Name:	
4-digit code:	

- Write your name and your VIP ID in the space provided above.
- The test has six (6) pages, including this one, and scratch page at the end.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.

Page	Max. points	Your points
2	20	
3	30	
4	30	
5	20	
Total	100	

Problem 1 (10 pts). Find (and sketch) the domain of $f(x,y) = \frac{\sqrt{4-x^2}}{y^2+3}$

Show work here:

domain:

Problem 2 (10 pts—5 points each part). For the function $f(x,y) = \sqrt{y - x^2 + x}$.

- (a) Sketch the level lines f(x,y) = k for k = -1, 0, 1, 2 (whenever the equations make sense)
- (b) Use the previous information to compute the range of the function f.

Show work here:

range:

Problem 3 (10 pts). Find the tangent plane to the elliptic paraboloid $z = f(x, y) = 2x^2 + y^2$ at the point (1, 1, 3).

Problem 4 (10 pts). Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of the function $f(x,y) = \frac{xy^2}{y+2x}$.

$$\frac{\partial f}{\partial x} = \boxed{ \qquad \qquad \frac{\partial f}{\partial y} = \boxed{ }}$$

Problem 5 (10 pts). Compute the directional derivative $D_{\boldsymbol{v}}f(0,\pi)$ for the function $f(x,y) = e^x \cos(xy^2 - 2y)$ and the direction of the vector $\boldsymbol{v} = \boldsymbol{i} + \boldsymbol{j}$.

$$D_{\boldsymbol{v}}f(0,\pi) =$$

Problem 6 (15 pts—5 pts each box). Find the local maxima, minima and saddle points of f(x) = $x^4 + y^4 - 4xy + 1$.

Exam #2

max	min	saddle pts.

Problem 7 (15 pts). Find the absolute maximum and minimum values of the function f(x,y) = $4x + 6y - x^2 - y^2 + 7$ on the set $D = \{(x, y) : 0 \le x \le 4, 0 \le y \le 5\}$. Make sure to sketch the set D and indicate the different borders.

Problem 8 (20 pts—5 pts each). Consider the function $z = f(x, y) = e^{xy}$

(a) What is the maximum value of any of the directional derivatives of f at the point (2,0)?

- Value of maximum directional derivative:
- (b) Are there any directions \boldsymbol{u} for which the directional derivative $D_{\boldsymbol{u}}f(2,0)=0$? If so, find at least one such direction.

u =

(c) Are there any directions v for which the directional derivative $D_v f(2,0) = -1$? If so, find at least one such direction.

 $oldsymbol{v} = oldsymbol{eta}$

(d) Are there any directions \boldsymbol{w} for which the directional derivative $D_{\boldsymbol{w}}f(2,0)=-4$? If so, find at least one such direction.

w =