POS Tagger types

History of Tagging

- 100 BC Dionysis Thrax document eight parts of speech
- 1959 Harris (U Penn) first tagger as part of TDAP parser project
- 1963 Klien and Simmons() Computational Grammar Coder CGC
 - Small lexicon (1500 exceptional words), morphological analyzer and context disambiguator
- 1971 Green and Rubin TAGGIT expanded CGC
 - More tags 87 and bigger dictionary
 - Achieved 77% accuracy when applied to Brown Corpus
- 1983 Marshal/Garside CLAWS tagger
 - Probabilistic algorithm using tag bigram probabilities

History of Tagging

1988 Church () PARTS tagger

- Extended CLAWS idea
- Stored P(tag | word) * P(tag | previous n tags)
- instead of P(word | tag) * P(tag | previous n tags) used in HMM taggers
- 1992 Kupiec HMM tagger
- 1994 Schütze and Singer () variable length Markov Models
- 1994 Jelinek/Magerman decision trees for the probabilities
- 1996 Ratnaparkhi () the Maximum Entropy Algorithm
- 1997 Brill unsupervised version of the TBL algorithm

Why POS Tagging

Why POS Tagging

- Named Entity Recognition (NER)
- Sentiment analysis
- Question answering
- Word sense disambiguation.

POS Tagging

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly
- P preposition of, by, to
- PRO pronoun *I, me, mine*
- DET determiner the, a, that, those

POS Tagging

- Words have more than 1 POS
 - ❖The back door = JJ
 - ❖On my back = NN
 - ❖ Win the waters back = RB
 - Promised to back the bill = VB
- What is POS tagging problem?
- To determine the POS tag for a particular instance of a word

How hard is POS tagging?

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Methods of POS Tagging

- *Rule Based
 - ENGTWOL
- Stochastic
 - HMM, CRF
- N-gram tagging
- Transformation Based Tagging
 - Brill Tagger

- The collection of tags used for a particular task is known as a tagset.
- The POS tagging in this project is using a <u>universal tagset</u>.
- They are total 12 tags in this tagset

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
	punctuation marks	.,;!
Х	other	ersatz, esprit, dunno, gr8, univeristy

	N	V	M
Mary	2	0	0
see	0	3	0
Jane	2	0	0
Will	2	0	3

Incorrect POS Tagging using MFC

Emission Probabilities

	N	М	٧
Mary	4/9	0	0
Jane	2/9	0	0
Will	1/9	3/4	0
Spot	2/9	0	1/4
Can	0	1/4	0
See	0	0	1/2
Pat	0	0	1/4

Transition Probabilities

	N	М	V	<e></e>
<\$>	3/4	1/4	0	0
N	1/9	1/3	1/9	4/9
М	1/4	0	3/4	0
v	1	0	0	0

- HMMM tagger has 1 hidden state for each possible tag
- And 2 distributions
- Emission probabilities and Transition probabilities
- Emission probability probability of observing a given word
- Transition probabilities give the conditional probability of moving between tags
- HMM uses Maximum likelihood estimate
- ❖To find POS for sentence
- ❖ Jane will spot Will

OUTPUT - POS Tagging using HMM

Rule Based Tagging

- Start with a dictionary
- Assign all possible tags to words from dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word

Start with a dictionary

she: PRP

promised: VBN,VBD

to TO

back: VB, JJ, RB, NN

the: DT

bill: NN, VB

 Etc... for the ~100,000 words of English with more than 1 tag

Assign every possible tag

Write rules to eliminate tags

Stage 1 of ENGTWOL Tagging

First Stage: Run words through FST morphological analyzer to get all parts of speech.

Example: Pavlov had shown that salivation ...

Pavlov PAVLOV N NOM SG PROPER

had HAVE V PAST VFIN SVO

HAVE PCP2 SVO

shown SHOW PCP2 SVOO SVO SV

that ADV

PRON DEM SG

DET CENTRAL DEM SG

CS

salivation N NOM SG

Stage 2 of ENGTWOL Tagging

Second Stage: Apply NEGATIVE constraints.

Example: Adverbial "that" rule

■ Eliminates all readings of "that" except the one in

"It isn't <u>that</u> odd"

```
Given input: "that"

If

(+1 A/ADV/QUANT) ;if next word is adj/adv/quantifier

(+2 SENT-LIM) ;following which is E-O-S

(NOT -1 SVOC/A) ; and the previous word is not a

; verb like "consider" which

; allows adjective complements

; in "I consider that odd"
```

Then eliminate non-ADV tags

- 14 - Else eliminate ADV

N-Gram Tagger

- Unigram tagger use 1 item or context, consider 1 token
- This tagging is based on training data memorized data
- Useless for new text
- Tag for "wind" will be same irrespective of context "the wind" or "to wind"

N-Gram Tagger

- N-Gram tagger is generalized unigram tagger
- Context is current word and POS tag of n-1 preceding tokens
- ❖ When n=3, we consider tags of 2 previous words
- N-gram tagger picks the tag most likely in the given context
- As n increases, sparse data problem increases

Default Tagger

- Simplest tagger
- Assigns same tag to each word
- default_tagger = nltk.DefaultTagger('NN')
- default_tagger.tag(tokens) [('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('green', 'NN'), ('eggs', 'NN'), ('and', 'NN'), ('ham', 'NN'), (',', 'NN'), ('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('them', 'NN'), ('Sam', 'NN'), ('I', 'NN'), ('am', 'NN'), ('!', 'NN')]
- Establishes a baseline

Regular Expression Tagger

Assign tag to token on basis of matching pattern Any word ending in ed is the past participle of a verb Any word ending with 's is a possessive noun → >>> patterns = [*... (r'.*ing\$', 'VBG'), # gerunds ... (r'.*ed\$', 'VBD'), # simple past ... (r'.*es\$', 'VBZ'), # 3rd singular present ... (r'.*ould\$', 'MD'), # modals ... (r'.*\'s\$', 'NN\$'), # possessive nouns *... (r'.*s\$', 'NNS'), # plural nouns ... (r'.*', 'NN') # nouns (default) ...]

