1 List of commands

1.1 Automatic bracing

$$\label{eq:comm*} $$\operatorname{A}_{\alpha} \to [A, \frac{1}{xx}] A, \frac{1}{xx}$ star for no resize $$\operatorname{A}_{\alpha} \to A, B$ same as \otimes \operatorname{AB}_{\alpha} \to A, B$ same as \anticommutator $$\operatorname{A}_{\alpha} \to A, B$ same as \anticommutator $$\operatorname{AB}_{\alpha} \to A, B$ same $$\operatorname{AB}_{\alpha} \to A,$$

1.2 Vector notation

\vectorbold	$\verb \vb{a} \to \mathbf{a}$	upright/no Greek
	\vb*{a}, \vb*{\theta} $ ightarrow oldsymbol{a}, oldsymbol{ heta}$	italic/Greek
\vectorarrow	extstyle ext	upright/no Greek
	$\verb \va*{a} , \verb \va*{\theta} \to \vec{a}, \vec{\theta}$	italic/Greek
\vectorunit	$\mathbf{vu}\{\mathbf{a}\} ightarrow \mathbf{\hat{a}}$	upright/no Greek
	\vu*{a}, \vu*{\theta} $ ightarrow \hat{m{a}},\hat{m{ heta}}$	italic/Greek
\dotproduct	$\forall dot \rightarrow \cdot as in a \cdot b$	note: \dp is a protected TEX primitive
\crossproduct	$\colon x \to x \text{ as in } \mathbf{a} \times \mathbf{b}$	alternate name
	$\c p \to x \text{ as in } \mathbf{a} \times \mathbf{b}$	shorthand name
\gradient	$\grad o oldsymbol{ abla}$	
	$\texttt{\grad}\{\texttt{\Psi}\} \to \boldsymbol{\nabla}\Psi$	default mode
	$\P \left(\P \right) o oldsymbol{ abla} \left(\Psi + oldsymbol{A_x^x} ight)$	long-form (like \qty but also handles spacing)
	$\P \left[\P \left(\mathbb{P}_x \right) + \mathbb{P}_x \right] \to \mathbf{\nabla} \left[\Psi + \mathbf{A}_x^{x^x} \right]$	
\divergence	extstyle ext	note: $amsmath$ symbol \div renamed
		\divisionsymbol
	$\texttt{\div}\{\texttt{\vb}\{\texttt{a}\}\} \to \boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{a}$	default mode
	$ ext{ iny (vb{a}+ iny tall)} ightarrow oldsymbol{ abla} \cdot \left(\mathbf{a} + oldsymbol{A_x^x} ight)$	long-form
	$\operatorname{ extstyle div}[\operatorname{ extstyle Vb}\{a\} + \operatorname{ extstyle tall}] o oldsymbol{ a} \cdot oldsymbol{a} + rac{A_x^x}{a}$	
\curl	$ackslash ag{curl} o oldsymbol{ abla} imes$	
	$\texttt{\curl{\vb{a}}} \to \boldsymbol{\nabla} \times \mathbf{a}$	default mode
	$\operatorname{ar{a}}+\operatorname{ar{a}}+$	long-form
	$\operatorname{ar{curl}[ar{x}^{x}]} o ar{x} imes \left[a + rac{ar{A}_{x}^{x^{x}}}{a^{x}} ight]$	
\laplacian	$ackslash$ \landamarrow \nabla^2	
•	\laplacian{\Psi} $ o abla^2 \Psi$	default mode
	$ extstyle egin{aligned} extstyle egin{aligned} extstyle egin{aligned} extstyle egin{aligned} extstyle \Psi + oldsymbol{A_x^x} \ extstyle \Psi + oldsymbol{A_x^x} \end{aligned} \end{aligned}$	long-form
	$ ext{ langer} V = V^2 \left[\Psi + rac{{f A}_x^x}{a^x} ight]$	

1.3 Operators

Example trig redefinitions:

\sin \sin(\grande)
$$\to \sin\left(\frac{1}{xx}\right)$$
 automatic braces; old \sin renamed \sine \\sin[2](x) $\to \sin^2(x)$ optional power \\sin x $\to \sin x$ can still use without an argument

But $\sin\left[\frac{1}{xx}\right] \quad \sin\left[x\right]\left[\frac{1}{xx}\right] \quad \sin\left[x\right]\left[\frac{1}{xx}\right] \quad \sin\left[x\right]\left\{\frac{1}{xx}\right\}$

```
\sin(x)
               \sinh(x)
                              \arcsin(x)
                                                \arraycolored{Asin(x)}
                                                                    \sin(x)
                                                                               sinh(x)
                                                                                            \arcsin(x)
                                                                                                          asin(x)
 \cos(x)
               \cosh(x)
                              \arccos(x)
                                                \acos(x)
                                                                    \cos(x)
                                                                               \cosh(x)
                                                                                           \arccos(x)
                                                                                                          acos(x)
 \tan(x)
               \tanh(x)
                              \arctan(x)
                                                \lambda(x)
                                                                   tan(x)
                                                                               tanh(x)
                                                                                           \arctan(x)
                                                                                                          atan(x)
 \csc(x)
               \csch(x)
                              \arccsc(x)
                                                \acsc(x)
                                                                    \csc(x)
                                                                               \operatorname{csch}(x)
                                                                                           \operatorname{arccsc}(x)
                                                                                                          acsc(x)
 \sec(x)
               \sch(x)
                              \arcsec(x)
                                                \acc(x)
                                                                               \operatorname{sech}(x)
                                                                                           \operatorname{arcsec}(x)
                                                                                                          asec(x)
                                                                    sec(x)
 \cot(x)
               \operatorname{\backslash} coth(x)
                              \arccot(x)
                                                \acot(x)
                                                                   \cot(x)
                                                                               \coth(x)
                                                                                           \operatorname{arccot}(x)
                                                                                                          acot(x)
 \sine
                                                                 \asine
                    \hypsine
                                          \arcsine
 \cosine
                    \hypcosine
                                                                 \acosine
                                          \arccosine
 \tangent
                    \hyptangent
                                          \arctangent
                                                                 \atangent
 \cosecant
                   \hypcosecant
                                          \arccosecant
                                                                 \acosecant
 \secant
                    \hypsecant
                                          \arcsecant
                                                                 \asecant
 \cotangent
                   \hypcotangent
                                          \arccotangent
                                                                 \acotangent
 \exp(\tall)
                     \exp(A_x^{x^x})
                                                             \exponential
 \log(\tall)
                     \log(A_r^x)
                                                             \logarithm
                                    old definitions \Rightarrow
 \ln(\tau)
                     \ln(A_x^{x^x})
                                                             \naturallogarithm
 \det(\tall)
                     \det(A_x^x)
                                                             \determinant
                     \Pr(A_r^{x^x})
 \Pr(\tall)
                                                             \Probability
 New operators:
 \trace or \tr
                           \operatorname{tr} \rho \operatorname{also} \operatorname{tr}(\operatorname{tall}) \to \operatorname{tr}(A_r^{x^x})
                                                                                     trace; same bracing as trig functions
 \Trace or \Tr
                           \Tr\rho \to Tr \rho
                                                                                     alternate
 \rank
                           \rank M \rightarrow rank M
                                                                                     matrix rank
                           \operatorname{\mathsf{Verf}}(x) \to \operatorname{\mathsf{erf}}(x)
                                                                                     Gauss error function
 \erf
                           \operatorname{Res}[f(z)] \to \operatorname{Res}[f(z)]
 \Res
                                                                                     residue; same bracing as trig functions
                           \pv{\int f(z) \dd{z}}\rightarrow \mathcal{P} \int f(z) dz
 \principalvalue
                                                                                     Cauchy principal value
                           \P \ int f(z) \ dd\{z\} \rightarrow P.V. \int f(z) dz
                                                                                     alternate
 \Re
                           \Re\{z\} \to \operatorname{Re}\{z\}
                                                                                     old \Re renamed to \real \rightarrow \Re
 \Im
                           \operatorname{Im}\{z\} \to \operatorname{Im}\{z\}
                                                                                     old \Im renamed to \imaginary \rightarrow \Im
But
```

