UNIVERSIDADE DO VALE DO ITAJAÍ ENGENHARIA DE COMPUTAÇÃO NICOLE MIGLIORINI MAGAGNIN

CIRCUITOS ELETRÔNICA BÁSICA - M3

Relatório apresentado como requisito parcial para a obtenção da M3 da disciplina de Eletrônica básica do curso de Engenharia de Computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

Prof. Walter Antonio Gontijo

Itajaí

1. OBJETIVO

Este relatório tem como objetivo demonstrar as implementações, cálculos e simulações de circuitos da terceira média da matéria de Eletrônica Básica. As simulações são realizadas no software *Multisim* e comparadas com os valores calculados por meio do conteúdo da disciplina.

2. INTRODUÇÃO

Conforme descrito durante a segunda etapa da disciplina de Eletrônica Básica, transistores são dispositivos semicondutores, feitos com silício ou germânio e usados para amplificar ou atenuar a intensidade da corrente elétrica em circuitos. Eles são um bloco fundamental na construção de circuitos eletrônicos, como chips de computadores e smartphones.

Uma vez que esses dispositivos se comportam como chave, é necessária apenas uma análise DC de seu comportamento, porém quando é necessário seu uso para a implementação de um amplificador de sinais, torna-se necessária a sua interpretação de maneira AC. Para a análise AC é desconsiderada a influência dos capacitores de acoplamento e de passagem, transformando-os em curto-circuito, diferente da análise AC onde eles se tornam parte de um circuito aberto

3. EXERCÍCIOS E RESULTADOS

- Monte no simulador o amplificador BC.
- Adicione um gerador de funções na entrada do amplificador.
- Configure para um sinal senoidal de 1 kHz, com amplitude de 5mV pico.
- Coloque uma ponteira do scope em vi e a outra em vo. Vc deve observar na saída um sinal senoidal de mesma frequência da entrada, amplificado pelo ganho de tensão.
- Obtenha o ganho de tensão das formas de onda.
- Compare o resultado da simulação com o calculado

3.1 - EXERCÍCIOS

Considere o circuito apresentado. Determine a polarização DC e a análise AC.

Figura 1 - Circuito proposto

$$\beta = \frac{\alpha}{1-\alpha} = \frac{0.98}{1-0.98} = 49$$

Figura 2 - Simulação inicial

Figura 3 - Circuito simulado conforme as especificações

Figura 4 - Forma de onda

$$Av = \frac{V0}{Vi} = \frac{942,096mV}{4,179mV} = 225 V$$

Uma vez que o transistor em questão opera como um transistor PNP, Positivo-Negativo-Positivo, ele funciona como um amplificador de sinal de tensão, algo que é possível de se observar no ganho de tensão do circuito.

ANÁLISE DC

Figura 5 - Análise DC

$$IE = \frac{VEE - VBE}{RE} = \frac{2 - 0.7}{1k} = 1,3mA$$
 $IC = \alpha * IE = 0,98 * 1,3mA = 1,274mA$
 $VB = 0V$
 $VE = 0,7V$
 $VC = -VCC + IC * RC = -8 + 1,274 * 4 = -2,9$
 $re = \frac{26mV}{IE} = 20 \Omega$

Figura 6 - Simulação DC com mensuração de IE

Figura 7 - Simulação DC com mensuração de IC

Figura 8 - Simulação DC com mensuração de $\it VB$

Figura 9 - Simulação DC com mensuração de VE

Figura 10 - Simulação DC com mensuração de VC

TABELA COMPARATIVA

Componente	Cálculo	Simulação
IE	1,3 mA	1,221 mA
IC	1,274 mA	1,197 mA
VB	0 V	0 V
VE	0,7 V	0,77 V
VC	-2,9 V	-2,016 V

