This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT -
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-7154

(43)公開日 平成5年(1993)1月14日

(51)Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 3 M 1/10

A 9065-5 J

審査請求 未請求 請求項の数7(全 8 頁)

(21)出願番号

特願平3-314025

(22)出顧日

平成3年(1991)10月30日

(31)優先権主張番号 特顯平2-297620

特顯平2-297620 平 2 (1990)11月 2日

(32)優先日 (33)優先権主張国

日本 (JP)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 武 藤 広 泰

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 福山 正博

(54) 【発明の名称】 A/D変換回路

(57)【要約】

【目的】A/D変換器の出力のオフセットを除去する。 【構成】低電位基準電圧から高電位基準電圧までの範囲 の電圧のアナログ信号をデジタルデータに変換するA/ D変換器の入力信号に付加するパイアス電圧の理想値に 対するオフセット及びアナログ信号の平均電圧値の理想 値に対するオフセットを検出し、A/D変換器の出力データからこのオフセットを減算して補正するようにし、 またこのオフセットによりパイアス電圧を補正しA/D 変換器の入力信号の平均電圧値が理想値となるようにしている。

【特許請求の範囲】。

【請求項1】アナログ信号にバイアス電圧を付加するバ イアス電圧付加手段と、低電位基準電圧と高電位基準電 圧が与えられ、両基準電圧の間の電圧範囲内において前。 記バイアス電圧付加手段の出力アナログ信号をデジタル 化するA/D変換手段と前記アナログ信号の理想平均電 圧値と前記パイアス電圧の理想値とが与えられ、前記A /D変換手段の出力サンブル値の平均値から前記アナロ グ信号の理想平均電圧値と前記バイアス電圧の理想値と を減算してオフセット検出を行うオフセット検出手段 と、前記A/D変換手段の出力データから前記オフセッ ト検出回路の出力データを減算して出力する減算手段 と、を備えて成ることを特徴とするA/D変換回路。 【請求項2】アナログ信号にバイアス電圧を付加するバ イアス電圧付加手段と、前記パイアス電圧を発生するバ イアス電圧発生手段と、低電位基準電圧と高電位基準電 圧が与えられ、両基準電圧の間の電圧範囲内において前 記バイアス電圧付加手段の出力アナログ信号をデジタル 化するA/D変換手段と、前記アナログ信号の理想平均 電圧値と前記バイアス電圧の理想値とが与えられ、前記 20 A/D変換手段の出力サンブル値の平均値から前記アナ ログ信号の理想平均電圧値と前記バイアス電圧の理想値 とを減算してオフセット検出を行うオフセット検出手段 と、前記バイアス電圧発生回路と前記バイアス電圧付加 回路のいずれか一方に前記オフセット検出手段の出力を 受けて、前記A/D変換手段の入力信号の平均電圧値が 理想値となるようにそのバイアス電圧を補正する補正手 段と、を備えて成ることを特徴とするA/D変換回路。 【請求項3】アナログ信号にバイアス電圧を付加するバ イアス電圧付加手段と、低電位基準電圧と高電位基準電 30 圧が与えられ、両基準電圧の間の電圧範囲内において前 記バイアス電圧付加手段の出力アナログ信号をデジタル 化するA/D変換手段と予め定めた数Nのサンブル値の 累積和値を出力する手段と、前記累積和値を前記予め定 めた数Nで割り算して平均値を求める手段と、前配平均 値から、前記アナログ信号の理想平均電圧値と前記バイ アス電圧の理想値とを減算してオフセット電圧値を検出 する手段と、前記A/D変換器の出力データから前記オ フセット検出回路の出力データを減算して出力する減算 手段と、を備えて成ることを特徴とするA/D変換回 路。

【請求項4】前記予め定めた数N以降のサンプル値につ いて連続的に前記オフセット電圧値を用いて前記減算処 理により補正することを特徴とする請求項3に記載のA /D変換回路。

【請求項5】前記予め定めた数N以降の予め定めた数の サンプル値について、前記オフセット電圧値を用いて前 記滅算処理により補正することを特徴とする請求項3に 記載のA/D変換回路。

【請求項6】アナログ信号にバイアス電圧を付加するバ 50 力する。A/D変換器4は、高電位基準電圧入力端子5

イアス電圧付加手段と、前記パイアス電圧を発生するパ イアス電圧発生手段と、低電位基準電圧と高電位基準電 圧が与えられ、両基準電圧の間の電圧範囲内において前 記バイアス電圧付加手段の出力アナログ信号をデジタル 化するA/D変換手段と、予め定めた数Nのサンプル値 の累積和値を出力する手段と、前記累積和値を前記予め 定めた数Nで割り算して平均値を求める手段と、前記平 均値から、外部から与えられたアナログ信号の理想平均 電圧値と前記パイアス電圧の理想値とを減算してオフセ ット電圧値を検出する手段と、前記バイアス電圧発生手 段と前記バイアス電圧付加手段のいずれか一方に前記オ フセット検出手段の出力を受けて前記A/D変換手段の 入力信号の平均電圧値が理想値となるようにそのバイア ス電圧を補正する手段と、を備えて成ることを特徴とす るA/D変換回路。

【請求項7】アナログ信号にバイアス電圧を付加するバ イアス電圧付加手段と、前記バイアス電圧を発生するバ イアス電圧発生手段と、低電位基準電圧と高電位基準電 圧が与えられ、両基準電圧の間の電圧範囲内において前 記バイアス電圧付加手段の出力アナログ信号をデジタル 化するA/D変換手段と、予め定めた数Nのサンブル値 の累積和値を出力する手段と、前記累積和値を前記予め 定めた数Nで割り算して平均値を求める手段と、前記平 均値から、外部から与えられたアナログ信号の理想平均 電圧値と前記バイアス電圧の理想値とを減算してオフセ ット電圧値を検出する手段と、前記得られたオフセット 電圧値をアナログ信号に変換して前記バイアス電圧発生 回路と前記パイアス電圧付加回路のいずれか一方に出力 するD/A変換手段と、前記D/A変換手段の出力を受 けて前記A/D変換器の入力信号の平均電圧値が理想値 となるように前記バイアス電圧発生回路と前記バイアス 電圧付加回路のいずれか一方のバイアス電圧を補正する 手段と、を備えて成ることを特徴とするA/D変換回 路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はA/D変換回路に関し、 特に低電位基準電圧から高電位基準電圧までの範囲の電 圧のアナログ信号をデジタルデータに変換するA/D変 換器にパイアス電圧を付加したアナログ信号を入力する ようにしたA/D変換回路に関する。

[0002]

40

【従来の技術】入力信号レベルを所定レベルだけバイア スして効率的なA/D変換を行う従来のA/D変換回路 は、図9に示すように構成されている。図9において、 アナログ信号入力端子1に印加されたアナログ信号は、 バイアス電圧付加回路2に入力される。バイアス電圧付 加回路2は、パイアス電圧発生回路3から入力するバイ アス電圧をアナログ信号に付加してA/D変換器4に出

10

と低電位基準電圧入力端子6とを備え、低電位基準電圧 から高電位基準電圧までの範囲内における電圧のアナロ グ信号を量子化する構成になっていて、例えば量子化ビ ット数が8ならば、入力が低電位基準電圧に等しい場 合、A/D変換器の出力端子に現れる出力は00Hとな り、入力が高電位基準電圧に等しい場合、出力はFFH となる。

【0003】尚、A/D変換器4には、単一電源方式と 2電源方式とがあるが、基準電圧と電源電圧との間には 次のような条件がある。

負電源電圧≦低電位基準電圧≦高電位基準電圧≦正電源

従って、例えば+5Vの単電源で駆動するA/D変換器 の場合、A/D変換器に入力すべきアナログ信号の最低 電圧値は0 (=負電源電圧=低電位基準電圧)でなけれ ばならない。アナログ信号が例えば0Vを中心として電 圧が変化する信号である場合には、バイアス電圧付加回 路2にてバイアス電圧を付加して、0 Vから高電位基準 電圧までの範囲で電圧が変化するようにしてからA/D 変換している。この場合、バイアス電圧として高電位基 20 準電圧の2分の1の電圧を付加するならば、パイアス電 圧付加回路に0 Vが入力されたときのA/D変換器の出 力は80Hとなる。

[0004]

