Reunalaskenta	arkkitehtuurit

Lauri Vene

Pro gradu -tutkielma UNIVERSITY OF HELSINKI Department of Computer Science

Helsinki, February 23, 2018

${\tt HELSINGIN\ YLIOPISTO-HELSINGFORS\ UNIVERSITET-UNIVERSITY\ OF\ HELSINKI}$

Tiedekunta — Fakultet — Faculty	Fiedekunta — Fakultet — Faculty Laitos — Institution — Department						
Faculty of Science		Department of (Computer Science	ee			
Tekijä — Författare — Author Lauri Vene							
Työn nimi — Arbetets titel — Title							
Reunalaskenta arkkitehtuurit							
Oppiaine — Läroämne — Subject	Oppiaine — Läroämne — Subject						
Computer Science Työn laji — Arbetets art — Level	Aika — Datum — Mo	nth and year	Simmäänä Sideo	ntal — Number of pages			
Pro gradu -tutkielma	February 23, 201		14	intal — Number of pages			
Tiivistelmä — Referat — Abstract			1				
Ti::-::-4 -1 ::							
Tiivistelmä.							
N							
Avainsanat — Nyckelord — Keywords reuna, pilvi, tietojenkäsittelytiede							
Säilytyspaikka — Förvaringsställe — Where de	eposited						
Muita tietoja — Övriga uppgifter — Additiona	al information						
5 1100 abbotic							

Contents

1	Huc	omioita	1
2	Joh	danto	1
3	Reu	ınalaskennan perusteet	1
	3.1	Motivaatio	1
	3.2		2
4	Suu	rimmat osatoimijat	4
	4.1	eNodeB	4
	4.2	Asiakaslaite	4
	4.3	Edge cloud	4
	4.4	Cloud	4
	4.5	Reunasolmu	4
5	Om	inaisuudet	4
	5.1	Etälaskenta	5
	5.2	Etäinstanssi	6
	5.3	Migraatio	6
	5.4	Integraatio mobiiliverkkoihin	7
	5.5	IP-verkko	7
	5.6	Kommunikaatio asiakaslaitteen Reunasolmun kanssa	7
	5.7	Hallinta	7
6	Reu	ınan rakenne	7
7	Esit	etyt ratkaisut	8
	7.1	Cloudlet	8
	7.2	FMC – Follow me cloud	9
	7.3	Small Cell Cloud	9
		7.3.1 Kommunikointi reunapalveluun	10
	7.4	SMORE ja MobiScud	11
	7.5	Concert	12
	7.6	ETSI MEC	12
	7.7	Yhteenveto	13
Lä	ihtee	\mathbf{t}	13

1 Huomioita

- reuna
- reunasolmu

Tutkielmassa puhutaan mobiililaitteesta, mutta monet toiminnallisuudet ovat sovellettavissa kaikenlaisiin mobiileihin laitteisiin, esimerkiksi kannettaviin tai älykkäisiin ajoneuvoihin.

Listan Mobile Computingin neljästä pääasiallisesta rajoitteesta. Unpredictable variation in network quality, lowered trust and robustness of mobile elements, limitations on local resources imposed by weight and size constraints, and concern for battery power consumption [13]

[13]M. Satyanarayanan, "Fundamental Challenges in Mobile Computing," Proc. 15th ACM Symp. Principles of Dist. Comp., Philadelphia, PA, May, 1996

2 Johdanto

3 Reunalaskennan perusteet

3.1 Motivaatio

Reunalaskennan ideana on täydentää ja avustaa resurssiköyhiä asiakaslaitteita. Mobiililaitteisiin voitaisiin teoriassa lisätä enemmän resursseja, mutta ne tulisivat kannettavuuden ja käyttöajan kustannuksella. Avustamiseksi voidaan ajatella esimerkiksi tilanne, jossa akkuvirtaa säästääkseen, mobiililaite välittää resurssi intensiivisen laskutoimituksen reunasolmulle laskettavaksi. Reunasolmun voi ajatella kevennetyksi versioksi palvelimesta joten sen rajoitteet ovat hyvin erilaiset kuin asiakaslaitteen. Täydentävä toiminta reunalaskennan avulla tarkoittaa asiakaslaitteen resurssin puutetta suoriutua jostakin tehtävästä. Esimerkiksi muistin riittämättömyys kuvankäsittelyyn. Tällöin voitaisiin esimerkiksi ottaa etäkäyttöyhteys reunasolmuun jolla käsittely tehdään. Asiakaslaitteelle jäisi tässä tilanteessa tehtäväksi ainoastaan esittää reunasolmun tilaa käyttäjälle.

Satyanarayana [Satyanarayanan, 2001] esitti artikkelissaan pervasive computing esimerkkejä jokapaikan tietotekniikasta. Ympäristöön sijoitettujen laitteiden yhteistoiminnan avulla, asiakkaalle voidaan tarjota parempaa ja täsmällisempää palvelua. Yhtenä palvelun laadun ehtona on kyky ennakoida asiakkaan toimintaa. Nykyään mobiililaitteilla on mahdollista hyödyntää langattomia yhteyksiä. Suurin osa palvelinresursseista ja palveluiden tuottamiseen käytettävästä tiedosta on keskittyneenä pilveen. Käytännössä minkä tahansa palvelun käyttäminen mobiililaitteella edellyttää yhteyttä näihin pilvipalveluihin. Pilvipalveluiden ylläpitäminen

