Teoría de la Computación 2023

Lab 01

17.julio.2023

- 1. Describir los lenguajes representados por las siguientes expresiones regulares:
 - i) 1*(0|1)*,
 - ii) $1^+(0|1)^*00^*$,
 - iii) $(a|b)^*aa(a|b)^*$,
 - iv) $(0^*|0^*(1|11))(00^*(1|11)^*0^*)$.
- 2. Representar los siguientes lenguajes o conjuntos de cadenas mediante una expresión regular:
 - i) Las cadenas binarias que no tienen dos 0's consecutivos.
 - ii) Las cadenas binarias que representan una potencia de 2.
 - ii) Las que consisten de los símbolos a,b,c que contienen la subpalabra "cab".
- 3. Para cada uno de los autómatas DFA a continuación,
 - (i) ¿Cuál es el lenguaje aceptado?
 - (ii) Elaborar la tabla de transición.

4. En el autómata

Establecer formalmente la secuencia de pasos y transiciones en el para la cadena,

$$w = aabababb$$

e indicar si dicha cadena es aceptada o no.

5. Para cada una de los lenguajes indicados a continuación

- Hallar una expresión regular para el lenguaje (cuando sea el caso).
- Expresar la cadena en notación polaca revertida (postfix).
- Diseñar un autómata finito determinista (AFD) que represente la expresión regular.
- a) $\Sigma = \{a, b\}, r = (ab)^*.$
- b) $\Sigma = \{a, b\}, r = (ab)^*b$.
- c) $\Sigma = \{a\}$, $L = \{\text{cadenas con un número de } a \text{'s igual a un múltiplo de 3}\}.$
- d) $\Sigma=\{0,1\}$, $L=\{{\rm cadenas~binarias~con~un~n\'umero~impar~de~0's}\}.$
- e) $\Sigma = \{0, 1\}$, $r = (111 \mid 1001)^*$.