

Trends in Thermochemical Conversion of Waste and Biomass

A brief overview

Prof. Klas Engvall
Dept. of Chemical Engineering and Technology
KTH Royal Institute of Stockholm
Stockholm, Sweden

E-mail: kengvall@kth.se

Outline of presentation

Background

Waste as a resource

A little bit about thermochemical conversion of solid fuels!

Waste-to-Energy (WtE) systems

Where are we going?

Summary

Background

Background

In 2012, the total generation of waste in the world was estimated to 1.3 billion tonnes.

MENA: Middle East and North Africa LAC: Latin America and the Caribbean ECA: Eastern and Central Asia

EAP: East Asia and the Pacific Region

AFR: sub-Saharan Africa SAR: South Asian Region OECD: OECD countries

Background

Two examples of waste disposal 2012

	AFR		OECD	
	Mtonnes	%	Mtonnes	%
Dumps	2.3	44	-	-
Landfills	2.6	50	242	42
Compost	0.05	1	66	12
Recycled	0.14	3	125	22
Incineration	0.05	1	120	21
Other	0.11	2	20	3
Total	5.25	100	573	100

Waste as a resource?

Waste as a resource

Thermal treatment is an "integrated" part of any waste management system and will very likely be so also in the future!

Waste as a resource

An example: Waste management in Sweden

Waste as a resource

Products from thermochemical conversion systems

Type of thermochemical technology depends on:

- Feedstock
- Desired and possible product(s)
- Economic incitements
- Available technology
- Geographic population
- Societal infrastructure

A little bit about thermochemical conversion of solid fuels!

Products
Char
Product gas
Tars/Pyrolysis oil

Residues

"After further upgrading"

Examples of thermal conversion technologies

Grate furnace

Fixed bed

"Downdraft"

Fluidised bed (FB)

"Circulating FB - CFB"
"Bubbling FB – BFB"

"Updraft"

What about a complete system?

- Schredding
- Sizing
- Drying
- etc.

- Gasification
- Combustion

- Filtration
- Gas cooling
- WGS
- Scrubbing
- etc.

- Synfuel applications
- Oil refinery

There is a vast number of possible process configurations depending on feedstock and utilization

Factors influencing choice of process configuration

Factors influencing choice of process configuration

Process complexity

Cost efficiency

Small scale \times Large scale

Factors influencing choice of process configuration

Process complexity

Small scale Large scale

Technologies generally utilized!

Technique	Untreated MSW	Pretreated MSW and RDF	
Combustion			
Grate	Widely applied	Widely applied	
Rotary kiln	Not normally applied	Applied	
Fluid bed - bubbling	Rarely applied	Applied	
Fluid bed - circulating	Rarely applied	Applied	
Fluid bed - rotating	Applied	Applied	
Pyrolysis	Rarely applied	Rarely applied	
Gasification	Rarely applied	Rarely applied	

Direct combustion: A modern waste incineration plant – an example

- Waste incineration CHP is mainly carried out in grate fired boilers for fuel flexibility
- Examples using rotary kiln and and circulating fluidised bed (CFB) also exist

Mainly three parts:

- Energy recovery
- Flue gas cleaning
- Ash removal (recovery)

Direct combustion: A modern waste incineration plant – an example

- 1. Waste bunker
- 2. Fuel feeding
- 3. Furnace, 1000 °C
- 4. Slag to water filled trough
- 5. Heat exchangers, steam data typically T = 400 ° C, P = 40 bar
- 6. Steam turbine

- 7. Generator
- B. Heat exchanger district heating
- 9. District heating $T = 70 120^{\circ}$ C
- 10. Electricity
- 11. Gas cleaning with electrostatic precipitator

Direct combustion: A modern waste incineration plant – an example

Flue gas cleaning

- 12-14. Water scrubbing with water containg various substances eg lime
- 12. Removal of heavy metals and acidic componds
- 13. Removal of SO2
- 14. Condensor condensing remaining moisture and heat pump extracting heat
- 15. SCR catalytic convertor for Nox
- 16. Chimney

Direct combustion: A modern waste incineration plant – an example

Ash removal

- 17. Cleaning of scrubber water. Precipitation of heavy metals using chemicals. Precipitated sludge is drained.
- 18. pH adjustment and release of water
- 19. Sludge and fly ash is stored

Gasification: Combined heat and power CFB plant

Lathi Energia Gasification Power Plant by Metso

- Waste derived fuel
- 50 MW_{el} and 90 MW_{heat}
- Supported by the Finish authorities
- Total investment 157 M€
- Start-up 2012
- Fuel handling
- 2. Gasifier
- Gas cooling
- 4. Gas filter
- 5. Gas boiler and flue gas cleaning

Source: IEE task 33

Pyrolysis: Power production in a rotary kiln pyrolysis plant

- Pyrolysis of MSW is a rotary drum at 450 ° C.
- Producing an oil rich pyrolysis gas, char as well as ferrous and nonferrous metals.
- Pyrolysis gas directly combusted in a HT combustor connected to a boiler producing steam for power generation.
- Char combusted in HT combustor.
- Residual ash in form of fused ashes is sent to landfill.

Source: IEE task 32

"A guess on possible trends!"

A few examples!

- Diversified production of multiple products
- Integration in the society
- Small scale processes

Flexible production of multiple products

Flexible production of multiple products

An example: The WoodRoll® process by Cortus Energy AB

- Next to commercial three stage gasifier with separate steps dryer, pyrolyser and gasifier
- Indirect heating by radiation heaters fuelled by pyrolysis gas
- High temperature gasification (~ 1100 ° C) using steam no tar formation
- Development of cost efficient gas cleaning and upgrading a challange

Flexible production of multiple products

Another example: Plasma gasification

- The plasma decomposes the organic components to a product gas.
- A relatively clean gas free from tar
- A vitrified slag is produced In case of gasification

Source: Alter NRG

Flexible production of multiple products

Another example: Plasma gasification

- The plasma decomposes the organic components to a product gas.
- A relatively clean gas free from tar
- A vitrified slag is produced In case of gasification

"Commercial plasma gasification has taken a hefty setback recently when the project erecting two WtE plants in Tee Valley, UK (50 MW electricity, 350 ktonnes waste / year) were halted after completing the first of the plants due to technical problem during commission;"

Source: Alter NRG

Integration in the urban system

"Several components in the society integrated for efficient energy recovery"

Small scale WtE processes

BioMax®100 Gen2 Modular Biopower System

- Waste treatment at a local level, close to the waste source
- An interesting option for rural areas with sparse population and poor infrastructure
- Preferably enable production of enable production of power
- Mobile to allow for use at the site where the feedstock is available

- Downdraft gasifier → lower tar formation
- A simplified gas cleaning system.

Summary

Summary

- Thermochemical conversion technology has been around for a long time but still large efforts are made to develop new techniques for treatment of waste and other residual materials.
- A major driving force is the continue need for treatment of nonrecyclable waste.
- Other important aspects are feasible techniques for
 - Local treatment of waste in regions with small communities
 - Societies with poor infrastructure
 - Need to for system facilitating multi-product production, especially in form of high value energy carriers and chemicals.
- Todays, technologies are generally either developed for largescale applications or not suitable for a waste feedstock, such as MSW or RDF.

Summary

 Trends in R&D to meet the societal needs are development of thermochemical waste conversion processes for diversified multi-product production, where different approaches are considered depending on feedstock type and plant scale.

Thank you for your attention!

E-mail: kengvall@kth.se

