江理2018-2019复变考试卷A

一、选择题(每小题3分, 共15分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = ($$
)

$$(A) -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

(B)
$$-\frac{1}{8}(1+\sqrt{3}i)$$

(C)
$$\frac{1}{8} \left(-1 + \sqrt{3} i \right)$$

(D)
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

2. 设 $f(z) = 2x^3 + 3y^3$ i,则f(z)(

- (A) 处处不可导
- (B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析
- (C) 处处解析
- (D) 仅在(0,0)点可导

3. 下列等式正确的是(

(A) Ln
$$\mathbf{i} = \left(2k\pi - \frac{\pi}{2}\right)\mathbf{i}$$
, ln $\mathbf{i} = \frac{\pi}{2}\mathbf{i}$ (B) Ln $\mathbf{i} = \left(2k\pi + \frac{\pi}{2}\right)\mathbf{i}$, ln $\mathbf{i} = \frac{\pi}{2}\mathbf{i}$

(B) Ln i =
$$\left(2k\pi + \frac{\pi}{2}\right)$$
i, ln i = $-\frac{\pi}{2}$ i

(C) Ln i =
$$\left(2k\pi + \frac{\pi}{2}\right)$$
i, ln i = $\frac{\pi}{2}$ i (D) Ln i = $\left(2k\pi - \frac{\pi}{2}\right)$ i, ln i = $-\frac{\pi}{2}$ i

(D) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
i, ln i = $-\frac{\pi}{2}$ i

$$4.z = 0$$
是函数 $\frac{1 - \cos z}{z - \sin z}$ 的()

- (A) 本性奇点 (B) 可去奇点
- (C) 二级极点

5. 设C为
$$z = (1-i)t$$
, t 从1到 0 的一段,则 $\int_{C} \overline{z} dz = ($)

- (A) -1

二、填空题(每小题3分,共15分)

2. 若C为正向圆周
$$|z| = \frac{1}{2}$$
,则 $\oint_{C} \frac{1}{z-2} dz = ______$.

3. 若
$$z = 2 - \pi i$$
,则 $e^z =$.

5. 函数
$$f(t) = \sin t$$
 的拉普拉斯变换 $F(s) =$.

三、计算题(70分)

1. 设
$$u(x,y) = x - 2xy$$
且 $f(0) = 0$,求解析函数 $f(z) = u + iv$. (10分)

2. 计算积分 $\oint_C \frac{2e^z}{z^5} dz$ 的值, 其中C为正向圆周 |z|=1. (7分)

3. 计算积分 $\oint_{\mathcal{C}} \frac{3z+5}{z^2-z} dz$ 的值,其中 \mathcal{C} 为正向圆周 $|z|=\frac{1}{2}$. (7分)

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分)

5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

公众号: 江小数 整理人: 死抠

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在2 < |z| < 6内展开为洛朗级数. (10分)

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求a,b,c的值. (12分)

8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = e^{-3t} \\ x(0) = 0, \ x'(0) = 0 \end{cases}$