

## Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Disciplina: Álgebra Linear I – 2020.2



## Lista 4 – Espaço Vetorial

- 1. Quais dos conjuntos abaixo são subespaços vetoriais de  $\mathbb{R}^3$ ? Justifique.
  - (a)  $W = \{(x, y, z) \in \mathbb{R}^3 \mid x 3z = 0\}.$
  - (b)  $W = \{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\}.$
  - (c)  $W = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0\}.$
- 2. Quais dos conjuntos abaixo são subespaços vetoriais de M(2,2)? Justifique.

(a) 
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}(2,2) \mid a = c \in b + d = 0 \right\}.$$

(b) 
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}(2,2) \mid a+d \le b+c \right\}.$$

(c) 
$$W = \{A \in \mathbf{M}(2,2) \mid A = A^T\}.$$

- 3. Quais dos conjuntos abaixo são subespaços vetoriais de  $\mathcal{P}_2$ ? Justifique.
  - (a)  $W = \{ p(t) \in \mathcal{P}_2 \mid p(0) = 0 \}.$
  - (b)  $W = \{p(t) \in \mathcal{P}_2 \mid p(0) = 2p(1)\}.$
  - (c)  $W = \{p(t) \in \mathcal{P}_2 \mid p(t) + p'(t) = 0\}.$
- 4. Quais dos conjuntos abaixo são subespaços vetoriais de  $\mathbb{R}^4?$  Justifique.
  - (a)  $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ e } z t = 0\}.$
  - (b)  $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y t = 0 \text{ e } z = 0\}.$
  - (c)  $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x y z + t = 0\}.$
- 5. Expresse o vetor  $(1, -3, 10) \in \mathbb{R}^3$  como combinação linear dos vetores u = (1, 0, 0), v = (1, 1, 0) e w = (2, -3, 5).
- 6. Consideremos  $v_1 = (1, -3, 2)$  e  $v_2 = (2, 4, -1)$  vetores de  $\mathbb{R}^3$ .
  - (a) Escreva u = (-4, -18, 7) como combinação linear dos vetores  $v_1$  e  $v_2$ .
  - (b) Mostre que v=(4,3,-6) não é combinação linear dos vetores  $v_1$  e  $v_2$ .

- (c) Determine uma condição para  $x, y \in z$  de modo que (x, y, z) seja combinação linear dos vetores  $v_1$  e  $v_2$ .
- 7. Quais dos seguintes vetores são combinações lineares de u = (0, -2, 2) e v = (1, 3, -1)?
  - (a) (2,2,2)
- (b) (3, 1, 5)
- (c) (0,4,5) (d) (0,0,0)
- 8. Seja S o subespaço vetorial de  $\mathcal{P}_2$  gerado pelos vetores t, 1-t e  $4+t^2$ . O vetor p(t)= $3 + 4t + 10t^2$  pertence a S? Justifique.
- 9. Seja  $\mathcal{P}_2$  o espaço vetorial de todos os polinômios de grau menor ou igual a 2 com coeficientes reais.
  - (a) Mostre que  $\mathcal{P}_2 = [1 + t, 1 t, t^2].$
  - (b) Escreva  $p(t) = 2 t + 3t^2$  como combinação linear dos vetores  $1 + t, 1 t, t^2$ .
- 10. Quais dos conjuntos abaixo são linearmente indepentes (LI)? Justifique.
  - (a)  $\{(1,2),(2,-1)\}$  em  $\mathbb{R}^2$ .
  - (b)  $\{(1,1,0),(1,-1,1)\}$  em  $\mathbb{R}^3$ .

(c) 
$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \right\}$$
 em  $\mathbf{M}(2, 2)$ .

(d) 
$$\left\{ \begin{bmatrix} 1 & -1 \\ 3 & 3 \end{bmatrix}, \begin{bmatrix} -1 & 3 \\ 1 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 4 & 2 \end{bmatrix} \right\}$$
 em  $\mathbf{M}(2, 2)$ .

- (e)  $\{t+1, t-1\}$  em  $\mathcal{P}_1$ .
- (f)  $\{t+1, 1+t^2, 1-t+t^2\}$  em  $\mathcal{P}_2$ .
- 11. Quais dos conjuntos abaixo são uma base? Justifique.
  - (a)  $\{(1,0,2),(1,1,2),(1,1,4)\}$  em  $\mathbb{R}^3$ .
  - (b)  $\{(2,1,-1),(1,0,-1),(1,1,0)\}$  em  $\mathbb{R}^3$ .

