Midterm Study Guide

Brent A. Thorne

brentathorne@gmail.com

Topics

- 1. Example of a finite dimensional vector space and an example of an infinite dimensional vector space (why is it infinite dim?),
- 2. Spanning vectors,
- 3. Independent vectors.
- 4. Dimension of a vector space.
- 5. What is a direct sum? Keep an example in mind. When is a sum a direct sum?
- 6. Illustrate the matrix for a particular linear map, say for T(x,y,z)=(2x+z,4y+1)
- 7. State the Fundamental Theorem of Algebra. Apply it to a simple example.
- 8. Define product of two spaces, its dimension,
- 9. Define the quotient of two vector spaces. Give an example of a linear quotient space.
- 10. Define a linear functional and the dual map.
- 11. Compute a dual basis of a vector space spanned by a basis.
- 1. Give an example of a finite dimensional vector space and an example of an infinite dimensional vector space. Why is it infinite dim?

Recall:

A vector space is finite-dimensional is some list of vector spans the space. Thus V is a finite vector space if span $(v_1,\ldots,v_m)=\{a_1v_1+\ldots+a_mv_m:a_1,\ldots,a_m\in\mathbb{F}\}$ with $\{0\}$ being the simpliest finite-dimensional space. An infinite-dimension space has no list that spans the vector space.

Ex 1.1 Finite dimensional vector space

 $V = \{a + b\sqrt{5}; a, b \in \mathbb{Q}\}$ is a vector space over \mathbb{Q} .

$$0 + 0\sqrt{5} = 0 \in V$$

$$\underbrace{a+b\sqrt{5}}_{\in V} + \underbrace{c+d\sqrt{5}}_{\in V} = \underbrace{(a+c)}_{\in Q} + \underbrace{(b+d)}_{\in Q} \sqrt{5} \in V \text{ closed under addition}$$

$$\underbrace{\lambda}_{\in Q}(a+b\sqrt{5}) = \underbrace{\lambda}_{\in Q}a + \lambda \underbrace{b}_{\in Q}\sqrt{5} \in V \text{ closed under multiplication}$$

note: \mathbb{Q} is Rational Space.

Ex 1.2 Finite dimensional vector space

 $\mathcal{P}_m(\mathbb{F})$ is finite dimensional with degree at most m.

Ex 1.2 Infinite dimensional vector space, and why.

 $\mathcal{P}(\mathbb{F})$ is infinite dimensional as every polymonial is span has degree at most m thus z^{m+1} is not in span, hence no list spans $\mathcal{P}(\mathbb{F})$ thus infinate dimensional.

2. Give an example of Spanning vectors.

Recall:

A span is the smallest list containing a subspace.

Ex 2.1 Spanning list

Suppose
$$(x_1,\ldots,x_n)\in\mathbb{F}$$
 then, $(x_1,\ldots,x_n)=x_1(1,0,\ldots,0)+x_2(0,1,\ldots,0)+\ldots+x_n(0,\ldots,0,1)$.

Thus,
$$(x_1,\ldots,x_n)\in \text{span}((1,0,\ldots,0)+(0,1,\ldots,0)+\ldots+(0,\ldots,0,1)).$$

3. Provide an example of Independent vectors.

Recall:

A list $v_1,\ldots,v_m\in V$ is linearly-independent if the only choice of $a_1,\ldots,a_m\in\mathbb{F}$ that makes $a_1v_1+\ldots+a_mv_m=0$ is $a_1=\ldots=a_m=0$.

Ex3.1 \mathbb{F}^n

(1,0,0,0),(0,1,0,0),(0,0,1,0) is linearly-independent in \mathbb{F}^n .

Ex3.2 $\mathcal{P}(\mathbb{F})$

 $1, \zeta, \ldots, \zeta^m$ is linearly-independent in $\mathcal{P}(\mathbb{F})$ for each non-negative interger m.

4. Demonstrate the dimension of a vector space.

Recall:

The dimension of a vector space is the length of its basis.

Ex 4.1 \mathbb{F}^n

 $\dim \mathbb{F}^n = n$

Ex 4.2 $\mathcal{P}_m(\mathbb{F})$

dim

 $P_m(\mathbb{F}) = m+1$

5. Explain what a direct sum is. Keep an example in mind. When is a sum a direct sum?

Recall:

The sum $U_1+\cdots+U_2$ is a direct sum is each element can only be written on way.

Ex5.1 F^3

$$U=\{(x,y,0)\in \mathbb{F}^3: x,y\in \mathbb{F})$$
 and

$$W=\{(0,0,z)\in\mathbb{F}^3:z\in\mathbb{F})$$
, then

$$\mathbb{F}^3 = U \oplus W$$
.

Ex5.2 \mathbb{F}^n

Suppose U_j is a subspace on \mathbb{F}^n of vectors with coordinated all 0 except possibly the j^{th} slot

(ie.
$$U_2=\{0,x,0,\dots,0)\}\in\mathbb{F}^n$$
), then

$$\mathbb{F}^n = U_1 \oplus \cdots \oplus U_n$$

Ex5.3 Non-example

$$U_1 = (x, y, 0)$$

$$U_2 = (0,0,z)$$

$$U_3=(0,y,y)$$

Note there are two ways to write (0,0,0)...

$$(0,1,0)+(0,0,1)+(0,-1,-1)=(0,0,0)$$
 and

$$(0,0,0) + (0,0,0) + (0,0,0) = (0,0,0)$$

Things to consider:

The direct sum as a projection on some subspace if and only if it is idempotent, $E^2=E$. * Where E is U along W.

$$z = Ez + (1 - E)z$$

Consider Ez=x and (1-E)z=y then

$$Ex=E^2z=Ez=x$$
 and $Ey=E(1-E)z=Ez-E^2z=0$

so that x is in U and y is in W. Thus,

 $V=U\oplus W$, and that the projection on U along W is precisely E.

see also 41 FDVS Halmos

ask Arek for some insight on this

6. Illustrate the matrix for a particular linear map

Recall:

$$Tv_k = A_{1,k}w_1 + \ldots + A_{m,k}w_m = \sum\limits_{j=1}^m A_{j,k}w_j$$
 or when context is not clear,

$$M(\mathcal{T},(v_1,\ldots,v_m),(w_1,\ldots,w_m)$$
 is used.

Ex.6.1
$$T(x,y,z)=(2x+z,4y+1)$$
 \leftarrow Arek said this is a typo (1 ought to be z).

 $\mathcal{T} \in \mathcal{L}(\mathbb{F}^2, \mathcal{P}_2(\mathbb{F})) \leftarrow$ We made it work anyway.

$$M(\mathcal{T}) = \begin{pmatrix} 0 & 2 & 0 & 1 \\ 1 & 0 & 4 & 0 \end{pmatrix}$$

Ex.6.2
$$T(x,y,z) = (2x+z,4y+z) \leftarrow *\mathsf{Note}$$
 correction

$$\mathcal{T} \in \mathcal{L}(\mathbb{R}^3,\mathbb{R}^2)$$

$$M(\mathcal{T}) = \left(egin{matrix} 2 & 0 & 1 \ 0 & 4 & 1 \end{matrix}
ight)$$

7. State the Fundamental Theorem of *Linear Algebra. Apply it to a simple example.

Recall: Fundamental Theorem of Linear Maps

Suppose V is finite-dimensional and $T \in \mathcal{L}(V,W)$. Then $\mathrm{range}T$ is finite-dimensional and

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T. *$

*Lame... Axler fumbles here and misses an opportunity to enlighten the student.

Recall: Rank-nullity Theorem (Strang)

 $\dim V = \dim \ker T + \dim \operatorname{im} T$

Recall: Fundamental Theorem of Linear Algebra

Let f be a linear map between two finite-dimensional vector spaces, representing a $m \times n$ matrix M of rank r then,

- r is the dimension of column space of M, which represent the image of f.
- n-r is the dimension of the null space of M, which represent the kernel of f.
- m-r is the dimension of the cokernel of f.

The transpose M^T of M is the matrix of the dual f^* of f, and it follows,

- r is the dimension of row space of M, which represent the image of f^* .
- n-r is the dimension of the left null space of M, which represent the kernel of f^* .
- m-r is the dimension of the cokernel of f^* .

FIXME!!! Make use of Axler's notation...

Recall: Fundamental Theorem of Linear Algebra (Strang*)

*Strang is way clearer. Probably because he is presenting to Engineers.

Let $A \in \mathbb{R}^{m imes n}$, then onsider Four subspaces, $\mathcal{R}(A), \mathcal{N}(A), \mathcal{R}(A^T), \mathcal{N}(A^T)$

$$ullet$$
 $\mathbb{R}^n=\mathcal{R}(A^T)\oplus\mathcal{N}(A)$, also $\mathbb{R}^n=\mathcal{R}(A^T)\perp\mathcal{N}(A)$

- lacksquare dim $\mathcal{R}(A^T)=r$
- lacksquare dim $\mathcal{N}(A)=n-r$
- $\mathbb{R}^m = \mathcal{R}(A) \oplus \mathcal{N}(AT)$, also $\mathbb{R}^n = \mathcal{R}(A) \perp \mathcal{N}(A^T)$
 - lacksquare dim $\mathcal{R}(A)=r$
 - ullet dim $\mathcal{N}(A^T)=m-r$

Where r is called the rank of A. Also note that $r \leq n$ and $r \leq m$.

Ex7.1 Basis

$$A = egin{bmatrix} 1 & 1 & -1 \ 1 & 0 & -1 \end{bmatrix}
ightarrow egin{bmatrix} 1 & 0 & -1 \ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} \text{ is a bais for } \mathcal{R}(A), \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \text{ is a basis for } \mathcal{N}(A).$$

$$\left[\left[egin{array}{c}1\\1\\-1\end{array}
ight], \left[egin{array}{c}1\\0\\-1\end{array}
ight]$$
 is a bais for $\mathcal{R}(A)$, $[]$ is a basis for $\mathcal{N}(A^T)$.

8. Define product of two spaces, its dimension,

Recall: Dimension of a product is the sum of dimensions

Suppose V_1,\dots,V_m are finite-dimensional vector space. Then $V_1 imes \dots imes V_m$ is finite-dimensional and

$$dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m$$
.

Recall: Products and direct sums *

Suppose the U_1,\ldots,U_m are subspaces of V. Define a linear map $\Gamma:U_1 imes\cdots imes U_m\mapsto U_1+\cdots+U_m$ by

$$\Gamma(u_1,\ldots,u_m)=u_1+\ldots+u_m.$$

Then $U_1+\cdots+U_m$ is a direct sum if and only if Γ is injective*.

* Lame... Axler fails to make the connection to biliear maps.

Recall: A sum is a direct sum if and only if dimensions add up

Suppose V is finite-diemnsional and U_1,\ldots,U_m are subspaces of V. Then $U_1+\ldots+U_m$ is a direct sum if and only if

$$dim(U_1+\cdots+U_m)={
m dim}U_1+\cdots+{
m dim}U_m.$$

9. Define the quotient of two vector spaces. Give an example of a linear quotient space.

Recall: Sum of vector and subspace

Suppose $v \in V$ and U is a subspace of V, then v + U is a subset of V defined by,

$$v+U=\{v+u:u\in U\}.$$

Recall: Affine subset, parrallel

- ullet subset of V of form v+U for some $v\in V$ and some subspace U of V.
- ullet for $v\in V$ and U a subspace of V, the affine subset v+U is said to be parrallel to U.

Recall: Quotient Space, V/U

Suppose U is a subspace of V, then V/U is the set of all affine subsets of V parrallel to U.

$$V/U=\{v+U:v\in V\}.$$

Recall: Two affine subsets parallel to U are equal or disjoint

Suppose U is a subspace of V and $v, w \in V$. Thre the following are equivalent:

- (a) $v-w\in U$
- (b) v + U = w + U
- (c) $(v+U) \cap (w+U) \neq \{0\}$

Recall: Quotient map, π

Suppose U is a subspace of V. Then π is the linear map $\pi:V\mapsto V/U$ defined by,

$$\pi(v) = v + U$$

for $v \in V$.

Recall: Dimension of a quotient space

$$\dim V/U = \dim V - \dim U.$$

Ex 9.1

Suppose $U=\{(x,2x)\in\mathbb{R}^2:x\in\mathbb{R}\}$, then U is the line in R^2 through the orgin with slope 2. Thus p+U is the line in R^2 that contains the point p and has slope 2.

Recall: \tilde{T}

* Axler makes a lame attempt to demonstrate the Rank-Nullity Theorem using the definition of \tilde{T} . He's not wrong but why? I suppose it gets us thinking but in no way it this 'Done Right'.

Suppose $T \in \mathcal{L}(V,W)$. Define $ilde{T}: V/(\mathrm{null}T) \mapsto W$ by,

$$ilde{T}(v+ ext{null}T)=Tv.$$

Recall: Null space and range of \hat{T}

Suppose $T \in \mathcal{L}(V, W)$. Then,

(a) $T \in \mathcal{L}(V,W)$ is a linear map from $V/(\mathrm{null}T)$ to W

(b) $T \in \mathcal{L}(V,W)$ is injective

(c) $\mathsf{range} T \in \mathcal{L}(V,W)$ =range T

(d) $V/(\mathrm{null}T)$ is isomporphic to rangeT

10. Define a linear functional and the dual map.

Recall: Linear functional

A $\mathit{linear functional}$ on V is a linear map from $V \mapsto \mathbb{F}$. In other words, a linear functional is an element of $\mathcal{L}(V,\mathbb{F})$.

Ex 10.1 Linear functional

Define $\varphi:\mathbb{R}^3\mapsto\mathbb{R}$ by $\varphi(x,y,z)=4x-5y+2z$. Then φ is a linear functional on R^3 .

 $\mathsf{Fix}\ (c_1,\ldots,c_n)\in\mathbb{F}^n.\ \mathsf{Define}\ \varphi:\mathbb{F}^n\mapsto\mathbb{F}\ \mathsf{by}\ \varphi(x_1,\ldots,x_n)=c_1x_1+\ldots+c_nx_n.\ \mathsf{Then}\ \varphi\ \mathsf{is}\ \mathsf{a}\ \mathsf{linear}\ \mathsf{functional}\ \mathsf{on}\ F^3.$

Define $\varphi:\mathbb{R}\mapsto\mathbb{R}$ by $\varphi(p)=3p''(5)+7p(4)$. Then φ is a linear functional on $\mathcal{P}(\mathbb{R})$.

Define $\varphi:\mathbb{R}\mapsto\mathbb{R}$ by $\varphi(p)=\int_0^1p(x)dx.$ Then arphi is a linear functional on $\mathcal{P}(\mathbb{R}).$

FIXME!!! Add more example if time allows...

Recall: Dual map, T'

If $T \in \mathcal{L}(V, W)$, then the $dual\ map$ of T is the linear map $T' \in (W', V') *$ defined by $T'(\varphi) = \varphi \circ T$ for $\varphi \in W'$.

* note swapping of order due to nature of coordinate change

Ex 10.2 Dual space

Define $D:\mathcal{P}(\mathbb{R})\mapsto\mathcal{P}(\mathbb{R})$ by Dp=p'.** Such an awful mixture of notation. WTF, Axler!?

Suppose φ is the linear functional on $\mathcal{P}(\mathbb{R})$ defined by $\varphi(p)=p(3)$. Then $D'(\varphi)$ is the linear functional on $\mathcal{P}(\mathbb{R})$ given by

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = p'(3).$$

Note: $D'(\varphi)$ is the linear functional on $\mathcal{P}(R)$ that takes p to p'(3).

Ex 10.3 Dual space

Define $D:\mathcal{P}(\mathbb{R})\mapsto\mathcal{P}(\mathbb{R})$ by Dp=p'.

Suppose φ is the linear functional on $\mathcal{P}(\mathbb{R})$ defined by $\varphi(p)=\int_0^1 p$. Then $D'(\varphi)$ is the linear functional on $\mathcal{P}(\mathbb{R})$ given by

$$(D'(arphi))(p)=(arphi\circ D)(p)=arphi(Dp)=arphi(p')=\int_0^1 p'=p(1)-p(0).$$

Note: $D'(\varphi)$ is the linear functional on $\mathcal{P}(R)$ that takes p to p(1)-p(0)\$.

11. Compute a dual basis of a vector space spanned by a basis.

Recall: Dual basis is a basis of the dual space

Suppose V is finite-dimensional. Then the dual basis of the basis of V is the basis of V'

Ex. 11.1 Proof that dual basis is a basis of the dual space

Suppose v_1, \ldots, v_n is a basis of V. Let $\varphi_1, \ldots, \varphi_n$ denote the dual basis.

Consider that $\varphi_1,\ldots,\varphi_n$ is linearly indendent list of element of V' such that

$$a_1\varphi_1+\ldots+a_n\varphi=0.$$

Consider $(a_1\varphi_1+\ldots+a_n\varphi_n)(v_j)=a_j$ for $j=1,\ldots,n$. Thus, $a_1=\ldots=a_n=0$. Hence $\varphi_1,\ldots,\varphi_n$ is linearly independent, thus a basis of V'.

Recall: We already computed this...

Ex 7.1 Basis

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 is a bais for $\mathcal{R}(A), \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is a basis for $\mathcal{N}(A)$.

$$\left[\left[egin{array}{c} 1 \\ 1 \\ -1 \end{array} \right], \left[egin{array}{c} 1 \\ 0 \\ -1 \end{array} \right] ext{ is a basis for } \mathcal{R}(A^T), \left[
ight] ext{ is a basis for } \mathcal{N}(A^T).$$

Appendix 1. State the Fundamental Theorem of Algebra. Apply it to a simple example.

Ex A.1

p(z)=0 has a solution in $\mathbb{C}.$

$$p(z)=a_nz^n+\ldots+a_0$$
 for $a_0,\ldots,a_n\in\mathbb{C}.$

Consider $M(z) = \frac{1}{p(z)}$.

Suppose $p(z) \neq 0$ then converges to a_0 .

In other words, every nonconstant polynomial with complex coefficents has a zero.

- 0:a
- 1:b
- 2:c