1.4 Quick quad text

General text: \qqtext \neq general quick quad text with argument $[\neq word or phrase] \rightarrow [word or phrase]$ normal mode; left and right \quad $[\q*\{word or phrase\}] \rightarrow [word or phrase]$ starred mode; right \quad only Special macros: \qcomma or $[\qc] \rightarrow [,]$ right \quad only complex conjugate; left and right \quad unless starred [\qcc*] \rightarrow [qcc*] $[\qcc] \rightarrow [\ c.c.\]$ $[\neq] \rightarrow [if]$ left and right \quad unless starred [\qif*] \rightarrow [if] Similar to \qif:

\qthen, \qelse, \qotherwise, \qunless, \qgiven, \qusing, \qassume, \qsince, \qlet, \qfor, \qall, \qeven, \qodd, \qinteger, \qand, \qor, \qas, \qin

1.5 Derivatives

\differential	\d d $ o$ d	
	\dd $\mathbf{x} o \mathrm{d} x$	no spacing (not recommended)
	$\d(x) \rightarrow \dx$	automatic spacing based on neighbors
	$\d[3] \{x\} \to \mathrm{d}^3 x$	optional power
	$\d(\cos\theta)$	long-form; automatic braces
\derivative	$\operatorname{dv}\{x\} \to \frac{\mathrm{d}}{\mathrm{d}x}$	one argument
	$\operatorname{dv}\{f\}\{x\} \to \frac{\mathrm{d}f}{\mathrm{d}x}$	two arguments
		optional power
	$dv\{x\}(grande) \rightarrow \frac{1}{dx}(\frac{1}{dx})$	long-form; automatic braces, spacing
	$dv*\{f\}\{x\}\to df/dx$	inline form using \flatfrac
\partialderivative	\pderivative{x} $ o \frac{\partial}{\partial x}$	alternate name
	$\pdv{x} \rightarrow \frac{\partial}{\partial x}$	shorthand name
	$\label{eq:dx} \begin{array}{l} \mathrm{d}x \\ \mathrm$	two arguments
	$\pdv[n]{f}{x} o rac{\partial^n f}{\partial x^n}$	optional power
	$\pdv{x}(\pdrande) o \frac{\partial}{\partial x} \left(\frac{1}{xx} \right)$	long-form
	$\pdv{f}{x}{y} o rac{\partial^2 f}{\partial x \partial y}$	mixed partial
	$\pdv*{f}{x} o \partial f/\partial x$	inline form using \flatfrac
\variation	$\operatorname{Var}\{F[g(x)]\} \to \delta F[g(x)]$	functional variation (works like \dd)
	$\forall \text{var}(E-TS) \rightarrow \delta(E-TS)$	long-form
\functionalderivative	$\begin{array}{l} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	functional derivative (works like \dv)
	$\fdv{F}{g} o rac{\delta F}{\delta a}$	
	$\footnote{\footnote{S}} \footnote{\footnote{S}} \foo$	long-form
	$\fdv*{F}{x} o \delta F^{OV}/\delta x$	inline form using \flatfrac

But

1.6 Dirac bra-ket notation

 $\label{phi} $$ \ \phi|\psi$ as opposed to $$ \langle\phi|\psi$.$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$\label{eq:linear_phi} \dyad{\psi}_{\xi} \to \langle \phi | \, |\psi \rangle \! \langle \xi | \, .$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

$$\label{eq:phi} $$ \left\{ \phi \right\} \ \langle \phi \right] \ \langle \xi \right] $$$$

