SOLUTIONS

Ex 25: Grandissement transversal

- 1. Le théorème de Thalès dans le triangle (CAB) donne : $\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$ donc $g_y = \frac{\overline{CA'}}{\overline{CA}}$
- 2. Grandissement avec origine aux foyers
 - **2.1.** Dans le triangle (ABF), (SJ)//(AB), le théorème de Thalès permet d'écrire :

$$\frac{\overline{JS}}{\overline{AB}} = \frac{\overline{FA}}{\overline{SF}}$$
 donc $\frac{-\overline{A'B'}}{\overline{AB}} = \frac{\overline{FA}}{\overline{f}}$ $g_y = -\frac{f}{\overline{FA}}$

On montre de la même façon dans le triangle (A'B'F') : $g_y = -\frac{\overline{F'A'}}{f'}$

2.2. Le quotient des deux expressions précédentes donne :

$$\frac{g_y}{g_y} = \frac{\overline{F'A'}}{f'} \times \frac{\overline{FA}}{f} = \frac{\overline{F'A'}.\overline{FA}}{f.f'}$$
 d'où le résultat : $\overline{FA}.\overline{F'A'} = f.f'$

3. Grandissement transversal avec origine au sommet

$$\frac{\overline{SA'}}{\overline{SA}} = \frac{\overline{SF'} + \overline{F'A'}}{\overline{SF} + \overline{FA}} = \frac{f' + \overline{F'A'}}{f + \overline{FA}} = \frac{\overline{SA'}}{\overline{SA}} = \frac{f'}{f} \cdot \frac{1 + \frac{\overline{F'A'}}{f'}}{1 + \frac{\overline{f}}{\overline{FA}}} = \frac{f'}{f} \cdot \frac{1 - g_y}{1 - \frac{1}{g_y}} = -\frac{f'}{f} \cdot g_y$$

On en déduit l'expression du grandissement transversal : $g_y = \frac{n}{n'} \frac{\overline{S'A'}}{\overline{SA}}$

Ex 26: Construction graphique - objet réel

Ex 27: Construction graphique - objet virtuel

Ex 28: Construction graphique d'un faisceau lumineux

Ex 29: Relations de conjugaison

1. Position du foyer objet F :
$$\overline{SF} = -\frac{n}{n'-n}\overline{SC}$$
 $f = \overline{SF} = -60\,mm$
Position du foyer image F' : $\overline{SF'} = \frac{n'}{n'-n}\overline{SC}$ $f' = \overline{SF'} = 90\,mm$

2. L'image formée est virtuelle

3.1. La relation de conjugaison avec origine au sommet s'écrit :
$$\frac{f}{\overline{SA}} + \frac{f'}{\overline{SA'}} = 1$$

$$\frac{f'}{\overline{SA'}} = 1 - \frac{f}{\overline{SA}} = \frac{\overline{SA} - f}{\overline{SA}} \quad \text{et finalement} \quad \overline{SA'} = \frac{\overline{SA} \cdot f'}{\overline{SA} - f} \quad \overline{\overline{SA'}} = -90 \, mm$$

3.2. Le grandissement transversal de l'image :
$$g_y = \frac{\overline{A'B'}}{\overline{AB}} = \frac{n}{n'} \cdot \frac{\overline{SA'}}{\overline{SA}}$$
 $g_y = +2,0$

4. Position de l'objet :
$$\frac{f}{\overline{SA}} + \frac{f'}{\overline{SA'}} = 1$$
 $\overline{SA} = \frac{\overline{SA'} \cdot f}{\overline{SA'} - f'}$ $\overline{\overline{SA}} = -16, 8 \, cm$

Grandissement transversal:
$$g_y = \frac{n}{n'} \cdot \frac{\overline{SA'}}{\overline{SA}}$$
 $g_y = -0.56$

L'image est presque deux fois plus petite que l'objet et inversée par rapport à celui-ci.

Ex 30: La lentille boule

1. •
$$f_1 = \frac{-1}{n-1}\overline{S_1C}$$
 $f_1 = \frac{-1}{n-1}R$ $f_1 = -R = -10 \, mm$
• $f_1' = \frac{n}{n-1}\overline{S_1C}$ $f_1' = \frac{n}{n-1}R$ $f_1' = 2R = 20 \, mm$

•
$$f'_1 = \frac{n}{n-1}\overline{S_1C}$$
 $f'_1 = \frac{n}{n-1}R$ $f'_1 = 2R = 20 \, mm$

•
$$f_2 = \frac{-n}{1-n}\overline{S_2C}$$
 $f_2 = \frac{-n}{n-1}R$ $f_2 = -2R = -20 \, mm$

•
$$f_2' = \frac{1}{1-n}\overline{S_2C}$$
 $f_2' = \frac{1}{n-1}R$ $f_2' = R = 10 \, mm$

2.2.
$$\frac{f_1}{\overline{S_1 A}} + \frac{f_1'}{\overline{S_1 A_1}} = 1$$
 donc $\frac{f_1'}{\overline{S_1 A_1}} = 1 - \frac{f_1}{\overline{S_1 A}} = \frac{\overline{S_1 A} - f_1}{\overline{S_1 A}}$ $\overline{S_1 A_1} = \frac{\overline{f_1'}.S_1 \overline{A}}{\overline{S_1 A} - f_1}$ $\overline{S_1 A} = \overline{S_1 C} + \overline{CA} = -5,0 \, mm$ $\overline{S_1 A_1} = -20 \, mm$

2.3. Grandissement transversal:
$$g_{y1} = \frac{\overline{A_1 B_1}}{\overline{AB}} = \frac{1}{n} \frac{\overline{S_1 A_1}}{\overline{S_1 A}}$$
 $g_{y1} = 2, 0$

3.2. Position de l'image finale :

$$\overline{S_2 A'} = \frac{f'_2 \cdot \overline{S_2 A_1}}{\overline{S_2 A_1} - f_2} \quad \text{avec} \quad \overline{S_2 A_1} = \overline{S_2 S_1} + \overline{S_1 A_1} = -40 \, mm \quad \overline{\overline{S_2 A'}} = +20 \, mm$$

3.3. Grandissement lié au second dioptre :
$$g_{y\,2} = n \frac{\overline{S_2 A'}}{\overline{S_2 A_1}}$$
 $g_{y\,2} = -1$ Grandissement global de la lentille boule : $g_y = g_{y\,1} \times g_{y\,2}$ $g_y = -2, 0$

Ex 31 : Lentille épaisse biconcave

1. •
$$f_1 = -\frac{1}{n-1}\overline{S_1C_1}$$
 $f_1 = 83,3 \, mm$ $f_1' = \frac{n}{n-1}\overline{S_1C_1}$ $f_1' = -133,3 \, mm$

•
$$f_2 = -\frac{n}{1-n}\overline{S_2C_2}$$
 $f_2 = 133, 3 \, mm$ $f_2' = \frac{1}{1-n}\overline{S_2C_2}$ $f_2' = -83, 3 \, mm$

2. La relation de Newton appliquée au 1er dioptre donne :

$$\overline{F_1A} \cdot \overline{F_1'A_1} = f_1 \cdot f_1' \quad \text{donc} \quad \overline{F_1'A_1} = \frac{f_1 \cdot f_1'}{\overline{F_1A}} \quad \boxed{\overline{F_1'A_1} = 55, 5 \, mm}$$

Grandissement de l'image intermédiaire :
$$\frac{\overline{A_1B_1}}{\overline{AB}} = -\frac{f_1}{\overline{F_1A}} \quad \boxed{\frac{\overline{A_1B_1}}{\overline{AB}}} = 0,42$$

Relation de Newton appliquée au $2^{\text{ème}}$ dioptre : $\overline{F_2A_1} \cdot \overline{F_2'A'} = f_2 \cdot f_2'$ $\overline{F_2'A'} = \frac{f_2 \cdot f_2'}{\overline{F_2A_1}}$

avec
$$\overline{F_2 A_1} = \overline{F_2 S_2} + \overline{S_2 S_1} + \overline{S_1 F_1'} + \overline{F_1' A_1} = -f_2 - e + f_1' + \overline{F_1' A_1} = -223,6 \, mm$$

$$\overline{\overline{F_2' A'}} = 49,6 \, mm$$

Grandissement de
$$A'B'$$
 par rapport à A_1B_1 : $\frac{\overline{A'B'}}{\overline{A_1B_1}} = -\frac{\overline{F_2'A'}}{\overline{f_2'}}$ $\overline{\frac{A_1B_1}{\overline{AB}}} = 0,59$

Grandissement transversal de la lentille :
$$\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A_1B_1}}{\overline{AB}} \cdot \frac{\overline{A_1B_1}}{\overline{AB}} \quad \overline{\frac{\overline{A'B'}}{\overline{AB}}} = 0,25$$

Ex 32: Objectif de microscope

1.1. La relation de conjugaison du dioptre plan s'écrit :

$$\frac{\overline{HA}}{1} = \frac{\overline{HA_1}}{n} \quad \text{soit} \quad \overline{HA_1} = n\overline{HA} \quad \overline{HA_1} = -6,0 \, mm$$

$$\overline{SA_1} = \overline{SH} + \overline{HA_1} = \overline{HA_1} - e \quad \overline{SA_1} = -11 \, mm$$

1.2. La relation de conjugaison du dioptre sphérique s'écrit : $\frac{f}{\overline{SA_1}} + \frac{f'}{\overline{SA'}} = 1$

donc
$$\overline{SA'} = \frac{f'.\overline{SA_1}}{\overline{SA_1} - f}$$
 avec $f' = -\frac{f}{n} = 5,33 \, mm$ $\overline{SA'} = 19,5 \, mm$

Le dioptre plan ne modifie pas la taille de l'image $(\overline{A_1B_1} = \overline{AB})$, le grandissement transversal de la lentille est donc simplement égal à celui du dioptre sphérique :

$$g_y = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A'B'}}{\overline{A_1B_1}} = n\frac{\overline{SA'}}{\overline{SA_1}}$$
 $g_y = -2,66$

2. Utilisation d'un objectif à immersion

L'indice optique de l'huile est égal à celui du verre de la lentille, le dioptre plan ne joue plus aucun rôle. La chaîne d'image se simplifie : $AB \xrightarrow{\text{dioptre sphérique}} A'B'$

$$\overline{SA'} = \frac{f'.\overline{SA}}{\overline{SA} - f}$$
 avec $\overline{SA} = \overline{HA} - e = -9,0 \, mm$ $\overline{SA'} = 48,0 \, mm$

Nouvelle valeur du grandissement transversal :
$$g_y = n \cdot \frac{\overline{SA'}}{\overline{SA}}$$
 $g_y = -8, 0$