Hoja 3

Espacios vectoriales

Problema 3.1 Demostrar que el conjunto \mathbb{P}_3 de polinomios $a_0 + a_1x + a_2x^2 + a_3x^3$ de grado 3 ó inferior es un espacio vectorial (siendo a_0 , a_1 , a_2 , a_3 números reales cualesquiera y x la variable). Demostrar que el conjunto $P^{(3)}$ de polinomios $a_0 + a_1x + a_2x^2 + a_3x^3$ de grado exactamente 3 (es decir, con $a_3 \neq 0$) no es un espacio vectorial.

Nótese que en general el conjunto de polinomios \mathbb{P}_n de grado menor o igual que $n \in \mathbb{N}$ es un espacio vectorial.

Problema 3.2 Dado el espacio vectorial \mathbb{R}^3 decidir cuál de los siguientes subconjuntos son subespacios:

- 1. $\{(x,0,z)^t : x,z \in \mathbb{R}\}.$
- 2. $\{(x,y,z)^t : x = 2y, x, y, z \in \mathbb{R}\}.$
- 3. $\{(x,y,z)^t : x = 2y + 5, x, y, z \in \mathbb{R}\}.$

Problema 3.3 Consideremos las tres matrices del espacio vectorial $\mathbb{R}^{2\times 2}$ dadas por

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Demostrar que el conjunto de todas las combinaciones lineales de A, B, C es un subespacio de $\mathbb{R}^{2\times 2}$.

Problema 3.4 Determinar si los conjuntos de polinomios $S_1 = \{p \in \mathbb{P}_2 \colon p(0) = 0, p'(0) = 0\}$ y $S_2 = \{p \in \mathbb{P}_2 \colon p(0) = 0, p'(0) = 1\}$ son subespacios de \mathbb{P}_2 .

Problema 3.5 Determinar si los conjuntos de matrices

$$S_1 = \left\{ A = \left(egin{array}{c} a & b \ c & d \end{array}
ight) : a,b,c,d \in \mathbb{Z}
ight\}$$

y $S_2 = \left\{ A \in \mathbb{R}^{2 \times 2} \colon det(A) = 0 \right\}$ son subespacios de $\mathbb{R}^{2 \times 2}.$

Problema 3.6 Sea V un espacio vectorial sobre el cuerpo \mathbb{K} y consideremos sus subespacios S_1, S_2 y S_3 . Determinar si las siguientes expresiones son ciertas o no.

a)
$$S_1 \cap (S_2 + S_3) = (S_1 \cap S_2) + (S_1 \cap S_3)$$
.

b)
$$(S_1 \cap S_2) + (S_1 \cap S_3) = S_1 \cap (S_2 + (S_1 \cap S_3)).$$

Problema 3.7 Sea T es subconjunto de todas las matrices en $\mathbb{R}^{n\times n}$ (con $n\in\mathbb{N}$) que tienen traza nula. Determinar si T es un subespacio vectorial de $\mathbb{R}^{n\times n}$.