VERMES MIKLÓS Fizikaverseny 2018. április 28. III. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

X. osztály

I. feladat

- 1) Egy 8 m átmérőjű léggömb 20°C-os, 2,2 atm nyomású héliummal van töltve. A levegő sűrűsége normál állapotban 1,293 kg/m^3 , a héliumé 0,1786 kg/m^3 .
- a) Mekkora a léggömbben levő He mennyiség tömege? 2 p b) Mekkora tömegű testtel lehet maximálisan terhelni a léggömböt, ha a légnyomás 9,86 10⁴ Pa, a levegő hőmérséklete 20°C és a léggömb köpenyének súlya 100 N? 3 p 2) Indokold meg az alábbi kérdésekre adott válaszaid! a) Azonos erő szükséges-e ahhoz, hogy egy üres vödröt levegőben vagy vízzel telt vödröt vízben tartsunk? 1,5 pb) Nagyobb vagy kisebb a Föld körül keringő űrhajóban a folyadékba helyezett testre ható felhajtóerő, mint a Föld felszínén? 2 p c) Üvegkád aljára gumidugót helyezünk. A dugót pálcával a kád aljához szorítva higanyt öntünk a kádba úgy, hogy az a dugót ellepje. A pálcát elvéve a dugó nem emelkedik a felszínre, pedig sűrűsége sokkal kisebb a higany sűrűségénél. Magyarázzuk meg a jelenséget! 1,5 p

II. feladat

 $p_1 = 4 \cdot 10^3 \text{ N/}m^2$, $V_1 = 1,12 \cdot 10^{-2}m^3$, $T_1 = 546 \text{ K}$ adatokkal jellemzett héliumgázt úgy viszünk át a $p_2 = 10^3 \text{ N/}m^2$, $V_2 = 4,48 \cdot 10^{-2}m^3$, $T_2 = 546 \text{ K}$ adatokkal jellemzett állapotba, hogy a pV diagrammon az állapotot meghatározó pont egy egyenesen mozogjon.

Az egyetemes gázállandó értéke 8,31 J/molK.

a.) Mennyi a folyamat C pontjában elért T _m legmagasabb hőmérséklet?	4 p
b.) Mennyi a hőcsere értéke az AC és CB szakaszokon?	4,5 p
e.) Mennyi az átlagos mólhő az AC és CB szakaszokon?	1,5 p

III. feladat

Az ábrán látható áramkörben az R_1 és az R_2 ellenállások egymással párhuzamosan vannak kapcsolva és E=130~V elektromotoros feszültségű és $r=1~\Omega$ belső ellenállású egyenáramú feszültségforrással van táplálva. A két ellenállás a feszültségforrástól d=100~mre van bekötve rézhuzalok segítségével. A szálak teljes ellenállása $R=3,4~\Omega$. Ismerve a szálakban kialakuló áramerősség értékét, I=5~A, ha az R_1 ellenállás értéke $64,8~\Omega$, határozzátok meg:

a) a kapocsfeszültség értékét a feszültségforrás sarkain,	1 p
b) a vezetőszálakon a feszültségesés értékét,	1 p
c) a szálak keresztmetszetének értékét,	1 p
d) az R ₂ ellenállás értékét,	2 p
e) a két ellenálláson leadott teljes teljesítmény értékét.	2 p
f) Mennyivel változik az áramerősség értéke, ha az összekötő szálak vastagságát	
a kétszeresére növeljük?	3 p

A réz fajlagos ellenállása 1,7•10⁻⁸ Ωm .