STAT 9120 - HW 2

Augusta University

Due: September 22nd, 2024 by 11:59pm, submitted on D2L

- 1. For n observations and p covariates, assume the $n \times p$ data matrix X has full column rank, n > p. For fixed n, describe what happens to the eigenvalues of X^TX as $p \to n$. (Hint: What is true about the eigenvalues of a singular matrix?)
- 2. Show that $\hat{\beta} = (X^T X)^- X^T Y$ is a solution to the normal equation.
- 3. (a) Derive the least squares estimates for $\hat{\beta}$, $\hat{\sigma}^2$ from the likelihood for the linear regression model $Y = X\beta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.
 - (b) Derive the estimates for the variance of $\hat{\beta}$ and variance of $\hat{\sigma}^2$.
- 4. For a projection matrix $P \in \mathbb{R}^{p \times p}$ and vector $x \in \mathbb{R}^p$, show that $||Px||^2 \le ||x||^2$. Interpret this fact in the context of linear regression; i.e., what does this tell us about Y vs. \hat{Y} ?
- 5. Suppose $\hat{\beta} = (X^T X)^- X^T Y$ is a solution to the normal equation. Show that $\tilde{\beta} = \hat{\beta} + (I (X^T X)^- (X^T X))z$ is also a solution to the normal equation, where z is an arbitrary vector.
- 6. Let response vector $Y = (1, 3, -2, 2)^T$ and design matrix

$$X = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

1

- (a) Find $\hat{\beta}$ using Method 1.
- (b) Find $\hat{\beta}$ using Method 2.
- (c) Find $\hat{\beta}$ using Method 3.

- (d) Show that β_2 and $\beta_1 + \beta_3$ are estimable. Explain why β_1 is not estimable in this case.
- (e) Find the BLUEs and corresponding variance estimates of $\hat{\beta}_2$ and $\hat{\beta}_1 + \hat{\beta}_3$.
- 7. Consider the design matrix $X = (1, x_1, \dots, x_{p-1})$, and the alternative design matrix $Z = (1, c_1x_1, c_2x_2, \dots, c_{p-1}x_{p-1})$ for non-zero scalars $c_j, j = 1, \dots, p-1$. Show that the fitted values for Y are equivalent under both design matrices.