Вариационный ряд

 $0.02,\, 0.021,\, 0.021,\, 0.022,\, 0.022,\, 0.022,\, 0.023,\, 0.023,\, 0.023,\, 0.025,\, 0.025,\, 0.025,\, 0.025,\, 0.026,\, 0.026,\, 0.026,\, 0.026,\, 0.027,\, 0.027,\, 0.027,\, 0.029,\, 0.029,\, 0.029,\, 0.029,\, 0.03,\, 0.03,\, 0.03,\, 0.03,\, 0.031,\, 0.031,\, 0.031,\, 0.031,\, 0.033,\, 0.033,\, 0.033,\, 0.033,\, 0.034,\, 0.034,\, 0.034,\, 0.034,\, 0.035,\, 0.035,\, 0.035,\, 0.035,\, 0.035,\, 0.035,\, 0.037,\, 0.037,\, 0.037,\, 0.037,\, 0.037,\, 0.038,\, 0.038,\, 0.038,\, 0.038,\, 0.038,\, 0.038,\, 0.039,\, 0.039,\, 0.039,\, 0.039,\, 0.039,\, 0.039,\, 0.039,\, 0.041,\, 0.041,\, 0.041,\, 0.042,\, 0.042,\, 0.042,\, 0.042,\, 0.043,\, 0.043,\, 0.043,\, 0.045,\, 0.045,\, 0.045,\, 0.045,\, 0.046,\, 0.046,\, 0.046,\, 0.047,\, 0.047,\, 0.047,\, 0.049,\, 0.049,\, 0.049,\, 0.049,\, 0.049,\, 0.05,\, 0.05,\, 0.051,\, 0.051,\, 0.051,\, 0.053,\, 0.053,\, 0.054,\, 0.054,\, 0.055,\, 0.055,\, 0.056,\, 0.056,\, 0.056$

Размах варьирования и разделение на интервалы

Размах:

$$x_{max} - x_{min} = 0.036$$

Величина интервала (по Стерджсу):

$$h = \frac{x_{max} - x_{min}}{1 + log_2 n} = \frac{0.056 - 0.02}{1 + log_2 100} = 0.0047$$

Интервальные промежутки с частотами

 $(0.0176 \ 0.0224) : 6$ $(0.0224 \ 0.0271) : 14$ $(0.0271 \ 0.0318) : 12$ $(0.0318 \ 0.0365) : 13$ $(0.0365 \ 0.0412) : 20$ $(0.0412 \ 0.0459) : 10$

 $(0.0459 \ 0.0506): 14$ $(0.0506 \ 0.0553): 9$ $(0.0553 \ 0.06): 2$

Выборочное среднее

$$x_{\rm B} = \frac{1}{n} \sum_{i=1}^{k} x_i n_i = 0.03748$$

Выборочная дисперсия и среднеквадратичное

 $D_{\rm B} = \frac{1}{n} \sum_{i=1}^{k} x_i^2 n_i - x_{\rm B}^2 = 0.0000942896 \qquad \qquad \widetilde{D}_{\rm B} = \frac{n}{n-1} D_{\rm B} = 0.0000952420$ $\sigma_{\rm B} = \sqrt{D_{\rm B}} = 0.0097102832 \qquad \qquad \widetilde{\sigma}_{\rm B} = \sqrt{\widetilde{D}_{\rm B}} = 0.00975920078$

Гистограмма относительных частот

Полигон частот

Эмпирическая функция

Проверка гипотезы (критерий Пирсона)

Заметим, что частота последнего промежутка n₉ меньше 5, поэтому объединим 8-й и 9-й промежутки

i	_	интервала x_{i+1}	$x_i - x_{\scriptscriptstyle \mathrm{B}}$	$x_{i+1}-x_{\scriptscriptstyle \mathrm{B}}$	Границы интервала <i>z</i> _i ; <i>z</i> _{i+1}		
	x_i x_{i+1}				$z_i = \frac{(x_i - x_{\scriptscriptstyle B})}{\sigma_{\scriptscriptstyle B}}$	$z_{i+1} = \frac{(x_{i+1} - x_{\scriptscriptstyle B})}{\sigma_{\scriptscriptstyle B}}$	
1	0.0176 0.0224		-0.01988	-0.01507	-∞	-1.55	
2	0.0224	0.0271	-0.01507	-0.01038	-1.55	-1.07	
3	0.0271	0.0318	-0.01038	-0.00568	-1.07	-0.58	
4	0.0318	0.0365	-0.00568	-0.00098	-0.58	-0.1	
5	0.0365	0.0412	-0.00098	0.00372	-0.1	0.38	
6	0.0412	0.0459	0.00372	0.00842	0.38	0.87	
7	0.0459	0.0506	0.00842	0.01312	0.87	1.35	
8	0.0506	0.06	0.01312	0.02252	1.35	8	

Находим теоретические вероятности P_i и теоретические частоты: $n_i' = nP_i = 100P_i$. Составляем расчетную таблицу

i	Границы	интервала	$\Phi(z_i)$	$\Phi(z_{i+1})$	P_i	$n_i' = 100P_i$	
	z_i ;	z_{i+1}			$=\Phi(z_{i+1})-\Phi(z_i)$		
	z_i	z_i z_{i+1}					
1	-8	-1.55	-0.5	-0.4394	0,0606	6.06	
2	-1.55	-1.07	-0.4394	-0.3577	0,0817	8.17	
3	-1.07	-0.58	-0.3577	-0.2190	0,1387	13.87	
4	-0.58	-0.1	-0.2190	-0.0398	0,1792	17.92	
5	-0.1	0.38	-0.0398	0.1480	0,1878	18.78	
6	0.38	0.87	0.1480	0.3079	0,1599	15.99	
7	0.87	0.87 1.35		0.4115	0,1036	10.36	
8	1.35 ∞		0.4115	0.5	0,0885	8.85	
$\sum i$			_	_	1	100	

Вычислим наблюдаемое значение критерия Пирсона. Для этого составим расчетную таблицу. Последние два столбца служат для контроля вычислений по формуле

$$\chi^2_{\text{набл}} = \sum_{i=1}^k \frac{(n_i - n_i')^2}{n_i'} = \sum_{i=1}^k \frac{n_i^2}{np_i} - n = \frac{1}{n} \sum_{i=1}^k n_i^2 - n$$

i	n_i	n_i'	$n_i - n'_i$	$(n_i - n_i')^2$	$(n_i - n_i')^2$	n_i^2	$\frac{n_i^2}{n_i'}$
					n_i'		$\overline{n_i'}$
1	6	6.06	-0.06	0.0036	0.00059	36	5.94
2	14	8.17	5.83	33.9889	4.16	196	23.99
53	12	13.87	-1.87	3.4969	0.252	144	10.38
4	13	17.92	-4.92	24.2064	1.351	169	9.43
5	20	18.78	1.22	1.4884	0.079	400	21.30
6	10	15.99	-5.99	35.8801	2.244	100	6.25
7	14	10.36	3.64	13.2496	1.279	196	18.92
8	11	8.85	2.15	4.6225	0.522	121	13.67
$\sum i$	100	100	_	_	9.888	_	109.888

Контроль:
$$\chi^2_{\text{набл}} = \sum_{i=1}^k \frac{(n_i - n_i')^2}{n_i'} = \frac{1}{n} \sum_{i=1}^k n_i^2 - n = 109.888 - 100 = 9.888$$

Находим критическую точку

$$k = 8 - 2 - 1 = 5$$

 $\alpha = 0.025$ – уровень значимости (вероятность ошибки первого рода, а именно отвергнуть нулевую гипотезу, когда она верна)

$$\chi_{k,\alpha}^2 = 12.8$$

Сравнение

<u>Так как</u> $\chi^2_{\text{набл}} < \chi^2_{k,\alpha}$ оснований отвергать гипотезу нет

Доверительные интервалы

• Математическое ожидание покрывается доверительным интервалом:

$$(x_{\scriptscriptstyle B} - \frac{\widetilde{\sigma}_{\scriptscriptstyle B}}{\sqrt{n}}t_{\gamma}; x_{\scriptscriptstyle B} + \frac{\widetilde{\sigma}_{\scriptscriptstyle B}}{\sqrt{n}}t_{\gamma})$$

Так как $\gamma = 0.9$ — доверительная вероятность и n = 100, то $t_{\gamma} = 1.65$ — критерий Стьюдента

$$t_{\gamma}$$
 рассчитывал по формуле $\Phi(t_{\gamma}) = \frac{1+\gamma}{2}$

Тогда доверительный интервал примет вид:

• Доверительный интервал для среднеквадратичного отклонения находится по формуле:

$$(\widetilde{\sigma}_{\scriptscriptstyle B}(1-q); \ \widetilde{\sigma}_{\scriptscriptstyle B}(1+q))$$

Для
$$\gamma = 0.9$$
 то $q = 0.143$

Тогда доверительный интервал для среднеквадратичного пример вид:

 γ — вероятность попадания случайной величины в доверительный интервал

Решение

	j	1	2	3	4	5	6	7	8					
i	$X \setminus Y$	16	18	20	22	24	26	28	30	m_{x}	$m_x x_i$	$\sum m_{ij}y_i$	$x_i^2 m_{ij}$	$x_j \sum m_{ij} x_j$
1	2,3	3	2	4	0	0	0	0	0	9	20,7	164	47,61	377,2
2	2,7	0	5	6	1	0	0	0	0	12	32,4	232	87,48	626,4
3	3,1	0	0	6	9	4	0	0	0	19	58,9	414	182,59	1283,4
4	3,5	0	0	0	8	16	7	0	0	31	108,5	742	379,75	2597
5	d	0	0	0	0	8	6	5	0	19	74,1	488	288,99	1903,2
6	4,3	0	0	0	0	0	4	5	1	10	43	274	184,9	1178,2
	m_y	3	7	16	18	28	17	10	1	100	337,6	2314	1171,32	7965,4
	$m_y y_i$	48	126	320	396	672	442	280	30	2314				
	$\sum m_{ij}x_i$	6,9	18,1	44	58,6	99,6	65,1	41	4,3	337,6				
	$y_j^2 m_{ij}$	768	2268	6400	8712	16128	11492	7840	900	54508				
	$y_j \sum_i m_{ij} x_i$	110,4	325,8	880	1289,2	2390,4	1692,6	1148	129	7965,4				

Вычисляем выборочные средние

$$x_{\rm B} = \frac{\sum \sum m_{ij} x_i}{n} = \frac{337.6}{100} = 3.376$$
$$y_{\rm B} = \frac{\sum \sum m_{ij} y_i}{n} = \frac{2314}{100} = 23.14$$

Вычисляем выборочные дисперсии

$$S_x^2 = \frac{1}{n-1} \left(\sum_{i} m_{xi} x_i^2 - \frac{1}{n} \left(\sum_{i} m_{xi} x_i \right)^2 \right) = \frac{1}{99} \left(1171,32 - \frac{1}{100} 337.6^2 \right) = 0.32$$

$$S_y^2 = \frac{1}{n-1} \left(\sum_{i} m_{yj} y_j^2 - \frac{1}{n} \left(\sum_{i} m_{yj} y_j \right)^2 \right) = \frac{1}{99} \left(54508 - \frac{1}{100} 2314^2 \right) = 9.72$$

Вычисляем корреляционный момент

$$S_{xy} = \frac{1}{n-1} \left(\sum m_{ij} x_i y_j - \frac{1}{n} (\sum m_{xi} x_i) (\sum m_{yj} y_j) \right) = \frac{1}{99} \left(7965, 4 - \frac{1}{100} (337.6 \cdot 2314) \right) = 1.5488$$

Оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение которой имеет вид:

$$y = y_{B} + r_{xy} \frac{S_{y}}{S_{x}} (x - x_{B}) = y_{B} + \frac{S_{xy}}{\sqrt{S_{x}^{2}} \sqrt{S_{y}^{2}}} \cdot \frac{\sqrt{S_{y}^{2}}}{\sqrt{S_{x}^{2}}} (x - x_{B}) = 23.14 + \frac{1.5488}{0.32} \cdot (x - 3.376)$$

$$\mathbf{y} = \mathbf{4.84x} + \mathbf{6.8}$$

Строим график:

