United College of Engineering and Research, Prayagraj Department of Computer Science

$\begin{array}{c} {\rm B.Tech(2020\text{-}21)} \\ {\rm Discrete~Structures~and~Theory~of~Logic(KCS~303)} \\ {\rm Assignment\text{-}3} \end{array}$

QNo.	Question	CO	Bloom's
		Type	level
1	Show that every group of order 3 is cyclic.	CO2	L3
2	Show that $(R-\{1\}, *)$, where the operation * is defined as $a*b = a+b-ab$, is an abelian	CO2	L3
	group.		
3	Show that if f: $G \to G'$ is an isomorphism and G is an abelian group then G' is also	CO2	L4
	abelian.		
4	Prove that if every element of a group except identity element is of order 2 then group	CO2	L3
	is abelian.		
5	If a and b are two elements of a group G then $(ab)^2 = a^2b^2$ if and only if G is an abelian.	CO2	L2
6	Define ring and give an example of a ring with zero divisors.	CO2	L2
7	Prove that every cyclic group is an abelian group.	CO2	L3

Bloom's Taxonomy levels (1- Remembering, 2- Understanding, 3- Applying, 4- Analyzing, 5- Evaluating, 6- Creating)

${\bf CO}$ - Course Outcome

