Task 1

Ariella Fuzaylov and Candice Djorno

4/10/2021

```
Employee_A_data=read.csv("Employee_A_data.csv", header=TRUE)
```

Given

- Population of N = 40,041 reviews
- Employee A took an SRS of n = 6,000 reviews

Subtask 1:

Estimate average rating

Under SRSWOR, the sample mean $\bar{y} = \frac{1}{n} \sum_{i \in S} y_i$ is an unbiased estimator for the population mean $\hat{\mu}$.

```
N = 40041
n= 6000
y_bar<-sum(Employee_A_data$Rating)/n
y_bar</pre>
```

```
## [1] 4.222667
```

Thus, the estimated average rating is $\hat{\mu} = 4.2226667$.

Confidence interval

```
srs_design = svydesign(id=~1,data=Employee_A_data, fpc=rep(N,n))
svymean(x=~Rating,design = srs_design)

## mean SE
## Rating 4.2227 0.0125

conf= confint(svymean(x=~Rating,design = srs_design))
conf

## 2.5 % 97.5 %
## Rating 4.198217 4.247116

A 95% confidence interval is [4.1982169, 4.2471165].
```

Subtask 2

Calculate Mean by Branch

```
rating.summary<-Employee_A_data%>%
   summarise(n= n(), Mean= mean(Rating), Var=sd(Rating)^2)
knitr::kable(rating.summary, caption = "Rating Summary Statistics")
```

Table 1: Rating Summary Statistics

n	Mean	Var
6000	4.222667	1.098269

```
rating.summary.by.branch<-Employee_A_data%>% group_by(Branch)%>%
   summarise(n= n(), Mean= mean(Rating),StD=sd(Rating))

## `summarise()` ungrouping output (override with `.groups` argument)
knitr::kable(rating.summary.by.branch, caption = "Rating Summarised by Branch")
```

Table 2: Rating Summarised by Branch

Mean	StD
4.396533 4.213475	0.9519919 0.9373561 1.1938787
	4.396533

The estimated average rating for California is 4.396533, for Hong Kong is 4.213475, for Paris is 3.976963.

Hypothesis Test

We perform a hypothesis test to determine whether there is evidence that any of the ratings are statistically significantly different from each other in the population.

```
H_0: \mu_{california} = \mu_{hongkong} = \mu_{paris}
```

 $H_1: \mu_{california} \neq \mu_{hongkong} \text{ or } \mu_{california} \neq \mu_{paris} \text{ or } \mu_{hongkong} \neq \mu_{paris} \text{ (i.e. the means are not all equal)}.$

We perform an ANOVA.

```
rating_aov = aov(Rating~Branch,data=Employee_A_data)
summary(rating_aov)
```

We obtain p-value < 2e-16 so $p-value < \alpha$. Therefore, we reject the null hypothesis and we conclude that there is evidence that Employee A could achieve more precision for these estimates.