Real Analysis Assignment 5

Joel Savitz

October 19, 2020

Problem 1:

Claim 1. Every monotone decreasing bounded below sequence has a limit

Proof. Let x_n be a monotone decreasing sequence bounded below. Thus by definition, $\forall n, x_{n+1} \leq x_n$. Let M be a lower bound of x_n , i.e $\forall n, x_n \geq M$. Since x_n is a sequence of real numbers bounded below, by the greatest lower bound property of the reals we have that there exists a greatest lower bound, an infimum, of the set x_n . Let $a = \inf x_n$. Let $\epsilon > 0$. Then, since a is the greatest lower bound of x_n , any $a + \epsilon$ is not a lower bound, so there exists some N_{ϵ} such that $x_{N_{\epsilon}} < a + \epsilon$. Then, since $\forall n, x_{n+1} \leq x_n$, we must have that $\forall n > N_{\epsilon}, x_n \leq x_{N_{\epsilon}}, \text{ and since } a \text{ is a lower bound of } x_n, \text{ we have } \forall n, a \leq x_n,$ and since $\epsilon > 0$, we of course have $a - \epsilon < a$. Putting this all together, we have that $\forall n > N_{\epsilon}, a - \epsilon < a \leq x_n \leq x_{N_{\epsilon}} < a + \epsilon$, thus by transitivity, $\forall n > N_{\epsilon}, a - \epsilon < x_n < a + \epsilon$, therefore $-\epsilon < x_n - a < \epsilon \iff |x_n - a| < \epsilon$. We have demonstrated that $\forall \epsilon > 0, \exists N_{\epsilon} : \forall n > N_{\epsilon}, |x_n - a| < \epsilon$, which is exactly the definition that $\lim x_n = a$, therefore the limit of x_n exists, and every monotone decreasing bounded below sequence has a limit.

Problem 2:

Claim 2. The sequence
$$a_n = \begin{cases} a_1 = 2 \\ a_{n+1} = \frac{a_n^2 + 1}{2a_n} & n \ge 1 \end{cases}$$
 has a limit.

Proof. First, note that $a_1 = 2 \ge 1$. Then, let $t \ge 0$. Noting that $\forall x \in \mathbb{R}, x^2 \ge 0$, we have the following:

$$(\sqrt{t} - \frac{1}{\sqrt{t}})^2 \ge 0 \tag{1}$$

$$t - 2 + \frac{1}{t} \ge 0$$

$$t + \frac{1}{t} \ge 2$$
(2)

$$t + \frac{1}{t} \ge 2 \tag{3}$$

Thus $\forall t \geq 0, t + \frac{1}{t} \geq 2$. Knowing this, we can determine a lower bound for a_{n+1}

as follows:

$$a_{n+1} = \frac{a_n^2 + 1}{2a_n} \tag{4}$$

$$2a_n = a_n \frac{a_n + \frac{1}{a_n}}{2a_n}$$

$$(5)$$

$$a_n \frac{2}{2a_n} \le a_n \frac{a_n + \frac{1}{a_n}}{2a_n} \tag{6}$$

$$1 \le \frac{a_n^2 + 1}{2a_n} \tag{7}$$

$$1 \le a_{n+1} \tag{8}$$

Since $a_1 \ge 1 \land a_{n+1} \ge 1$, we have $\forall n, a_n \ge 1$, therefore 1 is a lower bound of a_n and a_n is bounded below. Since $a_2 = \frac{a_1^2 + 1}{2a_1} = \frac{2^2 + 1}{2 \cdot 2} = \frac{5}{4}$, we see that $a_2 \le a_1$. Then, since $\forall n, a_n \ge 1 \implies \forall n, a_n^2 \ge 1$:

$$a_{n+1} = \frac{a_n^2 + 1}{2a_n} \tag{9}$$

$$\frac{a_n^2 + a_n^2}{2a_n} \ge \frac{a_n^2 + 1}{2a_n}$$

$$\frac{2a_n^2}{2a_n} \ge \frac{a_n^2 + 1}{2a_n}$$
(10)

$$\frac{2a_n^2}{2a_n} \ge \frac{a_n^2 + 1}{2a_n} \tag{11}$$

$$a_n \ge a_{n+1} \tag{12}$$

Therefore, a_n is monotone decreasing. Since a_n is bounded below and monotone decreasing, we have by the monotone convergence theorem that the limit of a_n exists.

