Урок 4. Неперервність

Задача 4.1 (**критерії неперервності**). Нехай (X, τ_X) і (Y, τ_Y) — топологічні простори і f — відображення X в Y. Наступні твердження ϵ еквівалентними.

- 1). Відображення $f \in \text{неперервним}$.
- 2). Прообраз будь-якого елемента передбази P в Y ε відкритим в X.
- 3). Прообраз будь-якого елемента бази B в $Y \in$ відкритим в X.
- 4). Існують системи околів $\{B(x)\}_{x \in X}$ в X і $\{D(y)\}_{y \in Y}$ в Y, такі, що для кожного $x \in X$ і кожного $V \in D(f(x))$ знайдеться $U \in B(x)$, таке, що $f(U) \subset V$.
 - 5). Прообраз будь-якої замкненої підмножини простору $Y \in \text{замкнутим в } X$.
 - 6). Для будь-якої підмножини $A \subset X$ маємо $f(\overline{A}) \subset \overline{f(A)}$.
 - 7). Для будь-якої підмножини $B \subset Y$ маємо $\overline{f^{^{-1}}(B)} \subset f^{^{-1}}(\overline{B})$.
 - 8). Для будь-якої підмножини $B\subset Y$ маємо $f^{-1}\bigl(\operatorname{Int} B\bigr)\subset\operatorname{Int} f^{-1}\bigl(B\bigr)$.

Передбаза топологічного простору (X, τ) — це сукупність відкритих множин $P = \{U_k \in \tau, k \in K\}$, така що сімейство усіх скінчених перетинів $\bigcap_{k=1}^n U_k$, k = 1, 2, ..., n є базою простору (X, τ) .

Будь-яка база простору ϵ його передбазою.

Приклад. Нехай $I = [0,1], \quad \tau_I = \{I \cap U, U \subset R, U \in \tau\}, \quad \text{де} \quad \tau$ — природна топологія числової прямої R. Тоді (I,τ_I) — топологічний простір. Сімейство усіх інтервалів виду $(r_1,r_2), [0,r_2)$ и $(r_1,1],$ де $r_1,r_2 \in Q$ (тобто раціональні числа), є базою простору (I,τ_I) , а усі інтервали виду $[0,r_2), (r_1,1]$ — його передбазою.

$$P$$
озв'язок. $1\Rightarrow 2$. $P=\left\{U_k\in au, k\in K
ight\}$ — передбаза простору $\left(Y, au_Y
ight)\Rightarrow U_k\in au$ $f\in C\left(X,Y
ight),\ U_k\in au\Rightarrow f^{-1}\left(U_k
ight)\!\in au_X$.

Коментар. Передбаза складається із відкритих множин. За першим критерієм неперервності прообраз відкритої множини при неперервному відображенні є відкритою множиною. Отже, прообраз будь-якого елемента передбази P в Y є відкритим в X.

$$2\Rightarrow 3.$$

$$P = \left\{U_k \in \tau, k \in K\right\} \text{— передбаза } Y \Rightarrow \exists B = \left\{\bigcap_{k=1}^n U_k, n \in N, U_k \in P\right\} \text{- база } Y.$$

$$f^{-1}\left(\bigcap_{k=1}^n U_k\right) = \bigcap_{k=1}^n f^{-1}\left(U_k\right), \ U_k \in P \ \Rightarrow \ f^{-1}\left(U_k\right) \in \tau \ \Rightarrow \bigcap_{k=1}^n f^{-1}\left(U_k\right) \in \tau.$$

Коментар. База складається із скінчених перетинів елементів передбази, які є відкритими. За умовою 2), прообраз елемента бази є відкритим. Крім того, прообраз скінченого перетину множин є скінченим перетином прообразів цих відкритих множин. Отже, отримуємо, що прообраз елемента бази є прообразом скінченого

перетину відкритих множин, тобто, прообразом скінченого перетину прообразів цих відкритих множин, який за третьою аксіомою Олександрова ε відкритою множиною.

$$3\Rightarrow 4.$$
 $\forall V\in D\big(f\big(x\big)\big)\ \exists W\in B: f\big(x\big)\in W\subset V$, де B — база в $Y\Rightarrow \Rightarrow f^{-1}\big(W\big)\in \tau_X$, $x\in f^{-1}\big(W\big)\Rightarrow \exists U\in B\big(x\big): U\subset f^{-1}\big(W\big)\Rightarrow \Rightarrow f\big(U\big)\subset f\!\!f^{-1}\big(W\big)\subset W\subset V$.

Коментар. В довільному околі $V \in D(f(x))$ знайдеться множина W із бази B простору Y, якій належить образ точки x. За умовою 3) це означає, що її прообраз $f^{-1}(W)$ є відкритою множиною в X. Значить, для довільної точки x із $f^{-1}(W)$ існує відкрита множина U із системи B(x), що міститься в $f^{-1}(W)$. Зважаючи на монотонність будь-якого відображення, отримуємо, що $f(U) \subset ff^{-1}(W) \subset W \subset V$.

$$4 \Rightarrow 5.$$

$$B = \overline{B} \subset Y \Rightarrow f^{-1}(B) = f^{-1}(Y \setminus Y \setminus B) = X \setminus f^{-1}(Y \setminus B).$$

$$\forall x \in f^{-1}(Y \setminus B) \exists U(x) : U \subset f^{-1}(Y \setminus B)?$$

$$x \in f^{-1}(Y \setminus B) \Rightarrow f(x) \in Y \setminus B \in \tau_{Y} \Rightarrow \exists V \in D(f(x)) : V \subset Y \setminus B \Rightarrow$$

$$\Rightarrow \exists U \in B(x) : f(U) \subset V \Rightarrow x \in U \subset f^{-1}f(U) \subset f^{-1}(V) \subset f^{-1}(Y \setminus B).$$

Коментар. Нехай B — замкнена множина в Y. Оскільки $f^{-1}(B) = X \setminus f^{-1}(Y \setminus B)$, достатньо показати, що множина $f^{-1}(Y \setminus B)$ є відкритою в X. Для цього покажемо, що будь-яка точка цієї множини є внутрішньою. Візьмемо довільну точку $x \in f^{-1}(Y \setminus B)$. Її образ належить множині $Y \setminus B$, яка є відкритою в Y (оскільки вона є доповненням до замкненої множини B). Отже, існує такий окіл $\exists V \in D(f(x))$, що міститься в множині $Y \setminus B$. За умовою 4) знайдеться множина $U \in B(x)$, образ якої міститься в множині V. Застосувавши до f(U) обернене відображення f^{-1} , доходимо висновку, що $x \in U \subset f^{-1}f(U) \subset f^{-1}(V) \subset f^{-1}(Y \setminus B)$. Зауважте, що тут використано універсальне включення: $\forall A \subset X$ $A \subset f^{-1}f(A)$.

$$\frac{5 \Rightarrow 6.}{f(A) \in Y \setminus \tau_{Y} \Rightarrow f^{-1}(\overline{f(A)}) \in X \setminus \tau_{X}, A \subset f^{-1}(\overline{f(A)}) \Rightarrow}$$

$$\Rightarrow \overline{A} \subset \overline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)}) \Rightarrow f(\overline{A}) \subset ff^{-1}(\overline{f(A)}) \subset \overline{f(A)}.$$

$$6 \Rightarrow 7.$$

$$A \triangleq f^{-1}(B) \Rightarrow f(\overline{A}) = f(\overline{f^{-1}(B)}) \subset \overline{ff^{-1}(B)} \subset \overline{B} \Rightarrow$$

$$\Rightarrow \overline{f^{-1}(B)} \subset f^{-1}(\overline{B}).$$

 $7 \Rightarrow 8$. Застосуємо 7) до $Y \setminus B$.

$$\overline{f^{-1}(Y \setminus B)} \subset f^{-1}(Y \setminus B) \Rightarrow$$

$$\Rightarrow f^{-1}(Int B) = f^{-1}(Y \setminus \overline{Y \setminus B}) = X \setminus f^{-1}(\overline{Y \setminus B}) \subset X \setminus \overline{f^{-1}(Y \setminus B)} =$$

$$= X \setminus \overline{X \setminus f^{-1}(B)} = Int f^{-1}(B).$$

$$\begin{split} 8 &\Rightarrow 1 \\ U &\in \tau \Rightarrow U = Int \ U \Rightarrow f^{-1} \big(U \big) \subset Int \ f^{-1} \big(U \big), \ Int \ f^{-1} \big(U \big) \subset f^{-1} \big(U \big) \Rightarrow \\ &\Rightarrow f^{-1} \big(U \big) = Int \ f^{-1} \big(U \big) \Rightarrow f^{-1} \big(U \big) \in \tau_{\scriptscriptstyle X} \ . \ \blacksquare \end{split}$$