Collectively Improving Robustness and Reproducibility in Genotyping-by-Sequencing (GBS) Experiments

Marcus Davy¹, Cecilia H. Deng², Helge Dzierzon³, Robert J Elshire⁴, Stephanie Galla⁵, Elena Hilario², Robyn Johnston⁴, Tammy Steeves⁵, Roy Storey¹, and Susan Thomson⁶

¹The New Zealand Institute for Plant & Food Research Limited, Te Puke, New Zealand, Pood Research Limited, Auckland, New Zealand, New Zealand, The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand, The Elshire Group Limited, Lincoln, New Zealand, New Zealand, The New Zeal

Overview

Many researchers have used genotyping-by-sequencing to generate marker data since the method was published in PLoS ONE in 2011. Others have made modifications to the method resulting in different, but related, types of GBS data generated. Additional analysis pipelines have been developed, many of which are licensed under Free / Libre and Open Source licenses -- allowing them to be inspected, tested and improved upon. Taken together these modifications and analysis pipelines demonstrate the power of the scientific method when combined with modern genomics laboratory techniques, open access publishing and open source software to rapidly and democratically advance our ability to conduct research. It has also left researchers wanting to use the technology with several questions which need to be answered before they adopt the approach. First, what laboratory method should one use to make GBS libraries? Second, what sequencing platform should be used and how? Third, what pipeline is best suited for the data generated and the genetics of the system being studied?

A group of like-minded scientists has come together to build software tools and an information repository to help others answer these questions for their own experiments in a project called Biospectra-by-Sequencing. The aim of the project is developing an informational Wiki for geneticists and genomicists as well as a containerized software test rig to evaluate and run many GBS pipelines.

Wet Lab

Data Types image courtesy of Dean Eaton (CC-BY)

Representative Methods

Author	DOI	Year	Enzyme Number	Size Selection	Selective Bases	Enzyme Type	DNA source
Elshire et. al.	10.1371/journal.pone.0019379	2011	1	no	no	II	native
Poland et. al.	10.1371/journal.pone.0032253	2012	2	no	no	II	native
Sonah et. al.	10.1371/journal.pone.0054603	2013	1	no	yes	II	native
Peterson et. al	10.3390/d6040665	2014	2	yes	no	II	native
Pan et. al.	10.1111/1755-0998.12342	2015	4	yes	no	II	native
Hilario et al.	10.1371/journal.pone.0143193	2015	1	no	no	II	amplified

Wiki Resources

Update on BBS project and NZOSS

PAG 2017

What is BBS?

BBS Wiki - http://biospectrabysequencing.org

interested in using GBS. The software development crew will be working toward best practice documentation and code for analysis of GBS data. The vision is of a software testing platform that can be used to evaluate the various

Biospectra By Sequencing

Update on BBS project and NZOSS

In December of 2016, in accordance with the desires of the members of the BBS project, the New Zealand Open Source Society Council has agreed to

take in the BBS project as one of their own. This is one of many changes

SNP calling pipelines that have been developed as well as run those pipelines on real data

that will be happening with the project in the New Year. There will be a renewed focus on updating this site and adding content for researchers

Enabling Genomics

Dry Lab

Pipeline Name`	DOI	Year Published	Denovo / Reference	Demultiplexer	Trimmer / Read QC Filter	Aligner	SNP Caller	Hardcoded enzyme	Output file types
TASSEL UNEAK	10.1371/journal.pgen.1003215	2013	Denovo	Built In	None	NA	Built In	Yes	hmp
STACKS	10.1111/mec.12354	2013	Denovo / RefereZnce	Built In	Built In	BWA / Bowtie2 / GSnap	Built In	Yes	Database with export
IGST-GBS	10.1371/journal.pone.0054603	2013	Reference	FastX toolkit	FastX toolkit	BWA	sam tools	Unknown	vcf
TASSLE 3	10.1371/journal.pone.0090346	2014	Reference	Built In	None	BWA / Bowtie 2	Built In	Yes	hmp
pyRAD	10.1093/bioinformatics/btu121	2014	Denovo	Built In	Built in	Muscle	Built In	No	Text (.loci, .phy, .nex, .snps, .vcf and others),
AftrRad	10.1111/1755-0998.12378	2015	Denovo	Built In	Built in	Mafft	Built In	No	Text (translation scripts)
GBS-SNP-CROP	10.1186/s12859-016-0879-y	2016	Denovo / Reference	Built In	Trimmomatic	BWA	sam tools	No	SNP matrix, TASSEL hmp, PLINK tped
GibPSs	10.1111/1755-0998.12510	2016	Denovo	Built In	Built in	Matching Built in	Built In	No	Database with export.
NGSEP	10.1186/s12864-016-2827-7	2016	Reference	Built In	Built in	Bowtie2	Built In	Unknown	vcf
FastGBS	10.1186/s12859-016-1431-9	2017	Reference	Sabre	Cutadapt	BWA	Platypus	Not used	vcf
ipyRAD	NA	NA	Denovo, Reference, Denovo+Reference	Built In	Built in	BWA / SMALT	sam tools / bed tools	No	Vcf + many others
TASSEL 5	NA	NA	Reference	Built In	Built In	BWA / Bowtie2	Built In	Yes	Database with export

Collaboration

The Biospectra-by-Sequencing project welcomes participation by like minded scientist from around the world regardless of skill level. One way to participate is to use the resources we are developing and provide feedback so they can be improved. If you have conducted GBS experiments you can add information about those experiments to the wiki (http://biospectrabysequencing.org). By doing that, you will be helping create a resource for other scientists and yourself. For those with coding skills, we encourage you to assist with the pipeline testing rig. There is plenty to do there with the twelve pipelines in the table above and more likely to come along. Find us on github (https://github.com/biospectrabysequencing). For more information or general questions about BBS, email Rob at Rob@ElshireGroup.co.nz.

