5. Limita funkce

Limita funkce je jedním z nejdůležitějších pojmů matematické analýzy. Na pojmu limita jsou založeny další významné pojmy, jako je spojitost, derivace funkce, Riemannův integrál, délka křivky ad. S přímým praktickým použitím limity se setkáme při vyšetřování průběhu funkce, např. při zjišťování asymptot grafu funkce.

5.1. Limita funkce podle Heineho

Hlavní myšlenka: Problém limity funkce se převede na (již známý) problém limity posloupnosti.

D (limita funkce podle Heineho): Nechť x_0 je hromadným bodem D(f). Číslo a nazveme **limita funkce** f **v bodě** $x_0 \Leftrightarrow \text{pro } každou \text{ posloupnost } \{x_n\}, x_n \in D(f), x_n \neq x_0, x_n \to x_0, \text{ platí } f(x_n) \to a$. Píšeme $\lim_{x \to x_0} f(x) = a$.

D (jednostranná limita funkce podle Heineho): Nechť x_0 je levým [pravým] hromadným bodem D(f). Číslo a nazveme **limita zleva** [**zprava**] **funkce** f **v bodě** $x_0 \Leftrightarrow$ pro každou posloupnost $\{x_n\}$, $x_n \in D(f)$, $x_n < x_0$ [$x_n > x_0$], $x_n \to x_0$, platí $f(x_n) \to a$. Píšeme $f(x_0-) = \lim_{x \to x_0-} f(x) = a$ [$f(x_0+) = \lim_{x \to x_0+} f(x) = a$].

Úlohy:

5.1.1. Vypočtěte
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
.

- **5.1.2.** Vypočtěte obě jednostranné limity funkce $y = \operatorname{sgn} x$ v bodě 0.
- **5.1.3.** Dokažte, že Dirichletova funkce $\chi(x)$ nemá limitu (ani jednostrannou) v žádném bodě $x_0 \in R$.
- **5.1.4.** Vyslovte definici nevlastní limity $+\infty$ ve vlastním bodě x_0 .

D (vlastní limita v nevlastním bodě $+\infty$): Nechť $+\infty$ je hromadným bodem D(f). Číslo a nazveme **limita funkce** f v nevlastním bodě $+\infty$ \Leftrightarrow pro každou posloupnost $\{x_n\}$, $x_n \in D(f)$, $x_n \to +\infty$, platí $f(x_n) \to a$. Píšeme $\lim_{x \to +\infty} f(x) = a$.

Úloha 5.1.5. Vyslovte definici vlastní limity funkce v nevlastním bodě $-\infty$ a definice nevlastních limit v nevlastních bodech.

5.2. Věty o limitách funkcí

Věty o limitách funkcí vyplývají na základě Heineho definice limity z vět o limitách posloupností. Proto jsou některé formulovány velmi podobně.

Formulaci uvádíme pro vlastní limity ve vlastních bodech, je však možné i jejich rozšíření na "nevlastní případy".

V 1: Každá funkce f má v libovolném bodě $x_0 \in \mathbf{R}$ nejvýše jednu limitu.

V 2: Nechť funkce f má v bodě x_0 konečnou limitu. Pak existuje okolí $P(x_0)$, v němž je omezená. (Tedy $\exists P(x_0) \ \exists K, L \in \mathbf{R} \ \forall x \in P(x_0) \cap D(f) : f(x) \in \langle K, L \rangle$.)

V 3 (Věta o kladné limitě): Nechť funkce f má v bodě x_0 konečnou kladnou [zápornou] limitu. Pak existuje okolí $P(x_0)$, v němž je f kladná [záporná].

V 4 (Věta o limitě součtu, rozdílu, součinu a podílu): Nechť jsou na M definovány funkce f, g, x_0 je hromadný bod M a platí

$$\lim_{x \to x_0} f(x) = a., \lim_{x \to x_0} g(x) = b..$$

Pak funkce f + g, f - g, $f \cdot g$, $f \cdot g$ (pro $g(x) \neq 0$, $b \neq 0$) mají limitu a + b, a - b, $a \cdot b$, $a \cdot b$.

(Tyto vlastnosti platí pro rozšířenou reálnou osu ve všech případech, kdy mají uvedené výrazy s a, b smysl; např. věta o součtu neplatí pro $a = +\infty$, $b = -\infty$.)

