Es04B: Circuiti lineari con Amplificatori Operazionali

Gruppo 23M Alessandro Costanzo Ciano, Luca Palumbo

21 novembre 2023

Scopo dell' esperienza

Scopo dell'esperienza di oggi è lo studio di alcuni circuiti esplicativi in cui gli amplificatori operazionali vengono utilizzati sia in modalità lineare, vista anche nella scorsa esperienza, che non lineare. I circuiti che saranno studiati sono l'amplificatore di carica ed un circuito astabile.

Amplificatore di carica

Primo impatto

Il circuito TOT in in esame (fig. 1) è stato realizzato in due fasi: inizialmente montando solo la parte del rilevatore e del formatore con i seguenti valori dei componenti indicati:

$$R_1 = (100 \pm 1) \text{ k}\Omega$$

 $C_T = C_F = (1.00 \pm 0.05) \text{ nF}$

Figura 1: Circuito TOT

In seguito si è inviata in ingresso un'onda quadra di frequenza circa 100 Hz e ampiezza circa 2 Vpp, che simula una iniezione di carica $Q_{in} = C_T \cdot V_{pp,S}$; Si verifica che effettivamente il formatore si comporta da amplificatore invertente, considerando come ingresso l'uscita del rivelatore. Si veda figura 2.

Discriminatore

Si è montato il circuito discriminatore collegandolo in serie ai due precedenti. Utilizzando il secondo generatore di tensione dell'analog discovery è stato inviato un segnale continuo all'ingresso invertente dell'amplificatore operazionale di 60 mV.

Il segnale V_{sh} che ci aspettiamo è:

$$V_{sh} = -\frac{C_T}{C_F} V_{pp,S} e^{-\frac{t}{RC_F}}$$

Figura 2: Segnali V_s (channel 1) e V_{sh} (channel 2)

 V_{discr} invece, a partire dall'impulso positivo in ingresso si mantiene si mantinene a V_{sat} finchè V_{sh} rimane sopra V_{thr} . Ha quindi la forma di un'onda quadra. Entrambi gli andamenti descritti vengono osservati sperimentalmente (fig. 3).

Figura 3: Segnali V_{sh} (channel 1) e V_{discr} (channel 2)

Durata dell'impulso in uscita

Si è misurato la durata dell'impulso d'uscita per un singolo valore di carica iniettata. Per farlo si sono usati i cursori di *waveforms*. Per la posizione del secondo cursore si è prestato cura nel posizionarlo al momento in cui il segnale inizia a decrescere.

L'incertezza associata al posizionamente di ogni cursore è dato da 1/10 del fondo scala (la distanza tra due tacchette mostrate sull'oscilloscopio) moltiplicato per $1/\sqrt{12}$ (l'ipotesi di distribuzione costante).

La misura risulta $T=(374\pm2)$ us

Si osserva in figura 4 che il fronte di discesa non è a scalino. Questo susceede perchè V_{sh} decresce lentamente, quindi si osseva un "transiente" in cui l'operazionale è in regime di linearità.

Ampiezza minima di carica per ottenere un segnale

L'ampiezza minima di carica in ingresso per cui si osserva un segnale all'uscita V_{discr} è stato determinato abbassando gradualmente la tensione V_S fino ad ottenere un segnale in uscita che mostri l'operazionale solo in fase lineare.

Risulta essere $Q_{min} = V_{pp,min}C = (8.6 \pm 0.3) \times 10^{-11}C$. [COME SI INTERPRETA QUESTO?]

0.a Dipendenza di T da Q_{in}

Si è a questo punto misurarto T a diverse ampiezze di ingresso, quindi a diverse Q_{in} La dipendenza di T da Q_{in} è data da:

$$T = RC_F \ln \left(\frac{Q_{in}}{C_F V_{thr}} \right)$$

Figura 4: Misurazione della durata dell'impulso

Figura 5: Grafico di fit e residui normalizzati

Si è effettuato un fit a due parametri con la seguente espressione come modello:

$$T = \tau \ln \left(\frac{Q_{in}}{B} \right)$$

Ci aspettiamo che i due parametri risultino $\tau = (0.100 \pm 0.005) \text{ms}$ e $B = (6.0 \pm 0.3) \times 10^{-11} C$ I risultati del fit sono:

$$\tau = (0.101 \pm 0.001) ms$$
 $B = (5.0 \pm 0.2) \times 10^{-11} C$

Con $\chi^2/ndof = 1.5/5$.

Quindi abbiamo ottenuto $V_{thr} = B/C_F = (50 \pm 3) \text{mV}$, non in accordo con quanto atteso.

