

Estimation of Actuation Configuration for a Multi-Actuated Blimp

Final Presentation (Semester Thesis)

Students: Matthias Krebs

Simon Laube

Advisors:

Kostas Alexis

Markus Achtelik

Motivation: Control Arbitrary Blimp

Motivation: Improve Usability & Control

Content

- System Overview
- Problem Formulation
 - Parameters
 - System Model
 - Input Pattern
 - Optimization
- Results
 - Simulation Results
 - Experimental Results
 - Ground Truth
- Conclusion & Outlook

Problem Formulation

Problem Formulation

System Overview

System Overview: Control

Problem Formulation

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1}(\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

with

$$\mathbf{M}_{b} = \underbrace{\sum_{k=1}^{N} \left[\mathbf{C}_{b,m_{k}} \left(\mathbf{p}_{m_{k}}^{m_{k},cog} \times \mathbf{F}_{m_{k}} \right) \right] - \underbrace{\left(\mathbf{p}_{b}^{cob,cog} \times \left(\mathbf{C}_{b,w} m \mathbf{g}_{w} \right) \right)}_{\mathbf{M}^{gravity}}$$

Aerodynamic effects on rotation neglected ($\mathbf{M}^{aero} << \mathbf{M}^{actuation}$)

Problem Formulation

Problem Formulation: Parameters

Full Parameter set is only jointly observable

Problem Formulation: Parameters

- Position is assumed to be on sphere
- Radius and mass are assumed to be known

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1}(\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

with

$$\mathbf{M}_{b} = \underbrace{\sum_{k=1}^{N} \left[\mathbf{C}_{b,m_{k}} \left(\mathbf{p}_{m_{k}}^{m_{k},cog} \times \mathbf{F}_{m_{k}} \right) \right] - \underbrace{\left(\mathbf{p}_{b}^{cob,cog} \times \left(\mathbf{C}_{b,w} m \mathbf{g}_{w} \right) \right)}_{\mathbf{M}^{gravity}}$$

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1} (\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

Constant (known)

State (known)

$$\mathbf{M}_b = \sum_{k=1}^{N} \begin{bmatrix} \mathbf{C}_{b,m_k} & \begin{bmatrix} 0 \\ 0 \\ -r \end{bmatrix} \times \begin{bmatrix} F_x^{m_k} \\ F_y^{m_k} \end{bmatrix} \end{bmatrix} - \underbrace{\begin{pmatrix} \mathbf{p}_b^{cob,cog} \times \langle \mathbf{C}_{b,w} m \mathbf{g}_w \rangle \rangle}_{\mathbf{M}^{gravity}}$$

Problem Formulation

Problem Formulation: Optimization

Nonlinear Least Squares

$$S(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\mathbf{y}_i - \mathbf{f}(\mathbf{x}_i, \boldsymbol{\theta})\|^2$$

- Levenberg-Marquardt
 - Gradient based minimization
 - Robust and fast convergence

$$(\mathbf{J}^{\mathsf{T}}\mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{\mathsf{T}}\mathbf{J}))\boldsymbol{\delta} = \mathbf{J}^{\mathsf{T}}[\mathbf{y} - \mathbf{f}(\boldsymbol{\theta})]$$

Problem Formulation

Problem Formulation: Input Pattern

- Inputs must be applicable and sufficiently excited
 - Forward/backward
 - Varying directions
 - Steady state motor dynamics

Results

- Simulation Results
 - Confidence Region
 - Convergence Region
 - Casestudies
- Experimental Results
- Groundtruth with Leica

Simulator

- Object oriented simulator in MATLAB
- Modular concept for (almost) arbitrary blimps

Results

- Zeige Konvergenz & Anzahl Iterationen mit LMA
- Tangential ebene einführen, damit wir resultate vergleichen können
- Erläutern dass init deviations

- Das ding das dreht
- Evt Tangentialebene auf Kugel

Simulation: Confidence Region

Zeige Konvergenz & Anzahl Iterationen mit LMA

Simulation: Convergence Region

Initial Parameters can be about 1m or 120° apart of the true value

Simulation: Casestudies

mean	AU4 x	AU4 y	J	Esdatas	Resnorm [rad/s2]
4 AUs	6.18e-04	7.66e-04	6.12e-02	6.94e-05	6.73e-04
No drag	-4.89e-04	1.38e-03	5.16e-02	1.81e-05	6.88e-04
Single AU			0.025	Position Deviation AU4	
			0.02	RMS 95%	
std	AU4 x	AU4 y	<u> </u>		
4 AUs	3.65e-03	7.19e-03	Dosition 0.015		
No drag	4.29e-03	7.96e-03	Positi		
			0.005		
			0 defa	ult nodrag 1AU cog_	offset

32 simulations à 2000 raw datapoints

Problem Formulation: Input Pattern

Data Acquisition

Results: Experiments

Experiment: Convergence Region

Initial Parameters can be about 1m or 120° apart of the true value Very Similar to Simulation case.

Experiments

Autonomous Systems Lab

Results: "Ground Truth" (Leica)

- 3 AU's visible at once
- Use different views
- Fit data to get tetrahedral's edge length
 - Residual below 0.01m

Results: Compare Leica and Batch Solution

Relative tetrahedral edge length error							
%	AU2	AU3	AU4				
AU1	1.68	0.86	2.76				
AU2		0.67	2.47				
AU3			3.78				

Conclusion

- What did we do?
 - Showed applicable method to estimate actuator configuration
- How accurate?
 - Actuator positions can be estimated within centimeters
- Where to use?
 - Automatically update parameters before flight within minutes

Thanks

Autonomous Systems Lab