Limiti superiori. $0 \le T(n)$ è O(f(n)) se esistono delle costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \le c \cdot f(n)$.

Limiti superiori. 0 ≤T(n) è O(f(n)) se esistono delle costanti c > 0 ed n_0 ≥ 0 tali che per tutti gli n ≥ n_0 si ha T(n) ≤ c · f(n).

Esempio: dimostriamo che $3n^2 + 2n \grave{e} O(n^2)$.

Dobbiamo dimostrare l'esistenza delle costanti c > 0 ed $n_0 \ge 0$ tali $3n^2 + 2n \le cn^2$ per ogni $n \ge n_0$.

Risolviamo la disequazione 3n² + 2n ≤ cn² :

 $c \ge 3n^2/n^2 + 2n/n^2 = 3 + 2/n$

Per $n \ge 1$, si ha che $3+2/n \le 3+2=5$

Se poniamo n_0 = 1 e c=5, abbiamo che

 $3n^2 + 2n \le cn^2$, per ogni $n \ge n_0$

Se partissimo da un valore di n piu` grande potremmo prendere una costante c piu` piccola

Se prendessimo $n_0 = 2$, allora potremmo prendere c=4

Se prendessimo c=3.1 allora potremmo prendere n_0 = 20.

In figura confrontiamo il grafico di

 $T(n)=3n^2+2n$ con quello di $h(n)=4n^2$

Limiti inferiori. T(n) è $\Omega(f(n))$ se esistono costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \ge c \cdot f(n) \ge 0$.

Limiti inferiori. $T(n) \in \Omega(f(n))$ se esistono costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \ge c \cdot f(n) \ge 0$.

Esempio: dimostriamo che $3n^2 + 2n \grave{e} \Omega(n^2)$.

Dobbiamo dimostrare l'esistenza delle costanti c > 0 ed $n_0 \ge 0$ tali $3n^2 + 2n \ge cn^2$ per ogni $n \ge n_0$.

Vera sicuramente per n=0 a prescindere dal valore di c. Vediamo quando e` vera per altri n.

Risolviamo la disequazione $3n^2 + 2n \ge cn^2$. Questa è soddisfatta se e solo se $c \le 3n^2/n^2 + 2n/n^2 = 3+2/n$

Osserviamo che $3+2/n \ge 3$ per ogni n > 0.

Possiamo quindi prendere c=3 ed $n_0=0$

Abbiamo quindi trovato le costanti c ed n_0 (con c=3 ed n_0 =0) per cui si ha che $3n^2 + 2n$ $\geq cn^2$ per ogni $n \geq n_0$.

Limiti esatti. $T(n) \in \Theta(f(n))$ se T(n) sia O(f(n)) che $\Omega(f(n))$.

Limiti esatti: T(n) è $\Theta(f(n))$ se T(n) sia O(f(n)) che $\Omega(f(n))$.

Esempio: abbiamo dimostrato che $3n^2 + 2n$ è sia $O(n^2)$ che $\Omega(n^2) \rightarrow 3n^2 + 2n$ è $\Theta(n^2)$

- Quando analizziamo un algoritmo miriamo a trovare stime asintotiche quanto più "strette" è possibile
- Dire che InsertionSort ha tempo di esecuzione $O(n^3)$ non è errato ma $O(n^3)$ non è un limite "stretto" in quanto si può dimostrare che InsertionSort ha tempo di esecuzione $O(n^2)$
- O(n²) è un limite stretto?
 - -Sì, perché il numero di passi eseguiti da InsertionSort è an²+bn+c, con a>0, che non solo è $O(n^2)$ ma è anche $\Omega(n^2)$.
 - Si può dire quindi che il tempo di esecuzione di Insertion Sort è $\Theta(n^2)$

Errore comune

Affermazione priva di senso. Ogni algoritmo basato sui confronti richiede almeno O(n log n) confronti.

lacksquare Per i lower bound si usa Ω

Affermazione corretta. Ogni algoritmo basato sui confronti richiede almeno Ω (n log n) confronti.

