PATEL'T COOPERATION TREATY

	From the INTERNATIONAL BUREAU
PCT	То:
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 27 November 2001 (27.11.01)	HARRISON GODDARD FOOTE Belgrave Hall Belgrave Street Leeds LS2 8DD ROYAUME-UNI
	L
Applicant's or agent's file reference LPB/P32059WO	IMPORTANT NOTIFICATION
International application No. PCT/GB00/03568	International filing date (day/month/year) 18 September 2000 (18.09.00)
The following indications appeared on record concerning: the applicant the inventor	X the agent the common representative
Name and Address HARRISON GODDARD FOOTE Tower House	State of Nationality State of Residence
Merrion Way Leeds LS2 8PA United Kingdom	Telephone No. +44 113 290 1400
	Facsimile No. +44 113 244 2829
	Teleprinter No.
2. The International Bureau hereby notifies the applicant that the the person the name X the add	
Name and Address	State of Nationality State of Residence
HARRISON GODDARD FOOTE Belgrave Hall Belgrave Street Leeds LS2 8DD	Telephone No. +44 113 233 0100
United Kingdom	Facsimile No.
	+44 113 233 0101
	Teleprinter No.
3. Further observations, if necessary:	
4. A copy of this notification has been sent to:	
X the receiving Office	the designated Offices concerned
the International Searching Authority	X the elected Offices concerned
X the International Preliminary Examining Authority	other:
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer Maria Victoria CORTIELLO
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	FOR FURTHER see Notification of Transmittal of International Search Report			
LPB/P32059WO	ACTION (Form PC1/ISA/2	(20) as well as, where applicable, item 5 below.		
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)		
PCT/GB 00/03568	18/09/2000 17/09/1999			
Applicant				
THE UNIVERSITY OF YORK				
THE UNIVERSITY OF TORK				
This International Search Report has been according to Article 18. A copy is being tra	n prepared by this International Searching Autl ansmitted to the International Bureau.	nority and is transmitted to the applicant		
This International Search Report consists	of a total of 8 sheets.			
1 📆	a copy of each prior art document cited in this	report.		
Basis of the report a. With regard to the language, the	international search was carried out on the ba	sis of the international application in the		
	less otherwise indicated under this item.	.,,		
the international search w Authority (Rule 23.1(b)).	vas carried out on the basis of a translation of t	he international application furnished to this		
b. With regard to any nucleotide an		nternational application, the international search		
was carried out on the basis of th contained in the internation	e sequence listing : onal application in written form.			
filed together with the inte	ernational application in computer readable for	m.		
furnished subsequently to this Authority in written form.				
x furnished subsequently to this Authority in computer readble form.				
the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.				
the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished				
2. X Certain claims were fou	ind unsearchable (See Box I).			
3. Unity of invention is lacking (see Box II).				
4. With regard to the title ,				
1	ubmitted by the applicant.			
the text has been establis	shed by this Authority to read as follows:			
_				
5. With regard to the abstract,				
l. 170	ubmitted by the applicant.			
	shed, according to Rule 38.2(b), by this Author e date of mailing of this international search re			
6. The figure of the drawings to be pub	lished with the abstract is Figure No.			
as suggested by the appl	licant.	None of the figures.		
because the applicant fai	led to suggest a figure.			
because this figure better	r characterizes the invention.			

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 24-26, 30-32, 33

Present claim 33 relate to a compound defined by reference to a desirable characteristic or property, namely a drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or an E2NT crystal structure. The claim cover all compounds having this desirable characteristic or property, whereas the application does not provide support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible.

Although claims 24-26 could be, at least partially considered as mere presentation of information (Rule 39.1 (v) PCT / Art. 52(2d) EPC), and claims 30-32 at least partially as a computer program (Rule 39.1 (vi) PCT / Art. 52(2c) EPC), the search has been carried out as far as possible in our systematic documentation.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

al Application No PC1 00/03568

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07K14/025 C12N15/37 A61K39/12 A61K38/16 A61P31/20 A61P17/00 A61P35/00 G06F13/00 G06F9/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC 7 & C12N & A61K \end{array}$ Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1-33 Υ WO 97 06246 A (VERTEX PHARMA) 20 February 1997 (1997-02-20) page 4, line 3 -page 5, line 6 page 6, line 22 -page 7, line 7 page 14, line 7 -page 16, line 2 page 17, line 12 -page 18, line 6 page 20, line 3 -page 28, line 30 & US 5 978 740 A 2 November 1999 (1999-11-02)

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 9 March 2001	Date of mailing of the international search report 23/03/2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Mateo Rosell, A.M.

3

PC No. 00/03568

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Category	Citation of document, with indication, where appropriate, of the relevant passages	risiovan to cannito.	
Y	GAUTHIER J-M ET AL: "TWO DNA-BOUND E2 DIMERS ARE REQUIRED FOR STRONG TRANSCRIPTIONAL ACTIVATION AND FOR COOPERATION WITH CELLULAR FACTORS IN MOST CELLS" NEW BIOLOGIST, vol. 3, no. 5, 1991, pages 498-509, XP000989622 ISSN: 1043-4674 cited in the application abstract page 504, right-hand column, last line -page 506, right-hand column, last line	1-33	
Α	HARRIS SETH F ET AL: "Crystal structure of the human papillomavirus type 18 E2 activation domain." SCIENCE (WASHINGTON D C), vol. 284, no. 5420, 4 June 1999 (1999-06-04), pages 1673-1677, XP002162385 ISSN: 0036-8075 cited in the application the whole document	1,10,21, 22	
Α	HEGDE RASHMI S ET AL: "Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1479-1489, XP002162386 ISSN: 0022-2836 cited in the application the whole document	1,10,21,	
Α	HEGDE RASHMI S ET AL: "Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2 protein." JOURNAL OF MOLECULAR BIOLOGY, vol. 276, no. 4, 6 March 1998 (1998-03-06), pages 797-808, XP002162387 ISSN: 0022-2836 cited in the application the whole document	1,10,21,	
İ			

Internation No PCT 00/03568

		PCT 00	/03568
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	MCBRIDE A A ET AL: "E2 POLYPEPTIDES ENCODED BY BOVINE PAPILLOMAVIRUS TYPE 1 FORM DIMERS THROUGH THE COMMON CARBOXYL-TERMINAL DOMAIN TRANSACTIVATION IS MEDIATED BY THE CONSERVED AMINO-TERMINAL DOMAIN" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 86, no. 2, 1989, pages 510-514, XP000982632 1989 ISSN: 0027-8424 cited in the application the whole document		1-8
А	KNIGHT J D ET AL: "THE ACTIVATION DOMAIN OF THE BOVINE PAPILLOMAVIRUS E2 PROTEIN MEDIATES ASSOCIATION OF DNA-BOUND DIMERS TO FORM DNA LOOPS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 88, no. 8, 1991, pages 3204-3208, XP000982633 1991 ISSN: 0027-8424 cited in the application the whole document		1-8
Α	COOPER CHRISTOPHER S ET AL: "Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions." VIROLOGY, vol. 241, no. 2, 15 February 1998 (1998-02-15), pages 312-322, XP002162388 ISSN: 0042-6822 cited in the application abstract page 316, right-hand column, last line -page 319, left-hand column, line 1		1,10
A	SAKAI HIROYUKI ET AL: "Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions." JOURNAL OF VIROLOGY, vol. 70, no. 3, 1996, pages 1602-1611, XP002162389 ISSN: 0022-538X cited in the application the whole document		1,10

Internation No PC 00/03568

		PC N 00/03568
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	YANG FAN ET AL: "Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping." JOURNAL OF MOLECULAR BIOLOGY, vol. 288, no. 3, 7 May 1999 (1999-05-07), pages 403-412, XP002162390 ISSN: 0022-2836 cited in the application the whole document	1,11-15, 17,18, 24,33
Α	GHOSE A K ET AL: "DETERMINATION OF PHARMACOPHORIC GEOMETRY FOR COLLAGENASE INHIBITORS USING A NOVEL COMPUTATIONAL METHOD AND ITS VERIFICATION USING MOLECULAR DYNAMICS, NMR, AND X-RAY CRYSTAL" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 117, no. 16, 1995, pages 4671-4682, XP002051616 ISSN: 0002-7863 the whole document	1,11-20, 24-26,33
Α	WIBLEY J E A ET AL: "A homology model of the three-dimensional structure of human O-6-alkylguanine-DNA alkyltransferase based on the crystal structure of the C-terminal domain of the Ada protein from Escherichia coli." ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, pages 75-95, XP000989520 ISSN: 0266-9536 the whole document -& WIBLEY J E A ET AL.,: "erratum" ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, page 439 XP002162457	1-33
P,X	ANTSON ALFRED A ET AL: "Structure of the intact transactivation domain of the human papillomavirus E2 protein." NATURE (LONDON), vol. 403, no. 6771, 17 February 2000 (2000-02-17), pages 805-809, XP000926219 ISSN: 0028-0836 the whole document -/	1-33

		PC 00/03568			
C.(Continu	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
T	MEYERS THOMAS C ET AL: "Patent protection for protein structures and databases." NATURE STRUCTURAL BIOLOGY, vol. 7, no. Supplement, November 2000 (2000-11), pages 950-952, XP002162391 ISSN: 1072-8368 the whole document	1-33			

Information on patent family members

International Application No
PCT 00/03568

Patent document cited in search report	:	whication date		Patent family member(s)	Publication date
WO 9706246	Α	20-02-1997	US AU EP	5978740 A 6766896 A 0846163 A	02-11-1999 05-03-1997 10-06-1998
			JP	11511016 T	28-09-1999

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 March 2001 (29.03.2001)

PCT

(10) International Publication Number WO 01/21645 A3

- (51) International Patent Classification⁷: C07K 14/025, C12N 15/37, A61K 39/12, 38/16, A61P 31/20, 17/00, 35/00, G06F 13/00, 9/00
- (21) International Application Number: PCT/GB00/03568
- (22) International Filing Date:

18 September 2000 (18.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

GB9921938.8 17 September 1999 (17.09.1999) GB

- (71) Applicant (for all designated States except US): THE UNIVERSITY OF YORK [GB/GB]; Heslington Hall, York YO10 5DD (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ANTSON, Alfred [GB/GB]; Department of Chemistry, University of York, York YO10 5DD (GB). MAITLAND, Norman [GB/GB]; Department of Biology, University of York, York YO10 5DD (GB).

- (74) Agent: HARRISON GODDARD FOOTE; Tower House, Merrion Way, Leeds LS2 8PA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 16 August 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

/21645 A3

(54) Title: TARGET FOR ANTIVIRAL THERAPY

(57) Abstract: A crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, that comprises residues vital for viral transcription and/or replication. The invention also provides for the use of the dimer protein and interactions at its dimerisation surface in rationalised antiviral drug design.

INTERNATIONAL SECOND CH REPORT

tional Application No PCT/GB 00/03568

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 C07K14/025 C12N15/37

A61P17/00

A61P35/00

A61K39/12 G06F13/00 A61K38/16 G06F9/00

A61P31/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS

Category °	Citation of document, with indication. where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 97 06246 A (VERTEX PHARMA) 20 February 1997 (1997-02-20) page 4, line 3 -page 5, line 6 page 6, line 22 -page 7, line 7 page 14, line 7 -page 16, line 2 page 17, line 12 -page 18, line 6 page 20, line 3 -page 28, line 30 & US 5 978 740 A 2 November 1999 (1999-11-02)	1-33

Y Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
9 March 2001	23/03/2001
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Mateo Rosell, A.M.

Int: :ional Application No PCT/GB 00/03568

		PC1/GB 00/03568
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	and the second s	The value of all in the
Y	GAUTHIER J-M ET AL: "TWO DNA-BOUND E2 DIMERS ARE REQUIRED FOR STRONG TRANSCRIPTIONAL ACTIVATION AND FOR COOPERATION WITH CELLULAR FACTORS IN MOST CELLS" NEW BIOLOGIST, vol. 3, no. 5, 1991, pages 498-509, XP000989622 ISSN: 1043-4674 cited in the application abstract page 504, right-hand column, last line -page 506, right-hand column, last line	1-33
Α	HARRIS SETH F ET AL: "Crystal structure of the human papillomavirus type 18 E2 activation domain." SCIENCE (WASHINGTON D C), vol. 284, no. 5420, 4 June 1999 (1999-06-04), pages 1673-1677, XP002162385 ISSN: 0036-8075 cited in the application the whole document	1,10,21,
Α	HEGDE RASHMI S ET AL: "Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1479-1489, XP002162386 ISSN: 0022-2836 cited in the application the whole document	1,10,21, 22
A .	HEGDE RASHMI S ET AL: "Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2 protein." JOURNAL OF MOLECULAR BIOLOGY, vol. 276, no. 4, 6 March 1998 (1998-03-06), pages 797-808, XP002162387 ISSN: 0022-2836 cited in the application the whole document	1,10,21,

•

Inte ional Application No PCT/GB 00/03568

		PCT/GB 00/03568	
	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category C. Citation of document, with indication where appropriate of the relevant passages.		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	MCBRIDE A A ET AL: "E2 POLYPEPTIDES ENCODED BY BOVINE PAPILLOMAVIRUS TYPE 1 FORM DIMERS THROUGH THE COMMON CARBOXYL-TERMINAL DOMAIN TRANSACTIVATION IS MEDIATED BY THE CONSERVED AMINO-TERMINAL DOMAIN" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 86, no. 2, 1989, pages 510-514, XP000982632 1989 ISSN: 0027-8424 cited in the application the whole document	1-8	
A	KNIGHT J D ET AL: "THE ACTIVATION DOMAIN OF THE BOVINE PAPILLOMAVIRUS E2 PROTEIN MEDIATES ASSOCIATION OF DNA-BOUND DIMERS TO FORM DNA LOOPS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 88, no. 8, 1991, pages 3204-3208, XP000982633 1991 ISSN: 0027-8424 cited in the application the whole document	1-8	
A	COOPER CHRISTOPHER S ET AL: "Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions." VIROLOGY, vol. 241, no. 2, 15 February 1998 (1998-02-15), pages 312-322, XPO02162388 ISSN: 0042-6822 cited in the application abstract page 316, right-hand column, last line -page 319, left-hand column, line 1	1,10	
A	SAKAI HIROYUKI ET AL: "Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions." JOURNAL OF VIROLOGY, vol. 70, no. 3, 1996, pages 1602-1611, XP002162389 ISSN: 0022-538X cited in the application the whole document	1,10	

:lonal Application No

PCT/GB 00/03568 C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α YANG FAN ET AL: "Crystal structure of 1,11-15, cyanovirin-N, a potent HIV-inactivating 17,18, protein, shows unexpected domain 24,33 swapping." JOURNAL OF MOLECULAR BIOLOGY. vol. 288, no. 3, 7 May 1999 (1999-05-07), pages 403-412, XP002162390 ISSN: 0022-2836 cited in the application the whole document GHOSE A K ET AL : "DETERMINATION OF Α 1.11-20.PHARMACOPHORIC GEOMETRY FOR COLLAGENASE 24-26,33 INHIBITORS USING A NOVEL COMPUTATIONAL METHOD AND ITS VERIFICATION USING MOLECULAR DYNAMICS, NMR, AND X-RAY CRYSTAL" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY. WASHINGTON, DC, vol. 117, no. 16, 1995, pages 4671-4682, XP002051616 ISSN: 0002-7863 the whole document

WIBLEY J E A ET AL: "A homology model of the three-dimensional structure of human 0-6-alkylguanine-DNA alkyltransferase based on the crystal structure of the C-terminal domain of the Ada protein from Escherichia coli." ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, pages 75-95, XP000989520 ISSN: 0266-9536 the whole document -& WIBLEY J E A ET AL.,: "erratum" ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, page 439 XP002162457 P,X ANTSON ALFRED A ET AL: "Structure of the intact transactivation domain of the human papillomavirus E2 protein." NATURE (LONDON). vol. 403, no. 6771, 17 February 2000 (2000-02-17), pages

805-809, XP000926219 ISSN: 0028-0836 the whole document 1-33

1-33

int :ional Application No PCT/GB 00/03568

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
alegoly '	Onument, with indication, where appropriate, or the relevant passages	Total to state 140.
	MEYERS THOMAS C ET AL: "Patent protection for protein structures and databases." NATURE STRUCTURAL BIOLOGY, vol. 7, no. Supplement, November 2000 (2000-11), pages 950-952, XP002162391 ISSN: 1072-8368 the whole document	1-33

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 24-26, 30-32, 33

Present claim 33 relate to a compound defined by reference to a desirable characteristic or property, namely a drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or an E2NT crystal structure. The claim cover all compounds having this desirable characteristic or property, whereas the application does not provide support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible.

Although claims 24-26 could be, at least partially considered as mere presentation of information (Rule 39.1 (v) PCT / Art. 52(2d) EPC), and claims 30-32 at least partially as a computer program (Rule 39.1 (vi) PCT / Art. 52(2c) EPC), the search has been carried out as far as possible in our systematic documentation.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Int tional Application No PCT/GB 00/03568

	.
5978740 A 6766896 A 0846163 A 11511016 T	02-11-1999 05-03-1997 10-06-1998 28-09-1999
	6766896 A 0846163 A

Target for Antiviral Therapy

The present invention provides a crystallised module of a nuclear phosphoprotein and an assay and method for determining interactions with human papillomavirus E2 for use in drug design, for use particularly but not exclusively in designing antiviral agents with potential use in treating warts, proliferative skin lesions and carcinoma of the cervix.

Background to the Invention

10

15

5

Human papillomaviruses (HPVs) cause warts and proliferative lesions in skin and other epithelia. In a minority of HPV types ("high risk", which include HPVs 16, 18, 31, 33, 45 and 56), further transformation of the wart lesions can produce tumours, most notably carcinoma of the cervix¹. HPVs have evolved a sophisticated system of control, mediated by protein:DNA and protein:protein interactions, that involves both cellular and viral proteins. The 45 kDalton nuclear phosphoprotein, E2, has two central roles in this control. It acts as the principal virally encoded transcription factor and, in association with the viral E1 protein, it creates the molecular complex at the origin of the viral DNA replication².

20

25

E2 has three distinct modules. The N-terminal module (E2NT) of about 200 amino acids is responsible for interactions with viral and host cell transcription factors. It is followed by a flexible, proline-rich, linker module and a C-terminal module (E2CT), each of about 100 amino acids ³ (Fig. 1a). The E2CT binds as a homodimer to DNA sites with a consensus sequence of ACCGN₄CGGT ⁴. In most HPVs a long upstream regulatory region (URR) precedes the viral genes and contains four spatially conserved E2 binding sites: three sites proximal to the transcription start site (p97 in HPV16) and one approximately 500bp upstream.

30

The dimer of E2CT serves to anchor E2 protein to its recognition sites on the DNA, the function of the E2NT is to bind and localise at least three cellular transcription

factors, Sp1, TFIIB and AMF-1, to the transcription initiation complex. In addition, E2 interacts with another viral protein, E1, which has ATPase and helicase activities. E1 itself binds to the viral origin of replication which consists of about 100 bp and is surrounded by the three E2-binding sites, proximal to the transcription start. The E2:E1 interaction greatly increases the rate of HPV genome replication^{2,5,6}, Fig. 1a. An intact E2 is essential for the normal productive (wart) life cycle of HPV, however during malignant progression HPV DNA is integrated into the host cell genome, which usually results in disruption of the E2/E1 ORFs and loss of E2 protein, in turn leading to dysregulated expression of the viral oncogenes E6 and E7.

10

15

Consistent with its role as a transcription regulator, E2 has been shown to direct the formation of loops in DNA containing E2 binding sites⁸. The loops were only formed with intact E2, and not with the E2CT alone. The E2 binding sites did not function independently and their co-operative effect was mediated by full length E2, leading the authors to suggest that there were specific interactions mediated by E2 that bridged across the set of DNA binding sites through its N-terminal. A similar DNA loop structure could also be achieved with Sp1, a cellular transcription factor, which forms a complex with distally bound E2 ⁹; Sp1/E2 interactions are critical for transcription activation in BPV¹⁰.

20

25

30

Eighty six known E2 proteins from different species and different human subtypes¹¹ are highly conserved, with sequence identities typically of 35% in the N and C-terminal modules (Fig. 1b). The crystal structure of the E2CT has been determined both alone and in complex with cognate DNA¹²⁻¹⁴. The module is a dimer with a barrel fold, and induces substantial bending (42-44°) of the DNA from its B-form double helix¹⁴.

The structure of the proteolytic fragment of HPV18 E2NT, missing 65 N-terminal residues, was recently reported at 2.1 Å spacing¹⁵. This allowed some analysis of mutational effects on function, although the missing 65 amino acids contain residues which are essential for the transcriptional and replication activities of the protein.

We report herein the structure of the complete E2NT determined by X-ray analysis at 1.9 Å. We have found that it is an L-shaped molecule with the residues vital for transcriptional and replication activities of the protein lying on opposite sides of the N-terminal domain. Surprisingly, our results show that the surface, vital for transcription activation, is in fact involved in association of two E2NT's into a dimer. We suggest that dimerisation of E2NT plays an important and key role in induction of DNA loop formation, the mechanism by which distally bound transcription factors would be brought close to the site of transcription initiation. More importantly, our results raise the possibility that dimer formation serves as a molecular switch between early gene expression and viral genome replication during HPV infection.

5

10

15

30

The process of rationalised drug design requires no explanation or teaching for the skilled person but a brief description is given here of computational design for the lay reader: various computational analyses are necessary to determine whether a molecule is sufficiently similar to the target moiety or structure. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pages. 134-135.

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and

rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a target. Again, these methods require no elucidation for the skilled person but are described here for the benefit of the unskilled reader. The screening process may begin by visual inspection of the target on the computer screen, generated from a machine-readable storage medium.

Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within that binding pocket as defined supra. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.

15

25

30

Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:

- GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically
 Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem.,
 pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
 - 2. MCSS (A. Miranker et al., "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, Mass.
 - 3. AUTODOCK (D. S. Goodsell et al., "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.

4. DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of calcineurin. This would be followed by manual model building using software such as Quanta or Sybyl.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

- CAVEAT (P. A. Bartlett et al, "CAVEAT: A Program to Facilitate the Structure Derived Design of Biologically Active Molecules". In Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, Calif.
- 20 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992).
 - 3. HOOK (available from Molecular Simulations, Burlington, Mass.).

25

As the skilled reader will already know, instead of proceeding to build ligand for the target in a step-wise fashion, one fragment or chemical entity at a time as described above, inhibitory or other target-binding compounds may be designed as a whole or *de novo*. These methods include:

1. LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Biosym Technologies, San Diego, Calif.

- 5 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations, Burlington, Mass.
 - 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.).
- Other molecular modelling techniques may also be employed. See, e.g., N. C. Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990). See also, M. A. Navia et al., "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

15

20

25

30

Once a compound has been designed or selected by the above methods, the efficiency with which that entity may bind to a target may be tested and optimized by computational evaluation. For example, an effective ligand will preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient ligands should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. Ligands may interact with the target in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free entity and the average energy of the conformations observed when the inhibitor binds to the protein.

An entity designed or selected as binding to a target may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole

interactions. Specifically, the sum of all electrostatic interactions between the inhibitor or other ligand and the target, when the inhibitor is bound to the target,

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C [M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. .COPYRGT.1992]; AMBER, version 4.0 [P. A. Kollman, University of California at San Francisco, .COPYRGT.1994]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass. .COPYRGT.1994]; and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif. .COPYRGT.1994). These programs may be implemented, for instance, using a Silicon Graphics workstation, IRIS 4D/35 or IBM RISC/6000 workstation model 550. Other hardware systems and software packages will be known to those skilled in the art.

preferably make a neutral or favourable contribution to the enthalpy of binding.

15

20

Once the ligand has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to a calcineurin-like binding pocket by the same computer methods described in detail, above. Again, all these facts are familiar to the skilled person.

25

30

Another approach is the computational screening of small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to a target. In this screening, the quality of fit of such entities to the binding site may be judged either by shape complementarity or by estimated interaction energy. E. C. Meng et al., J. Comp. Chem., 13, pp. 505-524 (1992).

The computational analysis and design of molecules, as well as software and computer systems therefor are described in US Patent No 5,978,740 which is included herein by reference, including specifically but not by way of limitation the computer system diagram described with reference to and illustrated in Fig 3 thereof as well as the data storage media diagram described with reference to and illustrated in Fig 4s and 5 thereof.

Statement of the Invention

According to a first aspect of the invention there is provided a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, for use in rationalised drug design. We have found that the dimer comprises residues vital for transcriptional and replicational activities of said protein lying on opposite sides of an N-terminal domain, for use in rationalised drug design.

15

5

Preferably the E2NT dimer protein is substantially as depicted in any of Figures 2c and/or 3a-d.

According to a second aspect of the invention there is provided an *in vitro* method for identifying and/or selecting a candidate therapeutic agent, the method comprising determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation.

Preferably, the method is for use in identifying and/or selecting an antiviral candidate therapeutic agent.

Preferably, the candidate therapeutic agent interferes or blocks interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.

According to a third aspect of the invention there is provided use of an E2NT dimerisation inhibitor in the preparation of a medicament for use in treating warts, proliferative skin lesions and/or cervical cancer.

According to a fourth aspect of the invention there is provided a method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of warts, proliferative skin lesions and/or cervical cancer comprising taking a sample from said patient and measuring E2NT interactions and/or DNA loop formation.

10

Thus it will be appreciated that a patient can be monitored at the start of therapy to test its effectiveness. Alternatively, a patient can be monitored once a therapy has been established so as to monitor its efficacy with a view to altering a therapy if found to be unsatisfactory.

15

20

25

30

The human papillomavirus E2 protein controls the primary transcription and replication of the viral genome. Both activities are governed by a ~200 amino acid N-terminal module (E2NT) which is connected to a DNA binding C-terminal module by a flexible linker. The crystal structure of the E2NT module from high-risk type 16 human papillomavirus reveals an L-shaped molecule with two closely packed domains, each with a novel fold. It forms a dimer in the crystal and in solution. The dimer structure is important in the interactions of E2NT with viral and cellular transcription factors and is the key to induction of DNA loops by E2. These loops may serve to target distal DNA-binding transcription factors to the region proximal to the start of transcription. The structure has implications for antiviral drug design and cervical cancer therapy.

The invention includes method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction. The method by which the E2NT crystal

structure is obtainable may comprise crystallisation using hanging-drop vapour diffusion. The method by which E2NT crystal structure is obtainable may comprise X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing. The crystal structure may comprise the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94. The rationalised drug design may comprise designing drugs which interact with the dimerisation surface of E2NT.

Further provided is a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:

15

10

5

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3;

20

- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine readable data storage medium for processing said machine readable data into said three-dimensional representation; and
 - (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

In class of embodiments, the three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

An additional aspect of the invention resides in a computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:

10

25

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;
- 15 (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
 - (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structure coordinates; and
 - (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 30 A yet further aspect of the invention relates to a crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT

amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å. The molecule or molecular complex may be defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

27. A machine-readable data storage medium (e.g. a magnetic or optical storage medium, for example a hard disc, a floppy disc or a CD-ROM), comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

20

30

5

In the machine-readable data storage medium the molecule or molecular complex may be defined by the set of structure coordinates according to Table 3, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than

25 1.5Å.

The invention further provides a machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second

set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.

5

In another aspect, the invention resides in a method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to the invention, comprising the steps of:

- 10 a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and
 - b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

Detailed Description f the Invention

The invention will now be described by way of example only with reference to the following Figures and Tables wherein:

5

Table 1 illustrates X-ray data and phasing statistics;

Table 2 illustrates refinement and model correlation;

10

Table 3 shows the structure coordinates of the E2NT module;

Figure 1a represents functional assignments of HPV 16 E2 protein;

types;

15

Figure 1b illustrates sequence alignment of E2NT modules from a subset of HPV

Figure 2a illustrates a stereo view of electron density with a final model at the dimer interface of the E2NT module, viewed down the crystallographic two-fold axis;

20

Figure 2b represents a stereo ribbon diagram of the E2NT module;

Figure 2c represents the E2NT dimer;

25

Figure 3a illustrates a schematic view of URR;

Figure 3b illustrates a schematic view of loop formation induced by binding of E2 proteins to two cognate sites;

Figure 3c illustrates a model of E2 dimer formation;

30

Figure 3d illustrates loops within URR as shown in Figure 3b;

Figure 4a illustrates the distribution of conserved residues on the E2NT monomer;

Figure 4b illustrates a first cluster of conserved residues on the E2NT monomer;

Figure 4c illustrates a second cluster of conserved residues on the E2NT monomer; and

Figure 4d illustrates conserved residues Gln12 and Glu39.

10

15

5

Those of skill in the art understand that a set of structure coordinates for an enzyme or an enzyme-complex or a portion thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations caused by acceptable errors in the individual coordinates will have little, if any effect on overall shape. In terms of binding pockets, these acceptable variations would not be expected to alter the nature of ligands that could associate with those pockets.

The term "associating with" refers to a condition of proximity between a chemical entity or compound, or portions thereof, and a calcineurin molecule or portions thereof. The association may be non-covalent--wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions--or it may be covalent.

The invention is also described with reference to US Patent No 5,978,740 which is included herein by reference, including specifically but not by way of limitation the computer system diagram described with reference to and illustrated in Fig 3 thereof as well as the data storage media diagram described with reference to and illustrated in Fig s 4 and 5 thereof.

With reference to Figure 1a and functional assignments of E2. There is shown in a schematic view of NT, linker and CT modules of E2 indicating known functions of each module. Amino acid numbers which delimit the modules correspond to E2 from HPV16. In Figure 1b, there is shown the sequence alignment of the E2NT modules from a subset of HPV types (HPV16, HPV18, HPV11 and HPV2a) and one BPV type. Shaded blocks above the alignment indicate the experimentally determined secondary structure. Shaded blocks below the sequences indicate the minimal peptide sequences involved in protein:protein interactions, suggested by mutation studies. Residues with more than 90% identity among 86 PV types are coloured: red for internal structural residues, green for residues within the fulcrum region, blue for surface residues.

5

10

15

20

25

With reference to the structural features of E2, in Figure 2a there is shown a stereo view of the electron density with the final model, at the dimer interface of the E2NT module, viewed down the crystallographic two-fold axis. The likelihood weighted map is contoured at the 1.5 σ level. Ribbons of two independent monomers are coloured blue and yellow. Side chains of ARG37 and Ile73 which are known to be critical for transactivation ^{4,31}, are shown in dark green; side chain of other residues at the dimer interface are shown in light green. Oxygen atoms are in red, nitrogen in blue, water molecules are shown as orange spheres and hydrogen bonds as dashed sticks. In Figure 2b, there is shown a stereo ribbon diagram of the E2NT module. The N1 domain is shown in aquamarine and the N2 domain in pink, with the fulcrum in green. In Figure 2c, there is shown the dimer of E2NT, showing the extent of the interface between the two subunits. The view is as in Figure 2a but rotated clockwise by 90°. Side chains of Gln12 and Glu39 which are critical for interactions with E1 ^{31-33,37} are shown in magenta. Side chains of residues at the dimer interface are coloured as per Figure 2a.

With reference to Figures 3a-d there is shown loop formation in the URR of HPV16.

In Figure 3a, there is shown a schematic view of the URR. The four E2-binding sites are represented by boxes. Numbers in italics indicate distances between individual

PCT/GB00/03568 WO 01/21645

sites upstream of the p97 promoter. Two possible E2 configurations, with separate or dimeric E2NT modules are shown. In Figure 3b, there is shown a schematic view of loop formation induced by binding of E2 proteins to two cognate sites, based on the experiments reported by Knight et al⁸. In Figure 3d, there is shown the possible DNA loops within the URR as depicted in Figure 3b. In Figure 3c, there is shown a model of the formation of E2 dimers, showing interactions between both the C-terminal and E2NT modules. The C-terminal dimer, with its bound DNA, is based on the crystal structure of this module¹². The E2NT dimer is proposed from the present work. The relative orientation and position of the E2NT and C-terminal modules is purely schematic.

10

5

With reference to Figures 4a-d there are shown functionally important residues. In Figure 4a, there is shown the distribution of conserved residues on the E2NT monomer. In Figures 4b and 4c there is shown the two clusters of conserved residues in the fulcrum of E2NT. In Figure 4d, there are shown conserved residues Gln12 and Glu39. Bonds in ball-and stick models are coloured aquamarine (N1 domain), pink (N2 domain) and green (fulcrum). Hydrogen bonds are shown as dashed lines, water molecules as orange spheres, oxygen atoms are in red, nitrogen atoms in blue and sulphur atoms in yellow.

20

25

30

15

There is convincing evidence that the E2 protein has an extended structure, is flexible and that its functions depend on this property. This is probably the reason why the intact protein has not yet been crystallised in spite of intensive efforts. A major problem is the extended flexible linker module, with around 100 residues. E2NT proved difficult to crystallise, and a number of different constructs were made and overexpressed before crystallisation with residues 1 to 201 was achieved, but even this construct possessed limited stability. The protein had to be crystallised within 2-3 days of purification; crystals grew within about 48 hours but only retained useful diffraction quality for a further 2-3 days. This necessitated that crystals be rapidly vitrified in cryoprotectant buffer and stored for use as soon as detector time became available 16.

Crystals of E2NT belong to the space group P3₁21 with unit-cell dimensions a=b=54.3 Å, c=155.5 Å. The structure was determined using two heavy atom derivatives and refined with data extending to 1.9 Å spacing (Fig. 2a). The main chain is well defined throughout with the exception of residues 125 and 126 which are in an exposed loop and are mobile. There was density for the last residue of the His-tag at the N-terminus, but none for the remainder of this entity. All amino acids lie in the allowed regions of the Ramachandran (ϕ, ψ) plot¹⁷ with 92.4% in most favoured regions¹⁸.

10

15

20

25

5

The transactivation module is composed of two domains, N1 and N2, arranged so as to give it an overall L-shaped appearance. Analysis of the PDB¹⁹using DALI²⁰shows that both have unique organisation of their secondary structures. Domain N1, which forms the N-terminus of the intact E2, is composed of residues 1 to 92, which fold into three long α -helices, Figure 2 (b,c). There is a tight loop between α 1 and α 2 and a more extended one between $\alpha 2$ and $\alpha 3$. The three helices pack antiparallel to one another in the form of a twisted plane, with angles of about 20° and 25° between the pairs of consecutive helices. DALI indicated a maximum Z-score of 5.7, that could suggest a significant correlation, for colicin la, a membrane protein which contains three 80 Å long α -helices arranged more or less coplanar²¹. This is the only other known protein that contains a true domain made up of such a packing of three helices. In addition there were 42 other structures which gave Z-scores above 4.0, most of which were four helix bundles, such as bacterioferritin²². However, in these only two of the three N1 helices superimposed simultaneously on two, not always adjacent, bundle helices as a result of a more planar arrangement of helices within N1. The indications are that the similarities observed reflect the optimum stacking angle of antiparallel helices against one another rather than suggesting a common ancestor for the evolution of these molecules.

30 Domain N2 is made up of residues 110 to 201 and is composed almost entirely of antiparallel β structure, with only one short helical segment from residues 171 to 178,

Figure 2 (b,c). The secondary structure has two short three and four stranded antiparallel β pleated sheets interconnected by two stranded β ribbons. For this domain DALI failed to identify any significant homologies to known structures, with a highest Z-score of only 2.1. From the analysis of Harris and Botchan¹⁵ and the present study, the N2 fold appears to be novel.

The structure between the N1 and N2 domains (residues 93 to 109) contains two consecutive single turns of helical structure, resulting in a compact and tight turn. It packs closely against elements of both domains and is not a truly independent structural domain. Rather it forms a fulcrum in the L-shape formed by N1 and N2 where it could act as a hinge, allowing the two domains to change their relative conformation in a specific way. Several of the interactions between adjacent regions of chain in the fulcrum are mediated indirectly through H-bonds involving water molecules, suggesting the possibility of flexibility.

15

20

25

30

10

5

One of the most striking features of the crystal structure is the association of two E2NT monomers into a tight dimer. The two E2NT monomers pack around the crystallographic 2-fold axis, as shown in Figure 2a. The dimer interface is formed mostly by amino acids from helices $\alpha 2$ and $\alpha 3$ of the N1 domain and by residues 142-144 from the N2 domain. The total buried surface area between the two E2NT is 2026 A° , comparable to the 2444 A° buried between the two E2CT¹², which are known to form a tight dimer with a $K_{\rm d}$ of 3-6 x 10⁻⁸ M ^{23,24}.

In the E2NT dimer interface, each subunit contributes a cluster of seven equivalent residues, invariant or conserved in the 86 known sequences of E2¹¹, with many direct and water-mediated hydrogen bonds and rather few non-polar contacts, Fig. 2. Analysis of the dimer forming surfaces shows that all the direct hydrogen bonds between monomers are made through these seven amino acids. For the invariant Arg37, all possible side-chain hydrogen bonds are made and all are well defined, Figure 2. Three of them are across the dimer interface. One hydrogen bond is critical, from NH2 to the main chain carbonyl oxygen of Leu77. A second hydrogen bond from NH2 is to OG1 of Thr81; in five out of 86 sequences this residue is

5

10

15

30

glutamine, and modelling shows a hydrogen bond is possible to the NE of Arg37. The NH1 of Arg71 H-bonds to the OE1 of residue 80, which is Glu or Gln in all but six variants. At the NE of Arg37 there is an ideal H-bond to water that itself makes another strong H-bond across the dimer interface to the main-chain carbonyl oxygen of residue 142. The role of the invariant Ile73 is the filling of the intersubunit nonpolar volume made up of the aliphatic parts of Arg37, Gln76 and of Leu77 - in this case from both monomers. The Leu77 is in a few sequences substituted by valine or isoleucine and in 9 out of 86 known sequences by methionine. Inspection of the structure shows that Leu77 is partially exposed to the solvent and therefore different hydrophobic side chains could be easily accommodated at this site. Another important non-polar side chain is Ala69. Its side chain methyl packs into the surface of the other monomer at van de Waals distance from the main chain of residue 142. The only observed mutation of Ala69 is to Gly, and is easily accommodated. Gln76 is conserved or has homologous substitutions in about 2/3 of E2 sequences; in about 1/4 of the sequences there is methionine or valine at this position¹¹. Although hydrophobic substitutions of Gln76 would disrupt the hydrogen bonding to Glu80 across the dimer interface, and to Arg37 from the same subunit, the hydrophobic side chain at residue 76 could instead make a compensating hydrophobic interaction with the adjacent intersubunit hydrophobic pocket formed by Ile73 and Leu77.

Modelling of the amino acid variations in the 86 known papillomavirus E2 proteins into the other contacts at the dimer interface shows that they generally can be accommodated (data not shown). The consistency of the hydrogen bonds and van de Waals contacts at the monomer-monomer interface in the various sequences suggests therefore that the E2NT dimer interactions are potentially present in all papillomaviruses.

The first experimental evidence for the E2NT dimerisation in the presence of DNA with multiple E2-binding sites was provided by Knight et al in 1991⁸. Their studies showed that intact E2 led to the formation of DNA loops on templates with widely separated E2 binding sites, while a truncated E2, containing the DNA-binding E2CT but missing the N-terminal 161 residues, did not. Such dimerisation is further

supported by the observed synergistic transcription activation by a complex of two DNA-bound E2 dimers²⁵.

