Ranking Methods in Machine Learning

A Tutorial Introduction

Shivani Agarwal

Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology

Example 1: Recommendation Systems

Example 2: Information Retrieval

Example 2: Information Retrieval

Example 2: Information Retrieval

Example 3: Drug Discovery

Problem: Millions of structures in a chemical library. How do we identify the most promising ones?

Example 4: Bioinformatics

Searching for genetic determinants in the new millennium

N.J. Risch

Human genetics is now at a critical juncture. The molecular methods used successfully to identify the genes underlying rare mendelian syndromes are failing to find the numerous genes causing more common, familial, non-mendelian diseases . . .

Example 4: Bioinformatics

Searching for genetic determinants in the new millennium

N.J. Risch

With the human genome sequence nearing completion, new opportunities are being presented for unravelling the complex genetic basis of nonmendelian disorders based on large-scale genomewide studies . . .

Types of Ranking Problems

Instance Ranking

Label Ranking

Subset Ranking

Rank Aggregation

?

Instance Ranking

Label Ranking

```
sports > politics
health > money
...

science > sports
money > politics
...
```

• • •

Subset Ranking

• • •

Rank Aggregation

• • •

Types of Ranking Problems

Instance Ranking

Label Ranking

Subset Ranking

Rank Aggregation

?

This tutorial

Tutorial Road Map

Part I: Theory & Algorithms

Bipartite Ranking

k-partite Ranking

Ranking with Real-Valued Labels

General Instance Ranking

RankSVM

RankBoost

RankNet

Part II: Applications

Applications to Bioinformatics

Applications to Drug Discovery

Subset Ranking and Applications to Information Retrieval

Further Reading & Resources

Part I Theory & Algorithms

[for Instance Ranking]

Bipartite Ranking

Bipartite Ranking

- Instance space X
- ▶ Input: Training sample $S = (S_+, S_-)$:

$$S_+ = (x_1^+, \dots, x_m^+) \in X^m$$
 (positive examples)
 $S_- = (x_1^-, \dots, x_n^-) \in X^n$ (negative examples)

▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$

Bipartite Ranking

- Instance space X
- ▶ Input: Training sample $S = (S_+, S_-)$:

$$S_{+} = (x_{1}^{+}, \dots, x_{m}^{+}) \in X^{m}$$
 (positive examples)
 $S_{-} = (x_{1}^{-}, \dots, x_{n}^{-}) \in X^{n}$ (negative examples)

▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$

- ▶ Expected error: $\operatorname{er}(f) = P_{(x,x') \sim \mathcal{D}_+ \times \mathcal{D}_-} \left[f(x) < f(x') \right]$
- ▶ Empirical error: $\widehat{\operatorname{er}}_S(f) = \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \mathbf{1}(f(x_i^+) < f(x_j^-))$

Bipartite Ranking: Basic Algorithmic Framework

Minimize a convex upper bound on the empirical ranking error, possibly with some regularization, over some class of ranking functions:

$$\min_{f \in \mathcal{F}} \left[\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \ell(f, x_i^+, x_j^-) + \lambda N(f) \right]$$

where

 $\ell(f, x_i^+, x_j^-)$: convex upper bound on $\mathbf{1}(f(x_i^+) < f(x_j^-))$

N(f) : regularizer

 $\lambda > 0$: regularization parameter

 \mathcal{F} : class of ranking functions

Bipartite RankSVM Algorithm

$$\min_{f \in \mathcal{F}_K} \left[\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \ell_{\text{hinge}}(f, x_i^+, x_j^-) + \frac{\lambda}{2} ||f||_K^2 \right]$$

$$\ell_{\mathrm{hinge}}(f, x_i^+, x_j^-) = \left(1 - \left(f(x_i^+) - f(x_j^-)\right)\right)_+ \left[u_+ = \max(u, 0)\right]$$

$$\mathcal{F}_K = \text{reproducing kernel Hilbert space (RKHS)}$$

$$\text{with kernel function } K$$

$$N(f) = \frac{\|f\|_K^2}{2}$$

[Herbrich et al, 2000; Joachims, 2002; Rakotomamonjy, 2004]

