

도입

친환경유기원예

- 친환경농업과 유기농업을 묶어 친환경유기농업이라고 부르지만 친환경농업이 바로 유기농업은 아님
- 관행농업의 문제점을 인식하고 그 대안으로 출발한 유기농업은 원예 분야에서 독특한 의미를 갖고, 친환경농업의 중심에 유기농업이 있음
- 친환경유기원예는 토양 및 시비관리, 병충해와 잡초 방제에서 관행농업과 다르고, 친환경유기농산물의 재배·생산·판매 방식은 법적으로 규정되어 있다.

학습목차

- 1. 배경과 용어 정리
- 2. 토양관리와 시비
- 3. 병충해와 잡초 방제
- 4. 유기농 관련 제도

학습목표

- 1. 친환경농업, 유기농업, 자연농업의 개념을 안다.
- 2. 친환경유기농업에서의 토양관리와 시비 요령을 알 수 있다.
- 3. 친환경유기농업에서의 병충해와 잡초 방제법에 대해 설명할 수 있다.
- 4. 친환경농산물의 분류와 인증 기준에 대해 이해할 수 있다.

원예학

배경과용어정리

※관행농업의 문제

- 토양 물리성 악화와 유실
- 농약과 화학비료 대량사용
- 수질오염과 지하수 고갈
- 염류집적과 부영양화 발생
- 환경파괴 식품안전성 불신

₩부영양화(富營養化, eutrophication)

하천수나 호수에 유기물 및 영양염류의 농도가 높아지는 현상

፠친환경농업의 배경

- 관행농업의 대안
- 지속가능한 농업
- 농산물 안전성 담보
- 생태환경의 보전
- 국제경쟁력 강화

Review 2019

제18회 친환경유기농무역박람회 2019

출처: http://www.organicshow.co.kr/

Q.

국내 친환경 농업?

- 친환경농업은 농업과 환경을 조화시켜 생산을 지속 가능케 하는 농업으로 경제성, 안정성, 그리고 환경보전을 추구하는 농업으로 정의
- 이러한 형태의 농업을 지칭하는 용어로 환경에 결부시켜 환경농업, 환경보전형농업, 환경 친화적 농업, 친환경유기농업 등이 있다
 - 1970년 종교단체에서 시작
 - 1990년 한국유기농업협회 창립
 - 1997년 친환경농업육성법 제정
 - 국제식품규격위원회(CODEX Alimentarius Commission) 가이드 라인을 받고 있음

Q. 교수님, 다음 친환경 농업관련 용어에 대해 설명 부탁드립니다.

[그림 4-2. 친환경농업과 유기농업의 상호관계]

교과서 389 page 참조

Q.

교수님, 다음 친환경 농업관련 용어에 대해 설명 부탁드립니다.

- 관행농업 오래전부터 해 오던 대로 이루어지는 농업방식
- 친환경농업

농업과 환경을 조화시켜 생산을 지속 가능케 하는 농업. 관행농업에서 벗어나 환경과의 조화를 생각하며 지속가능한 농업생산을 지향 친환경농업에서는 화학비료와 농약을 사용하되 가능한 한 자제

• 유기농업

친환경농업의 핵심. 경운은 하되 약하게, 비료는 주되유기질비료를, 제초는 하되 제초제를 사용하지 않고, 농약은 천연의 것을 사용

원예학

토양관리와시비

※좋은 토양의 구비조건

- 보수력과 보비력이 커야 한다.
- 배수성과 통기성이 좋아야 한다.
- 표토(5~20cm, 유기물질 및 미생물이 집중)는 깊고 부드러워야 한다.
- 토양반응은 중성에 가까워야 한다(pH 5.5-6)
- 병충해가 없어야 한다.

