Advanced image synthesis

Romain Vergne – 2014/2015

Ray tracing

Ray tracing

```
color trace(ray) {
  • hit = intersectScene(ray)
  • if(hit) {
    color = directIllumination(hit)
    if hit is reflective
       color += c_refl * trace(reflected ray)
    if hit is transmissive
       color += c_trans * trace(refracted ray)
  } else
    color = background_color
  return color
```

Ray tracing

```
color directIllumination(hit) {
  - color = (0,0,0)
  for each light L {
    T = cast shadow ray to L
    if hit is not shadowed by L
      color += Ambient+diffuse+specular terms(L,hit)
  • }
  return color
```

Physics -> Maths

- Bidirectionnal
- Reflectance
- Distribution
- Function

radiance

$$f(\mathbf{l}, \mathbf{v})$$

Reflectance equation

radiance

orientation

Microfacet theory

Surface reflection (specular term)

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Microfacet theory

Subsurface reflection (diffuse term)

- Constant:
$$f_{\mathrm{Lambert}}(\mathbf{l},\mathbf{v}) = rac{\mathbf{c}_{\mathrm{diff}}}{\pi}$$

Textures

From data

Colors, coefs, normals stored in 2D images

Procedural shader

 Little program that compute info at a given position

Textures

What is missing?

What is missing?

Reflectance equation

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega i$$

Reflectance equation

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega i$$

Reflectance equation

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega i$$

Rendering equation

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l}) (\mathbf{n}.\mathbf{l}) d\omega i + E_{out}$$

[Kajiya 1986]

Rendering equation

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega i + E_{out}$$

- Analytic solution usually impossible
- Lots of ways to solve it approximately:
 - e.g. ray-tracing but approximation only...
 - How can we do better?

- One ray per pixel
 - True or false...

- One ray per pixel
 - True or false...
- Multiple rays per pixel
 - Average result (sum + divide by number of rays)

No antialiasing

16 samples / pixel

- One sample per light
 - Hard (or noisy) shadows

- One sample per light
 - Hard (or noisy) shadows
- Multiple samples per light
 - Soft shadows

1 (random) sample / light

1 (random) sample / light

- One sample per hemisphere
 - Specular reflections

- One sample per hemisphere
 - Specular reflections
- Multiple samples per hemisphere
 - Glossy materials

- One sample per hemisphere
 - Specular reflections
- Multiple samples per hemisphere
 - Glossy materials

- One sample per hemisphere
 - Specular reflections
- Multiple samples per hemisphere
 - Glossy materials

Soft refractions (translucency)

- One sample per hemisphere
 - Specular refractions
- Multiple samples per hemisphere
 - Translucent materials

Soft wavelenghts (diffraction)

Sampling wavelengths

Sampling aperture

Sampling aperture

- Sampling aperture in practice
 - Sample a circular region
 - In the direction of the focal point
 - Intersect focal plane at the direction in the center of the disk

- Sampling aperture in practice
 - Sample a circular region
 - In the direction of the focal point
 - Intersect focal plane at the direction in the center of the disk

Soft animation (motion blur)

- Sampling time
 - Objects in motion (between time 1 and 2)

Summary

Distributed ray tracing

- Sampling pixels → antialiasing
- Sampling light → soft shadows
- Sampling wavelengths → dispersion
- Sampling aperture → depth of field
- Sampling time → motion blur
- Sampling reflection function → blurred reflections
- Sampling refraction function → blurred refractions
- Sampling paths → interreflections

$$L_o(\mathbf{v}) = \int f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega_i$$

Summary

Distributed ray tracing

- Sampling pixels → antialiasing
- Sampling light → soft shadows
- Sampling wavelengths → dispersion
- Sampling aperture → depth of field
- Sampling time → motion blur
- Sampling reflection function → blurred reflections
- Sampling refraction function → blurred refractions
- Sampling paths → interreflections

$$L_{o}(\mathbf{v}) = \int f(\mathbf{l}, \mathbf{v}) L_{i}(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega_{i}$$

$$L_{o}(\mathbf{v}) = \int \int \int \int \int \int \int \int f(\mathbf{l}, \mathbf{v}) L_{i}(\mathbf{l})(\mathbf{n}.\mathbf{l}) d\omega_{i} d_{x} d_{y} d_{u} d_{v} d_{t} d_{\lambda}$$

Regular sampling

Uniform sampling

Stratified sampling

•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•

- Regular sampling
- Uniform sampling
- Stratified sampling
- And many others
 - Poisson disk sampling
 - Low discrepancy sampling

• ...

