BÔ GIÁO DUC VÀ ĐÀO TAO ĐỂ THI CHÍNH THỨC

KÝ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2020 – LẦN 1 Bài thi: TOÁN

(Đề thi có 05 trang)

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Mã đề thi: 101

Câu 1. Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ?

A.
$$y = x^3 - 3x^2 + 1$$

B.
$$y = -x^3 + 3x^2 + 1$$

C.
$$v = -x^4 + 2x^2 + 1$$
.

D.
$$y = x^4 - 2x^2 + 1$$
.

Câu 2. Nghiệm của phương trình $3^{x-1} = 9$ là

A.
$$x = -2$$

B.
$$x = 3$$

C.
$$x = 2$$

D.
$$x = -3$$

Câu 3. Cho hàm số f(x) có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng

Câu 4. Cho hàm số f(x) có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A.
$$(-\infty;-1)$$

B.
$$(0;1)$$

C.
$$(-1;1)$$

D.
$$(-1;0)$$

Câu 5. Cho khối hộp chữ nhật có ba kích thước 3; 4; 5. Thể tích của khối hộp đã cho bằng

Câu 6. Số phức liên hợp của số phức z = -3 + 5i là

A.
$$z = -3 - 5i$$

B.
$$z = 3 + 5i$$

C.
$$\bar{z} = -3 + 5i$$
 D. $\bar{z} = 3 - 5i$

D.
$$z = 3 - 5i$$

Câu 7. Cho hình trụ có bán kính đáy r = 8 và độ dài đường sinh l = 3. Diện tích xung quanh của hình trụ đã cho bằng

A.
$$24\pi$$

B.
$$192\pi$$

C.
$$48\pi$$

D.
$$64\pi$$

Câu 8. Cho khối cầu có bán kính r = 4. Thể tích của khối cầu đã cho bằng

A.
$$\frac{256\pi}{3}$$

B.
$$64\pi$$

C.
$$\frac{64\pi}{3}$$

D.
$$256\pi$$

Câu 9. Với a,b là các số thực dương tùy ý và $a \ne 1, \log_{a^5} b$ bằng

A.
$$5\log_a b$$

B.
$$\frac{1}{5} + \log_a b$$
 C. $5 + \log_a b$ **D.** $\frac{1}{5} \log_a b$

C.
$$5 + \log_a b$$

D.
$$\frac{1}{5}\log_a b$$

Câu 10. Trong không gian Oxyz, cho mặt cầu (S): $x^2 + y^2 + (z+2)^2 = 9$. Bán kính của (S) bằng

Câu 11. Tiệm cận ngang của đồ thị hàm số $y = \frac{4x+1}{x-1}$ là

A.
$$y = \frac{1}{4}$$

B.
$$y = 4$$

C.
$$y = 1$$

D.
$$y = -1$$

Câu 12. Cho khối nón có bán kính đáy r = 5 và chiều cao h = 2. Thể tích của khối nón đã cho bằng

A.
$$\frac{10\pi}{3}$$

C.
$$\frac{50\pi}{3}$$

D.
$$50\pi$$

Câu 13. Nghiệm của phương trình $\log_3(x-1) = 2$ là

A.
$$x = 8$$

B.
$$x = 9$$

C.
$$x = 7$$

D.
$$x = 10$$

Câu 14. $\int x^2 dx$ bằng

$$\mathbf{A.} \ 2x + C$$

B.
$$\frac{1}{2}x^3 + C$$

D.
$$x^3 + C$$

D.
$$3x^3 + C$$

Câu 15. Có bao nhiều cách xếp 6 học sinh thành một hàng dọc?

B. 720.

D. 1.

Câu 16. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ.

Số nghiệm thực của phương trình f(x) = -1 là

D. 2.

Câu 17. Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là

B.
$$(3;0;0)$$

D.
$$(0;2;0)$$

Câu 18. Cho khối chóp có diện tích đáy B=6 và chiều cao h=2. Thể tích của khối chóp đã cho bằng

Câu 19. Trong không gian *Oxyz*, cho đường thẳng $d: \frac{x-3}{2} = \frac{y-4}{-5} = \frac{z+1}{3}$. Vecto nào sau đây là một vecto chỉ phương của d?

A.
$$\overrightarrow{u_2} = (3;4;-1)$$

B.
$$\overrightarrow{u_1} = (2; -5; 3)$$
 C. $\overrightarrow{u_3} = (2; 5; 3)$ **D.** $\overrightarrow{u_4} = (3; 4; 1)$

C.
$$\overrightarrow{u_3} = (2;5;3)$$

D.
$$\overrightarrow{u_4} = (3;4;1)$$

Câu 20. Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là

A.
$$\frac{x}{3} + \frac{y}{-1} + \frac{z}{2} = 1$$

B.
$$\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$$

C.
$$\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1$$
.

A.
$$\frac{x}{3} + \frac{y}{-1} + \frac{z}{2} = 1$$
. **B.** $\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$. **C.** $\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1$. **D.** $\frac{x}{-3} + \frac{y}{1} + \frac{z}{2} = 1$.

Câu 21. Cho cấp số nhân (u_n) với $u_1 = 3$ và công bội q = 2. Giá trị của u_2 bằng

D.
$$\frac{3}{2}$$

Câu 22. Cho hai số phức $z_1 = 3 - 2i$ và $z_2 = 2 + i$. Số phức $z_1 + z_2$ bằng

A.
$$5 + i$$

B.
$$-5+i$$

C.
$$5-i$$

D.
$$-5-i$$

Câu 23. Biết $\int_{1}^{3} f(x) dx = 3$. Giá trị của $\int_{1}^{3} 2f(x) dx$ bằng

D.
$$\frac{3}{2}$$
.

Câu 24. Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng

Câu 25. Tập xác định của hàm số $y = \log_5 x$ là

- **A.** $[0; +\infty)$
- **B.** $(-\infty;0)$
- C. $(0; +\infty)$
- **D.** $(-\infty; +\infty)$

Câu 26. Số giao điểm của đồ thị hàm số $y = x^3 + 3x^2$ và đồ thị hàm số $y = 3x^2 + 3x$ là

A. 3.

C. 2.

D. 0.

Câu 27. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B,

AB = a, BC = 2a; SA vuông góc với mặt phẳng đáy và $SA = \sqrt{15}a$ (tham khảo hình vẽ). Góc giữa SC và mặt phẳng đáy bằng

- **A.** 45°.
- **B.** 30°.
- **C.** 60°.
- **D.** 90°.

Câu 28. Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{-\infty}^{\infty} (2+f(x)) dx$ bằng

A. 5.

B. 3.

- C. $\frac{13}{2}$

Câu 29. Diện tích hình phẳng giới hạn bởi hai đường $y = x^2 - 4$ và y = 2x - 4 bằng

- **A.** 36

- C. $\frac{4\pi}{2}$

Câu 30. Trong không gian Oxyz, cho điểm M(2;-2;3) và đường thẳng $d:\frac{x-1}{2}=\frac{y+2}{2}=\frac{z-3}{1}$.

Mặt phẳng đi qua M và vuông góc với d có phương trình là

A. 3x + 2y - z + 1 = 0

B. 2x - 2v + 3z - 17 = 0

C. 3x + 2y - z - 1 = 0

D. 2x - 2v + 3z + 17 = 0

Câu 31. Gọi z_0 là nghiệm phức có phần ảo dương của phương trình $z^2 + 6z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn số phức $1-z_0$ là

- **A.** N(-2;2)
- **B.** M(4;2)
- **C.** P(4;-2)
- **D.** Q(2;-2)

Câu 32. Trong không gian Oxyz, cho ba điểm A(1;0;1), B(1;1;0) và C(3;4;-1). Đường thẳng đi qua A và song song với BC có phương trình là

- **A.** $\frac{x-1}{4} = \frac{y}{5} = \frac{z-1}{-1}$. **B.** $\frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{-1}$ **C.** $\frac{x-1}{2} = \frac{y}{3} = \frac{z-1}{-1}$ **D.** $\frac{x+1}{4} = \frac{y}{5} = \frac{z+1}{-1}$

Câu 33. Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

Số điểm cực đại của hàm số đã cho là

D. 3.

Câu 34. Tập nghiệm của bất phương trình $3^{x^2-13} < 27$ là

- A. $(4;+\infty)$
- **B.** (-4;4)
- C. $(-\infty;4)$
- **D.** (0:4)

Câu 35. Cho hình nón có bán kính đáy bằng 2 và góc ở đỉnh bằng 60°. Diện tích xung quanh của hình nón đã cho bằng

- A. 8π
- **B.** $\frac{16\sqrt{3}\pi}{2}$
- C. $\frac{8\sqrt{3}\pi}{2}$
- **D.** 16π

Câu 36. Giá trị nhỏ nhất của hàm số $y = x^3 - 24x$ trên đoạn [2;19] bằng

- **A.** $32\sqrt{2}$
- **B**. -40
- C. $-32\sqrt{2}$
- **D.** -45

Câu 37. Cho hai số phức z = 1 + 2i và w = 3 + i. Môđun của số phức $z\overline{w}$ bằng

- **A.** $5\sqrt{2}$
- **B.** $\sqrt{26}$
- **C.** 26
- **D.** 50.

