Learning Latent Variable Models through Tensor Methods

Anima Anandkumar

U.C. Irvine

Challenges in Unsupervised Learning

- Learn a latent variable model without labeled examples.
- E.g. topic models, hidden Markov models, Gaussian mixtures, community detection.
- Maximum likelihood is NP-hard in most scenarios.
- Practice: EM, Variational Bayes have no consistency guarantees.
- Efficient computational and sample complexities?

In this talk: guaranteed and efficient learning through tensor methods

How to model hidden effects?

Basic Approach: mixtures/clusters

• Hidden variable h is categorical.

Advanced: Probabilistic models

- ullet Hidden variable h has more general distributions.
- Can model mixed memberships.

Moment Based Approaches

Multivariate Moments

$$M_1 := \mathbb{E}[x], \quad M_2 := \mathbb{E}[x \otimes x], \quad M_3 := \mathbb{E}[x \otimes x \otimes x].$$

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\bullet \ \mathbb{E}[x \otimes x]_{i_1, i_2} = \mathbb{E}[x_{i_1} x_{i_2}].$
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^\top]$.

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\bullet \ \mathbb{E}[x \otimes x \otimes x]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1}x_{i_2}x_{i_3}].$

Outline

- Introduction
- 2 Spectral Methods: Matrices to Tensors
- Tensor Forms for Different Models
- 4 Experimental Results
- **(5)** Overcomplete Tensors
- 6 Conclusion

Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

- Dimension reduction through PCA (on data matrix)
- Clustering on projected vectors (e.g. *k*-means).

Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

- Dimension reduction through PCA (on data matrix)
- Clustering on projected vectors (e.g. k-means).

- Basic method works only for single memberships.
- Failure to cluster under small separation.
- Require long documents for good concentration bounds.

Classical Spectral Methods: Matrix PCA

Learning through Spectral Clustering

- Dimension reduction through PCA (on data matrix)
- Clustering on projected vectors (e.g. k-means).

- Basic method works only for single memberships.
- Failure to cluster under small separation.
- Require long documents for good concentration bounds.

Efficient Learning Without Separation Constraints?

Beyond SVD: Spectral Methods on Tensors

- How to learn the mixture components without separation constraints?
 - ► Are higher order moments helpful?
- Unified framework?
 - Moment-based Estimation of probabilistic latent variable models?
- SVD gives spectral decomposition of matrices.
 - ▶ What are the analogues for tensors?

Spectral Decomposition

Spectral Decomposition

• $u \otimes v \otimes w$ is a rank-1 tensor since its $(i_1, i_2, i_3)^{\text{th}}$ entry is $u_{i_1}v_{i_2}w_{i_3}$.

A has orthogonal columns.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

A has orthogonal columns.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

• $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$

A has orthogonal columns.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$
- a_i are eigenvectors of tensor M_3 .
- Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v$.

A has orthogonal columns.

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- $M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1.$
- a_i are eigenvectors of tensor M_3 .
- Analogous to matrix eigenvectors: $Mv = M(I, v) = \lambda v$.

Two Problems

- How to find eigenvectors of a tensor?
- ullet A is not orthogonal in general.

Whitening

$$M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i.$$

- Find whitening matrix W s.t. $W^{\top}A = V$ is an orthogonal matrix.
- When $A \in \mathbb{R}^{d \times k}$ has full column rank, it is an invertible transformation.

- Use pairwise moments M_2 to find W s.t. $W^{\top}M_2W = I$.
- Eigen-decomposition of $M_2 = U \mathrm{Diag}(\tilde{\lambda}) U^{\top}$, then $W = U \mathrm{Diag}(\tilde{\lambda}^{-1/2})$.

Using Whitening to Obtain Orthogonal Tensor

Multi-linear transform

- $M_3 \in \mathbb{R}^{d \times d \times d}$ and $T \in \mathbb{R}^{k \times k \times k}$
- $T = M_3(W, W, W) = \sum_i w_i (W^{\top} a_i)^{\otimes 3}$.
- $T = \sum_{i \in [k]} \lambda_i \cdot v_i \otimes v_i \otimes v_i$ is orthogonal.
- Dimensionality reduction when $k \ll d$.

Putting it together

$$M_2 = \sum_i w_i a_i \otimes a_i, \quad M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- Obtain whitening matrix W from SVD of M_2 .
- Use W for multi-linear transform: $T = M_3(W, W, W)$.
- ullet Find eigenvectors of T through power method and deflation.

For what models can we obtain M_2 and M_3 forms?

Outline

- Introduction
- 2 Spectral Methods: Matrices to Tensors
- Tensor Forms for Different Models
- 4 Experimental Results
- Overcomplete Tensors
- 6 Conclusion

Topic Modeling

k topics (distributions over vocab words). Each document \leftrightarrow mixture of topics. Words in document \sim _{iid} mixture dist.

Word generation (x_1, x_2, \ldots)

• Linear model: $\mathbb{E}[x_i|h] = Ah$.

Moments for Single Topic Models

- $\bullet \ \boxed{\mathbb{E}[x_i|h] = Ah.}$
- $\bullet \mid w := \mathbb{E}[h].$
- ullet Learn topic-word matrix A, vector w

Moments for Single Topic Models

$$\bullet \ \boxed{\mathbb{E}[x_i|h] = Ah.}$$

$$\bullet \mid w := \mathbb{E}[h].$$

ullet Learn topic-word matrix A, vector w

Pairwise Co-occurence Matrix M_r

$$M_2 := \mathbb{E}[x_1 \otimes x_2] = \mathbb{E}[\mathbb{E}[x_1 \otimes x_2 | h]] = \sum_{i=1}^k w_i a_i \otimes a_i$$

Triples Tensor M_3

$$M_3 := \mathbb{E}[x_1 \otimes x_2 \otimes x_3] = \mathbb{E}[\mathbb{E}[x_1 \otimes x_2 \otimes x_3 | h]] = \sum_{i=1}^k w_i a_i \otimes a_i \otimes a_i$$

Moments under LDA

$$M_2 := \mathbb{E}[x_1 \otimes x_2] \qquad -\frac{\alpha_0}{\alpha_0 + 1} \mathbb{E}[x_1] \otimes \mathbb{E}[x_1]$$

$$M_3 := \mathbb{E}[x_1 \otimes x_2 \otimes x_3] \qquad -\frac{\alpha_0}{\alpha_0 + 2} \mathbb{E}[x_1 \otimes x_2 \otimes \mathbb{E}[x_1]] - \text{more stuff...}$$

Then

$$M_2 = \sum \tilde{w}_i \ a_i \otimes a_i$$

$$M_3 = \sum \tilde{w}_i \ a_i \otimes a_i \otimes a_i.$$

- Three words per document suffice for learning LDA.
- Similar forms for HMM, ICA, etc.

Subgraph Counts as Graph Moments

Subgraph Counts as Graph Moments

Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

3-Star Count Tensor

$$\begin{split} \tilde{M}_3(a,b,c) &= \frac{1}{|X|} \# \text{ of common neighbors in } X \\ &= \frac{1}{|X|} \sum_{x \in X} G(x,a) G(x,b) G(x,c). \\ \tilde{M}_3 &= \frac{1}{|X|} \sum_{x \in X} [G_{x,A}^\intercal \otimes G_{x,B}^\intercal \otimes G_{x,C}^\intercal] \end{split}$$

Multi-view Representation

- Conditional independence of the three views
- π_x : community membership vector of node x.

Similar form as M_2 and M_3 for topic models

Main Results

- k communities, n nodes. Uniform communities.
- \bullet α_0 : Sparsity level of community memberships (Dirichlet parameter).
- p, q: intra/inter-community edge density.

Scaling Requirements

$$n = \tilde{\Omega}(k^2(\alpha_0 + 1)^3), \qquad \frac{p - q}{\sqrt{p}} = \tilde{\Omega}\left(\frac{(\alpha_0 + 1)^{1.5}k}{\sqrt{n}}\right).$$

Main Results

- k communities, n nodes. Uniform communities.
- α_0 : Sparsity level of community memberships (Dirichlet parameter).
- p, q: intra/inter-community edge density.

Scaling Requirements

$$n = \tilde{\Omega}(k^2(\alpha_0 + 1)^3), \qquad \frac{p - q}{\sqrt{p}} = \tilde{\Omega}\left(\frac{(\alpha_0 + 1)^{1.5}k}{\sqrt{n}}\right).$$

- For stochastic block model $(\alpha_0 = 0)$, tight results
- Tight guarantees for sparse graphs (scaling of p,q)
- Tight guarantees on community size: require at least \sqrt{n} sized communities
- Efficient scaling w.r.t. sparsity level of memberships α_0

Main Results (Contd)

- α_0 : Sparsity level of community memberships (Dirichlet parameter).
- Π : Community membership matrix, $\Pi^{(i)}$: i^{th} community
- \widehat{S} : Estimated supports, $\widehat{S}(i,j)$: Support for node j in community i.

Norm Guarantees

$$\frac{1}{n} \max_{i} \|\widehat{\Pi}^{i} - \Pi^{i}\|_{1} = \widetilde{O}\left(\frac{(\alpha_{0} + 1)^{3/2}\sqrt{p}}{(p - q)\sqrt{n}}\right)$$

Main Results (Contd)

- α_0 : Sparsity level of community memberships (Dirichlet parameter).
- Π : Community membership matrix, $\Pi^{(i)}$: i^{th} community
- \widehat{S} : Estimated supports, $\widehat{S}(i,j)$: Support for node j in community i.

Norm Guarantees

$$\frac{1}{n} \max_{i} \|\widehat{\Pi}^{i} - \Pi^{i}\|_{1} = \tilde{O}\left(\frac{(\alpha_{0} + 1)^{3/2} \sqrt{p}}{(p - q)\sqrt{n}}\right)$$

Support Recovery

 $\exists \, \xi \text{ s.t. for all nodes } j \in [n] \text{ and all communities } i \in [k], \text{ w.h.p.}$

$$\Pi(i,j) \geq \xi \Rightarrow \widehat{S}(i,j) = 1 \quad \text{ and } \quad \Pi(i,j) \leq \frac{\xi}{2} \Rightarrow \widehat{S}(i,j) = 0.$$

Zero-error Support Recovery of Significant Memberships of All Nodes

Outline

- Introduction
- 2 Spectral Methods: Matrices to Tensors
- Tensor Forms for Different Models
- 4 Experimental Results
- **(5)** Overcomplete Tensors
- 6 Conclusion

Computational Complexity $(k \ll n)$

- n = # of nodes k = # of communities.
- N=# of iterations c=# of cores.

	Whiten	STGD	Unwhiten
Space	O(nk)	$O(k^2)$	O(nk)
Time	$O(nsk/c + k^3)$	$O(Nk^3/c)$	O(nsk/c)

- Whiten: matrix/vector products and SVD.
- STGD: Stochastic Tensor Gradient Descent
- Unwhiten: matrix/vector products

Our approach:
$$O(\frac{nsk}{c} + k^3)$$

Embarrassingly Parallel and fast!

Scaling Of The Stochastic Iterations

Summary of Results

Facebook $n \sim 20k$

Datacat

Yelp $n \sim 40k$

Mathad

 $\begin{array}{c} \mathsf{DBLP}(\mathsf{sub}) \\ n \sim 1 \; \mathsf{million}(\sim 100k) \end{array}$

C

 \mathcal{D}

Punning Time

Error (\mathcal{E}) and Recovery ratio (\mathcal{R})

î.

Dataset	κ	Method	Rullling Time	\mathcal{C}	K
Facebook(k=360)	500	ours	468	0.0175	100%
Facebook(k=360)	500	variational	86,808	0.0308	100%
Yelp(k=159)	100	ours	287	0.046	86%
Yelp(k=159)	100	variational	N.A.		
,					
DBLP sub(k=250)	500	ours	10,157	0.139	89%
DBLP sub(k=250)	500	variational	558,723	16.38	99%
DBLP(k=6000)	100	ours	5407	0.105	95%

Thanks to Prem Gopalan and David Mimno for providing variational code.

Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank	Category	Business	Stars	Review Counts
1	Latin American	Salvadoreno Restaurant	4.0	36
2	Gluten Free	P.F. Chang's China Bistro	3.5	55
3	Hobby Shops	Make Meaning	4.5	14
4	Mass Media	KJZZ 91.5FM	4.0	13
5	Yoga	Sutra Midtown	4.5	31

Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank	Category	Business	Stars	Review Counts
1	Latin American	Salvadoreno Restaurant	4.0	36
2	Gluten Free	P.F. Chang's China Bistro	3.5	55
3	Hobby Shops	Make Meaning	4.5	14
4	Mass Media	KJZZ 91.5FM	4.0	13
5	Yoga	Sutra Midtown	4.5	31

Bridgeness: Distance from vector $[1/\hat{k},\ldots,1/\hat{k}]^{\top}$

Top-5 bridging nodes (businesses)

Business	Categories
Four Peaks Brewing	Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe
Pizzeria Bianco	Restaurants, Pizza, Phoenix
FEZ	Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix
Matt's Big Breakfast	Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Co	Restaurants, Bars, Nightlife, Pubs, Tempe

Outline

- Introduction
- 2 Spectral Methods: Matrices to Tensors
- 3 Tensor Forms for Different Models
- 4 Experimental Results
- Overcomplete Tensors
- 6 Conclusion

$$T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.$$

• k: tensor rank, d: ambient dimension. k > d: overcomplete.

$$T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.$$

- k: tensor rank, d: ambient dimension. k > d: overcomplete.
- A is incoherent: $\langle a_i, a_j \rangle \sim \frac{1}{\sqrt{d}}$ for $i \neq j$.

$$T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.$$

- k: tensor rank, d: ambient dimension. k > d: overcomplete.
- A is incoherent: $\langle a_i, a_j \rangle \sim \frac{1}{\sqrt{d}}$ for $i \neq j$.
- ullet Guaranteed Recovery when $k=o(d^{1.5})$.

$$T = \sum_{j \in [k]} w_j a_j \otimes a_j \otimes a_j.$$

- k: tensor rank, d: ambient dimension. k > d: overcomplete.
- A is incoherent: $\langle a_i, a_j \rangle \sim \frac{1}{\sqrt{d}}$ for $i \neq j$.
- ullet Guaranteed Recovery when $k=o(d^{1.5})$.
- Tight sample complexity bounds.

[&]quot;Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates" by A., R. Ge, M. Janzamin. Preprint, Feb. 2014.

[&]quot;Provable Learning of Overcomplete Latent Variable Models: Semi-supervised & Unsupervised".

High-level Intuition for Sample Bounds

- Gaussian mixture model: x = Ah + z, where z is noise.
- Exact moment $T = \sum_i w_i a_i \otimes a_i \otimes a_i$.
- Sample moment: $\hat{T} = \frac{1}{n} \sum_{i} x^{i} \otimes x^{i} \otimes x^{i} \dots$

Naive Idea: $\|\hat{T} - T\| \le \| \max(\hat{T}) - \max(T) \|$, apply matrix Bernstein's.

- Our idea: Careful ϵ -net covering for $\hat{T} T$.
- $\hat{T}-T$ has many terms, e.g. $\frac{1}{n}\sum_i z^i\otimes z^i\otimes z^i$.
- Need to bound $\frac{1}{n} \sum_{i} \langle z^i, u \rangle^3$, for all $u \in \mathcal{S}^{d-1}$.
- Classify inner products into buckets and bound them separately.

