

Eko-system BabelNet

Warszawa 05.04.16

O produkcie

Babelnet (http://babelnet.org/) jest to wielojęzykowa encyklopedia oraz semantyczna sieć łącząca koncepty i nazwy własne w wielki graf relacji.

Składa się z co najmniej 14 mln elementów, zwanych babelnet synsetami. Każdy babel synset reprezentuje znaczenie i zawiera zbiór synonimów (babel sense), które wyrażają to znaczenie w szerokim zakresie różnych języków.

BabelNet pokrywa ponad 270 jezyków, i powstal w ramach automatycznej integracji: WordNeta, Wikipedii, OmegaWlki, Wiktionary, WikiData itd.

System rozwijany jest przez Universystet Sapienza w Rzymie, oraz dysponuje różnymi interfejsami dostępowymi (m.in. JAVA API, HTTP Rest API, SPARQL).

Zakres danych

BabelNet 3.6 covers 271 languages and is obtained from the automatic integration of:

- WordNet, a popular computational lexicon of English (version 3.0).
- Open Multilingual WordNet, a collection of wordnets available in different languages (downloaded in August 2015).
- Wikipedia, the largest collaborative multilingual Web encyclopedia (November 2014 dump).
- OmegaWiki, a large collaborative multilingual dictionary (July 2015 dump).
- Wiktionary, a collaborative project to produce a free-content multilingual dictionary (August 2014 dump).
- Wikidata, a free knowledge base that can be read and edited by humans and machines alike (November 2014 dump).
- Wikiquote, a free online compendium of sourced quotations from notable people and creative works in every language (March 2015 dump).
- VerbNet, a Class-Based Verb Lexicon (version 3.2).
- Microsoft Terminology, a collection of terminologies that can be used to develop localized versions of applications (July 2015 dumps).
- GeoNames, a free geographical database covering all countries and containing over eight million placenames (April 2015 dump).
- WoNeF, an improved, expanded and evaluated automatic French translation of WordNet (high precision version, downloaded in August 2015).
- ItalWordNet, a lexical-semantic database developed in the framework of two different research projects: EuroWordNet and SI-TAL (downloaded in Dicember 2015).
- ImageNet, an image database organized according to the WordNet hierarchy (2011 release).

Zakres danych

- Multilinguality: the same concept is expressed in tens of languages
- Coverage: 271 languages and 14 million entries!
 - 6M concepts and 7.7M named entities
 - 745M word senses
 - 380M semantic relations (27 relations per concept on avg.)
 - 11M images associated with concepts
 - 41M textual definitions
 - 1.6M concepts with domains associated

BabelNet

BabelNet

BabelNet - JSON

Response example

```
"senses": [
   "lemma": "Apple_System_on_Chips",
   "simpleLemma": "Apple_System_on_Chips",
   "source": "WIKIRED",
   "sensekey": "",
   "sensenumber": 0,
   "frequency": 0,
   "position": 1,
   "language": "EN",
   "pos": "NOUN",
   "synsetID": {
     "id": "bn:14792761n",
     "pos": "NOUN",
     "source": "BABELNET"
   "translationInfo": "",
   "pronunciations": {
     "audios": [],
     "transcriptions": []
 },
   "lemma": "Apple_System_on_a_Chip",
   "simpleLemma": "Apple_System_on_a_Chip",
   "source": "WIKIRED",
   "sensekey": "",
   "sensenumber": 0,
   "frequency": 0,
```

BabelNet Synset vs Sense

BabelSynset

A BabelSynset is a set of multilingual lexicalizations (BabelSenses) that are synonymous expressions of a given concept or named entity. Each BabelSynset has its unique ID.

BabelSense

A BabelSense is a particular, language-specific lexicalization occurring in a given BabelSynset. Each BabelSense is tied to a particular source (WordNet, Wikipedia, Wiktionary, automatic translations, etc.).

