Corrigé du Partiel

Exercice 1. a) Soit a > 0, comme X est positive, on a p.s. $X \ge a1_{\{X \ge a\}}$, puis par monotonie de l'espérance conditionnelle

$$\mathbb{E}[X|\mathcal{G}] \ge a \, \mathbb{E}[1_{\{X > a\}}|\mathcal{G}]$$
 p.s.

b) Montrons que $\mathbb{E}[X^3|X^2]=0$. La variable constante 0 est mesurable par rapport n'importe quelle tribu, en particulier $\sigma(X^2)$. Par ailleurs, pour toute fonction ϕ borélienne bornée, on a

$$\mathbb{E}[X^3\phi(X^2)] = \int_{\mathbb{R}} x^3\phi(x^2)g(x) \, dx,$$

où g désigne la densité gaussienne. Comme g est paire, on intègre une fonction impaire sur \mathbb{R} , ce qui donne 0. Donc 0 est une version de l'espérance conditionnelle de X^3 sachant X^2 .

Exercice 2. On note M la variable proposée dans l'énoncé. On remarque tout d'abord que M est bien \mathcal{H} mesurable. On considère maintenant une variable $Z \in \mathcal{H}$. L'énoncé nous dit qu'il existe deux variables Y_1 et Y_2 , \mathcal{G} —mesurables telles que $Z = Y_1 1_A + Y_2 1_{A^c}$. On a

$$\mathbb{E}[MZ] = \mathbb{E}\left[\frac{\mathbb{E}[X1_A|\mathcal{G}]}{\mathbb{E}[1_A|\mathcal{G}]}1_AY_1 + \frac{\mathbb{E}[X1_A^c|\mathcal{G}]}{\mathbb{E}[1_A^c|\mathcal{G}]}1_{A^c}Y_2\right]$$
(1)

Les autres termes étant nuls car le produit des indicatrices $1_A 1_{A^c}$ est nul. En utilisant que $Y_1 \in \mathcal{G}$ puis que $\mathbb{E}[Y_1 X 1_A | \mathcal{G}] / \mathbb{E}[1_A | \mathcal{G}]$ est \mathcal{G} -mesurable, on obtient

$$\mathbb{E}\big[\frac{\mathbb{E}[X1_A|\mathcal{G}]}{\mathbb{E}[1_A|\mathcal{G}]}1_AY_1\big] = \mathbb{E}\big[\frac{\mathbb{E}[Y_1X1_A|\mathcal{G}]}{\mathbb{E}[1_A|\mathcal{G}]}1_A\big] = \mathbb{E}\big[\frac{\mathbb{E}[Y_1X1_A|\mathcal{G}]}{\mathbb{E}[1_A|\mathcal{G}]}\mathbb{E}[1_A|\mathcal{G}]\big] = \mathbb{E}[Y_1X1_A].$$

En raisonnant de même avec l'autre terme de (1) puis en sommant, on obtient $\mathbb{E}[MZ] = \mathbb{E}[XZ]$.

Exercice 3. a) On pose $Q_n = S_n^2 - cn$. Pour tout i on a X_i dans L_2 donc $S_n = X_1 + \cdots + X_n$ est dans L_2 ce qui montre que Q_n est intégrable. De plus $(Q_n)_{n\geq 1}$ est clairement adapté et pour tout $n\geq 1$

$$\mathbb{E}[Q_{n+1} - Q_n | \mathcal{F}_n] = \mathbb{E}[X_{n+1}^2 + 2X_{n+1}S_n - c | \mathcal{F}_n].$$

Comme $S_n \in \mathcal{F}_n$ et comme X_{n+1} est indépendant de \mathcal{F}_n

$$\mathbb{E}[Q_{n+1} - M_n | \mathcal{F}_n] = \mathbb{E}[X_{n+1}^2] + 2S_n \,\mathbb{E}[X_{n+1}] - c = 0.$$

b) Le processus $(M_n)_{n\geq 1}$ est adapté et par indépendance $\mathbb{E}|X_1\cdots X_n|=\mathbb{E}|X_1|\cdots \mathbb{E}|X_n|<+\infty$, ce qui montre que $X_1\cdots X_n$ est dans L_1 pour tout n puis que S_n est dans L_1 . Pour $n\geq 1$,

$$\mathbb{E}[M_{n+1} - M_n | \mathcal{F}_n] = \mathbb{E}[X_1 \cdots X_{n+1} | \mathcal{F}_n] = X_1 \cdots X_n \,\mathbb{E}[X_{n+1} | \mathcal{F}_n]$$

car $X_1 \cdots X_n \in \mathcal{F}_n$. De plus X_{n+1} est indépendant de \mathcal{F}_n donc

$$\mathbb{E}[M_{n+1} - M_n | \mathcal{F}_n] = X_1 \cdots X_n \, \mathbb{E}[X_{n+1}] = 0.$$

c) Clairement $(Z_n)_{n\geq 1}$ est adapté, et $|Z_n|\leq |X_n|+|Y_n|$ donc Z_n est intégrable. Soit $n\geq 1$, comme $Z_{n+1}\geq X_{n+1}$, et comme X_n est une sous-martingale

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] \ge \mathbb{E}[X_{n+1}|\mathcal{F}_n] \ge X_n.$$

On montre de même que $\mathbb{E}[Z_{n+1}|\mathcal{F}_n] \geq Y_n$ et on en déduit

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] \ge \max(X_n, Y_n) = Z_n.$$

d) Voir le cours.

Exercice 4. a) Remarquons que pour tout $k \geq 1$,

$$\{T \le k\} = \bigcup_{i=1}^{k} \{X_i \ge 10\}.$$

Chacun des événements de cette union est dans \mathcal{F}_k car le processus est adapté, donc $\{T \leq k\} \in \mathcal{F}_k$. b) On vérifie cette fois que pour tout $k \geq 1$,

$$\{T \le k\} = \bigcap_{i=1}^{+\infty} \{T_i \le k\}.$$

Chacun des événements de cette intersection est dans \mathcal{F}_k car T_i est un temps d'arrêt pour tout $i \geq 1$. On en conclut que $\{T \leq k\}$ est dans \mathcal{F}_k en utilisant la stabilité d'une tribu par intersection dénombrable.

Exercice 5.

- 1. La marche S est une martingale et T est un temps d'arrêt. Donc le processus arrêté S^T est une martingale, d'après le théorème d'arrêt. De plus $S_{n \wedge T} \geq 0$ pour tout $n \in \mathbb{N}$ (tant qu'elle n'a pas touché 0 la marche reste positive). Le processus S^T est donc une martingale positive. Le théorème de Doob assure alors qu'elle converge p.s.
- 2. Remarquons tout d'abord que
 - (i) $S_{n \wedge T} S_{n+1 \wedge T}$ ne prend que les valeurs 0, 1, -1
 - $(ii) S_{n \wedge T} S_{n+1 \wedge T} = 0 \iff T \le n$

Quand $S_{n\wedge T}$ converge $S_{n\wedge T} - S_{n+1\wedge T}$ tend vers 0. D'après (i) et (ii), ceci implique $S_{n\wedge T} - S_{n+1\wedge T} = 0$ puis $T \leq n$ à partir d'un certain rang. Donc quand S^T converge T est fini. En utilisant la question précédente, on obtient $T < +\infty$ p.s.

- **3.** D'après ce qui précède on a p.s. $T<+\infty$ et donc $S_{n\wedge T}=0$ à partir d'un certain rang. En particulier $S_{n\wedge T}\to 0$ p.s. Supposons qu'il y a convergence dans L^1 , alors $\mathbb{E}\,S_{n\wedge T}\to 0$. Or, d'après le théorème d'arrêt $\mathbb{E}\,S_{n\wedge T}=\mathbb{E}\,S_{0\wedge T}=\mathbb{E}\,S_0=1$ pour tout n. On obtient donc une contradiction, ce qui montre que S^T ne converge pas dans L^1 .
- **4.** On sait que $S_{n \wedge T} \to 0$ p.s. Remarquons que $|S_{n \wedge T}| \le 1 + n \wedge T \le 1 + T$. Si T est intégrable, on peut appliquer le théorème de convergence dominée, et on obtient $S_{n \wedge T} \to 0$ dans L^1 , ce qui contredit la question précédente. Par conséquent T n'est pas intégrable.

Exercice 6.

1. Comme les évènements $\{n \leq T\}$ et $\{n > T\}$ sont dans la tribu \mathcal{F}_n (en fait ils sont même dans \mathcal{F}_{n-1}) le processus est adapté. De plus $|Z_n| \leq |X_n| + |Y_n|$ donc Z_n est intégrable. Comme $\{n \leq T\} = \{T \leq n-1\}^c \in \mathcal{F}_{n-1}$ et comme X est une martingale

$$\mathbb{E}(X_n \mathbb{I}_{n < T} | \mathcal{F}_{n-1}) = \mathbb{E}(X_n | \mathcal{F}_{n-1}) \mathbb{I}_{n < T} = X_{n-1} \mathbb{I}_{n < T}$$

et de même pour Y. Ensuite on écrit $\mathbb{I}_{n \leq T} = \mathbb{I}_{n-1 \leq T} - \mathbb{I}_{T=n-1}$ et $\mathbb{I}_{n>T} = \mathbb{I}_{n-1>T} + \mathbb{I}_{T=n-1}$. On obtient donc

$$\mathbb{E}(Z_n|\mathcal{F}_{n-1}) = Z_{n-1} + (-X_{n-1} + Y_{n-1})\mathbb{I}_{n-1=T}.$$

Sous l'hypothèse $X_T = Y_T$ p.s. le dernier terme est nul ce qui montre que Z est une martingale. 2. Si $\mathbb{P}(X_T = Y_T) < 1$ alors $\mathbb{P}(X_T \neq Y_T) > 0$ et donc (comme $T < +\infty$ p.s.)

$$\sum_{n=0}^{\infty} \mathbb{P}(X_n \neq Y_n; T=n) > 0$$

ce qui montre qu'il existe $n \in \mathbb{N}$ tel que $\mathbb{P}(X_n \neq Y_n; T=n) > 0$. On a alors $\mathbb{P}(X_n > Y_n; T=n) > 0$ ou $\mathbb{P}(X_n < Y_n; T=n) > 0$.

3. Supposons que Z est une martingale et que $\mathbb{P}(X_T = Y_T) < 1$. Alors, d'après la question 1 $(X_n - Y_n)\mathbb{I}_{n=T} = 0$ p.s. pour tout $n \in \mathbb{N}$. Autrement dit, $\mathbb{P}(X_n \neq Y_n; T = n) = 0$ pour tout n. En combinant ceci avec la question 2. on obtient une contradiction. Donc si Z est une martingale alors $X_T = Y_T$ p.s.