Toinen painopiste on siinä että tieto seuraa käyttäjää. Esimerkiksi pöytäkoneelta mobiililaitteeseen. (Satyanarayanan, 2001). Cyber foraging, on termi jota käytetään kuvaamaan paradigmaa jossa laite etsii ympäristöstä hyödynnettävää tietoa ja avustajia/korvikkeita. Avustajan (surrogate) rooli on täydentää lähtökohtaisesti resurssirajallista laitetta, esimerkiksi suorittamalla laskentaa, jotta asiakaslaite voisi esimerkiksi säästää akkua. Tähän toimintaan liittyy kuitenkin useita haasteita. Esimerkiksi kuinka asiakaslaite löytää avustajan? Mitäs jos avustaja on ruuhkautunut? Kuinka avustaja alustetaan ja kauanko siinä kestää? Nämä ovat keskeisiä kysymyksiä myös reunalaskennassa. Vastuun jakaminen asiakaslaitteen sekä reunanklusterin välillä on riippuvainen siitä, kuinka paljon avustusta asiakaslaite tarvitsee. Toiseen ääripäähän vietynä asiakaslaite on niin sanottu kevyt asiakaspääte (thin client), jolla ei olisi resursseja juurikaan mihinkään. Tällainen asiakaslaite joutuisi jakamaan kaiken laskennan eteenpäin avustajalle. Tämän kaltainen asiakaslaite olisi riippuvainen reunan mahdollisuuksista suorittaa palveluiden vaatimia toiminnallisuuksia. Seuraavana askeleena kohti itsenäisempää suoriutumista olisi asiakaslaite, joka pystyy osittain tarjoamaan käyttäjälle palveuita. Tämä laite tarvisi reunaklusterilta avustusta ainoastaan joissain tapauksissa. Viimeisenä toimijana olisi kokonaan itsenäinen asiakaslaite, joka tarvitsisi reunalta ainoastaan palveluita täydentäviä ominaisuuksia. Tämä laite saattaisia turvautua reunalaskentaan esimerkiksi jos akku on vähissä, tai laitteella itsellään ei ole kaikea tarvittavaa tietoa laskennan suorittamiseksi.

3.2

- Mistä reunalaskenta koostuu? (Suurimmat toimijat, keskeisimmät toiminnot)
- Mikä on MEC?
- Reunalaskenta vai reunapalvelu?
- MCC vai MEC?
- Pilvi vai palvelinkeskus, palvelinresursseja.
- Mitä reunalaskenta on?
- Miksei siirretä laskentaa pilveen?
- Mitkä ovat mobiilin ongelmat nykyisellään?
- Mitkä ovat reunalaskennan haasteet?

Pilvipalvelulla tarkoitetaan palvelua, joka sijaitsee internetissä. Palvelut tarjotaan käyttäjälle verkkoyhteyden välityksellä. Pilvipalvelut sisältävät

usein suuria määriä laskenta- ja tallennusresursseja. Palvelut usein sijoitettu siten että ne ovat runkoverkossa kiinni, jolloin niiden voidaan ajatella sijaitsevan internetin "keskustassa". Yleensä palveluita ylläpidetään keskitettyinä korkeintaan muutamaan eri konesaliin. Pilvipalvelun palvelun kohde on usein asiakaslaite (UE, user equipment), joka sijaitsee internet-topologian näkökulmasta lehtisolmussa.

Reunalaskenta on yksi hajautetun laskennan muoto jossa

Mobiililaitteiden yleisiä ominaisuuksia ovat resurssien vähyys ja akkuvirran rajallisuus. Mobiililaitteiden käyttö on myös usein riippuvaista langattomista verkkoyhteyksistä. Palveluiden toiminta mobiililaitteilla on siis riippuvainen näiden kolmen ominaisuuden asettamista rajoista. Laskentaresurssien lisääminen johtaisin lyhyempään käyttöaikaan akkuvirralla. Suurempi akku mahdollistaa pidemmän käyttöajan, mutta se tekisi laitteesta suuremman. Akun kokoa ja laskentaresurssien määrää pyritäänkin tasapainottamaan. Voidaan pyrkiä minimoimaan laitteen virrankulutus esimerkiksi laittamalla laitteeseen heikkotehoisempi suoritin. Tämä näkyy siinä, millaisia palveluita mobiililaitteella voidaan tarjota. Esimerkiksi kuvankäsittelyä tai muuta raskaampaa laskentaa vaativaa toiminnallisuutta ei voida tällaisella laitteella tehdä. Seuraava vaihtoehto olisi lähettää laskentaa tehokkaammille laitteille pilveen. Laskennan siirtäminen vie aikaa ja tällöin ei voida tarjota kovin reaaliaikaisia palveluita. Siirrettyyn laskentaan kuluva aika koostuu pääasiassa verkon viiveestä, siirrosta ja itse laskennasta. Kokonaisuudessa siirtämiseen ja laskentaan kuluvan ajan määrään vaikuttaa pilven sijainti, verkon ruuhkaisuus, verkon kapasiteetti, sekä käytössä olevan laskentakapasiteetin määrä. Reunalaskenta on konsepti, jonka avulla laskenta voidaan tuoda lähemmäksi käyttäjää.

Reunalaskennassa (MEC,Mobile Edge Computing vai MCC Mobile Cloud Computing?) on tarkoitus tuoda palvelinresursseja lähemmäksi käyttäjää. Reunalaskenta on osassa kirjallisuutta jaettu kahteen kategoriaan sen mukaan tarjotaanko palvelua RAN (Radio access network) vai yleisesti WAN yhteydessä. RAN verkossa toimivaa reunalaskentaa kutsutaan Multi-access edge computing ja muita reunalaskennan ratkaisumalleja nimillä kuten sumu(fog computing) tai cloudlet[Taleb et al., 2017] . Tässä kontekstissa reunalla tarkoitetaan käyttäjän ja pilven väliin jäävää tilaa. TCP/IP-mallissa sovellustasolla olevia toimintoja ei siis esiinny tällä välillä. Reunalaskenta siis mahdollistaa palveluiden tuottamisen lähempänä käyttäjää. Lähempänä on hieman harhaan johtava termi, koska mikä tahansa pilveä lähempänä oleva palvelu on lähempänä, eikä siis välttämättä konkreettisesti lähellä.

Reunalaskennalle ei vielä ole olemassa kokonaisvaltaista arkkitehtuuria. Ongelmakentän voi jakaa karkeasti kahteen osaan. Fyysiseen arkkitehtuuriin ja sovellustason arkkitehtuuriin. Nämä ovat toisistaan riippuvaisia. Arkkitehtuuriratkaisut ovat riippuvaisia tarjottavista palveluista. Toiset arkkitehtuuriratkaisut tukevat toisia palveluita paremmin kuin toiset, kompromisseilta on siis vaikea välttyä.

4 Suurimmat osatoimijat

4.1 eNodeB

eNodeB on televerkossa tukiasemakontekstin kokonaisuus. Sen tehtäviin kuuluu teleradiotoiminnan järjestäminen. Mukaan lukien puhelinkeskuksien kanssa kommunikointi.

4.2 Asiakaslaite

UE (User Equipment) on yleisnimitys asiakaslaitteelle, joka hyödyntää pilven (cloud) ja reunan (edge) palveluita tietoliikenneyhteyksien avulla. Usein käyttäjälaitteen esimerkkinä toimii jokin mobiililaite kuten puhelin, mutta myös esimerkiksi auto.

4.3 Edge cloud

Edge cloud on yleisnimitys reunapalveluiden tarjoamiseen tarkoitettuille toimijoille. Riippuen arkkitehtuurista reunapilvi koostuu yksittäisistä toimijoista tai reunaa lähellä olevista klustereista. Edgen on mahdollista tarjota palveluita pienemmillä viiveillä ja suuremmilla tiedonsiirtokapasiteeteillä verrattuna perinteisiin pilvipalveluihin.

4.4 Cloud

4.5 Reunasolmu

Tässä tutkielmassa reunasolmulla viitataan yksittäiseen reunalla sijaitsevaan palvelinklusteriin, joka tuottaa asiakkaille reunapalveluita. Edge Cloud koostuu reunasolmujen joukosta.

Asiakaskohtaiselle reunainstanssille ei ole mitään vakiintunutta nimeä. Cloudlet on yksi ehdotettu toteutustekniikka tällaiselle asiakaskohtaiselle reunalla sijaitsevalle virtuaali-instanssille [Satyanarayanan et al., 2009].

5 Ominaisuudet

Reunalaskennan keskeisin tarkoitus on laskennan siirtäminen reunalla toimivalle reunalaskentaklusterille. Reunaa voidaan lähestyä pilven ja käyttäjälaitteiden puolelta. Käyttäjälaitteiden, kuten älypuhelimien laskentateho on suhteellisen heikkoa, lisäksi ne ovat akkuvirrasta riippuvaisia. Mobiililaitteen käyttöajan pidentämiseksi voidaan pyrkiä tekemään mahdollisimman vähän akkuakuluttavaa laskentaa paikallisesti, siirtämällä sitä reunalaskentaklusterille (Etsi se lähde jossa verrataan tietokoneita ja mobiililaitteita - eroa oli yhden kertaluokan verran). Esimerkiksi verkkoliikenne mobiililaitteen ja kohdepalvelimen välillä on merkittävä viive toisi reunaklusteri palvelun

huomattavasti lähemmäksi ja pienentäisi viivettä palvelussa. Viiveen pienenemisen seurauksena monet reaaliaikaisuuttaa tai nopeaa reagointia vaativat palvelut ovat mahdollisia. Lisäksi verkon viiveestä tai ruuhkasta johtuen, mobiililaitteella on usein huomattavasti nopeampi yhteys fyysisesti lähelle itseään verra

Lisäksi pilven tai konesalien suunnasta asiaa lähestyttäessä runkoverkko tukkeutuu. Siirtämällä osan palveluvastuusta reunalle, runkoverkon rasitteen tulisi ainakin periaatteessa pienentyä.

5.1 Etälaskenta

Etälaskennan toteuttamiseksi tarvitaan vastaukset seuraaviin kysymyksiin. Mitä siirretään ja minne siirretään?

MOCAssa oli selitetty kuinka muodostetaan yhteys in-network cloudiin. Etälaskenta voidaan karkeasti jakaa kahteen tyyppiin: Binääriseen ja osittaiseen [Mao et al., 2017]. Onkohan ok lainata surveytä?. Binäärisessä ohjelmasta suoritetaan selkeitä kokonaisuuksia joko reunasolmulla tai asiakaslaitteella. Osittaisessa etälaskennassa suoritusta siirretään dynaamisesti reunasolmulle.

Offloading on varmaan samankaltainen termi. Reunalla suoritettava etälaskenta saattaa siirtää ohjelman suorituksen kokonaan tai osittain asiakaslaitteelta reunasolmulle. Laskennan tulos lähetetään takaisin asiakaslaitteelle ja sitä käytetään osana muuta laskentaa. Laskennan hallinta suoritetaan asiakaslaitteella. Etälaskentaa motivoi raskaiden operaatioiden siirtäminen asiakaslaitteelta reunalle. Erityisesti mobiililaitteilla akkuvirran säästäminen on keskinen tekijä. Etälaskennan kannattavuus puhtaasti akkuvirran näkökulmasta muuttuu kannattavaksi, kun suoritettavan ohjelman lähettäminen ja tuloksen vastaanottaminen kuluttavat vähemmän akkua kuin ohjelman suorittaminen paikallisesti asiakaslaitteella. Todellisuudessa pelkästään akkuvirran säästäminen ei riitä, sillä muuten laskentaa voitaisiin siirtää pilveen. QoS kuitenkin heikkenee, mikäli laskennan suorittamiseen kuluva aika pitenee huomattavasti. Reunalle on teoriassa nopeampi yhteys ja nopeampi vastaus. Voitaisiin siis laskea että suoritusajassa mitaten ohjelman siirtäminen reunalle on kannattavaa kun suoritettavan ohjelman lähettäminen palvelimelle, sen suorittaminen ja tuloksen vastaanottaminen kestävät vähemmän aikaa kuin ohjelman suorittaminen paikallisesti. Ongelmana on että suorituksien aikavaatimus ei ole eksakti vaan ainoastaan arivoitavissa. Lisäksi suoritusaikainen aika-arvion tekeminen vie myös aikaa. Ajan ja akkuvirran säästämiseksi tehtävät toimet ovat siis keskeisimmät haasteet etälaskentaa toteutettaessa. Näiden käsittelyä ei tämän enempää tässä tutkielmassa käsitellä niiden monimutkaisuuden vuoksi.

5.2 Etäinstanssi

Etäinstanssissa asiakaslaitteella on yhteys reunalle. Asiakaslaitteelle tulee ainoastaan näkymä palvelun tilasta omalle laitteelleen. Vastaavasti kuin ottaisi SSH tai VNC yhteyden toiselle laitteelle.

-Tarkista oliko jossain järkevää lähdettä tähän

5.3 Migraatio

Reunalaskennan migraatiolla tarkoitetaan asiakaslaitteeseen liittyvän tilan tai laskennan siirtämistä reunasolmulta toiselle. Handoff/-over on mobiiliverkoissa yleisesti ilmenevä tilanne jossa, mobiililaitteen yhteys siirtyy tukiasemalta toiselle. Reunalaskennassa handover tehdään reunasolmulta toiselle. Reunalaskennan toteutustavasta riippuen, saatetaan tarvita niin sanottu live migraatio. Live migraatiossa suorituksen alla oleva sovellus tai virtuaalikone siirretään suoritusalustalta toiselle. Tavallisesti live migraatiota käytetään palvelinkeskusympäristössä virtuuaalikoneiden siirtämiseen suorituksen aikaiseen siirtämiseen. Live migraation tavoitteena on minimoida virtuaalikoneen käyttöön kohdistuva käyttökatkon kesto. Live migraatio toimii siten, että siirrettävää virtuaalikonetta aletaan kopioimaan kohdelaitteelle. Koska kyseessä on suoritusaikainen kopiointi, tilan kopiointi sisältää tallennustilan ja muistin kopioinnin. Mikäli palvelinkeskuksessa on jaettu levypalvelin, riittää ainoastaan muistin kopiointi. Tämä huomiona lähinnä siksi, että voidaan olettaa että reunasolmuilla ei ole jaettua levypalvelinta, jolloin joudutaan kopioimaan myös tallennustila. Kun virtuaalikoneen tila on saatu kopioitua uudelle alustalle, joudutaan kopioimaan kopioinnin aikana virtuaalikoneen tilaan tapahtuneet muutokset. Kopiointia jatketaan iteroiden kunnes päästään tilaan, jossa muutoksien määrä kopio-iteraatiota kohden ei enää pienene. Tällöin alkuperäinen virtuaalikone pysäytetään ja viimeisten muutoksien kopioinnin aikana virtuaalikone ei ole käytettävissä. Tämän jälkeen migratoitu virtuaalikoneinstanssi on käytettävissä uudella alustalla. [Ha et al., 2015]

Reunalaskennan ja perinteisen palvelinympäristön vaatimukset live migraatiota kohtaan ovat hieman erilaiset. Päällimmäisenä erona on migraatioon käytettävän kaistan suuruus. Palvelinsaleissa yhteysnopeudet ovat suuria ja etäisyydet verrattain lyhyitä. Lisäksi palvelinsaliympäristössä migraatioita on mahdollista tehdä koordinoidusti ilman aikarajoitteita. Reunasolmujen välillä olevien yhteyksien nopeudet saattavat vaihdella suuresti. Pitkä kopiointiaika johtaa pidempään käyttökatkokseen ja täten palvelun laadun heikkenemiseen. Kopiointiajan minimoimiseksi on pyrittävä pitämään siirrettävän datan määrä mahdollisimman pienenä. Reunasolmujen migraatiotarpeeseen vaikuttaa suuresti käyttäjien liikkuminen verkossa. Voidaan kuvitella tilanne jossa aamulla kaupungin keskustaan saapuvat työmatkailijat aiheuttavat "migraatiotulvan", joka ruuhkauttaa reunasolmujen käytössä

olevat kaistat.

Virtuaalikone-aihioihin perustuvassa järjestelmässä ainoastaan virtuaalikoneeseen tehdyt muutokset siirretään [Satyanarayanan et al., 2009]. Näin säästetään migraation aikana siirrettävän datan määrä. Mikäli on tiedossa, minne käyttäjä on siirtymässä, voitaisiin migraatio tehdä suoraan kohteena olevalle reunasolmulle. Palvelun laadun takaamiseksi migraation ennakointi on tärkeää. Mitä aikaisemmin aie siirtyä toiselle reunasolmulle tiedetään sen paremmin siihen keretään valmistautumaan. Migraation kesto on riippuvainen siirrettävän datan määrästä, sekä Mikäli käyttäjä haluaa keskeyttää reunapalvelun käytön saatetaan tila tai laskenta siirtää käyttäjän laitteelle tai jättää reunalle odottamaan.