Computation of $\lim a_n$

We know that $\lim a_n$ exists, so it makes sense to demote it by $a = \lim a_n$.

By the limit laws, $\lim_{n \to \infty} a_{n+1} = \frac{\lim_{n \to \infty} a_n^2 + 1}{2 \lim_{n \to \infty} a_n}$

Since they differ by finitely many terms, $\lim a_{n+1} = \lim a_n$, so we can compute as follows:

$$a = \frac{a^2 + 1}{2a}$$

$$2a^2 = a^2 + 1$$
(13)

$$2a^2 = a^2 + 1 \tag{14}$$

$$a^2 = 1 \tag{15}$$

$$\Longrightarrow a = \pm 1 \tag{16}$$

Suppose, for a contradiction, that $\lim a_n = -1$. Then, $\forall \epsilon > 0 \exists N_{\epsilon} : \forall n > 0$ $N_{\epsilon}, a_n \in (-1 - \epsilon, -1 + \epsilon)$, therefore for any $\epsilon > 0$ this last membership relation must be true for at least one a_n . Let $\epsilon = 1$. Then, some $a_n \in (-2,0)$, but $\forall n, a_n \geq 1$, which is a contradiction, thus $\lim a_n \neq -1$ and it must be the case that $\lim a_n = 1$.

Problem 3:

Claim 3. 0 is not a sub-sequential limit of $x_n = (-1)^n - \frac{2}{n}$

Proof. Define the neighborhood $B = (\frac{-1}{2}, \frac{1}{2})$. Note that any natural n is either even or odd. If n is even, then $(-1)^n = 1$, but if n is odd, then $(-1)^n = -1$. Now let $n \in \mathbb{N}$. $\forall n \in \mathbb{N}, n > 0$ implies the following:

$$n > 0 \tag{17}$$

$$\Longrightarrow \frac{1}{n} > 0 \tag{18}$$

$$\Rightarrow \frac{n}{n} < 0$$

$$\Rightarrow \frac{-1}{n} < 0$$

$$\Rightarrow \frac{-2}{n} < 0$$
(20)

$$\implies \frac{-2}{n} < 0 \tag{20}$$

$$\implies -1 - \frac{2}{n} < -1 \tag{21}$$

If n is odd, then then we have $(-1)^n - \frac{2}{n} < -1$. Thus for all odd n we have $x_n \notin B$. Now let $n \geq 4$ and note the following:

$$n \ge 4 \tag{22}$$

$$\implies -n \le -4$$
 (23)

$$\implies n \le 2n - 4 \tag{24}$$

$$\implies 1 \le \frac{2(n-2)}{n} \tag{25}$$

$$\implies 1 \le \frac{2(n-2)}{n}$$

$$\implies \frac{1}{2} \le \frac{n-2}{n}$$
(25)

$$\Longrightarrow \frac{1}{2} \le 1 - \frac{2}{n} \tag{27}$$

If n is even, then we have $(-1)^n - \frac{2}{n} \ge \frac{1}{2}$, thus for any even $n \ge 4$, we have $x_n \notin B$. Since $x_n \notin B$ for any odd n, we must also have $x_n \notin N$ for any odd n > 4, therefore $\forall n \geq 4, x_n \notin (0 - \frac{1}{2}, 0 + \frac{1}{2})$, and this demonstates that $\forall n \geq 4, x_n$ falls outside of some neighborhood of 0, in particular $B = (\frac{-1}{2}, \frac{1}{2}),$ so we conclude that finitely many x_n are in B. This is true if and only if 0 is not a subsequential limit of x_n .