אוניברסיטת חיפה -<u>בחינה בדחיסת תמונה וקול</u> מרצה: נמרוד פלג חומר עזר: מותר :מסי מחברת מספר זהות: :כללי - עבור כל השאלות

- יש לרשום את התשובות הסופיות במסגרות ובשורות המיועדות לכך.
- את החישובים וההסברים יש לכתוב בגוף המבחן.
- אם יש צורך בשטח נוסף: נא להפנות בברור לדף המתאים במחברת הבחינה !

- המבחן כתוב בלשון זכר מטעמי נוחות בלבד - **ואיתכן** הסליחה !

בהצלחה!

.1 <u>דחיסת דיבור (35 נקי)</u>

10

נקי

נתונה מערכת כללית של "דוחס ומשחזר דיבור", למטרות טלפוניה (רוחב סרט נדרש: 4KHz

.7KHz בכניסת המערכת אות דיבור \mathbf{S}_0 , בעל רוחב סרט של

הסבר <u>בקצרה תפקידו</u> של כל בלוק במערכת (לגבי כלוק A – מה צריך להיות תפקידו !)

(Aliasing) Asran ANA Angare (pish) LA (son) LA (son) noiton the le Good anh which is (12, 120 023)0 2370: Alers Pel GA MART 23th, 4KH, GO 2N/ 13/1 3/15 // (6)/10) 12/10 73/10/ 1/15 (6)/10/10) 1/1/15 1/1/10 1/1/ : C 1/1 8/3/15 13/15 Alls - 21/3/16 3/18/2 ~ 60 660 AMA By 1/2

6 (G'

ב. עבור תהליך הדגימה:

בציור נתונה המעטפת הספקטרלית של האות S₀ (מצוירת בקו מרוסק).

- מהן נקודות המקסימום המסומנות 1 4 ומה משמעותן :
- S_1 ועבור אבור אבור אבור אמרבי אבור אבור אבור פור אבור אבור אבור אבור פור י

 S_1 על גבי האיזר הנתון, יש לצייר בצורה חפשית (ולהסביר) כיצד תראה המעטפת הספקטרלית של האות S_1 לעומת המעטפת הספקטרלית (המצוירת) של S_0 .

6 נקי

ג. נתון כי בלוק B דוגם ברזולוציח של 8 סיביות לדגימה (0..255, לינארית). לצורך קידוד האנטרופיה ג. נתון כי בלוק B דוגם ברזולוציח של 8 סיביות לדגימה (Quantization) ביחס בבלוק D נדרש בבלוק C כימוי (Quantization) ביחס ביחס ביחס ביחס ביעד היית מפלג (איכותים בלוק את רמות הייצוג של הקוונטייזר, בשני המקרים הבאים, בהם נתון פילוג ההסתברות של האות הדגום (בערכו המוחלט) בנקודה \mathbf{S}_2 .

ד. נניח סדרת הדגימות הבאות הנכנסות לבלוק C **(לפי הפרמטרים בסעיף ג**') :

S2 = [..., 92, 96, 101, 110, 120, 128, 130, 140,...]

יש לתת פתרון כללי ולהדגים אותו על הסדרה הנתונה:

בבלוק C נדרש לבצע <u>כימוי אחיד</u> (Uniform quantization) ולהגיע ליחס הדחיסה של 8:5. (ירידה מייצוג ב- 8 סיביות ליצוג ב- 5 סיביות)

בחר תחומי החלטה ורמות ייצוג מתאימים (באופן כללי) והראה מהו הייצוג המתאים לסדרה הנתונה.

יחשב מהו יירעש הכימוייי ומהי השגיאה הריבועית הממוצעת (MSE) במקרה זה י

ל נקי

- ה. את הסדרה הנתונה בסעיף די יש לקודד עייי מערכת DPCM בה מופעל חזאי מסדר ראשון. ניתן להניח:
 - הדגימה הקודמת לסדרה הנתונה ערכה 100)
 - שגיאת החיזוי מוגבלת לתחום: 15+....0.... 16-

ה.2 לכמה סיביות תזדקק כדי לקודד את השגיאה <u>ללא הפסדים</u> ?

ה.3 יש לחשב את ה- MSE של שגיאת החיזוי המקרה שמוקצות לה שתי סיביות בלבד + סיבית

2. <u>דחיסת תמונות (30 נקי)</u>

נתונה סכמה כללית של מערכת **מפענה JPE**G עקרוני.

א. התבונן היטב בסכמה ובדוק אם היא נכונה או שגויה. אם מצאת שגיאה <u>הסבר למה היא תגרום,</u>

ג. ב. במקודד מבוסס LOCO (כמו JPEG-LS) נתון כי פיקסל מסוים (**המודגש בציור**) נמצא בקונקסט בו ממוצע שגיאת החיזוי הנו 4, ופרמטר הקידוד שלו הינו k=2. עבור הפיקסל שמודגש (שערכו 100), מצא מהי שגיאת החיזוי, והראה כיצד היא תקודד במקודד Golomb-Rice.

b 102 103 105 101 100

 $\frac{\hat{P}(\kappa)}{\hat{P}(\kappa)} = a + b - c = 163 + 101 - 102 = 102$ $e = 102 - 100 = 2 ; 1/(\kappa) = 1.20 | 1/(\kappa) = 1.20 | 1/(\kappa) = 1.20$ $\bar{e} - e = 102 - 2 ; 1/(\kappa) = 1/(\kappa) = 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 102 - 100 = 2 ; 1/(\kappa) = 1/(\kappa)$ $\frac{\hat{e}}{\hat{e}} - e = 1/(\kappa)$ $\frac{\hat{e$

...

10 נקי

נקי

1					
	98	104	103	99)
	99	103/	101	97	/
	97	100	99	97	1
	98	97)	97	95	

ג. נתונה מטריצת פיקסלים 4x4 (מתוך תמונה גדולה):

תוך שימוש בטכניקה של פירמידה גאוסיאנית-לפלסיאנית יש להגיע לתמונת מוקטנת (G) בגודל 2x2 עייי <u>מיצוע רביעיות</u> , ולחשב את תמונת ההפרש הלפלסיאנית (L).

- הראה כיצד לחשב את השגיאה הריבועית הממוצעת (MSE) אם מקודדים
 את תמונת ההפרש עייי שימוש בשתי סיביות לכל ייפיקסל הפרשייי
- מהו סך הכל <u>קצב הסיביות הנדרש</u> לקידוד כל הבלוק הנתון, <u>ללא הפסדים</u> במקרה הנ״ל יִּ (ללא קידוד אנטרופיה).

מוזו טן ווכנ <u>קבב ווטיבוונון ווי</u> נקירון בניובנוק וומנון, <u>נכאוובטוים</u> במקודוונייני וענטו ביות.
[- 101 100] /2p, G'60 dir in x13" /(ch) 262 -
4x4 Poles 6 -16 "20" Je 282 -
(x) (10-9/6 p/10 100 k) p/09/0 (200 18 feet)
$E = \begin{bmatrix} \frac{3}{2} & \frac{-3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-2}{2} & \frac{0}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{-2}{2} & \frac{0}{2} \\ \frac{1}{2} & \frac{1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
142 F=0 24/6, 309 1-141 x(CCO) 011 NC 18/)
GIODING 83>C ji3 /MO MSE +0 SK/ 1 3000 MM 1/2/C 807/2 =32,5-
: 30 Dr M 7/7/ 6-77 - 37,5-
$e^{i \int_{0}^{10} 4 \times 8b, t} = 32 + i G$ $16 \times 3 = 48b, t$ $E = 31.5$
80LH 300
16= 56/ p.So. 16 1/20, 23p/
http://cs.haifa.ac.il/students/

.3 .

10 נקי

דחיסת וידאו (35 נקי)

:נימוק

א. במקודד מסוג MPEG, הסבר יתרונות וחסרונות שימוש ב – Group of Pictures) GOP א. במקודד מסוג GOP, הסבר יתרונות וחסרונות GOP הכוללים 15 תמונות.

מתי עדיף לחשתמש ב - GOP ארוד ומתי בקצר! Lipor Joh Pizz Ger (: Lingen John)

Lill (6) Gor. (1) (I WINGEN P) (I Allax 1/2/2 eps) 2012/ 1910 (CHO) 16, 1 (10 Pa) Mer Gor Pali Pet - Delay -11 - NAND 1/205 · 8/2/20 11 (77 GOP > -/60 - Random 2/3/1 N/1/21 Held Wison seles (122 Get Right -(170 9/17 /NS E) 22/cs, -1:0/cx 15/ ("'n she" 14) p. 5/70, 2 / 10/24 -15/18 167 60P /s/ 13/2 /c/ 10/2 /c/2 /c/2 /c/2 /c/2

אוניברסיטת חיפה - החוג למדעי המחשב

מצוינים למטה שלשה שינויים מהותיים במקודד H.264 לעומת מקודד -MPEG. לגבי כל שינוי הסבר מה יתרונו (ואם יש: חסרונו). ומה עיקר השפעתו.

10 נקי

- 12) dien de plas sinte de ICTO, soprio Listo pola pola les (! 1200 pola orilator is l'ests Shift if prolant post pono orilator is l'arks Shift if prolant post pono orilator
- 100 m/03 /cel voll (d 104/2 ; salah salar, shinh Incher, shor
 - חיפוש תנועה בבלוקים בעלי גודל משתנה

-16 1 14/2 24/2 2/12 2/12 200/6N Know -/10 120/ -/16 en/ -//1/2 0,4.pl (11,2 20/02 15/1) 7.0,0 13 / _//ron

אוניברסיטת חיפה - החוג למדעי המחשב

ג. ענה בקצרה - הקף בעיגול והסף נימוק קצר (אין נימוק- אין ניקוד !)

ענה בקצרה - הקף בעיגול והסף נימוק קצר! (5 נק' כל סעיף) איו נימוק- איו ניקוד!

1. במקודד H.264 העבודה ברזולוציה של 1/4 פיקסל מאפשרת העלאת איכות תמונות INTRA לעומת מקודד MPEG

נכון / לא נכון

נימוק:

15

נקי

Intra West B GIB W

במקודד MPEG סדר פיענות התמונות הוא הסדר הזמני (כרונולוגי) שלהן.

נכון / לא נכון

נימוק:

-1/2x of GOP OJON PJO

3/1/1/2 Mb/ 1/2 Mcc/1/1/1/2

3. תמונות INTRA במקודד H.264 נדחסות טוב יותר מאשר במקודד MPEG2 כיון שהטיפול בהן הוא בבלוקים קטנים יותר.

נכון / לא נכון

נימוק:

1/1 isch clay NENIOR MAJOR 1/18 who she relled along

10