

Аппроксимация обменнокорреляционных функционалов в квантовой химии математическими выражениями с помощью символьной регрессии

Выполнили: Ким Павел Кулаев Кирилл

Куратор: Рябов Александр

Содержание

- 01 Введение
- 02 Обзор методов
- 03 Экспериментальная часть
- 04 Выводы

Введение

Актуальность

$$\hat{H}\Psi = \left[\hat{T} + \hat{V} + \hat{U}
ight]\Psi = \left[\sum_{i=1}^{N}\left(-rac{\hbar^{2}}{2m_{i}}
abla_{i}^{2}
ight) + \sum_{i=1}^{N}V(\mathbf{r}_{i}) + \sum_{i < j}^{N}U\left(\mathbf{r}_{i},\mathbf{r}_{j}
ight)
ight]\Psi = E\Psi$$

Стационарное уравнение Шредингера

$$E[
ho] = T_s[
ho] + \int d{f r} \, v_{
m ext}({f r})
ho({f r}) + E_{
m H}[
ho] + E_{
m xc}[
ho]$$

Полная энергия Кона-Шэма

$$v_{
m eff}(\mathbf{r}) = v_{
m ext}(\mathbf{r}) + e^2 \int rac{
ho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' + rac{\delta E_{
m xc}[
ho]}{\delta
ho(\mathbf{r})}$$

the corresponding energy expression, are the only unknowns in the Kohn-Sham approach to density functional theory

 $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_{N_2})$

Many-body wavefunction

LDA functionals

LDA exchange

- LDA_X (id=1): Slater exchange
- P. A. M. Dirac., Math. Proc. Cambridge Philos. Soc. 26, 376 (1930) (doi: 10.1017/S0305004100016108)
- F. Bloch., Z. Phys. 57, 545 (1929) (doi: 10.1007/BF01340281)
- LDA_X_1D_EXPONENTIAL (id=600): Exchange in 1D for an exponentially screened interaction
- N. Helbiq, J. I. Fuks, M. Casula, M. J. Verstraete, M. A. L. Margues, I. V. Tokatly, and A. Rubio., Phys. Rev. A 83, 032503 (2011) (doi: 10.1103/PhysRevA.83.032503)
- LDA_X_1D_SOFT (id=21): Exchange in 1D for an soft-Coulomb interaction
- N. Helbig, J. I. Fuks, M. Casula, M. J. Verstraete, M. A. L. Margues, I. V. Tokatly, and A. Rubio., Phys. Rev. A 83, 032503 (2011) (doi: 10.1103/PhysRevA.83.032503)
- LDA X 2D (id=19): Slater exchange
- P. A. M. Dirac., Math. Proc. Cambridge Philos. Soc. 26, 376 (1930) (doi: 10.1017/S0305004100016108)
- F. Bloch., Z. Phys. 57, 545 (1929) (doi: 10.1007/BF01340281)
- LDA_X_ERF (id=546): Short-range LDA exchange with error function kernel (erfc)
- P. M. W. Gill, R. D. Adamson, and J. A. Pople., Mol. Phys. 88, 1005-1009 (1996) (doi: 10.1080/00268979609484488)
- J. Toulouse, A. Savin, and H.-J. Flad., Int. J. Quantum Chem. 100, 1047-1056 (2004) (doi: 10.1002/qua.20259)
- Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao., J. Chem. Phys. 120, 8425-8433 (2004) (doi: 10.1063/1.1688752)
- LDA_X_RAE (id=549): Rae self-energy corrected exchange
- A.I.M. Rae., Chem. Phys. Lett. 18, 574 577 (1973) (doi: 10.1016/0009-2614(73)80469-5)

Мотивация

https://doi.org/10.1038/s41524-020-0310-0

https://doi.org/10.1038/s41598-022-18083-1

network architecture

DOI: 10.1126/science.abj6511

Постановка задачи

→ Цель:

Найти аналитический вид существующего нейросетевого обменно-корреляционного функционала, используя модели символьной регрессии

Задачи:

- Получить аналитические выражения известных обменно-корреляционных функционалов с помощью существующих алгоритмов символьной регрессии и оценить их эффективность;
- Аппроксимировать существующий нейросетевой обменно-корреляционный функционал с помощью моделей символьной регрессии, оценить качество полученного выражения;
- Сделать расчет полной энергии модельной системы в основном состоянии (молекула H₂O), используя полученный аналитический вид обменно-корреляционного потенциала, и сравнить со значением, рассчитанным ab initio.

Обзор методов

Генетический алгоритм gplearn

- + Есть возможность задавать произвольные базисные функции
- **Н** Возможность контролировать сложность аппроксимирующей формулы
- Получение лучшего в сравнении с имеющимися решения, а не оптимального

Использовали библиотеку gplearn

https://doi.org/10.1557/mrc.2019.85

End-to-end symbolic regression with transformers

Training

 10^{2}

Mean accuracy $(R^2 > 0.99)$

Operon SBP-GP GP-GOMEA Ours EPLEX MRGP AFP_FE Ours (skel) AIFeynman FEAT

Ours (no ref)

AFP

FFX

DSR

ITEA:

BSR-

0.0

0.2

0.4

0.6

0.8

1.0

gplearn

Formula complexity

Inference time (seconds)

