B-09 (ANSYS)

Формулировка задачи:

Дано: Стержень между двумя заделками.

$$E = 2 \cdot 10^{5} M\Pi a;$$

$$A = 200 \quad MM^{2};$$

$$F = 100 \quad \kappa H;$$

$$l = 400 \quad MM;$$

$$\Delta = \frac{F \cdot l}{F \cdot A} = 1 MM.$$

Hайти: эпюры N, σ , ε , w.

Аналитический расчёт (см. В-09) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

http://www.tychina.pro

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > 
Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > 
Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

№	Действие	Результат		
1	Задаём параметры расчёта — базовые величины задачи (задаём):U_M > Parameters > Scalar Parameters >F=100e3	Scalar Parameters		
2	Таблица элементов:Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3.М_М > PreprocessorС Р > ЕТ,1, ВЕАМЗ > EnterВторая строчка — контактный элемент CONTA178:М_М > Preprocessor > Element Type > Add/Edit/Delete > AddЕlement reference number пишем 2В левом окошке выбираем "Contact"В правом окошке "nd-to-nd 178"> ОК >В окошке Element types отметить вторую строчку "2 CONTA178"> Орtions >К2 установить "Penalty method"К4 установить "Real const GAP"К5 установить "Nodal coor - X"> ОК > Close	Defined Element Types: Type 1 BEAM3 Type 2 CONTA178 Add Options Delete Close Help		

№	Действие			Резул	ьтат	
	Кон	ечноэлементная модель				
	Узлы 1, 2, 3, 4 и 5 в точках В, С, D, K' и K' соответствен	но:				
6	M_M> Preprocessor> Modeling> Create> Node: NODE пишем 1 X,Y,Z пишем 0,0,0 > Apply > NODE пишем 2 X,Y,Z пишем l,0,0 > Apply > NODE пишем 3 X,Y,Z пишем 3*l,0,0 > Apply > NODE пишем 4 X,Y,Z пишем 4*l,0,0 > Apply > NODE пишем 5 X,Y,Z пишем 5 X,Y,Z пишем 4*l+Delta,0,0 > OK Справа от рабочего поля нажимаем кнопку Fit	s> In Active CS >	1 K-N	2	.3	SI,
7	Cкрываем оси системы координат: U_M > PlotCtrls > Window Controls > Windov Options > [/Triad] установить "Not Shown" > OK A Wedow Cyller FRAM Woodow Internation LEG Control lags READ Models for READ M	prioris of Image: Section of the s	1 K-N	2	.3	<u>.</u>

No	Действие	Результат
9	Контактный конечный элемент в зазоре (протягиваем по направлению оси X): Свойства элемента: M_M > Preprocessor > Modeling > Create > Elements > ElemAttributes > [ТҮРЕ]установить "2 CONTA178" [МАТ]установить "1" [REAL]установить "2" > ОК Протягиваем контакный элемент между узлами 4 и 5, ограничивающими зазор: M_M > Preprocessor > Modeling > Create > Elements > > Auto Numbered > Thru Nodes Левой кнопкой мыши последовательно кликаем на узлы 4 и 5 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 E-K-N
10	Проверка правильности протягивания конечных элементов между узлами: U_M > List > Elements > Nodes+Attributes Убеждаемся в том, что: а) Элементы протянуты последовательно между узлами 1 и 2, 2 и 3, 3 и 4, 4 и 5; б) Тип первых трёх элементов — 1 (это BEAM3), тип четвёртого элемента - 2 (это CONTA178); в) Реальные константы для балочных элементов — 1, для контактного — 2. Всё правильно. Закрываем информационное оконшко.	File LIST ALL SELECTED ELEHENTS. (LIST NODES) ELEH HAT TYP REL ESY SEC NODES 1 1 1 1 0 1 1 2 2 1 1 1 0 1 2 3 3 1 1 1 0 1 3 4 4 1 2 2 0 1 4 5

No	Действие	Результат
	Расчёт	
13	Запускаем расчёт: М_M > Solution > Solve > Current LS Синхронно появляются два окна: белое информационное и серое исполнительное. Белое закрываем, на сером нажимаем ОК. Расчёт пошёл. Когда он закончится, появится окно «Solution is done!». Закройте это окно. Расчёт окончен.	Time = 1 1.0E+10 1.0E+10 1.0E+04 1.0E+04 1.0E+05 1.0E+05 1.0E+04 1.0E+03 1.0E-04 1.0E-04 1.0E-05 0 5 Cumulative Iteration Number

http://www.tychina.pro

No	Действие	Результат
15	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	

N₂	Действие	Результат
18	Cocmaeление эпюры осевого напряжения: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LS,", "1" > Apply > "By sequence num", "LS,", "4" > OK > > Close	Currety Defined Data and Status: Label
19	Прорисовка эторы осевого напряжения: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "LS1" LabJ установить "LS4" > ОК Видим эпюру, состоящую из прямоугольников. Высоту каждого можно определить по его цвету, а можно посмотреть в виде списка: M_M > General Postproc > List Results > Elem Table Data > Отметить мышью строчку LS1 > ОК Получаем тот же результат, что и на рис. 1в. с погрешностями менее процента.	Time Time

No	Действие	Результат
20	Cocmaвление эпюры линейной осевой деформации: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "LEPEL,", "1" > Apply > "By sequence num", "LEPEL,", "4" > OK > > Close	A
21	Прорисовка эпюры линейной осевой деформации: М_M > General Postproc > Plot Results > Contour Plot >	PRETAB Command SS

N₂	Действие	Результат
22	Oceвые перемещения сечений стержня (таблица): M_M > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > X-Component of displacement> > OK Получаем окно "PRNSOL Command" с табличкой, где NODE — номер узла конечноэлементной модели, а UX — его перемещение по горизонтали. Погрешности вычисления перемещений узлов менее процента.	File PRINT U NODAL SOLUTION PER NODE ********* POST1 NODAL DEGREE OF FREEDOM LISTING ******* LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.12500E-02 3 0.17500E-02 4 0.10000G-02 5 0.0000 HAXIMUM ABSOLUTE VALUES NODE 3 VALUE 0.17500E-02

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.