Bipartite RankSVM Algorithm

Introducing slack variables and taking the Lagrangian dual results in the following convex quadratic program (QP) over mn variables $\{\alpha_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$:

$$\min_{\alpha} \left[\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{m} \sum_{l=1}^{n} \alpha_{ij} \alpha_{kl} \phi(x_i^+, x_j^-, x_k^+, x_l^-) - \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij} \right]$$

subject to
$$0 \le \alpha_{ij} \le C \quad \forall \ i, j$$

where

$$\phi(x_i^+, x_j^-, x_k^+, x_l^-) = \left(K(x_i^+, x_k^+) - K(x_i^+, x_l^-) - K(x_j^-, x_k^+) + K(x_j^-, x_l^-) \right)$$

$$C = \frac{1}{\lambda_{mn}}$$

Can be solved using a standard QP solver, or more efficient methods (e.g. Chapelle & Keerthi, 2010).

Bipartite RankBoost Algorithm

$$\min_{f \in \mathcal{L}(\mathcal{F}_{base})} \left[\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \ell_{exp}(f, x_i^+, x_j^-) \right]$$

$$\ell_{\text{exp}}(f, x_i^+, x_j^-) = \exp\left(-\left(f(x_i^+) - f(x_j^-)\right)\right)$$

$$\mathcal{L}(\mathcal{F}_{\text{base}}) = \text{linear combinations of functions in some}$$
base class $\mathcal{F}_{\text{base}}$

[Freund et al, 2003]

Bipartite RankBoost Algorithm

Input: $(S_+, S_-) \in X^m \times X^n$.

Initialize:
$$D_1(x_i^+, x_j^-) = \frac{1}{mn}$$
 for all $i \in \{1, ..., m\}, j \in \{1, ..., n\}$.

For t = 1, ..., T:

- Train weak learner using distribution D_t ; get weak ranker $f_t \in \mathcal{F}_{\text{base}}$.
- Choose $\alpha_t \in \mathbb{R}$.

• Update:
$$D_{t+1}(x_i^+, x_j^-) = \frac{1}{Z_t} D_t(x_i^+, x_j^-) \exp\left(-\alpha_t \left(f_t(x_i^+) - f_t(x_j^-)\right)\right)$$

where
$$Z_t = \sum_{i=1}^{m} \sum_{j=1}^{n} D_t(x_i^+, x_j^-) \exp\left(-\alpha_t \left(f_t(x_i^+) - f_t(x_j^-)\right)\right)$$
.

Output final ranking:
$$f(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$
.

Bipartite RankNet Algorithm

$$\min_{f \in \mathcal{F}_{\text{neural}}} \left[\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \ell_{\text{logistic}}(f, x_i^+, x_j^-) \right]$$

$$\ell_{\text{logistic}}(f, x_i^+, x_j^-) = \log \left(1 + \exp\left(-\left(f(x_i^+) - f(x_j^-)\right)\right)\right)$$

$$\mathcal{F}_{\text{neural}} = \text{functions represented by some class of neural networks}$$

[Burges et al, 2005]

k-partite Ranking

Rating k $doc1^k$ $doc2^k$ $doc3^k$ doc1² doc2² doc3² Rating 2 doc4² Rating 1 doc1¹ $doc2^1$ $doc3^1$ doc4¹

k-partite Ranking

- Instance space X
- ▶ Input: Training sample $S = (S_1, S_2, \dots, S_k)$:

$$S_k=(x_1^k,\ldots,x_{n_k}^k)\in X^{n_k}$$
 (examples of rating k):
$$S_2=(x_1^2,\ldots,x_{n_2}^2)\in X^{n_2}$$
 (examples of rating 2)
$$S_1=(x_1^1,\ldots,x_{n_1}^1)\in X^{n_1}$$
 (examples of rating 1)

- ▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$
- Empirical error:

$$\widehat{\mathbf{er}}_{S}(f) = \left(\frac{1}{\sum_{1 \le a < b \le k} n_{a} n_{b}}\right) \sum_{1 \le a < b \le k} \sum_{i=1}^{n_{b}} \sum_{j=1}^{n_{a}} (b - a) \, \mathbf{1}(f(x_{i}^{b}) < f(x_{j}^{a}))$$

k-partite Ranking: Basic Algorithmic Framework

Minimize a convex upper bound on the empirical ranking error, possibly with some regularization, over some class of ranking functions:

$$\min_{f \in \mathcal{F}} \left[\left(\frac{1}{\sum_{1 \le a < b \le k} n_a n_b} \right) \sum_{1 \le a < b \le k} \sum_{i=1}^{n_b} \sum_{j=1}^{n_a} \ell(f, x_i^b, x_j^a, (b-a)) + \lambda N(f) \right]$$

where

 $\ell(f, x_i^b, x_j^a, (b-a))$: convex upper bound on $(b-a) \, \mathbf{1}(f(x_i^b) < f(x_j^a))$

N(f) : regularizer

 $\lambda > 0$: regularization parameter

 \mathcal{F} : class of ranking functions

Ranking with Real-Valued Labels

. . .

Ranking with Real-Valued Labels

- Instance space X
- ightharpoonup Real-valued labels $Y=\mathbb{R}$
- ▶ Input: Training sample $S = ((x_1, y_1), ..., (x_m, y_m)) \in (X \times \mathbb{R})^m$
- ▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$
- Empirical error:

$$\widehat{\mathbf{er}}_{S}(f) = \frac{1}{\binom{m}{2}} \sum_{1 \le i < j \le m} |y_{i} - y_{j}| \, 1 \left((y_{i} - y_{j})(f(x_{i}) - f(x_{j})) < 0 \right)$$

Ranking with Real-Valued Labels: Basic Algorithmic Framework

Minimize a convex upper bound on the empirical ranking error, possibly with some regularization, over some class of ranking functions:

$$\min_{f \in \mathcal{F}} \left[\frac{1}{\binom{m}{2}} \sum_{1 \le i < j \le m} \ell(f, (x_i, y_i), (x_j, y_j)) + \lambda N(f) \right]$$

where

 $\ell(f,(x_i,y_i),(x_j,y_j))$: convex upper bound on $|y_i-y_j|\,\mathbf{1}\left((y_i-y_j)(f(x_i)-f(x_j))<0\right)$

N(f): regularizer

 $\lambda > 0$: regularization parameter

 \mathcal{F} : class of ranking functions

General Instance Ranking

General Instance Ranking

- ▶ Instance space X
- ▶ Input: Training sample $S = ((x_1, x_1', r_1), \dots, (x_m, x_m', r_m)) \in (X^2 \times \mathbb{R}_+)^m$
- ▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$

General Instance Ranking

- Instance space X
- ▶ Input: Training sample $S = ((x_1, x_1', r_1), \dots, (x_m, x_m', r_m)) \in (X^2 \times \mathbb{R}_+)^m$
- ▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$

► Empirical error:
$$\widehat{\operatorname{er}}_S(f) = \frac{1}{m} \sum_{i=1}^m r_i \ 1(f(x_i) < f(x_i'))$$

General Instance Ranking: Basic Algorithmic Framework

Minimize a convex upper bound on the empirical ranking error, possibly with some regularization, over some class of ranking functions:

$$\min_{f \in \mathcal{F}} \left[\frac{1}{m} \sum_{i=1}^{m} \ell(f, x_i, x_i', r_i) + \lambda N(f) \right]$$

where

 $\ell(f, x_i, x_i', r_i)$: convex upper bound on $r_i \mathbf{1}(f(x_i) < f(x_i'))$

N(f) : regularizer

 $\lambda > 0$: regularization parameter

 \mathcal{F} : class of ranking functions

General RankSVM Algorithm

$$\min_{f \in \mathcal{F}_K} \left[\frac{1}{m} \sum_{i=1}^m \ell_{\text{hinge}}(f, x_i, x_i', r_i) + \frac{\lambda}{2} ||f||_K^2 \right]$$

$$\ell_{\text{hinge}}(f, x_i, x_i', r_i) = \left(r_i - \left(f(x_i) - f(x_i')\right)\right)_+ \quad \left[u_+ = \max(u, 0)\right]$$

$$\mathcal{F}_K = \text{reproducing kernel Hilbert space (RKHS)}$$

$$\text{with kernel function } K$$

$$N(f) = \frac{\|f\|_K^2}{2}$$

[Herbrich et al, 2000; Joachims, 2002]

General RankBoost Algorithm

$$\min_{f \in \mathcal{L}(\mathcal{F}_{\text{base}})} \left[\frac{1}{m} \sum_{i=1}^{m} \ell_{\text{exp}}(f, x_i, x_i', r_i) \right]$$

$$\ell_{\text{exp}}(f, x_i, x_i', r_i) = r_i \exp\left(-\left(f(x_i) - f(x_i')\right)\right)$$

$$\mathcal{L}(\mathcal{F}_{\text{base}}) = \text{linear combinations of functions in some}$$

$$\text{base class } \mathcal{F}_{\text{base}}$$

[Freund et al, 2003]

General RankNet Algorithm

$$\min_{f \in \mathcal{F}_{\text{neural}}} \left[\frac{1}{m} \sum_{i=1}^{m} \ell_{\text{logistic}}(f, x_i, x_i', r_i) \right]$$

$$\ell_{\text{logistic}}(f, x_i, x_i', r_i) = r_i \log \left(1 + \exp\left(-\left(f(x_i) - f(x_i')\right)\right)\right)$$

$$\mathcal{F}_{\text{neural}} = \text{functions represented by some class of neural networks}$$

[Burges et al, 2005]

Tutorial Road Map

Part I: Theory & Algorithms

Bipartite Ranking RankSVM

k-partite Ranking RankBoost

Ranking with Real-Valued Labels RankNet

General Instance Ranking

Part II: Applications

Applications to Bioinformatics

Applications to Drug Discovery

Subset Ranking and Applications to Information Retrieval

Further Reading & Resources

Part II Applications

[and Subset Ranking]

Application to Bioinformatics

Searching for genetic determinants in the new millennium

N.J. Risch

Human genetics is now at a critical juncture. The molecular methods used successfully to identify the genes underlying rare mendelian syndromes are failing to find the numerous genes causing more common, familial, non-mendelian diseases . . .

Application to Bioinformatics

Searching for genetic determinants in the new millennium

N.J. Risch

With the human genome sequence nearing completion, new opportunities are being presented for unravelling the complex genetic basis of nonmendelian disorders based on large-scale genomewide studies . . .

Formulation as a Bipartite Ranking Problem

Relevant

• • •

Not relevant

Microarray Gene Expression Data Sets

[Golub et al, 1999; Alon et al, 1999]

Data Set	No. of Genes	No. of Tissue Samples	Notes
Leukemia	7129	72	25 AML / 47 ALL
Colon cancer	2000	62	40 tumor / 22 normal

Selection of Training Genes

Leukemia

Positive genes: Markers for AML/ALL

Myeloperoxidase

CD13

CD33

HOXA9 Homeo box A9

V-myb

CD19

CD10 (CALLA)

TCL1 (T cell leukemia)

C-myb

Deoxyhypusine synthase

Negative genes

157 genes involved in physiological cellular functions

Colon cancer

Positive genes:

Markers for colon cancer

Phospholipase A2

Keratin 6 isoform

PTP-H1

TF-IIIA

V-raf oncogene

MAPK kinase 1

CEA

Oncoprotein 18

PEP carboxykinase

ERK kinase 1

Negative genes

56 genes involved in physiological cellular functions

Top-Ranking Genes for Leukemia Returned by RankBoost

- ♦ Known marker; ♦ Potential marker;
- Known therapeutic target; Potential therapeutic target;
- x No link found.

	Gene	Relevance Summary	t-Statistic Rank	Pearson Rank
1.	KIAA0220		6628	2461
2.	G-gamma globin	•	3578	3567
3.	Delta-globin	•	3663	3532
4.	Brain-expressed HHCPA78 homolog		6734	2390
5.	Myeloperoxidase	•	139	6573
6.	Disulfide isomerase precursor		6650	575
7.	Nucleophosmin	•	405	1115
8.	CD34	•	6732	643
9.	Elongation factor-1 β	X	4460	3413
10.	CD24	•	81	1
11.	60S ribosomal protein L23		1950	73
12.	5-aminolevulinic acid synthase		4750	3351

[Agarwal & Sengupta, 2009]

Biological Validation

[Agarwal et al, 2010]

Application to Drug Discovery

Problem: Millions of structures in a chemical library. How do we identify the most promising ones?

Formulation as a Ranking Problem with Real-Valued Labels

$$pIC_{50} = 5.6718$$

$$pIC_{50} = 8.2991$$

$$pIC_{50} = 4.1317$$

. . .

Cheminformatics Data Sets

[Sutherland et al, 2004]

Data Set	No. of Compounds	No. of Chemical (2.5D) Descriptors	pIC ₅₀ Values
DHFR inhibitors	361	70	3.3 – 9.8
COX2 inhibitors	292	74	4.0 - 9.0

DHFR Results Using RankSVM

2.5D chemical descriptors
Gaussian kernel

FP2 molecular fingerprints
Tanimoto kernel

Training	Ranking error		
size	SVR	RankSVM	
24	0.4755	0.4601	
48	0.3430	0.3509	
72	0.2840	0.2726	
96	0.2483	0.2351	
120	0.2171	0.2121	
144	0.2023	0.2032	
168	0.2019	0.1817	
192	0.1808	0.1749	
216	0.1816	0.1722	
237	0.1714	0.1681	

Training	Ranking error	
size	SVR	RankSVM
24	0.3793	0.3546
48	0.2905	0.2896
72	0.2517	0.2421
96	0.2343	0.2201
120	0.2147	0.2052
144	0.2166	0.1988
168	0.2096	0.1966
192	0.2056	0.1962
216	0.1907	0.1787
237	0.1924	0.1798

[Agarwal et al, 2010]

Application to Information Retrieval (IR)

q1

q1 rel1

rel1 q2

rel1 q2

rel2

Learning to Rank in IR

Learning to Rank in IR

General Subset Ranking

• • •

General Subset Ranking

- Query space Q
- Document space D
- ▶ Query-document feature mapping $\phi: Q \times D \rightarrow \mathbb{R}^d$
- ▶ Input: Training sample $S = (S^1, ..., S^m)$:

$$S^{i} = \left((\phi_{1}^{i}, {\phi_{1}^{i}}'), \dots, ({\phi_{n_{i}}^{i}}, {\phi_{n_{i}}^{i}}') \right) \in (\mathbb{R}^{d} \times \mathbb{R}^{d})^{n_{i}}$$

where

$$\phi_j^i = \phi(q^i, d_j^i), \quad {\phi_j^i}' = \phi(q^i, {d_j^i}')$$

▶ Output: Ranking function $f: \mathbb{R}^d \rightarrow \mathbb{R}$

Subset Ranking with Real-Valued Relevance Labels

• • •

Subset Ranking with Real-Valued Relevance Labels

- Query space Q
- Document space D
- ▶ Query-document feature mapping $\phi: Q \times D \rightarrow \mathbb{R}^d$
- ▶ Input: Training sample $S = (S^1, ..., S^m)$:

$$S^{i} = \left((\phi_{1}^{i}, y_{1}^{i}), \dots, (\phi_{n_{i}}^{i}, y_{n_{i}}^{i}) \right) \in (\mathbb{R}^{d} \times \mathbb{R})^{n_{i}}$$

where

$$\phi^i_j = \phi(q^i, d^i_j), \quad y^i_j = \text{relevance of } d^i_j \text{ to } q^i$$

▶ Output: Ranking function $f: \mathbb{R}^d \rightarrow \mathbb{R}$

RankSVM Applied to IR/Subset Ranking

Standard RankSVM

$$\min_{f \in \mathcal{F}_K} \left[\left(\frac{1}{\sum_{i=1}^m \binom{n_i}{2}} \right) \sum_{i=1}^m \sum_{1 \leq j < k \leq n_i} \ell_{\text{hinge}} \left(f, (\phi^i_j, y^i_j), (\phi^i_k, y^i_k) \right) + \frac{\lambda}{2} \|f\|_K^2 \right]$$

$$\begin{split} \ell_{\mathrm{hinge}}\left(f,(\phi^i_j,y^i_j),(\phi^i_k,y^i_k)\right) &= & \left(1-\left(\mathrm{sign}(y^i_j-y^i_k)\cdot(f(\phi^i_j)-f(\phi^i_k))\right)\right)_+,\\ & \quad \text{convex upper bound on} \\ & \quad 1\left((y^i_j-y^i_k)(f(\phi^i_j)-f(\phi^i_k))<0\right) \end{split}$$

