

In the Claims:

1. (currently amended) A compound of formula (I) or (II)

wherein

G_1 and G_2 independently represent a tertiary carbon atom to which an unsubstituted C_1-C_{18} alkyl or phenyl or with CN, COC_1-C_{18} alkyl, CO-phenyl, $COOC_1-C_{18}$ alkyl, OC_1-C_{18} alkyl, NO_2 , NHC_1-C_{18} alkyl or $N(C_1-C_{18})_2$ alkyl substituted alkyl or phenyl groups are bonded; or one of

G_1 and G_2 is a secondary carbon atom to which a group $-P(O)(OR_{22})_2$ is bonded and the other is as defined above; or

G_1 and G_2 together with the nitrogen atom to which they are bonded form a 5 to 8 membered heterocyclic ring or a polycyclic or spirocyclic 5 to 20 membered heterocyclic ring system which is substituted with 4 C_1-C_4 alkyl groups or 2 C_5-C_{12} spirocycloalkyl groups in the ortho position to the nitrogen atom and which may be further substituted with one or more C_1-C_{18} alkyl, C_1-C_{18} alkoxy or $=O$ groups; and which may be interrupted by a further oxygen or nitrogen atom;

with the proviso that at least one of the 4 C_1-C_4 alkyl groups in ortho position to the nitrogen atom is higher alkyl than methyl;

L_1 , L_2 and L_3 is a linking group selected from the group consisting of

a direct bond, R₁-Y or R₂-C(O)-Y- where Y is attached to G₁ and/or G₂; C₁-C₂₅alkylene,

Y is O, or NR₉

~~L₃ is a group containing at least one carbon atom and is such that the radical •L₃(Q⁺X⁻) derived from the group is able to initiate polymerization of ethylenically unsaturated monomers;~~

Q₂ is a direct bond, O, NR₅ or NR₅R₆;

Q⁺ is a cationic group selected from the group consisting of

-L₁(Q⁺X⁻), -L₂(Q⁺X⁻), and -L₃(Q⁺X⁻), are a group

K₁ and K₂ are hydrogen, C₁-C₁₈alkyl, C₅-C₁₂cycloalkyl, phenyl or C₇-C₉phenylalkyl and

K₃ is a group -COK₄ or

K₄ is -Y-[CH₂-CH₂)-(CH₂)_s-N⁺ R₅R₆X⁻]t-CH₂-CH₂-(CH₂)_s-N⁺ R₅R₆R₇X⁻ or
-Y-CH₂-CHOH-CH₂-N⁺ R₅R₆X⁻-[(CH₂-CH₂)-(CH₂)_s-N⁺ X⁻]R₅R₆t-CH₂-CH₂-(CH₂)_s-N⁺ R₅R₆R₇X⁻u,
where s is a number from 0-8, t is a number from 0-4 and u is 1 and Y is -O- or NR₉; or

Z is $-C(O)-$ or a direct bond, wherein

if Z is $-C(O)-$, K_5 has the same meaning as K_4 , and

if Z is a direct bond, K₅ is

$$\text{Y}-\text{CH}_2-\text{CHOH}-\text{CH}_2-\text{N}^+ \text{R}_5\text{R}_6 \text{X}^- - \{[(\text{CH}_2-\text{CH}_2)-(\text{CH}_2)_s-\text{N}^+ \text{R}_5\text{R}_6 \text{X}]_l-\text{CH}_2-\text{CH}_2-(\text{CH}_2)_s-\text{N}^+ \text{R}_5\text{R}_6 \text{R}_7 \text{X}\}_{u_l}$$

Q^+X^- , $-\text{CH}_2\text{Q}^+\text{X}^-$ or $-\text{CHCH}_3\text{Q}^+\text{X}^-$;

and Y is $-O-$, $-NR_2$ or a direct bond:

and Y is $-O-$, $-NR_9$ or a direct bond;

wherein

R_1 is C₁-C₁₈alkylene,

R₂ is a direct bond or C₁-C₁₈alkylene,

R_3 is hydrogen or C_1-C_{18} alkyl,

R₄ is hydrogen or C₁-C₁₈alkyl,

R_5 , R_6 and R_7 are each independently of the others hydrogen, C₁-C₁₈alkyl, C₃-C₁₂cycloalkyl, phenyl or C₇-C₉phenylalkyl or C₆-C₁₀heteroaryl, which all may be unsubstituted or substituted by halogen, OH, NO₂, CN, C₁-C₄alkoxy, or

