Algoritmusok és adatszerkezetek II Mintaillesztés témakör jegyzete

Készült Ásványi Tibor előadásai és gyakorlatai alapján

Sárközi Gergő, 2021-22-1. félév Nincsen lektorálva!

Tartalomjegyzék

1.	Mintaillesztés	2
2.	Egyszerű (brute force) algoritmus	2
3.	Quicksearch	3
	3.1. Quicksearch példa	4
4.	Knuth-Morris-Pratt (lineáris) algoritmus RÖVIDEN	5
	4.1. Példa	6
5.	Knuth-Morris-Pratt (lineáris) algoritmus	7
	5.1. Jelölések	7

1. Mintaillesztés

- Abécé: $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_d}$ $(1 \le d < \infty \text{ konstans})$
- Szöveg, amiben keresünk: $T/1:\Sigma[n]$ $(1 \le n)$
- Minta, amit keresünk: $P/1: \Sigma[m]$ $(1 \le m \le n)$
- $s \in 0..(n-m)$ P érvényes eltolása T-n $\Leftrightarrow T[s+1..s+m] = P[1..m]$
- ullet A cél az érvényes eltolások S halmazának megállapítása

2. Egyszerű (brute force) algoritmus

- \bullet Minden lehetséges s értékre, egymástól függetlenül, próbáljuk a mintát
- Időkomplexitás: $MT(n, m) \in \Theta(n * m)$ és $mT(n, m) \in \Theta(n)$
 - Alapból $MT \in \Theta((n-m+1)*m)$ és $mT \in \Theta(n-m+1)$
 - $-m \le n \implies (n-m+1) \in \Theta(n)$
 - Tehát $MT \in \Theta(n * m)$ és $mT \in \Theta(n)$ (mint legfelül)
 - Hamnem elhanyagolhatón-hezképest ($m\geq \epsilon*n$ ahol $0<\epsilon<1)$ akkor $(n*m)\in\Theta(n^2)\implies MT\in\Theta(n^2)$

$ig(\mathrm{BruteForce}(T/1:\Sigma[n]\;;\; P/1:\Sigma[n] \;;\; P/1:\Sigma[n] \;;$	$S[m] ; S : \mathbb{N}\{\})$
$S := \{\}$	
s := 0 to n - m	
T[s+1s+m] = P	[1m]
$S := S \cup \{s\}$	SKIP

$$(T[s+1..s+m] = P[1..m]) : \mathbb{B})$$

$$j := 1$$

$$j \le m \land T[s+j] = P[j]$$

$$j + +$$

$$\mathbf{return} \ j > m$$

3. Quicksearch

- Egynél nagyobb lépésekben növeli az s eltolását (de nem ugrik át egy érvényes eltolást sem)
- Előkészítő fázis: Ábécé minden σ eleméhez $shift(\sigma) \in 1..m+1$ címke
 - Csak a mintától függ, a szövegtől nem
- $shift(\sigma)$ működése:
 - $-\sigma$ mindig a minta utáni első karakter a szövegben: $\sigma = T[s+m+1]$
 - Megmondja T[s+1..s+m]megnézése után mennyivel nőjön s
 - Ha $\sigma \in P$: s mennyivel nőjön, hogy a minta illeszkedhessen a T[s+m+1] karakterre (pl. ha $P[m]=\sigma$ akkor $shift(\sigma)=1$)
 - Ha $\sigma \notin P$: minta átugorja T[s+m+1] karaktert $(shift(\sigma) = m+1)$
- Időkomplexitás:
 - $-mT \in \Theta(\frac{n}{m+1}+m)$ (pl. T és P diszjunktak)
 - * Jobb, mint a brute force megoldás
 - $-MT \in \Theta((n-m+2)*m)$ (pl. T és P mind azonos σ sokszor)
 - * Azonos brute force-szal, de gyakorlatban lassabb
 - Átlagosan gyorsabb, mint a brute force, de azért nem optimális

3.1. Quicksearch példa

- Bal fenti ábra:
 - $-\ xxxx$ jelöli a mintával az eltolás előtt összehasonlított szövegrészt
 - Az eltolás mértékét mutatja be: az eltolás utána állapot látható

Szöveg: ...xxxxA.....xxxxB.....xxxxC.....xxxxD...
Minta: CADA CADA CADA CADA

σ	Α	В	С	D
$shift(\sigma)$	1	5	4	2

σ	A	B	C	D	
initial $shift(\sigma)$	5	5	5	5	5
C			4		4
A	3				3
D				2	2
A	1				1
final $shift(\sigma)$	1	5	4	2	

i =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
T[i]=	A	D	A	B	A	B	C	A	D	A	B	C	A	B	\overline{A}	D	\overline{A}	C	A	D	\overline{A}	D	\overline{A}
	Ø	A	D	A																			
		Ø	A	D	A																		
s = 6							C	<u>A</u>	\underline{D}	<u>A</u>													
												<u>C</u>	<u>A</u>	Ø	A								
														Ø	A	D	A						
s = 17																		<u>C</u>	<u>A</u>	\underline{D}	\underline{A}		
																				Ø	A	\overline{D}	\overline{A}

