конспект гранде

October 20, 2024

Abstract

Это всего лишь неловкие попытки совместить приятное с полезным - освоить большую часть матмематических команд и фукнций LATEXa и заодно повторить (ну или выучить) материал к коллоку. Если вам эта штукенция попалась в руки - не обращайте внимания, проходите мимо и не осуждайте неточности и грубость изложения

Contents

1	Число сочетаний, свойства. Бином Ньютона. Примеры. 1.1 Свойства числа сочетаний
2	Принцип математической индукции, примеры. Неравенство Бернулли. 2.1 Неравенство Бернулли
3	Множества, их объединение, пересечение, разность и декартово произведение. Геометрический смысл этих понятий. Примеры. 3.1 Манипуляции с множествами
4	Отображение множества X во множество Y . Образ и прообраз. Инъективное, сюръективное и биективное отображения. Примеры. Обратное отображение, критерий существования обратного отображения
5	Конечные, бесконечные, счетные, не более

Число сочетаний, свойства. Бином Ньютона. Примеры.

и несчетные

Презентация по теме: 03.09.24, гл. 1, пар. 1

чем счетные

Примеры

Сразу - тут могло бы быть определение факториала, но его нет в вопросе, потому нет так нет. Но для общего развития: ϕ акториал - это та штучка с восклицательным знаком около числа; обозначает последовательное перемножение всех чисел от 1 до данного числа. Типа, факториал числа 5 (5!) это перемножение всех чисел от 1 до пяти: 1*2*3*4*5=120.

Числом сочетаний из n по k называется число - последовательность утверждений. Если

1.1 Свойства числа сочетаний

1.
$$C_n^k = C_n^{n-k}$$

2.
$$C_n^0 = C_n^n = 1$$

3.
$$C_n^1 = C_n^{n-1} = n$$

4.
$$C_n^{k-1} + C_n^k = C_{n+1}^k$$

В основном, чаще всего мы вспоминаем про первое и третье - особенно полезно помнить при раскрытиях биномов Ньютона, так как они объясняют симметричность коэффициентов; про второе никто не вспоминает, но всеми ими пользуются (те самые единицы в треугольнике Паскаля как раз появляются из-за них), но да ладно.

Вопроса на докозательство этих штук нет! Чему я безусловно рада, но доказываются они буквально через раскрытие всех выражений через формулу, а дальше простая арифметика. Потому не теряемся если спросит!

1.2 Бином Ньютона

А, кстати, о нем.

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a b^{n-1} + b^n$$

Или же!

4

множества.

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Тут добавить более нечего, на деле. Это буквально все по теме, что было включено в презентацию, помимо примеров, до которых вы и сами додумаетесь если вспомните квадраты или кубы сумм или разностей.

2 Принцип математической индукции, примеры. Неравенство Бернулли.

Презентация по теме: 05.09.24, гл. 1, пар. 2

Принцип математической индукции: пусть $ho_n, n \leq 1$ - последовательность утверждений. Если

- 1. Утверждение ρ_1 верное
- 2. Из того, что ρ_n верно, следует, что ρ_{n+1} верно. Тогда утверждение ρ_n верно при всех $n \leq 1$

Предположение о том, что ρ_n верно (первая часть второго пункта) называют индукционным предположением. Переход от истинности ρ_n к истинности ρ_{n+1} (сам второй пункт полностью) - индукционным переходом. Вся логика мат. индукции строится на том, что любое множество, состоящее из натуральных чисел, имеет наименьший элемент (собственно, потому она начинается с первого элемента и проверки истинности выражения на единице).

2.1 Неравенство Бернулли

$$(1+x)^n \le 1 + nx, x \le -1 text n \le 1$$

А теперь, самое веселое, доказательство:

1. Проверим истинность выражения для n=1:

$$(1+x)^1 \le 1 + 1 * x \Leftrightarrow 1 + x \le 1 + x$$

2. Если оно верно для n=1, предположим что оно верно для n, тогда докажем его верность для n+1

$$(x+1)^{n+1} \le 1 + (n+1)x \Leftrightarrow$$
$$(x+1)(x+1)^n \le (1+nx)(1+x)$$
$$\le (1+nx) + x = 1 + (n+1)x$$

ч.т.д. (допишу потом пояснения)

3 Множества, их объединение, пересечение, разность и декартово произведение. Геометрический смысл этих понятий. Примеры.

Презентация по теме: 05.09.24, гл. 1, пар. 3

Множество - набор, собрание, коллекция предметов определенной природы. Эти предметы называются элементами множества. Множество, не содержащее ни одного элемента, называется пустым и обозначается Как правило, они обозначаются прописными латинскими буквами (A,B,C,...Z), элементы же -Принадлежность элемента строчными (a, b, c, ...z). a множеству A обозначается при помощи значка \in и записывается как $a \in A$, непринадлежность же - $a \notin A$ (просто перечеркнули, да). Если нужно просто перечислить множество некоторых элементов, эти элементы заключают в фигурные скобки, т.е. $\{a, b, c, ...z\}$.

Теперь о более сложном - предположим, $\rho(x)$ - некоторое логическое высказывание, а в некотором множестве A для всех элементов это высказывание истинно. Такое высказывание будет записываться как $\{x\in A|\rho(x)\}$ или

 $\{x|\rho(x)\}$

Из примеров множеств - любое числовое множество от мало до велика $(\mathbb{N},\mathbb{Z},\mathbb{R})$, ну или что-то более произвольное прозаическое - например, множество положительных рациональных чисел $\{x\in\mathbb{R}|x>0\}$. Сути не имеет, главное чтобы это был какой-то набор чисел, даже необязательно имеющих какое-то правило, которому они соотвествуют. (это уже были бы последовательности, например.. но об этом позже).