V 5 (Věta o limitě rovnosti): Nechť na nějakém okolí $P(x_0)$ platí f(x) = g(x) a existuje $\lim_{x \to x_0} f(x) = a$. Pak též $\lim_{x \to x_0} g(x) = a$.

V 6 (Věta o limitě nerovnosti): Nechť na nějakém okolí $P(x_0)$ platí $f(x) \le g(x)$ a existují limity obou funkcí v bodě x_0 . Pak $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Úloha 5.2.1. Na příkladech ukažte, jaký vztah může platit mezi limitami, jestliže na $P(x_0)$ platí ostrá nerovnost f(x) < g(x).

V 7 (Věta o třech limitách): Nechť na nějakém okolí $P(x_0)$ platí $f(x) \le h(x) \le g(x)$, přičemž $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = a$. Pak existuje i $\lim_{x \to x_0} h(x)$ a je rovna a.

V 8 (Věta o limitě monotónní funkce): Nechť bod x_0 je levým hromadným bodem množiny $M = D(f) \cap P(x_0-)$ a funkce f je neklesající na M. Pak existuje $\lim_{x \to x_0-} f(x)$. Je-li funkce f na M shora omezená, je tato limita konečná, není-li f na M shora omezená, je tato limita rovna $+\infty$.

Úloha 5.2.2. Vyslovte podobnou větu pro nerostoucí funkci a dále věty pro případ limity zprava.

V 9:
$$\lim_{x \to x_0} f(x) = 0 \iff \lim_{x \to x_0} |f(x)| = 0.$$

V 10: $\lim_{x \to x_0} f(x) = a \iff \lim_{x \to x_0} |f(x) - a| = 0$ (pro a vlastní).

V 11: Nechť x_0 je oboustranným hromadným bodem D(f). Pak následující dva výroky jsou ekvivalentní:

A: Existuje $\lim_{x \to x_0} f(x)$ a je rovna a.

B: Existují $\lim_{x \to x_0^-} f(x)$, $\lim_{x \to x_0^+} f(x)$ a obě jsou rovny a.

Úloha 5.2.3. Užitím V 11 dokažte, že funkce $y = x + \frac{|x|}{x}$ nemá limitu v bodě $x_0 = 0$.

V 12: Nechť na nějakém $P(x_0)$ platí f(x) > 0. Pak

1)
$$\lim_{x \to x_0} f(x) = 0 \Leftrightarrow \lim_{x \to x_0} \frac{1}{f(x)} = +\infty$$
,

2)
$$\lim_{x \to x_0} f(x) = +\infty \iff \lim_{x \to x_0} \frac{1}{f(x)} = 0.$$

V 13: Nechť $\lim_{x \to x_0} f(x) = a \neq 0$, $\lim_{x \to x_0} g(x) = 0$ a v nějakém okolí $P(x_0)$ platí sgn $g(x) = \operatorname{sgn} a$

[sgn
$$g(x) = -\text{sgn } a$$
]. Pak platí $\lim_{x \to x_0} \frac{f(x)}{g(x)} = +\infty$ [$-\infty$].

V 14: Nechť x_0 je hromadným bodem $D(f \cdot g)$, $\lim_{x \to x_0} f(x) = 0$ a g je funkce omezená. Pak $\lim_{x \to x_0} f(x) \cdot g(x) = 0$.

V (Věta o limitě složené funkce): Mějme složenou funkci $f \circ \varphi$. Nechť

1° ∃ okolí $P(x_0) \subset D(\varphi)$ tak, že $\varphi(P(x_0)) \subset D(f)$,

$$2^{\circ} \exists a \text{ jako } \lim_{x \to x_0} \varphi(x),$$

3° a je hromadným bodem D(f) a existuje $b = \lim_{x \to a} f(x)$,

 4° x_0 není hromadným bodem množiny { $x \in P(x_0)$; φ(x) = a }.

Pak existuje limita složené funkce $f \circ \varphi$ v bodě x_0 a platí $\lim_{x \to x_0} f \circ \varphi(x) = b$.

5.3. Výpočet limit

Limity některých elementárních funkcí.

