西安电子科技大学

	基础训练项目		_ 课程实验报告			
实验名称	模电基础实验	2: 晶体管	特性及放大器电路设计			
	学院	班	- 1 //=			
姓名	学号		成 绩			
同作者	无					
实验日期 _	2022 年 <u>5</u> 月	15日				
指导教师评	语:					
	指导教师: 年 月 日					
实验报告内容基本要求及参考格式						
一、实验目的						
二、实验所用仪器(或实验环境)						
三、实验基本原理及步骤(或方案设计及理论计算)						
四、实验数据记录(或仿真及软件设计)						
五、实验结果分析及回答问题(或测试环境及测试结果)						

目录

一、实验目的	1
二、实验器材与环境	1
2.1 TO-92 三极管	1
2.2 面包板	2
2.3 GPS-3303C 实验电源	3
2.4 GDS-2201A 双踪示波器	3
2.5 AFG-2225 双通道信号发生器	4
2.6 汇总及其他实验器材与材料	5
三、实验背景	5
四、实验原理	5
4.1 偏置电路与测量三极管参数 β	5
4.1.1 固定偏流电路	6
4.1.2 电流负反馈型偏置电路	7
4.1.3 分压式电流负反馈偏置电路	7
4.1.4 判断放大器工作状态可参考方法	8
4.2 CE/共射极组态晶体管放大器	9
4.2.1 阻容耦合共发射极放大器电路结构	9
4.2.2 直流工作状态的分析与计算	9
4.2.4 变形: 去除基极的旁路电容	12
4.2.5 本实验的基本指标	12
4.3 CE-CC 级联晶体管放大器	13
4.3.1 级间耦合方式及组合原则	13
4.3.2 多级放大器的组合原则	14
4.4 实际电路中输入阻抗和输出阻抗的测量方法	14
4.4.1 输入阻抗的测量方法	14
4.4.2 输出阻抗的测量方法	15
五、实验内容和步骤	16
5.1 测量三极管参数的实验内容和测试结果	16
5.2 CE 组态晶体管放大器的理论计算	17
5.3 搭建并测试 CE 组态晶体管放大器	18

5	.4 用 CC 组态放大器改善放大器输出阻抗特性	.21
六、	探索实验与思考题	.22
七、	课程学习心得	.23

一、实验目的

- (1) 掌握晶体管的基本参数、特性及其测量方法;
- (2) 掌握晶体管放大器的偏置电路的原理和设计、调试过程;
- (3) 掌握 C-E 组态放大器的原理和设计、调试过程;
- (4) 掌握晶体管放大器指标(增益、带宽、输入阻抗)的测量方法;
- (5) 掌握 C-C 组态放大器特性,及其在组合放大器中的应用;
- (6) 发现晶体管放大器的缺陷,理解其理想模型和实际之间的差异、原因以及应用限制。

二、实验器材与环境

2.1 TO-92 三极管

(1) 三极管管脚顺序:印字面朝读者,管脚朝下,从左至右依次为:发射极(E)、基极(B)、集电极(C)。

- (2) 电流 Ic 的测量,可以通过测量 Rc 或 Re 电阻上电压,换算得出。
- (3) 信号源的负载阻抗,要设为高阻(Hi-Z)状态。
- (4)本实验只使用单路电源。实验电源是双路电源,可以只使用其中一路, 负极作为 GND。
- (5) 电源输入至面包板处,应对地加1只退偶电容(>10uF)。
- (6) 所有电容均需注意极性,接反会炸裂。
- (7) 先测量电源电压正常,再将正负电源接入面包板。注意所有的元件、导线拔插之前都必须断电操作。断电不要使用总电源开关,而要用 OUTPUT 按 钮。
 - (8) 插接线不排除断线(极少数)的可能,使用前应测量导通电阻。

(9) 实验完毕,所有元件从面包板上拆卸、分类并归还实验室。

2.2 面包板

"面包板"(Bread Board)是实验室中用于搭接电路的重要工具之一,用面包板对小型电路进行实验测试也是电子工程师的必备技能之一。

附图1面包板的使用

面包板表面是多孔塑料板,孔间距为 2.54mm (与 IC 脚间距相等)。孔的底部有弹性金属夹片,电子元器件按照一定规则插上无需焊接即可工作;实验完毕后元器件可以拔下来反复使用。

面包板的上下两边拥有 4 组横向相连的插孔 (称之为电源孔排),一般是作为电源/地线的引入的通路;中间是上下两部分,纵向每 5 个孔一个组 (这 5 个 孔是联通的),这个就是我们的主工作区,用来插接元件和跳线。IC 芯片可以插在中间沟槽位置;其他分立元器件可以将引脚插在任意两个孔之间;跨过多个组之间的连接可以用导线接通,最终构成完整的电路。

附图 2 一个用面包板搭接完成的电路范例

2.3 GPS-3303C 实验电源

- (1) 先断开电源与电路的连接!
- (2) 双路电源连接关系选择为"SERIES/串联"模式(左 ON,右 OFF)。该模式下,VCC、GND和 VEE 分别是 CH1 正极、CH1 负极、CH2 负极。
- (3) 按"OUTPUT"按钮,开启输出(绿灯亮)。串联模式下双路输出会自动保持一致,调节 CH1 的 VOLTAGE 旋钮可同时设置两路输出电压。
- (4) 将电源输出端短路,调节 CH1 的 CURRENT 旋钮,将两路电源的短路保护电流都设为 0.1A 左右。
- (5) 按"OUTPUT"按钮关闭电源输出,正确接入电路后,再开启电源输出。
- (6) 如果 CH1 或 CH2 的红灯亮起,说明电路存在短路或过流,必须立即关闭输出并检查电路。
- (7) 使用完毕后,所有旋钮归零。

附图 3 GPS-3303C 实验电源的面板功能图

2.4 GDS-2201A 双踪示波器

- (1) 按"CH1"或"CH2"可以开启/关闭通道,并显示对应通道的菜单。
- (2) 耦合设为 DC、带宽设为 20MHz, 探头衰减设置与探头开关一致 (1x 或 10x)。
- (3) VOLTS/DIV 旋钮为垂直量程调节, TIME/DIV 为水平扫描速度。
- (4) TRIGGER LEVEL 旋钮设置合适的触发门限,保持波形稳定显示。
- (5)测量波形电压:按 Measure 按钮,底部菜单选择"Add Measurement",添加"V/I"测量,用 VARIABLE 旋钮在列表中选择"RMS/有效值"或"Pk-Pk/峰-峰值",Select 按钮确定添加。
- (6) Menu off 按钮可以消除弹出菜单,所有显示"^乜"的栏目都可以用 VARIABLE 旋钮调节数值。

附图 4 GDS2202A 示波器面板功能图

2.5 AFG-2225 双通道信号发生器

- (1) 按"CH1/CH2"按钮选择当前操作的通道号,彩色为选中。
- (2) 在通道菜单中,将负载 Load 设为"Hi-Z/高阻"
- (3) 按"Waveform"按钮,用 F1-F5 选择选择输出波形(Sine/正弦,Square/方波,Triangle/三角波等)。
- (4) 按"FREQ/Rate"按钮,用数字键盘直接输入频率数值,再按 F1-F5 确定频率单位(uHz~MHz)。
- (5) 按"AMPL"按钮,用数字键盘直接输入幅度值,再用 F1-F5 按钮确定幅度单位 (mV 或 V,有效值 RMS 或峰-峰值 VPP)
- (6) Offset (直流偏置) 设为 0。
- (7) 所有参数数值(频率/幅度等)都可以用旋钮调节,并可以用"<"和">"选择步进
- (8) 按"OUTPUT", 灯亮表示信号输出, 灯灭时关闭信号输出。电路接线或插拔过程必须关闭信号输出。
- (9) 用示波器检查确认输出波形正确后,再接入电路中。

2.6 汇总及其他实验器材与材料

实验仪器	实验仪器				
编号	仪器名称	型号	规格/指标	数量	
1	双踪示波器	固纬 GDS-2202	200MHz	1台	
2	信号源	固纬 AFG-2225	25MHz	1台	
3	万用表	UNIT-58	3位半	1个	
4	双路电源	固纬 GPS-3303	30V/3A	1台	
元器件					
编号	元件类型	型号	规格/指标	数量	
1	三极管	S8050	TO-92	2	
2	电阻	开放自选	1/4W, 1%	若干	
3	电解电容	10uF/25V		4	
工具器材	工具器材				
编号	工具名称	型号	规格/指标	数量	
1	面包板			1个	
2	插接线			20 根	
3	平口镊子			1 把	
4	鳄鱼夹电源线	电源自带	0.5m, 香蕉头	2根	
5	鳄鱼夹信号线	信号源自带	0.5m,BNC头	1 根	

三、实验背景

为提高模拟电子线路技术实际操作能力,该实验旨在提高学生对三极管及 三极管放大器相关的原理和实际问题的处理能力。

四、实验原理

4.1 偏置电路与测量三极管参数β

设置合适的直流工作点.以保证信号变化范围内晶体管始终工作在放大区.这是构成放大电路首先要解决的问题。如图 1 (a) 所示,若将信号直接加到晶体管发射结而不加任何偏置电压,则由于晶体管的非线性,电流波形产生严重的非线性失真。所以只有给晶体管加一个偏置电压,将直流工作点移到线性区,才可正常放大,如图 1(b) 所示。

图 1 设置合适的直流工作点(Q点),保证正常放大

4.1.1 固定偏流电路

固定偏流电路是最简单的偏置电路,如图 2 所示。由图可知,电源 U 包通过基极偏置电阻 R a 使发射结正偏,基极偏流为

$$I_{BQ} = \frac{U_{CC} - U_{BEQ}}{R_B} \approx \frac{U_{CC}}{R_B}$$
(4.1.1a)

