影像處理與機器人視覺 HW1

BMP格式圖檔的基本影像處理

教授:吳進義

助教:張哲睿、劉力元、賴亭諭

What is a BMP file?

- 由微軟所定義的圖像檔案格式,是bitmap的縮寫
- 點陣圖的一種
 - 其他類型的點陣圖格式:jpg、gif、png、tiff......等等。
- 共有黑白(1 bit)、灰階(4 bits or 8 bits)以及彩色(24 bits)這幾種。
- BMP檔案通常不壓縮,所以它們比同一張圖像的壓縮圖檔格式要大很多。

BMP的組成結構

BMP = **BMP** File Header

+ BMP Info Header

(色彩深度>=24bits) + Image Data Array

- = BMP File Header
 - + BMP Info Header
 - + RGBQUAD Array (調色盤)
 - + Image Data Array

Bmp File Header	bfType-
Bilip The Header	bfSize. [□]
(14Bytes)	bfReserved1-
(14Dytes)	bfReserved2
	bfOffbytes
Bmp Information	BiSize⊷
Binp information	BiWidth
Header₄	BiHeight.
Ticadel	Biplanes⊎
(40Bytes)	BiBitCount-
(40Dytes)	BiCompression -
	BiSizeImage₽
	BiXPelsPerMeter•
	BiYPelsPerMeter•
	BiClrUsed.
	biClrImportant;-
RGBQuad₄	RgbBlue-
KODQuad ²	RgbGreen-
(4Bytes)₀	RgbRed-
(4Dy 103)	rgbReserved₽
Image Data	
Ŭ	

BMP組成介紹

BMP文件由以下四部分組成:

- 1. BITMAPFILEHEADER:
 - 一共14個位元組,包含BMP圖像文件的類型、文件大小等訊息
- 2. BITMAPINFO:
 - 一共40個位元組,它包含有 BMP 圖像的寬、高、壓縮方法,以及定義顏色等訊息
- 3. RGBQUAD陣列
 - 可選,如使用索引來表示圖像,調色板就是索引與其對應的顏色的映射表
- 4. 點陣圖數據(bitmap data)

BMP的檔頭 - File Header

typedef struct tagBITMAPFILEHEADER { /*(14bytes)*/

```
bfType; /* (2bytes)用來表示圖檔的檔案類型,一般
為BM(0x42,0x4d)*/
     WORD
     DWORD bfSize; /* (4bytes) File size in bytes,整個檔案的大小 */
     WORD bfReserved1; /* (2bytes) 保留欄位, always 0*/
            bfReserved2; /* (2bytes) 保留欄位,always 0*/
     WORD
             bfOffbytes /* (4bytes) 到image data的偏移量,這裡的值表示檔頭和色盤總和的大小,會小於前面的
     DWORD
                         FileSize部份*/
BITMAPFILEHEADER;
```

BMP的檔頭資訊 - Info Header

typedef struct tagBITMAPINFOHEADER{ (40bytes)

DWORD biSize; (4bytes) 在Windows 3.X之後這裡的值就恆為40,指的是說structure BITMAPINFOHEADER的size

LONG biWidth; (4bytes) 表示寬有多少的像素

LONG biHeight; (4bytes) 表示高有多少的像素

WORD biPlanes; (2bytes) 因為bitmap不像gif可以同許包含許多的圖,所以在這裡的值也永遠是1

WORD biBitCount (2bytes) 圖形的顏色,有1,4,8,24,32五種值

DWORD biCompression; (4bytes) 0:不經過壓縮,1:經過8-bit RLE壓縮,2:經過4-bit RLE壓縮(我們只考慮0的情況)

DWORD biSizeImage; (4bytes) 壓縮後的檔案大小,若沒有經過壓縮則此值不使用

LONG biXPelsPerMeter; (4bytes) 水平解析度(dots per meter)

LONG biYPelsPerMeter; (4bytes) 垂直解析度(dots per meter)

DWORD biClrUsed; (4bytes) 使用色盤中的色彩數,若為0則表示使用色盤裡全部的顏色

DWORD biClrImportant; (4bytes) 有幾個關鍵色,這個數字僅供參考。

BITMAPINFOHEADER;

BMP的調色盤 - RGBQUAD

```
typedef struct tagRGBQUAD{
                              //(4bytes)
                              //(1bytes)
   BYTE rgbBlue;
   BYTE rgbGreen;
                              //(1bytes)
   BYTE rgbRed;
                              //(1bytes)
   BYTE rgbReserved;
                              //(1bytes)
} RGBQUAD;
```

BMP的内容—Image Data

- ·所謂的ImageData就是指一個巨大的矩陣,在BMP中有一個特點,就是每一列的長度剛剛好都是4的倍數,假若不恰好為4的倍數那就會補0
- · ImageData的排列順序是從image的最後一行開始紀錄,到最後 紀錄的是第一行的資料。

BMP的檔頭資訊與內容

testgray.bmp																		
00000000h:	42	4D	76	AO	00	00	00	00	00	00	36	04	00	00	28	00	;	BMv?6(.
00000010h:	00	00	C8	00	00	00	C8	00	00	00	01	00	08	00	00	00	;	??
00000020h:	00	00	40	9C	00	00	13	OB	00	00	13	OB	00	00	00	00	;	0?
00000030h:	00	00	00	00	00	00	00	00	00	00	01	01	01	00	02	02	;	
00000040h:	02	00	03	03	03	00	04	04	04	00	05	05	05	00	06	06	;	
00000050h:	06	00	07	07	07	00	08	08	08	00	09	09	09	00	OA	OA	;	
00000060h:	OA	00	OB	OB	OB	00	OC.	0C	0C	00	OD	OD	OD	00	OE	OE	;	
00000070h:	OE	00	OF	OF	OF	00	10	10	10	00	11	11	11	00	12	12	;	
00000080h:	12	00	13	13	13	00	14	14	14	00	15	15	15	00	16	16	;	
00000090h:	16	00	17	17	17	00	18	18	18	00	19	19	19	00	1 A	1A	;	
000000a0h:	14	00	1B	1B	1B	00	1C	1C	1C	00	1D	1D	1D	00	1E	1E	;	
000000b0h:	1E	00	1F	1F	1F	00	20	20	20	00	21	21	21	00	22	22	;	!!!.""
000000c0h:	22	00	23	23	23	00	24	24	24	00	25	25	25	00	26	26	;	".###.\$\$\$.%%%.&&
000000d0h:	26	00	27	27	27	00	28	28	28	00	29	29	29	00	2 A	2 A	;	£.'''.(((.))).**
000000e0h:	2 A	00	2B	2B	2B	00	2C	2C	2C	00	2 D	2D	2D	00	2 E	2 E	;	*.+++.,,,
000000f0h:	2 E	00	2 F	2 F	2F	00	30	30	30	00	31	31	31	00	32	32	;	///.000.111.22
00000100h:	32	00	33	33	33	00	34	34	34	00	35	35	35	00	36	36	;	2.333.444.555.66
00000110h:	36	00	37	37	37	00	38	38	38	00	39	39	39	00	ЗA	ЗА	;	6.777.888.999.::
00000120h:	3 A	00	3 B	3 B	3 B	00	3 C	3 C	3 C	00	ЗD	ЗD	ЗD	00	3 E	ЗE	;	:.;;;.<<<.===.>>
00000130h:	3 E	00	ЗF	ЗF	3 F	00	40	40	40	00	41	41	41	00	42	42	;	>.???.000.AAA.BB
00000140h:	42	00	43	43	43	00	44	44	44	00	45	45	45	00	46	46	;	B.CCC.DDD.EEE.FF
00000150h:	46	00	47	47	47	00	48	48	48	00	49	49	49	00	41	4 A	;	F.GGG.HHH.III.JJ
00000160h:	41	00	4B	4B	4B	00	4C	4C	4C	00	4D	4D	4D	00	4E	4E	;	J.KKK.LLL.MMM.NN
00000170h:	4E	00	4F	4F	4F	00	50	50	50	00	51	51	51	00	52	52	;	N.OOO.PPP.QQQ.RR

BMP的格式與檔頭資訊


```
000000000h: 42 4D 50 00 00 00 00 00 00 36 00 00 00 28 00 ; MP.....6...(.
00000010h: 00 00 02 00 00 00 03 00 00 01 00 18 00 00 00 ;
00000020h: 00 00 1A 00 00 00 12 0B 00 00 12 0B 00 00 00 00 ;
00000030h: 00 00 00 00 00 00 72 C6 F0 CC 33 66 00 00 66 00 ; .....走行..f.
00000040h: FF CC FF 00 00 66 CC 99 CC CC CC 00 00 00 00 ; ?...fc焚?...
```

作業要求

產生灰階漸層圖(10%)

讀BMP圖檔(15%)

將讀進來的BMP檔頭資訊show出來(10%)

影像處理(50%)

- 點波源干涉(25%)
 - · background(+10%)(加分題:自己產生作為背景的點波源干涉圖)
 - normalization(10%)
 - combine(15%)
- 顏色修改(25%)

將處理結果寫成BMP檔(15%)

有限制不能使用Python的第三方套件喔ex:Numpy、OpenCV... 請各位試著自己做做看~

Note: 產生灰階漸層圖

- ●產生一張寬是 255、高是100的灰階變化圖(8bit灰階), 然後存成 bmp
- ●x位置是多少,該直行的灰階值就是多少

↑像這樣子的圖

Note:點波源干涉

- 。 背景(會附上,有自己做出來有加分)
 - 第一個波源影響值(-1~1)
 - 第二個波源影響值(-1~1)
 - 第一個+第二個波源影響值(-2~2)
 - 第一個+第二個波源影響 Normalization(0~255)
- 與原前景圖結合
 - 背景+Weight*前景(<0,>255)
 - Normalization(0~255)

Normalization

Note:顏色修改

- 。透過修改RGBQUAD調色盤將灰階影像修改成彩色影像
 - 。 檔案大小不會改變

原始影像

Inverse

綠色系

黄色系

紅色系

