Math 357 Exam 02

2024-04-19 (F)

Your name:		
Honor pledge:		

Instructions

- 1. In the space above, please legibly write your name and the Rice Honor Pledge, then sign.
- 2. Full time for this exam is exactly 50 minutes. No resources are allowed.
- 3. Your reasoning—correctness and clarity—is more important than your "answer".
- 4. If you think there is ambiguity or error in an exercise, then briefly (!) write your understanding of the exercise and any additional hypotheses you are making, then proceed.
- 5. Note: The definition parts of Exercises 1–3 will be graded as Exercise 0.

This exam is an imperfect measure of my understanding at a particular point in time. It is not a measure of who I am or who I will be.

Exercise	Total	(a)	(b)	(c)	(d)
0	/4	/4	/4	/4	/4
1	/4	_	_	/4	/4
2	/4	_	/4	/4	/4
3	/4	_	/4	/4	/4
4	/4	/4	/4	/4	/4
Total	/20				

Let K_0 be a field, let $n \in \mathbb{Z}_{\geqslant 0}$, and let $f = a_n t^n + ... + a_0 \in K_0[t]$. For your definitions, clearly introduce any additional objects you use and the hypotheses you make.

- (a) Define what it means for f to be (i) irreducible and (ii) separable.
- (b) Define the formal derivative of f. As relevant to your definition, explain what multiplication by an integer means if char $K_0 \neq 0$ (in which case, K_0 does not contain an isomorphic copy of \mathbf{Z}).
- (4 pt) For the remaining parts of this exercise, let char $K_0=0$.
 - (c) Prove that if f is irreducible, then f is separable.
 - (d) Give a counterexample that illustrates that the converse to the statement in part (c) is false. That is, give a polynomial f that is separable and reducible.

For your definitions, clearly introduce the objects you use and the hypotheses you make.

- (a) Define "minimal polynomial".
- (4 pt) For the remaining parts of this exercise, let $\alpha = \sqrt[3]{5-3\sqrt{-1}} \in \mathbf{C}$.
 - (b) Find the minimal polynomial $\mathfrak{m}_{\alpha,\mathbf{Q}}$ of α over \mathbf{Q} . Demonstrate that it satisfies the axioms (i.e. defining properties) in your definition in part (a).
 - (c) Prove that $[\mathbf{Q}(\alpha):\mathbf{Q}]=6$.
 - (d) Let $f \in \mathbf{Q}[t]$ such that $\deg f = 4$ and f has no zeros in \mathbf{Q} , and let $\beta \in \mathbf{C}$ satisfy $f(\beta) = 0$. Can $\beta \in \mathbf{Q}(\alpha)$? Justify.

For your definitions, clearly introduce the objects you use and the hypotheses you make.

- (a) Define "splitting field".
- (4 pt) Let $p, q \in \mathbb{Z}_{>0}$ be prime; let

$$\mathsf{f}=\mathsf{t}^{\mathsf{p}}-\mathsf{q} \qquad \qquad \mathsf{g}=\sum_{\mathsf{j}=0}^{\mathsf{p}-1}\mathsf{t}^{\mathsf{j}}=\mathsf{t}^{\mathsf{p}-1}+\ldots+\mathsf{t}+1$$

be polynomials in $\mathbf{Q}[t]$; fix a splitting field K for fg, the product of f and g, over \mathbf{Q} ; let $\alpha \in K$ be a zero of f; let $\zeta \in K$ be a zero of g; and let K_f be the splitting field for f in $K: \mathbf{Q}$.

- (b) Prove that f and g are irreducible in $\mathbf{Q}[t]$. Hint: For g, let $\tilde{g}(t)=(t-1)g=t^p-1$, and consider $\tilde{g}(t+1)$.
- (c) Prove that for each integer $k \in \{0, \dots, p-1\}$, ζ^k is a zero of \tilde{g} , and $\zeta^k \alpha$ is a zero of f. Deduce that $K = K_f$.
- (d) Prove that $[K : \mathbf{Q}] = p^2 p$. Hint: Use a field diagram.

(4 pt) Let $K : K_0$ be a field extension.

- (a) Define $Aut(K : K_0)$.
- (b) Let H be a subgroup of $Aut(K : K_0)$. Define the fixed field of H.
- (c) State what it means for $K: K_0$ to be galois. You may use any characterization of a galois extension that we have discussed in class.
- (d) When $K: K_0$ is galois, the fundamental theorem of galois theory gives an inclusion-reversing, bijective correspondence between subfields (intermediate fields) of $K: K_0$ and subgroups of the galois group $Gal(K:K_0)$. Define the map from subfields to subgroups, and the map from subgroups to subfields.