

# Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

| Journal:                      | Global Change Biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                | Draft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wiley - Manuscript type:      | Primary Research Articles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Complete List of Authors:     | Deng, Ye; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ; University of Oklahoma, Institute for Environmental Genomics and Department of Botany and Microbiology He, Zhili; University of Oklahoma, Microbiology and Plant Biology Xiong, Jinbo; Ningbo University , Yu, Hao Xu, Meiying; Guangdong Institute of Microbiology, Hobbie, Sarah; University of Minnesota, Ecology, Evolution, and Behavior; Reich, Peter B; The University of Minnesota, Schadt, Chris; Oak Ridge National Laboratory, Kent, Angela; University of Illinois at Urbana-Champaign, Natural Resources and Environmental Sciences Pendall, Elise; University of Wyoming, Wallenstein, Matthew; Zhou, Jizhong; University of Oklahoma, Microbiology and Plant Biology                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Keywords:                     | elevated carbon dioxide, spatial turnover rate, microbial community, free air CO2 enrichment , $\beta\text{-diversity}$ , CO2 increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Abstract:                     | Although elevated CO2 (eCO2) significantly affects the $\alpha$ -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about its impacts on the geographic distribution of microorganisms regionally or globally. Here we examined the $\beta$ -diversity of 110 soil microbial communities across six free air CO2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The $\beta$ -diversity of soil microbial communities was significantly (p < 0.05) correlated with geographic distance under both CO2 conditions, but declined significantly (p < 0.05) faster at eCO2 (-0.0250) than at ambient CO2 (aCO2, -0.0231) though it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO2 at a large geographic scale (e.g., regionally). Both distance and soil properties significantly (p < 0.05) contributed to the observed microbial $\beta$ -diversity. This study provides new hypotheses for further understanding their assembly mechanisms, especially as threat from global change increases. |

SCHOLARONE™ Manuscripts



| 1  | Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities                                                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Running head: eCO <sub>2</sub> accelerates microbial spatial turnover                                                                                                             |
| 3  | Ye Deng <sup>1,2,#</sup> , Zhili He <sup>2,#,*</sup> , Jinbo Xiong <sup>2,3</sup> , Hao Yu <sup>2,4,5</sup> , Meiying Xu <sup>2,6</sup> , Sarah E. Hobbie <sup>7</sup> , Peter B. |
| 4  | Reich <sup>7,8</sup> , Christopher W. Schadt <sup>9</sup> , Angela Kent <sup>10</sup> , Elise Pendall <sup>11</sup> , Matthew Wallenstein <sup>12</sup> , and                     |
| 5  | Jizhong Zhou <sup>2,*</sup>                                                                                                                                                       |
| 6  | <sup>1</sup> CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental                                                                             |
| 7  | Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China;                                                                                                               |
| 8  | <sup>2</sup> Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the                                                                           |
| 9  | University of Oklahoma, Norman, OK;                                                                                                                                               |
| 10 | <sup>3</sup> School of Marine Sciences, Ningbo University, Ningbo, 315211, China;                                                                                                 |
| 11 | <sup>4</sup> Harbin Institute of Technology, Harbin, CHINA;                                                                                                                       |
| 12 | <sup>5</sup> School of Environmental Science and Engineering, Liaoning Technical University, Fuxin                                                                                |
| 13 | CHINA                                                                                                                                                                             |
| 14 | <sup>6</sup> State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of                                                                                  |
| 15 | Microbiology, Guangzhou, CHINA;                                                                                                                                                   |
| 16 | <sup>7</sup> The University of Minnesota, St. Paul, MN;                                                                                                                           |
| 17 | <sup>8</sup> Hawkesbury Institute for the Environment, University of Western Sydney, 2751, Australia;                                                                             |
| 18 | <sup>9</sup> Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; 37831;                                                                                           |

| 1  | <sup>10</sup> Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- |
|----|-------------------------------------------------------------------------------------------------------------|
| 2  | Champaign, Urbana, IL;                                                                                      |
| 3  | <sup>11</sup> University of Wyoming, Laramie, WY 82071;                                                     |
| 4  | <sup>12</sup> Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523;       |
| 5  | #equally contributed.                                                                                       |
| 6  |                                                                                                             |
| 7  | *Corresponding authors: Zhili He (405-325-3958, <u>zhili.he@ou.edu</u> ), and Jizhong Zhou (405-325-        |
| 8  | 6073, jzhou@ou.edu)                                                                                         |
| 9  |                                                                                                             |
| 10 | Keywords: elevated carbon dioxide; spatial turnover rate; microbial community; free air CO2                 |
| 11 | enrichment; β-diversity; CO <sub>2</sub> increases                                                          |
| 12 |                                                                                                             |
| 13 | Paper type: Primary Research Article                                                                        |
| 14 |                                                                                                             |
|    |                                                                                                             |

# Abstract

| Although elevated $CO_2$ (eCO <sub>2</sub> ) significantly affects the $\alpha$ -diversity, composition,      | function,  |
|---------------------------------------------------------------------------------------------------------------|------------|
| interaction and dynamics of soil microbial communities at the local scale, little is known                    | wn about   |
| its impacts on the geographic distribution of microorganisms regionally or globally.                          | Here we    |
| examined the $\beta$ -diversity of 110 soil microbial communities across six free air $CO_2$ en               | richment   |
| (FACE) experimental sites using a high-throughput functional gene array. The $\beta$ -diversity               | ty of soil |
| microbial communities was significantly (p < 0.05) correlated with geographic distant                         | ce under   |
| both $CO_2$ conditions, but declined significantly (p < 0.05) faster at e $CO_2$ (-0.0250)                    | ) than at  |
| ambient CO <sub>2</sub> (aCO <sub>2</sub> , -0.0231) though it varied within each individual site, indicating | that the   |
| spatial turnover rate of soil microbial communities was accelerated under eCO2 at                             | t a large  |
| geographic scale (e.g., regionally). Both distance and soil properties significantly (p                       | 0 < 0.05   |
| contributed to the observed microbial $\beta$ -diversity. This study provides new hypotheses for              | or further |
| understanding their assembly mechanisms, especially as threat from global CO <sub>2</sub> increase            | es.        |

#### Introduction

Many lines of evidence show that elevated CO<sub>2</sub> (eCO<sub>2</sub>) generally shifts the composition, 2 structure, and interaction of soil microbial communities and their ecosystem functioning 3 4 (Blagodatskaya et al., 2010, Carney et al., 2007, Deng et al., 2012, He et al., 2012a, He et al., 2010b, van Groenigen et al., 2014, Zhou et al., 2011). However, most of those studies were 5 conducted within individual sites, and it remains unclear how eCO<sub>2</sub> affects the geographic 6 distribution (e.g., distance-decay relationship) of soil microorganisms and their associated 7 ecological processes. The distance-decay relationship has been widely used to understand 8 geographic patterns of biodiversity and community assembly mechanisms across a range of 9 organisms and environmental gradients over a temporal and spatial scale (Hanson et al., 2012). 10 Two ecological theories have been proposed to explain the distance-decay relationship in both 11 macrobiology and microbiology. One is the niche assembly theory, which predicts the 12 biodiversity of a community is maintained by partitioning of organisms to specialized niches so 13 that certain number of species can coexist in a close proximity (Webb et al., 2002), and the other 14 is the neutral theory, which asserts that a community's history of stochastic dispersal and random 15 events (e.g., extinction, speciation) is largely responsible for biodiversity patterns in nature 16 (Hubbell, 2001). Both theories have gained support from previous studies in different ecosystems 17 (Fierer & Jackson, 2006, Finkel et al., 2012, Hanson et al., 2012, Horner-Devine et al., 2004, 18 Martiny et al., 2011a, Zhou et al., 2014, Zhou et al., 2008). Therefore, it is important to 19 understand the distance-decay relationship of soil microbial communities and their assembly 20 mechanisms for the maintenance of biodiversity in response to long-term eCO<sub>2</sub> exposure across 21 disparate ecosystems. 22

| Four processes (selection, drift, dispersal, and mutation) have been proposed to create           |
|---------------------------------------------------------------------------------------------------|
| and maintain microbial biogeographic patterns on inseparable ecological and evolutionary scales   |
| (Hanson et al., 2012). The detection of those ecological processes for maintaining biodiversity   |
| and supporting ecosystem functions is expected to be more sensitive with higher resolution        |
| markers (Horner-Devine et al., 2004). For example, the 16S rRNA gene (largely at the              |
| genus/sub-family level) may not be ideal for detecting drift or mutation (Hanson et al., 2012),   |
| while functional genes (at a resolution of species/strain level), such as amoA and nifH may be    |
| better molecular markers for such purposes (Martiny et al., 2011a, Zhou et al., 2008). Therefore, |
| to understand the assembly mechanisms of soil microbial communities, it is necessary to           |
| comprehensively survey the distance-decay relationship with various key functional genes.         |

