Practitioner's Docket No.: 800_134

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Yuji HORI, Osamu ODA, Mitsuhiro TANAKA, Bruno DAUDIN and Eva MONROY

Filed: Concurrently herewith

For: SUBSTRATE FOR SEMICONDUCTOR LIGHT-EMITTING ELEMENT,

SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND SEMICONDUCTOR

LIGHT-EMITTING ELEMENT FABRICATION METHOD

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450 I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 addressed to Mail Stop Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on *March 30, 2004* under "EXPRESS MAIL" mailing label number EV 44336 7518 US.

Janet M. Stevens

SUBMISSION OF CERTIFIED COPY OF PRIORITY DOCUMENT

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified application and the priority provided in 35 USC 119 is hereby claimed:

Country

Application Number

Filing Date

Europe

03290809.7

March 31, 2003

In support of this claim, a certified copy of the European Application is enclosed herewith.

March 30, 2004

Date

X Luph

Respectfully submitted,

Reg. No. 32.970

SPB:jms

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068 Customer No.: 025191

Telephone: (315) 233-8300 Facsimile: (315) 233-8320

IHIS PAGE BLANK (USPTO)

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03290809.7

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets

R C van Dijk

PAGE BLANK (USPTO)

Anmeldung Nr:

Application no.: 03290809.7

Demande no:

Anmeldetag:

Date of filing: 31.03.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

NGK INSULATORS, LTD.

2-56 Suda-cho,
Mizuho-ku
Nagoya-City,
Aichi Prefecture 467-8530
JAPON
COMMISSARIAT A L'ENERGIE ATOMIQUE
29-33, rue de la Fédération
BP 510
75752 Paris Cedex 15
FRANCE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.

Si aucun titre n'est indiqué se referer à la description.)

Substrate for semiconductor light-emitting element, semiconductor light-emitting element and semiconductor light-emitting element fabrication method

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des breyets:

H01L33/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

THIS PAGE BLANK (USPTO)

Substrate for semiconductor light-emitting element, semiconductor light-emitting element and semiconductor light-emitting element fabrication method

5 <u>Technical field of the invention</u>

[0001] The present invention relates to a semiconductor light-emitting element and a method of fabrication thereof and to a substrate for this semi-conductor light-emitting element.

10

15

Prior Art

[0002] Group III nitrides are used as semiconductor films by which light-emitting semiconductor elements are formed, and in recent years there have been hopes for them as semiconductor films in semiconductor light-emitting elements constituting, in particular, high-luminance light sources for green light to blue light and also light sources for ultraviolet light and white light.

[0003] Fig. 1 is a block diagram showing one example of a conventional so-called PN type semiconductor light-emitting element.

[0004] In the semiconductor light-emitting element 10 shown in Fig. 1, a buffer layer 2 constituted by GaN, an underlayer 3 constituted by Si-doped n-GaN, an n-type electrically conductive layer 4 constituted by Si-doped n-AlGaN, a light-emitting layer 5, a p-type clad layer 6 constituted by Mg-doped p-AlGaN and a p-type electrically conductive layer 7 constituted by Mg-doped p-GaN are successively formed on a substrate 1 which is mainly constituted by a sapphire single crystal.

30

25

[0005] The light-emitting layer 5 can be constituted as a single group III nitride layer or as a multiple-quantum-well (MQW) structure, and in recent

years in particular it can also be constituted as a quantum dot structure. This quantum dot structure presents a structure in which, as, for example, shown in Fig. 2, crystals 12-1 - 12-5 in the form of islands constituted by GalnN are formed in a base layer 17 constituted by GaN. These insular structures may be mutually isolated or they may be connected to one another. The specific form of the insular structures depends on the conditions of their fabrication. In this example, the insular structures 12-1 - 12-5 are so constituted that they are mutually isolated.

5

10

15

20

25

30

[0006] A portion of the n-type conductive layer 3 is exposed and an Al/Ti or similar n-type electrode 8 is formed on this exposed portion, and, further, an Au/Ni or similar p-type electrode 9 is formed on the p-type conductive layer 7. The imposition of a set voltage across the n-type electrode 8 and the p-type electrode 9 results in recombination of carriers in the light-emitting layer 5 and emission of light of a set wavelength. This wavelength is determined by the light-emitting layer's structure and composition, etc.

[0007] In the semiconductor light-emitting element shown in Fig. 1, the underlayer 3 and the n-type conductive layer 4 constitute an n-type conductor layer group, while the p-type clad layer 6 and the p-type electrode 7 constitute a p-type conductor layer group.

[0008] In order to make practical use of the semiconductor light-emitting element shown in Fig. 1, it is necessary to place the semiconductor light-emitting element 10 in an atmosphere which does not contain hydrogen, and then and give the p-type conductor layer group constituted by the p-type clad layer 6 and p-type electrode 7 activation treatment by effecting heating treatment at a temperature of 400°C or more, and lower the resistance value to a set value, eg, by separating and removing the element hydrogen which has combined with the Mg which was added as a dopant (Japanese Patent No. 25407991)

The second second to the second second second

[0009] However, when the light-emitting layer 5 is constituted as a quantum dot structure such as shown in Fig. 2, activation treatment at such a high temperature sometimes causes breakdown of the quantum dot structure. As a result, it is not possible to fabricate short-wavelength semiconductor light-emitting elements which can operate practical applications.

[0010] The object of the present invention is to provide a semi-conductor light-emitting element which can serve in practical applications, and in which a p-type semiconductor layer group and an n-type semiconductor layer group are deposited on a set substrate, a quantum dot structure type light-emitting layer is provided between the p-type semiconductor layer group and the n-type semiconductor layer group, and the resistance of the p-type semiconductor layer group is lowered sufficiently, and to provide a substrate for this semiconductor light-emitting element. It is also an object to provide a method of fabricating this semiconductor light-emitting element.

Summary of the Invention

[0011] In order to achieve the above object, the present invention relates to a substrate for a semiconductor light-emitting element which comprises, on set base material, a group III nitride underlayer which contains at least AI, in which the dislocation density is $\leq 1 \times 10^{11}/\text{cm}^2$ and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds, a p-type semiconductor layer group which is formed on this group III nitride underlayer, which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥ 50 at% and in which the carrier density is $\geq 1 \times 10^{16}/\text{cm}^3$, a light-emitting layer which is formed on the p-type semiconductor layer, which presents the form of insular crystals constituted by a group III nitride and which produces quantum effects, and an n-type semiconductor layer group which is formed on the light-emitting layer and in which the Ga content relative to the total group III elements is ≥ 20 at%.

[0012] Also, the invention relates to a semiconductor light-emitting element which comprises set base material, a group III nitride underlayer which is formed on the base material, which contains at least Al, in which the dislocation density is $\leq 1 \times 10^{11}/\text{cm}^2$ and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds, a p-type semiconductor layer group which is formed on the group III nitride underlayer, which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥ 50 at% and in which the carrier density-is $\geq 1 \times 10^{16}/\text{cm}^3$, a light-emitting layer which is formed on the p-type semiconductor layer, which presents the form of insular crystals constituted by a group III nitride and which produces quantum effects, and an n-type semiconductor layer group which is formed on the light-emitting layer and in which the Ga content relative to the total group III elements is ≥ 20 at%.

15

10

5

[0013] Further, the invention relates to a semiconductor light-emitting element fabrication method which comprises

a step in which a group III nitride underlayer, which contains at least AI, in which the dislocation density is $\leq 1 \times 10^{11}/\text{cm}^2$ and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds is formed on set base material.

20

a step in which a p-type semiconductor layer group which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥50 at% is formed on the group III nitride underlayer,

25

30

a step in which a light-emitting layer which presents the form of insular crystals constituted by a group III nitride and which produces quantum effects is formed on the p-type semiconductor layer,

and a step in which an n-type semiconductor layer group in which the Ga content relative to the total group III elements is ≥20 at% is formed on the light-emitting layer.

[0014]

The present inventors conducted intensive research in order to

achieve the objects noted above. As a result of this, a group III nitride underlayer such as described above which contains high crystal quality Al is provided on a set substrate, and a p-type semiconductor layer group and an n-type semiconductor layer group are constituted by group III nitrides having Ga as a principal component. Further, it was discovered that by following the fabrication method of the invention, reversing the deposition order of the ptype semiconductor layer group and n-type semiconductor layer group in a conventional semiconductor element structure such as shown in Fig. 1 and forming the abovenoted p-type semiconductor layer group with a carrier density of ≥1 x 10¹⁶/cm³ before the light-emitting layer and the abovenoted ntype semiconductor layer group are deposited, a light-emitting layer can be constituted and the resistance of abovenoted p-type semiconductor layer group can be reduced sufficiently without causing breakdown of the quantum dot structure which produces quantum effects. Thus, according to the invention, a semiconductor light-emitting element which has a light-emitting layer possessing a quantum dot structure and can serve in practical applications can be provided by a very simple process.

5

10

15

20

25

30

the light-emitting layer presents the form of a quantum dot structure, carrier confinement can be satisfactorily achieved even without making use of a double heterodyne structure such as one in which a quantum well structure is employed. Therefore, there is no need for the provision of a clad layer which is such as employed in a double heterodyne structure, etc. and whose bandgap is greater than that of the light-emitting layer. This is because the bandgap of the matrix material of the light-emitting layer containing the quantum dots is greater than the bandgap of the quantum dots in the light-emitting layer, and, consequently a double heterodyne structure is formed in the light-emitting layer. In this Specification, a double heterodyne structure such as this will be called a pseudo-double-heterodyne structure.

[0016] Further, if the arrangement is made such that the light-emitting

layer is constituted by plural layers, the result is that plural pseudo-doubleheterodyne structures are formed in the light-emitting layer, and the carrier confinement effect is further improved.

[0017] However, the invention is not one in which clad formation is completely excluded. As in the past, the carrier confinement effect can be improved by forming a clad layer adjacent to the light-emitting layer.

[0018] Formation of a p-type semiconductor layer group whose carrier density is equal to or greater than that noted above can be achieved by effecting activation treatment in the form of heat treatment at high temperature after the p-type semiconductor layer group has been formed or by forming the p-type semiconductor layer group by MBE procedure. A combination of these two procedures is of course effective.

15

20

25

10

5

[0019] According to the invention, sufficient activation and reduction of the resistance of the abovenoted p-type semiconductor layer group can be effected and a semiconductor light-emitting element which can serve in practical applications can be provided not only in the case of heat treatment at a high temperature such as noted above but also in the case in which heat treatment is effected at quite a low temperature.

[0020] The "insular crystals" in the invention can be so formed that they are mutually independent or they can be formed in a reticulate form in which they are mutually connected via thin layers. The specific forms depend on the insular crystals' fabrication conditions, etc.

Brief Description of the Drawings

30

Fig. 1 is block diagram showing one example of a conventional semiconductor light-emitting element.

Fig. 2 is a schematic showing the structure of a light-emitting layer

which constitutes a semiconductor light-emitting element.

Fig. 3 is a block diagram showing one example of a semiconductor light-emitting element of the invention.

Fig. 4 is a schematic showing the structure of a light-emitting layer which constitutes a semiconductor light-emitting element.

[0021] Below, a form of implementation of the invention will be described in detail.

10

5

Fig. 3 is a block diagram showing one example of the semi-conductor light-emitting element of the invention. In the semiconductor light-emitting element 30 shown in Fig. 3, an underlayer 23, a p-type electrically conductive layer 24, a light-emitting layer 25, an n-type clad layer 26 and an n-type electrically conductive layer 27 are successively provided on a substrate 21. Further, a portion of the p-type conductive layer 24 is exposed, a p-type electrode 28 constituted by, eg, Au/Ni is formed on this exposed p-type conductive layer 24, and an n-type electrode 29 constituted by, eg, Al/Ti is formed on the n-type conductive layer 27, thereby producing a so-called PN type semiconductor light-emitting element.

20

15

[0022] Also, the light-emitting layer 25 presents the form of a quantum well structure in which, as shown in Fig. 2, plural insular crystals 12-1 - 12-5 constituted by a set group III nitride are disposed mutually isolated in a base layer 17 constituted by a set group III nitride.

25

[0023] In Fig. 3, the p-type conductive layer 24 constitutes a p-type semiconductor layer group, and the n-type clad layer 26 and the n-type conductive layer 27 constitute an n-type semiconductor layer group. If so required, it is also possible to omit the n-type clad layer 26.

30

[0024] According to the invention, it is necessary that the underlayer 23 be constituted by a high crystal quality group III nitride which contains AI, in

which the dislocation density is $\leq 1 \times 10^{11}$ /cm² and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds. This results in the p-type conductive layer 24 which is formed on the underlayer 23 acquiring the excellent crystal quality of the underlayer 23 and possessing good crystal quality.

[0025] Since the p-type conductive layer 24 thus has good crystal quality, in cases such as in which it is formed by MBE procedure, since MBE deposition is effected in the absence of hydrogen, high temperature procedures to activate p-type dopant are not required after growth to the active region, which prevents thermal degradation on the quantum structures. The proportion of hydrogen uptake in the layer can be reduced, and so the amount of hydrogen that combines with the dopant in the p-type conductive layer 24 can be reduced, and the result is therefore that the p-type conductive layer 24 has a high carrier density such as noted below.

[0026] Apart from the use of MBE procedure, in the case of use of CVD procedure too, if the p-type conductive layer 24 is given activation treatment by effecting heating treatment in an atmosphere which does not contain hydrogen, hydrogen which has bonded with the dopant in the p-type semiconductor layer 24 can be efficiently separated and removed. Consequently, the p-type conductive layer 24 comes to have a high carrier density such as noted below. As a result, a semiconductor light-emitting element 30 which is employable in practical applications and possesses a light-emitting layer with a quantum dot structure can easily be produced.

[0027] It is necessary that the carrier density in the p-type conductive layer 24 be $\ge 1 \times 10^{16} / \text{cm}^3$, and it is still more preferable if the carrier density is $\ge 1 \times 10^{17} / \text{cm}^3$. With this, the voltage drop in the p-type layer can be suppressed, a voltage can be imposed on the light-emitting layer 25 efficiently, and the light emission efficiency can be improved. In particular, these effects become very marked when the light-emitting layer is constituted

by plural layers.

5

10

15

20

25

30

[0028] The abovenoted dislocation density is preferably $\le 5 \times 10^{10}$ /cm², and still more preferably it is $\le 1 \times 10^{10}$ /cm². Also, it is preferable that the abovenoted half-value width be ≤ 100 seconds, and it is still more preferable that it be ≤ 60 seconds.

[0029] Further, the surface roughness Ra is preferably ≤3 Å. This measurement is made in the range 5 µm square by means of an atomic force microscope (AFM).

[0030] The greater the AI content in the group III nitride constituting the underlayer 23 is, the more the dislocations originating in the substrate 21 become entangled at the interface of the substrate 21 and the underlayer 23, with consequent reduction of the proportion that propagates into the underlayer 23. As a result, the dislocation density in the underlayer 23 is reduced and the crystal quality of the underlayer 23 is improved. It is therefore preferable that group III nitride constituting the underlayer 23 contain as much AI as possible, and, specifically, it is preferable that it contain AI in a proportion that is ≥50 at% relative to the total group III elements, and still more preferably AI constitutes the totality of the group III elements, and the underlayer 23 is constituted by AIN.

[0031] The underlayer 23 preferably has a great film thickness, and, specifically, it is preferably formed to a thickness of $\geq 0.1~\mu m$, $\geq 0.5~\mu m$ being still more preferable. There are no particular restrictions regarding the upper limit of the thickness of the underlayer 23, and this is suitably selected and set taking into account the occurrence of cracks and the purpose of use, etc.

[0032] Apart from AI, the underlayer 23 can also contain other group III elements such as Ga and In, etc. and addition elements such as B, Si, Ge, Zn Be and Mg, etc. Also, there is not a limitation to deliberately added elements,

but it can also contain trace elements which are inevitably taken in depending on the film formation conditions, and trace amounts of impurities which are contained in the source materials and the reaction tube material.

[0033] As long as it satisfies the abovenoted requirements, the underlayer 23 can be formed by known film forming means. It can easily be produced by using MOCVD procedure and setting the film formation temperature to 1100°C or more. It is noted that the film formation temperature of this Patent means the set temperature of the substrate 21. From considerations of suppression of surface roughening, etc. of the underlayer 23, it is preferable that the film formation temperature be not more than 1250°C.

5

10

15

20

25

[0034] It is necessary that the p-type conductive layer 24 be constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥ 50 at%. This makes it possible to activate the p-type conductive layer 24 sufficiently to make its carrier density $\geq 1 \times 10^{16}/\text{cm}^3$ and to lower its resistance. In the invention the greater the Ga content in the group III nitride constituting the p-type conductive layer 24, the better, and, specifically, this content is preferably ≥ 70 at%, and still more preferably Ga constitutes the totality of the group III elements, and the layer consists of GaN.

[0035] The p-type conductive layer 24 contains a p-type dopant such as Zn, Be or Mg, etc. Also, it can contain Al and In, etc. as well as Ga. Further, there is not a limitation to deliberately added elements but it can also contain trace elements which are inevitably taken in depending on the film formation conditions, etc. and trace amounts of impurities which are contained in the source materials and the reaction tube material.

[0036] If the p-type layer is given activation treatment, this is effected after the formation of the p-type conductive layer 24 and before the formation of the light-emitting layer 25. Specifically, after the production of a multilayer

film structure in which, subsequent to the formation of the p-type conductive film 24, the substrate 21, underlayer 23 and p-type conductive layer 24 are stacked, heating treatment of this multilayer film structure is effected in an atmosphere which does not contain hydrogen, eg, in a vacuum, in nitrogen gas or in an atmosphere of an inert gas such as He, Ne, Ar, Kr or Xe, etc. The temperature at this time is set to 300-1100°C. The treatment time is made, eg, 10 minutes - 1 hour. The abovenoted temperature is the set temperature of the substrate 21.

[0037] Apart from the case in which the light-emitting layer 25 has insular crystals 12-1 - 12-5 formed as a single stage in the base layer 17 in the manner shown in Fig. 2, insular crystals 13-1 - 13-5; 14-1 - 14-5 and 15-1 - 15-5 may be formed in plural stages in a base layer 18 in the manner shown in Fig. 4. Such insular crystals can, for example, be produced by making the lattice constant of the group III nitride which constitutes the insular crystals of the light-emitting layer 25 large relative to the lattice constant of the group III nitride which constitutes the p-type conductive layer 24. Thus, insular crystals can be formed on the p-type conductive layer 24 by selecting respective group III nitrides in a manner such that these conditions are satisfied, applying known film formation technology to these nitrides and successively forming the p-type conductive layer 24 and the light-emitting layer 25.

[0038] The insular crystals are formed to a minute size such that quantum effects are produced.

[0039] At the time of formation of insular crystals in the light-emitting layer, it is desirable to effect formation by supplying In source material beforehand, and then effecting simultaneous supply of other group III source material and group V source material. This procedure makes it possible for formation of the insular structure to be effected with good control to a required size.

[0040] Localized carriers recombine in the insular crystals constituting the light-emitting layer 25, and any required light can be produced and emitted on the basis of this. Thus, light of any required colour from red to blue be caused to be produced and emitted by suitably controlling the size of the insular crystals, and it is also possible to cause white light to be produced and emitted by superimposing these colours on one another.

The light-emitting layer 25 can be constituted by a group III nitride which contains at least one out of Al, Ga and In, etc. Also, there is no limitation to deliberately added elements, but the layer can also contain trace elements which are inevitably taken in depending on the film formation conditions, etc. and trace amounts of impurities that are contained in the source materials and the reaction tube material.

[0042] For the n-type conductive layer 27 also, it is necessary that the Ga content relative to the total group III elements be ≥50 at%, and preferably this content is ≥70 at%, and still more preferably the layer consists of GaN. This makes it possible to form a good pn junction with the p-type conductive layer 24. The n-type conductive layer 27 contains an n-type dopant such as B, Si or Ge, etc. Also, it can contain Al and In as well as Ga. Also, there is no limitation to deliberately added elements, but the layer can also contain trace elements which are inevitably taken in depending on the film formation conditions, etc. and trace amounts of impurities that are contained in the source materials and the reaction tube material.

25

5

10

15

20

[0043] The n-type clad layer 26 can be constituted by a group III nitride which contains at least one out of Al, Ga and In, etc. Also, the n-type clad layer 26 contains an n-type dopant such as B, Si or Ge, etc.

The layers from the p-type conductive layer 24 to the n-type conductive layer 27 described above can be formed by known film formation methods, and, as noted earlier, they can be formed easily by MOCVD

procedure. They can also be formed by LPE procedure or MBE procedure. The use of MBE procedure is particularly preferable, since it makes precise control possible in the process of formation of a light-emitting layer with the quantum dot structure.

5

[0045] The substrate 21 can be constituted by known substrate material such as a sapphire single crystal, a ZnO single crystal, an LiAlO₂ single crystal, an LiGaO₂ single crystal, an MgAl₂O₄ single crystal, an MgO single crystal or similar oxide single crystal, an Si single crystal, an SiC single crystal or a similar group IV or group IV - IV single crystal, a GaAs single crystal, an AlN single crystal, a GaN single crystal, an AlGaN single crystal or similar group III-V single crystal, or a boride single crystal such as ZrB₂, etc.

[0046] Example

15

20

10

In this example of implementation, the PIN type semiconductor light-emitting element 30 shown in Fig. 3 was fabricated. A 2 inch diameter, 500 µm thick C plane sapphire single crystal was used as the substrate 21, and this was placed in an MOCVD unit, for which H₂, N₂, TMA (trimethylaluminium), TMG (trimethylgallium), Cp₂Mg, NH₃ and SiH₄ were laid on as a gas system. After the pressure had been set to 100 torr, the temperature of the substrate 21 was raised to 1100°C while H₂ was flowed at an average flow rate of 1 m/sec.

25

30

After that, set quantities of TMA and NH₃ were supplied, and an AIN layer was grown to a thickness of 1 μ m as the underlayer 23. In this process, the TMA and NH₃ feed rates were so set that the film formation rate was 0.3 μ m/hr. When examined by means of a TEM, the dislocation density in this AIN film was found to be 1 x 10¹⁰/cm². When the AIN's(002) plane X-ray rocking curve was measured, its half-value width was found to be 60 seconds, and it was confirmed that the material had good crystal quality, the surface roughness (Ra) being \leq 1.5 Å.

[0048] Next, the substrate temperature was set to 1080°C, and then TMG, NH₃ and Cp₂Mg were flowed at a total gas average flow rate of 1 m/sec, and a p-GaN layer doped with Mg was grown to a thickness of 3 μ m as the p-type conductive layer 24. The source material feed rates were made such that the film formation rate was 3 μ m/hr. The supply of Cp₂Mg was made such that the carrier density became 1.0 x 10¹⁸/cm³.

[0049] Next, N₂ gas was introduced into the MOCVD unit to make the interior of the unit a nitrogen atmosphere. Next, activation treatment of the abovenoted p-GaN layer was effected by making the substrate temperature 750°C and holding for 1 hour. The carrier density of the p-GaN at this time was 5 x 10¹⁷/cm².

[0050] Next, in order to protect the p-GaN layer that had been grown, TMG and NH₃ were flowed at an average flow rate of 10 m/sec, and a GaN film was grown to a thickness of 100 Å. After the growth was completed, the substrate to which the GaN film was attached was taken out and set in a MBE unit.

20

15

5

10

[0051] 7N Ga, 7N In and 6N AI were used as solid sources for the MBE unit, and atomic nitrogen produced by a high-frequency plasma unit was used as a nitrogen source. An Si solid source for producing n-type material was provided as a dopant source.

25

30

[0052] First, the substrate was heated to 900°C, and then the GaN film which had become a protective layer was removed by flowing H₂. After that, insular crystals for constituting the light-emitting layer 25 were grown from In_{0.26}Ga_{0.76}N at 600°C to a thickness of 20 Å and an average diameter of 200 Å on the p-GaN layer constituting the p-type conductive layer 24. After that, taking the light-emitting layer 24 as a base layer, a GaN layer was grown to a thickness of 50 Å at 600°C in order to bury the isolated insular crystals.

[0053] Next, an Si-doped n-Al_{0.06}Ga_{0.95}N (Tr. note: Please see text section [0053] for Ga content.) layer was grown at 600°C to a thickness of 50 Å as the n-type clad layer 26 on the abovenoted GaN layer, and finally an Si-doped n-GaN layer was grown at 600°C to a thickness of 2000 Å as the n-type conductive layer 27.

[0054] Next, a portion of the p-GaN layer constituting the p-type conductive layer 24 was exposed by effecting partial etching removal of the various layers, and a p-type electrode 28 constituted by Au/Ni was formed on this exposed portion. Also, an n-type electrode 29 constituted by Al/Ti was formed on the n-type GaN layer constituting the n-type conductive layer 27.

[0055] It was confirmed that blue light was emitted with an emission efficiency of 30 (Im/W) when drive was effected by imposing a voltage across the Au/Ni electrode and the Al/Ti electrode.

[0056] Comparison Example 1

5

10

15

20

25

30

A semiconductor light-emitting element was fabricated by procedure that was the same as in the example of implementation except that, instead of an AIN underlayer being formed, a GaN underlayer was formed to a thickness of 0.03 μm at the low temperature of 600°C. In this case, current did not flow in the semiconductor light-emitting element, and light was not emitted.

[0057] Comparison Example 2

In this comparison example, the PIN type semiconductor lightemitting element shown in Fig. 1 was fabricated.

A sapphire single crystal was used as the substrate 1, and was

placed in an MOCVD unit like that of the example of implementation. After the substrate 1 had been heated to 400° C, TMG and NH₃ were supplied and a GaN layer was formed to a thickness of 0.03 μ m as the buffer layer 2.

[0058] After that, the supply of TMG and NH $_3$ was temporarily halted, the substrate temperature was made 1120°C, TMG, NH $_3$ and SiH $_4$ were supplied, and an n-GaN layer 2 was formed at a film formation rate of 3 μ m/hr to a thickness of 3 μ m as the underlayer 3. Next, formation of the layers from the n-type conductive layer 4 to the p-type conductive layer 7 was effected in the same way as in the example of implementation. After that the semi-conductor light-emitting element which had been produced was placed in a nitrogen atmosphere which did not contain hydrogen, and activation treatment was effected by heating to 750°C and holding for 1 hour.

[0059] Then, the Al/Ti n-type electrode 8 and the Au/Ni p-type electrode 9 were formed, and it was ascertained that blue light was emitted with an emission efficiency of 10 (lm/W) when drive was effected by imposing a voltage across the Au/Ni electrode and Al/Ti electrode.

[0060] It is seen from the example of implementation and Comparison Example 1 that with a semiconductor light-emitting element possessing substrate/p-type semiconductor layer group/light-emitting layer/n-type semiconductor layer group structure produced in accordance with the invention by forming a high crystal quality AIN under-film and forming p-GaN, n-AIGaN and n-GaN on this AIN under-film, the resistance of the overall element is made lower and the light emission efficiency is made better than in the case of the semiconductor light-emitting element in which a low crystal quality GaN under-film is formed and the structure described above is formed on this GaN under-film.

[0061] Further, it is seen from the example of implementation and comparison Example 2 that in the case in which, in accordance with the

30

5

10

15

20

25

invention, a p-type semiconductor layer group is formed below a light-emitting layer and an n-type semiconductor layer group is formed above so as to give a substrate/p-type semiconductor layer group/light-emitting layer/n-type semiconductor layer group structure it is possible to activate only the p-type semiconductor layer group before the light-emitting layer is formed, whereas in the case in which an n-type semiconductor layer group is formed below a light-emitting layer and a p-type semiconductor layer group is formed above the light-emitting layer so as to give a substrate/n-type semiconductor layer group/light-emitting layer/p-type semiconductor layer group structure, the result is that activation treatment is effected with the structure from the n-type semiconductor layer group to the p-type semiconductor layer group made integral. It was found that, consequently, breakdown of the quantum dot structure constituting the light-emitting layer was caused, and there was failure to achieve a satisfactory light emission efficiency.

15

20

25

30

[0063]

rates and added gases, etc.

10

5

[0062] Although, a specific example was taken and a detailed description of the present invention was given above with reference to a form of implementation of the invention, the invention is not limited to the content described above, but all sorts of variations and modifications are possible as long as there is no departure from scope of the invention.

For example, the substrate can be given nitriding treatment, and

pretreatment, etc. of the substrate with group III raw material can be effected. Further, it is possible to make the composition of the underlayer continuously varying, or to effect variation thereof with stepwise divisions made in the film formation conditions. Also, for the purpose of improving the crystallinity of a conductive layer and a light-emitting layer, etc. still more, a buffer layer or a multilayer structure such as a strain superlattice, etc. can be interposed between the underlayer and the conductive layer, etc. by varying growth conditions such as the temperature, flow rate, pressure, source material feed

[0064] Further, although the p-type semiconductor layer group was constituted solely by p-type conductive layers in the semiconductor light-emitting element described above, it is also possible to provide a p-type clad layer above these p-type conductive layers and constitute the p-type semi-conductor layer group by the p-type conductive layers and the p-type clad layer.

[0065] Also, in activation treatment of the p-type semiconductor layer group, this activation treatment can be accelerated by making the atmosphere in which the activation treatment is to be effected a plasma, or by imposing a high frequency on this atmosphere.

[0066] As described above, the invention makes it possible to provide a semiconductor light-emitting element which can serve in practical applications, and in which a p-type semiconductor layer group and an n-type semiconductor layer group are deposited on a set substrate, a quantum dot structure type light-emitting layer is provided between the p-type semiconductor layer group and the n-type semiconductor layer group, and the p-type semiconductor layer group is made low-resistance by being sufficiently activation-treated, and to provide a substrate for this semiconductor light-emitting element. It is also made possible to provide a method of fabricating this semiconductor light-emitting element.

CLAIMS

1. Substrate for semiconductor light-emitting element which comprises, on set base material, a group III nitride underlayer which contains at least AI, in which the dislocation density is ≤1 x 10¹¹/cm² and whose (002) plane X-ray rocking curve half-value width is ≤200 seconds, a p-type semiconductor layer group which is formed above said group III nitride underlayer, which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥50 at% and in which the carrier density is ≥1 x 10¹⁶/cm³, a light-emitting layer which is formed on said p-type semiconductor layer, which presents the form of insular crystals constituted by a group III nitride and which produces quantum effects, and an n-type semiconductor layer group which is formed on said light-emitting layer and in which the Ga content relative to the total group III elements is ≥20 at%.

15

10

5

2. Substrate for a semiconductor light-emitting element as claimed in Claim 1, wherein the Al content relative to the total group III elements in said group III nitride underlayer is ≥50 at%.

20

3. Substrate for a semiconductor light-emitting element as claimed in Claim 2, wherein said group III nitride underlayer is constituted by AIN.

25

4. Substrate for semiconductor light-emitting element as claimed in any one of Claims 1-3, wherein said group III nitride underlayer is formed by CVD procedure at a temperature of ≥1100°C.

5. Substrate for semiconductor light-emitting element as claimed in any one of Claims 1-4, wherein said light-emitting layer containing said insular structure contains rare earth metal or transition metal atoms.

30

6. Substrate for semiconductor light-emitting element as claimed in any one of Claims 1-5, wherein said light-emitting layer containing said insular

structure consists of plural layers.

- 7. Substrate for semiconductor light-emitting element as claimed in any one of Claims 1-6, wherein the carrier density of said p-type semiconductor layer group is $\ge 1 \times 10^{17}/\text{cm}^3$.
- 8. Semiconductor light-emitting element which comprises set base material, a group III nitride underlayer which is formed on said base material, which contains at least AI, in which the dislocation density is $\leq 1 \times 10^{11}/\text{cm}^2$ and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds, a p-type semiconductor layer group which is formed above said group III nitride underlayer, which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥ 50 at% and in which the carrier density is $\geq 1 \times 10^{16}/\text{cm}^3$, a light-emitting layer which is formed on said p-type semiconductor layer, which presents the form of insular crystals constituted by a group III nitride and which produces quantum effects, and an n-type semiconductor layer group which is formed on said light-emitting layer and in which the Ga content relative to the total group III elements is ≥ 20 at%.
- 9. Semiconductor light-emitting element as claimed in Claim 8, wherein the Al content relative to the total group III elements in said group III nitride underlayer is ≥50 at%.
 - 10. Semiconductor light-emitting element as claimed in Claim 9, wherein said group III nitride underlayer is constituted by AIN.
 - 11. Semiconductor light-emitting element as claimed in any one of Claims 8-10, wherein said light-emitting layer containing said insular structure contains rare earth metal or transition metal atoms.
 - 12. Semiconductor light-emitting element as claimed in any one of Claims 8-11, wherein said light-emitting layer containing said insular structure

30

25

10

15

5

10

15

20

25

30

- 13. Semiconductor light-emitting element as claimed in any one of Claims 8-12, wherein the carrier density of said p-type semiconductor layer group is ≥1 x 10¹⁷/cm³.
- 14. Semiconductor light-emitting element fabrication method which comprises

a step in which a group III nitride underlayer which contains at least AI, in which the dislocation density is $\leq 1 \times 10^{11}/\text{cm}^2$ and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds is formed on set base material.

a step in which a p-type semiconductor layer group which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥50 at% is formed above said group III nitride underlayer,

a step in which a light-emitting layer which presents the form of insular crystals constituted by a group III nitride and which produces quantum effects is formed on said p-type semiconductor layer group.

and a step in which an n-type semiconductor layer group in which the Ga content relative to the total group III elements is ≥20 at% is formed on said light-emitting layer.

- 15. Semiconductor light-emitting element fabrication method as claimed in Claim 14, wherein said group III nitride underlayer is formed by MOCVD procedure at a temperature of ≥1100°C.
- 16. Semiconductor light-emitting element fabrication method as claimed in Claim 14 or 15, wherein said light-emitting layer is formed by supplying In source material beforehand, and then effecting simultaneous supply of other group III source material and group V source material.
- 17. Semiconductor light-emitting element fabrication method as claimed in

any one of Claims 14-16, wherein said light-emitting layer containing said insular structure and said n-type semiconductor layer group are formed by means of MBE procedure.

5

e no elemento de la compansión de la compa

Substrate for semiconductor light-emitting element, semiconductor light-emitting element and semiconductor light-emitting element fabrication method

ABSTRACT

To provide a semiconductor light-emitting element which can serve in practical applications, and in which a quantum dot structure type light-emitting layer is provided between a p-type semiconductor layer group and an n-type semiconductor layer group, and the p-type semiconductor layer group is made low-resistance by being sufficiently activation-treated. A group III nitride underlayer which contains at least AI, in which the dislocation density is $\leq 1 \times 10^{11}/\text{cm}^2$ and whose (002) plane X-ray rocking curve half-value width is ≤ 200 seconds is formed on set base material. Next, a p-type semiconductor layer group which is constituted by a group III nitride in which the Ga content relative to the total group III elements is ≥ 50 at% and in which the carrier density is $\geq 1 \times 10^{16}/\text{cm}^3$ is formed above the group III nitride underlayer. Next, a light-emitting layer which is contains plural mutually isolated insular crystals is formed on the p-type semiconductor layer group. Next, an n-type semiconductor layer group in which the Ga content relative to the total group III elements is ≥ 50 at% is formed on the light-emitting layer.

THIS PAGE BLANK (USPTO)

Fig. 1

Fig. 2

Fig. 3

Fig. 4