Preference Trees over Combinatorial Domains

Xudong Liu

Ph.D. Candidate
Department of Computer Science
College of Engineering
University of Kentucky
Lexington, KY, USA

Preferences Are Ubiquitous

Figure: Preferences of different forms

Describing Preferences

Figure: How to express it?

- On scale of 0 to 99, how will I rate these two cars?
 - I give Car1 44 points and Car2 78 points; thus, I prefer Car2 to Car1.
- Which one to me is better than the other?
 - I prefer Car1 to Car2. (Strict preference)
 - I like Car1 and Car2 equally. (Indifference/Equivalence)
 - I cannot decide. (Incomparability)

Describing Preferences

Figure: How to express it?

- On scale of 0 to 99, how will I rate these two cars? (Quantitative)
 - I give Car1 44 points and Car2 78 points; thus, I prefer Car2 to Car1.
- Which one to me is better than the other? (Qualitative)
 - I prefer Car1 to Car2. (Strict preference)
 - I like Car1 and Car2 equally. (Indifference/Equivalence)
 - I don't know. (Incomparability)

Binary Relations

Let O be a set of elements. A binary relation \leq over O is a collection of ordered pairs of elements in O; that is,

$$\preceq \subseteq O \times O$$
.

Properties of binary relations:

- **1** Reflexivity: $\forall o \in O, o \leq o$.
- **2** Irreflexivity: $\forall o \in O$, $o \not \leq o$.
- **3** Totality: $\forall o_1, o_2, o_1 \leq o_2 \text{ or } o_2 \leq o_1$.
- Transitivity: $\forall o_1, o_2, o_3$, if $o_1 \leq o_2$ and $o_2 \leq o_3$, then $o_1 \leq o_3$.
- **5** Symmetricity: $\forall o_1, o_2$, if $o_1 \leq o_2$, then $o_2 \leq o_1$.
- **1** Antisymmetricity: $\forall o_1, o_2$, if $o_1 \leq o_2$ and $o_2 \leq o_1$, then $o_1 = o_2$.

Binary Relations

 \leq is a partial preorder if it is reflexive and transitive, a total preorder if it is a partial preorder and total, a partial order if it is a partial preorder and antisymmetric, and a total order if it is a partial order and total.

(a) partial (pre)order

(b) total (pre)order

Binary Relations

 \leq is a partial preorder if it is reflexive and transitive, a total preorder if it is a partial preorder and total, a partial order if it is a partial preorder and antisymmetric, and a total order if it is a partial order and total.

(a) partial preorder

(b) total preorder

Binary Relations

Let \leq be a preference relation that is a partial preorder over O. We say that o_2 is weakly preferred to o_1 if $o_1 \leq o_2$, that o_2 is strictly preferred (\prec) to o_1 if $o_1 \leq o_2$ and $o_2 \not \leq o_1$, that o_1 is indifferent (\approx) from o_2 if $o_1 \leq o_2$ and $o_2 \leq o_1$, and that o_1 is incomparable (\sim) with o_2 if $o_1 \not \leq o_2$ and $o_2 \not \leq o_1$.

 $o_1 \leq o_5$, $o_4 < o_2$, $o_4 \approx o_8$, $o_6 \sim o_7$.

(b) preferences

Binary Relations

Let \leq be a preference relation that is a partial preorder over O. We say that o_2 is weakly preferred to o_1 if $o_1 \leq o_2$, that o_2 is strictly preferred (\prec) to o_1 if $o_1 \leq o_2$ and $o_2 \not \leq o_1$, that o_1 is indifferent (\approx) from o_2 if $o_1 \leq o_2$ and $o_2 \leq o_1$, and that o_1 is incomparable (\sim) with o_2 if $o_1 \not \leq o_2$ and $o_2 \not \leq o_1$.

 $o_1 \leq o_5$,

 $o_4 \prec o_2$,

 $o_4 \approx o_8$,

(a) total preorder

(b) preferences

Combinatorial Domains

Combinatorial Domains

Let V be a finite set of variables $\{X_1, \ldots, X_p\}$, D a set of finite domains $\{Dom(X_1), \ldots, Dom(X_p)\}$ for each variable X_i . A combinatorial domain CD(V) is a set of outcomes described by combinations of values from $Dom(X_i)$:

$$CD(V) = \prod_{X_i \in V} Dom(X_i).$$

Combinatorial Domains: Example

Domain of cars over set V of p binary variables:

```
• BodyType: {mvan, sedan}.
```

:

$$CD(V) = \{ \langle \text{sedan, 4, blue, } \ldots \rangle, \langle \text{mvan, 6m, grey, } \ldots \rangle, \ldots \}.$$

$$2^p \text{ outcomes, too many!}$$

Computational Complexity

- P (NP): decision problems solvable by a deterministic (nondeterministic, resp.) TM in poly time in the size of the input.
 - We typically believe that $P \subset NP$.
- 2 coNP: problems whose complements are in NP.

- SPACE: decision problems solvable by a TM in poly space in the size of the input.
- **o** A decision problem *L* is *C*-hard if $L' \leq_p L$ for every *L'* in class *C*.
- $oldsymbol{0}$ A decision problem L is C-complete if L is in class C and L is C-hard.

Computational Complexity

Figure: Computational complexity diagram

Combinatorial Domains: Example

Domain of cars (cf. the Car Evaluation Dataset¹)

- **1 BodyType**: {mvan, sedan, sport, suv}.
- **2** Capacity: {2, 5, 7m}.
- Color: {black, blue, grey, red, white}.
- LuggageSize: {big, med, small}.
- **Make**: {bmw, ford, honda, and vw}.
- Price: {low, med, high, vhigh}.
- Safety: {low, med, high}.

14 / 53

 $^{^1}$ http://www.cs.uky.edu/~liu/preflearnlib.php, slightly adapted in the talk.

Qualitative Preferences

Individual:

<sedan, 4, blue, med, vw, med, med>

Figure: Dominance Testing

Qualitative Preferences

Collective:

Figure : Social Choice and Welfare

Preference Modeling

Q: How do we represent qualitative preferences over combinatorial domains?

- Answer-Set Optimization Theories²
- Ceteris Paribus Networks (e.g., CP-nets³, TCP-nets⁴, Cl-nets⁵)
- Conditional Preference Theories⁶

Preferences Research Overview UNF, 1/7 17 / 53

²Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. "Answer Set Optimization". In: <u>IJCAI</u>. 2003

³C. Boutilier et al. "CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements". In: <u>Journal of Artificial Intelligence Research</u> (2004)

⁴Ronen I. Brafman and Carmel Domshlak. "Introducing Variable Importance Tradeoffs into CP-Nets". In: <u>UAI</u>. 2002

⁵Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. "Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods". In: (2009)

⁶Nic Wilson. "Extending CP-Nets with Stronger Conditional Preference Statements". In: <u>AAAI-04</u>. 2004

Preference Modeling

Q: How do we represent qualitative preferences over combinatorial domains?

Preference Trees (e.g., LP-trees^{16,20}, CLP-trees¹⁷, PLP-trees¹⁸, P-trees^{11,21})

Preferences Research Overview UNF, 1/7 18 / 53

⁷Richard Booth et al. "Learning conditionally lexicographic preference relations". In: ECAI. 2010

⁸Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

⁹Michael Bräuning and H Eyke. "Learning Conditional Lexicographic Preference Trees". In: Preference learning: problems and applications in AI (2012)

¹⁰Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains".
In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI).
2015

¹¹Niall M Fraser. "Ordinal preference representations". In: <u>Theory and Decision</u> (1994)

¹²Xudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". In: Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference Handling (MPREF). 2014

Preference Learning

Q: How do we learn predictive qualitative preference models over combinatorial domains?

- Ceteris Paribus Networks (e.g., CP-nets^{13,14,15})
- 2 Preference Trees (e.g., LP-trees¹⁶, CLP-trees¹⁷, **PLP-trees**¹⁸)
- Preference Forests¹⁹

Preferences Research Overview UNF, 1/7

19 / 53

 $^{^{13}}$ Jérôme Lang and Jérôme Mengin. "The complexity of learning separable ceteris paribus preferences". In: (2009)

¹⁴Frédéric Koriche and Bruno Zanuttini. "Learning conditional preference networks". In: <u>Artificial Intelligence</u> (2010)

 $^{^{16}}$ Richard Booth et al. "Learning conditionally lexicographic preference relations". In: $\underline{\text{ECAI}}$. 2010

¹⁷Michael Bräuning and H Eyke. "Learning Conditional Lexicographic Preference Trees". In: <u>Preference learning: problems and applications in Al</u> (2012)

¹⁸Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains".
In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI). 2015

¹⁹ Xudong Liu and Miroslaw Truszczynski. "Learning Preference Trees and Forests". In: IJCAI-16 (In Preparation)

Preference Reasoning

Q: How do we reason about preferences over combinatorial domains?

