ItbToolkit-1.0

Generated by Doxygen 1.8.5

Tue Sep 10 2013 17:59:34

Contents

1	Data	Struct	ure Index																	1
	1.1	Data S	tructures					 		 	 					 				1
2	File	Index																		3
	2.1	File Lis	st					 		 	 					 				3
3	Data	Struct	ure Docur	me	enta	ıtio	n													5
	3.1	Interp_	_data Struc	ct l	Ref	erei	nce	 		 	 					 				5
		3.1.1	Detailed	De	escı	ripti	on	 		 	 					 				5
		3.1.2	Field Doo	cu	mei	ntat	ion	 		 	 					 				5
			3.1.2.1	a	acc			 		 	 					 				5
			3.1.2.2	C	cur			 		 	 					 				5
			3.1.2.3	r	max	٠.		 		 	 					 				6
			3.1.2.4	r	min			 		 	 					 				6
			3.1.2.5	S	splir	ne .		 		 	 					 				6
			3.1.2.6	>	Χ.			 		 	 					 				6
			3.1.2.7	y	y .			 		 	 					 				6
	3.2	Ltb_m	odel Struct	t P	{efe	ren	ce .	 		 	 					 				6
		3.2.1	Detailed	De	escı	ripti	on	 		 	 					 				7
		3.2.2	Field Doo	cu	mei	ntat	ion	 		 	 					 				7
			3.2.2.1	E	E_fu	un .		 		 	 					 				7
			3.2.2.2	E	E_v	ес		 		 	 					 				7
			3.2.2.3	N	M_fı	un		 		 	 					 				7
			3.2.2.4	N	M_v	/ec		 		 	 					 				7
			3.2.2.5	F	R_m	nat		 		 	 					 				7
			3.2.2.6	ŗ	r_siz	ze .		 		 	 					 				7
			3.2.2.7	ŗ	r_ve	C .		 		 	 					 				7
			3.2.2.8	ţ	t_siz	ze .		 		 	 					 				7
			3.2.2.9	ţ	t_ve	C.		 		 	 					 				8
			3.2.2.10	t	B_f	un		 		 	 					 				8
			3.2.2.11	t	B_r	nax	٠.	 		 	 					 				8
			32212	ŧ	RΛ	/ec														a

iv CONTENTS

4	File	Docume	entation		9
	4.1	src/gsl_	_vector_he	lp_functions.h File Reference	9
		4.1.1	Detailed I	Description	10
	4.2	src/inte	erp_data.h	File Reference	10
		4.2.1	Detailed I	Description	11
		4.2.2	Function	Documentation	11
			4.2.2.1	check_interp_data	11
			4.2.2.2	interp_data_alloc	11
			4.2.2.3	interp_data_free	12
			4.2.2.4	set_eta_max	12
			4.2.2.5	set_eta_min	12
		4.2.3	Variable [Documentation	12
			4.2.3.1	dxi	12
	4.3	src/ltb.l	n File Refe	rence	13
		4.3.1	Detailed I	Description	15
		4.3.2	Function	Documentation	15
			4.3.2.1	cur_fun	15
			4.3.2.2	eta_fun	15
			4.3.2.3	exp_fun	15
			4.3.2.4	fi	16
			4.3.2.5	fiFlat	16
			4.3.2.6	fiHyperbolic	16
			4.3.2.7	fiSpherical	17
			4.3.2.8	get_chi	17
			4.3.2.9	get_min_max_for_interp	17
			4.3.2.10	get_xi	17
			4.3.2.11	grr_sq_fun	18
			4.3.2.12	interp_data_alloc_for_ltb	18
			4.3.2.13	Itb_model_alloc	18
			4.3.2.14	ltb_model_alloc_from_vec	19
			4.3.2.15	Itb_model_cpy	19
			4.3.2.16	ltb_model_exp	20
			4.3.2.17	ltb_model_free	20
			4.3.2.18	ltb_model_grr_sq	20
			4.3.2.19	$ltb_model_R_r\ \dots \dots$	21
			4.3.2.20	Itb_model_R_rt	21
			4.3.2.21	$ltb_model_R_t \ \dots \ $	22
			4.3.2.22	ltb_model_rho	22
			4.3.2.23	Itb_model_Ricci	23
			4.3.2.24	Itb_model_set_fun	23

CONTENTS

		4.3.2.25	ltb_model_set_R	. 23
		4.3.2.26	ltb_model_write_fun	. 24
		4.3.2.27	R_fun	. 24
		4.3.2.28	R_r_analytic_fun	. 25
		4.3.2.29	R_rt_analytic_fun	. 26
		4.3.2.30	R_t_analytic_fun	. 26
		4.3.2.31	rho_fun	. 27
		4.3.2.32	Ricci_fun	. 27
		4.3.2.33	set_cur	. 27
		4.3.2.34	xi_fun	. 28
		4.3.2.35	xi_fun_from_eta	. 28
		4.3.2.36	xiFlat	. 28
		4.3.2.37	xiHyperbolic	. 29
		4.3.2.38	xiSpherical	. 29
4.4	src/ltb_	_error.h Fil	le Reference	. 29
	4.4.1	Detailed	Description	. 29
	4.4.2	Macro De	efinition Documentation	. 30
		4.4.2.1	CHECK_M_DIM	. 30
		4.4.2.2	CHECK_PTR	. 30
		4.4.2.3	CHECK_SIZE	. 30
		4.4.2.4	CHECK_STAT	. 30
	4.4.3	Enumera	ation Type Documentation	. 30
		4.4.3.1	anonymous enum	. 30
4.5	src/ltb_	_integrate.l	h File Reference	. 31
	4.5.1	Detailed	Description	. 31
	4.5.2	Function	Documentation	. 31
		4.5.2.1	gsl_matrix_integrate_trap_range	. 31
4.6	src/ma	cros.h File	Reference	. 32
	4.6.1	Detailed	Description	. 32
4.7	src/phy	/s_constar	nt.h File Reference	. 32
	4.7.1	Detailed	Description	. 33
	4.7.2	Function	Documentation	. 33
		4.7.2.1	export_phys_const	. 33
		4.7.2.2	set_phys_const	. 33
	4.7.3	Variable	Documentation	. 33
		4.7.3.1	c	. 33
		4.7.3.2	G_grav	. 33
		4.7.3.3	H_0	. 33
		4.7.3.4	pi	. 34

Chapter 1

Data Structure Index

4	4	Data	Ctur	4	
1	1	Data	STri	ICTLI	ıres

le	re are the data structures with brief descriptions:	
	Interp_data	Ę
	Ltb_model	6

Data Structure Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

src/gsl_vector_help_functions.c
src/gsl_vector_help_functions.h
Custom extensions of gsl_vector, gsl_matrix from GSL library
src/interp_data.c
src/interp_data.h
Structure and functions needed for interpolation eta(xi)
src/ltb.c
src/ltb.h
Ltb model function
src/ltb_error.h
Errors Handling macros and functions
src/ltb_integrate.c
src/ltb_integrate.h
Functions for integrating
src/macros.h
Additional helpful macros
src/phys_constant.c
src/phys_constant.h
Physics constant

File Index

Chapter 3

Data Structure Documentation

3.1 Interp_data Struct Reference

```
#include <src/interp_data.h>
```

Data Fields

- int **n**
- int cur
- double * x
- double * y
- double max
- double min
- gsl_interp_accel * acc
- gsl_interp * spline

3.1.1 Detailed Description

Interp_data typdef stucture

Used in inverting xi function to get eta

Definition at line 14 of file interp_data.h.

3.1.2 Field Documentation

3.1.2.1 gsl_interp_accel* Interp_data::acc
minimum value op points to initialization
Definition at line 22 of file interp_data.h.

3.1.2.2 int Interp_data::cur

Numbers of point to initialize spline procedure Definition at line 17 of file interp_data.h.

3.1.2.3 double Interp_data::max

values of function in point x for spline initialization

Definition at line 20 of file interp data.h.

3.1.2.4 double Interp_data::min

maximum value of points to initialization

Definition at line 21 of file interp_data.h.

3.1.2.5 gsl_interp* Interp_data::spline

LUT (look up table) for accelerating of interpolation

Definition at line 23 of file interp_data.h.

3.1.2.6 double* Interp_data::x

curvature of model for which we want interpolation

Definition at line 18 of file interp_data.h.

3.1.2.7 double* Interp_data::y

x points for spline initialization

Definition at line 19 of file interp_data.h.

The documentation for this struct was generated from the following file:

• src/interp_data.h

3.2 Ltb_model Struct Reference

```
#include <src/ltb.h>
```

Data Fields

- int cur
- size_t r_size
- size_t t_size
- gsl_vector * r_vec
- gsl_vector * t_vec
- gsl_vector * tB_vec
- gsl_vector * E_vec
- gsl_vector * M_vec
- gsl_matrix * R_mat
- double(* tB_fun)(double)
- double(* E_fun)(double)
- double(* M_fun)(double)
- double tB_max

3.2.1 Detailed Description

Ltb_model typdef struct Keeping all important information about specific LTB Model.

Definition at line 26 of file ltb.h.

3.2.2 Field Documentation

3.2.2.1 double(* Ltb_model::E_fun)(double)

E function

Definition at line 38 of file ltb.h.

3.2.2.2 gsl_vector* Ltb_model::E_vec

values of function E - gsl_vector

Definition at line 34 of file ltb.h.

3.2.2.3 double(* Ltb_model::M_fun)(double)

M function

Definition at line 39 of file ltb.h.

3.2.2.4 gsl_vector* Ltb_model::M_vec

values of function M — gsl_vector

Definition at line 35 of file ltb.h.

3.2.2.5 gsl_matrix* Ltb_model::R_mat

Matrix of R (areal radius) — gsl_matrix of size r_vec x r_mat

Definition at line 36 of file ltb.h.

3.2.2.6 size_t Ltb_model::r_size

Curvature of model values=-1,0,1 or -999 (error). Number of r points in model, size of r_vec.

Definition at line 29 of file ltb.h.

3.2.2.7 gsl_vector* Ltb_model::r_vec

values of r — gsl_vector.

Definition at line 31 of file ltb.h.

3.2.2.8 size_t Ltb_model::t_size

Number of t points in model. size of t_vec

Definition at line 30 of file ltb.h.

3.2.2.9 gsl_vector* Ltb_model::t_vec

values of t — gsl_vector.

Definition at line 32 of file ltb.h.

3.2.2.10 double(* Ltb_model::tB_fun)(double)

tB function

Definition at line 37 of file ltb.h.

3.2.2.11 double Ltb_model::tB_max

maximum value of tB function, needed for normalization

Definition at line 40 of file ltb.h.

3.2.2.12 gsl_vector* Ltb_model::tB_vec

values of function t_{b} — gsl_vector

Definition at line 33 of file ltb.h.

The documentation for this struct was generated from the following file:

• src/ltb.h

Chapter 4

File Documentation

4.1 src/gsl_vector_help_functions.h File Reference

Custom extensions of gsl_vector, gsl_matrix from GSL library.

```
#include <string.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include "ltb_error.h"
```

Macros

- #define M(m, i, j) (gsl_matrix_get(m,i,j))
- #define **MS**(m, i, j, x) (gsl_matrix_set(m,i,j,x))
- #define V(v, i) (gsl_vector_get(v,i))
- #define **VS**(v, i, x) (gsl_vector_set(v,i,x))

Functions

• int gsl_vector_gen (gsl_vector *vec, unsigned int n, double min, double max)

Generate n values from min to max and kept them in gsl_vector vec.

int gsl_vector_gen_fun (gsl_vector *vec, unsigned int n, gsl_vector *r, double(*f)(double))

Generate n values of function f(r) and kept them in gsl_vector vec.

• int min (gsl_vector *vec, double x)

If ith element of vector vec is greater than x -> set x.

int max (gsl_vector *vec, double x)

If ith element of vector vec is lesser than $x \rightarrow set x$.

int gsl_vector_substract (gsl_vector *a, gsl_vector *b)

Subtraction of gsl_vector's a=a-b.

• int gsl_vector_substract_out (gsl_vector *a, gsl_vector *b, gsl_vector *out)

Subtraction of gsl_vector's out=a-b.

• int gsl_vector_add_constant_out (gsl_vector *dest, gsl_vector *src, double x)

Create new $gsl_vector dest = src + x$.

int gsl_vector_set_range (gsl_vector *vec, unsigned int min, unsigned int max, double val)

Set value val in vec over indexes from min to max.

int gsl_vector_load_from_file (gsl_vector *vec, char *fileName)

Load gsl_vector vec from ascii file.

int gsl_write_mat (gsl_matrix *matrix, char *fileName, char *header)

Write gsl_matrix matrix to ascii file fileName with header.

int gsl_write_two_vec (const gsl_vector *vec, const gsl_vector *vec2, char *fileName)

Write to vectors to file in two columns.

• int find_indices_leq (const double *data, const double x, unsigned int n, unsigned int start)

Find first indices of array data less equal than x.

• int gsl_vector_find_indices_leq (const gsl_vector *vec, const double x, unsigned int start)

Find first indices of gsl_vector vec less equal than x.

int find indices geq (const double *data, const double x, unsigned int n, unsigned int start)

Find first indices of array data greater equal than x.

