Chapter 4. Exact Model Knowledge Controller Design

1 Exact Model Knowledge Controller Design

As stated earlier, the Lyapunov techniques often aim to construct model-based controllers. In this chapter, we will introduce the process of designing a suitable controller for a nonlinear system with exact model knowledge.

For the following system

$$\dot{x} = f(x) + u \tag{1}$$

where $x \in \mathbb{R}^1$ represents the system state, $f(x) \in \mathbb{R}^1$ denotes the exactly known system dynamics, $u \in \mathbb{R}^1$ is the control input. The objective is to design the control input u to make the system state track some desired trajector $x_d \in \mathbb{R}^1$.

Define the tracking error $e \in \mathbb{R}^1$ as follows

$$e = x_d - x \tag{2}$$

then by taking its time derivative and substituting (1) into the resulting expression for \dot{x} , the open loop error system can be obtained as

$$\dot{e} = \dot{x}_d - f(x) - u \tag{3}$$

Based on the control objective that we need to push the tracking error e to zero, we choose the following Lyapunov function

$$V = \frac{1}{2}e^2 \tag{4}$$

Taking the time derivative of (4) yields

$$\dot{V} = e\dot{e}
= e(\dot{x}_d - f(x) - u)$$
(5)

Obviously, if we can design the controller u to make

$$\dot{x}_d - f(x) - u = -ke \tag{6}$$

with $k \in \Re^1$ being a positive control gain, then

$$\dot{V} = -ke^2 \tag{7}$$

and the tracking error e goes to zero exponentially fast. From (6), it can be seen that the controller we need to construct is

$$u = (\dot{x}_d - f(x)) + ke \tag{8}$$

The controller (8) consists of two parts, the first part is the terms in the bracket $(\dot{x}_d - f(x))$, they are feedforward terms targeting to cancel the system dynamics, while the second part is a standard feedback term ke.

Example 1 For the following nonlinear system

$$\dot{x} = ax^2 + \frac{u}{b + c\sin^2 t}$$

where $a, b, c \in \mathbb{R}^1 > 0$ denote known positive constants, design a nonlinear control $u \in \mathbb{R}^1$ to drive $x \in \mathbb{R}^1$ to zero exponentially fast.

Based on the dynamics of the system, design the following controller

$$u = \left(b + c\sin^2 t\right) \left[-ax^2 - kx\right]$$

then the closed-loop dynamics can be developed as

$$\dot{x} = ax^2 + \frac{u}{b + c\sin^2 t}$$
$$= -kx$$

the solution to the above differential equation is

$$x\left(t\right) = x_0 e^{-kt}$$

therefore, $x \to 0$ exponentially fast.

2 Backstepping Method Introduction

Backstepping is a very useful method for designing controls, especially for cascaded systems, it constructs a controller for a given system via a step-by-step process. We will use examples to demonstrate the design process.

Example 2 For the following system

$$\dot{x} = \sin(x) - y$$

where $x \in \mathbb{R}^1$ denotes the system state, while $y \in \mathbb{R}^1$ is the control input. To push x to zero, we design a EMK controller as

$$y = \sin(x) + kx$$

then the closed-loop dynamics can be obtaind

$$\dot{x} = -kx$$

and the state x goes to zero exponentially fast.

Example 3 Now we modify the system as follows

$$\begin{cases} \dot{x} = \sin(x) - y \\ \dot{y} = u \end{cases}$$

where $x \in \mathbb{R}^1$ and $y \in \mathbb{R}^1$ represent the system state, $u \in \mathbb{R}^1$ is the control input. Now we need to design u to drive x to zero asymptotically fast. We will use the backstepping method to design the

controller by the following two steps: Step 1, assume that y_d is the virtual input, and based on the above example, we can design y_d as

$$y_d = \sin(x) + kx \tag{9}$$

to make x go to zero. However, since y is only "virtual", in other words, it cannot be chosen freely, how to deal with that? To aid our analysis, we rewrite the first equation of the system dynamics as

$$\dot{x} = \sin(x) - y
= \sin(x) - y_d + (y_d - y)
= \sin(x) - y_d + e_y$$
(10)

where y_d is an auxiliary signal chosen to make x go to zero providing the mismatch term e_y doesn't exist. In other words, we choose y_d , instead of y, as our virtual control, since it can be chosen freely. In (10), e_y represents the mismatch between y_d and y

$$e_{y} = y_{d} - y. \tag{11}$$

According to the above analysis, y_d can be design as

$$y_d = \sin(x) + kx$$

then

$$\dot{x} = -kx + e_y \tag{12}$$

and, if e_y disappears, then the above design of y_d pushes x to zero. Therefore, step 2 aims to design the real control input u to drive e_y to zero (that is, to make the actual y track the desired y_d). To do that, we first need to deduct the dynamics of \dot{e}_y . Taking the time derivative of (11) and substituting (12) into the resulting expression yields

$$\dot{e}_y = \dot{y}_d - \dot{y}
= \dot{x}\cos(x) + k\dot{x} - \dot{y}
= \dot{x}(\cos(x) + k) - u
= (-kx + e_y)(\cos(x) + k) - u$$

if we design

$$u = (-kx + e_y)(\cos(x) + k) + k_u e_y$$

then

$$\dot{e}_y = -k_u e_y$$

and e_y goes to zero exponentially fast. Will this controller work? Choose

$$V = \frac{1}{2}e_y^2 + \frac{1}{2}x^2$$

then taking its time derivative yields

$$\dot{V} = e_y \dot{e}_y + x\dot{x}
= -k_u e_y^2 + x (-kx + e_y)
= (-k_u e_y^2 - kx^2) + xe_y$$

now how do we deal with the additional interconnecting term xe_y ? Do we definitely need to cancel our this term? How? Suppose we modify our controller slightly

$$u = (-kx + e_y)(\cos(x) + k) + k_u e_y + x$$

then

$$\dot{e}_y = -k_u e_y - x$$

after substituting it into the expression of $\dot{V}(t)$, it is easy to see that the latter term in \dot{e}_y will eventually cancel out the troublesome interconnecting term xe_y , thus $\dot{V}(t)$ becomes

$$\dot{V} = -k_u e_y^2 - kx^2$$

Therefore, both e_y and x will go to zero exponentially fast.

3 Filtered Signal Techniques

In this section, we will demonstrate how a filtered signal can be introduced to convert a second-order system into a first-order system. For the following linear system

$$r(t) = \dot{e}(t) + \alpha \cdot e(t)$$

where α denotes some positive constant, the following properties can be proven

- If $r(t) \to 0$ exp. fast, then e(t), $\dot{e}(t) \to 0$ exp. fast;
- If $r(t) \to 0$, then e(t), $\dot{e}(t) \to 0$;
- If r(t) is GUUB, then e(t), $\dot{e}(t)$ is also GUUB.

Example 4 For the following nonlinear system

$$\ddot{x} = -\dot{x}^2 \sin(x) + u$$

Assume both $x \in \mathbb{R}^1$ and $\dot{x} \in \mathbb{R}^1$ are measurable, design a EMK controller to push the state x to zero exp. fast.

Define the following filtered error signal

$$r = \dot{x} + \alpha x$$

then

$$\dot{r} = \ddot{x} + \alpha \dot{x}
= -\dot{x}^2 \sin(x) + (\alpha \dot{x} + u)$$

Based on the open-loop dynamics, design the following EMK controller

$$u = \dot{x}^2 \sin(x) - \alpha \dot{x} - kr$$

The closed-loop dynamics is

$$\dot{r} = -kr$$

therefore, $r \to 0$ exp. fast $\Longrightarrow \dot{x}$ and $x \to 0$ exp. fast.