Sistema de Rastreamento Solar

Eficiência na geração de energia limpa

Julia Pessoa Souza
Universidade de Brasília - UNB
Brasília-DF, Brasil
juliapessoasouza@gmail.com

Victor Barreto Batalha Universidade de Brasília - UNB Brasília-DF, Brasil victor.batalha@hotmail.com

Resumo— A busca por eficiência e a melhor obtenção de energia tem se tornado uma constante no estudo da geração de energia solar e com o uso da MSP430 pode-se fazer um modelo de rastreamento de luz para placas solares.

Palavras chaves— energia; eficiência; MSP430;

I. Justificativa

Nos tempos atuais, as discussões no viés de energia renovável, em virtude do aumento do aquecimento global do planeta, têm sido crescentes. O sol é considerado uma fonte de energia sustentável e inesgotável do ponto de vista humano. Tendo em vista a necessidade do maior aproveitamento desta fonte de energia uma solução é o rastreamento de luz para placas solares. Esta é uma forma eficiente de aumentar o aproveitamento da energia [5].

O sistema proposto otimiza a captação de energia solar por meio do rastreamento de luz. Assim, a mesma placa fotovoltaica pode gerar mais eletricidade ocupando a mesma área, o que aumenta o aproveitamento da energia e a eficiência da geração de eletricidade por meio desta fonte. O sistema diminui o ângulo de incidência entre a luz e o painel solar, aumentando a porcentagem da produção de energia daquele painel [1]. Isso diminui a possível perda de aproveitamento da luz por conta da mudança de posição do sol ao longo do dia[2].

Os materiais necessários para se construir o sistema são 4 sensores LDR, 2 resistores de 10k Ohms e 2 de 220 Ohms, 2 servo-motores, jumpers, uma protoboard para a montagem do circuito auxiliar e da placa MSP430 para configurar a lógica programacional.

O sistema de seguimento de luz solar consegue aumentar em até 50% a captação de luz no verão e 20% no inverno [6]. Além de ser necessário menos espaço para gerar a mesma quantidade de energia, um sistema de rastreamento solar também é capaz de entregar a potência de forma mais

uniforme, ou seja, há uma máxima produção de energia por mais tempo ao longo do dia. Conclui-se que o sistema tem capacidade para aproveitar melhor a captação desta fonte de energia[3].

II. DESENVOLVIMENTO

A. Hardware

O hardware do projeto descrito foi representado em um diagrama de blocos para facilitar a observação.

Figura.1.- Diagrama de Blocos

1.) Sensor LDR

A identificação do surgimento e da localização da luz será feita pelo sistema através do sensor chamado LDR, acoplando o mesmo junto de um resistor no circuito final.

Figura.2-Sensor LDR

O LDR significa resistor dependente de luz, ou seja, quanto maior a incidência de luz menor a resistência do

sensor[7]. Tal componente é constituído de um semicondutor de alta resistência, que ao receber uma grande quantidade de fótons oriundos da luz incidente, ele absorve elétrons que melhoram sua condutibilidade, reduzindo assim sua resistência.

2.) MSP 430

Como em nossa disciplina trabalhamos com o MSP430, trabalharemos, como sugerido pelo professor, com a versão MSP-EXP430G2. Toda a programação lógica para a resolução do sistema e do problema proposto será embarcada e coloca nessa parte do sistema, sendo responsável por parte da simulação em código via o software Code Composer Visual da Texas Instruments [4].

Figura.3- MSP430

3.) Servo Motor

O motor DC foi escolhido devido a facilidade em diversas situações como por exemplo poder operar em constante reversão, operar em corrente contínua, sua velocidade ser ajustável e seu alto torque na partida, podendo assim, movimentar a placa mais rapidamente [8].

Figura.4 - Servo Motor

Foi realizada a montagem de um esquemático do circuito proposto no Fritzing para melhor visualização e simulação do sistema sendo representado na figura a seguir.