R_5 , R_6 and R_7 together with the nitrogen or phosphorous atom to which they are bonded form a 3-12 membered monocyclic or polycyclic ring which may contain further heteroatoms;

R_6 is hydrogen or C_1-C_{25} alkyl, C_3-C_{25} alkyl interrupted by oxygen, sulfur or by $\text{N}-R_3$; or

$\text{C}_2\text{-C}_{24}$ alkenyl,

R_9 is hydrogen, C_1-C_{18} alkyl, C_3-C_{18} alkenyl, C_3-C_{18} alkinyl, phenyl, C_7-C_9 phenylalkyl, which all may be unsubstituted or substituted by one or more hydroxy, halogen or C_1-C_4 alkoxy groups;

R₂₂ is C₁-C₁₈alkyl;

X^- is the anion of a C_1-C_{18} carboxylic acid which may contain more than one carboxylic acid group, fluoride, chloride, bromide, iodide, nitrite, nitrate, hydroxide, acetate, hydrogen sulfate, sulfate, C_1-C_{18} alkoxy sulfate, aromatic or aliphatic sulfonate, carbonate, hydrogen carbonate, perchlorate, chlorate, tetrafluoroborate, borate, phosphate, hydrogen phosphate, dihydrogen phosphate or mixtures thereof; and

p, q, and r are independently of each other a number from 0 to 1 [[10]] and at least one is different from 0.

2. (cancelled)

3. (currently amended) A compound according to claim 1 of formulae Ia, Ib, Ic, Id or Ie

wherein

Q_1 is a direct bond or a $-CH_2-$ group; wherein

if Q_1 is a direct bond, T_8 is hydrogen, and

if Q_1 is $-CH_2-$, T_8 is methyl or ethyl;

T_1 , T_2 , T_3 and T_4 are independently methyl or ethyl with the proviso that at least one is ethyl;

T_7 and T_{10} are independently hydrogen or methyl;

T_5 and T_6 are hydrogen or

T_5 and T_6 together are a group $=O$, $=NOH$, $=NO-T_9$ or

T_5 is hydrogen and T_6 is $-O-T_9$ or $-NR_9-T_9$ where T_9 is hydrogen, R_9 or $-C(O)-R_9$, where R_9 is hydrogen, C_1-C_{18} alkyl, C_3-C_{18} alkenyl, C_3-C_{18} alkinyl, phenyl, C_7-C_9 phenylalkyl, which may be unsubstituted or substituted by one or more hydroxy, halogen or C_1-C_4 alkoxy groups;

T_{11} , T_{12} , T_{13} , T_{14} , T_{15} and T_{16} independently are C_1-C_{18} alkyl, C_3-C_{18} alkenyl, C_3-C_{18} alkinyl, C_5-C_{12} cycloalkyl, phenyl or C_7-C_9 phenylalkyl; or

T_{11} is hydrogen and T_{12} is a group $-P(O)(OC_2H_5)_2$ and the others are as defined above; or T_{11} and T_{14} are a group $-CH_2-O-T_9$ and the others are as defined above; or

T_{16} is a group $-C(O)-Y-R_5$ and the others are as defined above; or

T_{11} , T_{12} and T_{13} are a group $-CH_2OH$;

$\text{---}(Q^+X^-)$, is a group

K_1 and K_2 are hydrogen, C_5-C_{12} cycloalkyl, phenyl or C_7-C_9 phenylalkyl and

K_3 is a group $-COK_4$ or where

K_4 is $Y-[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-$ or
 $-Y-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ X^- R_5R_6]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-]_u$,
 where s and t are each a number from 0-4 and u is [[0 or]] 1; or

K_4 is a group , X^- or X^- or

Z is $-C(O)-$ or a direct bond, wherein

if Z is $-C(O)-$, K_5 has the meaning of K_4 , and

if Z is a direct bond, K_5 is

$O-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-]_u$,
 Q^+X^- , $-CH_2Q^+X^-$ or $-CHCH_3Q^+X^-$;

Y is $-O-$ or $-NR_9$;

Q^+X^- is or and

X^- and the other substituents are as defined in claim 1.

4. (currently amended) A compound according to claim 1 of formula IIa, IIb, IIc, IId or IIe

wherein

A_1 and A_2 are independently hydrogen or together with the carbon atom to which they are bonded form a carbonyl group, $-C(O)-$;

D is a direct bond or C_1-C_{12} alkylene, C_1-C_{12} alkylene which is interrupted by one or more O, S, or NR_9 atoms, C_5-C_{12} cycloalkylene or phenylene;

E is a group $-NR_9-(CH_2)_x-NR_9-$ where x is a number from 2 to 12, or a group

v is a number from 0 to 10 and w is 0 or 1;

Q_1 is a direct bond or a $-CH_2-$ group; wherein

if Q_1 is a direct bond, T_8 is hydrogen, and

if Q_1 is $-CH_2-$, T_8 is hydrogen, methyl or ethyl;

Y is $-O-$ or $-NR_9$;

T_1 , T_2 , T_3 and T_4 are independently methyl or ethyl with the proviso that at least one is ethyl;

T_7 is hydrogen or methyl;

$\text{L}_3(Q^+X^-)$, is a group

K_1 and K_2 are hydrogen, C_5-C_{12} cycloalkyl, phenyl or C_7-C_9 phenylalkyl and

K_3 is a group $-COK_4$ or $Z-K_5$ where

K_4 is $Y-[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-$ or

$-Y-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X]_u$,

where s and t are each a number from 0-4 and u is [0 or] 1; or

K_4 is a group $-Y-Q^+ X^-$, $-Y-N^+ R_5 X^-$ or $-N(R_6)N^+ R_5 X^-$ or

Z is $-C(O)-$ or a direct bond, wherein

if Z is $-C(O)-$, K_5 has the meaning of K_4 , and

if Z is a direct bond, K_5 is

$O-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X]_u$,

Q^+X^- , $-CH_2Q^+X^-$ or $-CHCH_3Q^+X^-$;

Q^+X^- is X^- or X^- , and

X^- and the other substituents are as defined in claim 1.

5. (currently amended) A compound according to claim 1 of formula IIIa, IIIb, IIIc, IIId or IIIe

(IIIa)

(IIIb)

(IIIc)

(IIId)

(IIIe)

wherein

T_1 , T_2 , T_3 and T_4 are independently methyl or ethyl with the proviso that at least one is ethyl;

T_7 is hydrogen or methyl;

Y is O or NR_9 ;

Q_1 is a direct bond or a $-\text{CH}_2-$ group; wherein

if Q_1 is a direct bond, T_8 is hydrogen, and

if Q_1 is $-\text{CH}_2-$, T_8 is methyl or ethyl;

v is a number from 0 to 10 and w is 0 or 1;

K_7 is a group

$-\text{CH}_2-\text{CHOH}-\text{CH}_2-\text{N}^+ \text{R}_5\text{R}_6 \text{X}^- - [(\text{CH}_2-\text{CH}_2)-(\text{CH}_2)_s-\text{N}^+ \text{R}_5\text{R}_6 \text{X}^-]_t-\text{CH}_2-\text{CH}_2-(\text{CH}_2)_s-\text{N}^+ \text{R}_5\text{R}_6\text{R}_7 \text{X}^-]_u$,

where s and t are each a number from 0-4 and u is [[0 or]] 1; or a group $-\text{D}_1-\text{Q}^+ \text{X}^-$ where

D_1 is C_1-C_{12} alkylene, C_1-C_{12} alkylene which is interrupted by one or more O, S, or NR_9 atoms,

C_5-C_{12} cycloalkylene or phenylene;

K_6 is selected from the group consisting of

$(\text{C}_5\text{-C}_6\text{cycloalkyl})_2\text{CCN}$, $(\text{C}_1\text{-C}_{12}\text{alkyl})_2\text{CCN}$, $-\text{CH}_2\text{CH=CH}_2$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-C(O)-(C}_1\text{-C}_{12})\text{alkyl}$,
 $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-C(O)-(C}_6\text{-C}_{10})\text{aryl}$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-C(O)-(C}_1\text{-C}_{12})\text{alkoxy}$,
 $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-C(O)-phenoxy}$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-C(O)-N-di(C}_1\text{-C}_{12})\text{alkyl}$,
 $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-CO-NH(C}_1\text{-C}_{12})\text{alkyl}$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}\text{CR}_{30}\text{-CO-NH}_2$, $-\text{CH}_2\text{CH=CH-CH}_3$,

$-\text{CH}_2\text{-C(CH}_3\text{)=CH}_2$, $-\text{CH}_2\text{-CH=CH-phenyl}$, $-\text{CH}_2\text{-C}\equiv\text{CH}$, 3-cyclohexenyl, 3-cyclopentenyl,

R_{30} is hydrogen or $\text{C}_1\text{-C}_{12}\text{alkyl}$;

the alkyl groups are unsubstituted or substituted with one or more $-\text{OH}$, $-\text{COOH}$ or $-\text{C(O)R}_{30}$ groups;
 and

the aryl groups are phenyl or naphthyl which are unsubstituted or substituted with $\text{C}_1\text{-C}_{12}\text{alkyl}$,
 halogen, $\text{C}_1\text{-C}_{12}\text{alkoxy}$, $\text{C}_1\text{-C}_{12}\text{alkylcarbonyl}$, glycidyloxy, OH, $-\text{COOH}$ or $-\text{COO}(\text{C}_1\text{-C}_{12})\text{alkyl}$, and
~~X⁻ and the other substituents are as defined in claim 1.~~

6. (currently amended) A compound according to claim 1 of formula IVa

wherein

T_1 , T_2 , T_3 and T_4 are independently methyl or ethyl with the proviso that at least one is ethyl;

T_7 is hydrogen or methyl;

K_6 is selected from the group consisting of

$(\text{C}_5\text{-C}_6\text{cycloalkyl})_2\text{CCN}$, $(\text{C}_1\text{-C}_{12}\text{alkyl})_2\text{CCN}$, $\text{-CH}_2\text{CH=CH}_2$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{30}\text{-C(O)-(C}_1\text{-C}_{12}\text{)alkyl}$,
 $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{30}\text{-C(O)-(C}_6\text{-C}_{10}\text{)aryl}$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{20}\text{-C(O)-(C}_1\text{-C}_{12}\text{)alkoxy}$,
 $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{30}\text{-C(O)-phenoxy}$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{30}\text{-C(O)-N-di(C}_1\text{-C}_{12}\text{)alkyl}$,
 $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{30}\text{-CO-NH(C}_1\text{-C}_{12}\text{)alkyl}$, $(\text{C}_1\text{-C}_{12})\text{alkyl-}CR_{30}\text{-CO-NH}_2$, $\text{-CH}_2\text{CH=CH-CH}_3$,
 $\text{-CH}_2\text{-C(CH}_3\text{)=CH}_2$, $\text{-CH}_2\text{-CH=CH-phenyl}$, $\text{-CH}_2\text{-C}\equiv\text{CH}$, 3-cyclohexenyl, 3-cyclopentenyl,

R_{30} is hydrogen or $C_1\text{-C}_{12}\text{alkyl}$;

the alkyl groups are unsubstituted or substituted with one or more -OH, -COOH or $-C(\text{O})R_{30}$ groups; and

the aryl groups are phenyl or naphthyl which are unsubstituted or substituted with $C_1\text{-C}_{12}\text{alkyl}$, halogen, $C_1\text{-C}_{12}\text{alkoxy}$, $C_1\text{-C}_{12}\text{alkylcarbonyl}$, glycidyloxy, OH, -COOH or $-COO(C_1\text{-C}_{12}\text{)alkyl}$, and X^- and the other substituents are as defined in claim 1.

7. (currently amended) A compound according to claim 1 of formula Va, Vb, Vc, Vd or Ve

(Va)

(Vb)

(Vc)

(Vd)

(Ve)

wherein

T_1 , T_2 , T_3 and T_4 are independently methyl or ethyl with the proviso that at least one is ethyl;
 T_7 is hydrogen or methyl;

Q_1 is a direct bond or a $-CH_2-$ group; wherein

if Q_1 is a direct bond, T_8 is hydrogen, and

if Q_1 is $-CH_2-$, T_8 is methyl or ethyl;

K_1 and K_2 are hydrogen, C_5-C_{12} cycloalkyl, phenyl or C_7-C_9 phenylalkyl and

K_3 is a group $-COK_4$ or where

K_4 is $Y-[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-$ or

$-Y-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-]_u$,

where s and t are each a number from 0-4 and u is [[0 or]] 1; or

K_4 is a group , or or

Z is $-C(O)-$ or a direct bond, wherein

if Z is $-C(O)-$, K_5 has the meaning of K_4 , and

if Z is a direct bond, K_5 is

$O-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-]_u Q^+X^-$,
 $-CH_2Q^+X^-$ or $-CHCH_3Q^+X^-$;

K_7 is a group

$-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[[(CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-]_u$,

where s and t are each a number from 0-4 and u is 0 or 1; or a group $-D_1-Q^+ X^-$ where

D_1 is C_1-C_{12} alkylene, C_1-C_{12} alkylene which is interrupted by one or more O, S, or NR_9 atoms,

C_5-C_{12} cycloalkylene or phenylene;

$Q^+ X^-$ is or and

~~X^- and the other substituents are as defined in claim 1.~~

8. (currently amended) A compound according to claim 1 of formula VIa

wherein

T_1 , T_2 , T_3 and T_4 are independently methyl or ethyl with the proviso that at least one is ethyl;
 T_7 is hydrogen or methyl;

K_1 and K_2 are hydrogen, C_5-C_{12} cycloalkyl, phenyl or C_7-C_9 phenylalkyl and

K_3 is a group $-COOK_4$ or

K_4 is $Y-[((CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-$ or
 $-Y-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[((CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-}_u$,
where s and t are each a number from 0-4 and u is $[0 \text{ or } 1]$; or

K_4 is a group $-Y-C_6H_4-Q^+ X^-$, $-Y-C_6H_4-N^+ R_5 X^-$ or

Z is $-C(O)-$ or a direct bond, wherein

if Z is $-C(O)-$, K_5 has the meaning of K_4 , and

if Z is a direct bond, K_5 is

$O-CH_2-CHOH-CH_2-N^+ R_5R_6 X^--[((CH_2-CH_2)-(CH_2)_s-N^+ R_5R_6 X]_t-CH_2-CH_2-(CH_2)_s-N^+ R_5R_6R_7 X^-}_u$, $Q^+ X^-$,
 $-CH_2Q^+ X^-$ or $-CHCH_3Q^+ X^-$ and

X^- and the other substituents are as defined in claim 1.

9. (previously presented) A compound according to claim 3 of formula Ia1, Ib1, Ic1, Id1 or Ie1

(Ia1)

(Ib1)

(Ic1)

(Id1)

(Ie1)

wherein

Q₁ is a direct bond or CH₂;

T₁₁ and T₃ are ethyl and T₂, and T₄ are methyl;

T₇ is methyl or H;

if Q₁ is a direct bond, T₈ is H;

if Q₁ is CH₂, T₈ is methyl or ethyl;

T₁₀ is H if T₇ is methyl or T₁₀ is methyl if T₇ is H;

T₁₁, T₁₂, T₁₃, T₁₄, T₁₅ and T₁₆ are independently methyl or ethyl; or

T₁₁ is H, T₁₂ is isopropyl, T₁₃ is phenyl and T₁₄, T₁₅, and T₁₆ are methyl; or

T₁₁ is H, T₁₂ is -P(=O)(OC₂H₅)₂, T₁₃ is t-butyl and T₁₄, T₁₅, and T₁₆ are methyl; or

T₁₁ and T₁₄ are -CH₂O-T₉ and T₁₂, and T₁₅ are methyl or phenyl and T₁₃, and T₁₆ are methyl or ethyl;

or

T₁₁, T₁₂, T₁₃, T₁₄, T₁₅ are methyl and T₁₆ is a group -CO-O-R₉ or -CON(R₉)₂; or

T₁₁, T₁₂ and T₁₃ are -CH₂OH, T₁₄ is H, T₁₅ is isopropyl and T₁₆ phenyl;

T₉ is hydrogen, R₉ or -C(O)-R₉, where R₉ is hydrogen, C₁-C₁₈alkyl, C₃-C₁₈alkenyl, C₃-C₁₈alkinyl, phenyl, or C₇-C₉phenylalkyl;

K₁ is H, K₂ is methyl or ethyl and

K₃ is a group -CO-K₄ or ;

K₄ is -Y-CH₂-CH₂-(CH₂)_s-N⁺X⁻R₅R₆R₇ or; -Y-CH₂-CHOH-CH₂-N-CH₂-CH₂-(CH₂)_s-N⁺X⁻R₅R₆R₇ where Y is O or NR₉ and s is a number from 0 to 2;

if K_3 is —Z- K_5 , Z is --CO-- or a direct bond; and

if Z is --CO- , K_5 has the same meaning as K_4 ;

if Z is a direct bond, K₅ is a group -O-CH₂-CHOH-CH₂-N-CH₂-CH₂-(CH₂)_s-N⁺X⁻R₅R₆R₇ or -CH₂N⁺R₅R₆R₇ X⁻ and

X^- is the anion of a C₁-C₁₈carboxylic acid which may contain more than one carboxylic acid group, fluoride, chloride, bromide, iodide, nitrite, nitrate, hydroxide, acetate, hydrogen sulfate, sulfate, C₁-C₁₈alkoxy sulfate, aromatic or aliphatic sulfonate, carbonate, hydrogen carbonate, perchlorate, chlorate, tetrafluoroborate, borate, phosphate, hydrogen phosphate, dihydrogen phosphate or mixtures thereof.

10. (previously presented) A compound according to claim 4 of formula IIa1, IIb1, IIc1 or IId1

wherein

Q_1 is a direct bond or CH_2 ;

T_{1-3} and T_3 are ethyl and T_2 , T_4 and T_7 are methyl;

if Q₁ is a direct bond, T₈ is H; and

if Q₁ is CH₂, T₈ is methyl or ethyl;

D is a direct bond, C₁-C₁₂alkylene or phenylene;

E is -NR₅-(CH₂)_x-NR₅- where x is 2 to 12 or a group

wherein Y is =NR_{9i}

K₁ is H, K₂ is methyl or ethyl and

K₃ is a group -CO-K₄ or -Z-K₅;

K₄ is -Y-CH₂-CH₂-(CH₂)_s-N⁺XR₅R₆R₇ or; -Y-CH₂-CHOH-CH₂-N-CH₂-CH₂-(CH₂)_s-N⁺X'R₅R₆R_{7i} where Y is O or NR₉ and s is a number from 0 to 2;

R₉ is hydrogen, C₁-C₁₈alkyl, C₃-C₁₈alkenyl, C₃-C₁₈alkinyl, phenyl or C₇-C₉phenylalkyl;

if K₃ is -Z-K₅, Z is -CO- or a direct bond;

if Z is -CO-, K₅ has the same meaning as K₄;

if Z is a direct bond, K₅ is a group -O-CH₂-CHOH-CH₂-N-CH₂-CH₂-(CH₂)_s-N⁺X'R₅R₆R₇ or -CH₂N⁺R₅R₆R₇ X';

and

X' is the anion of a C₁-C₁₈carboxylic acid which may contain more than one carboxylic acid group, fluoride, chloride, bromide, iodide, nitrite, nitrate, hydroxide, acetate, hydrogen sulfate, sulfate, C₁-C₁₈alkoxy sulfate, aromatic or aliphatic sulfonate, carbonate, hydrogen carbonate, perchlorate, chlorate, tetrafluoroborate, borate, phosphate, hydrogen phosphate, dihydrogen phosphate or mixtures thereof.

11. (original) A process for preparing a monomer/polymer clay nanocomposite dispersion comprising the steps of

- A) providing a first aqueous dispersion of a natural or synthetic clay which can be partially intercalated and/or exfoliated and wherein said clay has an exchangeable cation; adding a compound according to claim 1 to said dispersion and exchanging said cation at least partially;
- B) adding to said dispersion at least one ethylenically unsaturated monomer and polymerizing at least a portion of said ethylenically unsaturated monomer.

12. (original) A process according to claim 11 wherein the water phase of step A) is at least partially removed before performing step B).

13. (previously presented) A process according to claim 11 wherein the compound is added in an amount of from 1% to 100% by weight, based on the weight of the clay.

14. (previously presented) A process according to claim 11 wherein the ethylenically unsaturated monomer or oligomer is selected from the group consisting of styrene, substituted styrenes, conjugated dienes, acrolein, vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acid anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles and (alkyl)acrylamides, vinyl halides and vinylidene halides or mixtures thereof.

15. (previously presented) A process according to claim 14 wherein the ethylenically unsaturated monomers are styrene, α -methyl styrene, p-methyl styrene or a compound of formula $\text{CH}_2=\text{C}(\text{R}_a)-(\text{C}=\text{Z})-\text{R}_b$, wherein R_a is hydrogen or $\text{C}_1\text{-}\text{C}_4$ alkyl, R_b is NH_2 , $\text{O}^-(\text{Me}^+)$, glycidyl, unsubstituted $\text{C}_1\text{-}\text{C}_{18}$ alkoxy, $\text{C}_2\text{-}\text{C}_{100}$ alkoxy interrupted by at least one N and/or O atom, or hydroxy-substituted $\text{C}_1\text{-}\text{C}_{18}$ alkoxy, unsubstituted $\text{C}_1\text{-}\text{C}_{18}$ alkylamino, di($\text{C}_1\text{-}\text{C}_{18}$ alkyl)amino, hydroxy-substituted $\text{C}_1\text{-}\text{C}_{18}$ alkylamino or hydroxy-substituted di($\text{C}_1\text{-}\text{C}_{18}$ alkyl)amino, $-\text{O}-\text{CH}_2-\text{CH}_2-\text{N}(\text{CH}_3)_2$ or $-\text{O}-\text{CH}_2-\text{CH}_2-\text{N}^+\text{H}(\text{CH}_3)_2 \text{An}^-$; wherein
 An^- is an anion of a monovalent organic or inorganic acid;
 Me is a monovalent metal atom or the ammonium ion- and
 Z is oxygen or sulfur.

16. (original) A process according to claim 11 wherein an acid containing unsaturated monomer is added, which is selected from the group consisting of methacrylic anhydride, maleic anhydride, itaconic anhydride, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, acryloxypropionic acid, (meth)acryloxypropionic acid, styrene sulfonic acid, ethylmethacrylate-2-sulphonic acid, 2-acrylamido-2-methylpropane, sulphonic acid; phosphoethylmethacrylate; the corresponding salts of the acid containing monomer, and combinations thereof.

17. (original) A process according to claim 11 wherein step B) is repeated with a second ethylenically unsaturated monomer which is different from the first one, leading to a block copolymer.

18. (currently amended) A process according to claim 11 wherein the natural or synthetic clay is selected from the group consisting of smectite, phyllosilicate, montmorillonite, saponite, beidellite, montronite, hectorite, stevensite, vermiculite, kaolinite, hallosite, synthetic phyllosilicates, and combinations thereof.

19. (original) A monomer/polymer clay nanocomposite dispersion obtainable by a process according to claim 11.

20. (original) A composition comprising an aqueous dispersion of a natural or synthetic clay which is partially intercalated and/or exfoliated and a compound according to claim 1.

21. (previously presented) A composition according to claim 20, which contains additionally an ethylenically unsaturated monomer and/or an organic solvent.

22. (previously presented) A method for the polymerization of ethylenically unsaturated monomers which comprises polymerizing said monomers in the presence of a catalytically effective amount of a compound of formula I or II according to claim 1.

23. (previously presented) A method of improving the properties of paints, coatings, inks, adhesives, reactive diluents or thermoplastic materials which comprises incorporating a monomer/polymer clay nanocomposite dispersion according to claim 19 therein.