Además de las vistas en el Capítulo 5, existen otras generalizaciones que veremos en las siguientes secciones.

Supongamos que tenemos una función escalar $f: \mathbb{R}^3 \to \mathbb{R}$, de modo que f envía puntos de \mathbb{R}^3 a números reales. Será útil definir la integral de dicha función f a lo largo de una trayectoria $\mathbf{c} \colon I = [a,b] \to \mathbb{R}^3$, donde $\mathbf{c}(t) = (x(t), y(t), z(t))$. Para relacionar este concepto con algo tangible, supongamos que la imagen de \mathbf{c} representa un alambre. Hacemos que f(x,y,z) denote la densidad de masa en (x,y,z) y la integral de f será la masa total del alambre. Si f(x,y,z) indica la temperatura, también podemos utilizar la integral para determinar la temperatura media a lo largo del alambre. En primer lugar, proporcionamos la definición formal de la integral a lo largo de una trayectoria y luego, después del ejemplo, la motivaremos algo más.

Definición Integral a lo largo de una trayectoria La integral a lo largo de una trayectoria o la integral de f(x,y,z) a lo largo de la trayectoria c está definida cuando $\mathbf{c} : I = [a,b] \to \mathbb{R}^3$ es de clase C^1 y cuando la función compuesta $t \mapsto f(x(t),y(t),z(t))$ es continua en I. Definimos esta integral mediante la ecuación

$$\int_{\mathbf{c}} f \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \|\mathbf{c}'(t)\| \, dt.$$

En ocasiones, $\int_{\mathbf{c}} f \, ds$ se denota

$$\int_{\mathbf{c}} f(x, y, z) \ ds$$

О

$$\int_a^b f(\mathbf{c}(t)) \|\mathbf{c}'(t)\| dt.$$

Si $\mathbf{c}(t)$ solo es a trozos C^1 o $f(\mathbf{c}(t))$ es continua a trozos, definimos $\int_{\mathbf{c}} f \, ds$ dividiendo [a, b] en segmentos sobre los que $f(\mathbf{c}(t)) \| \mathbf{c}'(t) \|$ es continua y sumando las integrales sobre los segmentos.

Cuando f=1, recuperamos la definición de la longitud de arco de **c**. Obsérvese también que para que la definición anterior tenga sentido basta con que f esté definida en la curva imagen C de **c** y no necesariamente en todo el espacio.

Ejemplo 1

Sea **c** la hélice **c**: $[0, 2\pi] \to \mathbb{R}^3$, $t \mapsto (\cos t, \sin t, t)$ (veáse la Figura 2.4.9) y sea $f(x, y, z) = x^2 + y^2 + z^2$. Calcular la integral $\int_{\mathbf{c}} f(x, y, z) \, ds$.

Solución

En primer lugar calculamos $\|\mathbf{c}'(t)\|$:

$$\|\mathbf{c}'(t)\| = \sqrt{\left[\frac{d(\cos t)}{dt}\right]^2 + \left[\frac{d(\sin t)}{dt}\right]^2 + \left[\frac{dt}{dt}\right]^2}$$
$$= \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}.$$