

ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Nhập môn Học máy và Khai phá dữ liệu (IT3190)

Nội dung môn học

- Lecture 1: Giới thiệu về Học máy và khai phá dữ liệu
- Lecture 2: Thu thập và tiền xử lý dữ liệu
- Lecture 3: Hồi quy tuyến tính (Linear regression)
- Lecture 4+5: Phân cụm
- Lecture 6: Phân loại và Đánh giá hiệu năng
- Lecture 7: dựa trên láng giềng gần nhất (KNN)
- Lecture 8: Cây quyết định và Rừng ngẫu nhiên
- Lecture 9: Học dựa trên xác suất
- Lecture 10: Mang noron (Neural networks)
- Lecture 11: Máy vector hỗ trợ (SVM)
- Lecture 12: Khai phá tập mục thường xuyên và các luật kết hợp
- Lecture 13: Thảo luận ứng dụng học máy và khai phá dữ liệu trong thực tế

Học có giám sát

- Học có giám sát (Supervised learning)
 - Tập dữ liệu học (training data) bao gồm các quan sát (examples, observations), mà mỗi quan sát được gắn kèm với một giá trị đầu ra mong muốn.
 - Mục đích là học một hàm (vd: một phân lớp, một hàm hồi quy,...) phù
 hợp với tập dữ liệu hiện có và khả năng tổng quát hoá cao.
 - Hàm học được sau đó sẽ được dùng để dự đoán cho các quan sát mới.
 - Phân loại (classification): nếu đầu ra (output y) thuộc tập rời rạc và hữu hạn.
 - Hồi quy (regression): nếu đầu ra (output y) là các số thực.

Hồi quy tuyến tính: Giới thiệu

- Bài toán hồi quy: cần học một hàm $y = f(\mathbf{x})$ từ một tập học cho trước $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_M, \mathbf{y}_M)\}$ trong đó $\mathbf{y}_i \approx f(\mathbf{x}_i)$ với mọi i.
 - Mỗi quan sát được biểu diễn bằng một véctơ n chiều, chẳng hạn $\mathbf{x}_i = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{in})^T$.
 - Mỗi chiều biểu diễn một thuộc tính (attribute/feature)
- Mô hình tuyến tính: nếu giả thuyết hàm y = f(x) là hàm có dạng tuyến tính

$$f(x) = w_0 + w_1 x_1 + ... + w_n x_n$$

• Học một hàm hồi quy tuyến tính thì tương đương với việc học véctơ trọng số $\mathbf{w} = (w_0, w_1, ..., w_n)^T$

Hồi quy tuyến tính: Ví dụ

Hàm tuyến tính f(x) nào phù hợp?

0.13	-0.91	
1.02	-0.17	
3.17	1.61	
-2.76	-3.31	
1.44	0.18	
5.28	3.36	
-1.74	-2.46	
7.93	5.56	

Ví dụ: f(x) = -1.02 + 0.83x

Phán đoán tương lai

- Đối với mỗi quan sát $\mathbf{x} = (x_1, x_2, ..., x_n)^T$:
 - Giá trị đầu ra mong muốn c_x
 (Không biết trước đối với các quan sát trong tương lai)
 - Giá trị phán đoán (bởi hệ thống)

$$y_x = w_0 + w_1 x_1 + ... + w_n x_n$$

- Ta thường mong muốn y_x xấp xỉ tốt c_x
- Phán đoán cho quan sát tương lai $\mathbf{z} = (z_1, z_2, ..., z_n)^T$
 - Cần dự đoán giá trị đầu ra, bằng cách áp dụng hàm mục tiêu đã học được \mathbf{f} :

$$f(z) = w_0 + w_1 z_1 + ... + w_n z_n$$

Học hàm hồi quy

- Mục tiêu học: học một hàm f* sao cho khả năng phán đoán trong tương lai là tốt nhất.
 - Tức là sai số |c₇ f(z)| là nhỏ nhất cho các quan sát tương lai z.
 - Khả năng tổng quát hóa (generalization) là tốt nhất.
- Vấn đề: Có vô hạn hàm tuyến tính!!
 - Làm sao để học? Quy tắc nào?

- Dùng một tiêu chuẩn để đánh giá.
 - Tiêu chuẩn thường dùng là hàm lỗi (generalization error, loss function, ...)

Hàm đánh giá lỗi (loss function)

- Định nghĩa hàm lỗi E
 - □ Lỗi (error/loss) phán đoán cho quan sát $\mathbf{x} = (x_1, x_2, ..., x_n)^T$

$$r(\mathbf{x}) = [c_x - f^*(\mathbf{x})]^2 = (c_x - w_0 - w_1 x_1 - ... - w_n x_n)^2$$

• Lỗi của hệ thống trên toàn bộ không gian của x:

$$E = E_x[r(x)] = E_x[c_x - f^*(x)]^2$$

Cost, risk

Mục tiêu học là tìm hàm f* mà E là nhỏ nhất:

$$f^* = \operatorname{arg\,min}_{f \in \boldsymbol{H}} \boldsymbol{E}_x \left[r(\boldsymbol{x}) \right]$$

- Trong đó \boldsymbol{H} là không gian của hàm f.
- Nhưng: trong quá trình học ta không thể làm việc được với bài toán này.

Hàm lỗi thực nghiệm

- Ta chỉ quan sát được một tập **D** = {(**x**₁, y₁), (**x**₂, y₂), ..., (**x**_M, y_M)}.
 Cần học hàm f từ **D**.
- Lỗi thực nghiệm (empirical loss; residual sum of squares)

$$RSS(f) = \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i))^2 = \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$

- RSS/M là một xấp xỉ của $\mathbf{E}_{\mathbf{x}}[\mathbf{r}(\mathbf{x})]$ trên tập học \mathbf{D}
- $\left|\frac{1}{M}RSS(f) \mathbf{E}_x[r(\mathbf{x})]\right|$ thường được gọi là **lỗi tổng quát** hoá (generalization error) của hàm f.
- Nhiều phương pháp học thường gắn với RSS.

Bình phương tối thiểu (OLS)

Cho trước D, ta đi tìm hàm f mà có RSS nhỏ nhất.

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f)$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2 \quad (1)$$

- Đây được gọi là bình phương tối thiểu (least squares).
- Tìm nghiệm w* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ Mx(n+1) mà hàng thứ i là $A_i = (1, x_{i1}, x_{i2}, ..., x_{in})$; B^{-1} là ma trận nghịch đảo; $y = (y_1, y_2, ..., y_M)^T$.
- Chú ý: giả thuyết **A**^T**A** tồn tại nghịch đảo.

Bình phương tối thiểu: thuật toán

- Input: **D** = {($\mathbf{x}_1, \mathbf{y}_1$), ($\mathbf{x}_2, \mathbf{y}_2$), ..., ($\mathbf{x}_M, \mathbf{y}_M$)}
- Output: w*
- Học w* bằng cách tính:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó **A** là ma trạn dư II. (n+1) mà hàng thứ i là $\mathbf{A}_i = (1, \mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{in})$; \mathbf{B}^{-1} là ma trận nghịch đảo; $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_M)^T$.
- Chú ý: giả thuyết A^TA tồn tại nghịch đảo.
- Phán đoán cho quan sát mới x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Bình phương tối thiểu: ví dụ

Kết quả học bằng bình phương tối thiểu

X	у		
0.13	-1		
1.02	-0.17		
3	1.61		
-2.5	-2		
1.44	0.1		
5	3.36		
-1.74	-2.46		
7.5	5.56		

$$f^*(x) = 0.81x - 0.78$$

Bình phương tối thiểu: nhược điểm

- Nếu A^TA không tồn tại nghịch đảo thì không học được.
 - Nếu các thuộc tính (cột của A) có phụ thuộc lẫn nhau.
- Độ phức tạp tính toán lớn do phải tính ma trận nghịch đảo.
 →Không làm việc được nếu số chiều n lớn.
- Khả năng overfitting cao vì việc học hàm f chỉ quan tâm tối thiểu lỗi đối với tập học đang có.

Ridge regression (1)

• Cho trước $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_M, \mathbf{y}_M)\}, ta đi giải bài toán:$

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f) + \lambda \|\mathbf{w}\|_2^2$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2 + \lambda \sum_{j=0}^{n} w_j^2 \qquad (2)$$

Trong đó $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in})$ được tạo ra từ \mathbf{x}_i ; λ là một hằng số phạt ($\lambda > 0$).

Tikhonov, smoothing an illposed problem

v, Zaremba, model nn ill- complexity llem minimization ỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Bayes: priors over parameters

Andrew Ng: need no maths, but it prevents overfitting!

