

BUNDESREPUBLIK DEUTSCHLAND

EP04/50022 19. 02. 2004

RECEIVED	
23 MAR 2004	
WIPO	PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 21 989.7 /

Anmeldetag: 15. Mai 2003

Anmelder/Inhaber: Koenig & Bauer Aktiengesellschaft,
97080 Würzburg/DE

Bezeichnung: Druckmaschine

Priorität: 30.01.2003 DE 103 03 841.8
17.02.2003 DE 103 06 505.9

IPC: B 41 F 7/10

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-sprünglichen Unterlagen dieser Patentanmeldung.

München, den 05. Februar 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

**PRIORITY
DOCUMENT**
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH RULE 17.1 (a) OR (b)

Beschreibung

Druckmaschine

Die Erfindung betrifft eine Druckmaschine gemäß dem Oberbegriff des Anspruchs 1, 2, 14, 54, 58, 61 oder 62.

Die DE 25 28 008 A1 zeigt eine Druckmaschine für ein direktes Druckverfahren mit Formzylindern, welche in axialer Richtung mit sechs und in Umfangsrichtung mit zwei Druckplatten bestückbar, und mit Gegendruckzylindern, welche in axialer Richtung drei und in Umfangsrichtung mit einem Druckfilz belegbar sind. Sowohl die nebeneinander angeordneten Druckplatten als auch die nebeneinander angeordneten Druckfilze sind zueinander in Umfangsrichtung jeweils versetzt angeordnet.

Auch die DE 25 10 057 A1 offenbart eine Druckmaschine mit direktem Druckverfahren, wobei der mit einem Gegendruckzylinder zusammen wirkenden Formzylinder auf seiner Breite sechs und auf seinem Umfang zwei Druckplatten trägt.

Durch die JP 56-021860 A ist ein Druckwerk mit Form-, Übertragungs- und Gegendruckzylinder bekannt, wobei jeder der drei Zylinder mittels eines eigenen Antriebsmotors angetrieben wird.

Durch die DE 41 28 797 A1 ist eine dreifachbreite Rollenrotationsdruckmaschine mit zwei auf zwei verschiedenen, übereinander liegenden Ebenen angeordneten Falztrichtern bekannt.

Aus „Newspapers & Technology“, December 2000, ist eine Druckmaschine mit sechs Zeitungsseiten breiten Druckwerken bekannt. Die Druckwerke sind als Brückendruckwerke ausgebildet, wobei die Übertragungszylinder mit Gummituchhülsen

belegt sind.

Die WO 01/70608 A1 offenbart eine Wendestangenanordnung, wobei zwei im wesentlichen teilbahnbreite Wendestangen jeweils an einem Träger quer zur Richtung der einlaufenden Teilbahn verschiebbar angeordnet sind. Jeweils seitlich außerhalb des Seitengestells ist eine Registerwalze angeordnet, deren Längsachse im wesentlichen parallel zum Seitengestell verläuft und welche ebenfalls entlang einer Schiene in einer Richtung quer zur Richtung der einlaufenden Teilbahn verschiebbar ist.

Aus der US 4 671 501 A ist ein Falzaufbau bekannt, wobei zwei Falztrichter übereinander angeordnet sind, wobei die Bahnen nach Durchlaufen von Auflaufwalzen vor einem dritten Trichter längs geschnitten, die Teilbahnen über einem dritten Trichter um 90° gedreht und anschließend zu zwei Strängen zusammen gefasst den beiden übereinander angeordneten Trichtern zugeführt werden.

Durch die EP 10 72 551 A2 ist ein Falzaufbau mit zwei vertikal zueinander versetzten Gruppen von Falztrichtern bekannt. Oberhalb jeder der Gruppen von Falztrichtern ist eine Harfe, d. h. eine Gruppe von Sammel-, Abnahme- oder auch Harfenwalzen angeordnet, über welche die betreffenden Teilbahnen der zugeordneten Gruppe von Falztrichtern zugeführt werden.

In der WO 97/17200 A2 ist ein Falzaufbau bekannt, wonach geschnittene, quer zueinander versetzte Teilbahnen verschiedenen Falztrichtern zugeführt werden. Die horizontal nebeneinander angeordneten Falztrichter sind z. T. vertikal versetzt zueinander angeordnet.

Die DE 44 19 217 A1 zeigt einen Überbau einer Rollenrotationsdruckmaschine mit einer Wendevorrichtung, wobei Teilbahnen um eine halbe Teilbahnbreite versetzt werden, um sie übereinander zu führen und einem gemeinsamen Falztrichter zuzuführen.

Der Erfindung liegt die Aufgabe zugrunde, eine Druckmaschine zu schaffen.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1, 2, 14, 54, 58, 61 oder 62 gelöst.

Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, dass eine einfache, kostengünstige und raumsparende Bauweise bei gleichzeitig hoher Variabilität im Produkt bzw. Zwischenprodukt ermöglicht wird.

Vorteile bestehen insbesondere auch darin, dass im Vergleich zu einer doppeltbreiten Druckmaschine bei der selben zu erreichenden Sollstärke eines Produktes die Produktionssicherheit erheblich erhöht wird. Bei Beibehaltung der Anzahl von Druckeinheiten kann jedoch auch der Ausstoß der Druckmaschine, bzw. jedes Druckwerkes um 50 % gesteigert werden.

Die Anzahl der Rollenwechsler (Investition), die Häufigkeit der Rollenwechsel (Produktionssicherheit) sowie die Rüstzeit beim Einziehen von Bahnen (Zykluszeiten) kann gegenüber einer doppelt breiten Druckmaschine für die selbe Produktstärke vermindert werden.

In vorteilhafter Ausführung sind die Druckeinheiten als Neunzylinder-Satelliten-Druckeinheiten ausgeführt, was zum einen eine hohe Präzision im Farbregister und zum anderen eine schwingungsarme Bauweise zur Folge hat. Schwingungen werden auch vermindert durch die vorteilhafte Anordnung, Ausführung und Befestigung von Aufzügen auf den Zylindern. Zum einen werden Öffnungen auf den Mantelflächen in Umfangsrichtung minimiert. Weiterhin können zumindest auf dem Übertragungszylinder die Öffnungen derart alternierend in Umfangsrichtung versetzt angeordnet sein, dass zumindest auf einer Abschnittslänge immer eine geschlossene Mantelfläche mit dem Form-

bzw. Satellitenzylinder zusammen wirkt. Zum dritten werden Unrundheiten und Herstellungskosten dadurch minimiert, dass zwar den Ballen auf seiner gesamten wirksamen Länge axial durchsetzende Kanäle vorgesehen sind, Öffnungen hin zur Mantelfläche jedoch nur in den genannten Abschnitten bestehen. In die Kanäle werden dann z. B. wahlweise Vorrichtungen zur Befestigung von Aufzugenden und/oder Füllstücke eingesetzt.

Im Kanal bzw. in den Kanälen der Formzylinder sind in axialer Richtung jeweils zumindest sechs Einrichtungen zur axialen Positionierung von Druckformen angeordnet. Diese sind z. B. als formschlüssig mit Druckformenden zusammen wirkende Registerstifte ausgeführt, welche innerhalb des Kanals manuell oder fernbetätigbar axial bewegbar angeordnet sind.

Vorteilhaft im Hinblick auf eine register- bzw. passergenaue reproduzierbare Bestückung der Formzylinder mit Druckformen ist die Ausführung der Druckwerke mit zugeordneten Andrückvorrichtungen. Es können mit diesen auf der Mantelfläche des Zylinders aufliegende Aufzüge durch jeweils mindestens ein Andrückelement je nach Bedarf fixiert sein, während ein Ende eines Aufzugs oder mehrerer Aufzüge zur Entnahme oder zur Bestückung freigegeben ist bzw. sind.

Der mechanisch von den Zylinderpaaren unabhängige Antrieb des (bzw. der) Satellitenzylinder birgt insbesondere Vorteile im Hinblick auf die Möglichkeit eines variablen Betriebs. So kann beispielsweise während der Produktion ein Rüsten, z. B. ein fliegender Druckformwechsel oder ein Waschen, erfolgen. Umgekehrt kann eine Bahn eingezogen werden, während andere Zylinder bzw. Zylinderpaare stehen oder ein Rüstprogramm durchlaufen. Auch ist es von Vorteil, bei Vorliegen von Gummitüchern mit positiv oder negativ fördernden Eigenschaften, den Satellitenzylinder mit einer von den übrigen Zylindern unterschiedlichen Oberflächengeschwindigkeit zu betreiben.

In vorteilhafter Ausführung weist ein Überbau der Druckmaschine zumindest eine Längsschneideeinrichtung mit zumindest fünf quer zur Papierlaufrichtung voneinander beabstandeten Messern auf. In vorteilhafter Ausführung sind je Druckturm (bzw. je acht Druckstellen) zwei quer zur Papierlaufrichtung bewegbare Registereinrichtungen zur Kompensation von Laufwegen der Teilbahnen vorgesehen. Diese können in Weiterbildung baulich mit jeweils einer teilbahnbreiten Wendeeinrichtungen verbunden sein. Auch nachfolgende, lediglich Teilbahnen zugeordnete Leitelemente sind z. B. im wesentlichen lediglich teilbahnbreit ausgeführt. Diese Ausführungen ermöglichen einen schwingungsarmen, und damit wieder passgenauen Transport der Bahn. Durch Trägheit langer, starker, lediglich durch die Teilbahn(en) getriebener Leitelemente verursachte Bahnspannungsschwankungen (bei z. B. Lastwechseln, Änderung der Druckgeschwindigkeit) können wirksam verminder werden.

Im Hinblick auf einen zuverlässigen Betrieb und eine kostensparende Bauweise ist es auch von Vorteil, im Überbau die Möglichkeit einer Wendung einer Teilbahn um ein ungeradzahliges Vielfaches einer halben Teilbahn vorzusehen. Damit kann ein Einziehen und Bedrucken von Teilbahnen mit einer halben Trichterbreite (z. B. einer Zeitungsseite) entfallen.

In Bezug auf Kosten und raumsparende Bauweise ist es in einer Ausführung von Vorteil, lediglich einem von zwei übereinander angeordneten Falztrichtern eine sog. Harfe, d. h. mehrere i. d. R. ungetriebene Auflaufwalzen, vorzuordnen. Auf den anderen Falztrichter sind Bahnen aus der Harfe überführbar. Den beiden vertikal übereinander angeordneten Falztrichtern sind aus der selben Flucht von übereinander liegenden Teilbahnen Stränge variabler Stärke bzw. Teilbahnanzahl zuführbar.

In einer Ausführung sind Teilbahnen aus einer der einen Trichtergruppe zugeordneten Harfe der anderen Trichtergruppe beaufschlagbar und umgekehrt. In einer vorteilhaften Ausführung ist lediglich einem von zwei übereinander angeordneten Falztrichtern eine

sog. Harfe, d. h. mehrere i. d. R. ungetriebene Auflaufwalzen (auch Sammel- oder Abnahmewalzen genannt), vorzuordnen. Auf den anderen Falztrichter sind dann Bahnen aus der gemeinsamen Harfe überführbar. Den beiden vertikal übereinander angeordneten Falztrichtern sind aus der selben Flucht von übereinander liegenden Teilbahnen Stränge variabler Stärke bzw. Teilbahnanzahl zuführbar.

In einer vorteilhaften Ausführung einer Wendevorrichtung ist die Teilbahn lediglich um ein ungeradzahliges Vielfaches einer halben Teilbahnbreite versetzbar bzw. versetzt. So lässt es sich z. B. mit geringem Aufwand vermeiden, sehr schmale Bahnen bedrucken zu müssen oder zusätzliche Druckeinheiten vorzusehen. Die quer zur Bahn bewegbare Ausführung mindestens eine der Wendestangen ermöglicht eine hohe Variabilität.

Der mechanisch von den Druckeinheiten unabhängige Antrieb von Walzen des Trichteraufbaus und/oder des Falzapparates ist insbesondere im Hinblick auf eine gute Registerung und auf einen variablen Betriebes vorteilhaft.

Mit der Sechszyllindereinheit und den Bahnführungen bestehen insbesondere Vorteile darin, dass eine hohe Produktvielfalt erzielbar ist und in Verbindung mit den genannten Antriebssituationen dabei ein flexibler und exakter Antrieb möglich ist.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben.

Es zeigen:

Fig. 1 eine Rollenrotationsdruckmaschine in Seitenansicht;

Fig. 2 eine schematische Vorderansicht auf ein Druckwerk;

Fig. 3 eine schematische Draufsicht auf ein Druckwerk;

Fig. 4 einen Aufzug in perspektivischer Darstellung;

Fig. 5 einen Formzylinder; a: in perspektivischer Darstellung, b: im Längsschnitt, c: ein Halteelement, d: ein Halteelement mit Registereinrichtung;

Fig. 6 einen Übertragungszyliner; a: in perspektivischer Darstellung, b: im Längsschnitt, c: ein Halteelement, d: ein Fülelement;

Fig. 7 eine Vorrichtung zum Andrücken eines Aufzugs an einen Zylinder;

Fig. 8 ein erstes Ausführungsbeispiel für den Antrieb einer Neunzylinder-Satelliten-Druckeinheit;

Fig. 9 ein zweites Ausführungsbeispiel für den Antrieb einer Neunzylinder-Satelliten-Druckeinheit;

Fig. 10 ein drittes Ausführungsbeispiel für den Antrieb einer Neunzylinder-Satelliten-Druckeinheit;

Fig. 11 eine Ausführungsform des Ausführungsbeispiels gemäß Fig. 8;

Fig. 12 eine Übersicht über einen Überbau;

Fig. 13 ein erstes Ausführungsbeispiel einer kurzen Registereinrichtung;

Fig. 14 ein zweites Ausführungsbeispiel einer kurzen Registereinrichtung;

Fig. 15 ein Beispiel für eine Bahnwendung;

Fig. 16 eine Vorderansicht der Harfe mit gewendeter Bahn nach Fig. 15;

Fig. 17 einen Falzaufbau einer Rollenrotationsdruckmaschine;

Fig. 18 eine Seitenansicht des Falzaufbaus mit Bahnführung;

Fig. 19 eine Vorderansicht des Falzaufbaus mit Bahnführung

Fig. 20 eine erste Bahnführung / ein erstes Ausführungsbeispiel;

Fig. 21 eine zweite Bahnführung / ein zweites Ausführungsbeispiel;

Fig. 22 eine dritte Bahnführung / ein drittes Ausführungsbeispiel;

Fig. 23 eine vierte Bahnführung / ein vierter Ausführungsbeispiel.

Fig. 24 eine fünfte Bahnführung / ein fünftes Ausführungsbeispiel.

Die in Fig. 1 beispielhaft dargestellte Rollenrotationsdruckmaschine weist eine linke und eine rechte Sektion mit jeweils mindestens zwei Drucktürmen 01 auf. Die Drucktürme 01 weisen Druckeinheiten 02 auf, welche z. B. zumindest dreifach breit, d. h. für den Druck von jeweils sechs axial nebeneinander angeordneten Zeitungsseiten, ausgeführt sind. Die Druckeinheiten 02 sind als Satellitendruckeinheiten 02 ausgeführt. Die vorteilhafte Ausführung der Druckeinheiten 02 als Neunzylinder-Satelliten-Druckeinheiten 02 gewährleistet eine sehr gute Passerhaltigkeit bzw. einen geringen Fan-Out. Die Druckeinheiten 02 können aber auch als Zehnzylinder-Satelliten-Druckeinheiten 02 oder ggf. auch als im Gummi-gegen-Gummi-Druck betreibbare Druckeinheiten, wie z. B.

mehrere Brückendruckeinheiten oder eine H-Druckeinheit 02 ausgeführt sein. Den Druckeinheiten 02 werden Bahnen 03 von nicht dargestellten Rollen, insbesondere unter Verwendung von Rollenwechslern zugeführt.

Stromabwärts einer die Drucktürme 01 bzw. Druckeinheiten 02 durchlaufenden Bahn 03, hier oberhalb der Drucktürme 01, ist je Sektion ein Überbau 04 vorgesehen, in welchen die Bahn 03 bzw. Bahnen 03 an Längsschneideeinrichtungen 06 geschnitten, Teilbahnen mittels Wendeeinrichtungen 07 ggf. versetzt und/oder gestürzt, mittels in Fig. 1 lediglich angedeuteten Registereinrichtungen 08 im Längsregister zueinander ausgerichtet werden und übereinander geführt werden können. In Bahnlaufrichtung gesehen stromabwärts weist der Überbau 04 zumindest eine sog. Harfe 09 mit einer Anzahl von übereinander angeordneten, die Bahnen 03 bzw. Teilbahnen 03a; 03b; 03c führenden Harfen- oder Auflaufwalzen auf. Die Harfe 09 bestimmt den Trichtereinlauf der übereinander geführten Bahnen 03. Über diese Harfe 09 erfahren die Bahnen 03 eine Richtungsänderung und werden im Anschluss daran entweder als ein Strang oder als mehrere Stränge zusammengefasst und mindestens einem Falzaufbau 11 zugeführt.

Im Beispiel sind zwischen den Sektionen zwei Falzaufbauten 11 angeordnet, welche z. B. jeweils auf zwei verschiedenen übereinander liegenden Ebenen angeordnete Falztrichter aufweisen. Die Druckmaschine kann jedoch auch lediglich einen gemeinsamen, zwischen den Sektionen angeordneten Falzaufbau 11, oder aber lediglich eine Sektion und einen zugeordneten Falzaufbau 11 aufweisen. Auch kann der jeweilige Falzaufbau 11 mit nur lediglich einer Ebene von Falztrichtern ausgeführt sein. Jedem Falzaufbau 11 sind einer oder mehrere Falzapparate 12 zugeordnet.

Die Druckeinheit 02 weist mehrere, im Beispiel vier, Druckwerke 13 auf, mittels welchem Farbe von einem Farbwerk 14 über zumindest einen als Formzylinder 16 ausgeführten Zylinder 16 auf die Bahn 03 aufbringbar ist (Fig. 2). Im vorliegenden Beispiel für eine Ausführung der Druckeinheit 02 als Satelliten-Druckeinheit 02 ist das Druckwerk 13 als

Offsetdruckwerk 13 für den Naßoffset ausgeführt und weist zusätzlich zum Farbwerk 14 ein Feuchtwerk 20 und einen weiteren als Übertragungszylinder 17 ausgeführten Zylinder 17 auf. Der Übertragungszylinder 17 bildet mit einem ein Widerlager bildenden Druckzylinder 18 eine Druckstelle. Im Beispiel der Fig. 1 ist der Druckzylinder 18 als Satellitenzylinder 18 ausgeführt, welcher mit weiteren Übertragungszylindern 17 weiterer Druckwerke 13 in Druck-An-Stellung weitere Druckstellen bildet. Der Druckzylinder 18 könnte bei Ausbildung der Druckwerke als Doppeldruckwerk im Gummi-Gegen-Gummi-Druck auch als Übertragungszylinder 18 ausgeführt sein. Die gleichen Teile erhalten, soweit zur Unterscheidung nicht erforderlich, die selben Bezugszeichen. Ein Unterschied in der räumlichen Lage kann jedoch bestehen und bleibt im Falle der Vergabe gleicher Bezugszeichen i. d. R. unberücksichtigt.

Das Farbwerk 14 weist in vorteilhafter Ausführung einen über sechs Druckseiten reichenden Farbkasten 15 auf. In anderer Ausführung sind drei jeweils ca. zwei Druckseiten breite Farbkästen 15 in axialer Richtung nebeneinander angeordnet. Das Feuchtwerk 20 ist in vorteilhafter Ausführung als vierwalziges Sprühfeuchtwerk 20 ausgeführt.

Der Formzylinder 16 besitzt in einer ersten Ausführung z. B. einen Umfang zwischen 850 und 1.000 mm, insbesondere von 900 bis 940 mm. Der Umfang ist z. B. zur Aufnahme zweier stehenden Druckseiten, z. B. Zeitungsseiten im Broadsheetformat, mittels zweier in Umfangsrichtung auf den Formzylinder 16 hintereinander fixierbarer Aufzüge 19, z. B. flexibler Druckformen 19, ausgebildet. Die Druckformen 19 sind in Umfangsrichtung auf dem Formzylinder 16 montierbar und bei der in Fig. 3 dargestellten Ausführung jeweils als in axialer Richtung mit einer Druckseite bestückte Einzeldruckplatte einzeln austauschbar.

Die Länge L16 des nutzbaren Ballens des Formzylinders 16 beträgt in der ersten Ausführung z. B. 1.850 bis 2.400 mm, insbesondere 1.900 bis 2.300 mm und ist in axialer Richtung zur Aufnahme von z. B. mindestens sechs nebeneinander angeordneten

stehenden Druckseiten, insbesondere Zeitungsseiten im Broadsheetformat, bemessen (siehe Fig. 3, Abschnitte A bis F). Dabei ist es u. a. von der Art des herzustellenden Produktes abhängig, ob jeweils nur eine Druckseite oder mehrere Druckseiten in axialer Richtung nebeneinander auf einer Druckform 19 angeordnet sind. In einer vorteilhaften breiteren Variante der ersten Ausführung ist die Länge L16 des nutzbaren Ballens zwischen 2.000 und 2.400 mm.

In einer zweiten Ausführung besitzt der Formzylinder 16 z. B. einen Umfang zwischen 980 und 1.300 mm, insbesondere von 1.000 bis 1.200 mm. Die Länge L16 des nutzbaren Ballens beträgt hierbei z. B. 1.950 bis 2.400 mm, insbesondere 2.000 bis 2.400 mm. Die Belegung entspricht der o. g. Ausführung.

Der Übertragungszylinder 17 besitzt in der ersten Ausführung ebenfalls einen Umfang z. B. zwischen 850 und 1.000 mm, insbesondere von 900 bis 940 mm. Die Länge L17 des nutzbaren Ballens des Übertragungszylinders 17 beträgt in der ersten Ausführung z. B. 1.850 bis 2.400 mm, insbesondere 1.900 bis 2.300 mm und ist in Längsrichtung nebeneinander z. B. mit drei Aufzügen 21, z. B. Gummitüchern 21, belegt (Abschnitte AB bis EF). Sie reichen in Umfangsrichtung im wesentlichen um den vollen Umfang. Die Gummitücher 21 sind, das Schwingungsverhalten des Druckwerkes 13 im Betriebsfall günstig beeinflussend, alternierend, z. B. um 180°, zueinander versetzt (Fig. 3) angeordnet. In der breiteren Variante der ersten Ausführung ist die Länge L17 des nutzbaren Ballens ebenfalls zwischen 2.000 und 2.400 mm.

In der zweiten Ausführung besitzt der Übertragungszylinder 17 z. B. einen Umfang zwischen 980 und 1.300 mm, insbesondere von 1.000 bis 1.200 mm. Die Länge L17 des nutzbaren Ballens beträgt hierbei z. B. 1.950 bis 2.400 mm, insbesondere 2.000 bis 2.400 mm. Die Belegung mit Aufzügen 21 entspricht der ersten Ausführung.

Durchmesser von Ballen der Zylinder 16; 17 liegen in der ersten o. g. Ausführung z. B.

von 270 bis 320 mm, insbesondere von ca. 285 bis 300 mm. In der zweiten o. g. Ausführung liegt der Durchmesser von Ballen der Zylinder 16; 17 z. B. von ca. 310 bis 410 mm, insbesondere von 320 bis ca. 380 mm. Ein Verhältnis einer Länge des nutzbaren Ballens der Zylinder 16; 17 zu deren Durchmesser sollte bei 5,8 bis 8,8 liegen, z. B. bei 6,3 bis 8,0, in breiter Ausführung insbesondere bei 6,5 bis 8,0.

Als Länge L16; L17 des nutzbaren Ballens ist hier diejenige Breite bzw. Länge des Ballens zu verstehen, welche zur Aufnahme von Aufzügen 19; 21 geeignet ist. Dies entspricht in etwa auch einer maximal möglichen Bahnbreite einer zu bedruckenden Bahn 03. Bezogen auf eine gesamte Länge des Ballens der Zylinder 16; 17 wäre zu dieser Länge L16; L17 des nutzbaren Ballens noch die Breite von ggf. vorhandenen Schmitzringen, von ggf. vorhandenen Nuten und/oder von ggf. vorhandenen Mantelflächenbereichen hinzuzurechnen, welche z. B. zur Bedienung von Spann- und/oder Klemmvorrichtungen zugänglich sein müssen.

In vorteilhafter Ausführung weist der Satellitenzylinder 18 ebenfalls im wesentlichen die genannten Abmessungen und Verhältnisse zumindest des zugeordneten Übertragungszylinders 17 auf.

Die Aufzüge 19; 21 sind wie in Fig. 4 schematisch dargestellt z. B. als flexible Platten ausgeführt, wobei der als Gummituch 21 ausgeführte Aufzug 21 als ein sog. Metalldrucktuch 21 mit einer auf einer Trägerplatte 23 angeordneten elastischen und/oder kompressiblen Schicht 22 (strichliert) ausgeführt ist (in Fig. 4 sind die allein das Metalldrucktuch 21 betreffenden Bezugszeichen strichliert angebunden). Eine plattenförmige Druckform 19 bzw. eine Trägerplatte 23 für ein Gummidrucktuch besteht i. d. R. aus einem biegsamen, aber ansonsten formstabilen Material, z. B. aus einer Aluminiumlegierung, und weist zwei gegenüberliegende, im oder am Zylinder 16; 17 zu befestigende Enden 24; 26 mit einer Materialstärke MS von z. B. 0,2 mm bis 0,4 mm, vorzugsweise 0,3 mm auf, wobei diese Enden 24; 26 zur Ausbildung als

Einhängeschenkel 24; 26 jeweils entlang einer Biegelinie bezogen auf die gestreckte Länge l des Aufzugs 19; 21 um einen Winkel α ; β zwischen 40° und 140° , vorzugsweise 45° , 90° oder 135° abgekantet sind (Fig. 4). Ein vorlaufendes Ende 24 ist beispielsweise unter einem spitzen Winkel α von 40° bis 50° , insbesondere 45° , und ein nachlaufendes Ende 26 unter einem Winkel β von 80° bis 100° , insbesondere 90° , abgekantet. Wenn in Umfangsrichtung des Zylinders 16; 17, insbesondere des Übertragungszylinders 17, lediglich ein einziger Aufzug 21 aufgebracht ist, entspricht die Länge l des Aufzugs 21 nahezu dem Umfang dieses Zylinders 17.

Grundsätzlich sind die abgekanteten Enden 24; 26 der Aufzüge 19; 21 nun jeweils in eine am Umfang des jeweiligen Zylinders 16; 17 in Längsrichtung achsparallele, schlitzförmige Öffnung einsteckbar, wobei die Enden 24; 26 beispielsweise durch ihre Formgebung, Reibung oder Verformung gehalten werden. Sie können jedoch auch zusätzlich mittels durch Federkraft, durch Druckmittel oder einer während des Betriebes wirksamen Fliehkraft betätigbarer Mittel fixierbar sein. Die schlitzförmigen Öffnungen für in axialer Richtung nebeneinander angeordneter Druckplatten 19 auf dem Formzylinder 16 sind in vorteilhafter Ausführung jeweils in einer Flucht, z. B. als durchgehende schlitzförmige Öffnung (wie nachfolgend beschrieben), angeordnet, während die Öffnungen für die auf dem Übertragungszylinder 17 nebeneinander angeordneten Gummitücher 21 nicht durchgehend, sondern alternierend zueinander in Umfangsrichtung um 180° versetzt sind.

Fig. 5a und b) zeigt in einer perspektivischen Ansicht ein Beispiel für eine vorteilhafte Ausführung des Formzylinders 16. Im Zylinder 16 sind zwei Kanäle 27 vorgesehen, wobei sich beide Kanäle 27 durchgängig in axialer Richtung des Zylinders 16 zumindest über die gesamte Länge der sechs Abschnitte A bis F im Ballen erstrecken (Fig. 5b). Sie sind in Umfangsrichtung des Zylinders 16 z. B. um 180° versetzt zueinander angeordnet. Die unterhalb einer Mantelfläche 30 im Innern des Zylinders 16 angeordneten, z. B. als kreisförmige Bohrungen ausgeführten Kanäle 27, weisen zumindest über die Länge der sechs Abschnitte A bis F eine schmale, schlitzförmige Öffnung 28 zur Mantelfläche 30 des

Zylinders 16 auf (Fig. 5a). Eine Schlitzweite s16 der Öffnung 28 auf dem Formzylinder 16 in Umfangsrichtung beträgt weniger als 5 mm und liegt vorzugsweise im Bereich von 1 mm bis 3 mm (Fig. 5c).

Die abgekanteten Enden 24; 26 der Druckform 19 sind nun jeweils in eine der am Umfang in Längsrichtung achsparallelen Öffnungen 28 einsteckbar und sind, zumindest das nachlaufende Ende 26, durch eine im Kanal 27 angeordnete Halteeinrichtung 29, 31 fixierbar.

Die Halteeinrichtung 29, 31 weist hier zumindest ein Klemmstück 29 und ein Federelement 31 auf (Fig. 5c). Der nicht dargestellte rechtwinklig abgekantete nachlaufende Einhängeschenkel 26 (siehe Fig. 4) kommt vorzugsweise an einer zur Abkantung im wesentlichen komplementär geformten Wandung der Öffnung 28 zur Anlage und wird dort von dem Klemmstück 29 durch eine vom Federelement 31 auf das Klemmstück 29 ausgeübte Kraft angedrückt. Der nicht dargestellte spitzwinkelig abgekantete vorlaufende Einhängeschenkel 24 (siehe Fig. 4) kommt vorzugsweise an einer zur Abkantung im wesentlichen komplementär geformten Wandung der Öffnung 28, welche mit der Mantelfläche 30 eine Einhängekante bzw. -nase unter einem spitzen Winkel α' von 40° bis 50° , insbesondere 45° bildet, zur Anlage. Zum Lösen der Klemmung des nachlaufenden Endes 26 ist im Kanal 27 ein Stellmittel 32 vorgesehen, welches bei seiner Betätigung der vom Federelement 31 auf das Klemmstück 29 ausgeübten Kraft entgegenwirkt und das Klemmstück 29 von der Wandung bzw. dem Ende 26 wegschwenkt.

In vorteilhafter Ausführung ist in jedem Kanal 27 nicht nur ein Klemmstück 29, sondern sind über die Länge der Abschnitte A bis F axial nebeneinander mehrere Klemmstücke 29 in der Art von Segmenten mit jeweils zumindest einem Federelement 31 angeordnet (in Fig. 5a aus dem Zylinder 16 „herausgezogen“ dargestellt). Im Ausführungsbeispiel sind je Abschnitt A bis F mehrere, z. B. sechs, derartige Klemmstücke 29 gemäß Fig. 5c

angeordnet, wobei mittig zwischen den Klemmelementen 29 jeden Abschnittes A bis F, hier zwischen dem dritten und dem vierten Klemmelement 29 jedes Abschnittes A bis F, jeweils ein einen Registerstein 35 aufweisendes Passerelement 33 (Fig. 5d) angeordnet ist. Der Registerstein 35 bzw. Passerstift 35 ist z. B. in einer Nut eines Sockels 34 in axialer Richtung manuell verschieb- und justierbar. Der Registerstein 35 kann in nicht dargestellter Weiterbildung auch jeweils über axial in einem frei bleibenden Hohlraum des Kanals 27 bzw. des Passelementes 33 geführte Betätigungsseinrichtung, z. B. eine motorisch antreibbare Gewindespindel, axial bewegbar sein.

Das Stellmittel 32 ist in der dargestellten Ausführungsform derart ausgeführt, dass bei Betätigung die Halteeinrichtung(en) 29, 31, d. h. alle Klemmstücke 29, über die Länge der Abschnitte A bis F gleichzeitig geschlossen bzw. gelöst sind. Das Stellmittel 32 ist wie in Fig. 5a aus dem Zylinder 16 „herausgezogen“ dargestellt als jeweils mindestens über die Länge der Abschnitte A bis F reichender, axial im Kanal 27 verlaufender und mit Druckmittel betätigbarer reversibel verformbarer Hohlkörper 32, z. B. als Schlauch 32, ausgeführt. Dieser Schlauch 32 ist gemäß Fig. 5c mit den Klemmstücken 29 derart zusammen wirkend im Kanal 27 angeordnet, dass er den selbstsichernd die Haltevorrichtung schließenden Federelementen 31 bei Betätigung entgegenwirkt. Durch die Bereiche von Passerelementen 33 wird er hindurchgeführt (Fig. 5d).

Fig. 6a und b) zeigt in einer perspektivischen Ansicht ein Beispiel für eine vorteilhafte Ausführung des Übertragungszylinders 17. Im Zylinder 17 sind zwei Kanäle 36; 37 vorgesehen, wobei sich beide Kanäle 36; 37 durchgängig in axialer Richtung des Zylinders 17 zumindest über die gesamte Länge der sechs Abschnitte A bis F bzw. drei Abschnitte AB; CD; EF, im Ballen erstrecken (Fig. 6b). Sie sind in Umfangsrichtung des Zylinders 17 z. B. um 180° versetzt zueinander angeordnet.

Die beiden unterhalb einer Mantelfläche 40 im Innern des Zylinders 17 angeordneten, z. B. als kreisförmige Bohrungen ausgeführten Kanäle 36; 37, weisen insgesamt z. B.

drei, jeweils axial verlaufende, zumindest jeweils über die Länge eines Abschnittes AB; CD; EF reichende schmale, schlitzförmige Öffnungen 38; 39; 41 zur Mantelfläche 40 des Zylinders 17 hin auf (Fig. 6a). Zwei der drei Öffnungen 38; 39 stehen mit dem selben Kanal 36 in Verbindung und sind in axialer Richtung miteinander fluchtend, aber voneinander beabstandet an der Mantelfläche 40 angeordnet. Axial zwischen den beiden Öffnungen 38; 39 besteht ein die Form der übrigen Mantelfläche 40 fortsetzender, insbesondere ungestörter Abschnitt U ohne Öffnung. Die beiden fluchtenden, z. B. mit demselben Kanal 36 in Verbindung stehenden Öffnungen 38; 39 sind bevorzugt die stirnseitennahen Öffnungen 38; 39, wobei die dritte Öffnung 41 sich axial zumindest über den mittleren Anschnitt CD erstreckt und um 180° versetzt zu den anderen Öffnungen 38; 39 angeordnet ist. Eine Schlitzweite s17 der nicht abgedeckten Öffnung 38; 39; 41 auf dem Übertragungszylinder 17 in Umfangsrichtung beträgt jeweils weniger als 5 mm und liegt vorzugsweise im Bereich von 1 mm bis 3 mm (Fig. 6c). Zu Herstellungszwecken können jeweils an einem oder an zweien der Enden der Schlitze 38; 39; 41 radial verlaufende Bohrungen 42 vorgesehen sein, welche im Betriebszustand des Zylinders 17 mittels eines nicht dargestellten Stopfens verschließbar bzw. verschlossen ist (Fig. 6b). Der Stopfen weist eine Außenfläche auf, welche die ansonsten zylindrische Kontur des Zylinders 17 im montierten Zustand im Bereich der Bohrung 42 fortsetzt. In Umfangsrichtung des Zylinders 17 in einem zur Rotationsachse senkrechten Schnitt ist in einer vorteilhaften Ausführung jeweils lediglich eine der Öffnungen 38; 39; 41 bzw. eine der durch die Stopfen verkürzten Öffnung 38; 39; 41 hintereinander angeordnet. In diesem Schnitt betrachtet überschneiden sich somit die Öffnungen 38; 39; 41 bzw. die durch die Stopfen verkürzten Öffnung 38; 39; 41 nicht.

Die abgekanteten Enden 24; 26 des Gummituches 21 sind nun jeweils in eine der am Umfang in Längsrichtung achsparallelen Öffnungen 38; 39; 41 einsteckbar und sind, zumindest das nachlaufende Ende 26, jeweils durch zumindest eine im Kanal 36; 37 angeordnete Halteinrichtung 43, 44 fixierbar. Vorzugsweise sind die beiden Enden 24; 26 desselben Gummituches 21 durch die selbe Öffnung 38; 39; 41 in den selben Kanal

36; 37 geführt.

Die Halteeinrichtung 43, 44 weist hier jeweils zumindest ein Klemmstück 43 und ein Federelement 44 auf (Fig. 6c). Der nicht dargestellte rechtwinkelig abgekantete nachlaufende Einhängeschenkel 26 (siehe Fig. 4) kommt vorzugsweise an einer zur Abkantung im wesentlichen komplementär geformten Wandung der Öffnung 38; 39; 41 zur Anlage und wird dort von dem Klemmstück 43 durch eine vom Federelement 44 auf das Klemmstück 43 ausgeübte Kraft angedrückt. Der nicht dargestellte spitzwinkelig abgekantete vorlaufende Einhängeschenkel 24 (siehe Fig. 4) kommt vorzugsweise an einer zur Abkantung im wesentlichen komplementär geformten Wandung der Öffnung 38; 39; 41, welche mit der Mantelfläche 40 eine Einhängekante bzw. -nase unter einem spitzen Winkel α' von 40° bis 50° , insbesondere 45° bildet, zur Anlage. Zum Lösen der Klemmung des nachlaufenden Endes 26 ist im Kanal 36; 37 mindestens ein Stellmittel 46; 47; 48 vorgesehen, welches bei seiner Betätigung der vom Federelement 44 auf das Klemmstück 43 ausgeübten Kraft entgegenwirkt und das Klemmstück 43 von der Wandung wegschwenkt. In vorteilhafter Weise ist für jede der drei Öffnungen 38; 39; 41 im jeweils zugeordneten Kanal 36; 37 mindestens ein Stellmittel 46; 47; 48 vorgesehen (in Fig. 6a aus dem Zylinder 17 „herausgezogen“ dargestellt).

In vorteilhafter Ausführung ist in jedem Kanal 36; 37 nicht nur ein Klemmstück 43, sondern sind über die Länge der Abschnitte AB; CD; EF axial nebeneinander jeweils mehrere Klemmstücke 43 als einzelne Segmente mit jeweils zumindest einem Federelement 44 angeordnet (in Fig. 6a aus dem Zylinder 17 „herausgezogen“ dargestellt). Im Ausführungsbeispiel sind je Abschnitt AB; CD; EF und je Öffnung 38; 39; 41 mehrere, z. B. zehn, derartige Klemmstücke 43 gemäß Fig. 6c angeordnet. In Abschnitten AB; CD; EF des jeweiligen Kanals 36; 37, die keine Öffnung zur Mantelfläche 40 aufweisen, ist anstelle der Haltevorrichtung 43, 44 bzw. der Haltevorrichtungen 43, 44 zumindest ein Füllkörper 49 (Fig. 6d) im Kanal 36; 37 angeordnet. Im Beispiel sind mehrere, z. B. elf, dieser Füllkörper 49 als einzelne Segmente im betreffenden, keine

Öffnung aufweisenden Abschnitt AB; CD; EF des Kanals 36; 37 angeordnet. Mittig zwischen den Halteeinrichtungen 43, 44 jeden Abschnittes AB; CD; EF, d. h. im Bereich zwischen den Abschnitten A und B bzw. E und F, hier zwischen dem fünften und sechsten Klemmelement 43, kann ebenfalls jeweils ein Füllkörper 49 (Fig. 6d) angeordnet sein. Das Füllkörper 49 weist im wesentlichen einen dem Querschnitt des Kanals 36; 37 nachempfundenen Querschnitt und zumindest eine in axialer Richtung durchgehende Öffnung 51 auf, durch welche ein Betriebsmittel für das Stellmittel 46; 47; 48 durchführbar ist.

Das Stellmittel 46; 47; 48 ist in der dargestellten Ausführungsform derart ausgeführt, dass bei Betätigung die Halteeinrichtung 43, 44 eines Abschnittes AB; CD; EF, d. h. alle Klemmstücke 43 eines Abschnittes AB; CD; EF, gleichzeitig geschlossen bzw. gelöst sind. Das Stellmittel 46; 47; 48 ist in Fig. 6a aus dem Zylinder 17 „herausgezogen“ dargestellt. Im Kanal 36 (mit zwei Öffnungen 38; 39) erstreckt sich jeweils stirnseitig ein Stellmittel 46; 47 über zumindest die entsprechende Länge des Abschnittes AB; EF. Das der mittleren Öffnung 41 zugeordnete Stellmittel 48 erstreckt sich ebenfalls über zumindest die entsprechende Länge des zugeordneten Abschnittes CD. Es kann sich jedoch auch zumindest auf einer Seite bis zur Stirnseite des Zylinders 17 erstrecken, wenn es für eine Zufuhr von Betriebsmitteln von Vorteil ist (Fig. 6a). Die Stellmittel 46; 47; 48 sind jeweils als axial im Kanal 36; 37 verlaufender und mit Druckmittel betätigbarer reversibel verformbarer Hohlkörper 46; 47; 48, z. B. als Schlauch 46; 47; 48, ausgeführt. Dieser Schlauch 46; 47; 48 ist gemäß Fig. 6c mit den Klemmstücken 43 derart zusammen wirkend im Kanal 36; 37 angeordnet, dass er den selbstsichernd die Halteeinrichtung 43, 44 schließenden Federelementen 44 bei Betätigung entgegenwirkt. Durch die Bereiche von zu passierenden Füllkörpern 49 wird er durch diese bzw. deren Öffnung 51 hindurchgeführt (Fig. 6d).

In anderer Ausführung der Kanäle 36; 37 können diese auch jeweils nicht über die gesamte Länge durchgehend ausgeführt sein. So ist beispielsweise im Bereich jeden

Abschnitts AB; CD; EF jeweils ein Kanal 36; 37, ggf. mit entsprechender Haltevorrichtung, vorgesehen, wobei der Kanal 37 des mittleren Aufzuges 21 gegenüber den beiden äußeren um 180° versetzt ist. Dies ist in Fig. 6e lediglich schematisch angedeutet.

In einer insbesondere in Verbindung mit den sechs Seiten breiten Druckeinheiten 02 bzw. Zylindern 16; 17 vorteilhaften Ausführungsform ist zumindest zwei Zylindern 16; 17, insbesondere zwei Formzylindern 16, mindestens einer der Drucktürme 01 jeweils eine Vorrichtung 52 zum Andrücken eines Aufzugs 19; 21 an einen Zylinder 16; 17, insbesondere einer Druckform 19 an den Formzylinder 16, (im folgenden Andrückvorrichtung 52) zugeordnet. Dies ist z. B. von Vorteil, wenn in zwei korrespondierenden Druckwerken 13 ein schneller, z. B. fliegender Plattenwechsel vorgenommen werden soll. Insbesondere ist es für einen schnellen, sicheren und exakten Produktwechsel von Vorteil, wenn allen Formzylindern 16 eines Druckturmes 01 eine derartige Andrückvorrichtung 52 zugeordnet ist. Eine entsprechende Andrückvorrichtung 52 weist ein oder mehrere Andrückelemente 53; 54, z. B. Leisten, Stößel oder Wälzelemente 53; 54, auf, welche bzw. welches an einen und/oder mehrere Aufzüge 19; 21 wahlweise anstellbar ist bzw. sind. Hierdurch wird ein kontrolliertes und geführtes Einziehen bzw. Aufspannen und/oder Ablösen bzw. Abnehmen des Aufzuges 19; 21 ermöglicht. Auch ist es hierdurch möglich, ein Ende 24; 26 des Aufzuges 19; 21 in den entsprechenden Kanal 27; 36; 37 bzw. die Öffnung 28; 38; 39; 41 hinein zu bewegen oder ein gelöstes Ende 24; 26 bzw. den teilweise gelösten Aufzug 19; 21 in einer gewünschten Lage niederzuhalten. Die Andrückvorrichtung 52 erstreckt sich längs des Zylinders 16; 17 zumindest im gesamten Bereich der Abschnitte A bis F, d. h. im für das Drucken wirksamen Bereich des Ballens.

Die in Fig. 7 beschriebene Ausführung der Andrückvorrichtung 52 ist insbesondere auch in Verbindung mit der in Fig. 5 beschriebenen Ausführung für das über alle Abschnitte A bis F reichende gemeinsame Stellmittel 32 von Vorteil. In dieser Konstellation ist ein einzelnes oder gruppenweises Aufziehen, Wechseln und/oder Abnehmen auch für sechs

nebeneinander auf dem Formzylinder 16 angeordnete Druckformen 19 möglich, ohne dass innerhalb des Formzylinders 16 ein erhöhter Aufwand an Betätigungsseinrichtungen oder Betriebsmittelzufuhr zu erfolgen hat. Auch die Fertigung, Montage und Wartung vereinfacht sich dadurch erheblich.

Die Andrückvorrichtung 52 weist je Abschnitt A bis F (bei sechs nebeneinander angeordneten Aufzügen 19) bzw. Abschnitt AB; CD; EF (bei drei nebeneinander angeordneten Aufzügen 21) mindestens ein erstes Andrückelement 53, z. B. Wälzelement 53, auf. In einer vorteilhaften Ausführung gemäß Fig. 7 weist es je Abschnitt A bis F bzw. Abschnitt AB; CD; EF ein in Umfangsrichtung des Zylinders 16; 17 von diesem ersten Wälzelement 53 beabstandetes zweites Andrückelement 54, z. B. Wälzelement 54, auf. In Fig. 7 sind für den Fall des Formzylinders 16 lediglich mittleren Abschnitten B, C und D sowie die diesen Abschnitten B, C und D zugeordneten Wälzelemente 53; 54 dargestellt. Je Abschnitt A bis F bzw. AB bis EF ist ein erstes Wälzelement 53 oder eine Gruppe von in axialer Richtung nebeneinander angeordneten ersten Wälzelementen 53 sowie z. B. ein zweites Wälzelement 54 oder eine Gruppe von in axialer Richtung nebeneinander angeordneten zweiten Wälzelementen 54 angeordnet. Im Beispiel ist je Abschnitt A bis F bzw. AB bis EF ein erstes Wälzelement 53 und eine Gruppe von drei zweiten Wälzelementen 54 dargestellt. Vorteilhaft im Hinblick auf die Gefahr möglicher Verkantung und ggf. fehlerhafter axialer Ausrichtung ist die Anordnung von Gruppen von mindestens je zwei voneinander unabhängig bewegbaren Wälzelementen 53; 54. Ein einzelnes Wälzelement 53; 54 für einen Abschnitt A bis F bzw. AB bis EF ist beispielsweise als sich in Längsrichtung nahezu über die Länge des Abschnittes A bis F bzw. AB bis EF erstreckende Walze 53; 54 ausgeführt, ein Wälzelement 53; 54 einer Gruppe hingegen z. B. lediglich als höchsten die einen Bruchteil der Länge des Abschnittes A bis F bzw. AB bis EF aufweisende Rolle 53; 54.

Die axial nebeneinander angeordneten Wälzelemente 53; 54 sowie, falls vorgesehen, die in Umfangsrichtung hintereinander angeordneten Wälzelemente 53; 54 sind grundsätzlich

unabhängig voneinander bewegbar an beispielsweise einer Traverse 56 (oder mehreren Traversen 56) angeordnet. Das einzige erste Wälzelement 53 oder die Gruppe von ersten Wälzelementen 53 eines jeden Abschnittes A bis F bzw. AB bis EF sowie, soweit vorgesehen, das einzige zweite Wälzelement 54 oder die Gruppe von zweiten Wälzelementen 54 eines jeden Abschnittes A bis F bzw. AB bis EF sind unabhängig voneinander durch jeweils eigene Stellmittel 57; 58 betätigbar. Diese Stellmittel 57; 58 sind beispielsweise als mit Druckmittel beaufschlagbare reversibel verformbare Hohlkörper 57; 58, insbesondere als Schlauch 57; 58 ausgeführt. Es können aber auch anders geartete elektrisch oder magnetisch betätigbare Stellmittel vorgesehen sein.

Zum Aufspannen eines Aufzugs 16; 17 in einem der Abschnitte A bis F bzw. AB bis EF wird das vorlaufende, z. B. spitzwinkelig abgekantete Ende 24 des Aufzugs 16; 17 in die betreffende Öffnung 28; 38; 39; 41 eingeführt. Das bzw. die diesem Abschnitt A bis F bzw. AB bis EF zugeordnete erste bzw. ersten Wälzelemente 53 sowie, falls vorgesehen, das bzw. die diesem Abschnitt A bis F bzw. AB bis EF zugeordneten zweiten Wälzelemente 54 werden an den Zylinder 16; 17 bzw. an den aufzuziehenden, bereits eingehängten Aufzug 19; 21 angestellt. Sind bereits ein oder mehrere weitere Aufzüge 19; 21 auf dem Zylinder 16; 17 angeordnet und sollen dort verbleiben, so werden auch die diesen Abschnitt A bis F bzw. AB bis EF betreffenden ersten und/oder zweiten Wälzelemente 53; 54 an den jeweiligen Aufzug 19; 21 angestellt. Wenn erste und zweite Wälzelemente 53; 54 vorgesehen sind, drückt beim Abrollen des Zylinders 16; 17 mit den Wälzelementen 53; 54 das zweite Wälzelement 54 das nachlaufende abgekantete Ende 26 des Aufzuges 19; 21 bei Überrollung in die Öffnung 28; 38; 39; 41. Ist bzw. sind nur erste Wälzelemente 53 vorgesehen, so erfolgt das Hineindrücken durch diese. Vorzugsweise verbleiben hierbei die Wälzelemente 53; 54 ortsfest, während der Zylinder 16; 17 in eine Produktionsrichtung P gedreht wird. Das bzw. die zuvor in einer Freigabeposition (offen) befindliche Haltemittel für die Abschnitte A bis F bzw. AB bis EF, z. B. ein oder mehrere Klemmstücke 29; 43, wechselt bzw. wechselt in seine bzw. ihre Halte- oder Klemmposition (geschlossen). Nachdem das Haltemittel von seiner Freigabeposition in

seine Halteposition gewechselt ist werden alle Wälzelemente 53; 54 des betreffenden Abschnittes A bis F bzw. AB bis EF vom Zylinder 16; 17 bzw. dessen Aufzug 19; 21 abgestellt.

Beim Abspannen eines Aufzuges 19; 21 ist zu unterscheiden, ob ein oder mehrere andere Aufzüge 19; 21 auf dem Zylinder 16; 17 verbleiben sollen. In diesem Fall ist zunächst mindestens eines der dem zu belassenden Aufzug 19; 21 zugeordneten Wälzelemente 53; 54 im Bereich dessen nachlaufenden Endes 26 bzw. nahe der Öffnung 28; 38; 39; 41 anzustellen bzw. angestellt. Das dem zu lösenden Aufzug 19; 21 zugeordnete Wälzelement 53; 54 kann abgestellt verbleiben bzw. sein. Das Haltemittel für die Abschnitte A bis F bzw. AB bis EF wird geöffnet. Das nachlaufende Ende 26 des zu lösenden Aufzuges 19; 21 ist durch die Eigenspannung aus dem Kanal 27; 36; 37 entfernt, während die zu belassenden Aufzüge 19; 21 durch die Wälzelemente 53; 54 niedergehalten sind. Das Haltemittel wird wieder geschlossen. Weist die Andrückvorrichtung 52 jeweils erste und zweite Wälzelemente 53; 54 auf, so werden die zu belassenden Aufzüge 19; 21 vorteilhaft durch zumindest die zweiten Wälzelemente 54 niedergehalten. Beim zum Entfernen vorgesehenen Aufzug 19; 21 ist zunächst zumindest das zweite Wälzelement 54 abgestellt, damit das Ende 26 aus dem Kanal 27; 36; 37 entweichen kann, und das erste Wälzelement 53 angestellt, damit der bereits zum Teil gelöste Aufzug 19; 21 noch auf dem Zylinder 16; 17 geführt und gehalten ist. Anschließend kann der Zylinder 16; 17, vorzugsweise entgegen der Produktionsrichtung P, gedreht werden bis das vorlaufende Ende 24 aus dem Kanal 27; 36; 37 entfernt, und der Aufzug 19; 21 entnommen werden kann. Sind beim Abspannen des Aufzuges 19; 21 keine verbleibenden Aufzüge 19; 21 zu berücksichtigen, so können die Wälzelemente 53; 54 der nicht den zu lösenden Aufzug 19; 21 betreffenden Abschnitte A bis F bzw. AB bis EF während der Prozedur prinzipiell beliebige Betriebspositionen, vorzugsweise abgestellt, einnehmen.

Es können somit auf der Mantelfläche 30; 40 des Zylinders 16; 17 aufliegende Aufzüge

19; 21 durch jeweils mindestens ein Andrückelement 53; 54 je nach Bedarf fixiert sein, während ein Ende 24; 26 eines Aufzugs 19; 21 oder mehrerer Aufzüge 19; 21 freigegeben ist bzw. sind, d. h. zu diesem Zeitpunkt nicht angedrückt ist bzw. sind.

In einer vorteilhaften Ausführung werden die Zylinder 16; 17; 18 der Druckeinheit 02 so angetrieben, dass die Druckwerke 13 der Druckeinheit 02 jeweils zumindest durch einen von den übrigen Druckeinheiten 13 mechanisch unabhängigen Antriebsmotor 61 rotatorisch antreibbar sind. Im Fall der Satellitendruckeinheit 02 ist der bzw. sind die Satellitenzylinder 18 ebenfalls durch einen Antriebsmotor 61 mechanisch unabhängig von den zugeordneten Druckwerken 13 rotatorisch antreibbar. Die Antriebsmotoren 61 sind vorzugsweise als bezüglich ihrer Winkellage geregelte Elektromotoren 61, z. B. als Asynchronmotoren, Synchronmotoren oder Gleichstrommotoren, ausgeführt. In vorteilhafter Weiterbildung ist zwischen dem Antriebsmotor 61 und dem anzutreibenden Zylinder 16; 17; 18 bzw. Zylinderpaar 16, 17; 18, 18 mindestens ein Getriebe 62, insbesondere mindestens ein Untersetzungsgetriebe 62 (wie zum Beispiel Ritzel-, Vorsatz- und/oder Planetengetriebe) angeordnet. Die Einzelantriebe tragen zur hohen Flexibilität sowie zur Vermeidung von Schwingungen im mechanischen Antriebssystem, und dadurch auch zur hohen Qualität im Produkt bei. In den nachfolgenden Figuren 8 bis 10 weisen lediglich die Bauteile der rechten Bildhälfte entsprechende Bezugszeichen auf, da die linke Seite der rechten spiegelbildlich entspricht. Es sind jeweils für obere und untere Druckwerke alternative Konfigurationen für ggf. vorhandene Farb- bzw. Feuchtwerke 14; 20 angedeutet, welche wechselweise aufeinander zu übertragen sind.

In Fig. 8 weisen alle neun Zylinder 16; 17; 18 jeweils einen eigenen Antriebsmotor 61 auf, welcher jeweils z. B. über ein Getriebe 62 auf den Zylinder 16; 17; 18 treibt. Das oben dargestellte Farbwerk 14 weist neben weiteren, nicht bezeichneten Walzen zwei Reibzylinder 63 auf, welche rotatorisch gemeinsam mittels eines eigenen Antriebsmotors 64 antreibbar sind. Die beiden Reibzylinder 63 sind zum Erzeugen eines axialen Hubes durch ein nicht dargestelltes Antriebsmittel axial beweg- und antreibbar. Das unten

dargestellte Farbwerk 14 weist lediglich einen Reibzylinder 63 auf. Das oben dargestellte Feuchtwerk 20 weist neben weiteren, nicht bezeichneten Walzen zwei Reibzylinder 66 auf, welche rotatorisch gemeinsam mittels eines eigenen Antriebsmotors 67 antreibbar sind. Die beiden Reibzylinder 66 sind zum Erzeugen eines axialen Hubes durch ein nicht dargestelltes Antriebsmittel axial beweg- und antreibbar. Das unten dargestellte Feuchtwerk 20 weist lediglich einen Reibzylinder 66 auf. In einer Variante, welche in den oberen Druckwerken 13 durch punktierte Linien angedeutet ist, wird das Farb- und/oder Feuchtwerk 14; 20 nicht durch einen eigenen Antriebsmotor 64; 67, sondern von einem der Zylinder 16; 17; 18, insbesondere vom Formzylinder 16 her über eine mechanische Kopplung, z. B. über Zahnräder und/oder Riemen, rotatorisch angetrieben.

Im Gegensatz zu Fig. 8 werden die beiden Zylinder 16; 17 jedes Druckwerks 13 in der Ausführung nach Fig. 9 jeweils von einem gemeinsamen Antriebsmotor 61 am Übertragungszylinder 17 angetrieben. Der Antrieb kann axial, z. B. über ein Getriebe 62, erfolgen oder aber über ein auf ein Antriebsrad des Übertragungszylinders 17 treibendes Ritzel. Vom Antriebsrad des Übertragungszylinders 17 kann dann auf ein Antriebsrad des Formzylinders 16 abgetrieben werden. Die Antriebsverbindung 68 (als Verbindungsleitung dargestellt) kann als Zahnradverbindung oder aber über Riemen erfolgen und ist in Weiterbildung gekapselt ausgeführt. Für den Antrieb des Farb- und ggf. Feuchtwerks 14; 20 über eigene Antriebsmotoren 64; 67 oder einen Zylinder 16; 17; 18 ist grundsätzlich das zu Fig. 8 ausgeführte anzuwenden.

Im Gegensatz zu Fig. 9 werden die beiden Zylinder 16; 17 jedes Druckwerks 13 in der Ausführung nach Fig. 10 jeweils zwar von einem gemeinsamen Antriebsmotor 61, jedoch am Formzylinder 16 angetrieben. Der Antrieb kann wieder axial, z. B. über ein Getriebe 62, erfolgen oder aber über ein auf ein Antriebsrad des Formzylinders 16 treibendes Ritzel. Vom Antriebsrad des Formzylinders 16 kann dann auf ein Antriebsrad des Übertragungszylinders 17 abgetrieben werden. Die Antriebsverbindung 68 kann wie zu Fig. 9 dargelegt ausgeführt sein. Für den Antrieb des Farb- und ggf. Feuchtwerks 14; 20

über eigene Antriebsmotoren 64; 67 oder einen Zylinder 16; 17; 18 ist wieder grundsätzlich das zu Fig. 8 ausgeführte anzuwenden.

Im Gegensatz zu der in Fig. 8 oder 9 durch punktierte Linien angedeuteten Ausführung ohne eigenen rotatorischen Antrieb des Farb- und/oder Feuchtwerts 14; 20, ist es jedoch in einer Weiterbildung vorteilhaft, vom Übertragungszylinder 17 auf das Farb- und/oder Feuchtwert 14; 20 zu treiben. Somit kann ein eindeutiger Momentenfluß erreicht und ggf. ansonsten auftretende Zahnflankenwechsel vermieden werden. Eine Ausführung eines derartigen Antriebszuges ist schematisch in Fig. 11 dargestellt.

Der Antriebsmotor 61 treibt über ein Ritzel 71 auf ein mit dem Formzylinder 16 drehsteif verbundenes Antriebsrad 72, welches wiederum auf ein mit dem Übertragungszylinder 17 drehsteif verbundenes Antriebsrad 73 treibt. Das Antriebsrad 73 ist entweder verbreitert ausgeführt oder es ist ein zweites Antriebsrad 74 mit dem Übertragungszylinder 17 verbunden. Das verbreiterte oder zusätzliche Antriebsrad 73; 74 treibt über ein drehbar auf einem Zapfen 76 des Formzylinders 16 angeordnetes Antriebsrad 77 auf ein Antriebsrad 78 des Farb- und/oder Feuchtwerts 14; 20. Die Antriebsräder 72; 73; 74; 77; 78 sind vorzugsweise als Zahnräder ausgeführt. Für den Fall, dass der Formzylinder 16 zur Einstellung der axialen Lage um beispielsweise $\pm \Delta L$ axial ortsveränderbar ausgeführt ist, sind zumindest das Ritzel 71 sowie die Antriebsräder 72 bis 74 gerade verzahnt ausgeführt. Zwischen Antriebsmotor 61 und dem Getriebe 62 aus Ritzel 71 und Antriebsrad 72 kann zusätzlich ein strichliert angedeutetes, gekapseltes Vorsatzgetriebe 62' angeordnet sein. Der Antrieb auf den Formzylinder 16 kann alternativ auch axial auf den Zapfen 76 erfolgen, wobei ggf. eine axiale Bewegung des Formzylinders 16 über eine nicht dargestellte, eine axiale Relativbewegung zwischen dem Formzylinder 16 und dem Antriebsmotor 61 aufnehmende Kupplung erfolgt. Der Satellitenzylinder 18 wird in dieser Darstellung ebenfalls über ein Ritzel 71 an einem ihm zugeordneten Antriebsrad 79, insbesondere Zahnrad 79, angetrieben. Jeder durch einen unabhängigen Antriebsmotor 61 angetriebener Antriebszug ist in vorteilhafter Ausführung zumindest für sich, ggf. in

noch kleineren Einheiten, gekapselt (stichliiert in Fig. 11 dargestellt).

Die beschriebenen Ausgestaltungen der Druckeinheit 02 bzw. der Druckwerke 13 bzw. ihrer Zylinder 16; 17; 18 bzw. des Antriebes ermöglicht ein schwingungssarmes, passgenaues Drucken hoher Qualität mit einem bezogen auf die erreichbare Produktstärke geringen technischen und räumlichen Aufwand.

Nach dem Bedrucken der z. B. sechs Druckseiten breiten Bahn 03 läuft diese, ggf. über nicht näher bezeichnete Leitelemente und/oder Zugwalzen, in den Bereich des Überbaus 04 und wird z. B. durch die Längsschneideeinrichtungen 06 geführt (Fig. 12). Diese weist z. B. eine Walze 81, beispielsweise eine mittels eines eigenen Antriebsmotors 80 getriebene Zugwalze 81 auf, mit welcher Andrückrollen zusammen wirken können um Schlupf zu vermeiden. Längsschneideeinrichtung 06 und die Zugwalze 81 können auch getrennt voneinander ausgeführt sein, wobei jedoch vorzugsweise mit der Längsschneideeinrichtung 06 als Wiederlage eine andere Walze zusammen wirkt. In dieser Längsschneideeinrichtungen 06 wird die Bahn 03 beispielsweise in mehrere, z. B. drei, teilbahnbreite Bahnen 03a; 03b; 03c, kurz Teilbahnen 03a; 03b; 03c (durch Mittellinien symbolisiert, Linien 03a, 03b lediglich angedeutet), längs geschnitten bevor diese Teilbahnen 03a; 03b; 03c nachfolgenden Leitelementen, z. B. Walzen von Registereinrichtungen 08, Wendestangen von Wendeeinrichtungen 07, Auflaufwalzen für den Trichtereinlauf oder Zugwalzen zugeführt werden. Um einen bezüglich der Bahnspannung schwingungssarmen Bahntransport zu erreichen, können einzelne, mehrere oder alle ungetriebenen bzw. lediglich durch Friktion mit der Bahn 03a; 03b; 03c getriebenen Leitelemente, welche zur Führung von Teilbahnen 03a; 03b; 03c vorgesehen sind, mit einer verminderten Länge ausgeführt werden. So lässt sich neben der Länge die ansonsten für z. B. sechs Druckseiten breite Maschinen große erforderliche Stärke der Leitelemente und damit die Trägheit erheblich verringern. Die insbesondere bei Geschwindigkeitsänderung ansonsten bestehende Gefahr von Schwingungen in der Bahnspannung wird wirksam verminder, was sich wiederum in der Passerhaltigkeit und

damit in der Qualität des Druckes niederschlägt. Die nachfolgenden Ausführungen zu den Leitelementen verminderter Länge, zur seitlichen Ortsveränderbarkeit sowie zur Zuordnung einer Registerwalze zu einem anderen Leitelement, sind auf verschiedensten Druckmaschinen anzuwenden, jedoch von besonderem Vorteil i. V. m. breiten, z. B. sechs Platten breiten Maschinen.

Fig. 12 zeigt in einer perspektivischen Schrägangsicht ein erstes Ausführungsbeispiel für zumindest einen Teil des Überbaus 04. Exemplarisch ist in Fig. 12 die Teilbahn 03b als von der Mitte nach außen gewendete Teilbahn 03b dargestellt. Eine zweite der Teilbahnen 03a; 03c könnte beispielsweise mittels einer zweiten derartige Wendevorrichtung 07 ebenfalls in eine andere Flucht gewendet werden. Eine zweite Wendevorrichtung kann z. B. oberhalb oder unterhalb der ersten Wendeeinrichtung 07 liegen.

Die Wendevorrichtung 07 weist als Leitelement 82 wie üblich zwei parallele oder gekreuzte Wendestangen 82 auf, welche mit der Transportrichtung der einlaufenden Teilbahn 03a; 03b; 03c einen Winkel von ca. 45° bzw. 135° bilden, und mittels welchen eine einlaufende Bahn 03a; 03b; 03c seitlich versetzbare und/oder stürzbar ist. Die Wendestangen 82 weisen vorteilhafter Weise eine Länge L82 auf, deren Projektion auf die Querausdehnung der einlaufenden Teilbahn 03a; 03b; 03c unwesentlich größer, z. B. 0% bis 20% größer, als die Breite der einlaufenden Teilbahn 03a; 03b; 03c ist, d. h. die Länge L82 beträgt ca. das 1,4 bis 1,7-fache der Teilbahnbreite. Zumindest ist die Länge L82 derart gewählt, dass deren Projektion kleiner oder gleich der doppelten Breite einer zwei Seiten Breiten Teilbahn 03a; 03b; 03c ist, d. h. die Länge L82 beträgt höchstens das 2,8-fache der Teilbahnbreite. In vorteilhafter Weiterbildung sind die Wendestangen 82 jeweils einzeln an Trägern 83 gelagert, welche quer zur Richtung der einlaufenden Teilbahn 03a; 03b; 03c auf mindestens einer Führung 84 ortsveränderbar sind. Die nunmehr „kurzen“ Wendestangen 82 lassen sich nun je nach Anforderung aus der gewünschte Bahnführung in die erforderliche Position bringen. Unter Umständen können

auch beide Wendestangen 82 an einem derartigen Träger 83 gelagert sein.

Versetzte, gewendete, überführte und/oder gestürzte Teilbahnen 03a; 03b; 03c erfahren gegenüber anderen Teilbahnen 03a; 03c i. d. R. einen Versatz in Laufrichtung und werden deshalb mittels einer Registereinrichtung 08 im Längsregister korrigiert. Die Registereinrichtung 08 weist als Leitelement 86 zumindest eine parallel zur Laufrichtung bewegbare Walze 86 auf. Die Walze 86 bzw. mehrere Walzen 86 der Registereinrichtung 08 weisen vorteilhafter Weise eine Länge L86 auf, die unwesentlich größer, z. B. 0% bis 20% größer, als die Breite der einlaufenden Teilbahn 03a; 03b; 03c ist. Zumindest ist die Länge L86 kleiner oder gleich der doppelten Breite einer zwei Seiten Breiten Teilbahn 03a; 03b; 03c. In vorteilhafter Weiterbildung ist die Registereinrichtung 08 quer zur Richtung der einlaufenden Teilbahn 03a; 03b; 03c auf mindestens einer Führung 87 ortsveränderbar gelagert. Die nunmehr schmale Registereinrichtung 08 bzw. deren kurze Walzen 86 lassen sich nun je nach Anforderung aus der gewünschte Bahnführung in die erforderliche Position bringen.

Neben dem Schneiden, ggf. Wenden und ggf. Registrern wird die Teilbahn 03a; 03b; 03c im Überbau 04 u. U. über weitere, nicht getriebene Leitelemente, wie beispielsweise nicht dargestellte Leitwalzen, geführt, bevor sie letztlich einer dem Falzaufbau 11 vorgeordneten Auflauf- oder Harfenwalze 88 der sog. Harfe 09 (Fig. 1) zugeführt wird. Für gerade aus laufende Bahnen 03 bzw. Teilbahnen 03a; 03b; 03c ist im Überbau 04 stromaufwärts der Harfenwalze 89 beispielsweise eine über die volle Bahnbreite b03 reichende, in Transportrichtung ortsveränderbare Registerwalze 91 sowie eine Umlenkwalze 92 angeordnet.

In vorteilhafter Ausführung ist eine Länge L88 einer Leitwalze und/oder Harfenwalze 88; 93 unwesentlich größer, z. B. 0% bis 20% größer, als die Breite der einlaufenden Teilbahn 03a; 03b; 03c. Zumindest ist die Länge L88; L93 (Fig. 13) kleiner oder gleich der doppelten Breite einer zwei Seiten Breiten Teilbahn 03a; 03b; 03c. Im

Ausführungsbeispiel nach Fig. 12 ist die „kurze“ Harfenwalze 88 als Abschnitt 88 einer in dieser Ausführung geteilten, jedoch insgesamt über eine sechs Druckseiten breite Bahn 03 reichende Harfenwalze 89 realisiert. Die Abschnitte 88 sind hier unabhängig voneinander drehbar gelagert.

