

Sistemas Embarcados

O que são os sistema embarcados e tecnologias habilitadoras.

Sobre o Instrutor

- Graduado em Engenharia Elétrica pela Universidade Federal do Amazonas UFAM (2006). Atua em pesquisa e desenvolvimento na área de eletrônica e automação industrial. Possui vasta experiência em desenvolvimento de hardware, mais especificamente, placas de circuito impresso, dentre elas: placas de instrumentação analógica e digital utilizadas em sistemas de testes, placas processadoras baseadas em microcontroladores de diversos fabricantes, placas utilizadas em sistemas de comunicação digital com tecnologias cabeadas como RS485, RS422, Ethernet e tecnologias sem fio como Wi-fi 802.11, Zigbee 802.15 dentre outras. Possui experiência em desenvolvimento de firmware em diversas plataformas dentre elas: Intel 8088, 8051, Atmel, Microchip, ESP8266, Arduino.
- http://lattes.cnpq.br/5067803336101638

Ementa

- Conversor analógico para digital ou AD;
- Registradores que controlam o AD;
- Resolução do AD;
- Matemática da conversão;

Conversor analógico para digital, AD

- O conversor analógico para digital é um periférico vastamente utilizado na indústria para leitura de sensores e realização de medição de níveis de tensão.
- Somente alguns pinos específicos do microcontrolador são preparados para esse tipo de leitura

```
(PCINT14/RESET) PC6 ☐ 1
                                   28 PC5 (ADC5/SCL/PCINT13)
      (PCINT16/RXD) PD0 ☐ 2
                                   27 PC4 (ADC4/SDA/PCINT12)
      (PCINT17/TXD) PD1 ☐ 3
                                   26 PC3 (ADC3/PCINT11)
      (PCINT18/INT0) PD2 ☐ 4
                                   25 PC2 (ADC2/PCINT10)
 (PCINT19/OC2B/INT1) PD3 ☐ 5
                                   24 PC1 (ADC1/PCINT9)
    (PCINT20/XCK/T0) PD4 ☐ 6
                                   23 PC0 (ADC0/PCINT8)
                   VCC ☐ 7
                                   22 GND
                   GND ☐ 8
                                   21 AREF
                                   20 AVCC
(PCINT6/XTAL1/TOSC1) PB6 ☐ 9
(PCINT7/XTAL2/TOSC2) PB7 ☐ 10
                                   19 ☐ PB5 (SCK/PCINT5)
   (PCINT21/OC0B/T1) PD5 ☐ 11
                                   18 PB4 (MISO/PCINT4)
 (PCINT22/OC0A/AIN0) PD6 ☐ 12
                                   17 PB3 (MOSI/OC2A/PCINT3)
                                   16 ☐ PB2 (SS/OC1B/PCINT2)
      (PCINT23/AIN1) PD7 ☐ 13
  (PCINT0/CLKO/ICP1) PB0 ☐ 14
                                   15 PB1 (OC1A/PCINT1)
```


Registro de controle de escolha das entradas ADMUX.

ADMUX – ADC Multiplexer Selection Register

Bit	7	6	5	4	3	2	1	0	_
(0x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• Bits que controlam a referência de tensão do AD

 Table 21-3.
 Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal V _{ref} turned off
0	1	AV _{CC} with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 1.1V Voltage Reference with external capacitor at AREF pin

• Bits que controlam o canal do AD que deverá ser lido

 Table 21-4.
 Input Channel Selections

MUX30	Single Ended Input
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1000	ADC8 ⁽¹⁾
1001	(reserved)
1010	(reserved)
1011	(reserved)
1100	(reserved)
1101	(reserved)
1110	1.1V (V _{BG})
1111	0V (GND)

• Registro de controle e status A

ADCSRA – ADC Control and Status Register A

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	RW	R/W	R/W	RW	
Initial Value	0	0	0	0	0	0	0	0	

• Registro de controle e status B

ADCSRB - ADC Control and Status Register B

Bit	7	6	5	4	3	2	1	0	_
(0x7B)	_	ACME	_	_	_	ADTS2	ADTS1	ADTS0	ADCSRB
Read/Write	R	RW	R	R	R	RW	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• Registro de dados e suas possibilidades de armazenamento.

21.9.3.1	ADLAR = 0										
		Bit	15	14	13	12	11	10	9	8	
		(0x79)	-	-	-	-	-	-	ADC9	ADC8	ADCH
		(0x78)	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
			7	6	5	4	3	2	1	0	
		Read/Write	R	R	R	R	R	R	R	R	
			R	R	R	R	R	R	R	R	
		Initial Value	0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	
21.9.3.2	ADLAR = 1										
		Bit	15	14	13	12	11	10	9	8	_
		(0x79)	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
		(0x78)	ADC1	ADC0	-	-	-	-	-	-	ADCL
			7	6	5	4	3	2	1	0	•
		Read/Write	R	R	R	R	R	R	R	R	
			R	R	R	R	R	R	R	R	
		Initial Value	0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	

Resolução do AD

- É a quantidade de bits que um AD possui para fazer a conversão.
- O AD do nosso sistema possui 10 bits de resolução;

$$2^{10} = 1024$$

• Se levarmos em consideração que a entrada pode variar de 0 a 5 V então podemos calcular o menor valor que poderá ser medido para o nosso sistema, que consiste em:

$$5V / 1024 = 0.0048V \sim 5mV$$

• Grandezas menores do que esse valor terão suas medidas incertas.

Matemática da conversão

• Cada valor analógico da entrada equivalerá a um valor binário

5V	1024
2,5V	512
0V	0

Matemática da conversão

Precisão = Referência/ resolução = 5/1024 = 0,0048

Valor em tensão = Valor do AD * Precisão

Valor em tensão = Valor do AD * Referência/ resolução = Valor do AD * 5/1024;

Valor em tensão = Valor do AD * 5/1024;

Exercício 1

• Fazer a leitura de um potenciômetro

Exercício 2

• Fazer a leitura de um sensor de temperatura a varistor.

