Universidad de La Habana

FACULTAD DE MATEMÁTICA Y COMPUTACIÓN

Demostraciones de NP-Completitud

DISEÑO Y ANÁLISIS DE ALGORITMOS

Autor: Lidier Robaina Caraballo Grupo: C-411

Diciembre de 2024

${\rm \acute{I}ndice}$

1.	. Set Cover
	1.1. Set Cover vs Exact Cover
	1.2. $EC \in NP$
	1.3. $EC \in NP$ -Hard
	1.3.1. Reducción SAT \propto EC
	1.3.2. Demostración
2.	. Conjunto Dominante
	2.1. Definición de CD
	2.2. $CD \in NP$
	2.3. $CD \in NP$ -Hard
	2.3.1. Reducción VC \propto CD
	2.3.2. Demostración

1. Set Cover

Dado un conjunto X y una colección S de subconjuntos de X, el problema consiste en determinar si existe una subcolección $S' \subseteq S$ tal que cada elemento de X aparezca exactamente una vez en los subconjuntos de S'.

1.1. Set Cover vs Exact Cover

Set Cover es definido en la literatura como un problema ligeramente distinto: encontrar, si existe, la subcolección $S' \subseteq S$ de menor cardinalidad tal que $\bigcup_{\forall S_i \in S'} S_i = X$. Este problema es NP-

Completo, lo cual puede demostrarse por reducción desde Vertex Cover: dado un grafo G=(V,E), sean X=E y $\forall v_i \in V: S_i=\{e \in E \mid e \text{ incide en } v_i\}$, no es difícil notar que el problema de encontrar un cubrimiento mínimo en G es equivalente al problema de encontrar la menor cantidad de subconjuntos S_i que "cubran" todo X.

Por tanto, para evitar confusiones, en lo adelante nos referiremos al problema en cuestión como Exact Set Cover o Exact Cover (EC). EC es un caso particular de Set Cover (en su versión como problema de decisión) en el que los conjuntos S_i deben ser disjuntos, de forma tal que S' sea una partición de X.

1.2. $EC \in NP$

Dadas una instancia de EC definida por la entrada (X, S) y una posible solución S', es fácil verificar si S' "cubre exactamente" a X:

- 1. Recorrer cada conjunto de S' para comprobar que es un conjunto de la colección S.
- 2. Recorrer cada conjunto de S' y añadir sus elementos, sin repetición, a un conjunto A.
- 3. Comprobar si A = X, que en este caso ocurre si y solo si |A| = |X|.

Luego, como una solución de EC puede ser verificada en tiempo polinomial, EC es un problema NP.

1.3. $EC \in NP$ -Hard

A continuación demostraremos que EC puede ser reducido desde el problema de satisfacibilidad boolena (SAT), recordemos las definiciones:

- SAT: Dado un conjunto de cláusulas $C_1, C_2, ..., C_k$ sobre un conjunto de variables $x_1, x_2, ..., x_n$, donde cada cláusula está formada por una disyunción de literales (variables o sus negaciones), el problema consiste en determinar si existe una asignación de las variables que satisfaga la fórmula $f = C_1 \wedge C_2 \wedge ... \wedge C_k$.
- EC: Dado un conjunto X y una colección S de subconjuntos de X, el problema consiste en determinar si existe una subcolección $S' \subseteq S$ tal que cada elemento de X aparezca exactamente una vez en los subconjuntos de S'.

1.3.1. Reducción SAT \propto EC

Dada una instancia de SAT, mostremos cómo transformarla en una instancia de EC.

- X estará conformado por tres tipos de elementos:
 - x_i : un elemento por cada variable
 - C_j : un elemento por cada cláusula
 - p_{ij} : un elemento por cada aparación de una variable en una cláusula
- \blacksquare En S habrán cuatro tipos de subconjuntos de X:
 - $\{p_{ij}\}$ por cada elemento p_{ij}
 - $\{C_j, p_{ij}\}$ por cada cláusula C_j y cada una de las variables en C_j
 - $T_i = \{x_i\} \cup \{p_{ij} | x_i \text{ aparece en un literal negativo en } C_j\}$
 - $F_i = \{x_i\} \cup \{p_{ij} | x_i \text{ aparece en un literal postivo en } C_i\}$

Ejemplo: Sea la fórmula $f = C_1 \wedge C_2$ con $C_1 = x_1 \vee \overline{x_2}$ y $C_2 = \overline{x_1} \vee x_3$, al ejecutar el algoritmo anterior se obtiene la siguiente instancia de EC:

```
X = \{x_1, x_2, x_3, C_1, C_2, p_{11}, p_{21}, p_{12}, p_{32}\}
```

$$S = \{ \{p_{11}\}, \{p_{21}\}, \{p_{12}\}, \{p_{32}\}, \\ \{C_1, p_{11}\}, \{C_1, p_{21}\}, \{C_2, p_{12}\}, \{C_2, p_{32}\}, \\ T_1 = \{x_1, p_{12}\}, T_2 = \{x_2, p_{21}\}, T_3 = \{x_3\}, \\ F_1 = \{x_1, p_{11}\}, F_2 = \{x_2\}, F_3 = \{x_3, p_{32}\} \}$$

Teorema. La fórmula f es satisfacible si y solo si existe una subcolección $S' \subseteq S$ que "cubre exactamente" al conjunto X.

1.3.2. Demostración

 (\Rightarrow)

Sea f satisfacible para determinados valores de verdad de las variables, vamos a ir construyendo S' tomando conjuntos de S:

- 1. Si x_i =T entonces agregar T_i a S', si x_i =F agregar F_i . Quedan así cubiertos los elementos de X correpondientes a variables de f, sin solapamientos.
- 2. Como f ha sido evaluada verdadera, en todas las cláusulas C_j hay al menos un literal evaluado verdadero, sea x_i la variable correspondiente a uno de esos literales, agregar $\{C_j, p_{ij}\}$ a S'. Quedan así cubiertos los elementos de X correpondientes a cláusulas de f, sin solapamientos. Además, por la forma de construir los conjuntos T_i y F_i , podemos asegurar que los elementos p_{ij} añadidos en este paso no se solapan con los anteriores.
- 3. Agregar a S' los conjuntos $\{p_{ij}\}$ correspondientes a los elementos de este tipo que no pertenecen a ninguno de los conjuntos previamente añadidos.

Luego, por construcción, S' está constituido por conjuntos disjuntos cuya unión da como resultado al conjunto X.

Ejemplo: Utilicemos el mismo ejemplo para ilustrar el resultado, partiendo de la asignación $x_1=T$, $x_2=F$, $x_3=T$. Los conjuntos agregados a S' en cada paso son:

- 1. $T_1 = \{x_1, p_{12}\}, F_2 = \{x_2\}, T_3 = \{x_3\}$
- 2. $\{C_1, p_{11}\}, \{C_2, p_{32}\}$
- 3. $\{p_{21}\}$

Notar que, en efecto, cada elemento de X aparece exactamente una vez en los subconjuntos de S'.

(**←**`

Sea $S' \subseteq S$ un cubrimiento exacto de X, asignemos los valores a las variables de f de la siguiente manera:

- si $T_i \in S'$ entonces $x_i = T$
- si $F_i \in S'$ entonces $x_i = F$

Como x_i aparece exactamente una vez en S', T_i y F_i no pueden pertenecer ambos a S', por tanto no hay conflicto en la asignación.

Analicemos los conjuntos de S' del tipo $\{C_j, p_{ij}\}$, que recordemos correponde a un literal de la variable x_i en la cláusula C_j . Se tiene que dar uno de los siguientes cuatro casos:

- 1. x_i =T y el literal es negativo. Este caso es imposible, pues $p_{ij} \in T_i$ por definición de T_i , $T_i \in S'$ pues x_i =T, y p_{ij} ocurre exactamente una vez en S'.
- 2. x_i =F y el literal es positivo. Análogo al anterior, es imposible pues $p_{ij} \in F_i$ y $F_i \in S'$.
- 3. x_i =T y el literal es positivo. Este caso es posible, y satisface a C_i .
- 3. x_i =F y el literal es negativo. Análogo al anterior, es posible y satisface a C_i .

