Московский Государственный Университет им. М. В. Ломоносова

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра вычислительной математики

Курсовая работа

«Реализация библиотеки параллельной записи больших файлов с вещественными числами в текстовом представлении»

«Implementation of a parallel record library of large files with floating-point numbers in a text representation»

Выполнила

Я.В. Нагорных

Научный руководитель

д. ф.-м. н., доцент К. Ю. Богачев

Москва

Оглавление

Введ	дение		2
1.	Опис	ание алгоритма	4
	1.1.	Используемые структуры и классы	4
	1.2.	Распределение задач	5
	1.3.	Преобразование чисел в строковый тип	6
2.	Резул	пьтаты работы и ускорение	17
	2.1.	Тест 1. Массив случайных чисел	17
	2.2.	Тест 2. Целые числа	20
	2.3.	Тест 3. Повторяющиеся числа	21
	2.4.	Тест 4. Огромные массивы	23
3.	Заклі	ючение	26
Списо	к лите	ературы	27

Введение

Постановка проблемы. Печать больших массивов чисел без округления с большой точностью всегда занимает много времени. Однако, не вся печать упирается в возможности диска, как это может показаться. Кроме того, у печати данных мало ресурсов для ускорения.

Печать чисел с плавающей точкой также является проблемой, так как само значение числа и его экспоненту нельзя обрабатывать независимо.

Кроме того, стандартная реализация с использованием таких функций, как

или

достаточно затратна по времени.

Цели работы:

- 1. Ускорить печать больших массивов без потери точности;
- 2. Использовать быстрые алгоритмы печати целых чисел и чисел с плавающей точкой.

Возможные варианты улучшений. Мы уже обратили внимание на то, что стандартные функции преобразования буфера в строковый тип работают крайне долго. Возникает идея применения более быстрых алгоритмов преобразования чисел в строки. Так например

быстрое логарифмирование, разбиение числа на цифры, может заметно ускорить процесс.

Можно уменьшить число обращений к диску. Как известно, данные, отправленные на запись, накапливаются в памяти и записываются тогда, когда получен символ переноса строки или другой терминальный символ. Значит, можно отправлять на печать готовый буфер оптимального размера.

Другой идеей для улучшения является использование многопоточного программирования. Из-за того, что печать в файл должна быть строго последовательной, кажется, что ресурсов для распараллеливания немного. Нельзя разбить исходный массив на равные части и параллельно начать печать. Однако, так как большая часть времени уходит на преобразование чисел в строки, то можно распараллелить именно ее. Непосредственно запись в сам файл упирается в возможности диска. Ее ускорить нельзя.

Также можно задуматься над улучшениями и оптимизировать сам алгоритм, несколько модифицировав вид выходного массива. За счет этого можно уменьшить размер полученного файла. Если будет встречаться подряд несколько одинаковых чисел, то можно не записывать в файл их все. Также, немного уменьшит размер файла отбрасывание ненужных нулей в конце записи числа после точки.

1. Описание алгоритма

Схематично работа алгоритма параллельной записи показана на Рисунке 1.

Рисунок 1. Работа потоков.

1.1. Используемые структуры и классы

Структура reduce_chunk. В ней находится строковый буфер, готовый для печати, и его порядковый номер chunk_id. Кроме того, хранится флаг, является ли этот reduce_chunk последним.

Структура map_chunk. Этот тип состоит из лямбда-функции, которая должна обработать определенный фрагмент массива чисел, и элемента типа reduce_chunk, возвращаемый функцией.

Класс task.

Класс mutex_wait_queue. Это упрощенная реализация очереди сообщений. Под ней понимается очередь со следующим свойством: когда поток пытается прочитать что-то из пустой очереди, то он бло-кируется, до тех пор, пока какой-нибудь другой поток не положит в нее элемент. У этой очереди есть следующие методы:

- dequeue достает верхний элемент из очереди, если очередь непустая. Иначе, поток, вызвавший этот метод блокируется. Также можно передать время блокировки, по истечении которого, поток разблокируется и вернется ни с чем;
- dequeue_all аналогично dequeue, но достает все элементы, находящиеся в очереди, и складывает в переданный указатель вектор из них;
- enqueue кладет элемент в конец очереди.

