Seminar 1-2. Şiruri şi serii de numere reale.

Şiruri de numere reale

Definiția 1

Şirul $(x_n)_{n\in\mathbb{N}}: x_0, x_1, x_2, ..., x_n, x_{n+1}, ...$ se numeşte:

- crescător dacă $x_{n+1} \ge x_n$ pentru orice $n \in \mathbb{N}$;
- descrescător dacă $x_{n+1} \leq x_n$ pentru orice $n \in \mathbb{N}$.

Un sir este monoton dacă este crescător sau descrescător.

Observația 1

Dacă șirul $(x_n)_{n\in\mathbb{N}}$ are termeni strict pozitivi atunci spunem că este:

- crescător dacă $\frac{x_{n+1}}{x_n} \geq 1$ pentru orice $n \in \mathbb{N}$;
- descrescător dacă $\frac{x_{n+1}}{x_n} \leq 1$ pentru orice $n \in \mathbb{N}$.

Definiția 2

Şirul $(x_n)_{n\in\mathbb{N}}$ este **mărginit** dacă există două numere reale finite m și M astfel încât

$$m \le x_n \le M$$
.

Observația 2

Şirul $(x_n)_{n\in\mathbb{N}}$ este **mărginit** dacă există M>0 astfel încât $|x_n|\leq M$.

Observația 3

Orice șir monoton și mărginit este convergent. Reciproca NU este adevărată.

Definitia 3

Şirul $(x_n)_{n\in\mathbb{N}}$ este **convergent**(are limită finită) dacă există $x\in\mathbb{R}$ astfel încât pentru orice $\epsilon>0$ există $N=N(\epsilon)\in\mathbb{N}: |x_n-x|<\epsilon$ oricare ar fi $n\geq N$. În acest caz, notăm $x=\lim_{n\to\infty}x_n$.

Propoziția 1 - Criteriul cleștelui

Fie (x_n) un șir de numere reale. Dacă există două șiruri $(a_n)_{n\geq n_0}$ și $(b_n)_{n\geq n_0}$ cu aceeași limită,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x,$$

astfel încât

$$a_n \le x_n \le b_n, \quad n \ge n_0,$$

atunci şirul (x_n) are limită și

$$\lim_{n \to \infty} x_n = x.$$

Propoziția 2 - Criteriul raportului

Fie (x_n) un şir de numere reale pozitive astfel încât există

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=l\in[0,\infty].$$

- 1. Dacă l < 1 atunci $\lim_{n \to \infty} x_n = 0$.
- 2. Dacă l > 1 atunci $\lim_{n \to \infty} x_n = \infty$.

Propoziția 3 - Criteriul rădăcinii

Fie (x_n) un șir de numere reale pozitive. Dacă există

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=x\in[0,\infty],$$

atunci

$$\lim_{n \to \infty} \sqrt[n]{x_n} = x.$$

Propoziția 4 - Lema Stolz-Cesaro

Fie $x_n = \frac{a_n}{b_n}$ cu $a_n, b_n \in \mathbb{R}$ și $b_n \neq 0, n \in \mathbb{N}$. Dacă:

- (b_n) este un şir strict monoton,
- $b_n \to \infty$ sau $a_n \to 0, b_n \to 0,$
- există

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=x\in\mathbb{R}\cup\{\pm\infty\},$$

atunci

$$\lim_{n \to \infty} x_n = x.$$

Serii de numere reale

Definiția 1

Oricărui şir $(x_n)_{n\geq n_0}$ i se poate asocia un şir $(S_n)_{n\geq n_0}$, definit prin

$$S_n = x_{n_0} + x_{n_0+1} + \dots + x_n, \quad n \ge n_0.$$

Perechea de şiruri $((x_n),(S_n))$ se numeşte **serie** de numere reale cu **termenul general** x_n şi se notează prin $\sum_{n\geq n_0} x_n$. Şirul $(S_n)_{n\geq n_0}$ se numeşte **şirul sumelor parțiale** asociat seriei $\sum_{n\geq n_0} x_n$. În cazul în care nu contează alegerea lui n_0 , o serie va fi notată simplu prin $\sum x_n$.

Definiția 2

O serie $\sum_n x_n$ se numește **convergentă** dacă șirul sumelor parțiale (S_n) este convergent, adică dacă există un număr real $S \in \mathbb{R}$ astfel încât

$$\lim_{n\to\infty} S_n = S.$$

Dacă o serie NU este convergentă atunci ea se numește divergentă.

În cazul în care există, limita S a șirului $(S_n)_{n\geq n_0}$ se numește **suma seriei** $\sum\limits_{n\geq n_0} x_n$ și se notează $\sum\limits_{n=n_0}^{\infty} x_n$.

Exemplul 1 - Seria geometrică

Fie r un număr real fixat. Seria

$$\sum_{n>0} r^n$$

este convergență dacă și numai dacă $r \in (-1,1)$. În caz de convergență, suma seriei este

$$\sum_{n>0} r^n = \frac{1}{1-r}.$$

Numărul r se numește **rația** seriei geometrice.

Exemplul 2 - Seria armonică generalizată

Seria

$$\sum_{n>1} \frac{1}{n^{\alpha}}, \quad \alpha > 0$$

este divergentă dacă $\alpha \leq 1$ și convergentă dacă $\alpha > 1$.

Propoziția 1 - Criteriul de divergență

Dacă șirul (x_n) are limită nenulă sau nu are limită, atunci seria $\sum\limits_n x_n$ este divergentă.

Exerciții propuse

1. Studiați monotonia următoarelor șiruri:

(a)
$$x_n = \frac{n-1}{n}, n \in \mathbb{N}^*$$
;

(c)
$$x_n = \frac{n+2}{3^n}, n \in \mathbb{N};$$

(b)
$$x_n = \frac{5n-1}{5n}, n \in \mathbb{N}^*;$$

(d)
$$a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}, \quad n \in \mathbb{N}.$$

- 2. Folosind definiția arătați că șirul $x_n=\frac{2n-1}{2n+1}, \quad n\geq 1$ converge la x=1.
- 3. Calculați limitele următoarelor șiruri:

(a)
$$\lim_{n\to\infty} \frac{\cos n}{4^n}$$
, $n\in\mathbb{N}$;

(d)
$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$$
, $n\in\mathbb{N}^*$;

(b)
$$\lim_{n\to\infty} \frac{n^2}{4^n}$$
, $n\in\mathbb{N}$;

(e)
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{\ln 2} + \frac{1}{\ln 3} + \dots + \frac{1}{\ln n} \right), \quad n \in \mathbb{N}^*;$$

(c)
$$\lim_{n\to\infty} \frac{a^n}{n!}$$
, $a\in\mathbb{N}^*$;

(f)
$$\lim_{n \to \infty} \left(\frac{n+3}{n+1} \right)^{n-2}$$
, $n \in \mathbb{N}$.

4. Folosind şirul sumelor parţiale, studiaţi convergenţa seriilor:

(a)
$$\sum_{n>1} \frac{1}{n(n+1)}$$
;

(b)
$$\sum_{n>1} \ln(1+\frac{1}{n});$$

(c)
$$\sum_{n\geq 0} \left[\arctan(n+1) - \arctan n \right]$$
.

5. Folosind natura seriei geometrice sau a celei armonice generalizate, să se precizeze care din următoarele serii sunt convergente:

(a)
$$\sum_{n \ge 1} \frac{1}{\sqrt{n}}$$
;

(c)
$$\sum_{n>1} \frac{1}{n^3}$$
;

(b)
$$\sum_{n>0} (-2)^n$$
;

(d)
$$\sum_{n \ge 1} \frac{1}{n \sqrt[3]{n}}$$
.

6. Studiați convergența următoarelor serii:

(a)
$$\sum_{n\geq 1} \ln \frac{3n+1}{n+1}$$
;

(e)
$$\sum_{n>1} (-1)^n \frac{1}{n^2}$$
;

(b)
$$\sum_{n>1} \frac{1}{\sqrt[n]{n}};$$

(f)
$$\sum_{n\geq 1} (-1)^n \frac{1}{\ln n}$$
;

(c)
$$\sum_{n>1} \frac{n}{(n+1)!}$$
;

(g)
$$\sum_{n>1} (-1)^n \frac{1}{n^2 + (-1)^n}$$

(d) $\sum_{n \ge 2} \ln \left(1 - \frac{1}{n^2}\right)$;