#### **Technical Team**

Nature of Invention: Process Flow Diagram and Mass Balance.

**Applicant**: SynergyX

Inventors: Sanskaar Srivastava, Aditya Gupta, Priyanshu Kamde, Diya Saraf, Sakshi Dargu.

Chemical Formula: TiO<sub>2</sub>

Chemical Name: Titanium Dioxide

Process Title: Production of Titanium Dioxide from Titanium Isopropoxide

Raw materials and chemicals Required: Citric acid, Distilled water, TTiP, Ethylene Glycol

### Reason why Pechini method is used instead of Sol gel on industrial scale:

The Pechini method is preferred over the sol-gel method for industrial-scale TiO<sub>2</sub> nanoparticle production due to its scalability, cost-effectiveness, and precise control over processing parameters. Its straightforward mixing of precursor solutions allows for easy scale-up without altering processing conditions significantly, ensuring consistent product quality. Additionally, the method's reliance on citric acid as a chelating agent reduces costs compared to sol-gel processes. Moreover, the Pechini method offers better reproducibility and batch-to-batch consistency while providing versatility to tailor nanoparticle properties for various applications, making it a favorable choice for industrial TiO<sub>2</sub> production.

Ultimately pechini is just a modified sol gel process for industrial scale with better compatibility.

# **Process Description:**

## Block Diagram:



#### Material Balance:

Also Ti (OH)4+3EG - TI (EG)3 + 3420 :. EG needed - DE Knot hos The acaction for the formed M-L Complex to TiO, involves a stoichiometric coefficient of 1. :. To2 (Amarphous) formed -> x Kmol Ihr (3) Calcination Tioz (Amanphous) - Tioz (Conystalline) Tion (Constalline) formed - a Rmol hor. = 4 Distillation Column for necycle Assuming a 90% yield there may be an ample amount of citaic Acid: and EG Left which may be used to enhance paioductivity : Distilled EG !- 0.3 x kmol hor. Distilled Callyon :-Yotal EG feed !- 3.3x Kmol hor. Yotal Citric Acid feed - O. Bx Kmollhon L 3Kmollhon 3.3% Kmollan.

#### List the contributions of each author:

Process Flow Design:-Aditya Gupta, Sanskaar Srivastava, Priyanshu Kamde

Material Balance: Priyanshu Kamde, Sanskaar Srivastava, Aditya Gupta

Energy Balance: Sakshi Dargu, Diya Saraf

# Sign the pdf and upload.

| Name                   | Roll No | Signature |
|------------------------|---------|-----------|
| Aryan<br>Nigam         | 220227  | Deryara   |
| Sanskaar<br>Srivastava | 220967  | Zanekaar  |
| Aditya<br>Gupta        | 220066  | Adilys    |
| Priyanshu<br>Kamde     | 220494  | Go.       |
| Diya Saraf             | 220383  | Digo      |
| Sakshi<br>dargu        | 220323  | Sake      |