Lecture 7.5: Advanced Markov Chain Monte Carlo

Professor Alexander Franks

2020-11-25

Challenges in MCMC

- Modern models often have *many* parameters. Large models pose a challenge for MCMC.
- When there are thousands or more parameters
 - MCMC may take a long time to conververge to the stationary distribution
 - In Metropolis-Hastings we have many tuning parameters for the proposal distribution
 - Gibbs sampling has no tuning parameters, but does not work well for highly correlated posterior distributions
- In general, MCMC is very slow relative to optimization methods

Modern MCMC

- Gibbs and Metropolis samplers have a "random walk" behavior
 - Induces autocorrelation
 - Makes it difficult to explore the posterior space
- Hamiltonian Monte Carlo (HMC) borrows an idea from physics to reduce this problem

HMC

- Imagine a marble on a frictionless surface. The location of the marble is the current value of θ_t
- The negative posterior density is the "height" of the surface
- Each iteration we flick the marble with some velocity in a random direction
- Regions of high posterior density are like "wells"

HMC

- For Metropolis-Hastings we only need to be able to evaluate the posterior at each location
- For HMC we need the gradient (derivative) of the posterior as well
 - Determines where the marble rolls
- In physics the Hamiltonian is the sum of the kinetic energies, plus the potential energy of the particles
 - As our proposal, we randomly sample a momentum for the marble and update its position accordingly
 - Can think of HMC as the MH algorithm with a very clever jumping/proposal rule

HMC

Try out HMC at:

https://chi-feng.github.io/mcmc-demo/app.html

- Choose "HamiltonianMC" algorithm
- Experiment by sampling from different target distributions
- Compare to the Random Walk Metropolis

Approximate Inference

- MCMC can be very slow in high dimensional problems
- Idea: find a distribution that is easy to sample from which closely approximate $p(\theta \mid y)$
- A couple of examples
 - Laplace Approximation
 - Variational Bayes

Laplace Approximation to the Posterior

- Approximate the posterior distribution using a multivariate normal distribution
- When we have a lot of i.i.d. observations, the posterior will be approximately normal
- Center the normal at the mode of the posterior
- Compute the (co)variance of the normal by computing the second derivative / hessian of the posterior at the mode

Laplace Approximation

- Approximate the posterior distribution using a normal distribution
- When we have a lot of i.i.d. observations, the posterior will be approximately normal
- Center the normal at the mode of the posterior
- Compute the (co)variance of the normal by computing the second derivative / hessian of the posterior at the mode

Laplace Approximation

- Let $\tilde{\theta}$ be the mode of the of the posterior distribution
- Use a Taylor Series approximation the log-posterior around the mode is

$$0 \circ log P(heta \mid y) pprox log P(ilde{ heta} \mid y) - 1/2(heta - ilde{ heta}) H(heta - ilde{ heta})$$

$$0 \circ H = rac{d^2}{d heta^2} log p(heta \mid y)$$

- Note, linear term falls out because derivative at the mode is zero
- $p(heta \mid y) pprox N(ilde{ heta}, I(heta)^{-1})$

Finding the mode of the posterior distribution

- Calculus
 - Take the log
 - o Differentiate, set to zero and solve
- Computational
 - optim in R for one dimensional posteriors
 - \circ optimise in R for multivariate p

Variational Bayes

- Find even better approximations
- Let θ be d dimensional parameter vector
- Let $\epsilon \sim MVN_d(0,\Sigma)$
- Let g_{λ} be a class of flexible functions parameterized by λ
 - Neural networks!
- Solve an optimization problem:

$$rg\min_{\lambda} \operatorname{dist}(p(\theta \mid y)), p(g_{\lambda}(\epsilon)))$$

- Minimize the "distance" between the true posterior and the approximate one.
- Sample ϵ from a multivariate normal. $g_{\lambda}(\epsilon)$ will be a sample from something close to $p(\theta \mid y)$