Лекции по алгебре (читает Демченко О. В.)

Данный документ неидеальный, прошу сообщать о найденных недочетах в вк

Содержание

1. Теория групп

 $\mathbf{2}$

1. Теория групп

Опр. G - мн-во,
$$*: G*G \Rightarrow G, \ (g_1,g_2) \Rightarrow (g_1*g_2) \ (g_1g_2)$$

- 1) $(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$
- 2) $\exists e \in G : eg = ge = g \quad \forall g \in G$
- 3) $\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$
- 4) $g_1g_2 = g_2g_1 \quad \forall g_1, g_2 \in G$

Примеры.

- 1) $(\mathbb{Z}, +)$ группа
- 2) (\mathbb{Z}, \bullet) не группа
- 3) (R, +) группа кольца
- 4) (R^*, \bullet)
- 5) Группа самосовмещения D_n , например D_4 квадрат, композиция группа, $|D_n|=2n$
- 6) $GL_n(K) = \{A \in M_n(K) : |A| \neq 0\}$, умножение группа
- 7) $\mathbb{Z}n\mathbb{Z}$ частный случай п.3,4

Свойства (групп).

- 1) е единственный, e,e' нейтральные: e=ee'=e'
- 2) \widetilde{g} единственный Пусть \widetilde{g}, \hat{g} - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \hat{g}g = g\hat{g}$ $\hat{g} = e\hat{g} = (\widetilde{g}g)\hat{g} = \widetilde{g}(g\hat{g}) = \widetilde{g}e = \widetilde{g}$
- 3) $(ab)^{-1}=b^{-1}a^{-1}$ Это верно, если $(ab)(b^{-1}a^{-1})=(b^{-1}a^{-1})(ab)=e$, докажем первое: $(ab)(b^{-1}a^{-1})=((ab)b^{-1})a^{-1}=(a(bb^{-1}))a^{-1}=(ae)a^{-1}=aa^{-1}=e$
- 4) $(g^{-1})^{-1} = g$

Опр.
$$g\in G$$
 $n\in\mathbb{Z}$, тогда $g=\begin{bmatrix} \overbrace{g...g}^n, & n>0\\ e, & n=0\\ \underbrace{g^{-1}...g^{-1}}_n, & n<0 \end{bmatrix}$

Свойства (степени).

- $1) \ g^{n+m} = g^n g^m$
- $2) (g^n)^m = g^{nm}$

Опр. $g \in G, n \in N$ - порядок g (ordg = n), если:

- 1) $g^n = e$
- $2) \ g^m = e \Rightarrow m \geqslant n$

Примеры.

- 1) D_4 ord(поворот 90°) = 4 D_4 ord(поворот 180°) = 2
- 2) $(\mathbb{Z}/6\mathbb{Z}, +)$ $ord(\overline{1}) = 6$ $ord(\overline{2}) = 3$

Утв. $g^m = e$ ord $(g) = n \Rightarrow m : n \text{ (n>0)}$

Доказательство. $m = nq + r, \ 0 \leqslant r < n \ e = g^m = g^{nq+r} = (g^n)^q g^r = g^r \Rightarrow r = 0$

Опр. $H \subset G$ называется подгруппой G (H < G) (и сама является группой), если:

- $1) \ g_1, g_2 \in H \Rightarrow g_1 g_2 \in H$
- $2) e \in H$
- 3) $g \in H \Rightarrow g^{-1} \in H$

Примеры.

- 1) $n\mathbb{Z} < \mathbb{Z}$
- 2) D_4

3)
$$SL_n(K) = \{ A \in M_n(K) : |A| = 1 \}, SL_n(K) < GL_n(K) \}$$

Мультипликативная запись	Аддитивная запись
g_1g_2	$g_1 + g_2$
e	0
g^{-1}	-g
g^n	ng

Опр. $H < G, \, g_1, g_2 \in G$, тогда $g_1 \sim g_2$, если:

- 1) $g_1 = g_2 h, h \in H$ (левое)
- 2) $g_2 = hg_1, h \in H$ (правое)

Доказательство (эквивалентности).

- 1) (симметричность) $g_1 = g_2 h \stackrel{*h^{-1}}{\Rightarrow} g_2 = g_1 h^{-1}$
- 2) (рефлексивность) g = ge
- 3) (транзитивнось) $g_1=g_2h,\,g_2=g_3h\Rightarrow g_1=g_3(h_2h_1),$ где $h_2h_1\in H$

Опр. $[a] = \{b : ab\}$ классы эквивалентности

$${ {
m \bf Oпр.} \ [g] = gH = \{gh,h \in H\} \ ($$
левый класс смежности) $gh \sim g \Rightarrow gh \in [g] \ g_1 \in [g] \Rightarrow g_1 \sim g \Rightarrow g_1 = gh }$

$$\underline{\mathbf{Утв.}}$$
 $[e] = H$

Установим биекцию:

$$[g] = gh \leftarrow H$$
$$gh \leftarrow h$$

Очевидно, сюръекция, почему инъекция? $gh_1 = gh_2 \stackrel{*g^{-1}}{\Rightarrow} h_1 = h$

Теорема (Лагранжа).

 $H < G, |G| < \infty$, тогда |G| : |H| (уже доказали!)