Figura.5 - Esquemático do Circuito no Fritzing

O circuito representado foi montado e testado em conjunto com o código feito, como mostrado na imagem a seguir.

Figura.6 - Circuito montado.

A partir do circuito montado desenvolveu-se uma estrutura leve com papelão, a qual possibilitou a movimentação dos motores em todos os eixos com facilidade. A estrutura foi feita com a finalidade do protótipo da placa poder se movimentar

de acordo com a luz do sol, em todas as direções necessárias. Assim, o motor da horizontal pode realizar voltas completas, enquanto o motor que está na vertical só pode girar até um ângulo limite. Para a realização da estrutura os ângulos foram testados e limitados de acordo com sua necessidade.

Figura.7- Estrutura

Figura.8-Estrutura

Figura.9-Estrutura

B. Software

O código do projeto foi feito usando linguagem C++, foi testado no software Code Composer, para MSP430. O esquemático do circuito foi feito nos programas Proteus e Fritzing para a realização de testes. O código foi feito definindo limites para os dois motores, para evitar que a placa solar realize uma rotação completa. Foi utilizada uma média dos valores dos sensores superiores, dos inferiores, dos da parte esquerda e dos da parte direita. Assim a rotação de cada servo motor pode ser melhor definida. Se a média dos valores superiores estiver maior do que a dos inferiores, o motor que está posicionado na horizontal, gira um pouco mais para o lado superior, e, no caso contrário, gira mais para o lado inferior. O motor que está posicionado na vertical gira mais para o lado direito se a média do lado direito estiver maior, e mais para o esquerdo no caso contrário. Assim o motor vai girando até chegar ao seu limite definido. O limite é testado no circuito até atingir um valor razoável para a rotação da placa. O código foi compilado com sucesso no software Energia. Na figura pode-se observar a quantidade de memória utilizada.

III. RESULTADOS

Após a montagem do circuito e o carregamento do código do software para a placa MSP430, foi observado o funcionamento parcial do projeto. Apenas dois sensores LDR fazem os motores se movimentarem de acordo com a luz incidida sobre ele. Porém, na ausência de luz, todos os sensores colaboram para a movimentação conjunta dos motores. Os motores se movem lentamente de acordo com o tempo proposto no código, dependendo da luz emitida sobre o sensor superior direito. Segue descrito nas referências, item 10, o link do funcionamento do projeto já com a respectiva estrutura.

IV. Referência

- [1] http://www.byd.com/br/pv/sts.html
- [2] Projeto de um sistema de rastreamento solar baseado na teoria de controle por Servovisão - CEFET/RJ
- [3] Estudo comparativo entre métodos de rastreamento solar aplicados a sistemas fotovoltaicos
- [4] Manual do MSP430 disponível em:
 https://github.com/Victor-Barreto-Batalha/Microcontroladores-1/tree/master/Refs/MSP430
- 5] "Energia solar", um breve resumo", Aneel. Acesso em 04/09/2017.

 Disponível em:

 http://www2.aneel.gov.br/aplicacoes/atlas/pdf/03-energia-solar(3).pdf
- [6] "Em que consiste um sistema seguidor solar fotovoltaico", Portal Energia, Acesso em 02/04/2018. Disponível em https://www.portal-energia.com/em-que-consiste-sistema-seguidor-solar-fotovoltaico/
- [7] Material sobre o LDR disponível em: https://portal.vidadesilicio.com.br/sensor-de-luz-com-ldr/
- [8] Material sobre o Motor DC disponível em: http://www.kalatec.com.br/o-que-sao-motores-dc/
- [9] Link do Vídeo: https://mega.nz/#1q85EhOrL!hnoXV5Q-N1CXHH4ek--PBApmOV4N b10Fr4HPirYhO5Q >
- [10] Link do Código: https://github.com/Victor-Barreto-Batalha/Microcontroladores/blob/master/Ponto%20de%20controle/Solar_tracker_code