Programme de la semaine 21 (du 18/03 au 24/03).

Espaces vectoriels, applications linéaires

Reprise en insistant sur :

- Somme de deux sev, somme directe (définition : unicité de l'écriture d'un vecteur de F + G, caractérisation par la condition $F \cap G = \{0\}$), sev supplémentaires, caractérisation.
- Définition d'une application linéaire, caractérisation, propriétés. Vocabulaire : endo-iso-automorphismes, formes linéaires.
- Noyau et image d'une application linéaire ; ce sont des sev. Caractérisation de l'injectivité et de la surjectivité.
- Equation linéaire : définition, structure de l'ensemble des solutions, exemples des systèmes linéaires et des équations différentielles linéaires d'ordre 1 (ou 2).
- Structure de \mathbb{K} -espace vectoriel de $\mathcal{L}(E,F)$. La composée de deux applications linéaires est linéaire, règles de calcul avec \circ , +, ., la réciproque d'un isomorphisme est linéaire, la composée de deux isomorphismes est un isomorphisme. Puissance d'endomorphisme.
- Projections et symétries : définition et propriétés. Caractérisations : si p est un endomorphisme tel que $p \circ p = p$, c'est une projection ; si s est un endomorphisme tel que $s \circ s = \mathrm{id}_E$, c'est une symétrie.

Polynômes (début)

- Ensemble $\mathbb{K}[X]$, degré, coefficient dominant, ensemble $\mathbb{K}_n[X]$. Opérations : $+ \cdot \times \circ$. Formules associées pour les degrés. Structure de \mathbb{K} -ev de $\mathbb{K}[X]$, $\mathbb{K}_n[X]$ en est un sev.
- Divisibilité, division euclidienne.
- Fonctions polynomiales, évaluation, racine, traduction en termes de divisibilité. Racines multiples. Nombre maximal de racines d'un polynôme de degré n.
- Polynôme dérivé, degré du polynôme dérivé. Dérivée k-ième de X^n . Formule de Leibniz.

Pas encore au programme : formule de Taylor et caractérisation de la multiplicité des racines par les dérivées, polynômes scindés, factorisation dans $\mathbb{R}[X]$ ou dans $\mathbb{C}[X]$

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - Si $f \in \mathcal{L}(E, F)$, alors $\operatorname{Ker}(f)$ est un sev de E et $\operatorname{Im}(f)$ est un sev de F.
 - Une application $f \in \mathcal{L}(E, F)$ est injective si et seulement si son noyau est $\{0\}$.
 - Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors $\operatorname{Ker}(p)$ et $\operatorname{Im}(p)$ sont supplémentaires dans E.
 - Unicité dans la division euclidienne des polynômes.

Semaine suivante : Applications linéaires, polynômes.