Skriftlig eksamen i Dynamiske Modeller Sommeren 2014

VALGFAG

Onsdag den 18. juni 2014

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2014 S-2DM ex

Skriftlig eksamen i Dynamiske Modeller Onsdag den 18. juni 2014

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. For ethvert $a \in \mathbf{R}$ betragter vi tredjegradspolynomiet $P : \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^3 + (1 - a - a^2)z^2 + (a^3 - a^2 - a)z + a^3.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} - 5\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 8x = 0,$$

$$\frac{d^3x}{dt^3} - 5\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 8x = 30e^{-t}$$

og

$$(***) \frac{d^4y}{dt^4} - 5\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} + 8\frac{dy}{dt} = 0.$$

(1) Vis, at udsagnet

$$\forall z \in \mathbf{C} : P(z) = (z - a)(z - a^2)(z + 1)$$

er opfyldt.

- (2) Bestem samtlige rødder i polynomiet P, og angiv røddernes multipliciteter.
- (3) Bestem den fuldstændige løsning til differentialligningen (*).

- (4) Godtgør, at differentialligningen (*) ikke er globalt asymptotisk stabil.
- (5) Bestem den fuldstændige løsning til differentialligningen (**).
- (6) Bestem den fuldstændige løsning til differentialligningen (* * *).

Opgave 2. Vi betragter 3×3 matricen

$$A = \begin{pmatrix} -\frac{11}{6} & -\frac{5}{6} & \frac{1}{3} \\ -\frac{5}{6} & -\frac{11}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{7}{3} \end{pmatrix}$$

og vektordifferentialligningen

(§)
$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

- (1) Vis, at vektorerne a = (1, -1, 0), b = (1, 1, 2) og c = (-1, -1, 1) er egenvektorer for matricen A, og angiv de tilhørende egenværdier.
- (2) Bestem den fuldstændige løsning for vektordifferentialligningen (§).
- (3) Afgør, om vektordifferentialligningen (§) er globalt asymptotisk stabil.
- (4) Bestem den specielle løsning $\tilde{\mathbf{z}} = \tilde{\mathbf{z}}(t)$ til vektordifferentialligningen (§), så betingelsen $\tilde{\mathbf{z}}(0) = (1, -1, 3)$ er opfyldt.

Opgave 3. For ethvert r > 0 betragter vi mængden

$$K(r) = \{ z \in \mathbf{C} \mid |z| \le r \lor |z| = r^2 \}$$

- (1) Begrund, at mængden K(r) er kompakt for ethvert r > 0.
- (2) Bestem tallet r > 0, så $K(r) = K(r^2)$.
- (3) Bestem fællesmængden

$$\bigcap_{r>0} K(r).$$

(4) Bestem r > 0, så mængden K(r) er konveks.

Lad (z_k) være en følge af komplekse tal, og antag, at kravet

$$\forall k \in \mathbf{N} : z_k \neq 0$$

er opfyldt.

(5) Vis, at følgen (t_k) , som opfylder betingelsen

$$\forall k \in \mathbf{N} : t_k = \frac{z_k}{|z_k|},$$

har en konvergent delfølge (t_{k_p}) med grænsepunkt i $t \in \mathbf{T}$. (Man skal altså vise, at |t|=1.)

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 \left(x^2 + 2x + \dot{x} + \dot{x}^2 \right) dt = \int_0^1 \left(x^2 + 2x + \frac{dx}{dt} + \left(\frac{dx}{dt} \right)^2 \right) dt$$

og den funktion $F: \mathbf{R}^2 \to \mathbf{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : F(x,y) = x^2 + 2x + y + y^2.$$

- (1) Vis, at funktionen F er strengt konveks overalt på definitionsmængden \mathbf{R}^2 .
- (2) Bestem den funktion $x^* = x^*(t)$, der minimerer integralet I(x), idet betingelserne $x^*(0) = -1$ og $x^*(1) = 2$ er opfyldt.