Ridge regression (2)

Giải bài toán (2) tương đương với việc giải bài toán sau:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2$$
sao cho $\sum_{j=0}^{n} w_j^2 \le t$
(3)

- □ t là một hằng số nào đó.
- ullet Đại lượng hiệu chỉnh (phạt) $\lambda \| oldsymbol{w} \|_2^2$
 - Có vai trò hạn chế độ lớn của w* (hạn chế không gian hàm f).
 - Đánh đổi chất lượng của hàm f đối với tập học **D**, để có khả năng phán đoán tốt hơn với quan sát tương lai.

Ridge regression (3)

 Tìm nghiệm w* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}_{n+1})^{-1} \mathbf{A}^T \mathbf{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ $M_x(n+1)$ mà hàng thứ i là $(1, x_{i1}, x_{i2}, ..., x_{in})$; **y** = $(y_1, y_2, ..., y_M)^T$; I_{n+1} là ma trận đơn vị cỡ n+1.
- So sánh với phương pháp bình phương tối thiểu:
 - Tránh được trường hợp ma trận dữ liệu suy biến. Hồi quy Ridge luôn làm việc được.
 - Khả năng overfitting thường ít hơn.
 - Lỗi trên tập học có thể nhiều hơn.
- Chú ý: chất lượng của phương pháp phụ thuộc rất nhiều vào sự lựa chọn của tham số λ.

Ridge regression: thuật toán

- Input: $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_M, \mathbf{y}_M)\}, \text{ hằng số } \lambda > 0$
- Output: w*
- Học w* bằng cách tính:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ $M_x(n+1)$ mà hàng thứ i là $A_i = (1, x_{i1}, x_{i2}, ..., x_{in})$; B^{-1} là ma trận nghịch đảo; $y = (y_1, y_2, ..., y_M)^T$.
- Phán đoán cho quan sát mới x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

• **Chú ý:** để tránh vài ảnh hưởng xấu từ độ lớn của y, ta nên loại bỏ thành phần \mathbf{w}_0 trong đại lượng phạt ở công thức (2). Khi đó nghiệm \mathbf{w}^* sẽ thay đổi một chút.

Ridge regression: ví du

 Xét tập dữ liệu Prostate gồm 67 quan sát dùng để học, và 31 quan sát dùng để kiểm thử. Dữ liệu gồm 8 thuộc tính.

	Least	Distant
W	squares	Ridge
0	2.465	2.452
Icavol	0.680	0.420
lweight	0.263	0.238
age	-0.141	-0.046
lbph	0.210	0.162
svi	0.305	0.227
lcp	-0.288	0.000
gleason	-0.021	0.040
pgg45	0.267	0.133
Test RSS	0.521	0.492

Ridge regression: anh hưởng của λ

• $\mathbf{W}^* = (\mathbf{w}_0, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP)$ thay đổi khi cho λ thay đổi.

LASSO

Hồi quy Ridge sử dụng chuẩn L² cho đại lượng hiệu chỉnh:

$$w^* = \arg\min_{m{w}} \sum_{i=1}^M (y_i - m{A}_i m{w})^2$$
 , sao cho $\sum_{j=0}^n w_j^2 \leq t$

Thay L² bằng L¹ thì ta sẽ thu được phương pháp LASSO:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2$$

sao cho $\sum_{j=0}^{n} |w_j| \le t$

Hoặc có thể viết lại:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2 + \lambda ||\mathbf{w}||_1$$

 Hàm mục tiêu của bài toán là không trơn. Do đó việc giải nó có thể khó hơn hồi quy Ridge.

LASSO: đại lượng hiệu chỉnh

- Các kiểu hiệu chỉnh khác nhau sẽ tạo ra các miền khác nhau cho
 w.
- LASSO thường tạo ra nghiệm thưa, tức là nhiều thành phần của w có giá trị là 0.
 - Vì thế LASSO thực hiện đồng thời việc hạn chế và lựa chọn đặc trưng

Figure by Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=58258966

OLS, Ridge, LASSO

Xét tập dữ liệu Prostate gồm 67 quan sát dùng để học, và 31 quan sát dùng để kiểm thử. Dữ liệu gồm 8 thuộc tính.

	Ordinary Least		
W	Squares	Ridge	LASSO
0	2.465	2.452	2.468
lcavol	0.680	0.420	0.533
lweight	0.263	0.238	0.169
age	-0.141	-0.046	
lbph	0.210	0.162	0.002
svi	0.305	0.227	0.094
lcp	-0.288	0.000	
gleason	-0.021	0.040	
pgg45	0.267	0.133	
Test RSS	0.521	0.492	0.479

Một số trọng số là 0

→ Chúng có thể không quan trọng

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