Если каждый элемент множества A является элементом множества B или, как еще говорят, cogepжится, то A уазывают подмножеством B и обозначают $A \subset B$. Ну, или, если оно не содержится, то опять весьма просто перечеркивают $A \not\subset B$

Ну и о простом, если множества A и B состоят одни из одних и тех же элементов, то данные множества равны и обозначают это как A=B

3.1 Манипуляции с множествами

Объединением множеств A и B называется множество, состоящее из всех элементов, принадледащих множествам A и B - иными словами, тупо все элементы этих двух множеств. Обозначается как $A \cup B$.

Пересечением множеств A и B называется множество, состоящее из элементов принадлежащих как множеству A, так и множеству B. Обозначается как $A \cap B$.

Разностью множесвом A и B называется множество, состоящее из элементов принадлежащих множеству A, но не принадлежащих множеству B. Обозначается как

 $A \setminus B$.

И о самом сложном: пусть A и B - множества. Тогда множество $A\times B=^{def}\{(a,b)|a\in A\wedge b\in B\}$ называется декартовым произведением множества A и B (по картинке правда яснее).

Соотвественно, все приведенные выше картинки и есть *геометрические* смыслы данных операций над множествами; если у вас появились внезапные ассоциации с 9-11 классом и кругами Эйлера - не беспокойтесь, они полностью оправданы, вставьте вместо квадратов круги и грубо говоря будете правы.

4 Отображение Xмножества множество Y. Образ во прообраз. Инъективное, сюръективное биективное отображения. Примеры. Обратное отображение, критерий существования обратного отображения

Презентация по теме: 10.09.24, гл. 1, пар. 4

Отображением f множества X во множество Y

называется правило, сопоставляющее каждому элементу $x \in X$ единственный элемент $y \in Y$. Факт отображения f записывается как $f: X \to Y$ или $X \to^f Y$, а факт сопоставления элемента x элементу y записывается в виде y = f(x) или же $x \to^f y$. Внимательные могли заметить что выбор буквы для обозначения отображения и сама формулировка кажется больно знакмой - оно и верно, ибо если $Y = \mathbb{R}$, то f называется функцией. Пусть $f: X \to Y$ и $E \subset X$. Тогда множество

Пусть $f:X\to Y$ и $E\subset X$. Тогда множество $f(E)=^{def}\{f(x)|x\in E\}$ называется **образом** множества E при отображении f.

И соотвественно, пусть $f:X\to Y$ и $F\subset Y$. Тогда множество $f^{-1}(F)=^{def}\{x\in X|f(x)\in F\}$ называется **прообразом** множества F при отображении f.

В общем и целом, по-простому, по-людски, так сказать, образ - это множество значений функции от x на некотором участке E. Прообраз - обратное действие, дающее значение всех y в неком подмножестве F. Геометрические значения даны выше.

Отображением $f: X \to Y$ называется **инъекцией**, если для любых двух различных $x_1 \in X$ и $x_2 \in X$ верно то, что $f(x_1) \neq f(x_2)$; ну или же по более умному: $(\forall (x_1 \in X \land x_2 \in X): x_1 \neq x_2) \Rightarrow f(x_1) \neq f(x_2)$

Отображение $f:X\to Y$ называется **сюрьекцией**, если для любого $y\in Y$ найдется $x\in X$ такой, что f(x)=y; иначе же - $\forall y\in Y\exists x\in X: f(x)=y$

По-простому же - иньекция - это ситуация, при котором для любого x существует собственный yникальный y, в то время как сюрьекция - это про то, что для любого x этот самый y в целом существует. В тех случаях

же, когда при отображении $f:X \to Y$ выполняются оба правила - такое отображение будет называться **биекцией**

В качестве примера можно просто и незамысловато привести квадратичную функцию $f(x)=x^2$ и рассмотреть ее при разных на разных областях определения и значения: так, например, при $X=\mathbb{R},Y=\mathbb{R}$ не происходит ни сюрьекции, ни иньекции, зато при $X=\mathbb{R}_+,Y=\mathbb{R}$ происходит сюрьекция, а при $X=\mathbb{R}_+,Y=\mathbb{R}_+$ происходит биэкция. Самое сложное во всем этом не путаться между определениями, но с картинками все намного проще...

Не уверена, будет ли определение композиции отображения, потому на всякий случай замечание - композиция отображения это отображение сложной функции, которое обозначается как $f\circ g(x)=^{def}f(g(x))$. То бишь, $x\to^g y\to^f Z$

Пусть $f:X \to Y$. Отображение $g:Y \to X$ называется обратным отображением к f, если $g(f(x))=x, \forall x \in X$ и $f(g(x))=y, \forall y \in Y$. Обратное отображение g обозначается f^{-1} (то есть $f^{-1}=g$). Да, это обратная операция к отображению. Да, как $x \to^f y$, но $y \to^{f^{-1}} x$. Критерий существования обратного отображения до ужасного прост - отображение $f:X \to Y$ должно быть g00 биз ктивно. (теорема 4.1)

5 Конечные, бесконечные, счетные, не более чем счетные и несчетные множества. Примеры

Презентация по теме: 10.09.24, 12.09.24, гл. 1, пар. 5