NOMBRE:

DNI:

PROBLEMA 1 (3 puntos)

El circuito de la figura se encuentra en la configuración que se muestra el tiempo suficiente para considerarse en estado estacionario. En el instante de tiempo $\mathbf{t} = \mathbf{0}$ los conmutadores [A] y [B] cambian a la vez de la posición 1 a la 2. Determínese:

- El valor de los votajes v_L, v_C, y las intensidades i_L,i_C en los instántes de tiempo, t=0⁻, t=0⁺ y t→∞
- 2. La evolución temporal de $i_L(t)$ y $v_C(t)$ para t>0

PROBLEMA 2 (5 puntos).

En el circuito de la figura:

- 1. Determina función de transferencia H(s)=V/Vs en el dominio de Laplace.
- 2. En el circuito con R1=4 Ω , R2=1 Ω , L=1H, C=(1/6)F, y g = 7/6(Ω -1) se tiene que:

$$H(s) = \frac{-(7s+22)}{(s^2+3s+2)}$$

Halla:

- h(t).
- Si Vs es una señal senoidal, determina el diagrama de Bode asintótico del módulo de H(jω). ¿Qué tipo de Filtro es?

PROBLEMA 3 (2 puntos)

Un cuadripolo se considera que es simétrico si $Z_{11}=Z_{22}$ y $Z_{12}=Z_{21}$ o $Y_{11}=Y_{22}$ y $Y_{12}=Y_{21}$.

- 1. Obten las condiciones que deben cumplir los elementos de este cuadripolo para que sea simétrico.
- 2. Si **Z**_P es un condensador en paralelo con una inductancia, y conocidos los parámetros z,
 - Determina la potencia consumida en R_b en función de Vs.
 - Si Vs es una fuente senoidal, y ω→∞ determina la potencia consumida en Ra

NOTA: Transformadas de Laplace de posible utilidad.(No quiere decir que haya que usarlas todas)

$$Au(t) \leftrightarrow \frac{A}{s}$$

$$Atu(t) \leftrightarrow \frac{A}{s^{2}}$$

$$Ae^{-\alpha t}u(t) \leftrightarrow \frac{A}{s+\alpha}$$

$$At^{2}e^{-\alpha t}u(t) \leftrightarrow \frac{2A}{(s+\alpha)^{3}}$$