Ray tracing produces realistic images

- Each path begins and ends with:
 - E the eye
 - L the light

- Each path begins and ends with:
 - E the eye
 - L the light
- Each bounce involves interaction with a surface:
 - D diffuse reflection
 - G glossy reflection
 - S specular reflection

- Each path begins and ends with:
 - E the eye
 - L the light
- Each bounce involves interaction with a surface:
 - D diffuse reflection
 - G glossy reflection
 - S specular reflection
- Ray-casting:
 - E(D,G)L
- Ray-tracing:
 - E[S*](D,G)L
- All paths:
 - E(D,G,S)*L

- Each path begins and ends with:
 - E the eye
 - L the light
- Each bounce involves interaction with a surface:
 - D diffuse reflection
 - G glossy reflection
 - S specular reflection
- Ray-casting:
 - E(D,G)L
- Ray-tracing:
 - E[S*](D,G)L
- All paths:
 - E(D,G,S)*L

- Rendering equation is complex
 - No analytical solution

$$L_o(\mathbf{v}) = \int f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l}) (\mathbf{n}.\mathbf{l}) d\omega_i$$

- → numerical scheme
 - Monte-carlo = powerfull tool to solve integrals that do not have analytical solutions (such as the rendering equation)

Etc...

- - Average
 - Don't keep track on spacing (hope it will be 1/N on average)

- Monte-carlo
$$I = \int_a^b f(x) dx \quad \Longrightarrow \quad I \approx \frac{(b-a)}{N} \sum_i^N f(x_i)$$
 - Random samples

- Average
- Don't keep track on spacing (hope it will be 1/N on average)

- MC estimator:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{1/(b-a)}$$

$$\begin{array}{c} \text{- Monte-carlo} \\ \text{- Random samples} I = \int_a^b f(x) dx \end{array} \implies I \approx \frac{(b-a)}{N} \sum_i^N f(x_i)$$

- Average
- Don't keep track on spacing (hope it will be 1/N on average)

- MC estimator:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{1/(b-a)}$$

• Expected value:
$$E[F_N] = \int_a^b f(x) dx$$

• Variance:
$$\sigma^2[F_N] = E[F_N^2] - (E[F_N])^2$$

- MC estimator:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{1/(b-a)}$$

• Generalization:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{pdf(x_i)}$$

- MC estimator:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{1/(b-a)}$$

- Generalization:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{pdf(x_i)}$$

Depends on the sampling strategy

• MC estimator:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{1/(b-a)}$$

- Generalization:
$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{pdf(x_i)}$$

- Convergence rate: $O(\sqrt{N})$
 - Divide error by 2 needs 4x samples

Depends on the sampling strategy

Example: compute Pl

- Integral of the function that is 1 inside the circle and 0 outside
 - Probability = PI/4

Example: compute Pl

- Integral of the function that is 1 inside the circle and 0 outside
 - Probability = PI/4
- Sample random positions
 - Count ratio n = #inside / #total
 - PI ~= 4*n

Pros / cons

- Slow for 1D problems, but:
 - Convergence is independent of dimensions
 - Few restrictions on the integrand
 - Conceptually simple
 - Efficient to solve at just a few points

Pros/cons

- Slow for 1D problems, but:
 - Convergence is independent of dimensions
 - Few restrictions on the integrand
 - Conceptually simple
 - Efficient to solve at just a few points

- Cons:
 - Noisy
 - Slow convergence
 - Good implementation is hard

One ray per pixel

- One ray per pixel
- On each point, generate random rays, accumulate radiance

- One ray per pixel
- On each point, generate random rays, accumulate radiance
- Recurse

- One ray per pixel
- On each point, generate random rays, accumulate radiance
- Recurse

Systematically sample light

One single ray per bounce

- One single ray per bounce
- But hundreds of ray per pixel

10 paths / pixel

10 paths / pixel

100 paths / pixel

Naïve sampling strategy

Optimal sampling strategy

- Sampling strategy
 - Non-uniform sampling
 - Sample more in places where there are likely to be larger contributions to the integral

- Sampling strategy
 - Non-uniform sampling
 - Sample more in places where there are likely to be larger contributions to the integral

$$L_o(\mathbf{v}) \approx \frac{1}{N} \sum \frac{f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l})}{p d f(\mathbf{l})}$$

- Sampling strategy
 - Non-uniform sampling
 - Sample more in places where there are likely to be larger contributions to the integral

$$L_o(\mathbf{v}) \approx \frac{1}{N} \sum \underbrace{\frac{f(\mathbf{l}, \mathbf{v})L_i(\mathbf{l})(\mathbf{n}.\mathbf{l})}{pdf(\mathbf{l})}}$$

Send more rays in the direction of reflection (depending on glossiness properties)

- Sampling strategy
 - Non-uniform sampling
 - Sample more in places where there are likely to be larger contributions to the integral

$$L_o(\mathbf{v}) \approx \frac{1}{N} \sum \underbrace{\frac{f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l}) (\mathbf{n}.\mathbf{l})}{p d f(\mathbf{l})}}_{A \text{Void rays at grazing angles}}$$

Send more rays in the direction of reflection (depending on glossiness properties)

- Sampling strategy
 - Non-uniform sampling
 - Sample more in places where there are likely to be larger contributions to the integral

$$L_o(\mathbf{v}) \approx \frac{1}{N} \sum \underbrace{\frac{f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l}) (\mathbf{n}.\mathbf{l})}{p d f(\mathbf{l})}}_{A \text{Void rays at grazing angles}}$$

Send more rays in the direction of reflection (depending on glossiness properties)

- Sampling strategy
 - Non-uniform sampling
 - Sample more in places where there are likely to be larger contributions to the integral

$$L_o(\mathbf{v}) pprox \frac{1}{N} \sum \underbrace{\frac{f(\mathbf{l}, \mathbf{v}) L_i(\mathbf{l})(\mathbf{n}.\mathbf{l})}{pdf(\mathbf{l})}}_{A \text{Void rays at grazing angles}}$$

Send more rays in the direction of reflection (depending on glossiness properties)

Do not forget pdf

Uniform sampling the hemisphere = 1/vol(S) = 1/2PI

Sampling the hemisphere

$$(x \in [0,1), y \in [0,1)) \to \left(\phi = 2\pi x, \theta = \cos^{-1}\left[(1-y)^{1/(m+1)}\right]\right)$$

Loi du cosinus surélevé

 $\boldsymbol{p} = \sin\theta\cos\phi\boldsymbol{u} + \sin\theta\sin\phi\boldsymbol{v} + \cos\theta\boldsymbol{w}$

Sampling the hemisphere

Sampling the BRDF

Sampling the BRDF

5 Samples/Pixel

Path-tracing extensions

- Bidirectional path tracing [Lafortune, Veach]
 - Combine lights from light and camera
- Metropolis [Veach]
 - Extension to bi-directional
 - Reuse and mutation of important paths

Caching approaches

Indirect lighting is mostly smooth

Indirect lighting is mostly smooth

Indirect lighting is mostly smooth

- Indirect lighting is mostly smooth
- Interpolate nearby values

- Indirect lighting is mostly smooth
- Interpolate nearby values
- But compute full direct lighting

- Indirect lighting is mostly smooth
- Interpolate nearby values
- But compute full direct lighting

- Introduced by Ward [92]
- Lots of extensions
 - Gradient [92], SH [05], Hessian [12],...
- Complementary to photon mapping

Photon mapping

- Preprocess: cast rays from light sources, and bounce randomly
- Store photons: position, power, direction

Photon mapping

- Preprocess: cast rays from light sources, and bounce randomly
- Store photons: position, power, direction

Photon mapping

- Efficiently store photons for fast access
- Use spatial hierarchical data structure (kd-tree)

Photon mapping (rendering)

- Cast primary rays
- Secondary rays
 - Reconstruct irradiance using adjacent stored photons (k-closest photons)
- Combine with irradiance caching or other technique...

Photon mapping (rendering)

- Cast primary rays
- Secondary rays
 - Reconstruct irradiance using adjacent stored photons (k-closest photons)
- Combine with irradiance caching or other technique...

Photon mapping (rendering)

Special photon map for caustics LS+D

- Diffuse hypothesis
- Discretize scene in patchs

Convert rendering equation in the form:

$$B_i = B_{ei} + f_i \sum_j F_{ij} B_j$$

Bi = radiosity of patch i

• Fij = form factor:
$$F_{ij} = \int_{A_i} \int_{A_j} v(\mathbf{x}, \mathbf{x'}) \frac{\cos(\theta)\cos(\theta')}{\pi r^2} d\mathbf{x} d\mathbf{x'}$$

Matricial equation

$$\begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_{e,1} \\ \vdots \\ B_{e,n} \end{bmatrix} + \begin{bmatrix} f_1 F_{1,1} & \dots & f_1 F_{1,n} \\ \vdots & \ddots & \vdots \\ f_n F_{n,1} & \dots & f_n F_{n,n} \end{bmatrix} \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix}$$

Matricial equation

$$\begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_{e,1} \\ \vdots \\ B_{e,n} \end{bmatrix} + \begin{bmatrix} f_1 F_{1,1} & \dots & f_1 F_{1,n} \\ \vdots & \ddots & \vdots \\ f_n F_{n,1} & \dots & f_n F_{n,n} \end{bmatrix} \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix}$$

- Long / memory / discontinuities (geom) / diffuse only
- + view independant / handle complex scenes /
- Mostly used in architecture and video games (light maps)

- More recent methods
 - Precomputed radiance transfer
 - Many lights (VPLs) and extensions

References

- MIT:
 - http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/
- Standford:
 - http://candela.stanford.edu/cs348b-14/doku.php
- Siggraph:
 - http://blog.selfshadow.com/publications/s2014-shading-course/
 - http://blog.selfshadow.com/publications/s2013-shading-course/
- Image synthesis & OpenGL:
 - http://romain.vergne.free.fr/blog/?page_id=97
- Path tracing and global illum:
 - http://www.graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf
 - http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html
- GLSL / Shadertoy:
 - https://www.opengl.org/documentation/glsl/
 - https://www.shadertoy.com/
 - http://www.iquilezles.org/
- http://fileadmin.cs.lth.se/cs/Education/EDAN30/lectures/L2-rt.pdf
- http://csokavar.hu/raytrace/imm6392.pdf
- http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

