« Back to Homepage

CS Data Structures 2

Critical Topics from This Week

Recursion

- Recursion occurs when a function calls itself
- Any loop can be written instead with recursion; any recursion can be written instead with a loop
- Recursion is often useful in graph and tree problems

Graphs

- Graphs are like trees, except they can contain loops ("cycles"), and can be non-directed
- Nodes (or vertices) are connected by edges (or arcs).
- Graphs are useful for (among other things) tracking connections for a set of data, describing dependencies, and finding efficient ways to get from one state to another.

CompSci Data Structures

- Python lists allocate contiguous space for items
 - Lists pre-allocate extra space to grow
- Python dictionaries and sets are hashed
- hash: stable "one-way" conversion of data to fixed-size result Linked lists and doubly-linked lists are good for queues
- Lists, linked lists, and doubly-linked lists are good for stacks, but there's a trick to using a linked-list

Sorting

- Sorting is a commonly needed method
- Factors when choosing sorting algorithms:
 - Runtime
- Space Requirements
- Likely Structure of your data:
 - Random?
 - Almost reversed?
 - Almost sorted?
 - Likely duplicates?

Practice

Practice Part 1: Discussion Questions

Make a new file and add your answers to the questions below. Push the file to your github repository along with the other solutions.

Recursion

- **1.** In your own words, what is recursion?
- **2.** Why is it necessary to have a base case?

Graphs

- **1.** What is a graph?
- **2.** Give an example of something that would be good to model with a graph.

Performance of Different Data Structures

Fill in the missing spots in the chart with the correct runtimes. Do this by reasoning through how the data structures work, NOT by looking up the solution. Add-R means add to the right/end/top and Add-L means add to the left/beginning/bottom. There are X's in the spots where that operation doesn't make sense for that data structure (for instance, you can't index a stack, or pop from the end of a queue). We've provided the

Fill in the runtimes for the following actions for the table below: Data Structure Index Search Add-P Add-I Pon-I

	Data Structure	maex	Seurch	Auu-R	Add-L	Pop-L	Рор-к
	Python List (Array)	O(1)	O(n)	O(1)			
	Linked List						
	Doubly-Linked List	O(n)	O(n)	O(n)	O(n)	O(n)	O(n)
	Queue (as Array)	Χ	Χ		Χ		X
	Queue (as LL or DLL)	Χ	Χ		Χ		Χ
	Stack (as Array, LL, or DLL)	Χ	Χ		Χ	Χ	
(Deque (as DLL)	Χ	Χ				

these!

I'm not super sure about

- Index: Find an item in the structure when you know its position
- Search: Find an item in the structure when you know its data
- Add(R/L): Set a key in set/dictionary or add node to tree
- Pop(R/L): Remove a key or node

Fill in Runtime and Memory:

The answers for dictionary have been provided; you should fill in the rest:

Data Structure	Get	Add	Delete	Iterate	Memory
Dictionary (Hash Map)	O(1)	O(1)	O(1)	<i>O(n)</i>	medium
Set (Hash Map)					
Binary Search Tree					
Tree					

- Get: Find an item in the structure Add: Set a key in set/dictionary or add node to tree
- Delete: Remove a key or node
- Iterate: Find next item in data structure
- Memory: Relative to data, how much memory is used? (Choices: a little, medium, or a lot)

Sorting

- 1. Describe in words how the Bubble Sort algorithm works. **2.** Describe in words how the Merge Sort algorithm works.
- **3.** Describe in words how the Quick Sort algorithm works.

Practice Part 2: Practice Coding Recursion

Finish the functions in the recursion.py. 1. Print a list recursively.

- 2. Print tree data recursively.
- **3.** Find the length of a list recursively. 4. Find the number of nodes in a tree recursively.
- Graphs

Finish the function in the **graph.py**. 1. Write a method that returns True/False if animal1 preys on animal2.

Sorting Finish the functions in the sorting.py.

- **1.** Write a bubble sort algorithm.
- 2. Write a function that merges two already sorted lists.

Advanced

© 2020 Hackbright Academy

1. Implement merge sort.

HIIX

Mana

MISSY

Deborah

HIIX Muna

Deporal

Kristen

madina

MISSY

HIIX

Muna

Deboran

Muna

MISSY

Deboran

Kriston madina

Tina