• int gsl_vector_find_indices_geq (const gsl_vector *vec, const double x, unsigned int start)

Find first indices of gsl_vector vec greater equal than x.

• int find_indices_range (const double *data, const double xa, const double xb, unsigned int n, unsigned int start, int *ia, int *ib)

Find indices indices from range from xa to xb in array data.

• int gsl_vector_indices_range (const gsl_vector *vec, const double xa, const double xb, unsigned int start, int *ia, int *ib)

Find indices indices from range from xa to xb in gsl_vector vec.

int data_to_string (double *data, char *format, unsigned int n, char *out)

Convert double array to string.

• int gsl_vector_to_string (gsl_vector *vec, char *format, char *out)

Convert gsl_vector to string.

int gsl_matrix_row_normalize (gsl_matrix *mat)

Normalize rows of matrix to 1.

4.1.1 Detailed Description

Custom extensions of gsl_vector, gsl_matrix from GSL library. Most of function from this file was used during testes. I only use functions for writing vectors and matrices and function for generating values from function (gsl_vector_gen_fun() and gsl_vector_gen())

Definition in file gsl_vector_help_functions.h.

4.2 src/interp_data.h File Reference

Structure and functions needed for interpolation eta(xi)

```
#include <gsl/gsl_spline.h>
#include "ltb_error.h"
```

Data Structures

· struct Interp_data

Functions

- Interp_data * interp_data_alloc (double max, double min, unsigned int n, int cur, double(*f)(double, int))
 Allocating Interp_data.
- void interp_data_free (Interp_data *idata)

Freeing Interp_data stuct.

double set_eta_max (double xi_max)

Calculating max value for Interp_data structure.

• double set_eta_min (double xi_min)

Calculating min value for Interp_data structure.

• int check_interp_data (Interp_data *eta_interp, double xi_min, double xi_max, int cur) Check Interp_data.

Variables

- size_t eta_n
- double dxi

Parameter used to calculate min and max value in Interp_data. It telling how much bigger (lower) max (min) should be than max (min) value of xi. Used in set_eta_max() and set_eta_min() functions.

4.2.1 Detailed Description

Structure and functions needed for interpolation *eta(xi)*

Author

Lukasz Matczynski

Copyright

GNU Public License

Definition in file interp_data.h.

4.2.2 Function Documentation

4.2.2.1 int check_interp_data (Interp_data * eta_interp, double xi_min, double xi_max, int cur)

Check Interp_data.

Return error if cur != eta_interp->cur, xi_min < eta_interp->min or xi_max > eta_interp->max

Parameters

in	eta_interp	— Interp_data to check
in	xi_min	
in	xi_max	
in	cur	curvature parameter

Definition at line 137 of file interp_data.c.

4.2.2.2 Interp data* interp_data_alloc (double max, double min, unsigned int n, int cur, double(*)(double, int) f)

Allocating Interp_data.

Parameters

in	max	maximum value of points to initialize spline function
in	min	minimum value of points to initialize spline function
in	n	number of points to initialize spline function
in	cur	curvature of model for which we want interpolate (xi)
in	f	pointer to function calculating eta

Returns

pointer to allocate Interp_data stuct or NULL pointer

Definition at line 7 of file interp_data.c.

4.2.2.3 void interp_data_free ($Interp_data*idata$)

Freeing Interp data stuct.

Parameters

in idata pointer to Interp_data structure which we want to free	
---	--

Definition at line 77 of file interp_data.c.

4.2.2.4 double set_eta_max (double xi_max)

Calculating max value for Interp_data structure.

Parameters

in	xi_max	maximum value of xi
----	--------	---------------------

Definition at line 103 of file interp_data.c.

4.2.2.5 double set_eta_min (double xi_min)

Calculating min value for Interp_data structure.

Parameters

in	xi_mim	minimum value of xi

Definition at line 120 of file interp_data.c.

4.2.3 Variable Documentation

4.2.3.1 double dxi

Parameter used to calculate min and max value in Interp_data. It telling how much bigger (lower) max (min) should be than max (min) value of xi. Used in set_eta_max() and set_eta_min() functions.

Default numbers of points to initialize spline interpolation

See Also

```
set_eta_max()
set_eta_min()
```

Definition at line 35 of file interp_data.h.

4.3 src/ltb.h File Reference 13

4.3 src/ltb.h File Reference

Ltb model function.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_spline.h>
#include "ltb_error.h"
#include "gsl_vector_help_functions.h"
#include "phys_constant.h"
#include "interp_data.h"
#include <omp.h>
```

Data Structures

· struct Ltb model

Functions

