PC25028A Seq.ST25.txt SEQUENCE LISTING

<110> PFIZER INC. Hambor, John E. Roach, Marsha L.									
<120> GROWTH AND DIFFERENTIATION OF STEM CELLS									
<130> PC25028A	PC25028A								
<150> US 60/459,449 <151> 2003-03-31									
<160> 48									
<170> PatentIn version 3.2									
<210> 1 <211> 2297 <212> DNA <213> Homo sapiens									
<400> 1	60								
gagccgggct actctgagaa gaagacacca agtggattct gcttcccctg ggacagcact	120								
gagcgagtgt ggagagggt acagccctcg gcctacaagc tctttagtct tgaaagcgcc acaagcagca gctgctgagc catggctgaa ggggaaatca ccaccttcac agccctgacc	120 180								
gagaagttta atctgcctcc agggaattac aagaagccca aactcctcta ctgtagcaac	240								
gggggccact tcctgaggat ccttccggat ggcacagtgg atgggacaag ggacaggagc	300								
gaccagcaca ttcagctgca gctcagtgcg gaaagcgtgg gggaggtgta tataaagagt	360								
accgagactg gccagtactt ggccatggac accgacgggc ttttatacgg ctcacagaca	420								
ccaaatgagg aatgtttgtt cctggaaagg ctggaggaga accattacaa cacctatata	480								
tccaagaagc atgcagagaa gaattggttt gttggcctca agaagaatgg gagctgcaaa	540								
cgcggtcctc ggactcacta tggccagaaa gcaatcttgt ttctccccct gccagtctct	600								
tctgattaaa gagatctgtt ctgggtgttg accactccag agaagtttcg aggggtcctc	660								
acctggttga cccaaaaatg ttcccttgac cattggctgc gctaaccccc agcccacaga	720								
gcctgaattt gtaagcaact tgcttctaaa tgcccagttc acttctttgc agagcctttt	780								
acccctgcac agtttagaac agagggacca aattgcttct aggagtcaac tggctggcca	840								
gtctgggtct gggtttggat ctccaattgc ctcttgcagg ctgagtccct ccatgcaaaa	900								
gtggggctaa atgaagtgtg ttaaggggtc ggctaagtgg gacattagta actgcacact	960								
atttccctct actgagtaaa ccctatctgt gattccccca aacatctggc atggctccct	1020								
agcattccat gaccagaaac agggacaaag aaatcccccc ttcagaacag aggcatttaa	1080								
aatggaaaag agagattgga ttttggtggg taacttagaa ggatggcatc tccatgtaga	1140								
ataaatgaag aaagggaggc ccagccgcag gaaggcagaa taaatccttg ggagtcatta	1200								
ccacgccttg accttcccaa ggttactcag cagcagagag ccctgggtga cttcaggtgg	1260								
agagcactag aagtggtttc ctgataacaa gcaaggatat cagagctggg aaattcatgt	1320								

ggatctgggg	actgagtgtg	ggagtgcaga	gaaagaaagg	gaaactggct	gaggggatac	1380
cataaaaaga	ggatgatttc	agaaggagaa	ggaaaaagaa	agtaatgcca	cacattgtgc	1440
ttggcccctg	gtaagcagag	gctttggggt	cctagcccag	tgcttctcca	acactgaagt	1500
gcttgcagat	catctgggga	cctggtttga	atggagattc	tgattcagtg	ggttgggggc	1560
agagtttctg	cagttccatc	aggtccccc	caggtgcagg	tgctgacaat	actgctgcct	1620
tacccgccat	acattaagga	gcagggtcct	ggtcctaaag	agttattcaa	atgaaggtgg	1680
ttcgacgccc	cgaacctcac	ctgacctcaa	ctaaccctta	aaaatgcaca	cctcatgagt	1740
ctacctgagc	attcaggcag	cactgacaat	agttatgcct	gtactaagga	gcatgatttt	1800
aagaggcttt	ggccaatgcc	tataaaatgc	ccatttcgaa	gatatacaaa	aacatacttc	1860
aaaaatgtta	aacccttacc	aacagctttt	cccaggagac	catttgtatt	accattactt	1920
gtataaatac	acttcctgct	taaacttgac	ccaggtggct	agcaaattag	aaacaccatt	1980
catctctaac	atatgatact	gatgccatgt	aaaggccttt	aataagtcat	tgaaatttac	2040
tgtgagactg	tatgttttaa	ttgcatttaa	aaatatatag	cttgaaagca	gttaaactga	2100
ttagtattca	ggcactgaga	atgatagtaa	taggatacaa	tgtataagct	actcacttat	2160
ctgatactta	tttacctata	aaatgagatt	tttgttttcc	actgtgctat	tacaaatttt	2220
cttttgaaag	taggaactct	taagcaatgg	taattgtgaa	taaaaattga	tgagagtgtt	2280
aaaaaaaaa	aaaaaaa					2297

<210> 2 <211> 155

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Glu Gly Glu Ile Thr Thr Phe Thr Ala Leu Thr Glu Lys Phe 1 5 10 15

Asn Leu Pro Pro Gly Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser 20 25 30

Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly 35 40 45

Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu 50 60

Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr Leu 65 70 75 80

Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn Glu 85 90 95

Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr Tyr Page 2

Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys Lys 115 120 125

Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala 130 135 140

Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 145 150 155

<210> 3

<211> 468 <212> DNA

<213> Mus musculus

100

<400> 3

atggctgaag gggagatcac aaccttcgca gccctgaccg agaggttcaa cctgcctcta 60 ggaaactaca aaaagcccaa actgctctac tgcagcaacg ggggccactt cttgaggatc 120 cttcctgatg gcaccgtgga tgggacaagg gacaggagcg accagcacat tcagctgcag 180 ctcagtgcgg aaagtgcggg cgaagtgtat ataaagggta cggagaccgg ccagtacttg 240 gccatggaca ccgaagggct tttatacggc tcgcagacac caaatgagga atgtctgttc 300 ctggaaaggc tggaagaaaa ccattataac acttacacct ccaagaagca tgcggagaag 360 aactggtttg tgggcctcaa gaagaacggg agctgtaagc gcggtcctcg gactcactat 420 ggccagaaag ccatcttgtt tctgcccctc ccggtgtctt ctgactag 468

<210> 4

<211> 155

<212> PRT

<213> Mus musculus

<400> 4

Met Ala Glu Gly Glu Ile Thr Thr Phe Ala Ala Leu Thr Glu Arg Phe 1 5 10 15

Asn Leu Pro Leu Gly Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser 20 25 30

Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly
35 40 45

Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu 50 60

Ser Ala Gly Glu Val Tyr Ile Lys Gly Thr Glu Thr Gly Gln Tyr Leu 65 70 75 80

Ala Met Asp Thr Glu Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn Glu 85 90 95 Page 3

Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr Tyr 100 105 110

Thr Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys Lys 115 120 125

Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala 130 135 140

Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 145 150 155

<210> 5 <211> 4877

<212> DNA

<213> Homo sapiens

<400> actgttggga gaggaatcgt atctccatat ttcttctttc agccccaatc caagggttgt 60 agctggaact ttccatcagt tcttcctttc tttttcctct ctaagccttt gccttgctct 120 gtcacagtga agtcagccag agcagggctg ttaaactctg tgaaatttgt cataagggtg 180 tcaggtattt cttactggct tccaaagaaa catagataaa gaaatctttc ctgtggcttc 240 ccttggcagg ctgcattcag aaggtctctc agttgaagaa agagcttgga ggacaacagc 300 acaacaggag agtaaaagat gccccagggc tgaggcctcc gctcaggcag ccgcatctgg 360 ggtcaatcat actcaccttg cccgggccat gctccagcaa aatcaagctg ttttcttttg 420 aaagttcaaa ctcatcaaga ttatgctgct cactcttatc attctgttgc cagtagtttc 480 aaaatttagt tttgttagtc tctcagcacc gcagcactgg agctgtcctg aaggtactct 540 cgcaggaaat gggaattcta cttgtgtggg tcctgcaccc ttcttaattt tctcccatqq 600 aaatagtatc tttaggattg acacagaagg aaccaattat gagcaattgg tggtggatgc 660 tggtgtctca gtgatcatgg attttcatta taatgagaaa agaatctatt gggtggattt 720 agaaagacaa cttttgcaaa gagtttttct gaatgggtca aggcaagaga gagtatgtaa 780 tatagagaaa aatgtttctg gaatggcaat aaattggata aatgaagaag ttatttggtc 840 aaatcaacag gaaggaatca ttacagtaac agatatgaaa ggaaataatt cccacattct 900 tttaagtgct ttaaaatatc ctgcaaatgt agcagttgat ccagtagaaa ggtttatatt 960 ttggtcttca gaggtggctg gaagccttta tagagcagat ctcgatggtg tgggagtgaa 1020 ggctctgttg gagacatcag agaaaataac agctgtgtca ttggatgtgc ttgataagcg 1080 gctgttttgg attcagtaca acagagaagg aagcaattct cttatttgct cctgtgatta 1140 tgatggaggt tctgtccaca ttagtaaaca tccaacacag cataatttgt ttgcaatgtc 1200 cctttttggt gaccgtatct tctattcaac atggaaaatg aagacaattt ggatagccaa 1260 caaacacact ggaaaggaca tggttagaat taacctccat tcatcatttg taccacttgg 1320 Page 4

tgaactgaaa	gtagtgcatc	cacttgcaca	acccaaggca	gaagatgaca	cttgggagcc	1380
tgagcagaaa	ctttgcaaat	tgaggaaagg	aaactgcagc	agcactgtgt	gtgggcaaga	1440
cctccagtca	cacttgtgca	tgtgtgcaga	gggatacgcc	ctaagtcgag	accggaagta	1500
ctgtgaagat	gttaatgaat	gtgctttttg	gaatcatggc	tgtactcttg	ggtgtaaaaa	1560
cacccctgga	tcctattact	gcacgtgccc	tgtaggattt	gttctgcttc	ctgatgggaa	1620
acgatgtcat	caacttgttt	cctgtccacg	caatgtgtct	gaatgcagcc	atgactgtgt	1680
tctgacatca	gaaggtccct	tatgtttctg	tcctgaaggc	tcagtgcttg	agagagatgg	1740
gaaaacatgt	agcggttgtt	cctcacccga	taatggtgga	tgtagccagc	tctgcgttcc	1800
tcttagccca	gtatcctggg	aatgtgattg	ctttcctggg	tatgacctac	aactggatga	1860
aaaaagctgt	gcagcttcag	gaccacaacc	atttttgctg	tttgccaatt	ctcaagatat	1920
tcgacacatg	cattttgatg	gaacagacta	tggaactctg	ctcagccagc	agatgggaat	1980
ggtttatgcc	ctagatcatg	accctgtgga	aaataagata	tactttgccc	atacagccct	2040
gaagtggata	gagagagcta	atatggatgg	ttcccagcga	gaaaggctta	ttgaggaagg	2100
agtagatgtg	ccagaaggtc	ttgctgtgga	ctggattggc	cgtagattct	attggacaga	2160
cagagggaaa	tctctgattg	gaaggagtga	tttaaatggg	aaacgttcca	aaataatcac	2220
taaggagaac	atctctcaac	cacgaggaat	tgctgttcat	ccaatggcca	agagattatt	2280
ctggactgat	acagggatta	atccacgaat	tgaaagttct	tccctccaag	gccttggccg	2340
tctggttata	gccagctctg	atctaatctg	gcccagtgga	ataacgattg	acttcttaac	2400
tgacaagttg	tactggtgcg	atgccaagca	gtctgtgatt	gaaatggcca	atctggatgg	2460
ttcaaaacgc	cgaagactta	cccagaatga	tgtaggtcac	ccatttgctg	tagcagtgtt	2520
tgaggattat	gtgtggttct	cagattgggc	tatgccatca	gtaataagag	taaacaagag	2580
gactggcaaa	gatagagtac	gtctccaagg	cagcatgctg	aagccctcat	cactggttgt	2640
ggttcatcca	ttggcaaaac	caggagcaga	tccctgctta	tatcaaaacg	gaggctgtga	2700
acatatttgc	aaaaagaggc	ttggaactgc	ttggtgttcg	tgtcgtgaag	gttttatgaa	2760
agcctcagat	gggaaaacgt	gtctggctct	ggatggtcat	cagctgttgg	caggtggtga	2820
agttgatcta	aagaaccaag	taacaccatt	ggacatcttg	tccaagacta	gagtgtcaga	2880
agataacatt	acagaatctc	aacacatgct	agtggctgaa	atcatggtgt	cagatcaaga	2940
tgactgtgct	cctgtgggat	gcagcatgta	tgctcggtgt	atttcagagg	gagaggatgc	3000
cacatgtcag	tgtttgaaag	gatttgctgg	ggatggaaaa	ctatgttctg	atatagatga	3060
atgtgagatg	ggtgtcccag	tgtgcccccc	tgcctcctcc	aagtgcatca	acaccgaagg	3120
tggttatgtc	tgccggtgct	cagaaggcta	ccaaggagat	gggattcact	gtcttgatat	3180
tgatgagtgc	caactggggg	tgcacagctg	tggagagaat	gccagctgca	caaatacaga	3240
gggaggctat	acctgcatgt	gtgctggacg	cctgtctgaa	ccaggactga	tttgccctga	3300

ctctactcca ccccctcacc	tcagggaaga	tgaccaccac	tattccgtaa	gaaatagtga	3360
ctctgaatgt cccctgtccc	acgatgggta	ctgcctccat	gatggtgtgt	gcatgtatat	3420
tgaagcattg gacaagtatg	catgcaactg	tgttgttggc	tacatcgggg	agcgatgtca	3480
gtaccgagac ctgaagtggt	gggaactgcg	ccacgctggc	cacgggcagc	agcagaaggt	3540
catcgtggtg gctgtctgcg	tggtggtgct	tgtcatgctg	ctcctcctga	gcctgtgggg	3600
ggcccactac tacaggactc	agaagctgct	atcgaaaaac	ccaaagaatc	cttatgagga	3660
gtcgagcaga gatgtgagga	gtcgcaggcc	tgctgacact	gaggatggga	tgtcctcttg	3720
ccctcaacct tggtttgtgg	ttataaaaga	acaccaagac	ctcaagaatg	ggggtcaacc	3780
agtggctggt gaggatggcc	aggcagcaga	tgggtcaatg	caaccaactt	catggaggca	3840
ggagccccag ttatgtggaa	tgggcacaga	gcaaggctgc	tggattccag	tatccagtga	3900
taagggctcc tgtccccagg	taatggagcg	aagctttcat	atgccctcct	atgggacaca	3960
gacccttgaa gggggtgtcg	agaagcccca	ttctctccta	tcagctaacc	cattatggca	4020
acaaagggcc ctggacccac	cacaccaaat	ggagctgact	cagtgaaaac	tggaattaaa	4080
aggaaagtca agaagaatga	actatgtcga	tgcacagtat	cttttctttc	aaaagtagag	4140
caaaactata ggttttggtt	ccacaatctc	tacgactaat	cacctactca	atgcctggag	4200
acagatacgt agttgtgctt	ttgtttgctc	ttttaagcag	tctcactgca	gtcttatttc	4260
caagtaagag tactgggaga	atcactaggt	aacttattag	aaacccaaat	tgggacaaca	4320
gtgctttgta aattgtgttg	tcttcagcag	tcaatacaaa	tagatttttg	tttttgttgt	4380
tcctgcagcc ccagaagaaa	ttaggggtta	aagcagacag	tcacactggt	ttggtcagtt	4440
acaaagtaat ttctttgatc	tggacagaac	atttatatca	gtttcatgaa	atgattggaa	4500
tattacaata ccgttaagat	acagtgtagg	catttaactc	ctcattggcg	tggtccatgc	4560
tgatgatttt gccaaaatga	gttgtgatga	atcaatgaaa	aatgtaattt	agaaactgat	4620
ttcttcagaa ttagatggcc	ttattttta	aaatatttga	atgaaaacat	tttattttta	4680
aaatattaca caggaggcct	tcggagtttc	ttagtcatta	ctgtcctttt	cccctacaga	4740
attttccctc ttggtgtgat	tgcacagaat	ttgtatgtat	tttcagttac	aagattgtaa	4800
gtaaattgcc tgatttgttt	tcattataga	caacgatgaa	tttcttctaa	ttatttaaat	4860
aaaatcacca aaaacat					4877

```
<210> 6
<211> 1207
<212> PRT
<213> Homo sapiens
<400> 6
```

Met Leu Leu Thr Leu Ile Ile Leu Leu Pro Val Val Ser Lys Phe Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Val Ser Leu Ser Ala Pro Gln His Trp Ser Cys Pro Glu Gly Thr Page 6

Leu Ala Gly Asn Gly Asn Ser Thr Cys Val Gly Pro Ala Pro Phe Leu 35 40 45 Asn Tyr Glu Gln Leu Val Val Asp Ala Gly Val Ser Val Ile Met Asp 65 70 75 80 Phe His Tyr Asn Glu Lys Arg Ile Tyr Trp Val Asp Leu Glu Arg Gln 85 90 95 Leu Leu Gln Arg Val Phe Leu Asn Gly Ser Arg Gln Glu Arg Val Cys 100 105 110 Asn Ile Glu Lys Asn Val Ser Gly Met Ala Ile Asn Trp Ile Asn Glu 115 120 125 Glu Val Ile Trp Ser Asn Gln Gln Glu Gly Ile Ile Thr Val Thr Asp 130 135 140 Met Lys Gly Asn Asn Ser His Ile Leu Leu Ser Ala Leu Lys Tyr Pro 145 150 155 160 Ala Asn Val Ala Val Asp Pro Val Glu Arg Phe Ile Phe Trp Ser Ser 165 170 175 Glu Val Ala Gly Ser Leu Tyr Arg Ala Asp Leu Asp Gly Val Gly Val 180 185 190 Lys Ala Leu Leu Glu Thr Ser Glu Lys Ile Thr Ala Val Ser Leu Asp 195 200 205 Leu Asp Lys Arg Leu Phe Trp Ile Gln Tyr Asn Arg Glu Gly Ser 210 220 Asn Ser Leu Ile Cys Ser Cys Asp Tyr Asp Gly Gly Ser Val His Ile 225 230 235 240 Ser Lys His Pro Thr Gln His Asn Leu Phe Ala Met Ser Leu Phe Gly 245 250 255 Asp Arg Ile Phe Tyr Ser Thr Trp Lys Met Lys Thr Ile Trp Ile Ala 260 265 270 Asn Lys His Thr Gly Lys Asp Met Val Arg Ile Asn Leu His Ser Ser 275 280 285

Page 7

PC25028A Seq.ST25.txt
Phe Val Pro Leu Gly Glu Leu Lys Val Val His Pro Leu Ala Gln Pro
290 295 300 Lys Ala Glu Asp Asp Thr Trp Glu Pro Glu Gln Lys Leu Cys Lys Leu 305 310 315 Arg Lys Gly Asn Cys Ser Ser Thr Val Cys Gly Gln Asp Leu Gln Ser 325 330 335 His Leu Cys Met Cys Ala Glu Gly Tyr Ala Leu Ser Arg Asp Arg Lys 340 345 350 Tyr Cys Glu Asp Val Asn Glu Cys Ala Phe Trp Asn His Gly Cys Thr 355 360 365 Leu Gly Cys Lys Asn Thr Pro Gly Ser Tyr Tyr Cys Thr Cys Pro Val 370 380 Gly Phe Val Leu Leu Pro Asp Gly Lys Arg Cys His Gln Leu Val Ser 385 390 395 400 Cys Pro Arg Asn Val Ser Glu Cys Ser His Asp Cys Val Leu Thr Ser 405 410 415 Glu Gly Pro Leu Cys Phe Cys Pro Glu Gly Ser Val Leu Glu Arg Asp 420 425 430 Gly Lys Thr Cys Ser Gly Cys Ser Ser Pro Asp Asn Gly Gly Cys Ser 445 Gln Leu Cys Val Pro Leu Ser Pro Val Ser Trp Glu Cys Asp Cys Phe 450 460 Pro Gly Tyr Asp Leu Gln Leu Asp Glu Lys Ser Cys Ala Ala Ser Gly 465 470 475 480 Pro Gln Pro Phe Leu Leu Phe Ala Asn Ser Gln Asp Ile Arg His Met 485 490 495 His Phe Asp Gly Thr Asp Tyr Gly Thr Leu Leu Ser Gln Gln Met Gly 500 510 Met Val Tyr Ala Leu Asp His Asp Pro Val Glu Asn Lys Ile Tyr Phe 515 520 525 Ala His Thr Ala Leu Lys Trp Ile Glu Arg Ala Asn Met Asp Gly Ser 530 535 540 Gln Arg Glu Arg Leu Ile Glu Glu Gly Val Asp Val Pro Glu Gly Leu 545 550 560

Ala Val Asp Trp Ile Gly Arg Arg Phe Tyr Trp Thr Asp Arg Gly Lys 565 570 575 Ser Leu Ile Gly Arg Ser Asp Leu Asn Gly Lys Arg Ser Lys Ile Ile 580 585 590 Thr Lys Glu Asn Ile Ser Gln Pro Arg Gly Ile Ala Val His Pro Met 595 600 605 Ala Lys Arg Leu Phe Trp Thr Asp Thr Gly Ile Asn Pro Arg Ile Glu 610 615 620 Ser Ser Ser Leu Gln Gly Leu Gly Arg Leu Val Ile Ala Ser Ser Asp 625 630 635 640 Leu Ile Trp Pro Ser Gly Ile Thr Ile Asp Phe Leu Thr Asp Lys Leu 645 650 655 Tyr Trp Cys Asp Ala Lys Gln Ser Val Ile Glu Met Ala Asn Leu Asp 660 665 670 Gly Ser Lys Arg Arg Leu Thr Gln Asn Asp Val Gly His Pro Phe 675 680 685 Ala Val Ala Val Phe Glu Asp Tyr Val Trp Phe Ser Asp Trp Ala Met 690 695 700 Pro Ser Val Ile Arg Val Asn Lys Arg Thr Gly Lys Asp Arg Val Arg 705 710 715 720 Leu Gln Gly Ser Met Leu Lys Pro Ser Ser Leu Val Val His Pro 725 730 735 Leu Ala Lys Pro Gly Ala Asp Pro Cys Leu Tyr Gln Asn Gly Gly Cys 740 745 750 Glu His Ile Cys Lys Lys Arg Leu Gly Thr Ala Trp Cys Ser Cys Arg 755 760 765 Glu Gly Phe Met Lys Ala Ser Asp Gly Lys Thr Cys Leu Ala Leu Asp 770 780 Gly His Gln Leu Leu Ala Gly Gly Glu Val Asp Leu Lys Asn Gln Val 785 790 795 800 Thr Pro Leu Asp Ile Leu Ser Lys Thr Arg Val Ser Glu Asp Asn Ile 805 810 815 Thr Glu Ser Gln His Met Leu Val Ala Glu Ile Met Val Ser Asp Gln 820 830 Page 9

Asp Asp Cys Ala Pro Val Gly Cys Ser Met Tyr Ala Arg Cys Ile Ser 835 840 845 Glu Gly Glu Asp Ala Thr Cys Gln Cys Leu Lys Gly Phe Ala Gly Asp 850 855 860 Gly Lys Leu Cys Ser Asp Ile Asp Glu Cys Glu Met Gly Val Pro Val 865 870 875 880 Cys Pro Pro Ala Ser Ser Lys Cys Ile Asn Thr Glu Gly Gly Tyr Val 885 890 895 Cys Arg Cys Ser Glu Gly Tyr Gln Gly Asp Gly Ile His Cys Leu Asp 900 905 910 Ile Asp Glu Cys Gln Leu Gly Val His Ser Cys Gly Glu Asn Ala Ser 915 920 925 Cys Thr Asn Thr Glu Gly Gly Tyr Thr Cys Met Cys Ala Gly Arg Leu 930 935 940 Ser Glu Pro Gly Leu Ile Cys Pro Asp Ser Thr Pro Pro Pro His Leu 945 950 955 960 Arg Glu Asp Asp His His Tyr Ser Val Arg Asn Ser Asp Ser Glu Cys 965 970 975 Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp Gly Val Cys Met Tyr 980 985 990 Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys Val Val Gly Tyr Ile 995 1000 1005 Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp Trp Glu Leu Arg 1010 1015 1020 His Ala Gly His Gly Gln Gln Lys Val Ile Val Val Ala Val 1025 1030 1035 Cys Val Val Leu Val Met Leu Leu Leu Ser Leu Trp Gly 1040 1045 1050 Ala His Tyr Tyr Arg Thr Gln Lys Leu Leu Ser Lys Asn Pro Lys 1055 1060 1065 Asn Pro Tyr Glu Glu Ser Ser Arg Asp Val Arg Ser Arg Arg Pro 1070 1080 Ala Asp Thr Glu Asp Gly Met Ser Ser Cys Pro Gln Pro Trp Phe

Page 10

PC25028A Seq.ST25.txt 1085 Val Val Ile Lys Glu His Gln Asp Leu Lys Asn Gly Gly Gln Pro 1100 1110 Val Ala Gly Glu Asp Gly Gln Ala Ala Asp Gly Ser Met Gln Pro 1115 1120 1125 Thr Ser Trp Arg Gln Glu Pro Gln Leu Cys Gly Met Gly Thr Glu Gln Gly Cys Trp Ile Pro Val Ser Ser Asp Lys Gly Ser Cys Pro 1145 1150 1155 Met Glu Arg Ser Phe His Met Pro Ser Tyr Gly Thr Gln 1165Gln Val Thr Leu Glu Gly Gly Val Glu Lys Pro His Ser Leu Leu Ser Ala Leu Trp Gln Gln Arg Ala Leu Asp Pro Pro His Gln Met Asn Pro Glu Leu Thr Gln 1205 <210> 4749 <212> DNA <213> Mus musculus <400> aaaaaaggag aagggattcc tatctgtata tagggaagga atcctatctg catatttcgt 60 tgttagcacc atccctcatc ccggtgggct tggaactttc catcaattct ttcctgtctc 120 gtttctcttt catcctttgc ctggttgtgc ctgtctcagg gagaaatcag tcacctgcag 180 gccttgcagg gctcttaggc tctgggaaat ttgtcatacg ggtgtcaggt acttcttatt 240 gctgtccaaa gggaaaaaaa aagtgagaca aagaactctc ccggagcctt tccggctgca 300 ctcagaggct ctcgagaggt gcagaaggac ctggaaaggc agctaaataa aagatgccct 360 ggggccgaag gccaacctgg ctgttgctcg ccttcctgct ggtgttttta aagattagca 420 tactcagcgt cacagcatgg cagaccggga actgtcagcc aggtcctctc gagagaagcg 480 agagaagcgg gacttgtgcc ggtcctgccc ccttcctagt tttctcacaa ggaaagagca 540 tctctcggat tgacccagat ggaacaaatc accagcaatt ggtggtggat gctggcatct 600 cagcagacat ggatattcat tataaaaaag agagactcta ttgggtggat gtagaaagac 660 aagttttgct aagagttttc cttaacggga caggactaga gaaagtgtgc aatgtagaga 720 ggaaggtgtc tgggctggcc atagactgga tagatgatga agttctctgg gtagaccaac 780

agaacggagt	catcaccgta		cagggaaaaa		cttctaagtt	840
ccttaaaaca	tccgtcaaat	atagcagtgg	atccaataga	gaggttgatg	ttttggtctt	900
cagaggtgac	cggcagcctt	cacagagcac	acctcaaagg	tgttgatgta	aaaacactgc	960
tggagacagg	gggaatatcg	gtgctgactc	tggatgtcct	ggacaaacgg	ctcttctggg	1020
ttcaggacag	tggcgaagga	agccacgctt	acattcattc	ctgtgattat	gagggtggct	1080
ccgtccgtct	tatcaggcat	caagcacggc	acagtttgtc	ttcaatggcc	ttttttggtg	1140
atcggatctt	ctactcagtg	ttgaaaagca	aggcgatttg	gatagccaac	aaacacacgg	1200
ggaaggacac	ggtcaggatt	aacctccatc	catcctttgt	gacacctgga	aaactgatgg	1260
tagtacaccc	tcgtgcacag	cccaggacag	aggacgctgc	taaggatcct	gaccccgaac	1320
ttctcaaaca	gaggggaaga	ccatgccgct	tcggtctctg	tgagcgagac	cccaagtccc	1380
actcgagcgc	atgcgctgag	ggctacacgt	taagccgaga	ccggaagtac	tgcgaagatg	1440
tcaatgaatg	tgccactcag	aatcacggct	gtactcttgg	gtgtgaaaac	acccctggat	1500
cctatcactg	cacatgcccc	acaggatttg	ttctgcttcc	tgatgggaaa	caatgtcacg	1560
aacttgtttc	ctgcccaggc	aacgtatcaa	agtgcagtca	tggctgtgtc	ctgacatcag	1620
atggtccccg	gtgcatctgt	cctgcaggtt	cagtgcttgg	gagagatggg	aagacttgca	1680
ctggttgttc	atcgcctgac	aatggtggat	gcagccagat	ctgtcttcct	ctcaggccag	1740
gatcctggga	atgtgattgc	tttcctgggt	atgacctaca	gtcagaccga	aagagctgtg	1800
cagcttcagg	accacagcca	cttttactgt	ttgcaaattc	ccaggacatc	cgacacatgc	1860
attttgatgg	aacagactac	aaagttctgc	tcagccggca	gatgggaatg	gtttttgcct	1920
tggattatga	ccctgtggaa	agcaagatat	attttgcaca	gacagccctg	aagtggatag	1980
agagggctaa	tatggatggg	tcccagcgag	aaagactgat	cacagaagga	gtagatacgc	2040
ttgaaggtct	tgccctggac	tggattggcc	ggagaatcta	ctggacagac	agtgggaagt	2100
ctgttgttgg	agggagcgat	ctgagcggga	agcatcatcg	aataatcatc	caggagagaa	2160
tctcgaggcc	gcgaggaata	gctgtgcatc	caagggccag	gagactgttc	tggacggacg	2220
tagggatgtc	tccacggatt	gaaagcgctt	cccttcaagg	ttccgaccgg	gtgctgatag	2280
ccagctccaa	tctactggaa	cccagtggaa	tcacgattga	ctacttaaca	gacactttgt	2340
actggtgtga	caccaagagg	tctgtgattg	aaatggccaa	tctggatggc	tccaaacgcc	2400
gaagacttat	ccagaacgac	gtaggtcacc	ccttctctct	agccgtgttt	gaggatcacc	2460
tgtgggtctc	ggattgggct	atcccatcgg	taataagggt	gaacaagagg	actggccaaa	2520
acagggtacg	tcttcaaggc	agcatgctga	agccctcgtc	actggttgtg	gtccatccat	2580
tggcaaaacc	aggtgcagat	ccctgcttat	acaggaatgg	aggctgtgaa	cacatctgcc	2640
aagagagcct	gggcacagct	cggtgtttgt	gtcgtgaagg	ttttgtgaag	gcctgggatg	2700
ggaaaatgtg	tctccctcag	gattatccaa	tcctgtcagg	tgaaaatgct	gatcttagta	2760
aagaggtgac	atcactgagc	aactccactc	aggctgaagt Page 1		gatgggacag	2820

