1 List of symbols

(1 indicates a dimensionless quantity and – indicates not applicable).

Symbol	Variable name	Units	Description
$\arctan 2(y,x)$	_	_	The four quadrant inverse tangent which returns values in
			the interval $[-\pi, \pi]$, inclusive.
c	c	ms^{-1}	Sound speed in water.
D(v)	$filter_v[n]['D']$	1	Integer filter decimation factor.
$\widehat{\mathrm{DFT}}_{N}(x)$	N_DFT	_	The discrete Fourier transform of length N_{DFT} of x .
f		$_{\mathrm{Hz}}$	Frequency.
$f_{ m C}$		Hz	Frequency at centre of linear upsweep chirp pulse. Equiv-
			alent to $f_{\text{start}} + \frac{ f_{\text{stop}} - f_{\text{start}} }{2}$.
$f_{ m n}$	f_n	$_{ m Hz}$	Nominal operating frequency of a transducer.
$f_{ m S}$	$f_{-}s$	Hz	Analogue to digital sampling frequency.
$f_{ m s,dec}$	f_s_{dec}	Hz	Decimated sampling frequency.
$f_{ m start}$	$f_{-}1$	Hz	Start frequency of linear upsweep chirp pulse.
$f_{ m stop}$	$f_{-}2$	Hz	Stop frequency of linear upsweep chirp pulse.
$g(\theta, \phi, f)$	$g_{theta_phi_m}$	1	Transducer gain as a function of echo arrival angle in the
			beam and frequency.
$g_0(f)$	g_0m	1	Transducer gain along the main acoustic axis, i.e.
			$g(\theta, \phi, f)$ where $\theta = \phi = 0$.
$h_{\mathrm{bp}}(i,v)$	$filter_v[n]['h_fl_i']$	1	Complex valued receiving filter coefficients.
i		1	Generic integer index.
$\Im(x)$		_	The imaginary part of x .
j			The square root of -1 .
m	m	1	Sample index in frequency domain.

$N_{ m u}$	$N_{-}u$	1	Total number of transducer sectors/transceiver channels
			that are used to receive and process the acoustic signal.
$N_{ m V}$		1	Total number of filter stages.
N_w		1	Number of samples used in the sliding Hanning window.
n	n	1	Sample index in time domain.
$P_{\text{rx,e,t}}(f)$ $P_{\text{rx,e,t}}(m)$		W	FT of the received electric power in a matched load for the
111,0,0			signal from a single target at frequency f .
$P_{\rm rx,e,t}(m)$	$P_rx_e_t_m$	W	DFT of the received electric power in a matched load for
111,0,0			the signal from a single target.
$P_{\mathrm{rx,e,v}}(f)$		W	FT of the received electric power in a matched load for the
) -) - (0)			signal from a volume at frequency f .
$P_{\mathrm{rx,e,v}}(m)$	P_rx_e_v_m	$ m Wm^2$	DFT of the received electric power in a matched load for
, ,			the signal from a volume.
$p_{\mathrm{rx,e}}(n)$	p_rx_e_n	W	Received electric power in a matched load.
$p_{ m tx,e}$	p_tx_e	W	Transmitted electric power.
$p_{\mathrm{tx,auto}}(n)$	p_tx_auto	1	Square of the absolute value of the matched filter autocor-
- 621,616100 ()	_		relation function.
$\Re(x)$		_	The real part of x .
r		m	Distance from transducer.
r_0		m	Reference distance.
r_c		m	Distance from the transducer to the centre of the range
			volume covered by t_w .
$r_c(n)$		m	$range_c$ at sample number n .
r(n)	r_n	m	Distance from transducer.
$S_p(n)$	Sp n	$dB re 1 m^2$	Point scattering strength.
$S_{\mathbf{V}}$		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength.
$S_{\mathbf{V}}(f)$		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at frequency f .
$S_{\mathbf{V}}(n)$	Sv_n	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at sample index n .

TS		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^2$	Target strength.
TS(f)		$dB re 1 m^2$	Target strength at frequency f .
TS(m)	TS_m	$dB re 1 m^2$	Target strength at frequency index m .
t		\mathbf{S}	Time.
t_w	$t_{-}W$	S	Duration of sliding window for calculating volume backscattering strength.
u		1	Receiver channel number and transducer sector number.
u(i)		1	The Heaviside step function.
V		m^3	Volume occupied by scattering targets.
v		1	Filter stage.
w		1	The Hann window function.
w(i)		1	The Hann window function for index i, defined by $w(i) =$
			$0.5(1 + \cos(2\pi i/N_w)), -N_w/2 \le i \le N_w/2.$
$ ilde{w}(i)$		1	Normalised Hann window.
x^*		_	The complex conjugate of x .
$ x _{2}$		_	The l^2 -norm of x , also known as the Euclidean norm.
$Y_{\rm mf,auto}(m)$		1	Discrete Fourier transform (DFT) of the autocorrelation
iii,wa oo			function for the matched filter.
$Y_{ m mf,auto,red}(m)$		1	DFT of the reduced autocorrelation function for the matched filter.
$Y_{\text{nc.t}}(m)$		V	DFT of the pulse compressed signal from a single target.
$Y_{ m pc,t}(m) \ ilde{Y}_{ m pc,t}(m)$		Vm	DFT of the pulse compressed signal from a single tar-
- pc,t(***)		, 111	get normalized by the DFT of the reduced autocorrelation
			function for the matched filter.
$Y_{\mathrm{pc,v}}(m)$		Vm	DFT of the pulse compressed signal from a volume. Compensated for spreading loss.

