An Introduction to MIMO communications

Pascal Vallet

Bordeaux INP/Laboratoire IMS

Evolution of cellular communications

- 1980-2000. 1G cellular networks (AMPS, NMT, Radiocom2000)
- 1990-? 2G cellular networks (GSM, DCS, GPRS, EDGE)
- 2000-? 3G cellular networks (CDMA2000, UMTS, HSDPA, HSPA+)
- 2010-? 4G celullar networks (LTE, LTE Advanced)
- 2020-? 5G cellular networks
- ∼2030 6G cellular networks

Review of "classical" channel access techniques

- TDMA. Time Division Multiple Access (2G, 3G)
 - flexible data rates
 - → synchronization/equalization, roaming, multipath interference
- FMDA. Frequency Division Multiple Access (1G, 2G)
 - simplicity
 - of fading, inefficient use of bandwidth, static data rates
- CMDA. Code Division Multiple Access (3G)
 - random access
 - receiver complexity, complex power allocation
- OFDMA. Orthogonal Frequency Division Multiple Access (4G)
 - simplicity, reduced multi-user interference and fading
 - → non-robust to frequency offsets

SDMA

- SDMA. Space Division Multiple Access
- The use of multiple antennas at the BS allows to form virtual beams focused on a specific user.
- Mutiple users may share the same time slots and frequency bands.
- Increased capacity if the UTs have multiple antennas (MIMO communications).
- Signal processing techniques for SDMA rely on array processing methods.

SDMA and mobile communications (1)

Figure: Evolution of downlink data rates (Mbps), from 2G to 4G

- TDMA, FDMA, CDMA, OFDMA.
- SDMA: No exploitation until LTE (MIMO 4x4) and LTE Adv. (MIMO 8x8).
- SDMA will be one of the main features in 5G standards.

SDMA and mobile communications (2)

Figure: Requirements for future 2020 mobile standards (source: Nokia)

SDMA and mobile communications (3)

Key features

- Extreme densification of cells
- mmWave (30 GHz to 300 GHz)
- Massive MIMO (up to 120 antennas at base stations)

Challenges

- Green communications
- Co-user and co-channel interference
- Propagation of mmWaves

SDMA and mobile communications (4)

Figure: Exemple of a massive MIMO phased array for 5G communications (Aurora CMM.100.A, 5-6GHz, 64 antennas)

MIMO techniques

- **Diversity.** MIMO allows to exploit spatial diversity, as a complement of the standard time and frequency diversities, to combat channel fading.
- ullet Capacity. Under certain conditions, the use of M antennas at TX and N antennas at RX increases the capacity by a factor $\min(M,N)$, compared to the classical case where both TX and RX have a single antenna.
- **Space-Time Codes.** MIMO offers a new layer of coding, by carefully choosing how to organize symbols across each TX antenna and time.

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- MIMO channel capacity
 - Some reminders
 - The case of deterministic H
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- MIMO channel capacity
 - Some reminders
 - The case of deterministic H
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

SISO model (1)

Figure: SISO transmit/receive chain

SISO model (2)

• Transmit signal. $\tilde{s}(t) = \operatorname{Re}\left(s(t) \mathrm{e}^{\mathrm{i} 2\pi f_c t}\right)$ with

$$s(t) = \sum_{k \in \mathbb{Z}} s_k p(t - kT_s).$$

• Receive signal. $\tilde{r}(t) = \operatorname{Re}\left(r(t)\mathrm{e}^{\mathrm{i}2\pi f_c t}\right)$ with

$$r(t) = \sum_{p=1}^{P} \gamma_p s(t - T_p) + v(t)$$

where

- P is the multipath number
- $ightharpoonup T_p$ is the p-th path delay
- $ightharpoonup \gamma_p$ is the p-th path fading coefficient
- $\triangleright v(t)$ is the baseband additive noise

SISO model (3)

Filtered signal.

$$y(t) = (r \star g)(t)$$
$$= \sum_{k \in \mathbb{Z}} s_k h(t - kT_s) + w(t)$$

where

- ▶ $h(t) = \sum_{p=1}^{P} \gamma_p(p \star g)(t T_p)$ is the "equivalent" channel
- $\mathbf{v}(t) = (g \star v)(t).$

MISO model (1)

- ullet N colocated transmit antennas radiating isotropically
- Narrowband signals (cf. array processing chapter)
- P far-field scatterers

Figure: Example with a ULA at TX

MISO model (2)

The signal received at the p-th scatterer is modelled as

$$\tilde{x}_p(t) = \alpha_p \sum_{n=1}^{N} \tilde{s}_n \left(t - T_{n,p} \right)$$

where

- lacktriangledown $lpha_p$ is a fading coefficient between the antenna array and the p-th scatterer
- lacksquare $T_{n,p}$ is the propagation delay between the n-th antenna and the p-th scatterer
- $\tilde{s}_n(t)=\mathrm{Re}\left(s_n(t)\mathrm{e}^{\mathrm{i}2\pi f_c t}\right)$ is the signal transmitted by the n-th antenna.

