Automates et langages : Fiche

Sommaire

- Automates et langages : Fiche
 - Sommaire
 - 1. Introduction
 - 1.1. Les trois niveaux d'analyse
 - 1.2. Alphabet
 - 1.3. Concaténation
 - 2. Langage
 - 2.1 Langage régulier
 - 2.2. Exercice
 - 3. Automates
 - 3.1. Reconnaître les mots d'un langage
 - 3.2. Représentation graphique
 - 3.3. Reconnaissance des mots
 - 3.4 De l'expression régulière à l'automate
 - 3.5 De l'automate à l'expression régulière
 - 4. Automates asynchrones
 - 4.1. Automate complet
 - 5. Grammaire
 - 5.1. Méthodes de définition d'un langage
 - 5.2. Définition d'une grammaire
 - 5.3. Règle
 - 5.4. Exemple
 - 5.5 Dérivation
 - 5.6. Exemple

1. Introduction

1.1. Les trois niveaux d'analyse

- Analyse lexicale : reconnaître les éléments en entrée et les catégoriser
- Analyse syntaxique : vérifier que le code est conforme aux règles définies
- Analyse sémantique : donner du sens

1.2. Alphabet

Alphabet (Σ) : ensemble non vide dont les éléments sont appelés lettres ou symbole.

- ullet Exemple : $\Sigma_1=\{a,b,c\}$
- Un mot u constitué de n symboles : |u|=n
- Ensemble de tous les mots définis sur Σ : Σ^*

- Σ^+ = $\Sigma^*\setminus\{\epsilon\}$: ensemble de tous les mots non vides sur Σ
- ullet Σ^i : ensemble de tous les mots de longueur i

1.3. Concaténation

Soient deux mots $u=x_1\ x_2...\ x_p$ et $v=y_1\ y_2...\ y_q$, on appelle produit ou concaténation de u et c, noté uv ou u.v le mot $x_1\ x_2...\ x_p\ y_1\ y_2...\ y_q$

• $u.\epsilon = u$

2. Langage

Un langage L sur un alphabet Σ est un sous ensemble quelconque de Σ^* $(L\subseteq \Sigma^*)$, un ensemble de mots définis sur un même aplhabet

- $L_1 \cup L_2$: tous les éléments des deux ensembles
- ullet $L_1\cap L_2$: éléments communs des deux ensembles
- Puissance:
 - $\circ L^0 = \{\epsilon\}$
 - $\circ L^1 = L$
 - $\circ L^2 = L.L$
 - $\circ \ L^{n+1} = L.L^n$
- Etoile:

A compléter

2.1 Langage régulier

Un langage est dit régulier ssi on peut le construire à partir d'un nombre fini d'application d'opérations régulières à partir de langages finis.

- Langages finis:
 - $\circ \emptyset, \epsilon$
 - $\circ \ x \in \Sigma$
 - \circ Soient $a,b\in\Sigma$:
 - $a + b = (a + b) : a \circ b$
 - a.b = ab = (ab) : a et b
 - a^* : N'importe quel mot qui est une puissance de a.
 - $(a+b)^* = \{\epsilon, ab, abbaa, aaaaaa, bbbb, ...\}$
 - $(a.b)^* = \{\epsilon, ab, abab, ababab, ...\}$
 - (ab+b)(ab+b) = abab ou abb ou bab ou bab

2.2. Exercice

• Sur l'alphabet $\Sigma = \{a,b\}$:

Langage	Mot	Appartient ?
a^*b	b	oui $(a^0.b=b)$
a^*b	ϵ	non, pas de puissance de b
a^*b	ab	oui $(a^0.b=ab)$
a^*b	aaab	oui $(a^3.b=aaab)$
ab^*	b	non, pas de puissance de a
ab^*	ab	oui $(ab^1=ab)$
ab^*	abab	non, pas de puissance de a
ab^*	abbbb	oui $(a.b^4=abbbb)$
$(a + b)^*$	abbbb	oui $(a^1.b^4=abbbb)$
$(a+b)^*$	ϵ	oui $(a^0.b^0=\epsilon)$
$(a+b)^*$	bbabaabb	oui $(b^2.a.b.a^2.b^2=bbabaabb)$

• Remarque : $(a+b)^* = \Sigma^*$

Langage	Combinaisons	
b^*	$\{\epsilon,b,bb,bbb,\}$	
$(a+\epsilon)^*$	$\{\epsilon,a,aa,aaa,\}=a^*$	
$(ab)^*a$	$\{a,aba,ababa,\}$	
$(aba)^*$	$\{\epsilon, aba, abaaba,\}$	
$a(a+b)^*a$	$\{aa, aaa, aba, aaba, aaaaaaa,\}$	

3. Automates

3.1. Reconnaître les mots d'un langage

- Idée : créer un programme cpable de reconnaître les mots du langage
- Formalisme utilisé : les automates

Un automate à états finis (AF) est défini par A = $<\Sigma,Q,I,F,\Delta>$

- Σ : alphabet fini de l'automate (ex : $\{A,B\}$)
- Q : ensemble d'états (ex : $\{q_0,q_1,q_2,q_3,q_4\}$)
- ullet I : ensemble des états initiaux (ex : $\{q_0\}$)

ullet F : ensemble des états finaux (ex : $\{q_3\}$)

• Δ : relation de transition (ex : δ)

3.2. Représentation graphique

3.3. Reconnaissance des mots

• Les mots sont reconnus s'ils arrivent à l'état final. Exemple :

$$egin{array}{ll} \circ & ba: q_0
ightarrow^b q_2
ightarrow^a q_3 \ \circ & babb: q_0
ightarrow^b q_2
ightarrow^a q_3
ightarrow^b q_3
ightarrow^b q_3 \end{array}$$

Mots non reconnus:

ullet $aa:q_0
ightarrow^a q_1
ightarrow^a q_4:q_4$ n'est pas un état final

Un même langage peut être reconnu par des automates différents

3.4 De l'expression régulière à l'automate

(a+b)a:

 a^*b :

 ba^*b :

3.5 De l'automate à l'expression régulière

Lemme d'Arden:

ullet Soient 3 langages K,L et X tels que $\epsilon
otin K$ Si X=KX+L alors $X=K^*L$

Exemple:

(a+b)a:

- Expression régulière :
 - $\circ L = L_1$
 - $\circ \ L_1 = aL_2 + bL_2$
 - \circ $L_2=aL_3$
 - \circ $L_3 = \epsilon$

4. Automates asynchrones

- Contiennent au moins un mot vide
- Pour tout automate asynchrone, il existe un automate sans ϵ -transition équivalent :

Suppression des transitions vides :

$$L=a^*b^*$$

$$egin{aligned} \epsilon.C(q_0) &= \{q_0, q_1\} \ \epsilon.C(q_1) &= \{q_1\} \end{aligned}$$

$$F=\{q_1\} \ Fr=\{q_0,q_1\}$$

$$q_i=rac{q_0}{q_j=q_1}$$

Ajouter (q_0,b,q_1) à Δ

4.1. Automate complet

Méthode pour construire un automate complet déterministe A' équivalent à A:

1. Emonder l'automate

- Automate émondé : chaque état est accessible et co-accessible
 - $\circ q$ est **accessible** : on peut atteindre l'état q à partir de l'état initial
 - $\circ q$ est **co-accessible** : on peut atteindre l'état final à partir de l'état q
- On garde uniquement les états (et les transitions correspondantes) qui sont accessibles et co-accessibles

2. Déterminiser l'automate

- Automate déterministe : possède un seul état initial et la relation de transition est telle que :
 - D'un état donné, il existe au plus une seule transition partant de cet état avec une lettre donnée
 - Il n'existe pas d'ε-transition

5. Grammaire

5.1. Méthodes de définition d'un langage

- En extension : on donne un ensemble de mots du langage
- Par **expression régulière** : on donne une expression régulière qui reconnaît le langage
- Par une propriété : on donne une propriété qui caractérise le langage
- En utilisant des **notations ensemblistes** : on donne une définition ensembliste du langage
- Par une **grammaire** : on donne une grammaire qui reconnaît le langage

5.2. Définition d'une grammaire

Une grammaire est définie par G = $<\Sigma,V,S,R>$

- ullet Σ : alphabet de la grammaire (ex : $\{a,b\}$)
- ullet V : ensemble fini des variables (ex : $\{S,A,B\}$)

- S: variable initiale, racine ou axiome (ex: S)
- ullet R : ensemble fini des règles de production (ex : $\{S o aA, A o bB, B o \epsilon\}$)

5.3. Règle

- Règle de production : A
 ightarrow lpha
 - $\circ A$: variable de la grammaire
 - $\circ \; lpha$: mot formé à partir de Σ et de V

5.4. Exemple

$$G_1 = <\Sigma, V, S, R>$$

- $\sigma = \{a, b\}$
- $V = \{S, T\}$
- $R = \{S \rightarrow a, S \rightarrow T, T \rightarrow bT, T \rightarrow \epsilon\}$

Règles:

- S o a | T (a ou T)
- ullet $T o bT|\epsilon$

Donc on peut écrire :

$$L_1=L(G_1)=\{u\in\Sigma^*|S
ightarrow^*u\}=\{a,\epsilon,b,bb,bbb,...\}$$

5.5 Dérivation

• Dérivation : on remplace une variable par une règle de production

5.6. Exemple

$$G=<\Sigma,V,S,R>$$

- $\bullet \ \sigma = \{a,b\}$
- $V=\{S,T\}$
- $R = \{S \rightarrow abST, S \rightarrow \epsilon, T \rightarrow Ta, T \rightarrow \epsilon\}$

Dérivation de S :

$$S \rightarrow abST \rightarrow ababSTT \rightarrow ababTT \rightarrow ababTaT \rightarrow ababaT \rightarrow ababa$$