Midterm Exam 2 Solutions

Examination Date: Tuesday, April 13th, ± 1 day

1. Recall early on in the course, we very laboriously showed the existence and uniqueness of $\sqrt{2}$. We will show how the tools we have learned will allow us to show the existence and uniqueness of non-negative nth roots $\sqrt[n]{a}$ for any $n \in \mathbb{N}$ and any non-negative real number $a \in [0, \infty)$.

In the following, let $f:[0,\infty)\to[0,\infty)$ be defined by $f(x):=x^n$.

- (a) Show that f is strictly increasing for all $n \in \mathbb{N}$, and use it to conclude that f is injective.
 - We say f is strictly increasing if f(x) < f(y) for all $x, y \in [0, \infty)$ with x < y.
- (b) Show that f is continuous for all $n \in \mathbb{N}$. Then, given $M \in \mathbb{N}$, use part (a) and what you know about continuous functions to show that the restriction $f|_{[0,M]}$: $[0,M] \to [0,M^n]$ is both surjective and injective, and hence bijective.
- (c) Use the results of part (b) to conclude that for any $a \in [0, \infty)$, there exists a unique non-negative x such that $x^n = a$.
- (a) Given $0 \le x < y$, we show $x^n < y^n$ by induction.

(Basis statement) $0 \le x < y \implies 0 \le x^1 < y^1$

(Induction step) Assume $0 \le x^{n-1} < y^{n-1}$. Since y > 0, we multiply both sides of the inequality to get $yx^{n-1} < y^n$, and since $x \ge 0$ we multiply both sides of the inequality to get $x^n \le yx^{n-1}$, with equality when x = 0. Chaining these inequalities together, we get $0 \le x^n < y^n$.

(*Remark*: Be careful, you need to use the fact that $0 \le x < y$. If you only try to use x < y, $x^2 < y^2$ is not true in general (e.g. take x = -2, y = 1))

Thus, by induction, if $x, y \in [0, \infty)$ and x < y, then $f(x) = x^n < y^n = f(y)$, so f is strictly increasing.

Since f is strictly increasing, $f(x_1) = f(x_2)$ implies $x_1 = x_2$, since $x_1 \not< x_2$ and $x_2 \not< x_1$. Thus, f is injective.

(b) We can directly use proposition 3.2.4 (polynomials are continuous) to conclude that x^n , which is a polynomial, is continuous.

Alternatively, we can also proceed via induction. We showed in lecture that x is continuous. Then, by repeated usage of continuity of algebraic operations, $x^n = x \cdot x^{n-1}$ will be continuous.

Now given $M \in \mathbb{N}$, since the restriction of a continuous function will also be continuous, $f|_{[0,M]}$ will map the closed and bounded interval [0,M] to a closed and bounded interval (or a single point).

Since f is increasing, we have $f(0) \leq f(x) \leq f(M)$ for any $0 \leq x \leq M$. Thus $f|_{[0,M]}$ achieves a max at x = M, and a min at x = 0, and so it maps the closed and bounded interval [0, M] to $[f(0), f(M)] = [0, M^n]$.

Thus, $f|_{[0,M]}:[0,M]\to [0,M^n]$ is surjective. It is also injective by (a), since $f(x_1)=f(x_2)$ still implies $x_1=x_2$ for $x_1,x_2\in [0,M]$. Thus, $f|_{[0,M]}:[0,M]\to [0,M^n]$ is bijective.

(c) Let $a \in [0, \infty)$ be given. By the Archimedean property, there exists some $M \in \mathbb{N}$ such that a < M. Furthermore, since $1 \leq M$ we have $M \leq M^n$ by induction, so $a < M \leq M^n$, hence $a \in [0, M^n]$.

Thus, we can take $x := \left(f\big|_{[0,M]}\right)^{-1}(a)$ to satisfy the equation and satisfies $f(x) = x^n = a$. x exists and is unique since $f\big|_{[0,M]}$ is a bijection, as we showed in (b).

