

Varianta 045

Subjectul I

a)
$$\sqrt{2}$$
. b) $\frac{19}{\sqrt{3}}$. c) x-6y=20. d) $c = \frac{\pi}{2}$. e) 6. f) a=-2.

Subjectul II

1. a) 0. b)
$$\frac{1}{3}$$
. c) 2. d) 1. e) $\begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}$.

2. a)
$$e^{x}$$
-1. b) $e - \frac{5}{2}$. c) $f''(x) > 0$. d) e -1. e) $f(x) \ge 0$. $(\forall) x \in \mathbf{R}$.

Subjectul III

a)
$$f_n(k) = \frac{k(k-1)...(k-n+1)}{n!} = C_k^n$$
. $k \ge n$.

b) Pentru $k \ge n$, $f_n(k) = C_k^n \in \mathbb{Z}$.

Pentru $k \in \{0.1...n-1\}$ $f_n(k)=0 \in \mathbb{Z}$.

Pentru k<0.
$$f_n(k) = \frac{(-1)^n (-k)(-k+1)...(-k+n-1)}{n!} = (-1)^n C_{-k+n-1}^n \in \mathbf{Z}.$$

c) Luam
$$g=f_3=\frac{x(x-1)(x-2)}{6}=\frac{1}{6}x^3-\frac{1}{2}x^2+\frac{1}{3}x$$
 care are toti coeficientii neintregi, iar $f_3(k)\in \mathbf{Z}$.

 $(\forall) k \in \mathbf{Z}$

d) Cum f_n are n factori de gradul $1 \Rightarrow$ grad $f_n=n$.

e) Demonstram ca exista
$$a_0, a_1, a_2, a_3 \in \mathbb{C}$$
 unice a.i $h = a_0 \cdot 1 + a_1 x + a_2 \frac{x(x-1)}{2} + a_3 \frac{x(x-1)(x-2)}{6}$

$$x=0. h(0)=a_0.$$

$$x=1. h(1)=a_0+a_1. deci a_1=h(1)-h(0).$$

$$x=2$$
. $a_2=h(2)-2h(1)+h(0)$.

$$x=3$$
. $a_3=h(3)-a_0-3a_1$

Astfel am demonstrat ca a₀, a₁, a₂, a₃ sunt determinate in mod unic.

- f) Fie $w = a_0f_0 + a_1f_1 + a_2f_2 + a_3f_3$ conf lui e) luam $w(0) = a_0 \in \mathbb{Z}$.
- $w(1)=a_0+a_1 \in \mathbb{Z}$. $w(2)=a_0+2a_1+a_2 \in \mathbb{Z}$.
- $w(3) = a_0 + 3a_1 + 3a_2 + a_3 \in \mathbb{Z}$ rezulta ca $a_0, a_1, a_2, a_3 \in \mathbb{Z}$.

De aici si din $f_n(k) \in \mathbb{Z}$. $(\forall) k \in \mathbb{Z} \Rightarrow w(k) \in \mathbb{Z}$.

g) Din $e \Rightarrow u = a_0 f_0 + a_1 f_1 + a_2 f_2 + a_3 f_3$ cu $a_i \in \mathbb{Z} \Rightarrow u(k) \in \mathbb{Z}$. $(\forall) k \in \mathbb{Z}$

avem:
$$u = b_3 x^3 + b_2 x^2 + b_1 x + b_0$$
, $b_i \in \mathbf{Q}$

Analizam cazul b₃>0(cazul b₃<0 este similar)

Avem $\lim_{x\to\infty} u(x) = -\infty$, $\lim_{x\to\infty} u(x) = \infty$ si exista $A \in \mathbf{R}$ astfel ca $u(x) \le u(A)$, $\forall x \le A$ si u este strict crescatoare pe $[A, \infty)$

Polinomul
$$v(x) = u(x+1) - u(x)$$
 are gradul doi si $\lim u(x+1) - u(x) = \infty$

Exista B > A astfel ca $u(x + 1) - u(x) \ge 2$, $\forall x \ge B$. Daca alegem $M \in \mathbb{N}$, M > B si $u(M + 1) \ge M + 2$ deci $u(k) \ne M + 1$, $\forall k \in \mathbb{Z}$

Subjectul IV

a) se verifica usor.

b)
$$f_2(x) = \int_0^x t - \sin t \, dt = \frac{x^2}{2} + \cos x - 1$$
.

c) Fie
$$a_n = \frac{x^n}{n!}$$
. $(\forall) n \in \mathbb{N}^*$, avem $a_n > 0$ $(\forall) n \in \mathbb{N}^*$ si $\lim_{x \to \infty} \frac{a_{n+1}}{a_n} = \lim_{x \to \infty} \frac{x}{n+1} = 0$.

Conform criteriului raportului avem $\lim_{n\to\infty} a_n = 0$.

d) Avem $\lim_{x\to\infty} f_1 = \infty$ si $\lim_{x\to\infty} \frac{f(x)}{x} = 1$. apoi $f_1(x)$ -x=-sinx (\forall) $x \in \mathbf{R}$ cum nu exista $\lim_{x\to\infty} (-\sin x)$, graficul functiei f_1 nu are asimptota spre $+\infty$.

e) Cum verificarea este facuta, ramane sa aratam ca $P(n) \Rightarrow P(n+1)$

$$f_{(2n+1)}(x) = \int_{0}^{x} f_{2n}(t)dt = \frac{x^{2n+1}}{(2n+1)!} - \frac{x^{2n-1}}{(2n-1)!} + \dots + (-1)^{n-1} \frac{x^{3}}{3!} + (-1)^{n} x + (-1)^{n+1} \sin x.$$

$$f_{(2n+2)}(\mathbf{x}) = \int_{0}^{x} f_{2n}(t)dt = \frac{x^{2n+2}}{(2n+2)!} - \frac{x^{2n}}{2n!} + \dots + (-1)^{n-1} \frac{x^4}{4!} + (-1)^n \frac{x^2}{2!} + (-1)^{n+1} + (-1)^{n+2} \cos x$$

f) Aratam inductiv ca $0 \le f_n(x) \le 2 \frac{x^n}{n!}$ $(\forall) n \in \mathbb{N}^*$, x > 0 at n = 1 din $0 \le f_0(t) \le 2$ $(\forall) t \in \mathbb{R} \Rightarrow$ integrand

ca
$$0 \le f_1(x) \le 2x$$
. $(\forall) x > 0$ apoi din $0 \le f_n(t) \le 2 \frac{t^n}{n!}$ integrand $\Rightarrow 0 \le f_{n+1}(x) \le 2 \frac{x^{n+1}}{(n+1)!}$. $(\forall) x > 0$

g) din c) si f)
$$\Rightarrow$$
 ca $\lim_{x \to \infty} f_n(x) = 0$, $(\forall) x > 0$ si $\lim_{x \to \infty} (-1)^k f_n(x) = 0$ $(\forall) x > 0$

Fie $b_n(x)=1-\frac{x^2}{2!}+\ldots+(-1)^n\frac{x^{2n}}{(2n)!}$. Din f) $\Rightarrow \lim_{x\to\infty}b_n(x)=\cos x$. $(\forall)x>0$. Decoarece funcțiile b_n și

cos sunt funcții impare, rezultă egalitatea și pentru $x \le 0$

Asadar $\lim_{n\to\infty} b_n(x) = \cos x$, $(\forall) x \in \mathbf{R}$.