Using Red Hat Enterprise Linux 8.1 with NetApp ONTAP

ONTAP SAN Host

Sean Daffy, Amanda Stroman, Madhulika Kola August 17, 2020

This PDF was generated from https://docs.netapp.com/us-en/ontap-sanhost/hu_rhel_81.html on September 15, 2020. Always check docs.netapp.com for the latest.

Table of Contents

U	sing Red Hat Enterprise Linux 8.1 with NetApp ONTAP	1
	Installing the Linux Unified Host Utilities	1
	SAN Toolkit.	1
	SAN Booting	2
	Multipathing	2
	Recommended Settings	3
	Known Problems and Limitations	6
	Release Notes	c

Using Red Hat Enterprise Linux 8.1 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 64-bit .rpm file.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E-		device	host		lun	
vserver(cDOT/FlashR 	ay) lun-pathname	filename	adapter	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 8.1 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 8.1 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a098038303634722b4d59646c4436 dm-28 NETAPP,LUN C-Mode
size=10G features='3 queue_if_no_path pg_init_retries 50' hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 16:0:6:35 sdwb 69:624 active ready running
| |- 16:0:5:35 sdun 66:752 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 15:0:0:35 sdaj 66:48 active ready running
|- 15:0:1:35 sdbx 68:176 active ready running
```


Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 8.1 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-

byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a

host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"2 pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path_checker readsector0
   no_path_retry fail
}

devices {
   device {
     vendor "NETAPP "
     product "LUN.*"
     no_path_retry queue
     path_checker tur
   }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1275843	Kernel disruption might	Kernel disruption might	1760819
	occur on Red Hat	occur during storage	
	Enterprise Linux 8.1	failover operations on	
	with QLogic QLE2672	the Red Hat Enterprise	
	16GB FC HBA during	Linux 8.1 kernel with a	
	storage failover	QLogic QLE2672 Fibre	
	operation	Channel (FC) host bus	
		adapter (HBA). The	
		kernel disruption causes	
		Red Hat Enterprise	
		Linux 8.1 to reboot,	
		leading to application	
		disruption. If the kdump	
		mechanism is enabled,	
		the kernel disruption	
		generates a vmcore file	
		located in the/var/crash/	
		directory. You can check	
		the vmcore file to	
		determine the cause of	
		the disruption.A storage	
		failover with the QLogic	
		QLE2672 HBA event	
		affects the	
		"kmem_cache_alloc+131	
		" module. You can locate	
		the event in the vmcore	
		file by finding the	
		following string: "	
		[exception RIP:	
		kmem_cache_alloc+131]	
		"After the kernel	
		disruption, reboot the	
		Host OS and recover the	
		operating system. Then	
		restart the applications	

NetApp Bug ID	Title	Description	Bugzilla ID
1275838	Kernel disruption	Kernel disruption	1744082
	occurs on Red Hat	occurs during storage	
	Enterprise Linux 8.1	failover operations on	
	with QLogic QLE2742	the Red Hat Enterprise	
	32GB FC HBA during	Linux 8.1 kernel with a	
	storage failover	QLogic QLE2742 Fibre	
	operations	Channel (FC) host bus	
		adapter (HBA). The	
		kernel disruption causes	
		Red Hat Enterprise	
		Linux 8.1 to reboot,	
		leading to application	
		disruption. If the kdump	
		mechanism is enabled,	
		the kernel disruption	
		generates a vmcore file	
		located in the/var/crash/	
		directory. You can check	
		the vmcore file to	
		determine the cause of	
		the disruption. A storage	
		failover with the QLogic	
		QLE2742 HBA event	
		affects the	
		"kmem_cache_alloc+131	
		"module. You can locate	
		the event in the vmcore	
		file by finding the	
		following string: "	
		[exception RIP:	
		kmem_cache_alloc+131]	
		"After the kernel	
		disruption, reboot the	
		Host OS and recover the	
		operating system. Then	
		restart the applications.	

NetApp Bug ID	Title	Description	Bugzilla ID
1266250	Login to multiple paths fails during the Red Hat Enterprise Linux 8.1 installation on iSCSI SAN LUN	You cannot login to multiple paths during the Red Hat Enterprise Linux 8.1 installation on iSCSI SAN LUN multipath devices. Installation is not possible on multipath iSCSI device and the multipath service is not enabled on the SAN boot device.	1758504

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Copyright Information

Copyright © 2020 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval systemwithout prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.