 $\left\{ \left(\lambda \right) \right\} \rightarrow \left[A_{x}^{x^{x}} \right]$ \ket automatic sizing $\texttt{ket*{}}$ no resize \hat{A}_{x}^{x} \bra automatic sizing $\hat{\phi} \rightarrow \langle \phi | \psi \rangle$ automatic contraction $\hat{\phi}_x$ contraction inherits automatic sizing $\mathbf{A}^{\mathbf{x}}$ a star on either term in the contraction \bra*{\phi}\ket{\tall} $ightarrow \phi rac{A_x^{x^{x^{x^{x^{y}}}}}{A_x^{x^{y}}} \langle \phi | rac{A_x^{x^{y}}}{A_x^{x^{y}}} \langle \phi | rac{A_x^{x^{y}}}{A_x^{y}} \langle \phi | rac{A_x^{x}}{A_x^{y}} \langle \phi | A_x^{x} \langle \phi | A_x^{y} \rangle \langle \phi | A_x^{x} \langle \phi | A_x^{x} \langle \phi | A_x^{y} \rangle \langle \phi | A_x^{x} \langle \phi | A_x^{y} \rangle \langle \phi | A_x^{x} \langle \phi | A_x^{y} \rangle \langle \phi | A_x^{y} \rangle \langle \phi | A_x^{x} \langle \phi | A_x^{y} \rangle \langle \phi | A_x^{y}$ prohibits resizing \innerproduct \braket{a}{b} $\rightarrow \langle a|b\rangle$ two-argument braket $\braket{a} o \langle a|a\rangle$ one-argument (norm) automatic sizing \braket*{a}{\tall} $\rightarrow a \frac{A_r^{x^x}}{\langle a|A_r^{x^x}\rangle}$ no resize $\ightharpoonup \{a\}\{b\} o \langle a|b\rangle$ shorthand name $\displaystyle \operatorname{dyad}\{a\}\{b\} \to |a\rangle\langle b|$ \outerproduct two-argument dyad one-argument (projector) $\displaystyle \operatorname{dyad}\{a\}\{\text{tall}\} \to \left|a\right| \left\langle \underline{A_x^x}^x \right|$ automatic sizing $\d ^*{a}{\lambda \Delta x} = a A_x^x |a\rangle \langle A_x^x |a$ no resize \ketbra{a}{b} $\rightarrow |a\rangle\langle b|$ alternative name $\operatorname{\mathsf{lop}}\{a\}\{b\} \to |a\rangle\langle b|$ shorthand name \expectationvalue $\left\{A\right\} \rightarrow \left\langle A\right\rangle$ implicit form $\verb|\expval{A}{\ensuremath{\mbox{\sc VPsi}}|} \to A \, \langle \Psi | A | \Psi \rangle$ explicit form $\operatorname{\tt Nev{A}}{\operatorname{\tt Nev}} \to A \langle \Psi|A|\Psi \rangle$ shorthand name $\ensuremath{\tt ev{\grande}{\Psi}} \to \frac{1}{\ensuremath{\tt l}}$ default sizing ignores middle argument $\verb|\ev*{\grande}{\tall}| \to$ single star does no resizing whatsoever $\verb|\ev**{\grande}{\Psi}| \to \left<\Psi\right|$ double star resizes based on all parts $\mathsf{Matrixel}\{n\}\{A\}\{m\} \to A \langle n|A|m\rangle$ \matrixelement requires all three arguments $\mathbf{n}_{A} \in A \langle n|A|m \rangle$ shorthand name $\mathbf{m}_{n}^{n} \leq \mathbf{m}_{n}^{n} \leq \mathbf{m}_{n}^{n}$ default sizing ignores middle argument $\mathbf{n}_{n} \leq n$ single star does no resizing whatsoever \mathbf{m} double star resizes based on all parts

1.7 Matrix macros

But, alignment is illusion

$$\begin{pmatrix} 1 & 0 & & \frac{x}{y} \\ 0 & 1 & & b \\ u+v+w+x+y+z & d & e \end{pmatrix}$$

