

Event-based Robot Vision

Prof. Dr. Guillermo Gallego

Chair: Robotic Interactive Perception

guillermo.gallego@tu-berlin.de

http://www.guillermogallego.es

Types of Event Cameras

Dynamic Vision Sensor – DVS

- Output: events e = (x, y, t, p) representing brightness changes (i.e., temporal contrast)
- Models the transient visual pathway ("where" system)
- Spatial resolution: from 128 x 128 pixels (DVS128 in 2008, 1st commercially available) to recent 1 Mpixel versions (2020)
- Manufactured by iniVation, Samsung

Asynchronous Time-based Image Sensor - ATIS

Output:

- Change detection (CD) events (i.e., like DVS) that model the transient visual pathway ("where" system)
- Exposure measurements (**EM**) events (grayscale events) that model the sustained visual pathway ("what" system). Intensity-encoding is time-based
- No frames: both CD and EM events are asynchronous
- Manufactured by Prophesee (Paris)

Asynchronous Time-based Image Sensor - ATIS

camera

events

Sample application: Pixel-level video compression

Asynchronous Time-based Image Sensor - ATIS

Pixel-level video compression by transmitting only EM grayscale events

Video by X. Lagorce https://youtu.be/3Wiw8LA8hLs

Posch et al., A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression ..., IEEE JSSC 2011.

Dynamic Pixel and Active Vision Sensor - DAVIS

- Output: DVS events, standard frames and IMU data
 - Combines a DVS and a standard camera in the same pixel array
 - Frames (rolling or global shutter, grayscale or color) are not HDR (~55 dB)
 - Frames resemble the information in the "what" visual pathway
- Spatial resolution: from 240 x 180 pixels (DAVIS240C) to 640 x 480 pixels (VGA)
- Manufactured by iniVation and Insightness

Dynamic Pixel and Active Vision Sensor - DAVIS

- Output: DVS events, standard frames and IMU data
 - Combines a DVS and a standard camera in the same pixel array
 - Frames (rolling or global shutter, grayscale or color) are not HDR (~55 dB)
 - Frames resemble the information in the "what" visual pathway

Very Short Summary

	DVS (2008)	DAVIS (2014)	ATIS (2011)
Events (change detection)	Yes	Yes	Yes
Grayscale	No	Frames (~ 55dB)	EM events (HDR) Time-based encoding
HDR, Latency, Power	All similar		
Manufacturer	iniVation, Samsung	iniVation, Insightness	Prophesee

Types of Events

Types of Events

- **DVS** or "change detection (**CD**)" event e = (x, y, t, p)
- ATIS grayscale events (Exposure Measurement) e = (x, y, t, L)
- Event from a stereo camera
 - Include camera index (left/right): e = (x, y, t, p, l/r)
- Color events
 - Color DVS (include channel index) e = (x, y, t, p, channel)
 - Color ATIS (exposure measurement) e = (x, y, t, r, g, b)
- Augmented events e = (x, y, t, p, extra)
 - Additional information given by the output of some algorithm
 - Lifetime estimation: normal optical flow, lifetime
 - Sensor fusion (event camera + depth): 3D depth of each event

The meaning of "Event"

- Events can signal any kind of information with associated place and time (x, y, t): intensity, local spatial contrast, etc.
- Ideally, events represent meaningful information to reduce data rate and therefore decrease demands on bandwidth, memory, and computer power for transmission, storage and processing.

The term has evolved from address-event (AER) representation.
 Today "event" mostly refers to "brightness changes" output by DVSs.

Where could this be going?

 Perform early visual processing on chip, near the image plane (in analog and transmit only "meaningful information" off the chip)

- Increasing pixel complexity:
 - Standard Pixel → DVS pixel → DAVIS pixel
 → Pixel Processor Arrays (PPAs)

PPA

- One mini-processor per pixel (SCAMP-5)
- Dedicates more area to processing, less for transducing light (photodiode).
 Light conversion efficiency could be improved with a stacked approach.
- It is a prototype sensor (academic), not mass-produced.
- We are entering the realm of computational imaging/photography, co-designing the visual pipeline end-to-end.

References

Reading:

- Journal papers on main sensor designs:
 - **DVS**: Lichtsteiner et al., <u>A 128x128 120dB 15µs latency asynchronous</u> temporal contrast vision sensor, IEEE J. Solid-State Circuits, 2008.
 - ATIS: Posch et al., <u>A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS</u>, IEEE J. Solid-State Circuits, 2011.
 - **DAVIS**: Brandli et al., <u>A 240x180 130 dB 3 µs Latency Global Shutter</u> <u>Spatiotemporal Vision Sensor</u>, IEEE J. Solid-State Circuits, 2014.
- Papers comparing the sensors:
 - Posch et al., <u>Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras</u> <u>With Spiking Output</u>, Proc. IEEE, 2014. <u>PDF</u>
 - T. Delbruck, *The Slow but Steady Rise of the Event Camera*, EE Times 2020.
 - Section 2.1 of Gallego et al., Event-based Vision: A Survey, IEEE TPAMI 2020.