1. Week 6 Supplementary material

Example 1.1. Consider a continuous RV X with DF $F_X : \mathbb{R} \to [0,1]$ and p.d.f. $f_X : \mathbb{R} \to [0,\infty)$ given by

$$F_X(x) := \begin{cases} 0, & \text{if } x < 0, \\ x, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x \ge 1. \end{cases}, \qquad f_X(x) := \begin{cases} 1, & \text{if } 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

To identify the support S, we consider the following cases.

- (a) Let $x \in (-\infty, 0)$. Then for all h with -x > h > 0, we have x h < x + h < 0 and consequently, $F_X(x+h) F_X(x-h) = 0 0 = 0$. Therefore $x \notin S$.
- (b) Let $x \in (1, \infty)$. Then for all 0 < h < x 1, we have 1 < x h < x + h and consequently, $F_X(x+h) F_X(x-h) = 1 1 = 0$. Therefore $x \notin S$.
- (c) Let $x \in (0,1)$. For any $0 < h < \min\{x, 1-x\}$, we have 0 < x-h < x+h < 1 and consequently, $F_X(x+h) F_X(x-h) = (x+h) (x-h) = 2h > 0$. For $h \ge \min\{x, 1-x\}$, at least one of x h, x + h is in $(0,1)^c$ and hence $F_X(x+h) F_X(x-h) > 0$. Therefore $x \in S$.
- (d) Let x = 0. Then for any h > 0, we have $F_X(0 + h) F_X(0 h) = F_X(0 + h) > 0$. Then $0 \in S$. By a similar argument, $1 \in S$.

From the above discussion, we conclude that S = [0, 1].

Example 1.2. Let X be a discrete RV with p.m.f.

$$f_X(x) := \begin{cases} \frac{|x|}{110} & \text{if } x \in \{\pm 1, \pm 2, \dots, \pm 10\} \\ 0, & \text{otherwise} \end{cases}$$

and take $h: \mathbb{R} \to \mathbb{R}$ as $h(x) := |x|, \forall x \in \mathbb{R}$. Note that

$$h^{-1}((-\infty, y]) = \begin{cases} \emptyset, & \text{if } y < 0, \\ \{0\}, & \text{if } y = 0, \\ [-y, y], & \text{if } y > 0. \end{cases}$$

Then the DF of Y = h(X) = |X| is given by

$$F_Y(y) = \mathbb{P}(X \in h^{-1}((-\infty, y]))$$

$$= \begin{cases} \mathbb{P}(X \in \emptyset), & \text{if } y < 0, \\ \mathbb{P}(X \in \{0\}), & \text{if } y = 0, \\ \mathbb{P}(X \in [-y, y]), & \text{if } y > 0. \end{cases}$$

$$= \begin{cases} 0, & \text{if } y < 0, \\ \mathbb{P}(X = 0), & \text{if } y = 0, \\ \sum_{t \in [-y, y] \cap \{\pm 1, \pm 2, \dots, \pm 10\}} f_X(t), & \text{if } y > 0. \end{cases}$$

$$= \begin{cases} 0, & \text{if } y \le 0, \\ \sum_{t \in [-y, y] \cap \{\pm 1, \pm 2, \dots, \pm 10\}} \frac{|t|}{110}, & \text{if } y > 0. \end{cases}$$

From the structure of the DF we conclude that the RV is discrete. The p.m.f. may be computed using the techniques discussed in the lectures.

Example 1.3. Let X be a continuous RV with p.d.f.

$$f_X(x) = \begin{cases} \frac{|x|}{2}, & \text{if } -1 < x < 1\\ \frac{x}{3}, & \text{if } 1 \le x < 2\\ 0, & \text{otherwise} \end{cases}$$

and take $h: \mathbb{R} \to \mathbb{R}$ as $h(x) := x^2, \forall x \in \mathbb{R}$. Note that

$$h^{-1}((-\infty, y]) = \begin{cases} \emptyset, & \text{if } y < 0, \\ \{0\}, & \text{if } y = 0, \\ [-\sqrt{y}, \sqrt{y}], & \text{if } y > 0. \end{cases}$$

