8-Bit Bus Front-Loading **Latch Transceivers**

SN54/74LS646 SN54/74LS648 SN54/74LS647 SN54/74LS649

Features/Benefits

- · Bidirection bus transceivers and registers
- · Independent registers for A and B buses
- · Real-time data transfer or stored data transfer
- 24-pin SKINNYDIP® saves space
- · 3-state or open-collector outputs drive bus lines

Description

The 8-bit bus transceivers with 3-state ('LS646, 'LS648) or opencollector ('LS647, 'LS649) outputs have 16 D-type flip-flops and multiplexers. The bus-oriented pinout of the parts is shown in the Pin Configuration. The internal gate-level hardware configurations for the 'LS646/647 and 'LS648/649 are given in their respective Functional Block Diagrams. The basic repeated element, consisting of an edge-triggered flip-flop paralleled with a bypassing path or "feed-through" into a two-way mux, is sometimes called a "front-loading latch."

A pair of multiplexers are used to distribute two bytes of data through the part. The data-routing combinations offered by the multiplexers provide flexibility in directing data to or from either bus, and/or either register. Data is loaded into registers A or B upon the rising edge of the appropriate clock signals. CKA clocks register A, which receives data from the B bus directly at its inputs. Similarly, CKB clocks register B, which has the A bus available directly at its inputs. Control of the multiplexers is provided by two select lines (one per register), SRA and SRB. Command of the outputs is performed by enable line E, and direction line DIR.

When E is High, data from the buses can be stored into register A and B. When E is Low and DIR is High, the direction of operation is from A to B; when E and DIR are Low, the direction of operation is from B to A.

SRA is used to select between register A and the B bus, and then to route the data to a controlled buffer connected to the A bus. Likewise, SRB selects between register B and the A bus, and then routes the data to the B bus through a controlled buffer.

Ordering Information

PART NUMBER	PKG	ТЕМР	POLARITY	O/P	POWER
SN54LS646	JS,W,L	Mil		0 -1-1-	
SN74LS646	NS,JS	Com	Non-	3-state	
SN54LS647	JS,W,L	Mil	invert	Open-	
SN74LS647	NS,JS	Com		collector	
SN54LS648	JS,W,L	Mil		0 -1-1-	LS
SN74LS648	NS,JS	Com		3-state	
SN54LS649	JS,W,L	Mil	Invert	Open-	
SN74LS649	NS,JS	Com		collector	

NOTE: L package here is L28. The other packages are 24-pin.

Pin Configuration

'LS646/647/648/649 8-Bit Bus Front-Loading **Latch Transceivers**

Functional Block Diagrams

'LS646/647 (Non-Inverting)

* For the 'LS646 devices, the A and B bus outputs are 3-state.
For 'LS647 devices, the A and B bus outputs are open-collector.

'LS648/649 (Inverting)

* For the 'LS648 devices, the A and B bus outputs are 3-state.
For 'LS649 devices, the A and B bus outputs are open-collector.

IEEE Symbols

Block Diagrams

'LS646/647 (Non-Inverting)

'LS648/649 (Inverting)

For 'LS646/648 devices, the A and B bus outputs are 3-state. For 'LS647/649 devices, the A and B outputs are open-collector.

Function Table Nomenclature Description

E:

To enable the $A \rightarrow B$ or $B \rightarrow A$ operation.

DIR:

To select the direction of operation.

E	DIR	OPERATION DIRECTION
L	L	B-to-A
L	Н	A-to-B
Н	X	A and B buses both are inputs (storage

SRA/SRB: To select the output data coming from the A/B

register if SRA/SRB is a High level; otherwise,

directly from the input data bus.

A0-A7: Eight input/output pins on the A side.

B0-B7: Eight input/output pins on the B side.

CKA/CKB: Clock for Register A/B.

X: H or L state irrelevant ("Don't Care" conditions).

1: Positive edge of CK causes clocking, if clock enable

is asserted.

UC: H or L or ↓ case (nonclocked operation).

RGTR: Register.

Bus Management for 'LS646/647

		CON	TROL		DAT	A I/O	DI GOY DIA CDAM		DCK	11 CC4C/C47
OPERATION	Ē	DIR	SRA	SRB	A0-A7	B0-B7	BLOCK DIAGRAM	CKA	СКВ	'LS646/647
				al d			A	UC	UC	No operation
		1316	1 March 1				BUS RGTR A	UC	t	Real time A bus data → RGTR B
Storage	Н	X	X	X	Input	Input	RGTR B B BUS	1	UC	Real time B bus data → RGTR A
							скв ска	t	1	Real time A bus data → RGTR B Real time B bus data → RGTR A
		III II			1 190			UC	UC	Real time B bus data → A bus
Real time					i au		A BUS RGTR	UC	t	Real time B bus data → A bus Real time B bus data → RGTR B
B-to-A	L	L	L	X	Output	Input	RGTR B B BUS	1	UC	Real time B bus data → A bus Real time B bus data → RGTR A
Operation			10 10 10 10 10 10 10 10 10				скв ска	t	1	Real time B bus data → A bus Real time B bus data → RGTR A Real time B bus data → RGTR B
		Mile		IF T				UC	UC	RGTR A data → A bus
Stored data				18			A BUS RGTR	UC	t	RGTR A data → A bus RGTR A data → RGTR B
B-to-A	L	L	Н	X	Output	Input	RGTR B BUS	1	UC	Real time B bus data → RGTR A RGTR A data → A bus
Operation		e de Tono Tono					скв ска	t	t	Real time B bus data → RGTR A RGTR A data → A bus RGTR A data → RGTR B
-404-1			714 35					UC	UC	Real time A bus data → B bus
Real time							A BUS RGTR A	UC	†	Real time A bus data → B bus Real time A bus data → RGTR B
A-to-B	L	Н	X	L	Input	Output	RGTR	t	UC	Real time A bus data → B bus Real time A bus data → RGTR A
Operation							B BUS	1	t	Real time A bus data → B bus Real time A bus data → RGTR A Real time A bus data → RGTR B
			FRE					UC	UC	RGTR B data → B bus
Stored data		IS A I	EAT				A BUS RGTR A	UC	1	Real time A bus data → RGTR B RGTR B data → B bus
A-to-B	L	Н	x	Н	Input	Output	→ B	1	UC	RGTR B data → B bus RGTR B data → RGTR A
Operation		WAY HIS HIS		SA HE) JAC			CKB CKA	t	t	Real time A bus data → RGTR B RGTR B data → B bus RGTR B data → RGTR A

Bus Management for 'LS648/649

OPERATION		CONTROL			DAT	A I/O	DI GOK DIA GDAM		DCK	atemach .
OPERATION	Ē	DIR	SRA	SRB	A0-A7	B0-B7	BLOCK DIAGRAM	CKA	СКВ	'LS648/649
		lenin.					Α	UC	UC	No operation
		6.4.6	0.0				BUS RGTR A	UC	t	Real time A bus data → RGTR B
Storage	Н	X	X	X	Input	Input	RGTR B	1	UC	Real time B bus data → RGTR A
						15.5	CKB CKA	†	1	Real time A bus data → RGTR B Real time B bus data → RGTR A
		I DA		BE G				UC	UC	Real time B bus data → A bus
Real time		186					BUS RGTR A	UC	t	Real time $\overline{\underline{B}}$ bus data \rightarrow A bus Real time $\overline{\underline{B}}$ bus data \rightarrow RGTR B
B-to-A	L	L	L	Х	Output	Input	RGTR B	t	UC	Real time \overline{B} bus data \rightarrow A bus Real time B bus data \rightarrow RGTR A
Operation							CKB CKA	1	t	Real time \overline{B} bus data \rightarrow A bus Real time \underline{B} bus data \rightarrow RGTR A Real time \overline{B} bus data \rightarrow RGTR B
			LAD.		UI DAI		ser so l'unne d'iteration	UC	UC	RGTR A data → A bus
Stored data B-to-A			I HII		Output	Input	A BUS RGTR	UC	1	RGTR A data → A bus RGTR A data → RGTR B
	L	L	Н	X			RGTR B BUS	1	UC	Real time B bus data → RGTR A RGTR A data → A bus
Operation							скв ска	t	t	Real time B bus data → RGTR A RGTR A data → A bus RGTR A data → RGTR B
mente		H A	mai la		0 21			UC	UC	Real time A bus data → B bus
Real time		0.5 s					BUS RGTR A	UC	1	Real time \overline{A} bus data \rightarrow B bus Real time A bus data \rightarrow RGTR B
A-to-B	L	Н	Х	L	Input	Output	RGTR	t	UC	Real time $\overline{\underline{A}}$ bus data \to B bus Real time $\overline{\underline{A}}$ bus data \to RGTR A
Operation							CKB CKA	t	t	Real time $\overline{\underline{A}}$ bus data \rightarrow B bus Real time $\overline{\underline{A}}$ bus data \rightarrow RGTR A Real time A bus data \rightarrow RGTR B
		ivile	E Mark		ullall			UC	UC	RGTR B data → B bus
Stored data							A BUS RGTR A	UC	t	Real time A bus data \rightarrow RGTR B RGTR $\overline{\text{B}}$ data \rightarrow B bus
A-to-B	L	Н	x	н	Input	Output	RGTR B B	t	UC	RGTR B data → B bus RGTR B data → RGTR A
Operation							CKB CKA	t	t	Real time A bus data → RGTR B RGTR B data → B bus RGTR B data → RGTR A

Absolute Maximum Ratings

Supply voltage, V _{CC}	7.0 V
Input voltage,	7.0 V
Off-state output voltage	5.5 V
Storage temperature65° to +1	50° C

Operating Conditions

SYMBOL	PARA	MIN	ILITA TYP	RY MAX	COM	CIAL	UNIT		
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
TA	Operating free air temperatur	е	-55		125	0		75	°C
	146-10	High	20			20			
t _W Width of clock	Width of clock	Low	20			20			ns
		'LS646	20 t			20 t			
^T su	Setup time	'LS648	20 t	1		20 t			ns
	LI-LI C	'LS646	0 †			0 †			
^t h	Hold time	'LS648	0 †			0 1			ns
ЮН	High-level output current				-12			-15	mA
loL	Low-level output current				12			24	mA

[↑] The arrow indicates the transition of the clock input used for reference. ↑ for the low-to-high transitions. ↓ for the high-to-low transitions.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMET	ER		TEST	CONDITIONS		ILITAF TYP			MMER TYP		UNIT
VIL	Low-level input vo	oltage						0.7			0.8	V
VIH	High-level input v	oltage				2			2			V
VIC	Input clamp volta	ge	VCC	= MIN	I _I = -18 mA			-1.5			-1.5	V
ΔVT	Hysteresis (V _{T+} -V	′ _{T-})	V _C C=	MIN		0.1	0.4		0.2	0.4		V
IIL	Low-level input co	urrent	VCC	= MAX	V _I = 0.4 V			-0.4	Hy n' n		-0.4	mA
ΊΗ	High-level input of	urrent	VCC	= MAX	V _I = 2.7 V	717-1		20		-	20	μΑ
	Maximum input	AorB	1/	- MAY	V _I = 5.5 V			0.1	uly at	1000	0.1	mA
1	current	All others	, CC	= MAX	V _I = 7 V			0.1			0.1	IIIA
ele just.			Vcc	= MIN	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
VOL	Low-level output	voltage	VIL	= MAX = 2 V	I _{OL} = 24 mA					0.35	0.5	V
.,			V _{CC} = MIN V _{IL} = MAX V _{IH} = 2 V		I _{OH} = -3 mA	2.4	3.4		2.4	3.4		
VOH	High-level output	voltage			IOH = MAX	2	2 2				V	
lozL			Vcc	= MAX	V _O = 0.4 V			-400			-400	μΑ
IOZH	Off-state output c	urrent	VIL	= MAX = 2 V	V _O = 2.7 V			20			20	μΑ
los	Output short-circ	uit current*		= MAX	malasur diers	-40		-225	-40		-225	mA
					Outputs High	Na Kab		145			145	
				'LS- 646	Outputs Low			165			165	150
Icc			V _{CC} =		Outputs Disabled	d 165 145		165			165	mA
	Supply current	Supply current			Outputs High			145			145	mA
20- 41-				'LS- 648			165				165	
				0.10	Outputs Disabled			165			165	

^{*} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

SN54/74LS646 SN54/74LS648

Switching Characteristics $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

SYMBOL	PARAMETER	TEST CONDITIONS (See Interface Test Load/Waveforms)	'LS646 MIN MAX	'LS648 MIN MAX	UNIT
^t PLH	Data to output dolay		18	18	ns
^t PHL	Data to output delay		20	25	ns
^t PLH	Clock to output dolov		25	25	ns
t _{PHL}	Clock to output delay		35	40	ns
t _{PLH}	Select to output delay	C = 45×5 D = 6670	40	55	ns
^t PHL	(data input High)	$C_L = 45pF$ $R_L = 667\Omega$	35	40	ns
t _{PLH}	Select to output delay		50	40	ns
^t PHL	(data input Low)		25	40	ns
tPZL	Output enable delay		65	55	ns
^t PZH	Output enable delay		55	50	ns
t _{PLZ}	Output disable delay	C - FnE D - 6670	35	35	ns
^t PHZ	Output disable delay	$C_L = 5pF$ $R_L = 667\Omega$	35	45	ns
t _{PZL}	Direction anable delay	C - 45 D - 6670	60	45	ns
^t PZH	Direction enable delay	$C_L = 45pF$ $R_L = 667\Omega$	45	40	ns
t _{PLZ}	Direction disable delay	C - 5nF D - 6670	30	30	ns
^t PHZ	Direction disable delay	$C_L = 5pF$ $R_L = 667\Omega$	30	35	ns