4. Knuth-Morris-Pratt (lineáris) algoritmus RÖVIDEN

- Lineáris időben végzi el a feladatot
- Nem kell minden esetben a minta elejétől kezdeni az illesztést: a prefixet nem kell újra vizsgálni, ha az egyezik a szufixszel
- Előfeldogozás: $(\Theta(m))$ idő alatt végbemegy)
 - megadunk egy next függvényt, ami megadja a leghosszabb megegyező prefix-szuffix párok hosszát minden minta kezdőszeletre (hosszra)
 - -next(j) a leghosszabb olyan P prefix hossza, amely P első j karakterének szuffixe (de nem egyezik meg vele), azaz $next(j) \in 0..(j-1)$
- A szövegben nem kell visszaugrani, azaz buffer nélkül is használható. (Minden karaktert csak egyszer olvasunk ki, és csak "előrefelé" haladunk.)
- A mintát sikeres/sikertelen illesztés esetén annyival toljuk előrebb, amerkkora a sikeresen illesztet részminta hossza MÍNUSZ a sikeresen illesztet részminta legnagyobb szuffixe, ami egyben prefix.

 Azaz ez a legnagyobb szuffix lesz a minta kezdete.
- Időkomplexitás: $MT = mT \in \Theta(n)$
 - $-\Omega(n)$, mert i egyesével nő és n-ig megy
 - $O(n),\,2i-j$ értéke mindig szig. mon. nő, tehát max 2niteráció

- next[1] = 0
- $next[i+1] \le next[i]+1$
- $next(j) \in 0..(j-1) \ (j \in 1..m)$

- init ciklusának invariánsa:
 - $-i \le j \le m$
 - P első i karakter
e szuffixe P első j karakterének
 - -és $\forall l \in (i+2)..j: P$ első lkaraktere nem szuffixe Pelső j+1karakterének, de egyenlőek lehetnek
 - és next[1..j] = next(1..j) (azaz a tömb a fv alapján van töltve)
- KMP ciklusának invariánsa:
 - $-i \in 0..n \text{ és } j \in 0..(m-1) \text{ és } j \leq i$
 - $\text{ \'es } S = \{ s \in 0..(i-m) \mid T[(s+1)..(s+m)] = P \}$
 - és P első j karaktere szuffixe T első i karakterének (vagy egyenlőek)
 - és $\forall l \in (j+2)..m: P$ első l karaktere nem szuffixe T első i+1 karakterének (és nem is egyenlőek)

4.1. Példa

_										
i	j	next[j]	$\stackrel{1}{A}$	$\stackrel{2}{B}$	$\overset{3}{A}$	$\stackrel{4}{B}$	$\overset{5}{B}$	$\stackrel{6}{A}$	$\overset{7}{B}$	$\stackrel{8}{A}$
0	1	0		Å						
0	2	0			\underline{A}					
1	3	1			A	<u>B</u>				
2	4	2			A	B	Å			
0	4	2					Å			
0	5	0						<u>A</u>		
1	6	1						A	<u>B</u>	
2	7	2						A	B	\underline{A}
3	8	3								

Minta: P = ABABBABA

A végeredmény

P[j] =	A	B	A	B	B	A	B	A
j =	1	2	3	4	5	6	7	8
next[j] =	0	0	1	2	0	1	2	3

11 110100	11 Not obob.																
i =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T[i]=	A	B	A	B	A	B	B	A	B	A	B	B	A	B	A	B	A
	<u>A</u>	<u>B</u>	<u>A</u>	<u>B</u>	\mathscr{B}												
$\frac{s=2}{s=7}$			A	B	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>							
s=7								A	B	A	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>		
													A	B	A	<u>B</u>	\mathcal{B}
															A	B	<u>A</u>

$$S = \{2, 7\}$$

5. Knuth-Morris-Pratt (lineáris) algoritmus

5.1. Jelölések

- Akár teljes prefix: $x \sqsubseteq y \Leftrightarrow \exists z : x+z=y$
- Igazi prefix: $x \sqsubset y \Leftrightarrow x \sqsubseteq y \land x \neq y$
- Akár teljes szuffix: $x \supseteq y \Leftrightarrow \exists z: z+x=y$
- Igazi szuffix: $x \supset y \Leftrightarrow x \supseteq y \land x \neq y$
- Az üres sztring mindennek a prefixe és a szuffixe is.
- Kezdőszelet: $A_j = A[1..j]$ (ezt a jelölést ritkán használjuk)
 - $-A_0$ az üres sztring
- Prefix-szuffix: $x \square y \leftrightarrow x \sqsubseteq y \land x \sqsupset y$
- i. legnagyobb elem: $\max_i H$ $(i \in 1..|H|)$
 - $-\max_1 H = \max H \text{ és } \max_{|H|} H = \min H$
- $H(j) = \{h \in 0..j 1 \mid P_h \supset P_j\} = \{|x| \mid x \square P_j\}$ $(j \in 1..m)$ Azaz azon sztring hosszak, amelyek prefixek és szuffixek is P-nek egyben.
- $next(j) = \max H(j)$ $(j \in 1..m)$ Leghosszab P-beli prefix hossza, ami egyben valódi szuffixe P_j -nek.

NINCS BEFEJEZVE, NAGYON HIÁNYOS