Summer 20

1.)
$$I = \int_{0}^{1} \frac{1-e^{-t}}{t} dt$$
, $e^{-t} = 1-t+\frac{1}{2!}t^{2}-\frac{1}{3!}t^{3}...$

$$+ f(t) = (t')[1 - (1 - t + \frac{1}{2!}t^2 - \frac{1}{3!}t^3...)]$$

$$= (t')(1 - t + t - \frac{1}{2!}t^2 + \frac{1}{3!}t^3...)$$

$$= (-\frac{1}{2!}t + \frac{1}{3!}t^2...$$

So,
$$I = \int_{0}^{1} f(t) dt$$

$$= \int_{0}^{1} (1 - \frac{1}{2} \cdot t + \frac{1}{3} \cdot t^{2} \cdot ...) dt$$

$$= \left[t - (\frac{1}{2})(\frac{1}{2} \cdot t) t^{2} + (\frac{1}{3})(\frac{1}{3} \cdot t) t^{3} \cdot ... \right]_{0}^{1}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n \cdot n!}$$

Now,
$$|I-S_n| = \left|\sum_{n=0}^{\infty} (-1)^n \frac{1}{n \cdot n!} - \sum_{k=0}^{n} (-1)^k \frac{1}{k \cdot n!}\right|$$

$$\leq S_{n+1}$$

$$\leq S_{n+$$

For | I - Sn < 10-6.

= (n+1)(n+1)!) 2) Sm1 = Sn

2.)
$$C_{1}(x) = \frac{1}{x} \int_{0}^{x} \frac{1 - \cos(t)}{t^{2}} dt$$
, $\cos(t) = \sum_{h=0}^{\infty} (-1)^{h} \frac{x^{h}}{(2h)!}$
 $\rightarrow f(t) = (t^{-2}) \left[1 - (1 - \frac{1}{2!}t^{2} + \frac{1}{4!}t^{4} - \frac{1}{5!}t^{5} ...) \right]$
 $= (t^{-2}) \left(1 + \frac{1}{2!}t^{2} - \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} ... \right)$
 $= \frac{1}{2!} - \frac{1}{4!}t^{2} + \frac{1}{5!}t^{4} ...$

50, $C_{1}(x) = \frac{1}{x} \int_{0}^{x} \left(\frac{1}{2!} - \frac{1}{4!}t^{2} + \frac{1}{5!}t^{5} ... \right) dt$
 $= \frac{1}{x} \left[\frac{1}{2!}t - \frac{1}{3}\frac{1}{4!}t^{5} + \frac{1}{5}\frac{1}{5!}t^{5} ... \right]_{0}^{x}$
 $= \frac{1}{x} \left(\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{3} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5}\frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x - \frac{1}{3}\frac{1}{4!}x^{2} + \frac{1}{5!}x^{5} ... \right)$
 $= \frac{1}{x} \left(-\frac{1}{2!}x - \frac{1}{3}\frac{1}{4!}x - \frac{1}{$

2. continued)
$$Let C(x) = \sum_{n=1}^{\infty} (-1)^n \frac{1}{2n-1} \frac{x}{2n!}$$

Then For
$$|C;(x)-Sh(x)| \leq 10^{-6}$$
, $|x| \leq 1$
 $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}$

$$- \frac{1}{1} \sum_{K=h+1}^{\infty} \frac{(-1)^{k+1}}{2k-1} \frac{1}{2k-1} \frac{x^{2(k-1)}}{2k-1} = \frac{1}{10^{-6}}$$