Painel ► Cursos ► INE5412-04208A (20212) ► Unidade 2 - Gerência de Processos e Threads ► AF 2.1 - Fundamentos sobre processos e threads (questionário)

Iniciado em	Tuesday, 9 Nov 2021, 14:47
Estado	Finalizada
Concluída em	Tuesday, 9 Nov 2021, 15:36
Tempo empregado	49 minutos 29 segundos
Notas	16,00/17,00

Avaliar 9,41 de um máximo de 10,00(94%)

Questão 1 Correto

Atingiu 1,00 de 1,00 Sejam as duas threads abaixo executadas concorrentemente e compartilhando as variáveis A e B.

Thread 0	Thread 1
A = 0;	B = 0;
	•••
A = 1;	B = 1;
	•••
if (B == 0)	if (A == 0)
P1();	P2();

Com relação à situação acima, julgue os itens seguintes.

- I. As funções P1() e P2() nunca serão executadas simultaneamente.
- II. As funções P1() e P2() poderão não ser executadas.
- III. Uma das funções (P1() ou P2()) necessariamente será executada.
- IV. Apenas P1() ou apenas P2() será executada.

Estão corretas as assertivas:

Escolha uma opção:

- a. I e II. √
- b. I, II, III e IV.
- c. l e III.
- d. II e IV.
- e. III e IV.

Sua resposta está correta.

A resposta correta é: l e ll.

Correto

Atingiu 1,00 de 1,00 Com relação a processos e threads, analise as seguintes proposições e, a seguir, marque a alternativa CORRETA.

- I. Um processo é constituído de código executável, dados referentes ao código, pilha de execução, valor do contador de programa, valor do apontador de pilha, valores dos registradores do hardware e um conjunto de outras informações necessárias à execução do programa.
- II. O bloco de controle de processo (descritor de processo) mantém todas as informações que o sistema operacional necessita para gerenciar o processo, tais como identificador do processo, estado do processo, prioridade de escalonamento, ponteiro para o processo pai, entre outras.
- III. Processo é uma unidade básica de utilização de CPU, que possui como benefício o compartilhamento da seção de código, seção de dados, arquivos abertos, entre outras informações, com outros processos.
- IV. Threads, na API POSIX, podem ser criadas através da função pthread create().

Escolha uma opção:

- a. Somente as proposições I, II e IV são corretas.b. Somente as proposições I e IV são corretas.
- c. Somente as proposições I, II e III são corretas.
- d. Somente as proposições III e IV são corretas.

Sua resposta está correta.

A resposta correta é: Somente as proposições I, II e IV são corretas.

Correto

Atingiu 1,00 de 1,00 Sobre estados de processos em Sistemas Operacionais, analise as assertivas e assinale a alternativa que aponta a(s) correta(s).

- I. Um processo, em um sistema multiprogramável (multitarefa), não é executado todo o tempo pelo processador. Durante sua existência, ele passa por uma série de estados.
- II. Execução (running): um processo é classificado como *running* quando aguarda uma oportunidade para executar, ou seja, esperando que o sistema operacional aloque a CPU para sua execução.
- III. Pronto (ready): um processo é dito neste estado quando está sendo processado pela CPU. Em sistemas com apenas um processador, somente um processo pode estar pronto em um dado instante de tempo.
- IV. Bloqueado (waiting): neste estado um processo aguarda algum evento externo ou por algum recurso para poder prosseguir seu processamento. Como exemplo, podemos citar o término de uma operação de entrada/saída ou a espera de uma determinada data e/ou hora para poder continuar sua execução.

Escolha uma opção:

- a. Apenas II, III e IV.
- b. Apenas I.
- c. I, II, III e IV.
- d. Apenas I e IV.
- e. Apenas I e III.

Sua resposta está correta.

A resposta correta é: Apenas I e IV.

Questão 4

Correto

Atingiu 1,00 de 1,00 O gerenciamento de processos em sistemas modernos é feito, quase sempre, com o uso de preempção de processos através de técnicas de compartilhamento de tempo. O que a introdução de processadores com vários núcleos (cores) altera nesse gerenciamento?

Escolha uma opção:

- a. Torna possível o uso do algoritmo de escalonamento shortest job first (SJF).
- b. Torna possível o uso de threads para a execução de processos concorrentes.
- c. Torna possível a concorrência efetiva de processos paralelos.
- d. Torna possível separar os demais mecanismos de gerenciamento do sistema operacional do gerenciamento de processos.
- 🌘 🛮 e. Torna possível a paralelização efetiva de processos concorrentes. 🧹

Sua resposta está correta.

A resposta correta é: Torna possível a paralelização efetiva de processos concorrentes.

Correto

Atingiu 1,00 de 1,00 No navegador Firefox, cada nova aba representa uma nova *thread*; no Chrome, cada nova aba representa um novo processo. Os projetistas do Firefox e do Chrome adotaram diferentes decisões porque:

Escolha uma opção:

- a. Os projetistas do Firefox conceberam o navegador para executar, prioritariamente, em ambiente Linux, que suporta apenas multithreading, os projetistas do Chrome conceberam esses navegadores para executar, prioritariamente, em ambiente Windows, que suporta multiprocessamento e multithreading.
- b. Os projetistas do Firefox consideraram o menor consumo de recursos da máquina mais importante; os projetistas do Chrome priorizaram a robustez do navegador: se uma aba "pendurar", não é necessário "matar" todo o navegador.

√

- c. Os projetistas do Firefox consideraram a robustez mais importante do que a economia de recursos da máquina; os projetistas do Chrome consideraram mais importante a implementação de um navegador que usasse poucos recursos (memória, CPU) da máquina.
- d. Os projetistas do Firefox consideraram importante que cada aba tivesse a sua área de dados privada, compartilhando o mesmo código; os projetistas do Chrome preferiram que as abas compartilhassem a sua área de memória de uma maneira simples.

Sua resposta está correta.

A resposta correta é: Os projetistas do Firefox consideraram o menor consumo de recursos da máquina mais importante; os projetistas do Chrome priorizaram a robustez do navegador: se uma aba "pendurar", não é necessário "matar" todo o navegador.

Questão 6 Sobre exclusão mútua é correto afirmar que: Correto Escolha uma opção: Atingiu 1,00 de a. É uma técnica usada em programação concorrente para evitar que dois ou 1,00 mais processos tenham acesso simultaneamente a múltiplos recursos privados. b. É uma técnica usada em programação concorrente para resolver deadlock. c. É uma técnica usada em programação concorrente para evitar deadlock. d. É uma técnica usada em programação concorrente para evitar que duas ou mais threads tenham acesso simultaneamente a um recurso compartilhado (seção crítica). 🗸 e. É uma técnica usada em programação não concorrente para evitar que duas ou mais threads tenham acesso simultaneamente a um recurso compartilhado (seção crítica). Sua resposta está correta. A resposta correta é: É uma técnica usada em programação concorrente para evitar que duas ou mais threads tenham acesso simultaneamente a um recurso compartilhado (seção crítica).

Questão 7

Correto

Atingiu 1,00 de 1,00 A situação na qual vários processos manipulam um mesmo conjunto de dados concorrentemente e o resultado depende da ordem na qual os acessos são feitos é denominada:

Escolha uma opção:

- a. espera ocupada (busy waiting).
- b. exclusão mútua.
- c. condição de corrida (race condition).
- d. deadlock.
- e. região crítica.

Sua resposta está correta.

A resposta correta é: condição de corrida (race condition).

Questão 8 Incorreto Atingiu 0,00 de

1,00

Um programa Java chamado CorridaDeSapos que cria várias *threads* foi disparado a partir do bash no Linux. Durante sua execução, a chamada do comando ps -elf forneceu a seguinte saída:

UID	PID	PPID	LWP	С	NLWP	STIME	TTY	TIME	CMD
marcio	8094	2454	8094	0	19	15:20	pts/2	00:00:00	java
CorridaDeSapos									
marcio	8094	2454	8095	0	19	15:20	pts/2	00:00:00	java
CorridaDeSapos									
marcio	8094	2454	8096	0	19	15:20	pts/2	00:00:00	java
CorridaDeSapos									
marcio	8094	2454	8097	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8098	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8099	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8100	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8101	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8102	0	19	15:20	pts/2	00:00:00	java
CorridaD	CorridaDeSapos								
marcio	8094	2454	8103	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8104	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8105	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8106	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8107	0	19	15:20	pts/2	00:00:00	java
CorridaD	eSapos								
marcio	8094	2454	8108	75	19	15:20	pts/2	00:05:06	java
CorridaD	eSapos								
marcio	8094	2454	8109	76	19	15:20	pts/2	00:05:09	java
CorridaD	eSapos								
marcio	8094	2454	8110	75	19	15:20	pts/2	00:05:07	java
CorridaD	eSapos								
marcio	8094	2454	8111	76	19	15:20	pts/2	00:05:08	java
CorridaD									
marcio	8094	2454	8112	76	19	15:20	pts/2	00:05:08	java
CorridaDeSapos									
marcio	8142	2510	8142	0	1	15 : 27	pts/9	00:00:00	ps -eLf

A coluna "LWP" fornece o identificador da *thread* e a coluna "NLWP" fornece o número total de threads de um processo. Isso mostra que:

Escolha uma opção:

 a. Threads Java são mapeadas para processos Linux mas têm a memória compartilhada entre elas.

 b. Threads Java são mapeadas para threads Linux e participam do escalonamento executado pelo sistema operacional nativo.
 c. Threads Java são mapeadas para threads Linux e e seu escalonamento é executado pela JVM.
Sua resposta está incorreta.
A resposta correta é: Threads Java são mapeadas para threads Linux e participam do escalonamento executado pelo sistema operacional nativo.
O estado de um processo é definido, em parte, pela sua atividade presente.
Quando o processo está esperando para ser atribuído a um processador, ele se encontra em um estado denominado:
Escolha uma opção:
a. de execução.
b. de espera.
d. novo.
e. encerrado.
Sua resposta está correta.
A resposta correta é: pronto.
Nos conceitos de ciência da computação, um processo é um módulo executável
que pode conter threads. Um conceito importante sobre threads que estão contidas no mesmo processo é que:
Escolha uma opção:
a. controlam o acesso da memória dinâmica (heap) dos processos externos.
b. acessam a memória estática ao contrário de processos convencionais.
 c. possuem proteção contra problemas comuns de processos, como vazamento e acessos inválidos da memória.
 d. podem compartilhar a memória do processo.
 e. evitam que processos concorrentes acessem recursos do processo principal.
Sua resposta está correta

Sua resposta esta correta.

Questão 9

Atingiu 1,00 de

Questão 10

Atingiu 1,00 de

Correto

1,00

Correto

1,00

A resposta correta é: podem compartilhar a memória do processo.

Ouestão 11 Correto Atingiu 1,00 de 1,00 a. um trecho de programa no qual existe um recurso ao qual somente o sistema operacional pode ter acesso. b. um trecho de programa que deve ser executado em paralelo com a seção crítica de outro programa. c. um trecho de programa no qual existe o compartilhamento de algum recurso, mas o acesso ao recurso é mutuamente exclusivo. ✓ d. um trecho de programa cujas instruções podem ser executadas em

Sua resposta está correta.

paralelo e em qualquer ordem.

A resposta correta é: um trecho de programa no qual existe o compartilhamento de algum recurso, mas o acesso ao recurso é mutuamente exclusivo.

Questão 12

Correto

Atingiu 1,00 de 1,00 Qual o significado do conceito multithread num sistema operacional?

Escolha uma opção:

- a. Utilização de porções de memória para guardar dados que vêm de dispositivos com baixa velocidade para agilizar o processamento de algum dado.
- b. Condição em que processos ficam bloqueados esperando por algum evento que nunca vai acontecer.
- c. Capacidade de processar algum job assim que este chega ao sistema através da sobreposição de operações muito lentas com processamento.
- d. É uma forma de um processo dividir a si mesmo em duas ou mais tarefas que podem ser executadas simultaneamente.
- e. Guardar dados para posterior utilização, evitando a repetição de acesso a dispositivos lentos.

Sua resposta está correta.

A resposta correta é: É uma forma de um processo dividir a si mesmo em duas ou mais tarefas que podem ser executadas simultaneamente.

Correto

Atingiu 1,00 de 1,00 Imagine que várias threads devem acessar a mesma base de dados (bd), algumas para ler e outras para escrever. Contudo, existem algumas restrições para a realização de leituras e escritas:

- I. Enquanto uma thread estiver escrevendo, nenhuma outra thread pode acessar a base de dados (bd).
- II. Enquanto uma thread estiver lendo, somente threads leitoras podem acessar a base de dados (bd).

Seja a solução abaixo:

```
pthread mutex t db;
pthread mutex t mutex;
int rc = 0;// Quantidade de leitores lendo ou querendo
ler a base de dados (bd)
void reader() {
  while(1) { // Repete eternamente
   (1);
    rc=rc+1;// Um novo leitor
    if(rc==1)
       (2);// Caso este seja o primeiro leitor...
    (3);
     read data base();//le a bd
    (4);
    rc=rc-1;// Um leitor a menos...
    if(rc==0)
       (5);// Caso este seja o ultimo leitor.
    (6);
    use data read();// Utiliza as informações da bd
    // Fim do while
}
void writer(){
  while (1) {// Repete eternamente
    think up data(); //pensa em informações para adici
onar à bd
    (7);
    write data base();//escreve novas informações na b
d
    (8);
  }
}
```

Para a solução acima, que operações quais deveriam ser as operações 1, 2, 3, 4, 5, 6, 7 e 8?

Escolha uma opção:

```
a.
    1.pthread_mutex_lock(&mutex)
    2.pthread_mutex_lock(&db)
    3.pthread_mutex_unlock(&mutex)
    4.pthread_mutex_lock(&mutex)
    5.pthread_mutex_unlock(&db)
    6.pthread_mutex_unlock(&mutex)
    7.pthread_mutex_lock(&mutex)
    8.pthread_mutex_unlock(&mutex)

b.
    1.pthread_mutex_lock(&db)
    2.pthread_mutex_lock(&mutex)
    3.pthread_mutex_lock(&mutex)
    4.pthread_mutex_lock(&mutex)
```

```
5.pthread mutex unlock(&mutex)
    6.pthread mutex unlock(&db)
    7. pthread mutex lock(&db)
    8. pthread mutex unlock (&db)
   c.
    1.pthread mutex unlock(&mutex)
    2.pthread mutex unlock(&db)
    3.pthread mutex lock(&mutex)
    4.pthread mutex unlock(&mutex)
    5.pthread mutex lock(&db)
    6.pthread mutex lock(&mutex)
    7. pthread mutex lock(&db)
    8. pthread mutex unlock (&db)
   d.
    1.pthread mutex lock(&db)
    2.pthread mutex lock(&db)
    3.pthread mutex unlock(&mutex)
    4.pthread mutex lock(&mutex)
    5.pthread mutex unlock(&mutex)
    6.pthread mutex unlock(&mutex)
    7. pthread mutex lock(&db)
    8.pthread mutex unlock(&db)
e.
    1.pthread mutex lock(&mutex)
    2.pthread mutex lock(&db)
    3.pthread mutex unlock(&mutex)
    4. pthread mutex lock(&mutex)
    5.pthread mutex unlock(&db)
    6.pthread mutex unlock(&mutex)
    7. pthread mutex lock(&db)
    8. pthread mutex unlock (&db)
```

Sua resposta está correta.

A resposta correta é:

- 1.pthread mutex lock(&mutex)
- 2.pthread mutex lock(&db)
- 3.pthread mutex unlock(&mutex)
- 4.pthread mutex lock(&mutex)
- 5.pthread_mutex_unlock(&db)
- 6.pthread_mutex_unlock(&mutex)
- 7. pthread mutex lock(&db)
- 8.pthread mutex unlock(&db)

Correto

Atingiu 1,00 de 1,00 Para o trecho de código a seguir, qual o grafo que representa hierarquia de criação de processos?

```
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
  int i;
  for (i=0; i<3; i++)
    fork();
  while(wait(NULL) > 0);
}
```

Escolha uma opção:

Sua resposta está correta.

A resposta correta é:

Correto

Atingiu 1,00 de 1,00 Considere um sistema operacional típico utilizado atualmente em computadores, que possua suporte nativo a threads. Ao efetuar o gerenciamento de processos, o sistema operacional associa alguns dos elementos enumerados abaixo a cada thread individualmente, enquanto outros são compartilhados entre threads de um mesmo processo.

- 1. Valores dos registradores
- 2. Espaço de endereçamento
- 3. Pilha de execução
- 4. Portas de comunicação e arquivos em uso

Quais dos elementos enumerados acima são associados individualmente a cada thread?

Escolha uma opção:

- a. 3 e 4.
- b. 1 e 3. ✓
- c. 1, 2 e 4.
- d. 1, 2 e 3.
- e. 2, 3 e 4.

Sua resposta está correta.

A resposta correta é: 1 e 3.

Correto

Atingiu 1,00 de 1,00 O problema do produdor/consumidor é um problema clássico de sincronização de threads: um grupo de threads utiliza um buffer de tamanho N para armazenar temporariamente itens produzidos; threads produtoras produzem os itens, um a um, e os armazenam no buffer; threads consumidoras retiram os itens do buffer, um a um, para processamento. O problema pode ser resolvido com a utilização de semáforos, que são mecanismos de software para controle de concorrência entre threads. Duas operações são definidas para um semáforo s: wait(s) e post(s). Os pseudocódigos das threads produtoras e consumidoras estão mostrados na tabela abaixo. Pode-se resolver esse problema com a utilização dos semáforos mutex, cheio e vazio, inicializados, respectivamente, com 1, 0 e N.

processo produtor	processo consumidor
produz item	comando_e
comando_a	comando_f
comando_b	retira do buffer
coloca no buffer	comando_g
comando_c	comando_h
comando_d	consome o item

A partir dessas informações, para que o problema possa ser resolvido a partir do uso dos semáforos mutex, cheio e vazio, é necessário que comando_a, comando_b, comando_c, comando_d, comando_e, comando_f, comando_g e comando h correspondam, respectivamente, às operações

Escolha uma opção:

- a. wait(vazio), post(mutex), post(cheio), wait(mutex),
 wait(cheio), post(mutex), post(vazio) e post(mutex).
- b. wait(cheio), wait(mutex), post(mutex), post(vazio),
 wait(vazio), post(mutex), post(mutex) e wait(cheio).
- C. wait(mutex), wait(vazio), post(cheio), post(mutex),
 wait(mutex), wait(cheio), post(vazio) e post(mutex).
- d. wait(mutex), wait(vazio), post(cheio), post(mutex),
 wait(mutex), wait(vazio), post(cheio) e post(mutex).
- e. wait(vazio), wait(mutex), post(mutex), post(cheio),
 wait(cheio), wait(mutex), post(mutex) e post(vazio).

Sua resposta está correta.

A resposta correta é: wait (vazio), wait (mutex), post (mutex), post (cheio), wait (cheio), wait (mutex), post (mutex) e post (vazio).

Questão 17 Correto Atingiu 1,00 de	Em um sistema operacional multi-tarefa, diversos processos compartilham uma ou mais CPUs do sistema. Um processo pode estar rodando, bloqueado ou pronto. É CORRETO afirmar que:
1,00	Escolha uma opção:
	 a. Os processos bloqueados estão aguardando a alocação da CPU pelo sistema operacional.
	 b. Um processo é bloqueado quando o sistema operacional detectar que ele não está mais respondendo.
	 c. Quando o processo está bloqueado, ele irá aguardar que o administrador do sistema autorize seu funcionamento.
	 d. Um processo é bloqueado quando ele requisitar uma operação de E/S.
	 e. Um processo é bloqueado quando o sistema operacional detectar que ele tentou fazer uma operação ilegal.

Sua resposta está correta.

A resposta correta é: Um processo é bloqueado quando ele requisitar uma operação de E/S.

◀ Escalonamento: sistemas de tempo real

Seguir para...

AF 2.2 - Escalonamento (questionário) ▶