Manual de instalação do PRESTO: PulsaR Exploration and Search TOolkit

Ana Rafaely Medeiros de Oliveira

Universidade Federal da Paraíba Colaboração BINGO

Sumário

Sumário .	
1	Introdução ao PRESTO
2	Objetivo Principal
3	Características Técnicas
4	Aplicações do PRESTO
5	Processamento de Dados
6	Funcionalidades do Software
7	Instalação do PRESTO no Linux
7.1	Pré instalação
7.2	Ambiente conda
7.3	Instalação
7.4	Pacotes Adicionais
7.4.1	FFTW
7.4.2	PGPlot
7.4.3	TEMPO
7.4.4	GLIBv2
7.4.5	CFITSIO
8	Manuseio inicial do PRESTO
8.1	Dados
8.2	Examinando o formato de dados readfile) 12
8.3	Atalhos para grandes observações
8.3.1	Procure RFI persistente de baixo nível
8.4	Explore e FFT a série temporal
8.5	Encontre a interferência periódica
8.6	Determine o Plano da De-Dispersão
8.7	Subband De-Dispersion 2
	REFERÊNCIAS

1 Introdução ao PRESTO

O **PRESTO**¹é uma suíte de software poderosa, desenvolvida por Scott Ransom, projetada para a pesquisa e análise de pulsares. Criado do zero e disponível sob a licença GPL (v2), o PRESTO é uma ferramenta essencial para astrônomos e pesquisadores interessados no estudo de pulsares, especialmente pulsares binários de milissegundos.

2 Objetivo Principal

O principal objetivo do PRESTO é facilitar a detecção e análise de pulsares binários de milissegundos através de observações prolongadas de aglomerados globulares. No entanto, suas funcionalidades são versáteis e vão além desse escopo. O software também é amplamente utilizado em diversas pesquisas, incluindo a análise de integrações curtas e o processamento de grandes volumes de dados de raios-X.

3 Características Técnicas

- Linguagem de Programação: O código-fonte do PRESTO é majoritariamente escrito em ANSI C, com várias rotinas mais recentes implementadas em Python.
- Licença: GPL (v2), o que garante que o software é livre para uso e modificação, respeitando os termos da licença.

4 Aplicações do PRESTO

- Detecção de Pulsar Binário de Milissegundos: Ideal para observações prolongadas de aglomerados globulares, permitindo uma pesquisa mais eficiente desses pulsares.
- Integrações Curtas: Utilizado para a análise de dados em observações de integração curta.
- Processamento de Dados de Raios-X: Adequado para lidar com grandes volumes de dados provenientes de observações de raios-X.

PulsaR Exploration and Search TOolkit, em português, Kit de exploração e pesquisa Pulsar

5 Processamento de Dados

Segundo Scott, o *PRESTO* foi desenvolvido com foco em portabilidade, facilidade de uso e eficiência de memória. Atualmente, ele é capaz de processar dados brutos de várias máquinas e formatos de pulsar, incluindo:

- Dados no formato de pesquisa PSRFITS (como os gerados pelo GUPPI no GBT, PUPPI
 e pelos Mock Spectrometers em Arecibo, além de muitos dados novos e arquivados do
 Parkes).
- Formatos de banco de filtros de 1, 2, 4, 8 e 32 bits (em ponto flutuante) da SIGPROC.
- Séries temporais compostas por dados em ponto flutuante de precisão única (ou seja, 4 bytes), acompanhados por um arquivo de texto ".inf" que os descreve.
- Tempos de chegada de fótons (ou eventos) em formatos ASCII ou binários de precisão dupla [1].

No entanto, alguns formatos anteriormente suportados não estão mais incluídos:

- Processador Pulsar de Banda Larga Arecibo (WAPP) em Arecibo.
- Formatos de banco de filtros de 1 bit do Parkes e Jodrell Bank.
- SPIGOT no GBT.
- Máquina Pulsar Berkeley-Caltech (BCPM) no GBT.

Para processar esses formatos descontinuados, é recomendado verificar o ramo "clássico" do PRESTO, que não está mais em desenvolvimento ativo. Alternativamente, o *DSPSR* pode ser usado para converter esses formatos para o formato de banco de filtros SIGPROC ou, ainda melhor, para o formato de pesquisa *PSRFITS*. O *DSPSR* pode ser obtido em [2]. Se você necessita de suporte para algum desses formatos no PRESTO moderno, entre em contato para que possamos avaliar a possibilidade de implementação [1].

