2) \subseteq I_1 \cap I_2$ . Let  $z \in I_1 \cap I_2$ . We have

$$z = z(1_R)$$

$$= z(x + y)$$

$$= zx + zy$$

$$\in (I_1)(I_2).$$

Therefore,  $R/(I_1)(I_2) \cong R/I_1 \cap I_2$ .

Suppose the result holds for all values up to  $2 \le n \le k-1$ . Write  $J_1 = I_1$  and  $J_2 = (I_2)(I_3) \cdots (I_k)$ . We only need to show that  $J_1$  and  $J_2$  are comaximal, then apply n=2 to  $J_1$ ,  $J_2$  and n=k-1 to split up  $J_2$ .

For each  $i \in \{2, ..., k\}$ , there are elements  $x_i \in I_1$  and  $y_i \in I_i$  such that  $x_i + y_i = 1_R$ . We have  $x_i + y_i \equiv y_i \pmod{I_1}$ , so

$$1_R = (x_2 + y_2)(x_3 + y_3) \times (x_k + y_k)$$

is an element of  $J_1 + J_2$ .

# Localization

Where does  $\mathbb{Q}$  come from?

Consider the sets  $\mathbb{Z}$  and  $\Sigma = \mathbb{Z} \setminus \{0\}$ . Set

$$\Sigma^{-1}\mathbb{Z} = \{(a, b) \mid a \in \mathbb{Z}, b \in \Sigma\}.$$

Define  $\sim$  on  $\Sigma^{-1}\mathbb{Z}$  by

$$(a, b) \sim (c, d)$$
 if  $ad = bc$ .

This is an equivalence relation:

Reflexivity:

$$(a, b) \sim (a, b)$$
  
 $ab = ab$ .

Symmetry:

$$(a, b) \sim (c, d)$$
$$ad = bc$$
$$bc = ad$$
$$(c, d) = (a, b)$$

**Transitivity:** Suppose  $(a, b) \sim (c, d)$  and  $(c, d) \sim (e, f)$ , meaning ad = bc and cf = de. We need to show af = be.

$$ad - bc = 0$$

$$cf - de = 0$$

$$adf - bcf = 0$$

$$bcf - bde = 0$$

$$(adf - bcf) + (bcf - bde) = 0$$

$$(af - be)(d) = 0$$

and since  $d \neq 0$  and we are in  $\mathbb{Z}$ ,

$$af = be$$
,

meaning  $(a, b) \sim (e, f)$ .

Let  $\frac{a}{b}$  denote the equivalence class containing (a, b). We define

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

**Exercise:** Show that addition and multiplication are well-defined, and make the collection of equivalence classes into a field.

The field of equivalence classes  $\Sigma^{-1}\mathbb{Z}$  under the defined addition and multiplication forms the field  $\mathbb{Q}$ .

Let R be a ring. We say  $\Sigma \subseteq R$  is multiplicatively closed if, given  $a, b \in \Sigma$ ,  $ab \in \Sigma$ .

- (1)  $\Sigma = \mathbb{Z} \setminus \{0\}$  is multiplicatively closed.
- (2) Let  $r \in R$ . Then,  $\Sigma = \{r^n \mid n \in \mathbb{Z}\}.$
- (3) Let  $\mathfrak{p} \in R$ . Then,  $R \setminus \mathfrak{p}$  is multiplicatively closed (verify this).

#### **Universal Property**

Let R be a commutative ring with identity and  $\Sigma \subseteq R$  a multiplicatively closed subset with  $1_R \in \Sigma$ . There is a unique commutative ring  $\Sigma^{-1}R$  and ring homomorphism

$$\pi: R \to \Sigma^{-1}R$$

satisfying for any homomorphism  $\psi: R \to S$  that sends  $1_R$  to  $1_S$  and  $\psi(\Sigma) \subseteq S^\times$ , there is a unique homomorphism

$$\Psi: \Sigma^{-1}R \to S$$

such that  $\Psi \circ \pi = \psi$ .

$$R \xrightarrow{\pi} \Sigma^{-1}R$$

$$\downarrow^{\Psi}$$

$$\varsigma$$

Let  $\mathcal{F} = \{(r, d) \mid r \in R, d \in \Sigma\}$ . Define a relation  $(r_1, d_1) \sim (r_2, d_2)$  if  $x(r_1 d_2 - r_2 d_1) = 0$  for some  $x \in \Sigma$ .

We claim that  $\sim$  is an equivalence relation.

- (i) It is clear that  $(r, d) \sim (r, d)$ .
- (ii) If  $(r_1, d_1) \sim (r_2, d_2)$ , it is clear that  $(r_2, d_2) \sim (r_1, d_1)$ .
- (iii) Suppose  $(r_1, d_1) \sim (r_2, d_2)$ , and  $(r_2, d_2) \sim (r_3, d_3)$ . We have  $x, y \in \Sigma$  such that

$$x(r_1d_2 - r_2d_1) = 0$$
  
$$y(r_2d_3 - r_3d_2) = 0.$$

Therefore, we have

$$d_3yx(r_1d_2 - r_2d_1) = 0$$
  
$$d_1xy(r_2d_3 - r_3d_2) = 0.$$

Adding together, we have

$$d_3yx(r_1d_2 - r_2d_1) + d_1xy(r_2d_3 - r_3d_2) = d_3xyr_1d_2 - d_1xyr_3d_2$$
$$d_2xy(r_1d_3 - r_3d_1) = 0$$

Since  $d_2, x, y \in \Sigma$ ,  $d_2xy \in \Sigma$ , and we have  $(r_1, d_1) \sim (r_3d_3)$ .

Since  $\sim$  is an equivalence relation on  $\mathcal{F}$ , we set  $\Sigma^{-1}R$  to be the equivalence classes of  $\sim$  on  $\mathcal{F}$ . We denote the equivalence class containing (r, d) as  $\frac{r}{d}$ . We define addition and multiplication as

$$\frac{r_1}{d_1} + \frac{r_2}{d_2} = \frac{r_1 d_2 + r_2 d_1}{d_1 d_2}$$
$$\frac{r_1}{d_1} \frac{r_2}{d_2} = \frac{r_1 r_2}{d_1 d_2}.$$

These operations are well defined, and make  $\Sigma^{-1}R$  into a commutative ring with  $1_{\Sigma^{-1}R} = \frac{1}{1}$ .

Defining  $\pi: R \to \Sigma^{-1}R$  with  $r \mapsto \frac{r}{1}$ , we can verify that  $\pi$  is a homomorphism. Let  $\psi: R \to S$  with  $\psi(\Sigma) \subseteq S^{\times}$ , and  $\psi(1_R) = 1_S$ . Then, we define  $\Psi: \Sigma^{-1}R \to S$  as  $\frac{r}{d} \mapsto \psi(r)\psi(d)^{-1}$ .

To show this map is well-defined, let  $\frac{a}{b} = \frac{c}{d}$ . So, x(ad - bc) = 0 for some  $x \in \Sigma$ . Since  $\psi$  is a homomorphism,

$$\psi(x)(\psi(a)\psi(d) - \psi(b)\psi(c)) = 0.$$

Since  $x \in \Sigma$ ,  $\psi(x) \in S^{\times}$ , meaning

$$\psi(a)\psi(d) - \psi(b)\psi(c) = 0.$$

Since  $b, d \in \Sigma$ ,  $\psi(b), \psi(d) \in S^{\times}$ . Therefore,

$$\psi(a)\psi(d) = \psi(c)\psi(b)$$
  
$$\psi(a)\psi(b)^{-1} = \psi(c)\psi(d)^{-1}.$$

We can easily verify that  $\Psi$  is a ring homomorphism, and  $\Psi \circ \pi = \psi$ .

For example, if  $R = \mathbb{Z}$  and  $\Sigma = \mathbb{Z} \setminus \{0\}$ , then  $\Sigma^{-1}\mathbb{Z} = \mathbb{Q}$ , then for  $\pi : \mathbb{Z} \hookrightarrow \mathbb{Q}$ , and a homomorphism from  $\mathbb{Z}$  into a set S, there must exist a map from  $\mathbb{Q}$  to S.

Consider  $\mathbb{Z}$  with  $\Sigma = \mathbb{Z} \setminus p\mathbb{Z}$ . Then,  $\Sigma^{-1}\mathbb{Z} = \{(a,b) \mid a \in \mathbb{Z}, p \not| b\} = \mathbb{Z}_{\langle p \rangle}$ . We saw on an earlier homework assignment that  $\mathbb{Z}_{\langle p \rangle}/p\mathbb{Z}_{\langle p \rangle} \cong \mathbb{F}_p$ , meaning it is a maximal ideal (as if  $a \not| p$ , then a/b is a unit in  $\mathbb{Z}_{\langle p \rangle}$ ). The only other ideals are  $p^m\mathbb{Z}_{\langle p \rangle}$ , so we have a chain

$$p\mathbb{Z}_{\langle p\rangle}\supseteq p^2\mathbb{Z}_{\langle p\rangle}\supseteq\cdots$$
.

