

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General Purpose & High Capacitance

Class 2, X7R 6.3 <u>V TO 50 V</u>

100 pF to 22 μF

RoHS compliant & Halogen Free

YAGEO Phícomp

SCOPE

This specification describes X7R series chip capacitors with leadfree terminations.

APPLICATIONS

- PCs, Hard disk, Game PCs
- DVDs, Video cameras
- Mobile phones
- · Data processing

FEATURES

- · Supplied in tape on reel
- · Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP CTC & <u>12NC</u>

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC xxxx x x X7R x BB xxx (2) (3) (I) (4)

(I) SIZE – INCH BASED (METRIC)							
0201 (0603)							
0402 (1005)							
0603 (1608)							
0805 (2012)							
1206 (3216)							
1210 (3225)							
1812 (4532)							

(2) TOLERANCE

 $J = \pm 5\%$ (1) $K = \pm 10\%$ $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch K = Blister taping reel; Reel 7 inch P = Paper/PE taping reel; Reel 13 inch F = Blister taping reel; Reel 13 inch C = Bulk case

(4) RATED VOLTAGE

5 = 6.3 V6 = 10 V7 = 16 V8 = 25 V9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros The 3rd digit signifies the multiplying factor, and letter R is decimal point Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

NOTE

I. Tolerance $\pm 5\%$ is not available for full product range, please contact local sales force before ordering

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig.I.

DIMENSION

Table I For outlines see fig. 2

TYPE	L _I (mm)	\\/ (~~ ~~)	T (MM)	L ₂ / L ₃ (mm)		L ₄ (mm)
IIFE		W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03		0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	_	0.15	0.30	0.40
0603	1.6 ±0.10 ⁽¹⁾	0.8 ±0.10 ⁽¹⁾		0.20	0.60	0.40
	1.6 ±0.15 ⁽²⁾	0.8 ±0.15 ⁽²⁾	_	0.20	0.60	0.40
	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾		0.25	0.75	0.55
	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾	Refer to		0.75	0.55
1206	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾	table 2 to 4	0.25	0.75	1.40
1200	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 ⁽²⁾	_	0.23	0.73	1.40
1210	3.2 ±0.20 ⁽¹⁾	2.5 ±0.20 ^(I)		0.25	0.75	1.40
1210	3.2 ±0.40 ⁽²⁾	2.5 ±0.30 ⁽²⁾		0.25	0.75	1.40
1812	4.5 ±0.20 ⁽¹⁾	3.2 ±0.20 ^(I)	•	0.25	0.75	2.20
1812	4.5 ±0.40 ⁽²⁾	3.2 ±0.40 ⁽²⁾		0.25	0.75	2.20

OUTLINES

- 1. Dimension for size 0603, C < 2.2 μ F; 0805 to 1812, C \leq 100nF
- 2. Dimension for size 0603, C = $1\mu F$; 50V; 0805 to 1812, C > 100 nF

CAPACITAN Table 2 Six				7.711						
CAP.	0201					0402				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
100 pF										
150 pF										
220 pF										
330 pF					0.3±0.03					
470 pF										
680 _P F										
1.0 nF	0.3±0.03	0.3±0.03	0.3±0.03	0.3±0.03						
1.5 nF										
2.2 nF										0.5±0.05
3.3 nF						0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	
4.7 nF										
6.8 nF										
I0 nF										
15 nF										
22 nF										
33 nF										
47 nF										
68 nF									,	
100 nF										0.5±0.05
150 nF										
220 nF						0.5±0.05	0.5±0.05	0.5±0.05		
330 nF										
470 nF						0.5±0.05	0.5±0.05			
680 nF										
1.0 μF						0.5±0.05				
2.2 µF										
4.7 µF										
Ι0 μF										
22 µF										

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering

CAPACITANO			NESS FOR	X7R						
Table 3 Siz		03 to 0805								
CAP.	0603					0805				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
100 pF										
150 pF										
220 pF										
330 pF										
470 pF										
680 pF										
1.0 nF										
1.5 nF										
2.2 nF						0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
3.3 nF										
4.7 nF					0.8±0.1					
6.8 nF										
10 nF	00.01		0.8±0.1	0.8±0.1						
15 nF	0.8±0.1	0.8±0.1								
22 nF										
33 nF										
47 nF										
68 nF										0.85±0.1
100 nF						0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	
150 nF										
220 nF										
330 nF										
470 nF										
680 nF										1.25±0.2
I.0 μF					0.8±0.15	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	
2.2 µF										
4.7 μF										
1.7 μΓ 10 μF										
ι ο μι										

NOTE

22 μF

- I. Values in shaded cells indicate thickness class in $\ensuremath{\mathsf{mm}}$
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering

Table 4 Size I 206

1206 CAP.

100 pF 150 pF 220 pF 330 pF 470 pF 680 pF 1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1	CAP.	1206	10.11			 0./
150 pF 220 pF 330 pF 470 pF 680 pF 1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1			10 V	16 V	25 V	50 V
220 pF 330 pF 470 pF 680 pF 1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1						
330 pF 470 pF 680 pF 1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1						
470 pF 680 pF 1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 10 nF 115 nF 22 nF 33 nF 47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 470 nF 680 nF 1.0 μF 1.15±0.1	220	pF				
680 pF 1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	330	pF				
1.0 nF 1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1/1.15±0.1	470	pF				
1.5 nF 2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1	680	pF				
2.2 nF 3.3 nF 4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1	1.0	nF				
3.3 nF 4.7 nF 6.8 nF 0.85±0.1	1.5	nF				
4.7 nF 6.8 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1	2.2	nF				
6.8 nF 10 nF 15 nF 22 nF 33 nF 47 nF 68 nF 100 nF 120 nF 220 nF 330 nF 470 nF 680 nF 1.0 μF 1.15±0.1	3.3	nF				
10 nF 15 nF 22 nF 33 nF 47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 220 nF 330 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	4.7	nF				0.85±0.1
15 nF 22 nF 33 nF 47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 0.85±0.1 / 1.15±0.1 0.85±0.1 1.15±0.1 0.85±0.1 1.0±0 680 nF 1.0 µF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.	6.8	nF 0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1	
22 nF 33 nF 47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 470 nF 680 nF 1.0 \(\mu \) 680 nF 1.0 \(\mu \) 1.15\(\mu \)	10	nF				
33 nF 47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 470 nF 680 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	15	nF				
47 nF 68 nF 100 nF 150 nF 220 nF 330 nF 470 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	22	nF				
68 nF 100 nF 150 nF 220 nF 330 nF 470 nF 680 nF 1.0 μF 1.15±0.1	33	nF				
100 nF 150 nF 220 nF 330 nF 470 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2	47	nF				
150 nF 220 nF 330 nF 470 nF 680 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	68	nF				
220 nF 330 nF 470 nF 0.85±0.1 / 1.15±0.1 0.85±0.1 1.0±0 680 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2	100	nF				
220 nF 330 nF 470 nF 0.85±0.1 / 1.15±0.1 0.85±0 0.85±0.1 / 1.15±0.1 1.0±0 680 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 2.2 μF 10 μF 1.6±0.2 1.6±0.2 22 μF	150	nF				
470 nF 680 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	220	nF				0.85±0.1 / 1.15±0.1
470 nF 680 nF 1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.2 1.6±0.2 1.6±0.2	330	nF			0.85±0.1 / 1.15±0.1	0.85±0.1
1.0 μF 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.15±0.1 1.6±0.1 1.6±0.2	470	nF			0.85±0.1	1.0±0.1
2.2 μF 4.7 μF 10 μF 1.6±0.2 1.6±0.2 1.6±0.2	680	nF				
2.2 μF 4.7 μF 10 μF 1.6±0.2 1.6±0.2 1.6±0.2	1.0	μF 1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1	
10 μF 1.6±0.2 1.6±0.2 1.6±0.2 1.6±0.2						1.6±0.2
10 μF 1.6±0.2 1.6±0.2 1.6±0.2 1.6±0.2						
			1.6±0.2	1.6±0.2	1.6±0.2	
47 μF	22	μF				
·	47	μF				

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering
- 4. Please contact local sales force for special ordering code before ordering

	es from 1210 to 18	812	<u>.</u>			
CAP.	1210					1812
	6.3 V	10 V	16 V	25 V	50 V	50 V
100 pF						
150 pF						
220 pF						
330 pF						
470 pF						
680 pF						
1.0 nF						
1.5 nF						
2.2 nF						
3.3 nF						
4.7 nF						
6.8 nF						
10 nF						
15 nF					0.85±0.1	0.85±0.1
22 nF	0.05.0.1	0.05+0.1	0.05.0.1	0.05.0.1		0.85±0.1
33 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.85±0.1		
47 nF						
68 nF						
100 nF						
150 nF						
220 nF					1.15±0.1	1.15±0.1
330 nF						
470 nF						
680 nF	1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1	1.25±0.2	
1.0 μF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		1.6±0.2
2.2 µF					1.9±0.2	
4.7 μF	1.9±0.2	1.9±0.2	1.9±0.2	1.9±0.2		
10 μF					2.5±0.3	
22 µF			2.5±0.2	2.5±0.2		
47 μF	2.5±0.2	2.5±0.2		2.0 - 3.2		

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering
- 4. Please contact local sales force for special ordering code before ordering

THICKNESS CLASSES AND PACKING QUANTITY

Table 6							
SIZE	E THICKNESS TAPE WIDTH		Ø180 MM	I / 7 INCH	Ø330 MM	/ 13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
_	0.6 ±0.1 mm	8 mm	4,000		20,000		
_	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206 —	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
. 200	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
_	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
_	0.85 ±0.1 mm	8 mm		4,000		10,000	
_	1.15 ±0.1 mm	8 mm		3,000		10,000	
_	1.15 ±0.15 mm	8 mm		3,000		10,000	
1010	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
_	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000			
-				1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	I2 mm		3,000			
-	1.13 ±0.13 mm	12 mm		3,000			
-	1.35 ±0.15 mm	12 mm		2,000			
1808	1.5 ±0.1 mm	I2 mm		2,000			
-	1.6 ±0.2 mm	12 mm		2,000		8,000	
-	2.0 ±0.2 mm	12 mm		2,000			
	0.6 / 0.85 ±0.1 mm	12 mm		2,000			
-	1.15 ±0.1 mm	12 mm		1,000			
-	1.25 ±0.2 mm	12 mm		1,000			
1812	1.5 ±0.1 mm	12 mm		1,000			
1012				1,000			
_	1.6 ±0.2 mm	12 mm		-			
-	2.0 ±0.2 mm	12 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

ELECTRICAL CHARACTERISTICS

X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

-	_			_
	רו	h	םו	•

DESCRIPTION								VALUE
Capacitance range							100 pl	F to 47 μF
Capacitance tolerance							±5%, ±1	0%, ±20%
Dissipation factor (D.F.))							
	≤ 10 V	47 _P F ≤ 020	l ≤ I0nF	100pF ≤ 0	0402 ≤ 100nF	100 _P F	≤ 0603 ≤ IµF	≤ 5%
		150pF ≤ 08	05 ≤ 2.2µF	220 pF ≤	I 206 ≤ 2.2μF	2.2nF	≤ 1210 ≤ 2.2µF	= 3 / ₀
		Exception:	220nF≤ 040	02 ≤470nF	$0603 = 2.2 \mu F$	•	0805 ≥ 4.7 μF	≤ 10%
			1206 ≥ 4.7	μF	4.7µF≤ 1210	≤47µF	0201 ≥ 12 nF	
			0402 = ΙμF	=				≤ 12.5%
	16 V	47 pF≤ 020	l ≤I.2nF	100 pF≤ (0402 ≤22nF	100 pF	≤ 0603 <470nF	≤ 3.5%
		150 pF≤ 08	05 ≤560nF	220 _P F≤ I	206 ≤IµF	2.2nF≤	: 1210 ≤1μF	
		Exception:	1.5 nF≤ 020	01 ≤10nF	27nF ≤ 0402	≤I00nF	680 nF≤ 0805 ≤2.2µF	≤ 5%
			1206 = 2.2	μF	$2.2\mu F \le 1210$	≤10 μF	470 nF≤ 0603 ≤IuF	
			0402 = 220) nF	4.7 μF≤ 0805	≤I0µF	4.7μF ≤ 1206 ≤ 10μF	≤ 10%
			$1210 = 22\mu$	ıF				
	25 V	47 _P F ≤ 020	I ≤ 470pF	100 _P F ±	≤ 0402 ≤ 10nF	100	0pF ≤ 0603 ≤39nF	≤ 2.5%
		150pF ≤ 08	05 ≤ 180nF	220 _P F ±	≤ 1206 ≤ 680nF	2.2	nF≤ 1210 ≤1µF	
		Exception:	12 nF ≤ 04	02 ≤ 47nF	47nF ≤ 0603	≤220nF	220nF≤ 0805 ≤560 nF	≤ 3.5%
			1206 = IµF	=				
			$560pF \le 02$	201 ≤10nF	56 nF≤ 0402	≤100 nF	F 680nF ≤ 0805 ≤ I μF	≤ 5%
			1206 = 2.2	•	$2.2\mu F \le 1210$	≤10 μF		
			270nF ≤ 06	603 ≤IuF	2.2uF ≤ 0805	≤ 4.7uF	1206 ≥ 4.7uF	≤ 10%
			1210 ≥ 22	ΣuF				
	≥ 50 V							≤ 2.5%
		Exception:	020 I ≥47p		IμF≥1206≥			≤ 3.5%
			0603 ≥47n		47nF≥ 0402	≥I2 nF	470nF≥ 0805 ≥330 nF	≤ 3.0%
			0805=680					≤ 5%
			0402=100n	ıF	0603 ≥IµF		0805 ≥ IμF	≤ 10%
			1206 ≥ 2.2	μF	1210 ≥ 2.2μF	•		
Insulation resistance aft		1 ()		R _{ins}	\geq 10 G Ω or R	ins × C _r ≥	≥ 500(100) seconds whiche	ver is less
Maximum capacitance o			mperature					
(temperature character	ristic/coeffic	cient):						±15%
Operating temperature	range:						−55 °C to	+125 °C

