

Kinds of Ensemble

Tested on apple quality dataset

David Nardi

June 11, 2024

MSc in AI, University of Florence

Apple quality dataset

Variables

- Size
- Weight
- Sweetness
- Crunchiness
- Juiciness
- Ripeness
- Acidity

Binary classification task

Class distribution: 0.49 - 0.51

Methods

- kNN, Decision tree
- Random forest
- AdaBoost
- Super Learner

Random forest

AdaBoost algorithm

Encoding
$$\mathcal{Y} \in \{-1,1\}$$
 ada::ada(x, y, loss="exponential", type="discrete", iter $\leftarrow M^*$, nu $\leftarrow \lambda^*$, bag.frac $\leftarrow \pi^*$, control=base.learner)

AdaBoost tuning

Variable importance comparison

Super Learner flow diagram

Super Learner in practice

```
SuperLearner(Y, X,

family=binomial(),

cluster,

SL.library \leftarrow \{\varphi_k\},

cvControl=list(

V=10, shuffle=FALSE())

CV. SuperLearner(...)
```

What's in the ensemble?

- ullet Response variable mean $ar{y}$
- Logistic Regression with $\alpha = 0, \ 1 \ \text{and} \ 0.5$
- Grown and pruned Decision Tree
- Random Forest
- Gradient Boosting Machine with d = 1 and d = 4
- kNN

Super Learner CV error (reduced, w/out kNN)

Super Learner CV error (full)

Performance

Model	Train score	Test score
<i>k</i> NN	0.9029	0.8950
CART	0.8841	0.8290
Random Forest	0.8808	0.8890
$AdaBoost_{d=1}$	0.7983	0.7922
$AdaBoost_{d=4}$	0.9996	0.8845
Super Learner _{red}	0.9899	0.8785
Super Learner _{full}	0.9303	0.8897

References i

- T. Hastie, R. Tibshirani, and J. H. Friedman

 The Elements of Statistical Learning

 Springer, 2009.
- E. C. Polley, and M. J. van der Laan
 Super Learner in Prediction
 U.C. Berkeley Division of Biostatistics Working Paper Series.
 Working Paper 266, 2010
- M. Culp, K. Johnson and G. Michailidis ada: The R Package Ada for Stochastic Boosting Journal of Statistical Software, 17(2), 1–27, 2006

kNN and CART tuning

Random forest variable importance

AdaBoost variable importance

Discrete AdaBoost algorithm

Discrete AdaBoost with shrinkage and out-of-bag, as an additive model with prediction function $f_m(x)$

```
Input: M, \{(x_i, y_i)\}_{1}^{N}, x_i \in \mathbb{R}^{p}
1 Initialize f_0(x) = 0;
2 for m=1 to M do
        Set w_i^{(m)} = -\frac{\partial L(y,g)}{\partial g}\Big|_{g=f_m(x)} s.t. \sum_{i=1}^N w_i^{(m)} = 1;
        Fit classifier G_m(x) using w_i^{(m)} with samples from \pi_m;
      Weighted error rate \operatorname{err}_m = \sum_{i=1}^N w_i^{(m)} \mathbb{I}(y_i \neq G(x_i));
5
Set \alpha_m = \frac{1}{2} \log(\frac{1 - \operatorname{err}_m}{\operatorname{orr}_m});
         Update f_m(x) \leftarrow f_{m-1}(x) + \lambda \alpha_m G_m(x):
8 end
   Output: G(x) = sign(f_M(x))
```

Super Learner algorithm flow diagram

Input:
$$\mathcal{D} = \{(x_i, y_i)\}_1^N$$
, $\mathcal{L} = \{\varphi_k(X)\}_{k=1}^K$
1 foreach strong learner in \mathcal{L} do

Fit φ_k on $\mathcal{D} \Rightarrow \hat{\varphi}_k(\mathbf{X}) \rightarrow \hat{\mathcal{L}} = \{\hat{\varphi}_k\}_{k=1}^K$;

4 for
$$\nu = 1, 2, ..., V$$
 do

3 end

foreach strong learner in
$$\mathcal L$$
 do

6 | Fit
$$\varphi_k$$
 on $T(\nu)$, predict $\hat{\varphi}_{k,T(\nu)}(X_i \in V(\nu))$;

end
$$\varphi_k$$
 on $T(\nu)$, predict φ_k ,

9 Stack output in an
$$N \times K$$
 matrix $Z = \{\hat{\varphi}_{k,T(\nu)}(X_{V(\nu)})\}$;
10 Propose a family of weighted combinations

$$m(z|\alpha) = \sum_{k=1}^{N} \alpha_k \hat{\varphi}_{k,T(\nu)} (\boldsymbol{X}_{V(\nu)}) \to \hat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{N} L(Y_i, m(z_i|\alpha))$$

of size N s.t.
$$\alpha_k \ge 0$$
, $\sum_k \alpha_k = 1$ and minimizes $\sum_k \alpha_k \hat{\varphi}_k$;

11 Combine
$$\hat{\alpha}$$
 with the library $\hat{\mathcal{L}} \to \hat{\varphi}_{\mathsf{SL}}(\boldsymbol{X}) = \sum_{k=1}^K \hat{\alpha}_k \hat{\varphi}_k(\boldsymbol{X})$;

Output: $\hat{\varphi}_{SL}$