有关计算机体系结构的 思考汇总

樊建平 (fan@ict.ac.cn) 中国科学院计算技术研究所 HPC-0G课题组 2003.10.11

内容

- —几类网格计算机
- —Farming 计算模型与应用
- —指导计算机设计的ASC模型
- —DSAG 的理论模型、程序模型
- —支持DSAG模型的操作系统

几类网格计算机

- —网格相关的概念
- —面向网格的计算机系统
- —Dagger:一种散耦合的网格计算机 体系结构
- —网格处理器
- —网格化的个人计算机
- —网格化的支持DSAG的计算机

网格相关的概念

- —xxxGRID: bioGRID, PhyGRID, SciDataGRID, EduGRID, TradeGRID
- —GRID:共享(计算资源—》各种资源)、动态、按需、服务等特征。研究协议、标准,理论模型与方法,平台、应用系统等。可以从Internet演化、应用特征、学科发展(处理网络空间)、关键特征
- —GRIDxxx:网格计算机、网格终端、网格磁盘等。
- 一各种网格服务器在网格总的特征影响下形成。不同点主要体现在"拆"的方式方法不同,表现在部件定义、互连组织方式及计算机目标(高性能、服务器、个人计算机等)

面向网格的计算机系统

- —面向网格的服务器:传统体系结构+ 传统操作系统+网格处理平台
- —面向网格的服务端 (NC, PC): 支持 网格处理协议

Dagger:一种散耦合的网格计算机体系结构 A Decoupled Architecture of Grid Computer

-由网格处理器、网 格存储、网格控制 台、网格终端、 格交换机、网格路 由器6个网格部件 和IntraGRID、 InterGRID 2个网 格构成方法 (Construction Method)组成。有 些网格部件又由一 些网格零件组成 所谓"网格零件"即 在网格环境下可见 的功能单元

Dagger的早期实践:体系结构

早期结构的操作系统:DCOS结构

网格处理器

—支持整个Internet是一台计算机的概 念。是整个网格系统的发动机。

网格化的个人计算机

- —启发于联想的微网格概念:将家庭中使用的各种设备通过微网格协议 互连。
- —网格化的个人计算机:定义连接PC 内部设备(计算、显示、存储、交 互、软件固件等)的网格协议。

网格化的支持DSAG的计算机

一面向大规模并行处理,利用网格理念,将计算机资源分拆为CPU组、MEM组、DISK组三类。通过光纤等高速互连手段实现体系结构快速重组,提高应用程序的高生产率。

Farming 计算模型与应用

启发于原始农业生产方式的大规模并行处理。 允许处理效率与互连带宽变化。生产过程在单 户或村基础上完成。交易与深加工在连接度 高、离用户进的地方进行。可以用于探索计算 网格(Internet 为计算机)CPU分布与构成 的思路之一。是否可以用于多粒度并行计算机 的构成呢?

Farming 计算模型

指导高性能计算机设计的ASC模型

算法设计人员使用计算机模型 (RAM, PRAM, LogP等)进行设计与复杂度 分析。计算机设计人员使用模拟器与 Benchmark程序对系统进行事先分析、事 后测试。随着高性能构造器件多样化 (CPU: 商用、SOC、专用、FPGA、SIP等) 的发展及使用面的扩大(xxx信息学、计 算xxx),发展ASC模型指导高性能计算机 设计师越来越有必要。这也意味着高性 能计算机设计师懂器件、体系、系统软 件的同时,必须懂应用系统。

ASC模型(续)—例子

—针对生物信息学的需求,设计曙光 4000H, 指标为 100 TFLOPS 的计算 机系统。假设有以下三种选择:光 互连+商业PC主板、FPGA定制芯片 +3D mesh、高性能SOC+2D Mesh,我 们如何选择?如果还针对密码学, 我们又如何选择呢?可以有一个统 一的方法指导进行这类选择吗?

ASC模型(续)—构成与层次

1、领域相关应用系统

2、基本算法及领域相关算法与程序

3、程序语言与环境:

4、管理软件:操作系统

5、连接与体系结构层:互连带宽与方式,

6、器件与部件层:CPU、MEMROY、DSK、主板

ASC模型(续)—功能与实现

- —迫使计算机设计人员从应用(算法与系统)、软件(语言与操作系统)、硬件(器件与体系)三个层次多个角度(成本、研制周期、技术积累等)、分析与设计计算机系统。
- —实现考虑:借助自动控制相关理论、数学优化问题、成本交易模型等。

DSAG 的理论模型、程序模型

网格化的动态自组织计算机体系机构—DSAG体系结构

- 主要由CPU-BOX、MEM-BOX 和Disk-BOX构成:CPU(N)+MEM(M)+DSK(L)
- 通过动态映射可实现传统体系结构:
 - SMP: CPU(n)+MEM(m)+DSK(1)
 - MPP: E[CPU(n)+MEM(m)]+DSK(1)
 - Cluster:E[CPU(n)+MEM(m)+DSK(l)]
 - NAS like: CPU(n)+E[MEM(m)+DSK(l)]
- 还可以实现新的体系结构:
 - SMP(0-1)+MPP(0-1)+Cluster(0-1)
 - 动态D-SMP、动态D-MPP、动态D-Cluster
 - D-SMP(0-1)+D-MPP(0-1)+D-Cluster(0-1)
- Computer Architecture on Demand

■ RAM, CAM, PRAM 等已有模式

定义1. 一个RAM模型计算机C是一个四元组,其中P是计算机C的处理器,M是C的存贮器,In是C的指令集,r是C的字长。存贮器M由无限个存贮单元,,,…构成,每个存贮单元含有r个二进制位,其中r是事先约定的正整数。通常约定,M的头d个单元用作处理器P的寄存器,d是事先约定的正整数。RAM模型计算机C可以用图1描述。

特征:非线型执行,P1-Pn之间按某种顺序执行。是否与PRAM模式等同?

M

DSAG 的程序设计模型

- ■可重构计算的特征分析
 - 主要是FPGA技术发展带动的学科
 - 以最小的Gate No实现高速计算
 - 根据程序改变自己(预制而非动态)
- ■DSAG 支持的并行程序特性分析

RC(Reconfigurable Computing) 介绍

Reconfigurable Computing - defined

- RC is the middle ground between ASICs and microprocessors. ASICs are the ultimate in speed but lack flexibility while processors have the ultimate in flexibility but lack speed.
- Its key feature is the ability to perform computations in hardware to increase performance, while retaining much of the flexibility of a software solution.

Names: Adaptive Computing (AC), Reconfigurable Computing (RC), Run Time Reconfiguration (RTR) & Dynamically Reconfigurable Computing

The many names of RC

Fuzzy Hardware	Neural Networking	Transputing
Custom Computing	Genetic Computing	Soft Computing
Hyper-Specificity Computing	Reconfigurable Computing	Adaptive Computing
Hardware Virtualization	Transformable Computing	Instruction Set Metamorphosis

RC Hardware Granularity

Coarse grain functional units consist of ALU and memory units

Medium grain Functional units

consist of many input LUT1

Fine grain Functional Units take in 2-3 inputs to produce a single output

The functional unit from a Xilinx 6200 cell

Application Domains

DSP	Robotics	Sorting	Wireless
Event-Driven Simulation	Data Format Converters	Parallel Computing	Cryptography / Security
General Computation	Human-Computer Interactions	Hough / Radon transforms	Optoelectronics
AI / neural networks	Video compression	Tunable Oscillators	Language recognition

.... going into every type of application

DSAG 并行程序设计模型分析

指令级并行:MIT RAW Project

线程级:DSAG

进程级:DSAG

任务级:DSAG

Idea: distribute everything over a generalized on-chip network

支持DSAG体系结构的高性能计算机可高效运行的应用程序类型

- 已存在的三类MPI、Pthread 和PVM 程序 无需修改均可高效地运行于DSAG机器
- 编制新的应用程序时,可直接调用共享内存或消息传递算法模块,利用已有成果,加速程序的开发。
- 设计新算法解决新问题时,可以按问题本身的并行特征自由设计算法,无需考虑机器的特征。

DSAG 对已有并行程序的支持

- 已存在的三类MPI、Pthread 和PVM 程序 无需修改均可高效地运行于DSAG机器。
- 机器通过自动判定(装载过程中进行分析—执行代码二进制分析)或执行命令指定类型,将自己变成相应的硬件形态(SMP、MPP、Cluster)执行相应的程序。

DSAG 的高生产率特征

编制新的应用程序时,可直接调用共享 内存或消息传递算法模块,利用已有成 果,加速程序的开发。一个应用程序可 能包括对三类结构库函数的并行调用。 例如程序员开发通过投票方式确定基因 比对结果的程序(一组数据调用三组函 数库独立处理,结果比对,2:1为执行 完),机器将自动调整为三部分 (SMP、MPP、Cluster),并行执行三 个独立的程序,数据可以共享!

DSAG 新的程序设计模式

- 设计新算法解决新问题时,可以按问题本身的并行特征自由设计算法,无需考虑机器的特征。
- 例如对WEB空间的内容进行过滤与扫描时,相同数据用不同pattern过滤时,机器可以手动或自动变成MISD(Multi-Instr. Single Data) 计算机进行处理。

支持DSAG模型的操作系统

- —microkernel in every device
- —Physical Single address spaces
- —Parallel OS running at Host node
- —LINUX Interface with computing library.

谢 谢!

