Reflektionen & Coreflektionen

Topologie Seminar

Fabian Gabel

Sommersemester 2017

Das (sportliche) Programm – Etappen(ziele)

Grundlagen der Kategorientheorie (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen

Inhalt

Grundlagen der Kategorientheorie (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu ???

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu Funktoren.

Definition

Seien \mathcal{C} und \mathcal{D} Kategorien und $\mathcal{F}_1 \colon |\mathcal{C}| \to |\mathcal{D}|$ and $\mathcal{F}_2 \colon \operatorname{Mor}_{\mathcal{C}} \to \operatorname{Mor}_{\mathcal{D}}$. Dann nennen $\mathcal{F} = (\mathcal{C}, \mathcal{D}, \mathcal{F}_1, \mathcal{F}_2)$ einen (*covarianten*) Funktor von \mathcal{C} nach \mathcal{D} , falls folgende Bedingungen erfüllt sind:

- F1) $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(A), \mathcal{F}(B)]_{\mathcal{D}}$.
- F2) $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$, falls $f \circ g$ definiert ist.
- F3) $\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{C}|$.

Abkürzend: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$. (Homomorphismus von Funktoren)

Vokabelheft

Objekte verhalten sich zu Morphismen wie Kategorien zu Funktoren.

Definition

Seien \mathcal{C} und \mathcal{D} Kategorien und $\mathcal{F}_1 \colon |\mathcal{C}| \to |\mathcal{D}|$ and $\mathcal{F}_2 \colon \operatorname{Mor}_{\mathcal{C}} \to \operatorname{Mor}_{\mathcal{D}}$. Dann nennen $\mathcal{F} = (\mathcal{C}, \mathcal{D}, \mathcal{F}_1, \mathcal{F}_2)$ einen (*covarianten*) Funktor von \mathcal{C} nach \mathcal{D} , falls folgende Bedingungen erfüllt sind:

- F1) $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(A), \mathcal{F}(B)]_{\mathcal{D}}$.
- F2) $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$, falls $f \circ g$ definiert ist.
- F3) $\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{C}|$.

Abkürzend: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$. (Homomorphismus von Funktoren) Kontravarianter Funktor, falls modifiziert:

- F2') $f \in [A, B]_{\mathcal{C}}$ impliziert $\mathcal{F}(f) \in [\mathcal{F}(B), \mathcal{F}(A)]_{\mathcal{D}}$.
- F3') $\mathcal{F}(f \circ g) = \mathcal{F}(g) \circ \mathcal{F}(f)$, falls $f \circ g$ existiert.

a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ F \circ \Delta_{\mathcal{C}^*}$

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ F \circ \Delta_{\mathcal{C}^*}$
- e) Identitätsfunktor $\mathcal{I}_{\mathcal{C}}$: $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ definiert durch $\mathcal{F}(X) = X$ und $\mathcal{F}(f) = f$.

- a) Konstanter Funktor: \mathcal{C}, \mathcal{D} Kategorien, $X \in |\mathcal{D}|$. $\forall A \in |\mathcal{C}| \text{ und } \forall f \in \text{Mor}_{\mathcal{C}} \text{ durch } \mathcal{F}(A) \coloneqq X \text{ und } \mathcal{F}(f) \coloneqq 1_X$ (kovariant und contravariant).
- b) Vergissfunktor: \mathcal{C} ein (topologisches) Konstrukt: $\mathcal{F} \to \operatorname{Set}$ definiert durch $\mathcal{F}((X,\xi)) = X$ und $\mathcal{F}(f) = f$.
- c) Dualisierender Funktor: $\mathcal{F}: \mathcal{C} \to \mathcal{C}^*$ definiert durch $\mathcal{F}(X) = X$ und $F(f) = f^*$ (contravariant).
- d) Dualer Funktor: $\mathcal{F} \colon \mathcal{C} \to \mathcal{D}$ ein Funktor: $\mathcal{F}^* \coloneqq \Delta_{\mathcal{D}} \circ F \circ \Delta_{\mathcal{C}^*}$
- e) Identitätsfunktor $\mathcal{I}_{\mathcal{C}}$: $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ definiert durch $\mathcal{F}(X) = X$ und $\mathcal{F}(f) = f$.
- f) Inklusionsfunktor: Sei $\mathcal C$ eine Kategorie und $\mathcal A$ eine $\mathit{Unterkategorie},$ dh
 - 1. $|\mathcal{A}| \subset |\mathcal{C}|$,
 - 2. $[A, B]_{\mathcal{A}} \subset [A, B]_{\mathcal{C}}$ für alle $(A, B) \in |\mathcal{A}| \times |\mathcal{A}|$,
 - 3. Komposition von Mor. in $\mathcal A$ wie in $\mathcal C$; Identitätsmorphismus derselbe.

