ALGORYTMY KWANTOWE

Lista nr 2

- 1. Niech $V = \mathbb{C}^4$ Niech v = [2+3i, -2i, 5, i], w = [-i, -1, 3-i, -1-i]. Oblicz
 - (a) $\langle v|w\rangle$
 - (b) $\langle w|v\rangle$
 - (c) $\langle v|v\rangle$
 - (d) $\langle w|w\rangle$
 - (e) ||v||, ||w||
- 2. Sprawdź, czy dane wektory tworzą bazę ortonormalną przestrzeni V:
 - (a) $V = \mathbb{C}^4$, $v_1 = [i, 0, 0, 0]$, $v_2 = [0, i, 0, 0]$, $v_3 = [0, 0, i, 0]$, $v_4 = [0, 0, 0, i]$
 - (b) $V = \mathbb{C}^2$, $v_1 = \left[\frac{i}{\sqrt{2}}, 0\right]$, $v_1 = \left[0, \frac{-1}{\sqrt{2}}\right]$
 - (c) $V = \mathbb{C}^2$, $v_1 = \left[\frac{1+i}{2}, 0\right]$, $v_1 = \left[0, \frac{1-i}{2}\right]$
 - (d) $V = \mathbb{C}^4$, $v_1 = [e^{2\pi i}, 0, 0, 0]$, $v_2 = [0, e^{\pi i}, 0, 0]$, $v_3 = [0, 0, e^{\frac{2}{3}\pi i}, 0]$, $v_4 = [0, 0, 0, e^{\frac{\pi}{2}i}]$
- 3. Niech V będzie przestrzenią unitarną. Udowodnij, że dla każdego $v, w_1, w_2 \in V$ prawdziwa jest równość

$$\langle v|w_1 + w_2 \rangle = \langle v|w_1 \rangle + \langle v|w_2 \rangle.$$

4. Niech V będzie przestrzenią unitarną nad K. Udowodnij, że dla każdego $v,w\in V$, $\alpha\in K$ prawdziwa jest równość

$$\langle v|\alpha w\rangle = \overline{\alpha}\langle v|w\rangle.$$

5. Niech Vbędzie przestrzenią unitarną. Udowodnij, że dla każdego $v,w\in V$ prawdziwa jest nierówność

$$||v + w|| \le ||v|| + ||w||$$

6. Niech Vbędzie przestrzenią unitarną. Udowodnij, że dla każdego $v,w\in V$ prawdziwa jest nierówność

$$|\langle v|w\rangle| \le ||v|| ||w||.$$

- 7. Zaimplementuj obiekt Wektor, który ma rozmiar n i współrzędne będące liczbami zespolonymi. Obiekt ma posiadać metody:
 - (a) suma wektorów zwracającą obiekt klasy Wektor
 - (b) mnożenie wektora przez skalar zwracającą obiekt klasy Wektor
 - (c) iloczyn skalarny zwracającą liczbę zespoloną
 - (d) norma wektora zwracającą liczbę zespoloną