COGNOME *NOME* *MATRICOLA*

Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. Inserire le risposte negli $spazi\ predisposti.\ NON\ SI\ ACCETTANO\ RISPOSTE\ SCRITTE\ SU\ ALTRI\ FOGLI.\ 1\ Esercizio=4\ punti.\ Tempo\ previsto:\ 2$ ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

(1) Dopo aver richiamato la definizione di ideale in un anello commutativo unitario, dimostrare che l'intersezione di una qualsiasi famiglia di ideali è un ideale mentre non è detto che l'unione di ideali sia un ideale.

(2) Sia $\mathbf{Z}_{(p)} = \{\frac{m}{n} \in \mathbf{Q} \text{ t.c. } p \text{ non divide } n\}$. Verificare che $\mathbf{Z}_{(p)}$ è un sottoanello di \mathbf{Q} e determinarne tutti gli elementi invertibili. Inoltre dimostrare che l'insieme di tutti gli elementi non invertibili forma un ideale.

(3) Dimostrare che in $\mathbf{Z}[i]$ gli elementi 1+2i, 3 e 1+i sono irriducibili. Dedurne la fattorizzazione (unica) di $30 \in \mathbf{Z}[i]$.

(4) Considerare l'applicazione $\Psi: M_2(\mathbf{Z}) \to M_2(\mathbf{Z}_8), \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a \mod 8 & b \mod 8 \\ c \mod 8 & d \mod 8 \end{pmatrix}$. Dopo aver verificato che si tratta di un omomorfismo, se ne calcoli il nucleo e l'immagine.

5.	. Sia	A =	$\left\{ \frac{n}{9^{lpha}} \middle n \right\}$	$n \in \mathbf{Z}$	$, lpha \in \mathbf{I}$	N }. D	Oopo a	ver din	nostrat	o che	A è ur	n anello	, verific	care se	il suo ca	ampo de	ei quoz	ienti è ${f Q}$
(6)) De	termiı	nare t	utti i	diviso	ori del	lo zero	nell'a	nello Z	$\mathbf{Z} imes \mathbf{Z}_6$								

(7)	7) Dopo aver ricordato la definizione di anello euclideo, dimostrare che se K è un campo	o, allora $K[X]$ è euclideo.
(8)	(8) Dimostrare che se $k \in \mathbf{Z}$, il polinomio $X^4 + (2k+1)X + 1 \in \mathbf{Q}[X]$ è irriducibile.	Suggerimento: Ridurre modulo 2.