

rette in
$$\mathbb{R}^2$$
forma parametrica, troslato spazo di dim 4

 $l = lo + p \quad p \in l \quad y \neq g \quad y = (v_1, v_2) \quad g = (p_1, p_2)$
 $l = \begin{cases} \lambda v + p : \lambda \in \mathbb{R} \end{cases} = \begin{cases} (\lambda v_1 + p_1, \lambda v_2 + p_2) . \lambda \in \mathbb{R} \end{cases}$
 $= \begin{cases} x = \lambda v_1 + p_1 \\ 5 = \lambda v_2 + p_2 \end{cases}$
 $\lambda \in \mathbb{R}$
in coordinate

 $l = \begin{cases} (x, 3) \in \mathbb{R}^2 \quad ax + by + c = 0 \\ (a, b) \neq (o, o) \end{cases}$

rette in \mathbb{R}^3
parametrica come prima

 $coordinate$
 $l = \begin{cases} (x, 3, 2) \in \mathbb{R}^3 : \begin{cases} a_1 \times b_1 + c_1 + c_2 + d_1 = 0 \\ a_2 \times b_2 + c_2 \end{cases} \end{cases}$
 $con rango \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 2$

pioni in $l\mathbb{R}^3$

$$parametrica \quad H = H_0 + p \quad v_1, \quad w_1, \quad p \in \mathbb{R}^3$$
 $< v_2, w_1 > componente correspondente correspond$

A)
$$P_{4} = \langle v, w \rangle + p$$
 piano in forma parametrica $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix} w = \begin{pmatrix} 1 \\ 1 \end{pmatrix} P = \begin{pmatrix} 1 \\ 1 \end{pmatrix} P = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} R$ scrivi in coordinate

$$P_{4} = \left\{ \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} + P \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \times \times R \right\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1$$

Scrivi in coordinate

$$P_{4} = \left\{ \begin{array}{l} \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix}, \beta \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ \alpha \end{pmatrix} + \begin{pmatrix} \beta \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix}, \beta \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ \alpha \end{pmatrix} + \begin{pmatrix} \beta \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix}, \beta \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix}, \beta \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix}, \beta \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \vdots \\ \alpha \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} +$$

$$x = \beta + 1$$
 $\beta = x - 1$
 $x = \alpha + \beta + 1$ sostituisco $x = 2$
 $x = \alpha + 1$ $x = 2 - 1$
 $x = 3$ $x = 3 + 2 - 1 = 0$ $x = 3$ $x = 4$ $x = 3$

$$x = x + \beta + 1$$
 sostituisco $x = 2$
 $x = x + 1$ $x = 2 - 1$
 $x = 2 - 1$
 $x = 2 - 1$

$$\begin{cases} 3 = x + \beta + \gamma & \text{Sostituisco} & \text{Size} - \gamma \\ 2 = x + \gamma & \text{Max} - \gamma & \text{Max} - \gamma \\ 2 = x + \gamma & \text{Max} - \gamma & \text{Max} - \gamma & \text{Max} - \gamma \\ 2 = x + \gamma & \text{Max} - \gamma & \text{Max} - \gamma & \text{Max} - \gamma & \text{Max} - \gamma \\ 2 = x + \gamma & \text{Max} - \gamma$$

L1= { x+3-3=0 x,3,2 & R }

$$= x + \beta + \gamma$$
 sostituisco $\beta = \bar{\beta}$
 $= x + \gamma$ $\alpha = z - \gamma$
 $= \begin{cases} x - y + \bar{z} - 1 = 0 : x, y, \bar{z} \in \mathbb{R} \end{cases}$

$$L_1 = \langle \frac{1}{2} \rangle + \underline{q} \qquad \underbrace{\Xi} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \qquad \underbrace{q} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$L_1 = \left\{ \begin{pmatrix} -\lambda + z \\ \lambda + 1 \\ -1 \end{pmatrix} \right\} \qquad \left\{ \begin{aligned} x = -\lambda + z & x = -3 + 1 + z - 7 & x = -3 + 3 \\ 3 = \lambda + 1 & \lambda = 3 - 1 \\ 2 = -1 & 2 \end{aligned} \right\}$$

8.1

z)
$$Lz = \left\{ (x, 5, 2) \in \mathbb{R}^3 : \begin{array}{l} x+5-2=0 \\ -x+25+2+2=0 \end{array} \right\}$$
 retto in \mathbb{R}^3 in coordinate

$$r_{3}\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = 2$$

$$\begin{cases} 2 = x + 3 & x + 9 = x - 29 - 2 \\ 2 = x - 29 - 2 & 39 = -2 & 9 = -\frac{2}{3} \end{cases}$$

$$\begin{cases} z = x + y & x + y = x - zy - z \\ z = x - zy - z & 3y = -z & y = -\frac{z}{3} \end{cases}$$
quindi
$$L_z = \left\{ (x, y, z) \in \mathbb{R}^3 : y = -\frac{z}{3}, z = x - \frac{z}{3} \right\}$$

$$L_{z} = \left\{ \begin{pmatrix} x \\ -\frac{2}{3} \\ x - \frac{2}{3} \end{pmatrix} : x \in \mathbb{R} \right\} \leftarrow \text{forma parametrica}$$

$$L_{z} = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} + \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}$$

$$L_{z} = \left\langle \begin{pmatrix} x - 2/3 \\ 0 \end{pmatrix} \right\rangle + \begin{pmatrix} -2/3 \\ -2/3 \end{pmatrix}$$

$$L_{z} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} \right\rangle + \begin{pmatrix} -2/3 \\ -2/3 \end{pmatrix}$$

1)
$$A_{=}\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $AB = r = \begin{cases} x - 23 + 3 = 0 \end{cases}$ $y = -x - 3 = x + 3$

8.z)

A =
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

AB = $r = \begin{cases} x - 23 + 3 = 0 \end{cases}$

B = $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

P = $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$

AB = $r = \begin{cases} x - 23 + 3 = 0 \end{cases}$

B = $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

AB = $r = \begin{cases} x - 23 + 3 = 0 \end{cases}$

B = $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$$B = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$P = \begin{pmatrix} -2 \\$$

$$P = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 retta ortozonale
$$3+2 = -2(x-3)$$
passante per P
$$y+2 = -2x+6$$

$$y = -2x+4$$
projezione
$$\begin{cases} y = -2x+4 \\ y = \frac{x}{2} + \frac{3}{2} \end{cases} -2x+4 = \frac{x}{2} + \frac{3}{2}$$

passante per P
$$y+z=-zx+6$$

$$\begin{cases} y=-zx+4 & y=-zx+4 \end{cases}$$

projectione
$$\begin{cases} 5 = -2x + 4 \\ 5 = -2x + 4 \end{cases}$$

$$V=\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Projectione or

 $X_2 + 2X = 4 - 3/2$

di Psu r

 $X_2 + 2X = 4 - 3/2$
 $X_3 + 2X = 5/2$
 $X_4 + 2X = 5/2$
 $X_5 + 2X = 5/2$

$$V=\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 — projectione ort $x_{z} + zx = 4-3y$
di P su $y_{z} = 4-3y$
 $d(P,V) = \sqrt{(3-1)^{2} + (-z-2)^{2}}$ $\frac{5}{z}x = \frac{5}{2}$

V4+16 = 120

$$V=\begin{pmatrix} 1\\2 \end{pmatrix}$$
 \leftarrow projectione ort $x_2+zx=4-3/2$
di Psu x_3

$$= x_4 + zx = 4-3/2$$

$$= x_4 + zx = 4-3/2$$

Voiezione ort
$$x_2 + zx = 4 - 3/2$$

li P su r $= \frac{5}{2}x = 5/2$ $x = 7 = -2$ $y = 2$

ortogonale
$$3+z=-z(x-3)$$
ounte per P
 $y+z=-zx+6$
 $zx+4$
 $y=-zx+4$
 $zx+3$

retto, spiend
8.4) determinare dist(S, H)

$$S=\langle \begin{pmatrix} \frac{7}{4} \end{pmatrix} \rangle + \begin{pmatrix} \frac{7}{4} \end{pmatrix} \qquad H=\langle \begin{pmatrix} \frac{7}{4} \end{pmatrix}, \begin{pmatrix} \frac{7}{4} \end{pmatrix} \rangle + \begin{pmatrix} \frac{7}{4} \end{pmatrix} \rangle$$

sono paralleli? se no dist=0

controllo generatori, $\frac{7}{4} \in \langle \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4}, \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4}, \frac{7}{4}, \frac{7}{4}, \frac{7}{4} \rangle = \langle \frac{7}{4}, \frac{7}{4},$

trovo vett 1 a H facendo il prodotto vettoriale dei generatori
$$U = V \wedge W = \begin{pmatrix} e + e z & e_3 \\ -4 & 4 & 4 \\ z & -4 & 0 \end{pmatrix} = \begin{pmatrix} -4 \\ z \\ -4 \end{pmatrix}$$

1 cosi interseca sicuromente S
$$= < \left(\frac{1}{2}\right) > + \left(\frac{1}{3}\right)$$

e Q intersezone tra
$$N \in H$$

Infine $dist(S,H) = dist(P,Q)$

Infine dist(S,H) = dist(P,Q)

$$\begin{array}{cccc}
x = -t + 1 \\
y = zt + 4 \\
z = -t
\end{array}$$

$$\begin{array}{cccc}
t + 1 = -t + 1 \\
t + 1 = -t + 1
\end{array}$$

$$\begin{array}{cccc}
x = t \\
x = t \\
x = 1
\end{array}$$

Infine dist(S,H) = dist(P,Q)

$$\begin{pmatrix}
x = -t + 1 \\
y = 2t + 4
\end{pmatrix}$$

$$t + 1 = -t + 1$$

(==-t

$$t=0$$
 $P=\begin{pmatrix} 1\\ 1 \end{pmatrix}$ notare the per some abbiano $t=1$ folto é squale a $t=1$ perché $t=1$ abbiano fallo passare $t=1$ $t=1$

 $\beta = \frac{x-\lambda}{2}$

H=<(3),(3)>+(3)

x= λ +2β

8.5) Due rette sono schembe se non sono parallele e non hanno intersezioni

$$\int_{-\infty}^{\infty} \det\left(\frac{v}{\omega}\right|_{b-a} \neq 0 \quad l = < v > + \underline{\alpha} \quad S = < \underline{w} > + \underline{b}$$

$$l \in S \quad \text{non} \quad \text{sono} \quad \text{$\#$ SSE} \quad \underline{w} \quad \text{non} \quad \text{$\#$ ψ quind} \quad \underline{v} \neq \lambda \underline{w} \quad \text{(indipendenti)}$$

$$\text{se} \quad l \in S \quad \text{intersecono}, \text{ρ oiche } \quad l = \{\alpha \underline{v} + \underline{\alpha} : \alpha \in \Pi\} \quad e \quad S = \{\beta \underline{w} + \underline{b} : \beta \in \Pi\}$$

se l e S intersecano, poiché
$$l=\{\alpha_V+\alpha:\alpha\in\Pi\}$$
 e $S=\{\beta_U+b:\beta\in\Pi\}$ allora $\exists \hat{\alpha}, \hat{\beta}$ t.c. $\hat{\alpha}_V+\alpha=\hat{\beta}_U+b\iff b-\alpha=\hat{\alpha}_V-\hat{\beta}_U\in\langle V, U\rangle$ in pratica $b-\alpha$ comb l . di v e v combinando con la condizione precedente

in pratica
$$b-a$$
 comb 1. di $\underline{v} \in \underline{w}$ combinando con la condizione precedente \underline{v} , \underline{w} , $\underline{b}-\underline{a}$ indipendenti

8.3) $S=\langle \begin{pmatrix} z \\ 1 \end{pmatrix} \rangle + \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\begin{cases} = (x, y, z) \in \mathbb{R}^3 : x + y - z = 0 \\ -x + zy + z + z = 0 \end{cases}$$

$$\begin{cases} da = 0 & 8.1.2 \\ (\frac{7}{3}) > + (\frac{-2}{3}) \\ -\frac{2}{3} & \frac{1}{3} \end{cases}$$

$$\det \begin{pmatrix} z & 1 & 0 \\ 1 & 0 & -5/3 \\ z & 1 & 1/3 \end{pmatrix} = z \det \begin{pmatrix} 0 & -5/3 \\ 1 & 1/3 \end{pmatrix} - \det \begin{pmatrix} 1 & -5/3 \\ 2 & 1/3 \end{pmatrix}$$

$$\frac{10}{3} - \begin{pmatrix} 1 & 1/3 \\ 2 & 1/3 \end{pmatrix} = -\frac{1}{3} \quad \text{sono} \quad \text{solvembe}$$

$$R = \langle w \rangle + \underline{v}$$

 \underline{w} non deve esserte parallelo ne o \underline{z} ne a \underline{v} (devano essere lin. ind.)

det
$$(w|z|y)$$
 \neq det $(w|z|z)$ $\neq 0$ and es. $w=(z)$

si ccome per essere somenbe => det
$$(w|z|q-v) \neq 0$$

$$\det\begin{pmatrix} 1 & 2 & 0 - \alpha \\ 0 & 1 & 1 - \beta \\ 0 & 1 & -1 - \delta \end{pmatrix} => \det(w|y|p-y) \neq 0$$

$$\det\begin{pmatrix} 1 & 2 & -\alpha \\ 0 & 4 & 4-\beta \\ 0 & 1 & -4-\delta \end{pmatrix} = -1-\delta - 1+\beta \neq 0$$

$$0 & 1 & -4-\delta \end{pmatrix} = -1-\delta - 1+\beta \neq 0$$

$$\frac{\beta-\beta-2}{\delta \neq \beta-2}$$

$$\det\begin{pmatrix} 1 & 1 & 0-\alpha \\ 0 & 0 & -2/3-\beta \end{pmatrix} = \det\begin{pmatrix} 0 & -2/3-\beta \\ 0 & 0 & -2/3-\beta \end{pmatrix}$$

$$\det\begin{pmatrix} 1 & 1 & 0 - \alpha \\ 0 & 0 & -\frac{2}{3} - \beta \\ 0 & 1 & -\frac{2}{3} - \delta \end{pmatrix} = \det\begin{pmatrix} 0 & -\frac{2}{3} - \beta \\ 1 & -\frac{2}{3} - \delta \end{pmatrix} = \frac{2}{3} + \beta \neq 0 \quad \beta \neq -\frac{2}{3}$$

$$det \left(\begin{array}{ccc} 0 & 0 & -z/3 - \beta \\ 0 & 4 & -z/3 - \delta \end{array} \right) = det \left(\begin{array}{ccc} 0 & 3 \\ 4 & -z/3 \end{array} \right)$$

$$\det\begin{pmatrix} 0 & 0 & -z/3 - \beta \\ 0 & 1 & -z/3 - \delta \end{pmatrix} = \det\begin{pmatrix} 0 & -z/3 \\ 1 & -z/3 \end{pmatrix}$$

ad es $V = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$