Họ và tên: Phan Trí Tài

MSSV: 20127318

HOMEWORK 6

1.

(a) A ⇔B:

$$\Leftrightarrow$$
 (A => B) \land (B => A)

(b) $(A \land B) \Leftrightarrow (A \lor B)$

$$\Leftrightarrow$$
 (((A \lambda B) => (A \lambda B)) \lambda ((A \lambda B) => (A \lambda B)))

$$\Leftrightarrow$$
 ((¬(A \land B)) \lor (A \lor B)) \land (¬(A \lor B) \lor (A \land B)))

$$\Leftrightarrow$$
 ((¬A V ¬B V A V B) \land ((¬A \land ¬B) V (A \land B)))

$$\Leftrightarrow$$
 (($\neg A \land \neg B$) \lor ($A \land B$))

$$\Leftrightarrow$$
 (($\neg A \land \neg B$) $\lor A$) \land (($\neg A \land \neg B$) $\lor B$)

$$\Leftrightarrow$$
 (A V ¬B) \land (¬A V B)

(c) $A \wedge (A \Rightarrow B) \Rightarrow B$

2.

$$KB = \{A \land B \Rightarrow C, D \land E \Rightarrow B, F \Rightarrow A, E \Rightarrow A, E, D\}$$

Prove that the sentence C is entailed by KB by using

a) Forward chaining

R1: A \wedge B \Rightarrow C

R2: D \wedge E \Rightarrow B

R3: $F \Rightarrow A R4$:

 $E \Rightarrow A$

F1: E

F2: D

• Execute:

o F3: A(F1,R4)

○ F4: B(F1,F2,R2)

o F5: C(R1,F3,F4)

⇒ We infer C

⇒ KB := C

b) Backward chaining

We have current goal is C.

Using the Backward Chaining rule, we have a new goals, A and B.

Using the Backward chaining rule for A as it conclusion. We find R3. R3 is such a rule, which only fire if it is satisfied D and E, so we have the new current goals is F include of A.

But we don't find any rule which F as this solution so this goal failed.

Using the Backward chaining rule for A as it conclusion. We find R4. R4 is such a rule, which only fire if it is satisfied E, so we can reach this goal success.

Using the Backward chaining rule for B as it conclusion. We find R2. R2 is such a rule, which only fire if it is satisfied D and E, so we can reach this goal success.

Now, we have A and B so we will get goal is C.

⇒ We infer C

Formalization:

+ Accomplice: A

+ Key: K

+ Car: C

 $\mathsf{KB} = \{(\mathsf{A} => \mathsf{C}) \land [(\neg \mathsf{A} \land \neg \mathsf{K}) \lor (\mathsf{A} \land \mathsf{K})] \land \mathsf{K}\}$

(*): $A \Rightarrow C \equiv \neg A \lor C$

(*): $[(\neg A \land \neg K) \lor (A \land K)] \equiv [(\neg A \land \neg K) \lor A] \land [(\neg A \land \neg K) \lor K]$

 $\equiv (\neg K \lor A) \land (\neg A \lor K)$

#	Clause
1	¬A ∨ C
2	(¬K∨A)
3	(¬A V K)
4	('A V K)
	Ν.

A1: ¬A ∨ C

A2: $(\neg K \lor A)$

A3: (¬A ∨ K)

A4: K

A5: A (A4, A3)

A6: C (A5, A1)

=> KB |= C

=> The criminal came in a car

4.

- a) $\forall x \forall y$, $(Cat(x) \land Mouse(y)) => Chase(x,y)$
- b) $\forall x \exists y, Cat(x) => (Mouse(y) \land Chase(x,y))$
- c) $\exists x \forall y, Cat(x) \land (Mouse(y) => Chase(x,y))$
- d) $\exists x \exists y$, $Cat(x) \land Mouse(y) \land Chase(x,y)$
- e) $\exists y \forall x$, $Mouse(y) \land (Cat(x) => Chase(x,y))$
- f) $\forall y \exists x$, $Mouse(y) => Cat(x) \land Chase(x,y)$

a)

