RAPPELS

Exercice 1 (Fonction characteristique, moment, ...)

- 1. Soit X une gaussienne standard, calculer $\mathbb{E}(X^n)$ et $\mathbb{E}(|X|^n)$ pour tout $n \geq 0$.
- 2. Pour quels $z\in\mathbb{C}$ l'espérance $\mathbb{E}(e^{zX})$ a t'elle un sens ? Donner son expression sur cet ensemble.
- 3. Rappeler l'expression générale de la fonction caractéristique et de la densité d'une loi normale multidimensionnelle.

Exercice 2 (Image linéaire) On considère X une gaussienne de \mathbb{R}^d de covariance K et d'espérance μ .

- 1. Pour ℓ une application linéaire de matrice M, donner la loi de $\ell(X)$.
- 2. Montrer qu'on peut écrire $X = \tilde{\ell}(Y) + c$ où $\tilde{\ell}$ est une application linéaire, Y est une gaussienne multidimensionnelle standard et c est un vecteur.

Exercice 3 (Calculs explicites) On considère (X,Y,Z) une gaussienne de moyenne (1,2,1) et de matrice de covariance

$$K = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 5 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- 1. Déterminer la loi conditionnelle de (X + Y, X + Z) sachant X.
- 2. Déterminer le support de (X, Y, Z).
- 3. Écrire (X, Y, Z) comme image linéaire d'un vecteur gaussien standard.
- 4. Décrire la loi de (X, Y, Z) en utilisant des coordonnées orthogonale sur son support.

Exercice 4 (Intégration par partie gaussienne) Dans cet exercice on se place dans \mathbb{R}^d et on considère $f: \mathbb{R}^d \to \mathbb{R}$ une fonction \mathcal{C}^1 à support compact et $X = (X_1, \dots, X_d)$ un vecteur gaussien centré de matrice de covariance K.

1. Cas d=1: montrer que si f est une fonction réelle et que X est une gaussienne centrée de variance σ^2 , alors

$$\mathbb{E}(Xf(X)) = \sigma^2 \mathbb{E}(f'(X)).$$

Dans la suite de l'exercice, on prend $d \ge 2$. On suppose dans un premier temps que K est une matrice diagonale.

- 2. Que pouvez-vous dire des variables X_1, X_2, \dots, X_d (loi, indépendance)?
- 3. Montrer que

$$\forall i, \ \mathbb{E}(X_i f(X)) = K_{ii} \mathbb{E}(\frac{\mathrm{d}f}{\mathrm{d}x_i}(X)).$$

4. En déduire que si K est une matrice diagonale, pour tout vecteur $v \in \mathbb{R}^d$,

$$\mathbb{E}(\langle v, X \rangle f(X)) = \mathbb{E}(\langle v, K\nabla f \rangle),$$

où on rappelle que ∇f est le vecteur $(\frac{\mathrm{d}f}{\mathrm{d}x_1}, \dots \frac{\mathrm{d}f}{\mathrm{d}x_d})$.

On considère maintenant le cas général.

5. Montrer que la formule de la question 4 est toujours valable.

Exercice 5 Donner une condition nécessaire et suffisante pour qu'une suite de gaussienne converge en loi.

Exercice 6 (Vrai ou Faux) Donner une preuve ou un contre exemple pour les énoncés suivants.

- 1. Soit X_n une suite de variables admettant des densités f_n , si X_n converge en loi vers X alors X admet une densité.
- 2. Si X_n est une suite de variables aléatoires telle que les fonctions de répartition F_{X_n} converge simplement, alors X_n converge en loi.
- 3. Si X_n est une suite de variable aléatoire avec $X_n > 0$ p.s. et telle que X_n converge en loi vers X, alors X > 0 p.s..
- 4. Si X_n est une suite de variable aléatoire avec $X_n \ge 0$ p.s. et telle que X_n converge en loi vers X, alors $X \ge 0$ p.s..
- 5. Si X_n converge dans L^2 vers X et si f est une fonction continue, alors $f(X_n)$ converge dans L^2 vers f(X).
- 6. Si X_n converge dans L^2 vers X, alors $\mathbb{P}(X_n \in [0,1]) \to \mathbb{P}(X \in [0,1])$
- 7. Si X_n converge dans L^2 vers X, alors $\mathbb{E}(X_n) \to \mathbb{E}(X)$.
- 8. Le couple (X_n, Y_n) converge en loi vers (X, Y) si et seulement si X_n et Y_n convergent en loi.
- 9. Le couple (X_n, Y_n) converge L^2 vers (X, Y) si et seulement si X_n et Y_n convergent L^2 .