- **1** Preference Optimization^{20,21,22}:
 - Dominance testing: $o_1 \succ_P o_2$?
 - Optimality testing: $o_1 \succ_P o_2$ for all $o_2 \neq o_1$?
 - Optimality computing: what is the optimal outcome wrt *P*?
 - Ranking: how are the outcomes ordered wrt P?
- Preference Misrepresentation²³:
 - Control
 - Manipulation²⁴
 - Bribery

²⁰Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

²¹Xudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". In: Preference Handling (MPREF). 2014

²²Xudong Liu and Miroslaw Truszczynski. "Reasoning with Preference Trees over Combinatorial Domains". In: Proceedings of the 4th International Conference on Algorithmic Decision Theory (ADT).

²³Felix Brandt, Vincent Conitzer, and Ulle Endriss. "Computational social choice". In: Multiagent systems (2012)

²⁴Xudong Liu and Miroslaw Truszczynski. "Complexity of Manipulation in Elections Where Votes Are Lexicographic Preference Trees". In: AAMAS-17 (In Preparation)

Preference Applications

Q: What fields can we apply preferences to?

- Game Theory:
 - Hedonic games²⁵
- Automated Planning and Scheduling:
 - Trip planning²⁶
- Oata-Driven Decision Making:
 - Predictive decisions²⁷

Preferences

²⁵Matthew Spradling et al. "Roles and Teams Hedonic Game". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

²⁶Xudong Liu et al. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: <u>PARC Symposium</u>. 2015

²⁷Xudong Liu and Miroslaw Truszczynski. "Learning Preference Trees and Forests". In: <u>IJCAI-16 (In Preparation)</u>

- Let \mathcal{I} be a set of binary issues. The **combinatorial domain** $CD(\mathcal{I})$ is the set of *outcomes* represented by complete and consistent sets of literals over \mathcal{I} .
- A **P-tree** T over $CD(\mathcal{I})$ is a binary tree whose nodes, other than the leaves, are labeled with propositional formulas over \mathcal{I} .
- Given an outcome $M \in CD(\mathcal{I})$, the **leaf** $I_{\mathcal{T}}(M)$ is the leaf reached by traversing the tree \mathcal{T} according to M. When at a node N labeled with φ , if $M \models \varphi$, we descend to the left child of N; otherwise, to the right.
- For $M, M' \in CD(\mathcal{I})$, we have $M \succ_{\mathcal{T}} M'$ if $I_{\mathcal{T}}(M) \succ_{\mathcal{T}} I_{\mathcal{T}}(M')$, and $M \approx_{\mathcal{T}} M'$ if $I_{\mathcal{T}}(M) = I_{\mathcal{T}}(M')$. Outcome M is **optimal** if there exists no M' such that $M' \succ_{\mathcal{T}} M$.

Compact Representation of P-trees

A compact P-tree over $CD(\mathcal{I})$ is a tree where

- lacktriangle every node is labeled with a Boolean formula over \mathcal{I} , and
- every non-leaf node t labeled with φ has either two outgoing edges (Figure (a)), or one outgoing edge pointing left (Figure (b)), right (Figure (c)), or straight-down (Figure (d)).

Figure: Compact P-trees

Relative Expressivity of Preference Languages

```
\begin{array}{c} \mathsf{LP\text{-}trees} \\ & \cap \\ \mathsf{PLP\text{-}trees} \\ & \cap \\ \mathsf{Poss\text{-}theories} = \mathsf{ASO\text{-}rules} \ \subsetneq \ \mathsf{P\text{-}trees} \ \subset \mathsf{ASO\text{-}theories} \end{array}
```

Preferences Preference Modeling UNF, 1/7 24 / 5

Computational Complexity Results

DOMTEST: is it that $o \succeq_T o'$ in P-tree T? OPTTEST: is outcome o optimal w.r.t T?

OPTPROP: is there an optimal outcome o w.r.t T st $o \models \alpha$?

	DomTest	OptTest	ОртРкор
LP-tree	Р	Р	Р
ASO-rule/	Р	coNP-c	$\Delta_2^P(P^{NP})$
Poss-theory	•		2 \
P-tree	Р	coNP-c ²⁸	$\mid \Delta_2^P (P^{NP})$ - $\mathbf{c}^{29} \mid$
ASO-theory	Р	coNP-c	$\Sigma_2^P(NP^{NP})$ -c

Figure : Computational complexity results

UNF, 1/7

25 / 53

 $^{^{28}\}mbox{The complement problem is reduced from the SAT problem.}$

 $^{^{29}\}mbox{The}$ problem is reduced from the Maximum Satisfying Assignment (MSA) problem.

