10. 声をモデル化してみよう

• 入出力数の違いによるパターン認識問題の分類

1入力1出力の問題

複数入力1出力の問題

$$\mathbf{X}_1=(x_1,x_2,\ldots,x_d)$$
 今日 はよい天気です :
$$\mathbf{X}_n=(x_1,x_2,\ldots,x_d)$$

複数入力複数出力の問題

音声認識

- 統計的音声認識の定式化
 - 入力系列 x のもとで事後確率を最大にする単語列 \hat{w} を認識結果とする

$$\hat{\boldsymbol{w}} = rg \max_{\boldsymbol{w}} P(\boldsymbol{w}|\boldsymbol{x})$$

$$= rg \max_{\boldsymbol{w}} \frac{p(\boldsymbol{x}|\boldsymbol{w})P(\boldsymbol{w})}{p(\boldsymbol{x})}$$

$$= rg \max_{\boldsymbol{w}} p(\boldsymbol{x}|\boldsymbol{w})P(\boldsymbol{w})$$

$$= rg \max_{\boldsymbol{w}} p(\boldsymbol{x}|\boldsymbol{w})P(\boldsymbol{w})$$

- 音響モデル $p(oldsymbol{x}|oldsymbol{w})$
- 言語モデル $P(\boldsymbol{w})$

- 一昔前の解法
 - 音響モデル $p(\boldsymbol{x}|\boldsymbol{w})$
 - 隠れマルコフモデル (HMM)
 - DNN-HMM 法
 - 言語モデル P(w)
 - 文法記述
 - n-gram + スムージング
 - RNN 言語モデル
 - $oldsymbol{\cdot}$ 事後確率最大となる $\hat{oldsymbol{w}}$
 - ヒューリスティック探索
 - WFST

- 現在の主流の解法
 - end-to-end ニューラルネットワーク

- 参考資料:形態素解析も辞書も言語モデルもいらない
 end-to-end 音声認識
 https://www.slideshare.net/t_koshikawa/endtoend
- 1 文を越えた処理が必要になってくれば、ブラックボックスでは限界があるかも

- 音響モデル $p(\boldsymbol{x}|\boldsymbol{w})$ とは
 - p(特徴ベクトル系列 | 単語列) を計算するための 確率モデル

- まず、単純化のために単語認識問題を扱う
 - 単語は音素の系列で表現されているとする

- 設定 1
 - 各音素あたりの特徴ベクトル数が一定
 - 特徴ベクトルを離散値(記号)で近似したときに誤りがない
 - → 単語ごとの有限状態オートマトンでモデル化
 - 受理すれば p>0, 不受理ならば p=0

$$A \rightarrow A \rightarrow S \rightarrow S \rightarrow U \rightarrow U \rightarrow U \rightarrow U$$

- 設定 2
 - 各音素あたりの特徴ベクトル数が一定
 - 特徴ベクトルの近似に誤りがあり得る
 - → 単語ごとの確率オートマトンでモデル化
 - 各状態で、全てのシンボルに何らかの生成確率を与えるp= 各状態における記号の生成確率の積

- 設定 3
 - 各音素あたりの特徴ベクトル数が不定
 - 特徴ベクトルの近似に誤りがあり得る
 - → 非決定性確率オートマトン (=HMM) でモデル化
 - 各状態からの遷移が非決定的かつ確率的
 - p= 「各状態における記号の生成確率と遷移確率の積」 の可能な遷移に対する和

- 設定 4
 - 各状態ですべての特徴ベクトルに対して正の確率を 割り当てる → 状態遷移情報が隠れてしまう

- 実際の HMM
 - 各状態での特徴ベクトルの生成確率を混合正規分布 で表現

- HMM の学習
 - 離散記号:最尤推定
 - 連続値:パラメトリックな学習
 - 確率密度関数の平均と共分散行列を学習する
- 学習における問題点
 - 学習データに対して状態遷移系列がわからない

- 状態遷移系列が既知であれば
 - 状態遷移確率
 - 状態からの遷移を数え上げることによって学習可能
 - 信号出力確率
 - 状態ごとに平均・分散を計算することで学習可能

- 状態遷移系列の確率がわかっていれば
 - 学習結果の重み付き加算

- Baum-Welch 法による HMM の学習
 - HMM のパラメータを適当な初期値に設定
 - E(Expectation) ステップ
 - 学習データ(入力)に対して、状態遷移を与えたときの 確率を現在の HMM を用いて計算
 - それを全ての可能な状態遷移について求める(実際は d 動的計画法を用いて効率的に計算)
 - M(Maximization) ステップ
 - E ステップで得られたデータから HMM のパラメータを 最尤推定
 - E,M ステップをパラメータの変化量が一定値以下に なるまで繰り返し

ディープニューラルネットを用いた音声認識

メルフィルタをかけたスペクトル情報 $oldsymbol{x}$

12. 文法規則を書いてみよう

- 言語モデルとは
 - P(単語列) を計算するための確率モデル
- 2 つのアプローチ
 - 文法記述
 - 単語から文を構成する規則を文法として記述
 - 文法が受理する単語列 W に対して P(W)>0, そうでなければ P(W)=0
 - 統計的言語モデル
 - 大量のコーパスを元に確率を推定
 - $P(W) = P(w_1, ..., w_n)$ を何らかの近似で計算

12.2 タスクから文法を設計する

- 例題タスク
 - 新幹線の切符自動販売機の音声インタフェース
 - 機能
 - 乗車区間を指定できる
 - 席の種類を指定できる
 - 枚数を指定できる
 - 例文
 - 「東京から京都まで自由席 1 枚」
 - 「名古屋から品川までグリーン席 3 枚」

