Convolutional Neural Network (CNN)

Network Architecture designed for Image

Image Classification

(All the images to be classified have the same size.)

Image Classification

value represents intensity

in image processing?

Observation 1

Identifying some critical patterns

Perhaps human also identify birds in a similar way ... ©

https://www.dcard.tw/f/funny/p/233833012

Observation 1 A neuron does not have to see the whole image. Need to see the Input Laye Layer 2 whole image? χ_1 bird χ_{N} basic advanced detector detector

Some patterns are much smaller than the whole image.

Simplification 1 架構的設計跟問題本身有關

有可能不一定要把rbg都計算

Can different neurons have different sizes of receptive field?

Cover only some channels?

Simplification 1 – Typical Setting

經典的CNN架構

Each receptive field has a set of neurons (e.g., 64 neurons).

Observation 2 每一個receptive field在做的事情都很相近

The same patterns appear in different regions.

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Each receptive field has the neurons with the same set of parameters.

Benefit of Convolutional Layer

三種function set是包含關係

- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.

Another story based on *filter* ©

Convolutional Layer

Consider channel = 1 (black and white image)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	
-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	
	:		•

(The values in the filters are unknown parameters.)

Filter 1

stride=1

偵測左上到右下的斜線

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2 偵測垂直線

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

所有filter偵測出來的值 就稱為feature map

而且圖片會變小,接著又可以繼續再做convolution

Multiple

若第二層filter僅有3x3 但是對應於原本的圖片 已經涵蓋5x5了

Convolutional Layers

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Comparison of Two Stories

The neurons with different receptive fields **share the parameters**.

Each filter convolves over the input image.

Neuron Version Story	Filter Version Story
Each neuron only considers a receptive field.	There are a set of filters detecting small patterns.
The neurons with different receptive fields share the parameters.	Each filter convolves over the input image.

They are the same story.

Observation 3

Subsampling the pixels will not change the object

例如將原先圖片的偶數列與偶數行拿掉 看起來還是會很像

bird

pooling有很多版本,這裡提的是max pooling

Pooling – Max Pooling

-3

-3

Filter 2

+ Pooling

通常架構就是convolution和pooling

在交替使用

Repeat

Convolution

Pooling

pooling存在的理由是為了降低運算 但可能對資料有所傷害 因次近年來,運算能力變強 越來越多人把pooling拿掉

The whole CNN

最後把圖片拉直再丟進去一個fully connected layers cat dog

Application: Playing Go

48 channels in Alpha Go

Black: 1

white: -1

none: 0

Fully-connected network can be used

But CNN performs much better.

Why CNN for Go playing?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

• The same patterns appear in different regions.

Why CNN for Go playing?

Subsampling the pixels will not change the object

Pooling

How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Tabl 256 and 384 filters

Alpha Go does not use Pooling

More Applications

每一種cnn的應用 都會針對問題去設計架構 並不是圖片的cnn就能套用在任意的情境上

Speech

https://dl.acm.org/doi/10.110 9/TASLP.2014.2339736

Natural Language Processing

https://www.aclweb.org/anthology/S15-2079/

cnn辨識不出來這兩張圖片

雖然data augmentation可以處理這種問題

To learn more ... 但是data augementation也不是所有放大或旋轉的角度都有包含 因此若能讓cnn自己學會scaling和rotation是最好的(就是spatial transformer layer)

 CNN is not invariant to scaling and rotation (we need data augmentation ©).

Spatial Transformer Layer

https://youtu.be/SoCywZ1hZak (in Mandarin)