Lastly, we need to show x does not depend on the choice of M. With $x \in [0, \infty)$ as defined above, since f is injective, for any $y \in [0, \infty)$ we have that f(x) = f(y) = a implies x = y. Thus we conclude the existence and uniqueness of non-negative nth roots $\sqrt[n]{a} = x$.

- 2. In this problem, you will prove the *n*th derivative test, a generalization of Proposition 4.3.3 in the textbook. Suppose $n \in \mathbb{N}$, $x_0 \in (a,b)$, and $f : [a,b] \to \mathbb{R}$ is *n* times continuously differentiable, with $f^{(k)}(x_0) = 0$ for k = 1, 2, ..., n-1 and $f^{(n)}(x_0) > 0$.
 - (a) Prove that if $g:[a,b] \to \mathbb{R}$ is continuous and $g(x_0) > 0$, then there exists $\delta > 0$ such that g(c) > 0 for all $c \in (x_0 \delta, x_0 + \delta)$.
 - (b) Prove that if n is odd, then f has neither a relative minimum, nor a relative maximum at x_0 .
 - (c) Prove that if n is even, then f has a strict relative minimum at x_0 .
 - (a) Take g and x_0 as given in the problem statement. Then, since $g(x_0) > 0$, by continuity of g, there exists $\delta_1 > 0$ such that for all $c \in [a, b]$ with $|c x_0| < \delta_1$, we have

$$|g(c) - g(x_0)| < g(x_0)$$

We use properties of the absolute value and rearrange the inequality to get

$$-g(x_0) < g(c) - g(x_0) \implies g(c) > 0$$

Lastly, since $a < x_0 < b$ there exists some δ_2 such that $a < x_0 - \delta_2 < x_0 + \delta_2 < b$, so we can take $\delta := \min\{\delta_1, \delta_2\}$. Then g(c) > 0 for all $c \in (x_0 - \delta, x_0 + \delta)$.

(b+c) Take f and x_0 as given in the problem statement. Then, since f is n times continuously differentiable, $f^{(n)}$ is continuous. Since $f^{(n)}(x_0) > 0$, by the result of problem (a), we can take $\delta_+ > 0$ such that $f^{(n)}(c) > 0$ for all $c \in (x_0 - \delta_+, x_0 + \delta_+)$.

For any $x \in [a, b]$ distinct from x_0 , we have that f satisfies the requirements of Taylor's theorem. From the assumptions of the problem, we have that the Taylor polynomial is given by

$$P_{n-1}^{x_0}(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = f(x_0)$$

so there exists c between x and x_0 such that

$$f(x) - f(x_0) = \frac{f^{(n)}(c)}{n!} (x - x_0)^n$$

(b) Suppose n is odd. To show that f does not have a relative minimum at x_0 , let $\delta > 0$ be given. Define $\delta' := \min\{\delta, \delta_+\}$. Then, take $x_1 \in [a, b]$ such that $x_1 < x$ and $|x_1 - x_0| < \delta'$. Then, for any c between x_0 and x_1 , we have $c \in (x_0 - \delta_+, c_0 + \delta_+)$, so $f^{(n)}(c) > 0$ in this interval. We also have $x_1 - x_0 < 0$ so $(x_1 - x_0)^n < 0$ since n is odd. Thus, by Taylor's theorem we have

$$f(x_1) - f(x_0) = \frac{f^{(n)}(c)}{n!} (x_1 - x_0)^n < 0 \implies f(x_1) < f(x_0)$$

Since we can find such an x_1 for any given $\delta > 0$, we have that $f(x_0)$ does not have a relative minimum at x_0 .

To show f does not have a relative maximum at x_0 , we repeat the argument, except this time we choose $x_2 > x$. Then, $(x_2 - x_0)^n > 0$, and

$$f(x_2) - f(x_0) = \frac{f^{(n)}(c)}{n!} (x_2 - x_0)^n > 0 \implies f(x_2) > f(x_0)$$

Thus, f does not have a relative maximum at x_0 either.

