XI - Convergence Estimation

I - Inégalités

Théorème 1 - Inégalité de Markov

Soit X une variable aléatoire à valeurs positives admettant une espérance et a > 0. Alors,

$$\mathbf{P}\left(\left[X\geqslant a\right]\right)\leqslant\frac{\mathbf{E}\left[X\right]}{a}.$$

Exemple 1 - Survie d'un composant

• On suppose que la durée de vie X (en mois) d'un composant électronique suit une loi de exponentielle de paramètre 1/2. On peut estimer la probabilité que le composant fonctionne durant une année :

$$\mathbf{P}([X \geqslant 12]) \leqslant \frac{\mathbf{E}[X]}{12} = \frac{2}{12} = \frac{1}{6} \simeq 0.17.$$

Ainsi, avec probabilité égale à au plus 17%, le composant électronique fonctionnera durant au moins 1 an.

• Cette inégalité peut être appliquée en utilisant au préalable une fonction croissante. En effet, en reprenant l'exemple du composant, la fonction carré étant croissante et bijective sur \mathbb{R}_+ ,

$$X(\omega) \geqslant 12 \iff X(\omega)^2 \geqslant 12^2.$$

Ainsi, en rappelant que lorsque $X \hookrightarrow \mathscr{E}(1/2),$ alors $\mathbf{E}\left[X^2\right] = 8,$

$$\mathbf{P}([X \geqslant 12]) = \mathbf{P}([X^2 \geqslant 144]) \leqslant \frac{\mathbf{E}[X^2]}{144} = \frac{8}{144} \simeq 0.05.$$

On peut donc être plus précis que dans le point précédent et estimer qu'avec probabilité au plus égale à 5,6%, le composant électronnique fonctionnera au moins 1 an. Dans ce cas très précis, cette probabilité peut être calculée exactement :

$$\mathbf{P}([X \geqslant 12]) = \int_{12}^{+\infty} \frac{1}{2} e^{-x/2} dx = e^{-6} \simeq 0,0025.$$

Théorème 2 - Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire admettant une variance et $\varepsilon>0$. Alors,

$$\mathbf{P}\left(\left[\left|X-\mathbf{E}\left[X\right]\right|\geqslant\varepsilon\right]\right)\leqslant\frac{\mathbf{V}\left(X\right)}{\varepsilon^{2}}.$$

Exemple 2 - Survie d'un composant

En reprenant l'exemple précédent, comme $X \hookrightarrow \mathcal{E}(1/2)$, alors $\mathbf{E}[X] = 2$ et $\mathbf{V}(X) = 4$. Ainsi,

$$\mathbf{P}([|X - \mathbf{E}[X]| \ge 12]) \le \frac{\mathbf{V}(X)}{144} = \frac{4}{144} = \frac{1}{36} \simeq 0.028.$$

Pour interpréter ce résultat, on remarque que

$$|X - \mathbf{E}[X]| \geqslant 12 \Leftrightarrow |X - 2| \geqslant 12 \Leftrightarrow$$

$$\begin{cases}
X - 2 \geqslant 12 \\
\text{ou} \\
X - 2 \leqslant -12
\end{cases}$$

Comme $X \ge 0$, $|X - \mathbf{E}[X]| \ge 12$ est équivalent à $X \ge 10$. Ainsi, la probabilité que le composant fonctionne au moins 10 mois est au plus égale à $\frac{1}{36}$.

Chapitre XI - Convergence et Estimation ECT 2

II - Suites de variables aléatoires discrètes finies

Théorème 3 - Espérance d'une somme

Soit $n \ge 1, X_1, \dots, X_n$ des variables aléatoires admettant une espérance. Alors,

$$\mathbf{E}\left[X_1+\cdots+X_n\right]=\mathbf{E}\left[X_1\right]+\cdots+\mathbf{E}\left[X_n\right].$$

Exemple 3

Soit $n \ge 1, X_1, \dots, X_n$ des variables aléatoires suivant toutes une loi de Bernoulli de paramètre p. Alors,

$$\mathbf{E}\left[X_1 + \dots + X_n\right] = \mathbf{E}\left[X_1\right] + \dots + \mathbf{E}\left[X_n\right] = np.$$

Définition 1 - Indépendance mutuelle d'une famille finie

Soit $n \ge 1, X_1, \ldots, X_n$ des variables aléatoires. Les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes si pour toute famille I_1, \ldots, I_n d'intervalles, les événements $[X_1 \in I_1], \ldots, [X_n \in I_n]$ sont mutuellement indépendants.

Exemple 4 - Urnes, Pièces,...

Lors de lancers successifs d'une pièce de monnaie ou de tirages avec remise dans une urne, les résultats successifs sont généralement modélisés par une suite de variables aléatoires mutuellement indépendantes.

Proposition 1 - Variance d'une somme de v.a. indépendantes

Soit $n \ge 1, X_1, \dots, X_n$ des variables aléatoires indépendantes et admettant des variances. Alors,

$$\mathbf{V}(X_1 + \dots + X_n) = \mathbf{V}(X_1) + \dots + \mathbf{V}(X_n).$$

Exemple 5 - Lois de Bernoulli

Soit $n \ge 1, X_1, \dots, X_n$ des variables aléatoires suivant toutes une loi de Bernoulli de paramètre p. Alors,

$$V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n) = np(1-p).$$

On retrouve ainsi la variance d'une loi $\mathcal{B}(n,p)$. En effet, si X_1, \ldots, X_n suivent des lois de Bernoulli, la somme $Y = X_1 + \cdots + X_n$ compte le nombre de succès (c'est-à-dire le nombre de 1) dans la suite d'expériences de Bernoulli indépendantes X_1, \ldots, X_n . Ainsi, $Y \hookrightarrow \mathcal{B}(n,p)$.

