Sequences

Problem statement

You are on a company visit to Shopee. During the office tour, you noticed that there seems to be a random scribbling on one of the walls. After looking at it closely, you noticed it is actually an algorithm question! Below is the question:

You are given **N** functions f(i, j) with parameters **A**i, **B**i, **C**i, where the value of f(i, j) is equal to **A**i $x \neq 2 + B$ i for each $1 \leq j \leq C$ i. Find how many sequences (i1, j1), (i2, j2), ..., (iM, jM) of length **M** are there in which the following holds:

$$f(i1, j1) + f(i2, j2) + ... + f(iM, jM)$$
 is divisible by **K**

Two sequences are different if there is at least one index k, such that ik \neq ik' or jk \neq jk'

You quickly take note of the question, as maybe it is a draft for an interview question. Solve the question to increase your chance of acing the future interview at Shopee!

<u>Input</u>

The first line contains 3 integers **N** ($1 \le N \le 5,000$), **M** ($1 \le M \le 1,000,000,000$), and **K** ($1 \le K \le 2,000$).

The next **N** lines each contains 3 integers **A**i, **B**i, $(0 \le Ai, Bi < K)$ and **C**i $(1 \le Ci \le 1,000,000,000)$, denoting the parameters for the i-th function.

Output

One line containing a single integer, the number of the sequence. Since this number can be very large, output its value modulo $10^9 + 7$.

Sample explanation

Below are all the possible sequences:

- 1. (1, 1), (1, 1)
- 2. (1, 1), (1, 2)
- 3. (1, 1), (2, 1)
- 4. (1, 2), (1, 1)
- 5. (1, 2), (1, 2)
- 6. (1, 2), (2, 1)
- 7. (2, 1), (1, 1)
- 8. (2, 1), (1, 2)
- 9. (2, 1), (2, 1)
- 10. (2, 2), (2, 2)
- 11. (2, 3), (3, 1)
- 12. (3, 1), (2, 3)

Sample input

- 326
- 032
- 123
- 251

Sample output

12