Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 2 – Caractéristation inertielle des solides

Activation 1

Barrière sur la tamise – Matrices d'inertie

1

Florestan Mathurin

Savoirs et compétences :

- □ *Mod2.C13 : centre d'inertie*
- ☐ Mod2.C14 : opérateur d'inertie
- *Mod2.C15 : matrice d'inertie*

Barrière sur la Tamise

Le barrage sur la Tamise permet de protéger Londres des grandes marrées évitant ainsi des crues qui pourraient survenir. Ce barrage est constituée de dix portes dont une modélisation est donnée ci-dessous.

On donne:

- $L = 58 \,\mathrm{m}$ la longueur de la porte;
- R = 12.4 m le rayon de la porte;
- e = 0,05 m l'épaisseur de la porte, considérée négligeable devant R;

- $\rho = 7800 \,\mathrm{kg} \,\mathrm{m}^{-3}$; $\alpha = \frac{\pi}{3}$.

1 Déterminer les coordonnées du centre Question d'inertie de la porte :

- 1. déterminer les coordonnées du centre d'inertie G_P de la plaque;
- 2. déterminer les coordonnées du centre d'inertie G_C de la portion cylindrique;
- 3. déterminer les coordonnées du centre d'inertie G de la porte.

Question 2 Déterminer la forme de la matrice d'inertie de la porte :

- 1. donner la forme de la matrice d'inertie de la plaque $P \ en \ G_P$;
- 2. donner la forme de la matrice d'inertie du cylindre C en G_C ;
- 3. donner la forme de la matrice d'inertie de la porte P en G.

Question 3 Déterminer la moment d'inertie de la porte par rapport à (O, \overrightarrow{z}) .

Question Donner les formes des matrices d'inertie suivantes.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 2 - Caractéristation inertielle des solides

Sciences Industrielles de

l'Ingénieur

Activation 1 -Corrigé

Barrière sur la tamise – Matrices d'inertie

Florestan Mathurin

Savoirs et compétences :

- □ Mod2.C13: centre d'inertie
- ☐ Mod2.C14 : opérateur d'inertie
- □ Mod2.C15 : matrice d'inertie

Barrière sur la Tamise

Le barrage sur la Tamise permet de protéger Londres des grandes marrées évitant ainsi des crues qui pourraient survenir. Ce barrage est constituée de dix portes dont une modélisation est donnée ci-dessous.

On donne:

- $L = 58 \,\mathrm{m}$ la longueur de la porte;
- R = 12.4 m le rayon de la porte;
- e = 0.05 m l'épaisseur de la porte, considérée négligeable devant R;
- $\rho = 7800 \,\mathrm{kg \, m^{-3}};$ $\alpha = \frac{\pi}{3}.$

Question 1 Déterminer les coordonnées du centre d'inertie de la porte :

- 1. déterminer les coordonnées du centre d'inertie G_P de la plaque;
- 2. déterminer les coordonnées du centre d'inertie G_C de la portion cylindrique;
- 3. déterminer les coordonnées du centre d'inertie G de la porte.

Question 2 Déterminer la forme de la matrice d'inertie de la porte :

- 1. donner la forme de la matrice d'inertie de la plaque P en G_P ;
- 2. donner la forme de la matrice d'inertie du cylindre C en G_C ;

3. donner la forme de la matrice d'inertie de la porte P en G.

Question 3 Déterminer la moment d'inertie de la porte par rapport à (O, \overrightarrow{z}) .

Matrices d'inertie

Question Donner les formes des matrices d'inertie suivantes.

5