Zpracování vět a definic ke zkoušce z Matematické analýzy 1

Matěj Foukal a Karel Velička

July 10, 2023

1. ročník bc. informatika doc. RNDr. Martin Klazar, Dr.

Obsah

T	Jei.	ınıce	
1	.1	Reálná	í čísla
		1.1.1	Definice funkce, funkce prostá, na a bijekce
		1.1.2	Supremum a infimum v lineárním uspořádání
		1.1.3	Nejvýše spočetná a nespčetná čísla
1	.2	Limity	· · · · · · · · · · · · · · · · · · ·
		1.2.1	Vlastní a nevlastní limita posloupnosti, podposloupnost
		1.2.2	Liminf a limsup posloupnosti
1	.3	~	
		1.3.1	Řada, částečný součet řady, součet řady
		1.3.2	Geometrická řada a její součet, absolutně konvergentní řada
1	.4		2
1	.4	1.4.1	Limita funkce, jednostranná limita funkce
		1.4.1 $1.4.2$	Exponenciála, logaritmus, kosinus a sinus
		1.4.2 $1.4.3$	Spojitost funkce v bodě a jednostranná spojitost
		1.4.3 $1.4.4$	
			Asymptotické symboly
		1.4.5	Kompaktní, otevřená a uzavřená množina
1	_	1.4.6	Lokální a globální a ostré extrémy
I	.5		ce
		1.5.1	Derivace funkce, jedonstranná derivace funkce
		1.5.2	Standardní definice tečny
		1.5.3	Derivace vyšších řádů
		1.5.4	Ryze konvexní a konkávní funkce
		1.5.5	Inflexní bod
		1.5.6	Svislé asymptoty a asymptoty v nekonečnu
		1.5.7	Taylorův polynom funkce, Taylorova řada funkce
1	.6	_	ály
		1.6.1	Primitivní funkce
		1.6.2	Stejnoměrná spojitost
		1.6.3	Newtonův integrál funkce (nevlastní)
		1.6.4	Riemannův integrál funkce a množina míry O
		1.6.5	Henstock-Kurzweilův integrál
		1.6.6	Délka grafu funkce, plocha mezi grafy, objem rotačního tělesa
		-	zení bez důkazu
2	.1		á čísla
		2.1.1	Definice a vlastnosti reálných čísel
2	.2		(
		2.2.1	O podposloupnostech a existence monotónní posloupnosti
		2.2.2	Geometrická posloupnost a Liminf a limsup
2	.3	Řady .	
		2.3.1	O harmonických číslech a Riemannova věta
2	.4	Funkce	
		2.4.1	O Riemannově funkci a Limita složené funkce
		2.4.2	Heineho definice spojitosti, Blumbergova definice spojitosti a počet spojitých funkcí

	2.5	Deriva	ace	9			
		2.5.1	Derivace složené funkce a derivace inverzní funkce	9			
		2.5.2	l'Hospitalovo pravidlo a konvexivita a konkavita f"	9			
	2.6	Integrály					
		2.6.1	Lagrangeův a Cauchyův zbytek Taylorova polynomu a Bellova čísla	10			
		2.6.2	Riemann = Newton a integrace substitucí	10			
		2.6.3	Per partes a $int(r(x))$	10			
		2.6.4	O restrikcích, Lebesgueova věta a ZVA 2	11			
		2.6.5	Riemann = Darboux a HK. int a N. int	11			
		2.6.6	Délka grafu a Integrální kritérium	11			
3	Vět	Věty a tvrzení s důkazem					
	3.1	Reáln	á čísla	12			
		3.1.1	Odmocnina ze dvou není racionálních a Cantorova věta	12			
	3.2	Limity	7	12			
		3.2.1	Jendoznačnost limity a Bolzano-Weierstrassova věta	12			
		3.2.2	Limita a uspořádání a Cauchyova podmínka	12			
	3.3	Řady		13			
		3.3.1	Nutná podmínka konvergence řady a Harmonická řada	13			
	3.4	Funkc	e	13			
		3.4.1	Heineho definice a Aritmetika limit funkcí	13			
		3.4.2	Nabývání mezihodnot a Princip minima a maxima	14			
	3.5	Deriva	ace	15			
		3.5.1	Nutná podmínka extrému a Leibnizův vzorec	15			
		3.5.2	Lagrangeova věta a Derivace a monotonie 1	15			
		3.5.3	Taylorův polynom a Nejednoznačnost primitivní funkce	16			
	3.6	Integr	ály	17			
		3.6.1	Monotonie Newtonova integrálu a Derivace jsou Darbouxovy	17			
		3.6.2	Bachetova identita	17			
		3.6.3	Neomezené funkce jsou špatné a Baireova věta	18			
		3.6.4	Dolní součet je menší než horní a ZVA 1	18			
		3.6.5	Abelova sumace	19			

1 Definice

1.1 Reálná čísla

1.1.1 Definice funkce, funkce prostá, na a bijekce

- Funkce (zobrazení): Funkce f z množiny A do množiny B, neboli $f: A \to B$, je uspořádaná trojice (A, B, f), kde $f \subseteq A \times B$ a $\forall a \in A, \exists ! b \in B : afb$, neboli f(a) = b. (Platí: $\mathbb{D}_f = A$, $\mathbb{H}_f = B$)
- Funkce prostá (injektivní): Funkce $f: X \to Y$ pro $\forall x, x' \in X$ je prostá $\iff f(x) = f(x') \implies x = x'$. Dvěma různým x nepřiřadíme stejné y. Takže $\forall y$ existuje nejvýše jedno x.
- Funkce na (surjektivní): Funkce $f: X \to Y$ je na $\iff f[X] = Y$. $\forall y \ existuje \ alespoň \ jedno \ x$.
- Funkce bijektivní: Funkce $f: X \to Y$ je bijektivní \iff je prostá i na. ($\exists !x$)

Obraz množiny $C \subseteq A$ je $f[C] := \{f(a) \mid a \in C\} \subseteq B$.

1.1.2 Supremum a infimum v lineárním uspořádání

Nechť A je množina s uspořádáním (A, <) a B je množina, t.ž.: $B \subseteq A$. Prvky $a \in A$ jsou supremem (resp. infimem) množiny B, když splňují $\sup(B) := \min(\mathcal{H}(B))$ a $\inf(B) := \max(\mathcal{D}(B))$ v A.

- 1. Množina horních mezí $\mathcal{H}(B) := \{ \exists h \in A, \forall b \in B \mid b \leq h \}$
- 2. Množina dolních mezí $\mathcal{D}(B) := \{\exists d \in A, \forall b \in B \mid b \geq d\}$

1.1.3 Nejvýše spočetná a nespčetná čísla

Nechť X je množina, potom X je:

- $spočetn\acute{a} \iff \text{existuje bijekce } f: \mathbb{N} \to X.$
- nejvýše spočetná \iff je konečná nebo spočetná.
- $nespočetn\'a\iff$ není nejvýše spočetn'a.

Nekonečná \iff existuje prostá funkce $f: \mathbb{N} \to X$. Konečná \iff není nekonečná.

1.2 Limity

1.2.1 Vlastní a nevlastní limita posloupnosti, podposloupnost

Reálná posloupnost $(a_n) = (a_1, a_2, \dots) \in \mathbb{R}$ je funkce $a : \mathbb{N} \to \mathbb{R}$.

Limita posloupnosti Nechť (a_n) je reálná posloupnost a $L \in \mathbb{R}^*$, kde \mathbb{R}^* je \mathbb{R} spolu s $\pm \infty$. Potom L je limita posloupnosti (a_n) , pokud:

$$\forall \varepsilon, \exists n_0 : n \ge n_0 \implies a_n \in U(L, \varepsilon).$$

Píšeme $\lim_{n\to\infty} a_n = L$.

- Okolí bodu $b \equiv U(b, \varepsilon) := (b \varepsilon, b + \varepsilon)$
- Prstencové okolí bodu $b \equiv P(b, \varepsilon) := U(b, \varepsilon) \setminus \{\varepsilon\} = (b \varepsilon, b) \cup (b, b + \varepsilon)$

Vlastní a nevlastní limita Pokud $L \in \mathbb{R}$, pak konverguje a mluvíme o limitě vlastní, pokud $L = \pm \infty$, pak diveguje a mluvíme o limitě nevlastní.

Podposloupnost (b_n) je podposloupností posloupnosti (a_n) , pokud existuje taková posloupnost

$$\forall m \in \mathbb{N} : m_1 < m_2 < \dots \in \mathbb{N},$$

kde $\forall n : b_n = a_{m_n}$. Značíme jako $(b_n) \prec (a_n)$.

1.2.2 Liminf a limsup posloupnosti

Limes inferior (resp. superior) reálné posloupnosti (a_n) definujeme jako lim inf a_n , resp. lim sup a_n .

- Hromadný bod A posloupnosti (a_n) , pokud je limitou nějaké podposloupnosti posloupnosti (a_n) .
- \mathcal{H} definujeme jako množinu hromadných bodů, neboli $\mathcal{H}(a_n) := \{A \in \mathbb{R}^* \mid A \text{ je hromadný bod } (a_n)\}.$

1.3 Řady

1.3.1 Řada, částečný součet řady, součet řady

Řada je posloupnost $(a_n) \subseteq \mathbb{R}$.

