1.1 a.

The vertebral column data was first read from the ARFF file, then split into classes for processing.

```
library(foreign)
vert <- read.arff("column_2C_weka.arff")
vert_split <- split(vert, vert[,"class"])
sapply(vert_split$Abnormal[0:6], mean)
sapply(vert_split$Abnormal[0:6], median)
sapply(vert_split$Abnormal[0:6], sd)
sapply(vert_split$Normal[0:6], mean)
sapply(vert_split$Normal[0:6], median)
sapply(vert_split$Normal[0:6], sd)</pre>
```

1.1.1 Abnormal Data

me	ean								
	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle						
	64.69256	19.79111	55.92537						
	$sacral_slope$	pelvic_radius	$degree_spondylolisthesis$						
	44.90145	115.07771	37.77771						
standard deviation									
	pelvic_incidence	$pelvic_tilt$	lumbar_lordosis_angle						
	65.27489	18.79890	56.15000						
	$sacral_slope$	pelvic_radius	degree_spondylolisthesis						
	44.63960	115.65032	31.94652						
me	edian								
	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle						
	17.66213	10.51587	19.66947						
	$sacral_slope$	pelvic_radius	degree_spondylolisthesis						
	14.51556	14.09060	40.69674						

1.1.2 Normal Data

mean									
$pelvic_incidence$	pelvic_tilt	lumbar_lordosis_angle							
51.685244	12.821414	43.542605							
$sacral_slope$	pelvic_radius	$degree_spondylolisthesis$							
38.863830	123.890834	2.186572							
standard deviation									
pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle							
50.12312	13.48243	42.63892							
sacral_slope	pelvic_radius	$degree_spondylolisthesis$							
37.05969	123.87433	1.15271							
median									
pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle							
12.368161	6.778503	12.361388							
sacral_slope	pelvic_radius	degree_spondylolisthesis							
9.624004	9.014246	6.307483							

1.2 b.

```
library(foreign)
vert <- read.arff("column_2C_weka.arff")
pairs(vert[0:6], pch = 21, bg = c(''green'', ''blue'')[unclass(vert$class)])</pre>
```


Figure 1.1: Feature Scatter Plot

1.3 c.

Given the values from section a and the scatter plot from section b we can see that the two classes are seperatated well when comparing certain values such as pelvic_radius and degree_spondylolithesis. If we compare the values using the scatter plot from Figure 1.1 we can see that abnormal classes have a larger value with respect of degree_spondylolisthesis then the normal class. This shows that given certain values there is some what of a well defined area of seperation.

2.1 a.

Generating 100 3-dimensional vectors from a normal disribution with a mean vector as $[1\ 2\ 1]$ and a 3x3 covariance matrix as $[4\ 0.8\ -0.3;\ 0.8\ 2\ 0.6;\ -0.3\ 0.6\ 5]$

mean <-
$$c(1,2,1)$$

sigma <- matrix($c(4, 0.8, -0.3, 0.8, 2, 0.6, -0.3, 0.6, 5), 3,3)$
mvnd <- MASS::mvrnorm(n = 100, mean, sigma)

$$mean < -\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$sigma < - \begin{bmatrix} 4 & 0.8 & -0.3 \\ 0.8 & 2 & 0.6 \\ -0.3 & 0.6 & 5 \end{bmatrix}$$

Figure 2.1: Multivariate normal distribution

As you can see from Figure 2.1 it seems that there is only a slight relationship between the variables. Looking at the graph i can see a slight upper right correlation between variable 2 and 3 and a slight upper left hand correlation between variable 1 and 3

2.3 c.

