Claims

[1]	A light emitting device comprising:
	a light emititng chip; and
	a phosphor through which a first light emitting from the light emitting chip
	passes,
	wherein the phosphor comprises a silicate phosphor exciting a second light
	having a first centered emission peak using the first light and a sulfide phosphor
	exciting a third light having a second centered emission peak using the first light.
[2]	The light emitting device according to claim 1, wherein the first centered
	emission peak is in a range of 550 - 600 nm.
[3]	The light emitting device according to claim 1, wherein the second centered
	emission peak is in a range of 500 - 550 nm.
[4]	The light emitting device according to claim 1, wherein the silicate phosphor has
	a chemical formula of Sr3-xSiO5: Eu^{2+} x(0 < x \leq 1).
[5]	The light emitting device according to claim 1, wherein the sulfide phosphor has
	a chemical formula of Sr1-xGa2S4:Eu ²⁺ x(0.001 \leq x \leq 1).
[6]	The light emitting device according to claim 1, wherein the silicate phosphor and
	the sulfide phosphor exist at a ratio of 1:1 to 1:9.
[7]	The light emitting device according to claim 1, wherein the phosphor has a
	particle size of $d90 \le 20 $
[8]	The light emitting device according to claim 1, wherein the light emitting chip
	emits blue light.
[9]	The light emitting device according to claim 1, wherein the phosphor is molded
	in a periphery of the light emitting chip or on the light emitting chip.
[10]	The light emitting device according to claim 1, wherein the phosphor is man-
	ufactured by mixing the phosphor with a light transmitting resin.
[11]	The light emitting device according to claim 10, wherein the resin is an epoxy
	resin or a silicon resin.
[12]	The light emitting device according to claim 1, wherein the silicate phosphor is a
	yellow series and the sulfide phosphor is a green series.
[13]	A phosphor of a light emitting device, comprising:
	a silicate phosphor excited by a light generated by a light emitting chip and
	having a chemical formula of Sr3-xSiO5:Eu ²⁺ x(0 < x \leq 1); and
	a sulfide phosphor excited by the light generated by the light emitting chip and
	having a chemical formula of Sr1-xGa2S4: Eu^{2+} x(0.001 \leq x \leq 1).
[14]	A ligth emitting device comprising:
	a substrate:

- a light emitting chip emitting a light;
- a connection part for electrically connecting the substrate with the light emitting chip:
- a phosphor encapsulating the light emitting chip and through which the light passes;
- a silicate phosphor contained in the phosphor and having a chemical formula of Sr3-xSiO5: Eu^{2+} x(0 < x \leq 1); and
- a sulfide phosphor contained in the phosphor and having a chemical formula of $Sr1-xGa2S4:Eu^{2+} x(0.001 \le x \le 1)$.
- [15] The light emitting device according to claim 14, wherein when the light emitting device is a top view type, the silicate phosphor and the sulfide phosphor exist at a ratio of 1: 2 to 1: 3.
- [16] The light emitting device according to claim 14, wherein when the light emitting device is a side view type, the silicate phosphor and the sulfide phosphor exist at a ratio of 1:3 to 1:4.
- [17] A ligth emitting device comprising:
 - a leadframe;
 - a light emitting chip emitting a light;
 - a connection part for electrically connecting the leadframe with the light emitting chip;
 - a phosphor encapsulating and molding the light emitting chip and through which the light passes;
 - a silicate phosphor contained in the phosphor and having a chemical formula of Sr3-xSiO5:Eu²⁺ $x(0 < x \le 1)$; and
 - a sulfide phosphor contained in the phosphor and having a chemical formula of $Sr1-xGa2S4:Eu^{2+} x(0.001 \le x \le 1)$.
- [18] A ligth emitting device comprising:
 - a light emitting chip emitting a light; and
 - a resin-based phosphor through which the light emitting from the light emitting chip passes;
 - wherein the phosphor comprises a yellow silicate phosphor exciting a second light having a first centered emission peak using the first light and a green sulfide phosphor exciting a third light having a second centered emission peak using the first light, and the green sulfide phosphor and the yellow silicate phosphor exist at a ratio of 1:2 to 1:5.
- [19] The light emitting device according to claim 18, wherein the phosphor is contained at a ratio of 15 30 wt% with respect to the base so as to emit white light.

[20] The light emitting device according to claim 18, wherein the phosphor is contained at a ratio of 5 - 15 wt% with respect to the base so as to emit bluish light.