

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

BSc Engineering Honours Degree Semester 5 Examination (2017 Intake)

CS 3062 THEORY OF COMPUTING

Time allowed: 2 Hours September 2020

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

- 1. This paper consists of 5 questions in 5 pages, including this page.
- 2. Answer **ALL** questions.
- 3. The maximum attainable mark for each question/part is given in brackets.
- 4. This examination accounts for 70% of the module assessment.
- 5. This is a closed book examination.

NB: It is an offence to be in possession of unauthorized material during the examination.

- 6. Only calculators approved and labeled by the Faculty of Engineering are permitted.
- 7. Assume reasonable values for any data not given in or with the examination paper. Clearly state such assumptions made on the script.
- 8. In case of any doubt as to the interpretation of the wording of a question, make suitable assumptions and clearly state them on the script.
- 9. This paper should be answered only in English.
- 10. Abbreviations and Notations
 - DFA Deterministic Finite Automaton
 - NFA Non-deterministic Finite Automaton
 - NFA- Λ Non-deterministic Finite Automaton with Λ -transitions
 - CFG Context-free Grammar
 - CFL Context-free Language
 - PDA Push-Down Automaton
 - In a CFG, non-terminals are denoted by upper-case letters and terminals are denoted by lower-case letters and/or digits; non-terminal S is usually the start symbol and Λ represents the null string
 - A DFA or NFA is defined as a 5-tuple (Q, Σ , q_0 , A, δ), where each component has the usual meaning.
 - A PDA is expressed as a 7-tuple $(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where each component has the usual meaning.

Question 1 [20 marks]

In this question, there are 10 statements, (a) - (j); for each, you have to state whether it is either **True** or **False**. A correct choice will result in 2 marks and an incorrect choice will have a penalty of -1 mark. If not answered, it will result in 0 marks (no penalty). The minimum total marks possible for Q1 is 0.

- (a) A string w is not accepted by an NFA if there exists a path corresponding to w ending at a non-accepting state.
- (b) The alphabet of a formal language can be infinite.
- (c) Even if the number of states in two finite automata are not equal, they can still be equivalent.
- (d) The regular expression $(a \mid ab)^*$ generates strings with no consecutive b's.
- (e) The set of all strings of the form w=xx where $x=\{a,b\}^*$ is not a regular language.
- (f) If a CFG is ambiguous, then we can make it unambiguous by eliminating unit productions from it.
- (g) The CFG corresponding to the language $L = \{0^k 1^k \mid k \ge 1\}$ is $S \to 0S1 \mid 01 \mid \Lambda$.
- (h) The CFLs and regular languages are both closed under the concatenation operation.
- (i) If a Turing machine T decides a language L, then for a string x not in L, T may loop forever.
- (j) A Universal Turing machine can solve all intractable (computationally hard) problems.

Question 2 [20 marks]

- (a) Suppose L is the language over $\{a, b\}$ such that, for every string in L, if it starts with a then it ends with b and if it starts with b then it ends with a.
 - (i) Give a regular expression that represents the language L.

[2 marks]

(ii) Design a DFA that accepts the language L.

[5 marks]

(b) (i) State the pumping lemma for regular languages.

[2 marks]

(ii) Use the pumping lemma to show that $L = \{0^k\}$ is not regular. Here $k \ge 1$ and k is a perfect square of the form $k = i^2$ for i=1, 2, 3, ...

[6 marks]

(c) Describe either in words or by writing a regular expression, the strings that causes the following DFA to be in *each state*. What is the language accepted by this DFA?

[5 marks]

Question 3 [20 marks]

(a) Consider the DFA, M_1 =({1, 2, 3, 4, 5, 6,7}, {a, b}, 1, {4, 6, 7}, δ), whose δ is specified below

Current	Next State		Current	Next State		
State	Input a	Input b	State	Input a	Input b	
1	2	3	5	6	7	
2	4	5	6	4	5	
3	6	7	7	6	7	
4	4	5				

(i) Identify the *equivalence classes* of the given set of states. Show your work.

[5 marks]

(ii) Show the transition diagram of the equivalent minimum-state DFA.

[2 marks]

(b) Suppose the NFA, $M_2 = (\{1, 2, 3\}, \{a, b\}, 1, \{3\}, \delta)$ is given, where the transitions are specified as follows.

Current State	Next State(s)			
Current State	Input a	Input b		
1	1, 2	1		
2		3		
3				

Construct an equivalent DFA and show its transition diagram. Show your work.

[7 marks]

(c) Suppose the NFA- Λ , M₃ = ({1, 2, 3, 4}, {a, b}, 1, {4}, δ) is given, where the transitions are specified as follows.

Current State	Next State(s)				
Current State	Input a	Input b	Input Λ		
1	2, 3				
2	1				
3		4			
4	4		2		

Construct an equivalent NFA and show its transition diagram. Show your work.

[6 marks]

Question 4 [20 marks]

(a) Construct a CFG that generates the language $L = \{0^n 1^{2n} \mid n \ge 0\}$.

[4 marks]

- (b) Describe what language is generated by each of the CFGs indicated by the following productions:
 - (i). $S \rightarrow SaS \mid b$
 - (ii). $S \rightarrow SS \mid bS \mid a$

 $[2\times2=4 \text{ marks}]$

(c) Is the CFG given below *ambiguous*? Justify your answer with an example.

$$S \rightarrow aSb \mid aaSb \mid \Lambda$$

[3 marks]

(d) CFLs have interesting closure properties. One of them is string reversal. The formal way to state this is: "CFLs are closed over the operation of string reversal". Using this property, solve the following problem.

A CFL, $L_1(G_1)$, is given with $G_1 = (V_1, \sum, S, P_1)$, where $V_1 = \{S,A,B\}$, $\sum = \{a,b\}$ and the set P_1 of productions as follows:

$$S \rightarrow AB$$

$$A \rightarrow aAb$$

$$B \rightarrow bbBab \mid ab$$

Construct a CFG, $G_2 = (V_2, \{a, b\}, S, P_2)$, whose corresponding language L_2 contains only the strings that are the reverse of the strings in L_1 . Basically, you have to specify V_2 and P_2 .

[4 marks]

(e) Construct a push-down automaton (PDA) to accept the language $L = \{a^nba^n \mid n \ge 1\}$. Briefly describe how it works.

[5 marks]

Question 5 [20 marks]

(a) Given below is a transition table for a Turing machine (TM) with input alphabet $\{a, b\}$, where q is the current state and σ is the current input symbol.

\boldsymbol{q}	σ	$\delta(q,\sigma)$	\boldsymbol{q}	σ	$\delta(q,\sigma)$	\boldsymbol{q}	σ	$\delta(q,\sigma)$
q_0	Δ	(q_1, Δ, R)	q_2	Δ	(h_a, Δ, R)	q_6	a	(q_6, a, R)
q_1	a	(q_1, a, \mathbf{R})	q_3	Δ	(q_4, a, R)	q_6	b	(q_6, b, R)
q_1	\boldsymbol{b}	(q_1, b, R)	q_4	a	(q_4, a, R)	q_6	Δ	(q_7, b, L)
q_1	Δ	(q_2, Δ, L)	q_4	b	(q_4, b, R)	q_7	a	(q_7, a, L)
q_2	a	(q_3, Δ, R)	q_4	Δ	(q_7, a, L)	q_7	b	(q_7, b, L)
q_2	b	(q_5, Δ, R)	q_5	Δ	(q_6, b, R)	q_7	Δ	(q_2, Δ, L)

What is the final configuration if the TM starts with an arbitrary input string x in $\{a, b\}$ *? [8 marks]

(b) We do not define Λ -transitions for a Turing Machine. Why not? What features of a TM make it unnecessary or inappropriate to talk about Λ -transitions?

[4 marks]

- (c) Briefly describe and distinguish the following terms with respect to computational problems, giving one example problem for each.
 - (i). Decidable
 - (ii). Unsolvable
 - (iii). Tractable
 - (iv). Intractable

[4 marks]

- (d) State whether each statement below is True or False. (TM = Turing Machine)
 - (i). If a TM accepts a language L, then it will halt for every string in L.
 - (ii). A non-deterministic TM with multiple tapes has more computational power than a deterministic TM with a single tape.
 - (iii). Every context sensitive language is recursive.
 - (iv). Hilbert's 10th problem is solvable, though initially thought to be unsolvable.

[4 marks]

----- End of Paper -----