問題 1 次のソフトウェア規模の見積もりに関する記述を読み、各設問に答えよ。

<設問1> 次のファンクションポイント法に関する記述中の に入れるべき 適切な字句を解答群から選べ。

ファンクションポイント(FP)法とは、ソフトウェアの規模を測定する手法の一つである。次の手順により、ソフトウェアの持つ機能の数や複雑度などをもとに、FP 値を算出する。

「FP 値算出手順]

① 測定の対象となるシステムについて、各機能の複雑度は表1のとおりである。

機能	複	难 度 係	数数
	低	中	高
内部論理ファイル	7	10	15
外部インタフェース	5	7	10
外部入力	3	4	6
外部出力	4	5	7
外部照合	3	4	6

表 1 機能および複雑度別係数

② 各機能の数と、表 1 の複雑度を評価した係数の積和を、未調整 FP 値とする。 未調整 FP 値 = (内部論理ファイルのファンクション数) \times (内部論理の複雑度係数)

+ (外部インタフェースのファンクション数) × (外部インタフェースの複雑度係数)

- + (外部入力のファンクション数) × (外部入力の複雑度係数)
- + (外部出力のファンクション数) × (外部出力の複雑度係数)
- + (外部照合のファンクション数) × (外部照合の複雑度係数)
- ③ システム特性について、その複雑さを評価し、調整値とする。
- ④ 次式により、FP 値を求める。

FP 値 = 未調整 FP 値 × (0.65 + 調整値 × 0.01) なお、計算結果の小数点以下は切り上げる。

いま、あるソフトウェアのシステム特性を測定し、表2の結果が得られた。

まず、②の計算を考えると、内部論理ファイルについては、ファンクション数が 20で、複雑度が中であるから複雑度係数は 10 となる。よってその値は、200 となる。同様に外部インタフェースについては 50 となり、②の未調整 FP 値は (1) となる。

また, ③の調整値を30とすると, ④のFP値は (2) となる。

表 2 ソフトウェアの測定結果

機能	ファンクション数	複雑度
内部論理ファイル	20	中
外部インタフェース	10	低
外部入力	15	高
外部出力	15	低
外部照合	10	中

また、FP 値を使うと、開発工数やコスト、開発期間を見積もることができる。

開発工数[人月] = ソフトウェアの FP 値 ÷ 1人月で開発できる FP 値

コスト = 開発工数 × 1 人月あたりの費用

開発期間 = 開発工数 ÷ 作業人数

例えば、ソフトウェアの FP 値=800、1 人月で開発できる FP 値=10、1 人月あたりの費用=60 万円、作業人数=10 人とすると、開発工数は (3) 人月、コストは (4) 万円、開発期間は (5) ヶ月となる。

エ. 400

(1), (2)の解答群

ア. 360 イ. 380 ウ. 396

オ. 418 カ. 428 キ. 440 ク. 462

(3) の解答群

ア. 10 イ. 80 ウ. 100 エ. 800

(4) の解答群

ア. 2400 イ. 3600 ウ. 4800 エ. 6000

(5) の解答群

ア. 8 イ. 10 ウ. 16 エ. 80

<設問2> 次のソフトウェア規模の見積もりに関する記述中の に入れるべき適切な字句を解答群から選べ。

ファンクションポイント法以外にも、ソフトウェア規模を見積もる手法がある。各手法の特徴を表3に示す。

表3 ソフトウェア規模の見積もり手法

手法	特徵
(6)	過去に制作した類似の事例から、その実績値をもとに今回の事例を
	見積もる。精度は担当者の知識や経験に大きく左右される。
	最も古くから存在する手法の一つで、予想されるソースプログラム
(7)	の行数で見積もる。システム要件がほぼ固まった段階でないと計算
	できず,プログラマの技量に左右されるため信頼性が低い。
	予想されるソースプログラムの行数をもとに見積もるが、工数と規
(8)	模の関係は単純な比例関係ではないという考え方に基づいている。
	プログラマの習熟度などによる補正係数を利用して見積もり、プロ
	グラム言語にも左右されず客観性を保てる。

(6) ~ (8) の解答群

ア. COCOMO

ウ. RFP

オ. 標準タスク法

イ. LOC(Lines Of Code)法

エ. コストプラス法

カ. 類推法