Title

Contents

1 Monday April 20th

2

1 | Monday April 20th

Today: torsors.

Let k be a (perfect, separable) field and G/k a commutative algebraic group (a finite type reduced group?).

Definition A variety X/k is a torsor under G is $\mu: G \times X \to X$ a group action such that the map

$$G \times X \to X \times X$$

 $(g, x) \mapsto (\mu(gx), x)$

is an isomorphism.

For ℓ/k any field extension, the base change to X/ℓ induces μ_{ℓ} making X/ℓ a G/ℓ torsor. X is trivial iff it is isomorphic to

$$\mu: G \times G \to G$$

 $(g, hg) \mapsto gh.$

Claim X is trivial iff $X(k) \neq \emptyset$.

First "proof": for $p \in X(k)$, define $\mu(\cdot, p) : G \to X$. Want to get a map $G(k^{\text{sep}}) \to X(k^{\text{sep}})$, when does this happen? In characteristic zero, we have some map $G \to X$ (???) which is surjective with trivial kernel and thus an isogeny but has not k^{sep} points. But this doesn't work in positive characteristic.

Second proof: the map $G \times X \to X \times X$ being an isomorphism says that upon base change on $X \to \operatorname{Spec} k$, X becomes isomorphic to G. But then it also becomes isomorphic over base change for which X is intermediate. So if we have

which factors through Y, if $p \in X(k)$ then Spec $k \to X$ and thus $X/k \cong G/k$.

The form of the assumed isomorphic implies that the base change of the G-torsor X from Spec k to X is trivial as a $G \times X$ torsor over X.

For k a field, G/k, an equivalent definition would be that a G torsor is X/k with a G action that becomes trivial over k^{sep} . Therefore A G torsor X is a k^{sep}/k twisted form of X where $X/k^{\text{sep}} \cong G/k^{\text{sep}}$.

Example: Let G = E an elliptic curve, and X/k is a nice curve of genus 1, but X(k) is likely empty. Conversely, given such a curve of genus 1, we can take the Picard variety $\underline{\text{Pic}}^0 X$, i.e. the Jacobian. Then there is an isomorphism

$$X \xrightarrow{\cong} \underline{\operatorname{Pic}}^1 X$$
$$p \mapsto [p].$$

So every nice curve is a torsor for its Jacobian (?). Note that in higher dimensions, we'd need to take the albanese, and the same statement would work: every abelian variety is a torsor over its albanese.

For G/k commutative, we can make the set of torsors X for G/k modulo equivalence into a commutative group. We define the Weil-Chatelet group of G/k as WC(k,G). For two torsors, we can define the $Baer\ sum\ X_1 \oplus X_2$ by first defining a map

$$\mu_{\pm}: G \times (X_1 \times X_2) \to X_1 \times X_2$$

$$(g, x_1, x_2) \mapsto (\mu_1(g, x_1), \mu_2([-1]g, x_2))$$

and defining $X_1 \oplus X_2 = (X_1 \times X_2)/\mu_{\pm}$. Then the action μ_{\pm} on $X_1 \oplus X_2$ is a G torsor.

This makes WC(k,G) into a commutative group where $\mu: G \times G \to G$ defines $[-1](X,\mu) := (X,\mu([-1] \cdot))$.

Exercise For C/k a nice genus one curve, $G = E = \underline{\operatorname{Pic}}^0 C$ and $C = \underline{\operatorname{Pic}}^1 C$. Show that $n[C]\underline{\operatorname{Pic}}^n C$.

Note that by adding divisor classes, there is a map $\underline{\text{Pic}}^1C \times \underline{\text{Pic}}^1C \to \underline{\text{Pic}}^2E$.

Corollary For E/k an elliptic curve, WC(k, E) is a torsion abelian group iff for all genus 1 curves C, there exists an $n \in \mathbb{Z}^{\geq 0}$ such that $(\underline{\operatorname{Pic}}^n C)(k) \neq \emptyset$.

We can define the period of an elliptic curve as the least n for which the torsor becomes trivial, this is an interesting numerical invariant.

Next up: cocycles and descent.