

GSP: Apriori-Based Sequential Pattern Mining

Initial candidates: All singleton sequences

<a>, , <c>, <d>, <e>, <f>, <g>, <h>

Scan DB once, count support for each candidate

Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>		8		20	0	

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Length-2 candidates:

36 + 15= 51

■ Without Apriori pruning: 8*8+8*7/2=92 candidates

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

GSP Mining and Pruning

Sth scan: 1 cand. 1 length-5 seq. pat.

(bd)cba>

Candidates cannot pass min_sup threshold

4th scan: 8 cand. 7 length-4 seq. pat.

3rd scan: 46 cand. 20 length-3 seq. pat. 20 cand. not in DB at all

2nd scan: 51 cand. 19 length-2 seq. pat.

10 cand. not in DB at all

1st scan: 8 cand. 6 length-1 seq. pat.

(bd)bc> ...

Candidates cannot pass min_sup threshold

candidates not in DB

candidates cannot pass min_sup

candidates cannot pass min_sup

- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-k frequent sequences
 - Generate length-(k+1) candidate sequences from length-k
 frequent sequences using Apriori
 - set k = k+1
- Until no frequent sequence or no candidate can be found

mm_sup = 2
Sequence
<(bd)cb(ac)>
<(bf)(ce)b(fg)>
<(ah)(bf)abf>
<(be)(ce)d>
<a(bd)bcb(ade)></a(bd)bcb(ade)>