Simulation of Suspension Bridge in Spring System, Responding to Car and Earthquake

Bernice Feng

Suspension Bridge Structure (with nodes and links)

Fundamental Equations of Spring System

$$M_k \frac{d\vec{U_k}}{dt} = \sum_{j \in N(k)} T_{jk} \frac{\vec{X_j} - \vec{X_k}}{||\vec{X_j} - \vec{X_k}||}$$

$$\frac{d\vec{X_k}}{dt} = \vec{U_k}$$

$$T_{jk} = S_{jk}(||\vec{X}_j - \vec{X}_k|| - R_{jk}^0) + D_{jk}\frac{d}{dt}||\vec{X}_j - \vec{X}_k||$$

Note: velocity of the nodes connected to the ground should be 0

When a Car Passes the Suspension Bridge

$$\vec{F_p} = \vec{F_p} + \vec{F_{car}}$$

How does a car with different mass influence the suspension bridge?

When a Car Passes the Suspension Bridge

How does a car with different mass influence the suspension bridge?

When a Car Passes the Suspension Bridge

Plot kinetic energy: $E_{kinetic} = \sum_{i} \frac{1}{2} m_i \vec{U_i}^2$

When an Earthquake Happens

$$\vec{X}_{q}(1) = \vec{X}_{q}(1) + A\sin(2\pi\omega(t - t_{0}))$$

$$\vec{U}_{q}(1) = \vec{U}_{q}(1) + 2\pi\omega A\cos(2\pi\omega(t - t_{0}))$$

How does the earthquake with different frequency and amplitude influence the suspension bridge?

When an Earthquake Happens

How does the earthquake with same amplitude and different frequency influence the suspension bridge?

$$\omega = 2 \text{ and } A = 0.001$$

$$\omega = 5$$
 and $A = 0.001$

$$\omega = 10 \text{ and } A = 0.001$$

When an Earthquake Happens

How does the earthquake with same frequency and different amplitude influence the suspension bridge?

$$A = 0.0005$$
 and $\omega = 5$

$$A = 0.001$$
 and $\omega = 5$

$$A = 0.002$$
 and $\omega = 5$

$\omega = 2 \text{ and } A = 0.001$

A = 0.0005 and $\omega = 5$

When an Earthquake Happens

A = 0.001 and $\omega = 5$

How does the fineness of the suspension bridge influence itself?

$$m o rac{m}{n}$$

$$R^0 o rac{R^0}{n}$$

$$S \to S \cdot n$$

$$D \to D \cdot n$$

Note: time step should also be refined to ensure numerical stability

How does the fineness of the suspension bridge influence itself?

	n=2	n=3	n=4
Starting kinetic energy	152.8654	180.9286	195.7662
Time to equilibrium	4.6	4	19.6

Table 1: Starting kinetic energy and time to equilibrium

(a) The kinetic energy when (b) The kinetic energy when (c) The kinetic energy when n=2 n=3 n=4

when n=2

(a) The gravitational energy (b) The gravitational energy (c) The gravitational energy when n=3

when n=4

n=2

n = 3

(a) The elastic energy when (b) The elastic energy when (c) The elastic energy when n=4

(a) The total energy when (b) The total energy when (c) The total energy when n=2 n=3 n=4