ANÁLISE AC

Figura 11 - Análise AC

$$Zi = RE//re = 1k//20 = 19,6 \Omega$$

 $Z0 = RC = 5k\Omega$
 $Av = \frac{vo}{vi} = \frac{Rc}{re} = 250$

$$I1 = \alpha * IE = 1, 3 * 0, 98 = 1,274 A$$

Figura 12 - Circuito AC

Para obtenção dos valores de impedância de entrada e saída, foi adicionada uma ponta de prova em cada um dos pontos e adicionada a expressão que divide a tensão da ponta de prova naquele ponto, pela corrente no mesmo ponto a ferramenta do Multisim AC Single Analysis, sendo assim foi possível a visualização de valores semelhantes aos calculados (figuras 13 e 14).

Figura 13 - Impedância Zi

Figura 14 - Impedância Z0

Componente	Cálculo	Simulação
------------	---------	-----------

Zi	19,6 Ω	20 Ω
Z0	5kΩ	5kΩ
Av	250	225

3.1-2 - POLARIZAÇÃO FIXA

Determine:

- a) IB, IC, IE, VB, VE, VC, VCE
- b) Zi, Zo, AV

Figura 15 - Circuito proposto

Figura 16 - Circuito simulado

Figura 17 - Forma de onda

$$Av = \frac{V0}{Vi} = \frac{-1,433}{4,950mV} = -289$$

Para a visualização no osciloscópio de valores de ganho de tensão ao nível do resultado obtido, foram necessárias escalas diferentes para cada um dos canais, tendo Vi uma escala de visualização muito menor.

ANÁLISE DC

Figura 18 - Análise DC

$$IB = \frac{Vcc - VBE}{Rb} = \frac{12 - 0.7}{470k} = 24,04 \,\mu A$$

$$IC = 100 * 24,04 \,\mu A = 2,4mA$$

$$IE = (100 + 1) * 24,04 \,\mu A = 2,43mA$$

$$VB = Vcc - IB * RB = 12 - 24,04 \,\mu A * 470k = 0,7012$$

$$VCE = VC = Vcc - IC * RC = 12 - 2,4mA * 3k = 4,8V$$

 $Icsat = \frac{Vcc}{Rc} = \frac{12}{3000} = 4mA$

Figura 19 - Circuito simulado

Figura 20 - Mensuração de IB

Figura 21 - Mensuração de VCE

TABELA COMPARATIVA

Componente	Cálculo	Simulação
IB	24,04 μΑ	23,093 μΑ
IC	2,4 mA	2,384 mA
IE	2,43 mA	2,408 mA
VB	0,7 V	0,667 V
VC	4,8 V	4,849 V
VCE	4,8 V	4,849 V

ANÁLISE AC

Figura 21 - Análise AC

Figura 22 - Análise AC

Figura 23 - Simulação AC

$$Re = \frac{26mV}{lE} = \frac{26mV}{2,4mA} = 10,083$$

$$Zi = RB//\beta * re = 47000k//100 * 10,083 = 1.006,14\Omega$$

$$Z0 = RC//ro = 50k//3k = 2.830\Omega$$

$$Av = \frac{vo}{vi} = \frac{-Rc}{re} = \frac{-3000}{10,83} = -277$$

$$I1 = \alpha * IE = 2,4mA * (\frac{\beta}{\beta+1}) = 2,37 mA$$

Componente	Cálculo	Simulação
Zi	1.006,14Ω	1.080Ω
Z0	2830Ω	1278Ω
Av	- 277	-289

3.2 - ANÁLISE AC - EMISSOR COMUM

3.2-1 - DIVISOR DE TENSÃO

Determine:

a) IC, IE, VB, VE, VC, VCE

b) Zi, Zo, AV

Figura 24 - Circuito proposto

Figura 25 - Simulação

Figura 26 - Forma de onda

$$Av = \frac{V0}{Vi} = \frac{1,470 V}{-4,491 mV} = -327,32$$

O circuito divisor de tensão possui como característica a obtenção de tensões menores do que as geradas pelo gerador de tensão, desta forma, no circuito com um transistor TBJ ele possui dois resistores ligados em paralelo, os quais devem ser calculados utilizando o teorema de Thévenin.

ANÁLISE DC

Figura 27 - Análise DC

Figura 28 - Simulação DC

$$V_{B} = \frac{R_{2}V_{cc}}{R_{1}+R_{2}} = \frac{8,2k*22}{8,2k+56k} = 2,81 V$$

$$V_{E} = V_{B} - V_{BE=2,81-0,7=2,11V}$$

$$I_{E} = \frac{V_{E}}{R_{E}} = \frac{2,11}{1,5k} = 1,41 \, mA$$

$$I_{C} = I_{E} = 1,41 \, mA$$

$$V_{C} = V_{CC} - I_{C} * R_{C} = 22 - 1,41 \, mA * 6,8k = 12,41 \, V$$

$$V_{CE} = V_{CC} - I_{C} * (RC + RE) = 22 - 1,41 \, mA * (6,8k + 1,5k) = 10,3 \, V$$

TABELA COMPARATIVA

Componente	Cálculo	Simulação
VB	2,81 V	2,71 V
VE	2,11 V	1,93 V
IC	1,41 mA	1,27 mA
IE	1,41 mA	1,27 mA
VC	12,41 V	13,53 V
VCE	10,3 V	11,42 V

ANÁLISE AC

Figura 29 - Análise DC

Figura 30 - Simulação análise DC

$$\beta re > 10 * R2$$

$$90 * 1,5k > 10 * 8,2k$$

$$135k > 82k$$

$$VB = \frac{R2}{R1 + R2} * VCC = \frac{8,2k * 22}{56k + 8,2k} = 2,81 V$$

$$VE = VB - VBE = 2,81 V - 0,7 V = 2,11 V$$

$$Rth = R1 // R2 = 56k //8, 2k = 7,15k\Omega$$

$$Zi = Rth * \beta re = 7,15k // 135k = 6,79k\Omega$$

$$Zo = RC = 6,8k\Omega$$

$$Av = \frac{-RC}{re} = -\frac{6,8k}{18,44} = -368,76$$

$$I1 = \alpha * IE = I1 = 1,41mA * (\frac{\beta}{\beta + 1}) = 1,39 mA$$

Componente	Cálculo	Simulação
Zi	6,79kΩ	6,79kΩ
Z0	6,8kΩ	6,8kΩ
Av	- 277	-289

3.2-2 - POLARIZAÇÃO DO EMISSOR

Considere sem o capacitor CE Determine:

- a) IB, IC, IE, VB, VE, VC, VCE
- b) Zi, Zo, AV

Figura 31 - Circuito proposto

Figura 32 - Simulação

Figura 33 - Forma de onda

$$Av = \frac{V0}{Vi} = \frac{18,79mV}{-4,998mV} = -3.75$$

ANÁLISE DC

Figura 34 - Análise DC

Figura 35 - Simulação DC e mensuração de IC

$$Vcc - IB * RB - VBE - (\beta + 1) * IB * RE$$

$$IB = \frac{Vcc - VBE}{RB + (\beta + 1)*RE} = \frac{20 - 0.7}{470k + (120 + 1)*560} = 35,89 \,\mu A$$

$$IE = (\beta + 1) * IB = 121 * 35,89 \,\mu A = 4,34 \,m A$$

$$IC \simeq IE$$

$$VB = Vcc - IB * RB = 20 - 35,89 \,\mu A * 470000 = 3,13 \,V$$

$$VC = Vcc - IC * RC = 20 - 4,34mA * 2200 = 10,452 \,V$$

$$VCE = Vcc - IC * (RC + RE) = 20 - 4,34mA * (2200 + 560) = 8,02 \,V$$

Componente	Cálculo	Simulação
IB	35,9 μΑ	35, 89 μΑ
IC	4,28 mA	4, 34 mA
IE	4,29 mA	4, 34 mA
VB	3,23 V	3, 13 V
VC	10,58 V	10, 452 V
VCE	8,16 V	8, 02 V

