Exercices d'oraux de la banque CCP 2014-2015

20 exercices sur les 37 d'algèbre peuvent être traités en Maths Sup.

BANQUE ALGÈBRE

EXERCICE 59

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$) de degré inférieur ou égal à \mathfrak{n} . Soit f l'endomorphisme de E défini par : $\forall P \in E$, f(P)=P-P'.

- 1) Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser la matrice de f,
 - (b) en utilisant la matrice de f.
- 2) Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication : si $P \in E$, quel est le polynôme $P^{(n+1)}$?

EXERCICE 60

Soit la matrice $A=\left(\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right)$ et f l'endomorphisme de $\mathscr{M}_2(\mathbb{R})$ défini par : f(M)=AM.

- 1) Déterminer Ker(f).
- 2) f est-il surjectif?
- 3) Trouver une base de Ker(f) et une base de Im(f).

EXERCICE 62

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} .

Soient f et q deux endomorphismes de E tels que $f \circ q = Id$.

- 1) Démontrer que $Ker(g \circ f) = Ker(f)$.
- 2) Démontrer que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$.
- 3) Démontrer que $E = Ker(f) \oplus Im(g)$.

EXERCICE 64

Soit f un endomorphisme d'un espace vectoriel E de dimension n.

- 1) Démontrer que $E = Imf \oplus Kerf \Rightarrow Imf = Imf^2$.
- 2) (a) Démontrer que $Imf = Imf^2 \Leftrightarrow Kerf = Kerf^2$.
 - (b) Démontrer que $\mathrm{Im} f = \mathrm{Im} f^2 \Rightarrow E = \mathrm{Im} f \oplus \mathrm{Ker} f$.

EXERCICE 71

Soit p la projection vectorielle de \mathbb{R}^3 , sur le plan P d'équation x+y+z=0, parallèlement à la droite D d'équation $x=\frac{y}{2}=\frac{z}{3}$.

- 1) Verifier que $\mathbb{R}^3 = P \oplus D$.
- 2) Soit $u = (x, y, z) \in \mathbb{R}^3$. Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .
- 3) Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de \mathfrak{p} est diagonale.

EXERCICE 76

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire (|). On pose $\forall x \in \mathbb{E}, \ \|x\| = \sqrt{(x|x|)}$.

- 1) (a) Enoncer et démontrer l'inégalité de CAUCHY-SCHWARZ.
 - (b) Dans quel cas a-t-on l'égalité? Le démontrer.
- 2) Soit $E = \{f \in \mathcal{C}([a,b],\mathbb{R}), \forall x \in [a,b], f(x) > 0\}.$ Prouver que l'ensemble $\left\{ \int_a^b f(t) \ dt \times \int_a^b \frac{1}{f(t)} \ dt, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m.

EXERCICE 77

Soit E un espace euclidien.

- 1) Soit A un sous-espace vectoriel de E. Démontrer que $(A^{\perp})^{\perp} = A$.
- 2) Soient F et G deux sous-espaces vectoriels de E.
 - (a) Démontrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
 - (b) Démontrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

EXERCICE 78

Soit E un espace euclidien de dimension $\mathfrak n$ et $\mathfrak u$ un endomorphisme de E. On note $(x\mid y)$ le produit scalaire de x et y et $\|\cdot\|$ la norme euclidienne associée.

- 1) Soit $\mathfrak u$ un endomorphisme de E tel que $: \forall x \in E, \, \|\mathfrak u(x)\| = \|x\|.$
 - (a) Démontrer que : $\forall (x,y) \in E^2, \ (\mathfrak{u}(x) \mid \mathfrak{u}(y)) = (x \mid y).$
 - (b) Démontrer que $\mathfrak u$ est bijectif.
- 2) Démontrer que l'ensemble $\mathcal{O}(\mathsf{E})$ des isométries vectorielles de $\mathsf{E},$ muni de la loi $\circ,$ est un groupe.

2

3) Soit $u \in \mathcal{L}(E)$. Soit $e = (e_1, e_2, \dots, e_n)$ une base orthonormée de E. Prouver que : $u \in \mathcal{O}(E) \iff (u(e_1), u(e_2), \dots, u(e_n))$ est une base orthonormée de E.

EXERCICE 79

Soit a et b deux réels tels que a < b.

- 1) Soit h une fonction continue et positive de [a,b] dans \mathbb{R} . Démontrer que $\int_{a}^{b} h(x) dx = 0 \Longrightarrow h = 0$.
- 2) Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} . On pose $\forall (f,g) \in E^2, \ (f\mid g) = \int_a^b f(x)g(x)\ dx.$ Démontrer que l'on définit ainsi un produit scalaire sur E.
- 3) Majorer $\int_0^1 \sqrt{x} e^{-x} \ dx$ en utilisant l'inégalité de CAUCHY-SCHWARZ.

EXERCICE 80

Soit E l'espace vectoriel des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} .

- 1) Démontrer que $(f \mid g) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t) dt$ définit un produit scalaire sur E.
- 2) Soit F le sous-espace vectoriel engendré par $f: x \mapsto \cos x$ et $g: x \mapsto \cos(2x)$. Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2 x$.

EXERCICE 81

On définit dans $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$ l'application $\varphi(A, A') = \operatorname{Tr}({}^tAA')$ où $\operatorname{Tr}({}^tAA')$ désigne la trace du produit de la matrice tA par la matrice A'.

On note
$$\mathcal{F} = \left\{ \left(egin{array}{cc} \mathfrak{a} & \mathfrak{b} \\ -\mathfrak{b} & \mathfrak{a} \end{array}
ight), \; (\mathfrak{a},\mathfrak{b}) \in \mathbb{R}^2
ight\}.$$

On admet que φ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.

- 1) Démontrer que \mathcal{F} est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2) Déterminer une base de \mathcal{F}^{\perp}
- 3) Déterminer la projection orthogonale de $J=\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$ sur $\mathcal{F}^{\perp}.$
- 4) Calculer la distance de J à F.

EXERCICE 82

Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie n > 0.

On admet que pour tout $x \in E$, il existe un élément unique y_0 de F tel que $x - y_0$ soit orthogonal à F et que la distance de x à F soit égale à $||x - y_0||$.

$$\operatorname{Pour} A = \left(\begin{array}{cc} \mathfrak{a} & \mathfrak{b} \\ \mathfrak{c} & \mathfrak{d} \end{array} \right) \text{ et } A' = \left(\begin{array}{cc} \mathfrak{a}' & \mathfrak{b}' \\ \mathfrak{c}' & \mathfrak{d}' \end{array} \right), \text{ on pose } (A|A') = \mathfrak{a}\mathfrak{a}' + \mathfrak{b}\mathfrak{b}' + \mathfrak{c}\mathfrak{c}' + \mathfrak{d}\mathfrak{d}'.$$

- 1) Démontrer que (.|.) est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
- 2) Calculez la distance de la matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ au sous-espace vectoriel des matrices triangulaires supérieures.

EXERCICE 84

- 1) Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
- 2) Soit $n \in \mathbb{N}^*$. Donner, en justifiant, les solutions dans \mathbb{C} les solutions de l'équation $z^n = 1$ et préciser leur nombre.
- 3) En déduire, pour $n \in \mathbb{N}^*$, les solutions dans \mathbb{C} de l'équation $(z+\mathfrak{i})^n = (z-\mathfrak{i})^n$ et démontrer que ce sont des nombres réels.

EXERCICE 85

- 1) Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - (a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(x) dans la base $(1, X \alpha, (X \alpha)^2, \dots, (X \alpha)^n)$.
 - (b) Soit $r \in \mathbb{N}^*$. En déduire que : a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in [0, r-1], P^{(k)}(a) = 0$.
- 2) Déterminer deux réels $\mathfrak a$ et $\mathfrak b$ pour que 1 soit racine double du polynôme $P = X^5 + \mathfrak a X^2 + \mathfrak b X$ et factoriser alors ce polynôme dans $\mathbb R[X]$.

3

EXERCICE 86

Soit p un nombre premier.

- 1) (a) Soit $(a, b) \in \mathbb{Z}^2$. Prouver que si $p \land a = 1$ et $p \land b = 1$, alors $p \land (ab) = 1$.
 - (b) Prouver que $\forall k \in [\![1,p-1]\!]$, p divise $\binom{p}{k}k!$ puis que p divise $\binom{p}{k}$.
- 2) (a) Prouver que : $\forall n \in \mathbb{N}, n^p \equiv n \mod p$. Indication : procéder par récurrence.
 - (b) En déduire que : $\forall n \in \mathbb{N}$, p ne divise pas $n \Longrightarrow n^{p-1} \equiv 1 \mod p$.

EXERCICE 87

Soient a_0, a_1, \ldots, a_n n+1 réels deux à deux distincts.

1) Montrer que si b_0, b_1, \ldots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

$$deg(P) \leq n$$
 et $\forall i \in [0, n], P(a_i) = b_i$.

2) Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k lorsque :

$$\forall i \in [\![0,n]\!], \ b_i = \left\{ \begin{array}{l} 0 \ \mathrm{si} \ i \neq k \\ 1 \ \mathrm{si} \ i = k \end{array} \right..$$

3) Prouver que $\forall p \in [0,n], \sum_{k=0}^p \alpha_k^p L_k = X^p.$

EXERCICE 88

Soit $(a,b) \in \mathbb{R}^2$ et soit $n \in \mathbb{N}^*$. Soit le polynôme $P = aX^{n+1} + bX^n + 1$.

- 1) Déterminer a et b pour que 1 soit racine d'ordre au moins 2 de P.
- 2) Dans ce cas, vérifier que le quotient de la division euclidienne de P par $(X-1)^2$ est $\sum_{k=0}^{n-1} (k+1)X^k$.

EXERCICE 89

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{i\frac{2\pi}{n}}$.

1) On suppose $k \in [1, n-1]$. Déterminer le module et un argument du complexe $z^k - 1$.

2) On pose
$$S = \sum_{k=0}^{n-1} |z^k - 1|$$
. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.

EXERCICE 90

 \mathbb{K} désigne le corps des réels ou celui des complexes. Soient \mathfrak{a}_1 , \mathfrak{a}_2 , \mathfrak{a}_3 trois scalaires distincts donnés de \mathbb{K} .

4

- 2) On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
 - (a) Justifier que (L_1, L_2, L_3) est une base $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes $L_1,\,L_2$ et L_3 en fonction de $\mathfrak{a}_1,\,\mathfrak{a}_2$ et $\mathfrak{a}_3.$
- 3) Soit $P\in\mathbb{K}_2[X].$ Déterminer les coordonnées de P dans la base $(L_1,L_2,L_3).$

4) Application : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1). Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

EXERCICE 95

- 1) Enoncer le théorème de Bézout dans \mathbb{Z} .
- 2) Soit a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$. Prouver que : $(a \mid c \text{ et } b \mid c) \iff ab \mid c$.
- $\textbf{3)} \text{ On considère le système } (S): \left\{ \begin{array}{l} x \equiv 6 \mod (17) \\ x \equiv 4 \mod (15) \end{array} \right. \text{ dans lequel l'inconnue } x \text{ appartient à } \mathbb{Z}.$
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).