6 Funcionalidades do Software

O PRESTO é composto por inúmeras rotinas projetadas para lidar com três áreas principais da análise de pulsares:

- Preparação de Dados: Detecção (rfifind) e remoção (zapbirds) de interferências, de-dispersão (prepdata, prepsubband e mpiprepsubband), barycentrização (via TEMPO).
- Busca: Busca de aceleração e jerk no domínio de Fourier (accelsearch), busca de pulsos únicos (single_pulse_search.py) e busca de modulação de fase ou bandas laterais (search_bin).
- **Dobragem**: Otimização de candidatos (prepfold) e geração de Tempo de Chegada (TOA) (get_TOAs.py).
- Miscelânea: Exploração de dados (readfile, exploredat, explorefft), planejamento de de-dispersão (DDplan.py), conversão de datas (mjd2cal, cal2mjd), bibliotecas Python para pulsares/astrofísica, criação de pulso médio, estimativa de densidade de fluxo, entre outros.
- Ferramentas Pós-Busca de Pulsos Únicos: Algoritmo de agrupamento (rrattrap.py), produção de gráficos diagnósticos de pulsos únicos (make_spd.py, plot_spd.py e waterfaller.py).

Além disso, são fornecidos muitos utilitários adicionais para várias tarefas frequentemente necessárias ao trabalhar com dados de pulsares, como conversões de tempo, transformadas de Fourier, exploração de séries temporais e FFT, inversão de bytes, entre outros [1][3][4][5].

7 Instalação do PRESTO no Linux

Este tutorial é direcionado para a instalação do PRESTO no sistema operacional Linux. A instalação será realizada seguindo o processo padrão, conforme descrito no arquivo de referência do PRESTO.

O PRESTO tem alguns pré-requisitos e deve funcionar em um sistema semelhante ao Debian/Ubuntu. Portanto, certifique-se de instalar os seguintes pacotes:

- FFTW3
- PGPLOT
- TEMPO
- GLIBv2

• CFITSIO

Iniciaremos com a instalação principal do PRESTO e, posteriormente, abordaremos a instalação dos pacotes adicionais. Para qualquer duvida de erros pode verificar no meu github PULSAR_presto e o github original PRESTO .

7.1 Pré instalação

Instale os pacotes indicados a abaixo no seu computador, se você for linux, cole no terminal, ou ainda, se prefere pode instalar em algum ambiente conda.

Coloque no terminal (bash), o comando abaixo

```
Bash sudo apt-get install git build-essential libfftw3-bin libfftw3-dev
```

```
Bash sudo apt-get install pgplot5 libglib2.0-dev libcfitsio-bin libcfitsio-dev libpng-dev
```

```
Bash
sudo apt-get install latex2html gfortran tcsh autoconf libx11-dev python3-dev
python3-numpy python3-pip
```

Certifique-se de que sua variável de ambiente PRESTO aponte para o PRESTO git checkout de nível superior. E certifique-se de que \$PRESTO/lib e \$PRESTO/bin não estejam em suas variáveis de ambiente PATH ou LD_LIBRARY_PATH ou PYTHONPATH pois pode ocasiona problemas para executa-los.

Que nesse caso, você precisará utilizar o comando nano /.bashrc para verificação se está de acordo com o indicado acima. Portanto, digite no terminal.

```
Bash
nano ~/.bashrc
```

Posteriormente as alterações que for necessário, utilize Ctrl + 0 depois Ctrl + X e por fim Y, posteriormente você voltará para o terminal.

Para atualizar, você precisará digitar no terminal

```
Bash
source ~/.bashrc
```

Provavelmente também é uma boa ideia limpar suas compilações anteriores. Basta entrar no diretóriosrc e fazer um make clean, depois você volta o caminha fazendo o comando cd . . .

Veja o passo a passo:

```
Bash
make clean

Bash
cd ...
```

No documento original ele da duas opções de para compilação, o Python virtual ou Conda ativado, no meu caso utilizei o um ambiente conda, por já ter mais domínio.