Částečný součet řady (a_n) je $(s_n) := (a_1 + a_2 + \cdots + a_n)$

Součet řady je limita
$$\sum a_n = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots := \lim_{n \to \infty} (a_1 + a_2 + \dots + a_n) = \lim s_n \in \mathbb{R}^*.$$

1.3.2 Geometrická řada a její součet, absolutně konvergentní řada

Geometrická řada je řada $\sum_{n=0}^{\infty}q^n=1+q+q^2+\cdots+q^n+\ldots$, kde $q\in\mathbb{R}$ je kvocient.

$$\textbf{Součet geometrick\'e řady} \quad \text{je} \ \sum_{n=0}^{\infty} q^n = \begin{cases} \frac{1}{1-q} & \text{pro} \ |q| < 1 \\ +\infty & \text{pro} \ q \geq 1 \\ \text{neexistuje} & \text{pro} \ q \leq -1 \end{cases}$$

Absolutně konvergentní řada Řada $\sum a_n$ je AK, pokud konverguje řada $\sum |a_n|$. Tvrzení: Každá AK konverguje. Důkaz: $\sum a_n$ má (s_n) . Ukážeme, že (s_n) je Cauchyova...

1.4 Funkce

1.4.1 Limita funkce, jednostranná limita funkce

Limita funkce Funkce $f: M \to \mathbb{R}$ má v bodě $a \in \mathbb{R}^*$, kde a je limitní bod množiny M, limitu $A \in \mathbb{R}^*$, pokud $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in P(a, \delta) \cap M: f(x) \subseteq U(A, \varepsilon), \ tedy \lim_{x \to a} f(x) = A.$

 $Limitni\ body\ množiny\ M\subseteq\mathbb{R}\ prvku\ L\in\mathbb{R}^*\equiv\forall\varepsilon:P(L,\varepsilon)\cap M\neq\emptyset.$

Jednostranná limita funkce Podobně, jen $\forall x \in P^{\pm}(a, \delta) \cap M...$

1.4.2 Exponenciála, logaritmus, kosinus a sinus

Exponenciála
$$\forall x \in \mathbb{R} : e^x = \exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{n^2}{2} + \frac{n^3}{6} + \dots : \mathbb{R} \to \mathbb{R}.$$

Eulerovo číslo
$$\equiv e^1 = \sum_{n=0}^{\infty} \frac{1}{n!} \in \mathbb{I} \ a \ je \ rovno \approx 2.718...$$

Logaritmus $\log x$ je inverzní funkce k exponenciále, tedy $\log := \exp^{-1} : (0, \infty) \to \mathbb{R}$ Platí důležité vztahy: $\log(xy) = \log(x) + \log(y)$, $\log(1) = 0$, atd.

Cosinus a sinus
$$\forall t \in \mathbb{R} : \cos t := \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!}$$
 a $\sin t := \frac{(-1)^n t^{2n+1}}{(2n+1)!}$ jdoucí z $\mathbb{R} \to \mathbb{R}$

1.4.3 Spojitost funkce v bodě a jednostranná spojitost

Spojitost funkce v bodě Nechť $a \in M \subseteq \mathbb{R}$ a $f: M \to \mathbb{R}$. Funkce f je spojitá v bodě a, když

$$\forall \varepsilon, \exists \delta, \forall x \in U(a, \delta) \cap M : f(x) \subseteq U(f(a), \varepsilon).$$

Neboli funkce f je v bodě a spojitá, pokud $\lim_{x\to a} f(x) = f(a)$.

Jednostranná spojitost Podobně, jen je zleva (–) resp. zprava (+) spojitá a pro $\forall x \in U^{\pm}(a, \delta) \cap M...$

1.4.4 Asymptotické symboly

Symbol O Nechť je $M \subseteq \mathbb{R}, N \subseteq M$ a $f,g:M \to \mathbb{R}$ jsou funkce. Potom pokud $\exists c \geq 0, \forall x \in N: |f(x)| \leq c \cdot |g(x)|$, pak píšeme f(x) = O(g(x)), pro $x \in N$. (Nesmí nastat $\lim \frac{f(x)}{g(x)} = \infty$.)

Symbol o a \sim Nechť $a \in \mathbb{R}^*$ je limitní bod množiny $M \subseteq \mathbb{R}$ a $f, g: M \to \mathbb{R}$ jsou funkce, kde

$$\exists \delta \forall x \in P(A, \delta) \cap M(g(x) \neq 0)$$
 potom pro

- $mal\acute{e}$ o: $\lim_{x\to a} \frac{f(x)}{g(x)} = 0 \implies f(x) = o(g(x))$ pro $x\to a$,
- asymptotickou rovnost \sim : $\lim_{x\to a} \frac{f(x)}{g(x)} = 1 \implies f(x) \sim g(x)$ pro $x\to a$.

1.4.5 Kompaktní, otevřená a uzavřená množina

Kompaktní množina Množina $M \subseteq \mathbb{R}$ je kompaktní, když $\forall (a_n) \subseteq M$ má konvergentní podposloupnost (a_{m_n}) s $\lim a_{m_n} \in M$. (Když je M omezená a uzavřená.)

Otevřená množina Množina $M \subseteq \mathbb{R}$ je otevřená, když $\forall a \in M, \exists \delta : U(a, \delta) \subseteq M.$

Uzavřená množina Množina $M \subseteq \mathbb{R}$ je *uzavřená*, když $\forall (a_n) \subseteq M : \lim a_n = a \implies a \in M$.

1.4.6 Lokální a globální a ostré extrémy

Globální extrém Nechť $a \in M \subseteq \mathbb{R}$ a nechť $f: M \to \mathbb{R}$. Funkce f má na M v bodě a globální maximum (resp. minimum), když $\forall x \in M: f(x) \leq f(a)$, resp. $f(x) \geq f(a)$.

Lokální extrém Nechť $a \in M \subseteq \mathbb{R}$ a nechť $f: M \to \mathbb{R}$. Funkce f má na M v bodě a lokální maximum (resp. minimum), když $\exists \delta, \forall x \in U(a, \delta) \cap M: f(x) \leq f(a)$, resp $f(x) \geq f(a)$.

Ostrý extrém Pokud platí ostré nerovnosti v definici o lokálním/globálním extrému, jedná se o ostrý extrém.

1.5 Derivace

Oboustranný limitní bod (OLB) množiny M je $\forall \delta: P^{-}(a, \delta) \cap M \neq 0 \neq P^{+}(a, \delta) \cap M$.

1.5.1 Derivace funkce, jedonstranná derivace funkce

Funkce f je diferencovatelná, pokud á vlastní limitu, tedy pokud je spojitá.

Derivace funkce Nechť bod $a \in M$ je limitní bod množiny $M \subseteq \mathbb{R}$ a $f = f(x) : M \to \mathbb{R}$ je funkce. Potom derivace f v bodě a je limita

$$f'(a) = \frac{df}{dx}(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Jedonstranná derivace funkce Nechť bod $a \in M$ je levý(-), resp. pravý(+), limitní bod množiny $M \subseteq \mathbb{R}$ a $f = f(x) : M \to \mathbb{R}$ je funkce. Potom derivace funkce f v bodě a zleva, resp. zprava je limita

$$f'_{\pm}(a) := \lim_{x \to a^{\pm}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{\pm}} \frac{f(a+h) - f(a)}{h}.$$

1.5.2 Standardní definice tečny

Nechť $a \in M \subseteq \mathbb{R}$, a je limitní bod množiny M a $f: M \to \mathbb{R}$ je diferencovatelná v a. Tečnou ke grafu G_f funkce f v bodě $(a, f(a)) \in G_f$ rozumíme přímku l definovanou:

$$l: y = f'(a) \cdot (x - a) + f(a).$$

Je to jediný přímka se sklonem (směrnicí) f'(a) procházející bodem (a, f(a)).

1.5.3 Derivace vyšších řádů

Nechť $\emptyset \neq M \subseteq \mathbb{R}$ je otevřená množina a $f: M \to \mathbb{R}$, $f_0 := f$ a pro $i = 1, 2, \ldots, n \in \mathbb{N}$ platí, že $D(f_{i-1}) = M$ a $f_i := (f_{i-1})'$. Pak každou funkci $f^{(i)} := f_i : M \to \mathbb{R}$, $i = 1, 2, \ldots, n$ nazveme derivací řádu i.

Alternativně:

Nechť $a \in M \subseteq \mathbb{R}$, pokud $f: U(a, \delta) \to \mathbb{R}$ na $U(a, \delta)$ má derivaci $f^{(n-1)}(x)$ řádu n-1, potom derivace řádu n je

$$f^{(n)}(a) := \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a}.$$

1.5.4 Ryze konvexní a konkávní funkce

Nechť $I \subseteq \mathbb{R}$ je interval. Funkce $f: I \to \mathbb{R}$ je konvexní (resp. konkávní), pokud

$$\forall a, b, c \in I, a < b < c : (b, f(b) \le \mathcal{K}(a, f(a), c, f(c)). \ (resp. \ge)$$

Pro ostré nerovnosti je ryze konvexní/ ryze konkávní.

1.5.5 Inflexní bod

Nechť $a \in M \subseteq \mathbb{R}$, kde a je OLB množiny M; $f: M \to \mathbb{R}$ a l je tečna ke G_f v (a, f(a)). Tento bod je potom inflením bodem grafu funkce f, pokud:

$$\exists \delta, \forall x \in P^{-}(a, \delta) \cap M \wedge \forall x' \in P^{+}(a, \delta) \cap M \implies (x, f(x)) \le l \wedge (x', f(x')) \ge l,$$

(=bod, ve kterém f''=0 a f'=0 nebo f' neexistuje; dochází ke změně směru funkce).

