EDS ASSIGNMENT-1

Name: Himanshu Manoj Gharde

Division: CS7

Roll No: CS7-67

PRN: 202401110007

Google Collab:

https://colab.research.google.com/drive/1fDDBEMDDr

OfOrljYk8-iTilyiq402XVv?usp=drive link

Dataset: House Price

А	В	C	D	E	F	G	Н	1		J	К	L	М	N	О	P	Q	R
1 date	price	bedrooms	bathrooms	qft_living	sqft_lot	floors	waterfror	tview	со	ndition	sqft_abov	esqft_baser	yr_built	yr_renova	street	city	statezip	country
2 ########	313000	3	1.5	1340	7912	1.5	()	0	3	1340	0	1955	2005	18810 D	er Shoreline	WA 9813	USA
3 #########	2384000	5	2.5	3650	9050	2	()	4	5	3370	280	1921	0	709 W B	la Seattle	WA 98119	USA
4 #####################################	342000	3	2	1930	11947	1	()	0	4	1930	0	1966	0	26206-20	52 Kent	WA 98042	USA
5 #########	420000	3	2.25	2000	8030	1	()	0	4	1000	1000	1963	0	857 170t	h Bellevue	WA 9800	USA
6 #########	550000	4	2.5	1940	10500	1	()	0	4	1140	800	1976	1992	9105 170	Ot Redmond	WA 9805	USA
7 #########	490000	2	1	880	6380	1	()	0	3	880	0	1938	1994	522 NE 8	8 Seattle	WA 9811	USA
8 #########	335000	2	2	1350	2560	1	()	0	3	1350	0	1976	0	2616 174	4t Redmond	WA 9805	USA
9 #########	482000	4	2.5	2710	35868	2	()	0	3	2710	0	1989	0	23762 SE	: Maple Va	WA 9803	USA
0 #########	452500	3	2.5	2430	88426	1	()	0	4	1570	860	1985	0	46611-4	56 North Ber	WA 9804	USA
1 #####################################	640000	4	2	1520	6200	1.5	()	0	3	1520	0	1945	2010	6811 55t	h Seattle	WA 9811	USA
2 #####################################	463000	3	1.75	1710	7320	1	()	0	3	1710	0	1948	1994	Burke-Gi	In Lake Fore	s WA 9815!	USA
3 #####################################	1400000	4	2.5	2920	4000	1.5	()	0	5	1910	1010	1909	1988	3838-409	98 Seattle	WA 9810	USA
4 #####################################	588500	3	1.75	2330	14892	1	()	0	3	1970	360	1980	0	1833 220	Ot Sammam	i:WA 98074	4USA
5 #########	365000	3	1	1090	6435	1	()	0	4	1090	0	1955	2009	2504 SW	' Seattle	WA 9810	USA
6 ########	1200000	5	2.75	2910	9480	1.5	()	0	3	2910	0	1939	1969	3534 46t	h Seattle	WA 9810	USA
7 #####################################	242500	3	1.5	1200	9720	1	()	0	4	1200	0	1965	0	14034 SE	Kent	WA 98042	USA
8 #########	419000	3	1.5	1570	6700	1	()	0	4	1570	0	1956	0	15424 SE	Bellevue	WA 9800	7 USA
9 ########	367500	4	3	3110	7231	2	()	0	3	3110	0	1997	0	11224 SE	Auburn	WA 98092	USA
20 ########	257950	3	1.75	1370	5858	1	()	0	3	1370	0	1987	2000	1605 S 2	4 Des Moin	€WA 9819	USA
1 #########	275000	3	1.5	1180	10277	1	()	0	3	1180	0	1983	2009	12425 43	15 North Ber	WA 9804	USA
2 #########	750000	3	1.75	2240	10578	2	()	0	5	1550	690	1923	0	3225 NE	9 Seattle	WA 9811	USA

Importing Pandas And num.py in python

Pandas:

1. Find the total number of rows and columns (shape).

2. Check for any missing values.

```
2. Check for any missing values.
[6] missing_values = df.isnull().sum()
    print("Missing values in each column:\n", missing_values)

→ Missing values in each column:
     date
                     0
    price
                     0
    bedrooms 0
bathrooms 0
sqft_living 0
sqft_lot 0
    sqft_lot
    floors
    waterfront
    view
                   0
    condition
    sqft_above
    sqft_basement 0
    yr built
    yr renovated 0
    street
                     0
    city
                0
    statezip
    country
    dtype: int64
```

3. Find the average price.

```
3. Find the average price.

[7] average_price = df['price'].mean()
print("Average price:", average_price)

→ Average price: 551962.9884732141
```

4. Find the maximum number of bedrooms.

5. Find the minimum number of bathrooms. python Copy code

6. Sort the houses by price descending.

```
6. Sort the houses by price descending.

[10] sorted_price = df.sort_values(by='price', ascending=False)
    print(sorted_price[['price', 'bedrooms', 'bathrooms']].head())

price bedrooms bathrooms

4350 26590000.0 3.0 2.00

4346 12899000.0 3.0 2.50

2286 7062500.0 5.0 4.50

2654 4668000.0 5.0 6.75

2761 4489000.0 4.0 3.00
```

7. Count how many unique cities are present

```
7. Count how many unique cities are present.

[11] unique_cities = df['city'].nunique()
print("Unique cities:", unique_cities)

The second of the second of
```

8. Group houses by number of bedrooms and find average price per bedroom count

9. Find correlation between price and sqft_living.

```
9. Find correlation between price and sqft_living.

[13] correlation = df['price'].corr(df['sqft_living'])
print("Correlation between price and sqft_living:", correlation)

→ Correlation between price and sqft_living: 0.43041002543262824
```

10. Drop the 'street' column and create a new DataFrame.

Numpy

1. Calculate the standard deviation of prices.

2. Calculate the median of sqft_living.

```
2. Calculate the median of sqft_living.

[16] median_sqft_living = np.median(df['sqft_living'])
    print("Median sqft_living:", median_sqft_living)

→ Median sqft_living: 1980.0
```

3. Find the mean number of bathrooms.

```
3. Find the mean number of bathrooms.

[17] mean_bathrooms = np.mean(df['bathrooms'])
    print("Mean bathrooms:", mean_bathrooms)

→ Mean bathrooms: 2.1608152173913044
```

4. Find the maximum lot size (sqft_lot).

```
4: Find the maximum lot size (sqft_lot).

Double-click (or enter) to edit

[18] max_lot = np.max(df['sqft_lot'])
    print("Maximum lot size:", max_lot)

・ Maximum lot size: 1074218
```

5. Find the minimum year built.

```
5. Find the minimum year built.

[19] min_year_built = np.min(df['yr_built'])
    print("Minimum year built:", min_year_built)

The Minimum year built: 1900
```

6. Create an array of prices greater than 1 million.

7. Add 100 sqft extra to all sqft_living.

8. Multiply all prices by 1.1 to simulate price increase.

```
8: Multiply all prices by 1.1 to simulate price increase.

[22] increased_prices = np.multiply(df['price'], 1.1)
    print(increased_prices.head())

$\frac{1}{2} 0 & 344300.0 \\
    1 & 2622400.0 \\
    2 & 376200.0 \\
    3 & 462000.0 \\
    4 & 605000.0 \\
    Name: price, dtype: float64
```

9. Find how many houses have more than 3 bedrooms using boolean indexing.

```
9. Find how many houses have more than 3 bedrooms using boolean indexing.

[23] bedroom_array = np.array(df['bedrooms'])
houses_above_3_bedrooms = bedroom_array[bedroom_array > 3]
print("Houses with more than 3 bedrooms:", len(houses_above_3_bedrooms))

Houses with more than 3 bedrooms: 1962
```

10. Calculate the variance of sqft_basement.

```
10. Calculate the variance of sqft_basement.

↑ ↓ ♦ ᠍ ☑ ⋮

variance_sqft_basement = np.var(df['sqft_basement'])
print("Variance of sqft_basement:", variance_sqft_basement)

The variance of sqft_basement: 215376.5353107349
```