agricultural tasks

algorithms

core

demos

interfaces

tools

Core librairies

Device interfaces packages

Tools packages

Demo packages

Future packages

Ouverture de certains algorithmes de l'INRAE

- localisation wgs84 (last quater of 2023)
- suivi de trajectoire (2024)

Demo packages

Demo organization

Demo organization

URDF description :

ros2 run romea_demo robot_description.py mode:live or simulation robot_namespace:adap2e robot_configuration_directory:robot_directory_path

Launch:

ros2 launch romea_demo robot.launch.py
mode:=live or simulation
robot_namespace:=adap2e
robot_configuration_directory:=robot_directory_path
urdf_description:= user_description (optional, by default
urdf_description parameter is the result of urdf description script)

More info :

tirrex_demo package

Examples:

-ros2 run tirrex_demo robot_description.py mode:live robot_namespace:adap2e robot_configuration_directory:path_to_demo/config/robot > robot.urdf -ros2 launch tirrex_demo robot.launch.py mode:=live robot_namespace:=adap2e robot_configuration_directory:=path_to_demo/config/robot (warning in simulation mode gazebo must be launch before by using ros2 launch gazebo ros gazebo.launch.py)

Mobile base

Meta-description:

```
name: "adap2e"
configuration:
type: adap2e
model: fat
records:
joint_states: true
controller/odom: true
controller/odometry: true
controller/kinematic: true
simulation:
initial_xyz: [0.0, 0.0, 0.0] # meters
initial_rpy: [0.0, 0.0, 0.0] # degrees
```

Supported robots :

- <u>adap2e</u> (fat and slim models)
- alpo (pom and 4x4 models)
- aroco
- <u>campero</u> (rubber model)
- <u>effitbote3</u> (simulation only)
- robucar

Mobile base

URDF Description:

ros2 run romea_mobile_base_bringup urdf_description.py mode: live or simulation robot_namespace:adap2e meta_description_file_path:path to base meta-description file

Launch:

ros2 run romea_mobile_base_bringup mobile_base.launch.py mode:=live or simulation robot_namespace:=adap2e meta_description_file_path:=path to base meta-description file

More info:

- romea mobile base stack

Examples:

-ros2 run romea_mobile_base_bringup urdf_description.py mode:live robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/base.yaml > base.urdf -ros2 launch romea_mobile_base_bringup robot.launch.py mode:=live robot_namespace:=adap2e meta_description_file_path:=path_to_demo/config/robot/base.yaml (warning in simulation mode gazebo must be launch before by using ros2 launch gazebo ros gazebo.launch.py)

Teleoperation

Meta-description:

```
cmd_output:
    message_type:    romea_mobile_base_msgs/
TwoAxleSteeringCommand
    message_priority: 100
cmd_range:
    maximal_linear_speed:
    slow_mode: 1.0 # m/s
    turbo_mode: 2.0 # m/s
    #maximal_front_steering_angle: 20.0 # degree, optional
    #maximal_rear_steering_angle: 0.0 # degree, optional
```

Supported command type:

- one axle steering (alpo)
- two alxle steering (aroco,robucar,adap2e)
- skid steering (campero rubber, effibote3)
- omni_steering (campero mecanum)

Teleoperation

Joystick mapping (TODO):

ros2 run romea_teleop_bringup joystick_remapping.py base_meta_description_file_path: path to mobile base metadescription file

joystick_meta_description_file_path: path to joystick metadescription file

teleop_configuration_file_path: path to teleop configuration file

Launch:

ros2 launch romea_teleop_bringup mobile_base_teleop.launch.py robot namespace:adap2e

base_meta_description_file_path: path to mobile base metadescription file

joystick_meta_description_file_path: path to joystick metadescription file

teleop_configuration_file_path: path to teleop configuration file

More info:

romea_teleop stack

Examples:

-ros2 launch romea_teleop_bringup mobile_base_teleop.launch.py robot_namespace:=adap2e base_meta_description_file_path:=path_to_demo/config/robot/base.yaml joystick meta_description_file_path:=path_to_demo/config/robot/devices/remote_controller.joytick.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configura

Devices selection

Devices configuration:

```
remote controller:
 type: joystick
 available mode: all
lms151
type: lidar
available mode: live
ublox:
type: gps
 available mode: none
xsens:
 type: imu
 available mode: none
transceiver0:
 tvpe: rtls
 available mode: simulation
transceiver1
 tvpe: rtls
 available mode: simulation
```

More info:

tirrex_demo package

Examples:

-ros2 launch romea_demo_robot_devices.launch.py configuration_filaneme:=path_to_demo/config/robot/devices.yaml

Joystick

Meta-description:

```
name: "joystick"
driver:
pkg: "joy"
device: "/dev/input/js0"
autorepeat_rate: 10.0
deadzone: 0.1
configuration:
type: xbox
records:
joy: true
```

Supported driver packages:

- <u>joy</u>
- ds4 driver

Supported joysticks:

- xbox (360, one)
- dualshock4

Joystick

Launch:

ros2 launch romea_joy_bringup joystick_driver.launch.py robot_namespace:=adap2e (optional, default = "") meta_description_file_path:= path to joystick metadescription file

More infos:

-romea joy stack

Example:

GPS

Meta-description:

```
name: "gps"
 driver.
  pkq: "romea ublox driver"
  device: "/dev/ttvACM0"
  baudrate: 115200
 ntrip: # optional
  pkg: "ntrip client"
  host: caster.centipede.fr
  port: 2101
  username: centipede # optional
  password: centipede # optional
  mountpoint: MAGC
configuration:
  type: drotek
  model: f9p
  rate: 10 # hz
geometry:
parent link: "base link"
xyz: [0.0, 0.0, 1.5] #meters
records
 nmea sentence: true
qps fix: false
 vel: false
```