Die „kurze“ Harfenwalze 88; 93 als Leitelement 88; 93 kann jedoch anstatt oder zusätzlich zu einem Abschnitt 88 auch, wie in Fig. 13 dargestellt, als einzeln an einem Gestell angeordnete Harfenwalze 93 ausgeführt sein. Diese kann dann entweder gestellfest, oder aber an einem Träger 94 auf einer Führung 96 quer zur Richtung der einlaufenden Teilbahn 03a; 03b; 03c ortsveränderbar angeordnet sein.

Da der Versatz beim Wenden, Versetzen, Stürzen etc. lediglich diese Teilbahn 03a; 03b; 03c betrifft und an deren spezielle Bahnhöhung gebunden ist, kann in einer vorteilhaften Ausführung die erforderliche Registereinrichtung 08 mindestens einer den Lauf der Teilbahn 03a; 03b; 03c bestimmenden Leitelementen, wie z. B. der Wendeeinrichtung 07 bzw. einer Wendestange 82 oder der Harfe 09 bzw. einer „kurzen“ Harfenwalze 93, zugeordnet werden.

In Fig. 13 ist die „kurze“ Registereinrichtung 08 z. B. der „kurzen“ Harfenwalze 93 zugeordnet und zusammen mit dieser an der Führung 96 quer zur Richtung der einlaufenden Teilbahn 03b; 03c ortsveränderbar.

In Fig. 14 ist die „kurze“ Registereinrichtung 08 z. B. einer der „kurzen“ Wendestangen 82 zugeordnet und zusammen mit dieser an der Führung 84 quer zur Richtung der einlaufenden Teilbahn 03b ortsveränderbar. Diese Anordnung ist hier zwar für gekreuzte Wendestangen 82 dargestellt, jedoch auf parallele Wendestangen 82 aus Fig. 11 anzuwenden. Für den Fall der gekreuzten bzw. orthogonal zueinander verlaufenden Wendestangen 82 ist mindestens eine (hier zwei) Umlenkwalze 97 mit senkrecht zur Rotationsachse der Walze 81 verlaufender Rotationsachse.

In vorteilhafter Weiterbildung sind im Überbau 04 einer dreifach breiten Druckmaschine je ganzer Bahn 03 zwei derartige, mit Register- und Wendeeinrichtung 08; 07 oder mit Register- und Harfenwalze 93 gemeinsam ortsveränderbare „kurze“ Vorrichtungen über- oder untereinander angeordnet.

Die Führungen 84; 96 (Fig. 13 und 14) der genannten Ausführungsbeispiele können auf unterschiedlichste Weise realisiert sein. Beispielsweise können die Führungen 84; 96 als Spindeln mit zumindest abschnittsweisem Gewinde ausgeführt sein, welche zu beiden Seiten drehbar gelagert und z. B. durch einen nicht dargestellten Antrieb rotatorisch antreibbar sind. Die Träger 83; 94 können in der Art von Gleitsteinen auch in starren Führungen 84; 96, z. B. an Profilen, geführt sein. Hierbei kann ein Antrieb des Trägers 83; 94 ebenfalls über eine antreibbare Spindel oder in anderer Weise erfolgen.

Mittels der quer ortsveränderbaren Wendestange 82 sind variable Überführungen bzw. Versatz von Teilbahnen 03a; 03b; 03c über eine oder zwei Teilbahnbreiten (oder auch Vielfache einer halben Teilbahnbreite) hinweg möglich. Hierbei werden die bedruckten Teilbahnen 03a; 03b; 03c in die Flucht eines von mehreren, hier drei, quer zur Laufrichtung nebeneinander angeordneter Falztrichter 101; 102; 103 (Fig. 15) des Falzaufbaus 11 gebracht. Die Überführung erfolgt um beispielsweise dem Erfordernis an unterschiedlichen Stärken einzelner Stränge bzw. letztlich Zwischen- oder Endprodukten zu entsprechen, wobei gleichzeitig ein effektives Drucken mit möglichst vollen Bahnbreiten erfolgen soll.

Für n zu bedruckende volle Bahnen 03; 03' (z. B. n Drucktürme 01) einer jeweiligen maximalen Breite b_{03} von m Druckseiten weist der Überbau 04 in vorteilhafter Ausführung mindestens $(n * (m/2 - 1))$ Wendeeinrichtungen 07 auf. Im Fall einer sechs Seiten Breiten Druckmaschine und z. B. drei Bahnen 03; 03' (bzw. drei Drucktürmen 01) je Sektion sind sechs Wendeeinrichtungen 07 je Sektion von Vorteil.

In einer Ausführung einer Druckmaschine mit z. B. zwei Sektionen von jeweils drei Drucktürmen 01 und insgesamt sechs für den beidseitigen Vierfarbendruck vorgesehenen vier Druckseiten breiten Bahnen 03; 03'; 03'' sind mindestens drei Wendeeinrichtungen 07 je Sektion angeordnet.

In einer vorteilhaften Ausführung einer Druckmaschine mit z. B. zwei Sektionen von jeweils zwei Drucktürmen 01 und insgesamt vier für den beidseitigen Vierfarbendruck vorgesehenen sechs Druckseiten breiten Bahnen 03; 03'; 03'' sind z. B. vier Wendeeinrichtungen 07 je Sektion angeordnet. In dieser Druckmaschine mit zwei Sektionen bzw. insgesamt vier Drucktürmen 01 (vier Bahnen 03; 03') ist dann im Sammelbetrieb ein Produkt mit einer Gesamtstärke von 96 Seiten erzeugbar.

Neben dem Versatz einer Teilbahn 03a; 03b; 03c um ein ganzzahliges Vielfaches seiner Teilbahnbreite b03a, ist eine Betriebsweise vorteilhaft, wobei eine Teilbahn 03a; 03b; 03c um ein ungeradzahliges Vielfaches einer halben Teilbahnbreite b03a und/oder Trichterbreite (d. h. um den Faktor 0,5; 1,5; 2,5) versetzt ist (Fig. 15). Dies kann mittels langen, über die Gesamtbreite der Druckmaschine bzw. die Breite b03 der gesamten Bahn 03 reichende Wendestangen (nicht dargestellt), aber auch vorteilhaft mittels der oben beschriebenen ortsveränderbaren „kurzen“ Wendestangen 82 erfolgen. Die Wendestangen 82 sind dann beispielsweise wie in Fig. 15 dargestellt so angeordnet, dass die zuerst von der Teilbahn 03a; 03b; 03c umschlungene Wendestange 82 zumindest über eine gesamte Breite eines nachfolgenden Falztrichters 101; 102; 103 fluchtet, während die zweite Wendestange 82 zumindest mit zwei benachbarten Hälften zweier nebeneinander angeordneter nachfolgender Falztrichter 101; 102; 103 fluchtet.

Die um ein ungeradzahliges Vielfaches einer halben Trichterbreite b101 bzw. Teilbahnbreite b03a versetzte Teilbahn 03a; 03b; 03c läuft somit „zwischen“ den Falztrichtern 101; 102; 103. Dies ist in Fig. 15 und 16 am Beispiel der sechs Druckseiten breiten Trichteranordnung an einer zwei Seiten breiten Teilbahn 03a; 03b; 03c gezeigt,

jedoch auch auf Maschinen anderer Breite zu übertragen. Es müssen somit keine lediglich eine Druckseite breite Teilbahnen 03a; 03b; 03c bzw. Teilbahnen 03a; 03b; 03c einer halben Trichterbreite b101 als solche bedruckt und durch die Maschine geführt werden. Eine hohe Vielfalt im Produkt ist dennoch möglich.

Die um ein ungeradzahliges Vielfaches einer halben Teilbahnbreite b03a versetzte Teilbahn 03a; 03b; 03c wird vor dem Falztrichter 101; 102; 103 in einer zwischen den beiden fluchtenden Falztrichtern 101; 102; 103 liegenden Flucht längs geschnitten und läuft auf den Falzaufbau 11 bzw. die Harfe 09, d. h. ungeteilte und/oder geteilte Harfenwalze 89 und/oder „kurze“ Harfenwalze 93, zu (Fig. 16).

In Fig. 16 ist ein schematischer Schnitt der Fig. 15 mit exemplarisch verschiedenen ausgeführten Harfenwalzen 89; 93 dargestellt, wobei beispielsweise die Teilbahn 03c aus ihrer ursprünglichen Lage (unausgefüllt dargestellt) um eineinhalb Teilbahnbreiten b03a versetzt wurde. Sie kann, wenn sie beispielsweise mit einer weiteren Längsschneideeinrichtung 104 vor den Falztrichtern 101; 102; 103 geschnitten ist (dann jeweils eine Druckseite bzw. Zeitungsseite breit), jeweils häftig mit den Teilbahnen 03a und 03b auf je einen Falztrichter 101; 102 geführt werden. Die beiden (Zwischen)Produkte weisen dann z. B. jeweils mindestens eine eine Druckseite breite Teilbahn 03c1; 03c2 einer vormals zwei Druckseiten breiten Teilbahn 03a; 03b; 03c auf. Zusätzlich können Teilbahnen 03a'; 03b'; 03c' aus anderen, z. B. in einer anderen Druckeinheit 02 bzw. einem anderen Druckturm 01 bedruckten Bahnen 03' auf eine oder mehrere der Harfenwalzen 89; 93 auflaufen. Die in der gleichen Flucht über- bzw. untereinander laufenden Teilbahnen 03a, 03a', 03c1; 03b, 03b', 03c2; 03c' können nun z. B. jeweils zu einem Strang 109; 111; 112 zusammen gefasst einem Falztrichter 101; 102; 103 zugeführt werden. Im Ausführungsbeispiel lassen sich somit aus zwei jeweils beidseitig, in doppeltgroßen und dreifachbreiten Druckeinheiten (z. B. vierfarbig) bedruckten Bahnen 03; 03' Produkte bzw. Zwischenprodukte (auch Hefte oder Bücher genannt) mit folgenden, je nach Belegung der Formzylinder 16 und der korrespondierenden

Betriebsweise des Falzapparates 12 unterschiedlichen Anzahl von Seiten erzeugen: Bei Einfachproduktion, d. h. der Formzylinder 16 ist in Umfangsrichtung mit zwei Druckformen 19 unterschiedlicher Druckseiten A1, A2 bis F1, F2 (bzw. A1', A2' bis F1', F2' für die zweite Bahn 03') belegt und im Falzapparat 12 erfolgt ein Querschneiden und Sammeln, so sind über die Stränge 109 und 111 jeweils zwei unterschiedliche Hefte mit jeweils 10 Druckseiten, und über den Strang 112 zwei unterschiedliche Hefte mit jeweils 4 Druckseiten erzeugbar. Ein Gesamtprodukt weist z. B. 48 Seiten auf. Wird diese Druckmaschine in Doppelproduktion betrieben, d. h. der Formzylinder 16 ist in Umfangsrichtung mit zwei Druckformen 19 gleicher Druckseiten A1, A1; bis F1, (bzw. A1', A1' bis F1', F1') belegt und im Falzapparat 12 erfolgt kein Sammeln, so sind über die Stränge 109, 111 und 112 jeweils zwei gleiche aufeinander folgende Hefte der o. g. Seitenzahlen erzeugbar. Es wird ein Gesamtprodukt mit lediglich 24 Seiten, jedoch mit doppeltem Ausstoß produziert.

Die Harfenwalzen 89; 93, insbesondere wenn sie ungeteilt über die volle Länge ausgeführt sind, können in einer Weiterbildung über eigene, nicht dargestellte Antriebsmotoren rotatorisch angetrieben sein. Diese sind dann z. B. bezüglich ihrer Drehzahl, u. U. auch ihrer Lage, regelbar ausgeführt und stehen zur Übernahme aktueller Sollwerte mit der Maschinensteuerung bzw. einer elektronischen Leitachse in Verbindung.

Wie in Fig. 17 dargestellt, weist der Falzaufbau 11 mindestens zwei übereinander angeordnete Falztrichter 101, 106; 102, 107; 103, 108 auf, deren Symmetrieebenen S jeweils in einer gemeinsamen Flucht einer die Druckmaschine geradeaus durchlaufenden Teilbahn 03a; 03b; 03c liegen. Insbesondere fallen die Symmetrieebenen S der beiden übereinander angeordneten Falztrichter 101, 106; 102, 107; 103, 108 im wesentlichen zusammen mit einer Mittelebene M einer zwei Druckseiten breiten, geradeaus laufenden, lediglich in vertikaler Richtung umgelenkten Teilbahn 3a; 3b; 3c (3a'; 3b'; 3c' bzw. 3a''; 3b''; 3c'' bzw. 3a'''; 3b'''; 3c'' usw.). Die Teilbahnen 3a; 3b; 3c etc. sind in Fig. 17 aus einem unten (zu Fig. 18) erläuterten Grund zum Teil durchgezogen und zu einem anderen

Teil strichliert dargestellt.

Für die sechs Druckseiten breite Druckmaschine sind gemäß Fig. 17 zwei vertikal zueinander versetzte Gruppen von jeweils drei Falztrichtern 101, 102, 103 bzw. 106, 107, 108 angeordnet. Für vier Druckseiten breite Druckmaschinen können dies jeweils zwei, für acht Seiten breite Druckmaschinen jeweils vier Trichter nebeneinander sein. Jeweils ein oberer und ein unterer Falztrichter 101, 106; 102, 107; 103, 108 fluchten paarweise in der oben genannten Art und Weise zueinander und zu jeweils einer Mittelebene M. Die drei Falztrichter 101; 102; 103 bzw. 106; 107; 108 einer Gruppe sind quer zur Laufrichtung der Teilbahnen 03a; 03b; 03c zueinander versetzt nebeneinander und in einer vorteilhaften Ausführung im wesentlichen auf einer selben Höhe angeordnet. Sie können jedoch ggf. auch vertikal zueinander versetzt sein und/oder unterschiedliche vertikale Abmessungen aufweisen, wobei sie sich dann jedoch z. B. in horizontaler Ebene zumindest teilweise überschneiden.

In Bahnlaufrichtung gesehen weist der Falzaufbau 11 zumindest vor einer der übereinander angeordneten Gruppen von Falztrichtern 101; 102; 103 bzw. 106; 107; 108 die den Trichtereinlauf der Bahnen 03; 03'; bzw. Teilbahnen 03a; 03b; 03c festlegende Harfe 09, d. h. eine Gruppe von mehreren parallelen, zueinander in radialer Richtung versetzter Auflauf- bzw. Harfenwalzen 89; 93 auf, über welche verschiedene Bahnen 03; 03' bzw. Teilbahnen 03a; 03b; 03c; bzw. 03a'; 03b'; 03c' usw. aus dem Überbau 04 in den Falzaufbau 11 überführt werden. Im Anschluss an die Harfenwalzen 89; 93 werden sie zu einem Strang 109; 111; 112 oder zu mehreren Strängen 109; 111; 112 zusammengefasst. Die spätere Lage der Teilbahn 03a; 03b; 03c; bzw. 03a'; 03b'; 03c' im Strang 109; 111; 112 bzw. deren Druckseiten im Zwischen- und/oder Endprodukt wird u. a. durch die Wahl einer relativen Lage zu anderen, die Harfe 09 durchlaufenden Teilbahnen 03a; 03b; 03c; bzw. 03a'; 03b'; 03c' bereits in der Harfe 09 festgelegt. Die Harfenwalzen 89; 93 einer Harfe 09 sind zueinander vertikal und/oder horizontal versetzt und vorzugsweise als Baueinheit in einem gemeinsamen Rahmen gelagert. Prinzipiell kann für jede der vertikal

zueinander versetzten Gruppen von Falztrichtern 101; 102; 103 bzw. 106; 107; 108 eine derartige Harfe 09 vorgesehen sein.

Zur Einsparung von Bauhöhe weisen in einer vorteilhaften Ausführung, wie in Fig. 1 und Fig. 19 dargestellt, die beiden übereinander angeordneten, jedoch in ihrer Symmetrieebene zueinander fluchtenden Falztrichter 101, 106; 102, 107; 103, 108 eine gemeinsame Harfe 09 auf. Für n zu bedruckende volle Bahnen 03; 03' (z. B. n Drucktürme 01 einer Sektion) einer jeweiligen maximalen Breite b03 von m Druckseiten weist die Harfe 09 in vorteilhafter Ausführung mindestens $(n * m / 2)$ Harfenwalzen 88; 89; 93 auf, deren Rotationsachsen z. B. im wesentlichen in einer gemeinsamen Ebene liegen, und welche vorzugsweise in einem gemeinsamen Rahmen gelagert sind. Im Fall der hier vorliegenden sechs Seiten Breiten Druckmaschine und z. B. zwei Bahnen 03; 03' (bzw. zwei Drucktürmen 01) sind mindestens sechs Harfenwalzen 88; 89; 93 je Harfe 09 von Vorteil.

In einer Ausführung einer Sektion der Druckmaschine mit drei Drucktürmen 01 und drei für den beidseitigen Vierfarbendruck vorgesehenen Bahnen 03; 03'; 03'' sind mindestens neun Harfenwalzen 88; 89; 93 je Harfe 09 angeordnet. In dieser Sektion ist dann im Sammelbetrieb ein Produkt mit einer Gesamtstärke von 72 Seiten erzeugbar.

In einer vorteilhaften Ausführung einer Druckmaschine mit z. B. zwei Sektionen von jeweils zwei Drucktürmen 01 und insgesamt vier für den beidseitigen Vierfarbendruck vorgesehenen sechs Druckseiten breiten Bahnen 03; 03'; 03'' sind mindestens sechs Harfenwalzen 88; 89; 93 je Harfe 09 einer Sektion angeordnet. Diese sechs Harfenwalzen 88; 89; 93 je Sektion, also hier zwölf, können in zwei baulich getrennten Harfen 09 z. B. über einem gemeinsamen Falzaufbau 11 oder zwei Falzaufbauten 11, aber auch in einer baulich gemeinsamen Harfe 09 z. B. in zwei Fluchten angeordnet sein. In dieser Druckmaschine mit zwei Sektionen bzw. insgesamt vier Drucktürmen 01 (vier Bahnen 03; 03') ist dann im Sammelbetrieb ein Produkt mit einer Gesamtstärke von 96 Seiten

erzeugbar.

In einer Ausführung einer Druckmaschine mit z. B. zwei Sektionen von jeweils zwei Drucktürmen 01 und insgesamt vier für den beidseitigen Vierfarbendruck vorgesehenen sechs Druckseiten breiten Bahnen 03; 03'; 03'' sind mindestens sechs Harfenwalzen 88; 89; 93 je Harfe 09 einer Sektion angeordnet. Diese sechs Harfenwalzen 88; 89; 93 je Sektion, also hier zwölf, können in zwei baulich getrennten Harfen 09 z. B. über einem gemeinsamen Falzaufbau 11 oder zwei Falzaufbauten 11, aber auch in einer baulich gemeinsamen Harfe 09 z. B. in zwei Fluchten angeordnet sein. In dieser Druckmaschine mit zwei Sektionen bzw. insgesamt vier Drucktürmen 01 (vier Bahnen 03; 03') ist dann im Sammelbetrieb ein Produkt mit einer Gesamtstärke von 96 Seiten erzeugbar.

Ist lediglich ein Falzaufbau 11 für zwei Sektionen vorgesehen, so ist die Anzahl der erforderlichen Harfenwalzen 89; 93 entsprechend der Konfiguration der beiden Sektionen zu bestimmen. Ist der Falzaufbau 11 zwischen diesen beiden Sektionen angeordnet, so sind entweder sämtliche Harfenwalzen 89; 93 in einer Flucht oder aber um Bauhöhe einzusparen die Harfenwalzen 89; 93 jeder Sektion jeweils in einer Flucht und die Fluchten zueinander in radialer Richtung horizontal versetzt angeordnet. Die Harfenwalzen 89; 93 der beiden Fluchten sind hierbei z. B. wieder in einem gemeinsamen Rahmen angeordnet.

Sind, wie in Fig. 1 angedeutet, zwar zwei Falzaufbauten 11 für die beiden Sektionen vorgesehen, so kann es dennoch vorteilhaft sein, für zumindest eine der beiden Harfen 09 eine Anzahl von Harfenwalzen 89; 93, ggf. in den beiden o. g. Fluchten, vorzusehen, welche für beide Sektionen erforderlich wären. Somit ist ein noch größeres Maß an Flexibilität in der Produktstärke und –zusammenstellung gegeben. In einer Sektion bedruckte Bahnen 03; 03' können nun bei Bedarf zur Weiterverarbeitung der Harfe 09 der anderen Sektion zugeführt werden und umgekehrt.

Gemäß Fig. 18 ist mindestens eine der Teilbahnen 03a; 03b; 03c etc., welche die vor dem oberen Falztrichter 101; 102; 103 angeordnete gemeinsame Harfe 09 durchläuft, auf den unteren Falztrichter 106; 107; 108 führbar bzw. geführt. Je nach gewünschter Stärke der einzelnen Zwischenprodukte (Hefte, Bücher) sind mehr oder weniger der Teilbahnen 03a; 03b; 03c etc. auf den oberen bzw. unteren Falztrichter 101; 102; 103 bzw. 106; 107; 108 zu überführen. Je nach Produktionsbedarf können so verschieden starke Stränge 109; 111; 112; 113; 114; 116 auf den jeweils unteren bzw. oberen Falztrichter 101; 102; 103 bzw. 106; 107; 108 gegeben werden. Z. B. werden die strichliert in Fig. 17 dargestellten Teilbahnen als Strang 113; 114; 116 auf den jeweils unten liegenden Falztrichter 106; 107; 108, und die durchgezogenen auf den jeweils oben liegenden Falztrichter 101; 102; 103 geführt. Damit ist, je nachdem, wo die „Trennung“ in übereinander liegenden Teilbahnen 03a; 03b; 03c etc. aus der gemeinsamen Harfe 09 liegt, eine flexible Produktion verschieden starker Zwischenprodukte (Hefte, Bücher) oder Endprodukte mit verminderter Aufwand möglich. In Fig. 18 ist eine zweite Flucht von Harfenwalzen 89; 93 strichliert dargestellt, mittels welchen wie oben beschrieben beispielsweise Teilbahnen 03a; 03b; 03c etc. aus einer anderen Sektion aufgenommen werden können.

Im Fall von mehrfarbigen Produkten ist es bei Einsatz des beschriebenen Falzaufbaus 11 mit gemeinsamer Harfe 09 im Hinblick auf die Flexibilität vorteilhaft, alle Druckeinheiten 02 oder Drucktürme 01 bzw. die Wege der Bahn 03; 03' mit gleicher Farbigkeit auszuführen. So ist z. B. die Bahn 03; 03' und/oder Teilbahn 03a; 03b; 03c etc. bzw. das Druckwerk 13 für ein farbiges Deckblatt flexibel wählbar und die Stärke der Zwischenprodukte variabel.

Der oben genannte Falzaufbau 11 mit lediglich einer Harfe 09 für zwei übereinander angeordnete Falztrichter 101; 102; 103; 106; 107; 108 ist auch für andere Druckmaschinen mit anderen Zylinderbreiten und Zylinderumfängen geeignet. Ein derartiger, aus zwei übereinander angeordneten Falztrichtern 101; 102; 103; 106; 107; 108 und einer gemeinsamen Harfe 09 bestehender Falzoberbau 11 kann auch über

einem dritten Falztrichter mit eigener Harfe 09 angeordnet sein. Der beschriebene Falzaufbau 11 mit einer mehreren vertikal zueinander versetzten Falztrichtern 101; 102; 103; 106; 107; 108 zugeordneten Harfe 09 ist auch auf drei übereinander angeordnete Falztrichter 101; 102; 103; 106; 107; 108 gut anwendbar.

Außenseiten beispielsweise eines äußeren Buches lassen sich somit einer bestimmten Bahnführung oder/und einem bestimmten Druckturm/Druckeinheit zuordnen.

Durch die mehreren Falztrichtern 101; 102; 103; 106; 107; 108 zugeordnete Harfe 09 ist es möglich, die übereinander liegenden Teilbahnen 03a; 03b; 03c etc. je nach gewünschtem Produkt flexibel zu verschiedenen starken Büchern zu verarbeiten, ohne dass ein hoher Aufwand an zusätzlichen, überflüssigen Versetzungen von Teilbahnen 03a; 03b; 03c etc. erforderlich wären. So können z. B. von vier übereinander liegenden Teilbahnen 03a; 03b; 03c etc. in einem Fall drei Bahnen auf einen und eine auf den anderen Falztrichter 101; 102; 103; 106; 107; 108 geführt werden, während ein anderes mal jeweils zwei Teilbahnen 03a; 03b; 03c etc. zusammengefasst auf einen Falztrichter 101; 102; 103; 106; 107; 108 geführt werden. Besonders vorteilhaft ist es, dass nebeneinander liegende Stränge 109; 111; 112; 113; 114; 116 unterschiedlich stark, wie in Fig. 17 dargestellt, zusammengefasst werden können.

Den Falztrichtern 101; 102; 103; 106; 107; 108 jeweils vorgeordnete Zug- 117 und Trichtereinlaufwalzen 118 weisen in vorteilhafter Ausführung ebenso wie im Falzaufbau 11 vorgesehene Zugwalzen 121 (Fig. 19) jeweils eigene Antriebsmotoren 119 auf. In Fig. 19 ist die Zugwalze 117 für die untere Gruppe der Falztrichter 106; 107; 108 nicht sichtbar. Der jeweilige Antriebsmotor 119 der Zugwalzen 121 ist in Fig. 19 lediglich durch Füllung der betreffenden Zugwalze 121 dargestellt. Jedem der Falztrichter 101; 102; 103; 106; 107; 108 ist in vorteilhafter Ausführung zumindest eine derartig angetriebene Zugwalze 121 nachgeordnet, welche mit Andrückrollen oder einer Andrückwalze über den Strang 109; 111; 112; 113; 114; 116 zusammenwirkt. Daneben weist der Falzaufbau 11

vorzugsweise ungetriebene Leitwalzen 122 auf, über welche die eine Druckseite breiten Stränge 109; 111; 112; 113; 114; 116 geführt werden können.

Besonders vorteilhaft, z. B. im Hinblick auf die Einhaltung/Einstellung von Längsregistern, weist auch der Falzapparat 12 mindestens einen eigenen, von den Druckeinheiten 02 mechanisch unabhängigen Antriebsmotor 120 auf. Während die Antriebsmotoren 119 der Zug- bzw. Trichtereinlaufwalzen 117; 118; 121 des Falzaufbaus 11 und/oder getriebene Zugwalzen 81 des Überbaus 04 lediglich bezüglich einer Drehzahl geregelt ausgeführt sein müssen (bzgl. einer Winkellage ausgeführt sein können), ist der Antriebsmotor 120 am Falzapparat 12 in vorteilhafter Ausführung bezüglich seiner Winkellage regelbar bzw. geregelt ausgeführt.

Somit ist es in einer Ausführung möglich, den mechanisch unabhängig voneinander angetriebenen Druckeinheiten 02 und dem Falzapparat 12 (bzw. deren Antriebsmotoren 61; 120) eine Winkellage im Hinblick auf eine virtuelle elektronische Leitachse vorzugeben. In einer anderen Ausführung wird z. B. die Winkellage des Falzapparates 12 (bzw. dessen Antriebsmotors 120) ermittelt und anhand dieser die relative Winkellage der Druckeinheiten 02 bzw. Druckwerke 13 zu diesem vorgegeben. Die z. B. lediglich bezüglich ihrer Drehzahl geregelten Antriebsmotoren 80; 119 der getriebenen Walzen 81; 117; 118 erhalten ihre Drehzahlvorgabe beispielsweise von der Maschinensteuerung.

Durch die Ausführung der Rollenrotationsdruckmaschine mit dreifach breiten und doppelt großen Übertragungs- und Formzylindern und die entsprechende Ausführung des Falzaufbaus, lassen sich mittels einer Bahn beispielsweise in Doppelproduktion

- ein Buch mit zwölf Seiten, oder
- ein Buch mit vier Seiten und ein Buch mit acht Seiten, oder
- zwei Bücher mit sechs Seiten, oder
- drei Bücher mit vier Seiten

und weitere Variationen produzieren.

In Sammelproduktion verdoppeln sich die Seitenzahlen der dann jeweils aus zwei längsgefaltenen Abschnitten gesammelten Zwischenprodukte.

Für den Druck in Tabloidformat sind die jeweiligen Seitenzahlen jeweils zu verdoppeln. Die Dimensionierung der Zylinder 16; 17; 18 sowie der Gruppen von Falztrichtern 101; 102; 103; 106; 107; 108 ist entsprechend auf jeweils „liegende“ Druckseiten anzuwenden, wobei in Umfangsrichtung bzw. Laufrichtung der Bahn 03; 03'; 03a; 03b; 03c ein Abschnitt A; B; C zwei liegende Druckseiten aufweist, der Formzylinder 16 dann also z. B. einen Umfang entsprechend vier liegenden Druckseiten im Tabloidformat aufweist. Die Anzahl der Druckseiten in Längsrichtung bleibt je Bahn 03; 03'; 03a; 03b; 03c bzw. Zylinder 16; 17; 18 bzw. Trichterbreite bestehen.

Von großem Vorteil sind die beschriebenen Ausführungen der Druckwerke 13, des Überbaus 04, des Falzaufbaus 11 und/oder des Falzapparates 12 in Verbindung mit einer nachfolgend beschriebenen Weiterbildung im Hinblick auf eine Anordnung zusätzlicher Dreizylinderdruckwerke 123 und/oder den Bahnführungen und/oder den Druckprodukten:

Zu mindestens zwei Satellitendruckeinheiten 02 sind zusätzlich zwei Dreizylinderdruckwerke 123 zugeordnet, mittels welchen zwei jeweils einseitig in dem mindestens einen Druckturm T1; T2; T3 bedruckte Bahnen B10; B20; B30; B40 auf ihrer anderen Seite einfarbig bedruckbar sind.

Die beiden Satellitendruckeinheiten 02 sind einander zugeordnet und Bestandteile eines Druckturmes T1; T2; T3 mittels welchem wahlweise zwei Bahnen B10; B20; B30; B40 jeweils einseitig mehrfarbig oder eine Bahn B10; B20; B30; B40 beidseitig mehrfarbig bedruckbar ist.

Die beiden Satellitendruckeinheiten 02 sind übereinander gestapelt angeordnet. Sie sind vorzugsweise jeweils als Neunzylinder-Satellitendruckeinheiten 02 ausgeführt.

Die beiden Dreizylinderdruckwerke 123 sind vorteilhaft (Bauraum, Baueinheit) zusammen als Sechsylinder-Druckeinheit 124 ausgeführt.

Vorteilhaft sind die beiden Dreizylinderdruckwerke 123 (die Sechsylinder-Druckeinheit 124) oberhalb einer letzten Druckstelle der beiden zugeordneten Satellitendruckeinheiten 02 angeordnet. Die Sechsylinder-Druckeinheit 124 ist z. B. auf dem zugeordneten Druckturm T1; T2; T3 gestapelt angeordnet. Sie kann jedoch – je nach Produktion - auf einem vom bahntechnisch zugeordneten Druckturm T1; T2; T3 verschiedenen, insbesondere benachbarten, Druckturm T1; T2; T3 gestapelt angeordnet sein.

Die Satellitendruckeinheiten 02 und die beiden Dreizylinderdruckwerke 123 sind einander in dem Sinne (bahntechnisch) zugeordnet, dass eine Bahn wahlweise in einer ersten Betriebsweise durch beide Satellitendruckeinheiten 02, in einer zweiten Betriebsweise durch eine der Satellitendruckeinheiten 02 und durch eine der Dreizylinderdruckwerke 123, und in einer dritten Betriebsweise lediglich durch die beiden Dreizylinderdruckwerke 123 geführt ist.

Die Satellitendruckeinheiten 02 und die beiden Dreizylinderdruckwerke 123 sind einander in dem Sinne (bahntechnisch) insofern auch zugeordnet, dass wahlweise in einer ersten Betriebsweise eine erste Bahn durch beide Satellitendruckeinheiten 02 und eine zweite Bahn durch die beiden Dreizylinderdruckwerke 123, und in einer zweiten Betriebsweise zwei Bahnen jeweils durch eine der Satellitendruckeinheiten 02 und durch eine der Dreizylinderdruckwerke 123, geführt sind.

Zwei Bahnen sind z. B. in der Weise durch den Druckturm T1; T2; T3 und die Sechsylinder-Druckeinheit 124 geführt, dass sie nach dem Bedrucken jeweils auf einer Seite mehrfarbig und auf der anderen Seite einfarbig bedruckt sind.

Eine von zwei Bahnen ist z. B. durch den Druckturm T1; T2; T3 und eine andere Bahn lediglich durch die Sechszyylinder-Druckeinheit 124 in der Weise geführt, dass die eine Bahn beidseitig mehrfarbig und die andere Bahn beidseitig einfarbig (S-Führung) oder einseitig zweifarbig (C-Führung, nicht dargestellt) bedruckt ist.

Zumindest weist die Druckmaschine mehreren jeweils zwei Satellitendruckeinheiten 02 aufweisenden Drucktürme T1; T2; T3 und zusätzlich zumindest eine Sechszyylinder-Druckeinheit 124 auf.

Die Druckmaschine weist z. B. mindestens zwei einander paarweise benachbarte Drucktürme T1; T2; T3 auf, wobei die mindestens eine Sechszyylinder-Druckeinheit 124 auf einem der drei Drucktürme T1; T2; T3 gestapelt ist.

Im Beispiel weist die Druckmaschine (mindestens) drei einander paarweise benachbarte Drucktürme T1; T2; T3 auf, wobei die mindestens eine Sechszyylinder-Druckeinheit 124 auf einem der drei Drucktürme T1; T2; T3 gestapelt ist. Den drei Drucktürmen T1; T2; T3 ist eine gemeinsame Sechszyylinder-Druckeinheit 124 zugeordnet ist, welche auf der mittleren der drei Drucktürme T1; T2; T3 gestapelt angeordnet ist.

Drei Bahnen sind z. B. in der Weise durch die beiden Drucktürme T1; T2; T3 und die Sechszyylinder-Druckeinheit 124 geführt, dass zwei der Bahnen nach dem Bedrucken jeweils auf einer Seite mehrfarbig und auf der anderen Seite einfarbig, und die dritte Bahn beidseitig mehrfarbig bedruckt sind.

