Ciclos hamiltonianos e o problema do caixeiro viajante

Algoritmos em Grafos

Marco A L Barbosa

Conteúdo

Introdução

Propriedades

Algoritmos

O problema do caixeiro viajante

Algoritmo baseado na árvore geradora mínima

Heurística do vizinho mais próximo

Heurística 2-opt

Heurística 3-opt

Referências

O estudo utilizando apenas este material **não é suficiente** para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os exercícios indicados.

Introdução

- Um ciclo hamiltoniano (caminho hamiltoniano) é um ciclo (caminho) que usa cada vértice do grafo exatamente uma vez (exceto o primeiro vértice que é visitado duas vezes)
- Um grafo que contém um ciclo hamiltoniano é chamado de grafo hamiltoniano

Exemplos

Este grafo é hamiltoniano: A, C, E, D, B, A

Este grafo não é hamiltoniano

Propriedades

- Teorema de Ore
 - ▶ Uma condição suficiente (mas não necessária) para que um grafo G = (V, E) seja hamiltoniano é que a soma dos graus de cada par de vértices não adjacentes seja no mínimo |V|
- ▶ Teorema de Dirac
 - Uma condição suficiente (mas não necessária) para que um grafo G=(V,E) possua um ciclo hamiltoniano, é que o grau de cada vértice em G seja pelo menos igual a $\frac{|V|}{2}$

Algoritmos

Não são conhecidos algoritmos de tempo polinomial para determinar se um grafo é hamiltoniano ou não.

O problema do caixeiro viajante

O problema do caixeiro viajante

- Dado um grafo conexo com peso nas arestas, o problema do caixeiro viajante (do inglês travelling salesman problem -TSP) consiste em encontrar um ciclo de peso mínimo que passe por cada vértice exatamente uma vez (retornando ao vértice de origem)
- Aplicações
 - ▶ Planejamento de entregas
 - ▶ Perfuração de placas de circuito impresso
 - Sequenciamento de DNA (subproblema)

O problema do caixeiro viajante

- ▶ O TSP é NP-Difícil, o que implica que, a menos que P = NP, não existem algoritmos exatos de tempo polinomial para resolver este problema. Desta forma, é comum estudar algoritmos que não são exatos (não garantem encontrar o ótimo) mas executam em tempo polinomial
- Veremos os seguintes algoritmos
 - Algoritmo aproximativo baseado na árvore geradora mínima
 - Algoritmo heurístico construtivo vizinho mais próximo
 - Algoritmo heurístico melhorativo 2-opt e 3opt

- Ideia
 - Construir uma árvore geradora mínima é fazer um percurso pré-ordem
- Característica
 - Algoritmo aproximativo com fator de aproximação 2
- Requisito
 - ▶ A função de custo c tem que respeitar a desigualdade de triângulos, isto é, para todo vértice $u, v, w \in V$

$$c(u,w) \leq c(u,v) + c(v,w)$$

```
tsp-mst(G)
1 selecionar um vértice r ∈ G.V para ser a raiz
2 computar a árvore geradora mínima T
    usando mst-prim(G,r)
3 seja H a lista de vértices ordenado de acordo
    com uma visitação em pré-ordem da árvore T
4 return o ciclo hamiltoniano H
```


- ► Caminho encontrado por tsp-mst $\langle a, b, c, h, d, e, f, g, a \rangle$, custo = 19.1
- ▶ Melhor caminho $\langle a, b, c, h, f, g, e, d, a \rangle$, custo = 14,7

- Tempo de execução
 - ightharpoonup Com uma implementação do mst-prim usando busca linear, o tempo de execução é $\Theta(V^2)$

- ► Tempo de execução
 - ► Com uma implementação do mst-prim usando busca linear, o tempo de execução é $\Theta(V^2)$
- Prova do fator de aproximação 2

- ► Tempo de execução
 - ightharpoonup Com uma implementação do mst-prim usando busca linear, o tempo de execução é $\Theta(V^2)$
- Prova do fator de aproximação 2
 - ▶ Discutido em sala (veja a seção 35.2.1 do livro do Cormen)

