2015年秋学期

工程矩阵理论期终考试评分标准

一、(12%) 设
$$P = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $C^{2\times 2}$ 的 子 空 间 $V_1 = \left\{ X \in C^{2\times 2} \mid PX = O \right\}$,

 $V_2 = \{X \in C^{2\times 2} \mid XP = O\}$ 。分别求 V_1 , V_2 , $V_1 \cap V_2$, $V_1 + V_2$ 的基及它们的维数.

【解】

$$V_1$$
 的基: $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\dim V_1 = 2$;

$$V_2$$
的基: $C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $\dim V_1 = 2$;

$$V_1 \cap V_2$$
 的基: $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\dim V_1 \cap V_2 = 1$;

 $V_1 + V_2$ 的基: A, B, C, $\dim V_1 + V_2 = 3$

二、(10%) 已知矩阵
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
, R^4 的子空间 $W = K^{\perp}(A)$, 求向量

 $\eta = (1,0,0,0)^T \pm W + 0 \pm 2W.$

【解】

 $W=K^\perp(A)=R(A^H)$ 。记 $A^H=(\alpha,\beta)$ 。明显地, α,β 线性无关,所以, α,β 是 $W=L(\alpha,\beta)$ 的一组基。

设 η 在W中的正投影 $\eta_0=a\alpha+b\beta$,则 $\eta_0-\eta\perp W$,即 $\eta_0-\eta\perp\alpha,\beta$,也即 $<\eta_0-\eta,\alpha>=<\eta_0-\eta,\beta>=0$ 。

因为
$$\eta_0 - \eta = (a-1,b,-a+b,a+b)^T$$
,

所以
$$\begin{cases} (a-1)-(-a+b)+(a+b)=0 \\ b+(-a+b)+(a+b)=0 \end{cases}, \ \ \text{故} \ a=\frac{1}{3}, b=0.$$

因此设 η 在W中的正投影 $\eta_0 = a\alpha + b\beta = \frac{1}{3}(1,0,-1,1)^T$ 。

三、 (18%) 设
$$f \not\in C^{2\times 2}$$
上的线性变换: $\forall X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C^{2\times 2}$, $f(X) = \begin{pmatrix} 2a + 3b + d & b \\ a + 2c + d & d \end{pmatrix}$.

1. 求 f 在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵 A;

【解】
$$A = \begin{pmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. 求f的特征值,并求相应的各特征子空间的一组基;

【解】 $|\lambda E - A| = (\lambda - 1)^2 (\lambda - 2)^2$, 所以, f 的特征值为1,1,2,2。

因为
$$(A-E)x=0$$
有基础解系:
$$\begin{pmatrix} 3\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix},$$

所以,相应于特征值 1,特征子空间有一组基: $\begin{pmatrix} 3 & -1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 。

因为
$$(A-2E)x = 0$$
有基础解系:
$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

所以,相应于特征值 2,特征子空间有一组基: $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ 。

3. 问:是否存在 $C^{2\times 2}$ 的基使得f的矩阵是对角阵?为什么?

【答】不存在。

因为f只有3个线性无关的特征向量,而 $\dim C^{2\times 2}=4$ 。两者不等。

四、
$$(10\%)$$
设 $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 2 & 3 \\ 0 & 1 & b \\ 0 & 0 & a \end{pmatrix}$. 求 A 的若当标准形; 并问: 当参数 a,b

取什么值时, A 与 B 相似?

【解】

$$|\lambda E - A| = (\lambda + 1)(\lambda - 1)^2$$
,所以 A 的特征值为 1, 1, -1 . 又 $r(A - E) = 2$,

所以,
$$A$$
的若当标准形是 $J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 。

$$|\lambda E - B| = (\lambda + 1)(\lambda - 1)(\lambda - a)$$
, 所以, B 的特征值为 1, -1 , a .

如果 A 与 B 相似,则它们有相同的特征值,从而 a = 1。

当 a=1 时, A 与 B 相似当且仅当它们有相同的若当标准形,即 B 与 J 相似,也即 r(B-E)=2,也就是 $b\neq 0$ 。

五、(10%)设
$$A = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & -2 \end{pmatrix}$$
. 将 e^{At} 表示成关于 A 的多项式,并求行列式 $\det e^{At}$ 的值.

