Imputation in GMM models with nonparametric missingness structure

Jason Abrevaya and Peter Toth

University of Texas at Austin, University of Nevada, Reno

Introduction

- Estimator and asymptotic theory
- Monte Carlo simulations
- 4 Further questions

Imputation

- We examine the case when the researcher
 - ullet has 1 variable (X) with large number of missing values $(\tilde{2}0\%)$
 - fully observed variables (Z)
 - ullet wants to infer the relationship between a LHS variable Y and the RHS variables ${f Z}$
 - lacktriangledown learn the relationship between X and lacktriangledown using the fully observed cases
 - $oldsymbol{2}$ recover some of the variation in X for the missing observations
 - $oldsymbol{3}$ using the augmented data to infer the relationship between $oldsymbol{Z}$ and Y
- Chamberlain (1982), Abrevaya and Donald (2017), Murris (2019), Coe (2019)
 - works well in linear models

Question

- Abrevaya and Donald (2017) offers a simple GMM solution for the case when we have
 - ullet a linear model for $E[Y|X,\mathbf{Z}]$
 - ullet another linear model connecting X and ${f Z}$
 - the sole exclusion restriction that the missingness is (mean-) independent of X, conditional on $\mathbf Z$
- Our question is: Is it possible to apply the framework for the case of
 - parametric nonlinear model for $E[Y|X, \mathbf{Z}]$,
 - no assumption on the relationship between X and Z, other than X is not independent of Z,
 - arbitrary missingness structure with the same exclusion restriction as in the linear case
- We aim to preserve the (relatively) simple nature of the GMM-framework

Today's results

- We provide a GMM estimator that allows for efficiency gains IF the dimension of the **Z** is at most 4 (including the constant)
 - you can have additional dimensions with discrete variables
- We derive the asmyptotic properties of the estimator
- Highlight the trade-offs:
 - you do not want to do an imputation scheme if the estimates for the missing elements you use are very noisy
 - you have to do complicated schemes (including all Z-s) if you do not allow for strict exclusion restrictions

The model

$$E[Y|X, \mathbf{Z}, M] = E[Y|X, \mathbf{Z}] = h(\alpha X + \beta \mathbf{Z})$$
$$f_{X|\mathbf{Z}, M}(x, z, m) = f_{X|\mathbf{Z}}(x, z)$$

- ullet We know h, but the conditional distribution $f_{X|\mathbf{Z}}$ is unknown
 - h is smooth and well-behaved for identification (i.e. strictly increasing)
- ullet M is the missingness indicator, taking the value 1 when the observation is missing (otherwise 0)
- We observe

$$M, \mathbf{Z}, M \cdot X, Y$$

Weakened exclusion restriction

- Directly from AD (2017)
- ullet Weaker than the missingness-at-random assumption (standard), as it is allowed for M to depend on ${f Z}$
- ullet Roughly translates to $M \perp X$
- Our two assumptions imply that

$$E(Y|\mathbf{Z}, M) = \int h(\alpha X + \beta \mathbf{Z}) f_{X|\mathbf{Z}}(x, \mathbf{Z}) dx$$

Estimator and asymptotic theory

- Estimator and asymptotic theory
- Monte Carlo simulations
- 4 Further questions

Population moments

ullet Let us have $\mathbb{Z} \in \mathbb{R}^k$ (further, I will not emphasize that ${f Z}$ is a vector)

$$E[g(\alpha,\beta;E[y|z])] = E \left[\begin{array}{c} (1-m)x(y-h(\alpha x+\beta z)) \\ (1-m)z(y-h(\alpha x+\beta z)) \\ mz(y-E[y|z]) \end{array} \right] = 0,$$

- ullet Here g is a function whose co-domain is \mathbb{R}^{1+k+k}
 - ullet the first k+1 moments are the basis of the usual GMM estimator (assumed to be well-behaved)
 - ullet the argument E[y|z] is the function of z itself (technically a parameter) with the true value

$$E[y|z] = \int h(\alpha x + \beta z) f_{X|Z}(x, z) dx$$

The imputation estimator (GMM)

• We take the sample analogue of the population moments

$$\hat{g}(a,b;\hat{E}[y|z]) = n^{-1} \sum_{i=1}^{n} \begin{bmatrix} (1-m_i)x_i(y_i - h(ax_i + bz_i)) \\ (1-m_i)z_i(y_i - h(ax_i + bz_i)) \\ m_i z_i(y_i - \hat{E}[y_i|z_i]) \end{bmatrix}$$

$$\hat{E}[y_i|z_i] = \int h(ax + bz_i)\hat{f}_{x|z}(x,z_i)dx$$

ullet $\hat{f}_{x|z}$ is a linear estimator of the conditional pdf $f_{x|z}$ (Nadaraya-Watson for us)

$$[\hat{\alpha}, \hat{\beta}] = \underset{a,b}{\operatorname{argmin}} \hat{g}(a, b; \hat{E}[y|z])' \hat{W} \hat{g}(a, b; \hat{E}[y|z])$$

Monte Carlo simulations

Weighting Matrix

- The optimization of the weighting matrix seems to be important to achieve good results for imputation
- The optimal weighting matrix that minimizes the MSE (not the variance!) is the usual

$$W = \left(E[g(\alpha, \beta; E[y|z])'g(\alpha, \beta; E[y|z]) \right)^{-1}$$

ullet We always going to take the sample analogue of this population moment for our calculations (\hat{W})

Results

- Assume that the estimator $\hat{E}[y|z]$ converges uniformly and the bias is $o_p(\sqrt{n}^{-1})$
- \bullet Under usual regulatory assumptions, given that \hat{W} is the sample analogue of W,
 - The imputation estimator is root-n consistent
 - The asymptotic variance-covariance matrix is $(G'WG)^{-1} + o_p(n^{-1/2})$
 - **3** Asymptotically, $MSE = (G'WG)^{-1}$
 - (Asymptotic normality holds not proven yet)
 - ullet where G is the Jacobian matrix of g w.r.t. the finite dim'l parameters at the true values

Take-away

- Given that the optimal weighting matrix puts non-zero weights on the imputation moments, the MSE of the imputation estimator is strictly smaller than that of the optimally weighted GMM estimator that discards the observations with missing values
- When there is no convergent nonparametric estimator for which the bias vanishes fast enough, calculating these additional imputation moments gives more noise to the GMM estimator than they are worth
- In the Nadaraya-Watson case, we need that the rate of the bandwidth

$$-\frac{1}{k-1} < h < -1/4,$$

• where k-1 is the number of non-constant Z elements

Monte Carlo simulations

- Estimator and asymptotic theory
- Monte Carlo simulations
- 4 Further questions

The data generating process

$$E[Y|X=x,Z=z] = \Phi(\alpha x + \beta z)$$

- ullet The X is a nonlinear function of Z and some exogenous randomness
- The missingness is based on another probit model and truncation

$$M = 1[|\gamma z > \epsilon_i| < 0.8], \ \epsilon_i \sim N[0, 1]$$

- this gives missingness rates around 55%
- We implemented optimal weighting with k=2 (h=-1/3)
- Three estimators: 1. Full-data set GMM (infeasible) 2.
 Completely-observed GMM 3. Imputation GMM

Monte Carlo Results (true coefficients are [1, 0.5, -2])

n = 4000	Full-data	Completely-observed	Imputation
α	0.995	0.989	0.990
	(0.051)	(0.076)	(0.076)
β_0	0.497	0.516	0.510
	(0.047)	(0.068)	(0.054)
β_1	-2.007	-2.009	-2.012
	(0.069)	(0.099)	(0.078)
n = 16000	Full-data	Completely-observed	Imputation
$\frac{n = 16000}{\alpha}$	Full-data 0.996	Completely-observed 0.998	Imputation 0.998
	0.996	0.998	0.998
α	0.996 (0.026)	0.998 (0.038)	0.998 (0.038)
α	0.996 (0.026) 0.499	0.998 (0.038) 0.497	0.998 (0.038) 0.501

Further questions

- Estimator and asymptotic theory
- Monte Carlo simulations
- 4 Further questions

More exclusion restrictions, marginalized estimators (speculation)

- "Simple" imputation is not going to yield better results when the dimension of the Z vector is higher than 4
- There are two ways to remedy this
 - getting closer to missing-at random assumptions by adding exclusion restrictions like

$$M \perp (X, Z_i) | \mathbf{Z_{-i}}$$

② MAYBE we can devise clever reweighting-schemes to increase the number of moments but decrease the number of variables we condition on in E[y|z] (but the weighting scheme may be just as noisy to calculate, it urns out)