7.2 Ambiente conda

Para você manter seu código clean, é interessante você utilizar um ambiente virtual para a instalação dos próximos pacotes, com isso, instale o conda no se computador, após a sua instalação, crie o ambiente e configure, como:

```
Bash
conda create --name presto_env python=3.10
conda activate presto_env
conda install -c matplotlib numpy pandas scipy ipykernel
python -m ipykernel install --user --name presto_env --display-name "presto_env"
```

É importante verificar no arquivo se você está instalando os pacotes no ambiente virtual criado, para não ter conflitos.

Agora edite o arquivo /.bashrc com o comando nano /.bashrc e coloque na última linha o conteúdo abaixo:

```
Bash
alias jupyter-notebook="~/.local/bin/jupyter-notebook --no-browser"
```

Verifique no se você fez o processo corretamente, portanto, digite no terminal jupyter com o comando jupyter-notebook

7.3 Instalação

Faça a clonagem do github, digite no terminal

```
Bash
git clone https://github.com/scottransom/presto.git
```

Agora você precisa instalar os 3 pacotes, assim, digite no terminal

```
Bash
conda install meson meson-python ninja
```

Agora configure as compilações de código C/Fortran, digite no terminal

```
Bash
cd presto
meson setup build --prefix=$CONDA_PREFIX
```

Para evitar possíveis problemas de vinculação e execução, digite no terminal

```
Bash
cd presto/python
```

Abra o python no se terminal, assim execute o teste, indicado na linha abaixo.

```
Python
>>> python check_meson_build.py
```

Caso contrário, recomendo tentar corrigir os problemas detectados e começar novamente executando os seguintes comandos no terminal.

```
Bash
meson compile -C build
meson install -C build
```

Finalmente, instale o Python codes via pip:

```
Bash
cd $PRESTO/python
pip install --config-settings=builddir=build .
```

Faça os testes rapidamente para ver se a maioria das coisas está funcionando fazendo:

```
cd $PRESTO
python tests/test_presto_python.py
python examplescripts/ffdot_example.py
python python/fftfit_src/test_fftfit.py
```

7.4 Pacotes Adicionais

7.4.1 FFTW

Para o sistema linux, use os pacotes libfftw3-bin e libfftw3-dev Você precisará compilar, coloque no seu terminal

```
Bash
./configure --enable-shared --enable-single
```

Se você estiver usando um processador Intel moderno e tiver uma versão recente do GCC, poderá obter um desempenho muito melhor adicionando [6]:

```
Bash
--enable-sse --enable-sse2 --enable-avx --enable-avx2 --enable-fma
```

7.4.2 PGPlot

Para instalar de maneira simples basta

```
Bash sudo apt-get install pgplot5
```

Caso, não consiga instalar, seguia a alternativa. Você precisa realizar as seguintes etapas. Essas etapas são descritas mais detalhadamente abaixo para cada sistema operacional.

Copie o arquivo de distribuição por FTP anônimo da Caltech. Este é um arquivo tar compactado: download PGPLOT.

```
Bash
sudo apt-get update
sudo apt-get install build-essential gfortran libpng-dev
```

Baixar o PGPLOT Baixe o PGPLOT do site oficial. Você pode fazer isso usando wget, digite no terminal:

```
Bash
wget ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot522.tar.gz
```

Agora, extraia o arquivo, abaixo:

```
Bash
tar zxvf pgplot522.tar.gz
cd pgplot
```

Para Configurar o PGPLOT

Edite o arquivo **drivers.list** para especificar os drivers de dispositivos que deseja incluir. A configuração padrão geralmente é suficiente, mas você pode personalizá-la conforme necessário.

```
Bash
nano drivers.list
```

Compilar o PGPLOT, digite no terminal

```
Bash
cp makefile.std makefile
make
```

Caso aconteça algum erro, verifique o manual do PGPlot.[7]

7.4.3 **TEMPO**

Para instalar o tempo, você precisará digitar no terminal

```
Bash
cd presto
git clone git://git.code.sf.net/p/tempo/tempo
```

Você notará que aparecerá uma nova pasta chamada tempo no repositório do presto, para verificar use o comando

```
Bash
cd presto
./prepare
```

Instalar C shell (csh) Primeiro, instale o csh no seu sistema:

```
Bash
sudo apt-get update
sudo apt-get install csh
```

Instale as ferramentas de Desenvolvimento Primeiro, instale as ferramentas de desenvolvimento, incluindo autoconf, automake e libtool.

```
Bash
cd ~/presto/tempo
./prepare
```

Configure e compile:

```
Bash
export PATH=/usr/local/bin:$PATH
echo 'export PATH=/usr/local/bin:$PATH' >> ~/.bashrc
source ~/.bashrc
```

Agora basta verificar a instalação, digitando [8].

