Degradation modeling under multiple failure nodes

Model degradation status of each sensor signel Henry Xamit) = Jemp(t) + Gembert) This is a statistical method. m=1, ..., M) = p(t) \(\text{Imk} + \text{9lmk(t)}\)
\(\text{Tenk} = \text{Tem} \) \(\text{Ze-k} \ NN(UMR, \text{Imk}) \)
\(\text{Tenk} = \text{Tem} \) 1. Model Framework Elmert) = Elmett) | Reb N(0, 0mb) We assume there are K failure modes. Under failure mode k, with k=1,....K. we define the failure time to of unit I as the time when the underlying degradation status 9, vo) exceeds a predefined failure threshold DK. To = argmin gr (t) > Dr Eg. (1) \mathcal{D} Modeling health index: $Ylk(t) = \psi(\chi evt) Wk - a fusion model$ Yek (t): HI of unit lat time t under fais leve mode h Yelt): the vector of sensor signeds (Xelt) = [Xelt), ..., Xemit)] Elixan V Li): a basis funcción, e.g. linear, lernel, etc. WK: fusion coefficient under failure mode k, WKER mx1 2) Modeling degradation status: gent) = \$\phi(\ta) \takentern \tak GLK(t): degradation status of unit lat the funder failuse mode k $\phi(t)$: basis function in terms of time t, e.g., quadratic $\phi(t)=[1,t,t^2]$, p=3Tek: degradation parameter of unit I under failure mode k. Tek ERPXI Failure mode: Ze N Multinomial (Z1, ..., Zk) Degradation parameter. $\forall l$, $\lceil lk \equiv \lceil l \mid \not \exists l = k \ N (uk, \not \exists k), \not \models l, \dots, K$ Noise tem: Geklt) = Selt) | Ze=k ~ N(0, Tk²) 3/ The relationship between HI and degradation status Yeket) = \(\(\tau(t) \) W_K = Glyket) + Elyket) $= \phi(t) \Gamma_{ijk} + S_{ijk}(t)$

2. Parameter Estimation

Metrix form: Ye= \(\lambda \tan \rangle \tan Note: The failure modes of historical units are unknown 2) The failure threshold Dk is unknown, but we set arbitrary value of Dk, e.g. Dx = 1 EM Algorithm: (2) P(Ts) Zs): P(Ts), Tem, Try | Zs) = IT | TI P(Tem | Zz=t; Mmx, Emp) Complete data likelihood: = K (TIN (Tem (Umr, Emr)). N (Tey (Umr, Emr)) + Define: $P(k) = \begin{cases} 1 & \text{if } Z_0 = k \end{cases}$ $P(k) = \begin{cases} 1 & \text{if }$ $\int (T_{\ell}(\overline{z_{\ell}})) \cdot \int (T_{\ell}(\overline{z_{\ell}}) \cdot M_{\ell}, S_{\ell}) = \frac{K}{11} \left[(2\pi)^{-\frac{1}{2}} |S_{\ell}|^{-\frac{1}{2}} \exp \left\{ \frac{1}{2} (T_{\ell} - M_{\ell})^{T} S_{\ell}^{-1} (T_{\ell} - M_{\ell}) \right\} \right]$

2

Parameters to be estimated: (+) = Unk, Enge, Jage, Mel, ..., M Unk, Enge, Jage, Jyk, Zyk, Jyk ZI, TI are also unknown. De cannot be estimated directly. Therefore, EM algorithm is used, where Es. To are taken as latent variables. Estep: and WK, Zk, Eyk, Tike L at last iteration. Then we have $y_l = \psi(\chi l) W_R$. We calculate the posterior distribution of Ze and Tl. $P(Z_{k}=k \mid f_{k}) = \frac{\sum_{k=1}^{N} p(Z_{k}=k) p(Z_{k}=k)}{\sum_{k=1}^{N} p(X_{k} \mid Z_{k}=k) p(Z_{k}=k)} \frac{3}{N} p(X_{k} \mid Z_{k}=k) p(Y_{k} \mid Z_{k}=$ Je Zek N (Pelle Pet 1) Thus: $Plk = PlZ_l = kl$ = kl = kP(Te|Ze=k, 1) = P(# | Te, Ze=k) P(Te | Ze=k) $\sum_{k=1}^{5} P(y_k | \Gamma_k, Z_k = k) P(\Gamma_k | z_k = k)$