Gilt sogar $[A, B]_A = [A, B]_C$: volle Unterkategorie. $\mathcal{F}_c := \mathcal{I}_C |_A$

Definition – Universelle Abbildung

 \mathcal{A} und \mathcal{B} Kategorien, $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und $B \in |\mathcal{B}|$. Paar (u,A) mit $A \in |\mathcal{A}|$ und $u \colon B \to \mathcal{F}(A)$ heißt universelle Abbildung für B bezüglich \mathcal{F} , falls $\forall A' \in |\mathcal{A}|$ und $\forall f \colon B \to \mathcal{F}(A')$ genau ein \mathcal{A} -Morphismus $\overline{f} \colon A \to A'$ existiert so dass das Diagramm

kommutiert.

Definition – Universelle Abbildung

 \mathcal{A} und \mathcal{B} Kategorien, $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ Funktor und $B \in |\mathcal{B}|$. Paar (u,A) mit $A \in |\mathcal{A}|$ und $u \colon B \to \mathcal{F}(A)$ heißt universelle Abbildung für B bezüglich \mathcal{F} , falls $\forall A' \in |\mathcal{A}|$ und $\forall f \colon B \to \mathcal{F}(A')$ genau ein \mathcal{A} -Morphismus $\overline{f} \colon A \to A'$ existiert so dass das Diagramm

kommutiert.

Entsprechend: Paar (A, u) mit $A \in |\mathcal{A}|$ und $u \colon \mathcal{F}(A) \to B$: co-universelle Abbildung für B bezüglich \mathcal{F} , falls (u^*, A) eine universelle Abbildung für B bezüglich des Funktors $\mathcal{F}^* \colon \mathcal{A}^* \to \mathcal{B}^*$ ist:

kommutiert.

Das Prinzip bei der Arbeit

Schonmal gesehen bei der Stone-Čech-Kompaktifizierung?

Das Prinzip bei der Arbeit

Schonmal gesehen bei der Stone-Čech-Kompaktifizierung?

 $\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}.$

Für alle $X \in \mathbf{Tych}$ ist $(e_x, \beta(X))$ eine universelle Abbildung:

 $Y \in \mathbf{CompHaus}$ und $f \in [X, \mathcal{F}_e(Y)]_{\mathbf{Tych}}$, liefert Satz von Stone-Čech gerade:

$$X \xrightarrow{f} \mathcal{F}_{e}(Y) = Y$$

$$\mathcal{F}_{e}(\beta(X)) = \beta(X)$$

Weitere Beispiele

- ▶ T0-ifizierung
- ightharpoonup Vergissfunktor

Die richtigen Abbildungen zwischen Funktoren

Seien $\mathcal C$ und $\mathcal D$ Kategorien und $\mathcal F,\mathcal G\colon\mathcal C\to\mathcal D$ Funktoren.

1) Eine Familie $\eta = (\eta_A)_{A \in |\mathcal{C}|}$ mit $\eta_A \in [\mathcal{F}(A), \mathcal{G}(A)]_{\mathcal{D}}$ für alle $A \in |\mathcal{C}|$ heißt natürliche Transformation, falls für alle $(A, B) \in |\mathcal{C}| \times |\mathcal{C}|$ und alle $f \in [A, B]_{\mathcal{C}}$ das Diagramm

$$\begin{split} \mathcal{F}(A) & \xrightarrow{-\eta_A} \mathcal{G}(A) \\ & \downarrow^{\mathcal{F}(f)} & \downarrow^{\mathcal{G}(f)} \\ \mathcal{F}(B) & \xrightarrow{-\eta_B} \mathcal{G}(B) \end{split}$$

kommutiert. Kurz: $\eta \colon \mathcal{F} \to \mathcal{G}$ (Mor. von Funktoren).

Die richtigen Abbildungen zwischen Funktoren

Seien $\mathcal C$ und $\mathcal D$ Kategorien und $\mathcal F,\mathcal G\colon\mathcal C\to\mathcal D$ Funktoren.

