Mechatronics and Automation

LAB

Cycle1: Mechatronic product

Objectives: Study of Mechatronic product

1. CD drive, Hard disc drive

Cycle 2: Sensors

Objectives: Identifying the sensors, developing the circuit on bread board and observing its performance.

- 2. Infrared sensor
- 3. Ultrasonic
- 4. LDR
- 5. Thermocouple
- 6. Thermistor
- 7. LM35
- 8. Strain Gauge
- 9. Piezoelectric

Cycle 3: Actuators

Objectives: Identifying the type of actuator, their study, developing their basic controller circuit on bread board, observing the performance.

- 1. DC motor through L298D
- 2. Stepper motor through microcontroller
- 3. Stepper motor through IC555
- 4. RC servo through IC555
- 5. RC servo through microcontroller

Cycle 4: Hydraulics and Pneumatics

Objectives: Identifying H&P parts, Building their standard circuit and observing their performance

- 6. Double acting cylinder: auto reverse and speed control of fwd. stroke
- 7. Double acting cylinder: auto reciprocating and speed control
- 8. Double acting cylinder: auto reverse and time delay in reverse stroke
- 9. Automatic motion of double acting cylinder through solenoid operated valve
- 10. Double acting cylinder using latching
- 11. Two double acting cylinder sequencing using relay logic
- 12. Double acting cylinder: auto reverse using pressure control valve

Cycle 5: Controllers

Objectives: Study of controllers available, building simple algorithms

- 1. Simulation of PLC ladder logic
- 2. Development of PLC based small automation system
- 3. Basic programming on Microcontroller

Cycle 6: Programing of industrial manipulator

4. Programming of Scorbot-ER-4U

Lab session-1

- Lab Team
- Make groups
- Study of basic lab equipment
- Safety instructions

Study of basic lab equipment

Power supply

Dual channel power supply

Multiple DC Power Supply

Scientech 4077, 0 - 30V / 2A, ±15V / 1A Tracking, 5V/2A

Multi meter

DC Voltage Range	200 mV-1000 V			
AC Current Accuracy	± (2 % rdg + 3 digits)			
AC Current Range	20mA-20A			
Туре	Digital Multimeter			
Input Impedance	10 M Ohm			
Resistance Accuracy	± (1 % rdg + 10 digits)			
Capacitance Accuracy	± (4 % rdg + 5 digits)			
Capacitance Range	2000pf-200μF			
AC Voltage Range	2-750 V			
DC Voltage Accuracy	± (0.5 % rdg + 3 digits)			
DC Current Accuracy	± (1.8 % rdg + 2 digits)			
DC Current Range	2mA-20A			
Display Digit	3½			
Item Code	V M 890 D			
AC Voltage Accuracy	± (1 % rdg + 5 digits)			
Resistance Range	200 Ohm-20 Mohm			

Bread board

Study of basic configuration of OpAmp

Pin configuration of IC 741

 Op Amp is a versatile IC consisting of may internal transistors, resistors, and capacitors manufactured into a single chip

A DIP (dual-in-line package)LM741 op amp

Golden Rules

The output attempts to do whatever is necessary to make the voltage difference between the two inputs zero.

$$V+=V_{-}$$

The inputs draw no current.

$$i + = i - = 0$$

The Operational Amplifier

- An operational amplifier is modeled as a voltage controlled voltage source.
- An operational amplifier has a very high input impedance and a very high gain.
- Op amps can be configured in many different ways using resistors and other components.
- Most configurations use feedback.

Applications:

- Amplifiers provide gains in voltage or current.
- Op amps can convert current to voltage.
- Op amps can provide a buffer between two circuits.
- Op amps can be used to implement integrators and differentiators.

Inverting Amplifier

$$V_{in} = I R_{1}$$

$$V_{x-} V_{out} = I R_{f}$$

$$V_{x-} V_{out} = I R_{f}$$

$$V_{out} = V_{in} \times - (R_{f}/R_{1})$$

$$V_{x} = 0$$

$$V_{out} = V_{in} \times - (R_{f}/R_{1})$$

$$V_{x} = 0$$

$$V_{out} = V_{in} \times - (R_{f}/R_{1})$$

$$V_{x} = 0$$

Positive and Negative Feedback

- Connecting the output to the positive input is positive feedback
- Connecting the output to the negative input is negative feedback

Applications of OP-AMP

- Adder
- Integrator
- Differentiator
- Differential Amplifier
- Logarithmic Amplifier
- Comparator
- Buffer/follower

Non-Inverting Amplifier

- The circuit amplifies the input voltage without inverting the signal
- No voltage difference between inputs

$$V_1 = V_2$$

Resistors act like voltage divider

$$V_2 = \frac{R_2}{R_1 + R_2} V_C$$

 Combining the two equations for the voltages gives us the relationship between input and output

$$V_{OUT} = V_{IN} \left(1 + \frac{R_1}{R_2} \right)$$

- Inverting Op-Amp
 - Current through RI equals the current through Rf
 - No current in the inputs
 - The voltage at both inputs is zero

$$V_2 = 0$$

- Current through RI
- Current through Rf

$$I_1 = \frac{V_1 - 0}{R_1} = \frac{V_1}{R_1}$$

$$I_2 = -\frac{V_O - 0}{R_f} = -\frac{V_O}{R_f}$$

- Why the minus sign for the current through Rf?
 - The convention for Ohm's Law is that the current flows from the high voltage to the low voltage for a resistor
 - Here the current flows from the low voltage (ground) to the high voltage (VO)

- The current through RI must equal the current through Rf since there is no current in the inputs.
- Combining the two equations for the currents

$$V_{OUT} = -V_{IN} \frac{R_f}{R_1}$$

- Inverting Summing Amplifier
 - Each input resistor contributes to the current.

$$V_{OUT} = -V_1 \frac{R_f}{R_1} - V_2 \frac{R_f}{R_2} - V_3 \frac{R_f}{R_3}$$

Op-Amps: Practical Issues

Op-Amps require power

- > 741 requires plus and minus 15V
- Others may require only positive or both positive and negative voltages

- Output voltage is limited to
- Usually filter capacitors are connected to power to reduce noise

$$- \, V_{CC} < V_{OUT} < + V_{CC}$$

Voltage follower / Buffer

Observation Table 1

S. No.	V _{in} (DC Voltage)	V _{out}	Remark
1			
2			
3			

Inverting amplifier

Inverting amplifier

Observation Table

S.No	V _{in}	V _{out}	R _{in}	R _f	Gain=V _{out} /V _{in}	Gain=R _f /R _{in}	Remark
1	10 mV/1KHz		1ΚΩ	1ΚΩ			
2	100 mV/10KHz		1ΚΩ	1ΚΩ			
3	10 mV/1KHz		1ΚΩ	100ΚΩ			
4	100 mV/10KHz		1ΚΩ	10ΚΩ			
5	100 mV DC		1ΚΩ	10ΚΩ			
6	500 mV DC		1ΚΩ	10ΚΩ			
7	1 V DC		1ΚΩ	20ΚΩ			

Differential Amplifier

If
$$R_1 = R_2$$

and $R_f = R_g$:

$$V_{\text{out}} = \frac{R_{\text{f}}}{R_{1}} (V_{2} - V_{1})$$

S.No	V ₁ (DC V)	V ₂ (DC V)	R ₁	R ₂	R _f	R _g	V _{out}
1							
2							
3							
4							

Summing Amplifier

Summing Op-amp

$$Vout = -\left(\frac{Rf}{R1}V1 + \frac{Rf}{R2}V2 + \frac{Rf}{R3}V3\right)$$

S.No	Summing Op-amp		R ₁	R ₂	R ₃	R _f	V _{out}	
	V ₁	V ₂	V ₃					
1								
2								
3								
4								

