TABLE OF CONTENTS

REVIEW: AREA UNDER A CURVE

Methods for finding the area under a curve.

- ► Limit of a Riemann Sum
 - Conceptually easy cut into rectangles
 - ► Computationally rough $\lim_{n\to\infty}\sum_{i=1}^{n}f(x_i^*)\Delta x_i$; $\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- ► Use Geometry
 - Computationally nice when it's available! (Circles, triangles, symmetry, etc.)
 - ► Often not available most functions don't make such nice shapes.

- ► Up next: Fundamental Theorem of Calculus
 - Conceptually less obvious we'll spend about a day explaining why it works
 - ► Computationally generally nicer than Riemann sums
 - ► Doesn't work for every function

Fundamental Theorem of Calculus, Part 1

Let a < b and let f(x) be a function which is defined and continuous on [a,b]. Let

$$A(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

for any x in [a, b]. Then the function A(x) is differentiable and

$$A'(x) = f(x) .$$

FTC(I) gives us the derivative of a very specific function (subject to some fine print).

It shows a close relationship between integrals and derivatives.

Area Function: $A(x) = \int_a^x f(t) dt$ for $a \le x \le b$

AREA FUNCTION: $A(x) = \int_a^x f(t) dt$ FOR $a \le x \le b$

Notation: the function A depends on the variable x.

We need to know how the function f behaves on the whole interval (0, x) to find A(x). That's why we use f(t), not f(x).

AREA FUNCTION NOTATION

It might look strange at first to see two different variables. Let's consider the alternatives:

$$A(x) = \int_0^x f(t) \, \mathrm{d}t$$

$$A(1) = \int_0^1 f(t) dt$$

$$B(x) = \int_0^x f(x) dt \qquad C(x) = \int_0^x f(x) dx$$

$$B(1) = \int_{0}^{1} f(1) \, \mathrm{d}t$$

$$C(x) = \int_0^x f(x) dx$$

$$A(1) = \int_0^1 f(t) dt$$
 $B(1) = \int_0^1 f(1) dt$ $C(1) = \int_0^1 f(1) \underbrace{d1}_{??}$

Fundamental Theorem of Calculus, Part 1

Let a < b and let f(x) be a function which is defined and continuous on [a,b]. Let

$$A(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

for any x in [a, b]. Then the function A(x) is differentiable and

$$A'(x) = f(x) .$$

Question: Why is it true?

DERIVATIVE OF AREA FUNCTION, $A(x) = \int_a^x f(t) dt$

$$A'(x) = \lim_{\Delta x \to 0} \frac{\Delta A}{\Delta x} = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = \lim_{h \to 0} \frac{hf(x)}{h} = f(x)$$

DERIVATIVE OF AREA FUNCTION, $A(x) = \int_a^x f(t) dt$

$$A'(x) = \lim_{\Delta x \to 0} \frac{\Delta A}{\Delta x} = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = \lim_{h \to 0} \frac{hf(x)}{h} = f(x)$$

When h is very small, the purple area looks like a rectangle with base h and height f(x), so $A(x+h) - A(x) \approx hf(x)$ and $\frac{A(x+h) - A(x)}{h} \approx f(x)$. As h tends to zero, the error in this approximation approaches 0.

Fundamental Theorem of Calculus, Part 1

Let a < b and let f(x) be a function which is defined and continuous on [a,b]. Let

$$A(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

for any x in [a, b]. Then the function A(x) is differentiable and

$$A'(x) = f(x) .$$

Suppose $A(x) = \int_2^x \sin t \, dt$. What is A'(x)?

$$A'(x) = \sin x$$

Suppose $B(x) = \int_{x}^{2} \sin t \, dt$. What is B'(x)?

$$B'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left\{ -\int_2^x f(t) \, \mathrm{d}t \right\} = -\sin x$$

Fundamental Theorem of Calculus, Part 1

Let a < b and let f(x) be a function which is defined and continuous on [a,b]. Let

$$A(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

for any x in [a, b]. Then the function A(x) is differentiable and

$$A'(x) = f(x) .$$

Suppose $C(x) = \int_2^{e^x} \sin t \, dt$. What is C'(x)?

$$C'(x) = e^x \sin(e^x)$$
: if we set $a = 2$, then

$$C(x) = A(e^x)$$

$$\implies C'(x) = A'(e^x) \cdot \frac{d}{dx} \{e^x\} = \sin(e^x) \cdot e^x$$

It's possible to have two different functions with the same derivative.

$$A(x) = \int_0^x 2t \, \mathrm{d}t = x^2$$

$$B(x) = \int_1^x 2t \, dt = x^2 - 1$$

$$B'(x) = 2x$$

When two functions have the same derivative, they differ only by a constant.

In this example: B(x) = A(x) - 1

If two continuous functions have the same derivative, then one is a constant plus the other.

$$If A(x) = \int_a^x f(t) dt, then^1 A'(x) = f(x)$$

$$A(x) = \int_{a}^{x} e^{t} dt$$
. What functions could $A(x)$ be?

- $ightharpoonup A'(x) = e^x$.
- Guess a function with derivative e^x : $F(x) = e^x$.
- ► Then $A(x) = e^x + C$ for some constant C.

¹(as long as f(t) is continuous on [a, x])

$$If A(x) = \int_a^x f(t) dt, then^1 A'(x) = f(x)$$

$$A(x) = \int_{a}^{x} \cos t \, dt$$
. What functions could $A(x)$ be?

- $ightharpoonup A'(x) = \cos x.$
- Guess a function with derivative $\cos x$: $F(x) = \sin x$.
- ► Then $A(x) = \sin x + C$ for some constant C.

 $^{^{1}}$ (as long as f(t) is continuous on [a, x])

$$If A(x) = \int_a^x f(t) dt, then^1 A'(x) = f(x)$$

$$A(x) = \int_{-2}^{x} 5t^4 dt$$
. What functions could $A(x)$ be?

- $A'(x) = 5x^4$.
- Guess a function with derivative $5x^4$: $F(x) = x^5$.
- ► Then $A(x) = x^5 + C$ for some constant C.
- ► We ALSO know $A(-2) = \int_{-2}^{-2} 5t^4 dt = 0$, so we can find *C*:

$$0 = A(-2) = (-2)^5 + C \implies C = 32$$

$$ightharpoonup$$
 So, $A(x) = x^5 + 32$

¹(as long as f(t) is continuous on [a, x])

$$A(x) = \int_{-2}^{x} 5t^4 dt = x^5 + 32$$

$$A(-1) = \int_{-2}^{-1} 5t^4 dt = (-1)^5 + 32 = 31$$

$$A(x) = \int_{-2}^{x} 5t^4 dt = x^5 + 32$$

$$A(0) = \int_{-2}^{0} 5t^4 dt = (0)^5 + 32 = 32$$

$$A(x) = \int_{-2}^{x} 5t^4 dt = x^5 + 32$$

$$A(1) = \int_{-2}^{1} 5t^4 dt = (1)^5 + 32 = 33$$

$$A(x) = \int_{-2}^{x} 5t^4 dt = x^5 + 32$$

$$A(2) = \int_{-2}^{2} 5t^4 dt = (2)^5 + 32 = 64$$

$$A(x) = \int_{-2}^{x} 5t^4 dt = x^5 + 32$$

$$A(3) = \int_{-2}^{3} 5t^4 dt = (3)^5 + 32 = 275$$

$$If A(x) = \int_a^x f(t) dt, then^1 A'(x) = f(x)$$

$$A(x) = \int_{a}^{x} f(t) dt$$
. What functions could $A(x)$ be?

¹(as long as f(t) is continuous on [a, x])

$$If A(x) = \int_a^x f(t) dt, then^1 A'(x) = f(x)$$

$$A(b) = \int_a^b f(t) dt$$
. What functions could $A(b)$ be?

- ightharpoonup A'(x) = f(x).
- ▶ Guess a function with derivative f(x): F(x).
- ▶ Then A(x) = F(x) + C for some constant C.
- ► Also A(a) = 0, so 0 = F(a) + C, so C = -F(a)
- ► So, $A(\frac{b}{b}) = F(\frac{b}{b}) F(a)$

¹(as long as f(t) is continuous on [a, x])

$$\int_{a}^{b} f(t) dt = F(b) - F(a) \quad \text{where} \quad F'(x) = f(x)$$

$$\int_{a}^{b} f(t) dt = F(b) - F(a) \quad \text{where} \quad F'(x) = f(x)$$

$$\int_{a}^{b} f(t) dt = F(b) - F(a) \quad \text{where} \quad F'(x) = f(x)$$

Fundamental Theorem of Calculus, Part 2

Let F(x) be differentiable, defined, and continuous on the interval [a,b] with F'(x) = f(x) for all a < x < b. Then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Examples:

$$\frac{d}{dx} \left\{ 5x^7 \right\} = 35x^6, \text{ so}$$

$$\int_0^3 35x^6 dx = 5x^7 \Big|_{x=3} - 5x^7 \Big|_{x=0} = 5(3^7) - 5(0^7) = 5 \cdot 3^7$$

$$\frac{d}{dx} \{ \tan x \} = \sec^2 x, \text{ so}$$

$$\int_0^{\pi/4} \sec^2 x \, dx = \tan x \Big|_{x = \frac{\pi}{4}} - \tan x \Big|_{x = 0} = \tan(\pi/4) - \tan 0 = 1$$

$$\int_0^3 35x^6 \, dx = F(b) - F(a) \quad \text{where} \quad F(x) = 5x^7$$

$$\int_0^3 35x^6 \, \mathrm{d}x = 5(3)^7 - 5(0)^7$$

$$\int_0^{\pi/4} \sec^2 x \, dx = F(b) - F(a) \quad \text{where} \quad F(x) = \tan x$$

$$\int_0^{\pi/4} \sec^2 x \, dx = \tan\left(\frac{\pi}{4}\right) - \tan 0 = 1$$

RELEVANT VOCABULARY

Definition

If F(x) is a function whose derivative is f(x), we call F(x) an antiderivative of f(x).

Examples:

The derivative of x^2 is 2x, so: x^2 is an **antiderivative** of 2x.

When x > 0, the derivative of $\log x$ is $\frac{1}{x}$, so:

 $\frac{1}{x}$ is an **antiderivative** of $\log x$.

For all x, the derivative of $\log |x|$ is $\frac{1}{x}$, so:

 $\frac{1}{x}$ is an **antiderivative** of $\log |x|$.

An antiderivative of $\sin x$ is $-\cos x$, because $\frac{d}{dx} \{-\cos x\} = \sin x$.

CONVENIENT NOTATION

Definition

$$f(x)\Big|_a^b = f(b) - f(a)$$

The function f(x) evaluated from a to b

Examples:

$$\left(5x + x^2\right)\Big|_1^2 = (10+4) - (5+1)$$
$$\frac{x^2}{x+2}\Big|_5^{-1} = \frac{1}{1} - \frac{25}{7}$$

FTC Part 2, Abridged

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(x) \Big|_{a}^{b}$$

where F(x) is an antiderivative of f(x)

Definition

The **indefinite integral** of a function f(x):

$$\int f(x) \, \mathrm{d}x$$

means the *most general* antiderivative of f(x).

Examples:

$$\int 2x \, \mathrm{d}x = x^2 + C,$$

C "arbitrary constant."

$$\int \frac{1}{x} \, \mathrm{d}x = \log|x| + C$$

Remember: two functions with the same derivative differ by a constant, so we include the "+C" for indefinite integrals.

DEFINITE VS INDEFINITE INTEGRALS

For each pair of properties below, decide which applies to definite integrals, and which to indefinite integrals.

No limits (or bounds) of integration, $\int f(x) dx$	indefinite
Limits (or bounds) of integration, $\int_a^b f(x) dx$	definite
Area under a curve	definite
Antiderivative	indefinite
Number	definite
Function	indefinite

ANTIDIFFERENTIATION BY INSPECTION

$$1. \int e^x \, \mathrm{d}x = e^x + C$$

$$2. \int \cos x \, \mathrm{d}x = \sin x + C$$

$$3. \int -\sin x \, \mathrm{d}x = \cos x + C$$

4.
$$\int \frac{1}{x} dx = \log |x| + C$$

5.
$$\int 1 \, \mathrm{d}x = x + C$$

6.
$$\int 2x \, dx = x^2 + C$$

7.
$$\int nx^{n-1} dx = x^n + C \qquad (n \neq 0, \text{ constant})$$

8.
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$
 ($n \neq -1$, constant)

Power Rule for Antidifferentiation

$$\int x^n \, \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C$$

if $n \neq -1$ is a constant

Example:

$$\int (5x^2 - 15x + 3) dx = \frac{5}{3}x^3 - \frac{15}{2}x^2 + 3x + C$$

ANTIDERIVATIVES TO RECOGNIZE

$$ightharpoonup \int a \, \mathrm{d}x = ax + C$$

$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$