5

10

15

20

25

30

To analyse the functional behaviour of the E2NT dimers further, we measured the dissociation constant by sedimentation equilibrium using ultracentrifugation of recombinant E2NT protein containing the 201 N-terminal amino acids. A value of $K_d = 8.1 \pm 4 \times 10^{-6}$ M was obtained, indicating mediumstrength association. The micromolar range of the E2NT dimer K_d is certainly physiologically significant, and compares well with values for other transcription factors which have relatively low dissociation constants, often with the K_d values between 1 μ M and 20 μ M ^{26,27}. In vivo, the interaction could be enhanced when the two E2NT modules are placed in close proximity. Indeed, E2CT forms dimers which bind to the multiple DNA-binding sites located within the URR of viral DNA with K_d of protein: DNA interactions usually in the nanomolar range²⁸. Consequently, the local concentration of E2NT, bound to the E2CT via the non-conserved, flexible ~80 amino-acid linker, is effectively increased.

E2NT dimer interactions, as seen in the crystal structure, could form either between modules which are already part of a single E2 dimer, formed as a result of E2CT dimerisation interactions and bound to a single E2 binding site on the DNA (Fig. 3a), or between two preformed E2 dimers located on different E2 binding sites (Fig. 3b). The results of the electron microscopy suggest that the latter dimerisation does occur⁸. Although no direct experimental evidence exists for the former dimerisation, it does also seem possible due to the flexibility of the linker connecting the two modules. We propose that E2 molecules may initially keep their N-terminal modules within their internal dimers, but swap N-terminal modules and cross link to E2 molecules bound to distant DNA binding sites to form active loop structures during transcriptional activation and / or HPV DNA replication (Figure 3d). As discussed below, the effects of mutations on transcriptional transactivation can be explained in terms of the dimer being an essential element in this process.

E2 is a regulator of both transcription and viral DNA replication and thus interacts with other viral and host macromolecules in the infected cell. Indication of the possible importance of individual residues in the function comes firstly from the structure, secondly from the extensive set of sequences of the papillomaviral E2's and thirdly from mutagenesis studies on the individual proteins. In the following we make a primary attempt to map the molecule's function onto its structure.

The pattern of amino acid conservation for the 86 available papilloma sequences has been analysed using the GCG program suite²⁹. The sequences exhibit striking variation, characteristic of some virus families. However, 33 of the total 201 residues in the E2NT construct were totally or highly conserved. Fig. 4a illustrates the distribution of these 33 residues in the dimer. These were categorised into two sets: those with an essentially structural role and those exposed on the surface with a potential for intermolecular interactions. Thirteen residues (Fig. 1b) are buried or play a purely structural role within the monomer, they are not expected to be of functional importance and will not be discussed here.

A further 12 of these 33 residues stand out as having a structural role in the interface of the N1 and N2 domains. They form three clusters, the first making direct interactions between the two domains (Ile82, Glu90, Trp92, Lys112, Tyr138, Val145) and two separate sets of interactions, one from N2 (Pro106, Lys111, Phe168, Trp134) and the other from N1 (Trp33, Leu94) to the structure connecting them, referred to here as a fulcrum. The first two clusters are shown in Figure 4 b, c and it can be seen that Lys111 and Lys112 play key roles. Their side chains point in opposite directions to one another and their terminal amino groups are involved in near ideal patterns of hydrogen bonds. The flat surfaces of their extended side chains stack against Trp134 and Trp92, respectively. This clustering of invariant residues at the interface indicates a functional importance for the relative orientation of N1 and N2. The fulcrum could indeed provide a flexible pivot between the two domains, but there is no direct evidence for this as yet. Finally, while the side chain of Glu90 is held tightly in place by two H-bonds and could have a structural role, its OE2 atom is

exposed on the surface and is surrounded by near invariant side-chains, which may thus play a part in interactions with other molecules.

Of the remaining eight conserved residues, mutational substitutions of Glu20, Glu100 and Asp122 ³⁰⁻³³ had moderate effects on the transactivation and replication properties of E2, which depended on a particular viral strain. Glu20 lies on the top surface of N1. Asp122 lies far away on the distal surface of N2. Glu100 is completely exposed and points into the solvent at the junction of the L between the N1 and N2 domains. The functional role of these amino acids has yet to be clarified.

10

15

20

25

30

5

Three conserved amino acids (Arg37, Glu39 and Ile73) have been subjected to point mutation and the effects on the two principal functions of E2, i.e. transactivation and HPV DNA replication have been assessed (reviewed in⁴,also ^{31,34,35}). Together with the remaining two conserved amino acids, Gln12 and Ala69, these residues form two functionally important surfaces (see below).

Finally, a number of the mutational results (reviewed in ⁴, also ^{31,34,35}) correspond to residues that can be assigned to structural roles. Substitution of these residues will lead to substantial conformational changes and a probable inability to fold correctly. This is particularly true for some of the deletion mutants involving the core of the molecule. Knowledge of the structure will allow a more rational choice and design of mutants in the future.

The induction of DNA loops by E2NT dimerisation could be important for the construction of the active transcription bubble by targeting DNA-binding transcription factors, bound at distal sites, to the region proximal to the start of transcription (reviewed in ³⁶). In support of this, residues Arg37, Ile73 and Gln76 map onto the surface of E2NT involved in dimer formation, and mutations result in considerable disruption of transactivation, while having little effect on replication, ^{4,15,31}. The structure also shows that Ala69 which points its side chain methyl across the dimer interface, is also critical for transactivation. Mutational substitutions to

amino acids with longer side chains should have a knock out effect on E2NT dimer formation and consequently on transactivation.

The sites of association with cellular transcription factors AMF-1 (residues 74-134) and TFIIB (134-216) were previously mapped onto the E2NT module (Figure 1) using a series of deletion mutants as well as point mutations^{34,35}. These sites were mutually exclusive. In the structure, residues 74-134 include the fulcrum, while residues 134-216 correspond to domain N2. Further biochemical and structural studies can now be planned to characterise these interactions in more detail.

10

15

20

25

30

5

Replication of the viral genome is initiated by binding of another viral protein, E1, to the origin of DNA replication⁴ which is itself flanked by two E2 binding sites, Fig. 3a. While the function of E2CT dimers is to bind specifically to the DNA sites. E2NT interaction with E1 enhances the binding of E1 to this region. Mutational substitutions of Glu39 generally retained transcriptional activation while DNA replication was substantially reduced^{31-33,37}. In the structure, the conserved Glu39 makes every possible hydrogen bond by its side chain carboxyl oxygens, Fig. 4d. One hydrogen bond is to NE2 of Gln12, which is absolutely conserved in all known sequences of E2. The other three hydrogen bonds are to the water molecules which are part of an intimate net of well-defined water molecules surrounding Glu39 and mediating its interactions with adjacent residues. Interestingly, a number of these protein interactions with water molecules are conserved as they are made to the protein backbone, including carbonyl oxygens of Gln12, Met36 and Lys68. While mutation of Gln12 in BPV1 only slightly affected both transactivation and replication, it substantially reduced cooperative origin binding^{30,32}. positioning of Gln12 and Glu39 in the three-dimensional structure further enhances the notion that these two resides are involved in interactions with E1. The conserved set of interactions at Gln12/Glu39 suggests that the main chain carbonyl oxygens of Gln12 and Met36 and the conserved water molecules could be also involved in these interactions. Gln12/Glu39 are surrounded by Leu8, Ile15, Met36, Tyr43, Gln57 and

Lys68, which are unlikely to contribute into E2/E1 interactions, as these residues are not well conserved in E2 sequences from different papillomaviruses.

The Gln12/Glu39 cluster lies on a side of the N1 domain which is opposite to the side involved in transactivation (and dimerisation), Figure 2c. Notably, the spatial separation of the two functionally important surfaces suggests that E2NT module could be able to interact with E1 at the same time as it interacts through the dimerisation interface with another E2NT module.

The structure reported here for the entire E2 transactivation module, has several implications for understanding of E2 function. It is now possible to map known mutations onto the E2 three-dimensional structure, and to use the knowledge of amino acid conservation and the effects of mutations to assign roles in folding, structure and function to residues. To this end, our results indicate that molecular surfaces involved in transactivation and E1-binding are located at opposite sides of the N1 domain of E2NT, suggesting that both surfaces could be accessed simultaneously by other protein factors. In line with these observations, E1 has been shown to modulate transactivation by directly interacting with E2, leading to repression of transactivation in the presence of excess E1³⁸. It is not inconceivable that the docking of E2NT dimer with E1 is sufficient to block further association with other target proteins.

The structure shows that the transactivation surface is involved in the formation of the E2NT dimer, which could cross-link E2 molecules bound by their E2CT modules to well-separated DNA sites. Inevitably, such dimerisation would cause DNA to form a loop structure, targeting distally bound transcription factors to regions close to the promoter. While this process has been suggested to be essential for transactivation³⁶, the definition of interacting surfaces between E2 and other cellular transcription factors requires a great deal of further study.

25

5

Our results suggest that the process of DNA loop formation could involve swapping of E2NT modules across E2 dimers bound at separated DNA sites (Fig. 3a-d). The polar components of the monomer-monomer interactions may favour such exchange. Domain swapping is a well-recognised phenomenon that occurs relatively frequently between two individual monomers containing domains connected by a flexible linker ^{39,40}. E2 is to our knowledge the first example where the swapping event is predicted to occur between dimers.

5

10

15

20

25

30

The dimerisation surface of E2 represents a good target for designing anti-viral drugs, since it is essential for viral transcription, there is no homologous human protein and the residues forming the interface are highly conserved among different viral strains. Dynamic interactions between transcription factors play a central role in the regulation of transcription and replication. Dimerisation, heterodimerisation and the monomer-to-dimer transition may play important roles during the control of the papillomavirus life cycle. These processes themselves can be regulated through phosphorylation, proteolysis, interaction with small ligands or changes in their intracellular concentration. It has been suggested that E2 can regulate the switch between early gene expression and viral genome replication during HPV infection⁴¹. It is possible that dimerisation of E2NT modules plays an essential role during this process. One scenario would be to activate transcription via induction of DNA loop formation at early stages of the viral life cycle. At later stages, when the concentration of expressed E2 proteins within the cell becomes high and comparable with the K_d for E2 dimer formation, free E2NT modules could compete for dimerisation with those involved in DNA loop formation and titrate them away, switching off transcription and stimulating replication. It is also possible that other protein factors could be involved in this process, including, for example, E1.

The invention therefore includes the use of E2NT crystal structure in the design of anti-viral drugs, since it is essential for viral transcription. In the rationalised computational design of drugs using the crystal structure, computational analyses are therefore necessary to determine whether a molecule or the E2NT-binding portion

thereof is sufficiently similar to the E2NT structure. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pages. 134-135.

5

10

15

30

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Atom equivalency within QUANTA is defined by user input and, for the purpose of this invention equivalent atoms may be defined as protein backbone atoms (N, C.alpha., C and O) for all conserved residues between the two structures being compared. We will also consider only rigid fitting operations.

When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

For the purpose of one class of embodiments this invention, any set of structure coordinates of a molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, C.alpha., C, O) of less than 1.5 .ANG. when superimposed--using backbone atoms--on the relevant structure coordinates of E2NT are considered identical. More preferably, the root mean square

deviation is less than 1.0 .ANG.. Most preferably, the root mean square deviation is less than 0.5 .ANG..

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein from the backbone of E2NT a dimerising portion thereof, for example as defined by the structure coordinates of E2NT described herein.

10

20

25

5

The term "least squares" refers to a method based on the principle that the best estimate of a value is that in which the sum of the squares of the deviations of observed values is a minimum.

15 Materials and Methods

Purification and crystallisation.

Details of the purification and crystallisation of E2NT have been described previously ¹⁶. Briefly, the ORF encoding the N-terminal 201 residues of HPV-16 E2 was cloned into the prokaryotic expression plasmid pET15b downstream of the 20-residue His-tag leader sequence; protein was expressed in *E. coli*BL21(DE3)pLysS and purified using nickel affinity and anion exchange chromatography. Crystals were obtained by hanging drop vapour diffusion with 0.8-1.2M ammonium sulphate, 0.1M triethanolamine pH 8.0-8.3 and 3-5% 2-methyl-2,4-pentanediol. Crystals grew only with very fresh protein preparations and deteriorated in terms of diffraction quality in less than a week. This necessitated freezing and storage of crystals in liquid nitrogen immediately after growth, as discussed above.

Structure determination.

All data were recorded on cryogenically frozen crystals. A native crystal was frozen for which initial data were recorded to 3.4 Å¹⁶. For the screening of derivatives,

crystal stability was even more limiting. Nine crystals were soaked in various heavy atom reagents immediately after growth. The crystals were screened in-house using a MAR research imaging plate on a Rigaku RU200 rotating anode source, by recording 3° of data for each and analysing the fractional isomorphous difference from the native. Three derivatives showed promising differences from the native, in the range of 15-20% after scaling using SCALEPACK⁴² and were stored in liquid nitrogen. The native crystal was transported to EMBL Hamburg where 1.9 Å data were measured using synchrotron radiation from beam line X11, Table 1. In addition data were recorded at EMBL for the three promising derivatives to about 2.7 Å. Two of these derivatives proved useful in phase determination and the structure was solved by multiple isomorphous replacement with anomalous scattering (MIRAS) at 2.7 Å. The two derivatives were solved independently using the CCP4 suite⁴³ from the difference Patterson synthesis and by direct methods as implemented in SHELX⁴⁴. Both contained a single heavy atom site. Phases, calculated using MLPHARE, were enhanced by solvent flattening45 using a solvent content of 50 %. The resulting high quality density map was easily interpretable and the initial model was built using QUANTA (Molecular Simulations) for all but four residues of the construct, ignoring the His-tag. The model was completed with REFMAC (resolution 20-1.9 Å) using a bulk solvent correction, to an R-factor of 23.3 % (R_{Free} 29.7 % - for 5 % of the data). There are 221 residues in the recombinant protein: the first twenty comprise the His-Tag. The final model contains all but two of the 201 residues of the real protein: residues 125-126 are disordered and lie in a flexible surface loop. Only one residue, His0, of the His-tag has clear density and an ordered conformation. In addition there are 187 water molecules, which were selected using ARP⁴⁶during the course of refinement. The main statistics of the refined model are shown in Table 2.

Analytical ultracentrifugation.

5

10

15

20

25

Experiments were carried out in an Optima XL-A ultracentrifuge (Beckman-Coultier, CA, USA) using scanning UV optics. During the experiments, the recombinant E2NT was in 10mM TrisHCl pH 8.0, 5mM DTT, 0.2 mM EDTA, 300 mM NaCl.

Data were obtained at rotor speeds of 12,000 and 16,000 rpm, and the time to equilibrium was 10-12 hours. All runs were carried out at 293K, and all radial scans were at a wavelength of 280 nm. Dissociation constants were obtained by nonlinear regression using the Beckman ultracentrifuge software.

5 P32059WO

Table 1
X-ray data and phasing statistics

Data set	Native	UAc	AuCN	
Space Group	P3 ₁ 21	P3 ₁₂₁	P3 ₁ 21	
a ,b (Å)	54.68	54.49	54.58	
c (Å)	155.73	155.66	156.50	
Resolution (Å)	30-1.9	20-2.7	20 - 2.7	
Temperature, K	120	120	120	
Wavelength (Å)	0.86	0.86	0.86	
Unique reflections	21751	7873	7937	
Completeness (%)	98.8 (89.3)	99.8 (96.1)	99.7 (93.8)	
(outer shell)			(30.0)	
R-merge (outer shell)	0.058 (0.339)	0.073 (0.271)	0.061 (0.268)	
Phasing Power: (centric	/ acentric)	1.55 / 2.07	0.95 / 1.40	
FOM: MIRAS		0.59		
FOM: DM 20-2.7 Å (2.	7 - 1.9 Å)	0.88 (0.61)		
DM: Mean phase chang	e (20-2.7 Å)	32 °		
R-factor (FreeR)	0.223 (0.295)		T	

Table 2

Refinement and model correlation

	Resolution		1.9 ~ 10.0 Å
	Number of protein atoms		1622
5	Number of solvent sites		. 211
	Number of reflections used in refinement		20637
	Number of reflections used for Rfree calculation	1111	
	R-factor ‡		0.232
	Rfree ‡		0.305
10	Average atomic B-factor*, Å ²	protein atoms	38.0
		water molecules	48.5
	R.m.s. deviations from ideal geometry (Å). Targe	ets in parentheses	,
		bond distance	0.013 (0.020)
		angle distance	0.026 (0.040)
15	• •	chiral volume	0.142 (0.200)

[‡]Crystallographic R-factor, $R(free) = \sum ||F_o| - |F_c|| / \sum |F_o|$.

20		<u>Table 3</u>											
25	CRYST SCALE1 SCALE2 SCALE3	54.	0.0	54.0 1829 0000 0000	0.01056 0.02112 0.00000	0.00000 0.00000 0.00642	120.00 P3121 0.00000 0.00000 0.00000						
	ATOM ATOM ATOM	1 2 3	N CA C	HIS A	0 <i>E</i>	5.469 -26.512 6.434 -25.669 6.263 -25.743	52.262 1.00 61.92 51.568 1.00 61.84 50.051 1.00 53.91						
30	ATOM ATOM	4 · 5	O CB	HIS A	0 <i>P</i>	6.089 -24.713 7.837 -26.127	49.607 1.00 69.59 51.965 1.00 54.18						
	ATOM ATOM	6 7	CG ND1	HIS A	A 0	7.848 -26.468 7.914 -25.533	53.431 0.00 99.00 54.412 0.00 99.00						
35	ATOM MOTA	8 9	CD2 CE1		0 <i>F</i>	7.732 -27.728 7.828 -26.215	54.027 0.00 99.00 55.570 0.00 99.00						
33	MOTA MOTA	10 11	NE2		0	7.723 -27.531 6.663 -26.896	55.370 0.00 99.00 49.478 1.00 56.24						
	MOTA	12	CA	MET A	1	6.435 -27.076 5.209 -26.282	48.053 1.00 56.42 47.619 1.00 56.07						
40	ATOM ATOM	13 14	C 0	MET A	A 1	5.293 -25.299	46.911 1.00 56.51						
	ATOM ATOM	15 16	CB CG	MET A	A 1	6.216 -28.565 6.856 -29.020	47.788 1.00 60.46 46.477 0.00 99.00						
غه د	ATOM ATOM	17 18	SD CE	MET A	A 1.	7.244 -30.775 7.499 -30.975	46.483 0.00 99.00 44.711 0.00 99.00						
45	ATOM ATOM	19 20	N CA	GLU A		4.035 -26.755 2.803 -26.044	48.064 1.00 54.92 47.744 1.00 53.59						

						_			0 00 00 00
	ATOM	16	CG	MET		1	6.856 -29.020	46.477	0.00 99.00
	ATOM	17	SD	MET	Α	1	7.244 -30.775	46.483	0.00 99.00
	ATOM	18	CE	MET	Α	1	7.499 -30.975	44.711	0.00 99.00
	ATOM	19	N	GLU	A	2	4.035 -26.755	48.064	1.00 54.92
5	ATOM	20	CA	GLU		2	2.803 -26.044	47.744	1.00 53.59
,						2	2.870 -24.570	48.154	1.00 52.81
	MOTA	21	C	GLU					1.00 51.69
	MOTA	22	0	GLU		2	2.555 -23.664	47.393	
	ATOM	23	CB	GLU	A	2	1.661 -26.740	48.482	1.00 56.88
	ATOM	24	CG	GLU	A	2	2.090 -28.092	49.054	0.00 99.00
10	ATOM	25	CD	GLU	Α	2	1.019 -28.610	49.983	0.00 99.00
	ATOM	26	OE1			2	0.454 ~27.819	50.722	0.00 99.00
	ATOM	27	OE2			2	0.761 -29.811	49.963	0.00 99.00
							3.260 -24.346	49.424	1.00 52.06
	ATOM	28	N	THR		3			
	ATOM	29	CA	THR		3	3.300 -22.980	49.940	1.00 51.61
15	ATOM	30	С	THR	A	3	4.161 -22.059	49.070	1.00 50.30
	ATOM	31	0	THR	Α	3	3.731 -21.006	48.617	1.00 49.91
	MOTA	32	CB	THR	Α	3	3.858 -23.023	51.364	1.00 54.31
	ATOM	33		THR		3	2.975 -23.789	52.187	1.00 56.98
	ATOM	34	CG2			3	3.960 -21.605	51.935	1.00 55.18
20							5.372 -22.498	48.717	1.00 50.11
20	ATOM	35	N	LEU		4			
	MOTA	36	CA	LEU		4	6.201 -21.696	47.808	1.00 50.48
	ATOM	37	С	LEU	A	4	5.553 -21.516	46.444	1.00 50.18
	ATOM	38	0	LEU	Α	4	5.520 -20.410	45.877	1.00 50.73
	ATOM	39	CB	LEU	Α	4	7.603 ~22.286	47.626	1.00 52.72
25	ATOM	40	CG	LEU		4	8.545 ~22.252	48.826	1.00 56.58
	ATOM	41		LEU		4	9.819 -23.035	48.583	1.00 55.37
		42		LEU		4	8.829 -20.828	49.288	1.00 56.27
	ATOM								1.00 30.27
	MOTA	43	N	CYS		5	5.028 -22.615	45.885	
	ATOM	44	CA	CYS		5	4.362 -22.530	44.587	1.00 48.93
30	ATOM	45	С	CYS	A	5	3.218 -21.534	44.589	1.00 48.27
	ATOM	46	0	CYS	Α	5	3.136 ~20.698	43.682	1.00 47.03
	ATOM	47	CB	CYS	A	5	3.865 -23.879	44.075	1.00 49.50
	ATOM	48	SG	CYS		5	5.217 -24.972	43.626	1.00 50.79
	ATOM	49	N	GLN		6	2.356 -21.627	45.610	1.00 46.85
35	ATOM	50	CA	GLN		6	1.227 -20.718	45.675	1.00 47.22
رر							1.666 -19.276	45.865	1.00 46.83
	ATOM	51	C	GLN		6			
	ATOM	52	0	GLN		6	1.050 -18.382	45.276	1.00 48.60
	MOTA	53	CB	GLN	A	6	0.272 -21.079	46.817	1.00 50.54
	MOTA	54	CG	GLN	A	6	-0.681 -22.221	46.515	1.00 55.34
40	ATOM	55	CD	GLN	Α	6	-1.144 -22.875	47.806	1.00 59.63
	ATOM	56	OE1	GLN	A	6	-1.101 -22.222	48.853	1.00 61.52
	ATOM	57	NE2			6	-1.482 -24.156	47.775	1.00 57.45
		58	N	ARG		7	2.628 -19.035	46.757	1.00 46.33
	ATOM							46.938	1.00 46.38
45	ATOM	59	CA	ARG		7	3.162 -17.700		1.00 44.90
45	ATOM	60	С	ARG		7	3.780 -17.145	45.650	
	ATOM	61	0	ARG	A	7	3.544 -15.986	45.355	1.00 45.29
	MOTA	62	CB	ARG	A	7	4.267 -17.682	48.013	1.00 50.84
	ATOM	63	CG	ARG	A	7	3.690 -17.869	49.418	1.00 62.38
	MOTA	64	CD	ARG	Α	7	2.884 -16.616	49.765	1.00 71.41
50	ATOM	65	NE	ARG		7	3.786 -15.539	50.171	1.00 78.82
50	ATOM	66	CZ	ARG		7	3.406 -14.307	50.474	1.00 83.50
									1.00 85.24
	MOTA	67		ARG		7	2.122 -13.965	50.423	
	MOTA	68	NH2	ARG		7	4.316 -13.410	50.841	1.00 85.59
	ATOM	69	N	LEU	A	8	4.608 -17.918	44.984	1.00 45.22
55	ATOM	70	CA	LEU	Α	8	5.212 -17.429	43.728	1.00 45.85
	ATOM	71	С	LEU		8	4.161 -17.110	42.672	1.00 46.67
	ATOM	72	ŏ	LEU		8	4.197 -16.055	42.025	1.00 46.25
	ATOM	73	СВ	LEU		8	6.185 -18.477	43.194	1.00 41.52
							6.979 -18.054	41.944	1.00 44.17
60	MOTA	74	CG	LEU		8		42.283	
60	ATOM	75		LEU		8	7.941 -16.924		
	MOTA	76		LEU		8	7.723 -19.246	41.373	1.00 44.18
	MOTA	77	N	ASN		9	3.193 -18.014	42.508	1.00 47.73
	MOTA	78	CA	ASN	A	9	2.065 -17.825	41.610	1.00 48.73

					_				1 00 40 00
	MOTA	79	С	ASN A	9		1.351 -16.516		1.00 48.98
	MOTA	80	0	ASN A	. 9		1.136 -15.727 1.011 -18.923		1.00 48.98 1.00 54.35
	ATOM	81	CB	ASN A	9 9		1.011 -18.923 1.220 -20.16		1.00 54.55
5	ATOM	82	CG	ASN A ASN A	. 9		2.281 -20.42		1.00 60.06
, ,	ATOM	83 84		ASN A	9		0.174 -20.99		1.00 63.02
	ATOM ATOM	85	ND2	VAL A	10		1.047 -16.26		1.00 48.31
	ATOM	86	CA	VAL A	10		0.388 -15.003		1.00 48.22
	MOTA	87	C	VAL A	10		1.338 -13.83		1.00 48.34
10	ATOM	88	Õ	VAL A	10		0.931 -12.816		1.00 47.81
10	ATOM	89	СВ	VAL A	10		-0.111 -14.918		1.00 53.07
	MOTA	90		VAL A	10		-0.501 -13.48		1.00 53.77
	ATOM	91		VAL A	10	-	-1.328 -15.82		1.00 54.90
	ATOM	92	N	CYS A	11	•	2.601 -14.013		1.00 47.68
15	ATOM	93	CA	CYS A	11		3.570 -12.938		1.00 47.78
	ATOM	94	С	CYS A	11		3.747 -12.619	41.954	1.00 47.29
	MOTA	95	0	CYS A	11		3.632 -11.473	41.499	1.00 47.31
	ATOM	96	CB	CYS A	11		4.893 -13.269	44.144	1.00 48.13
	ATOM	97	SG	CYS A	11		6.077 -11.884	44.082	1.00 44.06
20	MOTA	98	N	GLN A	12		3.903 -13.633	41.120	1.00 47.63
	ATOM	99	CA	GLN A	12		4.150 -13.484	39.702	1.00 48.32
	ATOM	100	С	GLN A	12		2.936 -12.946	38.951	1.00 48.82
	MOTA	101	0	GLN A	12		3.103 -12.258	37.946	1.00 48.64
	MOTA	102	CB	GLN A	12		4.657 -14.783		1.00 45.97
25	ATOM	103	CG	GLN A	12		6.018 -15.213		1.00 45.90
	MOTA	104	CD	GLN A	12		6.659 -16.359		1.00 46.71
	MOTA	105	OE1	GLN A	12		6.028 -17.320		1.00 45.33
	ATOM	106	NE2	GLN A	12		7.983 -16.294		1.00 49.43
	MOTA	107	N	ASP A	13		1.736 -13.199		1.00 48.93
30	ATOM	108	CA	ASP A	13		0.516 -12.691		1.00 49.49
	MOTA	109	С	ASP A	13		0.413 -11.198		1.00 49.55
	MOTA	110	0	ASP A	13		0.082 -10.444		1.00 49.73
	ATOM	111	CB	ASP A	13		-0.732 -13.392		1.00 52.95
25	MOTA	112	CG	ASP A	13		-0.955 -14.680		0.00 99.00
35	MOTA	113		ASP A	13		-0.110 -15.160		0.00 99.00
	ATOM	114		ASP A	13		-2.054 -15.191		0.00 99.00 1.00 48.95
	ATOM	115	N	LYS A	14		0.801 -10.735		
	ATOM	116	CA	LYS A	14		0.809 ~9.313 1.794 ~8.575		1.00 49.25 1.00 49.07
40	ATOM	117	C	LYS A LYS A	14 14		1.470 -7.519		1.00 49.07
40	ATOM	118	O	LYS A	14		1.109 -9.040		1.00 52.53
	ATOM ATOM	119 120	CB CG	LYS A	14		-0.070 -8.421		1.00 52.33
	MOTA	121	CD	LYS A	14		-0.269 -6.975		1.00 66.42
	ATOM	122	CE	LYS A	14		-1.227 -6.247		1.00 70.58
45	ATOM	123	NZ	LYS A	14		-0.835 -4.824		1.00 72.01
43	ATOM	124	N	ILE A	15		2.984 -9.131		1.00 48.82
	ATOM	125	CA	ILE A	15		3.992 -8.530		1.00 49.56
	ATOM	126	C	ILE A	15		3.467 -8.390		1.00 50.17
	ATOM	127	ō	ILE A	15		3.538 -7.324		1.00 50.19
50	ATOM	128	CB	ILE A	15		5.288 -9.359		1.00 43.08
•	ATOM	129		ILE A	15		5.931 -9.100		1.00 45.94
	MOTA	130		ILE A	15		6.286 -8.951		1.00 47.46
	ATOM	131		ILE A	15		6.960 -10.120	40.472	1.00 42.94
	ATOM	132	N	LEU A	16		2.880 -9.437	36.623	1.00 51.16
55	ATOM	133	CA	LEU A	16		2.272 -9.406		1.00 52.54
	ATOM	134	C	LEU A	16		1.135 -8.414	35.191	1.00 52.81
	ATOM	135	Ö	LEU A	16		1.023 -7.678	34.194	1.00 53.37
_	ATOM	136	СВ	LEU A	16		1.859 -10.810	34.847	1.00 56.20
-	ATOM	137	CG	LEU A	16		3.067 -11.696	34.504	1.00 61.93
60	MOTA	138		LEU A	16		2.816 -13.139	34.904	1.00 65.17
	ATOM	139		LEU A	16		3.456 -11.572		1.00 62.31
	ATOM	140	N ·	THR A	17		0.274 -8.336		1.00 52.95
	MOTA	141	CA	THR A	17		-0.789 -7.332	36.217	1.00 53.67

