

CHEMISTRY CAP 8

UNIDADES QUIMICAS DE MASA @ SACO OLIVEROS

CENTRAL METALÚRGICA

... En este tema aprenderemos a realizar ese tipo cálculos.

COMPOSICIÓN CENTESIMAL

Indica el porcentaje en masa de cada elemento que forma parte de un compuesto.

Se determina a partir de la fórmula del compuesto, asumiendo que siendo el todo equivale a 100% y luego se calcula el porcentaje de la parte.

$$= \frac{m_{\text{ELEMENTO}}}{m_{\text{COMPUESTO}}} \times 100\%$$

EJEMPLO N°1:

Calcular la composición centesimal del carbonato de calcio ($CaCO_3$). Datos: mA: (Ca=40, C=12, O=16)

RESOLUCIÓ

 $\frac{N:}{M_{CaCO_3}}$ = 40+ 12+ 16 (3) = 100 uma

$$\%Ca = \frac{40 \times 1}{100} \times 100\%$$

$$= 40\%$$

$$\%C = \frac{12 \times 1}{100} \times 100\% = 12\%$$

$$%O = \frac{16 \times 3}{100} \times 100\%$$

= 48%

FÓRMULA EMPÍRICA O FÓRMULA MÍNIMA

MÍNIMAEs una fórmula no simplificable.

Pasos:

- Dividir los porcentajes en masa por la masa atómica del elemento.
- 2. Dividir los resultados anteriores entre el más pequeño.
- 3. Si los valores anteriores no son enteros se multiplican por un factor que lo convierta en enteros.
- 4. Los números obtenidos corresponden los subíndices de la fórmula empírica.

EJEMPLO N°2: Para la glucosa:

%C = 40%

%H = 6,67%

%O = 53,33%

Datos: m.A: (C=12, H=1, O=16)

RESOLUCIÓ

N:

Elemento	С	Н	О
Masas	40	6,67	53,33
÷ m.A	3,33	6,67	3,33
÷ menor	1	2	1
F.E	CH ₂ O		

FÓRMULA MOLECULAR

MOLECULAR Indica el número exacto de átomos de cada elemento que están presentes en la unidad más pequeña de la sustancia.

Pasos:

- 1. Se determina la fórmula empírica.
- 2. Se calcula la masa molecular de la fórmula empírica (\overline{M}_{FF})
- 3. Se calcula:

$$k = \frac{\overline{M}_{F.M}}{\overline{M}_{F.E}}$$

4. Se determina la fórmula molecular, multiplicando la fórmula empírica por el número k.

EJEMPLO N°3:

Calcular la fórmula molecular de la glucosa si su peso molecular es 180 uma.

Datos: m.A: (C=12, H=1, O=16)

RESOLUCIÓ

Del ejemplo anterior

F.E	CH ₂ O	
\overline{M}_{FE}	$12 + 2 \times 1 + 16 = 30$	

Calculamos k:

$$k = \frac{180}{30}$$
 $k = 6$

$$F.M = (CH_2O)_6$$

$$F.M = C_6 H_{12} O_6$$

Determine el porcentaje en masa del azufre y del oxígeno en el SO_2 .

mA: (S=32, O=16)

Para el SO₂:

$$\overline{M} = 32 + 2 \times 16$$

= 64 uma

$$\overline{M} = \sum_{m.A.} m.A.$$

$$\%E = \frac{m_{ELEMENTO}}{m_{COMPUESTO}} \times 100\%$$

Hallamos la C.C.:

$$%S = \frac{32}{64} \times 100\% = 50\%$$

$$\%O = \frac{2 \times 16}{64} \times 100\% = 50\%$$

2 ¿Qué porcentaje en masa le corresponde al agua en el CuSO₄·5H₂O? (MF=249,5)

 $\overline{M} = \sum m.A.$ $\%E = \frac{m_{\text{ELEMENTO}}}{m_{\text{COMPUESTO}}} \times 100\%$

RESOLUCI ÓN

Para el CuSO₄·5H₂O:

MF = 249,5 uma

Para el H₂O:

$$\overline{M} = 2 \times 1 + 16$$

= 18uma

Hallamos la C.C.:

¿Cuántos gramos de carbono hay en 880 g de CO₂? mA: (C=12, O=16)

$$\overline{M} = \sum_{m.A.} m.A.$$

$$\%E = \frac{m_{ELEMENTO}}{m_{COMPUESTO}} \times 100\%$$

RESOLUCI ÓN

Para 1 mol de CO₂:

$$\overline{M} = 12 + 2 \times 16 = 44 g$$

Hallamos la C.C.:

$$%C = \frac{12}{44}$$

En 880 g de CO₂:

$$m(C) = \frac{12}{44} \times 880 g$$

$$m(C) = 240 g$$

Determine la fórmula empírica de un hidrocarburo que tiene 75% de carbono.

