ARTIFICIALLY EVOLVED CHUNKS FOR MORPHOSYNTACTIC ANALYSIS

MARK ANDERSON, DAVID VILARES, AND CARLOS GÓMEZ-RODRÍGUEZ

WHY CHUNK?

Chunking can help

constituency parsing

(Ciravegna and Lavelli,
1999; Tsuruoka and Tsujii,
2005).

It can also be beneficial for **dependency parsing**(Attardi and Dell'Orletta, 2008; Tammewaret et al., 2015).

And for **UD parsing** and **POS tagging** for English treebanks (Lacroix, 2018).

Psycholinguistic grounds for considering chunking (Christiansen and Chater, 2016).

Chunk candidate criteria:

- 1. The components are syntactically linked
- 2. There is only one level of dependency (one head and its dependents)
- 3. The components are continuous.
- 4. No dependents within a chunk has a dependent outwith the chunk.

Extracting rules.

Extracting rules.

(DET ADJ NOUN)

(PRON AUX ADV)

(PART VERB)

(ADP ADV PRON AUX)

(SCONJ ADV VERB)

(AUX AUX VERB)

(PRON PROPN VERB)

(CCONJ PRON AUX DET ADJ NOUN)

CHUNKING

A sequence labelling task.

Each word is labelled, **B**, **I**, or **O**.

В

A token that begins a chunk.

Suffixed with chunk phrase type.

E.g. B-NP for a noun phrase.

ı

A token inside of a chunk.

Also suffixed with chunk phrase type.

E.g. I-VP for a verb phrase.

0

Anything outside of a chunk.

Extract 2615 unique rules from UD English EWT treebank v2.3

512 occur more than 5 times.

1.34x10¹⁵⁴ different rule sets.

EVOLUTIONARY SEARCH

Binary Representation of Rule-sets

Fitness = Chunking F1-score + 0.5 x proportion of max compression

Compression, r:

$$r = \frac{\text{\#tokens}}{(\text{\#chunks} + \text{\#tokens}_{out})}$$

$$r\% = \frac{(r_{subset} - 1)}{(r_{all-1})}$$

Algorithm 1 Evolutionary algorithm

```
19: function GETFITNESS(ind)
 1: for gen \leftarrow max<sub>gen</sub> do
                                                                     rules \leftarrow CONVERT(ind)
        for ind in population do
                                                             20:
            ind.fit \leftarrow GetFitness(ind)
                                                                     train, dev \leftarrow ChunkTreebanks(rules)
                                                             21:
 3:
        end for
                                                                     TRAINCHUNKER(train)
        offspring \leftarrow SELECT(population)
                                                                     F1 \leftarrow EVALULATECHUNKER(dev)
                                                             23:
        offspring \leftarrow \texttt{CLONE}(offspring)
                                                                     Rp \leftarrow GetMaxRProportion(dev)
                                                             24:
        for pair in offspring<sub>2i</sub>, offsrping<sub>2i+1</sub> do
                                                                     return F1 + 0.5·Rp
                                                             25:
            if random < P_{crossover} then
                                                             26: end function
 8:
                pair \leftarrow CROSSOVER(pair)
 9:
            end if
10:
        end for
11:
        for ind in offspring do
12:
            if random < P_{mutate} then
13:
                ind \leftarrow M\texttt{UTATE}(ind)
14:
            end if
15:
        end for
16:
        population \leftarrow offspring
17:
18: end for
```


Network Details

We use the neural sequence toolkit NCRF++ developed by Yang and Zhang, 2018.

DETAILS OF EXPERIMENT 1

- Multi-task Tagging
- Use a combination of POS tagging, morphological-feature tagging, and chunking.
- Baselines
- Compare against UDPipe 2.0 models and against the NCRF++ framework as single-task for each tagging task.