ATOM 142 C THR A 17									•		
ATOM		ATOM	142	C	THR A	17		-0.232	-5.916	36.173	
*** **ATOM** 145		ATOM	143	0	THR A	17		-0.860	-5.026	35.590	1.00 54.21
S		ATOM	144	CB	THR A	17		-1.677	-7.468	37.468	
ATOM 148 CA HISA 18		MOTA	145	OG1	THR A	17		-2.321	-8.742	37.469	1.00 54.73
ATOM	5	MOTA	146	CG2	THR A	17		-2.713	-6.355	37.551	1.00 52.35
ATOM 149 C HIS A 18 1.495 -4.331 36.754 1.00 54.39 ATOM 150 O HIS A 18 1.260 -4.115 35.313 1.00 55.01 ATOM 151 CB HIS A 18 1.260 -4.168 37.755 1.00 55.01 ATOM 152 CG HIS A 18 2.663 -4.168 37.755 1.00 53.19 ATOM 152 CG HIS A 18 2.98 -3.867 39.130 1.00 52.86 ATOM 154 CD2 HIS A 18 2.98 -3.867 39.130 1.00 52.86 ATOM 155 CRI HIS A 18 1.82.98 -3.867 39.130 1.00 52.60 ATOM 155 CEI HIS A 18 1.216 -2.733 39.421 1.00 52.60 ATOM 155 CEI HIS A 18 1.216 -2.720 40.730 1.00 53.79 ATOM 156 NEZ HIS A 18 1.216 -2.720 40.730 1.00 53.79 ATOM 157 N TYR A 19 2.580 -5.122 34.721 1.00 55.17 ATOM 158 CA TYR A 19 2.580 -5.122 34.721 1.00 55.17 ATOM 159 C TYR A 19 1.890 -4.733 32.380 1.00 58.17 ATOM 160 O TYR A 19 1.890 -4.733 32.380 1.00 58.17 ATOM 161 CB TYR A 19 1.890 -4.733 32.380 1.00 58.92 ATOM 161 CB TYR A 19 3.759 -6.320 32.950 1.00 59.36 ATOM 162 CG TYR A 19 5.983 -5.607 33.934 1.00 63.25 ATOM 163 CDI TYR A 19 5.983 -5.607 33.934 1.00 63.25 ATOM 164 CD2 TYR A 19 5.983 -5.607 33.934 1.00 63.25 ATOM 166 CEI TYR A 19 7.517 -7.199 34.703 1.00 63.59 ATOM 167 CZ TYR A 19 7.517 -7.199 34.703 1.00 63.59 ATOM 168 CEI TYR A 19 7.517 -7.199 34.703 1.00 63.59 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.76 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.76 ATOM 170 CA GLU A 20 0.779 -5.451 32.499 1.00 59.76 ATOM 171 C GLU A 20 0.779 -5.451 32.499 1.00 59.76 ATOM 173 CB GLU A 20 0.779 -5.451 32.499 1.00 59.76 ATOM 174 CG GLU A 20 -1.198 -3.103 30.928 1.00 59.95 ATOM 175 CD GLU A 20 -1.198 -3.103 30.928 1.00 59.95 ATOM 176 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.95 ATOM 177 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.95 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 57.59 ATOM 179 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 170 CA GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 170 CA GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 170 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 170 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 170 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 170 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.76 ATOM 1		ATOM	147	N	HIS A	18		0.879		36.878	1.00 53.99
ATOM 149 C HIS A 18 1.960 -4.115 35.313 1.00 55.01 ATOM 151 CB HIS A 18 2.663 -4.168 37.757 1.00 54.91 ATOM 152 CG HIS A 18 2.663 -4.168 37.755 1.00 52.86 ATOM 153 ND1 HIS A 18 1.486 -2.733 39.422 1.00 52.86 ATOM 154 CD2 HIS A 18 2.362 -4.553 40.296 1.00 52.86 ATOM 155 CE1 HIS A 18 1.216 -2.720 40.730 1.00 53.99 15 ATOM 156 NE2 HIS A 18 1.216 -2.720 40.730 1.00 53.99 ATOM 157 N TYR A 19 2.580 -5.122 34.721 1.00 56.14 ATOM 158 CA TYR A 19 3.044 -5.034 33.337 1.00 58.97 ATOM 160 O TYR A 19 3.044 -5.034 33.337 1.00 58.92 ATOM 161 CB TYR A 19 3.044 -5.034 33.337 1.00 58.92 ATOM 161 CB TYR A 19 1.957 -3.827 31.552 1.00 59.36 ATOM 162 CG TYR A 19 1.957 -3.827 31.552 1.00 59.36 ATOM 163 CD TYR A 19 5.097 -6.621 33.860 1.00 62.05 ATOM 164 CD2 TYR A 19 5.933 -5.607 33.934 1.00 63.252 ATOM 165 CE1 TYR A 19 5.933 -5.607 33.934 1.00 63.252 ATOM 166 CC2 TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 166 CC2 TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 167 CZ TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 168 CB TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 167 CZ TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 168 CB TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.67 ATOM 170 C GLU A 20 0.779 -5.451 32.499 1.00 59.76 ATOM 171 C GLU A 20 0.799 -3.804 31.918 1.00 63.59 ATOM 173 CB GLU A 20 -1.499 -6.241 32.056 1.00 63.59 ATOM 174 CG GLU A 20 -1.499 -6.241 32.056 1.00 63.59 ATOM 177 CC GLU A 20 -1.499 -6.862 31.499 1.00 59.76 ATOM 178 N ASN A 21 -1.186 -3.304 33.145 1.00 63.59 ATOM 179 CA ASN A 21 -1.186 -3.304 33.112 1.00 57.79 ATOM 180 C ASN A 21 -1.186 -3.304 33.112 1.00 57.59 ATOM 180 C ASN A 21 -1.186 -3.304 33.112 1.00 57.59 ATOM 180 C ASN A 21 -1.186 -3.306 33.022 1.00 58.99 ATOM 180 C ASN A 21 -1.186 -3.306 33.022 1.00 58.59 ATOM 180 C ASN A 21 -1.186 -3.306 33.022 1.00 58.59 ATOM 180 C ASN A 21 -1.186 -3.306 33.022 1.00 58.59 ATOM 180 C ASN A 21 -1.186 -3.306 33.022 1.00 58.59 ATOM 180 C ASR A 22 0.010 -1.499 -3.662 33.022 1.00 58.59 ATOM 180 C ASR						18		1.495	-4.331	36.754	1.00 54.39
ATOM						18		1.960		35.313	1.00 55.01
10										34.757	1.00 54.91
ATOM 152 CG HIS A 18 2.198 -3.867 39.130 1.00 52.60 ATOM 153 NDI HIS A 18 1.486 -2.733 39.432 1.00 52.60 ATOM 155 CE1 HIS A 18 1.266 -2.733 39.432 1.00 52.60 ATOM 155 CE1 HIS A 18 1.216 -2.720 40.730 1.00 52.72 ATOM 156 NE2 HIS A 18 1.216 -2.720 40.730 1.00 53.99 15 ATOM 157 N TYR A 19 2.580 -5.122 34.721 1.00 53.27 ATOM 158 CA TYR A 19 3.044 -5.034 33.337 1.00 58.17 ATOM 159 C TYR A 19 1.890 -4.733 32.380 1.00 58.92 20 ATOM 160 O TYR A 19 1.957 -3.827 31.552 1.00 59.36 ATOM 161 CB TYR A 19 3.759 -6.320 32.950 1.00 59.36 ATOM 162 CG TYR A 19 5.097 -6.621 33.580 1.00 59.36 ATOM 163 CD1 TYR A 19 5.993 -5.607 33.934 1.00 63.22 ATOM 165 CE1 TYR A 19 5.993 -5.607 33.934 1.00 63.25 ATOM 166 CE2 TYR A 19 7.212 -5.891 34.488 1.00 63.58 ATOM 166 CE2 TYR A 19 7.597 -7.199 34.703 1.00 63.46 ATOM 167 CZ TYR A 19 8.828 -7.470 35.274 1.00 63.54 ATOM 168 OH TYR A 19 8.828 -7.470 35.274 1.00 63.56 ATOM 169 N GUJ A 20 -0.426 -5.196 31.734 1.00 59.59 30 ATOM 170 CA GUJ A 20 -0.990 -3.804 31.918 1.00 59.59 ATOM 171 C GUJ A 20 -0.990 -3.804 31.918 1.00 59.59 ATOM 172 O GUJ A 20 -1.198 -3.103 30.928 1.00 59.63 ATOM 174 CG GUJ A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 175 CD GUJ A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 177 OE2 GUJ A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 178 CB GUJ A 20 -1.149 -3.803 31.409 1.00 73.88 ATOM 179 CA ASN A 21 -1.866 -3.340 33.145 1.00 63.59 ATOM 179 CA ASN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 181 O ASN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 183 CG ASN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 180 CA SN A 21 -1.86 -3.340 33.405 1.00 57.50 ATOM 1	10						•			37.735	
ATOM 153 ND1 HIS A 18											
ATOM 154 CD2 HIS A 18											
ATOM											
15											
ATOM	15.										
ATOM	15										
ATOM 169 C TYR A 19 1.890 -4.733 32.380 1.00 58.92 ATOM 161 CB TYR A 19 1.957 -3.827 31.552 1.00 59.36 ATOM 162 CG TYR A 19 5.097 -6.621 33.580 1.00 59.36 ATOM 163 CD1 TYR A 19 5.097 -6.621 33.580 1.00 62.05 ATOM 164 CD2 TYR A 19 5.983 -5.607 33.934 1.00 63.22 ATOM 165 CE1 TYR A 19 5.983 -5.607 33.934 1.00 62.05 ATOM 166 CE2 TYR A 19 5.513 -7.934 33.787 1.00 62.96 ATOM 166 CE2 TYR A 19 7.212 -5.881 34.488 1.00 63.58 ATOM 166 CE2 TYR A 19 7.597 -7.199 34.703 1.00 63.58 ATOM 167 CZ TYR A 19 7.597 -7.199 34.703 1.00 63.58 ATOM 168 OH TYR A 19 8.828 -7.470 35.274 1.00 62.56 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 170 CA GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 171 C GLU A 20 -0.990 -3.804 31.918 1.00 59.59 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 174 CG GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 175 CD GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 176 OE1 GLU A 20 -1.176 -7.583 31.409 1.00 62.55 ATOM 177 OE2 GLU A 20 -2.149 -6.241 32.056 1.00 66.29 ATOM 178 N ASN N 21 -1.186 -3.340 33.145 1.00 73.88 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 78.60 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 78.94 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.140 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.140 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.140 1.00 57.95 ATOM 180 C ASN A 21 -1.186 -3.340 33.140 1.00 57.95 ATOM 180 C ASN A 21 -3.691 -3.695 32.242 1.00 53.00 ATOM 180 C ASN A 21 -3.691 -3.695 32.242 1.00 53.00 ATOM 180 C ASN A 21 -3.691 -3.695 32.242 1.00 53.00 ATOM 190 C A SP A											
ATOM											
20											
ATOM 162 CG TYR A 19 5.097 -6.621 33.580 1.00 62.05 ATOM 163 CD1 TYR A 19 5.983 -5.607 33.934 1.00 63.22 ATOM 164 CD2 TYR A 19 5.983 -5.607 33.934 1.00 63.25 ATOM 165 CE1 TYR A 19 7.212 -5.891 33.787 1.00 62.96 ATOM 166 CE2 TYR A 19 7.212 -5.891 34.488 1.00 63.58 ATOM 166 CE2 TYR A 19 7.597 -7.199 34.703 1.00 63.59 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 170 CA GLU A 20 0.779 -5.813 32.991 1.00 59.59 ATOM 171 C GLU A 20 0.0990 -3.804 31.914 1.00 59.76 ATOM 172 O GLU A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 173 CB GLU A 20 -1.499 -6.241 32.056 1.00 66.29 ATOM 174 CG GLU A 20 -1.499 -6.241 32.056 1.00 66.29 ATOM 175 CD GLU A 20 -1.749 -9.862 31.815 1.00 78.60 ATOM 176 OE1 GLU A 20 -1.749 -9.862 31.692 1.00 78.60 ATOM 177 OE2 GLU A 20 -1.749 -9.862 31.692 1.00 78.60 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 78.60 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 59.09 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 78.94 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 181 O ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 182 CB ASN A 21 -1.637 0.118 32.496 1.00 57.97 ATOM 184 OD1 ASN A 21 -1.637 0.118 32.496 1.00 57.97 ATOM 185 NA ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 187 N ASN A 21 -1.637 0.118 32.496 1.00 57.55 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 189 O ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 189 O ASP A 22 0.327 -0.826 33.022 1.00 63.05 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.98 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.98 ATOM 190 CB ASP A 22 0.632 2.652 32.444 1.00 57.95 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.95 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.95 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.95 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.95 ATOM 190 CB ASP A 22 0.327 -0.826 33.022 1.00 65.95 ATOM 190 CB A	••										
ATOM 164 CD2 TXR A 19 5.983 -5.607 33.934 1.00 63.22 ATOM 165 CEI TXR A 19 7.212 -5.891 33.488 1.00 63.58 25 ATOM 166 CE2 TXR A 19 7.212 -5.891 33.488 1.00 63.58 ATOM 167 CZ TYR A 19 7.597 -7.199 34.488 1.00 63.58 ATOM 168 OH TXR A 19 7.597 -7.199 34.703 1.00 63.58 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 170 CA GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 171 C GLU A 20 -0.426 -5.196 31.734 1.00 59.59 ATOM 172 O GLU A 20 -0.990 -3.804 31.918 1.00 59.59 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 174 CG GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 175 CD GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 176 OEI GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 177 CC GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 176 OEI GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 177 CC GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 177 CC GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 178 N ASN A 21 -1.176 -7.583 31.409 1.00 78.90 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 180 C ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.59 ATOM 183 CG ASN A 21 -1.637 0.118 32.496 1.00 57.59 ATOM 184 ODI ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 54.54 ATOM 189 O ASP A 22 0.632 2.652 32.441 1.00 55.59 ATOM 190 CB ASP A 22 0.618 0.369 30.967 1.00 61.61 ATOM 191 CG ASP A 22 0.618 0.369 30.967 1.00 61.62 ATOM 193 ODZ ASP A 22 0.618 0.369 30.967 1.00 61.69 ATOM 194 N SER A 23 0.616 1.683 34.401 1.00 54.54 ATOM 195 CA SER A 23 0.616 1.683 36.640 1.00 47.57 ATOM 196 C SER A 23 0.616 1.663 36.640 1.00 47.57 ATOM 197 O SER A 23 0.649 1.402 30.660 35.090 1.00 47.57 ATOM 199 O SER A 23 0.549 1.424 6.312 35.512 1.00 60.98 ATOM 199 O SER A 23 0.649 1.402 30.660 35.000 1.00 47.54	20										
ATOM 165 CD2 TYR A 19 5.513 -7.934 33.787 1.00 62.96 ATOM 165 CE1 TYR A 19 7.212 -5.891 34.488 1.00 63.58 ATOM 166 CE2 TYR A 19 6.745 -8.226 34.345 1.00 63.58 ATOM 168 OH TYR A 19 6.745 -8.226 34.345 1.00 63.58 ATOM 168 OH TYR A 19 8.828 -7.470 35.274 1.00 62.56 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 170 CA GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 171 C GLU A 20 -0.426 -5.196 31.734 1.00 59.76 ATOM 172 O GLU A 20 -0.426 -5.196 31.734 1.00 59.59 ATOM 172 O GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 174 CG GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 175 CD GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 176 CG GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 177 OE2 GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 176 OE1 GLU A 20 -1.176 -7.583 31.409 1.00 78.60 ATOM 177 OE2 GLU A 20 -1.749 -9.862 31.692 1.00 82.52 ATOM 177 OE2 GLU A 20 -3.272 -8.678 32.242 1.00 78.94 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 57.50 ATOM 180 C ASN A 21 -1.082 -0.853 32.491 1.00 57.59 ATOM 180 C ASN A 21 -1.082 -0.853 32.918 1.00 57.59 ATOM 182 CB ASN A 21 -1.082 -0.853 32.918 1.00 57.59 ATOM 182 CB ASN A 21 -1.083 -2.964 33.362 1.00 63.07 ATOM 183 CG ASN A 21 -3.089 -2.964 33.302 1.00 63.07 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 63.07 ATOM 187 OE ASP A 22 0.327 -0.826 33.022 1.00 63.95 ATOM 187 OE ASP A 22 0.327 -0.826 33.022 1.00 63.95 ATOM 189 O ASP A 22 0.327 -0.826 33.022 1.00 63.95 ATOM 189 O ASP A 22 0.632 2.652 32.444 1.00 52.55 ATOM 190 CB ASP A 22 0.618 0.369 30.967 1.00 61.62 59 ATOM 191 CG ASP A 22 0.618 0.369 30.967 1.00 61.62 59 ATOM 193 OG ASP A 22 0.618 0.369 30.967 1.00 61.62 59 ATOM 194 N SSR A 23 0.616 1.683 34.40 1.00 54.54 ATOM 195 OG ASP A 22 2.235 0.116 29.099 1.00 69.85 ATOM 194 N SSR A 23 0.616 1.683 34.40 1.00 56.98 ATOM		ATOM	162	CG	TYR A						
25 ATOM 166 CE2 TYR A 19 7.212 -5.891 34.488 1.00 63.58 ATOM 167 CZ TYR A 19 6.745 -8.226 34.345 1.00 63.59 ATOM 168 OH TYR A 19 7.597 -7.199 34.703 1.00 63.58 ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 170 CA GLU A 20 -0.426 -5.196 31.734 1.00 59.63 ATOM 171 C GLU A 20 -0.426 -5.196 31.734 1.00 59.59 ATOM 172 O GLU A 20 -0.990 -3.804 31.918 1.00 59.59 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.59 ATOM 174 CG GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 175 CD GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 176 OE1 GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 177 CC GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 78.60 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 78.94 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.94 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.94 ATOM 180 C ASN A 21 -1.186 -3.340 33.145 1.00 59.94 ATOM 181 O ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 180 C ASN A 21 -1.637 0.118 32.496 1.00 57.97 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.97 ATOM 182 CB ASN A 21 -1.637 0.118 32.496 1.00 57.50 ATOM 185 NO ASN A 21 -3.691 -3.685 34.563 1.00 60.307 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 57.50 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 57.50 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 57.50 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 57.50 ATOM 189 O ASP A 22 0.632 2.652 32.441 1.00 57.50 ATOM 189 O ASP A 22 0.632 2.655 30.214 1.00 63.07 ATOM 189 O ASP A 22 0.632 2.655 30.214 1.00 65.99 ATOM 191 CG ASP A 22 0.632 2.655 30.214 1.00 65.99 ATOM 194 N SER A 23 0.616 1.683 34.40 1.00 59.98 ATOM 195 CA SER A 23 0.616 1.683 34.40 1.00 47.57 ATOM 198 CB SER A 23 0.616 1.683 34.40 1.00 47.57 ATOM 199 OG SER A 23 0.616 1.663 30.640 1.00 47.57 ATOM 199 OG SER A 23 0.649 3.064 3.069 3.00 60.80 ATOM 199 OG SER A 23 0.610 2.633 36.640 1.00 47.57 ATOM 199 OG SER A 23 0.616 1.663 36.640 1.00 47.57 ATOM 199 OG SER A 23 0.649 3.060 3.095 1.00 47.57 ATOM 199 OG SER A 23 0.649 3.060 3.095 1.00 47.57 ATOM 199 OG SER A 23 0.649 3.060 3		ATOM	163	CD1	TYR A	19					
25 ATOM 166 CE2 TYR A 19		MOTA	164	CD2	TYR A	19					
ATOM 168 OH TYR A 19		MOTA	165	CE1	TYR A	19		7.212	-5.891	34.488	1.00 63.58
ATOM 168 OH TYR A 19	25	ATOM	166	CE2	TYR A	19		6.745	-8.226	34.345	1.00 63.59
ATOM 168 OH TYR A 19			167	CZ	TYR A	19		7.597	-7.199	34.703	1.00 63.46
ATOM 169 N GLU A 20 0.779 -5.451 32.499 1.00 59.63 ATOM 170 CA GLU A 20 -0.426 -5.196 31.734 1.00 59.76 ATOM 171 C GLU A 20 -0.990 -3.804 31.918 1.00 59.76 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 173 CB GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 173 CB GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 175 CD GLU A 20 -2.142 -8.6678 31.815 1.00 78.60 35 ATOM 176 OE1 GLU A 20 -1.176 -7.583 31.409 1.00 78.60 ATOM 177 OE2 GLU A 20 -1.176 -7.583 31.409 1.00 78.60 ATOM 177 OE2 GLU A 20 -1.176 -3.340 33.145 1.00 59.90 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 180 C ASN A 21 -1.002 -0.853 33.404 1.00 57.97 ATOM 180 C ASN A 21 -1.637 0.118 32.496 1.00 57.97 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.691 -3.665 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 186 C ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 55.59 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 53.00 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 55.59 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 55.59 ATOM 190 CB ASP A 22 0.632 2.246 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 2.246 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 2.249 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 1.00 52.65 30 ATOM 190 CB ASP A 22 0.632 32.424 3.960 35.095 1.00 48.00 49.25 34 A									-7.470	35.274	1.00 62.56
ATOM 170 CA GLU A 20										32.499	1.00 59.63
30											
ATOM 172 O GLU A 20 -1.198 -3.103 30.928 1.00 59.90 ATOM 173 CB GLU A 20 -1.499 -6.241 32.056 1.00 66.29 ATOM 174 CG GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 175 CD GLU A 20 -2.142 -8.678 31.815 1.00 78.60 35 ATOM 176 OE1 GLU A 20 -1.749 -9.862 31.692 1.00 82.52 ATOM 177 OE2 GLU A 20 -3.272 -8.365 32.242 1.00 78.94 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 180 C ASN A 21 -1.002 -0.853 32.918 1.00 57.97 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.685 34.563 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.691 -3.685 34.563 1.00 62.59 45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 192 OD1 ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 193 OD2 ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 194 N SER A 23 0.616 1.683 34.401 1.00 64.95 ATOM 195 CA SER A 23 0.616 1.683 34.401 1.00 64.59 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 64.95 ATOM 197 O SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 197 O SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 ATOM 201 CA THR A 24 0.847 5.152 35.441 1.00 47.42 ATOM 202 C THR A 24 1.724 6.312 35.512 1.00 47.34 ATOM 203 O THR A 24 1.731 6.860 36.920 1.00 47.34	30										
ATOM 173 CB GLU A 20 -1.499 -6.241 32.056 1.00 66.29 ATOM 174 CG GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 175 CD GLU A 20 -2.142 -8.678 31.409 1.00 78.60 35 ATOM 176 OE1 GLU A 20 -1.749 -9.862 31.692 1.00 82.52 ATOM 177 OE2 GLU A 20 -3.272 -8.365 32.242 1.00 78.94 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.784 -2.053 33.404 1.00 57.70 ATOM 180 C ASN A 21 -1.637 0.118 32.496 1.00 57.50 40 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 52.50 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 54.54 ATOM 189 C ASP A 22 0.632 2.652 32.424 1.00 52.55 ATOM 190 CB ASP A 22 0.632 2.655 30.214 1.00 65.99 ATOM 191 CG ASP A 22 0.632 2.655 30.214 1.00 65.99 ATOM 193 OD2 ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.255 0.116 29.099 1.00 63.07 ATOM 193 OD2 ASP A 22 2.255 0.116 29.099 1.00 63.95 ATOM 194 N SER A 23 0.213 2.879 35.148 1.00 49.95 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.95 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.95 ATOM 197 O SER A 23 0.213 2.879 35.148 1.00 49.95 ATOM 199 OG SER A 23 0.213 2.879 35.441 1.00 65.99 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 201 CA THR A 24 0.847 5.152 35.441 1.00 47.41	50										
ATOM 174 CG GLU A 20 -1.176 -7.583 31.409 1.00 73.88 ATOM 175 CD GLU A 20 -2.142 -8.678 31.815 1.00 78.60 31.815 ATOM 176 OE1 GLU A 20 -1.749 -9.862 31.815 1.00 78.60 31.815 ATOM 177 OE2 GLU A 20 -1.749 -9.862 31.692 1.00 82.52 ATOM 177 OE2 GLU A 20 -3.272 -8.365 32.242 1.00 78.94 ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 57.97 ATOM 180 C ASN A 21 -1.002 -0.853 32.918 1.00 57.59 ATOM 181 O ASN A 21 -1.002 -0.853 32.918 1.00 57.19 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 185 ND2 ASN A 21 -3.089 -2.964 35.362 1.00 60.88 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 54.54 ATOM 188 C ASP A 22 0.327 -0.826 33.022 1.00 54.54 ATOM 188 C ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.818 0.369 30.967 1.00 66.98 ATOM 192 OD1 ASP A 22 2.235 0.116 29.099 1.00 65.99 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 65.98 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 197 O SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 197 O SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 47.42 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 47.42 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 47.41											
ATOM 175 CD GLU A 20											
ATOM											
ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 78.94 ATOM 179 CA ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.784 -2.053 33.404 1.00 57.50 ATOM 180 C ASN A 21 -1.002 -0.853 32.918 1.00 57.50 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.50 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.818 0.369 30.967 1.00 61.62 59 ATOM 192 OD1 ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 193 OD2 ASP A 22 2.2946 1.402 30.765 1.00 64.95 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 50 ATOM 197 O SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 198 CB SER A 23 0.213 2.879 35.148 1.00 47.57 ATOM 198 CB SER A 23 0.213 2.879 35.148 1.00 47.57 ATOM 198 CB SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 47.41 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	25										
ATOM 178 N ASN A 21 -1.186 -3.340 33.145 1.00 59.04 ATOM 179 CA ASN A 21 -1.784 -2.053 33.404 1.00 57.97 ATOM 180 C ASN A 21 -1.002 -0.853 32.918 1.00 57.50 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.50 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 185 ND2 ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 1.080 0.299 32.480 1.00 54.54 ATOM 188 C ASP A 22 1.080 0.299 32.480 1.00 54.54 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 53.00 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.818 0.369 30.967 1.00 61.62 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 47.57 ATOM 198 CB SER A 23 0.213 2.879 35.148 1.00 47.57 ATOM 199 OG SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.41	33										
ATOM 179 CA ASN A 21 -1.784 -2.053 33.404 1.00 57.97 ATOM 180 C ASN A 21 -1.002 -0.853 32.918 1.00 57.50 40 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 184 OD1 ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 185 ND2 ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 54.54 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 193 OD2 ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 47.57 ATOM 199 OG SER A 23 0.213 2.879 35.148 1.00 47.57 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.41 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 47.34 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.41											
ATOM 180 C ASN A 21 -1.002 -0.853 32.918 1.00 57.50 40 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 0.327 -0.826 33.022 1.00 54.54 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 193 OD2 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 56 ATOM 197 O SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 47.57 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 47.42 60 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 61 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.41 ATOM 203 O THR A 24 1.731 6.860 36.920 1.00 47.41											
40 ATOM 181 O ASN A 21 -1.637 0.118 32.496 1.00 57.19 ATOM 182 CB ASN A 21 -2.149 -1.876 34.875 1.00 61.71 ATOM 183 CG ASN A 21 -3.089 -2.964 35.362 1.00 63.07 ATOM 184 OD1 ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 1.080 0.299 32.480 1.00 54.54 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 197 O SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 198 CB SER A 23 0.213 2.879 35.148 1.00 49.25 56 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.731 6.860 36.920 1.00 47.41											
ATOM 182 CB ASN A 21											
ATOM 183 CG ASN A 21	40										
ATOM 184 OD1 ASN A 21 -3.691 -3.685 34.563 1.00 60.88 ATOM 185 ND2 ASN A 21 -3.161 -3.066 36.685 1.00 62.59 45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 1.080 0.299 32.480 1.00 54.54 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 191 CG ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 197 O SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 199 OG SER A 23 0.549 3.746 34.740 1.00 47.57 ATOM 199 CG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.41		MOTA									
ATOM 185 ND2 ASN A 21		MOTA	183	CG	ASN A						
45 ATOM 186 N ASP A 22 0.327 -0.826 33.022 1.00 56.38 ATOM 187 CA ASP A 22 1.080 0.299 32.480 1.00 54.54 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 197 O SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 198 CB SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41		ATOM	184	OD1	ASN A	21		-3.691	-3.685	34.563	
ATOM 187 CA ASP A 22 1.080 0.299 32.480 1.00 54.54 ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 51 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 47.57 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41		MOTA	185	ND2	ASN A	21		-3.161	-3.066	36.685	1.00 62.59
ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 197 O SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 198 CB SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 0.549 1.424 36.984 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	45	ATOM	186	N	ASP A	22		0.327	-0.826	33.022	
ATOM 188 C ASP A 22 0.710 1.630 33.112 1.00 53.00 ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 47.57 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41		ATOM	187	CA	ASP A	22		1.080	0.299	32.480	1.00 54.54
ATOM 189 O ASP A 22 0.632 2.652 32.424 1.00 52.65 ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 196 C SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 0.549 1.424 36.984 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41					ASP A			0.710	1.630	33.112	1.00 53.00
ATOM 190 CB ASP A 22 0.818 0.369 30.967 1.00 61.62 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41								0.632	2.652	32.424	1.00 52.65
50 ATOM 191 CG ASP A 22 2.107 0.655 30.214 1.00 65.99 ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG											1.00 61.62
ATOM 192 OD1 ASP A 22 2.946 1.402 30.765 1.00 64.95 ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	50										
ATOM 193 OD2 ASP A 22 2.235 0.116 29.099 1.00 69.58 ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	-										
ATOM 194 N SER A 23 0.616 1.683 34.440 1.00 50.98 ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 55 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41								2 235			
ATOM 195 CA SER A 23 0.213 2.879 35.148 1.00 49.25 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41											
55 ATOM 196 C SER A 23 1.294 3.960 35.095 1.00 48.02 ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41											
ATOM 197 O SER A 23 2.450 3.746 34.740 1.00 47.57 ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	55										
ATOM 198 CB SER A 23 -0.101 2.633 36.640 1.00 46.04 ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	23										
ATOM 199 OG SER A 23 0.549 1.424 36.984 1.00 56.16 ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41										34./40	
ATOM 200 N THR A 24 0.847 5.152 35.441 1.00 47.42 60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41											
60 ATOM 201 CA THR A 24 1.724 6.312 35.512 1.00 48.00 ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41											
ATOM 202 C THR A 24 1.731 6.860 36.920 1.00 47.34 ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41											
ATOM 203 O THR A 24 2.328 7.898 37.173 1.00 47.41	60										
ATOM 204 CB THR A 24 1.369 7.421 34.505 1.00 50.50											
		MOTA	204	CB	THR A	24	*	1.369	7.421	34.505	1.00 50.50

	ATOM	205	OG1		24	0.042	7.871	34.734	1.00 51.02
	MOTA	206	CG2		24	1.558	6.901	33.094	1.00 48.60
	ATOM	207	N	ASP A	25	1.124	6.096	37.828	1.00 46.98
_	ATOM	208	CA	ASP A	25	1.058	6.453	39.234	1.00 46.50
5	MOTA	209	С	ASP A	25	2.193	5.788	40.013	1.00 45.63
	ATOM	210	0	ASP A	25	2.376	4.578	40.042	1.00 44.95
	MOTA	211	CB	ASP A	25	-0.286	6.024	39.847	1.00 53.36
	MOTA	212	CG	ASP A	25	-1.442	6.789	39.202	1.00 62.10
	ATOM	213		ASP A	25	-1.605	7.997	39.498	1.00 64.72
10	MOTA	214		ASP A	25	-2.185	6.192	38.392	1.00 62.72
	ATOM	215	N	LEU A	26	3.000	6.633	40.614	1.00 45.40
	ATOM	216	CA	LEU A	26	4.167	6.207	41.381	1.00 45.37
	ATOM	217	C	LEU A	26	3.834	5.157	42.418	1.00 45.85
. ~	MOTA	218	0	LEU A	26	4.563	4.170	42.565	1.00 46.38
15	ATOM	219	CB	LEU A	26	4.763	7.483	41.982	1.00 44.87
	ATOM	220	CG	LEU A	26	6.056	7.341	42.783	1.00 44.69
	ATOM	221		LEU A	26	7.128	6.688	41.931	1.00 40.20
	MOTA	222		LEU A	26	6.529	8.703	43.267	1.00 46.93
00	ATOM	223	N	ARG A	27	2.741	5.281	43.178	1.00 45.28
20	ATOM	224	CA	ARG A	27	2.266	4.241	44.065	1.00 45.19
	MOTA	225	C	ARG A	27	2.251	2.841	43.483	1.00 44.47
	ATOM	226	0	ARG A	27	2.610	1.886	44.187	1.00 44.56
	ATOM	227	CB	ARG A	27	0.852	4.494 5.531	44.607	1.00 51.04 1.00 61.27
25	MOTA	228	CG	ARG A	27	0.713 -0.715	6.081	45.690 45.714	1.00 66.89
25	MOTA	229	CD	ARG A	27	-0.713	6.984	46.839	1.00 75.54
	ATOM	230	NE	ARG A	27 27	-2.083	7.555	47.170	1.00 75.34
	MOTA	231	CZ	ARG A	27	-3.184	7.333	46.456	1.00 79.30
	ATOM	232 233		ARG A	27	-2.152	8.359	48.228	1.00 79.78
30	ATOM ATOM	234	N	ASP A	28	1.771	2.632	42.255	1.00 43.06
30	ATOM	235	CA	ASP A	28	1.785	1.318	41.648	1.00 41.77
	ATOM	236	C	ASP A	28	3.195	0.797	41.385	1.00 41.18
	ATOM	237	0	ASP A	28	3.408	-0.409	41.402	1.00 40.08
	ATOM	238	CB	ASP A	28	1.014	1.325	40.303	1.00 44.91
35	ATOM	239	CG	ASP A	28	-0.450	1.655	40.560	1.00 53.31
22	ATOM	240		ASP A	28	-1.014	2.560	39.920	1.00 53.29
	ATOM	241		ASP A	28	-1.022	0.983	41.446	1.00 52.80
	ATOM	242	N	HIS A	29	4.132	1.700	41.062	1.00 40.87
	ATOM	243	CA	HIS A	29	5.510	1.269	40.787	1.00 40.10
40	ATOM	244	C	HIS A	29	6.208	0.795	42.073	1.00 39.08
	ATOM	245	ŏ	HIS A	29	6.987	-0.143	42.045	1.00 38.12
	ATOM	246	ÇВ	HIS A	29	6.246	2.473	40.166	1.00 40.60
	ATOM	247	CG	HIS A	29	5.590	2.806	38.837	1.00 42.13
	ATOM	248		HIS A	29	5.069	1.810	38.042	1.00 42.28
45	ATOM	249		HIS A	29	5.373	3.980	38.192	1.00 44.10
	ATOM	250		HIS A	29	4.552	2.348	36.943	1.00 43.73
	ATOM	251		HIS A	29	4.738	3.656	37.014	1.00 42.95
	ATOM	252	N	ILE A	30	5.896	1.454	43.152	1.00 39.44
	ATOM	253	CA	ILE A	30	6.339	0.990	44.501	1.00 39.95
50	MOTA	254	С	ILE A	30	5.899	-0.426	44.746	1.00 40.09
	ATOM	255	0	ILE A	30	6.658	-1.303	45.181	1.00 41.16
	MOTA	256	CB	ILE A	30	5.843	1.991	45.550	1.00 40.65
	ATOM	257	CG1	ILE A	30	6.563	3.321	45.334	1.00 40.86
	ATOM	258		ILE A	30	6.125	1.537	47.004	1.00 41.39
55	MOTA	259		ILE A	30	6.060	4.498	46.138	1.00 42.24
	ATOM	260	N	ASP A	31	4.631	-0.764	44.485	1.00 41.09
	ATOM .	261	CA	ASP A	31	4.082	-2.089	44.758	1.00 40.37
	MOTA	262	C	ASP A	31	4.718	-3.130	43.856	1.00 40.59
	ATOM	263	0	ASP A	31	4.965	-4.277	44.244	1.00 40.70
60	ATOM	264	CB	ASP A	31	2.566	-2.080	44.459	1.00 42.53
	MOTA	265	CG	ASP A	31	1.886	-3.379	44.801	1.00 44.66
	ATOM	266		ASP A	31	1.799	-4.311	43.991	1.00 46.03
	ATOM	267	OD2	ASP A	31	1.495	-3.517	45.987	1.00 53.28

								•		
	ATOM	268	N	TYR	Α	32	4.945		42.589	1.00 39.00
	MOTA	269	CA	TYR	Α	32	5.636		41.677	1.00 38.51
	MOTA	270	С	TYR	Α	32	7.017		42.231	1.00 36.55
	ATOM	271	0	TYR		32	7.359		42.252	1.00 36.44
5	MOTA	272	CB	TYR	Α	32	5.765		40.324	1.00 39.37
	ATOM	273	CG	TYR		32	6.750		39.369	1.00 42.61
	ATOM	274	CD1	TYR		32	6.374		38.646	1.00 45.04
	ATOM	275	CD2			32	8.005		39.141	1.00 43.12
	ATOM	276	CE1			32	7.245		37.758	1.00 46.06
10	MOTA	277	CE2	TYR		32	8.871		38.235	1.00 44.10
	MOTA	278	CZ	TYR		32	8.489		37.545	1.00 45.75
	ATOM	279	OH	TYR		32	9.322		36.633	1.00 44.58
	MOTA	280	N	TRP		33	7.850		42.552	1.00 36.14
	MOTA	281	CA	TRP		33	9.183		43.061	1.00 36.59
15	ATOM	282	C	TRP		33	9.144		44.391	1.00 36.80
	ATOM	283	0		Α	33	10.050		44.634	1.00 37.42
	ATOM	284	CB	TRP		33	10.054		43.159	1.00 37.44
	ATOM	285	CG	TRP		33	10.588		41.780	1.00 34.77
20	MOTA	286	CD1			33	10.244		40.979	1.00 35.47
20	ATOM	287	CD2	TRP		33	11.522		41.047	1.00 32.86
	ATOM	288	NE1	TRP		33	10.974		39.805	1.00 32.84
	ATOM	289	CE2	TRP		33	11.735		39.799	1.00 35.43
	ATOM	290	CE3			33	12.209		41.301	1.00 32.38
25	ATOM	291	CZ2			33	12.595		38.832	1.00 35.55 1.00 37.27
25	ATOM	292	CZ3	TRP		33	13.061		40.337	1.00 37.27
•	ATOM	293	CH2			33 34	13.245 8.150		39.108 45.246	1.00 37.05
	MOTA	294	N	LYS		34	7.990		46.437	1.00 37.56
	MOTA	295 296	CA C	LYS LYS		34	7.687		46.060	1.00 37.30
30	ATOM ATOM	290	0	LYS		34	8.220		46.684	1.00 37.30
30	ATOM	298	СВ	LYS		34	6.860		47.345	1.00 37.23
	ATOM	299	CG	LYS		34	7.111		47.891	1.00 41.05
	ATOM	300	CD	LYS		34	6.095		48.945	1.00 47.20
	ATOM	301	CE	LYS		34	5.764		48.964	1.00 49.66
35	ATOM	302	NZ	LYS		34	5.046		50.219	1.00 57.26
33	ATOM	303	N	HIS		35	6.853		45.025	1.00 37.50
	ATOM	304	CA	HIS		35	6.670		44.525	1.00 36.43
	ATOM	305	C	HIS		35	7.913		43.875	1.00 35.96
	ATOM	306	Õ	HIS		35	8.237		43.986	1.00 34.61
40	ATOM	307	CB	HIS		35	5.446		43.587	1.00 40.23
	ATOM	308	CG ·	HIS		35	4.200		44.428	1.00 44.09
	ATOM	309		HIS		35	3.567		44.788	1.00 48.39
	ATOM	310		HIS		35	3.539		45.058	1.00 48.71
	MOTA	311		HIS		35	2.538		45.574	1.00 48.93
45	MOTA	312	NE2	HIS	Α	35	2.524	-8.283	45.774	1.00 47.98
	ATOM	313	N	MET	Α	36	8.665	-7.457	43.180	1.00 35.13
	MOTA	314	CA	MET	Α	36	9.927	-7.985	42.606	1.00 35.12
	ATOM	315	С	MET		36	10.836	-8.474	43.753	1.00 35.05
	ATOM	316	0	MET	Α	36	11.472	-9.504	43.634	1.00 34.78
50	ATOM	317	CB	MET	Α	36	10.584	-6.890	41.772	1.00 36.78
	ATOM	318	CG	MET	A	36	9.832		40.454	1.00 38.38
	ATOM	319	SD	MET	A	36	10.026	-7.870	39.206	1.00 39.79
	MOTA	320	CE	MET	Α	36	11.681		38.605	1.00 43.43
	ATOM	321	N	ARG		37	10.903		44.853	1.00 35.39
55	ATOM	322	CA	ARG		37			46.004	1.00 35.09
	MOTA	323	С	ARG		37	11.240		46.667	1.00 34.61
	MOTA	324	0	ARG		37	12.028		46.996	1.00 33.53
	MOTA	325	CB	ARG		37	11.555		47.018	1.00 34.72
. .	MOTA	326	CG	ARG		37	12.370		48.305	1.00 34.13
60	ATOM	327	CD	ARG		37	12.132	-5.981	49.197	1.00 34.07
	MOTA	328	NE	ARG		37	12.665		50.551	1.00 35.48
	MOTA	329	CZ	ARG		37	12.420		51.520	1.00 33.64
	ATOM	330	NH1	ARG	Α	37	11.676	-4.228	51.375	1.00 38.49

	ATOM ATOM	331 332	NH2 N	ARG A LEU A	37 38	12.948 -5.572 9.920 -9.544	52.719 46.841	1.00 32.86 1.00 33.92
	ATOM	333	CA	LEU A	38	9.330 -10.768	47.372	1.00 34.82
	ATOM	334	С	LEU A	38	9.592 -11.985	46.532	1.00 36.08
5	ATOM	335	0	LEU A	38	9.879 -13.050	47.066	1.00 35.88
	ATOM	336	CB	LEU A	38	7.806 -10.549	47.542	1.00 37.00
	ATOM	337	CG	LEU A	38	7.048 -11.843	47.862	1.00 39.41
	ATOM ATOM	338 339		LEU A LEU A	38 38	7.338 -12.303 5.544 -11.698	49.271 47.633	1.00 36.17 1.00 42.91
10	ATOM	340	N	GLU A	39	9.532 -11.873	45.176	1.00 36.01
	ATOM	341	CA	GLU A	39	9.903 -12.982	44.328	1.00 35.41
	ATOM	342	С	GLU A	39	11.310 -13.492	44.650	1.00 35.95
	ATOM	343	0	GLU A	39	11.524 -14.706	44.610	1.00 34.71
	ATOM	344	CB	GLU A	39	9.826 -12.621	42.814	1.00 33.83
15	MOTA	345	CG	GLU A	39	9.999 -13.858	41.944	1.00 35.55
	ATOM ATOM	346 347	CD	GLU A GLU A	39 39	10.153 -13.499 11.229 -12.997	40.467 40.106	1.00 44.56 1.00 42.84
	ATOM	348		GLU A	39	9.219 -13.700	39.690	1.00 42.80
	ATOM	349	N	CYS A	40	12.280 -12.600	44.916	1.00 35.37
20	ATOM	350	CA	CYS A	40	13.616 -13.054	45.262	1.00 35.02
	MOTA	351	С	CYS A	40	13.603 -13.852	46.574	1.00 35.78
	ATOM	352	0	CYS A	40	14.329 -14.842	46.621	1.00 35.14
	ATOM	353	CB	CYS A	40	14.587 -11.879	45.434	1.00 34.19
25	ATOM ATOM	354 355	SG N	CYS A ALA A	40 41	14.743 -10.845 12.796 -13.419	43.945 47.540	1.00 35.07 1.00 36.59
23	ATOM	356	CA	ALA A	41	12.772 -14.160	48.820	1.00 38.13
	MOTA	357	C	ALA A	41	12.191 -15.553	48.590	1.00 37.52
	ATOM	358	0	ALA A	41	12.659 -16.527	49.200	1.00 38.32
•	MOTA	359	CB	ALA A	41	11.955 -13.380	49.827	1.00 36.08
30	MOTA	360	N	ILE A	42	11.221 -15.674	47.663	1.00 37.54
	ATOM	361	CA	ILE A	42	10.629 -16.995	47.397	1.00 36.18 1.00 36.44
	ATOM ATOM	362 363	С О	ILE A	42 42	11.626 -17.922 11.856 -19.069	46.753. 47.133	1.00 35.31
	ATOM	364	СВ	ILE A	42	9.325 -16.907	46.581	1.00 36.30
35	ATOM	365	CG1	ILE A	42	8.225 -16.165	47.345	1.00 38.51
	ATOM	366	CG2	ILE A	42	8.865 -18.282	46.108	1.00 38.23
	ATOM	367	CD1	ILE A	42	7.114 -15.700	46.390	1.00 41.57
	MOTA	368	N	TYR A	43	12.321 -17.436	45.707	1.00 35.53
40	ATOM ATOM	369 370	CA	TYR A	43 43	13.341 -18.254 14.479 -18.536	45.060 46.047	1.00 36.20 1.00 36.21
40	ATOM	371	С О .	TYR A	43	15.091 -19.597	45.993	1.00 36.21
	ATOM	372	СВ	TYR A	43	13.884 -17.474	43.838	1.00 36.61
	ATOM	373	CG	TYR A	43	13.065 -17.637	42.572	1.00 38.55
	MOTA	374	CD1	TYR A	43	12.717 -16.512	41.820	1.00 39.59
45	ATOM	375	CD2	TYR A	43	12.644 -18.871	42.116	1.00 39.53
	ATOM	376	CE1		43	11.998 -16.626	40.646	1.00 41.22 1.00 40.40
	ATOM ATOM	377 378	CZ	TYR A TYR A	43 43	11.943 -19.006 11.604 -17.884	40.918 40.210	1.00 40.78
	ATOM	379	ОН	TYR A	43	10.847 -17.954	39.081	1.00 41.19
50	ATOM	380	N	TYR A	44	14.794 -17.563	46.906	1.00 35.43
	ATOM	381	CA	TYR A	44	15.933 -17.815	47.811	1.00 37.45
•	MOTA	382	C	TYR A	44	15.547 -19.008	48.716	1.00 37.65
	ATOM	383	0	TYR A	44	16.329 -19.945	48.876	1.00 38.00
55 .	ATOM	384	CB	TYR A TYR A	44 44	16.205 -16.555 17.445 -16.670	48.635 49.503	1.00 38.20 1.00 40.09
<i>J J</i> .	ATOM ATOM	385 386	CG	TYR A	44	17.398 -17.286	50.756	1.00 41.30
	ATOM	387		TYR A	44	18.663 -16.206	49.041	1.00 40.77
	ATOM	388		TYR A	44	18.569 -17.412	51.492	1.00 42.23
	ATOM	389		TYR A	44	19.833 -16.312	49.776	1.00 42.80
60	MOTA	390	CZ	TYR A	44	19.746 -16.907	51.023	1.00 43.39
	ATOM	391	OH.	TYR A	44	20.863 -17.049	51.798	1.00 45.51
	ATOM ATOM	392 393	N CA	LYS A	45 45	14.334 -18.982 13.891 -20.078	49.224 50.118	1.00 38.11 1.00 40.98
	AION	222	CA	א פור	- J	13.031 -20.070	20.110	2.00 40.90

