Physics-based Animation: A Mathematical Perspective

Based on Ladislav Kavan's CS6660 with annotations from wxgopher June 26, 2019

Contents

1	Classical Mechanics	2
	1.1 Basics: a harmonic oscillator	2
2	Time Integration	2
3	Optimization	2
	3.1 Implicit Newmark	2
	3.2 Optimization Problems	2
	3.2.1 Solving unconstrained problems	3
	3.2.2 Newton's method	3
	3.3 Numerical Linear Algebra	4
	3.3.1 Direct solvers	4
	3.3.2 Iterative solvers	5
4	Elastic Materials and Finite Element Simulation	6
	4.1 Kinetic energy	6
	4.2 Elastic energy	7
	4.3 Vectorization	8
	4.4 Material property ψ	9
5	Fluids and Partial Differential Equations	9
6	Something more	9
7	Papers and books	9

This lecture note is based on Dr. Ladislav Kavan's Physics-based Animation course CS6660, originally taught at the University of Utah. I also try to include some supplementary materials from other resources.

Warning: Although as I strive to make this material useful, there are certain bugs, use this material at your own risk. I would also be grateful to hear feedbacks.

.....

1 Classical Mechanics

1.1 Basics: a harmonic oscillator

2 Time Integration

3 Optimization

3.1 Implicit Newmark

$$x_{n+1} = x_n + \frac{h}{2}(v_n + v_{n+1}),$$
 (1a)

$$v_{n+1} = v_n = \frac{h}{2}(f_n + f_{n+1}),$$
 (1b)

where *x* and *v* are positions and velocities, and $f_n \equiv f(x_n)$. Thus we have

$$x_{n+1} - x_n - hv_n = \frac{h^2}{4} (f_n + f_{n+1}).$$
 (2)

Let $y = x_n + h_n v_n + \frac{h^2}{4} f_n$, $x_{n+1} = x$, note that $\nabla E = -f$, then (2) becomes

$$x - y = \frac{h^2}{4}f \Rightarrow x - y + \frac{h^2}{4}f\nabla E = 0.$$
 (3)

Let $g(x) = \frac{1}{2}||x - y|^2 + \frac{h^2}{4}E$, then solving g equals to solve x for

$$\min_{x} \quad g(x). \tag{4}$$

3.2 Optimization Problems

Problem formulation:

$$\min_{x} \quad g(x), \quad x \in \mathbb{R}^{n}, \quad g \in \mathbb{R}. \tag{5}$$

Optimization problems can be categorized into constrained or unconstrained problems, or convex or non-convex problems.

Theorem 1. For a convex problem (where both objective and feasible set are convex), if the objective is C^2 , then the Hessian $H \succeq 0$, and the local minimum is the global minimum.

Definition 1. A linear programming (LP) is a problem with linear objective and linear equality or inequality constraints. A quadratic programming (QP) is the same as LP except with a quadratic objective.

Note 1. Convex QP has polynomial time solver but non-convex QP is NP-hard.

Example 1. A non-convex QP:

$$\min_{x} \quad \frac{1}{2} ||Ax||^2, \tag{6a}$$

$$s.t. ||x||_2 = 1.$$
 (6b)

Note 2. Software package for solving non-convex problem: IpOPT, KNITRO, or NEOS-Guide

3.2.1 Solving unconstrained problems

There are two ways to solve an unconstrained problem: descent method or trust-region method.

Descent method refers to pick a descent direction d and do an exact or inexact line search (LS) to determine descent distance αd .

Definition 2. *Descent direction*: $\forall \alpha \in (0, \alpha_0), \alpha_0 > 0, g(x + \alpha d) < g(x).$

Definition 3. *Exact LS refers to solving the following problem:*

$$\underset{\alpha>0}{\arg\min}\,g(x+\alpha d).$$

Backtracking LS

3.2.2 Newton's method

A usual descent direction is called **gradient descent** (GD), denoted by $d = -\nabla g$. It doesn't work well sometime, for example:

Example 2.

$$\min_{x_1, x_2} g(x_1, x_2) = \frac{1}{2} (x_1^2 + \gamma x_2^2), \quad \gamma > 0.$$
 (7)

If we do exact LS, we get

$$x_1^k = \gamma (\frac{\gamma - 1}{\gamma + 1})^k,\tag{8a}$$

$$x_2^k = (-\frac{\gamma - 1}{\gamma + 1})^k. {(8b)}$$

If gamma becomes huge, we can tell GD converges slowly (as two GD directions are perpendicular).

Newton's method refers to do a quadratic approximation to problem (5), given by

$$g(x+p) = g(x) + \nabla g^{\mathsf{T}}(x)p + \frac{1}{2}p^{\mathsf{T}}\nabla^{2}g(x)p + O(\|p\|^{2}) \equiv \tilde{g}(x) + O.$$
 (9)

Thus we have

$$\frac{\partial \tilde{g}}{\partial p} = 0 \Longleftrightarrow \nabla g + \nabla^2 g p = 0.$$

The **Newton descent direction** is given by

$$p = -(\nabla^2 g)^{-1} \nabla g. \tag{10}$$

Note 3. Newton's method is affine invariant. Let x = Ty with T being a nonsingular matrix, so problem (5) is equivalent to problem

$$\min_{y} \tilde{g}(y). \tag{11}$$

We also have

$$\nabla \tilde{g} = T^2 \nabla g, \quad \nabla^2 \tilde{g} = T^T \nabla^2 g T.$$

Newton direction Δy of \tilde{g} and Δx of g is given by

$$\Delta y = -T^{-1}\nabla^2 g \nabla g = T^{-1}\Delta x.$$

Definition 4. Newton decrement: substitute Newton descent direction (10) into (9), we get the Newton decrement

$$\lambda^2 = g - \frac{1}{2} \nabla g^{\mathrm{T}} (\nabla^2 g)^{-1} \nabla g. \tag{12}$$

A stopping criteria for Newton's method would be

$$\frac{\lambda^2}{2} \le \epsilon$$
.

Note that Newton decrement is also affine invariant.

Convergence analysis of the Newton's method is given as follows:

Theorem 2. *Kantorovich*: if g is strictly convex and $\nabla^2 g$ is Lipschitz continuous, then $\exists \epsilon > 0, \eta > 0, \gamma > 0$, s.t.

Damped phase I *If*
$$\|\nabla g\| \ge \eta$$
, then $\|g^{k+1}\| \le \|g^k\| - \gamma$;

Quadratic phase II If $\|\nabla g\| < \eta$, then $\|g^{k+1}\| \le c\|g^k\|^2$.

Some cases where Newton's method doesn't work well:

- 1. If *g* is highly nonlinear, the damped phase will be long;
- 2. If *g* is non-convex, solution might not converge to a minimum.

In practical implementations, the Hessian might not always be positive definite. A possible Hessian modification is:

Note 4. Hessian modification: Consider $A = \nabla^2 g + cI$, where c > 0. It is shown that if $\nabla^2 g = Q\Lambda Q^T$ ($\nabla^2 g$ is symmetric, hence it is always diagonalizable), then $A = Q(\Lambda + cI)Q^T$, hence A is positive definite given sufficiently large c > 0.

Solving Newton's direction (10) refers to solving a linear system. We introduce several techniques to tackle this.

3.3 Numerical Linear Algebra

We consider solving a linear system Ax = b.

3.3.1 Direct solvers

We can prefactor A into $A = UV^{T}$, with U and V being low rank matrices.

Common factorization methods are

LU If A is nonsingular, then there exist L, P, U, where they are lower-triangular matrix, permutation matrix (hence orthogonal), and upper-triangular matrix, respectively, s.t. A = PLU.

Sparse LU $A = P_1LUP_2$, where P_1 and P_2 are permutations to utilize sparse information of A.

Cholesky For symmetric positive-definite matrix, we have $A = LL^{T}$ with unique L. Note that for positive semi-definite matrix, Cholesky is not unique.

LDLT

3.3.2 Iterative solvers

Iterative solvers includes:

- 1. Classical method: Jacobian, Gauss-Seidel, SOR (super over-relaxation), etc.;
- 2. Krylov subspace method: CG (conjugate gradient)¹, GMRES (generalized minimal residual), etc.;
- 3. multigrid method.

Classical method Suppose *P* is easy to invert, let A = P + A - P, then

$$Ax = b \Leftrightarrow Px = (P - A)x + b.$$

P = diag(A) gives us Jacobian method, and it's GPU-friendly; P = lower(A) gives us GS method; $P = diag(A) + w \cdot lower(A)$ gives us SOR method where w < 2.

The residual term follows

$$r_k \equiv A(x^* - x_k) = b - Ax_k \quad \Leftrightarrow \quad r_{k+1} = (I - P^{-1}A)r_k.$$

To make classical method converge, we need $\rho(I - P^{-1}A) < 1$, where $\rho(\cdot)$ is the spectrum radius.

Krylov subpace method Assuming $A^{T} = A$ and $A \succeq 0$, then

$$\arg\min_{x} g(x) = \frac{1}{2} x^{T} A x - x^{T} b \quad \Leftrightarrow \quad solve \ A x = b. \tag{13}$$

Let $\nabla g_k = Ax_k - b = -r_k^2$ as a descent direction, the line search for (13) is as follows:

- 1. Solve α from $\arg\min_{\alpha}(\frac{1}{2}(x+\alpha r)^{\mathrm{T}}A(x+\alpha r)-(x+\alpha r)^{\mathrm{T}}b\equiv\frac{1}{2}\|x+\alpha r\|_{A}^{2}-(x+\alpha r)^{\mathrm{T}}b)$ by letting $\frac{\partial E}{\partial \alpha}=0$, where E is the objective;
- 2. α follows $\alpha = -\frac{\|r\|^2}{|r||_A^2}$;
- 3. $x_{k+1} = x_k + \alpha_k r_k$.

This is the gist of CG from gradient descent.

CG Assuming solving problem (13).

Definition 5. A-conjugate A set of vectors $\{p_i\}$ are A-conjugate iff $\forall i, j, i \neq j, p_i^T A p_j = 0$.

The CG algorithm is as follows:

- 1. We define $r_k = Ax_k b$;
- 2. Let $p_1 = r_1^3$;

3.
$$p_k = r_k + \beta_k p_{k-1}, \beta_k = \frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}};$$

- 4. Do LS along direction p_k , we have $\alpha_k = \frac{r_k^T p_k}{p^T A p_k}$;
- 5. $x_{k+1} = x_k + \alpha_k p_k$.

¹A good reference on CG is [8].

 $^{{}^{2}}Ax$ is computed on-fly, we don't need the whole A.

 $^{^{3}}r_{1}$ is usually chosen as a GD step

Preconditioning CG If *A* is ill-conditioned, we consider adding preconditioner *M* to *A*, s.t. cond(MA) < cond(A).

The Jacobian preconditioner is given by $M = diag(A)^{-1}$. The incomplete Cholesky is given by prefactoring A into $L_aL_a^{\mathrm{T}}$ where $-L_a$ is an approximation of L of the Cholesky decomposition of A given by $A = LL^{\mathrm{T}}$.

4 Elastic Materials and Finite Element Simulation

4.1 Kinetic energy

Consider kinetic energy

$$k = \frac{1}{2}v^{\mathrm{T}}Mv.$$

Assuming unit mass, we have

$$k = \frac{1}{2} \int_{\Omega} \rho(p) ||v(p)||^2 dp,$$
 (14)

where $p \in \Omega$ is the material point. We discretize Ω , and for every node p_i we define piece-wise shape function $s_i : \Omega \mapsto [0,1]$, s.t. $\sum_i s_i = 1$. For every region E_t , we also define

$$r_t(p) = \begin{cases} 1 & p \in E_t, \\ 0 & otherwise. \end{cases}$$

We have

$$v(p) = \sum_{i} v_i s_i(p), \tag{15a}$$

$$\rho(p) = \sum_{t} \rho_t r_t(p). \tag{15b}$$

The kinetic energy follows

$$k = \frac{1}{2} \int_{\Omega} \sum_{t} \rho_{t} r_{t} \|v(p)\|^{2} dp$$
 (16a)

$$= \frac{1}{2} \sum_{t} \rho_{t} \int_{\Omega} r_{t}(p) \|v(p)\|^{2} dp$$
 (16b)

$$= \frac{1}{2} \sum_{t} \rho_t \int_{E_t} ||v||^2 \mathrm{d}p \tag{16c}$$

$$= \frac{1}{2} \sum_{t} \rho_t \sum_{i,j} v_i^{\mathsf{T}} v_j \int_{E_t} s_i s_j \mathrm{d} p. \tag{16d}$$

(16e)

We define

$$\int_{E_t} s_i s_j \mathrm{d}p = s_{i,j}^t,\tag{17}$$

for different methods of discretization, we have

Triangal element (2-dimension)

$$s_{i,j}^{t} = \begin{cases} \frac{Area(t)}{6} & i = j, \\ \frac{Area(t)}{12} & i \neq j. \end{cases}$$

Tetrahderal element (3-dimension)

$$s_{i,j}^t = \begin{cases} \frac{Area(t)}{10} & i = j, \\ \frac{Area(t)}{20} & i \neq j. \end{cases}$$

Let's consider practical implementation of FEM. From discussions above, we have

$$\int_{E_t} \|v(p)\|^2 dp = \sum_{i,j} v_i^{\mathrm{T}} v_j \int_{E_t} s_i s_j dp$$
 (18a)

$$= \sum_{i,j} v_i^{\mathrm{T}} v_j s_{i,j}^t \tag{18b}$$

$$= V^{\mathrm{T}} S_t V, \tag{18c}$$

where $V = (v_1, v_2, \cdots, v_n)^T$, and

$$S_{t} = \begin{pmatrix} s_{1,1}^{t} \cdot I_{3} & \cdots & s_{1,n}^{t} \cdot I_{3} \\ \vdots & \ddots & \vdots \\ s_{n,1}^{t} \cdot I_{3} & \cdots & s_{n,n}^{t} \cdot I_{3} \end{pmatrix}.$$

The kinetic energy follows

$$k = \frac{1}{2} \sum_{t} \rho_t(V^{\mathrm{T}} S_t V) \tag{19a}$$

$$= \frac{1}{2} V^{\mathrm{T}} \left(\sum_{t} \rho_t S_t \right) V \tag{19b}$$

We denote *mass matrix* M_t with $M_t = \sum_t \rho_t S_t$. For triangle element we have

$$M_t = \sum_t \rho_t S_t = \rho_t Area(t) P \otimes I_3, \tag{20}$$

where *P* is defined by

$$P_{m,n} = \begin{cases} \frac{1}{6} & m = n \in i, j, k \\ \frac{1}{12} & m \neq n \in i, j, k, \\ 0 & otherwise \end{cases}$$

where i, j and k are triangle vertex indices⁴.

4.2 Elastic energy

In this section we only consider hyperelastic materials.

Pic here

Consider a deformation f from n-points d-dimensional material (rest pose) space Ω to world (deformed) space $f(\Omega) \in \mathbb{R}^{\mathrm{nd} \times \mathrm{nd}}$, for every spatial point p, the deformation gradient is $\nabla f(p)$. Elastic energy can be represented by

$$E = \int_{\Omega} \psi(\nabla f(p)) \nabla f(p) dp, \tag{21}$$

where $\psi \in \mathbb{R}^{n \times n} \mapsto \mathbb{R}^+$ is the *energy density function*.

The energy density function can be further decomposed into

$$\psi = \psi_{material} \circ \psi_{strain}, \tag{22}$$

⁴In practical implementation, sometimes the *mass lumping* technique is used. This technique aggregates matrix element to its diagonal and to facilitate computations.

where $\psi_{material}$ describes material property and ψ_{strain} describes geometric measure of distortion of this material.

Let's consider how to use FEM to discretize the elastic energy.

elaborate on this

We consider 3-dimensional problem, where $\psi \in \mathbb{R}^{3\times 3} \mapsto \mathbb{R}^+$ is given. For every tetrahedron (tet), we define $F = \nabla f \in \mathbb{R}^{3\times 3}$. For every deformed vertex \mathbf{x} and material vertex $\tilde{\mathbf{x}}^5$, we have $\mathbf{x} = f(\tilde{\mathbf{x}}) = F\tilde{\mathbf{x}} + b$, where \mathbf{b} is a constant. For the whole tet, we have

$$\mathbf{x}_i - \mathbf{x}_4 = F(\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_4),\tag{23}$$

where $i \in 1, 2, 3, 4$ are vertex indices. This can be written as

$$D_{s} = FD_{m_{s}} \tag{24}$$

where

$$D_{s} = \begin{pmatrix} x_{1} - x_{4} & x_{2} - x_{4} & x_{3} - x_{4} \\ y_{1} - y_{4} & y_{2} - y_{4} & y_{3} - y_{4} \\ z_{1} - z_{4} & z_{2} - z_{4} & z_{3} - z_{4} \end{pmatrix}, \quad D_{m} = \begin{pmatrix} \tilde{x}_{1} - \tilde{x}_{4} & \tilde{x}_{2} - \tilde{x}_{4} & \tilde{x}_{3} - \tilde{x}_{4} \\ \tilde{y}_{1} - \tilde{y}_{4} & \tilde{y}_{2} - \tilde{y}_{4} & \tilde{y}_{3} - \tilde{y}_{4} \\ \tilde{z}_{1} - \tilde{z}_{4} & \tilde{z}_{2} - \tilde{z}_{4} & \tilde{z}_{3} - \tilde{z}_{4} \end{pmatrix}, \quad (25)$$

thus

$$F = D_s(x)D_m^{-1}. (26)$$

The elastic energy (21) can be discretized with

$$E = \sum_{t} \int_{E_t} \psi_t(F_t) dt$$
 (27a)

$$=\sum_{t}w_{t}\psi_{t}(F_{t}),\tag{27b}$$

where

$$w_t = \frac{1}{6} det ||D_m||, (28)$$

is the volume of the tet *t*.

4.3 Vectorization

Before we get to the actual material property, we would introduce a vectorization scheme frequently seen in practical implementations.

Recall that $\nabla f \equiv F$ is linear w.r.t. x, where x is a collection of material space points, we have F = Gx, where $F \in \mathbb{R}^{3\times 3}$, $x \in \mathbb{R}^{3n\times 1}$, and G is a tensor.

Definition 6. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{k \times l}$, we denote the **Kronecker product** $A \otimes B$ (which is an $mk \times nl$ matrix) with

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}.$$
 (29)

Definition 7. We denote a vectorization of a matrix A with

$$vec(A) = (a_1, a_2, \cdots, a_n)^{\mathrm{T}}.$$
(30)

We further derives some lemmas:

Lemma 1. For any given matrices A, B, C and D, assuming the matrix dimensions agree, we have

 $^{^{5}\}mathbf{x} = (x, y, z)$

- 1. $(A \otimes B) \cdot (C \otimes D) = A \cdot C \otimes B \cdot D$;
- 2. $(A \otimes B)^{\mathsf{T}} = A^{\mathsf{T}} \otimes B^{\mathsf{T}};$
- 3. $vec(AX) = (I_p \otimes A) \cdot vec(X) = (X^T \otimes I_m) \cdot vec(A)$, where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^{n \times p}$.

Then for each tet, $vec(F) \in \mathbb{R}^{9 \times 1}$, $G \in \mathbb{R}^{9 \times 3n}$, $x \in \mathbb{R}^{3n \times 1}$, and

$$vec(F) = vec(D_s \cdot D_m^{-1}) = (D_m^{-T} \otimes I_3) \cdot vec(D_s), \tag{31}$$

where⁶

$$vec(D_s) = \begin{pmatrix} x_1 - x_4 \\ x_2 - x_4 \\ x_3 - x_4 \end{pmatrix} = (S \cdot I_3) \cdot x \in \mathbb{R}^{9 \times 1},$$
(32)

where we define a selector matrix *S* on each tet. *S* is defined by

$$S = \begin{pmatrix} \cdots & 1 & \cdots & -1 & \cdots \\ 1 & \cdots & \cdots & -1 & \cdots \\ \cdots & \cdots & 1 & -1 & \cdots \end{pmatrix}, \tag{33}$$

where the column indices of 1s are from x_1 , x_2 , and x_3 ; the column index of -1 is from x_4 . To sum up, for each tet:

$$vec(F) = (D_m^{-T} \otimes I_3)(S \otimes I_3)x = (D_m^{-T} \cdot S \otimes I_3)x.$$
(34)

4.4 Material property ψ

5 Fluids and Partial Differential Equations

6 Something more...

7 Papers and books

Numerical optimization can refer to [2] [6].

[1] and [9] are great references for continuum mechanics and FEM.

An awesome book on fluids simulation is [3].

Vector calculus can be found in [7].

Useful tips of C++ programming can be found in C++ core guidelines, [4], and [5].

References

- [1] Javier Bonet and Richard D Wood. *Nonlinear continuum mechanics for finite element analysis*. Cambridge university press, 1997.
- [2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
- [3] Robert Bridson. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.
- [4] Scott Meyers. *Effective C++: 55 specific ways to improve your programs and designs*. Pearson Education, 2005.

 $^{^{6}}x_{i}\in\mathbb{R}^{3\times1}$.

- [5] Scott Meyers. Effective modern C++: 42 specific ways to improve your use of C++ 11 and C++ 14. " O'Reilly Media, Inc.", 2014.
- [6] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.
- [7] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. *Technical University of Denmark*, 7(15):510, 2008.
- [8] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain, 1994.
- [9] Eftychios Sifakis and Jernej Barbic. Fem simulation of 3d deformable solids: a practitioner's guide to theory, discretization and model reduction. In *Acm siggraph 2012 courses*, page 20. ACM, 2012.