ANÁLISE AC

Figura 36 - Análise AC

Figura 37 - Simulação AC

ANÁLISE AC

$$Zb = \frac{vi}{lb} = \beta re + (\beta + 1) * RE$$

$$Zb \simeq \beta(re + RE)$$

$$re = \frac{26mv}{IE} = \frac{26mv}{4,34mA} = 5,99\Omega$$

$$Zi = RB // Zb = 470000 // 120 * (5,99 + 560) = 470000 // 67918,80$$

$$Zi = 59.343,22$$

$$Zo = RC // ro = 2200 // 40000 = 2,085k\Omega$$

$$Av = \frac{Vo}{Vi} = \frac{-\beta^*RC}{Zb} = \frac{-120^*2200}{67918,8} - 3,89$$

$$I1 = \alpha * IE = I1 = 4,29mA * (\frac{\beta}{\beta+1}) = 4,25 mA$$

Componente	Cálculo	Simulação
Zi	59,34kΩ	59,77kΩ
Z0	2,085kΩ	3,3kΩ
Av	- 3,89	-3,75

3.2-3 - POLARIZAÇÃO DO EMISSOR

Repita o exercício anterior – Acrescente o capacitor CE Determine: a) IB, IC, IE, VB, VE, VC, VCE b) Zi, Zo, AV

Figura 38 - Circuito proposto

Figura 39 - Circuito simulado

Figura 40 - Forma de onda

$$Av = \frac{V0}{Vi} = \frac{626,59mV}{-1,753mV} = -357,43$$

ANÁLISE DC

A análise DC permanece inalterada para o circuito DC, uma vez que são retirados os capacitores para esta análise.

ANÁLISE AC

Devido a ação do capacitor ao lago do resistor RE, o mesmo entra em curto e é retirado, sendo assim, a análise AC torna-se a mesma que em um circuito de emissor-comum.

Figura 41 - Análise AC

Figura 42 - Análise AC

$$Zb = \frac{vi}{lb} = \beta re + (\beta + 1) * RE$$

$$Zb \approx \beta (re)$$

$$re = \frac{26mv}{lE} = \frac{26mv}{4,34mA} = 5,99\Omega$$

$$Zi = RB // Zb = 470000 // 120 * (5,99) = 470000 // 718,80$$

$$Zi = 717,7\Omega$$

$$Zo = RC = 2200\Omega$$

$$Av = \frac{vo}{vi} = \frac{-Rc}{re} = \frac{-2200}{5,99} = -372,8$$

Componente	Cálculo	Simulação
Zi	717,7kΩ	717,7kΩ
Z0	2,2kΩ	3,3kΩ
Av	- 372,8	-357,43

Dentre os resultados obtidos durante as simulações e cálculos realizados para a M3 de Eletrônica Básica, pode-se notar resultados satisfatórios, onde o valor calculado e o valor simulado tiveram pouca ou nenhuma diferença.

3.3 - CIRCUITOS PROVA M3 3.3-1 - QUESTÃO 1

No circuito determine:

- a) As expressões literais para Av, Zi e Zo
- b) Projete o circuito para VE =0,2VCC, VC = 0,5VCC, Zi \geq = 10K, VCC = 10V, Ie = 1mA e B = 99.
- c) Para a entrada senoidal de 10mV pico, frequencia 1kHz calcule e desenhe a forma de onda de Vo.