In this study, we hypothesized that the similarity of soil microbial communities would decline as distance increased, and the turnover rate would be higher at eCO<sub>2</sub> than at aCO<sub>2</sub> largely due to increased soil carbon (C) inputs and altered microenvironments (van Groenigen *et al.*, 2014). To test those hypotheses, we analyzed the functional  $\beta$ -diversity of 110 soil microbial community samples (with 55 each from aCO<sub>2</sub> and eCO<sub>2</sub>) from six FACE experimental sites (BioCON, Duke, ORNL, MaizeFACE, SoyFACE and PHACE) in a distance range of < 1 m to > 2300 km using a comprehension functional genes array, GeoChip 3.0 (He *et al.*, 2010a). Our results indicated that the spatial turnover rate of soil microbial communities was accelerated under eCO<sub>2</sub> across such a distance range.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#### **Methods and Materials**

A total of 110 soil samples were taken from six FACE experimental sites across United States (Figure S1) with 55 each from aCO<sub>2</sub> and eCO<sub>2</sub> plots. Details about sampling sites were described in the Supplemental Materials and Methods. Within each site, five to twelve replicate samples were taken under each CO<sub>2</sub> condition. Since the distribution of the sampling plots and their sizes were different in six sites, the distance among replicate samples within each site varied from 2.5 to 864 meters. Soil DNA was extracted from each sample, and the functional gene microarray, GeoChip 3.0 was used to analyze key functional genes involved in important ecological processes, and details of target preparation, labeling and microarray hybridization as well as data analysis are described previously (He et al., 2012b, He et al., 2010b). The GeoChip 3.0 contains about 28,000 probes from 292 functional gene families involved in carbon, nitrogen, phosphate and sulfate cycling, energy metabolism, metal resistance and organic contaminant degradation (He et al., 2010a). Most functional gene families have specific probes derived from 100 to 2000 species/genera, thus the GeoChip could be considered as a specific, sensitive and quantitative tool to detect multiple subsets of microorganisms with certain ecological functions. Also, the phylogenetic marker, gyrB gene was integrated into this GeoChip as it could be used to detect specific microorganisms. Soil properties, such as NO<sub>3</sub>-N, NH<sub>4</sub>-N, total C and total nitrogen (N) were measured across all experiment sites as previously described (He et al., 2010b).

The β-diversity of soil microbial communities was measured by the Sørensen method. The distance-decay relationship was plotted as logarithmic similarity against logarithmic distance. A least square of linear regression was used to obtain the slope. To examine the significance of distance-decay relationships, we tested if those slopes were significantly less than zero (Martiny *et al.*, 2011b) by permutated 1000 times. Also, the obtained standard deviations of

- slopes from permutations of aCO<sub>2</sub> and eCO<sub>2</sub> were used to test whether they are significantly 1
- different. It was considered as significant if p < 0.05 in this study. The statistical analyses, such 2
- as permutational multivariate analysis of variance (PERMANOVA) (Anderson, 2001) and 3
- 4 multiple regression on matrices (MRM) (Legendre et al., 1994) were implemented to disclose
- ,raphic the relationships among geographic distances, environmental and microbial dissimilarities. 5

21

22

23

#### **Results and Discussions**

- Analysis of soil properties in the six FACE sites by ANOVA showed that soil nitrate, ammonium, total nitrogen (TN), total carbon (TC) and C:N ratio significantly differed by site (p < 0.001), but not by CO<sub>2</sub> (p > 0.05), and that their interaction was only significant (p < 0.001) for soil nitrate (Table S4). Under eCO<sub>2</sub>, previous studies showed that soil moisture was increased in five of six sites except ORNL, and that soil pH was increased in BioCON but remained unchanged in other five sites (Supplementary Information A).

  By using GeoChip hybridization signals from 110 samples, the distance-decay rate of soil microbial communities was calculated as the slope of a linear regression on the relationship
- 9 between geographic distance and community similarity under aCO<sub>2</sub>, eCO<sub>2</sub>, or both conditions. 10 Although the distance-decay rates varied within individual sites (Figure S2), they were 11 significant with the slopes less than zero: -0.0231 (r = -0.250, p < 0.001) for aCO<sub>2</sub> and -0.0250 (r 12 = -0.319, p < 0.001) for eCO<sub>2</sub> (Figure 1A) at the overall scale (pairwise against each other). 13 Permutation tests indicated that those two slopes were significantly (p < 0.001) different. When 14 the distance-decay rates were calculated only across six sites (without consideration of those 15 rates within each site), steeper slopes were observed for both eCO<sub>2</sub> (slope = -0.337, r = -0.431, p 16 < 0.001) and aCO<sub>2</sub> (slope = -0.290, r = -0.338, p < 0.001), and the slope of eCO<sub>2</sub> was 17 significantly (p < 0.001) steeper than that of aCO<sub>2</sub>. The results suggested a higher distance-decay 18 rate of soil microbial communities under eCO<sub>2</sub> compared to aCO<sub>2</sub> condition across six 19 experimental sites. 20
  - Also, a partial multiple regression on matrices (MRM) (Martiny *et al.*, 2011a) further identified the relative importance of distance and soil properties contributing to such distance-decay relationships. For the overall MRM model with all variables (distance, total C, total N,

- nitrate, ammonium, and C:N ratio) selected, they were significant (p = 0.001) with proportions
- 2 (R<sup>2</sup>): 0.237 for both aCO<sub>2</sub> and eCO<sub>2</sub>, 0.228 for aCO<sub>2</sub>, and 0.284 for eCO<sub>2</sub> microbial community
- 3 similarities (Table 1). For individual properties, soil C:N ratio made the largest contribution with
- 4 partial regression coefficients of 0.179~0.219 (p = 0.001), followed by soil ammonium
- 5 (0.117 $\sim$ 0.138, p = 0.001), and distance (0.014 $\sim$ 0.018, p = 0.001). Total C, nitrate, and total N
- 6 were not significant (p > 0.05) for aCO<sub>2</sub> only, eCO<sub>2</sub> only, or for either aCO<sub>2</sub>, eCO<sub>2</sub>, or both,
- 7 respectively (Table 1). The results indicated that C:N ratio and ammonium were identified as
- 8 major drivers of the  $\beta$ -diversity of soil microbial communities at eCO<sub>2</sub>.
- 9 We further analyzed the distance-decay relationship for key functional genes/categories
- with more than 200 probes, which allowed more robust and reliable detection of specific
- 11 functional populations. The results showed significant distance-decay relationships at the
- functional category and gene levels under aCO<sub>2</sub> or eCO<sub>2</sub> (Table S4). Furthermore, most of those
- functional genes/groups (e.g., amyA, phenol oxidase, endochitinase, nifH, nirS, nirK, norZ, dsrA,
- 14 ppx) had steeper slopes at eCO<sub>2</sub> than at aCO<sub>2</sub>, and especially the phylogenetic marker, gyrB also
- showed the same trend (Table S5). The results suggest that eCO<sub>2</sub> also accelerated the distance-
- decay rate of functional sub-communities at the functional category and/or gene level.
- 17 Understanding the mechanisms that generate and maintain biodiversity is the key to
- predicting the response of ecosystems to future global change. In this study, we found that the
- 19 turnover rate of soil microbial communities was higher under eCO<sub>2</sub> at a spatial scale of 2.5 m to
- 20 2300 km, and that soil C:N ratio and ammonium could largely contribute to this observation. Our
- 21 results provide new hypotheses for further understanding their assembly mechanisms.
- 22 It was hypothesized that eCO<sub>2</sub> would accelerate the decline of functional β-diversity of
- 23 soil microbial communities with geographic distance, and the changes of distance-decay

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1 relationship would be largely driven by environmental variation. Consistent with those

2 hypotheses, our results are well explained by the niche assembly theory (Webb et al., 2002). As

Hanson et al. (Hanson et al., 2012) proposed that four ecological and/or evolutionary processes:

selection, drift, dispersal, and mutation would shape the microbial biogeography. In this study,

our results suggest environmental selection may play a major role for structuring those microbial

communities by MRM analysis, showing that soil properties except total N had larger regression

coefficients than distance.

