C11 - 2.1 - Sketch, Find θ_r , θ_{stp} HW

Sketch θ_{stp} .

Sketch $heta_r$

45° In Quadrant IV

Find θ_r for each θ_{stp}

Find θ_{stp} for each θ_r

C11 - 2.1 - Sketch, Find $-\theta_{stp}$, θ_{cot} HW

Find a negative θ_{stp} for each θ_r

Find a positive and negative θ_{cot} for each θ_{stp}

C11 - 2.2 - ASTC +/-

Draw 2 triangles in the quadrants for the following statements

 $\cos\theta > 0$

 $\tan \theta > 0$

 $\sin \theta > 0$

 $\cos\theta < 0$

 $\tan \theta < 0$

 $\sin \theta < 0$

Draw a triangle in the quadrant for following statements

 $\cos\theta > 0$ and $\sin\theta < 0$

 $\cos\theta < 0$ and $\tan\theta > 0$

 $tan\theta > 0$ and $sin\theta > 0$

 $\cos\theta < 0$ and $\sin\theta < 0$

 $\cos\theta < 0$ and $\tan\theta < 0$

 $tan\theta < 0$ and $sin\theta > 0$

 $\cos\theta < 0$ and $\sin\theta > 0$

 $\cos\theta > 0$ and $\tan\theta < 0$

 $tan\theta < 0$ and $sin\theta < 0$

 $(4,3) \qquad sinx = \qquad (-3,4) \qquad sinx = \qquad sinx = \qquad x \qquad cosx = \qquad tanx = \qquad tanx = \qquad \theta_{stp} = \qquad \theta_{stp} = \qquad \theta_{stp} = \qquad \theta_{stp} = \qquad 0$

(-3,-4) \xrightarrow{x} \xrightarrow{x}

 $(2,3) \qquad \uparrow^{y} \qquad (5,-6) \qquad \uparrow^{x}$

$$(-3\sqrt{3}, -\sqrt{3})$$

$$\xrightarrow{x}$$

 $(-2.5) \qquad \qquad \int y \qquad sinx = \\ cosx = \\ tanx = \\ \theta_{stp} =$

(3,-3) sinx = cosx = tanx = $\theta_{stp} =$

(-3,8)

C11 - 2.3/4 - Exact Value Trig Ratios HW

Solve using the Special Triangles and ASTC and the Unit Circle

C11 - 2.3/4 - Exact Value Trig Ratios HW

Solve using the Special Triangles and ASTC and the Unit Circle

C11 - 2.3 - Special Trig Equations HW

April 20, 2015 9:04 PM

Solve for $x, 0 \le x < 360$, answer should say x =

$$cosx = \frac{1}{\sqrt{2}}$$

$$cosx = \frac{1}{2}$$

$$tanx = 1$$

$$sinx = \frac{1}{\sqrt{2}}$$

$$sinx = \frac{\sqrt{3}}{2}$$

$$cosx = \frac{\sqrt{3}}{2}$$

$$tanx = \frac{1}{\sqrt{3}}$$

$$tanx = \sqrt{3}$$

$$sinx = -\frac{1}{2}$$

$$cosx = -\frac{1}{\sqrt{2}}$$

$$cosx = -\frac{1}{2}$$

$$tanx = -1$$

$$sinx = -\frac{1}{\sqrt{2}}$$

$$sinx = -\frac{\sqrt{3}}{2}$$

$$cosx = -\frac{\sqrt{3}}{2}$$

$$tanx = -\frac{1}{\sqrt{3}}$$

$$tanx = -\sqrt{3}$$

C11 - 2.3 - Ratio Trig Equations HW

Solve for $x, 0 \le x < 360$, answer should say x =

sinx = 0.6

 $cosx = \frac{1}{4}$

cosx = 0.45

 $tanx = \frac{4}{5}$

sinx = 0.4

 $sinx = \frac{1}{3}$

cosx = 0.75

 $tanx = \frac{1}{5}$

tanx=0.35

sinx = -0.1

 $cosx = -\frac{1}{5}$

cosx = -0.65

tanx = -2

sinx = -0.8

 $sinx = -\frac{2}{3}$

cosx = -0.5

tanx = -0.707

C11 - 2.3 - Algebra Special Trig Equations HW

April 20, 2015 9:04 PM

Solve for $x, 0 \le x < 360$

2sinx = 1

 $\sqrt{2}cosx = 1$

2tanx = 2

 $2\cos x = -\sqrt{3}$

 $2sinx = -\sqrt{3}$

 $-\sqrt{2}sinx - 1 = 0$

 $2\cos x + 1 = 0$

tanx - 2 = -3

 $\sin^2 x = \frac{1}{4}$

1

 $\tan^2 x = 1$

 $4\cos^2 x - 1 = 0$

 $2\sin^2 x - 1 = 0$

C11 - 2.4 - Unit Circle Trig Equations HW

April 20, 2015 9:04 PM

Solve for θ , $0 \le \theta < 360$

 $sin\theta = 1$

 $cos\theta = 0$

 $sin\theta = -1$

 $tan\theta = und$

 $cos\theta = 1$

 $tan\theta = 0$

 $\sin^2\theta - 1 = 0$

C11 - 2.5 - Factoring Trig Equations HW

April 20, 2015 9:04 PM

Solve for $x, 0 \le x < 360$, by factoring, then setting factors equal to zero and solve.

C11 - 2.8 - Trig Ratios Tables and Graphs

x	sinx	cosx	tanx
30°			
45 ⁰			
60 ⁰			

x	sinx	cosx	tanx
00			
90 ⁰			
180 ⁰			
270 ⁰			
360 ⁰			

