# Работа 3.7.1 Скин-эффект в полом цилиндре

Шелихов Дмитрий Группа Б01-305

22 ноября 2024 г.

**Цель работы:** исследовать явление проникновения переменного магнитного поля в медный полый цилиндр.

В работе используются: генератор сигналов АКИП-3420, соленоид, намотанный на полый цилиндрический каркас, медный экран в виде полого цилиндра, измерительная катушка, амперметр, вольтметр, двухканальный осциллограф GOS-620, RLC-метр.

## Теоретические сведения

Считаем цилиндр достаточно длинным, так что в нем можно пренебречь краевыми эффектами. Тогда магнитное поле  $\vec{H}$  всюду направлено по оси системы Оz, а вихревое электрическое поле  $\vec{E}$  будет всюду перпендикулярно радиусу. (линии поля образуют соосные окружности)

Все величины считаем колеблющимися по гармоническому закону с некоторой частотой  $\omega$ , задаваемой частотой колебания тока в соленоиде. Тогда:

$$H_z = H(r)e^{i\omega t}, E_z = E(r)e^{i\omega t}$$

На границе цилиндра должны быть непрерывны касательные к поверхности компоненты как  $\vec{E}$ , так и  $\vec{H} = > \mathrm{E}(\mathbf{r})$  и  $\mathrm{H}(\mathbf{r})$  непрерывны во всей исследуемой области.

Пусть длинный полый цилиндр имеет радиус а и толщину стенки h « а. Последнее условие позволяет для описания поля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Внутри цилиндра ток отсутсвует => магнитное поле там является однородным  $H_z(r,t)=H_1e^{i\omega t}$ , где  $H_1={\rm const}$  - амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции в интегральной форме:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \to E(r) = -\frac{1}{2} \mu_0 r \cdot i\omega H_1$$

Откуда получаем связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = -\frac{1}{2}i\omega a\mu_0 H_1$$



Рис. 1: Электрическое и магнитное поле в тонкостенном цилиндре



Рис. 2: Поле в стенке цилиндра

Поле внутри тонкой стенки цилиндра описывается уравнением скин-эффекта в плоском случае:

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H$$

Где для медного цилиндра  $\mu \approx 1$ .

Граничные условия:

$$H(0) = H_1, H(h) = H_1$$

Решением дифференциального уравнения скин-эффекта с учетом граничных условий при  $\mathbf{x} = \mathbf{h}$  является:

$$H_1 = \frac{H_0}{ch(\alpha h) + \frac{1}{2}\alpha ash(\alpha h)}$$

где  $\alpha=\frac{\sqrt{2}}{\delta}e^{i\pi/4},\ \delta=\sqrt{\frac{2}{\omega\sigma\mu_0}}$  - глубина скин-слоя.

Предельные случаи:

1) При малых частотах  $\delta >> h$ , тогда  $|\alpha h| \ll 1$ , поэтому  $ch\alpha h \approx 1$ ,  $sh\alpha h \approx \alpha h$  и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}}$$

Отношение модулей амплитуд:

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}}$$

При этом колебания  $H_1$  отстают по фазе от  $H_0$  на угол  $\psi$ :

$$tg(\psi) = \frac{ah}{\delta^2}$$

2) При достаточно больших частотах  $\delta$  « h. Тогда  $\mathrm{sh}(\alpha h) \approx \mathrm{ch}(\alpha h) \approx \frac{1}{2}e^{\alpha h}$ . Отношение амплитуд:

$$\frac{H_1}{H_0} = \frac{4e^{-\alpha h}}{\alpha a} = \frac{2\sqrt{\delta}}{a} \cdot e^{-\frac{h}{\delta}} e^{-i(\frac{\pi}{4} + \frac{h}{\delta})}$$

Запаздывание поля внутри, чем поля снаружи на:

$$\psi = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}}$$

## Экспериментальная установка

Переменное магнитное поле создается с помощью соленодиа, намотанного на цилиндрический каркас, который подключается к генератору сигналов. Внутри каркаса расположен медный экран в виде полого цилиндра.

1) Цифровым амперметром измеряется действующее значение переменного тока в цепи соленоида.



Рис. 3: Распределение амплитуды колебаний магнитного поля и его мгновенного значения при некотором t в зависимости от расстояния x до внешней стенки цилиндра. Слева - низкие частоты, справа - высокие частоты

- 2) Цифровым вольтметром измеряется действующее напряжение на измерительной катушке 4.
- 3) На канал Y осциллографа податся напряжение с измерительной катушки, а на X напряжение резистора R, которое пропорционально току в соленоиде. С помощью осциллографа будем определять сдвиг фаз между напряжениями.



Рис. 4: Экспериментальная установка для изучения скин-эффекта

Для определения проводимости  $\sigma$  по изменению L катушки используем RLC-метр



Рис. 5: Схема подключения RLC-метра

### Измерение отношения амплитуд магнитного поля внутри и вне экрана

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которое возникает в измерительной катушке, находящейся в переменном магнитном поле.

$$U = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t}$$

- комплексная амплитуда ЭДС индукции в измерительной катушке.

Вольтметр показывает действующее значение:

$$U = \frac{SN\omega}{\sqrt{2}}\mu_0|H_1|$$

Откуда:

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I}$$

Неизвестную константу измеряем при малых частотах  $\nu \to 0$ , когда  $\frac{|H_1|}{|H_0|} \to 1$ .

# Определение проводимости материала экрана по фазовому сдвигу

Для определения  $\sigma$  экрана будем использовать частотную зависимость фазового сдвига между магнитными полями внутри и вне экрана при низких и высоких частотах.//

Зависимость  $tg(\psi)$  от  $\nu$  линейна, причем аппроксимирующая прямая должна проходить через начало координат. В области больших частот  $\nu >> 1/(\pi h^2 \sigma \mu_0)$  зависимость  $\psi(\sqrt{\nu}-\pi/4)$  аппроксимируется прямой, проходящей через начало координат. По наклону этих прямых можно вычислить проводимость материала экрана.

Заметим, что на входной канал Y осциллографа подается сигнал с измерительной катушки, который пропорционален производной поля внутри экрана по времени, поэтому появляется дополнительный сдвиг по фазе на  $\pi/2$ . Поэтому измеренный по осциллографу сдвиг по фазе между двумя синусоидами будет на  $\pi/2$  больше фазового сдвига между магнитными полями вне и внутри экрана:

$$\varphi = \psi + \frac{\pi}{2}$$

## Влияние скин-эффекта на индуктивность катушки

Из-за скин эффекта индуктивность соленоида с медным цилиндрическим экраном внутри будет зависеть от частоты тока.

Рассмотрим магнитный поток через катушку как сумму двух магнитных потоков:

1) Пронизивыющий область между катушкой и цилиндрическим экраном  $\Phi_{out}$  2) Пронизывающий область за экраном  $\Phi_{in}$ 

$$\Phi = \Phi_{in} + \Phi_{out} = H_0 S_0 + H_1 S_1 = LI$$

Индуктивность минимальна в случае, если  $\Phi_{in}=0$  (поле есть только во внешней области). При этом  $L_{min}=\frac{\Phi_{out}}{I}$ 

Максимальная индуктивность катушки достигается при максимальном потоке поля во внутренней области (когда  $H_0 = H_1$ ):

 $\Phi_{max} = \Phi_{out} + \Phi_{in_max} = H_0(S_0 + S_1) = L_{max}I_m$ , где поток через внешнюю область равен  $H_0S_0 = L_{max}I_m$ 

Откуда получаем:

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0 \sigma \nu)^2$$

Данная зависимость может быть аппроксимирована прямой, по углу наклона которой можно найти проводимость материала  $\sigma$ .

### Ход работы

1) Оценим частоту  $\nu_h$ , при которой толщина стенок экрана равна скиновой длине  $h=\delta$ . Для оценки примем проводимость меди  $\sigma\approx 5\cdot 10^7$  Сименс/м и  $\mu\approx 1$ . Воспользуемся формулой:

$$\omega = 2\pi\nu_h = \frac{2}{\delta^2\sigma\mu_0}$$

| $\delta$ , mm | $\sigma$ , Сименс/м | $\mu_0, \Gamma_{\rm H/M}$ | $\mu$ | $\nu_h$ , к $\Gamma$ ц |
|---------------|---------------------|---------------------------|-------|------------------------|
| 1.5           | $5.10^{7}$          | $4\pi \cdot 10^{-7}$      | 1     | 2.23                   |

- 2) Соберем установку согласно рис.4 и настроим приборы. Установим начальную частоту сигнала генератора  $\approx 0.01 \nu_h = 22.3~\Gamma$ ц, а амплитуду выходного сигнала A  $\approx 7$ -8 В.
- 3) В области низких частот (от  $\approx 0,01\nu_h$  до  $0,05\nu_h$ ) получим зависимость отношения  $\xi = \frac{U}{\nu I}$ от частоты $\nu$ . Для этого измерим силу тока в цепи соленоида и напряжение на измерительной катушке для не менее 10 значений частоты  $\nu$  в выбранном диапазоне.

| І, мА           | U, B              | ν, Γц |
|-----------------|-------------------|-------|
| $454.4 \pm 0.1$ | $0.140 \pm 0.001$ | 22.3  |
| $451.5 \pm 0.1$ | $0.194 \pm 0.001$ | 31.3  |
| $447.3 \pm 0.1$ | $0.245 \pm 0.001$ | 40.3  |
| $442.3 \pm 0.1$ | $0.292 \pm 0.001$ | 49.3  |
| $436.2 \pm 0.1$ | $0.335 \pm 0.001$ | 58.3  |
| $430.3 \pm 0.1$ | $0.375 \pm 0.001$ | 67.3  |
| $424.2 \pm 0.1$ | $0.411 \pm 0.001$ | 76.3  |
| $418.0 \pm 0.1$ | $0.444 \pm 0.001$ | 85.3  |
| $412.0 \pm 0.1$ | $0.473 \pm 0.001$ | 94.3  |
| $406.1 \pm 0.1$ | $0.499 \pm 0.001$ | 103.3 |
| $400.0 \pm 0.1$ | $0.522 \pm 0.001$ | 112.3 |

Величина  $\xi$  прямо пропорциональна коэффициенту ослабления магнитного поля внутри экрана относительно поля снаружи:

$$\xi = \xi_0 |H_1| / |H_0|$$

.

4) Исследуем зависимость величины  $\xi$  и фазового сдвига  $\psi$  от частоты  $\nu$  при низких частотах в диапазоне от  $0.05\nu_h0.5\nu_h$ . Для этого получим статичную и удобную для измерения картинку на экране осциллографа и измерим разность фаз между напряжениями на резисторе и на катушке для не менее 15 знаечний частоты  $\nu$  в выбранном диапазоне, а также силу тока в цепи соленоида и напряжение на измерительной катушке. Проведем 5-7 измерений в диапазоне частот  $(0.05 \ \nu_h - 0.1 \ \ni_h)$  и 8-10 измерений в диапазоне  $(0.1-0.5 \ \nu_h)$ .

| ν, Гц  | U, B              | І, мА           | $\Delta \varphi$ , рад |
|--------|-------------------|-----------------|------------------------|
| 111.5  | $0.519 \pm 0.001$ | $399.3 \pm 0.1$ | $1.10 \pm 0.05$        |
| 129.5  | $0.558 \pm 0.001$ | $388.9 \pm 0.1$ | $1.13 \pm 0.05$        |
| 147.5  | $0.590 \pm 0.001$ | $379.8 \pm 0.1$ | $1.11 \pm 0.06$        |
| 165.5  | $0.614 \pm 0.001$ | $371.8 \pm 0.1$ | $1.11 \pm 0.07$        |
| 183.5  | $0.634 \pm 0.001$ | $364.7 \pm 0.1$ | $1.12 \pm 0.08$        |
| 201.5  | $0.650 \pm 0.001$ | $358.7 \pm 0.1$ | $1.20 \pm 0.04$        |
| 219.5  | $0.662 \pm 0.001$ | $353.3 \pm 0.1$ | $1.23 \pm 0.05$        |
| 309.5  | $0.696 \pm 0.001$ | $333.8 \pm 0.1$ | $1.37 \pm 0.07$        |
| 399.5  | $0.706 \pm 0.001$ | $322.5 \pm 0.1$ | $1.38 \pm 0.09$        |
| 489.5  | $0.706 \pm 0.001$ | $314.1 \pm 0.1$ | $1.35 \pm 0.11$        |
| 579.5  | $0.700 \pm 0.001$ | $306.8 \pm 0.1$ | $1.46 \pm 0.05$        |
| 669.5  | $0.691 \pm 0.001$ | $300.0 \pm 0.1$ | $1.49 \pm 0.06$        |
| 759.5  | $0.680 \pm 0.001$ | $293.3 \pm 0.1$ | $1.52 \pm 0.07$        |
| 849.5  | $0.668 \pm 0.001$ | $286.6 \pm 0.1$ | $1.47 \pm 0.08$        |
| 939.5  | $0.654 \pm 0.001$ | $279.9 \pm 0.1$ | $1.51 \pm 0.09$        |
| 1029.5 | $0.640 \pm 0.001$ | $273.2 \pm 0.1$ | $1.54 \pm 0.05$        |
| 1119.5 | $0.625 \pm 0.001$ | $266.4 \pm 0.1$ | $1.54 \pm 0.05$        |

5) Повторим измерения пункта 4 при высоких частотах в диапазоне  $(0.5\nu_h$  -  $15~\nu_h)$  15-20 точек

| ν, Гц   | U, B              | І, мА           | $\frac{\Delta \varphi}{2}$ , рад |
|---------|-------------------|-----------------|----------------------------------|
| 1119.5  | $0.625 \pm 0.001$ | $266.4 \pm 0.1$ | $1.54 \pm 0.05$                  |
| 3219.5  | $0.342 \pm 0.001$ | $148.0 \pm 0.1$ | $1.67 \pm 0.08$                  |
| 5319.5  | $0.212 \pm 0.001$ | $95.9 \pm 0.1$  | $1.84 \pm 0.05$                  |
| 7419.5  | $0.146 \pm 0.001$ | $69.6 \pm 0.1$  | $1.94 \pm 0.07$                  |
| 9519.5  | $0.103 \pm 0.001$ | $53.7 \pm 0.1$  | $1.82 \pm 0.08$                  |
| 11619.5 | $0.080 \pm 0.001$ | $42.5 \pm 0.1$  | $2.24 \pm 0.13$                  |
| 13719.5 | $0.021 \pm 0.001$ | $34.7 \pm 0.1$  | $2.27 \pm 0.15$                  |
| 15819.5 | $0.051 \pm 0.001$ | $28.6 \pm 0.1$  | $2.36 \pm 0.17$                  |
| 17919.5 | $0.042 \pm 0.001$ | $23.6 \pm 0.1$  | $2.56 \pm 0.11$                  |
| 20019.5 | $0.035 \pm 0.001$ | $19.4 \pm 0.1$  | $2.51 \pm 0.11$                  |
| 22119.5 | $0.031 \pm 0.001$ | $15.7 \pm 0.1$  | $2.73 \pm 0.13$                  |
| 24219.5 | $0.027 \pm 0.001$ | $12.4 \pm 0.1$  | $2.83 \pm 0.15$                  |
| 26319.5 | $0.024 \pm 0.001$ | $9.5 \pm 0.1$   | $2.81 \pm 0.16$                  |
| 28419.5 | $0.021 \pm 0.001$ | $6.8 \pm 0.1$   | $2.96 \pm 0.18$                  |
| 30519.5 | $0.017 \pm 0.001$ | $4.2 \pm 0.1$   | ?                                |
| 32619.5 | $0.014 \pm 0.001$ | $2.5 \pm 0.1$   | ?                                |
| 34719.5 | $0.012 \pm 0.001$ | $2.6 \pm 0.1$   | ?                                |

6) Исследуем зависимость индуктивности катушки L от частоты  $\nu$ . Для этого соберем схему, изображенную на рис.5 и измерим с помощью RLC-метра индуктивность катушки при различных частотах:

| ν, Γц | L, мГн | R, Ом |
|-------|--------|-------|
| 40    | 10.10  | 19.2  |
| 150   | 7.24   | 22.3  |
| 250   | 5.35   | 24.4  |
| 300   | 4.78   | 25.0  |
| 400   | 4.08   | 25.8  |
| 500   | 3.69   | 26.3  |
| 600   | 3.46   | 26.5  |
| 800   | 3.21   | 26.9  |
| 1500  | 2.97   | 27.4  |
| 2000  | 2.92   | 27.8  |
| 2500  | 2.90   | 28.2  |
| 3000  | 2.89   | 28.6  |
| 4000  | 2.89   | 29.8  |
| 6000  | 2.90   | 32.7  |
| 7500  | 2.92   | 35.5  |
| 12000 | 3.05   | 46.9  |
| 15000 | 3.22   | 58.4  |
| 16200 | 3.31   | 64.1  |
| 20000 | 3.70   | 91.1  |
| 25000 | 4.73   | 175.6 |

## Обработка результатов

7) По результатам измерений пунктов 3 и 4 (в области низких частот  $\nu \approx 0.2\nu_h$ ) построим график в координатах  $1/\xi^2 = \mathrm{f}(\nu^2)$ . Экстраполируем зависимость к точке  $\nu = 0$ , соответствующей  $|H_1|/|H_0| = 1$ , определим  $\xi_0$ . По угловому коэффициенту зависимости рассчитаем проводимость меди  $\sigma$ , используя:

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}}$$



Убеждаемся, что зависимость линейная. Наклон графика  $k=0.18\pm0.01$ . Пересечение с Оу:  $(0,\,5152\pm50)$ 

$$\sigma = \frac{\xi_0 \sqrt{k}}{ah\mu_0 \pi}$$

| $\xi_0,  {\rm B}^*{\rm c}/{\rm m}{\rm A}$ | а, мм | h, мм | $\sigma$ , ·10 <sup>7</sup> Сименс/м |
|-------------------------------------------|-------|-------|--------------------------------------|
| $13.93 \pm 0.07$                          | 22.5  | 1.5   | $4.44 \pm 0.15$                      |

8) Построим график зависимости фазового сдвига, измеренного в пункте 4,  $tg\psi=f(\nu)$  от частоты. Учтем дополнительный сдвиг фаз  $\pi/2$  по формуле:

$$\varphi = \psi + \frac{\pi}{2}$$

Аппроксимируем прямой линейный участок графика и по её наклону определим коэффициент проводимости  $\sigma$  по формуле:

$$tg(\varphi - \frac{\pi}{2}) = ah\pi\sigma\mu_0 \cdot \nu$$





Наклон аппроксимирующей прямой <br/>  $k = (5.2 \pm 1.1) \cdot 10^{-3} \; c$ 

$$\sigma = \frac{k}{ah\pi\mu_0}$$

Откуда найдём  $\sigma$ :

| $k \cdot 10^{-3}, c$ | $\sigma \cdot 10^7$ , Сименс/м |
|----------------------|--------------------------------|
| $5.2 \pm 1.1$        | $3.9 \pm 0.8$                  |

9) Построим график частотной зависимости фазового сдвига, измеренной в пунтках 4 и 5  $\psi - \pi/4 = f(\sqrt{\nu})$ . Проведем прямую, проходящую через начало координат, которая будет касаться экспериментальной кривой при больших частотах (линейный участок графика при  $\nu >> \nu_h$ ). По наклону этоу прямой вычислим значение проводимости  $\sigma$  материала экрана с помощью:

$$\psi - \frac{\pi}{4} = h\sqrt{\pi\sigma\mu_0\nu}$$



Откуда находим наклон аппроксимирующей графика: k = (2.14  $\pm$  0.08)  $\cdot 10^{-2} \sqrt{c}$ 

$$k = h\sqrt{\pi\sigma\mu_0}$$

| k, $10^{-2}\sqrt{c}$ | $\sigma \cdot 10^7~{ m Cименc/m}$ |
|----------------------|-----------------------------------|
| $2.14 \pm 0.08$      | $5.2 \pm 0.4$                     |

10) Построим график зависимости индуктивности катушки от частоты  $L(\nu)$ . Определим максимальное и минимальное значение индуктивности



Откуда находим:

| $L_{max}$ , м $\Gamma$ н | $L_{min}$ , м $\Gamma$ н |
|--------------------------|--------------------------|
| 10.10                    | 2.89                     |

Построим график зависимости  $\frac{L_{max}-L}{L-L_{min}}$  от  $\nu^2$  и аппроксимируем его прямой, проходящей через начало координат. По углу наклона прямой определим проводимость материала по формуле:

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0 \sigma \nu)^2$$



Откуда находим  $k=(39.8\pm 1.4)\ \kappa\Gamma \mu^{-2}$  и из формулы:

$$k = (\pi a h \mu_0 \sigma)^2$$

 $u^2$ к $\Gamma$ ц $^2$ 

Получаем:

| $k$ , к $\Gamma$ ц $^{-2}$ | $\sigma \cdot 10^7$ , Сименс/м |
|----------------------------|--------------------------------|
| $39.8 \pm 1.4$             | $4.73 \pm 0.09$                |

11) Итого, мы измерили  $\sigma$  4 способами. Внесем все полученные значения в таблицу и сравним с табличным:

| $\sigma \cdot 10^7$ , Сименс/м |               |               |                 |   |  |
|--------------------------------|---------------|---------------|-----------------|---|--|
| 1 2 3 4 табл                   |               |               |                 |   |  |
| $4.44 \pm 0.15$                | $3.9 \pm 0.8$ | $5.2 \pm 0.4$ | $4.73 \pm 0.09$ | 5 |  |

Таким образом значение из способа 4 наиболее близко к табличному, однако способы 1 и 3 обладают меньшей погрешностью.

12) Используя полученные в пункте 3 значение коэффициента  $\xi_0$  рассчитаем экспериментальные значения коэффициентов ослабления поля  $|H_1|/|H_0|$  для измерений пунктов 3,4 и 5. Используя максимальный и минимальный коэффициенты проводимости  $\sigma$ , полученнеы в расчётах, рассчитаем теоретическую зависимость по формуле:

$$\frac{H_1}{H_0} = \frac{1}{chAcosA + ishAsinA + 1/2a(A + Ai)(shAcosA + ichAcosA)}$$

, где  $A = \sqrt{\pi \nu \sigma \mu_0}$ 

Изобразим на графике теоретические и экспериментальные результаты для зависимости  $|{\rm H}_1|/|{\rm H}_0|\nu$  в логарифмическом масштабе по оси абсцисс.

$$\frac{|H_1|}{|H_0|}(ln(\nu))$$



Вывод

Результаты измерения проводимости  $\sigma$  4 способами:

| $\sigma \cdot 10^7$ , Сименс/м                                                       |               |               |                 |   |  |  |
|--------------------------------------------------------------------------------------|---------------|---------------|-----------------|---|--|--|
| отнош.амплитуд разность фаз (низкие $ u$ ) разность фаз (высокие $ u$ ) индукт. табл |               |               |                 |   |  |  |
| $4.44 \pm 0.15$                                                                      | $3.9 \pm 0.8$ | $5.2 \pm 0.4$ | $4.73 \pm 0.09$ | 5 |  |  |