Définition 2 - Indépendance mutuelle d'une suite

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes. La suite de variables aléatoires est dite *indépendante* si, pour tout n entier naturel non nul, les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes.

III - Loi faible des grands nombres

Théorème 4 - Loi faible des grands nombres

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes admetant une même espérance m et une même variance σ^2 . Pour tout n entier naturel non nul, on pose $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$. Alors, pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbf{P}\left([\overline{X}_n - m] \geqslant \varepsilon \right) = 0.$$

Exemple 6 - Illustration de la loi des grands nombres

On considère une pièce équilibrée qui renvoie Pile avec probabilité p et Face avec probabilité 1-p. On lance cette pièce une infinité de fois et on note $X_i = 1$ si la pièce tombe sur pile au i^e lancer

et $X_i = 0$ sinon. Ainsi, $\mathbf{E}[X_i] = p$.

La quantité \overline{X}_n représente le nombre moyen de Piles obtenus lors des n premiers lancers.

Le théorème assure que lorsque n est grand, la probabilité que \overline{X}_n soit loin de p est très faible. Autrement dit, on peut approcher p par \overline{X}_n .

IV - Estimation

IV.1 - Définitions

Définition 3 - Échantillon

Soit n un entier naturel non nul et X une variable aléatoire. Un n-échantillon de X est une famille X_1, \ldots, X_n de variables aléatoires mutuellement indépendantes et de même loi que X.

Exemple 7 - Sondage

On souhaite connaître la proportion de français favorables à une réforme donnée. On modélise le problème en considérant une variable aléatoire X suivant une loi de Bernoulli de paramètre p. On interroge n français choisis indépendamment dans la population. On note X_i la réponse donnée par l'individu numéro i:1 si l'individu est favorable et 0 sinon. On suppose que X_i suit la même loi que X.

Définition 4 - Estimateur

Soit X une variable aléatoire suivant une loi de probabilité dépendant d'un paramètre θ , $n \ge 1$ et (X_1, \ldots, X_n) un n-échantillon de X. Un estimateur de θ est une variable aléatoire $\varphi(X_1, \ldots, X_n)$ où φ est une application de \mathbb{R}^n dans \mathbb{R} .

Exemple 8 - Sondage

Pour estimer p, on va utiliser la quantité $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$. D'après la loi faible des grands nombres, lorsque n est grand, \overline{X}_n est proche de $\mathbf{E}[X_1] = p$.

IV.2 - Estimation ponctuelle

Théorème 5 - Estimation ponctuelle

Soit X une variable aléatoire admettant une moyenne $m, \ge 1$ et (X_1, \ldots, X_n) un n-échantillon de X. Alors, \overline{X}_n est une estimation de $\mathbf{E}[X_1] = m$.

Exemple 9 - Estimateurs du paramètre

Estimation ponctuelle signifie qu'on estime le paramètre p par une unique valeur, un point dans l'ensemble des réels.

- Si X_1, \ldots, X_n est un *n*-échantillon d'une loi de Bernoulli de paramètre p, alors \overline{X}_n est un estimateur de p.
- Si X_1, \ldots, X_n est un *n*-échantillon d'une loi de Poisson de paramètre λ , alors \overline{X}_n est un estimateur de λ .

IV.3 - Estimation par intervalle de confiance

Théorème 6 - Intervalle de confiance

Soit X une variable aléatoire admettant une moyenne m et une variance σ^2 , $n \geqslant 1$, (X_1, \ldots, X_n) un n-échantillon de X et a un réel strictement positif. La probabilité que m appartienne à l'intervalle $\left[\overline{X}_n - \sqrt{\frac{\sigma^2}{na}}, \overline{X}_n + \sqrt{\frac{\sigma^2}{na}}\right]$ est supérieure à 1-a.

Exemple 10 - Intervalles de confiance

Plus on travaille sur un échantillon grand, c'est-à-dire plus n est grand, plus l'intervalle sera petit et notre estimation sera précise.

• Si X suit une loi de Bernoulli de paramètre p, la probabilité que p appartienne à $\left[\overline{X}_n - \sqrt{\frac{p(1-p)}{na}}, \overline{X}_n + \sqrt{\frac{p(1-p)}{na}}\right]$ est supérieure ou égale à a.

Comme p est inconnu, la quantité p(1-p) est inconnue et l'intervalle de confiance ne peut pas être déterminé explicitement. On pourra remarquer que, comme $p \in [0,1]$, alors $0 \le p(1-p) \le \frac{1}{4}$.

Ainsi, la probabilité que p appartienne à $\left[\overline{X}_n - \sqrt{\frac{1}{4na}}, \overline{X}_n + \sqrt{\frac{1}{4na}}\right]$ est supérieure ou égale à a.

Par exemple, si on a interrogé n=1000 français et que 10% ont répondu être favorables à la réforme, le paramètre p appartient avec probabilité 0.95 à l'intervalle

$$\left[0.1 - \sqrt{\frac{1}{4 \cdot 1000 \cdot 0.95}}, 0.1 + \sqrt{\frac{1}{4 \cdot 1000 \cdot 0.95}}\right] \simeq [0.084, 0.116]$$

Autrement dit,

$$P(p \in [8.4\%, 11.6\%]) \simeq 95\%.$$

• Si X suit une loi normale de paramètres m et σ^2 , la probabilité que m appartienne à $\left[\overline{X}_n - \sqrt{\frac{\sigma^2}{na}}, \overline{X}_n + \sqrt{\frac{\sigma^2}{na}}\right]$ est supérieure ou égale à a.

Comme σ^2 est inconnu, on peut estimer σ^2 par la variance empirique s_n^2 définie par : $s_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.