Programozáselmélet - Programozási alapfogalmak Készítette: Borsi Zsolt

1. Állapottér

A feladat adatokról szól, a program is adatokkal dolgozik. Egy adat típusérték-halmaza az adat lehetséges értékeiből áll.

Definíció (Állapot): Legyenek A_1, \ldots, A_n (ahol $n \in \mathbb{N}^+$) típusérték-halmazok és v_1, \ldots, v_n a halmazokat azonosító egyedi címkék (változók). Az ezekből képzett, címkézett értékeknek egy $\{v_1:a_1,\ldots,v_n:a_n\}$ halmazát (ahol $\forall i \in [1..n]:a_i \in A_i$) állapotnak nevezzük.

Egy-komponensű állapottér esetén $\{v_1:a_1\}$ helyett írhatunk a_1 -et is.

Definíció (Állapottér): Legyenek A_1, \ldots, A_n (ahol $n \in \mathbb{N}^+$) típusérték-halmazok és v_1, \ldots, v_n a halmazokat azonosító egyedi címkék (változók). Az ezekből képzett összes lehetséges $\{v_1:a_1,\ldots,v_n:a_n\}$ állapot (ahol $\forall i\in[1..n]:a_i\in A_i$) halmazát állapottérnek nevezzük és $(v_1:A_1,\ldots,v_n:A_n)$ -nel jelöljük.

$$(v_1:A_1,\ldots,v_n:A_n) ::= \{ \{v_1:a_1,\ldots,v_n:a_n\} | \forall i \in [1..n] : a_i \in A_i \}$$

Definíció (Változó): Az $A = (v_1:A_1, \dots, v_n:A_n)$ állapottér cimkéire (*változók*) úgy tekintünk mint $v_i: A \to A_i$ függvényekre, ahol $v_i(a) = a_i$ egy $a = \{v_1:a_1, \dots, v_n:a_n\}$ állapot esetén.

Definíció (Altér): Legyenek $A=(v_1:A_1,\ldots,v_n:A_n)$ és $B=(u_1:B_1,\ldots,u_n:B_m)$ állapotterek $(n,m\in\mathbb{N}^+$ és $m\leqslant n)$. Azt mondjuk, hogy az A állapottérnek altere a B állapottér $(B\leq A)$, ha van olyan $\varphi\colon [1..m]\to [1..n]$ injekció, amelyre $\forall i\in [1..m]: B_i=A_{\varphi(i)}$.

2. Feladat

Definíció (Feladat): Legyen A tetszőleges állapottér. Feladatnak nevezünk egy $F \subseteq A \times A$ relációt.

A feladat fenti definíciója természetes módon adódik abból, hogy a feladatot egy leképezésnek tekintjük az állapottéren, és az állapottér minden pontjára megmondjuk, hova kell belőle eljutni, ha egyáltalán el kell jutni belőle valahova.

3. Sorozatok

Jelölés: Ha H tetszőleges halmaz, akkor jelölje H^{**} az olyan (akár véges, vagy akár végtelen) sorozatok halmazát, mely sorozatok elemei mind a H halmazból valók. A H-beli

véges sorozatok halmazát H^* -gal, a végtelen sorozatok halmazát H^{∞} -nel jelöljük. Tehát $H^{**}=H^*\cup H^{\infty}$. Egy $\alpha\in H^*$ sorozat hosszát jelölje $|\alpha|$, végtelen sorozat esetén legyen $|\alpha|=\infty$.

4. Program

Definíció (Program): Legyen A az úgynevezett alap-állapottér ($fail \notin A$). Jelölje \bar{A} azon véges komponensű állapotterek unióját, melyeknek altere az A alap-állapottér: $\bar{A} = \bigcup_{A \subseteq B} B$.

Az A feletti programnak hívjuk az $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ relációt, ha

- 1. $\mathcal{D}_S = A$
- 2. $\forall a \in A : \forall \alpha \in S(a) : |\alpha| \ge 1 \text{ és } \alpha_1 = a$
- 3. $\forall \alpha \in \mathcal{R}_S : (\forall i \in \mathbb{N}^+ : i < |\alpha| \to \alpha_i \neq fail)$
- 4. $\forall \alpha \in \mathcal{R}_S : (|\alpha| < \infty \to \alpha_{|\alpha|} \in A \cup \{fail\})$

5. Elemi programok

Definíció (Elemi program): Legyen A tetszőleges állapottér. Az $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ programot *elemi programnak* nevezzük, ha

$$\forall a \in A \colon S(a) \subseteq \{\langle a \rangle, \langle a, fail \rangle, \langle a, a, a, \cdots \rangle, \langle a, b \rangle \mid b \in A\}$$

A definíció szerint minden programhoz található vele ekvivalens elemi program, csak a sorozatok közbülső elemeit el kell hagyni, így lényegében (egy adott szinten) minden program elemi. Az elemi programok közül kiválasztunk néhány speciális tulajdonsággal rendelkezőt, és a továbbiakban velük foglalkozunk.

Definíció: Legyen A tetszőleges állapottér. SKIP jelöli azt a programot, melyre

$$\forall a \in A \colon SKIP(a) = \{ \langle a \rangle \}$$

A SKIP az állapottér minden a állapotához egyetlen sorozatot, az < a > sorozatot rendeli. Így a-ból indulva a SKIP garantált hogy a-ba jut, és csak oda.

Definíció: Legyen A tetszőleges állapottér. ABORT jelöli azt a programot, melyre

$$\forall a \in A \colon ABORT(a) = \{ \langle a, fail \rangle \}$$

Az ABORT az állapottér minden a állapotához egyetlen sorozatot, az < a, fail > sorozatot rendeli. Így a-ból indulva az ABORT programnak nincs más végrehajtása, mint a fail állapotban végződő végrehajtás.

A harmadik speciális elemi program az értékadás, amivel az állapottér egyes komponenseinek (változóinak) értéke megváltoztatható.