DATA_605_Assignment_3_Fox

Amanda Fox

2025-04-13

Preparation

Load libraries:

```
# load libraries
library(tidyverse)
library(ggplot2)
library(scales)
```

Problem 1: Transportation Safety

1. Data Visualization:

Create a scatter plot of stopping distance (dist) as a function of speed (speed). Add a regression line to the plot to visually assess the relationship.

Stopping distance increases with speed in a roughly linear pattern, with a few possible outliers and more variability at higher speeds.

```
# Load data
data("cars")
glimpse(cars)
```

```
Rows: 50
Columns: 2
$ speed <dbl> 4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13~
$ dist <dbl> 2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34~
```

Stopping Distance vs Speed

2. Build a Linear Model:

Construct a simple linear regression model where stopping distance (dist) is the dependent variable and speed (speed) is the independent variable. Summarize the model to evaluate its coefficients, R-squared value, and p-value

Stopping Distance = 3.932409 * speed - 17.58

R-squared = 0.6511 which indicatest that speed explains 65.11% of variation in stopping distance.

p-value = 1.49e-12 which indicates that this relatioship is very unlikely to be due to chance.

```
# Model
mod_dist <- lm(dist ~ speed, data = cars)</pre>
# Summarize
summary(mod_dist)
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-29.069 -9.525 -2.272
                        9.215 43.201
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791
                         6.7584 -2.601
                                          0.0123 *
                                  9.464 1.49e-12 ***
speed
              3.9324
                         0.4155
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511,
                               Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
# Add predicted values (verified new plot matches above)
df_cars_model <- cars %>%
 mutate(predicted_dist = predict(mod_dist))
glimpse(df_cars_model)
```

3 & 4: Model Quality Evaluation & Residual Analysis

Calculate and interpret the R-squared value to assess the proportion of variance in stopping distance explained by speed.

R-squared is 0.6511 so 65.11% of the variation in stopping distance is explained by speed.

Perform a residual analysis to check the assumptions of the linear regression model, including linearity, homoscedasticity, independence, and normality of residuals. Plot the residuals versus fitted values to check for any patterns. Create a Q-Q plot of the residuals to assess normality. Perform a Shapiro-Wilk test for normality of residuals. Plot a histogram of residuals to further check for normality.

Assumptions are generally well met. The relationship is roughly linear and residual tests below show a reasonable fit with roughly normal distribution of residuals and some heteroscedasticity.

In the context of the small dataset size and visual examination of the scatterplots above, these results are acceptable. Note that independence is assumed since the behavior of one car should not impact another.

- 1. Residuals vs Fitted: Fan shape suggests some heteroscedasticity with increasing variance at higher speeds
- 2. Histogram of Residuals: Broadly normally distributed with a slight right skew
- 3. Q-Q: Follows the line generally but deviation at both ends, particularly the upper end, suggests some non-normality/outliers
- 4. Shapiro-Wilkes test: p<0.05 suggests non-normality (null hypothesis = data is normal, which is rejected).

```
# Add to dataframe
df_cars_model <- df_cars_model %>%
  mutate(
    .fitted = fitted(mod_dist),
    .resid = resid(mod_dist),
    .std_resid = rstandard(mod_dist)
)
glimpse(df_cars_model)
```

```
#------
# Diagnostic Plots**
#------
# Residuals vs Fitted
plot_resid <- df_cars_model %>%
    ggplot(aes(x = .fitted, y = .resid)) +
    geom_point(alpha = 0.6) +
    geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
    labs(
        title = "Residuals vs Fitted",
        x = "Fitted Values",
        y = "Residuals"
    ) +
    theme_minimal()

plot_resid
```

Residuals vs Fitted


```
# Histogram of Residuals
plot_resid_hist <- df_cars_model %>%
    ggplot(aes(x = .resid)) +
    geom_histogram(bins = 15, fill = "skyblue", color = "white") +
```

```
labs(title = "Histogram of Residuals", x = "Residuals") +
  theme_minimal()

plot_resid_hist
```

Histogram of Residuals


```
# Q-Q
plot_qq <- df_cars_model %>%
    ggplot(aes(sample = .resid)) +
    stat_qq() +
    stat_qq_line(color = "red") +
    labs(title = "Q-Q Plot of Residuals") +
    theme_minimal()
```



```
# shapiro-wilkes test
df_cars_model$.resid %>%
    shapiro.test()
```

Shapiro-Wilk normality test

```
data: . W = 0.94509, p-value = 0.02152
```

5. Conclusion

Based on the model summary and residual analysis, determine whether the linear model is appropriate for this data. Discuss any potential violations of model assumptions and suggest improvements if necessary.