Switching Characteristics Over Operating Range

		TEST CONDITIONS		MIL	C	MC	
SYMBOL	PARAMETER	(See Interface Test Load/Waveforms)	'LS646 MIN MA	'LS648 MIN MAX	'LS646 MIN MAX	'LS648 MIN MAX	UNIT
^t PLH	Data to output dalay		2	18	25	18	ns
t _{PHL}	Data to output delay		2:	5 25	25	25	ns
^t PLH			28	3 25	28	25	ns
t _{PHL}	Clock to output delay		35	5 40	35	40	ns
^t PLH	Select to output delay †	C - 45-5 D - 0070	41	55	40	55	ns
t _{PHL}	(data input High)	$C_L = 45pF$ $R_L = 667\Omega$	38	5 40	35	40	ns
^t PLH	Select to output delay †		50	40	50	40	ns
t _{PHL}	(data input Low)		30	40	30	40	ns
tPZL			65	5 55	65	55	ns
^t PZH	Output enable delay		55	5 50	55	50	ns
t _{PLZ}		0 5 5 7 0070	4:	35	45	35	ns
^t PHZ	Output disable delay	$C_L = 5pF$ $R_L = 667\Omega$	4:	5 50	45	50	ns
t _{PZL}	B:	0 45 5 5 0070	60) 45	60	45	ns
^t PZH	Direction enable delay	$C_L = 45pF$ $R_L = 667\Omega$	4:	5 40	45	40	ns
t _{PLZ}	Discouling discouling day		40	30	40	30	ns
^t PHZ	Direction disable delay	$C_L = 5pF R_L = 667\Omega$	45	5 45	45	45	ns

[†] See Figure 4.

Absolute Maximum Ratings

Supply voltage, V _{CC}	
Input voltage, 7.0 V	
Off-state output voltage 5.5 V	
Storage temperature65° to +150° C	

Operating Conditions

SYMBOL	PARA	METER	MIN	TYP			MER TYP	CIAL	UNIT
VCC	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
TA	Operating free air temperatur	-55		125	0		75	°C	
	MC-lab - 6 -11	High	20			20	118,111		-
t _w Width of clo	Width of clock	Low	20		rije di	20			ns
1 DE-		'LS647	20 †			20 1			
^t su	Setup time	'LS649	20 †			20 1	BUS II		ns
EF 7 314	U-112	'LS647	0 †			0 1	144	1	44
^t h	Hold time	'LS649	0 †			01			ns
VOH	High-level output voltage				5.5			5.5	V
loL	Low-level output current				12			24	mA

^{↑ ↓} The arrow indicates the transition of the clock input used for reference. ↑ for the low-to-high transitions. ↓ for the high-to-low transitions.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMET	ER		TEST	CONDITIONS	MIN .	-ITAF TYP			MER TYP		UNIT
VIL	Low-level input vo	oltage			many amapayada i			0.7			0.8	V
VIH	High-level input v	oltage				2			2			V
VIC	Input clamp volta	ge	VCC	= MIN	I _I = -18 mA			-1.5			-1.5	V
ΔVT	Hysteresis (V _{T+} -V	/ _{T-})	V _{CC} =	MIN		0.1	0.4		0.2	0.4		V
IIL	Low-level input co	urrent	VCC	= MAX	V _I = 0.4 V			-0.4			-0.4	mA
I _{IH}	High-level input of	urrent	VCC	= MAX	V _I = 2.7 V			20			20	μΑ
l _l	Maximum input	A or B	Vcc	= MAX	V _I = 5.5 V			0.1			0.1	mA
	current	All others	00		V ₁ = 7 V				for fi			
VOL	Low-level output	voltage	VCC	= MIN = MAX	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V
·OL	Low level output	voltago	VIH	= 2 V	I _{OL} = 24 mA				I de la	0.35	0.5	V
ГОН	High-level output	current		= MIN = MAX = 2 V	V _{OH} = 5.5 V			100			100	μΑ
					Outputs High		v. 1	130			130	
				'LS- 647	Outputs Low			150			150	
			V _{CC} =		Outputs Disabled	150		150			150	mA
Icc	Supply current		MAX		Outputs High			130			130	IIIA
				'LS- 649	S- Outputs Low			150			150	
					Outputs Disabled			150			150	

