Simulation and Generalized Langevin Equation Study of Lipid Subdiffusion in Biomembrane Phases

Sheeba Malik^{1,2}, Gerald R. Kneller^{3,4}, Micholas Dean Smith^{1,2} and Jeremy C. Smith^{1,2}

¹University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biology, University of Tennessee, Knoxville, Tennessee, ³Centre de Biophysique Moléculaire CNRS and Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France, ⁴Chimie du Vivant CNRS & Ecole Normale Supérieure, 24, rue Lhomond, 75005 Paris, France

Limitations

"ripple-like"; cannot resolve full

√ Timescale: Analysis is ps-ns; does

✓ Model choices: Force field, water

model, thermostat can shift

✓ Uncertainty: Report fit

not target long-time hydrodynamic

absolute values; relative trends are

windows/SEMs for a, Dalpha, , TVACF,

Conclusions

quantified via MSD, VACF, and

 $\kappa(t)$; τ_{VACF} and cage size track

κ(t) plateau/positive tail is a

dynamical fingerprint of caging.

slower transport; extendable to

Framework links ps memory to

✓ Phase-dependent subdiffusion

✓ Finite size: 128-lipid box → use

ripple periodicity/conformer

spectrum.

Background

Membranes show anomalous (often sub-diffusive) lipid motion on ps-ns scales.

Classic hydrodynamics is insufficient; frequency-/memory-based probes capture viscoelastic effects.

We need a phase-resolved short-time picture across gel, ripplelike, fluid.

Significance—Clinical: Quantifying ps-ns membrane caging via VACF-derived k(t) refines biophysical readouts (FRAP/NMR/IR), supporting more reliable diffusion estimates in complex or diseased membranes and informing assay interpretation for membrane-active therapeutics.

Significance—Biological: Phase-dependent transient caging (gel > ripple-like > fluid) links local viscoelastic memory to lipid mobility, offering a mechanistic basis for how packing and hydration modulate subdiffusion in cell-like membranes.

Simulation Details

GROMACS GROMACS

System (Different 324, 316 (fluid), 290, 288 (ripple), 268,

248 K (gel) Temperatures)

Force field (All

CHARMM36 [128 DMPC lipids] atom)

TIP4P/2005 Water Model

Annealing Rate $0.01 \, \text{K/ps}$

NVT (Dynamic analysis): saving frequency

0.01 ps; 30 ns; 4 independent sets Sampling for NPT (Structure analysis): saving

Analysis frequency 10 ps; ~100 ns; 4 independent

Equilibration: H-bonds Constraints

Production: None

Used inhouse code in python Analysis

MSD scaling: $W(t) = \langle (x(t) - x(0))^2 \rangle \stackrel{(t \to \infty)}{\sim} 2dD_{\alpha}t^{\alpha}$

VACF to MSD (exact link): $W(t) = 2 \int_0^t d\tau (t - \tau) c(\tau)$

Subdiffusive VACF tail: $c(t) \sim D_{\alpha}\alpha(\alpha-1)t^{\alpha-2}$, as $t \to \infty$

Results and Discussion

Bilayer Structural Properties: Area per Lipid and Bilayer Thickness

Area per lipid (APL) decreases and thickness increases with cooling → tighter packing → reduced mobility

Sub-Diffusive Behavior and Fractional Diffusion Across Membrane Phases

Velocity Autocorrelation Function and Molecular Caging

Temp (K)

deeper negative dips and longer positive tails, indicating transient caging and subdiffusion.

✓ The correlation time τ_{VACF} grows as temperature decreases / order increase

Memory Effects in Lipid Diffusion: Insights from the Generalized Langevin Equation

✓ Memory function ($\kappa(t)$, model-free GLE). Inversion of VACF yields a positive long-time tail with a 5-10 ps hump at lower T/greater order hallmarks of transient molecular caging.

✓ Short-time $\kappa(t)$ gives an effective cage scale $\sqrt{\langle u^2 \rangle}$, which decreases as ordering increases.

Future Directions and Questions ✓ Scale up systems; apply hydrodynamic

order.

corrections to link ps-ns memory to long-time D.

mixtures/proteins

✓ Method upgrade: more robust VACF → **k(t)** inversion with **uncertainty** estimates.

✓ Experiment bridge: predict FRAP, PFG-NMR, QENS directly from k(t).

✓ ML screening: learn mapping structure \rightarrow (a, τ_{VACF} , κ -tail) for fast design.

Scan for code and poster PDF

References

. Stachura S, Kneller GR. Anomalous lateral diffusion in lipid bilayers observed by molecular dynamics simulations with 2. Kneller GR, Baczynski K, Pasenkiewicz-Gierula M. Communication: Consistent picture of lateral subdiffusion in lipid 3. Stachura S, Kneller GR. Communication: Probing anomalous diffusion in frequency space. J Chem Phys. 2015 Nov 4. Kneller GR. Generalized Kubo relations and conditions for anomalous diffusion: Physical insights from a mathematica

Acknowledgements

5. Malik S, Karmakar S, Debnath A. Relaxation time scales of interfacial water upon fluid to ripple to gel phase transitions of

Microscopic Memory -> Macroscopic Transport Interfacial Water (IW) and Hydrogen Bonding Effects on Lipid Transient Caging Equations connecting ps memory to diffusivity (D)

Identification of interface water (IW)

Comment of the contraction Water continuously residing ± 0.3 nm away from lipid-moieties for 100 ps are IW

290 K - 288 K Temp (K)

VACF correlation time: $\tau_{VACF} = \left(\frac{D_{\alpha}}{\langle v^2 \rangle}\right)^{\overline{2-\alpha}}$ Generalized Langevin (memory kernel): $\frac{\partial c(t)}{\partial t} = -\int_0^t \kappa(t-t')c(t')\,dt'$ Effective cage size from short-time $\kappa(t)$: $\kappa(t) \stackrel{t\to\infty}{\sim} \frac{\langle v^2 \rangle}{\langle u^2 \rangle}$ for $\alpha \to \infty$

0, cage size $(\sqrt{\langle u^2 \rangle})$

Dr. Sheeba Malik (Post Doctoral Research Associate) University of Tennessee/Oak Ridge National Laboratory Email: smalik4@utk.ediu / <a href="mailto:mailts