In [1]: import pandas as pd
import numpy as np

In [2]: df=pd.read_csv("/Users/persie/Downloads/train.csv") df.head()

Out[2]:

	ld	age	job	marital	education	default	housing	loan	contact	I
0	25611	49	blue-collar	married	basic.9y	unknown	no	no	cellular	-
1	26010	37	entrepreneur	married	university.degree	no	no	no	telephone	
2	40194	78	retired	married	basic.4y	no	no	no	cellular	
3	297	36	admin.	married	university.degree	no	yes	no	telephone	
4	36344	59	retired	divorced	university.degree	no	no	no	cellular	

5 rows × 22 columns

In [3]: df.describe()

Out[3]:

	ld	age	duration	campaign	pdays	previou
count	32950.000000	32950.000000	32950.000000	32950.000000	32950.000000	32950.00000
mean	20618.796601	40.014112	258.127466	2.560607	962.052413	0.17471
std	11899.673392	10.403636	258.975917	2.752326	187.951096	0.49902
min	0.000000	17.000000	0.000000	1.000000	0.000000	0.00000
25%	10315.250000	32.000000	103.000000	1.000000	999.000000	0.00000
50%	20632.500000	38.000000	180.000000	2.000000	999.000000	0.00000
75%	30952.750000	47.000000	319.000000	3.000000	999.000000	0.00000
max	41187.000000	98.000000	4918.000000	56.000000	999.000000	7.00000

```
In [4]: df.isnull().sum()
Out[4]: Id
                           0
                           0
        age
                           0
        job
        marital
                           0
        education
                           0
        default
                           0
        housing
                           0
                           0
        loan
        contact
                           0
                           0
        month
        day_of_week
                           0
        duration
                           0
        campaign
                           0
        pdays
                           0
        previous
                           0
        poutcome
                           0
                           0
        emp.var.rate
        cons.price.idx
                           0
        cons.conf.idx
                           0
        euribor3m
                           0
        nr.employed
                           0
                           0
```

dtype: int64

In [5]: | df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 32950 entries, 0 to 32949 Data columns (total 22 columns): Non-Null Count # Column Dtype 0 Ιd 32950 non-null 1 32950 non-null age

int64 int64 2 job 32950 non-null object 3 marital 32950 non-null object 4 education 32950 non-null object 5 default 32950 non-null object 6 housing 32950 non-null object 32950 non-null 7 loan object 8 contact 32950 non-null object 9 32950 non-null object month 32950 non-null 10 day_of_week object 11 duration 32950 non-null int64 12 campaign 32950 non-null int64 13 pdays 32950 non-null int64 14 previous 32950 non-null int64 15 poutcome 32950 non-null object 32950 non-null float64 16 emp.var.rate 17 cons.price.idx 32950 non-null float64 18 cons.conf.idx 32950 non-null float64 19 32950 non-null float64 euribor3m 20 32950 non-null nr.employed float64 21 32950 non-null object dtypes: float64(5), int64(6), object(11)

memory usage: 5.5+ MB

In [6]: | df.drop(['Id'],axis=1,inplace=True)

In [7]: df.head()

Out[7]:

	age	job	marital	education	default	housing	loan	contact	month
0	49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov
1	37	entrepreneur	married	university.degree	no	no	no	telephone	nov
2	78	retired	married	basic.4y	no	no	no	cellular	jul
3	36	admin.	married	university.degree	no	yes	no	telephone	may
4	59	retired	divorced	university.degree	no	no	no	cellular	jun

5 rows × 21 columns

```
In [8]: df.columns
 Out[8]: Index(['age', 'job', 'marital', 'education', 'default', 'housing',
          'loan',
                 'contact', 'month', 'day_of_week', 'duration', 'campaign',
          'pdays',
                 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx',
                 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
                dtype='object')
 In [9]: | numeric=df.select_dtypes(include=np.number).columns.tolist()
In [10]: category=df.select_dtypes(exclude=np.number).columns.tolist()
In [11]: numeric
Out[11]:
          ['age',
           'duration',
           'campaign',
           'pdays',
           'previous',
           'emp.var.rate',
           'cons.price.idx',
           'cons.conf.idx',
           'euribor3m',
           'nr.employed']
In [12]: category
Out[12]:
          ['job',
           'marital',
           'education',
           'default',
           'housing',
           'loan',
           'contact',
           'month',
           'day_of_week',
           'poutcome',
           'y']
In [13]: | num=df[numeric]
In [14]: | cat=df[category]
```

Out[15]:		age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	eı
	0	49	227	4	999	0	-0.1	93.200	-42.0	
	1	37	202	2	999	1	-0.1	93.200	-42.0	
	2	78	1148	1	999	0	-1.7	94.215	-40.3	
	3	36	120	2	999	0	1.1	93.994	-36.4	
	4	59	368	2	999	0	-2.9	92.963	-40.8	

handling missing data

```
In [16]: df['age']=df['age'].fillna(df['age'].mean())
In [17]: #mean with continuous data
    df['duration']=df['duration'].fillna(df['duration'].median())
In [18]: #with categorical data
    df['loan']=df['loan'].fillna(df['loan'].mode())
```

visualisation

In [15]: num.head()

Out[20]: <AxesSubplot:ylabel='y'>

the data is imbalance

In [21]: import matplotlib.pyplot as plt

```
In [22]: # Function to perform univariate analysis of categorical columns
         def plot_categorical_columns(dataframe):
             categorical_columns = dataframe.select_dtypes(include=['object'
             for i in range(0,len(categorical_columns),2):
                     if len(categorical_columns) > i+1:
                         plt.figure(figsize=(10,4))
                         plt.subplot(121)
                         dataframe[categorical_columns[i]].value_counts(norm
                         plt.title(categorical_columns[i])
                         plt.subplot(122)
                         dataframe[categorical_columns[i+1]].value_counts(no
                         plt.title(categorical_columns[i+1])
                         plt.tight_layout()
                         plt.show()
                     else:
                         dataframe[categorical_columns[i]].value_counts(norm
                         plt.title(categorical_columns[i])
```

In [23]: plot_categorical_columns(cat)


```
In [24]: import seaborn as sns
```

```
In [25]: # Function to plot histograms
         def plot continuous columns(dataframe):
             numeric_columns = dataframe.select_dtypes(include=['number']).c
             dataframe = dataframe[numeric_columns]
             for i in range(0,len(numeric columns),2):
                 if len(numeric_columns) > i+1:
                     plt.figure(figsize=(10,4))
                     plt.subplot(121)
                     sns.distplot(dataframe[numeric_columns[i]], kde=False)
                     plt.subplot(122)
                     sns.distplot(dataframe[numeric_columns[i+1]], kde=False
                     plt.tight layout()
                     plt.show()
                 else:
                     sns.distplot(dataframe[numeric_columns[i]], kde=False)
         # Function to plot boxplots
         def plot box plots(dataframe):
             numeric_columns = dataframe.select_dtypes(include=['number']).c
             dataframe = dataframe[numeric_columns]
             for i in range(0,len(numeric_columns),2):
                 if len(numeric_columns) > i+1:
                     plt.figure(figsize=(10,4))
                     plt.subplot(121)
                     sns.boxplot(dataframe[numeric columns[i]])
                     plt.subplot(122)
                     sns.boxplot(dataframe[numeric_columns[i+1]])
                     plt.tight_layout()
                     plt.show()
                 else:
                     sns.boxplot(dataframe[numeric columns[i]])
```

In [26]: plot_continuous_columns(num)

/Users/persie/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms)

warnings.warn(msg, FutureWarning)

In [27]: plot_box_plots(num)

/Users/persie/opt/anaconda3/lib/python3.8/site-packages/seaborn/_d ecorators.py:36: FutureWarning: Pass the following variable as a k eyword arg: x. From version 0.12, the only valid positional argume nt will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/Users/persie/opt/anaconda3/lib/python3.8/site-packages/seaborn/_d ecorators.py:36: FutureWarning: Pass the following variable as a k eyword arg: x. From version 0.12, the only valid positional argume nt will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [28]: def bivariate_analysis_categorical(dataframe,target):
    categorical_columns = dataframe.select_dtypes(exclude=np.number
    for i in range(0,len(categorical_columns),2):
        if len(categorical_columns) > i+1:
            plt.figure(figsize=(15,5))
            plt.subplot(121)
            sns.countplot(x=dataframe[categorical_columns[i]],hue=t
            plt.xticks(rotation=90)
            plt.subplot(122)
            sns.countplot(dataframe[categorical_columns[i+1]],hue=t
            plt.xticks(rotation=90)
            plt.tight_layout()
            plt.show()
```

```
In [29]: bivariate_analysis_categorical(cat,df['y'])
```

/Users/persie/opt/anaconda3/lib/python3.8/site-packages/seaborn/_d ecorators.py:36: FutureWarning: Pass the following variable as a k eyword arg: x. From version 0.12, the only valid positional argume nt will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/Users/persie/opt/anaconda3/lib/python3.8/site-packages/seaborn/_d

