EECS 510 INTRO TO THE THEORY OF COMPUTATION TUES AUGUST 23 2022

LECTURE 00

2.2 NON-DETERMINISTIC FINITE AUTOMATA

DEFN A NONDETERMINISTIC FINITE AUTOMATA (NFA) IS A 5-TUPLE (Q, \(\Sigma\), \(\delta\), \(\delta\), \(\delta\)

LIRE IS DEA COUNTERPART WITH ONE EXCEPTION THAT THE TRANSITION FUNCTION

$$s: a * \Sigma \rightarrow P(a)$$

THE TRANSITION FUNCTION O MAPS A STATE & A SYMBOL INTO THE POWER SET OF Q

Q - FINITE SET OF STATES

Σ - ALPHABET

5 - TRANSITION FUNCTION

O(STATE, SYMBOL) = SET OF STATES

 $\sigma: \alpha \times \Sigma \longrightarrow \mathcal{P}(\alpha)$

9. EQ INITIAL/STARTING STATE

FCQ SET OF FINAL ACCEPTING STATES

NFA ACCEPTS INPUTS ENDING IN OI

ABSTRACT MACHINES THAT PROCESS STRING

- DIFFERENCE BETWEEN DEA & NEA IS CHOICE PARALLELISM

2.4 THE TRANSITION TABLE FOR NFA

TRANSITION TABLE

		0		
	90	9,	90	
	9,	9,	92	
*	9z	92	92	
_^	91	92	7 z	

EECS 510 INTRO TO THE THEORY OF COMPUTATION TUES AUGUST 23 2022 LECTURE 00

EXTENDING TRANSITION FUNCTION BASECASE J(q, E) = 2q} V q E Q INDUCTIVE CASE FOR A STRING W = X9

Q := LAST CHAR OF W

SUPPOSE 0 (q, x) = { p, ... Px }

AND LET U O (P; , q) := { R, , ..., Rn }

EX 2.4 RUN THE STRING DOID! THROUGH NFA

$$_{2}$$
 $\hat{\mathcal{J}}(q_{0},0) = \mathcal{J}(q_{0},0) = \{q_{0},q_{1}\}$

$$3\hat{\mathcal{J}}(q_0,00) = \mathcal{J}(q_0,0) \cup \mathcal{J}(q_1,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$$

$$\mathcal{J}(q_0,001) = \mathcal{J}(q_0,1) \cup \mathcal{J}(q_1,1) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$$

$$\mathcal{L}(q_{0},0000) = \mathcal{L}(q_{0},1) \cup \mathcal{L}(q_{1},1) = \xi q_{0} + \xi q_{2} = \xi q_{0}, q_{2}$$

LANGUAGE OF NFA A = (Q, E, J, 90, F)

- TWO SETS ARE NOT DISJOINTED

- IF YOU HAVE A DEA CAN BE TURNED INTO AN NEA

- AN NEA CAN SERIALIZED INTO A DEA

POWER SET CONSTRUCTION APPLIED OVER NFA

	0	1	
ϕ	ø	ø	
$\rightarrow \{q_{\bullet}\}$	£ 90, 9,}	Eq. 3	
٤٩. }	ϕ	£923	
* £9.3	ϕ	ø	
{q.,q,}	Ego, 9.}	ξq0, 92}	
* { 90, 92 }	£90, 9, }	{ g . }	
* { 9, , 9, 3	ø	£ 92}	
* { 90, 9, 92}	£ 90, 9,}	$\{q_0, q_2\}$	

EECS 510 INTRO TO THE THEORY OF COMPUTATION
TUES AUGUST 23 2022

LECTURE 00

THEOREM 2.1 GIVEN AN NFA $N = (Q_N, \sum, \delta_N, q_o, F_N),$

BUILDING THE DEA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$

USING THE ABOVE SUBSET CONSTRUCTION, THEN L(D)= L(N)

PF PROVE BY INDUCTION ON W THAT

$$\mathcal{F}_{o}(\{q_{o}\},\omega)=\mathcal{F}_{N}(q_{o},\omega)$$