# CS 221: Section 2

Learning with Sequential Inputs/Outputs

Basics of Recurrent Neural Networks

Autumn 2017 Course Staff

# Outline

### Introduction

Real-World Examples Sequences of Data

# Motivating the RNN

Linear Models
Expanding the Model

### Recurrent Neural Networks

Example RNN Model Closing Thought

Additional resources

+ロト 4個ト 4 恵ト 4 恵ト - 恵 - かくの

## Outline

# Introduction

Real-World Examples Sequences of Data

#### Motivating the RNN

Linear Models
Expanding the Model

### Recurrent Neural Networks

Example RNN Mode Closing Thought

Additional resources



# Medical Diagnosis



Input  $(x_t)$ : medical history

Output  $(y_t)$ : next emergency department visit



# Text Translation



Input  $(x_t)$ : French words in sentence Output  $(y_t)$ : translated English words

# **Image Captioning**



Input: image

Output: sentence of words

## **Stock Prediction**



Input  $(x_t)$ : historical stock prices Output  $(y_t)$ : stock price today

### +□ > <</p> 4□ > <</p> 4□ > 4□ > 4□ > 5 6 6

# Sequences of Data



Adapted from Fei-Fei Li's CS 231N slides.



### Outline

#### Introduction

Real-World Examples Sequences of Data

## Motivating the RNN

Linear Models
Expanding the Model

### Recurrent Neural Networks

Example RNN Model Closing Thought

Additional resources



## ML Framework



- 1. Obtain data  $\mathcal{D}_{\text{train}}.$
- 2. Model: choose f to capture relationship between x and y.
- 3. Loss: specify a loss which tells how right or wrong your prediction is
- 4. Optimize: run gradient descent to find the best set of weights for your model



# Developing a Stock Price Model

Goal: predict what the stock price will be today.

Idea: stock price today depends on prices in the past.

**Data**: Let  $x_t$  be the price on day t. We collect  $x_t$  from August, 2016 to August, 2017. Let  $y_t$  be the predicted price for day t.

# Developing a Stock Price Model

 $\label{Model:model} \textbf{Model} \colon \mathsf{assume} \ \mathsf{a} \ \mathsf{linear} \ \mathsf{relationship}.$ 

$$y_t = w_0 + w_1 x_{t-1} + w_2 x_{t-2} + w_3 x_{t-3}$$

In terms of the notation from lecture, we have

$$y_t = w^{\mathsf{T}} \phi_t, \qquad \qquad \phi_t = \begin{bmatrix} 1, x_{t-1}, x_{t-2}, x_{t-3} \end{bmatrix}^{\mathsf{T}}$$

Loss: squared loss between predicted and actual stock price.

$$L(x_t, y_t) = (x_t - y_t)^2 = (x_t - w^{\top} \phi_t)^2$$

## Initial Stock Price Model

# Benefits

- ► Training: just ordinary least squares [linear regression].
- ▶ Interpretability: linear combination of features.

### Problems

- Scalability: We have to manually specify the number of days in the past to include as features.
- Features: hard to specify complex relation between past prices using linear model. For example, want to use 1{x<sub>t−4</sub> − x<sub>t−5</sub>}.

### 4 D F 4 D F 4 E F 4 E F 9 Q C

# Long Past

Can we repackage the model to keep track of the history more easily?

Let's track  $h_t$  as our knowledge to predict time t. Suppose we set

$$h_t = ah_{t-1} + bx_{t-1}$$
  
 $h_{t-1} = ah_{t-2} + bx_{t-2}$   
:

If we do this cleverly, we can have  $h_t$  account for all past information!

#### 10 + 10 + 15 + 15 + 5 + 900

# Adding Non-Linearity

Let's model a more complex relationship b/w the present and past.

Add some non-linear function; examples:

- ► sigmoid [logistic unit from lecture]
- ► relu [rectified linear unit]

We end up with:

$$h_t = f_{\text{nonlinear}}(ah_{t-1} + bx_{t-1})$$
  
 $y_t = g_{\text{nonlinear}}(ch_t)$ 

### 4 D > 4 D > 4 E > 4 E > E 9 Q @

### Outline

#### Introduction

Real-World Examples Sequences of Data

#### Motivating the RNN

Linear Models
Expanding the Model

### Recurrent Neural Networks

Example RNN Model Closing Thought

Additional resources



## Example RNN Model

Let's model stock price as a weighted moving average.

$$h_t = f(h_{t-1}, x_{t-1})$$
  $h_t = (1 - \alpha)h_{t-1} + \alpha x_{t-1}$   
 $y_t = g(h_t)$   $y_t = h_t$ 

Why is this a reasonable model? If we expand it out, we find

$$y_t = h_t = \alpha x_{t-1} + \alpha (1 - \alpha) x_{t-2} + \alpha (1 - \alpha)^2 x_{t-3} + \dots$$



# Running forward and backward

Let's model stock price as a weighted moving average.

$$h_t = f(h_{t-1}, x_{t-1})$$
  $h_t = (1 - \alpha)h_{t-1} + \alpha x_{t-1}$   
 $y_t = g(h_t)$   $y_t = h_t$ 

Suppose we're given  $\mathbf{x} = \begin{bmatrix} 10 & 12 & 8 & 12 \end{bmatrix}^{\mathsf{T}}$ , and  $\alpha = 0.2$ .



# Basics of RNNs

We've covered a specific case of the more general RNN:



Adapted from John Canny's CS 294-129 slides.

So: RNN is neural network with recurrent feature over time.

$$h_t = f(h_{t-1}, x_{t-1})$$
  
$$y_t = g(h_t)$$



# **Expanding RNNs**

It's common to stack layers to train higher-level features. You can also have an input RNN (encoder) and an output RNN (decoder).



Adapted from John Canny's CS 294-129 slides and Stanford's CS 224N slides.



### ML Framework

**Takeaway**. An RNN is just another choice of how we want to capture the relationship between X and Y! It can be combined with other RNN's or other models like a lego piece.



- 1. Obtain data  $\mathcal{D}_{\text{train}}$ .
- 2. Model: choose f to capture relationship between x and y.
- 3. Loss: specify a loss which tells how right or wrong your prediction is
- 4. Optimize: run gradient descent to find the best set of weights for your model



# Outline

#### Introduction

Real-World Examples Sequences of Data

#### Motivating the RNN

Linear Models
Expanding the Model

### Recurrent Neural Networks

Example RNN Mode Closing Thought

## Additional resources



## Additional resources

If you're interested in using RNNs for your project, we recommend the following resources:

- 1. The Unreasonable Effectiveness of RNNs (Karpathy 2015)
- 2. Deep Learning Textbook Chapter on RNNs (Goodfellow et al 2016)
- 3. WildML RNN Tutorial With Code (Britz 2015)
- 4. CS 224N Lecture Notes (Instructors Chris Manning and Richard Socher)
- 5. Ask Us!!