

SPADE♠

A SEMI-SUPERVISED PROBABILISTIC APPROACH FOR DETECTING ERRORS IN TABLES

Minh Pham, Craig A. Knoblock, Muhao Chen, Binh Vu, Jay Pujara

Information Sciences Institute
University of Southern California

Tables are rich sources of structured knowledge

- Millions of tables on the Web
- Providing data for many applications

Beers

			index ▲ 🌂	beer_name Y	style T	ounces T	abv 🏲
	Country (or territory)	Capital	1	Pub Beer	American Pale Lager	12.0 oz	0.05
1	China (more)	Beijing	2	Devil's Cup	American Pale Ale (APA)	12.0 oz.	0.07
2			3	Rise of the Phoenix	American IPA	12.0 ounce	0.07
	Japan (more)	Tokyo	4	Sinister	American Double / Impe	12.0 oz	0.09%
	DR Congo	Kinshasa	5	Sex and Candy	American IPA	12.0 OZ.	0.08
4	Russia (more)	Moscow	6	Black Exodus	Oatmeal Stout	12.0 oz	0.08
5	Indonesia (more)	Jakarta	10,010,01				
6	South Korea (more)	GDP per	Voluntary	Household	Daccongor		
7	Egypt (more)	· ·	·		Passenger		
8	■ • Mexico	capita	expenditure	income	transport		
	Country	41 450	2.3	-0.5	138 643		
		43 746	2.3	1.1	132 125	Economics	
		2.3	0.4	134 954 e			

Tables can contain errors

• Errors can be detrimental for data applications

index ▲ 🌂	beer_name	style Y	ounces T	abv 🏲
1	Pub Beer	American Pale Lager	12.0 oz	0.05
2	Devil's Cup	American Pale Ale (APA)	12.0 oz.	0.07
3	Rise of the Phoenix	American IPA	12.0 ounce	0.07
4	Sinister	American Double / Impe	12.0 oz	0.09%
5	Sex and Candy	American IPA	12.0 OZ.	0.08
6	Black Exodus	Oatmeal Stout	12.0 oz	80.0

GDP per capita	Voluntary expenditure	Household income	Passenger transport
41 450	2.3	-0.5	138 643
43 746	2.3	1.1	132 125
44 720	2.3	0.4	134 954 e

Supervised approach: Need of extensive labeling data

	GDP per capita	Voluntary expenditure	Household income	Passenger transport	
	41 450	2.3	-0.5	138 643	
1000	•••				
normal rows	•••	•••			
	43 746	2.3	1.1	132 125	
	44 720	2.3	0.4	134 954 e	
How many labeled examples before reaching the error ?					

Supervised approach: Imbalanced dataset

	GDP per capita	Voluntary expenditure	Household income	Passenger transport
	41 450	2.3	-0.5	138 643
1000	•••	•••		
normal rows				
	43 746	2.3	1.1	132 125
	44 720	2.3	0.4	134 954 e
Why only a few errors ?				

Unsupervised approach: Inductive bias in method design

GDP per capita	Voluntary expenditure	Household income	Passenger transport				
41 450	2.3	-0.5	138 643				
43 746	2.3	1.1	132 125				
44 720	2.3	0.4	134 954 e				
	Inductive bias: only negative value in the column						
Normal Value							

Overall approach

Detect potential errors with signal functions

How to detect potential errors?

GDP per capita	Voluntary expenditure	Household income	Passenger transport
41 450	2.3	-0.5	138 643
43 746	2.3	1.1	132 125
44 720	2.3	0.4	134 954 e

Potential Errors

How to detect potential errors?

GDP per capita	Voluntary expenditure	Household income	Passenger transport
41 450	2.3	-0.5	138 643
43 746	2.3	1.1	132 125
44 720	2.3	0.4	134 954 e

Uncommon formats – External signal

Potential Errors Huge table corpora

External and internal signals

Overall approach

PSL model: Active learning iteration

Probabilistic Soft Logic (PSL) model

A probabilistic graphical model framework using first-order logic

Two main elements: predicates and rules

• Predicates can have "soft" values [0,1]

PSL model: Predicates

HasSignal(c, s) = VIndicate value of signal function s when applying on cell c

BadSignal(s) = VIndicate if a signal is bad or good

PSL model: Predicates

$$Label(c, \{-1, 0, 1\}) = \{0, 1\}$$

Indicate user label of cell c

$$Error(c) = V$$

Indicate error probability of cell c

PSL rules: Error probabilities

 $\neg BadSignal(s) \land HasSignal(c,s) \Rightarrow Error(c)$

 $BadSignal(s) \land HasSignal(c, s) \Rightarrow \neg Error(c)$

PSL rules: Signal function and user labeling

 $Label(c,1) \land HasSignal(c,s) \Rightarrow \neg BadSignal(s)$

 $Label(c,0) \land HasSignal(c,s) \Rightarrow BadSignal(s)$

Overall approach

Label propagation

Data	Error probability
San Francisco CA	0.7
Los Angeles	0.35
Springdale AR	0.71
Bend	0.17
Chicago	0.11

Data	Error probability
San Francisco CA	0.7
Los Angeles	0.35
Springdale AR	0.71
Bend	0.17
Chicago	0.11

Data	Error probability
San Francisco CA	0.7
Los Angeles	0.35
Springdale AR	0.71
Bend	0.17
Chicago	0.11

Label propagation

$$d(e) = |e_1 - e_2| \le \epsilon$$

 $\epsilon = 0.1$

Overall approach

Synthetic error generation

Data	Error Score
San Francisco CA	0.55
Los Angeles	0.35
Springdale AR	0.59
Bend	0.17
Chicago	0.11

Data	Cleaned data				
San Francisco CA	San Francisco				
Los Angeles					
Springdale AR	Springdale				
Bend					
Chicago					

Generated Errors					
San Francisco CA CA					
Los Angeles CA					
Springdale AR AR					
Bend CA					
Chicago AR					

San Francisco CA
Los Angeles
Springdale AR
Bend
Chicago

Learn transformations to convert cleaned data to erroneous data

INSERT_END("CA")
INSERT_END("AR")

Overall approach

Training classifier model

Evaluation process

Evaluation result

- SPADE outperforms 6 different systems: Raha [Mahdavi et al., 2019], ED2 [Neutatz et al., 2019], dBoost [Mariet et al., 2016], NADEEF [Dallachiesa et al., 2013], KATARA [Chu et al., 2015], ActiveClean [Krishman et al., 2016]
 - Experiment on 5 datasets from Raha
 - Average of ten runs with $SD = \pm 0.01, *: SD = \pm 0.02, **: SD = \pm 0.03$

Approach	Hospital			Beers		Rayyan		Flights			Movies				
	P	R	\mathbf{F}	P	R	\mathbf{F}	P	R	\mathbf{F}	P	R	\mathbf{F}	P	R	\mathbf{F}
dBoost	0.07	0.37	0.11	0.34	1.00	0.50	0.05	0.18	0.08	0.25	0.34	0.29	0.25	0.79	0.38
NADEEF	0.05	0.37	0.09	0.13	0.06	0.08	0.30	0.85	0.44	0.42	0.93	0.58	1.00	0.08	0.16
KATARA	0.44	0.11	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Active Clean	0.02	0.15	0.04	0.16	1.00	0.28	0.09	1.00	0.16	0.30	0.99	0.46	0.06	1.00	0.12
ED2	0.45	0.29	0.33	1.00	0.96	0.98	0.80	0.69	0.74	0.79	0.63	0.68	0.93	0.05	0.13
Raha	0.94	0.59	0.72	0.99	0.99	0.99	0.81	0.78	0.79	0.82	0.81	0.81	0.85	0.88	0.86
SPADE	0.93	1.00	0.96	1.00	1.00	1.00	0.80*	0.92*	0.85	0.81**	0.81**	0.81*	0.99	0.83	0.90

Conclusion

- Novel probabilistic active learning model for minimal user labeling
 - capture signals for both internal and external information
 - iteratively update model to recommend the most informative example
- Data augmentation process where we enrich our training datasets with synthetic data
 - propagate labeled data and generates additional errors
 - generalize better to unseen errors
- Semi-supervised approach for error detection with excellent performance

