Programming in Basic computer

Machine Language

- Program: List of instruction that directs the computer to perform a required data-processing task.
- Computer only execute binary form of the program.
- Program written for a computer may be in following categories:
- 1. Binary code
- 2. Octal/hexadecimal code
- 3. Symbolic code (use letter, numerals or special character): Translation is done using assembler. "Assembly language program"
- 4. High-level programming language.

TABLE 6-2 Binary Program to Add Two Numbers TABLE 6-3 Hexadecimal Program to Add Two Numbers

Location	Instruction code	Location	Instruction
0	0010 0000 0000 0100	000	2004
1	0001 0000 0000 0101	001	1005
10	0011 0000 0000 0110	002	3006
10	-	003	7001
11	0111 0000 0000 0001	004	0053
100	0000 0000 0101 0011	005	FFE9
101	1111 1111 1110 1001	006	0000
110	0000 0000 0000 0000		

 TABLE 6-4 Program with Symbolic Operation Codes

Location	Instruction	Comments
000	LDA 004	Load first operand into AC
001	ADD 005	Add second operand to AC
002	STA 006	Store sum in location 006
003	HLT	Halt computer
004	0053	First operand
005	FFE9	Second operand (negative)
006	0000	Store sum here

TABLE 6-5 Assembly Language Program to Add Two Numbers

	ORG 0 LDA A ADD B STA C HLT	/Origin of program is location 0 /Load operand from location A /Add operand from location B /Store sum in location C /Halt computer
A, B, C,	DEC 83 DEC -23 DEC 0	/Decimal operand /Decimal operand /Sum stored in location C
	END	/End of symbolic program

Assembly Language

- Rules:
- 1. Label field: empty or specify a symbolic address
- 2. Instruction field: machine instruction or pseudo instruction Instruction field consist of following items:
- a. MRI
- b. Non-MRI
- c. Pseudoinstruction

CLA	non-MRI
ADD OPR	direct address MRI
ADD PTR I	indirect address MR]

3. Comment field

TABLE 6-7 Definition of Pseudoinstructions

Symbol	Information for the Assembler
ORG N	Hexadecimal number N is the memory location for the instruction of operand listed in the following line
END	Denotes the end of symbolic program
DEC N	Signed decimal number N to be converted to binary
HEX N	Hexadecimal number N to be converted to binary

Example

TABLE 6-8 Assembly Language Program to Subtract Two Numbers

TABLE 6-9 Listing

Table 6 0

8	Symbol	Hexadecimal code	Description	
=	AND	0 or 8	AND M to AC	
	ADD	1 or 9	Add M to AC , carry to E	
	LDA	2 or A	Load AC from M	
	STA	3 or B	Store AC in M	
	BUN	4 or C	Branch unconditionally to m	
	BSA	5 or D	Save return address in m and branch to $m+1$	
_	ISZ	6 or E	Increment M and skip if zero	
	CLA	7800	Clear AC	
	CLE	7400	Clear E	
	CMA	7200	Complement AC	
	CME	7100	Complement E	
	CIR	7080	Circulate right E and AC	
	CIL	7040	Circulate left E and AC	
	INC	7020	Increment AC,	
	SPA	7010	Skip if AC is positive	
	SNA	7008	Skip if AC is negative	
	SZA	7004	Skip if AC is zero	
	SZE	7002	Skip if E is zero	
	HLT	7.001	Halt computer	
	INP	F800	Input information and clear flag	
	OUT	F400	Output information and clear flag	

Skip if input flag is on

Turn interrupt on

Turn interrupt off

Skip if output flag is on

F200

F100

F080.

F040

SKI

SKO

ION

IOF

TABLE 6-1 Computer Instructions

MIN, SUB, DIF,	ORG 100 LDA SUB CMA INC ADD MIN STA DIF HLT DEC 83 DEC -23 HEX 0	/Origin of program is location 100 /Load subtrahend to AC /Complement AC /Increment AC /Add minuend to AC /Store difference /Halt computer /Minuend /Subtrahend /Difference stored here
<i>D</i> п,	END	/End of symbolic program

Hexadeci	mal code		
Location	Content	Symbolic program	
			ORG 100
100	2107		LDA SUB
101	7200		CMA
102	7020		INC
103	1106		ADD MIN
104	3108		STA DIF
105	7001		HLT
106	0053	MIN,	DEC 83
107	FFE9	SUB,	DEC -23
108	0000	DIF,	HEX 0 END

Assembler

TABLE 6-10 Hexadecimal Character Code

Character	Code	Character	Code	Character	Code	
A	41	Q	51	6	36	
В	42	R	52	7	37	
С	43	S	53	8	38	
D	44	Τ	54	9	39	
E	45	U	55	space	20	
F	46	V	56	(28	
G	47	W	57)	29	
Н	48	X	58	*	2A	
I	49	Y	59	+	2B	
J	4A	Z	5 A	,	2C	
K	4B	0	30	_	2D	
L	4C	1	31		2E	
M	4D	2	32	1	2F	
N	4E	3	33	=	3D	
Ο	4F	4	34	CR	0D	(carriage
P	50	5	35			return)

TABLE 6-11 Computer Representation of the Line of Code: PL3, LDA SUB I

Memory word	Symbol	Hexadecimal code	Binary representation
1	P L	50 4C	0101 0000 0100 1100
2	3,	33 2C	0011 0011 0010 1100
3	LD	4C 44	0100 1100 0100 0100
4	Α	41 20	0100 0001 0010 0000
5	S U	53 55	0101 0011 0101 0101
6	В	42 20	0100 0010 0010 0000
7	I CR	49 OD	0100 1001 0000 1101

First pass

Figure 6-1 Flowchart for first pass of assembler.

LC: Location counter

 TABLE 6-8
 Assembly Language Program to Subtract Two Numbers

MIN, SUB, DIF,	ORG 100 LDA SUB CMA INC ADD MIN STA DIF HLT DEC 83 DEC -23 HEX 0 END	/Origin of program is location 100 /Load subtrahend to AC /Complement AC /Increment AC /Add minuend to AC /Store difference /Halt computer /Minuend /Subtrahend /Difference stored here /End of symbolic program
	END	rend of symbolic program

TABLE 6-12 Address Symbol Table for Program in Table 6-8

Memory word	Symbol or (LC)*	Hexadecimal code	Binary representation
1	ΜI	4D 49	0100 1101 0100 1001
2	Ν,	4E 2C	0100 1110 0010 1100
3	(LC)	01 06	0000 0001 0000 0110
4	ŚÚ	53 55	0101 0011 0101 0101
5	В,	42 2C	0100 0010 0010 1100
6	(LC)	01 07	0000 0001 0000 0111
7	ĎΙ	44 49	0100 0100 0100 1001
8	F,	46 2C	0100 0110 0010 1100
9	(LC)	01 08	0000 0001 0000 1000

^{*(}LC) designates content of location counter.

Second pass

Figure 6-2 Flowchart for second pass of assembler.