Chapter 1

ε-δ論法と極限

ここまでのこの本では、極限というものを厳密に定義していなかった。また、微分と積分において、イメージで導出できることを最重視し、厳密な議論を避けた箇所が多くある。

厳密には、極限は ε - δ 論法によって定義され、微分積分の基礎理論は極限の議論に基づいている。 ε - δ 論法に踏み込んでいない私たちは、極限というものを語る言葉をまだ持ち合わせていない。

1.1 実数の集合

厳密な理論を展開する上で、知っておくべき言葉の定義を行う。

1.1.1 区間

2つの実数の間の範囲は、区間と呼ばれる。

区間は、端点を含むかどうかによって、開区間、閉区間、半開区間に分類される。

開区間

端点を含まない区間を開区間という。

開区間 $a \le x \le b$ となる実数 x の集合を 開区間 といい、(a,b) と表す。

閉区間

端点を含まない区間を閉区間という。

半開区間

一方の端点を含み、他方の端点を含まない区間を半開区間という。

1.2 数列の極限

微分を定義するには関数の極限を考えるが、関数の極限の諸性質は、数列の極限から導かれる。 まずは、 $\varepsilon-\delta$ 論法(数列の場合は $\varepsilon-N$ 論法とも呼ばれる)によって数列の極限を定義し、その 性質をひとつひとつ確かめていこう。

1.2.1 εで「一致」をどう表現するか

「限りなく近づく」という表現では、「限りなく」の部分に無限という概念が含まれてしまう。 有限の値 ϵ を使って、無限を表現しようとするのが ϵ - δ 論法である。

* * *

 ε - δ 論法で極限を定義する前に、有限値 ε を使った議論の例を見てみよう。

実数は連続である(数直線には穴がない)ため、 $a \, C \, b$ が異なる実数であれば、 $a \, C \, b$ の間には無 数の実数が存在する。

つまり、aとbが異なる限り、その間の距離 |a-b| は絶対に0にはならない。

|a-b| が 0 にならないということは、ここでも実数の連続性によって、|a-b| より小さい実数が存 在してしまう。

たとえば、 $a \ge b$ の間の中点 $x = \frac{|a-b|}{2}$ は、|a-b| よりも小さい。

a と b の間の中点というと $\frac{a-b}{2}$ だが、正の数 ε と比較するため、絶対値をつけて $\frac{|a-b|}{2}$ としている

|a-b| より小さい実数が存在してしまうと、「任意の」 $\varepsilon > 0$ に対して、 $|a-b| < \varepsilon$ を成り立たせる ことができない。

 ε はなんでもよいのだから、|a-b|より小さい実数を ε として選ぶこともできてしまう。 しかし、|a-b| より小さい実数を ε としたら、 $|a-b| < \varepsilon$ は満たされない。

|a-b| が 0 でないという状況下では、あらゆる実数 ε より |a-b| を小さくすることは不可能である。 したがって、 $|a-b| < \varepsilon$ を常に成り立たせるなら、|a-b| = 0、すなわち a = b となる。

ここまでの考察から直観を取り除いて、この定理の数学的な証明をまとめておこう。

5

Proof: 有限値 ε の不等式による一致の表現

 $a \neq b$ と仮定する。

 $\varepsilon_0 = \frac{|a-b|}{2}$ とおくと、絶対値 |a-b| が正の数であることから、 ε_0 も正の数となる。 よって、 $|a-b| < \varepsilon_0$ が成り立つので、

$$|a-b| < \frac{|a-b|}{2}$$

 $2|a-b| < |a-b|$
 $2|a-b| - |a-b| < 0$
 $|a-b| < 0$

絶対値が負になることはありえないので、 $a \neq b$ の仮定のもとでは矛盾が生じる。したがって、a = b でなければならない。

なお、 $|a-b| < \varepsilon$ の右辺を定数倍し、 $|a-b| < k\varepsilon$ などとしても、この定理は成り立つ。

定理「有限値 ε の不等式による一致の表現」は、定数をkとして、次のように書き換えることもできる。

$$|a-b| < k\varepsilon \implies a = b$$

この場合、証明で $\varepsilon_0 = \frac{|a-b|}{2k}$ とおけば、まったく同様の議論が成り立つからだ。

実際に、 $|a-b| < 2\varepsilon$ とした場合のこの定理を、後に登場する数列の極限の一意性の証明で使うことになる。

1.2.2 ε-Ν論法による数列の収束

 $arepsilon - \delta$ 論法は、数列の極限に適用する場合、arepsilon - N 論法と呼ばれることが多い。

「数列が $\{a_n\}$ が α に収束する」ことの $\varepsilon-N$ 論法による表現を、まずはイメージで掴んでみよう。

* * *

まず、 α の周りに、両側それぞれ ε だけ広げた区間を考える。

 ε は正の数ならなんでもよいとすれば、 ε を小さな数に設定し、いくらでも区間を狭めることができる。

そして、「ここから先の項はすべて区間内に収まる」といえる位置に、Nという印をつけておく。

 ε を小さくしていくと、 ε による α 周辺の区間に入る項は少なくなる。 それでも、N をずらしていけば、N 以降はこの区間に収まる項だけになる。 これこそが「収束」という現象だと定義するのが、 $\varepsilon-N$ 論法の考え方である。

区間幅(の半分)となる ε をどんなに小さくしても、「N 番目以降は区間内に収まる項だけになる」

といえるような N を設定できるか?が肝心で、そのような N が存在するなら、数列は収束するといえる。

このことを、数学の言葉でまとめておこう。

 $\varepsilon - \delta$ 論法によるこの定義を用いることで、数列の収束に関する諸性質を証明できるようになる。

1.2.3 数列の極限の一意性

数列が複数の値に収束することはない。このことを示すのが、次の定理である。

米	よれ 万	ilσ	标	国の) — ī	李州																		
3	X)		(1 <u>57</u> 2)	100	,	EX 1.1.	,		a)		-													
女	攵タ	I] {(i_n } :	が収	東	する	な	らに		その)極	限值	直は	たた	ž 1	つに	.定	まる) ₀					

Proof: 数列の極限の一意性

数列 $\{a_n\}$ が α と β の 2 つの極限値を持つと仮定する。

このとき、任意の正の数 ε に対して、

$$n \ge N_1 \implies |a_n - \alpha| < \varepsilon$$

 $n \ge N_2 \implies |a_n - \beta| < \varepsilon$

が成り立つような自然数 N₁ と N₂ が存在する。

ここで、 $N = \max\{N_1, N_2\}$ とおくと、 $n \ge N$ のとき、 N_1 と N_2 の大きい方が n 以下に収まることから、 $n \ge N_1$ と $n \ge N_2$ がともに成り立つ。

よって、 $n \ge N$ のとき、 $|\alpha - \beta|$ を考えると、

$$|\alpha - \beta| = |\alpha - \beta + a_n - a_n|$$

$$= |(\alpha - a_n) + (a_n - \beta)|$$

$$\leq |\alpha - a_n| + |a_n - \beta|$$

$$= |-(a_n - \alpha)| + |a_n - \beta|$$

$$= |a_n - \alpha| + |a_n - \beta|$$

$$< \varepsilon + \varepsilon$$

$$= 2\varepsilon$$

$$\therefore |\alpha - \beta| < 2\varepsilon$$

したがって、有限値εの不等式による一致の表現より、

$$\alpha = \beta$$

これで、数列 $\{a_n\}$ の極限値はただ1つに定まることが示された。

1.2.4 数列の極限の線形性

数列の極限についても、線形性が成り立つ。

この線形性の式は、数列の和の極限と、数列の定数倍の極限を組み合わせたものになっている。 それぞれ証明することで、この線形性の式が成り立つことを確認しよう。

数列の和の極限

数列の和の極限			
数列 {a _n } と {b _n } :	がともに収束するとき	き、数列 $\{a_n+b_n\}$ も収束する。	0
そして、その極限	退値は次のようになる	0	
	1: (7-) 1: , 1:	1.
	$\lim_{n\to\infty} (a_n + b_1)$	$a_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty}$	\mathcal{O}_n

最終的に次のような関係を導くことで、この定理が証明される。

$$n \ge N \implies |(a_n + b_n) - (\alpha + \beta)| < \varepsilon$$

 $|(a_n+b_n)-(\alpha+\beta)|$ は、 a_n+b_n と $\alpha+\beta$ がどれだけ近いか、すなわち a_n+b_n と $\alpha+\beta$ の誤差を表している。そして、この誤差を ε より小さくする必要がある。

そのためには、 a_n と α の誤差を $\frac{\varepsilon}{2}$ より小さくし、 b_n と β の誤差も $\frac{\varepsilon}{2}$ より小さくできればよい。

Proof: 数列の和の極限

 $\lim_{n\to\infty} a_n = \alpha$ 、 $\lim_{n\to\infty} b_n = \beta$ とおき、 ε を任意の正の数とする。

このとき、 $\lim_{n\to\infty}a_n=\alpha$ より、次のような自然数 N_1 が存在する。

$$n \ge N_1 \implies |a_n - \alpha| < \frac{\varepsilon}{2}$$

同様に、 $\lim_{n\to\infty} b_n = \beta$ より、次のような自然数 N_2 が存在する。

$$n \ge N_2 \implies |b_n - \beta| < \frac{\varepsilon}{2}$$

ここで、 $N = \max\{N_1, N_2\}$ とおくと、 $n \ge N$ のとき、 $n \ge N_1$ と $n \ge N_2$ がともに成り立つ。

$$n \geq N \quad \Longrightarrow \quad |a_n - \alpha| < \frac{\varepsilon}{2} \quad \text{fig. } |b_n - \beta| < \frac{\varepsilon}{2}$$

よって、 $n \ge N$ のとき、三角不等式より、

$$|(a_n + b_n) - (\alpha + \beta)| = |(a_n - \alpha) + (b_n - \beta)|$$

$$\leq |a_n - \alpha| + |b_n - \beta|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

$$|(a_n + b_n) - (\alpha + \beta)| < \varepsilon$$

という不等式が成り立つことで、 $\lim_{n\to\infty} (a_n+b_n)=\alpha+\beta$ が示された。

数列 $\{a_n\}$ が α に収束するということは、 $\varepsilon-N$ 論法による数列の収束の定義より、

$$n \ge N \Longrightarrow |a_n - \alpha| < \varepsilon$$

という関係が成り立つということである。

ここでの ε は「任意の」正の数であるから、 ε の部分にどんな正の数を当てはめても、この関係が成り立つことになる。

数列の和の極限の証明では、arepsilon の部分に $\dfrac{arepsilon}{2}$ を当てはめた関係を利用している。

数列の定数倍の極限

