CONVEX SETS

Deh:	A set	CERT is	called con	ivex if	for any	x,y e C	and	A & [0,1]
The	point)	x+ (1-2) y	EC.					\
The	lone seg	ment between	n 2, y	is M	C. X	+ (1-2) 4 1	16(و (ال
ep.								

Examples:

1. let 2, JER", d +0. L = {2+td | teR} - line

3

$$H = \{x \in \mathbb{R}^n \mid a^Tx = b^3 - hyperplane$$

 $H^- = \{x \in \mathbb{R}^n \mid a^Tx \leq b^3 - halfspace$

H = Parx = 6

let's show its convexity: Let x,y & B(e,r), \ E[0,1].

$$\| \lambda x + (i - \lambda) y - c \| = \| \lambda (x - c) + (i - \lambda) (y - c) \| \le \| \lambda (x - c) \| + \| (i - \lambda) (y - c) \|$$

$$= \lambda \| x - c \| + (i - \lambda) \| y - c \|$$

$$= \lambda \| x - c \| + (i - \lambda) \| y - c \|$$

:. 1x+(4-x)y & B(c,r).

- 4.) Let $Q \in \mathbb{R}^{n \times n}$ be positive semidefinite, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. $E = \{x \in \mathbb{R}^n \mid x^T Q x + 2b^T x + c \leq o\}$ ellipsoid.
- lemma: Intersection of convex sets is convex. (finite or infinite collections)
- Why? let C; EIR? be loner & all i EI (I: Index set)
 - let C= A Ci. let xy + C. This, xy + Ci, Vi = 1.
 - Sma Ci is convex, $\forall \lambda \in [0,1)$: $\lambda \times + (1-\lambda)y \in Ci$ for all $i \in I$. Then, $\lambda \times + (1-\lambda)y \in ACi$.
- 5.) Let $A^T \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^m$. $P = \{x \in \mathbb{R}^n \mid A^T x \leq b\} = \bigcap_{i=1}^m \{x \in \mathbb{R}^n \mid q_i^T x \leq b_i\}$ Convex polytope

 intersection of halfspaces.
- Defn: let $x_1, \dots, x_k \in \mathbb{R}^n$. A convex combination of x_1, \dots, x_k is a point $\lambda_1 x_1 + \dots + \lambda_k x_k \in \mathbb{R}^n$ for some $\lambda_1, \dots, \lambda_k > 0$ such that $\sum_{i=1}^k \lambda_i = 1$.
- Dehn: Let $S \subseteq \mathbb{R}^n$. The convex hull of S, conv S, is the set of all convex combinations of points from S, that is, $conv S = \left\{ \begin{array}{l} \frac{k}{2} |\lambda_i S_i| | k \in \mathbb{N}, \lambda_i \geqslant 0, \forall i \in \mathbb{N}, \lambda_i$
- Result: conv S is the smallest convex set containing S.

 If S is convex, then conv S = S.

 If S is convex, $T \subseteq S$, then conv $T \subseteq conv S = S$.

Defn: A set $S \subseteq \mathbb{R}^h$ is called a cone if for any $x \in S$, $\lambda \geqslant 0$ we have

XXES.

e.g. a ray possing through the origin. a halfspace passing through the origin intersection of halfspaces passing through the origin.

lemma: A set S is a convex cone if and only it

a) xy ES => x +y ES

b.) x & S, 7 70 = 7x & S

Proof: Assume S is a convex cone. 6.) holds by definition. Moreover for any xiyES, since S is a core 2x, 2y ES. Using that S is convex, we have $\frac{1}{2}(2x) + \frac{1}{2}(2y) = x + y \in S$.

Now, let's assume al, b) hold. From b.), we know that S is a core. To show convexity, let xy ES be arbitrary, $\lambda \in [0,1]$.

Using b.), we know that likes and (1-2) yts.

Using (a), we obtain lx+(1-2)y+5.

Example: Ice cream cone (Lorenz cone)

For n=2, $||x|| \le t$ holds iff $x_1^2 + x_2^2 \le t^2$, $t \ge 0$.

let's show that L' is a convex cone.

First, noke that if () EL", then I(x) EL" bo 130.

Indeed, $\|\lambda x\| = |\lambda| \|x\| = \lambda \|x\| \le \lambda t$ since $\|x\| \le t$.

let (x), (y) \in L^n. To show: (x+y) \in L^n.

||x+y|| = ||x||+ ||y|| = t+s.

Deh: Given k points $x_1, ..., x_k \in \mathbb{R}^n$, a conic combination of $x_1, ..., x_k$ is a point of the form $\lambda_1 x_1 + \cdots + \lambda_k x_k$ for some $\lambda_1, ..., \lambda_k 70$.

The conic hull of a set is the smallest convex cone containing that set.

Dem: let $S \subseteq \mathbb{R}^n$ be a convex set. A point $z \in S$ is an extreme point of S if there's no $x_1, x_2 \in S$, $x_1 \neq x_2$ and $\lambda \in (0,1)$ such that

 $x = \lambda x_1 + (1-\lambda) x_2$.

Not an extreme point.

an the bds
is an
extene point.