

#### Problem Overview



How can we predict CO<sub>2</sub> emissions of a car?



**Potential Impact:** 

Quantify  $CO_2$  emissions for a given car Potentially quantify vehicular  $CO_2$  emissions in a city

## Dataset and Preprocessing



Target variable: CO<sub>2</sub> emissions (g/km)



#### Features:

Car year

Car make

Car Model

Vehicle class

Engine size (L)

Fuel Type

Transmission

Cylinders

Fuel consumption (city/hwy/combined)

Smog rating

CO<sub>2</sub> rating



Strong positive correlation between CO<sub>2</sub> emissions and:

Fuel consumption
Engine size
Cylinders



Bigger vehicles emit more CO<sub>2</sub>







#### Features Used for Modeling





Number of cylinders

Fuel type

- Models performed:
  - Linear Regression
  - Ridge Regression
  - Lasso Regression
  - **►**kNN
  - **SVR**
  - Random Forest



#### Modeling

- Median CO<sub>2</sub>
   emissions: 268 g/km
- Mean CO<sub>2</sub> emissions:276 g/km



## Conclusion and next steps

- All models performed well
- Car features that impact CO<sub>2</sub> emissions:
  - ► Fuel consumption (L/100 km)
  - Engine size (L)
  - Fuel type
  - Number of cylinders