Proprietà

Transitività.

```
• Se f = O(g) e g = O(h) allora f = O(h).

• Se f = \Omega(g) e g = \Omega(h) allora f = \Omega(h).

• Se f = \Theta(g) e g = \Theta(h) allora f = \Theta(h).
```

Additività.

```
• Se f = O(h) e g = O(h) allora f + g = O(h).

• Se f = \Omega(h) e g = \Omega(h) allora f + g = \Omega(h).

• Se f = \Theta(h) e g = \Theta(h) allora f + g = \Theta(h).
```

Bound asintotici per alcune funzioni di uso comune

Polinomi. $a_0 + a_1 n + ... + a_d n^d$, con $a_d > 0$, è $\Theta(n^d)$.

Dim. $O(n^d)$: dobbiamo trovare due costanti c>0 e $n_0 \ge 0$ tali che $a_0 + a_1 n + a_d n^d \le c n^d$ per ogni $n \ge n_0$

$$a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$$

 $\leq |a_0| + |a_1| n + |a_2| n^2 + ... + |a_d| n^d$
 $\leq (|a_0| + |a_1| + |a_2| + ... + |a_d|) n^d$, per ogni $n \geq 1$.
Basta quindi prendere $n_0 = 1$ e $c = |a_0| + |a_1| + ... + |a_d|$ (è una costante)

Bound asintotici per alcune funzioni di uso comune

Dimostriamo come esercizio che $a_0 + a_1 n + ... + a_d n^d$ è anche $\Omega(n^d)$:

- $a_0 + a_1 n + ... + a_d n^d = a_d n^d + ... + a_1 n + a_0 \ge a_d n^d (|a_0| + |a_1| n + ... + |a_{d-1}| n^{d-1})$
- Abbiamo appena visto che un polinomio di grado d è O(n^d)
 - Ciò implica $|a_0| + |a_1|n + ... + |a_{d-1}|n^{d-1} = O(n^{d-1})$ e di conseguenza esistono due costanti $n'_0 \ge 0$ e c'>0 tali che $|a_0| + |a_1|n + ... + |a_{d-1}|n^{d-1} \le c'n^{d-1}$ per ogni $n \ge n'_0$
 - In realta' possiamo prendere $n_0'=1$ come nella dim. precedente.
- Quindi $a_d n^d (|a_0| + |a_1|n + ... + |a_{d-1}|n^{d-1}) \ge a_d n^d c' n^{d-1}$ per ogni $n \ge n'_0$
- da cui $a_0 + a_1 n + ... + a_d n^d \ge a_d n^{d-c} n^{d-1}$ per ogni $n \ge n'_0$

Bound asintotici per alcune funzioni di uso comune

- Nella slide precedente abbiamo dimostrato che esistono due costanti $n'_0 \ge 0$ e c'>0 tali che $a_0 + a_1 n + ... + a_d n^d \ge a_d n^d c' n^{d-1}$ per ogni $n \ge n'_0 = 1$.
- Siccome $n'_0 = 1$ allora stiamo considerando solo valori di n>1 e possiamo scrivere il secondo membro della disequazione come $(a_d-c'/n)n^d$
- * Per dimostrare $a_0 + a_1 n + ... + a_d n^d = \Omega(n^d)$ dobbiamo trovare le costanti $n_0 \ge 0$ e c > 0 tali che $a_0 + a_1 n + ... + a_d n^d \ge c n^d$ per ogni $n \ge n_0$
- Ovviamente se troviamo due costanti $n_0 \ge n'_0$ e c > 0 tali (a_d -c'/n) $n^d \ge cn^d$ per ogni $n \ge n_0$ allora vale anche la disuguaglianza in *
- Risolviamo (a_d-c'/n)n^d ≥ cn^d.
- $(a_d-c'/n)n^d \ge cn^d \leftarrow \rightarrow a_d-c'/n \ge c \text{ (vale } \leftarrow \rightarrow \text{ perche' considero gli } n \ge n'_0 = 1)$
- Mi basta che c sia maggiore di 0 quindi posso semplicemente risolvere la disequazione a_d -c'/n >0 rispetto ad n.
- a_d -c'/n >0 \leftarrow > n>c'/ a_d . Ho finito: prendo n_0 =max{1, 2c'/ a_d } e c= a_d /2 (ottenuto rimpiazzando n con 2c'/ a_d in a_d -c'/n

