Bernoulli

Distribution de probabilité discrete

Modélise une expérience ayant 2 issues possibles 2 sédec [0]

Definition

Unc V.A. suit une loi de Bernorelli de prametre p

si elle prent uniquement ℓ valeeus: $\ell(x=1) = \rho$ et $\ell(x=0) = 1-\rho$ $\frac{\rho}{\rho} = \frac{\rho}{\sin x} = 1 \qquad \qquad \frac{\tau^2}{\cos x} = 1 \qquad \qquad \frac{\tau$

auxteristiques.

 $\bullet \not\models [X] = \rho$

• $Var(X) = \rho(1-\rho)$

• Noments: $\mathbb{E}[X^2] = \rho$ can $X^2 = X$

Représentation paphique:

1. la densité de probabilité: représente P(X) en fonction de X

Les fonction de répartition F(x): donné la probabilité
d'obtenir une valour inférieure en égali à z

Exemple: p = 0,6

* Démonstration de la Vauiance de la loi de Bunoulli

Rappel: $Van(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ $\mathbb{E}[X] = \angle x, P(X = z,)$ $\mathbb{E}[X] = A \cdot p + 0 \cdot (1 - p) = p$

$$\mathbb{E}[X^2] = 1^2 p + 0^2 (1-p) = p$$

 $Van(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ $= \rho - \rho^2$ $= \rho(\Lambda - \rho) \text{ factorisat}$