Một mô hình toán học về lượng thức ăn

SV trình bày: Lê Thị Thu An Đỗ Thị Mai Hoa Tăng Thu Trang Giáo viên hướng dẫn: Nguyễn Trọng Hiếu

Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội

5/5/2022

Mục lục

- 1. Giới thiệu
- 2. Mô hình toán học
- 2.1 Các hàm số trong mô hình
- 2.2 Hệ phương trình
- 3. So sánh phần mô phỏng với data ở NHANES
- 4. Giải thích về các tham số
- 5. Điều chỉnh 1 vài tham số

1 Giới thiệu

Các yếu tố ảnh hưởng đến lượng thức ăn

GLUCOSE

2 Mô hình toán học

2 Mô hình toán học

2.1 Các hàm số trong mô hình

1. Mức độ thèm ăn

2. Lượng ghrelin trong huyết tương

3. Hoạt động thể chất

E (exercise) nhận giá trị 0/1.

$$E(t) = \begin{cases} 1 \text{ if (t mod 1440)} \in (300, 1260) \\ 0 \end{cases}$$

Tức là hoạt động từ 5h sáng đến 21h tối.

4. Thói quen ăn

$$H(t) = \mathcal{W}_{\mathit{snack}} + \sum_{i=1}^{4} \chi_{[t^{low}_{\mathit{meal}_i}, t^{\mathit{up}}_{\mathit{meal}_i}]} e^{\displaystyle rac{-1}{2} \left(\displaystyle rac{t - t^{\mu}_{\mathit{meal}_i}}{t^{\sigma}_{\mathit{meal}_i}}
ight)^2}$$

•

5. Nồng độ glucose trong máu

G(t) tính theo đơn vị (mM) tức là $(10^{-3} mol/lit)$

- 6. Lượng thức ăn trong dạ dày S(t) tính theo gam.
- 7. Lượng thức ăn Q(t) được tiêu hóa trong khoảng thời gian $t_{\Delta}=2$ phút.

Các hàm ngẫu nhiên trong mô hình

- 8. $\chi_i(t)$: hàm chỉ thị trạng thái ăn
- 9. u : hàm ngẫu nhiên phân bố đều [0,1].
- 10. $k_{ij}(t)$ Cường độ xác suất chuyển từ trạng thái ăn sang trạng thái "nhịn".
- 11. $k_{ij}(t)$ Cường độ xác suất chuyển từ trạng thái "nhịn" sang trạng thái "ăn".

Các hàm u, k_{ij} , k_{ij} góp phần quyết định cho χ_i

Giải thích mô hình chuỗi Markov

Mô hình ăn - nhịn

2 Mô hình toán học

2.2 Hệ phương trình

Sơ đồ

mũi tên đỏ : làm tăng mũi tên xanh: làm giảm

Hệ phương trình

$$\begin{split} \frac{dL}{dt} &= k_{LS}^{max} e^{-\lambda_{LS}S} - k_{XL}L(t), \ L(0) = L_0 \\ \frac{dG}{dt} &= -(k_{XG} + k_{XGE}E)G(t) + \frac{k_G + k_{XS}\eta_G\rho_{GS}S(t)}{V_G}, \ G(0) = G_0 \\ A(t) &= A^{max} \frac{L(t)}{L_{A50} + L(t)} e^{-\lambda_{AG}G(t)} \\ k_{ji}(t) &= \rho_{HA}^{ji} H(t)(1 + w_A \frac{A(t)}{A_{max}}) \\ k_{ij} &= k_{ij0} + \rho_S^{ij} + \rho_G^{ij}G \\ \frac{dS}{dt} &= -k_{XS}S(t) + \chi_i k_S, \ S(0) = S_0 \end{split}$$

Chuỗi Markov ăn - nhịn

$$P(X(t+2) = i|X(t) = j) = 1 - e^{-k_{ji}(t)2}$$

$$P(X(t+2) = j|X(t) = j) = e^{-k_{ji}(t)2}$$

$$P(X(t+2) = j|X(t) = i) = 1 - e^{-k_{ij}(t)2}$$

$$P(X(t+2) = i|X(t) = i) = e^{-k_{ij}(t)2}$$

3 So sánh phần mô phỏng với data ở NHANES

4 Giải thích về các tham số

Tham số cho hàm Habits

```
\begin{split} t_{\textit{upperMeal}} &= [1000, 1400, 1400, 1440] \\ t_{\textit{meanMeal}} &= [500, 750, 610, 1140] \\ t_{\textit{sigmaMeal}} &= [85, 20, 240, 87] \\ w_{\textit{peak}} &= [0.92, 0.45, 0.65, 0.65] \\ w_{\textit{snack}} &= 0.047 \end{split}
```

Các tham số cho Ghrelin

$$\frac{dL}{dt} = k_{LS}^{max} e^{-\lambda_{LS}S} - k_{XL}L(t), \ L(0) = L_0 = 178$$

Phân tích k_{LS}^{max} :

$$k_{LS}^{max} = k_{XL}L^{max} = 4.16mM/min$$

 $L^{max} = 208pM$
 $k_{XL} = 0.02$

Phân tích λ_{LS} :

$$\lambda_{LS} = rac{log(2)}{S_{50}} = 0.005/g$$
 $e^{-\lambda_{LS}S_{50}} = rac{1}{2}$ $S_{50} = 150g$.

Các tham số cho Glucose

$$\frac{dG}{dt} = -(k_{XG} + k_{XGE}E)G(t) + \frac{k_G + k_{XS}\eta_G\rho_{GS}S(t)}{V_G}, \ G(0) = G_0 = 5$$

Phân tích phần giảm:

$$k_{XG} = CL/V_G = 0.089/12.4 = 0.0072/min,$$

 $V_G = 0.2W = (0.2)(62) = 12.4L,$
 $k_{XGE} = 0.5k_{XG} = 0.0036/min.$

Phân tích phần tăng:

$$k_G = k_{XG} G_0 V_G = (0.0072)(5)(12.4) = 0.4464 mmol/min,$$
 $k_{XS} = \frac{log(2)}{t_{1/2}} = 0.015/min,$
 $t_{1/2} = 45 min \text{ (có thể điều chỉnh)}..$
 $\eta_G = 0.2 g/g$
 $\rho_{GS} = 0.9$

Tham số cho hàm Appetite

$$A(t) = A^{max} rac{L(t)}{L_{A50} + L(t)} e^{-\lambda_{AG}G(t)}$$
 $A^{max} = 300$
 $L_{A50} = 120 pM$
 $\lambda_{AG} = 0.3$

Các tham số cho k_{ji}

$$k_{ji}(t)=
ho_{HA}^{jj}H(t)(1+w_Arac{A(t)}{A_{max}})$$
 $ho_{HA}^{ij}=0.01 \; ext{(có thể điều chỉnh)}$ $w_A=0.1 \; ext{(Có thể điều chỉnh)}$ $A^{max}=300$

Các tham số cho k_{ij}

$$k_{ij} = k_{ij0} + \rho_S^{ij} + \rho_G^{ij} G$$

$$k_{ij0}=0.001$$
 $ho_S^{ij}=0.0001$ (có thể điều chỉnh) $ho_G^{ij}=0.0001$ (có thể điều chỉnh)

Các tham số cho hàm Q và S

$$\frac{dS}{dt} = -k_{XS}S(t) + \chi_i k_S, \ S(0) = S_0 = 0$$

$$Q = \chi_i k_S t_\delta$$

$$k_{XS}=rac{log(2)}{t_{1/2}}=0.015/min,$$
 $t_{1/2}=45min~(ext{có thể điều chỉnh})$
 $k_S=16.5g/min~(ext{có thể điều chỉnh}).$

5 Điều chỉnh 1 vài tham số

Đk bình thường:

$$\eta_G = 0.2$$
 $t_{1/2} = 45 min$
 $k_S = 16.5 g/min$
 $w_A = 0.1$

Điều kiện	Lượng thức ăn	Lượng đường
Bình thường	2760	552
$\eta_G = 0.4$	2490	996
$\eta_G = 0.1, t_{1/2} = 90$	2652	265
$t_{1/2} = 30 \text{ min}$	2651	530
$w_A = 0.9, k_S = 12.4$	2385	477