Assignment: HPC Le
Title: Parallel searching algorithms.
Problem Statement:- Design and implement parallel algorithm intidizing all available resources for. - Binary search for sorted among - Best first search or \$BB DFS or BFS.
Objectiver: - To study and learn about parallel implementation of searching algorithm. - To learn about MPI API in clott
Outcomer: are will be able to - - tearn about parallel computing searching techniquer. - learn about MPI
Coto Software and Hardware requirements: - Os: Fedora windows (64 bit) - Grac Ctt compiler - Visual Studio Tent editor - MPICC compiler wing open MPI
- RAM - 46B - HPP - 500 GB

	Theory:
	
A	Bingry Search:
	- Binary search, also known lugarithmic search is
	an algorithm that finds the position of the
	target value within a sorted array
	- It compares the target value with middle element
	of an array If they are not equal the half
	in which target element cannot the lie is
	eliminated and the search algorithms continues
	on the remaining half.
	- If the search endr with remaining half
	during being empty the target is not in array.
	staren rais in Logarithmic time in
	The worst case making of los no companions
	n = size of array.
0 \	
8)	Breadth first search
	- 'DCF ^ 1
	-BFS is the most common graph troversal algorithm
	the graph teg lengthwise the source and traverse
	noder first.
	- moder told the modern
	- A queue is maintained of neighbour noder in
	tach layer

	Open MPI							
	- It is message passing interface library which							
	provider extremely high and competitive.							
	per formance.							
	- The OPEN MPI code has 3 major moduler:							
	1 OMPI: MPI code							
	2 ORTE - Open Runtime Environment.							
	3. OPAL Open portable Acress layer.							
	- mpice compiler is used to compile the catt							
	node embedded with open MPI							
	Algorithm:							
4)	A) Parallel Binary search.							
	parallel Binary Search (susted_array)							
	,							
	1. Divide the array into M blocks of size n/M.							
	2 Apply one se step of compasion by the middle							
	element of each block							
	3. I equality obtained return address and terminated.							
	4. Otherwise, Identify the adjucent blocks and							
	from a new block starting from the element							
	following the one that signalled (7) and							
	ending at the element proceding the one							
	that signalled (<),							
	5. If they are same element, return indesc							
	6 Otherwise, parallel binary-search (new-block)							

Teacher Signature _

-								
B	B) Breath first Search BFT (graph root, source S)							
	1 enque (C)							
	1 engue (s)							
	2 Make sas visited.							
	3. while (Q is not empty)							
	Il remove the vertex from q whose neighbor							
	will be visited now							
	3.1 V = deque (Q)							
	11 processing all neighbour of V 11 w = neighbour of V + neighbour- 3.2 if (w is not visited) 3.2.1 enque(W)							
	33 endi							
	4. end while							
	Test coure							
	Searching	input size	Sed time	parallal'	F-[" = 5.41-1.			
				time	crittony.			
	Bingry	n=1024	1 100		7-72			
	search		(1133	1.542877	0 (4.1)			
	(kg=5h)							
	1 - 1/							
	N.C.							
-	DFT.	n = 1024	1/0,6	0.007	1.57			
+								
(Conclusion:	Thus we have	successful in	m. 1-	1 1			
	understoo	of concept a	f porallal	hewen	ted and			
	toms u	of concept o) T	segrething	a algori-			
	,		حو					