 Progettazione di Algoritmi, a.a. 2023-24

 A. De Bonis

Esempio:

$$T(n) = 32n^2 + 17n + 32$$
.

- -T(n) è $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$ e $\Theta(n^2)$.
- -T(n) non è O(n), $\Omega(n^3)$, $\Theta(n)$ o $\Theta(n^3)$.

Tempo lineare: O(n)

Tempo lineare. Il tempo di esecuzione è al più un fattore costante per la dimensione dell'input.

Esempio:

Computazione del massimo. Computa il massimo di n numeri $a_1, ..., a_n$.

```
\max \leftarrow a_1
for i = 2 to n \in Se(a_i > max)
\max \leftarrow a_i
}
```

Il problema dell'individuazione del max di n numeri e` $\Omega(n)$

Dim. ogni numero diverso dal massimo deve partecipare ad almeno un confronto in cui risulta < dell'altro elemento → almeno un confronto per ciascuno degli n-1 elementi diversi dal massimo

Tempo lineare: O(n)

Merge. Combinare 2 sequenze ordinate $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_m$ in una lista ordinata.


```
i = 1, j = 1
while (i≤n and j≤m) {
   if (ai ≤ bj) aggiungi ai alla fine della lista output e incrementa i
   else aggiungi bj alla fine della lista output e incrementa j
}
Ciclo per aggiungere alla lista output gli elementi non ancora
esaminati di una delle due liste input
```

Affermazione. Fondere due sequenze ordinate rispettivamente di dimensione n ed m richiede tempo O(n+m).

Dim. Dopo ogni iterazione del while o del ciclo sottostante, la lunghezza dell'output aumenta di 1.

Tempo quadratico: O(n²)

Tempo quadratico. Tipicamente si ha quando un algoritmo esamina tutte le coppie di elementi input

Coppia di punti più vicina. Data una lista di n punti del piano $(x_1, y_1), ..., (x_n, y_n),$ vogliamo trovare la coppia più vicina.

Soluzione $O(n^2)$. Calcola la distanza tra tutte le coppie di punti.

```
\begin{array}{l} \min \leftarrow (\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2 \\ \text{for } i = 1 \text{ to } n \\ \text{for } j = i+1 \text{ to } n \\ \text{d} \leftarrow (\mathbf{x}_i - \mathbf{x}_j)^2 + (\mathbf{y}_i - \mathbf{y}_j)^2 \\ \text{Se } (\text{d} < \min) \\ \text{min} \leftarrow \text{d} \\ \end{array}
```

Per esercizio, svolgiamo l'analisi dell'algoritmo nella slide precedente...

Il for esterno mi costa: tempo lineare in n + il tempo per eseguire tutte le iterazioni del for interno

Analizziamo il for interno:

Chiamiamo t_i il numero di iterazioni del for interno alla i-esima iterazione del for esterno

Quante volte viene iterato il for interno in totale? Risposta: $t_1+t_2+...+t_n$.

