Clase 15 ¹ - El transistor bipolar de juntura (II)

REGÍMENES DE OPERACIÓN

Contenido:

- 1. Regímenes de operación.
- 2. Modelo circuital equivalente de gran señal.
- 3. Características de salida.

Lecturas recomendadas:

- Müller, Kamins, "Device Electronics for Integrated Circuits", Ch. 6, §§6.1; 6.3–6.4.
- \bullet Pedro Julian, "Introducción a la Microelectronica", Ch. 6, §§6.1–6.3 .
- Howe, Sodini, "Microelectronics: An Integrated Approach", Ch. 7, §§7.3–7.4.
- Gray, Hurst, Lewis, Meyer, "Analysis and Design of Analog Integrated Circuits", Ch. 1, §§1.3.

¹Esta clase es una traducción, realizada por los docentes del curso "Dispositivos Semiconductores" de la FIUBA, de la correspondiente hecha por el prof. Jesús A. de Alamo para el curso "6.012 - Microelectronic Devices and Circuits" del MIT. Cualquier error debe adjudicarse a la traducción.

Preguntas disparadoras:

- ¿Qué regímenes de operación existen para un TBJ?
- ¿Qué tiene de particular cada régimen?
- ¿Cómo son los modelos circuitales equivalentes del TBJ?

1. Regímenes de operación

- Modo Activo Directo (forward active): la corriente de colector se controla a través de V_{BE} y tiene tiene poca dependencia con la tensión del colector (buena aislación).
- Saturación (saturation): el TBJ está en conducción pero la corriente depende de V_{BE} y de V_{BC} . La base está inundada de portadores minoritarios.
- Reversa (reverse): ganancia es pobre; el dispositivo NO es útil en esta región y debe evitarse.
- Corte (cut-off): corrientes I_C e I_B despreciables: se encuentra en "bloqueo".

\square RÉGIMEN ACTIVO DIRECTO: $V_{BE} > 0, V_{BC} < 0$

• Perfil de portadores minoritarios (no en escala):

• El emisor inyecta electrones en la base, el colector colecta electrones de la base:

$$I_C = I_S \exp \frac{q \, V_{BE}}{kT}$$

• La base inyecta huecos al emisor, que se recombinan en el contacto del emisor:

$$I_B = \frac{I_S}{\beta_F} \left(\exp \frac{q \, V_{BE}}{kT} - 1 \right)$$

• Corriente del emisor:

$$I_E = -I_C - I_B = -I_S \exp \frac{q V_{BE}}{kT} - \frac{I_S}{\beta_F} \left(\exp \frac{q V_{BE}}{kT} - 1 \right)$$

- Los TBJs integrados actualmente: $I_C \sim 0.1 1 \ mA$, $\beta_F \simeq 50 300$.
- β_F difícil de controlar con precisión \Rightarrow se recurre a técnicas de diseño de circuitos para lograr insensibilidad a variaciones en β_F .

\Box Régimen de reversa: $V_{BE} < 0,\, V_{BC} > 0$

• Perfil de portadores minoritarios:

• El colector inyecta electrones en la base, el emisor colecta electrones de la base:

$$I_E = I_S \exp \frac{q \, V_{BC}}{kT}$$

• La base inyecta huecos al colector, se recombinan en el contacto con el colector y el sustrato:

$$I_B = \frac{I_S}{\beta_R} \left(\exp \frac{q \, V_{BC}}{kT} - 1 \right)$$

• Corriente de colector:

$$I_C = -I_E - I_B = -I_S \exp \frac{q V_{BC}}{kT} - \frac{I_S}{\beta_R} \left(\exp \frac{q V_{BC}}{kT} - 1 \right)$$

• Tipicamente, $\beta_R \simeq 0.1 - 5 \ll \beta_F$.

- Comparación de Gráficos de Gummel
- \square Régimen Activo Directo ($V_{CE} = 3 \text{ V}$):

 \square Régimen de Reversa ($V_{EC} = 3 \text{ V}$):

 \square Corte: $V_{BE} < 0, V_{BC} < 0$

Concentración de portadores minoritarios:

• La base extrae huecos del emisor:

$$I_E = \frac{I_S}{\beta_F}$$

• La base extrae huecos del colector:

$$I_C = \frac{I_S}{\beta_R}$$

• Luego la corriente de base es:

$$I_B = -I_C - I_B$$

 \bullet Estas son solo pequeñas corrientes de fuga ($\sim 10^{-12}~A)$ que en la mayoría de las aplicaciones prácticas pueden despreciarse.

\square Saturación: $V_{BE} > 0, V_{BC} > 0$

Perfiles de concentración de los portadores minoritarios:

El régimen de saturación es la superposición del régimen activo y el reverso:

$$I_C = I_S \left(\exp \frac{q V_{BE}}{kT} - \exp \frac{q V_{BC}}{kT} \right) - \frac{I_S}{\beta_R} \left(\exp \frac{q V_{BC}}{kT} - 1 \right)$$

$$I_B = \frac{I_S}{\beta_F} \left(\exp \frac{q V_{BE}}{kT} - 1 \right) + \frac{I_S}{\beta_R} \left(\exp \frac{q V_{BC}}{kT} - 1 \right)$$

$$I_E = -\frac{I_S}{\beta_F} \left(\exp \frac{q V_{BE}}{kT} - 1 \right) - I_S \left(\exp \frac{q V_{BE}}{kT} - \exp \frac{q V_{BC}}{kT} \right)$$

- I_C y I_E pueden tener cualquier signo, dependiendo de la magnitud relativa de V_{BE} y V_{BC} , y β_F y β_R .
- En saturación el colector y la base estan inundados de portadores minoritarios en exceso. ⇒ demora mucho tiempo sacar al TBJ de saturación.

2. Modelo circuital equivalente de gran señal

□ Sistema de ecuaciones que describen la operacion del TBJ

$$I_{C} = I_{S} \left(\exp \frac{q V_{BE}}{kT} - \exp \frac{q V_{BC}}{kT} \right) - \frac{I_{S}}{\beta_{R}} \left(\exp \frac{q V_{BC}}{kT} - 1 \right)$$

$$I_{B} = \frac{I_{S}}{\beta_{F}} \left(\exp \frac{q V_{BE}}{kT} - 1 \right) + \frac{I_{S}}{\beta_{R}} \left(\exp \frac{q V_{BC}}{kT} - 1 \right)$$

$$I_{E} = -\frac{I_{S}}{\beta_{F}} \left(\exp \frac{q V_{BE}}{kT} - 1 \right) - I_{S} \left(\exp \frac{q V_{BE}}{kT} - \exp \frac{q V_{BC}}{kT} \right)$$

 \square Representación del modelo circuital equivalente: $Modelo\ No\ Lineal\ Híbrido-\pi$ o $Modelo\ de\ "Ebers-Moll"$

Hay tres parámetros en este modelo: I_S , β_F , y β_R .

- □ Simplificaciones del modelo circuital equivalente
- Régimen activo directo: $V_{BE} > 0, V_{BC} < 0$

Típicamente: $V_{BE(on)} \simeq 0.7 \,\mathrm{V}$. I_B depende del circuito externo (malla de entrada o de control).

• En reversa: $V_{BE} < 0, V_{BC} > 0$

Típicamente: $V_{BC(on)} \simeq 0.5 \,\mathrm{V}$ (los dopajes de la juntura BC son menores). I_B también depende del circuito externo.

I_B vs. V_{BE} para $V_{CE} = 3 V$ (dispositivo en MAD):

I_B vs. V_{BC} para $V_{EC}=3\ V$ (dispositivo en reversa):

• En saturación: $V_{BE} > 0, V_{BC} > 0$

El dispositivo se comporta como dos diodos en directa con la base como ánodo común. Luego puede obtenerse: $V_{CE(sat)} = V_{BE(on)} - V_{BC(on)} \simeq 0.2 \,\mathrm{V}.$ I_B e I_C dependen del *circuito externo*.

• Corte:
$$V_{BE} < 0, V_{BC} < 0$$

В _____

Solo existen corrientes de fuga despreciables.

3. Características de salida

Características de salida referidas al emisor: I_C vs. V_{CE} (para distintas I_B):

También podría considerarse: I_C vs. V_{CB} (para distintas I_B):

I_C vs. V_{CB} para $0 \le I_B \le 100 \,\mu\text{A}$:

I_C vs. V_{CE} para $0 \le I_B \le 100 \,\mu\text{A}$:

I_C vs. V_{CE} para $0 \le I_B \le 100 \,\mu\text{A}$:

Conclusiones Principales TBJ

• En el modo activo directo tiene ganancia de corriente y aislación del colector. Para cálculos de polarización:

• En saturación se comporta como dos diodos con ánodo común en la base. I_C e I_B dependen de los circuitos externos.

• En corte bloquea la circulación de corriente:

