(11) EP 0 956 818 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

24.11.2004 Bulletin 2004/48

(51) Int Cl.7: **A61B 5/117**, G06K 9/00

(21) Application number: 99201446.4

(22) Date of filing: 10.05.1999

(54) System and method of biometric smart card user authentication

System und Verfahren zur biometrischen Authentifizierung eines Benutzers mit einer Chipkarte Système et méthode d'authentification biometrique d'un utilisateur à l'aide d'une carte à puce

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: **AL LT LV MK RO SI**

(30) Priority: 11.05.1998 US 84922 P

(43) Date of publication of application: 17.11.1999 Bulletin 1999/46

(73) Proprietor: Citicorp Development Center, Inc. Los Angeles, California 90066 (US)

(72) Inventor: Shinn, Philip C., Los Angeles, California 90034 (US)

(74) Representative: Johansson, Lars E. et al Hynell Patenttjänst AB Patron Carls Väg 2 683 40 Hagfors/Uddeholm (SE) (56) References cited:

EP-A- 0 612 035 WO-A-96/13800 GB-A- 2 248 513 WO-A-91/07729 GB-A- 2 237 672 US-A- 5 111 512

- "IDENTIFICATION AND VERIFICATION OF SIGNATURES" IBM TECHNICAL DISCLOSURE BULLETIN, vol. 39, no. 6, 1 June 1996 (1996-06-01), pages 93-97, XP000678532 ISSN: 0018-8689
- L. L. LEE ET AL: "RELIABLE ON-LINE HUMAN SIGNATURE VERIFICATION SYSTEM FOR POINT-OF-SALES APPLICATIONS"

 PROCEEDINGS OF THE IAPR INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, JERUSALEM, OCT. 9 13, 1994 CONFERENCE B: PATTERN RECOGNITION AND NEURAL NETWORKS, vol. 2, no. CONF. 12, 9 October 1994 (1994-10-09), pages 19-23, XP000509876 INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERSISBN: 0-8186-6272-7

EP 0 956 818 B

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention

[0001] The present invention relates to smart card security and more particularly to a system and method of biometric authentication of a smart card user.

1

Background

[0002] Authentication is the process by which an entity, such as a financial institution or bank or other type of institution, identifies and verifies its customers or users to itself and itself to its customers or users. Authentication includes the use of physical objects, such as cards and/or keys, shared secrets, such as personal identification numbers (PIN's) and/or passwords, and biometric technologies, such as voice prints, photos, signatures and/or fingerprints. Biometric tasks include, for example, an identification task and a verification task. The verification task determines whether or not the individual claiming an identity is the individual whose identity is being claimed. The identification task determines whether the biometric signal, such as a fingerprint, matches that of someone already enrolled in the system.

[0003] Typically, biometric systems have a common methodology, regardless of their modality, such as fingerprint, face, voice, or the like. A person enrolls by donating some number of samples of the biometric. From these samples, the biometric system creates a model of the particular individual's patterns, which is referred to as a template. When the person attempts to access the system, the application collects new data. In a verification application, the individual claims an identity, and the application retrieves the individual's model from a database and compares the new signal to the retrieved model. The result of this comparison is a match score, which indicates how well the new signal matches the template. The application then compares the match score obtained with a pre-defined threshold and decides whether to allow or deny access to the individual or, for example, to ask the individual for more data.

[0004] Various authentication parameters are used by security systems to verify a valid cardholder and to grant the cardholder access to a secured resource. Information parameters, such as PIN's, can be readily read and processed by a card reader according to a system verification algorithm. However, information can be compromised, so that many authentication systems also require person-unique biometric parameters, such as fingerprints, or retinal images. In such authentication systems, cardholder bio-specimens are stored in digital format in the system computer. During authentication the system obtains the information parameters, for example, from the card, and the biometric parameters from the person and matches both to the system-stored values. For a fingerprint, for example, there are fourteen

points and interpoint distances that the biometric reader compares and, depending on the match score, grants or denies access.

[0005] The required match score is a function of a preselected security level and is set by the application designer. However, the image acquisition tolerances, as well as changes in the person's biometric parameter, such as a finger cut on the referenced fingerprint, cause false acceptances, such as accepting an impostor (False Accept or FA), and false rejections, such as rejecting a valid user (False Reject or FR). Manufacturers of biometric readers or application developers provide performance histograms, which are distributions of the empirical number of valid acceptances and valid rejections provided by the reader. To the extent the distributions overlap, there are regions of false rejections of valid users or FR and false acceptance of impostors or FA. In setting the system parameters, application designers attempt to set a threshold authentication match score which balances these tolerances against efficiency for a given application.

[0006] The selected threshold match score is based on the desired probability of occurrence or non-occurrence of a FA and/or FR, and the performance histograms quantify the probability of occurrence of FA and FR. These probabilities are inverse, in that by increasing the threshold score to reduce the Probability of FA or P (FA), the Probability of FR or P(FR) is increased. Conversely, decreasing the threshold to reduce the Probability of FR or P(FR) increases the Probability of FA or P(FA).

[0007] In a given application the selected threshold is coded into the reader software, and system performance is observed. If actual system efficiency is unacceptable due to a False Reject Rate (FRR) that is too high, the threshold score is reduced, and if unacceptable due to a False Accept Rate (FAR) that is too high, the threshold is increased. Each time the threshold score changes, it must be recoded into the reader system software. Similarly, with each new reader model or new release, the threshold score must be changed in accordance with the new model histograms and possibly changed again following actual performance evaluation. Each re-coding of the threshold match score generally requires a new system software release, together with the time and labor required to install the new software.

[0008] EP-A-0 612 035 and GB-A-2 237 672 disclose a method of the kind referred to in the preamble of claim 1 of authenticating a smart card user at a reader device. EP-A-0 612 035 also discloses a system of authenticating a user at a reader device, which system is of the kind referred to in the preamble of claim 27.

SUMMARY OF THE INVENTION

[0009] It is a feature and advantage of the present invention to provide a system and method of biometric

smart card user authentication which automatically adjusts the probability of occurrence or non-occurrence of false acceptance of an impostor and false rejection of a valid user without the necessity of reprogramming the reader system software.

[0010] It is a further feature and advantage of the present invention of provide a system and method of biometric smart card user authentication in which the performance of the biometric technology is independent of where the system positions the threshold for false acceptance and false rejection.

[0011] It is another feature and advantage of the present invention to provide a system and method of biometric smart card user authentication which makes the card application more secure, thereby reducing the risk of fraudulent or unauthorized use and allowing for higher-value applications

[0012] It is an additional feature and advantage of the present invention to provide a system and method of biometric smart card user authentication which simplifies application design requirements by putting the user's biometric template on the card, thereby eliminating or greatly reducing network traffic.

[0013] It is still another feature and advantage of the present invention to provide a system and method of biometric smart card user authentication which enhances security and privacy by eliminating the necessity of transmitting the user's biometric template around to different locations where it is needed.

[0014] It is a still further feature and advantage of the present invention to provide a system and method of biometric smart card user authentication which allows application designers to set operating thresholds as tightly or as loosely as is appropriate for the particular risk involved.

[0015] It is also a feature and advantage of the present invention to provide a system and method of biometric smart card user authentication with a flexible architecture format for storing biometrics on the smart card that is independent of application or biometric methodology or vendor.

[0016] It is still an additional feature and advantage of the present invention to provide a system and method of biometric smart card user authentication which supports different methods, vendors, and releases, and allows for flexibility of application deployment.

[0017] It is another feature and advantage of the present invention to provide a system and method of biometric smart card user authentication in which the user is automatically authenticated by an application on the smart card.

[0018] It is an additional feature and advantage of the present invention to provide a method and system of biometric smart card user authentication in which the customer's use of the smart card in a transaction ties the customer undeniably to the transaction and make the transaction non-reputiatable.

[0019] To achieve the stated and other features, ad-

vantages and objects of the present invention, the system and method for authenticating a smart card user at a reader device of an embodiment of the present invention includes storing information fields for the user on the smart card relating to biometric information for the user, also referred to as a biometric template. The biometric template includes at least one model of biometric patterns for the user, such as the user's voice print, photograph, signature, fingerprint, hand geometry, retinal image or iris scan. The information fields also include a table of pre-defined probability of occurrence values for user authentication, as well as personal data for the user, identification of a biometric system, and a hashed data field. The information fields are stored in an application on a microprocessor of the smart card.

[0020] In an embodiment of the present invention, storing the information fields relating to the table of predefined probability of occurrence values involves automatically assigning a probability of occurrence value to each of a plurality of pre-defined threshold match scores, which are automatically identified for each of a plurality of value ranges of biometric reader device match scores. Identifying the threshold match scores involves automatically tabulating a performance histogram distribution of biometric reader device match scores for false acceptance of an impostor and false rejection of a valid user into a plurality of value ranges. Tabulating the performance histogram distribution involves automatically quantifying the performance histogram into discrete levels of biometric reader device match scores and automatically assigning the probability of occurrence value for each of the discrete levels of the biometric reader device match scores.

[0021] In an embodiment of the present invention, the smart card, together with a biometric sample for the user, are presented to the reader device, which is device match scores and automatically assigning the probability of occurrence value for each of the discrete levels of the biometric reader device match scores.

[0022] In an embodiment of the present invention, the smart card, together with a biometric sample for the user, are presented to the reader device, which is associated with a terminal, such as at least one of an area access terminal, a computer network terminal, a computer access terminal, a stored value terminal, a monetary access terminal, a PBX terminal, a long distance terminal, a personal computer, a laptop computer, a personal digital assistant, a public internet terminal, and an automated teller machine. The presented biometric sample is, for example, at least one of a voice print, photograph, signature, fingerprint, hand geometry, retinal image, and an iris scan

[0023] In an embodiment of the present invention, the user is automatically authenticated by the reader device based at least in part on a match level between the stored biometric information and the presented biometric sample according to a desired probability of occurrence value from the stored table. The desired probabil-

ity of occurrence value is pre-selected by pre-defining a desired probability of occurrence value for false acceptance of an impostor and false rejection of a valid user and pre-defining an instruction set which directs the reader device to look to the stored table of probability of occurrence values for a false acceptance of an impostor and false rejection of a valid user threshold match score corresponding to the desired probability of occurrence value. The user authentication is performed by an application associated with the reader device and residing on the reader device and/or the terminal.

[0024] Alternatively, in an embodiment of the present invention, in order to provide enhanced security, the user is automatically authenticated by an application on the smart card. For example, the reader device reads the presented biometric sample and automatically presents what is read by the reader device to the smart card application. The smart card application then authenticates the user according to the threshold match score from the table on the smart card application that corresponds to the desired probability of occurrence value.

[0025] Additional objects, advantages and novel features of the present invention will be set forth in part in the description which follows, and in part will become more apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention.

Brief Description of the Drawings

[0026]

Fig. 1 is a table which illustrates examples of types of data used in measuring biometrics performance for an embodiment of the present invention;

Fig. 2 shows a sample biometric reader device performance histogram for an embodiment of the present invention;

Fig. 3 is a table which illustrates four possible outcomes of a single biometric reader device trial for an embodiment of the present invention;

Fig. 4 is a diagram which illustrates an example of a receiver operating characteristic (ROC) curve for an embodiment of the present invention;

Fig. 5 is a flow chart which shows somewhat schematically an overview of the key components and the flow of information between the key components for an embodiment of the present invention; Fig. 6 is a table which illustrates examples of the type of data stored on the smart card for an embodiment of the present invention;

Fig. 7 is a table which shows a sample probability look-up table for an embodiment of the present invention; and

Fig. 8 is a flow chart which provides further detail regarding the process of authenticating a user through match scoring of a sample biometric obtained from the user by a biometric reader device for an embodiment of the present invention.

Detailed Description

[0027] Referring now in detail to an embodiment of the present invention, an example of which is illustrated in the accompanying drawings, a number of methods can be used to quantitatively measure biometrics performance. Fig. 1 is a table which illustrates examples of types of data used in measuring biometrics performance for an embodiment of the present invention. The types of data include, for example, performance histogram 2, False Accept Rate (FAR) and False Reject Rate (FRR) 4, Equal Error Rate (EER) 6, Failure to Acquire (FTA) 8, and "d" and Receiver Operating Characteristic (ROC) plots 10.

[0028] A basic way to look at data for quantitatively measuring the performance of biometrics is to inspect the performance histogram 2. Each time a trial is performed, the system returns a match score which is plotted in the histogram 2. Fig. 2 illustrates a sample biometric reader device performance histogram for an embodiment of the present invention. The histogram 2 has the match score 12 on the x-axis 14, from low scores 16 toward the left side of the histogram to high scores 18 toward the right side of the histogram. The number of cases attempted 20 is shown on the y-axis 22 of the histogram 2. Valid users 24 have higher match scores 18 and are shown on the right side of the histogram 2. Distributions vary from device to device, but are commonly normally distributed as bell curves 26 and 28. Impostors 30 have lower scores 16 and are shown on the left side of the histogram 2. Note also that there are usually fewer impostors 30 than valid users 24.

[0029] Referring further to Fig. 2, the vertical line on the histogram, which separates the two distributions of scores 26, 28, is known as the threshold 32. If a user scores higher than the threshold 32, the user is accepted, but if the user scores lower than the threshold, the user is rejected. There are four possible outcomes of a single trial. Fig. 3 is a table with illustrates the four possible outcomes of a single biometric reader device trial for an embodiment of the present invention. The four possible outcomes include, for example, Correct Accept 34 of a customer, Correct Reject 36 of an impostor, False Accept or FA 38 of an impostor, and False Reject or FR 40 of a customer. The percentage of cases in the False Accept or FA 38 outcome is called the False Accept Rate (FAR), and the percentage of cases in the False Reject or FR 40 outcome is called the False Reject Rate (FRR).

[0030] Referring again to Fig. 2, if the threshold 32 is repositioned toward the left side of the histogram 2, fewer FR's 40 occur, but more FA's 38 occur. If the threshold 32 is repositioned toward the right side of the histogram 2, more FR's 40 occur, but fewer FA's 38 occur. This is the essential tradeoff made in the context of an applica-

tion for an embodiment of the present invention. An important aspect of an embodiment of the present invention is that the system and method of the present invention automatically moves the threshold, and the performance of the biometric technology is independent of where the application positions the threshold 32.

[0031] The system and method for an embodiment of the present invention moves the threshold 32 according to the objectives of greater security or rejecting fewer customers. Referring likewise to Fig. 2, if the objective is greater security, the threshold 32 is moved to a higher position. If the objective is to reject fewer customers, the threshold 32 is moved to a lower position. Therefore, comparing a system which has, for example, a stated performance level of 1 percent FAR and 10 percent FRR with another system that has, for example, a performance level of 2 percent FAR and 8 percent FRR is analogous to comparing apples with oranges.

[0032] Different organizational constituencies typically have different perspectives of the FRR and FAR. For example, a security professional may prefer to know what the FRR will be if the FAR is set to 0 percent, while a marketing professional may wish to know what the FAR will be if the FRR is set to 0 percent. The number that is disposed in the middle is the Equal Error Rate (ERR). To address the aspect of movable thresholds, another method of quoting performance is the EER. Referring further to Fig. 2, to find the EER, the threshold 32 is set so that the percentage of FAR equals the percentage of FRR, and the overall error is calculated. For example, if the threshold 32 is set so that 5 percent of valid users 24 are rejected and 5 percent of impostors 30 are accepted, the overall EER is 5 percent. This is the outcomes table of a 5 percent EER.

[0033] Another measure of biometrics performance is called Failure to Acquire (FTA) 8, which is the failure of the system to find a signal to analyze. For example, in the fingerprint area, this is known as the 'presentation problem.' If a user does not place the user's finger on the scanner with the right orientation, or if the user moves the user's finger while the system is scanning, the resulting image cannot be processed. Likewise, in a speech system, if the user does not speak loudly enough, or if there is line noise or a bad connection, the system can fail to find the words. In a face verification system, the system may not be able to find a head in the proper frame it expects, and hence fails to acquire the photo. FTA 8 is often a result of human factor problems, mainly due to the amount of training a user may have or the amount of work a user must do to make the biometric work.

[0034] A numerical description of the degree of separation of two distributions, such as the scores of the valid users 24 and the scores of the impostors 30, known as "d'," is available from statistical decision and signal detection theory, and is related to the Neyman-Pearson equations describing distributions. It is defined according to the equation:

$$d' = (m2 - m1)/sqrt [sd1^2 + sd2^2)/2]$$

in which "d" is equal to the difference between the means of the distributions divided by the square root of the average of the squares of the standard deviations of the distributions.

[0035] Fig. 4 is a diagram which illustrates an example of a receiver operating characteristic (ROC) curve 42 for an embodiment of the present invention. Referring to Fig. 4, the Probability of False Reject or P(FR) 44 is plotted on the y-axis 46, and the Probability of False Acceptance or P(FA)) 48 is plotted on the x-axis 50. As previously mentioned, there is a tradeoff by moving the threshold, for example, higher and rejecting more valid users 23 but also keeping out more impostors 30. This tradeoff is shown as the ROC curve 42. In the ROC curve 42, points near the origin (0, 0) 52 represent operating the biometric with some FA 38 and FR 40, whereas points at the ends of the line represent thresholds which are set very high or very low. For example, the threshold can be set high, such that P(FA) 48 is low and P(FR) 44 is high, or the threshold can be set low, such that P(FA) 48 is high while P(FR) 44 is low.

[0036] Fig. 5 is a flow chart which shows somewhat schematically the key components and the flow of information between the key components for an embodiment of the present invention. Referring to Fig. 5, the system and method for biometric authentication of a smart card user 54 for an embodiment of the present invention involves storing certain information fields 56 in an application 58 on a microprocessor 60 embedded in the smart card 62, along with a biometric sample 64 itself. The information fields 56 include system identification and personal data, as well as a hashed data field, which is decoded by the system during the authentication process to certify the integrity of the information parameters.

[0037] Referring further to Fig. 5, additionally, the application 58 on the smart card 62 includes a probability look-up table 66 which quantifies a reader device performance histogram distribution into discrete levels of match score 12 and assigns a corresponding probability factor to each level for both false acceptances of impostors 30 and false rejections of valid users 24. The system reader device 68 is programmed with a desired Probability of False Acceptances or P(FA)'s 48 and False Rejections or P(FR)'s 44. The system reader 68 is also programmed with an instruction routine that tells the system signal processor to look to the probability look-up table 66 on the card 62 to determine the false acceptances or false rejections threshold match score corresponding to the desired probability factor, to be used for authentication.

[0038] An embodiment of the present invention provides an architecture which allows flexibility in application design. Since application requirements vary in terms of risk, user populations, channel properties and

15

cost, the system and method for an embodiment of the present invention supports a wide range of these properties. Biometric technology provides a type of security that is qualitatively different from that provided by token-based methods and information based methods. Token based methods make use of something that a user has, such as the card itself, and information-based methods utilize something that the user knows, such as a PIN or password. Biometric technology for an embodiment of the present invention can be used in addition to these other methods or by itself.

[0039] In embodiment of the present invention, the use of biometric technology in conjunction with the smart card 62 makes the card application 58 more secure, thereby reducing the risk of fraudulent or unauthorized use. This allows for the implementation of higher-valued applications. Further, such use of biometric technology provides for non-repudiation of a transaction by the user 54 using the user's smart card 62, so the user cannot deny a transaction performed by the user with the smart card. In other words, use of biometric technology in conjunction with the smart card 62 undeniably ties the user 54 to use of the smart card by the user. In addition, by putting the biometric template 64 on the card 62, application design requirements are simplified, since network traffic is eliminated or greatly reduced. This also enhances security and privacy, since it is unnecessary to transmit the template 64 around to different locations where it is needed.

[0040] The system and method for an embodiment of the present invention has numerous applications, such as secure area access, computer network and computer access, stored value or other monetary access, PBX and long distance access. Each of such applications has different requirements in terms of risk, environment, user, channel and cost. In terms of risk, a transaction which, for example, transfers a million dollars to a numbered Swiss bank account has a higher risk than one which simply returns a user's bank account balance. Gaining access, for example, to a nuclear weapons facility or to war plans or lists of secret agents carries a greater risk than gaining access to an officer's club or DISNEY WORLD. An objective of the application designer is to set application operating thresholds as tightly or as loosely as is appropriate for the particular risk involved.

[0041] In terms of environment, an office environment is different, for example, from an outdoor setting in a public space or a freezing border crossing station. While a face verification system works well, for example, in an office environment, it may not work in a public space where the lighting and background is uncontrolled. Likewise, a hand geometry unit will not work well at the freezing border station, unless heated in some way, but a speaker verification system may work. In regard to the user, if a user uses a particular system frequently, the user soon becomes habituated to the system. Since human factors are an important part of overall system per-

formance, a habituated user typically obtains better system performance than an unhabituated user on any given biometric. Some biometric methods are easier to learn and faster to use than others, so the type of user that is anticipated is an important factor in the selection and deployment of a biometric.

[0042] In terms of channel, some biometrics are more appropriate than others, depending on the channel of use. For example, for long distance or cell phone access, speaker verification is more natural and efficient than, for example, fingerprinting. Secure area access method choice depends on the environment, but signature verification may be more difficult than a camera based method, given the fact that the user may be carrying packages or the like and standing, or the user may be in a wheelchair. However, for a point of sale terminal, if a signature is required in a credit card transaction anyway, and if the merchant is moving to a paper-less business and the terminal has a pressure sensitive tablet for signature capture, then signature verification may be the most appropriate biometric method.

[0043] Other channels include, for example, the personal computer (PC) at home. Since many people only have one phone line into their home, deploying voice authentication may be cumbersome. However, a less cumbersome method may be a camera based method, since people may have cameras for other purposes, such as video teleconferencing. Other channels include, for example, laptop, personal digital assistant (PDA), public internet terminals, automated teller machines (ATM's), vehicles, and the like.

[0044] In terms of cost, there are a number of determinants of cost of a biometric, including the cost of enrollment, such as workstations, user time and monitoring, if supervised. Other cost factors include, for example, the cost of an access trial, such as user time, hardware and software and operations costs amortized over the number of verifications in the expected duration of the system, and the cost of storing the templates, such as the size of the template divided by cost of storage. To illustrate an example of the range of costs, a speaker verification system can be deployed for a telephone network that costs approximately \$5,000 per channel for a processor capable of performing up to 5 verifications a minute. If the system performs 300 verifications an hour, 24 hours a day, 7 days a week, 360 days a year, after 3 years when the system is presumed obsolete, the cost per verification is about 6 cents per hundred verifica-

[0045] On the other hand, to illustrate another example of the range of costs, an iris scanner at a secure room portal might also cost about \$5,000, but traffic through the portal might only be 30 verifications an hour or less, so the cost per verification for the iris scanner is proportionally greater than for speaker verification. As for template size, a hand geometry unit requires only 9 bytes of storage per template, whereas some fingerprint units and voice units require upwards of a kilobyte per

template. Since memory costs on smart cards are not inexpensive, and the amount of time it takes to transfer the data off the card, in the case of matching template to signal off the card, is proportional to the size of the template, template size is an important consideration.

[0046] In an embodiment of the present invention, a smart card parameter protocol mandates that certain information fields 56 are stored on the card 62, in addition to the biometric sample 64 itself. These information fields 56 include system identification and personal data, as well as a hashed data field, which is decoded by the system during the authentication process to certify the integrity of the information parameters. Fig. 6 is a table which illustrates examples of the type of data stored on the smart card 62 for an embodiment of the present invention.

[0047] Referring to Fig. 6, the content of the first six fields includes, for example, method 70, vendor 72, release 74, template 64, last updated 78, and first enrolled 80. The method field 70 relates to the biometric technology employed, such as fingerprint. The vendor field 72 identifies the particular vendor, such as SONY. The release field 74 specifies a release number, such as 1.0. The template field 64 is the particular template, and the last updated and first enrolled fields 78, 80 indicate dates. Referring further to Fig. 6, the hash value 82 is a value which is arrived at by hashing everything in the record. This can be transmitted elsewhere to authenticate the validity of the template 64.

[0048] Another aspect of an embodiment of the present invention is that the card 62 also includes a probability look-up table 66 which quantifies the reader device performance histogram distribution into discrete levels of match score, such as 200, 300, 400, and so on, and assigns a corresponding probability factor to each level. Fig. 7 is a table which shows a sample probability look-up table 66 for an embodiment of the present invention. Referring to Fig. 7, the probability look-up table 66 includes an array of threshold match scores that are interpreted by the application 58. For example, for a False Accept Rate or FAR of less than 1 in 100, the match value between the template 64 and the presented signal must be greater than 200. Alternatively, for a False Reject Rate or FRR of less than 1 in one million, a threshold match score of 400 is used. This is done for both FA 38 and FR 40.

[0049] In an embodiment of the present invention, the system reader 68 is programmed with a desired P(FA) 48 or P(FR) 44 rather than with a fixed threshold match score. The system reader 68 is also programmed with an instruction routine that tells the system signal processor to look to the probability look-up table 66 on the card 62 to determine the desired probability factor's corresponding FA 38 or FR 40 threshold match score to be used for authentication. This aspect reduces the cost of new system releases, since the application software may remain the same and only the cards have to be reprogrammed, instead of both the system and the cards

as in the prior art. In addition, the cards may be programmed for personalized authentication, for example, at either a higher or lower security level, on an individual basis, instead of one value fits all.

[0050] In an embodiment of the present invention, the user 54 is authenticated through match scoring of a sample biometric obtained from the user by the biometric reader device 68. Fig. 8 is a flow chart which provides further detail regarding the process of authenticating a user through match scoring of a sample biometric obtained from the user by a biometric reader device for an embodiment of the present invention. At S1, a biometric template 64 for the user 54 is stored in an application 58 on a microprocessor 60 of the smart card 62, along with information fields 56, including system identification and personal data for the user. At S2, a look-up table 66 based on a tabulation of performance histogram distribution of biometric reader device match scores for false acceptance or FA 38 and false rejection or FR 40 into value ranges, with each value range identified by a threshold match score and each threshold match score assigned a corresponding probability of occurrence value P(FA) 48 and P(FR) 44, is also stored on the smart card application 58.

[0051] Referring further to Fig. 8, at S3, the user 54 presents the smart card 58, along with a new biometric sample for the user, to the biometric reader device 68 pre-programmed with a desired probability of occurrence value and with an instruction set that commands the reader device to look to the look-up table 66 on the card 58 for the threshold match score associated with the desired probability to be used for authentication of the user. At S4, the reader device 58 compares the new biometric sample for the user 54 with the user's biometric template 64 stored on the smart card 62, identifies the threshold match score associated with the desired probability of occurrence value, and authenticates the user on the basis of the identified threshold match score. [0052] It is clear that there is no 'one biometric fits all' for every application, nor is there one operating threshold that is appropriate for all applications. An embodiment of the present invention provides a flexible architecture format for storing biometrics on smart cards that is independent of application or biometric methodology or vendor. In an embodiment of the present invention, threshold match scores are no longer 'hardwired' in a specific application to a specific method, vendor and specific release. The same architecture applies no matter what the risk, vendor, biometric method or release. Thresholds and methods are determined, and probability density functions of various vendors, methods and releases are derived in order to fill in the threshold match scores. Thus, an embodiment of the present invention supports different methods, vendors and releases, and allows for flexibility in application deployment.

[0053] Various preferred embodiments of the present invention have been described in fulfillment of the various objects of the invention. It should be recognized that

40

these embodiments are merely illustrative of the principles of the present invention. Numerous modifications and adaptations thereof will be readily apparent to those skilled in the art without departing from the spirit and scope of the present invention. Accordingly, the invention is limited only by the following claims.

Claims

- A method of authenticating a smart card user at a reader device, comprising:
 - storing information fields for the user on the smart card, wherein the information fields comprise biometric information for the user and a table of pre-defined probability of occurrence values for user authentication;
 - presenting the smart card and a biometric sample for the user to the reader device; and
 - automatically authenticating the user based at least in part on the match level between the stored biometric information and the presented biometric sample,
 - calculating a match level between:
 - (a) the biometric information for the user that is stored on the smart card and(b) the biometric sample for the user that is presented to the reader device;

characterized by

- storing the information fields relating to the table of pre-defined probability of occurrence values for user authentication further comprises automatically assigning a probability of occurrence value to each of a plurality of pre-defined threshold match scores;
- programming the reader device with:
 - (a) a desired probability of occurrence value and
 - (b) an instruction set directing the reader device to look to the table stored on the smart card to obtain the threshold match score that corresponds to the desired probability of occurrence value;
- comparing the calculated match level with the threshold match score that is obtained from the table stored on the smart card; and
- authenticating the user if the calculated match level is greater than the threshold match score that is obtained from the table stored on the smart card.
- 2. The method of claim 1, wherein storing the informa-

tion fields relating to the biometric information for the user further comprises storing a biometric template for the user

- 5 3. The method of claim 2, wherein storing the biometric template further comprises storing at least one model of biometric patterns for the user selected from a group of biometric patterns consisting of voice print, photograph, signature, fingerprint, hand geometry, retinal image, and iris scan.
 - The method of claim 1, wherein automatically assigning the probability of occurrence values further comprises automatically identifying the threshold match scores for each of a plurality of value ranges of biometric reader device match scores.
 - 5. The method of claim 4, wherein automatically identifying the threshold match scores further comprises automatically tabulating a performance histogram distribution ofbiometric reader device match scores for false acceptance of an impostor and false rejection of a valid user into the plurality of value ranges.
- 25 6. The method of claim 5, wherein automatically tabulating the performance histogram distribution further comprises automatically quantifying the performance histogram distribution into discrete levels of the biometric reader device match scores.
 - 7. The method of claim 6, wherein automatically tabulating the performance histogram distribution further comprises automatically assigning the probability of occurrence value for each of the discrete levels of the biometric reader device match scores.
 - The method of claim 1, wherein storing the information fields further comprises storing personal data for the user on the smart card.
 - The method of claim 1, wherein storing information fields further comprises storing information related to identification of a biometric system on the smart card.
 - The method of claim 1, wherein storing the information fields further comprises storing a hashed data field on the smart cared.
- 11. The method of claim 1, wherein storing the information fields further comprises storing the information fields in an application on the smart card.
- 12. The method of claim 11, wherein storing the information fields in the application further comprises storing the information fields in an application on a microprocessor of the smart card.

- 13. The method of claim 1, wherein presenting the smart card further comprises presenting the smart card to the reader device associated with a terminal.
- 14. The method of claim 13, wherein the terminal further comprises at least one of an area access terminal, a computer network terminal, a computer access terminal, a stored value terminal, a monetary access terminal, a PBX terminal, a long distance terminal, a personal computer, a laptop computer, a personal digital assistant, a public internet terminal, and an automated teller machine.
- 15. The method of claim 1, wherein presenting the biometric sample further comprises presenting the biometric sample to the reader device associated with a terminal.
- 16. The method of claim 15, wherein the terminal further comprises at least one of an area access terminal, a computer network terminal, a computer access terminal, a stored value terminal, a monetary access terminal, a PBX terminal, a long distance terminal, a personal computer, a laptop computer, a personal digital assistant, a public internet terminal, and an automated teller machine.
- 17. The method of claim 1, wherein presenting the biometric sample further comprises presenting at least one biometric sample selected from a group of biometric samples consisting of voice print, photograph, signature, fingerprint, hand geometry, retinal image, and iris scan.
- **18.** The method of claim 1, wherein automatically authenticating further comprises pre-selecting the desired probability of occurrence value.
- 19. The method of claim 18, wherein pre-selecting the desired probability of occurrence value further comprises pre-defining a desired probability of occurrence value for false acceptance of an impostor and false rejection of a valid user.
- 20. The method of claim 19, wherein pre-defining the desired probability of occurrence value further comprises pre-defining an instruction set directing the reader device to look to the stored table of probability of occurrence values for a false acceptance of an impostor and false rejection of a valid user threshold match score corresponding to the desired probability of occurrence value.
- 21. The method of claim 20, wherein automatically authenticating further comprises automatically selecting the false acceptance of an impostor and false rejection of a valid user threshold match score, such that for a desired false acceptance rate, a match

- value between the stored biometric information and the biometric sample is at least a pre-determined level, and for a desired false rejection rate, the match value is less than a pre-determined level.
- 22. The method of claim 1, wherein automatically authenticating further comprise automatically authenticating the user by an application associated with the reader device.
- 23. The method of claim 22, wherein automatically authenticating further comprises automatically authenticating the user by an application residing at least in part on the reader device.
- 24. The method of claim 22, wherein automatically authenticating further comprising automatically authenticating the user by an application residing at least in part on a terminal associated with the reader device.
- 25. The method of claim 1, wherein automatically authenticating further comprises automatically authenticating the user by an application associated with the smart card.
- 26. The method of claim 25, wherein automatically authenticating further comprises automatically authenticating the user by an application residing at least in part on the smart card.
- **27.** A system for authenticating a smart card user at a reader device, comprising:
 - means for storing information fields for the user on the smart card, wherein the information fields comprise biometric information for the user and a table of pre-defined probability of occurrence values for user authentication;
 - means for presenting the smart card and a biometric sample for the user to the reader device; and
 - means for automatically authenticating the user based at least in part on the match level between the stored biometric information and the presented biometric sample,
 - means for calculating a match level between:
 - (a) the biometric information for the user that is stored on the smart card and(b) the biometric sample for the user that is presented to the reader device;

characterized by

said means for storing the information fields relating to the table of pre-defined probability of occurence values for user authentification further automatically assignes a probability of occurence value to each

55

20

of a plurality of pre-defined threshold match scores;

- means for programming the reader device with:
 - (a) a desired probability of occurrence value and
 - (b) an instruction set directing the reader device to look to the table stored on the smart card to obtain the threshold match score corresponding to the desired probability of occurrence value;
- means for comparing the calculated match level with the threshold match score that is obtained from the table stored on the smart card;
 and
- wherein the user is authenticated if the calculated match level is greater than the threshold match score that is obtained from the table stored on the smart card.
- 28. The system of claim 27, wherein the means for storing the information fields further comprises an application on the smart card.
- 29. The system of claim 28, wherein the application on the smart card further comprises an application on a microprocessor of the smart card.
- 30. The system of claim 29, wherein the means for presenting the smart card and the biometric sample further comprises a reader device associated with a terminal.
- 31. The system of claim 30, wherein the means for presenting the smart card and the biometric sample further comprises an application associated with the reader device.
- 32. The system of claim 31, wherein the terminal further comprises at least one of an area access terminal, a computer network terminal, a computer access terminal, a stored value terminal, a monetary access terminal, a PBX terminal, a long distance terminal, a personal computer, a laptop computer, a personal digital assistant, a public internet terminal, and an automated teller machine.
- **33.** The system of claim 27, wherein the means for automatically authenticating the user further comprises an application associated with the reader device.
- 34. The system of claim 33, wherein the reader device is associated with a terminal.
- 35. The system of claim 34, wherein the terminal further comprises at least one of an area access terminal, a computer network terminal, a computer access

terminal, a stored value terminal, a monetary access terminal, a computer access terminal, a stored value terminal, a monetary access terminal, a PBX terminal, a long distance terminal, a personal computer, a laptop computer, a personal digital assistant, a public internet terminal and an automated teller machine.

36. The system of claim 27, wherein the means for automatically authenticating further comprises an application associated with the smart card.

Patentansprüche

- Verfahren zum Authentifizieren eines Benutzers einer Chip-Karte an einer Lesevorrichtung, umfassend:
 - Speichern von Informationsfeldern für den Benutzer auf der Chip-Karte, wobei die Informationsfelder biometrische Information für den Benutzer und eine Tabelle mit vordefinierten Werten einer Auftrittswahrscheinlichkeit für eine Authentifizierung eines Benutzers umfassen;
 - Vorlegen der Chip-Karte und einer biometrischen Probe für den Benutzer der Lesevorrichtung; und
 - Berechnen eines Übereinstimmungsniveaus zwischen:
 - (a) der biometrischen Information für den Benutzer, welche auf der Chip-Karte gespeichert ist und
 - (b) der biometrischen Probe für den Benutzer, welche der Lesevorrichtung vorgelegt wird;
 - automatisches Authentifizieren des Benutzers, das mindestens teilweise auf dem Übereinstimmungsniveau zwischen der gespeicherten biometrischen Information und der vorgelegten biometrischen Probe basiert,

gekennzeichnet durch:

- Speichern der Informationsfelder, die die Tabelle der vordefinierten Werte der Auftrittswahrscheinlichkeiten für die Authentifizierung des Benutzers betreffen, ferner umfassend ein automatisches Zuweisen eines Wertes der Auftrittswahrscheinlichkeit zu jedem einer Vielzahl von vordefinierten Übereinstimmungsschwellwerten;
- Programmieren der Lesevorrichtung mit:
 - (a) einem gewünschten Wert der Auftrittswahrscheinlichkeit; und

10

55

(b) einem Befehlssatz, der die Lesevorrichtung lenkt, in der auf der Chip-Karte gespeicherten Tabelle nachzusehen, um den Übereinstimmungsschwellwert zu erhalten, der dem gewünschten Wert der Auftrittswahrscheinlichkeit entspricht;

- Vergleichen des berechneten Übereinstimmungsniveaus mit dem Übereinstimmungsschwellwert, der aus der auf der Chip-Karte gespeicherten Tabelle erhalten wird; und
- Authentifizieren des Benutzers, falls das berechnete Übereinstimmungsniveau größer ist als der Übereinstimmungsschwellwert, der aus der auf der Chip-Karte gespeicherten Tabelle erhalten wird.
- Verfahren gemäß Anspruch 1, wobei das Speichern der Informationsfelder, die die biometrische Information für den Benutzer betreffen, ferner das Speichern einer biometrischen Vorlage für den Benutzer umfasst.
- 3. Verfahren gemäß Anspruch 2, wobei das Speichern der biometrischen Vorlage ferner ein Speichern mindestens eines Modells von biometrischen Mustern für den Benutzer umfasst, die aus einer Gruppe von biometrischen Mustern ausgewählt werden, die Stimmabdruck, Lichtbild, Unterschrift, Fingerabdruck, Handgeometrie, Netzhautbild und Irisabtastung enthalten.
- 4. Verfahren gemäß Anspruch 1, wobei ein automatisches Zuweisen der Werte der Auftrittswahrscheinlichkeit ferner ein automatisches Identifizieren der Übereinstimmungsschwellwerte für jeden einer Vielzahl von Wertebereichen der Übereinstimmungswerte der biometrischen Lesevorrichtung umfasst.
- 5. Verfahren gemäß Anspruch 4, wobei das automatische Identifizieren der Übereinstimmungsschwellwerte ferner ein automatisches Tabellarisieren einer Leistungs-Histogramm-Verteilung von Übereinstimmungswerten der biometrischen Lesevorrichtung für die falsche Anerkennung eines Betrüger und falsche Ablehnung eines gültigen Benutzers in die Vielzahl von Wertebereichen umfasst.
- 6. Verfahren gemäß Anspruch 5, wobei das Tabellarisieren der Leistungs-Histogramm-Verteilung ferner ein automatisches Quantifizieren der Leistungs-Histogramm-Verteilung in diskrete Niveaus der Übereinstimmungswerte der biometrischen Lesevorrichtung umfasst.
- Verfahren gemäß Anspruch 6, wobei das Tabellarisieren der Leistungs-Histogramm-Verteilung ferner

- ein automatisches Zuweisen des Wertes der Auftrittswahrscheinlichkeit für jedes der diskreten Niveaus der Übereinstimmungswerte der Lesevorrichtung umfasst.
- Verfähren gemäß Anspruch 1, wobei das Speichern der Informationsfelder femer ein Speichern von persönlichen Daten des Benutzers auf der Chip-Karte umfasst.
- Verfahren gemäß Anspruch 1, wobei das Speichern der Informationsfelder ferner ein Speichern einer Information, die das Identifizieren eines biometrischen Systems betrifft, auf der Chip-Karte umfasst.
- Verfahren gemäß Anspruch 1, wobei das Speichern der Informationsfelder ferner ein Speichern eines Hash-Datenfeldes auf der Chip-Karte umfasst.
- 11. Verfahren gemäß Anspruch 1, wobei das Speichern der Informationsfelder ferner ein Speichern der Informationsfelder in eine Anwendung auf der Chip-Karte umfasst.
- 12. Verfahren gemäß Anspruch 11, wobei das Speichern der Informationsfelder in der Anwendung ferner ein Speichern der Informationsfelder in einer Anwendung auf einem Mikroprozessor der Chip-Karte umfasst.
 - 13. Verfahren gemäß Anspruch 1, wobei das Vorlegen der Chip-Karte ferner ein Vorlegen der Chip-Karte der Lesevorrichtung umfasst, die einem Endgerät zugeordnet ist.
 - 14. Verfahren gemäß Anspruch 13, wobei das Endgerät ferner mindestens ein Bereichszugangsendgerät, ein Computernetzwerkendgerät, ein Computerzugangsendgerät, ein Speicherwertendgerät, ein Währungszugangsendgerät, ein PBX Endgerät, ein Fernendgerät, ein Personalcomputer, ein Laptopcomputer, ein persönlicher digitaler Assistent, ein öffentliches Internetendgerät und ein Geldautomat umfasst.
 - 15. Verfahren gemäß Anspruch 1, wobei das Vorlegen der biometrischen Probe ferner ein Vorlegen der biometrischen Probe der Lesevorrichtung umfasst, die einem Endgerät zugeordnet ist.
 - 16. Verfahren gemäß Anspruch 15, wobei das Endgerät ferner mindestens ein Bereichszugangsendgerät, ein Computerzugangsendgerät, ein Speicherwertendgerät, ein Währungszugangsendgerät, ein PBX Endgerät, ein Femendgerät, ein Personalcomputer, ein Laptopcomputer, ein persönlicher digitaler Assistent, ein öffentliches Internetendgerät und ein Geldautomat

55

45

20

umfasst.

- 17. Verfahren gemäß Anspruch 1, wobei das Vorlegen der biometrischen Probe ferner ein Vorlegen mindestens einer biometrischen Probe ausgewählt aus einer Gruppe von biometrischen Proben umfasst, die Stimmabdruck, Lichtbild, Unterschrift, Fingerabdruck, Handgeometrie, Netzhautbild und Irisabtastung enthalten.
- Verfahren gemäß Anspruch 1, wobei das Automatische Authentifizieren ferner ein Vor-Auswählen des gewünschten Wertes der Auftrittswahrscheinlichkeit umfasst.
- 19. Verfahren gemäß Anspruch 18, wobei das Vor-Auswählen des gewünschten Wertes der Auftrittswahrscheinlichkeit ferner ein Vordefinieren eines gewünschten Wertes der Auftrittswahrscheinlichkeit für die falsche Anerkennung eines Betrügers und falsche Ablehnung eines gültigen Benutzers umfasst
- 20. Verfahren gemäß Anspruch 19, wobei das Vordefinieren des gewünschten Wertes der Auftrittswahrscheinlichkeit ferner ein Vordefinieren eines Befehlsatzes umfasst, der die Lesevorrichtung lenkt, in die gespeicherte Tabelle der Werte der Auftrittswahrscheinlichkeit der Übereinstimmungsschwellwerte für eine falsche Anerkennung eines Betrügers und falsche Ablehnung eines gültigen Benutzers nachzusehen, die dem gewünschten Wert der Auftrittswahrscheinlichkeit entsprechen.
- 21. Verfahren gemäß Anspruch 20, wobei das automatische Authentifizieren ferner ein automatisches Auswählen des Übereinstimmungsschwellwertes für die falsche Anerkennung eines Betrügers und falsche Ablehnung eines gültigen Benutzers umfasst, so dass für eine gewünschte falsche Anerkennungshäufigkeit ein Übereinstimmungswert zwischen der gespeicherten biometrischen Information und der biometrischen Probe mindestens einem vorherbestimmten Niveau entspricht, und für eine falsche Ablehnungshäufigkeit der Übereinstimmungswert kleiner ist als ein vorherbestimmtes Niveau.
- 22. Verfahren gemäß Anspruch 1, wobei das automatische Authentifizieren ferner ein automatisches Authentifizieren des Benutzers durch eine Anwendung umfasst, die der Lesevorrichtung zugeordnet ist.
- 23. Verfahren gemäß Anspruch 22, wobei das automatische Authentifizieren ferner ein automatisches Authentifizieren des Benutzers durch eine Anwendung umfasst, die sich mindestens zu einem Teil auf

der Lesevorrichtung befindet.

- 24. Verfahren gemäß Anspruch 22, wobei das automatische Authentifizieren ferner ein automatisches Authentifizieren des Benutzers durch eine Anwendung umfasst, die sich mindestens zu einem Teil auf einem Endgerät befindet, das der Lesevorrichtung zugeordnet ist.
- 10 25. Verfahren gemäß Anspruch 1, wobei das automatische Authentifizieren ferner ein automatisches Authentifizieren des Benutzers durch eine Anwendung umfasst, die der Chip-Karte zugeordnet ist.
- 15 26. Verfahren gemäß Anspruch 25, wobei das automatische Authentifizieren ferner ein automatisches Authentifizieren des Benutzers durch eine Anwendung umfasst, die sich mindestens zu einem Teil auf der Chip-Karte befindet.
 - 27. System zum Authentifizieren eines Benutzers einer Chip-Karte an einer Lesevorrichtung, umfassend:
 - Mittel zum Speichern von Informationsfelder für den Benutzer auf der Chip-Karte, wobei die Informationsfelder biometrische Information für den Benutzer und eine Tabelle mit vordefinierten Werten der Auftrittswahrscheinlichkeit für die Authentifizierung des Benutzers umfasst;
 - Mittel zum Vorlegen der Chip-Karte und einer biometrischen Probe für den Benutzer der Lesevorrichtung; und
 - Mittel zum Berechnen eines Übereinstimmungsniveaus zwischen:
 - (a) der biometrischen Information für den Benutzer, welche auf der Chip-Karte gespeichert ist und
 - (b) der biometrischen Probe für den Benutzer, welche der Lesevorrichtung vorgelegt wird:
 - Mittel zum automatischen Authentifizieren des Benutzers, das mindestens teilweise auf dem Übereinstimmungsniveau zwischen der gespeicherten biometrischen Information und der vorgelegten biometrischen Probe basiert,

gekennzeichnet

 dadurch, dass das Mittel zum Speichern der Informationsfelder, die die Tabelle der vordefinierten Werten der Auftrittswahrscheinlichkelt für die Authentifizierung des Benutzers betreffen, ferner automatisch einen Wert der Auftrittswahrscheinlichkeit jedem einer Vielzahl von vordefinierten Übereinstimmungsschwellwerten zuweist;

10

20

35

45

50

55

- durch Mittel zum Programmieren der Lesevorrichtung mit:
 - (a) einem gewünschten Wert der Auftrittswahrscheinlichkeit; und
 - (b) einem Befehlssatz, der die Lesevorrichtung lenkt, in der auf der Chip-Karte gespeicherten Tabelle nachzusehen, um den Übereinstimmungsschwellwert zu erhalten, der dem gewünschten Wert der Auftrittswahrscheinlichkeit entspricht;
- durch Mittel zum Vergleichen des berechneten Übereinstimmungsniveaus mit dem Übereinstimmungsschwellwert, der aus der auf der Chip-Karte gespeicherten Tabelle erhalten wird; und
- wobei der Benutzer authentifiziert ist, falls das berechnete Übereinstimmungsniveau größer ist als der Übereinstimmungsschwellwert, der aus der auf der Chip-Karte gespeicherten Tabelle erhalten wird.
- 28. System gemäß Anspruch 27, wobei das Mittel zum Speichern der Informationsfelder ferner eine Anwendung auf der Chip-Karte umfasst.
- 29. System gemäß Anspruch 28, wobei die Anwendung auf der Chip-Karte ferner eine Anwendung auf einem Mikroprozessor der Chip-Karte umfasst.
- 30. System gemäß Anspruch 29, wobei das Mittel zum Vorlegen der Chip-Karte und der biometrischen Probe ferner eine Lesevorrichtung umfasst, die einem Endgerät zugeordnet ist.
- 31. System gemäß Anspruch 30, wobei das Mittel zum Vorlegen der Chip-Karte und der biometrischen Probe ferner eine Anwendung umfasst, die der Lesevorrichtung zugeordnet ist.
- 32. System gemäß Anspruch 31, wobei das Endgerät ferner mindestens ein Bereichszugangsendgerät, ein Computerzugangsendgerät, ein Speicherwertendgerät, ein Währungszugangsendgerät, ein PBX Endgerät, ein Fernendgerät, ein Personalcomputer, ein Laptopcomputer, ein persönlicher digitaler Assistent, ein öffentliches Internetendgerät und ein Geldautomat umfasst.
- 33. System gemäß Anspruch 27, wobei das Mittel zum automatischen Authentifizieren des Benutzers ferner eine Anwendung umfasst, die der Lesevorrichtung zugeordnet ist.
- **34.** System gemäß Anspruch 33, wobei die Lesevorrichtung einem Endgerät zugeordnet ist.

- 35. System gemäß Anspruch 34, wobei das Endgerät ferner mindestens ein Bereichszugangsendgerät, ein Computernetzwerkendgerät, ein Computerzugangsendgerät, ein Speicherwertendgerät, ein Währungszugangsendgerät, ein PBX Endgerät, ein Fernendgerät, ein Personalcomputer, ein Laptopcomputer, ein persönlicher digitaler Assistent, ein öffentliches Internetendgerät und ein Geldautomat umfasst.
- **36.** System gemäß Anspruch 27, wobei das Mittel zum automatischen Authentifizieren ferner eine Anwendung umfasst, die der Chip-Karte zugeordnet ist.

Revendications

- Procédé d'authentification d'un utilisateur de carte à mémoire au niveau d'un dispositif de lecture, qui comprend :
 - le stockage de champs d'informations relatifs à l'utilisateur sur la carte à mémoire, les champs d'informations comprenant des informations biométriques relatives à l'utilisateur et un tableau de probabilité prédéfinie de valeurs d'occurrence permettant l'authentification de l'utilisateur;
 - la présentation de la carte à mémoire et d'un échantillon biométrique relatif à l'utilisateur au dispositif de lecture; et
 - l'authentification automatique de l'utilisateur, au moins en partie sur la base du niveau de correspondance entre les informations biométriques stockées et l'échantillon biométrique présenté,
 - le calcul d'un niveau de correspondance entre :
 - (a) les informations biométriques relatives à l'utilisateur et stockées sur la carte à mémoire, et
 - (b) l'échantillon biométrique relatif à l'utilisateur que l'on présente au dispositif de lecture;

caractérisé par

- le stockage des champs d'informations concernant le tableau de probabilité prédéfinie de valeurs d'occurrence permettant l'authentification de l'utilisateur comprend de plus l'assignation automatiquement d'une probabilité de valeur d'occurrence à chacun d'une pluralité de scores seuils de correspondance prédéfinis;
- le fait de programmer le dispositif de lecture à l'aide :
 - (a) d'une probabilité voulue de valeur d'oc-

30

currence et

- (b) d'un ensemble d'instructions conduisant le dispositif de lecture à consulter le tableau stocké sur la carte à mémoire afin d'obtenir le score seuil de correspondance correspondant à la probabilité voulue de valeur d'occurrence;
- la comparaison du niveau calculé de correspondance au score seuil de correspondance que l'on obtient à partir du tableau stocké sur la carte à mémoire; et
- authentification de l'utilisateur si le niveau calculé de correspondance est supérieur au score seuil de correspondance obtenu à partir du tableau stocké sur la carte à mémoire.
- Procédé selon la revendication 1, dans lequel le stockage des champs d'informations concernant les informations biométriques relatives à l'utilisateur comprend de plus le stockage d'un modèle biométrique relatif à l'utilisateur.
- 3. Procédé selon la revendication 2, dans lequel le stockage du modèle biométrique comprend de plus le stockage d'au moins un modèle de références biométriques relatives à l'utilisateur, choisis à partir d'un groupe de références biométriques consistant en les éléments suivants : l'empreinte vocale, 1 a photographie, la signature, l'empreinte digitale, la géométrie de la main, l'image rétinienne et le balayage de l'iris.
- 4. Procédé selon la revendication 1, dans lequel l'assignation de la probabilité des valeurs d'occurrence comprend de plus l'identification automatique des scores seuils de correspondance pour chacune d'une pluralité d'intervalles devaleurs de scores de correspondance du dispositif de lecture biométrique.
- 5. Procédé selon la revendication 4, dans lequel l'identification des scores seuils de correspondance comprend de plus la tabulation d'une répartition en histogramme des performances des scores de correspondance du dispositif de lecture biométrique, pour la fausse acceptation d'un imposteur et le rejet par erreur d'un utilisateur valide, parmi la pluralité d'intervalles devaleurs.
- 6. Procédé selon la revendication 5, dans lequel la tabulation de la répartition en histogramme des performances comprend de plus la quantification automatique de la répartition en histogramme des performances en niveaux discrets de scores de correspondance du dispositif de lecture biométrique.
- 7. Procédé selon la revendication 6, dans lequel la ta-

- bulation de la répartition en histogramme des performances comprend de plus l'assignation de la probabilité de la valeur d'occurrence pour chacun des niveaux discrets des scores de correspondance du dispositif de lecture biométrique.
- 8. Procédé selon la revendication 1, dans lequel le stockage des champs d'informations comprend de plus le stockage de données personnelles relatives à l'utilisateur sur la carte à mémoire.
- 9. Procédé selon la revendication 1, dans lequel le stockage des champs d'informations comprend de plus le stockage d'informations concernant l'identification d'un système biométrique sur la carte à mémoire.
- 10. Procédé selon la revendication 1, dans lequel le stockage des champs d'informations comprend de plus le stockage d'une zone de données hachées sur la carte à mémoire.
- 11. Procédé selon la revendication 1, dans lequel le stockage des champs d'informations comprend de plus le stockage des champs d'informations dans une application sur la carte à mémoire.
- 12. Procédé selon la revendication 11, dans lequel le stockage des champs d'informations dans l'application comprend de plus le stockage des champs d'informations dans une application sur un microprocesseur de la carte à mémoire.
- 13. Procédé selon la revendication 1, dans lequel la présentation de la carte à mémoire comprend de plus la présentation de la carte à mémoire au dispositif de lecture associé à un terminal.
- 14. Procédé selon la revendication 13, dans lequel le terminal comprend de plus au moins l'un des éléments suivants : un terminal à accès local, un terminal de réseau informatique, un terminal à accès informatique, un terminal à valeur mémorisée, un terminal à accès monétaire, un terminal PBX, un terminal éloigné, un ordinateur personnel, un ordinateur portatif, un assistant numérique personnel, un terminal Internet public, et un guichet automatique bancaire.
- 50 15. Procédé selon la revendication 1, dans lequel la présentation de l'échantillon biométrique comprend de plus la présentation de l'échantillon biométrique au dispositif de lecture associé à un terminal.
- 55 16. Procédé selon la revendication 15, dans lequel le terminal comprend de plus au moins l'un des éléments suivants : un terminal à accès local, un terminal de réseau informatique, un terminal à accès

20

informatique, un terminal à valeur mémorisée, un terminal à accès monétaire, un terminal PBX, un terminal éloigné, un ordinateur personnel, un ordinateur portatif, un assistant numérique personnel, un terminal Internet public, et un guichet automatique bancaire.

- 17. Procédé selon la revendication 1, dans lequel la présentation de l'échantillon biométrique comprend de plus la présentation d'au moins un échantillon biométrique choisi parmi dans un groupe d'échantillons biométriques consistant en les éléments suivants : l'empreinte vocale, la photographie, la signature, l'empreinte digitale, la géométrie de la main, l'image rétinienne et le balayage de l'iris.
- 18. Procédé selon la revendication 1, dans lequel l'authentification automatique comprend de plus la présélection de la probabilité voulue de la valeur d'occurrence.
- 19. Procédé selon la revendication 18, dans lequel la présélection de la probabilité voulue de la valeur d'occurrence comprend de plus la prédéfinition d'une probabilité voulue de valeur d'occurrence correspondant à la fausse acceptation d'un imposteur et le rejet par erreur d'un utilisateur valide.
- 20. Procédé selon la revendication 19, dans lequel la prédéfinition de la probabilité voulue de la valeur d'occurrence comprend de plus la prédéfinition d'un ensemble d'instructions conduisant le dispositif de lecture à consulter le tableau stocké de probabilité de valeurs d'occurrence de score seuil de correspondance correspondant à la fausse acceptation d'un imposteur et au rejet par erreur d'un utilisateur valide et correspondant à la probabilité voulue de valeur d'occurrence.
- 21. Procédé selon la revendication 20, dans lequel l'authentification automatique comprend de plus la sélection automatique de score seuil de correspondance correspondant à la fausse acceptation d'un imposteur et au rejet par erreur d'un utilisateur valide, ce qui fait que pour un taux voulu d'acceptation par erreur, une valeur de correspondance entre les informations biométriques stockées et l'échantillon biométrique atteint au moins un niveau prédéterminé, et que pour un taux voulu de rejet par erreur, la valeur de correspondance se situe au-dessous d'un niveau prédéterminé.
- 22. Procédé selon la revendication 1, dans lequel l'authentification automatique comprend de plus l'authentification automatique de l'utilisateur par une application associée au dispositif de lecture.
- 23. Procédé selon la revendication 22, dans lequel

l'authentification automatique comprend de plus l'authentification automatique de l'utilisateur par une application résidant au moins en partie dans le dispositif de lecture.

- 24. Procédé selon la revendication 22, dans lequel l'authentification automatique comprend de plus l'authentification automatique de l'utilisateur par une application résidant au moins en partie dans un terminal associé au dispositif de lecture.
- 25. Procédé selon la revendication 1, dans lequel l'authentification automatique comprend de plus l'authentification automatique de l'utilisateur par une application associée à la carte à mémoire.
- 26. Procédé selon la revendication 25, dans lequel l'authentification automatique comprend de plus l'authentification automatique de l'utilisateur par une application résidant au moins en partie dans la carte à mémoire.
- 27. Système d'authentification d'un utilisateur de carte à mémoire au niveau d'un dispositif de lecture, qui comprend :
 - un moyen de stockage de champs d'informations relatifs à l'utilisateur sur la carte à mémoire, les champs d'informations comprenant des informations biométriques relatives à l'utilisateur et un tableau de probabilité prédéfinie de valeurs d'occurrence permettant l'authentification de l'utilisateur;
 - un moyen de présentation de la carte à mémoire et d'un échantillon biométrique relatif à l'utilisateur au dispositif de lecture; et
 - un moyen d'authentification automatique de l'utilisateur, au moins en partie sur la base du niveau de correspondance entre les informations biométriques stockées et l'échantillon biométrique présenté,
 - un moyen de calcul d'un niveau de correspondance entre:
 - (a) les informations biométriques relatives à l'utilisateur et stockées sur la carte à mémoire, et
 - (b) l'échantillon biométrique relatif à l'utilisateur que l'on présente au dispositif de lecture;

caractérisé par

 le fait que ledit moyen de stockage des champs d'informations concernant le tableau de probabilité prédéfinie de valeurs d'occurrence permettant l'authentification de l'utilisateur assigne de plus automatiquement une proba-

15

20

bilité de valeur d'occurrence à chacun des scores seuils de correspondance prédéfinis parmi une pluralité d'entre eux;

- un moyen de programmation du dispositif de lecture à l'aide :
 - (a) d'une probabilité voulue de valeur d'occurrence et
 - (b) d'un ensemble d'instructions conduisant le dispositif de lecture à consulter le tableau stocké sur la carte à mémoire afin d'obtenir le score seuil de correspondance correspondant à la probabilité voulue de valeur d'occurrence;
- un moyen de comparaison du niveau calculé de correspondance au score seuil de correspondance que l'on obtient à partir du tableau stocké sur la carte à mémoire; et
- l'utilisateur étant authentifié si le niveau calculé de correspondance est supérieur au score seuil de correspondance obtenu à partir du tableau stocké sur la carte à mémoire.
- 28. Système selon la revendication 27, dans lequel le moyen de stockage des champs d'informations comprend de plus une application se trouvant dans la carte à mémoire.
- 29. Système selon la revendication 28, dans lequel l'application se trouvant dans la carte à mémoire comprend de plus une application se trouvant dans un microprocesseur de la carte à mémoire.
- 30. Système selon la revendication 29, dans lequel le moyen de présentation de la carte à mémoire et de l'échantillon biométrique comprennent de plus un dispositif de lecture associé à un terminal.
- 31. Système selon la revendication 30, dans lequel le moyen de présentation de la carte à mémoire et de l'échantillon biométrique comprend de plus une application associée au dispositif de lecture.
- 32. Système selon la revendication 31, dans lequel le terminal comprend de plus au moins l'un des éléments suivants: un terminal à accès local, un terminal de réseau informatique, un terminal à accès informatique, un terminal à valeur mémorisée, un terminal à accès monétaire, un terminal PBX, un terminal éloigné, un ordinateur personnel, un ordinateur portatif, un assistant numérique personnel, un terminal Internet public, et un guichet automatique bancaire.
- 33. Système selon la revendication 27, dans lequel le moyen d'authentification automatique de l'utilisateur comprend de plus une application associée au

dispositif de lecture.

- 34. Système selon la revendication 33, dans lequel le dispositif de lecture est associé à un terminal.
- 35. Système selon la revendication 34, dans lequel le terminal comprend de plus au moins l'un des éléments suivants: un terminal à accès local, un terminal de réseau informatique, un terminal à accès informatique, un terminal à valeur mémorisée, un terminal à accès monétaire, un terminal PBX, un terminal éloigné, un ordinateur personnel, un ordinateur portatif, un assistant numérique personnel, un terminal Internet public, et un guichet automatique bancaire.
- 36. Système selon la revendication 27, dans lequel le moyen d'authentification automatique de l'utilisateur comprend de plus une application associée à la carte à mémoire.

2	4	9	∞	10
Performance Histogram	False Accept Rate (FAR) and False Reject Rate (FRR)	Equal Error Rate (EER)	Failure to Acquire (FTA)	D' and ROC Plots

FIG

Correct Accept

Correct Reject

False Accept

False Reject

False Reject

False Reject

FIG. 3

70	72	74	64	78	80	. 82	99 .
Method	Vendor	Release	Template	Last Updated	First Enrolled	- Hash	Probability

FIG 6.

99 /	PROBABILITY FA FR	200 700	300 900	0 400 500	90 500 400
	PROB	1/100	1/1000	1/10,000	1/100,000

FIG 7