mA: (C=12, H=1)

Hidrocarburo: C_xH_y

Elemento	С	н
Masas	75	25
÷ m.A	6,25	25
÷ menor	1	4
F.E	CH ₄	

¿Cuál es la fórmula empírica de un glúcido que tiene 40% de carbono, 6,66% de hidrógeno y 53,33% de oxígeno?

mA: (C=12, H=1, O=16)

GLÚCIDO $C_xH_yO_Z$

Elemento	С	н	O
Masas	40	6,66	53,33
÷ m.A	3,33	6,66	3,33
÷ menor	1	2	1
F.E	CH ₂ O		

6 Cierto hidrocarburo de masa molecular MF=30 tiene 20% de hidrógeno. Determine su fórmula molecular o verdadera.

mA: (C=12, H=1)

Hidrocarburo: C_xH_y

Elemento	С	н
Masas	80	20
÷ m.A	6,66	20
÷ menor	1	3
F.E	CH ₃	
\overline{M}_{FE}	$12 + 3 \times 1 = 15$	

Calculamos k:

$$k = \frac{30}{15}$$
 $k = 2$

$$F.M = (CH_3)_2$$

$$F.M = C_2H_6$$

Tel ácido oxálico tiene masa molecular 90. Determine su fórmula molecular si contiene 26,66% de carbono, 2,22% de hidrógeno y 71,11% de oxígeno.

mA: (C=12, H=1, O=16)

ÁCIDO OCÁLICO: C_xH_yO_Z

Elemento	С	н	Ο
Masas	26,66	2,22	71,11
÷ m.A	2,22	2,22	4,44
÷ menor	1	1	2
F.E	CHO ₂		
\overline{M}_{FE}	$12 + 1 + 2 \times 16 = 45$		

Calculamos k:

$$k = \frac{90}{45}$$

$$k = 2$$

$$F.M = (CHO_2)_2$$

El vinilbenceno o estireno se transforma en poliestireno (teknopor). Se trata de un hidrocarburo aromático de fórmula:

Calcule el porcentaje en masa del carbono en el estireno.

mA: (C=12, H=1)

Para el estireno:

F. Global:

$$\overline{M} = 8 \times 12 + 8 \times 1$$

= 104 uma

$$\%C = \frac{8 \times 12}{104} \times 100\% = 92,31\%$$

¿Cuál es la fórmula empírica de un ácido que contiene 48,64% de carbono, 8,11% de hidrógeno y 43,24% de oxígeno? mA: (C=12, H=1, O=16)

ÁCIDO: C_xH_yO_z

Elemento	С	н	O
Masas	48,64	8,11	43,24
÷ m.A	4,05	8,11	2,70
÷ menor	1,5	3	1
×2	3	6	2
F.E		C_3H_6 O_2	

Determine la fórmula molecular de un compuesto de masa molecular 34, si contiene 5,88% de hidrógeno y 94,12% de oxígeno.

mA: (H=1, O=16) COMPUESTO: H_xO_v

Elemento	н	Ο
Masas	5,88	94,12
÷ m.A	5,88	5,88
÷ menor	1	1
F.E	НО	
\overline{M}_{FE}	1 + 16 = 17	

Calculamos k:

$$k = \frac{34}{17}$$

$$k = 2$$

$$F.M = (HO)_2$$

$$F.M = H_2O_2$$

Tel benceno tiene masa molecular 78, determine su fórmula verdadera si contiene 92,30 % de carbono y 7,69 % de hidrógeno.

RESOLUCI ÓN

mA: (C=12, H=1)

Hidrocarburo: C_xH_y

Elemento	С	Н
Masas	92,30	7,69
÷ m.A	7,69	7,69
÷ menor	1	1
F.E	СН	
\overline{M}_{FE}	12 + 1 = 13	

Calculamos k:

$$k = \frac{78}{13}$$

$$k = 6$$

$$F.M = (CH)_6$$

$$F.M = C_6H_6$$

La anilina es un derivado del benceno, se usa en la fabricación de pinturas, explosivos y espuma de poliuretano. Su fórmula es

Para el estireno:

F. Global:

$$C_6H_7N$$

$$\overline{M} = 6 \times 12 + 7 \times 1 + 14 = 93 \text{ uma}$$

$$\%C = \frac{14}{93} \times 100\% = 15,05\%$$

