

14/06/2022

REX Red Pitaya ADC-DAC démo Red Pitaya 125-14 STEMlab Board

sommaire

- Présentation de la carte Red Pitaya 125-14 STEMlab
- Principales caractéristiques
- Liens utiles pour démarrer avec la Red Pitaya
- Ecosystème et système d'exploitation Red Pitaya programmation Bare Metal
- Connexion à la Red Pitaya et aux applications natives fournies
- Démo Bare-Metal ADC DAC 14 bits sur Vivado 2020_1 avec test analog discovery 2

STEMlab Boards (Red Pitaya)

STEMIab 125-10

STEMlab 125-14

STEMIab 125-10 vs. STEMIab 125-14 (originally Red Pitaya V1.1)

STEMlab is available in two versions and both offer the same functions and features with the difference in technical specification of high-frequency inputs and outputs, RAM capacity some other differences.

They are addressed to target different groups and/or needs. Where STEMlab 125-14 has 14 bit input/output channels for highly accurate measurement results in professional environment, STEMlab 125-10 has 10 bit input/output channels and is perfect for universities, students and makers.

		STEMIab 125-10	STEMIab 125-14	1
Basic	Processor	Dual Core ARM Cortex A9	Dual Core ARM Cortex A9	
	FPGA	Xilinx Zynq 7010 SOC	Xilinx Zynq 7010 SOC	
	RAM	256 MB (2 Gb)	512 MB (4 Gb)	
	System memory	Micro SD up to 32 GB	Micro SD up to 32 GB	
	Console connection	USB to serial converter required	micro USB	
	Power connector	Micro USB	Micro USB	
	Power connector	Micro USB	Micro USB	
	Power consumption	5 V, 1,5 A max	5 V, 2 A max	
Connectivity	Ethernet	1 Gbit	1 Gbit	
	USB	USB 2.0	USB 2.0	
	WiFi	requires WIFI dongle	requires WIFI dongle	
	Synchronisation		Daisy chain connector (up to 500 Mbps)	
RF inputs	RF input channels	2	2	
	Sample rate	125 MS/s	125 MS/s	
	ADC resolution	10 bit	14 bit	LTC2145-14
	Input impedance	1 MOhm / 10 pF	1 MOhm / 10 pF	
	Full scale voltage range	+-20 V	+-20 V	
	Absolute max. Input voltage range	30 V	30 V	
	Input ESD protection	Yes	Yes	
	Overload protection	Protection diodes	Protection diodes	
RF outputs	RF output channels	2	2	
	Sample rate	125 MS/s	125 MS/s	
	DAC resolution	10 bit	14 bit	DAC1401D125
	Load impedance	50 Ohm	50 Ohm	
	Voltage range	+-1 V	+-1 V	
	Ouput slew rate	200 V/us	200 V/us	
	Short circut protection	Yes	Yes	
	Connector type	SMA	SMA	
Extension connector	Digital IOs	16	16	
	Analog inputs	4	4	
	Analog inputs voltage range	0-3,5 V	0-3,5 V	
	Sample rate	100 kS/s	100 kS/s	
	Resolution	12 bit	12 bit	
	Analog outputs	4	4	
	Analog outputs voltage range	0-1,8 V	0-1,8 V	
	Communication interfaces	I ² C, SPI, UART	I ² C, SPI, UART	
	Dimensions	107 x 60 x 21 mm	107 x 60 x 21 mm	

Principales caractéristiques

- ✓ Plate-forme d'acquisition et de génération de signaux RF de la taille d'une carte de crédit
- ✓ Connectivité Ethernet
- ✓ SoC Xilinx (processeur et FPGA)
- ✓ Deux entrées analogiques rapides et deux sorties
- ✓ Possibilité d'intégration dans son propre système/produit
- ✓ Code source du logiciel ouvert disponible
- ✓ Fonctionne avec Linux ou PC Windows
- ✓ Peut être utilisé comme oscilloscope et générateur de signaux, spectre, analyseur de Bode, analyseur logique, compteur LCR*, streaming, SDR ou analyseur de réseau vectoriel* → applications disponibles
- ✓ Peut être contrôlé à distance à l'aide de LabVIEW, MATLAB, Python ou Scilab
- ✓ Peut être reprogrammé pour répondre à des besoins personnalisés -> JTAG
- ✓ Pris en charge par un marché d'applications avec plusieurs applications gratuites disponibles

Liens utiles sur le site Red Pitaya STEMlab

https://redpitaya.com/stemlab-125-14/

https://redpitaya.com/rtd-

<u>iframe/?iframe=https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware.</u> html

https://redpitaya.com/applications-measurement-tool/fpga/

https://redpitaya.readthedocs.io/en/latest/developerGuide/software/build/fpga/fpga.html

- -> Quick Start
- -> Developers guide -> Hardware
 - -> Software

Accès mode local ou adresse IP

Ecosystème installé sur la carte SD

Accès local RP-F***LOCAL/

Accès distant adresse IP

Juin 2022

- Importer le dossier IPs_adc_dac_redpitaya_125_14, lien ci-dessous et ouvrir Vivado 2020_1
- https://github.com/fabzz60/d-mo-adc-dac-Redpitaya-125-14 -> télécharger le Zip dans code
- Nouveau Projet -> demo_redpitaya_adc_dac -> ajouter la Board Red Pitaya-125-14 dans le répertoire Xilinx/Vivado/2020.1/data/boards/Board_files...fichier->board_files de IPs_adc_dac_redpitaya_125_14
- Importer IPs_ adc_dac_redpitaya_125_14 -> dans Settings /IP /IP Repository... add IP Repositories
- Dans l'onglet IP INTEGRATOR -> Créer un Block Design
- Naviguer dans IP Catalog -> User Repository-> et sélectionner les IP utiles à disposer sur le design

- Dans Diagram -> Touche + -> Ajouter le Zynq et le processor system reset
- Connecter le Zynq et le processor system reset -> Run connection Automation
- Connecter manuellement les autres IP et l'horloge commune ADC @125MHz comme sur le schéma
- Sur le bloc design créer -> clic droit -> Generate outputs products -> puis Create HDL wrapper
- Récupérer le fichier de contrainte dans IPs_adc_dac redpitaya_125_14 / sdc -> (set a target constraint file)
- Décommenter les lignes 117 213 dans le fichier de contrainte redpitaya-125-14.xdc
- Synthèse et implémentation -> vérifier les I/O dans l'onglet Windows puis générer le bit file (bitstream)

Analog discovery 2

Fin de la démo Merci de votre attention!