Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Christian Hensel, Matthias Volk

Introduction to Model Checking (Summer Term 2018)

— Solution 4 (due 28th May) —

General Remarks

- The exercises are to be solved in groups of three students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair before 12:00. Do not hand in your solutions via L2P or via e-mail.

Exercise 1 (6 Points)

Let $AP = \{a, b\}$ and let

$$E = \left\{ \sigma = A_0 A_1 A_2 \cdots \in \left(2^{AP}\right)^\omega \mid (\exists n \geq 0 \, . \, \forall 0 \leq i < n \, . \, a \in A_i \wedge A_n = \{a,b\}) \wedge (\forall j \geq 0 \, . \, \exists i \geq j \, . \, b \in A_i) \right\}$$

be an LT property. Provide a decomposition $E = S \cap L$ into a safety property S and a liveness property L. For this, give ω -regular expressions s and l over the alphabet 2^{AP} such that $S = \mathcal{L}_{\omega}(s)$ and $L = \mathcal{L}_{\omega}(l)$.

Hint: For a regular expression δ over the alphabet Σ , we let $\mathcal{L}(\delta) \subseteq \Sigma^*$ denote the language of finite words induced δ . An ω -regular expression γ over the alphabet Σ is of the form

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + \ldots + \alpha_n \cdot \beta_n^{\omega}$$

where $n \geq 1$, α_i, β_i are regular expressions over Σ such that $\epsilon \notin \mathcal{L}(\beta_i)$ for all $1 \leq i \leq n$. The semantics of an ω -regular expression γ is a language of infinite words defined by

$$\mathcal{L}_{\omega}(\gamma) = \mathcal{L}(\alpha_1)\mathcal{L}(\beta_1)^{\omega} \cup \ldots \cup \mathcal{L}(\alpha_n)\mathcal{L}(\beta_n)^{\omega}$$

where

- for $L \subseteq \Sigma^*$ it is $L^{\omega} = \{ \sigma_1 \sigma_2 \sigma_3 \dots \mid \forall i \geq 1 . \sigma_i \in L \}$, and
- for $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^\omega$ it is $L_1L_2 = \{\sigma_1\sigma_2 \mid \sigma_1 \in \mathcal{L}_1 \land \sigma_2 \in L_2\} \subseteq \Sigma^\omega$.

Solution:

According to the decomposition theorem from the lecture, every linear time property can be decomposed into a safety and a liveness property in the following way:

$$E = \underbrace{cl(E)}_{S} \cap \underbrace{\left(E \cup \left(\left(2^{AP}\right)^{\omega} \setminus cl(E)\right)\right)}_{L}$$

The linear time property E can be characterized by the following ω -regular expression:

$$E = \mathcal{L}_{\omega} \left(\{a\}^* \{a, b\}. \left(\left(2^{AP} \right)^* \left(\{b\} + \{a, b\} \right) \right)^{\omega} \right)$$

In our case, this yields the following safety property:

$$S = cl(E)$$

$$= \left\{ \sigma' \in \left(2^{AP} \right)^{\omega} \mid \operatorname{pref}(\sigma') \subseteq \operatorname{pref}(E) \right\}$$

$$= \left\{ \sigma' \in \left(2^{AP} \right)^{\omega} \mid \operatorname{pref}(\sigma') \subseteq \mathcal{L} \left(\left\{ a \right\}^* \left\{ a, b \right\} \left(2^{AP} \right)^* + \left\{ a \right\}^+ \right) \right\}$$

$$= \mathcal{L}_{\omega} \left(\underbrace{\left\{ a \right\}^* \left\{ a, b \right\} \cdot \left(2^{AP} \right)^{\omega} + \left\{ a \right\}^{\omega}}_{s} \right)$$

The liveness property $L = E \cup ((2^{AP})^{\omega} \setminus cl(E))$ can be deduced as

$$L = E \cup \left((2^{AP})^{\omega} \setminus cl(E) \right)$$

$$= E \cup \left((2^{AP})^{\omega} \setminus \mathcal{L}_{\omega} \left(\{a\}^* \{a, b\}, (2^{AP})^{\omega} + \{a\}^{\omega} \right) \right)$$

$$= E \cup \mathcal{L}_{\omega} \left(\{a\}^* (\emptyset + \{b\}) (2^{AP})^{\omega} \right)$$

$$= \mathcal{L}_{\omega} \left(\underbrace{\{a\}^* \{a, b\}, \left((2^{AP})^* (\{b\} + \{a, b\}) \right)^{\omega} + \{a\}^* (\emptyset + \{b\}), (2^{AP})^{\omega}}_{l} \right).$$

$$(1 + 2 + 2 + 3 \text{ Points})$$

Let $TS_i = (S_i, Act, \rightarrow_i, S_0^i, AP_i, L_i)$ be transition systems for $i \in \{1, 2\}$. Note that TS_1 and TS_2 have the same action set.

Prove or disprove the following statements under the assumption $AP_2 = \emptyset$.

- (a) $Traces(TS_1) \subseteq Traces(TS_1 \parallel TS_2)$,
- (b) $Traces(TS_1 \parallel TS_2) \subseteq Traces(TS_1)$.

Furthermore, let $\mathcal{F} = (\emptyset, \mathcal{F}_s, \mathcal{F}_w)$ be a fairness assumption.

Prove or disprove the following statements (for arbitrary AP₂).

- $(c) \; \; \mathit{Traces}(TS_1) \subseteq \mathit{Traces}(TS_2) \implies \mathit{FairTraces}_{\mathcal{F}}(TS_1) \subseteq \mathit{FairTraces}_{\mathcal{F}}(TS_2), \, \text{and} \, \\$
- (d) if E is a liveness property and $TS_2 \models_{\mathcal{F}} E$, then

$$Traces(TS_1) \subseteq Traces(TS_2) \implies TS_1 \models_{\mathcal{F}} E.$$

Solution:

(a) The statement does not hold. Consider the two transition systems TS_1 and TS_2 with $Act = \{\alpha, \beta\}$ and their composition $TS_1 \parallel TS_2$ as below.

We have $\sigma = \emptyset \{a\}^{\omega} \in Traces(TS_1)$, but $\sigma \notin Traces(TS_1 \parallel TS_2)$, so the statement does not hold.

(b) The statement holds under the assumption that there are no terminal states in $TS_1 \parallel TS_2$. We first show that in general the statement is violated.

Consider the two transition systems TS_1 and TS_2 as below:

Clearly, $\{a\} \in Traces(TS_1 \parallel TS_2)$ as $\langle s_0, t_0 \rangle$ is a terminal state. However, $Traces(TS_1) = \{\{a\}^{\omega}\} \subseteq (2^{AP})^{\omega}$ and, in particular, $\{a\} \notin Traces(TS_1)$.

We now move to the case where $TS_1 \parallel TS_2$ does not possess terminal states. According to the definition of the parallel composition operator \parallel , the composite transition system is given as $TS_1 \parallel TS_2 = (S = S_1 \times S_2, Act, \rightarrow, S_0^1 \times S_0^2, AP_1, L')$ with $L((s_1, s_2)) = L_1(s_1)$. As TS_1 and TS_2 have the same set of actions, \rightarrow is the smallest relation satisfying the SOS rules

$$\frac{s_1 \stackrel{\alpha}{\to}_1 s_1' \quad \wedge \quad s_2 \stackrel{\alpha}{\to}_2 s_2'}{(s_1, s_2) \stackrel{\alpha}{\to} (s_1', s_2')} \quad \text{for all } \alpha \in \text{Act.}$$

Let $\sigma \in Traces(TS_1 \parallel TS_2)$. As $TS_1 \parallel TS_2$ does not have terminal states, $\sigma \in (2^{AP})^{\omega}$ is an infinite word. Then, there exists an infinite path $\pi = (s_1^0, s_2^0)(s_1^1, s_2^1) \dots \in Paths(TS_1 \parallel TS_2)$ such that $trace(\pi) = L'((s_1^0, s_2^0))L'((s_1^1, s_2^1)) \dots = L(s_1^0)L(s_1^1) \dots = \sigma$. Since π is a path in $TS_1 \parallel TS_2$, it is $(s_1^i, s_2^i) \xrightarrow{\alpha_i} (s_1^{i+1}, s_2^{i+1})$ for all $i \geq 0$. Because of the rules defining \to (above), we have $s_1^i \xrightarrow{\alpha_i} s_1^{i+1}$ for all $i \geq 0$. Consequently, $\pi' = s_1^0 s_1^1 \dots \in Paths(TS_1)$ and $trace(\pi') = L(s_1^0)L(s_1^1) \dots = \sigma$ and therefore $\sigma \in Traces(TS_1)$.

(c) The statement does not hold. Consider the two transition systems TS_1 and TS_2 over the actions $Act_1 = Act_2 = \{\alpha, \beta, \tau\}$ and atomic propositions $AP_1 = AP_2 = \{a\}$ as below.

We have $Traces(TS_1) = Traces(TS_2)$ and, in particular, $Traces(TS_1) \subseteq Traces(TS_2)$ as the traces abstract from actions along transitions. Let $\mathcal{F} = (\emptyset, \emptyset, \{\beta\})$ be the fairness assumption that requires executions that have β continuously enabled from some point on to take β infinitely often. Then $\sigma_{\mathcal{F}} = \{a\} \emptyset^{\omega} \in FairTraces_{\mathcal{F}}(TS_1)$ because $\rho = s_0 \stackrel{\beta}{\to}_3 s_1 \stackrel{\tau}{\to}_3 s_1 \dots$ is an \mathcal{F} -fair execution in TS_1 . The only execution in TS_2 with trace $\sigma_{\mathcal{F}}$ is $\rho' = t_0 \stackrel{\alpha}{\to}_4 t_1 \stackrel{\tau}{\to}_4 t_1 \dots$, which is not \mathcal{F} -fair. Therefore $\sigma_{\mathcal{F}} \notin FairTraces_{\mathcal{F}}(TS_2)$ and $FairTraces_{\mathcal{F}}(TS_1) \not\subseteq FairTraces_{\mathcal{F}}(TS_2)$.

(d) The statement does not hold. Reconsider TS_1 , TS_2 (with $Traces(TS_1) \subseteq Traces(TS_2)$) and the fairness assumption \mathcal{F} from (c). We consider the LT property $E = \{A_0A_1 \dots \mid \forall j \geq 0 . \exists i \geq j . a \in A_i\}$. It is clear that E is a liveness property: take any finite word $\hat{\sigma} \in (2^{AP})^+$ and extend it to $\hat{\sigma} \{a\}^{\omega} \in E$. It is

$$FairTraces_{\mathcal{F}}(TS_2) = \mathcal{L}_{\omega}((\{a\}^+ \emptyset^+)^{\omega}) \subseteq E$$

and therefore $TS_2 \models_{\mathcal{F}} E$. However, ρ (from (c)) is an \mathcal{F} -fair execution in TS_1 and has trace $\sigma_{\mathcal{F}} \in FairTraces_{\mathcal{F}}(TS_1)$ (from (c)). As $\sigma_{\mathcal{F}} \notin E$, we have $TS_1 \not\models_{\mathcal{F}} E$.

Exercise 3^* (1+3+3 Points)

Consider the transition system TS given below. Let $B_1 = \{\alpha\}$, $B_2 = \{\alpha, \beta\}$ and $B_3 = \{\beta\}$ be sets of actions. Further, let E_a , E_b and E' be the following LT properties:

- E_a = the set of all words $A_0 A_1 A_2 \cdots \in (2^{\{a,b\}})^{\omega}$ with $A_i \in \{\{a,b\},\{a\}\}$ for infinitely many i (i.e., infinitely often a).
- E_b = the set of all words $A_0A_1A_2\cdots \in (2^{\{a,b\}})^{\omega}$ with $A_i \in \{\{a,b\},\{b\}\}$ for infinitely many i (i.e., infinitely often b).
- E' = the set of all words $A_0A_1A_2\cdots \in (2^{\{a,b\}})^{\omega}$ for which there does not exist an $i \in \mathbb{N}$ s.t. $A_i = \{a\}, A_{i+1} = \{a,b\}$ and $A_{i+2} = \emptyset$.

(a) For which LT properties $E \in \{E_a, E_b, E'\}$ does it hold that TS $\models E$?

Solution 4

- (b) For which sets of actions B_i ($i \in \{1,2,3\}$) and LT properties $E \in \{E_a, E_b, E'\}$ does it hold that TS $\models_{\mathcal{F}_{strong}^i} E$? Here, \mathcal{F}_{strong}^i is a strong fairness condition with respect to B_i that does not impose any unconditional or weak fairness conditions (i.e., $\mathcal{F}^{i}_{strong} = (\emptyset, \{B_i\}, \emptyset)$).
- (c) Answer the questions in (b) for weak fairness instead of strong fairness (i.e., $\mathcal{F}_{weak}^i = (\emptyset, \emptyset, \{B_i\})$).

Solution:

- TS $\not\models E_a$. The trace $(\emptyset \{b\})^{\omega}$ is not in E_a .
 - TS $\not\models E_b$. The trace $(\emptyset \{a\})^{\omega}$ is not in E_b .
 - TS $\not\models E'$. The trace $(\emptyset \{a\} \{a,b\})^{\omega}$ is not in E'.
- (b) Note that for all possible paths state s_1 is visited infinitely often and thus, actions α and β are enabled infinitely many times on all paths.
 - TS $\models_{\mathcal{F}^1_{strong}} E_a$. All paths have to take action α in s_1 infinitely many times. Thus, state s_2 with label $\{a\}$ is visited infinitely often.
 - TS $\not\models_{\mathcal{F}^1_{strong}} E_b$. The path $\pi_1 = (s_1 s_2)^{\omega}$ is a fair path but $trace(\pi_1) \notin E_b$.
 - TS $\not\models_{\mathcal{F}_{strong}^1} E'$. The path $\pi_2 = (s_1 s_2 s_4)^{\omega}$ is a fair path but $trace(\pi_2) \not\in E'$.
 - TS $\not\models_{\mathcal{F}^2_{strong}} E_a$. The path $\pi_3 = (s_1 s_3)^{\omega}$ is a fair path but $trace(\pi_3) \not\in E_a$.
 - TS $\not\models_{\mathcal{F}^2_{strong}} E_b$. The path $\pi_1 = (s_1 s_2)^{\omega}$ is a fair path but $trace(\pi_1) \notin E_b$.
 - TS $\not\models_{\mathcal{F}^2_{strong}} E'$. The path $\pi_2 = (s_1 s_2 s_4)^{\omega}$ is a fair path but $trace(\pi_2) \not\in E'$.
 - TS $\not\models_{\mathcal{F}^3_{strong}} E_a$. The path $\pi_3 = (s_1 s_3)^{\omega}$ is a fair path but $trace(\pi_3) \not\in E_a$.
 - TS $\models_{\mathcal{F}^3_{strong}} E_b$. All paths have to take action β in s_1 infinitely many times. Thus, state s_3 with label $\{b\}$ is visited infinitely often.
 - TS $\not\models_{\mathcal{F}_{strong}^3} E'$. The path $\pi_4 = (s_1 s_3 s_4)^{\omega}$ is a fair path but $trace(\pi_4) \notin E'$.
- (c) Remember the following relationship between strong and weak fairness for transition system TS and LT property P:

$$TS \models_{\mathcal{F}_{weak}} P \implies TS \models_{\mathcal{F}_{strong}} P$$