Supported driver packages :

- nmea navsat driver
- romea ublox driver
- ntrip_client

Supported GPS receivers

- ublox (drotek fp9, ublox evk m8)
- ashtech proflex800

GPS

URDF Description:

ros2 run roma_gps_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path: absolute path to gps meta-description file

Launch:

ros2 run roma_gps_bringup gps_driver.launch.py robot_namespace:=adap2e meta_description_file_path:= absolute path to gps meta-description file

More info:

romea gps stack

Examples:

-ros2 run romea_gps_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/ublox.gps.yaml > ublox.urdf -ros2 launch romea_gps_bringup gps_driver.launch.py robot_namespace:=adap2e meta_description_file_path:=path_to_demo/config/robot/ublox.gps.yaml

Meta-description:

```
name: "imu"
driver:
pkg: "xsens_driver"
device: "/dev/ttyUSB0"
baudrate: 115200
configuration:
type: xsens
model: mti
rate: 100 #hz
geometry:
parent_link: "base_link"
xyz: [0.0, 0.0, 1.0] #meters
rpy: [0.0, 0.0, 0.0] #degrees
records:
data: true
```

Supported driver packages:

- bluespace ai xsens mti driver
- xsens_driver

Supported IMU sensors:

- xsens (models mti and mti6xx)

MU

URDF Description:

ros2 run roma_imu_bringup urdf_description.py robot_namespace:adap2e meta_description_filename:path to imu metadescription file

Launch:

ros2 run roma_imu_bringup imu_driver.launch.py robot_namespace:=adap2e meta_description_filename:=path to imu metadescription file

More info:

- romea imu stack

Examples:

-ros2 run romea_imu_bringup urdf_description.py robot_namespace:adap2e meta_description_filanem:path_to_demo/config/robot/devices/xsens.imu.yaml > xsens.urdf -ros2 launch romea_imu_bringup imu_driver.launch.py robot_namespace:=adap2e meta_description_file_path:=path_to_demo/config/robot/devices/xsens.imu.yaml

LIDAR

Meta-description:

```
name: "lidar"
driver
 pkg: "sick scan"
 ip: "192.168.1.112"
port: 2112
configuration:
type: sick
model: lms151
rate: 50 # hz
resolution: 0.5 # degree
geometry:
parent link: "base link"
xyz: [2.02, 0.0, 0.34] # meters
rpy: [0.0, 0.0, 0.0] # degrees
records
 scan: true
cloud: false
```

Supported driver packages:

- sick scan

Supported lidars:

- sick (lms1xx,tim5xx)

LIDAR

URDF Description:

ros2 run roma_lidar_bringup urdf_description.py robot_namespace:adap2e meta_description_filename:path to lidar metadescription file

Launch:

ros2 run roma_lidar_bringup lidar_driver.launch.py robot_namespace:=adap2e meta_description_filename:=path to lidar metadescription file

More info:

- romea lidar stack

Examples:

-ros2 run romea_lidar_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/lms151.lidar.yaml > lms151.urdf -ros2 launch romea_lidar_bringup lidar_driver.launch.py robot_namespace:=adap2e meta_description_file_path:path_to_demo/config/robot/lms151.lidar.yaml

Bridge (Campero, Alpo....)

Adap2e

Meta-description:

```
name: "lidar"
driver:
 pkg: "sick scan"
 ip: "192.168.1.112"
 port: 2112
configuration:
 type: sick
 model: lms151
 rate: 50 # hz
resolution: 0.5 # degree
geometry:
 parent link: "base link"
 xyz: [2.02, 0.0, 0.34] # meters
rpy: [0.0, 0.0, 0.0] # degrees
records:
 scan: true
 cloud: false
```

Campero

```
Meta-description:
name: "front_lidar"
configuration:
type: sick
model: lms151
rate: 50 # hz
resolution: 0.5 # degree
geometry:
parent_link: "base_link"
xyz: [0.490, -0.300, 0.3513] # meters
rpy: [180.0, 0.0, -45.0] # degrees
records:
scan: true
bridge:
scan: /campero_bridge/front_laser/scan
```

Complete remapping used by algorithms, applications... /robot_name/front_lidar/scan : /campero_bridge/front_laser/scan

Robot Simulation

Nodes graph

Record/Replay

Records configuration:

directory: ~/dev/records # records directory
config: true # save config directory

debug: true# save cvs debug files into debug directorylog: true# save node log files into log directory

csv: true # save package versions and source codes diff

Examples:

- ros2 launch tirrex adap2e adap2e.launch.py mode:=simulation record:= true

- ros2 launch tirrex_adap2e adp2e.launch.py mode:=simulation record:= true
- ros2 launch tirrex demo replay.launch.py replay directory:=~dev/records/tirrex adap2e/22-12-15-51

Record/Replay

Examples:

- ros2 launch tiirex_adap2e adap2e.launch.py mode:=simulation records:= true
- ros2 launch romea_demo replay.launch.py replay_directory:~dev/records/rtirrex_adap2e/22-12-12-15-51

Simulation configuration

Simulation configuration:

 ${\color{red} \textbf{world_package}: romea_simulation_gazebo_worlds}$

world name: romea small vineyard.world

wgs84_anchor:

latitude: 45.76265802 longitude: 3.11000985 Altitude: 405.839

More Info:

romea simulation stack

Examples: