The T-invariant Trace via 1-dimensional Factorization Homology

Jiahe Cai

February 26, 2023

Abstract

Notes for Topics in Algebraic Topology 22-23. Before we introduced the cobordism hypothesis and some (higher) trace methods. Here we introduce factorization homology to connect the above two topics. Section 1 comes from [AF1] and Section 2 and 3 come from [AF2].

Contents

T	Factorization homology	J
2	The \mathbb{T} -invariant trace 2.1 Construction I. The \mathbb{T} -invariant $unit: 1 \to HH(A)$	6
	Epilogue 3.1 A conjecture of Töen–Vezzosi	

1 Factorization homology

Definition 1.1. A smooth M manifold is **finitary** if it admits a finite open cover $\mathcal{U} := \{U \subseteq M\}$ such that for each finite subset $S \subseteq \mathcal{U}$, the intersection $\bigcap_{U \in S} U$ is either empty or diffeomorphic to an Euclidean space.

Convention 1.2. In this article, a manifold is always smooth and finitary unless otherwise stated.

Definition 1.3. Given an n-dimensional manifold M, its tangent bundle classified by a map $M \to BO(n)$, and a map $B \to BO(n)$ between spaces, a **B-framing** on M is the following homotopy commutative diagram

Definition 1.4. The symmetric monoidal topological category Mfd_n^B consists of n-dimensional B-framed manifolds as objects and the morphism space $Mor_{Mfd_n^B}(M,N) := Emb(M,N)$ with the compact-open topology for any two objects M and N. The symmetric monoidal structure is disjoint union.

Definition 1.5. The symmetric monoidal topological full subcategory $Disk_n^B \subseteq Mfd_n^B$ consists of disjoint unions of n-dimensional *B*-framed Euclidean spaces as objects and the morphism space $Mor_{Disk_n^B}(D, D') := Emb(D, D')$ for any two objects D and D'. The symmetric monoidal structure is disjoint union.

Definition 1.6. A symmetric monoidal ∞ -category \mathfrak{X} is \otimes -presentable if \mathfrak{X} is presentable and tis symmetric monoidal structure distributes over colimits.

Convention 1.7. The symmetric monoidal ∞ -category \mathfrak{X} we use later will be \otimes -presentable. In fact, we may only need \mathfrak{X} to be \otimes - Δ^{op} cocomplete, but in this note we want to simplify our discussion. Moreover, when we write a functor $Mfd_n^B \to \mathfrak{X}$, we mean the functor $\mathcal{N}(Mfd_n^B) \to \mathfrak{X}$, where \mathcal{N} is the topological nerve. This also works for $Disk_n^B$. Generally, this works for all other topological categories we mentioned later. (Regard the ordinary categories as topological categories with discrete topology on morphism sets.)

Definition 1.8. The ∞ -category of $Disk_n^B$ -algebras in \mathfrak{X} is that of symmetric monoidal functors from $Disk_n^B$ to \mathfrak{X} :

$$Alg_{Disk_n^B}(\mathfrak{X}) := Fun^{\otimes}(Disk_n^B, \mathfrak{X})$$

Remark 1.9. When B = fr, then $Alg_{Disk_n^{fr}}(\mathfrak{X})$ is equivalent to the ∞ -category of E_n -algebras in \mathfrak{X} .

Definition 1.10. Let M be an object in Mfd_n^B and A an object in $Alg_{Disk_n^B}(\mathfrak{X})$ for a given ∞ -category \mathfrak{X} . Factorization homology with coefficient in A is the left Kan extension

$$Disk_n^B \xrightarrow{A} \mathfrak{X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Mfd_n^B \qquad \qquad .$$

Then factorization homology of M with coefficients in A is an object in $\mathfrak X$ given by a colimit:

$$\int_{M} A := colim(Disk_{n/M}^{B} \to Disk_{n}^{B} \xrightarrow{A} \mathfrak{X}). \tag{1.1}$$

Definition 1.11. Let M be an object in Mfd_n^B . A collar-gluing of M is a continuous map

$$f: M \rightarrow [-1,1]$$

to the closed interval for which the restriction on the subtarget (-1,1) is a smooth fiber bundle.

We will often denote a collar-gluing $M \xrightarrow{f} [-1,1]$ as the open cover

$$M_-\bigcup_{M_0 imes\mathbb{R}}M_+\cong M$$
,

where $M_-:=f^{-1}([-1,1)), M_+:=f^{-1}((-1,1])$ and $M_0:=f^{-1}(0).$

With the help of [AF1, Construction 2.21, Corollary 3.12], given a collar-gluing $M \xrightarrow{f} [-1,1]$ for $M \in Mfd_n^B$ and a symmetric monoidal functor $Mfd_n^B \xrightarrow{\mathcal{F}} \mathfrak{X}$ with \otimes -presentable \mathfrak{X} , there is a canonical morphism in \mathfrak{X}

$$\mathcal{F}(M_{-}) \bigotimes_{\mathcal{F}(M_{0} \times \mathbb{R})} \mathcal{F}(M_{+}) \to \mathcal{F}(M).$$
 (1.2)

Definition 1.12. A symmetric monoidal functor $\mathcal{F}: Mfd_n^B \to \mathfrak{X}$ satisfies \otimes -excision if for each collar-gluing $M_- \bigcup_{M_0 \times \mathbb{R}} M_+ \cong M$ for $M \in Mfd_n^B$, the canonical morphism (1.2) is an equivalence

in \mathfrak{X} . The ∞ -category of homology theories for B-framed n-manifolds valued in \mathfrak{X} is the full ∞ -subcategory

$$H(Mfd_n^B, \mathfrak{X}) \subset Fun^{\otimes}(Mfd_n^B, \mathfrak{X})$$

consisting of symmetric monoidal functors that satisfy ⊗-excision.

Lemma 1.13. [AF1, Lemma 3.18] For any $A \in Alg_{Disk_n^B}(\mathfrak{X})$, factorization homology with coefficient in A satisfies \otimes -excision.

Example 1.14. For $A \in Alg_{Disk_*^{fr}}(\mathfrak{X})$, i.e. an E_1 -algebra in \mathfrak{X} , we have

$$\int_{\mathbb{S}^1} A \simeq \int_{\mathbb{R}} A \bigotimes_{\int_{\mathbb{S}^0 \times \mathbb{R}} A} \int_{\mathbb{R}} A \simeq A \bigotimes_{A \otimes A^{op}} A \simeq HH(A),$$

where HH(A) is the Hochshild complex of A in \mathfrak{X} . Moreover, factorization homology gives a \mathbb{S}^1 -action on HH(A) as follows:

$$\mathbb{S}^1 \simeq Emb(\mathbb{S}^1,\mathbb{S}^1) \xrightarrow{\int A} End_{\mathfrak{X}}(\int_{\mathbb{S}^1} A) \simeq End_{\mathfrak{X}}(HH(A)).$$

We have the following characterization for factorization homology:

Theorem 1.15. [AF1, Theorem 3.24] There is an equivalence

$$\int: Alg_{Disk_n^B}(\mathfrak{X}) \rightleftarrows H(Mfd_n^B, \mathfrak{X}): ev_{\mathbb{R}^n},$$

where $ev_{\mathbb{R}^n}$ is the functor of evaluation on \mathbb{R}^n .

Finally, considering an E_{∞} -algebra in \mathfrak{X} as a symmetric monoidal functor $Fin \to \mathfrak{X}$, we can define a forgetful functor

$$fgt: CAlg(\mathfrak{X}) \to Alg_{Disk^B}(\mathfrak{X})$$

via the restriction along the connected components functor $[-]: Disk_n^B \to Disk_n \xrightarrow{[-]} Fin$ for any $n \ge 0$. Next, define the following functor:

$$An \times CAlg(\mathfrak{X}) \xrightarrow{\otimes} CAlg(\mathfrak{X}), \quad (M,A) \mapsto A^{\otimes M} := colim(M \to * \xrightarrow{A} CAlg(\mathfrak{X})).$$

We then have the following result:

Proposition 1.16. [AF1, Proposition 5.1] The following diagram among ∞ -categories commutes:

where U is the underlying space functor and the right downward arrow is the standard forgetful functor. In particular, there is a natural equivalence

$$\int_M A \simeq A^{\otimes M}$$

between the factorization homology of M with coefficients in A and the tensor of the commutative algebra A with the underlying space of M.

2 The \mathbb{T} -invariant trace

Remember that in this section, we still work with Convention 1.2 and Convention 1.7.

Definition 2.1. For a group G, G-actions of objects in \mathfrak{X} can be encoded into the functor ∞-category $Fun(BG,\mathfrak{X})$, whose 1-morphisms are called G-equivariant maps. Given two objects $F_A, F_B \in Fun(BG,\mathfrak{X})$ whose images of the object in BG are $F_A(*) := A$, $F_B(*) := B$, respectively, a 1-morphism $\eta: F_A \to F_B$ is called BG-invariant if for any 1-morphism $g \in BG$, the following diagram commutes up to coherent homotopy:

$$\begin{array}{c}
A \xrightarrow{\eta(*)} B \\
F_A(g) \downarrow & \downarrow F_B(g) \\
A \xrightarrow{\eta(*)} B
\end{array}$$

Then an object F_A is called BG-invariant if the identity morphism $\mathrm{id}_A: F_A \to F_A$ is BG-invariant.

Notice that if either F_A or F_B is BG-invariant, then η is automatically G-invariant.

2.1 Construction I. The \mathbb{T} -invariant $unit: \mathbf{1} \to HH(A)$

Remark 2.2. Even though we can obtain such a map using the functor $\int A$ on the unique morphism $\emptyset \to \mathbb{S}^1$, this section contains the first step to construct the $\mathbb{T} \cong B\mathbb{Z}$ -invariant map $HH(A) \to \mathbf{1}$ in the next subsection.

Definition 2.3. A paracyclic category $\Delta_{()}$ consists of:

- Objects: Nonempty linearly ordered sets with Z-action that satisfy two conditions:
 - (a) For an object Λ and each $\lambda \in \Lambda$, we have $\lambda < \lambda + 1$, where we indicate the \mathbb{Z} -action on Λ by +.
 - (b) For every pair of elements $\lambda, \lambda' \in \Lambda$, the set $\{\mu \in \Lambda : \lambda \leq \mu \leq \lambda'\}$ is finite.
- Morphisms: Z-equivariant and nondecreasing maps between objects.

Definition 2.4. The walking monad is the monoidal category O in which an object is a linearly ordered finite sets, a morphism is an order preserving map, and whose monoidal structure is join of linearly ordered sets.

Notice that the initial object in O is the empty set. Then we have the equivalences

$$\Delta^{\triangleleft} \simeq O, \qquad (\Delta^{op})^{\triangleright} \simeq O^{op},$$

where Δ^{\triangleleft} is the simplex category Δ adding an initial object.

Remark 2.5. [AF2, Observation A.15] For each monoidal ∞ -category \mathcal{Y} , we have an equivalence of ∞ -categories:

$$Fun^{E_1}(O, \mathcal{Y}) \xrightarrow{\simeq} Alg_{E_1}(\mathcal{Y}), \quad F \mapsto F(*),$$

where $* \in O$ is the final object.

Lemma 2.6. [AF2, Observation 1.3] We have the equivalences:

$$Disk_{1/\mathbb{R}}^{fr} \simeq O$$
, $Disk_{1/\mathbb{S}^1}^{fr} \simeq \Delta_{\circlearrowleft}^{\triangleleft}$.

Proof. In general, for each framed 1-manifold M, consider the composite functor:

$$Disk_{1/M}^{fr} \xrightarrow{forget} Disk_1^{fr} \xrightarrow{\pi_0} Set.$$

For $M = \mathbb{R}$, we have the equivalence:

$$Disk_{1/\mathbb{P}}^{fr} \to O$$
, $(U \xrightarrow{emb} \mathbb{R}) \mapsto \pi_0(U)$.

For $M = \mathbb{S}^1$, consider the universal covering map $\mathbb{R} \xrightarrow{exp} \mathbb{S}^1$. The linear order on $\pi_0 \exp^{-1}(U)$ inherited from an embedding $\exp^{-1}(U) \to \mathbb{R}$, together with the $\pi_1(\mathbb{S}^1) \cong \mathbb{Z}$ -action by decktransformations, determines a lift of this composite functor to $\Delta_{\circlearrowleft}^{\triangleleft}$. This lift is an equivalence of $B\mathbb{Z}$ -module categories:

$$Disk_{1/\mathbb{S}^1}^{fr} \to \Delta_{\circlearrowleft}^{\triangleleft}, \quad (U \to \mathbb{S}^1) \mapsto \pi_0 \exp^{-1}(U).$$

Lemma 2.7. [AF2, Lemma 1.4] Define a symmetric monoidal functor:

$$Disk_{1/(-)}^{fr}: Mfd_1^{fr} \to Cat_1, \quad M \to Disk_{1/M}^{fr}.$$

Then there is an equivalence $\int O \simeq Disk_{1/(-)}^{fr}$ between symmetric monoidal functors.

Proof. First, Lemma 2.6 tells us these two functors evaluate identically on \mathbb{R} . Second, Lemma 2.4.1 in [AF3] verifies that this symmetric monoidal functor $Disk_{1/(-)}^{fr}$ satisfies the \otimes -excision condition. Finally, the characterization Theorem 1.15 gives the equivalence we want.

Therefore, for any $A \in Alg_{E_1}(\mathfrak{X})$ that corresponds to the monoidal functor $\langle A \rangle \in Fun^{E_1}(O,\mathfrak{X})$ by Remark 2.5, we have the following diagram in \mathfrak{X} :

$$\Delta_{\circlearrowleft}^{\triangleleft} \xrightarrow{\simeq} Disk_{1/\mathbb{S}^{1}}^{fr} \xrightarrow{\simeq} \int_{\mathbb{S}^{1}} O \xrightarrow{\int_{\mathbb{S}^{1}} \langle A \rangle} \int_{\mathbb{S}^{1}} \mathfrak{X} \xrightarrow{\int_{\mathbb{S}^{1}}} \mathfrak{X}, \tag{2.1}$$

where the first and second equivalences are given by Lemma 2.6 and Lemma 2.7 respectively, and the last functor is given by the unique map $!: \mathbb{S}^1 \to *$ via Proposition 1.16.

Lemma 2.8. The colimit of the diagram (2.1) is equivalent to $\int_{\mathbb{S}^1} A$.

Proof. Given an inclusion $\mathbb{R} \to \mathbb{S}^1$, we can construct the following commutative diagram up to equivalence:

From the definition of factorization homology (1.1), we know that

$$\int_{\mathbb{S}^{1}} A = colim(Disk_{1/\mathbb{S}^{1}}^{fr} \to Disk_{1}^{fr} \xrightarrow{A} \mathfrak{X}) \simeq colim(Disk_{1/\mathbb{S}^{1}}^{fr} \xrightarrow{\simeq} \int_{\mathbb{S}^{1}} O \xrightarrow{\int_{\mathbb{S}^{1}} \langle A \rangle} \int_{\mathbb{S}^{1}} \mathfrak{X} \xrightarrow{\int_{\mathbb{S}^{1}} \langle A \rangle} \mathfrak{X}).$$

The initial object $\triangleleft \in \Delta_{\circlearrowleft}^{\triangleleft}$ will be sent to the unit object $\mathbf{1} \in \mathfrak{X}$ due to the E_1 -structure of A. Then we have the following canonical morphism:

$$unit: \mathbf{1} \to colim(\Delta_{\circlearrowleft}^{\lhd} \to \mathfrak{X}) \xrightarrow{\simeq_{(Lemma\ 2.8)}} \int_{\mathbb{S}^1} A \simeq HH(A).$$
 (2.2)

Since the initial object \triangleleft is \mathbb{T} -invariant, then the morphism *unit* is \mathbb{T} -equivariant.

2.2 Construction II. The \mathbb{T} -invariant trace : $HH(A) \rightarrow \mathbf{1}$

Convention 2.9. From now on, we only focus on $A := \underline{End}(V) := V^{\vee} \otimes V \in Alg_{E_1}(\mathfrak{X})$, where V is a dualizable object in \mathfrak{X} . This implies that $\underline{End}(V)$ has the structure of a Frobenius algebra. See the discussion on [AF2, (31)].

Definition 2.10. The walking adjunction is the $(\infty, 2)$ -category Adj that consists of two objects – and +, and morphisms are generated by identities and a pair of adjunction – \xrightarrow{L} + and + \xrightarrow{R} –. Its monoidal categories of endomorphisms of each of its two objects are canonically identified as the walking monad and the walking comonad:

$$O \xrightarrow{I \mapsto (R \circ L)^{\circ l}} End_{Adj}(-), \quad O^{op} \xrightarrow{I \mapsto (L \circ R)^{\circ l}} End_{Adj}(+).$$

Remark 2.11. In particular, there are fully-faithful functors between $(\infty, 2)$ -categories

$$\mathfrak{B}O \hookrightarrow Adj \hookrightarrow \mathfrak{B}O^{op}$$

where \mathfrak{B} means the deloop of categories.

We have the following characterization for Adj:

Remark 2.12. For each $(\infty, 2)$ -category \mathcal{C} , the evaluation map

$$ev_L: Mor_{Cat_2}(Adj, \mathbb{C}) \xrightarrow{\simeq} Mor(\mathbb{C})^{l.adj}, \quad F \mapsto F(L)$$

is an equivalence to the subspace of those 1-morphisms in C that are left adjoints.

Definition 2.13. [AF2, Appendix B] For the ∞ -category $\mathfrak X$ mentioned before, the ∞ -category of **category-objects internal to** $\mathfrak X$ is the full ∞ -subcategory

$$fCat_1[\mathfrak{X}] \subset Fun(\Delta^{op},\mathfrak{X})$$

consisting of those functors that satisfy Segal conditions. Then we can define the **beta-version** of factorization homology:

$$\int^{\beta}: fCat_1[\mathfrak{X}] \to Fun(\mathfrak{N},\mathfrak{X}), \quad \mathfrak{C} \mapsto (M \mapsto \int_{M}^{\beta} \mathfrak{C}),$$

where M is the ∞ -category of compact solidly 1-framed stratified spaces.

Remark 2.14. Let \mathfrak{X} be Cat_1 . Note the standard fully-faithful embedding

$$Cat_2 \subset fCat_2 := fCat_1[Cat_1] = Fun^{Segal}(\Delta^{op}, Cat_1).$$

Then we can define the factorization homology of $(\infty, 2)$ -categories:

$$\int^{\beta}: Cat_2 \subset fCat_2 \to Fun(\mathcal{M}, Cat_1), \quad \mathfrak{C} \mapsto (M \mapsto \int_{M}^{\beta} \mathfrak{C}).$$

Proposition 2.15. [AF2, Proposition B.12] For any associative algebra $A \in Alg_{E_1}(\mathfrak{X})$, there is a canonical \mathbb{T} -equivariant identification

$$\int_{\mathbb{S}^1} A \simeq \int_{\mathbb{S}^1}^{\beta} \mathfrak{B} A.$$

Remark 2.12 and [AF2, Observation A.24] imply the identification $Mor_{fCat_2}(Adj, \mathfrak{BX}) \simeq Obj(\mathfrak{X}^{duals})$ of ∞ -groupoids. Then for the dualizable object $A := End_{\mathfrak{X}}(V)$, we have the resulting composite functor:

$$\mathfrak{B}O \hookrightarrow Adj \xrightarrow{\langle End_{\mathfrak{X}}(V) \rangle} \mathfrak{BX}.$$

The following theorem we will use right now is the main and most technical part in the paper [AF2]. We only state the result below:

Theorem 2.16. [AF2, Theorem 1.1] There are canonical \mathbb{T} -equivariant equivalences

$$\int_{\mathbb{S}^1}^{\beta} Adj \simeq \Delta_{\circlearrowleft}^{\lhd \triangleright}, \qquad \int_{\mathbb{S}^1} End_{Adj}(-) \simeq \Delta_{\circlearrowleft}^{\lhd}.$$

Now we construct the following commutative diagram up to equivalence in \mathfrak{X} :

We simplify this diagram by Theorem 2.16:

$$\begin{array}{ccc}
\Delta_{\mathcal{O}}^{\triangleleft} & & \\
\downarrow & & \\
\Delta_{\mathcal{O}}^{\triangleleft \triangleright} & & \\
\end{array}$$

$$\begin{array}{cccc}
(2.3)
\end{array}$$

Notice the right-down arrow is equivalent to the diagram (2.1). Then we have $HH(End_{\mathfrak{X}}(V)) \simeq colim(\Delta_{\circlearrowleft}^{\lhd} \to \mathfrak{X})$ here. The final point $\rhd \in \Delta_{\circlearrowleft}^{\lhd \rhd}$ is sent to the unit $\mathbf{1} \in \mathfrak{X}$ due to the coalgebra structure in $End_{\mathfrak{X}}(V)$, and the universal property of this colimit determines the following morphism:

$$trace: HH(End_{\mathfrak{X}}(V)) \to \mathbf{1}.$$

Since the final object \triangleright is T-invariant, then the morphism trace is T-equivariant.

2.3 The composite morphism trace \circ unit

Finally, we compose the morphisms unit and trace of $End_{\mathfrak{X}}(V)$ for any dualizable object $V \in \mathfrak{X}$ to obtain a \mathbb{T} -invariant endomorphism in $End_{\mathfrak{X}}(1)$.

Theorem 2.17. [AF2, Theorem 2.6.(3)] Forgetting \mathbb{T} -invariance, this composite map *trace* \circ *unit* is equivalent up to coherent homotopy with the composite

$$\mathbf{1} \xrightarrow{\eta} V^{\vee} \otimes V \xrightarrow{\simeq} V \otimes V^{\vee} \xrightarrow{\epsilon} \mathbf{1}$$
,

where η and ϵ are the respective unit and counit of the duality between V and V^{\vee} .

Proof. In the diagram (2.3), we use the (nerve of) ordinary categories $\Delta_{\circlearrowleft}^{\triangleleft \triangleright}$ and $\Delta_{\circlearrowleft}^{\triangleleft}$. Thus the map $(\triangleleft \to \triangleright)$ in $\Delta_{\circlearrowleft}^{\triangleleft \triangleright}$ is unique, and it uniquely factors through any object in $\Delta_{\circlearrowleft}^{\triangleleft \triangleright}$. From Lemma 2.6, we know that the object $\mathbb{Z} \circlearrowleft \mathbb{Z} \in \Delta_{\circlearrowleft}^{\triangleleft \triangleright}$ is mapped to $End_{\mathfrak{X}}(V) \in \mathfrak{X}$ in the diagram (2.3). Therefore the unique factorization $(\triangleleft \to \mathbb{Z} \circlearrowleft \mathbb{Z} \to \triangleright) \in \Delta_{\circlearrowleft}^{\triangleleft \triangleright}$ is carried to

$$\mathbf{1} \xrightarrow{\eta} V^{\vee} \otimes V \xrightarrow{\simeq} V \otimes V^{\vee} \xrightarrow{\epsilon} \mathbf{1}$$
.

Then using the universal property of colimits in \mathfrak{X} , we see the composite *trace* \circ *unit* is equivalent up to coherent homotopy with the composite morphism mentioned above.

Remark 2.18. Here we omit the \mathbb{T} -invariance because the equivalence $V^{\vee} \otimes V \xrightarrow{\simeq} V \otimes V^{\vee}$ is not \mathbb{T} -invariant.

3 Epilogue

In this section we mention slightly some applications of the T-invariant trace.

3.1 A conjecture of Töen-Vezzosi

The T-invariant trace we constructed last section can be an essential part of the proof of Conjecture 5.1 of [TV]. The proof also needs 1-dimensional non-abelian Poincaré duality ([AF2, Proposition B.7]) and other skills that we do not mention here, so we only give a statement below.

Definition 3.1. We define the full ∞ -subcatgory $CAlg(Cat_1)^{rigid} \subset CAlg(Cat_1)$ of the rigid symmetric monoidal ∞ -categories (i,e,. those symmetric monoidal ∞ -categories in which each object is dualizable). Then we define the **moduli space of objects** functor to be

$$Obj: CAlg(Cat_1)^{rigid} \to An, \quad \mathfrak{X} \mapsto Obj(\mathfrak{X}),$$

and the **free loop** functor to be

$$L: CAlg(Cat_1)^{rigid} \to Fun(B\mathbb{T}, An), \quad \mathfrak{X} \mapsto L\mathfrak{X},$$

where $L\mathfrak{X}$ is the space $Obj(\mathfrak{X})$ with a \mathbb{T} -action. Precomposing by the unique map $\mathbb{T} \stackrel{!}{\to} *$ determines a natural transformation

$$Obj \xrightarrow{constant} L$$

in which the domain is regarded as taking in $Fun(B\mathbb{T},An)$ via the functor $An \xrightarrow{trivial} Fun(B\mathbb{T},An)$. Finally define the **categorical based loop** functor to be

$$End(\mathbf{1}): CAlg(Cat_1)^{rigid} \xrightarrow{End(\mathbf{1})} Anx \rightarrow trivialFun(B\mathbb{T}, An), \quad \mathfrak{X} \mapsto End_{\mathfrak{X}}(\mathbf{1}).$$