Класс worker_thread. Это главный поток. Он хранит две очереди сообщений m_map_queue и m_reduce_queue, состоящие из map_chunk и reduce_chunk соответственно. Зачем нужны такие очереди, будет сказано позже.

1.2. Распределение задач

Управляющий, или главный, поток worker_thread вызывает функцию create_mappers(), которая создает несколько потоков-обработчиков, и функцию create_reducer(), которая создает печатающий поток. Сам управляющий поток будет складывать элементы типа map_chunk в очередь m_map_queue. Потоки-обработчики бу-

дут доставать из этой очереди map_chunk-и на обработку и конвертировать числа в буферы типа reduce_chunk, готовые для печати. Эти готовые буферы они будут складывать в другую очередь m_reduce_queue. Печатающий поток должен забирать все готовые буферы из этой очереди и записывать их в правильном порядке в файл.

Что касается памяти, то потоки-обработчики при получении задачи на обработку фрагмента массива создают буфер типа std::string и складывают в него полученную строку. Затем указатель на эту строку складывается в очередь на печать.

1.3. Преобразование чисел в строковый тип

Мы уже говорили о том, что вместо стандартных функций sprintf, strtod и подобных им, будем использовать более быстрый алгоритм преобразования чисел, а именно алгоритм Grisu2.

Но прежде чем приступить к самому описанию этого алгоритма, сначала приведем используемые обозначения и кратко опишем его «предшественника» Grisu.

Используемые обозначения.

Приведем используемые далее обозначения и понятия.

Мы рассматриваем стандарт IEEE 754 — формат представления чисел с плавающей точкой. Знак числа хранится отдельно, поэтому далее мы будем рассматривать положительные числа, имея ввиду, что у отрицательных чисел «-» записан в отдельном бите.

Вообще, число v с плавающей точкой по основанию b представ-

ляется в памяти как

$$v = f_v \times b^{e_v},$$

где основание b в стандарте IEEE 754 равно 2. f_v – целое значение или мантисса, а e_v – noказатель.

Любая мантисса f может быть представлена как

$$f = \sum_{i=0}^{p-1} d_i \times b^i,$$

где $0 \leqslant d_i < b$. Числа d_i – знаки числа.

Будем называть число *нормированным*, если последний знак d_{p-1} отличен от нуля. Если экспонента может принимать любые неограниченные значения, то любое ненулевое число можно так отнормировать путем сдвига знака влево при соответствующей корректировке экспоненты.

В стандарте IEEE 754 представлены не все вещественные числа. Из-за этого, числа, которые не могут быть представлены в этом стандарте, будем округлять. Как известно, числа с цифрой 5 на конце, могут округляться по-разному. Используем следующие обозначения:

- $[x]^{\uparrow}$ округление вверх;
- $[x]^{\square}$ округление до ближайшего четного: например, число 0.5 округляется до 0, а число 1.5 до 2;
- $[x]^*$ используется, когда неважно, как именно округлять;
- $\tilde{x} = [x]_p^s$ округленное число до p знаков после запятой, а s один из вышеизложенных способов округления.

Количественно определим ошибку $|\tilde{x} - x|$ следующим образом. Представим \tilde{x} в виде $\tilde{x} = f \times b^e$, а f округлим до ближайшего такого, что $|\tilde{x} - x| \leq 0.5 \times b^e$, или другими словами, до половины единицы последнего разряда ulp (unit in the last place).

Для положительного числа $v = f_v \times b^{e_v}$ определим ближайшие в памяти числа к нему. v^- – предыдущее число для v, хранящееся в памяти. Аналогично v^+ – следующее число за v. Если v наименьшее, то $v^- = 0$. Если v наибольшее, то $v^+ = v + (v - v^-)$.

Введем понятие *границы* между двумя соседними числами. По определению это средние арифметические

$$m^- = \frac{v^- + v}{2}$$
 и $m^+ = \frac{v + v^+}{2}$.

Очевидно, что границы нельзя представить в виде чисел с плавающей точкой, так как они лежат между двумя соседними числами в памяти. Поэтому любое число w, такое что $m^- < w < m^+$, будет округлено до v. Если же w совпало с одной из границ будем округлять его до ближайшего четного.

Будем говорить, что представление R у числа с плавающей точкой v удовлетворяет требованию с максимальной точностью без округления, если при чтении R будет представлено как v.

Определим тип ${\tt diy_fp}$ для x как беззнаковое целое число f_x , состоящее из q битов, и знакового целого числа e_x неограниченного диапазона. Значение x можно вычислить как $x=f_x\times 2^{e_x}$. Другими словами, строим отображение:

$$x\mapsto (f_x,e_x), \qquad f_x\in \left(0,2^{q-1}\right]\cap \mathbb{Z}, \quad e_x\in \mathbb{Z}, \quad \text{ t.y. } x=f_x\times 2^{e_x}$$

Введем произведение двух таких типов. Вычислять и обозначать его

будем следующим образом:

$$x \otimes y := \left[\frac{f_x \times f_y}{2^q}\right]^{\uparrow} \times 2^{e_x + e_y + q}.$$

Алгоритм Grisu

В статье [1] описан алгоритм Grisu и его улучшения, также доказана точность его работы. Опишем кратко этот алгоритм.

Идея алгоритма. Предполагается, не умаляя общности, что у числа с плавающей точкой v отрицательный показатель. Тогда это число можно выразить как

$$v = \frac{f_v}{2^{-e_v}}.$$

Десятичные цифры v могут быть вычислены путем нахождения десятичного показателя t, для которого $1\leqslant \frac{f_v\times 10^t}{2^{-e_v}}<10$.

Первая цифра является целой частью этой дроби. Последующие цифры вычисляются путем повторного использования оставшейся дроби: нужно умножить числитель на 10 и взять целую часть от вновь полученной дроби.

Идея Grisu состоит в кэшировании приблизительных значений $\frac{10^t}{2^{e_t}}$. Дорогостоящих операций с большими числами не будет: они заменяются операциями с целыми числами фиксированного размера.

Кэш для всевозможных значений t и e_t может быть весьма затратным. Из-за этого требования к кеш-памяти в Grisu упрощены:

кэш хранит только нормированные приближения с плавающей точкой всех соответствующих степеней десяти, а не самих дробей. Таким образом хранятся

$$\tilde{c}_k := \left[10^k\right]_q^{\star},$$

где q — точность кэшированных чисел. Кэшированные числа сокращают большую часть вычисления экспоненты v, так что остается вычислить только показатель.

В процессе вычисления знаков используются степени десяти с экспонентой $e_{\tilde{c}_t}$, близкой к e_v . Разница между двумя показателями будет небольшой. Фактически, Grisu выбирает степени десяти так, что разница лежит в определенном диапазоне.

Реализация. Алгоритм Grisu:

- $Bxo\partial$: положительное число с плавающей точкой v точности p.
- Условие: точность diy_fp удовлетворяет $q \geqslant p+2$, а кеш степеней десяти состоит из предварительно вычисленных нормированных округленных diy_fp со значениями $\tilde{c}_k := \left[10^k\right]_q^*$
- Bывод: строковое представление в основании 10 для V такое, что $[V]_p^\square = v$. То есть при чтении числа V, оно должно быть округлено до v.

Шаги алгоритма:

1. Π реобразование: определим нормированный $\operatorname{diy_fp} w$ такой, что w=v.

2. Кэширование степеней: сначала вычисляем

$$k = -\left[\log_{10} 2^{\alpha - e + q - 1}\right],\,$$

а затем находим с заданной точностью

$$\tilde{c}_{-k} = f_c \times 2^{e_c}$$

такое, что $\alpha \leqslant e_c + e_w + q \leqslant \gamma$. (α и γ заданные заранее параметры, причем $\alpha + 3 \leqslant \gamma$. Считаем $\alpha = 0$ и $\gamma = 3$).

3. Произведение: пусть

$$\tilde{D} = f_D \times 2^{e_D} := w \otimes \tilde{c}_{-k}.$$

4. Выход: определим искомое

$$V := \tilde{D} \times 10^k.$$

Вычислим десятичное представление $\tilde{D},$ за которым следует строка е и десятичное представление k.

Поскольку значение diy_fp больше, чем значение входного числа, преобразование в шаге 1 дает точный результат. По определению diy_fp-ы имеют бесконечный диапазон экспоненциальности, и следовательно, показатель степени w достаточно велик для нормирования. Заметим, что показатель e_w удовлетворяет $e_w \leqslant e_v - (q-p)$.

