Laboratori d'Electromagnetisme

Sandro Barissi, Adrià Marín, Arnau Mas, Robert Prat 2018

Índex

1	Rep	resenta	ció de camps		4
	1.1	Introdu	cció		4
	1.2	Mètode	e experimental		5
	1.3	Resulta	ts i discussió		6
		1.3.1	Condensador		6
		1.3.2	Fils paral·lels		8
		1.3.3	•		8
	1.4	Conclus			9
2	Ford	ra entre	corrents	1	1
	2.1				
	2.2		-		1
	2.2	2.2.1	•		
		2.2.2	•		$\frac{2}{2}$
		2.2.3			3
	2.3	_	. •		.3
	2.5	2.3.1			.3
			•		3
		2.3.2	•		
	0.4	2.3.3			4
	2.4	Conclus	sions		.5
3	Circ	uits RL	C en sèrie	1	6
	3.1	Introdu	cció		6
	3.2	Mètode	e experimental		7
		3.2.1	-		7
		3.2.2	_		8
	3.3	Resulta	G		9
		3.3.1			9
		3.3.2	_		20
	3.4		_		20
					_
4			mútua i transformadors	2	_
	4.1				22
	4.2		•		22
		4.2.1			22
		4.2.2			23
	4.3	Resulta			24
		4.3.1	•		24
		4.3.2			25
	4.4	Conclus	sions		26

5	Mes	sura de la resistència d'un metall	28
	5.1	Introducció	28
	5.2	Mètode experimental	28
	5.3	Resultats	
	5.4	Conclusions	30
6	Can	nps magnètics d'espires i bobines	31
	6.1	Introducció	31
	6.2	Mètode experimental	31
		6.2.1 Espires	
		6.2.2 Bobines	
	6.3	Resultats	33
		6.3.1 Espires	33
		6.3.2 Bobines	
	6.4	Conclusions	
Α	Ann	exos	37
	A.1	Regressions adicionals	37
	A.2	Taules amb dades adicional	

Annex A

Annexos

A.1 Regressions adicionals

La taula A.1 i la figura A.1 mostren la regressió lineal realitzada per obtenir la relació entre l'angle de rotació del fil de torsió i la força que exerceix, necessària per a la pràctica 2.

Taula A.1: Força del fil de torsió en funció de l'angle

Mass (mg)	Rotació (°) (\pm 1°)
5	13
10	27
15	44
20	63
25	70

Figura A.1: Força en funció de la rotació del dial

A.2 Taules amb dades adicional

A la taula A.2 hi ha les intensitats mesurades per a cada massa, referent a la pràctica 2.

Taula A.2: Mesures de la intensitat necessària per contrarrestar la força gravitatòria de cada massa

Massa (mg)	Intensitat $(\pm 0.01\mathrm{A})$					
5	2.62	2.55	2.65	2.62	2.60	2.57
10	3.70	3.40	3.58	3.64	3.71	3.68
15	4.47	4.46	4.63	4.42	4.50	4.48
20	5.10	5.29	5.33	5.07	5.10	5.11
25	6.05	5.99	5.94	5.40	5.21	5.63

A la taula A.3 hi ha la resistència mesurada per a cada temperatura, referent a la pràctica 5.

Taula A.3: Mesures experimentals de la resistència a diferents temperatures. El voltatge subministrat és de $(3.1\pm0.2)\,\text{V}$

		5
Temperatura $(\pm 1^{\circ}\mathrm{C})$	Longitud $x \ (\pm 0.001 \mathrm{m})$	Resistència (Ω)
265	0.664	198 ± 9
260	0.668	201 ± 9
255	0.665	199 ± 9
250	0.664	198 ± 9
245	0.663	197 ± 9
240	0.661	195 ± 9
235	0.659	193 ± 9
230	0.657	192 ± 9
225	0.655	190 ± 9
220	0.654	189 ± 9
210	0.646	182 ± 8
200	0.643	180 ± 8
190	0.637	175 ± 8
180	0.630	170 ± 8
170	0.627	168 ± 7
160	0.622	165 ± 7
155	0.620	163 ± 7
150 145	0.616	160 ± 7
145	0.613	158 ± 7
	0.610	$156\pm7 \ 155\pm7$
135 130	0.608	153 ± 7 153 ± 7
125	0.605 0.603	153 ± 7 152 ± 7
120	0.600	152 ± 7 150 ± 6
115	0.597	148 ± 6
110	0.593	146 ± 6
105	0.585	140 ± 6
23	0.520	108 ± 5
-20	0.485	94 ± 4
-25	0.484	94 ± 4
-30	0.481	93 ± 4
−35	0.478	92 ± 4
-40	0.474	90 ± 4
-45	0.470	88 ± 4
-49	0.468	88 ± 4
-55	0.464	87 ± 4
-60	0.459	85 ± 4
-65	0.457	84 ± 4
-70	0.452	82 ± 3
-75	0.447	81 ± 3
-80	0.445	80 ± 3
-85	0.441	79 ± 3
-90	0.436	77 ± 3
-95	0.431	76 ± 3
-100	0.424	74 ± 3
-105	0.417	72 ± 3
-110	0.409	69 ± 3
-115	0.398	66 ± 3
-150	0.365	57 ± 3