Московский государственный технический университет имени Н.Э. Баумана

Факультет «Информатика и системы управления»

Кафедра «Программное обеспечение ЭВМ

и информационные технологии»

Моделирование

ЛАБОРАТОРНАЯ РАБОТА №4 Моделирование простейшей системы

Студент: Петухов И.С.

Группа: ИУ7-71

Преподаватель: Рудаков И.В.

Содержание

1	Аналит	ический раздел	3
2	Техноло	огический раздел	4
	2.1	Язык программирования	4
	2.2	Примеры кода	4
	2.3	Взаимодейсвтие с пользователем	(

1 Аналитический раздел

Цель данной работы - смоделировать систему, состоящую из генератора, источника информации, блока памяти и обслуживающего аппарата.

Закон генерации заявок - равномерный (параметры настраиваются и варьируются).

В ОА закон распределение Пуассона.

Определить оптимальный размер буферной памяти, т.е. ту длину, при которой ни одно сообщение необработанным не исчезает (т.е. нет отказа)

Должна быть возможность возвращения заявки в очередь после ее обработки.

Управляющую программу имитационной модели реализовать двумя подходами:

- событийный
- Δt (ориентирован на действие)

2 Технологический раздел

2.1 Язык программирования

В качестве языка программирований выбран язык высокого уровня JavaScript.

2.2 Примеры кода

Листинг 2.1 — Событийный принцип: поиск минимального размера буферной

памяти

```
function findMinLengthQueue(a, b, lambda, finishTime, releaseOrder) {
1
      let si = new SourceOfInformation(a, b);
2
      let su = new ServiceUnitByPoisson(releaseOrder, lambda);
3
4
5
      let bmLength = 0;
     let flagRun = true;
6
7
      while (flagRun) {
8
9
       ++bmLength;
10
        try {
11
12
          runSimulation(si, su, bmLength, finishTime);
        } catch (err) {
13
          flagRun = !flagRun;
14
        } finally {
15
          flagRun = !flagRun;
16
17
18
     }
19
     return bmLength;
20
   }
21
22
23
   function runSimulation(si, su, bmLength, finishTime) {
24
25
      let bm = new Memory(bmLength);
26
27
     let fel = [];
28
      let blocks = [si, su];
29
30
31
      initBlock(fel, blocks, finishTime);
32
33
34
      while (true) {
35
        let iMin = getNumberMin(fel);
36
```

Листинг 2.2 — Принцип dt: поиск минимального размера буферной памяти

```
function findMinLengthQueue(dt, a, b, lambda, finishTime, releaseOrder) {
1
2
      let bmLength = 0;
      let flagRun = true;
3
4
5
      while (flagRun) {
6
       ++bmLength;
7
8
        try {
          let si = new SourceOfInformation(a, b);
9
10
          let su = new ServiceUnitByPoisson(releaseOrder, lambda);
11
          let bm = new Memory(bmLength);
12
13
          let nowTime = 0;
14
          let blocks = [si, su];
15
16
17
          while (nowTime < finishTime) {
            blocks.forEach(block => {
18
              block.run(nowTime, bm);
19
20
            })
21
22
            nowTime += dt;
23
        } catch (err) {
24
          flagRun = !flagRun;
25
        } finally {
26
          flagRun = !flagRun;
27
28
        }
      }
29
30
31
      return bmLength;
32
```

2.3 Взаимодейсвтие с пользователем

Взаимодейсвтие с пользователем осуществляется через html страницы, открытые в браузере.

Управляющая программа имитационной модели (принцип dt
Параметры имитационной модели
время работы: 100 dt: 1 ☑ Выпускать обработанные заявки
Источник информации
параметры равномерного распределения:
a: 5 b: 10
Обслуживающий аппарат
параметры распределения Пуассона:
lambda: 15
Минимальная длинна буферной памяти: 8
найти минимальную длинну буферной памяти

Рисунок 2.1 — Принцип Δt : поиск минимального размера буферной памяти

Рисунок 2.2 — Принцип Δt : графики

Управляющая программа имитационной модели по событийному принципу

Параметры имитационной модели				
время работы: 100				
Выпускать обработанные заявки				
Источник информации				
параметры равномерного распределения:				
a: 5 b: 10				
Обслуживающий аппарат				
параметры распределения Пуассона:				
ambda: [15				
Минимальная длинна буферной памяти: 8				
найти минимальную длинну буферной памяти				

Рисунок 2.3 — Принцип событийный: поиск минимального размера буферной памяти

Длинна очереди: 15

Отобразить сотояния

Состояние буферной памяти

Состояние списка будущих событий

Рисунок 2.4 — Принцип событийный: графики