Capacitance tolerance ±5% is not available for full product range, please contact local sales force before ordering

SOLDERING RECOMMENDATION

Table 8					
SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 9 Test procedures and requirements

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance ⁽¹⁾		4.5.1	Class 2: At 20 °C, 24 hrs after annealing	Within specified tolerance	
			f = 1 KHz for C \leq 10 μ F, rated voltage > 6.3 V, measuring at voltage 1 V _{rms} at 20 °C		
			f = 1 KHz, for C \leq 10 μ F, rated voltage \leq 6.3 V, measuring at voltage 0.5 V _{rms} at 20 °C		
			f = 120 Hz for C > 10 μF_{r} measuring at voltage 0.5 V_{rms} at 20 $^{\circ} C$		
Dissipation Factor (D.F.) (1)		4.5.2	Class 2: At 20 °C, 24 hrs after annealing	In accordance with specification	
			f = 1 KHz for C \leq 10 μ F, rated voltage > 6.3 V, measuring at voltage 1 V _{rms} at 20 °C		
			f = 1 KHz, for C \leq 10 μ F, rated voltage \leq 6.3 V, measuring at voltage 0.5 V _{rms} at 20 °C		
			f = 120 Hz for C > 10 μF , measuring at voltage 0.5 V_{rms} at 20 $^{\circ} C$		
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification	

NOTE:

 $\label{eq:local_sales} \textbf{I. For individual product specification, please contact local sales.}$

TEST	TEST MET	HOD	PROCED	JRE	REQUIREMENTS		
Temperature Characteristic	IEC 60384- 21/22		Capacitano the followi	re shall be measured by the steps shown in ng table.	<general purpose="" series=""> Class I: Δ C/C: ±30ppm</general>		
			-	tance change should be measured after 5 min ecified temperature stage.	Class2:		
			Step	Temperature(°C)	X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%		
			a	25±2	13V. A C/C. 22 -02/6		
			b	Lower temperature±3°C	<high capacitance="" series=""> Class2:</high>		
			С	25±2	X7R/X5R: Δ C/C: ±15%		
			d	Upper Temperature±2°C	Y5V: ∆ C/C: 22~-82%		
			е	25±2			
			(I) Class I				
			formula as				
			Temp, Co	$efficient = \frac{C2 - C1}{C1x\Delta T} \times 10^6 \text{ [ppm/°C]}$			
			C1: Capac				
			C2: Capac	itance at 125°C			
			ΔT: 100°C	C(=125°C-25°C)			
			(2) Class II				
				e Change shall be calculated from the			
			formula as				
			$\Delta C = \frac{C2}{C}$	- <u>C1</u> x 100%			
			-	itance at step c itance at step b or d			
Adhesion		4.7		plied for 10 seconds to the line joining the	Force		
			terminatio	ns and in a plane parallel to the substrate	size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N		
Bond Strength		4.8	Mounting i	n accordance with IEC 60384-22 paragraph	No visible damage		
			4.3				
			Conditions	s: bending I mm at a rate of I mm/s, radius jig	<general purpose="" series=""></general>		
			340 mm		ΔC/C		
					Class2: X7R: ±10%		
					A/N. IIV/		
					<high capacitance="" series=""></high>		
					ΔC/C		
					Class2:		
					X7R: ±10%		

