

1 Ângulo entre retas e planos

1.1 Ângulo entre retas

Dados duas retas r e s no espaço, sabemos que elas podem ser paralelas, coincidentes, concorrentes ou reversas.

Se elas são concorrentes, elas determinam quatro ângulos, dois a dois opostos pelo vértice. Neste caso, definimos o o ângulo entre r e s como sendo o menor destes ângulos.

Se elas são reversas, então elas não se interceptam, mas dado um ponto P em r, passa uma reta s' que é paralela a s. Neste caso definimos o ângulo entre r e s como o ângulo entre r e s'.

Se elas são paralelas ou coincidentes, definimos o ângulo entre elas igual zero.

Em qualquer dos casos, assim como no plano, se \vec{r} e \vec{s} são vetores diretores de r e s respectivamente, o ângulo θ entre r e s é obtido através da fórmula:

$$\cos\theta = \frac{|\vec{r} \cdot \vec{s}|}{\|\vec{r}\| \|\vec{s}\|}$$

1.2 Exercícios

- 1. Calcule a medida angular θ entre as retas r: X = (1, 1, 9) + t(0, -1, 1) e s: x y + 3 = z = 4.
- 2. Dados uma reta r: X = (0,0,0) + t(0,1,-1) e um ponto A = (1,1,0), determine os pontos B e C sobre r que formam com A um triângulo isósceles cujos ângulos nos vértices B e C são $\theta = 30^{\circ}$.

1.3 Ângulo entre reta e plano

O ângulo θ entre uma reta r e um plano π é o ângulo formado entre r e a sua projeção ortogonal sobre o plano π .

Podemos ver que θ é o complementar do ângulo α entre r e uma reta perpendicular ao plano, isto é, se os ângulos são dados em graus, então $\alpha = 90 - \theta$. Com isso, se \vec{r} é um vetor diretor de r e \vec{n} é um vetor normal ao plano π , temos que

$$\cos\alpha = \frac{|\vec{r}\cdot\vec{n}|}{\|\vec{r}\|\|\vec{n}\|}.$$

Note que $\cos \alpha = \cos(90 - \theta) = \cos 90 \cos \theta + \sin 90 \sin \theta = \sin \theta$. Portanto,

$$\operatorname{sen} \theta = \frac{|\vec{r} \cdot \vec{n}|}{\|\vec{r}\| \|\vec{n}\|}.$$

1.4 Exercícios

- 1. Obtenha a medida angular em radianos entre a reta $\mathbf{r}: \mathbf{X} = (0,1,0) + \mathbf{t}(-1,-1,0)$ e o plano $\pi: \mathbf{y} + z 10 = 0$.
- 2. Obtenha uma equação vetorial da reta r que contém o ponto P = (1,1,1), é paralela ao plano $\alpha : x + 2y z = 0$ e forma um ângulo de $\pi/3$ radianos com o plano $\beta : x y + 2z = 1$.