Fiche d'exercices nº 4

1 Formules sur les formes quadratiques générales

Ex 1.1 Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et une application $f: E \to \mathbb{K}$ telle que

- (i) $f(\lambda x) = \lambda^2 f(x)$, pour tous $x \in E$, $\lambda \in \mathbb{K}$,
- (ii) $(x,y) \mapsto \frac{1}{2} (f(x+y) f(x) f(y))$ de $E \times E$ dans \mathbb{K} , est linéaire par rapport à la première variable. Montrer que f est une forme quadratique.

Ex 1.2 Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et q une forme quadratique sur E.

1. Montrer la formule du parallélogramme :

$$\forall x, y \in E, \quad q(x+y) + q(x-y) = 2(q(x) + q(y))$$
 (PA).

2. Montrer la formule de polarisation d'ordre 3 :

$$\forall x, y, z \in E, \quad q(x+y) + q(y+z) + q(x+z) = q(x) + q(y) + q(z) + q(x+y+z)$$
 (PO).

3. Expliquer pourquoi (PO) implique (PA).

Ex 1.3 Soit q une forme quadratique positive (i.e. $q(x) \ge 0, \forall x$) sur un \mathbb{R} -e.v E et b sa forme polaire.

1. Montrer l'inégalité de Cauchy-Schwarz

$$\forall x, y \in E, \quad b(x, y)^2 \le q(x)q(y)$$
 (CS)

(Indication : considérer l'application $P: \mathbb{R} \to \mathbb{R}, t \mapsto q(x+ty)$ avec x et y fixés.)

- 2. Montrer que si x et y sont liés alors (CS) est une égalité. La réciproque est-elle vraie?
- 3. On suppose de plus que q est définie. Montrer que si pour $x, y \in E$ (CS) est une égalité, alors x et y sont liés. (Indication : utiliser à nouveau P.)

Ex 1.4 Soit q une forme quadratique positive (i.e. $q(x) \ge 0, \forall x$).

1. Montrer l'inégalité de Minkowski (appelée aussi iinégalité triangulaire)

$$\forall x, y \in E, \quad \sqrt{q(x+y)} \le \sqrt{q(x)} + \sqrt{q(y)}$$
 (M).

(Indication: utiliser Cauchy-Schwarz.)

2. On suppose de plus que q est définie. Montrer que pour $x,y\in E$ (M) est une égalité si et seulement si $x=\rho y$ ou $y=\rho x$ avec $\rho>0$.

2 Formes quadratiques/ Représentations matricielles

Ex 2.1 Trouver les formes polaires et le rang des formes quadratiques suivantes sur \mathbb{R}^4 , donner les matrices dans la base canonique de \mathbb{R}^4 .

- 1. $q(x, y, z, t) = xy + y^2$
- 2. $q(x, y, z, t) = xy + zt + t^2$
- 3. $q(x, y, z, t) = x^2 y^2 + z^2 t^2$

Ex 2.2 Montrer que le déterminant est une forme quadratique sur $M_2(\mathbb{R})$. Donner sa forme polaire, donner sa matrice dans la base canonique $\{E_{11}, E_{12}, E_{21}, E_{22}\}$. Cette forme est-elle dégénérée, définie, positive?

Ex 2.3 Soient A et B deux matrices symétriques de $M_n(\mathbb{K})$ telles que $\forall X \in \mathbb{R}^n$, ${}^tXAX = {}^tXBX$ (*)

- 1. Soient X, Y $\in \mathbb{R}^n$, en appliquant (*) à X, Y et X+Y, montrer que ${}^tXAY = {}^tXBY$
- 2. En remplaçant X et Y par des vecteurs de la base canonique, en déduire que A=B.

Que peut-on déduire pour les formes quadratiques?

3 Orthogonalité-Isotropie

Ex 3.1 Soit q une forme quadratique sur \mathbb{R}^n , b sa forme polaire et Q sa matrice dans la base canonique.

- 1. Si Q = Id, existe-t-il un vecteur $x \in \mathbb{R}^n$ tel que b(x, y) = 0 quel que soit $y \in \mathbb{R}^n$? Que vaut le noyau N(q), le cône C(q)?
- 2. On suppose ici que rg(Q) = n.
 - (a) Expliquer pourquoi pour tout $x \in \mathbb{R}^n$ il existe $y \in \mathbb{R}^n$ tel que x = Qy.
 - (b) Que vaut le noyau N(q), le cône C(q)?
- 3. On suppose ici que rg(Q) < n.
 - (a) Expliquer pourquoi il existe $x \in \mathbb{R}^n$ tel que Qx = 0.
 - (b) Montrer que $N(q) \neq \{0\}$.
- 4. En déduire que $N(q) = \{0\}$ si et seulement si rg(Q) = n.

Ex 3.2 Soit $q: E \to K$ une forme quadratique sur un espace vectoriel de dimension finie.

- 1. Pour tout sous-espace vectoriel $F \subset E$, montrer que l'on a $(F^{\perp})^{\perp} = F + N(q)$.
- 2. Pour tous sous-espaces vectoriels $F, G \subset E$, montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$. Si q est non-dégénérée, montrer que l'on a $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Ex 3.3 Les formes quadratiques de l'exercice 2.1 sont-elles dégénérées? Sont-elles définies?

Ex 3.4 On considère la forme quadratique q de \mathbb{R}^4 dont la matrice dans la base canonique est :

$$\begin{pmatrix} 1 & 0 & \sqrt{3} & 0 \\ 0 & -9 & 0 & 0 \\ \sqrt{3} & 0 & 4 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 1 \end{pmatrix}.$$

- 1. La forme q est-elle dégénérée?
- 2. Existe-t-il des vecteurs q-isotropes non nuls?
- 3. On note u=(0,-2,3,0). Que vaut $\dim\{u\}^{\perp}$? Donner une base de $\{u\}^{\perp}$.

Ex 3.5 Construire une base orthogonale pour chacune des formes de \mathbb{R}^3 ou \mathbb{R}^4 suivantes :

- 1. $q(x, y, z) = x^2 + y^2 + xz$,
- 2. q(x, y, z) = 8xy 16xz 8yz,
- 3. $q(x, y, z) = 2x^2 + 5y^2 + 19z^2 8xy + 12xz 18yz$
- 4. $q(x, y, z, t) = x^2 + 2xy 4xt + 3y^2 + 8yz + 6y^2 2t^2$.

Ex 3.6 Diagonaliser et donner la signature des formes de \mathbb{R}^3 ou \mathbb{R}^4 suivantes :

- 1. $q(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + 8x_3^2 4x_1x_2 + 6x_1x_3 10x_2x_3$
- 2. $q(x_1, x_2, x_3) = 4x_1^2 + 2x_2^2 3x_1x_2 + 2x_1x_3 4x_2x_3$
- 3. $q(x_1, x_2, x_3, x_4) = 4x_1x_2 + 4x_2x_3 2x_3x_4$.

Ex 3.7 Soit $E = \mathbb{R}_n[X]$ et q la forme quadratique sur E donnée par $P \mapsto \int_{-1}^1 P^2(t) dt$.

- 1. Donner la forme polaire b associée à q.
- 2. On pose $p_0 = 1$, et $p_k = \frac{d^k}{dX^k}((X^2 1)^k)$. Montrer que $p_k \in \{1, X, X^2, \dots, X^{k-1}\}^{\perp}$.
- 3. En déduire une base q-orthogonale de E.