LOG: Logique des propositions

Définition : Formules du calcul des propositions (Inductive)

Soient P un ensemble de symboles (Variables propositionnelles), $C = \{V, \mathcal{F}, \neg, \wedge, \vee, \Rightarrow, \leftrightarrow\}$ l'ensemble des connecteurs logiques et $D = \{(,)\}$. L'ensemble des formules de la logique des propositions construite sur P, noté $P \operatorname{rop}(P)$ est défini inductivement par :

- La base $B = P \cup \{\mathcal{V}, \mathcal{F}\}$
- Les opérations : $\forall p, q \in P rop(P)$:

$$(p \lor q) \quad (p \Rightarrow q) \quad (p \land q) \quad (p \Leftrightarrow q) \quad \neg p$$

sont dans P rop(P)

Remarque:

On peut parfois juste utiliser \neg et \lor :

- $x \Rightarrow y$ est une abréviation de $(\neg x) \lor x$
- $x \wedge y$ pour $\neg(\neg x \vee \neg y)$
- $x \Leftrightarrow y \text{ pour } (x \Rightarrow y) \land (y \Rightarrow x)$

Définition: Formules du calcul des propositions (Par les grammaires)

Soit *P* un ensemble, une formule de calcul des propositions de *P* est un mot engendré par la grammaire :

$$G = (\{X\}, \{\mathcal{V}, \mathcal{F}, a, \neg, \vee, \wedge, \Rightarrow, \Leftrightarrow, (,)\}, \rightarrow, X)$$

$$X \to \mathcal{V}|\mathcal{F}|a|\neg X|X \lor X|X \land X|X \Rightarrow X|X \Leftrightarrow X|(X)$$

où a est un élément quelconque de P. On définit P rop(P) = L(G)

Remarque:

Cette grammaire est ambigüe et ne tient pas compte de l'ordre priorité des connecteurs logiques.

Priorité décroissante des CL : \neg , \land , \lor , \Rightarrow , \Leftrightarrow

Définition:

 $\overline{\text{On définit}}$ une application [] de Prop(P) vers \mathbb{F} de la façon suivante :

- [V] = 1; [F] = 0
- [x] = x $(x \in P)$
- $[\neg \alpha] = \overline{[\alpha]}$ $(\alpha \in Prop(P))$
- $\alpha \vee \beta$] = $[\alpha + [\beta]$ (α et $\beta \in Prop(P)$)
- $[\alpha \land \beta] = [\alpha].[\beta]$ $(\alpha \text{ et } \beta \in P \operatorname{rop}(P))$
- $[\alpha \Rightarrow \beta] = [\alpha] \Rightarrow [\beta]$ $(\alpha \text{ et } \beta \in Prop(P))$
- $[\alpha \Leftrightarrow \beta] = [\alpha] \Leftrightarrow [\beta]$ $(\alpha \text{ et } \beta \in Prop(P))$

Définition : Valuation des variables propositionnelles

On appelle valuation des variables propositionnelles une application $\delta: P \to \{0,1\}$

Définition : Sémantique

Soit une formule α de Prop(P) et δ une valuation de P. La sémantique de α sur la valuation δ , notée $[\alpha](\delta)$ (ou $\delta(\alpha)$) est la valeur obtenue en remplaçant dans $[\alpha]$ chaque variable propositionnelle α par α

Définitions :

Soient α une formule de Prop(P), δ une valuation et \mathcal{A} un ensemble de formules de Prop(P).

- δ est un **modèle** de α si et seulement si $[\alpha](\delta) = 1$
- α est une **tautologie** si et seulement si $\forall \delta$, $[\alpha](\delta) = 1$
- α et β sont **sémantiquement équivalentes** si et seulement si $\alpha \Leftrightarrow \beta$ est une tautologie.
- α est **contradictoire** si et seulement si α ne possède pas de modèle.
- δ est un **modèle de** \mathcal{A} si et seulement si δ est un modèle de chacune des formules de \mathcal{A} , i.e. si $\forall \alpha \in \mathcal{A}$, $[\alpha](\delta) = 1$
- \mathcal{A} est contradictoire si et seulement si \mathcal{A} ne possède pas de modèle, i.e. si $\forall \delta, \exists \alpha \in \mathcal{A}, [\alpha](\delta) = 0$

Définition : Déduction sémantique

Soit $\overline{\mathcal{A}}$ un ensemble de formules de Prop(P) et α une formule de Prop(P), on dit que α se déduit sémantiquement de \mathcal{A} si et seulement si tout modèle de \mathcal{A} est un modèle de α . On note : $\mathcal{A} \models \alpha$ Si $\mathcal{A} = \emptyset$, on note $\models \alpha$ (Ce qui veut dire que α est une tautologie)

Propriétés:

Soient $\mathcal{A}, \mathcal{B} \subset P \operatorname{rop}(P)$ et $\alpha, \beta \in P \operatorname{rop}(P)$.

- Si $A \subset B$ alors pour toute proposition α de Prop(P), si $A \models \alpha$ alors $B \models \beta$
- $A \models \alpha$ si et seulement si l'ensemble $A \cup \{\neg \alpha\}$ est contradictoire
- *Lemme du détachement* : $A \cup \{\alpha\} \models \mathcal{B}$ si et seulement si $A \models \alpha \Rightarrow \beta$

Théorème de compacité (ou de finitude)

Soient $A \subset P \operatorname{rop}(P)$ et $\alpha \in P \operatorname{rop}(P)$

- Forme 1 : \mathcal{A} admet un modèle si et seulement si tout sous-ensemble fini de \mathcal{A} admet un modèle
- Forme 2 : α se déduit sémantiquement de $\mathcal A$ si et seulement si α se déduit sémantiquement d'un sous ensemble fini de $\mathcal A$
- Forme 3:A est contradictoire si et seulement si l'un de ses sous ensembles finis est contradictoire

Définition : Système formel

Un système formel est un triplet (E, A, R) où

- *E* est un ensemble non vide de formules (bien formées)
- $A \subset E$, l'ensemble des axiomes
- \mathcal{R} est un ensemble de règles de déduction de la forme $\frac{e_1,...,e_n}{e_{n+1}}(r)$ où les e_i sont des formules de E et r est le nom de la règle. On lit " e_{n+1} se déduit de $e_1,...,e_n$ par la règle r"

Définition : Démonstration dans un système formel

Soit S = (E, A, R) un système formel et H un sous ensemble de E. Une démonstration de S avec hypothèses dans H est une suite finie $e_1, ..., e_n$ de formules de E telles que :

- Soit $e_i \in \mathcal{A}$ (e_i est un axiome)
- Soit $e_i \in \mathcal{H}$ (e_i est une hypothèse)
- Soit e_i est telle qu'il existe une règle de déduction $r \in \mathcal{R}$ et des indices j_1 à j_k tous strictement inférieurs à i vérifiant : $\frac{e_{j_1},...,e_{j_k}}{e_i}(r)$

Notation:

On note $\mathcal{H} \vdash_{\mathcal{S}} e_n$ et on dit que e_n se démontre dans \mathcal{S} en utilisant les hypothèses de \mathcal{H} . Si $\mathcal{H} = \emptyset$, on note $\vdash_{\mathcal{S}} e$ et on dit que e est un **théorème** de \mathcal{S}

Proposition:

Soit S = (E, A, R) un système formel, on a :

- Si $\mathcal{H} \subset \mathcal{H}'$, alors $\mathcal{H} \vdash_{\mathcal{S}} e$ implique $\mathcal{H}' \vdash_{\mathcal{S}} e$
- Si $\mathcal{H}' \vdash_{\mathcal{S}} e$ et $\mathcal{H}'' \cup \{e\} \vdash_{\mathcal{S}} e'$, alors $\mathcal{H}' \cup \mathcal{H}'' \vdash_{\mathcal{S}} e'$

Définition: *Validité*, *complétude* Soit S = (Prop(P), A, R) un système formel sur le calcul des propositions.

• S est un système formel **valide** si et seulement si pour tout \mathcal{H} tel que $\mathcal{H} \subset Prop(P)$ et pour tout formule $\alpha \in Prop(P)$ on a :

$$\mathcal{H} \vdash_{\mathcal{S}} \alpha$$
 implique $\mathcal{H} \models \alpha$

• S est un système formel **complet** si et seulement si pour tout H tel que $H \subset Prop(P)$ et pour tout formule $\alpha \in Prop(P)$ on a :

$$\mathcal{H} \vdash_{S} \alpha$$
 équivaut à $\mathcal{H} \models \alpha$

Proposition:

Soit S = (P rop(P), A, R) un système formel du calcul des propositions, S est valide si et seulement si :

- Les axiomes de S sont des tautologies
- Pour chaque règle de la forme $\frac{e_1,...,e_n}{e_{n+1}}(r)$ de S on a $e_1,...,e_n \models e_{n+1}$. On dit que chaque règle est valide.

Définition : Atome

Soit P un ensemble de variables propositionnelles, un atome (ou littéral) construit sur P est soit une variable propositionnelle, soit la négation d'une variable propositionnelle.

<u>Définition</u>: Soit *P* un ensemble de variables propositionnelles, une clause sur *P* est une formule de $P \operatorname{rop}(P)$ de la forme $a_1 \vee ... \vee a_k \vee \neg a_{k+1} \vee ... \vee \neg a_{k+r}$ où les a_i sont des éléments tous **distincts** de *P*. On note CL(P) l'ensemble des clauses sur *P*

<u>Notations</u>: Partant d'une clause $c = a_1 \lor ... \lor a_k \lor \neg a_{k+1} \lor ... \lor \neg a_{k+r}$, on peut la noter :

- Sous forme implicative :
 - $-\ c = (a_1 \vee \ldots \vee a_k) \Longleftarrow (a_{k+1} \wedge \ldots \wedge a_{k+r}$
 - $-c = (a_{k+1} \wedge ... \wedge a_{k+r} \Rightarrow (a_1 \vee ... \vee a_k)$
- Sous forme ensembliste : $c = (\{a_1, ..., a_k\}, \{a_{k+1}, ..., a_{k+r}\}) = (c^+, c^-)$

Si k = 0 et r = 0 la clause n'a pas d'atomes, on la note \square

Définition: Subsomption

Soient deux clauses c et c' définies sur P, on dit que c subsume c' si et seulement si une des 2 conditions équivalentes suivantes est vérifiée :

- Condition syntaxique : Tout littéral de *c* apparaît dans *c'*
- Condition sémantique : $\{c\} \models c'$ (i.e. pour toute valuation δ de P, $[c](\delta) = 1$ implique $[c'](\delta) = 1$)

Proposition:

Soit α une formule de Prop(P), α est sémantiquement équivalente à une formule β de la forme $\beta = c_1 \wedge ... \wedge c_n$ où les c_i sont des causes.

Définition:

Mettre une formule α sous forme clausale c'est trouver un ensemble de clauses $C(\alpha)$ dont la conjonction est équivalente à α

Proposition :

Soient α et β deux formules de Prop(P), soient $C(\alpha)$ et $C(\beta)$ les ensembles de clauses associées respectivement à α et β , on a :

- $C(\alpha \land \beta) = C(\alpha) \cup C(\beta)$
- $C(\alpha \vee \beta) = C(\alpha) \otimes C(\beta)$ où $E \otimes E' = \{c \vee c' | c \in E, c' \in E'\}$

Proposition:

Soit α une formule de Prop(P), α est une tautologie si et seulement si l'ensemble $\mathcal{C}(\alpha)$ obtenue par l'algorithme de mise sous forme clausale est égal à \emptyset

Définition : Système formel de Robinson

Soit P un ensemble de variables propositionnelles et C(P) l'ensemble des clauses construites sur P. Le système formel $(C(P), \emptyset, \mathcal{R})$ où

$$\mathcal{R} = \left\{ \frac{c_1 \vee a \vee c_2, c_3 \vee \neg a \vee c_4}{c_1 \vee c_2 \vee c_3 \vee c_4} \ (Resolution), \frac{c_1 \vee a \vee c_2 \vee a \vee c_3}{c_1 \vee a \vee c_2 \vee c_3} \ (Factorisation \ +), \frac{c_1 \vee \neg a \vee c_2 \vee \neg a \vee c_3}{c_1 \vee \neg a \vee c_2 \vee c_3} \ (Factorisation \ -) \right\}$$

est un système basé sur la règle de résolution.

Proposition:

Le système formel de Robinson est valide

Démonstration:

- Les règles de factorisation sont trivialement valides.
- La règle de résolution est valide, en effet soit δ telle que $[c_1 \lor a \lor c_2](\delta) = 1$ et $[c_3 \lor \neg a \lor c_4](\delta) = 1$ On a donc $[c_1 \lor c_2](\delta) = 1$ ou $[a](\delta) = 1$
 - Si $[c_1 \lor c_2](\delta) = 1$ alors $[c_1 \lor c_2 \lor c_3 \lor c_4](\delta) = 1$
 - Si $[a](\delta) = 1$ alors $[\neg a](a) = 0$ or $[c_3 \lor \neg a \lor c_4](\delta) = 1$ donc $[c_3 \lor c_4](\delta) = 1$ et ainsi $[c_1 \lor c_2 \lor c_3 \lor c_4](\delta) = 1$

 $\frac{\mathit{Th\'eor\`eme\ de\ Robinson\ :}}{\mathsf{Soit\ }\mathcal{C}\ \mathsf{un\ ensemble\ de\ clauses.}\ \mathcal{C}\ \mathsf{est\ contradictoire\ si\ et\ seulement\ si\ il\ existe\ une\ d\'emonstration\ de\ }\square\ \mathsf{avec\ hypoth\`eses\ dans\ }\mathcal{C}.\ \mathsf{On\ }}$ a donc les équivalences suivantes :

$$\mathcal{A} \models \alpha$$

ssi

 $\mathcal{C}(\mathcal{A}) \cup \mathcal{C}(\alpha)$ est contradictoire

ssi

$$\mathcal{C}(\alpha) \cup \mathcal{C}(\neg \alpha) \vdash_{Resolution} \Box$$