۳ نیمجلسهی سوم، چهارشنبه

در پایان جلسه ی قبل گفتیم که رویه ی به معادله ی $z=x^\intercal+y^\intercal$ را می توان مجموعه ی دوایری تصور کرد که شعاعشان با پیش رفتن در سوی محور z بیشتر و بیشتر می شود. این رویه را می توان همچنین مجموعه ی سهمی هائی نیز تصور کرد که هر چه بالاتر می روند باریکتر می شوند:

در زیر روش دیگری نیز برای نگاه کردن به رویهی مورد نظر آوردهایم.

سوال ۳۰. معادلهی رویهی حاصل از دوران منحنی z=f(y) حول محور z را بنویسید.

با توجه به اَشکالِ بالا (و توضیحاتی که در کلاس درس دادهایم) معادلهی رویهی مورد نظر عبارت میات از $z=f(\sqrt{x^{\mathsf{T}}+y^{\mathsf{T}}})$

z به طور کلی معادلهی رویه ی حاصل از دوران منحنی به معادله ی ضمنی $f(z,y)=\cdot$ حول محور عبارت است از

$$f(z,\sqrt{x^{\mathsf{Y}}+y^{\mathsf{Y}}})={}\cdot$$

مثال ۳۱. رویهی $z=x^{\rm r}+y^{\rm r}$ از دوران منحنی $z=y^{\rm r}$ از دوران منحنی میشود؛ زیرا می توان نوشت:

$$z = (\sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}})^{\mathsf{Y}} = f(\sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}})$$

مثال ۳۲. رویههای زیر را رسم کنید.

$$z = \ln(\sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}})$$
 .

قرار دهید:

$$f(\sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}}) = \ln(\sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}}).$$

بنا به آنچه گفته شد، رویهی مورد نظر از دوران منحنی $z = \ln(y)$ حول محور z ایجاد می شود.

این رویه نیز از دوران منحنی $z=e^y$ (برای $z=e^y$ این رویه نیز از دوران منحنی : $z=e^{\sqrt{x^{\mathrm{Y}}+y^{\mathrm{Y}}}}$.۲

 $f(t_1,\pm\sqrt{t_1}+t_1)=\cdot$ توجه ۳۳. از دوران منحنی $f(t_1,t_1)=\cdot$ حول محور t_1 به رویه ی نید! $t_i\neq t_j\in\{x,y,z\}$ داریم $i\neq j$ داریم نید!

۱.۳ مخروطها

مثال ۳۴. رویه به معادلهی زیر را رسم کنید.

$$z^{\mathsf{\tiny T}} = x^{\mathsf{\tiny T}} + y^{\mathsf{\tiny T}}$$

حاصل تلفیق شكلهای بالا به صورت زیر است:

رویهی مورد نظر را با نرمافزارهای رایانهای به صورت زیر کشیدهایم:

روش دوم. معادلهی مورد نظر را میتوان به صورت زیر نوشت: $z^{\mathsf{r}} = (\sqrt{x^{\mathsf{r}} + y^{\mathsf{r}}})^{\mathsf{r}}$ بنابراین شکل مورد نظر از دوران منحنی $z^{\mathsf{r}} = y^{\mathsf{r}}$ حول محور z ایجاد میشود؛ به بیان دیگر از دوران دو منحنی $z = \pm y$ حول محور z ایجاد میشود.

معادلهی کلّیِ یک مخروط به صورت زیر است:

$$rac{z^{ ext{ iny r}}}{c^{ ext{ iny r}}} = rac{x^{ ext{ iny r}}}{a^{ ext{ iny r}}} + rac{y^{ ext{ iny r}}}{b^{ ext{ iny r}}}$$

۲.۳ هذلولی وارِ یکپارچه

مثال ۳۵. رویهی به معادله $x^{\mathrm{Y}}+y^{\mathrm{Y}}$ را رسم کنید.

پاسخ.

$$x = \cdot \Rightarrow y^{\mathsf{T}} - z^{\mathsf{T}} = \mathsf{T}$$

$$y = \cdot \Rightarrow x^{\mathsf{T}} - z^{\mathsf{T}} = \mathsf{T}$$

نتیجهی تلفیق چهار شکل بالا به صورت زیر است:

شکل نرمافزاری رویه نیز به صورت زیر است:

تمرین ۳۶. شکل بالا را با استفاده از دوران رسم کنید.

پاسخ.

$$z^{\mathsf{Y}} + \mathsf{Y} = (\sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}})^{\mathsf{Y}}$$

پس رویه ی مورد نظر از دوران منحنی به معادله ی $z^{\gamma}+1=y^{\gamma}$ (یا $z^{\gamma}+1=z^{\gamma}$) حاصل می شود؛ به بیان دیگر از دوران یک هذلولی. به شکل حاصل هذلولوی یکپارچه z^{γ} می گویند.

معادلهی کلّیِ هذلولوی یکپارچه به صورت زیر است:

$$\frac{z^{\mathsf{Y}}}{c^{\mathsf{Y}}} + \mathsf{Y} = \frac{x^{\mathsf{Y}}}{a^{\mathsf{Y}}} + \frac{y^{\mathsf{Y}}}{b^{\mathsf{Y}}}$$

توجه ۳۷. (سوال یکی از دانشجویان) برای رسم معادله ی $z^{r}+r=x^{r}+y^{r}$ طرفین را بر ۲ تقسیم میکنیم، تا به معادله ی استاندار د بالا برسیم.

$$\frac{z^{\mathsf{Y}}}{(\sqrt{\mathsf{Y}})^{\mathsf{Y}}} + \mathsf{Y} = \frac{x^{\mathsf{Y}}}{(\sqrt{\mathsf{Y}})^{\mathsf{Y}}} + \frac{y^{\mathsf{Y}}}{(\sqrt{\mathsf{Y}})^{\mathsf{Y}}}$$

[†]Hyperboloid of one sheet