

# **Preliminary Technical Information**

# **TrenchMV™ Power MOSFET**

# **IXTN200N10T**

N-Channel Enhancement Mode Avalanche Rated



| Symbol            | Test Conditions                                            | Test Conditions                                                              |                    |           |
|-------------------|------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|-----------|
| V <sub>DSS</sub>  | T <sub>J</sub> = 25°C to 175°C                             |                                                                              | 100                | V         |
| V <sub>DGR</sub>  | $T_{J} = 25^{\circ}C \text{ to } 175^{\circ}C, R_{GS} = 1$ | $T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$ |                    |           |
| V <sub>gss</sub>  | Continuous                                                 |                                                                              | ±20                | V         |
| V <sub>GSM</sub>  | Transient                                                  |                                                                              | ± 30               | V         |
| I <sub>D25</sub>  | T <sub>C</sub> = 25°C                                      |                                                                              | 200                | A         |
| LRMS              | External lead current limit                                | <u> </u>                                                                     |                    |           |
| I <sub>DM</sub>   | $T_{\rm c}$ = 25°C, pulse width limite                     | 500                                                                          | Α                  |           |
| I <sub>A</sub>    | T <sub>C</sub> = 25°C                                      |                                                                              | 40                 | A         |
| E <sub>AS</sub>   | $T_{c} = 25^{\circ}C$                                      |                                                                              | 1.5                | J         |
| $P_{D}$           | T <sub>C</sub> = 25°C                                      |                                                                              | 550                | W         |
| T                 |                                                            |                                                                              | -55 +175           | °C        |
| $T_{JM}$          |                                                            |                                                                              | 175                | °C        |
| $T_{stg}$         |                                                            |                                                                              | -55 +175           | °C        |
| T <sub>L</sub>    | 1.6mm (0.062 in.) from case                                | 1.6mm (0.062 in.) from case for 10s                                          |                    | °C        |
| V <sub>ISOL</sub> | 50/60 Hz, RMS                                              | t = 1min                                                                     | 2500               | V~        |
| 1301              | $I_{ISOL} \leq 1 mA$                                       | t = 1s                                                                       | 3000               | V~        |
| M <sub>d</sub>    | Mounting torque Terminal connection torque                 |                                                                              | 1.5/13<br>1.3/11.5 | Nm/lb.in. |
| Weight            |                                                            |                                                                              | 30                 | g         |

| Symbol $(T_J = 25^{\circ}C, u)$ | Test Conditions inless otherwise specified) |                        | Char<br>Min. | acteris<br>Typ. | tic Values<br>Max. | ;<br>                    |
|---------------------------------|---------------------------------------------|------------------------|--------------|-----------------|--------------------|--------------------------|
| BV <sub>DSS</sub>               | $V_{GS} = 0V, I_{D} = 250\mu A$             |                        | 100          |                 |                    | V                        |
| V <sub>GS(th)</sub>             | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$        |                        | 2.5          |                 | 4.5                | V                        |
| GSS                             | $V_{GS} = \pm 20V, V_{DS} = 0V$             |                        |              |                 | ±200               | nA                       |
| I <sub>DSS</sub>                | $V_{DS} = V_{DSS}$<br>$V_{GS} = 0V$         | T <sub>J</sub> = 150°C |              |                 | 5<br>250           | μ <b>Α</b><br>μ <b>Α</b> |
| R <sub>DS(on)</sub>             | $V_{GS} = 10V, I_{D} = 50A, Note 1$         |                        |              |                 | 5.5                | mΩ                       |

= 100V= 200A $\leq$  5.5m $\Omega$ 

miniBLOC, SOT-227 B E153432



G = Gate D = Drain S = Source

Either Source terminal at miniBLOC can be used as Main or Kelvin Source

### **Features**

- International standard package
- miniBLOC, with Aluminium nitride isolation
- Avalanche Rated
- Low R<sub>DS(ON)</sub> and Q<sub>G</sub>
   Low package inductance
- Fast intrinsic Rectifier

# **Advantages**

- · Low gate charge drive requirement
- High power density

# **Applications**

- DC-DC coverters
- Battery chargers
- · Switched-mode and resonant-mode power supplies
- · DC choppers
- · AC and DC motor drives
- Uninterrupted power supplies
- High speed power switching applications



| Symbol Test Conditions      |                                                         |      | Characteristic Values |      |      |  |  |
|-----------------------------|---------------------------------------------------------|------|-----------------------|------|------|--|--|
| $(T_J = 25^{\circ}C, \iota$ | unless otherwise specified)                             | Min. | Тур.                  | Max  | ζ    |  |  |
| g <sub>fs</sub>             | $V_{DS} = 10V, I_{D} = 60A, Note 1$                     | 60   | 96                    |      | S    |  |  |
| C <sub>iss</sub>            |                                                         |      | 9400                  |      | pF   |  |  |
| C <sub>oss</sub>            | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                   |      | 1087                  |      | pF   |  |  |
| C <sub>rss</sub>            |                                                         |      | 140                   |      | pF   |  |  |
| t <sub>d(on)</sub>          | Resistive Switching Times                               |      | 35                    |      | ns   |  |  |
| t,                          | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 50A$ |      | 31                    |      | ns   |  |  |
| t <sub>d(off)</sub>         | $R_{G} = 3.3\Omega$ (External)                          |      | 45                    |      | ns   |  |  |
| t,                          | Ti <sub>G</sub> = 0.032 (External)                      |      | 34                    |      | ns   |  |  |
| $Q_{g(on)}$                 |                                                         |      | 152                   |      | nC   |  |  |
| Q <sub>gs</sub>             | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$ |      | 47                    |      | nC   |  |  |
| $Q_{gd}$                    | )                                                       |      | 47                    |      | nC   |  |  |
| R <sub>thJC</sub>           |                                                         |      |                       | 0.27 | °C/W |  |  |
| R <sub>thCS</sub>           |                                                         |      | 0.05                  |      | °C/W |  |  |

# SOT-227B Outline

|   | LITIA | IIMA  | LITIN | IIII  |
|---|-------|-------|-------|-------|
| Α | 1.240 | 1.255 | 31.50 | 31.88 |
| В | .307  | .323  | 7.80  | 8.20  |
| С | .161  | .169  | 4.09  | 4.29  |
| D | .161  | .169  | 4.09  | 4.29  |
| E | .161  | .169  | 4.09  | 4.29  |
| F | .587  | .595  | 14.91 | 15.11 |
| G | 1.186 | 1.193 | 30.12 | 30.30 |
| Н | 1.496 | 1.505 | 38.00 | 38.23 |
| J | .460  | .481  | 11.68 | 12.22 |
| K | .351  | .378  | 8.92  | 9.60  |
| L | .030  | .033  | 0.76  | 0.84  |
| М | .496  | .506  | 12.60 | 12.85 |
| N | .990  | 1.001 | 25.15 | 25.42 |
| 0 | .078  | .084  | 1.98  | 2.13  |
| Р | .195  | .235  | 4.95  | 5.97  |
| Q | 1.045 | 1.059 | 26.54 | 26.90 |
| R | .155  | .174  | 3.94  | 4.42  |
| S | .186  | .191  | 4.72  | 4.85  |
| т | 94.0  | 997   | 2/150 | 25.07 |

.004

-0.05

### Source-Drain Diode

## **Characteristic Values**

(T<sub>J</sub> = 25°C, unless otherwise specified)

| Symbol            | Test Conditions                                                                                                             | Min. | Тур.             | Max. |               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|------|------------------|------|---------------|
| I <sub>s</sub>    | $V_{GS} = 0V$                                                                                                               |      |                  | 200  | Α             |
| SM                | Repetitive, pulse width limited by $\rm T_{\rm \tiny JM}$                                                                   |      |                  | 500  | Α             |
| V <sub>SD</sub>   | $I_F = 50A$ , $V_{GS} = 0V$ , Note 1                                                                                        |      |                  | 1.0  | V             |
| t <sub>rr</sub> } | $I_{_{\rm F}} = 100 {\rm A}, \; -di/dt = 100 {\rm A}/\mu {\rm s}, \; V_{_{\rm R}} = 50 {\rm V}$ $V_{_{\rm GS}} = 0 {\rm V}$ |      | 76<br>5.4<br>205 |      | ns<br>A<br>nC |

Note 1: Pulse test,  $t \le 300\mu s$ ; duty cycle,  $d \le 2\%$ .

# PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.



Fig. 1. Output Characteristics @ 25°C



Fig. 3. Output Characteristics @ 150°C



Fig. 5.  $R_{DS(on)}$  Normalized to  $I_D$  = 100A Value vs. Drain Current



Fig. 2. Extended Output Characteristics @ 25°C



Fig. 4.  $R_{DS(on)}$  Normalized to  $I_D$  = 100A Value vs. Junction Temperature



Fig. 6. Drain Current vs. Case Temperature





Fig. 7. Input Admittance 250 225 200 175 Amperes 150 125  $T_J = 150$ °C 25°C 100 40°C 75 50 25 0 7.5 3.5 4.0 4.5 5.0 6.0 6.5 7.0 5.5 V<sub>GS</sub> - Volts

Fig. 8. Transconductance 160  $T_J = -40$ °C 140 120 25°C gfs-Siemens 100 150°C 80 60 40 20 25 175 0 50 75 100 125 150 200 225 250 I<sub>D</sub> - Amperes

**Intrinsic Diode** 300 270 240 210 180 150 120  $T_{\rm J} = 150^{\circ}{\rm C}$ 90  $T_J = 25^{\circ}C$ 60 30 0 0.4 0.5 0.6 0.8 0.9 1.0 1.1 1.2 V<sub>SD</sub> - Volts

Fig. 9. Forward Voltage Drop of







IXYS reserves the right to change limits, test conditions, and dimensions.



Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature



Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance



Fig. 17. Resistive Turn-off Switching Times vs. Drain Current



Fig. 14. Resistive Turn-on Rise Time vs. Drain Current



Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature



Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance



