Artificial Intelligence Decision Trees

Reminder: Features

Features, aka attributes

Sometimes: TYPE=French

• Sometimes: $f_{\text{TYPE=French}}(x) = 1$

Example					At	tributes	}				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	<i>\$\$</i>	T	T	ltalian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Decision Trees

- Compact representation of a function:
 - Truth table
 - Conditional probability table
 - Regression values
- True function
 - \blacksquare Realizable: in H

Expressiveness of DTs

Can express any function of the features

However, we hope for compact trees

Comparison: Perceptrons

What is the expressiveness of a perceptron over these features?

Example		Attributes									Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F

- For a perceptron, a feature's contribution is either positive or negative
 - If you want one feature's effect to depend on another, you have to add a new conjunction feature
 - E.g. adding "PATRONS=full \triangle WAIT = 60" allows a perceptron to model the interaction between the two atomic features
- DTs automatically conjoin features / attributes
 - Features can have different effects in different branches of the tree!
- Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
 - Though if the interactions are too complex, may not find the DT greedily

Decision Tree Learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
   if examples is empty then return default
   else if all examples have the same classification then return the classification
   else if attributes is empty then return Mode (examples)
   else
        best \leftarrow \text{Choose-Attributes}, examples
        tree \leftarrow a new decision tree with root test best
        for each value v_i of best do
             examples_i \leftarrow \{ elements of examples with best = v_i \}
             subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))
             add a branch to tree with label v_i and subtree subtree
        return tree
```

Choosing an Attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

 So: we need a measure of how "good" a split is, even if the results aren't perfectly separated out

Entropy and Information

Information answers questions

 The more uncertain about the answer initially, the more information in the answer

Scale: bitsBits on average:

- Answer to Boolean question with prior <1/2, 1/2>?
- Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>? 2
- Answer to 4-way question with prior <0, 0, 0, 1>?
- Answer to 3-way question with prior <1/2, 1/4, 1/4>?

Coding scheme:

Distribution: <1/2, 1/4, 1/4>

Code words: 0 , 10, 11

Bits on average= 1*1/2+2*1/4+2*1/4=3/2

Distribution: <1/2, 1/4, 1/4>

A probability p is typical of:

- A uniform distribution of size 1/p
- A code of length log 1/p

The average number of bits is $\sum_i p_i \log_2 \frac{1}{p_i}$

Entropy

- General answer: if prior is $\langle p_1, ..., p_n \rangle$:
 - Information is the expected code length

$$H(\langle p_1, \dots, p_n \rangle) = E_p \log_2 1/p_i$$
$$= \sum_{i=1}^n -p_i \log_2 p_i$$

- More uniform = higher entropy
- More values = higher entropy
- More peaked = lower entropy

Information Gain

Back to decision trees!

- For each split, compare entropy before and after
 - Difference is the information gain
 - Problem: there's more than one distribution after split!

 Solution: use expected entropy, weighted by the number of examples

$H(Parent) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$ $H(None) = -1\log_2 1 = 0$ $H(Some) = -1\log_2 1 = 0$ $H(Full) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.92$ $IG = H(Parent) - \frac{2}{12}H(None) - \frac{4}{12}H(Some) - \frac{6}{12}H(Full)$

IG = Entropy(Parent)- WeightedAverage(Entropy(Children))

IG = 0.54

Next Step: Recurse

- Now we need to keep growing the tree!
- Two branches are done (why?)
- What to do under "full"?
 - See what examples are there...

Example					At	tributes	}				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	<i>\$\$\$</i>	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	<i>\$\$</i>	Τ	T	ltalian	0–10	T
X_7	F	T	F	F	None	\$	\mathcal{T}	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Example: Learned Tree

Decision tree learned from these 12 examples:

- Substantially simpler than "true" tree
 - A more complex hypothesis isn't justified by data
- Also: it's reasonable, but wrong

Example: Play Tennis?

Training examples

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Selecting the Next Attribute

