1. Forward problem (initial boundary value problem for wave equation

$$\frac{1}{c^2(x)}u_{tt} = \Delta u \text{ in } \Omega \times [0, 2T],$$

$$u|_{t=0} = 0, u_t|_{t=0} = 0 \text{ in } \Omega,$$

$$u_n|_{\partial\Omega} = f,$$

where Ω is a disk in \mathbb{R}^2

$$\Omega = \{ x \in \mathbb{R}^2 | |x| < r \},$$

c is the speed of sound, and f is a Neumann boundary source (control). Control f runs over control space F. It is enough assume that $F = C_0^{\infty}(S \times [0, T])$, where $S = \{x \in \mathbb{R}^2 | |x| = r\}$. The solution will be denoted by u^f .

For solving forward problem we use Matlab, and we choose f as a rectangular pulse (depend on time only) or as Ricker pulse.

2. Inverse problem is finding c by the inverse data:

$$u^f|_{S\times[0,2T]}, f\in F.$$

We will consider a bit another problem: to find eikonal function

$$\tau(x) = dist(x, S),$$

where distance means the travel time from the point x to the boundary S. Notice, that fuction τ determines c since it satisfies eiconal equation

$$|\nabla \tau| = 1/c$$
.

3. Control problem.

Let u^h be a solution to the forward problem (corresponding to the control h) and v be an arbitrary solution to the wave equation. Then one can get differential equality

$$\frac{1}{c^2}(vu_t^f - u^f v_t)_t = \operatorname{div}(v\nabla u^f - u^f \nabla v).$$

After inegration over $\Omega \times [0, s]$ we have integral equality

$$\int_{\Omega^s} \frac{1}{c^2} (v u_t^f - u^f v_t) dx = \int_S (v f - u^f v_n) dS dt,$$

where $S = \partial \Omega = \{x \in \mathbb{R}^2 | |x| = r\}$, v_n is the normal derivative and Ω^s is the set filled with wave u up to the moment s. More precisely

$$\Omega^s = \{ x \in \Omega | \ \tau(x) < s \},\$$

where τ is the eikonal,

$$\tau(x) = dist(x, S),$$

where distance means the travel time from the point x to the boundary S. If we put v the even part of u^g with respect to t = T

$$v(x,t) = u_+^g(x,t) = \frac{1}{2}(u^g(x,t) + u^g(x,2T-t))$$

then

$$\int_{\Omega^s} \frac{1}{c^2} u_t^h u^g(, T) dx = \int_S [u_+^g h - u^h(g_n)_+] dS dt. \tag{1}$$

Now, if we put $v = \varphi$, where φ is arbitrary harmonic function (does not depend on time), then we have

$$\int_{\Omega^s} \frac{1}{c^2} u_t^h(, T) \varphi dx = \int_S [\varphi h - u^h \varphi_n] dS dt. \tag{2}$$

Let

$$f(.,t) = \int_0^t h(,.t')dt' \stackrel{def}{=} Ih(t).$$

Then 1 and 2 and can be rewritten as

$$C(f,g) \stackrel{def}{=} \int_{\Omega^s} \frac{1}{c^2} u^f u^g(.,T) dx = \int_{S \times [0,T]} [u_+^g If - Iu^f(g_n)_+] dS dt, \quad (3)$$

$$\Phi(f) \stackrel{def}{=} \int_{\Omega^s} \frac{1}{c^2} u^f(, T) \varphi dx = \int_S [\varphi If - Iu^f \varphi_n] dS dt. \tag{4}$$

Thus we have bilinear functional C and linear functional Φ . Let us consider equation

$$A(f,q) = \Phi(f), \quad \forall f \in F^s \tag{5}$$

with respect to $g \in F^s$. By definition this is equalent to the equation

$$\int_{\Omega^s} \frac{1}{c^2} u^f u^g(, T) dx = \int_{\Omega^s} \frac{1}{c^2} u^f(, T) dx.$$

But the last equality holds if and only if

$$u^g(,.T) = \varphi.$$

It follows from the approximate boundary contollability, that is any function from $L^2(\Omega^s)$ can be approximated by a wave $u^f(, T)$. Another words the following equality holds

$$\overline{U^s} = L^2(\Omega^s)$$

where

$$U^s = \{u^f(.,T)|\ f \in F^s\} \subset L^2(\Omega^s)$$

is the reachable set and $F^s \subset F$ is the subspace of the control space that consist of controls acting only during period [T-s,T]. Such controls generate waves which fill the domain Ω^s up to the moment T. Notice, that equation $A(f,g) = \Phi(f)$ is not solvable in general, but it may be shown it is dense solvable that

is there exist a sequence of controls $\{g_n\}$ such that $A(f,g_n) \to \Phi(f)$. Formally one can construct a wider control space in which the equation $A(f,g) = \Phi(f)$ will be solvable. So, let g is the solution of this equation. It implyes the equality $u^g(f,T) = \varphi$. Let us put

$$\varphi(x) = \frac{1}{|x - x_0|}, \quad n = 3,$$

$$\varphi(x) = \ln|x - x_0|, \quad n = 2.$$
(6)

These functions are fundamental solutions to the Laplace equations (up to some constants) and if c then they are harmonic in Ω^s if $x_0 \notin \Omega^s$.

How we are going to find $\tau(x_0)$? Let us fix a point x_0 and choose φ as in 6. If $x_0 \notin \Omega^s$ then after solving 5 we get control g that generates

$$u^g(.,T) \approx \varphi \text{ in } \Omega^s.$$

Then the value of $\Phi(g)$ equals

$$\Phi(g)(s) = \int_{\Omega^s} \frac{1}{c^2} \varphi^2 dx.$$

This value tends to ∞ when s tends to $\tau(x_0)$. At this moment we get blow-up

$$\Phi(g)(\tau(x_0)) = \infty.$$