Chapter 10: Integration of Differential Forms

Author: Meng-Gen Tsai Email: plover@gmail.com Exercise 10.1. ... Proof. (1)(2)**Exercise 10.2.** For $i=1,2,3,\ldots$, let $\varphi_i\in\mathscr{C}(\mathbb{R}^1)$ have support in $(2^{-i},2^{1-i})$, such that $\int \varphi_i = 1$. Put $f(x,y) = \sum_{i=1}^{\infty} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y)$ Then f has compact support in \mathbb{R}^2 , f is continuous except at (0,0), and $\int dy \int f(x,y) dx = 0 \qquad but \qquad \int dx \int f(x,y) dy = 1.$ Observe that f is unbounded in every neighborhood of (0,0). Proof. (1)(2)Exercise 10.3. ... Proof. (1)

(2)

Exercise 10.4. For $(x,y) \in \mathbb{R}^2$, define

$$\mathbf{F}(x,y) = (e^x \cos y - 1, e^x \sin y)$$

Prove that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$, where

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1, y)$$

$$\mathbf{G}_2(u,v) = (u, (1+u) \tan v)$$

are primitive in some neighborhood of (0,0). Compute the Jacobians of \mathbf{G}_1 , \mathbf{G}_2 , \mathbf{F} at (0,0). Define

$$\mathbf{H}_2(x,y) = (x, e^x \sin y)$$

and find

$$\mathbf{H}_1(u,v) = (h(u,v),v)$$

so that $\mathbf{F} = \mathbf{H}_1 \circ \mathbf{H}_2$ is in some neighborhood of (0,0).

Proof.

(1) By Definition 10.5,

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1)\mathbf{e}_1 + y\mathbf{e}_2,$$

$$\mathbf{G}_2(u,v) = u\mathbf{e}_1 + ((1+u)\tan v)\mathbf{e}_2$$

are primitive in some neighborhood of (0,0).

(2) Show that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$. Given any $(x, y) \in \mathbb{R}^2$, we have

$$(\mathbf{G}_2 \circ \mathbf{G}_1)(x, y) = \mathbf{G}_2(\mathbf{G}_1(x, y))$$

$$= \mathbf{G}_2(e^x \cos y - 1, y)$$

$$= (e^x \cos y - 1, (1 + (e^x \cos y - 1)) \tan y)$$

$$= (e^x \cos y - 1, e^x \sin y)$$

$$= \mathbf{F}(x, y).$$

(3) Since

$$J_{\mathbf{G}_1}(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ 0 & 1 \end{bmatrix}$$

$$J_{\mathbf{G}_2}(x,y) = \begin{bmatrix} 1 & 0 \\ \tan y & (1+x)\sec^2 y \end{bmatrix}$$

$$J_{\mathbf{F}}(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix},$$

$$J_{\mathbf{G}_1}(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$J_{\mathbf{G}_2}(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$J_{\mathbf{F}}(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(4) Define $h(u, v) = \sqrt{e^{2u} - v^2} - 1$ on

$$B\left((0,0); \frac{1}{64}\right) \subseteq \mathbb{R}^2.$$

h(u,v) is well-defined since $e^{2u} - v^2 > 0$ for all $(u,v) \in B\left((0,0); \frac{1}{64}\right)$.

(5) Given any $(x,y) \in \mathbb{R}^2$, we have

$$(\mathbf{H}_1 \circ \mathbf{H}_2)(x, y) = \mathbf{H}_1(\mathbf{H}_2(x, y))$$

$$= \mathbf{H}_1(x, e^x \sin y)$$

$$= (\sqrt{e^{2x} - (e^x \sin y)^2} - 1, e^x \sin y)$$

$$= (e^x \cos y - 1, e^x \sin y)$$

$$= \mathbf{F}(x, y).$$

Exercise 10.5. Formulate and prove an analogue of Theorem 10.8, in which K is a compact subset of an arbitrary metric space. (Replace the functions φ_i that occur in the proof of Theorem 10.8 by functions of the type constructed in Exercise 4.22.)

Proof (Theorem 10.8).

- (1) (Partitions of unity.) Suppose K is a compact subset of a metric space X, and $\{V_{\alpha}\}$ is an open cover of K. Then there exist functions $\psi_1, \ldots, \psi_s \in \mathscr{C}(X)$ such that
 - (a) $0 \le \psi_i \le 1$ for $1 \le i \le s$.
 - (b) each ψ_i has its support in some V_{α} , and
 - (c) $\psi_1(x) + \cdots + \psi_s(x) = 1$ for every $x \in K$.
- (2) It is trivial that some $V_{\alpha} = X$ by taking s = 1 and $\psi_1(x) = 1 \in \mathcal{C}(X)$. Now we assume that all $V_{\alpha} \subsetneq X$.
- (3) Associate with each $x \in K$ an index $\alpha(x)$ so that $x \in V_{\alpha(x)}$. Then there are open balls B(x) and W(x), centered at x, with

$$x \in B(x) \subseteq \overline{B(x)} \subseteq W(x) \subseteq \overline{W(x)} \subseteq V_{\alpha(x)}$$

(Since $V_{\alpha(x)}$ is open, there exists r > 0 such that $B(x;r) \subseteq V_{\alpha(x)}$. Take $B(x) = B\left(x; \frac{r}{89}\right)$ and $W(x) = B\left(x; \frac{r}{64}\right)$.)

(4) Since K is compact, there are finitely many points $x_1, \ldots, x_s \in K$ such that

$$K \subseteq B(x_1) \cup \cdots \cup B(x_s)$$
.

Note that

- (a) $\overline{B(x_i)}$ is a nonempty closed set since $x_i \in B(x_i) \subseteq \overline{B(x_i)}$.
- (b) $X W(x_i) \supseteq X V_{\alpha(x_i)}$ is a nonempty closed set by the assumption in (2).
- (c) $\overline{B(x_i)} \cap (X W(x_i)) \subseteq W(x_i) \cap (X W(x_i)) = \emptyset$.

By Exercise 4.22, there is a function

$$\varphi_i(x) = \frac{\rho_{\overline{B(x_i)}}(x)}{\rho_{\overline{B(x_i)}}(x) + \rho_{X - W(x_i)}(x)} \in \mathscr{C}(X)$$

such that $\varphi_i(x) = 1$ on $\overline{B(x_i)}$, $\varphi_i(x) = 0$ outside $W(x_i)$, and $0 \le \varphi_i(x) \le 1$ on X for $1 \le i \le s$.

(5) Define $\psi_1 = \varphi_1 \in \mathscr{C}(X)$ and

$$\psi_{i+1} = (1 - \varphi_1) \cdots (1 - \varphi_i) \varphi_{i+1} \in \mathscr{C}(X)$$

for $1 \le i \le s - 1$. Properties (a) and (b) in (1) are clear. Also,

$$\psi_1(x) + \dots + \psi_s(x) = 1 - (1 - \varphi_1(x)) \dots (1 - \varphi_s(x))$$

by the construction of ψ_i . If $x \in K$, then $x \in B(x_i)$ for some i, hence $\varphi_i(x) = 1$, and the product $(1 - \varphi_1(x)) \cdots (1 - \varphi_s(x)) = 0$. This proves property (c) in (1).

Exercise 10.6. Strengthen the conclusion of Theorem 10.8 by showing that the functions ψ_i can be made differentiable, and even infinitely differentiable. (Use Exercise 8.1 in the construction of the auxiliary functions ψ_i .)

Proof (Theorem 10.8).

- (1) It is trivial that some $V_{\alpha} = \mathbb{R}^n$ by taking s = 1 and $\psi_1(\mathbf{x}) = 1 \in \mathscr{C}^{\infty}(\mathbb{R}^n)$. Now we assume that all $V_{\alpha} \subseteq \mathbb{R}^n$.
- (2) Associate with each $\mathbf{x} \in K$ an index $\alpha(x)$ so that $\mathbf{x} \in V_{\alpha(x)}$. Then there are open *n*-cells $B(\mathbf{x})$ and $W(\mathbf{x})$ (Definition 10.1), centered at \mathbf{x} , with

$$\mathbf{x} \in B(\mathbf{x}) \subseteq \overline{B(\mathbf{x})} \subseteq W(\mathbf{x}) \subseteq \overline{W(\mathbf{x})} \subseteq V_{\alpha(\mathbf{x})}$$

(Since $V_{\alpha(\mathbf{x})}$ is open, there exists r > 0 such that $B(\mathbf{x}; r) \subseteq V_{\alpha(\mathbf{x})}$. Take

$$B(\mathbf{x}) = I\left(\mathbf{x}; \frac{r}{89\sqrt{n}}\right), \qquad W(\mathbf{x}) = I\left(\mathbf{x}; \frac{r}{64\sqrt{n}}\right)$$

where $I(\mathbf{p};r)$ is the open n-cell centered at $\mathbf{p}=(p_1,\ldots,p_n)$ defined by

$$I(\mathbf{p};r) = (p_1 - r, p_1 + r) \times \cdots \times (p_n - r, p_n + r) \subseteq \mathbb{R}^n.$$

(3) Define

$$f(y) = \begin{cases} e^{-\frac{1}{y^2}} & (y > 0), \\ 0 & (y \le 0). \end{cases}$$

 $f(y) \in \mathscr{C}^{\infty}(\mathbb{R}^1)$ by applying the similar argument in Exercise 8.1.

(4) Given any $\mathbf{x} = (x_1, \dots, x_n) \in K$ and construct $B(\mathbf{x})$ and $W(\mathbf{x})$ as in (2). Define

$$g_{x_j}(y_j) = \frac{f(y_j)}{f(y_j) + f\left(\frac{r}{64\sqrt{n}} - \frac{r}{89\sqrt{n}} - y_j\right)}$$

for $1 \leq j \leq n$. g_{x_j} is well-defined and $g_{x_j} \in \mathscr{C}^{\infty}(\mathbb{R}^1)$. So

$$g_{x_j}(y_j) = \begin{cases} 0 & \text{if } y_j \le 0, \\ \text{strictly increasing} & \text{if } 0 \le y_j \le \frac{r}{64\sqrt{n}} - \frac{r}{89\sqrt{n}}, \\ 1 & \text{if } y_j \ge \frac{r}{64\sqrt{n}} - \frac{r}{89\sqrt{n}}. \end{cases}$$

Next, define

$$h_{x_j}(y_j) = g_{x_j} \left(y_j - x_j + \frac{r}{64\sqrt{n}} \right) g_{x_j} \left(x_j + \frac{r}{64\sqrt{n}} - y_j \right)$$

for $1 \leq j \leq n$. $h_{x_j} \in \mathscr{C}^{\infty}(\mathbb{R}^1)$. So

$$h_{x_j}(y_j) = \begin{cases} 0 & \text{if } y_j \leq x_j - \frac{r}{64\sqrt{n}}, \\ \text{strictly increasing} & \text{if } x_j - \frac{r}{64\sqrt{n}} \leq y_j \leq x_j - \frac{r}{89\sqrt{n}}, \\ 1 & \text{if } x_j - \frac{r}{89\sqrt{n}} \leq y_j \leq x_j + \frac{r}{89\sqrt{n}}, \\ \text{strictly decreasing} & \text{if } x_j + \frac{r}{89\sqrt{n}} \leq y_j \leq x_j + \frac{r}{64\sqrt{n}}, \\ 0 & \text{if } y_j \geq x_j + \frac{r}{64\sqrt{n}}. \end{cases}$$

Finally we define $\mathbf{h}_{\mathbf{x}}: \mathbb{R}^n \to \mathbb{R}^1$ by

$$\mathbf{h}_{\mathbf{x}}(\mathbf{y}) = \prod_{j=1}^{n} h_{x_j}(y_j)$$

where $\mathbf{y} = (y_1, \dots, \underline{y_n}) \in \mathbb{R}^n$. Hence, $\mathbf{h_x} \in \mathscr{C}^{\infty}(\mathbb{R}^n)$ (Theorem 9.21). Also, $\mathbf{h_x}(\mathbf{y}) = 1$ on $\overline{B(\mathbf{x})}$, $\mathbf{h_x}(\mathbf{y}) = 0$ outside $W(\mathbf{x})$, and $0 \leq \mathbf{h_x}(\mathbf{y}) \leq 1$.

(5) Since K is compact, there are finitely many points $\mathbf{x}_1, \dots, \mathbf{x}_s \in K$ such that

$$K \subseteq B(\mathbf{x}_1) \cup \cdots \cup B(\mathbf{x}_s).$$

Take

$$\varphi_i(\mathbf{x}) = \mathbf{h}_{\mathbf{x}_i}(\mathbf{x}) \in \mathscr{C}^{\infty}(\mathbb{R}^n)$$

for $1 \leq i \leq s$.

(6) The rest are the same as the proof of Theorem 10.8 or Exercise 10.5.

Exercise 10.7.

- (a) Show that the simplex Q^k is the smallest convex subset of \mathbb{R}^k such that contains $\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_k$.
- (b) Show that affine mappings take convex sets to convex sets.

Proof of (a).

(1) Show that Q^k contains $\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_k$. Recall

$$Q^k = \{(x_1, \dots, x_k) \in \mathbb{R}^k : x_1 + \dots + x_k \le 1 \text{ and } x_1, \dots, x_k \ge 0\}$$

(Example 10.14). Hence $\mathbf{0} = (0, \dots, 0) \in Q^k$ and

$$\mathbf{e}_i = (0, \dots, \underbrace{1}_{i \text{th coordinate}}, \dots, 0) \in Q^k.$$

(2) Show that Q^k is a convex subset of \mathbb{R}^k . Given any $\mathbf{x} = (x_1, \dots, x_k) \in Q^k$, $\mathbf{y} = (y_1, \dots, y_k) \in Q^k$ and $0 < \lambda < 1$. Hence

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = (\lambda x_1 + (1 - \lambda)y_1, \dots, \lambda x_k + (1 - \lambda)y_k) \in Q^k$$

since each $\lambda x_i + (1 - \lambda)y_i \ge 0$ and

$$\sum_{i=1}^{k} (\lambda x_i + (1-\lambda)y_i) = \lambda \sum_{i=1}^{k} x_i + (1-\lambda) \sum_{i=1}^{k} y_i \le \lambda + (1-\lambda) = 1.$$

- (3) Given any convex set $E \subseteq \mathbb{R}^k$ containing $\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_k$. Show that $E \supseteq Q^k$.
 - (a) Induction on k. Base case: k = 1. Given any $\mathbf{x} = (x_1) \in Q^1$. We have $0 \le x_1 \le 1$ by the definition of Q^1 . So that $\mathbf{x} = x_1 \mathbf{e}_1 + (1 x_1)\mathbf{0} \in E$ since $\mathbf{0}, \mathbf{e}_1 \in E$ and E is convex.

(b) Inductive step: suppose the statement holds for k=n. Given any $\mathbf{x}=(x_1,\ldots,x_n,x_{n+1})\in Q^{n+1}$. If $x_{n+1}=1$, then $x_1=\cdots=x_n=0$ by the definition of Q^{n+1} . So $\mathbf{x}=\mathbf{e}_{n+1}\in E$ by the assumption of E. If $0\leq x_{n+1}<1$, then $x_1+\cdots+x_n\leq 1-x_{n+1}$ or

$$\frac{x_1}{1 - x_{n+1}} + \dots + \frac{x_n}{1 - x_{n+1}} \le 1.$$

So the point

$$\left(\frac{x_1}{1-x_{n+1}},\dots,\frac{x_n}{1-x_{n+1}}\right) \in Q^n,$$

or

$$\left(\frac{x_1}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}, 0\right), \text{ say } \widehat{\mathbf{x}}, \in E$$

by the induction hypothesis. Note that $\mathbf{e}_{n+1} \in E$. Hence

$$\mathbf{x} = x_{n+1}\mathbf{e}_{n+1} + (1 - x_{n+1})\widehat{\mathbf{x}} \in E$$

by the convexity of E.

(c) Conclusion: Since both the base case and the inductive step have been proved as true, by mathematical induction the statement holds.

Proof of (b).

(1) Let ${\bf f}$ be an affine mapping that carries a vector space X into a vector space Y such that

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{0}) + A\mathbf{x}$$

for some $A \in L(X, Y)$.

(2) Given any convex subset C of X. To show that $\mathbf{f}(C)$ is convex, it suffices to show that

$$\lambda \mathbf{y}_1 + (1 - \lambda)\mathbf{y}_2 \in \mathbf{f}(C)$$

for any $\mathbf{y}_1, \mathbf{y}_2 \in \mathbf{f}(C)$ and $0 < \lambda < 1$. Write $\mathbf{y}_1 = \mathbf{f}(\mathbf{x}_1)$, $\mathbf{y}_2 = \mathbf{f}(\mathbf{x}_2)$ for some $\mathbf{x}_1, \mathbf{x}_2 \in C$. Note that $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in C$ by the convexity of C. Hence

$$\mathbf{f}(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$$

$$= \mathbf{f}(\mathbf{0}) + A(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$$

$$= \mathbf{f}(\mathbf{0}) + \lambda A\mathbf{x}_1 + (1 - \lambda)A\mathbf{x}_2 \qquad (A \in L(X, Y))$$

$$= \lambda (\mathbf{f}(\mathbf{0}) + A\mathbf{x}_1) + (1 - \lambda)(\mathbf{f}(\mathbf{0}) + A\mathbf{x}_2)$$

$$= \lambda \mathbf{f}(\mathbf{x}_1) + (1 - \lambda)\mathbf{f}(\mathbf{x}_2)$$

$$= \lambda \mathbf{y}_1 + (1 - \lambda)\mathbf{y}_2 \in \mathbf{f}(C).$$

Exercise 10.8. Let H be the parallelogram in \mathbb{R}^2 whose vertices are (1,1), (3,2), (4,5), (2,4). Find the affine map T which sends (0,0) to (1,1), (1,0) to (3,2), (1,1) to (4,5), (0,1) to (2,4). Show that $J_T = 5$. Use T to convert the integral

$$\alpha = \int_{H} e^{x-y} dx dy$$

to an integral over I^2 and thus compute α .

Proof.

(1) By Affine simplexes 10.26,

$$T(\mathbf{x}) = T(\mathbf{0}) + A\mathbf{x},$$

where $A\in L(\mathbb{R}^2,\mathbb{R}^2)$, say $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Note that $T:\begin{bmatrix} 0 \\ 0 \end{bmatrix}\mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus

$$T: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 + ax + by \\ 1 + cx + dy \end{bmatrix}.$$

(2) By $T:(1,0)\mapsto (3,2)$ and $T:(0,1)\mapsto (2,4)$, we can solve A as

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$

It is easy to verify such

$$T: \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\mathbf{x}} \mapsto \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{T(\mathbf{0})} + \underbrace{\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\mathbf{x}} = \begin{bmatrix} 1 + 2x + y \\ 1 + x + 3y \end{bmatrix}$$

satisfying our requirement.

$$J_T = \det \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = 5.$$

(4)
$$\int_{H} e^{x-y} dx dy = \int_{[0,1]^{2}} e^{(1+2u+v)-(1+u+3v)} |J_{T}| du dv$$

$$= 5 \int_{[0,1]^{2}} e^{u-2v} du dv$$

$$= 5 \left\{ \int_{0}^{1} e^{u} du \right\} \left\{ \int_{0}^{1} e^{-2v} dv \right\}$$
 (Theorem 10.2)
$$= \frac{5}{2} (e-1)(1-e^{-2}).$$

Exercise 10.9
Proof.
(1)
(2)
Exercise 10.10
Proof.
(1)
(2)
D • 10.11
Exercise 10.11
Proof.
Proof.
Proof. (1)
Proof. (1) (2)
Proof. (1) (2)
Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.12
Proof. (1) (2) □ Exercise 10.12 Proof.
Proof. (1) (2) □ Exercise 10.12 Proof. (1)
Proof. (1) (2) □ Exercise 10.12 Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.12 Proof. (1) (2)

(1)

(2)

Exercise 10.14 (Levi-Civita symbol). Prove $\varepsilon(j_1,\ldots,j_k)=s(j_1,\ldots,j_k),$ where

$$s(j_1,\ldots,j_k) = \prod_{p < q} \operatorname{sgn}(j_q - j_p).$$

It is usually to define the Levi-Civita symbol by

$$\varepsilon(j_1,\ldots,j_k) = \begin{cases} 1 & \text{if } (j_1,\cdots,j_k) \text{ is an even permutation of } J, \\ -1 & \text{if } (j_1,\cdots,j_k) \text{ is an odd permutation of } J, \\ 0 & \text{otherwise} \end{cases}$$

(Basic k-forms 10.14). Thus, it is the sign of the permutation in the case of a permutation, and zero otherwise. So $\varepsilon(j_1,\ldots,j_k)$ is equivalent to an explicit expression $s(j_1,\ldots,j_k) = \prod_{p < q} \operatorname{sgn}(j_q - j_p)$.

Proof.

(1) Induction on k. Base case: Show that $\varepsilon(j_1, j_2) = s(j_1, j_2)$. Since

$$\varepsilon(j_1, j_2) = \begin{cases} 1 & \text{if } j_1 < j_2 \\ -1 & \text{if } j_1 > j_2, \end{cases}$$

$$\varepsilon(j_1, j_2) = \operatorname{sgn}(j_2 - j_1) = s(j_1, j_2).$$

(2) Inductive step: Show that for any $s \geq 2$, if $\varepsilon(j_1, \ldots, j_s) = s(j_1, \ldots, j_s)$ holds, then $\varepsilon(j_1, \ldots, j_{s+1}) = s(j_1, \ldots, j_{s+1})$ also holds.

$$\varepsilon(j_1, \dots, j_{s+1}) = \varepsilon(j_1, \dots, j_s) \prod_{\substack{1 \le p \le s \\ q = s+1}} \operatorname{sgn}(j_q - j_p)$$

$$= s(j_1, \dots, j_s) \prod_{\substack{1 \le p \le s \\ q = s+1}} \operatorname{sgn}(j_q - j_p)$$

$$= \prod_{1 \le p < q \le s} \operatorname{sgn}(j_q - j_p) \prod_{\substack{1 \le p \le s \\ q = s+1}} \operatorname{sgn}(j_q - j_p)$$

$$= \prod_{1 \le p < q \le s+1} \operatorname{sgn}(j_q - j_p)$$

$$= s(j_1, \dots, j_{s+1}).$$

(3) Conclusion: Since both the base case and the inductive step have been proved as true, by mathematical induction the statement holds for every integer $k \geq 2$.

Exercise 10.15. If ω and λ are k- and m-forms, respectively, prove that

$$\omega \wedge \lambda = (-1)^{km} \lambda \wedge \omega.$$

Proof.

(1) Write

$$\omega = \sum_{I} b_{I}(\mathbf{x}) dx_{I}, \qquad \lambda = \sum_{J} c_{J}(\mathbf{x}) dx_{J}$$

in the stardard presentations, where I and J range over all increasing k-indices and over all increasing m-indices taken from the set $\{1, \ldots, n\}$.

(2) Show that $dx_I \wedge dx_J = (-1)^{km} dx_J \wedge dx_I$.

$$dx_{I} \wedge dx_{J} = dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}} \wedge dx_{J}$$

$$= (-1)^{m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-1}} \wedge dx_{J} \wedge dx_{i_{k}}$$

$$= (-1)^{2m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-2}} \wedge dx_{J} \wedge dx_{i_{k-1}} \wedge dx_{i_{k}}$$

$$\dots$$

$$= (-1)^{km} dx_{J} \wedge dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}}$$

$$= (-1)^{km} dx_{J} \wedge dx_{J}.$$

(3)

$$\omega \wedge \lambda = \sum_{I,J} b_I(\mathbf{x}) c_J(\mathbf{x}) dx_I \wedge dx_J$$
$$= (-1)^{km} \sum_{J,I} c_J(\mathbf{x}) b_I(\mathbf{x}) dx_J \wedge dx_I$$
$$= (-1)^{km} \lambda \wedge \omega.$$

Exercise 10.16. If $k \geq 2$ and $\sigma = [\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k]$ is an oriented affine k-simplex, prove that $\partial^2 \sigma = 0$, directly from the definition of the boundary operator ∂ . Deduce from this that $\partial^2 \Psi = 0$ for every chain Ψ . (Hint: For orientation, do it first for k = 2, k = 3. In general, if i < j, let σ_{ij} be the (k-2)-simplex obtained by deleting \mathbf{p}_i and \mathbf{p}_j from σ . Show that each σ_{ij} occurs twice in $\partial^2 \sigma$, with opposite sign.)

Proof (Brute-force).

(1) Write the boundary of the oriented affine k-simplex $\sigma = [\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k]$ as

$$\partial \sigma = \sum_{i=0}^{k} (-1)^{i} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

where where the oriented (k-1)-simplex $[\mathbf{p}_0, \dots, \widehat{\mathbf{p}_i}, \dots, \mathbf{p}_k]$ is obtained by deleting σ 's *i*-th vertex (Boundaries 10.29).

(2)

$$\partial^{2} \sigma = \partial \left(\sum_{i} (-1)^{i} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}] \right)$$

$$= \sum_{i} (-1)^{i} \partial [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

$$= \sum_{j < i} (-1)^{i} (-1)^{j} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

$$+ \sum_{j > i} (-1)^{i} (-1)^{j-1} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \mathbf{p}_{k}]$$

$$= \sum_{j < i} (-1)^{i+j} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \mathbf{p}_{k}]$$

$$- \sum_{j > i} (-1)^{i+j} [\mathbf{p}_{0}, \dots, \widehat{\mathbf{p}}_{i}, \dots, \widehat{\mathbf{p}}_{j}, \dots, \mathbf{p}_{k}].$$

The latter two summations cancel since after switching i and j in the second sum. Therefore $\partial^2 \sigma = 0$.

(3) The boundary of a chain is the linear combination of boundaries of the simplices in the chain. Write $\Psi = \sum_{i=1}^{r} \sigma_i$, where σ_i is an oriented affine simplex. Then

$$\partial^2 \Psi = \partial \left(\partial \sum \sigma_i \right) = \partial \left(\sum \partial \sigma_i \right) = \sum \partial^2 \sigma_i = \sum 0 = 0$$

for any affine chain Ψ .

Exercise 10.17. Put $J^2 = \tau_1 + \tau_2$, where

$$\tau_1 = [\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2], \qquad \tau_2 = -[\mathbf{0}, \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_1].$$

Explain why it is reasonable to call J^2 the positively oriented unit square in \mathbb{R}^2 . Show that ∂J^2 is the sum of 4 oriented affine 1-simplexes. Find these. What is $\partial(\tau_1 - \tau_2)$?

Proof.

(1) Note that the unit square $I^2 \in \mathbb{R}^2$ is the union of $\tau_1(Q^2)$ and $\tau_2(Q_2)$, where

$$\tau_1(\mathbf{u}) = ([\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2])(\mathbf{u})$$

$$= \mathbf{0} + \alpha_1 \mathbf{e}_1 + \alpha_2 (\mathbf{e}_1 + \mathbf{e}_2)$$

$$= \mathbf{0} + (\alpha_1 + \alpha_2) \mathbf{e}_1 + \alpha_2 \mathbf{e}_2$$

$$= \mathbf{0} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{u}$$

and

$$\tau_{2}(\mathbf{u}) = (-[\mathbf{0}, \mathbf{e}_{2}, \mathbf{e}_{2} + \mathbf{e}_{1}])(\mathbf{u})$$

$$= ([\mathbf{0}, \mathbf{e}_{2} + \mathbf{e}_{1}, \mathbf{e}_{2}])(\mathbf{u})$$

$$= \mathbf{0} + \alpha_{1}(\mathbf{e}_{1} + \mathbf{e}_{2}) + \alpha_{2}\mathbf{e}_{2}$$

$$= \mathbf{0} + \alpha_{1}\mathbf{e}_{1} + (\alpha_{1} + \alpha_{2})\mathbf{e}_{2}$$

$$= \mathbf{0} + \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \mathbf{u}$$

where $\mathbf{u} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 \in \mathbb{R}^2$ (as in Equation (78)). Both τ_1 and τ_2 have Jacobian 1 > 0, or positively oriented (Affine simplexes 10.26). So it is reasonable to call J^2 the positively oriented unit square in \mathbb{R}^2 .

(2)

$$\begin{split} \partial \tau_1 &= [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] - [\mathbf{0}, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{0}, \mathbf{e}_1], \\ \partial \tau_2 &= [\mathbf{e}_2 + \mathbf{e}_1, \mathbf{e}_2] - [\mathbf{0}, \mathbf{e}_2] + [\mathbf{0}, \mathbf{e}_2 + \mathbf{e}_1] \\ &= [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2] + [\mathbf{e}_2, \mathbf{0}] + [\mathbf{0}, \mathbf{e}_1 + \mathbf{e}_2]. \end{split}$$

(3) By (2),

$$\partial J^2 = \partial \tau_1 + \partial \tau_2 = [\mathbf{0}, \mathbf{e}_1] + [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2] + [\mathbf{e}_2, \mathbf{0}],$$

which is the positively oriented boundary of I^2 .

(4) By (2),

$$\begin{split} \partial(\tau_1 - \tau_2) = & \partial \tau_1 - \partial \tau_2 \\ = & [\mathbf{0}, \mathbf{e}_1] + [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{0}] \\ & + [\mathbf{0}, \mathbf{e}_2] + [\mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2] + [\mathbf{e}_1 + \mathbf{e}_2, \mathbf{0}]. \end{split}$$

Exercise 10.18. Consider the oriented affine 3-simplex

$$\sigma_1 = [\mathbf{0}, \mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$

in \mathbb{R}^3 . Show that σ_1 (regarded as a linear transformation) has determinant 1. Thus σ_1 is positively oriented.

Let $\sigma_2, \ldots, \sigma_6$ be five other oriented 3-simplexes, obtained as follows: There are five permutations (i_1, i_2, i_3) of (1, 2, 3), distinct from (1, 2, 3). Associate with each (i_1, i_2, i_3) the simplex

$$s(i_1, i_2, i_3)[\mathbf{0}, \mathbf{e}_{i_1}, \mathbf{e}_{i_1} + \mathbf{e}_{i_2}, \mathbf{e}_{i_1} + \mathbf{e}_{i_2} + \mathbf{e}_{i_3}]$$

where s is the sign that occurs in the definition of the determinant. (This is how τ_2 was obtained from τ_1 in Exercise 10.17.) Show that $\sigma_2, \ldots, \sigma_6$ are positively oriented.

Put $J^3 = \sigma_1 + \cdots + \sigma_6$. Then J^3 may be called the positively oriented unit cube in \mathbb{R}^3 . Show that ∂J^3 is the sum of 12 oriented affine 2-simplexes. (These 12 triangles cover the surface of the unit cube I^3 .)

Show that $\mathbf{x} = (x_1, x_2, x_3)$ is in the range of σ_1 if and only if $0 \le x_3 \le x_2 \le x_1 \le 1$.

Show that the range of $\sigma_1, \ldots, \sigma_6$ have disjoint interiors, and that their union covers I^3 . (Compared with Exercise 10.13; note that 3! = 6.)

Proof.

(1) Show that σ_1 (regarded as a linear transformation) has determinant 1. Given any $\mathbf{u} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 \in \mathbb{R}^3$, we have

$$\sigma_{1}(\mathbf{u}) = ([\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{1} + \mathbf{e}_{2}, \mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}])(\mathbf{u})$$

$$= \mathbf{0} + \alpha_{1}\mathbf{e}_{1} + \alpha_{2}(\mathbf{e}_{1} + \mathbf{e}_{2}) + \alpha_{3}(\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3})$$

$$= \mathbf{0} + (\alpha_{1} + \alpha_{2} + \alpha_{3})\mathbf{e}_{1} + (\alpha_{2} + \alpha_{3})\mathbf{e}_{2} + \alpha_{3}\mathbf{e}_{3}$$

$$= \mathbf{0} + \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{say } A} \mathbf{u}.$$

So

$$\det(A) = \det \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = 1.$$

(2) Show that $\sigma_2, \ldots, \sigma_6$ are positively oriented. Define the permutation matrix $P_{(i_1,i_2,i_3)}$ corresponding to a permutation (i_1,i_2,i_3) of (1,2,3) by

$$P_{(i_1,i_2,i_3)} = \begin{bmatrix} \mathbf{e}_{i_1} & \mathbf{e}_{i_2} & \mathbf{e}_{i_3} \end{bmatrix}.$$

For example,

$$P_{(2,3,1)} = \begin{bmatrix} \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Note that the sign $s(i_1, i_2, i_3)$ of the permutation (i_1, i_2, i_3) is exactly the same as the determinant of the permutation matrix $P_{(i_1, i_2, i_3)}$. Define a permutation $(j_1, j_2, 3)$ of (1, 2, 3) (for swapping the first and the second coordinates of \mathbf{u}) by

$$(j_1, j_2, 3) = \begin{cases} (1, 2, 3) & \text{if } s(i_1, i_2, i_3) = 1, \\ (2, 1, 3) & \text{if } s(i_1, i_2, i_3) = -1. \end{cases}$$

Hence,

$$\begin{split} &(s(i_1,i_2,i_3)[\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3}])(\mathbf{u})\\ =&\mathbf{0}+\alpha_{j_1}\mathbf{e}_{i_1}+\alpha_{j_2}(\mathbf{e}_{i_1}+\mathbf{e}_{i_2})+\alpha_3(\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3})\\ =&\mathbf{0}+(\alpha_{j_1}+\alpha_{j_2}+\alpha_3)\mathbf{e}_{i_1}+(\alpha_{j_2}+\alpha_3)\mathbf{e}_{i_2}+\alpha_3\mathbf{e}_{i_3}\\ =&\mathbf{0}+P_{(i_1,i_2,i_3)}AP_{(j_1,j_2,3)}\mathbf{u} \end{split}$$

where $\mathbf{u} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 \in \mathbb{R}^3$. So

$$\det(P_{(i_1,i_2,i_3)}AP_{(j_1,j_2,3)}) = \det(P_{(i_1,i_2,i_3)})\det(A)\det(P_{(j_1,j_2,3)})$$

$$= s(i_1,i_2,i_3) \cdot 1 \cdot s(i_1,i_2,i_3)$$

$$= 1.$$

(3) Show that ∂J^3 is the sum of 12 oriented affine 2-simplexes. Note that

$$\begin{split} &\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &= \sum_{\substack{(i_1,i_2,i_3)\\i_1>i_2}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &+ \sum_{\substack{(i_1,i_2,i_3)\\i_1< i_2}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &= \sum_{\substack{(i_1,i_2,i_3)\\i_1>i_2\\i_1>i_2}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &+ \sum_{\substack{(i_1,i_2,i_3)\\i_2>i_1}} -s(i_2,i_1,i_3) [\mathbf{0},\mathbf{e}_{i_2}+\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &= \mathbf{0} \end{split}$$

and

$$\begin{split} &\sum_{\substack{(i_1,i_2,i_3)\\i_2>i_3}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &= \sum_{\substack{(i_1,i_2,i_3)\\i_2>i_3}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &+ \sum_{\substack{(i_1,i_2,i_3)\\i_2< i_3}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &= \sum_{\substack{(i_1,i_2,i_3)\\i_2>i_3\\i_2>i_3}} s(i_1,i_2,i_3) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &+ \sum_{\substack{(i_1,i_2,i_3)\\i_3>i_2\\i_3>i_2}} -s(i_1,i_3,i_2) [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &= \mathbf{0}. \end{split}$$

So

$$\begin{split} \partial J^3 &= \sum_{(i_1,i_2,i_3)} \partial(s(i_1,i_2,i_3)[\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3}]) \\ &= \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) \partial[\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3}] \\ &= \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3) ([\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3}] \\ &- [\mathbf{0},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3}] \\ &+ [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}+\mathbf{e}_{i_3}] \\ &- [\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}]) \\ &= \sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3)[\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3] \\ &- \underbrace{\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3)[\mathbf{0},\mathbf{e}_{i_1}+\mathbf{e}_{i_2},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3]}_{=\mathbf{0}} \\ &+ \underbrace{\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3)[\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3]}_{=\mathbf{0}} \\ &- \underbrace{\sum_{(i_1,i_2,i_3)} s(i_1,i_2,i_3)[\mathbf{0},\mathbf{e}_{i_1},\mathbf{e}_{i_1}+\mathbf{e}_{i_2}]. \end{split}$$

Thus,

$$\partial J^3 = \sum_{(i_1, i_2, i_3)} s(i_1, i_2, i_3) [\mathbf{e}_{i_1}, \mathbf{e}_{i_1} + \mathbf{e}_{i_2}, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3]$$
$$- \sum_{(i_1, i_2, i_3)} s(i_1, i_2, i_3) [\mathbf{0}, \mathbf{e}_{i_1}, \mathbf{e}_{i_1} + \mathbf{e}_{i_2}]$$

is the sum of 12 oriented affine 2-simplexes. (Note that 3! = 6.)

- (4) Show that $\mathbf{x} = (x_1, x_2, x_3)$ is in the range of σ_1 if and only if $0 \le x_3 \le x_2 \le x_1 \le 1$.
 - (a) By (1), ${\bf x}$ is in the range of σ_1 if and only if ${\bf x}=A{\bf u}$ for ${\bf u}=(u_1,u_2,u_3)\in Q^3,$ or

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 + u_3 \\ u_2 + u_3 \\ u_3 \end{bmatrix}.$$

- (b) Since $\mathbf{u}=(u_1,u_2,u_3)\in Q^3,\ u_1+u_2+u_3\leq 1\ \text{and}\ u_1,u_2,u_3\geq 0.$ Hence $0\leq u_3\leq u_2+u_3\leq u_1+u_2+u_3\leq 1\ \text{or}\ 0\leq x_3\leq x_2\leq x_1\leq 1.$
- (c) Conversely, if $0 \le x_3 \le x_2 \le x_1 \le 1$, we define

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ x_2 - x_3 \\ x_3 \end{bmatrix}.$$

Clearly, $\mathbf{v} \in Q^3$.

Exercise 10.19. ...

Proof.

- (1)
- (2)

Exercise 10.20. ...

Proof.

(1)

(2)
Exercise 10.21
Proof.
(1)
(2)
Exercise 10.22
Proof.
(1)
(2)
Exercise 10.23
Exercise 10.23
Proof.
Proof. (1)
Proof. (1) (2)
Proof. (1)
Proof. (1) (2)
Proof. (1) (2)
Proof. (1) (2) □ Exercise 10.24
Proof. (1) (2) □ Exercise 10.24 Proof.
Proof. (1) (2) □ Exercise 10.24 Proof. (1)
Proof. (1) (2) □ Exercise 10.24 Proof.
Proof. (1) (2) □ Exercise 10.24 Proof. (1) (2)
Proof. (1) (2) □ Exercise 10.24 Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.24 Proof. (1) (2)

(1)
(2)
Exercise 10.26
Proof.
(1)
(2)
Exercise 10.27
Proof.
(1)
(2)
Exercise 10.28
Proof.
(1)
(2)
F 1 10 00
Exercise 10.29
Proof.
(1)
(2)

Exercise 10.30. If N is the vector given by

$$\mathbf{N} = (\alpha_2 \beta_3 - \alpha_3 \beta_2) \mathbf{e}_1 + (\alpha_3 \beta_1 - \alpha_1 \beta_3) \mathbf{e}_2 + (\alpha_1 \beta_2 - \alpha_2 \beta_1) \mathbf{e}_3$$

(Equation (135)), prove that

$$\det \begin{bmatrix} \alpha_1 & \beta_1 & \alpha_2\beta_3 - \alpha_3\beta_2 \\ \alpha_2 & \beta_2 & \alpha_3\beta_1 - \alpha_1\beta_3 \\ \alpha_3 & \beta_3 & \alpha_1\beta_2 - \alpha_2\beta_1 \end{bmatrix} = |\mathbf{N}|^2$$

Also, verify

$$\mathbf{N} \cdot (T\mathbf{e}_1) = \mathbf{N} \cdot (T\mathbf{e}_2)$$

(Equation (137)).

Proof.

(1) By Laplace's expansion along the third column,

$$\det\begin{bmatrix} \alpha_1 & \beta_1 & \alpha_2\beta_3 - \alpha_3\beta_2 \\ \alpha_2 & \beta_2 & \alpha_3\beta_1 - \alpha_1\beta_3 \\ \alpha_3 & \beta_3 & \alpha_1\beta_2 - \alpha_2\beta_1 \end{bmatrix}$$

$$= (-1)^{1+3} (\alpha_2\beta_3 - \alpha_3\beta_2) \det\begin{bmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{bmatrix}$$

$$+ (-1)^{2+3} (\alpha_3\beta_1 - \alpha_1\beta_3) \det\begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_3 & \beta_3 \end{bmatrix}$$

$$+ (-1)^{3+3} (\alpha_1\beta_2 - \alpha_2\beta_1) \det\begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix}$$

$$= (\alpha_2\beta_3 - \alpha_3\beta_2)^2 + (\alpha_3\beta_1 - \alpha_1\beta_3)^2 + (\alpha_1\beta_2 - \alpha_2\beta_1)^2$$

$$= |\mathbf{N}|^2.$$

(2)

$$\mathbf{N} \cdot (T\mathbf{e}_1) = (\alpha_2\beta_3 - \alpha_3\beta_2, \alpha_3\beta_1 - \alpha_1\beta_3, \alpha_1\beta_2 - \alpha_2\beta_1) \cdot (\alpha_1, \alpha_2, \alpha_3)$$

$$= (\alpha_2\beta_3 - \alpha_3\beta_2)\alpha_1 + (\alpha_3\beta_1 - \alpha_1\beta_3)\alpha_2 + (\alpha_1\beta_2 - \alpha_2\beta_1))\alpha_3$$

$$= (\alpha_3\alpha_2 - \alpha_2\alpha_3)\beta_1 + (\alpha_1\alpha_3 - \alpha_3\alpha_1)\beta_2 + (\alpha_2\alpha_1 - \alpha_1\alpha_2)\beta_3$$

$$= 0.$$

(3)

$$\mathbf{N} \cdot (T\mathbf{e}_{2}) = (\alpha_{2}\beta_{3} - \alpha_{3}\beta_{2}, \alpha_{3}\beta_{1} - \alpha_{1}\beta_{3}, \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1}) \cdot (\beta_{1}, \beta_{2}, \beta_{3})$$

$$= (\alpha_{2}\beta_{3} - \alpha_{3}\beta_{2})\beta_{1} + (\alpha_{3}\beta_{1} - \alpha_{1}\beta_{3})\beta_{2} + (\alpha_{1}\beta_{2} - \alpha_{2}\beta_{1}))\beta_{3}$$

$$= (\beta_{2}\beta_{3} - \beta_{3}\beta_{2})\alpha_{1} + (\beta_{3}\beta_{1} - \beta_{1}\beta_{3})\alpha_{2} + (\beta_{1}\beta_{2} - \beta_{2}\beta_{1})\alpha_{3}$$

$$= 0.$$

Exercise 10.31. ...

 ${\it Proof.}$

- (1)
- (2)

Exercise 10.32. ...

Proof.

- (1)
- (2)