(c) Suppose n is even. Then, for all $x \in [a, b]$ distinct from x_0 , we have $(x - x_0)^n > 0$. Then, for all $x \in (x_0 - \delta_+, x_0 + \delta_+)$ distinct from x_0 , we have that for all c between c and c and c and c between c and c and c with c and c between c are the form c and c between c and c and c between c and c and c and c between c and c a

$$f(x) - f(x_0) = \frac{f^{(n)}(c)}{n!} (x - x_0)^n > 0 \implies f(x) > f(x_0)$$

Thus, f has a strict relative minimum at x_0 .

3. In this problem, we will study functions of *bounded variation*, which show up in a few areas of math, including probability theory.

In the following, let $f:[a,b]\to\mathbb{R}$ be increasing.

- (a) Show that f is bounded, and furthermore that $f \in \mathcal{R}[a, b]$. (Hint: Try using a partition P_n of n+1 uniformly spaced points.)
- (b) Use part (a) to show that a decreasing function is Riemann integrable.
- (c) We say a function $h:[a,b]\to\mathbb{R}$ is of bounded variation if h=f-g where f,g are increasing functions on [a,b]. Show that h is Riemann integrable.
- (a) Let f be as given. Then, for all $x \in [a, b]$, since f is increasing, we have

$$f(a) \le f(x) \le f(b)$$

thus f is bounded.

Now, to show f is Riemann integrable, let $\varepsilon>0$ be given. Choose $n\in\mathbb{N}$ such that $n>\frac{(b-a)(f(b)-f(a))}{\varepsilon}$. Let $P_n:=\{x_0,x_1,...,x_n\}$ be a partition of n+1 uniformly spaced points. Explicitly, $x_i=a+\frac{i}{n}(b-a)$, and $\Delta x_i=x_i-x_{i-1}=\frac{b-a}{n}$.

Since f is increasing, $f(x_{i-1}) \le f(x) \le f(x_i)$ for $x_{i-1} \le x \le x_i$. Thus,

$$m_{i} := \inf\{f(x) : x_{i-1} \le x \le x_{i}\} = f(x_{i-1})$$

$$M_{i} := \sup\{f(x) : x_{i-1} \le x \le x_{i}\} = f(x_{i})$$

$$L(P_{n}, f) = \sum_{i=1}^{n} m_{i} \Delta x_{i} = \frac{b-a}{n} \sum_{i=1}^{n} f(x_{i-1})$$

$$U(P_{n}, f) = \sum_{i=1}^{n} M_{i} \Delta x_{i} = \frac{b-a}{n} \sum_{i=1}^{n} f(x_{i})$$

Then we compute

$$U(P_n, f) - L(P_n, f) = \frac{b - a}{n} (f(b) - f(a)) < \varepsilon$$

Thus by proposition 5.1.13 in the text, f is Riemann integrable on [a, b].

Remark: As an alternative to using proposition 5.1.13, one can also use the properties of the Darboux integrals (since they are the sup and inf of the upper and lower Darboux sums)

$$\overline{\int_a^b} f - \underline{\int_a^b} f \le U(P_n, f) - L(P_n, f) = \frac{b - a}{n} (f(b) - f(a))$$

then, taking the limit as $n \to \infty$ gets $\overline{\int_a^b} f - \underline{\int_a^b} f \le 0$, which combined with $\overline{\int_a^b} f \ge \underline{\int_a^b} f$ implies $\overline{\int_a^b} f = \int_a^b f$, and hence f is Riemann integrable on [a,b].

- (b) Let $g:[a,b] \to \mathbb{R}$ be a decreasing function. Then, for $x,y \in [a,b]$ with x < y, we have g(x) > g(y), which can be rearranged as -g(x) < -g(y). Thus, -g is an increasing function, and so by (a) is Riemann integrable. Then, by linearity of the integral, -(-g) = g is also Riemann integrable. Thus, decreasing functions are also Riemann integrable on [a,b].
- (c) By (a), both f and g are Riemann integrable on [a, b]. Thus, by linearity of the integral, we have h = f g = f + (-g) is also Riemann integrable. Thus, functions of bounded variation are Riemann integrable.