

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных систем и технологий

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ

Отчет по лабораторной работе №2 «Распараллеливание арифметических выражений» Вариант №28

Выполнил студент гр. ИДБ-21-06

Музафаров К.Р.

Проверил

Саркисова И.О.

Дано: (m*p - o/f) - u*(a + x) - (w - r) + k*(c + q)/(y + b)

1) Составим эквивалентное выражение \tilde{E} и проверим на равносильность.

$$\tilde{E} = ((((m*p)-(o/f))-(u*(a+x)))-(w-r))+(k*((c+q)/(y+b)))$$

2) Схема с максимальным числом операций на каждом ярусе

Характеристика схемы:

- Число операций w = 13
- Число ярусов (высота) дерева h = 5
- Время, затрачиваемое на вычисления t = 5
- Ширина р = 6
- _ Степень параллелизма $D_p = \frac{w}{h} = \frac{13}{5} = 2,6$
- Время выполнения параллельного алгоритма $T_p=5$
- Время выполнения наилучшего последовательного алгоритма $T_1=13$
- Ускорение параллельного алгоритма $S_p = \frac{T_1}{T_P} = \frac{13}{5} = 2,6$
- _ Эффективность алгоритма $E_p = \frac{S_p}{p} = \frac{2,6}{6} = 0,43(3)$

3) Схема с оптимальным количеством операций на каждом ярусе.

Для
$$\tilde{E} = ((m*p)-(o/f)-(u*(a+x)))-(w-r)+(k*((c+q)/(y+b)))$$

Характеристика схемы:

- Число операций w = 13
- Число ярусов (высота) дерева h = 6
- Время, затрачиваемое на вычисления t = 6
- Ширина р = 3
- _ Степень параллелизма $D_p = \frac{w}{h} = \frac{13}{6} = 2,16(6)$
- Время выполнения параллельного алгоритма $T_p = 6$
- Время выполнения наилучшего последовательного алгоритма $T_1=13$
- _ Ускорение параллельного алгоритма $S_p = \frac{T_1}{T_P} = \frac{13}{6} = 2,16(6)$
- _ Эффективность алгоритма $E_p = \frac{S_p}{p} = \frac{2,16(6)}{3} = 0,72(2)$

4) Сравнение характеристик

До оптимизации	После оптимизации
$w = T_1 = 14$	$w = T_1 = 14$
h = 5	h = 6
p = 6	p = 3
$D_p = 2.8$	$D_p = 2.16(6)$
$S_p = 2.8$	$S_p = 2,16(6)$
$E_p = 0.46(6)$	$E_p = 0.72(2)$

5) Зависимости характеристик ускорения и эффективности исходного арифметического выражения от числа процессов:

Р - количество процессов за такт Е - эффективность S - ускорение										
P	1	2	3	4	5	6	7	8	9	10
E_p	1	0,928	0,722	0,65	0,52	0,433	0,371	0,325	0,288	0,26
S_p	1	1,857	2,166	2,6	2,6	2,6	2,6	2,6	2,6	2,6

6) Оптимальная загрузка процессоров достигается при: p = 3; S_p = 2,16; $E_p = 0,72$

7) График зависимости

8) Схема построенная программой при оптимальном количестве процессов

Рис 1. Схема при Р = 3

Рис 2. Схема при Р = 4

9) Проверка леммы Брента:
$$t' = t_{min} + \frac{w - t_{min}}{p}$$

$$P = 1$$
 $t' = 6 + \frac{13 - 6}{1} = 13$ $t = 13$ $t \le t$ ` (лемма Брента выполняется)

$$P = 2$$
 $t' = 6 + \frac{13 - 6}{2} = 9,5$ $t = 7$ $t < t$ ` (лемма Брента выполняется)

$$P = 3$$
 $t' = 6 + \frac{13 - 6}{3} = 8,33$ $t = 6$ $t < t$ ` (лемма Брента выполняется)

$$P = 4$$
 $t' = 6 + \frac{13 - 6}{4} = 7,75$ $t = 5$ $t < t$ ` (лемма Брента выполняется)

$$P = 5$$
 $t' = 6 + \frac{13 - 6}{5} = 7,4$ $t = 5$ $t < t$ ` (лемма Брента выполняется)

m	p	О	f	u	a	X	W	
4	5	2	3	4	2	3	9	
r	k	c	q	у	В			
7	9	10	3	4	4			
E =	(m*p - o/f) - u*(a + x) - (w - r) + k*(c + q)/(y + b) =							12
$\tilde{\mathrm{E}} =$	(((((m*p)-(o/f))-(u*(a+x)))-(w-r))+(k*((c+q)/(y+b))) =						12	