Per ogni i si ha t_i=(n-i)

Quindi sommando i t_i per tutte le iterazioni del for esterno ho

$$t_1+t_2+...+t_n = (n-1)+(n-2)+...+1+0 = n(n-1)/2$$
 iterazioni del for interno **IN TOTALE**

siccome la singola esecuzione del corpo del for interno richiede tempo pari ad una costante c \rightarrow il tempo richiesto da tutte le iterazioni del for interno è c(n(n-1)/2)= Θ (n²)

Tempo totale: $\Theta(n) + \Theta(n^2) = \Theta(n^2)$

Tempo cubico: $O(n^3)$

Tempo cubico. Tipicamente si ha quando un algoritmo esamina tutte le triple di elementi.

Esempio:

Disgiunzione di insiemi. Dati n insiemi S_1 , ..., S_n ciascuno dei quali è un sottoinsieme di $\{1, 2, ..., n\}$, c'è qualche coppia di insiemi che è disgiunta? Soluzione $O(n^3)$. Per ogni coppia di insiemi, determinare se i due insiemi sono disgiunti. (Supponiamo di poter determinare in tempo costante se un elemento appartiene ad un insieme)

Un utile richiamo

Alcune utili proprietà dei logaritmi:

- 1. $\log_a x = (\log_b x) / (\log_b a)$
- 2. $\log_a(xy) = \log_a x + \log_a y$
- 3. $\log_a x^k = k \log_a x$

Dalla 1. discende:

4. $\log_{\alpha}x = 1/(\log_{x}a)$

Dalla 3. discende:

5. $\log_{\alpha}(1/x) = -\log_{\alpha}x$

Dalla 2. e dalla 5. discende:

6. $\log_a(x/y) = \log_a x - \log_a y$

Regole per la notazione asintotica

$$d(n) = O(f(n)) \Rightarrow ad(n) = O(f(n)), \ \forall \ \text{costante} \ a > 0$$
 Es.: $\log n = O(n) \Rightarrow 7 \log n = O(n)$
$$d(n) = O(f(n)), e(n) = O(g(n)) \Rightarrow d(n) + e(n) = O(f(n) + g(n))$$
 Es.: $\log n = O(n), \sqrt{n} = O(n) \Rightarrow \log n + \sqrt{n} = O(n)$
$$d(n) = O(f(n)), e(n) = O(g(n)) \Rightarrow d(n)e(n) = O(f(n)g(n))$$
 Es.: $\log n = O(\sqrt{n}), \sqrt{n} = O(\sqrt{n}) \Rightarrow \sqrt{n} \log n = O(n)$
$$d(n) = O(f(n)), f(n) = O(g(n)) \Rightarrow d(n) = O(g(n))$$
 Es.: $\log n = O(\sqrt{n}), \sqrt{n} = O(n) \Rightarrow \log n = O(n)$
$$f(n) = a_d n^d + \cdots + a_1 n + a_0 \Rightarrow f(n) = O(n^d)$$
 Es.: $5n^7 + 6n^4 + 3n^3 + 100 = O(n^7)$
$$n^x = O(a^n), \ \forall \ \text{costanti} \ x > 0, \ a > 1$$
 Es.: $n^{100} = O(2^n)$

A. De Bonis

Regole per la notazione asintotica

- Le prime 5 regole nella slide precedente valgono anche se sostituiamo O con Ω o con Θ
- Dimostriamo per esercizio la 1.
- $d(n)=O(f(n)) \rightarrow ad(n)=O(f(n), per a costante positiva$
- Dim.
- $d(n)=O(f(n)) \rightarrow esistono due costanti c'>0 ed n'_0>0 t.c. <math>d(n) \le c'f(n)$ per ogni $n \ge n'_0$
- Moltiplicando entrambi i membri della disuguaglianza per a il verso della disuguaglianza rimane invariato perche' a>0.
- Quindi si ha ad(n)≤ac'f(n) per ogni n ≥ n'0.
- Abbiamo quindi trovato le costanti c ed n_0 per cui vale la definizione di O(f(n))
 - basta infatti porre c=ac' ed $n_0 = n'_0$
 - NB: ac' e` una costante > 0 perche' sia a che c' sono costanti > 0.