PREDICTING PROMOTER ACTIVITY FROM PROMOTER REGION SEQUENCE

Preksha Patel

Introduction

- Research Question: Developing a computational model to predicting promoter activity in yeast cells given the promoter region sequence
- Proposed Solution: Implement a linear regression model with regularization to predict promoter activity

Methods

- Separate the training (90 sequences) and test data (53 sequences)
- Extract Features from the genetic sequence. Features include:
 - Frequency of k-mers (k=1-5)
 - Sum of the distance of the k-mers (k=1-5) from the gene
 - Number of occurrences of k-mers (k=1-5)
 - Number of occurrences of known motifs
- Eliminate features with zero variance

Methods

- Fit an unregularized linear regression model to establish baseline
 - R² regression score of -0.008 on test data
- Select a subset of features
 - Use recursive feature elimination
 - Train a linear regression model
 - Eliminate least significantly contributing coefficient
 - Treat number of features as a hyperparameter
 - Evaluate it using 5-fold cross-validation

Methods

- Fit regularized linear regression models
 - Models include Ridge, Lasso and Elastic Net
 - Estimate hyperparameters using 5-fold cross-validation
 - Perform a grid search
 - Train the model on the entire training dataset
 - Evaluate performance using test data

Results

- Best performing model was elastic net with no feature selection
- Performance on test data
 - R² regression score of 0.229
 - Spearman correlation of 0.491
- Predicted promoter activities were concentrated in a smaller range

Discussion

- Possible reasons for low R² regression score (=0.229)
 - Feature extraction resulted in a loss of essential information
 - Small size of training dataset
 - Relation is non-linear

THANK YOU!

