CS1010S Programming Methodology

Lecture 3 Recursion, Iteration & Order of Growth

28 Jan 2015

Forum Etiquette

Facebook EXP

Mac Problems?

Progression

LEAVE NO MAN BEHIND

Reinforcements

Help sessions

- First session: Thursay 29 Jan

- Tuesdays 6:30 to 8:30 pm
 - SoC Execuitive Classroom, COM2-04-02
- Saturdays 10 am to 12 nn
 - SoC Video Conferencing Room, COM1-02-13

Done with all the missions?

Got a lot of time to burn?

Optional Trainings

Contests Due 8 Feb 2015

Winning: 400 EXP

Participation: 50 EXP

Divide 8 Conquer

Recursion

Smaller child problem(s) has same structure as the parent

Example

Consider the factorial function:

$$n! = n \times (n-1) \times (n-2) \cdots \times 1$$

Rewrite:

$$n! = \begin{cases} n \times (n-1)!, & n > 1 \\ 1, & n \leq 1 \end{cases}$$

Factorial

$$n! = \begin{cases} n \times (n-1)!, & n > 1 \\ 1, & n = 1 \end{cases}$$

```
def factorial(n):
    if n <= 1:
        return 1
    else:
        return n * factorial(n - 1)</pre>
```

Recursion

Function that calls itself is called a recursive function

Recursive process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
5 * 24
120
          Note the build up of pending operations.
```

Like Physicists, we care about two things:

- 1. Time
- 2. Space

Time: how long it takes to run a program

Space: how much memory we need to run the program

Recursive process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
             • Time ∝ #operations
5 * 24
                Linearly proportional to n
120
```

Recursive process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
5 * 24

    Space ∞ #pending operations

    Linearly proportional to n

120
```


Recursion

- 1. Figure out the base case
 - Typically n = 0 or n = 1
- 2. Assume you know how to solve n 1
 - Now how to solve for n?

Factorial: Linear recursion

```
def factorial(n):
    if n <= 1:
        return 1
    else:
        return n * factorial(n - 1)
                  factorial(4)
                  factorial(3)
                  factorial(2)
                  factorial(1)
```

Fibonacci Numbers

Leonardo Pisano Fibonacci (12th century) is credited for the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Note: each number is the sum of the previous two.

Fibonacci in Math

$$f(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ f(n-1) + f(n-2) & n > 1 \end{cases}$$

Fibonacci in Python

$$f(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ f(n-1) + f(n-2) & n > 1 \end{cases}$$

```
def fib(n):
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    else:
        return fib(n - 1) + fib(n - 2)
```

Tree recursion

Fibonacci

- Number of leaves in tree is fib(n + 1)
- Can be shown that fib(n) is the closest integer to $\frac{\Phi^n}{\sqrt{5}}$
 - Where $\Phi = \frac{1+\sqrt{5}}{2} \approx 1.6180$
 - called the golden ratio
- Therefore time taken is $\approx \Phi^n$
 - (exponential in n)

Tree recursion

- Time:
 - Proportional to number of leaves, i.e., exponential in n.
- Space (memory):
 - Proportional to the depth of the tree, i.e., linear in n.

Mutual recursion

```
def ping(n):
                                ping(10)
    if (n == 0):
         return n
                                Ping!
    else:
                                Pong!
         print("Ping!")
                                Ping!
         pong(n - 1)
                                Pong!
                                Ping!
def pong(n):
                                Pong!
    if (n == 0):
                                Ping!
         return n
                                Pong!
    else:
                                Ping!
         print("Pong!")
                                Pong!
         ping(n - 1)
```

Recap: Factorial

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
                     Recursive Process
5 * 24
                 Time \propto n Space \propto n
120
```

Another way

```
Start with 1, multiply by 2, multiply by 3, ...
                n! = 1 \times 2 \times 3 \cdots \times n
Factorial rule:
     product ← product × counter
     counter \leftarrow counter + 1
def factorial(n):
     product, counter = 1, 1
     while counter <= n:
          product = product * counter
          counter = counter + 1
     return product
```

while loop

```
while <expression>:
     <body>
```

expression

- Predicate (condition) to stay within the loop body
 - Statement(s) that will be evaluated if predicate is True

Yet another way

```
n! = 1 \times 2 \times 3 \cdots \times n
```

```
Factorial rule:
     product ← product × counter
     counter \leftarrow counter + 1
                                   non-inclusive.
def factorial(n):
                                     Up to n.
    product = 1
    for counter in range(2, n+1):
         product = product * counter
     return product
```

for loop

```
for <var> in <sequence>:
     <body>
```

sequence

a sequence of values

var

variable that take each value in the sequence

body

statement(s) that will be evaluated for each value in the sequence

range function

```
range([start,] stop[, step])
```

creates a sequence of integers

- from start (inclusive) to stop (non-inclusive)
- incremented by step

Examples

```
for i in range(10):
    print(i)
for i in range(3, 10):
    print(i)
for i in range(3, 10, 4):
    print(i)
```

break & continue

```
for j in range(10):
                          0
    print(j)
                                  Break out
    if j == 3:
                                   of loop
         break
print("done")
                          done
for j in range(10):
                                Continue with
    if j % 2 == 0:
                                  next value
         continue
    print(j)
print("done")
                          done
```

Iterative process

```
def factorial(n):
    product, counter = 1, 1
    while counter <= n:
        product = (product *
                   counter)
        counter = counter + 1
    return product
factorial(6)
```

product	counter
1	1
1	2
2	3
6	4
24	5
120	6
720	7
counter > n return prod	(7 > 6) uct (720)

Iterative process

product	counter		
1	1		
1	2		
2	3		
6	4		
24	5		
120	6		
720	7		

Time (# of steps):

linearly proportional to n

Space (memory):

- constant
- no deferred operations
- All information contained in 2 variables

Recursion VS Iteration

Recursive process occurs when there are deferred operations.

Iterative process does not have deferred operations.

Recursive Process

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
            *
                  * 1)))
               (2
            *
5 * 24
                         deferred
120
                         operations
```

In many languages, e.g. Python Java, there are explicit mechanisms for iteration:

while for

But actually, all that is needed is the ability to call a function.

Homework

How would you implement iteration without loops?

Orders of Growth

Rough measure of resources used by a computational process

Time: how long it takes to run a program

Space: how much memory do we need to run the program

We want to ask questions like:

```
factorial(5) \rightarrow factorial(10) ?
fib(10) \rightarrow fib(20)? 2x?
```

How much more time? Same? How much more space?

4x?

Orders of Growth

Let n denote size of the problem.

Let R(n) denote the resources needed.

Definition:

R(n) has order of growth $\Theta(f(n))$ written

$$R(n) = \Theta(f(n))$$

If there are positive constants k_1 and k_2 such that

$$k_1 f(n) \le R(n) \le k_2 f(n)$$

for any sufficiently large value of n

Diagram

For $n >= n_0$, R(n) is sandwiched between

Intuitively

If *n* is doubled

(i.e. increased to 2n)

then R(n)

(the resource required),

is increased to f(2n)

Some common f(n)

- 1
- n
- n^2
- n^3
- $\log n$
- $n \log n$
- 2ⁿ

Recursive Factorial

```
factorial(5)
5 * factorial(4)
5 * (4 * factorial(3))
5 * (4 * (3 * factorial(2))
5 * (4 * (3 * (2 * factorial(1)))
5 * (4 * (3 * (2 * 1)))
5 * (4 * (3 * 2))
5 * (4 * 6)
                    Time: O(n) Linear
5 * 24
                   Space: O(n) Linear
120
```

Iterative Factorial

product	counter			
1	1			
1	2			
2	3			
6	4			
24	5			
120	6			
720	7			

Time: O(n) Linear

Space: O(1) Constant

Suppose a computation C takes 3n + 5 steps to complete, what is the order of growth?

$$O(3n+5) = O(n)$$

Take the largest term. Drop the constants.

Another Example

How about $3^n + 4n^2 + 4$?

Order of growth

$$= 0(3^n + 4n^2 + 4)$$
$$= 0(3^n)$$

Tips

- Identify dominant terms, ignore smaller terms
- Ignore additive or multiplicative constants
 - $-4n^2 1000n + 300000 = O(n^2)$
 - $-\frac{n}{7} + 200n \log n = O(n \log n)$
- Note: $\log_a b = \frac{\log_c b}{\log_c a}$
 - So base is not important

More tricks in CS1231, CS3230

Some involve sophisticated proofs

For now...

Count the number of "basic computational steps".

- Identify the basic computation steps
- Try a few small values of *n*
- Extrapolate for really large *n*
- Look for "worst case" scenario

Numeric example

\overline{n}	$\log n$	$n \log n$	n^2	n^3	2^n
1	0	0	1	1	2
2	0.69	1.38	4	8	4
3	1.098	3.29	9	27	8
10	2.3	23.0	100	1000	1024
20	2.99	59.9	400	8000	10^6
30	3.4	109	900	27000	10^{9}
100	4.6	461	10000	10^{6}	1.2×10^{30}
200	5.29	1060	40000	8×10^6	1.6×10^{60}
300	5.7	1710	90000	27×10^6	2.03×10^{90}
1000	6.9	6910	10^{6}	10^{9}	1.07×10^{301}
2000	7.6	15200	4×10^6	8×10^{9}	?
3000	8	24019	9×10^{6}	27×10^{9}	?
10 ⁶	13.8	13.8×10^{6}	1012	10^{18}	?

13.7 billion years $\approx 2^{59}$ seconds

Time: how long it takes to run a program

Space: how much memory do we need to run the program

pythontutor.com

Moral of the story

Different ways of performing a computation (algorithms) can consume dramatically different amounts of resources.

Recursion Revisited

- Solve the problem for a simple (base) case
- Express (divide) a problem into one or more smaller similar problems
- Similar to

Mathematical Induction

Comparison

Mathematical Induction

• Start with a base case b

- Assume k works, derive a function to show k+1 also works
- Therefore, it must be true for all cases $\geq b$

Recursion

- Find base case(s) b
 where we can just
 state the answer
- Derive a function to express the problem of size n as subproblems of k < n
- The function can therefore solve all $n \ge b$

Sometimes it may be possible that you will need more than one base case?

When? Why?

Tree recursion

Other times you may have to express a problem in another form and the other form back in the present form (mutual recursion)

- E.g. sin and cos

Greatest Common Divisor

Euclid's Algorithm:

Given two numbers a and b, where $a = b \cdot Q + r$ (the remainder of the division), then we have

$$GCD(a,b) = GCD(b,r), \forall a,b > 0$$

 $GCD(a,0) = a$

Greatest Common Divisor

```
GCD(a,b) = GCD(b,r), \forall a,b > 0
def gcd(a, b):
    if (b == 0):
                        GCD(a, 0) = a
          return a
    else:
       return gcd(b, a % b)
GCD(206,40) = GCD(40,6)
             = GCD(6,4)
             = GCD(4,2)
             = GCD(2,0)
              = 2
```

Goal: Move all discs from one stick to another

Rules:

- 1. Can only move one disc at a time
- 2. Cannot put a larger disc over a smaller disc

Goal: Move all discs from one stick to another

Rules:

- 1. Can only move one disc at a time
- 2. Cannot put a larger disc over a smaller disc

Suppose we know how to move 3 discs from A to C

Suppose we know how to move 3 discs from A to C

Claim: we can move 3 discs from A to B. Why?

Claim: we can move 3 discs from A to B. Why?

How to move 4 discs from A to C?

How to move 4 discs from A to C?

Move 3 disc from A to B

How to move 4 discs from A to C?

- Move 3 disc from A to B
- Move 1 disc from A to C

How to move 4 discs from A to C?

- Move 3 disc from A to B
- Move 1 disc from A to C
- Move 3 disc from B to C

Divided into smaller problem

- Move 4 discs

 Move 3 discs
- Move 5 discs?

 Move 4 discs
- Move n discs? \rightarrow Move n-1 discs

Recursion

1. Expressed (divided) the problem into one or more smaller problems

$$n = f(n-1)$$

- 2. Solve the simple (base) case
 - 1 disc? Move directly from X to Y
 - 0 disc? Do nothing

To move n discs from A to C using B

To move n discs from A to C using B

1. move n-1 discs from A to B using C

To move n discs from A to C using B

- 1. move n-1 discs from A to B using C
- 2. move disc from A to C

To move n discs from A to C using B

- 1. move n-1 discs from A to B using C
- 2. move disc from A to C
- 3. move n-1 discs from B to C using A


```
def move_tower(size, src, dest, aux):
    if size == 1:
        print move(src, dest) # display the move
    else:
        move tower(size-1, src, aux, dest)
        print move(src, dest)
        move tower(size-1, aux, dest, src)
                                           dest
           Src
                           aux
```

```
def print_move(src, dest):
    print("move top disk from ", src" to ", dest)
```

What does this function compute?

```
def foo(b, e):
    def bar(a, b, e):
        if (e == 0):
            return a
        else:
            return bar(a*b, b, e-1)
        return bar(1, b, e)
```

Exponentiation

```
def power(b, e):
   def power product(a, b, e):
      ''' returns a * b^e '''
      if (e == 0):
         return a
      else:
         return power product(a*b, b, e-1)
   return power product(1, b, e)
• Time requirement? O(n)
```

Can we do better?

• Space requirement? O(n)

Another way to express b^e

$$b^{e} = \begin{cases} 1, & e = 0\\ (b^{2})^{\frac{e}{2}}, & e \text{ is even}\\ b^{e-1} \cdot b, & e \text{ is odd} \end{cases}$$

Fast Exponentiation

```
def fast_expt(b, e):
    if e == 0:
        return 1
    elif e % 2 == 0:
        return fast_expt(b*b, e/2)
    else:
        return b * fast_expt(b, e-1)
```

- Time requirement? $O(\log n)$
- Space requirement? $O(\log n)$

Can we do this iteratively?

Summary

- Recursion
 - Solve the problem for a simple (base) case
 - Express (divide) a problem into one or more smaller similar problems
- Iteration: while and for loops
- Fast Exponential Technique

Summary

- Order of growth:
 - Time and space requirements for computations
 - Different ways of performing a computation (algorithms) can consume dramatically different amounts of resources.
 - Pay attention to efficiency!

Something to think about....

- Can you write a recursive function sum_of_digits that will return the sum of digits of an arbitrary positive integer?
- How about a recursive function product_of_digits that will return the product of the digits?

Notice a pattern?

How would you write a function that computed the sum of square roots of the digits of a number?

Why is Python Cool?

Ask your friends in CS1010 how they would solve these problems in C.

