© Y.Mobian

★☆☆☆ Exercice 1.

- Question 1. Les bras de la parabole sont orientés vers le bas donc a < 0: a strictement négatif.
- Question 2. L'abscisse du sommet de la parabole est négative donc α est strictement négatif.
- **Question 3.** Le réel c s'obtient en calculant P(0).

En effet $P(0) = a \times 0^2 + b \times 0 + c = c$.

Or P(0) = 1 donc le réel c est strictement positif.

• **Question 4.** On sait que $\alpha = -\frac{b}{2a}$ donc $b = -2a\alpha$. Or a < 0 et $\alpha < 0$ donc b est le produit de trois quantités strictement négatives : b est strictement négatif.

• **Question 5.** Le réel β est l'ordonnée du sommet de la parabole.

On a ici $\beta > 0$: le réel β est strictement positif.

★☆☆☆ Exercice 2.

1. On a $\overrightarrow{MT} \begin{pmatrix} x_T - x_M \\ y_T - y_M \end{pmatrix}$ donc $\overrightarrow{MT} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ et $\overrightarrow{BF} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

On a $\overrightarrow{MT} = \overrightarrow{BF}$ donc le quadrilatère MTFB est un parallélogramme.

- 2. Le quadrilatère *MTFB* est un parallélogramme, ses diagonales se coupent en leur milieu *K*. K est donc le milieu du segment [BT] ou celui de [MF]. En utilisant la formule donnant les coordonnées du milieu d'un segment on trouve K(-1; 5).
- 3. Les points B, L et T sont alignés si et seulement les vecteurs \overrightarrow{BL} et \overrightarrow{BT} sont colinéaires.

Or
$$\overrightarrow{BL} \begin{pmatrix} 8 \\ 12 \end{pmatrix}$$
 et $\overrightarrow{BL} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$.

On remarque que $\overrightarrow{BL} = 2\overrightarrow{BT}$: les vecteurs \overrightarrow{BL} et \overrightarrow{BT} sont bien colinéaires et les points B, T et L sont alignés.

★★★☆ Exercice 3.

1. Voici la figure en question:

2. Dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$, on commence par déterminer les coordonnées des points A, C, E et J. Or,

$$A \begin{pmatrix} 0 \\ 0 \end{pmatrix}, C \begin{pmatrix} 0 \\ 1 \end{pmatrix}, E \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$$
 et $J \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Ainsi $\overrightarrow{AC} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et $\overrightarrow{EJ} \begin{pmatrix} 0 \\ \frac{3}{2} \end{pmatrix}$: on remarque que $\overrightarrow{EJ} = \frac{3}{2} \overrightarrow{AC}$: les vecteurs \overrightarrow{EJ} et \overrightarrow{AC} sont colinéaires donc les droites (AC)et (EI) sont parallèles.

25/09/2025 1/2

★★☆☆ Exercice 4.

(a) \vec{u} (-2; 3) est un vecteur directeur de la droite (D) donc on a d'après le cours -b = -2 et a = 3 soit a = 3 et b = 2.

Une équation cartésienne de la droite (*D*) est : 3x + 2y + c = 0.

Or $A(-1; 2) \in (D)$ donc on doit avoir $3x_A + 2y_A + c = 0$ soit -3 + 4 + c = 0 c'est-à-dire c = -1.

Conclusion : (*D*) : 3x + 2y - 1 = 0.

- (b) On teste si les coordonnées du point *B* vérifient l'équation de la droite (*D*). On a $3x_B + 2y_B - 1 = 3 \times 5 + 2 \times (-7) - 1 = 0$: on en déduit que le point *B* est situé sur la droite (*D*).
- 2. Déterminons l'équation réduite de la droite (D).

$$3x + 2y - 1 = 0 \iff y = -\frac{3}{2}x + \frac{1}{2}.$$

La droite (D') est parallèle à la droite (D): elles ont donc le même coefficient directeur.

On en déduit que (D') : $y = -\frac{3}{2}x + p$. Enfin, le point H(5;3) est situé sur cette droite (D') : ses coordonnées

$$H \in (D') \iff y_H = -\frac{3}{2}x_H + p.$$

doivent donc vérifier l'équation de
$$(D')$$
.
 $H \in (D') \iff y_H = -\frac{3}{2}x_H + p$.
Il vient alors : $3 = -\frac{3}{2} \times 5 + p$ soit $p = \frac{21}{2}$.

Conclusion:
$$(D'): y = -\frac{3}{2}x + \frac{21}{2}$$

★★☆☆☆ Exercice 5.

1. On a (a; b; c) = (2; -4; 8): un vecteur directeur de la droite (d) est $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ soit $\overrightarrow{u} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$. L'équation de la droite (d') est donnée sous forme réduite avec m = -2 donc un vecteur directeur \overrightarrow{v} de (d') est

 $\overrightarrow{v} \begin{pmatrix} 1 \\ m \end{pmatrix}$ soit $\overrightarrow{v} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

2. On calcule le déterminant des vecteurs \vec{u} et \vec{v} .

 $\det(\overrightarrow{u};\overrightarrow{v}) = \begin{vmatrix} 4 & 1 \\ 2 & -2 \end{vmatrix} = -10 \neq 0$: les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires et ainsi les droites (d) et (d') ne sont pas parallèles.

Elles sont donc sécantes.

3. Les droites (d) et (d') sont sécantes en un point K dont les coordonnées sont solutions du système :

$$\begin{cases} 2x - 4y = -8\\ 2x + y = 7 \end{cases}$$

On utilise la méthode de Cramer vu que $\Delta = \begin{vmatrix} 2 & -4 \\ 2 & 1 \end{vmatrix} = 10 \neq 0$.

On a alors:

$$x = \frac{\begin{vmatrix} -8 & -4 \\ 7 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & -4 \\ 2 & 1 \end{vmatrix}} = \frac{-8 + 28}{10} = 2 \text{ et } y = \frac{\begin{vmatrix} 2 & -8 \\ 2 & 7 \end{vmatrix}}{\begin{vmatrix} 2 & -4 \\ 2 & 1 \end{vmatrix}} = \frac{14 + 16}{10} = 3$$

2/2

On en déduit que le point K a pour coordonnées $\binom{2}{3}$.

25/09/2025