VERTEX - COVER

 $G_1 = (V, E)$ undirected graph $U \subseteq V$ is called a vertex cover if

for $(u, v) \in E$, either $u \in v$ (or both)

belong to U.

minimum vertex cover

Decision version:

Griven Grand a positive integer l decide whether Grantains a vertex corer of size | U| = l (< l). VERTEN-COVER ENP CNFSAT < VERTEX-COVER $\phi \mapsto (G, l)$ variable gudget (x) y, V y, V --- V y, clause gudget complete graph on s vertices labeled by these literals Converting $\phi = (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_3}) \land (x_1 \lor \overline{x_3} \lor x_4)$ to an undirected graph for proving the NP-Completeness of the vertex cover problem

$$x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1$$
 \(= n + (t - m) \) (10)

CLIQUE G = (v, E) undirected UCVis called a clique in G if Yu, ve U, u + v, $(u,v) \in E$ Maximum clique problem Decision version: Given Gand l, determine whether G contains a clique U of mize (U)=l.

CNFSAT < CLIQUE

Converting $\phi = (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_3})$ to an undirected graph for proving the NP-Completeness of the clique problem

p is satisfiable - Each clause has a true literal $\chi_{1} = 0$, $\chi_{2} = 1$, $\chi_{3} = 0$, $\chi_{4} = 1$ Con has an l-clique - one and exactly one vertex from each $x_1=0$, $x_4=1$, $x_3=0$ clause gadget N2=0 0 1

Traveling Salesperson Problem

complete weighted
graph on
n vertices

minimize the total cost of travel decide whether there is a four of cost < c.

HAM-CYCLE \leq TSP $G = (v_3 E) \mapsto G' = (v', E'), \text{ weight}$ V' = V $e \in E', \text{ take}$ $w + (e) = \begin{cases} 1 & \text{if } e \notin E \end{cases}$

$$C = N$$

LONGEST - PATH

G directed graph 9, t two vertices edger have + ve weights. Find the longest path from & to t in G. by, 8, t, w, c, decide whether a contains an s, + path of total cost & c. DHAM-PATH < LONGEST_PATH W(R) = 1 YEEE G, 8, 1 G, s, t, w, c C - n-1

INDEPENDENT SET

Gr, l, decide whether browntains an IS U of rize /U/= l.

CLIQUE
$$\leq$$
 IS $G = (V, E)$
 $(G, l) \mapsto (G, l)$ $G' = (V, E)$

SAT, CNFSAT VERTEX COVER TSP LONGEST-PATH

Big Question: Knowing that It is NPC, how can we "solve" IT?