Problema 1 Miguel Angel Dorado Maldonado

Dado un conjunto de 4 instrucciones para un procesador de tamaño de palabra de 8 bits, dos registros R0 y R1 y una memoria de 64 bytes:

Instrucción	Acción	Formato de instrucción								
ADI rd, rs, cte	rd ← rs + ExtSig(cte)	Opcode rd rs cte								
ADITU, 15, Cle	Tu < Ts + Extolg(cte)									
ADM rd, rs	rd ←rd + M(rs[5:0])	Opcode rd rs								
		1 0 x x x x								
STM rd, rs	M(ro[5:0])	Opcode rd rs								
	$M(rs[5:0]) \leftarrow rd$	1 1 x x x x								
BBQ dir	If R1 <r0, dir<="" pc="" td="" ←=""><td>Opcode dir</td></r0,>	Opcode dir								
		0 0								

donde cte es un entero representado en complemento a 2.

 a) (tema 1) Inicialmente el contenido de los registros es 0 (incluido el contador de programa, PC). Describe la evolución del contenido de los registros y de la memoria (traza de ejecución) si se ejecutan 10 instrucciones.

Memoria						
Pos	Contenido					
0	62 _{hex}					
1	55 _{hex}					
2	e0 _{hex}					
3	a0 _{hex}					
4	02 _{hex}					
5	59 _{hex}					
6	00 _{hex}					
7	00 _{hex}					
:	•••					

T									
Traza de ejecución									
PC	Instrucción	Registro o posición	Valor a escribir						
	(Ej. ADI R1, R0, 3)	de memoria a escribir							
0	ADI R1, R0, 2	R1	2						
1	ADI RO,R1,5	Ro	17						
2	STM R1, RO	M(a)	2						
3	ADM R1, RO	R1	4						
4	BBQ 2	PC	2						
2	STM R1, RO	M(7)	4						
3	ADM R1, RO	R1	8						
4	BBQ 2	/ R1> R0 /							
5	ADI RO, R1, -7	RO	8-7= 1						
6	BBQ 0	/R1 > R0 /							
7	BBQ 4	/ R1 > R0 /							

Este programa calcula el doble del valor dodo y lo suarda el nemoria.

- b) Diseña una unidad de datos para poder ejecutar esas cuatro instrucciones, en base a los elementos hardware proporcionados en la siguiente página. Además puedes utilizar los elementos hardware adicionales que creas oportunos (registros, multiplexores, sumadores, comparadores, etc). Indica claramente los puntos de control necesarios.
- c) Construye la tabla de control donde se indique claramente qué señales de control deben activarse (1) y cuales no (0) para cada instrucción.
 Tabla de control:

	Señales de control												
Instrucción	WBR	WR	WR2	SV	AWOP	MOR	MDW	CMP					
ADI	1	1	1	0	2	0	0	0					
ADM	1	1	0	1	2	1	0	Q					
STM	0	1	0	-	1	0	1	0					
BBQ	0	_)	-	О	0	0	1					

Unidad de Datos