library(fields)
x1 <- mvnd[1,]</pre>

```
x2 <- mvnd[2,]
Euclidean <- rdist(x1, x2)</pre>
```

$$x1 < -\begin{bmatrix} 0.08159917 & -0.3455406 & -0.2774757 \end{bmatrix}$$

$$x2 < -[2.096857 \quad 2.785129 \quad 1.236984]$$

$$Euclidean < -[4.019446]$$

library(stats)
x <- mvnd[1:5,]
mean<-colMeans(x)
cov<-cov(x)
Mahalanobis<-mahalanobis(x,mean,cov)</pre>

$$x < - \begin{bmatrix} 0.08159917 & -0.3455406 & -0.277475694 \\ 2.09685726 & 2.7851294 & 1.236983735 \\ 1.64938859 & 2.7939131 & 1.255435381 \\ 2.85857359 & 2.6075639 & 0.005900806 \\ 2.87544416 & 4.4884076 & 3.080050468 \end{bmatrix}$$

$$mean < -[1.912373 \quad 2.465895 \quad 1.060179]$$

$$cov < - \begin{bmatrix} 1.3194324 & 1.800401 & 0.8444832 \\ 1.8004009 & 3.056076 & 1.9542692 \\ 0.8444832 & 1.954269 & 1.7625221 \end{bmatrix}$$

 $Mahalanobis < -\begin{bmatrix} 3.1344661 & 0.0400899 & 2.9093868 & 2.9826712 & 2.9333861 \end{bmatrix}$

3.1 Eigenvalues & Eigenvectors

```
records <- read.table("five-dimensional-records.txt")
  mean <- colMeans(records)
cov <- cov(records)</pre>
```

 $mean < - \begin{bmatrix} 6241.66667 & 11.44167 & 2333.3333 & 120.83333 & 17000.00000 \end{bmatrix}$

```
cov < - \begin{bmatrix} 1.183356e + 07 & 59.924242 & 4152121.2121 & 173507.5758 & 490909.091 \\ 5.992424e + 01 & 3.191742 & 342.1212 & 141.9621 & 9818.182 \\ 4.152121e + 06 & 342.12121 & 1540606.0606 & 73424.2424 & 963636.364 \\ 1.735076e + 05 & 141.962121 & 73424.2424 & 13208.3333 & 569090.909 \\ 4.909091e + 05 & 9818.181818 & 963636.3636 & 569090.9091 & 40545454.545 \end{bmatrix}
```

Eigenvalues <- eigen(cov)\$values
Eigenvectors <- eigen(cov)\$vectors</pre>

```
Eigenvalues < -\begin{bmatrix} 4.058981e + 07 & 1.327940e + 07 & 6.078551e + 04 & 2.835137e + 03 & 5.672175e - 01 \end{bmatrix}
```

$$Eigenvectors < - \begin{bmatrix} 0.0210326211 & 9.430084e - 01 & 0.332053840 & 0.0057119337 & -0.0006728422 \\ 0.0002420299 & -8.480421e - 06 & -0.002006136 & -0.0006633593 & -0.9999977384 \\ 0.0269236336 & 3.312548e - 01 & -0.942852072 & 0.0239126004 & 0.0018793378 \\ 0.0141541619 & 1.292481e - 02 & -0.020405538 & -0.9996077844 & 0.0007073532 \\ 0.9993159400 & -2.895527e - 02 & 0.018703144 & 0.0133939822 & 0.0001957042 \end{bmatrix}$$

graph.png

Figure 3.1: Eigenvectors line graph

3.2 reduced representation

PCA <- as.data.frame(prcomp(records)\$x)[1:2]

7989.734-685.3013 $-7153.694 \quad -5315.8562$ $-8091.763 \quad -2891.1789$ -2743.70127926.393-2588.22507927.907-4949.073 -1158.9772079.0494PCA < --5367.2371-2912.6643101.72483774.98691105.8178103.0763358.36273631.3980-4900.4973645.9779 -3886.258

3.3 Scatter Plot

Figure 3.2: PCA Scatter Plot

3.4 Reconstruct Data

```
reconstructed <- PCA$x %*% t(PCA$rotation) + colMeans(records)
sqerr <- mean((records - reconstructed)^2)</pre>
```

