Unification & Generalised Modus Ponens

Informatics 2D: Reasoning and Agents

Lecture 11

Adapted from slides provided by Dr Petros Papapanagiotou

Propositional vs First-Order Inference

- > So far, we know how to formulate simple inference rules in FOL.
- ➤ Goal: Enabling first-order inference
- ➤ Idea:
 - o Convert the KB to propositional logic and use propositional inference
- > Better idea:
 - Use inference methods to work with first-order sentences directly

A

Universal instantiation (UI)

> Infer any sentence by substituting a ground term for the variable

$$\frac{\forall v \ \alpha}{\mathsf{SUBST}(\{v/g\}, \alpha)}$$

Example: $\forall x. King(x) \land Greedy(x) \Rightarrow Evil(x)$ yields:

- King(John) ∧ Greedy(John) ⇒ Evil(John)
- $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
- \circ King(Father(John)) \wedge Greedy(Father(John)) \Rightarrow Evil(Father(John))

Inference Rules for Quantifiers

Existential instantiation (EI)

> Replace the variable by a single new constant symbol

$$\frac{\exists v \ \alpha}{\mathsf{SUBST}(\{v/k\}, \alpha)}$$

Example. $\exists x. Crown(x) \land OnHead(x, John)$ yields:

∘ $Crown(C_1) \land OnHead(C_1, John)$

provided C_1 is a new constant symbol, called a Skolem constant

Inference Rules for Quantifiers

Inferential Equivalence

- > UI can be applied many times to produce many different outcomes
- ➤ El can be applied once, then the existentially quantified sentence could be discarded.
- > The new knowledge base (KB') is inferentially equivalent to the old KB

Reduction to propositional inference

> Suppose the KB contains just the following:

```
\forall x. King(x) \land Greedy(x) \Rightarrow Evil(x) \quad King(John) \qquad Greedy(John) \qquad Brother(Richard, John)
```

- > Instantiating the universal sentence in all possible ways, we have:
 - \circ King(John) \land Greedy(John) \Rightarrow Evil(John)
 - $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
 - King(John)
 - Greedy(John)
 - Brother(Richard, John)

Reduction to propositional inference

> Suppose the KB contains just the following:

```
\forall x. \ King(x) \land Greedy(x) \Rightarrow Evil(x) \ King(John)
```

Greedy(John)

Brother(Richard, John)

- > Instantiating the universal sentence in all possible ways, we have:
 - ∘ King(John) ∧ Greedy(John) ⇒ Evil(John)
 - $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
 - King(John)
 - Greedy(John)
 - Brother(Richard, John)

KB': The new KB will then include extra propositional symbols

Propositionalization

- > Every FOL KB can be propositionalized so as to preserve entailment
 - A ground sentence is entailed by new KB iff entailed by original KB
- ➤ Idea: propositionalize KB and query, apply DPLL (or some other complete propositional method), return result
- Problem: with function symbols, there are infinitely many ground terms,
 e.g., Father(Father(John)))

Theorem: Herbrand (1930)

ullet If a sentence α is entailed by a FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do

- create a propositional KB by instantiating with depth-*n* terms
- \circ see if α is entailed by this KB

Problem: works if α is entailed, loops forever if α is not entailed

Theorem: Turing (1936), Church (1936).

• Entailment for FOL is **semi-decidable** (i.e., algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every non-entailed sentence.)

Problems with Propositionalization

```
\forall x. \, \mathsf{King}(x) \land \, \mathsf{Greedy}(x) \Rightarrow \mathsf{Evil}(x) \qquad \mathsf{King}(\mathsf{John})
\forall y. \, \mathsf{Greedy}(y) \qquad \qquad \mathsf{Brother}(\mathsf{Richard}, \mathsf{John})
```

- It seems obvious that *Evil(John)*, but propositionalization produces lots of facts such as *Greedy(Richard)* that are irrelevant.
- \triangleright With p k-ary predicates and n constants, there are $p \cdot n^k$ instantiations.
- We want to find a substitution both for the variables in the implication sentence and for the variables in the sentences in the KB (e.g., x/John, y/John).

Modus Ponens (Propositional Logic)

Latin for "method of putting by placing" - "way that affirms by affirming"

$$\frac{P \qquad P \Longrightarrow Q}{Q}$$

$$P$$
, $P \Longrightarrow Q \vdash Q$

Generalized Modus Ponens (GMP)

such that $SUBST(\theta, p_i') = SUBST(\theta, p_i)$, for all i,

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\text{SUBST}(\theta, q)}$$

KB

 $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$ King(John) $\forall y \ Greedy(y)$

Applying GMP to KB

```
p_1' is King(John) p_1 is King(x) p_2' is Greedy(y) p_2 is Greedy(x) \theta is \{x/John, y/John\} q is Evil(x) SUBST(\theta, q) is Evil(John)
```

> GMP is a sound inference rule.

Unification

MAKE DIFFERENT LOGICAL EXPRESSIONS LOOK IDENTICAL

Unification

The UNIFY algorithm takes two sentences and returns a unifier for them if one exists.

UNIFY
$$(p, q) = \theta$$
 where SUBST $(\theta, p) = SUBST(\theta, q)$

α	$oldsymbol{eta}$	heta
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	eta	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	

α	$oldsymbol{eta}$	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	Fail!

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	Fail!

Standardizing variables apart eliminates overlap of variables

e.g. change Knows(x, Richard) to $Knows(z_{17}, Richard)$ and then we succeed the last case with

 $\theta = \{z_{17}/John, x/Richard\}$

Most General Unifier (MGU)

Unifying Knows(John, x) and Knows(y, z)

$$\theta = \{y/John, x/z\}$$
 or $\theta = \{y/John, x/John, z/John\}$

The first unifier is more general than the second.

