Notes on Algebraic Geometry

Kei Thoma

August 19, 2024

Contents

Ι	Pre	5
II	Algebraic Geometry	9
1	Affine Varieties	11
	1.1 Exercises	14
2	Projective Varieties	17
3	Morphisms	19

4 CONTENTS

TODO

Part I

Pre

1. Prove R int domain, then R[X] is int domain.

Proposition 0.0.1. If R is an integral domain, then the polynomial ring R[X] is again an integral domain.

Proof. 1. Since $1 \in R \subset R[X]$, the polynomial ring R[X] is nonempty.

2. Let $f,g\in R[X]$ be two nonzero polynomials with

$$f = \sum_{i=0}^{m} a_i X^i$$
 and $g = \sum_{j=0}^{n} b_j X^j$.

Consider its product

$$f \cdot g = \sum_{k=0}^{m+n} c_j X^k$$

and suppose $f \cdot g = 0$.

- 3. Since the leading coefficient of the product c_{m+n} is obtained by multiplying the leading coefficients of f and g, we have $c_{m+n} = a_m \cdot b_n$.
- 4. We had $f \cdot g = 0$, thus $c_{m+n} = a_m \cdot b_n = 0$.
- 5. R is an integral domain, therefore $a_m \cdot b_n = 0$ means $a_m = 0$ or $b_n = 0$.
- 6. This contradicts that f and g were nonzero polynomials.

Part II Algebraic Geometry

Chapter 1

Affine Varieties

Cheat Sheet

Definition 1.0.1. 1. The affine n-space over an algebraically closed field K is the set of all n-tuples of elements of K.

2. For a subset $S \subset K[X_1, \dots, X_n]$, we define the zero-locus as

$$Z(S) = \{ x \in \mathbb{A}^n \mid f(x) = 0 \text{ for all } f \in S \}.$$

3. A subset $V \subset \mathbb{A}^n$ is an algebraic set if there exists a subset $S \subset K[X_1, \dots, X_n]$ such that V = Z(S).

Full Text

Definition 1.0.2. Let K be an algebraically closed field and let $n \in \mathbb{N}_0$ be a natural number.

- 1. The affine n-space over K is the set of all n-tuples of elements of K.
- 2. An element p in \mathbb{A}^n is called a point.
- 3. If $p = (a_1, \ldots, a_n) \in \mathbb{A}^n$ is a point, then a_i is called the coordinate for each $1 \le i \le n$.

Intuition 1.0.3. It's just space with points. But not vectors, because we don't add points.

Definition 1.0.4. For each subset S of polynomials in $K[X_1, \ldots, X_n]$, we define the zero-locus Z(S) to be the set of points in the affine n-space \mathbb{A}^n on which the functions in S simultaneously vanish, i.e.

$$Z(S) = \{ x \in \mathbb{A}^n \mid f(x) = 0 \text{ for all } f \in S \}.$$

Intuition 1.0.5. These are just curves.

Remark 1.0.6. 1. If \mathfrak{a} is generated by T, then $Z(T) = Z(\mathfrak{a})$.

2. Z(T) can be written in finitely many generators.

Definition 1.0.7 (Algebraic Set). A subset V of \mathbb{A}^n is an algebraic set if there exists a subset $S \subset k[X_1, \ldots, X_n]$ such that V = Z(S).

Intuition 1.0.8. So if the points on the space is a curve, then it's an algebraic set.

Definition 1.0.9. Zariski topology on \mathbb{A}^n . Closed sets are algebraic sets.

BOOKMARK

Definition 1.0.10 (Affine Algebraic Variety). For an algebraically closed field K and a natural number $n \in \mathbb{N}_+$, let \mathbb{A}^n , be an affine n-space over K. The polynomials in $K[X_1, \ldots, X_n]$ can be viewed as K-valued functions on \mathbb{A}^n .

1. For each subset S of polynomials in $K[X_1, ..., X_n]$, define the zero-locus Z(S) to be the set of points in \mathbb{A}^n on which the functions in S simultaneously vanish, i.e.

$$Z(S) = \{ x \in \mathbb{A}^n \mid f(x) = 0 \text{ for all } f \in S \}.$$

- 2. A subset V of \mathbb{A}^n is called affine agebraic set if V=Z(S) for some $S\subset K[X_1,\ldots,X_n]$.
- 3. A nonempty affine algebraic set is called irreducible if it is not the union of two proper algebraic subsets. An irreducible affine algebraic set is also called an affine variety.

Definition 1.0.11. An affine algebraic variety is an irreducible closed subset of \mathbb{A}^n . An open subset of an affine variety is a quasi-affine variety.

Corollary 1.0.12. An algebraic set is irreducible if and only if its ideal is a prime ideal.

Definition 1.0.13. If $Y \subset \mathbb{A}^n$ is an affine algebraic set, we define the affine coordinate ring A(Y) of Y, to be A/I(Y).

Definition 1.0.14. If X is a topological space, we define the dimension of X (denoted $\dim X$) to be the supremum of all integers n such that there exists a chain $Z_0 \subset Z_1 \subset \cdots \subset Z_n$ of distinct irreducible closed subsets of X. We define the dimension of an affine or quasi-affine variety to be its dimension as a topological space.

1.1 Exercises

Exercise 1.1.1 (1.1. (a)). Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of the polynomial $f = y - x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k.

Solution. By definition 1.0.13 of a coordinate ring, we simply have $A(Y) = k[X,Y]/(Y-X^2)$. The isomorphism follows from the isomorphism theorem and the map $f: k[X,Y] \to k[X]$ where we set $f(Y) = X^2$.

Exercise 1.1.2 (1.1. (b)). Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.

Solution.
$$A(Z) = k[X,Y]/(XY-1)$$

We know A(Z) is an k-algebra (see remark). Consider $f: k[X,Y] \longrightarrow k[T]$. We must have $\ker f = (XY - 1)$, thus f(XY - 1) = 0, so f(X) = 1/f(Y)

I'll think about the rigorous details later, but basically $A(Z) \cong k[X, X^{-1}]$

Exercise 1.1.3 (1.1. (c)). Let f be any irreducible quadratic polynomial in k[X, Y], and let W be the conic defined by f. Show that A(W) is isomorphic to A(Y) or A(Z). Which one is it when?

Solution. Let f be irreducible.

$$A(W) = k[X, Y]/(f)$$

isn't this kinda clear ...? I'll come back to write it down rigorously, but in general ...

Exercise 1.1.4. Let $V \subset \mathbb{A}^3$ be the set $Y = \{(x, x^2, x^3) \in \mathbb{A}^3 \mid x \in K\}$.

- 1. Show that V is an affine variety of dimension 1.
- 2. Find generators for the ideal I(V).

Solution. An affine variety is an irreducible, closed subset of \mathbb{A}^n with regard to the Zariski topology.

- 1. We show that V is a closed subset with regard to the Zariski topology.
 - (a) Since any algebraic set is immediately a closed subset, it is enough to show that V is the zero-locus of some subset of polynomials in $K[X_1, \ldots, X_n]$.
 - (b) Consider the ideal $(Y X^2, Z X^3) \subset K[X, Y]$ and it's zero set $Z(Y X^2, Z X^3)$.
 - (c) Writing out the definition of the zero set gives

$$\begin{split} Z(Y-X^2,Z-X^3) &= \left\{ \, (x,y,z) \in \mathbb{A}^3 \mid y-x^2=0, \ z-x^3=0 \, \right\} \\ &= \left\{ \, (x,y,z) \in \mathbb{A}^3 \mid y=x^2, \ z=x^3 \, \right\} \\ &= \left\{ \, (x,x^2,x^3) \in \mathbb{A}^3 \mid x \in K \, \right\}. \end{split}$$

Thus, V is the zero set of the ideal $(Y - X^2, Z - X^3)$.

1.1. EXERCISES 15

- (d) Hence, by definition, $V = Z(Y X^2, Z X^3)$ is an algebraic set.
- 2. Here, we prove that V is irreducible.
 - (a) Consider the quotient $K[X, Y, Z]/(Y X^2, Z X^3)$.
 - (b) By substitution, we get the isomorphism

$$K[X, Y, Z]/(Y - X^2, Z - X^3) \cong K[X, X^2, X^3] = K[X].$$

- (c) Since K is a field it in particular an integral domain and so is K[X].
- (d) Thus, $(Y X^2, Z X^3)$ is prime in K[X, Y, Z].
- (e) With corollary 1.0.12 we may conclude the variety $V=Z(Y-X^2,Z-X^3)$ is irreducible.
- 3. We show that V is of dimension 1.
 - (a) By proposition 1.7, the dimension of V corresponds with the dimension of its affine coordinate ring A(V).
 - (b) It is

$$A(V) = K[X, Y, Z]/(Y - X^2, Z - X^3) \cong K[X].$$

(c) K[X] is a PID. All prime ideals are generated by irreducible elements. Thus dimension is 1.

Exercise 1.1.5. Let Y be the algebraic set in \mathbb{A}^3 defined by two polynomials $x^2 - yz$ and xz - x. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Solution. $Y = Z(x^2 - yz, xz - x)$

If z = 0, then x = 0 and y can be any thing, so one irreducible component is the y-axis. This is described by (x, z).

If x = 0, then yz = 0. If z = 0, then see above. y = 0 gives the z-axis as above.

If $z \neq 0$, then $x^2 = yz$ and x(z-1) = 0. And we have a parabola ...

Exercise 1.1.6. If we identify \mathbb{A}^2 with $\mathbb{A}^1 \times \mathbb{A}^1$ in the natural way, show that the Zariski topology on \mathbb{A}^{\nvDash} is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^1 .

Solution. In \mathbb{A}^1 , the only closed sets are finite sets and \mathbb{A}^1 itself. Take $\{p_1, p_2\} \subset \mathbb{A}^1$. Consider

$$\{(0,0);(0,1);(1,0);(1,1)\}$$

No, this is probably okay

Rather consider this example: $Z(X^2 - Y)$, then the preimages of the projections give the x-axis and the non-negative y-axis, but the latter is not an algebraic set.

Exercise 1.1.7. Show that k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n , for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Chapter 2

Projective Varieties

Chapter 3

Morphisms

Definition 3.0.1. Let X be a quasi-affine variety in \mathbb{A}^n_K and $f: X \to K$ a function.

- 1. f is regular at a point $p \in X$ if there is an open neighborhood $\mathcal{U} \subset X$ of p, and polynomials $g, h \in K[X_1, \ldots, X_n]$, such that $h(x) \neq 0$ for all $x \in \mathcal{U}$, and f = g/h on \mathcal{U} .
- 2. f is regular on X if it is regular at every point on X.

Lemma 3.0.2. A regular function is continuous, when K is identified with \mathbb{A}^1_K in its Zariski topology.

Definition 3.0.3 (Germ). Given a point p of a topological space X, and two maps $f, g: X \to Y$ where Y is any set, then f and g define the same germ at p if there is a neighbourhood \mathcal{U} of p such that restricted to \mathcal{U} , f and g are equal, i.e.

$$f(x) = g(x)$$
 for all $u \in \mathcal{U}$.

Definition 3.0.4. Let X be a variety.

- 1. We denote the ring of all regular functions on X by $\mathcal{O}(X)$.
- 2. If p is a point on X, we define the local ring of p on X, \mathcal{O}_p to be the ring of germs of regular functions on X near p. In other words, an element of \mathcal{O}_p is a pair (\mathcal{U}, f) where \mathcal{U} is an open subset of X containing p, and f is a regular function on \mathcal{U} , and where we identify two such pairs (\mathcal{U}, f) and (\mathcal{V}, g) if f = g on $\mathcal{U} \cap \mathcal{V}$.

Theorem 3.0.5. Let $X \subset \mathbb{A}^n$ be an affine variety.

1. The ring of all regular functions on X is isomorphic to the coordinate ring of X, i.e.

$$\mathcal{O}(X) \cong A(X)$$
.

- 2. There is a one-to-one correspondence between the points of X and the maximal ideals of A(Y).
- 3. The localization of the ring of all regular functions at $p \in X$

Bibliography

 $[{\it Har77}] \quad {\it Robin Hartshorne}. \ {\it Algebraic Geometry}. \ {\it New York: Springer}, \ 1977.$