fdasrsf Documentation

Release 2.3.11

J. Derek Tucker

CONTENTS

1 User Guide				
	1.1 Elastic Functional Alignment 1.2 Elastic Functional Principal Component Analysis 1.2.1 Vertical fPCA 1.2.2 Horizontal fPCA 1.2.3 Joint fPCA 1.3 Elastic Curve Alignment 1.3.1 Shape PCA	3 6 7 8 8 10 12		
2	Functional Alignment	15		
3	Functional Principal Component Analysis			
4	Elastic Functional Boxplots			
5	Functional Principal Least Squares			
6	6 Elastic Regression			
7	Elastic Principal Component Regression			
8	B Elastic GLM Regression			
9	Elastic Functional Tolerance Bounds			
10	0 Curve Registration			
11	1 SRVF Geodesic Computation			
12	2 Utility Functions			
13	13 Curve Functions			
14	UMAP EFDA Metrics	77		
15	References	79		
16	Indices and tables	81		
Pyt	ython Module Index			
Inc	lex	85		

A python package for functional data analysis using the square root slope framework and curves using the square root velocity framework which performs pair-wise and group-wise alignment as well as modeling using functional component analysis and regression.

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

USER GUIDE

Contents:

1.1 Elastic Functional Alignment

Otherwise known as time warping in the literature is at the center of elastic functional data analysis. Here our goal is to separate out the horizontal and vertical variability of the functional data

```
[1]: import fdasrsf as fs import numpy as np
```

Load in our example data

```
[2]: data = np.load('../../bin/simu_data.npz')
  time = data['arr_1']
  f = data['arr_0']
```

We will then construct the fdawarp object

```
[3]: obj = fs.fdawarp(f,time)
```

Next we will align the functions using the elastic framework

```
[4]: obj.srsf_align(parallel=True)

Initializing...
Compute Karcher Mean of 21 function in SRSF space...
updating step: r=1
updating step: r=2
```

Display plots demonstrating the alignment

1.2 Elastic Functional Principal Component Analysis

After we have aligned our data we can compute functional principal component analysis (fPCA) on the aligned data, warping functions, and jointly

```
[1]: import fdasrsf as fs import numpy as np
```

We will load in our example data again and compute the alignment

```
[2]: data = np.load('../../bin/simu_data.npz')
    time = data['arr_1']
    f = data['arr_0']
    obj = fs.fdawarp(f,time)
    obj.srsf_align(parallel=True)

Initializing...
    Compute Karcher Mean of 21 function in SRSF space...
    updating step: r=1
    updating step: r=2
```

1.2.1 Vertical fPCA

We will first compute fPCA on the aligned functions, by constructing the object and computing the PCA for the number of components, default=3)

[3]: vpca = fs.fdavpca(obj)
vpca.calc_fpca(no=3)

We then can plot the principal directions

1.2.2 Horizontal fPCA

We can then compute PCA on the set of warping functions

[5]: hpca = fs.fdahpca(obj)
hpca.calc_fpca(no=3)

We then can plot the principal directions

1.2.3 Joint fPCA

We can also compute the fPCA on jointly on the phase/amplitude space if we feel there is correlation between the variabilities

[7]: jpca = fs.fdajpca(obj) jpca.calc_fpca(no=3)

We then can plot the principal directions

[8]: jpca.plot()

1.3 Elastic Curve Alignment

Otherwise known as time warping in the literature is at the center of elastic functional data analysis. Here our goal is to separate out the horizontal and vertical variability of the open/closed curves

```
[1]: import fdasrsf as fs import numpy as np
```

Load in our example data

```
[2]: data = np.load('../../bin/MPEG7.npz',allow_pickle=True)
    Xdata = data['Xdata']
    curve = Xdata[0,1]
    n,M = curve.shape
    K = Xdata.shape[1]

beta = np.zeros((n,M,K))
    for i in range(0,K):
        beta[:,:,i] = Xdata[0,i]
```

We will then construct the fdacurve object

```
[3]: obj = fs.fdacurve(beta, N=M)
```

We then will compute karcher mean of the curves

```
[4]: obj.karcher_mean()

Computing Karcher Mean of 20 curves in SRVF space..

updating step: 1

updating step: 2

updating step: 3

updating step: 4

updating step: 5

updating step: 5

updating step: 6

updating step: 7
```

We then can align the curves to the karcher mean

```
[5]: obj.srvf_align(rotation=False)
```

Plot the results

```
[6]: obj.plot()
```


1.3.1 Shape PCA

We then can compute the Karcher covariance and compute the shape pca

[7]: obj.karcher_cov() obj.shape_pca()

Plot the principal directions

FUNCTIONAL ALIGNMENT

Group-wise function alignment using SRSF framework and Dynamic Programming

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

time_warping.align_fPCA(f, time, num_comp=3, showplot=True, smoothdata=False, cores=-1)

aligns a collection of functions while extracting principal components. The functions are aligned to the principal components

Parameters

- **f** (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- time (np.ndarray) vector of size M describing the sample points
- **num_comp** number of fPCA components
- **showplot** Shows plots of results using matplotlib (default = T)
- **smooth_data** (*bool*) Smooth the data using a box filter (default = F)
- **cores** number of cores for parallel (default = -1 (all))

Return type

tuple of numpy array

Return fn

aligned functions - numpy ndarray of shape (M,N) of N functions with M samples

Return an

aligned srvfs - similar structure to fn

Return q0

original srvf - similar structure to fn

Return mqn

srvf mean or median - vector of length M

Return gam

warping functions - similar structure to fn

Return q_pca

srsf principal directions

Return f_pca

functional principal directions

Return latent

latent values

Return coef

coefficients

Return U

eigenvectors

Return orig_var

Original Variance of Functions

Return amp var

Amplitude Variance

Return phase_var

Phase Variance

time_warping.align_fPLS(f, g, time, comps=3, showplot=True, smoothdata=False, delta=0.01, max_itr=100)

This function aligns a collection of functions while performing principal least squares

Parameters

- **f** (*np.ndarray*) numpy ndarray of shape (M,N) of N functions with M samples
- g (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- time (np.ndarray) vector of size M describing the sample points
- comps number of fPLS components
- **showplot** Shows plots of results using matplotlib (default = T)
- **smooth_data** (*bool*) Smooth the data using a box filter (default = F)
- **delta** gradient step size
- max_itr maximum number of iterations

Return type

tuple of numpy array

Return fn

aligned functions - numpy ndarray of shape (M,N) of N

functions with M samples :return gn: aligned functions - numpy ndarray of shape (M,N) of N functions with M samples :return qfn: aligned srvfs - similar structure to fn :return qgn: aligned srvfs - similar structure to fn :return qg0: original srvf - similar structure to fn :return qg0: original srvf - similar structure to fn :return qg0: original srvf - similar structure to fn :return wqf: srsf principal weight functions :return wqg: srsf principal weight functions :return wg: srsf principal weight functions :return cost: cost function value

class time_warping.fdawarp(f, time)

This class provides alignment methods for functional data using the SRVF framework

Usage: obj = fdawarp(f,t)

Parameters

- $\mathbf{f} (M,N)$: matrix defining N functions of M samples
- **time** time vector of length M
- **fn** aligned functions
- qn aligned srvfs
- **q0** initial srvfs

- **fmean** function mean
- mqn mean srvf
- gam warping functions
- **psi** srvf of warping functions
- **stats** alignment statistics
- qun cost function
- lambda lambda
- **method** optimization method
- gamI inverse warping function
- rsamps random samples
- **fs** random aligned functions
- gams random warping functions
- **ft** random warped functions
- qs random aligned srvfs
- **type** alignment type
- mcmc mcmc output if bayesian

Author: J. D. Tucker (JDT) < jdtuck AT sandia.gov > Date: 15-Mar-2018

gauss_model(n=1, sort_samples=False)

This function models the functional data using a Gaussian model extracted from the principal components of the srvfs

Parameters

- **n** (*integer*) number of random samples
- **sort_samples** (*bool*) sort samples (default = T)

joint_gauss_model(n=1, no=3)

This function models the functional data using a joint Gaussian model extracted from the principal components of the srsfs

Parameters

- n (integer) number of random samples
- **no** (*integer*) number of principal components (default = 3)

multiple_align_functions(mu, omethod='DP2', smoothdata=False, parallel=False, lam=0.0, cores=-1, grid_dim=7)

This function aligns a collection of functions using the elastic square-root slope (srsf) framework.

Usage: obj.multiple_align_functions(mu)

 $obj.multiple_align_functions(lambda)$

obj.multiple_align_functions(lambda, ...)

Parameters

- mu vector of function to align to
- **omethod** optimization method (DP, DP2, RBFGS) (default = DP)

- **smoothdata** (bool) Smooth the data using a box filter (default = F)
- parallel run in parallel (default = F)
- lam(double) controls the elasticity (default = 0)
- **cores** number of cores for parallel (default = -1 (all))
- **grid_dim** size of the grid, for the DP2 method only (default = 7)

plot()

plot plot functional alignment results

Usage: obj.plot()

srsf_align(method='mean', omethod='DP2', center=True, smoothdata=False, MaxItr=20, parallel=False,
lam=0.0, cores=-1, grid_dim=7)

This function aligns a collection of functions using the elastic square-root slope (srsf) framework.

Parameters

- **method** (string) warp calculate Karcher Mean or Median (options = "mean" or "median") (default="mean")
- **omethod** optimization method (DP, DP2, RBFGS) (default = DP2)
- **center** center warping functions (default = T)
- **smoothdata** (*bool*) Smooth the data using a box filter (default = F)
- MaxItr Maximum number of iterations (default = 20)
- **parallel** run in parallel (default = F)
- lam (double) controls the elasticity (default = 0)
- **cores** number of cores for parallel (default = -1 (all))
- **grid_dim** size of the grid, for the DP2 method only (default = 7)

Examples >>> import tables >>> fun=tables.open_file("../Data/simu_data.h5") >>> f = fun.root.f[:] >>> f = f.transpose() >>> time = fun.root.time[:] >>> obj = fs.fdawarp(f,time) >>> obj.srsf_align()

time_warping.normal(loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently², is often called the bell curve because of its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution².

Note: New code should use the normal method of a default_rng() instance instead; please see the random-quick-start.

loc

[float or array_like of floats] Mean ("centre") of the distribution.

² P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125.

scale

[float or array_like of floats] Standard deviation (spread or "width") of the distribution. Must be non-negative.

size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned if loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are drawn.

out

[ndarray or scalar] Drawn samples from the parameterized normal distribution.

scipy.stats.norm

[probability density function, distribution or] cumulative density function, etc.

Generator.normal: which should be used for new code.

The probability density for the Gaussian distribution is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

where μ is the mean and σ the standard deviation. The square of the standard deviation, σ^2 , is called the variance.

The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at $x + \sigma$ and $x - \sigma^2$). This implies that normal is more likely to return samples lying close to the mean, rather than those far away.

Draw samples from the distribution:

```
>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)
```

Verify the mean and the variance:

```
>>> abs(mu - np.mean(s))
0.0 # may vary
```

```
>>> abs(sigma - np.std(s, ddof=1))
0.1 # may vary
```

Display the histogram of the samples, along with the probability density function:

Two-by-four array of samples from N(3, 6.25):

time_warping.pairwise_align_bayes(fli, f2i, time, mcmcopts=None)

This function aligns two functions using Bayesian framework. It will align f2 to f1. It is based on mapping warping functions to a hypersphere, and a subsequent exponential mapping to a tangent space. In the tangent space, the Z-mixture pCN algorithm is used to explore both local and global structure in the posterior distribution.

The Z-mixture pCN algorithm uses a mixture distribution for the proposal distribution, controlled by input parameter zpcn. The zpcn\$betas must be between 0 and 1, and are the coefficients of the mixture components, with larger coefficients corresponding to larger shifts in parameter space. The zpcn["probs"] give the probability of each shift size.

Usage: out = pairwise_align_bayes(f1i, f2i, time)

out = pairwise_align_bayes(f1i, f2i, time, mcmcopts)

Parameters

- **f1i** vector defining M samples of function 1
- **f2i** vector defining M samples of function 2
- time time vector of length M
- mcmopts dict of mcmc parameters

default mcmc options: tmp = {"betas":np.array([0.5,0.5,0.005,0.0001]),"probs":np.array([0.1,0.1,0.7,0.1])} mcmcopts = {"iter":2*(10**4), "burnin":np.minimum(5*(10**3),2*(10**4)//2),

```
"alpha0":0.1, "beta0":0.1,"zpcn":tmp,"propvar":1, "initcoef":np.repeat(0,20), "npoints":200, "extrainfo":True}
```

:rtype collection containing :return f2_warped: aligned f2 :return gamma: warping function :return g_coef: final g_coef :return psi: final psi :return sigma1: final sigma

if extrainfo :return accept: accept of psi samples :return betas_ind :return logl: log likelihood :return gamma_mat: posterior gammas :return gamma_stats: posterior gamma stats :return xdist: phase distance posterior :return ydist: amplitude distance posterior)

time_warping.pairwise_align_bayes_infHMC(y1i, y2i, time, mcmcopts=None)

This function aligns two functions using Bayesian framework. It uses a hierarchical Bayesian framework assuming mearsurement error error It will align f2 to f1. It is based on mapping warping functions to a hypersphere, and a subsequent exponential mapping to a tangent space. In the tangent space, the infty-HMC algorithm is used to explore both local and global structure in the posterior distribution.

Usage: out = pairwise_align_bayes_infHMC(f1i, f2i, time)

```
out = pairwise align bayes infHMC(f1i, f2i, time, mcmcopts)
```

Parameters

- y1i vector defining M samples of function 1
- **y2i** vector defining M samples of function 2
- time time vector of length M
- mcmopts dict of mcmc parameters

default meme options: memcopts = {"iter":1*(10**4), "nchains":4, "vpriorvar":1,

```
"burnin":np.minimum(5*(10**3),2*(10**4)//2), "alpha0":0.1, "beta0":0.1, "alpha":1, "beta":1, "h":0.01, "L":4, "f1propvar":0.0001, "f2propvar":0.0001, "L1propvar":0.3, "L2propvar":0.3, "npoints":200, "thin":1, "sampfreq":1, "initcoef":np.repeat(0,20), "nbasis":10, "basis":'fourier', "extrainfo":True}
```

Basis can be 'fourier' or 'legendre'

:rtype collection containing :return f2_warped: aligned f2 :return gamma: warping function :return v_coef: final v_coef :return psi: final psi :return sigma1: final sigma

if extrainfo :return theta_accept: accept of psi samples :return f2_accept: accept of f2 samples :return SSE: SSE :return gamma_mat: posterior gammas :return gamma_stats: posterior gamma stats :return xdist: phase distance posterior :return ydist: amplitude distance posterior)

J. D. Tucker, L. Shand, and K. Chowdhary. "Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo", Computational Statistics and Data Analysis, accepted, 2021.

time_warping.pairwise_align_functions(f1, f2, time, omethod='DP2', lam=0, grid_dim=7)

This function aligns f2 to f1 using the elastic square-root

slope (srsf) framework.

Usage: out = pairwise_align_functions(f1, f2, time)

out = pairwise_align_functions(f1, f2, time, omethod, lam, grid_dim)

Parameters

- **f1** vector defining M samples of function 1
- **f2** vector defining M samples of function 2
- time time vector of length M
- **omethod** optimization method (DP, DP2, RBFGS) (default = DP)
- lam controls the elasticity (default = 0)
- **grid_dim** size of the grid, for the DP2 method only (default = 7)

:rtype list containing :return f2n: aligned f2 :return gam: warping function :return q2n: aligned q2 (srsf)

```
time_warping.rand(d0, d1, ..., dn)
```

Random values in a given shape.

Note: This is a convenience function for users porting code from Matlab, and wraps *random_sample*. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like *numpy.zeros* and *numpy.ones*.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).

d0, d1, ..., dn

[int, optional] The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned.

out

```
[ndarray, shape (d0, d1, ..., dn)] Random values.
```

random

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

Vertical and Horizontal Functional Principal Component Analysis using SRSF

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

class fPCA.fdahpca(fdawarp)

This class provides horizontal fPCA using the SRVF framework

Usage: obj = fdahpca(warp_data)

Parameters

- warp_data fdawarp class with alignment data
- gam_pca warping functions principal directions
- psi_pca srvf principal directions
- latent latent values
- **U** eigenvectors
- **coef** coefficients
- **vec** shooting vectors
- mu Karcher Mean
- **tau** principal directions

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 15-Mar-2018

calc_fpca(*no*=3, *stds*=*array*([-1, 0, 1]))

This function calculates horizontal functional principal component analysis on aligned data

Parameters

- **no** (*int*) number of components to extract (default = 3)
- stds number of standard deviations along gedoesic to compute (default = -1,0,1)

Return type

fdahpca object of numpy ndarray

Return q_pca

srsf principal directions

Return f_pca

functional principal directions

Return latent

latent values

Return coef

coefficients

Return U

eigenvectors

plot()

plot plot elastic horizontal fPCA results

Usage: obj.plot()

class fPCA.fdajpca(fdawarp)

This class provides joint fPCA using the SRVF framework

Usage: obj = fdajpca(warp_data)

Parameters

- warp_data fdawarp class with alignment data
- **q_pca** srvf principal directions
- **f_pca** f principal directions
- latent latent values
- **coef** principal coefficients
- id point used for f(0)
- mqn mean srvf
- **U** eigenvectors
- mu_psi mean psi
- mu_g mean g
- C scaling value
- **stds** geodesic directions

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 18-Mar-2018

calc_fpca(no=3, stds=array([-1., 0., 1.]), id=None, parallel=False, cores=-1)

This function calculates joint functional principal component analysis on aligned data

Parameters

- **no** (*int*) number of components to extract (default = 3)
- **id** (*int*) point to use for f(0) (default = midpoint)
- stds number of standard deviations along gedoesic to compute (default = -1,0,1)
- parallel (bool) run in parallel (default = F)
- **cores** (*int*) number of cores for parallel (default = -1 (all))

Return type

fdajpca object of numpy ndarray

Return q_pca

srsf principal directions

Return f_pca

functional principal directions

Return latent

latent values

Return coef

coefficients

Return U

eigenvectors

plot()

plot plot elastic vertical fPCA result

Usage: obj.plot()

class fPCA.fdavpca(fdawarp)

This class provides vertical fPCA using the SRVF framework

Usage: obj = fdavpca(warp_data)

Parameters

- warp_data fdawarp class with alignment data
- q_pca srvf principal directions
- **f_pca** f principal directions
- latent latent values
- **coef** principal coefficients
- id point used for f(0)
- mqn mean srvf
- **U** eigenvectors
- **stds** geodesic directions

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 15-Mar-2018

```
calc_fpca(no=3, id=None, stds=array([-1, 0, 1]))
```

This function calculates vertical functional principal component analysis on aligned data

Parameters

- **no** (*int*) number of components to extract (default = 3)
- id (int) point to use for f(0) (default = midpoint)
- stds number of standard deviations along gedoesic to compute (default = -1,0,1)

Return type

fdavpca object containing

Return q_pca

srsf principal directions

Return f_pca

functional principal directions

Return latent

latent values

Return coef

coefficients

Return U

eigenvectors

plot()

plot plot elastic vertical fPCA result Usage: obj.plot()

ELASTIC FUNCTIONAL BOXPLOTS

Elastic Functional Boxplots

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

class boxplots.ampbox(fdawarp)

This class provides amplitude boxplot for functional data using the SRVF framework

Usage: obj = ampbox(warp_data)

Parameters

- warp_data (fdawarp) fdawarp class with alignment data
- **Q1** First quartile
- Q3 Second quartile
- Q1a First quantile based on alpha
- Q3a Second quantile based on alpha
- minn minimum extreme function
- maxx maximum extreme function
- outlier_index indexes of outlier functions
- **f_median** median function
- q_median median srvf
- plt surface plot mesh

Author: J. D. Tucker (JDT) < jdtuck AT sandia.gov > Date: 15-Mar-2018

$construct_boxplot(alpha=0.05, k_a=1)$

This function constructs the amplitude boxplot using the elastic square-root slope (srsf) framework.