1.5.6 Svislé asymptoty a asymptoty v nekonečnu

Svislé asymptoty Nechť $M \subseteq \mathbb{R}, b \in \mathbb{R}$ je levý $(resp.\ pravý)$ limitní bod množiny M a $f: M \to \mathbb{R}$ je funkce. Potom když $\lim_{x \to b^{\mp}} f(x) = \pm \infty$, nazveme přímku x = b levou $(resp.\ pravou)$ svislou asymptotou funkce f.

Asymptoty v nekonečnu Nechť $M \subseteq \mathbb{R}; \pm \infty$ je limitní bod množiny $M; a, b \in \mathbb{R}$ a $f: M \to \mathbb{R}$ je funkce. Potom když $\lim_{x \to \pm \infty} (f(x) - (ax + b)) = 0$, nazveme přímku y = ax + b asymptotou funkce f v $\pm \infty$.

1.5.7 Taylorův polynom funkce, Taylorova řada funkce

Taylorův polynom funkce Nechť $\forall n \in \mathbb{N} : f, f', f'', \dots, f^{n-1} : U(b, \delta) \to \mathbb{R}$ a $\exists f^{(n)}(b) \in \mathbb{R}$. Potom polynom

$$T_n^{f,b}(x) := \sum_{j=0}^n \frac{f^{(j)}(b)}{j!} (x-b)^j,$$

nazveme Taylorovým polynomem funkce f řádu n se středem v b. Příklady důležitých Taylorových polynomů: $e^x = T_n^{f,0}(x)$, $\sin(x) = T_{2n+1}^{f,0}(x)$.

Taylorova řada funkce Nechť $\forall n \in \mathbb{N}_0 : f^{(n)} : U(a, \delta) \to \mathbb{R}$. Pokud $\forall x \in U(a, \delta)$ platí

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n,$$

pak řekneme, že funkce f na $U(a,\delta)$ je součtem své Taylorovy řady se středem v a.

1.6 Integrály

1.6.1 Primitivní funkce

Nechť $I \subseteq \mathbb{R}$ je netriviální interval a $F, f : I \in \mathbb{R}$. Potom F je primitivní funkce k f, neboli $F = \int f$, pokud F' = f na celém I.

1.6.2 Stejnoměrná spojitost

Nechť $M \subseteq \mathbb{R}$ a $f: M \to \mathbb{R}$, potom f na M je stejnoměrně spojitá, pokud:

$$\forall \varepsilon, \exists \delta : \forall a, b \in M \land |a - b| \le \delta \implies |f(a) - f(b) \le \varepsilon.$$

 $Platí, že každá spojitá funkce <math>f: M \to \mathbb{R}$ je pro kompaktní $M \subseteq \mathbb{R}$ stejnoměrně spojitá.

1.6.3 Newtonův integrál funkce (nevlastní)

Nechť $f:(a,b)\to\mathbb{R}$, kde a< b, má primitivní funkci F a existují vlastní limity $F(a):=\lim_{x\to a}F(x)$ a $F(b):=\lim_{x\to b}F(x)$, potom Newtonův integrál funkce f na intervalu (a,b) definujeme jako:

$$\int_{a}^{b} f := F(b) - F(a) = \lim_{x \to b} F(x) - \lim_{x \to a} F(x).$$

1.6.4 Riemannův integrál funkce a množina míry O

Riemannův integrál funkce Funkce $f:[a,b] \to \mathbb{R}$, kde a < b, je riemannovsky integrovatelná, neboli $f \in R(a,b)$, pokud $\exists c, \forall \varepsilon, \exists \delta, \forall (\overline{a},\overline{t})$ platí, že: $||\overline{a}|| < \delta \implies |R(\overline{a},\overline{t},f) - C| < \varepsilon$.. Píšeme také jako:

$$(R)$$
 $\int_a^b f = c$ nebo jako (R) $\int_a^b f(x)dx = c$.

Množina míry O Množina $M \subseteq \mathbb{R}$ má míru 0, pokud platí:

$$\forall \varepsilon, \exists [a_n, b_n], \forall n \in \mathbb{N}, \ kde \ a_n < b_n : M \subseteq \bigcup_{n=1}^{\infty} [a_n, b_n] \land \sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon.$$

1.6.5 Henstock-Kurzweilův integrál

Nechť $f:[a,b]\to\mathbb{R}$ je HK-integrovatelná, neboli $f\in \mathrm{HK}(a,b)$, pokud $\exists c, \forall \varepsilon, \exists \delta_c$, kalibr na [a,b], že pro \forall dělení s body $(\overline{a},\overline{t})$ intervalu [a,b] platí, že $(\overline{a},\overline{t})$ je δ_c -jemné $\Longrightarrow |R(\overline{a},\overline{t},f)-c|<\varepsilon$. Píšeme také jako:

$$(HK)\int_{a}^{b} f = c$$
 nebo jako $(HK)\int_{a}^{b} f(x)dx = c$

1.6.6 Délka grafu funkce, plocha mezi grafy, objem rotačního tělesa

Délka grafu funkce Nechť $f:[a,b]\to\mathbb{R}$ má ratifikovatelný graf, pokud:

$$\ell(G_f) := \sup(\{L(\overline{a}, f) \mid \overline{a} \text{ je dělení intervalu } [a, b]\}).$$

Plocha mezi grafy Nechť $f, g : [a, b] \to \mathbb{R}$, kde $f \leq g$. Plocha útvaru $G_{f,g}$ je potom:

$$A(G_{f,g}) := \inf(\{M(f,g,\overline{a}) \mid \overline{a} \text{ je dělení intervalu } [a,b]\}).$$

Vzorec pro výpočet plochy mezi grafy je: $A(G_{f,g}) := \int_a^b (g-f).$

Objem rotačního tělesa Nechť funkce $f:[a,b]\to[0,+\infty)$. Objem útvaru T_f je:

$$V(T_f) := \inf(\{K(f, \overline{a}) \mid \overline{a} \text{ je dělení intervalu } [a, b]\}).$$

7

K definujeme jako součet a $T_f := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b \land y^2 + z^2 \le f(x)^2\}.$

2 Věty a tvrzení bez důkazu

2.1 Reálná čísla

2.1.1 Definice a vlastnosti reálných čísel

Reálná čísla tvoří množinu $\mathbb{R}:=C/\sim$, kde C je množina všech Cauchyových posloupností a \sim je relace shodnosti na C. $Kde\ pro\ k, n_0, m, n \in \mathbb{N}\ je$:

- Cauchyova posloupnost $(a_n) \subseteq \mathbb{Q} : \forall k \exists n_0 : m, n \ge n_0 \implies |a_m a_n| \le \frac{1}{k}$.
- Relace shodnosti $(a_n) \sim (b_n) \iff \forall k \exists n_0 : n \geq n_0 \implies |a_n b_n| \leq \frac{1}{k}$

Vlastnosti reálných čísel Na množině \mathbb{R} je dána binární relace $(<) \subseteq \mathbb{R} \times \mathbb{R}$, operace sčítání (+), násobení (\cdot) a význačné prvky 0, 1, tedy uspořádané těleso $(\mathbb{R}, 0, 1, +, \cdot, <)$. (Platí komutativita, distributivita, asociativita, existence 0, 1, atd.)

2.2 Limity

2.2.1 O podposloupnostech a existence monotónní posloupnosti

O podposloupnostech Nechť (a_n) je libovolná reálná posloupnost a $A \in \mathbb{R}^*$. Potom platí:

- 1. (a_n) má podposloupnost, která má limitu.
- 2. (a_n) nemá limitu \iff (a_n) má dvě podposloupnosti s dvěma různými limitami.
- 3. $\lim a_n \neq A \iff (a_n)$ má podposloupnost, která má limitu různou od A.

Existence monotónní posloupnosti Každá posloupnost reálných čísel má monotónní podposloupnost.

2.2.2 Geometrická posloupnost a Liminf a limsup

Limita geometrická posloupnosti Nechť $q \in \mathbb{R}$, potom

$$\lim_{n \to \infty} q^n = \begin{cases} 0 & |q| < 1\\ 1 & q = 1\\ +\infty & q > 1\\ neexistuje & q \le -1 \end{cases}.$$

Liminf a limsup Pro každou $(a_b) \subseteq \mathbb{R}$ je množina $H(a_n)$ neprázdná. V lineárním uspořádání $(\mathbb{R}^*,<)$ má minimum i maximum.

2.3 **Ř**ady

2.3.1 O harmonických číslech a Riemannova věta

O harmonických číslech Nechť $h_n = \sum_{i=1}^n \frac{1}{j}$ jsou harmonická čísla, potom $\exists c > 0$, t.ž.:

$$\forall n \in \mathbb{N} : h_n = \log n + \gamma + \Delta_n,$$

kde c je konstanta, $|\Delta_n| \leq \frac{c}{n}$, a $\gamma = 0.57721\ldots$ je tzv. Eulerova konstanta.

Harmonick'a čísla jsou (s_n) harmonick\'e řady. Eulerova konstanta $\gamma := \lim_{n \to \infty} (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log n).$

Riemannova věta Nechť $\sum_{n=1}^{\infty} a_n$ je řada typu $1-1+\frac{1}{2}-\frac{1}{2}+\cdots+\frac{1}{n}-\frac{1}{n}+\ldots$, tedy nechť platí:

- 1. $\lim a_n = 0$,
- 2. $\sum a_{k_n} = +\infty$, kde a_{k_n} jsou kladné sčítance řady,
- 3. $\sum a_{z_n} = -\infty,$ kde a_{z_n} jsou záporné sčítance řady,

potom pro každé $S\in\mathbb{R}^*$ existuje bijekce $\pi:\mathbb{N}\to\mathbb{N},$ t.ž.: $\sum_{n=1}^\infty a_{\pi(n)}=S.$

Funkce 2.4

O Riemannově funkci a Limita složené funkce

O Riemannově funkci Riemannova funkce je spojitá právě a jenom v iracionálních číslech.

Riemannova funkce
$$r: \mathbb{R} \to \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}, \ tedy \ r(x) = \begin{cases} 0 & x \in \mathbb{I} \\ \frac{1}{n} & x = \frac{m}{n} \in \mathbb{Q} \ a \ \frac{m}{n} \ je \ zlomek \ v \ základním \ tvaru. \end{cases}$$

Limita složené funkce Nechť $a,b,L\in\mathbb{R}^*,\,M,N\subseteq\mathbb{R},\,a$ je limitní bod $M,\,b$ je limitní bod N a nechť funkce $g:M\to N$ a $f:N\to\mathbb{R}$ mají limity $\lim_{x\to a}g(x)=b$ a $\lim_{x\to b}f(x)=L$. Složená funkce $f(g):M\to\mathbb{R}$ má potom limitu $\lim_{x\to A}f(g)(x)=L\iff \mathrm{plat}$ í jedna z podmínek:

$$\begin{cases} b \in N \implies f(b) = L \dots f(x) \text{ je spojitá } v \text{ } L \\ \exists \delta, \forall x \in P(A, \delta) \cap M : b \notin g(x) \dots na \text{ nějakém prstencovém okolí funkce nenabývá hodnotu } b \end{cases}$$

Heineho definice spojitosti, Blumbergova definice spojitosti a počet spojitých funkcí

Heineho definice spojitosti Funkce $f: M \to \mathbb{R}$ je spojitá v bodě $a \in M \subseteq \mathbb{R}$ právě tehdy, když

$$\forall (a_n) \subseteq M : \lim a_n = a \implies \lim f(a_n) = f(a).$$

Blumbergova definice spojitosti $\forall f : \mathbb{R} \to \mathbb{R}, \exists M \subseteq \mathbb{R}, \text{ t.ž.: } M \text{ je hustá v } \mathbb{R} \text{ a restrikce } f | M \text{ je spojitá funkce.}$

- Hustá množina N v M: $\forall a \in M, \forall \delta : U(a, \delta) \cap N \neq 0$
- Restrikce (zúžení): $A \subseteq B, C$; $f: B \to C$. Restrikce na A je funkce $f|A: A \to C \equiv \forall x \in A: (f|A)(x) := f(x)$

Počet spojitých funkcí \exists bijekce $h: \mathbb{R} \to C(\mathbb{R})$, kde C(M) definujeme pro $M \subseteq \mathbb{R}$ jako

$$C(M) := \{ f : M \to \mathbb{R} \mid f \text{ je spojitá} \}.$$

2.5Derivace

2.5.1Derivace složené funkce a derivace inverzní funkce

Derivace složené funkce Nechť $a \in M \subseteq \mathbb{R}$, a je limitní bod množiny $M, g: M \to N$ je spojitá v a s derivací $g'(a) \in \mathbb{R}^*$; $g(a) \in N$ je limitní bod množiny $N \subseteq \mathbb{R}$. Nechť $f: N \to \mathbb{R}$ je funkce s derivací $f'(g(a)) \in \mathbb{R}^*$, potom složená funkce $f(g): M \to \mathbb{R}$ má derivaci

$$(f(g))'(a) = f'(g(a)) \cdot g'(a)$$
, pokud je součin napravo definován.

Alternativně:

Nechť f má derivaci v bodě b, funkce g má derivaci v bodě a, b = g(a) a g je spojitá v a. Potom

$$(f \circ g)'(a) = f'(b) \cdot g'(a) = f'(g(a)) \cdot g'(a).$$

Derivace inverzní funkce Nechť $a \in M \subseteq \mathbb{R}$, a je limitní bod množiny $M, f: M \to \mathbb{R}$ je prostá funkce s derivací $f'(a) \in \mathbb{R}^*$ a inverzní funkce $f^{-1}: f[M] \to M$ je spojitá v b:=f(a), potom když:

1.
$$f'(a) \in \mathbb{R} \setminus \{0\}$$
, pak $(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$

- 2. f'(a) = 0 a f roste (resp. klesá) v bodě a, pak $(f^{-1})'(b) = \pm \infty$
- 3. $f'(a) = \pm \infty$ a b je limitní bod množiny f[M], pak $(f^{-1})'(b) = 0$.

2.5.2 l'Hospitalovo pravidlo a konvexivita a konkavita f"

l'Hospitalovo pravidlo Nechť $a \in \mathbb{R}$; $f, g : P^+(a, \delta) \to \mathbb{R}$ mají vlastní derivace, $g' \neq 0$ a $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \text{ nebo } \lim_{x\to a} g(x) = \pm \infty, \text{ potom:}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \text{ pokud poslední limita existuje}.$$

Věta platí i pro $P^{-}(a, \delta), P(a, \delta)$ a pro $a = \pm \infty$.

Konvexivita a konkavita f'': Nechť $I \subseteq \mathbb{R}$ je interval, $f: I \to \mathbb{R}$ je spojitá, $D(f) = I^0, \forall c \in I^0, \exists f''(c) \in \mathbb{R}^*$.

- 1. $f'' \ge 0$ (resp. $f'' \le 0$) $\implies f$ je konvexní (resp. konkávní)
- 2. f'' > 0 (resp. f'' < 0) $\implies f$ je ryze konvexní (resp. ryze konkávní).

2.6 Integrály

2.6.1 Lagrangeův a Cauchyův zbytek Taylorova polynomu a Bellova čísla

Nechť $f, f', f'', \dots, f^{(n+1)} : U(a, \delta) \to \mathbb{R}$, kde $n \in \mathbb{N}$.

Lagrangeův zbytek $\forall x \in P(a, \delta) \exists c \text{ mezi } a \text{ a } x, \text{ t.ž.}$:

$$R_n^{f,a}(x) := \frac{f^{(n+1)}(c)}{(n+1)!} \cdot (x-a)^{n+1}$$

Cauchyův zbytek $\forall x \in P(a, \delta) \exists c \text{ mezi } a \text{ a } x, \text{ t.\check{z}.:}$

$$R_n^{f,a}(x) := \frac{f^{(n+1)}(c) \cdot (x-c)^n}{n!} \cdot (x-a)$$

Bellova čísla $\forall x \in (-1,1)$ platí: $e^{e^x-1} = \exp(\exp(x)-1) = \sum_{n=0}^{\infty} \frac{B_n x^n}{n!}$, kde B_n je počet rozkladů množiny.

2.6.2 Riemann = Newton a integrace substitucí

Riemann = Newton Nechť $f:[a,b] \to \mathbb{R}$ je spojitá a $F:[a,b] \to \mathbb{R}$ je k ní primitivní, potom

$$\lim_{\|\overline{a}\|\to 0} R(\overline{a}, \overline{t}, f) = F(b) - F(a).$$

Riemannův součet: $R(\overline{a}, \overline{t}, f) := \sum_{i=1}^{k} (a_i - a_{i-2}) \cdot f(t_i)$, kde \overline{a} je dělení intervalu I, tedy $\overline{a} = (a_0, \dots, a_k)$.

Integrace substitucí Nechť $I, J \subseteq \mathbb{R}$ jsou netriviální intervaly; $g: I \to J$; $g': I \to \mathbb{R}$ a $f: J \to \mathbb{R}$. Potom

1.
$$F = \int f$$
 na $J \implies F(g) = \int f(g) \cdot g'$ na I

2. pokud g je surjekce $\land g' \neq 0$ na I, pak platí: $G = \int f(g) \cdot g'$ na $I \implies G(g^{-1}) = \int f$ na J.

2.6.3 Per partes a int(r(x))

Per partes Nechť $f, g, F, G : (a, b) \to \mathbb{R}$, kde $a < b \in \mathbb{R}^*$; F (resp. G) je primitivní k f (resp. ke g). Potom, když jsou definovány dva ze tří členů T_i , pak platí:

$$(N)\underbrace{\int_a^b fG}_{T_1} = \underbrace{[FG]_a^b}_{T_2} - (N)\underbrace{\int_a^b Fg}_{T_3}.$$

(= pro neurčitý integrál: $\int f'g = fg - \int fg'$)

Integrál $\mathbf{r}(\mathbf{x})$: \forall racionální funkce r(x), kde $r(x) = \frac{p(x)}{q(x)} : \mathbb{R} \setminus Z(r) \to \mathbb{R}$, existuje funkce R(x) ve tvaru:

$$R(x) = r_0(x) + \sum_{i=1}^{k} s_i \cdot \log(|x - \alpha|) + \sum_{i=1}^{l} t_i \cdot \log(a_i(x)) + \sum_{i=1}^{m} u_i \cdot \arctan(b_i(x)),$$

kde $r_0(x)$ je racionální funkce; $k, l, m \in \mathbb{N}_0$; prázdné $\sum := 0$; $s_i, t_i, u_i \in \mathbb{R}$; $\alpha_i \in Z(r(x))$; $a_i(x)$ jsou ireducibilní trojčleny a $b_i \in \mathbb{R}[x]$ jsou nekonstantní lineární polynomy, t.ž.: na každém $\emptyset \neq I \subseteq \mathbb{R} \setminus Z(r(x))$ platí $R(x) = \int r(x)$. Platí, že Ireducibilní trojčlen je polynom stupně 2 a $Z(r) := \{a \in \mathbb{R} \mid q(a) = 0\}$.

2.6.4 O restrikcích, Lebesgueova věta a ZVA 2

O restrikcích Pokud $a < b < c \in \mathbb{R}$ a $f : [a, c] \to \mathbb{R}$, pak: $f \in R(a, c) \iff f \in R(a, b) \land f \in R(b, c)$, neboli

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$$

Lebesgueova věta Pro každou $f:[a,b] \to \mathbb{R}$ platí, že $f \in R(a,b) \iff f$ je omezená a nespojitá (*) s mírou 0. (*) $BN(f) := \{x \in M \mid f \text{ je nespojitá } v x\}$.

Základní věta analýzy 2 Nechť $f, F: (a, b) \to \mathbb{R}$, kde a < b; F je primitivní k f a $f \in R(a, b)$. Potom existují vlastní limity $F_a := \lim_{x \to a} F(x)$ a $F_b := \lim_{x \to b} F(x)$ a platí:

$$(R) \int_{a}^{b} f = F_b - F_a = (N) \int_{a}^{b} f.$$

2.6.5 Riemann = Darboux a HK. int a N. int

Riemann = **Darboux** Nechť $f : [a, b] \to \mathbb{R}$, potom:

$$f \in R(a,b) \iff \underline{\int_a^b} f = \overline{\int_a^b} f \in \mathbb{R}.$$

Pokud platí obě strany ekvivalence, pak: (R) $\int_a^b f = \int_{\underline{a}}^{\underline{b}} f = \overline{\int_a^b} f$.

HK. \int a N. \int : Nechť a < b; $F, f : [a, b] \to \mathbb{R}$, kde F je spojitá a F' = f na (a, b). Pak $f \in HK(a, b)$ a platí

$$(HK)\int_{a}^{b} f = F(b) - F(a) = (N)\int_{a}^{b} f.$$

2.6.6 Délka grafu a Integrální kritérium

Délka grafu Nechť $f:[a,b]\to\mathbb{R}$ je spojitá a $f'\in R(a,b)$, potom:

$$\ell(G_f) = \int_a^b \sqrt{1 + (f')^2} \in (0, +\infty).$$

Integrální kritérium Nechť $m \in \mathbb{Z}$ a $f:[m,+\infty) \to \mathbb{R}$ je nezáporná a nerostoucí funkce. Potom

řada
$$\sum_{n=m}^{\infty} f(n)$$
 konverguje $\iff \lim_{n\to\infty} \int_{m}^{n} f < +\infty.$

3 Věty a tvrzení s důkazem

3.1 Reálná čísla

3.1.1 Odmocnina ze dvou není racionálních a Cantorova věta

Věta ($\sqrt{2} \notin \mathbb{Q}$): Rovnice $x^2 = 2$ nemá v oboru \mathbb{Q} řešení.

Proof. Pro spor předpokládejme, že $\exists a,b \in \mathbb{N}$, t.ž.: $\left(\frac{a}{b}\right)^2 = 2$. Máme tedy $a^2 = 2b^2$, kde a^2 je sudé. Neboli a = 2c pro nějaké $c \in \mathbb{N}$. Dostáváme $(2c)^2 = 2b^2 \iff 4c^2 = 2b^2 \iff b^2 = 2c^2$, neboli b^2 je sudé, proto i b je sudé, což je spor s nesoudělností a,b. $\frac{1}{2}$

Cantorova věta: Pro žádnou množinu X neexistuje surjekce $f: X \to \mathcal{P}(X)$ z X na její potenci.

Proof. Pro spor předpokládejme, že $f: X \to \mathcal{P}(X)$ je surjektivní, kde $X \neq \emptyset$. Dále uvažme:

$$Y := \{ x \in X \mid x \notin f(x) \} \subseteq X.$$

Protože f je surjektivní, tak $\exists y \in X$ t.ž. f(y) = Y.

- (a) Pokud $y \in Y$, pak podle definice množiny Y platí, že $y \notin f(y) = Y$.
- (b) Pokud $y \notin Y = f(y)$, má y vlastnost definující množinu Y a $y \in Y$.

V obou připadech se jedná o spor. ½

3.2 Limity

3.2.1 Jendoznačnost limity a Bolzano-Weierstrassova věta

Věta (Jendoznačnost limity): Limita posloupnosti je $jednoznačná \equiv \lim a_n = K \wedge \lim a_n = L \implies K = L$. (Neboli když má nejvýše jednu limitu.)

Proof. Nechť $\lim a_n = K$ i $\lim a_n = L$ a nechť $\exists \varepsilon$.

Podle definice limity posloupnosti $\exists n_0, \text{ t.ž.: } n \geq n_0 \implies a_n \in U(K, \varepsilon) \text{ i } a_n \in U(L, \varepsilon).$

Dostáváme $\forall \varepsilon : U(K, \varepsilon) \cap U(L, \varepsilon) \neq \emptyset$. Tedy K = L.

Věta (Bolzano-Weierstrassova): Omezená posloupnost reálných čísel má vždy konvergentní podposloupnost.

Proof. Nechť (a_n) je omezená posloupnost a (b_n) je monotónní podposloupností (a_n) , neboli $(b_n) \leq (a_n)$. (b_n) je tak zjevně je omezená a podle věty o robustně monotónní posloupnosti má vlastní limitu.

3.2.2 Limita a uspořádání a Cauchyova podmínka

Věta (Limita a uspořádání): Nechť (a_n) a $(b_n) \in \mathbb{R}$ s $\lim a_n = K \in \mathbb{R}^*$ a $\lim b_n = L \in \mathbb{R}^*$. Potom platí:

- 1. $K < L \implies \exists n_0 : \forall m, n > n_0 \text{ je } a_m < b_n$.
- 2. $\forall n_0, \exists m, n \geq n_0 \land a_m \geq b_n \implies K \geq L$.

Proof.

- 1. Nechť K < L, pak $\exists \varepsilon : U(K, \varepsilon) < U(L, \varepsilon)$. Podle definice limity máme $\exists n_0 : m, n \ge n_0 \implies a_m \in U(K, \varepsilon)$ a $b_n \in U(L, \varepsilon)$. Tedy $m, n \ge n_0 \implies a_m < b_n$.
- 2. Triviálně obměnou implikace.

Věta (Cauchyova podmínka): Posloupnost reálných čísel (a_n) je konvergentní $\iff (a_n)$ je Cauchyova.

Proof. \Longrightarrow Nechť ε je dáno a $\lim a_n = a$.

Potom $\exists n_0 : n \geq n_0 \implies |a_n - a| < \frac{\varepsilon}{2}$. Tedy:

$$m, n \ge n_0 \implies |a_m - a_n| \le |a_m - a| + |a - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

pak (a_n) je Cauchyova posloupnost.

 \Leftarrow Nechť (a_n) je Cauchyova posloupnost. Víme, že (a_n) je omezená a proto má podle Bolzano-Weierstrassovy věty konvergentní podposloupnost (a_{m_n}) s limitou a. Pro dané ε tak máme $n_0: n \ge n_0 \implies |a_{m_n} - a| < \frac{\varepsilon}{2}$ a zároveň $n \ge n_0 \implies |a_n - a| \le |a_n - a_{m_n}| + |a_{m_n} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Dostáváme tedy, že $a_n \to a$.

(Použili jsme vyjádření $a_m - a_n = (a_m - a) + (a - a_n)$ a trojúhelníkovou nerovnost $|c + d| \le |c| + |d|$.)

3.3 Řady

3.3.1 Nutná podmínka konvergence řady a Harmonická řada

Tvrzení (Nutná podmínka konvergence řady): Když řada $\sum a_n$ konverguje, pak $\lim a_n = 0$.

Proof. Když $\sum a_n$ konverguje, pak $S := \lim s_n \in \mathbb{R}$, kde $s_n = \sum_{j=1}^n a_j$.

Podle výsledků o limitě podposloupnosti a podle aritmetiky limit dostáváme:

$$\lim a_n = \lim (s_n - s_{n-1}) = \lim s_n - \lim s_{n-1} = S - S = 0.$$

 $Využíváme\ platnosti\ \lim(s_n) = \lim(s_{n-1}) = S.$

Tvrzení (Harmonická řada): Harmonická řada $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$ diverguje a má součet $+\infty$.

Proof. Nechť (h_n) jsou částečné součty $\sum_{n=1}^{\infty} \frac{1}{n}$ a (s_n) jsou částečné součty $\sum_{n=1}^{\infty} a_n$.

Potom platí $\forall n: \frac{1}{n} > a_n$, tedy i $\forall n: h_n > s_n$. Protože podle *věty o jednom strážníkovi* se $\lim s_n = +\infty$, pak i $\lim h_n = +\infty$ a proto je $\sum \frac{1}{n} = +\infty$.

Proof. (Alternativně)

Pro částečné součty n a 2n platí:

$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \wedge s_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$
$$s_{2n} - s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \cancel{x} \cdot \frac{1}{2\cancel{x}} = \frac{1}{2}.$$

Proto $\forall n \in \mathbb{N} : s_{2n} - s_n \ge \frac{1}{2}$ a posloupnost (s_n) tím splňuje Cauchyovu podmínku a diverguje.

3.4 Funkce

3.4.1 Heineho definice a Aritmetika limit funkcí

Věta (Heineho definice): Nechť $M \subseteq \mathbb{R}, K, L$ jsou prvky \mathbb{R}^*, K je limitní bod množiny M a $f: M \to \mathbb{R}$. Pak

$$\lim_{x \to K} f(x) = L \iff \forall (a_n) \subseteq M \setminus \{K\} : \lim a_n = K \implies \lim f(a_n) = L.$$

Tedy L je limita funkce f v $K \iff pro$ každou posloupnost (a_n) v M, která má limitu K, ale nikdy se K nerovná, funkční hodnoty $(f(a_n))$ mají limitu L.

Proof.

 \implies Předpokládáme, že $\lim_{x\to K}f(x)=L$, že $(a_n)\subseteq M\setminus\{K\}$ má limitu K a žě ε je dáno. Potom

$$\exists \delta : \forall x \in M \cap P(K, \delta) \text{ je } f(x) \in U(L, \varepsilon).$$

Pro toto δ zároveň $\exists n_0 : n \geq n_0 \implies a_n \in P(K, \delta) \cap M$. Tedy $n \geq n_0 \implies f(a_n) \in U(L, \varepsilon)$ a $f(a_n) \to L$.

 \Leftarrow Za pomoci obměny $\neg \implies \neg$. Předpokládáme, že $\lim_{x \to K} f(x) = L$ neplatí a proto ani pravá strana ekvivalence neplatí. Tedy pro bod b:

$$\exists \varepsilon > 0 : \forall \delta > 0, \exists b = b(\delta) \in M \cap P(K, \delta), \ t.\check{z}.: \ f(b) \notin U(L, \varepsilon).$$

Položíme pro $n \in \mathbb{N} : \delta = \frac{1}{n}$ a $\forall n \in \mathbb{N}$ vybereme bod:

$$b_n := b\left(\frac{1}{n}\right) \in M \cap P\left(K, \frac{1}{n}\right), \ t.\check{z}.: \ f(b_n) \notin U(L, \varepsilon).$$

Posloupnost (b_n) leží v $M \setminus \{K\}$ a konverguje ke K, ale posloupnost hodnot $(f(b_n))$ nekonverguje kL. Pravá strana ekvivalence tedy neplatí. \nleq

Věta (Aritmetika limit funkcí): Nechť $M \in \mathbb{R}$, nechť $a, K, L \in \mathbb{R}^*$, kde a je limitní bod množiny M a nechť funkce $f, g: M \to \mathbb{R}$ mají limity $\lim_{x \to 0} f(x) = K$, $\lim_{x \to 0} g(x) = L$.

Potom platí
$$\begin{cases} \lim_{x \to a} f(x) + g(x) = K + L \\ \lim_{x \to a} f(x) \cdot g(x) = K \cdot L \\ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{K}{L}, \text{ kde pro } g(x) = 0 \text{ definujeme } \frac{f(x)}{g(x)} := 0. \end{cases}$$

 $Proof.\ Z\ d\mathring{u}vodu\ podobnosti\ probereme\ jen\ pod{\hat{u}}.$

Nechť $(a_n) \subseteq M \setminus \{aA\}$ s $\lim a_n = a$. Podle Heineho definice limity funkce platí:

 \implies Nechť $\lim f(a_n) = K$, $\lim g(a_n) = L$ a předpokládejme, že $L \neq 0$, proto i $\forall n \geq n_0 : g(a_n) \neq 0$. Zároveň předpokládejme, že $K, L \neq \pm \infty$, tedy že konvergují. Podle věty o AK posloupností se pak limity rovnají:

$$\lim \left(\frac{f(a_n)}{g(a_n)}\right) = \frac{\lim f(a_n)}{\lim g(a_n)} = \frac{K}{L}.$$

 \Leftarrow Protože tento vztah platí pro každou posloupnost $\left(\frac{f(a_n)}{g(a_n)}\right)$ s (a_n) jako výše, tak podle Heineho definice je $\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{K}{L}$.

3.4.2 Nabývání mezihodnot a Princip minima a maxima

Věta (Nabývání mezihodnot): Nechť $a,b,c \in \mathbb{R};\ a < b;\ f:[a,b] \to \mathbb{R}$ je spojitá a f(a) < c < f(b) nebo f(a) > c > f(b). Potom $\exists d \in (a,b): f(d) = c$.

Proof. Předpokládejme, že f(a) < c < f(b) (pro opačnou nerovnost obdobně).

Nechť $A := \{x \in [a, b] \mid f(x) < C\}$ a $d := \sup(A) \in [a, b]$.

Číslo d je korektně definované, protože množina $A \neq \emptyset$ $(a \in A)$ a je shora omezená (b).

Ukážeme, že ke sporu vede f(d) < c i f(d) > c, proto f(d) = c. Ze spojitosti funkce f v a a v b plyne, že $d \in (a, b)$.

- (a) Pro f(d) < c. Ze spojitosti funkce f v d plyne, že $\exists \delta : x \in U(d, \delta) \cap [a, b] \implies f(x) < c$. Pak ale A obsahuje větší čísla než d. Dostáváme spor, protože d je horní mez množiny A.
- (b) Pro f(d) > c. Ze spojitosti funkce f v d plyne, že $\exists \delta : x \in U(d, \delta) \cap [a, b] \implies f(x) > c$. Pak ale $\forall x \in [a, d)$ dostatečně blízké d leží mimo A, což je ve sporu d, jakožto nejmenší horní mezí množiny A.

Věta (Princip minima a maxima): Nechť $M \subseteq \mathbb{R}$ je neprázdná kompaktní množina a $f: M \to \mathbb{R}$ je spojitá. Potom $\exists a, b \in M, \forall x \in M: f(a) \leq f(x) \leq f(b)$.

Potom $\exists a,b \in M, \forall x \in M: f(a) \leq f(x) \leq f(b).$ Řekneme, že f nabývá na $M \begin{cases} v \text{ bodu } a \text{ minimum (nejmenší hodnotu) } f(a) \\ v \text{ bodu } b \text{ maximum (největší hodnotu) } f(b). \end{cases}$

Proof. Dokážeme existenci maxima (pro minimum obdobně).

Zjevně platí, že $\forall x \in M: f(x) \neq \emptyset$. Ukážeme, že M je shora omezená sporem.

Kdyby nebyla, tak $\exists (a_n) \subseteq M : \lim f(a_n) = +\infty$.

Podle kompaktnosti M má (a_n) konvergentní podposloupnost (a_{m_n}) s $b := \lim(a_{m_n}) \in M$. Pak i $\lim f(a_{m_n}) = +\infty$, což je spor, protože podle Heineho definice je $\lim f(a_{m_n}) = f(a)$. \nleq

Lze definovat $\forall x \in M : s := \sup(f(x)) \in \mathbb{R}$ a podle definice suprema $\exists (a_n) \subseteq M$ s $\lim f(a_n) = s$.

Díky kompaktnosti M má (a_n) konvergentní podposloupnost (a_{m_n}) s $b := \lim a_{m_n} \in M$.

Podle Heineho definice je $\lim f(a_{m_n}) = f(b) = s$. Protože s = f(b) je horní mezí, tak $\forall x \in M : f(b) \ge f(x)$.

Derivace 3.5

Nutná podmínka extrému a Leibnizův vzorec

Věta (Nutná podmínka extrému): Nechť $b \in M$ je OLB $M \subseteq \mathbb{R}, f : M \to \mathbb{R}, \exists f'(b) \in \mathbb{R}^*$ a $f'(b) \neq 0$. Potom

$$\forall \delta \exists c, d \in U(b, \delta) \cap M : f(c) < f(b) < f(d).$$

Tedy funkce f nemá v bodě b lokální extrém, nemá v b ani lokální minimum ani lokální maximum.

Proof. Nechť $b \in M \subseteq \mathbb{R}$ a $f: M \to \mathbb{R}$ a δ je dáno. Nechť f'(b) < 0 (opačná nerovnost obdobně). Vezmeme tak malé ε , že $\exists y \in U(f'(b), \varepsilon) \implies y < 0$). Nyní podle definice derivace funkce v bodě:

$$\exists \theta : x \in P(b,\theta) \cap M \implies \overbrace{\frac{f(x) - f(b)}{x - b}}^{<0} \in U(f'(b), \varepsilon).$$

Tedy když $P^-(b,\theta) \cap M$, pak f(x) > f(b), protože x - b < 0 a $\frac{f(x) - f(b)}{x - b} < 0$.

Podobně když $x \in P^+(b, \theta) \cap M$, pak f(x) < f(b).

Předpokládejme, že $\theta < \delta$ a $\exists c \in P^+(b,\theta) \cap M$ a $d \in P^-(b,\theta) \cap M$. Prvky c,d existují, protože b je OLB M. Proto platí $c, d \in U(b, \delta) \cap M \implies f(c) < f(b)$ a f(d) > f(b).

Věta (Leibnizův vzorec): Nechť $b \in M \subseteq \mathbb{R}$, b je LB množiny $M, f, g : M \to \mathbb{R}$ a f nebo g je spojitá v b. Potom

$$(fg)'(b) = f'(b) \cdot g(b) + f(b) \cdot g'(b),$$

když pravá strana není neurčitý výraz.

Proof. Nechť je g spojitá v b (druhý případ obdobně). Podle podle AL funkcí platí

$$(fg)'(b) = \lim_{x \to b} \frac{f(x)g(x) - f(b)g(b)}{x - b} =$$

$$= \lim_{x \to b} \frac{f(x)g(x) - f(b)g(x) + f(b)g(x) - f(b)g(b)}{x - b} =$$

$$= \lim_{x \to b} \frac{(f(x) - f(b))g(x) + f(b)(g(x) - g(b))}{x - b} =$$

$$= \lim_{x \to b} \frac{f(x) - f(b)}{x - b} \cdot \lim_{x \to b} (g(x) + f(b)) \cdot \lim_{x \to b} \frac{g(x) - g(b)}{x - b} =$$

$$\stackrel{spojitost}{=} f'(b) \cdot g(b) + f(b) \cdot g'(b).$$

Lagrangeova věta a Derivace a monotonie 1

Věta (Lagrangeova): Pokud f je hezká funkce, pak $\exists c \in (a,b) : f'(c) = \frac{f(b) - f(a)}{b-a} =: z.$ $Hezká funkce \ f:[a,b] \to \mathbb{R} \ je \ spojitá.$

Proof. Nechť $g(x) := f(x) - (x-a) \cdot z : [a,b] \to \mathbb{R}$ splňuje předpoklady Rolleovy věty, především g(a) = g(b) = f(a), takže 0 = g'(c) = f'(c) - z pro nějaké $c \in (a, b)$.

Rolleova věta: f je hezká & $f(a) = f(b) \implies \exists c \in (a,b) : f(c) = 0$.

Věta (Derivace a monotonie 1): Nechť $I \subseteq \mathbb{R}$ je interval, $f: I \to \mathbb{R}$ je spojitá a $\forall c \in I^0, \exists f'(c)$. Potom

- 1. $f' \ge 0$ (resp. $f' \le 0$) na $I^0 \implies f$ na I neklesá (resp. neroste)
- 2. f' > 0 (resp. f' < 0) na $I^0 \implies f$ na I roste (resp. klesá).

 $Kde\ I^0 \subseteq I\ značí\ vnitřek\ intervalu\ I,\ tedy\ I^0 = \{a \in I \mid \exists \delta : U(a,\delta) \subseteq I\}.$

Proof. Nechť je f' < 0 na I^0 (klesá) a x < y jsou libovolná čísla v I.

Podle Lagrangeovy věty pro nějaké $z \in (x,y) \subseteq I^0$ je $\frac{f(y)-f(x)}{y-x} = f'(z) < 0$. Protože y-x>0, je f(x)>f(y) a f na I klesá. (Zbývající tři možnosti obdobně.)

3.5.3 Taylorův polynom a Nejednoznačnost primitivní funkce

Lemma (o polynomech): Nechť $b \in \mathbb{R}, n \in \mathbb{N}_0$ a $p(x) \in \mathbb{R}[x]$ s deg $p \le n$. Pak $\lim_{x \to b} \frac{p(x)}{(x-b)^n} = 0 \implies p(x) \equiv 0$.

Proof. Indukcí podle n.

- (i) Pro n=0 platí. $p(x)=a_0$ a $\frac{a_0}{1}\to 0$ je $a_0=0$.
- (ii) Pro n>0 předpokládejme, že platí $\lim_{x\to b}\frac{p(x)}{(x-b)^n}=0\implies p(x)\equiv 0.$

Potom $p(b) = \lim_{x \to b} p(x) = 0$, tedy b je kořenem $p(x) = (x - b) \cdot q(x)$, kde $q(x) \in \mathbb{R}$ je stupně nejvýše n - 1.

Dostáváme tak z indukčního předpokladu

$$0 = \lim_{x \to b} \frac{p(x)}{(x-b)^n} = \lim_{x \to b} \frac{(x-b) \cdot q(x)}{(x-b)^n} = \lim_{x \to b} \frac{q(x)}{(x-b)^{n-1}}$$

neboli, že q(x) = 0, proto i $p(x) = (x - b) \cdot 0 = 0$.

Věta (Taylorův polynom) Nechť $n \in \mathbb{N}$ a $f: U(b, \delta) \to \mathbb{R}$ jsou jako v definici *Taylorova polynomu*. $T_n^{f,b}(x)$ je jediný polynom $p(x) \in \mathbb{R}$ stupně nejvýše n, t.ž.:

$$f(x) = p(x) + o((x-b)^n)$$
 pro $x \to b$.

Proof. Indukcí podle n dokážeme aproximaci $T_n^{f,b}$, tj. že $\lim_{x\to b} \frac{f(x)-T_n^{f,b}(x)}{(x-b)^n}=0$.

- (i) Pro n=1: podle AL funkcí je $\lim_{x \to b} \frac{f(x) T_1^{f,b}(x)}{x-b} = \lim_{x \to b} \frac{f(x) f(b)}{x-b} \lim_{x \to b} f'(b) = f'(b) f'(b) = 0.$
- (ii) Pro $n \ge 2$: podle L'Hospitalova pravidla a indukce máme, že

$$\lim_{x \to b} \frac{f(x) - T_n^{f,b}(x)}{(x - b)^n} = \lim_{x \to b} \frac{\left(f(x) - T_n^{f,b}(x)\right)'}{\left((x - b)^n\right)'} = \frac{1}{n} \lim_{x \to b} \frac{f'(x) - T_{n-1}^{f',b}(x)}{(x - b)^{n-1}} = \frac{1}{n} \cdot 0 = 0.$$

Nechť $p(x) \in \mathbb{R}[x]$ s $\deg(p) \le n$ splňuje, že $\lim_{x \to b} \frac{f(x) - p(x)}{(x - b)^n} = 0$, potom ale:

$$\lim_{x \to b} \frac{f(x) - T_n^{f,b}(x)}{(x - b)^n} = \lim_{x \to b} \frac{p(x) - f(x)}{(x - b)^n} + \lim_{x \to b} \frac{f(x) - T_n^{f,b}(x)}{(x - b)^n} = 0 + 0 = 0.$$

Podle předešlého Lemmatu o polynomech tak dostáváme $p(x) = T_n^{f,b}(x)$.

Věta (Nejednoznačnost primitivní funkce) Nechť $I \subseteq \mathbb{R}$ je netriviální interval; $F_1, F_2, f: I \to \mathbb{R}$ a F_1, F_2 je primitivní k f. Potom $\exists c \in \mathbb{R} : F_1 - F_2 = c$ na I.

Proof. Nechť $\exists a, b \in I, a < b.$

Podle Lagrangeovy věty o střední hodnotě, použité pro funkci F_1-F_2 a interval [a,b] platí, že:

$$\exists c \in (a,b) : \frac{(F_1 - F_2)(b) - (F_1 - F_2)(a)}{b - a} = (F_1 - F_2)'(c) = F_1'(c) - F_2'(c) = f(c) - f(c) = 0.$$

Dostáváme tedy pro nějaké c, že $\forall x \in I : F_1(b) - F_2(b) = F_1(a) - F_2(a) \implies F_1(x) - F_2(x) = c$.

3.6 Integrály

3.6.1 Monotonie Newtonova integrálu a Derivace jsou Darbouxovy

Věta (Monotonie Newtonova integrálu): Pokud $f, g \in N(a, b)$ a $f \leq g$ na (a, b), pak $(N) \int_a^b f \leq (N) \int_a^b g$.

Proof. Nechť F, resp. G, je primitivní k f, resp. ke g, a nechť čísla $c,d \in (a,b)$, kde c < d, jsou libovnolná. Použijeme Lagrangeovu větu o střední hodnotě pro F - G a interval [c,d]. Pro nějaký bod $e \in (c,d)$ platí:

$$(F(d) - G(d)) - (F(c) - G(c)) = (F - G)'(e) \cdot (d - c) =$$

$$= (F'(e) - G'(e)) \cdot (d - c) =$$

$$= (f(e) - g(e)) \cdot (d - c) \le 0.$$

Proto platí $F(d) - F(c) \le G(d) - G(c)$.

Tato nerovnost se zachovává při lineárních přechodech $c \to a, d \to b$ a dostaneme tak $(N) \int_a^b f \le (N) \int_a^b g.$

Věta (Derivace jsou Darbouxovy): Nechť $I \neq \emptyset$ je interval a $f: I \to \mathbb{R}$ má primitivní funkci $\Longrightarrow f$ má Darbouxovu vlastnost.

Proof. Nechť $a < b; f, F : [a, b] \to \mathbb{R}; F$ je primitivní k f a f(a) < c < f(b). Pro opačné nerovnosti obdobně. Uvážme funkci $G(x) := F(x) - cx : [a, b] \to \mathbb{R}$.

Patrně G' = F' - c = f - c na [a, b] a G je proto spojitá.

Podle věty o Principu minima a maxima G nabývá v nějakém $d \in [a,b]$ minimum a podle tvrzení O derivaci a monotonii 2 plyne z

$$G'(a) = f(a) - c < 0$$
 a $G'(b) = f(b) - c > 0$, že $d \in (a,b)$.

Nakonec podle věty O nutné podmínce extrému se

$$G'(d) = f(d) - c = 0$$
, takže $f(d) = c$.

3.6.2 Bachetova identita

Tvrzení (Bachetova identita): Nechť $p,q \in \mathbb{R}[x]$ nemají společný kořen, tj.: pro žádné $z \in \mathbb{C}$ neplatí, že p(z) = q(z) = 0. Potom $\exists r, s \in \mathbb{R}[x]$, t.ž.:

$$r(x) \cdot p(x) + s(x) \cdot q(x) = 1.$$

Proof. Nechť $p, q \in R[x]$ a $S := \{r(x) \cdot p(x) + s(x) \cdot q(x) \mid r(x), s(x) \in \mathbb{R}[x]\}.$

Nechť polynom $0 \neq t(x) \in S$, má nejmenší stupeň.