$ ilde{Y}_{ m pc,v}(m)$	V	DFT of the pulse compressed signal from a single volume normalized by the DFT of the reduced autocorrelation function for the matched filter. Compensated for spread- ing loss.
$y_{ m mf}(n)$	1	Matched filter. Signal used for pulse compression.
$y_{\rm mf,auto}(n)$	1	Autocorrelation function for the matched filter.
$y_{ m mf,auto,red}(n)$ y_mf_auto_red_n	1	Reduced autocorrelation function for the matched filter.
$y_{ m pc}(n)$	V	Pulse compressed signal averaged over all transducer sectors.
$y_{ m pc}(n,u)$	V	Pulse compressed signal from channel u .
$y_{ m pc,aft}(n)$	V	Pulse compressed signal from the aft transducer half.
$y_{ m pc,fore}(n)$	V	Pulse compressed signal from the forward transducer half.
$y_{ m pc,port}(n)$	V	Pulse compressed signal from the port transducer half.
$y_{ m pc,s}(n)$	Vm	Pulse compressed signal compensated for spherical spread-
o Polot /		ing.
$y_{\text{pc,star}}(n)$	V	Pulse compressed signal from the starboard transducer half.
$y_{ m pc,t}(n)$	V	Pulse compressed signal from a single target.
$y_{\text{TX}}(n, u)$	V	Received digitised, bandpass filtered, decimated complex signal after the final filter stage, $y_{\text{TX}}(n, u) = y_{\text{TX}}(n, u, N_{\text{V}})$.
$y_{\mathrm{TX}}(n,u,v)$	V	Received digitised, bandpass filtered, decimated complex signal.
$y_{ m rx,a}(t)$	Pa	Analogue acoustic signal received by the transducer.
$y_{\mathrm{rx,e}}(t,u)$	V	Analogue electric signal received by each transceiver chan-
		nel u.
$y_{\mathrm{TX,org}}(n,u)$	V	Received digitised signal before the bandpass filtering and decimation stages, $y_{\text{TX,org}}(n, u) = y_{\text{TX}}(n, u, 0)$.

$y_{tx}(n)$	V	Ideal transmitted signal generated from transmit signal
		properties.
$ ilde{y}_{ ext{tx}}(n)$	1	Ideal normalized transmitted signal generated from trans-
		mit signal properties.
$ ilde{y}_{ ext{tx}}(n,v)$	1	Ideal normalized transmitted signal generated from trans-
	_	mit signal properties after application of filter stage v .
$y_{ m tx,a}(t)$	Pa	Analogue acoustic transmit signal.
$y_{\mathrm{tx,e}}(t)$	V	Analogue electric transmit signal.
$y_{ heta}(n)$	rad	Electrical angle along the minor axis of the transducer
		(alongship when ship-mounted).
$y_\phi(n)$	rad	Electrical angle along the major axis of the transducer
		(athwartship when ship-mounted).
$z_{\rm rx,e}$	Ω	Receiver electric impedance.
$z_{ m td,e}$	Ω	Transducer sector electric impedance.
$\alpha(f)$	$\mathrm{dB}~\mathrm{m}^{-1}$	Absorption coefficient at frequency f .
$\gamma_{ heta}$	1	Conversion factor between phase difference in signals from
10	-	the fore and aft transducer halves and the physical arrival
		angle of an echo.
γ_{ϕ}	1	Conversion factor between phase difference in signals from
Ιψ	-	the port and starboard transducer halves and the physical
		arrival angle of an echo.
heta	rad	Angle coordinates along the minor axis of the transducer
·	1000	(alongship when ship-mounted).
λ	m	Acoustic wavelength.
λ_m	m	Acoustic wavelength at frequency index m
	m^2	Backscattering cross-section.
$rac{\sigma_{ m bs}}{ au}$	S	Nominal transmit pulse duration.
	S	Effective transmit pulse duration.
$ au_{ ext{eff}}$	b	Effective diamonnia pulse duration.

ϕ	rad	Angle coordinates along the major axis of the transducer
		(athwartship when ship-mounted).
$\psi(f)$	sr	Two-way equivalent beam angle at frequency f .