

Contextformer: A Transformer with Spatio-Channel Attention for Context Modeling in Learned Image Compression

A. Burakhan Koyuncu 1,2 , Han Gao 4 , Atanas Boev 2 , Georgii Gaikov 3 , Elena Alshina 2 , and Eckehard Steinbach 1 ¹Technical University of Munich ²Huawei Munich Research Center ³Huawei Moscow Research Center ⁴Tencent America

Motivation

In learned image compression frameworks, the context modeling is the one of the key components for a high-performance compression.

Figure 1: Commonly adopted compression framework [8]

Recent proposals in context modeling improved the performance by:

- Increasing support for spatial dependencies
- Exploiting of cross-channel dependencies
- Increasing context adaptivity

However, efficient exploitation of the latent space relations is still under-explored.

Our Method General Mechanism $N_{cs}=1$ $N_{cs}>1, sfo$ $N_{cs}>1, cfo$ Sequence Generator (spatio-channel) (spatio-channel) (spatial) Attention Norm Sliding Window Attention $N_{cs}>1, sfo$ $N_{cs}>1, cfo$ Entropy Parameters $\pi \mathcal{N}(u, \sigma^2)$ $\pi \mathcal{N}(\mu, \sigma^2)$

Runtime Optimization

Encoder Side

Encoder Side:

- Step N+3 contains the calculation for Step N→ Skip intermediate Channel Segment (SCS)
- Calculate Step N+3 and Step N+7 in parallel → Batched Dynamic Sequence (BDS)

Decoder Side:

Wavefront Coding

	Enc. Time [s]		Dec. Time [s]	
Method	Kodak	4K	Kodak	4K
w/o Optimization	56	1240	62	1440
BDS (ours)	32	600	_	_
BDS&SCS (ours)	8	120	_	_
Wavefront (ours)	40	760	44	820
3D context [3]	4	28	316	7486
2D context [4]	2	54	6	140
VTM 16.2 [1]	420	950	0.8	2.5

Experimental Results

Contextformer is implemented on top of Cui et al. [5].

Performance:

Figure 2: The rate savings relative to VTM 16.2 as a function of PSNR on the Kodak dataset

	BD-Rate [%] (lower is better)			
Method	Kodak	CLIC-P/-M	Tecnick	
VTM 16.2 [1]	0.0	0.0/ 0.0	0.0	
BPG [2]	30.3	40.5 / 30.9	30.5	
Minnen et al. [8]	14.7	11.6 / 14.1	13.7	
Cheng et al. [4]	4.2	5.9 / 9.1	4.8	
Cui et al. [5] •	3.2	_	_	
Minnen&Singh [7] +	1.9	_	-2.1	
Qian et al. [9]	4.7	_	_	
Guo et al. [6] ★	-3.7	_	_	
Contextformer *	-6.9	-9.8 / -5.9	-10.5	
Contextformer ^	-1.8	_	_	
Contextformer	-0.7	_	_	

CNN-based

• 2D • Multi-scale • Channel-wise * Advanced global ref.

Transformer-based

spatial spatio-channel, sfo spatio-channel, cfo

Model Size:

Method	Auto- encoder	Hyper- prior	Context& Entropy
Contextformer *	17.5M	4.0M	15.9M
Cui et al. [5] *	17.5M	4.0M	17.2M
Qian et al. [9]	7.6M	25.1M	13.1M
Minnen&Singh [7] *	8.4M	11.0M	101.9M

Contact Information

burakhan.koyuncu@tum.de burakhan-koyuncu Burak93/Contextformer

References

- [1] Versatile Video Coding. Standard, Rec. ITU-T H.266 and ISO/IEC 23090-3 (Aug 2020)
- [2] Bellard, F.: Bpg image format (2015), accessed: 2022-06-01. URL https://bellard.org/bpg
- [3] Chen, T., et al.: End-to-end learnt image compression via non-local attention optimization and improved context modeling. IEEE Trans. Image Process. (2021)
- [4] Cheng, Z., et al.: Learned image compression with discretized gaussian mixture likelihoods and attention modules. In: Proceedings of the IEEE Conf. Comput. Vis. Pattern Recog. (2020)
- [5] Cui, Z., et al.: Asymmetric gained deep image compression with continuous rate adaptation. In: Proceedings of the IEEE Conf. Comput. Vis. Pattern Recog. (2021)
- [6] Guo, Z., et al.: Causal contextual prediction for learned image compression. IEEE Transactions on Circuits and Systems for Video Technology (2021)
- [7] Minnen, D., Singh, S.: Channel-wise autoregressive entropy models for learned image compression. In: IEEE Int. Conf. Image Process. (2020)
- Minnen, D., et al.: Joint autoregressive and hierarchical priors for learned image compression. In:
- [9] Qian, Y., et al.: Entroformer: A transformer-based entropy model for learned image compression. In: Int. Conf. Learn. Represent. (2021)