Package 'Giotto'

July 17, 2020

```
Title Spatial single-cell transcriptomics toolbox
Version 0.3.6.9001
Description Toolbox to process, analyze and visualize spatial single-cell expression data
License MIT + file LICENSE
Encoding UTF-8
LazyData true
URL https://rubd.github.io/Giotto/, https://github.com/RubD/Giotto
BugReports https://github.com/RubD/Giotto/issues
RoxygenNote 7.1.1
Depends base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports data.table (>= 1.12.2),
      deldir,
      ggplot2 (>= 3.1.1),
      Matrix,
      magick,
      matrixStats (\geq 0.55.0),
      methods,
      uwot (>= 0.0.0.9010),
      cowplot (>= 0.9.4),
      grDevices,
      graphics,
      RColorBrewer (>= 1.1-2),
      dbscan (>= 1.1-3),
      farver (>= 2.0.3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      If a (>= 1.12.0),
      igraph (>= 1.2.4.1),
      irlba,
      plotly,
      parallel,
```

reticulate (>= 1.14),

2 R topics documented:

magrittr,

```
limma,
  ggdendro,
  smfishHmrf,
  devtools,
  reshape2,
  ggraph,
  Rcpp,
  Rfast,
  Rtsne (>= 0.15),
  rlang (>= 0.4.3),
  R.utils,
  fitdistrplus,
Suggests knitr,
  rmarkdown,
  MAST,
  scran (>= 1.10.1),
  png,
  FactoMineR,
  tiff.
  biomaRt.
  trendsceek,
  multinet (>= 3.0.2),
  RTriangle (>= 1.6-0.10)
biocViews
VignetteBuilder knitr
LinkingTo Rcpp,
  RcppArmadillo
Remotes lambdamoses/smfishhmrf-r
R topics documented:
```

addHMRF..........

20

average_gene_gene_expression_in_groups
binSpect
calculateHVG
calculateMetaTable
calculateMetaTableCells
calculate_distance_and_weight
cellProximityBarplot
cellProximityEnrichment
cellProximityHeatmap
cellProximityNetwork
cellProximitySpatPlot
cellProximitySpatPlot2D
cellProximitySpatPlot3D
cellProximityVisPlot
cellProximityVisPlot_2D_ggplot
cellProximityVisPlot_2D_plotly
cellProximityVisPlot_3D_plotly
changeGiottoInstructions
changeImageBg
clusterCells
clusterSpatialCorGenes
combCCcom
combineCellProximityGenes
combineCellProximityGenes_per_interaction
combineCPG
combineMetadata
convertEnsemblToGeneSymbol
convert_mgImage_to_array_DT
createCrossSection
createGiottoImage
createGiottoInstructions
createGiottoObject
createGiottoVisiumObject
createHeatmap_DT
createMetagenes
createNearestNetwork
createSpatialDelaunayNetwork
createSpatialEnrich
createSpatialGrid
createSpatialGrid_2D
createSpatialGrid_3D
createSpatialKNNnetwork
createSpatialNetwork
create_average_detection_DT
create_average_DT
create_cell_type_random_cell_IDs
create_crossSection_object
create_delaunayNetwork2D
create_delaunayNetwork3D
create_delaunayNetwork_deldir
create_delaunayNetwork_geometry
create, delaunayNetwork, geometry, 3D

create_delaunayNetwork_RTriangle	79
create_genes_to_use_matrix	79
create_KNNnetwork_dbscan	
create_screeplot	
crossSectionGenePlot	
crossSectionGenePlot3D	
crossSectionPlot	
crossSectionPlot3D	84
decide_cluster_order	
detectSpatialCorGenes	86
detectSpatialPatterns	
dimCellPlot	88
dimCellPlot2D	90
dimGenePlot	93
dimGenePlot2D	94
dimGenePlot3D	96
dimPlot	98
dimPlot2D	100
dimPlot3D	
doHclust	
doHMRF	
doKmeans	
doLeidenCluster	
doLeidenSubCluster	
doLouvainCluster	
doLouvainCluster_community	
doLouvainCluster_multinet	
doLouvainSubCluster	
doLouvainSubCluster_community	
doLouvainSubCluster_multinet	
doRandomWalkCluster	
doSNNCluster	
do_permuttest_random	
DT removeNA	
estimateImageBg	
exportGiottoViewer	
exprCellCellcom	
extractNearestNetwork	
fDataDT	
filterCellProximityGenes	
filterCombinations	
filterCPG	
filterDistributions	
filterGiotto	
findCellProximityGenes	
findCellProximityGenes_per_interaction	
findCPG	
findGiniMarkers	
findGiniMarkers_one_vs_all	
findMarkers_one_vs_all	
findMastMarkers	143

findMastMarkers_one_vs_all	
findNetworkNeighbors	
findScranMarkers	
findScranMarkers_one_vs_all	
find_grid_2D	
find_grid_3D	
$find_grid_x$	
find_grid_y	
find_grid_z	
FSV_show	149
get10Xmatrix	150
getClusterSimilarity	150
getDendrogramSplits	151
getDistinctColors	152
getGiottoImage	153
get_os	153
giotto-class	154
heatmSpatialCorGenes	154
hyperGeometricEnrich	156
insertCrossSectionGenePlot3D	157
insertCrossSectionSpatPlot3D	158
jackstrawPlot	
kmeans_binarize	
loadHMRF	161
makeSignMatrixPAGE	162
makeSignMatrixRank	
make_simulated_network	
mergeClusters	164
my_arowMeans	
my_growMeans	
my_rowMeans	165
nnDT to kNN	166
node_clusters	166
normalizeGiotto	167
PAGEEnrich	
pca_giotto	169
pDataDT	170
plotCCcomDotplot	170
plotCCcomHeatmap	171
plotCellProximityGenes	
plotCombineCCcom	
plotCombineCellCellCommunication	
plotCombineCellProximityGenes	
plotCombineCPG	
plotCPG	
plotGiottoImage	
plotHeatmap	
plotICG	
plotInteractionChangedGenes	
plotly_axis_scale_2D	
plotly_axis_scale_3D	
plotly_grid	

plotly_network	
plotMetaDataCellsHeatmap	
plotMetaDataHeatmap	
plotPCA	
plotPCA_2D	
plotPCA_3D	
plotRankSpatvsExpr	
plotRecovery	
plotRecovery_sub	
plotStatDelaunayNetwork	
plotTSNE	
plotTSNE_2D	
plotTSNE_3D	
plotUMAP	. 205
plotUMAP_2D	. 207
plotUMAP_3D	. 209
print.giotto	. 210
rankEnrich	. 210
rankSpatialCorGroups	. 211
rank_binarize	. 212
readExprMatrix	. 212
readGiottoInstructions	. 213
removeCellAnnotation	. 214
removeGeneAnnotation	. 214
replaceGiottoInstructions	
runPCA	
runPCA_factominer	
runPCA_prcomp_irlba	
runtSNE	
runUMAP	
screePlot	
selectPatternGenes	
select_expression_values	
select_spatialNetwork	
set_giotto_python_path	
show,giotto-method	
showClusterDendrogram	
showClusterHeatmap	
showGiottoImageNames	
show Giotto Instructions	
showGrids	
showNetworks	
showPattern	
showPattern2D	
showPattern3D	
showPatternGenes	
showProcessingSteps	
showSaveParameters	
showSpatialCorGenes	
signPCA	
silhouetteRank	
spatCellCellcom	. 439

spatCellPlot
spatCellPlot2D
spatDimCellPlot
spatDimCellPlot2D
spatDimGenePlot
spatDimGenePlot2D
spatDimGenePlot3D
spatDimPlot
spatDimPlot2D
spatDimPlot3D
spatGenePlot
spatGenePlot2D
spatGenePlot3D
spatialAEH
spatialDE
spatNetwDistributions
spatNetwDistributionsDistance
spatNetwDistributionsKneighbors
spatPlot
spatPlot2D
spatPlot3D
spat_fish_func
spat_OR_func
specificCellCellcommunicationScores
split_dendrogram_in_two
standardise_giotto
stitchFieldCoordinates
stitchTileCoordinates
subClusterCells
subsetGiotto
subsetGiottoLocs
trendSceek
updateGiottoImage
viewHMRFresults
viewHMRFresults2D
viewHMRFresults3D
violinPlot
visDimGenePlot
visDimGenePlot_2D_ggplot
visDimGenePlot_3D_plotly
visDimPlot
visDimPlot_2D_ggplot
visDimPlot_2D_plotly
visDimPlot_3D_plotly
visForceLayoutPlot
visGenePlot
visGenePlot_2D_ggplot
visGenePlot_3D_plotly
visPlot
visPlot_2D_ggplot
visPlot_2D_plotly
visPlot_3D_plotly

8 addCellIntMetadata

34	
34	
34	
34	341
33	338
33	
33	
33	
	3

_ . .

aaaCeнIntMetaaata

Description

Creates an additional metadata column with information about interacting and non-interacting cell types of the selected cell-cell interaction.

Usage

```
addCellIntMetadata(
  gobject,
  spatial_network = "spatial_network",
  cluster_column,
  cell_interaction,
  name = "select_int",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

spatial_network

name of spatial network to use

cluster_column column of cell types

cell_interaction

cell-cell interaction to use

name

name for the new metadata column

return_gobject return an updated giotto object
```

Details

This function will create an additional metadata column which selects interacting cell types for a specific cell-cell interaction. For example, if you want to color interacting astrocytes and oligodendrocytes it will create a new metadata column with the values "select_astrocytes", "select_oligodendrocytes", "other_astrocytes", "other_oligodendrocytes" and "other". Where "other" is all other cell types found within the selected cell type column.

addCellMetadata 9

Value

Giotto object

Examples

```
addCellIntMetadata(gobject)
```

addCellMetadata

addCellMetadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  vector_name = NULL,
  by_column = FALSE,
  column_cell_ID = NULL
)
```

Arguments

```
gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)

vector_name (optional) custom name if you provide a single vector

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional cell metadata in two manners:

- 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject)
- 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

giotto object

Examples

```
addCellMetadata(gobject)
```

10 addCellStatistics

 ${\tt addCellStatistics}$

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addCellStatistics(gobject)
```

addGeneMetadata 11

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

```
gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on gene_ID column in fDataDT

column_gene_ID column name of new metadata to use if by_column = TRUE
```

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

Value

giotto object

Examples

```
addGeneMetadata(gobject)
```

addGenesPerc

addGenesPerc

Description

calculates the total percentage of (normalized) counts for a subset of selected genes

```
addGenesPerc(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  vector_name = "gene_perc",
  return_gobject = TRUE
)
```

12 addGeneStatistics

Arguments

Value

```
giotto object if return_gobject = TRUE, else a vector with
```

Examples

```
addGenesPerc(gobject)
```

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
detection_threshold
detection threshold to consider a gene detected
return_gobject boolean: return giotto object (default = TRUE)
```

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

addGiottoImage 13

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addGeneStatistics(gobject)
```

 ${\tt addGiottoImage}$

add Giot to Image

Description

Adds giotto image objects to your giotto object

Usage

```
addGiottoImage(gobject, images)
```

Arguments

gobject giotto object

images list of giotto image objects, see createGiottoImage

Value

an updated Giotto object with access to the list of images

Examples

```
addGiottoImage(mg_object)
```

```
add {\tt GiottoImageToSpatPlot}
```

addGiottoImageToSpatPlot

Description

Add a giotto image to a spatial ggplot object post creation

Usage

```
addGiottoImageToSpatPlot(spatpl = NULL, gimage = NULL)
```

Arguments

```
spatpl a spatial ggplot object
```

gimage a giotto image, see createGiottoImage

14 addHMRF

Value

an updated spatial ggplot object

Examples

addGiottoImageToSpatPlot(mg_object)

addHMRF

addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

HMRF output from doHMRF()

k number of domains

hmrf_name specify a custom name

Details

Description ...

Value

giotto object

Examples

addHMRF(gobject)

addNetworkLayout 15

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

Arguments

Details

This function creates layout coordinates based on the provided kNN or sNN. Currently only the force-directed graph layout "drl", see layout_with_drl, is implemented. This provides an alternative to tSNE or UMAP based visualizations.

Value

giotto object with updated layout for selected NN network

Examples

```
addNetworkLayout(gobject)
```

16 adjustGiottoMatrix

addStatistics

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

See addGeneStatistics and addCellStatistics

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
addStatistics(gobject)
```

adjustGiottoMatrix adjustGiottoMatrix

Description

normalize and/or scale expresion values of Giotto object

all_plots_save_function

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

batch_columns metadata columns that represent different batch (max = 2)

covariate_columns

metadata columns that represent covariates to regress out

return_gobject boolean: return giotto object (default = TRUE)

update_slot expression slot that will be updated (default = custom)
```

Details

This function implements the removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

giotto object

Examples

```
adjustGiottoMatrix(gobject)
```

```
all_plots_save_function 
 all_plots_save_function
```

Description

Function to automatically save plots to directory of interest

```
all_plots_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
```

```
default_save_name = "giotto_plot",
    save_format = NULL,
    show_saved_plot = F,
    ncol = 1,
    nrow = 1,
    scale = 1,
    base_width = NULL,
    base_height = NULL,
    base_aspect_ratio = NULL,
    units = NULL,
    dpi = NULL,
    limitsize = TRUE,
    ...
)
```

Arguments

```
gobject
                  giotto object
plot_object
                  object to plot
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
                  name of plot
save_name
default_save_name
                  default name to save a plot
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
                  number of columns
ncol
                  number of rows
nrow
scale
                  scale
base_width
                  width
base_height
                  height
base_aspect_ratio
                  aspect ratio
units
                  units
dpi
                  Plot resolution
                  When TRUE (the default), ggsave will not save images larger than 50x50 inches,
limitsize
                  to prevent the common error of specifying dimensions in pixels.
```

See Also

```
{\tt general\_save\_function}
```

Examples

```
all_plots_save_function(gobject)
```

additional parameters to ggplot_save_function or general_save_function

annotateGiotto 19

annotateGiotto

annotate Giotto

Description

Converts cluster results into provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Arguments

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

giotto object

Examples

```
annotateGiotto(gobject)
```

```
annotate Spatial Grid \qquad annotate Spatial Grid
```

Description

annotate spatial grid with cell ID and cell metadata (optional)

Usage

```
annotateSpatialGrid(
  gobject,
  spatial_grid_name = "spatial_grid",
  cluster_columns = NULL
)
```

Arguments

Value

annotated spatial grid data.table

Examples

```
annotateSpatialGrid()
```

```
annotateSpatialNetwork
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column,
  create_full_network = F
)
```

Arguments

Value

annotated network in data.table format

Examples

```
annotateSpatialNetwork(gobject)
```

```
annotate\_spatlocs\_with\_spatgrid\_2D \\ annotate\_spatlocs\_with\_spatgrid\_2D
```

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_2D()
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_3D()
```

```
average_gene_gene_expression_in_groups

average_gene_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(
  gobject,
  cluster_column = "cell_types",
  gene_set_1,
  gene_set_2
)
```

Arguments

```
gobject giotto object to use
cluster_column cluster column with cell type information
gene_set_1 first specific gene set from gene pairs
gene_set_2 second specific gene set from gene pairs
```

binSpect 23

Details

Details will follow soon.

Value

data.table with average expression scores for each cluster

Examples

```
average_gene_gene_expression_in_groups(gobject)
```

binSpect

binSpect

Description

Previously: binGetSpatialGenes. BinSpect (Binary Spatial Extraction of genes) is a fast computational method that identifies genes with a spatially coherent expression pattern.

Usage

```
binSpect(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  nstart = 3,
  iter_max = 10,
  percentage_rank = 30,
  do_fisher_test = TRUE,
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

24 binSpect

iter_max kmeans: iter.max parameter

percentage_rank

percentage of top cells for binarization

do_fisher_test perform fisher test

calc_hub calculate the number of hub cells

hub_min_int minimum number of cell-cell interactions for a hub cell

get_av_expr calculate the average expression per gene of the high expressing cells

get_high_expr calculate the number of high expressing cells per gene

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE

verbose be verbose

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a spatial network based on the physical coordinates
- 3. contingency table: A contingency table is calculated based on all edges of neighboring cells and the binarized expression (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- Average expression of each gene within high expressing cells
- Number of hub cells, these are high expressing cells that have a user defined number of high expressing neighbors

By selecting a subset of likely spatial genes (e.g. soft thresholding highly variable genes) or using multiple cores can accelerate the speed.

Value

data.table with results (see details)

Examples

binSpect(gobject)

calculateHVG 25

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
method
                  method to calculate highly variable genes
reverse_log_scale
                  reverse log-scale of expression values (default = FALSE)
                  if reverse_log_scale is TRUE, which log base was used?
logbase
expression_threshold
                  expression threshold to consider a gene detected
nr_expression_groups
                  number of expression groups for cov_groups
{\tt zscore\_threshold}
                  zscore to select hvg for cov_groups
HVGname
                  name for highly variable genes in cell metadata
difference_in_cov
                  minimum difference in coefficient of variance required
show_plot
                  show plot
return_plot
                  return ggplot object
```

26 calculateMetaTable

Details

Currently we provide 2 ways to calculate highly variable genes: 1. high coeff of variance (COV) within groups:

First genes are binned (*nr_expression_groups*) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (*zscore_threshold*) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (difference_in_cov) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)
VC_small <- addStatistics(gobject = VC_small)
# 3. highly variable genes detection
VC_small <- calculateHVG(gobject = VC_small)</pre>
```

calculateMetaTable

calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

calculateMetaTableCells 27

Arguments

```
gobject giotto object
expression_values
expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

```
{\tt calculateMetaTableCells}
```

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

Examples

```
calculateMetaTableCells(gobject)
```

28 cellProximityBarplot

```
calculate\_distance\_and\_weight \\ calculate\_distance\_and\_weight
```

Description

```
calculate_distance_and_weight
```

Usage

```
calculate_distance_and_weight(
  networkDT = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  d2_or_d3 = c(2, 3)
)
```

Arguments

```
networkDT spatial network as data.table
sdimx spatial dimension x
sdimy spatial dimension y
sdimz spatial dimension z
d2_or_d3 number of dimensions
```

 ${\tt cellProximityBarplot} \quad \textit{cellProximityBarplot}$

Description

Create barplot from cell-cell proximity scores

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

```
gobject
                  giotto object
CPscore
                  CPscore, output from cellProximityEnrichment()
                  filter on minimum original cell-cell interactions
min_orig_ints
                  filter on minimum simulated cell-cell interactions
min_sim_ints
                  p-value
p_val
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot barplot

Examples

```
cellProximityBarplot(CPscore)
```

```
cellProximityEnrichment
```

cellProximityEnrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by reshuffling the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

Examples

```
cellProximityEnrichment(gobject)
```

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

cellProximityNetwork 31

Arguments

```
giotto object
gobject
CPscore
                  CPscore, output from cellProximityEnrichment()
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
                  numerical vector of length 3 to represent min, mean and maximum
color_breaks
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot heatmap

Examples

```
cellProximityHeatmap(CPscore)
```

```
cellProximityNetwork cellProximityNetwork
```

Description

Create network from cell-cell proximity scores

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = c("Fruchterman", "DrL", "Kamada-Kawai"),
```

```
only_show_enrichment_edges = F,
edge_width_range = c(0.1, 2),
node_size = 4,
node_text_size = 6,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "cellProximityNetwork")
```

Arguments

```
gobject
                  giotto object
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
edge_weight_range_depletion
                  numerical vector of length 2 to rescale depleted edge weights
edge_weight_range_enrichment
                  numerical vector of length 2 to rescale enriched edge weights
layout
                  layout algorithm to use to draw nodes and edges
only_show_enrichment_edges
                  show only the enriched pairwise scores
edge_width_range
                  range of edge width
                  size of nodes
node_size
node_text_size size of node labels
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

cellProximitySpatPlot 33

Value

```
igraph plot
```

Examples

```
cellProximityNetwork(CPscore)
```

```
cellProximitySpatPlot cellProximitySpatPlot
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot(gobject, ...)
```

Arguments

```
gobject
                  giotto object
                  additional parameters
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
```

```
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
\verb"point_other_border_stroke"
                  stroke size of other points
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
cellProximitySpatPlot2D and cellProximitySpatPlot3D for 3D
```

Examples

```
cellProximitySpatPlot(gobject)
```

```
cellProximitySpatPlot2D
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
```

```
cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
 point_size_select = 2,
 point_select_border_col = "black",
 point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
 point_other_border_col = "lightgrey",
 point_other_border_stroke = 0.01,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot2D"
)
```

Arguments

```
giotto object
gobject
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show spatial network of selected cells
show_network
show_other_network
                  show spatial network of not selected cells
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
```

```
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_alpha_other
                  opacity of other points
{\tt point\_other\_border\_col}
                  border color of other points
point_other_border_stroke
                  stroke size of other points
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

cellProximitySpatPlot2D(gobject)

```
cellProximitySpatPlot3D
```

cell Proximity Spat Plot 2D

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot3D",
)
```

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimz')
sdimz
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
```

```
show_other_cells
                  decide if show cells not in network
                  show spatial network of selected cells
show_network
show_other_network
                  show spatial network of not selected cells
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
point_size_other
                  size of other points
point_alpha_other
                  opacity of other points
axis_scale
                  scale of axis
custom_ratio
                  custom ratio of axes
x_ticks
                  ticks on x-axis
                  ticks on y-axis
y_ticks
                  ticks on z-axis
z_ticks
                  show plots
show_plot
return_plot
                  return plotly object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters
. . .
```

Details

Description of parameters.

Value

plotly

Examples

cellProximitySpatPlot3D(gobject)

cellProximityVisPlot 39

cellProximityVisPlot cellProximityVisPlot

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_{ticks} = NULL,
  plot_method = c("ggplot", "plotly"),
)
```

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
sdimz z-axis dimension name (default = 'sdimz')

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot or plotly

Examples

cellProximityVisPlot(gobject)

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximityVisPlot_2D_ggplot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
)
```

```
color_as_factor
```

convert color column to factor

show_other_cells

decide if show cells not in network

show_network show underlying spatial network

network_color color of spatial network

 $spatial_network_name$

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot

Examples

cellProximityVisPlot_2D_ggplot(gobject)

```
cell Proximity VisPlot\_2D\_plotly \\ cell Proximity VisPlot\_2D\_plotly
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_2D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 2,
  point_size_other = 1,
  point_alpha_other = 0.3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
)
```

```
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cell Proximity VisPlot\_2D\_plotly (gobject)
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_3D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
```

```
color_as_factor = T,
show_other_cells = F,
show_network = F,
show_other_network = F,
network_color = NULL,
spatial_network_name = "Delaunay_network",
show\_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
show_legend = T,
point_size_select = 2,
point_size_other = 1,
point_alpha_other = 0.5,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_{ticks} = NULL,
```

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimz')
sdimz
cell color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cellProximityVisPlot_3D_plotly(gobject)
```

 ${\tt changeGiottoInstructions}$

change Giot to Instructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

params parameter(s) to change

new_values new value(s) for parameter(s)

return_gobject (boolean) return giotto object
```

Value

giotto object with one or more changed instructions

Examples

changeGiottoInstructions()

changeImageBg 47

changeImageBg	changeImageBg	
---------------	---------------	--

Description

Function to change the background color of a magick image plot to another color

Usage

```
changeImageBg(
  mg_object,
  bg_color,
  perc_range = 10,
  new_color = "#FFFFFF",
  new_name = NULL
)
```

Arguments

```
mg_object magick image or giotto image object
bg_color estimated current background color
perc_range range around estimated background color to include (percentage)
new_color new background color
new_name change name of Giotto image
```

Value

magick image or giotto image object with updated background color

Examples

```
changeImageBg(mg_object)
```

clusterCells clusterCells

Description

cluster cells using a variety of different methods

Usage

```
clusterCells(
  gobject,
  cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
        "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
```

48 clusterCells

