

Introduction to Machine Learning

Logistic Regression

A characterization of machine learning problems

	Supervised	Unsupervised
Discrete	Classification Logistic Regression	Clustering
Continuous	Regression	Dimensionality reduction

Why linear regression may not make a good classifier

We know this: This is new: Salary (\$) Action (Y/N) ??? Age Experience

$$\ln\left(\frac{p}{1-p}\right) = \theta_0 + \theta_1 x$$

WHAT JUST HAPPENED 222

Estimating parameters

- Calculate prediction based on coefficients
- Adjust coefficients based on prediction error (loss function)

Sigmoid function

$$\sigma(t)=rac{e^t}{e^t+1}=rac{1}{1+e^{-t}}$$

Sigmoid function

$$y = \theta_0 + \theta_1 x$$

Linear Regression Cost Function

•
$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (h(x_i) - y_i)^2$$

Simplify Logistic Regression Cost Function

•
$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

- Since y = 0 or 1 always, can rewrite
- $Cost(h(x), y) = -y \log(h(x)) ((1-y) \log(1-h(x)))$

Logistic Regression Cost Function

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} Cost(h(x_i), y_i)$$

= $-\frac{1}{n} \sum_{i=1}^{n} y_i \log(h(x_i)) + (1 - y_i) \log(1 - h(x_i))$

- To fit parameters θ
 - $min_{\theta} J(\theta)$
- To make prediction given new x:
 - Output h(x) = $\frac{1}{1+e^{-(\theta_0+\theta_1x)}}$
- Just need to find θ s
 - Use gradient descent

Gradient Descent

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log(h(x_i)) + (1 - y_i) \log(1 - h(x_i))$$

- Want $min_{\theta} J(\theta)$
- Repeat

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

Gradient Descent

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log(h(x_i)) + (1 - y_i) \log(1 - h(x_i))$$

- Want $min_{\theta} J(\theta)$
- Repeat

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Let's try this out