Introduction to DAEs

Duy Duc NGUYEN

27/03/2019

Question 1: Overview

Let $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$, we search for solution $\mathbf{F}(\mathbf{x}) = \mathbf{0}$. It is a nonlinear algebraic equation system potentially very large: the number of unknowns and equations can be several million. Which methods can be used and compare advantages and dis-advantages of them.

Answer:

System of linear equations:

$$Ax = b$$

Square matrix: $A \in \mathbb{R}^n \times \mathbb{R}^n$, $x, b \in \mathbb{R}^n$,

Symmetric: $AA^T = A^T A = I$

Krylov subspace: $K_k = span(r_0, Ar_o, A^2r_o, ..., A^kr_o)$

basic matrix: $K_k = [v_1, v_2, \dots, v_k]$, v_i is column *i*-th

Residual: r = Ax - b

System of non-linear equations:

$$F(x)=0$$

Vector function $F: \mathbb{R}^n \to \mathbb{R}^n$, $x \in \mathbb{R}^n$

Component: $F(x)=[f_i(x)], i=1,...,n,f_i:R^n \rightarrow R$

Jacobian matrix: $J(x) = F'(x) = [\partial f_i / \partial x_i(x)]$

Question 1: Newton method for solving non-liner system

ALGORITHM 5.3.1.
$$\operatorname{newton}(x, F, \tau)$$
1. $r_0 = \|F(x)\|$
2. Do while $\|F(x)\| > \tau_r r_0 + \tau_a$

- (d) x = x + s
- (e) Evaluate F(x).

LIGORITHM 5.3.1.
$$\text{newton}(x, F, \tau)$$
 $r_0 = \|F(x)\|$ $F(x) = 0$, $F(x_{n+1}) - F(x_n)$ $F(x_n) \approx \frac{F(x_{n+1}) - F(x_n)}{x_{n+1} - x_n}$, $x_{n+1} = x_n + F'(x_n)^{-1}(F(x_{n+1}) - F(x_n))$, $x_{n+1} = x_n + F'(x_n)^{-1}(F(x_{n+1}) - F(x_n))$, where $x_{n+1} = x_n + F'(x_n)^{-1}(F(x_n)) = S_n$ (a) Compute $F'(x)$ $\|F(x_n)\| \gg \|F(x_{n+1})\| \to 0$ So that $x_{n+1} = x_n - F'(x_n)^{-1}F(x_n)$ $\|F(x_n)\| = S_n$ (d) $x = x + s$ (e) Evaluate $F(x)$.

Termination condition 1: $\|F(x)\| \le \tau_r \|F(x_n)\| + \tau_\alpha$

 τ_r Relative error tolerance τ_{α} Absolute error tolerance

Termination condition 2: (Inexact Newton method)

$$||F'(x_n)s_n + F(x_n)|| \le \eta_n ||F(x_n)||$$

$$\eta_n \text{ forcing terms}$$

Question 1: Newton-Krylov algorithms

Newton method

Advantage:

- Converging quickly to x*

Dis-advantage:

- Computing (step a) Jab matrix F' is costly
- Storing large Jab matrix F' is costly

For solving non-linear system

Question 1: GMRES: Arnoldi

Description: produce an orthonormal basic of a space

Input: the first element of a basic of that space

Output:
$$K_k = [v_1, v_2, ..., v_k],$$

 $\langle v_i, v_j \rangle = 0, \text{ if } i \neq j,$
 $||v_i|| = 1$

ALGORITHM 3.4.1. $arnoldi(x_0, b, A, k, V)$

- 1. Define $r_0 = b Ax_0$ and $v_1 = r_0/\|r_0\|_2$.
- 2. For i = 1, ..., k-1

$$v_{i+1} = \frac{Av_i - \sum_{j=1}^{i} ((Av_i)^T v_j) v_j}{\|Av_i - \sum_{j=1}^{i} ((Av_i)^T v_j) v_j\|_2}$$

Symmetric positive define (spd)
Orthogonal similarity transformation:

$$A = VHV^{-1} \rightarrow AV = VH$$

$$A_{n\times n}V_{n\times m}=V_{n\times m+1}H_{m+1\times m}$$

The last column *m*

$$Av_m = h_{1m}v_1 + h_{2m}v_2 + ... + h_{m+1,m}v_{m+1} = \sum_{j=1}^{n} h_{jm}v_j$$

$$v_{m+1} = \frac{Av_m - \sum_{j=1}^m h_{jm} v_j}{h_{m+1,m}}$$

$$A = VHV^{-1} \rightarrow H = V^{-1}AV = (A^{T}(V^{-1})^{T})V = (AV)^{T}V$$

$$h_{ij} = [H]_{ij} = [Av_{i}]^{T}v_{j}$$
(1087)

Question 1: GMRES

ALGORITHM 3.4.2. gmresa
$$(x, b, A, \epsilon, kmax, \rho)$$

1. $r = b - Ax$, $v_1 = r/||r||_2$, $\rho = ||r||_2$, $\beta = \rho$, $k = 0$

2. While
$$\rho > \epsilon ||b||_2$$
 and $k < kmax$ do

(a)
$$k = k + 1$$

(b) for
$$j = 1, ..., k$$

 $h_{ik} = (Av_k)^T v_i$

(c)
$$v_{k+1} = Av_k - \sum_{j=1}^k h_{jk}v_j$$
 arnoldi

(d)
$$h_{k+1,k} = ||v_{k+1}||_2$$

(e)
$$v_{k+1} = v_{k+1} / ||v_{k+1}||_2$$

(f)
$$e_1 = (1, 0, ..., 0)^T \in R^{k+1}$$

Minimize $\|\beta e_1 - H_k y^k\|_{R^{k+1}}$ over R^k to obtain y^k .

(g)
$$\rho = \|\beta e_1 - H_k y^k\|_{R^{k+1}}$$
.

3.
$$x_k = x_0 + V_k y^k$$
.

Description: find approximation of Ax=b

Input:
$$b, A, \in kmax, \rho$$
Output: approximation of x^*

Output: approximation of χ

Least square problem: Find x: $\min_{x \in x_0 + K_1} || r = b - Ax ||_2$

$$\forall z \in K_k, \exists y \in R^n: z = V_k y, V_k = [v_l^k]$$

$$x_0 + z = x_0 + V_k y$$

Least square problem: Find y $\min_{y \in \mathbb{R}^n} ||b - A(x_0 + V_k y)||_2$

$$= min_{y \in R^n} ||r_0 - AV_k y||_2, AV_k = V_k H,$$

$$= min_{y \in R^n} ||r_0 - V_k Hy||_2$$

Termination of the iteration: $||r_k||_2/||b||_2 \le \epsilon$ and $k \le kmax$ $\beta = ||r_0||_2, e_1 = [1,0,...,0]$

$$\beta V_k e_1 = ||r_0||_2 v_1 = ||r_0||_2 r_0 / ||r_0||_2 = r_0$$

$$||r_k||_2 = ||r_0 - V_k Hy||_2 = ||\beta V_k e_1 - V_k Hy||_2$$

$$= ||V_k(\beta e_1 - Hy)||_2 = ||\beta e_1 - Hy||_{R^{k+1}}$$

(V is orthonormal basic matrix)

→ compute at each iteration:

Question 1: Bi-CGSTAB

To understand this algorithm, must understand: CG, Bi-CG

CG: Conjugate gradient
$$x_{k+1} = x_k + \alpha_k p_k$$
, $p_k \in K_k = span(r_0, Ar_0, A^2r_0, ..., A^kr_0)$

 p_{ν} search directions

$$\begin{aligned} r_{k+1} &= b - A x_{k+1} = b - A \left(x_k + \alpha_k p_k \right) = r_k - \alpha_k A p_k \\ \text{orthogonality condition:} \quad \langle r_{k+1}, r_k \rangle = \langle r_k - \alpha A p_k, r_k \rangle = 0 \quad \text{So that} \quad \boxed{\alpha_k = \frac{\langle r_k, r_k \rangle}{\langle A p_k, r_k \rangle}}$$

Assume that:

 $p_{k+1} = r_{k+1} + \beta_k p_k \rightarrow r_k = p_k - \beta_k p_{k-1} \text{ Substitute into } \alpha \quad \text{ get } \qquad \left| \beta_{k+1} = \frac{\langle r_{k+1}, r_{k+1} \rangle}{\langle r_{k+1}, r_{k+1} \rangle} \right|$

$$\frac{\langle Ap_k, r_k \rangle}{\langle Ap_k, r_k \rangle}$$

Bi-CG: Bi Conjugate gradient

Use two subspace:
$$K_k = span(r_0, Ar_o, A^2r_o, ..., A^kr_o)$$
 and $\overline{K}_k = span(\hat{r}_0, A^T\hat{r}_0, (A^T)^2\hat{r}_0, ..., (A^T)^{k-1}\hat{r}_0)$

$$r_{k+1} = r_k - \alpha_k A p_k, \quad r_{k+1}^- = \bar{r_k} - \alpha_k A^T p_k \qquad \langle \bar{r_i}, r_j \rangle = 0 \quad \text{if} \quad i \neq j$$

$$p_{k+1} = r_{k+1} + \beta_k p_k, \quad p_{k+1}^- = r_{k+1}^- + \beta_k \bar{p_k} \quad \text{At each iteration} \quad \langle \bar{p_i}, Ap_j \rangle = 0 \quad \bar{r_i} \neq j$$

$$\alpha_k = \frac{\langle r_k, \bar{r_k} \rangle}{\langle Ap_k, \bar{r_k} \rangle}$$

Vinay2016 – Understanding Bi-CGSTAB C.T. Kelley – solving nonlinear equations with Newton's Method (1987)

$$B_{k+1} = \frac{\langle r_{k+1}, r_{k+1}^- \rangle}{\langle r_k, \overline{r_k} \rangle}$$

Question 1: Bi-CGSTAB

CGS: Conjugate Gradient Squared if $p_0 = r_0 \rightarrow r_{k+1} = r_k - \alpha_k A p_k \rightarrow r_k = \phi_k(A) r_0$

 $\dots = r_k + \beta_k (p_k - w_k A p_k)$

 $p_{k+1} = r_{k+1} + \beta_k p_k \rightarrow p_k = \pi_k(A) r_0$

Relation $\phi_{k+1}(A) = \phi_k(A) - \alpha_k A \pi_k(A)$

Bi-CGSTAB: Bi-conjugate gradient stabilized method $r_k = \phi_k(A)r_0$ replaced by $r_k = \prod_{i=1}^{n} (I - w_i A)\phi_k(A)r_0 = \phi_k(A)\phi_k(A)r_0$

 $p_k = \pi_k(A) r_0$ replaced by $p_k = \prod (I - w_i A) \pi_k(A) r_0 = \varphi_k(A) \pi_k(A) r_0$ $r_{k+1} = (I - w_i A) \varphi_k(A) \varphi_{k+1}(A) r_0 = (I - w_i A) \varphi_k(A) [\varphi_k(A) - \alpha_k A \pi_k(A)] r_0 = \dots$

 $\dots = s_k - w_k A s_k$, where $s_k = r_{k-1} - \alpha_k A p_k$

 $p_{k+1} = (I - w_i A) \varphi_k(A) \pi_{k+1}(A) r_0 = (I - w_i A) \varphi_k(A) [\varphi_{k+1}(A) + \beta_k \pi_k(A)] r_0 = \dots$

And

 $\bar{p}_{\nu} = \varphi_{\nu}(A^T)\pi_{\nu}(A^T)\bar{r}_{0}$

 $\bar{p}_0 = \bar{r}_0 \rightarrow \bar{r}_k = \phi_k(A^T) r_0$

 $\overline{r}_{\nu} = \varphi_{\nu}(A^{T})\varphi_{\nu}(A^{T})\overline{r}_{0}$

 $\pi_{\nu+1}(A) = \phi_{\nu+1}(A) + \beta_{\nu} \pi_{\nu}(A)$

 $\bar{p}_{\nu} = \pi_{\nu}(A^T)\bar{r}_{0}$

Question 1: Bi-CGSTAB

ALGORITHM 3.6.3. bicgstab $(x, b, A, \epsilon, kmax)$

1.
$$r = b - Ax$$
, $\hat{r}_0 = \hat{r} = r$, $\rho_0 = \alpha = \omega = 1$, $v = p = 0$, $k = 0$, $\rho_1 = \hat{r}_0^T r$

2. Do While $||r||_2 > \epsilon ||b||_2$ and k < kmax

(a)
$$k = k + 1$$

(b)
$$\beta = (\rho_k/\rho_{k-1})(\alpha/\omega)$$

(c)
$$p = r + \beta(p - \omega v)$$

(d)
$$v = Ap$$

(e)
$$\alpha = \rho_k/(\hat{r}_0^T v)$$

(f)
$$s = r - \alpha v$$
, $t = As$

(g)
$$\omega = t^T s / ||t||_2^2$$
, $\rho_{k+1} = -\omega \hat{r}_0^T t$

(h)
$$x = x + \alpha p + \omega s$$

(i)
$$r = s - \omega t$$

Compute β

$$\rho_k = \langle r_k, \bar{r_k} \rangle \quad \beta_{k+1} = \frac{\rho_{k+1}}{\rho_k} \frac{\alpha_k}{w_k}$$

Compute C

$$\rho_{1k} = \langle r_k, \overline{r_0} \rangle \quad \alpha_k = \frac{\rho_{1k}}{\langle Ap_k, \overline{r_0} \rangle} = \frac{r_k^T \overline{r_0}}{\overline{r_0}^T A p_k}$$

Compute w

$$w_k = \frac{\langle As_k, s_k \rangle}{\langle As_k, As_k \rangle} = \frac{(t_k)^T s_k}{\|t_k\|^2}$$

Return approximate solution

$$X_{k+1} = X_k + \alpha_k p_k + W_k s_k$$

Vort1992 – Bi-CGSTAB a fast and smoothly converging variant of Bi-CG for the solution of nonsymetric linear systems

Jonathan1994 - An introduction to CG method without the agonizing Pain

Vinay2016 - Understanding Bi-CGSTAB

C.T. Kelley – solving nonlinear equations with Newton's Method (1987)

Question 1: Compare GMRES and Bi-CGSTAB

Only need matrix-vector products

GMRES

At iteration m ≤ kmax

Store
$$x, F(x), x+hv, F(x+hv), s, \{v_k\}_{k=1}^m$$

Require new storage at m+1 If run out of storage, then restart with $x_0 := x_k$ Slow down the speed of convergence

Bi-CGSTAB

At iteration $m \le kmax$

Store
$$x, b, r, p, v, \overline{r_0}, t$$

No new storage required

I choose this one

Question 1: Newton-GMRES

3. $s = V_k y^k$. Output S_n

$$F'(x_n)s_n = -F(x_n)$$

F'(x) considered as A, -F(x) considered as b, r_k approximates b, r := -F(x)

Forward difference GMRES algorithm works with F instead of (A,b)

ALGORITHM 6.3.1.
$$nsolgm(x, F, \tau, \eta)$$
1. $r_c = r_0 = \|F(x)\|_2/\sqrt{N}$ Termination condition 1

2. Do while $||F(x)||_2/\sqrt{N} > \tau_r r_0 + \tau_a$

- (a) Select η.
- (b) fdgmres $(s, x, F, \eta) = S_n$ (c) x = x + s
- (d) Evaluate F(x)
- (e) $r_+ = ||F(x)||_2 / \sqrt{N}, \sigma = r_+ / r_c, r_c = r_+$
- (f) If $||F(x)||_2 \le \tau_r r_0 + \tau_a$ exit.

