

MSc in Data Science

Delivery Date: **17/11/2017**

MSc in Data Science Machine Learning

Academic Year: 2017-2018

Exercise 1: Regression and Classification

You are provided with two datasets, about wine quality. The identity of the dataset can be found in the following link:

- Wine Quality Dataset Identity:
 http://mlr.cs.umass.edu/ml/machine-learning-databases/wine-quality/winequality.names
- The dataset can be found in the following link: http://mlr.cs.umass.edu/ml/machine-learning-databases/wine-quality/
- Red wine: <u>http://mlr.cs.umass.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv</u>
- White wine:
 http://mlr.cs.umass.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv

Using this dataset, you are requested to learn a set of models according to the following restrictions:

a) Classification

Treating the problem as a classification problem, use a decision tree to learn a classification model that predicts wine quality based on the available features. Ensuring that overfitting has not occurred, use the learned model to identify the two most prominent features.

b) Linear regression

Treating the learning task as a regression problem, develop a linear regression object that predicts wine quality from all the available features. Perform the experiment 3 times, each time with a different a, and plot the cost function with respect to the training epochs required for the model to converge. Which value of a has been more suitable and why? Does scaling/standardisation affect a? For each one of the prominent features selected in step a), plot the cost function with respect to \overrightarrow{w} . Finally, describe your processing workflow for modelling the data.

c) Logistic regression

Treating the problem as a classification problem, apply logistic regression. For each one of the prominent features selected in step a), plot the cost function with respect to \vec{w} , and compare it to least squares cost function with respect to \vec{w} . Which of the two cost functions is more suitable for logistic regression and why?