\matrixquantity	\mqty{a & b \\ c & d} $ ightarrow rac{a}{c} rac{b}{d}$	groups a set of matrix elements into a single object
	\mqty(a & b \\ c & d) $ ightarrow egin{pmatrix} a & b \ c & d \end{pmatrix}$	parentheses
	\mqty*(a & b \\ c & d) $ ightarrow egin{pmatrix} a & b \ c & d \end{pmatrix}$	alternate parentheses
	\mqty[a & b \\ c & d] $ ightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ \mqty[a & b \\ c & d] $ ightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	square brackets
	\mqtyla & b \\ c & d $ ightarrow egin{bmatrix} a & b \ c & d \end{bmatrix}$	vertical bars
	↔ \mqty() ↔ \mqty*() ↔ \mqty[] ↔ \mqty	alternative syntax; robust and more LATEX-friendly
\smallmatrixquantity	\smqty{a & b \\ c & d} $\rightarrow a b \atop c d$ \smqty() or \smqty*() or \smqty[] or \smqty or	the smallmatrix form of \mqty small version of \mqty() small version of \mqty*() small version of \mqty[] small version of \mqty
\matrixdeterminant	\mdet{a & b \\ c & d} $\rightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix}$	matrix determinant
\identitymatrix	\mdet{a & b \\ c & d} $ ightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ \smdet{a & b \\ c & d} $ ightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ \imat{n}	small matrix determinant elements of $n \times n$ identity matrix
	\square \smqty(\imat{3}) $ ightarrow \left(egin{smallmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array}\right)$	formatted with \mqty or \smqty
\xmatrix	\xmat{x}{n}{m}	elements of $n \times m$ matrix filled with x
	\smqty(\xmat{1}{2}{3}) \rightarrow $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	formatted with \mqty or \smqty
	$\mbox{smqty(\xmat*{a}{3}{3}} \rightarrow \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$	star for element indices
	$\label{eq:smqty} $$ \operatorname{smqty}(1_{1}, 2)_{3}) \to \left(\begin{array}{cc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) $$ \operatorname{smqty}(1_{1}, a_{12}, a_{13}, a_{13}, a_{21}, a_{22}, a_{23}, a$	as a vector with indices
\zeromatrix	$\label{eq:local_smqty} $$ \operatorname{xmat}_{a}_{1}_{3}) \to \left(a_1 \ a_2 \ a_3\right) $$ \operatorname{xmat}_{n}_{m}$$ \\ \operatorname{xmqty}(\operatorname{xmat}_{2}_{2}) \to \left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}\right)$	$n \times m$ matrix filled with zeros equivalent to \mathbf{m}_{n}
\paulimatrix	\pmat{n}	n th Pauli matrix
	$ \begin{array}{l} \texttt{\smqty(\pmat\{0\})} \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \texttt{\smqty(\pmat\{1\})} \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ \texttt{\smqty(\pmat\{2\})} \to \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\ \texttt{\smqty(\pmat\{3\})} \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \end{array} $	$n \in \{0, 1, 2, 3 \text{ or } x, y, z\}$
\diagonalmatrix	$\displaystyle \{a,b,c,\ldots\}$	specify up to eight diagonal or block diagonal elements
	$\label{eq:mqty(dmat{0}{1,2,3})} \rightarrow \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix} \\ \text{mqty(dmat[0]{1,2})} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	
	$\texttt{\ndisplay}(\texttt{\ndisplay}) \to \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	optional argument to fill spaces

$$\label{eq:local_state} $$ \qty(\dmat\{1,2\&3\dash3\}) \to \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 & 5 \end{pmatrix}$ enter matrix elements for each block as a single diagonal element same as syntax as $$ \quad mat\{a,b,c,\ldots\}$ same as syntax as $$ \quad mat\{1,2,3\}$ $\to \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 & 4 & 5 \end{pmatrix}$$$