UNIVERSIDADE FEDERAL DE PERNAMBUCO - UFPE ENGENHARIA ELETRÔNICA FÍSICA EXPERIMENTAL 2

RELATÓRIO 2

Henrique Pedro da Silva

Fevereiro de 2022

Este relatório se encontra em: https://github.com/Shapis/experimental_physics_2_FI122

A. Medições de corrente e tensão elétricas em circuito simples

Abaixo segue a tabela das voltagens e amperagens obtidas experimentalmente, respectivamente em unidades de V, e A.

E na terceira coluna temos a verificação da lei de ohm através do proprio SciDAVis.

Lembrando que a lei de OHM nos dá que V = I * R. Logo: R = V / I . Então construi a terceira coluna a partir da divisão da primeira com a segunda. O que nos sugere que a resistência é de 24 Ω .

₹ Voltage(V)[X1]	Tage Corrente (A) [Y1]	☐ Lei_De_OHM[Y1]
0.5	0.02083	24.0038
1	0.04167	23.9981
1.5	0.0625	24
2	0.08333	24.001
2.5	0.10417	23.9992
3	0.125	24
3.5	0.14583	24.0005
4	0.16667	23.9995
4.5	0.1875	24
5	0.20833	24.0004

A inclinação obtida pelo ajuste linear foi 0.0416665454545455.

Um gráfico I vs. V corresponde a uma linha reta cuja inclinação é igual a 1/R.

Daí temos que 1/0.0416665454545455 = 24.0000698184. O que confirma nossas suspeitas sobre a resistência ser 24 Ohms. E confirma a validade da lei de OHM para nosso experimento.

B. Medidas de corrente-tensão em elementos resistivos

1.

Tensao_Fonte(V)[X2]	Torrente(A) 1[Y2]	Tensao_Lampada(V)[Y2]	Tensao_Resistor(V)[Y2]
0.25	0.01	0.01003	0.23997
0.5	0.02	0.02021	0.47979
0.75	0.02997	0.03072	0.71928
1	0.03993	0.04174	0.95826
1.25	0.04986	0.05347	1.2
1.5	0.05974	0.06616	1.43
1.75	0.06958	0.08007	1.67
2	0.07935	0.09557	1.9
2.25	0.08904	0.11309	2.14
2.5	0.09862	0.13315	2.37
2.75	0.10807	0.15642	2.59
3	0.11735	0.18371	2.82
3.25	0.12642	0.21601	3.03
3.5	0.13523	0.25443	3.25
3.75	0.14374	0.30016	3.45
4	0.1519	0.35434	3.65
4.25	0.15967	0.41782	3.83
4.5	0.16704	0.49102	4.01
4.75	0.17401	0.57381	4.18
5	0.1806	0.66553	4.33

Tensao_Fonte(V)[X2]	Corrente2(A) 1[Y2]	Tensao_Lampada(V)[Y2]	Tensao_Resistor(V)[Y2]	Resistencia_Filamento[Y2]	Resistividade_Filamento[Y2]	Temperatura_Filamento(K)[Y2]
0.25	0.01	0.01003	0.23997	1.003	4.23777e-08	8.36552
0.5	0.02	0.02021	0.47979	1.0105	4.26946e-08	8.41741
0.75	0.02997	0.03072	0.71928	1.02503	4.33083e-08	8.51771
1	0.03993	0.04174	0.95826	1.04533	4.41662e-08	8.65751
1.25	0.04986	0.05347	1.2	1.0724	4.531e-08	8.84322
1.5	0.05974	0.06616	1.43	1.10747	4.67915e-08	9.08254
1.75	0.06958	0.08007	1.67	1.15076	4.86208e-08	9.37629
2	0.07935	0.09557	1.9	1.20441	5.08875e-08	9.73769
2.25	0.08904	0.11309	2.14	1.2701	5.36631e-08	10.1765
2.5	0.09862	0.13315	2.37	1.35013	5.70443e-08	10.706
2.75	0.10807	0.15642	2.59	1.4474	6.11538e-08	11.3423
3	0.11735	0.18371	2.82	1.56549	6.61433e-08	12.1052
3.25	0.12642	0.21601	3.03	1.70867	7.21929e-08	13.0173
3.5	0.13523	0.25443	3.25	1.88146	7.94935e-08	14.1008
3.75	0.14374	0.30016	3.45	2.08821	8.82291e-08	15.3754
4	0.1519	0.35434	3.65	2.33272	9.85596e-08	16.8554
4.25	0.15967	0.41782	3.83	2.61677	1.10561e-07	18.5421
4.5	0.16704	0.49102	4.01	2.93954	1.24198e-07	20.4213
4.75	0.17401	0.57381	4.18	3.29757	1.39325e-07	22.4654
5	0.1806	0.66553	4.33	3.68511	1.55699e-07	24.6358

Na parte de conseguir o R(T), e R0 do tungstênio tive problemas em entender o roteiro adicional que explicava a curva I x V da lâmpada incandescente.

Me é dado que o p0 é $5.65*10^{\circ}-8$, e que o p(T) é dado por (T / $3.95*10^{\circ}-8$)^(1/0.83).

Para o p(T) ser = a o p0, seria necessário um T de 381K, que não é a temperatura ambiente. A não ser que você esteja localizado numa sala da área 2 com ar condicionado desligado.

Então do google, achei um valor tabelado de resistência do tungstênio de 1.333. O que com os resultados que acabei obtendo imagino que não se aplique para o que tentei aplicar, mas usei esse valor para poder ir adiante, e já que tudo no SciDAVis foi montado por fórmulas transformando a tabela anterior, seria rápido corrigir sabendo o R0 real.

Prosseguindo com esse valor de R0 provisório..

Corrente vs tensao na lampada Autor: Henrique Pedro da Silva

Corrente vs tensao no resistor Autor: Henrique Pedro da Silva

VI / I em funcao de VI * I Autor: Henrique Pedro da Silva

Vr / I em funcao de Vr*I Autor: Henrique Pedro da Silva

(VI^2) / R(T) por temperatura Autor: Henrique Pedro da Silva

Corrente vs tensao no resistor Autor: Henrique Pedro da Silva

- C. Medidas de corrente-tensão em um diodo semicondutor
- 1. Corrente de 174.44 nA no diodo quando ele está no sentido inverso. Ele dificulta muito a passagem de corrente, mas não torna impossível. Então o que medimos é uma corrente muito baixa.

Tensao_Fonte(V) 1[Y3]	Corrente_Diodo(A)[Y3]	Tensao_Diodo(V)[Y3]	Tensao_Resistor(V)
0.1	1.01e-12	0.09998	2.431e-11
0.2	7.99e-12	0.19981	1.9167e-10
0.3	5.499e-11	0.29868	0.00132
0.4	3.3466e-10	0.39197	0.00803
0.5	0.00141	0.46623	0.03377
0.6	0.00357	0.51437	0.08563
0.7	0.00646	0.54505	0.15495
1.7	0.04399	0.64431	1.06
2.7	0.08425	0.67793	2.02
3.7	0.12507	0.69836	3
4.7	0.16612	0.71305	3.99
5.5	0.19907	0.72241	4.78

3.

O interessante de se reparar é que é necessária certa tensão no diodo para permitir passagem de corrente. Enquanto a tensão é baixa, a corrente que passa é severamente reduzida. Mas a partir de certa tensão, o diodo permite passagem de corrente sem tanta resistência.

Também é importante reparar que o comportamento de um diodo ideal, não passaria corrente alguma. O nosso diodo não ideal, permite passagem de alguma corrente, mesmo que mínima antes de sua resistência ser vencida.