【解】
$$|\lambda E - A| = \lambda(\lambda + 1)^2$$
,所以, A 特征值为 $0, -1, -1$ 。又 $r(A + E) = 2$,所以, A

的若当标准形是
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$
。

因此 A 的最小多项式是 $m(\lambda) = \lambda(\lambda+1)^2$ 。

记
$$f(\lambda) = e^{\lambda t}, g(\lambda) = a + b\lambda + c\lambda^2$$
。

则
$$g(A) = f(A)$$
 当且仅当 $g(0) = f(0), g(-1) = f(-1), g'(-1) = f'(-1)$,

即
$$\begin{cases} a = 1 \\ a - b + c = e^{-t}, & 解得 \\ b - 2c = te^{-t} \end{cases}$$

$$\begin{cases} a = 1 \\ b = 2 - 2e^{-t} - te^{-t}, \\ c = 1 - e^{-t} - te^{-t} \end{cases}$$

故
$$e^{At} = E + (2 - 2e^{-t} - te^{-t})A + (1 - e^{-t} - te^{-t})A^2$$
。

由于 A 特征值为 0,-1,-1,所以 e^{At} 特征值为 $1,e^{-t},e^{-t}$ 。故 $\det e^{At}=e^{-2t}$ 。

六、(10%)已知矩阵
$$A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
。求 A 的广义逆矩阵 A^+ .

【解】记
$$B=2, C=\begin{pmatrix}1&0&-1\\1&1&1\end{pmatrix}$$
。

于是
$$A = \begin{pmatrix} O & B \\ C & O \end{pmatrix}$$
,从而 $A^+ = \begin{pmatrix} O & C^+ \\ B^+ & O \end{pmatrix}$ 。

$$B^+ = \frac{1}{2}$$

C是行满秩矩阵,所以 $C^+ = C^H (CC^H)^{-1}$ 。

$$CC^{H} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad \text{IT } \bigcup \left(CC^{H} \right)^{-1} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}.$$

所以
$$C^+ = C^H (CC^H)^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{3} \\ -\frac{1}{2} & \frac{1}{3} \end{pmatrix}$$

所以,
$$A^{+} = \begin{pmatrix} O & C^{+} \\ B^{+} & O \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \\ 0 & -\frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$$

七、(30%)证明题:

- 1. 假设 α_1, α_2, L , α_n 是内积空间V的一组基, $\eta \in V$ 。如果 $\eta \perp \alpha_i$ (i = 1, 2, L, n). 证明: $\eta = \theta$ 。
 - 【证】设 η 为 $lpha_1,lpha_2$,L, $lpha_n$ 的线性组合 通过验证 $<\eta,\eta>=0$ 得出结论
- 2. 已知 A 是一 $m \times n$ 矩阵, A 的秩 r(A) = n, $\| \mathbf{g} \|$ 是线性空间 C^m 上的范数,证明: 如下定义的 C^n 上的函数 $\| \mathbf{g} \|_A$ 是 C^n 上的范数: 对任意 $x \in C^n$, $\| x \|_A = \| Ax \|$ 。
 - 【证】说明"当 $x\neq\theta$ 时 $Ax\neq\theta$ " 通过验证三条公理,最后得出结论
- 3. 已知n阶 Hermite矩阵 A 是正定的,B 是 $n \times s$ 矩阵。证明:矩阵 $B^H AB$ 是正定的 当且仅当B的秩r(B) = s。

【证】

- 4. 已知 $s \times n$ 矩阵 A 的秩 r(A) = r,关于矩阵的范数,证明: $\|AA^+\|_{E} = \sqrt{r} \|AA^+\|_{S}$
 - 【证】证明 AA^{\dagger} 的特征值为1或0

证明 AA⁺相似于对角阵

证明 $r(AA^{+}) = r(A)$ 并得出结论

5. 已知 $n \times n$ 矩阵A的最小多项式没有重根,证明:矩阵 $M = \begin{pmatrix} A & A^2 \\ A^2 & A \end{pmatrix}$ 的最小多项

式也没有重根。

【证】因为A的最小多项式没有重根,所以存在可逆矩阵P,使得 $P^{-1}AP = \Lambda$ 是对角阵。

令
$$C = \begin{pmatrix} P & O \\ O & P \end{pmatrix}$$
,则 C 是可逆的,且 $C^{-1}MC = \begin{pmatrix} \Lambda & \Lambda^2 \\ \Lambda^2 & \Lambda \end{pmatrix}$ 。

验证
$$C^{-1}MC = \begin{pmatrix} \Lambda & \Lambda^2 \\ \Lambda^2 & \Lambda \end{pmatrix}$$
是正规阵

所以 $C^{-1}MC$ 酉相似于对角阵。

从而M与对角阵相似,故其最小多项式没有重根。