```
In [30]: df.drop(['day_of_week'],axis=1,inplace=True)
```

treat outliers

```
In [32]: df['y']=df['y'].map({'no':0,'yes':1})
In [33]: x=df.drop(['y'],axis=1)
    y=df['y']
```

```
In [34]: df=treat_outliers(x)
```

categorical into numerical

```
In [35]: #label encoding
df=pd.get_dummies(df)
df.shape
Out[35]: (32950, 58)
```

Out[36]: <AxesSubplot:>

In [37]: df.corr()

0ut		
	7 /	_
O G C		

	age	duration	campaign	pdays	previous	emp.var.ra
age	1.000000	-0.000494	0.007063	NaN	-0.013049	0.0545
duration	-0.000494	1.000000	-0.080557	NaN	0.028897	-0.0476
campaign	0.007063	-0.080557	1.000000	NaN	-0.090701	0.1417
pdays	NaN	NaN	NaN	NaN	NaN	Ni
previous	-0.013049	0.028897	-0.090701	NaN	1.000000	-0.4754
emp.var.rate	0.054567	-0.047689	0.141779	NaN	-0.475454	1.0000
cons.price.idx	0.034671	0.002902	0.105762	NaN	-0.303604	0.7641
cons.conf.idx	0.109320	-0.011168	0.003443	NaN	-0.175793	0.3991
euribor3m	0.064946	-0.054867	0.122487	NaN	-0.490059	0.9755
nr.employed	0.045264	-0.071522	0.136186	NaN	-0.494280	0.9248
job_admin.	-0.097025	-0.012889	0.012549	NaN	0.013382	-0.0253
job_blue-collar	-0.002416	0.017245	0.002405	NaN	-0.045912	0.0579
job_entrepreneur	0.038408	0.005867	-0.004445	NaN	-0.006510	0.0066
job_housemaid	0.083648	-0.005830	0.001541	NaN	-0.010889	0.0382
job_management	0.075019	-0.003460	-0.013105	NaN	0.007649	-0.0180
job_retired	0.329492	0.016679	-0.012714	NaN	0.053050	-0.0981

					0.040444	0.0004
job_self-employed	0.003900	0.002277	0.007785	NaN	-0.010414	-0.0004
job_services	-0.060988	0.003520	0.006882	NaN	-0.004994	0.0203
job_student	-0.191838	0.019115	-0.024938	NaN	0.084986	-0.1396
job_technician	-0.058022	-0.018815	0.003180	NaN	-0.018815	0.0537
job_unemployed	0.001843	-0.005689	-0.005099	NaN	0.014438	-0.0214
job_unknown	0.047288	-0.006619	-0.002047	NaN	-0.005390	0.0160
marital_divorced	0.165293	-0.003978	0.009458	NaN	-0.000753	0.0188
marital_married	0.287181	-0.003782	-0.005444	NaN	-0.044630	0.0835
marital_single	-0.428142	0.005610	-0.000937	NaN	0.047674	-0.1029
marital_unknown	0.001027	0.013051	0.002351	NaN	0.014010	-0.0113
education_basic.4y	0.226281	0.015128	-0.000327	NaN	-0.023442	0.0300
education_basic.6y	0.013173	0.002953	0.007771	NaN	-0.017777	0.0250
education_basic.9y	-0.029002	0.008312	-0.007204	NaN	-0.019702	0.0210
education_high.school	-0.105649	0.006022	-0.000751	NaN	0.021707	-0.0172
education_illiterate	0.015676	0.001104	-0.001043	NaN	-0.004805	-0.0021
education_professional.course	0.007177	-0.012272	0.008805	NaN	-0.006300	0.0213
education_university.degree	-0.069932	-0.016584	-0.003889	NaN	0.018402	-0.0473
education_unknown	0.063258	0.004562	0.000145	NaN	0.013891	-0.0024
default_no	-0.194819	0.014171	-0.040983	NaN	0.108960	-0.2071
default_unknown	0.194783	-0.013998	0.041129	NaN	-0.109104	0.2070
default_yes	0.002867	-0.007481	-0.005995	NaN	0.005422	0.0049
housing_no	0.003995	0.011294	0.011987	NaN	-0.029610	0.0594
housing_unknown	0.003025	-0.007001	-0.002584	NaN	-0.002600	0.0060
housing_yes	-0.004911	-0.009103	-0.011151	NaN	0.030307	-0.0611
loan_no	0.001621	0.006262	-0.010949	NaN	0.000626	-0.0007
loan_unknown	0.003025	-0.007001	-0.002584	NaN	-0.002600	0.0060
loan_yes	-0.003012	-0.003653	0.012719	NaN	0.000447	-0.0017
contact_cellular	-0.024952	0.034666	-0.065177	NaN	0.243322	-0.3945
contact_telephone	0.024952	-0.034666	0.065177	NaN	-0.243322	0.3945
month_apr	0.009039	0.043842	-0.057812	NaN	0.117642	-0.3189
month_aug	0.067164	-0.054125	0.026837	NaN	-0.077649	0.1776
month_dec	0.028803	0.032535	-0.006807	NaN	0.066104	-0.1232
month_jul	-0.037645	0.025516	0.084361	NaN	-0.138454	0.3159
month_jun	0.000270	-0.031417	0.046742	NaN	-0.087658	0.1500
month_mar	-0.013487	-0.001818	-0.010253	NaN	0.065539	-0.1420
month_may	-0.056170	0.021410	-0.007896	NaN	0.018651	-0.1228

