CS361: Machine Learning

Project Guideline

Ashish Anand
Professor, Dept. of CSE, IIT Guwahati
Associated Faculty, Mehta Family School of Data Sc and AI, IIT Guwahati

Objective

- Hands on experience on
 - classical ML algorithms implementation
 - using exploratory data analysis
 - entire ML pipeline

Project Administration

Project Group

- Number of Registered Students: 125
- Number of students in a group: 4
- Assign Roles to each member
 - Marks will be based on Individual Contribution

Important Timelines

- Project Group Information: 11th Feb, Sunday [11:45 PM]
- Project Proposal: 23rd Feb, Friday [11:45 PM]
- Mid-Term Report: 22nd Mar, Friday [11:45 PM]
- Final Report and Code: 19th Apr, Friday [11:45 PM]
- Presentation & Viva: 20th-28th Apr
- No extension feasible

Marks Distribution

- Project: 20-30
 - Group Work + Individual Contribution
 - Divided across several evaluation stages
 - Report across evaluation stages
 - Plagiarism Check

Project Proposal

- Introduction: Should discuss motivation, the target problem, major challenges and outline of proposed direction
- Methods: Intended methods you are planning to apply. Try to choose methods from different paradigms
- Intended Experiments
- Relevant References
- Max 2-page content, references extra
- Evaluation: Primarily based on how concise and good a report is. Report must be in your own words with proper citation.

Mid-Term Report

- Objective: More formalized version of initial problem description submission
- Presented in form of extended abstract
 - We will provide latex template
- Organize into following sections
 - Abstract, Introduction, Method, Progress, Conclusion, References
- 3-4 Pages, Max 4 Pages

 Evaluation: Based on Progress made, clarity in the work direction, report

Final Report and Presentation

- Follow a full paper format
 - Latex template will be shared again
 - 6-7 Pages
- Evaluation: Based on clarity on the problem formulation, model selection, challenges handled, analysis of reported results, and report

What I'll be expecting

Report

- Explain problem: definition or formulation, motivation, challenges, existing methods: adv. and disadv.
- Explain your data: basic statistics, pre-processing
- Explain your method: comparative study, discussion on comparative adv. of the chosen methods or project, novelty aspect
- Explain Implementation (You may include if any specific challenges faced, or if you have used certain verifications)
- Explain Result: Provide insights from obtained results.
- Explain Future Scope: what next and what could be done differently

Code

- Well commented and readme file
- Anybody should be able to execute and replicate results as reported in report.

How to start working on project?

- Choose theme: Environment, Economics, Education, Finance, Agriculture, Health, Infra Development etc.
- Define main question(s) you want your model to answer
 - Prediction
 - Important Features and their relative significance
- Accordingly, choose appropriate models
- Define Appropriate Experiment settings
- Analyze Results

What kind of work will be more appreciated

- Comprehensive studies
- Well reported

Relevant Resources

- Challenges [Adv: Data availability]
- Kaggle
- Papers with Code

Relevant Conferences

- ICML, WWW, KDD, NeuRIPS/NIPS
- IJCNLP, ICLR, AAAI, IJCAI
- ArXiv: Machine Learning
- ML/AI for social good