	MOTA	394	С	LYS A	45	13.832 -21.403	49.387	1.00 41.49
	MOTA	395	0	LYS A	45	14.315 -22.472	49.789	1.00 42.02
	MOTA	396	CB	LYS A	45	12.537 -19.754	50.750	1.00 40.25
	MOTA	397	CG	LYS A	45	11.968 -20.894	51.614	1.00 48.19
5	ATOM	398	CD	LYS A	45	12.824 -21.269	52.813	1.00 51.93
_	ATOM	399	CE	LYS A	45	12.671 -20.308	53.983	1.00 59.68
	ATOM	400	NZ	LYS A	45	13.979 -20.145	54.698	1.00 61.34
	ATOM	401	N	ALA A	46	13.307 -21.357	48.139	1.00 42.39
	ATOM	402	CA	ALA A	46	13.230 -22.586	47.356	1.00 41.88
10	ATOM	403	C	ALA A	46	14.613 -23.167	47.179	1.00 41.96
10	ATOM	404	Ö	ALA A	46	14.828 -24.368	47.347	1.00 42.06
		405	СВ	ALA A	46	12.561 -22.294	46.004	1.00 45.41
	ATOM			ARG A	47	15.605 -22.341	46.839	1.00 42.18
	ATOM	406	N		47	16.967 -22.806	46.649	1.00 42.10
15	ATOM	407	CA	ARG A		17.567 -23.364	47.949	1.00 44.97
15	ATOM	408	C	ARG A	47			
	ATOM	409	0_	ARG A	47	18.270 -24.377	47.899	1.00 44.85
	MOTA	410	CB	ARG A	47	17.873 -21.700	46.134	1.00 39.95
	ATOM	411	CG	ARG A	47	19.278 -22.115	45.751	1.00 44.08
	ATOM	412	CD	ARG A	47	19.323 -23.087	44.564	1.00 51.87
20	MOTA	413	NE	ARG A	47	20.701 -23.450	44.306	1.00 57.92
	ATOM	414	CZ	ARG A	47	21.372 -24.042	43.351	1.00 62.27
	ATOM	415	NH1	ARG A	47	20.819 -24.506	42.243	1.00 60.85
	MOTA	416	NH2	ARG A	47	22.696 -24.175	43.516	1.00 66.76
	ATOM	417	Ν.	GLU A	48	17.287 -22.673	49.051	1.00 45.14
25	ATOM	418	CA	GLU A	48	17.783 -23.090	50.364	1.00 48.18
	ATOM	419	·C	GLU A	48	17.266 -24.500	50.681	1.00 48.66
,	MOTA	420	0	GLU A	48	18.009 -25.362	51.122	1.00 49.01
	ATOM	421	СВ	GLU A	48	17.202 -22.208	51.472	1.00 50.97
	MOTA	422	CG	GLU A	48	17.987 -21.039	51.955	1.00 59.37
30	MOTA	423	CD	GLU A	48	17.911 -20.689	53.432	1.00 58.91
-	ATOM	424		GLU A	48	16.891 -20.144	53.912	1.00 64.65
	ATOM	425		GLU A	48	18.904 -20.949	54.156	1.00 64.43
	ATOM	426	N	MET A	49	16.000 -24.730	50.361	1.00 49.75
	ATOM	427	CA	MET A	49	15.358 -26.017	50.510	1.00 50.42
35	ATOM	428	C	MET A	49	15.738 -27.106	49.543	1.00 50.69
55	ATOM	429	Õ	MET A	49	15.197 -28.218	49.620	1.00 51.52
		430		MET A	49	13.840 -25.835	50.513	1.00 53.09
	ATOM		CB	MET A	49	13.351 -25.048	51.719	1.00 55.67
	ATOM	431	CG ·			11.617 -24.613	51.508	1.00 64.13
40	ATOM	432	SD	MET A	49	10.922 -24.927	53.123	1.00 64.34
40	ATOM	433	CE	MET A	49	16.616 -26.852		1.00 50.09
	ATOM	434	N	GLY A	50		48.592 47.664	1.00 30.09
	ATOM	435	CA	GLY A	50	17.159 -27.787		1.00 48.31
-	ATOM	436	C	GLY A	50	16.332 -27.949	46.384	1.00 48.34
4.5	MOTA	437	0	GLY A	50	16.603 -28.920	45.679	
45	ATOM	438	N	PHE A	51	15.383 -27.074	46.084	1.00 48.32
	MOTA	439	CA	PHE A		14.628 -27.205	44.837	
	ATOM	440	С	PHE A	51	15.442 -26.616	43,675	1.00 49.10
	ATOM	441	0	PHE A	51	16.187 -25.659	43.884	1.00 48.66
	MOTA	442	CB	PHE A		13.266 -26.527	44.904	1.00 54.66
50	MOTA	443	CG	PHE A	51	12.370 -27.030	46.005	1.00 62.30
	MOTA	444	CD1	PHE A	51	12.237 -28.382	46.261	1.00 66.64
	MOTA	445	CD2	PHE A	51	11.648 -26.142	46.784	1.00 64.64
	MOTA	446	CEl	PHE A	51	11.418 -28.837	47.281	1.00 67.20
	ATOM	447	CE2	PHE A	51	10.813 -26.584	47.788	1.00 65.80
55	ATOM	448	CZ	PHE A	51	10.708 -27.937	48.047	1.00 65.88
	ATOM	449	N	LYS A	52	15.455 -27.331	42.554	1.00 49.49
	ATOM	450	CA	LYS A	52	16.204 -26.877	41.377	1.00 48.93
	ATOM	451	C	LYS A	52	15.254 -26.192	40.393	1.00 47.94
	MOTA	452	Õ	LYS A	52	15.644 -25.414	39.516	1.00 46.65
60	ATOM	453	СВ	LYS A	52	16.905 -28.073	40.739	1.00 54.00
-	ATOM	454	CG	LYS A	52	17.964 -28.697	41.640	1.00 61.04
	ATOM	455	CD	LYS A	52	18.931 -29.536		1.00 64.27
			CE	LYS A	52	19.717 -30.537	41.711	0.00 99.00
	ATOM	456	2	א כזע	J.	10.111 30.331	320122	5.55 55.66

						-			
	ATOM	457	NZ	LYS A	52	20.300 -31	674	41.001	0.00 99.00
	ATOM	458	N	HIS A	53	13.968 -26	5.480	40.589	1.00 46.17
	ATOM	459	CA	HIS A	53			39.834	1.00 45.58
	ATOM	460	С	HIS A	53	11.697 -25	6.685	40.724	1.00 44.64
5	ATOM	461	Õ	HIS A	53	11.566 -26		41.649	1.00 44.95
-	ATOM	462	CB	HIS A	53	12.568 -26	5.542	38.531	1.00 44.28
	ATOM	463	CG	HIS A	53	11.635 -27		38.758	1.00 46.45
	ATOM	464		HIS A	53			38.978	1.00 45.21
	ATOM	465		HIS A	53			38.829	1.00 45.27
16	ATOM	466		HIS A	53	9.709 -28		39.163	1.00 45.18
10	MOTA	467		HIS A	53			39.076	1.00 49.44
		468		ILE A	54			40.468	1.00 43.90
	ATOM		N	ILE A	54	9.598 -24		41.100	1.00 44.62
	ATOM	469	CA	ILE A	54	8.589 -24		39.976	1.00 43.53
15	ATOM	470	C			8.704 -23		39.123	1.00 44.50
15	ATOM	471	0	ILE A	54				1.00 44.30
	ATOM	472	CB	ILE A	54			41.996	
	MOTA	473		ILE A	54	8.222 -22		42.337	1.00 51.18
	MOTA	474		ILE A	54	10.420 -22		41.313	1.00 54.51
	ATOM	475		ILE A	54~	8.293 -22		43.690	1.00 55.08
20	MOTA	476	N	ASN A	55	7.679 -25		39.853	1.00 42.57
	ATOM	477	CA	ASN A	5.5	6.719 -25		38.748	1.00 41.98
	MOTA	478	С	ASN A	55	-		37.389	1.00 41.70
	ATOM	479	0	ASN A	55	6.958 -24		36.368	1.00 41.10
	MOTA	480	CB	ASN A	55	5.639 -24		38.828	1.00 41.18
25	ATOM	481	CG	ASN A	55	4.611 -24		39.915	1.00 45.37
	ATOM	482	OD1	ASN A	55	4.481 -25	.766	40.285	1.00 42.95
	ATOM	483	ND2	ASN A	55	3.908 -23		40.393	1.00 49.59
	ATOM	484	N	HIS A	56	8.508 -26	5.115	37.343	1.00 42.09
	ATOM	485	CA	HIS A	56	9.304 -26	5.336	36.155	1.00 41.80
30	MOTA	486	С	HIS A	56	9.996 -25	.085	35.651	1.00 42.37
	ATOM	487	0	HIS A	56	10.579 -25	5.115	34.573	1.00 41.39
	ATOM	488	СВ	HIS A	56	8.509 -27	0.081	35.059	1.00 38.13
	ATOM	489	CG	HIS A	56	8.140 -28	3.417	35.639	1.00 39.93
	ATOM	490		HIS A	56	8.997 -29		35.683	1.00 40.64
35	ATOM	491		HIS A	56	7.000 -28		36.253	1.00 40.69
55	ATOM	492		HIS A	56	8.401 -30		36.292	1.00 46.16
	ATOM	493		HIS A	56	7.192 -30		36.648	1.00 44.07
	ATOM	494	N	GLN A	57	10.115 -24		36.492	1.00 42.01
	ATOM	495	CA	GLN A	57 57	10.867 -22		36.209	1.00 43.31
40	ATOM	496	C	GLN A	57	12.178 -22		37.011	1.00 42.73
70	ATOM	497	0	GLN A	57	12.135 -23		38.159	1.00 42.65
	ATOM	498	СВ	GLN A	57	10.017 -21		36.771	1.00 44.03
	-	499	CG	GLN A	57	10.191 -20		36.476	1.00 54.62
	ATOM	500	CD	GLN A	57	8.889 -19		36.723	1.00 54.38
45	ATOM ATOM	501	OE1		57	8.881 -18		36.990	1.00 54.35
43					57	7.774 -20		36.641	1.00 57.38
	ATOM	502		GLN A				36.435	1.00 41.67
	ATOM	503	N	VAL A	58 ⁻	13.308 -22		37.122	1.00 41.07
	ATOM	504	CA	VAL A	58	14.592 -22			1.00 39.90
50	MOTA	505	C	VAL A	58	14.654 -21		38.395	1.00 39.90
50	ATOM	506	0	VAL A	58	14.141 -20		38.425	
	ATOM	507	CB	VAL A	58	15.766 -22		36.168	1.00 41.94
	ATOM	508		VAL A	58	15.770 -20		35.859	1.00 41.59
	ATOM	509		VAL A	58	17.085 -22		36.676	1.00 43.75
~ ~	ATOM	510	N	VAL A	59	15.193 -22		39.461	1.00 40.08
55	MOTA	511	CA	VAL A	59	15.414 -21		40.713	1.00 40.24
	ATOM	512	С	VAL A	59	16.878 -21		40.635	1.00 39.98
	ATOM	513	0	VAL A	59	17.761 -22		40.559	1.00 41.27
	MOTA	514	€B	VAL A	59	15.250 -22		41.945	1.00 40.48
_	ATOM	515	CG1	VAL A	59	15.437 -21		43.243	1.00 44.12
60	MOTA	516	CG2	VAL A	59	13.830 -23		42.037	1.00 39.62
	MOTA	517	N	PRO A	60	17.121 -19		40.686	1.00 40.13
	MOTA	518	CA	PRO A	60	18.466 -19		40.576	1.00 40.49
	ATOM	519	С	PRO A	60	19.312 -19	9.737	41.806	1.00 40.57

	**************************************	E 2 0	^	PRO A	60		18.766 -20.039	42.863	1.00 39.38
	ATOM ATOM	520 521	O CB	PRO A	60		18.272 -17.874	40.580	1.00 40.12
	MOTA	522	CG	PRO A	60		16.837 -17.576	40.657	1.00 40.26
	ATOM	523	CD	PRO A	60		16.069 -18.866	40.722	1.00 39.33
. 5	ATOM	524	N	THR A	61		20.627 -19.662	41.632	1.00 39.59
	ATOM	525	CA	THR A	61		21.502 -19.731	42.799	1.00 39.51
	ATOM	526	С	THR A	61		21.145 -18.651	43.803	1.00 38.37
	ATOM	527	0	THR A	61		20.503 -17.621	43.545	1.00 37.40
	ATOM	528	CB	THR A	61		23.000 -19.670	42.486	1.00 42.80
10	ATOM	529		THR A	61		23.259 -18.498	41.695	1.00 42.80 1.00 42.91
	ATOM	530	CG2		61		23.435 -20.914	41.722	1.00 42.91
	ATOM	531	N	LEU A	62		21.544 -18.931 21.280 -17.966	45.058 46.132	1.00 37.77
	ATOM	532	CA	LEU A	62 62	٠.	21.841 -16.582	45.847	1.00 36.03
15	MOTA	533	C O	LEU A LEU A	62		21.248 -15.566	46.209	1.00 36.36
13	ATOM	534 535	CB	LEU A	62		21.904 -18.492	47.447	1.00 35.93
	ATOM ATOM	536	CG	LEU A	62		21.278 -19.807	47.950	1.00 36.47
	ATOM	537		LEU A	62		22.090 -20.339	49.139	1.00 44.24
	ATOM	538		LEU A	62		19.850 -19.557	48.450	1.00 33.58
20	ATOM	539	N	ALA A	63		23.053 -16.511	45.336	1.00 36.59
20	ATOM	540	CA	ALA A	63		23.729 -15.236	45.091	1.00 36.90
	ATOM	541	C	ALA A	63		22.946 -14.476	44.014	1.00 36.28
	MOTA	542	ō	ALA A	63		22.808 -13.263	44.128	1.00 35.61
	ATOM	543	CB	ALA A	63		25.153 -15.402	44.601	1.00 39.35
25	MOTA	544	N	VAL A	64		22.430 -15.198	43.013	1.00 35.11
	ATOM	545	CA	VAL A	64		21.587 -14.456	42.054	1.00 35.89
	MOTA	546	С	VAL A	64		20.370 -13.842	42.720	1.00 35.12
	ATOM	547	0	VAL A	64		20.062 -12.664	42.487	1.00 34.59
	MOTA	548	CB	VAL A	64		21.180 -15.331	40.855	1.00 37.44
30	ATOM	549		VAL A	64		20.071 -14.660	40.053	1.00 40.96
	ATOM	550		VAL A	64		22.390 -15.680	40.014	1.00 36.95
	ATOM	551	N	SER A	65		19.616 -14.592	43.540 44.238	1.00 35.09 1.00 34.42
	ATOM	552	CA	SER A	65 65		18.477 -14.039 18.854 -12.961	44.236	1.00 34.42
35	ATOM	553 554	С	SER A SER A	65 65		18.110 -11.986	45.326	1.00 34.19
33	MOTA MOTA	555	O CB	SER A	65		17.583 -15.074	44.940	1.00 34.49
	ATOM	556	OG	SER A	65		17.165 -16.015	43.951	1.00 35.80
	ATOM	557	N	LYS A	66		19.977 -13.079	45.922	1.00 34.79
	ATOM	558	CA	LYS A	66		20.365 -11.976	46.828	1.00 35.44
40	ATOM	559	C	LYS A	66		20.611 -10.670	46.044	1.00 35.50
	ATOM	560	0	LYS A	66		20.219 -9.590	46.478	1.00 35.28
	ATOM	561	CB	LYS A	66		21.709 -12.362	47.478	1.00 36.28
	ATOM	562	CG	LYS A	66		21.492 -13.207	48.738	1.00 43.87
	ATOM	563	CD	LYS A	66		22.772 -13.202	49.570	1.00 52.29
45	ATOM	564	CE	LYS A			23.722 -14.338	49.256	1.00 56.53
	ATOM	565	NZ	LYS A	66		24.326 -14.857	50.541	1.00 60.41
	ATOM	566	N	ASN A	67		21.345 -10.788	44.956	1.00 35.53 1.00 35.43
	ATOM	567	CA	ASN A	67 67		21.679 -9.615	44.136 43.544	1.00 33.43
50	MOTA	568	C	ASN A ASN A	67 67		20.452 -8.955 20.370 -7.741	43.518	1.00 33.85
50	MOTA	569	O	ASN A	67		22.657 -10.003	43.019	1.00 39.24
	MOTA	570 571	CB CG	ASN A	67		22.999 -8.797	42.163	1.00 49.34
	ATOM ATOM	572		ASN A	67		22.646 -8.711	40.977	1.00 55.32
	ATOM	573		ASN A	.67		23.611 -7.794	42.784	1.00 51.11
55	ATOM	574	N	LYS A	68		19.505 -9.746	43.007	1.00 34.69
	ATOM	575	CA	LYS A	68		18.245 -9.160	42.532	1.00 33.90
	ATOM	576	C	LYS A	68		17.421 -8.525	43.620	1.00 33.51
_	ATOM	577	Ö	LYS A	68		16.726 -7.530	43.412	1.00 32.16
	ATOM	578	CB	LYS A	68		17.439 -10.259	41.811	1.00 35.44
60	MOTA	579	CG	LYS A	68		18.132 -10.664	40.503	1.00 38.74
	ATOM	580	CD	LYS A	68		17.352 -11.710	39.729	1.00 44.24
	MOTA	581	CE	LYS A	68		15.976 -11.178	39.345	1.00 46.97
	ATOM	582	NZ	LYS A	68		15.414 -12.058	38.260	1.00 51.68

									* 00 00 10
	MOTA	583	N	ALA A	69	17.395	-9.098	44.856	1.00 33.48
	ATOM	584	CA	ALA A	69	16.654	-8.440	45.924	1.00 33.17
	ATOM	585	C	ALA A	69	17.299	-7.103	46.282	1.00 31.99
								46.498	1.00 31.80
_	ATOM	586	0	ALA A	69	16.620	-6.105		
5	ATOM	587	CB	ALA A	69	16.642	-9.315	47.213	1.00 31.02
	MOTA	588	N	LEU A	70	18.627	-7.019	46.312	1.00 32.54
	ATOM	589	CA	LEU A	70	19.278	-5.715	46.511	1.00 32.22
	ATOM	590	С	LEU A	70	18.830	-4.668	45.471	1.00 32.04
	ATOM	591	0	LEU A	70	18.604	-3.504	45.815	1.00 32.18
10	ATOM	592	CB	LEU A	70	20.800	-5.876	46.425	1.00 35.34
10	ATOM	593	CG	LEU A	70	21.431	-6.582	47.652	1.00 41.35
	MOTA	594		LEU A	70	22.952	-6.614	47.488	1.00 47.21
	MOTA	595	CD2	LEU A	70	21.124	-5.797	48.927	1.00 42.20
	MOTA	596	N	GLN A	71	18.732	-5.068	44.222	1.00 32.28
15	ATOM	597	CA	GLN A	71	18.336	-4.184	43.118	1.00 32.66
13									
	ATOM	598	С	GLN A	71	16.888	-3.744	43.319	1.00 33.12
	ATOM	599	0	GLN A	71	16.599	-2.548	43.262	1.00 34.13
	ATOM	600	CB	GLN A	71	18.506	-4.847	41.767	1.00 32.48
									1.00 36.30
	ATOM	601	CG	GLN A	71	19.933	-5.100	41.321	
20	ATOM	602	CD	GLN A	71	20.143	-5.912	40.083	1.00 36.39
	ATOM	603	OE1	GLN A	7 1	21.103	-5.642	39.339	1.00 42.50
		604		GLN A	71	19.349	-6.917	39.755	1.00 33.68
	MOTA								
	MOTA	605	N	ALA A	72	16.008	-4.697	43.668	1.00 32.97
	MOTA	606	CA	ALA A	72	14.624	-4.358	43.963	1.00 32.73
25	MOTA	607	С	ALA A	72	14.529	-3.414	45.129	1.00 33.36
				ALA A	72	13.741	-2.468	45.153	1.00 33.02
	ATOM	608	0						
	ATOM	609	CB	ALA A	72	13.751	-5.597	44.164	1.00 31.63
	ATOM	610	N	ILE A	73	15.314	-3.700	46.205	1.00 32.96
	ATOM	611	CA	ILE A	73	15.341	-2.754	47.321	1.00 32.98
30						15.756	-1.358	46.932	1.00 33.05
30	ATOM	612	С	ILE A	73				
	ATOM	613	0	ILE A	73	15.173	-0.371	47.407	1.00 31.52
	ATOM	614	CB	ILE A	73	16.262	-3.309	48.450	1.00 32.37
	ATOM	615	CG1	ILE A	73	15.549	-4.497	49.099	1.00 34.48
	MOTA	616		ILE A	73	16.564	-2.217	49.479	
35	MOTA	617	CD1	ILE A	73	16.442	-5.452	49.895	1.00 36.56
	MOTA	618	N	GLU A	74	16.821	-1.221	46.107	1.00 33.20
	MOTA	619	CA	GLU A	74	17.249	0.135	45.770	1.00 34.02
	ATOM	620	С	GLU A	74	16.127	0.888	45.042	1.00 33.88
	ATOM	621	0	GLU A	74	15.924	2.077	45.333	1.00 33.58
40	ATOM	622	CB	GLU A	74	18.483	0.128	44.849	1.00 42.88
	ATOM	623	CG	GLU A	74	19.730	-0.391	45.551	1.00 50.60
	ATOM	624	CD	GLU A	74	20.121	0.534	46.697	1.00 55.46
	ATOM	625	OE1	GLU A	74	19.809	0.219	47.869	1.00 54.43
	ATOM	626	OE2	GLU A	74	20.627	1.630	46.386	1.00 51.96
45	ATOM	627	N	LEU A	75	15.444	0.203	44.142	1.00 34.25
73									1.00 34.85
	ATOM	628	CA	LEU A	75	14.353	0.814	43.393	
	MOTA	629	С	LEU A	75	13.181	1.091	44.339	1.00 35.22
	MOTA	630	0	LEU A	75	12.683	2.215	44.292	1.00 35.32
	ATOM	631	СB	LEU A	75	13.895	-0.038	42.211	1.00 33.68
50									
50	MOTA	632	CG	LEU A	75	14.632	0.175	40.849	1.00 40.28
	ATOM	633	CD1	LEU A	75	14.246	1.524	40.263	1.00 38.74
	ATOM	634	CD2	LEU A	75	16.134	0.148	41.044	1.00 41.33
		635		GLN A	76	12.769	0.098	45.129	1.00 35.20
	ATOM		N						
	ATOM	636	CA	GLN A	76	11.711	0.401	46.107	1.00 34.63
55	ATOM	637	С	GLN A	76	12.023	1.622	46.951	1.00 34.20
	ATOM	638	ŏ	GLN A	76	11.197	2.539	47.032	1.00 33.10
					76		-0.800	47.043	1.00 37.30
	ATOM	639	CB	GLN A		11.439			
	ATOM	640	CG	GLN A	76	10.346	-0.570	48.086	1.00 36.76
	MOTA	641	CD	GLN A	76	10.511	-1.541	49.275	1.00 38.06
60	MOTA	642		GLN A	76	11.019	-2.647	49.179	1.00 36.12
50					76	10.136	-1.178	50.481	1.00 39.68
	MOTA	643		GLN A					
	MOTA	644	N	LEU A	77	13.195	1.702	47.596	1.00 34.42
	ATOM .	645	CA	LEU A	77	13.533	2.857	48.402	1.00 34.29

							•		- 00 04 07
	ATOM	646	С	LEU A	77	13.506	4.183	47.638	1.00 34.87
	ATOM	647	0	LEU A	77	13.070	5.221	48.149	1.00 32.77
	ATOM	648	CB	LEU A	77	14.906	2.756	49.079	1.00 31.33
	ATOM	649	CG	LEU A	77	14.976	1.566	50.093	1.00 33.32
5	ATOM	650	CD1	LEU A	77	16.417	1.466	50.566	1.00 35.24
•	ATOM	651	CD2	LEU A	77	14.094	1.902	51.303	1.00 32.76
	ATOM	652	N	THR A	78	14.094	4.162	46.440	1.00 35.43
	ATOM	653	CA	THR A	78	14.147	5.391	45.644	1.00 35.16
	ATOM	654	C	THR A	78	12.754	5.938	45.407	1.00 34.62
10	ATOM	655	ŏ	THR A	78	12.561	7.128	45.655	1.00 35.48
10		656	СВ	THR A	78	14.869		44.306	1.00 33.75
	ATOM			THR A	78	16.212		44.644	1.00 36.55
	ATOM	657		THR A	78	14.710		43.359	1.00 35.96
	ATOM	658				11.867		44.971	1.00 35.23
	MOTA	659	N	LEU A	79			44.646	1.00 35.59
15	MOTA	660	CA	LEU A	79	10.492		45.879	1.00 36.24
	MOTA	661	С	LEU A	79	9.738			1.00 34.44
	MOTA	662	0	LEU A	79	8.923		45.814	
	ATOM	663	CB	LEU A	79	9.744		43.961	1.00 37.56
	MOTA	664	CG	LEU A	79	10.302		42.611	1.00 40.81
20	ATOM	665	CD1	LEU A	79	9.415		42.066	1.00 36.86
	ATOM	666	CD2	LEU A	79	10.404		41.632	1.00 44.33
	ATOM	667	N	GLU A	80	10.058	5.284	47.023	1.00 35.96
	ATOM	668	CA	GLU A	80	9.487	5.773	48.285	1.00 35.25
	ATOM	669	C	GLU A	80	10.002	7.132	48.672	1.00 35.81
25		670	Ö	GLU A	80	9.241		49.182	1.00 36.57
23	ATOM		СВ	GLU A	80	9.805		49.414	1.00 33.47
	MOTA	671		GLU A	80	8.923		49.368	1.00 36.03
	MOTA	672	CG		80	9.390		50.293	1.00 39.80
	MOTA	673	CD	GLU A		10.528		50.789	1.00 38.34
	MOTA	674	OE1		80			50.397	1.00 40.54
30	ATOM	675		GLU A	80	8.587		48.443	1.00 35.85
	ATOM	676	N	THR A	81	11.266			1.00 37.65
	ATOM	677	CA	THR A	81	11.759		48.714	
	MOTA	678	С	THR A	81	11.074		47.742	1.00 39.27
	MOTA	679	0	THR A	81	10.711		48.159	1.00 38.93
35	ATOM	680	CB	THR A	81	13.277		48.523	1.00 38.88
	ATOM	681	OG1	THR A	81	13.854	8.188	49.626	1.00 41.45
	ATOM	682	CG2	THR A	81	13.827		48.511	1.00 37.76
	ATOM	683	N	ILE A	82	10.887	9.360	46.500	1.00 39.69
	ATOM	684	CA	ILE A	82	10.176	10.260	45.568	1.00 41.32
40	ATOM	685	C	ILE A	82	8.727		45.979	1.00 42.17
40	MOTA	686	ŏ.		82	8.195	11.566	45.910	1.00 42.11
		687	СВ	ILE A	82	10.199		44.134	1.00 38.27
	ATOM		CG1		82	11.619		43.651	1.00 39.22
	MOTA	688	CG2		82	9.462		43.194	1.00 37.66
4.0	ATOM	689			82	12.489		43.731	1.00 43.59
45	MOTA	690	CD1			8.09		46.426	1.00 43.95
	MOTA	691	N	TYR A	83			46.924	1.00 45.07
	MOTA	692	CA	TYR A	83	6.726		48.038	1.00 45.84
	ATOM	693	С	TYR A	83	6.59			1.00 44.82
	MOTA	694	0	TYR A	83	5.613		48.097	1.00 47.55
50	MOTA	695	CB	TYR A	83	6.22		47.364	
	MOTA	696	CG	TYR A	83	4.74		47.683	1.00 52.04
	MOTA	697	CD1		83	3.82		46.643	1.00 53.71
	ATOM	698	CD2	TYR A	83	4.292		48.987	1.00 53.75
	ATOM	699	CE1		83	2.46	8.119	46.899	1.00 55.59
55	ATOM	700		TYR A	83	2.93	8.343	49.245	1.00 55.42
	ATOM	701	CZ	TYR A	83	2.03		48.199	1.00 56.63
	ATOM	702	OH	TYR A	83	0.69		48.454	1.00 58.49
		702	N	ASN A	84	7.59		48.932	1.00 45.54
	ATOM			ASN A		7.51		49.959	1.00 46.22
60	ATOM	704	CA		84	7.96		49.446	1.00 45.99
60	ATOM	705	C	ASN A	84	7.81		50.226	1.00 46.80
	MOTA	706	O	ASN A		8.19		51.257	1.00 45.97
	MOTA	707	CB	ASN A	84			52.011	1.00 42.27
	ATOM	708	CG	ASN A	84	7.99	3.3/0	JZ. U11	1100 36127

	ATOM	709	OD1	ASN A	8,4	6.960	9.292	51.955	1.00 48.67
	MOTA	710	ND2	ASN A	84	9.032	9.528	52.753	1.00 40.72
	ATOM	711	N	SER A	85	8.351	13.244	48.201	1.00 44.95
	ATOM	712	CA	SER A	85	8.830	14.568	47.823	1.00 43.57
5	ATOM	713	c	SER A	85	7.800	15.337	46.988	1.00 43.08
5					85	6.747	14.845	46.627	1.00 41.05
	MOTA	714	0	SER A					
	ATOM	715	CB	SER A	85	10.108	14.456	46.969	1.00 43.41
	ATOM	716	OG	SER A	85	9.782	14.024	45.656	1.00 38.06
	ATOM	717	N	GLN A	86	8.199	16.543	46.586	1.00 43.58
10	ATOM	718	CA	GLN A	86	7.377	17.394	45.725	1.00 44.93
- •	ATOM	719	C	GLN A	86	7.185	16.853	44.331	1.00 45.37
		720	Ö	GLN A	86	6.311	17.326	43.581	1.00 45.62
	ATOM								
	ATOM	721	СВ	GLN A	86	8.100	18.761	45.588	1.00 52.00
	ATOM	722	CG	GLN A	86	9.448	18.557	44.909	1.00 58.47
15	MOTA	723	CD	GLN A	86	10.263	19.798	44.692	1.00 64.18
	ATOM	724	OE1	GLN A	86	11.330	19.934	45.303	1.00 70.12
	ATOM	725	NE2	GLN A	86	9.786	20.668	43.810	1.00 65.51
	ATOM	726	N	TYR A	87	8.002	15.875	43.915	1.00 45.13
	ATOM	727	CA	TYR A	87	7.886	15.277	42.601	1.00 44.09
20					87	6.898	14.125	42.585	1.00 44.50
20	ATOM	728	C	TYR A					
	ATOM	729	0	TYR A	87	6.682	13.536	41.536	1.00 43.83
	ATOM	730	CB	TYR A	87	9.231	14.748	42.072	1.00 42.80
	ATOM	731	CG	TYR A	87	10.318	15.782	42.226	1.00 41.15
	ATOM	732	CD1	TYR A	87	11.376	15.539	43.084	1.00 41.11
25	ATOM	733	CD2		87	10.272	17.010	41.567	1.00 39.57
	ATOM	734		TYR A	87	12.344	16.496	43.319	1.00 41.24
			CE2	TYR A	87	11.243	17.967	41.779	1.00 39.89
	ATOM	735						42.614	1.00 39.09
	ATOM	736	CZ	TYR A	87	12.295	17.693		
••	ATOM	737	ОН	TYR A	87	13.302	18.594	42.842	1.00 41.44
30	ATOM	738	N	SER A	88	6.318	13.805	43.743	1.00 45.60
	ATOM	739	CA	SER A	88	5.478	12.626	43.844	1.00 46.49
	MOTA	740	С	SER A	88	4.368	12.534	42.814	1.00 47.16
	ATOM	741	0	SER A	88	4.080	11.467	42.270	1.00 46.71
	ATOM	742	СВ	SER A	88	4.816	12.633	45.245	1.00 48.13
35	ATOM	743	OG	SER A	88	4.092	11.417	45.346	1.00 51.98
22		744		ASN A	89	3.667	13.642	42.565	1.00 48.16
	ATOM		N						1.00 49.94
	ATOM	745	CA	ASN A	89	2.563	13.593	41.604	
	ATOM	746	С	ASN A	89	2.888	13.746	40.138	1.00 50.05
	ATOM	747	0	ASN A	89	1.922	13.898	39.362	1.00 49.81
40	ATOM	748	CB	ASN A	89	1.500	14.616	42.040	1.00 57.17
	ATOM	749	CG	ASN A	89	1.003	14.286	43.439	1.00 62.53
	ATOM	750	OD1	ASN A	89	0.752	15.195	44.234	1.00 67.35
	ATOM	751		ASN A	89	0.884	12.995	43.737	1.00 64.39
	ATOM	752	N	GLU A	90	4.149	13.696	39.690	1.00 49.64
45		753	CA	GLU A	90	4.384	13.669	38.238	1.00 49.09
73	ATOM						12.346	37.610	1.00 48.60
	ATOM	754	C	GLU A	90	3.952			
	ATOM	755	0	GLU A	90	3.715	11.386	38.327	1.00 47.76
	ATOM	756	CB	GLU A	90	5.891	13.782	37.891	1.00 47.16
	ATOM	757	CG	GLU A	90	6.546	14.906	38.632	1.00 42.61
50	ATOM	758	CD	GLU A	90	7.981	15.219	38.359	1.00 44.84
	ATOM	759	OE1	GLU A	90	8.767	14.356	37.961	1.00 46.86
	ATOM	760		GLU A	90	8.343	16.400	38.592	1.00 45.57
	ATOM	761	N	LYS A	91	3.961	12.276	36.269	1.00 47.66
		762	CA		91	3.798	10.985	35.595	1.00 47.27
55	MOTA			LYS A				35.749	1.00 46.58
رر	ATOM	763	C	LYS A	91	5.099	10.180		
	ATOM	764	0_	LYS A	91	6.181	10.745	35.610	1.00 45.68
	ATOM	765	CB	LYS A	91	3.615	11.124	34.076	1.00 48.52
	MOTA	766	CG	LYS A	91	2.234	10.887	33.509	1.00 55.86
	ATOM	767	CD	LYS A	91	2.206	11.249	32.017	1.00 56.83
60	ATOM	768	CE	LYS A	91.	2.934	10.173	31.214	1.00 56.89
- '	ATOM	769	NZ	LYS A	91	3.771	10.752	30.132	1.00 54.96
	ATOM	770	N -	TRP A	92	4.971	8.888	36.019	1.00 46.05
	ATOM	771	CA	TRP A		6.082	7.961	36.101	1.00 45.89
	ALON	, , ,	UM.	TALL IN	12	0.002		50.101	

	MOTA	772	С	TRP		92	5.70	6.699	35.343	1.00 46.10
	ATOM	773	0	TRP		92	4.70	6.079	35.668	1.00 46.31
	ATOM	774	CB	TRP		92	6.45	7.556	37.550	1.00 42.18
	ATOM	775	CG	TRP		92	6.87	8.733	38.372	1.00 37.28
5	MOTA	776	CD1	TRP	A	92	6.02	9.494	39.126	1.00 35.98
	ATOM	777	CD2	TRP		92	8.17	9.326	38.526	1.00 35.45
	MOTA	778	NE1	TRP		92	6.70	10.512	39.704	1.00 37.68
	ATOM	779	CE2	TRP		92	8.03	10.426	39.359	1.00 34.31
	ATOM	780	CE3	TRP		92	9.43	9.034	38.009	1.00 35.29
10	MOTA	781	CZ2	TRP		92	9.08	11.251	39.784	1.00 37.71
	ATOM	782	CZ3	TRP		92	10.48	9.844	38.391	1.00 34.81
	ATOM	783	CH2	TRP		92	10.32	10.920	39.272	1.00 37.49
	ATOM	784	N	THR		93	6.40	6.302	34.333	1.00 46.29
	ATOM	785	CA	THR		93	6.12	5.105	33.583	1.00 47.56
15	ATOM	786	С	THR		93	6.90	3.910	34.110	1.00 48.41
	ATOM	787	0_	THR		93	7.84	4.126	34.862	1.00 48.37
	MOTA	788	CB	THR		93	6.3	5.242	32.077	1.00 46.70
	MOTA	789	OG1	THR		93	7.7	4.928	31.792	1.00 44.41
	ATOM	790	CG2	THR		93	6.03	6.666	31.629	1.00 44.27 1.00 48.40
20	ATOM	791	N	LEU		94	6.50	2.716	33.705	
	MOTA	792	CA	LEU		94	7.2	1.494	34.076	1.00 48.72
	ATOM	793	С	LEU		94	8.64	1.507	33.559	1.00 48.08
	MOTA	794	0	LEU		94	9.58	1.053	34.225	1.00 47.67
0.5	MOTA	795	CB	LEU		94	6.46	0.294	33.479	1.00 56.38 1.00 61.49
25	ATOM	796	CG	LEU		94	6.48	-1.036	34.232	
	ATOM	797	-	LEU		94	6.45	-0.872	35.741	1.00 61.80
	ATOM	798		LEU		94	5.3	-1.900	33.781	1.00 62.20 1.00 45.95
	ATOM	799	N	GLN		95	8.8	2.022	32.332	1.00 43.86
20	ATOM	800	CA	GLN		95	10.17	2.149	31.805	
30	ATOM	801	C	GLN		95	10.99	3.201	32.555	
	ATOM	802	0	GLN		95	12.13	2.966	32.803	1.00 42.10 1.00 47.51
	MOTA	803	СВ	GLN		95	10.23	2.431	30.291	1.00 47.51
	ATOM	804	CG	GLN		95	10.93	1.311	29.532 29.531	1.00 53.82
2.5	ATOM	805	CD	GLN		95	12.44	1.369 2.191	28.850	1.00 63.35
35	MOTA	806		GLN		95	13.08	0.470	30.270	1.00 53.33
	ATOM	807	NE2			95 06	13.08	4.296	32.984	1.00 39.88
	ATOM	808	N	ASP		96 96	10.39 11.04	5.272	33.814	1.00 39.85
	ATOM	809	CA	ASP		96	11.6	4.615	35.076	1.00 40.22
40	ATOM	810	C	ASP ASP		96	12.7	5.042	35.499	1.00 39.43
40	ATOM	811 812	O CB	ASP		96	10.1	6.397	34.246	1.00 40.26
	MOTA	813	CG	ASP		96	9.60	7.287	33.110	1.00 43.09
	ATOM	814	OD1			96	10.29	7.391	32.079	1.00 38.82
	ATOM	815		ASP		96	8.5	7.883	33.274	1.00 41.58
45	ATOM ATOM	816	N	VAL		97	10.9	3.643	35.651	1.00 39.44
45		817	CA	VAL		97	11.3	3.024	36.913	1.00 38.84
	ATOM	818	C	VAL		97	11.9	1.641	36.744	1.00 38.61
	ATOM	819	Ö	VAL		97	12.0	0.843	37.707	1.00 38.87
	ATOM	820	СВ	VAL		97	10.1	2.955	37.903	1.00 40.58
50	ATOM	821		VAL		97	9.5	4.325	38.123	1.00 37.24
50	ATOM	822		VAL		97	9.1	1.929	37.569	1.00 39.40
	ATOM	823	N	SER		98	12.4	1.314	35.539	1.00 37.55
	ATOM	824	CA	SER		98	12.9	0.014	35.183	1.00 36.27
,	ATOM	825	C	SER		98	14.40	-0.046	35.652	1.00 36.46
55	ATOM	826	Ö	SER		98	15.0	1.015	35.744	1.00 36.95
,,	ATOM	827	СВ	SER		98	12.9	-0.142	33.637	1.00 41.66
	ATOM	828	OG	SER		98	13.8	0.716	32.996	1.00 41.12
	ATOM	829	N	LEU		99	14.9	-1.247	35.831	1.00 36.38
	ATOM	830	CA	LEU		99	16.3	-1.378	36.203	1.00 36.81
60	ATOM	831	C	LEU		99	17.2	-0.939	35.042	1.00 36.83
50	ATOM	832	ŏ	LEU		99	18.2	-0.341	35.258	1.00 36.14
	ATOM	833	СВ	LEU		99	16.6	-2.829	36.589	1.00 42.12
	ATOM	834	CG	LEU		99	18.0	-3.111	37.080	1.00 45.46