```
pyth_leid_resolution = 1,
     pyth_leid_weight_col = "weight",
     pyth_leid_part_type = c("RBConfigurationVertexPartition",
        "ModularityVertexPartition"),
     pyth_leid_init_memb = NULL,
     pyth_leid_iterations = 1000,
     pyth_louv_resolution = 1,
     pyth_louv_weight_col = NULL,
     python_louv_random = F,
     python_path = NULL,
     louvain_gamma = 1,
     louvain\_omega = 1,
     walk\_steps = 4,
     walk_clusters = 10,
     walk_weights = NA,
     sNNclust_k = 20,
     sNNclust_eps = 4,
     sNNclust_minPts = 16,
     borderPoints = TRUE,
     expression_values = c("normalized", "scaled", "custom"),
     genes_to_use = NULL,
     dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
     dim_reduction_name = "pca",
     dimensions_to_use = 1:10,
     distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
        "manhattan", "canberra", "binary", "minkowski"),
     km_centers = 10,
     km_iter_max = 100,
     km_nstart = 1000,
     km_algorithm = "Hartigan-Wong",
     hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
        "mcquitty", "median", "centroid"),
     hc_k = 10,
     hc_h = NULL
     return_gobject = TRUE,
     set\_seed = T,
     seed_number = 1234
   )
Arguments
   gobject
                   giotto object
   cluster_method community cluster method to use
                   name for new clustering result
   name
   nn_network_to_use
                   type of NN network to use (kNN vs sNN)
   network_name
                   name of NN network to use
   pyth_leid_resolution
                   resolution for leiden
   pyth_leid_weight_col
                   column to use for weights
```

clusterCells 49

pyth_leid_part_type

partition type to use

pyth_leid_init_memb

initial membership

pyth_leid_iterations

number of iterations

pyth_louv_resolution

resolution for louvain

pyth_louv_weight_col

python louvain param: weight column

python_louv_random

python louvain param: random

python_path specify specific path to python if required

louvain_gamma louvain param: gamma or resolution

louvain_omega louvain param: omega

walk_steps randomwalk: number of steps
walk_clusters randomwalk: number of clusters
walk_weights randomwalk: weight column
sNNclust_k SNNclust: k neighbors to use

sNNclust_eps SNNclust: epsilon

sNNclust_minPts

SNNclust: min points

borderPoints SNNclust: border points

expression_values

expression values to use

$$\label{eq:genes_to_use} \begin{split} & \text{genes_to_use} & = NULL, \\ & \text{dim_reduction_to_use} \end{split}$$

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

 $distance_method$

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject | boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Wrapper for the different clustering methods.

Value

giotto object with new clusters appended to cell metadata

See Also

 $\label{lem:cluster_doLouvainCluster_multinet} do Louvain Cluster_community, do Louvain Cluster_multinet, do Louvain Cluster, do Random Walk Cluster, do SNN Cluster, do Kmeans, do H clust Cluster, do Louvain Cluster, do Louva$

Examples

```
clusterCells(gobject)
```

clusterSpatialCorGenes

cluster Spatial Cor Genes

Description

Cluster based on spatially correlated genes

Usage

```
clusterSpatialCorGenes(
  spatCorObject,
  name = "spat_clus",
  hclust_method = "ward.D",
  k = 10,
  return_obj = TRUE
)
```

Arguments

spatCorObject spatial correlation object

name name for spatial clustering results
hclust_method method for hierarchical clustering
k number of clusters to extract

return_obj return spatial correlation object (spatCorObject)

Value

spatCorObject or cluster results

Examples

```
clusterSpatialCorGenes(gobject)
```

combCCcom 51

combCCcom combCCcom

Description

Combine spatial and expression based cell-cell communication data.tables

Usage

```
combCCcom(
  spatialCC,
  exprCC,
  min_lig_nr = 3,
  min_rec_nr = 3,
  min_padj_value = 1,
  min_log2fc = 0,
  min_av_diff = 0
)
```

Arguments

```
spatialCC spatial cell-cell communication scores
exprCC expression cell-cell communication scores
min_lig_nr minimum number of ligand cells
min_rec_nr minimum number of receptor cells
min_padj_value minimum adjusted p-value
min_log2fc minimum log2 fold-change
min_av_diff minimum average expression difference
```

Value

combined data.table with spatial and expression communication data

Examples

```
combCCcom(gobject)
```

```
combine \textit{CellProximityGenes} \\ combine \textit{CellProximityGenes}
```

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCellProximityGenes(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpgObject
                  cell proximity gene score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
min_int_cells
                  minimum number of interacting cell type
min_fdr
                  minimum adjusted p-value
                  minimum absolute spatial expression difference
min_spat_diff
                  minimum absolute log2 fold-change
min_log2_fc
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

Examples

```
{\tt combineCellProximityGenes(gobject)}
```

 $combine \verb|CellProximityGenes_per_interaction| \\ combine CellProximity Genes_per_interaction|$

Description

Combine CPG scores per interaction

Usage

```
combineCellProximityGenes_per_interaction(
  cpgObject,
  sel_int,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5
)
```

Examples

 ${\tt combineCellProximityGenes_per_interaction()}$

combineCPG

combineCPG

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCPG(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

54 combineMetadata

Arguments

```
cpgObject
                  cell proximity gene score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
min_int_cells
                  minimum number of interacting cell type
                  minimum adjusted p-value
min_fdr
min_spat_diff
                  minimum absolute spatial expression difference
min_log2_fc
                  minimum absolute log2 fold-change
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

Examples

```
combineCPG(gobject)
```

combineMetadata combineMetadata

Description

This function combines the cell metadata with spatial locations and enrichment results from createSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

Arguments

```
gobject Giotto object
spat_enr_names names of spatial enrichment results to include
```

Value

Extended cell metadata in data.table format.

Examples

```
combineMetadata(gobject)
```

convertEnsemblToGeneSymbol

convert Ensembl To Gene Symbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

matrix an expression matrix with ensembl gene IDs as rownames

species species to use for gene symbol conversion

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

Examples

```
convertEnsemblToGeneSymbol(matrix)
```

Description

converts a magick image object to a data.table

Usage

```
convert_mgImage_to_array_DT(mg_object)
```

Arguments

mg_object magick image or Giotto image object

Value

data.table with image pixel information

56 createCrossSection

createCrossSection

createCrossSection

Description

Create a virtual 2D cross section.

Usage

```
createCrossSection(
  gobject.
 name = "cross_section",
  spatial_network_name = "Delaunay_network",
  thickness_unit = c("cell", "natural"),
  slice_thickness = 2,
  cell_distance_estimate_method = "mean",
  extend_ratio = 0.2,
 method = c("equation", "3 points", "point and norm vector",
    "point and two plane vectors"),
  equation = NULL,
  point1 = NULL,
 point2 = NULL,
  point3 = NULL,
 normVector = NULL,
 planeVector1 = NULL,
 planeVector2 = NULL,
 mesh\_grid\_n = 20,
  return_gobject = TRUE
)
```

Arguments

```
gobject
                   giotto object
name
                   name of cress section object. (default = cross_section)
spatial_network_name
                   name of spatial network object. (default = Delaunay_network)
thickness_unit unit of the virtual section thickness. If "cell", average size of the observed
                   cells is used as length unit. If "natural", the unit of cell location coordinates
                   is used.(default = cell)
slice_thickness
                   thickness of slice
{\tt cell\_distance\_estimate\_method}
                   method to estimate average distance between neighboring cells. (default = mean)
                   deciding the span of the cross section meshgrid, as a ratio of extension compared
extend_ratio
                   to the borders of the vitural tissue section. (default = 0.2)
method
                   method to define the cross section plane. If equation, the plane is defined by
                   a four element numerical vector (equation) in the form of c(A,B,C,D), corre-
```

sponding to a plane with equation Ax+By+Cz=D. If 3 points, the plane is define by the coordinates of 3 points, as given by point1, point2, and point3. If point

createGiottoImage 57

	and norm vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of one norm vector (normVector) to the plane. If point and two plane vector, the plane is defined by the coordinates of one point (point1) in the plane and the coordinates of two vectors (planeVector1, planeVector2) in the plane. (default = equation)
equation	equation required by method "equation".equations needs to be a numerical vector of length 4, in the form of $c(A,B,C,D)$, which defines plane $Ax+By+Cz=D$.
point1	coordinates of the first point required by method "3 points", "point and norm vector", and "point and two plane vectors".
point2	coordinates of the second point required by method "3 points"
point3	coordinates of the third point required by method "3 points"
normVector	coordinates of the norm vector required by method "point and norm vector"
planeVector1	coordinates of the first plane vector required by method "point and two plane vectors"
planeVector2	coordinates of the second plane vector required by method "point and two plane vectors"
mesh_grid_n	numer of meshgrid lines to generate along both directions for the cross section plane.
return_gobject	boolean: return giotto object (default = TRUE)

Details

Creates a virtual 2D cross section object for a given spatial network object. The users need to provide the definition of the cross section plane (see method).

Value

giotto object with updated spatial network slot

createGiottoImage

Description

Creates a giotto image that can be added to a Giotto object and/or used to add an image to the spatial plotting functions

Usage

```
createGiottoImage(
  gobject = NULL,
  spatial_locs = NULL,
  mg_object,
  name = "image",
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0
)
```

58 createGiottoInstructions

Arguments

```
gobject
                  giotto object
spatial_locs
                  spatial locations (alternative if giobject = NULL)
mg_object
                  magick image object
name
                  name for the image
                  adjustment of the maximum x-value to align the image
xmax_adj
xmin_adj
                  adjustment of the minimum x-value to align the image
                  adjustment of the maximum y-value to align the image
ymax_adj
                  adjustment of the minimum y-value to align the image
ymin_adj
```

Value

a giotto image object

Examples

```
createGiottoImage(mg_object)
```

createGiottoInstructions

createGiottoInstructions

Description

Function to set global instructions for giotto functions

Usage

```
createGiottoInstructions(
  python_path = NULL,
  show_plot = NULL,
  return_plot = NULL,
  save_plot = NULL,
  save_dir = NULL,
  plot_format = NULL,
  dpi = NULL,
  units = NULL,
  height = NULL,
  width = NULL
```

```
python_path path to python binary to use
show_plot print plot to console, default = TRUE
return_plot return plot as object, default = TRUE
save_plot automatically save plot, dafault = FALSE
save_dir path to directory where to save plots
```

createGiottoObject 59

```
plot_format format of plots (defaults to png)
dpi resolution for raster images
units units of format (defaults to in)
height height of plots
width width of plots
```

Value

named vector with giotto instructions

See Also

More online information can be found here $https://rubd.github.io/Giotto_site/articles/instructions_and_plotting.html$

Examples

```
createGiottoInstructions()
```

createGiottoObject
create Giotto object

Description

Function to create a giotto object

Usage

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
  gene_metadata = NULL,
  spatial_network = NULL,
  spatial_network_name = NULL,
  spatial_grid = NULL,
  spatial_grid_name = NULL,
  spatial_enrichment = NULL,
  spatial_enrichment_name = NULL,
  dimension_reduction = NULL,
  nn_network = NULL,
  images = NULL,
  offset_file = NULL,
  instructions = NULL,
  cores = NA
)
```

60 createGiottoObject

Arguments

raw_exprs matrix with raw expression counts [required]

spatial_locs data.table or data.frame with coordinates for cell centroids

norm_expr normalized expression values

norm_scaled_expr

scaled expression values

custom_expr custom expression values cell_metadata cell annotation metadata gene_metadata gene annotation metadata

spatial_network

list of spatial network(s)

spatial_network_name

list of spatial network name(s)

spatial_grid list of spatial grid(s)

spatial_grid_name

list of spatial grid name(s)

spatial_enrichment

list of spatial enrichment score(s) for each spatial region

spatial_enrichment_name

list of spatial enrichment name(s)

dimension_reduction

list of dimension reduction(s)

nn_network list of nearest neighbor network(s)

images list of images

offset_file file used to stitch fields together (optional)

instructions list of instructions or output result from createGiottoInstructions cores how many cores or threads to use to read data if paths are provided

Details

[**Requirements**] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. This matrix can be provided as a base matrix, sparse Matrix, data.frame, data.table or as a path to any of those. To include spatial information about cells (or regions) you need to provide a matrix, data.table or data.frame (or path to them) with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- spatial enrichments
- · dimensions reductions
- nearest neighbours networks
- · images

Value

giotto object

Examples

```
createGiottoObject(raw_exprs, spatial_locs)
```

createGiottoVisiumObject

createGiottoVisiumObject

Description

creates Giotto object directly from a 10X visium folder

Usage

```
createGiottoVisiumObject(
  visium_dir = NULL,
  expr_data = c("raw", "filter"),
  gene_column_index = 1,
  png_name = NULL,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  instructions = NULL,
  cores = NA
)
```

```
visium_dir
                  path to the 10X visium directory [required]
expr_data
                  raw or filtered data (see details)
gene_column_index
                  which column index to select (see details)
                  select name of png to use (see details)
png_name
xmax_adj
                  adjustment of the maximum x-value to align the image
                  adjustment of the minimum x-value to align the image
xmin_adj
                  adjustment of the maximum y-value to align the image
ymax_adj
                  adjustment of the minimum y-value to align the image
ymin_adj
instructions
                  list of instructions or output result from createGiottoInstructions
                  how many cores or threads to use to read data if paths are provided
cores
```

62 createHeatmap_DT

Details

expr_data: raw will take expression data from raw_feature_bc_matrix and filter from filtered_feature_bc_matrix

- gene_column_index: which gene identifiers (names) to use if there are multiple columns (e.g. ensemble and gene symbol)
- png_name: by default the first png will be selected, provide the png name to override this (e.g. myimage.png)

Value

giotto object

Examples

```
createGiottoVisiumObject(visium_dir)
```

createHeatmap_DT

 $createHeatmap_DT$

Description

creates order for clusters

Usage

```
createHeatmap_DT(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D",
  gene_order = c("correlation", "custom"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete"
)
```

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters
```

createMetagenes 63

Details

Creates input data.tables for plotHeatmap function.

Value

list

Examples

```
createHeatmap_DT(gobject)
```

createMetagenes

createMetagenes

Description

This function creates an average metagene for gene clusters.

Usage

```
createMetagenes(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  gene_clusters,
  name = "metagene",
  return_gobject = TRUE
)
```

```
gobject Giotto object
expression_values
expression values to use
gene_clusters numerical vector with genes as names
name name of the metagene results
return_gobject return giotto object
```

64 createNearestNetwork

Details

```
An example for the 'gene_clusters' could be like this: cluster_vector = c(1, 1, 2, 2); names(cluster_vector) = c('geneA', 'geneB', 'geneC', 'geneD')
```

Value

giotto object

Examples

```
createMetagenes(gobject)
```

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour (NN) network

Usage

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  name = "sNN.pca",
  return_gobject = TRUE,
  k = 30,
  minimum_shared = 5,
  top_shared = 3,
  verbose = T,
  ...
)
```

createNearestNetwork 65

name arbitrary name for NN network

return_gobject boolean: return giotto object (default = TRUE)

k number of k neighbors to use minimum_shared minimum shared neighbors

top_shared keep at ...
verbose be verbose

... additional parameters for kNN and sNN functions from dbscan

Details

This function creates a k-nearest neighbour (kNN) or shared nearest neighbour (sNN) network based on the provided dimension reduction space. To run it directly on the gene expression matrix set $dim_reduction_to_use = NULL$.

See also kNN and sNN for more information about how the networks are created.

Output for kNN:

• from: cell_ID for source cell

• to: cell_ID for target cell

• distance: distance between cells

• weight: weight = 1/(1 + distance)

Output for sNN:

• from: cell_ID for source cell

• to: cell_ID for target cell

• distance: distance between cells

• weight: 1/(1 + distance)

• shared: number of shared neighbours

• rank: ranking of pairwise cell neighbours

For sNN networks two additional parameters can be set:

- minimum_shared: minimum number of shared neighbours needed
- top_shared: keep this number of the top shared neighbours, irrespective of minimum_shared setting

Value

giotto object with updated NN network

Examples

createNearestNetwork(gobject)

```
create Spatial Delaunay Network \\ create Spatial Delaunay Network
```

Description

Create a spatial Delaunay network based on cell centroid physical distances.

Usage

```
createSpatialDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  name = "Delaunay_network",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  verbose = T,
  return_gobject = TRUE,
  ...
)
```

gobject	giotto object	
dimensions	which spatial dimensions to use (default = all)	
name	name for spatial network (default = 'delaunay_network')	
maximum_distance		
	distance cuttof for Delaunay neighbors to consider. If "auto", "upper wisker" value of the distance vector between neighbors is used; see the boxplotgraphics documentation for more details.(default = "auto")	
minimum_k	minimum number of neighbours if maximum_distance != NULL	
options	(geometry) String containing extra control options for the underlying Qhull command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)	
Υ	(RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh boundary.	
j	(RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.	
S	(RTriangle) Specifies the maximum number of added Steiner points.	
verbose	verbose	
return_gobject	boolean: return giotto object (default = TRUE)	
	Other parameters of the triangulate function	

createSpatialEnrich 67

Details

Creates a spatial Delaunay network as explained in delaunayn (default), deldir, or triangulate.

Value

giotto object with updated spatial network slot

Examples

```
createSpatialDelaunayNetwork(gobject)
```

 $create Spatial Enrich \qquad \textit{create Spatial Enrich}$

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
createSpatialEnrich(
  gobject,
  enrich_method = c("PAGE", "rank", "hypergeometric"),
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  p_value = FALSE,
  n_genes = 100,
  n_times = 1000,
  top_percentage = 5,
  output_enrichment = c("original", "zscore"),
  name = "PAGE",
  return_gobject = TRUE
)
```

```
gobject
                  Giotto object
                  method for gene signature enrichment calculation
enrich_method
                  Matrix of signature genes for each cell type / process
sign_matrix
expression_values
                  expression values to use
reverse_log_scale
                  reverse expression values from log scale
logbase
                  log base to use if reverse_log_scale = TRUE
p_value
                  calculate p-value (default = FALSE)
                  (page) number of genes of permutation iterations to calculate p-value
n_genes
```

68 createSpatialGrid

Details

For details see the individual functions:

```
PAGE: PAGEEnrichPAGE: rankEnrichPAGE: hyperGeometricEnrich
```

Value

Giotto object or enrichment results if return_gobject = FALSE

Examples

```
createSpatialEnrich(gobject)
```

Description

Create a spatial grid.

Usage

```
createSpatialGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

```
gobject giotto object
sdimx_stepsize stepsize along the x-axis
sdimy_stepsize stepsize along the y-axis
sdimz_stepsize stepsize along the z-axis
```

createSpatialGrid_2D 69

```
minimum_padding
minimum padding on the edges

name
name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid(gobject)
```

```
createSpatialGrid_2D createSpatialGrid_2D
```

Description

create a spatial grid for 2D spatial data.

Usage

```
createSpatialGrid_2D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_2D(gobject)
```

```
createSpatialGrid_3D createSpatialGrid_3D
```

Description

Create a spatial grid for 3D spatial data.

Usage

```
createSpatialGrid_3D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_3D(gobject)
```

```
createSpatialKNNnetwork
```

createSpatialKNNnetwork

Description

Create a spatial knn network.

Usage

```
createSpatialKNNnetwork(
  gobject,
  method = "dbscan",
  dimensions = "all",
  name = "knn_network",
  k = 4,
  maximum_distance = NULL,
  minimum_k = 0,
  verbose = F,
  return_gobject = TRUE,
  ...
)
```

Arguments

```
gobject giotto object
```

method method to create kNN network

dimensions which spatial dimensions to use (default = all)

name name for spatial network (default = 'spatial_network')k number of nearest neighbors based on physical distance

maximum_distance

distance cuttof for nearest neighbors to consider for kNN network

minimum_k minimum nearest neigbhours if maximum_distance != NULL

verbose verbose

return_gobject | boolean: return giotto object (default = TRUE)

Value

giotto object with updated spatial network slot

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

 $maximum_distance$: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

Examples

```
createSpatialKNNnetwork(gobject)
```

72 createSpatialNetwork

```
create Spatial Network \\ create Spatial Network
```

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  name = NULL,
  dimensions = "all",
  method = c("Delaunay", "kNN"),
delaunay_method = c("deldir", "delaunayn_geometry", "RTriangle"),
maximum_distance_delaunay = "auto",
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  minimum_k = 0,
  knn_method = "dbscan",
  k = 4,
  maximum_distance_knn = NULL,
  verbose = F,
  return_gobject = TRUE,
)
```

gobject	giotto object	
name	<pre>name for spatial network (default = 'spatial_network')</pre>	
dimensions	which spatial dimensions to use (default = all)	
method	which method to use to create a spatial network. (default = Delaunay)	
delaunay_method		
	Delaunay method to use	
maximum_distance_delaunay		
	distance cuttof for nearest neighbors to consider for Delaunay network	
options	(geometry) String containing extra control options for the underlying Qhull command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)	
Υ	(RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh boundary.	
j	(RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.	
S	(RTriangle) Specifies the maximum number of added Steiner points.	
minimum_k	minimum nearest neigbhours if maximum_distance != NULL	

```
knn_method method to create kNN network
k number of nearest neighbors based on physical distance
maximum_distance_knn
distance cuttof for nearest neighbors to consider for kNN network
verbose verbose
return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. For Delaunay method, neighbors will be decided by delaunay triangulation and a maximum distance criteria. For kNN method, number of neighbors can be determined by k, or maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

Value

giotto object with updated spatial network slot

Examples

```
createSpatialNetwork(gobject)
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0
)
```

Arguments

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom")
)
```

Arguments

```
gobject giotto object

meta_data_name name of metadata column to use
expression_values

which expression values to use
```

Value

data.table with average gene epression values for each factor

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(
  gobject,
  cluster_column = "cell_types",
  needed_cell_types
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

Examples

```
create_cell_type_random_cell_IDs(gobject)
```

Description

create a crossSection object

Usage

```
create_crossSection_object(
  name = NULL,
  method = NULL,
  thickness_unit = NULL,
  slice_thickness = NULL,
  plane_equation = NULL,
  mesh_grid_n = NULL,
  mesh_obj = NULL,
  cell_subset = NULL,
  cell_subset_spatial_locations = NULL,
  cell_subset_projection_locations = NULL,
  cell_subset_projection_PCA = NULL,
  cell_subset_projection_coords = NULL)
)
```

Arguments

name name of cress section object. (default = cross_sectino)
method method to define the cross section plane.

thickness_unit unit of the virtual section thickness. If "cell", average size of the observed cells is used as length unit. If "natural", the unit of cell location coordinates

is used.(default = cell)

```
slice_thickness
                  thickness of slice
plane_equation a numerical vector of length 4, in the form of c(A,B,C,D), which defines plane
                  Ax+By+Cz=D.
mesh_grid_n
                  numer of meshgrid lines to generate along both directions for the cross section
mesh_obj
                  object that stores the cross section meshgrid information.
cell_subset
                  cells selected by the cross section
cell_subset_spatial_locations
                  locations of cells selected by the cross section
cell\_subset\_projection\_locations
                  3D projection coordinates of selected cells onto the cross section plane
cell_subset_projection_PCA
                  pca of projection coordinates
cell_subset_projection_coords
                  2D PCA coordinates of selected cells in the cross section plane
cell_distance_estimate_method
                  method to estimate average distance between neighboring cells. (default = mean)
                  deciding the span of the cross section meshgrid, as a ratio of extension compared
extend_ratio
                  to the borders of the vitural tissue section. (default = 0.2)
```

create_delaunayNetwork2D

create_delaunayNetwork2D

Description

Create a spatial Delaunay network.

Usage

```
create_delaunayNetwork2D(
  gobject,
  method = c("delaunayn_geometry", "RTriangle", "deldir"),
  sdimx = "sdimx",
  sdimy = "sdimy",
  name = "delaunay_network",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  verbose = T,
  return_gobject = TRUE,
  ...
)
```

Examples

create_delaunayNetwork2D(gobject)

```
create_delaunayNetwork3D
```

create_delaunayNetwork3D

Description

Create a spatial Delaunay network.

Usage

```
create_delaunayNetwork3D(
  gobject,
  method = "delaunayn_geometry",
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  name = "delaunay_network_3D",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  return_gobject = TRUE,
  ...
)
```

Examples

 ${\tt create_delaunayNetwork3D(gobject)}$

```
create\_delaunayNetwork\_deldir \\ create\_delaunayNetwork\_deldir
```

Description

Create a spatial Delaunay network.

Usage

```
create_delaunayNetwork_deldir(
   spatial_locations,
   sdimx = "sdimx",
   sdimy = "sdimy",
   ...
)
```

```
create_delaunayNetwork_deldir(gobject)
```

```
create\_delaunayNetwork\_geometry \\ create\_delaunayNetwork\_geometry
```

Description

Create a spatial Delaunay network.

Usage

```
create_delaunayNetwork_geometry(
  spatial_locations,
  sdimx = "sdimx",
  sdimy = "sdimy",
  options = "Pp",
   ...
)
```

Examples

```
create_delaunayNetwork_geometry(gobject)
```

Description

Create a spatial Delaunay network.

Usage

```
create_delaunayNetwork_geometry_3D(
  spatial_locations,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  options = options,
  ...
)
```

```
{\tt create\_delaunayNetwork\_geometry\_3D(gobject)}
```

```
create\_delaunay Network\_RTriangle \\ create\_delaunay Network\_RTriangle
```

Description

Create a spatial Delaunay network.

Usage

```
create_delaunayNetwork_RTriangle(
   spatial_locations,
   sdimx = "sdimx",
   sdimy = "sdimy",
   Y = TRUE,
   j = TRUE,
   S = 0,
   ...
)
```

Examples

create_delaunayNetwork_RTriangle(gobject)

Description

subsets matrix based on vector of genes or hvg column

Usage

```
create_genes_to_use_matrix(gobject, sel_matrix, genes_to_use, verbose = TRUE)
```

Arguments

```
gobject giotto object
sel_matrix selected expression matrix
genes_to_use genes to use, character or vector of genes
verbose verbosity
```

Value

subsetted matrix based on selected genes

80 create_screeplot

```
create\_KNNnetwork\_dbscan \\ create\_KNNnetwork\_dbscan
```

Description

Create a spatial knn network.

