Wyższa Szkoła Informatyki Stosowanej i Zarządzania

KODOWY SYSTEM TRANSMISJI DANYCH

dr inż. Janusz DUDCZYK

ZAGADNIENIA

- Schemat blokowy, terminologia;
- Parametry kanału ziarnistego, ciągi błędów;
- Kody blokowe, splotowe, liniowe;
- Dekodowanie korekcyjne;
- Koder kodu rozdzielnego;
- Koder kodu nierozdzielnego.

Schemat blokowy kodowego systemu transmisji danych

Pojęcia podstawowe

- Kodowanie zabezpieczenie transmisji przed błędami;
- Źródło danych generuje wiadomość dyskretną, której przyporządkowane są ciągi informacyjne. Jest to kodowanie dla źródła;
- Koder przypisuje ciągom informacyjnym odpowiednie ciągi kodowe /zawierające nadmiar/;
- Modulator zamienia sygnał cyfrowy na analogowy w zależność od kanału.

Dzięki zakodowaniu danych nadawczych, po stronie odbiorczej na podstawie odebranego ciągu, zostaje podjęta decyzja o nadanym ciągu kodowym.

Pojęcia podstawowe

Szybkość modulacji
$$v_m = \frac{1}{\varepsilon}$$
 [bod] czas trwania sygnału elementarnego

Szybkość transmisji

$$v_t = v_m \cdot \lg_2 q$$
, [bit/s] q -wartość modulacji

Elementowa stopa błędu $p_e = \frac{N_b}{N_{co}}$

Stopa błędu:

- Nie powinna przekraczać, 10⁻¹⁰ 10⁻¹²;
- Dla kanału radiowego 10⁻² (konieczność zabezpieczenia kodowania, co setny bit może zostać przekłamany);
- Dla linii telefonicznej 10⁻³ 10⁻⁴.

Pojęcia podstawowe

Źródło danych:

- Bezpamięciowe (ciągi od siebie niezależne);
- Generuje k-pozycyjne q-narne ciągi informacyjne h;
- Ciągi h_i są ciągami kodowymi równodostępnego kodu dla źródła;

$$P(\overrightarrow{h_i}) = const = \frac{1}{L}; \quad L = q^k$$

■ W dalszych rozważaniach q = 2.

Parametry kanału ziarnistego

- 1. Zbiór sygnałów wejściowych kanału $\{\vec{s}_i\}$: $i=1,2,...,L; L=2^k$
- 2. Zbiór sygnałów wyjściowych kanału $\{\overrightarrow{y}_i\}$: $j=1,2,...,k; k=2^n$

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

k - długość ciągu informacyjnegon - długość ciągu kodowego

Podstawy telekomunikacji

Parametry kanału ziarnistego

Kanał ziarnisty jest całkowicie określony poprzez:

Zbiór możliwych ciągów kodowych $\overline{S_i}$

Zbiór możliwych ciągów odebranych $\{\overrightarrow{y}_j\}$

Matematyczne związki pomiędzy

$$\{\overrightarrow{s_i}\}\ i\{\overrightarrow{y_j}\}$$

Parametry kanału ziarnistego

Macierz prawdopodobieństw:

$$m = \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{bmatrix}$$

$$m = \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

Prawdopodobieństwa przejść kanału: $p_{ii} = P(y_i/s_i)$

Jeżeli $p_{ii} = p_{ii} = p$ to kanał jest symetryczny i bezpamięciowy (BSK).

Kanał bezpamięciowy – prawdopodobieństwo błędnego odebrania informacji nie zależy od wcześniejszego i późniejszego nadania informacji.

$$m_{\rm BSK} = \begin{bmatrix} 1-p & p \\ p & 1-p \end{bmatrix} -$$

Ciągi błędów

Błąd – zmiana wartości logicznej elementu sygnału s_i powstała w czasie przesyłania tego sygnału przez kanał ziarnisty.

Ciąg błędów:

$$\vec{z} = \vec{y} \oplus \vec{s}$$
 gdzie: $z_l = y_l \oplus s_j$
dla $l = 1, 2, 3, ..., n$

Ciągi błędów

Waga ciągu binarnego – liczba jedynek w ciągu.

$$\vec{v(s)} = \sum_{i=1}^{n} s_i$$

Waga ciągu błędów – liczba błędów (jedynek) jakie wystąpiły podczas transmisji.