1 Multivibratore astabile

Descrizione

Il circuito riportato in figura 6 è un multivibratore astabile, composto da un trigger Shmith invertente con in serie un integratore RC che fa da feedback. V_- supera i valori di soglia in modo ciclico. Il periodo di oscillazione risulterà quindi $T=T_++T_-$ dove:

$$T + = \tau \ln \left(\frac{V_{OH} - \beta V_{OL}}{V_{OH} (1 - \beta)} \right)$$

$$T - = \tau \ln \left(\frac{\beta V_{OH} - V_{OL}}{-V_{OL}(1 - \beta)} \right)$$

con $\tau = R_3 C_1$ e V_{OH} e V_{OL} rispettivamente tensioni rispettivamente massima e minima di V_{out} in saturazione. Abbiamo misurato $V_{OL} = -3.51 \pm 0.03 V$ e $V_{OH} = 4.15 \pm 0.03 V$ (l'incertezza associata è dovuta al fatto che V_{out} ha una leggera pendenza).

I valori che ci attendiamo di T_+ e T_- sono quindi:

$$T_{+,att} = 0.99 \pm 0.04 \text{ms}$$
 $T_{-,att} = 1.14 \pm 0.04 \text{ms}$

Figura 6: Circuito multivibratore astabile

Andamenti

Si è montato il circuito con le seguenti componenti:

$$\begin{array}{lcl} R_1 & = & (9.9 \pm 0.3) \; \mathrm{k}\Omega \\ R_2 & = & (10.0 \pm 0.3) \; \mathrm{k}\Omega \\ R_3 & = & (9.9 \pm 0.3) \; \mathrm{k}\Omega \\ C_1 & = & (98.0 \pm 0.3) \; \mathrm{nF} \end{array}$$

Si osserva in figura 7 che V_{out} risulta un onda quadra. Anche V_+ risulta un'onda quadra ma con l'ampiezza dimezzata. V_- segue invece un andamento determinato dalle seguenti equazioni, a seconda della condizione inizile di V_{out} :

$$V_{-}(t) = V_{OL} + (V_{Th} - V_{OL})e^{\frac{-t}{\tau}}$$

con V_{OL} valore minimo della tensione di uscita V_{out} e V_{Th} e

$$V_{-}(t) = V_{OH} + (V_{OH} + \beta V_{OL})e^{\frac{-t}{\tau}}$$

una volta raggiunte le tensioni V_{TL} e V_{TH} di threshold si osserva rispettivamente una inversione di V_{out} , e dunque $V_{-}(t)$ evolve passando ciclicamente da un equazione all'altra.

I valori massimi e minimi di V_+ e V_- misurati sono:

$$V_{+,max} = V_{-,max} = (2.096 \pm 0.004)V$$
 $V_{+,min} = V_{-,min} = (-1.707 \pm 0.003)V$

Periodo e duty-cycle

Per valutare il duty cycle (fig. 8) di V_+ si è misurato T_+ e T_- considerando soltanto la zona di saturazione (l'opamp per un breve periodo si trova in linearità):

$$T_{+} = 1.09 \pm 0.03 \text{ms}$$
 $T_{-} = 1.03 \pm 0.03 \text{ms}$
$$\text{dutycylce} = \frac{T_{+}}{T_{+} + T_{-}} = 0.51 \pm 0.01$$

Figura 7: Segnali V_{-} (channel 1) e V_{out} (channel 2)

Figura 8: Misura di tempo Segnali V_{-} (channel 1) e V_{out} (channel 2)

Massima frequenza possibile

Vogliamo stimare la massima frequenza del segnale di un onda quadra che è possibile generare. Ricordando che lo slew rate tipico dell'operazionale usato è $13V/\mu s$ possiamo pensare di dividerlo per la differenza $V_{+,max}-V_{-,min}$. Si otterrebbe così una frequenze dell'ordine del mega hertz. A questa frequenza si dovrebbe avere il fronte di discesa che inizia appena termina il fronte di salita. Questa però è una sovrastima della frequenza massima troppo larga.

Sostituendo le resistenze e condensatori con componenti dal valore nominale più basso, si osserva che il segnale generato non è più propriamente un "onda quadra". Infatti nel fronte di salita si osserva la velocità di risposta. Questo è evidente in 9, dove si è usato $R=1k\Omega$ e C=1nF. Misurando il periodo in queste condizioni si ottiene $T'=28\pm 2\mu s$, che implica una frequenza massima per le onde quadre di $f'=35\pm 3 {\rm kHz}$

Si osserva inoltre che a basse frequenze il periodo non è più lineare con il parametro τ , Infatti diminuendo la quantità τ di un fattore 1000, il periodo diminusice solo di un fattore $T/T'=75\pm5$. Il parametro che entra in gioco per spiegare questa non linarità è la capacità parassita del opamp.

Figura 9: Resistenza $R=1k\Omega$ nominale, condensatore C=1nFnominale