Clustering

Hierarchical Agglomerative Clustering (HAC)

Learning Objectives

- What's the Hierarchical Agglomerative Clustering (HAC) Algorithm?
 - What's hierarchical clustering? What's agglomerative? How does it work?
 - ▶ How does it compare to *k*-Means?
- ▶ What is a measure of **dissimilarity between points**? How about **dissimilarity between clusters**? What's **linkage**?
- How does (high) dimensionality of data impacts metrics-based clustering techniques such as HAC and k-Means?
- Afternoon Assignment
 - ► Topic modeling with *k*-Means
 - Implement HAC with scipy
 - Topic modeling with HAC

Hierarchical Clustering

Definition

 ${\sf Example}$

HAC Algorithm

Pseudocode Step-through

Linkage

Choosing k

Hierarchical Clustering Definition

Example

HAC Algorithm

Pseudocode Step-through Linkage Choosing k

Hierarchical Clustering

- ► Type of **agglomerative** clustering
 - ▶ I.e., we will **iteratively group** observations together based on their **distance** from one another
 - As we continue to group observations together we form a hierarchy of their similarity to one another
- ► This will force us to answer different questions then we did in *k*-Means
 - No longer do we have to choose the number of clusters up front
 - Instead we'll have to define the nature of successive grouping of observations

Hierarchical Clustering

Definition

 ${\sf Example}$

HAC Algorithm

Pseudocode Step-through Linkage

Choosing k

Example of Hierarchical Agglomerative Clustering

Hierarchical Clustering
Definition
Example

HAC Algorithm
Pseudocode
Step-through
Linkage
Choosing k

HAC

The algorithm in all its glory:

- 1. Each point as its own cluster
- 2. Merge "closest" clusters
- 3. End when all data points are in a single cluster

Like *k*-Means, this training algorithm may look pretty simple... and that's because it is

Hierarchical Clustering Definition Example

HAC Algorithm

Step-through

Linkage Choosing *k*

Step-by-step Execution: DATA!!

Dendrogram

Step-by-step Execution: Iteration 1 - Compute

1 - Compute distances between observations 2 - Identify/choose a minimum 3 - Fuse observations

Observations

Dendrogram

Step-by-step Execution: Iteration 1 - Identify

1 - Compute distances between observations 2 - **Identify**/choose a minimum 3 - Fuse observations

Observations

Dendrogram

Step-by-step Execution: Iteration 1 - Fuse

Step-by-step Execution: Iteration 2 - Compute

1 - Compute distances between observations 2 - Identify/choose a minimum 3 - Fuse observations

Observations

Dendrogram

Step-by-step Execution: Iteration 2 - Identify

1 - Compute distances between observations
 2 - Identify/choose a minimum
 3 - Fuse observations

Observations

Dendrogram

Step-by-step Execution: Iteration 2 - Fuse

Step-by-step Execution: Iteration 3 - Compute

1 - Compute distances between observations 2 - Identify/choose a minimum 3 - Fuse observations

Observations

Dendrogram

Step-by-step Execution: Iteration 3 - Identify

1 - Compute distances between observations 2 - **Identify**/choose a minimum 3 - Fuse observations

Observations

Dendrogram

Step-by-step Execution: Iteration 3 - Fuse

Step-by-step Execution: Iteration 4 - Compute

Dendrogram

Step-by-step Execution: Iteration 4 - Identify

Dendrogram

Step-by-step Execution: Iteration 4 - Fuse

HAC: Final Dendrogram

Hierarchical Clustering
Definition
Example

HAC Algorithm

Pseudocode Step-through

Linkage

Choosing k

Distance betweeen clusters?

Complete Linkage

Maximal intercluster dissimilarity

 Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the largest of these dissimilarities

- Pro: Balanced clusters
- ▶ Cons: More sensitive to outliers; may violate "closeness"
 - Forces "spherical" clusters with consistent "diameter"
- \rightarrow More commonly used

Single Linkage

Minimal intercluster dissimilarity

 Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the smallest of these dissimilarities

- Pro: Less senstive to outliers; handles irregular shapes fairly naturally
- Con: Extended, trailing clusters
 - ▶ Can fuse single observations one-at-a-time, producing long chains $a \rightarrow b \rightarrow ... \rightarrow z$
- ightarrow Less commonly used

Average Linkage

Mean intercluster dissimilarity

Compute all pairwise dissimilarities between the observations in cluster A and the the observations in cluster B, and record the average of these dissimilarities

$$D(A,B) = \frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} D(a,b)$$

- Compromise between complate and single linkages
- Pro: Balanced clusters
 - Less affected by outliers
- → More commonly used

Centroid Linkage

Dissimilarity between the centroid for cluster A and the centroid for cluster B

$$D(A, B) = D(\frac{1}{|A|} \sum_{a \in A} \vec{a}, \frac{1}{|B|} \sum_{b \in B} \vec{b})$$

- Centroid linkage can result in undesirable inversions
- ightarrow Not as commonly used, though popular in Genomics

Hierarchical Clustering
Definition
Example

HAC Algorithm

Pseudocode Step-through Linkage

Choosing k

Choosing k

- ▶ In constrast to *k*-Means, we don't have to choose *k* from the start
- ▶ Depending on where precisely we cut, we have anywhere from 1 to *n* clusters

The curse of dimensionality

Just as nearest neighbors breaks down in high dimensional space... Distance based clustering breaks down in high dimensional space...

The curse of dimensionality

Can you work out some of the points on the plot?

Dimension	Volume of a ball of radius R	Radius of a ball of volume V
0	1	All balls have volume 1
1	2R	V/2
2	πR^2	$\frac{V^{1/2}}{\sqrt{\pi}}$
3	$\frac{4}{3}\pi R^3$	$\left(\frac{3V}{4\pi}\right)^{1/3}$
4	$\frac{\pi^2}{2}R^4$	$\frac{(2V)^{1/4}}{\sqrt{\pi}}$
5	$\frac{6\pi^{2}}{15}R^{5}$	$\left(\frac{15V}{8\pi^2}\right)^{3/2}$
6	$\frac{\pi^3}{6}R^6$	$\frac{(6V)^{1/6}}{\sqrt{\pi}}$
7	$\frac{16\pi^3}{105}R^7$	$\frac{(6V)^{1/6}}{\sqrt{\pi}} = \left(\frac{105V}{16\pi^3}\right)^{1/7}$
8	$\frac{\pi^4}{24}R^8$	$\frac{(24V)^{1/8}}{\sqrt{\pi}}$
9	$\frac{32\pi^4}{945}R^9$	$\left(\frac{945V}{32\pi^4}\right)^{1/9}$
10	$\frac{\pi^5}{120}R^{10}$	$\frac{(120V)^{1/10}}{\sqrt{\pi}}$