High-level Intuition for Sample Bounds

- Gaussian mixture model: x = Ah + z, where z is noise.
- Exact moment $T = \sum_i w_i a_i \otimes a_i \otimes a_i$.
- Sample moment: $\hat{T} = \frac{1}{n} \sum_{i} x^{i} \otimes x^{i} \otimes x^{i} \dots$

Naive Idea: $\|\hat{T} - T\| \le \| \max(\hat{T}) - \max(T) \|$, apply matrix Bernstein's.

- Our idea: Careful ϵ -net covering for $\hat{T} T$.
- ullet $\hat{T}-T$ has many terms, e.g. $\frac{1}{n}\sum_i z^i\otimes z^i\otimes z^i$.
- Need to bound $\frac{1}{n} \sum_{i} \langle z^i, u \rangle^3$, for all $u \in \mathcal{S}^{d-1}$.
- Classify inner products into buckets and bound them separately.
- Tight sample bounds for a range of latent variable models.
- E.g. Require $\tilde{\Omega}(k)$ samples for k-Gaussian mixtures in low-noise regime.

Main Result: Local Convergence

- Initialization: $||a_1 a^{(0)}|| \le \epsilon_0$, and $\epsilon_0 < \text{const.}$
- Noise: $\hat{T} := T + E$, and $||E|| \le 1/\operatorname{polylog}(d)$.
- Error: $\epsilon_T := ||E|| + \tilde{O}\left(\frac{\sqrt{k}}{d}\right)$

Theorem (Local Convergence)

After $O(\log(1/\epsilon_T))$ steps of alternating rank-1 updates,

$$||a_1 - a^{(t)}|| = O(\epsilon_T).$$

- Linear convergence: up to approximation error.
- Guarantees for overcomplete tensors: $k = o(d^{1.5})$ and for p^{th} -order tensors $k = o(d^{p/2})$.
- Requires good initialization. What about global convergence?

Global Convergence k = O(d)

SVD Initialization

- Find the top singular vector of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Conditions for global convergence

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Global Convergence k = O(d)

SVD Initialization

- Find the top singular vector of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Conditions for global convergence

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Latest Improvement (Assuming Gaussian a_i 's)

• Improved initialization requirements for convergence.

$$|\langle x^{(0)}, a_j \rangle| \ge d^{\beta} \frac{\sqrt{k}}{d}$$

Global Convergence k = O(d)

SVD Initialization

- Find the top singular vector of $T(I, I, \theta)$ for $\theta \sim \mathcal{N}(0, I)$.
- Use them for initialization. L trials.

Conditions for global convergence

- Number of initializations: $L \ge k^{\Omega(k/d)^2}$, Tensor Rank: k = O(d)
- No. of Iterations: $N = \Theta(\log(1/\epsilon_T))$. Recall ϵ_T : approx. error.

Latest Improvement (Assuming Gaussian a_i 's)

• Improved initialization requirements for convergence.

$$|\langle x^{(0)}, a_j \rangle| \ge d^{\beta} \frac{\sqrt{k}}{d}$$

• Initialize with samples with noise variance $d\sigma^2$ s.t. $\sigma = o\left(\frac{\sqrt{d}}{\sqrt{k}}\right)$

$$\sigma = o\left(\frac{\sqrt{d}}{\sqrt{k}}\right)$$

Outline

- Introduction
- 2 Spectral Methods: Matrices to Tensors
- Tensor Forms for Different Models
- 4 Experimental Results
- **6** Overcomplete Tensors
- 6 Conclusion

Conclusion

Guaranteed Learning of Latent Variable Models

- Efficient sample and computational complexities
- Better performance compared to EM, Variational Bayes etc.

In practice

- Scalable and embarrassingly parallel: handle large datasets.
- Efficient performance: perplexity or ground truth validation.

Software Code

- Topic modeling https://github.com/FurongHuang/TopicModeling
- Community detection
 https://github.com/FurongHuang/Fast-Detection-of-Overlapp