here:
$$P(T_{kn}) \approx k$$
 $P(T_{kn}) \approx k$ $P(T_{k$

After M Step, To update WK: At first, we regard WK as known, and obtain the estimate of Te under failure mode k from its posterior distribution. $\hat{\Gamma}_{QR} = \left(\frac{1}{m^2} \phi_{\ell}^{\dagger} \phi_{\ell}^{\dagger} + \sum_{k} \right)^{-1} \left(\frac{1}{\sigma_{k^2}} \phi_{\ell}^{\dagger} \psi(\chi_{\ell}) w_{k} + \sum_{k'} u_{k'} \right)$ Since $\psi(x_e)_{w_k}$ is normally distributed given $z_e - k$, i.e. V(Xe) w | Ze=k ~ N (pl uk, pl \ + \ \ 2 I), ne have | Fell | Ze=k ~ N (E (Tell | Ze=k), Var (Tell | Ze=k)) E (Flk | 81=k) = (= pt pl + It) (= pt fl ((| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (| (X)) w | 2 = t) I I (| (X)) w | 2 = t) I ($=\left(\frac{1}{\sigma_{k}}\phi_{l}^{T}\phi_{l}+\Sigma_{k}^{T}\right)^{T}\left(\frac{1}{\sigma_{k}}\phi_{l}^{T}\phi_{l}u_{k}+\Sigma_{k}^{T}u_{k}\right)=u_{k}$ $Var\left(\left|\widehat{L}_{k}\right| \geq_{l} = k\right) = \left(\left|\widehat{L}_{k}\right| \phi_{l}^{T} \phi_{l} + \left|\widehat{L}_{l}\right|^{T}\right)^{T} \left|\widehat{L}_{k}\right|^{2} \phi_{l}^{T} \left|Var\left(\left|V(X_{l})w\right| \geq_{l} = k\right) \left(\left|\widehat{L}_{k}\right| \phi_{l}^{T} \phi_{l} + \left|\widehat{L}_{l}\right|^{T}\right)^{T} \left|\widehat{L}_{k}\right|^{2} \phi_{l}^{T} \left|Var\left(\left|V(X_{l})w\right| \geq_{l} = k\right) \left(\left|\widehat{L}_{k}\right| \phi_{l}^{T} \phi_{l} + \left|\widehat{L}_{l}\right|^{T}\right)^{T} \left|\widehat{L}_{k}\right|^{2} \phi_{l}^{T} \left|Var\left(\left|V(X_{l})w\right| \geq_{l} = k\right) \left(\left|\widehat{L}_{k}\right| \phi_{l}^{T} \phi_{l} + \left|\widehat{L}_{l}\right|^{T}\right)^{T} \left|\widehat{L}_{k}\right|^{2} \phi_{l}^{T} \left|Var\left(\left|V(X_{l})w\right| \geq_{l} = k\right) \left(\left|\widehat{L}_{k}\right| \phi_{l}^{T} \phi_{l} + \left|\widehat{L}_{l}\right|^{T}\right)^{T} \left|\widehat{L}_{k}\right|^{2} \left|\widehat{L}_{k}\right|^$ $= \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac{1}{\sqrt{2}} \phi_{1} + \sqrt{2} \phi_{1} \right) \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \phi_{1} \left(\frac$ = == (== + ==) (== + ==) = + ==) = + == (== + ==) At failure time: We have $\phi(t_k)M_k = D_k$ according to $E_{q, (1)}$.

To a argum $g_k(x) > D_k$ To anymal distribution $E(g_k(t) - D_k) = 0$ \$15) Tes also follows a multivariate normal distribution $E(\phi(\tau_k)) = \phi(\tau_k) E(\hat{r}_{loc}) = \phi(\tau_k) u_k = D_k$

$$V_{\text{av}}(\phi_{\text{CD}})[\widehat{p}_{\text{a}}|_{\text{av}}) = \phi_{\text{CD}}) V_{\text{av}}(\phi_{\text{CD}})[\widehat{p}_{\text{a}}|_{\text{av}}) \phi_{\text{CD}}]$$

$$= \frac{1}{\sqrt{2}} \phi_{\text{CD}}(1) \left(\sum_{k} \phi_{k}^{T} \phi_{k} \left(\overline{\sigma_{k}^{T}} \phi_{k}^{T} + \sum_{k}^{T} \right)^{T} \right) \phi_{\text{CD}}^{T}}{\sqrt{2}}$$