MISO model (3)

ullet The baseband model of $ilde{x}_p(t)$ can be approximated as

$$x_p(t) = \alpha_p e^{-i2\pi f_c T_{1,p}} \mathbf{a}(\theta_p, \phi_p)^T \mathbf{s}(t - T_{1,p})$$

with

- $\mathbf{a}(\theta,\phi)$ is the steering vector associated with the transmit N-antenna array
- \bullet θ_p, ϕ_p are the elevation and azimuth of the p-th scatterer
- $\mathbf{s}(t) = (s_1(t), \dots, s_N(t))^T.$

MISO model (4)

Figure: Example with ULA at TX, $\mathbf{a}(\theta) = \left(1, \mathrm{e}^{-\mathrm{i}2\pi\frac{d}{\lambda_c}\sin(\theta)}, \dots, \mathrm{e}^{-\mathrm{i}2\pi(N-1)\frac{d}{\lambda_c}\sin(\theta)}\right)^T$

Digression on a 1st type of beamforming (1)

- **Scenario.** Instead of scatterers, consider two single-antenna UTs with directions (θ_1, ϕ_1) and (θ_2, ϕ_2) , in LOS with the array.
- **Transmit signal.** On the *n*-th antenna, we transmit (in baseband)

$$s_n(t) = \overline{[\mathbf{a}(\theta_1,\phi_1)]_n} \quad \underbrace{s^{(1)}(t)}_{\text{signal for UT1}} + \overline{[\mathbf{a}(\theta_2,\phi_2)]_n} \quad \underbrace{s^{(2)}(t)}_{\text{signal for UT2}}$$

Digression on a 1st type of beamforming (2)

Signal received at UT1.

$$\begin{split} x_1(t) &= \alpha_1 \, \operatorname{e}^{-\mathrm{i} 2\pi f_c T_1} \underbrace{\left\| \mathbf{a}(\theta_1,\phi_1) \right\|_2^2 \, s^{(1)}(t-T_1)}_{\text{useful signal}} \\ &+ \alpha_1 \, \operatorname{e}^{-\mathrm{i} 2\pi f_c T_1} \, \underbrace{\mathbf{a}(\theta_1,\phi_1)^T \overline{\mathbf{a}(\theta_2,\phi_2)} s^{(2)}(t-T_1)}_{\text{interference}} \\ &+ \operatorname{noise}. \end{split}$$

Digression on a 1st type of beamforming (3)

• Example for ULA. Denoting $\nu(\theta) = \frac{d}{\lambda_c}\sin(\theta)$, we have

$$\|\mathbf{a}(\theta_1)\|_2^2 = N$$

$$\left| \mathbf{a}(\theta_2)^T \overline{\mathbf{a}(\theta_1)} \right| = \left| \frac{\sin \left(\pi (N-1)(\nu(\theta_1) - \nu(\theta_2)) \right)}{\sin \left(\pi (\nu(\theta_1) - \nu(\theta_2)) \right)} \right|$$

SIMO model (1)

- M colocated isotropic received antennas
- One far-field source backscattering signal $\tilde{x}_p(t)$ to the RX.

Figure: Example with ULA at RX

SIMO model (2)

• The complex envelope of the signal received by the RX array from the *p*-th scatterer is modelled as (cf. array processing chapter)

$$\mathbf{r}_p(t) = \beta_p e^{-i2\pi f_c \bar{T}_{1,p}} \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p\right) x_p \left(t - \bar{T}_{1,p}\right)$$

where

- \triangleright β_p is a fading coefficient between p-th scatterer/RX
- ullet $\bar{T}_{m,p}$ is the propagation delay between p-th scatterer/m-th antenna
- \bullet $\bar{\theta}_p, \bar{\phi}_p$ are the elevation and azimuth of the scatterer
- ullet ${f b}(ar{ heta},ar{\phi})$ is the steering vector associated with the received M antenna array.

SIMO model (3)

Figure: Example with ULA at RX, $\mathbf{b}(\bar{\theta}) = \left(1, \mathrm{e}^{-\mathrm{i}2\pi\frac{\bar{d}}{\lambda_c}\sin(\bar{\theta})}, \ldots, \mathrm{e}^{-\mathrm{i}2\pi(M-1)\frac{\bar{d}}{\lambda_c}\sin(\bar{\theta})}\right)^T$

MIMO model (1)

• Taking into account the P scatterers and additive noise,

$$\mathbf{r}(t) = \sum_{p=1}^{P} \mathbf{r}_p(t) + \mathbf{v}(t)$$
$$= \sum_{p=1}^{P} \gamma_p \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p \right) \mathbf{a}(\theta_p, \phi_p)^T \mathbf{s}(t - \delta_p) + \mathbf{v}(t)$$

where

•
$$\delta_p = T_{1,p} + \bar{T}_{1,p}$$
.