Lookup Tagger

- *A lot of high-frequency words do not have the NN tag
- Find the hundred most frequent words and store their most likely tag
- use this information as the model for a "lookup tagger"
- what it does on some untagged input text:
- >>> sent = brown.sents(categories='news')[3] >>> baseline_tagger.tag(sent) [('``', '``'), ('Only', None), ('a', 'AT'), ('relative', None), ('handful', None), ('of', 'IN'), ('such', None), ('reports', None), ('was', 'BEDZ'), ('received', None), ("""', """), (',', ','), ('the', 'AT'), ('jury', None), ('said', 'VBD'), (',', ','), ('``', '``'), ('considering', None), ('the', 'AT'), ('widespread', None), ('interest', None), ('in', 'IN'), ('the', 'AT'), ('election', None), (',', ','), ('the', 'AT'), ('size', None), ('of', 'IN'), ('voters', None), ('and', 'CC'), ('the', 'AT'), ('size', None), ('of', 'IN'), ('this', 'DT'), ('city', None), ("""", """"), ('.', '.')]

Conditional Random Field

- Probabilistic approach to POS tagging
- Input in CRF is a set of features
- Derived using feature function

Features in CRF

- Is the first letter of the word capitalised (Generally Proper Nouns have the first letter capitalised)?
- ❖ Is it the first word of the sentence?
- ❖ Is it the last word of the sentence
- Does the word contain both numbers and alphabets?
- Does it have a hyphen (generally, adjectives have hyphens for example, words like fast-growing, slow-moving)
- Is the complete word capitalised?
- ❖ Is it a number?
- What are the first four suffixes and prefixes? (words ending with "ed" are generally verbs, words ending with "ous" like disastrous are adjectives)

Backoff Tagger

- Many words in Lookup tagger have been assigned a tag of None
- Use the lookup table first
- If it is unable to assign a tag, then use the default tagger
- This process is known as backoff

Transformation based Tagging

- Also called Brill tagging
- Require training corpus
- Transforms one state to another state by using transformation rules
- Take inspiration from rule based and stochastic tagging
- Based on rules it assigns tags to words
- *Rules are automatically learned from data

Transformation based Tagging

- ❖ How does it work?
- Start with the solution
- Most beneficial transformation chosen in each cycle
- Apply to the problem transformation chosen in last step

Transformation based Tagging

- Example
- The President said he will ask Congress to increase grants to states for vocational rehabilitation
- Two rules are
- *Replace NN with VB when the previous word is TO
- Replace TO with IN when the next tag is NNS

Phrase	to	increase	grants	to	states	for	vocational	rehabilitation
Unigram	TO	NN	NNS	TO	NNS	IN	JJ	NN
Rule 1		VB						
Rule 2				IN				
Output	TO	VB	NNS	IN	NNS	IN	JJ	NN
Gold	TO	VB	NNS	IN	NNS	IN	JJ	NN

Error Analysis

Look at a confusion matrix

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	-	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

See what errors are causing problems

- Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
- Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

The result is compared with a manually coded "Gold Standard"

- Typically accuracy reaches 96-97%
- This may be compared with result for a baseline tagger (one that uses no context).

Important: 100% is impossible even for human annotators.

Question

- I do not like green eggs and ham, I do not like them Sam I am!
- What will be the output of default tagger?
- default_tagger = nltk.DefaultTagger('NN')

Answer

- I do not like green eggs and ham, I do not like them Sam I am!
- >>> raw = 'I do not like green eggs and ham, I do not like them Sam I am!'
- >>> tokens = nltk.word_tokenize(raw)
- >>> default_tagger = nltk.DefaultTagger('NN')
- >>> default_tagger.tag(tokens)
- ('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('green', 'NN'),
- ('eggs', 'NN'), ('and', 'NN'), ('ham', 'NN'), (',', 'NN'), ('I', 'NN'),
- ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('them', 'NN'), ('Sam', 'NN'),
- ('I', 'NN'), ('am', 'NN'), ('!', 'NN')]

Tagging new words

- Most-frequent-tag approach has a problem!!
- What about words that don't appear in the training set?
- For example, here are some words that occur in a small Brown Corpus test set but not the training set:

Abernathy all-american big-boned

absolution alligator boathouses

Adrien asparagus boxcar

ajar baby-sitter

Alicia bantered

Tagging new words

- New words added to (newspaper) language
 20+ per month
- Plus many proper names ...
- Increases error rates by 1-2%
 - Method 1: assume they are nouns
 - Method 2: assume the unknown words have a probability distribution similar to words only occurring once in the training set.
 - Method 3: Use morphological information, e.g., words ending with –ed tend to be tagged VBN.

Part-of-Speech Tagging: Summary

- Languages generally have a small set of closed class words that are highly frequent, ambiguous, and open-class words like nouns, verbs, adjectives.
 - Various part-of-speech tagsets exist for English, of between 40 and 200 tags.
 - For Turkish, the size of a tagset can be more than 1000.
- **Part-of-speech tagging** is the process of assigning a part-of-speech label to each of a sequence of words.
- The probabilities in HMM taggers are estimated by maximum likelihood estimation on tag-labeled training corpora.
 - Viterbi algorithm is used for decoding, finding the most likely tag sequence.
 - Beam search is a variant of Viterbi decoding that maintains only a fraction of high scoring states rather than all states during decoding.