	ATOM	835	CD1	LEU	Α	99	18.330	-2.481	38.442	1.00 43.84
	ATOM	836	CD2	LEU.	Α	99	18.341	-4.606	37.072	1.00 45.55
	ATOM	837	N	GLU	Α	100	16.797	-1.199	33.818	1.00 36.41
	ATOM	838	CA	GLU			17.488	-0.765	32.611	1.00 37.21
5	ATOM	839	С	GLU			17.790	0.722	32.622	1.00 36.02
	ATOM	840	0	GLU			18.972	1.068	32.470	1.00 37.81
	ATOM	841	CB	GLU			16.690	-1.126	31.340	1.00 40.11
	ATOM	842	CG	GLU			17.528	-0.836	30.096	1.00 49.41
	ATOM	843	CD	GLU			16.866	-1.247	28.790	1.00 56.89
10	ATOM	844		GLU			15.724	-1.755	28.761	1.00 57.99
	ATOM	845	OE2	GLU			17.534	-1.025	27.753	1.00 62.25
	ATOM	846	N	VAL			16.808	1.580	32.792	1.00 35.41
	ATOM	847	CA	VAL			17.044	3.010	32.973	1.00 34.54
	ATOM	848	С	VAL			17.897	3.329	34.185	1.00 34.62
15	ATOM	849	0	VAL			18.899	4.082	34.151	1.00 33.43
	ATOM	850	CB	VAL			15.666	3.714	33.047	1.00 36.71
	ATOM	851		VAL			15.797	5.167	33.459	1.00 34.93
	ATOM	852		VAL			15.013	3.600	31.651	1.00 37.61
•	ATOM	853	N	TYR			17.555	2.678	35.314	1.00 33.28
20	MOTA	854	CA	TYR			18.202	3.008	36.583	1.00 33.58
	ATOM	855	C	TYR			19.711	2.817	36.484	1.00 33.46
	MOTA	856	0	TYR			20.424	3.624	37.071	1.00 33.95 1.00 34.23
	ATOM	857	СВ	TYR			17.653	2.091	37.691	
0.5	ATOM	858	CG	TYR			17.996	2.494	39.103	1.00 36.50
25	ATOM	859	CD1				17.325	3.559	39.676	1.00 36.36 1.00 36.63
	MOTA	860	CD2	TYR			18.961	1.811	39.855	1.00 36.63 1.00 37.25
	ATOM	861	CEl				17.582	3.949	40.979	1.00 37.23
	ATOM	862	CE2				19.237	2.202	41.162	1.00 37.04
20	ATOM	863	CZ	TYR			18.537	3.253	41.707	1.00 36.93
30	ATOM	864	ОН	TYR			18.795	3.693	42.966	1.00 30.01
	ATOM	865	N	LEU			20.170	1.800	35.766	1.00 32.90
	MOTA	866	CA	LEU			21.575	1.513	35.625	1.00 34.09
	ATOM	867	C	LEU			22.225	2.188	34.422	1.00 33.37
25	ATOM	868	0	LEU			23.434	2.037	34.247 35.568	1.00 37.11
35	ATOM	869	CB	LEU			21.811	0.003	36.853	1.00 39.98
	ATOM	870	CG	LEU			21.363	-0.757	36.702	1.00 39.30
	MOTA	871		LEU			21.588	-2.261	38.073	1.00 40.37
	ATOM	872		LEU			22.104	-0.231 2.913	33.614	1.00 40.30
40	MOTA	873	N	THR			21.460		32.468	1.00 33.72
40	ATOM	874	CA	THR			22.115	3.606	33.060	1.00 34.87
	ATOM	875	С	THR			22.792	4.825 5.345	34.004	1.00 35.13
	ATOM	876	0			104	22.206	4.013	31.409	1.00 35.03
	ATOM	877	CB	THR			21.074	2.790	30.928	1.00 30.04
15	ATOM	878	OG1				20.507 21.709	4.722	30.326	1.00 34.76
45	ATOM	879	CG2	THR			23.907	5.292	32.541	1.00 35.32
	ATOM	880	N	ALA			24.595	6.446	33.150	1.00 36.34
	ATOM	881	CA	ALA		105	23.662	7.647	33.117	1.00 36.12
•	ATOM	882	C				23.031	7.852	32.074	1.00 35.49
50	ATOM	883	0	ALA			25.840	6.710	32.281	1.00 36.09
50	ATOM	884	CB	ALA PRO			23.556	8.404	34.195	1.00 35.90
	ATOM	885	N				24.273	8.154	35.428	1.00 36.06
	MOTA	886	CA	PRO			23.617	7.057	36.275	1.00 35.41
	ATOM	887	C	PRO			22.426	7.141	36.602	1.00 34.13
55	ATOM	888	O	PRO PRO			24.167	9.484	36.175	1.00 36.61
55	ATOM	889	CB	PRO			22.880	10.077	35.695	1.00 36.41
	ATOM	890	CG	PRO			22.862	9.725	34.223	1.00 36.41
	ATOM	891	CD	_			24.407	6.045	36.646	1.00 35.50
	ATOM	892	N	THR THR			23.833	4.857	37.287	1.00 33.50
60	ATOM	893	CA	THR			23.033	5.142	38.651	1.00 34.02
60	ATOM	894	C	THR			23.236	6.108	39.324	1.00 34.98
	ATOM	895 896	O	THR			24.820	3.666	37.301	1.00 34.50
	ATOM	896	CB				24.820	2.516	37.812	1.00 36.86
	MOTA	897	OGI	THR	~	107	24.114	2.010	57.012	

	ATOM	898		THR A		26.016	3.957	38.203	1.00 39.22
	ATOM ATOM	899 900	N CA	GLY A		22.272 21.709	4.352 4.504	39.091 40.436	1.00 35.80 1.00 35.25
	ATOM	901	C	GLY A		20.719	5.660	40.527	1.00 35.77
5	ATOM	902	0	GLY A	108	20.469	6.140	41.646	1.00 35.22
	ATOM	903	N	CYS A		20.099	6.080	39.427	1.00 34.86
	ATOM	904	CA	CYS A		19.226 17.997	7.257 6.934	39.416 38.551	1.00 35.48 1.00 35.39
	ATOM ATOM	905 906	C O	CYS A		18.179	6.397	37.449	1.00 35.39
10	ATOM	907	СВ	CYS A		19.987	8.395	38.610	1.00 35.03
	ATOM	908	SG	CYS A		21.181	9.249	39.651	1.00 42.26
	MOTA	909	N	ILE A		16.785	7.158	39.035	1.00 34.76
	ATOM	910	CA	ILE A		 15.613	7.181 8.456	38.156 37.264	1.00 34.74 1.00 34.48
15	ATOM ATOM	911 912	С 0	ILE A		15.774 16.234	9.494	37.723	1.00 34.48
13	ATOM	913	СВ	ILE A		14.315	7.414	38.954	1.00 37.69
	ATOM	914	CG1			14.117	6.274	39.951	1.00 41.68
	MOTA	915	CG2			13.100	7.594	38.049	1.00 39.85
20	ATOM	916		ILE A		13.770	4.943	39.384	1.00 43.84
20	ATOM ATOM	917 918	N CA	LYS A LYS A		15.373 15.522	8.287 9.400	36.013 35.086	1.00 34.15 1.00 35.30
	ATOM	919	CA	LYS A		14.453	9.355	34.002	1.00 35.93
	ATOM	920	ō	LYS A		13.942	8.285	33.702	1.00 35.35
	ATOM	921	СВ	LYS A	111	16.879	9.488	34.449	1.00 39.11
25	MOTA	922	CG	LYS A		17.713	8.300	34.171	1.00 44.79
	MOTA	923	CD	LYS A		19.195 19.930	8.574 7.270	34.494 34.207	1.00 41.27 1.00 41.21
	ATOM ATOM	924 925	CE NZ	LYS A		19.943	6.341	35.377	1.00 36.81
	ATOM	926	N	LYS A		14.181	10.569	33.482	1.00 36.64
30	ATOM	927	CA	LYS A	112	13.194	10.511	32.410	1.00 37.12
	MOTA	928	C	LYS A		13.553	11.477	31.283	1.00 38.56
	ATOM	929	0	LYS A		14.382	12.368 10.464	31.442 32.883	1.00 37.40 1.00 45.17
	MOTA MOTA	930 931	CB CG	LYS A		11.784 11.274	11.108	34.092	1.00 43.17
35	ATOM	932	CD	LYS A		9.855	10.826	34.592	1.00 42.31
	ATOM	933	CE	LYS A	112	9.625	11.830	35.702	1.00 40.92
	ATOM	934	NZ	LYS A		8.251	12.207	36.085	1.00 41.42
	ATOM	935	N	HIS A		12.734	11.353 12.198	30.256 29.053	1.00 38.75 1.00 39.66
40	ATOM ATOM	936 937	CA C	HIS A		12.848 14.221	12.110	28.430	1.00 39.88
70	ATOM	938	Ö	HIS A		14.895	13.102	28.197	1.00 40.77
	ATOM	939	СВ	HIS A		12.341	13.611	29.366	1.00 38.57
	ATOM	940	CG	HIS A		11.036	13.636	30.115	1.00 38.81
15	ATOM	941		HIS A		9.924	12.958 14.172	29.655 31.299	1.00 42.21 1.00 41.13
45	MOTA MOTA	942 943		HIS A		8.934	13.113	30.518	1.00 37.50
	ATOM	944		HIS A		9.378	13.838	31.529	1.00 43.65
	ATOM	945	N	GLY A		14.678	10.906	28.098	1.00 40.03
	ATOM	946	CA	GLY A		15.948	10.634	27.465	1.00 42.07
50	ATOM	947	C	GLY A		15.982	10.869	25.944	1.00 42.05 1.00 43.10
	ATOM	948 949	O N	GLY A TYR A		15.006 17.172	10.756 11.210	25.196 25.445	1.00 43.10
	ATOM ATOM	950	CA	TYR A		17.369	11.441	24.019	1.00 42.59
	ATOM	951	C	TYR A		18.822	11.155	23.637	1.00 42.83
55	ATOM	952	0	TYR A	115	19.673	11.182	24.526	1.00 40.37
	ATOM	953	CB	TYR A		17.029	12.863	23.612	1.00 43.99
	ATOM	954	CG	TYR A		17.877	13.912	24.298	1.00 45.80 1.00 47.34
-	ATOM ATOM	955 956		TYR A		18.944 17.628	14.514 14.263	23.648 25.614	1.00 47.34
60	MOTA	957	CE1			19.718	15.463	24.291	1.00 47.70
	ATOM	958		TYR A		 18.375	15.230	26.260	1.00 47.78
	MOTA	959	CZ	TYR A	115	19.398	15.845	25.579	1.00 48.85
	MOTA	960	OH	TYR A	115	20.194	16.754	26.228	1.00 49.73

	ATOM	961	N	THR A	116		19.071	10.953	22.342	1.00 41.33
	ATOM	962	CA	THR A			20.415	10.564	21.938	1.00 42.28
	ATOM	963	C	THR A			21.285	11.789	21.697	1.00 42.08
	ATOM	964	ō	THR A			20.858	12.791	21.136	1.00 42.54
5	ATOM	965	СВ	THR A			20.365	9.722	20.643	1.00 46.87
	ATOM	966		THR A			19.589	8.542	20.949	1.00 49.86
	ATOM	967		THR A			21.753	9.272	20.209	1.00 46.71
	ATOM	968	N	VAL A			22.552	11.650	22.045	1.00 40.95
	ATOM	969	CA	VAL A			23.575	12.638	21.686	1.00 40.83
10	ATOM	970	C	VAL A			24.538	11.818	20.830	1.00 41.40
10	ATOM	971	Ö	VAL A			24.850	10.689	21.222	1.00 41.22
	ATOM	972	СВ	VAL A			24.297	13.196	22.928	1.00 39.95
	ATOM	973		VAL A			25.599	13.915	22.569	1.00 41.09
	ATOM	974		VAL A		•	23.375	14.216	23.617	1.00 38.93
15	ATOM	975	N N	GLU A			24.986	12.396	19.713	1.00 41.76
13	ATOM	976	CA	GLU A			25.908	11.573	18.905	1.00 42.29
		977	C	GLU A			27.254	12.265	18.832	1.00 42.60
	ATOM	978		GLU A			27.288	13.498	18.801	1.00 42.94
	ATOM		0	GLU A			25.266	11.262	17.556	1.00 46.34
20	MOTA	979	CB	GLU A			25.200		16.365	1.00 40.34
20	MOTA	980	CG					11.896		1.00 55.27
	ATOM	981	CD	GLU A			25.542	11.270	15.029	1.00 54.40
	MOTA	982		GLU A			24.442	10.707	14.879	
	MOTA	983		GLU A			26.425	11.358	14.155	1.00 57.58
05	MOTA	984	N	VAL A			28.322	11.485	18.947	1.00 41.77
25	MOTA	985	CA	VAL A			29.661	12.031	18.909	1.00 42.33
	ATOM	986	С	VAL A			30.408	11.363	17.735	1.00 43.93
	ATOM	987	0	VAL A			30.499	10.136	17.672	1.00 42.59
	ATOM	988	СВ	VAL A			30.486	11.790	20.187	1.00 42.91
20	ATOM	989		VAL A			31.894	12.330	19.963	1.00 40.51
30	MOTA	990		VAL A			29.868	12.517	21.398	1.00 38.33
	ATOM	991	N	GLN A			30.927	12.212	16.870	1.00 44.65
	ATOM	992	CA	GLN A			31.698	11.727	15.723	1.00 47.49
	MOTA	993	С	GLN A			33.182	11.912	16.001	1.00 50.11
	ATOM	994	0	GLN A			33.676	13.040	16.117	1.00 48.28
35	ATOM	995	СВ	GLN A			31.330	12.541	14.481	1.00 48.85
	ATOM	996	CG	GLN A			29.834	12.547	14.248	1.00 52.37
	ATOM	997	CD	GLN A			29.456	13.089	12.884	1.00 55.34
	ATOM	998		GLN A			30.319	13.536	12.135	1.00 59.08
	ATOM	999	NE2	GLN A	120		28.164	13.016	12.580	1.00 56.41
40	ATOM	1000	N	PHE A	121		33.872	10.771	16.065	1.00 52.87
	ATOM	1001	CA	PHE A			35.287	10.824	16.382	1.00 58.51
	MOTA	1002	С	PHE A	121		36.147	11.092	15.162	1.00 62.63
	ATOM	1003	0	PHE A			37.367	11.134	15.318	1.00 63.15
	MOTA	1004	CB	PHE A	121		35.764	9.660	17.219	1.00 54.96
45	ATOM	1005	CG	PHE A			35.110		18.571	1.00 55.06
	MOTA	1006	CD1	PHE A	121		33.983	8.822	18.763	1.00 54.70
	ATOM	1007	CD2	PHE A	121		35.627	10.295	19.641	1.00 52.63
	MOTA	1008	CE1	PHE A	121		33.389	8.726	20.000	1.00 54.52
	ATOM	1009	CE2	PHE A	121		35.032	10.209	20.885	1.00 53.27
50	ATOM	1010	CZ	PHE A	121		33.908	9.438	21.065	1.00 53.03
	ATOM	1011	N	ASP A			35.547	11.249	13.988	1.00 66.78
	ATOM	1012	CA	ASP A			36.246	11.801	12.847	1.00 72.12
	ATOM	1013	С	ASP A			35.414	12.152	11.632	1.00 74.59
	ATOM	1014	ō	ASP A			35.591	13.228	11.042	1.00 75.06
55	MOTA	1015	CB	ASP A			37.480	10.970	12.495	1.00 80.67
	ATOM	1016	CG	ASP A			38.640	11.910	12.201	1.00 84.98
	ATOM	1017		ASP A			38.366	13.018	11.687	1.00 87.13
	ATOM	1018		ASP A			39.782	11.512	12.508	1.00 89.25
	ATOM	1019	N	GLY A			34.511	11.277	11.204	1.00 77.06
60	ATOM	1020	CA	GLY A			33.653	11.544	10.050	1.00 79.12
	ATOM	1021	C	GLY A			32.499	10.546	9.975	1.00 80.59
	ATOM	1022	ŏ	GLY A			32.702	9.332	10.039	1.00 80.64
	ATOM	1023	N	ASP A			31.278	11.063	9.813	1.00 81.67
	AT OLI		1.4	11	T = 3		51.2.0			

	ATOM	1024	CA	ASP A	124	30.122	10.180	9.717	1.00 82.77
	ATOM	1025	С	ASP A			9.574	8.324	1.00 82.74
	MOTA	1026	0	ASP A			9.77 7	7.400	0.00 99.00
_	ATOM	1027	CB	ASP A			10.863	10.141	1.00 87.39
5	ATOM	1028	CG	ASP A			9.968	11.019	1.00 91.94
	ATOM	1029		ASP A			8.933	11.489	1.00 93.18
	ATOM ATOM	1030 1031	N N	ASP A			10.288	11.244	1.00 93.68
	ATOM	1031	CA	ASN A			6.401 5.964	13.268 14.601	1.00 58.22 1.00 58.81
10	ATOM	1032	C	ASN A		32.728	6.983	15.144	1.00 58.26
•	ATOM	1034	ŏ	ASN A			8.096	15.487	1.00 58.82
	ATOM	1035	СВ	ASN A		34.919	5.955	15.579	1.00 58.33
	ATOM	1036	CG	ASN A		35.959	4.889	15.347	1.00 62.63
	ATOM	1037	OD1	ASN A	127	35.660	3.697	15.490	1.00 64.16
15	ATOM	1038	ND2	ASN A	127	37.179	5.307	15.008	1.00 60.87
	ATOM	1039	N	THR A	128	31.462	6.617	15.180	1.00 57.71
	MOTA	1040	CA	THR A		30.411	7.522	15.665	1.00 57.23
	ATOM	1041	С	THR A		29.652	6.846	16.795	1.00 56.48
20	ATOM	1042	0	THR A		29.065	5.792	16.534	1.00 57.24
20	ATOM	1043	CB	THR A		29.452	7.842	14.501	1.00 56.65
	ATOM	1044	OG1			30.208	8.579	13.536	1.00 57.99
	ATOM	1045	CG2			28.244	8.653	14.901	1.00 56.34
	ATOM ATOM	1046 1047	N CA	MET A		29.705 29.082	7.406 6.817	18.002 19.175	1.00 54.99 1.00 52.19
25	ATOM	1047	CA	MET A		27.768	7.511	19.173	1.00 52.19
23	ATOM	1049	Ö	MET A		27.588	8.705	19.333	1.00 30.42
	ATOM	1050	СВ	MET A		30.009	6.909	20.391	1.00 40.33
	ATOM	1051	CG	MET A		31.164	5.934	20.458	1.00 62.68
	ATOM	1052	SD	MET A		30.652	4.263	20.904	1.00 68.26
30	MOTA	1053	CE	MET F	129	29.906	4.518	22.510	1.00 68.01
	MOTA	1054	N	HIS A	130	26.859	6.735	20.126	1.00 49.01
	ATOM	1055	-CA	HIS A		25.554	7.194	20.571	1.00 47.13
	MOTA	1056	С	HIS A		25.485	7.057	22.095	1.00 46.21
25	ATOM	1057	0	HIS A		26.009	6.118	22.678	1.00 45.61
35	MOTA	1058	CB	HIS A		24.436	6.345	19.956	1.00 53.82
	ATOM	1059	CG	HIS A		23.967	6.751	18.602	1.00 62.48
	ATOM ATOM	1060 1061		HIS A		24.816 22.711	7.119 6.825	17.581 18.084	1.00 66.97 1.00 65.45
	ATOM	1062		HIS A		24.114	7.424	16.505	1.00 63.43
40	ATOM	1063		HIS A		22.831	7.252	16.784	1.00 68.13
,,	MOTA	1064	N	TYR A		24.998	8.097	22.775	1.00 43.95
	ATOM	1065	CA	TYR A		24.923	8.130	24.227	1.00 42.51
	ATOM	1066	C	TYR A		23.536	8.666	24.576	1.00 41.94
	ATOM	1067	0	TYR A	131	22.956	9.497	23.829	1.00 41.77
45	ATOM	1068	CB	TYR A	131	25.948	9.151	24.762	1.00 42.89
	MOTA	1069	CG	TYR A	131	27.390	8.830	24.392	1.00 42.97
	MOTA	1070	CD1	TYR A		27.910	9.421	23.240	1.00 42.76
	MOTA	1071		TYR A		28.205	7.993	25.131	1.00 43.24
50	MOTA	1072	CE1	TYR A		29.207	9.187	22.828	1.00 44.91
50	MOTA	1073		TYR A		29.502	7.765	24.728	1.00 45.47
	ATOM	1074	CZ OH	TYR A		29.991	8.365	23.587	1.00 46.72
	ATOM	1075 1076		THR A		31.295	8.087	23.222	1.00 49.71 1.00 40.16
	ATOM ATOM	1076	N CA	THR A		22.979 21.666	8.297 8.825	25.721 26.098	1.00 40.16
55	ATOM	1077	C	THR A		21.835	9.967	27.066	1.00 37.49
55	ATOM	1079	Õ	THR A		22.535	9.779	28.077	1.00 37.45
	ATOM	1080	СВ	THR A		20.792	7.731	26.746	1.00 38.81
	ATOM	1081		THR A		20.603	6.712	25.757	1.00 36.51
	ATOM	1082		THR A		19.452	8.267	27.216	1.00 36.18
60	ATOM	1083	N	ASN A		21.212	11.104	26.792	1.00 35.61
	MOTA	1084	CA	ASN A		21.188	12.167	27.803	1.00 36.33
	MOTA	1085	С	ASN A	133	19.749	12.266	28.321	1.00 35.53
	ATOM	1086	0	ASN A	133	18.880	11.616	27.771	1.00 35.34

								•			
	ATOM	1087	CB	ASN A			21.662	13.500	27.280		36.82
	ATOM	1088	CG	ASN A			22.055	14.518	28.327		42.70
	ATOM	1089		ASN A			22.192	15.696	27.956		44.62
_	ATOM	1090		ASN A			22.275	14.088	29.562		37.77
5	ATOM	1091	N	TRP A			19.546	12.925	29.444		35.65
	ATOM	1092	CA	TRP A			18.238	12.908	30.127		36.02
	ATOM	1093	С	TRP A			17.856	14.318	30.510		36.37
	ATOM	1094	0	TRP A			18.686	15.002	31.095		37.57
10	ATOM	1095	СВ	TRP A			18.363	12.078	31.423		34.98
10	ATOM	1096	CG	TRP A			18.900	10.691	31.221		35.16
	ATOM	1097	CD1				20.214	10.320	31.363		36.78
	ATOM	1098	CD2	TRP A			18.190	9.511	30.845		37.83
	ATOM	1099	NE1			•	20.350	8.987	31.103		33.83
15	ATOM	1100	CE2				19.121	8.458	30.802		34.86
13	MOTA	1101	CE3	TRP A			16.836	9.240 7.136	30.593		35.07
	ATOM ATOM	1102 1103	CZ2	TRP A			18.770	7.136	30.516 30.308		36.92 39.28
			CH2				16.498 17.449				38.59
	ATOM	1104		TRP A				6.905 14.807	30.240 30.259		36.82
20	ATOM	1105 1106	N CA				16.634				
20	ATOM			THR A			16.349	16.149	30.758		36.51
	ATOM	1107	C	THR A			16.094	16.125 17.149	32.270 32.927		37.13
	ATOM	1108 1109	O				16.234				35.77 41.31
	ATOM ATOM		CB	THR A			15.214	16.871	30.031		39.42
25	ATOM	1110 1111		THR A			13.979 15.461	16.175 16.910	30.224 28.512		43.30
23	ATOM	1111	N N	HIS A			15.650	15.007	32.831		36.50
	ATOM	1113	CA	HIS A			15.236	14.974	34.227		37.55
	ATOM	1113	C	HIS A			16.017	13.856	34.227		36.41
	ATOM	1115	Ö	HIS A			15.783	12.717	34.570		37.39
30	ATOM	1116	СВ	HIS A			13.731	14.716	34.346		42.28
50	ATOM	1117	CG	HIS A			12.843	15.884	34.044		45.85
	ATOM	1118		HIS A			12.928	16.585	32.850		44.57
	ATOM	1119		HIS A			11.847	16.467	34.751		47.41
	ATOM	1120		HIS A			12.039	17.564	32.853		45.33
35	ATOM	1121		HIS A			11.362	17.512	33.987		49.47
	ATOM	1122	N	ILE A			16.941	14.223	35.827		35.44
	ATOM	1123	CA	ILE A			17.696	13.165	36.526		34.42
	ATOM	1124	C	ILE A			17.396	13.291	38.023		34.06
	ATOM	1125	ō	ILE A			17.573	14.396	38.537		34.29
40	ATOM	1126	СВ	ILE A			19.209	13.314	36.268		33.02
	ATOM	1127		ILE A			19.527	13.053	34.780		33.98
	ATOM	1128		ILE A			19.995	12.315	37.126		34.85
	ATOM	1129		ILE A			20.948	13.484	34.427	1.00	35.15
	ATOM	1130	N	TYR A			16.902	12.217	38.643	1.00	33.90
45	MOTA	1131	CA	TYR A	138		16.497	12.371	40.067		34.35
	ATOM	1132	С	TYR A	138		17.618	11.920	40.998	1.00	34.35
	MOTA	1133	0	TYR A	138		17.925	10.740	40.954	1.00	35.52
	ATOM	1134	CB	TYR A	138		15.196	11.604	40.319		35.05
	ATOM	1135	CG	TYR A			14.075	12.281	39.524	1.00	37.41
50	ATOM	1136		TYR A			13.904	11.924	38.203	1.00	38.75
	ATOM	1137		TYR A			13.272	13.267	40.084		40.04
	ATOM	1138		TYR A			12.922	12.525	37.431		39.64
	MOTA	1139	CE2	TYR A			12.281	13.870	39.308		41.81
	MOTA	1140	CZ	TYR A			12.128	13.492	37.999		41.16
55	ATOM	1141	OH	TYR A			11.171	14.050	37.192		43.58
	ATOM	1142	N	ILE A			18.255	12.823	41.721		34.48
	MOTA	1143	CA	ILE A			19.360	12.458	42.607		35.01
	ATOM	1144	С	ILE A			18.756	12.127	43.996		34.60
	MOTA	1145	0	ILE A			18.312	13.089	44.613		35.20
60	ATOM	1146	CB	ILE A			20.353	13.612	42.774	1.00	
	ATOM	1147		ILE A			20.926	14.098	41.421	1.00	
	ATOM	1148		ILE A			21.546	13.200	43.637	1.00	
	ATOM	1149	CD1	ILE A	139		21.487	12.956	40.588	1.00	38.91

	ATOM	1150	N	CYS	Α	140	18.581	10.861	44.301	1.00 35.26
	MOTA	1151	CA	CYS	Α	140	17.938	10.511	45.590	1.00 37.11
	ATOM	1152	С	CYS	Α	140	18.952	10.174	46.664	1.00 37.66
	ATOM	1153	0	CYS	Α	140	19.865	9.384	46.448	1.00 37.82
5	ATOM	1154	CB	CYS	Α	140	17.078		45.411	1.00 42.45
_	ATOM	1155	SG	CYS			15.483	9.689	44.680	1.00 49.17
	ATOM	1156	N	GLU			18.799	10.796	47.831	1.00 37.14
	ATOM	1157	CA	GLU			19.664	10.484	48.966	1.00 37.88
	ATOM	1158	C	GLU			18.845	9.929	50.125	1.00 36.63
10	ATOM	1159	ŏ	GLU			17.678	9.579	49.925	1.00 35.72
10	ATOM	1160	СВ	GLU			20.509	11.709	49.297	1.00 43.42
	ATOM	1161	CG	GLU			21.392	12.145	48.129	1.00 53.61
	ATOM	1162	CD	GLU			22.122	13.446	48.352	1.00 58.09
				GLU			21.544	14.528	48.139	1.00 57.53
15	MOTA	1163					23.308	13.339	48.747	1.00 64.14
13	ATOM	1164		GLU						1.00 36.78
	ATOM	1165	N	GLU			19.445	9.883	51.315	
	ATOM	1166	CA	GLU			18.783	9.263	52.479	1.00 36.84
	MOTA	1167	C	GLU			17.515	9.941	52.907	1.00 35.85
•	MOTA	1168	0	GLU			16.496	9.267	53.166	1.00 36.59
20	ATOM	1169	CB	GLU			19.780	9.360	53.654	1.00 43.10
	ATOM	1170	CG	GLU			21.150	8.763	53.466	1.00 54.03
	MOTA	1171	CD	GLU			22.322	9.696	53.311	1.00 60.55
	MOTA	1172	OE1	GLU			22.260	10.679	52.543	1.00 59.21
	MOTA	1173	OE2	GLU	Α	142	23.401	9.470	53.924	1.00 64.17
25	ATOM	1174	N	ALA	Α	143	17.477	11.272	52.922	1.00 34.96
	ATOM	1175	CA	ALA	Α	143	16.241	11.960	53.308	1.00 36.52
	ATOM	1176	С	ALA	Α	143	15.739	12.999	52.312	1.00 36.98
	ATOM	1177	0	ALA	Α	143	15.239	14.019	52.787	1.00 38.22
	ATOM	1178	СВ	ALA	Α	143	16.560	12.620	54.652	1.00 34.45
30	ATOM	1179	N	SER	А	144	16.163	12.881	51.031	1.00 36.01
	ATOM	1180	CA	SER			15.754	13.884	50.048	1.00 35.70
	ATOM	1181	С	SER	Α	144	15.959	13.477	48.583	1.00 35.68
	ATOM	1182	0	SER			16.665	12.520	48.259	1.00 34.04
	ATOM	1183	СВ	SER			16.607	15.158	50.246	1.00 39.92
35	ATOM	1184	OG	SER			17.965	14.791	49.965	1.00 46.64
	ATOM	1185	N	VAL			15.361	14.287	47.712	1.00 36.14
	ATOM	1186	CA	VAL			15.576	14.054	46.260	1.00 35.49
	ATOM	1187	C	VAL			15.546	15.410	45.563	1.00 36.78
	ATOM	1188	ŏ	VAL			14.806	16.307	45.979	1.00 34.89
40	ATOM	1189	СВ	VAL			14.580	13.058	45.707	1.00 36.75
70	ATOM	1190		VAL			13.141	13.446	46.028	1.00 36.76
	MOTA	1191		VAL			14.730	12.908	44.192	1.00 37.20
		1192	N N	THR			16.453	15.595	44.600	1.00 37.23
	ATOM	1192	CA	THR			16.434	16.814	43.769	1.00 37.23
45	ATOM						16.529	16.390	42.297	1.00 39.36
43	ATOM	1194	C	THR			17.361	15.521	41.981	1.00 39.50
	ATOM	1195		THR					44.040	1.00 43.57
	ATOM	1196	CB	THR			17.709	17.657		
	ATOM	1197	OG1				17.833	17.886	45.432	1.00 49.29
50	MOTA	1198		THR			17.686	18.953	43.244	1.00 46.55
50	ATOM	1199	N	VAL			15.699	16.998	41.454	1.00 39.48
	ATOM	1200	CA	VAL			15.774	16.719	40.017	1.00 38.72
	ATOM	1201	С	VAL			16.800	17.682	39.433	1.00 39.04
	ATOM	1202	0	VAL	Α	147	16.921	18.842	39.851	1.00 38.28
	MOTA	1203	CB	VAL			14.451	16.800	39.268	1.00 40.51
55	MOTA	1204		VAL			13.871	18.209	39.197	1.00 42.34
	ATOM	1205	CG2	VAL	A	147	14.532	16.183	37.873	1.00 36.37
	MOTA	1206	N	VAL	Α	148	17.711	17.103	38.634	1.00 39.16
	MOTA	1207	CA	VAL			18.685	17.909	37.910	1.00 38.86
	ATOM	1208	С	VAL			18.569	17.615	36.406	1.00 38.03
60	ATOM	1209	Ō	VAL			18.093	16.554	35.994	1.00 38.38
	ATOM	1210	СВ	VAL			20.117	17.663	38.437	1.00 37.94
	ATOM "	1211		VAL			20.196	17.921	39.948	1.00 37.81
	ATOM	1212		VAL			20.543	16.227	38.135	1.00 39.08
										_

	ATOM	1213	N	GLU A	149	19.105	18.521	35.575	1.00 37.21
		1213	CA	GLU A		19.010	18.272	34.118	1.00 37.63
	ATOM ATOM	1215	C	GLU A		20.309	17.767	33.517	1.00 36.45
		1215	0	GLU A		21.385	18.214	33.912	1.00 37.57
5	ATOM ATOM	1217	CB	GLU A		18.519	19.530	33.403	1.00 48.95
3		1217	CG	GLU A		19.598	20.527	33.046	1.00 53.64
	ATOM		CD	GLU A		19.100	21.544	32.022	1.00 58.00
	MOTA	1219		GLU A		19.440	22.716	32.229	1.00 55.36
	MOTA	1220	051	GLU A	149	18.363	21.228	31.067	1.00 61.49
10	ATOM	1221		GLU A		20.200	16.861	32.559	1.00 37.43
10	ATOM	1222	N			21.399	16.289	31.923	1.00 37.43
	ATOM	1223	CA	GLY A		21.910	17.392	30.970	1.00 37.25
	ATOM	1224	C			21.910	18.016	30.338	1.00 37.62
	ATOM	1225	0	GLY A		23.181	17.714	31.014	1.00 37.02
1.5	ATOM	1226	N	GLN A		23.713	18.812	30.210	1.00 37.21
15	ATOM	1227	CA	GLN A				29.331	1.00 30.32
	ATOM	1228	С	GLN A	_	24.833	18.247		1.00 37.40
	MOTA	1229	0	GLN A		25.351	17.166	29.610	
	MOTA	1230	CB	GLN A		24.280	19.937	31.078	1.00 37.56
••	MOTA	1231	CG	GLN A		23.177	20.667	31.852	1.00 43.46
20	MOTA	1232	CD	GLN A		23.691	21.877	32.581	1.00 48.78
	ATOM	1233		GLN A		23.987	22.896	31.946	1.00 49.56
	ATOM	1234	NE2	GLN A		23.820	21.769	33.905	1.00 44.12
	MOTA	1235	N	VAL A		25.173	19.028	28.294	1.00 36.05
	MOTA	1236	CA	VAL A		26.097	18.488	27.284	1.00 36.80
25	MOTA	1237	C	VAL A		27.209	19.494	26.986	1.00 37.21
	MOTA	1238	0	VAL A		26.949	20.667	26.795	1.00 36.72
	ATOM	1239	CB	VAL A		25.385	18.266	25.921	1.00 40.17
	MOTA	1240		VAL A		26.394	17.345	25.148	1.00 37.05
	MOTA	1241	CG2	VAL A		24.181	17.350	26.088	1.00 42.64
30	ATOM	1242	N	ASP A		28.420	19.032	27.005	1.00 37.01
	MOTA	1243	CA	ASP A		29.712	19.530	26.819	1.00 37.91
	ATOM	1244	С	ASP A		30.452	19.060	25.554	1.00 36.17
	MOTA	1245	0	ASP A	153	30.094	18.059	24.955	1.00 37.68
	ATOM	1246	CB	ASP A		30.713	19.123	28.066	1.00 30.79
35	MOTA	1247	CG	ASP A	153	30.890	20.514	28.634	1.00 39.47
	MOTA	1248		ASP A		30.469	21.441	27.840	1.00 53.60
	MOTA	1249	OD2	ASP A	153	31.411	20.767	29.695	1.00 41.06
	MOTA	1250	N	TYR A	154	31.550	19.785	25.263	1.00 36.73
	MOTA	1251	CA	TYR A	154	32.497	19.232	24.299	1.00 38.06
40	MOTA	1252	С	TYR A	154	33.107	17.950	24.912	1.00 38.77
	MOTA	1253	0	TYR A	154	33.386	16.934	24.276	1.00 38.93
	MOTA	1254	CB	TYR A	154	33.624	20.200	23.920	1.00 38.36
	MOTA	1255	CG	TYR A	154	34.637	19.489	23.038	1.00 38.72
	ATOM	1256	CD1	TYR A	154	34.295	19.193	21.714	1.00 39.88
45	ATOM	1257	CD2	TYR A	154	35.875	19.104	23.514	1.00 39.51
	MOTA	1258	CE1	TYR A	154	35.184	18.532		1.00 39.95
	ATOM	1259		TYR A	154	36.759	18.454	22.687	1.00 41.22
	MOTA	1260	CZ	TYR A	154	36.412	18.174	21.376	1.00 41.17
	MOTA	1261	OH	TYR A	154	37.332	17.516	20.610	1.00 42.16
50	MOTA	1262	N	TYR A	155	33.319	18.027	26.224	1.00 38.13
	MOTA	1263	CA	TYR A	155	33.883	16.968	27.018	1.00 38.84
	ATOM	1264	С	TYR A		32.959	15.819	27.350	1.00 37.80
	MOTA	1265	0	TYR A		33.530	14.735	27.543	1.00 37.77
	MOTA	1266	СВ	TYR A		34.500	17.518	28.323	1.00 40.03
55	MOTA	1267	CG	TYR A		35.364	18.745	28.031	1.00 43.75
	ATOM	1268		TYR A		34.854	20.021	28.230	1.00 44.64
	ATOM	1269		TYR A		36.655	18.604	27.562	1.00 44.86
	ATOM	1270		TYR A		35.628	21.136	27.950	1.00 46.55
	ATOM	1271		TYR A		37.440	19.709	27.271	1.00 46.37
60	MOTA	1272	CZ	TYR A	155	36.920	20.963	27.485	1.00 48.04
, .	ATOM	1273	OH	TYR A		37.708	22.064	27.230	1.00 50.62
	ATOM	1274	N	GLY A	156	31.651	16.005	27.491	1.00 36.89
	ATOM ,	1275	CA	GLY A		30.784	14.894	27.833	1.00 36.27
	ALON,	12/3	-ri						