MIMO model (2)

• The transmit signal used is given by

$$\mathbf{s}(t) = \sum_{k \in \mathbb{Z}} \begin{pmatrix} s_{k,1} \\ \vdots \\ s_{k,N} \end{pmatrix} p(t - kT_s)$$

where p(t) is a shaping filter common to the N TX antennas.

ullet We use g(t) as a filter common to the M RX antennas.

MIMO model (3)

MIMO model - continuous time

The received signal after filtering is modelled as

$$\mathbf{y}(t) = (\mathbf{r} \star g)(t)$$
$$= \sum_{k \in \mathbb{Z}} \mathbf{H}(t - kT_s)\mathbf{s}_k + \mathbf{w}(t)$$

with

- $\mathbf{H}(t) = \sum_{p=1}^{P} \gamma_p \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p \right) \mathbf{a}(\theta_p, \phi_p)^T (p \star g) (t \delta_p)$ the MIMO channel impulse response
- $\mathbf{w}(t) = ((v_1 \star g)(t), \dots, (v_M \star g)(t))^T$ the filtered noise

MIMO model (4)

MIMO model - discrete time

After sampling at frequency $\frac{1}{T_s}\text{, we get}$

$$\mathbf{y}_n = \mathbf{y}(nT_s)$$

$$= \sum_{k \in \mathbb{Z}} \mathbf{H}_k \mathbf{s}_{n-k} + \mathbf{w}_n$$

where $\mathbf{H}_k = \mathbf{H}(kT_s)$ and $\mathbf{w}_n = \mathbf{w}(nT_s)$.

MIMO model (5)

• Remark. In practice, we consider finite-length and causal channels:

$$\mathbf{y}_n = \sum_{k=0}^K \mathbf{H}_k s_{n-k} + \mathbf{w}_n$$

- If K > 1, the channel is said to be frequency selective.
- ▶ If K = 1, the channel is said to be *flat fading*: $y_n = Hs_n + w_n$.

Kronecker model (1)

• **Assumption 1.** The scatterers are colocated and induce approximately the same delays

$$\delta_1 = \ldots = \delta_P = \delta$$

- Assumption 2. $\gamma_1, \ldots, \gamma_p$ are modelled as i.i.d. complex circular rv with variance $\frac{1}{P}$ (normalized total transmit energy is spread uniformly among the scatterers).
- Assumption 3.
 - ▶ The DoD and DoA (θ_1, ϕ_1) , $(\bar{\theta}_1, \bar{\phi}_1)$, . . . , (θ_P, ϕ_P) , $(\bar{\theta}_P, \bar{\phi}_P)$ are independent, and mutually independent of $\gamma_1, \ldots, \gamma_P$.
 - $(\theta_1, \phi_1), \dots, (\theta_P, \phi_P)$ are i.i.d., distributed as a generic rv (θ, ϕ)
 - $(\bar{\theta}_1, \bar{\phi}_1), \dots, (\bar{\theta}_P, \bar{\phi}_P)$ are i.i.d., distributed as a generic rv $(\bar{\theta}, \bar{\phi})$

Kronecker model (2)

• **TLC.** As $P \to \infty$, the channel matrix

$$\mathbf{H} = (p \star g)(0) \sum_{p=1}^{P} \gamma_p \mathbf{b} \left(\bar{\theta}_p, \bar{\phi}_p\right) \mathbf{a} (\theta_p, \phi_p)^T$$

converge in distribution to a Gaussian random matrix, with correlated entries.

 \bullet Correlation analysis. Assuming $(p\star g)(0)=1,$ straightfoward computations show that

$$\mathbb{E}\left[h_{i,j}\overline{h}_{k,l}\right] = \mathbb{E}\left[\left[\mathbf{b}\left(\overline{\theta},\overline{\phi}\right)\mathbf{a}\left(\theta,\phi\right)^{T}\right]_{i,j}\overline{\left[\mathbf{b}\left(\overline{\theta},\overline{\phi}\right)\mathbf{a}\left(\theta,\phi\right)^{T}\right]_{l,k}}\right]$$
$$= r_{i,l}\ \tilde{r}_{j,k}$$

where

$$r_{i,l} = \mathbb{E}\left[\left[\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)\right]_{l}\ \overline{\left[\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)\right]_{l}}\ \right] \ \text{and} \ \tilde{r}_{j,k} = \mathbb{E}\left[\left[\mathbf{a}\left(\theta,\phi\right)\right]_{j}\overline{\left[\mathbf{a}\left(\theta,\phi\right)\right]_{k}}\ \right].$$

Kronecker model (3)

RX covariance matrix.

$$\mathbf{R} = (r_{i,l})_{i,l=1,\dots,M} = \mathbb{E}\left[\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)\mathbf{b}\left(\bar{\theta},\bar{\phi}\right)^*\right]$$

TX covariance matrix.

$$\tilde{\mathbf{R}} = (\tilde{r}_{j,k})_{j,k=1,...,N} = \mathbb{E}\left[\mathbf{a}\left(\theta,\phi\right)\mathbf{a}\left(\theta,\phi\right)^*\right]$$

Kronecker model

Under the previous assumptions, and if the number of scatterers P is large, one can model ${\bf H}$ as

$$\mathbf{H} = \mathbf{R}^{\frac{1}{2}} \mathbf{X} \tilde{\mathbf{R}}^{\frac{1}{2}}$$

where \mathbf{X} is a $M \times N$ random matrix with i.i.d $\mathcal{N}_{\mathbb{C}}(0,1)$ entries.