[Ha et al., 2015] Tukivat että migraatio virtuaalikone-aihioilla + muutoksien siirroilla aiheuttaa noin 1s downtimen hitaahkolla verkolla. Tavoitteena oli minimoida siirrettävän datan määrä ja tutkia handoff+ migraation aiheuttaman käyttökatkoksen pituutta. Testi tehtiin cloudleteillä.

MobiScudissa ja SMOREssa esitetään että käytetään livemigraatiota, mutta ei sen tarkemmin pureuduta ongelmaan. Todetaan vain että käytetään live migraatiota

5.4 Integraatio mobiiliverkkoihin

MEC ratkaisut ovat jakautuneet kahteen erilliseen ratkaisumalliin. SMOREssa ratkaisu on että SMORE nuuskii/monitoroi LTE/EPC kommunikointia ja injektoituu väliin.

5.5 IP-verkko

Service discovery IP-verkossa.

5.6 Kommunikaatio asiakaslaitteen Reunasolmun kanssa

5.7 Hallinta

Sisältää palveluiden etsimisen (Service Discovery) ja palveluihin ohjauksen esim Software Defined Networkingin avulla (SDN).

6 Reunan rakenne

Rakenteeseen vaikuttaa ehkä eniten seuraavat kaksi valintaa

- Kerroksittain
- Lähelle vähän vai kauemmaksi enemmän

Molempiin ratkaisuihin liittyy omat haasteensa. Etenkin voidaan olettaa että lähelle hajalleen aiheuttaisi huomattavasti enemmän ylläpitotyötä.

7 Esitetyt ratkaisut

Reunalaskennasta löytyy valtavasti artikkeleita, joissa esitetään reunalaskentaan liittyvien haasteiden ratkaisuja. Ratkaisut ovat yksittäisi tapauksia eivätkä sinällään arkkitehtuuriratkaisuja.

7.1 Cloudlet

Minkä ongelman cloudlet ratkaisee? Miten cloudlet toimii? Mitkä ovat cloudletin ongelmat?

Cloudlet on reunasolmulla suoritettava virtuaalikone-teknologiaan perustuva ratkaisu. [Satyanarayanan et al., 2009] Virtuaalikoneisiin pohjautuva cloudlet on yksi tunnetuimmista reunapalveluiden tuottamisen konsepteista. Cloudletin ideana on hyödyntää muokattuja virtuaalikone-instansseja, joita voidaan suorittaa reunasolmussa. Cloudletillä tarkoitetaan järjestelmää, joka suorittaa reunasolmulla virtuaalikoneiden hallintaan liittyviä toimia. Yhdellä reunasolmulla voidaan siis suorittaa usean eri käyttäjän virtuaalikoneita.

Reunan luonteesta johtuen cloudletin oletetaan ylläpitävän ainoastaan sellaisia palveluita jotka käyttävät reunaa hetkellisesti tai väliaikaisesti [Satyanarayanan et al., 2009]. Cloudlettiä ei ole siis tarkoitettu pidempiaikaiseen tallennukseen, vaan enemminkin suoritusaikaisten tarpeiden täyttämiseen.

Cloudletin keskeisimmäksi rakennuspalikaksi on valittu virtuaalikone. Verrattuna prosessi tai sovellus tason virtualisointiin, virtuaalikoneiden käyttö ei aseta rajoitteita palvelun toteuttamiseen käytettävään ohjelmointikieleen [Satyanarayanan et al., 2009]. Lisäksi virtuaalikoneiden käyttö cloudlettien perustana mahdollistaa helpon tavan jakaa reunasolmun resursseja ja pitää asikaskohtaiset instanssit toisistaan erillään.

Tavallisen virtuaalikone-kuvan suuruus tallennettuna on noin 8 gigatavua. Koska reunasolmujen pääasiallinen idea on tarjota suoritusympäristö palveluille, ei näin suuren tiedoston tallentaminen reunasolmulle jokaista käyttäjää kohden ole tarkoituksenmukaista. Ja kuten jo aiemmin mainittu, reunasolmujen resurssit oletetaan rajallisiksi verrattuna palvelinsaliympäristöön. Täten pidempiaikainen tiedostojen tallennus on parempi tehdä keskitettyihin ratkaisuihin. Sen lisäksi että tallentaminen reunasolmuille ei ole mahdollista, kokonaisen virtuaalikoneen siirtäminen verkon yli olisi huomattavan hidasta ja se tukkisi verkon. Siirrettävyys korostuu etenkin tilanteessa jossa siirrettäviä virtuaalikoneita olisi useita.

Cloudletin keskeisimpiä oivalluksia onkin käyttää virtuaalikoneissa yhteistä pohjaa. Yhteisen pohjan käyttäminen mahdollistaa sen että jokaisesta virtuaalikoneesta voidaan tallentaa vain pohjaan tehdyt muutokset. Muutokset sisältävää tiedostoa kutsutaan pinnoitteeksi (VM overlay). Pinnoitteen ja pohjan yhdistämiseen käytetään dynaamista virtuaalikone synteesiä. Dynaamisuudella tarkoitetaan sitä, että käyttäjän alkaessa käyttämään cloudlet infrastruktuuri rakentaa käyttäjän muutokset sisältävästä pinnoitteesta ja

virtuaalikone-pohjasta, suoritettavan virtuaalikoneen. Dynaaminen virtuaalikoneiden syntetisointi edellyttää että cloudletiltä löytyy oikeanlainen virtuaalikonepohja. Kun virtuaalikone halutaan sulkea cloudlet tallentaa virtuaalikoneeseen tehdyt muutokset pinnoitteeksi ja pakkaa tiedoston. Satayanaran ensimmäisessä cloudletteja käsittelevässä julkaisussa [Satyanarayanan et al., 2009] muutoksien tallentaminen pinnoitteeksi tuottaa noin 100-200 megatavun kokoisen tiedoston. Tämän kokoinen tiedosto on nykyisillä tiedosiirtonopeuksilla siirrettävissä inhimillisessä ajassa, jopa langattomien yhteyksien yli.

Cloudlettejä voi olla useita erilaisia, siispä cloudlet toiminta edellyttää että jokaisella reunasolmulla tulee olla oikean cloudlet-pohja saatavilla ja käyttäjien cloudlettien on pohjauduttava johonkin rajalliseen määrään erilaisia cloudlet pohjia.

*Hallinta

RAW - Migraatio

Cloudlettien välinen migraatio ja handoff. Cloudlettien väliselle migraatiolle voi olla useita eri syitä. Migraatio tilanteessa jossa virtuaalikone siirretään paikasta toiseen odottamaan käyttöönottoa on keskeisin. Pelkän pinnoitteen siirtäminen riittää, mikäli tarvittava virtuaalikonepohja löytyy kohteena olevasta cloudletistä. On kuitenkin huomattava että pinnoiteen(VM overlay) tallettamiseen voi olla kannattavaa käyttää myös asikkaan laitetta, mikäli se vain on mahdollista. Perusteluina asiakaslaitteen käyttölle tallennusmediana voisi olla tapaus, jossa asiakas matkustaa ulkomaille ja pinnoite tulisi siirtää hyvin kaukana sijaitsevalta palvelimelta kohteena olevalle cloudletille. Tällöin saattaisi olla nopeampaa siirtää pinnoite suoraa asiakaslaitteelta.

*RAW – Handoff

7.2 FMC – Follow me cloud

7.3 Small Cell Cloud

Small Cell Cloud (SCC, pienisoluinen pilvi?) perusidea on reunapalveluiden integroiminen osaksi LTE-verkkoinfrastruktuuria. Reunaopalveluita tuotettaisiin tukiasemiin (Base Station) sijoitetuilla palvelinresursseilla. LTE mahdollistaa heterogeenisten verkkojen luomisen. Matkapuhelinverkkojen tapauksessa tällä tarkoitetaan sitä, että yksittäisen solun sisällä saattaa olla pienempiä soluja. Verkko saattaa siis koostua useammasta kerroksesta erikokoisia soluja. Kun solut ovat muuttumassa pienemmiksi tukiasemat tulevat fyysisesti lähemmäksi käyttäjää.

SCC tarkoituksena on hyödyntää solujen pienentymistä, tuomalla niihin reunapalveluiden tuottamisen mahdollistavaa teknologiaa. SCC reunalaskentapalvelut tuotetaan SCeNBce klustereissa. SCeNBce (Small-cell eNodeB computing-enhanced) on palvelinresursseilla varustettu eNodeB tukiasema [Lobillo et al., 2014]. Verrattuna cloudletteihin, SCeNBce:ssä

palvelinresurssit ovat tiiviisti osana tukiasemaa.

SCM (Small Cell Manager) on SCC arkkitehtuurissa hallinnasta vastaava komponentti. Normaalisti LTE verkossa keskeinen hallinnosta vastaava komponentti on Mobility Management Entity (MME). Sen tehtäviin kuuluu on hoitaa muunmuassa MME:ltä toiselle tapahtuvat handoverit ja asiakkaiden autentikointi. Täten on luonnollista että SCM liitetään MME:n yhteyteen, jossei suorasti niin ainakin jonkin yhteyden välityksellä. Eräs ehdotettu tapa toteuttaa SCM onkin integroida se suoraan MME:n yhteyteen jolloin tämä komponentti vastaa sekä reunapalveluista ja LTE-verkon hallinnasta[Lobillo et al., 2014]. SCM tehtävänä on organisoida resurssien utilisointia SCeNBce klustetereiden välillä. Tähän kuuluu esimerkiksi palvelinresurssien sammuttaminen mikäli ne eivät ole käytössä ja mahdollisesti yliutilisoidulta SCeNBce:ltä kuorman siirtäminen toiselle SCeNBce:lle. Tämän lisäksi esimerkiksi virtuaalikoneiden migraatiopäätöksien tekeminen on SCM tehtävä.

Koska SCC:n tapauksessa palveluiden tuottamiseen käytettäisiin matkapuhelinverkkoa, rajaisi se myös asiakaslaitteet älypuhelimiin ja muihin tätä verkkoa käyttäviin laitteisiin. Reunapalveluiden sitominen tiukasti matkapuhelinverkkoon vaikuttaa erikoiselta. Ratkaisulla on hyvät ja huonot puolensa. Reunapalveluiden tarjoamisen muihin verkkoihin, esimerkiksi WiFi yhteydellä ei onnistu suoraan ehdotetulla

SCC:n arkkitehtuurin haasteena saattaa olla niiden ylläpidettävyys, jossa matkapuhelinverkko-operaattori on vastuussa reunasolmun ylläpidosta, koska se on tiukasti sidoksissa tukiasemaan[Lobillo et al., 2014]. Tukiasemaan tiukasti sidotulla ratkaisulla on kuitenkin mahdollista hyödyntää laajemmin tukiaseman ominaisuuksia, kuten radioyhteyksiä toisiin tukiasemiin. SCeN-Bce tukiasemien hankkiminen vaatii operaattoreilta investointeja sekä lisää ylläpitotyön määrää. (Näiden vuoksi ehkä kantsis miettii, että miksi se on niin tiukasti kiinni siinä televerkossa. Muutenkin useampi operaattori samalla alueella tarkoittaa että jokaisella on myös omat reunapalvelut, joka taas meinaa kokonaiskuvassa että sama palvelu pitää duplikoida monelle operaattorille.)

7.3.1 Kommunikointi reunapalveluun

SCC pohjaisessa järjestelmässä tavallinen verkkoon menevä tietoliikenne ja reunapalvelulle menevä tietoliikenne on ehdotettu eroteltavaksi toisistaan [Puente et al., 2015]. Eristyksen seurauksena LTE-A arkkitehtuuriin ei tarvitse koskea muutoin kuin lisäyksien osalta. Liikenne SCeNBce:llä tarjottuihin reunapalveluihin on tehtävä tarkoitusta varten olevan rajapinnan kautta. Asiakaslaitteelta tuleva liikenne reititetään SCeNBce:llä. Pakettien reitittämiseksi SCeNBce joutuu päättelemään, onko paketin määränpää reunapalvelu vai tavallinen tietoliikenne.

Koska LTE-tukiasemat eivät toimi IP tasolla, ei reunapalvelulta tuleva

pakettiliikenteen sisältämä asiakaslaitteen IP-osoite riitä identifioimaan kohdelaitetta. Yleisesti LTE verkossa, internetistä asiakaslaitteelle suuntautuvan liikenteen osalta pakettien ohjaamiseksi, käytetään GTP-tunnelia. GTP-tunnelilla tietoliikenne saadaan ohjattua oikealle tukiasemalle. Tukiaseman ja asiakaslaitteen välisen kommunkaatioväylän selvittämiseksi joudutaan tekemään TEID (Tunnel endpoint IDentifier) ja DRB-ID (Data Radio Bearer ID) muunnos.

Vastaava ongelma on myös reunapalvelulta asiakaslaitteelle suuntautuvassa tietoliikenteessä. SCC:n yhteydessä ehdotetussa ratkaisussa reunapalvelulta tulevan liikenteen yhdistäminen asiakaslaitteen IP-osoitteeseen voidaan tehdä käyttäen TEID perustuvaa ohjaustaulua. TEID on asiakaskohtaisen GTP-tunnelin indetifioiva tunniste. TEID:stä ja asiakaslaitekohtaisesta IP-osoitteesta voidaan muodostaa SCeNBce:lle reititystaulu. Reititystaulun avulla voidaan ohjata IP-osoitte muuntaa DRB liikkenneväyläksi ja ohjata tietoliikenne asiakaslaitteeseen.

7.4 SMORE ja MobiScud

SMORE (Software defined network Mobile Offloading aRchitecturE) [Cho et al., 2014] on toinen televerkkoihin suunniteltu MEC ratkaisu. SMORE:n keskeisin sisältö on lisätä televerkon infrastruktuuriin SDN (Software Defined Networking) hyödyntäviä ratkaisuja reunalaskennan toteuttamiseksi. SDN käyttöönotolla tavoitellaan sitä, jotta televerkon toimintaan ei tarvitsisi tehdä muutoksia. Minkään olemassa olevan komponentin toiminta ei siis muutu. SMORE:lla on kaksi keskeistä toimintoa joita varten SDN on käytössä. Ensimmäisenä on mobiiliverkon kontrollitasolla (control-plane) tapahtuva viestien monitorointi. Toisena toimintona on monitoroinnin pohjalta tehtävät päätökset ohjata haluttu osa tietoliikenteestä reunalaskentayksiköille. Kontrollitasolla viestejä monitoroiva komponentti on SMORE monitori (SMORE monitor) ja tietoliikenteen ohjauspäätöksistä vastaava komponentti on SMORE kontrolleri (SMORE controller).

SMORE monitori tarkkailee asiakaslaitteen ja LTE/EPC:n välistä liikennettä. Asiakaslaitteen liittyessä mobiiliverkkoon, asiakaslaite ja LTE/EPC:n sisäiset komponenti muodostavat tunneleita ja asiakaslaitteeseen liitetään erilaisia tunneleita koskevia osoite ja metatietoja. SMORE monitorin tehtävänä on poimia asiakaslaitteen liittyessä ja yhteydenmuodostuksen aikana asiakaslaitteisiin liittyviä tietoja. Asiakaslaitteen lähettäessä liittymispyynnön (attach request) SMORE monitori poimii pyynnöstä asiakaslaitteen IMSI (international Mobile Subscriber Identity) ja TAI:n (Tracking Area Identifier). Tämän jälkeen SMORE monitori poimii MME:n asiakaslaitteelle lähettämästä liittymispyynnön hyväksymis -viestistä ("attach accept") monitori poimii asiakaslaitteelle annetun IP-osoitteen, SGW:n IP-osoitteen, SGW:n TEID:n ja asiakaslaitteen GUTI:n (Globally Unique Temporary Id). Tämän jälkeen eNodeB neuvottelee asiakaslaitteen kanssa radioyhteydestä

ja tämän lopputulos välitetään MME:lle. SMORE monitor poimii eNodeB:n ja MME:n välisestä kommunikaatiosta eNodeB:n IP-osoitteen ja eNodeB:n TEID:n. Kun kaikki edellä mainitut tiedot on saatu poimittua SMORE monitor välittää ne SMORE kontrollerille. SMORE kontrolleri voi näiden tietojen perusteella välittää SDN:lle tarpeelliset muutokset tietoliikenteen ohjaamiseksi reunalaskenta yksikölle.

Toinen tilanne josta SMORE kontrolleri on kiinnostunut on handover, eli mikäli asiakaslaite siirtyy mobiiliverkossa eNodeB:den välillä. SMORE kontrollerin on tässä tapauksessa kiinnostunut mobiiliverkossa tapahtuvista muutoksista. Handover alkaa kun tällä hetkellä käytössä oleva eNodeB päättää, että on aika siirtää asiakaslaitteen yhteys toiselle eNodeB:lle (kohde). Alkuperäinen eNodeB välittää pyynnön kohteena olevalle eNodeB:lle joka oletettavasti hyväksyy sen. Tämän jälkeen, kohteena oleva eNodeB pyytää MME:ltä reitityksen muutosta. Tässä välissä oleva SMORE monitor poimii reitityksen muutosta koskevan tiedon ja välittää ne SMORE kontrollerille. Tämän tiedon pohjalta SMORE kontroller voi tehdä SDN muutokset siten että vanhat reititykset voidaan poistaa ja korvata uusilla.

7.5 Concert

7.6 ETSI MEC

ETSI (European Telecommunications Standards Institute) on eurooppalainen telealan standardointijärjestö. ETSI on alkanut standardoimaan etenkin telepuolella tapahtuvan reunalaskennan toimintoja. ETSIn MEC spesifikaation määrittelee reunapalvelun tuottamiseksi vaadittavat ominaisuudet jotka palvelun tulee toteuttaa, sekä listaa mahdollisia, mutta ei vaadittuja toimintoja näiden lisäksi. Vaadittuja toimintoja ovat muunmuassa asiakaslaitteen mahdollisuus liikkua mobiiliverkossa, siten että yhteys reunapalveluun säilyy ja liikenteen ohjaukseen liittyvien reitityksien tekeminen reunapalveluiden saavuttamiseksi. Lisäksi sallitaan liikenteen dekapselointi ja uudelleenkapselointi. [ETSI, 2016b]

ETSI:n mukaisen viitekehyksen [ETSI, 2016a] komponenttien jaon perusteella voidaan tehdä komponenttikohtaisia vastuiden jakoja. Viitekehyksen mukaan reunalaskennan toimijat voidaan jakaa kolmeen toimialueeseen: system, host ja network (olisko sovellus, isäntä ja verkko?)

Referenssi arkkitehtuurissa reuna-isännällä tarkoitetaan sitä entiteettiä joka tarjoaa virtualisointi-infrastruktuurin sekä reunalaskennan toteuttamiseen vaadittavat resurssit (laskenta, tallennus ja verkko). Reuna-alustalla tarkoiteen sitä entiteettiä joka mahdollistaa reunapalveluiden käyttämisen. . Reuna-alusta siis mahdollistaa reunapalveluiden saavuttamisen, eli käytännössä tarjoaa rajapinnan asiakaslaitteen suuntaan. Tähän kuuluu siis palvelurekisterin ylläpitäminen, reitityssääntöjen ylläpitäminen, sekä liikenteen välittäminen reunapalveluille. Reuna-alusta voi myös itse tarjota palveluita. Es-

imerkkinä tällaisesta voisi olla tunnistautumispalvelu. Reuna-applikaatioilla tarkoitetaan reuna-alustalla suoritettavia virtuaalikoneita, jotka suorittavat reunapalveluiden tuottamiseksi tarkoitettuja ohjelmistoja.

7.7 Yhteenveto

Lähteet

- [Cho et al., 2014] Cho, J., Nguyen, B., Banerjee, A., Ricci, R., Van der Merwe, J., and Webb, K. (2014). Smore: software-defined networking mobile offloading architecture. In *Proceedings of the 4th workshop on All things cellular: operations, applications, & challenges*, pages 21–26. ACM.
- [ETSI, 2016a] ETSI (2016a). Mobile edge computing (mec); framework and reference architecture. http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf. [Verkkoaineisto, Luettu 2018-02-23].
- [ETSI, 2016b] ETSI (2016b). Mobile edge computing (mec); technical requirements. http://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/01.01.01_60/gs_MEC002v010101p.pdf. [Verkkoaineisto, Luettu 2018-02-23].
- [Ha et al., 2015] Ha, K., Abe, Y., Chen, Z., Hu, W., Amos, B., Pillai, P., and Satyanarayanan, M. (2015). Adaptive vm handoff across cloudlets. Technical report, Technical Report CMU-C S-15-113, CMU School of Computer Science.
- [Lobillo et al., 2014] Lobillo, F., Becvar, Z., Puente, M. A., Mach, P., Presti, F. L., Gambetti, F., Goldhamer, M., Vidal, J., Widiawan, A. K., and Calvanesse, E. (2014). An architecture for mobile computation offloading on cloud-enabled lte small cells. In 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pages 1–6.
- [Mao et al., 2017] Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. *IEEE Communications Surveys Tutorials*, PP(99):1–1.
- [Puente et al., 2015] Puente, M. A., Becvar, Z., Rohlik, M., Lobillo, F., and Strinati, E. C. (2015). A seamless integration of computationally-enhanced base stations into mobile networks towards 5g. In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pages 1–5.
- [Satyanarayanan, 2001] Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. *IEEE Personal Communications*, 8(4):10–17.

- [Satyanarayanan et al., 2009] Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for vm-based cloudlets in mobile computing. *IEEE Pervasive Computing*, 8(4):14–23.
- [Taleb et al., 2017] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D. (2017). On multi-access edge computing: A survey of the emerging 5g network edge cloud architecture and orchestration. *IEEE Communications Surveys & Tutorials*, 19(3):1657–1681.