Задача 1

Дан параллелограмм ABCD. Векторы $\mathbf{a} = \overline{AC}$ и $\mathbf{b} = \overline{BD}$ являются его диагоналями.

Выразить векторы AB, BC, CD и DA через векторы \mathbf{a} и \mathbf{b} .

Other:
$$\overline{AB} = \frac{1}{2}(\mathbf{a} - \mathbf{b}), \ \overline{BC} = \frac{1}{2}(\mathbf{a} + \mathbf{b}), \ \overline{CD} = \frac{1}{2}(\mathbf{b} - \mathbf{a}), \ \overline{DA} = -\frac{1}{2}(\mathbf{a} + \mathbf{b}).$$

Задача 2

Дан треугольник АВС.

Выразить медиану \overline{AD} , опущенную из вершины A к стороне BC , через векторы \overline{AB} и \overline{AC} .

Otbet:
$$\overline{AD} = \frac{1}{2}(\overline{AB} + \overline{AC})$$
.

Задача 3

Дан четырёхугольник ABCD. Точки P и Q являются серединами сторон AB и CD соответственно.

Записать вектор \overline{PQ} через векторы \overline{BC} и \overline{AD} .

Otbet:
$$\overline{PQ} = \frac{1}{2} (\overline{BC} + \overline{AD})$$
.

Задача 4

Точка C делит отрезок AB в отношении $\alpha:\beta$, т.е. $\frac{|\overline{AC}|}{|\overline{CB}|} = \frac{\alpha}{\beta}$, точка O – произвольная

точка, не лежащая на отрезке AB.

Записать вектор \overline{OC} через \overline{OA} и \overline{OB} .

OTBET:
$$\overline{OC} = \frac{\beta}{\alpha + \beta} \overline{OA} + \frac{\alpha}{\alpha + \beta} \overline{OB}$$
.

Задача 5

Доказать утверждение: необходимым и достаточным условием линейной зависимости трёх векторов является их компланарность.

Задача 6

Доказать или опровергнуть утверждение: для любых ненулевых компланарных векторов ${\bf a}$, ${\bf b}$ и ${\bf c}$ найдутся числа α и β такие, что ${\bf c} = \alpha {\bf a} + \beta {\bf b}$.

06.09.2014 22:11:33