

# Chapter 7: Entity-Relationship (E-R) Model – Part 1

Revision by Gun-Woo Kim

Dept. of Computer Science and Engineering
Hanyang University

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use



#### **Contents**

- 7.1 Overview of Design Process
- 7.2 Entity-Relationship Modeling
- 7.3 Constraints
- 7.4 Removing Redundant Attributes in Entity Sets
- 7.5 Entity-Relationship Diagram (E-R Diagram)



#### 7.1 Overview of Design Process

- Design phases
  - Specification of user requirements
  - Conceptual design
    - Provide a detailed overview of the enterprise
    - Use entity-relationship model to represent the conceptual design
    - Its result is a graphic representation of the schema (E-R diagram)
  - Logical design
    - Map the conceptual schema onto the implementation data model of the database system that will be used
  - Physical design
    - The physical feature of the database such as file organization and choice of index structure are specified



#### 7.1 Overview of Design Process





#### **Example of E-R Diagram**

- ER 다이어그램이란?
  - ER 모델은 개체 (Entity)와 개체 간의 관계(Relationship)를 표준화된 그림으로 나타냄.

1명의 직원이 다수의 프로젝트를 가질수있다는 말, 즉 1대 다 의 관계





# 7.2 Entity-Relationship Model - Entity Sets

- A database can be modeled as:
  - a collection of entities,
  - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
  - Example: specific person, company, event, plant
- Entities have attributes
  - Example: people have names and addresses
- An entity set is a set of entities of the same type that share the same properties.
  - Example: set of all persons, companies, trees, holidays



## **Entity Sets (Cont.)**

instructor\_ID instructor\_name

| 76766 | Crick      |
|-------|------------|
| 45565 | Katz       |
| 10101 | Srinivasan |
| 98345 | Kim        |
| 76543 | Singh      |
| 22222 | Einstein   |

instructor

student-ID student\_name

| 98988 | Tanaka  |
|-------|---------|
| 12345 | Shankar |
| 00128 | Zhang   |
| 76543 | Brown   |
| 76653 | Aoi     |
| 23121 | Chavez  |
| 44553 | Peltier |

student



#### **Relationship Sets**

A relationship is an association among several entities

Example:

44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) student entity relationship set <u>instructor</u> entity

A **relationship set** is a mathematical relation among  $n \ge 2$  entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where  $(e_1, e_2, ..., e_n)$  is a relationship

Example:

 $(44553,22222) \in advisor$ 



#### Relationship Set (Cont.)





### Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
- For instance, the *advisor* relationship set between entity sets *instructor* and *student* may have the attribute *date* which tracks when the student started being associated with the advisor





#### Degree of a Relationship Set

차수에 따른 유형
 관계 집합에 참가하는 개체 타입의 수를 관계 타입의 차수(degree)라고함.





#### Degree of a Relationship Set (Cont.)

① 1진 관계(recursive relationship): 한 개의 개체가 자기 자신과 관계를 맺는 경우



2 2진 관계(binary relationship) : 두 개의 개체가 관계를 맺는 경우



③ 3진 관계(ternary relationship) : 세 개의 개체가 관계를 맺는 경우





#### **Attributes**

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
  - Example:

```
instructor = (ID, name, street, city, salary )
course= (course id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
  - Simple and composite attributes. (단순, 복합) 더이상 분해할수 있느냐 없느냐로 나눔
  - Single-valued and multivalued attributes (단일-값, 다중-값)
    - ▶ Example: multivalued attribute: *phone\_numbers* (집, 사무실, 핸드폰)
  - Derived attributes (유도된 속성)
    - Can be computed from other attributes
    - Example: age, given date\_of\_birth



#### **Composite Attributes**





## 7.3 Constraints –

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
  - One to one
  - One to many
  - Many to one
  - Many to many



### **Mapping Cardinalities (Cont.)**

#### One to One:

좌측 개체 타입에 포함된 개체가 우측 개체 타입에 포함된 개체와 일대일로 대응하는 관계





#### **Mapping Cardinalities (Cont.)**

#### One to Many or Many to One:

 실제 일상생활에서 가장 많이 볼 수 있는 관계로, 한쪽 개체 타입의 개체 하나가 다른 쪽 개체 타입의 여러 개체와 관계를 맺음.





#### **Mapping Cardinalities (Cont.)**

- Many to Many: <sup>요약하면 N:M관계라고 할 수 있음</sup>
  - 각 개체 타입의 개체들이 서로 임의의 개수의 개체들과 서로 복합적인 관계를 맺고 있는 관계를 말함





#### Keys

- A **super key** of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
  - ID is candidate key of instructor
  - course\_id is candidate key of course
- Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.



#### **Keys for Relationship Sets**

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
  - (s\_id, i\_id) is the super key of advisor
- Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys
  - If the relationship of *student-to-instructor* is
    - many-to-one, the primary key : (s\_id)one-to-many, the primary key : (i\_id)

    - one-to-one, the primary key : (s\_id) or (i\_id)
    - many-to-many, the primary key : (s\_id, i\_id)
- Need to consider semantics of relationship set in selecting the *primary* key in case of more than one candidate key
  - 왜 그럴까? → 실제 관계 relation을 잘 생각해 보면 당연!





#### instructor-to-student

| i_id  | s_id  |
|-------|-------|
| 76766 | 98988 |
| 45565 | 12345 |
| 45565 | 00128 |
| 10101 | 76543 |
|       |       |

결국, many측 참여 개체의 Primary key가 관계 릴레이션의 Primary key로 사용됨



#### 7.4 Removing Redundant Attributes

- Suppose we have entity sets
  - instructor, with attributes including dept\_name
  - department

and a relationship

- inst\_dept relating instructor and department
- Attribute dept\_name in entity instructor is redundant since there is an explicit relationship inst\_dept which relates instructors to departments
  - The attribute replicates information present in the relationship, and should be removed from instructor
  - BUT: when converting back to tables, in some cases the attribute gets reintroduced, as we will see.



#### 7.5 Entity-Relationship Diagrams

- Basic structure
  - Rectangle represent entity sets
  - Diamonds represent relationship sets
  - Attributes listed inside entity rectangle
  - Underline indicates primary key attributes
  - Lines link entity sets to relationship sets
  - Dashed lines link attributes of a relationship set to the relationship set
  - Double lines indicate total participation of an entity in a relationship set
  - Double diamonds represent identifying relationship sets linked to weak entity sets





### **Complex Attributes**





#### Roles

- Entity sets of a relationship need not be distinct
  - Each occurrence of an entity set plays a "role" in the relationship
- The labels "course\_id" and "prereq\_id" are called roles.



선위의 label > role(역할)을 표시



#### **Cardinality Constraints**

- We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (—), signifying "many," between the relationship set and the entity set.

  directed line=1 관계, undirected line: M(□)관계
- One-to-one relationship:
  - A student is associated with at most one instructor via the relationship advisor
  - A student is associated with at most one department via stud\_dept



#### **One-to-One Relationship**

- one-to-one relationship between an instructor and a student
  - an instructor is associated with at most one student via advisor
  - and a student is associated with at most one instructor via advisor





## **One-to-Many Relationship**

- one-to-many relationship between an instructor and a student
  - an instructor is associated with several (including 0) students via advisor
  - a student is associated with at most one instructor via advisor,





#### Many-to-One Relationships

- In a many-to-one relationship between an *instructor* and a *student*,
  - an instructor is associated with at most one student via advisor,
  - and a student is associated with several (including 0) instructors via advisor





#### Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor





#### **Alternative Notation for Cardinality Limits**

Cardinality limits can also express participation constraints



0..\* → 각 교수님은 지도학생이 한 명도 없을 수도 있고, 여러 명 있을 수도 있다. 1..1 → 학생은 반드시 한 명의 지도교수님이 있어야 한다. (학생 객체에 있는 모든 투플들은 advisor 관계에 모두 참여 = "전체참여")



# Participation of an Entity Set in a Relationship Set

- **Total participation** (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
  - E.g., participation of section in sec\_course is total
    - every section must have an associated course
- Partial participation: some entities may not participate in any relationship in the relationship set
  - Example: participation of *instructor* in *advisor* is partial → 앞의 예 참고

이는 Total participation임



야매로 1의 관계를 가지면 대부분 double line을 가질수 있는 확률이 높음



#### **Weak Entity Sets**

- An entity set that does not have a primary key is referred to as a weak entity set(약성개체집합) 강성개체집합 → 주키가 있는 객체집합
- The existence of a weak entity set depends on the existence of a identifying entity set(식별객체집합)
  - It must relate to the identifying entity set via a total, one-to-many relationship set from the identifying to the weak entity set
  - Identifying relationship depicted using a double diamond
- The **discriminator** (*or partial key*) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak entity set.
- The primary key of a weak entity set is formed by the primary key of the strong entity set on which the weak entity set is existence dependent, plus the weak entity set's discriminator.

  존재존속관계



#### Weak Entity Sets (Cont.)

- We underline the discriminator of a weak entity set with a dashed line.
- We put the identifying relationship of a weak entity in a double diamond.
- Primary key for section (course\_id, sec\_id, semester, year)





### Weak Entity Sets (Cont.)

- Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.
- If course\_id were explicitly stored, section could be made a strong entity, but then the relationship between section and course would be duplicated by an implicit relationship defined by the attribute course\_id common to course and section

참고1: E-R 다이어그램에서 section에서 course\_id는 생략 가능하지만, 실제 DB 구현시 course\_id가 있어야 한다.

참고2: sec\_id를 unique하게 만들면 section 객체집합은 중복되지 않는 주키를 가질 수 있다. 그러나 개념적으로 section의 존재는 course에 의존적이기 때문에 바람직하지 않다.



## E-R Diagram for a University Enterprise