A *PLP-tree* over $CD(\mathcal{I})$ is a labeled tree, where

- every node t is labeled with a attribute Attr(t) in \mathcal{I} and a conditional preference table CPT(t),
- every non-leaf node t has either one unlabeled outgoing edge or multiple outgoing edges labeled, each labeled by some value in Dom(Attr(t)), and
- every attribute appears at most once on every branch.

Figure : A UIUP PLP-tree

According to this UIUP PLP-tree, Car1 is preferred to Car2.

Figure: A UICP PLP-tree

According to this UICP PLP-tree, Car2 is preferred to Car1.

Figure: A CIUP PLP-tree

According to this CICP PLP-tree, Car1 is preferred to Car2.

Preferences Preference Modeling UNF, 1/7 29 / 53

Figure: A CICP PLP-tree

According to this CICP PLP-tree, Car1 is preferred to Car2.

30 / 53

Complexity Results

	UP	CP
UI	Р	Р
CI	NPC ³⁰	Р

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(a) Conslearn

(b) SMALLLEARN

31 / 53

	UP	CP
UI	NPC ³¹	NPC
CI	NPC	NPC

(c) MaxLearn

Figure: Complexity results for passive learning problems

³⁰Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

³¹Schmitt and Martignon, On the Complexity of Learning Lexicographic Strategies, 2006.

Experimental Results on Trees

Figure: Learning curve for UIUP using ASP and greedy heuristic

Preferences Preference Learning UNF, 1/7 32 / 53

Experimental Results on Trees

Figure: Learning curve for all four classes using greedy heuristic

- **1** A preference forest F is a collection of PLP-trees $F = \{T_1, \ldots, T_n\}$.
- ② Denote by $N_F(o_1, o_2) = |\{T \in F : o_1 \succ_T o_2\}|$.
- **③** Given a preference forest F, and two outcomes o_1 and o_2 , we say that $o_1 \succ_F^{Maj} o_2$ iff $N_F(o_1, o_2) > N_F(o_2, o_1)$, and that $o_1 \approx_F^{Maj} o_2$ iff $N_F(o_1, o_2) = N_F(o_2, o_1)$.
 - Pro: intuitive, decided in polynomial time.
 - Con: Condorcet paradox.
 - Other aggregating rules: positional scoring rules, Copeland's method, etc.

Experimental Results on Forests

Figure: Learning UIUP using ASP and greedy heuristic

Experimental Results on Forests

Figure: Learning all four classes using greedy heuristic

Lexicographic Preference Trees (LP-Trees)

- **1** An LP tree \mathcal{L} over $\mathcal{I} = \{X_1, \dots, X_p\}$ is a (binary) tree, where
 - each node t in $\mathcal L$ is labeled by an issue from $\mathcal I$ and with *preference information*, and
 - each issue appears exactly once on every path from the root to a leaf.

Preferences Preference Reasoning UNF, 1/7 37 / 53

Positional Scoring Rules

- k-approval: (1, ..., 1, 0, ..., 0) with k being the number of 1's and m k the number of 0's where $m = 2^p$.
- (k, l)-approval: $(a, \ldots, a, b, \ldots, b, 0 \ldots, 0)$, where a and b are constants (a > b) and the numbers of a's and b's equal to k and l, respectively.
- b-Borda: $(b, b-1, \ldots, 0)$, where if b>m-1, b-Borda is reduced to the regular Borda rule with $(m-1, m-2, \ldots, 1, 0)$.

The Evaluation and Winner Problems

The Evaluation Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP trees. Given a \mathcal{C} -profile P of n LP trees over p issues and a positive integer R, the *evaluation* problem is to decide whether there exists an alternative $o \in \mathcal{X}$ such that $s_w(o, P) \geq R$.

The Winner Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP trees. Given a \mathcal{C} -profile P of n LP trees over p issues, the winner problem is to compute an alternative $o \in \mathcal{X}$ with the maximum score $s_w(o, P)$.

Complexity of the Evaluation Problem: k-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(a)
$$k = 2^{p-1} \pm f(p)$$
, $f(p)$ is a poly

(b)
$$k = 2^{p-c}$$
, $c > 1$ is a const

Figure : k-Approval

Complexity of the Evaluation Problem: (k, l)-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

(a)
$$k = l = 2^{p-1}$$

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(b)
$$k = l = 2^{p-c}$$
, $c > 1$ is a const

41 / 53

Figure : (k, l)-Approval ³²

³² Liu and Truszczynski, Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming, ADT, 2013.

Complexity of the Evaluation Problem: b-Borda

	UP	CP
UI	Р	NPC
CI	NPC	NPC

(a)
$$b = 2^p - 1$$

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(b)
$$b = 2^{p-c} - 1$$
, $c \ge 1$ is a const

Figure : b-Borda

Modeling the Problems in ASP

Figure : The winner problem

• Solvers: clingo³³, clingcon³⁴

Preferences Preference Reasoning UNF, 1/7 43 / 53

³³M. Gebser et al. "Potassco: The Potsdam Answer Set Solving Collection". In: <u>AI Communications</u> (2011)

 $^{^{34}}$ Max Ostrowski and Torsten Schaub. "ASP modulo CSP: The clingcon system". In: $\underline{\text{TPLP}}$ (2012)

Modeling the Problems in W-MAXSAT

Figure: The winner problem

Solver: toulbar³⁵

 $^{^{35}\}text{M}$ Sanchez et al. "Max-CSP competition 2008: toulbar2 solver description". In: the Third International CSP Solver Competition (2008)

Random LP Profiles

 To experiment with LP profiles, we developed methods to randomly generate encodings of a special type of CI-CP LP tree of size linear in the number of issues

Varying p and n: 2^{p-2} -approval

Figure: Solving the winner problem

Varying p and n: $(2^{p-2}, 2^{p-2})$ -approval ³⁶

Figure: Solving the winner problem

Preferences Preference Reasoning UNF, 1/7

47 / 53

 $^{^{36}}$ scoring vector: $(2,\ldots,2,1,\ldots,1,0,\ldots,0)$ with the numbers of 2's and 1's equal to 2^{p-2}

Varying p and n: Borda

Figure: Solving the winner problem

Personalization in Trip Planning

- Important to incorporate user constraints and preferences into trip planning systems.
- 2 Collaboration with experts (in AI, planning, optimization, multi-agent systems) at PARC.
- Developed a hipergraph-based trip planner that accommodates constraints specified as *linear temporal logic* and preferences expressed as *preferential cost function* to compute optimal routes using A*37.
- Available later for trip planning in the Bay Area, LA, and Denver.

³⁷Xudong Liu et al. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: <u>PARC Symposium.</u> 2015

Preferences Preference Reasoning UNF, 1/7 49 / 53

Personalization in Trip Planning

- From SJC, to Pier 39, Monday, 9am.
- 2 Constraints: never drive a car, and bike for 1 to 2 hours.
- **③** Preferences: bike = public (0.25) > wait(2) > walk(3), and 30\$/hr.

Data-Driven Preference Engineering

- Recommender Systems³⁸:
 - Collaborative
 - Ontent-based
 - Hybrid
- Machine Learning:
 - Supervised learning (e.g., decision trees, random forests)
 - 2 Label ranking³⁹
- Preference Elicitation (Human-in-the-Loop):
 - Context-based
- Preference Learning:
 - Conditional Preference Networks, Preference Trees
 - Stochastic Models (e.g., Choquet integral⁴⁰, TOPSIS-like models⁴¹)

 $^{^{38}}$ Gediminas Adomavicius and Alexander Tuzhilin. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions". In: Knowledge and Data Engineering, IEEE Transactions on (2005)

³⁹Eyke Hüllermeier et al. "Label ranking by learning pairwise preferences". In: <u>Artificial Intelligence</u> (2008)

 $^{^{40}}$ Agnes Leroy, Vincent Mousseau, and Marc Pirlot. "Learning the parameters of a multiple criteria sorting method". In: Algorithmic decision theory. 2011

⁴¹Manish Agarwal, Ali Fallah Tehrani, and Eyke Hüllermeier. "Preference-based Learning of Ideal Solutions in TOPSIS-like Decision Models". In: <u>Journal of Multi-Criteria Decision Analysis</u> (2014)

Preference Reasoning and Applications

- Social Choice and Welfare⁴²:
 - Voting
 - Fair devision
 - Strategyproof Social Choice
- Automated Planning and Scheduling:
 - Travel scheduling
 - Manufacturing
 - Traffic control
- Computer Vision and Image Processing:
 - Image retrieval
 - 2 Image and video understanding

Preferences Future Research Scenarios UNF, 1/7 52 / 53

⁴²Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. <u>Handbook of Social Choice & Welfare</u>. Vol. 1 & 2. Elsevier, 2010

Questions?

Thank you!

Preferences Conclusion UNF, 1/7 53 / 53