2. Металл **X** – важный конструкционный материал. Хлорирование минерала **A**, являющегося оксидом элемента **X**, в присутствии углерода приводит к образованию летучего высшего хлорида **B**. Восстановление **B** магнием позволяет получить простое вещество **X**. При взаимодействии **A** с водородом происходит лишь частичное восстановление **A** до соединения **C** (ω (**X**) = 64.22%).

Для получения высокочистого металла \mathbf{X} его нагревают в вакуумированном сосуде с небольшим количеством галогена \mathbf{D} . Пары образующегося галогенида \mathbf{E} ($\omega(\mathbf{X}) = 8.62\%$) соприкасаются с раскаленной вольфрамовой нитью и разлагаются, а \mathbf{X} осаждается в виде крупных кристаллов.

- 1) Определите вещества X, A-E. Напишите уравнения реакций, указанных в условии.
- Скорость осаждения X на нити немонотонно зависит от температуры системы: достигает максимума при 200 °C, затем резко падает при 400 °C и снова поднимается при 520 °C. Объясните данное явление.
- 3) Почему для получения металла высокой степени чистоты достаточно использовать небольшое количество галогена **D**?

№ 2

1) Т.к. Аявляется оксидом металлаX, то при частичном восстановлении водородом образуется другой оксид – С. Представим его формулу как X_aO_b , тогда:

$$\omega(\mathbf{X}) = \frac{aA_r(\hat{\mathbf{X}})}{aA_r(\mathbf{X}) + 16b} = 0.6422$$

откуда

$$A_r(X) = 28.72 \cdot \frac{b}{a}$$

Займёмся перебором целочисленных значений а и b:

a\b	1	2	3	4	5
1	28,7	57,4	86,2	114,9	143,6
2	14,4	28,7	43,1	57,4	71,8
3	9,6	19,1	28,7	38,3	47,9

Среди полученных значений молярных масс только одно соответствует химическому элементу – титану: $a=3,\ b=5,\ A_r(\mathbf{X})=48.$ Вещество $\mathbf{C}-\mathrm{Ti}_3\mathrm{O}_5$ (смешанный оксид $\mathrm{TiO}_2\cdot\mathrm{Ti}_2\mathrm{O}_3$).

Аналогичным путем можно было определить искомый элемент через массовую долю металла в галогениде E, представив его формулу как $X\Gamma_n$:

металла в галогениде **E**, представив его формулу как X
$$\Gamma_n$$
:
$$\omega(\textbf{\textit{X}}) = \frac{A_r(\textbf{\textit{X}})}{A_r(\textbf{\textit{X}}) + nA_r(\textbf{\textit{\Gamma}})} = 0.0862$$

откуда

$$M(X) = 0.094 \cdot n \cdot A_r(\Gamma)$$

Перебирая целочисленные значения п и атомные массы галогенов

$n \setminus A_r(\Gamma)$	19	35,5	80	127
1	1,8	3,3	7,5	11,9
2	3,6	6,7	15,0	23,9
3	5,4	10,0	22,6	35,8
4	7,1	13,3	30,1	47,8

приходим к тому же выводу: n = 4, $A_r(\Gamma) = 127$. Вещество $E - TiI_4$.

Поскольку C образуется за счет восстановления A, оно должно содержать титан в более высокой степени окисления, т.е. +4. Таким образом, зашифрованные соединения:

A	В	C	D	E
TiO ₂	TiCl ₄	Ti ₃ O ₅	I_2	TiI ₄

Уравнения протекающих реакций:

$$TiO_2 + 2Cl_2 + 2C = TiCl_4 + 2CO$$

 $TiCl_4 + 2Mg = Ti + 2MgCl_2$
 $3TiO_2 + H_2 = Ti_3O_5 + H_2O$
 $Ti + 2I_2 = TiI_4$

- 2) Немонотонность скорости осаждения титана от температуры стенок реактора объясняется образованием различных веществ. При низких температурах образуется тетраиодид титана TiI₄, который обладает высокой летучестью. При температуре выше 300 °C образуется дииодид титана TiI₂, имеющий гораздо более низкую летучесть, которая становится существенной лишь при температуре выше 500 °C.
- 3) После осаждения титана на нити выделившийся иод вступает в реакцию с новыми порциями металла:

$$TiI_4 = Ti + 2I_2$$
$$Ti + 2I_2 = TiI_4$$

В ходе процесса иод практически не расходуется, а выполняет роль переносчика металла из холодной зоны в горячую. Такие процессы называются химическими транспортными реакциями.

Рекомендации к оцениванию:

- 1. Определение элемента **X** с обоснованием (расчет или проверка) 1.5 *1.5 балла*
- Определены вещества A-E каждое по 0.5 балла.

 $0.5 \times 5 = 2.5$ балла

- 3. Записаны 6 уравнений реакции каждое по 0.5 балла (если в $0.5 \times 6 = 3$ балла уравнении неверно расставлены коэффициенты, за него ставится 0.25 балла).
- 4. Обоснование немонотонности скорости осаждения 2 балла.

2 балла

Дан верный ответ на вопрос о количестве галогена – 1 балл.

1 балл

ИТОГО: 10 баллов