Kronecker model for a ULA

 \bullet If the DoA are uniformly spread in the angular sector $\bar{\Theta},$ i.e.

$$\bar{\theta} \sim \mathcal{U}\left(\bar{\Theta}\right)$$

then

$$r_{k,l} = \frac{1}{|\bar{\Theta}|} \int_{\bar{\Theta}} e^{-i2\pi \frac{\bar{d}}{\lambda_c}(k-l)\sin(\bar{\theta})} d\bar{\theta} = \frac{1}{|\bar{\Theta}|} \int_{\sin(\bar{\Theta})} \frac{e^{-i2\pi \frac{\bar{d}}{\lambda_c}(k-l)u}}{\sqrt{1-u^2}} du.$$

so that

$$\mathbf{R} \xrightarrow{\frac{\bar{d}}{\lambda_c} \to \infty} \mathbf{I}.$$

• If $\bar{d} \gg \lambda_c$, the RX antennas may be considered as "statistically uncorrelated" (id. for TX antennas).

Rice model

Rice model

Under the assumptions of the Kronecker model, and in the presence of a direct path, one can model ${\bf H}$ as

$$\mathbf{H} = \sqrt{\frac{\kappa}{\kappa + 1}} \mathbf{C} + \sqrt{\frac{1}{\kappa + 1}} \mathbf{R}^{\frac{1}{2}} \mathbf{X} \tilde{\mathbf{R}}^{\frac{1}{2}}$$

where

- $\mathbf{C} = \mathbf{b} \left(\bar{\theta}_0, \bar{\phi}_0 \right) \mathbf{a} \left(\theta_0, \phi_0 \right)^T$ with $\left(\bar{\theta}_0, \bar{\phi}_0 \right)$ and $\left(\theta_0, \phi_0 \right)$ deterministic
- \bullet κ is the ratio between the energy carried by the direct path over the energy reflected by the scatterers.

Outline

- MIMO channel modelling
 - Reminder on SISO channel model
 - MISO model: signal received at a scatterer
 - SIMO model: signal backscattered to the receiver
 - MIMO model: global link
 - Statistical models
- 2 MIMO channel capacity
 - Some reminders
 - ullet The case of deterministic ${f H}$
 - The case of fast fading Gaussian H
 - The case of block fading Gaussian H
- Space-Time Coding
 - Model
 - Standard decoders
 - Bound on the error probability and Tarokh's criteria
 - Examples of STBC
 - DMT
- 4 References

Reminder on channel codes (1)

 \bullet Context. We consider a flat fading $M\times N$ MIMO channel. On a symbol time, we receive

$$y = Hx + v$$

where

- ▶ $\mathbf{H} \in \mathbb{C}^{M \times N}$ is the channel matrix,
- $\mathbf{v} \sim \mathcal{N}_{\mathbb{C}^M}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right)$ is the additive Gaussian noise, assumed spatially white.
- $\mathbf{x} \in \mathbb{C}^N$ is the transmit signal, satisfying the power constraint

$$\mathbb{E} \|\mathbf{x}\|_2^2 \le P \quad \Leftrightarrow \quad \mathsf{tr}\mathbf{Q} \le P$$

where $\mathbf{Q} = \mathbb{E}[\mathbf{x}\mathbf{x}^*]$.

Reminder on channel codes (2)

• Code. A code is a set of codewords $\mathcal{C} = \{\mathbf{X}_1, \dots, \mathbf{X}_{|\mathcal{C}|}\}$, where for $k = 1, \dots, |\mathcal{C}|$, \mathbf{X}_k is a $N \times L$ matrix of symbols, with L the codelength.

In the context of MIMO communications, such codes are referred to as Space-Time Block Codes (STBC).

- Rate. $R = \frac{\log |\mathcal{C}|}{L}$.
- Decoding function. $\phi: \mathbb{C}^{M \times L} \mapsto \mathcal{C}$.
- Error probability. If X is a (randomly) transmitted codeword and if we receive the $M \times L$ matrix Y, then

$$P_e = \mathbb{P}\left(\phi(\mathbf{Y}) \neq \mathbf{X}\right).$$

Reminder on channel codes (3)

• Achievability. A rate R>0 is said to be achievable if there exists a sequence of STBC $(\mathcal{C}_L)_{L>1}$ with length L, rate R_L and error probability $P_{e,L}$ such that

$$R_L \xrightarrow[L \to \infty]{} R$$
 and $P_{e,L} \xrightarrow[L \to \infty]{} 0$.

• Channel capacity. The capacity of the MIMO channel is defined as

$$C = \sup \{R \ge 0 : R \text{ is achievable} \}.$$

Reminder on the SVD (1)

ullet SVD. Any M imes N complex matrix ${f H}$ can be factorized as

$$\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

where

 $oldsymbol{\Sigma} = (\sigma_{i,j})$ is a M imes N diagonal matrix of singular values, with

$$\sigma_{1,1} \geq \ldots \geq \sigma_{r,r} > 0$$

and $\sigma_{i,i} = 0$ for all i > r, with $r = \text{rank}(\mathbf{H})$.

- ightharpoonup U is a $M \times M$ unitary matrix of left singular vectors.
- ightharpoonup V is $N \times N$ matrix of right singular vectors.

Reminder on the SVD (2)

ullet EVD (1). An eigenvalue decomposition of matrix 1 $HH^*\succeq 0$ is given by

$$\mathbf{H}\mathbf{H}^* = \mathbf{U} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_M \end{pmatrix} \mathbf{U}^*,$$

where $\lambda_1 = \sigma_{1,1}^2 \ge \dots \lambda_r = \sigma_{r,r}^2 > \lambda_{r+1} = \dots = \lambda_M = 0$.

• EVD (2). An eigenvalue decomposition of matrix $H^*H \succeq 0$ is given by

$$\mathbf{H}^*\mathbf{H} = \mathbf{V} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_N \end{pmatrix} \mathbf{V}^*,$$

where $\lambda_1 = \sigma_{1,1}^2 \ge \dots \lambda_r = \sigma_{r,r}^2 > \lambda_{r+1} = \dots = \lambda_N = 0$.

¹N.B. $A \succeq 0 \Leftrightarrow A$ is positive semidefinite.

Capacity for a deterministic channel \mathbf{H} (1)

• Information capacity. The information capacity of the channel is defined by

$$C = \sup_{f_{\mathbf{x}}: \ \mathbb{E}||\mathbf{x}||_2^2 \le P} \mathbb{I}(\mathbf{x}; \mathbf{y})$$

where $\mathbb{I}(\mathbf{x}; \mathbf{y})$ is the mutual information between the input/output of the channel.

Mutual information.

$$\begin{split} \mathbb{I}(\mathbf{x}; \mathbf{y}) &= \mathbb{H}(\mathbf{y}) - \mathbb{H}(\mathbf{y} | \mathbf{x}) \\ &= \mathbb{H}(\mathbf{y}) - M \log(\pi e \sigma^2). \end{split}$$

where $\mathbb{H}(.)$ is the entropy and $\mathbb{H}(.|.)$ the conditional entropy.

Capacity for a deterministic channel H (2)

• Output entropy. Since $\mathbb{E}[\mathbf{y}\mathbf{y}^*] = \mathbf{H}\mathbf{Q}\mathbf{H}^* + \sigma^2\mathbf{I}$ with $\mathbf{Q} = \mathbb{E}[\mathbf{x}\mathbf{x}^*]$, we have

$$\mathbb{H}(\mathbf{y}) \leq \log \Big((\pi e)^M \det \left(\mathbf{H} \mathbf{Q} \mathbf{H}^* + \sigma^2 \mathbf{I} \right) \Big)$$

with equality iff $\mathbf{y} \sim \mathcal{N}_{\mathbb{C}^M}(\mathbf{0}, \mathbf{HQH^*} + \sigma^2 \mathbf{I})$, which is verified if $\mathbf{x} \sim \mathcal{N}_{\mathbb{C}^N}(\mathbf{0}, \mathbf{Q})$.

Information capacity (1st formula)

$$C = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right)$$

Capacity for a deterministic channel H(3)

ullet Consider the EVD of matrix $\mathbf{H}^*\mathbf{H}\succeq \mathbf{0}$

$$\mathbf{H}^*\mathbf{H} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^*$$

where
$$\Lambda = \operatorname{diag}(\lambda_1,\dots,\lambda_r,\underbrace{0,\dots,0}_{N-r})$$
 and $\mathbf V$ is $N\times N$ unitary.

ullet Since $\mathbf{Q}\mapsto \mathbf{V}^*\mathbf{Q}\mathbf{V}$ is an isometric isomorphism conserving the trace,

$$C = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{V}^* \mathbf{Q} \mathbf{V} \mathbf{\Lambda}^{\frac{1}{2}}}{\sigma^2} \right) = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{Q} \mathbf{\Lambda}^{\frac{1}{2}}}{\sigma^2} \right)$$

Capacity for a deterministic channel H(4)

• Using Hadamard's inequality,

$$\operatorname{logdet}\left(\mathbf{I} + \frac{\boldsymbol{\Lambda}^{\frac{1}{2}}\mathbf{Q}\boldsymbol{\Lambda}^{\frac{1}{2}}}{\sigma^2}\right) \leq \sum_{i=1}^r \operatorname{log}\left(1 + \frac{q_i\lambda_i}{\sigma^2}\right)$$

with equality iff $\mathbf{Q} = \operatorname{diag}(q_1, \dots, q_N)$.

Information capacity (2nd formula)

$$C = \sup_{\substack{q_1, \dots, q_r \ge 0 \\ q_1 + \dots + q_r \le P}} \sum_{i=1}^r \log \left(1 + \frac{q_i \lambda_i}{\sigma^2} \right)$$

Capacity for a deterministic channel H (5)

• Water-Filling. Using KKT Theorem, there exists unique maximizers q_1^*, \dots, q_r^* such that

$$q_i^* = \left(\frac{1}{\gamma^*} - \frac{1}{\frac{\lambda_i}{\sigma^2}}\right)^+ \quad \forall i = 1, \dots, r$$

where γ^* is the unique solution to the equation $f\left(\frac{1}{\gamma}\right) = P$ with

$$f\left(\frac{1}{\gamma}\right) = \sum_{i=1}^{r} \left(\frac{1}{\gamma} - \frac{1}{\frac{\lambda_i}{\sigma^2}}\right)^+.$$

Capacity for a deterministic channel H (6)

Figure: Illustration of the water-filling problem

Capacity for a deterministic channel \mathbf{H} (7)

Figure: Illustration of the water-filling problem (no power allocated to sub-channel 4)

Precoding/postcoding and optimal power allocation (1)

 \bullet From the previous study, the optimal capacity-achieving covariance matrix ${\bf Q}$ is given by

where the allocated powers q_1^*,\ldots,q_r^* are adjusted by water-filling, and ${\bf V}$ is the $N\times N$ unitary eigenvectors matrix of ${\bf H}^*{\bf H}$.

ullet Remark. The knowledge of the channel matrix ${f H}$ is required, which may be unrealistic depending on the context.

Precoding/postcoding and optimal power allocation (2)

• Transmit signal/Precoding. We use

$$\mathbf{x} = \mathbf{V} \begin{pmatrix} \sqrt{q_1^*} & & & & & \\ & \ddots & & & & \\ & & \sqrt{q_r^*} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix} \mathbf{s}$$

where $\mathbf{s} \in \mathbb{C}^N$ is a vector of transmit symbols, such that

$$\mathbb{E}[\mathbf{s}\mathbf{s}^*] = \mathsf{diag}\left(\underbrace{1,\ldots,1}_{r \; \mathsf{times}},0,\ldots,0\right)$$

Precoding/postcoding and optimal power allocation (3)

• Receive signal. Using the SVD of H, the receive signal writes

$$y = Hx + v$$

$$=\mathbf{U}\begin{pmatrix} \sqrt{q_1^*\lambda_1}s_1\\ \vdots\\ \sqrt{q_r^*\lambda_r}s_r\\ 0\\ \vdots\\ 0\end{pmatrix}+\mathbf{v}$$

Precoding/postcoding and optimal power allocation (4)

• **Postcoding.** The receiver computes

$$\mathbf{z} = \mathbf{U}^*\mathbf{y}$$

$$= \begin{pmatrix} \sqrt{q_1^* \lambda_1} s_1 \\ \vdots \\ \sqrt{q_r^* \lambda_r} s_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \mathbf{w}$$

where $\mathbf{w} \sim \mathcal{N}_{\mathbb{C}^M} (\mathbf{0}, \sigma^2 \mathbf{I})$.

Precoding/postcoding and optimal power allocation (5)

Summary of precoding/postcoding

- After precoding/postcoding, we retrieve $r = \operatorname{rank}(\mathbf{H})$ parallel AWGN subchannels, with optimized SNR (the channel capacity and the information capacity coincides). Thus, a maximum of r symbols per channel use can be transmitted.
- Precoding/postcoding may be interpreted as a beamforming along "virtual" directions (i.e. along the singular vectors of H).
- Precoding/postcoding and optimal power allocation can only be performed if
 H is known at both the transmitter and the receiver.

Capacity for a fast fading Gaussian H (1)

- **Model.** The channel matrix \mathbf{H} has i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries (and independent of \mathbf{x}), changes at each symbol time (fast fading) and is known to the receiver.
- IT model.

• Information capacity (1).

$$C = \sup_{f_{\mathbf{x}}: \ \mathbb{E}\|\mathbf{x}\|_{2}^{2} \leq P} \mathbb{I}\left(\mathbf{x}; (\mathbf{y}, \mathbf{H})\right)$$

Capacity for a fast fading Gaussian H (2)

Information capacity (2). Conditioning on H, we get

$$C = \sup_{f_{\mathbf{x}}: \ \mathbb{E}\|\mathbf{x}\|_{2}^{2} \le P} \mathbb{I}(\mathbf{x}; \mathbf{H}) + \mathbb{I}(\mathbf{x}; \mathbf{y} | \mathbf{H})$$

where

$$\mathbb{I}(\mathbf{x}; \mathbf{y}|\mathbf{H}) := \mathbb{H}(\mathbf{x}|\mathbf{H}) - \mathbb{H}(\mathbf{x}|\mathbf{y}, \mathbf{H})$$
$$:= \mathbb{E}[J(\mathbf{H})]$$

with

$$\mathbf{Z} \mapsto J(\mathbf{Z}) = \int \int f(\mathbf{x}, \mathbf{y} | \mathbf{H} = \mathbf{Z}) \log \left(\frac{f(\mathbf{x}, \mathbf{y} | \mathbf{H} = \mathbf{Z})}{f(\mathbf{x} | \mathbf{H} = \mathbf{Z}) f(\mathbf{y} | \mathbf{H} = \mathbf{Z})} \right) d\mathbf{x} d\mathbf{y}$$

Capacity for a fast fading Gaussian H (3)

• Information capacity (3). Since x and H are independent,

$$C = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \leq P}} \quad \sup_{f_{\mathbf{x}} : \; \mathbb{E}[\mathbf{x} \mathbf{x}^*] = \mathbf{Q}} \mathbb{E}[J(\mathbf{H})].$$

• Information capacity (4). From the previous section,

$$\sup_{f_{\mathbf{x}} \colon \mathbb{E}[\mathbf{x}\mathbf{x}^*] = \mathbf{Q}} J(\mathbf{H}) = \operatorname{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{Q}\mathbf{H}^*}{\sigma^2}\right).$$

with equality if $\mathbf{x} \sim \mathcal{N}_{\mathbb{C}^N}(\mathbf{0}, \mathbf{Q})$.

Capacity for a fast fading Gaussian H (4)

Information capacity (1st formula)

$$C = \sup_{\substack{\mathbf{Q}\succeq\mathbf{0}\\ \mathrm{tr}\mathbf{Q}\leq P}} \mathbb{E}\left[\mathrm{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{Q}\mathbf{H}^*}{\sigma^2}\right)\right].$$

Capacity for a fast fading Gaussian H (5)

• **Information capacity (6).** Using the unitary invariance of the standard complex Gaussian distribution, namely

$$\mathbf{H}\mathbf{U} \stackrel{\mathcal{D}}{=} \mathbf{H}$$

for any $N \times N$ unitary matrix ${\bf U}$, we deduce from the EVD of ${\bf Q}$ that

$$C = \sup_{\substack{\mathbf{D} \succeq \mathbf{0} \text{ diagonal} \\ \operatorname{tr} \mathbf{D} \leq P}} \underline{\mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{D}\mathbf{H}^*}{\sigma^2}\right)\right]}.$$

• Information capacity (6). Moreover, if \mathcal{P}_N is the set of $N \times N$ permutation matrices,

$$\Psi(\mathbf{D}) = \Psi(\mathbf{P}\mathbf{D}\mathbf{P}^*) \quad \forall \mathbf{P} \in \mathcal{P}_N.$$

Capacity for a fast fading Gaussian H (6)

• Information capacity (7). Using the concavity of $\mathbf{D} \mapsto \Psi(\mathbf{D})$, we obtain

$$\Psi(\mathbf{D}) = \frac{1}{|\mathcal{P}_N|} \sum_{\mathbf{P} \in \mathcal{P}_N} \Psi(\mathbf{P} \mathbf{D} \mathbf{P}^*)$$

$$\leq \Psi \left(\underbrace{\frac{1}{|\mathcal{P}_N|} \sum_{\mathbf{P} \in \mathcal{P}_N} \mathbf{P} \mathbf{D} \mathbf{P}^*}_{= \text{ multiple of the identity}} \right).$$

where $|\mathcal{P}_N| = N!$ is the cardinality of \mathcal{P}_N .

• Information capacity (8). It follows that $\mathbf{D} \mapsto \Psi(\mathbf{D})$ achieves its maximum for $\mathbf{D} = \alpha \mathbf{I}$, with $\alpha \geq 0$.

Capacity for a fast fading Gaussian \mathbf{H} (7)

Information capacity (2nd formula)

The information capacity is given by

$$C = \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \frac{P}{N\sigma^2}\mathbf{H}\mathbf{H}^*\right)\right]$$

and is achieved for $\mathbf{x} \sim \mathcal{N}_{\mathbb{C}^N}(\mathbf{0}, \frac{P}{N}\mathbf{I})$.

- Remark (1). This information capacity is usually called *ergodic capacity* and coincides with the channel capacity if H is known at the receiver.
- Remark (2). Uniform power allocation $\frac{P}{N}$ per antenna, and no specific direction favored.
- Remark (3). No simple expression (i.e. by solving expectation) is known.

