Liam Hardiman December 7, 2018

260A - Homework 4

Problem 1. Let E and F be two Banach spaces, and let $T \in \mathcal{L}(E, F)$. Prove that $\mathrm{Im}(T)$ is closed if and only if there exists a constant C > 0 such that

$$\operatorname{dist}(x, \ker T) \le C \cdot ||Tx||, \quad \forall x \in E.$$

Proof. First suppose that the given inequality holds for some C > 0. Let Tx_n be a convergent sequence in the image of T. Then the sequence of $x_n + \ker T$'s converges in the quotient $E/\ker T$ by the given inequality. Since T is continuous, $\ker T$ is closed and the quotient $E/\ker T$ is complete. Thus, $x_n + \ker T$ converges to some $x + \ker T$. By continuity, Tx_n then converges to Tx, which is in the image of T. Thus, the image of T is closed.

Conversely, suppose that $\operatorname{Im}(T)$ is closed. Then the image is a Banach space. By the first isomorphism theorem, T induces an isomorphism $\tilde{T}: E/\ker T \to \operatorname{Im}T$. By the open mapping theorem, \tilde{T} is a homeomorphism, and the statement that \tilde{T} is continuous is equivalent to the desired inequality.

Problem 2. Prove that if H is a Hilbert space and B is a Banach space, then the space $\mathcal{L}_c(B, H)$ of compact operators $B \to H$ is the closure of the set of operators in $\mathcal{L}(B, H)$ which are of finite rank.

Proof. Suppose T is a compact operator $B \to H$. By the compactness of T, for any n > 0 we can find a finite covering of $\overline{T[B(0,1)]}$, the closure of the image of the unit ball in B, by balls of radius $\frac{1}{n}$. Say $\overline{T[B(0,1)]} \subseteq \bigcup_{j=1}^{M_n} B(y_j, \frac{1}{n})$ for some finite $M_n > 0$. Let P_n be the projection onto the vectors y_1, \ldots, y_{M_n} . Then $P_n T$ is clearly of finite rank as P_n has finite rank.

Now given any $x \in B(0,1) \subseteq B$, we can find a y_j with $||Tx - y_j||_H \le \frac{1}{n}$. We use this to show that the P_nT 's approximate T. We have

$$||P_n Tx - Tx||_H \le ||P_n Tx - y_j||_H + ||y_j - Tx||_H$$

$$\le ||Tx - y_j||_H + ||y_j - Tx||_H$$

$$\le \frac{2}{n}.$$

The fact that $||P_nTx-y_j||_H \leq ||Tx-y_j||_H$ follows from the fact that P_n projects onto the space spanned by the y_k 's. Sending $n \to \infty$ shows that the finite rank P_nT 's approximate T, so the compact operators $B \to H$ are in the closure of the set of finite rank operators in $\mathcal{L}(B, H)$.

Conversely, suppose that T_n is a sequence of finite rank operators in $\mathcal{L}(B, H)$ that converges to $T \in \mathcal{L}(B, H)$. Choose N large so that $||T_n - T|| < \epsilon$ for all n > N. Since finite-rank operators are compact, for any n we can cover $\overline{T_n[B(0,1)]}$ by finitely many ϵ -balls. Since $||T_n x - Tx||_H < \epsilon$ for any $x \in B(0,1)$,

we have that the 2ϵ -balls with the same centers cover $\overline{T[B(0,1)]}$. Sine ϵ was arbitrary, this shows that the closed image of the unit ball under T is compact, so T is a compact operator.

Problem 3. Let B be a complex Banach space, $B \neq \{0\}$, and let $T \in \mathcal{L}(B,B)$. Prove the following.

(i) There exists a non-empty compact set $\operatorname{Spec}(T) \subseteq \mathbb{C}$, called the spectrum of T, such that the resolvent $R(z) = (T - zI)^{-1} \in \mathcal{L}(B, B)$ exists if and only if $z \notin \operatorname{Spec}(T)$.

Problem 4. Let $E = L^p[0,1]$ with $1 \le p < \infty$. Given $u \in E$, set

$$Tu(x) = \int_0^x u(t) \ dt.$$

(i) Prove that $T: E \to E$ is compact.

Proof. Fix $u \in L^p[0,1]$ and suppose that $x_n \to x$ in [0,1]. Since $|\chi_{[0,x_n]}(t)u(t)| \le |u(t)| \in L^p[0,1]$ for all n, the dominated convergence theorem tells us that

$$Tu(x_n) = \int_0^1 \chi_{[0,x_n]}(t)u(t) \ dt \to \int_0^1 \chi_{[0,x]}(t)u(t) \ dt = Tu(x).$$

That is, T maps E into C[0,1]. Suppose we're given a bounded sequence $u_n \in L^p[0,1]$, i.e. $||u_n||_{L^p} \leq M < \infty$. We then have

$$|Tu_n(x)| = \left| \int_0^1 \chi_{[0,x]}(t) u_n(t) dt \right|$$

$$\leq \int_0^1 \chi_{[0,x]}(t) |u_n(t)| dt$$

$$\leq x^{1/q} \cdot ||u||_{L^p}$$

$$\leq M,$$

where $\frac{1}{p} + \frac{1}{q} = 1$ (the inequality still holds if p = 1). Thus, the sequence of continuous functions Tu_n is uniformly bounded. Now fix $\epsilon > 0$. For any $x < y \in [0, 1]$ and p > 1 we have

$$|Tu_n(x) - Tu_n(y)| = \left| \int_0^1 \chi_{[x,y]}(t) u_n(t) \, dt \right|$$

$$\leq \int_0^1 \chi_{[x,y]}(t) |u_n(t)| \, dt$$

$$\leq |y - x|^{1/q} \cdot ||u_n||_{L^p}$$

$$\leq |y - x|^{1/q} \cdot M.$$

We can choose |y-x| small enough so that the above quantity is bounded by ϵ , which shows that the sequence of continuous functions Tu_n is equicontinuous (I'm not sure how get this to work for p=1). By the Arzela-Ascoli theorem we have that Tu_n has a uniformly convergent subsequence. Since uniform convergence implies L^p convergence, we have that Tu_n has a convergent subsequence in E, so T is a compact operator.

(ii) Compute the eigenvalues of T and the spectrum of T.

Solution. In our discussion of part (i) we showed that T maps $L^p[0,1]$ into C[0,1]. In particular, if $Tu = \lambda u$, then u must be continuous. But the fundamental theorem of calculus tells us that the integral of a continuous function is differentiable, so u is actually differentiable. Differentiating both sides of the eigenvalue equation gives $u = \lambda u'$. If $\lambda \neq 0$, then the solutions to this differential equation are of the form $u(x) = Ce^{x/\lambda}$, $C \in \mathbb{C}$. However, we must also have

$$\lambda u(0) = Tu(0) = \int_0^0 u(t) dt = 0,$$

so $u(0) = Ce^0 = 0$. But then C must be zero, which would force u to be identically zero. We conclude that there are no eigenvectors for $\lambda \neq 0$. If $\lambda = 0$ then any L^p function with vanishing integral is an eigenfunction with eigenvalue zero.

Problem 5. Let X, Y, and Z be three Banach spaces with norms $\|\cdot\|_X$, $\|\cdot\|_Y$, and $\|\cdot\|_Z$. Assume that $X \subseteq Y$ with compact injection and that $Y \subseteq Z$ with continuous injection. Prove that for any $\epsilon > 0$ there exists $C_{\epsilon} \geq 0$ such that

$$||u||_Y \le \epsilon ||u||_X + C_\epsilon ||u||_Z$$

for all $u \in X$.

Proof. Suppose the proposition were false: that for some ϵ and for every $C \geq 0$ there exists a u_C such that

$$||u_C||_Y > \epsilon ||u_C||_X + C||u_C||_Z$$

for all $x \in X$. Set C = n and let u_n be a sequence in X such that the above equality holds, i.e.

$$||u_n||_Y > \epsilon ||u_n||_X + n||u_n||_Z. \tag{1}$$

We can assume without loss of generality that the sequence u_n has norm 1 in X, since replacing u_n with $\frac{u_n}{\|u_n\|_X}$ gives the same inequality after multiplying through by $\|u_n\|_X$. By the compactness of the injection of X into Y, we have that u_n has a convergent subsequence in Y. Without loss of generality, assume then that u_n converges in Y. Rearranging (1) gives

$$n||u_n||_Z < ||u_n||_Y - \epsilon ||u_n||_X \le ||u_n||_Y$$

$$\iff \|u_n\|_Z < \frac{1}{n} \|u_n\|_Y.$$

Since u_n converges in Y, the right-hand side of the above inequality must go to zero. Since Y continuously embeds into Z and u_n converges in Y, we must have that u_n converges to zero in both Y and Z. But then the left-hand side of (1) will tend to 0 and the right-hand side will tend to ϵ : a contradiction. We conclude that the proposition is true.

In class we showed (using the Arzela-Ascoli theorem) that $C^1([0,1])$ compactly embeds into C([0,1]). We also have that C([0,1]) continuously embeds into $L^1([0,1])$ by $\int_0^1 |f| dx \le ||f||_{\infty}$. By the proposition we then have that for all $\epsilon > 0$ there is some C_{ϵ} with

$$\max_{x \in [0,1]} |f(x)| \le \epsilon \cdot \max_{x \in [0,1]} |f'(x)| + C_{\epsilon} ||f||_{L^{1}}$$

for all
$$f \in C^1([0,1])$$
.