	records < -	[5700	12.8	2500	270	25000]			
		1000	10.9	600	10	10000			
		3400	8.8	1000	10	9000			
		3800	13.6	1700	140	25000			
		4000	12.8	1600	140	25000			
		8200	8.3	2600	60	12000			
		1200	11.4	400	10	16000			
		9100	11.5	3300	60	14000			
		9900	12.5	3400	180	18000			
		9600	13.7	3600	390	25000			
		9600	9.6	3300	80	12000			
		9400	11.4	4000	100	13000			
		_				_			
	「 5700.0000	2334.	6917	17166	5.6667	160.6	60833	8120.833	7
	-5230.2250	120.2917		4508.3333		2222.50000		10000.000	
	-508.3333	16997.3583		-1321.8917		10.00000		-1758.333	
	-2320.8333	6243.				17019	.16667	8011.442	
	14758.3333		12.8000		-612.5000		83333	10333.333	
	8200.0000	2330.1917		17266.6667			39167	-4879.167	- 1
reconstructed < -	-5030.2250	120.7917		4308.3333		2222.	50000	16000.000	
	5191.6667	17000	.0583	978.	1083	60.0	0000	3241.667	
	3779.1667	6242.	7250	3400.	.0000	17059	.16667	1011.442	
	20358.3333	13.7	000	1387.	.5000	6510.	83333	10333.333	
	9600.0000		2331.4917		17966.6667		39167	-4879.167	- 1
	3169.7750	120.7	7917	7908.3333		2312.	50000	13000.000	
	L								_

 $sqerr < -\left[76488567\right]$

```
PCA <- prcomp(vert[0:6])</pre>
           Eigenvalues <- PCA$sdev^2</pre>
          Eigenvectors <- PCA$rotation</pre>
           reduced <- as.data.frame(PCA$x)[1:2]</pre>
           pairs(reduced, pch = 21, bg = c('green', 'blue')[unclass(vert$class)])
  Eigenvalues < -\begin{bmatrix} 1.780994e + 03 & 3.453271e + 02 & 1.887770e + 02 & 1.060179e + 02 & 8.861407e + 01 & 7.207841e - 18 \end{bmatrix}
                                                                                  -0.32364565 0.47663485
                                                                                                                                                                                                          -0.001544813
                                                                                                                                                                                                                                                                              0.37367725
                                                                                                                                                                                                                                                                                                                                        -0.44170387 \quad -5.773503e - 01
Eigenvectors < - \begin{bmatrix} -0.92504005 & 0.41600405 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.00121232 & 0.0012123
                                                                                                                                                                                                                                                                                                                                                                                                      5.773503e - 01
                                                                                                                                                                                                                                                                                                                                                                                                      1.089295e - 11
                                                                                                                                                                                                                                                                           -0.38043651 \quad -0.51524534 \quad \  5.773503e - 01
                                                                                                                                                                                                                                                                                                                                                                                                      3.590517e - 12
                                                                                                                                                                                                                                                                                                                                    0.08359925 \quad -3.067324e - 12
```


Figure 4.1: PCA Vertebral Column Data Set

```
library('tsne')
records <- read.table('five-dimensional-records.txt')</pre>
tsne_10 <- tsne(records, perplexity=10)</pre>
tsne_50 <- tsne(records, perplexity=50)</pre>
                                                   278.07448
                                      -352.32073
                                      -16.54169
                                                  -481.36909
                                      400.59149
                                                   -135.67055
                                      -398.91724
                                                   -11.26791
                                      -175.19482
                                                   58.76914
                                      250.22489
                                                  -336.66253
                        tsne\_10 < -
                                       362.52881
                                                   127.94042
                                       82.24818
                                                   108.50328
                                       145.93197
                                                   354.96502
                                      -125.27177
                                                   462.93079
                                       74.42643
                                                   -146.08627
                                      -247.70552
                                                  -280.12678
                                     -157.92121
                                                  -259.202370
                                      -84.49455
                                                   -66.797062
                                      -224.85017
                                                   89.352029
                                                   296.897437
                                      63.06430
                                      303.43655
                                                   -7.161843
                                     -145.51641
                                                   266.365026
                        tsne\_50 < -
                                      -288.65359
                                                   -93.832651
                                      35.04427
                                                  -239.403781
                                      225.58846
                                                  -203.064369
```

100.09517

-15.59996

189.80716

-39.776473

106.572968

150.051089

Figure 5.1: tsne perplexity 10

Figure 5.2: tsne perplexity 50

The data seems to be more correlated and well structed and not as spread out as the other data in question 3