Appln. No. 09/646,349 Amd. dated March 29, 2004 Reply to Office Action of October 30, 2003

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:
Listing of Claims:

1-2: (cancelled).

3 (currently amended): In a A method of producing a material for an aperture grille for use in a color picture tube, comprising providing a low carbon steel;—sheet containing 9 to 30 wt% of Ni; cold-rolling the low carbon steel sheet; at a reduction rate of not more than 60% and annealing the low carbon sheet; at a temperature of 400 to 500°C

the improvement wherein said low carbon steel

consists of, in addition to usual components for low carbon

steel, 9 to 30 wt% of Ni, said cold-rolling is at a reduction

rate of not less than 60%, and said annealing is at a

temperature of 400 to 500°C.

4 (currently amended): A method of producing a material for an aperture grille for use in a color picture tube, comprising

_______providing a low carbon steel sheet consisting of Fe,

C, wherein said C is present in an amount no greater than 0.01

wt%, up to 0.5 wt% Mn, up to 0.3 wt% Si, up to 0.01 wt% S and

N, containing 9 to 30 wt% of Ni and 0.1 to 5 wt% of Co;

Appln. No. 09/646,349 Amd. dated March 29, 2004 Reply to Office Action of October 30, 2003

cold-rolling the low carbon steel sheet at a
reduction rate of not less than 60%; and
annealing the low carbon steel sheet at a
temperature of 400 to 500°C.
5 (currently amended): A method of producing a
material for an aperture grille for use in a color picture
tube, comprising
providing a low carbon steel sheet containing 9 to
30 wt% of Ni[[,]] and being substantially free of tin;
annealing the low carbon steel sheet at a
temperature of 500 to 800°C;
subjecting the low carbon steel sheet to cold-
rolling at a reduction rate not less than 60%[[,]]; and
annealing the low carbon steel sheet at a
temperature of 400 to 500°C.
6 (currently amended): A method of producing a
material for an aperture grille for use in a color picture
tube, comprising providing a low carbon steel sheet containing
9 to 30 wt% of Ni and 0.1 to 5 wt% of Co, and being
substantially free of tin;
annealing the low carbon steel sheet at a
temperature of 500 to 800°C;

- 3 -

Appln. No. 09/646,349 Amd. dated March 29, 2004 Reply to Office Action of October 30, 2003

cold-rolling the low carbon steel sheet at a
reduction rate of not less than 60%[[,]]; and
annealing the low carbon steel sheet at a
temperature of 400 to 500°C.

- 7 (Previously presented): An aperture grille for use in a color picture tube, which is made of a low carbon steel sheet containing 9 to 30 wt% of Ni produced by the method of according to claim 5.
- 8 (Previously presented): An aperture grille for use in a color picture tube, which is made of a low carbon steel sheet containing 9 to 30 wt% of Ni and 0.1 to 5 wt% of Co produced by the method according to claim 6.
- 9 (Previously presented): A color picture tube incorporating an aperture grille for use in a color picture tube, which is made of a low carbon steel sheet containing 9 to 30 wt% of Ni produced according to the method of claim 3.
- 10 (Previously presented): A color picture tube incorporating an aperture grille for use in a color cathode ray tube, which aperture grille is made of a low carbon steel sheet containing 9 to 30 wt% of Ni and 0.1 to 5 wt% of Co produced according to the method of claim 4.