Algorithm computes for a better eta

Forward difference approximation of (eq5.15)

$$F'(x)v_k$$

approximate multiplication of F' with a vector, mainly by working with F, instead of compute F'

C.T. Kelley – solving nonlinear equations with Newton's Method (1987)

Question 1: Newton-BiCGSTAB

ALGORITHM 3.6.3. bicgstab $(x, b, A, \epsilon, kmax)$

1.
$$r = b - Ax$$
, $\hat{r}_0 = \hat{r} = r$, $\rho_0 = \alpha = \omega = 1$, $v = p = 0$, $k = 0$, $\rho_1 = \hat{r}_{ALGORITHM 6.3.1. nsolgm(x, F, \tau, \eta)}^T$

2. Do While $||r||_2 > \epsilon ||b||_2$ and k < kmax

(a)
$$k = k + 1$$

(b)
$$\beta = (\rho_k/\rho_{k-1})(\alpha/\omega)$$

(c)
$$p = r + \beta(p - \omega v)$$

(d)
$$v = Ap$$
 \blacktriangleleft $V_k = D_h F(x : p_k)$

(e)
$$\alpha = \rho_k/(\hat{r}_0^T v)$$

(f)
$$s = r - \alpha v$$
, $t = As \blacktriangleleft t_k = D_h F(x : s_k)$

(g)
$$\omega = t^T s / ||t||_2^2$$
, $\rho_{k+1} = -\omega \hat{r}_0^T t$

(h)
$$x = x + \alpha p + \omega s$$
 \triangleleft $S_{k+1} = S_k + \alpha_k p_k + w_k S_k$

(i)
$$r = s - \omega t$$

1.
$$r_c = r_0 = ||F(x)||_2 / \sqrt{N}$$

2. Do while $||F(x)||_2/\sqrt{N} > \tau_r r_0 + \tau_a$

(a) Select
$$\eta$$
. dfbicgstab

(b)
$$fdgmres(s, x, F, \eta)$$

(c)
$$x = x + s$$

(d) Evaluate
$$F(x)$$

(e)
$$r_{+} = ||F(x)||_{2} / \sqrt{N}, \sigma = r_{+} / r_{c}, r_{c} = r_{+}$$

(f) If
$$||F(x)||_2 \le \tau_r r_0 + \tau_a$$
 exit.

Question 2: Overview

Question 2: Consider $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$, a system of differential and algebraic equations (DAEs):

$$\boldsymbol{F}(\boldsymbol{x}(t),t) = \boldsymbol{I}(\boldsymbol{x}(t)) + \boldsymbol{Q}(\boldsymbol{x}(t)) + \boldsymbol{S}(t)$$

Where x(t) is the solution of F(x(t), t) = 0 for $(t \in [0, T])$. I and Q are algebraic nonlinear functions of x and S is an explicit term function of t (stimuli of the system).

Additional informations:

- ullet ${\mathcal Q}$ means time derivative of ${\mathcal Q}$.
- F, x, I, Q and $S \in \mathbb{R}^n$,
- n the size of the system (number of equations in F, or number of unknowns in x) can be very big (up to several millions)
- I and Q are C^1 functions (differentiable with continuous derivatives).
- We consider that the system has a solution that is unique
- F is a stiff system (large ratio in time constants)

The question: Propose a method to compute a numerical approximation of the solution x(t) of this system F(x(t), t) = 0 for $(t \in [0, T])$.

$$\frac{d \mathbf{Q}(\mathbf{x}(t))}{dt} = \frac{d \mathbf{Q}}{d \mathbf{x}} \frac{d \mathbf{x}}{dt} = Jab(\mathbf{Q}, \mathbf{x}) \dot{\mathbf{x}}$$

system becomes

$$I(x(t))+Jab(Q,x)\dot{x}+S(x)=F(t,x,\dot{x})=0$$

Forward Euler:

$$F(t_{n-1}, x_{n-1}, \frac{x_n - x_{n-1}}{\Delta t}) = 0$$
 Cfl condition, 1st order convergence

Backward Euler:
$$F(t_n, x_n, \frac{x_n - x_{n-1}}{\Delta t}) = 0$$
 Stable, 1st order convergence Newton-krylov method

Mid-point:
$$F\left(\frac{t_n+t_{n-1}}{2}\right)$$

$$F(\frac{t_n+t_{n-1}}{2}, \frac{X_n+X_{n-1}}{2}, \frac{X_n-X_{n-1}}{\Delta t}) = 0$$
 1/2 Stable, 2nd order convergence

Thank you for your attention