Úlohy:

5.3.1. Užitím věty o třech limitách dokažte, že $\lim_{x \to 0} \sin x = 0$.

5.3.2. Dokažte, že $\lim_{x \to x_0} \sin x = \sin x_0$ a $\lim_{x \to x_0} \cos x = \cos x_0$.

5.3.3. Dokažte, že $\lim_{x \to x_0} x^n = x_0^n$ a že pro každý polynom P(x) je $\lim_{x \to x_0} P(x) = P(x_0)$.

Platnost výsledků úloh 5.3.2 a 5.3.3 lze zobecnit na všechny elementární funkce takto:

V: Je-li f elementární funkce, $x_0 \in D(f)$, pak $\lim_{x \to x_0} f(x) = f(x_0)$.

Použití této věty nazýváme využití spojitosti funkce k výpočtu limity (viz kap. 6).

Speciální limity:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e,$$

$$\lim_{x \to 0} \frac{\left(1 + x \right)^m - 1}{x} = m \text{ (pro libovolná } m \in R),$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Úlohy:

5.3.4. Dokažte první z výše uvedených speciálních limit.

5.3.5. Vypočtěte
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$
.

5.3.6. Vypočtěte
$$\lim_{x\to +\infty} \left(1+\frac{2}{x}\right)^x$$
.

Výpočet dle definice a vět o limitách

5.3.7. Vypočtěte
$$\lim_{x \to +\infty} \frac{6x^3 + 2x + 5}{2x^3 + x^2 + 7}$$
.

5.3.8. Vypočtěte
$$\lim_{x\to +\infty} \frac{6 \cdot 2^{3x} + 2^{x+1} + 5}{2^{3x+1} + 2^{2x} + 7}$$
.

5.3.9. Vypočtěte
$$\lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
, kde $x > 0$.

5.3.10. Vypočtěte
$$\lim_{x\to 0} x \sin \frac{1}{x}$$
.

Další metoda výpočtu limit funkcí: užitím l'Hospitalova pravidla (viz 8.3.).

5.4. Limita funkce podle Cauchyho

Cauchyho definice limity využívá vztahu mezi okolími. Vyslovíme dvě definice. Jedna uvažuje okolí ve smyslu topologickém, druhá ve smyslu metrickém.

D (limita funkce podle Cauchyho): Nechť x_0 je hromadným bodem D(f). Říkáme, že funkce f **má v bodě** x_0 **limitu** $a \Leftrightarrow \forall U(a) \exists P(x_0) \forall x : x \in D(f) \cap P(x_0) \Longrightarrow f(x) \in U(a)$. Píšeme $\lim_{x \to x_0} f(x) = a$.

Poznámka: Poslední implikaci lze nahradit inkluzí $f(D(f) \cap P(x_0)) \subset U(a)$.

D (limita funkce podle Cauchyho, druhá definice): Nechť x_0 je hromadným bodem D(f). Říkáme, že funkce f **má v bodě** x_0 **limitu** $a \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tak}$, že $\forall x : x \in D(f) \cap P(x_0, \delta) \Rightarrow f(x) \in U(a, \varepsilon)$. Píšeme $\lim_{x \to x_0} f(x) = a$.

Poznámka: Závěr definice lze formálně upravit na jiný tvar s využitím absolutních hodnot: místo $\forall x: x \in D(f) \cap P(x_0, \delta)$ uvedeme $\forall x \in D(f): 0 < |x - x_0| < \delta$ a místo $f(x) \in U(a, \epsilon)$ dáme $|f(x) - a| < \epsilon$.

Úlohy:

- **5.4.1.** Znázorněte obsah Cauchyových definic na obrázku.
- **5.4.2.** Vyslovte Cauchyovy definice vlastní limity v nevlastním bodě, nevlastní limity ve vlastním bodě a nevlastní limity v nevlastním bodě.

V (Ekvivalence definic limity funkce): Heineho definice a Cauchyova definice limity funkce jsou ekvivalentní.

Limita funkce dle definice Heineho je tedy přesně týž pojem jako limita funkce podle Cauchyho. Je tu však rozdíl v jejich použití. Heineho definici používáme častěji k *výpočtu* limit, neboť v této definici znalost hodnoty limity funkce není předem potřebná, Cauchyovu definici používáme častěji k *důkazům*, hodnotu limity musíme znát předem.

_ * _