Set 23: Student's T-Distribution

Stat 260: July 10, 2024

Recall: Central Limit Theorem (CLT): Let X_1, X_2, \ldots, X_n be a random sample of size n, where n is large $(n \ge 30)$ from any distribution, with mean μ and standard deviation σ . Then,

 $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \text{Normal}(0, 1).$ $\overline{X} \sim \text{Normal}(\mu, \sigma/\sqrt{n})$ and

Recall: Confidences Intervals for μ

• Case 1: σ is known and population is near-normally distributed.

• Case 2: σ is unknown and \underline{n} is large $(n \geq 30)$,

• What if σ is unknown and n is small (n < 30)?

Let X_1, X_2, \ldots, X_n be a random sample of size n from a (near) normal distribution with mean μ and unknown variance. Then,

Tr =
$$\frac{\overline{x} - u}{5/\sqrt{n}}$$
 follows a T-distribution with $V = n-1$ "degrees of freedom" (dof)

Properties of T Random Variables

- T random variables are continuous random variables.
- There are infinitely many T random variables.
 - \triangleright Each identified by parameter $\nu > 0$, the **degrees of freedom** (dof).
 - $\triangleright T_{\nu}$ denotes the T-distributed random variable with ν dof.
- The probability density function (pdf) for the T distribution is a symmetric bell curve, always centred at $\mu = 0$.

- The parameter ν dictates the shape of the T pdf:
 - \triangleright As ν increases \Rightarrow

variance decreases (graphbecomes taller in the middle)

more dof -> more pinched (taller graph)

as Y approaches 00: Too = Z (standard normal distribution)

Example 1: Determine the following:

(a) For $\nu = 20$, find $P(T_{20} \ge 1.725)$.

 $P(T_{20} \ge 1.725) = 0.05$ From T-dist table

	A.4 Crit	A.4 Critical Values of the t-Distribution				0		
				α				Eprobabil
(0)	0.40	0.30	0.20	0.15	0.10	0.05	0.025	Orghan
11	0.325	0.727	1.376	1.963	3.078		12.706	(,,
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	
. 8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	
V 9	0.261	0.543	0.883	1.100	1.383	1.883	2.262	
10	0.260	0.542	0.879	1.093	1.372	1.8 2	2.228	
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	
14	0.258	0.537	0.868			1.701	2.145	
15	0.258	0.536	0.866	1.074	1.341	1.733	2.131	
16	0.258		0.865	1.071				
17		0.534	0.863	1.071	1.337	1.7-6	2.120	
18	0.257	0.534	0.862	1.069		1.7-0	2.110	
19					1.330	1.784	2.101	1 /

(b) $P(T_3 \le -0.584)$.

(d) For $\nu=15$, determine the critical value: $t_{\frac{15}{4},0.01}$

(e) Determine $P(T_{18} > 2.45)$

 $P(T_{1g} > 2.45) \Rightarrow$ not in table 50 you take two closest values from table and give it as abound 2 0.01 $\leq P(T_{1g} > 2.45) < 0.015$

(f) Determine the value c such that $P(-c < T_{10} < c) = 0.90$.

Confidence Intervals for the mean μ

• Case 3: σ is unknown and n is small (n < 30).

When the population is near-normal, with unknown standard deviation and a small sample size, the $(100 - \alpha)$ CI is given by:

sample mean **Example 2:** The temperatures from 8 weather stations from around Victoria are measured, and a sample temperature of 14.2°C and sample standard deviation of 2.1°C are found. Find the 99% CI for the true mean temperature μ .

(reasonable to assume temp readings from same region are normally distributed)
$$\bar{x}$$
: 14.2°c 5=2.1°c n=8

Since n is small (n < 30), & is unknown, and population is near-normal use a t_r , a_{12} critical value.

990/o CI = 1-d=0.99 \rightarrow d=0.0) \Rightarrow d/2=0.05 (Y =n-1=8-1=7)

 t_r , 0.005 = 3.499

14.2 t (3.499) $\frac{2.1}{\sqrt{8}}$ = 14.2 t 2.60°C or [t_1 , t_2] form

 t_1 [11.6°c, 16.8°c]

Extra Example 1: Seven tomato plants are treated regularly with a standard commercial 5-10-10 fertilizer (5% Nitrogen, 10% Phosphorus, and 10% Potassium). At the end of the growing season, their total fruit yields are recorded below (in kg). Determine the 90% for the true mean fruit yield of the fertilized plants.

Ans: [4.28, 5.32]

Readings: Swartz 6.1.1 [EPS bottom half of p. 204 – end of 5.5]

Practice problems: EPS 5.9, 5.11

Devore 7ed: Read §7.2 to pg 265 [we use $n \ge 30$ as large] and §7.3. Practice Problems §7.2: 13, and §7.3: 29, 33, 35a, 37a, 39b, 41.

4