

		- 1		1 + + + + + + + + + + + + + + + + + + +
	3	7		
	1	5		
Sz	S1	S_2	S1	
		C		
Das Tokenkonto is - Bei dem Auf	st nie negativ: ruf von dequeue() und v	venn s2 negativ ist		
müssen alle	Elemente von s1 in s2 l er Elemente mal der La	kopiert werden, was		
Kopieren kos	stet. E Elemente wurden bere			
s1 durch billi das Schema	ge Operationen gespei	chert und somit passt		
q.e.d.				
A(enqueue) = T(e	nqueue) + Δ (enqueue) =	= 0(1)		
A(dequeue) = T(de = O(1)	equeue) + Δ(enqueue) =	= O(1) + c * n - c * n		