```
int set_cur (const gsl_vector *E_vec, int *cur)
```

Setting curvature of model.

int cur_fun (double E)

Calculate curvature from E.

• double Ricci_fun (double E, double E_r, double R, double R_r)

Calculate single values of Ricci Tensor.

• int ltb_model_Ricci (Ltb_model *Itb, gsl_vector *E_r, gsl_matrix *R_r, gsl_matrix *Ric)

Calculate matrix of Ricci Tensor values.

- double rho_fun (double M_r, double R, double R_r)
- int ltb_model_rho (Ltb_model *ltb, gsl_vector *M_r, gsl_matrix *R_r, gsl_matrix *rho_mat)

Calculate matrix of density in LTB model.

• double grr_sq_fun (double R_r, double E)

Calculate root square of radial part of LTB metrics.

int ltb_model_grr_sq (gsl_vector *E, gsl_matrix *R_r, gsl_matrix *grr_sq)

Calculate matrix of root square of radial part of LTB model metrics .

• double exp fun (double R, double R r, double R t, double R rt)

Calculate expansion parameter in LTB model.

• int ltb_model_exp (Ltb_model *ltb, gsl_matrix *R_r, gsl_matrix *R_t, gsl_matrix *R_rt, gsl_matrix *exp)

Calculate matrix of expansion parameters in LTB model.

int get_chi (int cur, gsl_vector *E, gsl_vector *chi_vec)

Calculate vector of chi values.

double fiFlat (double eta)

Calculate values of fi in model with curvature = 0.

double fiSpherical (double eta)

Calculate values of fi in model with curvature > 0.

double fiHyperbolic (double eta)

Calculate values of fi in model with curvature < 0.

double fi (double eta, int cur)

Calculate values of fi.

• double xi_fun (double tB, double M, double E, double t, int cur)

Calculet xi value using value of tB,M,E functions.

• int get_xi (gsl_vector *tB, gsl_vector *M, gsl_vector *t, gsl_vector *E, int cur, gsl_matrix *xi_mat)

Calculate xi matrix using values of tB,M, functions.

• double xiHyperbolic (double eta)

Calculate xi value in model with curvature < 0.

double xiFlat (double eta)

Calculate values of xi in model with curvature = 0.

double xiSpherical (double eta)

Calculate values of xi in model with curvature > 0.

double xi_fun_from_eta (double eta, int cur)

Calculate values of xi.

• Interp data * interp data alloc for Itb (const Ltb model *model, size t n)

Allocating interpolation data for specific Ltb_model.

• int get_min_max_for_interp (const Ltb_model *model, double *max, double *min)

Finding value of max and min for Interp_data.

double eta_fun (double xi, int cur, Interp_data *eta_interp)

Calculate values of eta from xi.

• double R fun (double M, double E, double eta, int cur)

Calculate R (areal radius) value.

 Ltb_model * ltb_model_alloc (size_t _r_size, size_t _t_size, double(*M)(double), double(*E)(double), double(*tB)(double))

Allocating Ltb_model structure.

 Ltb_model * ltb_model_alloc_from_vec (gsl_vector *_r_vec, gsl_vector *_t_vec, double(*M)(double), double(*E)(double), double(*tB)(double))

Allocating Ltb_model structure from r vector and t vector.

Ltb_model * ltb_model_cpy (Ltb_model *src)

Allocating Ltb_model making copy of src.

void ltb_model_free (Ltb_model *model)

Freeing Ltb_model structure.

• int ltb_model_set_fun (Ltb_model *model)

Setting values of tB, M, E function for Ltb_model model.

int ltb_model_set_R (Ltb_model *model, Interp_data *eta_interp)

Calculating matrix of function R(t,r)

- int ltb_model_write_fun (const Ltb_model *model, char *file_name)
- double R_t_analytic_fun (double R, double M, double E, int sgn)

Calculating partial derivative of R over t.

• int ltb_model_R_t (const Ltb_model *model, Interp_data *eta_interp, gsl_matrix *R_t)

Calculating partial derivatives of R over t.

• double R_r_analytic_fun (double R, double R_t, double E, double E_r, double M, double M_r, double tB, double tB_r, double t)

Calculating partial derivative of R over r.

• int ltb_model_R_r (const Ltb_model *model, const gsl_matrix *R_t, const gsl_vector *E_r_vec, const gsl_vector *B_r_vec, gsl_matrix *R_r)

Calculating value of partial derivatives of R over r.

• double R_rt_analytic_fun (double R, double R_r, double R_t, double E_r, double M, double M_r)

Calculating value of partial mixed derivative of R over r and t.

• int ltb_model_R_rt (const Ltb_model *model, const gsl_matrix *R_r, const gsl_matrix *R_t, const gsl_vector *E_r, const gsl_vector *M_r, gsl_matrix *R_rt)

Calculating value of partial mixed derivative of R over r and t.

4.3 src/ltb.h File Reference

Variables

- int tB_norm
- unsigned int chunk_size

4.3.1 Detailed Description

Ltb model function. Details(TODO)

Author

Lukasz Matczynski

Copyright

GNU Public License

Definition in file Itb.h.

4.3.2 Function Documentation

4.3.2.1 int cur_fun (double *E*)

Calculate curvature from E.

Parameters

in	Ε	value of $E(r)$ function from LTB model
----	---	---

Returns

curvature parameter from set {-1,0,1}

Definition at line 170 of file ltb.c.

4.3.2.2 double eta_fun (double xi, int cur, Interp_data * eta_interp)

Calculate values of eta from xi.

If curvature (cur = 0) is flat — use analytic formula for eta(xi). Otherwise use eta_interp parameter for spline interpolation of eta(xi). If cur != 0 && eta_interp == NULL throw up error and return GSL_NAN.

Parameters

in	xi	value of xi
in	cur	curvature parameter
in	eta_interp	Interp_data needed for spline interpolation Using gsl spline interpolation

Returns

Single eta value.

Definition at line 423 of file ltb.c.

4.3.2.3 double exp_fun (double R, double R_r, double R_t, double R_rt)

Calculate expansion parameter in LTB model.

Parameters

in	R_r	partial derivative of areal radius $R\left(\frac{\partial R}{\partial r}\right)$ in point (t,r)
in	R_t	partial derivative of areal radius $R\left(\frac{\partial R}{\partial t}\right)$ in point (t,r)
in	R_rt	partial derivative of areal radius $R\left(\frac{\partial^2 R}{\partial r \partial t}\right)$ in point (t,r)

Returns

single value of expansion parameter

Definition at line 113 of file ltb.c.

4.3.2.4 double fi (double eta, int cur)

Calculate values of fi.

Depending on cur parameter choosing function to calculate fi(eta)

Parameters

in	eta	value of eta
in	cur	curvature parameter

Returns

fi value

See Also

fiFlat() fiSpherical() fiHyperbolic()

4.3.2.5 double fiFlat (double eta)

Calculate values of fi in model with curvature = 0.

Returns

fi value

See Also

fi()

Definition at line 276 of file ltb.c.

4.3.2.6 double fiHyperbolic (double eta)

Calculate values of fi in model with curvature < 0.

Returns

fi value

See Also

fi()

Definition at line 281 of file ltb.c.

4.3 src/ltb.h File Reference

4.3.2.7 double fiSpherical (double eta)

Calculate values of fi in model with curvature > 0.

Returns

fi value

See Also

fi()

Definition at line 271 of file ltb.c.

4.3.2.8 int get_chi (int cur, gsl_vector * E, gsl_vector * chi_vec)

Calculate vector of chi values.

Parameters

ſ	in	cur	curvature parameter
ſ	in	Е	value of $E(r)$ LTB function
ſ	out	chi_vec	vector of chi values

Returns

error code or GSL_SUCCESS;

Definition at line 186 of file ltb.c.

4.3.2.9 int get_min_max_for_interp (const Ltb_model * model, double * max, double * min)

Finding value of max and min for Interp_data.

Parameters

in	model	pointer to Ltb_model
out	max	— max value of points to initialize spline procedure [out] min — mina value of
		points to initialize spline procedure

Returns

GSL_SUCCESS or error code

Definition at line 344 of file ltb.c.

4.3.2.10 int get_xi (gsl_vector * tB, gsl_vector * tH, gsl_vector * t, gsl_vector * t, gsl_vector * t, gsl_vector * the first cur, gsl_matrix * xi_mat)

Calculate xi matrix using values of tB,M, functions.

If cur parameter is not in {-1,0,1}, return GSL_NAN and throw up error

Parameters

Generated on Tue Sep 10 2013 17:59:34 for ltbToolkit-1.0 by Doxygen

in	tB	values of tB function
in	М	values of M function
in	Ε	values of <i>E</i> function
in	t	values of time coordinates
out	xi_mat	values of xi

Returns

GSL_SUCESS or error code

See Also

xi_fun_from_eta()

Definition at line 231 of file ltb.c.

4.3.2.11 double grr_sq_fun (double R_r , double E)

Calculate root square of radial part of LTB metrics.

Parameters

in	R_r	partial derivative of areal radius $R\left(\frac{\partial R}{\partial r}\right)$ in point (t,r)
in	Е	value of $E(r)$ LTB function

Returns

value or sqrt of radial part of LTB metrics

Definition at line 76 of file ltb.c.

4.3.2.12 Interp_data* interp_data_alloc_for_ltb (const Ltb_model * model, size_t n)

Allocating interpolation data for specific Ltb_model.

Parameters

in	model	pointer to Ltb_model
in	n	numbers of point to initialize spline

Returns

pointer to Interp_data* (or null pointer)

Definition at line 396 of file ltb.c.

4.3.2.13 Ltb_model* ltb_model_alloc (size_t _r_size, size_t _t_size, double(*)(double) M, double(*)(double) E, double(*)(double) tB)

Allocating Ltb_model structure.

 r_size and t_size have to be > 0 otherwise throw up error and return NULL ptr. If can't allocate any of Ltb_model pointers return NULL.

Parameters

in	_r_size	number of <i>r</i> points (radial coordinates)
in	_t_size	number of <i>t</i> points (time coordinates)
in	М	pointer to $M(r)$ function
in	Е	pointer to $E(r)$ function
in	tB	pointer to tB(r) function

Returns

pointer to Ltb_model

See Also

```
ltb_model_alloc_from_vec()
ltb_model_cpy()
```

Definition at line 519 of file ltb.c.

```
4.3.2.14 Ltb_model* ltb_model_alloc_from_vec ( gsl_vector * _r_vec, gsl_vector * _t_vec, double(*)(double) M, double(*)(double) E, double(*)(double) tB )
```

Allocating Ltb_model structure from r vector and t vector.

After allocating Ltb_model with ltb_model_alloc() function (with r parameter equal to $_r_vec->$ size and t parameter to $_t_vec->$ size) copy $_r_vec$ and $_t_vec$ to Ltb_model $_r_vec$ and $_t_vec$. If copying data fail throw up error and return null.

Parameters

in	_r_vec	vector of <i>r</i> values (radial coordinate)
in	_t_vec	vector of t values (time coordinate)
in	М	pointer to $M(r)$ function
in	Ε	pointer to $E(r)$ function
in	tB	pointer to tB(r) function

Returns

pointer to Ltb_model

See Also

```
ltb_model_alloc()
ltb_model_cpy()
```

Definition at line 597 of file ltb.c.

```
4.3.2.15 Ltb_model* ltb_model_cpy ( Ltb_model * src )
```

Allocating Ltb_model making copy of src.

Allocate Ltb_model with ltb_model_alloc() function, after this copying of data from Ltb_model *src to newly created. If copying of any data fail throw up error and return NULL.

Parameters

in	src	Ltb_model to copy

Returns

pointer to Ltb_model

See Also

```
ltb_model_alloc_from_vec()
ltb_model_alloc()
```

Definition at line 634 of file ltb.c.

```
4.3.2.16 int ltb_model_exp ( Ltb_model * ltb, gsl_matrix * R_r, gsl_matrix * R_t, gsl_matrix * R_rt, gsl_matrix * exp )
```

Calculate matrix of expansion parameters in LTB model.

Parameters

in	Itb	pointer to Ltb_model (using ltb->R_mat)
in	R_r	partial derivative of areal radius $R\left(\frac{\partial R}{\partial r}\right)$ in point (t,r)
in	R_t	partial derivative of areal radius $R\left(\frac{\partial R}{\partial t}\right)$ in point (t,r)
in	R_rt	partial derivative of areal radius $R\left(\frac{\partial^2 R}{\partial r \partial t}\right)$ in point (t,r)
out	ехр	matrix of expansion parameters

Returns

error code or GSL SUCCESS;

See Also

expansion_fun()

Definition at line 119 of file ltb.c.

4.3.2.17 void ltb_model_free (Ltb_model * model)

Freeing Ltb_model structure.

Parameters

j	n	model	pointer to Ltb_model

Definition at line 689 of file ltb.c.

4.3.2.18 int ltb_model_grr_sq ($gsl_vector * E$, $gsl_matrix * R_r$, $gsl_matrix * grr_sq$)

Calculate matrix of root square of radial part of LTB model metrics .

Parameters

4.3 src/ltb.h File Reference 21

in	Е	value of $E(r)$ LTB function
in	R_r	partial derivative of areal radius $R\left(\frac{\partial R}{\partial r}\right)$ in point (t,r)
out	matrix	of grr_sq values

Returns

error code or GSL_SUCCESS;

See Also

grr_sq_fun()

Definition at line 87 of file ltb.c.

4.3.2.19 int ltb_model_R_r (const Ltb_model * model, const gsl_matrix * R_t, const gsl_vector * E_r_vec, const gsl_vector * B_r_vec, gsl_matrix * R_r)

Calculating value of partial derivatives of R over r.

Parameters

in	R	areal radius value
in	R_t	partial derivative of R over t
in	Е	LTB E(r) function
in	E_r	derivative of $E(r)$ function
in	М	LTB M(r) function
in	M_r	derivative of $M(r)$ function
in	tB	LTB <i>tB(r)</i> function
in	tB_r	derivative of $tB(r)$ function
out	R_r	matrix of partial derivative of R over r

Returns

GSL SUCCESS or error code

See Also

Itb_model_R_r_analytic_fun()

Definition at line 910 of file ltb.c.

4.3.2.20 int ltb_model_R_rt (const Ltb_model * model, const gsl_matrix * R_r, const gsl_matrix * R_t, const gsl_vector * E_r, const gsl_vector * M_r, gsl_matrix * R_rt)

Calculating value of partial mixed derivative of R over r and t.

Parameters

in	model	pointer to Ltb_model
in	R_r	partial derivative of R over t
in	R_t	partial derivative of R over t
in	E_r	derivative of $E(r)$ function

i	n	M_r	derivative of $M(r)$ function
01	ut	R_rt	matrix of mixed partial derivative

Returns

GSL_SUCCESS or error code

See Also

R_rt_analytic_fun()

Definition at line 955 of file ltb.c.

4.3.2.21 int ltb_model_R_t (const Ltb_model * model, Interp_data * eta_interp, gsl_matrix * R_t)

Calculating partial derivatives of R over t.

Parameters

in	1	model	pointer to Ltb_model
in	1	eta_interp	pointer to Interp_data needed for calculating sign of derivative.
ou	t	R_t	matrix of derivatives

Returns

GSL_SUCCESS or error code

See Also

R_t_analytic_fun()

Definition at line 860 of file ltb.c.

4.3.2.22 int ltb_model_rho (Ltb_model * ltb, gsl_vector * M_r, gsl_matrix * R_r, gsl_matrix * rho_mat)

Calculate matrix of density in LTB model.

All pointers should be allocated otherwise return GSL_EFAULT. All matrix should have equals dimensions all vector should have size equal matrices second dimension otherwise return GSL_EBADLEN.

Parameters

in	Itb	pointer to Ltb_model (using ltb->R_mat)
in	M_r	first derivative of $M(r)$ function in point r
in	R_r	partial derivative of areal radius $R\left(\frac{\partial R}{\partial r}\right)$ in point (t,r)
out	rho_mat	matrix of density

Returns

error code or GSL_SUCCESS;

See Also

rho_fun()

Definition at line 47 of file ltb.c.

4.3 src/ltb.h File Reference 23

```
4.3.2.23 int ltb_model_Ricci ( Ltb_model * ltb, gsl_vector * E_r, gsl_matrix * R_r, gsl_matrix * Ric )
```

Calculate matrix of Ricci Tensor values.

All pointers should be allocated otherwise return GSL_EFAULT. All matrix should have equals dimensions all vector should have size equal matrices second dimension otherwise return GSL_EBADLEN.

Parameters

in	Itb	pointer to Ltb_model (using ltb->R_mat)
in	E_r	first derivative of E
in	R_r	partial derivative over r of R
out	Ric	pointer to Ricci matrix

Returns

```
error code or GSL_SUCCESS;
```

See Also

Ricci_fun()

Definition at line 13 of file ltb.c.

```
4.3.2.24 int ltb_model_set_fun ( Ltb model * model )
```

Setting values of tB, M, E function for Ltb_model model.

Calculating values of LTB functions (M, E, tB) using pointers tu function $model->M_fun$, $model->E_fun$, $model->tB_fun$. If one of this pointers is NULL return GSL_EFAULT. Calculated values are stored in Ltb_model gsl_vectors (M_vec , E_vec and tB_vec). For tB is calculate $model->tB_max$ if global parameter tB_norm is set values in tB_vec will be normalized ($gsl_vector_max(tB_vec) == 0$). Depending on E_vec curvature parameter is calculated (E < 0 - cur = 1, E > 0 - cur = -1, E == 0 cur=0, otherwise error will be throw up and cur == -999).

Parameters

in	model	pointer to Ltb model
		_

Returns

GSL_SUCCESS or error code

See Also

```
ltb_model_alloc()
ltb model set R
```

Definition at line 730 of file ltb.c.

```
4.3.2.25 int ltb_model_set_R ( Ltb_model * model, Interp_data * eta_interp )
```

Calculating matrix of function R(t,r)

eta_interp pointer is needed to calculate eta in curved model. If you only interested in flat model you can pass NULL in place of eta_interp.

Parameters

in	model	pointer to Ltb_model
in	eta_interp	pointer to Inter_data structure

Returns

GSL_SUCCESS or error code

See Also

```
ltb_model_set_fun()
ltb_model_alloc()
```

Definition at line 472 of file ltb.c.

```
4.3.2.26 int ltb_model_write_fun ( const Ltb_model * model, char * file_name )
```

Write basis function E,tB,M of Ltb_model model to ascii file file_name

Writing to file content of r_vec , M_vec , E_vec , tB_vec in four columns.

Parameters

in	model	pointer to Ltb_model with functions to write
in	file_name	name of file

Returns

GSL_SUCCESS or error code

See Also

ltb_model_write_fun()

Definition at line 793 of file ltb.c.

4.3.2.27 double R_fun (double M, double E, double eta, int cur)

Calculate R (areal radius) value.

Parameters

in	М	value of $M(r)$ function
in	Е	value of $E(r)$ function
in	tB	value of $tB(r)$ function
in	eta	value of eta
in	cur	value of curvature parameter

Returns

value of R

See Also

ltb_model_set_R()

Definition at line 454 of file ltb.c.

4.3 src/ltb.h File Reference 25

4.3.2.28 double R_r analytic_fun (double R, double R_t , double E, do

Calculating partial derivative of R over r.

Parameters

in	R	areal radius value
in	М	value of $M(r)$ function
in	Е	value of <i>E(r)</i> function
in	sgn	sign of derivative (have to be calculated separately)

Returns

Partial derivative of R over r

See Also

ltb_model_R_r()

Definition at line 894 of file ltb.c.

4.3.2.29 double R_r t_analytic_fun (double R, double R_r , double R_r , double R_r , double R_r , double R_r)

Calculating value of partial mixed derivative of R over r and t.

Parameters

in	R	areal radius value
in	R_r	partial derivative of R over t
in	R_t	partial derivative of R over t
in	E_r	derivative of $E(r)$ function
in	М	LTB M(r) function
in	M_r	derivative of $M(r)$ function

Returns

value of partial mixed derivative of R over r and t

See Also

ltb_model_R_rt()

Definition at line 950 of file ltb.c.

4.3.2.30 double R_t _analytic_fun (double R, double M, double E, int sgn)

Calculating partial derivative of R over t.

Parameters

in	R	areal radius value
in	М	value of $M(r)$ function
in	Е	value of $E(r)$ function
in	sgn	sign of derivative (have to be calculated separately)

Returns

Partial derivative of R over t

See Also

ltb_model_R_t()

Definition at line 822 of file ltb.c.

4.3 src/ltb.h File Reference 27

4.3.2.31 double rho_fun (double M_r , double R, double R_r)

Calculate density in point (t,r).

Calculate density using equation [?]:

$$\rho = \frac{M_{,r}}{4\pi R^2 R_{,r}}$$

Parameters

	M_r	first derivative of $M(r)$ function in point r
Ī	R	value of areal radius in point (t,r)
Ī	R_r	partial derivative of areal radius $R\left(\frac{\partial R}{\partial r}\right)$ in point (t,r)

Returns

value of density

See Also

ltb_model_rho()

Definition at line 42 of file ltb.c.

4.3.2.32 double Ricci_fun (double E, double E_r, double R, double R_r)

Calculate single values of Ricci Tensor.

Parameters

in	E	value of LTB $E(r)$ function
in	E_r	first derivative of E
in	R	areal radius
in	R_r	partial derivative over r of R

Returns

value of Ricci Tensor (double)

Definition at line 8 of file ltb.c.

4.3.2.33 int set_cur (const gsl_vector * E_vec, int * cur)

Setting curvature of model.

Checking all values of E gsl_vector If all values have the same sign set cur parameter and return GSL_SUCCESS. If E values have different sign set cur parameter to error value -999 and return LTB_ECURV.

Parameters

in	Ε	vector of values of $E(r)$ LTB function
out	cur	curvature parameter

Returns

GSL_SUCCESS or LTB_ECURV

See Also

set_cur()

Definition at line 152 of file ltb.c.

4.3.2.34 double xi_fun (double tB, double M, double E, double t, int cur)

Calculet xi value using value of tB,M,E functions.

Parameters

in	tB	value of tB function
in	М	value of <i>M</i> function
in	Е	value of <i>E</i> function
in	t	value of time coordinate
in	cur	curvature parameter

Returns

value of xi

Definition at line 210 of file ltb.c.

4.3.2.35 double xi_fun_from_eta (double eta, int cur)

Calculate values of xi.

Depending on cur parameter choosing function to calculate xi(eta)

Parameters

in	eta	value of eta
in	cur	curvature parameter

Returns

fi value

See Also

xiFlat() xiSpherical() xiHyperbolic()

Definition at line 307 of file ltb.c.

4.3.2.36 double xiFlat (double eta)

Calculate values of xi in model with curvature = 0.

Returns

xi value

See Also

xi_fun_from_eta()

Definition at line 328 of file ltb.c.

```
4.3.2.37 double xiHyperbolic ( double eta )
```

Calculate xi value in model with curvature < 0.

Returns

xi value

See Also

```
xi_fun_from_eta()
```

Definition at line 333 of file ltb.c.

```
4.3.2.38 double xiSpherical (double eta)
```

Calculate values of xi in model with curvature > 0.

Returns

xi value

See Also

```
xi_fun_from_eta()
```

Definition at line 338 of file ltb.c.

4.4 src/ltb error.h File Reference

Errors Handling macros and functions.

```
#include <gsl/gsl_errno.h>
#include <gsl/gsl_nan.h>
```

Macros

- #define CHECK STAT(status)
- #define CHECK PTR(stptr, errno)
- #define CHECK_M_DIM(m1, m2, reason)
- #define CHECK_SIZE(s1, s2, reason)

Enumerations

```
• enum { LTB_ECURV = 100, LTB_EEFUN = 101 }
```

4.4.1 Detailed Description

Errors Handling macros and functions.

Definition in file https://liber.ncb/.

4.4.2 Macro Definition Documentation

4.4.2.1 #define CHECK_M_DIM(m1, m2, reason)

Value:

Checking if two matrices have the same shape

Definition at line 37 of file ltb_error.h.

4.4.2.2 #define CHECK_PTR(stptr, errno)

Value:

Checking pointer macro - if pointer is NULL return specific error errno

Definition at line 30 of file ltb_error.h.

4.4.2.3 #define CHECK_SIZE(s1, s2, reason)

Value:

```
if (s1 != s2) { \
    gsl_error(reason,__FILE__, __LINE__, GSL_EBADLEN); \
    return GSL_EBADLEN; \
}
```

Checking if two values differ

Definition at line 44 of file ltb_error.h.

4.4.2.4 #define CHECK_STAT(status)

Value:

```
if(status) { \
          return status; \
     }
```

Checking status macro - if status is > 0 then return status

Definition at line 23 of file ltb_error.h.

4.4.3 Enumeration Type Documentation

4.4.3.1 anonymous enum

Ltb erro codes

Enumerator

LTB_ECURV Wrong value of curvature

LTB_EEFUN E(r)<-0.5 metric degeneration

Definition at line 15 of file ltb_error.h.

4.5 src/ltb_integrate.h File Reference

Functions for integrating.

```
#include <gsl/gsl_matrix.h>
#include "ltb_error.h"
```

Functions

• int gsl_matrix_integrate_trap_range (const gsl_matrix *mat, double dr, unsigned int rstart, unsigned int rstop, unsigned int tstart, unsigned int tstop, gsl_matrix *integral)

Integrate using trapezoid method points kept in gsl_matrix.

4.5.1 Detailed Description

Functions for integrating. Details(TODO)

Author

Lukasz Matczynski

Copyright

GNU Public License

Definition in file ltb_integrate.h.

4.5.2 Function Documentation

4.5.2.1 int gsl_matrix_integrate_trap_range (const gsl_matrix * mat, double dr, unsigned int rstart, unsigned int rstop, unsigned int tstart, unsigned int tstop, gsl_matrix * integral)

Integrate using trapezoid method points kept in gsl matrix.

This function is needed for calculating radial proper length d(t,r). To get it we mast integrate points in rows of grr_sq matrix (ltb_model_grr_sq()). To integrate l'm using trapezoid method:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \sum_{i=1}^{n} (f(x_i) + f(x_{i+1}))$$

Where h size of integration interval. When r dimension of matrix grr_sq is n we calculate n integrals

$$\int_{m[0]}^{m[0]} f(x) dx, \int_{m[0]}^{m[1]} f(x) dx, ..., \int_{m[0]}^{m[n-1]} f(x) dx$$

Where m[i] are matrix elements. First of this integrals is always 0.

Parameters

in	mat	matrix to integrate
in	dr	size of integration interval
in	rstart	element of row from which start to integrate
in	rstop	element of row on which stop integrating
in	tstart	row from which start to integrate
in	tstop	row on which stop integrating
out	integral	matrix where result of integration is kept

See Also

```
ltb_model_grr_sq()
```

Definition at line 3 of file ltb_integrate.c.

4.6 src/macros.h File Reference

Additional helpful macros.

4.6.1 Detailed Description

Additional helpful macros.

Definition in file macros.h.

4.7 src/phys_constant.h File Reference

Physics constant.

```
#include "macros.h"
```

Macros

- #define G_DEF 6.67300e-11 * 1.98892e40 / 3.08568025e25 / (299792458.0*299792458.0)
 - Default G parameter c=1, Gpc / 10^{\land} $10M_{sun}$.
- #define H_0_DEF 100.0 / 299792.458 * 1000

Default Hubble parameter c=1 units $Gpc*h^{\setminus}\{-1\}$.

• #define C_DEF 299792458.0;

Default c — speed of light.

Functions

void export_phys_const (char *file_name)

Write physical constant to file.

• void set_phys_const (double G_in, double H_0_in, double c_in)

Set physical constant.

Variables

- static const double pi = 3.14159265
- double G_grav
- double H 0
- double c
- static const double Gyr_per_Gpc = 3.08568025e16 / 299792458.0 / (365.25*24.0*3600.0)

Gyr/Gpc value Parameter used to conver time values to distance values.

4.7.1 Detailed Description

Physics constant.

Definition in file phys_constant.h.

4.7.2 Function Documentation

4.7.2.1 void export_phys_const (char * file_name)

Write physical constant to file.

Parameters

	<i>e</i> :1	
in	l tile	

Definition at line 8 of file phys_constant.c.

4.7.2.2 void set_phys_const (double G_in , double H_0in , double C_in)

Set physical constant.

Parameters

in	G_in	Gravity Const.
in	H_0_in	actual value of Hubbel Parameter
in	c_in	speed of light

Definition at line 20 of file phys_constant.c.

4.7.3 Variable Documentation

4.7.3.1 double c

c speed of light

Definition at line 6 of file phys_constant.c.

4.7.3.2 double G_grav

Gravity constant G

Definition at line 4 of file phys_constant.c.

4.7.3.3 double H_0

Hubbel parameter

Definition at line 5 of file phys_constant.c.

4.7.3.4 const double pi = **3.14159265** [static]

pi constant

Definition at line 10 of file phys_constant.h.

Index

acc	grr_sq_fun
Interp_data, 5	ltb.h, 18
С	gsl_matrix_integrate_trap_range
phys_constant.h, 33	ltb_integrate.h, 31
CHECK_M_DIM	H 0
Itb_error.h, 30	phys constant.h, 33
CHECK PTR	priys_constant.ri, 55
Itb_error.h, 30	Interp data, 5
CHECK_SIZE	acc, 5
ltb_error.h, 30	cur, 5
CHECK_STAT	max, 5
ltb_error.h, 30	min, 6
check_interp_data	spline, 6
interp_data.h, 11	x, 6
cur	y, 6
Interp_data, 5	interp_data.h
cur_fun	check_interp_data, 11
ltb.h, 15	dxi, 12
dxi	interp_data_alloc, 11
interp data.h, 12	interp_data_free, 12
F ,	set_eta_max, 12
E_fun	set_eta_min, 12
Ltb_model, 7	interp_data_alloc interp_data.h, 11
E_vec	interp_data_alloc_for_ltb
Ltb_model, 7	Itb.h, 18
eta_fun	interp_data_free
ltb.h, 15	interp_data.h, 12
exp_fun	P ,
Itb.h, 15	LTB_ECURV
export_phys_const phys_constant.h, 33	ltb_error.h, 30
phys_constant.n, oo	LTB_EEFUN
fi	Itb_error.h, 30
ltb.h, 16	ltb.h
fiFlat	cur_fun, 15
ltb.h, 16	eta_fun, 15
fiHyperbolic	exp_fun, 15
Itb.h, 16	fi, 16
fiSpherical	fiFlat, 16
ltb.h, 16	fiHyperbolic, 16 fiSpherical, 16
G_grav	get chi, 17
phys constant.h, 33	get min max for interp, 17
get_chi	get_xi, 17
ltb.h, 17	grr_sq_fun, 18
get_min_max_for_interp	interp data alloc for ltb, 18
Itb.h, 17	ltb_model_R_r, 21
get_xi	Itb_model_R_rt, 21
Itb.h, 17	Itb_model_R_t, 22

36 INDEX

Itb_model_Ricci, 22	ltb_model_cpy
Itb model alloc, 18	Itb.h, 19
ltb_model_alloc_from_vec, 19	ltb_model_exp
Itb_model_cpy, 19	Itb.h, 20
Itb_model_exp, 20	ltb_model_free
Itb_model_free, 20	Itb.h, 20
Itb_model_grr_sq, 20	ltb_model_grr_sq
ltb_model_rho, 22	ltb.h, 20
Itb_model_set_R, 23	ltb_model_rho
Itb_model_set_fun, 23	Itb.h, 22
ltb_model_write_fun, 24	ltb_model_set_R
R_fun, 24	Itb.h, 23
R_r_analytic_fun, 24	ltb_model_set_fun
R_rt_analytic_fun, 26	ltb.h, 23
R_t_analytic_fun, 26	ltb_model_write_fun
rho_fun, 26	Itb.h, 24
Ricci_fun, 27	
set_cur, 27	M fun
xi_fun, 27	Ltb_model, 7
	M vec
xi_fun_from_eta, 28	Ltb_model, 7
xiFlat, 28	max
xiHyperbolic, 28	Interp_data, 5
xiSpherical, 29	min
ltb_error.h	
LTB_ECURV, 30	Interp_data, 6
LTB_EEFUN, 30	phys constant h
ltb_error.h	phys_constant.h
CHECK_M_DIM, 30	C, 33
CHECK_PTR, 30	export_phys_const, 33
CHECK SIZE, 30	G_grav, 33
CHECK STAT, 30	H_0, 33
Itb_integrate.h	pi, <mark>33</mark>
gsl_matrix_integrate_trap_range, 31	set_phys_const, 33
Ltb_model, 6	pi
	phys_constant.h, 33
E_fun, 7	
E_vec, 7	R_fun
M_fun, 7	ltb.h, 24
M_vec, 7	R_mat
R_mat, 7	Ltb model, 7
r_size, 7	R_r_analytic_fun
r_vec, 7	Itb.h, 24
t_size, 7	R_rt_analytic_fun
t_vec, 7	Itb.h, 26
tB_fun, 8	r size
tB max, 8	Ltb_model, 7
tB vec, 8	R_t_analytic_fun
Itb_model_R_r	Itb.h, 26
Itb.h, 21	
Itb_model_R_rt	r_vec
	Ltb_model, 7
Itb.h, 21	rho_fun
ltb_model_R_t	
14L L 00	Itb.h, 26
Itb.h, 22	Ricci_fun
ltb_model_Ricci	
Itb_model_Ricci Itb.h, 22	Ricci_fun ltb.h, 27
Itb_model_Ricci Itb.h, 22 Itb_model_alloc	Ricci_fun
Itb_model_Ricci Itb.h, 22 Itb_model_alloc Itb.h, 18	Ricci_fun ltb.h, 27
Itb_model_Ricci Itb.h, 22 Itb_model_alloc	Ricci_fun ltb.h, 27
Itb_model_Ricci Itb.h, 22 Itb_model_alloc Itb.h, 18	Ricci_fun ltb.h, 27 set_cur ltb.h, 27

INDEX 37

```
set_eta_min
     interp_data.h, 12
set_phys_const
    phys_constant.h, 33
spline
     Interp_data, 6
src/gsl_vector_help_functions.h, 9
src/interp_data.h, 10
src/ltb.h, 13
src/ltb_error.h, 29
src/ltb_integrate.h, 31
src/macros.h, 32
src/phys_constant.h, 32
t_size
     Ltb_model, 7
t_vec
     Ltb_model, 7
tB_fun
     Ltb_model, 8
tB_max
     Ltb_model, 8
tB_vec
     Ltb_model, 8
Х
     Interp_data, 6
xi_fun
     Itb.h, 27
xi_fun_from_eta
     Itb.h, 28
xiFlat
     Itb.h, 28
xiHyperbolic
     Itb.h, 28
xiSpherical
    Itb.h, 29
     Interp_data, 6
```