Why was a higher distance-decay rate observed at eCO<sub>2</sub>? There are several possibilities. First, soil C inputs increase at eCO<sub>2</sub> (van Groenigen et al., 2014), and this may drive microorganisms from oligotrophy-dominant to copiotroph-dominant communities, resulting in microbial composition changes. Indeed, we found that total soil C significantly contributed to the distance-decay relationship under eCO<sub>2</sub> but not under aCO<sub>2</sub>. Second, soil N availability tends to decrease as progressive N limitation generally occurs at eCO<sub>2</sub> (Reich & Hobbie, 2013). An increased abundance of N<sub>2</sub>-fixing communities at eCO<sub>2</sub> was identified as a common pattern across disparate sites (He et al., 2015, unpublished), possibly leading to altered N transformation soil microbial communities at eCO<sub>2</sub>. Also, a recent study showed that microbial spatial turnover rates (z values) increased under long-term inorganic fertilization in grassland soils (Liang et al., 2015). Indeed, this study found that nitrate was a significant contributor to the distance-decay relationship under aCO<sub>2</sub> but not under eCO<sub>2</sub> though C:N ratio and ammonium were found to be most important contributors to this relationship under both CO<sub>2</sub> conditions. Third, soil moisture generally increases at eCO<sub>2</sub>, which may stimulate microbial activity, especially microorganisms involved in C decomposition and N cycling (He et al., 2010b, van Groenigen et al., 2014), further driving the convergence of soil microbial communities under eCO<sub>2</sub>. Therefore, all those

possible reasons point to possible mechanisms shaping soil microbial communities, such as election and/or drift for generating the distance-decay relationship and increase its spatial turnover rate under  $eCO_2$  across those six sites. Dispersal and mutation may also increase at  $eCO_2$ , but they may not significantly impact the distance-decay relationship across those six sites.

- However, the distance-decay relationship varied within individual sites, and this appears to be contradictory with a previous study of ammonium-oxidizing bacterial communities within salt marsh sediments, which showed a significant distance-decay relationship (Martiny *et al.*, 2011a). Possible reasons may include a narrow distance scale, limited number of experimental plots for each site, and/or intertwining of multiple processes. For example, dispersal may entirely counteract compositional differentiation imposed by draft and selection, eliminating the distance-decay relationship (Hanson *et al.*, 2012).
- Some of microbial biogeography studies were performed in environmentally uniform or controlled systems (Bell, 2010, Martiny *et al.*, 2011a), which is expected to better reveal the distance-decay relationship and understand community assembly mechanisms. However, it is very difficult to find same or similar ecosystems or environments in nature if possible. As a result, some studies of the distance-decay relationship of microbial communities have been conducted among disparate ecosystems or environments (Knief *et al.*, 2010, Ranjard *et al.*, 2013). Therefore, it is necessary to comprehensively survey the distance-decay relationship and understand their assembly mechanisms among disparate ecosystems and environments.
- In summary, this study showed that eCO<sub>2</sub> accelerated the distance-decay relationship of soil microbial communities across disparate sites, which may be largely due to environmental selection and/or drift, providing new hypotheses for further understanding their assembly

- 1 mechanisms. Our results imply that eCO<sub>2</sub> may affect geographic patterns of soil microbial
- 2 communities at the future  $eCO_2$  environment.

4

# Acknowledgements

1

| 2  | This work was supported by the US Department of Agriculture (Project 2007-35319-18305)     |
|----|--------------------------------------------------------------------------------------------|
| 3  | through the NSF-USDA Microbial Observatories Program, by the US Department of Energy,      |
| 4  | Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program |
| 5  | (DE-SC0004601) as well as by the National Science Foundation under Grant Numbers DEB-      |
| 6  | 0716587 and DEB-0620652 as well as the DEB-0322057, DEB-0080382, DEB-0218039 DEB-          |
| 7  | 0219104, DEB-0217631, DEB-0716587 BioComplexity, LTER and LTREB projects, the DOE          |
| 8  | Program for Ecosystem Research, and the Minnesota Environment and Natural Resources Trust  |
| 9  | Fund. PHACE support was provided by the USDA -Agricultural Research Service and CSREES     |
| 10 | (2008-35107-18655), the US Department of Energy's Office of Science (BER), and by the      |
| 11 | National Science Foundation (DEB# 1021559). YD is supported by the Strategic Priority      |
| 12 | Research Program of the Chinese Academy of Sciences (Grant XDB15010302) and the "100-      |
| 13 | Talent Program" of the Chinese Academy of Sciences.                                        |
|    |                                                                                            |

| -  | •     |    |     |
|----|-------|----|-----|
| R. | ate i | en | ces |

- 3 Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral
- 4 Ecol., **26**, 32-46.
- 5 Bell T (2010) Experimental tests of the bacterial distance-decay relationship. ISME J, 4, 1357-
- 6 1365.
- 7 Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric
- 8 CO2 increases microbial growth rates in soil: results of three CO2 enrichment
- 9 experiments. Global Change Biology, **16**, 836-848.
- 10 Carney MC, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at
- elevated CO2leads to loss of soil carbon. Proceedings of the National Academy of
- Sciences of the United States of America, **104**, 4990-4995.
- Deng Y, He Z, Xu M et al. (2012) Elevated Carbon Dioxide Alters the Structure of Soil
- Microbial Communities. Applied and Environmental Microbiology, **78**, 2991-2995.
- Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities.
- Proceedings of the National Academy of Sciences of the United States of America, 103,
- 17 626-631.
- Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-Decay
- 19 Relationships Partially Determine Diversity Patterns of Phyllosphere Bacteria on Tamrix
- Trees across the Sonoran Desert. Applied and Environmental Microbiology, 78, 6187-
- 21 6193.
- Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic
- patterns: processes shaping the microbial landscape. Nat Rev Micro, 10, 497-506.

- 1 He Z, Deng Y, Van Nostrand JD et al. (2010a) GeoChip 3.0 as a high-throughput tool for
- analyzing microbial community composition, structure and functional activity. ISME J, 4,
- 3 1167-1179.
- 4 He Z, Piceno Y, Deng Y et al. (2012a) The phylogenetic composition and structure of soil
- 5 microbial communities shifts in response to elevated carbon dioxide. ISME J, **6**, 259-272.
- 6 He Z, Van Nostrand JD, Zhou J (2012b) Applications of functional gene microarrays for
- profiling microbial communities. Curr. Opin. Biotechnol., **23**, 460-466.
- 8 He Z, Xu M, Deng Y et al. (2010b) Metagenomic analysis reveals a marked divergence in the
- 9 structure of belowground microbial communities at elevated CO2. Ecol. Lett., 13, 564-
- 10 575.
- Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for
- bacteria. Nature, **432**, 750-753.
- Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography, Princeston, NJ,
- Princeston University Press.
- Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are
- important determinants of the Methylobacterium community composition in the plant
- 17 phyllosphere. ISME J. **4**, 719-728.
- Legendre P, Lapointe F-J, Casgrain P (1994) Modeling brain evolution from behavior: a
- permutational regression approach. Evolution, **48**, 1487-1499.
- 20 Liang Y, Wu L, Clark IM et al. (2015) Over 150 Years of Long-Term Fertilization Alters Spatial
- Scaling of Microbial Biodiversity. mBio, in press.

| 1  | Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011a) Drivers of bacterial β-   |
|----|-----------------------------------------------------------------------------------------------|
| 2  | diversity depend on spatial scale. Proceedings of the National Academy of Sciences, 108,      |
| 3  | 7850-7854.                                                                                    |
| 4  | Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011b) Drivers of bacterial β-   |
| 5  | diversity depend on spatial scale. P NATL ACAD SCI USA, 108, 7850-7854.                       |
| 6  | Ranjard L, Dequiedt S, Chemidlin Prevost-Boure N et al. (2013) Turnover of soil bacterial     |
| 7  | diversity driven by wide-scale environmental heterogeneity. Nat Commun, 4, 1434.              |
| 8  | Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of   |
| 9  | plant biomass. Nature Climate Change, 3, 278–282.                                             |
| 10 | Van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA (2014) Faster Decomposition            |
| 11 | Under Increased Atmospheric CO2 Limits Soil Carbon Storage. Science, 344, 508-509.            |
| 12 | Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ (2002) Phylogenies and community                  |
| 13 | ecology. Annual Review of Ecology and Systematics, 33, 475-505.                               |
| 14 | Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic Molecular Ecological Network of       |
| 15 | Soil Microbial Communities in Response to Elevated CO2. mBio, 2.                              |
| 16 | Zhou J, Deng Y, Zhang P et al. (2014) Stochasticity, succession, and environmental            |
| 17 | perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences,        |
| 18 | <b>111</b> , E836-E845.                                                                       |
| 19 | Zhou J, Kang S, Schadt CW, Garten CT, Jr. (2008) Spatial scaling of functional gene diversity |
| 20 | across various microbial taxa. Proc Natl Acad Sci U S A, 105, 7768-7773.                      |
| 21 |                                                                                               |
| 22 |                                                                                               |

- **Supporting Information captions**
- 2 A. Supplemental Methods and Materials
- 3 B. Supplemental Tables
- Table S1 General information about six FACE experimental sites in this study
- Table S2 Summary of samples used in this study
- Table S3 Summary of plots and plot coordinates for all samples for this study.
- 7 Table S4 Effects of site,  $CO_2$  and their interaction on soil properties
- 8 Table S5 The distance decay relationship at the functional gene and category levels
- 9 C. Supplemental Figures
- Figure S1 Location of six FACE experimental sites in this study
- Figure S2 The distance-decay rates within individual sites at aCO<sub>2</sub> and eCO<sub>2</sub>
- 12 D. Supplemental references

- 1 Table 1 Relative importance of environmental factors contributing to the correlation by multiple
- 2 regression on matrices (MRM) analysis.

|                   | all $(R^2 = 0.237,$ |       | $aCO_2 (R^2 = 0.228,$ |       | $eCO_2 (R^2 = 0.284,$ |       |
|-------------------|---------------------|-------|-----------------------|-------|-----------------------|-------|
|                   | p = 0.001)          |       | p = 0.001)            |       | p = 0.001)            |       |
|                   | Coefficient         | р     | Coefficient           | p     | Coefficient           | p     |
| Log (Distance)    | 0.015               | 0.001 | 0.014                 | 0.001 | 0.018                 | 0.001 |
| Log (Nitrate + 1) | 0.025               | 0.001 | 0.029                 | 0.001 | 0.002                 | 0.499 |
| Log (Ammonium)    | 0.117               | 0.001 | 0.119                 | 0.001 | 0.138                 | 0.001 |
| Log (Total N)     | -0.010              | 0.555 | 0.024                 | 0.501 | -0.057                | 0.084 |
| Log (Total C)     | 0.046               | 0.004 | 0.026                 | 0.355 | 0.086                 | 0.005 |
| Log (C:N ratio)   | 0.219               | 0.001 | 0.197                 | 0.001 | 0.179                 | 0.001 |

#### 1 Figure captions

12

Figure 1 The distance-decay relationship of soil microbial communities from aCO2 and eCO2 2 samples. The x-axis is log (geographic distance) in kilometer and y-axis is log (similarity) 3 4 calculated using the Sørensen method. Geographic distance was calculated from each two sites or plots based on plot coordinates (Table S3). (A) For all samples within and among six 5 experimental sites, the slope of aCO<sub>2</sub> plots was -0.0231, and the slope of eCO<sub>2</sub> plots was -0.0250, 6 and both slopes were significantly less than zero. The permutation test indicated these two slopes 7 were significantly different (t = 25.29, p < 0.001, df = 1998). (B) For the geographic distances 8 across six different sites, the slope of aCO<sub>2</sub> plots was -0.290, and the slope of eCO<sub>2</sub> plots was -9 hese t 0.337. The permutation test indicated these two slopes were significantly different as well (t = 10 659.5, p < 0.001, df = 1998). 11



165x71mm (300 x 300 DPI)

| 1        |     | Supplementary Information                                                                           |
|----------|-----|-----------------------------------------------------------------------------------------------------|
| 2        |     |                                                                                                     |
| 3        |     |                                                                                                     |
| 4<br>5   | Δ   | Supplemental Methods and Materials                                                                  |
| 6        | 11. | Supplemental Methods and Materials                                                                  |
| 7        |     |                                                                                                     |
| 8<br>9   | В.  | Supplemental Tables                                                                                 |
| LO       |     | Table S1 General information about six FACE experimental sites in this study                        |
| l1       |     | Table S2 Summary of samples used in this study                                                      |
| L2       |     | Table S3 Summary of plots and plot coordinates for all samples for this study.                      |
| L3       |     | Table S4 Effects of site, CO <sub>2</sub> and their interaction on soil properties                  |
| L4       |     | <b>Table S5</b> The distance decay relationship at the functional gene and category levels          |
| L5       |     |                                                                                                     |
| L6       | ~   |                                                                                                     |
| L7       | C.  | Supplemental Figures                                                                                |
| L8       |     | Figure S1 Location of six FACE experimental sites in this study                                     |
| L9       |     | Figure S2 The distance-decay rates within individual sites at aCO <sub>2</sub> and eCO <sub>2</sub> |
| 20       |     |                                                                                                     |
| 21       |     |                                                                                                     |
|          | ъ   | Sumulamental references                                                                             |
| 22<br>23 | ν.  | Supplemental references                                                                             |
|          |     |                                                                                                     |

## A. Supplemental Materials and Methods

3 Description, background and sampling of six sites/ecosystems

**BioCON.** The BioCON (Biodiversity, CO<sub>2</sub>, Nitrogen deposition) experiment site is a planted 4 native grassland containing a total of 296 plots with three treatments: CO<sub>2</sub> (ambient, 368 ppm vs 5 elevated, 560 ppm), N (ambient vs. 4 g NH<sub>4</sub>NO<sub>3</sub> m<sup>-2</sup> year<sup>-1</sup>), and plant diversity (1, 4, 9 or 16 6 native grass species in four functional groups: C<sub>3</sub>, C<sub>4</sub>, forb and legume) (Reich et al., 2001). 7 Previous studies showed increased soil pH, soil moisture, and bacterial biomass, and shifts of 8 both phylogenetic and functional composition, structure and interaction network of soil microbial 9 communities under eCO<sub>2</sub> (Deng et al., 2012, He et al., 2012b, He et al., 2010b, Zhou et al., 2010, 10 Zhou et al., 2011). In this study, we analyzed soil microbial communities sampled from 24 plots 11 (12 for aCO<sub>2</sub> and 12 for eCO<sub>2</sub>) with 16 species and without N addition in July 2007 when this 12 site was exposed to eCO<sub>2</sub> for 10 years. 13 **Duke.** The Duke Forest FACE experiment is a pine-dominated (>90% of basal area) forest 14 ecosystem. Elevated CO<sub>2</sub> concentration is maintained 200 ppm (e.g., 585 ppm) above the 15 ambient level (e.g., 385 ppm). Soils are highly weathered clay loams (mixed thermic Ultic 16 Hapludalfs), and a detailed description of the site can be found in Lichter et al. (Lichter et al., 17 2008). Soil moisture tended to increase at eCO<sub>2</sub> (Norby et al., 2010) although soil pH varied 18 relatively little (4.1 to 5.2) between aCO<sub>2</sub> and eCO<sub>2</sub> samples (Ge et al., 2010). Previous studies 19 20 showed that limited available N in soil constrained C sequestration at eCO<sub>2</sub>(Norby et al., 2010), while eCO2 increased the release of soluble C from roots to soil, thus accelerating turnover of N 21 pools in the rhizosphere (Phillips et al., 2011). Another study showed that the acid to aldehyde 22 ratios of lignin-derived phenols increased and leaf-derived alkyl structures were enriched under 23 eCO<sub>2</sub> and N fertilization, suggesting an enhanced degradation of lignin and hydrolysable lipid 24

- 1 components(Feng et al., 2010). In this study, we analyzed soil microbial communities from 16 plots (8 each for aCO<sub>2</sub> and eCO<sub>2</sub>) sampled in July 2008 when this site was exposed to eCO<sub>2</sub> for 2 15 years. 3 **ORNL.** The Oak Ridge National Laboratory (ORNL) FACE experiment is a sweetgum 4 (Liquidambar styraciflua L.) plantation with four 25-m diameter plots with two eCO<sub>2</sub> (~ 544 5 ppm) and two aCO<sub>2</sub> (~ 376 ppm) (Norby et al., 2001). The soil is classified as Aquic Haplidult 6 with a pH of approximately 5.5-6.0, and a previous studies indicate no significant changes with 7 the soil microbial community, soil pH, or soil moisture at eCO<sub>2</sub>, while soil N availability 8
- if the CO<sub>2</sub> fertilization effect is sustainable, especially in N limited forest ecosystems at eCO<sub>2</sub> 10 conditions (Norby et al., 2010). One possibility is that eCO<sub>2</sub>-grwon trees may be able to access a 11

declined significantly faster at eCO<sub>2</sub> (Austin et al., 2009, Garten et al., 2011), arising a question

- larger inorganic N pool in deeper soil by increased root exploration at eCO<sub>2</sub> (Iversen et al., 2011). In this study, 12 samples (6 each for aCO<sub>2</sub> and eCO<sub>2</sub>) sampled in July 2008 were analyzed when 13
- this site was exposed to eCO<sub>2</sub> for 10 years. 14

9

12

23

**SoyFACE/MaizeFACE.** The SoyFACE is a typical corn-soybean rotation agroecosystem with a 15 randomized complete block design (n = 4) with each block containing four treatments: (i) 16 ambient  $CO_2$  (~400 ppm in 2008) and  $O_3$  (~37.9 ppb in 2008), (ii) elevated  $CO_2$  (~550 ppm), (iii) 17 elevated O<sub>3</sub> (~ 61.3 ppb in 2008), and (iv) a combination of elevated CO<sub>2</sub> and O<sub>3</sub>. The soil is 18 Drummer-Flanagan (fine-silty, mixed, mesic Typic Endoaquoll) with a pH of 5.73-6.14, which 19 was not significantly affected by eCO<sub>2</sub> (Peralta & Wander, 2008), but eCO<sub>2</sub> did generally 20 increase soil moisture for both SoyFACE and MaizeFACE experiments (Leakey et al., 2009). It 21 is hypothesized that legumes like soybean have a competitive advantage over non-legumious 22

species at eCO<sub>2</sub> (Rogers et al., 2009), while C<sub>4</sub> plants (e.g., corn) may not be as sensitive as C<sub>3</sub>

- 1 grasses or other plants in response to eCO<sub>2</sub> (Leakey et al., 2009). In this study, 24 soil samples were collected for CO<sub>2</sub> treatments (ambient and elevated CO<sub>2</sub>) in October 2008 from SoyFACE 2 plots and 24 soil samples in May 2009 from MaizeFACE plots at the depth of 0-15 cm. This site 3 4 was exposed to eCO<sub>2</sub> for 7 or 8 years, respectively. PHACE. The PHACE (Prairie Heating and Carbon Dioxide Enrichment) experiment includes a 5 factorial combination of two levels of CO<sub>2</sub> (ambient 400 ppm vs elevated 600 ppm) and two 6 temperature (ambient vs elevated with 1.5/3.0°C warmer day/night) regimes with five 7 replications for each treatment randomly assigned 20 (3.3-m diameter) circular plots. The soil is 8 9 a fine-loamy, mixed, mesic Aridic Argiustoll with pH of 7.9, which was not significantly affected by eCO<sub>2</sub> while soil moisture significantly increased at eCO<sub>2</sub> (Dijkstra et al., 2010). It is 10 a mixed-grass prairie semiarid ecosystem dominated by C<sub>4</sub> grasses, C<sub>3</sub> grasses, and forbs and 11 12 sub-shrubs, and details of the experimental site, design and setup are as previously described(Dijkstra et al., 2010). A previous study showed that microbially mediated CH<sub>4</sub> 13 consumption was significantly higher but N<sub>2</sub>O emission was not significantly affected under 14 elevated CO<sub>2</sub> (Dijkstra et al., 2010), and another study indicated that eCO<sub>2</sub> completely reversed 15 the desiccation effects of moderate warming, and favored C3 grasses and enhanced stand 16 productivity, whereas warming favored C<sub>4</sub> grasses (Morgan et al., 2011). A recent laboratory 17
- ability to decompose soil organic matter (SOM) compared with those from ambient CO<sub>2</sub> plots,

incubation study from PHACE showed that eCO2 microbial communities had an increased

- suggesting positive feedbacks of soil microbial communities to this semi-arid ecosystem (Nie et
- 21 al., 2013). In this study, we only analyzed soil microbial communities from 10 plots (5 for aCO<sub>2</sub>
- 22 and 5 for eCO<sub>2</sub>) sampled in July 2008 when this site was exposed to eCO<sub>2</sub> for only 2 years.

#### **Analysis of soil properties**

18

- 1 Soil NO<sub>3</sub>-N and NH<sub>4</sub>-N were extracted with 1 M KCl solution and quantified by a Flow Injection
- 2 Autoanalyzer (LACHAT, 1994). Soil organic carbon and total N were determined using a
- 3 LECO Truspec dry combustion carbon analyzer (Nelson & Sommers, 1996).

## 4 DNA extraction, purification and quantitation

- 5 Soil DNA was extracted by freeze-grinding mechanical lysis as described previously(Zhou et al.,
- 6 1996), and was purified using a low melting agarose gel followed by phenol extraction. DNA
- 7 quality was assessed by the ratios of 260 nm/280 nm, and 260/230 nm using a NanoDrop ND-
- 8 1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE), and final DNA
- 9 concentrations were quantified with PicoGreen (Ahn et al., 1996) using a FLUOstar Optima
- 10 (BMG Labtech, Jena, Germany).

#### 11 GeoChip analysis

- GeoChip 3.0 was used to analyze all 110 soil DNA samples, and it contains about 28,000 probes
- covering approximately 57,000 gene variants from 292 functional gene families involved in C, N,
- 14 P and S cycling, energy metabolism, antibiotic resistance, metal resistance and organic
- 15 contaminant degradation (He et al., 2010a), and GeoChip-based hybridization detection is
- 16 considered quantitative (He et al., 2012a). Details for target preparation, labeling, and GeoChip
- hybridization as well as data analysis are previously described (He et al., 2010a, He et al., 2012c,
- He et al., 2010b). Briefly, 50 ng of DNA was used as template for the whole community genome
- 19 amplification (WCGA) (Wu et al., 2006), and 3.0 μg of amplified DNA was labeled and then
- 20 hybridized with GeoChip 3.0 at 45°C with 50% formamide. The image was processed and spots
- with a signal to noise ratio (SNR) > 2.0 were considered as positive signals (He & Zhou, 2008),
- and raw data were pre-processed.

#### Statistical analysis

Multivariate and direct gradient analysis. Permutational multivariate analysis of variance (PERMANOVA)(Anderson, 2001) was used to evaluate the contribution of site/ecosystem and CO<sub>2</sub> as well as their interaction to microbial community variations with the Adonis function, and to partition sums of squares from a centroid based on a Bray-Curtis dissimilarity matrix implemented in R (R Development Core Team, 2012). It first calculates the distances among samples and then permutates the distance matrix for 999 times. Since our experiments were carried out in six experimental sites, randomization was only implemented within each site to control the effect across all sites. Significance tests were done using F-test based on sequential sums of squares from permutations. Different datasets of microbial communities generated with different analytical methods were used to examine whether different locations and/or elevated atmospheric CO<sub>2</sub> has significant effects on soil microbial communities. All three procedures (anosim, adonis and mrpp) were performed with the Vegan package in R.

## Calculations of geographic distances and β-diversity

To create a geographic distance matrix between any two sampling sites, the geographic distance was calculated using latitudinal and longitudinal coordinates (Table S5) and the Haversine formula.  $\beta$ -diversity of soil microbial communities was analyzed using the Sørensen method. The distance-decay relationship was plotted as logarithmic similarity against logarithmic distance. A linear regression was used to obtain the slope. To examine the significance of distance-decay relationships, we tested if those slopes were significantly less than zero (Martiny *et al.*, 2011). Also, the significance of slopes between aCO<sub>2</sub> and eCO<sub>2</sub> was tested by permutation. It was considered as significant if p value < 0.05 in this study.

#### Multiple regression on matrices (MRM)

- To identify the relative importance of multiple factors contributing to the distance-decay 1
- relationship, a multiple regression on matrices (MRM) was used (Legendre et al., 1994). The 2
- partial regression coefficients of an MRM model give a measure of the rate of change in the soil 3
- 4 microbial community similarity for variables of interests when other variables were held constant
- (Martiny *et al.*, 2011). 5

# **B.** Supplemental Tables

2 3 4

1

**Table S1** Summary information about six FACE experimental sites/ecosystems in this study.

| Project                  | BioCON <sup>a</sup>                                                         | Duke <sup>b</sup>                              | ORNL <sup>c</sup>     | MaizeFACE <sup>d</sup>                               | SoyFACE <sup>d</sup> | PHACE <sup>e</sup>                            |
|--------------------------|-----------------------------------------------------------------------------|------------------------------------------------|-----------------------|------------------------------------------------------|----------------------|-----------------------------------------------|
| Site                     | Cedar Creek Ecosystem Science Reserve, MN                                   | Duke Forest,<br>NC                             | Oak<br>Ridge, TN      | Urbana-Champaign, IL  Corn/Soybean rotation  550 ppm |                      | Cheyenne,<br>WY                               |
| Ecosystem                | Native C <sub>3</sub> grass, C <sub>4</sub> grass, legume, and forb species | Loblolly pine forest                           | Sweetgum plantation   |                                                      |                      | Mixed<br>grass<br>prairie                     |
| Elevated CO <sub>2</sub> | 560 ppm                                                                     | Ambient + 200 ppm                              | 550 ppm               |                                                      |                      | 600 ppm                                       |
| Other treatment          | Plant diversity, and nitrogen                                               | Soil nutrients                                 | None                  | O <sub>3</sub> , temperature, and drought            |                      | Temperatu<br>re                               |
| Lat/Lon                  | 45°24' N/<br>93°12' W                                                       | 35 <sup>°</sup> 58' N/<br>79 <sup>°</sup> 5' W | 35°54' N/<br>84°20' W | 40°2' N/88                                           | 3°13' W              | 41 <sup>°</sup> 11'N<br>104 <sup>°</sup> 54'W |
| Start-end year           | 1997-                                                                       | 1994-2010                                      | 1998 -<br>2009        | 2001-                                                |                      | 2006-2013                                     |

5 6

7

9 10

a. BioCON (Biodiversity, CO<sub>2</sub> and Nitrogen): <a href="http://www.biocon.umn.edu/">http://www.biocon.umn.edu/</a>

b. Duke Forest-Atmosphere Carbon Transfer and Storage (FACTS-I): <a href="http://face.env.duke.edu/main.cfm/">http://face.env.duke.edu/main.cfm/</a>

c. ORNL FACE: http://face.ornl.gov/

d. MaizeFACE and SoyFACE: <a href="http://soyface.illinois.edu/index.htm/">http://soyface.illinois.edu/index.htm/</a>

e. PHACE (Prairie Heating and CO<sub>2</sub> Enrichment): <a href="http://www.ars.usda.gov/Research/docs.htm?docid=16754/">http://www.ars.usda.gov/Research/docs.htm?docid=16754/</a>

**Table S2** Summary of samples used in this study (ambient  $CO_2$  vs elevated  $CO_2$ ). A total of 110 (55 for each  $CO_2$  condition) were analyzed.

| Site                      | BioCON    | Duke      | ORNL      | MaizeFACE    | SoyFACE   | PHACE     |
|---------------------------|-----------|-----------|-----------|--------------|-----------|-----------|
| Ecosystem                 | Grassland | Forest    | Forest    | Soybean      | Corn      | Grassland |
| Ring/block                | 6         |           | 4/5       | 8            | 8         | 2         |
| Plot                      | 24        | 16        | 12/15     | 24           | 24        | 10        |
| Replicates                | 12        | 8         | 6         | 12           | 12        | 5         |
| Depth                     | 0-15 cm   | 0-10 cm   | 0-15      | 0-15 cm      | 0-15 cm   | 0-15 cm   |
| Sub-total                 | 24        | 16        | 12        | 24           | 24        | 10        |
| Sampling time             | July 2007 | July 2008 | July 2008 | October 2008 | May 2009  | July 2008 |
| eCO <sub>2</sub> exposure | 10 years  | 15 years  | 10 years  | 7 years      | 7.5 years | 2 years   |

Table S3 Summary of plots and plot coordinates for all samples for this study.

| Site      | $CO_2$  | Plot | Latitude | Longitude |
|-----------|---------|------|----------|-----------|
| BioCON    | Ambient | 67   | -93.19   | 45.40     |
| BioCON    | Ambient | 69   | -93.19   | 45.40     |
| BioCON    | Ambient | 104  | -93.19   | 45.40     |
| BioCON    | Ambient | 107  | -93.19   | 45.40     |
| BioCON    | Ambient | 184  | -93.19   | 45.40     |
| BioCON    | Ambient | 188  | -93.19   | 45.40     |
| BioCON    | Ambient | 201  | -93.19   | 45.40     |
| BioCON    | Ambient | 222  | -93.19   | 45.40     |
| BioCON    | Ambient | 306  | -93.18   | 45.40     |
| BioCON    | Ambient | 344  | -93.18   | 45.40     |
| BioCON    | Ambient | 355  | -93.18   | 45.40     |
| BioCON    | Ambient | 358  | -93.18   | 45.40     |
| Duke      | Ambient | 1A   | -79.09   | 35.98     |
| Duke      | Ambient | 5A   | -79.09   | 35.98     |
| Duke      | Ambient | 6A   | -79.09   | 35.98     |
| Duke      | Ambient | 8A   | -79.09   | 35.97     |
| Duke      | Ambient | 9A   | -79.09   | 35.98     |
| Duke      | Ambient | 10A  | -79.09   | 35.98     |
| Duke      | Ambient | 11A  | -79.09   | 35.98     |
| Duke      | Ambient | 12A  | -79.09   | 35.97     |
| ORNL      | Ambient | S4a  | -84.34   | 35.90     |
| ORNL      | Ambient | S4b  | -84.34   | 35.90     |
| ORNL      | Ambient | S4c  | -84.34   | 35.90     |
| ORNL      | Ambient | S5a  | -84.34   | 35.90     |
| ORNL      | Ambient | S5b  | -84.34   | 35.90     |
| ORNL      | Ambient | S5c  | -84.34   | 35.90     |
| MaizeFACE | Ambient | 1S1  | -88.24   | 40.04     |
| MaizeFACE | Ambient | 1S2  | -88.24   | 40.04     |
| MaizeFACE | Ambient | 1S3  | -88.24   | 40.04     |
| MaizeFACE | Ambient | 4S1  | -88.24   | 40.04     |
| MaizeFACE | Ambient | 4S2  | -88.24   | 40.04     |
| MaizeFACE | Ambient | 4S3  | -88.24   | 40.04     |
| MaizeFACE | Ambient | 10S1 | -88.23   | 40.04     |
| MaizeFACE | Ambient | 10S2 | -88.23   | 40.04     |
| MaizeFACE | Ambient | 10S3 | -88.23   | 40.04     |
| MaizeFACE | Ambient | 11S1 | -88.23   | 40.04     |
| MaizeFACE | Ambient | 11S2 | -88.23   | 40.04     |
| MaizeFACE | Ambient | 11S3 | -88.23   | 40.04     |
| SoyFACE   | Ambient | 17S1 | -88.23   | 40.04     |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 25S3                                                                                                                                                                                                                                                                                                                                                                                                                                             | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 32S1                                                                                                                                                                                                                                                                                                                                                                                                                                             | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 32S2                                                                                                                                                                                                                                                                                                                                                                                                                                             | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 32S3                                                                                                                                                                                                                                                                                                                                                                                                                                             | -88.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                | -104.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                               | -104.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                               | -104.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                               | -104.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ambient  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                               | -104.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 23                                                                                                                                                                                                                                                                                                                                                                                                                                               | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 33                                                                                                                                                                                                                                                                                                                                                                                                                                               | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 45                                                                                                                                                                                                                                                                                                                                                                                                                                               | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 51                                                                                                                                                                                                                                                                                                                                                                                                                                               | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 147                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 163                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 173                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 179                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 250                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 270                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 272                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 283                                                                                                                                                                                                                                                                                                                                                                                                                                              | -93.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 2A                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 3A                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 4A                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 7A                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 2B                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 3B                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 4B                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | 7B                                                                                                                                                                                                                                                                                                                                                                                                                                               | -79.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | S1a                                                                                                                                                                                                                                                                                                                                                                                                                                              | -84.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | S1b                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | S1c                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | S2a                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | S2b                                                                                                                                                                                                                                                                                                                                                                                                                                              | -84.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Elevated | S2c                                                                                                                                                                                                                                                                                                                                                                                                                                              | -84.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | Ambient Ambient Ambient Ambient Ambient Ambient Ambient Ambient Elevated | Ambient         24S1           Ambient         24S2           Ambient         24S3           Ambient         25S1           Ambient         25S2           Ambient         32S1           Ambient         32S3           Ambient         32S3           Ambient         12           Ambient         12           Ambient         22           Ambient         25           Elevated         23           Elevated         33           Elevated         45           Elevated         51           Elevated         173           Elevated         179           Elevated         270           Elevated         283           Elevated         2A           Elevated         2A           Elevated         3A           Elevated         3B           Elevated         3B           Elevated         3B           Elevated         51a           Elevated         51a           Elevated         51a           Elevated         51a           Elevated         52a | Ambient         1783         -88.23           Ambient         2481         -88.23           Ambient         2482         -88.23           Ambient         2581         -88.23           Ambient         2582         -88.23           Ambient         2583         -88.23           Ambient         3281         -88.23           Ambient         3282         -88.23           Ambient         3283         -88.23           Ambient         12         -104.89           Ambient         12         -104.89           Ambient         22         -104.89           Ambient         25         -104.89           Ambient         25         -104.89           Elevated         23         -93.19           Elevated         33         -93.19           Elevated         45         -93. |

| MaizeFACE | Elevated | 3S1  | -88.24  | 40.04 |
|-----------|----------|------|---------|-------|
| MaizeFACE | Elevated | 3S2  | -88.24  | 40.04 |
| MaizeFACE | Elevated | 3S3  | -88.24  | 40.04 |
| MaizeFACE | Elevated | 5S1  | -88.23  | 40.04 |
| MaizeFACE | Elevated | 5S2  | -88.23  | 40.04 |
| MaizeFACE | Elevated | 5S3  | -88.23  | 40.04 |
| MaizeFACE | Elevated | 14S1 | -88.23  | 40.04 |
| MaizeFACE | Elevated | 14S2 | -88.23  | 40.04 |
| MaizeFACE | Elevated | 14S3 | -88.23  | 40.04 |
| MaizeFACE | Elevated | 15S1 | -88.23  | 40.04 |
| MaizeFACE | Elevated | 15S2 | -88.23  | 40.04 |
| MaizeFACE | Elevated | 15S3 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 20S1 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 20S2 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 20S3 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 21S1 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 21S2 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 21S3 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 28S1 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 28S2 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 28S3 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 29S1 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 29S2 | -88.23  | 40.04 |
| SoyFACE   | Elevated | 29S3 | -88.23  | 40.04 |
| PHACE     | Elevated | 3    | -104.89 | 41.20 |
| PHACE     | Elevated | 7    | -104.89 | 41.20 |
| PHACE     | Elevated | 11   | -104.89 | 41.20 |
| PHACE     | Elevated | 26   | -104.89 | 41.20 |
| PHACE     | Elevated | 27   | -104.89 | 41.20 |

3

**Table S4** The effect of site and CO<sub>2</sub> on soil properties analyzed by ANOVA.

|                     | Site    |          | $CO_2$  |        | Site x CO <sub>2</sub> |         |
|---------------------|---------|----------|---------|--------|------------------------|---------|
|                     | F value | P > F    | F value | P > F  | F value                | P > F   |
| Nitrate             | 52.253  | <0.0001  | 2.9209  | 0.0906 | 6.435                  | <0.0001 |
| Ammonium            | 14.0834 | <0.0001  | 1.2869  | 0.2594 | 0.828                  | 0.5328  |
| Total nitrogen (TN) | 16.3036 | <0.0001  | 0.7447  | 0.3903 | 0.7665                 | 0.5761  |
| Total carbon (TC)   | 9.2797  | <0.0001  | 0.8297  | 0.3646 | 0.3235                 | 0.8978  |
| C:N ratio           | 22.1813 | < 0.0001 | 1.0774  | 0.3018 | 0.3785                 | 0.8624  |



**Table S5** The significant distance decay relationships of key functional genes/categories at  $aCO_2$  and  $eCO_2$  and their significance of slopes (p values) between  $aCO_2$  and  $eCO_2$  by permutation tests.

| Functional category and | $aCO_2$ |        | eCO <sub>2</sub> |        | Significance (aCO <sub>2</sub> |
|-------------------------|---------|--------|------------------|--------|--------------------------------|
| gene/enzyme             | r       | Slope  | r                | Slope  | vs. eCO <sub>2</sub> )         |
| Carbon cycling          | -0.292  | -0.035 | -0.321           | -0.034 | 0.104                          |
| amyA                    | -0.190  | -0.013 | -0.293           | -0.016 | < 0.001                        |
| Endochitinase           | -0.168  | -0.010 | -0.268           | -0.014 | < 0.001                        |
| Phenol oxidase          | -0.159  | -0.010 | -0.212           | -0.014 | < 0.001                        |
| Acc/Pcc                 | -0.154  | -0.009 | -0.232           | -0.014 | < 0.001                        |
| Rubisco                 | -0.135  | -0.010 | -0.254           | -0.014 | < 0.001                        |
| CODH                    | -0.112  | -0.008 | -0.269           | -0.016 | < 0.001                        |
| Nitrogen cycling        | -0.263  | -0.027 | -0.307           | -0.027 | 0.036                          |
| nifH                    | -0.181  | -0.010 | -0.269           | -0.013 | < 0.001                        |
| narG                    | -0.180  | -0.010 | -0.251           | -0.012 | < 0.001                        |
| nirK                    | -0.185  | -0.011 | -0.272           | -0.014 | < 0.001                        |
| nirS                    | -0.142  | -0.009 | -0.255           | -0.013 | < 0.001                        |
| nosZ                    | -0.145  | -0.008 | -0.259           | -0.014 | < 0.001                        |
| ureC                    | -0.076  | -0.006 | -0.243           | -0.012 | < 0.001                        |
| Sulfur cycling          | -0.298  | -0.028 | -0.338           | -0.028 | 0.747                          |
| dsrA                    | -0.133  | -0.008 | -0.244           | -0.012 | < 0.001                        |
| dsrB                    | -0.156  | -0.011 | -0.259           | -0.015 | < 0.001                        |
| Phosphorus cycling      | -0.233  | -0.023 | -0.288           | -0.026 | < 0.001                        |
| ppx                     | -0.145  | -0.008 | -0.245           | -0.012 | < 0.001                        |
| Energy process          | -0.252  | -0.020 | -0.293           | -0.019 | < 0.001                        |
| Cytochrome              | -0.124  | -0.008 | -0.226           | -0.012 | < 0.001                        |
| Phylogeny (gyrB)        | -0.155  | -0.009 | -0.253           | -0.013 | < 0.001                        |
| Organic Remediation     | -0.202  | -0.017 | -0.307           | -0.020 | < 0.001                        |
| alkK                    | -0.174  | -0.014 | -0.292           | -0.019 | < 0.001                        |
| linB                    | -0.137  | -0.011 | -0.263           | -0.017 | < 0.001                        |
| mdlA                    | -0.207  | -0.015 | -0.267           | -0.015 | 0.457                          |
| nmoA                    | -0.223  | -0.018 | -0.273           | -0.018 | 0.890                          |
| pcaG                    | -0.124  | -0.008 | -0.284           | -0.016 | < 0.001                        |
| phn                     | -0.139  | -0.008 | -0.262           | -0.011 | < 0.001                        |
| pimF                    | -0.187  | -0.012 | -0.286           | -0.015 | < 0.001                        |
| tfdA                    | -0.234  | -0.018 | -0.303           | -0.019 | 0.068                          |
| Metal Resistance        | -0.247  | -0.020 | -0.320           | -0.021 | < 0.001                        |
| arsC                    | -0.150  | -0.010 | -0.267           | -0.016 | < 0.001                        |
| chrA                    | -0.132  | -0.008 | -0.268           | -0.013 | < 0.001                        |
| copA                    | -0.190  | -0.012 | -0.259           | -0.014 | < 0.001                        |
| czcA                    | -0.150  | -0.011 | -0.226           | -0.012 | < 0.001                        |
| czcD                    | -0.182  | -0.012 | -0.271           | -0.014 | < 0.001                        |
| terC                    | -0.161  | -0.009 | -0.272           | -0.014 | < 0.001                        |
| zntA                    | -0.166  | -0.011 | -0.263           | -0.014 | < 0.001                        |

## C. Supplemental Figures



Figure S1 Location of six FACE experimental sites in this study. They are BioCON, Duke, ORNL, MaizeFACE, SoyFACE, and PHACE. Details about those sites are described in the Supplementary Information A (Supplemental Materials and Methods) and Table S1. Geographic distance ranges from less than 1.0 meter within a plot to a maximum of 2,302 km between the Duke Forest site and the PHACE site.

Duke (r = -0.0629, p = 0.495)

Geo distance (km)

0.70

0.65

0.60

0.55

0.50

0.5

4.0

0.3

0.2

0.0

0.1

0.2

Geo distance (km)

0.3

0.4

Similarity

0.0

Similarity

ORNL (r = -0.0602, p = 0.631)

0.55

0.50

0.45

0.40

0.7

9.0

4.0

0.3

0.05

0.10

Geo distance (km)

0.15

Similarity 0.5

0.00

0.05

Geo distance (km)

PHACE (r = -0.0666, p = 0.664)

0.20

Similarity

2 3

0.4

0.3

0.2

0.1

0.7

9.0

0.5

0.4

0.3

0.2

0.0

0.1

0.2

Geo distance (km)

0.3

0.4

Similarity

0.0

BioCON (r = -0.109, p = 0.07)

Geo distance (km)

MaizeFACE (r = -0.488, p = 6.93e-18)

2 3 4

5

6

7

8

9

**Figure S2** The distance decay rates of soil microbial communities within individual sites. Those rates were highly variable from significant distance relationships (MaizeFACE and SoyFACE), to no significant changes (BioCON, Duke, ORNL and PHACE). This may be largely due to the small distance scale, a limited number of plots for each site, and intertwining of multiple processes.

### D. Supplemental References

- Ahn S, Costa J, Emanuel J (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucl. Acids Res., **24**, 2623-2625.
- Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol., **26**, 32-46.
  - Austin EE, Castro HF, Sides KE, Schadt CW, Classen AT (2009) Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol. Biochem., **41**, 514-520.
    - Deng Y, He Z, Xu M *et al.* (2012) Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities. Appl Environ Microbiol, **78**, 2991-2995.
    - Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytologist, **187**, 426-437.
    - Feng X, Simpson AJ, Schlesinger WH, Simpson MJ (2010) Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest. Global Change Biology, **16**, 2104-2116.
  - Garten CT, Iversen CM, Norby RJ (2011) Litterfall 15N abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment. Ecology, **92**, 133-139.
  - Ge Y, Chen C, Xu Z, Oren R, He J-Z (2010) The Spatial Factor, Rather than Elevated CO2, Controls the Soil Bacterial Community in a Temperate Forest Ecosystem. Appl Environ Microbiol, **76**, 7429-7436.
  - He Z, Deng Y, Van Nostrand JD *et al.* (2010a) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J, **4**, 1167-1179.
  - He Z, Deng Y, Zhou J (2012a) Development of functional gene microarrays for microbial community analysis. Curr. Opin. Biotechnol., 23, 49-55.
  - He Z, Piceno Y, Deng Y *et al.* (2012b) The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J, **6**, 259-272.
  - He Z, Van Nostrand JD, Zhou J (2012c) Applications of functional gene microarrays for profiling microbial communities. Curr. Opin. Biotechnol., 23, 460-466.
  - He Z, Xu M, Deng Y *et al.* (2010b) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters, **13**, 564-575.
  - He Z, Zhou J (2008) Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis. Appl Environ Microbiol, **74**, 2957-2966.
  - Iversen CM, Hooker TD, Classen AT, Norby RJ (2011) Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Glob. Change Biol., 17, 1130-1139.
  - Lachat (1994) QuickChem Method 12-107-04-1-B. pp Page, Milwaukee, WI, LACHAT Instrument.
- Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot., **60**, 2859-2876.
  - Legendre P, Lapointe F-J, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution, **48**, 1487-1499.
  - Lichter J, Billings SA, Ziegler SE *et al.* (2008) Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Glob. Change Biol., **14**, 2910-2922.
- Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial β-diversity depend on spatial scale. P NATL ACAD SCI USA, **108**, 7850-7854.
- Morgan JA, Lecain DR, Pendall E *et al.* (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, **476**, 202-205.

13

14 15

18

19 20

21

22

24

25 26

27

- Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: *Methods of Soil Analysis*. (eds Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME) pp Page. Madison, WI, Soil Science Society of America.
- Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD (2013) Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett., **16**, 234-241.
- 6 Norby RJ, Kobayashi K, Kimball BA (2001) Rising CO2– future ecosystems. New Phytol., **150**, 215-221.
- Norby RJ, Warren JM, Iversen CM, Medlyn BE, Mcmurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. P NATL ACAD SCI USA, **107**, 19368-19373.
- Peralta A, Wander M (2008) Soil organic matter dynamics under soybean exposed to elevated [CO2].
  Plant and Soil, **303**, 69-81.
  - Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett., **14**, 187-194.
  - R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (<a href="http://www.R-project.org">http://www.R-project.org</a>), Vienna, Austria.
- Reich PB, Knops J, Tilman D *et al.* (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, **410**, 809-812.
  - Rogers A, Ainsworth EA, Leakey ADB (2009) Will Elevated Carbon Dioxide Concentration Amplify the Benefits of Nitrogen Fixation in Legumes? Plant Physiol., **151**, 1009-1016.
    - Wu L, Liu X, Schadt CW, Zhou J (2006) Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol, 72, 4931-4941.
- Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X (2010) Functional Molecular Ecological Networks. mBio, 1.
  - Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2. mBio, 2.
  - Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol, **62**, 316-322.