A Gentle Introduction to Non-commutative Harmonic Analysis

McDonald, E. S. Supervisor: Sukochev, F.

UNSW Australia

March 30, 2015

Introduction

Question for this lecture:

How do Fourier Series work?

Another Question:

What is the non-commutative torus?

Fourier Analysis In Kindergarten

• In second year we learn the following situation:

Definition

If $f: \mathbb{R} \to \mathbb{C}$ is a function that is periodic with period P, then

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nx}{P}\right) + b_n \sin\left(\frac{2\pi nx}{P}\right) \right)$$

Definition

$$a_n = \frac{2}{P} \int_0^P f(x) \cos\left(\frac{2\pi nx}{P}\right) dx$$
$$b_n = \frac{2}{P} \int_0^P f(x) \sin\left(\frac{2\pi nx}{P}\right) dx$$

Fourier Analysis In Kindergarten

There are many questions left unanswered...

- Does this really work for any function f?
- In what sense is the Fourier series meant to converge?

A better notation

The notation that was used in second year,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{2\pi nx}{P} \right) + b_n \sin \left(\frac{2\pi nx}{P} \right) \right),$$

is rather silly. This;

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \exp\left(\frac{2\pi i n x}{P}\right)$$

is much better.

McDonald, E. (UNSW)

An even better notation still

Let

$$\mathbb{T}=\{\zeta\in\mathbb{C}\ :\ |\zeta|=1\}.$$

We can identify periodic functions on $\mathbb R$ with functions on $\mathbb T.$ Let

$$z:\mathbb{T}\to\mathbb{T}$$

be the identity function. If we are identifying P-periodic functions on \mathbb{R} with functions on \mathbb{T} , then we identify

$$\exp\left(\frac{2\pi inx}{P}\right) = z^n.$$

Integrating functions on \mathbb{T}^l

 \mathbb{T} has a measure: normalised arc length. We call this measure \mathbf{m} , so that if $f: \mathbb{T} \to \mathbb{C}$,

$$\int_{\mathbb{T}} f \ d\mathbf{m} = \int_0^1 f \left(\exp(2\pi i t) \right) \ dt.$$

McDonald, E. (UNSW)

An even better notation still

So with our new notation, Fourier series look like this:

Definition

If $f : \mathbb{T} \to \mathbb{C}$, then the fourier series of f is

$$\sum_{n\in\mathbb{Z}}c_nz^n.$$

where

$$c_n = \int_{\mathbb{T}} z^{-n} f \ d\mathbf{m}.$$

Fourier Series for Grown-ups

For $n \in \mathbb{Z}$, and $f \in L^1(\mathbb{T}, \mathbf{m})$, let

$$\widehat{f}(n) := \int_{\mathbb{T}} z^{-n} f \ d\mathbf{m}.$$

So we have a "correspondence",

$$f \sim \sum_{n \in \mathbb{Z}} \widehat{f}(n) z^n$$
.

What does " \sim " mean?

McDonald, E. (UNSW)

What does the Fourier Series mean?

At the moment when we write

$$f \sim \sum_{n \in \mathbb{Z}} \widehat{f}(n) z^n$$

the right hand side is just a formal power series. What do we have to do to make the " \sim " into an "="?

How shall the sum on the right hand side be interpreted? What kind of object is this?

Divergent Series

Normally in mathematics, when we write

$$\sum_{n=0}^{\infty}a_n,$$

we mean

$$\lim_{N\to\infty}\sum_{n=0}^N a_n.$$

This means that series like

$$\sum_{n=0}^{\infty} (-1)^n$$

$$\sum_{n=0}^{\infty} n$$

do not make sense. This is "classical summation"

11 / 27

Divergent Series

It is often desirable to assign a "sensible" value to a series that is divergent. This is called *regularisation*.

What this means is redefining what we mean by

$$\sum_{n=0}^{\infty} a_n.$$

Abel Summation

Abel Summation is a method of regularisation that is motivated by *Abel's theorem*.

Theorem

Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series that converges in (-1,1). Suppose that

$$\sum_{n=0}^{\infty} a_n$$

exists. Then

$$\sum_{n=0}^{\infty} a_n = \lim_{x \to 1^-} \sum_{n=0}^{\infty} a_n x^n.$$

Abel summation

Definition

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, the *Abel sum* of $\{a_n\}_{n=0}^{\infty}$ is

$$(A) \sum_{n=0}^{\infty} a_n := \lim_{r \to 1^-} \sum_{n=0}^{\infty} a_n r^n.$$

Abel summation

For example,

$$(A) \sum_{n=0}^{\infty} (-1)^n = \lim_{r \to 1^-} \sum_{n=0}^{\infty} (-r)^n$$
$$= \lim_{r \to 1^-} \frac{1}{1+r}$$
$$= \frac{1}{2}.$$

Abel's theorem guarantees that if a series is summable in the classical sense, then it is Abel summable and the Abel and classical sums agree.

Aside

Using a completely different method of regularisation, we can give rigorous justification to the (infamous) expression,

$$1+2+3+4+\cdots=-\frac{1}{12}$$
.

Back to Fourier Series

Let $f \in L^1(\mathbb{T})$, define

$$A_r f := \sum_{n \in \mathbb{Z}} \widehat{f}(n) r^n z^n.$$

This exists for any r.

The question of whether a Fourier series is Abel summable is equivalent to considering the limit $\lim_{r\to 1^-} A_r f$.

Back to Fourier Series

The following theorem is remarkably easy to prove:

Theorem

Suppose that $f \in L^p(\mathbb{T}, \mathbf{m})$, with $p \in [1, \infty)$. Then

$$f = \lim_{r \to 1^{-}} A_r f =_{(A)} \sum_{n \in \mathbb{Z}} \widehat{f}(n) z^n$$

where the limit is in the L^p sense.

The final word on Fourier Series?

So at last we have rigorous meaning for the expression,

$$f=\sum_{n\in\mathbb{Z}}\widehat{f}(n)z^n.$$

We simply need to interpret the right hand side as an Abel sum, converging in the L^p sense, if $f \in L^p(\mathbb{T}, \mathbf{m})$ and $p \in [1, \infty)$.

Can we do better?

Abel summation is nice, but what really interests us is classical summation. Carleson and Hunt proved the following,

Theorem

Suppose that $f \in L^p(\mathbb{T}, \mathbf{m})$, for $p \in (1, \infty)$, then

$$f = \sum_{n \in \mathbb{Z}} \widehat{f}(n) z^n$$

where the sum is a classical sum, converging in the L^p sense.

What about the p = 1 case?

The theorem spectacularly fails to be true when p=1. The following is a result of Kolmogorov,

Theorem

There is a function $k \in L^1(\mathbb{T}, \mathbf{m})$ such that

$$\zeta \mapsto \sum_{n \in \mathbb{Z}} \widehat{k}(n) \zeta^n$$

diverges for every $\zeta \in \mathbb{T}$.

What about higher dimensions?

Let $f \in L^1(\mathbb{T}^2, \mathbf{m} \times \mathbf{m})$. Let $z, w : \mathbb{T}^2 \to \mathbb{T}$ be the first and second coordinate functions.

Then we can write,

$$f = \lim_{r,s\to 1^-} \sum_{(n,m)\in\mathbb{Z}^2} \widehat{f}(n,m) r^n s^m z^n w^m.$$

where

$$\widehat{f}(n,m) = \int_{\mathbb{T}^2} z^{-n} w^{-m} f \ d(\mathbf{m} \times \mathbf{m}).$$

What about higher dimensions?

In other words, most functions on $\mathbb{T}^2\mbox{ can be written as a doubly-indexed power series,}$

$$f = \sum_{(n,m)\in\mathbb{Z}^2} c_{n,m} z^n w^m$$

for some coefficients $c_{n,m}$, and the series converges in "some sense".

Non-commutative Geometry

Question: What is non-commutative geometry?

Answer:

The study of non-commutative algebras which are somehow similar to algebras of functions on geometric spaces, using the methods and language of geometry.

Introducing the non-commutative torus

Let θ be an irrational number.

Definition

The non-commutative torus $\mathcal{A}(\mathbb{T}^2_{\theta})$ is an algebra over \mathbb{C} such that any $a \in \mathcal{A}(\mathbb{T}^2_{\theta})$ has an expression like,

$$a = \sum_{(n,m)\in\mathbb{Z}^2} a_{n,m} u^n v^m$$

which converges in some sense, and u and v are elements satisfying

$$uv = e^{2\pi i\theta}vu$$

and $u^*u = uu^* = v^*v = vv^* = 1$.

Let us ignore issues of convergence for now.

The Upshot

The algebra $\mathcal{A}(\mathbb{T}^2_{\theta})$ is a lot like an algebra of functions on \mathbb{T}^2 , and many techniques of harmonic analysis can be used on $\mathcal{A}(\mathbb{T}^2_{\theta})$. So this justifies the term "non-commutative harmonic analysis".

The end!