# **IT-Security Management**

# Modul 182

Copyright © by Janik von Rotz

| Titel           | IT-Security Management        | Тур             | Kategorie      | Version               | 1.2        |
|-----------------|-------------------------------|-----------------|----------------|-----------------------|------------|
| Thema           | Modul 182                     | Klasse          | öffentlich     | Freigabe Datum        | 05.05.2012 |
| Autor           | Janik von Rotz                | Status          | Status         |                       |            |
| Ablage/Name     | D:\SkyDrive\education\bbzs\4. | lehrjahr\sba\Mo | dul184\Modu 18 | 34 IT-Security Manage | ment.docx  |
| Schlüsselwörter |                               |                 |                |                       |            |
| Kommentare      |                               |                 |                |                       |            |

#### **Dokumentverlauf**

| Version | Datum      | Autor          | Beschreibung der Änderung               | Status         |
|---------|------------|----------------|-----------------------------------------|----------------|
| 1.0     | 28.04.2012 | Janik von Rotz | Erstellen Dokument                      | In Bearbeitung |
| 1.1     | 05.05.2012 | Janik von Rotz | Freigeben                               | Freigabe       |
| 1.2     | 14.05.2012 | Janik von Rotz | Umstruktierung, anpassen Formatvorlagen | Fertiggestellt |

**IT-Security Management** 

#### Referenzierte Dokumente

|  | Nr. | Dok-ID | Titel des Dokumentes / Bemerkungen | Ablage / Link |  |
|--|-----|--------|------------------------------------|---------------|--|
|--|-----|--------|------------------------------------|---------------|--|

#### Lizenz

#### **Creative Commons License**



#### **Deutsch**

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Schweiz zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-sa/3.0/ch/ oder wenden Sie sich brieflich an Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

#### **English**

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Switzerland License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ch/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

# **Inhaltsverzeichnis**

| 1     | Betriebswirtschaftliche Aspekte zur Systemsicherheit          | 6               |
|-------|---------------------------------------------------------------|-----------------|
| 1.1   | Auswirkungen von Sicherheitsvorfällen                         | 6               |
| 1.2   | IT-Sicherheits-Risikomanagement Prozess-Kette                 | 8               |
| 1.2.1 | Schritt 1: Identifikation und Bewertung                       | 8               |
| 1.2.2 | Schritt 2: Entwicklung und Implementierung                    | 8               |
| 1.2.3 | Schritt 3: Implementierung und Aufrechterhalten der Sicherhei | itsrichtlinen 8 |
| 1.2.4 | Schritt 4: Austesten der Systemsicherheit                     | 9               |
| 1.3   | Wichtige Sicherheitsbedrohungen – STRIDE                      | 11              |
| 1.4   | Mehrstufige Verteidigung für das IT-System                    | 12              |
| 1.4.1 | ISO-OSI Layer 8" – Der Anwender                               | 13              |
| 1.4.2 | Ebene der physischen Sicherheit                               | 14              |
| 1.4.3 | Gefährdungen auf der Perimeter-Ebene                          | 15              |
| 1.4.4 | Ebene des internen Netzwerkes                                 | 16              |
| 1.4.5 | Hostebne                                                      | 17              |
| 1.4.6 | Anwendungsebene                                               | 19              |
| 1.4.7 | Datenebene                                                    | 20              |
| 1.5   | Checkliste bei Sicherheitvorfällen                            | 21              |
| 1.6   | Optimale Methoden für die Sicherheit                          | 22              |
| 1.7   | Sicherheitscheckliste                                         | 22              |
| 2     | Kryptographie                                                 | 23              |
| 2.1   | Digitale Signatur                                             | 24              |
| 2.1.1 | Verfahren                                                     | 25              |
| 2.2   | Public-Key-Verfahren/ Asymmetrische Verschlüsselung           | 26              |
| 2.3   | Symmetrische Verschlüsselung                                  | 27              |
| 3     | Packet Firewalls                                              | 28              |
| 3.1   | Packet Filter Firewalls                                       | 28              |
| 3.1.1 | Filterbereich                                                 | 28              |
| 3.1.2 | Vorgang:                                                      | 29              |
| 3.1.3 | Filterbereich                                                 | 29              |
| 3.2   | Firewall Topologien                                           | 30              |
| 3.2.1 | 3-Port Firewall                                               | 30              |
| 3.3   | Screened Subnetz                                              | 30              |
| 3.4   | Firewall Verfahren                                            | 31              |
| 3.4.1 | Stateless Firewall (Zustandslose Firewall)                    | 31              |
| 3.4.2 | Stateful Firewall                                             | 32              |
| 3.5   | Stateful Inspection Firewall                                  | 33              |
| 4     | Firewall Infrastruktur planen                                 | 34              |

| 4.1    | Vorgaben                                                                 | 34         |
|--------|--------------------------------------------------------------------------|------------|
| 4.2    | Schema                                                                   | 34         |
| 4.3    | Konfigurationen                                                          | 34         |
| 4.3.1  | IP                                                                       | 34         |
| 4.3.2  | Filtertabelle (für restriktive Firewall                                  | 36         |
| 4.3.3  | Port-Forwarding                                                          | 36         |
| 5      | Aktive FTP und FW-Regeln                                                 | 37         |
| 6      | Passives FTP und FW Regeln                                               | 38         |
| 7      | IDS (Intusion Detection System)                                          | 39         |
| 7.1    | Fragen und Antworten                                                     | 39         |
| 7.1.1  | Zweck der Intrusion Detection Systems?                                   | 39         |
| 7.1.2  | Typen von Intrusion Detection Systems                                    | 39         |
| 7.1.3  | Host-basierte IDS                                                        | 39         |
| 7.1.4  | Netzwerk-basierte IDS                                                    | 39         |
| 7.1.5  | Funktionsweise von IDS                                                   | 41         |
| 7.1.6  | Funktionsweise der IDS                                                   | 41         |
| 7.1.7  | IDS Software                                                             | 42         |
| 7.1.8  | Abgrenzung gegenüber Honeypots                                           | 42         |
| 7.1.9  | In welcher Beziehung stehen IDS zu Honeypots?                            | 43         |
| 7.1.10 | Einsatz-Szenarien für NIDS                                               | 43         |
| 7.1.11 | Einsatz-Szenarien für HIDS                                               | 43         |
| 8      | ISAKMP                                                                   | 44         |
| 9      | Beispiel IT-Security Management Laptop-Computer                          | 45         |
| 9.1    | Einleitung                                                               | 45         |
| 9.2    | Zweck des Dokumentes                                                     | 45         |
| 9.3    | Allgemeiner Rahmen                                                       | 45         |
| 9.4    | Einsatz der Laptop-Computer                                              | 45         |
| 9.5    | Beschreibung der Latptop-Hardware                                        | 45         |
| 9.6    | Einbezug der generellen IT-Security Richtlinien                          | 46         |
| 9.7    | IT-Asset, Bedrohungs-Analyse                                             | 47         |
| 9.8    | Sicherheitsrichtlinien                                                   | 49         |
| 9.8.1  | Sicherheitsrichtlinien für Hardware Laptop-Computer                      | 49         |
| 9.8.2  | Sicherheitsrichtlinien für Lokal gespeicherte Geschäftsdaten             | 49         |
| 9.8.3  | Sicherheitsrichtlinien für lokal gespeicherte firmenspezifische Al<br>49 | nwendungen |
| 9.8.4  | Sicherheitsrichtlinien für Internetverbindung über WWLAN                 | 49         |
| 9.8.5  | Sicherheitsrichtlinien für lokales Administratoren-Konto                 | 49         |
| 9.8.6  | Sicherheitsrichtlinien für lokales Benutzerkonto und Benutzer            | 50         |
| 9.8.7  | Sicherheitsrichtlinien für Windows OS                                    | 50         |
| 9.8.8  | Sicherheitsrichtlinien für lokale Firewall                               | 50         |

# 1 Betriebswirtschaftliche Aspekte zur Systemsicherheit

# 1.1 Auswirkungen von Sicherheitsvorfällen

#### Verlust der Vertraulichkeit von Daten

- o unerlaubte Kopieroperationen
- Abhören der Datenübertragung
- o Lücken in der Zugriffssicherheit aufgrund von administrativen Mängeln
- o physischer Zugriff auf Datenträger (Diebstahl von Datenträgern oder Mobilesystemen)
- Verlust von Vertraulichkeit aufgrund dem Einsatz von Malware (Keylogger, Rootkits)

#### Verlust der Integrität von Daten

o aus den gleichen Gründen wie oben

#### Verlust der Verfügbarkeit von Systemen

- Unterbrechung der Geschäftsprozesse
- o durch Lahmlegen von wichtigen Systemen
- Sabotage an Systemen oder Teilsystemen
- Denial of Service Angriffe gegen exponierte Dienste

#### Verlust der Identität von Benutzern und Host

- durch das Ausspionieren von Benutzernamen und Kennwörtern (Social Engineering, Passwort-Cracker)
- o den Diebstahl von privaten Schlüsseln in PKI-Infrastruktureny-> Dritte können unberechtigterweise an Stelle von Personen oder Diensten handeln

#### Verlust der Nichtabstreitbarkeit der Urheberschaft

- o die Urheberschaft von Dokumenten kann nicht nachvollzogen werden,
- o die Rechtsverbindlichkeit von digitalen Dokumenten kann nicht gewährleistet werden.

Zusammengefasst kann gesagt werden, dass die IT-Security den Auftrag hat die folgenden abstrakten Güter zu schützen:

- 1. Schutz der Vertraulichkeit von Daten bei Einspeicherung und Übertragung
- 2. Schutz der Integrität von Daten bei Einspeicherung und Übertragung
- 3. Schutz der Verfügbarkeit von Systemen und Diensten
- 4. Schutz vor missbräuchlicher Verwendung der Systeme
- 5. Schutz der Identitäten von Benutzern und Systemen
- 6. Schutz der Nichtabstreitbarkeit der Urheberschaft von Daten Prozessen

#### Die betriebswirtschaftlichen Folgen sind:

- Produktionseinbussen oder Verzögerungen
- Beeinträchtigung des Kundenvertrauens
- Beeinträchtigung des Investorenvertrauens
- Umsatzverluste
- Rufschädigung
- Rechtliche Konsequenzen aufgrund von Haftungsansprüchen von Geschäftspartnern

Die Planung, Implementierung, Überprüfung und Aufrechterhaltung von Sicherheitsmassnahmen verursacht Kosten. Typischerweise betragen diese Kosten nur einen Bruchteil der Kosten, die bei einem Sicherheitsvorfall für die Behebung und Verarbeitung von Schäden aufgewendet werden müssen.

