Korrespondenzen zwischen Laplace- und z-Bereich (für Sprunginvarianztransformation)

Nr.	F(s)	$F(z) = Z \{F(s)\}$
1	1/s	$\frac{z}{z-1}$
2	$\frac{1}{s^2}$	$\frac{T \cdot z}{(z-1)^2}$
3	$\frac{1}{s^3}$	$\frac{T^2 \cdot z (z + 1)}{\left(z - 1\right)^3}$
4	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$
5	$\frac{1}{(1 + T_1 s)s}$	$\frac{z \cdot \left(1 - e^{-T/T_1}\right)}{(z - 1) \cdot \left(z - e^{-T/T_1}\right)}$
6	$\frac{1}{(s + a)^2}$	$\frac{T \cdot z \cdot e^{-aT}}{\left(z - e^{-aT}\right)^2}$
7	$\frac{1}{(s + a)^{k+1}}$	$\frac{\left(-1\right)^{k}}{k!} \cdot \frac{d^{k}}{da^{k}} \cdot \left(\frac{z}{z - e^{-aT}}\right)$
8	$\frac{\omega}{\left(a^2 + \omega^2\right) + 2as + s^2}$	$\frac{z \cdot e^{-aT} \cdot sin(\omega T)}{z^2 - 2z \cdot e^{-aT} \cdot cos(\omega T) + e^{-2aT}}$
9	$\frac{s + a}{\left(a^2 + \omega^2\right) + 2as + s^2}$	$\frac{z^2 - z \cdot e^{-aT} \cdot \cos(\omega T)}{z^2 - 2z \cdot e^{-aT} \cdot \cos(\omega T) + e^{-2aT}}$