# Corollary to the Universal Property

Given  $\pi$ ,  $\psi$ , and  $\Psi$  as defined above, we have the following.

- (1)  $\ker \pi = \{r \in R \mid xr = 0 \text{ for some } x \in \Sigma\}$ . In particular,  $\pi$  is an injection if  $\Sigma$  does not contain zero or any zero divisors.
- (2)  $\Sigma^{-1}R = 0$  if and only if  $0 \in \Sigma$ .

Recall that  $\pi(r) = \frac{r}{1}$ . Recall that  $r \in \ker \pi$  if and only if  $\frac{r}{1} = \frac{0}{1}$ , which is true if and only if  $x(r \cdot 1 - 0 \cdot 1) = 0$  for some  $x \in \Sigma$ , meaning xr = 0.

 $\Sigma^{-1}R = 0$  if and only if  $(1,1) \sim (0,1)$ , which is true if and only if  $x \cdot 1 = 0$  for some  $x \in \Sigma$ , which is only true if  $x = 0 \in \Sigma$ .

The ring  $\Sigma^{-1}R$  is called the localization of R at  $\Sigma$ . If R is an integral domain and  $\Sigma = R \setminus \{0\}$ , then  $\Sigma^{-1}R$  is known as the field of fractions of R, or Frac(R).

#### **Corollary: Field of Fractions**

Let R be an integral domain,  $\Sigma = R \setminus \{0\}$ . Let  $F = \operatorname{Frac}(R)$ . Let K be any field that contains a subring  $S \cong R$ . Then, any field of K generated by S (i.e., the intersection of all subfields that contain S) is isomorphic to F.

The proof is left as an exercise for the reader.

For an outline, consider  $\varphi: R \xrightarrow{\simeq} S \subseteq K$ . Recall that  $\Sigma = R \setminus \{0\}$ . Consider  $\varphi(\Sigma)$  from R to K, and use the universal property.

#### **Localization Examples**

(1) Let R be an integral domain, R[x] be the set of polynomials. Then, for  $\Sigma = R[x] \setminus \{0\}$ ,

$$\operatorname{Frac}(R[x]) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in R[x], g(x) \neq 0 \right\}$$

is the field of rational functions.

(2) Let R be a commutative ring with identity, and let  $f \in R$ . Set  $\Sigma = \{f^n \mid n \ge 0\}$ . We form  $\Sigma^{-1}R$ , denoted  $R_f$ . Then,  $R_f = 0$  if and only if  $f^n = 0$  for some  $n \ge 0$ .

If f is not nilpotent, then  $R_f \neq 0$ , meaning f is invertible in  $R_f$ . We have

$$R_f \cong R[x]/\langle xf - 1 \rangle$$
.

(3) Consider  $R = K[x, y]/\langle xy \rangle$  for K any field. We set f = x. Note that f is not nilpotent, but f is a zero divisor. Note that f is invertible in  $R_f$ .

Consider  $\pi: R \to R_f$ ,  $g \mapsto \frac{g}{1}$ . We have  $y \mapsto \frac{y}{1}$ . However, in  $R_f$ , x is invertible, so  $1 = \frac{x}{x} \in R_f$ . So,  $\frac{y}{1} = \frac{y}{1} \cdot \frac{x}{x} = \frac{xy}{x} = \frac{0}{1}$ . In this case, we do not have that R injects into  $R_f$ .

**Exercise:** For  $\pi: R \to R_f$ , we have  $\pi(R) = K[x] \subseteq R_f = K[x, x^{-1}]$ .

### **Proposition: Localization by Prime Ideal**

The ring R is the zero ring if and only if  $R_{\mathfrak{p}} = 0$  for all  $\mathfrak{p} \in \operatorname{Spec}(R)$ .

If R = 0, then clearly  $R_{\mathfrak{p}} = 0$  for all  $\mathfrak{p} \in \operatorname{Spec}(R)$ .

In the reverse direction, suppose  $R_{\mathfrak{p}}=0$  for all  $\mathfrak{p}\in\operatorname{Spec}(R)$ . Pick  $r\in R, r\neq 0$ . Set

$$I = Ann_R(r) = \{x \in R \mid xr = 0\}$$

to be the annihilator of r. We can verify that l is an ideal. Since  $r \neq 0$ ,  $1_R \notin I$ , meaning l is a proper ideal. Since l is a proper ideal,  $l \subset \mathcal{M}$  for some maximal ideal  $\mathcal{M}$ .

Consider  $R_{\mathcal{M}}$ . We have  $\frac{r}{1} \in R_{\mathcal{M}}$ . However, as  $\mathcal{M}$  is maximal,  $\mathcal{M}$  is prime, so  $R_{\mathcal{M}} = 0$ . There exists  $s \in \Sigma = R \setminus \mathcal{M}$  such that sr = 0. So,  $s \in I$ . However,  $I \subset \mathcal{M}$ , and  $s \notin \mathcal{M}$ . Thus, r = 0.

# **Vector Spaces**

Let  $\mathbb{F}$  be a field. We say V is a  $\mathbb{F}$ -vector space if V is an Abelian group under addition with the scalar product  $\mathbb{F} \times V \to V$ ,  $(\alpha, v) \to \alpha v$  satisfying

- (a) (a+b)v = av + bv for all  $a, b \in \mathbb{F}, v \in V$
- (b) (ab)v = a(bv)
- (c) a(v+w) = av + aw for all  $a \in \mathbb{F}$ ,  $v, w \in V$
- (d) 1v = v for all  $v \in V$ .

A set  $B \subseteq V$  is said to be linearly independent if whenever

$$\sum_{i=1}^{m} a_i v_i = 0 \Rightarrow a_1 = a_2 = \dots = a_m = 0$$

For  $B \subseteq V$ , the  $\mathbb{F}$ -span of B is

$$\operatorname{span}_{\mathbb{F}}(B) = \{a_1v_1 + \cdots + a_mv_m \mid a_i \in \mathbb{F}\}.$$

If  $\operatorname{span}_{\mathbb{F}}(B) = V$ , then we say B spans V. If B is linearly independent and spans V, then we say B is a  $\mathbb{F}$ -basis for V.

#### **Examples: Vector Spaces and Bases**

(1) The set  $\mathbb{F}^n = \{(a_1, \dots, a_m) \mid a_i \in \mathbb{F}\}$  is an  $\mathbb{F}$ -vector space with basis

$$B = \{e_i\}_{i=1}^n$$
.

(2)  $V = \mathbb{F}[x]$  is an  $\mathbb{F}$ -vector space with basis  $\{1, x, x^2, \dots\}$ .

### **Proposition: Basis Maximality**

Let  $B = \{v_1, \dots, v_n\}$  be a spanning set for V. Assume no proper subset of B spans V. Then, B is a basis for V

Assume  $a_1 \neq 0$ . We have

$$v_1 = \frac{-1}{a_1} (a_2 v_2 + \cdots + a_n v_n),$$

so  $v \in \operatorname{span}_{\mathbb{F}}(v_2, \ldots, v_n)$ . Thus,

$$V = \operatorname{span}_{\mathbb{F}}(v_1, v_2, \dots, v_n) \subset \operatorname{span}_{\mathbb{F}}(v_2, \dots, v_n),$$

which is a contradiction as we assumed no proper subset of B spanned V.

### **Proposition: Finite Spanning Sets and Basis**

Let B be a finite spanning set of V. Then, B contains a basis for V.

The proof is clear from the definition of basis.

### **Example: Basis of a Vector Space**

Let  $f \in \mathbb{F}[x]$ . Consider  $V = \mathbb{F}[x]/\langle f(x) \rangle$  (the quotient space of  $\mathbb{F}[x]$  formed by f(x)). Then, for  $g(x) \in \mathbb{F}[x]$ , we can write g(x) = f(x)g(x) + r(x), where r(x) = 0 or  $\deg(r(x)) < \deg(f(x))$ . Then,

$$g(x) + \langle f(x) \rangle = (f(x)q(x) + r(x)) + \langle f(x) \rangle$$
$$= r(x) + \langle f(x) \rangle.$$

Therefore,

$$\{1+\langle f(x)\rangle, x+\langle f(x)\rangle, \dots x^{n-1}+\langle f(x)\rangle\}$$

where  $n = \deg(f(x))$  is a spanning set for  $\mathbb{F}[x]/\langle f(x)\rangle$ .

Suppose

$$(a_0 + \langle f(x) \rangle) + (a_1 x + \langle f(x) \rangle) + \dots + (a_{n-1} x^{n-1} + \langle f(x) \rangle) = 0 + \langle f(x) \rangle$$
$$\sum_{i=0}^{n-1} a_i x^i + \langle f(x) \rangle = 0 + \langle f(x) \rangle.$$

Then,  $f(x)|\sum_{i=0}^{n-1} a_i x^i$ . However,  $\deg(f(x)) = n$ , so we must have  $a_0 = a_1 = \cdots = a_{n-1} = 0$ .