Zwei von drei Bahnen sind durch die zwei Drucktürme T1; T2; T3 und eine dritte Bahn ist lediglich durch die Sechszyylinder-Druckeinheit 124 in der Weise geführt sind, dass die beiden erstgenannten Bahnen beidseitig mehrfarbig und die dritte Bahn beidseitig einfarbig (oder einseitig zweifarbig) bedruckt ist. Die Druckmaschine weist vorteilhaft Mittel (Umlenkwalzen und/oder Einziehwege etc) zum Führen der Bahnen auf, welche ein

wahlweises Betreiben der Druckmaschine in dieser und der vorgenannten Produktionen ermöglicht.

Vier Bahnen sind in einem vorteilhaften Beispiel in der Weise durch die drei Drucktürme T1; T2; T3 und die Sechszyylinder-Druckeinheit 124 geführt, dass zwei der Bahnen nach dem Bedrucken jeweils auf einer Seite mehrfarbig und auf der anderen Seite einfarbig, und die anderen beiden Bahnen beidseitig mehrfarbig bedruckt sind. In anderer Bahnhörung sind drei von vier Bahnen durch die drei Drucktürme T1; T2; T3 und die vierte Bahn lediglich durch die Sechszyylinder-Druckeinheit 124 in der Weise geführt, so dass drei erstgenannten Bahnen beidseitig mehrfarbig und die dritte Bahn beidseitig einfarbig oder einseitig zweifarbig bedruckt ist. Die Druckmaschine weist vorteilhaft Mittel zum Führen der Bahnen auf, welche ein wahlweises Betreiben der Druckmaschine entsprechend der beiden (bzw. drei) genannten Betriebsweisen ermöglicht.

Die Mehrfarbigkeit bedeutet im vorgenannten z. B. vierfarbig.

In einer Betriebsweise der Druckmaschine sind die vier Bahnen mit den drei Drucktürmen T1; T2; T3 und der Sechszyylinder-Druckeinheit 124 in der Weise bedruckt, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen nach dem Bedrucken auf einem Weg zu einem Trichteraufbau TR bzw. Falzaufbau 11 zwischen den beiden beidseitig mehrfarbig bedruckten Bahnen zu liegen kommen. Die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen durchlaufen hierbei z. B. den mittleren der drei Drucktürme T1; T2; T3 und die Sechszyylinder-Druckeinheit 124.

In anderer Betriebsweise sind die vier Bahnen mit den drei Drucktürmen T1; T2; T3 und der Sechszyylinder-Druckeinheit 124 in der Weise bedruckt, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen nach dem Bedrucken auf einem Weg zu einem Trichteraufbau TR unterhalb der beiden beidseitig mehrfarbig

bedruckten Bahnen zu liegen kommen. Die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen durchlaufen hierbei z. B. den dem Trichteraufbau TR nächstliegenden der drei Drucktürme T1; T2; T3 und die Sechszyliner-Druckeinheit 124.

In einer weiteren Betriebsweise sind die vier Bahnen mit den drei Drucktürmen T1; T2; T3 und der Sechszyliner-Druckeinheit 124 in der Weise bedruckt, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen nach dem Bedrucken auf einem Weg zu einem Trichteraufbau TR oberhalb der beiden beidseitig mehrfarbig bedruckten Bahnen zu liegen kommen. Die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen durchlaufen hierbei den dem Trichteraufbau TR entfernt liegenden der drei Drucktürme T1; T2; T3 und die Sechszyliner-Druckeinheit 124.

Auch hierbei weist die Druckmaschine vorzugsweise Mittel zum Führen der Bahnen auf, welche ein wahlweises Betreiben der Druckmaschine gemäß den drei letztgenannten Betriebsweisen ermöglicht.

Die Satellitendruckeinheit weist mehrere, insbesondere vier, Zylinderpaare jeweils aus Form- 16 und Übertragungszylinder 17, und mindestens einen mit mindestens einem der Übertragungszylinder 17 zusammenwirkenden Satellitenzylinder 18 auf. Vorteilhaft ist vier Paaren ein Satellitenzylinder 18 zugeordnet. Es können aber auch zwei Satellitenzylinder 18 zu den vier Paaren sein.

In einer Ausführung sind jeweils zwei der Paare als Antriebsverbunde durch einen gemeinsamen, vom jeweils anderen Antriebsverbund unabhängigen Antriebsmotor 61 angetrieben. Zum Beispiel ist der Satellitenzylinder 18 (oder jeweils einer von zweien) durch einen der Antriebsverbunde angetrieben.

Vorteilhaft ist der Satellitenzylinder 18 jedoch durch mindestens einen eigenen Antriebsmotor 61, unabhängig von den Paaren angetrieben.

Bei zwei Satellitenzylindern 18 können diese durch mindestens einen gemeinsamen Antriebsmotor 61, unabhängig von den Paaren gemeinsam angetrieben sein.

Die Paare sind in vorteilhafter Ausführung jeweils durch mindestens einen eigenen Antriebsmotor 61 unabhängig von den anderen Paaren angetrieben. Hierbei kann jeder Zylinder der Paare einen eigenen Antriebsmotor 61 aufweisen.

In einer weniger aufwendigen Ausführung sind die beiden Zylinder des Paars gekoppelt und durch einen gemeinsamen Antriebsmotor 61 angetrieben.

Ein Farbwerk 14 ist in einer weniger aufwendigen Ausführung vom Antrieb des zugeordneten Formzylinders 16 her angetrieben. Es kann jedoch auch unabhängig vom Antrieb des zugeordneten Formzylinders 16 durch einen eigenen Antriebsmotor 61 angetrieben sein.

Die Sechszylinder-Druckeinheit 124 weist zwei Zylinderpaare jeweils aus Form- 16 und Übertragungszylinder 17, und je Paar einen mit einem der Übertragungszylinder 17 zusammenwirkenden Gegendruckzylinder auf.

Die Paare sind in bevorzugter Ausführung jeweils durch mindestens einen eigenen Antriebsmotor 61 unabhängig vom anderen Paar angetrieben.

Es kann z. B. jeder Zylinder der Paare einen eigenen Antriebsmotor 61 aufweisen. In einer vorteilhafter Ausführung sind jedoch die beiden Zylinder des Paars gekoppelt und durch einen gemeinsamen Antriebsmotor 61, unabhängig vom anderen Zylinderpaar angetrieben.

Ein Farbwerk 14 ist in einer weniger aufwendigen Ausführung vom Antrieb des zugeordneten Formzylinders 16 her angetrieben. Es kann jedoch auch unabhängig vom Antrieb des zugeordneten Formzylinders 16 durch einen eigenen Antriebsmotor 61 angetrieben sein.

Die Gegendruckzylinder sind in vorteilhafter Ausführung jeweils durch einen eigenen Antriebsmotor 61, unabhängig von den Paaren und voneinander angetrieben. Dies ist vorteilhaft im Hinblick auf die unabhängige Positionierbarkeit der beiden Druckwerke.

Es können ggf. aber bei Bedarf die beiden Gegendruckzylinder durch mindestens einen gemeinsamen Antriebsmotor 61, unabhängig von den Paaren angetrieben ein.

In einfacherster Ausführung können die Gegendruckzylinder jeweils vom zugeordneten Paar her angetrieben sein.

In bevorzugter Ausführung sind die Zylinder der Paare jeweils paarweise durch jeweils einen Antriebsmotor 61 und die Gegendruckzylinder jeweils einzeln durch je einen Antriebsmotor 61 angetrieben.

Mittels der Druckmaschine ist ein Druckprodukt (bzw. Bahnstrang) herstellbar, so dass von vier nach dem Bedrucken auf dem Weg zum Trichtereinlauf benachbarten Bahnen zwei Bahnen jeweils auf einer Seite mehrfarbig, insbesondere vierfarbig, und auf der anderen Seite einfarbig, und die anderen beiden Bahnen beidseitig mehrfarbig, insbesondere vierfarbig bedruckt sind:

Zum Beispiel ein Druckprodukt/Strang von vier Bahnen von unten nach oben betrachtet mit folgender Farbigkeit: unterste Bahn 1 : 4 (Unterseite eine Farbe : Oberseite vier Farben), zweite Bahn von unten 4 : 1, dritte Bahn von unten 4 : 4 und vierte Bahn 4 : 4.

Zum Beispiel ein Druckprodukt/Strang von vier Bahnen von unten nach oben betrachtet mit folgender Farbigkeit: unterste Bahn 4 : 4 (Unterseite eine Farbe :Oberseite vier Farben), zweite Bahn von unten 1: 4 dritte Bahn von unten 4 : 1 und vierte Bahn 4 : 4.

Zum Beispiel ein Druckprodukt/Strang von vier Bahnen von unten nach oben betrachtet mit folgender Farbigkeit: unterste Bahn 4 : 4 (Unterseite eine Farbe :Oberseite vier Farben), zweite Bahn von unten 1: 4 dritte Bahn von unten 4 : 1 und vierte Bahn 4 : 4.

Weiter ist ein Druckprodukt herstellbar, so dass von vier nach dem Bedrucken auf dem Weg zum Trichtereinlauf benachbarten Bahnen drei Bahnen jeweils beidseitig mehrfarbig, insbesondere vierfarbig, und die vierte Bahn beidseitig einfärbig bedruckt sind:

Zum Beispiel ein Druckprodukt/Strang von vier Bahnen von unten nach oben betrachtet mit folgende Farbigkeit: unterste Bahn 4 : 4 (Unterseite eine Farbe :Oberseite vier Farben), zweite Bahn von unten 1 : 1, dritte Bahn von unten 4 : 4 und vierte Bahn 4 : 4.

Zum Beispiel ein erstes Druckprodukt/Strang von vier Bahnen von unten nach oben betrachtet mit folgender Farbigkeit: unterste Bahn 4 : 4 (Unterseite eine Farbe :Oberseite vier Farben), zweite Bahn von unten 4: 4 dritte Bahn von unten 1 : 1 und vierte Bahn 4 : 4.

Die beschriebene Ausgestaltung der Druckmaschine , insbesondere mit der Sechszyliner-Druckeinheit 124, erlaubt die beschriebene Vielfalt in der Produktion, ohne dass hierfür umsteuerbare Druckeinheiten erforderlich wären. Die Zylinder der Satellitendruckeinheiten 02 und der Sechszyliner-Druckeinheit 124 können immer in der gleichen Drehrichtung betrieben werden. Dies bewirkt Vorteile im Hinblick auf die Verwendung von Minigap-Technologie, d. h. der schmalen Öffnung 28, und im Hinblick auf den Aufwand bei Ausstattung und Antrieb.

Die Druckmaschine ist z. B. mit Druckwerken ausgeführt, welche eine Breite von sechs Breiten stehender Druckseiten, insbesondere im Zeitungsformat aufweisen. Der Umfang zumindest der Formzylinder 16 entspricht im wesentlichen der Länge von zwei Längen zweier Druckseiten, insbesondere im Zeitungsformat.

Für die Zylinder der Dreizylinder-Druckwerke 123 sind die oben genannten Verhältnisse und Ausführungen zu den Zylindern 16; 17 anzuwenden.

Bezugszeichenliste

- 01 Druckturm
- 02 Druckeinheit, Satellitendruckeinheit, Neunzylinder-Satelliten-Druckeinheit
Zehnzylinder-Satelliten-Druckeinheit, H-Druckeinheit
- 03 Bahn, Teilbahn
- 03a Bahn, Teilbahn
- 03b Bahn, Teilbahn
- 03c Bahn, Teilbahn
- 03c1 Teilbahn
- 03c2 Teilbahn
- 04 Überbau
- 05 –
- 06 Längsschneideeinrichtung
- 07 Wendeeinrichtung, Wendevorrichtung
- 08 Registereinrichtung
- 09 Harfe
- 10 –
- 11 Falzaufbau
- 12 Falzapparat
- 13 Druckwerk, Offsetdruckwerk
- 14 Farbwerk
- 15 Farbkasten
- 16 Zylinder, Formzylinder
- 17 Zylinder, Übertragungszylinder
- 18 Druckzylinder, Satellitenzylinder
- 19 Aufzug, Druckform, Druckplatten
- 20 Feuchtwerk, Sprühfeuchtwerk
- 21 Aufzug, Gummituch, Metalldrucktuch

- 22 Schicht
- 23 Trägerplatte
- 24 Ende, vorlaufendes, Einhängeschenkel
- 25 –
- 26 Ende, nachlaufendes, Einhängeschenkel
- 27 Kanal
- 28 Öffnung
- 29 Klemmstück, Klemmelement
- 30 Mantelfläche
- 31 Federelement
- 32 Stellmittel, Hohlkörper, Schlauch
- 33 Passerelement
- 34 Sockel
- 35 Registerstein, Passerstift
- 36 Kanal
- 37 Kanal
- 38 Öffnung, Schlitz
- 39 Öffnung, Schlitz
- 40 Mantelfläche
- 41 Öffnung, Schlitz
- 42 Bohrung
- 43 Klemmstück, Klemmelement
- 44 Federelement
- 45 –
- 46 Stellmittel, Hohlkörper, Schlauch
- 47 Stellmittel, Hohlkörper, Schlauch
- 48 Stellmittel, Hohlkörper, Schlauch
- 49 Füllelement
- 50 –

- 51 Öffnung
- 52 Andrückvorrichtung
- 53 Andrückelement, erstes, Wälzelement, Walze, Rolle
- 54 Andrückelement, zweites, Wälzelement, Walze, Rolle
- 55 –
- 56 Traverse
- 57 Stellmittel, Hohlkörper, Schlauch
- 58 Stellmittel, Hohlkörper, Schlauch
- 59 –
- 60 –
- 61 Antriebsmotor, Elektromotor
- 62 Getriebe, Untersetzungsgetriebe
- 62' Vorsatzgetriebe
- 63 Reibzylinder
- 64 Antriebsmotor
- 65 –
- 66 Reibzylinder
- 67 Antriebsmotor
- 68 Antriebsverbindung
- 69 –
- 70 –
- 71 Ritzel
- 72 Antriebsrad
- 73 Antriebsrad
- 74 Antriebsrad
- 75 –
- 76 Zapfen
- 77 Antriebsrad
- 78 Antriebsrad

- 79 Antriebsrad, Zahnrad
- 80 Antriebsmotor
- 81 Walze, Zugwalze
- 82 Wendestange, Leitelement
- 83 Träger
- 84 Führung
- 85 –
- 86 Walze, Leitelement
- 87 Führung
- 88 Auflaufwalze, Harfenwalze, Abschnitt
- 89 Auflaufwalze, Harfenwalze, Leitelement
- 90 –
- 91 Registerwalze
- 92 Umlenkwalze
- 93 Auflaufwalze, Harfenwalze, Registerwalze, Leitelement
- 94 Träger
- 95 –
- 96 Führung
- 97 Umlenkwalze
- 98 –
- 99 –
- 100 –
- 101 Falztrichter
- 102 Falztrichter
- 103 Falztrichter
- 104 Längsschneideeinrichtung, Mittel
- 105 –
- 106 Falztrichter
- 107 Falztrichter

108 Falztrichter
109 Strang
110 –
111 Strang
112 Strang
113 Strang
114 Strang
115 –
116 Strang
117 Zugwalze
118 Trichtereinlaufwalze
119 Antriebsmotor
120 Antriebsmotor
121 Zugwalze
122 Leitwalze
123 Dreizylinderdruckwerke
124 Sechszylinder-Druckeinheit

A Abschnitt
B Abschnitt
C Abschnitt
D Abschnitt
E Abschnitt
F Abschnitt

A1, A2 Druckseite
B1, B2 Druckseite
C1, C2 Druckseite
D1, D2 Druckseite

E1, E2 Druckseite

F1, F2 Druckseite

B10 Bahn

B20 Bahn

B30 Bahn

B40 Bahn

b03 Breite, Bahn, Bahnbreite

b03a Breite, Teilbahn

b23 Breite (23)

b27 Breite (27)

b101 Trichterbreite

I Länge

L16 Länge

L17 Länge

L82 Länge

L86 Länge

L88 Länge

L93 Länge

M Mittelebene

MS Materialstärke

P Produktionsrichtung

S Symmetrieebene

S16 Schlitzweite

S17 Schlitzweite

U Abschnitt

T1 Druckturm
T2 Druckturm
T3 Druckturm

entsprechende Bezeichnung einer zweiten Bahn bzw. Teilbahn

α Winkel
 β Winkel
 α' Winkel

Ansprüche

1. Druckmaschine mit zwei übereinander gestapelten Satellitendruckeinheiten (02), dadurch gekennzeichnet, dass auf der oberen der beiden Satellitendruckeinheiten zwei Dreizylinder-Druckeinheiten (123) oder eine Sechszylinder-Druckeinheit (124) gestapelt angeordnet ist.
2. Druckmaschine mit mindestens zwei Satellitendruckeinheiten, dadurch gekennzeichnet, dass den beiden Satellitendruckeinheiten (02) zusätzlich zwei Dreizylinderdruckwerke (123) zugeordnet sind, mittels welchen zwei jeweils einseitig in dem mindestens einen Druckturm bedruckte Bahnen (B10; B20; B30; B40) auf ihrer anderen Seite einfarbig bedruckbar sind.
3. Druckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden Satellitendruckeinheiten (02) einander zugeordnet und Bestandteile eines Druckturmes (T1; T2; T3; T4) sind, mittels welchen wahlweise zwei Bahnen (B10; B20; B30; B40) jeweils einseitig mehrfarbig, oder eine Bahn (B10; B20; B30; B40) beidseitig mehrfarbig bedruckbar ist.
4. Druckmaschine nach Anspruch 3, dadurch gekennzeichnet, dass die beiden Satellitendruckeinheiten übereinander gestapelt angeordnet sind.
5. Druckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Satellitendruckeinheiten jeweils als Neunzylinder-Satellitendruckeinheiten ausgeführt sind.
6. Druckmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Dreizylinderdruckwerke zusammen als Sechszylinder-Druckeinheit ausgeführt sind.

