Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 29 de septiembre de 2021

Contenidos estimados para hoy

- Deducción natural
 - Definición inductiva de 9
 - Inducción y recursión en derivaciones
 - Relación de deducción y teoremas

- Corrección y completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
 - Teorema de corrección

El conjunto 3 de las derivaciones

Definimos el conjunto de las derivaciones de manera recursiva.

El conjunto 9 de las derivaciones

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathfrak D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathcal D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

■ Un árbol de un sólo nodo $\varphi \in PROP$ pertenece a \mathfrak{D} .

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathcal D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

■ Un árbol de un sólo nodo $\varphi \in PROP$ pertenece a \mathscr{D} .

$$\blacksquare \ \dot{\overset{\cdot}{\varphi}}^{D_1} \in \mathscr{D} \ \mathsf{y} \ \dot{\overset{\cdot}{\varphi}}^{D_2} \in \mathscr{D} \ \Longrightarrow \$$

El conjunto 9 de las derivaciones

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathcal D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

■ Un árbol de un sólo nodo $\varphi \in PROP$ pertenece a \mathfrak{D} .

$$\stackrel{:}{\underset{\varphi}{\circ}} D_1 \in \mathscr{D} \ \ \mathsf{y} \ \stackrel{:}{\underset{\varphi'}{\circ}} D_2 \in \mathscr{D} \ \Longrightarrow \ D := \ \frac{\stackrel{:}{\underset{\varphi}{\circ}} D_1 \ \ :D_2}{\stackrel{:}{\underset{\varphi}{\circ}} \varphi'} \wedge I \ \in \ \mathscr{D}.$$

$$\bullet \quad \dot{\stackrel{:}{\cdot}} \stackrel{D}{\circ} \in \mathscr{D} \implies$$

$$\begin{array}{c}
\vdots D \\
\varphi \wedge \varphi'
\end{array} \iff D_1 := \frac{\vdots D}{\varphi \wedge \varphi'} \wedge E \in \mathfrak{D}, \qquad D_2 := \frac{\vdots D}{\varphi \wedge \varphi'} \wedge E \in \mathfrak{D}.$$

$$\begin{array}{c}
\vdots D \\
\varphi \wedge \varphi' \\
\downarrow D \\
\psi
\end{array} \implies D_1 := \frac{\varphi \wedge \varphi'}{\varphi \wedge \varphi'} \wedge E \in \mathfrak{D}, \qquad D_2 := \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E \in \mathfrak{D}.$$

$$\begin{array}{c}
\varphi \\
\vdots D \\
\psi \\
\downarrow D \\
\downarrow \varphi \\
\downarrow \varphi
\end{array} \rightarrow I$$

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

$$\begin{array}{ccc} \vdots D & & \vdots D \\ \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & & \frac{\varphi}{\varphi \vee \varphi'} \vee I \end{array}$$

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

$$\begin{array}{ccc} \vdots D & & \vdots D \\ \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & & \frac{\varphi}{\varphi \vee \varphi'} \vee I \end{array}$$

 \blacksquare $(\rightarrow E)$ es como $(\land I)$.

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

$$\begin{array}{ccc} \vdots D & & \vdots D \\ \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & & \frac{\varphi}{\varphi \vee \varphi'} \vee I \end{array}$$

 \blacksquare $(\rightarrow E)$ es como $(\land I)$.

$$\begin{array}{ccc}
\vdots D_1 & \vdots D_2 & \vdots D_1 & \vdots D_2 \\
\frac{\varphi}{\varphi} & \varphi' & \wedge I & \frac{\varphi}{\varphi} & \varphi \to \psi \\
\hline
\psi & & \psi
\end{array} \to E$$

 \blacksquare (RAA) es como (\rightarrow I).

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** Hip(D) de una derivación D.

