

Infinite Recommendation Networks A Data-Centric Approach

Question: Is more data what you need for better recommendation?

Noveen Sachdeva, Mehak Preet Dhaliwal, Carole-Jean Wu, Julian McAuley

UC San Diego & Meta AI

Infinite-width Autoencoder for Recommendation

<u>Premise</u>: Does stretching the hidden layers of an autoencoder till ∞ help in better recommendation?

co-AE

Methodology

- Infinite-width Correspondence: Performing Kernelized Ridge Regression with the Neural Tangent Kernel (NTK) emulates the training of an infinite-width NN for an infinite number of SGD steps.
- X_u is the bag-of-items representation for user u i.e. all the items that u interacted with, and we aim to reconstruct it along with **missing user preferences**
- Due to the infinite-width correspondence, ∞ -AE optimizes in closed-form:

$$\hat{X} = K \cdot (K + \lambda I)^{-1} \cdot X$$
 s.t. $K_{u,v} := \mathbb{K}(X_u, X_v) \quad \forall u, v$

• The optimization has only a single hyper-parameter λ

• Time complexity Training: $\mathcal{O}(U^2 \cdot I + U^{2.376})$ Inference: $\mathcal{O}(U \cdot I)$

• Memory complexity Training: $\mathcal{O}(U \cdot I + U^2)$ Inference: $\mathcal{O}(U \cdot I)$

Experiments

Dataset	NeuMF	GCN	MVAE	EASE	∞-AE
Magazine	13.6	22.5	12.1	22.8	23.0
ML-1M	25.6	28.8	22.1	29.8	32.8
Douban	13.3	16.6	16.1	19.4	24.9
Netflix	12.0		20.8	26.8	30.5*

Table 1: nDCG@10 performance (higher is better) of various recommendation algorithms.

* represents training on 5% random users.

Figure 2: Performance of ∞ -AE with varying depth.

- \bullet ∞ -AE outperforms various state-of-the-art methods, even when trained on just 5% random users
- 1 layer seems to be enough for optimal recommendation performance: common folk-knowledge
- Even though the model is expensive; it is simplistic, easy to implement (thanks, JAX), and the performance is great! But how to scale it up? ③

Distill-CF

Data Distillation for Collaborative Filtering Data

Movies/Ads/Songs...

Idea: Treat the to-be-synthesized data as parameters, and learn them through a bilevel optimization.

Distill-CF

Overview & Challenges

- Challenges:
 - Data consists of **discrete** (u, i, r) tuples: how to optimize?
 - Data is typically extremely sparse
 - Dynamic popularity: some users/items are more popular than others
 - Expensive bilevel optimization
 - Use ∞-AE for closed-form computation of the inner loop
- Optimizes for data-quality rather than quantity

Outer loop — optimize the support set for a fixed learning algorithm

Inner loop — optimize the learning algorithm for a fixed support set

Distill-CF

Experiments

Figure 3: Does Distill-CF outperform other samplers? (Log-scale)

Figure 4: Distill-CF + EASE for the ML-1M dataset.

- Using Distill-CF, we can get 96-105% of full-data performance on as small as 0.1% data sub-samples, leading to as much as ~1000x time speedup!
- Distill-CF works well for the second-best EASE model, even though data was optimized for ∞-AE

Thank you!

For paper, code, and these slides:

noveens.com