深圳大学医学部生物医学工程学院 本科生课程作业

课程: 计算方法

(2018-2019 学年第一学期)

任课教师: 张治国

专业 (方向)	生物医学工程
年级/班级	2016 级 2 班
学号	2016222042
姓名	陈焕鑫
提交日期	2018年 11 月 6 日

供助教评分使用						
助教姓名						
收到日期	201_年 月 日					
评分(0-100)						
评语(如有)						

4. 给出 $f(x) = \sin x$ 的等距节点函数表,如用分段线性插值计算 $\sin x$ 的近似值,使其截断误差为 $\frac{1}{2} \times 10^4$,则函数表的步长应取多大?

解:

设 Lh(x)为 f(x)的分段线性插值多项式

则 L_h(x)的余项为

$$R_{1}(x) = f(x) - L_{h}(x) = f(x) - L_{h}^{(k)}(x) = \frac{f''(\xi)}{2}(x - x_{k})(x - x_{k+1}),$$
$$\xi, x \in [x_{k}, x_{k+1}] \quad \exists \xi \quad 依赖于 x.$$

$$\therefore \max |R_1(x)| \leq \frac{M_2}{2} \max_{k=0,1,\ldots,n-1} \max_{x_k \leq x \leq x_{k+1}} |(x-x_k)(x-x_{k+1})| \leq \frac{M_2}{8} h^2,$$

其中,
$$M_2 = \max |f''(x)| = \max |\sin''(x)| = \max |-\sin(x)| = 1$$
,

$$\therefore \max |R1(x)| \le \frac{h^2}{8}$$
,为了使其截断误差为 $\frac{1}{2} \times 10^4$, $\therefore \frac{h^2}{8} \le \frac{1}{2} \times 10^{-4}$

解得 h≤0.02

∴要使截断误差不超过 $\frac{1}{2}$ ×10⁴,需要步长 h≤0.02

14. 设 $f(x) = \frac{1}{1+x^2}$, 在 $-5 \le x \le 5$ 上取 n=10, 按等距节点求分段线性插值函数 $L_n(x)$,计算各节点中点处的 $L_n(x)$ 与 f(x) 的值 解:

依题意,可得x与f(x)的对应关系为

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
f (x)	0.0385	0.0588	0.1	0.2	0.5	1	0.5	0.2	0.1	0.0588	0.0385

根据
$$L_{n^{(k)}}(x) = y_k \frac{x - x_{k+1}}{x_k - x_{k+1}} + y_{k+1} \frac{x - x_k}{x_{k+1} - x_k}, (k = 0, 1, ..., n-1).$$
 得,

$$L_{n}^{(0)} = 0.0385 \times \frac{x+4}{-1} + 0.0588 \times \frac{x+5}{1}, x \in [-5, -4],$$

$$L_{n}^{(1)} = 0.0588 \times \frac{x+3}{-1} + 0.1 \times \frac{x+4}{1}, x \in [-4, -3],$$

$$L_{n}^{(2)} = 0.1 \times \frac{x+2}{-1} + 0.2 \times \frac{x+3}{1}, x \in [-3, -2],$$

$$L_{n}^{(3)} = 0.2 \times \frac{x+1}{-1} + 0.5 \times \frac{x+2}{1}, x \in [-2, -1],$$

$$L_{n}^{(4)} = 0.5 \times \frac{x-0}{-1} + 1 \times \frac{x+1}{1}, x \in [-1, 0],$$

$$L_{n}^{(5)} = 1 \times \frac{x-1}{-1} + 0.5 \times \frac{x-0}{1}, x \in [0, 1],$$

$$L_{n}^{(6)} = 0.5 \times \frac{x-2}{-1} + 0.2 \times \frac{x-1}{1}, x \in [1, 2],$$

$$L_{n}^{(7)} = 0.2 \times \frac{x-3}{-1} + 0.1 \times \frac{x-2}{1}, x \in [2, 3],$$

$$L_{n}^{(8)} = 0.1 \times \frac{x-4}{-1} + 0.0588 \times \frac{x-3}{1}, x \in [3, 4],$$

$$L_{n}^{(9)} = 0.0588 \times \frac{x-5}{-1} + 0.0385 \times \frac{x-4}{1}, x \in [4, 5],$$

$$L_{n}^{(0)} = 0.0203x + 0.1403, \quad x \in [-5, -4],$$

$$L_{n}^{(1)} = 0.0412x + 0.2235, \quad x \in [-4, -3],$$

$$L_{n}^{(2)} = 0.1x + 0.4, \quad x \in [-3, -2],$$

$$L_{n}^{(3)} = 0.3x + 0.8, \quad x \in [-2, -1],$$

$$L_{n}^{(4)} = 0.5x + 1, \quad x \in [-1, 0],$$

$$L_{n}^{(5)} = -0.5x + 1, \quad x \in [0, 1],$$

$$L_{n}^{(6)} = -0.3x + 0.8, \quad x \in [1, 2],$$

$$L_{n}^{(7)} = -0.1x + 0.4, \quad x \in [2, 3],$$

$$L_{n}^{(8)} = -0.0412x + 0.2235, \quad x \in [3, 4],$$

$$L_{n}^{(9)} = -0.0203x + 0.1403, \quad x \in [4, 5],$$

 L_n 满足 $L_n(x_i)=y_i$, (i=0,1,2,…,n),

::Ln(x)为 f(x)在[-5,5]上的分段线性插值多项式

由此可得, Ln(x)与 f(x)在各节点中点处的值如下表所示

X	-4.5	-3.5	-2.5	-1.5	-0.5	0.5	1.5	2.5	3. 5	4. 5
f (x)	0.0471	0.0755	0.1379	0.3077	0.8	0.8	0.3077	0.1379	0.0755	0.0471
$L_n(x)$	0.04864	0.07941	0.15	0.35	0.75	0.75	0.35	0.15	0.07941	0.04864

