Assignment 2

Jonas Trepiakas - hv
n548@alumni.ku.dk

Homework 4: Let X and Y be topological spaces and $f: X \to Y$ a continuous function. Let $Z := \{(x, f(x)) \mid x \in X\} \subseteq X \times Y$ be equipped with the subspace topology coming from the product topology on $X \times Y$. Show that Z is homeomorphic to X.

Solution: We check that lemma 6.6 is satisfied:

Let $\varphi \colon X \to Z$ by $\varphi(x) = (x, f(x))$. This is clearly a well defined bijection. Let $A \subseteq Z$ be open. If $A = \varnothing$, then $\varphi^{-1}(A) = \varnothing$ which is open in X by definition of a topology, so assume A is nonempty and let $x \in \varphi^{-1}(A)$. Then $A = Z \cap (U \times V)$ where U is open in X and V is open in Y by definition 4.1 for the subspace topology and definition 4.6 for the product topology. Now, since f is continuous and $x \times f(x) \in Z \cap (U \times V)$ implies that $f(x) \in V$, we have that $f^{-1}(V)$ is a neighborhood of x, so since the intersection of a finite collection of open sets is open by definition of a topological space, $S = U \cap f^{-1}(V)$ is a neighborhood of x. Now, if $x' \in S$ then $f(x') \in V$ and $x' \in U$, so $\varphi(x') = x' \times f(x') \in Z \cap (U \times V) = A$, thus $x \in S \subseteq \varphi^{-1}(A)$.

Since x was arbitrary, we can for any $x \in A$, find an open neighborhood of x, S_x , as above. Then we have

$$A = \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} S_x \stackrel{\forall x \in A \colon S_x \subseteq A}{\subseteq} A$$

Thus $A = \bigcup_{x \in A} S_x$ and by definition 2.1, A is open

Now, we check the second part of Lemma 6.6: if $U \subseteq X$ is open, then $\varphi(U)$ is open in Z.

Let $U \subseteq X$ be open (if $U = \varnothing$, $(\varphi^{\circ -1})^{-1}(U) = \varnothing$ which is open, so assume U is nonempty) and let $x \times f(x) \in \varphi(U)$. Then $x \in U$ and hence $f(x) \in Y$, so $x \times f(x) \in (U \times Y) \cap Z$. We now claim $(U \times Y) \cap Z \subseteq \varphi(U)$. Let $x \times y \in (U \times Y) \cap Z$. Since $x \times y \in Z$, f(x) = y, and since $x \times y \in U \times Y$, we have $x \in U$, so $x \times y = x \times f(x) = \varphi(x) \in \varphi(U)$.

Now, since $(U \times Y) \cap Z$ was chosen for any $x \in U$ independent of x, we have

$$\varphi(U) = \bigcup_{x \in U} \{x \times f(x)\} \subseteq \bigcup_{x \in U} (U \times Y) \cap Z \subseteq \varphi(U)$$

hence $\varphi(U) = (U \times Y) \cap Z$. Since U is open in X and Y is open in Y by definition of a topology, we have that $(U \times Y) \cap Z$ is open in Z by definition of a subspace topology, hence $\varphi(U)$ is open in Z. Hence φ is a homeomorphism by Lemma 6.6.

Homework 5: Let $X = \mathbb{R}$ be equipped with the topology

$$\mathcal{T} = \{\emptyset\} \cup \{U \subseteq X \mid \#(X \setminus U) < \infty\}.$$

- (i) Prove or disprove that (X, \mathcal{T}) is Hausdorff.
- (ii) Prove or disprove that (X, \mathcal{T}) is connected.
- (iii) Find the closure of the sets $A = [0, 1] = \{t \in \mathbb{R} \mid 0 \le t \le 1\}$, $B = (0, 1) = \{t \in \mathbb{R} \mid 0 < t < 1\}$, $C = \{2, 4, 6, 8\}$ in X with respect to \mathcal{T} .
- (iv) Suppose that $f: X \to X$ is a bijection. Prove that f is a homeomorphism.