**

Target Noise

x 0.0

 10^{2}

 10^{3}

0.001

0.01

0.1

 10^{4}

In.	ference
	ierence

$b_{ m max}$	Max binary ops	5+D	
O_b	Binary operators	add:1, sub:1, mul:1	
$u_{ m max}$	Max unary ops	5	
		inv:5, abs:1, sqr:3, sqrt:3,	
O_u	Unary operators	sin:1, cos:1, tan:0.2, atan:0.2,	
		log:0.2, exp:1	

arXiv:2204.10532

https://github.com/facebookresearch/symbolicregression

Экспериментальная часть

Описание эксперимента

Генерация модельных значений электронной плотности

- 1) от 0 до 1000 electrons per bohr³; 1500 и 1000 точек соответственно для обучения и тестирования модели
- 2) от 0 до 1e7 electrons per bohr³ (верхняя граница определялась расчетом электронной плотности атома Hg) 2000 и 3000 точек соответственно для обучения и тестирования модели

Использование сгенерированных значений электронной плотности для расчета значений обменно-корреляционных потенциалов с известными аналитическими выражениями – Ida_x, Ida_c_chachiyo, Ida_c_pw_mod

Расчет полной энергии молекулы воды в основном состоянии с использованием полученных аналитических формул и сравнение с референсным значением, полученным ab initio

Аппроксимация нейросетевого функционала неизвестного аналитического вида* моделями символьной регрессии и оценка полученной формулы

*https://github.com/ml-electronproject/NNfunctional/tree/master

Символьная регрессия известных потенциалов генетическим алгоритмом

Интервал: от 0 до 1e7 electrons per $bohr^3$

 $-\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{1}{3}}$ $-0.7386 n^{\frac{1}{3}}$

референсная формула

 $-0.738n^{\frac{1}{3}}$

предсказанное выражение

Интервал: от 0 до 1e7 electrons per bohr³

 $A * ln \left(1 + b \left(\frac{4\pi}{3} \right)^{\frac{1}{3}} n^{\frac{1}{3}} + b \left(\frac{4\pi}{3} \right)^{\frac{2}{3}} n^{\frac{2}{3}} \right)$ $-0.0156 * ln \left(53.2 n^{\frac{2}{3}} + 33.0 n^{\frac{1}{3}} + 1 \right)$

референсная формула

 $-0.0219 * \ln \left(\left(n^{\frac{1}{3}} + \sqrt{(n + 0.167)} \right) - 0.0527 \right)$

предсказанное выражение

Символьная регрессия известных потенциалов нейросетью-трансформером

Интервал: от 0 до 1e4 electrons per bohr 3 Ida_x функционал $-\frac{3}{4}\left(\frac{3}{\pi}\right)^{\frac{1}{3}}n^{\frac{1}{3}}$ референсная формула $-0.7386n^{\frac{1}{3}}$ референсная формула $0.0027368415157811958 - 0.7386999562105924n^{\frac{1}{3}}$ предсказанное выражение -7 предсказанное выражение

Символьная регрессия нейросетевого потенциала

Данные – рассчитанные ab initio значения электронной плотности системы и значения обменнокорреляционного потенциала в приближении LDA

GA символьная регрессия

$$-0.9603n^{\frac{1}{3}} - 0.9603 * \left(\frac{1}{n + 0.6540}\right)^{1/6}$$

NN-трансформер символьная регрессия

$$(-18.95n^{\frac{1}{3}} - 0.2757)(0.0008950n^{\frac{1}{3}} + 0.03917)$$

Сравнение расчитанных значений основного состояния молекулы воды

Используемый функционал	Значение энергии, в единицах Хартри	Абсолютная разность с референсным значением
Ab initio референсное значение*	-75.80	0
Нейросетевой функционал**	-75.83	0,03
GA символьная регрессия lda_x + lda_c_chachiyo	-61.87	13,93
GA символьная регрессия нейросетевого потенциала	-74.15	1,65
NN-трансформер символьная регрессия lda_x + lda_c_chachiyo	-74.07	1,73
NN-трансформер символьная регрессия нейросетевого потенциала	-73.90	1,9

^{*}https://pyscf.org/user/scf.html

^{**}https://github.com/ml-electron-project/NNfunctional/tree/master

Выводы

Выводы

✓ С помощью генетического алгоритма и нейросетевого трансформера были получены формульные выражения известных обменно-корреляционных функционалов в LDA приближении − lda_x и −da_c_chachiyo. Полученные формулы показали высокое соответствие аналитическим зависимостям, а значения потенциала, посчитанные с помощью них, - соответствие потенциалам, посчитанным ab initio;

- Был аппроксимирован существующий нейросетевой обменно-корреляционный функционал с помощью моделей символьной регрессии. Посчитанные с помощью полученной формулы значения потенциалов показали соответствие значениям, полученным нейросетевым функционалом;
- ✓ Проведен расчет полной энергии основного состояния молекулы воды. Показано, что использование выражений, полученных с помощью метода символьной регрессии, позволяет рассчитывать энергию данной модельной системы с высокой точностью.

GitHub проекта

Наша команда

Ким Павел, ИТМО

Эксперименты с NN-трансформером для символьной регрессии

Кулаев Кирилл, ЮФУ

Эксперименты с генетическим алгоритмом для символьной регрессии

Рябов Александр, Сколтех

Формулирование гипотез, ведение проекта

Медведев Михаил, ИОХ РАН

Формулирование гипотез, ведение проекта

@AIRI_Research_Institute

Artificial Intelligence Research Institute

airi.net

- airi_research_institute
- AIRI Institute
- AIRI Institute
- AIRI_inst
- in artificial-intelligence-research-institute