Large SNR analysis (1)

• The ergodic capacity may be written as

$$\begin{split} C(\rho) &= \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \rho \mathbf{H} \mathbf{H}^*\right)\right] \\ &= \mathbb{E}[\operatorname{rank}(\mathbf{H})] \log(\rho) + \mathbb{E}\left[\sum_{i=1}^{\operatorname{rank}(\mathbf{H})} \log\left(\lambda_i(\mathbf{H} \mathbf{H}^*) + \frac{1}{\rho}\right)\right] \end{split}$$

where $\lambda_1(\mathbf{HH}^*) \geq \ldots \geq \lambda_M(\mathbf{HH}^*) \geq 0$ are the eigenvalues of \mathbf{HH}^* and ρ is the SNR per antenna.

It holds that

$$\begin{split} & \mathbb{P}\left(\mathrm{rank}(\mathbf{H}) = \min(M, N)\right) = 1 \\ & \mathbb{E}\left[\sum_{i=1}^{\mathrm{rank}(\mathbf{H})} \log\left(\lambda_i(\mathbf{H}\mathbf{H}^*) + \frac{1}{\rho}\right)\right] \xrightarrow[\rho \to \infty]{} \sum_{i=1}^{\min(M, N)} \mathbb{E}\left[\log\left(\lambda_i(\mathbf{H}\mathbf{H}^*)\right)\right]. \end{split}$$

Large SNR analysis (2)

Behaviour for large SNR

As $\rho \to \infty$,

$$C(\rho) = \min(M, N) \log(\rho) + \mathcal{O}(1).$$

- Remark (1). At high SNR, the Gaussian MIMO ergodic capacity behaves as the capacity of $\min(M,N)$ scalar Gaussian channels.
- Remark (2). At high SNR, the ergodic capacity may be further increased by increasing $both\ M$ and N.

Figure: Ergodic capacity and large SNR approximation (M=N=2)

Large N analysis (1)

• As $N \to \infty$, the LLN implies

$$\frac{\mathbf{H}\mathbf{H}^*}{N} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{h}_n \mathbf{h}_n^* \xrightarrow[N \to \infty]{a.s.} \mathbf{I}.$$

Behaviour for large N

$$C\left(\frac{P}{N\sigma^2}\right) \xrightarrow[N \to \infty]{} M\log\left(1 + \frac{P}{\sigma^2}\right).$$

ullet Remark. Increasing the number of transmit antennas N to increase the capacity is pointless if the number of receive antennas M does not increase as well.

Large N analysis (2)

Figure: Ergodic capacity and large N approximation (M=2) vs. total SNR $\frac{P}{\sigma^2}$

Large M analysis (1)

 \bullet Using the fact that $\mathsf{det}(\mathbf{I}+\mathbf{AB})=\mathsf{det}(\mathbf{I}+\mathbf{BA})$,

$$\mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \mathbf{H}\mathbf{H}^* \frac{P}{N\sigma^2}\right)\right] = N \log(M) + \mathbb{E}\left[\operatorname{logdet}\left(\mathbf{I} + \frac{\mathbf{H}^*\mathbf{H}}{M} \frac{P}{N\sigma^2}\right)\right]$$

Behaviour for large M

As $M o \infty$,

$$C\left(\frac{P}{N\sigma^2}\right) = N\log(M) + N\log\left(\frac{P}{N\sigma^2}\right) + o(1).$$

• **Remark.** Increasing the number of receive antennas M "slowly" increases the capacity (i.e. with \log speed).

Large M analysis (2)

Figure: Ergodic capacity and large M approximation (N=2) vs. total SNR $\frac{P}{\sigma^2}$

- Model. The channel matrix \mathbf{H} has i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ entries (and independent of \mathbf{x}), is constant during the transmission of a codeword (block fading) and is known to the receiver.
- For a fixed realization of H, the maximum achievable rate is given by

$$C(\mathbf{H}) = \sup_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \operatorname{tr} \mathbf{Q} \le P}} \operatorname{logdet} \left(\mathbf{I} + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right).$$

• If R > 0 is a fixed target rate, then

$$\mathbb{P}\left(C(\mathbf{H}) < R\right) > 0.$$

 \Rightarrow The channel capacity is zero.

- In the context of block fading channels, we use the concepts of *outage* probability and *outage* capacity to extend the notion of channel capacity.
- \bullet Outage probability. For a fixed target rate R, we define

$$P_{\mathsf{out}}(R) = \inf_{\substack{\mathbf{Q} \succeq \mathbf{0} \\ \mathsf{tr} \mathbf{Q} \leq P}} \mathbb{P}\left(\mathsf{logdet}\left(\mathbf{I} + \frac{\mathbf{H}\mathbf{Q}\mathbf{H}^*}{\sigma^2}\right) < R \right).$$

• Outage capacity. For $\epsilon > 0$, we define

$$C_{\mathsf{out}}(\epsilon) = \sup \{R > 0 : P_{\mathsf{out}}(R) \le \epsilon \}.$$

Literature

- **SU-MIMO.** Foschini & Ganz'98 [6], Telatar'99 [12], Zheng & Tse'02 [16], Jorswieck & Boche [8]
- MU-MIMO. Viswanath & Tse'03 [14], Caire & Shamai'03 [2], Viswanath et al.'01 [15]