Based on the model summary and residual analysis, the linear model is acceptable. The R-squared value is meaningful but not strong; model fit might improve by adding more predictors such as weight, tire specs, etc.

Linearity, normality, and constant variance are generally met, with acceptable slight heteroscedasticity and non-normality in residuals. Independence was not formally tested but reasonable to assume since each car's stopping distance is unrelated to others.

Problem 2: Health Policy Analyst

<int>

<int>

1. Initial Assessment of Healthcare Expenditures and Life Expectancy

Task: Create a scatterplot of LifeExp vs. TotExp to visualize the relationship between healthcare expenditures and life expectancy across countries.

```
#-----
# Load data
#-----
df_who_raw <- read_csv("https://raw.githubusercontent.com/AmandaSFox/DATA605_Math/main/Assig
glimpse(df_who_raw)
Rows: 190
Columns: 12
$ Country
               <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola~
               <dbl> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,~
$ LifeExp...2
$ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,~
$ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,~
               <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0~
$ TBFree
               <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0~
$ PropMD
               <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0~
$ PropRN
               <dbl> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1~
$ PersExp
               <dbl> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761~
$ GovtExp
$ ...10
               <dbl> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907~
$ TotExp
$ LifeExp...12
               <dbl> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,~
#-----
# Clean data
#-----
# check for NAs
df_who_raw %>%
 summarise(across(everything(), ~sum(is.na(.))))
# A tibble: 1 x 12
```

<int>

Country LifeExp...2 InfantSurvival Under5Survival TBFree PropMD PropRN PersExp

<int> <int> <int> <int>

```
# i 4 more variables: GovtExp <int>, ...10 <int>, TotExp <int>,
   LifeExp...12 <int>
# check for duplicate rows
nrow(df_who_raw) - nrow(distinct(df_who_raw))
[1] 0
# count unique values in each column
df_who_raw %>%
summarise(across(everything(), n_distinct))
# A tibble: 1 x 12
  Country LifeExp...2 InfantSurvival Under5Survival TBFree PropMD PropRN PersExp
                <int>
                               <int>
                                              <int> <int> <int> <int>
      190
                                  83
                                                       140
                                                               188
                                                                      189
1
                   43
                                                 99
                                                                              161
# i 4 more variables: GovtExp <int>, ...10 <int>, TotExp <int>,
  LifeExp...12 <int>
# verify col 10 includes only NA values
unique(df_who_raw$...10)
[1] NA
# verify both LifeExp columns are identical
all(df_who_raw\LifeExp...2\ == df_who_raw\LifeExp...12\)
[1] TRUE
# drop second LifeExp and NA columns, rename LifeExp
df_who_clean <- df_who_raw %>%
  select(- LifeExp...12,- ...10) %>%
  rename(LifeExp = `LifeExp...2`)
glimpse(df_who_clean)
```

```
Rows: 190
Columns: 10
                <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola~
$ Country
                <dbl> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,~
$ LifeExp
$ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,~
$ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,~
$ TBFree
                <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0~
$ PropMD
                <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0~
                <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0~
$ PropRN
$ PersExp
                <dbl> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1~
                <dbl> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761~
$ GovtExp
                <dbl> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907~
$ TotExp
#-----
# Summary and Plot
#-----
# summarize
```

```
Country
                      LifeExp
                                    InfantSurvival
                                                      Under5Survival
Length: 190
                           :40.00
                   Min.
                                    Min.
                                           :0.8350
                                                     Min.
                                                             :0.7310
Class :character
                   1st Qu.:61.25
                                    1st Qu.:0.9433
                                                      1st Qu.:0.9253
Mode :character
                   Median :70.00
                                    Median : 0.9785
                                                      Median: 0.9745
                           :67.38
                   Mean
                                    Mean
                                           :0.9624
                                                      Mean
                                                             :0.9459
                    3rd Qu.:75.00
                                    3rd Qu.:0.9910
                                                      3rd Qu.:0.9900
                           :83.00
                                    Max.
                                           :0.9980
                                                      Max.
                                                             :0.9970
                   Max.
    TBFree
                     PropMD
                                          PropRN
                                                              PersExp
Min.
       :0.9870
                 Min.
                         :0.0000196
                                      Min.
                                              :0.0000883
                                                           Min.
                                                                  :
                                                                      3.00
1st Qu.:0.9969
                 1st Qu.:0.0002444
                                                           1st Qu.: 36.25
                                      1st Qu.:0.0008455
                                                           Median: 199.50
Median :0.9992
                 Median :0.0010474
                                      Median :0.0027584
       :0.9980
Mean
                 Mean
                         :0.0017954
                                              :0.0041336
                                                           Mean
                                                                  : 742.00
                                      Mean
3rd Qu.:0.9998
                 3rd Qu.:0.0024584
                                      3rd Qu.:0.0057164
                                                           3rd Qu.: 515.25
Max.
       :1.0000
                 Max.
                         :0.0351290
                                      Max.
                                              :0.0708387
                                                           Max.
                                                                  :6350.00
   GovtExp
                        TotExp
Min.
     :
                         :
            10.0
                   Min.
                                13
1st Qu.:
           559.5
                   1st Qu.:
                               584
Median: 5385.0
                   Median: 5541
Mean
      : 40953.5
                   Mean
                          : 41696
3rd Qu.: 25680.2
                   3rd Qu.: 26331
Max.
       :476420.0
                   Max.
                         :482750
```