Bash tempo

7.4.4 GLIBv2

Em máquinas Linux é quase certo que isso já esteja em seu sistema (verifique em /usr/lib e /usr/include/glib*). Embora você possa precisar instalar um pacote de desenvolvimento simplista para ter os arquivos de inclusão necessários. No Ubuntu, o pacote que você precisa é: libglib2.0-dev. [9]

7.4.5 CFITSIO

Eu recomendo fortemente o uso de pacotes pré-compilados, mais uma vez (no Ubuntu eles são libcfitsio-bin e libcfitsio-dev), porém, esta é uma instalação muito fácil via fonte. [10]

8 Manuseio inicial do PRESTO

Essa parte é basicamente uma tradução modificada do autor scott, nela alguns pontos importantes são abordados, assim como suas recomendações.

Para testar se o Presto está funcionando corretamente, você precisará de 1 GB livre no seu disco para excussão do código a seguir.

Para isso também precisará executar alguns comandos como > typewriter script

8.1 Dados

Baixe o exemplo abaixo do arquivo, seu tamanho é de 25MB (GBT_Lband_PSR.fil).

8.2 Examinando o formato de dados readfile)

Coloque no seu terminal readfile GBT_Lband_PSR.fil

Digite no terminal

```
Bash readfile GBT_Lband_PSR.fil
```

Ao realizar esse comendo espera-se que tenha essa imagem de retorno ??.

Figura 1 – Retorno esperado. Fonte: [11].

- readfile pode identificar automaticamente a maioria dos tipos de dados que PRESTO pode alça (em PRESTO v2, porém, isso é apenas SIGPROC banco de filtros e PSRFITs)
- Ele imprime os metadados sobre a observação

Digite no terminal

```
Bash
rfifind -time 2.0 -o Lband GBT_Lband_PSR.fil
```

Ao realizar esse comendo espera-se que tenha essa imagem de retorno 2.

```
Pulsar Data RFI Finder
by Scott M. Ransom

Assuming the data are SIGPROC filterbank format...
Reading SIGPROC filterbank data from 1 file:
'GBT_Lband_PSR.fil'

Number of files = 1
Num of polns = 2 (summed)
Center freq (MHz) = 1400
Num of channels = 96
Sample time (s) = 7.2e-05
Spectra/subint = 2400
Total points (N) = 531000
Total points (N) = 531000
Total points (S) = 38.232
Clipping sigma = 6.000
Invert the band? = False
Byteswap? = False
Remove zeroDM? = False
File Start Spec Samples Padding Start MJD

1 0 531000 0 53010.48482638889254

Analyzing data sections of length 28800 points (2.0736 sec).
Prime factors are: 2 2 2 2 2 2 2 3 3 5 5

Writing mask data to 'Lband_rfifind.mask'.
Writing RFI data to 'Lband_rfifind.stats'.

Massaging the data ...

Amount Complete = 37%^C

### Assuming Assumin
```

Figura 2 – Retorno esperado. Fonte: [11].

- **rfifind** identifica fort banda estreita e/ou curta duração da banda larga RFI
- Ele imprime os metadados sobre a observação
- Programas PRESTO automaticamente clipe forte, transitório, $\mathtt{DM} = 0$

```
Bash rfifind -time 2.0 -o Lband GBT_Lband_PSR.fil
```

```
Writing mask data to 'Lband_rfifind.mask'.
Writing RFI data to 'Lband_rfifind.rfi'.
Writing statistics to 'Lband_rfifind.stats'.
 Massaging the data ...
 Amount Complete = 100%
There are 31 RFI instances.
 Total number of intervals in the data: 1824
   Number of padded intervals:
Number of good intervals:
Number of bad intervals:
   Ten most significant birdies:
Sigma Period(ms) Freq(Hz)
                                                                                            Number
                           11.5521
                           11.6494
                           11.6168
                                                             86.0822
                                                                                            146
                          11.6168
8.76787
11.5844
11.52
11.4881
11.7153
11.6823
11.7484
                                                             114.053
                                                            114.053
86.3233
86.8055
87.0467
85.3588
85.5999
85.1177
  Ten most numerous birdies:
Number Period(ms)
                                                             Freq(Hz)
                                                                                            Sigma
                                                            28.9352
28.6941
57.8704
57.6292
57.3881
57.147
85.841
86.5644
                                                                                            4.82
4.75
4.85
                          34.56
34.8504
17.28
17.3523
                           17.4252
                                                                                            4.68
                           11.6494
                           11.5521
```