ID3 Algorithm

Converting a Tree to Rules

R₁: If (Outlook=Sunny) ∧ (Humidity=High) Then PlayTennis=No

R₂: If (Outlook=Sunny) ∧ (Humidity=Normal) Then PlayTennis=Yes

R₃: If (Outlook=Overcast) Then PlayTennis=Yes

R₄: If (Outlook=Rain) ∧ (Wind=Strong) Then PlayTennis=No

R₅: If (Outlook=Rain) ∧ (Wind=Weak) Then PlayTennis=Yes

Example: Miles Per Gallon

40 Examples

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Find the First Split

 Look at information gain for each attribute

Note that each attribute is correlated with the target!

What do we split on?

Result: Decision Stump

Second Level

Final Tree root 22 18 pchance = 0.001 cylinders = 3 cylinders = 4 cylinders = 5 | cylinders = 6 | cylinders = 8 0 0 4 17 1 0 8 0 9 1 pchance = 0.085 Predict bad pchance = 0.135 Predict bad Predict bad maker = america maker = asia maker = europe horsepower = low horsepower = medium horsepower = high 0 10 2 5 2 2 0 0 0 1 9 0 Predict bad Predict good pchance = 0.317 | pchance = 0.717 | Predict bad Predict good acceleration = high horsepower = low horsepower = medium horsepower = high acceleration = low acceleration = medium 0 4 2 1 0 0 1 0 0 1 1 1 Predict good pchance = 0.894 Predict bad Predict bad Predict good pchance = 0.717acceleration = low acceleration = medium acceleration = high modelyear = 70to74 modelyear = 75to78 modelyear = 79to83 1 1 1 0 0 0 0 1 1 0 0 0 Predict bad Predict bad (unexpandable) Predict bad Predict good Predict bad Predict bad

Reminder: Overfitting

Overfitting:

- When you stop modeling the patterns in the training data (which generalize)
- And start modeling the noise (which doesn't)

• We had this before:

- Naïve Bayes: needed to smooth
- Perceptron: early stopping

Significance of a Split

- Starting with:
 - Three cars with 4 cylinders, from Asia, with medium HP
 - 2 bad MPG
 - 1 good MPG
- What do we expect from a three-way split?
 - Maybe each example in its own subset?
 - Maybe just what we saw in the last slide?

- Probably shouldn't split if the counts are so small they could be due to chance
- A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*
- Each split will have a significance value, p_{CHANCE}

^{*}The Asterix stands for "You don't need to know the details in this course"

Keeping it General

Pruning:

- Build the full decision tree
- Begin at the bottom of the tree
- Delete splits in which

$$p_{CHANCE} > MaxP_{CHANCE}$$

 Continue working upward until there are no more prunable nodes

$$y = a XOR b$$

а	b	У
0	0	0
0	1	1
1	0	1
1	1	0

Pruning example

■ With MaxP_{CHANCE} = 0.1:

Note the improved test set accuracy compared with the unpruned tree

	Num Errors	Set Size	Percent Wrong
Training Set	5	40	12.50
Test Set	56	352	15.91

Regularization

- MaxP_{CHANCE} is a regularization parameter
- Generally, set it using held-out data (as usual)

A few important points about learning

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - Underfitting: fits the training set poorly

Training Data

Held-Out Data

> Test Data

A few important points about learning

- What should we learn where?
 - Learn parameters from training data
 - Tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data
- What are examples of hyperparameters?

Inductive Learning

Inductive Learning (Science)

- Simplest form: learn a function from examples
 - A target function: g
 - Examples: input-output pairs (x, g(x))
 - E.g. x is an email and g(x) is spam / ham
 - E.g. x is a house and g(x) is its selling price
- Problem:
 - Given a hypothesis space H
 - Given a training set of examples X_i
 - Find a hypothesis h(x) such that $h \sim g$
- Includes:
 - Classification (outputs = class labels)
 - Regression (outputs = real numbers)
- How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

• Curve fitting (regression, function approximation):

- Consistency vs. simplicity
- Ockham's razor

Consistency vs. Simplicity

- Fundamental tradeoff: bias vs. variance
- Usually algorithms prefer consistency by default (why?)
- Several ways to operationalize "simplicity"
 - Reduce the hypothesis space
 - Assume more: e.g. independence assumptions, as in naïve Bayes
 - Have fewer, better features / attributes: feature selection
 - Other structural limitations (decision lists vs trees)
 - Regularization
 - Smoothing: cautious use of small counts
 - Many other generalization parameters (pruning cutoffs today)
 - Hypothesis space stays big, but harder to get to the outskirts