```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np

In [2]: %*javascript
    IPython.OutputArea.prototype._should_scroll = function(lines) {
        return false;
    }

In [3]: from IPython.display import set_matplotlib_formats
    set_matplotlib_formats('retina')

In []:

In [4]: top_df = pd.read_csv("/Users/adriana/Google Drive/_Learning/_DS4A/Assignments/0_Final_Project/2020_top_thir
    ty.csv")
```

ty.csv")

poli\_df = pd.read\_csv("/Users/adriana/Google Drive/\_Learning/\_DS4A/Assignments/0\_Final\_Project/top\_thirty\_p

oli\_df.csv")

hc\_df = pd.read\_csv("/Users/adriana/Google Drive/\_Learning/\_DS4A/Assignments/0\_Final\_Project/top\_thirty\_hc\_

df.csv")

In [5]: top\_df.head()

### Out[5]:

|   | region    | city          | state      | popsize | pop_est | white_nonhi | black | asian | hisp_lat |
|---|-----------|---------------|------------|---------|---------|-------------|-------|-------|----------|
| 0 | northeast | New York City | New York   | 1M+     | 8336817 | 0.32        | 0.243 | 0.141 | 0.291    |
| 1 | west      | Los Angeles   | California | 1M+     | 3979576 | 0.29        | 0.089 | 0.116 | 0.485    |
| 2 | midwest   | Chicago       | Illinois   | 1M+     | 2693976 | 0.33        | 0.296 | 0.066 | 0.288    |
| 3 | southwest | Houston       | Texas      | 1M+     | 2320268 | 0.24        | 0.226 | 0.068 | 0.450    |
| 4 | west      | Phoenix       | Arizona    | 1M+     | 1680992 | 0.43        | 0.071 | 0.038 | 0.426    |

| [6]: | po  | li_df.he  | ad()        |               |              |         |             |       |       |          |             |            |            |
|------|-----|-----------|-------------|---------------|--------------|---------|-------------|-------|-------|----------|-------------|------------|------------|
| [6]: |     | region    | city        | state         | popsize      | pop_est | white_nonhi | black | asian | hisp_lat | mayor_party | gov_party  | leg_maj    |
|      | 0   | southwest | Albuquerque | New Mexico    | 500k-999,999 | 560513  | 0.39        | 0.033 | 0.029 | 0.492    | Democrat    | Democrat   | Democrat   |
|      | 1   | southeast | Atlanta     | Georgia       | 500k-999,999 | 506811  | 0.38        | 0.510 | 0.044 | 0.043    | Democrat    | Republican | Democrat   |
|      | 2   | southwest | Austin      | Texas         | 500k-999,999 | 978908  | 0.48        | 0.078 | 0.076 | 0.339    | Democrat    | Republican | Republican |
|      | 3   | northeast | Baltimore   | Maryland      | 500k-999,999 | 593490  | 0.28        | 0.624 | 0.026 | 0.053    | Democrat    | Republican | Democrat   |
|      | 4   | northeast | Boston      | Massachusetts | 500k-999,999 | 692600  | 0.45        | 0.252 | 0.097 | 0.198    | Democrat    | Republican | Democrat   |
|      | hc_ | _df.head  | ()          |               |              |         |             |       |       |          |             |            |            |
| [7]: |     | region    | city        | state         | popsize      | pop_est | white_nonhi | black | asian | hisp_lat | hc_demo     |            |            |
|      | 0   | southwest | Albuquerque | New Mexico    | 500k-999,999 | 560513  | 0.39        | 0.033 | 0.029 | 0.492    | 25.0        |            |            |
|      | 1   | southeast | Atlanta     | Georgia       | 500k-999,999 | 506811  | 0.38        | 0.510 | 0.044 | 0.043    | NaN         |            |            |

5.0

NaN

113.0

0.339

0.053

0.198

### Merge & Clean 2019 Hate Crimes and 2018-2021 Political Parties (Congress, Governor, & Mayor)

978908

593490

692600

0.48 0.078 0.076

0.28 0.624 0.026

0.45 0.252 0.097

Texas 500k-999,999

Maryland 500k-999,999

Boston Massachusetts 500k-999,999

2 southwest

northeast

northeast

Austin

Baltimore

```
In [8]: # merge political and hate crime dfs to top_df

top_df = pd.merge(poli_df, hc_df, on = "city", how = "left")
top_df.head()
```

### Out[8]:

|   | region_x  | city        | state_x       | popsize_x    | pop_est_x | white_nonhi_x | black_x | asian_x | hisp_lat_x | mayor_party | <br>leg_maj    | region  |
|---|-----------|-------------|---------------|--------------|-----------|---------------|---------|---------|------------|-------------|----------------|---------|
| 0 | southwest | Albuquerque | New Mexico    | 500k-999,999 | 560513    | 0.39          | 0.033   | 0.029   | 0.492      | Democrat    | <br>Democrat   | southwe |
| 1 | southeast | Atlanta     | Georgia       | 500k-999,999 | 506811    | 0.38          | 0.510   | 0.044   | 0.043      | Democrat    | <br>Democrat   | southea |
| 2 | southwest | Austin      | Texas         | 500k-999,999 | 978908    | 0.48          | 0.078   | 0.076   | 0.339      | Democrat    | <br>Republican | southwe |
| 3 | northeast | Baltimore   | Maryland      | 500k-999,999 | 593490    | 0.28          | 0.624   | 0.026   | 0.053      | Democrat    | <br>Democrat   | northea |
| 4 | northeast | Boston      | Massachusetts | 500k-999,999 | 692600    | 0.45          | 0.252   | 0.097   | 0.198      | Democrat    | <br>Democrat   | northea |

5 rows × 21 columns

### In [9]: top\_df.columns

### In [10]: # clean columns for top\_df

### Out[10]:

| region      | city        | state         | popsize      | pop_est | white_nonhi | black | asian | hisp_lat | mayor_party | gov_party  | cong_maj   | hc_demo |
|-------------|-------------|---------------|--------------|---------|-------------|-------|-------|----------|-------------|------------|------------|---------|
| 0 southwest | Albuquerque | New Mexico    | 500k-999,999 | 560513  | 0.39        | 0.033 | 0.029 | 0.492    | Democrat    | Democrat   | Democrat   | 25.0    |
| 1 southeast | Atlanta     | Georgia       | 500k-999,999 | 506811  | 0.38        | 0.510 | 0.044 | 0.043    | Democrat    | Republican | Democrat   | NaN     |
| 2 southwest | Austin      | Texas         | 500k-999,999 | 978908  | 0.48        | 0.078 | 0.076 | 0.339    | Democrat    | Republican | Republican | 5.0     |
| 3 northeast | Baltimore   | Maryland      | 500k-999,999 | 593490  | 0.28        | 0.624 | 0.026 | 0.053    | Democrat    | Republican | Democrat   | NaN     |
| 4 northeast | Boston      | Massachusetts | 500k-999,999 | 692600  | 0.45        | 0.252 | 0.097 | 0.198    | Democrat    | Republican | Democrat   | 113.0   |

### In [11]: # sort top\_df by population size estimate top\_df = top\_df.sort\_values(by=['pop\_est'], ascending = False) top\_df.head()