Usage

```
create_KNNnetwork_dbscan(
  spatial_locations,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  k = 4,
  ...
)
```

Examples

```
create_KNNnetwork_dbscan(gobject)
```

create_screeplot

create_screeplot

Description

create screeplot with ggplot

Usage

```
create_screeplot(pca_obj, ncp = 20, ylim = c(0, 20))
```

Arguments

pca_obj pca dimension reduction object

ncp number of principal components to calculate

ylim y-axis limits on scree plot

Value

ggplot

crossSectionGenePlot 81

```
{\tt crossSectionGenePlot} \quad {\it crossSectionGenePlot}
```

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot(
  gobject = NULL,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionGenePlot",
  ...
)
```

Arguments

```
gobject giotto object

crossSection_obj

crossSection object

name name of virtual cross section to use

spatial_network_name

name of spatial network to use

default_save_name

default save name for saving, don't change, change save_name in save_param

parameters for spatGenePlot2D
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D
```

82 crossSectionGenePlot3D

```
crossSectionGenePlot3D
```

crossSectionGenePlot3D

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
crossSectionGenePlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSectionGenePlot3D",
  ...
)
```

Arguments

```
gobject giotto object

name name of virtual cross section to use

spatial_network_name
    name of spatial network to use

default_save_name
    default save name for saving, don't change, change save_name in save_param

... parameters for spatGenePlot3D
```

Details

Description of parameters.

Value

ggplot

```
crossSectionGenePlot3D(gobject)
```

crossSectionPlot 83

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  default_save_name = "crossSectionPlot",
   ...
)
```

Arguments

```
gobject giotto object

name name of virtual cross section to use

spatial_network_name
 name of spatial network to use

default_save_name
 default save name for saving, don't change, change save_name in save_param

... parameters for spatPlot2D
```

Details

Description of parameters.

Value

ggplot

See Also

crossSectionPlot

84 crossSectionPlot3D

crossSectionPlot3D

Description

Visualize cells in a virtual cross section according to spatial coordinates

Usage

```
crossSectionPlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  show_other_cells = T,
  other_cell_color = alpha("lightgrey", 0),
  default_save_name = "crossSection3D",
  ...
)
```

Arguments

Details

Description of parameters.

Value

ggplot

```
{\tt crossSectionPlot3D(gobject)}
```

decide_cluster_order 85

```
decide_cluster_order
decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cor_method = "pearson",
  hclust_method = "ward.D"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters

cor_method method for correlation
hclust_method method for hierarchical clustering
```

Details

Calculates order for clusters.

Value

custom

```
decide_cluster_order(gobject)
```

detectSpatialCorGenes detectSpatialCorGenes

Description

Detect genes that are spatially correlated

Usage

```
detectSpatialCorGenes(
  gobject,
  method = c("grid", "network"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "Delaunay_network",
  network_smoothing = NULL,
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

```
gobject
                  giotto object
method
                  method to use for spatial averaging
expression_values
                  gene expression values to use
subset_genes
                  subset of genes to use
spatial_network_name
                  name of spatial network to use
network_smoothing
                  smoothing factor beteen 0 and 1 (default: automatic)
spatial_grid_name
                  name of spatial grid to use
min_cells_per_grid
                  minimum number of cells to consider a grid
cor_method
                  correlation method
```

Details

For method = network, it expects a fully connected spatial network. You can make sure to create a fully connected network by setting minimal_k > 0 in the createSpatialNetwork function.

- 1. grid-averaging: average gene expression values within a predefined spatial grid
- 2. network-averaging: smoothens the gene expression matrix by averaging the expression within one cell by using the neighbours within the predefined spatial network. b is a smoothening factor that defaults to 1 1/k, where k is the median number of k-neighbors in the selected spatial network. Setting b = 0 means no smoothing and b = 1 means no contribution from its own expression.

The spatCorObject can be further explored with showSpatialCorGenes()

detectSpatialPatterns 87

Value

```
returns a spatial correlation object: "spatCorObject"
```

See Also

```
showSpatialCorGenes
```

Examples

```
detectSpatialCorGenes(gobject)
```

```
detectSpatialPatterns detectSpatialPatterns
```

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
                  scale features
scale_unit
                  number of principal components to calculate
ncp
show_plot
                  show plots
PC_zscore
                  minimum z-score of variance explained by a PC
```

88 dimCellPlot

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

Value

```
spatial pattern object 'spatPatObj'
```

Examples

```
detectSpatialPatterns(gobject)
```

dimCellPlot

dimCellPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimCellPlot(...)
```

Arguments

```
Arguments passed on to dimCellPlot2D
gobject giotto object
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
cell_annotation_values numeric cell annotation columns
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show_NN_network = TRUE
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
```

dimCellPlot 89

```
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of dim. reduction points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot2D()

```
dimCellPlot(gobject)
```

90 dimCellPlot2D

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimCellPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show\_center\_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
```

dimCellPlot2D 91

```
show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot2D"
Arguments
                     giotto object
    gobject
    dim_reduction_to_use
                      dimension reduction to use
    dim_reduction_name
                      dimension reduction name
                      dimension to use on x-axis
    dim1_to_use
                      dimension to use on y-axis
    dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                      numeric cell annotation columns
    show_NN_network
                      show underlying NN network
    nn_network_to_use
                      type of NN network to use (kNN vs sNN)
    network_name
                      name of NN network to use, if show_NN_network = TRUE
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                      midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
                      select subset of cells based on cell IDs
    select_cells
    show\_other\_cells
                      display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
                      size of not selected cells
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    label_fontface font of labels
    edge_alpha
                      column to use for alpha of the edges
```

92 dimCellPlot2D

```
point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_alpha
                  transparancy of dim. reduction points
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  title for plot, defaults to cell_color parameter
title
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

Other dimension reduction cell annotation visualizations: dimCellPlot()

```
dimCellPlot2D(gobject)
```

dimGenePlot 93

dimGenePlot

dimGenePlot

in save_param

Description

Visualize gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot(...)
```

Arguments

```
Arguments passed on to dimGenePlot2D
gobject giotto object
expression_values gene expression values to use
genes genes to show
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show NN network = TRUE
edge_alpha column to use for alpha of the edges
scale_alpha_with_expression scale expression with ggplot alpha parameter
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of points
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_legend show legend
legend_text size of legend text
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
```

94 dimGenePlot2D

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot3D()

Examples

```
dimGenePlot(gobject)
```

dimGenePlot2D

dimGenePlot2D

Description

Visualize gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_alpha = 1,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  background_color = "white",
  axis_text = 8,
```

dimGenePlot2D 95

```
axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimGenePlot2D"
    )
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
                     genes to show
    genes
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    edge_alpha
                     column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
                     point with border or not (border or no_border)
    point_shape
                     size of point (cell)
    point_size
    point_alpha
                     transparancy of points
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    point_border_col
                     color of border around points
    point_border_stroke
                     stroke size of border around points
    show_legend
                     show legend
    legend_text
                     size of legend text
```

96 dimGenePlot3D

color of plot background axis_text size of axis text size of axis title axis_title cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cowplot param: relative width cow_rel_w cow_align cowplot param: how to align show_plot show plots return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

background_color

default save name for saving, don't change, change save_name in save_param

... additional parameters for cowplot::save_plot()

Details

Description of parameters.

Value

ggplot

See Also

```
dimGenePlot3D
```

Other dimension reduction gene expression visualizations: dimGenePlot3D(), dimGenePlot()

Examples

dimGenePlot2D(gobject)

dimGenePlot3D dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

dimGenePlot3D 97

Usage

```
dimGenePlot3D(
     gobject,
     expression_values = c("normalized", "scaled", "custom"),
     genes = NULL,
     dim_reduction_to_use = "umap",
     dim_reduction_name = "umap",
     dim1_to_use = 1,
     dim2\_to\_use = 2,
     dim3_to_use = 3,
      show_NN_network = F,
     nn_network_to_use = "sNN",
     network_name = "sNN.pca",
     network_color = "lightgray",
     cluster_column = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 1,
     edge_alpha = NULL,
     point_size = 2,
      genes_high_color = NULL,
     genes_mid_color = "white",
     genes_low_color = "blue",
      show_legend = T,
     show_plot = NA,
     return_plot = NA,
      save_plot = NA,
      save_param = list(),
     default_save_name = "dimGenePlot3D"
   )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
                    genes to show
   genes
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
   show_NN_network
                    show underlying NN network
   nn_network_to_use
```

type of NN network to use (kNN vs sNN)

98 dimPlot

```
name of NN network to use, if show_NN_network = TRUE
network_name
                  column to use for alpha of the edges
edge_alpha
                  size of point (cell)
point_size
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

See Also

Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot()

Examples

```
dimGenePlot3D(gobject)
```

dimPlot

dimPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot(...)
```

Arguments

arguments passed on to dimPlot2D
gobject giotto object
group_by_subset subset the group_by factor column
dim_reduction_to_use dimension reduction to use
dim_reduction_name dimension reduction name
dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis

dimPlot 99

```
spat_enr_names names of spatial enrichment results to include
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show_NN_network = TRUE
cell_color color for cells (see details)
color_as_factor convert color column to factor
cell_color_code named vector with colors
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D

100 dimPlot2D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot(gobject)
```

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
```

dimPlot2D 101

```
edge_alpha = NULL,
      point_shape = c("border", "no_border"),
      point_size = 1,
      point_alpha = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      title = NULL,
      show_legend = T,
      legend_text = 8,
      legend_symbol_size = 1,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot2D"
    )
Arguments
    gobject
                    giotto object
    group_by_subset
                    subset the group_by factor column
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
    dim2_to_use
                    dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
   network_name
                    name of NN network to use, if show_NN_network = TRUE
    cell_color
                    color for cells (see details)
    color_as_factor
                    convert color column to factor
    cell_color_code
                    named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                    midpoint for color gradient
```

102 dimPlot2D

```
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_alpha
                  transparancy of point
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  create multiple plots based on cell annotation column
groub_by
```

dimPlot3D 103

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot2D(gobject)
```

dimPlot3D

dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot3D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 3,
  show_plot = NA,
  return_plot = NA,
```

104 dimPlot3D

 $save_plot = NA$,

```
save_param = list(),
      default_save_name = "dim3D"
Arguments
    gobject
                      giotto object
    dim_reduction_to_use
                      dimension reduction to use
    dim_reduction_name
                      dimension reduction name
    dim1_to_use
                      dimension to use on x-axis
    dim2_to_use
                      dimension to use on y-axis
    dim3_to_use
                      dimension to use on z-axis
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
                      select subset of cells based on cell IDs
    select_cells
    show_other_cells
                      display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
                      size of not selected cells
    show_NN_network
                      show underlying NN network
    nn_network_to_use
                      type of NN network to use (kNN vs sNN)
    network_name
                      name of NN network to use, if show_NN_network = TRUE
    color_as_factor
                      convert color column to factor
    cell_color
                      color for cells (see details)
    cell_color_code
                      named vector with colors
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    edge_alpha
                      column to use for alpha of the edges
    point_size
                      size of point (cell)
                      show plot
    show_plot
    return_plot
                      return ggplot object
                      directly save the plot [boolean]
    save_plot
                      list of saving parameters, see showSaveParameters
    save_param
    default_save_name
                      default save name for saving, don't change, change save_name in save_param
    show_legend
                      show legend
```

doHclust 105

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
dimPlot3D(gobject)
```

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
  "manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL,
  name = "hclust",
  return_gobject = TRUE,
  set\_seed = T,
  seed_number = 1234
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes_to_use subset of genes to use
```

106 doHMRF

```
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
agglomeration_method
                 agglomeration method for hclust
k
                 number of final clusters
                 cut hierarchical tree at height = h
h
                 name for hierarchical clustering
name
return_gobject boolean: return giotto object (default = TRUE)
                 set seed
set_seed
seed_number
                 number for seed
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

hclust

Examples

doHclust(gobject)

doHMRF

doHMRF

Description

Run HMRF

Usage

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "Delaunay_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
```

doHMRF107

```
dimensions_to_use = 1:10,
  name = "test",
  k = 10,
  betas = c(0, 2, 50),
  tolerance = 1e-10,
  zscore = c("none", "rowcol", "colrow"),
  numinit = 100,
  python_path = NULL,
  output_folder = NULL,
  overwrite_output = TRUE
)
gobject
                giotto object
```

Arguments

```
expression_values
                 expression values to use
spatial_network_name
                 name of spatial network to use for HMRF
spatial_genes
                 spatial genes to use for HMRF
spatial_dimensions
                 select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 name of HMRF run
name
                 number of HMRF domains
k
betas
                 betas to test for
tolerance
                 tolerance
zscore
                 zscore
numinit
                 number of initializations
                 python path to use
python_path
output_folder
                 output folder to save results
overwrite_output
```

overwrite output folder

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

```
doHMRF(gobject)
```

108 doKmeans

doKmeans

doKmeans

Description

cluster cells using kmeans algorithm

Usage

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  centers = 10,
  iter_max = 100,
  nstart = 1000,
  algorithm = "Hartigan-Wong",
  name = "kmeans",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 subset of genes to use
genes_to_use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
                 number of final clusters
centers
                 kmeans maximum iterations
iter_max
nstart
                 kmeans nstart
                 kmeans algorithm
algorithm
name
                 name for kmeans clustering
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
```

doLeidenCluster 109

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

kmeans

Examples

```
doKmeans(gobject)
```

doLeidenCluster

doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
  gobject,
  name = "leiden_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  init_membership = NULL,
  n_iterations = 1000,
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

110 doLeidenSubCluster

```
partition_type The type of partition to use for optimisation.
init_membership
```

initial membership of cells for the partition

n_iterations number of interations to run the Leiden algorithm. If the number of iterations

is negative, the Leiden algorithm is run until an iteration in which there was no

improvement.

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

This function is a wrapper for the Leiden algorithm implemented in python, which can detect communities in graphs of millions of nodes (cells), as long as they can fit in memory. See the https://github.com/vtraag/leidenalgleidenalg github page or the https://leidenalg.readthedocs.io/en/stable/index.htmlreadthedocs page for more information.

Partition types available and information:

- RBConfigurationVertexPartition: Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
- Modularity Vertex Partition: Implements modularity. This quality function is well-defined only for positive edge weights. It does *not* use the resolution parameter

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLeidenCluster(gobject)
```

doLeidenSubCluster

doLeidenSubCluster

Description

Further subcluster cells using a NN-network and the Leiden algorithm

Usage

doLeidenSubCluster 111

```
hvg_min_perc_cells = 5,
hvg_mean_expr_det = 1,
use_all_genes_as_hvg = FALSE,
min_nr_of_hvg = 5,
pca_param = list(expression_values = "normalized", scale_unit = T),
nn_param = list(dimensions_to_use = 1:20),
k_neighbors = 10,
resolution = 0.5,
n_iterations = 500,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
```

Arguments

```
giotto object
gobject
                  name for new clustering result
name
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
hvg_param
                  parameters for calculateHVG
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
                  minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                  parameters for runPCA
pca_param
                  parameters for parameters for createNearestNetwork
nn_param
k_neighbors
                  number of k for createNearestNetwork
resolution
                  resolution of Leiden clustering
n_iterations
                  number of interations to run the Leiden algorithm.
python_path
                  specify specific path to python if required
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
return_gobject boolean: return giotto object (default = TRUE)
verbose
                  verbose
```

Details

This function performs subclustering using the Leiden algorithm on selected clusters. The systematic steps are:

• 1. subset Giotto object

112 doLouvainCluster

- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Leiden clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLeidenCluster

Examples

```
doLeidenSubCluster(gobject)
```

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
)
```

```
gobject giotto object

version implemented version of Louvain clustering to use

name name for cluster

nn_network_to_use

type of NN network to use (kNN vs sNN)
```

network_name name of NN network to use [community] specify specific path to python if required python_path resolution [community] resolution weight_col weight column name [multinet] Resolution parameter for modularity in the generalized louvain method. gamma omega [multinet] Inter-layer weight parameter in the generalized louvain method [community] Will randomize the node evaluation order and the community evallouv_random uation order to get different partitions at each call return_gobject boolean: return giotto object (default = TRUE) set_seed set seed seed_number number for seed

Details

. . .

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object with new clusters appended to cell metadata

additional parameters

See Also

doLouvainCluster_community and doLouvainCluster_multinet

Examples

```
doLouvainCluster(gobject)
```

```
\label{lower} do Louvain Cluster\_community \\ do Louvain Cluster\_community
```

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

Usage

```
doLouvainCluster_community(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  louv_random = F,
```

```
return_gobject = TRUE,
 set_seed = F,
  seed_number = 1234
)
```

Arguments

giotto object gobject name for cluster name nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name specify specific path to python if required python_path resolution resolution weight_col weight column to use for edges Will randomize the node evaluation order and the community evaluation order louv_random to get different partitions at each call return_gobject boolean: return giotto object (default = TRUE)

set_seed

seed_number number for seed

set seed

Details

This function is a wrapper for the Louvain algorithm implemented in Python, which can detect communities in graphs of nodes (cells). See the https://python-louvain.readthedocs.io/ en/latest/index.htmlreadthedocs page for more information.

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLouvainCluster_community(gobject)
```

```
doLouvainCluster_multinet
                        doLouvainCluster_multinet
```

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

doLouvainSubCluster 115

Usage

```
doLouvainCluster_multinet(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  gamma = 1,
  omega = 1,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

```
gobject giotto object
name name for cluster
```

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

gamma Resolution parameter for modularity in the generalized louvain method.

omega Inter-layer weight parameter in the generalized louvain method.

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See glouvain_ml from the multinet package in R for more information.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLouvainCluster_multinet(gobject)
```

 ${\tt doLouvainSubCluster} \qquad {\tt doLouvainSubCluster}$

Description

subcluster cells using a NN-network and the Louvain algorithm

116 doLouvainSubCluster

Usage

```
doLouvainSubCluster(
  gobject,
  name = "sub_louvain_clus",
  version = c("community", "multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  gamma = 1,
  omega = 1,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

```
gobject
                  giotto object
name
                  name for new clustering result
version
                  version of Louvain algorithm to use
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
                  minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                  parameters for runPCA
pca_param
nn_param
                  parameters for parameters for createNearestNetwork
k_neighbors
                  number of k for createNearestNetwork
resolution
                  resolution for community algorithm
gamma
                  gamma
omega
                  omega
```

Details

This function performs subclustering using the Louvain algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet and doLouvainCluster_community

Examples

```
doLouvainSubCluster(gobject)
```

```
\label{lower} do Louvain SubCluster\_community \\ do Louvain SubCluster\_community
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
min_nr_of_hvg = 5,
pca_param = list(expression_values = "normalized", scale_unit = T),
nn_param = list(dimensions_to_use = 1:20),
k_neighbors = 10,
resolution = 0.5,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
```

Arguments

```
gobject
                  giotto object
name
                  name for new clustering result
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
min_nr_of_hvg
                 minimum number of HVG, or all genes will be used as input for PCA
                  parameters for runPCA
pca_param
nn_param
                  parameters for parameters for createNearestNetwork
k_neighbors
                  number of k for createNearestNetwork
resolution
                  resolution
                  specify specific path to python if required
python_path
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use
return_gobject boolean: return giotto object (default = TRUE)
verbose
                  verbose
```

Details

This function performs subclustering using the Louvain community algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain community clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

```
doLouvainCluster_community
```

Examples

```
doLouvainSubCluster_community(gobject)
```

```
{\tt doLouvainSubCluster\_multinet}
```

doLouvainSubCluster_multinet

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

Usage

```
doLouvainSubCluster_multinet(
  gobject,
  name = "sub_louvain_mult_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  gamma = 1,
  omega = 1,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

```
gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters
```

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

gamma gamma
omega omega
nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain multinet algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain multinet clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet

Examples

doLouvainSubCluster_multinet(gobject)

doRandomWalkCluster 121

doRandomWalkCluster

doRandomWalkCluster

Description

Cluster cells using a random walk approach.

Usage

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

```
gobject
                 giotto object
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
                 number of walking steps
walk_steps
walk_clusters
                 number of final clusters
walk_weights
                 cluster column defining the walk weights
return_gobject | boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
```

Details

See cluster_walktrap function from the igraph package in R for more information.

Value

giotto object with new clusters appended to cell metadata

```
{\tt doRandomWalkCluster(gobject)}
```

122 doSNNCluster

doSNNCluster

doSNNCluster

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234
)
```

Arguments

gobject giotto object name name for cluster

 $nn_network_to_use$

type of NN network to use (only works on kNN)

 $network_name \qquad name \ of \ kNN \ network \ to \ use$

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See sNNclust from dbscan package

Value

giotto object with new clusters appended to cell metadata

do_permuttest_random 123

Examples

```
doSNNCluster(gobject)
```

```
{\tt do\_permuttest\_random} \quad \textit{do\_permuttest\_random}
```

Description

calculate random values

Performs permutation test on subsets of a matrix

Usage

```
{\tt do\_permuttest\_random(}
  expr_values,
  select_ind,
  other_ind,
  name = "perm_1",
  mean_method,
  offset = 0.1
)
do_permuttest(
  expr_values,
  select_ind,
  other_ind,
  n_{perm} = 1000,
  adjust_method = "fdr",
  mean_method,
  offset = 0.1,
  cores = 2
)
```

Examples

```
do_permuttest_random()
do_permuttest_random()
```

DT_removeNA

DT_removeNA

Description

set NA values to 0 in a data.table object

Usage

```
DT_removeNA(DT)
```

Arguments

DT

data.table

124 exportGiottoViewer

 $\verb"estimateImageBg"$

estimateImageBg

Description

helps to estimate which color is the background color of your plot

Usage

```
estimateImageBg(mg_object, top_color_range = 1:50)
```

Arguments

```
mg_object magick image or Giotto image object top_color_range top possible background colors to return
```

Value

vector of pixel color frequencies and an associated barplot

Examples

```
estimateImageBg(mg_object)
```

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

Usage

```
exportGiottoViewer(
  gobject,
  output_directory = NULL,
  spat_enr_names = NULL,
  factor_annotations = NULL,
  numeric_annotations = NULL,
  dim_reductions,
  dim_reduction_names,
  expression_values = c("scaled", "normalized", "custom"),
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  expression_rounding = 2,
  overwrite_dir = T,
  verbose = T
```

exprCellCellcom 125

Arguments

gobject giotto object output_directory directory where to save the files spat_enr_names spatial enrichment results to include for annotations factor_annotations giotto cell annotations to view as factor numeric_annotations giotto cell annotations to view as numeric dim_reductions high level dimension reductions to view dim_reduction_names specific dimension reduction names expression_values expression values to use in Viewer dim_red_rounding numerical indicating how to round the coordinates dim_red_rescale numericals to rescale the coordinates expression_rounding numerical indicating how to round the expression data overwrite files in the directory if it already existed overwrite_dir verbose be verbose

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function. To include enrichment results from createSpatialEnrich include the provided spatial enrichment name (default PAGE or rank) and add the gene signature names (.e.g cell types) to the numeric annotations parameter.

Value

writes the necessary output to use in Giotto Viewer

Examples

exportGiottoViewer(gobject)

exprCellCellcom exprCellCellcom

Description

Cell-Cell communication scores based on expression only

126 exprCellCellcom

Usage

Arguments

```
giotto object to use
gobject
cluster_column cluster column with cell type information
                  number of iterations
random_iter
                  first specific gene set from gene pairs
gene_set_1
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
                  which method to adjust p-values
adjust_method
                  adjust multiple hypotheses at the cell or gene level
adjust_target
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values, without considering the spatial position of cells. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on expression only

```
exprCellCellcom(gobject)
```

extractNearestNetwork 127

```
{\tt extractNearestNetwork} \ \ \textit{extractNearestNetwork}
```

Description

Extracts a NN-network from a Giotto object

Usage

```
extractNearestNetwork(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  output = c("igraph", "data.table")
)
```

Arguments

Value

igraph or data.table object

Examples

extractNearestNetwork(gobject)

 ${\sf fDataDT}$

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

gobject giotto object

Value

data.table with gene metadata

Examples

```
pDataDT(gobject)
```

```
filter {\tt CellProximity Genes}
```

filter Cell Proximity Genes

Description

Filter cell proximity gene scores.

Usage

```
filterCellProximityGenes(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

Arguments

```
cpg0bject
                  cell proximity gene score object
\min_{cells}
                  minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells
                  minimum number of interacting neighbor cell type
min_int_cells_expr
                  minimum expression level for interacting neighbor cell type
                  minimum adjusted p-value
min_fdr
                  minimum absolute spatial expression difference
min_spat_diff
min_log2_fc
                  minimum log2 fold-change
min_zscore
                  minimum z-score change
zscores_column calculate z-scores over cell types or genes
                  differential expression directions to keep
direction
```

Value

cpgObject that contains the filtered differential gene scores

```
filterCellProximityGenes(gobject)
```

filterCombinations 129

filterCombinations filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_thresholds = c(1, 2),
  gene_det_in_min_cells = c(5, 50),
  min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
  x_axis_offset = 0,
  scale_y_axis = "identity",
  y_axis_offset = 0,
  show_plot = TRUE,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "filterCombinations")
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_thresholds
                  all thresholds to consider a gene expressed
gene_det_in_min_cells
                  minimum number of cells that should express a gene to consider that gene fur-
                  ther
min_det_genes_per_cell
                  minimum number of expressed genes per cell to consider that cell further
                  ggplot transformation for x-axis (e.g. log2)
scale_x_axis
x_axis_offset
                  x-axis offset to be used together with the scaling transformation
                  ggplot transformation for y-axis (e.g. log2)
scale_y_axis
y_axis_offset
                  y-axis offset to be used together with the scaling transformation
                  show plot
show_plot
return_plot
                  return only ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

filterCPG

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

filterCombinations(gobject)

filterCPG

filterCPG

Description

Filter cell proximity gene scores.

Usage

```
filterCPG(
  cpgObject,
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down")
)
```

```
cpgObject
                 cell proximity gene score object
                 minimum number of source cell type
min_cells
min_cells_expr minimum expression level for source cell type
min_int_cells
                 minimum number of interacting neighbor cell type
min_int_cells_expr
                 minimum expression level for interacting neighbor cell type
min_fdr
                 minimum adjusted p-value
min_spat_diff
                 minimum absolute spatial expression difference
min_log2_fc
                 minimum log2 fold-change
                 minimum z-score change
min_zscore
zscores_column calculate z-scores over cell types or genes
                 differential expression directions to keep
direction
```

filterDistributions 131

Value

cpgObject that contains the filtered differential gene scores

Examples

```
filterCPG(gobject)
```

filterDistributions filterDistributions

Description

show gene or cell distribution after filtering on expression threshold

Usage

```
filterDistributions(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  detection = c("genes", "cells"),
  plot_type = c("histogram", "violin"),
  nr_bins = 30,
  fill_color = "lightblue",
  scale_axis = "identity",
  axis_offset = 0,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "filterDistributions"
)
```

```
giotto object
gobject
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
detection
                  consider genes or cells
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
axis_offset
                  offset to be used together with the scaling transformation
show_plot
                  show plot
return_plot
                  return ggplot object
```

132 filterGiotto

Value

ggplot object

Examples

```
filterDistributions(gobject)
```

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

Usage

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  gene_det_in_min_cells = 100,
  min_det_genes_per_cell = 100,
  verbose = F
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_threshold

threshold to consider a gene expressed

gene_det_in_min_cells

minimum # of cells that need to express a gene

min_det_genes_per_cell

minimum # of genes that need to be detected in a cell

verbose

verbose
```

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

```
giotto object
```

Examples

```
filterGiotto(gobject)
```

```
findCellProximityGenes
```

findCellProximityGenes

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCellProximityGenes(
 gobject,
 expression_values = "normalized",
  selected_genes = NULL,
 cluster_column,
  spatial_network_name = "Delaunay_network",
 minimum_unique_cells = 1,
 minimum_unique_int_cells = 1,
 diff_test = c("permutation", "limma", "t.test", "wilcox"),
 mean_method = c("arithmic", "geometric"),
 offset = 0.1,
 adjust_method = c("bonferroni", "BH", "holm", "hochberg", "hommel", "BY", "fdr",
    "none"),
 nr_permutations = 1000,
 exclude_selected_cells_from_test = T,
 do_parallel = TRUE,
  cores = NA
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
diff_test
                  which differential expression test
mean_method
                  method to use to calculate the mean
offset
                  offset value to use when calculating log2 ratio
```

adjust_method which method to adjust p-values

nr_permutations

number of permutations if diff_test = permutation

exclude_selected_cells_from_test

exclude interacting cells other cells

do_parallel run calculations in parallel with mclapply

cores number of cores to use if do_parallel = TRUE

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- · diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

findCellProximityGenes(gobject)

```
find {\tt CellProximityGenes\_per\_interaction} \\ find {\tt CellProximityGenes\_per\_interaction}
```

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCellProximityGenes_per_interaction(
  expr_values,
 cell_metadata,
 annot_spatnetwork,
 sel_int,
 cluster_column = NULL,
 minimum_unique_cells = 1,
 minimum_unique_int_cells = 1,
 exclude_selected_cells_from_test = T,
 diff_test = c("permutation", "limma", "t.test", "wilcox"),
 mean_method = c("arithmic", "geometric"),
 offset = 0.1,
 adjust_method = "bonferroni",
 nr_permutations = 100,
 cores = 1
)
```

Examples

 ${\tt findCellProximityGenes_per_interaction()}$

findCPG

findCPG

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

```
findCPG(
  gobject,
  expression_values = "normalized",
  selected_genes = NULL,
  cluster_column,
  spatial_network_name = "Delaunay_network",
  minimum_unique_cells = 1,
  minimum_unique_int_cells = 1,
  diff_test = c("permutation", "limma", "t.test", "wilcox"),
```

136 findCPG

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
selected_genes subset of selected genes (optional)
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
diff_test
                  which differential expression test
mean_method
                  method to use to calculate the mean
offset
                  offset value to use when calculating log2 ratio
adjust_method
                  which method to adjust p-values
nr_permutations
                  number of permutations if diff_test = permutation
exclude_selected_cells_from_test
                  exclude interacting cells other cells
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value

findGiniMarkers 137

- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

```
findCPG(gobject)
```

findGiniMarkers

findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.2,
  min_det_gini_score = 0.2,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 5
)
```

```
min_expr_gini_score
```

filter on minimum gini coefficient for expression

min_det_gini_score

filter on minimum gini coefficient for detection

detection_threshold

detection threshold for gene expression

rank_score rank scores for both detection and expression to include

min_genes minimum number of top genes to return

Details

Detection of marker genes using the https://en.wikipedia.org/wiki/Gini_coefficientgini coefficient is based on the following steps/principles per gene:

- 1. calculate average expression per cluster
- 2. calculate detection fraction per cluster
- 3. calculate gini-coefficient for av. expression values over all clusters
- 4. calculate gini-coefficient for detection fractions over all clusters
- 5. convert gini-scores to rank scores
- 6. for each gene create combined score = detection rank x expression rank x expr gini-coefficient x detection gini-coefficient
- 7. for each gene sort on expression and detection rank and combined score

As a results "top gini" genes are genes that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

findGiniMarkers(gobject)

findGiniMarkers_one_vs_all

findGiniMarkers_one_vs_all

Description

Identify marker genes for all clusters in a one vs all manner based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 4,
  verbose = TRUE
)
```

Arguments

```
giotto object
gobject
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
min_expr_gini_score
                  filter on minimum gini coefficient on expression
min_det_gini_score
                  filter on minimum gini coefficient on detection
detection_threshold
                  detection threshold for gene expression
rank_score
                 rank scores for both detection and expression to include
min_genes
                  minimum number of top genes to return
verbose
                  be verbose
```

Value

data.table with marker genes

See Also

findGiniMarkers

```
findGiniMarkers_one_vs_all(gobject)
```

140 findMarkers

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
  cluster_column = NULL,
 method = c("scran", "gini", "mast"),
  subset_clusters = NULL,
  group_1 = NULL,
 group_2 = NULL,
 min_expr_gini_score = 0.5,
 min_det_gini_score = 0.5,
 detection_threshold = 0,
 rank_score = 1,
 min\_genes = 4,
 group_1_name = NULL,
  group_2_name = NULL,
 adjust_columns = NULL,
)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
{\tt detection\_threshold}
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
                  minimum number of top genes to return (for gini)
min_genes
                  mast: custom name for group_1 clusters
group_1_name
```

findMarkers_one_vs_all

```
group_2_name mast: custom name for group_2 clusters

adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)

additional parameters for the findMarkers function in scran or zlm function in MAST
```

141

Details

Wrapper for all individual functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

findScranMarkers, findGiniMarkers and findMastMarkers

Examples

```
findMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner.

Usage

```
findMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  method = c("scran", "gini", "mast"),
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  adjust_columns = NULL,
  verbose = TRUE,
)
```

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

subset_clusters

selection of clusters to compare

method method to use to detect differentially expressed genes

pval scran & mast: filter on minimal p-value

logFC scan & mast: filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

min_expr_gini_score

gini: filter on minimum gini coefficient for expression

min_det_gini_score

gini: filter minimum gini coefficient for detection

detection_threshold

gini: detection threshold for gene expression

rank_score gini: rank scores to include

adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)

verbose be verbose

... additional parameters for the findMarkers function in scran or zlm function in

MAST

Details

Wrapper for all one vs all functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

findScranMarkers_one_vs_all, findGiniMarkers_one_vs_all and findMastMarkers_one_vs_all

```
findMarkers_one_vs_all(gobject)
```

findMastMarkers 143

findMastMarkers findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  custom name for group_1 clusters
group_1_name
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
group_2_name
                  custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the zlm from the MAST package to detect differentially expressed genes.

Value

data.table with marker genes

```
findMastMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  adjust_columns = NULL,
  pval = 0.001,
  logFC = 1,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
                  filter on minimal p-value
pval
logFC
                  filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
                  be verbose
verbose
                  additional parameters for the zlm function in MAST
```

Value

data.table with marker genes

See Also

findMastMarkers

```
findMastMarkers_one_vs_all(gobject)
```

findNetworkNeighbors 145

```
{\it findNetworkNeighbors} \quad {\it findNetworkNeighbors}
```

Description

Find the spatial neighbors for a selected group of cells within the selected spatial network.

Usage

```
findNetworkNeighbors(
  gobject,
  spatial_network_name,
  source_cell_ids = NULL,
  name = "nb_cells"
)
```

Arguments

Value

data.table

Examples

findNetworkNeighbors(gobject)

findScranMarkers

findScranMarkers

Description

Identify marker genes for all or selected clusters based on scran's implementation of findMarkers.

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  ...
)
```

Arguments

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

```
findScranMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

find_grid_2D 147

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

subset_clusters

subset of clusters to use

pval filter on minimal p-value

logFC filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose

... additional parameters for the findMarkers function in scran

Value

data.table with marker genes

See Also

findScranMarkers

Examples

findScranMarkers_one_vs_all(gobject)

find_grid_2D

 $find_grid_2D$

Description

find grid location in 2D

Usage

```
find_grid_2D(grid_DT, x_loc, y_loc)
```

find_grid_3D

find_grid_3D

Description

find grid location in 3D

```
find_grid_3D(grid_DT, x_loc, y_loc, z_loc)
```

148 find_grid_z

find_grid_x

find_grid_x

Description

find grid location on x-axis

Usage

```
find_grid_x(grid_DT, x_loc)
```

find_grid_y

find_grid_y

Description

find grid location on y-axis

Usage

```
find_grid_y(grid_DT, y_loc)
```

find_grid_z

 $find_grid_z$

Description

find grid location on z-axis

```
find_grid_z(grid_DT, z_loc)
```

FSV_show 149

FSV_show FSV_show

Description

Visualize spatial varible genes caculated by spatial_DE

Usage

```
FSV_show(
  results,
  ms_results = NULL,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5
)
```

Arguments

results results caculated by spatial_DE

ms_results ms_results caculated by spatial_DE

size indicate different levels of qval

color indicate different SV features

sig_alpha transparency of significant genes

unsig_alpha transparency of unsignificant genes

Details

Description of parameters.

Value

ggplot object

Examples

```
FSV_show(results)
```

150 getClusterSimilarity

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data, gene_column_index = 1)
```

Arguments

```
path_to_data path to the 10X folder gene_column_index which column from the features or genes .tsv file to use for row ids
```

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix and tt has 3 files:

- barcodes.tsv(.gz)
- features.tsv(.gz) or genes.tsv(.gz)
- matrix.mtx(.gz)

By default the first column of the features or genes .tsv file will be used, however if multiple annotations are provided (e.g. ensembl gene ids and gene symbols) the user can select another column.

Value

sparse expression matrix from 10X

Examples

```
get10Xmatrix(path_to_data)
```

```
getClusterSimilarity
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

getDendrogramSplits 151

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
getClusterSimilarity(gobject)
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

152 getDistinctColors

distance distance method to use for hierarchical clustering

h height of horizontal lines to plot

h_color color of horizontal lines

show_dend show dendrogram

verbose be verbose

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

getDendrogramSplits(gobject)

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

```
getDistinctColors(n)
```

Arguments

n number of colors wanted

Value

number of distinct colors

getGiottoImage 153

 ${\tt getGiottoImage}$

getGiottoImage

Description

get get a giotto image from a giotto object

Usage

```
getGiottoImage(gobject, image_name)
```

Arguments

gobject

giotto object

image_name

 $name\ of\ giotto\ image\ show {\tt GiottoImageNames}$

Value

a giotto image

Examples

```
getGiottoImage(gobject)
```

get_os

get_os

Description

 $return\ the\ type\ of\ operating\ system,\ see\ https://conjugateprior.org/2015/06/identifying-the-os-from-r/$

Usage

```
get_os()
```

Value

character osx, linux or windows

giotto-class

S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

```
raw_exprs raw expression counts
norm_expr normalized expression counts
norm_scaled_expr normalized and scaled expression counts
custom_expr custom normalized counts
spatial_locs spatial location coordinates for cells
cell_metadata metadata for cells
gene_metadata metadata for genes
cell_ID unique cell IDs
gene_ID unique gene IDs
spatial_network spatial network in data.table/data.frame format
spatial_grid spatial grid in data.table/data.frame format
spatial_enrichment slot to save spatial enrichment-like results
dimension_reduction slot to save dimension reduction coordinates
nn_network nearest neighbor network in igraph format
images slot to store giotto images
parameters slot to save parameters that have been used
instructions slot for global function instructions
offset_file offset file used to stitch together image fields
OS_platform Operating System to run Giotto analysis on
```

 $heatmSpatialCorGenes \quad \textit{heatmSpatialCorGenes}$

Description

Create heatmap of spatially correlated genes

heatmSpatialCorGenes 155

Usage

```
heatmSpatialCorGenes(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_cluster_annot = TRUE,
  show_row_dend = T,
  show_column_dend = F,
  show_row_names = F,
  show_column_names = F,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "heatmSpatialCorGenes",
  ...
)
```

Arguments

```
gobject
                 giotto object
                 spatial correlation object
spatCorObject
                 name of clusters to visualize (from clusterSpatialCorGenes())
use_clus_name
show_cluster_annot
                 show cluster annotation on top of heatmap
                 show row dendrogram
show_row_dend
show_column_dend
                 show column dendrogram
show_row_names show row names
show_column_names
                 show column names
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 additional parameters to the Heatmap function from ComplexHeatmap
. . .
```

Value

Heatmap generated by ComplexHeatmap

Examples

```
heatmSpatialCorGenes(gobject)
```

 $hyperGeometric Enrich \qquad hyperGeometric Enrich$

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
hyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  top_percentage = 5,
  output_enrichment = c("original", "zscore")
)
```

Arguments

```
gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

top_percentage percentage of cells that will be considered to have gene expression with matrix binarization

output_enrichment

how to return enrichment output
```

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

Examples

hyperGeometricEnrich(gobject)

```
insert {\tt CrossSectionGenePlot3D}
```

insertCrossSectionGenePlot3D

Description

Visualize cells and gene expression in a virtual cross section according to spatial coordinates

Usage

```
insertCrossSectionGenePlot3D(
 gobject,
 crossSection_obj = NULL,
 name = NULL,
 spatial_network_name = "Delaunay_network",
 mesh_grid_color = "#1f77b4",
 mesh_grid_width = 3,
 mesh_grid_style = "dot",
 sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_other_cells = F,
 axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spatGenePlot3D_with_cross_section",
)
```

Arguments

```
gobject
                  giotto object
                  name of virtual cross section to use
name
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimy')
show_other_cells
                  display not selected cells
```

Details

Description of parameters.

Value

ggplot

Examples

insertCrossSectionGenePlot3D(gobject)

```
insert {\tt CrossSectionSpatPlot3D} \\ insert {\tt CrossSectionSpatPlot3D}
```

Description

Visualize the meshgrid lines of cross section together with cells

```
insertCrossSectionSpatPlot3D(
  gobject,
  crossSection_obj = NULL,
  name = NULL,
  spatial_network_name = "Delaunay_network",
  mesh_grid_color = "#1f77b4",
  mesh_grid_width = 3,
  mesh_grid_style = "dot",
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  show_other_cells = F,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  default_save_name = "spat3D_with_cross_section",
)
```

jackstrawPlot 159

Arguments

```
giotto object
gobject
name
                  name of virtual cross section to use
spatial_network_name
                  name of spatial network to use
mesh_grid_color
                  color for the meshgrid lines
mesh_grid_width
                  width for the meshgrid lines
mesh_grid_style
                  style for the meshgrid lines
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
show_other_cells
                  display not selected cells
axis_scale
                  axis_scale
custom_ratio
                  custom_ratio
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for spatPlot3D
```

Details

Description of parameters.

Value

ggplot

Examples

insertCrossSectionSpatPlot3D(gobject)

jackstrawPlot jackstrawPlot

Description

identify significant prinicipal components (PCs)

jackstrawPlot

Usage

```
jackstrawPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  genes_to_use = NULL,
  center = FALSE,
  scale_unit = FALSE,
  ncp = 20,
  ylim = c(0, 1),
  iter = 10,
  threshold = 0.01,
  verbose = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "jackstrawPlot"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  cells or genes
reduction
                  subset of genes to use for PCA
genes_to_use
                  center data before PCA
center
scale_unit
                  scale features before PCA
ncp
                  number of principal components to calculate
                  y-axis limits on jackstraw plot
ylim
                  number of interations for jackstraw
iter
                  p-value threshold to call a PC significant
threshold
verbose
                  show progress of jackstraw method
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
```

Details

The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

default save name for saving, don't change, change save_name in save_param

kmeans_binarize 161

Value

ggplot object for jackstraw method

Examples

```
jackstrawPlot(gobject)
```

kmeans_binarize

kmeans_binarize

Description

create binarized scores from a vector using kmeans

Usage

```
kmeans_binarize(x, nstart = 3, iter.max = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
)
```

Arguments

```
name_used name of HMRF that was run
output_folder_used
output folder that was used
k_used number of HMRF domains that was tested
betas_used betas that were tested
python_path_used
python path that was used
```

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

Examples

loadHMRF(gobject)

makeSignMatrixPAGE

make Sign Matrix PAGE

Description

Function to convert a list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option. Each cell type or process should have a vector of cell-type or process specific genes. These vectors need to be combined into a list (sign_list). The names of the cell types or processes that are provided in the list need to be given (sign_names).

Usage

```
makeSignMatrixPAGE(sign_names, sign_list)
```

Arguments

sign_names vector with names for each provided gene signature

sign_list list of genes (signature)

Value

matrix

See Also

PAGEEnrich

Examples

 ${\tt makeSignMatrixPAGE()}$

makeSignMatrixRank 163

makeSignMatrixRank makeSignMatrixRank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(sc_matrix, sc_cluster_ids, gobject = NULL)
```

Arguments

```
sc_matrix matrix of single-cell RNAseq expression data
sc_cluster_ids vector of cluster ids
gobject if giotto object is given then only genes present in both datasets will be considered
```

Value

matrix

See Also

rankEnrich

Examples

```
makeSignMatrixRank()
```

```
make_simulated_network
```

make_simulated_network

Description

Simulate random network.

Usage

```
make_simulated_network(
  gobject,
  spatial_network_name = "Delaunay_network",
  cluster_column,
  number_of_simulations = 100
)
```

Examples

```
{\tt make\_simulated\_network(gobject)}
```

164 mergeClusters

 ${\tt mergeClusters}$

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
  max_sim_clusters = 10,
  return_gobject = TRUE,
  verbose = TRUE
)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
new_cluster_name
                  new name for merged clusters
                 min correlation score to merge pairwise clusters
min_cor_score
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
max_sim_clusters
                  maximum number of clusters to potentially merge to reach force_min_group_size
return_gobject return giotto object
                  be verbose
verhose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value. The force_min_group_size might not always be reached if clusters have already been merged before A giotto object is returned by default, if FALSE then the merging vector will be returned.

my_arowMeans 165

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

my_arowMeans

my_arowMeans

Description

arithmic rowMeans that works for a single column

Usage

```
my_arowMeans(x)
```

Examples

my_arowMeans(x)

my_growMeans

my_growMeans

Description

geometric rowMeans that works for a single column

Usage

```
my\_growMeans(x, offset = 0.1)
```

Examples

```
my\_growMeans(x)
```

my_rowMeans

my_rowMeans

Description

arithmic or geometric rowMeans that works for a single column

Usage

```
my_rowMeans(x, method = c("arithmic", "geometric"), offset = 0.1)
```

Examples

```
my_rowMeans(x)
```

node_clusters

nnDT_to_kNN

 $nnDT_to_kNN$

Description

Convert a nearest network data.table to a kNN object

Usage

```
nnDT_to_kNN(nnDT)
```

Arguments

nnDT

nearest neighbor network in data.table format

Value

kNN object

node_clusters

node_clusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
node_clusters(hclus_obj, verbose = TRUE)
```

Arguments

hclus_obj hclus object verbose be verbose

Value

list of splitted dendrogram nodes from high to low node height

Examples

```
node_clusters(hclus_obj)
```

normalizeGiotto 167

normalizeGiotto	normalizeGiotto
-----------------	-----------------

Description

fast normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  log_offset = 1,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

Arguments

```
gobject
                  giotto object
norm_methods
                  normalization method to use
library_size_norm
                  normalize cells by library size
scalefactor
                  scale factor to use after library size normalization
                  transform values to log-scale
log_norm
log_offset
                  offset value to add to expression matrix, default = 1
logbase
                  log base to use to log normalize expression values
                  z-score genes over all cells
scale_genes
scale_cells
                  z-score cells over all genes
scale_order
                  order to scale genes and cells
verbose
                  be verbose
```

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.

168 PAGEEnrich

- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

```
normalizeGiotto(gobject)
```

PAGEEnrich

PAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
PAGEEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

```
gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment

how to return enrichment output
```

pca_giotto 169

Details

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z = ((Sm^{\circ}mu) * m^{(1/2)})/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

```
makeSignMatrixPAGE
```

Examples

PAGEEnrich(gobject)

pca_giotto

pca_giotto

Description

performs PCA based on Rfast

Usage

```
pca_giotto(mymatrix, center = T, scale = T, k = 50)
```

Arguments

matrix or object that can be converted to matrix mymatrix

center center data scale scale features

k number of principal components to calculate

Value

list of eigenvalues, eigenvectors and pca coordinates

170 plotCCcomDotplot

pDataDT

pDataDT

Description

show cell metadata

Usage

```
pDataDT(gobject)
```

Arguments

gobject

giotto object

Value

data.table with cell metadata

Examples

```
pDataDT(gobject)
```

plotCCcomDotplot

plotCCcomDotplot

Description

Plots dotplot for ligand-receptor communication scores in cell-cell interactions

```
plotCCcomDotplot(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  cluster_on = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
 aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomDotplot"
```

plotCCcomHeatmap 171

Arguments

```
gobject
                  giotto object
                  communinication scores from exprCellCellcom or spatCellCellcom
comScores
selected_LR
                  selected ligand-receptor combinations
selected_cell_LR
                  selected cell-cell combinations for ligand-receptor combinations
                  show ligand-receptor names
show_LR_names
show_cell_LR_names
                  show cell-cell names
                  values to use for clustering of cell-cell and ligand-receptor pairs
cluster_on
                  correlation method used for clustering
cor\_method
aggl_method
                  agglomeration method used by hclust
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
show
                  values to show on heatmap
```

Value

ggplot

Examples

```
plotCCcomDotplot(CPGscores)
```

plotCCcomHeatmap plotCCcomHeatmap

Description

Plots heatmap for ligand-receptor communication scores in cell-cell interactions

```
plotCCcomHeatmap(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  show = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
  aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
```

```
"median", "centroid"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCCcomHeatmap")
```

Arguments

gobject giotto object comScores $communinication\ scores\ from\ expr\cell\cellcom\ or\ spat\cell\cellcom$ selected ligand-receptor combinations selected_LR selected_cell_LR selected cell-cell combinations for ligand-receptor combinations show_LR_names show ligand-receptor names show_cell_LR_names show cell-cell names show values to show on heatmap cor_method correlation method used for clustering agglomeration method used by hclust $aggl_method$ show_plot show plots return_plot return plotting object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

```
plotCCcomHeatmap(CPGscores)
```

```
plotCellProximityGenes
```

plotCellProximityGenes

Description

Create visualization for cell proximity gene scores

Usage

```
plotCellProximityGenes(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 4,
  min_cells_expr = 1,
  min_int_cells = 4,
  min_int_cells_expr = 1,
  min_fdr = 0.1,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCellProximityGenes"
```

Arguments

```
gobject
                  giotto object
cpgObject
                  cell proximity gene score object
method
                  plotting method to use
min_cells
                  minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells
                  minimum number of interacting neighbor cell type
min_int_cells_expr
                  minimum expression level for interacting neighbor cell type
min_fdr
                  minimum adjusted p-value
min_spat_diff
                  minimum absolute spatial expression difference
                  minimum log2 fold-change
min_log2_fc
min_zscore
                  minimum z-score change
zscores_column calculate z-scores over cell types or genes
direction
                  differential expression directions to keep
cell_color_code
                  vector of colors with cell types as names
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

174 plotCombineCCcom

Value

plot

Examples

```
plotCellProximityGenes(CPGscores)
```

plotCombineCCcom

plotCombineCCcom

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCCcom(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCCcom"
)
```

Arguments

```
gobject
                  giotto object
{\sf combCCcom}
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
{\tt detail\_plot}
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
```

```
facet_nrow ggplot facet nrow parameter

colors vector with two colors to use

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCCcom(CPGscores)
```

```
plot {\tt Combine Cell Cell Communication} \\ plot {\tt Combine Cell Cell Communication} \\
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCellCellCommunication(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCellCellCommunication"
```

Arguments

```
giotto object
gobject
combCCcom
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
                  show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
                  ggplot facet ncol parameter
facet_ncol
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCellCellCommunication(CPGscores)
```

```
plot {\tt Combine Cell Proximity Genes} \\ plot {\tt Combine Cell Proximity Genes}
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCellProximityGenes(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
```

```
simple_plot_facet = c("interaction", "genes"),
facet_scales = "fixed",
facet_ncol = length(selected_gene_to_gene),
facet_nrow = length(selected_interactions),
colors = c("#9932CC", "#FF8C00"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCombineCPG"
)
```

Arguments

```
gobject
                  giotto object
combCpgObject
                  CPGscores, output from combineCellProximityGenes()
selected_interactions
                  interactions to show
selected_gene_to_gene
                  pairwise gene combinations to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCellProximityGenes(CPGscores)
```

178 plotCombineCPG

plotCombineCPG plotCombineCPG

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCPG(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCPG"
)
```

Arguments

```
gobject
                 giotto object
combCpgObject
                 CPGscores, output from combineCellProximityGenes()
selected_interactions
                 interactions to show
selected_gene_to_gene
                 pairwise gene combinations to show
detail_plot
                 show detailed info in both interacting cell types
simple_plot
                 show a simplified plot
simple_plot_facet
                 facet on interactions or genes with simple plot
facet_scales
                 ggplot facet scales paramter
facet_ncol
                 ggplot facet ncol parameter
facet_nrow
                 ggplot facet nrow parameter
colors
                 vector with two colors to use
show_plot
                 show plots
return_plot
                 return plotting object
                 directly save the plot [boolean]
save_plot
save_param
                 list of saving parameters from all_plots_save_function
default_save_name
```

default save name for saving, don't change, change save_name in save_param

plotCPG 179

Value

ggplot

Examples

```
plotCombineCPG(CPGscores)
```

plotCPG

plotCPG

Description

Create visualization for cell proximity gene scores

Usage

```
plotCPG(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 5,
  min_cells_expr = 1,
  min_int_cells = 3,
  min_int_cells_expr = 1,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  min_zscore = 2,
  zscores_column = c("cell_type", "genes"),
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCPG"
)
```

Arguments

```
gobject giotto object
cell proximity gene score object
method plotting method to use
min_cells minimum number of source cell type
min_cells_expr minimum expression level for source cell type
min_int_cells minimum number of interacting neighbor cell type
min_int_cells_expr
minimum expression level for interacting neighbor cell type
```

180 plotGiottoImage

min_fdr minimum adjusted p-value

min_spat_diff minimum absolute spatial expression difference

min_log2_fc minimum log2 fold-change min_zscore minimum z-score change

zscores_column calculate z-scores over cell types or genes direction differential expression directions to keep

cell_color_code

vector of colors with cell types as names

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

plot

Examples

plotCPG(CPGscores)

plotGiottoImage plotGiottoImage

Description

get plot a giotto image from a giotto object

Usage

```
plotGiottoImage(gobject, image_name)
```

Arguments

gobject giotto object

image_name name of giotto image showGiottoImageNames

Value

plot

Examples

```
plotGiottoImage(gobject)
```

plotHeatmap 181

plotHeatmap

plotHeatmap

Description

Creates heatmap for genes and clusters.

