南京大学 电子科学与工程学院 全日制统招本科生 《信号与系统》期末考试试卷 闭卷

任课教师姓名: __李晨 孙国柱__

考试日期: _2013.1.8 _ 考试时长: _120_分钟

考生年级		考生专业		考生学号		考生姓名			
	题号	_	=	三	四	五	六	总分	
	得分								
	, ,	·)填空或没时间信号10		能无失真均	也通过理想	低通滤波器	本题1	得分	
	则滤波器的转折频率 $\mathbf{w}_c \geq$; 在满足抽样定理的条件下,对该信号进行均								
	匀理想抽样的时间间隔 $T \leq$ 。								
2.	在 s 平面和 z 平面的映射关系中,复变量 z 和 s 的关系是。								
	s平面上的								
	s平面的平行于实轴的直线映射到 z 平面是;								
	s 平面」	上的				映射	到 z 平面是	:负实轴。	
3.	计算离	散时间信号	x(n) = n-	$2 \mid u(n+1)$ 自	勺Z变换,	X(z) =		_,其相应的	
	收敛区	(ROC)是_			0				
4.						$H(z) = \frac{1}{1 - 2z}$	$\frac{1-z^{-1}}{z^{-1}-\frac{1}{4}z^{-2}} +$	$\frac{1}{2}z^{-3}$,若激	
	励信号 $x(n) = (1/2)^n u(n)$,其零状态响应为 $y(n)$,计算 $y(1) =$ 。								
5.								单位样值响应	
	h(n) = 是 (稳	定的,非穩	· 注定的)。			该系统是	(因果的,	非因果的)、	

1

二. (15分)某因果的连续时间 LTI 反馈系统框图如下。

本题得分

- 1. 求闭环的系统函数 H(s) = Y(s)/X(s)
- 2. 若该系统是稳定的,求K的取值范围。
- 3. 若该系统单位冲激响应的形式是 $h(t) = Ate^{-at}u(t)$,求使系统因果且稳定的 K、a 和 A 的数值。

三. (15 分) 如图所示电路,t<0 时,开关位于"1"且已达到稳态,t=0 时刻,开关自"1"转至"2"。画出 $t\ge0$ 时电路的 s 域等效模型图,求 $t\ge0$ 时回路中的电流 i(t)和电容上的电压 $u_C(t)$ 。

本题得分

四. (15 分) 若 x(n) = u(n) - u(n-4),

本题得分

- (1) 求此序列的 Z变换 X(z),并画出极零图。
- (2) 求此序列的傅里叶变换 $X(e^{jw})$,并大致画出其幅度谱。

五. (10 分)设某因果的离散 LTI 系统的单位阶跃响应为 g(n),已 本题得分 知当输入为因果序列 x(n)时,其零状态响应 $y_{zs}(n) = \sum_{i=0}^{n} g(i)$,求

六. (20分)已知某离散系统的单位阶跃响应为

本题得分	
------	--

$$g(n) = 6[(-\frac{1}{3})^n - (-\frac{1}{2})^n] u(n)$$

- (1) 求系统函数 H(z)和单位样值响应 h(n);
- (2) 画出系统函数 H(z)的极零图,并粗略画出幅频响应曲线;
- (3) 写出差分方程,并画出使用最少延时器的系统框图;
- (4) 若激励信号为u(n),系统全响应为y(n),且y(0) = -1,y(1) = 1,求y(n)。