Figura 3 – Retorno esperado. Fonte: [11].

- Verifique o número de coisas ruins intervalos. Normalmente deveria ser menos de 20%
- Mais significativo e mais números de passarinhos estão listados (para veja tudo, use -rfixwin).
- Cria vários arquivos de saída incluindo ..rfifind.ps onde as cores são ruins (o vermelho é periódico RFI, azul/verde são questões estatísticas no domínio do tempo)

8.3 Atalhos para grandes observações

Às vezes, para observações longas ou com muitos canais, amostragem rápida ou muita RFI, o rfifind pode levar muito tempo para ser executado. Muitas vezes você pode mascarar a maior parte da RFI fazendo alguns atalhos e usando -ignorechan:

- Execute rfifind em um subconjunto de dados (um ou mais arquivos individuais).
- Ajuste os resultados, principalmente usando -nocompute e valores diferentes de -freqsig e -imesig, então os piores canais são marcados para mascaramento.
- Você pode então converter esse arquivo de pesos em uma lista de canais a serem ignorados usando a rotina weights_to_ignorechan.py, que também fornece um comando paz (de PSRCHIVE) para zapear arquivos dobrados feitos a partir dos dados.

Por fim, execute > prepdata ... -ignorechan 0:10,15,20:25,67 ... myfiles*.fil

8.3.1 Procure RFI persistente de baixo nível

Digite no terminal o seguinte comando

```
Bash
prepdata -nobary -o Lband_topo_DMO.00 \ -dm 0.0 -mask Lband_rfifind.mask \
    GBT_Lband_PSR.fil
```

Figura 4 – Retorno esperado. Fonte: [11].

- prepdata dispersa um único série temporal. A bandeira "-nobary" diz ao PRESTO para não fazer baricentro a série temporal.
- Se você precisar de-dispersar várias séries temporais, use **prepsubband**.
- Costumávamos precisar definir o número de pontos (-numout) para torne-o um bom número redondo para FFTing, mas o PRESTO faz isso automaticamente agora.

8.4 Explore e FFT a série temporal

Digite no terminal o seguinte comando

```
Bash
realfft Lband_topo_DMO.00.dat

Bash
realfft Lband_topo_DMO.00.dat

Bash
explorefft Lband_topo_DMO.00.fft
```

Você deve encontrar um resultado próximo a

Figura 5 – Gráfico de Potencia junto a frequência Retorno esperado. Fonte: [11].

- exploredat e explorefft permite que você para visualizar interativamente um série temporal ou seu poder espectro (para encontrar RF.
- mudando o poder normalização (chave 'n') em explorefft é frequentemente muito útil.
- realfft exige que a série temporal é facilmente fatorável (e pelo menos tem 1 fator de '2'). Verifique usando "fator".

8.5 Encontre a interferência periódica

Digite no terminal

```
Bash accelsearch -numharm 4 -zmax 0 \Lband_topo_DM0.00.dat
```

Você deve encontra algo do tipo

		Summed	Coherent	Num	Period	Frequency	FFT 'r'	Freq D		FFT 'z'	Accel		
and	Sigma	Power	Power Harm		(ms)	(Hz)	(bin)	(Hz/s)		(bins)	(m/s^2)	Notes	
	60.87	1876.6	3637.40	2	34.777(8)	28.754(6)	1113.00(25)	0.000	0(7)	0.0(1.0)	0.0(7.0)×10^3		
	20.01	229.74	671.54	4	16.6698(9)	59.989(3)	2322.00(13)	0.000	0(3)	0.00(50)	0.0(1.7)x10^3		
	9.20	57.94	57.02	1	5.7945(4)	172.58(1)	6680.00(50)	0.00	0(1)	0.0(2.0)	0.0(2.3)x10 ³	H 6 of Cand 1	
	7.93	55.92	53.33	4	5.8484(1)	170.986(3)	6618.38(13)	0.000	0(3)	0.00(50)	0.0(5.9)x10^2		
,	4.26	31.23	59.09	4	5.6024(1)	178.494(3)	6909.00(13)	0.000	0.0000(3)		0.0(5.6)x10^2		
3.90		25.02	5.39	2	2.92384(6)	342.016(6)	13238.50(25)	0.000	0(7)	0.0(1.0)	0.0(5.9)x10^2		
			Power	,	Raw	FFT 'r'	Pred 'r'	FFT 'z'	Pred 'z'	Phase	Centroid	Purity	
and	Harm	Sigma	Loc Po		Power	(bin)	(bin)	(bins)	(bins)	(rad)	(0-1)	= 1	Notes
1	1	78.99	3125(7	9)	1.99e+03	1113.1595(70)	1113.00	-0.022(55)	0.00	2.477(13	0.4943(37	0.9895(57	
	2	5.87	19.9(6.	3)	16.9	2226.319(91)	2226.00	-0.04(73)	0.00	5.12(16)	0.481(46)	0.962(74)	
2	1	12.38	80(13)	90.9	2322.080(43)	2322.00	0.26(32)	0.00	5.424(79	0.462(23)	1.021(35)	
	2	20.96	224(21)	143	4644.161(26)	4644.00	0.52(20)	0.00	5.411(47	0.508(14)	0.997(21)	
	3	4.17	11.1(4.	7)	12.9	6966.24(11)	6966.00	0.78(87)	0.00	3.75(21)	0.511(61)	1.024(93)	
	4	3.49	8.3(4.	1)	7.02	9288.32(14)	9288.00	1.0(1.2)	0.00	2.05(25)	0.418(71)	0.94(12)	
3	1	10.37	57(11)	70.8	6680.255(56)	6680.00	0.32(47)	0.00	3.222(94	0.469(27)	0.927(45)	
4	1	6.98	27.2(7.	4)	24.8	6618.261(77)	6618.38	-1.01(62)	0.00	1.94(14)	0.483(39)	0.968(63)	
	2	3.62	8.8(4.	2)	10.3	13236.52(15)	13236.75	-2.0(1.4)	0.00	4.05(24)	0.350(69)	0.85(13)	
	3	2.58	5.3(3.	3)	6.47	19854.78(40)	19855.12	-3.0(7.5)	0.00	4.62(31)	0.290(88)	0.42(33)	
	4	2.95	6.4(3.	6)	15.3	26473.04(20)	26473.50	-4.0(2.1)	0.00	5.09(28)	0.342(80)	0.76(16)	
5	1	6.12	21.5(6.	6)	19.6	6909.061(89)	6909.00	-0.35(73)	0.00	4.98(15)	0.412(44)	0.942(72)	
	2	2.87	6.2(3.	5)	4.55	13818.12(16)	13818.00	-0.7(1.2)	0.00	3.82(28)	0.416(82)	0.99(13)	
	3	2.43	4.9(3.	1)	4.33	20727.18(26)	20727.00	-1.1(2.9)	0.00	4.43(32)	0.519(92)	0.69(21)	
	4	2.54	5.2(3.	2)	6.43	27636.25(18)	27636.00	-1.4(1.4)	0.00	0.28(31)	0.391(90)	0.96(14)	
6	1	1.43	2.6(2.	3)	3.81	13238.68(17)	13238.50	1.18(94)	0.00	3.36(44)	0.43(13)	1.41(14)	
	2	4.45	12.4(5.	0)	25	26477.37(12)	26477.00	2.4(1.0)	0.00	4.14(20)	0.394(58)	0.929(97)	

Figura 6 – Resultado esperado. Fonte: [11].

- Nós "trick" o Accelsearch para encontrar interferências periódicas (ele encontrou 6 candidatos, com vários harmônicos em cada um).
- Essas informações serão usadas para criar um arquivo "birds".

• O arquivo ".inf" é ASCII legível por humanos (também é encontrado no arquivo ACCEL)

8.6 Determine o Plano da De-Dispersão

Digite no terminal

```
Bash
DDplan.py -d 500.0 -n 96 -b 96 -t 0.000072 \-f 1400.0 -s 32 -r 0.5
```

- DDplan.py determina maneiras quase ideais de dispersar seus dados para mantenha a sensibilidade a pulsares rápidos e ainda economize tempo de CPU e E/S
- Pressupõe o uso de pré-subband para fazer múltiplas passagens pelos dados usando desdispersão de "subbanda"
- Especifique as informações da linha de comando do arquivo readfile ou (Novo!) forneça o filename e DDplan.py determinarão os detalhes da observação
- A nova opção "-w" gravará um arquivo dedisp*py que você pode executar desdisperse seus dados (e edite conforme necessário, ou seja, para adicionar máscaras rfifind)

Será retornado a figura abaixo 7.

Figura 7 – Resultado esperado. Fonte: [11].

8.7 Subband De-Dispersion 2

Digite no terminal

```
Bash
prepsubband -nsub 32 -lodm 0.0 -dmstep 2.0 -numdms 24 -downsamp 4 -mask
Lband_rfifind.mask -o Lband GBT_Lband_PSR.fil
```

Esse comando vem da primeira chamada da primeira linha do plano:

Low DM High DM dDM DownSamp dsubDM #DMs DMs/call calls Work 0.000 336.000 2.00 4 48.00 168 24 7 0.8 336.000 552.000 3.00 8 72.00 72 24 3 0.1	85
--	----

Figura 8 – Caption

- Execute o prepsubband tantas vezes quantas forem as "chamadas" no plano.
- Os formatos de arquivo aceitos para rodar o prepsubband são SIGPROC filterbank (".fil") e PSRFITS (".sf" ou ".fits").
- Se você tiver um computador paralelo (e observações longas), pode usar o mpiprepsubband totalmente paralelo para que uma CPU leia os dados, transmita para outras CPUs, que cada uma efetivamente faz uma "chamada".
- O script dedisp.py em \$PRESTO/examplescripts pode ajudá-lo a automatizar esse processo (e gerar sub-bandas também, o que pode ser usado para dobrar candidatos mais rapidamente do que dobrar dados brutos). Quando o arquivo tiver sido editado, faça: python dedisp.py.

Referências

- 1 PRESTO. https://github.com/scottransom/presto. Accessed: 25 de julho de 2024. Citado 2 vezes nas páginas 4 e 5.
- 2 DSPSR. https://dspsr.sourceforge.net/>. Accessed: 25 de julho de 2024. Citado na página 4.
- 3 FOURIER Techniques for Very Long Astrophysical Time-Series Analysis. https://ui.adsabs.harvard.edu/abs/2002AJ....124.1788R/abstract. Accessed: 25 de julho de 2024. Citado na página 5.
- 4 ANDERSEN BRIDGET C. SEARCH BY ORCID ; RANSOM, S. M. s. b. o. A fourier domain "jerk" search for binary pulsars. arXiv:1807.07900, 2018. Citado na página 5.
- 5 RANSOM SCOTT M. SEARCH BY ORCID ; CORDES, J. M. . E. S. S. A new search technique for short orbital period binary pulsars. <u>arXiv:astro-ph/0210010</u>, 2018. Citado na página 5.
- 6 FFTW. https://www.fftw.org/>. Accessed: 25 de julho de 2024. Citado na página 9.
- 7 PGPLOT Graphics Subroutine Library. https://sites.astro.caltech.edu/~tjp/pgplot/>. Accessed: 25 de julho de 2024. Citado na página 11.
- 8 TEMPO. https://tempo.sourceforge.net/>. Accessed: 25 de julho de 2024. Citado na página 11.
- 9 GLIB 2.0. https://docs.gtk.org/glib/>. Accessed: 25 de julho de 2024. Citado na página 12.
- 10 CFITSIO A FITS File Subroutine Library. https://heasarc.gsfc.nasa.gov/fitsio/. Accessed: 25 de julho de 2024. Citado na página 12.
- 11 RANSOM, S. M. . U. Searching for pulsars with presto. 2018. Citado 5 vezes nas páginas 13, 14, 15, 16 e 17.