Rapport du miniprojet 1 de RECHERCHE OPÉRATIONNELLE

Clément RIU et Anne SPITZ

7 décembre 2016

2/ Problème de production

1. Programme linéaire

Pour modéliser le problème nous allons utiliser les notations suivantes :

T est l'ensemble des instant du problèmes (les semaines de production). T^* est T privé de la semaine 0. \mathcal{R} est l'ensemble des références qu'il est possible de produire.

Ensuite, les données du problèmes seront : $\forall t \in T$ et $\forall r \in \mathcal{R}, s_{t,r}$ le stock de la référence r en semaine t et $x_{t,r}$ la quantité produite en semaine t de la référence r. Enfin $d_{t,r}$ est la demande en référence r la semaine t et c_r est le coût du stock de la référence r. Q est la quantité maximale produite chaque semaine et N est la quantité maximale de référence produite chaque semaine.

Notre programme linéaire sera le suivant :

$$\min \sum_{t \in T^*} \sum_{r \in \mathcal{R}} c_r \times s_{t,r}$$
sous contraintes:
$$\forall t \in T; \forall r \in \mathcal{R}; s_{t,r} = x_{t,r} + s_{t-1,r} - d_{t,r}$$

$$\forall t \in T^*; \sum_{r \in \mathcal{R}} \mathbf{1}_{x_{t,r} > 0} \leq N$$

$$\forall t \in T^*; \sum_{r \in \mathcal{R}} x_{t,r} \leq Q$$

$$\forall t \in T; \forall r \in \mathcal{R}; s_{t,r} \in \mathbf{R}^+$$

$$\forall t \in T; \forall r \in \mathcal{R}; x_{t,r} \in \mathbf{R}^+$$