1) Eine Familie $\eta = (\eta_A)_{A \in |\mathcal{C}|}$ mit $\eta_A \in [\mathcal{F}(A), \mathcal{G}(A)]_{\mathcal{D}}$ für alle $A \in |\mathcal{C}|$ heißt natürliche Transformation, falls für alle $(A, B) \in |\mathcal{C}| \times |\mathcal{C}|$ und alle $f \in [A, B]_{\mathcal{C}}$ das Diagramm

$$\begin{split} \mathcal{F}(A) & \xrightarrow{-\eta_A} \mathcal{G}(A) \\ & \downarrow^{\mathcal{F}(f)} & \downarrow^{\mathcal{G}(f)} \\ \mathcal{F}(B) & \xrightarrow{-\eta_B} \mathcal{G}(B) \end{split}$$

kommutiert. Kurz: $\eta \colon \mathcal{F} \to \mathcal{G}$ (Mor. von Funktoren).

2) Eine natürliche Transformation $\eta\colon \mathcal{F}\to \mathcal{G}$ heißt natürliche Äquivalenz, falls für alle $A\in |\mathcal{C}|$ der Morphismus η_A ein Isomorphismus ist.

Die richtigen Abbildungen zwischen Funktoren

Seien $\mathcal C$ und $\mathcal D$ Kategorien und $\mathcal F,\mathcal G\colon\mathcal C\to\mathcal D$ Funktoren.

1) Eine Familie $\eta = (\eta_A)_{A \in |\mathcal{C}|}$ mit $\eta_A \in [\mathcal{F}(A), \mathcal{G}(A)]_{\mathcal{D}}$ für alle $A \in |\mathcal{C}|$ heißt natürliche Transformation, falls für alle $(A, B) \in |\mathcal{C}| \times |\mathcal{C}|$ und alle $f \in [A, B]_{\mathcal{C}}$ das Diagramm

$$\begin{split} \mathcal{F}(A) & \xrightarrow{-\eta_A} \mathcal{G}(A) \\ & \downarrow^{\mathcal{F}(f)} & \downarrow^{\mathcal{G}(f)} \\ \mathcal{F}(B) & \xrightarrow{-\eta_B} \mathcal{G}(B) \end{split}$$

kommutiert. Kurz: $\eta: \mathcal{F} \to \mathcal{G}$ (Mor. von Funktoren).

- 2) Eine natürliche Transformation $\eta\colon \mathcal{F}\to \mathcal{G}$ heißt natürliche Äquivalenz, falls für alle $A\in |\mathcal{C}|$ der Morphismus η_A ein Isomorphismus ist.
- 3) \mathcal{F} und \mathcal{G} heißen $nat \ddot{u}rlich \ddot{a}quivalent$, wenn eine nat \ddot{u}rliche Äquivalenz $\eta\colon \mathcal{F}\to \mathcal{G}$ existiert. Kurz: $\mathcal{F}\approx \mathcal{G}$.

Definition

Sind $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ und $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ Funktoren und $u = (u_B) \colon \mathcal{I}_{\mathcal{B}} \to \mathcal{F} \circ \mathcal{G}$ sowie $v = (v_A) \colon \mathcal{G} \circ \mathcal{F} \to \mathcal{I}_{\mathcal{A}}$ natürliche Transformationen mit den Eigenschaften

- (1) $\mathcal{F}(v_A) \circ u_{\mathcal{F}(A)} = \mathbf{1}_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{A}|$ und
- (2) $v_{\mathcal{G}(B)} \circ \mathcal{G}(u_B) = \mathbf{1}_{\mathcal{G}(B)}$ für alle $B \in |\mathcal{B}|$,

so nennen wir $\mathcal G$ den zu $\mathcal F$ linksadjungierten Funktor und analog nennen wir $\mathcal F$ den zu $\mathcal G$ rechtsadjungierten Funktor. Das Paar $(\mathcal G,\mathcal F)$ nennen wir ein Paar adjungierter Funktoren.

Definition

Sind $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ und $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ Funktoren und $u = (u_B) \colon \mathcal{I}_{\mathcal{B}} \to \mathcal{F} \circ \mathcal{G}$ sowie $v = (v_A) \colon \mathcal{G} \circ \mathcal{F} \to \mathcal{I}_{\mathcal{A}}$ natürliche Transformationen mit den Eigenschaften

- (1) $\mathcal{F}(v_A) \circ u_{\mathcal{F}(A)} = \mathbf{1}_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{A}|$ und
- (2) $v_{\mathcal{G}(B)} \circ \mathcal{G}(u_B) = \mathbf{1}_{\mathcal{G}(B)}$ für alle $B \in |\mathcal{B}|$,

so nennen wir $\mathcal G$ den zu $\mathcal F$ linksadjungierten Funktor und analog nennen wir $\mathcal F$ den zu $\mathcal G$ rechtsadjungierten Funktor. Das Paar $(\mathcal G,\mathcal F)$ nennen wir ein Paar adjungierter Funktoren.

Satz

Ein Funktor $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ besitzt einen linksadjungierten Funktor $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ genau dann, wenn für alle $B \in |\mathcal{B}|$ eine bezüglich \mathcal{F} universelle Abbildung existiert.

Definition

Sind $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ und $\mathcal{G}: \mathcal{B} \to \mathcal{A}$ Funktoren und $u = (u_B): \mathcal{I}_{\mathcal{B}} \to \mathcal{F} \circ \mathcal{G}$ sowie $v = (v_A): \mathcal{G} \circ \mathcal{F} \to \mathcal{I}_{\mathcal{A}}$ natürliche Transformationen mit den Eigenschaften

- (1) $\mathcal{F}(v_A) \circ u_{\mathcal{F}(A)} = \mathbf{1}_{\mathcal{F}(A)}$ für alle $A \in |\mathcal{A}|$ und
- (2) $v_{\mathcal{G}(B)} \circ \mathcal{G}(u_B) = \mathbf{1}_{\mathcal{G}(B)}$ für alle $B \in |\mathcal{B}|$,

so nennen wir \mathcal{G} den zu \mathcal{F} linksadjungierten Funktor und analog nennen wir \mathcal{F} den zu \mathcal{G} rechtsadjungierten Funktor. Das Paar $(\mathcal{G}, \mathcal{F})$ nennen wir ein Paar adjungierter Funktoren.

Satz

Ein Funktor $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ besitzt einen linksadjungierten Funktor $\mathcal{G} \colon \mathcal{B} \to \mathcal{A}$ genau dann, wenn für alle $B \in |\mathcal{B}|$ eine bezüglich \mathcal{F} universelle Abbildung existiert.

Bemerkung

Die universelle Abbildung aus dem Satz ist gerade die natürliche Tranformation aus der Definition.

▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- ▶ Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- ▶ Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz
- ▶ Adjungierte Situation: Quadrupel $(\mathcal{G}, \mathcal{F}, u, v)$.

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- ▶ Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz
- ▶ Adjungierte Situation: Quadrupel $(\mathcal{G}, \mathcal{F}, u, v)$.

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- ▶ Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz
- ▶ Adjungierte Situation: Quadrupel $(\mathcal{G}, \mathcal{F}, u, v)$.

Beispiel

Wieder Stone-Čech-Kompaktifizierung:

$$\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}.$$

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- ▶ Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz
- ▶ Adjungierte Situation: Quadrupel $(\mathcal{G}, \mathcal{F}, u, v)$.

Beispiel

Wieder Stone-Čech-Kompaktifizierung:

 $\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}.$

<u>Für alle</u> $X \in \mathbf{Tych}$ ist $(e_x, \beta(X))$ eine universelle Abbildung bezüglich \mathcal{F}_e Also: Existiert eine Linksadjungierte $\beta \colon \mathbf{Tych} \to \mathbf{CompHaus}$.

- ▶ Adjungierte Funktoren sind bis auf natürliche Äquivalenz eindeutig
- ▶ Die natürlichen Transformationen aus der Definition sind als (co-)universelle Abbildungen eindeutig bis auf natürliche Äquivalenz
- ▶ Adjungierte Situation: Quadrupel $(\mathcal{G}, \mathcal{F}, u, v)$.

Beispiel

Wieder Stone-Čech-Kompaktifizierung:

 $\mathcal{F} = \mathcal{F}_e \colon \mathbf{CompHaus} \to \mathbf{Tych}.$

<u>Für alle</u> $X \in \mathbf{Tych}$ ist $(e_x, \beta(X))$ eine universelle Abbildung bezüglich \mathcal{F}_e Also: Existiert eine Linksadjungierte $\beta \colon \mathbf{Tych} \to \mathbf{CompHaus}$.

Wir haben (nichts-ahnend) einen Funktor konstruiert!

Inhalt

Grundlagen der Kategorientheorie (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen

A Unterkategorie einer Kategorie C.

 $\mathcal{F}_e \colon \mathcal{A} \to \mathcal{C}$ der Inklusionsfunktor.

Dann nennen wir \mathcal{A} reflektiv in \mathcal{C} genau dann, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (1) \mathcal{F}_e besitzt einen linksadjungierten Funktor \mathcal{R} .
- (2) Für alle $X \in |C|$ ex. eine universelle Abbildung (r_X, X_A) bezüglich \mathcal{F}_e .

A Unterkategorie einer Kategorie C.

 $\mathcal{F}_e \colon \mathcal{A} \to \mathcal{C}$ der Inklusionsfunktor.

Dann nennen wir \mathcal{A} reflektiv in \mathcal{C} genau dann, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (1) \mathcal{F}_e besitzt einen linksadjungierten Funktor \mathcal{R} .
- (2) Für alle $X \in |C|$ ex. eine universelle Abbildung (r_X, X_A) bezüglich \mathcal{F}_e .

Funktor \mathcal{R} nennen wir Reflektor

Morphismen $r_X \colon X \to X_{\mathcal{A}}$ nennen wir Reflektionen von X bezüglich $\mathcal{A}.$

A Unterkategorie einer Kategorie C.

 $\mathcal{F}_e \colon \mathcal{A} \to \mathcal{C}$ der Inklusionsfunktor.

Dann nennen wir \mathcal{A} reflektiv in \mathcal{C} genau dann, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (1) \mathcal{F}_e besitzt einen linksadjungierten Funktor \mathcal{R} .
- (2) Für alle $X \in |C|$ ex. eine universelle Abbildung (r_X, X_A) bezüglich \mathcal{F}_e .

Funktor $\mathcal R$ nennen wir Reflektor

Morphismen $r_X \colon X \to X_{\mathcal{A}}$ nennen wir Reflektionen von X bezüglich \mathcal{A} .

Durch Dualisierung erhalten wir einen weiteren Begriff:

Wir nennen \mathcal{A} coreflektiv in \mathcal{C} , genau dann, wenn \mathcal{A}^* reflektiv ist in \mathcal{C}^* .

A Unterkategorie einer Kategorie C.

 $\mathcal{F}_e \colon \mathcal{A} \to \mathcal{C}$ der Inklusionsfunktor.

Dann nennen wir \mathcal{A} reflektiv in \mathcal{C} genau dann, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (1) \mathcal{F}_e besitzt einen linksadjungierten Funktor \mathcal{R} .
- (2) Für alle $X \in |C|$ ex. eine universelle Abbildung (r_X, X_A) bezüglich \mathcal{F}_e .

Funktor ${\mathcal R}$ nennen wir Reflektor

Morphismen $r_X: X \to X_A$ nennen wir Reflektionen von X bezüglich A.

Durch Dualisierung erhalten wir einen weiteren Begriff:

Wir nennen \mathcal{A} coreflektiv in \mathcal{C} , genau dann, wenn \mathcal{A}^* reflektiv ist in \mathcal{C}^* .

Wir nennen \mathcal{A} epireflektiv/ extremal epireflektiv/ bireflektiv in \mathcal{C} , falls

Definition – Reflektive Unterkategorie

A Unterkategorie einer Kategorie C.

 $\mathcal{F}_e \colon \mathcal{A} \to \mathcal{C}$ der Inklusionsfunktor.

Dann nennen wir \mathcal{A} reflektiv in \mathcal{C} genau dann, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- (1) \mathcal{F}_e besitzt einen linksadjungierten Funktor \mathcal{R} .
- (2) Für alle $X \in |C|$ ex. eine universelle Abbildung (r_X, X_A) bezüglich \mathcal{F}_e .

Funktor $\mathcal R$ nennen wir Reflektor

Morphismen $r_X: X \to X_A$ nennen wir Reflektionen von X bezüglich A.

Durch Dualisierung erhalten wir einen weiteren Begriff: Wir nennen \mathcal{A} coreflektiv in \mathcal{C} , genau dann, wenn \mathcal{A}^* reflektiv ist in \mathcal{C}^* .

Wir nennen \mathcal{A} epireflektiv/ extremal epireflektiv/ bireflektiv in \mathcal{C} , falls

- $ightharpoonup \mathcal{A}$ reflektiv in \mathcal{C}
- ▶ $r_X: X \to X_A$ ist ein Epimorphismus/ extremaler Epimorphismus / Bimorphismus ist.

Die Morphismen r_X nennen wir Epireflektionen/ extremale Epireflektionen/ Bireflektionen.

Wie sehen Bireflektionen oder Bicoreflektionen denn aus?

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ▶ volles,
- ▶ unter Isomorphie abgeschlossenes
- ightharpoonup Unterkonstrukt eines topologischen Konstrukts \mathcal{C} .

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ► volles,
- ▶ unter Isomorphie abgeschlossenes
- lacktriangleq Unterkonstrukt eines topologischen Konstrukts \mathcal{C} .

und ist A bireflektiv (bicoreflektiv) in C, dann:

ightharpoonup A ist topologisch.

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ▶ volles,
- ▶ unter Isomorphie abgeschlossenes
- lacktriangleq Unterkonstrukt eines topologischen Konstrukts \mathcal{C} .

und ist A bireflektiv (bicoreflektiv) in C, dann:

- ightharpoonup A ist topologisch.
- ightharpoonup initialen (finalen) Strukturen in $\mathcal A$ stimmen mit denen in $\mathcal C$ überein.

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ▶ volles,
- ▶ unter Isomorphie abgeschlossenes
- ▶ Unterkonstrukt eines topologischen Konstrukts C.

und ist A bireflektiv (bicoreflektiv) in C, dann:

- ightharpoonup A ist topologisch.
- ightharpoonup initialen (finalen) Strukturen in $\mathcal A$ stimmen mit denen in $\mathcal C$ überein.
- ▶ finale (initiale) Strukturen in A entstehen aus den finalen (initialen) Strukturen in C, indem man den Bireflektor (Bicoreflektor) anwendet.

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ▶ volles,
- ▶ unter Isomorphie abgeschlossenes
- ▶ Unterkonstrukt eines topologischen Konstrukts C.

und ist A bireflektiv (bicoreflektiv) in C, dann:

- ightharpoonup A ist topologisch.
- ightharpoonup initialen (finalen) Strukturen in $\mathcal A$ stimmen mit denen in $\mathcal C$ überein.
- ▶ finale (initiale) Strukturen in A entstehen aus den finalen (initialen) Strukturen in C, indem man den Bireflektor (Bicoreflektor) anwendet.

Bi(co)reflektive Unterkategorien sind gutartig im folgenden Sinne:

Satz

Ist A ein

- ► volles.
- ▶ unter Isomorphie abgeschlossenes
- lacktriangleq Unterkonstrukt eines topologischen Konstrukts \mathcal{C} .

und ist A bireflektiv (bicoreflektiv) in C, dann:

- ightharpoonup A ist topologisch.
- ightharpoonup initialen (finalen) Strukturen in $\mathcal A$ stimmen mit denen in $\mathcal C$ überein.
- ▶ finale (initiale) Strukturen in A entstehen aus den finalen (initialen) Strukturen in C, indem man den Bireflektor (Bicoreflektor) anwendet.

Oha!

Sei $\mathcal A$ bicoreflektiv in $\mathcal C...$

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

(1) A ist wieder topologisch:

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen:
 Daten: X Menge,((X_i, ξ_i))_{i∈I} Familie von A-Objekten.
 ξ die initiale C-Struktur auf X.

 Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen:
 Daten: X Menge,((X_i,ξ_i))_{i∈I} Familie von A-Objekten.
 ξ die initiale C-Struktur auf X.

 Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

Zeige nun: $\xi_{\mathcal{A}}$ ist eindeutige Initialstruktur auf \mathcal{A} ist...

▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen:
 Daten: X Menge,((X_i, ξ_i))_{i∈I} Familie von A-Objekten.
 ξ die initiale C-Struktur auf X.

 Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X : (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- ▶ X einelementig: Nur diskrete Struktur und diese ist eindeutig.

