

Methoden und Anwendungen der Optimierung

WS 2017/18

Prof. Dr. Michael Schneider

schroeder@dpo.rwth-aachen.de

Übung 8 - Aufgaben

Aufgabe 1 (Tabu-Suche):

Gegeben sei die in Abb. 1 dargestellte Instanz eines STSP in der euklidischen Ebene. Die Länge einer Kante zwischen zwei Knoten ist durch die euklidische Distanz gegeben. Es soll eine Tabu-Suche mit lokaler Bestensuche unter Verwendung der in Abb. 2 dargestellten Nachbarschaftsoperatoren implementiert werden.

- a) Welche Attribute eines Lösungsübergangs halten Sie beim STSP für ein attributives Gedächtnis für geeignet?
- b) Was sind beim STSP die Vor- und Nachteile eines expliziten gegenüber eines attributiven Gedächtnisses?
- c) Nennen Sie mögliche Tabu-Restriktionen.
- d) Welche Struktur würden Sie von einer guten Lösung bei der vorliegenden Instanzstruktur erwarten?
- e) Wie können sie diese Eigenschaft verwenden, um die Laufzeitkomplexität der lokalen Suche zu verbessern? Welche Laufzeitkomplexität der lokalen Suche könnte unter sinnvollen Annahmen erreicht werden?

Hinweis: Nutzen Sie das Konzept der Generatorkanten (v, w) bei der Definition der Nachbarschaftsoperatoren, um die Nachbarschaft einzuschränken und die Tabu-Suche in vielversprechende Bereiche des Lösungsraums zu lenken.

Abbildung 1: STSP Beispielinstanz

Abbildung 2: Nachbarschaftsoperatoren für das STSP.

Aufgabe 2 (Tabu-Suche):

Gegeben seien die in Tab. 1 dargestellten Lösungen x mit Attributen $b_i \in \{0, 1\}$, $i = 1, \ldots, 5$ und Kosten c(x). Der zugehörige Nachbarschaftsgraph ist in Abb. 3 dargestellt. Führen Sie eine Tabu-Suche mit lokaler Bestensuche durch, welche bei x = 1 startet. Als Tabu-Kriterium wird das inc-Attribut (+) und das dec-Attribut (-) verwendet: Ändert sich bei einem Lösungsübergang das Attribut b_i , so ist die Umkehrung des Wertes von b_i für die nächsten zwei Iterationen tabu. Ein Übergang, welcher den besten gefundenen Zielfunktionswert verbessert, ist immer erlaubt. Brechen Sie die Suche nach 5 Übergängen ohne Verbesserung ab.

x	b_4	b_3	b_2	b_1	b_0	c(x)
1	0	0	0	0	1	50
2	0	0	1	1	1	51
3	0	0	0	1	1	46
4	1	0	1	1	1	47
5	1	1	1	1	0	52
6	0	0	1	1	0	48
7	0	1	0	1	0	49
8	1	1	0	1	0	61

Tabelle 1: Lösungen mit Attributen b_i .

Abbildung 3: Nachbarschaftsgraph zu Aufgabe 2.