	ATOM	1276	С	GLY	A	156	29.374	15.297	28.278	1.00	
	ATOM	1277	0	GLY	Α	156	28.845	16.351	27.962	1.00	36.73
	ATOM	1278	N	LEU	Α	157	28.737	14.367	28.989	1.00	35.47
	ATOM	1279	CA	LEU			27.410	14.593	29.547	1.00	36.71
5	ATOM	1280	C	LEU			27.570	14.782	31.061	1.00	36.98
	ATOM	1281	ŏ	LEU			28.299	14.009	31.703		37.91
		1282	СВ	LEU			26.472	13.404	29.348		36.06
	ATOM			_					27.878		39.11
	MOTA	1283	CG	LEU			26.409	12.902			
10	MOTA	1284		LEU			25.362	11.777	27.835	1.00	
10	ATOM	1285		LEU			25.944	14.021	26.948		37.66
	ATOM	1286	N	TYR			26.860	15.773	31.583		36.59
	ATOM	1287	CA	TYR	Α	158	27.043	16.018	33.020		37.29
	ATOM	1288	С	TYR	Α	158	25.778	16.579	33.654		37.06
	ATOM	1289	0	TYR	A	158	24.813	16.941	32.968	1.00	36.78
15	MOTA	1290	CB	TYR	Α	158	28.202	17.007	33.172	1.00	37.24
	ATOM	1291	CG	TYR			27.948	18.410	32.664	1.00	38.25
	ATOM	1292	CD1	TYR			27.547	19.427	33.526		37.59
		1293		TYR			28.158	18.721	31.322	1.00	
	ATOM					A-1	27.355	20.718	33.056		38.42
20	ATOM	1294	CE1	TYR							
20	ATOM	1295		TYR			27.955	20.009	30.839	1.00	
	MOTA	1296	CZ	TYR			27.573	21.006	31.711.	1.00	
	MOTA	1297	ОН	TYR	Α	158	27.359	22.290	31.260		37.90
	ATOM	1298	N	TYR	Α	159	25.799	16.661	34.979	1.00	36.65
	ATOM	1299	CA	TYR	Α	159	24.758	17.394	35.694	1.00	37.45
25	ATOM	1300	С	TYR	Α	159	25.493	18.169	36.801	1.00	37.16
	ATOM	1301	Ö	TYR			26.659	17.920	37.045	1.00	37.16
	ATOM	1302	ČВ	TYR			23.638	16.543	36.301		37.42
	ATOM	1303	CG	TYR			24.161	15.441	37.222		37.53
	MOTA			TYR			24.429	14.181	36.732	1.00	
20		1304	CD1						38.574		38.15
30	MOTA	1305		TYR			24.352	15.689			
	ATOM	1306	CE1	TYR			24.902	13.169	37.564		39.89
	ATOM	1307		TYR			24.823	14.699	39.407	1.00	
	ATOM	1308	CZ	TYR			25.101	13.454	38.893		39.58
	ATOM	1309	ОН	TYR	Α	159	25.613	12.488	39.741		40.63
35	ATOM	1310	N	VAL	Α	160	24.779	19.122	37.356	1.00	
	MOTA	1311	CA	VAL	A	160	25.251	19.943	38.452	1.00	38.20
	ATOM	1312	С	VAL	Α	160	24.277	19.714	39.629	1.00	38.68
	ATOM	1313	0	VAL			23.078	19.922	39.514	1.00	38.89
	ATOM	1314	СВ	VAL			25.295	21.439	38.094	1.00	41.01
40	ATOM	1315		VAL			25.815	22.251	39.288		39.83
10	ATOM	1316		VAL			26.254	21.687	36.916	1.00	
	ATOM	1317		HIS			24.818	19.208	40.708	1.00	
			N					18.916	41.919		39.84
	MOTA	1318	CA	HIS			24.018				
4.5	MOTA	1319	C	HIS			24.734	19.569	43.095	1.00	
45	MOTA	1320	0	HIS	-		25.900	19.316	43.322		38.92
	MOTA	1321	CB	HIS	A	161		17.418			37.10
	ATOM	1322	CG	HIS	A	161	23.189	16.976	43.377	1.00	
	ATOM	1323	ND1	HIS	Α	161	21.908	17.363	43.665	1.00	42.27
	ATOM	1324	CD2	HIS	Α	161	23.571	16.163	44.374	1.00	38.66
50	ATOM	1325		HIS			21.508	16.811	44.805	1.00	34.42
	ATOM	1326		HIS			22.503	16.079	45.262	1.00	40.76
	ATOM	1327	N	GLU			24.031	20.404	43.832	1.00	
	ATOM	1328	CA	GLU			24.557	21.115	44.998	1.00	
				GLU			25.795	21.928	44.616	1.00	
E E	ATOM	1329	C							1.00	
55	ATOM	1330	0	GLU			26.806	21.828	45.304		
	ATOM	1331	CB	GLU			24.930	20.138	46.121		46.97
	ATOM	1332	CG	GLU			23.750	19.235	46.415	1.00	
	MOTA	1333	CD	GLU			23.494	18.891	47.854	1.00	
	ATOM	1334	OE1	GLU	A	162	22.551	19.508	48.387	1.00	
60	ATOM	1335		GLU			24.226	18.027	48.364	1.00	65.49
	ATOM	1336	N	GLY			25.786	22.518	43.432	1.00	43.79
	ATOM	1337	CA	GLY			26.930	23.253	42.929	1.00	
	MOTA	1338	C	GLY			28.023	22.409	42.306		43.73
	134 OE ,	1000	~	د بدب	• •	100					· -

	MOTA	1339	0	GLY A		28.958	23.011	41.746	1.00 43.41 1.00 42.17
	ATOM	1340	N	ILE A		27.986	21.079		
	MOTA	1341	CA	ILE A		29.078	20.258	41.896	1.00 41.52
_	ATOM	1342	С	ILE A		28.743	19.687	40.513	1.00 41.11
5	MOTA	1343	0	ILE A		27.677	19.110	40.314	1.00 40.21
	ATOM	1344	CB	ILE A		29.442	19.081	42.820	1.00 41.77
	ATOM	1345	CG1	ILE A		29.730	19.597	44.228	
	ATOM	1346		ILE A		30.651	18.346	42.258	1.00 43.25
	ATOM	1347		ILE A		29.708	18.526	45.303	1.00 50.89
10	MOTA	1348	N	ARG A		29.613	20.004	39.561	1.00 40.27
	ATOM	1349	CA	ARG A		29.428	19.508	38.202	1.00 40.37
	MOTA	1350	С	ARG A	4	29.979	18.082	38.132	1.00 40.18
	ATOM	1351	0	ARG A		31.139	17.889	38.436	1.00 40.87
	ATOM	1352	CB	ARG A		30.211	20.389	37.205	1.00 43.98
15	MOTA	1353	CG	ARG A		30.190	19.775	35.799	1.00 48.81
	MOTA	1354	CD	ARG A		31.056	20.614	34.844	1.00 50.67
	MOTA	1355	NE	ARG A	165	30.374	21.882	34.644	1.00 54.50
	ATOM	1356	CZ	ARG A		30.245	22.592	33.535	1.00 51.25
	MOTA	1357	NHl	ARG A	165	30.788	22.211	32.399	1.00 52.55
20	MOTA	1358	NH2	ARG A	165	29.552	23.727	33.612	1.00 46.13
	ATOM	1359	N	THR A	166	29.159	17.127	37.747	1.00 38.84
	MOTA	1360	CA	THR A	166	29.502	15.722	37.710	1.00 37.91
	ATOM	1361	С	THR A	166	29.318	15.152	36.310	1.00 36.66
	ATOM	1362	0	THR A	166	28.167	15.109	35.857	1.00 36.77
25	ATOM	1363	CB	THR A	166	28.621	14.911	38.700	1.00 42.71
	ATOM	1364	OG1	THR A	166	28.895	15.399	40.034	1.00 43.09
	ATOM	1365	CG2	THR A		28.934	13.427	38.662	1.00 40.93
	ATOM	1366	N	TYR A		30.398	14.733	35.667	1.00 36.29
	ATOM	1367	CA	TYR A	167	30.309	14.112	34.342	1.00 36.95
30	ATOM	1368	С	TYR A		29.970	12.639	34.466	1.00 37.76
	ATOM	1369	Ō	TYR A		30.561	11.961	35.335	1.00 39.69
	ATOM	1370	CB	TYR A		31.611	14.231	33.518	1.00 37.91
	MOTA	1371	CG	TYR A		31.797	15.617	32.933	1.00 38.45
	MOTA	1372		TYR A		32.311	16.637	33.726	1.00 39.32
35	ATOM	1373		TYR A		31.397	15.937	31.646	1.00 39.69
	ATOM	1374		TYR A		32.458	17.919	33.243	1.00 38.98
	ATOM	1375		TYR A		31.535	17.214	31.133	1.00 39.08
	ATOM	1376	CZ	TYR A		32.064	18.201	31.946	1.00 40.35
	MOTA	1377	OH	TYR A		32.216	19.488	31.494	1.00 39.61
40		1378	N	PHE A		28.924	12.172	33.821	1.00 37.39
••	ATOM	1379	CA	PHE A		28.547	10.772	33.818	1.00 38.28
	ATOM	1380	C	PHE A		28.987	10.058	32.559	1.00 39.29
	ATOM	1381	Õ	PHE A		28.980	8.825	32.494	1.00 38.30
	MOTA	1382	СВ	PHE A		27.085	10.508	34.167	1.00 38.07
45	ATOM	1383	CG	PHE A		26.068	11.226	33.320	1.00 34.93
43	ATOM	1384		PHE A		25.596	10.661	32.153	1.00 36.11
	ATOM	1385		PHE A			12.470		1.00 35.04
	ATOM	1386		PHE A		24.656	11.337	31.364	1.00 34.93
	ATOM	1387		PHE A		24.672	13.140	32.951	1.00 35.38
50	ATOM	1388	CZ	PHE A		24.215	12.564	31.799	1.00 30.80
50	ATOM	1389	N	VAL A		29.331	10.849	31.524	1.00 39.59
	ATOM	1390	CA	VAL A		30.019	10.310	30.354	1.00 40.03
	ATOM	1391	C	VAL A		31.149	11.322	30.039	1.00 41.32
	ATOM	1392	Ö	VAL A		30.904	12.530	30.018	1.00 39.98
55	ATOM	1393	CB	VAL A		29.136	10.155	29.112	1.00 39.59
		1393		VAL A		29.130	9.684	27.917	1.00 41.55
	ATOM	1395		VAL A		28.019	9.107	29.242	1.00 38.14
60	ATOM			GLN A		32.377	10.844	29.870	1.00 41.92
	ATOM	1396	N CA	GLN A		33.464	11.693	29.396	1.00 42.70
	ATOM	1397		GLN A		33.833	11.215	27.990	1.00 43.33
UU	MOTA	1398	C	GLN A		34.348	10.097	27.861	1.00 43.22
	MOTA	1399	O CB	GLN A		34.696	11.627	30.293	1.00 39.48
	ATOM	1400	CB	GLN A	170	34.448	12.220	31.676	1.00 45.31
	MOTA	1401	CG	GUN A	110	J7.47U	14.44	51.0.0	

		1 400		CTN		170	35.691	12.212	32.542	1.00 46.68
	ATOM	1402	CD	GLN GLN			35.649	11.848	33.717	1.00 52.69
	ATOM	1403		GLN			36.816	12.618	31.998	1.00 47.58
	ATOM ATOM	1404 1405	NEZ N	PHE			33.678	12.076	26.982	1.00 43.04
5	ATOM	1406	CA	PHE			33.884	11.606	25.629	1.00 44.34
3	ATOM	1407	C	PHE			35.302	11.186	25.340	1.00 45.84
	MOTA	1408	Ö	PHE			35.508	10.343	24.446	1.00 45.10
	ATOM	1409	CB	PHE			33.422	12.612	24.597	1.00 39.68
	ATOM	1410	CG			171	31.961	12.978	24.639	1.00 38.24
10	ATOM	1411		PHE			31.016	11.986	24.875	1.00 40.47
	ATOM	1412		PHE			31.530	14.269	24.412	1.00 35.50
	ATOM	1413		PHE			29.673	12.310	24.905	1.00 37.70
	ATOM	1414		PHE			30.187	14.604	24.441	1.00 37.98
_	ATOM	1415	CZ	PHE	Α	171	29.248	13.621	24.690	1.00 37.99
15	MOTA	1416	N	LYS	A	172	36.287	11.662	26.080	1.00 45.69
	ATOM	1417	CA	LYS	Α	172	37.660	11.223	25.889	1.00 47.54
	MOTA	1418	С	LYS	Α	172	37.949	9.748	26.138	1.00 48.27
	MOTA	1419	0	LYS	Α	172	38.884	9.175	25.570	1.00 48.26
	ATOM	1420	CB	LYS	Α	172	38.594	12.102	26.708	1.00 52.42
20	ATOM	1421	CG	LYS			40.022	12.159	26.201	1.00 57.12
	ATOM	1422	CD	LYS			40.904	12.971	27.157	1.00 64.24
	ATOM	1423	CE	LYS	A	172	42.362	12.543	27.018	1.00 65.59
	MOTA	1424	NZ	LYS			43.304	13.691	26.949	1.00 65.87
	MOTA	1425	N	ASP			37.154	9.132	27.009	1.00 48.25
25	ATOM	1426	CA	ASP			37.212	7.712	27.287	1.00 49.23
	MOTA	1427	С	ASP			36.954	6.925	26.007	1.00 49.36
	MOTA	1428	0	ASP			37.788	6.072	25.701	1.00 49.13
	MOTA	1429	CB	ASP			36.263	7.269	28.394	1.00 46.27
••	ATOM	1430	CG	ASP			36.627	7.869	29.740	1.00 50.82
30	ATOM	1431		ASP			35.740	8.056	30.605	1.00 51.86
	MOTA	1432		ASP			37.817	8.158	29.970	1.00 52.02 1.00 49.89
	ATOM	1433	N	ASP			35.901	7.144	25.248	1.00 49.89
	ATOM	1434	CA	ASP			35.671	6.430	24.007	1.00 52.00
25	ATOM	1435	C	ASP			36.647	6.784 5.884	22.897 22.165	1.00 52.00
35	ATOM	1436	0	ASP			37.085 34.231	6.582	23.539	1.00 51.65
	MOTA	1437	CB	ASP ASP			33.276	5.662	24.274	1.00 51.83
	ATOM	1438 1439	CG	ASP			33.751	4.664	24.847	1.00 48.40
	ATOM	1439		ASP			32.060	5.942	24.269	1.00 52.72
40	ATOM ATOM	1441	N N	ALA			37.040	8.053	22.808	1.00 52.36
70	ATOM	1442	CA	ALA			38.024	8.476	21.821	1.00 53.78
	ATOM	1443	C	ALA			39.362	7.759	21.964	1.00 54.22
	ATOM	1444	Ö	ALA		_	39.999	7.417	20.974	1.00 54.32
	ATOM	1445	CB	ALA			38.226	9.986	21.910	1.00 51.67
45	ATOM	1446	N	GLU			39.832	7.508	23.186	1.00 55.55
•••	ATOM	1447	CA	GLU			41.120	6.865	23.409	1.00 56.73
	ATOM	1448	C	GLU			41.015	5.357	23.234	1.00 57.74
	ATOM	1449	0	GLU			42.025	4.646	23.187	1.00 58.14
	ATOM	1450	CB	GLU			41.655	7.170	24.806	1.00 56.85
50	ATOM	1451	CG	GLU	Α	176	41.910	8.632	25.116	1.00 59.30
	MOTA	1452	CD	GLU	Α	176	42.180	8.743	26.537	0.00 99.00
	ATOM	1453	OE1	GLU	Α	176	41.740	8.063	27.454	0.00 99.00
	MOTA	1454		GLU			43.073	9.574	26.687	0.00 99.00
	ATOM	1455	N	LYS	Α	177	39.790	4.852	23.170	1.00 58.44
55	ATOM	1456	CA	LYS			39.555	3.420	23.024	1.00 59.70
	MOTA	1457	С	LYS			39.312	3.069	21.561	1.00 60.20
	MOTA	1458	0	LYS			39.326	1.895	21.198	1.00 60.71
	ATOM	1459	СВ	LYS	A	177	38.350	3.040	23.887	1.00 63.58
	ATOM	1460	CG	LYS			38.054	1.569	24.029	1.00 67.87
60	MOTA	1461	CD	LYS			37.047	1.277	25.140	1.00 70.02
	MOTA	1462	CE	LYS			36.872	-0.235	25.242	1.00 73.46
	MOTA	1463	NZ	LYS		•	36.221	-0.638	26.517	1.00 75.57
	ATOM .	1464	N	TYR	A	178	38.908	4.057	20.758	1.00 60.36

	ATOM	1465	CA	TYR A	178	38.551	3.798	19.381		61.69
	ATOM	1466	С	TYR A	178	39.369	4.563	18.361		62.23
	ATOM	1467	0	TYR A	178	39.821	3.923	17.409	1.00	63.37
	ATOM	1468	СВ	TYR A	178	37.057	3.988	19.100	1.00	61.34
5	ATOM	1469	CG	TYR A		36.139	3.197	20.010	1.00	61.39
,		1470		TYR A		36.249	1.811	20.081	1.00	62.10
	ATOM			TYR A		35.189	3.821	20.798		61.28
	ATOM	1471	CD2				1.072	20.730		62.32
	ATOM	1472	CE1			35.440				62.22
	ATOM	1473	CE2	TYR A		34.378	3.097	21.651		62.51
10	MOTA	1474	CZ	TYR A		34.505	1.723	21.707		
	MOTA	1475	ОН	TYR A		33.696	0.989	22.540		62.15
	ATOM	1476	N	SER A	179	39.573	5.858	18.525		62.95
	MOTA	1477	CA	SER A	179 -	40.159	6.703	17.498		64.19
	ATOM	1478	С	SER A	179	41.662	6.923	17.631	1.00	64.98
15	MOTA	1479	ō	SER A		42.279	6.550	18.630	1.00	64.79
13	ATOM	1480	СВ	SER A		39.470	8.077	17.505	1.00	65.34
				SER A		39.982	8.923	16.491		69.64
	ATOM	1481	OG			42.254	7.552	16.609		65.75
	MOTA	1482	N	LYS A				16.658	1.00	66.93
	MOTA	1483	CA	LYS A		43.672	7.876			
20	MOTA	1484	С	LYS A		43.886	9.316	17.107	1.00	
	MOTA	1485	0	LYS A		44.806	9.591	17.887	1.00	67.85
	ATOM	1486	CB	LYS A	180	44.431	7.615	15.360		69.83
	ATOM	1487	CG	LYS A	180	45.938	7.673	15.581		73.65
	ATOM	1488	CD	LYS A		46.681	8.326	14.427	1.00	76.04
25	ATOM	1489	CE	LYS A		48.016	8.889	14.887	1.00	75.99 [.]
23	ATOM	1490	NZ	LYS A		47.829	10.056	15.790	1.00	78.28
				ASN A		43.017	10.216	16.652		66.93
	MOTA	1491	N	ASN A		43.126	11.609	17.113		66.52
	ATOM	1492	CA.				11.842	18.240		65.58
~ ~	MOTA	14.93	C	ASN A		42.128				65.86
30	ATOM	1494	0	ASN A		41.133	11.131	18.348		
	ATOM	1495	CB	ASN A		43.174	12.454	16.113		99.00
	MOTA	1496	CG	ASN A	181	44.528	12.902	15.624		99.00
	ATOM	1497	OD1	ASN A	181	45.545	12.248	15.833		99.00
	ATOM	1498	ND2	ASN A	181	44.525	14.056	14.935		99.00
35	ATOM	1499	N	LYS A		42.432	12.756	19.155	1.00	65.06
55	ATOM	1500	CA	LYS A		41.483	13.086	20.232	1.00	62.47
	ATOM	1501	C	LYS A		40.755	14.370	19.855		60.44
				LYS A		40.951	15.405	20.491		60.89
	ATOM	1502	0				13.224	21.544		68.03
40	ATOM	1503	CB	LYS A		42.257	13.626	22.774		70.69
40	ATOM	1504	CG	LYS A		41.462	-			73.12
	MOTA	1505	CD	LYS A		42.223	14.606	23.651		
	MOTA	1506	CE	LYS A		41.360	15.246	24.718		73.28
	ATOM	1507	NZ	LYS A	182	40.729	16.534	24.325		74.63
	ATOM	1508	N	VAL A	183	40.007	14.401	18.761		58.04
45	ATOM	1509	CA	VAL A	183	39.240	15.559	18.324		55.16
	ATOM	1510	С	VAL A		37.899	15.073	17.781		52.42
	ATOM	1511	ŏ	VAL A		37.902	14.220	16.898	1.00	52.43
	ATOM	1512	СB	VAL A		39.936	16.462	17.302	1.00	58.84
				VAL A		38.965	17.219	16.395		61.12
50	ATOM	1513				40.809	17.504	18.010		60.87
50	MOTA	1514		VAL A		36.785		18.302		49.48
	ATOM	1515	N	TRP A			15.581			45.59
	ATOM	1516	CA	TRP A		35.495	15.042	17.878		
	MOTA	1517	С	TRP A		34.490	16.159	17.706		44.01
	MOTA	1518	0	TRP A	184	34.791	17.353	17.913		42.88
55	MOTA	1519	CB	TRP A	184	35.049	13.926	18.839		42.62
	ATOM	1520	CG	TRP A		35.075	14.460	20.253		39.47
	MOTA	1521		TRP A		34.123	15.236	20.830		37.50
	ATOM	1522		TRP A		36.109	14.271	21.216		41.84
			NE1			34.491	15.541	22.123		36.00
60	ATOM	1523		TRP A		35.717	14.963	22.380		39.37
60	MOTA	1524				37.328	13.587	21.201		39.30
	ATOM	1525		TRP A						41.08
	ATOM	1526		TRP A		36.504	14.983	23.529		
	MOTA	1527	CZ3	TRP A	184	38.105	13.599	22.341	1.00	41.95

ATOM 1529 CH2 TRP A 184 37.692 14.293 23.486 1.00 42.34 APP A 150 CA GLU A 185 32.221 18.099 17.270 1.00 42.34 APP APP APP APP APP APP APP APP APP AP								•		
ATOM 1530 CA GLU A 185 33.292 15.809 17.270 1.00 42.70 ATOM 1530 CA GLU A 185 30.950 16.204 17.765 1.00 43.74 ATOM 1531 C GLU A 185 30.950 16.204 17.765 1.00 43.14 ATOM 1533 CB GLU A 185 30.950 17.074 15.635 1.00 42.03 ATOM 1535 CD GLU A 185 31.903 17.074 15.635 1.00 42.03 ATOM 1535 CD GLU A 185 31.903 17.074 15.635 1.00 42.03 ATOM 1536 CB GLU A 185 31.903 17.074 15.635 1.00 42.03 ATOM 1536 CB GLU A 185 31.903 17.074 15.635 1.00 42.12 ATOM 1536 CB GLU A 185 31.903 17.074 15.635 1.00 42.12 ATOM 1536 CB GLU A 185 31.953 17.527 12.910 1.00 40.53 ATOM 1536 CB GLU A 185 31.641 18.955 13.015 1.00 42.12 ATOM 1538 CB GLU A 185 31.641 18.955 13.015 1.00 39.53 ATOM 1538 CB ATOM 1540 CC VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1541 CB VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1541 CB VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1544 CG VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1544 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1544 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1544 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG VAL A 186 28.159 16.656 18.00 31.00 50.05 ATOM 1545 CG VAL A 188 28.150 16.656 18.00 31.00 50.05 CG VAL A 187 ATOM 1545 CG VAL A 188 27.60 CG VAL A 187 ATOM 1550 CG HIS A 187 26.60 CG VAL A 187 26.20 16.657 19.023 1.00 52.23 ATOM 1550 CG HIS A 187 26.20 16.656 18.00 31.00 50.05 S.22 ATOM 1550 CG HIS A 187 26.20 16.656 18.00 31.00 50.05 S.22 ATOM 1550 CG HIS A 188 22.50 TATOM 1550 CG HIS A 188 22.50 TATOM 1550 CG HIS A 188		ATOM	1528	CH2	TRP A	184				
ATOM 1531 CB GLU A 185 32.211 16.770 17.099 13.04 42.70 ATOM 1531 CB GLU A 185 30.950 16.204 17.765 1.00 43.74 ATOM 1532 OB GLU A 185 30.599 15.062 17.506 1.00 43.74 ATOM 1533 CB GLU A 185 31.933 17.074 15.635 1.00 42.03 ATOM 1535 CB GLU A 185 31.933 17.074 15.635 1.00 42.03 ATOM 1536 OEI GLU A 185 31.933 17.527 12.910 10.0 38.91 ATOM 1536 OEI GLU A 185 31.953 17.527 12.910 10.0 42.12 ATOM 1537 OE2 GLU A 185 31.953 17.527 12.910 10.0 42.12 ATOM 1538 N VAL A 186 30.374 17.021 18.653 1.00 42.15 ATOM 1539 N VAL A 186 30.374 17.021 18.653 1.00 42.15 ATOM 1539 N VAL A 186 30.374 17.021 18.653 1.00 42.16 ATOM 1540 C VAL A 186 27.943 17.165 18.791 1.00 45.51 ATOM 1541 N VAL A 186 27.943 17.165 18.791 1.00 45.51 ATOM 1541 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 29.339 17.002 20.872 1.00 41.67 ATOM 1545 N VAL A 186 20.404 N VAL A 186 20.304 N V				N	GLU A	185			_	
ATOM 1531 C GLU A 185 30.950 16.204 17.750 1.00 43.14 ATOM 1532 O GLU A 185 31.903 17.074 15.633 1.00 42.03 ATOM 1533 CB GLU A 185 31.903 17.074 15.633 1.00 42.03 ATOM 1535 CB GLU A 185 31.903 17.074 15.633 1.00 42.03 ATOM 1536 CB GLU A 185 31.903 17.074 15.633 1.00 42.03 ATOM 1536 CB GLU A 185 31.903 17.752 12.91 1.00 40.53 ATOM 1537 CB2 GLU A 185 31.953 17.527 12.91 1.00 40.53 ATOM 1538 CB GLU A 185 31.641 18.955 13.015 1.00 39.53 ATOM 1538 CB ATOM 1538 CB ATOM 1539 CA VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1540 CB VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1541 CB VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1542 CB VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1544 CG2 VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1544 CG2 VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 CG2 VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1545 CG2 VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1545 CG2 VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1545 CG2 VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1546 CA HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1546 CB HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1546 CB HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1545 CB HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1555 CB HIS A 187 24.620 16.257 19.023 1.00 52.260 ATOM 1555 CB HIS A 187 26.356 16.159 15.600 1.00 33.27 ATOM 1555 CB HIS A 187 26.356 16.159 15.600 1.00 33.27 ATOM 1555 CB HIS A 187 26.135 16.916 14.467 1.00 55.72 CB HIS A 188 22.836 16.916 14.467 1.00 55.72 CB HIS A 188 22.836 16.925 13.713 1.00 49.24 ATOM 1555 CB ATOM 1556 CB ATOM 1557 CB ATOM 1556 CB ATOM 1557 CB ATOM 1557 CB ATOM 1557 CB ATOM 1556 CB ATOM 1557 CB ATOM 1556 CB ATOM 1557 CB ATOM 1556 CB ATOM 1557 CB ATOM 1557 CB ATOM 1556 CB ATOM 1557 CB ATOM 1557 CB ATOM 1556 CB ATOM 1557 CB AT				CA	GLU A	185				
5 ATOM 1532 OB GIU A 185 30.589 15.062 17.506 1.00 43.14 ATOM 1533 CB GIU A 185 33.023 17.900 14.999 1.00 38.91 ATOM 1535 CD GIU A 185 33.023 17.900 14.999 1.00 38.91 10.00 3			1531							
ATOM 1533 CB GLU A 185 31.903 17.074 15.833 CB ATOM 1535 CD GLU A 185 32.851 18.134 13.528 1.00 42.12 ATOM 1536 CD GLU A 185 32.851 18.134 13.528 1.00 42.12 ATOM 1537 CBC GLU A 185 31.953 17.527 12.910 1.00 40.53 ATOM 1538 CBC GLU A 185 31.953 17.527 12.910 1.00 40.53 ATOM 1538 CBC GLU A 185 31.641 18.955 13.015 1.00 33.76 ATOM 1538 CBC GLU A 186 37.4 17.021 18.653 1.00 43.76 ATOM 1540 C VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1541 CBC VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1541 CBC VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1541 CBC VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1544 CBC VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1544 CBC VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1544 CBC VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1544 CBC VAL A 186 28.159 16.494 21.688 1.00 41.69 ATOM 1544 CBC VAL A 186 28.159 16.494 21.688 1.00 41.69 ATOM 1545 CBC VAL A 186 28.159 16.494 21.688 1.00 41.69 ATOM 1545 CBC VAL A 186 28.159 16.494 21.688 1.00 41.69 ATOM 1546 CA HIS A 187 25.679 16.656 18.003 1.00 50.05 ATOM 1547 CBL VAL A 186 28.159 16.494 21.688 1.00 41.69 ATOM 1545 CBC HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1547 CBL VAL A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1547 CBL VAL A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1550 CBC HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1550 CBC HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1551 CBC VAL A 188 22.883 15.91 14.467 1.00 55.72 ATOM 1555 CBC HIS A 187 24.620 16.257 19.023 1.00 52.60 ATOM 1555 CBC HIS A 187 24.620 16.257 19.023 1.00 52.60 ATOM 1555 CBC ALA A 188 22.883 16.916 14.467 1.00 55.72 ATOM 1555 CBC ALA A 188 22.883 16.916 14.467 1.00 55.72 ATOM 1555 CBC ALA A 188 22.883 16.916 14.467 1.00 55.72 ATOM 1555 CBC ALA A 188 22.883 16.882 20.591 1.00 54.61 ATOM 1556 CBC ALA A 188 20.747 17.673 21.356 1.00 54.61 ATOM 1556 CBC ALA A 188 20.747 17.773 19.155 1.00 54.61 ATOM 1556 CBC ALA A 188 20.747 17.773 19.155 1.00 54.61 ATOM 1556 CBC ALA A 188 20.747 17.773 19.155 1.00 54.61 ATOM 1556 CBC ALA A 188 20.747 17.773 19.155 1.	5			0	GLU A	185				
ATOM 1534 CG GLU A 185 33.023 17.900 14.999 1.00 42.12 ATOM 1535 CD GLU A 185 33.851 18.900 14.999 1.00 42.12 ATOM 1536 OEI GLU A 185 31.953 17.527 12.910 1.00 42.13 ATOM 1538 N VAL A 186 30.374 17.021 18.653 1.00 39.53 ATOM 1538 N VAL A 186 29.211 16.563 19.400 1.00 39.53 ATOM 1540 C VAL A 186 27.943 17.165 18.791 1.00 43.51 ATOM 1541 O VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1540 C VAL A 186 29.339 17.008 20.872 1.00 43.51 ATOM 1540 C VAL A 186 29.339 17.008 20.872 1.00 43.51 ATOM 1541 CGI VAL A 186 29.339 17.008 20.872 1.00 41.68 ATOM 1544 CG2 VAL A 186 29.339 17.008 20.872 1.00 41.68 ATOM 1546 CA HIS A 187 25.679 16.596 21.452 1.00 41.68 ATOM 1546 CA HIS A 187 25.679 16.596 21.452 1.00 41.69 ATOM 1547 C HIS A 187 25.679 16.596 21.452 1.00 52.23 ATOM 1548 O HIS A 187 24.620 16.257 19.023 1.00 50.25 ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1553 CG HIS A 187 27.613 16.916 14.467 1.00 55.72 ATOM 1555 N ALA A 188 23.501 17.291 19.524 1.00 54.61 ATOM 1555 N ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1555 N ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1556 CA ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1557 C ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.806 17.291 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.501 17.271 21.1929 1.00 57.50 ATOM 1550 N ALA A 188 23.501 17.271 21.1929 1.00 57.50 ATOM 1550 N ALA A 188 23.501 17.291 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.501 17.291 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.501 17.291 19.524 1.00 54.61 ATOM 1550 N ALA A 188 23.501 17.291 19.524 1.00 54.61 ATOM 1560 N GLY A 189 19.802 11.00 17.773 19.155 1.00 62.45 ATOM 1560 N GLY A 189 19.802 11.00 10.00 57.50 ATOM 1560 N GLY A 189 19.802 11.00 17.773 19.155 1.00 62.75 ATOM 1560 N GLY A 189 19.802 11.00 17.774 19.50 10.00 62.75 ATOM 1560 N GLY A 189	_		1533 [.]							1.00 42.03
ATOM 1535 CD GLU A 185 32.851 18.134 13.328 1.00 42.53 ATOM 1536 OEI GLU A 185 33.953 17.527 12.910 1.00 40.53 ATOM 1537 OEZ GLU A 185 33.641 18.955 13.015 1.00 40.53 ATOM 1538 N VAL A 186 29.211 16.563 19.400 1.00 43.76 ATOM 1540 C VAL A 186 29.211 16.563 19.400 1.00 43.76 ATOM 1541 O VAL A 186 27.804 18.379 18.647 1.00 45.37 ATOM 1541 O VAL A 186 27.804 18.379 18.647 1.00 45.37 ATOM 1542 CB VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1543 CCI VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 N HIS A 187 27.012 16.572 18.454 1.00 48.89 ATOM 1546 CA HIS A 187 25.679 16.556 18.003 1.00 50.05 ATOM 1547 C HIS A 187 24.620 16.257 19.023 1.00 50.05 ATOM 1548 O HIS A 187 25.329 15.949 16.672 1.00 52.60 ATOM 1550 CG HIS A 187 26.356 16.159 15.400 10.00 53.27 ATOM 1550 CG HIS A 187 26.356 16.159 15.400 10.00 53.27 ATOM 1551 ND1 HIS A 187 26.356 16.916 14.467 1.00 53.27 ATOM 1552 CC2 HIS A 187 26.356 16.916 14.467 1.00 53.27 ATOM 1555 N ALA A 188 22.883 16.882 20.551 1.00 53.28 ATOM 1556 CA ALA A 188 22.883 16.882 20.551 1.00 53.28 ATOM 1556 CA ALA A 188 22.883 16.882 20.551 1.00 54.05 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 54.05 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 59.90 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 57.80 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 57.80 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 57.50 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 57.50 ATOM 1556 CA GLA A 188 22.883 16.882 20.551 1.00 57.50 ATOM 1557 C GLA A 189 21.007 17.773 19.155 1.00 61.46 ATOM 1556 CA GLA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1557 C GLA A 189 21.007 17.773 19.155 1.00 61.46 ATOM 1556 CA GLY A 189 19.809 18.811 18.867 1.00 57.50 ATOM 1557 C GLA A 189 21.007 17.773 19.155 1.00 61.46 ATOM 1556 CA GLY A 189 21.007 17.773 19.155 1.00 61.46 ATOM 1557 C GLA A 189 21.007 17.773 19.155 1.00 61.46 ATOM 1557 C GLA A 189 21.007 17.773 19.155 1.00 61.46 ATOM 1558 C C GLY A 189 21.007 17.775 18.889 1.00 62.69 ATOM 1557 C GLA A 199 22.251 17.900 10.00 40.12 ATOM 1568 C C GLY A 189			1534							
10 ATOM 1537 OPE GLU A 185 33.641 18.955 13.015 1.00 39.537 ATOM 1538 N YAL A 186 30.374 17.021 18.653 1.00 43.76 ATOM 1538 N YAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1540 C YAL A 186 27.943 17.165 18.791 1.00 45.37 ATOM 1540 O YAL A 186 29.339 17.008 20.872 1.00 43.51 ATOM 1540 C YAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1540 C YAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1540 C YAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1545 N HIS A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1540 C YAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1540 N HIS A 187 27.012 16.272 18.454 1.00 41.68 ATOM 1546 CA HIS A 187 25.679 16.656 18.003 1.00 50.25 ATOM 1546 CA HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1540 C HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 52.23 ATOM 1551 NDI HIS A 187 26.356 16.159 15.600 1.00 52.25 ATOM 1553 CCD HIS A 187 27.012 16.655 19.262 1.00 52.62 ATOM 1553 CCD HIS A 187 27.013 16.925 13.713 1.00 49.24 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1556 CA ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1557 C ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1556 N GLA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1556 N GLA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1560 N GLY A 189 19.809 18.381 18.867 1.00 62.66 ATOM 1561 N GLY A 189 19.809 18.381 18.867 1.00 62.67 ATOM 1560 N GLY A 189 19.809 18.381 18.867 1.00 62.67 ATOM 1561 N GLY A 189 19.809 18.381 18.807 1.00 63.68 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 63.67 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 63.67 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 63.67 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 63.67 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 63.67 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 63.67 ATOM 1560 N GLY A 189 19.809 18.381 18.809 1.00 63.00 90.00 ATOM 1560 N GLY A 199 22.8			1535							
ATOM 1539 N VAL A 186 30.374 17.021 18.653 1.00 43.51 ATOM 1539 CA VAL A 186 27.943 17.165 18.791 1.00 43.51 ATOM 1541 O VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1541 O VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1541 O VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1543 CCI VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1543 CCI VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.89 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.89 ATOM 1548 O HIS A 187 24.620 16.257 19.023 1.00 52.60 ATOM 1549 CB HIS A 187 24.447 15.055 19.262 1.00 52.60 ATOM 1551 ND1 HIS A 187 25.329 15.949 16.672 1.00 52.60 ATOM 1551 ND1 HIS A 187 27.012 16.272 18.454 1.00 53.27 ATOM 1551 ND1 HIS A 187 26.356 16.916 14.467 1.00 53.27 ATOM 1553 CCI HIS A 187 27.633 15.710 15.495 1.00 52.63 ATOM 1554 NC HIS A 187 27.216 16.925 13.713 1.00 54.05 ATOM 1555 CCI HIS A 187 27.216 16.925 13.713 1.00 54.05 ATOM 1555 CCI HIS A 187 27.216 16.925 13.713 1.00 54.05 ATOM 1555 N ALA A 188 22.883 16.892 0.591 1.00 53.28 ATOM 1555 CC A ALA A 188 22.883 16.892 0.591 1.00 57.68 ATOM 1556 CA ALA A 188 22.883 16.892 0.591 1.00 57.68 ATOM 1556 CA ALA A 188 22.883 16.892 0.591 1.00 57.68 ATOM 1556 CA ALA A 188 22.883 16.892 0.591 1.00 57.68 ATOM 1560 N CLY A 189 19.809 18.381 18.867 1.00 57.68 ATOM 1560 N CLY A 189 19.809 18.381 18.867 1.00 60.86 ATOM 1560 N CLY A 189 19.809 18.381 18.867 1.00 60.60 ATOM 1560 N CLY A 189 19.809 18.381 18.867 1.00 60.60 ATOM 1560 N CLY A 189 19.809 18.381 18.867 1.00 60.60 ATOM 1560 N CLY A 190 21.011 21.283 18.391 1.00 60.60 ATOM 1560 N CLY A 190 21.011 21.283 18.391 1.00 60.60 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 57.50 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1560 N CLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1570 N VAL A 192 28.237		MOTA	1536							1.00 40.55
ATOM 1540 C VAL A 186 29.211 16.563 19.400 1.00 43.51 ATOM 1540 C VAL A 186 27.943 17.165 18.791 1.00 45.37 ATOM 1541 0 VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1542 CB VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1543 CG1 VAL A 186 29.339 17.008 20.872 1.00 41.68 ATOM 1544 CG2 VAL A 186 29.339 17.008 20.872 1.00 41.68 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 43.69 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1545 N HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1546 CA HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1548 O HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1550 CG HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1551 NDI HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1553 CE1 HIS A 187 27.633 15.710 15.495 1.00 54.05 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 54.05 ATOM 1555 C A ALA A 188 23.836 17.199 19.524 1.00 54.05 ATOM 1555 C A ALA A 188 23.836 17.199 19.524 1.00 54.68 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 54.68 ATOM 1555 C ALA A 188 23.836 17.199 19.524 1.00 54.68 ATOM 1556 CA ALA A 188 23.836 17.199 19.524 1.00 54.68 ATOM 1556 CA ALA A 188 23.836 17.199 19.524 1.00 57.68 ATOM 1556 CA ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1566 N GLY A 189 19.862 19.892 18.710 1.00 60.86 ATOM 1566 N GLY A 189 19.862 19.892 18.710 1.00 60.86 ATOM 1566 C GLY A 189 19.862 20.591 17.773 19.155 1.00 60.86 ATOM 1566 C GLY A 189 19.862 20.492 18.448 10.00 62.75 ATOM 1566 C GLY A 190 21.511 21.883 18.381 18.867 1.00 62.75 ATOM 1567 N GLY A 189 19.862 20.492 18.740 1.00 58.52 ATOM 1567 N GLY A 189 19.862 20.492 18.740 1.00 62.75 ATOM 1567 N GLY A 189 19.862 20.492 18.448 10.00 62.75 ATOM 1567 N GLY A 189 19.866 20.494 17.7673 11.00 58.54 ATOM 1567 N GLY A 189 19.866 20.494 17.7673 11.00 58.55 ATOM 1567 N GLY A 189 19.866 20.494 17.7670 11.00 60.86 ATOM 1567 N GLY A 190 22.551 22.159 17.660 1.00 60.86 ATOM 1567 N GLY A 190 22.551 22.159 17.660 1.00 60.86 ATOM 15	10	ATOM	1537							
ATOM 1540 C VAL A 186 27,943 17.165 18.791 1.00 43.51 ATOM 1541 0.0 VAL A 186 27.804 18.379 18.647 1.00 43.51 ATOM 1542 CB VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1543 CG1 VAL A 186 28.159 16.494 21.688 1.00 41.67 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1545 N HIS A 187 25.679 16.656 18.003 1.00 50.05 ATOM 1546 CA HIS A 187 25.679 16.656 18.003 1.00 50.05 ATOM 1547 C HIS A 187 24.447 15.055 19.262 1.00 52.60 ATOM 1548 O HIS A 187 24.447 15.055 19.262 1.00 52.60 ATOM 15545 ND1 HIS A 187 24.447 15.055 19.262 1.00 52.50 ATOM 15545 CB HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1555 CD2 HIS A 187 26.135 16.916 14.467 1.00 55.72 ATOM 1555 CD2 HIS A 187 27.633 15.710 15.495 1.00 54.05 ATOM 1555 NA LAR A 188 23.836 17.199 19.524 1.00 54.61 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 54.61 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1556 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1556 CA ALA A 188 21.500 17.477 20.393 1.00 59.90 ATOM 1556 CA ALA A 188 21.500 17.477 20.393 1.00 59.90 ATOM 1556 CA ALA A 188 21.500 17.477 20.393 1.00 59.90 ATOM 1566 CA ALA A 188 21.500 17.477 12.1929 1.00 57.50 ATOM 1566 CA GLY A 189 19.802 18.807 17.991 1.00 57.50 ATOM 1566 CA GLY A 189 19.802 18.807 17.991 1.00 57.50 ATOM 1566 CA GLY A 189 19.802 18.807 17.991 1.00 57.50 ATOM 1567 CA GLY A 189 19.802 18.807 17.00 62.76 ATOM 1567 CA GLY A 189 19.802 18.807 17.00 62.76 ATOM 1567 CA GLY A 189 19.802 18.807 17.991 1.00 57.50 ATOM 1567 CA GLY A 189 19.802 18.807 17.991 1.00 57.50 ATOM 1567 CA GLY A 189 19.802 18.807 17.901 1.00 62.76 ATOM 1567 CA GLY A 189 19.802 18.807 17.901 1.00 62.76 ATOM 1567 CA GLY A 189 19.802 18.807 17.901 18.401 18.807 17.00 62.76 ATOM 1567 CA GLY A 190 21.211 21.883 18.308 1.00 60.80 ATOM 1567 CA GLY A 190 21.211 21.282 18.401 10.00 52.57 ATOM 1567 CA GLY A 190 21.211 21.282 18.401 10.00 52.57 ATOM 1567 CA GLY A 190 22.511 21.599 17.600 17.500 17.500 1		ATOM								
ATOM 1541 C VAL A 186 27,804 18.379 18.647 1.00 43.51 ATOM 1542 CB VAL A 186 29.339 17.008 20.872 1.00 41.67 ATOM 1543 CG1 VAL A 186 28.159 16.494 21.688 1.00 41.68 ATOM 1544 CG2 VAL A 186 30.697 16.596 21.452 1.00 34.89 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1546 CA HIS A 187 25.679 16.656 18.003 1.00 50.05 ATOM 1546 CA HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1549 CB HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1549 CB HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1549 CB HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1551 ND1 HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1555 CD2 HIS A 187 27.633 15.710 15.495 1.00 54.05 ATOM 1555 CD2 HIS A 187 27.633 15.710 15.495 1.00 54.05 ATOM 1555 CD2 HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1555 NA ALA A 188 23.806 17.199 19.524 1.00 54.61 ATOM 1556 CA ALA A 188 23.806 17.199 19.524 1.00 57.68 ATOM 1555 CB ALA A 188 23.806 17.199 19.524 1.00 57.68 ATOM 1556 CA ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1556 CB ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1556 CB ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 60.86 ATOM 1563 O GLY A 189 21.007 17.291 21.929 1.00 57.50 ATOM 1560 N GLY A 189 21.007 17.291 21.929 1.00 57.50 ATOM 1560 N GLY A 189 19.809 18.381 18.807 1.00 60.60 ATOM 1567 C GLY A 189 19.809 18.381 8.808 1.00 60.60 ATOM 1567 C GLY A 189 19.809 18.381 8.808 1.00 60.60 ATOM 1567 C GLY A 189 19.809 18.381 8.809 1.00 59.90 ATOM 1567 C GLY A 189 19.809 18.381 8.809 1.00 59.90 ATOM 1567 N GLY A 189 21.051 20.429 18.448 1.00 62.76 ATOM 1568 N GLY A 190 22.551 22.159 17.660 1.00 58.35 ATOM 1569 CA GLY A 190 22.551 22.159 17.660 1.00 58.55 ATOM 1569 C GLY A 190 22.551 22.159 17.660 1.00 58.55 ATOM 1569 C GLY A 190 22.551 22.159 17.660 1.00 58.55 ATOM 1569 C GLY A 190 22.551 22.159 17.660 1.00 58.55 ATOM 1570 C GLY A 190 22.551 22.159 17.660 1.00 58.55 ATOM 1570 C GLY A 190 22.551 22.159 17.660 1.00 58.55 ATOM 1570 C GLY A 190 22.5		MOTA	1539							
15 ATOM 1543 CB VAL A 186		MOTA	1540							
ATOM 1544 CG2 VAL A 186 ATOM 1544 CG2 VAL A 186 ATOM 1545 CG1 VAL A 186 ATOM 1546 CA VAL A 186 ATOM 1546 CA HIS A 187 ATOM 1546 CA HIS A 187 ATOM 1546 CA HIS A 187 ATOM 1547 C HIS A 187 ATOM 1548 O HIS A 187 ATOM 1548 O HIS A 187 ATOM 1549 CB HIS A 187 ATOM 1549 CB HIS A 187 ATOM 1549 CB HIS A 187 ATOM 1540 CO HIS A 187 ATOM 1540 CB HIS A 187 ATOM 1551 ND1 HIS A 187 ATOM 1552 CC2 HIS A 187 ATOM 1553 CE1 HIS A 187 ATOM 1555 N ALA A 188 ATOM 1555 N ALA A 188 ATOM 1555 N ALA A 188 ATOM 1555 CA ALA A 188 ATOM 1555 C CA ALA A 188 ATOM 1556 CA ALA A 188 ATOM 1557 C ALA A 188 ATOM 1558 O ALA A 188 ATOM 1559 CB ALA A 188 ATOM 1550 CG HIS A 187 ATOM 1550 CG HIS A 187 ATOM 1550 CG HIS A 187 ATOM 1551 NO HIS A 187 ATOM 1555 N ALA A 188 ATOM 1555 N ALA A 188 ATOM 1555 CA ALA A 188 ATOM 1556 CA ALA A 188 ATOM 1557 C ALA A 188 ATOM 1558 O ALA A 188 ATOM 1559 CB ALA A 188 ATOM 1559 CB ALA A 188 ATOM 1559 CB ALA A 188 ATOM 1550 CG BLA A 188 ATOM 1560 CG BLY A 189 ATO		ATOM								
ATOM 1544 GG2 VAL A 186 30.697 16.596 21.452 1.00 34.89 ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1546 CA HIS A 187 25.679 16.656 18.003 1.00 50.05 22.33 ATOM 1547 C HIS A 187 24.447 15.055 19.262 1.00 52.60 ATOM 1549 CB HIS A 187 26.356 16.159 19.023 1.00 52.23 ATOM 1550 CG HIS A 187 26.356 16.159 19.023 1.00 55.72 ATOM 1551 NDI HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1551 NDI HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1552 CD2 HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1552 CD2 HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1553 CEI HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1555 ND ALA A 188 27.216 16.925 13.713 1.00 49.24 ATOM 1555 ND ALA A 188 23.836 17.199 19.524 1.00 54.61 ATOM 1555 CD ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1555 CD ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1555 ND ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1559 CB ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1560 N GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1560 N GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1560 C GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1560 C GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1560 C GLY A 189 19.809 18.381 18.809 1.00 62.45 ATOM 1560 C GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1560 C GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1560 C GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1560 C GLY A 190 22.551 22.159 17.600 1.00 52.76 ATOM 1560 C GLY A 190 22.551 22.159 17.600 1.00 58.62 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 58.39 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 58.39 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 58.39 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 58.39 ATOM 1570 C GLN A 191 22.446 23.554 17.366 1.00 54.69 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 56.77 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 56.77 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 56.77 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 56.77 ATOM 1570 C GLN A 191 22.559 22.082 18.858 1.00 56.79 ATOM 1570 C GLN A 191	15	ATOM								
ATOM 1545 N HIS A 187 27.012 16.272 18.454 1.00 46.62 ATOM 1546 CA HIS A 187 27.012 16.277 19.023 1.00 50.05 ATOM 1547 C HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1548 O HIS A 187 24.447 15.055 19.262 1.00 51.22 ATOM 1549 CB HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1551 NDI HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1555 CCB HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1555 CCD HIS A 187 27.216 16.925 13.713 1.00 54.05 ATOM 1555 CD HIS A 187 27.216 16.925 13.713 1.00 54.05 ATOM 1555 NN ALA A 188 23.836 17.199 19.524 1.00 54.61 ATOM 1555 CC ALA A 188 23.836 17.199 19.524 1.00 54.61 ATOM 1556 CA ALA A 188 22.883 16.882 20.591 1.00 54.61 ATOM 1558 O ALA A 188 23.836 17.199 19.524 1.00 57.68 ATOM 1556 CA ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1556 CA ALA A 188 23.501 17.291 21.992 1.00 57.50 ATOM 1560 N GLY A 189 19.802 18.381 18.867 1.00 62.45 ATOM 1561 CA GLY A 189 19.802 18.381 18.807 1.00 62.45 ATOM 1562 C GLY A 189 19.802 18.381 18.807 1.00 62.37 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1570 C GLN A 191 25.462 22.451 17.673 1.00 52.57 ATOM 1570 C GLN A 191 25.462 22.451 17.676 1.00 52.57 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1570 C GLN A 191 26.437 27.603 18.451 0.00 99.00 ATOM 1577 N VAL A 192 28.237 21.647 17.875 1.00 44.67 ATOM 1578 C C JLL A 193 31.569 19.822 19.009 10.00 41.81 ATOM 1580 C C LL A 193 31.569 19.822 19.009 10.00 41.81 ATOM 1580 C LL E A 193 31.566 19.82 19.009 10.		MOTA								
ATOM 1546 CA HIS A 187										
ATOM 1547 C HIS A 187 24.620 16.257 19.023 1.00 52.23 ATOM 1548 O HIS A 187 24.447 15.055 19.262 1.00 52.60 ATOM 1549 CB HIS A 187 25.329 15.949 16.672 1.00 51.22 ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 53.72 ATOM 1551 ND1 HIS A 187 26.356 16.159 15.600 1.00 53.72 ATOM 1552 CD2 HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1553 CE1 HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1555 NALA A 188 23.836 17.199 19.524 1.00 54.05 ATOM 1555 CA ALA A 188 22.883 16.892 0.591 1.00 57.68 ATOM 1557 C ALA A 188 22.883 16.882 0.591 1.00 57.68 ATOM 1555 CB ALA A 188 21.502 17.477 20.393 1.00 59.75 ATOM 1556 CA ALA A 188 23.501 17.291 21.329 1.00 57.50 ATOM 1556 CB ALA A 188 23.501 17.291 21.329 1.00 57.50 ATOM 1560 N GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1563 N GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1566 C GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1566 C GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1570 C GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 N GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 N GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 N GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1577 N VAL A 191 24.466 23.554 17.336 1.00 52.69 ATOM 1577 N VAL A 191 26.437 25.200 17.560 1.00 52.57 ATOM 1577 N VAL A 191 26.437 25.200 17.560 1.00 52.57 ATOM 1576 N C GLN A 191 26.437 25.200 17.560 1.00 52.57 ATOM 1577 N VAL A 192 27.660 1.02 20.27 17.760 1.00 54.69 ATOM 1578 N C GLN A 191 26.459 27.683 17.803 1.00 45.59 ATOM 1587 N C GLN A 191 26.459		ATOM							_	
ATOM 1548 O HIS A 187										
ATOM 1549 CB HIS A 187 25.329 15.949 16.672 1.00 51.22 ATOM 1551 CG HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1555 CG HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1555 ND1 HIS A 187 26.356 16.159 15.600 1.00 55.72 ATOM 1555 ND1 HIS A 187 27.633 15.710 15.495 1.00 54.954 ATOM 1554 NE2 HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1555 NALA A 188 27.633 15.710 15.495 1.00 54.92 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 53.78 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1555 CA ALA A 188 21.502 17.477 20.393 1.00 59.96 ATOM 1555 CB ALA A 188 23.501 17.291 21.929 1.00 57.68 ATOM 1556 CA GLY A 189 19.809 18.381 18.867 1.00 60.86 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1564 CA GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1566 C GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.438 1.00 60.60 ATOM 1566 C GLY A 190 21.211 21.883 18.39 1.00 60.60 ATOM 1567 O GLY A 190 21.211 21.881 18.39 1.00 58.62 ATOM 1567 O GLY A 190 21.211 21.881 18.39 1.00 58.62 ATOM 1569 CA GLN A 191 22.159 17.660 1.00 58.62 ATOM 1570 C GLN A 191 22.159 17.660 1.00 58.62 ATOM 1571 O GLN A 191 24.466 23.554 17.366 1.00 54.69 ATOM 1577 O GLN A 191 24.466 23.554 17.366 1.00 54.69 ATOM 1577 O GLN A 191 24.466 23.554 17.367 1.00 52.57 ATOM 1577 O GLN A 191 22.466 22.451 17.667 1.00 52.57 ATOM 1577 O GLN A 191 22.466 23.554 17.367 1.00 52.57 ATOM 1578 C GLN A 191 22.466 26.948 17.561 0.00 99.00 ATOM 1578 C GLN A 191 22.4792 24.927 17.760 1.00 58.62 ATOM 1577 O GLN A 191 22.466 26.948 17.561 0.00 99.00 ATOM 1578 C GLN A 191 22.466 26.948 17.561 0.00 99.00 ATOM 1578 C GLN A 191 22.466 26.948 17.561 0.00 45.59 ATOM 1577 O GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1578 C GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1588 C GI ILE A 193 31.246 21.009 19.127 1.00 40.00 45.59 ATOM 1588 C GI ILE A	20	ATOM								
ATOM 1550 CG HIS A 187 26.356 16.159 15.600 1.00 53.27 ATOM 1551 ND1 HIS A 187 26.356 16.159 15.400 1.00 55.72 15.400 15.50 CD2 HIS A 187 26.351 16.916 14.467 1.00 55.72 15.400 15.50 CD2 HIS A 187 27.216 16.925 13.713 1.00 49.24 15.50 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 54.61 15.50 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 54.61 15.50 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 15.70 15.50 CD ALA A 188 22.883 16.882 20.591 1.00 57.68 15.70 15.50 CD ALA A 188 22.883 16.882 20.591 1.00 57.68 15.70 15.50 CD ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1556 CB ALA A 188 23.501 17.291 21.929 1.00 57.50 15.70		MOTA								
ATOM 1551 NDI HIS A 187 26.135 16.916 14.467 1.00 55.72 ATOM 1552 CD2 HIS A 187 27.633 15.710 15.495 1.00 54.05 ATOM 1553 CEI HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1556 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1555 O ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1555 CA ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1555 CA ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1556 CA ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1560 N GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1562 C GLY A 189 19.809 18.381 18.867 1.00 62.76 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1566 C GLY A 190 21.211 21.883 18.381 1.00 62.37 ATOM 1566 C GLY A 190 21.211 21.883 18.381 1.00 62.37 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.29 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1567 C GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 52.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1575 OEI GLN A 191 26.466 23.554 17.366 1.00 58.39 ATOM 1570 C GLN A 191 26.466 23.554 17.366 1.00 58.39 ATOM 1570 C GLN A 191 26.466 24.927 17.760 1.00 58.35 ATOM 1575 OEI GLN A 191 26.467 22.2451 17.687 1.00 52.67 ATOM 1577 CD GLN A 191 26.466 26.948 17.561 0.00 99.00 ATOM 1578 CA GLN A 191 26.467 22.2451 17.687 1.00 52.67 ATOM 1578 CA GLN A 191 26.467 22.2451 17.667 1.00 58.55 ATOM 1580 CG ILN A 191 26.666 26.948 17.561 0.00 99.00 ATOM 1578 CA GLN A 191 26.666 26.948 17.561 0.00 99.00 ATOM 1578 CA GLN A 191 26.666 26.948 17.561 0.00 99.00 ATOM 1578 CA GLN A 191 26.665 22.853 17.803 1.00 45.55 91 ATOM 1580 CG ILN A 192 26.676 22.977 17.506 10.00 40.00 42.50 ATOM 1580 CA ILR A 193 31.266 21.009 19.127 1.00 40.00 42.50 ATOM										
ATOM 1552 CD2 HIS A 187 27.216 16.925 13.713 1.00 54.05 ATOM 1554 NE2 HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1555 N NALA A 188 23.836 17.199 19.524 1.00 53.78 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 57.68 ATOM 1556 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1557 C ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1558 O ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 15560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1560 N GLY A 189 19.802 19.892 18.710 1.00 62.76 ATOM 1560 N GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1565 CA GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1568 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 56.67 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1573 CG GLN A 191 22.492 12.74 16.958 1.00 52.57 ATOM 1573 CG GLN A 191 22.599 22.082 18.858 1.00 52.69 ATOM 1575 OEI GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1575 OEI GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1575 OEI GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1578 CD GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1578 CD GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1578 CD GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1578 CD GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1578 CD GLN A 191 26.462 22.451 17.760 1.00 58.35 ATOM 1578 CD GLN A 191 26.462 22.451 17.760 1.00 58.55 ATOM 1585 CG UNA 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1578 CD GLN A 191 27.070 27.403 18.451 0.00 49.07 ATOM 1585 CG UNA A 192		ATOM								
ATOM 1553 CE1 HIS A 187 27.216 16.925 13.713 1.00 49.24 ATOM 1554 NE2 HIS A 187 28.134 16.205 14.329 1.00 53.78 ATOM 1555 N ALA A 188 28.334 16.205 14.329 1.00 54.61 ATOM 1556 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1557 C ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1559 CB ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1559 CB ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1550 CB ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1562 C GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1563 O GLY A 189 19.809 18.381 18.867 1.00 62.76 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 66.60 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1571 CD GLN A 191 22.559 22.082 18.858 1.00 52.69 ATOM 1573 CG GLN A 191 22.466 23.554 17.336 1.00 52.69 ATOM 1575 OEI GLN A 191 26.437 25.200 17.501 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.501 1.00 62.97 ATOM 1576 NE2 GLN A 191 22.4972 24.927 17.760 1.00 58.35 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.501 1.00 62.97 ATOM 1576 NE2 GLN A 191 22.4972 24.927 17.760 1.00 59.00 ATOM 1577 C VAL A 192 27.264 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.943 16.684 1.00 49.07 ATOM 1581 CB VAL A 192 27.264 21.947 15.684 1.00 49.07 ATOM 1584 N ILE A 193 28.831 20.882 18.755 1.00 40.08 ATOM 1584 N ILE A 193 29.875 21.406 19.636 1.00 39.91 1.00 40.12 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 40.12 ATOM 1586 C ILE A 193 31.566 21.509 19.822 19.009 19.00 40.12 ATOM 1586 C ILE A 193 31.566 21.509 19.822 19.009 19.00 40.12 ATOM 1586 CG ILE A 193 31.566 21.509 19.822 19.009 19.00 40.12 ATOM 1588 CG ILE A 193 31.566 21.509 19.822 19.009 19.00 40.12 ATOM 1588 CG ILE A 193 3		MOTA		ND1	HIS A	187				
ATOM 1554 NE2 HIS A 187 28.134 16.205 14.329 1.00 53.78 ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 54.61 ATOM 1557 C ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1557 C ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1558 O ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1550 N GLY A 189 21.107 17.673 21.356 1.00 60.86 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1560 N GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1563 O GLY A 189 19.802 18.710 1.00 62.76 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1568 N GLN A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1568 N GLN A 191 23.029 21.274 16.958 1.00 56.77 ATOM 1568 N GLN A 191 23.029 21.274 16.958 1.00 56.77 ATOM 1570 C GLN A 191 25.599 22.082 18.858 1.00 56.77 ATOM 1570 C GLN A 191 25.462 22.451 17.667 1.00 52.59 ATOM 1573 CG GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1575 OEI GLN A 191 25.462 22.451 17.667 1.00 52.57 ATOM 1575 OEI GLN A 191 25.492 71.760 1.00 58.35 ATOM 1575 OEI GLN A 191 26.462 22.97 17.760 1.00 58.35 ATOM 1576 CD GLN A 191 26.4637 25.200 17.502 1.00 62.97 ATOM 1577 C WAL A 192 26.437 25.200 17.502 1.00 62.97 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.55 ATOM 1581 CB VAL A 192 27.264 21.012 16.898 1.00 45.55 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1586 C ILE A 193 28.831 20.882 11.00 40.04 4.70 ATOM 1586 C ILE A 193 28.831 20.882 11.00 40.04 4.70 ATOM 1586 C ILE A 193 31.546 21.009 19.127 1.00 40.00 40.00 ATOM 1586 C ILE A 193 31.546 21.009 19.127 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 31.546 21.009 19.127 1.00 40.00 40.12 ATOM 1589 CGI ILE A 193 31.569 19.822 19.009 1.000 40.12 4.70 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.000 40.12 4.70 ATOM 1589 CGI	25									
ATOM 1555 N ALA A 188 23.836 17.199 19.524 1.00 54.61 ATOM 1555 CA ALA A 188 22.883 16.882 20.591 1.00 59.90 ATOM 1557 C ALA A 188 22.883 16.882 20.591 1.00 59.90 ATOM 1558 O ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1559 CB ALA A 188 23.501 17.291 21.929 1.00 60.86 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.45 ATOM 1565 CA GLY A 189 19.862 19.892 18.700 1.00 63.40 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.62 40 ATOM 1568 N GLN A 191 23.029 21.274 16.958 1.00 56.77 ATOM 1569 CA GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 22.492 24.927 17.760 1.00 52.69 ATOM 1573 CG GLN A 191 22.4972 24.927 17.760 1.00 52.57 ATOM 1574 CD GLN A 191 22.599 22.082 18.858 1.00 52.69 ATOM 1575 OEI GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1579 C VAL A 192 27.264 21.012 16.898 1.00 49.07 ATOM 1579 C VAL A 192 27.264 21.012 16.898 1.00 49.07 ATOM 1579 C VAL A 192 27.264 21.012 16.898 1.00 49.07 ATOM 1570 C JAN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1578 CA VAL A 192 27.264 21.017 1.585 1.00 44.47 ATOM 1580 C VAL A 192 27.264 21.017 1.585 1.00 44.47 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CG ILE A 193 31.569 19.822 19.009 1.00 40.01 ATOM 1586 C ILE A 193 31.569 19.822 19.009 1.00 40.01 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.01 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 ATOM 1588 CB ILE A 193 31.566 21.218 21.573 1.00 38.63		ATOM								
ATOM 1556 CA ALA A 188 22.883 16.882 20.591 1.00 57.68 ATOM 1557 C ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1558 O ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1559 CB ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1566 C GLY A 189 19.862 19.892 18.700 62.37 ATOM 1566 C GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 22.466 23.554 17.336 1.00 56.77 ATOM 1570 C GLN A 191 22.466 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 22.466 22.451 17.687 1.00 52.57 ATOM 1572 CB GLN A 191 22.4972 24.927 17.760 1.00 52.57 ATOM 1575 OCI GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1577 N VAL A 191 26.467 25.459 27.683 16.684 1.00 52.69 ATOM 1578 CA VAL A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1578 CA VAL A 191 27.070 27.403 18.451 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.688 1.00 49.07 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.59 ATOM 1581 CB VAL A 192 27.264 21.012 16.688 1.00 49.07 ATOM 1581 CB VAL A 192 27.264 21.012 16.688 1.00 49.07 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 44.47 ATOM 1585 CA ILE A 193 31.569 19.822 19.009 1.00 49.07 ATOM 1585 CA ILE A 193 31.246 21.009 19.127 1.00 40.02 ATOM 1586 C ILE A 193 31.569 19.822 19.009 1.00 40.01 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 36.14 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.02 ATOM 1589 CGI ILE A 193 31.569 19.822 19.009 1.00 40.02										
ATOM 1558 O ALA A 188 21.502 17.477 20.393 1.00 59.90 ATOM 1558 O ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1559 CB ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1550 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1562 C GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1565 CA GLY A 189 19.862 19.892 18.710 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 23.173 23.285 17.983 1.00 56.67 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1577 N VAL A 192 26.437 25.200 17.502 1.00 62.97 ATOM 1577 N VAL A 192 26.437 25.200 17.502 1.00 62.97 ATOM 1577 N VAL A 192 27.264 21.012 16.898 1.00 99.00 45.59 ATOM 1570 C VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 40										
ATOM 1558 O ALA A 188 20.747 17.673 21.356 1.00 60.86 ATOM 1559 CB ALA A 188 23.501 17.291 21.329 1.00 57.50 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1563 O GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.462 22.451 17.687 1.00 52.59 ATOM 1573 CG GLN A 191 24.466 23.554 17.687 1.00 52.69 ATOM 1573 CG GLN A 191 24.972 24.927 17.760 1.00 52.57 ATOM 1574 CD GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1578 CA VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1579 C VAL A 192 27.264 21.943 16.684 1.00 49.07 ATOM 1580 CG VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 CG VAL A 192 28.473 22.853 17.803 1.00 45.59 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1588 CB ILE A 193 31.266 21.009 19.127 1.00 40.00 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.01 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.02 40.00 ATOM 1589 CG1 ILE A 193 31.569 19.822 19.009 1.00 40.02 40	••									
ATOM 1559 CB ALA A 188 23.501 17.291 21.929 1.00 57.50 ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.76 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.69 ATOM 1571 O GLN A 191 25.462 22.451 17.687 1.00 52.69 ATOM 1572 CB GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1574 CD GLN A 191 24.922 24.927 17.760 1.00 58.35 ATOM 1575 OE1 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.466 29.48 16.891 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 45.59 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1578 CA VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1581 CB VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1585 CG ILE A 193 31.266 21.009 19.027 1.00 61.44 ATOM 1585 CG ILE A 193 31.266 21.009 19.027 1.00 61.44 ATOM 1585 CG ILE A 193 31.266 21.009 19.027 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 31.266 21.009 19.127 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 31.266 21.009 19.127 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1589 CGI ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1589 CGI ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1589 CGI ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1589 CGI ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATOM 1589 CGI ILE A 193 31.266 21.009 19.007 1.00 40.00 40.12 ATO	30									
ATOM 1560 N GLY A 189 21.107 17.773 19.155 1.00 61.42 ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1562 C GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1563 O GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1566 C GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1569 CA GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.69 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1577 N VAL A 192 26.166 26.948 17.561 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1578 CA VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 CB VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1583 CG2 VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1584 N ILEA 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILEA 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILEA 193 31.246 21.009 19.127 1.00 40.01 ATOM 1588 CB ILEA 193 31.246 21.009 19.127 1.00 40.01 ATOM 1588 CB ILEA 193 31.246 21.009 19.127 1.00 36.14 ATOM 1588 CB ILEA 193 31.246 21.009 19.127 1.00 38.65										
ATOM 1561 CA GLY A 189 19.809 18.381 18.867 1.00 62.45 ATOM 1562 C GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1563 O GLY A 189 18.863 20.613 18.809 1.00 63.40 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.69 ATOM 1571 O GLN A 191 25.462 22.451 17.687 1.00 52.69 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1578 CA VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1580 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.237 21.647 17.875 1.00 44.559 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1588 CB ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1585 CA ILE A 193 31.246 21.009 19.127 1.00 40.01 ATOM 1588 CB ILE A 193 31.246 21.009 19.127 1.00 40.01 ATOM 1588 CB ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1588 CB ILE A 193 31.246 21.009 19.127 1.00 40.01 ATOM 1588 CB ILE A 193 29.875 21.406 19.636 21.00 38.85										
ATOM 1562 C GLY A 189 19.862 19.892 18.710 1.00 62.76 ATOM 1563 O GLY A 189 18.863 20.613 18.809 1.00 63.40 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1567 O GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.466 26.948 17.561 0.00 99.00 ATOM 1576 NE2 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1577 N VAL A 192 26.166 26.948 17.561 0.00 99.00 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.515 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 49.07 ATOM 1588 CG VAL A 192 28.837 22.853 17.803 1.00 45.15 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1588 CB ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63										
ATOM 1563 O GLY A 189 18.863 20.613 18.809 1.00 63.40 ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1573 CG GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.466 26.437 25.200 17.502 1.00 62.97 ATOM 1576 NE2 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 99.00 ATOM 1576 NE2 GLN A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1579 C VAL A 192 27.264 21.943 16.684 1.00 49.07 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1588 CG VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1588 CG VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1588 CG VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1588 CB ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1588 CB ILE A 193 31.246 21.009 19.127 1.00 40.00 60 ATOM 1588 CB ILE A 193 31.266 21.009 19.127 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12	25								_	
ATOM 1564 N GLY A 190 21.051 20.429 18.448 1.00 62.37 ATOM 1565 CA GLY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.247 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.90 60 ATOM 1588 CB ILE A 193 31.266 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 31.266 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 28.303 21.218 21.573 1.00 38.63	33									
ATOM 1564 N GHY A 190 21.211 21.883 18.338 1.00 60.60 ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1578 CA VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1579 C VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 CG1 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 60 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.85										1.00 62.37
ATOM 1566 C GLY A 190 22.551 22.159 17.660 1.00 58.62 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1568 N GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1574 CD GLN A 191 26.467 25.462 20.82 18.858 1.00 52.69 ATOM 1575 OE1 GLN A 191 26.467 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1588 CB ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.85 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.85										1.00 60.60
40 ATOM 1567 O GLY A 190 23.029 21.274 16.958 1.00 58.39 ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 54.69 ATOM 1569 CA GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.5462 22.451 17.687 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1575 N VAL A 192 27.7683 16.891 0.00 99.00 ATOM 1578 CA VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 44.84 ATOM 1586 C ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1587 O ILE A 193 31.246 21.009 19.127 1.00 40.00 60 ATOM 1587 O ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 29.715 20.868 21.104 1.00 38.85										
ATOM 1568 N GLN A 191 23.173 23.285 17.983 1.00 56.77 ATOM 1569 CA GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.69 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 The second of the seco	40								16.958	
ATOM 1569 CA GLN A 191 24.466 23.554 17.336 1.00 54.69 ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 62.97 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.467 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1582 CG1 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 40.84 ATOM 1585 CA ILE A 193 28.831 20.882 18.775 1.00 40.84 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1589 CG1 ILE A 193 29.715 20.868 21.104 1.00 38.63	40								17.983	
ATOM 1570 C GLN A 191 25.462 22.451 17.687 1.00 52.57 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1575 OEI GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1583 CG2 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 40.84 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63								23.554	17.336	
45 ATOM 1571 O GLN A 191 25.599 22.082 18.858 1.00 52.69 45 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1582 CG1 VAL A 192 27.960 20.717 15.544 1.00 39.90 55 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 29.047 19.665 15.684 1.00 39.90 ATOM 1585 CA ILE A 193 31.246 20.237 14.584 1.00 40.84 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.65								22.451	17.687	
45 ATOM 1572 CB GLN A 191 24.972 24.927 17.760 1.00 58.35 ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1575 OE1 GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1582 CG1 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 31.246 21.009 19.127 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63									18.858	
ATOM 1573 CG GLN A 191 26.437 25.200 17.502 1.00 62.97 ATOM 1574 CD GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1582 CG1 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1588 CB ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63	45						24.972	24.927		1.00 58.35
ATOM 1574 CD GLN A 191 26.166 26.948 17.561 0.00 99.00 ATOM 1575 OE1 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 40.84 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63	73				GLN A	191	26.437	25.200		1.00 62.97
ATOM 1575 OE1 GLN A 191 25.459 27.683 16.891 0.00 99.00 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 1570 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1582 CG1 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1586 C ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 60 ATOM 1587 O ILE A 193 29.875 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63								26.948		
50 ATOM 1576 NE2 GLN A 191 27.070 27.403 18.451 0.00 99.00 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1580 O VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1582 CG1 VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63							25.459	27.683	16.891	
50 ATOM 1577 N VAL A 192 26.162 21.943 16.684 1.00 49.07 ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63				NE2	GLN A	191	27.070	27.403		
ATOM 1578 CA VAL A 192 27.264 21.012 16.898 1.00 45.59 ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1583 CG2 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 40.84 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.246 21.009 19.127 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.85	50				VAL A	192	26.162	21.943	16.684	
ATOM 1579 C VAL A 192 28.237 21.647 17.875 1.00 44.47 ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1582 CG1 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63	50						27.264	21.012		
ATOM 1580 O VAL A 192 28.473 22.853 17.803 1.00 45.15 ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 ATOM 1582 CG1 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63								21.647		
ATOM 1581 CB VAL A 192 27.960 20.717 15.544 1.00 42.50 1582 CG1 VAL A 192 29.047 19.665 15.684 1.00 39.90 1582 CG1 VAL A 192 26.874 20.237 14.584 1.00 40.84 1583 CG2 VAL A 192 26.874 20.237 14.584 1.00 40.84 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 1587 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 1588 CB ILE A 193 28.303 21.218 21.573 1.00 38.63 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63								22.853		
55 ATOM 1582 CG1 VAL A 192 29.047 19.665 15.684 1.00 39.90 ATOM 1583 CG2 VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1585 CA ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1586 C ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63					VAL A	192	27.960	20.717	15.544	
ATOM 1583 CG2 VAL A 192 26.874 20.237 14.584 1.00 40.84 ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63	55									
ATOM 1584 N ILE A 193 28.831 20.882 18.775 1.00 41.81 ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63	22						26.874			
ATOM 1585 CA ILE A 193 29.875 21.406 19.636 1.00 39.71 ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63					ILE F	193				
ATOM 1586 C ILE A 193 31.246 21.009 19.127 1.00 40.00 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63							29.875			
60 ATOM 1587 O ILE A 193 31.569 19.822 19.009 1.00 40.12 ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63										
ATOM 1588 CB ILE A 193 29.715 20.868 21.104 1.00 36.14 ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63	60						31.569			
ATOM 1589 CG1 ILE A 193 28.303 21.218 21.573 1.00 38.63										
20 7CF 21 FOF 21 Q57 1 (0) 18 85							28.303			
		ATOM	1590	CG2			30.765	21.585	21.957	1.00 38.85

				~ ·	103 -	07 016	20 501	22 022	1.00 41.29
	ATOM	1591			193	27.916	20.591	22.922	1.00 41.29
	MOTA	1592	N	LEU A		32.075	22.008	18.852	1.00 39.67
	ATOM	1593	CA	LEU A		33.436	21.783	18.388	1.00 40.23
_	ATOM	1594	C	LEU A		34.455	21.944	19.486	
5	MOTA	1595	0	LEU A		34.136	22.489	20.557	1.00 40.07 1.00 38.19
	ATOM	1596	CB	LEU A		33.741	22.794	17.252	1.00 38.19
	MOTA	1597	CG	LEU A		32.736	22.764	16.101	
	ATOM	1598		LEU A		33.203	23.702	14.980	1.00 42.33
	MOTA	1599		LEU A		32.593	21.362	15.514	1.00 41.05
10	MOTA	1600	N	CYS A		35.658	21.430	19.269	1.00 41.29
	MOTA	1601	CA	CYS A		36.711	21.575	20.273	1.00 43.15
	MOTA	1602	С	CYS A		36.956	23.045	20.562	1.00 45.32
	ATOM	1603	0	CYS A		37.083	23.872	19.671	1.00 44.47
	ATOM	1604	CB	CYS A		37.981	20.893	19.785	1.00 44.75
15	MOTA	1605	SG	CYS A		39.358	21.057	20.920	1.00 43.19
	ATOM	1606	N	PRO A		36.918	23.423	21.847	1.00 46.44
	MOTA	1607	CA	PRO A		36.978	24.814	22.245	1.00 47.49
	MOTA	1608	С	PRO A		38.376	25.335	22.514	1.00 48.05
	MOTA	1609	0	PRO A	196	38.575	26.531	22.759	1.00 49.91
20	MOTA	1610	CB	PRO A	196	36.123	24.820	23.515	1.00 48.09
	MOTA	1611	CG	PRO A	196	36.293	23.449	24.079	1.00 47.48
	MOTA	1612	CD	PRO A	196	36.834	22.513	23.018	1.00 47.09
	ATOM	1613	N	THR A		39.365	24.477	22.488	1.00 48.20
	MOTA	1614	CA	THR A	197	40.753	24.821	22.766	1.00 49.51
25	ATOM	1615	С	THR A	197	41.610	24.697	21.491	1.00 48.70
	ATOM	1616	0	THR A	197	41.132	24.143	20.508	1.00 47.51
	ATOM	1617	CB	THR A	197	41.337	23.819	23.789	1.00 54.19
	ATOM	1618	OG1	THR A	197	42.063	22.755	23.133	1.00 60.20
	ATOM	1619	CG2	THR A	197	40.249	23.146	24.620	1.00 60.00
30	ATOM	1620	N	SER A	198	42.874	25.104	21.600	1.00 48.43
-	ATOM	1621	CA	SER A	198	43.755	25.011	20.443	1.00 49.41
	ATOM	1622	С	SER A	198	44.106	23.572	20.088	1.00 51.13
	ATOM	1623	0	SER A	198	44.340	22.748	20.974	1.00 50.32
	ATOM	1624	CB	SER A	198	45.022	25.837	20.600	1.00 41.67
35	MOTA	1625	OG	SER A	198	44.689	27.176	20.863	1.00 42.21
	ATOM	1626	N	VAL A	199	44.135	23.321	18.783	1.00 51.78
	ATOM	1627	CA	VAL A		44.448	22.018	18.210	1.00 54.21
	ATOM	1628	С	VAL A	199	45.846	22.063	17.593	1.00 55.85
	ATOM	1629	0	VAL A		46.229	23.043	16.958	1.00 55.32
40	ATOM	1630	CB	VAL A	199	43.415	21.673	17.105	1.00 55.83
	ATOM	1631		VAL A	199	43.848	20.450	16.311	1.00 58.48
	ATOM	1632		VAL A		42.081	21.363	17.794	1.00 58.90
	MOTA	1633	N	PHE A	200	46.643	21.031	17.823	1.00 57.80
	ATOM	1634	CA	PHE A	200	48.033	20.977	17.458	1.00 60.84
45	ATOM	1635	C	PHE A	200	48.501	19.863	16.538	1.00 63.34
	ATOM	1636	0	PHE A	200	47.988	18.771	16.373	1.00 63.71
	ATOM	1637	CB	PHE A		48.976	20.962	18.695	1.00 56.48
	ATOM	1638	CG	PHE A		49.009	22.350	19.286	1.00 51.93
	ATOM	1639		PHE A		49.867	23.304	18.779	1.00 50.53
50	ATOM	1640		PHE A		48.118	22.686	20.298	1.00 52.06
	ATOM	1641		PHE A		49.844	24.596	19.289	1.00 48.79
	ATOM	1642		PHE A		48.104	23.972	20.813	1.00 46.67
	ATOM	1643	CZ	PHE A		48.952	24.921	20.283	1.00 48.73
	ATOM	1644	N	SER A		49.612	20.201	15.906	1.00 65.54
55	ATOM	1645	CA	SER A		50.520	19.367	15.151	1.00 67.49
	ATOM	1646	Ċ	SER A		50.543	17.927	15.652	1.00 68.56
	ATOM	1647	ŏ	SER A		50.873	17.710	16.841	1.00 69.46
	ATOM	1648	СВ		201 ·	51.928	19.984	15.374	1.00 69.06
	ATOM	1649	OG	SER A		51.799	21.376	15.666	1.00 64.56
60	ATOM	1650	OT	SER A		50.201	17.025	14.856	1.00 71.71
J-J	ATOM	1651		W TAW		16.850	8.350	41.749	1.00 33.70
	ATOM	1652		WAT W		14.700	3.706	36.739	1.00 34.70
	ATOM	1653		WAT W			-21.581	45.725	1.00 35.04
					-				

