

LLM-Symbolic Integration for Robust Temporal Tabular Reasoning

Atharv Kulkarni¹, Kushagra Dixit¹, Vivek Srikumar¹, Dan Roth², Vivek Gupta³ ¹University of Utah, ²University of Pennsylvania, ³Arizona State University

Introduction

- Large language models excel with free-form text, but fail on queries about time on tabular data.
- Large tables, filters, and counterfactuals bloat the prompt and lead to incorrect reasoning.

Can we give models a structured view of the data and then let them reason correctly via SQL?

Approach

Symbolic Intermediate Representation

- Hide the noise: Rather than show all the data in the table, we only show the schema of the data.
- Ask for SQL, not prose:

Write an SQL query that answers the question using the database schema.

Run: Execute the query on the database and return the result.

Results Original vs Counterfactual for GPT-4o. 48.5 42.4 Accuracy 65 Gap between original and counterfactual data diminishes as we use symbolic SQL-based reasoning Original Counterfactual Small Table vs Large Table for GPT-4o. 73.9 72.9 73.9 71.1 56.1 50.2 Gap between small and large table data diminishes as we use symbolic SQL-based reasoning Small Table Large Table Easy, Medium, and Hard results for GPT-4o. Symbolic SQL-based reasoning boosts accuracy at every difficulty level and noticeably narrows the gap between Easy and Hard questions Easy Hard

Conclusion

Áron Szilágyi

Personal information

For temporal reasoning over tables, converting tables into symbolic schemas improves LLM reasoning by reducing reliance on memorized patterns.