

Introduction to Audio Content Analysis

Module 7.2: Representation of Pitch in Music

alexander lerch

introduction overview

corresponding textbook section

section 7.2

lecture content

- pitch-related music terminology: interval, mode, tonic, chord
- learning objectives
 - name musical intervals and notate them in score notation
 - explain pitch distance
 - discuss whether a chord is a harmony

introduction overview

corresponding textbook section

section 7.2

lecture content

• pitch-related music terminology: interval, mode, tonic, chord

learning objectives

- name musical intervals and notate them in score notation
- explain pitch distance
- discuss whether a chord is a harmony

musical pitch notation and names

Georgia Center for Music Tech || Technology

each octave (freq factor 2) is split into 12 pitch classes

0	1	2	3	4	5	6	7	8	9	10	11
\overline{C}	$C\sharp/D\flat$	D	D♯/E♭	Е	F	F♯/G♭	G	$G\sharp/A\flat$	Α	A♯/B♭	В

musical pitch intervals

Interval	Enharmonic Equivalent	Δ ST
Unison	Diminished Second	0
Minor Second	Augmented Unison	1
(Major) Second	Diminished Third	2
Minor Third	Augmented Second	3
Major Third	Diminished Fourth	4
(Perfect) Fourth	Augmented Third	5
Augmented Fourth	Diminished Fifth/Tritone	6
(Perfect) Fifth	Diminished Sixth	7
Minor Sixth	Augmented Fifth	8
Major Sixth	Diminished Seventh	9
Minor Seventh	Augmented Sixth	10
Major Seventh	Diminished Octave	11
(Perfect) Octave	Augmented Seventh	12

musical pitch MIDI pitch

$$\mathfrak{p}(f) = 69 + 12 \cdot \log_2 \left(\frac{f}{f_{A4}}\right)$$

$$f(\mathfrak{p}) = f_{A4} \cdot 2^{\frac{\mathfrak{p}-69}{12}}$$

MIDI pitch mapping to pitch class

$$PC(\mathfrak{p}) = \mod(\mathfrak{p}, 12)$$

musical pitch MIDI pitch

$$\mathfrak{p}(f) = 69 + 12 \cdot \log_2 \left(\frac{f}{f_{A4}}\right)$$

$$f(\mathfrak{p}) = f_{A4} \cdot 2^{\frac{\mathfrak{p}-69}{12}}$$

MIDI pitch mapping to pitch class

$$\mathrm{PC}(\mathfrak{p}) = \mod(\mathfrak{p},12)$$

musical pitch (MIDI) pitch distance

cent: pitch distance between two frequencies

$$\Delta C(f_1, f_2) = 100 \cdot (\mathfrak{p}(f_1) - \mathfrak{p}(f_2))$$

$$= 100 \cdot \left(\left(69 + 12 \cdot \log_2 \left(\frac{f_1}{f_{A4}} \right) \right) - \left(69 + 12 \cdot \log_2 \left(\frac{f_2}{f_{A4}} \right) \right) \right)$$

$$= 1200 \cdot \log_2 \left(\frac{f_1}{f_2} \right)$$

 \Rightarrow 100 cents span one semitone

musical pitch (MIDI) pitch distance

cent: pitch distance between two frequencies

$$\Delta C(f_1, f_2) = 100 \cdot \left(\mathfrak{p}(f_1) - \mathfrak{p}(f_2) \right)$$

$$= 100 \cdot \left(\left(69 + 12 \cdot \log_2 \left(\frac{f_1}{f_{A4}} \right) \right) - \left(69 + 12 \cdot \log_2 \left(\frac{f_2}{f_{A4}} \right) \right) \right)$$

$$= 1200 \cdot \log_2 \left(\frac{f_1}{f_2} \right)$$

 \Rightarrow 100 cents span one semitone

musical pitch (MIDI) pitch distance

cent: pitch distance between two frequencies

$$\begin{split} \Delta C(f_1, f_2) &= 100 \cdot \left(\mathfrak{p}(f_1) - \mathfrak{p}(f_2) \right) \\ &= 100 \cdot \left(\left(69 + 12 \cdot \log_2 \left(\frac{f_1}{f_{A4}} \right) \right) - \left(69 + 12 \cdot \log_2 \left(\frac{f_2}{f_{A4}} \right) \right) \right) \\ &= 1200 \cdot \log_2 \left(\frac{f_1}{f_2} \right) \end{split}$$

 $\Rightarrow 100\,\mathrm{cents}$ span one semitone

musical pitch temperament

- equally tempered scale:
 - octave split into 12 equidistant notes (on log scale)
 - not key dependent, any modulation possible
 - enharmonic equivalence: $C\sharp = D\flat$
 - typical scale for keyboard instruments

$$\frac{f_1}{f_2}=2^{N/12}$$

other scales can sound purer for specific keys but are less commonly used

- expressive intonation: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals
- vibrato
 - periodic modulation around mean pitch
 - frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with

Module 7.2: Representation of Pitch in Music

- expressive intonation: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals

- periodic modulation around mean pitch
- frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone,
 - other possibilities to adjust frequency: guitar, wind instruments,

- expressive intonation: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals

- periodic modulation around mean pitch
- frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone, ...
 - other possibilities to adjust frequency: guitar, wind instruments, . . .

- expressive intonation: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals

- periodic modulation around mean pitch
- frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone, ...
 - other possibilities to adjust frequency: guitar, wind instruments, . . .

- expressive intonation: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals

- periodic modulation around mean pitch
- frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone, ...
 - other possibilities to adjust frequency: guitar, wind instruments, ...

summary lecture content

pitch

- each octave split into 12 pitches
- pitch class is an octave-independent representation of pitch

■ intervals

distance between two pitches

cent

metric for pitch distance

