Assignment #5 CIS 427/527

Group 2

February 22, 2016

2.2.1

Which of the following strings are formulas in predicate logic?

Solution

- (a),(b),(f),(g) are formulas.
- (c) isn't, as f(m) is a term.
- (d) isn't, as B is expecting two terms, yet B(m, x) is a formula.
- (e) isn't, as B(m) doesn't have enough arguments.
- (h) isn't, as B(x) doesn't have enough arguments.

2.5.3

Solution

2.5.11

Solution

2.6.1

Consider the formula

$$\phi = \forall x \ \exists y \ Q(g(x,y),g(y,y),z)$$

Find two models M and M' with respective environments l and l' such that $M \models_l \phi$ but $M' \not\models_l \phi$

Solution

$$\begin{aligned} M\\ A &= \{a,b\}\\ Q^M &= \{(a,a,b)\}\\ g^M(x,y) &= a\\ z^M &= c \end{aligned}$$

Then, $\forall x \ \forall y \ Q(g(x,y),g(y,y),z) = Q(a,a,b)$, which holds, so $M \models \phi$.

$$\begin{array}{l} M' \\ A = \{a,b\} \\ Q^{M'} = \{(a,a,c)\} \\ g^{M'} = c \\ z^{M'} = a \end{array}$$

Then, $\forall x \ \forall y \ Q(g(x,y),g(y,y),z) = Q(c,c,a)$, but $(c,c,a) \notin Q^{M'}$, so $M' \not\models \phi$.

2.6.2

Consider the sentence

$$\phi = \forall x \; \exists y \; \exists z \; (P(x,y) \land P(z,y) \land (P(x,z) \rightarrow P(z,x)))$$

Which of the following models satisfies ϕ ?

- (a) $P^M = \{(m, n) | m < n\}$
- (b) $P^{M'} = \{(m, 2 * m) | m \text{ natural number} \}$ (c) $P^{M''} = \{(m, n) | m < n + 1\}$

Solution

- (a) This model does not satisfy ϕ , because we either need to force P(x,z) to be false by requiring z to be smaller than x (in which case we can escape the natural numbers), or by having $x < z \land z < x$, which cannot happen.
- (b) Yes, because the first two properties say y = 2 * x and y = 2 * z, which means x = z making P(x, z) always false.
- (c) Yes, let y = z = x, then all the properties hold.

2.6.3

Let P be a predicate with two arguments. Find a model M which satisfies $\forall x \ \neg P(x,x)$. Find also a model M' such that $M' \not\models \forall x \ \neg P(x, x)$.

Solution

- Let $P^M = \{(x, y) | x < y\}$, then we have $\forall x \neg P(x, x)$.
- Let $P^{M'} = \{(x,y)|x=y\}$, then we have $M' \not\models \forall x \neg P(x,x)$ as desired.

2.7.5

Show $\forall x(P(x) \lor Q(x)) \not\models \forall x P(x) \lor \forall x Q(x)$. Thus, find a model which satisfies $\forall x(P(x) \lor Q(x))$, but not $\forall x P(x) \lor \forall x Q(x)$

Solution

• Let A = natural numbers, and let $P^M = \{x | x \le 5\}, Q^M = \{x | x > 5\}.$

Then $\forall x.x \leq 5 \ \forall x > 5$ holds, but it is not true that $\forall x.x \leq 5 \ \forall x.x > 5$.