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - ▶ Existenz und Eindeutigkeit initialer Strukturen: Daten: X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von \mathcal{A} -Objekten. ξ die initiale \mathcal{C} -Struktur auf X. Zurückholen der \mathcal{C} -Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- lacktriangleq X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - ▶ Existenz und Eindeutigkeit initialer Strukturen: Daten: X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von \mathcal{A} -Objekten. ξ die initiale \mathcal{C} -Struktur auf X. Zurückholen der \mathcal{C} -Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

Zeige nun: ξ_A ist eindeutige Initialstruktur auf A ist...

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- ▶ X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von \mathcal{A} -Objekten.

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen:
 Daten: X Menge,((X_i, ξ_i))_{i∈I} Familie von A-Objekten.
 ξ die initiale C-Struktur auf X.

 Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- ightharpoonup X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von \mathcal{A} -Objekten.
 - \blacktriangleright $\xi_{\mathcal{A}}$ die finale \mathcal{A} -Struktur und $\xi_{\mathcal{C}}$ die finale \mathcal{C} -Struktur bzgl. d. Dat.

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - ▶ Existenz und Eindeutigkeit initialer Strukturen: Daten: X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von \mathcal{A} -Objekten. ξ die initiale \mathcal{C} -Struktur auf X. Zurückholen der \mathcal{C} -Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- lacktriangleq X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von A-Objekten.
 - \blacktriangleright $\xi_{\mathcal{A}}$ die finale \mathcal{A} -Struktur und $\xi_{\mathcal{C}}$ die finale \mathcal{C} -Struktur bzgl. d. Dat.
 - $\xi_{\mathcal{A}} = \xi_{\mathcal{C}} \dots$

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - ▶ Existenz und Eindeutigkeit initialer Strukturen: Daten: X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von \mathcal{A} -Objekten. ξ die initiale \mathcal{C} -Struktur auf X. Zurückholen der \mathcal{C} -Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- lacktriangleq X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von A-Objekten.
 - \blacktriangleright $\xi_{\mathcal{A}}$ die finale \mathcal{A} -Struktur und $\xi_{\mathcal{C}}$ die finale \mathcal{C} -Struktur bzgl. d. Dat.
 - $\xi_{\mathcal{A}} = \xi_{\mathcal{C}} \dots$

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen:
 Daten: X Menge,((X_i, ξ_i))_{i∈I} Familie von A-Objekten.
 ξ die initiale C-Struktur auf X.

 Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X : (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- $\,\blacktriangleright\,\, X$ einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von A-Objekten.
 - \blacktriangleright $\xi_{\mathcal{A}}$ die finale \mathcal{A} -Struktur und $\xi_{\mathcal{C}}$ die finale \mathcal{C} -Struktur bzgl. d. Dat.
 - $\xi_{\mathcal{A}} = \xi_{\mathcal{C}} \dots !$

Sei \mathcal{A} bicoreflektiv in \mathcal{C} ...

- (1) \mathcal{A} ist wieder topologisch:
 - Existenz und Eindeutigkeit initialer Strukturen:
 Daten: X Menge,((X_i, ξ_i))_{i∈I} Familie von A-Objekten.
 ξ die initiale C-Struktur auf X.

 Zurückholen der C-Struktur durch Bikoreflektor:

$$\mathbf{1}_X \colon (X, \xi_{\mathcal{A}}) \to (X, \xi)$$

Zeige nun: $\xi_{\mathcal{A}}$ ist eindeutige Initialstruktur auf \mathcal{A} ist...

- ▶ Für alle X ist $\{(Y, \eta) \in |\mathcal{A}| : Y = X\} \subset \{(Z, \zeta) \in |\mathcal{C}| : Z = X\}$ Menge.
- ▶ X einelementig: Nur diskrete Struktur und diese ist eindeutig.
- (2) Bildung finaler Strukturen:
 - ▶ X Menge, $((X_i, \xi_i))_{i \in I}$ Familie von A-Objekten.
 - \blacktriangleright $\xi_{\mathcal{A}}$ die finale \mathcal{A} -Struktur und $\xi_{\mathcal{C}}$ die finale \mathcal{C} -Struktur bzgl. d. Dat.
 - $\xi_{\mathcal{A}} = \xi_{\mathcal{C}} \dots !$

Sei \mathcal{A} bireflektiv in $\mathcal{C}...$ Analog.

Inhalt

Grundlagen der Kategorientheorie (Teil II) Funktoren allgemein Adjungierte Funktoren

Reflektive und coreflektive Unterkategorien Allgemein In topologischen Konstrukten

Konvergenzstrukturen und uniforme Konvergenzstrukturen