

Counting Sums

ways to

= 6

write 5 as a sum of 3 positive integers, when order matters partition 5 items into 3 groups, when order matters

3 + 1 + 1	λ			
2 + 2 + 1	***************************************		***	λ
2 + 1 + 2	***************************************			
1 + 3 + 1	***		***	
1 + 2 + 2	\Rightarrow			
1 + 1 + 3	$\stackrel{\wedge}{\Longrightarrow}$		★	***

Addition	Partition	
sum to 5	5 stars (items)	
3 positive terms	3 consecutive star intervals	
2 +'s separating the numbers	2 bars separating the intervals	
	4 inter-star gaps	
	Choose 2 of 4 gaps	

$$\binom{4}{2} = 6$$

k Terms Adding to n

ways to write n as a sum of k positive integers, when order matters

Simple Examples

ways to write n as sum of k positive integers, when order matters $=\binom{n-1}{k-1}$

$$=\binom{n-1}{k-1}$$

k	sums	$egin{pmatrix} \mathbf{n}-1 \ \mathbf{k}-1 \end{pmatrix}$
1	n	$egin{pmatrix} \mathbf{n}-1 \ 1-1 \end{pmatrix} = 1$
n	1+1++1	$\binom{\mathbf{n-1}}{\mathbf{n-1}} = 1$
2	1+(n-1), 2+(n-2),, (n-1)+1	$egin{pmatrix} \mathbf{n-1} \ \mathbf{2-1} \end{pmatrix} = \mathbf{n-1}$
n-1		

8 as sum of 4 positive integers $\binom{8-1}{4-1} = \binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35$

$$\binom{8-1}{4-1} = \binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35$$

Any Sum to n

ways to write n as a sum of (any # of) positive integers

$$3 \qquad \Rightarrow \qquad \Rightarrow \qquad \Rightarrow$$

$$1+2 \qquad \Rightarrow \qquad \Rightarrow$$

$$2+1 \qquad \Rightarrow \qquad \Rightarrow$$

$$1+1+1 \qquad \Rightarrow \qquad \Rightarrow$$

$$\# = 4 = 2^{2}$$

n as sum of
$$k \in [n]$$
: $\binom{n-1}{k-1}$

$$\sum_{k=1}^{n} {n-1 \choose k-1} = \sum_{i=0}^{n-1} {n-1 \choose i} = 2^{n-1}$$

Nonnegative Terms

ways to write n as sum of k nonnegative integers

k Non-negatives Adding to n

ways to write n as a sum of k non-negative integers, when order matters

sequences with n stars and k-1 bars

length n+(k-1) sequences with k-1 bars

$$\binom{n+k-1}{k-1}$$

4-Letter Words

4-letter words when order matters $26^4 = 456,976$

4-letter words when order does not matter

Determined by composition: #a, #b, #c, ..., #z

$$\#a + \#b + \#c + ... + \#z = 4$$

sum to 4 26 nonnegative terms k=26

$$\binom{4+26-1}{26-1} = \binom{29}{25} = \binom{29}{4} = 23,751$$
 a little $\geq 264/4!$

More Applications

Can derive # positive adding to n

$$1+2+1+3=7$$

$$1+2+1+3=7$$
 $0+1+0+2=7-4=3$

$$\binom{(n-k)+k-1}{k-1} = \binom{n-1}{k-1}$$

Can derive # non-negative adding to ≤ n

k non-negative adding to \leq n = |#| k+1 non-negative adding to n

$$2+0+3 \le 7$$

$$2+0+3 \le 7$$
 $2+0+3+2=7$

$$\binom{n + (k+1) - 1}{(k+1) - 1} = \binom{n+k}{k}$$

