EPC2039 – Enhancement Mode Power Transistor

 V_{DS} , 80 V $R_{DS(on)}\,,\;25\,m\Omega$ $I_{D}\,,\;6.8\,A$

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings				
	PARAMETER	VALUE	UNIT		
W	Drain-to-Source Voltage (Continuous)	80	V		
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	96	V		
I _D	Continuous (T _A = 25°C, R _{θJA} = 70°C/W)	6.8	Α		
	Pulsed (25°C, T _{PULSE} = 300 μs)	50	A		
V _{GS}	Gate-to-Source Voltage	6			
	Gate-to-Source Voltage	-4	V		
T _J	Operating Temperature	-40 to 150	·c		
T _{STG}	Storage Temperature	-40 to 150			

	Thermal Characteristics				
PARAMETER TYP					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	3			
R _{0JB} Thermal Resistance, Junction-to-Board		28	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	81			

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

EPC2039 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 1.35 mm x 1.35 mm

Applications

- High Speed DC-DC conversion
- Wireless Power Transfer
- Lidar/Pulsed Power Applications

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- Ultra Small Footprint

Static Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER TEST CONDITIONS MIN TYP MAX UNIT					
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	80			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}$		20	250	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.2	2	mA
IGSS	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		20	250	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 2 \text{ mA}$	0.8	1.6	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 6 \text{ A}$		20	25	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A, V}_{GS} = 0 \text{ V}$		2.5		V

All measurements were done with substrate shorted to source.

Dynamic Characteristics (T _j = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			210	260	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$		2		
C _{oss}	Output Capacitance			115	175	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V -0+040VV -0V		155		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 40 \text{ V}, V_{GS} = 0 \text{ V}$		190		
R_{G}	Gate Resistance			0.5		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 40 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 6 \text{ A}$		1910	2370	
Q _{GS}	Gate to Source Charge			760		
Q_{GD}	Gate to Drain Charge	$V_{DS} = 40 \text{ V, I}_{D} = 6 \text{ A}$		420		
Q _{G(TH)}	Gate Charge at Threshold			560		pC
Q _{OSS}	Output Charge	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$		7640	11500	
Q _{RR}	Source-Drain Recovery Charge			0		

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: R_{DS(on)} vs. V_{GS} for Various Drain Currents

Figure 2: Transfer Characteristics

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

Figure 5a: Capacitance (Linear Scale)

Figure 5b: Capacitance (Log Scale)

Figure 6: Gate Charge

Figure 7: Reverse Drain-Source Characteristics

Figure 8: Normalized On-State Resistance vs. Temperature

Figure 9: Normalized Threshold Voltage vs. Temperature

All measurements were done with substrate shortened to source

Figure 10: Transient Thermal Response Curves

t_p, Rectangular Pulse Duration, seconds

t_p, Rectangular Pulse Duration, seconds

Figure 11: Safe Operating Area

TAPE AND REEL CONFIGURATION

	EPC2039 (note 1)			
Dimension (mm)	target min ma		max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (note 2)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (note 2)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

solder bump side down (face side down)

DIE MARKINGS

Part		Laser Markings	
Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2039	2039	YYYY	ZZZZ

DIE OUTLINE

Solder Bump View

Pad 1 is Gate; Pads 4, 5, 6, 7 are Drain; Pads 2, 3, 8, 9 are Source

	Micrometers			
DIM	MIN	Nominal	MAX	
Α	1320	1350	1380	
В	1320	1350	1380	
c	450	450	450	
d	210	225	240	
е	187	208	229	

Side View

RECOMMENDED LAND PATTERN

(measurements in μ m)

The land pattern is solder mask defined Solder mask is 10 µm smaller per side than bump

RECOMMENDED STENCIL DRAWING

(measurements in μm)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at

https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice. Revised April, 2021