Kirchoff's Current Law

the algebraic sum of currents entering a node is zero

This is nothing more than conservation of electrons, i.e., what enters the mode is equal to what leaves the node.

At node A
$$\sum_{ij} i_j = i_1 + i_2 = 0$$

At node B
$$\sum_{\text{tout}} i_j = -i_2 + i_3 + i_4 = 0$$

A circuit with N nodes will have N-1 independent equations from Kirchoff's Current Law.

Kirchoff's Voltage Law

The algebraic sum of all the voltages around a loop is zero.

Important: identify every element by passive

use first algebraic sign you encounter as you travel anound loop.

element with multiple currents through it

$$|0001: -V_1 + V_2 + V_3 = 0$$

$$loop3 - v_1 + v_2 + v_4 + v_5 = 0$$

If a circuit has N nodes and E elements you can write E-N+1 independent KVL equations.

loop 1 gives v_x : $-40+5+v_x+10=0$ $v_x=+25$ volts loop 2 gives v_y : $-40+5+20+v_y+10=0$ $v_y=+5$ volts loop 3 gives v_z : $-40+5+20-5+v_z+10=0$ $v_z=+10$ volts Note: You can use many other bops.

2-2 Connection constraints

- · circuit interconnection of electrical devices
- · node electrical junction of two or more devices
- . loop-closed path formed by tracing through an ordered sequence of nodes without passing through any node more than once

This circuit has three nodes. We always number the ground node \emptyset .

There are many possible loops. Four are shown.

2-3 Combined Constraints

Good is to determine voltages or currents at various places in a circuit.

Initially all circuits will come with reference marks.

I. Start with element equations

II, Then do connection equations

KCL at node A:
$$\sum_{i=0}^{\infty} -i_{x}-i_{0}=0$$
 (3)
KVL around loop $\sum_{i=0}^{\infty} \sqrt{-\infty} + \sqrt{0}=0$ (4)

This is four equations in four unknowns

From (1) and (3)
$$i_0 = -i_x$$
 (3) $i_0 = -i_s$ substituting (1) into (3)

Since is is known ix and is are now known.

Substituting these results into (2) gives

$$w = -i_s R$$

Using (4) now gives Nx as

$$\sigma_x = \sigma_0 = -i_s R$$

The - sign simply means that for the given direction of is No is in the opposite polarity to that shown in the drawing