集电极电流为

$$I_{CQ} = \frac{U_{cc} - U_{CE}}{R_R} \tag{4.1.1b}$$

也可以

$$I_{CQ} = \beta I_{BQ} \tag{4.1.1c}$$

同时,依据此可以计算β。 集电极电压为

$$U_{\text{CEQ}} = U_{\text{CC}} - I_{\text{CQ}} R_{\text{C}} \tag{4.1.1d}$$

只要合理选择 RB、Re的阻值,晶体管即可工作在放大区。

图 2 固定偏流电路

4.1.2 电流负反馈型偏置电路

电流负反馈型偏置电路稳定工作点的原理是引入自动调节机制,即负反馈机制。如图 3 所示,在射极增加了电阻 RE,由图可知,不论何种原因(温度变化、更换管子等)导致 Ico 发生变化,例如温度 T 升高引起一系列变化,则

图 3 电流负反馈型偏置电路

可见负反馈使 I cq 向相反方向变化, I cq 减小阻止了 I cq 的增大,结果使工作点趋于稳定。

根据图 3, 工作点电流电压计算如下:

$$U_{CC} = I_{BQ}R_B + U_{BEQ} + I_{EQ}R_E = I_{BQ}R_B + U_{BEQ} + (1+\beta)I_{BQ}R_E$$
 (4.1.2a)

故

$$I_{BQ} = \frac{U_{CC} - U_{BEQ}}{R_B + (1 + \beta)R_E}$$
 (4.1.2b)

$$I_{CQ} \approx I_{EQ} \approx \beta I_{BQ}$$
 (4.1.2c)

$$U_{\text{CEQ}} = U_{\text{CC}} - I_{\text{CQ}} R_{\text{C}} - I_{\text{EQ}} R_{\text{E}} \approx U_{\text{CC}} - I_{\text{CQ}} (R_{\text{C}} + R_{\text{E}})$$
(4.1.2d)

4.1.3 分压式电流负反馈偏置电路

分压式电流负反馈偏置电路如图 4 所示,这是电流负反馈偏置电路的改进电路、增加分压电阻 R_{B2} ,使基极电位 U_B 基本固定,从而使 I_{EQ} 引起的 U_{EQ} 变化就是 U_{BEQ} 的变化,进而增强了 U_{EQ} 对 I_{CQ} 的调节作用,有利于工作点 Q 的进一步稳定。

图 4 分压式电流负反馈偏置电路 (a) 电路; (b) 用戴维南定理等效后的电路 将图 4(a) 的基极回路做戴维南定理等效,得到图 4(b),其中:

$$U_{\rm BB} = \frac{R_{\rm B2}}{R_{\rm B1} + R_{\rm B2}} U_{\rm CC} \tag{4.1.3a}$$

$$R_{\rm B} = R_{\rm Bi} // R_{\rm B2}$$
 (4.1.3b)

$$U_{\rm BB} = I_{\rm BQ}R_{\rm B} + U_{\rm BEQ} + I_{\rm EQ}R_{\rm E} = \frac{R_{\rm B}}{1 + \beta}I_{\rm EQ} + U_{\rm BEQ} + I_{\rm EQ}R_{\rm E}$$
(4.1.3c)

故

$$I_{BQ} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E}$$
 (4.1.3*d*)

$$I_{\text{EQ}} \approx I_{\text{CQ}} \approx \beta I_{\text{BQ}} \approx \frac{U_{\text{BB}} - U_{\text{BEQ}}}{\frac{R_{\text{B}}}{1 + \beta} + R_{\text{E}}} \approx \frac{U_{\text{BB}} - U_{\text{BEQ}}}{R_{\text{E}}}$$

$$(4.1.3e)$$

可见,当 $R_B(=R_{B1}/\!\!/ R_{B2})$ 较小, β 较大(即 I_{BQ} 较小时)时, I_{CQ} 可用式(9)的近似公式计算。

4.1.4 判断放大器工作状态可参考方法

- (1) 若无偏压,或加负偏压,发射结零偏或反偏,则放大器工作在截止区,这时, IBQ、ICQ=0, UCEQ= Ucc,,管压降达到最大。
- (2) 若有偏压,且发射结正偏,则可能工作在放大区,也可能工作在饱和区。为此:
- ①先按放大区计算,若计算结果. UCEQ >UBEQ, UCEQ=UCEQ-UBEQ>0, 说明集电结反偏. 可确定管子工作在放大区。
- ②若结果 $U_{CEQ} \leq U_{BEQ}$,说明集电结正偏或零偏. 可确定管子实际工作在饱和区。此时,集电极电流达到最大值,称为饱和电流 I_{CS} ,在饱和状态, I_{BQ} 再增大, I_{CQ} 也不会随之增大。饱和电流 I_{C} 为

$$I_{\rm CS} = I_{\rm C(max)} \approx \frac{U_{\rm CC} - U_{\rm CES}}{R_{\rm C} + R_{\rm E}} \approx \frac{U_{\rm CC}}{R_{\rm C} + R_{\rm E}}$$
 (4.1.4a)

4.2 CE/共射极组态晶体管放大器

共发射极放大器是应用最为普遍的放大器。

4.2.1 阻容耦合共发射极放大器电路结构

图 5 (a) (b) 电路分别给出一个简化的共射电路和一个实用的共射电路,对比二者有以下区别:

- (1) 实用电路省略了一个独立直流电源 UBB,代之以用电阻 RBI和 RB2对 Ucc 分压来提供基极偏压,即采用**分压式电流负反馈偏置电路。本实验中采用的是固定偏流电路。**
- (2) 待放大的输入信号通过电容耦合到基极,输出信号也通过电容耦合到负载 R_L,耦合电容一般为容量较大的电解电容,对直流呈现无穷大的阻抗(相当于开路),而对频率较高的交流信号呈现很小的阻抗(相当于短路),故其作用是隔去直流通交流。
- (3) 晶体管射极通过 R_E和 C_E并联网络接地,既稳定了直流工作点,而对交流信号又呈短路状态。图 5 (b) 所示电路称为 "阻容耦合共射放大器"。

图 5 共发射级放大器电路 (a) 简化共射电路; (b) 实用的阻容耦合共射极放大器电路

4.2.2 直流工作状态的分析与计算

如前所述,为了保证核心器件晶体管始终工作在放大区,分析和设置直流工作点十分重要。对于直流工作状态,所有电容都相当于开路($Zc=1/(jwC)\to oo$),因此可画出图 5(b)所示电路的直流通路如图 6(a) 所示,可见这是一个分压式负反馈偏置电路。

图 6 图 5 (b) 电路的直流通路 其中(a) 直流电路;(b) 用戴维南定理等效后的电路

该电路中,若 β =100, U_{BFQ} =0.7 V, U_{CC} =+12V, R_{B1} =39 k Ω , R_{B2} =25k Ω , R_{C} = R_{E} =2 k Ω ,经过计算,即可知: I_{BQ} =19 μ A, I_{CQ} 略等于 I_{EQ} =1.9mA, U_{CQ} =8.2

V。UCEQ=4.4 V,管子工作在放大区。

实际上可以用式(8) 近似法直接估算 Ieo(Uco)。

$$I_{\rm EQ} \approx I_{\rm CQ} \approx \frac{U_{\rm BB} - U_{\rm BEQ}}{R_{\rm F}} = \frac{4.7 - 0.7}{2} = 2 \text{ mA}$$

$$U_{\text{CEQ}} = U_{\text{CC}} - I_{\text{CQ}}(R_{\text{C}} + R_{\text{E}}) = 12 - 2 \times (2 + 2) = 4 \text{ V}$$

图 7 给出估算法得到的放大器直流工作点参数,今后大多数情况下可以用近似估算法。在图 7 中,隔直电容 C_1 的直流压降为 $U_{C1}=U_{BQ}=4.7$ v.隔直电容 C_2 的直流压降为 $U_{C2}=U_{CQ}=8$ V。

图 7 一个实际放大器的直流工作状态

4.2.3 共射放大器的交流分析及主要指标估算

在直流工作点设置正确的基础上,可以专门来分析共射放大器的交流指标。图 8(a) 给出阻容耦合共射放大器电路,其二端口模型如图 8(b) 所示。现在利用放大器交流小信号等效电路模型来求解图(h) 中放大器电压增益 Ao、输入电阻 Ri、输出电阻 Ro等。

图 8 共射级放大器电路及模型 (a) 电路; (b) 模型

对于**交流分量**而言,所有**电解电容**阻抗极小,可视为短路。直流电源是一个不变量,也可视为交流短路,即交流地电位,因此电路可简化为图 9 所示的交流通路。首先将晶体管用**最小信号模型**来代替,然后分别画出基极、集电极、发射极对地的所有与交流有关的支路,得到放大器的交流小信号等效电路如图 10 所示。

图 9 放大器的交流通路

图 10 共射放大器的交流小信号等效电路

根据交流小信号等效电路计算共射放大器的各项指标。

1、电压放大倍数(电压增益)Au。

由图 10 可知,输出电压 Uo为

$$U_{o} = -I_{e}(r_{ce} /\!\!/ R_{c} /\!\!/ R_{L}) = -\beta I_{b}(r_{ce} /\!\!/ R_{c} /\!\!/ R_{L})$$

$$I_{b} = \frac{U_{i}}{r_{be}}$$

所以

$$A_{u} = \frac{U_{o}}{U_{i}} = \frac{-\beta I_{b}(r_{ce} /\!\!/ R_{c} /\!\!/ R_{L})}{I_{b}r_{be}} = -\frac{\beta(r_{ce} /\!\!/ R_{c} /\!\!/ R_{L})}{r_{be}}$$

一般情况下,晶体管的输出电阻 $r_{ce} \ge R_C // R_L$,故

$$A_{\rm w} = \frac{U_{\rm o}}{U_{\rm i}} = -\frac{\beta (R_{\rm e} /\!/ R_{\rm L})}{r_{\rm bc}} = -\frac{\beta R_{\rm L}'}{r_{\rm bc}}$$

式中: rce 为基极与发射极之间的交流电阻,工作点电流 Icq 越大, rbe 越小,

$$r_{be} = r'_{bb} + (1+\beta)r_e = r'_{bb} + (1+\beta)\frac{26 (\text{mV})}{I_{CQ}(\text{mA})}(\Omega)$$

RL'为集电极总的交流负载电阻,

$$R_{\rm L}' = R_{\rm C} /\!\!/ R_{\rm L}$$

2、输出电阻 Ro

根据输出电阻 Ro 的定义,令 Us= 0,RL 开路,在输出端加电压 U。,求出输出电流 Io。因为 Us=0,所以 Ib=0,受控源 β Ib=0,故输出电阻 Ro 为

$$R_o = \frac{U_o}{I_o} \Big|_{U_s=0, R_L=\infty} = r_{ce} /\!\!/ R_c \approx R_c$$

3、输入电阻 Ri

如图 10 可知,放大器的输入电阻 Ri 为

$$R_i = \frac{U_i}{I_i} = R_{B1} // R_{B2} // r_{be}$$

如果基极偏置电阻 $(R_{B1}//R_{B2}) \gg r_{be}$,则

$$R_{\rm i} \approx r_{\rm be}$$

4、源电压放大倍数(源增益)

考虑信号源内阻 Rs 的影响,源电压放大倍数 Aus < Au,

$$A_{us} = \frac{U_o}{U_o} = \frac{U_i}{U_o} \times \frac{U_o}{U_i} = \frac{R_i}{R_o + R_i} A_u$$

4.2.4 变形: 去除基极的旁路电容

由相似的推导过程,可以得到如下指标:

1、电压放大倍数(电压增益)Au

$$A_{u} = \frac{-\beta R_{L}}{r_{be} + (1+\beta) R_{e}} \approx -\frac{R_{L}}{R_{e}}$$

2、输入内阻 Ri

$$R_{\rm i} = R_{\rm B1} / / R_{\rm B2} / / R_{\rm i}$$

3、输出电阻 Ro

$$R_O = R_C$$

4.2.5 本实验的基本指标

本次实验和上面电路的区别在于, R_{B2} 趋于无穷大。其他分析一致,因此各指标如下:

1、电压放大倍数(电压增益)Au

$$A_{u} = \frac{-\beta R_{L}}{r_{be} + (1 + \beta) R_{e}} \approx -\frac{R_{L}'}{R_{e}}$$
(4.2.5a)

2、输入内阻 Ri

$$R_{i} = R_{B} / / R_{i} = R_{B} / / \left(\frac{U_{T}}{I_{B}} + (1 + \beta) R_{E} \right)$$
(4.2.5b)

其中, $r_{be} = \frac{U_T}{I_R}$ 来自于三极管模型。

3、输出电阻 Ro

$$R_O = R_C \tag{4.2.5c}$$

由此可见,只变化了 R_i 。

4.3 CE-CC 级联晶体管放大器

在许多应用中,根据信号源和负载的实际情况,要求放大器有较大的放大 倍数以及合适的输入电阻和输出电阻,单级放大器满足不了要求,需要将不同 组态的基本放大器级联成多级放大器。

4.3.1 级间耦合方式及组合原则

多级放大器各级之间的连接方式称为耦合方式。级间耦合时,一方面要确保各级放大器有合适的直流工作点,另一方面应使前级输出信号尽可能不衰减地传输到后级输入。常见耦合方式有四种、即阻容耦合、直接耦合、磁耦合(变压器耦合)和光耦合,如图 11 所示。

图 11 级间耦合方式 (a) 阻容耦合; (b) 直接耦合; (c) 磁耦合 (变压器耦合); (d) 光耦合

阻容耦合方式将各级直流工作状态隔离开,前后级互不影响,各级直流工

作点可独立设计,但需要大电容隔直流通交流,不仅体积大,而且在集成电路 工艺中根本不可能制造这样大容量的电容。

直接耦合方式省去隔直流电容,前后级直流状态互有影响,各级直流工作点不能独立设计。这会增加设计的复杂度。但直接耦合方式特别适合集成电路工艺,在集成电路中毫不例外地采用直接耦合方式。

变压器耦合方式也有隔直流通交流的作用,各级直流工作点可独立设计。前后级可以共地、也可以不共地,特别是变压器具有阻抗变换作用,设原边和副边的匝数比为 n=N1/N2,则原边看进去的交流等效阻抗为 $R_1'=n^2R_{i2}$ 。变压器耦合方式在功率放大器和高频电路中有较多应用。

光耦合适用于前后级需要电气隔离且不共地的场合,首先将电信号变成光,通过光耦器件又将光变成电信号。因为前后级信号靠光传输,可以避免因公共地线引入的干扰,而且在的压场合用光耦合也比较安全,所以在工业现场或一些仪器中有广泛应用。

4.3.2 多级放大器的组合原则

根据电路对放大倍数、输入电阻和输出电阻等指标的具体要求,利用三种组态基本放大器的特点,合理地组成多级放大器,其基本原则如下:

- (1)通常选用**共射放大器(CE)**作为主放大器(因为共射放大器屯压增益大,输入电阻和输出电阻大小一般),并根据总电压放大倍数决定采用几级共射放大器。
- (2) 如果要求输入电阻大.则应采用共集放大器(CC) 或共源(CS)、共漏(CD) 放大器作为多级放大器的输入级(因为这些电路的输入电阻大),即采用CC(CS 或 CD)- CE 组合。
- (3) 若负载很重(也就是负载电阻很小.负载电容很大).则应采用共集放大器作为多级放大器的输出级(因为共集电路的输出电阻小),即采用 CE CC 组合。本实验中,即使用了该情况的多级放大器。
- (4) 有时,当共射一共射级联时,由于前级的输出电阻不小,后级的输入电阻义不大,级联时会影响总增益的提高,所以用**共集电路作为中间级起隔离和缓冲作用**,即采用 CE-CC-CE 组合等。具体应该如何组合要视实际需要而定。在高频放大器中,也采用共射一共基组合。

多级放大器组合示意图如图 12 所示。

图 12 组合的多级放大器示意图

4.4 实际电路中输入阻抗和输出阻抗的测量方法

4.4.1 输入阻抗的测量方法

搭建电路结构如下图所示,左端为输入端,输入端电压为 U_i ,右边为输出端,输出端电压为 U_o ,线性放大电路放大倍数为A。

图 13 输入阻抗测量电路(图中数值可忽视)

开关 S1 闭合时,输入和输出电压关系为:

$$U_o = U_i \times A'$$

开关 S1 断开时,此时 Rs 接入,输入和输出电压关系为:

$$U_{o}^{'}=U_{i}^{'}\times A'$$

同时,此时流过输入阻抗的电流为

$$I_i = \frac{U_i - U_i'}{R_s}$$

故输入阻抗为:

$$R_i = \frac{U_i'}{I_i}$$

4.4.2 输出阻抗的测量方法

搭建电路结构如下图所示,左端为输入端,输入端电压为 U_i ,右边为输出端,输出端电压为 U_o ,线性放大电路放大倍数为A。

图 14 输出阻抗测量电路(图中数值可忽视)

开关 S1 断开时,测得此时的示波器电压 U_o ;

开关 S1 闭合时,此时 R_L 接入,测出此时的示波器电压 U_o ,故输出阻抗为

$$R_O = \frac{U_O - U_O'}{U_O'} R_L$$

五、实验内容和步骤

5.1 测量三极管参数的实验内容和测试结果

(1) 按照下图,在面包板上搭建一个三极管电路。Vcc 取约 12V 左右,测量各节点(对地)电压,填入表格中。

图 15 固定偏流电路表 1 实验 1 结果

序号	R _B	Rc	Vcc	Uве	Uce	工作 状态
1	470k	1k	12V	0.656V	6.21V	放大区
2	10k	1k	12V	0.72V	0.015V	饱和区
3	R _B 断开 B 接地	1k	12V	0V	11.98V	截止区

(2) 根据上述记录,分别计算 Ib、Ic 值,并判断三极管的工作状态依据公式(4.1.1a)和(4.1.1c),可计算 Ib 和 Ic 为

序号	Ib/mA	Ic / mA
1	0.024	5.8
2	1.128	1.199
3	0	0

由上文各区域判断方法,可以得出序号 1、2 和 3 分别为放大区、饱和区和截止区。

(3) 分析计算: 三极管的放大倍数 β =? 由公式 (4.1.1c),可以得到

$$\beta = \frac{I_c}{I_b} \approx 241$$

5.2 CE 组态晶体管放大器的理论计算

参考下图,设计一个 CE 组态放大器,图中指定 R_E =100 Ω , C_E 暂不接入,根据实验 1 得出的参数,完成下列计算:

图 16 共射放大器电路及模型

(1) 要求放大器增益=20dB (10倍), 计算 Rc取值。 由公式 (4.2.5a) 可得:

$$A_u = -\frac{R_C}{R_c} = 10$$

计算得, R_C = 1k Ω 。

(2) 使三极管工作于最合适的静态工作点(U_{CE}≈ V_{CC}/2), 计算 R_B 取值 根据公式(4.1.2b)、公式(4.1.2c)和公式(4.1.4d),且 U_{CEQ}=1/2V_{CC},得到:

$$R_{B} = \frac{U_{CC} - U_{BQ}}{I_{BQ}} - (1 + \beta)R_{E} = 479 \text{k}\Omega$$

(3) 计算放大器的输入阻抗 Ri 和输出阻抗 Ro 理论值。

$$R_{\rm i} = R_B / / R_i = R_B / / (\frac{U_T}{I_B} + (1+\beta)R_E) = 23.925 \text{k}\Omega$$

$$R_O = R_C = 1 \text{k}\Omega$$

5.3 搭建并测试 CE 组态晶体管放大器

按照自己计算的参数,在面包板上搭建放大器电路。

图 17 实际搭建电路

图 18 实际波形图

在图上测量标注各节点静态电压,然后依次做以下实验:

(1) 测量直流工作点(测 U_{CE} 和 I_{C}),和设计值相比是否有误差?若偏差过大(如误差 >20%),应调整 R_{B} 的值使三极管工作点正常。 经测量,

$$U_{CE} = 6.09V$$

$$U_{R_E} = 0.54V$$

故

$$I_{C} = \frac{U_{CC} - U_{CE} - U_{R_{E}}}{R_{E}} = 5.37 mA$$

(2)输入 1kHz/50mV_{rms} 正弦波信号,用示波器观察并测量输出波形幅度,计算放大倍数。和设计值相比,是否有偏差?

(帖输出波形照片)

实际如图 18,输入电压 51.8mV,输出电压 493mV,实际放大倍数:

$$A_u' = \frac{493mV}{51.8mV} = 9.52$$

预计放大增益为10倍,误差为4.8%在可接受的误差范围之内。

(3) 保持输入 $1kHz/50mV_{rms}$ 正弦波信号不变,在放大器输入端串入 10k 电阻,观察并记录输出幅度的下降。得出放大器的**输入阻抗**,并与设计值比较。 该方法和 4.4.1 一致,按要求搭建电路。测得数据为: $U_o = 490mV$ 、

 $U_o^{'}=355 \mathrm{m}V$ 。且已知 $A_u^{'}\approx 9.52$ 、 $R_s=10k\Omega$ 。故输入阻抗为

$$R_i = \frac{U_i ' R_S}{U_i - U_i'} = 26.27k\Omega$$

(4) 保持输入 $1kHz/50mV_{rms}$ 正弦波信号不变,在放大器输出端接 1k 负载电阻,观察并记录输出幅度的下降。得出放大器的**输出阻抗**,并与设计值比较。 该方法和 4.4.2 一致,按要求搭建电路。测得数据为: $U_0 = 490mV$ 、

 $U_o = 260 \text{mV}$,且 $R_L = 1k\Omega$ 。故输出阻抗为

$$R_{o} = \frac{U_{o} - U_{o}'}{U_{o}'} R_{L} = 0.88k\Omega$$

(5) 保持输入信号幅度不变,增加信号频率直到增益下降 3dB,记录截止频率 fn,再降低信号频率直到增益下降 3dB,记录截止频率 fc。并解释 fn 和 fc 分别与什么因素有关?

按照题目要求, 记录得到各自截止频率为

$$f_H = 1.996MHz$$

$$f_{x} = 7.9 Hz$$

 f_H 是高频截止频率,可能由三极管内部结电容引起; f_L 是低频截止频率,可能由耦合电容引起。

(6)接入 CE,观察放大器的倍数如何变化?接入合适幅度的输入信号,重新

测量放大倍数、输入阻抗。(帖输出波形照片)

接入 CE 之后, 放大后的信号放大倍数增加, 但是由于三极管本身参数限制, 其结果会出现不对称的现象, 如图 19。

图 19 接入旁路电容放大波形失真现象

因此,我调整合适幅度的信号,重新用示波器检测波形如图 20 所示。

图 20 经调整输入信号的放大波形

同样,采用本题中(2)和(3)的方法,

(6.1)

实际如图 18,输入电压 10mV,输出电压 1620mV,实际放大倍数:

$$A_u' = \frac{1620mV}{10mV} = 162$$

(6.2)

该方法和 4.4.2 一致,按要求搭建电路。测得数据为: $U_o=1620 \mathrm{m}V$ 、 $U_o=829 \mathrm{m}V$,且 $R_L=1k\Omega$ 。故输出阻抗为

$$R_{o} = \frac{U_{o} - U_{o}'}{U_{o}'} R_{L} = 0.96k\Omega$$

5.4 用 CC 组态放大器改善放大器输出阻抗特性

参考下图,设计一个组合放大器,要求在后级增加 C-C 组态放大器,构成 CE-CC 放大器,在图上测量标注各节点静态电压,并完成下列理论分析和实验。

图 21 CE-CC 放大器

(1)测量 VT2的静态工作点,并解释:引入 VT2对 VT1工作点是否有影响?我通过测量 Uceqt1=5.92V、Uceqt2=6.07V。通过观察数据可以发现,Uceqt2 比 Uceqt1 略微升高,除了可能出现的测量误差,我们可以认为两者几乎不会有影响。其误差为

$$\frac{U_{CEQT2} - U_{CEQT1}}{U_{CEQT1}} = 2.53\%$$

(2)输入 1kHz/50mV_{rms} 正弦波信号,用示波器观察并测量输出波形幅度,与实验 3 对比,级联后的组合放大器增益是否有变化?

在本实验中,测得输入输出电压分别为

$$U_i = 50.9 \text{mV}$$
, $U_O = 490 \text{mV}$

$$A_u$$
" = $\frac{490mV}{50.9mV}$ = 9.63

经过数值比较,可以发现在增加级联 TV_2 前后,放大器输出的信号增益没有发生变化,所以级联 CC 组态放大器不会改变原 CE 组态放大器的放大增益,保持 20dB 的放大增益。

(3) 在输出端接入 1k 负载电阻, 重新测量输出阻抗, 并解释这一现象。

该方法和 4.4.2 一致, 按要求搭建电路。测得数据为: $U_o = 490 \text{mV}$ 、

 $U_o = 482 \text{mV}$,且 $R_L = 1k\Omega$ 。故输出阻抗为

$$R_o = \frac{U_o - U_o'}{U_o'} R_L = 0.017 k\Omega$$

在级联 CC 组态放大器后,放大器整体的输出阻抗大大降低,主要因为 CC 组态三极管放大电路的放大增益 $A_u \approx 1$ 而输出阻抗 $R_o \approx \frac{r_{be}}{1+\beta}$ (小阻值),因而 CC 组态放大电路可以用来改善 CE 组态放大电路的输出阻抗。

六、探索实验与思考题

(1)给 C-E 放大器电路中的三极管加热(如用手捏住加温,或者用烙铁轻微加热),观察直流工作点的变化,并解释这一现象。

给 C-E 放大器电路中的三极管加热,观察到直流工作点 U_{CEQ} 随着温度的升高而不断降低。根据三极管的性质,随着温度的升高,三极管的放大倍数 β 也会随着升高,根据:

$$I_{BQ} = \frac{V_{CC} - U_{BEQ}}{R_R + (1 + \beta)R_F}$$

$$U_{CEQ} \approx V_{CC} - I_{CQ} (R_C + R_E)$$

根据直流工作点 U_{CEO} 的计算:

$$U_{CEQ} \approx V_{CC} - \beta \frac{V_{CC} - U_{BEQ}}{R_R + 300R_E} (R_C + R_E)$$

随着放大倍数 β 的升高,直流工作点 U_{CEO} 降低。

- (2)和前面学过的运算放大器对比,三极管放大器有哪些缺点和限制?又有哪些优点?
 - ① 三极管放大器的缺点和限制
- 三极管放大器的放大信号不稳定,如果外界温度发生变化,三极管放大器的放大倍率也会跟着变化。

当信号输入线发生晃动,输出的信号也会发生抖动,输出信号不稳定。而 且三极管放大电路的放大倍率由三极管放大电路内部的电阻决定,如果要改变 放大倍率,需要改变多个电阻,并且可能需要重新计算直流工作点。

而运算放大器就可以解决改变放大倍率困难的缺点,而且由于运算放大器 的反馈机制,能够输出更加稳定的放大信号,减少外界环境的影响。

- ②三极管放大器的优点
- 三极管放大电路结构简单,放大过程中产生的噪声少,是一种优秀低噪声

放大器,三极管放大电路经常用于设备前端信号接受,减少接收的噪声干扰。

(3) 观察波形正负幅度是否相等(特别是实验 3.6 中), 如何解释这一现象?

图 22 非线性放大失真现象

通过比较波形正负幅值的长度发现,信号中正幅值小于负幅值。该现象为信号的非线性放大失真。

由图 1得,输入信号 U_{BE} 转换为 i_B 是一个非线性过程,因此工作点 Q 两侧的放大倍率不同。若输入信号为小信号,非线性失真小,若为大信号,会出现严重的非线性失真。并且输入信号的正幅值放大倍率小于负幅值的放大倍率,使输出信号的正负幅值,正小负大。

七、课程学习心得

实验中会遇到难以遇到的问题。比如示波器采集信号要调成交流耦合。如果采用直流耦合,示波器会出现直流分量,会比信号源 5 到 6mV 的差距。我还尝试用电容去耦,后来直接通过示波器改变耦合方式就成功解决了。除此之外,还对三极管及三极管放大器等理论和应用有了更深入的理解。

总体来说,实际工程操作会比理论分析要复杂的多,会遇到许多难以想到的情况。遇到它,并解决它,最后会有许多收获。