Легко показать, что $\forall i \quad 0 < \tilde{e}_{c_i} - \tilde{e}_{c_{i-1}} \leqslant 4$, и поскольку кеш неограничен, требуемый \tilde{c}_{-k} должен находиться в кэше. Это является причиной первоначального требования $\gamma \geqslant \alpha + 3$. Разумеется, бесконечный кеш не нужен.

Результатом Grisu является строка, содержащая десятичное представление \tilde{D} , за которым следуют символ \mathbf{e} и k знаков. Таким образом, он представляет собой число $V:=\tilde{D}\times 10^k$. Утверждается, что представление V у числа v удовлетворяет требованию с точностью p.

Алгоритм Grisu2

Но у Grisu есть существенный недостаток. Например, при значениях по умолчанию $\alpha=3$ и q=64 получаем k=-19, а значит, число 1 будет напечатано в виде 100000000000000000000=19. Поэтому будем использовать Grisu2. Этот алгоритм является усовершенствованием предыдущего и не записывает лишние нули в конец числа. Так, если целочисленный тип $\operatorname{diy}_{-}\operatorname{fp}$ содержит более двух дополнительных битов, или так называемых флагов, то эти флаги можно использовать для сокращения длины выходной строки. В отличие от Grisu алгоритм Grisu2 не генерирует полное десятичное представление, а просто возвращает значащие цифры и соответствующий показатель. Затем процедура форматирования объединяет эти данные для получения представления в требуемом формате.

Идея алгоритма. Как описано выше, Grisu2 использует дополнительные флаги для создания более короткой выходной строчки. Также Grisu2 не будет работать с точными числами, а вместо этого будет вычислять аппроксимации m^- и m^+ . Чтобы избежать ошибочных результатов, которые не удовлетворяют требованиям, добавляется так называемое безопасное пространство (safety margin) во-

круг приблизительных границ. То есть увеличивается диапазон, в котором, согласно алгоритму, может оказаться полученное число. Как следствие, Grisu2 иногда может вернуть не самое оптимальное представление: оно может лежать вне изначальных границ. Во избежание таких проблем добавляется третий дополнительный флаг. Итого, $q \geqslant p+3$.

Реализация. Алгоритм Grisu2:

- $Bxo\partial$: положительное число с плавающей точкой v точности p.
- Условие: точность diy_fp удовлетворяет $q \geqslant p+3$, а кеш степеней десяти состоит из предварительно вычисленных нормированных округленных diy_fp значений $\tilde{c_k} := \left[10^k\right]_a^\star$
- *Вывод:* десятичные знаки d_i , где $0 \le i \le n$ и целочисленное K, такое что $V := d_0 \dots d_n \times 10^K$ удовлетворяет $[V]_p^\square = v$.

Шаги алгоритма:

- 1. Γ раницы: вычисляем границы для v: m^- и m^+ .
- 2. Преобразование: определим diy_fp для w^+ так ,что $w^+=m^+$. Определим также diy_fp для w^- так, что $w^-=m^-$ и $e_w^-=e_w^+$.
- 3. Кэширование степеней: находим с заданной точностью

$$\tilde{c}_{-k} = f_c \times 2^{e_c}$$

такое, что $\alpha \leqslant e_c + e_w + q \leqslant \gamma$.

4. Произведение: вычисляем

$$\tilde{M}^- := w^- \otimes \tilde{c}_{-k};$$

 $\tilde{M}^+ := w^+ \otimes \tilde{c}_{-k};$

и пусть также

$$\begin{split} M_{\uparrow}^- &:= \tilde{M}^- + \mathrm{1ulp}; \\ M_{\downarrow}^+ &:= \tilde{M}^+ - \mathrm{1ulp}; \\ \delta &:= M_{\downarrow}^+ - M_{\uparrow}^-. \end{split}$$

- 5. Количество разрядов: находим наибольшее κ такое, что $M_\downarrow^+ \mod 10^\kappa \leqslant \delta$ и определим $P := \left\lfloor \frac{M_\downarrow^+}{10^\kappa} \right\rfloor$.
- 6. Bыход: определим $V := P \times 10^{k+\kappa}$. Получаем десятичные знаки d_i и число n путем вычисления десятичного представления P. Положим $K := k + \kappa$ и возвращаем его с n знаками d_i .

Grisu2 не дает никаких гарантий относительно краткости длины результата. Его результатом является кратчайшее возможное число в интервале от $M_{\uparrow}^- \times 10^k$ до $M_{\downarrow}^+ \times 10^k$ включительно, где $M_{\uparrow}^- \times 10^k$ и $M_{\downarrow}^+ \times 10^k$ зависят от точности q для $\mathrm{diy_fp}$. Чем больше q, тем ближе $M_{\uparrow}^- \times 10^k$ и $M_{\downarrow}^+ \times 10^k$ к фактическим границам m^- и m^+ .

Для наглядности на Рисунке 2 приведен пример работы Grisu2. В частности, видно, что алгоритм отбрасывает лишние нули в конце числа и что выбирает более короткую запись числа. Иррациональное число Grisu2 напечатал с машинной точностью.

```
array[0] = 1;
                              1
array[1] = 1.2;
                              1.2
array[2] = 1.23;
                              1.23
array[3] = 1.23400000;
                              1.234
array[4] = 1.23456789;
                              1.23456789
array[5] = -1;
                              -1
array[6] = -1.234;
                              -1.234
array[7] = sqrt(2);
                              1.4142135623730952
array[8] = 1234e-36;
                              1.234e-33
array[9] = 0.000000123;
                              1.23e-7
array[10] = 0.123;
                              0.123
                              12.3
array[11] = 12.3;
array[12] = 123.000;
                              123
                                выходной файл
        массив
```

Рисунок 2. Полученный с помощью Grisu2, выходной файл для данного массива.

Улучшения для алгоритма

Будем использовать следующее улучшение. Пусть в массиве есть n подряд идущих одинаковых чисел с заданной точностью, то есть $\forall i: 1 \leqslant i < n$ верно, что $\|x_i - x_{i-1}\| \leqslant \varepsilon$, где ε – машинная точность. В таком случае сократим запись n чисел и вернем строку вида $\mathbf{n} * \mathbf{x}$. Таким образом, если в нашем массиве много повторяющихся чисел, то выходная строчка будет гораздо короче, а значит, можно ускорить программу и уменьшить размер выходного файла. Для этого также нужно модифицировать алгоритм чтения, чтобы

он мог обрабатывать запись вида **n***x.

Запись целых чисел, означающих количество повторяющихся элементов массива, также можно ускорить. Для этого используется алгоритм 2 из статьи [2]. Суть алгоритма заключается в быстром логарифмировании числа по основанию 10.

2. Результаты работы и ускорение

Чтобы проверить эффективность работы алгоритма параллельной записи, описанного в 1, проведено сравнение с алгоритмом стандартной печати:

```
for (int i = 0; i < n;)
{
    for (int j = 0; j < m; j++, i++)
        fprintf (f, "%.16f", a[i]);
    fprintf (f, "\n");
}</pre>
```

Здесь n — размер массива, а m — количество чисел, записываемых в одну строку. Стандартная печать будет записывать числа с 16 знаками после запятой.

Для всех дальнейших тестов было сделано следующее. Оба выходных файла, полученные работой параллельного алгоритма и стандартного, считывались вновь. Затем вычислялась разница между считанным числами. Во всех запусках погрешность не превышала машинной точности, что говорит о точности работы реализованного алгоритма.

2.1. Тест 1. Массив случайных чисел

Оба алгоритма запускались на одних и тех же массивах вещественных чисел, сгенерированных случайным образом. Этот тест полезен тем, что в реальных моделях данные могут задаваться каким-либо распределением (например, нормальным), где все числа

являются вещественными и различными.

Описанный в Разделе 1 алгоритм параллельной записи запускался с разным числом потоков на машине с 6 ядрами.

Время работы в секундах для обоих алгоритмов приведено в Таблице 1. Также в таблице приведен размер полученного текстового файла. Под числом потоков понимается число потоков-обработчиков. Таким образом реально задействовано на два потока больше, так как помимо обработчиков есть еще управляющий поток и печатающий.

Размер		Число	потоко	В	Стандартная	Размер
массива	6	4	2	1	печать	файла
	0.593	0.880	1.620	3.196	4.256	
10^{7}	0.562	0.841	1.612	3.239	4.176	245 MB
	0.530	0.802	1.502	3.052	4.188	
	2.571	4.044	7.812	15.37	22.47	
$5 \cdot 10^7$	2.634	4.273	8.214	16.30	21.11	1.2 GB
	2.689	4.179	7.822	15.32	20.89	
	5.219	8.276	15.67	32.46	41.71	
10^{8}	5.077	7.970	15.30	30.57	41.78	$2.4~\mathrm{GB}$
	5.189	8.078	15.37	30.75	41.96	
	41.12	49.15	75.23	148.91	200.94	
$5 \cdot 10^8$	40.23	50.08	75.92	149.08	200.33	12 GB
	41.23	49.16	74.92	148.52	200.69	

Таблица 1.

Также стоит заметить, что отношение времени работы при уве-

личении количества потоков заметно уменьшается, и при увеличении размеров массива стремится к обратному отношению числа потоков. Наглядно зависимость времени от числа потоков для массива размером 10^8 изображена на Рисунке 3.

Рисунок 3. Зависимость времени работы от числа потоков.

Тот факт, что отношения работы не строго пропорциональны, объясняется несколькими фактами. Во-первых, часть времени, хоть и небольшую при таких данных, занимала запись на диск. Во-вторых, не все потоки могли быть все время задействованными. Некоторые потоки могли обращаться к пустой очереди и тем самым тратить время на ожидание.

Среднее ускорение работы алгоритма по сравнению со стандартной печатью приведены в Таблице 2. Ускорение на одном потоке демонстрирует ускорение работы Grisu2 по сравнению со стандартной печатью.

Размер	Число потоков					
массива	6	4	2	1		
10^{7}	7.49	5.00	2.67	1.33		
$5 \cdot 10^7$	8.17	5.16	2.70	1.37		
108	8.10	5.16	2.71	1.34		
$5 \cdot 10^8$	4.91	4.06	2.66	1.35		

Таблица 2.

Заметим, что при увеличении массива до определенного размера, ускорение возрастает, а затем спадает. Первое объясняется тем, что с увеличением объема данных, потоки простаивают меньше. Второй факт будет рассмотрен подробнее в пункте 2.4.

2.2. Тест 2. Целые числа

Массив состоит из сгенерированных случайным образом целых чисел от 0 до 1000. С помощью этого теста, во-первых, можно проверить работу с целыми числами, а во-вторых, убедиться в том, что Grisu2 отбрасывает ненужные нули.

Размер	Число потоков			3	Станд.	Размер
массива	6	4	2	1	печать	файла
	0.213	0.322	0.643	1.297	5.300	
10^{7}	0.216	0.320	0.649	1.284	5.245	$56~\mathrm{MB}~/~205~\mathrm{MB}$
	0.219	0.337	0.650	1.321	5.312	
	1.052	1.664	3.319	6.362	27.93	
$5 \cdot 10^7$	1.069	1.675	3.334	6.375	29.46	$295~\mathrm{MB}~/~1~\mathrm{GB}$

	1.071	1.662	3.340	6.490	29.43	
	2.057	3.374	6.618	12.61	55.04	
10^{8}	2.018	3.309	6.712	12.63	55.70	$590~\mathrm{MB}~/~2~\mathrm{GB}$
	2.012	3.248	6.601	13.66	56.31	
$5\cdot 10^8$	10.82	16.68	32.14	62.94	283.61	
	10.91	16.68	32.20	64.08	290.70	$2.9~\mathrm{GB}~/~10~\mathrm{GB}$
	10.15	16.45	32.09	64.12	287.54	

Таблица 3.

Заметим, что размер файла, полученного с помощью нового алгоритма гораздо меньше размера файла, полученного стандартной печатью, так как отброшены лишние нули. За счет этого ускорение возросло по сравнению с Тестом 2.1.

Размер	Число потоков					
массива	6	4	2	1		
10^{7}	24.47	16.19	8.17	4.06		
$5 \cdot 10^7$	27.20	17.36	8.69	4.51		
10^{8}	27.44	16.82	8.38	4.29		
$5 \cdot 10^8$	27.03	17.30	8.93	4.51		

Таблица 4.

2.3. Тест 3. Повторяющиеся числа

Сгенерируем массив чисел из 0 и 1. В этом случае все последовательности одинаковых подряд идущих чисел будут сворачиваться в короткую строку вида n*x.