Usage

```
plotHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_color_code = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D"
  gene_order = c("correlation", "custom"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete",
  show_values = c("rescaled", "z-scaled", "original"),
  size_vertical_lines = 1.1,
  gradient_colors = c("blue", "yellow", "red"),
  gene_label_selection = NULL,
  axis_text_y_size = NULL,
  legend_nrows = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotHeatmap"
)
```

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters
cluster_color_code
color code for clusters
cluster_cor_method
method for cluster correlation
```

182 plotHeatmap

```
cluster_hclust_method
                  method for hierarchical clustering of clusters
                  method to determine gene order
gene_order
gene_custom_order
                  custom order for genes
{\tt gene\_cor\_method}
                  method for gene correlation
gene_hclust_method
                  method for hierarchical clustering of genes
show_values
                  which values to show on heatmap
size_vertical_lines
                  sizes for vertical lines
gradient_colors
                  colors for heatmap gradient
gene_label_selection
                  subset of genes to show on y-axis
axis_text_y_size
                  size for y-axis text
legend_nrows
                  number of rows for the cluster legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name
```

Details

If you want to display many genes there are 2 ways to proceed:

- 1. set axis_text_y_size to a really small value and show all genes
- 2. provide a subset of genes to display to gene_label_selection

Value

ggplot

```
## Not run:
plotHeatmap(gobject)
## End(Not run)
```

plotICG 183

plotICG plotICG

Description

Create barplot to visualize interaction changed genes

Usage

```
plotICG(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotICG"
)
```

Arguments

```
gobject
                  giotto object
                  cell proximity gene score object
cpgObject
source_type
                  cell type of the source cell
source_markers markers for the source cell type
ICG_genes
                  named character vector of ICG genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

```
plotICG(CPGscores)
```

```
plotInteraction {\tt Changed Genes} \\ plotInteraction {\tt Changed Genes} \\
```

Description

Create barplot to visualize interaction changed genes

Usage

```
plotInteractionChangedGenes(
   gobject,
   cpgObject,
   source_type,
   source_markers,
   ICG_genes,
   cell_color_code = NULL,
   show_plot = NA,
   return_plot = NA,
   save_plot = NA,
   save_param = list(),
   default_save_name = "plotInteractionChangedGenes")
```

Arguments

```
gobject
                  giotto object
cpgObject
                  cell proximity gene score object
                  cell type of the source cell
source_type
source_markers markers for the source cell type
ICG_genes
                  named character vector of ICG genes
cell_color_code
                  cell color code for the interacting cell types
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

```
plotInteractionChangedGenes(CPGscores)
```

plotly_axis_scale_2D 185

```
plotly_axis_scale_2D plotly_axis_scale_2D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_2D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object sdimx x axis of cell spatial location sdimy y axis of cell spatial location mode axis adjustment mode custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_2D(gobject)
```

```
plotly_axis_scale_3D plotly_axis_scale_3D
```

Description

adjust the axis scale in 3D plotly plot

```
plotly_axis_scale_3D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

186 plotly_grid

Arguments

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_3D(gobject)
```

plotly_grid

plotly_grid

Description

provide grid segment to draw in plot_ly()

Usage

```
plotly_grid(
   spatial_grid,
   x_start = "x_start",
   y_start = "y_start",
   x_end = "x_end",
   y_end = "y_end"
)
```

Arguments

```
spatial_grid spatial_grid in giotto object
```

Value

edges in spatial grid as data.table()

```
plotly_grid(gobject)
```

plotly_network 187

plotly_network

plotly_network

Description

provide network segment to draw in 3D plot_ly()

Usage

```
plotly_network(
  network,
  x = "sdimx_begin",
  y = "sdimy_begin",
  z = "sdimz_begin",
  x_end = "sdimx_end",
  y_end = "sdimy_end",
  z_end = "sdimz_end"
)
```

Arguments

gobject network in giotto object

Value

edges in network as data.table()

Examples

```
plotly_network(gobject)
```

```
plotMetaDataCellsHeatmap
```

plotMetaDataCellsHeatmap

Description

Creates heatmap for numeric cell metadata within aggregated clusters.

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
```

save_plot

save_param

default_save_name

custom_gene_order

```
clus_cor_method = "pearson",
      clus_cluster_method = "complete",
      custom_values_order = NULL,
      values_cor_method = "pearson",
      values_cluster_method = "complete",
      midpoint = 0,
      x_{text_size} = 8,
      x_{text_angle} = 45,
      y_text_size = 8,
      strip_text_size = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "plotMetaDataCellsHeatmap"
    )
Arguments
    gobject
                     giotto object
                     annotation columns found in pDataDT(gobject)
    metadata_cols
    spat_enr_names spatial enrichment results to include
    value_cols
                     value columns to use
    first_meta_col if more than 1 metadata column, select the x-axis factor
    second_meta_col
                     if more than 1 metadata column, select the facetting factor
    show_values
                     which values to show on heatmap
    custom_cluster_order
                     custom cluster order (default = NULL)
    clus_cor_method
                     correlation method for clusters
    clus_cluster_method
                     hierarchical cluster method for the clusters
                     midpoint of show_values
    midpoint
                     size of x-axis text
    x_text_size
    x_text_angle
                     angle of x-axis text
    y_text_size
                     size of y-axis text
    strip_text_size
                     size of strip text
    show_plot
                     show plot
    return_plot
                     return ggplot object
```

directly save the plot [boolean]

custom gene order (default = NULL)

list of saving parameters, see showSaveParameters

default save name for saving, don't change, change save_name in save_param

plotMetaDataHeatmap 189

Details

Creates heatmap for the average values of selected value columns in the different annotation groups.

Value

ggplot or data.table

See Also

plotMetaDataHeatmap for gene expression instead of numeric cell annotation data.

Examples

```
plotMetaDataCellsHeatmap(gobject)
```

```
plotMetaDataHeatmap
```

Description

Creates heatmap for genes within aggregated clusters.

```
plotMetaDataHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_gene_order = NULL,
  gene_cor_method = "pearson",
  gene_cluster_method = "complete",
  gradient_color = c("blue", "white", "red"),
  gradient_midpoint = 0,
  gradient_limits = NULL,
  x_{text_size} = 10,
  x_{text_angle} = 45,
  y_{text_size} = 10,
  strip_text_size = 8,
  show_plot = NA,
```

```
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotMetaDataHeatmap"
)
```

```
gobject
                 giotto object
expression_values
                 expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
first_meta_col if more than 1 metadata column, select the x-axis factor
second_meta_col
                 if more than 1 metadata column, select the facetting factor
show_values
                 which values to show on heatmap
custom_cluster_order
                 custom cluster order (default = NULL)
clus_cor_method
                 correlation method for clusters
clus_cluster_method
                 hierarchical cluster method for the clusters
custom_gene_order
                 custom gene order (default = NULL)
gene_cor_method
                 correlation method for genes
gene_cluster_method
                 hierarchical cluster method for the genes
gradient_color vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                 vector with lower and upper limits
                 size of x-axis text
x_text_size
x_text_angle
                 angle of x-axis text
y_text_size
                 size of y-axis text
strip_text_size
                 size of strip text
show_plot
                 show plot
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
                 list of saving parameters, see showSaveParameters
save_param
default_save_name
                 default save name
```

plotPCA 191

Details

Creates heatmap for the average expression of selected genes in the different annotation/cluster groups. Calculation of cluster or gene order is done on the provided expression values, but visualization is by default on the z-scores. Other options are the original values or z-scores rescaled per gene (-1 to 1).

Value

ggplot or data.table

See Also

plotMetaDataCellsHeatmap for numeric cell annotation instead of gene expression.

Examples

```
plotMetaDataHeatmap(gobject)
```

plotPCA

plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
```

192 plotPCA

```
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell color param-
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

plotPCA_2D 193

Examples

```
plotPCA(gobject)
```

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

Usage

```
plotPCA_2D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_2D",
   ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
```

194 plotPCA_2D

```
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotPCA_2D(gobject)
```

plotPCA_3D 195

plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

plotPCA_3D

Usage

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
   ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of PCA
default_save_name
                 default save name of PCA plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show NN network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
                 return_plot return ggplot object
                  save_plot directly save the plot [boolean]
                 save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_2D(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotPCA_3D(gobject)
```

plotRankSpatvsExpr

plotRankSpatvsExpr

Description

Plots dotplot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRankSpatvsExpr(
  gobject,
  combCC,
  expr_rnk_column = "LR_expr_rnk",
  spat_rnk_column = "LR_spat_rnk",
  midpoint = 10,
  size\_range = c(0.01, 1.5),
  xlims = NULL,
  ylims = NULL,
  selected_ranks = c(1, 10, 20),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRankSpatvsExpr"
)
```

plotRecovery 197

```
midpoint of colors
midpoint
size_range
                  size ranges of dotplot
                  x-limits, numerical vector of 2
xlims
ylims
                  y-limits, numerical vector of 2
selected_ranks numerical vector, will be used to print out the percentage of top spatial ranks are
                  recovered
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotRankSpatvsExpr(CPGscores)
```

plotRecovery

plotRecovery

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

```
plotRecovery(
  gobject,
  combCC,
  expr_rnk_column = "exprPI_rnk",
  spat_rnk_column = "spatPI_rnk",
  ground_truth = c("spatial", "expression"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRecovery"
)
```

198 plotRecovery_sub

Arguments

gobject giotto object

combCC combined communinication scores from combCCcom

expr_rnk_column

column with expression rank information to use

spat_rnk_column

column with spatial rank information to use

ground_truth what to consider as ground truth (default: spatial)

show_plot show plots

return_plot return plotting object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

plotRecovery(CPGscores)

plotRecovery_sub plotRecovery_sub

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery_sub(combCC, first_col = "LR_expr_rnk", second_col = "LR_spat_rnk")
```

Arguments

combCC combined communinication scores from combCCcom

first_col first column to use second_col second column to use

```
plotRecovery_sub(CPGscores)
```

```
plotStatDelaunayNetwork
```

plotStatDelaunayNetwork

Description

Plots network statistics for a Delaunay network..

Usage

```
plotStatDelaunayNetwork(
  gobject,
  method = c("deldir", "delaunayn_geometry", "RTriangle"),
  dimensions = "all",
  maximum_distance = "auto",
  minimum_k = 0,
  options = "Pp",
  Y = TRUE,
  j = TRUE,
  S = 0,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotStatDelaunayNetwork",
)
```

gobject	giotto object
dimensions	which spatial dimensions to use (maximum 2 dimensions)
maximum_distanc	ne e
	distance cuttof for Delaunay neighbors to consider
minimum_k	minimum neigbhours if maximum_distance != NULL
options	(geometry) String containing extra control options for the underlying Qhull command; see the Qhull documentation (/doc/qhull/html/qdelaun.html) for the available options. (default = 'Pp', do not report precision problems)
Υ	(RTriangle) If TRUE prohibits the insertion of Steiner points on the mesh boundary.
j	(RTriangle) If TRUE jettisons vertices that are not part of the final triangulation from the output.
S	(RTriangle) Specifies the maximum number of added Steiner points.
show_plot	show plots
return_plot	return ggplot object
save_plot	directly save the plot [boolean]
save_param	list of saving parameters from all_plots_save_function

200 plotTSNE

```
default_save_name

default save name for saving, don't change, change save_name in save_param

Other parameters of the triangulate function

name

name for spatial network (default = 'delaunay_network')
```

Details

Plots statistics for a spatial Delaunay network as explained in triangulate. This can be used to further finetune the createSpatialDelaunayNetwork function.

Value

giotto object with updated spatial network slot

Examples

```
plotStatDelaunayNetwork(gobject)
```

plotTSNE

plotTSNE

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot2D
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
```

plotTSNE 201

```
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell color param-
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA_3D(), plotTSNE_2D(), plotTSNE_3D(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

202 plotTSNE_2D

Examples

```
plotTSNE(gobject)
```

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
  ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
```

plotTSNE_2D 203

```
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

```
plotTSNE_2D(gobject)
```

204 plotTSNE_3D

plotTSNE_3D

plotTSNE 3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne"
  default_save_name = "TSNE_3D",
)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of TSNE
default_save_name
                 default save name of TSNE plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show NN network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
                 return_plot return ggplot object
                  save_plot directly save the plot [boolean]
                  save_param list of saving parameters, see showSaveParameters
```

plotUMAP 205

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D(), plotUMAP()
```

Examples

```
plotTSNE_3D(gobject)
```

plotUMAP

plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
. . .
                 group_by_subset subset the group_by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
```

206 plotUMAP

```
select_cell_groups select subset of cells/clusters based on cell color param-
select_cells select subset of cells based on cell IDs
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size size of not selected cells
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no_border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP_3D()
```

```
plotUMAP(gobject)
```

plotUMAP_2D 207

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP_2D(
  gobject,
  dim_reduction_name = "umap";
  default_save_name = "UMAP_2D",
)
```

```
giotto object
gobject
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot2D
                 group_by_subset subset the group by factor column
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 spat_enr_names names of spatial enrichment results to include
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show_NN_network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                  show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
```

208 plotUMAP_2D

```
label_fontface font of labels
edge_alpha column to use for alpha of the edges
point_shape point with border or not (border or no border)
point_size size of point (cell)
point_alpha transparancy of point
point_border_col color of border around points
point_border_stroke stroke size of border around points
title title for plot, defaults to cell_color parameter
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_3D(), plotUMAP()
```

```
plotUMAP_2D(gobject)
```

plotUMAP_3D 209

plotUMAP_3D

plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap";
  default_save_name = "UMAP_3D",
)
```

```
gobject
                 giotto object
dim_reduction_name
                 name of UMAP
default_save_name
                 default save name of UMAP plot
                 Arguments passed on to dimPlot3D
                 dim1_to_use dimension to use on x-axis
                 dim2_to_use dimension to use on y-axis
                 dim3_to_use dimension to use on z-axis
                 show_NN_network show underlying NN network
                 nn_network_to_use type of NN network to use (kNN vs sNN)
                 network_name name of NN network to use, if show NN network = TRUE
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                      eter
                 select_cells select subset of cells based on cell IDs
                 show_other_cells display not selected cells
                 other_cell_color color of not selected cells
                 other_point_size size of not selected cells
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 edge_alpha column to use for alpha of the edges
                 point_size size of point (cell)
                 show_plot show plot
                 return_plot return ggplot object
                  save_plot directly save the plot [boolean]
                  save_param list of saving parameters, see showSaveParameters
```

210 rankEnrich

Details

Description of parameters.

Value

plotly

See Also

```
Other reduced dimension visualizations: dimPlot2D(), dimPlot3D(), dimPlot(), plotPCA_2D(), plotPCA_3D(), plotPCA(), plotTSNE_2D(), plotTSNE_3D(), plotTSNE(), plotUMAP_2D(), plotUMAP()
```

Examples

```
plotUMAP_3D(gobject)
```

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

Usage

```
print.giotto(object, ...)
```

Arguments

nr_genes number of genes (rows) to print nr_cells number of cells (columns) to print

rankEnrich

rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

```
rankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

rankSpatialCorGroups 211

Arguments

```
gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

output_enrichment

how to return enrichment output
```

now to return entremnent outpo

Details

sign_matrix: a rank-fold matrix with genes as row names and cell-types as column names. Alternatively a scRNA-seq matrix and vector with clusters can be provided to makeSignMatrixRank, which will create the matrix for you.

First a new rank is calculated as $R = (R1*R2)^{\Lambda}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: $RBP = (1 - 0.99) * (0.99)^{\Lambda}(R - 1)$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

See Also

```
make Sign Matrix Rank
```

Examples

```
rankEnrich(gobject)
```

```
rankSpatialCorGroups rankSpatialCorGroups
```

Description

Rank spatial correlated clusters according to correlation structure

```
rankSpatialCorGroups(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_plot = NA,
  return_plot = FALSE,
  save_plot = NA,
```

212 readExprMatrix

```
save_param = list(),
  default_save_name = "rankSpatialCorGroups"
)
```

Arguments

gobject giotto object

spatCorObject spatial correlation object

 $use_clus_name \quad name \ of \ clusters \ to \ visualize \ (from \ clusterSpatialCorGenes())$

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

data.table with positive (within group) and negative (outside group) scores

Examples

```
rankSpatialCorGroups(gobject)
```

rank_binarize

rank_binarize

Description

create binarized scores from a vector using arbitrary rank

Usage

```
rank_binarize(x, max_rank = 200)
```

 ${\tt readExprMatrix}$

readExprMatrix

Description

Function to read an expression matrix into a sparse matrix.

```
readExprMatrix(path, cores = NA, transpose = FALSE)
```

readGiottoInstructions 213

Arguments

path path to the expression matrix

cores number of cores to use

transpose transpose matrix

Details

The expression matrix needs to have both unique column names and row names

Value

sparse matrix

Examples

readExprMatrix()

readGiottoInstructions

read Giot to Instrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

 $giot to\ object\ or\ result\ from\ create Giot to Instructions()$

param parameter to retrieve

Value

specific parameter

Examples

readGiottoInstrunctions()

214 removeGeneAnnotation

removeCellAnnotation removeCellAnnotation

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the cell metadata

Value

giotto object

Examples

removeCellAnnotation(gobject)

removeGeneAnnotation removeGeneAnnotation

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the gene metadata

Value

giotto object

Examples

removeGeneAnnotation(gobject)

replaceGiottoInstructions

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

gobject giotto object

instructions new instructions (e.g. result from createGiottoInstructions)

Value

giotto object with replaces instructions

Examples

replaceGiottoInstructions()

runPCA runPCA

Description

runs a Principal Component Analysis

216 runPCA

Usage

```
runPCA(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  name = "pca",
  genes_to_use = "hvg",
  return_gobject = TRUE,
  center = F,
  scale_unit = F,
  ncp = 100,
  method = c("irlba", "factominer"),
  rev = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

gobject giotto object expression_values expression values to use reduction cells or genes arbitrary name for PCA run name subset of genes to use for PCA genes_to_use return_gobject boolean: return giotto object (default = TRUE) center data first (default = FALSE) center scale features before PCA (default = FALSE) scale_unit ncp number of principal components to calculate which implementation to use method do a reverse PCA rev verbose verbosity of the function additional parameters for PCA (see details)

Details

See prcomp_irlba and PCA for more information about other parameters.

- genes_to_use = NULL: will use all genes from the selected matrix
- genes_to_use = <hvg name>: can be used to select a column name of highly variable genes, created by (see calculateHVG)
- genes_to_use = c('geneA', 'geneB', ...): will use all manually provided genes

Value

giotto object with updated PCA dimension recuction

runPCA_factominer 217

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)</pre>
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)</pre>
VC_small <- addStatistics(gobject = VC_small)</pre>
# 3. dimension reduction
VC_small <- calculateHVG(gobject = VC_small)</pre>
VC_small <- runPCA(gobject = VC_small)</pre>
plotPCA(VC_small)
```

runPCA_factominer

runPCA_factominer

Description

performs PCA based on the factominer package

Usage

```
runPCA_factominer(x, ncp = 100, scale = TRUE, rev = FALSE, ...)
```

Arguments

matrix or object that can be converted to matrix number of principal components to calculate ncp scale features scale

reverse PCA rev

Value

list of eigenvalues, loadings and pca coordinates

```
runPCA_prcomp_irlba
                       runPCA_prcomp_irlba
```

Description

performs PCA based on the irlba package

218 runtSNE

Usage

```
runPCA_prcomp_irlba(
    x,
    ncp = 100,
    center = TRUE,
    scale = TRUE,
    rev = FALSE,
    ...
)
```

Arguments

x matrix or object that can be converted to matrix
ncp number of principal components to calculate
center center data
scale scale features
rev reverse PCA

Value

list of eigenvalues, loadings and pca coordinates

runtSNE runtSNE

Description

run tSNE

Usage

```
runtSNE(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "tsne",
  genes_to_use = NULL,
  return_gobject = TRUE,
  dims = 2,
  perplexity = 30,
  theta = 0.5,
  do_PCA_first = F,
  set_seed = T,
  seed_number = 1234,
  verbose = TRUE,
)
```

runtSNE 219

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
reduction
                 cells or genes
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
name
                 arbitrary name for tSNE run
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
                 tSNE param: number of dimensions to return
dims
perplexity
                 tSNE param: perplexity
                 tSNE param: theta
theta
                 tSNE param: do PCA before tSNE (default = FALSE)
do_PCA_first
set seed
                 use of seed
seed_number
                 seed number to use
                 verbosity of the function
verbose
                 additional tSNE parameters
. . .
```

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple tSNE results can be stored by changing the *name* of the analysis

Value

giotto object with updated tSNE dimension recuction

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)
VC_small <- addStatistics(gobject = VC_small)</pre>
```

220 runUMAP

```
# 3. dimension reduction
VC_small <- calculateHVG(gobject = VC_small)
VC_small <- runPCA(gobject = VC_small)
VC_small <- runTSNE(VC_small, dimensions_to_use = 1:5, n_threads = 2)
plotTSNE(gobject = VC_small)</pre>
```

runUMAP

runUMAP

Description

run UMAP

Usage

```
runUMAP(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 dim_reduction_to_use = "pca",
 dim_reduction_name = "pca",
 dimensions_to_use = 1:10,
 name = "umap",
 genes_to_use = NULL,
 return_gobject = TRUE,
 n_neighbors = 40,
 n_{components} = 2,
 n_{epochs} = 400,
 min_dist = 0.01,
 n_{threads} = 1,
 spread = 5,
 set\_seed = T,
 seed_number = 1234,
 verbose = T,
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

reduction cells or genes
dim_reduction_to_use
use another dimension reduction set as input
dim_reduction_name
name of dimension reduction set to use
dimensions_to_use
number of dimensions to use as input
```

runUMAP 221

```
name
                 arbitrary name for UMAP run
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
n_neighbors
                 UMAP param: number of neighbors
n_components
                 UMAP param: number of components
                 UMAP param: number of epochs
n_epochs
                 UMAP param: minimum distance
min_dist
n_threads
                 UMAP param: threads to use
spread
                 UMAP param: spread
set_seed
                 use of seed
                 seed number to use
seed_number
                 verbosity of function
verbose
                 additional UMAP parameters
```

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
- multiple UMAP results can be stored by changing the *name* of the analysis

Value

giotto object with updated UMAP dimension recuction

Examples

```
# 1. create giotto object
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# 2. normalize giotto
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000)
VC_small <- addStatistics(gobject = VC_small)
# 3. dimension reduction
VC_small <- calculateHVG(gobject = VC_small)
VC_small <- runPCA(gobject = VC_small)
VC_small <- runUMAP(VC_small, dimensions_to_use = 1:5, n_threads = 2)
plotUMAP(gobject = VC_small)</pre>
```

222 screePlot

screePlot screePlot

Description

identify significant prinicipal components (PCs) using an screeplot (a.k.a. elbowplot)

Usage

```
screePlot(
 gobject,
 name = "pca",
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 method = c("irlba", "factominer"),
 rev = FALSE,
  genes_to_use = NULL,
  center = F,
  scale_unit = F,
 ncp = 100,
 ylim = c(0, 20),
  verbose = T,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "screePlot",
)
```

Arguments

gobject giotto object name of PCA object if available name expression_values expression values to use cells or genes reduction which implementation to use method do a reverse PCA rev genes_to_use subset of genes to use for PCA center data before PCA center scale features before PCA scale_unit number of principal components to calculate ncp ylim y-axis limits on scree plot verbose verobsity show_plot show plot return_plot return ggplot object

selectPatternGenes 223

Details

Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a 'elbow method'). Screeplot will use an available pca object, based on the parameter 'name', or it will create it if it's not available (see runPCA)

Value

ggplot object for scree method

Examples

```
screePlot(gobject)
```

selectPatternGenes

selectPatternGenes

Description

Select genes correlated with spatial patterns

Usage

```
selectPatternGenes(
   spatPatObj,
   dimensions = 1:5,
   top_pos_genes = 10,
   top_neg_genes = 10,
   min_pos_cor = 0.5,
   min_neg_cor = -0.5,
   return_top_selection = FALSE
)
```

Arguments

spatPatObj	Output from detectSpatialPatterns
dimensions	dimensions to identify correlated genes for.
top_pos_genes	Top positively correlated genes.
top_neg_genes	Top negatively correlated genes.
min_pos_cor	Minimum positive correlation score to include a gene.
min_neg_cor	Minimum negative correlation score to include a gene.

224 select_spatialNetwork

Details

Description.

Value

Data.table with genes associated with selected dimension (PC).

Examples

```
selectPatternGenes(gobject)
```

```
select\_expression\_values \\ select\_expression\_values
```

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

```
select_spatialNetwork
```

Description

function to select a spatial network

Usage

```
select_spatialNetwork(gobject, name = NULL, return_network_Obj = FALSE)
```

set_giotto_python_path 225

Description

sets the python path and/or install miniconda and the python modules

Usage

```
set_giotto_python_path(
   python_path = NULL,
   packages_to_install = c("pandas", "networkx", "python-igraph", "leidenalg",
        "python-louvain", "python.app", "scikit-learn")
)
```

show,giotto-method

show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

 $show {\tt ClusterDendrogram} \ \ \textit{show ClusterDendrogram}$

Description

Creates dendrogram for selected clusters.

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
```

226 showClusterHeatmap

```
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "showClusterDendrogram",
...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
cor
                  correlation score to calculate distance
                  distance method to use for hierarchical clustering
distance
h
                  height of horizontal lines to plot
h_color
                  color of horizontal lines
rotate
                  rotate dendrogram 90 degrees
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

additional parameters for ggdendrogram()

Details

Expression correlation dendrogram for selected clusters.

Value

ggplot

Examples

showClusterDendrogram(gobject)

showClusterHeatmap showClusterHeatmap

Description

Creates heatmap based on identified clusters

showClusterHeatmap 227

Usage

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

giotto object gobject expression_values expression values to use vector of genes to use, default to 'all' genes cluster_column name of column to use for clusters correlation score to calculate distance cor distance distance method to use for hierarchical clustering show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] save_param list of saving parameters, see showSaveParameters default_save_name default save name for saving, don't change, change save_name in save_param

additional parameters for the Heatmap function from ComplexHeatmap

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

```
showClusterHeatmap(gobject)
```

228 showGiottoInstructions

 $show {\tt GiottoImageNames} \quad \textit{show GiottoImageNames}$

Description

Prints the available giotto images that are attached to the Giotto object

Usage

```
showGiottoImageNames(gobject, verbose = TRUE)
```

Arguments

gobject a giotto object

verbose verbosity of function

Value

a vector of giotto image names attached to the giotto object

Examples

```
showGiottoImageNames(gobject)
```

 ${\tt showGiottoInstructions}$

showGiottoInstructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

gobject giotto object

Value

named vector with giotto instructions

Examples

showGiottoInstructions()

showGrids 229

showGrids

showGrids

Description

Prints the available spatial grids that are attached to the Giotto object

Usage

```
showGrids(gobject, verbose = TRUE)
```

Arguments

gobject

a giotto object

verbose

verbosity of function#'

Value

vector

Examples

showGrids()

showNetworks

showNetworks

Description

Prints the available spatial networks that are attached to the Giotto object

Usage

```
showNetworks(gobject, verbose = TRUE)
```

Arguments

gobject

a giotto object

verbose

verbosity of function#'

Value

vector

Examples

showNetworks()

showPattern

showPattern

showPattern

Description

```
show patterns for 2D spatial data
```

Usage

```
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of ggplot

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

See Also

showPattern2D

Examples

```
showPattern(gobject)
```

showPattern2D 231

showPattern2D

showPattern2D

Description

show patterns for 2D spatial data

Usage

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D")
```

Arguments

```
gobject
                 giotto object
                 Output from detectSpatialPatterns
spatPatObj
dimension
                 dimension to plot
trim
                 Trim ends of the PC values.
background_color
                 background color for plot
grid_border_color
                 color for grid
                 show legend of ggplot
show_legend
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

```
{\tt showPattern2D(gobject)}
```

232 showPattern3D

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

Usage

```
showPattern3D(
 gobject,
 spatPatObj,
 dimension = 1,
  trim = c(0.02, 0.98),
 background_color = "white",
 grid_border_color = "grey",
  show_legend = T,
 point_size = 1,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showPattern3D"
```

Arguments

```
gobject
                  giotto object
spatPatObj
                  Output from detectSpatialPatterns
dimension
                  dimension to plot
                  Trim ends of the PC values.
trim
background_color
                  background color for plot
grid_border_color
                  color for grid
                  show legend of plot
show_legend
point_size
                  adjust the point size
axis_scale
                  scale the axis
                  cutomize the scale of the axis
custom_ratio
x_ticks
                  the tick number of x_axis
                  the tick number of y_axis
y_ticks
z_ticks
                  the tick number of z_axis
```

showPatternGenes 233

```
show_plot show plot

return_plot return plot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Value

plotly

Examples

```
showPattern3D(gobject)
```

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

Usage

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

Arguments

```
gobject
                  giotto object
                  Output from detectSpatialPatterns
spatPatObj
dimension
                  dimension to plot genes for.
                  Top positively correlated genes.
top_pos_genes
top_neg_genes
                  Top negatively correlated genes.
point_size
                  size of points
return_DT
                  if TRUE, it will return the data.table used to generate the plots
show_plot
                  show plot
```

234 showProcessingSteps

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

showPatternGenes(gobject)

 $show Processing Steps \qquad show Processing Steps$

Description

shows the sequential processing steps that were performed in a summarized format

Usage

showProcessingSteps(gobject)

Arguments

gobject giotto object

Value

list of processing steps and names

Examples

showProcessingSteps(gobject)

showSaveParameters 235

showSaveParameters showSaveParameters

Description

Description of Giotto saving options, links to all_plots_save_function

Usage

```
showSaveParameters()
```

Value

Instruction on how to use the automatic plot saving options within Giotto

Examples

```
showSaveParameters()
```

showSpatialCorGenes

show Spatial Cor Genes

Description

Shows and filters spatially correlated genes

Usage

```
showSpatialCorGenes(
  spatCorObject,
  use_clus_name = NULL,
  selected_clusters = NULL,
  genes = NULL,
  min_spat_cor = 0.5,
  min_expr_cor = NULL,
  min_cor_diff = NULL,
  min_rank_diff = NULL,
  show_top_genes = NULL
)
```

Arguments

236 signPCA

```
min_cor_diff filter on minimum correlation difference (spatial vs expression)
min_rank_diff filter on minimum correlation rank difference (spatial vs expression)
show_top_genes show top genes per gene
```

Value

data.table with filtered information

Examples

```
showSpatialCorGenes(gobject)
```

signPCA

signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
 gobject,
 name = "pca",
 method = c("screeplot", "jackstraw"),
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 pca_method = c("irlba", "factominer"),
 rev = FALSE,
 genes_to_use = NULL,
 center = T,
  scale_unit = T,
 ncp = 50,
 scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_ylim = c(0, 1),
 verbose = TRUE,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "signPCA"
)
```

Arguments

```
gobject giotto object

name name of PCA object if available

method method to use to identify significant PCs
```

signPCA 237

expression_values

expression values to use

reduction cells or genes

pca_method which implementation to use

rev do a reverse PCA

genes_to_use subset of genes to use for PCA

center center data before PCA

scale_unit scale features before PCA

ncp number of principal components to calculate

scree_ylim y-axis limits on scree plot

jack_iter number of interations for jackstraw

jack_threshold p-value threshold to call a PC significant

jack_ylim y-axis limits on jackstraw plot

verbose verbosity show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a. 'elbow method').
- 2. The Jackstraw method uses the permutationPA function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

signPCA(gobject)

238 silhouetteRank

silhouetteRank si

silhouetteRank

Description

Previously: calculate_spatial_genes_python. This method computes a silhouette score per gene based on the spatial distribution of two partitions of cells (expressed L1, and non-expressed L0). Here, rather than L2 Euclidean norm, it uses a rank-transformed, exponentially weighted function to represent the local physical distance between two cells.

Usage

```
silhouetteRank(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

specify specific path to python if required

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use

subset_genes only run on this subset of genes

rbp_p fractional binarization threshold

examine_top top fraction to evaluate with silhouette
```

Value

python_path

data.table with spatial scores

Examples

```
silhouetteRank(gobject)
```

spatCellCellcom 239

spatCellCellcom spatCellCellcom

Description

Spatial Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
spatCellCellcom(
  gobject,
 spatial_network_name = "Delaunay_network",
 cluster_column = "cell_types",
  random_iter = 1000,
 gene_set_1,
 gene_set_2,
  log2FC_addendum = 0.1,
 min_observations = 2,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
  do_parallel = TRUE,
 cores = NA,
  verbose = c("a little", "a lot", "none")
)
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
                  which method to adjust p-values
adjust_method
                  adjust multiple hypotheses at the cell or gene level
adjust_target
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
                  verbose
verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.. More details will follow soon.

240 spatCellPlot

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
spatCellCellcom(gobject)
```

spatCellPlot

spatCellPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatCellPlot(...)
```

Arguments . . .

```
Arguments passed on to spatCellPlot2D
gobject giotto object
show_image show a tissue background image
gimage a giotto image
image_name name of a giotto image
sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
spat_enr_names names of spatial enrichment results to include
cell_annotation_values numeric cell annotation columns
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
select_cell_groups select subset of cells/clusters based on cell_color param-
    eter
select_cells select subset of cells based on cell IDs
point_shape shape of points (border, no_border or voronoi)
point_size size of point (cell)
point_alpha transparancy of spatial points
point_border_col color of border around points
point_border_stroke stroke size of border around points
show_cluster_center plot center of selected clusters
show_center_label plot label of selected clusters
center_point_size size of center points
label_size size of labels
label_fontface font of labels
show_network show underlying spatial network
spatial_network_name name of spatial network to use
```

spatCellPlot 241

```
network_color color of spatial network
network_alpha alpha of spatial network
show_grid show spatial grid
spatial_grid_name name of spatial grid to use
grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size point size of not selected cells
other_cells_alpha alpha of not selected cells
coord_fix_ratio fix ratio between x and y-axis
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot2D()

Examples

spatCellPlot(gobject)

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatCellPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy"
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show\_center\_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
 background_color = "white",
```

```
vor_border_color = "white",
      vor_max_radius = 200,
      vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatCellPlot2D"
    )
Arguments
   gobject
                     giotto object
    show_image
                     show a tissue background image
    gimage
                     a giotto image
    image_name
                     name of a giotto image
    sdimx
                     x-axis dimension name (default = 'sdimx')
                     y-axis dimension name (default = 'sdimy')
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
                     shape of points (border, no_border or voronoi)
    point_shape
   point_size
                     size of point (cell)
    point_alpha
                     transparancy of spatial points
   point_border_col
                     color of border around points
   point_border_stroke
                     stroke size of border around points
    show_cluster_center
                     plot center of selected clusters
```

plot label of selected clusters

show_center_label

center_point_size size of center points label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use color of spatial network network_color network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' vor_alpha transparancy of voronoi 'cells' axis_text size of axis text axis_title size of axis title show_plot show plot return ggplot object return_plot directly save the plot [boolean] save_plot list of saving parameters, see showSaveParameters save_param

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

default_save_name

Value

ggplot

See Also

Other spatial cell annotation visualizations: spatCellPlot()

Examples

```
spatCellPlot2D(gobject)
```

spatDimCellPlot

spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot(...)
```

Arguments

Arguments passed on to spatDimCellPlot2D . . . gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image plot_alignment direction to align plot spat_enr_names names of spatial enrichment results to include cell_annotation_values numeric cell annotation columns dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axis sdimy = spatial dimension to use on y-axis cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color paramselect_cells select subset of cells based on cell IDs dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size size of points in dim. reduction space

dim_point_alpha transparancy of dim. reduction points

```
dim_point_border_col border color of points in dim. reduction space
dim_point_border_stroke border stroke of points in dim. reduction space
spat_point_shape shape of points (border, no_border or voronoi)
spat_point_size size of spatial points
spat_point_alpha transparancy of spatial points
spat_point_border_col border color of spatial points
spat_point_border_stroke border stroke of spatial points
dim_show_cluster_center show the center of each cluster
dim_show_center_label provide a label for each cluster
dim_center_point_size size of the center point
dim_center_point_border_col border color of center point
dim_center_point_border_stroke stroke size of center point
dim_label_size size of the center label
dim_label_fontface font of the center label
spat show cluster center show the center of each cluster
spat_show_center_label provide a label for each cluster
spat_center_point_size size of the center point
spat_label_size size of the center label
spat_label_fontface font of the center label
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
nn_network_name name of NN network to use, if show_NN_network = TRUE
dim_edge_alpha column to use for alpha of the edges
spat_show_network show spatial network
spatial_network_name name of spatial network to use
spat_network_color color of spatial network
spat_show_grid show spatial grid
spatial_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
coord_fix_ratio ratio for coordinates
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
```

```
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot2D()

Examples

```
spatDimCellPlot(gobject)
```

spatDimCellPlot2D

spatDimCellPlot2D

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

Usage

```
spatDimCellPlot2D(
  gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
```

```
cell_color_gradient = c("blue", "white", "red"),
gradient_midpoint = NULL,
gradient_limits = NULL,
select_cell_groups = NULL,
select_cells = NULL,
dim_point_shape = c("border", "no_border"),
dim_point_size = 1,
dim_point_alpha = 1,
dim_point_border_col = "black",
dim_point_border_stroke = 0.1,
spat_point_shape = c("border", "no_border", "voronoi"),
spat_point_size = 1,
spat_point_alpha = 1,
spat_point_border_col = "black",
spat_point_border_stroke = 0.1,
dim_show_cluster_center = F,
dim_show_center_label = T,
dim_center_point_size = 4,
dim_center_point_border_col = "black",
dim_center_point_border_stroke = 0.1,
dim_label_size = 4,
dim_label_fontface = "bold",
spat_show_cluster_center = F,
spat_show_center_label = F,
spat_center_point_size = 4,
spat_center_point_border_col = "black",
spat_center_point_border_stroke = 0.1,
spat_label_size = 4,
spat_label_fontface = "bold",
show_NN_network = F,
nn_network_to_use = "sNN",
nn_network_name = "sNN.pca",
dim_edge_alpha = 0.5,
spat_show_network = F,
spatial_network_name = "Delaunay_network",
spat_network_color = "red",
spat_network_alpha = 0.5,
spat_show_grid = F,
spatial_grid_name = "spatial_grid",
spat_grid_color = "green",
show_other_cells = TRUE,
other_cell_color = "grey",
dim_other_point_size = 0.5,
spat_other_point_size = 0.5,
spat_other_cells_alpha = 0.5,
show_legend = T,
legend_text = 8,
legend_symbol_size = 1,
dim_background_color = "white",
spat_background_color = "white",
vor_border_color = "white",
vor_max_radius = 200,
```

```
vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      coord_fix_ratio = NULL,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimCellPlot2D"
    )
Arguments
    gobject
                     giotto object
                     show a tissue background image
    show_image
    gimage
                     a giotto image
                     name of a giotto image
    image_name
    plot_alignment direction to align plot
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    sdimx
                     = spatial dimension to use on x-axis
    sdimv
                     = spatial dimension to use on y-axis
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    dim_point_shape
                     dim reduction points with border or not (border or no_border)
    dim_point_size size of points in dim. reduction space
```

transparancy of dim. reduction points

dim_point_alpha

dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster $spat_center_point_size$ size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use

```
spat_network_color
                  color of spatial network
spat_show_grid show spatial grid
spatial_grid_name
                  name of spatial grid to use
spat_grid_color
                  color of spatial grid
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
dim_other_point_size
                  size of not selected dim cells
spat_other_point_size
                  size of not selected spat cells
spat_other_cells_alpha
                  alpha of not selected spat cells
                  show legend
show_legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
dim_background_color
                  background color of points in dim. reduction space
spat_background_color
                  background color of spatial points
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha
                  transparancy of voronoi 'cells'
axis_text
                  size of axis text
                  size of axis title
axis_title
coord_fix_ratio
                  ratio for coordinates
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

252 spatDimGenePlot

Value

ggplot

See Also

Other spatial and dimension reduction cell annotation visualizations: spatDimCellPlot()

Examples

```
spatDimCellPlot2D(gobject)
```

spatDimGenePlot

spatDimGenePlot

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot(...)
```

Arguments

Arguments passed on to spatDimGenePlot2D . . . gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image expression_values gene expression values to use plot_alignment direction to align plot genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size dim reduction plot: point size dim_point_alpha transparancy of dim. reduction points dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE dim_network_color color of NN network edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter

spatDimGenePlot 253

```
sdimx spatial x-axis dimension name (default = 'sdimx')
sdimy spatial y-axis dimension name (default = 'sdimy')
spatial_network_name name of spatial network to use
spatial_network_color color of spatial network
spatial_grid_name name of spatial grid to use
spat_point_shape spatial points with border or not (border or no_border)
spat_point_size spatial plot: point size
spat_point_alpha transparancy of spatial points
spat_point_border_col color of border around points
spat_point_border_stroke stroke size of border around points
cell_color_gradient vector with 3 colors for numeric data
gradient_midpoint midpoint for color gradient
gradient_limits vector with lower and upper limits
show_legend show legend
legend_text_size of legend text
dim_background_color color of plot background for dimension plot
spat_background_color color of plot background for spatial plot
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plots
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot3D()

Examples

```
{\tt spatDimGenePlot(gobject)}
```

254 spatDimGenePlot2D

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
  genes,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_alpha = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
 dim_network_color = "gray",
  show\_spatial\_grid = F,
 nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spatial_network_name = "Delaunay_network",
  spatial_network_color = NULL,
  spatial_grid_name = "spatial_grid",
  spat_point_shape = c("border", "no_border", "voronoi"),
  spat_point_size = 1,
  spat_point_alpha = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  cow_n_col = 2,
 cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
```

spatDimGenePlot2D 255

```
show_legend = T,
      legend_text = 8,
      dim_background_color = "white",
      spat_background_color = "white",
      vor_border_color = "white",
      vor_max_radius = 200,
      vor_alpha = 1,
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot2D"
    )
Arguments
    gobject
                     giotto object
                     show a tissue background image
    show_image
    gimage
                     a giotto image
    image_name
                     name of a giotto image
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
                     genes to show
    genes
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
    dim2_to_use
                     dimension to use on y-axis
    dim_point_shape
                     dim reduction points with border or not (border or no_border)
    dim_point_size dim reduction plot: point size
    dim_point_alpha
                     transparancy of dim. reduction points
    dim_point_border_col
                     color of border around points
    dim_point_border_stroke
                     stroke size of border around points
    show_NN_network
                     show underlying NN network
    dim_network_color
                     color of NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
```

name of NN network to use, if show_NN_network = TRUE

network_name

edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter spatial x-axis dimension name (default = 'sdimx') sdimx spatial y-axis dimension name (default = 'sdimy') sdimy spatial_network_name name of spatial network to use spatial_network_color color of spatial network spatial_grid_name name of spatial grid to use spat_point_shape spatial points with border or not (border or no_border) spat_point_size spatial plot: point size spat_point_alpha transparancy of spatial points spat_point_border_col color of border around points spat_point_border_stroke stroke size of border around points cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits cowplot param: how many columns cow_n_col cowplot param: relative height cow_rel_h cow_rel_w cowplot param: relative width cow_align cowplot param: how to align show_legend show legend legend_text size of legend text dim_background_color color of plot background for dimension plot spat_background_color color of plot background for spatial plot vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' transparancy of voronoi 'cells' vor_alpha size of axis text axis_text size of axis title axis_title show_plot show plots return_plot return ggplot object directly save the plot [boolean] save_plot list of saving parameters, see showSaveParameters save_param default_save_name default save name for saving, don't change, change save_name in save_param spatDimGenePlot3D 257

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimGenePlot3D
```

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot3D(), spatDimGenePlot()

Examples

```
spatDimGenePlot2D(gobject)
```

spatDimGenePlot3D

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

```
spatDimGenePlot3D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  genes,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 label_size = 16,
 genes_low_color = "blue",
 genes_mid_color = "white",
```

258 spatDimGenePlot3D

genes_high_color = "red",

```
dim_point_size = 3,
      nn_network_alpha = 0.5,
      show_spatial_network = F,
      spatial_network_name = "Delaunay_network",
      network_color = "lightgray",
      spatial_network_alpha = 0.5,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_{ticks} = NULL,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot3D"
Arguments
    gobject
                    giotto object
    expression_values
                    gene expression values to use
   plot_alignment direction to align plot
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
                    dimension to use on z-axis
   dim3_to_use
                    genes to show
    genes
    show_NN_network
                    show underlying NN network
    nn\_network\_to\_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
    network_name
    dim_point_size dim reduction plot: point size
    spatial_network_name
                    name of spatial network to use
    spatial_grid_name
                    name of spatial grid to use
```

spatDimPlot 259

```
spatial_point_size
```

spatial plot: point size

show_plot show plots

return_plot return plotly object

save_plot directly save the plot [boolean]

show legend

save_param list of saving parameters, see showSaveParameters

default_save_name

show_legend

default save name for saving, don't change, change save_name in save_param

edge_alpha_dim dim reduction plot: column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

Details

Description of parameters.

Value

plotly

See Also

Other spatial and dimension reduction gene expression visualizations: spatDimGenePlot2D(), spatDimGenePlot()

Examples

```
spatDimGenePlot3D(gobject)
```

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot(...)
```

260 spatDimPlot

Arguments

Arguments passed on to spatDimPlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axis sdimy = spatial dimension to use on y-axis spat_enr_names names of spatial enrichment results to include cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell color paramselect_cells select subset of cells based on cell IDs dim_point_shape point with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_alpha transparancy of point in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no_border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label

spatDimPlot 261

```
show_NN_network show underlying NN network
nn_network_to_use type of NN network to use (kNN vs sNN)
network_name name of NN network to use, if show_NN_network = TRUE
nn_network_alpha column to use for alpha of the edges
show_spatial_network show spatial network
spat_network_name name of spatial network to use
spat_network_color color of spatial network
show_spatial_grid show spatial grid
spat_grid_name name of spatial grid to use
spat_grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
dim_other_point_size size of not selected dim cells
spat_other_point_size size of not selected spat cells
spat_other_cells_alpha alpha of not selected spat cells
dim_show_legend show legend of dimension reduction plot
spat_show_legend show legend of spatial plot
legend_text size of legend text
legend_symbol_size size of legend symbols
dim_background_color background color of points in dim. reduction space
spat_background_color background color of spatial points
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot2D and spatDimPlot3D for 3D visualization.

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot3D()
```

Examples

```
spatDimPlot(gobject)
```

262 spatDimPlot2D

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

```
spatDimPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  dim_point_shape = c("border", "no_border"),
  dim_point_size = 1,
 dim_point_alpha = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border", "voronoi"),
  spat_point_size = 1,
  spat_point_alpha = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
 dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
```

spatDimPlot2D 263

```
spat_label_fontface = "bold",
 show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_alpha = 0.05,
 show_spatial_network = F,
 spat_network_name = "Delaunay_network",
 spat_network_color = "blue",
  spat_network_alpha = 0.5,
 show_spatial_grid = F,
 spat_grid_name = "spatial_grid",
 spat_grid_color = "blue",
 show_other_cells = T,
 other_cell_color = "lightgrey",
 dim\_other\_point\_size = 1,
 spat_other_point_size = 1,
 spat_other_cells_alpha = 0.5,
 dim_show_legend = F,
 spat_show_legend = F,
 legend_text = 8,
 legend_symbol_size = 1,
 dim_background_color = "white",
 spat_background_color = "white",
 vor_border_color = "white",
 vor_max_radius = 200,
 vor_alpha = 1,
 axis_text = 8,
 axis_title = 8,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatDimPlot2D"
)
```