```
month nov
                       0.035956 -0.024554
                                            -0.083451
                                                         NaN
                                                               0.101299
                                                                            -0.0999
           month_oct
                       0.018739
                                  0.018414
                                            -0.063842
                                                         NaN
                                                               0.111377
                                                                            -0.1920
                       0.007944
                                            -0.038161
                                                               0.130961
          month_sep
                                  0.020090
                                                         NaN
                                                                            -0.1576
     poutcome_failure
                                                               0.853216
                      -0.018343 -0.005620
                                            -0.068021
                                                         NaN
                                                                            -0.3863
poutcome_nonexistent
                       0.013049 -0.028897
                                             0.090701
                                                         NaN
                                                              -1.000000
                                                                            0.4754
   poutcome_success
                       0.006143
                                  0.064824
                                            -0.058182
                                                         NaN
                                                               0.466338
                                                                            -0.2544
```

58 rows × 58 columns

PCA

In [38]: df.shape

```
Out[38]: (32950, 58)
In [39]: df.columns
         Index(['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.va
Out [39]:
         r.rate',
                 cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employe
         d',
                 'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_h
         ousemaid',
                 'job_management', 'job_retired', 'job_self-employed', 'job_
         services'
                 'job_student', 'job_technician', 'job_unemployed', 'job_unk
         nown',
                 'marital_divorced', 'marital_married', 'marital_single',
                 'marital_unknown', 'education_basic.4y', 'education_basic.6
         у',
                 'education_basic.9y', 'education_high.school', 'education_i
         lliterate',
                 'education_professional.course', 'education_university.degr
         ee',
                 'education_unknown', 'default_no', 'default_unknown', 'defa
         ult_yes',
                 'housing_no', 'housing_unknown', 'housing_yes', 'loan_no',
                 'loan_unknown', 'loan_yes', 'contact_cellular', 'contact_te
         lephone'
                 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_
         jun',
                 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_
         sep',
                 'poutcome_failure', 'poutcome_nonexistent', 'poutcome_succe
         ss'],
               dtype='object')
In [40]: from sklearn.decomposition import PCA
In [41]: |pca=PCA(n_components=10)
```

```
Out[42]: PCA(n_components=10)
In [43]: X=pca.transform(df)
In [44]: X.shape
Out[44]: (32950, 10)
In [45]: pca.singular_values_
Out[45]: array([28835.08560229, 12648.4455777 ,
                                                  1649.04292151,
                                                                   702.89559
         497,
                  244.71471825,
                                   160.09581335,
                                                   125.67873386,
                                                                   118.48668
         801,
                  104.88992672,
                                   101.33245981])
In [46]: |pca.explained_variance_ratio_
Out[46]: array([8.35732656e-01, 1.60804869e-01, 2.73330944e-03, 4.96599783e
         -04,
                6.01928717e-05, 2.57623118e-05, 1.58762700e-05, 1.41112018e
         -05,
                1.10584038e-05, 1.03210065e-05])
         LDA
In [47]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysi
         lda=LDA(n_components=1)
In [49]:
         lda.fit_transform(df,y)
Out[49]: array([[-0.36392791],
                 [-0.83995188]
                 [ 3.84527335],
                 [-0.75295795],
                 [-0.760131],
                 [ 1.27362264]])
In [58]: pred=lda.predict(df)
In [61]: from sklearn.metrics import confusion_matrix, classification_report
In [62]: |confusion_matrix(pred,y)
Out[62]: array([[28265,
                         2140].
                 [ 973,
                         1572]])
```

In [42]: pca.fit(df)

In [63]: print(classification_report(pred,y)) recall f1-score precision support 0 0.97 0.93 0.95 30405 0.42 0.50 1 0.62 2545 0.91 32950 accuracy 0.70 0.77 macro avg 0.73 32950 weighted avg 0.92 0.91 32950 0.91

In []: