Determining Contact Angles by Wilhelmy Method and Critical Surface Tension by Zisman Plot

Teng-Jui Lin

Department of Chemical Engineering, University of Washington

Surface and Colloid Science

Surface tension can be measured by partial immersion (Wilhelmy) method

- Partial immersion method (Wilhelmy slide)
 - Force required to maintain the position of a solid which penetrates a fluid interface
- Force balance
 - Down = Weight Buoyancy + Surf. Tension

$$F_{\downarrow}=F_g-F_b+F_{\sigma}$$

$$F_{\downarrow} = mg -
ho g V_{
m disp} + P \sigma$$

Assumes: uniform σ , fully wetted $\theta = 0$

Contact angle can also be measured by partial immersion (Wilhelmy) method

- Force balance
 - Down = Weight Buoyancy + Surf. Tension

$$F_{\downarrow} = F_q - F_b + F_{\sigma}$$

$$F_{\downarrow} = mg -
ho g V_{
m disp} + P \sigma$$

Assumes: uniform σ , fully wetted $\theta = 0$

- Relax contact angle assumption
 - Contact angle as contribution to surface tension

$$F_{\downarrow} = mg -
ho g V_{
m disp} + P \sigma \cos heta$$

- $P\sigma\cos\theta$
 - Know any two terms
 - Solve the other one

0° < θ < 90°
"partial wetting"

90° < θ < 180° "partial non-wetting"

 $\theta = 180^{\circ}$ "total non-wetting"

Contact angle of solid-liquid interactions is defined by pair-wise surface tensions

Horizontal force balance

$$heta \in (0,\pi] = (0,180]\deg \quad \Rightarrow \quad \cos heta \in (1,-1]$$

 $\theta = 0^{\circ}$ "wetting out"

 $0^{\circ} < \theta < 90^{\circ}$ "partial wetting"

Young's equation

$$\cos heta = rac{\sigma_{sg} - \sigma_{sl}}{\sigma_{lg}}$$

- Low energy surfaces does not wet out by most liquids
 - Plastics, polymers

$$(\sigma_{sg}-\sigma_{sl})<\sigma_{lg}$$

- High energy surfaces wet out by most liquids
 - Clean metals, mineral oxides

$$(\sigma_{sg}-\sigma_{sl})>\sigma_{lg}$$

90° < θ < 180° "partial non-wetting"

 $\theta = 180^{\circ}$ "total non-wetting"

Zisman plot gives critical surface tension of low-energy solids using contact angles

- $P\sigma\cos\theta$ Know σ and P, solve for $\cos\theta$
- Critical surface tension σ_c of a solid surface tension at or below which solid can be totally wet out

$$\sigma \leq \sigma_c \quad \Rightarrow \cos \theta = 1 \quad \Rightarrow \mathsf{wet} \; \mathsf{out}$$

- Teflon has $\sigma_c=19~\mathrm{mN/m}$
 - Can't be wetted by almost any liquid at room temperature
 - Water: $\sigma = 72$ mN/m
 - \circ Oil: σ = 30 mN/m

- Liquid does not dissolve or swell solid
- Liquid does not interact specifically with solid
- Liquid vapor does not adsorb on solid

Force method allows calculation of any variable in $P\sigma\cos\theta$ given the other two

- $ullet F_{\downarrow} = mg
 ho g V_{
 m disp} + {P \sigma \cos heta \over 2}$
 - Measure perimeter PGiven σ , $\cos \theta$
 - \circ Measure surface tension σ Given $P, \cos \theta$
 - Measure contact angle θ Given P, σ
 - Measure critical surface tension σ_c Given Zisman plot $(\cos \theta \text{ vs. } \sigma)$