Better towers

March 6, 2017

Let J^+ be (the nerve of) the category $(J^{\triangleleft})^{\triangleright} = (J^{\triangleright})^{\triangleleft}$.

Let $J \to \mathfrak{ts}(\mathbf{C})$ be a slicing considered with its canonical extension ([hearts, 1.15]) $J^+ \to \mathfrak{ts}(\mathbf{C})$.

We define

- A J(-Postnikov) tower to be a functor $(J^+)^{\mathrm{op}} \to \mathbf{C}: X_{-\infty} \leftarrow \cdots \leftarrow X_i \xrightarrow{i \leq j} X_j \leftarrow \cdots \leftarrow X_{+\infty}$ such that
 - 1. $X_{-\infty} \cong 0$ and $X_{+\infty} \cong X$;
 - 2. $(X_j = R_j(X_{+\infty}) \text{ for } j \in J)$.
- A J(-Postnikov) pretower to be a functor $J^{\text{op}} \to \mathbf{C}$ (such that $X_j \cong R_j(X_{j+j1})^1$

We denote $\varphi \colon \operatorname{Post}^+(\mathbf{C}) \hookrightarrow \operatorname{Post}(\mathbf{C})$ the inclusion of Postnikov towers into Postnikov pretowers. We say that *Postnikov towers are convergent* in \mathbf{C} if φ is an equivalence, whose inverse is given by taking the limit $\lim_{\to \infty} (X_0 \leftarrow X_1 \leftarrow \cdots)$.

Let $\mathbf{W} \subseteq \mathbf{C} \times J^+$ be the category of all pairs (C,j) where $C \in \mathbf{C}_{\leq j}$ is a j-truncated object (in the obvious sense). Then (since \mathbf{W} is the category of elements of $J \to \mathrm{Cat}_\infty \colon j \mapsto \mathbf{C}_{\leq j}$) there exists a cocartesian fibration $p \colon \mathbf{W} \to J^+$ such that $p^\leftarrow(j) = \mathbf{C}_{\leq j}$; this fibration classifies a tower of functors

$$\mathbf{C}_{\leq -\infty} \leftarrow \cdots \leftarrow \mathbf{C}_{\leq j} \leftarrow \cdots \leftarrow \mathbf{C}$$

Postnikov towers are then identified with cocartesian sections of p, and Postnikov pretowers with the cocartesian sections of \tilde{p} in the pullback

$$\mathbf{W} \times_{(J^{+})^{\mathrm{op}}} J^{\mathrm{op}} \longrightarrow \mathbf{W}$$

$$\downarrow^{p}$$

$$J^{\mathrm{op}} \longrightarrow (J^{+})^{\mathrm{op}}$$

¹ is a \mathbb{Z} -poset with action $+_J \colon J \times \mathbb{Z} \to J$; since $j \leq j +_J 1$ (contravariant) functoriality gives $X_{j+_J 1} \to X_j$, and the request now is that $X_j \cong R_j(X_{j+_J 1})$. Equivalently –since the associated normal torsion theory $(\mathcal{E}_j, \mathcal{M}_j)$ is firmly \mathcal{E} -reflective— $X_{j+_J 1} \xrightarrow{e_j} X_j$ and $\tau_{\geq j}(X_j) \cong 0$.