Experiment Title: 8

Student Name: Pratibha UID:18BCS6093

Branch:AIML-1 Section/Group:B

Semester:5 Date of Performance:

Subject Name: DIP LAB Subject Code: CSF-336

1. Aim/Overview of the practical:

Write the python program which help us to understand the implementation and technicalities behind the image histogram, image pyramid, image translation using the required libraries

2. The task to be done:

- a) Plot an image into graph.
- b) Using of pydrown () function

3. Required libraries or software

import numpy as np

import imageio

import matplotlib.pyplot as plt

import cv2 as cv

4. Algorithm/Flowchart:

5. Theme/Interests definition(For creative domains):

6. Steps for experiment/practical:

Understanding the relation of image with graphs

1.1 Histogram

In[4]:

importing required libraries of opency

import cv2

```
from matplotlib import pyplot as plt
# In[5]:
# reads an input image
img = cv2.imread('aa.jpg',0)
# In[6]:
# find frequency of pixels in range 0-255
histr = cv2.calcHist([img],[0],None,[256],[0,255])
# show the plotting graph of an image
plt.plot(histr)
plt.show()
# In[7]:
# Alternative method of plotting image into histogram
plt.hist(img.ravel(),256,[0,255])
plt.show()
### 2. Pydrown function
# In[8]:
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('aa.jpg')
layer = img.copy()
for i in range(4):
  plt.subplot(2, 2, i + 1)
  # using pyrDown() function
layer = cv2.pyrDown(layer)
plt.imshow(layer)
cv2.imshow("str(i)", layer)
cv2.waitKey(0)
cv2.destroyAllWindows()
# In[9]:
import cv2
import numpy as np
image = cv2.imread('aa.jpg')
```

```
# Store height and width of the image
height, width = image.shape[:2]
quarter_height, quarter_width = height / 4, width / 4
T = np.float32([[1, 0, quarter_width], [0, 1, quarter_height]])
# the image using the matrix, T
img_translation = cv2.warpAffine(image, T, (width, height))
cv2.imshow("Originalimage", image)
cv2.imshow('Translation', img_translation)
cv2.waitKey()
cv2.destroyAllWindow()
## Thank You for visiting my worksheet
7. Observations/Discussions(For applied/experimental sciences/materials based
labs):
8. Percentage error (if any or applicable):
9. The command that we have learned today in the program:
10. Result/Output/Writing Summary of the concept behind the experiment:
```


Ó

11. Graphs (If Any): Image /Soft copy of graph paper to be attached here