0.6.4 Aufgabe 4

a) $G = \{A \in GL(4,\mathbb{R}) | A^{\top}JA = J\}$ z.Z.: G ist Gruppe

Beweis: $G \subset GL(4,\mathbb{R})$, d.h. wir können das UGK anwenden.

- (1) $E_4^{\top} J E_4 = J$, als ist $E_4 \in G$ und $G \neq \emptyset$
- (2) Seien $A, B \in G: (A \cdot B^{-1})^{\top} J(AB) = B^{-1 \top} A^{\top} JAB^{-1} = (B^{-1})^{\top} JB^{-1}$. Nach Vors.: $B^{\top} JB = J \Leftrightarrow J = (B^{\top})^{-1} JB^{-1} = (B^{-1})^{\top} JB^{-1} = AB^{-1} \in G$

Damit ist G eine Gruppe

0.7 Übung 6, 13.12.2004

0.7.1 Aufgabe 1

a) Grad $q =: m \quad m = \text{Grad } q = \text{Grad } r_1 > \text{Grad } r_2 > \dots > \text{Grad } r_n > \text{Grad } r_{n+1} > \text{Grad } r_{n+2}$

Falls kein $n \in \mathbb{N}$ ex. mit $k_n = 0$, dann gilt: k_{n+1} ex., Grad $k_{n+1} \ge 0$

Also gibt es m+2 verschiedene Elemente in der Menge $\{0,...,m\}$.

b) Der Eukl.-Algo liefert

$$\begin{aligned}
 r_0 &= s_1 r_1 + r2 \\
 r_1 &= s_2 r_2 + r3 \\
 r_2 &= s_3 r_3 + r4 \\
 & \dots \\
 r_{n-2} &= s_{n-1} r_{n-1} + r_n \\
 r_{n-1} &= s_n r_n + 0
 \end{aligned}$$

Wir zeigen: r_n teilt r_{n-k} für alle k = 0, ..., n

Beweis:

I.A.: r_n teilt $r_n = r_{n-0}$; r_n teilt r_{n-1} wg. der letzten Gleichung

I.V.: r_n teilt $r_{n-(k-1)}$ und r_n teilt r_{n-i}

I.S.: z.Z.: r_n teilt $r_{n-(k-1)}$

Wir wissen: $r_{n-(k+1)} = s_{n-k} \cdot r_{n-k} + r_{n-(k-1)}$

Nach I.V.: $\exists l, m \in \mathbb{K}[x]$ $k_{r-k} = l \cdot r_n \text{ und } r_{n-(k-1)} = n \cdot r_n$

Damit: $r_{n\cdot(k-1)} = s_{n-k}lr_n + m\cdot kn = (s_{n-k}l + m)r_n$, d.h. r_n teilt $r_{n-(k+1)}$

Also ist r_n ein Teiler von $r_0 = p, r_1 = q$

c) Ist d ein Teiler von p und q, so teilt d auch r_k für alle $k \in \{0, ..., n\}$

Inhaltsverzeichnis

Beweis:

IA: d teilt r_0 , d teilt r_1 nach Vor.

IV: d teilt r_{k-1} und d teil r_2

IS: $r_{k-1} = s_k r_k + r_{k+1}$

Nach IV: $\exists l, m \in \mathbb{K}[x] : r_{k-1} = d \text{ und } r_m = md$

Damit $r_{k+1} = (l - s_k m)d$, d teilt also r_{k+1}

Insbesondere teilt d also k

0.7.2 Aufgabe 2

$$\underbrace{(x^4 + 3x^3 + 2x^2 - 3)}_{r_0} = \underbrace{(x^3 - x)}_{r_1}\underbrace{(x + 3)}_{s_1} + \underbrace{(3x^2 + 3x - 3)}_{r_2}$$

$$\underbrace{(x^3 - x)}_{r_1} = \underbrace{(3x^2 + 3x - 3)}_{r_2}\underbrace{(\frac{1}{3}x - \frac{1}{3})}_{s_2} + \underbrace{(x - 1)}_{r_3}$$

$$\underbrace{(3x^2 + 3x - 3)}_{r_2} = \underbrace{(x - 1)}_{r_3}\underbrace{(3x + 6)}_{s_3} + \underbrace{3}_{r_4}$$

$$\underbrace{1 - \frac{1}{2}((s_2 - s_3) + 1)r_3 + (-s_1s_2s_2 - s_1 - s_2)r_1}_{r_3}$$

$$1 = \frac{1}{3}((s_2 - s_3) + 1)r_0 + (-s_1s_2s_3 - s_1 - s_3)r_1$$

$$d.h.: r = \frac{1}{3}s_2s_3 + 1 = \frac{1}{3}x^2 + \frac{1}{3}x - \frac{1}{3}$$

$$s = -\frac{1}{3}s_1s_2s_3 - \frac{1}{3}s_1 - \frac{1}{3}s_3$$

$$= -\frac{1}{3}x^3 - \frac{4}{3}x^2 - \frac{5}{3}x - 1$$

0.7.3 Aufgabe 3

$$\begin{pmatrix}
0 & 1 & 1 & 2 & | & 0 \\
2 & 2 & 1 & 2 & | & 1 \\
2 & 0 & 1 & 1 & | & 1 \\
1 & 2 & 2 & 0 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 1 & 1 & 2 & | & 0 \\
0 & -2 & -3 & 2 & | & -3 \\
0 & -4 & -3 & 1 & | & -3 \\
1 & 2 & 2 & 0 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 1 & 1 & 2 & | & 0 \\
0 & 0 & -1 & 6 & | & -3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 0 & 15 & | & -6
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & 0 & -18 & | & 8 \\
0 & 1 & 0 & -7 & | & 3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 0 & 15 & | & -6
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & -4 & | & 2 \\
0 & 1 & 0 & -7 & | & 3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 0 & 15 & | & -6
\end{pmatrix}$$

$$\mathbb{K} = \mathbb{R}: \qquad \mathbb{K} = \mathbb{F}_{3} \qquad \mathbb{K} = \mathbb{F}_{5}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & \frac{2}{5} \\
0 & 1 & 0 & 0 & | & \frac{1}{5} \\
0 & 0 & 1 & 0 & | & \frac{3}{5} \\
0 & 0 & 0 & 1 & | & -\frac{2}{5}
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 2 & | & 2 \\
0 & 1 & 0 & 2 & | & 0 \\
0 & 0 & 1 & 0 & | & 0 \\
0 & 0 & 0 & 0 & | & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & | & 2 \\
0 & 1 & 0 & 3 & | & 3 \\
0 & 0 & 1 & 4 & | & 3 \\
0 & 0 & 0 & 0 & | & 4
\end{pmatrix}$$

$$L = \{\begin{pmatrix}
2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix}
1 \\ 0 \\ 0 \\ 1 \end{pmatrix} | r \in \mathbb{F}_{3}\} \quad L = \emptyset$$