Vorwärtskinematik - Rückwärtskinematik

 $egin{aligned} q &= [q_1, q_2] & w &= [x, y, arphi] \ q &= [q_1, q_2, q_3] & w &= [x, y, arphi] \end{aligned}$ Beispiele: 2D: RR-Roboter:

RRR-Roboter:

3D: Roboter mit Standardkinematik

$$q = [q_1..., q_6]$$
 $w = [x, y, z, rx, ry, rz]$ $w = [x, y, z, A, B, C]$

Robotik, Prof. Dr. Schillhuber

Vorwärtskinematik

Beispiel 2D RR

Möglichkeit 1 für Wahl der Koordinatensysteme

$${}^{1}T_{2} = \begin{bmatrix} {}^{1}R_{2} & {}^{1}t \ 0 & 1 \end{bmatrix} \qquad = \begin{bmatrix} \cos q_{2} & -\sin q_{2} & \cos q_{2}l_{2} \ \sin q_{2} & \cos q_{2} & \sin q_{2}l_{2} \ 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}T_{2} = {}^{0}T_{1} \, {}^{1}T_{2} = egin{bmatrix} \cos(q_{1} + q_{2}) & -\sin(q_{1} + q_{2}) & \cos(q_{1} + q_{2})l_{2} + \cos q_{1}l_{1} \ \sin(q_{1} + q_{2}) & \cos(q_{1} + q_{2}) & \sin(q_{1} + q_{2})l_{2} + \sin q_{1}l_{1} \ 0 & 0 & 1 \end{bmatrix}$$

Punkt P im Koordinatensystem {0}

$${}^0 ilde{p} = {}^0T_2\,{}^2 ilde{p} = {}^0T_2\, {}^2egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = egin{bmatrix} \cos(q_1+q_2)l_2 + \cos q_1l_1 \ \sin(q_1+q_2)l_2 + \sin q_1l_1 \ 1 \end{bmatrix}$$

Robotik, Prof. Dr. Schillhuber

3

Vorwärtskinematik

Beispiel 2D RR

Möglichkeit 2 für Wahl der Koordinatensysteme

$${}^{0}T_{1} = \left[egin{matrix} {}^{0}R_{1} & {}^{0}t \ 0 & 1 \end{array}
ight] & = \left[egin{matrix} \cos q_{1} & -\sin q_{1} & 0 \ \sin q_{1} & \cos q_{1} & 0 \ 0 & 0 & 1 \end{array}
ight]$$

$$^{1}T_{2} = egin{bmatrix} ^{1}R_{2} & ^{1}t \ 0 & 1 \end{bmatrix} = egin{bmatrix} \cos q_{2} & -\sin q_{2} & l_{1} \ \sin q_{2} & \cos q_{2} & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}{T}_{2} = {}^{0}{T}_{1} \, {}^{1}{T}_{2} = egin{bmatrix} \cos(q_{1} + q_{2}) & -\sin(q_{1} + q_{2}) & \cos q_{1}l_{1} \ \sin(q_{1} + q_{2}) & \cos(q_{1} + q_{2}) & \sin q_{1}l_{1} \ 0 & 0 & 1 \end{bmatrix}$$

Punkt P im Koordinatensystem {0}

$${}^0 ilde{p} = {}^0T_2\,{}^2 ilde{p} = {}^0T_2\, \left[egin{array}{c} l_2 \ 0 \ 1 \end{array}
ight] = \left[egin{array}{c} \cos(q_1+q_2)l_2 + \cos q_1l_1 \ \sin(q_1+q_2)l_2 + \sin q_1l_1 \ 1 \end{array}
ight]$$

HM[●]

Robotik, Prof. Dr. Schillhuber

5

Vorwärtskinematik

Beispiel 2D RRR

gesucht: ${}^0 ilde{p}$

Robotik, Prof. Dr. Schillhuber

Beispiel 2D RRR

$${}^{0}T_{1} = egin{bmatrix} \cos q_{1} & -\sin q_{1} & 0 \ \sin q_{1} & \cos q_{1} & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$^{1}T_{2} = egin{bmatrix} \cos q_{2} & -\sin q_{2} & l_{1} \ \sin q_{2} & \cos q_{2} & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$^2T_3 = egin{bmatrix} \cos q_3 & -\sin q_3 & l_2 \ \sin q_3 & \cos q_3 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$${}^0 ilde{p} = {}^0T_1\, {}^1T_2\, {}^2T_3\, {}^3 ilde{p} = {}^0T_1\, {}^1T_2\, {}^2T_3\, egin{bmatrix} l_3\ 0\ 1 \end{bmatrix}$$

Robotik, Prof. Dr. Schillhuber

7

Vorwärtskinematik

Beispiel 3D Standard Roboter (3 Achsen)

Beispiel 3D Standard Roboter (3 Achsen)

- z-Achsen sind Drehachsen
- Achse 2 und 3 sind parallel zueinander
- Achse 1 und 2 sind senkrecht zueinander

Robotik, Prof. Dr. Schillhuber

9

Vorwärtskinematik

$${}^{0}T_{1} = egin{bmatrix} \cos q_{1} & -\sin q_{1} & 0 & 0 \ \sin q_{1} & \cos q_{1} & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{1}T_{2} = egin{bmatrix} \cos q_{2} & -\sin q_{2} & 0 & l_{1,x} \ 0 & 0 & -1 & 0 \ \sin q_{2} & \cos q_{2} & 0 & l_{1,z} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{2}T_{3}=egin{bmatrix} \cos q_{3} & -\sin q_{3} & 0 & l_{2,x} \ \sin q_{3} & \cos q_{3} & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0} ilde{p}={}^{0}T_{1}\,{}^{1}T_{2}\,{}^{2}T_{3}\,{}^{3} ilde{p}={}^{0}T_{1}\,{}^{1}T_{2}\,{}^{2}T_{3}\,\left[egin{matrix} l_{3},x\ 0\ 0\ 1 \end{matrix}
ight]$$

Robotik, Prof. Dr. Schillhuber

11

Vorwärtskinematik

Denavit-Hartenberg-Parameter Vorgehensweise

Festlegung von Geraden, Verbindungslinien und Koordinatensystemen um die kinematische Kette zu beschreiben

- 1. Durch jedes Gelenk geht eine Gerade
- 2. Verbindung zweier Geraden über Gemeinlot

Spezialfälle: Gelenkgeraden - schneiden sich

- sind parallel
- sind identisch

Robotik, Prof. Dr. Schillhuber

DH-Parameter (klassisch)

Robotik, Prof. Dr. Schillhuber

13

Vorwärtskinematik

DH-Parameter (klassisch)

- z_{n-1} Achse geht in Bewegungsrichtung des n-ten Gelenks
- $\mathbf{x_n}$ Achse ist das Kreuzprodukt von $\mathbf{z_{n-1}}$ und $\mathbf{z_n}$ Achse (Gemeinlot) $x_n = z_{n-1} \times z_n$
- y_n Achse ergibt sich aus Ergänzung zum Rechtssystem

Anmerkungen:

- Nulllage wird vom Hersteller festgelegt (jedes Gelenk kann einen Offset haben)
- manche Gelenke werden vom Hersteller mit negativer Drehrichtung definiert

DH-Parameter (klassisch)

Einzeltransformationen:

- 1. Gelenkwinkel θ_n Rotation um die z_{n-1} Achse damit x_{n-1} auf x_n Achse liegt
- 2. Gelenkabstand d_n Translation entlang z_{n-1} Achse bis Schnittpunkt von z_{n-1} und x_n Achse
- 3. Armlänge a_n Translation entlang x_n Achse bis zum Ursprung n System
- 4. Verwindung α_n Rotation um die x_n Achse damit z_{n-1} auf z_n Achse liegt

Robotik, Prof. Dr. Schillhuber

15

Vorwärtskinematik

DH-Parameter (klassisch)

$$^{n-1}T_n = Rot(z_{n-1},\theta_n)Trans(z_{n-1},d_n)Trans(x_n,a_n)Rot(x_n,\alpha_n)$$

$$=\begin{bmatrix}c\theta_n & -s\theta_n & 0 & 0\\ s\theta_n & c\theta_n & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & d_n\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 0 & a_n\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 0 & 0\\ 0 & c\alpha_n & -s\alpha_n & 0\\ 0 & s\alpha_n & c\alpha_n & 0\\ 0 & 0 & 0 & 1\end{bmatrix}$$

$$=\begin{bmatrix}c\theta_n & -s\theta_n c\alpha_n & s\theta_n s\alpha_n & a_n c\theta_n\\ s\theta_n & c\theta_n c\alpha_n & -c\theta_n s\alpha_n & a_n s\theta_n\\ 0 & s\alpha_n & c\alpha_n & d_n\\ 0 & 0 & 0 & 1\end{bmatrix}$$

DH-Parameter (klassisch)

,	n	α_n	a_n	d_n	θ_n
	1	90°	0	11	q1
2	2	0	12	0	<i>q</i> 2
	3	0	13	0	<i>q3</i>
4	4	90°	0	<i>l4</i>	q4
[;	5	-90°	0	15	<i>q</i> 5
-	5	0	0	16	<i>q6</i>

Robotik, Prof. Dr. Schillhuber

17

Vorwärtskinematik

DH Parameter für UR3 aus UR Steuerung

/home/ur/ursim-current/.urcontrol/urcontrol.conf.UR3

```
[DH]  a = [0.00000, -0.24365, -0.21325, 0.00000, 0.00000, 0.00000] \\ d = [0.1519, 0.00000, 0.00000, 0.11235, 0.08535, 0.0819] \\ alpha = [1.570796327, 0, 0, 1.570796327, -1.570796327, 0] \\ q_home_offset = [0, -1.570796327, 0, -1.570796327, 0, 0] \\ joint_direction = [1, 1, -1, 1, 1, 1]
```


Robotik, Prof. Dr. Schillhuber

modifizierte DH-Parameter

Robotik, Prof. Dr. Schillhuber

19

Vorwärtskinematik

DH-Parameter (modifiziert)

- z_n Achse geht in Bewegungsrichtung des n-ten Gelenks
- $\mathbf{z_n}$ Achse ist das Kreuzprodukt von $\mathbf{z_n}$ und $\mathbf{z_{n+1}}$ Achse (Gemeinlot) $x_n = z_n \times z_{n+1}$
- y_n Achse ergibt sich aus Ergänzung zum Rechtssystem

HM*

Robotik, Prof. Dr. Schillhuber

DH-Parameter (modifiziert)

Einzeltransformationen:

1. Armlänge a_{n-1}

Translation entlang x_{n-1} Achse bis Schnittpunkt von x_{n-1} und z_n Achse

- 2. Verwindung α_{n-1} Rotation um die x_{n-1} Achse damit z_{n-1} auf z_n Achse liegt
- 3. Gelenkabstand d_n Translation entlang $\mathbf{z_n}$ Achse bis zum Ursprung des n Systems
- 4. Gelenkwinkel θ_n Rotation um die z_n Achse damit x_{n-1} auf x_n Achse liegt

Robotik, Prof. Dr. Schillhuber

21

Vorwärtskinematik

DH-Parameter (modifiziert)

$$^{n-1}T_n = Trans(x_{n-1}, a_{n-1})Rot(x_{n-1}, \alpha_{n-1})Trans(z_n, d_n)Rot(z_n, \theta_n)$$

$$=\begin{bmatrix}1 & 0 & 0 & a_{n-1}\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 0 & 0\\0 & c\alpha_{n-1} & -s\alpha_{n-1} & 0\\0 & s\alpha_{n-1} & c\alpha_{n-1} & 0\\0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & d_n\\0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}c\theta_n & -s\theta_n & 0 & 0\\s\theta_n & c\theta_n & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{bmatrix}$$

$$= \begin{bmatrix} c\theta_n & -s\theta_n & 0 & a_{n-1} \\ s\theta_n c\alpha_{n-1} & c\theta_n c\alpha_{n-1} & -s\alpha_{n-1} & -d_n s\alpha_{n-1} \\ s\theta_n s\alpha_{n-1} & c\theta_n s\alpha_{n-1} & c\alpha_{n-1} & d_n c\alpha_{n-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DH-Parameter (modifiziert)

n	$ lpha_{n-1} $	a_{n-1}	d_n	θ_n
1	0	0	11	ql
2	90°	0	0	q2 +180°
3	0	12	0	<i>q3</i>
4	0	13	<i>l4</i>	q4
5	-90°	0	15	<i>q</i> 5
6	90°	0	<i>l</i> 6	<i>q6</i> +180°

Nullstellung des Herstellers berücksichtigt

Robotik, Prof. Dr. Schillhuber

23

Vorwärtskinematik

n	$ a_{n-1} $	a_{n-1}	d_n	θ_n
1	0	0	815	q1
2	-90°	350	0	<i>q</i> 2
3	0	850	0	q3 -90°
4	-90°	145	820	q4
5	90°	0	0	<i>q</i> 5
6	-90°	0	170	<i>q6</i> +180°

Nullstellung des Herstellers berücksichtigt

Achtung: bei KUKA ist Drehrichtung bei Achse 1, 4 und 6 negativ

Robotik, Prof. Dr. Schillhuber

