Intervalos de Confianza

Parámetro	Tamaño Muestral	Varianzas	Límite Inferior	Límite Superior
μ	$n \ge 30$	Conocida σ^2	$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	$\bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
	Cualquier población	Desconocida	$\bar{x} - z_{\alpha/2} \frac{\hat{s}}{\sqrt{n}}$	$\bar{x} + z_{\alpha/2} \frac{\hat{s}}{\sqrt{n}}$
	n < 30	Conocida σ^2	$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	$\bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
	Población Normal	Desconocida	$\bar{x} - t_{\alpha/2}^{n-1} \frac{\hat{s}}{\sqrt{n}}$	$\bar{x} + t_{\alpha/2}^{n-1} \frac{\hat{s}}{\sqrt{n}}$
σ^2	Población Normal		$\frac{ns^2}{\chi_{1-\alpha/2}^{n-1}}$	$\frac{ns^2}{\chi^{n-1}_{\alpha/2}}$
p	$n\hat{p} > 5 \text{ y } n(1-\hat{p}) > 5$		$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
$\mu_1 - \mu_2$	$n_1 \ge 30 \text{ y } n_2 \ge 30$	Conocidas σ_1^2 y σ_2^2	$\bar{x}_1 - \bar{x}_2 - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\bar{x}_1 - \bar{x}_2 + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	Cualquier población	Desconocidas	$\bar{x}_1 - \bar{x}_2 - z_{\alpha/2} \sqrt{\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}}$	$\bar{x}_1 - \bar{x}_2 + z_{\alpha/2} \sqrt{\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}}$
	$n_1 < 30 \text{ o } n_2 < 30$	Conocidas σ_1^2 y σ_2^2	$\bar{x}_1 - \bar{x}_2 - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\bar{x}_1 - \bar{x}_2 + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	Población Normal	Desconocidas e iguales	$\bar{x}_1 - \bar{x}_2 - t_{\alpha/2}^{n_1 + n_2 - 2} \hat{s}_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\bar{x}_1 - \bar{x}_2 + t_{\alpha/2}^{n_1 + n_2 - 2} \hat{s}_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
		Desconocidas y diferentes	$\bar{x}_1 - \bar{x}_2 - t^v_{\alpha/2} \sqrt{\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}}$	$\bar{x}_1 - \bar{x}_2 + t^v_{\alpha/2} \sqrt{\frac{\hat{s}_1^2}{n_1} + \frac{\hat{s}_2^2}{n_2}}$
$\frac{\sigma_1^2}{\sigma_2^2}$	Población Normal		$\frac{\hat{s}_1^2}{\hat{s}_2^2} F_{\alpha/2}^{n_2 - 1, n_1 - 1}$	$\frac{\hat{s}_1^2}{\hat{s}_2^2} F_{1-\alpha/2}^{n_2-1,n_1-1}$
$p_1 - p_2$	$n\hat{p}_i > 5 \text{ y } n(1 - \hat{p}_i) > 5$		$\hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$\hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$

Notación

n es el tamaño muestral.

 μ es la media poblacional.

 σ es la desviación típica de la población.

p es la proporción de individuos que presentan el atributo estudiado en la población.

 \bar{x} es la media muestral.

s es la desviación típica muestral.

 \hat{s} es la cuasidesviación típica muestral.

 \hat{p} es la proporción de individuos que presentan el atributo estudiado en la muestra.

$$\hat{s}_p^2 = \frac{(n_1 - 1)\hat{s}_1^2 + (n_2 - 1)\hat{s}_2^2}{n_1 + n_2 - 2} = \frac{n_1s_1^2 + n_2s_2^2}{n_1 + n_2 - 2} \text{ es la cuasivarianza ponderada.}$$

$$\hat{s}_{p}^{2} = \frac{(n_{1} - 1)\hat{s}_{1}^{2} + (n_{2} - 1)\hat{s}_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2}}{n_{1} + n_{2} - 2} \text{ es la cuasivarianza ponderada.}$$

$$v = \frac{\left(\frac{\hat{s}_{1}^{2}}{n_{1}} + \frac{\hat{s}_{2}^{2}}{n_{2}^{2}}\right)^{2}}{\left(\frac{\hat{s}_{1}^{2}}{n_{1}} + \frac{\hat{s}_{2}^{2}}{n_{2}^{2}}\right)^{2}} - 2, \text{ son los grados de libertad de la } t \text{ de Student en el caso de varianzas diferentes.}$$

$$\hat{s}_{p} = \frac{\left(\frac{\hat{s}_{1}^{2}}{n_{1}} + \frac{\hat{s}_{2}^{2}}{n_{2}^{2}}\right)^{2}}{n_{2} + 1} - 2, \text{ son los grados de libertad de la } t \text{ de Student en el caso de varianzas diferentes.}$$

 $z_{\alpha/2}$ es el valor de la normal estándar que deja acumulada una probabilidad $1-\alpha/2$.

 $t_{\alpha/2}^{n-1}$ es el valor de una t de student de n-1 grados de libertad que deja acumulada una probabilidad $1-\alpha/2$.

 $\chi_{\alpha/2}^{n-1}$ es el valor de una ji-cuadrado con n-1 grados de libertad que deja acumulada una probabilidad $1-\alpha/2$.

 $\chi(n-1)_{1-\alpha/2}$ es el valor de una ji-cuadrado con n-1 grados de libertad que deja acumulada una probabilidad $\alpha/2$.

 $F_{\alpha/2}^{n_1-1,n_2-1}$ es el valor de una F de Fisher-Snedecor de n_1-1 y n_2-1 grados de libertad que deja acumulada una probabilidad $1-\alpha/2$.

 $F_{1-\alpha/2}^{n_1-1,n_2-1}$ es el valor de una F de Fisher-Snedecor de n_1-1 y n_2-1 grados de libertad que deja acumulada una probabilidad $\alpha/2$.