- Ideia
 - Começar com um vértice qualquer
 - A cada passo, escolher o vértice mais próximo do último vértice visitado
 - Voltar para o primeiro vértice

```
tsp-nn(G)
1 selecionar um vértice inicial v_0 \in G.V
2 C = [v_0] // caminho contendo v_0
3 \ v = v_0
4 while C não incluí todos os vértices
5
        u = vértice mais próximo de v
             que não está em C
        C.add(u) // adiciona u ao caminho C
        v = u
8 C.add(v_0) // fecha o ciclo
9 return C
```

- Análise do tempo de execução
 - Encontrar o vértice mais próximo que não foi visitado (linha 5) usando uma busca linear custa O(V)
 - Como cada vértice (a menos do primeiro) é colocado uma vez no ciclo, o tempo total de execução do algoritmo é O(V²)

Caminho final: a, b, c, h, f, e, d, g, a Custo: 16,5

- ► Caminho encontrado por tsp-mst $\langle a, b, c, h, f, e, d, g, a \rangle$, custo = 17,9
- ▶ Melhor caminho $\langle a, b, c, h, f, g, e, d, a \rangle$, custo = 14,7

- Usada para melhorar uma solução (obtida por algum algoritmo construtivo)
- Ideia
 - Elimina 2 arestas não adjacentes e reconecta o caminho usado duas outras arestas, verifica se houve melhora
 - Repete este processo para todos os pares de arestas e realiza a melhor troca

- Usada para melhorar uma solução (obtida por algum algoritmo construtivo)
- ▶ Ideia
 - ► Elimina 2 arestas não adjacentes e reconecta o caminho usado duas outras arestas, verifica se houve melhora
 - Repete este processo para todos os pares de arestas e realiza a melhor troca

- Seja w a função de custo e t um percurso
- Vamos supor que o percurso t é representado por um vetor (índices 1..|V|) de vértices. A aresta $(t_{|V|},t_1)$ está implícita nesta representação
- Seja (t_a, t_b) e (t_c, t_d) duas arestas não adjacentes de t (a, b, c, d são os índices em t)
- Seja t' o percurso (válido) obtido a partir de t trocando a aresta (t_a, t_b) por (t_a, t_c) e (t_c, t_d) por (t_b, t_d)
- ▶ Seja $\delta = w(t_a, t_b) + w(t_c, t_d) w(t_a, t_c) w(t_b, t_d)$ a diferença do custo de t e t' (quando maior a diferença, maior a melhoria)
- ▶ Seja δ_{max} o maior valor entre os δ 's de todas as trocas de arestas

```
tsp-2opt(t, w)
1 loop
2 \delta_{\text{max}} = 0
3 best = nil
  for a = 1..(n-2)
   b = a + 1
        lim = n if a \neq 1 else n - 1
6
         for c = (a + 2)..lim
             d = c + 1 if c \neq n else 1
8
             \delta = w(t_a, t_b) + w(t_c, t_d) - w(t_a, t_c) - w(t_b, t_d)
9
             if \delta > \delta_{\text{max}}
10
                 \delta_{\text{max}} = \delta
11
12
                  best = a, b, c, d
13
       if \delta_{max}! = 0
           a, b, c, d = best
14
            t = (t - \{(t_a, t_b), (t_c, t_d)\}) \cup \{(t_a, t_c), (t_b, t_d)\}
15
16
        else return t
```


► Mesmo princípio do 2-opt, mas seleciona 3 arestas

Referências

- ► Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition. Capítulo 35.2.1.
- Caminho hamiltoniano. Wikipédia. https: //pt.wikipedia.org/wiki/Caminho_hamiltoniano
- Problema do caminho hamiltoniano. Wikipédia https: //en.wikipedia.org/wiki/Hamiltonian_path_problem
- Problema do caixeiro viajante. Wikipédia. https://en. wikipedia.org/wiki/Travelling_salesman_problem
- Algoritmo vizinho mais próximo. Wikipédia. https://en. wikipedia.org/wiki/Nearest_neighbour_algorithm
- Algoritmo de Christofides. Wikipédia. https: //en.wikipedia.org/wiki/Christofides_algorithm