[Joachims, 2002]

RankSVM Applied to IR/Subset Ranking

RankSVM with Query Normalization & Relevance Weighting

$$\min_{f \in \mathcal{F}_K} \left[\frac{1}{m} \sum_{i=1}^m \left[\frac{1}{\binom{n_i}{2}} \sum_{1 \leq j < k \leq n_i} \ell_{\text{hinge}}^{\text{rel}} \left(f, (\phi_j^i, y_j^i), (\phi_k^i, y_k^i) \right) + \frac{\lambda}{2} \|f\|_K^2 \right] \right]$$

$$\begin{array}{ll} \ell_{\mathrm{hinge}}^{\mathrm{rel}}\left(f,(\phi_{j}^{i},y_{j}^{i}),(\phi_{k}^{i},y_{k}^{i})\right) &=& \left(|y_{j}^{i}-y_{k}^{i}|-\left(\mathrm{sign}(y_{j}^{i}-y_{k}^{i})\cdot(f(\phi_{j}^{i})-f(\phi_{k}^{i}))\right)\right)_{+},\\ & \text{convex upper bound on} \\ & |y_{j}^{i}-y_{k}^{i}|\,\mathbf{1}\left((y_{j}^{i}-y_{k}^{i})(f(\phi_{j}^{i})-f(\phi_{k}^{i}))<0\right) \end{array}$$

[Agarwal & Collins, 2010; also Cao et al, 2006]

Ranking Performance Measures in IR

Mean Average Precision (MAP)

Binary Labels: $y_i \in \{0, 1\}$

$$\mathsf{MAP}_{S}(f) \ = \ \frac{1}{m} \sum_{i=1}^{m} \left[\frac{1}{\left| \{j : y_{j}^{i} = 1\} \right|} \sum_{j : y_{j}^{i} = 1} \mathsf{prec}_{r_{j}^{i}}^{i}(f) \right]$$

 $r^i_j = ext{rank of document } d^i_j ext{ for query } q^i$

 $\operatorname{prec}_r^i(f) = \operatorname{fraction} \operatorname{of} \operatorname{positives} \operatorname{in} \operatorname{top} r \operatorname{documents} \operatorname{for} \operatorname{query} q^i$

Ranking Performance Measures in IR

Normalized Discounted Cumulative Gain (NDCG)

General Real-Valued Labels: $y_i \in \mathbb{R}$

$$NDCG_{S}(f) = \frac{1}{m} \sum_{i=1}^{m} \left[\frac{1}{Z_{i}} \sum_{r=1}^{n_{i}} \frac{2^{y_{\pi_{r}^{i}}^{i}} - 1}{\log_{2}(r+1)} \right]$$

 π_r^i = index of document ranked at position r for query q^i

 Z_i = normalization constant

NDCG@
$$k_S(f) = \frac{1}{m} \sum_{i=1}^{m} \left[\frac{1}{Z_i} \sum_{r=1}^{k} \frac{2^{y_{\pi_r^i}^i} - 1}{\log_2(r+1)} \right]$$

Ranking Algorithms for Optimizing MAP/NDCG

- SVMMAP [Yue et al. 2007]
- SVMNDCG [Chapelle et al. 2007]
- LambdaRank [Burges et al. 2007]
- AdaRank [Xu & Li 2007]
- Regression-based algorithm [Cossock & Zhang 2008]
- SoftRank [Taylor et al. 2008]
- SmoothRank [Chapelle & Wu 2010]

LETOR 3.0/OHSUMED Data Set

[Liu et al, 2007]

No. of	Relevance	Total no. of	Avg. no. of Docs/Query	No. of
Queries	Labels	Query-Doc Pairs		Features
106	2 : definitely relevant 1 : partially relevant 0 : not relevant	16, 140	152	45

OHSUMED Results – NDCG

OHSUMED Results – MAP

Further Reading & Resources

[Incomplete!]

Early Papers on Ranking

W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, Journal of Artificial Intelligence Research, 10:243–270, 1999.

R. Herbrich, T. Graepel, and K. Obermayer, Large margin rank boundaries for ordinal regression. *Advances in Large Margin Classifiers*, 2000.

T. Joachims, Optimizing search engines using clickthrough data, KDD 2002.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences. *Journal of Machine Learning Research*, 4:933–969, 2003.

C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender, Learning to rank using gradient descent, ICML 2005.

Generalization Bounds for Ranking

- S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, D. Roth, Generalization bounds for the area under the ROC curve, *Journal of Machine Learning Research*, 6:393—425, 2005.
- S. Agarwal, P. Niyogi, Generalization bounds for ranking algorithms via algorithmic stability, *Journal of Machine Learning Research*, 10:441—474, 2009.
- C. Rudin, R. Schapire, Margin-based ranking and an equivalence between AdaBoost and RankBoost, *Journal of Machine Learning Research*, 10: 2193—2232, 2009

Bioinformatics/Drug Discovery Applications

- S. Agarwal and S. Sengupta, Ranking genes by relevance to a disease, CSB 2009.
- S. Agarwal, D. Dugar, and S. Sengupta, Ranking chemical structures for drug discovery: A new machine learning approach. *Journal of Chemical Information and Modeling*, DOI 10.1021/ci9003865, 2010.

Other Applications

Natural Language Processing

M. Collins and T. Koo, Discriminative reranking for natural language parsing, *Computational Linguistics*, 31:25—69, 2005.

Collaborative Filtering

M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, CofiRank - Maximum margin matrix factorization for collaborative ranking, NIPS 2007.

Manhole Event Prediction

C. Rudin, R. Passonneau, A. Radeva, H. Dutta, S. Ierome, and D. Isaac, A process for predicting manhole events in Manhattan, *Machine Learning*, DOI 10.1007/s10994-009-5166, 2010.

IR Ranking Algorithms

- Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Hunag, and H.W. Hon, Adapting ranking SVM to document retrieval, SIGIR 2006.
- C.J.C. Burges, R. Ragno, and Q.V. Le, Learning to rank with non-smooth cost functions. NIPS 2006.
- J. Xu and H. Li, AdaRank: A boosting algorithm for information retrieval. SIGIR 2007.
- Y. Yue, T. Finley, F. Radlinski, and T. Joachims, A support vector method for optimizing average precision. SIGIR 2007.
- M. Taylor, J. Guiver, S. Robertson, T. Minka, Softrank: optimizing non-smooth rank metrics. WSDM 2008.

IR Ranking Algorithms

- S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, Structured learning for nonsmooth ranking losses. KDD 2008.
- D. Cossock and T. Zhang, Statistical analysis of Bayes optimal subset ranking, *IEEE Transactions on Information Theory*, 54:5140–5154, 2008.
- T. Qin, X.D. Zhang, M.F. Tsai, D.S. Wang, T.Y. Liu, and H. Li. Query-level loss functions for information retrieval. *Information Processing and Management*, 44:838–855, 2008.
- O. Chapelle and M. Wu, Gradient descent optimization of smoothed information retrieval metrics. *Information Retrieval* (To appear), 2010.
- S. Agarwal and M. Collins, Maximum margin ranking algorithms for information retrieval, ECIR 2010.

NIPS Workshop 2005 Learning to Rank

SIGIR Workshops 2007-2009

Learning to Rank for Information Retrieval

NIPS Workshop 2009

Advances in Ranking

American Institute of Mathematics Workshop in Summer 2010

The Mathematics of Ranking

Tutorial Articles & Books

Tie-Yan Liu, Learning to Rank for Information Retrieval, Foundations & Trends in Information Retrieval, 2009.

Shivani Agarwal, A Tutorial Introduction to Ranking Methods in Machine Learning, In preparation.

Shivani Agarwal (Ed.), Advances in Ranking Methods in Machine Learning, Springer-Verlag, In preparation.