So each \mathbb{T} -space $End_{\mathfrak{X}}(1)$ is endowed with the trivial \mathbb{T} -action.

Corollary 3.2. [AF2, Corollary 2.9] There is a natural transformation between functors from $CAlg(Cat_1)^{rigid}$ to $Fun(B\mathbb{T}, An)$,

$$L \xrightarrow{trace} End(1),$$

with the property that the composite natural transformation evaluates as

$$Obj \xrightarrow{constant} L \xrightarrow{trace} End(\mathbf{1}), \quad (V \in Obj(\mathfrak{X})) \mapsto ((\mathbf{1} \xrightarrow{\eta} V^{\vee} \otimes V \xrightarrow{\simeq} V \otimes V^{\vee} \xrightarrow{\epsilon} \mathbf{1}) \in End_{\mathfrak{X}}(\mathbf{1})).$$

3.2 1-dimensional cobordism hypothesis

From the 1-dimensional cobordism hypothesis [L], we have the equivalence

$$Fun^{\otimes}(Bord_1^{fr},\mathfrak{X})\simeq\mathfrak{X}^{dual}$$

of ∞ -groupoids of 1-dimensional fully-extended topological field theories(TFTs) and dualizable objects in \mathfrak{X} . To check the dualizable object $V \in \mathfrak{X}$ determines a TFT Z_V , we need to identify the value $Z_V(\mathbb{S}^1)$. We can witness \mathbb{S}^1 as a union of two hemispherical 1-disks to determine an identification

$$(\mathbf{1} \xrightarrow{Z_V(\mathbb{S}^1)}) \simeq (\mathbf{1} \xrightarrow{\eta} V^{\vee} \otimes V \xrightarrow{\simeq} V \otimes V^{\vee} \xrightarrow{\epsilon} \mathbf{1}).$$

In this way, one can easily identify all values of the sought TFT Z_V , via combinatorial presentations of 1-manifolds as gluings of disjoint unions of 1-disks along boundary 0-spheres. The key difficulty in proving the 1-dimensional cobordism hypothesis is to verify coherent compatibilities among each value of Z_V determined by a combinatorial presentation. Each combinatorial presentation of \mathbb{S}^1 sullpies a natural cyclic group action with some order $r \in \mathbb{N}$ on $Z_V(\mathbb{S}^1)$. These actions should be invariant on $Z_V(\mathbb{S}^1)$ for any $r \in \mathbb{N}$ and then extended to a $Diff^{fr}(\mathbb{S}^1) \simeq \mathbb{T}$ -invariant action on $Z_V(\mathbb{S}^1)$, which is not obvious. The construction of \mathbb{T} -invariant map $trace \circ unit$ in the last section solves the key difficulty mentioned above, therefore finding a possible way to prove the 1-dimensional cobordism hypothesis.

References

- [AF1] David Ayala, John Francis, Factorization homology of topological manifolds, Journal of Topology, Volume 8, Issue 4, 1045–1084, 2015.
- [AF2] David Ayala, John Francis, Traces for factorization homology in dimension 1, arXiv:2105.01143v2.
- [AF3] David Ayala, John Francis, Zero-pointed manifolds, Journal of the Institute of Mathematics of Jussieu, 20(3), 785-858, 2021.
- [L] Jacob Lurie, On the classification of topological field theories, Current Developments in Mathematics, pages 129-280, 2008. Int. Press, Somerville, MA, 2009.
- [TV] Bertrand Töen, Gabriele Vezzosi, *Chern character, loop spaces and derived algebraic geometry*, Algebraic topology, 331–354, Abel Symp., 4, Springer, Berlin, 2009.