(c) 
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\} \text{ em } \mathbf{M}(2, 2).$$

(d) 
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \right\} \text{ em } \mathbf{M}(2, 2).$$

- (e)  $\{t, 1+t, t-t^2\}$  em  $\mathcal{P}_2$ .
- (f)  $\{1, 2-t, 3-t^2, t+2t^2\}$  em  $\mathcal{P}_2$ .
- 12. Classifique em verdadeiro (V) ou falso (F), e justifique sua resposta.

(a) 
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}(2,2) \mid a,b,c \in d \in \mathbb{R} \text{ com } b = c+1 \right\}$$
 é um subespaço vetorial do espaço  $\mathbf{M}(2,2)$  das matrizes reais dois por dois.

- (b)  $\mathbb{R}^2 = [(1,1), (1,-1), (0,1)].$
- (c)  $(1,0,0) \in [(1,1,1),(-1,1,0),(1,0,-1)].$
- (d) O conjunto  $\{(1, -1, 2), (-1, 1, 1), (0, 0, 1)\}$  forma uma base para  $\mathbb{R}^3$ .
- 13. Determine o(s) valor(es) de  $k \in \mathbb{R}$  de modo que:
  - (a) O vetor u = (-1, k, -7) seja combinação linear dos vetores  $v_1 = (1, -3, 2)$  e  $v_2 = (2, 4, -1)$ .
  - (b) O conjunto  $\{(1,0,k),(1,1,k),(1,1,k^2)\}$  seja uma base de  $\mathbb{R}^3$ .
  - (c) O conjunto  $\{(1,0,-1),(1,1,0),(k,1,-1)\}$  seja LI em  $\mathbb{R}^3$ .
- 14. Classifique em verdadeiro (V) ou falso (F), e justifique sua resposta.
  - (a) O vetor v = (1, -1, 2) pertence ao subespaço gerado por u = (1, 2, 3) e v = (3, 2, 1).
  - (b) Qualquer vetor em  $\mathbb{R}^3$  pode ser expresso como combinação linear dos vetores u = (-5, 3, 2) e v = (3, -1, 3).
- 15. Sejam  $W_1 = [(1,0,0)]$  e  $W_2 = [(1,1,0),(0,1,1)]$  subespaços de  $\mathbb{R}^3$ . Mostre que  $\mathbb{R}^3 = W_1 \oplus W_2$ .
- 16. Encontre uma base e a dimensão do subespaço W de  $\mathbb{R}^3$  nos casos seguintes:
  - (a)  $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$
  - (b)  $W = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$
- 17. Encontre geradores para os seguintes subespaços de  $\mathbb{R}^3$ :
  - (a)  $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0\}.$
  - (b)  $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + z = x 2y = 0\}.$
  - (c)  $W_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 3z = 0\}.$
  - (d)  $W_1 \cap W_2$ .
  - (e)  $W_2 + W_3$ .
- 18. Sejam  $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0\}$  e  $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y\}$  subespaços de  $\mathbb{R}^3$ .
  - (a) Encontre uma base e a dimensão de  $W_1 \cap W_2$ .
  - (b) Encontre uma base e a dimensão de  $W_1 + W_2$ .
  - (c)  $\mathbb{R}^3 = W_1 + W_2$ ? Justifique.
  - (d)  $\mathbb{R}^3 = W_1 \oplus W_2$ ? Justifique.

- 19. Sejam  $W_1 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x+y=0; z=t\}$ e $W_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x-y-z+t=0\}$  subespaços de  $\mathbb{R}^4$ .
  - (a) Encontre uma base e a dimensão de  $W_1 \cap W_2$ .
  - (b) Encontre uma base e a dimensão de  $W_1 + W_2$ .
  - (c)  $\mathbb{R}^4 = W_1 + W_2$ ? Justifique.
  - (d)  $\mathbb{R}^4 = W_1 \oplus W_2$ ? Justifique.
- 20. Em  $\mathbb{R}^2$ , considere o conjunto  $\beta = \{(2,1), (1,-1)\}$ . Mostre que  $\beta$  é uma base de  $\mathbb{R}^2$  e calcule  $[(4,-1)]_{\beta}$ .
- 21. Sejam  $v_1 = (1, 2, 3), v_2 = (0, 1, 2)$  e  $v_3 = (0, 0, 1)$  vetores de  $\mathbb{R}^3$ .
  - (a) Mostre que o conjunto  $\beta = \{v_1, v_2, v_3\}$  é uma base de  $\mathbb{R}^3$ .
  - (b) Determine as coordenadas de u = (5, 4, 2) em relação à base  $\beta$ .
  - (c) Determine o vetor  $v \in \mathbb{R}^3$  tal que  $[v]_{\beta} = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$ .
- 22. Sejam  $\alpha$  e  $\beta$  bases ordenadas de  $\mathbb{R}^3$  tais que  $[I]^{\alpha}_{\beta}=\begin{bmatrix}1&1&0\\0&1&0\\1&0&1\end{bmatrix}$ . Se  $v\in\mathbb{R}^3$  e  $[v]_{\beta}=$

