Hodnoty

Podmínky měření jsou uvedeny v následující tabulce.

Teplota [°C]	Tlak [hPa]	Vlhkost [% RH]
24,6	989,6	32,3

Tabulka 1: Podmínky měření

Délka provázku fyzického kyvadla byla změřena pásovým měřidlem.

	1	2	průměr	σ_{stat}	σ_{sys}	σ_{abs}
l [mm]	997	998	997,5	0,5	0,02	0,5

Tabulka 2: Délka provázku pro fyzické kyvadlo

Průměr kuličky byl měřen posuvným měřidlem z různých stran.

	1	2	3	4	5	průměr	σ_{stat}	σ_{sys}	σ_{abs}
$d_k[\text{mm}]$	25,6	25,2	26,0	25,2	25,2	25,4	0,2	0,02	0,2
$R[\mathrm{mm}]$	12,8	12,6	13,0	12,6	12,6	12,7	0,1	0,01	0,1

Fyzikální praktikum I

Tabulka 3: Rozměry kuličky

Hmotnost kuličky m_k a hmotnost provázku m_t byly měřeny na digitálních váhách.

$$m_k = (62, 3365 \pm 0, 0001) \text{ g}$$

$$m_t = (0,5493 \pm 0,0001) \text{ g}$$

Redukovaná délka reverzního kyvadla byla měřena pásovým měřidlem.

$$l_r = (994 \pm 1) \text{ mm}$$

Perioda fyzického kyvadla byla měřena automatickým měřičem času.

	$8T_f$	T_f
	[s]	[s]
1	16,0867	2,0108
2	16,0918	2,0115
3	16,0924	2,0116
4	16,0899	2,0112
5	16,0912	2,0114
6	16,0877	2,0110
7	16,0904	2,0113
8	16,0811	2,0101
9	16,0818	2,0102
10	16,0898	2,0112
průměr	16,0883	2,0110
σ_{stat}	0,0013	0,0002
σ_{sys}	0,0001	0,00001
σ_{abs}	0,0013	0,0002

Tabulka 4: Periody fyzického kyvadla

Následující tabulka udává periody kmitání reverzního kyvadla s čočkou dole (T_d) a nahoře (T_n) v závislosti na vzdálenosti čočky od bližšího břitu d_z .

Fyzikální praktikum I

	$8T_d$			$8T_n$		
d_z [mm]	1	2	průměr	1	2	průměr
	[s]	[s]	[s]	[s]	[s]	[s]
78,40	16,0835	16,0816	16,0826	16,3454	16,3470	16,3462
76,32	16,0651	16,0678	16,0665	16,2764	16,2695	16,2730
73,24	16,0472	16,0486	16,0479	16,1369	16,1384	16,1377
71,02	16,0307	16,0325	16,0316	16,0465	16,0522	16,0494
69,58	16,0271	16,0281	16,0276	15,9829	15,9800	15,9815
67,40	16,0149	16,0127	16,0138	15,9135	15,9142	15,9139

Tabulka 5: Osminásobky period reverzního kyvadla při různých polohách čočky

Společná perioda reverzního kyvadla pro obě osy byla měřena automatickým měřičem času.

	8T	T
	[s]	[s]
1	16,0307	2,0038
2	16,0308	2,0039
3	16,0310	2,0039
4	16,0315	2,0039
5	16,0300	2,0038
6	16,0307	2,0038
průměr	16,0308	2,00385
σ_{stat}	0,0002	0,00003
σ_{sys}	0,0001	0,00001
σ_{abs}	0,0002	0,00003

Tabulka 6: Periody reverzního kyvadla shodné pro obě osy

Úkol 1Dosazením do (??) z tabulky 2, 3 a 4 dostaneme

$$g = (9,74 \pm 0,05) \text{ m s}^{-2}$$

Úkol 2

Obrázek 1: Závislost osminásobku periody kmitů reverzního kyvadla na vzdálenosti čočky

Směrnice přímky fit dole je $k_1=(0,0062\pm0,0002)$, směrnice fit nahore $k_2=(0,0404\pm0,0009)$.

Úkol 3

Dosazením hodnot z tabulky 6 a hodnoty l_r do (??) dostaneme

$$g = (9,77 \pm 0,02) \text{ m s}^{-2}$$

Úkol 4

Použitím hodnot z tabulky 2, 3 a (??) a hodnot m_k a m_t získáme moment setrvačnosti fyzikálního kyvadla

$$I = (0,0632 \pm 0,0003) \text{ kg m}^2$$

Dosazením do (??) dostaneme

$$q = (9,74 \pm 0,04) \text{ m s}^{-2}$$
.

Nepřesnost aproximace fyzikálního kyvadla jako matematického je tedy v rámci chyby měření.

$\acute{\mathrm{U}}\mathrm{kol}\ 5$

Využitím (??) získáme vzdálenost těžiště fyzického kyvadla od osy otáčení

$$l_s=1005,7~\mathrm{mm}$$

Délka matematického kyvadla je

$$l_m = L + R = 1010, 2 \text{ mm}$$

Rozdíl je tedy $4,5~\mathrm{mm}.$