#### Theorem: Reordering a Basis

Let  $B = \{v_1, \dots, v_n\}$  be a basis for V. Let  $A = \{w_1, \dots, w_m\}$  be linearly independent vectors. Then, there is a reordering of B such that  $\{w_1, \dots, w_i, v_{i+1}, \dots, v_n\}$  is a basis for V.

We will prove this by induction. For the base case, we have i = 0, which means there is no replacement, and the hypothesis of the theorem is satisfied.

The induction hypothesis is that  $S = \{w_1, \dots, w_i, v_{i+1}, \dots, v_n\}$  is a basis for V. Since S is spanning,

$$W_{i+1} = a_1 W_1 + \cdots + a_i W_i + a_{i+1} V_{i+1} + \cdots + a_n V_n$$

If  $a_{i+1} = a_{i+2} = \cdots = a_n = 0$ , then  $w_{i+1} \in \operatorname{span}_{\mathbb{F}}(w_1, \ldots, w_i)$ , which contradicts A being linearly independent.

After reordering, we can assume  $a_{i+1} = 0$ . Thus,

$$v_{i+1} = \frac{1}{a_{i+1}} \left( w_{i+1} - a_1 w_1 - \dots - a_i w_i - a_{i+2} v_{i+2} - \dots - a_n v_n \right) \tag{*}$$

Hence,

$$\operatorname{span}_{\mathbb{F}}(w_1, \ldots, w_i, v_{i+1}, \ldots, v_n) = \operatorname{span}_{\mathbb{F}}(w_1, \ldots, w_{i+1}, v_{i+1}, \ldots, v_n).$$

Suppose  $b_1w_1 + \cdots + b_{i+1}w_{i+1} + b_{i+1}v_{i+1} + \cdots + b_nv_n = 0$ . We replace  $w_{i+1}$ , and find

$$0 = b_1 w_1 + \dots + b_{i+1} (a_1 w_1 + \dots + a_i w_i + a_{i+1} v_{i+1} + \dots + a_n v_n) + b_{i+2} v_{i+2} + \dots + b_n v_n$$
  
=  $(b+1+b_{i+1}a_1)w_1 + \dots + b_{i+1}a_{i+1}v_{i+1} + \dots + (b_{i+2}+b_{i+1}a_{i+1})v_{i+1} + \dots + (b_n+b_na_n)v_n$ 

Since  $\{w_1, \ldots, w_i, v_{i+1}, \ldots, v_n\}$  is a coefficient, we know all coefficients are zero. Specifically,  $b_{i+1}a_{i+1}=0$ . Since  $a_{i+1}\neq 0$  by assumption, we know that  $b_{i+1}=0$ . Then,

$$b_1 w_1 + \cdots + b_i w_i + b_{i+2} + \cdots + b_n v_n = 0.$$

So, 
$$b_{i+1} = b_1 = \cdots = b_i = \cdots = b_n$$
.

#### **Corollary: Linearly Independent Sets in Vector Spaces**

- (1) Let V have a finite basis with n elements. Any linearly independent set must have n or fewer elements. Any spanning set must have n or greater elements.
- (2) If V has a finite basis with n elements, any other basis must also have n elements.

#### **Finite-Dimensional Vector Spaces**

Let V have a basis of n elements over a field  $\mathbb{F}$ . We say the dimension of V over  $\mathbb{F}$  is n, and write  $\dim_{\mathbb{F}} V = n$ . We say V is finite-dimensional if such n is finite; otherwise, we say V is infinite-dimensional.

#### **Examples: Dimensions of Vector Spaces**

- (1)  $\dim_{\mathbb{R}} \mathbb{R}^n = n$
- (2)  $\dim_{\mathbb{C}} \mathbb{C}^n = n$ ,  $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$  (verify this for yourself)
- (3)  $\dim_{\mathbb{Q}} \mathbb{R} = \infty$
- (4) For  $\deg(f(x)) = n$ ,  $\dim_{\mathbb{F}}(\mathbb{F}[x]/\langle f(x)\rangle) = n$

### **Subspaces**

Let  $W \subseteq V$  be a subgroup. If W is closed under scalar multiplication, then W is known as a subspace of V.

- (1)  $\mathbb{Q}^n$  is a  $\mathbb{Q}$ -subspace of  $\mathbb{R}^n$ , but it is *not* an  $\mathbb{R}$ -subspace of  $\mathbb{R}^n$  (it is not closed under scalar multiplication by  $\mathbb{R}$ ).
- (2)  $W = \{a + bx \mid a, b \in \mathbb{F}\}$  is an  $\mathbb{F}$ -subspace of  $\mathbb{F}[x]$ .

### **Corollary: Basis and Subspace**

Let A be a set of linearly independent vectors in a finite-dimensional vector space V. There is a basis of V that contains A. In particular, if  $W \subseteq V$  is a subspace and A is a basis of W, then there is a basis of V that contains A.

Taking  $B = \{v_1, \dots, v_n\}$  as a basis for V, we replace vectors in B with vectors from A.

#### **Linear Transformations**

Let V, W be  $\mathbb{F}$ -vector spaces. A map  $T: V \to W$  is said to be a linear transformation if, for all  $v_1, v_2 \in V$  and  $\alpha, \beta \in \mathbb{F}$ ,

$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2).$$

The collection of all linear transformations between V and W is denoted  $\operatorname{Hom}_{\mathbb{F}}(V,W)$ .

#### **Lemma: Isomorphism of Finite-Dimensional Vector Spaces**

If V is an  $\mathbb{F}$ -vector space of dimension n, then  $V \cong \mathbb{F}^n$  as  $\mathbb{F}$ -vector spaces.

Let  $B = \{v_1, \dots, v_n\}$  be a basis of V. Define

$$T: \mathbb{F}^n \to V$$

$$(a_1, \dots, a_n) \mapsto a_1 v_1 + \dots + a_n v_n.$$

Let  $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in \mathbb{F}^n, \alpha \in \mathbb{F}$ . We have

$$T(\alpha(a_1, ..., a_n) + (b_1, ..., b_n)) = T((\alpha a_1 + b_1, ..., \alpha a_n + b_n))$$

$$= (\alpha a_1 + b_1)v_1 + ... + (\alpha a_n + b_n)v_n$$

$$= \alpha(a_1v_1 + ... + a_nv_n) + (b_1v_1 + ... + b_nv_n)$$

$$= \alpha T((a_1, ..., a_n)) + T((b_1, ..., b_n)).$$

Let  $v \in V$ . Then,  $v = a_1v_1 + \cdots + a_nv_n$  for some  $a_1, \ldots, a_n \in \mathbb{F}$ . So,

$$T((a_1,\ldots,a_n)) = a_1v_1 + \cdots + a_nv_n$$
  
=  $v$ .

Suppose  $T((a_1, ..., a_n)) = T((b_1, ..., b_n))$ . Then,

$$a_1v_1 + \dots + a_nv_n = b_1v_1 + \dots + b_nv_n$$
  

$$0 = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n.$$

Since  $\{v_1, \ldots, v_n\}$  is linearly independent,  $a_i - b_i = 0$  for all  $i \in \{1, \ldots, n\}$ , meaning  $a_i = b_i$  for all i. Thus, T is bijective.

#### **Example: Vector Space Bases**

(1) Define  $\mathfrak{SL}_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{Mat}_2(\mathbb{R}) \mid a+d=0 \right\}$ . This is a 3-dimension  $\mathbb{R}$ -vector space with basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

- (2) We define  $SL_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in Mat_2(\mathbb{R}) \mid ad bc = 1 \right\}$  as a Lie group.
- (3) If  $\mathbb{F}$  is a finite field with q elements, we want to consider the vector space  $V = \mathbb{F}^n$  and find the number of potential bases.

After selecting  $v_1$  (for which there are  $q^n-1$  choices), we choose  $v_2$  by throwing away  $\mathbb{F}_{v_1}$ , meaning there are  $q^n-q$  choices for  $v_2$ . Iteratively, we have, for  $v_{i+1}$ ,  $q^n-q^i$  choices. Therefore, there are

$$\prod_{i=0}^{n-1} q^n - q^i$$

choices of basis for  $\mathbb{F}^n$ .

### Theorem: Dimension of Quotient Space

Let V be an F-vector space and W a subspace. Then, V/W is a vector space and  $\dim_F(V) = \dim_F(W) + \dim_F(V/W)$  (including infinite-dimensional spaces).

Note that  $V/W = \{v + W \mid v \in V\}$  is an abelian group. We define scalar multiplication as  $\alpha(v + W) = \alpha v + W$ . This can be verified as a vector space.

Assume V is finite-dimensional. Let  $\{w_1, \ldots, w_m\}$  be a basis for W. By our earlier lemma, we can expand this set to a basis of V,  $\{w_1, \ldots, w_m, v_{m+1}, \ldots, v_n\}$ . Define  $\pi: V \to V/W$  as  $v \to v + W$ .