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

$$\mathit{Hip}\left(\frac{\vdots D \quad \vdots D'}{\varphi \quad \varphi'} \atop \varphi \wedge \varphi' \land I\right) := \mathit{Hip}\left(\vdots D \atop \varphi\right) \cup \mathit{Hip}\left(\vdots D' \atop \varphi'\right).$$

 $\wedge E$

$$Hip\left(\frac{\vdots}{\varphi \wedge \varphi'} \wedge E\right) = Hip\left(\frac{\vdots}{\varphi \wedge \varphi'} \wedge E\right) := Hip\left(\frac{\vdots}{\varphi \wedge \varphi'}\right).$$

 $\wedge E$

$$\mathit{Hip}\left(\frac{\vdots}{\varphi \wedge \varphi'}_{} \wedge E\right) = \mathit{Hip}\left(\frac{\vdots}{\varphi \wedge \varphi'}_{} \wedge E\right) := \mathit{Hip}\left(\frac{\vdots}{\varphi \wedge \varphi'}_{}\right).$$

$$\rightarrow I$$

$$Hip \begin{pmatrix} [\varphi] \\ \vdots \\ \psi \\ \varphi \to \psi \end{pmatrix} := Hip \begin{pmatrix} \varphi \\ \vdots \\ \psi \end{pmatrix} \setminus \{\varphi\}.$$

 $\vee E$

$$\begin{array}{cccc} \mathit{Hip} \left(\begin{array}{cccc} & [\varphi] & [\psi] \\ \vdots D_1 & \vdots D_2 & \vdots D_3 \\ \varphi \lor \psi & \dot{\chi} & \dot{\chi} \end{array} \right) := \\ & & \mathcal{H}ip(D_1) \cup \left(\mathit{Hip}(D_2) \smallsetminus \{\varphi\} \right) \cup \left(\mathit{Hip}(D_3) \smallsetminus \{\psi\} \right). \end{array}$$

 $\overline{\lor I, \bot}$ Son como $(\land E)$

$$\forall I, \bot$$
 Son como $(\land E)$ \longrightarrow Hip se define igual.

$$\begin{array}{ccc}
\vdots D & \vdots D \\
\frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & \frac{\varphi}{\varphi \vee \varphi'} \vee I
\end{array}$$

 $\boxed{ \lor I, \bot }$ Son como $(\land E)$ \longrightarrow Hip se define igual.

$$\begin{array}{ccc}
\vdots D & \vdots D \\
\frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & \frac{\varphi}{\varphi \vee \varphi'} \vee I
\end{array}$$

 $\longrightarrow E$ Es como $(\land I)$.

$$\begin{array}{ccc} \vdots D_1 & \vdots D_2 & \vdots D_1 & \vdots D_2 \\ \varphi & \varphi' & \wedge I & \frac{\varphi}{\varphi} & \varphi \to \psi \\ \hline \varphi \wedge \varphi' & \wedge I & \frac{\varphi}{\psi} & \psi & \to E \end{array}$$

 $\overline{\lor I, \bot}$ Son como $(\land E)$ \longrightarrow Hip se define igual.

 $\begin{array}{ccc}
\vdots D & \vdots D \\
\frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & \frac{\varphi}{\varphi \vee \varphi'} \vee I
\end{array}$

$$\frac{}{\varphi'} \wedge E = \frac{}{\varphi \vee \varphi'}$$

 $\longrightarrow E$ Es como $(\land I)$.

$$\frac{\vdots D_1 \quad \vdots D_2}{\varphi \quad \varphi'} \quad \wedge I \quad \frac{\vdots D_1 \quad \vdots D_2}{\varphi \quad \varphi \rightarrow \psi} \rightarrow E$$

 \overline{RAA} Es como $(\rightarrow I)$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

■ φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

■ *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
 - $\blacksquare \ \{\psi, \neg \varphi \to \neg \psi\} \vdash \varphi.$

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
- Principio de no contradicción: $\vdash \neg(\varphi \land \neg \varphi)$.

Relación entre verdad y demostrabilidad

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Relación entre verdad y demostrabilidad

¿Cómo se comparan las nociones semánticas con la de derivabilidad? Recordemos: $\Gamma \models \varphi \iff \text{para toda } v \text{ que valide } \Gamma, \|\varphi\|_v = 1.$

Relación entre verdad y demostrabilidad

¿Cómo se comparan las nociones semánticas con la de derivabilidad? Recordemos: $\Gamma \models \varphi \iff \text{para toda } v \text{ que valide } \Gamma, [\![\varphi]\!]_v = 1.$

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	F
Asignaciones (modelo)	Derivaciones (pruebas formales)

Relación entre verdad y demostrabilidad

¿Cómo se comparan las nociones semánticas con la de derivabilidad? Recordemos: $\Gamma \models \varphi \iff \text{para toda } v \text{ que valide } \Gamma, [\![\varphi]\!]_v = 1.$

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

lacktriangle Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

■ Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

lacktriangle Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

Teorema (Corrección)

Si
$$\Gamma \vdash \varphi$$
, entonces $\Gamma \models \varphi$.

■ Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

Teorema (Corrección)

Si $\Gamma \vdash \varphi$, entonces $\Gamma \models \varphi$.

Demostración.

Probamos por inducción en $D \in \mathfrak{D}$:

"Para todo Γ tal que $Hip(D) \subseteq \Gamma$, se da $\Gamma \models Concl(D)$ ".

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$PROP$$
 $D = \varphi$. Sea $\Gamma \subseteq PROP$.

$$Hip(D) = \{\varphi\} \subseteq \Gamma$$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$\fbox{PROP} \ D = \varphi. \ {\sf Sea} \ \Gamma \subseteq {\sf PROP}.$$

$$Hip(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma$$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$Hip(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma \implies \Gamma \models \varphi = Concl(D).$$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $\mathit{Hip}(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip \begin{pmatrix} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{pmatrix} \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \end{matrix}$$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{array} \wedge I \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2). \end{matrix}$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{array} \wedge I \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\parallel \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2).$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip \begin{pmatrix} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{pmatrix} \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2). \end{matrix}$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{array} \wedge I \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2). \end{matrix}$$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea v una asignación que valide $\Gamma \implies \llbracket \varphi_1 \rrbracket_v = 1$ y $\llbracket \varphi_2 \rrbracket_v = 1$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea v una asignación que valide $\Gamma \Longrightarrow \llbracket \varphi_1 \rrbracket_v = 1$ y $\llbracket \varphi_2 \rrbracket_v = 1$. Luego $\llbracket \varphi_1 \land \varphi_2 \rrbracket_v = \min\{\llbracket \varphi_1 \rrbracket_v, \llbracket \varphi_2 \rrbracket_v\} = 1$.

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{:}D,$
 - lacksquare para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \psi$, y

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - Ψ para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

lacksquare para todo Γ , $\mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

 $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{:}D,$

lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi. \\ \text{Supongamos} \,\, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $Hip(D)\subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, \mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{:}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

 $\operatorname{Supongamos} \operatorname{\it Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \operatorname{\it Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

 $\operatorname{Supongamos} \operatorname{\it Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \operatorname{\it Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Para todo Γ , $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

- $\rightarrow I$ Suponiendo HI para $\cdot D$,
 - \blacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

■ para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$.

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Sea v una asignación que valide Γ .

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

 $\operatorname{Supongamos} \operatorname{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \Longrightarrow \operatorname{Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Sea v una asignación que valide Γ . Casos en $[\![\varphi]\!]_v$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

Para todo $\Gamma,\ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{U}}\!\!D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \,\, \Gamma, \mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

Para todo $\Gamma,\ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:
 - 1 $\llbracket \varphi \rrbracket_{\nu} = 1 \implies \nu \text{ valida } \Gamma \cup \{\varphi\} \implies \llbracket \psi \rrbracket_{\nu} = 1$ $\implies \llbracket \varphi \to \psi \rrbracket_{\nu} = 1.$

Para todo $\Gamma,\ Hip(D)\subseteq\Gamma \implies \Gamma\models Concl(D)$

$$\longrightarrow I$$
 Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\dot{U}}}\!\!D,$

lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

- $\begin{array}{l} \text{ 1 } & [\![\varphi]\!]_v = 1 \implies v \text{ valida } \Gamma \cup \{\varphi\} \implies [\![\psi]\!]_v = 1 \\ & \implies [\![\varphi \to \psi]\!]_v = 1. \end{array}$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\dot{U}}}\!\!D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:
 - $\begin{array}{ccc} \blacksquare & \llbracket \varphi \rrbracket_{v} = 1 \implies v \text{ valida } \Gamma \cup \{\varphi\} \implies \llbracket \psi \rrbracket_{v} = 1 \\ & \Longrightarrow \llbracket \varphi \to \psi \rrbracket_{v} = 1. \end{array}$

