CKM Matrix and CP Violation in Standard Model

B physics at B factories Lecture 14

DIPARTIMENTO DI FISICA

Shahram Rahatlou

Fisica delle Particelle Elementari, Anno Accademico 2015-16

http://www.roma1.infn.it/people/rahatlou/particelle/

b Quark is Special!

- Processes involving b quark can be used to measure several CKM element magnitudes
- Large mass of b quark allows use of Heavy Quark Effective Theory (HQET) for reliable theoretical calculations
 - Important for interpretation of experimental measurements with B mesons
- B mesons are of particular interest for study of CP violation
 - We will discuss this in detail next week
- Highlights of b quark
 - Heavy mass: big phase space an hence variety of final states to decay to
 - Long lifetime: important for experimental techniques to identify B mesons
 - B0-B0bar oscillation: a fine example of quantum entanglement, important ingredient for CP violation
 - b→u transitions: necessary ingredient for CP violation

Summary of B properties

Particle, <i>I(J^P)</i>	Mass (in MeV/c²)	Lifetime $\tau = 1/\Gamma$ (in 10^{-12} s)
$B_d^0 = (bd), I(J^p) = 1/2 (0^-)$	5279.4 ± 0.5	1.536 ±0.014 & (cτ =460μm)
$B^{-} = (bu), I(J^{p}) = 1/2 (0^{-})$	5279.0 ± 0.5	1.671 ±0.018 & (cτ =501μm)
$B_{s}^{0} = (bs), I(J^{p}) = 0(0^{-})$	5369.6 ± 2.4	1.461 ±0.057 & (cτ =438μm)
$\Lambda_{\rm b} = ({\rm bud}), I(J^p) = 0(1/2+)$	5624.0 ± 9.0	1.229 ±0.080 & (cτ =368μm)

B Production in e⁺e⁻ Collisions

B Production at Upsilon resonance: B Factory

Enough energy to barely produce 2 B mesons, nothing else! B Mesons produced with ~ 300 MeV momentum Moving very slowly, don't travel much before decay

PEP-II Collider at SLAC (Stanford, CA)

B Production at Z⁰ Resonance

All types of B hadrons produced in $Z \rightarrow bb$ hadronization

b hadron	Fraction [%]
$\overline{B^+, B^0}$	39.7 ± 1.0
B_s^0	10.7 ± 1.1
b baryons	9.9 ± 1.7

$$\frac{\Gamma(b\overline{b})}{\Gamma(TOT)} \sim 17\%$$

Average B momentum ~ 35 GeV \Rightarrow ($\beta \gamma$)_B \approx 7 (highly relativistic)

LEP/SLD Program ended in '95, made important contributions to b physics

B Production at Hadron Colliders

At B factor xsec ~ 1 nb

$$\sigma = N_c Q_f^2 \frac{4\pi\alpha^2}{3s} = N_c Q_f^2 \frac{86.8 \text{ nb}}{s \text{ (GeV}^2)}$$

At LHC @ 7 TeV xsec ~ 0.3 mb

$$\frac{d\sigma}{d\Omega}(q\overline{q},gg\to q\overline{q})\sim \frac{\alpha_s^2}{s}$$

Lowest order

Flavor excitation

Gluon splitting

Summary of Past Experiments

<u>Experiments</u>	# of b events	<u>Environment</u>	<u>Characteristics</u>
LEP Coll. ALEPH/DELPHI/ L3/OPAL	~1M (each expt.)	Z ⁰ decays (σ~6nb)	Back-to-back 45GeV b-jets All B hadrons produced Stopped
SLD	~0.1M	Z ⁰ decays (σ~6nb)	Back-to-back 45GeV b-jets All B hadrons produced Beam polarized Stopped
ARGUS	~0.2M	Υ(4S) decays (σ ~1.2nb)	B mesons produced at rest ${ m B^0}$ and ${ m B^+}$ produced ${ m f Stopped}$
CLEO	~9M	Υ(4S) decays (σ ~1.2nb)	B mesons produced at rest B^0 and B^+ produced Running at charm threshold
Belle Babar		Υ(4S) decays (σ~1.2nb)	B mesons produced at rest B ⁰ and B ⁺ produced Running
TeVatron Coll. CDF/D0	~several	pp collider E(c.d.m)=1.8 TeV	Triggered events All B hadrons produced Running

Final Luminosity of BaBar in 2008

Accumulated Luminosity in Belle

Integrated luminosity of B factories

Catalog of B decays

Introduction to Diagram Jargon!

Penguins in B Decays!?

Ref: Preface to Shifman's 1999 book, ITEP Lectures on Particle Physics and Field Theory, John Ellis recalls how the gluon interference diagram came to be called a penguin diagram.

One night in spring 1977, Ellis lost a bet during a game of darts. His penalty required that he use the word "penguin" in a journal article. "For some time, it was not clear to me how to get the word into this b quark paper that we were writing at the time," Ellis wrote.

"Then, one evening I stopped on my way back to my apartment to visit some friends living in Meyrin, where I smoked some illegal substance. Later, when I got back to my apartment and continued working on our paper, I had a sudden flash that the famous diagrams looked like penguins.

So we put the name into our paper, and the rest, as they say, is history."

Topology of Tree Decay Amplitudes

Hadronic & Leptonic current do factorize

Leptonic

- * Low energy QCD: decay constant f
- * Lattice QCD starts to get precise

Semileptonic

(In most cases best way to extract $|V_{ii}|$)

Exclusive Decays:

- * FF: Symmetries (χ & HQS)
- * FF: Lattice QCD, Sum Rules; ...
- **Inclusive Decays:**
- * Operator Product Expansion

No factorization in naïve sense due to gluon exchange

Theoretical developments: e.g. QCD Factorisation approach Not used for |V_{ij}| extraction (yet)

Hadronic

Summary of b-quark Decay

$\underline{\text{Mode}}$	N_c	f_{QCD}	f_{ps}	V_{xb}	$\underline{\mathcal{B}}$
$c\overline{u}d'$	3	1.3	0.52	0.038	48%
$c\overline{c}s'$	3	1.3	0.25	0.038	23%
$ce\overline{\nu}_e$	1	1.0	0.52	0.038	12%
$c\mu\overline{ u}_{\mu}$	1	1.0	0.52	0.038	12%
$c au \overline{ u}_{ au}$	1	1.0	0.13	0.038	3%

$u\overline{u}d'$	3	1.3	1.00	0.003	0.6%
$u\overline{c}s'$	3	1.3	0.52	0.003	0.3%
$ue\overline{\nu}_e$	1	1.0	1.00	0.003	0.1%
$u\mu\overline{\nu}_{\mu}$	1	1.0	1.00	0.003	0.1%
$u \tau \overline{\nu}_{\tau}$	1	1.0	0.25	0.003	< 0.1%

 $s(d)g, s(d)\gamma, s(d)Z^0...$

- 99% of B's \rightarrow D's
- 66(13)% of B's $\rightarrow K^+(K^-)$: flavor tagging
- 10% semi-leptonic BR: flavor tagging 7×10^{-4} of B's $\to J/\psi \to \mu^+\mu^-$
- $\bullet\,$ mean track multiplicity for single B ~ 5.5

Brief Primer of B Reconstruction at e⁺e⁻ B Factory

PEP-II Asymmetric B-Factory at SLAC

- 9 GeV e⁻ on 3.1 GeV e⁺
- Y(4S) boost in lab frame
 - $\beta \gamma = 0.55$

Snapshot of BB Event at BaBar

Exclusive or Inclusive?

Exclusive Selection

- All products in selected final states are found in the detector
- Conservation laws connect measured quantities between initial and final states
- Advantages:
 - Typically better signal to noise ratio
 - Kinematic constraints remove most of combinatorial background
- Disadvantages:
 - Usually requires more reliance on theoretical models and theory for interpretation of results

Inclusive Selection

- Not all particles in final state selected
- No kinematic relation between initial and final state
- Advantage:
 - Closer to transition diagram at quark level, hence typically less dependent on theory models
- Disadvantage:
 - More background because of reduced constraints