Pokłosie BabelNetu

W oparciu o Babelnet (http://babelnet.org/) powstały dwa narzędzia:

- 1) Babelfy wielojęzykowy system ujednoznaczniania
- 2) Wikipedia Bi taksonomia taksonomia stron Wikipedii dopasowana do taksonomii kategorii.

Babelfy

Babelfy

Restauracja urzeka wdziękiem, zapachem, obsługa kelnerska najwyższy poziom, polecamy: gęś, królika i polędwice wołową

Enable partial matches:

POLISH

xpanded view | compact view

iom

, polecamy:

królika

polędwice

wołowa

cja – w wie część awarta zpośrednio

Web-footed long-necked typically gregarious migratory aquatic birds usually

Królik – polska nazwa zwyczajowa kilku gatunków zajęczaków z rodziny

polędwice
The portion of the loin
(especially of beef)
just in front of the
rump

Klasteryzacja wyników wyszukiwania z pomocą BabelNetu

Wstęp

- Celem jest zweryfikować jak Babelnet/Babelfy pomaga w poprawie jakości grupowania krótkich tekstów.
- Badamy dobrze znane metody klasteryzacji krótkich tekstów wzbogacone semantyczną informacją z Babelnetu.
- Trzy poziomowe eksperymenty:
 - Porównanie trzech popularnych metod klasteryzacji wyników wyszukiwania
 - Ocena wpływu BabelNetu/Babelfy na jakość klasteryzacji
 - Weryfikacja idei klasteryzacji opartej na samym ujednoznacznieniu zapytania
- Ewaluacja na zbiorze AMBIENT z użyciem czterech popularnych miar: Rand Index (RI), Adjusted Rand Index (ARI), Jaccard Index (JI) and F1 measure

Przegląd stanu wiedzy

- Klasteryzacja Wyników Wyszukiwania (ang. Search Results Clustering -SRC) jest specyficzną dziedziną w ramach klasteryzacji dokumentów
- Kontekstowy opis dokumentu (tzw. snippet) zwracany przez wyszukiwarkę jest krótki, często niekompletny, oraz ograniczony względem zapytania, co powoduje iż określenie miary podobieństwa między dokumentami jest dużym wyzwaniem.
- Podejścia do klasteryzacji wyników wyszukiwania mogą być klasyfikowane jako: data-centric lub description-centric
- Data-centric Bisecting K-means, HAC
- Description-centric STC, Lingo, KeySRC

Rest API

- Babelfy text disambiguation
 - https://babelfy.io/v1/disambiguate
- BabelNet get categories and glosses for the given synset
 - https://babelnet.io/v3/getSynset
- BabelNet get hypernyms for the given synset
 - https://babelnet.io/v3/getEdges

Pierwszy eksperyment

Algorithm	RI	ARI	JI	F1
Lingo	62.52	18.09	30.76	49.01
STC	66.95	23.05	28.10	53.08
K-means	62.79	7.69	12.83	49.79

Drugi eksperyment

Improvement	RI	ARI	JI	F1
Lingo	62.52	18.09	30.76	49.01
synsets+	63.52	18.61	29.21	49.76
categories+	63.04	17.01	27.46	49.36
categories+1	61.73	16.48	29.55	48.65
categories+2	62.17	17.44	30.30	48.80
glosses+	62.69	12.27	21.30	47.24
hypernyms+	61.52	16.35	29.44	48.32

Trzeci eksperyment

Approach	RI	ARI	JI	F1
Lingo	62.52	18.09	30.76	49.01
babelC11	50.60	1.67	26.87	41.53
babelCl2	50.44	1.56	27.06	40.41

