

1. DATABRICKS & PYSPARK

INTRODUCTION

Follow us on:

Databricks features

➤ Databricks platform provides a number of features including Clusters, Data engineering, Machine Learning, Lakehouse, Generative Al and other.

Databricks features

- Databricks is the go to choice for Data engineering which includes PySpark development.
- Databricks provides notebooks for Spark
 & SQL Development.

What you will learn in this section?

- Databricks: Generic features like DBFS, dbutils, mount ADLS, calling notebooks, widgets, jobs, etc.
- > PySpark: In detail from start to end.

Pre-requisites

- > SQL
- > Python Fundamentals
- > Databricks community Edition

2. DATABRICKS & PYSPARK

INTRODUCTION TO APACHE SPARK

Follow us on:

Apache Spark

> Apache Spark is a processing engine.

It is widely used in Data engineering, Data science and Machine learning.

Apache spark is an alternative to Map reduce.

Mapreduce Challenges

- MapReduce programs are mainly written in Java.
- Development in MapReduce was lengthy.
- Intermediate computed results need to be written to disk for processing of next stage, this was a major drawback as it consumed more time.

How did it begin?

Experts who worked on Hadoop understood the issue with MapReduce due its limitations.

Cloud And Data Universe

They started working on a project to overcome MapReduce limitations and named the project as Spark.

Spark Journey

- > Initial development on Spark began around 2009.
- Spark was a game changer in Big data computing!

Cloud And Data Universe

- The biggest advantage over MapReduce was Spark stored intermediate results inmemory, thereby providing 10 to 100 faster execution as compared to MapReduce!
- First version of Apache Spark was released in 2014.

Databricks

- Creators of Apache Spark later formed a company named Databricks in 2013 and a service offering with same name.
- Databricks service offers Data engineering, Machine learning and Lakehouse solutions.
- Free usage on Databricks community edition.
- Available on cloud: Azure, AWS & GCP.

What does Spark deliver?

- Spark is a processing engine / technology used to perform ETL.
- Spark development involves complete coding.

3. DATABRICKS & PYSPARK

SPARK COMPONENTS & API

Follow us on:

Spark Components

Spark SQL

Spark MLlib Spark
Structured
Streaming

GraphX

Spark API's

4. DATABRICKS & PYSPARK

SPARK ARCHITECTURE

Follow us on:

Spark Architecture

Spark Architecture

- Spark uses master-slave architecture.
- The main task of spark is to distribute data across cluster and process it in parallel over nodes.

Spark Application

- Spark Application is a program written by user.
- It consists of driver program and executors.

Driver Program

- Driver program initiates the execution of program.
- Its runs the main() function of application.
- It creates the SparkContext.

SparkContext & SparkSession

- SparkContext is an entry point to spark.
- By using SparkContext we can create a RDD which is fundamental unit of storage in spark.
- After initial version of spark, SparkSession was introduced which became entry point to spark.
- SparkSession includes SparkContext, SQLContext, HiveContext and StreamingContext.

Cloud And Data Universe

Cluster Manager

- Cluster Manager is responsible for acquiring resources in a cluster.
- The driver program requests for resources to the cluster manager.
- Then cluster manager launches executors on worker nodes as requested by driver program.
- Cluster managers: standalone, Mesos, Yarn

Execution Modes

Cluster Mode: Driver is launched inside the cluster.

Client Mode: Driver is launched outside the cluster i.e. on client machine from which spark application was submitted.

Local Mode: Application runs on single machine.

Executors

- Executor is a java process launched on worker node.
- Executors register themselves with driver program at the beginning.
- The executors are dynamically added or removed during the task execution.

Task

Task is a unit or chunk of data sent to executor.

Each executor runs one to many tasks

Job

Job is a process of parallel computation.

It involves computation of multiple tasks.

5. DATABRICKS & PYSPARK

RDD

Follow us on:

RDD

- RDD stands for Resilient distributed dataset.
- It is the fundamental unit of storage in spark.
- We can create a RDD using SparkContext.
- RDD is immutable.

RDD is partitioned across worker nodes.

RDD

- RDD stands for Resilient distributed dataset.
- Resilient: Relates to fault-tolerance i.e. ability to recover from failure.

Distributed: Partitioned across nodes.

Dataset: Collection of records which is stored in files like csv, json, etc.

RDD Operations

- Once RDD is created you can perform different operations on it.
- There are broadly 2 types of operations.
- Transformations & Actions.

RDD Transformations

- Once we can create and RDD, we can perform various transformations as needed.
- These can be mostly done using map(), filter(), reducebykey(),etc.
- Remember, each time we apply a transformation on a RDD, we will get a new RDD, existing RDD will remain unchanged as RDD is immutable.

Shuffle

- Data is distributed across nodes initially.
- Once the data is read we need to perform some operations on it.
- Certain operations require data to be re-distributed across the nodes.
- > This triggers an event called as shuffle.
- > Shuffle involves copying of data across the nodes.
- Shuffle is a costly operation!

Types of Transformation

- 2 types of transformations: Narrow & Wide.
- In Narrow transformation shuffle doesn't occur as there is no need to re-copy the data across worker nodes in intermediate steps.
- In wide transformation shuffle occurs as there is need to re-copy the data across worker nodes in intermediate steps.

Actions

- Once all the transformations are done we need to call an action for the result to be computed.
- It is important to note here, spark doesn't use any resources or initiate any computation unless an action is called!

Scenario

1. Suppose we want to read data from a text file.

- 2. Next, we need to perform few operations on data like filter and aggregate.
- 3. Fetch final results.

Important points

- Operations like filter, aggregate, etc. are transformations.
- When spark runs the transformations, actual computation doesn't take place, instead it records these entries in lineage graph.
- Lineage graph contains flow of rdd's pointing to its parent rdd's.

Lineage graph

CREATE RDD From List

CONTROL PARTITIONS
IN RDD

CREATE RDD FROM TEXTFILE

FLATMAP, MAP, REDUCEBYKEY TRANSFORMATIONS ON RDD

LINEAGE GRAPH

UNDERSTANDING DAG FUNDAMENTALS

MAPREDUCE WORKING

Map Reduce – Wordcount example

Cloud And Data Universe

Map Reduce – Wordcount example with Combiner

Cloud And Data Universe

REDUCEBYKEY VS REDUCEBYKEYLOCALLY

GROUPBYKEY

FILTER TRANSFORMATION ON RDD

SORTBY & SORTBYKEY TRANSFORMATIONS ON RDD

EXTRACT TOP BOTTOM FROM RDD

SAVE RDD AS TEXTFILE

Brought to you by:

