

2D boundary integral equations and the Nyström method

Alex Barnett¹ and Fruzsina Agocs¹

Computational Tools 2024 BIE workshop. Day 1, 6/10/24

¹Center for Computational Mathematics, Flatiron Institute, Simons Foundation

Integral equations on 1D interval

Given: i) function $\sigma(t)$ defined on interval $[0, 2\pi)$, periodic: $\sigma(2\pi) = \sigma(0)$, etc ii) "kernel" function k(t, s) defined on square $[0, 2\pi)^2$,

Integral operator K acts on σ to give another function $K\sigma$:

$$(K\sigma)(t) := \int_0^{2\pi} k(t,s)\sigma(s)ds, \quad t \in [0,2\pi)$$

continuous analog of matrix-vector prod. Ax

Integral equation:
$$(I+K)\sigma = f$$
, ie

Integral equation:
$$(I+K)\sigma=f$$
, ie
$$\sigma(t)+\int_0^{2\pi}k(t,s)\sigma(s)ds=f(t), \quad t\in[0,2\pi)$$

$$I = \begin{bmatrix} 0 & -s & 2\pi \\ +i & k(t,s) \\ 2\pi & k(t,s) \end{bmatrix}_{2\pi} \begin{bmatrix} 0 \\ s \\ 2\pi \end{bmatrix} = \begin{bmatrix} 0 \\ i \\ 2\pi \end{bmatrix}$$
analog of lin, sys. $Ax = b$

Fredholm "second kind" (due to presence of I, otherwise called "first kind")

If kernel continuous, or "weakly" singular (integrable), K is compact:

- eigenvalues $(K\phi_k = \lambda_k \phi_k)$ discrete, with $\lim_{k \to \infty} \lambda_k = 0$ unless some $\lambda_k = -1$, 2nd kind IE has at most one soln: Nul $(I + K) = \{0\}$
- Nul $(I + K) = \{0\}$ \Rightarrow existence of solution for any f Fredholm Alternative like square matrix (finite-dim), recall: uniqueness ⇒ consistent for any RHS

Contrast 1st kind IE $K\sigma = f$ is ill-posed problem (unstable)! **FLATIR**

Nyström discretization of 2nd kind IE on interval

Simplest quadrature for periodic funcs: periodic trapezoid rule (PTR)

$$\int_0^{2\pi} f(t) dt \approx \sum_{j=1}^N \frac{2\pi}{N} f\left(\frac{2\pi j}{N}\right) = \sum_{j=1}^N w_j f(t_j) \qquad w_j = \text{weights}, \quad t_j = \text{nodes}$$
 For f smooth, superalgebraically convergent ("spectral"): error $= \mathcal{O}(N^{-p})$ for any p

Apply quad to integral in 2nd kind IE:

call the resulting approx soln $\tilde{\sigma}$

$$\tilde{\sigma}(t) + \sum_{j=1}^{N} k(t, t_j) w_j \tilde{\sigma}(t_j) = f(t), \quad t \in [0, 2\pi)$$
 (*)

Holds for all t; in particular, holds at each t_i , i = 1, ..., N, giving:

$$\sigma_i + \sum_{j=1}^{N} k(t_i, t_j) w_j \sigma_j = f(t_i), \quad i = 1, \dots, N$$
 where $\sigma_i := \tilde{\sigma}(t_i)$

Write as:
$$A\sigma = \mathbf{f}$$
 $N \times N$ lin sys, entries $a_{ij} = \delta_{ij} + k(t_i, t_j)w_j$, and $f_j := f(t_j)$

solve? dense direct $\mathcal{O}(N^3)$; dense iter. $\mathcal{O}(N^2)$; fast iter. $\approx \mathcal{O}(N)$; fast direct $\approx \mathcal{O}(N^{(d+1)/2})$ Why 2nd kind? eigs(A) accumulate only at +1, iterative fast conv.

Sometimes for BIE (eg, far-field eval), node values $\{\sigma_i\}_{i=1}^N$ suffice. If not, interpolate from them to any $t \in [0, 2\pi)$. Two approaches:

- either: rearrange (*) to give $\tilde{\sigma}(t) = \ldots$, called "Nyström interpolant" (rare)
 or (common): use local high-order Lagrange (or global spectral) interpolation:

Demo Nyström on interval (1D)

```
kfun = @(s.t) exp(3*cos(t-s)):
                                                    % smooth convolutional kernel, periodic domain [0.2pi)
 ffun = Q(t) cos(5*t+1):
                                                    % smooth data (RHS) func
 N = 30:
                                                    % number of unknowns: should study convergence as N grows...
 ti = 2*pi/N*(1:N): wi = 2*pi/N*ones(1.N):
                                                    % PTR nodes and weights, row vecs
 A = eye(N) + bsxfun(kfun,tj',tj)*diag(wj);
                                                    % identity plus fill k(t_i, t_j)w_j for i, j=1..N
 rhs = ffun(tj');
                                                    % col vec
                                                    % dense direct square solve (pivoted LU), gives col vec
 sigmaj = A\rhs;
   system matrix A
                                                                            - self-con
                                                                                         "self-convergence":
                                                                             true er
                             0.5
                                                           10 -5
10
                                                                                         use N=40 as "true"
                           funcs
20
                                                        .드
10 <sup>-10</sup>
                                                                                         f and k smooth
30
                             -0.5
                                                                                            \sigma smooth
40
        20
           30 40
                                                          10 -15
                                                                                         ⇒ spectral conv?
                                                                     20
```

Thm. (Anselone, Kress,...): error at node values (and Nyström interpolant) same order as that of quadrature rule applied to integrand $k(t,\cdot)\sigma$.

Demo Nyström on interval (1D)

"self-convergence": use *N*=40 as "true"

f and k smooth $\Rightarrow \sigma$ smooth \Rightarrow spectral conv?

Thm. (Anselone, Kress,...): error at node values (and Nyström interpolant) same order as that of quadrature rule applied to integrand $k(t,\cdot)\sigma$.

• Then, f or k nonsmooth? worse (here algebraic) convergence using plain PTR rule:

Qu: why does order appear to improve at end?

Fundamental solution in \mathbb{R}^2

Eg PDE: Poisson eqn
$$\Delta u = g$$

$$\Delta := (\partial/\partial x_1)^2 + (\partial/\partial x_2)^2$$
 Laplacian

Notation: $\mathbf{x} := (x_1, x_2) \in \mathbb{R}^2$ is a point. This frees up $\mathbf{y} \in \mathbb{R}^2$ as another point (not y-coord!)

Not well-posed prob. unless add BC! BIEs are good for *homogeneous* PDEs (driving $g \equiv 0$)

Eg well-posed* BVP:

$$\Delta u = 0$$
 in Ω

*exists, unique, continuous w.r.t. data

 $\Delta u = 0 \text{ in } \Omega$ PDE (u harmonic) Ω $u = f \text{ on } \Gamma$ Dirichlet BC

 $\Phi(\mathbf{x}, \mathbf{y})$

Laplace fundamental soln:
$$\Phi(x, y) = \frac{1}{2\pi} \log \frac{1}{r}$$
 where $r := \|x - y\|$ &

obeys
$$-\Delta_{\mathbf{x}}\Phi=-\Delta_{\mathbf{y}}\Phi=\delta_{\mathbf{x}}$$
 Φ harmonic except unit point-mass at $\mathbf{0}$

 x_1

Normal **n** points outwards, $\|\mathbf{n}\| = 1$ normal deriv. notation $u_n := \mathbf{n} \cdot \nabla u$

Green's 2nd identity:
$$\int_{\Gamma} v u_n - v_n u \, ds = \int_{\Omega} v \Delta u - (\Delta v) u \, dy$$

calculus

warm-up: set u = BVP soln, $v \equiv 1$, G2I becomes $\int_{\Gamma} u_n ds - 0 = 0 - 0$: so u has zero flux more fun: fix "target" $x \in \Omega$, let $v = \Phi(x, \cdot)$, G2I gives: $\partial \Phi(\mathbf{x}, \mathbf{y}) / \partial n_{\mathbf{y}}$

Green's representation formula:

$$\int_{\Gamma} \Phi(x, y) u_n(y) - \frac{\partial \Phi(x, y)}{\partial n_y} u(y) \, ds_y = u(x) \quad \text{for } x \in \Omega$$

Gets soln from "Cauchy data" $(u, u_n)|_{\Gamma}$

also versions for Helmholtz. Stokes. Maxwell

Layer potentials and their jump relations

Representations of harmonic functions off a curve Γ : "density" σ Single-layer potential $(S\sigma)(x) := \int_{\Gamma} \Phi(x, y) \sigma(y) ds_y$ charge sheet

Double-layer potential $(\mathcal{D}\sigma)(\mathbf{x}) := \int_{\Gamma} \frac{\partial \Phi(\mathbf{x},\mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} \sigma(\mathbf{y}) ds_{\mathbf{y}}$ dipole sheet

$$u^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

$$u_{n}^{\pm}(\mathbf{x}) := \lim_{h \to 0^{+}} \mathbf{n}_{\mathbf{x}} \cdot \nabla u(\mathbf{x} \pm h\mathbf{n}_{\mathbf{x}})$$

Jump relations:

$$(S\sigma)^{\pm}=S\sigma$$
 S (Roman font) means restriction of S to Γ : a bdry int. op. $(\mathcal{D}\sigma)^{\pm}=(D\pm I/2)\sigma$ jump in potential equal to σ ; D restriction to Γ in P.V. sense $(S\sigma)^{\pm}_n=(D^T\mp I/2)\sigma$ jump in normal derivative $(\mathcal{D}\sigma)^{\pm}_n=T\sigma$ T hypersingular, kernel $\partial^2\Phi(\mathbf{x},\mathbf{y})/\partial\mathbf{n}_{\mathbf{x}}\partial\mathbf{n}_{\mathbf{y}}\sim 1/r^2$

• D smooth kernel on smooth Γ , while S always log (weakly) singular

Recap GRF in LP notation: u harmonic in $\Omega \Rightarrow \mathcal{S}u_n^- - \mathcal{D}u^- = u$ in Ω

Say wish to solve interior Dirichlet Laplace BVP:

or
$$\Delta u = 0$$
 in Ω PDE $u^- = f$ on Γ BC

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I - 2D)c$$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form?

Say wish to solve interior $\Delta u = 0$ in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0$$
 in Ω

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Say wish to solve interior
$$\Delta u = 0$$
 in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds. Usually not how Γ described...

Say wish to solve interior $\Delta u = 0$ in Ω PDE Dirichlet Laplace BVP: $u^- = f$ on Γ BC

$$\Delta u = 0 \text{ in } \Omega$$

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma = -2f$$
 scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds. Usually not how Γ described...

Parameterize the bdry
$$y(t)$$

$$\mathbf{y}: \mathbb{R} \to \mathbb{R}^2$$
, 2π -periodic, $\Gamma = \{\mathbf{y}(t): t \in [0, 2\pi)\}$

change variable $ds_v = ||y'(t)|| dt$ abuse notation $\sigma(t) = \sigma(y(t))$

Say wish to solve interior Dirichlet Laplace BVP:

or
$$\Delta u = 0$$
 in Ω PDE $u^- = f$ on Γ BC

Pick **representation**: $u = \mathcal{D}\sigma$, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE: $(I-2D)\sigma = -2f$ scaled to 2nd kind form

$$(I-2D)\sigma = -2f$$

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns u of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent ©

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on Γ using arc-length measure ds. Usually not how Γ described...

Parameterize the bdry
$$y(t)$$
 $y: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{y(t): t \in [0, 2\pi)\}$

change variable $ds_v = ||y'(t)|| dt$ abuse notation $\sigma(t) = \sigma(y(t))$

Get 1D IE:
$$\sigma(t) - 2\int_0^{2\pi} \frac{\partial \Phi(\boldsymbol{y}(t), \boldsymbol{y}(s))}{\partial \boldsymbol{n}_{\boldsymbol{y}(s)}} \sigma(s) \|\boldsymbol{y}'(s)\| ds = -2f(t), \ \ t \in [0, 2\pi)$$

familiar form
$$(I+K)\sigma=-2f$$
, with kernel $k(s,t)=\frac{-2}{2\pi}\frac{n_{y(s)}\cdot(y(t)-y(s))}{\|y(t)-y(s)\|^2}\|y'(s)\|$

formula on diagonal: $k(t,t) = \lim_{s \to t} k(t,s) = \kappa(t)/2\pi$, κ curvature of Γ (check!)

$$\Delta u = 0 \text{ in } \Omega$$
 PDE $u^- = f \text{ on } \Gamma$ BC

Pick **representation**:
$$u = \mathcal{D}\sigma$$
, look up its **JR** for BC: $u^- = (D - I/2)\sigma$

Insert the BC to get BIE:
$$(I-2D)\sigma=-2f$$
 scaled to 2nd kind form

This shows: let σ solve BIE, then $u = \mathcal{D}\sigma$ solves BVP (i.e., no spurious solns)

But how know all solns
$$u$$
 of this form? Fred. Alt.: BIE has soln $\forall f!$ BVP & BIE equivalent \odot

(had we picked $u = S\sigma$, would get 1st kind, poorly conditioned but can have its uses)

Above BIE expressed on
$$\Gamma$$
 using arc-length measure ds . Usually not how Γ described... Parameterize the bdry $\mathbf{y}(t)$ $\mathbf{y}: \mathbb{R} \to \mathbb{R}^2$, 2π -periodic, $\Gamma = \{\mathbf{y}(t): t \in [0, 2\pi)\}$

change variable $ds_v = ||y'(t)|| dt$ abuse notation $\sigma(t) = \sigma(y(t))$

Get 1D IE:
$$\sigma(t) - 2\int_0^{2\pi} \frac{\partial \Phi(\mathbf{y}(t), \mathbf{y}(s))}{\partial \mathbf{n}_{\mathbf{y}(s)}} \sigma(s) \|\mathbf{y}'(s)\| ds = -2f(t), \ t \in [0, 2\pi)$$

familiar form
$$(I+K)\sigma=-2f$$
, with kernel $k(s,t)=\frac{-2}{2\pi}\frac{n_{\mathbf{y}(s)}\cdot(\mathbf{y}(t)-\mathbf{y}(s))}{\|\mathbf{y}(t)-\mathbf{y}(s)\|^2}\|\mathbf{y}'(s)\|$ formula on diagonal: $k(t,t)=\lim_{s\to t}k(t,s)=\kappa(t)/2\pi$, κ curvature of Γ (check!)

Now Nyström discretize with PTR, solve lin. sys. for $\sigma := \{\sigma_j\}_{j=1}^N$

Finally evaluate soln:
$$u(\mathbf{x}) = (\mathcal{D}\sigma)(\mathbf{x}) \stackrel{\text{PTR}}{\approx} \sum_{j=1}^{N} \frac{\mathbf{n}_{\mathbf{y}(t_j)} \cdot (\mathbf{x} - \mathbf{y}(t_j))}{\|\mathbf{x} - \mathbf{y}(t_j)\|^2} \|\mathbf{y}'(t_j)\| w_j \sigma_j$$

Testing your codes

Test GRF first for a known soln

Indirect vs direct formulations

Above was indirect: pick representation, Table: direct vs indirect pros/cons we prefer indirect

Exterior Laplace

subtlety of decay in 2D mixed rep

Helmholtz

 $(\Delta + \kappa^2)u = 0$ arises from scalar wave equation $u_{tt} - \Delta u = 0$ κ "wavenumber"; wavelength $\lambda = 2\pi/\kappa$ Also used for 2D Maxwell (z-invar); TE vs TM

Recap

TO DO

Several steps: write out yourself + try HW exercises in repo

- •
- Nyström discretization gets $\sigma(t_j)$ interpolate from them to other t
- Fancier quadratures needed for singular kernels and/or close eval
- Nyström is not the only discr. meth: Galerkin, collocation. but: simplest and no less accurate

Resources

Many numerical analysis (mathematical flavor), particularly:

- Linear Integral Equations, R. Kress, (1999, Springer). Ch. 6 & 12.
- The Numerical Solution of Integral Equations of the Second Kind, K. E. Atkinson, (1997, CUP).

Fewer on the practical/tutorial side:

• "High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane", S Hao, AH Barnett, PG Martinsson, P Young. *Adv. Comput. Math.* **40**, 245–272 (2014).

goes beyond these slides for logarithmic singularities, eg SLP

- https://users.flatironinstitute.org/~ahb/BIE/
- https://github.com/ahbarnett/BIEbook in progress...