7. 给定数据表

X	0. 125	0. 250	0. 375	0. 500	0. 625	0.750
f (x)	0. 79618	0. 77334	0. 74371	0. 70413	0. 65632	0.60228

- (1) 用前四组数据进行 Newton 插值,并利用公式(4.3) 求 Newton 插值多项式的系数;
- (3) 用(1) 中的 Newton 插值多项式计算 f(0.1581) 和 f(0.6367) 的近似值. 解:

(1)

依题意,可以得到差分表如下所示

Xk	$f(x_k)$	$f[x_k, x_{k+1}]$	$f[x_k, x_{k+1}, x_{k+2}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}, x_{k+4}]$
0. 125	0. 79618				
		-0. 18272			
0.250	0. 77334		-0. 21728		
		-0. 23704		-0. 2697	
0. 375	0. 74371		-0. 3184		0. 8329
		-0.31664		0. 1468	
0.500	0. 70413		-0. 26336		
		-0. 38248			
0. 625	0.65632				

取前四组数据进行 Newton 插值,得到的插值多项式的系数为:

$$f_0 = 0.79618, f[x_0, x_1] = -0.18272, f[x_0, x_1, x_2] = -0.21728, f[x_0, x_1, x_2, x_3] = -0.2697,$$

插值多项式为:

$$N_3(x) = 0.79618 - 0.18272(x - 0.125) - 0.21728(x - 0.125)(x - 0.25) - 0.2697(x - 0.125)(x - 0.25)(x - 0.375),$$

(3)

$$f(0.1581) \approx N_3(0.1581) = 0.7906.$$

$$f(0.6367) \approx N_3(0.6367) = 0.6457.$$

附加题【7. (3) 用 MATLAB 编程实现】

```
程序代码如下:
clc; clear; close all;
xi = 0.1581; %所要求的插值点
%插值条件如下:
x = 0.125 : 0.125 : 0.750;
y = [0.79618 \ 0.77334 \ 0.74371 \ 0.70413 \ 0.65632 \ 0.60228];
nx = length(x); %向量x的长度
ny = length(y); %向量y的长度
if nx~=ny %如果向量 x 和向量 y 的长度不一致,出错
   error('错误, x,y 的长度不一致');
end
Table = zeros(nx); %初始化均差表
Table(:,1) = y; %均差表的第一列为 y
for k = 2:1:nx
               %从第二列开始,完善均差表.k 为列标
   for h = 1:1:nx-k+1 %h 为行标
      %由课本中的公式(4.5)可得
      Table (h,k) = (Table (h+1,k-1)-Table (h,k-1))/(x(h+k-1)-x(h));
   end
end
fxk = Table(:,1);
fxk xk1 = Table(:,^2);
fxk xk2 = Table(:,3);
fxk xk3 = Table(:,4);
fxk xk4 = Table(:,5);
fxk xk5 = Table(:,6);
table(fxk,fxk xk1,fxk xk2,fxk xk3,fxk xk4,fxk xk5)%打印出均差表
Para = ones (1, nx); %初始化插值多项式系数表
Para(1) = Table(1,1); %多项式系数第一个为 f0
for k = 2:1:nx
                  %从第二项开始要乘上插值基
   for h = 1:1:k-1
      Para(k) = Para(k) * (xi - x(h));
   end
   Para(k) = Para(k) *Table(1, k);
end
%对系数表求和,得到结果
fprintf('当插值点为%f时,结果为\n',xi)
result = sum(Para)
```

运行程序得到均差表如图 1 所示

6×6 <u>table</u>					
fxk	fxk_xk1	fxk_xk2	fxk_xk3	fxk_xk4	fxk_xk5
0.79618	-0.18272	-0.21728	-0.26965	0.83285	-1.2561
0.77334	-0.23704	-0.3184	0.14677	0.047787	0
0.74371	-0.31664	-0.26336	0.17067	0	0
0.70413	-0.38248	-0.19936	0	0	0
0.65632	-0.43232	0	0	0	0
0.60228	0	0	0	0	0

图1-均差表

当 xi 的值设置为 0.1581 时,得到的结果如图 2 所示

当插值点为0.158100时,结果为 result = 0.7903

图 2 - xi 为 0.1581 时的结果

当 xi 的值设置为 0.6367 时,得到的结果如图 3 所示

当插值点为0.636700时,结果为 result = 0.6515

图 3 - xi 为 0.6367 时的结果