

Bringing SQL to the OpenStack World

Apache Tajo on Swift

Jihoon Son Apache Tajo PMC member

Who am I

Jihoon Son

- Ph.D candidate (Computer Science & Engineering, 2010.3 ~)
- Tajo project co-founder (2010)
- Apache Tajo PMC and Committer (2014.5.1 ~)

Contacts

- Email: jihoonson AT apache.org
- LinkedIn: https://www.linkedin.com/in/jihoonson

Outline

- OpenStack Swift
- Apache Tajo
- Tajo on Swift
- Location-aware Computing of Tajo
- Brief Evaluation Results
- Roadmap

OpenStack Swift

- Popular object storage
 - Images, videos, logs, ...
- Enterprises store objects on Swift to provide their services
 - Usually private clusters

SQL on Swift

- Data analysis is important to improve the quality of their services
 - SQL is one of the most powerful and popular query languages
- Many enterprise data analysis tools relying on SQL
 - OLAP, visualization, data mining, ...
- Need for using SQL on Swift

- Scalable, efficient, and fault-tolerant data warehouse system
 - Support SQL standards compliance
 - Efficient batch execution and interactive ad-hoc analysis
 - Low latency and high throughput
 - No use of MapReduce
 - No single point of failure

- Active open source project
 - Apache incubating project (2013)
 - Apache Top-Level
 Project (2014)
 - 18 committers + 16 contributors

Activity summary

Issues: 30 Day Summary

Issues: 47 created and 50 resolved

Tajo on Swift

Tajo on Swift

- No need to modify code of Tajo and Swift
 - Tajo can access Swift with the Hadoop-openstack library
 - But, doesn't need to install or run Hadoop
 - Just use it

Tajo on Swift

- Focusing on private clusters
 - Tajo and Swift may share the same cluster
 - Able to optimize the cluster configuration and data deployment
- More efficient data analysis!
 - By reducing the overhead of bottlenecks

Data Locality Problem

Network can be usually the bottleneck

Data Locality Problem

Network can be usually the bottleneck

Data Locality Problem

Important to reduce data transmission over the

Location-aware Computing

- Moving the processing close to the data
 - Avoiding the performance degradation due to the data transfer over the network

Location-aware Computing

- Three cases of user data deployment
 - Case 1: small objects without segmentation
 - Case 2: large objects with segmentation
 - Case 3: large objects without segmentation

Case 1: Small Objects W/O Segmentation

- Each task processes an object
 - The object size should be sufficiently small to be processed by a task

Case 1: Small Objects W/O Segmentation

1) Getting object locations from the ring

Case 1: Small Objects W/O Segmentation

2) Assigning tasks based on object locations

- Each task processes a segment
 - The segment size should be sufficiently small to be processed by a task

1) Getting segments of the given objects

2) Getting segment locations from the ring

3) Assigning tasks based on segment locations

Case 3: Large Objects W/O Segmentation

- Inevitable performance degradation due to the suboptimal data deployment
 - Each Tajo worker processes large objects, which causes coarse-grained load balancing

Case 3: Large Objects W/O Segmentation

- Alternatively, Tajo will provide the data load feature
 - Load objects into the Tajo's optimized internal storage

Location-aware Computing

- Current status
 - Support location-aware computing without segmentation
- Future support
 - Location-aware computing for segmented objects
 - Data load into the Tajo's storage

Brief Evaluations

- Performance comparison with on another distributed storage
 - Swift VS Hadoop Distributed File System (HDFS)
- Scalability test of Swift

Brief Evaluations

- Cluster configuration
 - 1 master + 8 slaves
 - Each worker is equipped with 1 disk
 - Swift: 1 proxy server + 8 storage nodes
 - HDFS: 1 namenode + 8 datanodes
 - Tajo: 1 master + 8 workers
 - Each worker can process 2 tasks simultaneously

Brief Evaluations

- Data set
 - Crawled twitter log
 - # of objects: 1014
 - Avg size of objects: 70MB
 - Total size: 69.5GB
- Query
 - Full scan query
 - select * from twitter_log

Comparison with HDFS

Scan time

Schedule time

Scalability Test

Data

Result

Our Roadmap

- Storage layer specialized for Swift
 - Location-aware computing for segmented objects
 - Data load into the Tajo's storage
- Block storage support
 - Cinder and Ceph
- Provisioning Tajo clusters
 - Sahara
 - Heat, TOSCA

Thanks!

http://tajo.apache.org/