

001 - INTRODUÇÃO AOS MICROCONTROLADORES

Programação em seu nível mais alto e voltada para a prática.

Automação e Controle

- As experimentações efetuadas com um projeto eletromecânico devem levar a uma configuração final totalmente automatizada
- As leituras dos parâmetros de entrada e saída e seu armazenamento também devem ser automatizadas, para descarregamento em ferramenta de análise operacional e gerencial

O que automatizar ?

- Processos perigosos para o ser humano
- Processos repetitivos
- Processos que exigem precisão
- Processos com muitas etapas
- Processos que envolvem produtos personalizados para os clientes

PCB - Printed Circuit Board

CPU – Central Processing Unit

- Velocidades no patamar de GHz
- Necessitam de SO para operar
- Consomem muita energia e precisam de resfriamento
- Conectam-se a vários tipos de dispositivos, incluindo os de alta velocidade

Microcontrolador

- Velocidades no patamar de MHz
- Não necessitam de SO para operar
- Consomem pouca energia, assim não precisam de resfriamento
- Requer menos componentes adicionais
- Seu uso é restrito a aplicações específicas

Oscilador

- Controla o passo temporal da sucessão de ações provocadas pelas instruções do microcontrolador ou microprocessador
- Possui uma frequência nominal
- Constituído de um cristal de quartzo e de um circuito divisor de frequência

LEDs

- Sinaliza um estado dos dispositivos
- Pode ser observado à distância
- Demonstra estados estáticos e dinâmicos
- Varia a natureza da informação de acordo com a cor

Potenciômetro

- Equivale a uma resistência variável
- Possibilita a experimentação dinâmica do potencial e propriedades de um circuito
- Provê o conceito de regulagem, ajuste e equilíbrio das características de um projeto, para uma etapa posterior de automação

Capacitor Eletrolítico

- Seleciona o tipo de corrente alternada nos nós adjacentes do circuito
- Provê o acúmulo e o descarregamento harmônico de cargas no circuito
- Suaviza os impactos de variações de corrente

Push button

- Provê o corte absoluto de corrente em um trecho do circuito
- Possibilita a experimentação de parâmetros críticos como correntes e temperatura dos componentes
- Possibilita a experimentação do balanço do circuito, quando ainda não se fez a completa automação

Servo motor

- Provê o controle de ajuste fino para o sincronismo entre os passos de um processo mecânico
- Fornece a precisão observada nos projetos de automação
- Possibilita aquilo que compreendemos como robótica
- Característica mais marcante da automação industrial

Resistor

- Balanceia potencial e corrente nos circuitos eletrônicos
- Atenua a corrente sobre um componente, reduzindo o seu aquecimento e, consequentemente, preservando-o do desgaste e dos consequentes defeitos

Aplicação dos Microcontroladores:

- Controle de acesso à empresa e departamentos
- Controle de temperatura (INDÚSTRIA)
- Controle de dispositivos com servomotores
- Controle de drones (CIVIL e MILITAR)
- Controle remoto
- Controle de eletrônicos automotivos
- Controle dos HDs de computadores
- Controle de câmeras de vigilância
- Robótica

002 – PCBs Arduino no Mercado e componentes

O Arduino é um só, mas são muitos.

Cópia chinesa (TQFP-32)

O legítimo já é reconhecido automaticamente por PnP. A cópia necessita da instalação do driver CH340.

Gerenciador de dispositivos

→ # thor Adaptadores de rede Adaptadores de vídeo Computador Controladores de armazenamento Controladores de som, vídeo e jogos Controladores IDE ATA/ATAPI Controladores USB (barramento serial universal) Dispositivos de Interface Humana Dispositivos de Mídia Digital Dispositivos de sistema Dispositivos do software Entradas e saídas de áudio > 🛅 Filas de impressão Leitores de cartões inteligentes Mouse e outros dispositivos apontadores USB-SERIAL CH340 (COM3) > Processadores Teclados Unidades de disco

Gerenciador de dispositivos do Windows mostrando a cópia chinesa com driver USB instalado.

Gerenciador de dispositivos

Gerenciador de dispositivos do Windows mostrando o Arduino legítimo com driver USB PnP reconhecido automaticamente.

Placa com chip SMD (chinesa)

Placa com chip DIP (italiana)

USB to serial interface, automaticamente reconhecido pelo Windows

Pinos SDA e SCL (italiana)

Esse esquema se aplica aos Arduinos italianos sem pinos separados SDA e SCL.

Comparação características

Clock Frequency (MHz)	20 max.	Clock frequency (MHz)	48 max.
Flash size (KB)	32	Flash size (KB)	32
SRAM size (Bytes)	2048	SRAM size (Bytes)	4096
EEPROM SIZE (Bytes)	1024	EEPROM SIZE (Bytes)	None.
UART	1	USART	î
SPI	2	SPI	ï
I ² C	1	J ² C	1
Timers	1 x 16-bit, 2 x 8-bit	Timers	4 x 16-bit
ADC	8 x 10bit (TQFP Package)	ADC	10 x 12-bit
GPIO	23 (shared with other peripherals)	GPIO	26 (shared with other peripherals)
Internal ADC reference	Yes	Internal ADC reference	Yes

Table 1 - Major features of the ATmega328

Table 2 – Major features of the STM32F030K6T6

UART e USART UART:

Universal Asynchronous Receiver/Transmitter Circuito simples Full duplex Taxa de transmissão variável

USART:

Universal Synchronous/Asynchronous Receiver/Transmitter Circuito complexo Half duplex Taxa de transmissão definida Mais veloz.

003 – Microcontrolador ATMega32 - Arquitetura

Um microcontrolador versátil.

Características

- Processador de 8 bits
- Arquitetura RISC
- SRAM 2Kb (DIP)/ 4Kb (SDM)
- Memória Flash 32Kb
- 32 x 8bits registros de propósito geral
- Arquitetura Harvard (Memórias de dados e de programa separadas)
- Todos os 32 registros conectados à Unidade Lógico-Aritmética
- 6 registros de 8 bits podem ser agrupados em 3 registros de 16 bits (X, Y e Z)
- EEPROM de 1Kb (DIP)/ 0Kb (SDM)
- 28 pinos (DIP)/ 32 pinos (SDM)

Processador/Periféricos

Arquitetura - DIP

https://www.newtoncbraga.com.br/microcontroladores/138-atmel/

Registros de propósito geral

7	0	Addr.			
R0		\$00			
R1		\$01			
R2	!	\$02			
R13	3	\$0D			
R14		\$0E			
R15	R15				
R16	6	\$10	A		
R17		\$11	Agrupamento		
			em 16 bits		
R26	6	\$1A	X-register Low Byte		
R27		\$1B	X-register High Byte		
R28	R28		Y-register Low Byte		
R29		\$1D	Y-register High Byte		
R30	R30		Z-register Low Byte		
R31		\$1F	Z-register High Byte		

Mapa da Memória do ATMega328

004 – Preparando para programar o Arduino

Instalando e entendendo a IDE.

Passos de instalação

Instalar a IDE a partir do site docs.arduino Instalar o driver CH340SER para o modelo SMD Conectar a placa no USB Executar a IDE para escolha da placa

ATmega328	0x3FFF	32K	0x08FF	2K	0x3FF	1024

Entrando no site do Arduino

https://docs.arduino.cc/

ATmega328	0x3FFF	32K	0x08FF	2K	0x3FF	1024
	I .	l e		I	I	

Instalando o CH340 para SMD - 1

https://www.blogdarobotica.com/2020/03/21/instalando-driver-serial-para-arduinos-com-chip-ch340/

- Download Driver CH340 para WINDOWS 10, 8, 7 e abaixo: link1
- Download Driver CH340 para WINDOWS 11: link1

Após baixar o arquivo e clicar duas vezes logo se apresentará a tela abaixo:

Instalando o CH340 para SMD - 2

https://www.driverscape.com/download/usb-serial-ch340

Home » USB-SERIAL CH340

Use the links on this page to download the latest version of USB-SERIAL CH340 drivers. All drivers available for download have been scanned by antivirus program. Please choose the relevant version according to your computer's operating system and click the download button.

System Information

Your machine is currently running: Windows 10 64bit (Detect)

USB-SERIAL CH340 Drivers Download

Driver Version: 3.3.2011.11

Release Date: 2011-11-04

File Size: 41.02K

Supported OS: Windows 10 64 bit, Windows 8.1 64bit, Windows 7 64bit, Windows Vista 64bit,

Windows XP 64bit

Download

005 – Projeto Leds 3 portas e 3 Leds

Enviando sinais para Portas.

Operação do Arduino

- Vamos operar com as PORTAS do Arduino
- De preferência com as PORTAS que servem tanto como ENTRADA como para SAÍDA
- Um microcontrolador gerencia processos chaveando as PORTAS com nível baixo (0-zero/desligado) ou alto (1-um/ligado), e desta forma desativando (nível baixo) ou ativando (nível alto) uma PORTA
- As operações de ativação e desativação são feitas por software, através da linguagem *Assembler* ou linguagem *C* por meio de programação
- A programação pode ser feita pela IDE Arduino ou pelo ATMEL Studio (IDE do fabricante, hoje Microchip)

Portas de Entrada e Saida

Ground (GND) — Terra – Potencial Zero

Conexões aos Leds

Conexões aos Leds

Instruções de Portas em C


```
pinMode(1, OUTPUT); // Define porta de SAÍDA
pinMode(1, INPUT); // Define porta de ENTRADA
```

digitalWrite(1, HIGH); // Coloca a porta em estado alto/ativo digitalWrite(1, LOW); // Coloca a porta em estado baixo/passivo

Pausa de processamento em C

delay(1000); // Define pausa em milissegundos

006 – Projeto Leds Como usar Funções

Detalhes da linguagem C.

Resistores em paralelo

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{EQ}} = \frac{1}{r} + \frac{1}{r}$$

$$R_{EQ} = \frac{r}{2}$$

007 – Utilizando o potenciômetro no circuito

Resistência variável.

Potenciômetro Resistor variável

Circuito esquemático

