Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)					_	(Nome)							ume	i ma	atric	ola)															

CODICE = 975534

Α	В	С	D	E	

1	
2	0000
3	0000
4	00000
5	
6	
7	00000
8	0000
9	0000
10	00000

1. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: 1/2 B: N.E. C: $+\infty$ D: N.A. E: 0

2. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale A: N.A. B: $-\sin(1)$ C: 0 D: $2\cos(1)$ E: $\cos(1)$

3. La parte reale di $\log(||i||)(i+1)^4$ vale

A: 0 B: -1 C: 2 D: N.A. E: 1

4. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale

A: 1 B: 0 C: N.A. D: -1/e E: $\sqrt{2}$

5. Sia y la soluzione di y'(x) + y(x) = 0 con y(0) = k, $k \in \mathbb{R}$. Allora $\lim_{x \to +\infty} y(x)$ vale A: $1 + \pi$ B: k^2 per ogni $k \in \mathbb{R}$ C: N.E. D: N.A. E: 0

6. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: N.A. B: 4 C: π D: 0 E: ϵ

7. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: 0 B: N.E. C: 1 D: e E: N.A.

8. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: 1 B: $\frac{e^2-1}{4}$ C: N.A. D: N.E. E: 0

9. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale

A: $x - \frac{x^2}{2}$ B: $x - \pi/2$ C: $\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8}$ D: $\log(2) + \frac{x}{2} - \frac{1}{8}x^2$ E: N.A.

10. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: $\frac{\sin^4(1)}{2}$ B: 0 C: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ D: 1 E: N.A.

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	Ε	

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	

1. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale A: $-\sin(1)$ B: $\cos(1)$ C: $2\cos(1)$ D: N.A. E: 0

2. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ B: $\frac{\sin^4(1)}{2}$ C: 1 D: N.A. E: 0

3. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: N.A. B: 0 C: 1 D: N.E. E: e

- 4. Sia y la soluzione di y'(x) + y(x) = 0 con y(0) = k, $k \in \mathbb{R}$. Allora $\lim_{x \to +\infty} y(x)$ vale A: 0 B: N.E. C: N.A. D: k^2 per ogni $k \in \mathbb{R}$ E: $1 + \pi$
- 5. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale A: $x-\frac{x^2}{2}$ B: N.A. C: $x-\pi/2$ D: $\log(2)+\frac{x-1}{2}-\frac{(x-1)^2}{8}$ E: $\log(2)+\frac{x}{2}-\frac{1}{8}x^2$
- 6. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale A: N.A. B: $\sqrt{2}$ C: 0 D: 1 E: -1/e
- 7. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: 1/2 B: $+\infty$ C: 0 D: N.E. E: N.A.

8. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: N.A. B: 4 C: e D: 0 E: π

9. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: 0 B: N.A. C: N.E. D: 1 E: $\frac{e^2-1}{4}$

10. La parte reale di $\log(||i||)(i+1)^4$ vale

A: 2 B: 0 C: N.A. D: -1 E: 1

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)	(Nome)	(Numero di matricola)

1	00000
2	00000
3	00000
4	
5	
6	
7	00000
8	
9	
10	0000

1. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: N.A. B: e C: 4 D: 0 E: π

2. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale A: N.A. B: -1/e C: $\sqrt{2}$ D: 1 E: 0

3. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: N.A. B: N.E. C: 1 D: $\frac{e^2-1}{4}$ E: 0

4. Il limite

$$\lim_{x\to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: e B: 0 C: N.E. D: N.A. E: 1

5. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale A: $\log(2)+\frac{x}{2}-\frac{1}{8}x^2$ B: $x-\frac{x^2}{2}$ C: $x-\pi/2$ D: $\log(2)+\frac{x-1}{2}-\frac{(x-1)^2}{8}$ E: N.

6. Sia y la soluzione di y'(x)+y(x)=0 con $y(0)=k,\ k\in\mathbb{R}$. Allora $\lim_{x\to+\infty}y(x)$ vale A: $1+\pi$ B: N.A. C: k^2 per ogni $k\in\mathbb{R}$ D: 0 E: N.E.

7. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: $\frac{\sin^4(1)}{2}$ B: 1 C: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ D: N.A. E: 0

8. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale

A: 0 B: $2\cos(1)$ C: $-\sin(1)$ D: N.A. E: $\cos(1)$

9. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: N.E. B: N.A. C: 1/2 D: 0 E: $+\infty$

10. La parte reale di $\log(||i||)(i+1)^4$ vale

A: 1 B: N.A. C: -1 D: 2 E: 0

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)	(Nome)	(Numero di matricola)

 ${\rm CODICE} = 048253$

1	00000
2	00000
3	0000
4	00000
5	
6	
7	
8	00000
9	
10	0000

1. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale

A: $-\sin(1)$ B: 0 C: $\cos(1)$ D: $2\cos(1)$ E: N.A

2. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: $\frac{\sin^4(1)}{2}$ B: 0 C: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ D: 1 E: N.A.

3. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: N.A. B: $+\infty$ C: N.E. D: 0 E: 1/2

4. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale

A: 0 B: 1 C: N.A. D: -1/e E: $\sqrt{2}$

5. Sia y la soluzione di y'(x) + y(x) = 0 con $y(0) = k, k \in \mathbb{R}$. Allora $\lim_{x \to +\infty} y(x)$ vale

A: N.E. B: k^2 per ogni $k \in \mathbb{R}$ C: N.A. D: 0 E: $1 + \pi$

6. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: 4 B: π C: N.A. D: e E: 0

7. La parte reale di $\log(\|i\|)(i+1)^4$ vale

A: -1 B: 0 C: 2 D: 1 E: N.A.

8. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale

A:
$$x - \pi/2$$
 B: $\log(2) + \frac{x}{2} - \frac{1}{8}x^2$ C: $\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8}$ D: $x - \frac{x^2}{2}$ E: N.A

9. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: N.A. B: 0 C: N.E. D: e E: 1

10. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: 1 B: $\frac{e^2-1}{4}$ C: N.E. D: N.A. E: 0

(Cognome)												(No	me)			(Nı	ımeı	ro di	ma	trico	la)					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc \overline{ \bullet \bigcirc \bigcirc \bigcirc \bigcirc }$

(Cognome)														(No	me)			(Nı	ıme	ro di	i ma	trico	la)			

Α	В	С	D	\mathbf{E}	
	_	_	_		

(Cognome)														(No	me)			(Nı	ıme	ro di	i ma	trico	la)			

Α	В	С	D	\mathbf{E}	
	_	_	_		

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

(Cognome)														(No	me)			(Nı	ıme	ro di	i ma	trico	la)			

 ${\rm CODICE} = 048253$

Α	В	С	D	\mathbf{E}	
	_	_	_		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)												(No	me)				ume	li m	atri	col	a)							

Α	В	С	D	\mathbf{E}	
11	ט	\circ	יי	ш	

1	00000
2	00000
3	00000
4	
5	
6	
7	00000
8	
9	
10	0000

1. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A:
$$\frac{\sin^4(1)}{2}$$
 B: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ C: -1 D: N.A. E: 1

2. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale

A:
$$-1/e$$
 B: N.A. C: $\sqrt{2}$ D: 1 E: 0

3. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: N.A. B: 0 C:
$$+\infty$$
 D: N.E. E: 1

4. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: N.A. B: e C:
$$+\infty$$
 D: 0 E: π

5. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale

A:
$$x - \pi/2$$
 B: $\log(2) + \frac{x}{2} - \frac{1}{8}x^2$ C: $x - \frac{x^2}{2}$ D: N.A. E: $\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8}$

6. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale

A: N.A. B:
$$-\sin(1)$$
 C: $\cos(1)$ D: $\cos(\sqrt{2})$ E: 0

7. Sia y la soluzione di y'(x) + y(x) = 0 con $y(0) = k, k \in \mathbb{R}$. Allora $\lim_{x \to +\infty} y(x)$ vale

A: N.A. B:
$$k^2$$
 per ogni $k \in \mathbb{R}$ C: 0 D: N.E. E: $1 + \pi$

8. La parte reale di $\log(\|i\|)(i+1)^4$ vale

9. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

10. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: N.A. B: 1 C: N.E. D: 0 E:
$$\frac{e^2+1}{4}$$

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 620840

A	В	С	D	E

1	00000
2	0000
3	
4	
5	
6	
7	00000
8	00000
9	
10	

1. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: N.A. B: 3/e C: 1/2 D: N.E. E: 0

2. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale

A: 1 B: -1/e C: 0 D: N.A. E: $\sqrt{2}$

3. La parte reale di $\log(||i||)(i+1)^4$ vale

A: -1 B: 0 C: 1 D: 2 E: N.A.

4. Sia y la soluzione di y'(x)+y(x)=0 con $y(0)=k,\ k\in\mathbb{R}.$ Allora $\lim_{x\to+\infty}y(x)$ vale

A: N.A. B: $1 + \pi$ C: N.E. D: 0 E: k^2 per ogni $k \in \mathbb{R}$

5. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: 0 B: $\frac{e^2+1}{4}$ C: 1 D: N.A. E: N.E.

6. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: e B: 0 C: N.A. D: π E: $+\infty$

7. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale

A: $-\sin(1)$ B: $\cos(1)$ C: N.A. D: $\cos(\sqrt{2})$ E: 0

8. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: 1 B: 0 C: N.E. D: N.A. E: $+\infty$

9. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale

A:
$$\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8}$$
 B: $x - \frac{x^2}{2}$ C: N.A. D: $x - \pi/2$ E: $\log(2) + \frac{x}{2} - \frac{1}{8}x^2$

10. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: $\frac{\sin^4(1)}{2}$ B: -1 C: N.A. D: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ E: 1

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	Ε	
4.1	ב	\sim			

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	

1. Sia y la soluzione di y'(x)+y(x)=0 con $y(0)=k,\ k\in\mathbb{R}$. Allora $\lim_{x\to+\infty}y(x)$ vale A: N.E. B: $1+\pi$ C: k^2 per ogni $k\in\mathbb{R}$ D: N.A. E: 0

2. La parte reale di $\log(\|i\|)(i+1)^4$ vale

A: -1 B: 0 C: 1 D: N.A. E: 2

3. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: N.A. B: $+\infty$ C: 1 D: N.E. E: 0

4. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: -1 B: 1 C: $\frac{\sin^4(1)}{2}$ D: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$ E: N.A.

5. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: $+\infty$ B: π C: e D: N.A. E: 0

6. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale

A: $\sqrt{2}$ B: 0 C: 1 D: -1/e E: N.A.

7. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale

A:
$$\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8}$$
 B: N.A. C: $x - \pi/2$ D: $\log(2) + \frac{x}{2} - \frac{1}{8}x^2$ E: $x - \frac{x^2}{2}$

8. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: $\frac{e^2+1}{4}$ B: 1 C: N.A. D: N.E. E: 0

9. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: N.A. B: 1/2 C: N.E. D: 0 E: 3/e

10. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale

A: 0 B: N.A. C: $\cos(\sqrt{2})$ D: $-\sin(1)$ E: $\cos(1)$

Corso di Laurea in Ingegneria Elettronica, Informatica & Telecomunicazioni Prova di Analisi Matematica 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)								-		•	(No	ome)	•		_	(Numero di matricola)											

A B C D E

1	00000
2	00000
3	0000
4	00000
5	
6	
7	00000
8	
9	
10	0000

1. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} \frac{\log(n)}{4^{(n^2)}} (x - e)^n$$

A: 0 B: N.A. C: $+\infty$ D: e E: π

2. Data $f(x) = \sin(\tan(x))$, allora $f'(\pi/4)$ vale A: $\cos(1)$ B: 0 C: $-\sin(1)$ D: N.A. E: $\cos(\sqrt{2})$

3. Il minimo della funzione $f(x) = x \log(x)$ per x > 0 vale A: N.A. B: 1 C: $\sqrt{2}$ D: -1/e E: 0

4. L'integrale

$$\int_{-1}^{1} \sin^3(x) \, dx$$

vale

A: N.A. B: $\frac{\sin^4(1)}{2}$ C: 1 D: -1 E: $\frac{8}{3}(2 + \cos(1))\sin^4(\frac{1}{2})$

5. L'integrale

$$\int_{1}^{e} x \log(x) \, dx$$

vale

A: 0 B: 1 C: $\frac{e^2+1}{4}$ D: N.E. E: N.A.

6. Il limite

$$\lim_{x \to +\infty} \frac{3^x - x^e}{x^e + xe^x}$$

vale

A: 0 B: N.E. C: 1/2 D: 3/e E: N.A.

- 7. Sia y la soluzione di y'(x) + y(x) = 0 con y(0) = k, $k \in \mathbb{R}$. Allora $\lim_{x \to +\infty} y(x)$ vale A: k^2 per ogni $k \in \mathbb{R}$ B: $1 + \pi$ C: N.A. D: 0 E: N.E.
- 8. La parte reale di $\log(||i||)(i+1)^4$ vale A: N.A. B: 2 C: 0 D: -1 E: 1
- 9. Il limite

$$\lim_{x \to 0^+} |\log(x)|^{\frac{1}{x}}$$

vale

A: N.A. B: N.E. C: 0 D: $+\infty$ E: 1

10. Il polinomio di Taylor di grado 2 in $x_0=1$ della funzione $\log(1+x)$ vale

A:
$$x - \pi/2$$
 B: $x - \frac{x^2}{2}$ C: $\log(2) + \frac{x}{2} - \frac{1}{8}x^2$ D: N.A. E: $\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8}$

	(Cognome)												(N	ome)			(N	ume	ro d	trice	ola)			

Α	В	С	D	Ε	

1	
2	
3	
4	
5	
_	
6	
6 7	
7	
7 8	

	(Cognome)													(No	me)			(Nı	ıme	ro di	i ma	trico	la)		

Α	В	С	D	\mathbf{E}	
	_	_	_		

1	$\boxed{ \bullet \circ \circ \circ \circ}$
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

	(Cognome)												(N	ome)			(N	ume	ro d	trice	ola)			

CODICE = 957291

Α	В	С	D	\mathbf{E}	
11	ט	\circ	יי	ш	

$\bigcirc \bullet \bigcirc \bigcirc \bigcirc$

	(Cognome)												(N	ome)			(N	ume	ro d	trice	ola)			

Α	В	С	D	\mathbf{E}	
	_	_	_		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Elettronica, Informatica &

Telecomunicazioni Prova di Analisi Matematica 1

13 febbraio 2012

PARTE B

1. Determinare l'immagine della funzione

$$f(x) = e^{-x} \frac{x^2 + 1}{x - 1}$$

studiando anche eventuali massimi e minimi (locali e assoluti).

Soluzione: Osserviamo che agli estremi del dominio si hanno i seguenti limiti

$$\lim_{x \to +\infty} f(x) = 0 \qquad \lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to 1^+} f(x) = +\infty \qquad \lim_{x \to 1^-} f(x) = -\infty.$$

Studiando la derivata prima si ha

$$f'(x) = -\frac{x(3 - 2x + x^2)}{e^x(-1 + x)^2},$$

e risulta $f' \ge 0$ per $x \le 0$. In $x_0 = 0$ si ha quindi un punto di massimo locale. Massimo e minimo assoluto non esistono.

2. Studiare il problema di Cauchy

$$\begin{cases} y''(t) + 9y(t) = 0, \\ y(0) = \alpha, \\ y'(0) = \beta, \end{cases}$$

e determinare per quali $\alpha, \beta \in \mathbb{R}$ le soluzioni sono delle funzioni dispari.

Soluzione: L'integrale generale è $y(x) = A\sin(3x) + B\cos(3x)$. Il problema di Cauchy ha come soluzione $y(x) = \frac{3\alpha\cos(3t) + \beta\sin(3t)}{3}$ e per essere dispari serve che α sia uguale a zero, mentre β può essere qualsiasi numero.

3. Studiare, al variare di $\beta > 0$, il seguente limite

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} t \sin(t^2) dt}{x^\beta}.$$

Soluzione: L'integrale in questione si può calcolare esattamente e risulta $\int_0^{x^2} t \sin(t^2) dt =$ $\sin^2(\frac{x^4}{2})$. Pertanto si tratta di calcolare

$$\lim_{x \to 0^+} \frac{\sin^2(\frac{x^4}{2})}{x^{\beta}}.$$

Usando i limiti notevoli tale limite è equivalente a

$$\lim_{x \to 0^+} \frac{(\frac{x^4}{2})^2}{x^\beta} = \lim_{x \to 0^+} \frac{x^8}{4x^\beta}.$$

Il limite pertanto vale 1/4 se $\beta = 8$, 0 se $0 < \beta < 8$ e $+\infty$ se $\beta > 8$. Allo stesso risultato si poteva arrivare anche usando ripetutamente il teorema de L'Hopital, senza calcolare esplicitamente l'integrale.

- 4. Sia $\{a_n\}$ una successione di numeri reali strettamente positivi e strettamente crescente. Studiare le seguenti proposizioni e dire se qualcuna è vera, motivando la risposta.
 - A) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{a_n}$ converge;

 - B) $\sum_{n=1}^{+\infty} \frac{1}{a_n} = +\infty;$ C) $\sum_{n=1}^{+\infty} \frac{a_n}{n} = +\infty;$ D) $\sum_{n=1}^{+\infty} \frac{1}{a_n^2} < +\infty.$

Soluzione: Osserviamo che $\lim_n a_n$ esiste sempre o finito e positivo, o infinito.

La A) è falsa, infatti se $\lim_n a_n = L < +\infty$, allora per la serie viene violata la condizione necessaria in quanto il limite per $n \to +\infty$ di $\frac{(-1)^n}{a_n}$ non è zero.

La B) è falsa, basta infatti prendere $a_n = n^2$ e la serie converge.

La C) è vera, infatti $\frac{a_n}{n}>\frac{a_0}{n}$ e quindi la serie è maggiore di un multiplo della serie armonica.

La D) è falsa, infatti basta prendere $a_n = \sqrt{n}$ in maniera tale che la serie diventa $\sum_{n=1}^{+\infty} \frac{1}{a_n^2} = \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$.