summary(df_who_clean)

```
# Scatterplot with linear regression line
plt3 <- df_who_clean %>%
    ggplot(aes(x = TotExp, y = LifeExp)) +
    geom_point(alpha = 0.6, color = "gray60") +
    geom_smooth(method = "lm", se = FALSE, color = "darkred") +
    scale_x_continuous(labels = scales::comma)+
    labs(
    title = "Life Expectancy vs Total Health Expenditures",
    x = "Total Health Expenditures",
    y = "Life Expectancy"
    ) +
    theme_minimal()
```

Life Expectancy vs Total Health Expenditures

Run a simple linear regression with LifeExp as the dependent variable and TotExp as the independent variable (without transforming the variables).

LifeExp = $64.75 + 0.00006297 \times$ TotExp For every additional \$1 in total healthcare spending, life expectancy increases by about 0.000063 years or about 0.023 days above a "baseline" of 64.75 years at \$0 spending.

Provide and interpret the F-statistic, R-squared value, standard error, and p-values.

- F-statistic and p value: 65.26 on 1 and 188 DF with p of 7.7e-14 indicates the relationship between total expenditure and life expectancy is extremely unlikely to be due to chance
- R-squared: 0.2577 indicates that total healthcare expenditure explains only 25.77% of the variance in life expectancy, which is weak
- Standard error: 9.37 indicates that average error is 9.37 years which is significant in this case as the interquartile range is 13.75 years.

Discuss whether the assumptions of simple linear regression (linearity, independence, homoscedasticity, and normality of residuals) are met in this analysis.