Parameters

- **alpha** quantile value (e.g.,=.05, i.e., 95%)
- **k_a** scalar for outlier cutoff (e.g.,=1)

plot()

plot box plot and surface plot

Usage: obj.plot()

class boxplots.phbox(fdawarp)

This class provides phase boxplot for functional data using the SRVF framework

Usage: obj = phbox(warp_data)

Parameters

- warp_data (fdawarp) fdawarp class with alignment data
- **Q1** First quartile
- Q3 Second quartile
- Q1a First quantile based on alpha
- Q3a Second quantile based on alpha
- minn minimum extreme function
- maxx maximum extreme function
- outlier_index indexes of outlier functions
- **median_x** median warping function
- psi_median median srvf of warping function
- plt surface plot mesh

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 15-Mar-2018

construct_boxplot(alpha=0.05, k_a=1)

This function constructs phase boxplot for functional data using the elastic square-root slope (srsf) framework.

Parameters

- **alpha** quantile value (e.g.,=.05, i.e., 95%)
- **k_a** scalar for outlier cutoff (e.g.,=1)

plot()

plot box plot and surface plot

Usage: obj.plot()

FUNCTIONAL PRINCIPAL LEAST SQUARES

Partial Least Squares using SVD

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

fPLS.pls_svd(time, qf, qg, no, alpha=0.0)

This function computes the partial least squares using SVD

Parameters

- **time** vector describing time samples
- \mathbf{qf} numpy ndarray of shape (M,N) of N functions with M samples
- qg numpy ndarray of shape (M,N) of N functions with M samples
- **no** number of components
- **alpha** amount of smoothing (Default = 0.0 i.e., none)

Return type

numpy ndarray

Return wqf

f weight function

Return wqg

g weight function

Return alpha

smoothing value

Return values

singular values

ELASTIC REGRESSION

Warping Invariant Regression using SRSF

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

class regression.elastic_logistic(f, y, time)

This class provides elastic logistic regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_logistic(f,y,time)

Parameters

- **f** (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- **y** numpy array of N responses
- time (np.ndarray) vector of size M describing the sample points
- **B** optional matrix describing Basis elements
- alpha alpha parameter of model
- **beta** beta(t) of model
- fn aligned functions numpy ndarray of shape (M,N) of M functions with N samples
- qn aligned srvfs similar structure to fn
- gamma calculated warping functions
- \mathbf{q} original training SRSFs
- **b** basis coefficients
- Loss logistic loss

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 29-Oct-2021

calc_model(B=None, lam=0, df=20, max_itr=20, cores=-1, smooth=False)

This function identifies a regression model with phase-variability using elastic pca

Parameters

- **B** optional matrix describing Basis elements
- lam regularization parameter (default 0)
- **df** number of degrees of freedom B-spline (default 20)
- max_itr maximum number of iterations (default 20)
- cores number of cores for parallel processing (default all)

predict(newdata=None)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

Parameters

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions
- **time** vector of time points
- **y** truth if available
- smooth smooth data if needed
- **sparam** number of times to run filter

class regression.elastic_mlogistic(f, y, time)

This class provides elastic multinomial logistic regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_mlogistic(f,y,time)

Parameters

- **f** (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- y numpy array of N responses
- time (np.ndarray) vector of size M describing the sample points
- B optional matrix describing Basis elements
- alpha alpha parameter of model
- **beta** beta(t) of model
- fn aligned functions numpy ndarray of shape (M,N) of N functions with M samples
- qn aligned srvfs similar structure to fn
- gamma calculated warping functions
- **q** original training SRSFs
- **b** basis coefficients
- Loss logistic loss

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 29-Oct-2021

calc_model(*B=None*, *lam=0*, *df=20*, *max_itr=20*, *delta=0.01*, *cores=-1*, *smooth=False*)

This function identifies a regression model with phase-variability using elastic pca

Parameters

- **B** optional matrix describing Basis elements
- **lam** regularization parameter (default 0)
- **df** number of degrees of freedom B-spline (default 20)
- max_itr maximum number of iterations (default 20)

• cores – number of cores for parallel processing (default all)

predict(newdata=None)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

Parameters

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions
- **time** vector of time points
- **y** truth if available
- smooth smooth data if needed
- sparam number of times to run filter

class regression.elastic_regression(f, y, time)

This class provides elastic regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_regression(f,y,time)

Parameters

- \mathbf{f} numpy ndarray of shape (M,N) of N functions with M samples
- **y** numpy array of N responses
- **time** vector of size M describing the sample points
- B optional matrix describing Basis elements
- alpha alpha parameter of model
- **beta** beta(t) of model
- fn aligned functions numpy ndarray of shape (M,N) of M functions with N samples
- qn aligned srvfs similar structure to fn
- gamma calculated warping functions
- **q** original training SRSFs
- **b** basis coefficients
- SSE sum of squared error

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 29-Oct-2021

calc_model(B=None, lam=0, df=20, max_itr=20, cores=-1, smooth=False)

This function identifies a regression model with phase-variability using elastic pca

- B optional matrix describing Basis elements
- **lam** regularization parameter (default 0)
- **df** number of degrees of freedom B-spline (default 20)
- max_itr maximum number of iterations (default 20)

• **cores** – number of cores for parallel processing (default all)

predict(newdata=None)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

Parameters

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions
- **time** vector of time points
- **y** truth if available
- smooth smooth data if needed
- sparam number of times to run filter

regression. $logistic_warp(beta, time, q, y)$

calculates optimal warping for function logistic regression

Parameters

- **beta** numpy ndarray of shape (M,N) of N functions with M samples
- time vector of size N describing the sample points
- **q** numpy ndarray of shape (M,N) of N functions with M samples
- y numpy ndarray of shape (1,N) responses

Return type

numpy array

Return gamma

warping function

regression. $logit_gradient(b, X, y)$

calculates gradient of the logistic loss

Parameters

- **b** numpy ndarray of shape (M,N) of N functions with M samples
- X numpy ndarray of shape (M,N) of N functions with M samples
- **y** numpy ndarray of shape (1,N) responses

Return type

numpy array

Return grad

gradient of logistic loss

regression.logit_hessian(s, b, X, y)

calculates hessian of the logistic loss

Parameters

• s – numpy ndarray of shape (M,N) of N functions with M samples

- **b** numpy ndarray of shape (M,N) of N functions with M samples
- X numpy ndarray of shape (M,N) of N functions with M samples
- y numpy ndarray of shape (1,N) responses

Return type

numpy array

Return out

hessian of logistic loss

regression. $logit_loss(b, X, y)$

 $logistic\ loss\ function,\ returns\ Sum\{-log(phi(t))\}$

Parameters

- **b** numpy ndarray of shape (M,N) of N functions with M samples
- X numpy ndarray of shape (M,N) of N functions with M samples
- y numpy ndarray of shape (1,N) of N responses

Return type

numpy array

Return out

loss value

regression.mlogit_gradient(b, X, Y)

calculates gradient of the multinomial logistic loss

Parameters

- **b** numpy ndarray of shape (M,N) of N functions with M samples
- X numpy ndarray of shape (M,N) of N functions with M samples
- y numpy ndarray of shape (1,N) responses

Return type

numpy array

Return grad

gradient

regression. $mlogit_loss(b, X, Y)$

calculates multinomial logistic loss (negative log-likelihood)

Parameters

- **b** numpy ndarray of shape (M,N) of N functions with M samples
- X numpy ndarray of shape (M,N) of N functions with M samples
- **y** numpy ndarray of shape (1,N) responses

Return type

numpy array

Return nll

negative log-likelihood

regression.mlogit_warp_grad(alpha, beta, time, q, y, max_itr=8000, tol=1e-10, delta=0.008, display=0) calculates optimal warping for functional multinomial logistic regression

Parameters

- alpha scalar
- beta numpy ndarray of shape (M,N) of N functions with M samples
- time vector of size M describing the sample points
- **q** numpy ndarray of shape (M,N) of N functions with M samples
- y numpy ndarray of shape (1,N) responses
- max_itr maximum number of iterations (Default=8000)
- **tol** stopping tolerance (Default=1e-10)
- **delta** gradient step size (Default=0.008)
- **display** display iterations (Default=0)

Return type

tuple of numpy array

Return gam old

warping function

regression.phi(t)

calculates logistic function, returns $1/(1 + \exp(-t))$

Parameters

t - scalar

Return type

numpy array

Return out

return value

regression.regression_warp(beta, time, q, y, alpha)

calculates optimal warping for function linear regression

Parameters

- beta numpy ndarray of shape (M,N) of M functions with N samples
- **time** vector of size N describing the sample points
- \mathbf{q} numpy ndarray of shape (M,N) of M functions with N samples
- y numpy ndarray of shape (1,N) of M functions with N samples responses
- alpha numpy scalar

Return type

numpy array

Return gamma_new

warping function

ELASTIC PRINCIPAL COMPONENT REGRESSION

Warping Invariant PCR Regression using SRSF

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

class pcr_regression.elastic_lpcr_regression(f, y, time)

This class provides elastic logistic pcr regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_lpcr_regression(f,y,time)

Parameters

- $\mathbf{f} (M,N)$ % matrix defining N functions of M samples
- y response vector of length N (-1/1)
- warp_data fdawarp object of alignment
- pca class dependent on fPCA method used object of fPCA

:param information :param alpha: intercept :param b: coefficient vector :param Loss: logistic loss :param PC: probability of classification :param ylabels: predicted labels

Author: J. D. Tucker (JDT) < jdtuck AT sandia.gov > Date: 18-Mar-2018

calc_model(pca method='combined', no=5, smooth data=False, sparam=25, parallel=False)

This function identifies a logistic regression model with phase-variability using elastic pca

Parameters

- **pca_method** string specifing pca method (options = "combined", "vert", or "horiz", default = "combined")
- **no** scalar specify number of principal components (default=5)
- **smooth_data** smooth data using box filter (default = F)
- **sparam** number of times to apply box filter (default = 25)
- parallel calculate in parallel (default = F)

predict(newdata=None)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions
- time vector of time points
- **y** truth if available
- smooth smooth data if needed
- sparam number of times to run filter

class pcr_regression.elastic_mlpcr_regression(f, y, time)

This class provides elastic multinomial logistic per regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_mlpcr_regression(f,y,time)

Parameters

- $\mathbf{f} (M,N)$ % matrix defining N functions of M samples
- y response vector of length N
- Y coded label matrix
- warp_data fdawarp object of alignment
- pca class dependent on fPCA method used object of fPCA

:param information :param alpha: intercept :param b: coefficient vector :param Loss: logistic loss :param PC: probability of classification :param ylabels: predicted labels

Author: J. D. Tucker (JDT) < jdtuck AT sandia.gov > Date: 18-Mar-2018

calc_model(pca_method='combined', no=5, smooth_data=False, sparam=25, parallel=False)

This function identifies a logistic regression model with phase-variability using elastic pca

Parameters

- **f** (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- **y** numpy array of N responses
- time (np.ndarray) vector of size M describing the sample points
- **pca_method** string specifing pca method (options = "combined", "vert", or "horiz", default = "combined")
- **no** scalar specify number of principal components (default=5)
- **smooth_data** smooth data using box filter (default = F)
- **sparam** number of times to apply box filter (default = 25)
- parallel run model in parallel (default = F)

predict(newdata=None)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions
- **time** vector of time points
- **y** truth if available
- smooth smooth data if needed
- **sparam** number of times to run filter

class pcr_regression.elastic_pcr_regression(f, y, time)

This class provides elastic per regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_pcr_regression(f,y,time)

Parameters

- $\mathbf{f} (M,N)$ % matrix defining N functions of M samples
- y response vector of length N
- warp_data fdawarp object of alignment
- pca class dependent on fPCA method used object of fPCA
- alpha intercept
- **b** coefficient vector
- SSE sum of squared errors

Author: J. D. Tucker (JDT) < jdtuck AT sandia.gov > Date: 18-Mar-2018

calc_model(pca_method='combined', no=5, smooth_data=False, sparam=25, parallel=False, C=None)

This function identifies a regression model with phase-variability using elastic pca

Parameters

- **pca_method** string specifing pca method (options = "combined", "vert", or "horiz", default = "combined")
- **no** scalar specify number of principal components (default=5)
- $smooth_data smooth data using box filter (default = F)$
- **sparam** number of times to apply box filter (default = 25)
- parallel run in parallel (default = F)
- **C** scale balance parameter for combined method (default = None)

predict(newdata=None)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions

- **time** vector of time points
- **y** truth if available
- **smooth** smooth data if needed
- **sparam** number of times to run filter

ELASTIC GLM REGRESSION

Warping Invariant GML Regression using SRSF

moduleauthor:: Derek Tucker <jdtuck@sandia.gov>

class elastic_glm_regression.elastic_glm_regression(f, y, time)

This class provides elastic glm regression for functional data using the SRVF framework accounting for warping

Usage: obj = elastic_glm_regression(f,y,time)

Parameters

- $\mathbf{f} (M,N)$ % matrix defining N functions of M samples
- y response vector of length N
- time time vector of length M
- alpha intercept
- **b** coefficient vector
- **B** basis matrix
- lambda regularization parameter
- SSE sum of squared errors

Author: J. D. Tucker (JDT) <jdtuck AT sandia.gov> Date: 18-Mar-2018

This function identifies a regression model with phase-variability using elastic pca

- link string of link function ('linear', 'quadratic', 'cubic')
- **B** optional matrix describing Basis elements
- **lam** regularization parameter (default 0)
- **df** number of degrees of freedom B-spline (default 20)
- max_itr maximum number of iterations (default 20)
- **smooth_data** smooth data using box filter (default = F)
- **sparam** number of times to apply box filter (default = 25)
- parallel run in parallel (default = F)

predict(newdata=None, parallel=True)

This function performs prediction on regression model on new data if available or current stored data in object Usage: obj.predict()

obj.predict(newdata)

Parameters

- **newdata** (*dict*) dict containing new data for prediction (needs the keys below, if None predicts on training data)
- $\mathbf{f} (M,N)$ matrix of functions
- **time** vector of time points
- y truth if available
- smooth smooth data if needed
- sparam number of times to run filter

```
elastic_glm_regression.rand(d0, d1, ..., dn)
```

Random values in a given shape.

Note: This is a convenience function for users porting code from Matlab, and wraps *random_sample*. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like *numpy.zeros* and *numpy.ones*.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).

d0, d1, ..., dn

[int, optional] The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned.

out

```
[ndarray, shape (d0, d1, ..., dn)] Random values.
```

random

ELASTIC FUNCTIONAL TOLERANCE BOUNDS

Functional Tolerance Bounds using SRSF

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

tolerance.bootTB(f, time, a=0.5, p=0.99, B=500, no=5, parallel=True)

This function computes tolerance bounds for functional data containing phase and amplitude variation using bootstrap sampling

Parameters

- **f** (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- time (np.ndarray) vector of size M describing the sample points
- \mathbf{a} confidence level of tolerance bound (default = 0.05)
- \mathbf{p} coverage level of tolerance bound (default = 0.99)
- \mathbf{B} number of bootstrap samples (default = 500)
- **no** number of principal components (default = 5)
- **parallel** enable parallel processing (default = T)

Return type

tuple of boxplot objects

Return amp

amplitude tolerance bounds

Rtype out_med

ampbox object

Return ph

phase tolerance bounds

Rtype out_med

phbox object

Return out med

alignment results

Rtype out_med

fdawarp object

$tolerance.mvtol_region(x, alpha, P, B)$

Computes tolerance factor for multivariate normal

Krishnamoorthy, K. and Mondal, S. (2006), Improved Tolerance Factors for Multivariate Normal Distributions, Communications in Statistics - Simulation and Computation, 35, 461–478.

Parameters

- $\mathbf{x} (M,N)$ matrix defining N variables of M samples
- alpha confidence level
- P coverage level
- **B** number of bootstrap samples

Return type

double

Return tol

tolerance factor

tolerance.pcaTB(f, time, a=0.5, p=0.99, no=5, parallel=True)

This function computes tolerance bounds for functional data containing phase and amplitude variation using fPCA

Parameters

- **f** (np.ndarray) numpy ndarray of shape (M,N) of N functions with M samples
- time (np.ndarray) vector of size M describing the sample points
- \mathbf{a} confidence level of tolerance bound (default = 0.05)
- \mathbf{p} coverage level of tolerance bound (default = 0.99)
- **no** number of principal components (default = 5)
- **parallel** enable parallel processing (default = T)

Return type

tuple of boxplot objects

Return warp

alignment data from time_warping

Return pca

functional pca from jointFPCA

Return tol

tolerance factor

tolerance.rwishart(df, p)

Computes a random wishart matrix

Parameters

- **df** degree of freedom
- **p** number of dimensions

Return type

double

Return R

matrix

CURVE REGISTRATION

statistic calculation for SRVF (curves) open and closed using Karcher Mean and Variance

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

class curve_stats.**fdacurve**(beta, mode='O', N=200, scale=False)

This class provides alignment methods for open and closed curves using the SRVF framework

Usage: obj = fdacurve(beta, mode, N, scale) :param beta: numpy ndarray of shape (n, M, N) describing N curves in R^M :param mode: Open ('O') or closed curve ('C') (default 'O') :param N: resample curve to N points :param scale: scale curve to length 1 (true/false) :param q: (n,T,K) matrix defining n dimensional srvf on T samples with K srvfs :param betan: aligned curves :param qn: aligned srvfs :param basis: calculated basis :param beta_mean: karcher mean curve :param q_mean: karcher mean srvf :param gams: warping functions :param v: shooting vectors :param C: karcher covariance :param s: pca singular values :param U: pca singular vectors :param coef: pca coefficients :param pca principal directions :param qun: cost function :param samples: random samples :param gamr: random warping functions :param cent: center :param scale: scale :param len: length of curve :param len_q: length of srvf :param mean_scale mean length :param mean_scale_q mean length srvf :param E: energy

Author: J. D. Tucker (JDT) < jdtuck AT sandia.gov > Date: 26-Aug-2020

karcher_cov()

This calculates the mean of a set of curves

karcher_mean(rotation=True, parallel=False, cores=-1, method='DP')

This calculates the mean of a set of curves :param rotation: compute optimal rotation (default = T) :param parallel: run in parallel (default = T) :param cores: number of cores for parallel (default = T) :param method: method to apply optimization (default="DP") options are "DP" or "RBFGS"

plot()

plot curve mean results

sample_shapes(no=3, numSamp=10)

Computes sample shapes from mean and covariance

Parameters

- **no** number of direction (default 3)
- **numSamp** number of samples (default 10)

$shape_pca(no=10)$

Computes principal direction of variation specified by no. N is Number of shapes away from mean. Creates 2*N+1 shape sequence

Parameters

no – number of direction (default 3)

```
srvf_align(rotation=True, parallel=False, cores=-1, method='DP')
```

This aligns a set of curves to the mean and computes mean if not computed :param rotation: compute optimal rotation (default = T) :param parallel: run in parallel (default = T) :param cores: number of cores for parallel (default = T) :param method: method to apply optimization (default="DP") options are "DP" or "RBFGS"

```
curve_stats.randn(d0, d1, ..., dn)
```

Return a sample (or samples) from the "standard normal" distribution.

Note: This is a convenience function for users porting code from Matlab, and wraps *standard_normal*. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like *numpy.zeros* and *numpy.ones*.

Note: New code should use the standard_normal method of a default_rng() instance instead; please see the random-quick-start.

If positive int_like arguments are provided, *randn* generates an array of shape (d0, d1, ..., dn), filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1. A single float randomly sampled from the distribution is returned if no argument is provided.

d0, d1, ..., dn

[int, optional] The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned.

 \mathbf{Z}

[ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied.

standard_normal: Similar, but takes a tuple as its argument. normal: Also accepts mu and sigma arguments. Generator.standard_normal: which should be used for new code.

For random samples from $N(\mu, \sigma^2)$, use:

```
sigma * np.random.randn(...) + mu
```

```
>>> np.random.randn()
2.1923875335537315 # random
```

Two-by-four array of samples from N(3, 6.25):

```
>>> 3 + 2.5 * np.random.randn(2, 4)
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
```


SRVF GEODESIC COMPUTATION

geodesic calculation for SRVF (curves) open and closed

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

geodesic.back_parallel_transport(u1, alpha, basis, T=100, k=5)

backwards parallel translates q1 and q2 along manifold

Parameters

- u1 numpy ndarray of shape (2,M) of M samples
- alpha numpy ndarray of shape (2,M) of M samples
- basis list numpy ndarray of shape (2,M) of M samples
- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return utilde

translated vector

geodesic.calc_alphadot(alpha, basis, T=100, k=5)

calculates derivative along the path alpha

Parameters

- alpha numpy ndarray of shape (2,M) of M samples
- basis list of numpy ndarray of shape (2,M) of M samples
- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return alphadot

derivative of alpha

geodesic.calculate_energy(alphadot, T=100, k=5)

calculates energy along path

Parameters

• alphadot – numpy ndarray of shape (2,M) of M samples

- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy scalar

Return E

energy

geodesic.calculate_gradE(u, utilde, T=100, k=5)

calculates gradient of energy along path

Parameters

- **u** numpy ndarray of shape (2,M) of M samples
- utilde numpy ndarray of shape (2,M) of M samples
- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy scalar

Return gradE

gradient of energy

Return normgradE

norm of gradient of energy

geodesic.cov_integral(alpha, alphadot, basis, T=100, k=5)

Calculates covariance along path alpha

Parameters

- alpha numpy ndarray of shape (2,M) of M samples (first curve)
- alphadot numpy ndarray of shape (2,M) of M samples
- basis list numpy ndarray of shape (2,M) of M samples
- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return u

covariance

geodesic.find_basis_normal_path(alpha, k=5)

computes orthonormalized basis vectors to the normal space at each of the k points (q-functions) of the path alpha

Parameters

- alpha numpy ndarray of shape (2,M) of M samples (path)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return basis

basis vectors along the path

geodesic.geod_dist_path_strt(beta, k=5)

calculate geodisc distance for path straightening

Parameters

- beta numpy ndarray of shape (2,M) of M samples
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy scalar

Return dist

geodesic distance

geodesic.geod_sphere(beta1, beta2, k=5, scale=False, rotation=True, center=True)

This function calculates the geodesics between open curves beta1 and beta2 with k steps along path

Parameters

- beta1 numpy ndarray of shape (2,M) of M samples
- beta2 numpy ndarray of shape (2,M) of M samples
- \mathbf{k} number of samples along path (Default = 5)
- **scale** include length (Default = False)
- **rotation** include rotation (Default = True)
- **center** center curves at origin (Default = True)

Return type

numpy ndarray

Return dist

geodesic distance

Return path

geodesic path

Return O

rotation matrix

geodesic.init_path_geod(beta1, beta2, T=100, k=5)

Initializes a path in C. beta1, beta2 are already standardized curves. Creates a path from beta1 to beta2 in shape space, then projects to the closed shape manifold.

Parameters

- **beta1** numpy ndarray of shape (2,M) of M samples (first curve)
- **beta2** numpy ndarray of shape (2,M) of M samples (end curve)
- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return alpha

a path between two q-functions

Return beta

a path between two curves

Return O

rotation matrix

geodesic.init_path_rand(beta1, beta_mid, beta2, T=100, k=5)

Initializes a path in C. beta1, beta_mid beta2 are already standardized curves. Creates a path from beta1 to beta_mid to beta2 in shape space, then projects to the closed shape manifold.

Parameters

- **beta1** numpy ndarray of shape (2,M) of M samples (first curve)
- **betamid** numpy ndarray of shape (2,M) of M samples (mid curve)
- **beta2** numpy ndarray of shape (2,M) of M samples (end curve)
- **T** Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return alpha

a path between two q-functions

Return beta

a path between two curves

Return O

rotation matrix

geodesic.path_straightening(beta1, beta2, betamid, init='rand', T=100, k=5)

Perform path straightening to find geodesic between two shapes in either the space of closed curves or the space of affine standardized curves. This algorithm follows the steps outlined in section 4.6 of the manuscript.

Parameters

- **beta1** numpy ndarray of shape (2,M) of M samples (first curve)
- **beta2** numpy ndarray of shape (2,M) of M samples (end curve)
- **betamid** numpy ndarray of shape (2,M) of M samples (mid curve Default = NULL, only needed for init "rand")
- init initialize path geodesic or random (Default = "rand")
- T Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy ndarray

Return dist

geodesic distance

Return path

geodesic path

Return pathsqnc

geodesic path sequence

Return E

energy

geodesic.update_path(alpha, beta, gradE, delta, T=100, k=5)

Update the path along the direction -gradE

Parameters

- alpha numpy ndarray of shape (2,M) of M samples
- **beta** numpy ndarray of shape (2,M) of M samples
- gradE numpy ndarray of shape (2,M) of M samples
- **delta** gradient paramenter
- T Number of samples of curve (Default = 100)
- \mathbf{k} number of samples along path (Default = 5)

Return type

numpy scalar

Return alpha

updated path of srvfs

Return beta

updated path of curves

TWELVE

UTILITY FUNCTIONS

Utility functions for SRSF Manipulations

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

utility_functions.SqrtMean(gam, parallel=False, cores=-1)

calculates the srsf of warping functions with corresponding shooting vectors

Parameters

- gam numpy ndarray of shape (M,N) of M warping functions with N samples
- **parallel** run in parallel (default = F)
- **cores** number of cores for parallel (default = -1 (all))

Return type

2 numpy ndarray and vector

Return mu

Karcher mean psi function

Return gam mu

vector of dim N which is the Karcher mean warping function

Return psi

numpy ndarray of shape (M,N) of M SRSF of the warping functions

Return vec

numpy ndarray of shape (M,N) of M shooting vectors

utility_functions.SqrtMeanInverse(gam)

finds the inverse of the mean of the set of the diffeomorphisms gamma

Parameters

gam – numpy ndarray of shape (M,N) of M warping functions with N samples

Return type

vector

Return gamI

inverse of gam

utility_functions.SqrtMedian(gam)

calculates the median srsf of warping functions with corresponding shooting vectors

Parameters

 $\label{eq:gam-numpy} \textbf{gam} - \text{numpy ndarray of shape } (M,N) \ \text{of} \ M \ \text{warping functions with} \ N \ \text{samples}$

Return type

2 numpy ndarray and vector

Return gam_median

Karcher median warping function

Return psi_meidan

vector of dim N which is the Karcher median srsf function

Return psi

numpy ndarray of shape (M,N) of M SRSF of the warping functions

Return vec

numpy ndarray of shape (M,N) of M shooting vectors

utility_functions.cumtrapzmid(x, y, c, mid)

cumulative trapezoidal numerical integration taken from midpoint

Parameters

- \mathbf{x} vector of size N describing the time samples
- y vector of size N describing the function
- **c** midpointtic
- mid midpiont location

Return type

vector

Return fa

cumulative integration

utility_functions.diffop(n, binsize=1)

Creates a second order differential operator

Parameters

- **n** dimension
- **binsize** dx (default = 1)

Return type

numpy ndarray

Return m

matrix describing differential operator

utility_functions.elastic_depth(f, time, method='DP2', lam=0.0, parallel=True)

calculates the elastic depth between functions in matrix f

Parameters

- **f** matrix of size MxN (M time points for N functions)
- \mbox{time} vector of size M describing the sample points
- method method to apply optimization (default="DP2") options are "DP","DP2","RBFGS"
- lam controls the elasticity (default = 0.0)

Return type

scalar

Return amp

amplitude depth

Return phase

phase depth

utility_functions.elastic_distance(f1, f2, time, method='DP2', lam=0.0)

" calculates the distances between function, where f1 is aligned to f2. In other words calculates the elastic distances

Parameters

- **f1** vector of size N
- **f2** vector of size N
- time vector of size N describing the sample points
- method method to apply optimization (default="DP2") options are "DP","DP2","RBFGS"
- lam controls the elasticity (default = 0.0)

Return type

scalar

Return Dy

amplitude distance

Return Dx

phase distance

utility_functions.f_K_fold(Nobs, K=5)

generates sample indices for K-fold cross validation

:param Nobs number of observations :param K number of folds

Return type

numpy ndarray

Return train

train indexes (Nobs*(K-1)/K X K)

Return test

test indexes (Nobs*(1/K) X K)

utility_functions.f_to_srsf(f, time, smooth=False)

converts f to a square-root slope function (SRSF)

Parameters

- **f** vector of size N samples
- time vector of size N describing the sample points

Return type

vector

Return q

srsf of f

utility_functions.geigen(Amat, Bmat, Cmat)

generalized eigenvalue problem of the form

max tr L'AM / sqrt(tr L'BL tr M'CM) w.r.t. L and M

:param Amat numpy ndarray of shape (M,N):param Bmat numpy ndarray of shape (M,N):param Bmat numpy ndarray of shape (M,N)

Return type

numpy ndarray

Return values

eigenvalues

Return Lmat

left eigenvectors

Return Mmat

right eigenvectors

utility_functions.gradient_spline(time, f, smooth=False)

This function takes the gradient of f using b-spline smoothing

Parameters

- **time** vector of size N describing the sample points
- \mathbf{f} numpy ndarray of shape (M,N) of M functions with N samples
- smooth smooth data (default = F)

Return type

tuple of numpy ndarray

Return f0

smoothed functions functions

Return g

first derivative of each function

Return g2

second derivative of each function

utility_functions.innerprod_q(time, q1, q2)

calculates the innerproduct between two srsfs

:param time vector describing time samples :param q1 vector of srsf 1 :param q2 vector of srsf 2

Return type

scalar

Return val

inner product value

utility_functions.invertGamma(gam)

finds the inverse of the diffeomorphism gamma

Parameters

 $\label{eq:gam-vector} \textbf{gam} - \text{vector describing the warping function}$

Return type

vector

Return gamI

inverse of gam

utility_functions.optimum_reparam(q1, time, q2, method='DP2', lam=0.0, grid_dim=7)

calculates the warping to align srsf q2 to q1

Parameters

- q1 vector of size N or array of NxM samples of first SRSF
- time vector of size N describing the sample points
- q2 vector of size N or array of NxM samples samples of second SRSF
- method method to apply optimization (default="DP2") options are "DP", "DP2", "RBFGS"
- lam controls the amount of elasticity (default = 0.0)
- **grid_dim** size of the grid, for the DP2 method only (default = 7)

Return type

vector

Return gam

describing the warping function used to align q2 with q1

utility_functions.optimum_reparam_pair(q, time, q1, q2, lam=0.0)

calculates the warping to align srsf pair q1 and q2 to q

Parameters

- q vector of size N or array of NxM samples of first SRSF
- time vector of size N describing the sample points
- q1 vector of size N or array of NxM samples samples of second SRSF
- q2 vector of size N or array of NxM samples samples of second SRSF
- lam controls the amount of elasticity (default = 0.0)

Return type

vector

Return gam

describing the warping function used to align q2 with q1

utility_functions.outlier_detection(q, time, mq, k=1.5)

calculates outlier's using geodesic distances of the SRSFs from the median

Parameters

- **q** numpy ndarray of N x M of M SRS functions with N samples
- time vector of size N describing the sample points
- mq median calculated using time_warping.srsf_align()
- \mathbf{k} cutoff threshold (default = 1.5)

Returns

q_outlier: outlier functions

utility_functions.randomGamma(gam, num)

generates random warping functions

Parameters

- gam numpy ndarray of N x M of M of warping functions
- **num** number of random functions

Returns

rgam: random warping functions

utility_functions.resamplefunction(x, n)

resample function using n points

Parameters

- **x** functions
- **n** number of points

Return type

numpy array

Return xn

resampled function

utility_functions.rgam(N, sigma, num, mu_gam=None)

Generates random warping functions

Parameters

- N length of warping function
- **sigma** variance of warping functions
- **num** number of warping functions

:param mu_gam mean warping function (default identity) :return: gam: numpy ndarray of warping functions utility_functions.smooth_data(f, sparam=1)

This function smooths a collection of functions using a box filter

Parameters

- **f** numpy ndarray of shape (M,N) of M functions with N samples
- **sparam** Number of times to run box filter (default = 25)

Return type

numpy ndarray

Return f

smoothed functions functions

utility_functions.srsf_to_f(q, time, f0=0.0)

converts q (srsf) to a function

Parameters

- **q** vector of size N samples of srsf
- time vector of size N describing time sample points
- **f0** initial value

Return type

vector

Return f

function

utility_functions.update_progress(progress)

This function creates a progress bar

Parameters

 $\textbf{progress}-fraction\ of\ progress$

utility_functions.warp_f_gamma(time, f, gam)

warps a function f by gam

:param time vector describing time samples :param q vector describing srsf :param gam vector describing warping function

Return type

numpy ndarray

Return f temp

warped srsf

utility_functions.warp_q_gamma(time, q, gam)

warps a srsf q by gam

:param time vector describing time samples :param q vector describing srsf :param gam vector describing warping function

Return type

numpy ndarray

Return q_temp

warped srsf

$utility_functions.zero_crossing(Y, q, bt, time, y_max, y_min, gmax, gmin)$

finds zero-crossing of optimal gamma, gam = s*gmax + (1-s)*gmin from elastic regression model

Parameters

- Y response
- **q** predicitve function
- **bt** basis function
- **time** time samples
- y_max maximum repsonse for warping function gmax
- **y_min** minimum response for warping function gmin
- gmax max warping function
- gmin min warping fucntion

Return type

numpy array

Return gamma

optimal warping function

CHAPTER

THIRTEEN

CURVE FUNCTIONS

functions for SRVF curve manipulations

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

curve_functions.Basis_Normal_A(q)

Find Normal Basis

Parameters

 ${f q}$ – numpy ndarray (n,T) defining T points on n dimensional SRVF

:rtype list :return delg: basis

curve_functions.calc_j(basis)

Calculates Jacobian matrix from normal basis

Parameters

basis – list of numpy ndarray of shape (2,M) of M samples basis

Return type

numpy ndarray

Return j

Jacobian

curve_functions.calculate_variance(beta)

This function calculates variance of curve beta

Parameters

beta – numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return variance

variance

$\verb|curve_functions.calculatecentroid| (beta)$

This function calculates centroid of a parameterized curve

Parameters

beta – numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return centroid

center coordinates

```
curve_functions.curve_to_q(beta, mode='O')
```

This function converts curve beta to srvf q

Parameters

- **beta** numpy ndarray of shape (2,M) of M samples
- mode Open ('O') or closed curve ('C') (default 'O')

Return type

numpy ndarray

Return q

srvf of curve

Return lenb

length of curve

Return leng

length of srvf

curve_functions.curve_zero_crossing(Y, q, bt, y_max, y_min, gmax, gmin)

finds zero-crossing of optimal gamma, gam = s*gmax + (1-s)*gmin from elastic curve regression model

Parameters

- **Y** response
- beta predicitve function
- **bt** basis function
- y_max maximum repsonse for warping function gmax
- **y_min** minimum response for warping function gmin
- gmax max warping function
- gmin min warping fucntion

Return type

numpy array

Return gamma

optimal warping function

Return O hat

rotation matrix

curve_functions.elastic_distance_curve(beta1, beta2, closed=0, rotation=True, scale=False, method='DP')

Calculates the two elastic distances between two curves :param beta1: numpy ndarray of shape (2,M) of M samples :param beta2: numpy ndarray of shape (2,M) of M samples :param closed: open (0) or closed (1) curve (default=0) :param rotation: compute optimal rotation (default=True) :param scale: include scale (default=False) :param method: method to apply optimization (default="DP") options are "DP" or "RBFGS"

Return type

tuple

Return dist

shape distance

Return dx

phase distance

curve_functions.elastic_shooting(q1, v, mode=0)

Calculates shooting vector from v to q1

Parameters

- q1 vector of srvf
- **v** shooting vector
- mode closed or open (1/0)

:rtype numpy ndarray :return q2n: vector of srvf

curve_functions.elastic_shooting_vector(q1, q2, mode=0)

Calculates shooting between two srvfs

Parameters

- q1 vector of srvf
- q2 vector of srvf
- mode closed or open (1/0)

:rtype numpy ndarray :return v: shooting vector :return d: distance :return q2n: aligned srvf

curve_functions.find_basis_normal(q)

Finds the basis normal to the srvf

Parameters

q1 – numpy ndarray of shape (2,M) of M samples

Return type

list of numpy ndarray

Return basis

list containing basis vectors

curve_functions.find_best_rotation(q1, q2, allow_reflection=False, only_xy=False)

This function calculates the best rotation between two srvfs using procustes rigid alignment

Parameters

- **q1** numpy ndarray of shape (2,M) of M samples
- **q2** numpy ndarray of shape (2,M) of M samples
- **allow_reflection** bool indicating if reflection is allowed (i.e. if the determinant of the optimal rotation can be -1)
- **only_xy** bool indicating if rotation should only be allowed in the first two dimensions of the space

Return type

numpy ndarray

Return q2new

optimal rotated q2 to q1

Return R

rotation matrix

$\verb|curve_functions.find_rotation_and_seed_coord| (beta1, beta2, closed=0, rotation=True, method='DP')|$

This function returns a candidate list of optimally oriented and registered (seed) shapes w.r.t. beta1

Parameters

- **beta1** numpy ndarray of shape (2,M) of M samples
- beta2 numpy ndarray of shape (2,M) of M samples
- **closed** Open (0) or Closed (1)
- rotation find rotation (default=True)
- method method to apply optimization (default="DP") options are "DP" or "RBFGS"

Return type

numpy ndarray

Return beta2new

optimal aligned beta2 to beta1

Return q2best

optimal aligned q2 to q1

Return Rbest

rotation matrix

Return gamIbest

warping function

curve_functions.find_rotation_and_seed_q(q1, q2, closed=0, rotation=True, method='DP')

This function returns a candidate list of optimally oriented and registered (seed) srvs w.r.t. q1

Parameters

- **q1** numpy ndarray of shape (2,M) of M samples
- **q2** numpy ndarray of shape (2,M) of M samples
- **closed** Open (0) or Closed (1)
- rotation find rotation (default=True)
- method method to apply optimization (default="DP") options are "DP" or "RBFGS"

Return type

numpy ndarray

Return q2best

optimal aligned q2 to q1

Return Rbest

rotation matrix

Return gamIbest

warping function

curve_functions.find_rotation_and_seed_unique(q1, q2, closed=0, rotation=True, method='DP')

This function returns a candidate list of optimally oriented and registered (seed) shapes w.r.t. beta1

Parameters

- **beta1** numpy ndarray of shape (2,M) of M samples
- **beta2** numpy ndarray of shape (2,M) of M samples
- closed Open (0) or Closed (1)
- **rotation** find rotation (default=True)
- method method to apply optimization (default="DP") options are "DP" or "RBFGS"

Return type

numpy ndarray

Return beta2new

optimal rotated beta2 to beta1

Return O

rotation matrix

Return tau

seed

curve_functions.gram_schmidt(basis)

Performs Gram Schmidt Orthogonlization of a basis_o

param basis

list of numpy ndarray of shape (2,M) of M samples

rtype

list of numpy ndarray

return basis o

orthogonlized basis

$curve_functions.group_action_by_gamma(q, gamma)$

This function reparamerized srvf q by gamma

Parameters

- \mathbf{f} numpy ndarray of shape (2,M) of M samples
- gamma numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return qn

reparatermized srvf

curve_functions.group_action_by_gamma_coord(f, gamma)

This function reparamerized curve f by gamma

Parameters

- \mathbf{f} numpy ndarray of shape (2,M) of M samples
- gamma numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return fn

reparatermized curve

curve_functions.innerprod_q2(q1, q2)

This function calculates the inner product in srvf space

Parameters

- **q1** numpy ndarray of shape (2,M) of M samples
- **q2** numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return val

inner product

curve_functions.inverse_exp(q1, q2, beta2)

Calculate the inverse exponential to obtain a shooting vector from q1 to q2 in shape space of open curves

Parameters

- **q1** numpy ndarray of shape (2,M) of M samples
- **q2** numpy ndarray of shape (2,M) of M samples
- beta2 numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return v

shooting vectors

curve_functions.inverse_exp_coord(beta1, beta2, closed=0, method='DP')

Calculate the inverse exponential to obtain a shooting vector from beta 1 to beta 2 in shape space of open curves

Parameters

- beta1 numpy ndarray of shape (2,M) of M samples
- beta2 numpy ndarray of shape (2,M) of M samples
- **closed** open (0) or closed (1) curve
- method method to apply optimization (default="DP") options are "DP" or "RBFGS"

Return type

numpy ndarray

Return v

shooting vectors

Return dist

distance

curve_functions.optimum_reparam_curve(q1, q2, lam=0.0, method='DP')

calculates the warping to align srsf q2 to q1

Parameters

- q1 matrix of size nxN or array of NxM samples of first SRVF
- time vector of size N describing the sample points
- q2 matrix of size nxN or array of NxM samples samples of second SRVF
- lam controls the amount of elasticity (default = 0.0)
- method method to apply optimization (default="DP") options are "DP" or "RBFGS"

Return type

vector

Return gam

describing the warping function used to align q2 with q1

curve_functions.parallel_translate(w, q1, q2, basis, mode=0)

parallel translates q1 and q2 along manifold

Parameters

- w numpy ndarray of shape (2,M) of M samples
- **q1** numpy ndarray of shape (2,M) of M samples
- **q2** numpy ndarray of shape (2,M) of M samples
- basis list of numpy ndarray of shape (2,M) of M samples
- mode open 0 or closed curves 1 (default 0)

Return type

numpy ndarray

Return wbar

translated vector

$curve_functions.pre_proc_curve(beta, T=100)$

This function prepcoessed a curve beta to set of closed curves

Parameters

- **beta** numpy ndarray of shape (2,M) of M samples
- T number of samples (default = 100)

Return type

numpy ndarray

Return betanew

projected beta

Return gnew

projected srvf

Return A

alignment matrix (not used currently)

curve_functions.project_curve(q)

This function projects srvf q to set of close curves

Parameters

q – numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return qproj

project srvf

$curve_functions.project_tangent(w, q, basis)$

projects srvf to tangent space w using basis

Parameters

- w numpy ndarray of shape (2,M) of M samples
- **q** numpy ndarray of shape (2,M) of M samples
- basis list of numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return wproj

projected q

 $curve_functions.psi(x, a, q)$

This function formats variance output

Parameters

- **x** numpy ndarray of shape (2,M) of M samples curve
- **a** numpy ndarray of shape (2,1) mean
- **q** numpy ndarray of shape (2,M) of M samples srvf

Return type

numpy ndarray

Return psi1

variance

Return psi2

cross variance

Return psi3

curve end

Return psi4

curve end

curve_functions.q_to_curve(q, scale=1)

This function converts srvf to beta

Parameters

- **q** numpy ndarray of shape (n,M) of M samples
- scale scale of curve

Return type

numpy ndarray

Return beta

parameterized curve

 $curve_functions.resamplecurve(x, N=100, time=None, mode='O')$

This function resamples a curve to have N samples

Parameters

- **x** numpy ndarray of shape (2,M) of M samples
- N Number of samples for new curve (default = 100)
- **time** timing vector (Default=None)
- mode Open ('O') or closed curve ('C') (default 'O')

Return type

numpy ndarray

Return xn

resampled curve

curve_functions.scale_curve(beta)

scales curve to length 1

Parameters

 ${f beta}$ – numpy ndarray of shape (2,M) of M samples

Return type

numpy ndarray

Return beta scaled

scaled curve

Return scale

scale factor used

curve_functions.shift_f(f, tau)

shifts a curve f by tau

Parameters

- \mathbf{f} numpy ndarray of shape (2,M) of M samples
- tau scalar

Return type

numpy ndarray

Return fn

shifted curve

FOURTEEN

UMAP EFDA METRICS

Distance metrics for functions and curves in R^n for use with UMAP (https://github.com/lmcinnes/umap)

moduleauthor:: J. Derek Tucker <jdtuck@sandia.gov>

umap_metric.efda_distance(q1, q2)

" calculates the distances between two curves, where q2 is aligned to q1. In other words calculates the elastic distances/ This metric is set up for use with UMAP or t-sne from scikit-learn

Parameters

- **q1** vector of size N
- q2 vector of size N

Return type

scalar

Return dist

amplitude distance

umap_metric.efda_distance_curve(beta1, beta2, closed)

"calculates the distances between two curves, where beta2 is aligned to beta1. In other words calculates the elastic distance. This metric is set up for use with UMAP or t-sne from scikit-learn

Parameters

- beta1 vector of size n*M
- beta2 vector of size n*M
- closed -
- (0) if open curves and (1) if closed curves

Return type

scalar

Return dist

shape distance

REFERENCES

Tucker, J. D. 2014, Functional Component Analysis and Regression using Elastic Methods. Ph.D. Thesis, Florida State University.

Robinson, D. T. 2012, Function Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. Thesis, Florida State University.

Huang, W. 2014, Optimization Algorithms on Riemannian Manifolds with Applications. Ph.D. Thesis, Florida State University.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011). Registration of Functional Data Using Fisher-Rao Metric. arXiv:1103.3817v2 [math.ST].

Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis 61, 50-66.

- J. D. Tucker, W. Wu, and A. Srivastava, "Phase-Amplitude Separation of Proteomics Data Using Extended Fisher-Rao Metric," Electronic Journal of Statistics, Vol 8, no. 2. pp 1724-1733, 2014.
- J. D. Tucker, W. Wu, and A. Srivastava, "Analysis of signals under compositional noise With applications to SONAR data," IEEE Journal of Oceanic Engineering, Vol 29, no. 2. pp 318-330, Apr 2014.

Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Neural Information Processing Systems (NIPS), 2011.

Wen Huang, Kyle A. Gallivan, Anuj Srivastava, Pierre-Antoine Absil. "Riemannian Optimization for Elastic Shape Analysis", Short version, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014).

Cheng, W., Dryden, I. L., and Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447-475.

W. Xie, S. Kurtek, K. Bharath, and Y. Sun, A geometric approach to visualization of variability in functional data, Journal of American Statistical Association 112 (2017), pp. 979-993.

Lu, Y., R. Herbei, and S. Kurtek, 2017: Bayesian registration of functions with a Gaussian process prior. Journal of Computational and Graphical Statistics, 26, no. 4, 894–904.

Lee, S. and S. Jung, 2017: Combined analysis of amplitude and phase variations in functional data. arXiv:1603.01775 [stat.ME], 1–21.

- J. D. Tucker, J. R. Lewis, and A. Srivastava, "Elastic Functional Principal Component Regression," Statistical Analysis and Data Mining, vol. 12, no. 2, pp. 101-115, 2019.
- J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, "A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data," Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.

- T. Harris, J. D. Tucker, B. Li, and L. Shand, "Elastic depths for detecting shape anomalies in functional data," Technometrics, 10.1080/00401706.2020.1811156, 2020.
- M. K. Ahn, J. D. Tucker, W. Wu, and A. Srivastava. "Regression Models Using Shapes of Functions as Predictors" Computational Statistics and Data Analysis, 10.1016/j.csda.2020.107017, 2020.
 - J. D. Tucker, L. Shand, and K. Chowdhary. "Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo", Computational Statistics and Data Analysis, accepted, 2021.

CHAPTER

SIXTEEN

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
b
boxplots, 27
С
curve_functions, 67
curve_stats, 49
е
{\tt elastic\_glm\_regression}, 43
f
fPCA, 23
fPLS, 29
g
geodesic, 53
p
pcr_regression, 39
regression, 31
time_warping, 15
tolerance, 45
u
umap_metric, 77
utility_functions, 59
```

84 Python Module Index

INDEX

A	module, 49
align_fPCA() (in module time_warping), 15 align_fPLS() (in module time_warping), 16 ampbox (class in boxplots), 27	<pre>curve_to_q() (in module curve_functions), 67 curve_zero_crossing() (in module curve_functions), 68</pre>
B back_parallel_transport() (in module geodesic), 53 Basis_Normal_A() (in module curve_functions), 67 bootTB() (in module tolerance), 45 boxplots module, 27 C calc_alphadot() (in module geodesic), 53 calc_fpca() (fPCA.fdahpca method), 23 calc_fpca() (fPCA.fdaipca method), 24 calc_fpca() (fPCA.fdavpca method), 25 calc_j() (in module curve_functions), 67 calc_model() (elastic_glm_regression.elastic_glm_regression_method), 43 calc_model() (pcr_regression.elastic_lpcr_regression_method), 39 calc_model() (pcr_regression.elastic_mlpcr_regression	elastic_logistic (class in regression), 31 elastic_lpcr_regression (class in pcr_regression), 39 elastic_mlogistic (class in regression), 32
method), 40 calc_model() (pcr_regression.elastic_pcr_regression method), 41 calc_model() (regression.elastic_logistic method), 31 calc_model() (regression.elastic_mlogistic method), 32 calc_model() (regression.elastic_regression method), 33	elastic_mlpcr_regression (class in pcr_regression), 40 elastic_pcr_regression (class in pcr_regression), 41 elastic_regression (class in regression), 33 elastic_shooting() (in module curve_functions), 68 elastic_shooting_vector() (in module curve_functions), 69
<pre>calculate_energy() (in module geodesic), 53 calculate_gradE() (in module geodesic), 54 calculate_variance() (in module curve_functions),</pre>	f_K_fold() (in module utility_functions), 61 f_to_srsf() (in module utility_functions), 61 fdacurve (class in curve_stats), 49 fdahpca (class in fPCA), 23 fdajpca (class in fPCA), 24 fdavpca (class in fPCA), 25 fdawarp (class in time_warping), 16 find_basis_normal() (in module curve_functions), 69 find_basis_normal_path() (in module geodesic), 54

<pre>find_best_rotation() (in module curve_functions), 69</pre>	<pre>mlogit_warp_grad() (in module regression), 35 module</pre>
find_rotation_and_seed_coord() (in module	boxplots, 27
curve_functions), 69	curve_functions, 67
<pre>find_rotation_and_seed_q() (in module</pre>	curve_stats, 49
curve_functions), 70	elastic_glm_regression, 43
<pre>find_rotation_and_seed_unique() (in module</pre>	fPCA, 23
curve_functions), 70	fPLS, 29
fPCA	geodesic, 53
module, 23	pcr_regression, 39
fPLS	regression, 31
module, 29	time_warping, 15
	tolerance, 45
G	umap_metric,77
<pre>gauss_model() (time_warping.fdawarp method), 17</pre>	utility_functions, 59
geigen() (in module utility_functions), 61	<pre>multiple_align_functions()</pre>
<pre>geod_dist_path_strt() (in module geodesic), 55</pre>	(time_warping.fdawarp method), 17
geod_sphere() (in module geodesic), 55	<pre>mvtol_region() (in module tolerance), 45</pre>
geodesic module, 53	N
gradient_spline() (in module utility_functions), 62	normal() (in module time_warping), 18
<pre>gram_schmidt() (in module curve_functions), 71</pre>	0
group_action_by_gamma() (in module	O
curve_functions), 71	<pre>optimum_reparam() (in module utility_functions), 62</pre>
<pre>group_action_by_gamma_coord() (in module</pre>	optimum_reparam_curve() (in module
curve_functions), 71	curve_functions), 72
I	<pre>optimum_reparam_pair() (in module util- ity_functions), 63</pre>
<pre>init_path_geod() (in module geodesic), 55</pre>	<pre>outlier_detection() (in module utility_functions), 63</pre>
init_path_rand() (in module geodesic), 56	
innerprod_q() (in module utility_functions), 62	P
innerprod_q2() (in module curve_functions), 71	<pre>pairwise_align_bayes() (in module time_warping),</pre>
inverse_exp() (in module curve_functions), 72	19
<pre>inverse_exp_coord() (in module curve_functions), 72</pre>	<pre>pairwise_align_bayes_infHMC() (in module</pre>
invertGamma() (in module utility_functions), 62	time_warping), 20
	<pre>pairwise_align_functions() (in module</pre>
J	time_warping), 21
<pre>joint_gauss_model()</pre>	<pre>parallel_translate() (in module curve_functions),</pre>
method), 17	path_straightening() (in module geodesic), 56
K	pcaTB() (in module tolerance), 46
	pcr_regression
karcher_cov() (curve_stats.fdacurve method), 49	module, 39
karcher_mean() (curve_stats.fdacurve method), 49	phbox (class in boxplots), 27
1	phi() (in module regression), 36
L	plot() (boxplots.ampbox method), 27
logistic_warp() (in module regression), 34	plot() (boxplots.ampoox method), 28
<pre>logit_gradient() (in module regression), 34</pre>	plot() (curve_stats.fdacurve method), 49
logit_hessian() (in module regression), 34	plot() (fPCA.fdahpca method), 24
logit_loss() (in module regression), 35	plot() (FCA.faaipca method), 25
	plot() (fPCA.fdavpca method), 26
M	plot() (time_warping.fdawarp method), 18
mlogit_gradient() (in module regression), 35	pls_svd() (in module fPLS), 29
mlogit_loss() (in module regression), 35	pre_proc_curve() (in module curve functions), 73

86 Index

```
predict() (elastic_glm_regression.elastic_glm_regression.update_path() (in module geodesic), 57
         method), 43
                                                       update_progress() (in module utility_functions), 64
                                                       utility_functions
predict()
                (pcr_regression.elastic_lpcr_regression
                                                            module, 59
         method), 39
predict()
              (pcr_regression.elastic_mlpcr_regression
                                                       W
         method), 40
predict()
                 (pcr_regression.elastic_pcr_regression
                                                       warp_f_gamma() (in module utility_functions), 64
         method), 41
                                                       warp_q_gamma() (in module utility_functions), 65
predict() (regression.elastic_logistic method), 31
                                                       Ζ
predict() (regression.elastic_mlogistic method), 33
predict() (regression.elastic_regression method), 34
                                                       zero_crossing() (in module utility_functions), 65
project_curve() (in module curve_functions), 73
project_tangent() (in module curve_functions), 73
psi() (in module curve_functions), 74
Q
q_to_curve() (in module curve_functions), 74
R
rand() (in module elastic_glm_regression), 44
rand() (in module time_warping), 21
randn() (in module curve stats), 50
randomGamma() (in module utility_functions), 63
regression
    module, 31
regression_warp() (in module regression), 36
resamplecurve() (in module curve_functions), 74
resamplefunction() (in module utility_functions), 64
rgam() (in module utility_functions), 64
rwishart() (in module tolerance), 46
S
sample_shapes() (curve_stats.fdacurve method), 49
scale_curve() (in module curve functions), 74
shape_pca() (curve_stats.fdacurve method), 49
shift_f() (in module curve_functions), 75
smooth_data() (in module utility_functions), 64
SqrtMean() (in module utility_functions), 59
SgrtMeanInverse() (in module utility functions), 59
SqrtMedian() (in module utility functions), 59
srsf_align() (time_warping.fdawarp method), 18
srsf_to_f() (in module utility_functions), 64
srvf_align() (curve_stats.fdacurve method), 49
Т
time_warping
    module, 15
tolerance
    module, 45
U
umap_metric
    module, 77
```

Index 87