【発明が解決しようとする課題】上述した従来のA/D ・ 変換回路では、A/D変換器の出力にオフセットが生じ るという問題がある。例えば、バイアス電圧を発生させ る回路として基準電圧を分圧する回路が考えられるが、 任意の抵抗比を設定することは部品のばらつきのために 困難であり、可変抵抗を用いて任意の値に設定しても、 経年変化や温度変化等のために任意の値からずれる。と のように、バイアス電圧が経年変化、温度変化、部品精 度等によって大きくずれることがあるからである。ま た、バイアス電圧を加える前のアナログ信号でも、アナ ログ信号を増幅する増幅器の特性によってアナログ信号 にオフセットが生ずる場合があるからである。

【0005】本発明は、このような従来の問題に鑑みな されたもので、その目的は、A/D変換器の出力にオフ セットが生ずるのを防止し得る手段を備えたA/D変換 回路を提供することにある。

[0006]

【課題を解決するための手段】前述の課題を解決するた め、本発明の第1の態様によるA/D変換回路は、アナ ログ信号にバイアス電圧を付加するバイアス電圧付加手 段と、低電位基準電圧と高電位基準電圧が与えられ、両 基準電圧の間の電圧範囲内において前記バイアス電圧付 加手段の出力アナログ信号をデジタル化するA/D変換 手段と前記アナログ信号の理想平均電圧値と前記バイア ス電圧の理想値とが与えられ、前記A/D変換手段の出 カサンプル値の平均値から前記アナログ信号の理想平均 50 の種入力信号とし正弦波形信号、MSK変調信号やQP

電圧値と前記バイアス電圧の理想値とを減算してオフセ ット検出を行うオフセット検出手段と、前記A/D変換 手段の出力データから前記オフセット検出回路の出力デ ータを減算して出力する減算手段と、を備えて構成され る。また、本発明の第2の態様によるA/D変換回路 は、アナログ信号にバイアス電圧を付加するバイアス電 圧付加手段と、前記バイアス電圧を発生するバイアス電 圧発生手段と、低電位基準電圧と高電位基準電圧が与え られ、両基準電圧の間の電圧範囲内において前記パイア ス電圧付加手段の出力アナログ信号をデジタル化するA /D変換手段と、前記アナログ信号の理想平均電圧値と 前記パイアス電圧の理想値とが与えられ、前記A/D変 換手段の出力サンブル値の平均値から前記アナログ信号 の理想平均電圧値と前記パイアス電圧の理想値とを減算 してオフセット検出を行うオフセット検出手段と、前記 バイアス電圧発生回路と前記バイアス電圧付加回路のい ずれか一方に前記オフセット検出回路の出力を受けて、 前記A/D変換器の入力信号の平均電圧値が理想値とな るようにそのバイアス電圧を補正する補正手段と、を備 えて構成される。

[0007]

【作用】次に前記の如く構成される本発明のA/D変換 回路の作用を説明する。本発明では、オフセット検出回 路がA/D変換器の入力信号の平均電圧値の理想値に対 するオフセットを検出する。そして、第1発明では、A /D変換器の出力データからオフセット検出回路の出力 データを減算し、A/D変換器の出力データからアナロ グ信号及びバイアス電圧のオフセットを取り除き、A/ D変換器の出力データを補正する。また、第2発明で は、オフセット検出回路の出力によってバイアス電圧に 一定の操作を施し、A/D変換器の入力信号の平均電圧 値が理想値と等しくなるようにし、A/D変換器の出力 にオフセットが生じないようにする。ここで、バイアス 電圧に加える一定の操作とは、バイアス電圧を理想のバ イアス電圧と等しくなるようにし、かつ、アナログ信号 のオフセット電圧値をキャンセルするような補正をする ことを意味する。斯くして、本発明によれば、正しいデ ジタルデータを得ることができる。

[0008]

40 【実施例】次に、本発明について図面を参照しながら説 明する。図1は、本発明によるA/D変換回路の第1の 実施例を示す構成ブロック図である。図9と同一構成部 分には同一符号名称を付してある。本第1実施例では、 減算器7とオフセット検出回路8とを追加してある。ア ナログ信号入力端子1に印加されるアナログ信号は平均 電圧が既知のものであるが、前記した通りオフセットを 生じている。この入力信号に関して、そのサンブル値の 分布が正規分布をしている場合や一様分布をしている入 力信号は、平均値をはさんで左右対称の分布をもつ。こ

30

SK変調信号を直交復調したとき得られるアイバターン 信号等がある。また、分布が左右対称でない信号として は、例えば、レーリーフェージング下の電界変動に対応 する信号等がある。また、バイアス電圧発生回路3が発 生するバイアス電圧にも誤差がある。従って、アナログ*

 $V_{AD} = V_{AV} + \triangle V + V_{B} + \triangle V_{B}$

と表され、理想平均電圧値 Vょ。′は、

$$V_{AD}' = V_{AV} + V_{B}$$

と表される。その結果、A/D変換器4の出力データに オフセットが生ずる。そこで、本第1の実施例では、A 10 /D変換器4の出力データに生ずるオフセットを補正で きるようにしてある。

【0009】即ち、オフセット検出回路8では、外部か ら端子9にバイアス電圧の理想値が、端子10にアナロ グ信号の理想平均電圧値が与えられるが、まずA/D変 換器4の各出力サンプル値を用いてアナログ信号の平均 電圧値を求める。これは前記式(1)で示されるもので ある。次いで、求めた平均電圧値からアナログ信号の理 想平均電圧入力端子10に供給される理想平均電圧値と バイアス電圧入力端子9に供給される理想値バイアス電 20 圧とを減算し、つまり、式(1)から式(2)を減算す る操作をし、オフセット($\Delta V + \Delta V_{o}$)を検出する。 そして、減算器7では、A/D変換器4の出力データか らオフセット検出回路8の出力データを減算する。その 結果、デジタルデータ出力端子11からは、アナログ信 ・ 号のオフセット ΔV とバイアス電圧のオフセット ΔV 。 の除去された正しいデジタルデータが出力される。 【0010】次に、図2を参照して具体的に説明する。

図2は、cos(2 xft)[V]で表される正弦波を $V_{\bullet} = 1.5 [V] (201), \Delta V = 0.1 [V]$ (202), $\Delta V_{\bullet} = 0.2[V](203)$ & U = 0.2[V]f [Hz] でサンブルする場合を示している。図2 (a)は、オフセットのないアナログ信号の原波形であ り、t=T/4,2T/4,3T/4,Tにおける電圧 は、それぞれ0V(211), -1V(212), 0V (213), 1V(214)である。図2(b)は、バ イアス電圧付加回路2の入力信号波形であり、図2

(a) に示すアナログ信号に△V=0.1 [V] (20 2)のオフセット電圧が加わったアナログ信号の波形で ある。従って、t=T/4、2T/4、3T/4、Tに 40 おける電圧は、それぞれ0.1V(221)、-0.9 V(222), 0. 1V(223), 1. 1V(22 4) である。次いで、図2(c)は、V。 + △V。 = 1.5+0.2[V]のバイアス電圧を付加したA/D 変換器4への入力信号の波形である。t = T/4、2 T **/4、3T/4、Tにおいてサンプル値1.8V(23** 1), 0.8V(232), 1.8V(233), 2. 8V(234)が得られる。そして、オフセット検出回 路8においてサンブル値1.8V(231)、0.8V (232), 1. 8V (233), 2. 8V (234)

* 信号の理想平均電圧値をV.v.、アナログ信号のオフセッ ト電圧値を ΔV 、バイアス電圧の理想値をV。、バイア ス電圧の理想値との誤差をAV。とすると、A/D変換 器4の入力信号の実際の平均電圧値Vasは、

... (1)