# 1.2 IT-Sicherheits-Risikomanagement Prozess-Kette

### 1.2.1 Schritt 1: Identifikation und Bewertung

- Identifizieren der sicherheitsrelevanten IT-Asset Items und Sub-Asset-Items
- Identifizieren der Bedrohungen, denen die Asset-Items ausgesetzt sind
- Festlegen der Sicherheitsrisiken der Sicherheitsrisiken, die sich aus den einzelnen Bedrohungen ergeben
- Liste mit relariver Rangordnung der Sicherheitsrisiken erstellen (Priorisierung der zu ergreifenden Gegenmassnahmen zur Reduzierung von Sicherheitsrisiken
- Identifikations- und Bewertungsprozess auf neue und geänderte System kontinuierlich anwenden (permanente Tätigkeit)

### 1.2.2 Schritt 2: Entwicklung und Implementierung

- Festlegen von Sicherheitsrichtlinien für die die verschiedenen Sicherheitsmassnahmen und Asset-Items entsprechend ihrer Priorisierung
- Ausarbeitung von Verfahren, die bei Notfällen (Systemausfälle, sicherheitskritische Vorfälle) zur Anwendung kommen müssen
- Austesten der Sicherheitsmassnahmen im Testbetrieb
- Dokumentation der Sicherheitsrichtlinien als praktische Wegleitungen für die Inbetriebnahme und Wartung von Systemen

### 1.2.3 Schritt 3: Implementierung und Aufrechterhalten der Sicherheitsrichtlinen

- Schulung von IT-Personal und Anwendern
- Anwendung der Sicherheitsrichtlinien bei der Installation und Inbetriebnahme von System
- Anwendung der Sicherheitsrichtlinien bei der Wartung der Systeme

#### Sicherheitsrichtlinie

Beschreibt, mit welchen Prozessen den verschiedenen Risiken, die auf den verschiedenen Asset-Items festgestellt wurden, begegnet werden soll und wie diese Massnahmen überwacht und weiterentwickelt werden sollen. Zudem werden die Verantwortlichkeiten grundsätzlich geregelt.

### 1.2.4 Schritt 4: Austesten der Systemsicherheit

Es werden zwei Testarten unterschieden

#### 1.2.4.1 Test aus der Aussensicht -> Penetrationstest

| Phase | Bezeichnung                         | Vorraussetzung                                                     | Vorgehen                                                                                        | Tools                   |
|-------|-------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|
| 1     | System aufklären                    | Tester haben keine                                                 |                                                                                                 | Social Engineering      |
|       |                                     | Kenntnisse über das Sys-                                           |                                                                                                 | Netzwerk Scanner (nmap) |
|       |                                     | tem                                                                |                                                                                                 | Paketgenerator (netcat) |
|       |                                     |                                                                    |                                                                                                 | Vulnerabilty            |
|       |                                     |                                                                    |                                                                                                 | Passwort-Cracker        |
|       |                                     |                                                                    |                                                                                                 | Etc.                    |
| 2     | Security-Audits<br>(Test von innen) | Tester verfügen über eine<br>vollständige Systemdo-<br>kumentation | Es werden primär Si-<br>cherheitsrichtlinien<br>(Prozesse, Vorge-<br>hensweisen über-<br>prüft) |                         |

Externe Tester überprüfen die IT-Sicherheit mit dem Wissensstand eines externen Angreifers und erstatten detaillierten Bericht.

Die entdeckten Mängel haben Einfluss auf den Sicherheitsprozess (Schritte 1-3) und die eigenlichen Sicherheitsrichtlinien.

#### 1.2.4.1.1 Phasen und Werkzeuge für Penetrationstests

| Phase | Bezeichnung/ Zielsetzung                                                                                                                                               | Tools                                                           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1     | Anforderungen                                                                                                                                                          |                                                                 |
|       | Bekanntgabe der zu überprüfenden Adressen und Prozesse                                                                                                                 |                                                                 |
| 2     | Footprinting Informationsbeschaffung (Information-Gathering) mittels                                                                                                   | <ul> <li>Publikationen der Firma<br/>(z.B. Homepage)</li> </ul> |
|       | Systemtools                                                                                                                                                            | <ul> <li>Social Engineering</li> </ul>                          |
|       |                                                                                                                                                                        | <ul> <li>DNS-Einträge zur Firmen-<br/>Domäne</li> </ul>         |
| 3     | Ist-Aufnahme                                                                                                                                                           | Netzwerkscanner (nmap)                                          |
|       | Mit Scans sollen benutzte IP-Adressen, Betriebssysteme von<br>Hosts und Netzwerkgeräten, Produkte und Versionen von<br>wichtigen Diensten in Erfahrung gebracht werden |                                                                 |
| 4     | Analyse                                                                                                                                                                | <ul> <li>Vulnerability Scanner</li> </ul>                       |
|       | Einsatz von Schachstellen-Analysatoren                                                                                                                                 | (Nessus)                                                        |
|       | (Vulnerabilty Scanner)                                                                                                                                                 | <ul> <li>Spezielle Vulnerability-</li> </ul>                    |
|       | Einsatz von Passwort-Cracker gegen Netzwerkgeräte und Serversysteme                                                                                                    | Toolsammlungen (BOSS vom BSI)                                   |
| 5     | Report                                                                                                                                                                 |                                                                 |
|       | Berichterstattung über die Ergebnisse des Penetrationstests                                                                                                            |                                                                 |
|       | Massnahmen zur Ausmerzung der erkannten Schwachstellen vorschlagen                                                                                                     |                                                                 |

#### 1.2.4.2 Test aus der Innensicht -> Sicherheits-Audit

Externe Tester überprüfen die IT-Sicherheit (Zweckmässigkeit der Sicherheitsprozesse (Schritte 1-3) und die Wirksamkeit der Sicherheitsrichtlinien) unter Mitwirkung der verantwortlichen Administratoren mit dem vollen Systemwissen der Administratoren).

Die entdeckten Mängel haben Einfluss auf den Sicherheitsprozess (Schritte 1-3) und die eigentlichen Sicherheitsrichtlinien.

# 1.3 Wichtige Sicherheitsbedrohungen – STRIDE

| Bedrohungstyp          | Beispiele                                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------|
| Spoofing               | Fälschen von MAC-Adressen                                                                              |
| <b>O</b> pooming       | Fälschen von IP-Adressen                                                                               |
|                        | Fälschen von FQDNs                                                                                     |
|                        | Fälschen von E-Mail-Nachichten                                                                         |
|                        | Replayangriffe mit Authentifizierungspaketen                                                           |
| Tampering              | Ändern von Daten bei der Übertragung                                                                   |
| r ampering             | Ändern von Daten in Dateien                                                                            |
| Repudiation            | Alle Massnahmen, die dazu dienen, die Urheberschaft eines Dokumentes abstreiten zu können.             |
|                        | Löschen einer kritischen Datei und anschliessendes Verschleiern des Ereignisses                        |
| Information disclosure | Offenlegen von Informationen in Fehlermeldungen                                                        |
| information disclosure | Offenlegen von Programmcode auf Websites                                                               |
| Denial of Services     | Überfluten eines Netzwerkes z.B. mit SYN-Flag haltigen TCP-Segmenten oder mit gefälschten ICMP-Paketen |
| Elevation of Privilege | Ausnutzen von Pufferüberläufen (Buffer Overflow), um root- bzw. Administratoren-Rechte zu erhalten     |
|                        | Unrechtmässiges Beschaffen von Administratorenrechten                                                  |

# Begriffe im Zusammenhang mit Schwachstellen von Programmen und Angriffe

| Vulnerabilty | Schwachstelle einer Software, die das Ausarbeiten eines Angriffs möglich macht (z.B. Buffer overflow, SQL-Injection)     |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Exploit      | Konkretes Angriffsverfahren, das auf einer bestimmten Vulnerability beruht                                               |  |
| CERT         | Computer Emergency and Response Team                                                                                     |  |
|              | Organsinsation (meist staatlich), die sich mit der Aufdeckung, Behebung und Dokumentation von Vulnerabilties beschäftigt |  |

# 1.4 Mehrstufige Verteidigung für das IT-System

IT-Sicherheit muss bekanntlich auf allen IT-Asset-Items und allen darin implementierten OSI-Layern wirksam werden.

Das mehrstufige Konzept erhöht Wahrscheinlichkeit, dass ein Angriff entdeckt wird und vermindert die Wahrscheinlichkeit, dass ein Angriff erfolgreich ausgeführt werden kann.



Abbildung 1: Schema Mehrstufige Verteidigung

Mehrstufe Implementierung von Sicherheitsrichtlinien (Quelle: MSFT Webcast "Grundlagen der IT-Sichereheit")

# 1.4.1 ISO-OSI Layer 8" – Der Anwender

#### Sicherheitsbedrohung erfolgen durch:

- mangelhaftes Sicherheitsbewusstsein (User Awareness), Methoden des "Social Engineerings" zielen auf die Leichtgläubigkeit und Bedenkenlosigkeit der Benutzer ab (Schulung der Mitarbeiter, Überwachung)
- Regelwidriges Verhalten (z.B. Installation/ Betrieb eines Modems am Netzwerk-Arbeitsplatz)
- Sorglosigkeit im Umgang mit vertraulichen Daten (z.B. Kopien von sensiblen Daten auf Laptop) anlegen
- Opfer von ausgeklügelten Methoden (z.B. Pasword-Phishing)

#### Gegenmassnahmen:

- Sicherheitsschulungen
- Merkblätter oder Weisungen, die die Benutzer vor Social Engineering schützen sollen. Die Sicherheitsrichtlinien können in Form von Check-Listen, Anweisungen für bestimmte Standardabläufe oder ganze Prozessketten umfassen.
- Verwendung von zentral administrierten Client-Computern (Durchsetzen von Sicherheitsrichtlinien über Gruppenrichtlinien)
- Einsatz von Proxy-Systemen
- Überwachung der Benutzertätigkeit

### 1.4.2 Ebene der physischen Sicherheit

#### • Gefährdung druch:

- o Beschädigen von Hardware
- Diebstahl von Datenträgern oder ganzen Systemen

#### • Gegenmassnahmen zum Schutz der physischen Sicherheit

- o Verschliessen von Türen, Installation von Alarmanlagen und Überwachungs-systemen
- o Beschäftigung von Sicherheitspersonal
- o Erzwingen von Zugriffsverfahren
- Überwachen und Protokollieren des Zugangs/ Zugriffs
- o Beschränken der Zugriffsreche auf Dateieingabe- und Ausgabegeräten
- Verwenden von anerkannten Sicherheits-Tools für den Remotezugriff zur Erhöhung der Sicherheit

### 1.4.3 Gefährdungen auf der Perimeter-Ebene

#### Netzwerkperimeter sind Netzwerkübergänge zu

- o Internet und Internet-Anwendungen
- Zweigniederlassungen
- Geschäftspartnern
- o Remotebenutzern
- o Drahtlose Netzwerken

#### • Gefährdungen auf Perimeterebene

Eine Sicherheitslücke im Netzwerkperimeter kann zu Folgendem führen:

- Angriff auf das Unternhmensnetzwerk
- o Angriff auf Remote-Benutzer
- Angriff von oder auf Geschäftspartnern
- o Angriff von oder auf Zweigniederlassungen
- Angriff auf eigene Internetdienste
- o Angriff aus dem Internet

#### Massnahmen zum Schutz der Perimeterebene

Der Netzwerkperimeterschutz umfasst die folgenden Komponenten:

- Firewall (Paket- und Anwendungs-Firewall)
- Sperren von Kommunikationsanschlüssen
- o Port- und IP-Adressübersetzung
- Virtuelle private Netzwerke (IPSec)
- Tunnelprotokolle
- o VPN-Quarantäne
- Sichere Netz-Zugangsverfahren einsetzen (WPA2, IEEE 802.1X mit Client- und Serverzertifikaten)

#### 1.4.4 Ebene des internen Netzwerkes

- Gefährdung durch
  - Nicht autorisierter Zugang auf Systeme
  - o Ausspionieren von Paketen im Netzwerk
  - o Zugriff auf den gesamten Netzwerk-Datenverkehr
  - o Nicht autorisierter Zugriff auf drahtlose Netzwerke
  - Unerwartete Kommunikationsanschlüsse

#### Massnahmen zum Schutz der Ebene des internen Netzwerkes

- Implementierung der gegenseitigen Authentifizierung (Kerberos)
- Segmentierung der Netzwerke (z.B. VLAN)
- Verschlüsselung der internen Netzwerkkommunikaiton (IPSec)
- Sperren von Kommunikationsanschlüssen
- Steuern des Zugriffs auf Netzwerkgeräte (Netzzugangsverfahren: z.B. WPA2, oder IEEE 802.1X z.B. über WPA2)
- Signieren von Netzwerkpaketen

#### 1.4.5 Hostebne

Spezifische Netzwerkfunktionen

Betriebsystemkonfiguration (Hardening: Härten des TCP/IP-Stacks)

#### • Gefährdungen für die Hostebene

- o Ungesicherte Konfiguration des Betriebssystems
- o Verteilen von Viren, Trojanern, Würmern und Rootkits
- Nicht überwachter Zugriff
- Ausnutzen von Schwachstellen des Betriebssystems (z.B. LM-Passwort-Hash, Ausnutzen von unsicher pogrammierten Betriebssystem-Calls für die Durchführung eines Buffer-Overflows)

#### • Massnahmen zum Schutz der Hostebene

- Generell: Konsequentes Einhalten aller Sicherheitsrichtlinien, die zum Schutz der Host-Systeme definiert worden
- Schutz der Hosts vor physischem Zugriff
- o Redundante Auslegung von wichtigen Hardware-Komponenten
- Installation des Betriebssystemes und der Softwaren nur aus sicheren Quellen (Original-Datenträger oder oder Quellen deren Integrität durch Hash-Werte verifiziert werden können)
- Schutz des Dateisystems auf Laptop-Computern durch Verschlüsselung des Datenträgers
- Einhalten von Standards bei der Installation (Einsatz des Security Baseline Analyzer (MSBA) und des Microsoft Security Configuration Wizards)
- Implementieren der gegenseitigen Authentifizierung (Kerberos)
- Verzicht auf Einspeicherung von LAN-Manager Passwörtern
- o Durchsetzen einer zweckmässigen Passwort-Policy mit Gruppenrichtlinien
- Reduzieren des Betriebsystems:
  - Entfernen von nicht benötigten Systemteilen,
  - Härten des TCP/IP-Stacks (Schutz gegen DoS-Angriffe)
- o Implementieren der Ressourcen Überwachung
- Deaktivieren oder Entfernen unnötiger Dienste (-> deaktivieren von unnötigen LISTEN-Ports)
- Installieren und Verwalten von Antimalware-Software (gegen Viren Würmer und Trojaner)
- Regelmässiges Einspielen aktueller Sicherheits-Patches für Betriebssysteme, Serverdienste und Anwenderprogramme.
- Zusammenfassung von Instrastrukturservern in speziellen Organisationseinheiten und Anwendung von dafür sppeziell ausgearbeiteten Gruppenrichtlinien (vergl. Server Sicherheits Handbuch von Microsoft)
- Einsatz von speziell konfigurierten Host-Firewalls (-> verg. Handbuch Windows Server Security, FW-Konfigurationsdateien für bestimmte Servertypen)

Konsequente Einhaltung des Prinzips der "niedrigst möglichen Privilegierung" von Benutzern -> jedem Benutzer nur so viele Rechte und Berechtigungen zuweisen, wie für die Arbeit unbedingt nötig sind.

- Überwachung von wichtigen Infrastrukturservern mit spezieller Managementsoftware
- Bei Micrososoft-Systemen: Zuhilfenahme von geeigneten Security Tools:
  - (Security Update Manager, Windows Server Update Service WSUS, System Management Server 2003 Inventory Tool for Microsoft Updates (SMS-Ergänzung),
  - Microsoft Baseline Security Analyzer (MBSA 2.0), Microsoft Office Visio 2003
     Connector for the Microsoft Baseline Security Analyzer;
  - Enterprise Scan Tool;
  - Microsoft Security Assessment Tool
  - Automatic Scan and Update Tools für Windows und Office
- Für Microsoft Systeme: Verwendung der "Best Practice" Anleitungen
- Absichern von speziellen Server-Typen mit geeigneten Hof-Fixes: Z.B. IIS gegen "Directory Traversal" Techniken, die mit speziell konstruierten Unicode URL funktionieren schützen (Lockdown Tool)

### 1.4.6 Anwendungsebene

- Anwendungsspezifische Sicherheitsprobleme (z.B. SQL-Injection)
- Gewohnte Funktionalitäten müssen trotzt Sicherheitsoptimierungen wenn immer möglich noch erhalten bleiben.

#### • Gefährdungen für die Anwendungseben

- o Anwendung nicht mehr verfügbar
- o Ausführung von böswilligem Code
- Übermässige Verwendung einer Anwendung
- o Unerwünschte Verwendung von Anwendungen

#### • Massnahmen zum Schutz der Anwendungsebene

- o Aktivieren nur der eforderlichen Dienste und Funktionen
- o Konfigurieren der Sicherheitseinstellungen der Anwendung
- o Installieren und Aktualisieren von Antiviren-Software
- o Einspielen von Patches für die Anwendungen
- o Ausführen der Anwendung mit dem kleinst möglichen Berechtigungsumfang

#### 1.4.7 Datenebene

#### Gefährdung der Datenebene

- o Unerlaubtes Anzeigen, Kopieren, Ändern oder Löschen von Informationen
- Unerlaubtes Abfragen von Verzeichnissen

#### • Massnahmen zum Schutz der Datenebene

- o Verschlüsseln der Dateien mit EFS
- o (EFS ist eine Element der Sicherheitsrichtlinie, Prozesse müssen getestet und geschult werden, Revovery-Möglichkeiten sind nach Schlüsselverlust keine vorhanden)
- Einschränken des Datenzugriffs mit Zugriffs-Steuerungs-Listen (Access Conrol Lists = ACL) unter Verwendung einer geeignet definierten AD-Sicherheitsgruppen-Infrastruktur)
- o Erstellen von Plänen zur Datensicherung, Vorgehensweise für Wiederherstellung testen und schriftlich festhalten
- Schützen von Dokumentenund E-Mails-Nachrichten mit Windows Rights Management Services

### 1.5 Checkliste bei Sicherheitvorfällen

#### • Vorgehensweise bei Sicherheitvorfällen

- o Erkennen, dass ein Angriff stattfindet
- o Identifzieren des Angriffs
- Melden, dass ein Angriff stattfindet
- o Eindämmen des Angriffs
- o Implementieren von vorbeugenden Massnahmen
- o Dokumentieren des Angriffs

#### • Eindämmen der Folgen des Angriffs

- o Herunterfahren der betroffenen Server
- o Entfernen der betroffenen Computer aus dem Netzwerk
- o Sperren des eingehenden und ausgehenden Netzwerkdatenverkehrs
- Ergreifen vorbeugender Massnahmen zum Schutz von noch nicht befallenen Computern
- Sicher der Beweise

## 1.6 Optimale Methoden für die Sicherheit

- Kontinuierliche Einhaltung der sicherheitsrelevanten Prozesse (Schritte 1-4)
- Mehrstufige Verteidigung
- Sicheres Design (Perimeter-Netzwerke, Segmentierung der internen Netzwerke, sichere Zugansverfahren,...)
- Niedrigste Berechtigung
- Aufrechterhalten der Sicherheitsstufen
- Sicherheitsaspekte müssen für die Benutzer im Vordergrund stehen
- Entwickeln und Testen von Plänen und Verfahren für die Vorgehensweise bei Sicherheitsvorfällen und Betriebsunterbrüchen
- Lernen aus Fehlern

### 1.7 Sicherheitscheckliste

- Erstellen Sie Dokumente zu Sicherheitsrichtlinien und -verfahren
- Lesen Sie Sicherheitsdokumente (z.B. Microsoft Securiy-Portal, www.heise.de, ...)
- Abonnieren Sie E-Mail-Benachrichtigungen mit Sicherhetiswarnungen
- Implementieren Sie eine mehrstufige Verteidigung
- Berücksichtigen Sie für Microsoft-Systeme die "Best Practices" für die verschiedenen Host-Typen und/ oder deren Systemteile
- Führen Sie regelmässig Sicherungs- und Wiederherstellungsprozeduren durch
- Denken Sie wie ein Hacker/ Cracker
- Testen Sie Ihre Infrastruktur mit geeigneten Testprogrammen auf Sicherheitslücken (z.B. mit Nessus Vulnerability Scanner, nmap, netcat)

# 2 Kryptographie



## Überprüfung der digitalen Signatur



Die digitale Signatur garantiert die folgenden IT-Güter

- Integrität der digital unterzeichneten Daten
- Schutz der Nichtabstreitbarkeit der digital unterzeichneten Daten

Voraussetzung ist, dass der Schutz der digitalen Identitäten der digital unterzeichnenden Benutzer garantiert bleibt.

Abbildung 2: Kryptographie kompakt

# 2.1 Digitale Signatur



Abbildung 3: Digitale Signatur

#### 2.1.1 Verfahren

Bei der digitalen Signatur (DSig) oder der elektronischen Unterschrift handelt sich um einen asymmetrischen elektronischen Schlüssel, die die Identität des Benutzers sicherstellt. Der Schlüssel wird mit dem privaten Schlüssel des Absenders verschlüsselt und vom Empfänger mit dem öffentlichen Schlüssel gelesen.



Abbildung 4: Signierung

Die digitale Signatur wird als verschlüsselte Information dem Dokument angehängt. Dieses wird dadurch so gesichert, dass Änderungen am Inhalt sofort erkannt werden. Eine weitere Forderung in Bezug auf die digitale Signatur besagt, dass der Unterzeichner eindeutig erkannt werden muss und identifizierbar ist.



Abbildung 5: Arbeitsweise digitale Signatur

Vom Verfahren her wird für das Dokument der Hashwert ermittelt und mit dem geheimen Schlüssel des Benutzers verschlüsselt. Dieses neue verschlüsselte Dokument wird mit dem Originaldokument übertragen. Der Empfänger berechnet ebenfalls den Hashwert aus dem Originaldokument, entschlüsselt mit dem öffentlichen Schlüssel das verschlüsselte Dokument und vergleicht beide.

Die personenbezogene Zuordnung des öffentlichen Schlüssels übernimmt ein Trustcenter, das ein Zertifikat ausstellt. Der Namen des Zertifikat-Inhabers sowie dessen Zeichnungsberechtigung können im Trustcenter hinterlegt werden. Der geheime Schlüssel kann auf einer Chipkarte gespeichert und durch biometrische Daten, Passwörter u.ä. gesichert sein. Die Trustcenter haften für die Richtigkeit der Zertifikate. Die Mitgliedstaaten können den Einsatz elektronischer Signaturen im öffentlichen Bereich zusätzlichen Anforderungen unterwerfen. Sie gelten in einem Gerichtsverfahren als Beweismittel.

# 2.2 Public-Key-Verfahren/ Asymmetrische Verschlüsselung

Das Public-Key-Verfaren ist ein asymmetrisches Verschlüsselungsverfahren zur Verschlüsselung und Entschlüsselung von Daten. Das Public-Key-Verfahren kann zur vertraulichen Kommunikation benutzt werden, aber auch für die digitale Signatur.

Bei diesem Verfahren werden zwei verschiedene Schlüssel verwendet: Der Public Key, der öffentlich zugänglich sein kann, und der Private oder Secret Key (SK), der geheim und nur dem Inhaber bekannt ist.