Los únicos conjuntos del tipo $\{C_j, p_{ij}\}$ que pueden pertenecer a S' corresponden a literales que satisfacen la cláusula C_i , y en S' hay un conjunto de este tipo para cada cláusula, por tanto todas las cláusulas son evaluadas verdaderas según esta asignación de las variables. Luego, f es satisfacible. \square

Hemos reducido un conocido problema NP-Completo a EC, por tanto EC es un problema NP-Hard, y como también es NP, entonces es NP-Completo.

2. Conjunto Dominante

En un grafo G = (V, E), un conjunto de vértices $D \subseteq V$ es un conjunto dominante si cada vértice de V que no está en D es adyacente a al menos un vértice de D. El número dominante es la cardinalidad del menor conjunto dominante de G.

Hallar el número dominante de G.

2.1. Definición de CD

Para analizar su NP-Completitud, es necesario transformar el problema en un problema de decisión:

■ CD: Dados un grafo G y un entero positivo k, determinar si existe en G un conjunto dominante de tamaño k.

2.2. $CD \in NP$

Es fácil verificar si un conjunto de vértices es dominante en tiempo polinomial. Basta con añadir cada vértice del conjunto y cada uno de los adyacentes a estos a un conjunto auxiliar; al finalizar el algoritmo, ese conjunto auxiliar es igual a V si y solo si el conjunto de entrada es dominante. Luego, CD es un problema NP.

2.3. $CD \in NP$ -Hard

A continuación demostraremos que CD puede ser reducido desde el problema de Vertex Cover (VC), recordemos su definición:

■ VC: Dados un grafo G y un entero positivo k, determinar si existe un conjunto de vértices de tamaño k tal que sobre los vértices del conjunto insidan todas las aristas de G.

2.3.1. Reducción $VC \propto CD$

Dada un grafo G=(V,E) de entrada a VC, mostremos cómo transformarlo en un grafo G'=(V',E') de entrada para CD.

- $V' = V \cup \{v_i | 1 \le i \le |E|\}$ (añadir un nuevo vértice por cada arista de G)
- $E' = E \cup \{(u, v_i), (v_i, v) | e_i = (u, v), 1 \le i \le |E|\}$ (añadir una arista desde cada nuevo vértice hacia los dos vértices incididos por su arista correpondiente)

Teorema. En G existe un cubrimiento de vértices de tamaño k si y solo si en G' existe un conjunto dominante de tamaño k.

2.3.2. Demostración

 (\Rightarrow)

Llamemos vértice "dominante" a un vértice que pertenece a un conjunto dominante, y digamos que "domina" a sus vértices adyacentes.

Al menos uno de los vértices incididos por cada arista de E tiene que pertenecer al cubrimiento de G, por tanto podemos considerar a los vértices del cubrimiento como dominantes en G y al resto de los vértices de V como dominados. Igualmente, los vértices de G' que no pertenecen a V (los vértices añadidos) son dominados por esos mismos vértices, pues son necesariamente adyacentes a alguno de ellos. Luego, el mismo conjunto que es un cubrimiento de G es un conjunto dominante de G'.

 (\Leftarrow)

Sea D un conjunto dominante en G' de tamaño k, consideremos dos casos:

- $D \subseteq V$: Todo vértice de G pertenece a D o es adyacente a algún vertice de D, por tanto toda arista de G incide sobre algún vértice de G. Luego, D es un cubrimiento de G de tamaño k.
- $D \nsubseteq V$: Todo vértice añadido que pertenezca a D puede ser sustituido por cualquiera de sus dos vecinos, y seguirá siendo un conjunto dominante. Luego, se puede reducir al caso anterior.

Por tanto, queda demostrado para cualquier caso. \square

Hemos reducido un conocido problema NP-Completo a CD, por tanto CD es un problema NP-Hard, y como también es NP, entonces es NP-Completo.