Skalar- und Vektorfelder

Abgabe über die NextCloud bis 23:59 Uhr des o.g. Datums.

Aufgabe 1 Programmieren: Gradient

(6 Punkte)

In dieser Aufgabe soll die Berechnung und Darstellung des Gradienten zwischen einer kontinuierlichen 2D-Funktion und einem diskreten 2D-Datensatz (also einem Bild) verglichen werden. In $\mathtt{task4_1.py}$ finden Sie bereits eine Darstellung der Funktion $f(x,y) = 3x^2 - 4y^2$ in einem quadratischen Bereich um [-3,3]. Außerdem wurde das Bild $\mathtt{circle.png}$ geladen und wird als Bild-Plot angezeigt.

a) (2 Punkte)

Berechnen Sie den Gradienten von f(x,y). Dafür müssen Sie die partiellen Ableitungen (manuell) bestimmen. Zeigen Sie das Ergebnis an, indem Sie den Plot der Funktion in Schritten von 0.5 in x- und y-Richtung abtasten. Zeichnen Sie an den Abtastungsstellen den Gradienten als Pfeil mittels axis.quiver ein (siehe Cheatsheet Quiverplots). Um die Abtastungsstellen zu definieren, bietet sich z.B. np.arange an.

b) (1 Punkt)

Findet sich im dargestellten Funktionsbereich von f(x, y) ein Extremwert? Zeichnen Sie diesen als einen grünen Punkt ein.

c) (3 Punkte)

Zeigen Sie nun eine Darstellung des Gradienten auf circle.png. Da es sich hier um eine diskrete Domäne handelt, müssen Sie die Vorwärtsableitung (forward derivative) in x- und y-Richtung verwenden. Zeichnen Sie wie zuvor Pfeile ein, welche die Gradientenrichtung zeigen. Verwenden Sie hier Abstastungsschritte von 10 in x- und y-Richtung für die Pfeilpositionen. Wählen Sie einen passenden Skalierungsfaktor für die Größe der Pfeile, sodass diese auf dem Ergebnisplot gut zu differenzieren sind.

Hinweise:

- Der Zugriff auf einen Pixel p = (x, y) erfolgt mittels circle_bw[y,x]. Das ist aus "Koordinatensicht" nicht intuitiv und liegt daran, dass Numpy die klassische Matrixindizierung verwendet, d.h. zuerst die Reihe, dann die Spalte angegeben wird.
- Denken Sie beim Anwenden der Vorwärtsableitung daran, dass die y-Achse von Bildern/Matrizen invertiert ist, also von oben nach unten verläuft.

Das Ergebnis sieht so aus:

Aufgabe 2 Skalarfelder

(4 Punkte)

Geben Sie die Antworten auf die Theorieaufgaben in der Multiple-Choice-Datei MC04.txt an. Es ist immer genau eine Auswahlmöglichkeit richtig. Bitte keine anderen Anmerkungen in diese Datei schreiben und den Dateinamen nicht verändern.

a) (1 Punkt)

Der Gradient zeigt immer...

- (a) in Richtung des steilsten Abstiegs (steepest descent).
- (b) in Richtung der höchsten Steigung (highest slope).
- (c) in Richtung der Isolinie (Höhenlinie).
- (d) in Richtung der Oberflächennormale.

b) (1 Punkt)

Wie lautet die Hesse-Matrix zu f(x, y) aus Aufgabe 1? Mögliche Antworten:

(a)
$$\mathbf{H}(f) = \begin{pmatrix} 6 & 0 \\ 0 & -8 \end{pmatrix}$$
 (b) $\mathbf{H}(f) = \begin{pmatrix} 0 & 6 \\ -8 & 0 \end{pmatrix}$ (c) $\mathbf{H}(f) = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix}$ (d) $\mathbf{H}(f) = \begin{pmatrix} 0 & 3 \\ -4 & 0 \end{pmatrix}$

(b)
$$\mathbf{H}(f) = \begin{pmatrix} 0 & 6 \\ -8 & 0 \end{pmatrix}$$

(c)
$$\mathbf{H}(f) = \begin{pmatrix} 3 & 0 \\ 0 & -4 \end{pmatrix}$$

(d)
$$\mathbf{H}(f) = \begin{pmatrix} 0 & 3 \\ -4 & 0 \end{pmatrix}$$

c) (1 Punkt)

Um welche Art von Extremum handelt es sich bei Aufgabe 1 b)?

- (a) Sattelpunkt.
- (b) Lokales Minimum.
- (c) Lokales Maximum.
- (d) Es ist kein isolierter kritischer Punkt und damit lässt sich der Punkt nicht klassifizieren.

d) (1 Punkt)

Nach dem guadrangle lemma ist nur eine bestimmte Abfolge von kritischen Punkten um eine Morse-Smale Zelle möglich. Angenommen die folgenden kritischen Punkte umschließen eine solche Zelle im Uhrzeigersinn, welche Reihenfolge ist ungültig?

- (a) Sattelpunkt, Minimum, Sattelpunkt, Maximum.
- (b) Minimum, Sattelpunkt, Maximum, Sattelpunkt.
- (c) Maximum, Sattelpunkt, Minimum, Sattelpunkt.
- (d) Minimum, Maximum, Sattelpunkt, Minimum.

Aufgabe 3 Vektorfelder

(5 Punkte)

Gegeben sei das Vektorfeld $\mathbf{v}(x,y) = \begin{pmatrix} xy - 3x \\ 4y - xy + x \end{pmatrix}$.

a) (1 Punkt)

Berechnen Sie die Ableitungen $\mathbf{v}_x, \mathbf{v}_y$ und die daraus resultierende Jacobi-Matrix **J**. Mögliche Antworten:

(a)
$$\mathbf{J} = \begin{pmatrix} x & 4-x \\ y-3 & 1-y \end{pmatrix}$$

(b)
$$\mathbf{J} = \begin{pmatrix} 1 - y & y - 3 \\ x & 4 - x \end{pmatrix}$$

(c)
$$\mathbf{J} = \begin{pmatrix} x - 3 & 1 - x \\ y & 4 - y \end{pmatrix}$$

(a)
$$\mathbf{J} = \begin{pmatrix} x & 4-x \\ y-3 & 1-y \end{pmatrix}$$
 (b) $\mathbf{J} = \begin{pmatrix} 1-y & y-3 \\ x & 4-x \end{pmatrix}$ (c) $\mathbf{J} = \begin{pmatrix} x-3 & 1-x \\ y & 4-y \end{pmatrix}$ (d) $\mathbf{J} = \begin{pmatrix} y-3 & x \\ 1-y & 4-x \end{pmatrix}$

b) (1 Punkt)

Bestimmen Sie die zwei kritischen Punkte von $\mathbf{v}(x,y)$. Mögliche Antworten:

(a)
$$x = 0 \qquad x = 4$$
$$y = 0 \qquad y = 3$$

$$\begin{array}{ccc}
(c) & x = 0 & x = 6 \\
 & y = 0 & y = 3
\end{array}$$

$$\begin{array}{ccc}
(d) & x = 0 & x = \\
 & y = 0 & y =
\end{array}$$

c) (3 Punkte)

Bestimmen Sie mithilfe von ${\bf J}$ den Typ der kritischen Punkte. Mögliche Antworten:

- (a) Center, attracting focus.
- (b) Saddle node, attracting focus.
- (c) Repelling focus, saddle node.
- (d) Saddle node, attracting node.