Prosesler ve Proses Yönetimi

Prosesler

- bilgisayar sisteminde birden fazla iş aynı anda etkin olabilir, örneğin
 - kullanıcı programı
 - diskten okuma işlemi
 - yazıcıdan çıkış alma
- farklı işler farklı programlar tarafından yaratılabilirler
- ⇒sistemde aynı anda etkin olan bir dizi program: PROSES

Proses nedir?

Tanım:

Bir fonksiyonu gerçeklemek üzere ardışıl bir program parçasının yürütülmesi sonucu ortaya çıkan işlemler dizisine proses denir.

proses ⇔ görev (task)

Proses nedir?

- proses = işletim sistemi için, etkin olan bir program
- proses:
 - ardışıl program kodu,
 - program sayacı,
 - donanım saklayıcıları içerikleri,
 - data alanı yerel ve global değişkenlerden oluşur.

Proses nedir?

- bilgisayarda yer alan tüm yazılım prosesler olarak düzenlenmiştir
 - kullanıcı prosesleri
 - işletim sistemi prosesleri
- bir programa ilişkin birden fazla proses olabilir
- prosesler sistem çağrıları ile
 - sistem kaynaklarını kullanır
 - birbirleri ile etkileşir
 - dış dünya ile haberleşir

Program ⇔ Proses

Örnek: Yemek yapmayı seven bir bilgisayarcı bir tarife göre kek yapıyor.

```
yemek tarifi \rightarrow program malzeme \rightarrow girişler bilgisayarcı \rightarrow işlemci
```

Proses → bilgisayarcının malzemeleri elde ettikten sonra yemek tarifini okuyup, istenilen sonuç için işlemleri adım adım yerine getirmesi.

Program ⇔ Proses

(örnek devam) O sırada oğlu "arı soktu" çığlıkları ile içeri girer. Bilgisayarcı yemek tarifinde kaldığı yere işaret koyar, işini bırakır, ilk yardım kitabını alır ve ilgili tedaviye başlar.

```
tedavi yolu \rightarrow program ilaçlar \rightarrow girişler bilgisayarcı \rightarrow işlemci
```

Proses → kitaptaki tedavi yöntemi uygulanarak ilk yardım işleminin yapılması

Program ⇔ Proses

<u>(örnek devam)</u>

Sonuç: işlemci iki proses arasında zamana göre paylaşıldı

- proses
 - bir etkinlik
 - bir program, girişler, çıkışlar ve zaman içinde farklı durumlara sahip
- işlemcinin hangi prosese hizmet vereceği bir algoritma ile belirlenir

Prosesler

Model:

Prosesler

- sistemde MİB tek
 - proseslerin görüntü MİB'leri var
- zaman paylaşımlı çalışma
 - zaman dilimi (quantum) kavramı
- sistem saklayıcıları da tek
 - program sayacı, yığın göstergesi, durum saklayıcısı, genel amaçlı saklayıcılar, sıra saklayıcısı, ...
- ⇒ Bu durumda zaman paylaşımlı çalışma nasıl gerçekleştirilir?

- proseslerin işlemciye ne zaman sahip olacakları önceden kestirilemez
 - program kodu çalışma sırası veya zamanlamaya dayalı işlemler içermemelidir

Örnek: dosya_A ve dosya_B içeriği hakkında ne söylenebilir?

- proses
 - ÇALIŞIYOR
 - ÇALIŞMIYOR

- \Rightarrow işlemciye sahip
- ⇒ işlemciye sahip değil

- prosesler sistemde var oldukları sürece farklı durumlarda bulunurlar
- üç temel durum söz konusudur:
 - çalışır: MİB'ne sahip ve yürütülmekte
 - hazır: MİB'ini elde etmek için beklemekte
 - <u>askıda</u>: bir olayın gerçekleşmesini bekliyor, çalışması engellenmiş durumda-MİB'ini alsa da kullanamaz

Durum geçişleri:

- olay beklemeye geç (askıda durumuna)
 örneğin prosesin G/Ç isteği hemen karşılanamazsa
- 2. prosesin MİB'i kullanma süresi dolmuş, sıra başka prosesin olabilir
- 3. prosesin tekrar sırası gelmiş, MİB'ini kullanabilir
- 4. beklenen olay gerçekleşir, proses çalışmaya hazır

Soru: bir askıda kuyruğu yeterli mi?

- işletim sistemi her proses ve kaynak için bir dizi denetim bilgisi saklar
 - yönetilen her varlık için tablo
 - G/Ç tabloları
 - bellek tabloları
 - dosya tabloları
 - proses tablolari

Prosesin Görüntüsü

	<u>*</u>
Proses Kontrolüne İlişkin Bilgiler	proses kimlik no (pid)
	işlemci durum bilgisi
	proses kontrol bilgisi
Prosesin Bellek Bileşenlerine İşaretçiler	kullanıcı yığını
	kullanıcıya özel adres uzayı (program ve veri blokları)
	paylaşılan adres uzayı

- prosese ilişkin bilgiler <u>proses tanımlayıcı</u> alanında tutulur
 - proses kontrol bloğu PCB
 - proses ile ilgili bilgileri içeren veri yapısı
- prosesler ile ilgili tüm işlemler PCB üzerinden
 - PCB'ye erişim hızlı olmalı
 - bazı sistemlerde o an yürütülen prosese ait PCB'ye işaret eden saklayıcı (donanım)
 - PCB'den durum bilgisi almak ve güncellemek için özel komutlar

Proses Kontrol Bloğu (PCB)

- proses kimlik bilgileri
 - prosesin kimlik numarası
 - prosesin annesinin kimlik numarası
 - prosesin sahibi
- 2. prosesin o anki durumu ve varsa beklediği olay
- prosesin önceliği
- 4. iş sıralama ile ilgili bilgiler

Proses Kontrol Bloğu (PCB)

- 5. prosesin kullandığı kaynaklara işaretçiler
 - örneğin açık dosyaları
- 6. prosese ayrılmış sanal bellek bölgesine işaretçi
- sistem saklayıcılarının ve kullanıcıya açık (makina dili ile erişilebilen işlemci saklayıcıları) saklayıcıların içeriklerinin saklandığı alan
 - genel amaçlı sakayıcılar, program sayacı, durum saklayıcısı, sıra saklayıcısı, yığın göstergesi,
 - ⇒ işlemci bağlamı

- Proses yaratma (create)
 - bir prosesi ancak bir başka proses yaratır (UNIX tipi sistemlerde)
 - prosesler arası hiyerarşi
 - yaratan proses: anne (parent) proses
 - yaratılan proses: çocuk (child) proses
 - bir proses birden fazla çocuk proses yaratabilir

- proses yaratılırken yapılan işlemler:
 - proses tablosunda yer yoksa proses yaratılmaz
 - proses tablosunda yer varsa,
 - PCB oluşturulur
 - prosese kimlik numarası atanır (sistemde tek)
 - başlangıç öncelik değeri atanır
 - başlangıç kaynakları sağlanır (bellek, vs)
 - *hazır* prosesler kuyruğuna eklenir

- Proses yok etme (destroy)
 - proses sistemden silinir
 - kaynakları iade edilir
 - kimlik numarası iade edilir
 - PCB ve proses tablosu kaydı silinir
 - çocukları varsa ilgili işlemler yapılır
 - ya tüm çocuklar da yok edilene kadar kaydı tamamen silinmez
 - ya da çocuklar başka prosese atanır
 - örneğin UNIX'te init prosesine

- Askıya alma (suspend)
 - kısa süreli askıya almada kaynakları elinden alınmaz
 - uzun süreli askıya almada kaynakları elinden alınır (kaynağın türüne bağlı)
- Tekrar başlatma (resume)
 - prosesi kaldığı noktadan yeniden başlatma
- Önceliğinin değiştirilmesi

Proseslerin Durum Değiştirmesi Sırasında Yapılan İşlemler

- işlemci bağlamı saklanır
- koşmakta olan prosesin PCB'u güncellenir
- koşmakta olan proses uygun kuyruğa (hazır / askıda) alınır
- koşacak yeni proses belirlenir
- seçilen prosesin PCB'u güncellenir
- bellek yönetimi ile ilgili bilgiler güncellenir
- seçilen prosesin bağlamı saklayıcılara yüklenir