FOL: There is a **single** most general unifier (MGU) that is unique up to renaming of variables.

$$MGU = \{y/John, x/z\}$$

Can be viewed as an equation solving problem.

• i.e. solve $Knows(John, x) \stackrel{?}{=} Knows(y, z)$

MGU Examples

	MGU
$Loves(John, x) \stackrel{?}{=} Loves(y, Mother(y))$	
$Loves(John, Mother(y)) \stackrel{?}{=} Loves(y, y)$	

MGU Examples

	MGU
$Loves(John, x) \stackrel{?}{=} Loves(y, Mother(y))$	{x/Mother(John), y/John}
$Loves(John, Mother(y)) \stackrel{?}{=} Loves(y, y)$	

MGU Examples

	MGU
$Loves(John, x) \stackrel{?}{=} Loves(y, Mother(y))$	{x/Mother(John), y/John}
$Loves(John, Mother(y)) \stackrel{?}{=} Loves(y, y)$	Fail!

Finding the MGU

Can be broken-down into a series of steps

- Decomposition
- Conflict
- Eliminate
- Delete
- Switch
- Coalesce
- Occurs Check

Other presentations of algorithm are possible (see R&N)

$$f(s_1, ..., s_n) \stackrel{?}{=} f(t_1, ..., t_n)$$

Replace with

$$s_1 \stackrel{?}{=} t_1, ..., s_n \stackrel{?}{=} t_n$$

Example

Given

 $Knows(John, x) \stackrel{?}{=} Knows(y, z)$

Replace with

John
$$\stackrel{?}{=} y$$
, $x \stackrel{?}{=} z$

Decomposition

$$f(s_1, ..., s_n) \stackrel{?}{=} g(t_1, ..., t_n)$$
 where $f \neq g$

Example

Given

 $Knows(John, x) \stackrel{\cdot}{=} Greedy(y)$

fail

Conflict

P, $x \stackrel{?}{=} t$ where x occurs in P but not in t, and t is not a variable

Replace with

 $P\{x/t\}$ and $x \stackrel{?}{=} t$

Example

Given

 $Knows(John, x) \stackrel{\cdot}{=} Knows(y, z), z \stackrel{\cdot}{=} Richard$

Replace with

Knows(John, x) $\stackrel{?}{=}$ Knows(y, Richard), $z \stackrel{?}{=}$ Richard

Eliminate

$$P, s \stackrel{?}{=} s$$

P

Example

Given

 $z \stackrel{?}{=} Richard$, $Greedy(John) \stackrel{?}{=} Greedy(John)$

Replace with

$$z \stackrel{?}{=} Richard$$

Delete

 $P, s \stackrel{?}{=} x$ where x is a variable and s is not

Replace with

$$P$$
 and $x \stackrel{?}{=} s$

Example

Given

Knows(John, x) $\stackrel{.}{=}$ Knows(y, z), Richard $\stackrel{.}{=}$ z

Replace with

 $Knows(John, x) \stackrel{?}{=} Knows(y, z), z \stackrel{?}{=} Richard$

Switch

 $P, x \stackrel{?}{=} y$ where x, y variables occurring in P

Replace with

$$P\{x/y\}$$
 and $x \stackrel{?}{=} y$

Example

Given

 $Knows(John, x) \stackrel{?}{=} Knows(y, z), y \stackrel{?}{=} z$

Replace with

 $Knows(John, x) \stackrel{?}{=} Knows(z, z), y \stackrel{?}{=} z$

Coalesce

 $x \stackrel{?}{=} s$ where x **occurs** in s and s not a variable

Fail!

Occurs Check

Example

Given

P(x), $x \stackrel{?}{=} Father(x)$

Fail (else Eliminate will loop)

P(Father(Father(...))))

Decompose

 $John \stackrel{?}{=} y, x \stackrel{?}{=} Mother(y)$

Switch

 $y \stackrel{?}{=} John, x \stackrel{?}{=} Mother(y)$

Eliminate

 $y \stackrel{?}{=} John, x \stackrel{?}{=} Mother(John)$

Example

New Example KB

Example Knowledge Base

It is known in The Hundred-Acre Wood that if someone who is very fond of food gives a treat to one of their friends, they are really generous.

Eeyore, the sad donkey, has some hunny that he has received for his birthday from Winnie-the-Pooh, who, as we know, is very fond of food.

Prove that Winnie-the-Pooh is generous.

Formalisation

if someone who is very fond of food gives a treat to one of their friends, they are really generous

• $VeryFondOfFood(x) \land Treat(y) \land Friend(z) \land Gives(x, y, z) \Rightarrow Generous(x)$

Eeyore (...) has some hunny

• $\exists x. Owns(Eeyore, x) \land Hunny(x)$ or after EI: $Owns(Eeyore, H_1) \land Hunny(H_1)$

that he has received for his birthday from Winnie-the-Pooh

• $Hunny(x) \land Owns(Eeyore, x) \Rightarrow Gives(Pooh, x, Eeyore)$

Hunny is a treat.

• $Hunny(x) \Rightarrow Treat(x)$

Residents of the the Hundred-Acre Wood are friends.

• $Resident(x, HundredAcreWood) \Rightarrow Friend(x)$

Eeyore is a resident of the Hundred-Acre Wood.

• Resident (Eeyore, Hundred AcreWood)

Pooh is very fond of food.

• VeryFondOfFood(Pooh)

Why?

- > Setting the scene for inference & resolution.
- ➤ Linked to logic programming.

...but more in the next lecture!