SVD and Least Squares Problems

Note Title

* LS via SVD

Recall the LS solution via aR factorization:
(1) Compute reduced aR of A.
(2) Compute $y = \hat{Q}^T b$.

(3) Solve RX = Y - (*)

If A: full rank, then Rii +0, 1≤i≤n, and the triangular system (*) has a unique LS solution.

Now using the reduced SVD of A, i.e., $A = \hat{U} \Sigma V^T$, we can also solve the normal egn:

 $A^{\mathsf{T}}A \times = A^{\mathsf{T}}B$ $\Leftrightarrow (\hat{U}\hat{\Sigma}V^{\mathsf{T}})^{\mathsf{T}}(\hat{U}\hat{\Sigma}V^{\mathsf{T}}) \times = (\hat{U}\hat{\Sigma}V^{\mathsf{T}})^{\mathsf{T}}B$

 \Leftrightarrow

 $V\hat{\Sigma}^{T}\hat{\Sigma}V^{T}X = V\hat{\Sigma}^{T}\hat{U}^{T}b$ $\hat{\Sigma}^{T}\hat{\Sigma}V^{T}X = \hat{\Sigma}^{T}\hat{U}^{T}b$ since V: ortho. \Leftrightarrow

 $\ddot{\Sigma} V^{\mathsf{T}} \times = \hat{\mathcal{O}}^{\mathsf{T}} \mathcal{B} \qquad \text{if } A : \text{full rank,}$ i.e., 0, >0, 15j5n

This can be solved easily.

(1) Compute reduced SVD of A.

(2) Compute y = ÛTb.

(3) Solve \(\hat{\Sigma}w = \mathfrak{y}. \tag{\pi*}

(4) Set X = Vw

Note: (**) is a diagonal system, easier to solve than (*)!!

Pseudo inverse and SVD

Recall that if $A \in \mathbb{R}^{m \times n}$ is full rank, $m > n : A^{\dagger} = (A^{\dagger}A)^{-1}A^{\dagger}$ $m = n : A^{\dagger} = A^{-1}$ $m < n : A^{\dagger} = A^{\dagger}(AA^{\dagger})^{-1}$

However, we can define the pseudoinv. using SVD even if A is not full rank!

$$A = U \sum V^{\mathsf{T}}, \qquad \sum = \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{r} \end{bmatrix} r$$

$$A^{\dagger} := V \sum_{i=1}^{T} U_{i}^{T} \sum_{j=1}^{T} := \begin{bmatrix} x_{i,0} & 0 & 0 \\ 0 & x_{i,0} & 0 \end{bmatrix} r$$

as we discussed before, At salisfies the following Moore-Penrose conditions: (i) $A \times A = A$; (ii) $X A \times = X$ (iii) $(A \times)^T = A \times$; (iv) $(X A)^T = X A$.

$$\triangle A \times A = A$$
; $\triangle X + X = X$

$$(A \times)^T = A \times (A \times)^T = XA$$

Such X is uniquely determined and X = A⁺!!

* Pseudo inverse & Orthogonal Projectors Thm AAt is an ortho. proj. onto range (A)
and AAt = Ur Ur $A^{\dagger}A$ is an ortho. proj. onto range (A^{T}) and $A^{\dagger}A = V_{r}V_{r}^{T}$ where $U_{r} \in \mathbb{R}^{m \times r}$, $V_{r} \in \mathbb{R}^{m \times r}$ consist of the first r columns of U, V, respectively. r = rank (A). (Proof) Let PA := AAT, PAT := ATA. Now, $P_A = U \Sigma V^T V \Sigma^+ U^T$ $= U \sum_{i=1}^{T} U^{T} = U \begin{bmatrix} I_{i} & 0 \\ 0 & 0 \end{bmatrix} U^{T}$ = UrUr / PA2 = Ur Ur Ur Ur = UrUr = PA $P_{A}^{T} = (U_{r}U_{r}^{T})^{T} = (U_{r}^{T})^{T}U_{r}^{T} = U_{r}U_{r}^{T} = P_{A} \checkmark$ So it's an ortho. proj. ! Finally, it's also clear that PA maps onto range (A) since range (A) = < u1, ..., Ur>. You can do similarly for PAT ///

Note: Consider any X & Frange (A).

Then = y \in IR^n s.t. X = Ay.

Now PA X = AA^t X = AA^t Ay

= Ay = X. "A via

Moore-Pourose (i)

* Principal Component Analysis (PCA)

(a.k.a. Karhunen-Loève Transform)

is a data analysis technique that

uses an orthogonal transformation to

convert a set of observations of possibly

correlated variables into a set of

linearly uncorrelated variables called

"principal components."

One can understand PCA using SVD! But before doing so, we need a bit of Statistics.

Suppose we are given a set of vectors (observations) often X_1, X_2, \cdots, X_n there are viewed and each Xj EIRd. d: could be huge as n ex. a face image database). Let X:= [X1 ×2···×n] ∈ IR realizations of some stochastic You know the mean (or average) process. of this data set $\overline{\mathbb{X}} := \frac{1}{n} \sum_{j=1}^{\infty} \mathbb{X}_{j}$ and define the centered data matrix $X := \begin{bmatrix} X_1 - \overline{X} & X_2 - \overline{X} & \cdots & X_n - \overline{X} \end{bmatrix}$ Note: $\hat{X} = X \left(I_n - \frac{1}{n} I_n I_n^T \right)$ Good exercise! Now the sample covariance matrix S is defined as $S := \frac{1}{n} \widetilde{X} \widetilde{X}^{T} \in \mathbb{R}^{d \times d}$

Sij indicates the covariance or mutual correlation between the ith and jth entries of data vectors.

PCA is nothing but an eigenvalue decomposition of S, i.e., $S = \Phi \Lambda \Phi^T$, $\Lambda = diag(\lambda_1, ..., \lambda_d)$

Let's sort λ_i 's as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ Because $S^T = S$, and $S = \frac{1}{N} \times X^T$,

We can show that $\lambda_i \geq 0$. $1 \leq i \leq d$ $\Phi = [\Phi_1 \cdots \Phi_d] \in \mathbb{R}^{d \times d}$ is a matrix containing the eigenvectors. Also thanks to $S^T = S$, Φ is an orthogonal matrix whose columns form an ONB of \mathbb{R}^d .

The change of the bases from $[\Phi_1 \cdots \Phi_d]$ is achieved simply by $\Phi^T \times X$. $\Phi_i^T \times Y$ is called the ith principal components of X.

PCA was known for a long time, e.g., since the time of Pearson (1901) and Hotelling (1933).

Those days, the measurement dimension I was much smaller than the number of samples n, i.e. I << n

This is called the "classical" setting.

Ex. 5 exam scores of 2000 students

I = 5, n = 2000.

Due to the advent of computers and pensor technology, now we often have

d >> n , the "neo-classical" netting.

Ex. The face database: d=1282, n=143.