1. Assume the signal X_n is a simple reflected r.w. on $A = [0, 20] \cap \mathbf{Z}$ starting at 10. Let W_0, W_1, \ldots be a sequence of i.i.d. taking two values with prob. 1/2:

$$P(W_1 = \pm L) = 1/2,$$

The observation Y_n is defined by

$$Y_n = \min \{ \max \{X_n + W_n, 0\}, 20 \}.$$

(It is hidden Markov model with $\gamma(x,w) = \min \{ \max \{x+w,0\}, 20 \}$). Choose L=5.

a) (smoothing) Using forward and backward Baum-Welch equations, simulate $X_n, Y_n, 0 \le n \le 200$ and the smoothing estimates of X_{100} :

$$\hat{X}_{100,T} = \frac{\sum_{a \in A} a \phi_{100,T}^a}{\sum_{r \in A} \phi_T^r},$$

for $T=100,\ldots,200$. Plot on the same graph X_{100} (as a constant) and $\hat{X}_{100,T},T=100,\ldots,200$.

b) (prediction) Simulate $X_n, Y_n, 0 \le n \le 200$ and the prediction estimates of X_{200} :

$$\hat{X}_{200,n} = \frac{\sum_{a \in A} a \phi_{200,n}^a}{\sum_{r \in A} \phi_n^r}$$

for $n=100,\ldots,200$. Plot on the same graph X_{200} (as a constant) and $\hat{X}_{200,n}, n=100,\ldots,200$.in time interval [0,200], for $L=1;\ L=3;\ L=5;\ L=10;\ L=15;\ L=20.$

2. Assume we have three coins $\{1, 2, 3\}$ with the following probabilities

$$\begin{array}{cccc} & 1 & 2 & 3 \\ P(H) & 0.3 & 0.5 & 0.7 \\ P(T) & 0.7 & 0.5 & 0.3 \end{array}$$

At n=0 a coin is randomly selected and tossed, then the tossing continues possibly changing the coin with probability 1/3 (the chosen coin is the signal $X_n \in \{1,2,3\}$. Assume we observed $Y_{[0,10]} = HHTHHTHTTTT$.

- a) Find $\mathbf{P}(X_5 = i | Y_{[0,10]}), i = 1, 2, 3;$
- and $\mathbf{P}(X_5 = i|Y_{[0,10]}), i = 1, 2, 3;$
- b) Find $\mathbf{P}(X_{10} = i | Y_{[0,5]})$ and $\mathbf{P}(X_{10} = i | Y_{[0,6]}), i = 1, 2, 3.$