Exercice 1 Soit X la matrice de données associée à 4 individus $\{w_1, w_2, w_3, w_4\}$ définie par

$$\begin{pmatrix} 2 & 3 \\ 7 & 4 \\ 3.5 & 3 \\ 0.5 & 5 \end{pmatrix}$$

- 1. Tracer le nuage de points formé par $\{w_1, w_2, w_3, w_4\}$ et donner son inertie totale.
- 2. Déterminer le tableau des écarts et effectuer une classification ascendante hiérarchique, en utilisant l'indice du lien min.
- 3. Choisir deux centres initiaux et appliquer l'algorithme Kmeans.

Exercice 2 On a mesuré la pression systolique et le taux de cholestérol de six individus, les résultats sont consignés dans le tableau suivant :

	Syst	Chol
A	140	6
В	85	5.9
С	135	6.1
D	145	5.8
Е	130	5.4
F	145	5

- 1. Faire une classification hiérarchique;
- 2. Proposer une partition;
- 3. On suppose que nous avons une partition à trois classes $C_1 = \{A, C, D\}$, $C_2 = \{B\}$, $C_3 = \{E, F\}$
 - Calculer l'inertie totale, intra-classe et inter-classe (les individus ont le même poids)
 - Le pourcentage d'inertie expliquée par une partition est définie par $\left(1 \frac{W}{T}\right) \times 100$, déterminer sa valeur pour cette partition

Exercice 3 En utilisant l'indice de la moyenne, effectuer une classification hiérarchique des éléments de l'ensemble $I = \{a, b, c, d, e\}$ dont les distances deux à deux sont fournies dans le tableau suivant

	a	b	С	d	е
a	0				
b	25	0			
c	18	30	0		
d	25	40	10	0	
е	10	34	15	18	0

- 1. Déduire le tableau des distances ultramétriques;
- 2. A partir de l'arbre hiérarchique, déterminer une partition à deux classes.

Exercice 4 Soit $E = \{a, b, c, d\}$ l'ensemble dont les distances entre éléments pris deux à deux sont rangées dans le tableau suivant :

	a	b	c	d
a	0			
a b	1	0		
c	3	4	0	
d	2	3	5	0

- 1. Construire l'arbre hiérarchique indicé en utilisant l'algorithme d'agrégation suivant l'indice δ défini par $\delta(h_1, h_2) = \sup \{d(i, j); i \in h_1, j \in h_2\}$ h_1 et h_2 sont deux parties de E.
- 2. Comment peut on obtenir, à partir de l'arbre hiérarchique, une partition de E? Donner une partition à deux classes.
- 3. Déduire de l'arbre hiérarchique le tableau des distances ultramétriques.

Exercice 5 Soit E un ensemble à trois éléments. Montrer que l'ensemble des parties de E n'est pas une hiérarchie. Construire une hiérarchie à partir de E

Exercice 6 Effectuer une classification ascendante hiérarchique, en utilisant le critère de Ward, de la matrice X suivante :

$$\begin{pmatrix} 2 & 2 \\ 7, 5 & 4 \\ 3 & 3 \\ 0, 5 & 5 \\ 6 & 4 \end{pmatrix}$$

Exercice 7 Le tableau suivant donne les mesures de deux variables sur quatre éléments A, B, C et D

Α	5	3
В	-1	1
С	1	-2
D	-3	-2

Retrouver une partition à deux classes en utilisant la méthode des Kmeans (McQueen1967)