EXERCICE 1

Soit x un réel strictement positif.

Comparer les réels A et B dans les cas suivants :

1.
$$A = \frac{2}{3}$$

$$et B = \frac{x}{2x+1}$$

2.
$$A = \frac{6}{x}$$

2.
$$A = \frac{6}{x}$$
 et $B = \frac{5}{x+2}$

3.
$$A = \frac{x}{\sqrt{x^2 + 1}}$$
 et $B = \frac{\sqrt{x^2 + 1}}{x}$

EXERCICE 2

Soient *x* et *y* deux réels strictement positifs.

- **1.** Montrer que : $x + y \ge 2\sqrt{xy}$.
- 2. En déduire que :

$$\frac{x}{y} + \frac{y}{x} \ge 2$$
 et que $(x + y) \left(\frac{1}{x} + \frac{1}{y}\right) \ge 4$

EXERCICE 3

Soit *x* un nombre réel tel que : $-2 \le x \le -1$

On considère : $A = \frac{1-3x}{2x+4}$.

- **1. a.** Encadrer: 1 3x et 2x + 1.
- **1.b.** En déduire que : $-7 \le A \le -\frac{4}{3}$.
- **2.a.** Vérifier que : $A = -\frac{3}{2} + \frac{5}{2(2x+1)}$
- **2.b.** En déduire que : $-4 \le A \le -\frac{7}{2}$.
- **3.** Ouel est l'encadrement le plus précis de *A* ?

EXERCICE 4

Soient x et y deux nombres réels tels que :

$$-1 < x < 2$$
 et $-4 < y < -2$

1. Encadrer chacun des nombres suivants :

$$x + 2y$$
 et xy et $\frac{x}{y+1}$

On considère : $A = x^2 - x - 2$.

- **2.** Encadrer x^2 et x + 2. puis en déduire un encadrement de A.
- **3.** Vérifier que A = (x + 1)(x 2), puis encadrer A.
- 4. Vérifier que $A = \left(x \frac{1}{2}\right)^2 \frac{9}{4}$ puis encadrer A.
- **5.** Quel est l'encadrement le plus précis de *A* ?

EXERCICE 5

Déterminer l'intervalle ou l'union d'intervalles auxquels appartient le nombre réel x dans chacun des cas suivants:

- **a.** x < -2 ou x > 0
- **b.** x > -2 et x < 0
- c. |x + 1| < 1
- **d.** |x 2| < 3
- e. |x + 3| > 5
- f. 2 < |3x 5| < 5

EXERCICE 6

Soient *a* et *b* deux nombres réels tels que :

$$a \in [-2,5]$$
 et $b \in [-3,-1]$

Écrire le nombre suivant sans valeur absolue : A = 2|2a + 7| - |3b| + 2|b + 8| - |2b - a|

EXERCICE 7

Soient *x* et *y* deux réels tels que :

$$x \ge \frac{1}{2}$$
 et $y \le 1$ et $x - y = 3$

- 1. Montrer que : $\sqrt{(2x-1)^2} + \sqrt{(2y-2)^2} = 7$.
- **2.** Montrer que : $\frac{1}{2} \le x \le 4$ et $-\frac{5}{2} \le y \le 1$
- **3.** Déterminer la valeur du nombre *H* tel que : H = |x + y - 5| + |x + y + 4|

Soient *a* et *b* deux réels tels que :

$$a \ge -2$$
 et $b \le -1$ et $a - b = 6$

1. Déterminer la valeur du nombre *A* tel que :

$$E = \sqrt{(a+2)^2} + \sqrt{(b+1)^2}$$

- **2.** Montrer que : $a \le 5$ et $b \ge -8$
- **3.** Calculer la valeur du nombre *F* tel que :

$$F = |a + b - 4| + |a + b + 10|$$

EXERCICE 9

Soient *a* et *b* deux nombres réels tels que :

$$|a+2| \le 3 \text{ et} - 1 \le b \le 4$$

1. Etablir que $-5 \le a \le 1$.

~ 1 ~

2. Montrer que |a+b-1| < 7

On pose E = ab + 6b - 5a.