This is a surjective linear map with  $W \subseteq \ker \pi$ . We claim that  $\{v_{m+1} + W, \dots, v_n + W\}$  is a basis for V/W. Let  $v \in V$ . Write

$$v = \sum_{i=1}^{m} a_i w_i + \sum_{j=m+1}^{n} a_j v_j$$

meaning

$$\pi(v) = W + \sum_{j=m+1}^{n} a_j(v+W),$$

meaning  $\{v_{m+1}+W,\ldots,v_n+W\}$  spans V/W. To show linear independence, suppose  $\sum_{j=m+1}^n a_j(v+W)=0+W$ . Then,

$$\left(\sum_{j=m+1}^{n} a_j v_j\right) + W = 0 + W$$

meaning

$$\sum_{j=m+1}^{n} a_j v_j \in W.$$

However, since  $\{w_1, \ldots, w_m, v_{m+1}, \ldots, v_n\}$  is linearly independent, this cannot be the case unless  $\sum_{j=m+1}^n a_j v_j = 0$ , so  $a_{m+1} = \cdots = a_n = 0$ . Therefore,  $\{v_{m+1} + W, \ldots, v_n + W\}$  is a basis, so the dimension of V/W is n - m.

If  $\dim_F(V) = \infty$  and  $\dim_F(W) = \infty$ , then we are done. Otherwise, if  $\dim_F(V) = \infty$  and  $\dim_F(W) < \infty$ , take a basis  $\{w_1, \ldots, w_m\}$  of W. Pick  $v_1 \in V$ ,  $v_1 \notin W$ . Put  $v_1 + W$  in  $\mathcal{B}$ . Pick  $v_2 \in V$ ,  $v_2 \notin W \cup \operatorname{span}_F\{v_1\}$ , and put  $v_2 + W$  into  $\mathcal{B}$ . Continue this process. Then,  $\dim_F(V/W) = \infty$ .

### Corollary: Kernel of Linear Transformations and Subspaces

Let  $T \in \operatorname{Hom}_F(V, W)$ . Then,  $\ker T$  is a subspace of V, T(V) is a subspace of W, and  $\dim_F(V) = \dim_F \ker T + \dim_F T(V)$ .

To prove this, we use something akin to the first isomorphism theorem.

#### Corollary: Linear Transformations between Vector Spaces of Identical Finite Dimension

Let  $T \in \text{Hom}_F(V, W)$  with  $\dim_F(V) = \dim_F(W) = n$ . Then, the following are equivalent:

- (i) T is an isomorphism;
- (ii) T is injective;
- (iii) T is surjective;
- (iv) T sends a basis of V to a basis of W.

#### Field Extensions and Characteristics

Let K and F be fields. If  $F \subseteq K$ , then we say K is an extension field of F (note that K is also an F-vector space). Denote K as an extension field by K/F (yes, this is very bad notation).

Viewing K as an F-vector space, we say the degree of K over F means  $\dim_F(K)$ , written as  $\deg(K/F)$ . If  $\deg(K/F) < \infty$  ,we say K is a finite extension of F. If  $\deg(K/F) = \infty$ , it is an infinite extension.

- (1) For  $F = \mathbb{R}$ ,  $K = \mathbb{C}$ , we have  $\deg(K/F) = 2$ .
- (2) For  $K = \mathbb{Q}(\sqrt{2})$ ,  $\deg(K/\mathbb{Q}) = 2$ .
- (3) For  $K = \mathbb{R}$  and  $F = \mathbb{Q}$ , then  $\deg(\mathbb{R}/\mathbb{Q}) = \infty$ .

For K a field, K has characteristic n if  $n \cdot 1_R = 0_K$  and no smaller value of n satisfies this criterion. If there is no such n, then K has characteristic 0. For example,  $\operatorname{char}(\mathbb{Q}) = 0$  and  $\operatorname{char}(\mathbb{F}_p) = p$ .

Since fields are integral domains, all characteristics must be 0 or prime.

Suppose K has characteristic zero. Then, the map

$$f: Z \hookrightarrow K$$

$$n \mapsto \underbrace{1_K + \dots + 1_K}_{k \text{ times}}$$

$$0 \mapsto 0_K$$

$$-n \mapsto \underbrace{-1_K - \dots - 1_K}_{k \text{ times}}$$

$$\vdots$$

implying that  $\mathbb{Q} \hookrightarrow K$ . Thus, if K has characteristic 0, it is automatically an extension field of  $\mathbb{Q}$ .

If K has characteristic p, then  $\mathbb{Z} \xrightarrow{\varphi} K$  with  $\ker \varphi \supseteq p\mathbb{Z}$  implies that  $\ker \varphi = p\mathbb{Z}$ . Thus,  $\mathbb{Z}/p\mathbb{Z} \cong \operatorname{im} \varphi$ . Every field is an extension of either  $\mathbb{Q}$  or  $\mathbb{F}_p$ .

### **Polynomial Division Algorithm**

Let F be a field,  $f(x), g(x) \in F[x], g(x) \neq 0$ . Then, there exist unique  $g(x), r(x) \in F[x]$  with r(x) = 0 or deg g(x) such that f(x) = g(x)g(x) + r(x).

We will use induction on deg f. If  $\deg(f)=0$ , then  $f\in F$ . If  $g\notin F$ , then  $f=g\cdot 0+f$ . If  $g\in F$ , then  $f=g\cdot \frac{f}{g}+0$ .

Assume the result holds for any polynomial with degree less than or equal to n-1. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0$$
  
$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0, b_m \neq 0$$

If m > n, then  $f = g \cdot 0 + f$ . Suppose  $m \le n$ . Consider the polynomial

$$\tilde{f}(x) = f(x) - \frac{a_n}{b_m} x^{n-m} g(x).$$

Since the leading term of f(x) is  $a_n x^n$ , and the leading term of  $-\frac{a_n}{b_m} x^{n-m} g(x)$  is

$$-\frac{a_n}{b_m}x^{n-m}\left(b_mx^m\right)=-a_nx^n,$$

we can apply the induction hypothesis to  $\tilde{f}$ , resulting in

$$\tilde{f}(x) = q(x)\tilde{q}(x) + \tilde{r}(x)$$

with  $\tilde{q}(x), \tilde{r}(x) \in F[x]$  and deg  $\tilde{r}(x) < \deg g(x)$ . Replacing  $\tilde{f}(x)$ , we find

$$f(x) - \frac{a_n}{b_m} x^{n-m} g(x) = g(x) \tilde{q}(x) + \tilde{r}(x)$$
$$f(x) = g(x) \left( \tilde{q}(x) + \frac{a_n}{b_m} x^{n-m} \right) + \tilde{r}(x),$$

Setting  $q(x) = \left(\tilde{q}(x) + \frac{a_n}{b_m}x^{n-m}\right)$  and  $r(x) = \tilde{r}(x)$ , we see that we have satisfied the existence condition.

### Corollary to Polynomial Division: Principal Ideal Domain

Let F be a field. Every ideal in F[x] is principal.

Let  $I \subseteq F[x]$  be an ideal. If  $a \in I$  for some  $a \in F$ , then  $I = \langle 1_F \rangle = F[x]$ . Assume every nonzero element of I has positive degree. Let  $\mathcal{I} \in \{n \in \mathbb{Z}_{\geq 1} \mid n = \deg f \text{ for some } f \in I\}$ . By the well-ordering principle,  $\mathcal{I}$  has a smallest element,  $n_0$ . Let  $f_0 \in I$  be the polynomial with degree  $n_0$ .

We claim that  $I = \langle f_0 \rangle$ . Let  $g(x) \in I$ . Write  $g(x) = f_0(x)q(x) + r(x)$  with  $q(x), r(x) \in F[x], r(x) = 0$  or deg  $r(x) < \deg f(x)$ . Since I is an ideal, and  $f_0(x), g(x) \in I$ , we have  $r(x) = g(x) - f_0(x)q(x) \in I$ . If  $r(x) \neq 0$ , then deg  $r(x) < n_0$ . Thus r(x) = 0 and  $f_0(x)|g(x)$ .

#### **Irreducible Polynomials**

Let  $f(x) \in F[x]$ . We say f(x) is irreducible if whenever f(x) = g(x)h(x) for some g(x),  $h(x) \in F[x]$ , then g(x) or h(x) is in F.

### Corollary: Irreducible Polynomials and Maximal Ideals

Let  $f(x) \in F[x]$ . Then,  $\langle f(x) \rangle$  is a maximal ideal.

Suppose  $\langle f(x) \rangle \subseteq I \subseteq F[x]$ . We have  $I = \langle g(x) \rangle$  for some  $g(x) \in F[x]$  (by the previous result). Since  $\langle f(x) \rangle \subseteq \langle g(x) \rangle$ , we know g(x)|f(x). In particular, f(x) = g(x)h(x) for some  $h(x) \in F[x]$ . Since f is irreducible, we must have either  $g(x) \in F$  or  $h(x) \in F$ . If  $g(x) \in F$ , then I = F, and if  $g(x) = f(x)h(x)^{-1}$ , so f(x)|g(x), and  $I = \langle f(x) \rangle$ .

# Field Extensions for Roots of Irreducible Polynomials

Let  $f(x) \in F[x]$  be irreducible. There is a field K containing a root of f and an isomorphic copy of F.

We let  $K = F[x]/\langle f(x) \rangle$ . Then K is a field since  $\langle f(x) \rangle$  is maximal. We have

$$\pi: F[x] \to F[x]/\langle f(x) \rangle$$
$$g(x) \mapsto g(x) + \langle f(x) \rangle.$$

Note that

$$\pi|_F: F \to F[x]/\langle f(x)\rangle$$
  
 $a \mapsto a + \langle f(x)\rangle$ 

meaning  $1_F \mapsto 1_F + \langle f(x) \rangle \neq 0 + \langle f(x) \rangle$ , and

$$\ker(\pi|_F) = 0.$$

Thus,  $\pi|_F$  is an injection, so  $F \cong \pi|_F(F)$ . Set  $\theta = \pi(x) = x + \langle f(x) \rangle$ . Then,  $f(\theta) = f(x + \langle f(x) \rangle) = f(x) + \langle f(x) \rangle = 0 + \langle f(x) \rangle$ , so  $\theta$  is a root of f in K.

### **Roots of Irreducible Polynomials**

Let  $f(x) \in F[x]$  be irreducible with deg f = n. Set  $K = F[x]/\langle f(x) \rangle$  and  $\theta = x + \langle f(x) \rangle \in K$ . Then,  $\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$  forms a basis for K as an F-vector space.

Let  $g(x) + \langle f(x) \rangle \in K$ . Write g(x) = f(x)q(x) + r(x). Then,

$$g(\theta) = f(\theta)q(\theta) + r(\theta)$$

$$= r(\theta)$$

$$\in \text{span}\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$$

since r(x) = 0 or deg r(x) < n.

If  $a_0 + a_1\theta + \cdots + a_{n-1}\theta^{n-1} = 0$ , then  $g(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$  satisfies  $g(\theta) = 0$ , so f(x)|g(x), so g(x) = 0 since f is irreducible.

(1) Set  $F = \mathbb{R}$ ,  $f(x) = x^2 + 1$ . Then,  $K = F[x]/\langle x^2 + 1 \rangle$ , with elements of K looking like  $a + b\theta$ . Let  $a(\theta) = 1 + 3\theta$  and  $b(\theta) = 2 - 7\theta$ . Note  $a(\theta) + b(\theta) = 3 - 4\theta$ . However,

$$a(\theta)b(\theta) = (1+3\theta)(2-7\theta)$$
$$= 2-\theta-21\theta^2$$

Notice that  $\theta^2 + 1 = f(\theta) = 0$ . Therefore,  $\theta^2 = -1$ .

$$= 23 - \theta$$

In F[x], we have

$$a(x)b(x) = 2 - x - 21x^{2}$$
$$= -21x^{2} - x + 2,$$

and by long division, we have

$$= (-21)(x^2 + 1) + (-x + 23)$$
$$a(\theta)b(\theta) = 23 - \theta$$

# **Proposition: Irreducibility and Roots**

Let  $f(x) \in F[x]$ . If deg f(x) = 2 or 3, then f(x) is irreducible in K[x] for K/F an extension if and only if f does not have a root.

The proof is effectively what has been said.

# **Proposition: Polynomial over Integers**

Let  $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$ . If  $r/s \in \mathbb{Q}$ , gcd(r,s) = 1, and f(r/s) = 0, then  $r|a_0$  and  $s|a_n$ . In particular, if f is monic, the only possible roots of f in  $\mathbb{Q}$  are roots in  $\mathbb{Z}$  that divide  $a_0$ .

Suppose f(r/s) = 0. Then,

$$0 = a_n \left(\frac{r}{s}\right)^n + \dots + a_1 \frac{r}{s} + a_0$$
  
=  $a_n r^n + a_{n-1} r^{n-1} s + \dots + a_1 r s^{n-1} + a_0 s^n$   
$$0 = r \left(a_n r^{n-1} + \dots + a_1 s^{n-1}\right) + a_0 s^n$$

Therefore,  $r|a_0s^n$ , meaning  $r|a_0$  (as gcd(r,s)=1). Similarly,

$$0 = a_n r^n + s \left( a_{n-1} r^{n-1} + \dots + a_0 s^{n-1} \right)$$

so  $s|a_nr^n$ , meaning  $s|a_n$ .

#### **Proposition: Irreducible Polynomials over Integral Domains**

Let  $I \subset R$  with R an integral domain. Let p(x) be a non-constant monic polynomial in R[x]. If  $\overline{p}(x)$ , the image of p(x) in (R/I)[x], cannot be factored into two polynomials of smaller degree in (R/I)[x], then p(x) is irreducible.

Suppose p(x) is reducible. Since p is monic, we can write p(x) = a(x)b(x) with a(x), b(x) monic, irreducible polynomials of smaller degree. But then,  $\overline{p}(x) = \overline{a}(x)\overline{b}(x)$ , which contradicts  $\overline{p}(x)$  as irreducible.

#### Eisenstein's Criterion

Let R be an integral domain,  $\mathcal{P} \in \operatorname{Spec}(R)$ , and let  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$  be a non-constant polynomial. Suppose  $a_0, \ldots, a_{n-1} \in \mathcal{P}$ , but  $a_0 \notin \mathcal{P}^2$ . Then, f is irreducible.

Suppose f(x) = b(x)c(x) in R[x] with b(x), c(x) non-constant. We have  $x^n = \overline{b(x)c(x)}$ , where  $\overline{p(x)}$  denotes the image of the coefficients of p(x) in  $(R/\mathcal{P})[x]$ . The constant terms gives that  $b_0c_0 \equiv 0$  modulo  $\mathcal{P}$ . Since  $R/\mathcal{P}$  is an integral domain,  $b_0 \in \mathcal{P}$  or  $c_0 \in \mathcal{P}$ . Assume  $b_0 \in \mathcal{P}$ .

Now, consider the linear term. This implies  $b_0c_1 + b_1c_0 \in \mathcal{P}$ . However,  $b_0 \in \mathcal{P}$ , meaning  $b_1c_0 \in \mathcal{P}$ . Either  $b_1 \in \mathcal{P}$  or  $c_0 \in \mathcal{P}$ . If  $c_0 \in \mathcal{P}$ , we have achieved our contradiction. Otherwise, assume  $b_1 \in \mathcal{P}$ .

In the quadratic term, we have that  $b_2c_0 \in \mathcal{P}$ , so either  $b_2 \in \mathcal{P}$  or  $c_0 \in \mathcal{P}$ . Continuing the process, we either get that every  $b_i \in \mathcal{P}$  or  $c_0 \in \mathcal{P}$ . If all  $b_i \in \mathcal{P}$ , then  $\overline{b(x)} = x^m$ , meaning

$$x^{n} = x^{m} \overline{c(x)}$$

$$= x^{m} \left( x^{k} + \overline{c_{k-1}} x^{k-1} + \dots + \overline{c_{1}} x + \overline{c_{0}} \right)$$

$$= x^{n} + \dots + x^{m} \overline{c_{0}}.$$

Thus, it must be the case that  $c_0 \in \mathcal{P}$ , meaning  $a_0 = b_0 c_0 \in \mathcal{P}^2$ .

#### Gauss's Lemma

Let  $f(x) \in \mathbb{Z}[x]$  be a monic polynomial. If f(x) is irreducible in  $\mathbb{Z}[x]$ , then f(x) is irreducible in  $\mathbb{Q}[x]$ .

Suppose f(x) = g(x)h(x) with g(x),  $h(x) \in \mathbb{Q}[x]$ . Set a to be the least common multiple of the denominators of coefficients of g. Similarly, set b to be the least common multiple denominator of coefficients of h.

Consider abf(x) = G(x)H(x), where G(x) = ag(x) and H(x) = bh(x). Notice that abf(x) = G(x)H(x) is an equation in  $\mathbb{Z}[x]$ . If ab = 1, we have a contradiction. Otherwise, let p be a prime such that p|ab. In  $(\mathbb{Z}/p\mathbb{Z})[x]$ , we have

$$0 = \overline{G(x)H(x)}$$

Since  $(\mathbb{Z}/p\mathbb{Z})[x]$  is an integral domain, either  $\overline{G(x)} = 0$  or  $\overline{H(x)}$ . Assume without loss of generality that  $\overline{G(x)} = 0$ . Then, p divides all the coefficients of G(x). Thus,

$$abf(x) = G(x)H(x)$$
 in  $\mathbb{Z}[x]$ 

$$\frac{ab}{p}f(x) = f(x)\frac{1}{p}G(x)H(x) \qquad \text{in } \mathbb{Z}[x].$$

We can do this for every prime, such that  $f(x) = \tilde{G}(x)\tilde{H}(x)$  in  $\mathbb{Z}[x]$ .

### **Example: Applying Eisenstein's Criterion**

(1) Let p be prime, with  $n \ge 2$  an integer. Consider  $f(x) = x^n - p$ . We say f is an Eisenstein polynomial with prime p, so f is irreducible over  $\mathbb{Z}[x]$ . Thus, by Gauss's Lemma,  $f(x) = x^n - p$  is irreducible in  $\mathbb{Q}[x]$ . This shows that  $\sqrt[n]{p} \notin \mathbb{Q}$  for any prime p with  $n \ge 2$ . We can form  $K = \mathbb{Q}[x]/\langle x^n - p \rangle$ . This is a degree p field extension of  $\mathbb{Q}$  that contains an pth root of p.

