Notes de cours de calculabilité

Yann Miguel

14 janvier 2020

Table des matières

1	Cours 1	2
	1.1 Machine de Turing	2
2	Contact/MCC	4

1 Cours 1

Un problème peut être simple à définir, mais ne pas admettre une solution algorithmique. Par exemple, la suite de Collatz.

```
Algorithm 1 Collatz(n)

print n

if n=1 then

return 0

else

if n=0(mod2) then

Collatz(n/2)

else

Collatz(3n+1)

end if
end if
```

1.1 Machine de Turing

```
Il s'agit d'un modèle mathématique abstrait. Définition: Une machine de Turing(MT) déterministe est un \gamma-uplet
```

$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, q_F)$$

où:

- Q est un ensemble d'états fini
- Σ est l'alphabet d'entrée
- Γ est l'alphabet de ruban (contient tout les symboles pouvant apparaître sur le ruban)
- δ est une fonction de transition
- $q_0 \in \! \mathbb{Q}$ est l'état initial
- B $\in \Gamma \backslash \Sigma$ est un symbole blanc spécial (ne fait pas parti de l'alphabet d'entrée)
- $q_F \in \mathbb{Q}$ est l'état final

Finalisations:

Résultat	Condition		
acceptation	la machine entre et s'arrête sur l'état final		
rojet	s'arrête dans un état non final		
rejet	la machine ne s'arrête pas		

Définition:

Une description instantanée(DI) d'une MT décrit sa configuration courante. C'est un mot

$$uqav \in (\{\epsilon\} \cup (\Gamma \setminus \{B\})\Gamma^*)Q\Gamma(\{\epsilon\} \cup \Gamma^*(\Gamma \setminus \{B\}))$$

avec:

- Q, l'état courant
- u, v $\in \Gamma^*$, le contenu du ruban à gauche et à droite de la tête, jusqu'au dernier symbole non blanc
- a $\in \Gamma$, le symbole de ruban actuellement sous la tête

Définition:

Un mouvement, une transition, un déplacemennt de la MT à partir de la DI α = uqav vers la DI suivante β sera noté $\alpha \vdash \beta$. Plus précisement:

- 1. Si $\delta(q, a) = (p, b, L)$,
 - si u = ϵ , alors β = pBbv (potentiellement en supprimantles B à la fin de bv)
 - si u = u'c avec c $\in \Gamma$ alors β = u'pcbv (potentiellement en supprimant les B à la fin de bv)
- 2. si $\delta(q, a) = (p, b, R)$
 - si v = ϵ alors β = ubpB (potentiellement en supprimant les B au début de ub)
 - si v $\neq \epsilon$ alors β = ubpv (potentiellement en supprimant les B au début de ub)
- 3. si $\delta(q, a)$ est indéfini, alors aucun mouvement n'est possible depuis α et α est une DI d'arrêt. Si $q = q_F$, alors α est une DI acceptante.

2 Contact/MCC

Туре	Lien
site	aeporreca.org/calculabilite(ou le lien discord)
mail	antonio.porreca@lis-lab.fr
note	0.2*CC+0.8*ET