Stiffness mediated heterogeneity

Rahul Kulkarni

January 13, 2015

Abstract

1 Introduction

2 Implementation

2.1 Program Flow

2.2 Cell/ECM properties and their range

Biological Cell

Prpoerty Name	Value
type	
age	
stiffness	(0,1)
divisionRate	(0,1)
size	(0,1)
contractility	(0,1)
invasiveness	(0,1)
degradationPotential	(0,1)
sensingRadius	1

ECM Site	Prpoerty Name	Value
	type	0
	fiberDensity	(1,10)
	crossLinking	(0,1)

2.3 Function details

2.3.1 Update Division Rate

$$divisionRate = \frac{Number\ of\ ECM\ Sites\ in\ Neighbourhood}{Number\ of\ ECM\ Sites\ in\ Neighbourhood\ +\ 1} \tag{1}$$

2.3.2 Update Stiffness

$$stiffness = \frac{\sum_{\forall i \ and \ ECM \ Site \in \ Neighbourhood \ crossLinking_i}{Number \ of \ ECM \ Sites \ in \ Neighbourhood}}{Neighbourhood}$$
(2)

2.3.3 Update Degradation Potential

$$degradationPotential = \frac{\sum_{\forall i \ and \ ECM \ Site \in Neighbourhood} fiberDensity_i}{\sum_{\forall i \ and \ ES \in Neighbourhood} fiberDensity_i + 2}$$

$$(3)$$

2.3.4 Update Fiber Density

$$fiber Density_i = fiber Density_i - fiber Density_i * average Degradation Rate$$
 where

$$Average\ Degradation\ Rate = \frac{\sum_{\forall\ i\ and\ BC\ \in\ NeighbourhooddegradationPotential_i}{Number\ of\ BC\ in\ Neighbourhood}$$
 where BC is Biological Cell

2.3.5 Update State Of Transient Amplifying Cell

3 Results