Ciągi błędów

Kodowanie nadmiarowe – przyporządkowanie sekwencji *k*-pozycyjnych ciągów przeprowadzonych według reguł kodowania.

Kody nadmiarowe wzajemnie jednoznaczne – przyporządkowanie ciągów do ciągów kodowych jest wzajemnie jednoznaczne.

Dekodowanie – przyporządkowanie odebranym ciągom wyjściowym decyzji o nadanych ciągach kodowych w oparciu o reguły dekodowania oraz odtworzenie ciągu informacyjnego.

Kody blokowe

Kodowanie blokowe – to przekształcenie k-pozycyjnych ciągów informacyjnych na n-pozycyjne ciągi kodowe.

$$\vec{h} = (h_1, h_2, ..., h_k) \rightarrow \vec{s} = (s_1, s_2, ..., s_n)$$

Kodowanie *i*-tego ciągu informacyjnego zamyka się w całości w czasie trwania *i*-tego ciągu kodowego.

Kody blokowe

Właściwości:

Uzyskany kod blokowy to kod (n,k)

Sprawność kodu blokowego: $\eta = \frac{k}{n}$

Nadmiar kodowy kodu blokowego: $p_k = 1 - \eta = 1 - \frac{k}{n}$

Efektywna szybkość transmisji: $v_{\text{ef}} = \eta \cdot v_t$; [bit/s]

Kody splotowe

Kodowanie splotowe – i-ty ciąg kodowy uzależniony jest od i-tego ciągu informacyjnego oraz m-1 poprzednich ciągów informacyjnych.

$$\vec{s}_i = f(h_{i-m+1}, h_{i-m+2}, ..., h_i)$$

Kody splotowe

Właściwości:

Uzyskany kod wymuszony $N = n \cdot m$

Sprawność kodu splotowego: $\eta = \frac{k}{n}$

Kod wymuszony – sekwencje złożone z *m*-kolejnych ciągów kodowych:

Lepiej dostosowany do kanału, w którym występuje szereg błędów (na podstawie całości możliwość odtworzenia przekłamanego lub zanikłego fragmentu).

Kody liniowe (blokowe)

Założenie: ciągi informacyjne h oraz kodowe s są binarne.

Kod rozdzielczy:
$$s_i = h_j$$
; dla $j = 1,2,3,...k$

k – długość ciągu informacyjnego.

Kody liniowe

Kod liniowy: jest zadawany układem r liniowo niezależnych równań -,,testów parzystości kodu" o znanych współczynnikach T_{il} .

$$T_{jl}$$
 przyjmują wartości ze zbioru $\{0,1\}$

$$T_{jl}$$
 przyjmują wartości ze zbioru $\{0,1\}$ $\bigoplus \sum_{i=1}^n T_{jl} s_i = 0; \quad j=1,2,3,...,r$

$$T_{jl} = \begin{cases} 1 \\ 0 \end{cases}$$

 $T_{jl} = egin{cases} 1 & ext{-jeżeli \emph{l}-ta pozycja ciągu kodowego wchodzi w skład \emph{j}-tego równania.} & ext{-w przypadku przeciwnym.} \end{cases}$

Kody liniowy (5,3) - przykład

- 1. Dla kodu rozdzielczego w każdym zespole kontrolnym występuje tylko jedna pozycja kontrolna.
- 2. Podzbiór pozycji ciągu kodowego objęty *j*-tym równaniem kontrolnym, to *j*-ty zespół kontrolny.

$$\begin{cases} s_1 \oplus s_2 \oplus s_4 = 0 \\ s_1 \oplus s_3 \oplus s_5 = 0 \end{cases}$$
 dla utworzonego zespołu kontrolnego suma "mod 2"=0

 $\begin{cases} 1 \oplus 1 \oplus 0 = 0 \\ 1 \oplus 0 \oplus 1 = 0 \end{cases}$

Wyższa Zarządzania Stosowanej i Zarządzania

Podstawy telekomunikacji

Odległość minimalna kodu d_{min}

Odległość Hamminga: pomiędzy dwoma *n*-pozycyjnymi ciągami, jest to liczba pozycji na których owe ciągi różnią się między sobą, lub waga sumy modulo tych ciągów.

Odległość minimalna kodu liniowego: to minimalna odległość pomiędzy dwoma ciągami kodowymi.

$$d_{\min} = \min \left[d(\vec{s}_i, \vec{s}_j) \right]$$

$$i, j \in \{1, 2, 3, \dots, 2^k\}$$
 $i \neq j$ \vec{s}_i, \vec{s}_j - ciągi kodowe

Dekodowanie detekcyjne

Dekodowanie detekcyjne: nie umożliwia odtworzenia sygnału (informacji), informuje o wystąpieniu błędów.

Nadmiar kodowy wykorzystywany jest do wykrywania błędów.

Reguła decyzyjna dekodera: "punktowa reguła decyzyjna z wymazywaniem".

$$\vec{s} = \begin{cases} \vec{y} & \text{dla } \vec{y} \in \{\vec{s}\} \\ \text{w przypadku przeciwnym} \end{cases}$$

Dekodowanie detekcyjne

Syndrom: ciąg o długości r uzyskany poprzez podstawienie y_i w miejsce s_i i wyliczenie testów parzystości.

$$Y_j(\vec{y}) = \bigoplus_{i=1}^n T_{jl} y_i$$

Jeżeli odebrany ciąg jest ciągiem kodowym, to w wyniku syndrom składa się z samych zer. $\overrightarrow{V}(\overrightarrow{y}) + \overrightarrow{O}$

Reguła decyzyjna detektora:

$$\vec{s} = \begin{cases}
\vec{y} & \text{dla } Y(\vec{y}) = \vec{0}_r \\
y & \text{w przypadku przeciwnym} \\
\text{Wyższa Szkoła Informatyki Stosowanej i Zarządzania}
\end{cases}$$

decyzja wymijająca

ciąg o długości r złożony

z samych zer.

Podstawy telekomunikacji

Dekodowanie detekcyjne - przykład

Sygnał odebrany ma postać: y = 01010

Wyliczenie testów parzystości: $Y_j(\vec{y}) = \bigoplus \sum_{i=1}^n T_{jl} y_i$

$$y_1 \oplus y_2 \oplus y_4 = 0 \oplus 1 \oplus 1 = 0$$

$$y_1 \oplus y_3 \oplus y_5 = 0 \oplus 0 \oplus 0 = 0$$

$$\overrightarrow{Y} = \{0,0\}$$

Z powodu zakłóceń odebrano: y = 01011

$$y_1 \oplus y_2 \oplus y_4 = 0 \oplus 1 \oplus 1 = 0$$

$$y_1 \oplus y_3 \oplus y_5 = 0 \oplus 0 \oplus 1 = 1$$

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Podstawy telekomunikacji

Przekłamanie informacji

Dekodowanie detekcyjne

Należy zwiększyć odległość minimalną poprzez zwiększenie nadmiaru. Powoduje to jednak zmniejszenie sprawności i spadek szybkości transmisji.

Kod liniowy wykrywa wszystkie ciągi błędów dla których zachodzi

związek: $V(\vec{z}) < d_{\min}$

Waga zakłóceń Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Dekodowanie detekcyjne - przykład

Sygnał odebrany ma postać: y = 01010

Z powodu zakłóceń odebrano: y = 011111

$$y_1 \oplus y_2 \oplus y_4 = 0 \oplus 1 \oplus 1 = 0$$

$$y_1 \oplus y_3 \oplus y_5 = 0 \oplus 1 \oplus 1 = 0$$

$$\overrightarrow{Y} = \{0,0\}$$

Kod nie jest w stanie poprawnie wykryć błędu transmisji.

Dekodowanie korekcyjne

Dekodowanie korekcyjne: nie informuje o wystąpieniu błędów, lecz stara się je usunąć.

Nadmiar kodowy wykorzystywany jest do wykrywania błędów oraz lokalizacji wykrytych błędów i skorygowania pozycji błędów.

Reguła decyzyjna dekodera: "punktowa reguła decyzyjna brak odpowiedzi wymijającej.

$$\vec{s} = \vec{y}$$
 dla $\vec{y} \in \{\vec{s}\}$

Dekodowanie korekcyjne

Syndrom: ciąg o długości r uzyskany poprzez podstawienie y_i w miejsce s; i wyliczenie testów parzystości.

jeśli
$$\vec{Y}(\vec{y}) = \vec{0}_r$$

eśli
$$\vec{Y}(\vec{y}) \neq \vec{0}_r$$

jeśli $Y(y) = 0_r$ podejmowana jest decyzja

jeśli $\vec{Y}(\vec{y}) \neq \vec{0}_r$ to na podstawie syndromu określenie jaki ciąg błędów wystąpił i podejmowana jest decyzia

$$\vec{s} = \vec{y}$$

$$\vec{s} = \vec{y} \oplus \vec{z}$$

gdzie:
$$\frac{1}{z}$$
 - ciąg błędów określony na podstawie syndromu

Dekoder optymalny działa zgodnie z zasadą maksymalnego prawdopodobieństwa.