[표 4-4 토성에 따른 채소와 과수의 생육 반응]

작물	사질토양	점질토양
채소	 조숙, 노화 촉진, 조기 추대, 저항성 약화 지근발생 억제, 바람들이 촉진, 외관 양호 향기 저하(우엉), 육질 허술, 저장력 감소 박막외피(마늘, 양파)대형과, 과육 허술 수송성 불양(수박), 착과수 감소(딸기) 	
과수	• 측근발생 억제, 착색 및 성숙 촉진, 조기 결실, 경제수령 단축	

- ※ 모래와 점토의 함량에 따라 사토(沙土, sand soil)·사양토(砂壤土, sandy loam)·양토(壤土, loamy soil)·식양토(埴壤土, clay loam soil)
 - 작물에 따라 알맞은 토양을 선택·조성

[표 4-4 토성에 따른 채소와 과수의 생육 반응]

작물	사질토양	점질토양
채소		 만숙, 노화 억제, 만추대, 저항성 증진 지근발생 촉진, 바람들이 억제, 외관불량 향기 양호(우엉), 육질 양호, 저장력 우수 후막외피(마늘, 양파), 소형과, 과육 치밀 수성성 양호(수박), 착과수 증가(딸기)
과수		• 잎의 과번무, 화아분화 어거제, 소과, 품질저하, 결실 지연

- ※ 모래와 점토의 함량에 따라 사토(沙土, sand soil)·사양토(砂壤土, sandy loam)·양토(壤土, loamy soil)·식양토(埴壤土, clay loam soil)
 - 작물에 따라 알맞은 토양을 선택·조성

과종이나 채소종류에 따라 적합한 토성이 필요

과종	토성	비고
복숭아	사양토	배수가 좋은 토양
사과	사양토~양토	토심이 깊고 배수가 잘되는 토양
배나무	양토~식양토	토양이 비옥한 토양
포도	사양토~식양토	토양적응성이 넓음

※양분의 유효도와 토양반응과의 관계

• 토양 산도에 따라 특정무기양분의 함량이 달라짐

፠토양 유기물(식물 부숙질) 시용효과

4강. 생육과 환경[복습]

- 보수력과 보비력 향상
- 토양반응 완충능 향상
- 미생물의 활동을 증진
- 토양의 입단화(떼알구조)를 촉진

₩무기양분의 결핍

- 고등식물은 물, 공기, 태양에너지 및 토양에서 흡수된 필수원소들이 있는 조건하에서 생장에 필요한 모든 유기 화합물 및 기타 화합물을-아미노산, 호르몬 및 비타민 등
 합성할 수 있는 독립영양체(autotrophic)
- 특정 필수원소의 결핍은 관련 생화학적 대사와 기능이 교란되기 때문에 일어 남.
- 식물이 정상적인 생육을 유지하기 위해 토양 속 필수원소의 양보다는 유효도가 중요

6강. 생육과 환경[복습]

₩식물의 필수원소 흡수형태

다량원소	흡수형태	미량원소	흡수형태
탄소(C)	CO_2	몰리브덴(Mo)	MoO ₄ 3-
수소(H)	H_2O	구리(Cu)	Cu ⁺ , Cu ²⁺
산소(O)	O_2 , H_2O	아연(Zn)	Zn ²⁺
질소(N)	NO_3^- , NH_4^+	망간(Mn)	Mn ²⁺
황(S)	SO ₄ ²⁻	붕소(B)	H_3BO_3
칼륨(K)	K ⁺	철(Fe)	Fe ²⁺ , Fe ³⁺
인(P)	H ₂ PO ₄ -, HPO ₄ 2-	염소(CI)	Cl ⁻
마그네슘(Mg)	Mg ²⁺	니켈(Ni)	Ni ²⁺
칼슘(Ca)	Ca ²⁺		

- 필수원소들은 주로 이온(ions)의 형태로 식물에 흡수
- 미량원소는 작물의 생육에 요구되는 양은 적지만 중요성이 낮다는 것은 아님
- 근권부에서 수분의 흡수와 함께 작물에 흡수

፠시비량 결정

- 이론적 계산
 시비량 = (작물의흡수량 양분천연공급량)/비료의 이용율
- cf. 작물의 흡수량: 천연공급량과 비료로 공급된 양분 중에서 흡수한 비료량 천연공급량: 토양과 관개수로부터 작물에 공급되는 양분 비료이용효율: 시용한 비료의 성분량 중 작물이 흡수한 성분량의 비율

➡ 시비량 결정의 애로점

- 관여 요인(품종, 토양, 기상, 작부방식)이 많아 사실상 정확한 산출이 어려움
- 시비량 결정(관행): 작물 별로 3요소 적량시험(시험연구기관)을 통해 산출된 표준시비량을 기준으로 하여, 재배 여건에 따라 가감 조절하여 시비량을 결정
- 시비량 결정에는 무엇보다도 재배자의 오랜 경험이 중요

※관행농법의 문제점→연작에 의한 기지현상(soil sickness)

- 기지현상(忌地現狀, soil sickness): 작물을 연작할 때 해를 거듭할수록 생육이 뚜렷하게 나빠지는 현상
- **원인** : 양분소모, 염류집적, 물리성악화, 병해충과 선충집적, 타감물질, 잡초번식

₩대책_돌려짓기(윤작)

- 동일한 경지에 서로 다른 작물을 돌려 가며 재배
- 지력회복과 기지현상방지
- 채소작물과 벼과작물의 윤작체계의 잇점(답전윤환)
 - 녹비제공
- 통기성 개선
- 염류제거

토양 내 양분 유효화, 토양 개량, 답-전 미생물의 길항작용에 의한 토양 병충해 발생 억제

[그림. 윤작(좌) 및 청소작물(우)에 의한 토양개량]

₩질소과잉에 따른 각종 병해의 발생 예방_청소작물 도입

- 채소에 발생하는 병 요인 가운데 질소과잉이 발병에 가장 큰 요인으로 조사됨
- 질소과잉에 따른 각종 병해의 발생을 경감시키기 위해서 벼과작물을 청소작물(cleaning crop)로 도입
- 청소작물로는 흡비력이 강한 옥수수, 수수, 피, 귀리, 호밀, 이탈리안 라이그래스 등을 이용
- 이러한 벼과작물을 출수기 내지 개화기까지
 50~70일 정도 재배한 후에 예취하여 절단한 다음에 녹비로 토양에 환원시키면 염류제거와 함께
 토양개량의 효과를 얻을 수 있음

◆ 2절 토양관리와 시비

₩유기물 시용

- 퇴비 유기 농축산부산물, 토양개량과 대체비료
 - 볏짚, 왕겨, 톱밥, 파쇄목, 돈분, 우분, 계분
 - 양질의 퇴비는 부숙 과정에서 양분함량이 증가되고 유해가스가 없으며, 유용균이 많이 번식하고, 토양의 완층능을 증가
 - 퇴비의 제조과정은 재료수집 → 혼합과 야적 → 퇴적과 뒤집기 (10~14주) → 후숙의 단계(20일 이상 야적)를 거침

※유기물 시용

- **녹비** 녹색식물의 줄기와 잎, green manure
 - 두과작물 자운영, 알팔파, 레드클로버(질소고정능력활용)
 - 벼과작물 보리, 밀, 호밀, 귀리 등(심근성, 토양물리성 개선)

Q.

유기농법에서 퇴비와 녹비사용의 주의점에 대해 설명 부탁드립니다.

- 모두 생산과정에서 합성농약이나 화학비료가 사용되지 않아야 함
- 퇴비의 재료인 축분의 경우도 당연히 유기축산에서 생산된 것이어야 하고,
- 녹비작물을 이용할 때도 반드시 유기농법으로 재배해야 됨

원예학

병충해와 잡초 방제

₩식물 병의 정의

- 식물의 병(disease)이란 식물의 본래의 생리적 또는 형태적 이상을 말하며, 끊임없는 병원(病原, causal agent)의 방해를 받아 식물의 정상적인 생활기능이 저해받는 과정을 의미
- 병원 중에서 식물에 감염하여 직접 병의 원인이 되는 병원성미생물을 병원체(病原體, pathogen)라고 함

국한국방송통신대학교 Korea National Open Universit

출처: 거창사과 병해충 도감(좌, 중)

※식물병원균의 종류 및 분류

- 식물병원성미생물-병원체
 - 진균(곰팡이, funji)
 - 세균(bacteria)
 - 파이토플라스마 (phytoplasma)
 - 바이러스(virus)
 - 바이로이드(viroid)
- 병원체에는 선충과 같은 생물성 병원도 포함
- 병원체에 기생당하는 식물을 기주식물(host plant)라고 함

※ 1µm= 10⁻⁶m(미터)

• 출처: Agrios(2005), 식물의학(2017)

፠병발생에 대한 이해

- 식물병이 발생하기 위해서는 세 가지 요인이 충족되어야 함
- 삼각형의 넓이는 식물체에서 혹은 식물집단의 발병정도를 의미

፠병징에 대한 이해

- 발병에 의하여 육안으로 관찰되는 기주식물의 여러 가지 이상변화를 병징(病徵, symptom)이라고 함
- 병의 진단에 필요한 중요한 실마리를 제공
- 발병하는 부위에 따라 전신병징 국부병징으로 구분

[사과의 탄저병, 부란병, 바이로이드 감염 예시]

• 출처: 거창사과 병해충 도감(좌, 중)

፠진균에 의한 병(1)

- 식물에 병을 일으킬 수 있는 진균(곰팡이, fungi)은 8,000종 이상
- 전체 식물병의 75%
- 기공이나 상처를 통하거나 표피를 직접 뚫고 침입 - 균사체, 곰팡이가루(분생포자)
- 10~30℃ 범위의 온도와 다습하고 약산성인 조건에서 잘 자라지만 기주, 환경조건에 다양하게 영향을 받음
- 특정 기주만을 침해하는 것도 있지만 기주 범위가 대단히 넓은 것(탄저병 · 균핵병 · 잿빛곰팡이병)도 있음
- 일생을 기주식물에 기생하여 살거나 아니면 일정기간을 기생. 흙 속에 월동 가능하기도 함

፠세균에 의한 병(1)

- 식물에 병을 유발시킬 수 있는 세균(bacteria)은
 약 80종 (원예식물에 나타나는 병도 열 가지 내외)
- 주로 상처와 기공을 통해 침해하기 때문에 상처없이 작물을 재배하는 것이 중요
- 대부분의 세균은 30℃ 이상의 고온을 좋아하고, 건조에는 대단히 약하며 다습조건 및 중성/알카리성 조건에서 잘 자람
- 세균은 진균에 비해 증식과 생육속도가 매우 빠름

Q2

바이러스와 바이로이드의 차이점에 대해 설명 부탁드립니다.

- 바이로이드는 크기가 작고(바이러스의 1/10) 식물세포를 감염할 수 있는 리보핵산(RNA)으로 스스로 복제하고 병을 일으킬 수 있음
- 바이러스의 RNA는 단백질 껍데기에 들어있는데 비해 바이로이드의 RNA는 껍데기가 없이 노출된 상태로 존재함
- 바이러스는 다양한 원예작물에 발병하나 바이로이드는 사과 배 포도 등 일부 과수작물에서 발견

[담배모자이크 virus]

• 출처: 식물의학

₩식물 병의 방제

- 식물병의 방제는 병원균의 종류와 기주식물에 따라 다양
- 일반적으로 경제성을 고려하여 개체보다는 군락에 중점을 두어서, 병 발생 후의 치료보다는 예방과 발병을 줄이는 것에 주력

- 발생의 예찰

- 화학적 방제

- 법적인 규제

- 생물적 방제

- 병의 진단

- 물리적 방제

- 경종적 방제

- 종합적 방제

₩해충의 피해 단계

- (1차 가해) 외관손상, 품질과 수량저하
- (2차 감염) 무름병, 탄저병, 바이러스 등
- (3차 피해) 해충의 배설물 등으로 인한 그을음병, 광합성 억제
- 작물별로 해충에 대한 피해양상이 다름 (사과, 배, 무, 배추는 대표적으로 가해하는 해충 종류가 상대적으로 많음)

2절 해충과 선충

╬해충의 방제 - 해충종합관리_ICT 융합기술활용

• 무인병해충예찰시스템

※친환경유기농적 병충해 및 잡초 방제법

- 물리적 방법 가열
- 생물적 방법 천적
- 화학적 방법 제충국
- 경종적 방법 제거, 환경개선

※친환경유기농적 방제법 - 토양가열소독

- 가열소독 시 유용미생물을 고려하여 60℃에서 30분 정도 하는 것이 적당
- 소토법, 증기이용법, 태양열소독법

[그림 14-5. 뜨거운 증기를 이용한 토양소독 모습]

※친환경유기농적 방제법 - 토양가열소독_태양열 소독법

- 원리 한여름 고온기에 태양열을 투명필름으로 멀칭한 토양 내부로 전도시켜 지온을 상승. 밀폐된 하우스 내에서 효과 높음
- 효과
 - 유기물분해효율 및 유용곰팡이류의 미생물 증가 ↑
 - 토양병원균의 혐기적 사멸 ↑
 - 특정 유기산과 독성은 토양병원균의 생장억제 및 사멸 ↑
 - 잡초발생 ↓

፠친환경유기농적 방제법 - 미생물 농약

- *Paenibacillus poyamixa*: 균사생장억제, 포자파괴, 흰가루병
- Bacillus thuringiensis:
 독소물질 (BT), 소화기중독발생, 각종 나방류
- 표 14-2 참고 (교과서 396 참고)

유기농 살충제 처리(BT)

3_절 형질전환을 이용한 품종육성

₩대표적인 형질전환 품종

내충성 품종 Bt 옥수수 '일드가드'

- 세균 Bacillus thuringiensis(Bt) 독소 염기성환경의 곤충 소화기관에 독성발현 → 곤충소화기관에 구멍이 나고 식욕이 저하 → 아사
- 목적 유전자 Bt 독소 생산 유전자

출처: https://www.planetnatural.com/pestproblem-solver/garden-pests/cornborer-control/

• 교과서 371 page

※친환경유기농적 방제법 - 천적 _ 뱅커플랜트

- 일반적인 천적의 이용방법은 대량 증식하여 집중적으로 방사하는 방법을 사용
- 증식하고 유지하는 뱅커플랜트(banker plant)를 이용하면 천적을 보다 영속적으로 길게 사용할 수 있음
- 뱅커플랜트와 주 작물의 유연관계가 멀수록 뱅커플랜트에 발생하는 초식자는 주 작물에 해를 주지 않으나, 포식자 천적은 기주전환이 가능하여 작물에 발생하는 해충을 공격

그림 14 - 7. 딸기밭의 뱅커플랜트(보리)와 콜레마니진딧벌(399p)

፠친환경유기농적 방제법 - 페르몬 (pheromone)

- 페르몬 곤충의 의사전달 신호물질
- 종류 성페르몬, 집합페르몬, 경보페르몬, 길잡이페르몬, 분산페르몬, 계급분화페르몬 등
- **방제용도** 트랩과 병용 → 나방류의 포살 → 증식억제
 - 트랩의 사용: 해충의 행동습성에 따라 (크기, 색깔, 광질 등)

Q.

국내 페로몬 방제의 이용현황과 전망?

- 천적을 이용하는 시설원예에서 보조수단으로 이용하는 것이 바람직
- 과수원과 같은 노지재배에서는 면적 당 설치 대수를 정확히 구명해야 함
- 여러 해충에 적용할 수 있는 복합페로몬 개발, 필요한 시간에만 방출되는 페로몬방출 프로그램 개발, 유효기간이 길고 효과가 오래가는 페로몬의 개발 등에 대한 연구투자 필요

<u>♣친환경유기농적 방제법 - 친환경 유기농약</u>

- 천연의 살균·살충, 또는 제초제 등이 이용
- 어느 정도 효과는 있지만 이들 친환경 자재들이 살충제를 필적할 만한 효과를 나타내는 것은 아님
- 제충국, 난황유, 보로도액, 석회유황합제
- 제충국은 국화과식물로 피레트린(pyrethrin)이라는 살충성분을 갖고 있어 곤충의 운동신경을 마비.
 잔딧물, 응애, 노린재류에 효과가 큼
- 난황유는 계란노른자, 식용유, 물을 혼합하여 흰가루병, 노균병, 응애, 잔딧물, 깍지벌레 등을 방지하는 데 사용

3_절 병충해와 잡초 방제

券친환경유기농적 방제법 - 타감작용 및 동반작물 활용

- 타감물질(allelopathy)
 식물, 미생물이 자신의 방어 또는 공격하는 효과
 - 국화가 폴리아세틸렌 주변식물 생육억제
 - 침엽수류 피톤치드 항균작용
 - 가지과채소 페닐아세트산 발아율 억제
- 동반식물(companion plant) 하나의 작물이 다른 작물에 어떠한 이익을 주는 조합식물. 타감물질분비로 병충해, 잡초경감 등이 원인
 - 양배추 vs 셀러리 → 진딧물과 배추좀나방 방제
 - 오이 vs 파 → 덩굴쪼갬병 방제효과

፠친환경유기농적 방제법 - 잡초방제

- 손, 도구, 화염, 멀칭 등 이용
- 윤작, 피복작물로 잡초와 경합
- 미생물제초제 생물적 방제

04

원예학

유기농관련제도

4절 유기농 관련 제도

※친환경농산물의 분류와 인증

- '친환경농산물'이란 친환경농업을 통하여 얻는 것으로 그 생산방법과 사용자재 등에 따라 유기농산물, 무농약농산물로 분류
 - **유기농산물** : 유기합성농약과 화학비료를 사용하지 않고 유기농산물 인증기준에 따라 생산된 농산물

- **무농약농산물** : 유기합성농약은 사용하지 않고 화학비료는 권장 성분량의1/3 이하를 사용하여 무농약농산물 인증기준에 따라 생산된 농산물

인증신청 → 서류심사 → 현장심사 → 결과통보 → 사후관리

[친환경 농산물 인증신청 절차]

• 출처: 국립농산물 품질관리원 http://www.enviagro.go.kr/portal/main/main.do

4절 유기농 관련 제도

ॐ친환경농산물의 분류와 인증

심사사항	구비조건		
<u> </u>	유기농산물(유기임산물)	무농약농산물	
가. 일반	 경영관련자료를 최근 2년 이상 기록, 보관 농산물 재배포장의 비료 농약 등 영 농자재 사용에 관한 자료를 보관 최근 2년 이내에 교육기관에서 3시 간 이상 쵠환경농업에 대한 교육이 수 	 영농관련자료를 최근 1년 이상 기록 보관 농산물 재배포장의 비료, 농약 등 영 농자재 사용에 관한 자료 최근 2년 이내에 교육기관에서 3시 간 이상 친환경농업에 대한 교육이수 	
나. 재배포장, 용수, 종자	 토양오염우려기준을 초과하지 않음 품관원이 정하는 재배기간 준수 다년생작물(목초제외): 최초 수확전 3년의 기간 그밖의 작물: 파종 또는 재식 전 2년의 기간 용수는 농업용수 이상이어야 함 유전자변형 농산물인 종자는 사용할수 없음 	 토양오염우려기준을 초과하지 않음 농업용수 이상의 수질 이용 종자, 묘는 최소한 1세대 또는 한번의 생육기동안 재배된 식물로 부터유래된 것을 사용 유전자변형 농산물인 종자는 사용불가 	

출처: 친환경농축산물 및 유기식품 등의 인증에 관한 세부실시 요령(2019)

4절 유기농 관련 제도

ॐ친환경농산물의 분류와 인증

심사사항	구비조건			
ロ へいる	유기농산물(유기임산물)	무농약농산물		
다. 재배방법	 화학비료, 유기합성농약 일체 사용 금지 적절한 윤작계획수립 최소 2년 주기로 담수재배작물과 밭 작물을 조합하여 답전윤환 재배 가축분뇨를 원료로 하는 퇴비, 액비 는 유기농축산물, 무항생제축산물 인증 농장이나 경축순환농업으로 사육한 농장에서 유래된 것만 사용 할 수 있으며, 완전히 부숙시켜서 사 용할 것 	 유기합성농약은 사용하지 않고, 화학 비료는 농진청장, 농업기술원장, 농 업기술 터소장이 권장하는 성분량 의 3분의 1이하 범위 내에서 사용시 가와 사용자재에 대한 개획을 마련하 여 사용 장기간의 윤작이 되도록 노력할 것 병충해, 잡초 방제는 무농약재배에 적합한 방법으로 방제 		
라. 생산물의 품질관리	 취급과정에서 방사선은 해충방제, 식품보전, 병원의 제거 또는 위생의 목적으로 사용할 수 없음 유기합성농약 성분은 검출되지 말 아야 함 식물공장에서 생산된 농산물은 제 외 	 취급과정에서 방사선은 해충 방제, 식품보전, 병원의 제거 또는 위생의 목적으로 사용할 수 없음 유기합성농약 성분은 검출되지 아니 하여야 함 		
한 립 Korral National Open University 출처: 친환경농축산물 및 유기식품 등의 인증에 관한 세부실시 요령(2019)				

출처: 친환경농축산물 및 유기식품 등의 인증에 관한 세부실시 요령(2019)

학습확인

★학습확인

- 1. 친환경유기농업의 탄생 배경과 친환경농업, 유기농업, 자연농업의 개념을 구분할 수 있는가? (관행농업vs친환경농업vs유기농업)
- 2. 친환경유기농업에서의 토양관리와 시비 요령을 이해하는가? (기지현상, 윤작, 청소작물, 녹비작물)
- 3. 친환경유기농업에서의 병충해와 잡초 방제법에 대해 설명할 수 있는가? (토양소독,미생물농약, BT독소, 뱅커플렌트, 타감물질, 동반식물)
- 4. 친환경농산물의 분류와 인증 기준에 대해 이해할 수 있는가? (유기농산물, 무농약농산물, 각구비조건)

정리하기

주요 원예작물의 색깔 별 함유된 식물영양소 및 효과

(표1-2 참고, 12page)

색깔	함유된 식물영양소	효과
빨간색	리코펜(lycopene)- 토마토 엘라그산(ellagic acid)-딸기 폴리페놀류(polyphenols)-사과	항암·진통 작용 항암작용 항암·항산화 작용
초록색	루테인(lutein)-브로콜리, 양배추	항산화·항암 작용
흰색	알리인(alliin)-마 늘 케르세틴(quercetin)-양파	항암·항균작용 항암·혈압강하 작용
보라색	레스베라트롤(resveratrol)-포도, 블루베리	항산화·항암 작용
노란색	베타카로틴(beta-carotene)-당근, 호박	암세포 파괴

정리하기

Wolfe et al (2003) J.Agric.Food chem(51)609-614

- 사과 껍질이 항산화 효과가 최대
- 친환경 유기농업이 부가가치를 높일 수 있지만 전체적인 농업 생산성을 고려해야 한다.

다음시간_{에는...}

15강 생활과 원예

