CSCI 301 HW 6

Isaac Boaz

May 30, 2023

Problem 1

a.

$$\begin{split} S &\to A \mid B \\ A &\to \epsilon \mid aAbb \\ B &\to aaab \mid aaaBb \end{split}$$

b.

$$\begin{split} S &\to aAB \\ A &\to \epsilon \mid aA \\ B &\to ab \mid aBb \end{split}$$

c.

$$S \to \epsilon \mid aSb \mid bSa \mid SS$$

Problem 2

Problem 3

Derivation	Rule	Lookahead
$E \implies TR$	$E \to TR$	(
$TR \implies FVR$	$T \to FV$	(
$FVR \implies (E)VR$	$F \to (E)$	(
$(E)VR \implies (TR)VR$	$E \to TR$	a
$(TR)VR \implies (FVR)VR$	$T \to FV$	a
$(FVR)VR \implies (aVR)VR$	$F \to a$	a
$(aVR)VR \implies (aR)VR$	$V \to \Lambda$	+
$(aR)VR \implies (a+TR)VR$	$R \to +TR$	+
$(a+TR)VR \implies (a+FVR)VR$	$T \to FV$	a
$(a + FVR)VR \implies (a + aVR)VR$	$F \to a$	a
$(a + aVR)VR \implies (a + aR)VR$	$V \to \Lambda$)
$(a+aR)VR \implies (a+a)VR$	$R \to \Lambda$)
$(a+a)VR \implies (a+a)*FVR$	$V \to *FV$	*
$(a+a)*FVR \implies (a+a)*aVR$	$F \to a$	a
$(a+a)*aVR \implies (a+a)*aR$	$V \to \Lambda$	\$
$(a+a)*aR \implies (a+a)*a$	$R \to \Lambda$	\$