Results of Experiment 1 English Treebanks

	EWT		GUM		LINES		PARTUT	
	POS	FEATS	POS	FEATS	POS	FEATS	POS	FEATS
udpipe	94.44	95.37	93.88	94.21	94.73	94.83	94.10	94.01
single	95.08	96.09	94.61	94.92	95.64	95.57	94.69	94.54
pos+feats	95.23	96.21	94.60	95.26	95.59	95.71	94.63	94.16
pos+feats+chunks ₇₅	95.89	96.72	95.58	96.31	96.38	96.45	96.04	95.60
pos+feats+chunks ₉₅	95.86	96.52	95.52	96.21	96.35	96.33	96.21	95.60

Results of Experiment 1 Bulgarian (BG), German (DE), and Japanese (JA)

	BG			DE	JA	
	POS	FEATS	POS	FEATS	POS	FEATS
udpipe	97.78	95.55	92.03	70.18	96.39	-
single	97.41	95.06	93.07	87.14	96.97	-
pos+feats	97.69	94.84	92.90	87.28	-	-
pos+feats+chunks ₇₅	97.49	94.58	93.34	87.03	96.98	-
pos+feats+chunks ₉₅	97.44	94.45	92.90	87.11	97.09	-

Results of Experiment 1 Chunking

	BASELINE	(SINGLE)	MULTI (WITH POS + FEATS)		
	75%	95%	75%	95%	
en-ewt	89.99	91.59	91.84	92.98	
en-gum	85.76	88.11	88.08	89.98	
en-lines	86.01	88.38	88.45	90.67	
en-partut	88.36	90.78	91.79	93.30	
bg	92.27	92.60	93.79	94.45	
de	88.74	88.97	89.35	89.62	
ja	93.35	92.73	94.39	94.02	

DETAILS OF EXPERIMENT 2

- 1 Feature Ablation for Sequence-labelleling Parsing
- Use a combination of POS tags, morphological-feature tags, and chunks as predicted from the best performing pos-feats-chunk model from experiment 1 as input features.
- Baselines
 First uses no features but uses UDPipe predicted POS tags to decode sequence-labelling parsing encoding. Compare against UDPipe 2.0 models and against the NCRF++ framework as single-task for each tagging task.

Second baseline uses UDPipe predicted POS tags as input.

Dependency Parsing as Sequence Labelling

Results of Experiment 2 English Treebanks

	EWT		GUM		LINES		PARTUT	
	UAS	LAS	UAS	LAS	UAS	LAS	UAS	LAS
no feature ^{udpipe}	80.97	77.87	76.70	72.71	76.43	71.87	81.63	78.67
pos ^{udpipe}	84.88	81.79	81.09	76.87	79.06	74.08	84.01	80.63
pos	86.15	83.29	83.03	79.31	80.76	76.12	85.83	82.69
pos+feats	86.32	83.37	82.83	79.13	81.15	76.48	86.71	83.60
pos-chunks ₇₅	85.84	82.87	82.49	78.83	80.86	76.04	87.03	83.86
pos-chunks ₉₅	85.80	82.86	81.95	78.19	80.32	75.55	86.65	83.86
pos-feats-chunks ₇₅	86.43	83.41	82.61	78.86	81.13	76.21	87.09	83.86
pos-feats-chunks ₉₅	85.99	83.04	82.15	78.50	80.82	76.09	87.35	84.04

Results of Experiment 2

Bulgarian (BG), German (DE), and Japanese (JA)

	BG		D	E	JA		
	UAS	LAS	UAS	LAS	UAS	LAS	
no features ^{udpipe}	86.49	82.43	63.20	58.86	89.96	88.43	
pos ^{udpipe}	89.48	85.30	79.39	74.04	92.49	90.42	
pos	89.47	85.11	81.77	76.69	93.68	91.70	
pos-feats	89.74	85.48	82.05	77.12	-	-	
pos+chunks ₇₅	89.23	84.67	81.49	76.54	93.28	91.41	
pos+chunks ₉₅	89.06	84.77	81.55	76.40	92.95	91.20	
pos+feats+chunks ₇₅	89.11	84.83	81.77	76.71	-	-	
pos+feats+chunks ₉₅	89.24	85.07	81.41	76.38	-	-	

DETAILS OF EXPERIMENT 3

Multi-task Framework for Sequence-labelling Parsing

• Use a combination of POS tags, morphological-feature tags, and chunks as auxillary task for sequence-labelling persing.

Weighted as 1x parsing, 0.5x POS tagging (as needed for decoding), 0.25x morphological-feature tagging, and 0.25x chunking.

Baselines

First is dependency parsing as a single task while using UDPipe predicted POS tags to decode.

POS tagging alone and POS tagging with morphological-feature tagging.

Results of Experiment 3 English Treebanks

	EWT		GUM		LINES		PARTUT	
	UAS	LAS	UAS	LAS	UAS	LAS	UAS	LAS
single ^{udpipe}	80.97	77.87	76.70	72.71	76.43	71.87	81.63	78.67
pos	84.52	81.30	78.94	74.96	78.75	74.13	83.66	80.25
pos+feats	84.21	81.14	79.51	75.42	78.56	73.87	84.10	81.31
pos-chunks ₇₅	84.55	81.51	79.54	75.48	78.17	73.55	83.86	81.13
pos-chunks ₉₅	84.42	81.34	79.60	75.54	78.72	74.20	83.57	80.16
pos-feats-chunks ₇₅	84.25	81.24	79.81	75.84	78.75	73.95	84.01	80.90
pos-feats-chunks ₉₅	84.24	81.18	79.48	75.36	78.84	74.15	84.98	81.92

Results of Experiment 3

Bulgarian (BG), German (DE), and Japanese (JA)

	BG		D	E	JA	
	UAS	LAS	UAS	LAS	UAS	LAS
single ^{udpipe}	86.49	82.43	63.20	58.86	89.96	88.43
pos	88.00	83.89	80.75	75.59	93.25	91.45
pos-feats	88.07	83.89		75.50	-	-
pos+chunks ₇₅	87.90	83.66	81.29	75.96	93.25	91.61
pos+chunks ₉₅	88.07	83.93	80.98	75.71	93.04	91.28
pos+feats+chunks ₇₅	88.26	84.00	80.77	75.52	-	-
pos+feats+chunks ₉₅	88.09	83.67	80.69	75.63	-	-

Accuracy Differences

Automatically extracted chunks can be leveraged.

Results show they are especially useful when used in a multi-task framework for POS tagging, morphological-feature tagging, and sequence-labelling parsing.

Evolutionary search can be further fine-tuned.

Run parallel to lower running time.

Use adaptive parameters.

Shallow syntactic information can be useful

Raises questions about the interplay between different levels of syntactic abstraction.

And whether the efficacy of chunks are dependent on linguistic features of a given language.

Acknowledgements

Work completed under the supervision of **Carlos Goméz-Rodríguez** and in collaboration with **David Vilares**.

This work has received funding from the European Research Council (ERC), under the European Union's Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150).

Bibliography

- 1. Ciravegna, F., Lavelli, A. (1999). Full text parsing using cascades of rules: an information extraction perspective. In Ninth Conference of the European Chapter of the Association for Computational Linguistics
- 2. Tsuruoka, Y., Tsujii, J. (2005). Chunk parsing revisited. In Proceedings of the Ninth International Workshop on Parsing Technology (pp. 133-140)
- 3. Attardi, G., Dell'Orletta, F. (2008). Chunking and dependency parsing. In Proceedings of LREC Workshop on Partial Parsing: Between Chunking and Deep Parsing
- 4. Tammewar, A. Singla, K. Agrawal, B. Bhat, R. Sharma, D. M. (2015). Can distributed word embeddings be an alternative to costly linguistic features: A study on parsing hindi. In Proceedings of the 6th Workshop on Statistical Parsing of Morphologically Rich Languages
- 5. Lacroix, O. (2018). Investigating NP-Chunking with Universal Dependencies for English. In Proceedings of the Second Workshop on Universal Dependencies (pp 85-90)
- 6. Christiansen, M. H., & Chater, N. (2016). The Now-or-Never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39.

Extra Slides

Frequencies of rules

125 rule set 0.01 100 Counts 25 rule length (#tokens) 125rule set 0.11 100-Counts 75 25 5 rule length (#tokens)

Distribution of rule lengths