aatcttccac	actagtggct	gaaatcatgg	tgtcaggcat	gaactatgaa	gatgactgtg	2880
gtcccggggg	gtgtggaagc	catgctcgat	gcgtttcaga	cggagagact	gctgagtgtc	2940
agtgtctgaa	agggtttgcc	agggatggaa	acctgtgttc	tgatatagat	gagtgtgtgc	3000
tggctagatc	ggactgcccc	agcacctcgt	ccaggtgcat	caacactgaa	ggtggctacg	3060
tctgcagatg	ctcagaaggc	tacgaaggag	acgggatctc	ctgtttcgat	attgacgagt	3120
gccagcgggg	ggcgcacaac	tgcgctgaga	atgccgcctg	caccaacacg	gagggaggct	3180
acaactgcac	ctgcgcaggc	cgcccatcct	cgcccggacg	gagttgccct	gactctaccg	3240
caccctctct	ccttggggaa	gatggccacc	atttggaccg	aaatagttat	ccaggatgcc	3300
catcctcata	tgatggatac	tgcctcaatg	gtggcgtgtg	catgcatatt	gaatcactgg	3360
acagctacac	atgcaactgt	gttattggct	attctgggga	tcgatgtcag	actcgagacc	3420
tacgatggtg	ggagctgcgt	catgctggct	acgggcagaa	gcatgacatc	atggtggtgg	3480
ctgtctgcat	ggtggcactg	gtcctgctgc	tcctcttggg	gatgtggggg	acttactact	3540
acaggactcg	gaagcagcta	tcaaaccccc	caaagaaccc	ttgtgatgag	ccaagcggaa	3600
gtgtgagcag	cagcgggccc	gacagcagca	gcggggcagc	tgtggcttct	tgtccccaac	3660
cttggtttgt	ggtcctagag	aaacaccaag	accccaagaa	tgggagtctg	cctgcggatg	3720
gtacgaatgg	tgcagtagta	gatgctggcc	tgtctccctc	cctgcagctc	gggtcagtgc	3780
atctgacttc	atggagacag	aagccccaca	tagatggaat	gggcacaggg	caaagctgct	3840
ggattccacc	atcaagtgac	agaggacccc	aggaaataga	gggaaactcc	cacctaccct	3900
cctacagacc	tgtggggccg	gagaagctgc	attctctcca	gtcagctaat	ggatcgtgtc	3960
acgaaagggc	tccagacctg	ccacggcaga	cagagccagt	taagtagaaa	ctgggagtag	4020
acagaaggta	cagaagggaa	aataacaaac	caggctgatg	atggtagagt	gctacagact	4080
tggtactcca	gtttccacgg	ctaatcactg	ctcgctcagg	gtcctgaaga	tagctgcaca	4140
gctgcagagc	tgcacagcgg	gatagctgcg	acttttgctt	cttgctttaa	gcagttccac	4200
tgaagatact	caaaagagaa	gtggagaaaa	tcattagaaa	ccaaagtcaa	gacattcata	4260
tataagctgt	gtcttcttca	ctggacggtt	tgcctctttt	ccttttgcct	cagaaggagt	4320
gggttaaagc	aggtgacccc	atgctctgtc	aacccctgaa	taaatgatgt	gatctacata	4380
gaagtcttag	ctcactctca	ggaacgcttg	gaacactata	acttttgcta	tgatatactg	4440
ccaagtgtgg	cccatgctca	taattgtgcc	ttctgaattg	tgataaatta	gtgaaaaaac	4500
tgtaacttag	aatctgattt	attcaggatt	agatcatctt	tttatactat	aaaaatcttc	4560
gaatgaaaat	atttaacttt	aaaaacatta	ccttaatcat	tgtcttttct	tcttgaagtc	4620
tttcccagtg	aaaacgctca	attctgctgt	ttccatagaa	tttttaattt	attttaagac	4680
atgagattgt	aaacaaattg	cttgatttat	tttatcctaa	ttatttaaat	aaaatcaccc	4740
taaagcatc						4749

PC25028A Seq.ST25.txt <210> 1214 <211> Mus musculus <400> Met Pro Trp Gly Arg Arg Pro Thr Trp Leu Leu Ala Phe Leu Leu 1 10 15 Val Phe Leu Lys Ile Ser Ile Leu Ser Val Thr Ala Trp Gln Thr Gly
20 25 30 Asn Cys Gln Pro Gly Pro Leu Glu Arg Ser Glu Arg Ser Gly Thr Cys 35 40 45Ala Gly Pro Ala Pro Phe Leu Val Phe Ser Gln Gly Lys Ser Ile Ser 50 60 Arg Ile Asp Pro Asp Gly Thr Asn His Gln Gln Leu Val Val Asp Ala 65 70 75 80 Gly Ile Ser Ala Asp Met Asp Ile His Tyr Lys Lys Glu Arg Leu Tyr 85 90 95 Trp Val Asp Val Glu Arg Gln Val Leu Leu Arg Val Phe Leu Asn Gly 100 105 110 Thr Gly Leu Glu Lys Val Cys Asn Lys Val Ser Gly Leu Ala Ile Asp 115 120 125 Ile Asp Asp Glu Val Leu Trp Val Asp Gln Gln Asn Gly Val Ile 130 140 Thr Val Thr Asp Met Thr Gly Lys Asn Ser Arg Val Leu Leu Ser Ser 145 150 155 160 Leu Lys His Pro Ser Asn Ile Ala Val Asp Pro Ile Glu Arg Leu Met 165 170 175 Phe Trp Ser Ser Glu Val Thr Gly Ser Leu His Arg Ala His Leu Lys 180 185 190 Gly Val Asp Val Lys Thr Leu Leu Glu Thr Gly Gly Ile Ser Val Leu 195 200 205 Thr Leu Asp Val Leu Asp Lys Arg Leu Phe Trp Val Gln Asp Ser Gly 210 215 220

Glu Gly Ser His Ala Tyr Ile His Ser Cys Asp Tyr Glu Gly Gly Ser 225 230 235 240

Val Arg Leu Ile Arg His Gln Ala Arg His Ser Leu Ser Ser Met Ala 245 250 255 Phe Phe Gly Asp Arg Ile Phe Tyr Ser Val Leu Lys Ser Lys Ala Ile 260 265 270 Trp Ile Ala Asn Lys His Thr Gly Lys Asp Thr Val Arg Ile Asn Leu 275 280 285 His Pro Ser Phe Val Thr Pro Gly Lys Leu Met Val Val His Pro Arg 290 295 300 Ala Gln Pro Arg Thr Glu Asp Ala Ala Lys Asp Pro Asp Pro Glu Leu 305 310 315 320 Leu Lys Gln Arg Gly Arg Pro Cys Arg Phe Gly Leu Cys Glu Arg Asp 325 330 335 Pro Lys Ser His Ser Ser Ala Cys Ala Glu Gly Tyr Thr Leu Ser Arg 340 345 350 Asp Arg Lys Tyr Cys Glu Asp Val Asn Glu Cys Ala Thr Gln Asn His 355 360 365 Gly Cys Thr Leu Gly Cys Glu Asn Thr Pro Gly Ser Tyr His Cys Thr 370 375 380 Cys Pro Thr Gly Phe Val Leu Leu Pro Asp Gly Lys Gln Cys His Glu 385 390 395 400 Leu Val Ser Cys Pro Gly Asn Val Ser Lys Cys Ser His Gly Cys Val 405 410 415 Leu Thr Ser Asp Gly Pro Arg Cys Ile Cys Pro Ala Gly Ser Val Leu 420 425 430 Gly Arg Asp Gly Lys Thr Cys Thr Gly Cys Ser Ser Pro Asp Asn Gly 435 440 445 Gly Cys Ser Gln Ile Cys Leu Pro Leu Arg Pro Gly Ser Trp Glu Cys 450 460 Asp Cys Phe Pro Gly Tyr Asp Leu Gln Ser Asp Arg Lys Ser Cys Ala 465 470 475 480 Ala Ser Gly Pro Gln Pro Leu Leu Phe Ala Asn Ser Gln Asp Ile 485 490 495 Arg His Met His Phe Asp Gly Thr Asp Tyr Lys Val Leu Leu Ser Arg 500 505 510 Page 15

Gln Met Gly Met Val Phe Ala Leu Asp Tyr Asp Pro Val Glu Ser Lys 515 520 525 Ile Tyr Phe Ala Gln Thr Ala Leu Lys Trp Ile Glu Arg Ala Asn Met 530 540 Asp Gly Ser Gln Arg Glu Arg Leu Ile Thr Glu Gly Val Asp Thr Leu 545 550 555 Glu Gly Leu Ala Leu Asp Trp Ile Gly Arg Arg Ile Tyr Trp Thr Asp 565 570 575 Ser Gly Lys Ser Val Val Gly Gly Ser Asp Leu Ser Gly Lys His His 580 585 590 Arg Ile Ile Gln Glu Arg Ile Ser Arg Pro Arg Gly Ile Ala Val 595 600 605 His Pro Arg Ala Arg Arg Leu Phe Trp Thr Asp Val Gly Met Ser Pro 610 620 Arg Ile Glu Ser Ala Ser Leu Gln Gly Ser Asp Arg Val Leu Ile Ala 625 630 635 640 Ser Ser Asn Leu Glu Pro Ser Gly Ile Thr Ile Asp Tyr Leu Thr 645 650 655 Asp Thr Leu Tyr Trp Cys Asp Thr Lys Arg Ser Val Ile Glu Met Ala 660 665 Asn Leu Asp Gly Ser Lys Arg Arg Leu Ile Gln Asn Asp Val Gly 675 680 685 His Pro Phe Ser Leu Ala Val Phe Glu Asp His Leu Trp Val Ser Asp 690 695 700 Trp Ala Ile Pro Ser Val Ile Arg Val Asn Lys Arg Thr Gly Gln Asn 705 710 715 720 Arg Val Arg Leu Gln Gly Ser Met Leu Lys Pro Ser Ser Leu Val Val 725 730 735 Val His Pro Leu Ala Lys Pro Gly Ala Asp Pro Cys Leu Tyr Arg Asn 740 745 750 Gly Gly Cys Glu His Ile Cys Gln Glu Ser Leu Gly Thr Ala Arg Cys 755 760 765 Leu Cys Arg Glu Gly Phe Val Lys Ala Trp Asp Gly Lys Met Cys Leu Page 16

775

Pro Gln Asp Tyr Pro Ile Leu Ser Gly Glu Asn Ala Asp Leu Ser Lys 785 790 795 800 Glu Val Thr Ser Leu Ser Asn Ser Thr Gln Ala Glu Val Pro Asp Asp 815 Asp Gly Thr Glu Ser Ser Thr Leu Val Ala Glu Ile Met Val Ser Gly 820 825 830 Met Asn Tyr Glu Asp Asp Cys Gly Pro Gly Gly Cys Gly Ser His Ala 835 840 845 Arg Cys Val Ser Asp Gly Glu Thr Ala Glu Cys Gln Cys Leu Lys Gly 850 860 Phe Ala Arg Asp Gly Asn Leu Cys Ser Asp Ile Asp Glu Cys Val Leu 865 870 875 880 Ala Arg Ser Asp Cys Pro Ser Thr Ser Ser Arg Cys Ile Asn Thr Glu 885 890 895 Gly Gly Tyr Val Cys Arg Cys Ser Glu Gly Tyr Glu Gly Asp Gly Ile 900 905 910 Ser Cys Phe Asp Ile Asp Glu Cys Gln Arg Gly Ala His Asn Cys Ala 915 920 925 Glu Asn Ala Ala Cys Thr Asn Thr Glu Gly Gly Tyr Asn Cys Thr Cys 930 935 940 Ala Gly Arg Pro Ser Ser Pro Gly Arg Ser Cys Pro Asp Ser Thr Ala 945 950 955 960 Pro Ser Leu Leu Gly Glu Asp Gly His His Leu Asp Arg Asn Ser Tyr 965 970 975 Pro Gly Cys Pro Ser Ser Tyr Asp Gly Tyr Cys Leu Asn Gly Gly Val 980 985 990 Cys Met His Ile Glu Ser Leu Asp Ser Tyr Thr Cys Asn Cys Val Ile 995 1000 1005 Gly Tyr Ser Gly Asp Arg Cys Gln Thr Arg Asp Leu Arg Trp Trp 1010 1020 Glu Leu Arg His Ala Gly Tyr Gly Gln Lys His Asp Ile Met Val 1025 1030 1035

val	Ala 1040	val	Cys	Met	Val	Ala 1045	PC2 Leu	5028, Val	A Se Leu	q.ST Leu	25.tx [.] Leu 1050	t Leu	Leu	Gly		
Met	Trp 1055	Gly	Thr	Tyr	Tyr	Tyr 1060	Arg	Thr	Arg	Lys	Gln 1065	Leu	Ser	Asn		
Pro	Pro 1070	Lys	Asn	Pro	Cys	Asp 1075	Glu	Pro	Ser	Gly	Ser 1080	Val	Ser	Ser		
Ser	Gly 1085	Pro	Asp	Ser	Ser	Ser 1090	Gly	Ala	Ala	val	Ala 1095	Ser	Cys	Pro		
G∏n	Pro 1100	Тгр	Phe	val	Val	Leu 1105	Glu	Lys	His	Gln	Asp 1110	Pro	Lys	Asn		
Gly	Ser 1115	Leu	Pro	Ala	Asp	Gly 1120	Thr	Asn	Gly	Ala	Val 1125	Val	Asp	Ala		
Gly	Leu 1130	Ser	Pro	Ser	Leu	G]n 1135	Leu	Gly	Ser	Val	ніs 1140	Leu	Thr	Ser		
Trp	Arg 1145	Gln	Lys	Pro	His	Ile 1150	Asp	Gly	Met	Gly	Thr 1155	Gly	Gln	Ser		
Cys	Trp 1160	Ile	Pro	Pro	Ser	Ser 1165	Asp	Arg	Gly	Pro	Gln 1170	Glu	Ile	Glu		
Gly	Asn 1175	Ser	His	Leu	Pro	Ser 1180	Tyr	Arg	Pro	val	Gly 1185	Pro	Glu	Lys		
Leu	ніs 1190	Ser	Leu	Gln	Ser	Ala 1195	Asn	Gly	Ser	Cys	ніs 1200	Glu	Arg	Ala		
Pro	Asp 1205	Leu	Pro	Arg	Gln	Thr 1210	Glu	Pro	val	Lys						
<210 <211 <212 <213	> 12 > DN		apie	ens												
<400 tagg	_	a ct	ccga	acag	gat	tcttt	ca c	ccag	gcat	c to	ctcca	gag	ggat	ccgcca	60	
gccc	gtcca	g ca	gcac	catg	tgg	gtgac	ca a	acto	ctgc	c ag	ccctg	ctg	ctgc	agcatg	120	
tcct	cctgc	a to	tcct	cctg	ctc	cccat	cg c	cato	ccct	a tg	cagag	gga	caaa	ggaaaa	180	
gaag	aaata	c aa	ttca	tgaa	ttc	aaaaa	at c	agca	aaga	c ta	cccta	atc	aaaa	tagatc	240	
cagc	actga	a ga	taaa	aacc	aaa	aaagt	ga a	tact	gcag	a cc	aatgt	gct	aata	gatgta	300	
ctag	gaata	a ag	gact	tcca	ttc	acttg	ca a	ggct	tttg	t tt	ttgat	aaa	gcaa	gaaaac	360	
aatg	cctct	g gt	tccc	cttc	aat	agcat	gt c		ggag Page		aaaaa	gaa	tttg	gccatg	420	

aatttgacct	ctatgaaaac	aaagactaca	ttagaaactg	catcattggt	aaaggacgca	480
gctacaaggg	aacagtatct	atcactaaga	gtggcatcaa	atgtcagccc	tggagttcca	540
tgataccaca	cgaacacagc	tttttgcctt	cgagctatcg	gggtaaagac	ctacaggaaa	600
actactgtcg	aaatcctcga	ggggaagaag	ggggaccctg	gtgtttcaca	agcaatccag	660
aggtacgcta	cgaagtctgt	gacattcctc	agtgttcaga	agttgaatgc	atgacctgca	720
atggggagag	ttatcgaggt	ctcatggatc	atacagaatc	aggcaagatt	tgtcagcgct	780
gggatcatca	gacaccacac	cggcacaaat	tcttgcctga	aagatatccc	gacaagggct	840
ttgatgataa	ttattgccgc	aatcccgatg	gccagccgag	gccatggtgc	tatactcttg	900
accctcacac	ccgctgggag	tactgtgcaa	ttaaaacatg	cgagacataa	catgggctct	960
caactgatgg	tgaacttctt	ctggtgagtg	acagaggctg	cagtgaagaa	taatgagtct	1020
aatagaagtt	tatcacagat	gtctctaatc	tctatagctg	atccctacct	ctctcgctgt	1080
ctttgtaccc	agcctgcatt	ctgtttcgat	ctgtcttta	gcagtccata	caatcatttt	1140
tctacatgct	ggcccttacc	cagcttttct	gaatttacaa	taaaaactat	ttttaacgt	1200
g						1201

10 728 <210>

<211> PRT

Homo sapiens

<400>

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu $10 \ 15$

Leu His Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln 20 25 30

Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr 35 40 45

Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val 50 60

Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu 70 75 80

Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys 85 90 95

Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe $100 \hspace{1cm} 105 \hspace{1cm} 110$

Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys 115 120 125 Page 19

Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys
130 135 140 Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His 145 150 155 160 Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr 165 170 175 Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser 180 185 190 Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu 195 200 205 Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp 210 215 220 His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro 225 230 235 240 His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp 245 250 255 Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr 260 265 270 Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys 275 280 285 Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu 290 295 300 Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile 305 310 315 320 Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Glu 325 330 335 His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn 340 345 350 Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr 355 360 Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp 370 380 Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met Page 20

390

Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp 405 410 415

Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp Ala 420 425 430

Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Ala His 445 445

Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys 450 460

Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu 465 470 475 480

Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val 485 490 495

Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg 500 505 510

Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp 515 520 525

Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr 530 540

Glu Ala Trp Leu Gly Ile His Asp Val His Gly Arg Gly Asp Glu Lys 545 550 555 560

Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly 565 570 575

Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp 580 585 590

Phe Val Ser Thr Ile Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu 595 600 605

Lys Thr Ser Cys Ser Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn 610 620

Tyr Asp Gly Leu Leu Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu 625 630 635 640

Lys Cys Ser Gln His His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu 645 650 655

PC25028A Seq.ST25.txt
Ile Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp
660 665 670

Tyr Gly Gly Pro Leu Val Cys Glu Gln His Lys Met Arg Met Val Leu 675 680 685

Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly 690 700

Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile 705 710 715 720

Leu Thr Tyr Lys Val Pro Gln Ser 725

<210> 11 <211> 2204 <212> DNA

<213> Mus musculus

<400> atgatgtggg ggaccaaact tctgccggtc ctgttgctgc agcatgtcct cctgcacctc 60 ctcctgcttc atgtcgccat cccctatgca gaaggacaga agaaaagaag aaatacactt 120 catgaattta aaaagtcagc aaaaactact cttaccaagg aagacccatt actgaagatt 180 aaaaccaaaa aagtgaactc tgcagatgag tgtgccaaca ggtgtatcag gaacaggggc 240 tttacgttca cttgcaaggc cttcgttttt gataagtcaa gaaaacgatg ctactggtat 300 cctttcaata gtatgtcaag tggagtgaaa aaagggtttg gccatgaatt tgacctctat 360 gaaaacaaag actatattag aaactgcatc attggtaaag gaggcagcta taaagggacg 420 gtatccatca ctaagagtgg catcaaatgc cagccttgga attccatgat cccccatgaa 480 cacagctttt tgccttcgag ctatcgcggt aaagacctac aggaaaacta ctgtcgaaat 540 cctcgagggg aagaaggggg accctggtgt ttcacaagca atccagaggt acgctacgaa 600 gtctgtgaca ttcctcagtg ttcagaagtt gaatgcatga cctgcaatgg tgaaagctac 660 agaggtccca tggatcacac agaatcaggc aagacttgtc agcgctggga ccagcagaca 720 ccacaccggc acaagttctt gccagaaaga tatcccgaca agggctttga tgataattat 780 tgccgcaatc ctgatggcaa gccgaggcca tggtgctaca ctcttgaccc tgacacccct 840 tgggagtatt gtgcaattaa aacgtgcgct cacagtgctg tgaatgagac tgatgtccct 900 atggaaacaa ctgaatgcat tcaaggccaa ggagaaggtt acaggggaac cagcaatacc 960 atttggaatg gaattccctg tcagcgttgg gattcgcagt accctcacaa gcatgatatc 1020 actcccgaga acttcaaatg caaggacctt agagaaaatt attgccgcaa tccagatggg 1080 gctgaatcac catggtgttt taccactgac ccaaacatcc gagttggcta ctgctctcaa 1140 attcccaagt gtgacgtgtc aagtggacaa gattgttatc gtggcaatgg gaaaaattac 1200

atgggcaact tatccaaaac aaggtctgga cttacatgtt ccatgtggga caagaatatg

Page 22

1260

gaggatttac	accgtcatat	cttctgggag	ccagatgcta	gcaaattgaa	taagaattac	1320
tgccggaatc	ctgatgatga	tgcccatgga	ccttggtgct	acacggggaa	tcctcttatt	1380
ccttgggatt	attgccctat	ttcccgttgt	gaaggagata	ctacacctac	aattgtcaat	1440
ttggaccatc	ctgtaatatc	ctgtgccaaa	acaaaacaac	tgcgggttgt	aaatggcatt	1500
ccaacacaaa	caacagtagg	gtggatggtt	agtttgaaat	acagaaataa	acatatctgt	1560
ggaggatcat	tgataaagga	aagttgggtt	cttactgcaa	gacaatgttt	tccagccaga	1620
aacaaagact	tgaaagacta	tgaagcttgg	cttggcatcc	acgatgttca	tgagagaggc	1680
gaggagaagc	gcaagcagat	cttaaacatt	tcccagctgg	tctatggtcc	tgaaggctca	1740
gacttggttt	tactgaagct	tgctcgacct	gcaatcctgg	ataactttgt	cagtacaatt	1800
gatttaccta	gttatggttg	tacaatccct	gaaaagacca	cttgcagtat	ttacggctgg	1860
ggctacactg	gattgatcaa	cgcggatggt	ttattacgag	tagctcatct	gtatattatg	1920
gggaatgaga	aatgcagtca	gcaccatcaa	ggcaaggtga	ctttgaatga	gtctgagtta	1980
tgtgctgggg	ctgaaaagat	tggatcagga	ccatgtgagg	gagattatgg	tggcccactc	2040
atttgtgaac	aacacaaaat	gagaatggtt	cttggtgtca	ttgttcctgg	tcgtggatgt	2100
gccatcccaa	atcgtcctgg	tatttttgtt	cgagtagcat	attatgcaaa	atggatacac	2160
aaagtaattt	tgacatacaa	gttgtaatag	ccatagaaga	ggcc		2204

¹² 727 <210>

<400>

Met Trp Gly Thr Lys Leu Leu Pro Val Leu Leu Gln His Val Leu 1 5 10 15

Leu His Leu Leu Leu His Val Ala Ile Pro Tyr Ala Glu Gly Gln 20 25 30

Lys Lys Arg Arg Asn Thr Leu His Glu Phe Lys Lys Ser Ala Lys Thr 35 40 45

Thr Leu Thr Lys Glu Asp Pro Leu Leu Lys Ile Lys Thr Lys Lys Val 50 60

Asn Ser Ala Asp Glu Cys Ala Asn Arg Cys Ile Arg Asn Arg Gly Phe 65 70 75 80

Thr Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ser Arg Lys Arg Cys 85 90 95

Tyr Trp Tyr Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Gly Phe $100 \hspace{1cm} 105 \hspace{1cm} 110$ Page 23

<211> PRT

Mus musculus

Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys 115 120 125 Ser Gly Ile Lys Cys Gln Pro Trp Asn Ser Met Ile Pro His Glu His 145 150 155 160 Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr 165 170 175 Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser 180 185 190 Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu 195 200 205 Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Pro Met Asp 210 215 220 His Thr Glu Ser Gly Lys Thr Cys Gln Arg Trp Asp Gln Gln Thr Pro 225 230 235 240 His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp 245 250 255 Asp Asn Tyr Cys Arg Asn Pro Asp Gly Lys Pro Arg Pro Trp Cys Tyr 260 265 270 Thr Leu Asp Pro Asp Thr Pro Trp Glu Tyr Cys Ala Ile Lys Thr Cys 275 280 285 Ala His Ser Ala Val Asn Glu Thr Asp Val Pro Met Glu Thr Thr Glu 290 295 300 Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Ser Asn Thr Ile 305 310 315 320Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Lys 325 330 335 His Asp Ile Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn 340 345 350 Tyr Cys Arg Asn Pro Asp Gly Ala Glu Ser Pro Trp Cys Phe Thr Thr 355 360 Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Lys Cys Asp Page 24

375

Val Ser Ser Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met 385 390 395 400 Gly Asn Leu Ser Lys Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp 405 410 415Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp Ala 420 425 430 Ser Lys Leu Asn Lys Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala His 435 440 445 Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys 450 455 460 Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu 465 470 475 480 Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val 485 490 495 Asn Gly Ile Pro Thr Gln Thr Thr Val Gly Trp Met Val Ser Leu Lys 500 505 510 Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp 515 525 Val Leu Thr Ala Arg Gln Cys Phe Pro Ala Arg Asn Lys Asp Leu Lys 530 540 Asp Tyr Glu Ala Trp Leu Gly Ile His Asp Val His Glu Arg Gly Glu 545 550 555 560 Glu Lys Arg Lys Gln Ile Leu Asn Ile Ser Gln Leu Val Tyr Gly Pro 565 570 575 Glu Gly Ser Asp Leu Val Leu Leu Lys Leu Ala Arg Pro Ala Ile Leu 580 585 590 Asp Asn Phe Val Ser Thr Ile Asp Leu Pro Ser Tyr Gly Cys Thr Ile 595 600 605 Pro Glu Lys Thr Thr Cys Ser Ile Tyr Gly Trp Gly Tyr Thr Gly Leu 610 615 620 Ile Asn Ala Asp Gly Leu Leu Arg Val Ala His Leu Tyr Ile Met Gly 625 630 635 640

```
PC25028A Seq.ST25.txt
Asn Glu Lys Cys Ser Gln His His Gln Gly Lys Val Thr Leu Asn Glu
645 650 655
Ser Glu Leu Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu
660 665 670
Gly Asp Tyr Gly Gly Pro Leu Ile Cys Glu Gln His Lys Met Arg Met 675 680 685
Val Leu Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile Pro Asn Arg
690 695 700
Pro Gly Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp Ile His Lys 705 710 715 720
Val Ile Leu Thr Tyr Lys Leu
725
<210>
       618
       DNA
       Homo sapiens
<400>
       13
atggcggcgc ccggcgagcg gggccgcttc cacggcggga acctcttctt cctgccgggg
                                                                              60
ggcgcgcgct ccgagatgat ggacgacctg gcgaccgacg cgcggggccg gggcgcgggg
                                                                             120
cggagagacg cggccgcctc ggcctcgacg ccagcccagg cgccgacctc cgattctcct
                                                                             180
gtcgccgagg acgcctcccg gaggcggccg tgccgggcct gcgtcgactt caagacgtgq
                                                                             240
atgcggacgc agcagaagcg ggacaccaag tttagagagg actgcccgcc ggatcgcgag
                                                                             300
gaactgggcc gccacagctg ggctgtcctc cacaccctgg ccgcctacta ccccgacctg
                                                                             360
cccaccccag aacagcagcg agacatggcc cagttcatac atttattttc taagttttac
                                                                             420
ccctgtgagg agtgtgctga agacctaaga aaaaggttgt gcaggaacca cccagacacc
                                                                             480
cgcacccggg catgcttcac acagtggctg tgccacctgc acaatgaagt gaaccgcgag
                                                                             540
ctgggcaagc ctgacttcga ctgctcaaaa gtggatgagc gctggcgcga cggctggaag
                                                                             600
gatggctcct gtgactag
                                                                             618
<210>
       275
<212>
<213>
       PRT
       Homo sapiens
<400>
Met Ile Ser Thr Ser Trp Gly Ala Pro Lys Ala Phe Ser Lys Gly Phe 1 10 15
Asn Leu Gln His Val Ala Asp Gly Leu Tyr Gly Ser His Leu His Val
20 25 30
```

Tyr Ser Trp Pro Gly Gly Glu Ile Lys Gln Leu Ile Asp Leu Gly Pro 35 40 45

Thr Gly Leu Leu Pro Leu Glu Ile Arg Phe Leu His Asp Pro Ser Lys $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$

Asp Thr Gly Phe Val Gly Ser Ala Leu Ser Ser Asn Met Ile Arg Phe 65 70 75 80

Phe Lys Asn Ser Asp Glu Thr Trp Ser His Glu Val Val Ile Ser Val 85 90 95

Lys Pro Leu Lys Val Glu Asn Trp Ile Leu Pro Glu Met Pro Gly Leu 100 105 110

Ile Thr Asp Phe Leu Ile Ser Leu Asp Asp Arg Phe Ile Tyr Phe Val 115 120 125

Asn Trp Leu His Gly Asp Ile Arg Gln Tyr Asn Ile Glu Asp Pro Lys 130 135 140

Asn Pro Val Leu Thr Gly Gln Ile Trp Val Gly Gly Leu Leu Gln Lys 145 150 155 160

Gly Ser Pro Val Lys Ala Val Gly Glu Asp Gly Asn Thr Phe Gln Phe 165 170 175

Glu Val Pro Gln Ile Lys Gly Lys Ser Leu Arg Gly Gly Pro Gln Met 180 185 190

Phe Ser Ala Trp Asp Arg Gln Phe Tyr Pro Glu Ile Met Glu Lys Gly 210 220

Ser His Ile Ile Gln Ile Asp Val Asp Thr Glu Lys Gly Gly Leu Thr 225 230 235 240

Ile Asn Pro Asp Phe Phe Val Asp Phe Gly Asp Glu Pro Asp Gly Pro 245 250 255

Ser Leu Ala His Glu Met Arg Tyr Pro Gly Gly Asp Cys Thr Ser Asp 260 265 270

Ile Trp Ile 275

<210> 15 <211> 559

PC25028A Seq.ST25.txt
<213> Mus musculus
<400> 15 cgacaccacc ccttccgcgg ccccggcgcc gcaaggtttg gagcacggga agcgaccgtg
ccgggcctgc gtggacttca agtcgtggat gcggacccag cagaagcggg acatcaagtt
tagggaggac tgtccgcagg atcgggaaga attgggtcgc cacacctggg ctttcctcca
tacgctggcc gcctattacc cggacaggcc cacgccagaa caacaacagg atatggccca
gttcatacat atattttcca agttttaccc ctgcgaggaa tgtgcggaag acataaggaa
gaggataggc aggaaccagc cagacacaag cactcgagta tccttcagcc agtggctgtg
ccgcctgcac aatgaggtga atcggaagct gggcaagcct gattttgact gctcgagagt
agatgagcgt tggcgtgacg gatggaagga cggctcctgt gactagaaga ttaccagcag
ttcgggaggg ggatctaggc tggttctatg ggcaacagcc tgattgacga ttaaagtgca
tctgagccaa cacttgttt
<210> 16 <211> 125 <212> PRT <213> Mus musculus
<400> 16
Met Arg Thr Gln Gln Lys Arg Asp Ile Lys Phe Arg Glu Asp Cys Pro 1 10 15
Gln Asp Arg Glu Glu Leu Gly Arg His Thr Trp Ala Phe Leu His Thr 20 25 30
Leu Ala Ala Tyr Tyr Pro Asp Arg Pro Thr Pro Glu Gln Gln Gln Asp 35 40 45
Met Ala Gln Phe Ile His Ile Phe Ser Lys Phe Tyr Pro Cys Glu Glu 50 55 60
Cys Ala Glu Asp Ile Arg Lys Arg Ile Gly Arg Asn Gln Pro Asp Thr 65 70 75 80
Ser Thr Arg Val Ser Phe Ser Gln Trp Leu Cys Arg Leu His Asn Glu 85 90 95
Val Asn Arg Lys Leu Gly Lys Pro Asp Phe Asp Cys Ser Arg Val Asp 100 105 110
Glu Arg Trp Arg Asp Gly Trp Lys Asp Gly Ser Cys Asp 115 120 125
<210> 17 <211> 600 <212> DNA

Page 28

<213> Mus musculus

<400> 17						
	ccagcgagcc	ggcgggcttc	cctcgcggca	gtcgcttctc	cttcctgccg	60
ggcggcgcgc	gctccgagat	gaccgacgac	ctggtgactg	acgcgcgggg	ccgcggcgca	120
aggcatagag	acgacaccac	cccttccgcg	gccccggcgc	cgcaaggttt	ggagcacggg	180
aagcgaccgt	gccgggcctg	cgtggacttc	aagtcgtgga	tgcggaccca	gcagaagcgg	240
gacatcaagt	ttagggagga	ctgtccgcag	gatcgggaag	aattgggtcg	ccacacctgg	300
gctttcctcc	atacgctggc	cgcctattac	ccggacaggc	ccacgccaga	acaacaacag	360
gatatggccc	agttcataca	tatattttcc	aagttttacc	cctgcgagga	atgtgcggaa	420
gacataagga	agaggatagg	caggaaccag	ccagacacaa	gcactcgagt	atccttcagc	480
cagtggctgt	gccgcctgca	caatgaggtg	aatcggaagc	tgggcaagcc	tgattttgac	540
tgctcgagag	tagatgagcg	ttggcgtgac	ggctggaagg	acggctcctg	tgactagtga	600

<210> 18

<400> 18

Met Ala Ala Pro Ser Glu Pro Ala Gly Phe Pro Arg Gly Ser Arg Phe 1 5 10 15

Ser Phe Leu Pro Gly Gly Ala Arg Ser Glu Met Thr Asp Asp Leu Val 20 25 30

Thr Asp Ala Arg Gly Arg Gly Ala Arg His Arg Asp Asp Thr Thr Pro
35 40 45

Ser Ala Ala Pro Ala Pro Gln Gly Leu Glu His Gly Lys Arg Pro Cys 50 60

Arg Ala Cys Val Asp Phe Lys Ser Trp Met Arg Thr Gln Gln Lys Arg 65 70 75 80

Asp Ile Lys Phe Arg Glu Asp Cys Pro Gln Asp Arg Glu Glu Leu Gly 85 90 95

Arg His Thr Trp Ala Phe Leu His Thr Leu Ala Ala Tyr Tyr Pro Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Arg Pro Thr Pro Glu Gln Gln Asp Met Ala Gln Phe Ile His Ile 115 120 125

Phe Ser Lys Phe Tyr Pro Cys Glu Glu Cys Ala Glu Asp Ile Arg Lys 130 140

<211> 198 <212> PRT

<213> Mus musculus

PC25028A Seq.ST25.txt

Arg Ile Gly Arg Asn Gln Pro Asp Thr Ser Thr Arg Val Ser Phe Ser
145 150 155 160

Gln Trp Leu Cys Arg Leu His Asn Glu Val Asn Arg Lys Leu Gly Lys 165 170 175

Pro Asp Phe Asp Cys Ser Arg Val Asp Glu Arg Trp Arg Asp Gly Trp 180 185 190

Lys Asp Gly Ser Cys Asp 195

<210> 19 1869

DNA

Homo sapiens

<400> 19

gtcaccccca gcgggcgcgg gccggagcac gggcacccag catgggggta ctgctcacac 60 agaggacgct gctcagtctg gtccttgcac tcctgtttcc aagcatggcg agcatggcgg 120 ctataggcag ctgctcgaaa gagtaccgcg tgctccttgg ccagctccag aagcagacag 180 atctcatgca ggacaccagc agactcctgg acccctatat acgtatccaa ggcctggatg 240 ttcctaaact gagagagcac tgcagggagc gccccggggc cttccccagt gaggagaccc 300 tgagggggct gggcaggcgg ggcttcctgc agaccctcaa tgccacactg ggctgcgtcc 360 tgcacagact ggccgactta gagcagcgcc tccccaaggc ccaggatttg gagaggtctg 420 ggctgaacat cgaggacttg gagaagctgc agatggcgag gccgaacatc ctcgggctca 480 ggaacaacat ctactgcatg gcccagctgc tggacaactc agacacggct gagcccacga 540 aggctggccg gggggcctct cagccgccca ccccacccc tgcctcggat gcttttcagc 600 gcaagctgga gggctgcagg ttcctgcatg gctaccatcg cttcatgcac tcagtggggc 660 gggtcttcag caagtggggg gagagcccga accggagccg gagacacagc ccccaccagg 720 ccctgaggaa gggggtgcgc aggaccagac cctccaggaa aggcaagaga ctcatgacca 780 ggggacagct gccccggtag cctcgagagc accccttgcc ggtgaaggat gcggcaggtg 840 ctctgtggat gagaggaacc atcgcaggat gacagctccc gggtccccaa acctgttccc 900 ctctgctact agccactgag aagtgcactt taagaggtgg gagctgggca gacccctcta 960 cctcctccag gctgggagac agagtcaggc tgttgcgctc ccacctcagc cccaagttcc 1020 ccaggcccag tggggtggcc gggcgggcca cgcgggaccg actttccatt gattcagggg 1080 tctgatgaca caggctgact catggccggg ctgactgccc ccctgccttg ctccccgagg 1140 cctgccggtc cttccctctc atgacttgca gggccgttgc ccccagactt cctcctttcc 1200 gtgtttctga aggggaggtc acagcctgag ctggcctcct atgcctcatc atgtcccaaa 1260 ccagacacct ggatgtctgg gtgacctcac tttaggcagc tgtaacagcg gcagggtgtc 1320 ccaggagccc tgatccgggg gtccagggaa tggagctcag gtcccaggcc agccccgaag 1380

Page 30

tcgccacgtg	gcctggggca	ggtcacttta	cctctgtgga	cctgttttct	ctttgtgaag	1440
ctagggagtt	agaggctgta	caaggccccc	actgcctgtc	ggttgcttgg	attccctgac	1500
gtaaggtgga	tattaaaaat	ctgtaaatca	ggacaggtgg	tgcaaatggc	gctgggaggt	1560
gtacacggag	gtctctgtaa	aagcagaccc	acctcccagc	gccgggaagc	ccgtcttggg	1620
tcctcgctgc	tggctgctcc	ccctggtggt	ggatcctgga	attttctcac	gcaggagcca	1680
ttgctctcct	agagggggtc	tcagaaactg	cgaggccagt	tccttggagg	gacatgacta	1740
atttatcgat	ttttatcaat	ttttatcagt	tttatattta	taagccttat	ttatgatgta	1800
tatttaatgt	taatattgtg	caaacttata	tttaaaactt	gcctggtttc	taaaaaaaaa	1860
aaaaaaaa						1869

<210> 20

<211> 25

<212> PRT

<213> Homo sapiens

<400> 20

Met Gly Val Leu Leu Thr Gln Arg Thr Leu Leu Ser Leu Val Leu Ala 1 10 15

Leu Leu Phe Pro Ser Met Ala Ser Met Ala Ala Ile Gly Ser Cys Ser 20 25 30

Lys Glu Tyr Arg Val Leu Leu Gly Gln Leu Gln Lys Gln Thr Asp Leu 35 40 45

Met Gln Asp Thr Ser Arg Leu Leu Asp Pro Tyr Ile Arg Ile Gln Gly 50 55 60

Leu Asp Val Pro Lys Leu Arg Glu His Cys Arg Glu Arg Pro Gly Ala 65 70 75 80

Phe Pro Ser Glu Glu Thr Leu Arg Gly Leu Gly Arg Arg Gly Phe Leu 85 90 95

Gln Thr Leu Asn Ala Thr Leu Gly Cys Val Leu His Arg Leu Ala Asp 100 105 110

Leu Glu Gln Arg Leu Pro Lys Ala Gln Asp Leu Glu Arg Ser Gly Leu 115 120 125

Asn Ile Glu Asp Leu Glu Lys Leu Gln Met Ala Arg Pro Asn Ile Leu 130 135 140

Gly Leu Arg Asn Asn Ile Tyr Cys Met Ala Gln Leu Leu Asp Asn Ser 145 150 155 160

PC25028A Seq.ST25.txt Asp Thr Ala Glu Pro Thr Lys Ala Gly Arg Gly Ala Ser Gln Pro Pro 165 170 175

Thr Pro Thr Pro Ala Ser Asp Ala Phe Gln Arg Lys Leu Glu Gly Cys 180 185 190

Arg Phe Leu His Gly Tyr His Arg Phe Met His Ser Val Gly Arg Val 195 200 205

Phe Ser Lys Trp Gly Glu Ser Pro Asn Arg Ser Arg Arg His Ser Pro 210 215 220

His Gln Ala Leu Arg Lys Gly Val Arg Arg Thr Arg Pro Ser Arg Lys 235 240

Gly Lys Arg Leu Met Thr Arg Gly Gln Leu Pro Arg 245 250

<210> 21 <211> 1848 <212> DNA

<213> Mus musculus

<400> 21

gtcacccctg agaggcacgg gccagagtac caggacccag tatgcagaca cggcttctaa 60 gaacactgct cagtttgacc ctcagtctcc tcatcctgag catggcactg gccaatcgtg 120 gctgctccaa ctcttcctct cagctcctca gccagctgca gaatcaggcg aacctcacgg 180 ggaacacaga atcactcttg gagccctata tccgcctcca aaacctgaac acacctgacc 240 tgagagctgc ctgcacccag cactctgtgg ccttccccag tgaggacaca ctccggcaac 300 tgagcaagcc tcacttcctg agcactgtgt acaccacact ggacagagtc ttgtaccaac 360 tggatgcttt aagacagaaa tttctgaaga ctccggcttt tccaaagctg gacagtgccc 420 ggcacaatat cctcggcata aggaacaatg ttttctgcat ggcccggctg ctcaaccact 480 ccctggagat acctgagccc acacagacag actctggggc ctcacggtcc actacaacac 540 cagatgtctt taataccaag ataggcagct gtggctttct ctggggatac catcgcttca 600 tgggctcagt ggggagggtc ttcagggaat gggacgatgg ctccacacgc agccggagac 660 agagcccgct ccgggcccgg cgcaagggaa cccgcagaat ccgggtccgg cacaagggaa 720 cccgcagaat ccgggtccgg cgcaagggaa cccgcagaat ctgggtccgg cgcaagggat 780 cccgcaaaat cagaccttcc aggagcaccc agagcccgac gaccagggcc taggttccct 840 ggtagcctga ggacacactg acagacagca tagtctggtg atacaggatg tcgctctcag 900 aggctttcaa agctgcttct gtcaccaggg gtcacacaga agagcacttt aaggggtgaa 960 gttgagtgtc ccctactacc actcaggact tcaaggatag tgaggttatt gtgtcccac 1020 tccaagcctc cagtcctagt ggggtggctg ggtcggacca cgtggggccg gaggttttcc 1080 attgattcag gggtctgatg acacaagctg attcaccaca gggctggctg ggctgaaccc 1140

Page 32

ctcgggctgt	tggtcctttc	ctctcatgac	ttgaaactgt	ttcctccaga	cttcctcctt	1200
tccctgtggc	tgggttccaa	agagaggtct	gatccggtgc	tctctctcat	gccttatccc	1260
actcaggaca	gatacctgga	cctctgggtg	acctcacact	tggcagttgc	gacaggggca	1320
gggtgtccta	ccaaggaaca	ctgatctggg	cgttcaggga	agagagctca	gagcctagct	1380
tgttccctaa	ttctctgtgt	gactgtgagc	aagacacttt	atttatccga	atgtcagcgt	1440
tctctgtgga	aagctgtgtt	gtgtgtgtgg	gtccttaggt	aatagccccc	tctgcctgtc	1500
agctgctgga	ctctgacata	gggtggacat	caaagtctct	gtaaatggga	acctgtggtg	1560
caaacggttg	tggggtgtgt	ttatgggaga	tctcccagtg	cctaaaagcc	ctgttttggg	1620
tcctcgctgc	atgatgctcc	ctctggtgat	gtgttgtgaa	atttttcaca	ggctgaacca	1680
gtcctcttga	aaggtctcag	aagctggtga	gcaattactt	ggagggacat	gactaattta	1740
ttgttttatt	ttttatcagt	ttaatccgtt	ttatatttat	aaggcctatt	tataatgtat	1800
atttaatgtt	aatattttgc	taacatattt	aaaacctgtc	ttgtttct		1848

<210> 22

<400> 22

Met Gln Thr Arg Leu Leu Arg Thr Leu Leu Ser Leu Thr Leu Ser Leu 10 15

Leu Ile Leu Ser Met Ala Leu Ala Asn Arg Gly Cys Ser Asn Ser Ser 20 25 30

Ser Gln Leu Leu Ser Gln Leu Gln Asn Gln Ala Asn Leu Thr Gly Asn 35 40 45

Thr Glu Ser Leu Leu Glu Pro Tyr Ile Arg Leu Gln Asn Leu Asn Thr 50 55 60

Pro Asp Leu Arg Ala Ala Cys Thr Gln His Ser Val Ala Phe Pro Ser 65 70 75 80

Glu Asp Thr Leu Arg Gln Leu Ser Lys Pro His Phe Leu Ser Thr Val 85 90 95

Tyr Thr Thr Leu Asp Arg Val Leu Tyr Gln Leu Asp Ala Leu Arg Gln 100 105 110

Lys Phe Leu Lys Thr Pro Ala Phe Pro Lys Leu Asp Ser Ala Arg His 115 120 125

Asn Ile Leu Gly Ile Arg Asn Asn Val Phe Cys Met Ala Arg Leu Leu 130 135 140 Page 33

<211> 263

<212> PRT

<213> Mus musculus

Asn Hi 145	s Ser	Leu	Glu	Ile 150	Pro	Glu	Pro	Thr	G]n 155	Thr	Asp	Ser	Gly	Ala 160	
Ser Ar	g Ser	Thr	Thr 165	Thr	Pro	Asp	Val	Phe 170	Asn	Thr	Lys	Ile	Gly 175	Ser	
Cys Gl	y Phe	Leu 180	Trp	Gly	Tyr	His	Arg 185	Phe	Met	Gly	Ser	val 190	Gly	Arg	
Val Ph	e Arg 195	Glu	Trp	Asp	Asp	Gly 200	Ser	Thr	Arg	Ser	Arg 205	Arg	Gln	Ser	
Pro Le 21	u Arg O	Ala	Arg	Arg	Lys 215	Gly	Thr	Arg	Arg	Ile 220	Arg	٧a٦	Arg	His	
Lys G1 225	y Thr	Arg	Arg	Ile 230	Arg	val	Arg	Arg	Lys 235	Gly	Thr	Arg	Arg	Ile 240	
Trp Va	l Arg	Arg	Lys 245	Glу	Ser	Arg	Lys	Ile 250	Arg	Pro	Ser	Arg	Ser 255	Thr	
Gln Se	r Pro	Thr 260	Thr	Arg	Αla										
<210> 23 <211> 33 <212> DNA <213> Mus musculus															
<400> 23										33					
<210> 24 <211> 31 <212> DNA <213> Mus musculus															
<400> 24 ttatcactag tcacaggagc cgtccttcca t										31					
<210> 25 <211> 32 <212> DNA <213> Mus musculus															
<400> 25 tcactagtca caggagccgt ccttccatcc gt										32					
<210> <211> <212> <213>	26 424 DNA Mus n	nuscu	ılus												
<400>	26														

			DC.	75N78x Can	CTフ5 +v+		
catatgc	gga	cccagcagaa	gcgggacatc	25028A Seq. aagtttaggg	aggactgtcc	gcaggatcgg	60
gaagaat	tgg	gtcgccacac	ctgggctttc	ctccatacgc	tggccgccta	ttacccggac	120
aggccca	cgc	cagaacaaca	acaggatatg	gcccagttca	tacatatatt	ttccaagttt	180
tacccct	gcg	aggaatgtgc	ggaagacata	aggaagagga	taggcaggaa	ccagccagac	240
acaagca	ctc	gagtatcctt	cagccagtgg	ctgtgccgcc	tgcacaatga	ggtgaatcgg	300
aagctgg	gca	agcctgattt	tgactgctcg	agagtagatg	agcgttggcg	tgacggatgg	360
aaggacg	gct	cctgtgacta	gtgaaagggc	gaattctgca	gatatccatc	acactggcgg	420
ccgc							424
<211> : <212> : <213> :		musculus					
	27 agt	ggagtggaaa	ga				22
<211> 2 <212> 1	28 21 DNA Mus	musculus					
	28 ggc	aggttctgga	a				21
<211> 2 <212> 1	29 22 DNA Mus	musculus					
	29 aga	cccctgcctt	gt				22
<211> 2 <212> 1	30 21 DNA Mus	musculus					
	30 atg	tgtcagccag	с				21
<211> 2 <212> 0	31 22 DNA Mus	musculus					
	31 aga	cccctgcctt	gt				22
<211> 2 <212> 0	32 21 DNA Mus	musculus					

PC25028A Seq.ST25.txt <400> 32 atctgcaatg tgtcagccag c 21 <210> 33 <211> 22 <212> DNA <213> Mus musculus <400> 33 cctgaaccaa tcccacctct ct 22 <210> 34 <211> 21 <212> DNA <213> Mus musculus <400> 34 atctcccgtt gctttctgac g 21 <210> 35 <211> 22 <212> DNA <213> Mus musculus <400> 35 attgagaaga cccctgcctt gt 22 <210> 36 <211> 21 <212> DNA <213> Mus musculus <400> 36 atctgcaatg tgtcagccag c 21 37 21 <210> <211> 21 <212> DNA <213> Mus musculus <400> 37 aagaagatgg ctttcaggcc c 21 <210> 38 <211> 21 <212> DNA <213> Mus musculus <400> 38 aaggccattg aagtgtggtg g 21 <210> 39 <211> 22 <212> DNA

22

<213> Mus musculus

gactctctaa aacccttgcc gg

<210> <211> <212>	40 21 DNA			
<213>		musculus		
<400> ccatgg1	40 tcaa	cacctgcaca	t 2	21
<210> <211> <212> <213>	41 22 DNA Mus	musculus		
	41 tcgg	tataatgatt	tg .	22
<210> <211> <212> <213>	42 22 DNA Mus	musculus		
	42 taat	ttggcatgct	ca 2	22
<210> <211> <212> <213>	DNA	musculus		
	43 atgt	gcaccattgc	2	20
<210> <211> <212> <213>	44 21 DNA Mus	musculus		
	44 agat	gctgcatctt	c 2	21
<210> <211> <212> <213>		musculus		
<400> aagcaga		gaccaaccgt	t 2	21
<210> <211> <212> <213>		musculus		
<400> aagcaga		gaccaaccgt	t 2	21
<210> <211> <212> <213>	47 20 DNA Mus	musculus		

<400> ttaatgt	47 tgct	tggcccgatc	20
<211> <212>	48 22 DNA Mus	musculus	
	48 aagg	cttgttttag aa	22