Построяване на честотна таблица

Курсов проект

Разпределени софтуерни архитектури, летен семестър 2023/2024

Изготвил: Теодор Костадинов, 4МІ0600097, СИ, 3 курс

1. Постановка на задачата

1.1 Описание на задачата

Задачата се състои в разработването на програма, която получава за вход текстов файл и пресмята колко често се среща всеки символ във файла. Този процес е известен като построяване на честотна таблица. Честотната таблица е основополагащ елемент за множество алгоритми за компресия на данни, включително алгоритъма на Хъфман.

1.2 Цел на задачата

Основната цел е да се създаде програма, която ефективно и точно може да изчисли честотата на символите в даден текстов файл. Програмата трябва да бъде оптимизирана за работа с големи файлове и да използва паралелна обработка за подобряване на производителността.

1.3 Алгоритъм на Хъфман

Алгоритъмът на Хъфман е метод за компресия на данни без загуба, който използва честотната таблица за изграждане на бинарно дърво за кодиране на символите. Символите с по-висока честота се кодират с по-кратки битови последователности, а символите с по-ниска честота - с по-дълги. Това води до намаляване на общия размер на данните.

1.4 Изисквания към програмата

1. Вход и изход:

- Програмата трябва да приема като вход текстов файл.
- Програмата трябва да изчислява и отпечатва честотната таблица, показвайки колко пъти се среща всеки символ във файла.

2. Ефективност:

- Програмата трябва да бъде способна да обработва големи файлове.
- Използването на паралелна обработка е препоръчително за подобряване на производителността.

3. Точност:

• Честотната таблица трябва да бъде коректно изчислена, като се вземат предвид всички символи във файла, включително специални символи и интервали.

1.5 Задачи за изпълнение

1. Четене на файла:

• Разработване на механизъм за четене на входния текстов файл символ по символ, за да се осигури точност при изчисляването на честотите на символите.

2. Изчисляване на честотите:

• Създаване на структура от данни (например хеш-таблица), в която да се съхранява броят на срещанията на всеки символ.

3. Паралелна обработка:

- Разделяне на файла на части, които да се обработват паралелно от различни нишки, с цел ускоряване на процеса.
- Синхронизиране на достъпа до глобалната честотна таблица, за да се избегнат конфликти при актуализиране.

4. Отчитане и представяне на резултатите:

- Обединяване на резултатите от всички нишки и извеждане на окончателната честотна таблица.
- Показване на времето за изпълнение на програмата и броя използвани нишки.

2. Цел на проекта

Целта на проекта е да изследва ефективността на 3 различни решения, използващи многонишково програмиране за решаване на поставената задача в точка 1. Всяко решение е имплементирано с Java код, който може да се изпълнява с променливи параметри - входен файл, брой нишки, тих режим, и в едно от решенията - големина на четящия прозорец. Времето за изпълнението на програмата с множество параметри се записва чрез помощен скрипт и се изчисляват метриките в точка 2.2.

Трите вида разглеждани решения са:

- "Наивно" решение Всяка нишка чете по един символ от входния файл и увеличава честота на символа в споделена колекция.
- Решение "Изчитане наведнъж" Входният файл се зарежда в паметта, след което всяка нишка взима пропорционално по големина парче и изчислява честота на символите.
- Решение "Изчитане на парчета" Всяка нишка чете парче от входния файл и изчислява честота на символите, след което взима следващото парче от входния файл.

2.1 Изпълнение на решение

- Всяко решение е написано на Java.
- За да се стартира решението, изпълнете javac ExampleProgram.java, след което java ExampleProgram стартира програмата без никакви параметри.
- Програмата приема следните параметри:
 - -f <input_file> Задава входния файл на програмата, текстът, чиито символи ще бъдат анализирани за честота на срещане. Задължителен параметър при изпълнение на програмата.
 - -t <number_of_threads> Задава броят нишки, които паралелно ще изчисляват броя срещания на всеки символ. Работата на всяка една отделна нишка варира в решенията. Задължителен параметър при изпълнение на програмата.
 - -q Задава тих режим на работа на програмата, заглушават се всички съобщения свързани с индивидуалните нишки. Показва се само финалното съобщение за общо време на работа на програмата и общ брой нишки. Опционален параметър при изпълнение на програмата.
 - -w <output_file> Задава местоположението на изходния файл, съдържащ честота на всеки символ от входния файл. Без задаване на този параметър, изходният файл няма да бъде запаметен. Опционален параметър при изпълнение на програмата.
 - -c <number_of_bytes> Наличен в третото решение. Задава колко голям блок от данни да прочете всяка нишка и обработи. След приключване на блока, нишката ще прочете следващия непрочетен блок от входния файл, ако има такъв. Задължителен параметър при изпълнение на съответното решение.
- Програмата извежда подходящи съобщения на различните етапи от работата си, както и времето отделено за изчисление;
- Примерни съобщения:

```
"Thread-<num> started.",

"Thread-<num> stopped.",

"Thread-<num> execution time was (millis): <num>",

"Threads used in current run: <num>",

"Total execution time for current run (millis): <num>".
```

2.2 Метрики на тестовете

- #: Номер на извършения тест в групата.
- р: Брой паралелни нишки, които се използват за обработка на файла в извършения тест.
- **G**: Грануларността на извършения тест.
- **Tp(1), Tp(2), Tp(3)**: Времето за изпълнение (в милисекунди) за всеки от трите тестове при дадения брой нишки р.
- Тр: Минималното време за изпълнение от всички тестове за дадения брой нишки р.
- **Sp**: Ускорение спрямо единична нишка. То е изчислено като отношение на времето за изпълнение с една нишка (Tp(1)) спрямо времето за изпълнение с р нишки (Tp). Ускорението демонстрира ефективността на паралелизма и колко добре програмата използва ресурсите при увеличаване на броя на нишките.
- **Ер**: Ефективност на паралелизма. Това е измерване на ефективността на паралелизма и се изчислява като Sp / p. Ефективността над 1 показва, че програмата е в състояние да използва ресурсите ефективно при увеличаване на броя на нишките, докато стойности под 1 могат да означават загуба на ресурси за синхронизация и други разходи.

2.3 Извличане на резултатите

Резултатите се извличат чрез Python скрипт - "extract_results.py" и "extract_results_chunks.py". Скриптът изпълнява конкретно решение с конкретен входен файл при списък от зададени стойности за брой нишки. Всяка зададена стойност за брой нишки се използва, за да се тества времето за изпълнението на програмата 3 пъти. Python скриптът изчислява най-ниската времева стойност, както и автоматично пресмята ускорение и ефективност от описаните в точка 2.2.

Основните параметри, които се променят във файла са:

- INPUT_FILE_SIZE задава големината на входния файл, който ще бъде подаван на програмата. Входните файлове са предварително създадени чрез bash скрипта head -c <FILE_SIZE>MB </dev/urandom >inputs/<FILE_SIZE>, където <FILE_SIZE> е желаният размер на файла в MB.
- *SOLUTION_DIR* Директорията, където се намира желаното решение.
- *THREAD_COUNTS* Списък със стойностите за брой нишки, с които ще се изпълнява многократно програмата.

2.4 Характеристики на машините за тестове

Parameters Home PC

t5600.rmi.yaht.net

Parameters	Home PC	t5600.rmi.yaht.net
CPU Architecture	12th Gen Intel(R) Core(TM) i7-12800H (x86_64)	x86_64
Threads per core	1	2
Cores per socket	14	8
Sockets	1	2
Total cores	14	16 (32 with HT)
Model name	Intel(R) Core(TM) i7-12800H	Intel(R) Xeon E5-2660 @ 2.20GHz
CPU max MHz	2400	3000
CPU min MHz	100	1200
L1d cache	32 KB (per core)	32 KB (per core)
L1i cache	32 KB (per core)	32 KB (per core)
L2 cache	1152 KB	256 KB
L3 cache	24576 KB	20480 KB
RAM Size	32.0 GB	62.7 GB
OS Version	Windows 11 Enterprise	CentOS Linux release 7 (core)

3. Изследване на "Наивното" решение

В този подход всяка нишка чете по един символ от входния файла и отчита срещането в споделената колекция за честота на символите.

3.1 Описание на решението

- 1. **Четене на файла**: Всяка нишка чете по един символ от входния текстов файл, използвайки синхронизация чрез общ обект fileLock, който гарантира, че достъпът до файловете е синхронизиран и безопасен за многонишково изпълнение.
- 2. **Обновяване на честотната таблица**: След като символът е прочетен, той се добавя или увеличава броят си в споделената колекция **frequencyTable**. Тази операция също е синхронизирана, за да се избегнат конфликтите при достъп и актуализация на данните в таблицата.
- 3. **Използване на ExecutorService**: За паралелната обработка се използва ExecutorService с фиксиран брой нишки, които се инициализират в зависимост от броя на зададените нишки (numThreads). Всяка нишка се създава като инстанция на HuffmanParallelReadOneByOne, която е Runnable.

3.2 Имплементация на решението

Кодът, който всяка нишка изпълнява (ко∂ 1):

```
@Override
public void run() {
    long startTime = System.currentTimeMillis();
    System.out.println("Thread-" + threadId + " started.");
    try {
        while (true) {
            int c;
            synchronized (fileLock) {
                c = reader.read();
            if (c == -1) {
                break;
            }
            char character = (char) c;
            synchronized (frequencyTable) {
                frequencyTable.put(character,
frequencyTable.getOrDefault(character, 0) + 1);
    } catch (IOException e) {
        e.printStackTrace();
    }
```

```
long endTime = System.currentTimeMillis();
   System.out.println("Thread-" + threadId + " stopped.");
   System.out.println("Thread-" + threadId + " execution time was (millis): " +
   (endTime - startTime));
}
```

Кодът за паралелно изпълнение на програмата ($\kappa o \partial 2$):

```
private static void runMultiThreaded() {
   long startTime = System.currentTimeMillis();
   ExecutorService executor = Executors.newFixedThreadPool(numThreads);
   List<Future<?>> futures = new ArrayList<>();
   for (int i = 0; i < numThreads; i++) {
        HuffmanParallelReadOneByOne task = new HuffmanParallelReadOneByOne(i + 1);
        futures.add(executor.submit(task));
   }
   ...</pre>
```

3.3 Резултати от решението

Резултати от "Наивното" решение при четене на файл 25 MB, машина "Home PC" (таблица 1):

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	1226ms	1201ms	1223ms	1201ms	1.000000	1.000000
2	2	1	3526ms	3400ms	3530ms	3400ms	0.353235	0.176618
3	3	1	3133ms	3742ms	3512ms	3133ms	0.383339	0.127780
4	4	1	3641ms	3417ms	3559ms	3417ms	0.351478	0.087869
5	5	1	3536ms	3548ms	3490ms	3490ms	0.344126	0.068825
6	6	1	3649ms	3707ms	3506ms	3506ms	0.342556	0.057093
7	7	1	3758ms	3712ms	3530ms	3530ms	0.340227	0.048604
8	8	1	4243ms	4197ms	3936ms	3936ms	0.305132	0.038142
9	9	1	4116ms	4420ms	4017ms	4017ms	0.298979	0.033220
10	10	1	4090ms	4152ms	3971ms	3971ms	0.302443	0.030244
11	16	1	4293ms	4236ms	3971ms	3971ms	0.302443	0.018903
12	32	1	3961ms	4472ms	4384ms	3961ms	0.303206	0.009475
13	64	1	4700ms	4631ms	4687ms	4631ms	0.259339	0.004052
14	128	1	4505ms	4830ms	4937ms	4505ms	0.266593	0.002083

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
15	1024	1	6918ms	6478ms	7399ms	6478ms	0.185397	0.000181

Графика на времето от "Наивното" решение при четене на файл 25 МВ, машина "Ноте РС" (фигура 1):

Резултати от "Наивното" решение при четене на файл 100 MB, машина "Home PC" (таблица 2):

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	9035ms	9036ms	8772ms	8772ms	1.000000	1.000000
2	2	1	28627ms	29537ms	25661ms	25661ms	0.341842	0.170921
3	3	1	28802ms	25892ms	26154ms	25892ms	0.338792	0.112931
4	4	1	32447ms	37745ms	34016ms	32447ms	0.270349	0.067587
5	5	1	34000ms	30658ms	29518ms	29518ms	0.297175	0.059435
6	6	1	30357ms	28985ms	31542ms	28985ms	0.302639	0.050440
7	7	1	31535ms	31318ms	31603ms	31318ms	0.280095	0.040014
8	8	1	29417ms	30549ms	30437ms	29417ms	0.298195	0.037274
9	9	1	31383ms	37041ms	36181ms	31383ms	0.279514	0.031057
10	10	1	32033ms	28289ms	27986ms	27986ms	0.313442	0.031344
11	16	1	32166ms	32434ms	29786ms	29786ms	0.294501	0.018406
12	32	1	32478ms	30175ms	29088ms	29088ms	0.301568	0.009424

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
13	64	1	33984ms	35911ms	33252ms	33252ms	0.263804	0.004122
14	128	1	34119ms	32320ms	30944ms	30944ms	0.283480	0.002215
15	1024	1	38123ms	39321ms	42229ms	38123ms	0.230097	0.000225

Графика на времето от "Наивното" решение при четене на файл 100 МВ, машина "Ноте РС" (фигура 2):

3.4 Анализ на получените резултати

Забелязва се, че с увеличаването на броя на нишките, времето за изпълнение на програмата също се увеличава. Това е обратно на желания ефект - да ускорим времето за изпълнение, чрез добавяне на паралелна обработка. Нежеланият ефект се случва поради бавното синхронизиране на четенето от файла - всяка нишка бива блокирана и чака да получи достъп до файла, за да прочете 1 символ. Не се постига добър баланс между двете основни задачи - четене на символите от файла и пресмятането на честота на всеки символ.

4. Решение "Изчитане наведнъж"

4.1 Описание на решението

В този подход целият входен файл се изчита наведнъж в паметта и след това се разделя на части, които се обработват паралелно от различни нишки. Прочетеният в паметта файл се разделя на толкова части, колкото са нишките. Всяка нишка започва да пресмята честотата на символите в определената за нея част от файла. Това премахва необходимостта от синхронизация при четенето на файла, като по този начин се очаква да се подобри производителността.

4.2 Имплементация на решението

Кодът, който всяка нишка изпълнява (код 3):

```
@Override
public void run() {
    int threadId = threadCounter.getAndIncrement();
    long startTime = System.currentTimeMillis();
    System.out.println("Thread-" + threadId + " started.");
    calculateFrequency(dataChunk, frequencyTable);
    long endTime = System.currentTimeMillis();
    System.out.println("Thread-" + threadId + " stopped.");
    System.out.println("Thread-" + threadId + " execution time was (millis): " +
(endTime - startTime));
}
private static void calculateFrequency(String data, ConcurrentHashMap<Character,
AtomicInteger> frequencyTable) {
   for (char c : data.toCharArray()) {
        frequencyTable.computeIfAbsent(c, k -> new
AtomicInteger()).incrementAndGet();
}
```

Кодът за паралелно изпълнение на програмата ($\kappa o \partial 4$):

```
private static void runMultiThreaded(String data) {
   long startTime = System.currentTimeMillis();
   ExecutorService executor = Executors.newFixedThreadPool(numThreads);
   List<Future<?>> futures = new ArrayList<>();

int chunkSize = data.length() / numThreads;
   for (int i = 0; i < numThreads; i++) {
     int start = i * chunkSize;
     int end = (i == numThreads - 1) ? data.length() : (i + 1) * chunkSize;
     HuffmanParallelReadAllAtOnce task = new
HuffmanParallelReadAllAtOnce(data.substring(start, end));</pre>
```

```
futures.add(executor.submit(task));
}
...
}
```

4.3 Резултати от решението

Резултати от решение "Изчитане наведнъж" при четене на файл *100 MB*, машина "Home PC" (*таблица 3*):

#	p	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	2350ms	2413ms	2235ms	2235ms	1.000000	1.000000
2	2	1	2314ms	2218ms	2470ms	2218ms	1.007665	0.503832
3	3	1	2225ms	1961ms	1918ms	1918ms	1.165276	0.388425
4	4	1	1803ms	1961ms	1949ms	1803ms	1.239601	0.309900
5	5	1	1459ms	2117ms	1767ms	1459ms	1.531871	0.306374
6	6	1	3180ms	2020ms	2159ms	2020ms	1.106436	0.184406
7	7	1	3620ms	2517ms	2165ms	2165ms	1.032333	0.147476
8	8	1	3470ms	2662ms	2653ms	2653ms	0.842443	0.105305
9	9	1	2983ms	2631ms	4038ms	2631ms	0.849487	0.094387
10	10	1	2988ms	3276ms	4254ms	2988ms	0.747992	0.074799
11	16	1	2865ms	3103ms	2745ms	2745ms	0.814208	0.050888
12	32	1	1930ms	3283ms	7918ms	1930ms	1.158031	0.036188
13	64	1	1238ms	8237ms	5116ms	1238ms	1.805331	0.028208
14	128	1	1399ms	1261ms	1797ms	1261ms	1.772403	0.013847
15	1024	1	1092ms	2745ms	1612ms	1092ms	2.046703	0.001999

Графика на времето от решение "Изчитане наведнъж" при четене на файл *100 МВ*, машина "Home PC" (фигура 3):

Резултати от решение "Изчитане наведнъж" при четене на файл *300 МВ*, машина "Home PC" (*таблица 4*):

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	9456ms	9795ms	9553ms	9456ms	1.000000	1.000000
2	2	1	18150ms	16403ms	16836ms	16403ms	0.576480	0.288240
3	3	1	16599ms	21735ms	19744ms	16599ms	0.569673	0.189891
4	4	1	17394ms	19099ms	20118ms	17394ms	0.543636	0.135909
5	5	1	19153ms	21386ms	19965ms	19153ms	0.493709	0.098742
6	6	1	18399ms	29957ms	19062ms	18399ms	0.513941	0.085657
7	7	1	19745ms	18900ms	20859ms	18900ms	0.500317	0.071474
8	8	1	22914ms	23760ms	23979ms	22914ms	0.412673	0.051584
9	9	1	24573ms	22810ms	21297ms	21297ms	0.444006	0.049334
10	10	1	26675ms	20560ms	20512ms	20512ms	0.460998	0.046100
11	16	1	22583ms	20736ms	23473ms	20736ms	0.456019	0.028501
12	32	1	22194ms	44400ms	35639ms	22194ms	0.426061	0.013314
13	64	1	24253ms	16726ms	16839ms	16726ms	0.565347	0.008834
14	128	1	15853ms	16239ms	15985ms	15853ms	0.596480	0.004660

#	p	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
15	1024	1	15617ms	17366ms	15478ms	15478ms	0.610932	0.000597

Графика на времето от решение "Изчитане наведнъж" при четене на файл *300 МВ*, машина "Home PC" (фигура 4):

Графика на ускорението от решение "Изчитане наведнъж" при четене на файл *300 МВ*, машина "Home PC" (фигура 5):

Резултати от решение "Изчитане наведнъж" при четене на файл *500 МВ*, машина "Home PC" (*таблица 5*):

#	p	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	10993ms	10779ms	11070ms	10779ms	1.000000	1.000000
2	2	1	10673ms	10457ms	10887ms	10457ms	1.030793	0.515396
3	4	1	6959ms	7457ms	7226ms	6959ms	1.548929	0.387232
4	8	1	5806ms	5548ms	5548ms	5548ms	1.942862	0.242858
5	16	1	4861ms	4770ms	5864ms	4770ms	2.259748	0.141234
6	32	1	4414ms	4819ms	4892ms	4414ms	2.442003	0.076313
7	64	1	5180ms	5393ms	5138ms	5138ms	2.097898	0.032780
8	128	1	4073ms	4459ms	4299ms	4073ms	2.646452	0.020675
9	1024	1	4482ms	4450ms	4479ms	4450ms	2.422247	0.002365

Графика на времето от решение "Изчитане наведнъж" при четене на файл *500 МВ*, машина "Home PC" (*фигура 6*):

Графика на ускорението от решение "Изчитане наведнъж" при четене на файл *500 МВ*, машина "Home PC" (*фигура 7*):

Резултати от решение "Изчитане наведнъж" при четене на файл *1000 MB*, машина "Home PC" (*таблица* 6):

# F)	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
-----	---	---	-------	-------	-------	---------	----	----

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	14570ms	11577ms	11687ms	11577ms	1.000000	1.000000
2	2	1	11197ms	9857ms	10290ms	9857ms	1.174495	0.587248
3	4	1	7335ms	8165ms	7585ms	7335ms	1.578323	0.394581
4	8	1	5768ms	5587ms	5576ms	5576ms	2.076220	0.259527
5	16	1	4925ms	4924ms	4841ms	4841ms	2.391448	0.149466
6	32	1	4816ms	4868ms	4983ms	4816ms	2.403862	0.075121
7	64	1	5004ms	5389ms	5212ms	5004ms	2.313549	0.036149
8	128	1	5383ms	5252ms	5132ms	5132ms	2.255846	0.017624
9	1024	1	4313ms	4514ms	4495ms	4313ms	2.684211	0.002621

Графика на времето от решение "Изчитане наведнъж" при четене на файл *1000 МВ*, машина "Home PC" (фигура 8):

Резултати от решение "Изчитане наведнъж" при четене на файл 300 МВ, машина "t5600" (*таблица 7*):

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	7608ms	7584ms	7607ms	7584ms	1.000000	1.000000
2	2	1	34934ms	32621ms	33768ms	32621ms	0.232488	0.116244
3	4	1	55997ms	49641ms	34783ms	34783ms	0.218038	0.054509

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
4	8	1	41765ms	41447ms	49779ms	41447ms	0.182980	0.0228725

Графика на времето от решение "Изчитане наведнъж" при четене на файл *300 МВ*, машина "t5600" (фигура 9):

Резултати от решение "Изчитане наведнъж" при четене на файл 500 МВ, машина "t5600" (таблица 8):

	#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
	1	1	1	12725ms	12561ms	12528ms	12528ms	1.000000	1.000000
	2	2	1	51763ms	53182ms	51864ms	51763ms	0.242026	0.121013
	3	4	1	55789ms	84889ms	74577ms	55789ms	0.224560	0.056140
_	4	8	1	69366ms	68123ms	73179ms	68123ms	0.183903	0.022988

Графика на времето от решение "Изчитане наведнъж" при четене на файл *500 МВ*, машина "t5600" (фигура 10):

Резултати от решение "Изчитане наведнъж" при четене на файл 1000 MB, машина "t5600" (таблица 9):

#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1	1	1	25158ms	25029ms	25253ms	25029ms	1.000000	1.000000
2	2	1	55230ms	56797ms	57546ms	55230ms	0.453178	0.226589
3	4	1	133729ms	124239ms	146021ms	124239ms	0.201458	0.050365
4	8	1	154782ms	126549ms	145557ms	126549ms	0.197781	0.024723

Графика на времето от решение "Изчитане наведнъж" при четене на файл *1000 МВ*, машина "t5600" (*фигура 11*):

4.4 Анализ на получените резултати

Наблюденията над "Home PC" показват, че рри файлове с големина 100 и 300 MB увеличаването на броя нишки забавя програмата, но при файлове с големина 500, 1000 MB времето намаля с нарастването на нишките.

При малки файлове (100 и 300 MB), времето за обработка на всеки малък фрагмент от данни е относително кратко. Това означава, че нишките прекарват повече време в синхронизация и смяна на контекста, отколкото в реална работа. При 500 MB файл, всяка нишка обработва по-голямо количество данни, което прави влиянието на синхронизацията по-малко забележимо, тъй като по-голямата част от времето се изразходва за реална работа.

Това обаче не се случва на машината "t5600". Не се наблюдава подобрение с увеличаване на броя на нишките нито при 100, 300, 500 МВ файлове. Сървърът има повече ядра (16 физически, 32 с НТ) в сравнение с "Home PC", както и различен кеш. Освен това "t5600" използва хипернишкова технология, което позволява на всяко ядро да обработва две нишки едновременно. Поради тези различия не може да се достигне оптималната големина за обработване в "t5600".

5. Решение "Изчитане на парчета"

5.1 Описание на решението

В този подход всяка нишка чета зададено количество от файла и пресмята честота на символите в него. След приключване на изчетеното парче, нишката прочита следващо необработено парче данни от входния файл. Това продължава, докато целият файл не бъде изчетен. Всяка нишка използва общ брояч за текущата позиция във файла, който се актуализира чрез атомарна операция, за да се избегне припокриване при четенето.

Този подход комбинира ефективността на паралелното четене с простотата на обработка на парчета от данни, което позволява лесно мащабиране и подобрена производителност. Използването на атомарни операции и синхронизация само когато е необходимо, минимизира времето за блокиране на нишките и подобрява цялостната производителност на програмата.

Така се постига едно огромно преимущество пред "Изчитане наведнъж" - възможността да се обработват входни данни, които не могат директно да се заредят в паметта на машината.

5.2 Имплементация на решението

Кодът, който всяка нишка изпълнява (ко∂ 5):

```
@Override
public void run() {
    long startTime = System.currentTimeMillis();
    System.out.println("Thread-" + threadId + " started.");
    try {
        while (true) {
            long currentPointer = filePointer.getAndAdd(chunkSize);
            if (currentPointer >= file.length()) {
                break;
            byte[] buffer = new byte[chunkSize];
            synchronized (file) {
                file.seek(currentPointer);
                int bytesRead = file.read(buffer);
                if (bytesRead == -1) {
                    break;
                }
                for (int i = 0; i < bytesRead; i++) {
                    char character = (char) buffer[i];
                    frequencyTable.computeIfAbsent(character, k -> new
AtomicInteger()).incrementAndGet();
                }
            }
```

```
}
} catch (IOException e) {
    e.printStackTrace();
}

long endTime = System.currentTimeMillis();
    System.out.println("Thread-" + threadId + " stopped.");
    System.out.println("Thread-" + threadId + " execution time was (millis): " + (endTime - startTime));
}
```

Кодът за паралелно изпълнение на програмата (код 6):

```
private static void runMultiThreaded(RandomAccessFile file) {
   long startTime = System.currentTimeMillis();
   ExecutorService executor = Executors.newFixedThreadPool(numThreads);
   List<Future<?>> futures = new ArrayList<>();

   for (int i = 0; i < numThreads; i++) {
        HuffmanParallelReadChunks task = new HuffmanParallelReadChunks(i + 1, file);
        futures.add(executor.submit(task));
   }
   ...
}</pre>
```

5.3 Резултати от решението

Резултати от решение "Изчитане на парчета" при четене на файл *300 МВ*, машина "Home PC" (*таблица* 9):

Chunk Size (KB)	#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
4	1	1	76800.00	5233ms	5251ms	5508ms	5233ms	1.000000	1.000000
4	2	2	76800.00	5807ms	5757ms	5782ms	5757ms	0.908980	0.454490
4	3	4	76800.00	5803ms	5773ms	6223ms	5773ms	0.906461	0.226615
4	4	8	76800.00	5836ms	5778ms	5509ms	5509ms	0.949900	0.118738
4	5	16	76800.00	5816ms	5535ms	5491ms	5491ms	0.953014	0.059563
4	6	32	76800.00	5810ms	5816ms	5810ms	5810ms	0.900688	0.028147
4	7	64	76800.00	5686ms	5813ms	5911ms	5686ms	0.920331	0.014380
4	8	128	76800.00	5752ms	5855ms	5820ms	5752ms	0.909771	0.007108
4	9	1024	76800.00	5691ms	5732ms	5726ms	5691ms	0.919522	0.000898

Chunk Size (KB)	#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
8	1	1	38400.00	5113ms	5326ms	5330ms	5113ms	1.000000	1.000000
8	2	2	38400.00	5533ms	5191ms	5488ms	5191ms	0.984974	0.492487
8	3	4	38400.00	5478ms	5534ms	5448ms	5448ms	0.938510	0.234627
8	4	8	38400.00	5534ms	5507ms	5502ms	5502ms	0.929298	0.116162
8	5	16	38400.00	5620ms	5292ms	5541ms	5292ms	0.966175	0.060386
8	6	32	38400.00	5539ms	5489ms	5503ms	5489ms	0.931499	0.029109
8	7	64	38400.00	5522ms	5243ms	5530ms	5243ms	0.975205	0.015238
8	8	128	38400.00	5960ms	5568ms	5582ms	5568ms	0.918283	0.007174
8	9	1024	38400.00	5475ms	5521ms	5410ms	5410ms	0.945102	0.000923
16	1	1	19200.00	5384ms	5699ms	5568ms	5384ms	1.000000	1.000000
16	2	2	19200.00	5862ms	5922ms	5459ms	5459ms	0.986261	0.493131
16	3	4	19200.00	6178ms	5833ms	5703ms	5703ms	0.944065	0.236016
16	4	8	19200.00	5848ms	5971ms	5976ms	5848ms	0.920657	0.115082
16	5	16	19200.00	6073ms	5766ms	5958ms	5766ms	0.933750	0.058359
16	6	32	19200.00	5970ms	5892ms	5876ms	5876ms	0.916270	0.028633
16	7	64	19200.00	5858ms	5835ms	5777ms	5777ms	0.931972	0.014562
16	8	128	19200.00	5956ms	5582ms	5870ms	5582ms	0.964529	0.007535
16	9	1024	19200.00	5944ms	5682ms	5519ms	5519ms	0.975539	0.000953
32	1	1	9600.00	5637ms	5259ms	5281ms	5259ms	1.000000	1.000000
32	2	2	9600.00	5708ms	5730ms	5730ms	5708ms	0.921338	0.460669
32	3	4	9600.00	5465ms	5463ms	5739ms	5463ms	0.962658	0.240664
32	4	8	9600.00	5744ms	5719ms	5694ms	5694ms	0.923604	0.115450
32	5	16	9600.00	5757ms	5664ms	5706ms	5664ms	0.928496	0.058031
32	6	32	9600.00	5695ms	5689ms	5733ms	5689ms	0.924416	0.028888
32	7	64	9600.00	5763ms	5751ms	5737ms	5737ms	0.916681	0.014323
32	8	128	9600.00	5585ms	5543ms	5750ms	5543ms	0.948764	0.007412
32	9	1024	9600.00	5443ms	5376ms	5360ms	5360ms	0.981157	0.000958
64	1	1	4800.00	5218ms	5375ms	5342ms	5218ms	1.000000	1.000000
64	2	2	4800.00	5449ms	5364ms	5684ms	5364ms	0.972782	0.486391

Chunk Size (KB)	#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
64	3	4	4800.00	5644ms	5638ms	5607ms	5607ms	0.930622	0.232656
64	4	8	4800.00	5373ms	5626ms	5640ms	5373ms	0.971152	0.121394
64	5	16	4800.00	5400ms	5613ms	5672ms	5400ms	0.966296	0.060394
64	6	32	4800.00	5644ms	5613ms	5649ms	5613ms	0.929628	0.029051
64	7	64	4800.00	5402ms	5636ms	5509ms	5402ms	0.965939	0.015093
64	8	128	4800.00	5855ms	5777ms	5820ms	5777ms	0.903237	0.007057
64	9	1024	4800.00	5463ms	5475ms	5614ms	5463ms	0.955153	0.000933
128	1	1	2400.00	5331ms	5706ms	5647ms	5331ms	1.000000	1.000000
128	2	2	2400.00	5775ms	5613ms	5644ms	5613ms	0.949759	0.474880
128	3	4	2400.00	5371ms	5583ms	5602ms	5371ms	0.992553	0.248138
128	4	8	2400.00	5354ms	5324ms	5364ms	5324ms	1.001315	0.125164
128	5	16	2400.00	5617ms	5595ms	5326ms	5326ms	1.000939	0.062559
128	6	32	2400.00	5321ms	5602ms	5632ms	5321ms	1.001879	0.031309
128	7	64	2400.00	5697ms	5778ms	5840ms	5697ms	0.935756	0.014621
128	8	128	2400.00	5717ms	5809ms	5373ms	5373ms	0.992183	0.007751
128	9	1024	2400.00	6234ms	5600ms	5814ms	5600ms	0.951964	0.000930
256	1	1	1200.00	5323ms	5223ms	5261ms	5223ms	1.000000	1.000000
256	2	2	1200.00	5621ms	5637ms	5544ms	5544ms	0.942100	0.471050
256	3	4	1200.00	5535ms	5644ms	5300ms	5300ms	0.985472	0.246368
256	4	8	1200.00	5342ms	5245ms	5575ms	5245ms	0.995806	0.124476
256	5	16	1200.00	5343ms	5592ms	5321ms	5321ms	0.981582	0.061349
256	6	32	1200.00	5380ms	5544ms	5635ms	5380ms	0.970818	0.030338
256	7	64	1200.00	5601ms	5598ms	5653ms	5598ms	0.933012	0.014578
256	8	128	1200.00	5983ms	5913ms	5479ms	5479ms	0.953276	0.007447
256	9	1024	1200.00	6278ms	6275ms	6145ms	6145ms	0.849959	0.000830
512	1	1	600.00	5332ms	5531ms	5270ms	5270ms	1.000000	1.000000
512	2	2	600.00	5539ms	5636ms	5763ms	5539ms	0.951435	0.475718
512	3	4	600.00	5752ms	5475ms	5768ms	5475ms	0.962557	0.240639
512	4	8	600.00	5777ms	5818ms	5418ms	5418ms	0.972684	0.121585

Chunk Size (KB)	#	p	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
512	5	16	600.00	5492ms	5422ms	5496ms	5422ms	0.971966	0.060748
512	6	32	600.00	5828ms	5769ms	5717ms	5717ms	0.921812	0.028807
512	7	64	600.00	5858ms	5823ms	5886ms	5823ms	0.905032	0.014141
512	8	128	600.00	5900ms	5931ms	5821ms	5821ms	0.905343	0.007073
512	9	1024	600.00	6199ms	5825ms	6234ms	5825ms	0.904721	0.000884
1024	1	1	300.00	5788ms	5871ms	5476ms	5476ms	1.000000	1.000000
1024	2	2	300.00	5860ms	5896ms	5905ms	5860ms	0.934471	0.467235
1024	3	4	300.00	5576ms	5588ms	5743ms	5576ms	0.982066	0.245516
1024	4	8	300.00	5465ms	5864ms	5845ms	5465ms	1.002013	0.125252
1024	5	16	300.00	5579ms	5901ms	5896ms	5579ms	0.981538	0.061346
1024	6	32	300.00	5915ms	5940ms	5990ms	5915ms	0.925782	0.028931
1024	7	64	300.00	6019ms	5738ms	6016ms	5738ms	0.954339	0.014912
1024	8	128	300.00	6263ms	6061ms	6226ms	6061ms	0.903481	0.007058
1024	9	1024	300.00	5964ms	5753ms	5741ms	5741ms	0.953841	0.000931

Графика на времето от решение "Изчитане на парчета" при четене на файл *300 МВ*, машина "Home PC" (фигура 12):

Графика на ускорението от решение "Изчитане на парчета" при четене на файл *300 МВ*, машина "Home PC" (фигура 13):

Графика на ефективността от решение "Изчитане на парчета" при четене на файл *300 МВ*, машина "Home PC" (*фигура 14*):

Резултати от решение "Изчитане на парчета" при четене на файл *500 МВ*, машина "Home PC" (*таблица 10*):

Chunk Size (KB)	#	p	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
4	1	1	128000.00	5469ms	5477ms	5430ms	5430ms	1.000000	1.000000
4	2	2	128000.00	5790ms	5823ms	5772ms	5772ms	0.940748	0.470374
4	3	4	128000.00	5911ms	5771ms	5797ms	5771ms	0.940911	0.235228
4	4	8	128000.00	5812ms	5735ms	5747ms	5735ms	0.946818	0.118352
4	5	16	128000.00	5862ms	5784ms	5822ms	5784ms	0.938797	0.058675
4	6	32	128000.00	5732ms	5826ms	5746ms	5732ms	0.947313	0.029604
4	7	64	128000.00	5772ms	5888ms	5744ms	5744ms	0.945334	0.014771
4	8	128	128000.00	5701ms	5722ms	5704ms	5701ms	0.952464	0.007441
4	9	1024	128000.00	5815ms	6035ms	5742ms	5742ms	0.945664	0.000923
16	1	1	32000.00	5515ms	5681ms	5423ms	5423ms	1.000000	1.000000
16	2	2	32000.00	5721ms	5726ms	5368ms	5368ms	1.010246	0.505123
16	3	4	32000.00	5606ms	5369ms	5633ms	5369ms	1.010058	0.252514
16	4	8	32000.00	5369ms	5319ms	5646ms	5319ms	1.019553	0.127444
16	5	16	32000.00	5614ms	5337ms	5601ms	5337ms	1.016114	0.063507
16	6	32	32000.00	5662ms	5730ms	5666ms	5662ms	0.957789	0.029931
16	7	64	32000.00	5332ms	5669ms	5719ms	5332ms	1.017067	0.015892
16	8	128	32000.00	5652ms	5537ms	5833ms	5537ms	0.979411	0.007652
16	9	1024	32000.00	5801ms	5413ms	5765ms	5413ms	1.001847	0.000978
32	1	1	16000.00	5515ms	5461ms	5451ms	5451ms	1.000000	1.000000
32	2	2	16000.00	5698ms	5646ms	5724ms	5646ms	0.965462	0.482731
32	3	4	16000.00	5630ms	5534ms	5698ms	5534ms	0.985002	0.246250
32	4	8	16000.00	5494ms	5574ms	5470ms	5470ms	0.996527	0.124566
32	5	16	16000.00	5569ms	5493ms	5533ms	5493ms	0.992354	0.062022
32	6	32	16000.00	5508ms	5488ms	5555ms	5488ms	0.993258	0.031039
32	7	64	16000.00	5653ms	5682ms	5588ms	5588ms	0.975483	0.015242
32	8	128	16000.00	5627ms	5644ms	5748ms	5627ms	0.968722	0.007568
32	9	1024	16000.00	5420ms	5408ms	5401ms	5401ms	1.009258	0.000986

Chunk Size (KB)	#	р	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
64	1	1	8000.00	5536ms	5467ms	5517ms	5467ms	1.000000	1.000000
64	2	2	8000.00	5653ms	5574ms	5666ms	5574ms	0.980804	0.490402
64	3	4	8000.00	5743ms	5601ms	5496ms	5496ms	0.994723	0.248681
64	4	8	8000.00	5591ms	5642ms	5853ms	5591ms	0.977821	0.122228
64	5	16	8000.00	5648ms	5609ms	5557ms	5557ms	0.983804	0.061488
64	6	32	8000.00	5537ms	5540ms	5472ms	5472ms	0.999086	0.031221
64	7	64	8000.00	5554ms	5605ms	5643ms	5554ms	0.984336	0.015380
64	8	128	8000.00	5599ms	5627ms	5570ms	5570ms	0.981508	0.007668
64	9	1024	8000.00	5280ms	5287ms	5295ms	5280ms	1.035417	0.001011
256	1	1	2000.00	5416ms	5512ms	5442ms	5416ms	1.000000	1.000000
256	2	2	2000.00	5636ms	5516ms	5724ms	5516ms	0.981871	0.490935
256	3	4	2000.00	5566ms	5600ms	5605ms	5566ms	0.973051	0.243263
256	4	8	2000.00	5623ms	5674ms	5572ms	5572ms	0.972003	0.121500
256	5	16	2000.00	5762ms	5555ms	5514ms	5514ms	0.982227	0.061389
256	6	32	2000.00	5439ms	5589ms	5586ms	5439ms	0.995771	0.031118
256	7	64	2000.00	5657ms	5584ms	5560ms	5560ms	0.974101	0.015220
256	8	128	2000.00	5825ms	5715ms	5610ms	5610ms	0.965419	0.007542
256	9	1024	2000.00	6300ms	5910ms	6162ms	5910ms	0.916413	0.000895
512	1	1	1000.00	5532ms	5513ms	5564ms	5513ms	1.000000	1.000000
512	2	2	1000.00	5563ms	5523ms	5643ms	5523ms	0.998189	0.499095
512	3	4	1000.00	5482ms	5480ms	5523ms	5480ms	1.006022	0.251505
512	4	8	1000.00	5512ms	5543ms	5601ms	5512ms	1.000181	0.125023
512	5	16	1000.00	5465ms	5517ms	5486ms	5465ms	1.008783	0.063049
512	6	32	1000.00	5543ms	5567ms	5717ms	5543ms	0.994588	0.031081
512	7	64	1000.00	5774ms	5736ms	5642ms	5642ms	0.977136	0.015268
512	8	128	1000.00	5664ms	5700ms	5747ms	5664ms	0.973340	0.007604
512	9	1024	1000.00	5949ms	5890ms	5981ms	5890ms	0.935993	0.000914
1024	1	1	500.00	5488ms	5581ms	5630ms	5488ms	1.000000	1.000000
1024	2	2	500.00	5836ms	5732ms	5719ms	5719ms	0.959608	0.479804

Chunk Size (KB)	#	p	G	Tp(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
1024	3	4	500.00	5622ms	5665ms	5778ms	5622ms	0.976165	0.244041
1024	4	8	500.00	5601ms	5807ms	5691ms	5601ms	0.979825	0.122478
1024	5	16	500.00	5583ms	5727ms	5742ms	5583ms	0.982984	0.061437
1024	6	32	500.00	5912ms	5863ms	5755ms	5755ms	0.953606	0.029800
1024	7	64	500.00	5829ms	5991ms	6004ms	5829ms	0.941499	0.014711
1024	8	128	500.00	5874ms	5875ms	5770ms	5770ms	0.951127	0.007431
1024	9	1024	500.00	6262ms	5964ms	6081ms	5964ms	0.920188	0.000899
10240	1	1	50.00	5562ms	5614ms	5749ms	5562ms	1.000000	1.000000
10240	2	2	50.00	5755ms	5584ms	5543ms	5543ms	1.003428	0.501714
10240	3	4	50.00	5689ms	5741ms	5616ms	5616ms	0.990385	0.247596
10240	4	8	50.00	5730ms	5833ms	5629ms	5629ms	0.988097	0.123512
10240	5	16	50.00	5701ms	5832ms	5730ms	5701ms	0.975618	0.060976
10240	6	32	50.00	5916ms	5859ms	5804ms	5804ms	0.958305	0.029947
10240	7	64	50.00	5659ms	5738ms	5707ms	5659ms	0.982859	0.015357
10240	8	128	50.00	6047ms	5833ms	6021ms	5833ms	0.953540	0.007450
10240	9	1024	50.00	6062ms	6202ms	6043ms	6043ms	0.920404	0.000899
51200	1	1	10.00	5795ms	5614ms	5643ms	5614ms	1.000000	1.000000
51200	2	2	10.00	5654ms	5547ms	5582ms	5547ms	1.012079	0.506039
51200	3	4	10.00	5512ms	5669ms	5642ms	5512ms	1.018505	0.254626
51200	4	8	10.00	5634ms	5561ms	5688ms	5561ms	1.009531	0.126191
102400	1	1	5.00	5602ms	5650ms	5641ms	5602ms	1.000000	1.000000
102400	2	2	5.00	5701ms	5720ms	5736ms	5701ms	0.982635	0.491317
102400	3	4	5.00	5586ms	5631ms	5584ms	5584ms	1.003223	0.250806
102400	4	8	5.00	5636ms	5686ms	8508ms	5636ms	0.993967	0.124246

Графика на времето от решение "Изчитане на парчета" при четене на файл *500 МВ*, машина "Home PC" (*фигура 15*):

Графика на ускорението от решение "Изчитане на парчета" при четене на файл *500 МВ*, машина "Home PC" (*фигура 16*):

Резултати от решение "Изчитане на парчета" при четене на файл *1000 MB*, машина "Home PC" (*таблица* 11):

Chunk Size (KB)	#	р	G	Tp(1)	Tp(2)	Тр(3)	Tp(min)	Sp	Ер
16384	1	1	62.50	24510ms	23071ms	27739ms	23071ms	1.000000	1.000000
16384	2	2	62.50	28504ms	23930ms	22799ms	22799ms	1.011930	0.505965
16384	3	4	62.50	22265ms	23121ms	21267ms	21267ms	1.084826	0.271207
16384	4	8	62.50	22894ms	21564ms	21525ms	21525ms	1.071823	0.133978
32768	1	1	31.25	20623ms	21459ms	26341ms	20623ms	1.000000	1.000000
32768	2	2	31.25	28585ms	21367ms	22683ms	21367ms	0.965180	0.482590
32768	3	4	31.25	21160ms	20454ms	20638ms	20454ms	1.008262	0.252066
32768	4	8	31.25	20489ms	20339ms	20505ms	20339ms	1.013963	0.126745
65536	1	1	15.62	20591ms	20385ms	20774ms	20385ms	1.000000	1.000000
65536	2	2	15.62	22372ms	22560ms	21992ms	21992ms	0.926928	0.463464
65536	3	4	15.62	21917ms	22782ms	23357ms	21917ms	0.930100	0.232525
65536	4	8	15.62	22824ms	24752ms	24272ms	22824ms	0.893139	0.111642
102400	1	1	10.00	22915ms	23946ms	23128ms	22915ms	1.000000	1.000000
102400	2	2	10.00	23128ms	23200ms	22937ms	22937ms	0.999041	0.499520
102400	3	4	10.00	22510ms	23042ms	22656ms	22510ms	1.017992	0.254498
102400	4	8	10.00	22748ms	22854ms	22967ms	22748ms	1.007341	0.125918

Графика на времето от решение "Изчитане на парчета" при четене на файл *1000 MB*, машина "Home PC" (фигура 17):

Графика на ускорението от решение "Изчитане на парчета" при четене на файл *1000 МВ*, машина "Home PC" (*фигура 18*):

Графика на ефективността от решение "Изчитане на парчета" при четене на файл *1000 МВ*, машина "Home PC" (*фигура 19*):

Резултати от решение "Изчитане на парчета" при четене на файл *10 000 MB*, машина "Home PC" (*таблица 12*):

Chunk Size (KB)	#	р	G	Tp(1)	Тр(2)	Тр(3)	Tp(min)	Sp	Ер
32768	1	1	312.50	252404ms	252404ms	252404ms	252404ms	1.000000	1.000000
32768	2	2	312.50	322522ms	322522ms	322522ms	322522ms	0.782595	0.391297
32768	3	8	312.50	320744ms	320744ms	320744ms	320744ms	0.786933	0.098367
32768	4	16	312.50	245671ms	245671ms	245671ms	245671ms	1.027407	0.064213
126976	1	1	80.65	204815ms	204815ms	204815ms	204815ms	1.000000	1.000000
126976	2	2	80.65	210692ms	210692ms	210692ms	210692ms	0.972106	0.486053
126976	3	8	80.65	207184ms	207184ms	207184ms	207184ms	0.988566	0.123571
126976	4	16	80.65	220280ms	220280ms	220280ms	220280ms	0.929794	0.058112

Графика на времето от решение "Изчитане на парчета" при четене на файл *10000 МВ*, машина "Home PC" (*фигура 20*):

Резултати от решение "Изчитане на парчета" при четене на файл 300 MB, машина "t5600 (таблица 13):

Chunk Size (Bytes)	#	р	G	Тр(1)	Tp(2)	Tp(3)	Tp(min)	Sp	Ер
4096	1	1	76800.00	11179ms	11187ms	11204ms	11179ms	1.000000	1.000000
4096	2	2	76800.00	11598ms	11299ms	11318ms	11299ms	0.989380	0.494690
4096	3	8	76800.00	11592ms	11584ms	11564ms	11564ms	0.966707	0.120838
4096	4	16	76800.00	11641ms	11603ms	11591ms	11591ms	0.964455	0.060278
4096	5	32	76800.00	11626ms	11661ms	11585ms	11585ms	0.964955	0.030155
16384	1	1	19200.00	11116ms	11042ms	11032ms	11032ms	1.000000	1.000000
16384	2	2	19200.00	11175ms	11380ms	11103ms	11103ms	0.993605	0.496803
16384	3	8	19200.00	11121ms	11191ms	11174ms	11121ms	0.991997	0.124000
16384	4	16	19200.00	11114ms	11112ms	11154ms	11112ms	0.992801	0.062050
16384	5	32	19200.00	11102ms	11160ms	11128ms	11102ms	0.993695	0.031053
65536	1	1	4800.00	10967ms	10979ms	11034ms	10967ms	1.000000	1.000000
65536	2	2	4800.00	10962ms	10971ms	10946ms	10946ms	1.001919	0.500959
65536	3	8	4800.00	10943ms	10971ms	10982ms	10943ms	1.002193	0.125274
65536	4	16	4800.00	10915ms	10941ms	10929ms	10915ms	1.004764	0.062798

Chunk Size	#	_	6	T=/1)	T=/2)	T= (2)	Tra(min)	C	E.
(Bytes)	#	р	G	Тр(1)	Тр(2)	Тр(3)	Tp(min)	Sp	Ер
65536	5	32	4800.00	10969ms	10935ms	10975ms	10935ms	1.002926	0.031341
1048576	1	1	300.00	10964ms	11021ms	11042ms	10964ms	1.000000	1.000000
1048576	2	2	300.00	10996ms	10970ms	10978ms	10970ms	0.999453	0.499727
1048576	3	8	300.00	10952ms	10948ms	10974ms	10948ms	1.001461	0.125183
1048576	4	16	300.00	10957ms	10974ms	10954ms	10954ms	1.000913	0.062557
1048576	5	32	300.00	11000ms	10966ms	11005ms	10966ms	0.999818	0.031244
8388608	1	1	37.50	11036ms	11057ms	11069ms	11036ms	1.000000	1.000000
8388608	2	2	37.50	10996ms	11013ms	10974ms	10974ms	1.005650	0.502825
8388608	3	8	37.50	11042ms	11048ms	10980ms	10980ms	1.005100	0.125638
8388608	4	16	37.50	11086ms	11081ms	11087ms	11081ms	0.995939	0.062246
8388608	5	32	37.50	11158ms	11128ms	11160ms	11128ms	0.991733	0.030992

Графика на времето от решение "Изчитане на парчета" при четене на файл *300 МВ*, машина "t5600" (фигура 21):

Резултати от решение "Изчитане на парчета" при четене на файл 1000 МВ, машина "t5600 (таблица 14):

Chunk Size (Bytes)	#	р	G	Tp(1)	Tp(2)	Тр(3)	Tp(min)	Sp	Ер
4096	1	1	256000.00	37143ms	37335ms	37328ms	37143ms	1.000000	1.000000
4096	2	8	256000.00	38465ms	38489ms	38205ms	38205ms	0.972203	0.121525
4096	3	32	256000.00	38328ms	38139ms	38381ms	38139ms	0.973885	0.030434
1048576	1	1	1000.00	36122ms	36202ms	36240ms	36122ms	1.000000	1.000000
1048576	2	8	1000.00	36317ms	36297ms	36397ms	36297ms	0.995179	0.124397
1048576	3	32	1000.00	36319ms	36140ms	36441ms	36140ms	0.999502	0.031234
8388608	1	1	125.00	36486ms	36585ms	36969ms	36486ms	1.000000	1.000000
8388608	2	8	125.00	36362ms	36496ms	36290ms	36290ms	1.005401	0.125675
8388608	3	32	125.00	36565ms	36541ms	36480ms	36480ms	1.000164	0.031255
33554432	1	1	31.25	36990ms	36722ms	36877ms	36722ms	1.000000	1.000000
33554432	2	8	31.25	36925ms	37186ms	36867ms	36867ms	0.996067	0.124508
33554432	3	32	31.25	36631ms	36710ms	36852ms	36631ms	1.002484	0.031328
134217728	1	1	7.81	37362ms	37412ms	37391ms	37362ms	1.000000	1.000000
134217728	2	8	7.81	36432ms	33726ms	36239ms	33726ms	1.107810	0.138476
134217728	3	32	7.81	36432ms	36477ms	36252ms	36252ms	1.030619	0.032207

Графика на времето от решение "Изчитане на парчета" при четене на файл *1000 МВ*, машина "t5600" (фигура 22):

5.4 Анализ на получените резултати

За разлика от решението "Изчитане наведнъж", където се наблюдава ускорение над 2.5 пъти, в това решение, "Изчитане на части" се постигна ускорение от едва 1.1 при подходящ обем работа на всяка нишка и големина на входните данни. При файла с големина 300 МВ ускорение не се постига при разновидни обеми на работа за всяка нишка. При файла от 500 МВ, ускорение се постига при четящ прозорец 16 КВ и 51200 КВ - съответно стойности близки до големината на L1 и L3 кеша на изпълняващата машина Ноте РС. На сървърната машина забързвания чрез увеличаване на големината на четящия прозорец са незначими. Най-много се откроява забързването от 1.1 пъти при големина на прозореца 134,217,728 В (128 МВ) и 8 на брой нишки при файла с големина 1000 МВ.

6. Заключение

Най-високо ускорение показа второто решение "Изчитане наведнъж". При работа с файлове, които могат да се заредят наведнъж в паметта на машината, оптималното решение е всяка нишка да поеме пропорционално голямо количество данни и единствено да изчислява честотата на всеки символ. Така се избягва нуждата от синхронизиране при четенето от файла. Когато обаче файла не може да бъде зареден наведнъж, добро решение е всяка нишка да чете и пресмята конкретен размер парче от входните данни. От получените резултати следва, че големината на парчето, което всяка нишка обработва следва да е пропорционално на броя нишки - всяка нишка да поеме равен товар, без да има нужда от повторно четене.