CLASSIFYING NFL DEFENSIVE COVERAGES WITH GRAPH NEURAL NETWORKS

Matt Manner, Connor Nickol, Josh Gen

SCHOOL of DATA SCIENCE

BACKGROUND

- NFL's yearly Big Data Bowl analytics competition
 - NFL releases Amazon Web Services (AWS) Next Gen Stats player tracking data
 - Our data: first 8 weeks of 2021 season
- Included data sets:
 - Players: name, unique ID, position for 1679 players
 - Plays: unique play ID, offensive/defensive team, pass coverage for 8557 plays
 - PFF: player, play, position for 188254 player-plays
 - Games: 10x/sec player & football location tracking data for each play

- Motivation: thousands of man-hours spent analyzing film for multi-billion dollar industry
- Live classification of defensive coverages as they unfold; defensive matchup analytics

SCHOOL of DATA SCIENCE

7 COVERAGE OPTIONS

- 3 Man Coverages
- 4 Zone Coverages
- Cover 2 Man is also known as Cover 5

DATA PROCESSING

- Consider 22 players (11 offense, 11 defense) + 1 football as nodes in an undirected graph
 - Information encoded in nodes and edges
 - Look at each frame individually and then aggregate predictions for a play level prediction
- Input data: adjacency matrix, edge matrix, node-feature matrix
 - Adjacency matrix: 23 x 23 (number of nodes x number of nodes)
 - Values: Binary 1/0 whether 2 nodes are connected by an edge (<10 yds apart)
 - Edge Feature matrix: #Es x 1 (number of edges x number of edge features)
 - One edge feature: Distance between the connected nodes
 - Node Feature matrix: 23 x 4 (number of nodes x number of node features)
 - Values: X & Y coordinates, defense/offense, frame number, player orientation, score differential
 - Y matrix: 1 x 7 (one for each play x number of label options)
 - Edge and node feature matrices were normalized

NODE FEATURE MATRIX

]: node_feat								
1			new_x	new_y	Defense	0	score_d	frames_after_snap
uniqueplayId	frameld	nflld						
202109090097	6.0	25511.0	-0.980974	-0.008857	-0.957427	0.434343	-0.334252	-1.590890
	31.0	25511.0	-0.782499	0.114917	-0.957427	0.546177	-0.334252	-1.470628
	32.0	25511.0	-0.769268	0.138913	-0.957427	0.597867	-0.334252	-1.350365
	33.0	25511.0	-0.757690	0.169225	-0.957427	0.597867	-0.334252	-1.230103
	34.0	25511.0	-0.742804	0.203326	-0.957427	0.620312	-0.334252	-1.109841
20210919081081	25.0	football	-0.405397	0.056819	-0.957427	-1.660279	-0.628234	0.333308
	26.0	football	-0.403743	0.066923	-0.957427	-1.660279	-0.628234	0.453570
	24.0	football	-0.413667	0.049241	-0.957427	-1.660279	-0.628234	0.573833
	7.0	football	-1.012399	0.027770	-0.957427	-1.660279	-0.628234	0.694095
	6.0	football	-0.908200	0.027770	-0.957427	-1.660279	-0.628234	0.814358

4337018 rows x 6 columns

- Other potential features:
 - Down & Distance
 - Defensive Team (One hot encoded)
 - Quarter
 - Yardline

ADJACENCY MATRIX

k	<pre>pd.DataFrame(adj_mat[0])</pre>																				
		0	1	2	3	4	5	6	7	8	9	 13	14	15	16	17	18	19	20	21	22
	0	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	0	0	1
	1	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	0	0	1
	2	0	0	1	0	1	0	1	0	0	0	 0	0	1	0	0	1	1	0	0	0
	3	0	0	0	1	0	1	0	0	0	0	 0	0	0	1	1	0	0	0	0	0
	4	1	1	1	0	1	0	1	1	1	1	 1	1	1	0	0	1	1	1	0	1
	5	1	1	0	1	0	1	1	1	1	1	 1	1	0	1	1	0	0	0	1	1
	6	1	1	1	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	1	0	1
	7	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	1	0	1
	8	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	1	0	1
	9	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	0	0	1
•	10	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	0	0	1
	11	1	1	0	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	1	0	1
	12	1	1	1	0	1	1	1	1	1	1	 1	1	1	0	1	1	0	1	0	1

- 23 x 23
- Binary encoded
- 1 if players are less than10 yards apart
- Could be adjusted to 15 or 20 yards potentially
- Both offensive and defensive players are connected

EDGE FEATURE MATRIX

```
[18]: e_temp
[18]: array([[ 0.05186691],
              [ 0.03718468],
               0.00805848].
              [-0.01114553],
               0.0289336],
               0.0318355],
               0.03305182],
              [ 0.03303774],
              0.02983895],
              [ 0.02507425],
              [ 0.02405333],
              [ 0.01397416].
              [ 0.00791901],
               0.01448363],
              [-0.01168777],
              [-0.00257598],
              [ 0.03218069],
              [ 0.03718468],
              [ 0.05186691],
              [-0.00576094],
              [ 0.00272568].
              [ 0.01713086],
              [ 0.02279601],
               0.02914762],
              [ 0.03330279],
               0.03647011],
              [ 0.02288395],
```

- Number of edges x number of edges features
- 345 x 1 here for the example shown
- Our feature is normalized distance the 2 players making up the edge are from each other
- Consider adding other features such as angle or speed differential

Y LABEL MATRIX

- One hot encoded coverage (1 7)
- Same coverage label for each play, one for each frame of the play

GNN MODEL ARCHITECTURE

Figure 2: GNN model architecture

METHODOLOGY

- Inspiration from a soccer paper using GNN's attempting to classify successful counter attacks
- Used the Spektral Package for creating our graph data
 - Transforms the data into a suitable format for analysis in TensorFlow
- Model Information:
 - GNN with 3 hidden layers, 128 hidden nodes for each layer, 100 epochs
 - 0.01 learning rate, ADAM optimization, Categorical Cross Entropy loss function, Leaky ReLu &
 Softmax activation functions
 - Used an 80/20 train test split
 - About 188,000 frames making up 7,100 plays

RESULTS AND ANALYSIS

- Our GNN correctly classified 57% of the frames
 - With aggregation this resulted in 63% accuracy at the play level
 - Training issues and time limited our ability to further improve accuracy
- Amazon ML Solutions Lab CNN achieves 85% accuracy using 8x the data
- Our Bayesian Logistic Regression Model from last semester was 48% accurate
 - The increased accuracy is due to including post-snap frames and using deep learning methods over Bayesian methods

[47]:		uniqueplayId	coverage	predicted_coverage	count
	0	202110170483	3	5	27
	1	202110170673	3	5	13
	2	202110170762	1	1	20

SCHOOL of DATA SCIENCE

CONCLUSIONS

Takeaways:

- Graph neural networks can be more powerful than Bayesian methods
- GNN's are growing in popularity and usability (growth of Spektral)
- Model updates live, frame-by-frame predictions of defensive coverage

Limitations:

- Network depth and parameters (relatively shallow, small network due to available resources/time)
- Limited node features due to technical errors with Spektral
- Lack of documentation/example work regarding Spektral and GNN's in general

Future Work:

- Expanded node features and increased network size
- Longer training/more epochs with further GPU resources
- Add in features such as man coverage indicators to help the model with coverages commonly confused

REFERENCES

H. Song et al., "Explainable Defense Coverage Classification in NFL Games using Deep Neural Networks," 42 Analytics, Mar. 2022, Accessed: Winter 04, 2023. [Online].

A. Sahasrabudhe and J. Bekkers, "A Graph Neural Network deep-dive into successful counterattacks," 42 Analytics, Mar. 2023, Accessed: Apr. 24, 2023. [Online].