Talaj nedvességtartalom mérés IoT eszközzel

Berta Máté

Konzulens:

Naszály Gábor

Feladat

- Önálló laboratórium tanulságaiból kiindulva IoT alapú öntözőrendszer implementálása
- Talaj nedvességtartalom mérés kapacitív szenzorral
- A megoldás során elkészül:
 - Kapcsolási rajz és NYÁK
 - Szoftver μC-re
 - Szoftver központi számítógépre

Rendszerterv 1.

Smart Watering Automation Network—S.W.A.N.

Rendszerterv 2.

Kapacitív talaj nedvességtartalom mérés

Talajból kioldott ionok

$$\bullet \ \varepsilon_r^* = \varepsilon_r' - j \cdot \varepsilon_r'' = \varepsilon_r' - j \left(\varepsilon_{relax}'' + \frac{\sigma_{dc}}{2\pi f \varepsilon_0} \right)$$

- A kapacitás több fontos tényezőtől függ:
 - Frekvencia
 - Talaj vezetőképessége (talaj minőség)
 - Szenzor geometria

Eredeti és módosított szenzor kapcsolási rajza

Kalibrációs mérés 1

- Célja kettős! (karakterisztika, vizsgálódás)
- Metodikája szakirodalomból átvett
- Tanulságai:
 - Szenzor geometria jelentős fontosságú
 - Gerjesztőjel spektruma nem okoz szignifikáns változást a karakterisztikában

Kalibrációs mérés 2

- Karakterisztika jellege nem változik
- "Lineáris" szakaszok meredeksége
- SWAN kliens mérőjele négyszögjel

Hardver követelmények (SWAN kliens)

- Akkumulátoros üzem
- Mágnes szelep vezérlése
- Alacsony költség (egyszerre több kliens használatának céljából)
- Kültéri villanyszereléshez használt IP65 doboz határozta meg a méreteket

Szoftver követelmények (SWAN kliens & szerver)

Kliens

- Alacsony fogyasztás
- Megbízható működés (beavatkozó szerv hiba esetén ne lépjen működésbe)
- Több kliensre kerül a firmware

Szerver:

- Több kliens kezelésére alkalmas
- Gyors reakció idő
- Folyamatos elérhetőség

Hardver implementáció

- μC működéséhez szükséges elemek
 - Passzív komponensek + csökkentett zajú környezet
- Tápfeszültség előállító hálózat
 - LDO 3.3V, 1A, 250mV dropout, 0.1 μA (shutdown)
- Akkumulátor töltő áramkör
- I2C & UART busz
- Galvanikusan leválasztott relé kapcsolás
- Mérőjel hardveres előállítása (!)
- ESD és fordított polaritás védelem

Kliens PCB

Firmware implementáció 1.

- FreeRTOS módosított változata
 - xTaskCreatePinnedToCore(), vTaskSuspendAll()
- Deep sleep (fejlesztőkörnyezet korlátozó tényező)
 - 10μA
- Double -> Float
- PubSubClient (!)
- ArduinoJSON v6

Firmware implementáció 2.

Szerver implementáció 1.

Raspberry Pi Zero W

- DietPi
- NodeRED
 - SQLite
 - Mosquitto

Szerver implementáció 2.

SWAN SERVER

Eredmények és továbbfejlesztési lehetőségek

Eredmények:

- Működő prototípus
- Sikeres talaj nedvességtartalom mérés
- 2021 nyarán "éles" körülmények között tesztelhető
- Tovább fejlesztési lehetőségek:
 - Átlag fogyasztás csökkentése (~4 mA, ~26 nap)
 - Költség csökkentése (akkumulátor költsége 22%)
 - Szenzor geometriájának változtatása
 - Szoftver időzítések optimalizálása
 - Debug üzenetek elhagyása (minimalizálás)

Bírálói kérdések megválaszolása

- Adjon javaslatot a WiFi-n alapuló vezeték nélküli kapcsolat alternatívájára, amely alacsony fogyasztású rádiós összeköttetést valósíthat meg a rendszerkomponensek között.
 - LoRAWAN
 - Class A működéssel
- Adjon javaslatot alternatív energiaellátásra, amellyel az akkumulátor töltése megoldható. Milyen költségvonzata van egy ilyen rendszerkomponensnek?
 - Energy harvesting jellegű megoldás
 - Pl. Napelemcella
 - Cella: 1000 Ft 8000 Ft (4-5W)
 - Boost SMPS ~ 1000 Ft (4-5W)
 - Kisebb akkumulátor sokkal olcsóbban elérhető

