We have computed μ_4 , i.e. the 4th moment of Z to be 2.999..., and that the difference $(\mu_4 - 3)$ is about $2.1 \cdot 10^{-14}$ for parameter 256. Let us now compute how many samples one would need to successfully distinguish $mom_{4,\mathbf{C}}(\mathbf{u})$ when $\mathbf{u} \in \pm \mathbf{C}$ and when $\mathbf{u} \notin \pm \mathbf{C}$. $mom_{4,\mathbf{C}}(\mathbf{u}) = \mathbb{E}[(\langle \mathbf{u}, \mathbf{C} \mathbf{x} \rangle^4] = 3 + (\mu_4 - 3) \sum_{i=1}^n \langle \mathbf{u}, \mathbf{c}_i \rangle^4$. If $\mathbf{u} = \mathbf{c}_i$, the entire expression is $3 + (\mu_4 - 3) \cdot 1 = \mu_4$ because $\langle \mathbf{c}_i, \mathbf{c}_i \rangle = 1$ and $\langle \mathbf{c}_i, \mathbf{c}_j \rangle = 0$ for $i \neq j$. Otherwise, the sum $(\sum_{i=1}^n \langle \mathbf{u}, \mathbf{c}_i \rangle^4) < 1$.

Say one wants to distinguish $mom_{4,\mathbf{C}}(\mathbf{c}_i)$ and $mom_{4,\mathbf{C}}(\mathbf{u})$ for $\mathbf{u} \notin \pm \mathbf{C}$. Let $y = \langle \mathbf{u}, \mathbf{C} \mathbf{x} \rangle$ and assume y follows a standard normal distribution with $\mu = 0$ and $\sigma^2 = 1$. Then we approximate the variance σ^2 and standard deviation σ for $\langle \mathbf{u}, \mathbf{C} \mathbf{x} \rangle^4$ as $\mathbb{E}[y^8] - \mathbb{E}[y^4]^2$. Then $\sigma^2 \approx 105 - 9 = 96$ and $\sigma = \sqrt{96} \approx 9.79796$.

Now, to estimate number of samples we use formula for confidence intervals and Central Limit Theorem. Let s denote required number of samples. Then

$$s \ge \big(\frac{Z_{\alpha/2} \cdot \sigma}{\mathsf{err}}\big)^2$$

Now, we want err to be smaller than $2.1 \cdot 10^{-14}$ for parameter 256. If we set err to be 10^{-14} , and we want to determine a difference with, say, 75 % confidence, we get:

$$s \ge \left(\frac{0.68 \cdot 9.79796}{10^{-14}}\right)^2 \approx 4.439 \cdot 10^{29}$$

where 0.68 is from standard normal tables for 75 %. This result is way beyond the limit of acceptable transcript size, which for parameter 256 is $2^{32} \approx 4.3 \cdot 10^9$ and for non-challenge parameters 512 and 1024 is $2^{64} \approx 2 \cdot 10^{19}$. One can therefore conclude that the attack will not be successful.