Arguments

```
gobject
                  giotto object
                  show a tissue background image
show_image
                  a giotto image
gimage
image_name
                  name of a giotto image
plot_alignment direction to align plot
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
sdimx
                  = spatial dimension to use on x-axis
sdimy
                  = spatial dimension to use on y-axis
```

264 spatDimPlot2D

spat_enr_names names of spatial enrichment results to include color for cells (see details) cell_color color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_shape point with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_alpha transparancy of point in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape shape of points (border, no border or voronoi) spat_point_size size of spatial points spat_point_alpha transparancy of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label

spat_background_color

spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network $nn_network_to_use$ type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network show_spatial_grid show spatial grid spat_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells ${\tt dim_other_point_size}$ size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells dim_show_legend show legend of dimension reduction plot spat_show_legend show legend of spatial plot legend_text size of legend text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space

background color of spatial points

266 spatDimPlot3D

```
vor_border_color
                  border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
                  transparancy of voronoi 'cells'
vor_alpha
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot3D
```

Other spatial and dimension reduction visualizations: spatDimPlot3D(), spatDimPlot()

Examples

```
spatDimPlot2D(gobject)
```

spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
spatDimPlot3D(
  gobject,
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = 3,
  sdimx = "sdimx",
  sdimy = "sdimy",
```

spatDimPlot3D 267

```
sdimz = "sdimz",
show_NN_network = F,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
show_cluster_center = F,
show_center_label = T,
center_point_size = 4,
label_size = 16,
select_cell_groups = NULL,
select_cells = NULL,
show_other_cells = T,
other_cell_color = "lightgrey",
other_point_size = 1.5,
cell_color = NULL,
color_as_factor = T,
cell_color_code = NULL,
dim_point_size = 3,
nn_network_alpha = 0.5,
show_spatial_network = F,
spatial_network_name = "Delaunay_network",
network_color = "lightgray",
spatial_network_alpha = 0.5,
show_spatial_grid = F,
spatial_grid_name = "spatial_grid",
spatial_grid_color = NULL,
spatial_grid_alpha = 0.5,
spatial_point_size = 3,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_ticks = NULL,
legend_text_size = 12,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "spatDimPlot3D"
```

Arguments

268 spatDimPlot3D

sdimx = spatial dimension to use on x-axis sdimy = spatial dimension to use on y-axis sdimz = spatial dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name show_cluster_center show the center of each cluster show_center_label provide a label for each cluster center_point_size size of the center point label_size size of the center label select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells color for cells (see details) cell_color color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_point_size size of spatial points show plot show_plot

spatGenePlot 269

```
return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim_point_border_col
                  border color of points in dim. reduction space
dim_point_border_stroke
                  border stroke of points in dim. reduction space
spatial_network_color
                  color of spatial network
spatial_other_point_size
                  size of not selected spatial points
spatial_other_cells_alpha
                  alpha of not selected spatial points
dim_other_point_size
                  size of not selected dim. reduction points
```

Details

Description of parameters.

show legend

show_legend

Value

plotly

See Also

Other spatial and dimension reduction visualizations: spatDimPlot2D(), spatDimPlot()

Examples

```
spatDimPlot3D(gobject)
```

spatGenePlot

spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

```
spatGenePlot(...)
```

270 spatGenePlot

Arguments . . .

Arguments passed on to spatGenePlot2D gobject giotto object show_image show a tissue background image gimage a giotto image image_name name of a giotto image sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') expression_values gene expression values to use genes genes to show cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits show_network show underlying spatial network network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use midpoint expression midpoint scale_alpha_with_expression scale expression with ggplot alpha parameter point_shape shape of points (border, no_border or voronoi) point_size size of point (cell) point_alpha transparancy of points point_border_col color of border around points point_border_stroke stroke size of border around points cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align show_legend show legend legend_text size of legend text background_color color of plot background vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' vor_alpha transparancy of voronoi 'cells' axis_text size of axis text axis_title size of axis title show_plot show plots return_plot return ggplot object save_plot directly save the plot [boolean] save_param list of saving parameters, see showSaveParameters default_save_name default save name for saving, don't change, change save_name in save_param

spatGenePlot2D 271

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D and spatGenePlot2D
```

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot3D()

Examples

```
spatGenePlot(gobject)
```

spatGenePlot2D

spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

```
spatGenePlot2D(
  gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
  sdimx = "sdimx",
  sdimy = "sdimy",
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  show_network = F,
  network_color = NULL,
  spatial_network_name = "Delaunay_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_shape = c("border", "no_border", "voronoi"),
  point_size = 1,
  point_alpha = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
```

272 spatGenePlot2D

```
show_legend = T,
      legend_text = 8,
      background_color = "white",
      vor_border_color = "white",
      vor_alpha = 1,
      vor_max_radius = 200,
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatGenePlot2D"
    )
Arguments
   gobject
                     giotto object
                     show a tissue background image
    show_image
                     a giotto image
    gimage
                     name of a giotto image
    image_name
                     x-axis dimension name (default = 'sdimx')
    sdimx
                     y-axis dimension name (default = 'sdimy')
    sdimy
    expression_values
                     gene expression values to use
                     genes to show
    genes
   cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
                     show underlying spatial network
    show_network
    network_color
                     color of spatial network
    spatial_network_name
                     name of spatial network to use
    show_grid
                     show spatial grid
                     color of spatial grid
    grid_color
    spatial_grid_name
                     name of spatial grid to use
   midpoint
                     expression midpoint
    scale_alpha_with_expression
```

scale expression with ggplot alpha parameter shape of points (border, no_border or voronoi)

point_shape

spatGenePlot2D 273

```
size of point (cell)
point_size
                  transparancy of points
point_alpha
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
background_color
                  color of plot background
vor_border_color
                  border colorr for voronoi plot
                  transparancy of voronoi 'cells'
vor_alpha
vor_max_radius maximum radius for voronoi 'cells'
                  size of axis text
axis_text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatGenePlot3D
```

Other spatial gene expression visualizations: spatGenePlot3D(), spatGenePlot()

Examples

```
spatGenePlot2D(gobject)
```

274 spatGenePlot3D

spatGenePlot3D spatGenePlot3D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot3D(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 genes,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "Delaunay_network",
 edge_alpha = NULL,
 show\_grid = F,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 genes_high_color = NULL,
 genes_mid_color = "white",
 genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
 point_size = 2,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot3D"
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
show_network show underlying spatial network
network_color color of spatial network
```

spatGenePlot3D 275

```
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
spatial_grid_name
                  name of spatial grid to use
                  size of point (cell)
point_size
show_legend
                  show legend
show_plot
                  show plots
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters, see showSaveParameters
default_save_name
                  default save name for saving, don't change, change save_name in save_param
grid_color
                  color of spatial grid
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  additional parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

See Also

Other spatial gene expression visualizations: spatGenePlot2D(), spatGenePlot()

Examples

```
spatGenePlot3D(gobject)
```

276 spatialAEH

spatialAEH

spatialAEH

Description

Compute spatial variable genes with spatialDE method

Usage

```
spatialAEH(
  gobject = NULL,
  SpatialDE_results = NULL,
  name_pattern = "AEH_patterns",
  expression_values = c("raw", "normalized", "scaled", "custom"),
  pattern_num = 6,
  l = 1.05,
  python_path = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object

SpatialDE_results
results of SpatialDE function

name_pattern name for the computed spatial patterns
expression_values
gene expression values to use

pattern_num number of spatial patterns to look for

lengthscale

python_path specify specific path to python if required

return_gobject show plot
```

Details

This function is a wrapper for the SpatialAEH method implemented in the ...

Value

An updated giotto object

Examples

```
spatialAEH(gobject)
```

spatialDE 277

spatialDE spatialDE

Description

Compute spatial variable genes with spatialDE method

Usage

```
spatialDE(
  gobject = NULL,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "SpatialDE"
)
```

Arguments

```
gobject
                  Giotto object
expression_values
                  gene expression values to use
size
                  size of plot
color
                  low/medium/high color scheme for plot
                  alpha value for significance
sig_alpha
                  alpha value for unsignificance
unsig_alpha
                  specify specific path to python if required
python_path
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function is a wrapper for the SpatialDE method implemented in the ...

Value

a list of data.frames with results and plot (optional)

278 spatNetwDistributions

Examples

```
spatialDE(gobject)
```

 $spatNetwDistributions\ spatNetwDistributionsDistance$

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributions(
  gobject,
  spatial_network_name = "spatial_network",
  distribution = c("distance", "k_neighbors"),
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributions"
)
```

Arguments

```
Giotto object
gobject
spatial_network_name
                  name of spatial network
                  show the distribution of cell-to-cell distance or number of k neighbors
distribution
hist_bins
                  number of binds to use for the histogram
test_distance_limit
                  effect of different distance threshold on k-neighbors
ncol
                  number of columns to visualize the histograms in
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Details

The **distance** option shows the spatial distance distribution for each nearest neighbor rank (1st, 2nd, 3th, ... neigbor). With this option the user can also test the effect of a distance limit on the spatial network. This distance limit can be used to remove neigbor cells that are considered to far away. The **k_neighbors** option shows the number of k neighbors distribution over all cells.

Value

```
ggplot plot
```

Examples

```
spatNetwDistributionsDistance(gobject)
```

```
spat {\tt NetwDistributionsDistance} \\ spat {\tt NetwDistributionsDistance}
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributionsDistance(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsDistance")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
                  number of binds to use for the histogram
hist_bins
test_distance_limit
                  effect of different distance threshold on k-neighbors
ncol
                  number of columns to visualize the histograms in
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

```
ggplot plot
```

Examples

```
spatNetwDistributionsDistance(gobject)
```

```
spat Netw Distributions Kneighbors \\ spat Netw Distributions Kneighbors
```

Description

This function returns a histogram displaying the number of k-neighbors distribution for each cell

Usage

```
spatNetwDistributionsKneighbors(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsKneighbors")
```

Arguments

```
Giotto object
gobject
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

Examples

```
spatNetwDistributionsKneighbors(gobject)
```

spatPlot 281

spatPlot spatPlot

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot(...)
```

Arguments

```
Arguments passed on to spatPlot2D
. . .
                 gobject giotto object
                 show_image show a tissue background image
                 gimage a giotto image
                 image_name name of a giotto image
                 group_by_subset subset the group_by factor column
                 sdimx x-axis dimension name (default = 'sdimx')
                 sdimy y-axis dimension name (default = 'sdimy')
                 spat_enr_names names of spatial enrichment results to include
                 cell_color color for cells (see details)
                 color_as_factor convert color column to factor
                 cell_color_code named vector with colors
                 cell_color_gradient vector with 3 colors for numeric data
                 gradient_midpoint midpoint for color gradient
                 gradient_limits vector with lower and upper limits
                 select_cell_groups select subset of cells/clusters based on cell_color param-
                 select_cells select subset of cells based on cell IDs
                 point_shape shape of points (border, no_border or voronoi)
                 point_size size of point (cell)
                 point_alpha transparancy of point
                 point_border_col color of border around points
                 point_border_stroke stroke size of border around points
                 show_cluster_center plot center of selected clusters
                 show_center_label plot label of selected clusters
                 center_point_size size of center points
                 label_size size of labels
                 label_fontface font of labels
                 show_network show underlying spatial network
                 spatial_network_name name of spatial network to use
                 network_color color of spatial network
                 network_alpha alpha of spatial network
```

show_grid show spatial grid

282 spatPlot

```
spatial_grid_name name of spatial grid to use
grid_color color of spatial grid
show_other_cells display not selected cells
other_cell_color color of not selected cells
other_point_size point size of not selected cells
other_cells_alpha alpha of not selected cells
coord_fix_ratio fix ratio between x and y-axis
title title of plot
show_legend show legend
legend_text size of legend text
legend_symbol_size size of legend symbols
background_color color of plot background
vor_border_color border colorr for voronoi plot
vor_max_radius maximum radius for voronoi 'cells'
vor_alpha transparancy of voronoi 'cells'
axis_text size of axis text
axis_title size of axis title
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_plot show plot
return_plot return ggplot object
save_plot directly save the plot [boolean]
save_param list of saving parameters, see showSaveParameters
default_save_name default save name for saving, don't change, change save_name
    in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot2D(), spatPlot3D()

Examples

```
spatPlot(gobject)
```

spatPlot2D 283

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

```
spatPlot2D(
 gobject,
  show_image = F,
  gimage = NULL,
  image_name = "image",
 group_by = NULL,
 group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border", "voronoi"),
 point_size = 3,
 point_alpha = 1,
 point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "Delaunay_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
```

284 spatPlot2D

```
title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  vor_border_color = "white",
  vor_max_radius = 200,
  vor_alpha = 1,
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D"
)
```

Arguments

```
gobject
                  giotto object
                  show a tissue background image
show_image
                  a giotto image
gimage
                  name of a giotto image
image_name
group_by_subset
                  subset the group_by factor column
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  shape of points (border, no_border or voronoi)
point_shape
                  size of point (cell)
point_size
point_alpha
                  transparancy of point
```

spatPlot2D 285

point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points size of labels label_size label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use color of spatial network network_color network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background vor_border_color border colorr for voronoi plot vor_max_radius maximum radius for voronoi 'cells' vor_alpha transparancy of voronoi 'cells' axis_text size of axis text

size of axis title

cowplot param: how many columns

axis_title

cow_n_col

286 spatPlot3D

```
cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
                  show plot
show_plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters, see showSaveParameters
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  create multiple plots based on cell annotation column
groub_by
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Other spatial visualizations: spatPlot3D(), spatPlot()

Examples

```
spatPlot2D(gobject)
```

 ${\tt spatPlot3D}$

spatPlot3D

Description

Visualize cells according to spatial coordinates

```
spatPlot3D(
  gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
```

spatPlot3D 287

```
other_point_size = 0.5,
  show_network = F,
 network_color = NULL,
 network_alpha = 1,
 other_cell_alpha = 0.5,
  spatial_network_name = "Delaunay_network",
  show\_grid = F,
  grid_color = NULL,
 grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  title = "",
  show_legend = T,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spat3D"
)
```

Arguments

```
gobject
                  giotto object
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
point_size
                  size of point (cell)
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
                  show underlying spatial network
show_network
network_color
                  color of spatial network
network_alpha
                  opacity of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
```

288 spat_fish_func

grid_alpha opacity of spatial grid

spatial_grid_name

name of spatial grid to use

title title of plot show_legend show legend

axis_scale the way to scale the axis

custom_ratio customize the scale of the plot

 x_{ticks} set the number of ticks on the x-axis y_{ticks} set the number of ticks on the y-axis z_{ticks} set the number of ticks on the z-axis

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters, see showSaveParameters

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

See Also

Other spatial visualizations: spatPlot2D(), spatPlot()

Examples

spatPlot3D(gobject)

spat_fish_func
spat_fish_func

Description

performs fisher exact test

```
spat_fish_func(gene, bin_matrix, spat_mat, calc_hub = F, hub_min_int = 3)
```

spat_OR_func 289

```
spat_OR_func
```

spat_OR_func

Description

calculate odds-ratio

Usage

```
spat_OR_func(gene, bin_matrix, spat_mat, calc_hub = F, hub_min_int = 3)
```

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

gene_set_1 first specific gene set from gene pairs
gene_set_2 second specific gene set from gene pairs

log2FC_addendum

addendum to add when calculating log2FC

min_observations

minimum number of interactions needed to be considered

adjust_method which method to adjust p-values

adjust_target adjust multiple hypotheses at the cell or gene level

verbose verbose

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
specificCellCellcommunicationScores(gobject)
```

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend dendrogram object

Value

list of two dendrograms and height of node

```
split_dendrogram_in_two(dend)
```

standardise_giotto 291

```
standardise_giotto standardise_giotto
```

Description

standardises a matrix

Usage

```
standardise_giotto(x, center = TRUE, scale = TRUE)
```

Arguments

```
x matrixcenter center datascale scale data
```

Value

standardized matrix

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

292 stitchTileCoordinates

Arguments

```
location_file location dataframe with X and Y coordinates
offset file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
                  column that indicates the field within the location_file
field_col
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

Examples

```
stitchFieldCoordinates(gobject)
```

```
\verb|stitchTileCoordinates|| stitchTileCoordinates||
```

Description

Helper function to stitch tile coordinates together to form one complete picture

Usage

```
stitchTileCoordinates(location_file, Xtilespan, Ytilespan)
```

```
 \begin{array}{ll} \mbox{location\_file} & \mbox{location dataframe with $X$ and $Y$ coordinates} \\ \mbox{Xtilespan} & \mbox{numerical value specifying the width of each tile} \\ \mbox{Ytilespan} & \mbox{numerical value specifying the height of each tile} \\ \end{array}
```

subClusterCells 293

Details

•••

Examples

stitchTileCoordinates(gobject)

subClusterCells

subClusterCells

Description

subcluster cells

Usage

```
subClusterCells(
  gobject,
  name = "sub_clus",
  cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 1,
  n_{iterations} = 1000,
  gamma = 1,
  omega = 1,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

```
gobject giotto object

name name for new clustering result

cluster_method clustering method to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters
```

294 subClusterCells

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

 $k_neighbors$ number of k for createNearestNetwork

resolution resolution

n_iterations number of interations to run the Leiden algorithm.

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

 ${\tt doLouvainCluster_multinet}, {\tt doLouvainCluster_community} \ and \ @see also \ {\tt doLeidenCluster_community} \\$

Examples

subClusterCells(gobject)

subsetGiotto 295

subsetGiotto

subsetGiot to

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL, verbose = FALSE)
```

Arguments

```
gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep
verbose be verbose
```

Value

giotto object

Examples

```
subsetGiotto(gobject)
```

 ${\tt subsetGiottoLocs}$

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T,
  verbose = FALSE
)
```

296 trendSceek

Arguments

gobject	giotto object
x_max	maximum x-coordinate
x_min	minimum x-coordinate
y_max	maximum y-coordinate
y_min	minimum y-coordinate
z_max	maximum z-coordinate
z_min	minimum z-coordinate
return_gobject	return Giotto object

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

Examples

```
subsetGiottoLocs(gobject)
```

trendSceek trendSceek

Description

Compute spatial variable genes with trendsceek method

Usage

```
trendSceek(
  gobject,
  expression_values = c("normalized", "raw"),
  subset_genes = NULL,
  nrand = 100,
  ncores = 8,
  ...
)
```

```
gobject Giotto object
expression_values
gene expression values to use
subset_genes subset of genes to run trendsceek on
nrand An integer specifying the number of random resamplings of the mark distribution as to create the null-distribution.

ncores An integer specifying the number of cores to be used by BiocParallel
... Additional parameters to the trendsceek_test function
```

updateGiottoImage 297

Details

This function is a wrapper for the trendsceek_test method implemented in the trendsceek package

Value

data.frame with trendsceek spatial genes results

Examples

```
trendSceek(gobject)
```

updateGiottoImage

updateGiottoImage

Description

Updates the boundaries of a giotto image attached to a giotto object

Usage

```
updateGiottoImage(
  gobject,
  image_name,
  xmax_adj = 0,
  xmin_adj = 0,
  ymax_adj = 0,
  ymin_adj = 0,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object
image_name spatial locations

xmax_adj adjustment of the maximum x-value to align the image

xmin_adj adjustment of the minimum x-value to align the image

ymax_adj adjustment of the maximum y-value to align the image

ymin_adj adjustment of the minimum y-value to align the image

return_gobject return a giotto object
```

Value

```
a giotto object or an updated giotto image if return_gobject = F
```

```
updateGiottoImage(gobject)
```

298 viewHMRFresults

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object
```

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
visPlot
```

```
viewHMRFresults(gobject)
```

viewHMRFresults2D 299

viewHMRFresults2D

viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object
```

HMRF output from doHMRF

k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D
```

```
viewHMRFresults2D(gobject)
```

300 viewHMRFresults3D

viewHMRFresults3D

viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object
```

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot3D
```

```
viewHMRFresults3D(gobject)
```

violinPlot 301

violinPlot

violinPlot

Description

Creates violinplot for selected clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip\_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
                  genes to plot
genes
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
strip_text
                  size of strip text
\verb"axis_text_x_size"
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
show_plot
                  show plot
return_plot
                  return ggplot object
```

302 visDimGenePlot

Value

ggplot

Examples

```
violinPlot(gobject)
```

visDimGenePlot

visDimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
visDimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h"
  show_legend = T,
  plot_method = c("ggplot", "plotly"),
  show_plots = F
)
```

visDimGenePlot 303

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name$ name of NN network to use, if $show_NN_network = TRUE$

edge_alpha column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_legend show legend show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot(gobject)

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plots = F
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
dim1_to_use
dimension to use on x-axis
```

```
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
                 size of point (cell)
point_size
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
                 size of point (cell)
midpoint
cow_n_col
                 cowplot param: how many columns
                 cowplot param: relative height
cow_rel_h
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
show_legend
                 show legend
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot_2D_ggplot(gobject)

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_3D_plotly(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plots = F
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
show_legend
                 show legend
                 show plots
show_plots
```

Details

Description of parameters.

visDimPlot 307

Value

ggplot

Examples

```
visDimGenePlot_3D_plotly(gobject)
```

visDimPlot

visDimPlot

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  plot_method = c("ggplot", "plotly"),
  show_legend = T,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
```

308 visDimPlot

```
save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
                     dimension to use on z-axis
    dim3_to_use
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
    edge_alpha
                     column to use for alpha of the edges
    point_size
                     size of point (cell)
    point_border_col
                     color of border around points
    point_border_stroke
                     stroke size of border around points
    show_legend
                     show legend
```

show_plot

save_plot
save_dir

return_plot

show plot

return ggplot object

directly save the plot [boolean]

directory to save the plot

visDimPlot_2D_ggplot

309

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visDimPlot(gobject)
```

```
visDimPlot_2D_ggplot visDimPlot_2D_ggplot
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_ggplot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
```

```
edge_alpha = NULL,
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
                     color for cells (see details)
    cell_color
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
```

size of center points

visDimPlot_2D_plotly 311

Details

Description of parameters.

Value

ggplot

Examples

```
visDimPlot_2D_ggplot(gobject)
```

```
visDimPlot_2D_plotly visDimPlot_2D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
```

```
center_point_size = 4,
label_size = 4,
edge_alpha = NULL,
point_size = 5
)
```

Arguments

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
color_as_factor
                 convert color column to factor
cell_color
                 color for cells (see details)
cell_color_code
                 named vector with colors
show_cluster_center
                 plot center of selected clusters
show_center_label
                 plot label of selected clusters
center_point_size
                 size of center points
label_size
                 size of labels
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
```

Details

Description of parameters.

Value

plotly

```
visDimPlot_2D_plotly(gobject)
```

```
visDimPlot_3D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_3D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 1
```

```
giotto object
gobject
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
                 dimension to use on y-axis
dim2_to_use
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
```

314 visForceLayoutPlot

```
name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
```

Details

Description of parameters.

Value

plotly

Examples

```
visDimPlot_3D_plotly(gobject)
```

visForceLayoutPlot visForceLayoutPlot

Description

Visualize cells according to forced layout algorithm coordinates

```
visForceLayoutPlot(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_name = "layout",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = T,
  cell_color = NULL,
  color_as_factor = TRUE,
  cell_color_code = NULL,
  edge_alpha = NULL,
  point_size = 1,
```

visForceLayoutPlot 315

```
point_border_col = "black",
point_border_stroke = 0.1,
show_legend = T,
show_plot = F,
return_plot = TRUE,
save_plot = F,
save_dir = NULL,
save_folder = NULL,
save_format = NULL,
show_saved_plot = F,
...
)
```

```
gobject
                  giotto object
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  NN network to use
                  name of layout to use
layout_name
dim1_to_use
                  dimension to use on x-axis
                  dimension to use on y-axis
dim2_to_use
show_NN_network
                  show underlying NN network
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  column to use for alpha of the edges
edge_alpha
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  directory to save the plot
save_dir
save_folder
                  (optional) folder in directory to save the plot
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

316 visGenePlot

Details

Description of parameters.