7. Druckmaschine nach Anspruch 2 oder 6, dadurch gekennzeichnet, dass die beiden Dreizylinderdruckwerke oberhalb einer letzten Druckstelle der beiden zugeordneten Satellitendruckeinheiten angeordnet sind.
8. Druckmaschine nach Anspruch 3 und 6, dadurch gekennzeichnet, dass die Sechzylinder-Druckeinheit auf dem zugeordneten Druckturm (T1; T2; T3; T4) gestapelt angeordnet ist.
9. Druckmaschine nach Anspruch 3 und 6, dadurch gekennzeichnet, dass die Sechzylinder-Druckeinheit auf einem vom zugeordneten Druckturm (T1; T2; T3; T4) verschiedenen, insbesondere benachbarten, Druckturm (T1; T2; T3; T4) gestapelt angeordnet ist.
10. Druckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Satellitendruckeinheiten und die beiden Dreizylinderdruckwerke einander in der Weise zugeordnet sind, dass eine Bahn wahlweise in einer ersten Betriebsweise durch beide Satellitendruckeinheiten, in einer zweiten Betriebsweise durch eine der Satellitendruckeinheiten und durch eine der Dreizylinderdruckwerke, und in einer dritten Betriebsweise lediglich durch die beiden Dreizylinderdruckwerke geführt ist.
11. Druckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Satellitendruckeinheiten und die beiden Dreizylinderdruckwerke einander in der Weise zugeordnet sind, dass wahlweise in einer ersten Betriebsweise eine erste Bahn durch beide Satellitendruckeinheiten und eine zweite Bahn durch die beiden Dreizylinderdruckwerke, und in einer zweiten Betriebsweise zwei Bahnen jeweils durch eine der Satellitendruckeinheiten und durch eine der Dreizylinderdruckwerke, geführt sind.
12. Druckmaschine nach Anspruch 3 und 6, dadurch gekennzeichnet, dass zwei Bahnen

in der Weise durch den Druckturm und die Sechszyliner-Druckeinheit geführt sind, dass sie nach dem Bedrucken jeweils auf einer Seite mehrfarbig und auf der anderen Seite einfarbig bedruckt sind.

13. Druckmaschine nach Anspruch 3 und 6, dadurch gekennzeichnet, dass eine von zwei Bahnen durch den Druckturm und eine andere Bahn lediglich durch die Sechszyliner-Druckeinheit in der Weise geführt sind, dass die eine Bahn beidseitig mehrfarbig und die andere Bahn beidseitig einfarbig bedruckt ist.
14. Druckmaschine mit mehreren jeweils zwei Satellitendruckeinheiten aufweisenden Drucktürmen (T1; T2; T3; T4), dadurch gekennzeichnet, dass die Druckmaschine zusätzlich zumindest eine Sechszyliner-Druckeinheit aufweist.
15. Druckmaschine nach Anspruch 3 oder 14, dadurch gekennzeichnet, dass die Druckmaschine mindestens zwei einander paarweise benachbarte Drucktürme aufweist, und dass die mindestens eine Sechszyliner-Druckeinheit auf einem der drei Drucktürme gestapelt ist.
16. Druckmaschine nach Anspruch 3 oder 14, dadurch gekennzeichnet, dass die Druckmaschine mindestens drei einander paarweise benachbarte Drucktürme aufweist, und dass die mindestens eine Sechszyliner-Druckeinheit auf einem der drei Drucktürme gestapelt ist.
17. Druckmaschine nach Anspruch 16, dadurch gekennzeichnet, dass den drei Drucktürmen eine gemeinsame Sechszyliner-Druckeinheit zugeordnet ist, welche auf der mittleren der drei Drucktürme gestapelt angeordnet ist.
18. Druckmaschine nach Anspruch 15, dadurch gekennzeichnet, dass drei Bahnen in der Weise durch die beiden Drucktürme und die Sechszyliner-Druckeinheit geführt sind,

dass zwei der Bahnen nach dem Bedrucken jeweils auf einer Seite mehrfarbig und auf der anderen Seite einfarbig, und die dritte Bahn beidseitig mehrfarbig bedruckt sind.

19. Druckmaschine nach Anspruch 15, dadurch gekennzeichnet, dass zwei von drei Bahnen durch die zwei Drucktürme und eine dritte Bahn lediglich durch die Sechszyliner-Druckeinheit in der Weise geführt sind, dass beiden erstgenannten Bahnen beidseitig mehrfarbig und die dritte Bahn beidseitig einfarbig bedruckt ist.
20. Druckmaschine nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Druckmaschine Mittel zum Führen der Bahnen aufweist, welche ein wahlweises Betreiben der Druckmaschine gemäß Anspruch 18 oder Anspruch 19 ermöglicht.
21. Druckmaschine nach Anspruch 16, dadurch gekennzeichnet, dass vier Bahnen in der Weise durch die drei Drucktürme und die Sechszyliner-Druckeinheit geführt sind, dass zwei der Bahnen nach dem Bedrucken jeweils auf einer Seite mehrfarbig und auf der anderen Seite einfarbig, und die anderen beiden Bahnen beidseitig mehrfarbig bedruckt sind.
22. Druckmaschine nach Anspruch 16, dadurch gekennzeichnet, dass drei von vier Bahnen durch die drei Drucktürme und die vierte Bahn lediglich durch die Sechszyliner-Druckeinheit in der Weise geführt sind, dass drei erstgenannten Bahnen beidseitig mehrfarbig und die dritte Bahn beidseitig einfarbig bedruckt ist.
23. Druckmaschine nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Druckmaschine Mittel zum Führen der Bahnen aufweist, welche ein wahlweises Betreiben der Druckmaschine gemäß Anspruch 21 oder Anspruch 22 ermöglicht.
24. Druckmaschine nach Anspruch 2, 12, 13, 18, 19, 21 oder 22, dadurch gekennzeichnet, dass die mehrfarbig bedruckte Seite vierfarbig bedruckt ist.

25. Druckmaschine nach Anspruch 21, dadurch gekennzeichnet, dass die vier Bahnen mit den drei Drucktürmen und der Sechszyliner-Druckeinheit in der Weise bedruckt sind, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen nach dem Bedrucken auf einem Weg zu einem Trichteraufbau (TR) zwischen den beiden beidseitig mehrfarbig bedruckten Bahnen zu liegen kommen.
26. Druckmaschine nach Anspruch 21 oder Betriebsweise nach Anspruch 25, dadurch gekennzeichnet, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen den mittleren der drei Drucktürme und die Sechszyliner-Druckeinheit durchlaufen.
27. Druckmaschine nach Anspruch 21 oder Betriebsweise nach Anspruch 25, dadurch gekennzeichnet, dass die vier Bahnen mit den drei Drucktürmen und der Sechszyliner-Druckeinheit in der Weise bedruckt sind, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen nach dem Bedrucken auf einem Weg zu einem Trichteraufbau (TR) unterhalb der beiden beidseitig mehrfarbig bedruckten Bahnen zu liegen kommen.
28. Druckmaschine nach Anspruch 21 oder Betriebsweise nach Anspruch 25, dadurch gekennzeichnet, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen den dem Trichteraufbau (TR) nächstliegenden der drei Drucktürme und die Sechszyliner-Druckeinheit durchlaufen.
29. Druckmaschine nach Anspruch 21 oder Betriebsweise nach Anspruch 25, dadurch gekennzeichnet, dass die vier Bahnen mit den drei Drucktürmen und der Sechszyliner-Druckeinheit in der Weise bedruckt sind, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen nach dem

Bedrucken auf einem Weg zu einem Trichteraufbau (TR) oberhalb der beiden beidseitig mehrfarbig bedruckten Bahnen zu liegen kommen.

30. Druckmaschine nach Anspruch 21 oder Betriebsweise nach Anspruch 25, dadurch gekennzeichnet, dass die beiden auf einer Seite mehr- und auf der anderen Seite einseitig bedruckten Bahnen den dem Trichteraufbau (TR) entferntliegenden der drei Drucktürme und die Sechszyliner-Druckeinheit durchlaufen.
31. Druckmaschine nach Anspruch 21 oder Betriebsweise nach Anspruch 25, dadurch gekennzeichnet, dass die Druckmaschine Mittel zum Führen der Bahnen aufweist, welche ein wahlweises Betreiben der Druckmaschine gemäß Anspruch 25, 27 oder 29 ermöglicht.
32. Druckmaschine nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Satellitendruckeinheit mehrere Zylinderpaare jeweils aus Form- und Übertragungszyliner, und mindestens einen mit mindestens einem der Übertragungszyliner zusammenwirkenden Satellitenzyliner aufweist.
33. Druckmaschine nach Anspruch 32, dadurch gekennzeichnet, dass die Satellitendruckeinheit vier Paare und einen den vier Übertragungszylinern zugeordneten Satellitenzyliner aufweist.
34. Druckmaschine nach Anspruch 32, dadurch gekennzeichnet, dass die Satellitendruckeinheit vier Paare und zwei jeweils zwei Übertragungszylinern zugeordnete Satellitenzyliner aufweist.
35. Druckmaschine nach Anspruch 32, dadurch gekennzeichnet, dass jeweils zwei der Paare als Antriebsverbunde durch einen gemeinsamen, vom jeweils anderen Antriebsverbund unabhängigen Antriebsmotor angetrieben sind.

36. Druckmaschine nach Anspruch 35, dadurch gekennzeichnet, dass ein Satellitenzylinder durch einen der Antriebsverbunde angetrieben ist.
37. Druckmaschine nach Anspruch 32, 33, 34 oder 35, dadurch gekennzeichnet, dass der Satellitenzylinder durch mindestens einen eigenen Antriebsmotor, unabhängig von den Paaren angetrieben ist.
38. Druckmaschine nach Anspruch 34, dadurch gekennzeichnet, dass die beiden Satellitenzylinder durch mindestens einen gemeinsamen Antriebsmotor, unabhängig von den Paaren angetrieben sind.
39. Druckmaschine nach Anspruch 32, 33 oder 34, dadurch gekennzeichnet, dass die Paare jeweils durch mindestens einen eigenen Antriebsmotor unabhängig von den anderen Paaren angetrieben sind.
40. Druckmaschine nach Anspruch 32, 33 oder 34, dadurch gekennzeichnet, dass jeder Zylinder der Paare einen eigenen Antriebsmotor aufweist.
41. Druckmaschine nach Anspruch 32, 33 oder 34, dadurch gekennzeichnet, dass die beiden Zylinder des Paars gekoppelt und durch einen gemeinsamen Antriebsmotor angetrieben sind.
42. Druckmaschine nach Anspruch 35, 40 oder 41, dadurch gekennzeichnet, dass ein Farbwerk vom Antrieb des zugeordneten Formzylinders her angetrieben ist.
43. Druckmaschine nach Anspruch 35, 40 oder 41, dadurch gekennzeichnet, dass ein Farbwerk unabhängig vom Antrieb des zugeordneten Formzylinders durch einen eigenen Antriebsmotor angetrieben ist.

44. Druckmaschine nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Sechszylinder-Druckeinheit zwei Zylinderpaare jeweils aus Form- und Übertragungszylinder, und je Paar einen mit einem der Übertragungszylinder zusammenwirkenden Gegendruckzylinder aufweist.
45. Druckmaschine nach Anspruch 44, dadurch gekennzeichnet, dass die Paare jeweils durch mindestens einen eigenen Antriebsmotor unabhängig vom anderen Paar angetrieben sind.
46. Druckmaschine nach Anspruch 44, dadurch gekennzeichnet, dass jeder Zylinder der Paare einen eigenen Antriebsmotor aufweist.
47. Druckmaschine nach Anspruch 44, dadurch gekennzeichnet, dass die beiden Zylinder des Paars gekoppelt und durch einen gemeinsamen Antriebsmotor angetrieben sind.
48. Druckmaschine nach Anspruch 44, 45, 46 oder 47, dadurch gekennzeichnet, dass ein Farbwerk vom Antrieb des zugeordneten Formzylinders her angetrieben ist.
49. Druckmaschine nach Anspruch 44, 45, 46 oder 47, dadurch gekennzeichnet, dass ein Farbwerk unabhängig vom Antrieb des zugeordneten Formzylinders durch einen eigenen Antriebsmotor angetrieben ist.
50. Druckmaschine nach Anspruch 44, dadurch gekennzeichnet, dass die Gegendruckzylinder jeweils durch einen eigenen Antriebsmotor, unabhängig von den Paaren und voneinander angetrieben sind.
51. Druckmaschine nach Anspruch 44, dadurch gekennzeichnet, dass die beiden Gegendruckzylinder durch mindestens einen gemeinsamen Antriebsmotor,

unabhängig von den Paaren angetrieben sind.

52. Druckmaschine nach Anspruch 45, dadurch gekennzeichnet, dass die Gegendruckzylinder jeweils vom zugeordneten Paar her angetrieben sind.
53. Druckmaschine nach Anspruch 44, dadurch gekennzeichnet, dass die Zylinder der Paare jeweils paarweise durch jeweils einen Antriebsmotor und die Gegendruckzylinder jeweils einzeln durch je einen Antriebsmotor angetrieben sind.
54. Druckprodukt einer Druckmaschine, dadurch gekennzeichnet, dass von vier nach dem Bedrucken auf dem Weg zum Trichtereinlauf benachbarten Bahnen zwei Bahnen jeweils auf einer Seite mehrfarbig, insbesondere vierfarbig, und auf der anderen Seite einfarbig, und die anderen beiden Bahnen beidseitig mehrfarbig, insbesondere vierfarbig bedruckt sind.
55. Druckprodukt nach Anspruch 54, dadurch gekennzeichnet, dass die vier Bahnen von unten nach oben betrachtet folgende Farbigkeit aufweisen: unterste Bahn 1 : 4 (Unterseite eine Farbe : Oberseite vier Farben), zweite Bahn von unten 4 : 1, dritte Bahn von unten 4 : 4 und vierte Bahn 4 : 4.
56. Druckprodukt nach Anspruch 54, dadurch gekennzeichnet, dass die vier Bahnen von unten nach oben betrachtet folgende Farbigkeit aufweisen: unterste Bahn 4 : 4 (Unterseite eine Farbe : Oberseite vier Farben), zweite Bahn von unten 1: 4 dritte Bahn von unten 4 : 1 und vierte Bahn 4 : 4.
57. Druckprodukt nach Anspruch 54, dadurch gekennzeichnet, dass die vier Bahnen von unten nach oben betrachtet folgende Farbigkeit aufweisen: unterste Bahn 4 : 4 (Unterseite eine Farbe : Oberseite vier Farben), zweite Bahn von unten 1: 4 dritte Bahn von unten 4 : 1 und vierte Bahn 4 : 4.

58. Druckprodukt einer Druckmaschine, dadurch gekennzeichnet, dass von vier nach dem Bedrucken auf dem Weg zum Trichtereinlauf benachbarten Bahnen drei Bahnen jeweils beidseitig mehrfarbig, insbesondere vierfarbig, und die vierte Bahn beidseitig einfarbig bedruckt sind.

59. Druckprodukt nach Anspruch 58, dadurch gekennzeichnet, dass die vier Bahnen von unten nach oben betrachtet folgende Farbigkeit aufweisen: unterste Bahn 4 : 4 (Unterseite eine Farbe :Oberseite vier Farben), zweite Bahn von unten 1 : 1, dritte Bahn von unten 4 : 4 und vierte Bahn 4 : 4.

60. Druckprodukt nach Anspruch 58, dadurch gekennzeichnet, dass die vier Bahnen von unten nach oben betrachtet folgende Farbigkeit aufweisen: unterste Bahn 4 : 4 (Unterseite eine Farbe :Oberseite vier Farben), zweite Bahn von unten 4: 4 dritte Bahn von unten 1 : 1 und vierte Bahn 4 : 4.

61. Die Druckmaschine, Betriebsweise oder Druckprodukt nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Druckwerke mit einer Breite für das Bedrucken von sechs nebeneinander angeordneter, stehender Druckseiten, insbesondere im Zeitungsformat ausgeführt sind.

62. Die Druckmaschine, Betriebsweise oder Druckprodukt nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Umfang zumindest der Formzylinder der Druckwerke im wesentlichen der Länge von zwei Längen zweier Druckseiten, insbesondere im Zeitungsformat, entspricht.

Zusammenfassung

Die Erfindung betrifft eine Druckmaschine mit zwei übereinander gestapelten Satellitendruckeinheiten, wobei auf dem oberen der beiden Satellitendruckeinheiten zwei Dreizylinder-Druckeinheiten oder eine Sechszylinder-Druckeinheit gestapelt angeordnet ist.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

02

Fig. 8

Fig. 9

02

Fig. 10

Fig. 11

12/23

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16
Fig. 17

15/23

Fig. 16

Fig. 17

17/23

Fig. 18

Fig. 1

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.