Figura 43 - Proposta

Figura 44 - Circuito simulado

Figura 45 - Forma de onda para Av

Figura 46 - Análise DC

ANÁLISE DC

$$VCC - IB * RB - VBE - IERE = 0$$

$$REeq = \frac{VE}{IE} = \frac{2}{1mA} = 2000\Omega$$

$$IB = \frac{IE}{(\beta+1)} = \frac{1mA}{100} = 10 \,\mu A$$

$$IC = IB * 99 = 0,99mA$$

$$VC = Vcc - IC * RC$$

$$5 = 10 - 0,99mA * RC$$

$$5 - 10 = -0,99mA * RC$$

$$\frac{-5}{-0,99mA} = RC$$

$$RC = 5050 \,\Omega$$

$$10 - 10\mu A * RB - 0,7 - 1mA * 2000 = 0$$

$$10 - 10\mu A * RB - 2,7 = 0$$

$$10 - 2,7 - 10\mu A * RB = 0$$

$$-10\mu A * RB = -7,3$$

$$RB = \frac{-7,3}{-10\mu A} = 730k\Omega$$

Figura 47 - Análise AC

$$Zi >= 10k = \frac{RB^*(\beta re + (\beta+1)^*RE)}{RB + (\beta re + (\beta+1)^*RE)} >= 10k$$

$$re = \frac{26mV}{1mA} = 26$$

$$\frac{730k^*(99^*26 + 100^*RE)}{730k + 99^*26 + 100^*RE)} = \frac{730k^*(2574 + 100^*RE)}{730k + 2574 + 100^*RE)} > = 10k$$

$$1,88x10^9 + 73.000.000 * RE > = (732.574 + (100 * RE)) * 10k$$

$$1,88x10^9 + 73.000.000 * RE >= (7,32x10^9 + (1000000 * RE))$$

72000000 *
$$RE >= 5,42x10^9$$

 $RE >= \frac{5,42*10^9}{72000000} = 75,28 \Omega$

$$RE1 = 110$$

 $RE2 \rightarrow 1890$

$$Zb = \beta * re + (\beta + 1) * RE$$

 $Zb = 99 * 26 + (100) * 110 = 13574 \Omega$
 $Zi = RB//Zb = 730000//13574 = 13.326,21 \Omega$

$$Zo = Rc = 5050\Omega$$

$$Av = -\frac{\beta^*RC}{Zb} = -36,83$$

3.3 - 2 - QUESTÃO 2

No circuito determine:

- a) As expressões literais para Av, Zi e Zo.
- b) Projete o circuito para $|Av| \ge 10$, $Zo \ge 2k2$, $Zi \ge 10K$, Re = 20R, Re = 99 e VCC = 10V.
- c) Calcule e desenhe a tensão na carga (RL infinito) para Rs = 5K, Vs = 12mV/1kHz senoidal.

Figura 48 - Proposta

Figura 49 - Análise DC

Figura 50 - Análise AC

Figura 51 - Circuito simulado

Figura 51 - Forma de onda para Av

$$Rth = \frac{Ra*Rb}{Ra+Rb}$$

$$VB = \frac{R2*VCC}{R1+R2}$$

$$VE = VB - VBE$$

$$VBE = 0,7$$

$$IE = \frac{VE}{RE}$$

$$IB = \frac{IE}{\beta+1}$$

$$IC = IB * \beta$$

$$VCE = VCC - IC * RC - IE * RE$$

$$re = \frac{26mv}{IE} = \frac{26mv}{(\beta+1)*IB}$$

$$\beta re = \beta * \frac{26mv}{IE} = \beta * \frac{26mv}{(\beta+1)*IB}$$

$$Zi = Rth // \beta re$$

$$Zi = Rth // \beta * \left(\frac{26mv}{(\beta+1)*(\frac{VCC - VBE}{RB + (\beta+1)*REq})}\right)$$

$$zo = RC$$

$$Av = \frac{-RC//RL}{re}$$

b)

$$|Av| >= 10$$
 $Zo >= 2k2$
 $Zi >= 10K$
 $re = 20R$
 $B = 99$
 $VCC = 10V$.

$$Zo = RC$$
 $RC >= 2k2$
 $RC = 2k2 \Omega$
 $Av >= 10$
 $\frac{-RC//RL}{20} >= 10$
 $\frac{-2k2//RL}{20} >= 10$
 $RL >= 200$

$$Zi = Rth//\beta * re >= 10k$$
 $Zi = Rth//99 * 20 >= 10k$
 $Rth//1980 >= 10k$
 $\frac{Rth*1980}{Rth+1980} >= 10k$
 $Rth * 1980 >= 10k * (Rth + 1980)$
 $Rth * 1980 >= 10k * Rth + 19.800.000$
 $1980Rth >= 10000Rth + 19.800.000$
 $1980Rth - 10000Rth >= 19.800.000$
 $-8020 * Rth >= 19.800.00$
 $Rth >= 2,47k \Omega$
 $VE = \frac{1}{10} * VCC$
 $re = \frac{26mV}{IE}$
 $20 * IE = 26mV$
 $IE = \frac{26mV}{20}$

$$IE = 1,3mA$$

$$RE = \frac{VE}{IE} = \frac{1}{1,3mA} = 769,23 \Omega$$

$$R2 = 4000$$

$$Rth = \frac{4000*R1}{4000+R1}$$

$$2,47k = \frac{4000*R1}{4000+R1}$$

$$2,47k * (4000 + R1) = 4000 * R1$$

$$9.880.000 + 2470 * R1 = 4000R2$$

$$9.880.000 = 4000 * R1 - 2470 * R1$$

$$9880000 = 1530 * R2$$

$$R1 = 6457,51\Omega$$

$$RL = 300$$

$$zo = RC = 2200 \Omega$$

 $Zi = Rth //99 * 20 = 2,47k // 99*20 = 1099\Omega$
 $Av = \frac{-RC//RL}{re} = -\frac{2200 // 300}{20} = 13,2$

PROJETO:

$$RC = 2200 \Omega$$

 $Ra = 6460\Omega$
 $RB = 4000\Omega$
 $IE = 1, 3mA$
 $RE = 769, 23 \Omega$
 $RL = 300$
 $zo = 2200 \Omega$
 $Zi = 1099 \Omega$
 $Av = 13,2$

c)

$$R_{S} = 5K$$

$$V_{S} = 12mV/1kHz$$

$$Vi = \frac{Zi*Vs}{Zi+Rs} = \frac{1515,5*(12mV)}{1515,5+5000} = 2,8mV$$

A tensão na carga se torna 0, uma vez que o RL é infinito.

Figura 52 - Proposta

O presente circuito é equivalente ao primeiro circuito deste relatório, sendo assim, apenas foi feita a simulação da maneira proposta:

Desenhe a forma de onda de Vo para a entrada senoidal de 1mV pico, frequência 1kHz.

Figura 53 - Circuito simulado

Figura 54 - Forma de onda

4. CONCLUSÃO

Os resultados obtidos por meio deste relatório através de cálculos e comparações com simulações foram positivos, foi possível visualizar valores muito próximos e entender um pouco mais do funcionamento dos circuitos quando chave e quando amplificadores. Foram revisados conceitos aprendidos durante a segunda média e inseridos novos, com novas equações e análises AC, onde a visão do circuito torna-se diferente e é preciso colocar seus capacitores em curto, obtendo-se assim valores de impedância e ganho de tensão (amplificação).

Durante toda a disciplina os conhecimentos foram consolidados a partir de experimentos simulados, práticos e cálculos, tornando assim a aprendizagem mais ampla.

5. REFERÊNCIAS

MULTISIM, Ni (org.). ¿Cómo Encontrar la Impedancia de un Circuito en Multisim? 2014. Disponível em: https://digital.ni.com/public.nsf/allkb/B9197FDAA8E120CD86257D9D008087E9. Acesso em: 06 dez. 2021.

AMORIM, Prof. Henrique. TBJ - Análise AC. São Paulo: Unifesp - Ict, 2021.