Then it follows:

$$TS \not\models_{\mathcal{F}_{strong}} P \implies TS \not\models_{\mathcal{F}_{weak}} P$$

Thus, we can already deduce from the solution to (b):

- TS $\not\models_{\mathcal{F}_{weak}^1} E_b$.
- TS $\not\models_{\mathcal{F}^1_{weak}} E'$.
- TS $\not\models_{\mathcal{F}^2_{meak}} E_a$.
- TS $\not\models_{\mathcal{F}^2_{meak}} E_b$.
- TS $\not\models_{\mathcal{F}^2_{weak}} E'$.
- TS $\not\models_{\mathcal{F}_{weak}^3} E_a$.
- TS $\not\models_{\mathcal{F}^3_{weak}} E'$.

Note that for paths $\pi_3 = (s_1 s_3)^{\omega}$ and $\pi_4 = (s_1 s_3 s_4)^{\omega}$ action α is continuously enabled.

• TS $\models_{\mathcal{F}_{weak}^1} E_a$. Paths visiting states s_2 or s_4 infinitely many times satisfy the property E_a . Therefore, the only paths violating the property have the form $((s_1s_2) + (s_1s_2s_4) + (s_1s_3) +$ $(s_1s_3s_4)^*(s_1s_3)^\omega$. However, action α is continuously enabled in $(s_1s_3)^\omega$ but never taken. Thus, these paths are not fair and are not considered.

• TS $\not\models_{\mathcal{F}_{weak}^3} E_b$. The path $\pi_1 = (s_1 s_2)^{\omega}$ is a fair path but $trace(\pi_1) \not\in E_b$.

Note, for property E' it is also possible to show that E' is a safety property and fairness assumption \mathcal{F}_k^i $(i \in \{1, 2, 3\}, k \in \{strong, weak\})$ is realizable for TS. Then we can use the fact TS $\not\models E'$ to conclude that TS $\not\models_{\mathcal{F}_k^i} E'$.

Exercise 4 (2+3 Points)

Consider the transition system TS depicted below and the regular safety property

 $P_{\mathit{safe}} = \text{ ``always if a is valid and $b \land \neg c$ was valid somewhere before,} \\ \text{ then neither a nor b holds thereafter at least until c holds"}$

As an example, it holds:

$$\{b\} \emptyset \{a, b\} \{a, b, c\} \in \operatorname{pref}(P_{safe})$$

$$\{a, b\} \{a, b\} \emptyset \{b, c\} \in \operatorname{pref}(P_{safe})$$

$$\{b\} \{a, c\} \{a\} \{a, b, c\} \in \operatorname{BadPref}(P_{safe})$$

$$\{b\} \{a, c\} \{a, c\} \{a\} \in \operatorname{BadPref}(P_{safe})$$

- (a) Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- (b) Decide whether TS $\models P_{safe}$ using the TS $\otimes \mathcal{A}$ construction. Provide a counterexample if TS $\not\models P_{safe}$.

Solution:

(a) The NFA \mathcal{A} that accepts the set of minimal bad prefixes is depicted below.

(b) First we apply the $TS \otimes \mathcal{A}$ construction which yields:

A counterexample to TS $\models P_{safe}$ is given by the following initial path fragment in TS $\otimes A$:

$$\pi_{\otimes} = \langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_4, q_3 \rangle$$

By projection on the state component, we get a path in the underlying transition system TS:

$$\pi = s_0 s_1 s_4$$
 with $trace(\pi) = \{a, b\} \{a, b, c\} \{a, b\}$

Obviously, $trace(\pi) \in BadPref(P_{safe})$, so we have $Traces_{fin}(TS) \cap BadPref(P_{safe}) \neq \emptyset$. Therefore, $TS \not\models P_{safe}$.