$$\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}, \text{ encontre } [v]_{\alpha}.$$

- 23. A matriz de mudança de base de uma base  $\alpha$  de  $\mathbb{R}^2$  para a base  $\beta = \{(1,1),(0,2)\}$  é  $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}.$  Determine a base  $\alpha$ .
- 24. Sejam  $\alpha = \{(1,0),(0,1)\}, \ \beta = \{(-1,1),(1,1)\} \ \text{e} \ \gamma = \{(2,0),(0,2)\}$  bases ordenadas de  $\mathbb{R}^2$ . Se  $[v]_{\beta} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ , determine  $[v]_{\alpha}$  e  $[v]_{\gamma}$ .
- 25. Sejam  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ , e  $\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$  uma base ordenada de  $\mathbf{M}(2,2)$ . A soma dos quadrados das entradas de  $[A]_{\beta}$  é:
  - (a) 10.
  - (b) 19.
  - (c) 21.
  - (d) 30.
  - (e) 36.

- 26. Sejam  $\alpha = \{(1,0),(0,1)\}, \beta = \{(-1,1),(1,1)\}$  e  $\gamma = \{(3,-1),(1,3)\}$  bases ordenadas de  $\mathbb{R}^2$ .
  - (a) Ache as seguintes matrizes de mudança de base:  $[I]^{\beta}_{\alpha}$ ,  $[I]^{\alpha}_{\beta}$ , e  $[I]^{\beta}_{\gamma}$ .
  - (b) Seja u = (2,3). Determine:  $[u]_{\alpha}$ ,  $[u]_{\beta}$  e  $[u]_{\gamma}$ .
  - (c) Seja  $v \in \mathbb{R}^2$  tal que  $[v]_{\beta} = \begin{vmatrix} 3 \\ -1 \end{vmatrix}$ . Determine:  $[v]_{\alpha}$  e  $[v]_{\gamma}$ .
- 27. Sejam  $\alpha = \{(1,0),(0,2)\}, \beta = \{(-1,0),(1,1)\}, \gamma = \{(1,1),(-1,0)\}$  bases ordenadas de  $\mathbb{R}^2$ . Determine:
  - (a)  $[I]^{\beta}_{\alpha}$

- (b)  $[I]^{\gamma}_{\beta}$  (c)  $[I]^{\beta}_{\gamma}$  (d)  $[I]^{\gamma}_{\alpha}$
- 28. Sejam  $\alpha$  e  $\beta$  bases ordenadas de  $\mathbb{R}^3$  tais que  $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ .
  - (a) Seja  $u \in \mathbb{R}^3$  tal que  $[u]_{\beta} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ . Determine  $[u]_{\alpha}$ .
  - (b) Seja  $v \in \mathbb{R}^3$  tal que  $[v]_{\alpha} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ . Determine  $[v]_{\beta}$ .
- 29. Sejam  $\alpha = \{1, t, t^2\}$  e  $\beta = \{1, 2t + 1, t^2\}$  bases ordenadas de  $\mathcal{P}_2$ .
  - (a) Determine  $[I]^{\alpha}_{\beta}$ .
  - (b) Se p(t) = 3 + 2t, encontre  $[p(t)]_{\beta}$ .
- 30. Seja  $V=\mathcal{S}_2$  o espaço vetorial das matrizes simétricas de ordem 2 com entradas reais. Sejam

$$\alpha = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \quad \text{e} \quad \beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

duas bases ordenadas de V.

- (a) Determine  $[I]^{\beta}_{\alpha}$ .
- (b) Determine  $[I]^{\alpha}_{\beta}$ .
- (c) Encontre v tal que  $[I]^{\beta}_{\alpha} \cdot [v]_{\beta} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ .