COMMONWEALTH OF AUSTRALIA Copyright Regulation 1969

WARNING

This material has been copied and communicated to you by or on behalf of Curtin University of Technology pursuant to Part VB of the Copyright Act 1968 (the Act)

The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice

Theoretical Foundations of Computer Science

Lecture 7

Reducibility

Aims of lecture

- To explore undecidability
 - > Last lecture showed
 - Hierarchy of languages
 - » A_{TM} is undecidable
 - » The Co-language of A_{TM} is not Turing Recognised
 - Have existence of larger languages
 - > More decidable and undecidable languages
 - > Determine undecidability through mapping proofs

Unit Learning Outcomes

• Understand recognisability and decidability, use the construction & mapping reducibility techniques to prove a problem decidable or undecidable.

Assessment Criteria

• **Prove** the classification of a language as Decidable or Undecidable using mapping reducibility of languages involving languages or graphs.

Proving Undecidablity

- To explore undecidability
 - > ATM is undecidable
 - > Consequences:
 - The Co-language of ATM is not Turing Recognisable
 - Have existence of larger set of languages
 - Turing Thesis: No machine will recognise them, unsolvable
- Programmers: Is your problem unsolvable?
 - > Need techniques to determine undecidable languages
 - > Direct techniques often difficult

Reducibility

- Transformation of problem concept
 - > Used to prove other languages undecidable
 - > Used in definition of NP completeness
 - ➤ To programmers:
 - Can a problem be converted to one already solved?
- Transform is a function
 - > If $w \in \Sigma^*$ as input, create output $f(w) \in \Sigma^*$
 - > Process to be done by a decidable TM computing f

Decidability of A_{REX}

- $A_{REX} = \{ \langle R, w \rangle : R \text{ is a RE that generates } w \}$
 - > Proof
 - Convert R into NFA M₁ using known construction
 - Convert M₁ into DFA M₂ using known construction
 - For any w generated by R, M₁ & M₂ both recognise w because of the equality guaranteed by the constructions
 - There is a M_3 , a TM that decides M_2 recognising w since it has been shown that A_{DFA} is decidable
 - > So string <R,w> = > <M₁,w> = > <M₂,w>
 - $TM for A_{REX} is$
 - » TM to transform <R,w> to <M₂,w>
 - » Followed by M₃

Reduction

- A way of converting one problem into another
 - ➤ A solution to the second problem can be used to solve the first problem
 - \succ Given problems A and B, if A reduces to B, a solution to B can be used to solve A.
 - only concerned with solvability of A when B's solution is known
 - > If A reduces to B then B is more complex (harder) than A
 - A reduces to simple B, then A must be simple
 - Complex A reduces to B then B must be complex

MAPPING REDUCIBILITY

Concept
Computable Functions
Mapping Reducibility
Theorems concerning Reducibility

Mapping reducibility

- Formalizing the notion of reducibility
 - > allows us to use reducibility in more refined ways
 - > e.g., proving that some languages are not Turing-recognizable, applications in complexity theory
- Mapping reducibility (also known as many-one reducibility)
 - ➤ Being able to reduce problem A problem B means a computable function exists that convert instances of problem A to instances of problem B.
 - > Such a conversion function is called a *reduction*.

Computable functions

- A TM computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.
- A function $f: \Sigma^* \to \Sigma^*$ is a computable function if some TM M, on every input w, halts with just f(w) on its tape.
- Example:
 - > A function f takes input w and returns the description of a TM < M if w=< M is an encoding of a TM M.
 - > M' is a TM that recognizes the same language as M.

Definition of mapping reducibility

- Language A is mapping reducible to language B, written $A \le_{\mathrm{m}} B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w, w \in A \Leftrightarrow f(w) \in B$.
- The function f is called the reduction of A to B.
- Provides a way to convert membership testing in *A* to membership testing in *B*.
 - > If one problem is mapping reducible to a second previously solved problem, a solution can be obtained for the original problem.

Theorems of reducibility

- Classifying problems by decidability:
 - ➤ If A is reducible to B and B is decidable, then A is also decidable.
 - ➤ Similarly, if A is undecidable and reducible to B, then B is also undecidable.

DECIDABILITY & MAPPING REDUCIBILITY

Approach Used for A_{REX}

Approach

- Aim
 - > Use Mapping Reducibility to prove Decidability
- Reason
 - > Direct proof involves deep insight into the process
 - > Mapping Reducibility
 - Ignores the machine; purely language
 - Requires only matching a problem to another problem
- Technique
 - > A, find decidable B, show $A \le_m B$; A decidable

Fact for Solving A_{REX}

- Need known facts
 - $> A_{DFA} \{ < M, w > : M \text{ is a DFA and M accepts w} \}$
 - A_{DFA} is decidable
 - > R a regular expression
 - Can construct NFA M_1 so R generates $w \Leftrightarrow M_1$ accepts w
 - Algorithm has a TM that finishes in finite steps
 - > M₁ describes an NFA
 - Can construct DFA M_2 so M_1 accepts $w \Leftrightarrow M_2$ accepts w
 - Algorithm has a TM that finishes in finite steps
 - $> A_{REX} = \{ < R, w > : R \text{ is a RE that generates w} \}$

Proof

- Currently A_{REX} is unknown A_{DFA} is decidable
 - > So want $A_{REX} \leq_m A_{DFA}$
- Start with a string from A_{REX}
 - \rightarrow Let $\langle R, w \rangle \in AREX$
- Need a function into ADFA so of form <M,w>
 - > Let $f_1: \Sigma^* \rightarrow \Sigma^*$, mapping for RE to NFA
 - > So $f_1(<R,w>) = <M_1,w>$
 - > <R,w> \in A_{REX} means R generates w
 - > f_1 is such that R generates $w \Leftrightarrow M_1$ accepts w
 - > So $f_1(\langle R, w \rangle) \in A_{NFA}$.

Proof (continued)

- Note the equivalence, so argument is both ways
 - > So <R,w> \in A_{REX} \Leftrightarrow f₁(<R,w>) \in A_{NFA}
 - > f_1 is a reduction

- f_1 is a reduction, but we have not proved A_{NFA} to be undecidable, hence we are not finished
 - > Using similar reasoning, there is a function $f_2:\Sigma^* \to \Sigma^*$ such that:

$$_{-} < M_{1}, w> \in A_{NFA} \Leftrightarrow f_{2}(< M_{1}, w>) \in A_{DFA}$$

• Hence $\langle R, w \rangle \in A_{REX} \Leftrightarrow f_2(f_1(\langle R, w \rangle)) \in A_{DFA}$

Conclusion of Proof

So we have the reduction

$$ightharpoonup$$
 Let $f: \Sigma^* \rightarrow \Sigma^*$: such that $f(\langle R, w \rangle) = f_2(f_1(\langle R, w \rangle))$

- > f is a reduction, $A_{REX} \leq_m A_{DFA}$
- > We know that is A_{DFA} decidable so A_{REX} is also decidable.

REDUCTION

Principle
The Real Halting Problem
Two More Examples

Reduction

- A way of converting one problem into another
 - > so that a solution to the second problem can be used to solve the first problem
 - > Given problems A and B, if A reduces to B, a solution to B can be used to solve A.
 - only concerned with solvability of A when B's solution is known
- Examples from everyday life
 - > Finding your way around a new city can be reduced to getting a map of the city
 - > Problem of travelling from Perth to Sydney is reduced to buying a plane ticket for the journey

Role of reducibility

- Examples from Maths:
 - ➤ Measuring the area of a triangle can be solved if its height and width can be measured
 - ➤ A system of linear equations can be solved if matrix inversion can be done
- Classifying problems by decidability
 - ➤ If A is reducible to B and B is decidable, then A is also decidable.
 - > Similarly, if A is undecidable and reducible to B, then B is also undecidable.

Undecidability

- Have that A_{TM} is undecidable
 - > This is really the Acceptance Problem
 - > Will use Reductions to prove undecidability
 - > Note finiteness
 - If we can prove TM will always stop in a finite number of moves then language is decidable
 - Undecidability depends on proof by contradiction
 - ➤ Will look at the true Halting Problem

Approach

- Use Reducibility
 - > Aim: So A is undecidable
 - > Proof
 - Assume A is decidable
 - Find an undecidable B
 - Show $B \leq_m A$
 - But implies B is decidable
 - Contradiction so A is undecidable
 - > Or Reduce selected B to A

the key insight

often have to guess appropriate B

Undecidable problems from language theory

- Determining whether a TM halts on a given input
 - \rightarrow HALT_{TM}= {<M, w>|M is a TM and M halts on input w}
- Theorem: HALT_{TM} is undecidable
- Proof idea:
 - > Assume that R is a TM that decides HALT_{TM}.
 - > Using R, we can test whether M halts on w.
 - If R indicates that M doesn't halt on w, $\langle M, w \rangle$ is not in A_{TM} .
 - If R indicates that M does halt on w, we can simulate without danger of looping.
 - > If R exists, we can decide A_{TM} , contradicting an earlier theorem.

Proof

- Assume that TM R decides $HALT_{TM}$.
 - > Construct TM S to decide A_{TM}
 - > S = "On input <M, w>:
 - 1. Run TM *R* on input <*M*, *w*>.
 - 2. If *R* rejects, *reject*.
 - 3. If *R* accepts, simulate *M* on *w* until it halts.
 - 4. If M has accepted, accept; if M has rejected, reject."
 - > If R decides $HALT_{TM}$, then S decides A_{TM} .
 - Because A_{TM} is undecidable, $HALT_{TM}$ also must be undecidable.

Halting problem

- $HALT_{TM}$ is the real halting problem
 - $>A_{TM}=\{<M, w>|M \text{ is a TM and } M \text{ accepts input } w\}$ is the acceptance problem
- Proof of $HALT_{TM}$ illustrates the strategy for proving that a problem is undecidable
 - > Common strategy for most proofs of undecidability
 - > A_{TM} itself is directly proved (via diagonalisation)

Further examples of reducibility

- $E_{TM} = \{ <M > | M \text{ is a TM and } L(M) = \emptyset \}$
- Theorem: E_{TM} is undecidable.
- Proof idea:
 - > Assume that E_{TM} is decidable.
 - > Then show that A_{TM} is decidable, a contradiction.

Further examples of reducibility

- $REGULAR_{TM} = \{ <M > | M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- Theorem: $REGULAR_{TM}$ is undecidable.
- Proof idea:
 - > Assume that *REGULAR*_{TM} is decidable by a TM *R*.
 - ightharpoonup Use R to construct a TM S that decides A_{TM} .

Post Correspondence Problem

- An undecidable problem concerning simple manipulations of strings
- Two collections of dominos

$$\left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\} \\
\left\{ \left[\frac{a}{ab} \right], \left[\frac{b}{ca} \right], \left[\frac{ca}{a} \right], \left[\frac{a}{ab} \right], \left[\frac{abc}{c} \right] \right\}$$

- When the string of symbols at the top and the bottom of a collection are the same, there is a match.
- PCP is to determine whether a collection of dominos has a match. Repetitions of dominos is allowed.
- The general form of this problem is unsolvable by algorithms.

Summary

- Role of reducibility
- Reductions via computation histories
- Mapping reducibility