Câu 38. Cho a và b là hai số thực dương thỏa mãn $4^{\log_2 a^2 b} = 3a^3$. Giá trị của biểu thức ab^2 bằng

B. 6.

Câu 39. Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 2}}$. Họ tất cả các nguyên hàm của hàm số $g(x) = (x+1) \cdot f'(x)$ là

- **A.** $\frac{x^2 + 2x 2}{2\sqrt{x^2 + 2}} + C$. **B.** $\frac{x 2}{\sqrt{x^2 + 2}} + C$. **C.** $\frac{2x^2 + x + 2}{\sqrt{x^2 + 2}} + C$. **D.** $\frac{x + 2}{2\sqrt{x^2 + 2}} + C$.

Câu 40. Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = \frac{x+4}{x+m}$ đồng biến trên khoảng $(-\infty; -7)$ là

- **A.** [4;7)
- **B.** (4;7]
- C.(4;7)
- **D.** $(4; +\infty)$

Câu 41. Trong năm 2019, diện tích rừng trồng mới của tỉnh A là 600 ha. Giả sử diện tích rừng trồng mới của tỉnh A mỗi năm tiếp theo đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Kể từ sau năm 2019, năm nào dưới đây là năm đầu tiên tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên 1000 ha?

- A. Năm 2028.
- **B.** Năm 2047.
- C. Năm 2027.
- **D.** Năm 2046.

Câu 42. Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60°. Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng

- **A.** $\frac{172\pi a^2}{2}$
- **B.** $\frac{76\pi a^2}{2}$
- **C.** $84\pi a^2$
- **D.** $\frac{172\pi a^2}{9}$

Câu 43. Cho hình lăng trụ đứng *ABC.A'B'C'* có tất cả các cạnh đều bằng *a*. Goi M là trung điểm CC' (tham khảo hình vẽ). Khoảng cách từ M đến mặt phẳng (A'BC) bằng

B.
$$\frac{\sqrt{2}a}{2}$$

C.
$$\frac{\sqrt{21}a}{7}$$
 D. $\frac{\sqrt{2}a}{4}$

D.
$$\frac{\sqrt{2}a}{4}$$

Câu 44. Cho hàm bậc bốn f(x) có bảng biến thiên như sau:

χ			-1		0		1		+∞
f'(x)		-	0	+	0		0	+	
f(x)	+∞ /				y 3 ∖			/	+∞

Số điểm cực trị của hàm $g(x) = x^4 \left[f(x+1) \right]^2$ là

C. 7.

D. 5.

Câu 45. Cho hàm số $y = ax^3 + bx^2 + cx + d(a, b, c, d \in \mathbb{R})$ có đồ thị

là đường cong trong hình vẽ. Có bao nhiều số dương trong các số a,b,c,d?

A. 4.

B. 1.

C. 2.

D. 3.

Câu 46. Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó **không** có hai chữ số liên tiếp nào cùng chẵn bằng

A.
$$\frac{25}{42}$$

B.
$$\frac{5}{21}$$

C.
$$\frac{65}{126}$$

D.
$$\frac{55}{126}$$

Câu 47. Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDAvà S' đối xứng với S qua O. Thể tích khối chóp S'.MNPQ bằng

A.
$$\frac{20\sqrt{14}a^3}{81}$$
 B. $\frac{40\sqrt{14}a^3}{81}$ **C.** $\frac{10\sqrt{14}a^3}{81}$ **D.** $\frac{2\sqrt{14}a^3}{81}$

B.
$$\frac{40\sqrt{14}a^3}{81}$$

C.
$$\frac{10\sqrt{14}a^3}{81}$$

D.
$$\frac{2\sqrt{14}a^3}{81}$$

Câu 48. Xét các số thực không âm x và y thỏa mãn $2x + y.4^{x+y-1} \ge 3$. Giá trị nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 6y$ bằng

A.
$$\frac{33}{4}$$

B.
$$\frac{65}{8}$$

C.
$$\frac{49}{8}$$

D.
$$\frac{57}{8}$$

Câu 49. Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 728 số nguyên y thỏa $\min \log_4(x^2 + y) \ge \log_3(x + y)?$

D. 115.

Câu 50. Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ. Số nghiệm thực phân biệt của phương trình $f(x^3f(x))+1=0$ là

----- HÉT -----

BẢNG ĐÁP ÁN

1.C	2.B	3.B	4.D	5.D	6.A	7.C	8.A	9.D	10.D
11.B	12.C	13.D	14.B	15.B	16.A	17.B	18.C	19.B	20.B
21.C	22.C	23.C	24.B	25.C	26.A	27.C	28.A	29.B	30.A
31.C	32.C	33.C	34.B	35.A	36.C	37.A	38.A	39.B	40.B
41.A	42.A	43.A	44.B	45.C	46.A	47.A	48.B	49.C	50.C