Wnioski

- Wprowadziliśmy nowe semantyczne cechy z BabelNet/Babelfy (jak ujednoznacznione synsety, categories/glosses opisujące synsety, czy semantyczne krawędzie) w celu weryfikacji jak one wpływają na wynik klasteryzacji
- Najlepsze usprawnienia dotyczą rozszerzania o synsety i są stosunkowo słabe (co jest zaskoczeniem?).
- Klasteryzja snippetów tylko z użyciem informacji z Babelnetu daje gorsze wyniki niż Lingo.
- Występuje problem wydajności środowiska badawczego (requests limits ale także czasy odpowiedzi).
- Należy opuścić sferę płaskiego rozszerzania na poczet heurystyk grafowych

Wnioski

- Duże możliwości są też w modelu word2vec zaadoptowanym do przestrzeni znaczeń
- Projekt o nazwie Sense Embeddings zrealizowany w ramach ekosystemu BabelNet

Koniec części 1

Ośrodek Przetwarzania Informacji – Państwowy Instytut Badawczy al. Niepodległości 188B, 00-608 Warszawa tel. 22 570 14 00 www.opi.org.pl

Whose line is it anyway? Czyli charakterystyka emocjonalna filmu na podstawie napisów

Warszawa 05.04.16

Problem

- Dla każdej linii dialogu w danym filmie przypisać jeden z ośmu stanów emocjonalnych: 'love', 'happiness', 'surprise', 'emotionless', 'sad', 'disgust', 'anger' oraz 'fear'.
- Znaleźć "profil emocjonalny" kultowych filmów
- Aby dodać pikanterii zadanie wykonać dla dwóch języków 'love', 'happiness', 'surprise', 'emotionless', 'sad', 'disgust', 'anger' and 'fear'
- Sprawdzić, czy wyniki są stabilne pomiędzy językami

Metoda – Emocje

- Wytrenować model Skip-Gram z próbkowaniem negatywnym na polskiej i angielskiej wikipedii w celu uzyskania wektorowej reprezentacji słów
- Za pomocą BabelNet'a stworzyć *drzewo emocji*, gdzie korzeniem jest stan emocjonalny a potomkami są sensy będące jego hyponimami (np. Dla sensu '*love*' jego hyponimem jest '*admiracja*').
- Każdemu wierzchołkowi przypisujemy wektorową reprezentację słowa opisującego dany sens
- Policzyć średnią ważoną wierzchołków drzewa z wagami tym mniejszymi, im dalej wierzchołek jest od korzenia

Metoda – Zdania

- Z każdej liniki usunąć wyrazy znajdujące się na stop liście.
- Uśrednić wektorowe reprezentacje słów pozostałych po filtrowaniu
- … trzymać kciuki :)

Metoda – Zdania

- Z każdej liniki usunąć wyrazy znajdujące się na stop liście.
- Uśrednić wektorowe reprezentacje słów pozostałych po filtrowaniu
- … trzymać kciuki :)

Przykładowe wyniki

TC 1 1	4	\sim		C	. •
Table	1:	Com	parison	OŤ.	emotions
Iucic	• •	COIL	Julioun	\sim $_{\perp}$	CITIOUTOIL

	Casablanca		Pulp Fiction	
	EN	PL	EN	PL
love	851	116	1210	112
sad	42	113	33	78
emotionless	133	694	121	722
disgust	33	302	17	407
anger	56	94	61	58
surprise	320	94	157	234
fear	241	128	168	123
happiness	68	87	50	83
sum	1744	1744	1817	1817

Przykładowe wyniki

Oczywiste rozszerzenia

- Stosowanie lasów zamiast drzew
- Zastąpienie nienadzorowanego, naiwnego algorytmu bazującego na mierze kosinusowej algorytmami nadzorowanymi (to właśnie testujemy)
- Odejście od zagadnienia klasyfikacji w kierunku klasyfikacji wieloetykietowej (ktoś chętny do tagowania zbioru?)

Koniec części 2

Ośrodek Przetwarzania Informacji – Państwowy Instytut Badawczy al. Niepodległości 188B, 00-608 Warszawa tel. 22 570 14 00 www.opi.org.pl

Who was it anyway?

Czyli próba oceny postaci historycznych Warszawa 05.04.16

 Oprócz tego, że BabelFy i BabelNet zawierają w sobie koncepty, nazwy własne w postaci grafów, mogą również posłużyć do wyszukiwania osób, o których informacje możemy znaleźć na przykład w Wikipedii.

 Możemy również eksplorować sieć semantyczną, powiązaną z główną postacią (szukaną frazą).

Więc co możemy zrobić?

- Odpytać sieć semantyczną o informacje, które zawiera o zadanej postaci historycznej,
- Zebrać teksty pojawiające się w znalezionych węzłach sieci.
- Za pomocą słowników semantycznych ocenić zbadać sentyment zebranych definicji.
 - lexicon (http://www.cs.uic.edu/liub/)
 - sentiwordnet (http://sentiwordnet.princeton.edu/)
- Opakować w zgrabną aplikację :)

https://bhs.opi.org.pl/

Positive (0.6286721504112809) vs. Negative (0.3713278495887188)

Positive:)

https://bhs.opi.org.pl/

Positive (0.40646258503401334) vs. Negative (0.593537414965986)

Negative:(

Jak to działa?

albert einstein

England (1819-1861)

- Dla szukanej frazy, za pomocą BabelFy wykonujemy dysambiguację, odnajdujemy najbardziej pasujący węzeł sieci,
- Dla znalezionego węzła, za pomocą BabelNet odwiedzamy gałęzie: hypernyms, hyponyms, meronym,
- Dla odwiedzonych gałęzi zbieramy definicje (gloss),
- Tokenizujemy znaleziony korpus i oceniamy go za pomocą słowników. Wynik jest normalizowany do 1,

Oceniamy!

Postaci pozytywne

Postać	Wynik pozytywny	Wynik negatywny	Ocena
Albert Einstein	0.5519	0.4480	Pozytywna
Marilyn Monroe	0.5719	0.4280	Pozytywna
Isaac Newton	0.6286	0.3713	Pozytywna

Postaci negatywne

Postać	Wynik pozytywny	Wynik negatywny	Ocena
Al Capone	0.4768	0.5231	Negatywna
Stalin	0.4573	0.5426	Negatywna
Billy the Kid	0.4064	0.5935	Negatywna

A jak to jest wśród zwolenników / przeciwników kotów?

Osoby znane z miłości do kotów

Postać	Wynik pozytywny	Wynik negatywny	Ocena
Abraham Lincoln	0.4263	0.5736	Negatywna
Ernest Hemingway	0.6171	0.3828	Pozytywna
Theodore Roosevelt	0.5969	0.4030	Pozytywna

Osoby znane z nienawiści do kotów

Postać	Wynik pozytywny	Wynik negatywny	Ocena
Dwight Eisenhower	0.5147	0.4852	Pozytywna
Napoleon Bonaparte	0.5428	0.4571	Pozytywna
Henry III of England	0.3653	0.6346	Negatywna

Problemy

- Dysambiguacja nie zawsze pomaga: Stalin vs. Joseph Stalin. W przypadku postaci historycznych lepsze wyniki otrzymywane były w przypadku przeszukiwania sieci z pominięciem BabelFy,
- Iterowanie dużej ilości węzłów,
- Brak zbiorów referencyjnych,

Koniec części 3

... i ostatniej:)

Ośrodek Przetwarzania Informacji – Państwowy Instytut Badawczy al. Niepodległości 188B, 00-608 Warszawa tel. 22 570 14 00 www.opi.org.pl

Rekrutujemy do pracy przy projektach typu:

- Konkurs na najlepszy algorytm antyplagiatowy
 - Centralny system antyplagiatowy
 - Wirtualni konsultanci
 - Semantyczne wyszukiwarki
 - Centralna Polska Bibliografia Naukowa

Kontakt: |i|@opi.org.pl

Blog: http://opi-lil.github.io/