12.2 タスクから文法を設計する

- 文法 = 出現可能な単語列パターンの定義
 - 文のパターンを句の並びで定義
 - \$ 文 → \$ 区間 \$ 席種 \$ 枚数
 - 例) 東京から京都まで自由席1枚
 - 句のパターンを単語または単語集合の並びで定義
 - \$ 区間 → \$ 駅名 から \$ 駅名 まで
 - 認識対象とする単語集合(= 語彙)を定義
 - \$ 駅名→東京 | 品川 | 新横浜 | ...
 - \$ 席種→グリーン席 | 指定席 | 自由席

13章 統計的言語モデルを作ろう

- 統計的言語モデルとは
 - P(単語列) を言語統計から計算
 - 正しい文には高い確率を与えたい
 - 誤っている文には低い確率を与えたい

13.1 文の出現確率の求め方

• 単語列 w の生成確率

$$P(\mathbf{w}) = P(w_1, \dots, w_n)$$

= $P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)\dots P(w_n|w_1, \dots, w_{n-1})$

- $P(w_i|w_1,\ldots,w_{i-1})$ の近似
 - 1- グラム $\sim P(w_i)$
 - 2- グラム $\sim P(w_i|w_{i-1})$
 - 3- グラム $\sim P(w_i|w_{i-2},w_{i-1})$

13.2 N- グラム言語モデル

- N- グラム言語モデルとは
 - 単語の生起を (N-1) 重マルコフ過程で近似したモデル
 - ある時点での単語の生起確率は直前の N-1 単語に のみ依存すると仮定
 - 3- グラムによる単語列 w_1,\ldots,w_n の生成確率

$$P(w_1, \dots, w_n) = P(w_1)P(w_2|w_1) \prod_{k=3}^n P(w_k|w_{k-2}, w_{k-1})$$

13.2 N- グラム言語モデル

- 1.コーパスを準備する
 - 大量の電子化された文章を集める例) 新聞記事 DVD-ROM, Web, etc.
- 2.単語に区切る
 - 英語の場合:空白で区切る
 - 日本語の場合:形態素解析が必要
- 3.条件付き確率を求める
 - スパースネスの問題を解決したうえで $P(w_i|w_{i-2},w_{i-1})$ を求める

13.2 N- グラム言語モデル

- 3- グラム確率の推定
 - 最尤推定を用いる
 - C(w): 単語列 w の出現回数

$$f(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}$$

- $P(w_i|w_{i-2},w_{i-1})=f(w_i|w_{i-2},w_{i-1})$ とするとスパースネスの問題が生じる
 - 妥当な単語列であっても偶然コーパスに出現しなければ3- グラムの確率が 0 になる
 - 補間法、スムージングなどで対処

13.5 ニューラルネットワークを用いた言語モデル

- フィードフォワード型
 - 過去 N 単語から次単語の確率分布を求める

13.5 ニューラルネットワークを用いた言語モデル

- リカレント型
 - フィードバックで仮想的にすべての履歴を表現

14. 連続音声認識に挑戦しよう

• 音声認識の原理

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{arg\,max}} P(\boldsymbol{w}|\boldsymbol{x}) = \underset{\boldsymbol{w}}{\operatorname{arg\,max}} P(\boldsymbol{x}|\boldsymbol{w})P(\boldsymbol{w})$$

- 入力 x のもとで事後確率 P(w|x) を最大にする単語列 \hat{w} を認識結果とする
- P(x|w): 音響モデル …HMM を用いて計算
- P(w) : 言語モデル ...N-gram を用いて計算
- 問題点
 - 大語彙(数千語以上)の場合、全ての可能なwを リストアップすることは不可能

14.1 基本的な探索手法

- 探索の導入
 - 膨大な候補から解になりそうな部分のみに絞る

- 縦型探索
- 横型探索
- ビームサーチ

- ・解の絞り方
 - 評価値の高い候補を優先する
 - ... ヒューリスティックサーチ
 - 探索空間を静的に展開し、最適化 ...WFST

14.1 基本的な探索手法

ビームサーチ:探索幅(ビーム)の導入

音声区間

14.2 ヒューリスティック探索

- ヒューリスティック探索とは
 - 各候補の**今後の**スコアを予測し、高い順に探索

14.3 WFST による探索手法

- WFST とは
 - Weighted Finite State Transducer (重み付き有限状態トランスデューサ)
 - 記号列を入力し、別の記号列と重みを出力

14.3 WFST による探索手法

- WFST によるデコードのアイディア
 - 音声認識に用いる確率モデル(HMM 、単語辞書、 言語モデルなど)は WFST で表現可能
 - 記号列 A を記号列 B に変換する WFST1 と、記号列 B を記号列 C に変換する WFST2 を合成すると、記号列 A を記号列 C に変換する WFST になる
 - ただし、状態数は組み合わせ的に増える
 - WFST には、 FSA と同様、決定化・最小化のアル ゴリズムが存在する

14.3 WFST による探索手法

• 各種モデルの WFST への変換

→音素

合成• 最適化 天気:天気/0.7 明日:明日/0.5 言語モデル 単語列→文 明後日:明後日/0.5 降水確率: 降水確率/0.3 a:明日/1 $s:\epsilon/0.3$ u:ε/1 サーチ用 発音モデル **WFST** 音素列→単語 t:ε/1 sh: $\epsilon/0$. 特徴ベクトル列 →文 音響モデル 特徴ベクトル

参考文献

講義用スライドも公開中 https://masahiroaraki.github.io/GuideToASR/