Solution:

- (i) We claim that (X, \mathcal{T}) is not Hausdorff: We show that condition (b) in theorem 5.19 is not satisfied: Let x_n be the sequence $x_n = \frac{1}{n}$. Let x be any point of \mathbb{R} . Then for any neighborhood U of x, its complement is finite and can thus contain at most a finite subcollection of $\{x_n\}_{n\in\mathbb{N}}$. Let $N\in\mathbb{N}$ be the maximum of the indices in this subcollection, the for all n>N, we have that x_n is not in U^c , so $x_n\in (U^c)^c=U$ so since U was arbitrary, x_n converges to x by definition 5.14, so since x_n converges to every point in \mathbb{R} , we get contraposition of theorem 5.19.(b) that X is not Hausdorff.
- (ii) If X could be separated as $X = U \cup V$ where U, V are open disjoint nonempty subsets of X, then $V = X \setminus U$, so $\#V = \#X \setminus U < \infty$ by definition of V being open, hence $\#X \setminus V = \#X \#V = \infty$, where the second equality follows from theorem 468 in the dismat book, so V is not open. Thus no such separation exists, so X is connected by definition 8.1.

- (iii) We saw in (i) that for any $x \in \mathbb{R}$, any neighborhood of x intersects $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \subseteq (0,1) \subseteq [0,1]$, thus by proposition 5.9, $\mathbb{R} \subseteq \overline{(0,1)}, \overline{[0,1]} \subseteq \mathbb{R}$ hence $\mathbb{R} = \overline{(0,1)}, \overline{[0,1]}$. Now, since $\#\mathbb{R} \setminus (\mathbb{R} \setminus \{2,4,6,8\}) = \#\{2,4,6,8\} = 4 < \infty$, we find that $\mathbb{R} \setminus \{2,4,6,8\}$ is open, hence its complement $\mathbb{R} \setminus (\mathbb{R} \setminus \{2,4,6,8\}) = \{2,4,6,8\}$ is closed by definition, so $\overline{\{2,4,6,8\}} = \{2,4,6,8\}$ by corollary 5.13 and proposition 5.12.
- (iv) Since f is a bijection, $f^{\circ -1}$ is too, so we have that for any subset $U \subseteq X$, $\# f^{-1}(U) = \#U$. Now, for any nonempty open set $U \subseteq X$, we have $\mathbb{R} \setminus U$ is finite and

$$\mathbb{R}\backslash f^{-1}(U) = f^{-1}(X)\backslash f^{-1}(U) \stackrel{\text{week}}{=} \stackrel{1, 4.(\text{v})}{=} f^{-1}(X\backslash U).$$

And thus $\#\mathbb{R}\backslash f^{-1}(U)=\#f^{-1}(X\backslash U)=\#X\backslash U<\infty$, so $f^{-1}(U)$ is open. Now, if $U=\varnothing$ then $f^{-1}(U)=\varnothing$, which is open in X. Thus for any open set $U\subseteq X$, $f^{-1}(U)$ is open in X, so f is continuous.

Now, by replacing all f in the above by $f^{\circ -1}$ (the inverse of f), we find that $f^{\circ -1}$ is continuous too. Hence f is a homeomorphism.

Homework 6: Consider the following topological spaces (X, \mathcal{T}) and the given sequences $(a_n)_{n \in \mathbb{N}}$ in them. In each case either prove that the sequence does not converge, or find all the points the sequence converges to.

- (i) $X = \mathbb{R}$, T generated by all the half-open intervals $[x, y), x, y \in \mathbb{R}, x < y$.
 - (a) $a_n = \frac{1}{n}, n \in \mathbb{N}$.
 - (b) $a_n = -\frac{1}{n}, n \in \mathbb{N}$.
- (ii) $X = \{1, 2, 3, 4, 5\}, \mathcal{T} = \{\emptyset, X, \{1\}, \{2, 3\}, \{1, 2, 3\}, \{2, 3, 4, 5\}\}.$
 - (a) $a_n = 4, n \in \mathbb{N}$.
 - (b) $a_n = 2$ when $n \in \mathbb{N}$ is even, and $a_n = 3$ when $n \in \mathbb{N}$ is odd.
- (iii) $X = \mathbb{R}, \mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(t, \infty) \mid t \in \mathbb{R}\}.$
 - (a) $a_n = \frac{1}{n}, n \in \mathbb{N}$.
 - (b) $a_n = n, n \in \mathbb{N}$.

Solution:

(i):

- (a): We claim $a_n \to 0$ as its only limit point. For any open set U containing 0, there exists a basis element [x,y) such that $0 \in [x,y) \subseteq U$ by definition 3.1 and definition 3.7. Now we have $x \le 0 < y$. Thus by the Archimedean property, we can find $N \in \mathbb{N}$ such that for all $n \ge N$, we have $\frac{1}{y} < n$ hence since n is positive, $x \le 0 < \frac{1}{n} < y$, so $\frac{1}{n} \in [x,y) \subseteq U$ and thus by definition 5.14, a_n converges to 0. Assume a_n also converges to $z \ne 0$. If z < 0, then [z-1,0) contains z but does not contain any points of the sequence a_n , so z is not a limit point of a_n . If z > 0 then there exists $N \in \mathbb{N}$ such that $N < \frac{1}{z} \le N + 1$, and thus $z \in [\frac{1}{N+1}, \frac{1}{N})$ since inversion is continuous on $(0, \infty)$. Now, assume $\frac{1}{k} \in [\frac{1}{N+1}, \frac{1}{N})$ for a $k \in \mathbb{N}$. Then k = N + 1, and so for all n > N + 1, $\frac{1}{n} \notin [\frac{1}{N+1}, \frac{1}{N})$, so z is not a limit point of a_n . Thus 0 is the only limit point of the sequence.
- (b) We claim that a_n has no limit points in \mathbb{R}_l and thus does not converge.

Firstly, since for any $z \ge 0$, [z, z+1) is a neighborhood of z that does not intersect the sequence since it contains only non-negative points of \mathbb{R} while all points of the sequence are negative, the sequence does not converge to any $z \ge 0$. Assume $a_n \to z$ with z < 0.

There exists $N \in \mathbb{N}$ such that $-(N+1) < \frac{1}{z} \le -N$, so $z \in \left[-\frac{1}{N}, -\frac{1}{N+1}\right]$ by continuity of inversion on $(-\infty, 0)$, which, as in (a), only contains $-\frac{1}{N}$ of the sequence, so for all n > N, $a_n = -\frac{1}{n} \notin \left[-\frac{1}{N}, -\frac{1}{N+1}\right]$, hence a_n does not converge to z.

- (ii)·
- (a) We claim that $a_n = 4, n \in \mathbb{N}$ converges to 4 and 5. Let U be any neighborhood of either point. Then

since the only neighborhoods containing 4 or 5 are X and $\{2,3,4,5\}$ which both contain $4=a_n, \forall n \in \mathbb{N}$, we have that a_n is in U for all $n \geq 1$, so by definition 5.14, a_n converges to 4 and 5. For the points 1,2,3, we have $1,2,3 \in \{1,2,3\}$ which does not contain $4=a_n$ for all n, and thus the condition in definition 5.14 is not satisfied, so a_n does not converge to 1,2 or 3.

(b) We claim that a_n converges to the points 2, 3, 4 and 5.

We note that for any neighborhood of any of the points 2, 3, 4 and 5, $\{2,3\}$ is contained in the neighborhood, and thus for all $n \geq 1$, a_n is in the neighborhood, so a_n converges to 2, 3, 4 and 5 by definition 5.14. Now, for the point 1, take the neighborhood $\{1\}$. If there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \in \{1\}$ then $a_n = 1$ which is a contradiction. Hence a_n does not converge to 1.

(iii):

(a) We claim that a_n converges to all points in $\mathbb{R}_0^- = \{x \in \mathbb{R} \mid x \leq 0\}$.

Let $x \in \mathbb{R}_0^-$ and U be any neighborhood of x. Assume first that $U \neq X$. Then U is of the form (t, ∞) with $t < x \le 0$. Now, since for all $n \ge 1$, $a_n > 0$, we have $a_n \in (t, \infty)$, so the condition in definition 5.14 is satisfied with N = 1. If U = X, a_n is similarly in X for any $n \ge 1$. Thus a_n converges to x. We claim that a_n does not converge to any x > 0. Fix any x > 0, then $x \in (\frac{x}{2}, \infty)$. Now, by the

We claim that a_n does not converge to any x>0. Fix any x>0, then $x\in(\frac{x}{2},\infty)$. Now, by the Archimedean property, there exists $N\in\mathbb{N}$ such that $\frac{2}{x}< N$, and thus for all $n\geq N$, we have $a_n=\frac{1}{n}<\frac{x}{2}$, so for all $n\geq N$, $a_n\notin(\frac{x}{2},\infty)$, and thus a_n does not satisfy the condition in definition 5.14, so it does not converge to any x>0.

(b) We claim a_n converges to all points in \mathbb{R} .

Fix any $x \in \mathbb{R}$ and take any neighborhood U of x. Assume first $U \neq X$, then U is of the form (t, ∞) . Then by the Archimedean property, there exists $N \in \mathbb{N}$ such that x < N, so we find that for all $n \ge N$, we have $t < x < N \le n = a_n$, and thus for all $n \ge N$, $a_n \in (t, \infty)$. Now, if U = X, then a_n is trivially in U for all $n \ge 1$. Thus a_n converges to x by definition 5.14.