

128K x 32 Static RAM Module

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs — Access time of 25 ns
- 66-pin, 1.1-inch-square PGA package
- Low active power
 - 4.0W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1838 is a very high performance 4-megabit static RAM module organized as 128K words by 32 bits. The module is constructed using four 128K x 8 static RAMs mounted onto a multilayer ceramic substrate. Four chip selects $(\overline{CS}_1, \overline{CS}_2, \overline{CS}_3,$ $\overline{\text{CS}}_4$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

Writing to each byte is accomplished when the appropriate chip selects (\overline{CS}) and write enable ($\overline{\text{WE}}$) inputs are both LOW.

Data on the input/output pins (I/O_X) is written into the memory location specified on the address pins (A_0 through A_{16}).

Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.

The data input/output pins remain in a high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Selection Guide

		1838-25	1838-30	1838-35
Maximum Access Time (ns)		25	30	35
Maximum Operating Current (mA)	Commercial	720	720	720
	Military	720	720	720
Maximum Standby Current (mA)	Commercial	240	240	240
	Military	240	240	240

Cypress Semiconductor Corporation

Maximum Ratings

(Above which the useful life may be impaired.)

Storage Temperature -65° C to $+150^{\circ}$ C
Supply Voltage to Ground Potential $-0.5V$ to $+7.0V$
DC Voltage Applied to Outputs
in High Z State0.5V to +7.0V
DC Input Voltage0.5V to +7.0V

Operating Range

Range	Ambient Temperature	$ m v_{cc}$
Commercial	0°C to +70°C	5V ± 10%
Military	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range

		1838		38	
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		V
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA		0.4	V
V_{IH}	Input HIGH Voltage		2.2	6.0	V
$V_{\rm IL}$	Input LOW Voltage		-0.3	0.8	V
I_{IX}	Input Load Current	$GND \le V_I \le V_{CC}, V_{CC} = Max.$	-10	+10	μΑ
I_{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-10	+10	μΑ
I _{CCx32}	V _{CC} Operating Supply Current by 32 Mode	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \leq V_{IL}$		720	mA
I _{CCx16}	V _{CC} Operating Supply Current by 16 Mode	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, \overline{CS} \leq V_{IL}$		480	mA
I _{CCx8}	V _{CC} Operating Supply Current by 8 Mode	V_{CC} = Max., I_{OUT} = 0 mA, $\overline{CS} \le V_{IL}$		360	mA
I_{SB1}	Automatic $\overline{\text{CS}}$ Power-Down Current ^[1]	Max. V_{CC} ; $\overline{CS} \ge V_{IH}$, Min. Duty Cycle = 100%		240	mA
I_{SB2}	Automatic CS Power-Down Current ^[1]	$\begin{array}{l} \text{Max. V}_{\text{CC}}; \overline{\text{CS}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V or V}_{\text{IN}} \leq 0.2\text{V} \end{array}$		40	mA

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 5.0$ V	50	pF
C_{OUT}	Output Capacitance	V CC = 3.0 V	50	pF

Notes

2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O
$$167\Omega$$
 O 1.73V

^{1.} A pull-up resistor to V_{CC} on the \overline{CS} input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Switching Characteristics Over the Operating Range^[3]

		1838	1838-25		1838-30		1838-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLI	E	•	•					•
t _{RC}	Read Cycle Time	25		30		35		ns
t_{AA}	Address to Data Valid		25		30		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACS}	CS LOW to Data Valid		25		30		35	ns
t _{DOE}	OE LOW to Data Valid		12		13		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z		10		15		20	ns
t _{LZCS}	CS LOW to Low Z ^[4]	0		0		0		ns
t _{HZCS}	CS HIGH to High Z ^[4, 5]		15		18		20	ns
WRITE CYCI	LE [6]	•						
t _{WC}	Write Cycle Time	25		30		35		ns
t _{SCS}	CS LOW to Write End	20		25		30		ns
t_{AW}	Address Set-Up to Write End	20		25		30		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	17		21		25		ns
t_{SD}	Data Set-Up to Write End	12		13		15		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	10	0	12	0	15	ns

Notes:

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed by design and not 100% tested.
- 5. t_{HZCS} and t_{HZWE} are specified with $C_L = 5 \, pF$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \, mV$ from steady-state voltage.
- 6. The internal write time of the memory is defined by the overlap of \(\overline{\overline{\sc CS}}\) LOW and \(\overline{\sc WE}\) LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 2^[7, 9]

Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled)^[6, 10]

- Notes:
 7. WE_N is HIGH for read cycle.
- 8. Device is continuously selected, $\overline{CS} = V_{IL}$ and $\overline{OE} = V_{IL}$.
- 9. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.
- 10. Data I/O will be high impedance if $\overline{OE} = V_{IH}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\textbf{CS}}$ Controlled)[6, 10, 11]

11. If $\overline{\text{CS}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

Truth Table

$\overline{\mathrm{CS}}_{\mathrm{N}}$	ŌĒ	$\overline{ ext{WE}}_{ ext{N}}$	Input/Output	Mode
Н	X	X	High Z	Deselect/Power-Down
L	L	Н	Data Out	Read
L	X	L	Data In	Write
L	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1838HG-25C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-25M	HG01	66-Pin PGA Module	Military
	CYM1838HG-25MB	HG01	66-Pin PGA Module	
30	CYM1838HG-30C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-30M	HG01	66-Pin PGA Module	Military
	CYM1838HG-30MB	HG01	66-Pin PGA Module	
35	CYM1838HG-35C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-35M	HG01	66-Pin PGA Module	Military
	CYM1838HG-35MB	HG01	66-Pin PGA Module	

Document #: 38-M-00046-B

Package Diagram

66-Pin PGA Module HG01

[©] Cypress Semiconductor Corporation, 1992. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.