- Every child loves Santa:
 - $\circ \forall x$, Child(x) => Loves(x,Santa)
- Everyone who loves Santa loves any reindeer : $\bigcirc \forall x \forall y$, Loves(x,Santa) => Reindeer(y) => Loves(x,y)
- Rudolph is a reindeer, and Rudolph has a red nose: ○
 Reindeer(Rudolph) ∧ RedNose(Rudolph)
- Anything which has a red nose is weird or is a clown: ∀x,
 RedNose(x) => Weird(x) ∨ Clown(x)
- No reindeer is a clown:
 - $\circ \neg \exists x$, Reindeer(x) \land Clown(x)
- Scrooge does not love anything which is weird:
 - \circ $\forall x$, $Clown(x) = > \neg Loves(Scrooge,x)$ b)
- Every child loves Santa:
 - \forall x[Child(x) => Loves(x,Santa)] \equiv \forall x [¬ Child(x) ∨ Loves(x,Santa)] CNF: [¬ Child(x) ∨ Loves(x,Santa)]
- Everyone who loves Santa loves any reindeer:
 - $_{\circ}$ \forall x Loves(x,Santa) => \forall yReindeer(y) => Loves(x,y)
 - $\equiv \forall x [Loves(x,Santa) = > (\forall y Reindeer(y) = > Loves(x,y))] \circ$ $\equiv \forall x [\neg Loves(x,Santa) \lor (\forall y \neg Reindeer(y) \lor Loves(x,y)]$
 - $_{\circ} \equiv \forall x [\neg Loves(x,Santa) \lor (\neg Reindeer(F(x)) \lor Loves(x,F(x))]$
 - $= [\neg Loves(x,Santa) \lor (\neg Reindeer(F(x)) \lor Loves(x,F(x))]_{\bigcirc}$ $CNF: [\neg Loves(x,Santa) \lor \neg Reindeer(F(x)) \lor Loves(x,F(x))]$
- Rudolph is a reindeer, and Rudolph has a red nose: ○
 Reindeer(Rudolph) ∧ RedNose(Rudolph) CNF:
 Reindeer(Rudolph) ∧ RedNose(Rudolph)

- Anything which has a red nose is weird or is a clown: ∀x,
 RedNose(x) => Weird(x) ∨ Clown(x)
 - $\equiv \forall x [\neg RedNose(x) \lor Weird(x) \lor Clown(x)] \circ \equiv [\neg RedNose(x) \lor Weird(x) \lor Clown(x)] \circ CNF: \neg RedNose(x) \lor Weird(x) \lor Clown(x)$
- No reindeer is a clown:
 - $\circ \neg \exists x$, Reindeer(x) \land Clown(x)
 - $\bigcirc \equiv \forall x [\neg (Reindeer(x) \land Clown(x))] \bigcirc \equiv \forall x [\neg Reindeer(x) \lor \neg Clown(x)] \bigcirc \equiv [\neg Reindeer(x) \lor \neg Clown(x)] \bigcirc CNF: [\neg Reindeer(x) \lor \neg Clown(x)]$
- Scrooge does not love anything which is weird: ∀x,
 Weird(x) => ¬Loves(Scrooge,x)
 - \circ ≡ \forall x[¬Weird(x) \lor ¬Loves(Scrooge,x)] \circ ≡[¬Weird(x) \lor ¬Loves(Scrooge,x)] \circ CNF: ¬ Weird (x) \lor ¬Loves(Scrooge,x)

c)

#	Clause
1	¬ Child(x) ∨ Loves(x,Santa)
2	\neg Loves(x,Santa) $\lor \neg$ Reindeer(F(x)) \lor Loves(x,F(x))
3	Reindeer(Rudolph)
4	RedNose(Rudolph)
5	$\neg RedNose(x) \lor Weird(x) \lor Clown(x)$
6	\neg Reindeer(x) $\lor \neg$ Clown(x)
7	¬ Weird (x) ∨ ¬Loves(Scrooge,x)

A1: \neg Child(x) \lor Loves(x,Santa)

A2: \neg Loves(x,Santa) $\lor \neg$ Reindeer(F(x)) \lor Loves(x,F(x))

A3: Reindeer(Rudolph)

A4: RedNose(Rudolph)

A5: $\neg RedNose(x) \lor Weird(x) \lor Clown(x)$

A6: \neg Reindeer(x) $\lor \neg$ Clown(x)

A7: \neg Weird (x) $\lor \neg$ Loves(Scrooge,x)

A8: ¬Clown(Rudolph)(A3,A6)

A9: Weird(Rudolph) (A8,A5,A4)

A10: ¬Loves(Scrooge, Rudolph) (A9,A7)

A11: ¬Loves(Scrooge,Santa) (A10,A2,A3)

A12: ¬ Child(Scrooge)(A11,A1)

⇒ Scrooge is not a child