問題3 次の入園料に関する説明を読み、各設問に答えよ。

[入園料の説明]

J遊園地は9時から21時まで営業しており、大人は2000円、子ども(中学生以下)は1000円の入園料を徴収している。また、より多くの人に来園してもらうため、次のような割引サービスを行っている。

表 割引サービス

条件	割引率
10 時以前に来園	20%
17 時以降に来園	50%
団体割引(10人以上)	30%
割引券の利用	10%

これらの割引サービスは、割引券の利用を除き併用はできず、条件が重複する場合は、割引率が一番高いサービスだけを適用する。例えば、9時に20人で来園した場合は、10時以前の来園である20%と団体割引の30%に該当するが、割引率の大きい30%が適用される。

割引券を利用した場合は各割引率をさらに 10%上乗せする。例えば、12 時に 20 人で来園して割引券を利用した場合は、団体割引の 30%と合わせて、40%の割引率になる。

<設問1> 次の流れ図は、来園時間、来園者数、割引券の有無から割引率を変数 waribiki に求める流れ図である。流れ図中の に入れるべき適切な字句を解答群から選べ。

(1) ~ (4) の解答群

ア. waribiki: 20%イ. waribiki: 30%ウ. 来園時間: 9 時エ. 来園時間: 10 時オ. 来園時間: 17 時カ. 来園時間: 21 時キ. 来園者数: 10 人ク. 来園者数: 20 人

図1 割引率を求める流れ図

<設問2> 次のテストケースの作成に関する記述中の に入れるべき適切な 字句を解答群から選べ。

図1の流れ図の動作を検証するため、テストケースを作成する。テストケースの作成にあたって、デシジョンテーブルを作成した。

割引サービスに関する条件は4種類なので、それぞれの真偽 (YesとNo) を組み合わせると、条件指定は全部で (5) 通りになるが、10 時以前の来園と17 時以降の来園は両方とも真 (Yes) になることは無いので、条件指定は次の12 通りである。

			_	_								_
10 時以前の来園	Y	Y	Y	Y	N	N	N	N	N	N	N	N
17 時以降の来園	N	N	N	N	Y	Y	Y	Y	N	Ν	N	N
10 人以上で来園	Y	Y	N	N	Y	Y	N	N	Y	Y	N	Ν
割引券あり	Y	N	Y	N	Y	N	Y	N	Y	N	Y	N
割引なし	_	_	_	_	_	_	_	_	_	_	_	0
10%割引	_	_	_	_	_	_	_	_	_	_	0	_
20%割引	_	_	_	0	_	_	_	_	_	_	_	_
30%割引	_	0	0	_	_	_	_	_	_	0	_	_
40%割引	0	_	_	_	_	_	_	_	0	_	_	_
50%割引	_	_	_	_	_	0	_	0	_	_	_	_
60%割引	_	_	_	_	0	_	0	_	_	_	_	_

図2 割引率のデシジョンテーブル

図 2 のデシジョンテーブルを動作に着目して整理したのが、図 3 のデシジョンテーブルである。

10 時以前の来園	Y	Y		N	_	(7)	N	N
17 時以降の来園	N	N	(6)	Y	N		N	N
10 人以上で来園	N	N		_	Y		N	N
割引券あり	Y	N		N	Y		Y	N
割引なし	_	_	_	_	_	_	_	\circ
10%割引	_	_	_	_	_	_	0	_
20%割引	_	0	_	_	_	_	_	_
30%割引	0	_	_	_	_	0	_	_
40%割引	_	_	_	_	0	_	_	_
50%割引	_	_	_	0	_	_	_	_
60%割引	_	_	0	_	_	_	_	_

図3 整理した割引率のデシジョンテーブル

これにより、デシジョンテーブルのすべての条件を網羅するには、12種類のテストパターンを図3に従って8種類にまとめたものを用意すれば良いことが分かる。

ここで,来園時間,来園者数,割引券の値を次の値を使用する。

- ・来園時間 … 9時, 13時, 18時の3つ
- ・来園者数 … 4人,15人の2つ
- ・割引券 … 1 (割引券あり), 0 (割引券なし) の2つ

図1の流れ図に与えるデータを(来園時間,来園者数,割引券)と表した場合,

(8) を与えた場合は 10%, (9) を与えた場合は 20%の割引率になることを確認する。

なお,割引率が40%になる場合の入園時間は (10) である。

(5) の解答群

ア. 16

イ. 18

ウ. 24

エ. 32

(6), (7)の解答群

イ.

ウ.

工

N
_
Y
N

オ. N Y - カ. N Y -N *. N
Y
Y

ク. N Y N -

(8), (9) の解答群

Y

- ア. (9時, 4人, 0)
- イ. (9時, 4人, 1)
- ウ. (9時, 15人, 0)
- エ. (13 時, 15 人, 1)
- 才. (13 時, 4人, 0)
- カ. (13 時, 4人, 1)
- キ. (18時, 4人, 1)
- ク. (18時, 15人, 0)

(10) の解答群

ア.9時のみ

イ. 13 時のみ

ウ. 18 時のみ

エ. 9時または13時