

What is claimed is:

1. A timing error detection circuit for detecting a timing error of symbols arranged at a predetermined symbol cycle included in a signal, comprising:

a sampling circuit for sampling said signal at a frequency equal to or more than double of a symbol rate;

an amplitude detection circuit for detecting an amplitude at said sampled position in said signal; and a detection circuit for detecting said timing error based on difference of said detected plurality of amplitudes.

2. A timing error detection circuit as set forth in claim 1, wherein said signal is a phase shift modulated signal.

3. A timing error detection circuit for detecting a timing error of symbols arranged at a predetermined symbol cycle T included in a signal, comprising:

a sampling circuit for sampling said signal at a frequency equal to four times of a symbol rate;

an amplitude detection circuit for detecting an amplitude at said sampled position in said signal; and

25 a detection circuit for detecting a direction

and amount of said timing error based on the large or small relationship and the difference of said detected amplitude at time "T/4" and the detected amplitude at time "3T/4" when assuming a symbol appears at times "0" and "T".

4. A timing error detection circuit as set forth in claim 3, wherein said signal is a phase shift modulated signal.

5. A timing error detection circuit for detecting a timing error of symbols arranged at a predetermined symbol cycle T included in a signal, comprising:

a sampling circuit for sampling at a frequency equal to double of a symbol rate;

an interpolation circuit for generating data at time "T/4" by using sampled data at time "0" and "T/2", and generating data at time "3T/4" by using said sampled data at time "T/2" and data on time "T" when assuming a symbol appears at times "0" and "T";

an amplitude detection circuit for detecting an amplitude of said signal at the position from data at said time "T/4" and time "3T/4"; and

a detection circuit for detecting a direction and amount of said timing error based on the large or small relationship and the difference of the amplitude at

said time "T/4" and the amplitude at said time "3T/4".

6. A timing error detection circuit as set forth in claim 5, wherein said signal is a phase shift modulated signal.

5 7. A demodulation circuit, comprising:
a symbol timing reproduction circuit for detecting a timing error of symbols arranged at a predetermined symbol cycle included in a signal and reproducing a symbol timing of said signal based on the
10 detected timing error;

a carrier reproduction circuit for performing carrier reproduction of the signal wherein said symbol timing is reproduced; and

15 a symbol decode circuit for decoding said symbol included in said carrier reproduced signal;
and wherein:

said symbol timing reproduction circuit comprises:

20 a sampling circuit for sampling said signal at a frequency equal to or more than double of a symbol rate or more;

an amplitude detection circuit for detecting an amplitude at said sampled position in said signal;

25 a detection circuit for detecting said timing error based on difference of said detected plurality of

amplitudes; and

an interpolation circuit for reproducing the symbol timing by performing interpolation processing on said signal based on said detected timing error.

5 8. A demodulation circuit as set forth in claim 7, wherein said signal is a phase shift modulated signal.

9. A demodulation circuit, comprising:

a symbol timing reproduction circuit for detecting a timing error of symbols arranged at a predetermined symbol cycle included in a signal and reproducing a symbol timing of said signal based on the detected timing error;

a carrier reproduction circuit for performing carrier reproduction of the signal wherein said symbol timing is reproduced; and

15 a symbol decode circuit for decoding said symbol included in said carrier reproduced signal:

and wherein:

20 said symbol timing reproduction circuit comprises:

a sampling circuit for sampling said signal at a frequency equal to four times of a symbol rate;

an amplitude detection circuit for detecting an amplitude at said sampled position in said signal;

25 a detection circuit for detecting a direction

and amount of said timing error based on sizes and difference of said detected amplitude at time "T/4" and the detected amplitude at time "3T/4" when assuming a symbol appears at times "0" and "T"; and

5 an interpolation circuit for reproducing the symbol timing by performing interpolation processing on said signal based on said detected timing error.

10. A demodulation circuit as set forth in claim 9, wherein said signal is a phase shift modulated signal.

10 11. A demodulation circuit, comprising:
 a symbol timing reproduction circuit for detecting a timing error of symbols arranged at a predetermined symbol cycle included in a signal and reproducing a symbol a symbol timing of said signal based
15 on the detected timing error;

 a carrier reproduction circuit for performing carrier reproduction of the signal wherein said symbol timing was reproduced; and

20 a symbol decode circuit for decoding said symbol included in said carrier reproduced signal;
 and wherein:

 said symbol timing reproduction circuit comprises:

25 a sampling circuit for sampling said signal at a frequency equal to double of a symbol rate;

a first interpolation circuit for generating data at time "T/4" by using said sampled data at time "0" and "T/2", and generating data at time "3T/4" by using said sampled data at time "T/2" and data at time "T" when assuming a symbol appears at times "0" and "T";

an amplitude detection circuit for detecting an amplitude of said signal at the position from data on said time "T/4" and data at said time "3T/4";

a detection circuit for detecting a direction and amount of said timing error based on the large or small relationship and the difference of an amplitude at said time "T/4" and an amplitude at said time "3T/4"; and

a second interpolation circuit for reproducing a symbol timing by performing interpolation processing on said signal based on said detected timing error.

12. A demodulation circuit as set forth in claim 11, wherein said signal is a phase shift modulated signal.

20 13. A timing error detection method for detecting a timing error of symbols arranged at a predetermined symbol cycle included in a signal, comprising the steps of:

sampling said signal at a frequency equal to or more than double of a symbol rate;

detecting an amplitude at said sampled position in said signal; and

detecting said timing error based on difference of said detected plurality of amplitudes.

5 14. A timing error detection method as set forth in claim 13, wherein said signal is a signal subjected to phase shift modulation.

10 15. A timing error detection method for detecting a timing error of symbols arranged at a predetermined symbol cycle T included in a signal, including the steps of:

sampling said signal at a frequency of four times a symbol rate;

15 detecting an amplitude at said sampled position in said signal; and

detecting a direction and size of said timing error based on sizes and difference of said detected amplitude at time "T/4" and the detected amplitude at time "3T/4" when assuming a symbol appears at times "0" and "T".

20 16. A timing error detection method as set forth in claim 15, wherein said signal is a phase shift modulated signal.

25 17. A timing error detection method for detecting a timing error of symbols arranged at a predetermined

symbol cycle T included in a signal, including the steps of:

sampling at a frequency equal to double of a symbol rate;

5 generating data at time "T/4" by using said sampled data at time "0" and data at time "T/2" when assuming a symbol appears at times "0" and "T";

generating data at time "3T/4" by using said sampled data at time "T/2" and data on time "T";

10 detecting an amplitude of said signal at the position from data at said time "T/4" and time "3T/4"; and

15 detecting a direction and size of said timing error based on the large or small relationship and the difference of the amplitude at said time "T/4" and the amplitude at said time "3T/4".

18. A timing error detection method as set forth in claim 17, wherein said signal is a signal subjected to phase shift modulation.

20 19. A modulation method including the steps of:

sampling said signal at a frequency equal to double of twice a symbol rate;

detecting an amplitude at said sampled position in said signal;

25 detecting said timing error based on

difference of said detected plurality of amplitudes;
reproducing a symbol timing by performing
interpolation processing on said signal based on the
detected timing error;

5 performing carrier reproduction of the signal
wherein said symbol timing is reproduced; and
 decoding said symbol included in said carrier
reproduced signal.

20. A demodulation method as set forth in claim
10 19, wherein said signal is a phase shift modulated
signal.

21. A demodulation method, including the steps
of:

15 sampling said signal including symbols
arranged at a predetermined symbol cycle at a frequency
equal to four times of a symbol rate;

detecting an amplitude at said sampled
position in said signal;

20 detecting a direction and size of said timing
error based on the large or small relationship and the
difference of said detected amplitude at time "T/4" and
said detected amplitude at time "3T/4" when assuming a
symbol appears at times "0" and "T";

25 reproducing a symbol timing by performing
interpolation processing on said signal based on said

detected timing error;

performing carrier reproduction of the signal
wherein said symbol timing is reproduced; and

decoding said symbol included in said carrier
reproduced signal.

22. A demodulation method as set forth in claim
21, wherein said signal is a phase shift modulated
signal.

23. A demodulation method including the steps of:
sampling a signal including symbols arranged
at a predetermined symbol cycle at a frequency equal to
double of a symbol rate;

generating data at time "T/4" by using said
sampled data at time "0" and data at time "T/2" when
assuming a symbol appears at times "0" and "T";

generating data at time "3T/4" by using said
sampled data at time "T/2" and data at time "T";

detecting an amplitude of said signal at the
position from data at said time "T/4" and data at time
"3T/4"; and

detecting a direction and amount of said
timing error based on the large and small relationship
and difference of the amplitude of said time "T/4" and
the amplitude at said time "3T/4";

25 reproducing the symbol timing by performing

interpolation processing on said signal based on said detected timing error;

performing carrier reproduction of the signal wherein said symbol timing is reproduced; and

5 decoding said symbol included in said carrier reproduced signal.

24. A demodulation method as set forth in claim 23, wherein said signal is a signal subjected to phase shift modulation.