Technical Report

Xunhui Zhang, Ayushi Rastogi, Yue Yu March 9, 2020

This is the technical report for MSR 2020 data show case paper "On the Shoulders of Giants: A New Dataset for Pull-based Development Research".

1 Data Distribution

1.1 Dichotomous Metrics

Figure 1 shows the data distribution of dichotomous metrics.

- same country is the same_country metric. 81.7% contributor and integrator come from the same country.
- same affiliation is the same_affiliation metric. 90.4% contributor and integrator come from the same affiliation.
- include test is the test_inclusion metric. Only 19.5% pull requests include test code.
- gender is the contrib_gender metric. 90.2% contributors are male.
- follow is the contrib_follow_integrator metric. Only 7.13% contributors follow the closer of the pull request.
- first pr is the first_pr metric. 14.3% of the pull requests are submitted by contributors without any experience.
- core is the core_member metric. About 67.9% pull requests are submitted by core members
- conflict is the comment_conflict metric. Only 1.19% pull requests' comments have "conflict" mark.
- ci usage is the ci_exists metric. 74.7% pull requests use CI tools.
- *ci pass* is the ci_test_passed metric. 69% of the pull requests passed the ci builds. 31% pull requests have 1 or more failures.
- ci last status is the ci_last_build_status metric. 87.9% pull requests passed the last build.
- ci first status is the ci_first_build_status metric. 75.5% pull requests passed the first build.

- \bullet bug is the bug_fix metric. 61.5% pull requests fix bugs, and 38.5% pull requests add new features.
- # is the hash_tag metric. 21.6% pull requests refer to other pull requests or issues.
- @ is the at_tag metric. 20.5% pull requests refer to developers.

Figure 1: The distribution of dichotomous metrics

1.2 Continuous Metrics

Figure 2, 3, 4, 5 show the data distribution of continuous metrics with square root scale. For some of the metrics, we did some pre-processings.

- num_commits: we add a range of x axis from 0 to 500, and we only consider those pull request that have greater or equal to 1 commit.
- src_churn: we add a range of x axis from 0 to 10,000.

- test_churn: we add a range of x axis from 0 to 10,000.
- files_added: we add a range of x axis from 0 to 1,500.
- files_deleted: we add a range of x axis from 0 to 1,500.
- files_modified: we add a range of x axis from 0 to 2,000.
- files_changed: we add a range of x axis from 0 to 2,000.
- src_files: we add a range of x axis from 0 to 2,000.
- doc_files: we add a range of x axis from 0 to 2,000.
- other_files: we add a range of x axis from 0 to 2,000.
- num_commit_comments: we add a range of x axis from 0 to 500.
- num_issue_comments: we add a range of x axis from 0 to 500.
- num_pr_comments: we add a range of x axis from 0 to 500.
- num_comments: we add a range of x axis from 0 to 500.
- churn_addition: we add a range of x axis from 0 to 200,000.
- churn_deletion: we add a range of x axis from 0 to 200,000.
- *ci_latency*: we add a range of x axis from 0 to 10,000,000.
- *ci_failed_perc*: we only consider those pull requests that use ci tools.
- pr_succ_rate: we only consider contributors who had submitted pull requests before.
- perc_neq_emotion: we only consider pull requests that have at least 1 comment.
- perc_pos_emotion: we only consider pull requests that have at least 1 comment.
- perc_neu_emotion: we only consider pull requests that have at least 1 comment.
- perc_contrib_neg_emo: we only consider pull requests that have at least 1 comment.
- perc_contrib_pos_emo: we only consider pull requests that have at least 1 comment.
- perc_contrib_neu_emo: we only consider pull requests that have at least 1 comment.
- perc_inte_neg_emo: we only consider pull requests that have at least 1 comment.
- perc_inte_pos_emo: we only consider pull requests that have at least 1 comment.
- perc_inte_neu_emo: we only consider pull requests that have at least 1 comment.

1.3 Factor Metrics

Figure 6 shows the data distribution of factor metrics. For *contrib_country*, *inte_country*, *contrib_affiliation* and *inte_affiliation*, we show the top 6 factors, and treat other factors as others.

Figure 2: The distribution of continuous metrics

Figure 3: The distribution of continuous metrics

Figure 4: The distribution of continuous metrics

Figure 5: The distribution of continuous metrics

Figure 6: The distribution of factor metrics