Value

ggplot

Examples

visForceLayoutPlot(gobject)

visGenePlot

visGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

```
visGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  plot_method = c("ggplot", "plotly"),
  show_plots = F
```

visGenePlot 317

Arguments

gobject giotto object
expression_values

gene expression values to use

genes genes to show

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align three mode to adjust axis scale axis_scale x_ticks number of ticks on x axis number of ticks on y axis y_ticks number of ticks on z axis z_ticks plot_method two methods of plot

show_plots show plots

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visGenePlot(gobject)
```

```
visGenePlot_2D_ggplot visGenePlot_2D_ggplot
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  genes_high_color = "darkred",
  genes_mid_color = "white",
  genes_low_color = "darkblue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plots = F
)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

visGenePlot_3D_plotly

```
genes_low_color
```

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint

 ${\tt scale_alpha_with_expression}$

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_colcowplot param: how many columnscow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative widthcow_aligncowplot param: how to align

show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visGenePlot_2D_ggplot(gobject)

 ${\tt visGenePlot_3D_plotly} \ \ {\it visGenePlot_3D_plotly}$

Description

Visualize cells and gene expression according to spatial coordinates

Usage

network_color

show_grid

spatial_network_name

genes_high_color

genes_mid_color

genes_low_color

spatial_grid_name

point_size show_legend

axis_scale

x_ticks

y_ticks

```
visGenePlot_3D_plotly(
     gobject,
      expression_values = c("normalized", "scaled", "custom"),
     genes,
      show_network = F,
     network_color = NULL,
      spatial_network_name = "spatial_network",
     edge_alpha = NULL,
      show\_grid = F,
     genes_high_color = NULL,
     genes_mid_color = "white",
     genes_low_color = "blue",
      spatial_grid_name = "spatial_grid",
     point_size = 1,
      show_legend = T,
     axis_scale = c("cube", "real", "custom"),
     custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
      show_plots = F
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
   genes
                    genes to show
                    show underlying spatial network
   show_network
```

color of spatial network

show spatial grid

name of spatial network to use

color represents high gene expression

color represents middle gene expression

color represents low gene expression

name of spatial grid to use

three mode to adjust axis scale

number of ticks on x axis number of ticks on y axis

size of point (cell)

show legend

visPlot 321

Details

Description of parameters.

Value

plotly

Examples

```
visGenePlot_3D_plotly(gobject)
```

visPlot visPlot

Description

Visualize cells according to spatial coordinates

```
visPlot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cell_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
```

322 visPlot

```
grid_color = NULL,
      grid_alpha = 1,
      spatial_grid_name = "spatial_grid",
      coord_fix_ratio = 0.6,
      title = "",
      show_legend = T,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_{ticks} = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      plot_method = c("ggplot", "plotly"),
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
   gobject
                     giotto object
    sdimx
                     x-axis dimension name (default = 'sdimx')
    sdimy
                     y-axis dimension name (default = 'sdimy')
    sdimz
                     z-axis dimension name (default = 'sdimz')
   point_size
                     size of point (cell)
   point_border_col
                     color of border around points
   point_border_stroke
                     stroke size of border around points
    cell_color
                     color for cells (see details)
    cell_color_code
                     named vector with colors
    color_as_factor
                     convert color column to factor
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
   other_cell_color
                     color of not selected cells
    show_network
                     show underlying spatial network
```

color of spatial network

name of spatial network to use

network_color

spatial_network_name

visPlot_2D_ggplot 323

```
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
title
                  title of plot
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot(gobject)
```

```
visPlot_2D_ggplot
visPlot_2D_ggplot
```

Description

Visualize cells according to spatial coordinates

```
visPlot_2D_ggplot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
```

324 visPlot_2D_ggplot

```
color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cells_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 0.6,
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  save_format = NULL,
  show_saved_plot = F,
)
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

visPlot_2D_ggplot 325

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

title title of plot

show_legend show legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

visPlot_2D_ggplot(gobject)

326 visPlot_2D_plotly

```
visPlot_2D_plotly
```

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
  network_color = "lightgray",
  network_alpha = 1,
  other_cell_alpha = 0.5,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  show_plot = F
```

Arguments

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')

sdimy y-axis dimension name (default = 'sdimy')

point_size size of point (cell)

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor
```

visPlot_3D_plotly 327

```
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
                  alpha of spatial grid
grid_alpha
spatial_grid_name
                  name of spatial grid to use
                  show legend
show_legend
show_plot
                  show plot
```

Details

Description of parameters.

Value

plotly

Examples

```
visPlot_2D_plotly(gobject)
```

```
visPlot_3D_plotly
```

Description

Visualize cells according to spatial coordinates

```
visPlot_3D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
```

328 visPlot_3D_plotly

```
network_color = NULL,
network_alpha = 1,
other_cell_alpha = 0.5,
spatial_network_name = "spatial_network",
spatial_grid_name = "spatial_grid",
title = "",
show_legend = T,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
stow_plot = F
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
point_size
                  size of point (cell)
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
                  title of plot
title
show_legend
                  show legend
show_plot
                  show plot
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
color_as_factor
                  convert color column to factor
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
coord_fix_ratio
                  fix ratio between x and y-axis
```

visSpatDimGenePlot 329

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot_3D_plotly(gobject)
```

visSpatDimGenePlot

visSpatDimGenePlot

Description

integration of visSpatDimGenePlot_2D(ggplot) and visSpatDimGenePlot_3D(plotly)

```
visSpatDimGenePlot(
 gobject,
 plot_method = c("ggplot", "plotly"),
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
 genes,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
 label_size = 16,
 genes_low_color = "blue",
 genes_mid_color = "white",
 genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
```

330 visSpatDimGenePlot

```
show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
     midpoint = 0,
     point_size = 1,
      cow_n_col = 2,
      cow_rel_h = 1,
     cow_rel_w = 1,
     cow_align = "h",
     show_legend = T,
      show_plots = F
   )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
   sdimx
                    x-axis dimension name (default = 'sdimx')
   sdimy
                    y-axis dimension name (default = 'sdimy')
    sdimz
                    z-axis dimension name (default = 'sdimz')
   genes
                    genes to show
   dim_point_border_col
                    color of border around points
   dim_point_border_stroke
                    stroke size of border around points
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
```

edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter label_size size for the label

genes_low_color

color to represent low expression of gene

genes_high_color

color to represent high expression of gene

dim_point_size dim reduction plot: point size

spatial_network_name

name of spatial network to use

spatial_grid_name

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

spatial_point_border_stroke

stroke size of border around points

legend_text_size

the size of the text in legend

axis_scale three modes to adjust axis scale ratio custom_ratio set the axis scale ratio on custom

x_ticks number of ticks on x axis y_ticks number of ticks on y axis z_ticks number of ticks on z axis

midpoint size of point (cell)
point_size size of point (cell)

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_legend show_plot show plot

Details

Description of parameters.

Value

ggplot or plotly

Examples

 $\verb|visSpatDimGenePlot(gobject)| \\$

visSpatDimGenePlot_2D visSpatDimGenePlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
visSpatDimGenePlot_2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  genes,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  point_size = 1,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spatial_point_size = 1,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
  midpoint = 0,
  genes_high_color = "red",
  genes_mid_color = "white";
  genes_low_color = "blue",
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  show_legend = T,
  show_plots = F
```

Arguments

gobject giotto object

expression_values

gene expression values to use

plot_alignment direction to align plot

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis

point_size size of point (cell)

dim_point_border_col

color of border around points

dim_point_border_stroke

stroke size of border around points

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name \qquad name \ of \ NN \ network \ to \ use, \ if \ show_NN_network = TRUE$

 ${\tt edge_alpha_dim} \ \ dim \ reduction \ plot: \ column \ to \ use \ for \ alpha \ of \ the \ edges$

scale_alpha_with_expression

scale expression with ggplot alpha parameter

spatial_network_name

name of spatial network to use

spatial_grid_name

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

 ${\tt spatial_point_border_stroke}$

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align

show_legend show legend

dim_point_size dim reduction plot: point size

show_plot show plot

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimGenePlot_2D(gobject)
```

```
visSpatDimGenePlot_3D visSpatDimGenePlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
visSpatDimGenePlot_3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  genes,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  label_size = 16,
  genes_low_color = "blue",
  genes_mid_color = "white",
  genes_high_color = "red",
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show\_spatial\_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
```

y_ticks = NULL, z_ticks = NULL

```
Arguments
   gobject
                     giotto object
    plot_alignment direction to align plot
   dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
   dim1_to_use
   dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
   network_name
    genes_low_color
                     color represent high gene expression (see details)
    genes_high_color
                     color represent high gene expression (see details)
    nn_network_alpha
                     column to use for alpha of the edges
    show_spatial_network
                     show spatial network
    spatial_network_name
                     name of spatial network to use
    network_color color of spatial/nn network
    spatial_network_alpha
                     alpha of spatial network
    show_spatial_grid
                     show spatial grid
    spatial_grid_name
                     name of spatial grid to use
    spatial_grid_color
                     color of spatial grid
    spatial_grid_alpha
                     alpha of spatial grid
    legend_text_size
                     text size of legend
    show_legend
                     show legend
```

Details

show_plot

Description of parameters.

show plot

visSpatDimPlot

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

visSpatDimPlot

visSpatDimPlot

Description

integration of visSpatDimPlot_2D and visSpatDimPlot_3D

```
visSpatDimPlot(
  gobject,
  plot_method = c("ggplot", "plotly"),
  plot_alignment = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = NULL,
  label_fontface = "bold",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  dim_point_size = 3,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  nn_network_alpha = NULL,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
```

visSpatDimPlot 337

```
show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      legend_text_size = 12,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      show_legend = T,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      show_plot = F
Arguments
    gobject
                     giotto object
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    nn_network_alpha
                     column to use for alpha of the edges
    show\_spatial\_network
                     show spatial network
```

338 visSpatDimPlot_2D

```
spatial_network_name
                  name of spatial network to use
spatial_network_alpha
                  alpha of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial\_grid\_color
                  color of spatial grid
spatial_grid_alpha
                  alpha of spatial grid
legend_text_size
                  text size of legend
show_legend
                  show legend
show_plot
                  show plot
plot_mode
                  choose the mode to draw plot: ggplot or plotly
spatial_network_color
                  color of spatial network
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visSpatDimPlot(gobject)
```

visSpatDimPlot_2D
visSpatDimPlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

```
visSpatDimPlot_2D(
  gobject,
  plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  sdimx = NULL,
  sdimy = NULL,
```

visSpatDimPlot_2D

 $show_NN_network = F,$

339

```
nn_network_to_use = "sNN",
     network_name = "sNN.pca",
      show\_cluster\_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      label_fontface = "bold",
      cell_color = NULL,
      color_as_factor = T,
      cell_color_code = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
      dim_plot_mode = NULL,
     dim_point_size = 1,
     dim_point_border_col = "black",
     dim_point_border_stroke = 0.1,
     nn_network_alpha = 0.05,
      show_spatial_network = F,
      spatial_network_name = "spatial_network",
      spatial_network_color = NULL,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_point_size = 1,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
     plot_method = "ggplot"
Arguments
                    giotto object
   gobject
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
                    dimension to use on y-axis
   dim2_to_use
   show_NN_network
                    show underlying NN network
   nn_network_to_use
```

type of NN network to use (kNN vs sNN)

color for cells (see details)

network_name
cell_color

name of NN network to use, if show_NN_network = TRUE

340 visSpatDimPlot_2D

```
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
nn_network_alpha
                  column to use for alpha of the edges
show_spatial_network
                  show spatial network
spatial_network_name
                  name of spatial network to use
spatial_network_color
                  color of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimPlot_2D(gobject)
```

visSpatDimPlot_3D 341

visSpatDimPlot_3D

visSpatDimPlot_3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimPlot_3D(
  gobject,
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 16,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  legend_text_size = 12
```

Arguments

gobject giotto object

342 visSpatDimPlot_3D

```
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
                 dimension to use on y-axis
dim2_to_use
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
nn_network_alpha
                 column to use for alpha of the edges
show_spatial_network
                 show spatial network
spatial_network_name
                 name of spatial network to use
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
spatial_network_color
                 color of spatial network
                 show legend
show_legend
                 show plot
show_plot
```

Details

Description of parameters.

Value

plotly

writeHMRFresults 343

Examples

```
visSpatDimPlot_3D(gobject)
```

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

Arguments

gobject giotto object

HMRF output HMRF output from doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

Description

write out factor-like annotation data from a giotto object for the Viewer

```
write_giotto_viewer_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Description

write out dimensional reduction data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_dim_reduction(
  dim_reduction_cell,
  dim_red = NULL,
  dim_red_name = NULL,
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  output_directory = getwd()
)
```

Arguments

```
dim_reduction_cell

dimension reduction slot from giotto object

dim_red high level name of dimension reduction

dim_red_name specific name of dimension reduction to use

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

output_directory

directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

```
write\_giotto\_viewer\_numeric\_annotation \\ write\_giotto\_viewer\_numeric\_annotation
```

Description

write out numeric annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_numeric_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Index

*Topic giotto ,	cellProximityHeatmap, 30
giotto-class, 154	cellProximityNetwork, 31
print.giotto, 210	cellProximityNetwork, 31
show, giotto-method, 225	cellProximitySpatrlot2D, 34, 34
*Topic giotto	
createGiottoObject, 59	cellProximitySpatPlot3D, 34, 36
*Topic object	cellProximityVisPlot, 39
giotto-class, 154	cellProximityVisPlot_2D_ggplot, 41
print.giotto, 210	cellProximityVisPlot_2D_plotly, 43
show, giotto-method, 225	cellProximityVisPlot_3D_plotly, 44
Show, grotto-method, 225	changeGiottoInstructions, 46
addCellIntMetadata,8	changeImageBg, 47
addCellMetadata, 9, 60	cluster_walktrap, 121
addCellStatistics, 10, 16	clusterCells, 47
addGeneMetadata, 11, 60	clusterSpatialCorGenes, 50
addGenesPerc, 11	combCCcom, 51, 196, 198
addGeneStatistics, 12, 16	combineCellProximityGenes, 51
addGiottoImage, 13	<pre>combineCellProximityGenes_per_interaction,</pre>
addGiottoImage, 13 addGiottoImageToSpatPlot, 13	53
addHMRF, 14	combineCPG, 53
addNetworkLayout, 15	combineMetadata, 54
addStatistics, 16	<pre>convert_mgImage_to_array_DT, 55</pre>
addistatistics, 10 adjustGiottoMatrix, 16	<pre>convertEnsemblToGeneSymbol, 55</pre>
all_plots_save_function, 17, 26, 29, 31,	<pre>create_average_detection_DT, 73</pre>
32, 34, 36, 38, 129, 132, 155, 158,	create_average_DT, 74
171–173, 175–178, 180, 183, 184,	<pre>create_cell_type_random_cell_IDs, 74</pre>
197–199, 212, 230, 231, 233, 235,	<pre>create_crossSection_object, 75</pre>
278–280	create_delaunayNetwork2D,76
annotate_spatlocs_with_spatgrid_2D, 21	<pre>create_delaunayNetwork3D,77</pre>
annotate_spatiocs_with_spatgrid_3D, 22	<pre>create_delaunayNetwork_deldir,77</pre>
annotateGiotto, 19	<pre>create_delaunayNetwork_geometry, 78</pre>
annotateSpatialGrid, 20	<pre>create_delaunayNetwork_geometry_3D, 78</pre>
annotateSpatialNetwork, 20	<pre>create_delaunayNetwork_RTriangle, 79</pre>
average_gene_gene_expression_in_groups,	<pre>create_genes_to_use_matrix, 79</pre>
22	create_KNNnetwork_dbscan, 80
22	create_screeplot, 80
binSpect, 23	createCrossSection, 56
5115peet, 25	createGiottoImage, 13, 57
calculate_distance_and_weight, 28	createGiottoInstructions, 58, 60, 61
calculateHVG, 25, 216, 219, 221	createGiottoObject, 59, 292
calculateMetaTable, 26	createGiottoVisiumObject, 61
calculateMetaTableCells, 27	createHeatmap_DT, 62
cellProximityBarplot, 28	createMetagenes, 63
cellProximityEnrichment, 29	createNearestNetwork, 64

INDEX 347

createSpatialDelaunayNetwork, 66, 200	fDataDT, 127
createSpatialEnrich, 67, 125	filterCellProximityGenes, 128
createSpatialGrid, 68	filterCombinations, 129, 132
createSpatialGrid_2D, 69	filterCPG, 130
createSpatialGrid_3D,70	filterDistributions, 131
createSpatialKNNnetwork, 71	filterGiotto, 132
createSpatialNetwork, 72, 86	find_grid_2D,147
crossSectionGenePlot, 81	find_grid_3D,147
crossSectionGenePlot3D, 82	find_grid_x, 148
crossSectionPlot, 83, 83	find_grid_y,148
crossSectionPlot3D, 84	find_grid_z,148
	findCellProximityGenes, 133
decide_cluster_order, 85	<pre>findCellProximityGenes_per_interaction</pre>
delaunayn, 67	135
deldir,67	findCPG, 135
detectSpatialCorGenes, 86	findGiniMarkers, 137, 139, 141
detectSpatialPatterns, 87	<pre>findGiniMarkers_one_vs_all, 138, 142</pre>
dimCellPlot, 88, 92	findMarkers, 140, <i>146</i>
dimCellPlot2D, 88, 89, 90	findMarkers_one_vs_all, 141
dimGenePlot, 93, 96, 98	findMastMarkers, <i>141</i> , 143, <i>144</i>
dimGenePlot2D, 93, 94, 94, 98	findMastMarkers_one_vs_all, 142, 144
dimGenePlot3D, 94, 96, 96	findNetworkNeighbors, 145
dimPlot, 98, 103, 105, 192, 194, 196, 201,	findScranMarkers, 141, 145, 147
203, 205, 206, 208, 210	findScranMarkers_one_vs_all, 142, 146
dimPlot2D, 98–100, 100, 105, 191–194, 196,	FSV_show, 149
200–203, 205–208, 210	
dimPlot3D, 92, 99, 100, 103, 103, 192,	general_save_function, 18
194–196, 201, 203–206, 208–210	get10Xmatrix, 150
do_permuttest (do_permuttest_random),	get_os, 153
123	getClusterSimilarity, 150
do_permuttest_random, 123	getDendrogramSplits, 151
doHclust, 50, 105	<pre>getDistinctColors, 152</pre>
doHMRF, 106	<pre>getGiottoImage, 153</pre>
doKmeans, 50, 108	giotto (giotto-class), 154
doLeidenCluster, 50, 109, 112, 294	giotto-class, 154
doLeidenSubCluster, 110	glouvain_ml, <i>115</i>
doLouvainCluster, 50, 112	
doLouvainCluster_community, 50, 113, 113,	hclust, <i>106</i>
117, 119, 294	Heatmap, <i>155</i>
doLouvainCluster_multinet, 50, 113, 114,	heatmSpatialCorGenes, 154
117, 120, 294	hyperGeometricEnrich, 68, 156
doLouvainSubCluster, 115	<pre>insertCrossSectionGenePlot3D, 157</pre>
<pre>doLouvainSubCluster_community, 117</pre>	insertCrossSectionSpatPlot3D, 158
<pre>doLouvainSubCluster_multinet, 119</pre>	inscrete observations patricists, 150
doRandomWalkCluster, 50, 121	jackstrawPlot, 159
doSNNCluster, 50, 122	3
DT_removeNA, 123	kmeans, <i>109</i>
	kmeans_binarize, 161
estimateImageBg, 124	knn, 65
exportGiottoViewer, 124	
exprCellCellcom, 125, 171, 172	layout_with_drl, 15
extractNearestNetwork, 127	loadHMRF, 161

348 INDEX

make_simulated_network, 163	plotUMAP_2D, 100, 103, 105, 192, 194, 196,
makeSignMatrixPAGE, 162, 169	201, 203, 205, 206, 207, 210
makeSignMatrixRank, 163, 211	plotUMAP_3D, 100, 103, 105, 192, 194, 196,
mergeClusters, 164	201, 203, 205, 206, 208, 209
my_arowMeans, 165	prcomp_irlba, 216
my_growMeans, 165	print.giotto, 210
my_rowMeans, 165	
	rank_binarize, 212
nnDT_to_kNN, 166	rankEnrich, 68, 163, 210
node_clusters, 166	rankSpatialCorGroups, 211
normalizeGiotto, 167	readExprMatrix,212
	readGiottoInstructions, 213
PAGEEnrich, 68, 162, 168	removeBatchEffect, 17
PCA, 216	removeCellAnnotation, 214
pca_giotto, 169	removeGeneAnnotation, 214
pDataDT, 20, 170	replaceGiottoInstructions, 215
permutationPA, <i>160</i> , <i>237</i>	Rtsne, <i>219</i>
plotCCcomDotplot, 170	runPCA, 215, 223
plotCCcomHeatmap, 171	runPCA_factominer, 217
plotCellProximityGenes, 172	<pre>runPCA_prcomp_irlba, 217</pre>
plotCombineCCcom, 174	runtSNE, 218
plotCombineCellCellCommunication, 175	runUMAP, 220
plotCombineCellProximityGenes, 176	
plotCombineCPG, 178	screePlot, 222
plotCPG, 179	select_expression_values, 224
plotGiottoImage, 180	select_spatialNetwork, 224
plotHeatmap, 181	selectPatternGenes, 223
plotICG, 183	<pre>set_giotto_python_path, 225</pre>
plotInteractionChangedGenes, 184	show, giotto-method, 225
plotly_axis_scale_2D, 185	showClusterDendrogram, 225
plotly_axis_scale_3D, 185	showClusterHeatmap, 226
plotly_grid, 186	showGiottoImageNames, 153, 180, 228
plotly_network, 187	showGiottoInstructions, 228
plotMetaDataCellsHeatmap, 187, 191	showGrids, <i>20</i> , 229
plotMetaDataHeatmap, 189, 189	showNetworks, 229
plotPCA, 100, 103, 105, 191, 194, 196, 201,	showPattern, 230
203, 205, 206, 208, 210	showPattern2D, <i>230</i> , 231
plotPCA_2D, 100, 103, 105, 192, 193, 196,	showPattern3D, 232
201, 203, 205, 206, 208, 210	showPatternGenes, 233
plotPCA_3D, 100, 103, 105, 192, 194, 195,	showProcessingSteps, 234
201, 203, 205, 206, 208, 210	showSaveParameters, 89, 92, 93, 96, 98, 99,
plotRankSpatvsExpr, 196	102, 104, 182, 188, 190, 192, 194,
plotRecovery, 197	195, 201, 203, 204, 206, 208, 209,
plotRecovery_sub, 198	226, 227, 235, 241, 244, 247, 251,
plotStatDelaunayNetwork, 199	253, 256, 259, 261, 266, 269, 270,
plotTSNE, 100, 103, 105, 192, 194, 196, 200,	273, 275, 282, 286, 288, 302
203, 205, 206, 208, 210	showSpatialCorGenes, 87, 235
plotTSNE_2D, 100, 103, 105, 192, 194, 196,	signPCA, 236
201, 202, 205, 206, 208, 210	silhouetteRank, 238
plotTSNE_3D, 100, 103, 105, 192, 194, 196,	sNN, 65
201, 203, 204, 206, 208, 210	sNNclust, <i>122</i>
plotUMAP, 100, 103, 105, 192, 194, 196, 201,	spat_fish_func, 288
203, 205, 205, 208, 210	spat_OR_func, 289
, , ,,,	

INDEX 349

spatCellCellcom, <i>171</i> , <i>172</i> , 239	visGenePlot_2D_ggplot, 318
spatCellPlot, 240, 245	visGenePlot_3D_plotly, 319
spatCellPlot2D, 240, 241, 242	visPlot, 298, 321
spatDimCellPlot, 245, 252	visPlot_2D_ggplot, 323
spatDimCellPlot2D, 245, 247, 247	visPlot_2D_plotly, 326
spatDimGenePlot, 252, 257, 259	visPlot_3D_plotly, 327
spatDimGenePlot2D, 252, 253, 254, 259	visSpatDimGenePlot, 329
spatDimGenePlot3D, 253, 257, 257	visSpatDimGenePlot_2D, 332
spatDimPlot, 259, 266, 269	visSpatDimGenePlot_3D, 334
spatDimPlot2D, 260, 261, 262, 269	visSpatDimPlot, 336
spatDimPlot3D, 261, 266, 266	visSpatDimPlot_2D, 338
spatGenePlot, 269, 273, 275	visSpatDimPlot_3D, 341
spatGenePlot2D, <i>81</i> , <i>270</i> , <i>271</i> , <i>271</i> , <i>275</i>	V135patb1iii 10t_5b, 541
	<pre>write_giotto_viewer_annotation, 343</pre>
spatGenePlot3D, 81, 271, 273, 274	write_giotto_viewer_dim_reduction, 344
spatialAEH, 276	write_giotto_viewer_numeric_annotation,
SpatialDE, 276	345
spatialDE, 277	writeHMRFresults, 343
spatNetwDistributions, 278	wiltering results, 545
spatNetwDistributionsDistance, 279	zlm, <i>143</i>
spatNetwDistributionsKneighbors, 280	,
spatPlot, 281, 286, 288	
spatPlot2D, 281, 282, 283, 288, 299	
spatPlot3D, 282, 286, 286, 300	
specificCellCellcommunicationScores,	
289	
split_dendrogram_in_two, 290	
standardise_giotto, 291	
stitchFieldCoordinates, 60, 291	
stitchTileCoordinates, 292	
subClusterCells, 293	
subsetGiotto, 295	
subsetGiottoLocs, 295	
trendSceek, 296	
trendsceek_test, 296	
triangulate, 66, 67, 200	
umap, 221	
updateGiottoImage, 297	
viewHMRFresults, 298	
viewHMRFresults2D, 299	
viewHMRFresults3D, 300	
violinPlot, 301	
visDimGenePlot, 302	
,	
visDimGenePlot_2D_ggplot, 304	
visDimGenePlot_3D_plotly, 305	
visDimPlot, 307	
visDimPlot_2D_ggplot, 309	
visDimPlot_2D_plotly, 311	
visDimPlot_3D_plotly, 313	
visForceLayoutPlot, 314	
visGenePlot, 316	