(2) Let p be prime. Consider the polynomial  $\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$ . This is clearly a polynomial in  $\mathbb{Z}[x]$ . Note that this can also be written as  $\frac{x^p-1}{x-1}$ . This means all roots of  $\Phi_p(x)$  must be not equal to 1 but must be equal to 1 when raised to the power p. This polynomial is *not* Eisenstein. However, we can show that it is irreducible.

Suppose  $\Phi_p(x) = g(x)h(x)$  for some  $g(x), h(x) \in \mathbb{Z}[x]$ . This also gives  $\Phi_p(x+1) = g(x+1)h(x+1)$ . To show  $\Phi_p(x)$  is irreducible, it is enough to show that  $\Phi_p(x+1)$  is irreducible.

$$\Phi_{p}(x+1) = \frac{(x+1)^{p} - 1}{(x+1-1)}$$

$$= \frac{(x+1)^{p} - 1}{x}$$

$$= \frac{1}{x} \left( \sum_{k=0}^{p} {p \choose k} x^{k} - 1 \right)$$

$$= x^{p-1} + px^{p-1} + \dots + \frac{p(p-1)}{2} x + p.$$

This polynomial does satisfy the Eisenstein criterion, so it is irreducible, meaning  $\Phi_p(x)$  is irreducible in  $\mathbb{Q}[x]$  (upon application of Gauss's lemma).

The polynomials  $\Phi_p(x)$  are called cyclotomic polynomials. Note that  $\mathbb{Q}[x]/\langle \Phi_p(x) \rangle$  is a polynomial of degree p-1 and contains a pth root of unity.

(3) Consider the ring  $\mathbb{F}_p[t]$ . Let  $\mathbb{F}_p(t)$  denote the field of rational functions. In  $\mathbb{F}_p[t]$ ,  $\langle t \rangle$  is a prime ideal. In the polynomial ring  $(\mathbb{F}_p[t])[x]$ , the polynomial  $f(x) = x^n - t$  is irreducible by the Eisenstein criterion.

By a more general version of Gauss's lemma, we have f(x) is irreducible in  $(\mathbb{F}_p(t))[x]$ . So,  $(\mathbb{F}_p(t))[x]/\langle x^n-t\rangle$  is a degree n extension in  $\mathbb{F}_p(t)$ .

For n=2, elements of  $(\mathbb{F}_n(t))[x]/\langle x^2-t\rangle$  look like  $a(t)+b(t)\theta$  where  $\theta$  is a root of  $x^2-t$ .

#### **Simple Field Extensions**

Let K/F be an extension of fields. Let  $\alpha \in K$ . We write  $F(\alpha)$  for the smallest field that contains F and  $\alpha$ . In other words,

$$F(\alpha) = \bigcap_{\substack{F \subseteq E \\ \alpha \in F}} E.$$

We refer to this as the extension of F by  $\alpha$ . More generally, for  $\{\alpha_i\}$  with  $\alpha_i \in K$ ,

$$F(\{\alpha_i\}) = \bigcap_{\substack{F \subseteq E \\ \{\alpha_i\} \subseteq F}} E$$

If  $K = F(\alpha)$ , we say K is a simple extension and  $\alpha$  is a primitive element.

# Theorem: Constructing a Simple Field Extension

Let F be a field,  $p(x) \in F[x]$  irreducible. Let K be an extension of F containing a root  $\alpha$  of p(x). Then,  $F(\alpha) \cong F[x]/\langle p(x) \rangle$ .

Define  $\varphi: F[x] \to F(\alpha)$ ,  $f(x) \mapsto f(\alpha)$ . Since  $f(\alpha)$  contains F and  $\alpha$ , it must be the case that  $\varphi$  is a homomorphism. Note that  $\varphi(p(x)) = p(\alpha) = 0$ . Therefore,  $\langle p(x) \rangle \subseteq \ker \varphi$ . Since  $\varphi$  is not the zero map, and p(x) is irreducible,  $\langle p(x) \rangle = \ker \varphi$ , as  $\langle p(x) \rangle$  is maximal.

Then,  $F[x]/\langle p(x)\rangle \xrightarrow{\psi} F(\alpha)$  is an injection (as it is not the zero map). Thus,  $F[x]/\langle p(x)\rangle$  is isomorphic to its image in  $F(\alpha)$ . Note that  $F\subseteq \operatorname{im}(\psi)$ , and  $\alpha\in\operatorname{im}(\psi)$ . Since  $\operatorname{im}(\psi)$  is a field that contains both F and  $\alpha$ ,  $\operatorname{im}(\psi)=\alpha$ . Thus,  $F[x]/\langle p(x)\rangle\cong F(\alpha)$ .

#### **Example: Simple Field Extensions**

(1) Let  $F = \mathbb{Q}$ ,  $p(x) = x^3 - p$ . We know that p(x) is irreducible by the Eisenstein criterion. Consider  $K = \mathbb{R}$ . Then,  $\alpha = \sqrt[3]{p}$ . We have  $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{p}) \subseteq \mathbb{R}$ . We know that  $\mathbb{Q}(\sqrt[3]{p}) \cong \mathbb{Q}[x]/\langle x^3 - p \rangle$ .

However, if  $K = \mathbb{C}$ , then we have  $\alpha$  could be  $\sqrt[3]{p}$ ,  $\zeta_3\sqrt[3]{p}$  or  $\zeta_3^2\sqrt[3]{p}$ , where  $\zeta_3$  denotes the cubic roots of unity. Then, we have  $\mathbb{Q}(\sqrt[3]{p})$ ,  $\mathbb{Q}(\zeta_3\sqrt[3]{p})$ , and  $\mathbb{Q}(\zeta_3\sqrt[3]{p})$  as separate fields, each isomorphic to  $\mathbb{Q}[x]/\langle x^3-p\rangle$ .

#### Theorem: Isomorphism between Field Extensions

Let F and E be fields, with  $\varphi: F \xrightarrow{\simeq} E$ . Let  $p(x) \in F[x]$  be irreducible, and q(x) be the polynomial created by applying  $\varphi$  to the coefficients of p. Let  $\alpha$  be a root of p(x) in some extension K/F, and  $\beta$  a root of q(x) in some extension L/E. There exists an isomorphism  $\Phi: F(\alpha) \to E(\alpha)$ , with  $\alpha \mapsto \beta$  and  $\Phi|_F = \varphi$ .

We can extend  $\varphi$  to an isomorphism  $\tilde{\varphi}: F[x] \to E[x]$ . We have  $q(x) = \tilde{\varphi}(p(x))$ . Since  $\tilde{\varphi}$  is an isomorphism, we have  $\langle p(x) \rangle$  maximal in F[x], meaning  $\langle q(x) \rangle$  is maximal in E[x]. In particular,  $F[x]/\langle p(x) \rangle \cong E[x]/\langle q(x) \rangle$ . Thus,  $F(\alpha) \cong E(\alpha)$ .

#### Algebraic and Transcendental Elements

An element  $\alpha \in K$  is said to be algebraic over F if there is a polynomial  $f(x) \in F[x]$  with  $f(\alpha) = 0$ . If  $\alpha$  is not algebraic, we say  $\alpha$  is transcendental over F. We say K/F is an algebraic extension if every element of K is algebraic over F.

- (1)  $\sqrt{2}$  is algebraic over  $\mathbb{Q}$ , since  $f(\sqrt{2}) = 0$  where  $f(x) = x^2 2$ .
- (2)  $\pi$  is transcendental over  $\mathbb{Q}$ . However,  $\pi$  is algebraic over  $\mathbb{R}$ , as  $f(\pi) = 0$  where  $f(x) = x \pi$ .

### **Proposition: Minimal Polynomials**

Let  $\alpha$  be algebraic over F. There is a unique monic irreducible polynomial  $m_{\alpha,F}(x) \in F[x]$  such that  $\alpha$  is a root. Moreover,  $f(x) \in F[x]$  has  $\alpha$  as a root if and only if  $m_{\alpha,F}(x)|f(x)$ .

Let  $g(x) \in F[x]$  have  $\alpha$  as a root. Assume g has minimum degree among such polynomials. If g is not monic, scale g to be monic. Suppose g(x) = a(x)b(x). Then,  $0 = a(\alpha)b(\alpha)$ . Then,  $a(\alpha) = 0$  or  $b(\alpha) = 0$ . If  $\deg(a(x)), \deg(b(x)) < \deg(g(x))$ , then this is a contradiction to g with minimum degree. Thus, g is irreducible.

Suppose  $f(x) \in F[x]$  with  $f(\alpha) = 0$ . We use the division algorithm to write f(x) = g(x)q(x) + r(x) with r(x) = 0 or  $\deg(r(x)) < \deg(g(x))$ . Plugging in  $\alpha$ , we get  $f(\alpha) = g(\alpha)q(\alpha) + r(\alpha) = 0 + r(\alpha)$ . Thus,

 $r(\alpha) = 0$  implies r(x) = 0 (or else r would be a polynomial with degree lower than g that has  $\alpha$  as a root).

The polynomial  $m_{\alpha,F}$  is called the minimal polynomial of  $\alpha$  over F. If F is clear from context, we write  $m_{\alpha}$ . We say  $\alpha$  has a degree equal to the degree of  $m_{\alpha,F}$ .

#### **Corollary: Minimal Polynomial over Field Extension**

Let L/F be fields. If  $\alpha$  is algebraic over L and F, then  $m_{\alpha,L}(x)|m_{\alpha,F}(x)$  in L[x].

Since L is an extension of F,  $m_{\alpha,F}(x) \in L[x]$ . Since  $m_{\alpha,F}(\alpha) = 0$ , the proposition gives  $m_{\alpha,L}|m_{\alpha,F}$ .

### **Corollary: Simple Field Extension of Minimal Polynomial**

Let  $\alpha$  be algebraic over F. Then,  $F(\alpha) \cong F[x]/\langle m_{\alpha,F}(x) \rangle$ . Thus,  $\deg_F(\alpha) = \deg(m_{\alpha,F}(x)) = \dim_F(F(\alpha))$ .

### **Proposition: Condition for Algebraic over Field**

We have  $\alpha \in K$  is algebraic over F if and only if  $F(\alpha)/F$  is a finite extension. Specifically, if  $\dim_F(K) = n$ , then  $\deg(m_{\alpha,F}(x)) \leq n$  for all  $\alpha \in K$ . We have  $\deg(m_{\alpha,F}(x)) = n$  exactly when  $K = F(\alpha)$ .

Suppose  $\alpha \in K$  is algebraic. Then, we have  $F(\alpha) \cong F[x]/\langle m_{\alpha,F}(x) \rangle$ , so  $\dim_F(F(\alpha)) = \deg(m_{\alpha,F}(x))$ .

Suppose  $\dim_F(F(\alpha)) = n$ . We must have  $\{1, \alpha, \alpha^2, \dots, \alpha^n\}$  is linearly dependent. So, there exists  $a_0, a_1, \dots, a_n \in F$  with  $a_n \alpha^n + \dots + a_1 \alpha + a_0 = 0$ . Set  $f(x) = a_n x^n + \dots + a_1 x + a_0$ . Since  $f(\alpha) = 0$ ,  $\alpha$  is algebraic.

(1) Let 
$$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
,  $F_2 = \mathbb{Q}(\sqrt{2})$ , and  $F_3 = \mathbb{Q}(\sqrt{3})$ . Then,

$$m_{\sqrt{2},\mathbb{Q}}(x) = x^2 - 2$$

$$m_{\sqrt{2}} = (x) = x^2 - 2$$

$$m_{\sqrt{2},F_2}(x) = x - \sqrt{2}.$$

#### Theorem: Dimensions of Field Extensions

Let  $F \subseteq K \subseteq L$  be fields. Then,  $\dim_F(L) = \dim_F(K) \cdot \dim_K(L)$ .

Let  $\{x_1, \ldots, x_m\}$  be a basis for L/K, and  $\{y_1, \ldots, y_n\}$  be a basis for K/F. We claim that  $\{x_iy_i\}$  is a basis for L/F.

Let  $z \in L$ . We can write  $z = a_1x_1 + \cdots + a_mx_m$  for  $a_i \in K$ . For each i, write  $a_i = b_{i,1}y_1 + \cdots + b_{i,n}y_n$  for some  $b_{i,j} \in F$ . Thus,

$$z = \left(\sum_{j=1}^n b_{1,j}y_j\right)x_1 + \cdots + \left(\sum_{j=1}^n b_{m,j}y_j\right)x_m,$$

meaning  $z \in \text{span}_F(\{x_i y_i\})$ . Thus, we have  $\{x_i y_i\}$  is spanning for L.

To show linear independence, suppose  $\exists b_{i,j} \in F$  with

$$0 = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{i,j} x_{i} y_{j}$$
$$= \sum_{i=1}^{m} \left( \sum_{j=1}^{n} b_{i,j} y_{j} \right) x_{i}.$$

Since  $\{x_i\}$  is linearly independent over K, we must have that for each i,

$$0=\sum_{j=1}^n b_{i,j}y_j.$$

Similarly, since  $\{y_j\}$  is linearly independent over F, we must have that  $b_{i,j} = 0$  for all i, j. Thus,  $\{x_i y_j\}$  is linearly independent.

Thus, we have that for L/F fields, if  $F \subseteq K \subseteq L$ , then  $\dim_F(K)|\dim_F(L)$ .

### **Example: Applying Field Extension Dimensions**

(1) Let  $\zeta_{11}$  be a 11th root of unity with  $\zeta_{11} \neq 1$ . Therefore,  $\zeta_{11}$  is a root of  $\Phi_{11}(x) = \frac{x^{11}-1}{x-1} = x^{10} + x^9 + \cdots + x + 1$ . We used the Eisenstein criterion to show this was an irreducible polynomial. Thus,  $Q(\zeta_{11}) \cong \mathbb{Q}[x]/\langle \Phi_{11}(x) \rangle$ . We have  $m_{\zeta_{11},\mathbb{Q}}(x) = \Phi_{11}(x)$ , meaning  $\dim_{\mathbb{Q}}(\mathbb{Q}(\zeta_{11})) = 10$ , and  $\{1,\zeta_{11},\ldots,\zeta_{11}^9\}$  is a basis for  $\mathbb{Q}(\zeta_{11})$  over  $\mathbb{Q}$ .

We claim that  $\sqrt[3]{2} \notin \mathbb{Q}(\zeta_{11})$ . Set  $K = Q(\sqrt[3]{2})$ . Then, we know that  $m_{\sqrt[3]{2},\mathbb{Q}} = x^3 - 2$  by the Eisenstein criterion, meaning  $\dim_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2})) = 3$ . If  $\sqrt[3]{2} \in \mathbb{Q}(\zeta_{11})$ , then  $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(\zeta_{11})$ , which would give that  $\dim_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2})) | \dim_{\mathbb{Q}}(Q(\zeta_{11}))$ , but 3 does not divide 10.

Note that this shows  $m_{\sqrt[3]{2},\mathbb{Q}}(x) = x^3 - 2$ .

(2) Let p be prime. We know that  $f(x) = x^n - p$  is irreducible, so  $\dim_{\mathbb{Q}} (\mathbb{Q}(\sqrt[n]{p})) = n$ . Let m|n. Observe that  $(\sqrt[n]{p})^{n/m} = \sqrt[m]{p}$ . So,  $\sqrt[m]{p} \in \mathbb{Q}(\sqrt[n]{p})$ . In particular,  $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[m]{p}) \subseteq \mathbb{Q}(\sqrt[n]{p})$ .

Thus,  $\dim_{\mathbb{Q}(\sqrt[n]{p})}\mathbb{Q}(\sqrt[n]{p}) = n/m$ , and  $\deg(m_{\sqrt[n]{p},\mathbb{Q}(\sqrt[n]{p})}) = n/m$ . Set

$$f(x) = x^{n/m} - \sqrt[m]{p} \in \mathbb{Q}(\sqrt[m]{p})[x].$$

Then,  $f(\sqrt[n]{p}) = 0$ , and f is monic with  $\deg(f) = n/m$ . Thus,  $m_{\sqrt[n]{p},\mathbb{Q}(\sqrt[n]{p})} = x^{n/m} - \sqrt[n]{p}$ . Moreover, this gives  $x^{n/m} - \sqrt[n]{p}$  is irreducible over  $\mathbb{Q}(\sqrt[n]{p})$ .

#### **Theorem: Generated Field Extensions**

The extension K/F is finite if and only if  $K = F(\alpha_1, ..., \alpha_r)$  for some  $\alpha_1, ..., \alpha_r$  algebraic over F. If  $\alpha_i$  has degree  $n_i$ , then  $\dim_F(K) < n_1 n_2 \cdots n_r$ .

Suppose K/F is finite. Let  $\alpha_1, \ldots, \alpha_r$  be a basis for K/F, if  $\dim_F(K) = r$ . Then,  $F \subseteq F(\alpha_i) \subseteq K$  for some  $\alpha_i$ . Since K/F is finite, and  $\dim_F(F(\alpha_i)) \mid \dim_F(K)$ , so too must be  $F(\alpha_i)/F$ . Thus,  $\alpha_i$  is algebraic.

**Exercise:** Show  $\dim_F(F(\alpha_1,\ldots,\alpha_r)) \leq n_1 n_2 \cdots n_r$ . This can be done by inducting on r.

$$\dim_F(F(\alpha_1,\ldots,\alpha_r)) = \dim_F(F(\alpha_1))\dim_{F(\alpha_1)}(F(\alpha_1,\ldots,\alpha_n))$$
:

#### **Corollary: Operations on Algebraic Elements**

Let  $\alpha, \beta$  be algebraic over F. Then,  $\alpha \pm \beta$ ,  $\alpha\beta$ , and  $\alpha/\beta$  (provided  $\beta \neq 0$ ) are algebraic over F.

We have that  $\alpha \pm \beta$ ,  $\alpha\beta$ , and  $\alpha/\beta$  ( $\beta \neq 0$ ) are all elements of  $F(\alpha,\beta)$ . Since  $\alpha,\beta$  are algebraic over F,  $F(\alpha,\beta)/F$  is an algebraic extension.

# **Corollary: Extending Field Extensions**

Let L/F be an extension. Let K be the set of elements algebraic over L. Then, K is a field extension.

### **Examples: More Field Extensions**

(1) Let  $L = \mathbb{C}$ ,  $F = \mathbb{Q}$ . Let  $\overline{\mathbb{Q}} \subseteq \mathbb{C}$  be the subfield containing all complex numbers algebraic over  $\mathbb{Q}$ . We refer to this as the algebraic closure of  $\mathbb{Q}$  in  $\mathbb{C}$ . Note that  $\sqrt[n]{2} \in \overline{\mathbb{Q}}$  for every n. Thus, we have

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt[n]{2}) \subset \overline{\mathbb{Q}}.$$

Thus, we have  $\dim_{\mathbb{Q}}(\overline{\mathbb{Q}}) \geq n$  for every  $n \in \mathbb{Z}_{>1}$ . Thus,  $\dim_{\mathbb{Q}}(\overline{\mathbb{Q}}) = \infty$ .

Fixing a degree n, if  $\alpha \in \overline{\mathbb{Q}}$  has degree n, then deg  $(m_{\alpha,\mathbb{Q}}(x)) = n$  and  $m_{\alpha,\mathbb{Q}}(x) \in \mathbb{Q}[x]$ . For each such polynomial, there are n coefficients, each of which has countably many choices (from  $\mathbb{Q}$ ). So, there are countably many elements of degree n. Thus,  $\overline{\mathbb{Q}}$  is the countable union of these countable roots of countably many polynomials, so  $\overline{\mathbb{Q}}$  is countable.

This means  $\mathbb{R}\setminus(\mathbb{R}\cap\overline{\mathbb{Q}})$  is an uncountable set. These are the real transcendental numbers. Similarly,  $\mathbb{C}\setminus\overline{\mathbb{Q}}$  is the complex transcendental numbers.

#### Theorem: Transitivity of Algebraic Extensions

Suppose K/F and L/K are algebraic extensions. Then, L/F is algebraic.

Let  $\alpha \in L$ . There exists a polynomial  $f(x) = a_n x^n + \dots + a_1 x + a_0 \in K[x]$  such that  $f(\alpha) = 0$ . Consider  $F(\alpha, a_0, \dots, a_n)$ . We have that K/F is algebraic. Thus,  $E = F(a_0, \dots, a_n)$  is a finite extension of F. Observe that  $f(x) \in F(\alpha_0, \dots, \alpha_n)[x]$ .

We have  $\dim_F(E) = \dim_{F(\alpha_1,...,\alpha_n)}(E)\dim_F(F(\alpha_1,...,\alpha_n))$ . Thus, E/F is finite, so  $\alpha$  is algebraic over F. Thus, L/F is algebraic.

#### **Definition: Compositum of Fields**

Let  $K_1$ ,  $K_2$  be subfields of K. The compositum of  $K_1$  and  $K_2$ , denoted  $K_1K_2$  is the smallest subfield of K containing both  $K_1$  and  $K_2$ .

#### **Proposition: Degree of Compositum Extension**

Let  $K_1$  and  $K_2$  be finite extensions of F, and let  $K_1, K_2 \subseteq K$  for some field K. Then,  $\deg(K_1K_2/F) \le \deg(K_1/F)\deg(K_2/F)$ . We have equality if and only if an F-basis for  $K_1$  or  $K_2$  remains linearly independent over the other field. If  $\{x_1, \ldots, x_n\}$  is a basis for  $K_1/F$ , and  $\{y_1, \ldots, y_m\}$  is a basis for  $K_2/F$ , then  $\{x_iy_j\}$  spans  $K_1K_2/F$ .

We can see that  $K_1K_2 = F(x_1, ..., x_n, y_1, ..., y_m)$ . Since we know that  $\{x_1, ..., x_n\}$  is a basis for  $K_1/F$ ,  $x_i^k \in K_1$  can be written as  $\sum a_i x_i$  for  $a_i \in F$ . Similarly,  $y_i^k \in K_2$  can be written as  $\sum b_i y_i$  for  $b_i \in F$ .

If we consider sums of the form  $\sum a_{i,j}x_iy_j$ , these sums are closed under addition and multiplication. Thus,  $\{x_iy_j\}$  spans  $K_1K_2$ . This gives  $\dim_F(K_1K_2) \leq \dim_F(K_1)\dim_{K_2}$ . To find equality, we have

$$K_1K_2 = F(x_1, ..., x_n, y_1, ..., y_m)$$
  
=  $K_1(y_1, ..., y_m)$ ,

so  $\{y_1, \ldots, y_m\}$  spans  $K_1K_2$  over  $K_1$ . Thus,  $\dim_{K_1}(K_1K_2) \leq \dim_F(K_2)$ , with equality if and only if  $\{y_1, \ldots, y_m\}$  is linearly independent over  $K_1$ . Thus,

$$\dim_F(K_1K_2) = \dim_{K_1}(K_1K_2)\dim_F(K_1)$$
$$= \dim_F(K_2)\dim_F(K_1)$$

if and only if  $\{y_1, \ldots, y_m\}$  is linearly independent over  $K_1$ .



### **Corollary: More Degree of Compositum Extensions**

Let  $K_1$ ,  $K_2$  be finite extensions of F with  $\dim_F(K_1) = n$  and  $\dim_{K_2}(F) = m$ . If  $\gcd(m,n) = 1$ , then  $\dim_F(K_1K_2) = \dim_{K_1}(F)\dim_{K_2}(F)$ .

We always have  $\dim_F(K_1K_2) \leq \dim_{K_2}(F)\dim_{K_1}(F)$ , and  $F \subseteq K_1 \subseteq K_1K_2$ , so  $\dim_F(K_1)|\dim_F(K_1K_2)$ , and similarly  $\dim_F(K_2)|\dim_F(K_1K_2)$ , so  $\operatorname{lcm}(m,n)|\dim_F(K_1K_2)$ , so  $\min|\dim_F(K_1K_2)$ . Thus,  $\dim_F(K_1K_2) = mn$ .

### **Examples: Compositum Field Extensions**

- (1) Consider  $K_1 = \mathbb{Q}(i)$  and  $K_2 = \mathbb{Q}(\sqrt[3]{2})$ . We know that  $\dim_{\mathbb{Q}}(\mathbb{Q}(i)) = 2$ , and  $\dim_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2})) = 3$ . Thus,  $[\mathbb{Q}(i)\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 6$  (where  $[K:F] = \dim_F(K)$ ) with basis  $\{1,i,\sqrt[3]{2},\sqrt[3]{4},i\sqrt[3]{2},i\sqrt[3]{4}\}$ . Moreover,  $\mathbb{Q}(i,\sqrt[3]{2})$  contains  $\mathbb{Q}(i)$  and  $\mathbb{Q}(\sqrt[3]{2})$ , so it contains  $\mathbb{Q}(i)\mathbb{Q}(\sqrt[3]{2})$ , and since  $i\sqrt[3]{2} \in \mathbb{Q}(i)\mathbb{Q}(\sqrt[3]{2})$ , we have  $\mathbb{Q}(i,\sqrt[3]{2}) \subseteq \mathbb{Q}(i)\mathbb{Q}(\sqrt[3]{2})$ , meaning  $\mathbb{Q}(i,\sqrt[3]{2}) = \mathbb{Q}(i)\mathbb{Q}(\sqrt[3]{2})$ .
- (2) Consider  $K_1=\mathbb{Q}(i)$  and  $K_2=\mathbb{Q}(\zeta_8)$ , with  $\zeta_8=e^{2\pi i/8}=e^{\pi i/4}$ . Therefore,  $\zeta_8=\sqrt{i}$ . Let  $f(x)=x^4+1$ . Then,  $f(\zeta_8)=0$ , and f is irreducible (examine f(x+1) and find it is Eisenstein). Thus,  $[\mathbb{Q}(\zeta_8):\mathbb{Q}]=4$ . The compositum  $[\mathbb{Q}(i)\mathbb{Q}(\zeta_8):\mathbb{Q}]\leq 8$ , but since  $\mathbb{Q}\subseteq\mathbb{Q}(i)\subseteq\mathbb{Q}(\zeta_8)$ , so we do not have equality. Thus,  $\mathbb{Q}(i)\mathbb{Q}(\zeta_8)=\mathbb{Q}(\zeta_8)$ , so  $[\mathbb{Q}(\zeta_8)\mathbb{Q}(i):\mathbb{Q}]=4$ .