Overall the model violates all assumptions except independence (countries are independent observations so independence is assumed). Linearity: The relationship is clearly non-linear in the scatterplot Homoscedasticity: The residual plot shows an uneven distribution of residuals around the line Normality: The histogram has a long left tail, and the qq plot varies widely around the line. The Shapiro-Wilkes small p value also indicates non normality.

```
#-----
# Model
#-----
mod_life <- lm(LifeExp ~ TotExp, data = df_who_clean)
summary(mod_life)</pre>
```

```
Call:
lm(formula = LifeExp ~ TotExp, data = df_who_clean)
Residuals:
    Min
             1Q Median
                             3Q
                                    Max
-24.764 -4.778
                  3.154
                         7.116 13.292
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
TotExp
            6.297e-05 7.795e-06
                                  8.079 7.71e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.371 on 188 degrees of freedom
Multiple R-squared: 0.2577,
                               Adjusted R-squared: 0.2537
F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
```

```
Rows: 190
Columns: 14
$ Country
                 <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola~
$ LifeExp
                 <dbl> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,~
$ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,~
$ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,~
$ TBFree
                 <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0~
                 <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0~
$ PropMD
$ PropRN
                 <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0~
                 <dbl> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1~
$ PersExp
                 <dbl> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761~
$ GovtExp
                 <dbl> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907~
$ TotExp
$ predicted_life <dbl> 64.76043, 64.96099, 65.08661, 75.60402, 64.85765, 65.57~
$ .fitted
                 <dbl> 64.76043, 64.96099, 65.08661, 75.60402, 64.85765, 65.57~
                 <dbl> -22.7604272, 6.0390128, 5.9133872, 6.3959804, -23.85765~
$ .resid
$ .std_resid
                 <dbl> -2.43668924, 0.64646820, 0.63298727, 0.68842673, -2.554~
```

```
# Residuals vs Fitted
plot_resid_who <- df_who_model %>%
    ggplot(aes(x = .fitted, y = .resid)) +
    geom_point(alpha = 0.6) +
    geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
    labs(title = "Residuals vs Fitted", x = "Fitted Values", y = "Residuals") +
    theme_minimal()

plot_resid_who
```

Residuals vs Fitted


```
# Histogram of Residuals
plot_hist_who <- df_who_model %>%
    ggplot(aes(x = .resid)) +
    geom_histogram(bins = 15, fill = "skyblue", color = "white") +
    labs(title = "Histogram of Residuals", x = "Residuals") +
    theme_minimal()
```

Histogram of Residuals 30 10 Residuals

```
# QQ plot
plot_qq_who <- df_who_model %>%
    ggplot(aes(sample = .resid)) +
    stat_qq() +
    stat_qq_line(color = "red") +
    labs(title = "Q-Q Plot of Residuals") +
    theme_minimal()
```


-1

```
# Shapiro Wilkes
shapiro.test(df_who_model$.resid)
```

0 **X** 2

3

Shapiro-Wilk normality test

-2

data: df_who_model\$.resid
W = 0.89146, p-value = 1.609e-10

-3

Discussion: Consider the implications of your findings for health policy. Are higher healthcare expenditures generally associated with longer life expectancy? What do the assumptions of the regression model suggest about the reliability of this relationship?

Higher healthcare expenditures are related to longer life expectancy but the relationship is not linear (see scatterplot above). The linear model is significant (low p value) but the fit is poor with a low R-squared and high standard error.

To make a final conclusion on which to base policy, additional work is needed such as transformations or a non-linear model.

2. Transforming Variables for a Better Fit

Task: Recognizing potential non-linear relationships, transform the variables as follows: Raise life expectancy to the 4.6 power (LifeExp^4.6). Raise total expenditures to the 0.06 power (TotExp^0.06), which is nearly a logarithmic transformation. Create a new scatterplot with the transformed variables and re-run the simple linear regression model.

The transformed data now has a visually linear relationship on the scatterplot with a more even distribution around the linear regression line.

Provide and interpret the F-statistic, R-squared value, standard error, and p-values for the transformed model.

- F-statistic and p value: 65.26 on 1 and 188 DF with p of 7.7e-14 indicates the relationship between total expenditure and life expectancy is extremely unlikely to be due to chance
- \bullet R-squared: 0.2577 indicates that total healthcare expenditure explains only 25.77% of the variance in life expectancy, which is weak
- Standard error: 9.37 indicates that average error is 9.37 years which is significant in this case as the interquartile range is 13.75 years.

Compare this model to the original model (from Question 1). Which model provides a better fit, and why?

- F-statistic and p value: 65.26 on 1 and 188 DF with p of 7.7e-14 indicates the relationship between total expenditure and life expectancy is extremely unlikely to be due to chance
- R-squared: 0.2577 indicates that total healthcare expenditure explains only 25.77% of the variance in life expectancy, which is weak
- Standard error: 9.37 indicates that average error is 9.37 years which is significant in this case as the interquartile range is 13.75 years.

```
$ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,~
$ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,~
$ TBFree
                 <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0~
$ PropMD
                 <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0~
                <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0~
$ PropRN
                 <dbl> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1~
$ PersExp
$ GovtExp
                 <dbl> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761~
$ TotExp
                 <dbl> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907~
$ LifeExp 46
                 <dbl> 29305338, 327935478, 327935478, 636126841, 26230450, 37~
                 <dbl> 1.327251, 1.625875, 1.672697, 2.061481, 1.560068, 1.765~
$ TotExp_006
```

```
# Scatterplot with linear regression line
plt4 <- df_who_transform %>%
    ggplot(aes(x = TotExp_006, y = LifeExp_46)) +
    geom_point(alpha = 0.6, color = "gray60") +
    geom_smooth(method = "lm", se = FALSE, color = "darkred") +
    scale_x_continuous(labels = scales::comma)+
    labs(
    title = "Transformed: Life Expectancy vs Total Health Expenditures",
    x = "Total Health Expenditures ^ 0.06",
    y = "Life Expectancy ^ 4.6"
    ) +
    theme_minimal()
```

Transformed: Life Expectancy vs Total Health Expenditures


```
#-----
# Model
#-----
mod_life_transform <- lm(LifeExp_46 ~ TotExp_006, data = df_who_transform)
summary(mod_life_transform)</pre>
```

```
Call:
```

lm(formula = LifeExp_46 ~ TotExp_006, data = df_who_transform)

Residuals:

Min 1Q Median 3Q Max -308616089 -53978977 13697187 59139231 211951764

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -736527910 46817945 -15.73 <2e-16 ***
TotExp_006 620060216 27518940 22.53 <2e-16 ***
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 90490000 on 188 degrees of freedom Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283 F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16

Rows: 190 Columns: 14 \$ Country <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola~ \$ LifeExp <dbl> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,~ \$ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,~ \$ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,~ <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0~ \$ TBFree \$ PropMD <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0~ \$ PropRN <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0~ <dbl> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1~ \$ PersExp <dbl> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761~ \$ GovtExp <dbl> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907~ \$ TotExp \$ predicted_life <dbl> 64.76043, 64.96099, 65.08661, 75.60402, 64.85765, 65.57~ <dbl> 64.76043, 64.96099, 65.08661, 75.60402, 64.85765, 65.57~ \$.fitted \$.resid <dbl> -22.7604272, 6.0390128, 5.9133872, 6.3959804, -23.85765~ \$.std_resid <dbl> -2.43668924, 0.64646820, 0.63298727, 0.68842673, -2.554~

```
# Residuals vs Fitted
plot_resid_who <- df_who_model %>%
    ggplot(aes(x = .fitted, y = .resid)) +
    geom_point(alpha = 0.6) +
    geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
    labs(title = "Residuals vs Fitted", x = "Fitted Values", y = "Residuals") +
    theme_minimal()
```

plot_resid_who

Residuals vs Fitted


```
# Histogram of Residuals
plot_hist_who <- df_who_model %>%
    ggplot(aes(x = .resid)) +
    geom_histogram(bins = 15, fill = "skyblue", color = "white") +
    labs(title = "Histogram of Residuals", x = "Residuals") +
    theme_minimal()

plot_hist_who
```

Histogram of Residuals 30 10 Residuals

```
# QQ plot
plot_qq_who <- df_who_model %>%
    ggplot(aes(sample = .resid)) +
    stat_qq() +
    stat_qq_line(color = "red") +
    labs(title = "Q-Q Plot of Residuals") +
    theme_minimal()
```



```
# Shapiro Wilkes
shapiro.test(df_who_model$.resid)
```

Shapiro-Wilk normality test

data: df_who_model\$.resid
W = 0.89146, p-value = 1.609e-10

Discussion: How do the transformations impact the interpretation of the relationship between healthcare spending and life expectancy? Why might the transformed model be more appropriate for policy recommendations?