uczenie nadzorowane

May 13, 2025

```
[10]: import sklearn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import pandas as pd
import xgboost as xgb
```

1 Wczytanie danych

```
[2]: url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

⇔housing.data'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',

⇔'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']

dataset = pd.read_csv(url, delim_whitespace=True, names=names)
```

```
/tmp/ipykernel_6362/3994773014.py:3: FutureWarning: The 'delim_whitespace'
keyword in pd.read_csv is deprecated and will be removed in a future version.
Use ``sep='\s+'`` instead
  dataset = pd.read_csv(url, delim_whitespace=True, names=names)
```

2 EDA

```
[21]: df = dataset
    print("Podstawowe informacje o zbiorze:")
    display(df.info())

    print("\nStatystyki opisowe:")
    print(df.describe())

    print("\nLiczba brakujących wartości w każdej kolumnie:")
    display(df.isnull().sum())
```

Podstawowe informacje o zbiorze: <class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns):

Dava	columns (codal il columns).						
#	Column	Non-Null Count	Dtype				
0	CRIM	506 non-null	float64				
1	ZN	506 non-null	float64				
2	INDUS	506 non-null	float64				
3	CHAS	506 non-null	int64				
4	NOX	506 non-null	float64				
5	RM	506 non-null	float64				
6	AGE	506 non-null	float64				
7	DIS	506 non-null	float64				
8	RAD	506 non-null	int64				
9	TAX	506 non-null	float64				
10	PTRATIO	506 non-null	float64				
11	В	506 non-null	float64				
12	LSTAT	506 non-null	float64				
13	MEDV	506 non-null	float64				

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

None

Statystyki opisowe:

J	<i>J</i>						
	CRIM	ZN	INDUS	CHAS	NOX	RM	\
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	
	AGE	DIS	RAD	TAX	PTRATIO	В	\
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	
std	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	
min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	
25%	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	
50%	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	
75%	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	
max	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	
	LSTAT	MEDV					
count	506.000000	506.000000					

```
12.653063
                   22.532806
mean
        7.141062
                  9.197104
std
        1.730000
                  5.000000
min
25%
        6.950000
                   17.025000
                   21.200000
50%
        11.360000
75%
        16.955000
                   25.000000
                   50.000000
max
        37.970000
```

Liczba brakujących wartości w każdej kolumnie:

```
CRIM
            0
ZN
            0
INDUS
            0
CHAS
            0
NOX
            0
RM
            0
AGE
DIS
            0
RAD
TAX
PTRATIO
            0
LSTAT
            0
MEDV
            0
dtype: int64
```

2.1 Rozkład cech w zbiorze

```
[18]: fig, axs = plt.subplots(ncols=7, nrows=2, figsize=(20, 10))
  index = 0
  axs = axs.flatten()
  for i,j in df.items():
        sns.boxplot(y=i, data=df, ax=axs[index])
        index += 1
  plt.suptitle('Rozkłady cech w zbiorze ')
  plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=5.0)
```


2.1.1 Rozkład MEDV

```
[]: plt.figure(figsize=(6, 4))
    sns.histplot(df['MEDV'], bins=30)
    plt.title('Rozkład cen mieszkań (MEDV)')
    plt.xlabel('MEDV')
    plt.ylabel('Liczba obserwacji')
    plt.show()
```


2.2 Sprawdzenie współliniowości


```
[14]: print("\nPary zmiennych o wysokiej korelacji (|r| > 0.75):")
high_corr = correlation_matrix.abs().unstack().sort_values(ascending=False)
high_corr = high_corr[high_corr < 1]
display(high_corr[high_corr > 0.75])
```

Pary zmiennych o wysokiej korelacji (|r| > 0.75):

RAD TAX 0.910228 TAX RAD 0.910228 DIS NOX 0.769230 NOX DIS 0.769230 NOX 0.763651 INDUS NOX INDUS 0.763651

dtype: float64

Współczynniki VIF:

```
feature
10 PTRATIO 85.029547
5
        RM 77.948283
       NOX 73.894947
4
9
       TAX 61.227274
6
       AGE 21.386850
         B 20.104943
11
8
       RAD 15.167725
7
       DIS 14.699652
     INDUS 14.485758
12
     LSTAT 11.102025
1
        ZN
             2.844013
0
      CRIM 2.100373
3
      CHAS
             1.152952
```

3 Podział na zbiór treningowy i testowy

```
[23]: # Podział zbioru danych
X = dataset.drop('MEDV', axis=1)
y = dataset['MEDV']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □ → random_state=42)
```

4 Badanie modeli

```
max_depth=5, alpha=10, n_estimators=10)
xg_reg.fit(X_train, y_train)
```

```
[24]: XGBRegressor(alpha=10, base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=0.3, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.1, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=10, n_jobs=None, ...)
```

5 GridSearchCV dla XGBoost

Best score: -13.74 using params: {'learning_rate': 0.1, 'max_depth': 3,
'n_estimators': 200}

6 Test vs Train

```
# Ewaluacja modeli

# Regresja liniowa
y_pred_lr = lr.predict(X_test)
print('Linear Regression - MSE: ', mean_squared_error(y_test, y_pred_lr))
print('Linear Regression - MAE: ', mean_absolute_error(y_test, y_pred_lr))
print('Linear Regression - R2: ', r2_score(y_test, y_pred_lr))

# XGBoost
y_pred_xg = xg_reg.predict(X_test)
print('XGBoost - MSE: ', mean_squared_error(y_test, y_pred_xg))
print('XGBoost - MAE: ', mean_absolute_error(y_test, y_pred_xg))
print('XGBoost - R2: ', r2_score(y_test, y_pred_xg))
```

Linear Regression - MSE: 24.291119474973478

Linear Regression - MAE: 3.189091965887837 Linear Regression - R2: 0.6687594935356326

XGBoost - MSE: 40.061291602494165 XGBoost - MAE: 4.234852414972642 XGBoost - R2: 0.4537130108927857

7 Założenia Regresji Liniowej

```
[43]: plt.figure(figsize=(6, 4))
    sns.regplot(x=y_test, y=y_pred_lr, line_kws={"color": "red"})
    plt.xlabel("Rzeczywiste wartości (y_test)")
    plt.ylabel("Przewidywane wartości (y_pred)")
    plt.title("Dopasowanie regresji liniowej")
    plt.grid()
    plt.show()
```



```
plt.xlabel('Wartości przewidywane')
plt.ylabel('Reszty')
plt.title('Reszty vs przewidywane wartości')
plt.show()
```

Reszty vs przewidywane wartości


```
[]: sns.histplot(residuals, kde=True)
plt.title("Histogram reszt")
plt.show()
```


7.1 Regresja liniowa nie spełnia założeń, ponieważ:

- Na wykresie widać, że residua mają różne rozproszenie (przy skrajnych wartościach są bardziej rozrzucone). To znaczy, że ich rozrzut nie jest taki sam w całym zakresie, a w regresji liniowej powinien być stały.
- Histogram reszt jest lekko przekrzywiony (prawoskośny), więc nie przypomina rozkładu normalnego, jak powinien.