1. Let function f be defined by the polynomial below:

$$f(x) = -2x^4 - 3x^3 + 5x^2 - 4x + 7$$

Draw lines that match each function reflection with its polynomial:

| Reflections | Polynomials                    |
|-------------|--------------------------------|
| -f(x) •     | $2x^4 - 3x^3 - 5x^2 - 4x - 7$  |
| -f(-x)      | $2x^4 + 3x^3 - 5x^2 + 4x - 7$  |
| f(−x) •     | $-2x^4 + 3x^3 + 5x^2 + 4x + 7$ |

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.



For all questions on this page, the functions f, g, and h are defined by the table below.

| f(m) | a(m)                  | h(m)                                                 |
|------|-----------------------|------------------------------------------------------|
|      | g(x)                  | n(x)                                                 |
| 2    | 4                     | h(x)                                                 |
| 4    | 3                     | 6                                                    |
| 7    | 1                     | 5                                                    |
| 9    | 7                     | 9                                                    |
| 5    | 8                     | 2                                                    |
| 8    | 6                     | 4                                                    |
| 6    | 5                     | 1                                                    |
| 3    | 9                     | 3                                                    |
| 1    | 2                     | 7                                                    |
|      | 7<br>9<br>5<br>8<br>6 | 2 4<br>4 3<br>7 1<br>9 7<br>5 8<br>8 6<br>6 5<br>3 9 |

3. Evaluate h(1).

$$h(1) = 8$$

4. Evaluate  $g^{-1}(2)$ .

$$g^{-1}(2) = 9$$

5. By filling more rows of the table, it is possible to make function f even. If that were done, what would be the value of f(-7)?

If function f is even, then

$$f(-7) = 6$$

6. By filling more rows of the table, it is possible to make function g odd. If that were done, what would be the value of g(-5)?

If function g is odd, then

$$g(-5) = -8$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 + (-x)$$
  
 $p(-x) = x^3 - x$ 

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 - x)$$
$$-p(-x) = -x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. I have drawn half of a function. Draw the other half to make it even or odd.



9. Let function f be defined with the equation below.

$$f(x) = \frac{x-4}{5}$$

a. Evaluate f(59).

step 1: subtract 4 step 2: divide by 5

$$f(59) = \frac{(59) - 4}{5}$$
$$f(59) = 11$$

b. Evaluate  $f^{-1}(10)$ .

step 1: multiply by 5 step 2: add 4

$$f^{-1}(x) = 5x + 4$$
$$f^{-1}(10) = 5(10) + 4$$
$$f^{-1}(10) = 54$$

10. The function b is represented by the curve y = b(x) graphed below.



a. Evaluate b(5).

$$b(5) = 4$$

b. Evaluate  $b^{-1}(3)$ .

$$b^{-1}(3) = 1$$

- 11. Function f is defined by the table below.
  - a. Complete the columns for -f(x) and f(-x) and -f(-x).

| $\overline{x}$ | f(x) | -f(x) | f(-x) | -f(-x) |
|----------------|------|-------|-------|--------|
| -2             | 5    | -5    | 5     | -5     |
| -1             | -8   | 8     | -8    | 8      |
| 0              | 0    | 0     | 0     | 0      |
| 1              | -8   | 8     | -8    | 8      |
| 2              | 5    | -5    | 5     | -5     |

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.