Left Recursion, Left Factoring, FIRST, FOLLOW

March 10, 2025

Left Recursion

Definition: Left recursion occurs when a non-terminal references itself as the first symbol in its production.

Drawback in LL(1) Parsing:

- LL(1) parsers rely on a single token lookahead, and left recursion leads to infinite recursion, making parsing impossible.
- ▶ Must be eliminated for LL(1) grammar.

Example (Left Recursive Grammar):

$$A \rightarrow A\alpha \mid \beta$$

Removing Left Recursion:

$$A \to \beta A'$$
$$A' \to \alpha A' \mid \varepsilon$$

Left Factoring

Definition: Left factoring is used when a grammar has two or more productions that share a common prefix.

Drawback in LL(1) Parsing:

- ► LL(1) parsers require a single unique lookahead token to decide the production.
- If multiple productions share a common prefix, the parser cannot determine which rule to apply.

Example (Before Left Factoring):

$$A \to \alpha\beta \mid \alpha\gamma$$

After Left Factoring:

$$A \to \alpha A'$$
$$A' \to \beta \mid \gamma$$

FIRST Set Definition and Rules

FIRST(A): The set of terminals that can appear at the start of any string derived from **A**. If **A** can derive ε , include ε in FIRST(A).

Rules:

- ▶ If **A** is a terminal, $FIRST(A) = \{A\}$.
- ▶ If $A \to \varepsilon$, then $\varepsilon \in FIRST(A)$.
- $\blacktriangleright \text{ If } \mathbf{A} \to X_1 X_2 \dots X_n$:
 - ▶ Add FIRST(X_1) (excluding ε) to FIRST(A).
 - ▶ If X_1 can derive ε , check X_2 , and so on.
 - ▶ If all X_i can derive ε , add ε to FIRST(A).

Example for FIRST Set

Grammar:

$$A \to aB \mid \varepsilon$$
$$B \to b \mid c$$

FIRST Sets:

- ▶ FIRST(A) = $\{a, \varepsilon\}$
- ► FIRST(B) = { b, c }

FOLLOW Set Definition and Rules

FOLLOW(A): The set of terminals that can appear immediately after **A** in some derivation.

Rules:

- If S is the start symbol, FOLLOW(S) includes \$.
- ▶ If $\mathbf{A} \to \alpha B \beta$, then:
 - ▶ Add FIRST(β) (excluding ε) to FOLLOW(B).
 - ▶ If β can derive ε , add FOLLOW(A) to FOLLOW(B).
- ▶ If $\mathbf{A} \to \alpha B$, then FOLLOW(B) includes FOLLOW(A).

Example for FOLLOW Set

Grammar:

$$S \to AB$$
$$A \to a \mid \varepsilon$$
$$B \to b$$

FOLLOW Sets:

- ► FOLLOW(S) = { \$ }
- ► FOLLOW(A) = { b }
- ► FOLLOW(B) = { \$ }