Then the DF of $Y = h(X) = X^2$ is given by

$$F_Y(y) = \mathbb{P}(X \in h^{-1}((-\infty, y]))$$

$$= \begin{cases} \mathbb{P}(X \in \emptyset), & \text{if } y < 0, \\ \mathbb{P}(X \in \{0\}), & \text{if } y = 0, \\ \mathbb{P}(X \in [-\sqrt{y}, \sqrt{y}]), & \text{if } y > 0. \end{cases}$$

$$= \begin{cases} 0, & \text{if } y < 0, \\ \mathbb{P}(X = 0), & \text{if } y = 0, \\ \mathbb{P}(\{-\sqrt{y} \le X \le \sqrt{y}\}), & \text{if } y > 0. \end{cases}$$

$$= \begin{cases} 0, & \text{if } y < 0, \\ 0, & \text{if } y = 0, \\ \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) \, dx, & \text{if } y > 0. \end{cases}$$

$$= \begin{cases} 0, & \text{if } y < 0, \\ 0, & \text{if } y = 0, \\ 0, & \text{if } y = 0, \end{cases}$$

$$= \begin{cases} 0, & \text{if } y < 0, \\ 0, & \text{if } y = 0, \end{cases}$$

$$= \begin{cases} 0, & \text{if } y \le 4, \\ 0, & \text{if } y \le 4 \end{cases}$$

$$= \begin{cases} 0, & \text{if } y \le 0, \\ \frac{y}{2}, & \text{if } 0 \le y < 1, \\ \frac{y+2}{6}, & \text{if } 1 \le y < 4, \end{cases}$$

$$1, & \text{if } y \ge 4. \end{cases}$$

From the structure of the DF we conclude that the RV is continuous. The p.d.f. may be computed using the techniques discussed in the lectures.

Example 1.4. Let X be a discrete RV with p.m.f.

$$f_X(x) = \begin{cases} \frac{1}{7}, & \text{if } x \in \{-2, -1, 0, 1\} \\ \frac{3}{14}, & \text{if } x \in \{2, 3\} \\ 0, & \text{otherwise.} \end{cases}$$

Consider the RV $Y = X^2$. Here $S_X = \{-2, -1, 0, 1, 2, 3\}$ and $S_Y = \{0, 1, 4, 9\}$. Observe that,

$$\begin{split} \mathbb{P}(Y=0) &= \mathbb{P}\left(X^2=0\right) = \mathbb{P}(X=0) = \frac{1}{7}, \\ \mathbb{P}(Y=1) &= \mathbb{P}\left(X^2=1\right) = \mathbb{P}(X \in \{-1,1\}) = \frac{1}{7} + \frac{1}{7} = \frac{2}{7}, \\ \mathbb{P}(Y=4) &= \mathbb{P}\left(X^2=4\right) = \mathbb{P}(X \in \{-2,2\}) = \frac{1}{7} + \frac{3}{14} = \frac{5}{14} \\ \mathbb{P}(Y=9) &= \mathbb{P}\left(X^2=9\right) = \mathbb{P}(X \in \{-3,3\}) = 0 + \frac{3}{14} = \frac{3}{14}. \end{split}$$

Therefore, the p.m.f. of Y is

$$f_Y(y) = \begin{cases} \frac{1}{7}, & \text{if } y = 0\\ \frac{2}{7}, & \text{if } y = 1\\ \frac{5}{14}, & \text{if } y = 4\\ \frac{3}{14}, & \text{if } y = 9\\ 0, & \text{otherwise,} \end{cases}$$

and the DF of Y is

$$F_Y(y) = \begin{cases} 0, & \text{if } y < 0\\ \frac{1}{7}, & \text{if } 0 \le y < 1\\ \frac{3}{7}, & \text{if } 1 \le y < 4\\ \frac{11}{14}, & \text{if } 4 \le y < 9\\ 1, & \text{if } y \ge 9. \end{cases}$$

In fact, after identifying S_Y , we could have directly computed the DF F_Y as follows:

$$F_Y(y) = \mathbb{P}(Y \le y) = \begin{cases} 0, & \text{if } y < 0, \\ \mathbb{P}(Y = 0), & \text{if } 0 \le y < 1, \\ \mathbb{P}(Y = 0) + \mathbb{P}(Y = 1), & \text{if } 1 \le y < 4, \\ \mathbb{P}(Y = 0) + \mathbb{P}(Y = 1) + \mathbb{P}(Y = 4), & \text{if } 4 \le y < 9, \\ 1, & \text{if } y \ge 9. \end{cases}$$

and the p.m.f. f_Y from F_Y using standard techniques discussed in the lectures.

Example 1.5. Let X be a discrete RV with p.m.f.

$$f_X(x) = \begin{cases} \frac{x}{55} & \text{if } x \in \{1, 2, \dots, 10\} \\ 0, & \text{otherwise.} \end{cases}$$

Now consider the RV $Y = X^2$. Note that the function $h : \mathbb{R} \to \mathbb{R}$ defined by $h(x) := x^2, \forall x \in \mathbb{R}$ is one-to-one on the support S_X . Here, Y is discrete with support $S_Y = \{1, 4, 9, \dots, 100\}$. Hence, the p.m.f. f_Y is given by

$$f_Y(y) = \begin{cases} f_X(\sqrt{y}), & \text{if } y \in S_Y, \\ 0, & \text{otherwise} \end{cases} = \begin{cases} \frac{\sqrt{y}}{55}, & \text{if } y \in S_Y, \\ 0, & \text{otherwise} \end{cases}.$$

The DF F_Y can now be computed from the p.m.f. f_Y using standard techniques.

Example 1.6. Let X be a continuous RV with p.d.f.

$$f_X(x) = \begin{cases} e^{-x}, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}$$

and consider $Y = X^2$. Here, $S_X = [0, \infty)$ and the function $h : \mathbb{R} \to \mathbb{R}$ defined by $h(x) := x^2, \forall x \in \mathbb{R}$ is continuous differentiable on $(0, \infty)$. Moreover, $h'(x) = 2x > 0, \forall x \in (0, \infty)$ and hence h is strictly monotone increasing on $(0, \infty)$. The inverse function is given by $h^{-1}(y) = \sqrt{y}, \forall y \in (0, \infty)$.

The p.d.f. f_Y is given by

$$f_Y(y) = \begin{cases} \frac{e^{-\sqrt{y}}}{2\sqrt{y}}, & \text{if } y > 0\\ 0, & \text{otherwise.} \end{cases}$$

The DF F_Y can now be computed from the p.d.f. f_Y by standard techniques.

Example 1.7. Let X be a continuous RV with p.d.f.

$$f_X(x) = \begin{cases} \frac{|x|}{2}, & \text{if } -1 < x < 1\\ \frac{x}{3}, & \text{if } 1 \le x < 2\\ 0, & \text{otherwise} \end{cases}$$

and consider $Y = X^2$.

Observe that $\{x \in \mathbb{R} : f_X(x) > 0\} = (-1,0) \cup (0,2)$. Now, $h(x) = x^2$ is strictly decreasing on (-1,0) with inverse function $h_1^{-1}(t) = -\sqrt{t}$; and $h(x) = x^2$ is strictly increasing on (0,2) with inverse function $h_2^{-1}(t) = \sqrt{t}$. Note that h((-1,0)) = (0,1) and h((0,2)) = (0,4). Then, $Y = X^2$ has p.d.f. given by

$$f_Y(y) = f_X(-\sqrt{y}) \left| \frac{d}{dy}(-\sqrt{y}) \right| 1_{(0,1)}(y) + f_X(\sqrt{y}) \left| \frac{d}{dy}(\sqrt{y}) \right| 1_{(0,4)}(y)$$

$$= \begin{cases} \frac{1}{2}, & \text{if } 0 < y < 1\\ \frac{1}{6}, & \text{if } 1 < y < 4\\ 0, & \text{otherwise.} \end{cases}$$

We can now compute the DF of Y and verify that this matches with our earlier computation in Example 1.3.