Alessandro Baccarini

Curriculum Vitae

Contact Information

Email abaccarini@proton.me

Website abaccarini.github.io
LinkedIn alessandro-baccarini
GitHub abaccarini
Scholar 1161 citations, July 2025

Research Interests

My interests span across areas of information security, applied cryptography, and privacy-enhancing technologies. Concretely, I design and implement protocols for secure multi-party computation (MPC) and its application to privacy-preserving machine learning, compliance monitoring, and outsourcing. I simultaneously investigate mechanisms for quantifying private information leakage from secure computation. I am also interested in post-quantum cryptographic techniques.

Education

PhD, Computer Science, University at Buffalo	Aug. 2024
Advisor: Marina Blanton	
MS, Cybersecurity, Fordham University	May 2019
Advisor: Thaier Hayajneh	
BS, Physics, Fordham University	May 2017
Minor, Mathematics	

Work Experience

Cryptography Researcher, Contractor	Sept. 2024 – Dec. 2024
Blockchain R&D Organization	
Research Assistant, Computer Science	Jun. 2019 – Aug. 2024
University at Buffalo	
Teaching Assistant, Computer Science	Jan. 2020 – May 2022
University at Buffalo	
Adjunct Assistant Professor, Physics	Aug. 2017 – May 2019
Fordham University	
Graduate Research Assistant, Cybersecurity	Aug. 2017 – May 2019
Fordham University	

A. Baccarini 1 / 5 Last updated: July 2025

Awards and Recognition

Alan Selman Scholarship, University at Buffalo

Mar. 2024

First place \$2000 cash prize, focus in theoretical computer science.

GSAS Centennial Scholarship, Fordham University

Aug. 2017 - May 2019

Sept. 2024 - Dec. 2024

Full tuition support and stipend (academic year + summer).

Projects and Experience

Threshold Decryption for FHE

Blockchain R&D Organization

- Evaluated distributed threshold decryption protocols for multi-party fully homomorphic encryption (FHE) schemes with application to private smart contract deployment on Ethereum-like blockchains.
- Developed and evaluated an actively secure threshold decryption construction based on Shamir secret sharing over Galois rings in C++, yielding an up to 4× performance improvement over prior works while maintaining robust security guarantees.
- Designed a general-purpose threshold distributed key generation protocol compatible with various multi-party FHE schemes, and implemented it within the MP-SPDZ framework.

PICCO Compiler

2022 - Present

University at Buffalo

Repository

- Core developer and maintainer of PICCO, a source-to-source secure multi-party computation (MPC) compiler library that translates general-purpose programs into secure distributed equivalents.
- Integrated ring-based constructions into the compiler to support general-purpose secure computation over diverse input domains and broaden application flexibility.
- Performed extensive optimizations to existing field-based protocols and led a large-scale refactor of over 100k lines of code to enhance long-term maintainability and enable support for stronger security models.
- Mentored undergraduate REU students on projects including optimizing and parallelizing networking layers across parties, and developing a web interface to facilitate secure input/output interactions.

MPC and Privacy-Preserving Machine Learning

2020 - 2023

University at Buffalo

Repository

- Designed a novel comprehensive ring-based framework of replicated secret sharing MPC protocols for an arbitrary number of parties in the semi-honest (passively secure), honest majority setting.
- Implemented protocols in C++, applying extensive profiling and low-level optimizations that led to up to 33× performance improvements over state-of-the-art secret sharing techniques.
- Applied MPC to privacy-preserving machine learning tasks, including (quantized) convolutional neural network inference and support vector machine (SVM) classification.
- Discovered an algebraic optimization for secure quantized inference that minimizes the overall ring modulus across multiple layer evaluations, yielding over 2× performance improvement on average.

Secure Computation Information Disclosure Analysis

University at Buffalo

2021 – Present Repository

- Developed an information-theoretic technique to quantify leakage about private inputs from arbitrary secure computation outputs, enabling practical assessment of residual disclosure under complex function evaluation.
- Analyzed common statistical functions under practical MPC configurations and proposed concrete mitigation strategies for real-world deployment.
- Combined the methodology with entropy estimation techniques using machine learning to assess leakage from complex descriptive statistical measures (e.g., variance, order statistics).
- Awarded first place Alan Selman Scholarship in theoretical computer science for this work, recognized for its combination of rigorous theory and real-world relevance to secure data analysis.

Blockchain Applications in Healthcare

2017 - 2019

Fordham University

- Led the design of the first framework that fused blockchain and healthcare into a HIPAA-compliant IoT remote patient monitoring system, based on the Ethereum protocol.
- Contributed to Solidity-based prototype development supporting automated, real-time patient data tracking.

Significant Course Projects

Implementation and Analysis of the Apple PSI System

2021

University at Buffalo, Security and Privacy in IoT

Repository

- Developed a modified variant of Apple's private set intersection (PSI) system in Python to obliviously detect harmful media within a database through neural network-based perceptual hash functions.
- Implemented various necessary cryptographic primitives to build the framework, including secret sharing of private keys, HMAC key derivation and pseudorandom functions, and Diffie-Hellman group construction.

Quantum Secret Sharing of Classical Information

2020

University at Buffalo, Applied Cryptography and Computer Security

Repository

 Analyzed the Hillery-Buek-Berthiaume quantum secret sharing protocol of classical information, and implemented the construction in IBM's Python Qiskit framework.

Publications

Thesis

[1] Alessandro Baccarini. New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis. PhD thesis, University at Buffalo, 2024.

Conference Proceedings

- [2] **Alessandro Baccarini**, Marina Blanton, and Shaofeng Zou. Understanding information disclosure from secure computation output: A study of average salary computation. In *ACM Conference on Data and Application Security and Privacy (CODASPY)*, pages 187–198, 2024.
- [3] **Alessandro Baccarini** and Thaier Hayajneh. Evolution of format preserving encryption on IoT devices: FF1+. In *Hawaii International Conference on System Sciences (HICSS)*, pages 1628–1637, 2019.
- [4] Abdullah Alhayajneh, **Alessandro Baccarini**, and Thaier Hayajneh. Quality of service analysis of VoIP services. In *IEEE Annual Ubiquitous Computing*, *Electronics & Mobile Communication Conference (UEMCON)*, pages 812–818, 2018.

Refereed Journals

- [5] **Alessandro Baccarini**, Marina Blanton, and Shaofeng Zou. Understanding information disclosure from secure computation output: A comprehensive study of average salary computation. *ACM Transactions on Privacy and Security (TOPS)*, 28(1):1–36, 2024.
- [6] Alessandro Baccarini, Marina Blanton, and Chen Yuan. Multi-party replicated secret sharing over a ring with applications to privacy-preserving machine learning. *Proceedings on Privacy Enhancing Technologies (PoPETs)*, 2023(1):608–626, 2023.
- [7] Abdullah Alhayajneh, **Alessandro Baccarini**, Gary Weiss, Thaier Hayajneh, and Aydin Farajidavar. Biometric authentication and verification for medical cyber physical systems. *Electronics*, 7(12):436, 2018.
- [8] Kristen Griggs, Olya Ossipova, Christopher Kohlios, **Alessandro Baccarini**, Emily Howson, and Thaier Hayajneh. Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. *Journal of Medical Systems*, 42(7):130, 2018.

Technical Presentations

• RAND Corporation, Engineering & Applied Sciences Dept. Virtual.	Apr. 2025
	•
• Intel Labs, Security & Privacy Research Group. Virtual.	Mar. 2025
• Riverside Research, Secure & Resilient Systems Group. Lexington, MA.	Feb. 2025
MITRE Corporation, Cyber for Identity Trust & Assurance Dept. Virtual.	Jan. 2025
• Dissertation defense, University at Buffalo. Buffalo, NY.	July 2024
ACM CODASPY 2024. Porto, Portugal.	June 2024
PETS 2023. Lausanne, Switzerland.	July 2023
Great Lakes Security Day, RIT. Rochester, NY.	Apr. 2023
• IEEE UEMCON 2018. New York. NY.	Nov. 2018

Professional Service

Conference Committees

IEEE Symposium on Security and Privacy, poster jury

2025

Refereeing

Journal of Computer and System Sciences (JCSS)

IEEE Transactions on Information Forensics and Security (TIFS)

IEEE Transactions on Dependable and Secure Computing (TDSC)

European Symposium on Research in Computer Security (ESORICS)

IEEE/ACM International Conference on Automated Software Engineering (ASE)

Multidisciplinary Digital Publishing Institute (MDPI) Entropy, Sensors, Symmetry, Information

Hawaii International Conference on System Sciences (HICSS)

Technical Skills

Cryptographic secure multi-party computation, secret sharing, homomorphic encryption, lattice cryp-

tography, zero-knowledge proofs, differential privacy, information theory

Languages C/C++, Python, Rust, Bash, Lua, LATEX

Developer Version control (Git, SVN), CMake, Make, GDB, Valgrind, Neovim, VS Code

Platforms Docker, AWS EC2, GitHub, HPC Clustering, Linux, Unix, Windows

Libraries GMP, GMPFR, GSL, STL, OpenSSL, SageMath, MP-SPDZ, NumPy, Pandas, SciPy,

Matplotlib, TensorFlow

Teaching

At the **University at Buffalo**:

CSE 116 Computer science II (Instructor)	2 semesters
CSE 4/529 Algorithms for Modern Computing Systems (TA)	3 semesters
CSE 4/531 Analysis of Algorithms (TA)	1 semester
CSE 542 Software Engineering Concepts (TA)	1 semester

At Fordham University:

PHYS 1511/12 Physics I/II Lab (Instructor) 4 semesters