^{*} Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

SN54/74LS647 SN54/74LS649

Switching Characteristics $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

SYMBOL	PARAMETER	TEST CONDITIONS (See Interface Test Load/Waveforms)	'LS647 MIN MAX	'LS649 MIN MAX	UNIT
^t PLH	Data to output dolay		26	25	ns
t _{PHL}	Data to output delay		27	30	ns
t _{PLH}	Clock to output delay		35	30	ns
t _{PHL}		$C_L = 45pF$ $R_L = 667\Omega$	45	45	ns
t _{PLH}	Select to output delay (data input High)		50	55	ns
^t PHL			45	45	ns
^t PLH	Select to output delay (data input Low)		60	45	ns
t _{PHL}			30	40	ns
^t PLH	Output enable delay		40	40	ns
^t PHL			50	50	ns
t _{PLH}	Direction anable delay		35	30	ns
^t PHL	Direction enable delay		40	45	ns

Switching Characteristics Over Operating Range

SYMBOL	PARAMETER	TEST CONDITIONS (See Interface Test Load/Waveforms)	MIL			СОМ		
			'LS647 MIN M	7 AX	'LS649 MIN MAX	'LS647 MIN MAX	'LS649 MIN MAX	UNIT
^t PLH	Data to output delay	— C _L = 45pF R _L = 667Ω		32	35	32	35	ns
^t PHL				27	30	27	30	ns
t _{PLH}	Clock to output delay			35	40	35	40	ns
t _{PHL}				45	45	45	45	ns
^t PLH	Select to output delay (data input High)		usi -h.	50	55	50	55	ns
^t PHL				45	45	45	45	ns
t _{PLH}	Select to output delay (data input Low)			60	50	60	50	ns
t _{PHL}			PETH	30	40	30	40	ns
t _{PLH}	Output enable delay			40	45	40	45	ns
t _{PHL}			me etd	50	50	50	50	ns
^t PLH	Direction enable delay			40	45	40	45	ns
t _{PHL}			etui" .	40	45	40	45	ns

[†] See Figure 4.

Test Waveform

- NOTES: 1. When SRA/SRB is low, the input data will transfer to output bus.
 - 2. When SRA/SRB is high, the data of register will transfer to output bus.
 - 3. For the inverting devices, the timing is similar, but the output is opposite to that for the non-inverting devices.

Enable/Disable/Direction-Change Delay

V_T = 1.3 V

Figure 5.

Test Load

NOTES: 1. C_L includes probe and jig capacitance.

- 2. All diodes are 1N916 or 1N3064.
- 3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- In the examples above the phase relationships between inputs and outputs have been chosen arbitrarily.
- 5. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz Z_{OUt} = 50Ω and t_R = 15 ns t_F \leq 6 ns
- When measuring propagation delay times of 3-state outputs, switches S1 and S2 are closed.

Package Drawings

L28 Leadless Chip Carrier

N24S Molded SKINNYDIP

UNLESS OTHERWISE SPECIFIED: ALL DIMENSIONS MIN.-MAX. IN INCHES ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

Package Drawings

W24 CERPACK

J24S Ceramic SKINNYDIP

UNLESS OTHERWISE SPECIFIED: ALL DIMENSIONS MIN.-MAX. IN INCHES ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

Americas Monolithic Memories

2175 Mission College Blvd. Santa Clara, CA 95050 Phone (408) 970-9700 Telex (910) 338-2374 Telex (910) 338-2376 Fax (408) 988-4254

France Monolithic Memories France S.A.R.L.

Silic 463 F 94613 Rungis Cedex France Phone 1-6874500 Telex 202146 Fax 1-6876825

Japan Monolithic Memories Japan KK

5-17-9 Shinjuku Shinjuku Tokyo 160 Japan Phone 3-207-3131 Telex 232-3390 MMIKKJ Fax 3-207-3139

United Kingdom Monolithic Memories, Ltd.

Monolithic House 1 Queens Road Farnborough, Hants England GU146DJ Phone 9-011-44-252-517431 Telex 858051 MONO UKG Fax (0252) 43724

Germany Monolithic Memories, GmbH

Mauerkircherstr 4 D 8000 Munich 80 West Germany Phone 89-984961 Telex 524385 Fax 89-983162

Monolithic Memories reserves the right to make changes in order to improve circuitry and supply the best product possible.

Monolithic Memories cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in their product. No other circuit patent licenses are implied.

Printed in U.S.A.