- 3. Vérifier que E = (a + 6)(b 5) + 30.
- 4. En déduire un encadrement de E et déterminer l'amplitude de cet encadrement.

EXERCICE 10

Soient *a* et *b* deux réels tels que :

$$|2a - b| < 3$$
 et $2 < b < 5$.

- **1.** Montrer que : $-\frac{1}{2} < a < 4$
- 2. Encadrer les nombres suivants :

$$x = 2b - a$$
; $y = a^2 + b^2$; $z = ab$

- **3. a.** Développer le produit (2a b)(2b a).
- **3.b.** Montrer que : $|5ab 2(a^2 + b^2)| < \frac{63}{3}$.

EXERCICE 11

On pose pour tout réel x de l'intervalle $[1, +\infty[$:

$$A = \sqrt{1 + \frac{1}{x}}$$

1. Montrer que : $A - 1 = \frac{1}{r(A+1)}$

EXERCICE 12

Soit *x* un réel strictement positif.

1. Montrer que : A – 1 = $\frac{-x^2}{\sqrt{1+x^2}+1+x^2}$.

4. Déterminer une valeur approchée du nombre

2. Montrer que : $\sqrt{1+x^2}+1+x^2>2$

3. Déduire que : $|A - 1| \le \frac{1}{2}x^2$.

 $\frac{1}{\sqrt{1.0004}}$ à 2 × 10⁻⁴ prés.

On considère : $B = \frac{\sqrt{1+x^2}}{x}$.

1. Montrer que : B $-\frac{1}{x} = \frac{x}{\sqrt{1+x^2+1}}$

2. Montrer que : $\sqrt{1+x^2}+1 > 2$.

EXERCICE 13

Soit x un réel non nul.

On considère : $A = \frac{1}{\sqrt{1+r^2}}$.

- **2.** Montrer que : 2 < A + 1 < 3 puis en déduire que: $1 + \frac{1}{3x} < A < 1 + \frac{1}{2x}$
- 3. En déduire que $\frac{11}{10}$ est une valeur approchée par excès du nombre $\sqrt{1,2}$ à $\frac{1}{20}$ près.

EXERCICE 16

 $\frac{1+\sqrt{0.6}}{2}$ à 2 × 10⁻¹ près.

EXERCICE 15

3. Déduire que : $|B - 1| \le \frac{1}{2}|x|$.

 $\frac{\sqrt{1,0001}}{0.01}$ à 5 × 10⁻³ prés.

EXERCICE 14

1. Compare x et y.

2. Montrer que : $\frac{1}{2} < y < 1$

3.a. Montrer que : $y - 1 = \frac{x - 1}{2(1 + \sqrt{x})}$

3.b. En déduire que : $|y-1| < \frac{1}{2}|x-1|$

Soit *x* un réel strictement positif.

1. Montrer que : $1 < \sqrt{1+x} < 1 + \frac{x}{2}$.

2. En déduire un encadrement de $\sqrt{1.004}$

4. En déduire une valeur approchée du nombre

4. Déterminer une valeur approchée du nombre

Soient *x* et *y* deux nombre réels tels que :

0 < x < 1 et $y = \frac{1 + \sqrt{x}}{2}$

1. Montrer que pour tout x de [0,1], ona :

$$2 + \frac{x}{6} \le \sqrt{4 + x} \le 2 + \frac{x}{4}$$

2. En déduire un encadrement de $\sqrt{4.36}$ d'amplitude 3×10^{-2} .

EXERCICE 17

Soient x et y deux réels strictement positifs.

- **1.** Comparer: x + y et $2\sqrt{xy}$.
- 2. En déduire que :

$$\left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 \ge 8$$

3. Soient a et b deux réels strictement positifs.

Montrer que:

$$\left(a + \frac{1}{a}\right)\left(b + \frac{1}{b}\right) \ge \frac{(ab+1)^2}{ab}$$