Были сделаны замеры времени аналогично предыдущим тестам. Время работы в секундах приведено в Таблице 3. Также приведен размер файла «со звездами», полученным быстрым алгоритмом, и размер файла «без звезд», полученного алгоритмом стандартной печати.

Размер	Число потоков			3	Станд.	Размер
массива	6	4	2	1	печать	файла
	0.112	0.181	0.339	0.652	3.445	
10^7	0.109	0.159	0.310	0.604	3.322	24 MB / 187 MB
	0.119	0.168	0.329	0.661	3.460	
	0.521	0.843	1.630	2.983	16.91	
$5 \cdot 10^7$	0.549	0.841	1.643	3.067	17.30	123 MB / 936 MB
	0.530	0.833	1.612	2.875	16.96	
	1.178	1.748	3.343	6.056	36.19	
10^{8}	1.152	1.678	3.209	5.959	36.38	245 MB / 1.8 GB
	1.163	1.689	3.290	6.039	36.41	
	5.720	8.354	15.82	31.50	182.22	
$5 \cdot 10^8$	5.714	8.346	15.71	31.29	182.00	1.2 GB / 9.4 GB
	5.816	8.418	15.92	31.69	183.52	

Таблица 5.

Среднее ускорение приведено в Таблице 6.

Размер	Число потоков					
массива	6	4	2	1		
10^{7}	30.08	20.13	10.46	5.33		
$5 \cdot 10^7$	31.98	20.32	10.47	5.74		
10^{8}	31.20	21.31	11.07	6.03		
$5 \cdot 10^8$	31.75	21.81	11.54	5.80		

Таблина 6.

2.4. Тест 4. Огромные массивы

Здесь, как и в первом случае, числа будут генерироваться случайным образом. Сравнивать будем стандартную печать и алгоритм, запущенный на $12 \ (+2)$ потоках.

Помимо обычного запуска, проведем и запуск с записью не на диск, а в разделяемую память *shared-memory*. Как известно, разделяемая память является самым быстром средством обмена данными между процессами.

Ранее говорилось, что скорость диска влияет на печать, но не всегда сильно. За счет сравнения записи на диск и в *shared-memory* можно оценить, это влияние.

Далее на Рисунке 4 приведена зависимость времени работы от размера массива.

Сначала хочется заметить, что стандартная печать не сильно замедляется при записи в диск. Все время скорость работы диска была порядка 40–50 Mb/s. Диск фактически не оказывает никакого существенного влияния на работу.

Из графиков также видно, что при записи в shared-memory от-

Рисунок 4. 1 – стандартная печать с записью на диск; 2 – стандартная печать с записью в разделяемую память; 3 – алгоритм параллельной печати с записью на диск; 4 – алгоритм параллельной печати с записью в разделяемую память.

ношение времени работы стандартного алгоритма и ускоренного постоянно, так как оба графика – прямые. Это значит, что ускорение одинаково на всех данных.

Однако, такого нельзя сказать в случае записи на диск. На графике в точке $4\cdot 10^8$ (9.6 GB) происходит излом: начинает ощущаться влияние диска. Именно это мы и наблюдали в Тесте 1 – ускорение

немного упало при $5\cdot 10^8$. С этого момента печать начинает упираться в диск. При запуске тестов было замечено, что скорость записи на диск временами достигает 800-900 Mb/s. Из-за слишком больших файлов (так файл при размере массива 10^9 достигает 24 GB) создается очередь из буферов на печать. Потоки-обработчики обрабатывают буферы быстрее, чем производится сама печать. Разница между третьим и четвертым графиком — накладные расходы на работу диска.

3. Заключение

В результате написания курсовой работы была решена поставленная задача: реализована библиотека параллельной записи массивов вещественных чисел.

В ходе тестирования была проверена точность работы реализованного алгоритма, а также измерено ускорение в сравнении со стандартной функцией печати.

Написанная на языке C++ подпрограмма была внедрена в промышленный гидродинамический симулятор tNavigator.

Список литературы

- 1. FLORIAN LOITSCH. Printing Floating-Point Numbers Quickly and Accurately with Integers, 2004.
- 2. Wojciech Muła. SSE: conversion integers to decimal representation, 2011.
- 3. Богачев К.Ю.. Основы параллельного программирования. М.: Бином. Лаборатория знаний, 2010.
- 4. DAVID GOLDBERG. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1): 5–48, 1991.