Recommender Systems with Deep Learning

Paula Gómez Duran paulagomezduran@gmail.com

PhD student

WHAT is an EMBEDDING?

• **Embeddings** are a way to represent entities using learned vectors.

How do we use embeddings for RS?

Figure from this blog.

EMBEDDINGS can be **learned** and **reused** across models:

-1	
- 1	

0.2

0.4

.

-0.45

0.87

0.23

-0.67

Corporate Social Responsibility (CSR) can generate a positive reputation for a company leading to possibly more sales and growth. According to Jones et al (2019), a corporation that invests in the environmental and ethical approaches of CSR will demonstrate to the public and the media that they are a responsible company. Watson (2018) provides evidence that this improves consumer sales as customers tend to support ethical green business practice thus improving profitability and encouraging growth. For example, a yoghurt company called Yeo Valley has been investing in making its products organic, creating fully recyclable packaging and reducing its CO2 output. As a result, profits have doubled within the last two years providing the company with a range of opportunities to expand (Peterson, 2019). Overall, the evidence seems to suggest that investing in CSR can improve brand image and productivity.

0.8	0.2	-0.87		-0.52	0.7	-0.32	-0.79
-----	-----	-------	--	-------	-----	-------	-------

TECHNIQUES FOR RECOMMENDATION:

SOTA models

1. Matrix Factorization

$$r_{ij} = p_i^T q_j$$

- $p \rightarrow$ latent features for users (user embeddings)
- **q** → latent features for items (item embeddings)

2. Factorization Machines (FM)

(Paper here)

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j - \frac{1}{2} \sum_{i=1}^{n} \langle \mathbf{v}_i, \mathbf{v}_i \rangle x_i x_i$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f} \, v_{j,f} \, x_i \, x_j - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} \, v_{i,f} \, x_i \, x_i \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right) \left(\sum_{j=1}^{n} v_{j,f} x_{j} \right) - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

Why is FM a generalization of MF?

MF
$$r_{ij} = p_i^T q_j$$

$$r_{ij} = \langle \mathbf{v_i}, \mathbf{v_j} \rangle x_i x_j$$

 Forced to learn features of users and items while factorizing.

- Allow side-info in x_i vector
- Allow more dimensions

	User_0 User_Nu	Item_0 Item_N _i	Context_0 Context_Nc					
User_0 User_N _u	0	Interactions user-item	Interactions user-context					
Item_0 Item_N _i	Interactions user-item	0	Interactions item-context					
Context_0 Context_Nc	Interactions user-context	Interactions item-context	0					

NFM

DFM

WD

FM captures interactions of only second order! $(\ell = 1)$

We might want to capture high order interactions

Factorization Machine (FM) model

NCF model

NFM model DFM model WD model

Rendle, Steffen. "Factorization machines." 2010

Feature vector x											N	Tar	get y										
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0			5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1	•••	0	0	0.5	0.5	•••	8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	Α	B Us	Cer		TI		SW Movie	ST		TI Oth	NH ner M	SW lovie	ST s rate	ed	Time	TI	NH ₋ast l	SW Movie	ST e rate	 ed			

 $\hat{y}_{uic} = h^T \Big[x, \phi^L \Big(z^{(L-1)} \Big) \Big]$ Rendle, Steffen, et al. "Neural collaborative NCF filtering vs. matrix factorization revisited." Fourteenth ACM Conference on Recommender model Systems. 2020. **NeuMF Layer** He, Xiangnan, et al. "Neural collaborative filtering.", 2017 (Linear) Concatenate Addition Layer l FM Layer = $Relu(\cdot)$ MLP + Linear(·) Layer 2 Layer 1 V2

10 10 10

Concatenate

 $\bigcirc \bigcirc \bigcirc \bigcirc$

EVALUATION ON RANKING

Explicit vs Implicit feedback

- X
- How much did the user like the film?

(explicit)

- Was the user interested in the film?

(implicit)

- We won't care about ratings (1-5).
- All provided data will be treated as positive
 - → We will need to perform negative sampling.

Leave-one-out procedure:

(positive samples)

Leave-one-out procedure:

(positive samples)

Compute HR and NDCG to see whether out GT prediction is in the TOP@K **COMPUTE PREDICTIONS AND SORT THEM**

1 - 5 users:

items: 6 - 21

TEST dataset

u1 - **item 6**

(GT)

u1 - **Item_7**

u1 - **Item 11**

u1 - **Item 12**

u1 - **Item 13**

•••

u1 - **Item 17**

u1 - **Item 18**

u1 - **Item 19**

u1 - **Item 21**

METRICS:

Hit Ratio (HR@K)

Measures whether the test item is in the top@K positions of the recommendation list ($1 = yes \mid 0 = no$).

Normalized Discounted Cumulative Gain (NDCG@K)

Measures the ranking quality which gives information about where in the raking is our test item.