Korekcja błędów

Niech \vec{s}_i oraz \vec{s}_j będą ciągami kodowymi o odległości: $d(s_i; s_j) = d_{\min}$ Jeśli w odebranym ciągu \vec{s}_i wystąpił pojedynczy błąd, to $d(\vec{y}; \vec{s}_i) = 1$ oraz $d(\vec{y}; \vec{s}_j) = d_{\min} \pm 1$

Dla *t*-błędów, w najgorszym przypadku $d(y; s_j) = d_{\min} - t$

Dekoder skoryguje błąd *t*-krotny, gdy $d(\vec{y}; \vec{s}_j) > d(\vec{y}; \vec{s}_i); \quad d(\vec{y}; \vec{s}_i) = t$

W najgorszym przypadku, $d_{\min} - t > t$ więc: $d_{\min} > 2t$

Kod może korygować błędy o krotności mniejszej niż połowa odległości minimalnej kodu.

Kod z kontrolą parzystości (detekcyjny)

Kod liniowy, detekcyjny dany równaniem:

$$\bigoplus \sum_{l=1}^{n} s_l = 0$$

Jest to kod typu (n, n-1)

Wyznaczanie pozycji kontrolnej $s_n = \bigoplus_{l=1}^{n-1} s_l$

$$s_n = \bigoplus_{l=1}^{n-1} s_l$$

Oznacza to, że zbiór ciągów kodowych to zbiór wszystkich ciągów *n*-pozycyjnych o parzystej liczbie jedynek.

Odległość minimalna tego kodu: $d_{\min}=2$

Kod wykrywa wszystkie błędy o krotności nieparzystej, nie wykrywa żadnych błędów o krotności parzystej.

Korekcyjny kod Hamminga

Kod o $d_{\min} = 3$ i może korygować błędy pojedyncze.

Syndrom – ciągu odebranego traktowany jest jako liczba binarna, która wskazuje na numer pozycji błędu.

Należy rozpatrzyć n+1 sytuacji (pojedynczy błąd może wystąpić na "n" sposobów, bądź może nie wystąpić).

Należy stworzyć n+1 różnych syndromów.

Dla kodu liniowego można stworzyć 2^r różnych syndromów więc:

$$2^r \ge n+1$$

Korekcyjny kod Hamminga

Poszczególne wiersze zawierają kolejne zespoły kontrolne.

Kod Hamminga jest kodem nierozdzielnym.

Pozycje kontrolne występują w jednym zespole kontrolnym.

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Podsťawy telekomunikacji

r = 3

k = 4

Kod ((7/4)) posiada trzy bity nadmiarowe: n = 7

 2^r syndromów = 2^3 = 8

deklarowanie wartości syndromu

1 zespół kontrolny $\mathbf{K1}$ - $\mathbf{S_1}$ \oplus $\mathbf{S_3}$ \oplus $\mathbf{S_5}$ \oplus $\mathbf{S_7}$ = 0

1 0 0 1 II zespół kontrolny $\mathbf{K2}$ - $\mathbf{S_2}$ \oplus $\mathbf{S_3}$ \oplus $\mathbf{S_6}$ \oplus $\mathbf{S_7}$ = 0

2 0 1 0 III zespół kontrolny $\mathbf{K3}$ - $\mathbf{S_4}$ \oplus $\mathbf{S_5}$ \oplus $\mathbf{S_6}$ \oplus $\mathbf{S_7}$ = 0

3 0 1 1

0 1

K1, K2, K3 – stanowią pozycje kontrolne bowiem występują tylko raz w jednym zespole kontrolnym !!!.

Wyższa szkoja imormatyki Stosowanej i Zarządzania

Podstawy telekomunikacji

r = 3

k = 4

proces kodowania

Wyższa Szkoła Informatyki St 1

Kod (7)4) posiada trzy bity nadmiarowe:

n = 7

Podstawy telekomunikacji

I zespół kontrolny K1 - S_3 S_5 4 pozycje S_3 s_6 = 0 S_7 II zespół kontrolny **K2** informacyjne \oplus **S**₇ = 0 \oplus S 5 s_6 III zespół kontrolny **K3** - Y_3 jest to ciąg h_i 0 0 0 0 $\mathbf{0}$ ()0

Odzania

Obliczanie syndromu

Obliczanie syndromu dla ciągu kodowego:

I zespół kontrolny **K1** -
$$\boxed{s_1}$$
 \oplus s_3 \oplus s_5 \oplus s_7 = 0

II zespół kontrolny **K2** - $\boxed{s_2}$ \oplus s_3 \oplus s_6 \oplus s_7 = 0

III zespół kontrolny **K3** - $\boxed{s_4}$ \oplus s_5 \oplus s_6 \oplus s_7 = 0

$$Y_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$Y_2 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$Y_3 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$\vec{Y} = \{000\}_b = 0$$

Wyższa szkoja imorniatyki stosowanej i Zarządzania

Podstawy telekomunikacji

Obliczanie syndromu

Obliczanie syndromu dla ciągu kodowego:

$$Y_1 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$Y_2 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$Y_3 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

BRAK KOREKCJI

Wyższa Szkoła Informatyki Stosowanej i Zi
$$\vec{Y} = \{101\}_b = 5$$

$$Y_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$Y_2 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$Y_3 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$\vec{Y} = \{110\}_b = 6$$

Podstawy telekomunikacji

Wydłużony kod Hamminga

Do kodu Hamminga (n, k) i $d_{\min} = 3$ dodana zostaje jedna pozycja kontrolna, uzyskany zostaje: (n + 1, k) i $d_{\min} = 4$.

Kod ten koryguje wszystkie błędy pojedyncze oraz wykrywa błędy podwójne (kod korekcyjno-detekcyjny).

Dodatkowa pozycja kontrolna to test parzystości:

Dekoder podejmuje decyzję na podstawie dwóch decyzji:

- \vec{S}_1 wytworzona na podstawie syndromu, jak w kodzie Hamminga.
- $\overline{\mathbf{S}_{2}}$ wytworzona na podstawie testu parzystości.

Wydłużony kod Hamminga

$$\vec{s}_2 = \bigoplus_{l=1}^{n+1} y_l$$
 - wytworzona na podstawie testu parzystości.

Możliwe przypadki:

- 1. Brak błędu $\vec{s_1} = \vec{0}, \vec{s_2} = 0$; podjęcie decyzji;
- 2. Błąd pojedynczy $\vec{s_1} \neq \vec{0}$, $\vec{s_2} = 1$; korekcja na podstawie syndromu;
- 3. Błąd na pozycji kontrolnej $\vec{s_1} = \vec{0}, \vec{s_2} = 1$; podjęcie decyzji;
- 4. Błąd podwójny $\vec{s_1} \neq \vec{0}$, $\vec{s_2} = 0$; decyzja wymijająca.

Kody łączne

Dany jest zbiór kodów blokowych $\{C_i\}$ o jednakowej długości ciągu informacyjnego k.

Kod m-razy łączony – kod dla którego ciąg kodowy S powstaje

z szeregu połączeń m-ciągów.

$$d_{\min} = \sum_{i=1}^{m} d_{\min i}; \quad \eta = \frac{k}{\sum_{i=1}^{m} n_i}$$

 \vec{r}_1 \vec{r}_2 \vec{r}_m \vec{r}_m

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Podstawy telekomunikacji

Kod iterowany

Kod dwukrotnie iterowany:

Długość ciągu informacyjnego: $k = k_1 k_2$, który wpisuje się w macierz

o wymiarach " $k \times k$ ";

Wiersze koduje się kodem

Kolumny koduje się kodem (n_2, k_2)

Otrzymany kod to kod:

$$(n_1,k_1)$$

$$(n_2,k_2)$$

$$(n_1, n_2, k_1, k_2)$$

$$d_{\min} = d_{\min 1} \cdot d_{\min 2}; \left(\eta = \frac{k_1 \cdot k_2}{n_1 \cdot n_2} = \eta_1 \cdot \eta_2 \right)$$

Sprawność wyższa niż dla kodu łącznego

Zapis wielomianowy kodu

Binarny *n*-pozycyjny ciąg traktowany jest jako wielomian postaci:

$$\vec{b} = \vec{b}_{n-1} \cdot x^{n-1} \oplus \vec{b}_{n-2} \cdot x^{n-2} \oplus \dots \oplus b_1 \cdot x \oplus b_0$$

$$b_j \in \{0,1\} : j = 0,1,...,n-1$$

$$\vec{a} = 01011$$

$$\vec{a} = 01011$$
 \Rightarrow $a(x) = x^4 \oplus x^2 \oplus x$

Kodowanie rozdzielne

Pierwsze *k*-pozycji to pozycje informacyjne.

Dzieląc przesunięty wielomian informacyjny przez wielomian

generacyjny otrzymano:

$$\frac{x^r h(x)}{g(x)} = A(x) \oplus \frac{r(x)}{g(x)}$$

Mnożąc obustronnie otrzymano:

$$A(x) \cdot g(x) = x^r h(x) \oplus r(x)$$

Wielomian A(x)g(x) należy do zbioru $\{s(x)\}\ s(x) = A(x) \cdot g(x)$

Reguła kodowania ma postać:

$$s(x) = x^r \cdot h(x) \oplus r(x)$$

Kodowanie rozdzielne $\frac{x^r h(x)}{g(x)} = A(x) \oplus \frac{r(x)}{g(x)}$

$$\frac{x^r h(x)}{g(x)} = A(x) \oplus \frac{r(x)}{g(x)}$$

Przykład: Kod (7,3) generowany przez wielomian $g(x) = x^4 \oplus x^2 \oplus x \oplus 1$

$$g(x) = x^4 \oplus \underline{x}^2 \oplus x \oplus 1$$

Kodowanie rozdzielne $\frac{x^r h(x)}{g(x)} = A(x) \oplus \frac{r(x)}{g(x)}$

$$\frac{x^r h(x)}{g(x)} = A(x) \oplus \frac{r(x)}{g(x)}$$

Przykład: Kod (7,3) generowany przez wielomian

$$g(x) = x^4 \oplus x^2 \oplus x \oplus 1$$
$$g(x) = \{10111\}$$

$$\{0110000\} \xrightarrow{\div g(x)} \{0111001\}$$

 $s(x) = A(x) \cdot g(x) = x^r h(x) \oplus r(x) = \{0111001\}$ Wyższa szkoła informatyki stosowanej i zarządzania

Koder kodu rozdzielnego

realizuje dzielenie wielomianów

Wyższa Szkoła Informatyki Stosowamespiółczyndzikowielomianu generującego

Podstawy telekomunikacji

Dekoder kodu rozdzielnego

realizuje dzielenie wielomianów

- 1. Ciąg informacyjny jest znany zanim zostanie podjęta decyzja o jego poprawności;
- 2. Na wejściu odebrany y(x);
- 3. Wyzerowanie rejestrów przed rozpoczęciem dekodowania w n=k+r taktach;
- 4. W pierwszych *k*-taktach odbywa się kluczowanie.

Kodowanie nierozdzielne

Ciągi informacyjne są mnożone przez wielomian generujący g(x).

$$s(x) = w(x) \cdot g(x)$$
 $w(x)$ - wielomian stopnia większego niż k-1.

Przykład: Kod (7,3) generowany przez wielomian $g(x) = x^4 \oplus x^2 \oplus x \oplus 1$

	h				S					V(s)	$g(x) = \{10111\}$
0	0	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	0	1	1	_1_	-4	1 0 1 1 1
0	1	0	0	_1-	0	1	1	1	0	4	* 0 1 1
0	1	1	0	1	1	1	0	0		4	
1	0	0	1	0	1	1	1	0	0	4	$ \oplus $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
1	0	1	1	0	0	1	0	1	1	4	0 1 1 1 0 0 1
1	1	0	1	1	1	0	0	1	0	4	
xx 1	1	1	1	1	Λ	Λ	1	Λ	1	1	Dodstawy telekomunikacii

Koder kodu nierozdzielnego

realizuje mnożenie wielomianów

Dla cyklicznego kodowania nierozdzielnego zachodzi:

Mnożenie wielomianów jest równoważne sumowaniu przesuniętych iloczynów cząstkowych.

$$s(x) = h(x) \oplus \sum_{i=0}^{r} g_i \cdot x^i$$

Przykład: g = 1011; h = 1001; g * h = 1010011

Dekoder kodu nierozdzielnego

realizuje dzielenie wielomianów

Wyższa Szkoła Informatyki Stosowaneyspółcząnnik wielomianu generującego

Podstawy telekomunikacji

DZIĘKUJĘ ZA UWAGĘ