File: hw11.py, methods: baseFunctions.py

	Units	F →	В •	D
Description			Б	D
Description From			B1	B1
To To		B1	ы	ы
		CONVEN	CONNEN	CONVEN
Stream Class		CONVEN	CONVEN	CONVEN
Maximum Relative Error	* "			
Cost Flow	\$/hr			
MIXED Substream				
Phase		Liquid Phase	Liquid Phase	Liquid Phase
Temperature	С	126.074	135.694	110.86
Pressure	bar	1.01325	1.01325	1.013
Molar Vapor Fraction		0	0	
Molar Liquid Fraction		1	1	
Molar Solid Fraction		0	0	
Mass Vapor Fraction		0	0	
Mass Liquid Fraction		1	1	
Mass Solid Fraction		0	0	
Molar Enthalpy	kcal/mol	3.58532	2,68673	6.456
Mass Enthalpy	kcal/kg	35.1642	25.3401	69.96
Molar Entropy	cal/mol-K	-83.8367	-89.9029	-71.27
Mass Entropy	cal/gm-K	-0.822256	-0.847925	-0.7723
Molar Density	mol/cc	0.00753546	0.00717265	0.0084579
Mass Density	kg/cum	768.311	760.495	780.5
Enthalpy Flow	Gcal/hr	0.896329	0.472923	0.4776
Average MW		101.959	106.027	92.28
+ Mole Flows	kmol/hr	250	176.022	73.97
- Mole Fractions				
TOLUE-01		0.3	0.0100099	0.9899
ETHYL-01		0.7	0.98999	0.01000
+ Mass Flows	kg/hr	25489.8	18663.1	6826.
→ Mass Fractions				
Volume Flow	cum/hr	33.1765	24.5407	8.746
+ Liquid Phase				

Problem 1ab

Name	Value	Units	
Temperature	110.869	С	
Subcooled temperature			
Heat duty	-13.387	GJ/hr	
Subcooled duty			
Distillate rate	73.9783	kmol/hr	
Reflux rate	327.483	kmol/hr	
Reflux ratio	4.42675		
Free water distillate rate			
Free water reflux ratio			
Distillate to feed ratio			
oiler / Bottom stage performance ———	Value	Jait	
oiler / Bottom stage performance ————	Value 135.694	Unit:	
oiler / Bottom stage performance Name Temperature		С	
oiler / Bottom stage performance ————	135.694	C GJ/hr	

2.16591

Boilup ratio

Bottoms to feed ratio

File: hw11.py, methods: baseFunctions.py

Summary

		Value	Units
	Number of Trayed/Packed stages	23	
	Total height		ft
٠	Total head loss (Hot liquid height)		ft
	Total pressure drop		bar
	Number of sections	1	
	Number of diameters	1	
	Pressure drop across sump		bar
	Total residence time		hr

Sections

i															
			Start	End	Diameter		Section Height		Internals	Tray Type or	Section Pressure Drop			Limiting	
			Stage	Stage					Туре	Packing Type			to Flood	Stage	
	•	CS-1	2	13	1.99955	ft ▼	24	ft ▼	TRAY	SIEVE	18.654	bar	1092.53	13	View

McCabe-Thiele diagram: 14 stages, feed at 6

File: hw11.py, methods: baseFunctions.py

Problem 2

```
==== Problem 2 ====

dT Ln, condenser: 131.11700047464612 Δ°F

dT, reboiler: 50 Δ°F

Heat duty, condenser: 13.38695324118 GJ/h

Heat duty, reboiler: 13.614113476152 GJ/h

Heat transfer coefficient, condenser: 150 Btu/ft²/h/Δ°F

Heat transfer area, condenser: 59.93574330274267 m²

Heat transfer area, reboiler: 119.87918450200634 m²
```

File: hw11.py, methods: baseFunctions.py

Problem 3

$$traySpacing \coloneqq 2 \ ft \qquad nTrays \coloneqq 26 \qquad F_{P} \coloneqq 1 \qquad F_{M} \coloneqq 1 \qquad GJ \coloneqq 10^{9} \ J$$

$$H \coloneqq 10 \ ft + nTrays \cdot traySpacing = 62 \ ft \qquad D \coloneqq 6.5 \ ft \qquad V \coloneqq \left(\frac{D}{2}\right)^{2} \cdot H = 18.544 \ m^{3}$$

$$cShell \coloneqq 10^{3.4974 + 0.4485 \cdot \log \left(\frac{V}{m^{2}}\right) + 0.1074 \cdot \log \left(\frac{V}{m^{2}}\right)^{2}} \cdot \left(2.25 + 1.82 \cdot F_{P} \cdot F_{M}\right) = 7.055 \cdot 10^{4}$$

$$A \coloneqq \pi \cdot \left(\frac{D}{2}\right)^{2} = 3.083 \ m^{2} \qquad N_{trays} \coloneqq 26$$

$$Fq \coloneqq \text{if} \left(N_{trays} < 20 \cdot 10^{\left(0.4771 + 0.08516 \cdot \log \left(N_{trays}\right) - 0.3473 \cdot \log \left(N_{trays}\right)^{2}}\right), 1\right) = 1$$

$$cTrays \coloneqq 10$$

$$cTrays \coloneqq 10$$

$$A_{B} \coloneqq 110.164 \ m^{2}$$

$$cCond \coloneqq 10^{4.3247 - 0.3030 \cdot \log \left(\frac{A_{C}}{m^{2}}\right) + 0.1634 \cdot \log \left(\frac{A_{C}}{m^{2}}\right)^{2}} \cdot \left(1.63 + 1.66 \cdot F_{M} \cdot F_{P}\right) = 64493$$

$$cBoiler \coloneqq 10$$

$$cSteam \coloneqq 4.399 \ \frac{GJ}{hr} \cdot \frac{14.83}{GJ} \cdot 350 \ day = 5.48 \cdot 10^{5}$$

$$cWater \coloneqq 4.28 \ \frac{GJ}{hr} \cdot \frac{0.354}{GJ} \cdot 350 \ day = 1.273 \cdot 10^{4}$$

$$CapCost \coloneqq cShell + cTrays + cCond + cBoiler = 6.09 \cdot 10^{5}$$

$$OpCost \coloneqq cSteam + cWater = 5.607 \cdot 10^{5}$$

$$EAOC \coloneqq OpCost + \frac{CapCost}{5} = 6.825 \cdot 10^{5} \qquad \frac{cSteam}{EAOC} = 0.803$$