

Two-Laning with Paved Shoulders of Sikar-Bikaner Section of NH-11 in the State of Rajasthan on BOT (Toll Basis)

Final Traffic Assessment Report

November 2016

Disclaimer

The information in this Report has been prepared based on information collected from primary and secondary sources. Wherever information was not readily available, reasonable assumptions have been made, in good faith to draw meaningful inferences and these have been mentioned in the respective sections of the report. All such assumptions are subject to further corroboration based on availability of information. The information and analysis presented in this Report is not and does not purport to be comprehensive or to have been independently verified. This report has been prepared by Feedback Infra Pvt. Ltd. for its client, IL&FS Transportation Networks Limited. for its use for furthering the project. No external agency shall use any part of this report without the prior permission from IL&FS.

The information contained in this Report is selective and is subject to updating, expansion, revision and amendment. It does not, and does not purport to, contain all the information that may be required.

This Report may include certain statements, estimates, projections and forecasts. Such statements, estimates, projections, targets and forecasts are based on reasonable assumptions made by the management, officer and employees of Feedback Infra Pvt. Ltd. Assumptions and the base information on which they are made may or may not prove to be correct. No representation or warranty is given as to the reasonableness of forecasts or the assumptions on which they may be based and nothing in this Report is, or should be relied on as, a promise, representation or warranty.

TABLE OF CONTENTS

Disclaimer	ii
CHAPTER 1	5
TRAFFIC SURVEYS AND ANALYSIS	5
1.1 INTRODUCTION	5
1.2 OBJECTIVE AND SCOPE OF SERVICES	
1.3 THE PROJECT CORRIDOR	
1.4 TRAFFIC STUDIES	
1.5 TRAFFIC INTENSITY	
1.5.1 Classified Traffic Volume Counts	
1.5.2 Average daily traffic (ADT)	
1.5.4 Annual Average Daily Traffic (AADT)	
1.5.5 Daily variation of traffic volume	
1.6 TRAVEL PATTERN	
CHAPTER 2	22
TRAFFIC GROWTH RATES	22
2.1. INTRODUCTION	22
2.2. METHODOLOGY FOR TRAFFIC GROWTH RATE ESTIMATION	
2.3. REGIONAL INFLUENCE	
2.4. PAST VEHICLE REGISTRATION DETAILS	
2.5. PAST GROWTH OF ECONOMY	
2.6. TRANSPORT DEMAND ELASTICITY	
2.6. TRANSPORT DEMAND ELASTICITY	
2.8. PERSPECTIVE GROWTH: STATES' AND NATIONAL ECONOMIES	
2.9. PROJECTED TRAFFIC GROWTH RATES	
2.10. COMPETING / ALTERNATE ROUTES	
2.11. DIVERTED TRAFFIC	
CHAPTER 3	32
TOLLING STRATEGY AND TRAFFIC PROJECTIONS	32
3.1 TOLL PLAZAS	
3.2 TOTAL TRAFFIC PROJECTION	
3.3 DISCOUNTS	
3.4 TOLL REVENUE ESTIMATES	
LIST OF TABLES	
Table 1-1: Traffic surveys schedule	7
Table 1-2: Vehicle Classification and PCU Factors Used in the Study	
Table 1-3: Average Daily Traffic	
Table 1-4: Seasonal factors	
Table 1-5: Annual Average Daily Traffic (PCU)	10
Table 1-6: Day factors and maximum variations	
Table 1-7: Traffic composition of All Vehicles	
Table 1-8: Sample size of OD survey	
Table 1-9: Adopted zoning system	
Table 1-10: Zones with maximum influence on each mode	
Table 1-11: Distribution of Trips (%)	
Table 1-12: Trip Length Distribution of Commercial Vehicles in %	19

Table 1-13: Classification of commodities.	19
Table 1-14: Commodity distribution (%)	
Table 1-15: Commodity distribution (%)	
Table 1-16: Average Commodity distribution	21
Table 1-17: Average Occupancy at different locations	21
Table 2-1: Regional Influence (%)	22
Table 2-2: Past vehicle registration data of influencing states	23
Table 2-3: Economic indices of states and India at constant prices (2004 - 05)	24
Table 2-4: Observed transport demand elasticity values and traffic growth	25
Table 2-5: Projected transport demand elasticity values	26
Table 2-6: Projected growth rates of indicators	26
Table 2-7a: Estimated Traffic growth rates (%)	27
Table 2-7b: Adopted Traffic growth rates (%)	27
Table 2-8: Details of Project Route and Alternative Route	28
Table 2-9: Diversion Curve Equations	
Table 2-10a: Vehicle Operating Cost (Rs.)	
Table 2-10b: Value of Time (Rs.)	
Table 2-10c: Toll Rates (Rs.)	
Table 2-10d: Generalized cost on Alternate route and project road (in Rs.)	
Table 2-10e: Potential and Actual traffic diversion to Project Road	
Table 3-1: Toll plaza details as per existing chainage	
Table 3-2: Structures / Bypass details	
Table 3-3a: Toll Rates Adopted (in Rs) for four lane	
Table 3-3b: Toll Rates Adopted (in Rs) for two lane	
Table 3-4a: Toll Rates in Year 2016-17 (in Rs) _Before COD	
Table 3-4a: Toll Rates in Year 2016-17 (in Rs) _After COD	
Table 3-5: Projected total traffic for Most Likely Scenario	
Table 3-6: Tollable Component	
Table 3-7a: Projected Tollable Traffic at 362.000	
Table 3-7b: Projected Tollable Traffic @ km 420.000	
Table 3-7c: Projected Tollable Traffic @ km 507.000	
Table 3-7d: Projected Tollable Traffic @ Bikaner Bypass	
Table 3-8: Annual Toll Revenue Estimation (Rs. in Crores)	41
LIST OF FIGURES	
Figure 1-1: Project Stretch	6
Figure 1-2: Traffic Survey Location Map	
Figure 1-3: Daily variation of Traffic	
Figure 2-1: Project Route Vs Alternative Routes	28

Chapter 1

Traffic Surveys and Analysis

1.1 INTRODUCTION

IL&FS Transportation Networks Limited. has appointed M/s Feedback Infra Pvt. Ltd., a leading Integrated Infrastructure Consulting Company, based at New Delhi to prepare the traffic study 2-lane with paved shoulders from km 357.000 (Sikar) to km 557.775 (Bikaner) section of NH-11 in the state of Rajasthan on BOT (Toll Basis), under Government of India, Ministry of Road Transport and Highways (MORTH) through Public Works Department (PWD) and Government of Rajasthan.

As part of this study, a systematic methodology has been followed to assess the characteristics of the traffic on the project road. The details pertaining to the data collection, primary as well as secondary, and results from its analysis are presented in the following sections.

The present Traffic Report presents the existing traffic characteristics, methodology used to derive traffic growth rates, details on adopted traffic growth rates, forecasted Traffic, divertible traffic and generated traffic if any. Based on these, tollable traffic and toll revenue estimation at the toll plaza locations have been calculated and presented.

1.2 OBJECTIVE AND SCOPE OF SERVICES

The objective of the study is to estimate the base year tollable traffic, projected tollable traffic and related revenues on the project road for the duration of the concession. The scope of services of this study is to:

- 1 day Origin Destination Surveys, 24 hours; at the Toll Plaza Locations
- 1 day Registration Plate Surveys, 24 hours; at the Toll Plaza Locations
- Review the past traffic data on the project stretch and other competing / alternative routes;
- Analyse the network conditions, traffic characteristics and level of toll charged for the competing/alternate routes if any;
- Establish seasonality factors using available past traffic data and /or from using fuel sales data or any other relevant data. Detailed justifications for SCF to be brought out in the report;
- A study of the Project Influence Area, alternate routes to the Project and assessing the possibility
 of diversion of traffic from / to the Project road under consideration due to existing or future
 developments;
- Various NHs/ SHs/ other roads linked to project road. Comment on condition ofvarious
 adjoining/ feeder roads (if any) and their likely impact on future traffic movement on the Project
 road. Category I class of traffic coming from those roads. Comments on traffic potential viz.
 normal traffic, diverted traffic (from road and from rail), induced/generated traffic, Project
 influence areas- districts I' sectors;
- Network Analysis of the project stretch;
- Identify factors which may have a positive and / or negative impact on the Traffic;
- Estimation of the ADT & AADT based on the findings of the study done on the above points;
- Estimation of category wise traffic growth rates at all toll plazas; (please note that if the factors influencing the traffic at all toll plazas are different then the traffic growth rate needs to reflect the same);
- Forecast of category wise tollable traffic annually from current year till end of concession period:
- Forecast of year wise Toll revenue (both vehicle wise and usage wise) from current year till end
 of concession period (in line with the toll policy and relevant toll schedules in the Concession
 agreement.

- All traffic data collected shall be in line with relevant Schedule and read with the amendments thereto the Concession Agreement;
- The approach / methodology to be followed and assumptions made for arriving at future traffic
 projects should be scientific, to be carried out systematically taking into account all socioeconomic demographic and traffic characteristics for the project corridor, as followed by leading
 traffic analysts.

1.3 THE PROJECT CORRIDOR

The project corridor from Sikar Bikaner section of NH-11 is located in the state of Rajasthan. The project corridor starts at km 357.000 at Sikar and ends at Bikaner at km 557.775. The total length of the project corridor is 237.578 km. The project road falls under 3 districts namely Sikar, Churu and Bikaner districts of Rajasthan.

The important towns and settlements along the project corridor are Sikar, Laxmangarh, Fatehpur, Ratangarh, Bikaner and Shri Dungargarh. NH 11 is a National Highway in India that links Jaisalmer and Fatehpur. This 495 km long highway passes through Bharatpur, Dausa, Jaipur, Sikar and Fatehpur.

Figure 1-1: Project Stretch

Sikar District

The district is located in the north-eastern part of the state of Rajasthan. It is bounded on the north by Jhunjhunu district, in the north-west by Churu district, in the south-west by Nagaur district and in the south-east by Jaipur district. It also touches Mahendragarh district of Haryana on its north-east corner.

Sikar district is one of the semi desert districts of Rajasthan. Agriculture and animal husbandry is the main occupation of the people in this district. It was an industrial backward district but since last few years it appears to have bright future for industrial development due to favorable geographical situation regarding availability of raw material from mineral resources. Bajra, Wheat, Gram, Barley, Rape & Mustard Groundnut, Pulses and Guar are the major crops of the Sikar District.

Animal husbandry plays a vital role in the economy of the district. Sikar, district is very rich in livestock, both quantitatively and qualitatively since rearing of livestock forms an important spare time occupation

of the cultivators of the district. The main livestock of the district are cows, buffaloes, sheep, goats and camels.

Churu District

Churu district is a district of the Indian state of Rajasthan in western India. The district has good connections within and outside the state. National Highway Nos. 11 (Agra-Bikaner), 65 (Ambala-Pali), and 709 Ext. (Rohtak-Rajgarh) pass through the district. The economy of the town and surrounding area is mainly based on agriculture and animal husbandry. The oilseeds, especially mustard seed, are the predominant crop in recently developed small, well-irrigated fields. Wheat, kharif pulses, bajra (pearl millet), and gwar are other produces. Churu is the main mandi (market) for agricultural produce of the area. There is no large or medium size industry in the industrial area. The main small-scale industries are granite slabs and tiles, cutting and polishing, and mustard seed crushing.

Bikaner District

Bikaner is a district of the state of Rajasthan in western India. The district is bounded by Ganganagar District to the north, Hanumangarh District to the northeast, Churu District to the east, Nagaur District to the southeast, Jodhpur District to the south, Jaisalmer District to the southwest, and Punjab Province of Pakistan to the northwest. Bikaner is an agricultural district with cereals, pulses and oilseeds being the main agricultural products of the region. The district has few registered small-scale industries. Almost the entire district is devoid of rock exposures except near Kolayat and at a few places in the southern parts of Nokha and Dulmera. The district Bikaner is thus vast sandy racks except Kolayat are covered with sand of Rock locally known as "Magra" are found is parts Kolayat tehsil.

1.4 TRAFFIC STUDIES

To capture traffic flow characteristics, travel pattern of traffic passing through the project road and other characteristics related to miscellaneous requirements on the project road, the consultant has collected the toll data for a period of 7 days (29-05-2016 to 5-06-2016) from client and following Table 1-1 primary traffic surveys were conducted.

No. of S. **Locations (Chainage)** Period Type of survey No. days km 362.000 1-06-2016 to 2-06-2016 1 Km 420.000 1 3-06-2016 to 4-06-2016 Origin – Destination survey & VR Survey 1 Km 507.000 2-06-2016 to 3-06-2016 Bikaner Bypass 31-05-2016 to 1-06-2016

Table 1-1: Traffic surveys schedule

Traffic survey location for carrying out VR and OD surveys were carried out at the existing toll plaza locations as per the Concession Agreement. The traffic survey locations as per existing chainage are marked in **Figure 1-2**.

Figure 1-2: Traffic Survey Location Map

1.5 TRAFFIC INTENSITY

1.5.1 Classified Traffic Volume Counts

The Toll data was provided by the client for 7 days continuously. The vehicle classification used in the survey along with their PCU factors, as suggested in IRC: 64 - 1990, are presented in Table 1-2

Vehicle Type **PCU Factor Fast Moving Vehicles** Car, jeep, van 1.0 Taxi 1.0 Mini bus 1.5 Standard Bus (private and government classified) 3.0 Light Motor Vehicles (LMV) 1.0 Light commercial vehicle (passenger & goods) 1.5 Truck 2-axle 3.0 Truck 3-axle 3.0 4 to 6-axle truck 4.5 4.5 More than 6-axle truck

Table 1-2: Vehicle Classification and PCU Factors Used in the Study

The analysis of the classified traffic volume at the toll plaza locations was carried out to arrive at the following:

- Average Daily Traffic (ADT) and Annual Average Daily Traffic (AADT)
- Daily variation of traffic volume

• Average Composition of traffic

1.5.2 Average daily traffic (ADT)

Traffic volume data was averaged to determine Average Daily Traffic (ADT). ADT by vehicle type is presented in **Table 1-3.**

km km km Bikaner Mode of Vehicle 362.000 420.200 507.000 Bypass 2234 1838 2189 365 Car/ Jeep/Van Minibus / LCV 425 213 128 127 Bus / Truck 872 473 529 161 Tollable vehicles 3 Axle Truck 433 233 396 574 429 193 405 MAV (4-6) Axle 601 OSV (>= 7 axle)0 0 0 0 Car/ Jeep/Van 74 112 96 10 Minibus / LCV 62 25 57 11 Toll **Exempted** Bus / Truck 3 1 1 Vehicles 3 Axle Truck 0 0 0 0 MAV (4-6) Axle 0 0 0 0 **Grand Total (Nos.)** 4529 3091 3802 1849 **Total Grand Total (PCUs)** 8886 5305 7165 5491

Table 1-3: Average Daily Traffic

- The traffic at the first location is higher than that at the second location as some of the traffic goes off towards Churu using NH-65.
- The share of passenger vehicles is observed to be in the range of 75-80% of the total traffic at the three locations along the project road while at Bikaner bypass the share of passenger vehicles is low, in the range of 36%. The low share of passenger vehicles indicates that the bypass caters to mainly the through traffic.

1.5.3 Seasonal Correction Factor

The traffic plying on any road generally varies over different periods of the year depending on the cycle of different socio-economic activities in the regions through which it passes. Therefore, in order to have a more realistic picture of the traffic on the project road, it is required to assess its seasonal variation to estimate the annual average daily traffic (AADT)

AADT is the base year (FY 2016-17) traffic. This is a product of ADT and seasonal variation factor. Seasonal variation factor can be derived using various methods. Vehicle data from toll booths check posts etc. or sale details of petrol and diesel fuels along the corridor, arrival of vehicles at establishments like APMC, truck terminals, railway goods stations, etc. are the commonly used sets of data.

For the present study, fuel sales data for the last 2 years has been collected from various petrol pumps and analyzed and is as presented in **Table 1-4**.

Table 1-4: Seasonal factors

Month	Fuel	Outlets	SCF		
	MS	HSD	MS	HSD	
April	22.83	98.75	1.03	1.02	
May	22.67	92.19	1.04	1.10	

Month	Fuel	Outlets	S	CF
June	22.42	91.01	1.05	1.11
July	23.83	103.26	0.99	0.98
August	23.17	101.13	1.02	1.00
September	22.75	93.85	1.03	1.08
October	24.08	106.98	0.98	0.95
November	23.42	110.73	1.01	0.91
December	24.75	107.49	0.95	0.94
January	23.50	97.53	1.00	1.04
February	23.42	106.28	1.01	0.95
March	25.58	104.10	0.92	0.97

Since the daily toll for seven days was provided for the months of May and June, weighted average of the 2 months has been taken with 3 days of the month of May and 4 days of the month of June.

Thus, for cars the final SCF has been arrived at by taking an average of MS and HSD and for trucks / bus it has been considered 1.10, from the HSD data as listed above in **Table 1-4**.

1.5.4 Annual Average Daily Traffic (AADT)

The traffic volume survey along the project road has been carried out in month of May and June 2016 and seasonal factors for these months were considered for converting ADT to AADT. AADT vehicle type wise is shown in **Table 1-5**. The AADT values for base year (2016-17) have been used for the traffic volume projection up to horizon year and for projecting the toll revenue.

km km km **Bikaner Mode of Vehicle** 362.000 420.200 507.000 **Bypass** Car/ Jeep/Van 2390 1967 2343 391 Minibus / LCV 467 234 141 140 Bus / Truck 959 521 582 177 Tollable vehicles 3 Axle Truck 476 257 436 631 MAV (4-6) Axle 472 212 446 661 OSV (>= 7 axle)0 0 0 0 Car/ Jeep/Van 79 120 102 11 Minibus / LCV 68 28 63 12 Toll **Exempted** Bus / Truck 4 1 1 Vehicles 3 Axle Truck 0 0 0 0 0 0 0 0 MAV (4-6) Axle Grand Total (Nos.) 4912 2024 3343 4114 **Total** Grand Total (PCUs) 9704 5780 7815 6032

Table 1-5: Annual Average Daily Traffic (PCU)

1.5.5 Daily variation of traffic volume

Daily variation of traffic (mode wise) is shown in Figure 1-3 below. Daily variation of traffic in terms of day factors is presented in Table 1-6.

Figure 1-3: Daily variation of Traffic

Table 1-6: Day factors and maximum variations

Lagation	Cundou	Manday	Tuesday	Wadwaaday	Thursday	Evidov	Catuuday	Maxin variat	
Location	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	-ve (%)	+ve (%)
km 362	5.9%	-3.8%	-1.1%	-1.8%	-1.5%	0.1%	2.2%	-3.8%	5.9%
km 420	6.3%	-4.4%	4.8%	-0.2%	-3.7%	3.4%	-6.2%	-6.2%	6.3%
km 507	1.8%	1.9%	3.9%	-4.0%	-3.3%	0.2%	-0.4%	-4.0%	3.9%
Bikaner Bypass	9.1%	-5.9%	-2.8%	-2.7%	-2.2%	0.3%	4.0%	-5.9%	9.1%

Day factor is the variation of each day's traffic to the average daily traffic. Day wise variations are observed at all locations.

Traffic Composition

The traffic composition of vehicles is given in **Table 1-7**.

Table 1-7: Traffic composition of All Vehicles

				P				
Mode of vehicle	km 3	62.000	km 4	20.000	km 5	07.000	Bikane	er Bypass
	Nos.	% share	Nos.	% share	Nos.	% share	Nos.	% share
Car/ Jeep/Van	2390	48.66%	1967	58.84%	2343	56.95%	391	19.32%
Minibus / LCV	467	9.51%	234	7.00%	141	3.43%	140	6.92%
Bus / Truck	959	19.52%	521	15.58%	582	14.15%	177	8.75%
3 Axle Truck	476	9.69%	257	7.69%	436	10.60%	631	31.18%
MAV (4-6) Axle	472	9.61%	212	6.34%	446	10.84%	661	32.66%
<i>OSV (>=7 axle)</i>	0	0.00%	0	0.00%	0	0.00%	0	0.00%
Toll Exempted	148	3.01%	152	4.55%	166	4.04%	24	1.19%
Total Vehicles	0	0.00%	0	0.00%	0	0.00%	0	0.00%

1.6 TRAVEL PATTERN

Origin Destination Survey

Origin - destination (O-D) surveys were conducted to elicit information related to the base year travel characteristics of goods and passenger trips using the project road and likely future traffic diversions to or from the project road. The travel characteristics obtained by O-D survey would facilitate the identification of (i) local and through traffic on the project road, and (ii) the tollable traffic at the existing toll plazas.

The O-D survey locations on the Project road are also shown in **Figure 1.2** along with other survey locations.

The origin-destination survey was carried out using the road side interview (RSI) technique. The survey was conducted for 1 day at the existing four toll plaza locations to understand the road user characteristics. Road users were interviewed by trained enumerators to obtain the required data under the guidance of traffic engineers and supervisors. For this purpose, cars (private and taxi cars) and buses were considered as passenger vehicles. Similarly, LMVs, LCVs, 2-axle trucks, 3- axle trucks, 4 to 6-axle trucks and more than 6-axle trucks were considered as goods vehicles.

The information collected contained trip origin and trip destination. In addition, type of commodity for goods vehicles and purpose and occupancy for passenger vehicles were also collected. Further, trip length and frequency also elicited during O-D surveys. The sample size of each vehicle type is given in **Table 1-8**.

The data collected from RSI were entered into the computer and checked manually. Incorrect entries were corrected by cross-checking it with original field data sheets. The data was also checked for inconsistencies. The checking included:

- Trips from zones to zones which cannot possibly ply through the survey location
- Vehicle type with their corresponding lead / load / occupancy for any inconsistencies

The checked and corrected data were used for final analysis.

Km 507.000 km 362.000 km 420.000 Bikaner Bypass Vehicle Type % % **AAD** % **AADT** % Sample **AADT AADT** Sample Sample T Sample 2390 79.9 1968 66.4 2344 55.0 392 Car/ Jeep/Van 56.1 Minibus / LCV 468 70.3 234 73.1 142 57.7 140 75.7 522 84.1 65.1 Bus / Truck 960 51.1 582 178 66.3 3 Axle Truck 476 56.7 258 62.4 436 58.7 632 69.1 75.0 MAV (4-6) Axle 472 48.9 212 446 53.1 662 52.4

Table 1-8: Sample size of OD survey

Zoning System

For analysis of data collected from the field, it is required to code them for developing origin and destination matrices of trips. The local traffic needed to be assessed precisely, at the same time through traffic and its geo-regional representation also should be assessed.

For the purpose of delineating the growth centres affecting the influence area, the entire country was broadly divided into two regions. They are, Immediate Influence Area (IIA) and Broad Influence Area (BIA) of the project.

While defining zone boundaries the following were considered:

- > Important towns and industrial areas along or near the project road
- > Important roads
- Administrative boundaries, e.g., district and state boundaries.

Eighteen zones were considered along and close to the project corridor, starting from Sikar to Bikaner. Certain areas / districts / states were considered separately and far off districts were clubbed together. These considerations helped in arriving at 84 zones for the project. The zones are listed in **Table 1-9** below.

Table 1-9: Adopted zoning system

Zone No.	Zone Name	District
1	Sikar	
2	Pura ki Dhani, Bhadhadar	
3	Rashidpura	
4	Khuri Chhoti / Khuri bari	
5	Ghassu ki Bas	
6	Laxmangarh	
7	Fatehpur	
8	RolSabsar	
9	Biramsar / Bhojdesar	Along the Project
10	Ratangarh	Road
11	Bharpalsar	
12	Rajaldesar	
13	Kitasar	
14	Bigga	
15	Shri Dungagarh	
16	Jodhasar	
17	Sheruna	
18	Bikaner	
19	Nokha Mandi	
20	Kolayat	
21	Poogal	Bikaner distt.
22	Chhatargarh	Bikanei distt.
23	Jamsar,	
24	Lunkaransar	
25	Sadarshahar	
26	Taranagar(Reni)	
27	Raigarh	Churu distt.
28	Churu	
29	Sujangarh	
30	Nim ka Thana	
31	Shri Madhopur	Sikar district
32	Danta Ramgarh	
33	Jhunjhunun district	Jhunjhunun district
34	Ladnun	
35	Didwana	
36	Jayal	Magazir diatriat
37	Nagaur	Nagaur district
38	Makrana	
39	Parvatsar	

Zone No.	Zone Name	District
40	Nawan, Marot	
41	Merta City	
42	Kheenvsar	
43	Jodhpur	
44	Phalodi, Bap, Shergarh	Jodhpur
45	Osian, Bhopalgarh, Bilara	
46	Suratgarh	
47	Sadulshahr	Ganganagar district
48	Ganganagar distt	
49	Hanumangarh, Tibi	
50	Rawatsar	Hanumagarh district
51	Nohar, Bhadra	
52	Sangariya	
53	Kot Putli, Bairat, Shahpura Tehsils	Jaipur
54	Jaipur distt	· · · · · ·
55	Tonk, Bundi, Kota, Baran, Jhalawar	
56	Alwar, Bharatpur	
57	Sawai Madhopur, Dausa, Karauli, Dhaulpur	
58	Kishangarh, Nasirabad	
59	Ajmer	Other districts of
60	Bhilwara, Chittaurgarh, Banswara, Pratapgarh	Rajasthan
61	Rajasmand, Udaipur, Dungarpur	
62	Pali, Sirohi	
63	Barmer, Jalor	
64	Jaisalmer	D:-1-
65	Punjab Hisar	Punjab
66	Sirsa, Fatehabad	_
68	Bhiwani	
69	Narnaul	
70	Rewari, Gurgaon	Haryana
71	Faridabad, Palwal	
72	North Haryana	
73	Chandigarh	_
74	New Delhi	
75	Uttarakhand	
76	Himachal Pradesh, J&K	
77	Uttar Pradesh	
78	Madhya Pradesh	
79	Gujarat	
80	Bihar, Jharkhand, West Bengal	Other States of India
81	Chhatisgarh, Orissa	
82	Maharashtra, Goa	
	South India (Karnataka, Tamilnadu, Kerala, Andhra	
83	Pradesh)	
84	Eastern States (Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, Assam, Meghalaya)	

Expansion factors and development of O - D matrices

The origin – destination details were collected from the trip makers during the survey on sample basis. Sampling varied with the changes in traffic flow across the day. Care has been taken to eliminate any

element of bias in sampling. Since data was collected on sample basis, expansion factors are required to replicate the pattern as reflected in the sample to the total number of vehicular trips made during the day. These expansion factors are calculated separately for each class of vehicle. For example, if x_c is number of cars interviewed and X_c is the total number of cars counted during the day, then X_c/x_c would be the expansion factor for cars.

O–D matrices are developed to assess the traffic movement pattern. These matrices actually speak about distribution of trips for each zone as intra-zonal and inter-zonal movements. The vehicle wise O-D matrices are developed by multiplying the sample O-D matrix obtained from survey data with expansion factors. Accordingly eight matrices, for different modes were developed for each survey location.

O-D matrices for different vehicle type for project stretch at all survey locations are presented in **Annexure 1.1** to this report.

Travel pattern and characteristics

The Influence various zones of particularly and areas along the project corridor are analysed. They are as given in **Table 1-10**.

Table 1-10: Zones with maximum influence on each mode

	km 362.000			km 420.000			km 507.00)0	Bikaner Bypass		
Rank	Zone	Percentage	Rank	Zone	Percentage	Rank	Zone	Percentage	Rank	Zone	Percentage
					Car / Tax	ci					
1	Sikar - Laxmangarh	29.90%	1	Fatehpur - Ratangarh	13.80%	1	Shri Dungagarh - Bikaner	26.32%	1	Bikaner - Nokha Mandi	68.93%
2	Sikar - Fatehpur	9.96%	2	Bikaner - Jaipur distt	12.62%	2	Bikaner - Jaipur distt	11.57%	2	Shri Dungagarh - Nokha Mandi	8.51%
3	Sikar - Khuri Chhoti / Khuri bari	8.50%	3	Sikar - Ratangarh	11.32%	3	Ratangarh - Bikaner	7.00%	3	Nokha Mandi - Lunkaransar	3.74%
					LCV/Mini	Bus					
1	Sikar - Laxmangarh	25.72%	1	Fatehpur - Ratangarh	20.42%	1	Shri Dungagarh - Bikaner	24.19%	1	Bikaner - Nokha Mandi	31.09%
2	Sikar - Fatehpur	7.73%	2	Sikar - Bikaner	13.92%	2	Shri Dungagarh - Jodhasar	15.32%	2	Bikaner - Kolayat	5.70%
3	Sikar - Khuri Chhoti / Khuri bari	6.90%	3	Sikar - Ratangarh	7.57%	3	Shri Dungagarh - Sheruna	12.13%	3	Bikaner - Jayal	5.66%
					Bus / True	ck					
1	Sikar - Fatehpur	15.27%	1	Bikaner - Jaipur distt	14.59%	1	Bikaner - Jaipur distt	20.46%	1	Bikaner - Nokha Mandi	27.92%
2	Bikaner - Jaipur distt	13.28%	2	Sikar - Bikaner	9.14%	2	Shri Dungagarh -	8.45%	2	Shri Dungagarh -	5.79%

	km 362.000			km 420.000			km 507.00)0		Bikaner Byr	ass
Rank	Zone	Percentage	Rank	Zone	Percentage	Rank	Zone	Percentage	Rank	Zone	Percentage
		_					Bikaner			Nokha	
										Mandi	
3	Sikar -	10.70%	3	Sikar -	8.38%	3	Bikaner -	7.44%	3	Bikaner -	4.99%
	Laxmangarh	10.7070		Ratangarh			Sujangarh	7.1170		Nagaur	1.5570
					3 Axle Tru	ıck					
	Bikaner - Jaipur			Bikaner - Jaipur			Shri			Bikaner -	
1	distt	19.06%	1	distt	18.87%	1	Dungagarh -	11.44%	1	Nokha	18.04%
							Bikaner			Mandi	
2	Ganganagar distt	9.12%	2	Sikar -	7.67%	2	Bikaner -	11.42%	2	Bikaner -	7.12%
	- Jaipur distt	7.1270		Ratangarh	7.0770		Jaipur distt	11.42/0		Jodhpur	7.1270
										Shri	
3	Jaipur distt -	5.75%	_	- Sikar - Bikaner	6.98%	3	Bikaner - 5.0	5.01%	3	Dungagarh -	3.46%
	Punjab					New Delhi	New Delhi No.		0.0170	Nokha	
					7.7.177					Mandi	
					MAV		T				·
	Bikaner - Jaipur			Bikaner - Jaipur			Shri			Bikaner -	
1	distt	11.90%	1	distt	14.20%	1	Dungagarh -	7.33%	1	Nokha	9.14%
	V-2 VV			disti			Bikaner			Mandi	
2	Jaipur distt -	7.72%	2	Sikar - Bikaner	8.73%	2	Bikaner -	7.33%	2	Punjab -	8.33%
	Punjab	1.12/0		Sixui Dixuitoi	0.7570		Jaipur distt	7.5570		Gujarat	0.5570
_	Ganganagar distt			Ratangarh -		_	Sikar -			Punjab -	
3	- Jaipur distt	5.16%	3	Jaipur distt	6.52%	3	Bikaner	4.78%	3	Maharashtra,	7.37%
	t wip on whole			3 41 P 41 41 51			2			Goa	

State Share

The share of trips influencing states are as given in **Table 1-11** below, which will be used in the growth rate estimation.

Table 1-11: Distribution of Trips (%)

Mode/State	Car / Taxi	Mini Bus / LCV	Bus / Truck	3 Axle	MAV
	,	km 362.00	0		
Rajasthan	98.66%	96.23%	94.45%	76.09%	74.04%
Punjab	0.37%	1.48%	2.13%	7.63%	10.17%
Haryana	0.68%	0.88%	0.80%	5.31%	5.21%
Gujarat	0.00%	0.32%	0.33%	1.29%	0.89%
ROI	0.29%	1.09%	2.29%	9.68%	9.69%
Total	100.00%	100.00%	100.00%	100.00%	100.00%
		km 420.00	0		
Rajasthan	97.47%	95.30%	94.09%	83.95%	82.86%
Punjab	0.73%	1.16%	1.26%	1.26%	0.92%
Haryana	0.79%	1.49%	3.51%	9.78%	8.88%
Gujarat	0.00%	0.00%	0.00%	0.00%	1.56%
ROI	1.01%	2.05%	1.15%	5.01%	5.79%
Total	100.00%	100.00%	100.00%	100.00%	100.00%
		km 507.00	0		
Rajasthan	98.09%	98.75%	92.53%	82.27%	66.77%
Punjab	0.00%	0.00%	0.00%	1.02%	1.23%
Haryana	1.05%	0.53%	2.36%	6.58%	13.63%
Gujarat	0.04%	0.00%	0.51%	1.81%	8.92%
ROI	0.82%	0.71%	4.59%	8.32%	9.46%
Total	100.00%	100.00%	100.00%	100.00%	100.00%
		Bypass			
Rajasthan	98.55%	91.93%	84.56%	79.74%	64.57%
Punjab	0.95%	3.79%	6.41%	6.85%	14.12%
Haryana	0.25%	1.91%	2.61%	1.03%	1.32%
Gujarat	0.00%	0.94%	2.10%	4.89%	8.83%
ROI	0.25%	1.42%	4.31%	7.49%	11.17%
Total	100.00%	100.00%	100.00%	100.00%	100.00%

• At all four locations, Rajasthan holds the major share of cars while for the commercial trucks the influencing states include Rajasthan, Haryana, Gujarat and Punjab.

Lead distribution

Table 1-12 depicts the trip length distribution of each mode of vehicles at survey locations.

Table 1-12: Trip Length Distribution of Commercial Vehicles in %

Vehicle Type	0-50	50-100	100-200	200-500	500-1000	>1000	Total
			km 362.0	00			
Car/ Jeep/Van	45.5	20.7	8.4	23.8	1.6	0.0	100.0
Minibus / LCV	38.6	15.5	7.8	32.0	4.5	1.6	100.0
Bus / Truck	12.1	23.9	6.1	48.2	5.8	3.8	100.0
3 Axle Truck	3.5	6.0	3.9	54.8	17.2	14.6	100.0
MAV (4-6) Axle	3.3	4.7	8.9	48.0	18.4	16.8	100.0
			km 420.0	00			
Car/ Jeep/Van	14.1	16.5	10.9	54.4	4.0	0.1	100.0
Minibus / LCV	21.3	15.2	17.1	40.3	5.7	0.5	100.0
Bus / Truck	9.1	13.1	11.8	60.1	5.9	0.0	100.0
3 Axle Truck	4.3	11.5	14.5	53.8	8.1	7.7	100.0
MAV (4-6) Axle	2.6	10.6	11.6	59.8	7.4	7.9	100.0
			km 420.0	00			
Car/ Jeep/Van	9.0	29.7	32.5	26.7	2.1	0.0	100.0
Minibus / LCV	28.9	28.1	20.3	20.3	2.3	0.0	100.0
Bus / Truck	3.4	9.3	33.3	47.0	5.5	1.5	100.0
3 Axle Truck	1.8	12.6	25.0	43.7	9.6	7.3	100.0
MAV (4-6) Axle	1.0	8.4	15.7	37.8	14.3	22.9	100.0
			Bypass	•			
Car/ Jeep/Van	69.0	12.9	4.7	12.6	0.8	0.0	100.0
Minibus / LCV	31.3	16.4	10.2	28.1	12.5	1.6	100.0
Bus / Truck	29.2	6.8	13.0	28.6	13.0	9.3	100.0
3 Axle Truck	19.3	7.5	10.3	31.9	14.8	16.2	100.0
MAV (4-6) Axle	9.7	3.7	11.5	25.9	18.7	30.4	100.0

Commodity Groups and Analysis

The different commodities recorded during the O-D survey have been classified in 19 categories as presented in Table 1-13. Due consideration has been given to include all possible commodities and to categorize them into homogeneous groups, accounting the pattern of movement along the corridor.

Table 1-13: Classification of commodities

No.	Commodity Type
1	Empty
2	Food Grains (Rice, Wheat, Gur, sugarcane etc.,)
3	Vegetables / Fruits
4	Milk/ Milk products / Fish/Meat
5	Consumer Item
6	Iron / Steel
7	Petroleum / Oil / Gas/ Lubricants
8	Chemicals
9	Timber / Wood
10	Marble / Stone

No.	Commodity Type
11	Aggregate, boulders, Bricks
12	Sand, soil & Cement
13	Manufactured Goods (Electronic items, Vehicles, Leather, Tobacco, Rubber/
13	Tyres, Plastics, etc.)
14	Minerals (chromium, Iron ore etc.)
15	Paper
16	Animal / Animal Fodder
17	Parcels / Containers
18	Textiles, fibre
19	Scrap

The percentage of each commodity mode-wise is given in Table 1-14 and 1-15 below.

Table 1-14: Commodity distribution (%)

Commodity Type	LCV	2A	<i>3A</i>	MAV	LCV	2A	<i>3A</i>	MAV LCV
		kn	n 362 .000			kn	1 420.000	
Empty	40.0	20.4	14.1	22.3	27.4	20.8	21.8	29.5
Food Grains (Rice, Wheat, Gur, sugarcane etc.,)	2.6	4.9	4.9	4.2	6.6	11.5	8.5	8.9
Vegetables / Fruits	9.7	7.5	7.6	7.7	14.6	6.8	7.7	3.2
Milk/ Milk products / Fish/Meat	10.2	2.8	0.7	0.0	4.2	0.8	1.3	1.1
Consumer Item	6.4	14.9	16.7	10.7	4.7	1.7	4.3	7.4
Iron / Steel	3.8	3.2	6.3	3.0	3.3	4.0	3.8	2.6
Petroleum / Oil / Gas/ Lubricants	0.2	4.1	5.8	3.5	2.4	13.0	4.7	7.9
Chemicals	0.9	1.7	3.0	3.7	0.0	0.0	0.0	0.0
Timber / Wood	2.4	0.0	3.0	1.6	0.0	5.7	2.1	1.1
Marble / Stone	0.9	4.7	2.8	3.7	1.9	1.3	1.7	3.7
Aggregate, boulders, Bricks	0.9	6.3	7.2	15.8	11.3	9.8	11.1	13.2
Sand, soil & Cement	0.2	1.5	0.0	1.4	1.4	0.8	0.4	2.1
Manufactured Goods (Electronic items, Vehicles, Leather, Tobacco, Rubber/ Tyres, Plastics, etc.)	8.5	14.2	7.6	10.9	9.0	12.5	19.7	10.5
Minerals (chromium, Iron ore etc.)	0.2	0.0	0.0	0.9	0.5	0.8	0.0	0.0
Paper	0.2	1.0	0.0	0.5	0.0	0.8	0.0	0.0
Animal / Animal Fodder	9.7	7.6	13.0	6.7	10.8	7.0	8.1	6.8
Parcels / Containers	1.2	2.6	1.9	0.5	0.5	0.0	1.3	1.6
Textiles, fibre	1.7	2.5	5.6	3.0	0.0	2.1	3.4	0.5
Scrap	0.2	0.0	0.0	0.0	1.4	0.4	0.0	0.0
Total	100.0	100	100	100	100	100	100	100

Table 1-15: Commodity distribution (%)

Commodity Type		LCV	2A	<i>3A</i>	MAV	LCV	2A	<i>3A</i>	MAV LCV
ı	<i>V V</i> 1		Bikaner Bypass						
Ī	Empty	37.0	28.5	19.5	25.6	32.8	28.9	37.9	29.3
	Food Grains (Rice, Wheat, Gur, sugarcane etc.,)	11.8	4.3	12.4	6.2	7.0	12.6	9.6	9.9

Commodity Type	LCV	2A	<i>3A</i>	MAV	LCV	2A	<i>3A</i>	MAV LCV
2 21		Kn	n 507.000			Bika	ner Byp	ass
Vegetables / Fruits	7.9	2.6	5.8	4.2	13.3	8.2	9.6	6.7
Milk/ Milk products / Fish/Meat	4.7	3.8	4.8	2.0	0.8	0.0	2.1	1.5
Consumer Item	6.3	7.7	6.8	3.7	15.6	11.3	6.5	3.7
Iron / Steel	0.0	0.8	0.5	1.5	0.8	0.0	0.9	5.4
Petroleum / Oil / Gas/ Lubricants	3.9	13.0	5.8	11.3	0.8	7.5	4.9	3.8
Chemicals	0.0	1.9	1.0	2.5	0.0	0.0	1.0	3.2
Timber / Wood	3.1	0.9	0.0	0.5	0.0	0.6	0.0	0.5
Marble / Stone	1.6	0.0	2.0	3.7	0.0	0.6	1.0	2.7
Aggregate, boulders, Bricks	8.7	25.7	27.1	27.8	8.6	7.5	9.4	14.2
Sand, soil & Cement	0.0	0.9	0.0	0.0	0.8	0.6	2.1	0.5
Manufactured Goods (Electronic items, Vehicles, Leather, Tobacco, Rubber/ Tyres, Plastics, etc.)	4.7	6.2	4.3	4.7	7.0	6.3	5.4	7.2
Minerals (chromium, Iron ore etc.)	0.0	0.0	0.0	0.0	3.9	2.5	2.3	4.7
Paper	0.0	0.0	0.0	0.0	0.0	1.9	0.5	0.3
Animal / Animal Fodder	5.5	1.7	5.6	3.4	7.8	5.0	4.5	4.5
Parcels / Containers	4.7	0.0	0.0	0.2	0.0	0.0	0.2	0.0
Textiles, fibre	0.0	0.9	3.0	2.7	0.0	2.5	1.4	0.5
Scrap	0.0	0.9	1.3	0.0	0.8	3.8	0.7	1.5
Total	100.0	100	100	100	100	100	100	100

Table 1-16: Average Commodity distribution

Commodity group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Km 362.000	24.2	4.1	8.1	3.4	12.2	4.1	3.4	2.3	1.7	3.0	7.6	0.8	10.3	0.3	0.4	9.2	1.5	3.2	0.1
Km 420.000	24.9	8.9	8.1	1.9	4.5	3.5	7.0	0.0	2.2	2.1	11.3	1.2	12.9	0.3	0.2	8.2	0.8	1.5	0.5
Km 507.000	27.7	8.7	5.1	3.8	6.1	0.7	8.5	1.3	1.1	1.8	22.3	0.2	5.0	0.0	0.0	4.1	1.2	1.7	0.6
Bikaner Bypass	32.2	9.8	9.4	1.1	9.3	1.8	4.3	1.1	0.3	1.1	9.9	1.0	6.5	3.3	0.7	5.5	0.0	1.1	1.7

The distribution spectrum shows that commodity type food grains, vegetables, milk products, consumer items, construction materials and manufactured goods are being transported maximum along the corridor.

Occupancy of Passenger Vehicles

The average occupancy of the passenger vehicles are provided in **Table 1-17**.

Table 1-17: Average Occupancy at different locations

Wakiala	Average Occupancy							
Vehicle	km 362.000	km 420.000	km 507.000	Bypass				
Car / Jeep	4	4	3	3				
Mini Bus	18	18	4	16				
Bus	43	37	13	23				

Chapter 2

Traffic Growth Rates

2.1. INTRODUCTION

Traffic growth on a road facility is generally estimated on the basis of historical trends, in the present case traffic growth rates are estimated using econometric methods. Demand changes are usually because of shifts in the pattern of economic activities in the surrounding regions.

2.2. METHODOLOGY FOR TRAFFIC GROWTH RATE ESTIMATION

The exercise of traffic growth rate estimation has been carried out by us using the elasticity approach. The elasticity method relates traffic growth to changes in the related economic parameters. According to IRC: 108 - 2015, elasticity based econometric model for highway projects could be derived in the following form:

$$Log_e(P) = A_0 + A_1 Log_e(EI)$$

Where;

P = Traffic volume (of any vehicle type)

EI = Economic Indicator (GDP/ NSDP / Population / PCI)

 A_0 = Regression constant

A₁ = Regression co-efficient (Elasticity Index)

The main steps followed are:

- ➤ Defining the project influence area from OD analysis of travel pattern.
- Estimating the past elasticity of traffic growth from time series of registered vehicles of influencing state(s).
- Assessment of future elasticity values for major vehicle groups, namely, car, bus and truck.
- Study of past performance and assessment of perspective growth rates of state economies of influence area.

The elasticity values will be obtained by fitting log-log regression between the registered vehicle types (car, bus and commercial vehicles) and NSDP, Population and Per-capita income of influencing states and GDP of India. The influencing states obtained from the Origin-Destination survey include Rajasthan, Haryana, Punjab, Gujarat and Rest of India. The regression analysis will be carried out using various combinations of economic indicators and population of registered vehicles and the elasticity values resulted from the best fit equations will be used in estimating growth rates.

2.3. REGIONAL INFLUENCE

In order to analyse the vehicles growth the share of constituent regions/states are to be considered and are presented in **Table 2-1** below. The states of Rajasthan, Haryana, Punjab, and Gujarat are the major influencing states while the share of other states is marginal, and has hence not been considered separately.

Table 2-1: Regional Influence (%)

Mode	RJ	HR	PB	GJ	Rest of India	Total
Trucks	84.7	3.5	4.1	2.3	5.4	100

RJ: Rajasthan, HR-Haryana, PB-Punjab, GJ-Gujarat

2.4. PAST VEHICLE REGISTRATION DETAILS

In order to analyse the vehicle growth in the states, the vehicle registration data of Rajasthan, Haryana, Punjab and Gujarat been collected and presented in **Table 2-2** below.

Table 2-2: Past vehicle registration data of influencing states

Year	Car / Jeeps	Bus	Commercial vehicles								
	Rajas										
2004-05	409442	58092	208881								
2005-06	460380	60979	229347								
2006-07	515376	63320	269084								
2007-08	579044	65605	297423								
2008-09	646102	69298	318118								
2009-10	727158	73257	346981								
2010-11	824612	77980	385796								
2011-12	934962	83345	431537								
2012-13	1051288	88616	478379								
CAGR	12.51%	5.42%	10.91%								
	Hary										
2004-05	419879	11297	166437								
2005-06	485453	19986	176046								
2006-07	568758	22101	200977								
2007-08	664134	26906	220470								
2008-09	745335	29516	230858								
2009-10	851374	33520	249991								
2010-11	988958	35646	275162								
2011-12	1134514	39153	292735								
2012-13	1293065	43456	307509								
CAGR	15.10%	18.34%	7.98%								
	Commercial Vehicles										
Year	Punjab	Gu	ijarat (
2004-05	118766	19	1159								
2005-06	127720	20	4362								
2006-07	139816	22	3022								
2007-08	149983	23	9404								
2008-09	159251	24	7772								
2009-10	169553	25	9231								
2010-11	169553	27	6290								
2011-12	201758		1533								
2012-13		31	9207								
CAGR	7.86%		62%								
	Commercia	al Vehicles									
Year	All India										
2001-02	2948300										
2002-03	2973740										
2003-04	3491637										
2004-05	3748484	Sor	ırce:								
2005-06	3877622		oort Year Data Book by								
2006-07	4274984		ublication, New Delhi								
2007-08	5118880										
2008-09	5600938	Respective state govt. transport department publication									
2009-10	6040924	аерантен ривисанон									
2010-11	6431926										
2011-12	7064495										
2012-13	7658391										
CAGR	10.46%										

2.5. PAST GROWTH OF ECONOMY

Growth of traffic on the project road is influenced by existing development and future growth prospects of the connecting regions. The time series data of states income NSDP at constant (2004-05) prices, state population, per-capita Income of PIA states and GDP as published by Central Statistical Organisation have been collected and studied to assess the past performance of influencing state economies. **Table 2-3** depicts the growth of economic indicators (The datum for GDP and other income levels have been modified to 2004-05 prices).

The growth rate of population in Rajasthan for the period of 2001 to 2011 has been observed to be 1.95% per annum.

Table 2-3: Economic indices of states and India at constant prices (2004 - 05)

Year	NSDP (Rs.)	% growth	Per capita NSDP (Rs)	% growth
Rajasthan		-		
2004-05	11263572		18565	
2005-06	12020228	7%	19445	5%
2006-07	13434991	12%	21342	10%
2007-08	14047148	5%	21922	3%
2008-09	15228354	8%	23356	7%
2009-10	16115948	6%	24304	4%
2010-11	18536565	15%	27502	13%
2011-12	20274905	9%	29612	8%
2012-13	21439120	6%	30839	4%
2013-14	22463210	5%	31836	3%
2014-15	23752978	6%	33186	4%
CAGR	7.75%		5.98%	
Haryana		1	Gujarat	% growth
2004-05	8622228		17226500	
2005-06	9401146	9%	19727000	15%
2006-07	10470049	11%	21395400	8%
2007-08	11289592	8%	23925300	12%
2008-09	12158839	8%	24948000	4%
2009-10	13677999	12%	28473200	14%
2010-11	14605347	7%	31589195	11%
2011-12	15852299	9%	33688617	7%
2012-13	16716882	5%	35647679	6%
2013-14	17830719	7%	38547194	8%
2014-15	19243700	8%		
CAGR	8.36%		8.39%	
		NSDP ((Rs.)	
Year	Punjab	% growth	All India	% growth
2004-05	8610813		2971464	
2005-06	9032981	5%	3253073	9%
2006-07	10007179	11%	3564364	10%
2007-08	10873818	9%	3896636	9%
2008-09	11476627	6%	4158676	7%
2009-10	12209725	6%	4516071	9%
2010-11	12998333	6%	4918533	9%
2011-12	13698738	5%	5247530	7%
2012-13	14258538	4%	5482111	4%
2013-14	15030456	5%	5741791	5%
2014-15	15887725	6%	7.59%	
CAGR	6.32%			

Source: Central Statistical Organization (CSO), Govt. of India

2.6. TRANSPORT DEMAND ELASTICITY

The elasticity approach was used for determining growth rates of future traffic. Since time series traffic data on project road is not available, traffic growth rates and elasticity values are established by using registered vehicles as dependent variable.

Regression analysis was carried out on the database to arrive at the transport demand elasticity and growth rates using each category of vehicle with various combinations of economic parameter and population. The resultant elasticity values, growth rates, R² values and t-statistic are presented in Table 2-4 based on best fit.

Vehicle Type (a)	Indicator (b)	Indica		Growth Rate (%) (e)= (c)*(d)	R-square (f)	t-stat (g)				
Rajasthan										
Car	Population	5.14	1.67	11.51	1.00	2.57				
Bus	PCI	0.80	6.32	5.07	0.99	24.50				
Trucks	NSDP	1.22	8.10	9.93	0.98	24.33				
Trucks										
Punjab	NSDP	1.00	6.33	6.33	0.99	12.27				
Haryana	NSDP	0.93	8.37	7.81	0.99	33.86				
Gujarat	NSDP	0.68	9.27	6.26	0.99	20.56				
All India	NSDP	1.22	7.74	9.44	0.99	23.86				

Table 2-4: Observed transport demand elasticity values and traffic growth

2.7. PROJECTED TRANSPORT DEMAND ELASTICITY

In order to arrive at realistic future elasticity values for the project road, various factors relating to vehicle technology changes besides character of traffic and travel pattern on the project road have been considered.

High elasticity of cars being witnessed now is because of large demand facilitated by financing schemes and loans. Factors like growth of household incomes (particularly in urban areas), reduction in the prices of entry-level cars, growth of the used car market, changes in life style, growing personal incomes, desire to own a vehicle facilitated by availability of loans/financing schemes on easy terms, etc. have all contributed to the rapid growth in ownership of cars. However, such trend would slow down and elasticity can be expected to decline.

Over the years there is a change in passenger movement with more and more people shifting towards personalised modes. Moreover, the buses are usually plying on fixed pre-decided routes and thus elasticity values for buses have been considered accordingly.

With the changing freight vehicle mix in favour of LCV for short distance traffic and 3-axle/MAV for long-distance traffic, higher elasticity values for these have been considered as compared to 2-axle trucks.

Presently, the trend of gradual replacement of three axle trucks by MAVs also observed in many areas, leading to reduction in numbers of 3 axle trucks. This shift has already been observed in various areas of the country.

The transport demand elasticity by vehicle type, over a period of time, tends to decline and approach unity or even less. As the economy and its various sectors grow, every region tends to become self-sufficient. Moreover, much of the past growth has been associated with the country's transition from a largely rural subsistence economy to cash-based urban economy, dominated by regional and national linkages. As the transition proceeds, its impact on transport pattern can be expected to become less dominant. Therefore, the demand for different type of vehicles falls, over time, despite

greater economic development. In other words the values of elasticity tend to decrease with economic development in future years due to changes in the structure of economy, with higher contribution from service sector and higher value of industrial outputs. The same is also clear from the relationships of the economy and transport demand elasticity over time nationally and internationally. The elasticity values have therefore been moderated for the future years as given in **Table 2-5**.

Table 2-5: Projected transport demand elasticity values

Vehicle Type	Indicator	2017-2021	2022-2026	2027-2031	Beyond 2031
Rajasthan	-	-	-		-
2w	Population	5.23	4.70	4.23	3.81
Cars	Population	5.52	4.69	3.99	3.39
Buses	PCI	0.64	0.58	0.52	0.47
Trucks(PIA)	NSDP	0.82	0.78	0.74	0.70

2.8. PERSPECTIVE GROWTH: STATES' AND NATIONAL ECONOMIES

Against this background, any agenda for future growth of the state economies has to take into account past trends, future prospects, and the emerging challenges. The growth prospects for the subject states have been developed taking into consideration the past performance of the state economies and the economic growth envisaged for the future. The pace with which the regional economies grow with the envisaged growth of the state is a major contributing factor in growth of traffic.

Therefore, considering the present economic scenarios, a realistic growth slopping down from 7.0 to 5.0 % is assumed for the four period blocks for Rajasthan state. For Haryana, the NSDP growth for the six period blocks is considered varying from 7.5% to 5.0%, for Punjab it has been considered from 6.5% to 5.0% and for Gujarat it is 9.0% to 6.0%.

Similarly population growth rates also have been considered and therefore growth of PCI levels. The population projection is adopted from "The population Projections for India and States, Report of the Technical Group on Population Projections Constituted by the National Commission on Population, May 2006, published by Office of the Registrar General & Census Commissioner, India.

Considering the present GDP growth and its future targets, a realistic growth rate of 7.8 % to 6.0 % has been assumed. The perspective economy growth rates considered are presented in **Table 2-6**.

Table 2-6: Projected growth rates of indicators

Indicator	2017-2021	2022-2026	2027-2031	Beyond 2031
Rajasthan	-	-	-	
PCI	6.20	6.07	5.95	5.83
NSDP	7.00	6.50	6.00	5.00
Population	1.45	1.38	1.31	1.24
NSDP`				
Haryana	7.50	7.00	6.00	5.00
Punjab	6.50	6.00	5.50	5.00
Gujarat	9.00	8.00	7.00	6.00
GDP (India)	7.80	7.50	7.00	6.00

2.9. PROJECTED TRAFFIC GROWTH RATES

Based on the present composition of goods vehicles, overall growth of goods vehicles and average load carried by each vehicle type, tonnage has been calculated for 5 year blocks for the present and future composition of traffic. The tonnage has been adjusted for future years for each mode of vehicle in such a way that the load share of 2A and 3A slashes and that of LCV and MAV increases. The difference in the present and future tonnage gives the additional traffic due to change in modal share which has been converted into vehicles. On this basis the growth rates of the commercial vehicles have been moderated keeping the overall growth of trucks constant.

Normally, the growth potential of passenger traffic depends on the population, per capita income and economic growth rates. As discussed above, the population is used to project these modes due to its good correlation with their respective growth.

Considering all the above discussed points, the growth rates were conceived using method discussed earlier and are modified accordingly.

Year	Car	Bus	LCV	2-Axle	3-Axle	MAVs
2017-2021	8.0	4.0	11.5	-4.1	-4.7	12.3
2022-2026	6.5	3.5	8.3	-3.4	-3.6	8.7
2027-2031	5.2	3.1	6.9	-2.7	-4.4	7.1
Beyond 2031	4.2	2.7	5.4	-1.5	-0.8	4.4

Table 2-7a: Estimated Traffic growth rates (%)

In absence of segregated Toll data of Two Axle and Bus, it has been assumed that the ratio of 2 axle truck and bus is 50:50. Average growth rates of Bus & 2 axle truck has been adopted for Bus / 2 Axle Trucks. The final adopted growth rates are given in **Table 2-7b**.

Year	Car	LCV	Bus / 2- Axle	3-Axle	MAVs
2017-2021	8.0	11.5	-0.1	-4.7	12.3
2022-2026	6.5	8.3	0.1	-3.6	8.7
2027-2031	5.2	6.9	0.2	-4.4	7.1
Beyond 2031	4.2	5.4	0.6	-0.8	4.4

Table 2-7b: Adopted Traffic growth rates (%)

2.10. COMPETING / ALTERNATE ROUTES

Any competing /alternate route or mode will have considerable impacts on the traffic and in turn on the toll expectancy.

A detailed reconnaissance study of the project road and the surrounding areas revealed that there exist alternate route through which the traffic may divert to the project road.

The Central and South India bound traffic (Indore and below) moving towards Hanumangarh and beyond are at present using the route from Indore – Chittorgarh-Bhilwara -Kishangarh via NH-79/79A and from Hanumangarh to Kishangarh via Mega Highway (State Highway). The project road also forms an alternate road for this traffic using Indore –Ujjain-Jhalawar (State Highway -27) from Jhalawar to Jaipur via NH-12 from Jaipur to Ratangarh via NH-11 and from Ratangarh to Hanumangarh via Mega Highway.

The alternate route and its details are as discussed below:

Diverted	Project Road		Alternative Road	
Traffic	Route	NH/SH	Route	NH/SH
Alternative-1	Indore - Ujjain - Jhalawar - Kota - Jaipur - Sikar - Ratangarh - Hanumangarh	SH-27, NH-12, NH-11, Mega Highway (SH)	Indore-Ratlam- Neemuch- Chittorgarh - Bhilwara- Kishangarh - Kishangarh- Hanumanagrh	NH-59, SH-31, NH-79, NH-79A, Mega Highway (SH)

Figure 2-1: Project Route Vs Alternative Routes

Project Road Vs Alternative Route

The details of the project road and alternative road is presented in the **Table 2-8** below and pictorially shown in the **Figure 2-1**

Table 2-8: Details of Project Route and Alternative Route

Alternative Route					
Link	Length(km)	Lane Configuration	Condition	NH/SH/MDR	
	To	otal Length = 966 kms			
Indore-Ratlam-Neemuch- Chittorgarh	339	4-Lane	Good	NH-59 / SH-31 / NH- 79	
Chittorgarh-Bhilwara- Kishangarh	218	4/6 Lane	Good	NH-79/NH-79A	
Kishangarh-Ratangarh- Hanumanagrh	409	2L+ PS	Good	Mega Highway (State Highway)	
	Proje	ct Road +Connecting Road			
	T	otal Length = 976 kms			
Indore-Ujjain	63	4L	Good	SH-27	
Ujjain-Jhalawar	175	2L	Poor	SH-27	
Jhalwar - Kota	84	2L/4L	Poor	NH-12	
Kota - Jaipur	248	4L	Good	NH-12	
Jaipur - Sikar	111	4L	Good	NH-11	
Sikar - Ratangarh	94	2L/4 L	Good	NH-11	
Ratangarh-Hanumanagrh	201	2L+PS	Good	Mega Highway (State Highway)	

The detailed analysis is discussed below:

Procedure for Diversion Analysis Calculation

- ➤ VOC is calculated based on the observed speed, traffic, road characteristics, vehicle characteristics etc on the project road and alternative roads using HDM-4 models.
- Travel time is calculated for project and alternate roads.

Travel time = [Length of road/observed speed of vehicle]

Speed is based on vehicle type with present condition of road.

- \triangleright VOT is calculated for vehicle category wise for project road and alternate route. VOT is product of speed and value of time in Rs/hr. (IRC: SP: 30 2009)
- Project road toll cost and the same on alternate route, if any.
- ➤ The generalised cost is calculated for project road and alternate route. Generalised cost consists of three components: vehicle operation cost (VOC), value of time (VOT) and toll cost.

> Cost ratio:

Cost ratio = [Generalised cost of project road/ Generalised cost of alternate route]

The rate of diversion is calculated using the diversion curve/equations, which is similar to Logit curve. These equations are presented in **Table 2-9** using which the percentage of diversion traffic to project road is calculated.

2.11. DIVERTED TRAFFIC

Cost ratio diversion curves have been used for estimating the diverted traffic from/to the project road. In this approach, traffic likely to be diverted from alternate route to project road is estimated using diversion curves, which computes the ratio of perceived costs on the competitive/alternative facilities.

The rate of diversion is calculated using the diversion curve/equations, which is similar to Logit curve.

Table 2-9: Diversion Curve Equations

Vehicle	Cost Ratio Interval	Relationship	
---------	---------------------	--------------	--

Vehicle	Cost Ratio Interval	Relationship
Car	<0.634 0.64 = CR <1.465 1.465 <= CR <= 2.00	% Div = 98.75 - ((CR/0.634)* 8.125) % Div = 90.625-((CR-0.634)/0.831)*84.375 %Div = 6.25-((CR-1.465)/0.535))*5.25
Truck & Buses	<= 0.75 0.75 <= CR <=1.25 1.25<=CR <=2.00	% Div=100-(CR/0.75)*5 % Div= 95-((CR-0.75)/.5)*90 % Div= ((2-CR)/0.75)*5

The generalised cost is calculated for project road and alternate route. Generalised cost consists of three components: vehicle operation cost (VOC), value of time (VOT) and toll cost. VOC is calculated based on the observed speed, traffic, road characteristics, vehicle characteristics etc. on the project road and alternative roads using HDM-4 models. Toll cost is calculated using prevailing toll policies. The generalised costs arrived at are presented in **Table 2-10**.

Alternate route

The various components of the project road and the *Alternate Route* are as given below:

Vehicle Operating Cost

Vehicle Costs include direct user expenses to own and use private vehicles. These indicate the savings that result from reduced vehicle ownership and use. VOC is calculated based on the observed speed, traffic, road characteristics, vehicle characteristics etc. on the project road and alternative road as described in IRC SP-30:2009.

Table 2-10a: Vehicle Operating Cost (Rs.)

Vehicle Type	Alternate Route	Project Route
Car	7100	7175
Pvt Bus	17523	17814
LCV	18612	18837
2Axle	20943	21339
3Axle	25131	25607
MAV	36419	37021

Value of Time

VOT is calculated for vehicle category wise for project road and alternate route. VOT is product of speed and value of time in Rs/hr and is calculated based on IRC: SP: 30 – 2009. Travel time savings is often the principal benefit of a transportation project. Travel time savings can also lead to reductions in vehicle operating costs.

Table 2-10b: Value of Time (Rs.)

Vehicle Type	Alternate Route	Project Route
Car	2456	2552
Pvt Bus	21107	22020
LCV	441	455
2Axle	1001	1024
3Axle	1669	1707
MAV	2598	2695

Toll Rates

The details of toll rates for the project road and the alternate route are as given below:

Table 2-10c: Toll Rates (Rs.)

Vehicle Type	Alternative Road	Project Road
Car	753	670
Pvt Bus	2578	2350
LCV	1749	1395
2Axle	3318	2785
3Axle	5129	4395
MAV	5668	4740

The total generalized cost for the project road has been worked out by adding tables 2.10 (a) to (c) and is as presented below:

Table 2-10d: Generalized cost on Alternate route and project road (in Rs.)

Mode	Alternate Route	Project Route
Car	10310	10397
Bus	41208	42183
LCV	20802	20687
2 axle	25262	25148
3 axle	31929	31709
4-6 axle	44685	44456

From the OD data at NH-79 near Kishangarh provided by client, the traffic moving from Hanumangarh and north of Hanumangarh towards Indore & Central / South India has been worked out as potentially divertible traffic.

Based on cost ratio, the numbers of traffic getting diverted out of the potential divertible traffic in percentage of each mode is estimated and presented in **Table 2-10e** below.

Table 2-10e: Potential and Actual traffic diversion to Project Road

Mode	Potential Divertible Traffic	% of diversion	Actual Diverted Traffic (2016-17)
LCV	147	50.99	75
2 axle	94	50.81	48
3 axle	243	51.24	124
4-6 axle	296	50.92	151

It has been assumed that four laning of NH-12 shall be completed in year 2020-21. It is expected that 50% traffic will be diverted from alternate route to project road in year 2021-22 and remaining 50% in year 2026-27. This traffic has been included in the total traffic while doing the projections and revenue estimation.

Apart from the route discussed above, there are no other probable alternate routes to the project road.

Chapter 3

Tolling Strategy and Traffic Projections

3.1 TOLL PLAZAS

There are four toll plaza locations existing along project corridor including the one on the Bikaner bypass. Details of the toll plazas are given in **Table 3-1** below.

Table 3-1: Toll plaza details as per existing chainage

Sl. No.	Design Chainage	Existing Chainage	Length for which Fee is payable
TP1	Km 362.475	Km 362.500	54.537 (4-Lane section 17.780 and 2-lane paved shoulders section 36.757kms)
TP-2	km 419.702	Km 420.220	69.500
<i>TP-3</i>	Km 506.878	Km 507.000	73.338

In addition to the above, the fee levied and collected hereunder for structures or forming part of the Project Highway, as the case may be, costing more than 10 crores at the following toll plaza at one and a half times of the base rate as specified below shall be due and payable for following Plaza(s) are listed in the **Table 3-2**:

Table 3-2: Structures / Bypass details

S. No. (A)	Location of Toll Plaza (chainage) (B)	Nature of Structure (C)	Length of bypass for which additional fee is applicable (D)	Cost (in Crore)
1	Km 362.475	Sikar Bypass	19.463	25.34
2	km 419.702	Realignment	3.500	20.07
3	Km 1.148 of Bikaner Bypass	Bikaner Bypass	17.240	50.12

Schedule of User Fee

As per Rule 3 of National Highways Fee (Determination of Rates and Collection) Rules, 2008, read with National Highways Fee (Determination of Rates and Collection) Amendment Rules, 2010 issue vides notification no. G.S.R. 950(E) dated 03.12.2010, National Highways Fee (Determination of Rates and Collection) Amendment Rules, 2011 issue vide notification No. G.S.R. 15(E) dated 12.01.2011, National Highways Fee (Determination of Rates and Collection) Second Amendment Rules, 2011 issue vide notification No. G.S.R. 756(E) dated 12.10.2011, the Central Government, hereby notified that there shall be collected fees on mechanical vehicles at per km base fee/toll rates as applicable from 2007-08 are given in **Table 3-3.**The escalated for 2016-17 rates are also given in **Table 3-3**.

Table 3-3a: Toll Rates Adopted (in Rs) for four lane

S. No.	Category of Vehicle	Capping Rate of base fee per vehicle per one way trip For 2007-08 (in rupees per km)	Capping Rate of base fee per vehicle per one way trip For FY-17 (in rupees per km)*
1	Car, Jeep, Van	0.65	1.02
2	Light Commercial Vehicle or Mini Bus	1.05	1.64
3	Bus or Truck (2 Axle)	2.20	3.44
4	3 Axle Truck	2.40	3.75
5	HCM, EME, MAV (4-6 Axle)	3.45	5.39
6	Oversized Vehicle (>7 Axle)	4.20	6.56

Table 3-3b: Toll Rates Adopted (in Rs) for two lane

S. No.	Category of Vehicle	Capping Rate of base fee per vehicle per one way trip For 2007-08 (in rupees per km)	Capping Rate of base fee per vehicle per one way trip For FY-17 (in rupees per km)*
1	Car, Jeep, Van	0.39	0.61
2	Light Commercial Vehicle or Mini Bus	0.63	0.99
3	Bus or Truck (2 Axle)	1.32	2.07
4	3 Axle Truck	1.44	2.26
5	HCM, EME, MAV (4-6 Axle)	2.07	3.25
6	Oversized Vehicle (>7 Axle)	2.52	3.95

Table 3-4a: Toll Rates in Year 2016-17 (in Rs) _Before COD

S. No.	Category of Vehicle	Km 362.500	Km 420.220	Km 507.000	Bikaner Bypass
1	Car, Jeep, Van	40	40	45	15
	Light Commercial				
2	Vehicle or Mini	65	70	70	25
	Bus				
3	Bus or Truck (2	135	140	150	45
	Axle)				10
4	3 Axle Truck	145	155	165	50
5	HCM, EME,	210	225	240	75
3	MAV (4-6 Axle)	210	223	240	15
6	Oversized Vehicle	255	270	290	90
0	(>7 Axle)	233	270	270	70

Table 3-4a: Toll Rates in Year 2016-17 (in Rs) _After COD

S. No.	Category of Vehicle	Km 362.500	Km 420.220	Km 507.000	Bikaner Bypass
1	Car, Jeep, Van	50	45	45	15
	Light Commercial				
2	Vehicle or Mini	80	75	70	25
	Bus				
3	Bus or Truck (2	170	155	150	55
	Axle)	170	133	130	33

S. No.	Category of Vehicle	Km 362.500	Km 420.220	Km 507.000	Bikaner Bypass
4	3 Axle Truck	180	170	165	60
5	HCM, EME, MAV (4-6 Axle)	265	245	240	85
6	Oversized Vehicle (>7 Axle)	320	295	290	100

Perception of the Inflation Rates

Inflation is generally defined as the increase of prices of goods and services over a certain period of time. Inflation is one of the macroeconomic parameter of the developing world which includes India as well. Since the last 2 years, with the newly formed government pursuing the monetary policy to contain inflation with strong macroeconomic fundamentals of our country, the inflation has come down. The WPI index and the inflation rate as per the calendar year and the financial year are as given below:

	Calendar Year A									Average			
		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
WPI		103.37	109.59	114.94	124.92	127.86	140.08	153.35	164.92	175.35	182.01	177.03	
Inflation Rate			6.02%	4.88%	8.68%	2.35%	9.56%	9.47%	7.54%	6.32%	3.80%	-2.74%	5.59%
						Financial	Year						
		2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15		
WPI		104.47	111.35	116.63	126.02	130.81	143.32	156.13	167.62	177.64	181.19		
Inflation Rate			6.59%	4.74%	8.05%	3.80%	9.56%	8.94%	7.36%	5.98%	2.00%		6.34%
					D	ecember of i	he year						
	Dec-05	Dec-06	Dec-07	Dec-08	Dec-09	Dec-10	Dec-11	Dec-12	Dec-13	Dec-14	Dec-15		
WPI	104.9	112.2	116.7	124.5	133.4	146	157.3	168.8	179.6	178.7	176.8		
Inflation Rate		6.96%	4.01%	6.68%	7.15%	9.45%	7.74%	7.31%	6.40%	-0.50%	-1.06%		5.24%

The average inflation rate based on the calendar year since 2005 indicates a growth of 5.59% while based on the financial year indicates a growth of 6.34%. India's inflation rate has been on the rise over the last decade. However, it has been decreasing slightly since 2010. Considering the upward and the down ward trend of inflation since last 10 years, the inflation factor adopted study for the entire concession period 5.0%, which is close to the average of the last 10 years.

3.2 TOTAL TRAFFIC PROJECTION

The summary of projected total traffic at four toll plaza locations is presented in **Table 3-5** below. This table gives the total traffic without considering diversions.

Table 3-5: Projected total traffic for Most Likely Scenario

				•						
•	Km 3	62.000	Km 4	20.200	Km 5	07.000	Bikane	r Bypass	Ave	rage
Year	Nos.	PCUs	Nos.	PCUs	Nos.	PCUs	Nos.	PCUs	Nos.	PCUs
2016-17	4912	9704	3343	5780	4114	7815	2024	6032	3598	7333
2017-18	5206	10185	3554	6072	4367	8230	2124	6364	3813	7713
2018-19	5531	10728	3785	6399	4646	8697	2239	6752	4050	8144
2019-20	5890	11338	4039	6764	4953	9223	2372	7199	4314	8631

X 7	Km 3	62.000	Km 42	20.200	Km 50	07.000	Bikane	r Bypass	Ave	rage
Year	Nos.	PCUs	Nos.	PCUs	Nos.	PCUs	Nos.	PCUs	Nos.	PCUs
2020-21	6286	12024	4317	7171	5292	9813	2525	7714	4605	9181
2021-22	6994	13715	4894	8545	5664	10474	2698	8303	5063	10259
2022-23	7383	14414	5173	8985	5984	11028	2841	8781	5345	10802
2023-24	7802	15173	5472	9461	6328	11629	2999	9306	5650	11392
2024-25	8253	15998	5793	9977	6698	12281	3171	9882	5979	12035
2025-26	8738	16892	6138	10536	7096	12988	3359	10512	6333	12732
2026-27	9626	19122	6875	12399	7523	13754	3564	11203	6897	14120
2027-28	10097	20036	7213	12993	7890	14416	3740	11801	7235	14812
2028-29	10599	21016	7572	13627	8279	15125	3930	12448	7595	15554
2029-30	11132	22065	7954	14306	8692	15882	4135	13145	7978	16350
2030-31	11699	23187	8359	15031	9130	16692	4355	13896	8386	17202
2031-32	12302	24389	8788	15806	9594	17556	4591	14705	8819	18114
2032-33	12798	25317	9144	16412	9977	18224	4772	15285	9173	18810
2033-34	13316	26287	9515	17045	10376	18922	4960	15890	9542	19536
2034-35	13857	27300	9903	17706	10792	19650	5158	16524	9928	20295
2035-36	14422	28359	10308	18396	11227	20410	5364	17185	10330	21088
2036-37	15013	29466	10732	19118	11681	21204	5580	17877	10752	21916
2037-38	15631	30623	11174	19871	12154	22032	5805	18599	11191	22781
2038-39	16277	31832	11635	20659	12648	22897	6041	19354	11650	23686
2039-40	16952	33096	12118	21481	13164	23800	6287	20143	12130	24630
2040-41	17657	34417	12621	22341	13702	24742	6545	20967	12631	25617
2041-42	18395	35797	13148	23239	14264	25726	6814	21829	13155	26648

With Reference to Article 29 Effect of variation of Traffic growth:

29.1.1 The Authority and the Concessionaire acknowledge that the traffic as on April 1, 2023 (the "Target Date") is estimated to be 12357 PCUs per day (the "Target Traffic"), and hereby agree that for determining the modifications to the Concession Period under this Article 29, the actual traffic on the Target Date shall be derived by computing the average of the traffic as determined by traffic sampling to be undertaken, in accordance with Clause 22.3, on the date that falls one year prior to the Target Date, on the Target Date and on the first anniversary of the Target Date (the "Actual Average Traffic"). For the avoidance of doubt, it is agreed that traffic sampling shall be undertaken for a continuous period of 7 (seven) days during anytime within 15 (fifteen) days prior to the date specified herein and the average thereof shall be deemed to be the actual traffic. It is further agreed that if the Project Highway shall have two or more Toll Plazas, the average traffic thereof shall be computed for determining the Actual Average Traffic hereunder.

As per the definition of PCU given in the concession agreement, "PCU" shall have the meaning ascribed to a passenger car unit in the IRC-64:1990 or any modification thereof, and when used in this Agreement, shall include only motorized vehicles liable to make payments of user charges at the Toll Plazas in accordance with the Fee rules and the exempted vehicles specified therein, but does not include tractors, motor cycles and non-motorized vehicles.

As per the Traffic Projection used for revenue estimation, an average Traffic of all four Toll Plazas on Target Date works out to be 11410 PCUs which is around 7.67% less than the Target Traffic (12357 PCU).

29.2.1 Subject to the provisions of Clause 29.1.2, in the event Actual Average Traffic shall have fallen short of the Target Traffic, then for every 1% (one per cent) shortfall as compared to the Target Traffic, the Concession Period shall, subject to payment of Concession Fee in accordance with this Agreement, be increased by 1.5% (one point five per cent) thereof; provided that such increase in Concession Period shall not in any case exceed 20% (twenty per cent) of the Concession Period. For the avoidance of doubt, and by way of illustration, it is agreed that in the event of a shortfall of 10.6% (ten point six per cent) in Target Traffic, the Concession Period shall be increased by 15% (fifteen per cent) thereof.

As the Target Traffic is short by 7.67% then the extension in concession period will be 1.5%*7.67=11.5% extension in concession period. With rounding off same works out to be 11% increase in the original concession period.

Original Concession period is 25 Years Addition concession period will be 11%*25=2.75 Years Revised Concession period will be =25+2.75=27.75 Years

3.3 DISCOUNTS

The discounts allowed for local traffic/frequent users as per Schedule R of the Concession Agreement are given below.

- (1) The executing authority or the concessionaire, as the case may be, shall upon request provide a pass for multiple journeys to cross a toll plaza within the specified period at the rates specified below
- (2) A driver, owner or person in charge of a mechanical vehicle who makes use of the section of national highway, permanent bridge, bypass or tunnel, may opt for such pass and he or she shall have to pay the fee in accordance with the following rates, namely:

Amount Payable	Maximum number of one way journeys allowed	Period of Validity
One and half times of the fee for one way journeys	Two	Twenty four hours from the time of payment
Two-third of amount of the fee payable for fifty single journeys	Fifty	One month from date of payment

(3) A person who owns a mechanical vehicle registered for non-commercial purposes and uses it as such for commuting on a section of national highway, permanent bridge, bypass or tunnel, may obtain a pass, on payment of fee at the base rate for the year 2007-2008 of rupees one hundred and fifty per calendar month and revised annually, authorizing it to cross the toll plaza specified in such pass:

Provided that such pass shall be issued only if such driver, owner or person in charge of such mechanical vehicle resides within a distance of twenty kilometers from the toll plaza specified by such person and the use of such section of national highway, permanent bridge, bypass or tunnel, as the case may be, does not extend beyond the toll plaza next to the specified toll plaza.

Provided further that no such pass shall be issued if a service road or alternative road is available for use by such driver, owner of person in charge of a mechanical vehicle.

(4) No pass shall be issued of fee collected from a driver, owner or person in charge of a mechanical vehicle that uses part of the section of a national highway and does not cross a toll plaza

Tollable traffic components

The numbers and frequency of trips of vehicles of various categories needed to be estimated near accurately to arrive at the toll revenue estimates. The O-D survey data are used to arrive at these figures.

The O-D survey provides us with valuable information in this regard. The percentages of each type are derived from the number of appearance of vehicles in the data. The frequency of each type is calculated by considering the multiple entries. Subsequent reductions have to be done to arrive at exact component of each type, so that they are not considered as tollable traffic repeatedly.

The frequency and share of each type as elucidated from O-D survey are provided in **Table 3-6.**

Table 3-6: Tollable Component

Mode of Vehicle	Categories	km 362.000 <i>TP-1</i>	km 420.000 <i>TP-2</i>	km 507.000 <i>TP-3</i>	Bikaner bypass TP-4	Frequency Factor
	Upto 20km Travel	8.9	3.8	4.3	11.6	2.00
Cor/Loon/Toyi	Monthly Pass	2.1	1.7	3.0	1.3	1.67
Car/Jeep/Taxi	Single Entry	62.1	51.9	41.5	71.8	1.00
	Return Pass	26.9	42.6	51.2	15.3	2.00
	Monthly Pass	12.0	7.5	11.4	10.2	1.67
Mini Bus /	Single Entry	63.4	66.2	55.2	62.4	1.00
LCV	Return Pass	21.6	19.1	28.7	20.5	2.00
	Local registered	3.0	7.2	4.7	6.9	1.00
Dug / 2 Avda	Monthly Pass	3.6	2.7	1.0	8.9	1.67
Bus / 2 Axle	Single Entry	62.2	66.6	71.4	60.3	1.00
Trucks	Return Pass	27.7	23.2	25.3	26.8	2.00

Mode of Vehicle	Categories	km 362.000 <i>TP-1</i>	km 420.000 <i>TP-2</i>	km 507.000 <i>TP-3</i>	Bikaner bypass TP-4	Frequency Factor
	Local registered	6.5	7.5	2.3	4.0	1.00
	Monthly Pass	0.3	0.4	0.2	1.9	1.67
3 Axle	Single Entry	87.3	75.0	72.1	72.8	1.00
Trucks	Return Pass	8.8	20.3	26.0	21.9	2.00
	Local registered	3.6	4.3	1.7	3.4	1.00
	Monthly Pass	0.3	0.2	0.1	1.0	1.67
4 to 6Axle	Single Entry	86.9	83.1	83.6	83.6	1.00
Trucks	Return Pass	9.9	15.5	15.0	13.5	2.00
	Local registered	2.9	1.2	1.3	1.9	1.00

The Projected tollable traffic under different toll paying categories from FY 2016-17 to FY 2041-42 has been given in **Table 3.7.**

Table 3-7a: Projected Tollable Traffic at 362.000

Financial	Car/			2 4 4 5	4- 6	To	tal
Year	Jeep/Van	LCV	2AT	3-Axle T	Axles	Nos	PCU
2016-17	2390	467	959	476	472	4764	9520
2017-18	2581	521	958	454	530	5044	9984
2018-19	2788	581	957	432	595	5353	10504
2019-20	3011	647	956	412	668	5694	11092
2020-21	3252	722	955	393	751	6073	11759
2021-22	3512	869	978	423	978	6760	13420
2022-23	3740	942	979	408	1063	7132	14098
2023-24	3983	1020	980	393	1155	7531	14830
2024-25	4242	1104	981	379	1256	7962	15630
2025-26	4518	1196	982	365	1365	8426	16496
2026-27	4811	1392	1007	393	1689	9292	18700
2027-28	5062	1488	1009	375	1809	9743	19587
2028-29	5325	1590	1011	359	1937	10222	20537
2029-30	5602	1700	1013	343	2074	10732	21553
2030-31	5893	1817	1015	328	2222	11275	22647
2031-32	6199	1943	1017	314	2379	11852	23812
2032-33	6460	2048	1023	311	2484	12326	24712
2033-34	6731	2158	1029	309	2593	12820	25651
2034-35	7014	2275	1036	306	2708	13339	26639
2035-36	7308	2398	1042	304	2827	13879	27665
2036-37	7615	2527	1048	301	2951	14442	28732
2037-38	7935	2663	1054	299	3081	15032	29853
2038-39	8268	2807	1061	296	3217	15649	31026
2039-40	8616	2959	1067	294	3358	16294	32249
2040-41	8977	3119	1073	292	3506	16967	33528
2041-42	9355	3287	1080	289	3660	17671	34863
2042-43	9747	3465	1086	287	3821	18406	36258
2043-44	10157	3652	1093	285	3989	19176	37720

Financial	Car/	LCV	2.47	2 4.J. T	4- 6	Total	
Year	Year Jeep/Van LCV 2AT 3-Axle T	Axles	Nos	PCU			
2044-45	10583	3849	1099	282	4165	19978	39242
2045-46	11028	4057	1106	280	4348	20819	40838
2046-47	11491	4276	1113	278	4539	21697	42504
2047-48	11974	4507	1119	276	4739	22615	44245
2048-49	12477	4750	1126	274	4948	23575	46068

Table 3-7b: Projected Tollable Traffic @ km 420.000

Financial	Car/	Car/			4- 6	Total	
Year	Jeep/Van	LCV	2AT	3-Axle T	Axles	Nos	PCU
2016-17	1967	234	521	257	212	3191	5606
2017-18	2124	261	520	245	238	3388	5882
2018-19	2294	291	520	233	267	3605	6191
2019-20	2478	324	519	222	300	3843	6537
2020-21	2676	362	519	212	337	4106	6929
2021-22	2890	468	542	251	513	4664	8280
2022-23	3078	507	543	242	558	4928	8705
2023-24	3278	549	543	233	607	5210	9161
2024-25	3491	594	544	225	660	5514	9659
2025-26	3718	644	544	217	717	5840	10194
2026-27	3960	793	569	249	984	6555	12032
2027-28	4166	848	570	238	1054	6876	12605
2028-29	4382	907	571	228	1129	7217	13220
2029-30	4610	969	572	218	1209	7578	13874
2030-31	4850	1036	574	208	1295	7963	14578
2031-32	5102	1108	575	199	1386	8370	15323
2032-33	5316	1167	578	198	1447	8706	15906
2033-34	5540	1230	582	196	1511	9059	16519
2034-35	5772	1297	585	194	1578	9426	17156
2035-36	6015	1367	589	193	1647	9811	17823
2036-37	6267	1441	592	191	1720	10211	18518
2037-38	6531	1518	596	190	1795	10630	19244
2038-39	6805	1600	599	188	1874	11066	19999
2039-40	7091	1687	603	187	1957	11525	20798
2040-41	7389	1778	606	185	2043	12001	21623
2041-42	7699	1874	610	184	2133	12500	22491
2042-43	8022	1975	614	182	2226	13019	23390
2043-44	8359	2082	617	181	2324	13563	24334
2044-45	8710	2194	621	179	2427	14131	25323
2045-46	9076	2313	625	178	2533	14725	26353
2046-47	9457	2438	629	176	2645	15345	27432
2047-48	9854	2569	632	175	2761	15991	28553
2048-49	10268	2708	636	174	2883	16669	29734
	10200					10007	27,04

Table 3-7c: Projected Tollable Traffic @ km 507.000

Financial	Car/		245		4- 6	To	tal
Year	Jeep/Van	LCV	2AT	3-Axle T	Axles	Nos	PCU
2016-17	2343	141	582	436	446	3948	7616
2017-18	2530	157	581	416	501	4185	8011
2018-19	2733	175	581	396	562	4447	8456
2019-20	2952	195	580	377	632	4736	8960
2020-21	3188	218	580	360	709	5055	9526
2021-22	3443	243	579	343	797	5405	10160
2022-23	3666	263	580	330	866	5705	10688
2023-24	3905	285	580	318	941	6029	11261
2024-25	4159	309	581	307	1023	6379	11890
2025-26	4429	334	581	296	1112	6752	12565
2026-27	4717	362	582	285	1209	7155	13302
2027-28	4962	387	583	273	1295	7500	13938
2028-29	5220	414	584	261	1387	7866	14618
2029-30	5491	442	585	249	1485	8252	15339
2030-31	5777	473	587	238	1591	8666	16121
2031-32	6077	505	588	228	1703	9101	16946
2032-33	6333	533	591	226	1778	9461	17585
2033-34	6599	561	595	224	1857	9836	18254
2034-35	6876	592	598	222	1938	10226	18945
2035-36	7165	624	602	221	2024	10636	19678
2036-37	7465	657	606	219	2113	11060	20434
2037-38	7779	693	609	217	2206	11504	21224
2038-39	8106	730	613	215	2303	11967	22049
2039-40	8446	770	617	214	2404	12451	22912
2040-41	8801	811	620	212	2510	12954	23809
2041-42	9171	855	624	210	2620	13480	24746
2042-43	9556	901	628	209	2735	14029	25726
2043-44	9957	950	632	207	2856	14602	26751
2044-45	10375	1001	635	205	2982	15198	27816
2045-46	10811	1055	639	204	3113	15822	28931
2046-47	11265	1112	643	202	3250	16472	30093
2047-48	11738	1172	647	200	3393	17150	31306
2048-49	12231	1236	651	199	3542	17859	32574

Table 3-7d: Projected Tollable Traffic @ Bikaner Bypass

Financial	Car/	LCV	2AT	2 A.J. T	4- 6	To	tal
Year	Jeep/Van			3-Axle T	Axles	Nos	PCU
2016-17	391	140	177	631	661	2000	6000
2017-18	422	156	177	601	742	2098	6329

Financial	Car/	LCV	2.475	2 4 1 7	4- 6	To	otal
Year	Jeep/Van	LCV	2AT	3-Axle T	Axles	Nos	PCU
2018-19	456	174	177	573	834	2214	6720
2019-20	493	194	176	546	936	2345	7162
2020-21	532	216	176	520	1051	2495	7674
2021-22	575	241	176	496	1181	2669	8267
2022-23	612	261	176	478	1283	2810	8739
2023-24	652	283	176	461	1395	2967	9265
2024-25	694	306	177	444	1516	3137	9838
2025-26	739	332	177	428	1648	3324	10468
2026-27	787	359	177	413	1792	3528	11160
2027-28	828	384	177	395	1919	3703	11756
2028-29	871	411	178	377	2055	3892	12400
2029-30	916	439	178	361	2201	4095	13096
2030-31	964	469	178	345	2357	4313	13843
2031-32	1014	502	179	330	2525	4550	14657
2032-33	1057	529	180	327	2636	4729	15234
2033-34	1101	557	181	324	2752	4915	15836
2034-35	1147	588	182	322	2873	5112	16470
2035-36	1196	619	183	319	2999	5316	17126
2036-37	1246	653	184	317	3131	5531	17818
2037-38	1298	688	185	314	3269	5754	18538
2038-39	1353	725	186	312	3413	5989	19293
2039-40	1409	764	188	309	3563	6233	20080
2040-41	1469	806	189	307	3720	6491	20906
2041-42	1530	849	190	304	3883	6756	21759
2042-43	1595	895	191	302	4054	7037	22660
2043-44	1662	943	192	299	4233	7329	23598
2044-45	1731	994	193	297	4419	7634	24578
2045-46	1804	1048	194	295	4613	7954	25602
2046-47	1880	1104	196	292	4816	8288	26672
2047-48	1959	1164	197	290	5028	8638	27792
2048-49	2041	1227	198	288	5249	9003	28960

3.4 TOLL REVENUE ESTIMATES

The summary of toll revenue estimate is presented in Table 3-8 below:

Table 3-8: Annual Toll Revenue Estimation (Rs. in Crores)

Pe	riod	km 362.000	km 420.000	km 507.000	Bikaner Bypass	Total
Apr-16	<i>Mar-17</i>	16.0	8.9	12.5	3.3	40.8
Apr-17	<i>Mar-18</i>	22.4	10.2	13.8	4.2	50.6
Apr-18	<i>Mar-19</i>	25.0	11.2	15.3	4.7	56.2

Pe	riod	km 362.000	km 420.000	km 507.000	Bikaner Bypass	Total
Apr-19	<i>Mar-20</i>	27.8	12.5	17.0	5.2	62.6
Apr-20	<i>Mar-21</i>	30.5	13.8	19.0	5.8	69.2
Apr-21	<i>Mar-22</i>	37.1	17.7	21.2	6.6	82.6
Apr-22	<i>Mar-23</i>	41.1	19.3	23.5	7.5	91.4
Apr-23	<i>Mar-24</i>	45.0	21.4	26.1	8.2	100.8
Apr-24	<i>Mar-25</i>	50.0	23.9	28.7	9.2	111.8
Apr-25	<i>Mar-26</i>	55.5	26.2	32.0	10.2	123.9
Apr-26	<i>Mar-27</i>	66.7	32.9	35.8	11.4	146.8
Apr-27	<i>Mar-28</i>	73.2	36.4	39.1	12.7	161.4
Apr-28	<i>Mar-29</i>	80.7	40.3	43.1	14.1	178.2
Apr-29	<i>Mar-30</i>	89.0	44.0	48.0	15.8	196.7
Apr-30	<i>Mar-31</i>	98.3	48.7	52.8	17.5	217.4
Apr-31	<i>Mar-32</i>	109.6	53.9	58.4	19.4	241.4
Apr-32	<i>Mar-33</i>	119.2	59.0	63.7	21.2	263.1
Apr-33	<i>Mar-34</i>	130.1	64.3	69.6	23.2	287.2
Apr-34	<i>Mar-35</i>	142.3	70.3	76.2	25.5	314.2
Apr-35	<i>Mar-36</i>	155.2	77.1	83.2	27.7	343.2
Apr-36	<i>Mar-37</i>	170.3	84.3	91.0	30.9	376.4
Apr-37	<i>Mar-38</i>	186.6	92.1	100.0	33.5	412.2
Apr-38	<i>Mar-39</i>	203.9	101.4	109.1	36.9	451.3
Apr-39	<i>Mar-40</i>	223.3	111.0	119.7	40.1	494.1
Apr-40	<i>Mar-41</i>	244.2	121.8	130.6	44.2	540.7
Apr-41	<i>Mar-42</i>	268.1	133.1	143.7	48.3	593.1
Apr-42	<i>Mar-43</i>	294.9	145.9	157.2	53.6	651.6
Apr-43	<i>Mar-44</i>	322.3	160.2	172.0	58.4	713.0
Apr-44	<i>Mar-</i> 45	354.6	176.0	188.6	64.6	783.8