Product specification 16 19

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
Resistance to Soldering Heat	4.9		Precondition: $150 + 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned	
			Preheating: for size >1206: 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	<general purpose="" series=""> ΔC/C Class2: X7R: ±10% <high capacitance="" series=""> ΔC/C Class2: X7R: ±10% D.F. within initial specified value R_{ins} within initial specified value</high></general>	
Solderability	IEC 60384- 21/22	4.10	Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination	
			Test conditions for lead containing solder alloy Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: 1 Test conditions for lead-free containing solder alloy Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm		
			Alloy Composition: SAC305 Number of immersions: I		
Rapid Change of Temperature		4.11	Preconditioning; 150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature	No visual damage <general purpose="" series=""></general>	
			5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	ΔC/C Class2: X7R: ±15%	
			Recovery time 24 ±2 hours	<pre><high capacitance="" series=""> ΔC/C Class2: X7R: ±15%</high></pre>	
			_	D.F. meet initial specified value R _{ins} meet initial specified value	

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
Damp Heat with U _r Load	IEC 60384- 21/22	4.13	I. Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp 2. Initial measure:	No visual damage after recovery	
				<general purpose="" series=""></general>	
				ΔC/C	
			Spec: refer to initial spec C, D, IR	Class2:	
			3. Damp heat test:	X7R: ±15%	
			500 \pm 12 hours at 40 \pm 2 °C; 90 to 95% R.H. 1.0 U _r applied	D.F.	
				Class2:	
			4. Recovery: Class 2: 24 ±2 hours	X7R: ≤ 16V: ≤ 7%	
				≥ 25V: ≤ 5%	
			5. Final measure: C, D, IR	R _{ins}	
				Class2:	
			P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	X7R: ≥ 500 M Ω or R _{ins} x C _r ≥ 25s	
				whichever is less	
				<high capacitance="" series=""></high>	
				ΔC/C	
				Class2:	
				X7R: ±20%	
				D.F.	
				Class2:	
				X7R: 2 x initial value max	
				R _{ins}	
				Class2:	
				X7R: 500 M Ω or $R_{ins} \times C_r \ge 25s$	
				whichever is less	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Endurance	IEC 60384- 4.14 21/22	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Endurance test: Temperature: X7R: 125 °C Specified stress voltage applied for 1,000 hours:	No visual damage	
Voltage Proof	IEC 60384- 4.6	Specified stress voltage applied for 1~5 seconds Ur ≦ 100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover	

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version II	Jan. 06, 2015	-	- Dimension updated
Version 10	Jul. 08, 2014	-	- Dimension updated
Version 9	Aug. 19, 2013	-	- Dimension updated
Version 8	Oct 13, 2011	-	- Dimension updated
Version 7	Jan 13, 2011	-	- Dimension updated
Version 6	Oct 13, 2010	-	- Rated voltage of 0201 extend to 50 V
			- Capacitance range of 0201 X7R 6.3V to 16V extend to 100 pF
			- Capacitance range of 0805 X7R 10V extend to 10 μF
			- Capacitance range of 0805 X7R 50V extend to 1 μF
			- Capacitance range of I210 X7R I0V extend to 22 µF
			- Figures of impedance ESR updated
Version 5	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated
Version 4	Apr 21, 2010	-	- The statement of "Halogen Free" on the cover added
			- Dimension updated
Version 3	Oct 26, 2009	-	- Capacitance range of 0402 X7R 25 V extend to 100 nF
Version 2	May 11, 2009	-	- Product range updated
Version I	Apr 24, 2009	-	- Ordering code updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X7R series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: X7R_10V_9, X7R_16V-to-100V_9, X7R_16-to-500V_9, UP-X5R_X7R_HighCaps_6.3-to-25V_11, UY-X5R_X7R_HighCaps_6.3-to-25V_11
			 Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NPOX5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated

