Polytopes, Amoeba, and Tropical Curves Connections in Tropical Geometry

C. Haynes J. Whidden

GT Directed Reading Program, Fall 2024

Table of Contents

- Tropical Curves
- 2 Polytopes
- Amoebas
- 4 Conclusion

Definition

The *tropicalization* of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is given by its image in the *tropical semiring* T.

Definition

The *tropicalization* of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is given by its image in the *tropical semiring* T.

Basically, take addition and make it minimization, then take multiplication and make it addition.

Definition

The *tropicalization* of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is given by its image in the *tropical semiring* T.

Basically, take addition and make it minimization, then take multiplication and make it addition.

Example

The tropicalization of $f = x_1 + x_2 + 1$ is given by

Definition

The *tropicalization* of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is given by its image in the *tropical semiring* T.

Basically, take addition and make it minimization, then take multiplication and make it addition.

Example

The tropicalization of $f = x_1 + x_2 + 1$ is given by

$$trop(f) = min\{x_1, x_2, 1\}.$$

Example

The tropicalization of $f = x_1 + x_2 + 1$ is given by

$$trop(f) = min\{x_1, x_2, 1\}.$$

Its tropical curve is

These are the points where trop(f) has its minimum achieved twice.

Example

The tropicalization of $f = x_1 + x_2 + 1$ is given by

$$trop(f) = min\{x_1, x_2, 1\}.$$

Its tropical curve is

These are the points where trop(f) has its minimum achieved twice.

This constitutes one construction of a tropical curve.

Table of Contents

- 1 Tropical Curves
- 2 Polytopes
- Amoebas
- Conclusion

Definition

A polytope is the convex hull of some finite set of points in \mathbb{R}^n .

Definition

A polytope is the convex hull of some finite set of points in \mathbb{R}^n .

The Newton Polytope of a polynomial $f = \sum_k a_k x^{\mathbf{u}_k} \in \mathbb{C}[x_1, \dots, x_n]$ is the polytope in \mathbb{R}^n given by the convex hull of all $\mathbf{u}_k = (u_{k_1}, u_{k_2}, \dots, u_{k_n})$.

Definition

A polytope is the convex hull of some finite set of points in \mathbb{R}^n .

The Newton Polytope of a polynomial $f = \sum_k a_k x^{\mathbf{u}_k} \in \mathbb{C}[x_1, \dots, x_n]$ is the polytope in \mathbb{R}^n given by the convex hull of all $\mathbf{u}_k = (u_{k_1}, u_{k_2}, \dots, u_{k_n})$.

Here $x^{\mathbf{u}} = x_1^{u_1} x_2^{u_2} \dots x_n^{u_n}$.

Example

The Newton Polytope newt(f) of $f = x_1 + x_2 + 1$ is the convex hull of

$$\{(1,0),(0,1),(0,0)\}$$
:

Definition

The *inner normal fan* of a polytope Σ is the polyhedral fan containing the normal cones to each face of Σ .

Example

The inner normal fan of newt(f), where $f = x_1 + x_2 + 1$, is

Example

The inner normal fan of newt(f), where $f = x_1 + x_2 + 1$, is

Example

The inner normal fan of newt(f), where $f = x_1 + x_2 + 1$, is

This constitutes another construction of a tropical curve.

Table of Contents

- Tropical Curves
- 2 Polytopes
- 3 Amoebas
- 4 Conclusion

Definition

The variety $\mathbb{V}(f)$ of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is the set of points $v \in \mathbb{C}^n$ such that f(v) = 0.

Definition

The variety $\mathbb{V}(f)$ of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is the set of points $v \in \mathbb{C}^n$ such that f(v) = 0.

Varieties contain exactly those points on which f vanishes.

Definition

The variety $\mathbb{V}(f)$ of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is the set of points $v \in \mathbb{C}^n$ such that f(v) = 0.

Varieties contain exactly those points on which f vanishes.

Definition

The amoeba of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is the image of $\mathbb{V}(f)$ under the local logarithmic map

$$\mathsf{Log}: (\mathbb{C}^*)^n \to \mathbb{R}^n$$
,

$$Log(v_1,\ldots,v_n) = (\log |v_1|,\ldots,\log |v_n|).$$

Example

The amoeba of $f = x_1 + x_2 + 1$ is the image of V(f) under Log:

Example

The amoeba of $f = x_1 + x_2 + 1$ is the image of $\mathbb{V}(f)$ under Log:

Example

The amoeba of $f = x_1 + x_2 + 1$ is the image of $\mathbb{V}(f)$ under Log:

The *spine* of this amoeba is another construction of a *tropical curve*.

Table of Contents

- Tropical Curves
- 2 Polytopes
- Amoebas
- 4 Conclusion

Maybe you've noticed a pattern?

Maybe you've noticed a pattern?

Question: Why do these objects coincide?

Question: Why do these objects coincide?

Keywords: Tropical Geometry, Maslov Dequantization, Log Semiring, Logarithmic Limit Set, Newton Polytope

Book: Introduction to Tropical Geometry - Diane Maclagan and Bernd Sturmfels