EXAMEN FINAL - PARTE TEORICA 27 de junio

Apellido y nombre	1	2	3	A	5	Total
				R. C.	And in case of	
	1			10	100	
	10000				1000	

· Tiempo disponible: 2 horas.

Justificar todas las respuestas.

Ejercicio 1. [10 ptos] Sea $\mathbb K$ un cuerpo y sean V y W dos espacios vectoriales sobre $\mathbb K$.

- (a) Definir que es una transformación lineal T de V en W y definir NuT e ImT.
- (b) Probar que si V es de dimensión finita, entonces dim $V=\dim\operatorname{Nu} T+\dim\operatorname{Im} T$.

Ejercicio 2. [10 ptos] Sea K un cuerpo y sea V un K-espacio vectorial con producto interno.

- (a) Definir la norma de un vector y el ángulo entre dos vectores, destacando qué hace falta para que el mismo esté bien definido.
- (b) Enunciar y probar la desigualdad triangular. (Se puede usar la desigualdad de Cauchy-Schwarz sin probarla.)

Ejercicio 3. [10 ptos] Sea V el espacio de matrices $n \times n$ con entradas en un cuerpo \mathbb{K} .

- (a) Definir la función determinante de V en K.
- (b) Probar que una matriz $A \in V$ es inversible si y solo si det $A \neq 0$.

Ejercicio 4. [10 ptos] Sea V un K espacio vectorial y sea T una transformación lineal de V en V tal que $T^k = 0$ para algún k.

(a) Probar que todos los autovalores de T son nulos.

(b) Probar que si T ≠ 0, entonces T no es diagonlizable.

7 (2) = CX T (T(2)) = 1C0

throng the not be suffered to

remo d \$0

130

1

VANUE NVNAUNI

- 5. Sea V un espacio vectorial de dimensión n, y sean W_1 , W_2 subespacios de V. Demostrar que
 - (a) dim $W_1 \leq n$.
 - (b) $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.

Ejercicios (solo) para alumnos libres:

Sea V un espacio vectorial real de dimensión 3, y <,> un producto interno en V.Demostrar que si $v,w \in V$ tales que < v,w >= 0 entonces los vectores v y w son linealmente independientes. Demostrar que V es isomorfo a \mathbb{R}^3 . Sea $v_0 \in V$ y $W = \{v \in V : \langle v, v_0 \rangle = 0\}$, demostrar que W es un subespacio vectorial de V. >Es $W = \{v \in V : \langle v, v_0 \rangle = c\}$, con $c \in \mathbb{R}$, $c \neq 0$ un subespacio de V?