Agenda

- 1. Sidebar on Bayesian estimation: MAP vs. MCMC (vs. HMC)
- 2. Random slopes
- 3. Multivariate normal distribution
- 4. Jointly distributed random effects

Approximating the posterior

Recall simple binomial model $4 \sim \text{Binom}(5, p)$ 5 trials $4 \sim \text{Beta}(1, 1)$ 4 'successes'

4 'successes'

$$4 \sim \text{Binom}(5, p)$$

$$p \sim \text{Beta}(1,1)$$

Bayes' Rule
$$\Pr(p|n = 5, k = 4) = \frac{\Pr(k = 4|n = 5, p)\Pr(p)}{\Pr(k = 4)}$$

Approximating the posterior

Recall simple binomial model $4 \sim \text{Binom}(5, p)$ 5 trials $p \sim \text{Beta}(1, 1)$

4 'successes'

$$4 \sim \text{Binom}(5, p)$$

$$p \sim \text{Beta}(1,1)$$

Bayes' Rule
$$\Pr(p|n = 5, k = 4) = \frac{\Pr(k = 4|n = 5, p)\Pr(p)}{\Pr(k = 4)}$$

 $\propto \Pr(k = 4|n = 5, p)\Pr(p)$
 $= \binom{5}{4}p^4(1-p)^1 \times 1$
 $\propto p^4 - p^5$

The posterior distribution for p is proportional to this

$$Pr(p|data) \propto p^4 - p^5$$

$$Pr(p|data) \propto p^4 - p^5$$

$$Pr(p|data) \propto p^4 - p^5$$

$$Pr(p|data) \propto p^4 - p^5$$

$$\Pr(p|data) \propto p^4 - p^5$$

Normal approximation

 $4 \sim Binom(5, p)$

$$Pr(p|data) \propto p^4 - p^5$$

$$Pr(p|data) \propto p^4 - p^5$$

$$Pr(p|data) \propto p^4 - p^5$$

$$\Pr(p|data) \propto p^4 - p^5$$

MCMC approximation

 $4 \sim Binom(5, p)$

MCMC vs. MAP

Markov chain Monte Carlo

Approximates posterior using a large approximate sample.

Maximum a posteriori

Approximates posterior by finding its mode and approximating with a normal distribution.

Hamiltonian Monte Carlo

Simulate a physical system

Energy at any point in the parameter space is proportional to the negative log likelihood of the posterior.

Random draws by perturbing a particle in that system

Place a particle in that system, give it a push in a random direction, and use Hamiltonian dynamics to simulate its motion.

Wherever the particle ends up after a fixed number of iterations is the next draw from the posterior.

Hamiltonian Monte Carlo

HMC vs. MCMC

Takes advantage of gradient

Gradient (slope) information helps HMC adjust to the shape of the posterior.

Reduces autocorrelation

HMC tends to explore the plausible areas of the parameter space much more quickly. It is not likely to spend too much time in one small area.

No-U-Turn sampler (NUTS)

A version of HMC that automatically optimizes some of the meta-parameters of the algorithm.

Random slopes

Independent random coefficients

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = \beta_{0k} + \beta_{1k} Age_i$

$$eta_{0k} = \gamma_{00} + \eta_{0k}$$
 $eta_{1k} = \gamma_{10} + \eta_{1k}$

$$\eta_{0k} \sim \mathsf{Norm}(0, \phi_0)$$
 $\eta_{1k} \sim \mathsf{Norm}(0, \phi_1)$

(Fixed priors omitted)

 η_{0k} and η_{1k} are independent: knowing one tells us nothing about the other.

Independence of random effects is rarely a realistic assumption.

Multivariate normal distribution

Joint distribution

Variables may not be independent

nt distribution over
$$y_0$$
 and y_1 Variables may not be independent $\begin{bmatrix} y_0 \\ y_1 \end{bmatrix} \sim \text{MVNorm} \left(\begin{bmatrix} \mu_0 \\ \mu_1 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \right)$

 μ_0 and μ_1 are mean of y_0 and y_1 , respectively.

The covariance matrix describes the way that y_0 and y_1 inform another.

Off-diagonal elements depend on the correlation between y_0 and y_1 (ρ_{12}).

Multivariate normal distribution

Multivariate normal distribution

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_k \end{bmatrix} \sim \text{MVNorm} \begin{pmatrix} \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_k \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1k} & \sigma_{2k} & \cdots & \sigma_k^2 \end{bmatrix} \end{pmatrix}$$

Jointly distributed random effects

Independent

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = \beta_{0k} + \beta_{1k}Age_i$$

$$\beta_{0k} = \gamma_{00} + \eta_{0k}$$

$$\beta_{1k} = \gamma_{10} + \eta_{1k}$$

$$\eta_{0k} \sim \mathsf{Norm}(0, \phi_0)$$
 $\eta_{1k} \sim \mathsf{Norm}(0, \phi_1)$

$$\eta_{1k} \sim \mathsf{Norm}(0, \phi_1)$$

Joint

$$S_{ik} \sim \text{Norm}(\mu_{ik}, \sigma)$$

$$\mu_{ik} = eta_{0k} + eta_{1k} Age_i$$

$$\beta_{0k} = \gamma_{00} + \eta_{0k}$$

$$\beta_{1k}=\gamma_{10}+\eta_{1k}$$

$$\begin{bmatrix} \eta_{0k} \\ \eta_{1k} \end{bmatrix} \sim \mathsf{MVNorm} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Phi \right)$$

(Fixed priors omitted)

Estimates

$$S_{ik} \sim ext{Norm}(\mu_{ik}, \sigma)$$
 $\mu_{ik} = eta_{0k} + eta_{1k} Age_i$

$$eta_{0k} = \gamma_{00} + \eta_{0k}$$
 $eta_{1k} = \gamma_{10} + \eta_{1k}$

$$\begin{bmatrix} \eta_{0k} \\ \eta_{1k} \end{bmatrix} \sim \text{MVNorm} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Phi \right)$$

$$E(\gamma_{00}|D) = 521.63$$
 $E(\gamma_{10}|D) = -5.55$
 $E(\sigma|D) = 46.96$
 $E(\Phi|D) = \begin{bmatrix} 28.68 & -4.50 \\ -4.50 & 2.71 \end{bmatrix}$

Class-level estimates

Random effects by classroom

Class-level predictions

Random effects by classroom

