CS1555 Recitation 5 - Video

Objective: To practice more relational model concepts and relational algebra, especially aggregations, joins, and division.

Consider the following relation schemas and states:

Student (SID, Name, Class, Major)

Student Dir (SID, Address, Phone)

 $FK: (SID) \rightarrow Student (SID)$

Course (Course No, Name, Level)

Courses taken (Course No, Term, SID, Grade)

 \overline{FK} : (Course No) \rightarrow Course (Course No)

 $FK: (SID) \rightarrow Student (SID)$

Student

SID	Name	Class	Major
123	John	3	CS
124	Mary	3	CS
126	Sam	2	CS
129	Julie	2	Math

Student Dir

SID	Address	Phone
123	333 Library St	555-535-5263
124	219 Library St	555-963-9635
129	555 Library St	555-123-4567

Course

Course_No	Course_Name	Course_level
CS1520	Web Programming	UGrad
CS1555	Database Management Systems	UGrad
CS1550	Operating Systems	UGrad
CS1655	Secure Data Management and Web Applications	UGrad
CS2550	Database Management Systems	Grad

Course_taken

Course_No	Term	SID	Grade
CS1520	Fall 19	123	3.75
CS1520	Fall 19	124	4
CS1520	Fall 19	126	3
CS1555	Fall 19	123	4
CS1555	Fall 19	124	NULL
CS1550	Spring 20	123	NULL
CS1550	Spring 20	124	NULL
CS1550	Spring 20	126	NULL
CS1550	Spring 20	129	NULL
CS2550	Spring 20	124	NULL
CS1520	Spring 20	126	NULL

Part 1: Relational Model

- 1. For each of the relational algebra queries below:
 - a. Identify the expected arity, schema, and min/max cardinality of the relation resulted from the below queries, without actually evaluating the query and based only on the schemas and cardinalities of the 4 given relations.
 - b. Find the resulted relation given the above states of the relations.

(Note: we are using |T| notation to denote the Arity of relation T and |r(T)| notation to denote the cardinality of relation T)

- a. $T2 \leftarrow \pi_{\text{Course No}} (\sigma_{\text{Term} = \text{'Spring 20'}} (\text{Courses taken}))$
- b. T3 <- Courses taken * Course
- c. $T4 \leftarrow Courses_taken$ $\bigcirc Course_taken.Course_No = Course_No$ $\bigcirc Course_No$

Part 2: Relational Algebra

Write a relational algebra query for each of the queries below:

- 1. List the SID of the students who did not enroll in any course in Fall 19.
- 2. Find the total number of students.
- 3. Find the total number of students who have enrolled in the course "Operating Systems"
- 4. List the SID, name, and address (if available) of all students.