Abbildung 6:Prinzip der Asymmetischen Verschlüsselug

Da die beiden Schlüssel nicht voneinander ableitbar sind, kann ein Schlüssel öffentlich bekannt gegeben werden (Public Key). Die Verschlüsselung des Klartextes erfolgt durch den öffentlichen Schlüssel in Kombination mit einem mathematischen Algorithmus, die Entschlüsselung durch einen geheimen Secret Key.



Abbildung 7: Funtionsablauf bei der Asysmmetrischen Verschlüsselung

# 2.3 Symmetrische Verschlüsselung

Die symmetrische Verschlüsselung kennt nur einen geheimen Schlüssel, der zur Verschlüsselung im Sender und zur Entschlüsselung im Empfänger benutzt wird. Der Sender chiffriert mit diesem Schlüssel die Nachricht, die der Empfänger mit dem gleichen Schlüssel dechiffrieren kann. Nur der Sender und der Empfänger dürfen über den geheimen Schlüssel verfügen, der vor der Kommunikation erzeugt und über einen sicheren Kanal zwischen den Kommunikationspartnern ausgetauscht werden muss. Um einen sicheren Schlüsselaustausch zu gewährleisten, dürfen nur solche Informationen übermittelt werden, aus denen keine Rückschlüsse auf den Schlüssel abgeleitet werden können. Ein solches Protokoll wird vom Diffie-Hellman-Algorithmus unterstützt.



Abbildung 8: Symmetrische Verschlüsselung

Der Vorteil des symmetrischen Verschlüsselungsverfahrens ist das es sehr schnell arbeitet, nachteilig ist, dass Unbefugte, die in den Besitz des Schlüssels kommen, alle Nachrichten dechiffrieren und selber auch verschlüsselte Nachrichten herausgeben können.

## 3 Packet Firewalls

## 3.1 Packet Filter Firewalls

#### 3.1.1 Filterbereich

• L3 – IP Protokoll

Filter auf den folgenden Header-Feldern:

- IP Destination Address
- o IP Source Address
- Protocol:
  - 6: TCP
  - 7: UDP
  - 50: ESP
  - 1: ICMP
  - 41: IPv6 over IPv4
  - 4: IP in IP
- o IHL (Internet Header Length)

Anzahl 4 Byte Blöcke im IPv4 Header:

- 5: normal
- >5: Optionsfeld im IPv4 Header ist besetzt => z.B. mit IP-Adressen von Routern zur Festlegung der Übertragungsweges => Potentielle Gefahr!
- L 3,5 ICMP

Filter auf den folgenden Header Feldern:

- o Typ:
  - 8: Echo Request
  - 0 Echo Reply
  - 3 Dest
- o Code

#### Beispiel Schema:



Abbildung 9: Beispiel Schema Paket Firewall

# **3.1.2 Vorgang:**

| Ursache                                                         | Wirkung           |                        |                               | Ergebnis                                                                          |
|-----------------------------------------------------------------|-------------------|------------------------|-------------------------------|-----------------------------------------------------------------------------------|
| CL erzeugt                                                      | Wer erzeugt       | Was wird erzeugt       | Filterung auf 1 Router ISP    | Output                                                                            |
| Ping www.oracle.com (ICMP<br>Typ 8 (Echo Request)               | www.oracle.com    | ICMP Typ0 (Echo Reply) | Weiterleitung                 | Ping wird ausgeführt für e4606.b.akamaiedge.net [2.20.18.174] mit 32 Bytes Daten: |
|                                                                 |                   |                        |                               | Antwort von 2.20.18.174: Bytes=32 Zeit=22ms TTL=56                                |
|                                                                 |                   |                        |                               | Antwort von 2.20.18.174: Bytes=32 Zeit=21ms TTL=56                                |
| Ping <u>www.oracle.com</u> -i 56 (TTL gesetzt, dass auf 1. Rou- | 1 Router ISP      | IMCP Typ11             | Aussendung                    | Ping wird ausgeführt für e4606.b.akamaiedge.net [2.20.18.174] mit 32 Bytes Daten: |
| ter ISP TTL=0                                                   |                   |                        |                               | Antwort von 2.20.18.174: Bytes=32 Zeit=21ms TTL=56                                |
|                                                                 |                   |                        |                               | Antwort von 2.20.18.174: Bytes=32 Zeit=21ms TTL=56                                |
| Tracert 10.13.1.10                                              | 1. Router ISP     | ICMP Typ3, code 13     | Ja (keine Aussendung)         |                                                                                   |
| Ping www.microsoft.com                                          | www.microsoft.com | ICMP Typ 0             | Die ICMP Typ 0 Nachricht wird |                                                                                   |
|                                                                 |                   |                        | schon auf                     |                                                                                   |
|                                                                 |                   |                        | www.microsoft.com gefiltert   |                                                                                   |
|                                                                 |                   |                        | oder kann auf dem Zugangs-    |                                                                                   |
|                                                                 |                   |                        | router gefiltert werden.      |                                                                                   |

## 3.1.3 Filterbereich

• L4 TCP

Filterung auf den folgenden Feldern:

- Destination Port Nr.
- o Source Port Nr. der beteiligten Software Prozesse
- o SYN-Flag aus den Control Bits (z.B. kein TCP-Segment mit gesetztem SYN-Flag in das innere Netz laufen lassen)
- L4 UDP

Filterung auf folgenden Feldern:

- o Destination Port Nr.
- o Source Port Nr.

# 3.2 Firewall Topologien

### 3.2.1 3-Port Firewall



Abbildung 10: 3-Port Firewall

#### 3.3 Screened Subnetz



Abbildung 11: Screened Subnet

# 3.4 Firewall Verfahren

# 3.4.1 Stateless Firewall (Zustandslose Firewall)



Abbildung 12: Stateless Firewall

#### 3.4.1.1 Regeln

| Nr. | Ziel (Net/Host) | Quelle (Net/Host) | Ziel Port | Quell Port | Action |
|-----|-----------------|-------------------|-----------|------------|--------|
| 0a  | 0.0.0.0         | LAN               | any       | any        | deny   |
| 0b  | LAN             | 0.0.0.0           | any       | any        | deny   |
| 1a  | LAN             | 0.0.0.0           | 80 TCP    | >1023 TCP  | allow  |
| 1b  | 0.0.0.0         | LAN               | >1023 TCP | 80 TCP     | allow  |

#### 3.4.1.2 Nachteile

- Doppelter Regelsatz
- WAN to LAN Regeln öffnen zu viele Ports

#### 3.4.2 Stateful Firewall



Abbildung 13: Stateful Firewall

[3] Das einlaufende Datagramm wird gemäss in der Connection Tracking Table als zu [1] zugehörige Nachricht erkannt.

### 3.4.2.1 Erstellung der Connection Tracking Table

| tcp            | Der Aufbau ist verbindungsorientiert, da TCP zustandsbehaftet |  |  |
|----------------|---------------------------------------------------------------|--|--|
| udp, icmp, esp | Zustandlose Protokolle:                                       |  |  |
|                | FW muss Verbindungszustand emulieren:                         |  |  |
|                | IP Adr                                                        |  |  |
|                | Port Nr                                                       |  |  |
|                | Sequence Nr                                                   |  |  |
|                | Zeitstempel                                                   |  |  |

stateful FW entsprechen dem heutigen Stand der Technik

# 3.5 Stateful Inspection Firewall

#### Inspection:

- Beduetet, dass die FW bestimmte Keywords in den Nutzdaten filtern kann.
- Hauptanwendung ist FTP.



Abbildung 14: Steful Inspection Firewall

| Nr                                       | Quell (Net/Host) | Ziel (Net/Host) | Ziel Port        | Quell Port | Action |  |  |
|------------------------------------------|------------------|-----------------|------------------|------------|--------|--|--|
| Х                                        | LAN              | 0.0.0.0         | 21 (ftp.control) | >1023      | Allow  |  |  |
| keine statische ftp_data Regel vorhanden |                  |                 |                  |            |        |  |  |

[1] ftp.control: Start der FTP-Session

#### [2] ftp.control-Message inspizieren:

- Keyword für aktiv/passiv
- Keyword für Port-Nummer des ftp\_data channels

#### >>ftp\_data-Verbindung erlauben (Eintrag in connection tracking table)

Je nach dem ob aktives oder passives FTP betrieben wird, lieg die FW-Problematik auf Server- oder Client-Seite

# 4 Firewall Infrastruktur planen

# 4.1 Vorgaben

• Öffentliches Netz 83.1.10.0 /28

## 4.2 Schema



Abbildung 15: Schema Firewall Infrastruktur planen

# 4.3 Konfigurationen

#### 4.3.1 IP

| Device        | WAN 0.0.0.0 /0 | ISP-Range 83.1.10.0<br>/28 | DMZ 192.168.1.0 /24 | LAN 172.110.0.0 /16 |
|---------------|----------------|----------------------------|---------------------|---------------------|
| Client        | x.x.x.x        |                            |                     |                     |
| Interface02   |                | 83.1.10.1                  |                     |                     |
| Interface01   |                |                            |                     | 172.110.0.1         |
| Interface03   |                |                            | 192.168.1.1         |                     |
| PC01          |                |                            |                     | DHCP                |
| PC02          |                |                            |                     | DHCP                |
| AD/DNS/DHCP   |                |                            |                     | 172.110.0.2         |
| FTP-Server    |                |                            | 192.168.1.10        |                     |
| Public DNS    |                |                            | 192.168.1.11        |                     |
| E-Mail Server |                |                            | 192.168.1.12        |                     |
| Web-Server    |                |                            | 192.168.1.13        |                     |

# 4.3.2 Filtertabelle (für restriktive Firewall

| Rule Nr. | Net to<br>Net | SRC-IP-Adr         | DST-IP-Adr          | IP Proto-<br>col | L4 Proto-<br>col | SRC-Port<br>Nr. | DST<br>Port-Nr | Interface      | Action |
|----------|---------------|--------------------|---------------------|------------------|------------------|-----------------|----------------|----------------|--------|
| 1        | LAN-<br>DMZ   | 172.168.0.0<br>/16 | 192.168.1.11<br>/24 | 17               | UDP              | > 1023          | 53 (DNS)       | IE01 –<br>IE03 | Allow  |
| 2        | LAN-<br>DMZ   | 172.168.0.0<br>/16 | 192.168.1.10<br>/24 | 17               | ТСР              | > 1023          | 21 (FTP)       | IE01 –<br>IE03 | Allow  |
| 3        | LAN-<br>DMZ   | 172.168.0.0<br>/16 | 192.168.1.12<br>/24 | 17               | ТСР              | > 1023          | 25<br>(SMTP)   | IE01 –<br>IE03 | Allow  |
| 4        | LAN-<br>DMZ   | 172.168.0.0<br>/16 | 192.168.1.13<br>/24 | 17               | ТСР              | > 1023          | 80<br>(HTTP)   | IE01 –<br>IE03 | Allow  |
|          |               |                    |                     |                  |                  |                 |                |                |        |
| 10       | Any           | Any                | Any                 | Any              | Any              | Any             | Any            | Any            | Drop   |

# 4.3.3 Port-Forwarding

Beinhaltet folgende Services (WAN to DMZ):

| Service | Zielport im einlaufenden TCP/ UDP Segment | Forwarding IP-Adr | Forwarding TCP Port | Forwarding UDP Port |
|---------|-------------------------------------------|-------------------|---------------------|---------------------|
| http    | 80                                        | 192.168.1.13      | 80                  |                     |
| smtp    | 25                                        | 192.168.1.12      | 25                  |                     |
| dns     | 53                                        | 192.168.1.11      |                     | 53                  |
| ftp     | 21                                        | 192.168.1.10      | 21                  |                     |

# 5 Aktive FTP und FW-Regeln



Abbildung 16: Aktives FTP

# 6 Passives FTP und FW Regeln



Bei passivem FTP hat der Serverseitige FW-Admin das Problem.

Abbildung 17: Passives FTP

# 7 IDS (Intusion Detection System)

## 7.1 Fragen und Antworten

### 7.1.1 Zweck der Intrusion Detection Systems?

#### Welchen Zweck verfolgen die IDS?

Ein Intrusion Detection System (IDS) bzw. Angrifferkennungssystem ist ein System zur Erkennung von Angriffen, die gegen ein Computersystem oder Computernetz gerichtet sind.

#### 7.1.2 Typen von Intrusion Detection Systems

IDS werden in zwei unterschiedlichen Architekturen angeboten, die sich hinsichtlich des Bereiches, für den ein IDS zuständig ist, unterscheiden. Wie heissen die beiden Architekturtypen?

- Host-Basierte IDS
- Netzwerk-Basierte IDS

•

#### 7.1.3 Host-basierte IDS

Fassen Sie den Aufgabenbereich und die Funktionen der Host-basierten IDS kurz zusammen und notieren Sie je einen Vor- und einen Nachteil dieser Systemarchitektur!

HIDS werden aus Hosts installiert. Sie ergänzen das Betriebssystem in der Erkennung von Angriffen. Dazu werden Log-Dateien des Betriebssystems ausgewertet.

#### Vorteile:

- Sehr spezifische Aussagen über den Angriff.
- Kann ein System umfassend überwachen.

#### Nachteile:

- Kann durch einen DoS-Angriff ausgehebelt werden.
- Wenn das System außer Gefecht gesetzt wurde, ist auch das IDS lahmgelegt.

#### 7.1.4 Netzwerk-basierte IDS

Fassen Sie den Aufgabenbereich und die Funktionen der Netzwerk-basierten IDS kurz zusammen und notieren Sie je einen Vor- und einen Nachteil dieser Systemarchitektur!

#### Vorteile:

- Ein Sensor kann ein ganzes Netz überwachen.
- Durch Ausschalten eines Zielsystems ist die Funktion des Sensors nicht gefährdet.

#### Nachteile:

Keine lückenlose Überwachung bei Überlastung der Bandbreite des IDS.

• Keine lückenlose Überwachung in geswitchten Netzwerken (nur durch Mirror-Port auf einem Switch).

#### 7.1.5 Funktionsweise von IDS

Der Bau eines IDS ist eine äusserst komplexe Herausforderung für die Netzwerktechniker und Software-Entwickler. Oft weichen die tatsächlichen Leistungen eines IDS stark von jenen, die in den Prospekten versprochen werden, ab.

Ein grosses Problem beim Betrieb von IDS sind die "Falschmeldungen". Die Falschmeldungen können unterschiedlicher Natur sein und werden in der Fachsprache wie folgt bezeichnet:

| Bezeichnung                     | Bedeutung                                                                                                                                 |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| falsch positiv / false positive | Ein IP-Datagramm wird fälschlicherweise vom IDS als positiv getestet. (im IP-Datagramm wurde ein bestimmtes Angriffsmuster festgestellt). |
|                                 | Vereinfacht gesagt: "Falscher Alarm"                                                                                                      |
| falsch negativ / false negative | Ein Angriffsmuster in einem IP-Datagramm wird fälschlicherweise nicht erkannt.                                                            |
|                                 | Vereinfacht gesagt: "Fälschlicherweise wurde kein Alarm ausgegeben".                                                                      |

#### 7.1.6 Funktionsweise der IDS

Obwohl die IDS überaus komplexe Aufgaben erfüllen müssen, lässt sich dennoch ein recht übersichtliches Funktionsprinzip der IDS beschreiben. Zeichnen und beschriften Sie ein Diagramm, aus dem hervorgeht, wie ein IDS grundsätzlich funktioniert, bzw. funktionieren sollte!



Der komplette Prozess unterteilt sich dabei in drei Schritte:

- 7. Die Wahrnehmung eines IDS wird durch Sensoren ermöglicht, die Logdaten (HIDS) oder Daten des Netzwerkverkehrs (NIDS) sammeln.
- 8. Während der Mustererkennung überprüft und verarbeitet das Intrusion Detection System die gesammelten Daten und vergleicht sie mit Signaturen aus der Musterdatenbank.
  - Treffen Ereignisse auf eines der Muster zu, so wird ein "Intrusion Alert" (Einbruchs-Alarm) ausgelöst.

#### 7.1.7 IDS Software

Ein theoretisches Funktionsprinzip hat natürlich keinen grossen Wert, wenn es keine Softwaren gibt, die das Prinzip auch wirklich implementiert haben. Suchen Sie Softwareprodukte, die sich als HIDS oder NIDS eigenen. Erstellen Sie eine Tabelle, die etwa die folgenden Attribute aufweist:

Hersteller, Produktbezeichnung, Einsatz als HIDS oder NIDS, dediziertes Gerät oder reine Software-Lösung, Produkt ist kommerziell oder open Source, versprochene Leistungen (Stichworte).

IDS Systeme werden von verschiedenen Herstellern von Netzwerkgeräten angeboten.

Ein wichtiges, reines Software IDS-Produkt ist "Snort". Snort ist eine OSS.

- **Snort** ist ein freies Netzwerk-IDS für Unix/Linux-, Mac OS X- und Windows-Systeme. Snort kann mittels diverser Module zur Auswertung der Daten (bsp. ACID) oder Module zur Intrusion Prevention (bsp. SnortSAM) aufgewertet werden.
- **Samhain** ist ein Host-basierendes System, das auf vielen Plattformen läuft. Viele Linux-Distributionen enthalten bereits vorgefertigte Pakete dieser Software. Durch kryptographische Signaturen können Verfälschungen an Konfigurations-Dateien und der Kommunikation über Netzwerk aufgedeckt werden.
- Prelude als hybrides IDS, welches diverse andere Programmpakete (Snort, Samhain u. a.) integriert, steht ebenso für die Plattformen Linux, BSD, Solaris und OSX zur Verfügung (auch für unterschiedliche Architekturen wie x86, PowerPC, SPARC usw.).
- **Projekt Hogwash**. Dieses IDS arbeitet auf Layer 2 und bindet sich somit mit keiner IP-Adresse an angeschlossene Netzwerke. Es wird dadurch schwerer angreifbar und ermöglicht es, ohne aufwendige Konfiguration der beidseitig angeschlossenen Systeme eingesetzt zu werden.
- Xray IDS ist ein auf Windows ausgelegtes Host-IDS. Es ist das erste System, das speziell für Windows entwickelt wurde.

#### 7.1.8 Abgrenzung gegenüber Honeypots

#### Was ist ein Honeypot?

- Ein Honeypot ist ein Computer im Netzwerk, der Hacker verleiten soll genau diesen anzugreifen.
- Auf diesem Computer befinden sich weder wichtige Daten noch Dienste, die regulär genutzt werden.
- Er dient lediglich dazu, die Angriffe auf einen isolierten Teil des Netzwerkes zu lenken, indem bewusst Sicherheitslöcher geöffnet bleiben.

### 7.1.9 In welcher Beziehung stehen IDS zu Honeypots?

Der Honeypot ist damit ein weiterer Bestandteil des IDS. Das Konzept des Honeypots hat allerdings einen entscheidenden Nachteil: Er kann als Einsprungpunkt für den Hacker dienen, von dem aus weitere Angriffe auf das Netzwerk gestartet werden.

Ein IDS soll dem Angreifer verborgen bleiben. Es soll von den Angreifern unerkannt, deren Angriffe registrieren, protokollieren und möglichst aus klassifizieren können. Zudem sollen die zuständigen Administratoren über die Angriffe orientiert werden,

Ein Honeypot soll sich dem Hacker als mögliches Angriffziel präsentieren. Die Betreiber der Honeypots sollen dadurch die Möglichkeit erhalten die Angriffsmuster studieren zu können, um noch bessere Abwehrsysteme (Firewalls, IDS) konstruieren zu können.

#### 7.1.10 Einsatz-Szenarien für NIDS

Notieren Sie, für welche Systemumgebungen der Einsatz von NIDS speziell empfehlenswert ist! Das wichtigste Einsatzgebiet von NIDS sind die Perimeter-Netzwerke (Übergangsnetzwerke, DMZ). Hier sind Angriffe aus dem Internet besonders häufig zu registrieren.

#### 7.1.11 Einsatz-Szenarien für HIDS

Notieren Sie, für welche Host-Typen der Einsatz von HIDS besonders empfehlenswert ist!

Serversysteme, die typischerweise häufig Angriffen ausgesetzt sind: Alle Arten von Internetdienst-Server (http, https, smtp, pop3, imap, ftp, dns)

## 8 ISAKMP

| ΙP |           |         |  |
|----|-----------|---------|--|
|    | UDP       |         |  |
|    | srcP: 500 | IKEv1V4 |  |
|    | dstP:500  | Mai     |  |
|    |           |         |  |
|    |           |         |  |

### A) Proposal

- a. Proposal Daten
  - i. HASH-Algor
  - ii. ESP Krypot
- b. Länge des DH-Vorschlüssel
- c. Auth-Verfahren Tunnel End Point
  - i. PSK
  - ii. Kerberos
  - iii. Zertifikate X.509
- B) Proposal-Entscheid (Vorschlag)
- C) DH Key Erstellen →
- D) DH Key Erst. ←
- E) X.509 Zert. signiert →
- F) X.509 Zert. signiert ←

| IP                                          | ESP    |                                 |
|---------------------------------------------|--------|---------------------------------|
| src IP: TEP A<br>dst: TEP B<br>Protocol: 50 | Header | Encrypted Data IP: CI ←→ CI Mai |

| Begriff | Bezeichnung                    |
|---------|--------------------------------|
| TEP     | Tunnel-End-Point               |
| Cl      | Client                         |
| PSK     | Preshared Key                  |
| DH      | Diffie Hellmann                |
| Zert.   | Zertifikat                     |
| ESP     | Encapsulating Security Payload |

# 9 Beispiel IT-Security Management Laptop-Computer

## 9.1 Einleitung

### 9.2 Zweck des Dokumentes

In diesem Dokument beinhaltet IT-Asset, Bedrohungsanalyse und Sicherheitsrichtlinien für Laptop-Computer der Firma Versicherung AG.

#### 9.2.1.1 Referenzierte Dokumente

[1] Generelle Richtlinien zum IT-Security Management der Versichrung AG

## 9.3 Allgemeiner Rahmen

Die Firma Versicherung AG bietet Consulting und Lösungen für Versicherungen von Firmenkunden an. Die Versichrung AG ist in der ganzen Schweiz tätig und unterhält Niederlassungen in Zürich, Luzern, Bern und Lausanne.

Die Versicherung AG beschäftigt 30 Mitarbeiterinnen und Mitarbeiter im Aussendienst. Diese Mitarbeiter beraten Firmenkunden umfasend vor Ort und benötigen daher Online-Zugriff auf zentral gespeicherte Daten.

## 9.4 Einsatz der Laptop-Computer

Der Laptop-Computer ist das wichtigste Arbeitsmittel für den Aussendienst. Damit haben die Mitarbeiter Zugriff auf

- - zentral gespeicherte Daten
- lokal gespeicherte Daten
- - firmenspezifische Anwendungen für die Beratung und die Offertierung

Im Innendienst-Einsatz sind die Laptops mit dem Firmennetzwerkk über Ethernet verbunden.

Im Aussendienst-Einsatz erfolgt die Verbindung über das eingebaute WWLAN-Modul / 3G-Modul. Die Datenübertragung wird mit IPSec verschlüsselt.

Im Aussendienst-Einsatz wird das lokal gespeicherte Benutzerprofil verwendet

# 9.5 Beschreibung der Latptop-Hardware

- DualCore Prozessoren, die Harware Virtualisierung erfmöglichen
- 4 GB RAM
- 1000 GB Harddisk
- DVD Laufwerk
- Ethernet-, WLAN-, und WWLAN-Schnittstelle
- 6 USB Ports

## 9.6 Einbezug der generellen IT-Security Richtlinien

Gemäss [1] sind die folgenden generellen Sicherheitsrichtlinien explizit in die Sicherheitsrichtlinien für Laptop-Computer zu integrieren:

- BIOS muss durch Kennwort geschützt sein
- Hardware Virtualisierungstechnologie muss deaktiviert sein
- Benutzerkonten müssen durch Kennwortrichtlinien (auch für lokalte Konten) geschützt sein
- Für den Zugriff auf Ressourcen muss das Prinzip "Nur so viel Zugriffsberechtigung erteilen, wie für die Arbeit erforderlich ist"
- Daten müssen bei Einspeicherung und Übertragung ausreichend geschützt sein
- Das Betriebssystem und die Anwendungen müssen durch regelmässiges Updaten auf dem neusten Stand gehalten werden
- Die Konnektivität muss durch angepasste Filterregeln mit Host-Firewall geschützt sein

# 9.7 IT-Asset, Bedrohungs-Analyse

| Komponen-<br>ten-/ Item-<br>Nr | Komponenten- /<br>Item-Bezeichnung                              | Bedro-<br>hung Nr. | Bedrohungsanalyse                                                                   | Verweis auf<br>Sicherheitsrichtlinie      |
|--------------------------------|-----------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| 1                              | Hardware Laptop-<br>Computer                                    |                    |                                                                                     |                                           |
| 1.1                            | BIOS                                                            | 1.1.1              | Neuinstallation des Computers mit Boot-<br>Medium                                   | 1.2 BIOS-Boot-Diable                      |
|                                |                                                                 | 1.1.2              | Ändern der Bios-Settings                                                            | 1.1 BIOS-Schutz                           |
|                                |                                                                 | 1.1.3              | Installation einer VM auf dem Host-Computer                                         | 1.3 BIOS-Settings-Virtualisation          |
| 1.2                            | Festplatte                                                      | 1.2.1              | Festplatte nach Entsorgung auslesen                                                 | 1.4 Festplatte-Verschlüsseln              |
|                                |                                                                 | 1.2.2              | Festplatte wird nicht korrekt entsorgt                                              | 1.5 Festplatten-Entsorgung                |
|                                |                                                                 | 1.2.3              | Daten auf formatierter Festplatte sind nach aufwändigem Recovery wieder verwendbar. | 1.6 Festplatten-Formatierung              |
|                                |                                                                 | 1.2.4              | Auf der Festplatte schleust sich einer tojanische VM ein.                           | 1.3 BIOS-Settings-Virtualisation          |
| 2                              | Lokalgespeicherte<br>Geschäftsdaten                             | 2.1.1              | Geschäftsdaten geraten unverschlüsselt in falsche Hände.                            | 2.1 Vertrauliche Geschäftsdaten           |
| 3                              | lokal gespeicher-<br>te firmenspezifi-<br>sche Anwendun-<br>gen | 3.1.1              | Eine Firmenanwendung ist ohne Benutzer und Passwort zugänglich.                     | 3.1 Zugang Firmenanwendung                |
| 4                              | Internetverbin-<br>dung über<br>WWLAN                           | 4.1.1              | Vertrauliche Daten werden über ein unsichers<br>Netz versendet                      | 4.1 Senden vertrauliche Daten             |
|                                |                                                                 | 4.1.2              | Firmendaten werden unverschlüsselt an die Firma gesendet.                           | 4.2 Verschlüsselte Datenübertragung Firma |

# Beispiel IT-Security Management Laptop-Computer

| 5   | lokales Adminis-<br>tratoren-Konto           |       |                                                                                                                         |                               |
|-----|----------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5.1 | Benutzername                                 | 5.1.1 | Der Benutzername des Administrators wurde nicht geändert und ist somit die erste Auswahl bei einer Brute-Force Attacke. | 5.1 Adminstrator Benutzername |
| 5.2 | Passwort                                     | 5.1.2 | Das Passwort wird gecrackt.                                                                                             | 5.2 Sicheres Admin Passwort   |
| 6   | lokales Benutzer-<br>konto und Benut-<br>zer |       |                                                                                                                         |                               |
|     | Private Daten                                | 6.1.1 | Der Benutzer speichert persönliche Daten auf einem ungeschützten Ordner.                                                | 7.2 Lokale Berechtigungen     |
|     | Passwort                                     |       | Das Passwort wird gecrackt.                                                                                             | 6.1 Sichers Benutzer Passwort |
| 7   | Windows OS                                   |       |                                                                                                                         |                               |
| 7.1 | Windows OS<br>Security                       | 7.1.1 | Für das Windows existiert ein Exploit mithilfe dessen sich der Laptop kompromittieren lässt.                            | 7.3 Windows Updates           |
|     |                                              | 7.1.2 | Das OS ist mit Malware jeglicher Art infiziert.                                                                         | 7.5 Antivirus                 |
| 8   | Lokale Firewall                              | 8.1.1 | Die Firewall wurde schlecht konfiguriert und es sind viele ungenutzte Ports offen.                                      | 8.1 Allgemeine FW-Regeln      |
|     |                                              | 8.1.2 | Der User schaltet die Firewall aus.                                                                                     | 8.2 Ausschalten lokale FW     |
| 9   | Anwender                                     |       |                                                                                                                         |                               |
| 9.1 | Daten                                        | 9.1.1 | Der Benutzer arbeitet mit vertraulichen Daten in der Öffentlichkeit.                                                    | 9.1 Korrekte Bedienung        |
|     |                                              | 9.1.1 | Benutzer schreibt Passwort auf Notizzettel                                                                              | 9.1 Korrekte Bedienung        |
| 9.2 | Computerver-<br>wendung                      | 9.2.1 | Computer ist ungesperrt einer Drittperson zugänglich                                                                    | 7.4 Computer-Sperre           |
|     |                                              | 9.2.2 | Computer wird einer Drittperson ausgeliehen                                                                             | 9.1 Korrekte Bedienung        |

### 9.8 Sicherheitsrichtlinien

## 9.8.1 Sicherheitsrichtlinien für Hardware Laptop-Computer

| Nr  | Sicherheitsrichtlinie        |                                                                                                                                                                                                                        |  |
|-----|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.1 | BIOS-Schutz                  | BIOS muss durch Kennwort geschützt sein                                                                                                                                                                                |  |
| 1.2 | BIOS-Boot-Disable            | Es darf nicht von Medien wie anderen Festplatten, USB-<br>Sticks oder CDs gebootet werden.                                                                                                                             |  |
| 1.3 | BIOS-Settings-Virtualisation | Hardware Virturalisierungstechnologie muss deaktiviert sein                                                                                                                                                            |  |
| 1.4 | Festplatte-Verschlüsseln     | Festplatte muss mit Bit-Locker ( <a href="http://windows.microsoft.com/de-CH/windows7/products/features/bitlocker">http://windows.microsoft.com/de-CH/windows7/products/features/bitlocker</a> ) verschlüsselt werden. |  |
| 1.5 | Festplatten-Entsorgung       | Festplatte wird, sofern diese nicht wiederverwendet wird zertrümmert.                                                                                                                                                  |  |
| 1.6 | Festplatten-Formatierung     | Die Festplatte, sofern wiederverwendet, wird mit einem zertifizierten Wipe-Tool vor der Neuverwendung gelöscht.                                                                                                        |  |

## 9.8.2 Sicherheitsrichtlinien für Lokal gespeicherte Geschäftsdaten

| Nr  | Sicherheitsrichtlinie       |                                                                                                  |
|-----|-----------------------------|--------------------------------------------------------------------------------------------------|
| 2.1 | Vertrauliche Geschäftsdaten | Vertrauliche Geschäftsdaten werden mit dem Tool AxCrypt                                          |
|     |                             | ( <a href="http://www.axantum.com/axcrypt/">http://www.axantum.com/axcrypt/</a> ) verschlüsselt. |

### 9.8.3 Sicherheitsrichtlinien für lokal gespeicherte firmenspezifische Anwendungen

| Nr  | Sicherheitsrichtlinie  |                                                                                                                        |
|-----|------------------------|------------------------------------------------------------------------------------------------------------------------|
| 3.1 | Zugang Firmenanwendung | Jede Firmenanwendung, die auf einem Laptop installiert wird, darf nur mit einem Benutzer und Passwort zugänglich sein. |

## 9.8.4 Sicherheitsrichtlinien für Internetverbindung über WWLAN

| Nr  | Sicherheitsrichtlinie                 |                                                                                                          |
|-----|---------------------------------------|----------------------------------------------------------------------------------------------------------|
| 4.1 | Senden vertrauliche Daten             | Daten müssen bei Einspeicherung und Übertragung ausreichend geschützt sein                               |
| 4.2 | Verschlüsselte Datenübertragung Firma | Die Datenübertragung zur Firma findet auf verschlüsseltem Weg über einen Site to End IPsec Tunnel statt. |

### 9.8.5 Sicherheitsrichtlinien für lokales Administratoren-Konto

| Nr  | Sicherheitsrichtlinie     |                                                                                                                      |
|-----|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| 5.1 | Adminstrator Benutzername | Der Administrator Benutzername darf nicht "Administrator" laufen, da dieser zu bekannt für Brute-Force attacken ist. |
| 5.2 | Sicheres Admin Passwort   | Das Admin Passwort besteht aus mind. 16 Alphanummerischen- und 4 Sonder-zeichen                                      |

### 9.8.6 Sicherheitsrichtlinien für lokales Benutzerkonto und Benutzer

| Nr  | Sicherheitsrichtlinie      |                                                                                |
|-----|----------------------------|--------------------------------------------------------------------------------|
| 6.1 | Sicheres Benutzer Passwort | Das Passwort des Benutzers besteht aus mindestens 8 alphanummerischen Zeichen. |

### 9.8.7 Sicherheitsrichtlinien für Windows OS

| Nr  | Sicherheitsrichtlinie   |                                                                                                                               |
|-----|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 7.1 | Benutzer Kennwortschutz | Benutzerkonten müssen durch Kennwortrichtlinien (auch für lokalte Konten) geschützt sein                                      |
| 7.2 | Lokale Berechtigungen   | Für den Zugriff auf Ressourcen muss das Prinzip "Nur so viel Zugriffsberechting erteilen, wie für die Arbeit erforderlch ist" |
| 7.3 | Windows Updates         | Das Betriebssystem und die Anwendungen müssen durch regelmässiges Updaten auf dem neusten Stand gehalten werden               |
| 7.4 | Computer-Sperre         | Der Computer wird bei nichtverwendung nach 1. Minute gesperrt.                                                                |
| 7.5 | Antivirus               | Jeder Laptop enthält eine Antiviren Software der Avira Antivirus Premium Edition.                                             |

### 9.8.8 Sicherheitsrichtlinien für lokale Firewall

| Nr  | Sicherheitsrichtlinie |                                                                                      |
|-----|-----------------------|--------------------------------------------------------------------------------------|
| 8.1 | Allgemeine FW-Regeln  | Die Konnektivität muss duch angepasste Filterregeln mit Host-Firewall geschützt sein |
| 8.2 | Ausschalten lokale FW | Der lokale FW-Service darf nicht durch den User ausgeschaltet werden können.         |

## 9.8.9 Sicherheitsrichtlinien für Anwender

| Nr  | Sicherheitsrichtlinie |                                                                                  |
|-----|-----------------------|----------------------------------------------------------------------------------|
| 9.1 | Korrekte Bedienung    | Anwender vorgängig für die Verwendung des Computers geschult und sensibilisiert. |

# 10 Zusammenfassung

# 10.1 Die abstrakten IT-Güter

|       | IT-Gut                                                                           | Geeignete Technologie/ Massnahme                                 | Das IT-Gut kann bedroht werden durch                                            |
|-------|----------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|
|       | Vertraulichkeit der Daten                                                        | Verschlüsselte Datenübertragung in authentifizierten, verschlüs- | Netztraffic capturen, z.B. auf Routern im Inter-                                |
|       | (Unberechtigte können die Daten nicht                                            | selten Tunnel (IPSec)                                            | net                                                                             |
|       | sinnbezogen lesen)                                                               |                                                                  | Man in the middle Angriffe                                                      |
|       |                                                                                  | Datenträgerverschlüsselung für mobile Datenträger (z.B. USB-     |                                                                                 |
|       |                                                                                  | Drives und Laptops)                                              | Diebstahl iund Verlust von Datenträger                                          |
|       |                                                                                  | Zugriffssteuerung (Sicherheits-                                  | Unzweckmässig festgelegte Zugriffslisten, Iden-                                 |
|       |                                                                                  | Gruppen und DACLs)                                               | titätsklau                                                                      |
| DATEN | Integrität der Daten                                                             | VPN (z.B. IPSec)                                                 | Man in the Middle Angriffe                                                      |
|       | Integrität der Daten                                                             | · · · · ·                                                        | Mail III the Middle Alignite                                                    |
|       | (Daten können nicht verändert werden ohne dass dies vom Eigentümer bemerkt wird. | Hashbildung auf Dateien (z.B. bei digital signierten Emails      | Verlust von eingespeicherten Daten und Back-                                    |
|       | Der Eigentümer ist imstande das Original wieder herzustellen.)                   | Redundante Datenträgersysteme (RAID)                             | updaten                                                                         |
|       |                                                                                  | Backup- und Einlagerungskonzept Regelmässige Restore-Tests       | Verlust der Restore-Möglichkeit entstanden<br>durch Inkompatibilitäten (HW, SW) |

### Zusammenfassung

|         | IT-Gut                                                                                                                              | Geeignete Technologie/ Massnahme                                                     | Das IT-Gut kann bedroht werden durch                                                                                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                     |                                                                                      |                                                                                                                     |
|         | Verfügbarkeit der Systeme                                                                                                           | OS Hardening gegen SYN-Flood Angriffe                                                | (D)DoS-Angriffe:                                                                                                    |
|         | (Unberechtigte sollen nicht in der Lage sein, die Verfügbar-<br>keit der Systeme massgeblich zu stören)                             | Netz-IDS zur Auswertung von Angriffen (= DoS-Angriff)                                | SYN-Flood Angriffe gegen TCP Ports im LISTEN Zustand                                                                |
|         | Unterbrüche durch technische Ausfälle, Naturereignisse                                                                              | Redundante Auslegung von wichtigen Systemeinheiten,                                  | Technische Ausfälle von Systemteilen                                                                                |
|         |                                                                                                                                     | Servervirtualisierung (z.B. für schnellere Wiederherstellung von wichtigen Systemen) | Naturereignisse                                                                                                     |
|         |                                                                                                                                     | Passwortrichtlinien um Identitätsklauf mit zerstörerischer<br>Absicht, zu verhindern | Identitätsklau von administrativen Konten                                                                           |
|         |                                                                                                                                     | Einsatz von Anti-Malware Software                                                    |                                                                                                                     |
| SYSTEME |                                                                                                                                     | OS und Anwendungen regelmässig updaten                                               | Ausnutzen von Schwachstellen bei OS oder Anwendungssoftwaren                                                        |
| SYST    | Missbräuchliche Verwendung der Systeme<br>(Unberechtigte sollen nicht in der Lage sein, Systemressourcen für ihre Zwecke zu nutzen) | Host IDS und Netz IDS einsetzen und dereln Fehlermeldungen auswerten                 | Missbräuchliche Verwendung von Syste-<br>men (auch Netzwerk-Ressourcen oder<br>Netzwerzugängen) augrund von ungenü- |
|         | ,                                                                                                                                   | Logs von Zugangsprotokollen auswerten                                                | gend geschützten Zugängen                                                                                           |
|         |                                                                                                                                     | 2083 Von Zugungsprotokonen daswerten                                                 | Missbräuchliche Verwendung von Ser-                                                                                 |
|         |                                                                                                                                     | Server-Dienste sachgemäss konfigurieren (Ereignisprotokoll                           | verdiensten (z.B. Email-Weiterleitung für Spamer) aufgrund von unsachgemäss konfigurierten Server- anwendungen      |
|         |                                                                                                                                     | Einsatz von Anti-Malware Software                                                    | (z.B. SMTP-Relaying) oder nach erfolgtem                                                                            |
|         |                                                                                                                                     | Betriebssystem und Anwendungen regelmässig updaten                                   | Identitätsklau für Serverzugänge                                                                                    |
|         |                                                                                                                                     |                                                                                      | Einsatz von Malware, um Systeme für (D)DoS-Angriffe ohne Wissen des Betreibers zu nutzen                            |

|          | IT-Gut                                                                                                                                                    | Geeignete Technologie/ Massnahme                                                                                                                                        | Das IT-Gut kann bedroht werden durch                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|          | Digitale Integrität der Benutzer  (Niemand soll sich in IT-Systemen als andere Person ausgeben können oder an Stelle einer anderen Person handeln können) | Passwortrichtlinien um den Aufwand von Brute Force<br>Angriffen zu erhöhen (der aufwand steigt exponential,<br>nicht nur linear mit der Länge des Passwortes            | Identitätsklau, um so unerlaubt Zugriff<br>auf Systeme und Ressourcen zu erhalten |
|          |                                                                                                                                                           | Verwendung von sicheren Authentifizierungsverfahren                                                                                                                     |                                                                                   |
| BENUTZER |                                                                                                                                                           | (Kerberos, iEEE 802.1X, CHAP bei PPP, X.509 Zertifikate für IPSec, SSL-Tunnel über das Web -> https für authentifizierte Umgebungen )                                   |                                                                                   |
|          |                                                                                                                                                           | Zweikomponenten-Authentifizierung: "Etwas haben und etwas wissen" (Smartcard mit private Key, PIN-Code für den Zugriff)                                                 |                                                                                   |
|          | Nichtabstreitbarkeit der Urheberschaft                                                                                                                    | Digitale Signatur von Dokumenten zum Nachweis der Ur-                                                                                                                   | Verfassen anonymen Dokumenten                                                     |
|          | (Die Urheberschaft eines Dokumentes steht zweifelsfrei und dauerhaft fest)                                                                                | heberschaft und zum Nachweis der Integrität des Dokumentes ("wissen was man unterschrieben hat" -> keine nachträgliche Änderungen ohne Wissen des Subscribers möglich!) |                                                                                   |

# 10.2 Technologien und IT-Güter

Kreuzen Sie an, welche IT-Güter bei nachstehend beschriebenen Situationen geschützt sind!

| 1 Active Directory Inter-Standort Verbindung  | Welche Daten -> Daten bei der Übertragung                                                   |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| Als IP-in-IP Protokoll wird IPSec eingesetzt. | ☑ Vertraulichkeit der Daten -> welche Daten?                                                |
|                                               | ☑ Integrität der Daten                                                                      |
|                                               | Welche Systeme -> IPSec Tunnel-Endpunkt                                                     |
|                                               | ☑ Verfügbarkeit der Systeme -> welche Systeme?                                              |
|                                               | ☑ Keine Missbräuchlich Verwendung der Systeme                                               |
|                                               | ☐ Digitale Integrität der Benutzer -> welche Benutzer?                                      |
|                                               | ☐ Nichabstreitbarkeit der Urheberschaft                                                     |
| 2 WLAN-Zugang über WPA2-PSK                   | Welche Daten -> bei Übertragung!                                                            |
|                                               | ☑ Vertraulichkeit der Daten                                                                 |
|                                               | ☑ Integrität der Daten                                                                      |
|                                               | -> welche Systeme -> WLAN AP, WLAN Bandbreite                                               |
|                                               | ☑ Verfügbarkeit der Systeme                                                                 |
|                                               | ☑ Keine Missbräuchlich Verwendung der Systeme                                               |
|                                               | ☐ Digitale Integrität der Benutzer -> welche Benutzer?                                      |
|                                               | ☐ Nichabstreitbarkeit der Urheberschaft                                                     |
| <b>3</b> WLAN-Zugang über IEEE 802.1X         | Welche Daten -> Daten bei der Übertragung                                                   |
|                                               | ☑ Vertraulichkeit der Daten -> welche Daten?                                                |
|                                               | ☑ Integrität der Daten                                                                      |
|                                               | Welche Systme -> WLAN AP, WLAN Bandbreite                                                   |
|                                               | ☑ Verfügbarkeit der Systeme -> welche Systeme?                                              |
|                                               | ☑ Keine Missbräuchlich Verwendung der Systeme                                               |
|                                               | Welche Identität? -> Persönliche Identität zur Auth am AD und IEEE 802.+X Portfreischaltung |
|                                               | ☑ Digitale Integrität der Benutzer -> welche Benutzer?                                      |
|                                               | ☐ Nichabstreitbarkeit der Urheberschaft                                                     |

□ Keine Missbräuchlich Verwendung der Systeme□ Digitale Integrität der Benutzer -> welche Benutzer?

☐ Nichabstreitbarkeit der Urheberschaft

| 7 | Email mit PGP-Technologie versenden | Welche Daten -> Daten bei der Übertragung              |  |
|---|-------------------------------------|--------------------------------------------------------|--|
|   |                                     | -> Daten bei der Einspeicherung                        |  |
|   |                                     | ☑ Vertraulichkeit der Daten -> welche Daten?           |  |
|   |                                     | ☑ Integrität der Daten                                 |  |
|   |                                     | Welche Systeme -> KDC auf DC                           |  |
|   |                                     | ☑ Verfügbarkeit der Systeme -> welche Systeme?         |  |
|   |                                     | ☑ Keine Missbräuchlich Verwendung der Systeme          |  |
|   |                                     | Welche Identität -> Identität des AD-Benutzers         |  |
|   |                                     | ☑ Digitale Integrität der Benutzer -> welche Benutzer? |  |
|   |                                     | ☐ Nichabstreitbarkeit der Urheberschaft                |  |

Modul 182

## 10.3 Erweiterte Firewall Regeln für einen DNS-Serverver

Die Firma RADON AG unterhält an ihrem Haupsitz in Luzern eine DMZ mit dem IP-Adressbereich <84.1.1.16/ 29>. Die öffentlichen Zonen werden wie folgt gehostet:

| Server                             | autorisierend in der Rolle             |  |
|------------------------------------|----------------------------------------|--|
| Host <84.1.1.20> mit BIND 9.3      | Als Master aurorisierend für die Zonen |  |
|                                    | <radonch></radonch>                    |  |
|                                    | <16/29.1.1.84.in-addr.arpa>            |  |
| Host <212.9'.198.185> mit BIND 9.3 | Als Master aurorisierend für die Zonen |  |
|                                    | <radonch></radonch>                    |  |
|                                    | <16/29.1.1.84.in-addr.arpa>            |  |

DMZ und WAN sind durch einen Router mit mit stateful und FTP-stateful Inspection Firewall-Funktionalität getrennt.

Erstellen Sie die Firewall-Regeln für

- die DNS-Queries von Clients aus dem Internet
- die DNS-Queries von Resolvern aus der HSZ bzw. aus der DMZ
- Studieren Sie neu noch, welche Regeln (Richtung und L4 Protokoll) erforderlich sind, damit der Zonentransfer zwischen Master und Slave funktioniert!

| Nr. | Richtung In/<br>out | L3 Protocol | Quelle          |              | Ziel          |              | SF j/ n  | Aktion | Beschreibung (L7 Proto-<br>koll) |
|-----|---------------------|-------------|-----------------|--------------|---------------|--------------|----------|--------|----------------------------------|
|     |                     |             | Host-IP-Adr./   | L4 Protokoll | Host-IP-Adr./ | L4 Protokoll | <u> </u> |        |                                  |
|     |                     |             | Netz-IPAdr      | Port Nr      | Netz-IPAdr    | Port Nr      |          |        |                                  |
| 1   | HSZ->DMZ            | IP          | HSZ_NETIPAdr/24 | > 1023       | 84.1.120      | udp 53       | J        | Allow  | HSZ_DNSQueries                   |
| 2   | DMZ-WAN             | IP          | 84.1.1.20       | > 1023       | ANY           | udp 53       | J        | Allow  | DMZ_DNS_ServerQue                |
| 3   | WAN-DMZ             | IP          | ANY             | > 1023       | 84.1.1.20     | udp 53       | J        | Allow  | WAN_to-DMZ_DNSQ                  |
| 4   | WAN-DMZ             | IP          | 212.9.198.185   | > 1023       | 84.1.1.20     | tcp 53       | J        | Allow  | DNS_Slave-A/IXFR                 |
| 5   | DMZ_WAN             | IP          | 84.1.1.20       | > 1023       | 212.9.198.185 | Tcp 53       | J        | Allow  | toSlaVeNOTIFY                    |

Autor Janik von Rotz Version 1.2 57 / 61

Notieren Sie, was bei Windows Server System zum Schutz gegen (D)DoS-Angriffe zu tun wäre. Erwähnen Sie, die Nummer der KB und welche Konfigurations-Items angefasst werden müssten!

Is -d <Zone>

Der DNS-Server <84.1.1.20> in der DMZ untersteht Ihnen zur Administration. Sie haben einen Zugang über SSH eingerichtet (TCP LISTEN Port 22). Dadurch muss dem Schutz der Verfügbarkeit des Systems besondere Aufmerksamkeit geschenkt werden. Beschreiben Sie kurz, welche Möglichkeiten Sie haben um ein Linux System gegen (D)DoS-Angriffe zu schützen!

Es geht um "Hardening des TCP/IP-Stacks des OS gegen SYN-Flood Angriffe"

Unter Linux gibt es einen Mechanismus, der unter der Bezeichung Syncookies bekannt ist. Die Einstellung liegt im /proc-System:

proc/sys/net/ipv4/tcp\_syncookies

Nähere Details entnimmt man einem HowTo.

Grundsätzlich gibt es keinen wirchlich effizienten Schutz gegen SYN-Flood Angriffe, da es sich um ein systemimmanentes Problem handelt: LISTEN-Ports sind nun halt einfach dazu gedacht, TCP-Verbindungsanfragen entgegenzunhmen.

Dermassen gehärtete Systeme, ob Linux oder Windows, verbrauchen einen Teil der CPU- und RAM-Ressourcen für die SYN-Flood Schutzfunktion.

Notieren Sie, was bei Windows Server System zum Schutz gegen (D)DoS-Angriffe zu tun wäre. Erwähnen Sie, die Nummer der KB und welche Konfigurations-Items angefasst werden müssten!

Microsoft hat eine KB unter dem Titel "How To: Harden the TCP/IP Stack?" herausgegeben.

Es müssen verschiedene Kernel-Funktionen über das Setzen von Registry-Keys aktiviert werden.

SynAttackProtect TcpMaxPortsExhausted TcpMaxHalfOpenRetried cpMaxConnectResponseRetransmissions

TcpMaxHalfOpen TcpMaxDataRetransmissions EnablePMTUDiscovery KeepAliveTime

**NoNameReleaseOnDemand** 

## 10.4 IIS mit Datenbank basierter Webapplikation in der DMZ

In der DMZ läuft ein IIS auf einem Windows Server 2003. Darauf wird eine Datenbank basierte Webshopapplikation betrieben. Im Rahmen der IT-Sicherheitsmanagement Prozesskette führen Sie in der nachstehenden Tabelle für das Asset-Item "IIS" die folgenden Schritte aus:

- Erfassen der Sub-Items
- Identifizieren der hauptsächlichen Bedrohungen
- Bewertung des Risikos (Wahrscheinlichkeit des Eintretens x Schadensausmass)
- Liste möglicher Massnahmen

| 1    | IIS mit Datenbank basierter Webapplikation                                                           |                                                                                                          |                    |                 |    |
|------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|-----------------|----|
| Sub  | Bezeichnung/                                                                                         | Bedrohung                                                                                                | Risikobewertung    |                 |    |
| Item | Beschreibung                                                                                         |                                                                                                          |                    |                 |    |
|      |                                                                                                      |                                                                                                          | Wahrscheinlichkeit | Schadensausmass |    |
| 1.1  | Serverhardware                                                                                       | Technisch bedingte Systemausfälle                                                                        | 7                  | 5               | 47 |
| 1.2  | Betriebsssystem Windows 2003 Server R2                                                               | (D)DoS-Angriffe gegen den TCP/IP-Stack                                                                   | 7                  | 7               | 49 |
|      |                                                                                                      | Ausnutzen von Vulnerbiltites mit konkreten Expoits                                                       |                    |                 |    |
|      |                                                                                                      | Übernahme von admin-Rechte und Berechtigungen durch Hacker                                               |                    |                 |    |
| 1.3  | Administratives Konto,                                                                               | Identitätsklau durch Passwort-Hacking                                                                    | 5                  | 9               | 45 |
|      | digitale Identität des Administrators                                                                |                                                                                                          |                    |                 |    |
| 1.4  | IIS                                                                                                  | Exploits auf Vulnerabilities des IIS                                                                     | 4                  | 7               | 28 |
| 1.5  | ASP .NET-Framework                                                                                   | Exploits auf Vulnerabilties des ASP.NET Frameworks                                                       | 4                  | 7               | 28 |
| 1.6  | ASP.NET-Webanwendung                                                                                 | Ausnutzen von von Sicherheitsmängeln in der Web-<br>Anwendung (z.B. SQL-Injection, Cross-Site Scripting) | 6                  | 7               | 42 |
| 1.7  | Benutzer und Geschäftsdaten (Bestellungen,<br>Lieferungen, offene Rechnungen,) der We-<br>banwendung | Verlust von wichtigen Datenteilen durch Inkonsistenz der Anwendungssoftware                              | 7                  | 10              | 70 |
|      |                                                                                                      | Diebstahl der Daten durch Extraction aus dem RDBMS                                                       |                    |                 |    |
|      |                                                                                                      | Verlust von Backup-Daten aus organisatorischen oder technischen Gründen                                  |                    |                 |    |

# 10.5 Ausarbeitung von Sicherheitsrichtlinien

Sie arbeiten nun für den IIS Sicherheitsrichtlinien aus. Formulieren Sie Sicherheitsrichtlinien für den IIS, den den Schutz der Vertraulichkeit und Integrität der Daten bei Einspeicherung und Transport garantieren sollen!

| DATA.S01 | Restriktives Datenzugriffskonzept für den Zugriff auf die RDBMS gespeicherten Benuthzer und Geschäftsdaten planen, anwenden und testen.                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA.S02 | Petetrationstest und Security-Audit für die RDBMS-Einspeicherung durchführen                                                                                              |
| DATA.S03 | Sicherheitstests für die Webapplikation entwickeln und durchführen lassen                                                                                                 |
| HW.S01   | Redundante Auslegung wichtiger Systemteile (RAID, USV, Internetkonnektivität)                                                                                             |
|          | -> Virtualisierung der Server für http un das RDBMS                                                                                                                       |
| OS.S01   | Installtion der OS nur aus sicheren Quellen und in speziell gesicherten Umgebungen (Firewall)                                                                             |
| OS.S02   | Anwendung des Microsof Security Base Line Analyzers, Anwendung von spziellen Gruppenrichtlinien und Host-Firewall Regeln gemäss Microsoft Windos Server Security Handbuch |
| OS.S03   | OS TCP/IP-Stack gegen SYN-Flood Angriffe härten                                                                                                                           |
| OS.S04   | Regelmässiges Einspielen von Betriebssystem-Updates                                                                                                                       |
| OS.S05   | Installation von Anti-Malware Software                                                                                                                                    |
| IIS.S01  | Applikation regelmässig updaten                                                                                                                                           |
| IIS.S02  | Microsoft- und CERT-Publikationen zur aktuell verwendten Version des IIS verfolgen und Empfehlungen umsetzen                                                              |

# 11 Abbildungsverzeichnis

| Abbildung 1: Schema Mehrstufige Verteidigung                        | 12 |
|---------------------------------------------------------------------|----|
| Abbildung 2: Kryptographie kompakt                                  | 23 |
| Abbildung 3: Digitale Signatur                                      | 24 |
| Abbildung 4: Signierung                                             | 25 |
| Abbildung 5: Arbeitsweise digitale Signatur                         | 25 |
| Abbildung 6:Prinzip der Asymmetischen Verschlüsselug                | 26 |
| Abbildung 7: Funtionsablauf bei der Asysmmetrischen Verschlüsselung | 26 |
| Abbildung 8: Symmetrische Verschlüsselung                           | 27 |
| Abbildung 9: Beispiel Schema Paket Firewall                         | 28 |
| Abbildung 10: 3-Port Firewall                                       | 30 |
| Abbildung 11: Screened Subnet                                       | 30 |
| Abbildung 12: Stateless Firewall                                    | 31 |
| Abbildung 13: Stateful Firewall                                     | 32 |
| Abbildung 14: Steful Inspection Firewall                            | 33 |
| Abbildung 15: Schema Firewall Infrastruktur planen                  | 34 |
| Abbildung 16: Aktives FTP                                           | 37 |
| Abbildung 17: Passives FTP                                          | 38 |

## 12 Kontakt

| Name    | Janik von Rotz             |
|---------|----------------------------|
| E-Mail  | contact@janikvonrotz.ch    |
| Website | http://www.janikvonrotz.ch |