(6,3) Code Example

For the (6,3) code:

$$\begin{array}{rcl}
 n & = & 6 \\
 k & = & 3 \\
 m & = & 3
 \end{array}$$

So,
$$r = k/n = 0.5$$

 $BW_exp = 1/r = 2.0$

The parity symbols are defined by:

$$p_1 = m_1 + m_3$$

$$p_2 = m_1 + m_2$$

$$p_3 = m_2 + m_3$$

The generator matrix is G = [I P]:

G =

The parity-check matrix is $H = [P^T \ I]$:

H =

Check orthogonality:

ans =

Since k = 3 there are $2^k = 2^3 = 8$ 3-tuple source messages:

M =

0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

The eight valid 6-tuple code words are:

$$\gg$$
 C = mod(M * G, 2)

C =

0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	0	0	0

The remaining $2^n - 2^k = 2^6 - 2^3 = 64 - 8 = 56$ 6-tuples are invalid code words.

A 64-entry lookup table could be constructed that maps each of the possible received 6-tuples to the nearest valid codeword and corresponding 3-tuple source message.

Instead construct a $2^m = 2^3 = 8$ row standard array. The first (header) row is the all-zero syndrome followed by all the valid codewords:

000 000000 001101 010011 011110 100110 101011 110101 111000

For maximum likelihood decoding the entries in the second row are determined by any remaining invalid codeword of minimum weight. In this example there are six of them, all with only a single 1. Choose 000001 and call it e_1 . The corresponding syndrome is $S_1 = e_1 H^T = 001$. Construct the second row with S_1 followed by column entries that are the error pattern e_1 (coset leader) added to each of the valid codewords (coset):

```
        000
        000000
        001101
        010011
        011110
        100110
        101011
        110101

        111000
        001
        000001
        001100
        010010
        011111
        100111
        101010

        110100
        111001
```

The process is repeated. There are still five invalid codewords remaining that have weight 1. Choose $e_2=000010$ with syndrome $S_2=e_2H^T=010$:

0							100110		
1	11000	001		000001	001100	010010	011111	100111	101010
1	10100	11	1001						
0	10	<mark>000</mark>	010	001111	010001	011100	100100	101001	110111
1	11010								

Now there are four invalid codewords with weight 1. For the fourth row choose $e_3 = 000100$ with syndrome $S_3 = e_3 H^T = 100$:

	000	000000	001101	010011	011110	100110	101011	110101
	111000							
	001	000001	001100	010010	011111	100111	101010	110100
	111001							
	010	000010	001111	010001	011100	100100	101001	110111
	111010							
	100	000100	001001	010111	011010	100010	101111	110001
1111	00							

Construct the fifth, sixth and seventh rows with the remaining three invalid codewords of weight 1:

000	000000	001101	010011	011110	100110	101011	110101
111000							
001	000001	001100	010010	011111	100111	101010	110100
111001							
010	000010	001111	010001	011100	100100	101001	110111
111010							

	100	000100	001001	010111	011010	100010	101111	110001
11110	<mark>90</mark>							
	101	001000	000101	011011	010110	101110	100011	111101
	110000							
	011	010000	011101	000011	001110	110110	111011	100101
	101000	110	100000	101101	110011	111110	000110	001011
	010101	011000						

At this point there are eight remaining invalid codewords:

This means in addition to correcting all single symbol error patterns this (6,3) code can correct some multiple symbol error patterns as well. Since double symbol error patterns are more likely than triple or higher symbol error patterns for maximum likelihood decoding we should choose one of the remaining invalid codewords with weight 2. Arbitrarily select $e_7 = 100001$ with syndrome $S_7 = e_7 H^T = 111$.

The complete standard array is then:

	000	000000	001101	010011	011110	100110	101011	110101
	111000							
	001	000001	001100	010010	011111	100111	101010	110100
	<mark>111001</mark>							
	010	000010	001111	010001	011100	100100	101001	110111
	<mark>111010</mark>							
	100	000100	001001	010111	011010	100010	101111	110001
11116	<mark>90</mark>							
	101	001000	000101	011011	010110	101110	100011	111101
	110000							
	011	010000	011101	000011	001110	110110	111011	100101
	101000	110	100000	101101	110011	111110	000110	001011
	010101	011000	<mark>)</mark>					
	111	100001	101100	110010	111111	000111	001010	010100
	<mark>011001</mark>							

As an example assume we want to send the source message $m=[1\ 0\ 1]$. The corresponding codeword from above is $c=[1\ 0\ 1\ 0\ 1\ 1]$. Suppose after this codeword is sent through a noisy channel we receive $r=[1\ 1\ 0\ 1\ 1]$. Can we recover the original source message?

```
Using MATLAB:
```

r =

1 1 1 0 1 1

Calculate the syndrome $S = rH^T$:

$$>> S = mod(r * H', 2)$$

S =

0 1 1

Use the syndrome to locate the corresponding error pattern e_5 in the standard array:

$$>> e5 = [0 1 0 0 0 0]$$

e5 =

 $0 \qquad 1 \qquad 0 \qquad 0 \qquad 0 \qquad 0$

Decode the received message as $\hat{c} = r + e_5$:

$$>> c_hat = mod(r + e5, 2)$$

 $c_hat =$

1 0 1 0 1 1

The estimate of the original source message $\widehat{\mathbf{m}}$ is the first three symbols of $\hat{\mathbf{c}}\colon$

m_hat =

1 0 1

This is in fact the original source message.