	ATOM	1654	OWO	WAT	W	4	13.647 -16.192 51.826 1.00 35.32
	ATOM	1655	OWO	TAW	W	5	27.151 6.021 35.728 1.00 35.70
	MOTA	1656	OWO		W	6	35.841 19.641 17.028 1.00 36.41
			OWO		W	7	12.924 7.105 31.382 1.00 36.46
_	ATOM	1657					#E:#E: /:E:#
5	MOTA	1,658	OW0		W	8	22.070 24.110
	ATOM	1659	OWO		W	9	17.562 -18.568 44.759 1.00 38.24
	MOTA	1660	OW0	WAT	W	10	23.931 7.992 29.610 1.00 38.55
	ATOM	1661	OWO	WAT	W	11	32.085 22.981 25.237 1.00 38.76
	MOTA	1662	OWO	WAT	W	12	18.237 6.493 43.333 1.00 38.96
10	MOTA	1663	OWO		W	13	19.973 21.293 36.711 1.00 38.84
10	ATOM	1664	OWO		W	14	14.757 -3.264 32.978 1.00 39.29
		1665	000		W	15	19.948 -2.552 48.084 1.00 39.94
	ATOM		OWO			16	13.394 -3.627 35.420 1.00 40.05
	MOTA	1666			W		24.218 1.873 40.503 1.00 40.12
4 =	ATOM	1667	OWO		W	17	
15	MOTA	1668	OW0		W	18	
	MOTA	1669	OWO	WAT	W	19	29.332 23.835 36.728 1.00 40.10
	MOTA	1670	OW0	TAW	W	20	32.982 14.615 37.196 1.00 40.03
	MOTA	1671	OWO	TAW	W	21	15.963 -14.411 41.801 1.00 40.85
	ATOM	1672	OWO	WAT	W	22	36.115 14.124 27.538 1.00 41.62
20	ATOM	1673	OWO		W	23	36.759 24.316 27.854 1.00 41.58
~0	ATOM	1674	OWO		W	24	24.232 -12.120 40.700 1.00 41.18
		1675	OWO		W	25	20.170 8.808 43.184 1.00 41.55
	MOTA						14.174 8.391 52.525 1.00 43.14
	ATOM .	1676	000		W	26	
~-	ATOM	1677	OWO		W	27	
25	MOTA	1678	OWO		M	28	14.723 -7.678 41.271 1.00 41.77
	MOTA	1679	OW0	TAW	W	29	19.317 13.171 52.356 1.00 41.81
	ATOM	1680	OWO	WAT	W	30	23.266 21.233 27.612 1.00 42.08
	ATOM	1681	OWO	WAT	W	31	11.768 12.568 50.507 1.00 42.04
	MOTA	1682	OWO	TAW	W	32	13.539 -13.131 41.639 1.00 42.18
30	ATOM	1683	OWO		W	33	11.508 10.524 52.379 1.00 42.93
50	MOTA	1684	OWO		W	34	3.363 -0.753 38.246 1.00 42.96
			OWO		W	35	22.835 -3.224 40.382 1.00 43.01
	ATOM	1685				36	26.824 22.825 28.526 1.00 43.00
	MOTA	1686	000				
	MOTA	1687	OWO		W	37	
35	MOTA	1688	OMO		W	38	8.736 -6.966 49.493 1.00 43.69
	ATOM	1689	OWO		W	39	15.651 -14.676 38.985 1.00 43.87
	ATOM	1690	OWO	WAT	W	40	8.333 -12.297 37.586 1.00 44.06
	ATOM	1691	OWO	WAT	W	41	25.939 7.843 39.161 1.00 44.11
	ATOM	1692	OWO	WAT	W	42	10.384 9.683 30.485 1.00 44.27
40	ATOM	1693	OWO		W	43	0.943 8.083 43.152 1.00 44.34
	ATOM	1694	OWO		W	44	21.071 2.692 43.998 1.00 44.65
	ATOM	1695	OWO		W	45	16.203 7.540 48.658 1.00 44.83
		1696	OWO		W	46	21.491 -11.431 40.332 1.00 44.88
	MOTA				W	47	21.292 -1.593 41.871 1.00 45.24
4.5	MOTA	1697	OWO				
45	ATOM	1698	OWO			48	
	MOTA	1699	OWO			49	
	MOTA	1700	OWO			50	
	MOTA	1701	OWO			51	7.067 6.695 50.824 1.00 46.58
	MOTA	1702	OW0			52	27.033 16.432 44.207 1.00 47.45
50	ATOM	1703	· 0W0	WAT	W	53	12.107 -10.902 38.882 1.00 47.44
	MOTA	1704	OW0			54	31.232 24.588 19.293 1.00 47.66
	ATOM	1705	OWO			55	21.781 -3.130 44.031 1.00 47.48
	ATOM	1706	OWO			56	7.169 -27.314 41.711 1.00 48.17
			OW0			57	33.861 -1.778 23.374 1.00 48.53
55	MOTA	1707					
55	MOTA	1708	OW0			58	
	MOTA	1709	OW0			59	
	MOTA	1710	OMO			60	
	ATOM	1711	OWO			61	39.604 24.739 18.318 1.00 49.28
	ATOM	1712	OW0	WAT	W	62	24.974 -18.827 45.601 1.00 50.87
60	MOTA	1713	OWO			63	21.207 -0.654 31.876 1.00 49.81
	ATOM	1714	OWO			64	13.203 8.179 28.792 1.00 50.30
	ATOM	1715	OWO			65	21.887 5.385 43.977 1.00 50.58
	ATOM	1716	OWO			66	24.468 6.206 27.276 1.00 50.23
	111001	_, _ ,	30		••		

PCT/GB00/03568

									20 024	1.00 50.79
	ATOM ·	1717	OMO	TAW	W	67	16.159	-6.928	39.274	
	ATOM	1718	OWO	WAT	W	68	18.759	17.803	28.696	1.00 50.80
	ATOM	1719	OWO	WAT	W	69	13.821	14.472	25.933	1.00 52.01
	ATOM	1720	OW0	WAT	W	70	5.992	2.145	50.465	1.00 52.52
5	ATOM	1721	OWO			71	22.450	0.866	42.331	1.00 52.86
,	ATOM	1722		WAT		72	37.480	14.455	29.856	1.00 52.16
				WAT		73	7.914	14.799	34.609	1.00 52.26
	MOTA	1723						14.728	12.928	1.00 52.80
	ATOM	1724		WAT		74	33.074			1.00 53.07
	ATOM	1725		WAT		75	-2.139		35.817	
10 ·	ATOM	1726	OWO	TAW	W	76	8.849		29.567	1.00 53.08
	MOTA	1727	OWO	WAT	W	77	2.499	9.596	40.507	1.00 53.22
	ATOM	1728	OWO	WAT	W	78	8.453	-4.313	50.928	1.00 53.22
	MOTA	1729		WAT		79	13.988	-16.279	37.477	1.00 54.52
	ATOM	1730		WAT		80	29.311	23.613	25.169	1.00 53.94
15		1731		WAT		81	10.698	17.607	37.556	1.00 53.87
13	ATOM					82		-28.803	42.420	1.00 54.34
	MOTA	1732		TAW						1.00 54.11
	MOTA	1733		TAW		83	1.674	-0.659	35.990	
	MOTA	1734		WAT		84	13.238	5.649	29.129	1.00 54.35
	MOTA	1735	OWO	WAT	W	85	23.172	23.184	42.047	1.00 53.98
20	MOTA	1736	OWO	WAT	W	86	25.591	-14.157	41.467	1.00 54.33
	ATOM	1737	OWO	WAT	W	87	39.505	4.678	27.285	1.00 55.10
	ATOM	1738		WAT		88	33.071	24.177	22.504	1.00 53.92
		1739		WAT		89	2.865		47.361	1.00 55.09
	MOTA					90	10.824	5.199	27.990	1.00 54.87
25	MOTA	1740		WAT				-18.762	37.013	1.00 55.07
25	MOTA	1741		TAW		91				1.00 56.03
	ATOM	1742		WAT		92	19.672	23.135	34.883	
	ATOM	1743	OWO	WAT	W	93	3.899	3.408	32.498	1.00 56.24
	ATOM	1744	OWO	WAT	W	94	17.326	5.781	50.106	1.00 56.35
	ATOM	1745	OWO	WAT	W	95	46.420	28.753	20.001	1.00 56.50
30	MOTA	1746	OWO	WAT	W	96	18.033	-25.950	38.021	1.00 56.78
	ATOM	1747		TAW		97	16.668	11.173	20.729	1.00 57.28
	ATOM	1748		WAT		98	-0.327		37.865	1.00 56.31
		1749		WAT		99	13.791		42.473	1.00 56.28
	ATOM					100	14.138	-6.120	36.256	1.00 56.78
25	ATOM	1750		TAW				-1.004	43.200	1.00 56.68
35	MOTA	1751		TAW		101	-0.503			
	MOTA	1752		TAW			7.034	2.268	29.920	1.00 57.78
	ATOM	1753		WAT		103	39.612		21.840	1.00 57.56
	ATOM	1754	OWO	WAT	W	104	12.322	-7.683	34.772	1.00 57.82
	ATOM	1755	OWO	WAT	W	105	21.186	21.778	39.197	1.00 58.10
40	ATOM	1756	OWO	WAT	W	106	25.213	27.127	14.493	1.00 58.04
	ATOM	1757	OWO	WAT	W	107	37.189		11.613	1.00 58.31
	MOTA	1758		TAW				-17.600	47.916	1.00 58.58
		1759		WAT		109	25.505	0.503	36.518	1.00 57.70
	MOTA			WAT			21.154		24.315	1.00 58.80
4.5	MOTA	1760							29.269	1.00 58.45
45	ATOM	1761		WAT			23.932			1.00 58.92
	ATOM		OW0					16.034		
	ATOM	1763		WAT				-12.369	36.445	1.00 60.00
	MOTA	1764	OWO	TAW	W	114	45.949		19.720	1.00 59.22
	ATOM	1765	OW0	TAW	W	115	3.882		43.893	1.00 59.38
50	MOTA	1766	OWO	WAT	W	116	26.040	-17.629	41.513	1.00 58.92
	ATOM	1767	OWO	WAT	W	117	13.942	-10.256	37.298	1.00 60.39
	ATOM	1768		WAT			7.840		31.734	1.00 60.14
		1769		WAT				-20.559	43.212	1.00 60.45
	ATOM			WAT			18.311		47.879	1.00 60.32
E	ATOM	1770					38.093		26.658	1.00 61.27
55	MOTA	1771		TAW						1.00 61.39
	MOTA	1772		TAW				-26.418	44.769	
	MOTA	1773		WAT			17.200		32.783	1.00 60.41
	MOTA	1774		WAT			33.055		13.378	1.00 61.34
	ATOM	1775		TAW			29.579		37.422	1.00 60.84
60	ATOM	1776		TAW			26.196		42.367	1.00 60.80
	ATOM	1777		WAT			23.556	~4.737	42.642	1.00 61.18
	ATOM	1778	OWO	TAW	W	128	10.687	-3.375	35.374	1.00 61.88
	ATOM	1779	OWO	WAT	W	129		-13.947	38.339	1.00 62.52
	111 011		٥٠		•					•

	MOTA	1780		WAT !		30	9.747		36.212	1.00 59.32
•	ATOM	1781	OWO	WAT I	N 13	31	24.814		45.661	1.00 62.19
	ATOM	1782	OWO	WAT 1	N 13	32	23.200	4.574	23.546	1.00 61.90
	ATOM	1783	OW0	TAW	N 13	33	24.938	30.370	17.496	1.00 62.23
5	MOTA	1784		WAT			35.459	1.260	16.603	1.00 62.66
_	ATOM	1785		WAT !			24.178	20.068	20.090	1.00 61.73
	ATOM	1786		WAT			40.127	0.350	18.771	1.00 62.44
	ATOM	1787		WAT			19.279	14.663	46.778	1.00 63.59
	ATOM	1788		WAT !			20.090	20.354	46.023	1.00 62.81
10	ATOM	1789		WAT			15.250		46.516	1.00 63.68
10	ATOM	1790		WAT			21.267		39.386	1.00 63.31
	ATOM	1791		WAT			26.107		33.033	1.00 63.89
	ATOM	1792		WAT			13.216		48.398	1.00 64.51
	ATOM	1793		WAT			23.474		51.112	1.00 65.45
15	ATOM	1794		WAT			6.778		28.981	1.00 64.57
13	ATOM	1795		WAT			23.613		49.685	1.00 64.50
	ATOM	1796		WAT			21.834		36.556	1.00 65.24
	ATOM	1797		WAT			10.139		36.806	1.00 65.85
	ATOM	1798		WAT			32.489		33.677	1.00 64.60
20	ATOM	1799		WAT			31.655		27.510	1.00 64.29
20		1800		WAT			4.585		39.031	1.00 66.94
	ATOM	1801		WAT !			38.484	_	18.085	1.00 65.84
	MOTA			WAT !			42.438		21.219	1.00 65.71
	MOTA	1802		WAT			33.971		27.259	1.00 66.15
25	MOTA	1803		WAT			24.597		45.286	1.00 67.06
25	ATOM	1804		WAT				-26.008	50.039	1.00 66.08
	ATOM	1805		WAT			9.030		39.896	1.00 66.14
	ATOM	1806						-18.835	45.004	1.00 67.94
	ATOM	1807		WAT			-3.398		40.260	1.00 65.32
20	MOTA	1808					25.878		20.622	1.00 68.10
30	MOTA	1809		WAT			27.187		24.805	1.00 67.75
	ATOM	1810		WAT					35.784	1.00 67.73
	ATOM	1811		WAT			24.071 7.746		52.663	1.00 70.19
	MOTA	1812		WAT			19.301		47.873	1.00 70.13
25	MOTA	1813		WAT					32.539	1.00 65.45
35	MOTA	1814		WAT			10.439		41.113	1.00 68.64
	MOTA	1815		WAT			23.798			1.00 65.77
	ATOM	1816		WAT			2.464		30.549	1.00 65.77
	ATOM	1817		WAT			9.665		35.700	1.00 69.25
40	ATOM	1818		WAT			1.759		44.227	1.00 69.23
40	MOTA	.1819		WAT			20.960		26.258	1.00 67.86
	MOTA	1820		WAT			28.769		27.878	1.00 67.88
	MOTA	1821		WAT			30.212		8.293	1.00 09.23
	MOTA	1822		WAT			20.178		50.589	
	MOTA	1823		WAT			19.736		23.117	1.00 70.72 1.00 70.10
45	ATOM	1824		WAT			8.978		50.514	1.00 70.10
	MOTA	1825		TAW			25.144		34.429	1.00 /1.90
	MOTA	1826	OWO	WAT	W 1	/6	26.946		35.563	1.00 68.69
	MOTA	1827		WAT			44.918		13.054	1.00 70.16
	MOTA	1828		TAW			22.370		38.170	1.00 71.66
50	MOTA	1829		WAT			-0.624		33.201	1.00 72.23
	MOTA	1830		WAT			11.015		47.520	1.00 71.42
	MOTA	1831		WAT			7.766		52.950	1.00 71.64
	MOTA	1832	OWO	WAT	W 18	82	3.469	-28.368	52.511	1.00 70.10

3

References

10

15

25

1. zur Hausen, H. Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. *Curr. Top. Microbiol. Immunol.* **186**, 131-156 (1994).

- 2. Mohr, I. J., Clark, R., Sun, S., Androphy, E. J., MacPherson, P. & Botchan, M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. *Science* **250**, 1694-1699 (1990).
 - 3. Giri, I. & Yaniv, M. Structural and mutational analysis of E2 *trans*-activating proteins of papillomaviruses reveals three distinct functional domains. *EMBO J.* 7, 2823-2829 (1988).
 - 4. McBride, A. & Myers, G. in *Human Papillomaviruses 1997* (eds Myers, G., Sverdrup, F., Baker, C., McBride, A., Münger, K. & Bernard, H.-U.) III-54-III-73 (Theoretical Biology and Biophysics, Los Alamos, 1997).
 - 5. Berg, M. & Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J. Virol. 71, 3853-3863 (1997).
 - 6. Gillette, T. G. & Borowiec, J. A. Distinct roles of two binding sites for the bovine papillomavirus (BPV) E2 transactivator on BPV DNA replication. *J. Virol.* 72, 5735-5744 (1998).
- Choo, K. B., Pan, C. C. & Han, S. H. Integration of human papillomavirus type 16
 into cellular DNA of cervical carcinoma: Preferential deletion of the E2 gene and invariable retention of the long control region and E6/E7 open reading frames.
 Virology 161, 261(1987).
 - 8. Knight, J. D., Li, R. & Botchan, M. The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. *Proc. Natl. Acad. Sci. USA* 88, 3204-3208 (1991).
 - 9. Li, R., Knight, J. D., Jackson, S. P., Tjian, R. & Botchan, M. R. Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. *Cell* 65, 493-505 (1991).
- 10. Sandler, A. B., Baker, C. C. & Spalholz, B. A. Sp1 is critical for basal and E2 30 transactivated transcription from the bovine papillomavirus type 1 P₈₉ promoter. J. Gen. Virol. 77, 189-198 (1996).

- 11. E2 sequence database. (1999). http://hpv-web.lanl.gov:
- 12. Hegde, R. S., Grossman, S. R., Laimins, L. A. & Sigler, P. B. Crystal structure at
- 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. *Nature* 359, 505-512 (1992).
- 13. Hegde, R. S. & Androphy, E. J. Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism. *J. Mol. Biol.* **284**, 1479-1489 (1998).
 - 14. Hegde, R. S., Wang, A. F., Kim, S. S. & Schapira, M. Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2
- 10 protein. J. Mol. Biol. 276, 797-808 (1998).
 - 15. Harris, S. F. & Botchan, M. R. Crystal structure of the human papillomavirus type 18 E2 activation domain. Science 284, 1673-1677 (1999).
 - 16. Burns, J. E., Moroz, O. V., Antson, A. A., Sanders, C. M., Wilson, K. S. & Maitland, N. J. Expression, crystallization and preliminary X-ray analysis of the E2
- transactivation domain from papillomavirus type 16. Acta Crystallog. **D54**, 1471-1474 (1998).
 - 17. Ramakrishan, C. & Ramachandran, G. N. Stereochemical criteria for polypeptide and protein chain conformations. *Biophys. J.* 5, 909-933 (1995).
 - 18. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M.
- PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26, 283-291 (1993).
 - 19. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., et al. The protein data bank: a computer based archival file for macromolecular structures. *J. Mol. Biol.* 112, 535-542 (1977).
- 25 20. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123-138 (1993).
 - 21. Wiener, M., Freymann, D., Ghosh, P. & Stroud, R. M. Crystal structure of colicin 1a. Nature 385, 461-464 (1997).
- 22. Frolow, F., Kalb, A. G. & Yariv, J. The structure of a unique, two-fold symmetric, haem-binding protein. *Nature Struct. Biol.* 1, 453-460 (1994).

23. Mok, Y. K., Gay, G. D., Butler, P. J. & Bycroft, M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. *Protein Sci.* 5, 310-319 (1996).

- 24. Foguel, D., Silva, J. L. & de Prat-Gay, G. Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus E2 protein obtained at high pressure. *J. Biol. Chem.* 273, 9050-9057 (1998).
- 25. Gauthier, J.-M., Dostatni, N., Lusky, M. & Yaniv, M. Two DNA-bound E2 dimers are required for strong transcriptional activation and for cooperation with cellular factors in most cells. *The New Biologist* 3, 498-509 (1991).
- 26. Estojak, J., Brent, R. & Golemis, E. Correlation of two-hybrid affinity with in vitro measurements. *Mol. Cell. Biol.* 15, 5820-5829 (1995).
 - 27. Sengchanthalangsy, L., Datta, S., Huang, D., Anderson, E., Braswell, E. & Ghosh, G. Characterisation of the dimer interface of transcription factor NKkB p50 homodimer. *Journal of Molecular Biology* **289**, 1029-1040 (1999).
- 15 28. Chao, S.-F., Rocque, W. J., Daniel, S., Czyzyk, L. E., Phelps, W. C. & Alexander, K. A. Subunit affinities and stoichiometries of the human papillomavirus type 11 E1:E2:DNA complex. *Biochemistry* 38, 4586-4594 (1999).
 - 29. Program manual for the Wisconsin package. (8): Madison, Wisconsin, USA: Genetics computer group. (1994).
- 30. Abroi, A., Kurg, R. & Ustav, M. Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants. *J. Virol.* 70, 6169-6179 (1996).

- 31. Cooper, C. S., Upmeyer, S. N. & Winokur, P. L. Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. *Virology* 241, 312-322 (1998).
- 32. Brokaw, J. L., Blanco, M. & McBride, A. A. Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator. *J. Virol.* **70**, 23-29 (1996).

33. Sakai, H., Yasugi, T., Benson, J. D., Dowhanick, J. J. & Howley, P. M. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions. *J. Virol.* 70, 1602-1611 (1996).

- 5 34. Breiding, D. E., Sverdrup, F., Grossel, M. J., Moscufo, N., Boonchai, W. & Androphy, E. J. Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain. *Mol. Cell. Biol.* 17, 7208-7219 (1997).
 - 35. Yao, J. M., Breiding, D. E. & Androphy, E. J. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB. J. Virol. 72, 1013-1019 (1998).
 - 36. Semenza, G. L. Transcription factors and human disease (Oxford University Press, New York and Oxford, 1998).
 - 37. Ferguson, M. K. & Botchan, M. R. Genetic analysis of the activation domain of bovine papillomavirus protein E2: its role in transcription and replication. *J. Virol.*
- 15 **70**, 4193-4199 (1996).

- 38. Le Moal, M. A., Yaniv, M. & Thierry, F. The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2. J. Virol. 68, 1085-1093 (1994).
- 39. Bennett, M. J., Schlunegger, M. P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. *Protein Science* 4, 2455-2469 (1995).
 - 40. Yang, F., Bewley, C. A., Louis, J. M., et al. Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. *Journal of Molecular Biology* **288**, 403-412 (1999).
- 41. Desaintes, C. & Demeret, C. Control of papillomavirus DNA replication and transcription. Semin. Cancer. Biol. 7, 339-347 (1996).
 - 42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Meth. Enzymol.* 276, 307-326 (1997).
 - 43. Collaborative Computational Project, N. 4. The CCP4 suite: programs for protein crystallography. *Acta Crystallog.* **D50**, 760-763 (1994).
- 30 44. Sheldrick, G. M. & Schneider, T. R. SHELXL: high-resolution refinement. Meth. Enzymol. 277, 319-343 (1997).

45. Cowtan, K. D. & Main, P. Phase combination and cross-validation in iterated density-modification calculations. *Acta Crystallog.* **D52**, 43-48 (1996).

46. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. *Acta Crystallog.* **D49**, 129-147 (1993).

Claims

- 5 1. A crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, comprising residues vital for transcriptional and replicational activities of said protein.
- 2. An E2NT dimer protein according to Claim 1 wherein the residues lie on opposite sides of an N-terminal domain.
 - 3. An E2NT dimer protein according to either preceding claim wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
 - 4. An E2NT dimer according to Claim 3 comprising three clusters.

15

- 5. An E2NT dimer according to either of Claims 3 or 4 wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues Ile82, Glu90, Trp92, Lys112, Tyr138, Val145.
- An E2NT dimer according to any one of Claims 3-5 wherein a second cluster
 of residues is associated with N1 interactions and comprises either or both of residues
 Trp33 and Leu94.
 - 7. An E2NT dimer according to any one of Claims 3-6 wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues Pro106, Lys111, Phe168, Trp134.

8. An E2NT dimer according to any preceding claim further comprising residues associated with transactivation and/or replication properties of E2.

- An E2NT dimer according to Claim 8 wherein the residues comprise any one
 or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73,
 Gln12 and Ala69.
 - 10. Use of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein according to any preceding claim or homologue thereof in mapping mutations onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and the effect of mutations on folding of the E2 protein.
 - 11. Use according to Claim 10 in rationalised antiviral drug design.

10

- 15 12. An *in vitro* method for identifying and/or selecting a candidate therapeutic agent, the method comprising determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation in E2.
- 20 13. Use of the method according to Claim 12 in identifying and/or selecting an antiviral candidate therapeutic agent.
 - 14. Use according to Claim 13 wherein identification/selection of the candidate therapeutic agent depends on its ability to interfere with or block interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.
 - 15. Use of an E2NT dimerisation inhibitor for the preparation of a medicament for treatment of conditions that arise as a result of HPV infection.
- 30 16. Use according to Claim 15 for the treatment of warts, proliferative skin lesions and/or cervical cancer.

17. A method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of an HPV infection comprising taking a sample from said patient and measuring E2NT interactions and/or DNA loop formation.

5

10

15

- 18. Use of a dimerisation surface of an crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof according to any one of Claims 1-9 as a target site for interaction with putative antiviral agents and/or for measuring efficacy of said agents.
- 19. A method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction.
- 20. A method of claim 19, wherein the method by which the E2NT crystal structure is obtainable comprises crystallisation using hanging-drop vapour diffusion.
- 20 21. A method of claim 19 or claim 20 wherein the method by which E2NT crystal structure is obtainable comprises X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing.
- 22. A method of any of claims 19 to 21, wherein the crystal structure comprises the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94.
 - 23. A method of any of claims 19 to 22, wherein the rationalised drug design comprises designing drugs which interact with the dimerisation surface of E2NT.
 - 24. A computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a

three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:

5

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3;

10

- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and
 - (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

20

25

- 25. The computer according to claim 24, wherein said three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
- 26. A computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;

- 5 (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
 - (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structure coordinates; and

15

- (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 27. A crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
 - 28. The crystallized molecule or molecular complex according to claim 27, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

29. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

10

- 30. The machine-readable data storage medium according to claim 7, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 15
- 31. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.

25

20

32. A method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to claim 27 or claim 28 comprising the steps of:

a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and

- b. analysing the results of said fitting operation to quantify the association
 between the chemical entity and the dimerisation surface.
 - 33. A drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or its crystal structure or using a complex of any of claims 1 to 9, a method of claim 12, a use of any of claims 13, claim 14 or 18. a method of any of claims 20 to 24 or 32 or a product of any of claims 25 to 31.

FIG. I. A

HPV 16 E2 Protein: Functional assignments

FG. 1. B

C= blue; monomer ribbon: D= yellow; monomer ribbon: E= dark green; side chauns of Arg 37 and IIe 73; F = light green; side chauns of other residues: G = 0.2; red: H = blue; N_2 ; I = crange 11.20: J = dashod sticks; hydrogen bands]

figure . 28

N = NI domain = aquambrine

M = fulcrum = green

L = N2 domain = pink

Fig. 2 C

Fig 3.A.

1.3

FIG. 3B

Fig. 3. C

FIG. 4 A.

0 = yellow; sulphur atoms.

Fig. 4.B

Fig. LC

Flaure 4D.

TENT COOPERATION TREA

PCT

REC'D 17 JAN 2002

INTERNATIONAL PRELIMINARY EXAMINATION REPORT PCT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference	1	Con Northeadles of Tonor-illed of International						
LPB/P32059WO	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)						
international application No.	International filing date (day/month	/year) Priority date (day/month/year)						
PCT/GB00/03568	18/09/2000	17/09/1999						
International Patent Classification (IPC) or na C07K14/00	tional classification and IPC							
Applicant								
THE UNIVERSITY OF YORK et al.								
 This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36. 								
2. This REPORT consists of a total of	6 sheets, including this cover s	heet.						
This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).								
These annexes consist of a total of 7 sheets.								
3. This report contains indications rela	uting to the following items:							
I ⊠ Basis of the report								
Ⅱ ⊠ Priority								
III 🖾 Non-establishment of o	pinion with regard to novelty, in	on with regard to novelty, inventive step and industrial applicability						
IV 🔲 Lack of unity of invention	n							
	nder Article 35(2) with regard to one suporting such statement	novelty, inventive step or industrial applicability;						
VI Certain documents cite	ed							
VII - Certain defects in the it	nternational application							
VIII Certain observations of	n the international application							
Date of submission of the demand	Date of	completion of this report						
17/04/2001	17.01,2	002						
Name and mailing address of the international preliminary examining authority:	ul Authoriz	ed officer						
European Patent Office D-80298 Munich Tel. +49 89 2399 - 0 Tx: 523656 Fax: +49 89 2399 - 4465	6 epmu d	oni, J-C ne No. +49 89 2399 8563						

Form PCT/IPEA/409 (cover sheet) (January 1994)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/03568

		s of the re					
1.	the r and	eceivina O	ffice in res nexed to th	nonse to an invita	ional application (Replacement sheets which have been furnished to ation under Article 14 are referred to in this report as "originally filed" bey do not contain amendments (Rules 70,16 and 70.17)):		
	1-66	:	as	s originally filed			
	Clai	ms, No.:					
	1-31		w	ith telefax of	23/11/2001		
	Drav	wings, she	ets:				
	1/13	i-13/13	as	s originally filed			
		:					
2.	2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.						
	The	se element	s were av	ailable or furnishe	d to this Authority in the following language: , which is:		
		the langua	ige of a tra	anslation furnished	d for the purposes of the international search (under Rule 23.1(b)).		
					rnational application (under Rule 48.3(b)).		
		the langua 55.2 and/o		anslation furnished	d for the purposes of international preliminary examination (under Rule		
3.	Witl inte	n regard to rnational pi	any nucle reliminary	otide and/or amlexamination was	ino acid sequence disclosed in the international application, the carried out on the basis of the sequence listing:		
		contained	in the inte	rnational applicati	ion in written form.		
		filed toget	her with th	e international ap	plication in computer readable form.		
		furnished	subseque	ntly to this Author	ity in written form.		
					ity in computer readable form.		
		the interna	ational app	olication as filed h	furnished written sequence listing does not go beyond the disclosure in as been furnished.		
			ment that i been furr		corded in computer readable form is identical to the written sequence		
4	. The	e amendme	ints have r	resulted in the car	ncellation of:		
		the descri	iption,	pages:			
		the claims	5,	Nos.:			

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

L... milmin .to oo boodttoo

International application No. PCT/GB00/03568

		the drawings,	sheets:
5.		This report has been considered to go be	n established as if (some of) the amendments had not been made, since they have been yond the disclosure as filed (Rule 70.2(c)):
		(Any replacement streport.)	heet containing such amendments must be referred to under item 1 and annexed to this
6.	Add	litional observations,	if necessary:
11.	Pric	ority	
1.		This report has bee prescribed time limi	n established as if no priority had been claimed due to the failure to furnish within the the requested:
		☐ copy of the ear	lier application whose priority has been claimed.
		☐ translation of the	ne earlier application whose priority has been claimed.
2.		This report has bee been found invalid.	n established as if no priority had been claimed due to the fact that the priority claim has
	Thu dat		f this report, the international filing date indicated above is considered to be the relevant
3.		ditional observations e separate sheet	if necessary:
181	. No	n-establishment of	opinion with regard to novelty, inventive step and industrial applicability
1.	The	e questions whether vious), or to be indus	the claimed invention appears to be novel, to involve an inventive step (to be non- trially applicable have not been examined in respect of:
		the entire internation	nal application.
	X	claims Nos. 23-25	and 28-30, all completely.
be	ecau	ise:	
	×	the said internation following subject m see separate sheet	nal application, or the said claims Nos. 23-25 and 28-30, all completely relate to the natter which does not require an international preliminary examination (specify):
		the description, cla that no meaningful	ims or drawings (indicate particular elements below) or said claims Nos. are so unclear opinion could be formed (specify):
	×	the claims, or said	claims Nos. are so inadequately supported by the description that no meaningful opinion

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/03568

		could be formed.						
no international search report has been established for the said claims Nos								
2.	2. A meaningful international preliminary examination cannot be carried out due to the failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions:							
		the written form has not	been fu	irnished o	or does not comply with the standard.			
		the computer readable	form has	s not bee	n furnished or does not comply with the standard.			
	cita	easoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; tations and explanations supporting such statement						
1.	Sta	tement						
	Nov	velty (N)	Yes: No:	Claims Claims	1-22, 26, 27, 31 None			
	Inve	entive step (IS)	Yes: No:		None 1-22, 26, 27, 31			
	Indi	ustrial applicability (IA)	Yes: No:		1-22, 26, 27, 31 None			
		!						
2.	Cita	ations and explanations						

Form PCT/IPEA/409 (Boxes I-VIII, Sheet 3) (July 1998)

see separate sheet

Re Item I

Basis of the opinion

The amendments filed with the letter dated 23 November 2001 are considered to be formally allowable under Articles 19(2) and 34(2) PCT.

Re Item II

Priority

The claimed priority date appears to be valid. Therefore, the document Antson et al., NATURE, 17 February 2000, pages 805-809, which was cited as P,X by the ISA is not taken into account for the establishment of the present opinion.

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

1. Claims 23-25 and 28-30 merely amount to the presentation of information. According to Rule 67.1(v) PCT, examination of such claims is not required.

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- 1. The present application relates to crystals of a dimeric N-terminal domain of the Human Papillomavirus E2 activator (NT-HPVE2) type 18 and their use.
- 2. It is not at present clear what could form the technical problem underlying the present application which does not disclose how the crystals claimed are linked to an invention other than the mere recitation of the possible uses of said crystal. The resolution of a three-dimensional structure of a protein is a priori a scientific problem: space coordinates of a given protein constitute an admittedly complex parameter but still remain nothing else than physical parameters. As such, three-dimensional structure data do not automatically solve any technical problem, except if the determination of these data has produced a surprising technical

---- T/10 U/17

effect, e.g. if the methods based on this structure had provided a confirmed inhibitor/antagonist... In the absence of such a technical effect, it is concluded that the subject-matter of claims 26 and 27 does not meet the requirements of Article 33(3) PCT concerning inventive step.

- 3. It appear also obvious that the skilled person would set out to crystallize a E2NT protein dimer and would succeed in doing so, since obtaining crystals of any protein is nowadays more or less straightforward. Crystals are usually and obviously obtained for use in rationalized drug design: since obtaining the crystals of the invention did not appear to involve overcoming a technical prejudice (and since the claims do not refer to a particular method overcoming this prejudice) claims 1-22 and 31 are considered to merely recite what the skilled person would intend to do with said crystal(s). As such their subject-matter does not involve an inventive step and therefore does not meet the requirements of Article 33(3) PCT.
- 4. In other words, claims 1-22 and 31 are directed to uses and methods which have not been put into practice successfully within the limits of the invention or which refer to unclear or even undisclosed matter (like undefined "dimerisation surface"): their subject-matter merely amounts to the wording of the technical problem to be solved which does not involve an inventive step *per se* (Articles 6 and 33(3) PCT; see also the Guidelines of the PCT, Ch. III, 4.7).

<u>Claims</u>

- 1. Use, in rationalised drug design, of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein, the E2NT dimer protein comprising residues at its dimer interface that are vital for transcriptional and replicational activities of said protein and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.
- 2. Use of protein according to Claim 1 wherein the residues lie on opposite sides 10 of an N-terminal domain.
 - 3. Use of a protein according to either preceding claim wherein the residues comprise a plurality of further residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
 - 4. Use of a protein according to Claim 3 wherein the E2NT dimer protein comprises three clusters.
- 5. Use of a protein according to either of Claims 3 or 4 wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues Ile82, Glu90, Trp92, Lys112, Tyr138, Val145.
- 25 6. Use of a protein according to any one of Claims 3 to 5 wherein a second cluster of residues is associated with N1 interactions and comprises either or both of residues Trp33 and Leu94.
- 7. Use of a protein according to any one of Claims 3 to 6 wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues Pro106, Lys111, Phe168, Trp134.

- 9. Use in mapping mutations onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and/or the effect of mutations on folding of the E2 protein of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein, the E2NT dimer protein comprising residues at its dimer interface that are vital for transcriptional and replicational activities of said protein and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Glu12 and Ala69.
 - 10. Use of a protein according to claim 9 further including any one or more of the features receited in claims 2 to 8.
- 15 11. An in vitro method for identifying and/or selecting a candidate therapeutic agent, the method comprising the steps of
 - determining interaction in a sample of a E2 N-terminal module

 (E2NT) dimer, the dimer comprising residues at its dimer interface
 that are vital for transcriptional and replicational activities of said

 protein and wherein the residues comprise any one or more of the
 following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73,
 Glu12 and Ala69
 - (ii) contacting the sample with the candidate therapeutic agent and;
 - (iii) measuring DNA loop formation in E2.
 - 12. A method according to claim 11 wherein the candidate therapeutic agent is for the treatment of warts, proliferative skin lesions and/or cervical cancer.
- 13. A method according to either claim 11 or 12 further including any one or more of the features receited in claims 2 to 8.

5

10

.... 20

- 14. Use of the method according to any one of claims 10 to 13 in identifying and/or selecting an antiviral candidate therapeutic agent.
- 15. Use according to Claim 14 wherein identification/selection of the candidate therapeutic agent depends on its ability to interfere with or block interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.
 - 16. A method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of an HPV infection comprising the steps of:
 - (i) taking a sample from said patient

15

- (ii) contacting the sample with an E2 N-terminal module (E2NT) dimer, the dimer commissing residues at its dimer interface that are vital for transcriptional and replicational activities of said protein and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69 and;
- (iii) measuring E2NT interactions and/or DNA loop formation of the dimer.
- 20 17. Use of a dimerisation surface of an crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein according to any one of Claims 1-8 as a target site for interaction with putative antiviral agents and/or for measuring efficacy of said agents.
- 25 18. A method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction the crystallised E2NT comprising residues at its dimer interface that are vital for transcriptional and replicational activities and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.

- 19. A method decraim 18, wherein the method by which the E2NT crystall structure is obtainable comprises crystallisation using hanging-drop vapour diffusion.
- 5 20. A method of claim 18 or 19 wherein the method by which E2NT crystal structure is obtainable comprises X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 A spacing.
- 10 21. A method of any of claims 18 to 20 further including any one or more of the features receited in claims 2 to 8..
 - 22. A method of any of claims 18 to 21, wherein the rationalised drug design comprises designing drugs which interact with the dimerisation surface of E2NT.
- 23. A computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:
 - (a) a machine-readable data storage medium comprising a data storage material 25 encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69;
 - (b) a working memory for storing instructions for processing said machine-readable data;

- (c) a central-processing unit coupled to said working memory and to said machine readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- 5 (d) a display coupled to said central-processing unit for displaying said threedimensional representation.
 - 24. The computer according to claim 23, wherein said three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
- 15 25. A computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:
- (a) a machine-readable data storage medium comprising a data storage material
 20 encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;
 - (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
 - (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
- 30 (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the

10

10

machine readable data. (a) and for processing said machine restable data of (b) into structure coordinates; and

- (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
 - 26. A crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Glu12 and Ala69 according to Table 3 or a homologue of said molecular or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 27. The crystallized molecule or molecular complex according to claim 26, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 28. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 30 29. The machine-readable data storage medium according to claim 28, wherein said molecule or molecular complex is defined by the set of structure coordinates

or a homologue of said molecule or molecular complex, said according to Table homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

- A machine-readable data storage medium comprising a data storage material 30. encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least 10 a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.
- A method for evaluating the ability of a chemical entity to associate with a 31. molecule or molecular complex according to claim 26 or 27 comprising the steps of: 15
 - employing computational means to perform a fitting operation between the 2 chemical entity and a dimerisation surface of the molecule or molecular complex; and
- 20 b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface,

25

5

30

P32059woamendedelaims23-11-01