oduction Hypothesis ANOVA Table Example Conclusions

One-way ANOVA

MAM5120 - Statistical Concepts, Methods and Tools

Samantha Pendleton¹

¹ Aberystwyth University Department of Computer Science

Content

- 1 Introduction
- 2 Hypothesis
- 3 ANOVA Table
- 4 Example
 - Analysing Data
 - Calculations
 - R: ANOVA Table
- 5 Conclusions

Introduction Hypothesis ANOVA Table Example Conclusions

Introduction to ANOVA

One-way ANOVA

- to compare three or more means
- to determine whether groups are significantly different
- useful to test differences between medicines, populations, etc.

Assumptions

- samples are independent
- response is normally distributed

Hypothesis

NULL HYPOTHESIS

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

ALTERNATIVE HYPOTHESIS

HA: "at least two means are different"

Significance

if p-value is significant at 95% (p<0.05) then we reject the NULL Hypothesis

Table

Source	SS	df	MS	F	p(>F)
Treatment	SS _{treat}	k-1	$SS_{treat}/(k-1)$	MS_{treat}/MS_{resid}	р
Residual	SS _{resid}	N-k	$SS_{resid}/(N-k)$		
Total	$SS_{treat} + SS_{resid}$	N-1			

Annotating

- SS = Sum of Squares
- df = Degrees of Freedom
- MS = Mean of Squares
- F = f-statistic

ntroduction Hypothesis ANOVA Table **Example** Conclusions

Example

A Marine Research Centre want to observe sightings of Maui's Dolphins off the coast of New Zealand for 3 random days

Figure: Maui dolphin. Image Source: Daily Mail¹

Samantha Pendleton (sap21) MAM5120 2017 6 / 10

¹http://www.dailymail.co.uk/sciencetech/article-2118304/Worlds-smallest-dolphin-threat-nets-species-reduced-just-55-survivors.html?ito=feeds-newsxml

Data

Sightings					
Random Day	Morning	Afternoon	Evening	Night	
1	6	3	10	8	
2	4	7	9	7	
3	3	8	8	5	
6.5	4.3333	6	9	6.6666	

Assuming

- Sightings/Days are independent
- Counts/Numbers are normally distributed

Identifying Calculations

$$k = 4$$
: $N = 12$: at 95%

Source	SS	df	MS	F
Treatment	33.6667	3	11.2222	3.54386
Residual	25.3333	8	3.1667	
Total	59	11		

Annotating

$$SS_{treat}$$
: $3(4.3333... - 6.5)^2 + 3(6 - 6.5)^2 + ... = 33.6667$

$$SS_{resid}$$
: $((6-5=1)+(4-5=-1)+(3-5=-2))=2+...=25.3333$

$$df_t = k - 1 = 4 - 1 = 3$$

$$df_r = N - k = 12 - 4 = 8$$

$$MS_{treat}: SS_{treat}/df_t = 33.6667/3 = 11.2222$$

$$MS_{resid}: SS_{resid}/df_r = 25.3333/8 = 3.1667$$

Hypothesis ANOVA Table **Example** Conclusions

R: ANOVA Table

Example in R

> summary(aov(number \sim days, data=sightings))

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
days	3	33.67	11.222	3.544	0.0677
Residuals	8	25.33	3.167		

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Remember

if p-value is significant at 95% (p<0.05) then we reject the NULL Hypothesis

ANOVA Table Conclusions Introduction Hypothesis Example

Results

- p-value = 0.0677
- p > 0.05
- not significant at 95%
- insufficient evidence to reject H₀ in favour of H_A
- observations from different times of day come from the same distribution (have the same mean)

