Формальная логика. Метод математической индукции.*

- 1. Определите, является ли утверждение всегда истинным $(\neg Q \lor (P \Rightarrow Q)) \Rightarrow$ $\neg P$
- 2. Даны следующие утверждения и предикаты $(x, y \in \mathbb{R})$:
 - А: Все деревья высокие;
 - B(x): x+5=10:
 - \bullet $C(x,y): x^2 \leq y$:
 - $E(x; y) : x^2 + y^2 = 0.$

Среди следующих утверждений укажите истинные:

(a) A;

(g) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : B(x) \Rightarrow A$:

(b) C(x,-1);

(h) $\forall x \in \mathbb{R} \ \exists u \in \mathbb{R} : B(x) \Rightarrow E(x; u)$:

- (c) $A \wedge B(5)$; (i) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} : B(x) \wedge E(x; y)$;
- $\begin{array}{ll} \text{(d)} & A \Rightarrow B(10); \\ \text{(e)} & \forall x \in \mathbb{R} : B(x); \end{array} \\ \begin{array}{ll} \text{(j)} & \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : E(x;y) \Rightarrow C(x;y); \\ \text{(k)} & \forall x \in \mathbb{R} : B(x) \Rightarrow C(x;y); \end{array}$

- (f) $\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} : C(x;y);$ (l) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : B(x) \Rightarrow B(y).$
- 3. Пусть $x, y, z \in \mathbb{R}$. Какие из следующих утверждений верны?
 - (a) $\forall x \ \forall y \ \exists z : xy^2 < z$:

(c) $\exists z \ \forall x \ \exists y : xy^2 = z$:

(b) $\forall x \ \forall z \ \exists y : xy^2 \leqslant z$;

- (d) $\forall z \; \exists x \; \forall y : xy^2 \leqslant z$;
- 4. Записать отрицание к утверждению, не используя знак отрицания. Что верно: утверждение или его отрицание?
 - (a) $\forall x : x^2 > 0$:

(c) $\exists x : x^2 < 0$:

(b) $\forall x \; \exists u : x^2 > u^2$:

- (d) $\exists x \ \forall y : xy > 0$;
- 5. Какие из следующих утверждений верны?
 - (a) $\forall x \in \mathbb{R} : x > 2 \Rightarrow |x| > 2$;
 - (b) $\forall x \in \mathbb{R} : x < 2 \Rightarrow |x| < 2$:
 - (c) $\forall x \ \forall y \ \exists z : (y > x) \Rightarrow (y > z) \land (z > x)$:
 - (d) $\forall \varepsilon \ \forall x : |x-3| < \varepsilon \Rightarrow |x^2-9| < 10\varepsilon$.

6. Докажите, что для любого натурального n выполнено равенство

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

- 7. Докажите, что для любого натурального $n \ge 5$ верно: $3^{n-1} > 2n^2 n$.
- 8. Последовательность c_n задана рекуррентно:

$$c_1 = 6$$
, $c_{n+1} = 2c_n - 3n + 2$.

Докажите, что $c_n = 2^n + 3n + 1$.

при составлении листка использованы материалы Ильи Шурова из открытых источников.

Домашнее задание

1. Являются ли утверждения логически эквивалентными?

$$(P \lor Q) \Rightarrow R$$
 и $(P \Rightarrow R) \lor (Q \Rightarrow R)$

- 2. Записать отрицания ко всем утверждениям задачи 3, не используя знак от-
- 3. Какие из следующих утверждений верны?
 - (a) $\forall x \in \mathbb{R} : |x 3| < 1 \Rightarrow |x| < 4$:
 - (b) $\forall x \in \mathbb{R} : |x 3| > 1 \Rightarrow |x| > 4$:
 - (c) $\forall \varepsilon \ \forall x : |x-3| < \min(\varepsilon; 1) \Rightarrow |x^2-9| < 10\varepsilon$:
 - (d) $\forall \varepsilon \exists \delta \forall x : (\delta > 0) \land (|x 3| < \delta) \land (\varepsilon > 0) \Rightarrow |x^2 9| < \varepsilon$.
- 4. Последовательность a_n задана рекуррентно:

$$a_1 = 2$$
, $a_2 = 3$, $a_{n+1} = 3a_n - 2a_{n-1}$.

Докажите, что $a_n = 2^{n-1} + 1$.

- 5. Доказать, что при каждом натуральном n число $4^n + 15n 1$ делится на 9.
- 6. Докажите, что для любого натурального n выполнено равенство

$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Задачи для самостоятельного решения

1. Докажите, что высказывание всегда истинно

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

- 2. Среди следующих утверждений, построенных из предикатов из задачи 2, укажите истинные:
 - (a) B(5);

(g) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : \neg C(x; y)$:

- (b) $A \vee B(5)$; (h) $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} : B(x) \Rightarrow E(x;y)$;
- (c) $A \Rightarrow B(5)$;
- (i) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : C(x;y) \Rightarrow E(x;y)$:

- (j) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : (C(x; y) \land E(x; y)) \Rightarrow \neg B(x))$: (e) $\neg C(3;4)$; (k) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} : B(x) \Rightarrow B(y)$);

(d) $A \wedge B(10)$;

- (f) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : C(x; y);$ (l) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : B(x) \Rightarrow B(y).$
- 3. Доказать, что при каждом натуральном n справедливо неравенство

$$\frac{n}{2} < 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^n - 1} \leqslant n.$$

- 4. Доказать, что при каждом натуральном n выражение $2n^3 + 3n^2 + 7n$ делится на 6.
- 5. Доказать, что при каждом натуральном n выражение $7^n + 12n + 17$ делится на 18.
- 6. Докажите неравенство для всех натуральных $n: 4^n > 7n 5$.
- 7. Докажите неравенство для всех натуральных $n: 4^n \ge n^2 + 3^n$.
- 8. Доказать, что при каждом натуральном n справедливо равенство

$$1 \cdot 4 + 2 \cdot 7 + 3 \cdot 10 + \ldots + n(3n+1) = n(n+1)^2.$$

9. Доказать, что при каждом натуральном n справедливо равенство

$$1 + \frac{7}{3} + \frac{13}{9} + \ldots + \frac{6n-5}{3^{n-1}} = \frac{2 \cdot 3^n - 3n - 2}{3^{n-1}}.$$