Kombinační logické obvody

Booleovská proměnná a funkce

Definice 1: Booleovská proměnná je proměnná, která nabývá pouze hodnot 0 nebo 1.

Přímé proměnné: a, b, c, ...

Negované proměnné: \bar{a} , \bar{b} , \bar{c} , ...

Definice 2: Booleovská funkce n proměnných je funkce $f: \{0,1\}^n \rightarrow \{0,1\}$

Booleovská funkce n proměnných $y = f(x_1, x_2, ..., x_n)$, kde $y, x_1, x_2, ..., x_n$ jsou booleovské proměnné.

Pro n booleovských proměnných existuje 2^{2ⁿ} booleovských funkcí

Funkce dvou proměnných

а	b	0	NOR		ā		\overline{b}	XOR	NAND	AND	⇔	b	=>	а		OR	1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Minterm a maxterm

а	b	С	Minterm	Maxterm
0	0	0	$m_0 = \bar{a}\bar{b}\bar{c}$	$M_0 = a + b + c$
0	0	1	$m_1 = \bar{a}\bar{b}c$	$M_1 = a + b + \bar{c}$
0	1	0	$m_2 = \bar{a}b\bar{c}$	$M_2 = a + \overline{b} + c$
0	1	1	$m_3 = \bar{a}bc$	$M_3 = a + \bar{b} + \bar{c}$
1	0	0	$m_4=aar bar c$	$M_4 = \bar{a} + b + c$
1	0	1	$m_5=aar{b}c$	$M_5 = \bar{a} + b + \bar{c}$
1	1	0	$m_6 = ab\bar{c}$	$M_6 = \bar{a} + \bar{b} + c$
1	1	1	$m_7 = abc$	$M_7 = \bar{a} + \bar{b} + \bar{c}$

Minterm je součinem všech proměnných (buď přímých nebo negovaných).
Pokud pro daný řádek proměnná nabývá log. 1, použije se přímá proměnná. V opačném případě negovaná proměnná.

Maxterm je součtem všech proměnných (buď přímých nebo negovaných). Pokud pro daný řádek proměnná nabývá log. 1, použije se negovaná proměnná. V opačném případě přímá proměnná.

Pozn.: žádná proměnná se v mintermu a maxtermu neopakuje dvakrát, a to ať v přímé nebo negované podobě.

Úplné normální formy

Úpná normální disjunktní forma (ÚNDF) je součtem (disjunkcí) mintermů. Úpná normální konjunktivní forma (ÚNKF) je součinem (konjunkcí) maxtermů.

а	b	С	У		
0	0	0	0		M0
0	0	1	1	m1	
0	1	0	0		M2
0	1	1	0		M3
1	0	0	0		M4
1	0	1	1	m5	
1	1	0	1	m6	
1	1	1	0		M7

$$y = m1 + m5 + m6 = \bar{a}.\bar{b}.c + a.\bar{b}.c + a.b.\bar{c}$$

$$y = M0. M2. M3. M4. M7 =$$
 $(a + b + c). (a + \bar{b} + c).$
 $(a + \bar{b} + \bar{c}). (\bar{a} + b + c). (\bar{a} + \bar{b} + \bar{c})$

Pravdivostní tabulka -> booleovský výraz (formule)

ÚNDF (Úplná normální disjunktní forma)

<i>y</i> =	$\bar{a}.\bar{b}.c$	$+a.\bar{b}.c$	$+(a.b.\bar{c}$
		/	

Minter $y = \overline{a.\overline{b}.\overline{c} + a.b.c}$

а	b	С	У
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0 🕨
1	0	1	1
1	1	0	1 /
1	1	1	0 🖟

Když je více jedniček než nul, je výhodnější popsat výrazem negaci funkce. Pak se zaměřujeme na nuly.

Booleova algebra

Zákony	+(or)	.(and)
Neutrality nuly a jedničky	x + 0 = x	x. 1 = x
Komutativní	x + y = y + x	x.y=y.x
Asociativní	(x+y)+z=x+(y+z)	(x.y).z = x.(y.z)
Distributivní	(x+y).(x+z) = x+y.z	x.(y+z) = x.y + x.z
Idempotence	x + x = x	x.x = x
Agresivity nuly a jedničky	x + 1 = 1	x.0=0
Absorbce	x + xy = x	$x.\left(x+y\right) =x$
Absorbce negace	$x + \bar{x}.y = x + y$	$x.\left(\bar{x}+y\right)=x.y$
Negace negace	$\bar{\bar{x}} = x$	
Vyloučeného třetího	$x + \bar{x} = 1$	$x.\bar{x}=0$
De Morganovy	$\overline{x+y} = \overline{x}.\overline{y}$	$\overline{x.y} = \bar{x} + \bar{y}$

Algebraický důkaz zákonů absorbce negace

$$x(\bar{x} + y) = xy$$

Důkaz:

$$x(\bar{x} + y) = x\bar{x} + xy = xy$$

$$x + \bar{x}y = x + y$$

Důkaz:

$$x + \bar{x}y = x(1 + y) + \bar{x}y = x + xy + \bar{x}y = x + xy + \bar{x}y = x + xy + \bar{x}y = x + y(x + \bar{x}) = x + y$$

Zákony booleovy algebry využijeme k minimalizaci booleovské funkce

$$y = a.b.c + a.\overline{b}.\overline{c} = a.c(b + \overline{b}) + a.\overline{b}.\overline{c} =$$

$$= a.c.1 + a.\overline{b}.\overline{c} = a(c + \overline{b}.\overline{c}) = a.(c + \overline{b})$$

Minimalizace booleovské funkce je postup, kterým výraz zjednodušíme z pohledu počtu přímých a negovaných proměnných a počtu termů ve výrazu. Obecně řečeno snížíme počet operací, které je nutno provést.

Metody:

- Algebraická minimalizace (úpravy výrazu využitím zákonů booleovy algebry)
- Karnaughovy mapy
- Algoritmus Quine-McCluskey

Logické obvody - logické (booleovské) funkce implementované v hardwaru

Přehled nejčastěji užívaných logických hradel

Invertor $y = \bar{a}$

Hradlo AND y = abb 74HC08

Hradlo OR y = a + b

Buffer y = a

Vynucené zpoždění nebo zesílení signálu

74HC04

Hradlo NAND $y = \overline{ab}$

Hradlo NOR $y = \overline{a+b}$

Hradlo XOR

$$y = a \oplus b$$

Vícevstupá hradla, uvádíme pouze pro NAND, obdobně pro AND, OR, NOR, XOR

Třívstupový NAND

Čtyřvstupový NAND

$$y = \overline{abcd}$$

$$\begin{matrix} a \\ b \\ c \\ d \end{matrix}$$

Osmivstupový NAND

$$y = \overline{abcdefgh}$$

PRO ZVĚDAVCE:

U každého obvodu uvádíme číslo (např. 74HC00) pod kterým můžete výše uvedené hradlo zakoupit. Pro další informace použijte vyhledávač a dotaz např. "74HC00 datasheet pdf" a získáte podrobné informace o daném obvodu.

Kombinační logické obvody

Stavební prvky: logické obvody AND, OR, NOR (negovaný OR), AND, NAND (negovaný AND), XOR (exclusive or), invertor

Pospojováním se tvoří složitější logické funkce.

Pro daný logický výraz nakreslete odpovídající schéma

$$y = a + \overline{b + d.(c + \overline{ab})}$$

Řešení

$$z = \overline{\overline{a} + b + c}$$

ÚNDF → schéma zapojení

а	b	С	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Chování kombinačního obvodu v čase

T_d je zpoždění kombinačního obvodu. Je to doba mezi změnou vstupu a tomu odpovídající změně výstupu. Každé hradlo má určité zpoždění a zpoždění narůstá, jak se změna vstupu šíří obvodem. Celkové zpoždění t_d je tedy závislé na tom, které bity se mění na vstupu. V návrhu obvodů se musí vždy počítat s největším možným zpožděním.