... (2) の平均1.8 Vを求め、これから既知であるアナログ信

号の理想平均電圧値0 Vとバイアス電圧の理想値1.5 Vを減算すると、オフセット $(\Delta V + \Delta V_{\bullet}) = 0.3$ Vを検出することができる。以上の例では、アナログ信 号の平均電圧値を求めるのに4つのサンプル値を用いた が、一般的にアナログ信号の平均電圧値を求めるのには 十分な数のサンブル値を用いなければならない。 【0011】オフセット検出回路8と減算器7は、A/ D変換器4からのサンプルデータを用いた図3に示す処 理を行う演算回路で構成できる。図3において、SをK 番目のサンプル値D(K)までの累積和値とすると、ス テップS1において、初期値S=0、K=0とおいた 後、K番目のサンプル値D(K)を得(ステップS 2)、累積和値SをS=S+D(K)として求める(ス テップS3)。その後、サンプル番号Kが予め定めた数 (N-1)と等しくなったか否かを判断し (ステップS **4)、N-1に至っていなければKを1だけインクリメ** ントし(ステップS5)、次のサンブル値についての処 理S2以後の処理に戻る。ステップS4において、K= N-1と判断されたならば、累積和値Sを累積したサン ブル数Nで割り算して平均値Daaを求め(ステップS 6)、オフセット電圧Dorractを、平均値Daoから、予 め端子9及び10に供給されている入力アナログ信号の 理想平均電圧値及び理想バイアス電圧値との和D′ 🚜を 減算することにより求める(推定する) (ステップS 7)。こうして真のオフセット電圧値が得られ、このオ フセット電圧Doffsetを用いて、A/D変換器4からの 出力デジタルデータを補正する。すなわち、上記オフセ ット電圧値算出に用いたサンプル値データを補正するた め、これらサンブル値データをメモリに一時記憶してお き、K=0番目のサンプル値D(0)からN-1番目の サンブル値D(N-1)についてオフセット電圧値D offsetの減算処理を行う。ステップS8において、初期 値設定K=Oとした後、サンプル値D(K)からD offsetを減算して補正データD′(K)を求め(ステッ プS9)、補正データD′(K)を出力端子11に出力 する (ステップS10)。 そして、K=N-1に至った か否かを判断し(ステップS11)、N-1に至ってい なければKを1だけインクリメントし (ステップS1 2)、ステップS9の処理に戻る。 【0012】ステップS11の処理終了により上記N個

50 のサンブル値の補正を終了する。これ以降の(N+1)

番目のサンブル値の補正は、ステップS9とS10と同 様な処理を施して行われる。以後の補正サンプル値の数 に制限を与えないときの処理手順が図4に示されてい る。図4において、サンブル値D(K)を得(ステップ S13)、D(K)からオフセット電圧値Doffsetを減 ,算処理して補正データ値D′ (K)を求め(ステップS 14)、そのデータD′(K)を出力端子11に出力す る(ステップS15)。その後、次のサンプル値に対し て同様な処理を施すためKを1だけインクリメントして (ステップS16)、ステップS13の処理に戻る。 【0013】一方、図5には、図3に示すステップS1 1の処理終了後、予め定めたN′個のサンプル値D(N +1), D(N+2), …, D(N+N')に対しての み補正を行う場合の処理が示されている。ステップS2 1で、サンプル値D(K)を得(ステップS21)、こ のD(K)からオフセット電圧値 DOFFSETを減算処理し てデータD′(K)を求め(ステップS22)、この D'(K)を出力端子11に供給した後、KがN'-1 に至ったか否かを判断する(ステップS24)。こと で、N'-1に至っていないと判断されれば、Kを1だ 20 けインクリメントし (ステップS25)、ステップS2 1の処理に戻る。KがN′-1に等しければ処理を終了 する。また、A/D変換器4にて得られたサンブル値を 用いたオフセット検出及びA/D変換器の出力データの 補正は、一旦メモリ等に蓄積した後に行うこともできる・ ことは言うまでもない。

【0014】次に、図6は、本発明の他の実施例に係わ るA/D変換回路を示す。本第2実施例では、第1実施 例における減算器7を省略し、オフセット検出回路8か らのデジタル出力(Doffset)をD/A変換器12でア 30 ナログ信号に変換してバイアス電圧付加回路2′に与 え、A/D変換器4の入力信号の平均電圧が前記式 (2)となるようにしたものである。即ち、パイアス電 圧付加回路2′は、入力されたバイアス電圧について、 それが理想的なパイアス電圧となるように、かつ、入力 されたアナログ信号のオフセット電圧値をキャンセルす るように補正する手段を設けてある。その結果、A/D 変換器4からはオフセットのない正しいデジタルデータ が出力されることになる。

【0015】尚、図7に示すようにオフセット検出回路 40 8で得られたオフセット電圧DoffsetをD/A変換器 1 3でアナログ信号に変換して、バイアス電圧発生回路3 に供給し、パイアス電圧発生回路3がパイアス電圧を予 め補正するようにしても良い。この場合には、図3にお けるオフセット電圧値Dorrsetを求めるSI~S6まで の処理手順を用いることができることは勿論である。バ イアス電圧付加回路2は、例えば図8のように、オペア ンプ14を用いて構成きる。図8において、入力端子1 からのアナログ信号は抵抗R1を介してオペアンプ14 の非反転入力端子に供給され、バイアス電圧発生回路3 50 アス電圧付加回路

から発生されるバイアス電圧が抵抗R2を介して加算さ れている。オペアンプ14の反転入力端子は抵抗R3を 介して接地されるとともに、出力端子との間に帰還抵抗 R4が接続されている。オペアンプの電源として+15 Vと-15Vの2電源が用いられている。

8

[0016]

【発明の効果】以上説明したように、第1発明のA/D 変換回路によれば、低電位基準電圧から高電位基準電圧 までの範囲の電圧のアナログ信号をデジタルデータに変 10 換するA/D変換器の入力信号に付加するバイアス電圧 の理想値に対するオフセット、及びアナログ信号の平均 電圧値の理想値に対するオフセットを検出し、A/D変 換器の出力データを補正するようにし、また第2 発明の A/D変換回路によれば、低電位基準電圧から高電位基 **準電圧までの範囲の電圧のアナログ信号をデジタルデー** タに変換するA/D変換器の入力信号に付加するパイア ス電圧の理想値に対するオフセット、及びアナログ信号 の平均電圧値の理想値に対するオフセットを検出し、バ イアス電圧を補正しA/D変換器の入力信号の平均電圧 値が理想値となるようにしたので、正しいデジタルデー タを得ることができる、という効果がある。

【図面の簡単な説明】

【図1】本発明によるA/D変換回路の一実施例を示す 構成ブロック図である。

【図2】図1の実施例におけるオフセット検出回路の動 作を説明するための図である。

【図3】図1の実施例におけるオフセット検出回路8及 び減算器7の動作処理手順を示すフローチャートであ る.

【図4】図1の実施例におけるオフセット検出回路8及 び減算器7の動作処理手順を示し、オフセット電圧値を 求めるのに用いたサンブル値以降に入力されるサンブル 値を個数の限定なく補正処理するフローチャートであ

【図5】図1の実施例におけるオフセット検出回路8及 び減算器7の動作処理手順を示し、オフセット電圧値を 求めるのに用いたサンプル値以降に入力されるサンプル 値を、予め定めた個数N′だけ補正処理するフローチャ ートである。

【図6】本発明によるA/D変換回路の他の実施例を示 す構成ブロック図である。

【図7】本発明によるA/D変換回路の更に他の実施例 を示す構成ブロック図である。

【図8】図1の実施例におけるバイアス電圧付加回路の 構成例を示すブロック図である。

【図9】従来のA/D変換回路の構成ブロック図であ

【符号の説明】

入力端子

2, 2' バイ

10 バイアス電圧発生回路 A/ ***** 9 バイアス電圧理想値入力端子 D変換器 アナログ信号理想平均電圧値入力端子 5 高電位基準電圧入力端子 6 低電 デジタルデータ出力端子 位基準電圧入力端子 12, 13 D/A変換器 減算器 8 オフ 14 オペアンプ セット検出回路

【図1】

[図2]

[図4]

【図5】

【図9】

PRIOR ART

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-007154

(43) Date of publication of application: 14.01.1993

(51)Int.CI.

H03M 1/10

(21)Application number: 03-314025

(71)Applicant: NEC CORP

(22)Date of filing:

30.10.1991

(72)Inventor: MUTO HIROYASU

(30)Priority

Priority number: 02297620

Priority date: 02.11.1990

Priority country: JP

(54) A/D CONVERTER CIRCUIT

(57)Abstract:

PURPOSE: To eliminate an output offset of the A/D converter.

CONSTITUTION: An offset detection circuit 8 detects an offset with respect to an ideal average voltage of an analog signal and an offset of a bias voltage with respect to an ideal value added to an input signal of an A/D converter 4 converting an analog signal with a voltage in a range from a low reference voltage till a high reference voltage into a digital data and a subtractor 7 subtracts the offset from the output data of the D/A converter 4 to make correction. function the bias voltage is corrected by the offset so that an average voltage of the input signal of the A/D converter 4 is an ideal value.

LEGAL STATUS

[Date of request for examination]

27.10.1995

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2924373

[Date of registration]

07.05.1999

[Number of appeal against examiner's

decision of rejection]

appeal against

[Date of requesting appearaminer's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office