$$\phi_{\text{CD}}(1) \widehat{f}_{\text{AD}} \Big|_{\widehat{a}=k} NN \left(D_{K}, \overline{\sigma_{k}^{T}} \phi_{\text{CD}}^{T} \phi_{\text{CD}}^{T} \right) \left(\overline{\sigma_{k}^{T}} \phi_{k}^{T} \phi_{k}^{T} + \sum_{k}^{T} \right)^{T} \right) \phi_{\text{CD}}^{T}}$$
Therefore, the likelihood function
$$L_{W} = \prod_{k=1}^{T} p(\phi_{\text{CD}}) \widehat{f}_{\text{AD}} \Big|_{\widehat{a}=k} = b = (2\pi\sigma_{k}^{T})^{T} \sup_{k} \left\{ \frac{1}{2\sigma_{k}^{T}} (\phi_{\text{CD}}) \widehat{g}_{\text{AD}} - \frac{1}{2\sigma_{k}^{T}} (\overline{\sigma_{k}^{T}} \phi_{k}^{T} + \Sigma_{k}^{T})^{T} \right\} \phi_{\text{CD}}^{T}$$
The log-likelihood function:
$$I_{\text{CD}} L_{W} = \sum_{k=1}^{T} -\frac{1}{2} I_{\text{CD}} \widehat{g}_{\text{CD}} \widehat{\sigma_{k}^{T}} \right) - \frac{1}{2\sigma_{k}^{T}} \left(\overline{\sigma_{k}^{T}} \phi_{k}^{T} + \Sigma_{k}^{T} \right)^{T} (\overline{\phi_{k}^{T}} \phi_{\text{CD}} + \overline{\phi_{k}^{T}}) \phi_{\text{CD}}^{T} + \sum_{k=1}^{T} \frac{1}{2\sigma_{k}^{T}} (\phi_{\text{CD}}) \widehat{g}_{\text{AD}} - \mu_{\text{CD}}^{T} \right)$$

$$Since | I_{\text{CD}} | \widehat{\sigma_{k}^{T}} \widehat{\sigma_{k}^{T}} + \sum_{k=1}^{T} I_{\text{CD}}^{T} \widehat{\sigma_{k}^{T}} + \sum_{k=1}^{T} I_{\text{CD}}^{T} \widehat{g}_{\text{CD}} + \sum_{k=1}^{T} I_{\text{CD}}^{T} \widehat{\sigma_{k}^{T}} + \sum_{k=1}^{T} I_{\text{CD}}^{T}} (\phi_{\text{CD}}^{T} \widehat{g}_{\text{CD}} + \mu_{\text{CD}}^{T}) - \mu_{\text{CD}}^{T} \right)$$

$$Since | I_{\text{CD}} | \widehat{\sigma_{k}^{T}} \widehat{\sigma_{k}^{T}} + \sum_{k=1}^{T} I_{\text{CD}}^{T} \widehat{\sigma_{k}^{T}} \widehat{\sigma_{k$$

Let $a = \phi(x)(\overline{\sigma_{k'}}, \phi_{l}, \phi_{l} + \overline{\Sigma_{k'}})^{-1} \overline{\sigma_{k'}} \phi_{l} \psi_{l}(x_{l})$ $\sum_{k=1}^{2} \frac{1}{\sigma_{k}^{2}} a_{i} T \left(a_{i} w_{k} + b Q_{\sigma_{k}^{2}} \phi_{k}^{T} \phi_{k} + \sum_{k} J_{\kappa}^{T} \omega_{k} - D_{k} \right) = 0$ Let $b_1 = D_k - \phi(\tau_k) \left(\frac{1}{\sigma_{k^2}} + \frac{1}{\sigma_{k^2}} + \frac{1}{\sigma_{k^2}} \right)^{-1} \mathcal{I}_k \mathcal{I}_k$ $\sum_{k=1}^{\infty} \frac{1}{\sigma_{kk}^{2}} \alpha_{i}^{T} (a_{i} w_{k} - b_{i}) = 0$ Lot $M_2 = \frac{\alpha_1}{\sqrt{|x_e|^2}} + \frac{|x_e|}{\sqrt{|x_e|^2}} + \frac{1}{\sqrt{|x_e|^2}} + \frac{1}{\sqrt{|x_e|^2$ The transfer (The transfer) p (3) $= \psi(\tau_{\ell}) \left(\frac{1}{\sqrt{\kappa}} + \frac{1}{\sqrt{\kappa}} \right) \psi(\tau_{\ell}) + \frac{1}{\sqrt{\kappa}} \psi$ J \$ (Tx) Zx Pet \$ (\$\frac{1}{2} \phi \frac{1}{2} \phi $= \frac{1}{\sqrt{2}} \left(\frac{1}{2} \left(\frac{1}$ $\frac{1}{\sqrt{\sqrt{\sqrt{2}}}} = \frac{1}{\sqrt{\sqrt{\sqrt{2}}}} = \frac{1}{\sqrt{\sqrt{\sqrt{2}}}} = \frac{1}{\sqrt{\sqrt{2}}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{$ We have $\sum_{i=1}^{2} a_2^{T} a_2 w_k - a_2^{T} b_2 = 0$ Then $\hat{W}_{K} = \left(\sum_{i=1}^{L} a_{2}^{T} a_{2}\right) \sum_{k=1}^{L} a_{2}^{T} b_{2}$

3. Failuse Mode Recognition & RUL Prediction

The point of this part
$$P(z_{k}=k)$$
 $P(z_{k}=k)$ $P(z_{k$

2) RM:

Te
$$\geq_{e}=k$$
, $\leq_{e}=k$, $\leq_{e}=$

For an in-service unit l,

$$g(t_n + t) = \phi(t_n + t) T_e$$

The probability that the degradation status exceeds the failure threshold at time t after the vis