Another yes, y=2x is a linear combination of the functions y=x&

Another Method, if y=2x is a linear combination of y, & yz, then y, y, yz must be linearly dependent.

$$||W(y,y_1,y_2)| = \begin{vmatrix} 2x & x & x^2 \\ 2 & 1 & 2x \end{vmatrix} = 2(2x-2x) = 0$$

As W(y, y, yz)=0, Hence they are linearly dependent.

Therefore, y=2x is a linear combination of y=x & $y=x^2$

$$\frac{And 2}{V(y,y,y_2)} = \begin{vmatrix} \sin x & \cos x & \sin(x+1) \\ \cos x & -\sin x & \cos(x+1) \\ -\sin x & -\cos x & -\sin(x+1) \end{vmatrix}$$

= pinx[ain x pin(x+1)+ coax coa(x+1)]-coax[-coax con(x+1)]+ sin x 100 (x+1)] + sin (x+1) [-1002 - sin2x]

=
$$(\rho m_x^2 + \rho s^2 x) (\rho m(x+1)) - \rho m(x+1) (\rho m_x^2 + \rho s^2 x)$$

+ $\rho m_x \rho s x \rho s x (x+1) - \rho m_x \rho s x \rho s x (x+1)$

Theoryfore, y, y., y, are briestly defendent

: 43 is a linear combination of y, & 42.

Ans. By the Adjunction of linear widefundence / defendence

where
$$f$$
 is f is f in f i

Hence they are L.D.

| Lab |
$$2t^2 t^4$$
 | $4t^3$ | $= 8t^5 - 4t^5 = 4t^5 + 0$

| Hence they are LT:

| Amas: finish, the = $\frac{4x^2-7x}{3y^2+2}$, $y(1)=1$

| This is I order differential sym. & is potentially form.

| By relationizing, low get, $3y^2 dy + 2dy = 4x^2 dx - 7x dx$

| Antigriating, $\int 3y^2 dy + 2 \int dy = 4 \int x^2 dx - 7x dx + C_1$

| $y^3 + 2y = 4x^3 - 7x^2 + C_1$

| $6y^3 + 12y = 8x^3 - 21x^2 + C_1$

| $6y^3 + 12y = 8x^3 - 21x^2 + C_1$

| Rest $y(1)=1$, $6(1) + 12(1) = 8(1) - \frac{2}{3}(1) + C_1$

| $C_1 = 31$ |

| Hence the Soln is $-\frac{C_1 = 31}{5(y^3 + 12y - 8x^3 - 21x^2 + 31)}$

| Amas: Gruin, $\frac{d^2y}{dx^2} = 2$, on integrating $-\frac{d^2y}{dx^2} = 2x + C_1$

| $y^2(0) = 6$, from 0 | $C_1 = 6$ |

| $y^2(0) = 0$, from 0 | $C_2 = 0$ |

| Solution $-\frac{C_1 = 6}{3}$ | $C_2 = 0$ |

| Solution $-\frac{C_1 = 6}{3}$ | $C_2 = 0$ |

| $C_3 = 0$ | $C_4 = 0$

Anot given
$$\frac{d^2y}{dt^2} + 4y = 0$$

i) To find CF. $m^2 + 4 = 0$
 $m = \pm 2i$
 $y = c_1 e^{2ix} + c_2 e^{2ix}$
 $PI = 0$, since it is Homogonous differential by:

 $8VP$, $y(0) = 2$ & $y(T/4) = 10$
 $y(0) = c_1 + c_2$ | $y(T/4) = 10$
 $c_1 + c_2 = -2$ | $c_1 + c_2 = 10$
 $c_1 - ic_2 = 10$

Solution $\Rightarrow y = 4e^{2ix} - 6e^{2ix}$
 $c_1 + c_2 = -2$
 $c_1 + c_2 = -2$

An finitely many solm. exits , family $\Rightarrow y = c_1 e^{2ix} + c_2 e^{2ix}$
 $y(0) = -2$
 $y(2\pi) = 3$
 $c_1 + c_2 = -2$
 $c_1 + c_2 = -2$

No Soln. exists. Ans