A machine-independent characterization of timed languages

Sławomir Lasota University of Warsaw

joint work with Mikołaj Bojańczyk

HIGHLIGHTS 2013

deterministic timed automata with uninitialized clocks

the automaton accepts words $t_1 t_2 t_3 \in \mathbb{R}^3$ such that

Myhill-Nerode theorem

let L be a language over a finite alphabet A

L is recognized by a DFA

≈L has finitely many equivalence classes

 \forall v (wv \in L iff uv \in L) iff w ≈_L u

The same for deterministic timed automata?

Problems:

- infinitely many equivalence classes • no canonical minimal timed automaton

deterministic timed automata with uninitialized clocks

do not minimize

Solution: move to sets with atoms

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata

with uninitialized clocks

minimal automata for languages of deterministic timed automata with uninitialized clocks

Myhill-Nerode theorem for timed languages

let L be a language over $A \times R$

such that

- L contains only increasing words
- L is invariant under Aut(R, <, +1)

L is recognized by a deterministic timed automaton

with uninitialized clocks

iff

- ≈L has orbit-finite set of equivalence classes
- L is forgetful

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata
with uninitialized clocks

L is forgetful iff

there is $M \in \mathbb{R}$ such that

for every timed word and $\pi \in Aut(R, <, +1)$

for every factorization

summary

• Myhill-Nerode theorem for timed languages

• superclass of deterministic timed automata closed under minimization

both result due to sets with atoms

Thank you!