### Out[11]:

|    | region    | city          | state      | popsize | pop_est | white_nonhi | black | asian | hisp_lat | mayor_party | gov_party  | cong_maj   | hc_demo |
|----|-----------|---------------|------------|---------|---------|-------------|-------|-------|----------|-------------|------------|------------|---------|
| 26 | northeast | New York City | New York   | 1M+     | 8336817 | 0.32        | 0.243 | 0.141 | 0.291    | Democrat    | Democrat   | Democrat   | 90.0    |
| 20 | west      | Los Angeles   | California | 1M+     | 3979576 | 0.29        | 0.089 | 0.116 | 0.485    | Democrat    | Democrat   | Democrat   | 118.0   |
| 6  | midwest   | Chicago       | Illinois   | 1M+     | 2693976 | 0.33        | 0.296 | 0.066 | 0.288    | Democrat    | Democrat   | Democrat   | 18.0    |
| 15 | southwest | Houston       | Texas      | 1M+     | 2320268 | 0.24        | 0.226 | 0.068 | 0.450    | Democrat    | Republican | Republican | 13.0    |
| 30 | west      | Phoenix       | Arizona    | 1M+     | 1680992 | 0.43        | 0.071 | 0.038 | 0.426    | Democrat    | Republican | Democrat   | 111.0   |

```
In [12]: # Create new columns for total population size estimate of black + asian + hisp/lat;
# and columns for each demographic's population size estimate

top_df["minor_pop_est"] = (top_df["black"] + top_df["asian"] + top_df["hisp_lat"]) * top_df["pop_est"]
top_df["white_pop_est"] = top_df["white_nonhi"] * top_df["pop_est"]
```

top\_df["black\_pop\_est"] = top\_df["black"] \* top\_df["pop\_est"]
top\_df["asian\_pop\_est"] = top\_df["asian"] \* top\_df["pop\_est"]
top\_df["hisp\_lat\_pop\_est"] = top\_df["hisp\_lat"] \* top\_df["pop\_est"]
top\_df.head()

### Out[12]:

|    | region    | city                | state       | popsize | pop_est | white_nonhi | black | asian | hisp_lat | mayor_party | gov_party  | cong_maj   | hc_demo | minor_pop_ |
|----|-----------|---------------------|-------------|---------|---------|-------------|-------|-------|----------|-------------|------------|------------|---------|------------|
| 26 | northeast | New<br>York<br>City | New<br>York | 1M+     | 8336817 | 0.32        | 0.243 | 0.141 | 0.291    | Democrat    | Democrat   | Democrat   | 90.0    | 5627351.4  |
| 20 | west      | Los<br>Angeles      | California  | 1M+     | 3979576 | 0.29        | 0.089 | 0.116 | 0.485    | Democrat    | Democrat   | Democrat   | 118.0   | 2745907.   |
| 6  | midwest   | Chicago             | Illinois    | 1M+     | 2693976 | 0.33        | 0.296 | 0.066 | 0.288    | Democrat    | Democrat   | Democrat   | 18.0    | 1751084.   |
| 15 | southwest | Houston             | Texas       | 1M+     | 2320268 | 0.24        | 0.226 | 0.068 | 0.450    | Democrat    | Republican | Republican | 13.0    | 1726279.:  |
| 30 | west      | Phoenix             | Arizona     | 1M+     | 1680992 | 0.43        | 0.071 | 0.038 | 0.426    | Democrat    | Republican | Democrat   | 111.0   | 899330.    |

### In [13]: # save master df for resiliency

top\_df.to\_csv("/Users/adriana/Google Drive/\_Learning/\_DS4A/Assignments/0\_Final\_Project/2020\_top\_thirty\_fina
l.csv", index = False)

### **Population and Minority Demos**

```
In [14]: # Population Estimate of Top 40 Cities by Region

pop_region_plot = top_df.groupby("region")["pop_est"].sum()
pop_region_plot.plot.bar(figsize = (15,5))
plt.xlabel("Regions in the US")
plt.ylabel("population (millions)")
plt.title("Population Estimate of Top 40 Cities by Region");
```



## In [15]: # Population Est. and Minority Pop. Est. of Top 40 Cities pop\_city\_plot = top\_df[["city", "pop\_est", "minor\_pop\_est"]].sort\_values(by=['pop\_est'], ascending = False) pop\_city\_plot.plot.bar(x = "city", figsize = (15,5)) plt.xlabel("Top 40 Cities in the US") plt.ylabel("population (millions)") plt.title("Population Est. and Minority Pop. Est. of Top 40 Cities");





In [17]: # Population Est., Minority Est., and Demographics Est. of Top 40 Cities by Region

pop\_demo\_plot = top\_df.groupby("region")[["pop\_est", "minor\_pop\_est", "white\_pop\_est","black\_pop\_est","asia n\_pop\_est", "hisp\_lat\_pop\_est"]].sum().sort\_values(by=['pop\_est'], ascending = False)
pop\_demo\_plot.plot.barh(figsize = (15,10))
plt.xlabel("population (millions)")
plt.ylabel("Top 40 Cities by Region in the US")
plt.title("Population Est., Minority Est., and Demographics Est. of Top 40 Cities by Region");



```
In [18]: # Population Est., Minority Est., and Demographics Est. of Top 10 Cities

pop_demo_plot = top_df.groupby("city")[["pop_est", "minor_pop_est", "white_pop_est","black_pop_est","asian_pop_est", "hisp_lat_pop_est"]].sum().sort_values(by=['pop_est'], ascending = False).head(10)
pop_demo_plot.plot.bar(figsize = (20,5))
plt.xlabel("Top 10 Cities by Region in the US")
plt.ylabel("population (millions)")
plt.title("Population Est., Minority Est., and Demographics Est. of Top 10 Cities");
```



```
In [19]: # Create new features for each total minorities
# and each demographic's percentage of the total population, for each city

top_df["minor_pop_ratio"] = top_df["minor_pop_est"]/top_df["pop_est"]
top_df["white_pop_ratio"] = top_df["white_pop_est"]/top_df["pop_est"]
top_df["black_pop_ratio"] = top_df["black_pop_est"]/top_df["pop_est"]
top_df["asian_pop_ratio"] = top_df["asian_pop_est"]/top_df["pop_est"]
top_df["hisp_lat_pop_ratio"] = top_df["hisp_lat_pop_est"]/top_df["pop_est"]
```

```
In [20]: # save master df for resiliency
     top_df.to_csv("/Users/adriana/Google Drive/_Learning/_DS4A/Assignments/0_Final_Project/2020_top_thirty_fina
     l.csv", index = False)
```

## In [21]: # Minority Population Ratio of Top 40 Cities by Region ratio\_region\_plot = top\_df.groupby("region")["minor\_pop\_ratio"].sum().sort\_values(ascending = False) ratio\_region\_plot.plot.bar(figsize = (15,5)) plt.xlabel("Top 40 Cities by Region in the US") plt.ylabel("Minority Population Ratio") plt.title("Minority Population Ratio of Top 40 Cities by Region");



### In [22]: # Minority Population Ratio of Top 40 Cities ratio\_city\_plot = top\_df.groupby("city")["minor\_pop\_ratio"].sum().sort\_values(ascending = False) ratio\_city\_plot.plot.bar(figsize = (15,5)) plt.xlabel("Top 40 Cities in the US") plt.ylabel("Minority Population Ratio") plt.title("Minority Population Ratio of Top 40 Cities");





```
In [24]: # Minority Population Ratio by Demo of Top 10 Cities

dem_ratio_city_plot = top_df.groupby(["city","pop_est"])[["white_pop_ratio", "black_pop_ratio", "asian_pop_ratio", "hisp_lat_pop_ratio"]].sum().sort_values(by = "hisp_lat_pop_ratio", ascending = False).head(10)
    dem_ratio_city_plot.plot.bar(figsize = (15,5))
    plt.xlabel("Top 10 Cities in the US")
    plt.ylabel("Minority Population Ratio by Demo")
    plt.title("Minority Population Ratio by Demo of Top 10 Cities");
```



### **Hate Crime**

In [25]: # FBI Hate Crimes Victims of Single-bias Incidents in 2019 by Top 40 Cities

hc\_plot = top\_df[["city", "hc\_demo"]].sort\_values(by = "hc\_demo", ascending = False)
hc\_plot.plot.bar(x = "city", y = "hc\_demo", color = "orangered", figsize = (15,5))
plt.xlabel("Top 40 Cities")
plt.ylabel("Ethnicity, Race, and Ancestry HC")
plt.title("FBI Hate Crimes Victims of Single-bias Incidents in 2019 by Top 40 Cities");





```
In [26]: # FBI Hate Crimes Victims of Single-bias Incidents in 2019 by Top 40 Cities by Region
hc_region_plot = top_df.groupby("region")["hc_demo"].sum()
hc_region_plot.plot.bar(color = "orangered", figsize = (15,5))
plt.xlabel("Regions in the US")
plt.ylabel("By Ethnicity, Race, and Ancestry")
plt.title("FBI Hate Crimes Victims of Single-bias Incidents in 2019 by Top 40 Cities by Region");
```



### **Hate Crime and Population Correlations**

```
In [27]: # Correlation of total minority population percentage to count of victims of hate crimes (race, ethnicity, ancestry)

minor_hc_corr = top_df[["minor_pop_ratio", "hc_demo"]].corr()
minor_hc_corr
```

### Out[27]:

|                 | minor_pop_ratio | hc_demo   |
|-----------------|-----------------|-----------|
| minor_pop_ratio | 1.000000        | -0.028896 |
| hc_demo         | -0.028896       | 1.000000  |

### In [28]: minor\_hc\_corr.plot.line();



### Out[29]:

| region  | midwest | northeast | southeast  | southwest | west  |
|---------|---------|-----------|------------|-----------|-------|
| hc_demo |         |           |            |           |       |
| 0.0     | 100.0   | 0.0       | 0.000000   | 0.000000  | 0.0   |
| 1.0     | 0.0     | 0.0       | 0.000000   | 0.000000  | 100.0 |
| 2.0     | 50.0    | 0.0       | 0.000000   | 50.000000 | 0.0   |
| 3.0     | 0.0     | 0.0       | 33.333333  | 66.666667 | 0.0   |
| 4.0     | 0.0     | 0.0       | 100.000000 | 0.000000  | 0.0   |

```
In [30]: # heatmap of crosstab

sns.set(rc = {'figure.figsize':(8, 8)})
ax = sns.heatmap(hc_norm, cmap = "Reds")
ax.set_title("Hate Crime Counts, per City, by Region");
```



### **Mayor Political Party**

In [31]: # Mayoral Party Counts of the Top 40 Cities

mayor\_plot = top\_df.groupby("mayor\_party")["city"].count()
mayor\_plot.plot.bar(color = "darkcyan", figsize = (15,5))
plt.xlabel("Political Party Affiliation")
plt.ylabel("Count")
plt.title("Mayoral Party Counts of the Top 40 Cities");



```
In [32]: # Mayoral Party Counts of the Top 40 Cities by Region

mayor_region_plot = top_df.groupby("region")["mayor_party"].value_counts().unstack()
mayor_region_plot.plot.barh(figsize = (15,5))
plt.xlabel("Mayoral Party Count")
plt.ylabel("Region")
plt.title("Mayoral Party Counts of the Top 40 Cities by Region");
```



### **Governor Political Party**

# In [33]: # Governor Political Party Counts of the Top 40 Cities gov\_plot = top\_df.groupby("gov\_party")["city"].count() gov\_plot.plot.bar(color = "rebeccapurple", figsize = (15,5)) plt.xlabel("Political Party Affiliation") plt.ylabel("Count") plt.title("Governor Political Party Counts of the Top 40 Cities");



```
In [34]: # Governor Party Counts of the Top 40 Cities by Region

gov_region_plot = top_df.groupby("region")["gov_party"].value_counts().unstack()
    gov_region_plot.plot.barh(figsize = (15,5))
    plt.xlabel("Governor Party Count")
    plt.ylabel("Region")
    plt.title("Governor Party Counts of the Top 40 Cities by Region");
```



### **Congress Majority Party**

# In [35]: # Total Congress Party Majority Counts of the Top 40 Cities cong\_plot = top\_df.groupby("cong\_maj")["city"].count() cong\_plot.plot.bar(color = "olivedrab", figsize = (15,5)) plt.xlabel("Political Party Affiliation") plt.ylabel("Count") plt.title("Total Congress Party Majority Counts of the Top 40 Cities");



```
In [36]: # Congress Majority Party Counts of the Top 40 Cities by Region

cong_region_plot = top_df.groupby("region")["cong_maj"].value_counts().unstack()
cong_region_plot.plot.barh(figsize = (15,5))
plt.xlabel("Congress Majority Counts")
plt.ylabel("Region")
plt.title("Congress Majority Party Counts of the Top 40 Cities by Region");
```



### **Political Sums**

To-Do:

• mayor\_state = how frequently mayoral party and state majority party differs

# In [37]: # Total Party Majority Counts of the Top 40 Cities by Region political = top\_df[["region", "city", "mayor\_party", "gov\_party", "cong\_maj"]] political = political.melt(id\_vars = ["region","city"], value\_vars = ["mayor\_party", "gov\_party", "cong\_maj"]) political\_gb = political.groupby("region")["value"].value\_counts(normalize=True).unstack() political\_gb.plot.barh(figsize = (15,5)) plt.xlabel("Total Party Majority Normalized Counts") plt.ylabel("Region") plt.title("Total Political Party Majority Counts of the Top 40 Cities by Region");



```
In [38]: mayor_count = top_df.groupby("mayor_party")["city"].count()
    mayor_region_count = top_df.groupby("region")["mayor_party"].value_counts().unstack()
    gov_count = top_df.groupby("gov_party")["city"].count()
    gov_region_count = top_df.groupby("region")["gov_party"].value_counts().unstack()
    cong_count = top_df.groupby("cong_maj")["city"].count()
    cong_region_count = top_df.groupby("region")["cong_maj"].value_counts().unstack()
    political_total_norm = political.groupby("region")["value"].value_counts(normalize=True).unstack()
```

```
In [39]: mayor_region_count
Out[39]:
```

| mayor_party | Democrat | Independent | Republican | none |
|-------------|----------|-------------|------------|------|
| region      |          |             |            |      |
| midwest     | 6.0      | NaN         | 1.0        | NaN  |
| northeast   | 5.0      | NaN         | NaN        | NaN  |
| southeast   | 5.0      | NaN         | 1.0        | NaN  |
| southwest   | 6.0      | 1.0         | 3.0        | NaN  |
| west        | 9.0      | NaN         | 2.0        | 1.0  |

### **Sources**

Census Data (2019-2020): <a href="https://www.census.gov/quickfacts/fact/table">https://www.census.gov/quickfacts/fact/table</a> (https://www.census.gov/quickfacts/fact/table)

Hate Crime Data (2019 - race, ethnicity, ancestry): <a href="https://ucr.fbi.gov/hate-crime/2019">https://ucr.fbi.gov/hate-crime/2019</a> (https://ucr.fbi.gov/hate-crime/2019)

### **Political Data**

Mayoral (2021): <a href="https://ballotpedia.org/Party\_affiliation\_of\_the\_mayors\_of\_the\_100\_largest\_cities">https://ballotpedia.org/Party\_affiliation\_of\_the\_mayors\_of\_the\_100\_largest\_cities</a>)

/Party\_affiliation\_of\_the\_mayors\_of\_the\_100\_largest\_cities)

Governor (2021): https://ballotpedia.org/Partisan\_composition\_of\_governors (https://ballotpedia.org/Partisan\_composition\_of\_governors)

Senate (2020): <a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU</a> (<a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU</a> (<a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU</a> (<a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PEJ5QU</a>)

House of Representatives (2018): <a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2</a> (<a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2</a> (<a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2</a> (<a href="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2">https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2</a>)

| In [ ]: |  |
|---------|--|
|---------|--|