Libovolný $a(x) \in S$ jím dělíme se zbytkem:

$$a(x) = t(x) \cdot b(x) + c(x),$$

kde $b(x), c(x) \in \mathbb{R}[x]$ a $\deg(c(x)) < \deg(t(x))$ nebo c(x) = 0.

Protože ale $c(x) = a(x) - b(x) \cdot t(x) \in S$, platí c(x) = 0 a a(x) = b(x)t(x), takže t(x) dělí každý prvek v S.

Ale $p(x), q(x) \in S$ a t(x) je oba dělí.

Protože p(x) a q(x) nemají společný kořen, tak podle Zvalgovy věty * je t(x) nenulový konstantní polynom. B.Ú.N.O. je t(x) = 1. Tedy $1 \in S$ a máme uvedenou identitu.

* Zvalgova věta: $\forall p(x) \in \mathbb{C}[x] \setminus \mathbb{C}, \exists d \in \mathbb{C} : p(\alpha) = 0.$

3.6.3 Neomezené funkce jsou špatné a Baireova věta

Tvrzení (Neomezené funkce jsou špatné): Pokud funkce $f : [a, b] \to \mathbb{R}$ neomezená, pak $f \notin R(a, b)$. (Pokud je neomezená, pak není riemannovsky integrovatelná.)

Proof. Předpokládáme, že $f:[a,b]\to\mathbb{R}$ je neomezená. Ukážeme, že:

$$\forall n, \exists (\overline{a}, \overline{t}) : ||\overline{a}|| < \frac{1}{n} \land |R(\overline{a}, \overline{t}, f)| > n.$$

To je však v rozporu s Cauchyho podmínkou pro riemannovskou integrovatelnost funkce <math>f.

Z neomezenosti f a z kompaktnosti [a,b] vyplývá, že existuje konvergentní posloupnost $(b_n) \subseteq [a,b]$ s limitou $\lim b_n = \alpha \in [a,b]$ a s $\lim |f(b_n)| = +\infty$.

Nechť je dáno $n \in \mathbb{N}$.

Jako \overline{a} vezmeme libovolné dělení $\overline{a}=(a_0,\ldots,a_k)$ intervalu [a,b] s $||\overline{a}||<\frac{1}{n}$, ale t.ž.: $\exists j\in [k]:\alpha\in [a_{j-1},a_j]$. Pak vybereme libovolné body $\forall i\neq j:t_i\in [a_{i-1},a_i]$ a uvážíme neúplný Riemannův součet

$$s := \sum_{i=1, i \neq j}^{k} (a_i - a_{i-1}) f(t_i).$$

Nyní vybereme zbývající bod $t_i \in [a_{i-1}, a_i]$ tak, že:

$$|(a_i - a_{i-1})f(t_i)| > |s| + n.$$

To lze, protože $b_n \in [a_{j-1}, a_j]$ pro každé dostatečně velké n.

Pak definujeme \bar{t} jako sestávající ze všech těchto bodů a pomocí trojúhelníkové nerovnosti dostaneme požadované:

$$|R(\overline{a}, \overline{t}, f)| \ge |(a_i - a_{i-1})f(t_i)| - |s| > n.$$

Věta (Baireova): Pokud $a < b \in \mathbb{R}$ a $[a,b] = \bigcup_{n=1}^{\infty} M_n$, pak některá množina M_n není řídká.

Proof. Nechť v $[a,b] = \bigcup^{\infty} M_n$ je každá množina M_n řídká, odvodíme spor.

 M_1 je řídká $\Longrightarrow \exists [a_1, b_1] \subseteq [a, b], \text{ t.ž.: } a_1 < b_1 \text{ a } [a_1, b_1] \cap M_1 = \emptyset.$

 M_2 je řídká $\Longrightarrow \exists [a_2, b_2] \subseteq [a_1, b_1]$, t.ž.: $a_2 < b_2$ a $[a_2, b_2] \cap M_2 = \emptyset$, atd.

Takto získáme posloupnost vnořených intervalů:

$$[a,b] \supseteq [a_1,a_2] \supseteq [a_2,a_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots$$
, t.ž.:

$$\forall n \in \mathbb{N} : a_n < b_n \land [a_n, b_n] \cap M_n = \emptyset.$$

Nechť $\alpha := \lim a_n \in [a, b].$

(Limita existuje, protože $a \in [a, b]$, protože (a_n) je neklesající a je zdola omezená číslem a a shora číslem b.)

Dokonce $\forall m, n : a_n < b_m$, takže $\forall n : \alpha \in [a_n, b_n]$.

Potom ale $\forall n : \alpha \notin M_n$ dává spor, protože $\alpha \in [a, b]$.

3.6.4 Dolní součet je menší než horní a ZVA 1

Věta $(\int \leq \overline{\int})$: Nechť $f:[a,b] \to \mathbb{R}$. Pro každá dvě dělení $a,b \in \mathcal{D}(a,b)$ platí, že

$$s(\overline{a}, f) \le \underline{\int_a^b} f \le \overline{\int_a^b} f \le S(\overline{b}, f),$$

Proof. Nechť \overline{a} a \overline{b} jsou dělení intervalu [a, b].

Víme, že $\overline{c} := \overline{a} \cup \overline{b}$. Pak totiž $\overline{a}, \overline{b} \subseteq \overline{c}$ a podle tvrzení O monotonii dolního a horního součtu je

$$s(\overline{a}, f) \le s(\overline{c}, f) \le S(\overline{c}, f) \le S(\overline{b}, f)$$
 a dostáváme $s(\overline{a}, f) \le S(\overline{b}, f)$.

Dolní součet: $s(\overline{a}, f)$ Horní součet: $S(\overline{a}, f)$

18

Věta (ZVA 1): Nechť $f:[a,b] \to \mathbb{R}$ a $f \in R(a,b)$. Potom $\forall x \in (a,b]$ je $f \in R(a,x)$ a $F:[a,b] \to \mathbb{R}$, kde

$$F(x) := \int_a^x f,$$
 je lipschitzovsky spojitá.

 $t.j.: spojit\acute{a} \ v \ x \in [a,b] \implies F'(x) = f(x).$

Proof. Nechť $f \in R(a,b)$. Podle tvrzení o restrikcích je $f \in R(a',b')$ pro každé $a \le a' < b' \le b$.

Tedy F je správně definováno a F(a) = 0.

Protože f je omezená (tvrzení, že neomezené funkce jsou špatné), vezmeme omezující konstantu d>0.

Nechť c := 1 + d, nechť $x < y \in [a, b]$ a podle definice Riemannova integrálu nechť $(\overline{a}, \overline{t})$ je takové s body intervalu
$$\begin{split} [x,y],\, \check{\text{ze}}\, \left|\int_x^y f - R(\overline{a},\overline{t},f)\right| &< y-x. \\ \text{Podle } \textit{tvrzen\'{i}} \textit{ o } \textit{restrikc\'{i}}\textit{ch} \textit{ a } \textit{definice } \textit{funkce } F \textit{ plat\'{i}},\, \check{\text{ze}}\text{:} \end{split}$$

$$|F(y) - F(x)| = \left| \int_x^y f \right| \le y - x + |R(\overline{a}, \overline{t}, f)| \le y - x + c \cdot (y - x),$$

a tak $|F(y) - F(x)| \le c \cdot |y - x|$ a F je lipschitzovsky spojitá.

Nechť f je v $x_0 \in [a, b]$ spojitá a $\exists \varepsilon$. Vezmeme číslo δ , t.ž.:

$$x \in U(x_0, \delta) \cap [a, b] \implies f(x) \in U(f(x_0), \varepsilon).$$

Nechť $x \in P(x_0, \delta) \cap [a, b]$ je libovolné, řekněme, že $x > x_0$ (pro < obdobně).

Vezmeme dělení s body $(\overline{a}, \overline{t})$ intervalu $[x_0, x]$, t.ž.: $\left| \int_{-\infty}^{x} f - R(\overline{a}, \overline{t}, f) \right| < \varepsilon(x - x_0)$. Potom:

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \cdot \int_{x_0}^x f - f(x_0)$$

je menší, než:

$$\frac{R(\overline{a},\overline{t},f)+\varepsilon(x-x_0)}{x-x_0}-f(x_0)<\frac{(x-x_0)(f(x_0)+\varepsilon+\varepsilon)}{x-x_0}-f(x_0)=2\varepsilon.$$

Podobně se dokáže, že je i větší, než -2ε a dostaneme tak $F'(x_0) = f(x_0)$.

3.6.5Abelova sumace

Věta (Abelova sumace): Nechť $a < b \in \mathbb{Z}$ a $f, f' \in R(a, b)$ a f je spojitá v b. Potom

$$\sum_{a < n < b} f(n) = \int_a^b f + \int_a^b \{x\} f'(x) =: \int_a^b T, \text{ je identita.}$$

Proof. Dokažme, že b = a + 1 (elmentární identita).

Identitu s mezemi a < b pak dostaneme jako součet elem. identit s mezemi a a a + 1, a + 1 a a + 2 ... b - 1 a b. Dokažme tedy elementární identitu. Podle integrace per partes pro b = a + 1 je

$$T = \int_{a}^{a+1} (x-a)f'(x) = [(x-a)f(x)]_{a}^{a+1} - \int_{a}^{a+1} f,$$

takže opravdu: $\sum_{a < n \le b} f(n) = [(x-a)f(x)]_a^{a+1} = f(a+1).$