ARTIFICIAL NEURAL NETWORK (JARINGAN SYARAF TIRUAN)

Outline

- 1. Konsep jaringan syaraf tiruan
- 2. Model McCulloch Pitts
- 3. Model Hebb
- 4. Model Perceptron

Jaringan Syaraf Biologis

- Otak manusia berisi jutaan sel syaraf (neuron) yang bertugas memproses informasi
- Neuron saling berinteraksi satu sama lain mendukung kemampuan kerja otak manusia

Sel Syaraf (Neuron)

Sel Syaraf (Neuron)

- Komponen utama neuron dapat dikelompokkan menjadi 3 bagian :
 - Dendrit = bertugas menerima informasi = jalur input bagi soma
 - Badan sel (soma) = tempat pengolahan informasi, di badan sel terdapat inti sel yang bertugas mengolah informasi
 - Akson = bertugas mengirimkan impuls-impuls sinyal ke sel syaraf lain = jalur output bagi soma
 - Antar dendrit dipertemukan dengan sinapsis

Analogi JST dengan JSB

JST	J S Biologis Badan sel (soma)	
Node / input		
Input	Dendrit	
Output	Akson	
Bobot	Sinapsis	

Jaringan Syaraf Tiruan

- Meniru cara kerja jaringan syaraf biologis
- Generalisasi model matematis dari pemahaman manusia:
 - Pemrosesan informasi terjadi pada neuron
 - Sinyal mengalir diantara sel saraf/neuron melalui suatu sambungan penghubung
 - Setiap sambungan penghubung memiliki bobot yang bersesuaian.
 - Bobot ini akan digunakan untuk menggandakan / mengalikan sinyal yang dikirim melaluinya.
 - Setiap sel syaraf akan menerapkan fungsi aktivasi terhadap sinyal hasil penjumlahan berbobot yang masuk kepadanya untuk menentukan sinyal keluarannya.

Model Struktur Neuron JST

Model Sel Syaraf (Neuron)

Model Sel Syaraf (Neuron)

• Secara matematis:

$$v_k = \sum_{j=0}^p w_{kj} x_j$$

dan

$$y_k = \varphi(v_k)$$

SUMMATION FUNCTION

- Fungsi yang digunakan untuk mencari rata-rata bobot dari semua elemen input.
- Bentuk sederhananya adalah dengan mengalikan setiap nilai input (Xj) dengan bobotnya (Wij) dan menjumlahkannya

$$v_k = \sum_{j=0}^p w_{kj} x_j$$

SUMMATION FUNCTION

- Diibaratkan dengan sebuah neuron yang memonitor sinyal yang datang dari neuron-neuron lain.
- Neuron ini menghitung penjumlahan berbobotnya dan kemudian menentukan sinyal untuk dikirim ke neuron-neuron lain.

Karakteristik JST

- Dapat belajar dari pengalaman
- Algoritma untuk JST beroperasi secara langsung dengan angka sehingga data yang tidak numerik harus diubah menjadi data numerik.
- JST tidak diprogram untuk menghasilkan keluaran tertentu. Semua keluaran atau kesimpulan yang ditarik oleh jaringan didasarkan pada pengalamannya selama mengikuti proses pembelajaran.
- Pada proses pembelajaran, ke dalam JST dimasukkan pola-pola input (dan output) lalu jaringan akan diajari untuk memberikan jawaban yang bisa diterima.

Karakteristik JST

- Ditentukan oleh :
 - Pola hubungan antar neuron (disebut arsitektur jaringan)
 - Metode penentuan bobot-bobot sambungan (disebut dengan pelatihan atau proses belajar jaringan)
 - Fungsi aktivasi

Arsitektur JST

- Pada JST, neuron-neuron akan dikumpulkan dalam lapisan-lapisan (layer) yang disebut dengan lapisan neuron (neuron layers).
- Neuron-neuron pada satu lapisan akan dihubungkan dengan lapisan-lapisan sebelum dan sesudahnya.
- Informasi yang diberikan pada jaringan syaraf akan dirambatkan lapisan ke lapisan, mulai dari lapisan input sampai ke lapisan output melalui lapisan tersembunyi (hidden layer).

Contoh

MATA KULIAH

KECERDASAN BUATAN

Arsitektur JST

- Faktor terpenting untuk menentukan kelakuan suatu neuron adalah fungsi aktivasi dan pola bobotnya.
- Umumnya neuron yang terletak pada lapisan yang sama akan memiliki keadaan yang sama → fungsi aktivasi yang sama.
- Bila neuron-neuron pada suatu lapisan (misal lapisan tersembunyi) akan dihubungkan dengan neuron-neuron pada lapisan lain (misal lapisan output) maka setiap neuron pada lapisan tersebut (lapisan tersembunyi) juga harus dihubungkan dengan setiap neuron pada lapisan lainnya (lapisan output)

Arsitektur JST

- Ada beberapa arsitektur jaringan syaraf, antara lain :
 - Jaringan dengan lapisan tunggal (single layer net)
 - Jaringan dengan banyak lapisan (multilayer net)
 - Jaringan dengan lapisan kompetitif (competitive net)

Single Layer Net

- Hanya memiliki satu lapisan dengan bobot-bobot terhubung
- Jaringan ini hanya menerima input kemudian secara langsung akan mengolahnya menjadi output tanpa harus melalui lapisan tersembunyi.

Single Layer Net

- Seberapa besar hubungan antara 2 neuron ditentukan oleh bobot yang bersesuaian.
- Semua unit input akan dihubungkan dengan setiap unit output.

Single Layer Net

Multilayer Net

- Memiliki 1 atau lebih lapisan yang terletak diantara lapisan input dan lapisan output
- Ada lapisan bobot yang terletak antara 2 lapisan yang bersebelahan
- Jaringan dengan banyak lapisan ini dapat menyelesaikan permasalahan yang lebih sulit daripada lapisan tunggal, tentu saja dengan pembelajaran yang lebih rumit

FAKULTAS ILMU KOMPUTER

Multilayer Net

Competitive Net

- Sekumpulan neuron bersaing untuk mendapatkan hak menjadi aktif
- Umumnya hubungan antar neuron pada lapisan kompetitif ini tidak diperlihatkan pada diagram arsitektur

Competitive Net

Proses Pembelajaran Jaringan

- Cara belajar JST :
- Ke dalam JST diinputkan informasi yang sebelumnya telah diketahui hasil keluarannya.
- Penginputan informasi ini dilakukan lewat node-node atau unit-unit input.
 Bobot-bobot antarkoneksi dalam suatu arsitektur diberi nilai awal dan kemudian JST dijalankan.

Proses Pembelajaran Jaringan

- Bobot-bobot ini bagi jaringan digunakan untuk belajar dan mengingat suatu informasi. Pengaturan bobot dilakukan secara terus-menerus dan dengan menggunakan kriteria tertentu sampai diperoleh keluaran yang diharapkan.
- Hal yang ingin dicapai dengan melatih/mengajari JST adalah untuk mencapai keseimbangan antara kemampuan memorisasi dan generalisasi.

Proses Pembelajaran Jaringan

- Kemampuan memorisasi = kemampuan JST untuk memanggil kembali secara sempurna sebuah pola yang telah dipelajari.
- Kemampuan generalisasi = adalah kemampuan JST untuk menghasilkan respon yang bisa diterima terhadap pola-pola input yang serupa (namun tidak identik) dengan pola-pola yang sebelumnya telah dipelajari.

Metode Pembelajaran JST

- Berdasarkan cara memodifikasi bobotnya ada
 2 macam pembelajaran :
- Pembelajaran terawasi (supervised learning), contoh: Hebb, perceptron, back propagation
- Pembelajaran tak terawasi (unsupervised learning), contoh : LVQ

Pembelajaran Terawasi

- Output yang diharapkan telah diketahui sebelumnya
- Contoh: JST untuk mengenali pasangan pola, misalkan pada operasi AND

Input		Target
0	0	0
0	1	0
1	0	0
1	1	1

Pembelajaran Terawasi

- Satu pola input akan diberikan ke satu neuron pada lapisan input
- Pola ini akan dirambatkan di sepanjang jaringan syaraf hingga sampai ke neuron pada lapisan output
- Lapisan output ini akan membangkitkan pola output yang akan dicocokkan dengan pola output targetnya
- Jika berbeda → error
- Jika error terlalu besar, perlu dilakukan pembelajaran lebih banyak

Pembelajaran Tak Terawasi

- Tidak memerlukan target output
- Tidak dapat ditentukan hasil yang diharapkan selama proses pembelajaran
- Nilai bobot disusun dalam suatu range tertentu tergantung nilai input yang diberikan
- Tujuannya untuk mengelompokkan unit yang hampir sama dalam suatu area tertentu

- Dipakai untuk menentukan keluaran suatu neuron
- Merupakan fungsi yang menggambarkan hubungan antara tingkat aktivasi internal (summation function) yang mungkin berbentuk linier atau nonlinear.
- Beberapa fungsi aktivasi JST diantaranya threshold, hard limit, sigmoid, dan identitas.

Fungsi Hard Limit

$$y = \begin{cases} 1, & jika \ x \ge 0 \\ 0, & jika \ x < 0 \end{cases}$$

Fungsi Threshold

$$y = \begin{cases} 1, & jika \ x \ge \theta \\ 0, & jika \ x < \theta \end{cases}$$

Fungsi Bipolar Hard Limit

$$y = \begin{cases} 1, & \text{jika } x > 0 \\ 0, & \text{jika } x = 0 \\ -1, & \text{jika } x < 0 \end{cases}$$

Fungsi Aktivasi

Fungsi Bipolar Threshold

Fungsi Aktivasi

Fungsi Linear (Identitas)

Fungsi Aktivasi

Fungsi Sigmoid

$$y = f(x) = \frac{1}{1 + e^{-\sigma X}}$$

Aplikasi Yang Dapat Dibuat dengan JST

- a. Klasifikasi
- b. Pengenalan pola
- c. Peramalan
- d. Optimisasi

Outline

- 1. Konsep jaringan syaraf tiruan
- 2. Model McCulloch Pitts
- 3. Model Hebb
- 4. Model Perceptron

MATA KULIAH

KECERDASAN BUATAN

$$f(net) = \begin{cases} 0, & jika \ net < \theta \\ 1, & jika \ net \ge \theta \end{cases}$$

- Model yang pertama ditemukan dengan karakteristik :
- 1. Fungsi aktivasi biner threshold
- 2. Semua bobot positif (excitatory) memiliki nilai yang sama
- 3. Tiap neuron punya threshold yang sama
- Kelemahan: penentuan bobot secara analitik / trial and error secara manual, sulit untuk masalah yang kompleks

Buatlah model neuron McCulloch-Pitts untuk mengenali pola fungsi logika "AND" sesuai tabel kebenaran berikut :

X_1	X ₂	Y
0	0	0
0	1	0
1	0	0
1	1	1

terdapat dua input yaitu x1 dan x2 dan satu output y. Bila nilai bobot w1 dan w2 dibuat sama dengan 1, (w1 = 1 dan w2 = 1), maka kita bisa menghitung jumlah seluruh input yang masuk untuk tiap-tiap data sebagai berikut :

X1	X ₂	$net = \sum x_i w$
0	0	0.1 + 0.1 = 0
0	1	0.1 + 1.1 = 1
1	0	1.1 + 0.1 = 1
1	1	1.1 + 1.1 = 2

Agar y(net) memenuhi fungsi logika "AND", maka nilai ambang θ pada fungsi aktivasi dibuat sama dengan 2, sehingga

X ₁	X ₂	$net = \sum x_i w$	$y(net) = \begin{cases} 0 & jika & net < 2 \\ 1 & jika & net \ge 2 \end{cases}$
0	0	0.1 + 0.1 = 0	0
0	1	0.1 + 1.1 = 1	0
1	0	1.1 + 0.1 = 1	0
1	1	1.1 + 1.1 = 2	1

nilai bobot w dan nilai ambang θ dapat diubah-ubah sesuai keinginan supaya sesuai dengan yang diharapkan (trial and error)

Outline

- 1. Konsep jaringan syaraf tiruan
- 2. Model McCulloch Pitts
- 3. Model Hebb
- 4. Model Perceptron

Model Hebb

Model Hebb

- Langkah-langkah:
- 1. Inisialisasi semua bobot = Wi = 0 (i=1,..,n)
- 2. Untuk semua vektor input s dan unit target t, lakukan :
 - Set aktivasi unit masukan Xi = Si (i=1,..,n)
 - Set aktivasi unit keluaran y = t
 - Perbaiki bobot menurut persamaan
 - Wi (baru) = Wi(lama)+ Δ W
 - $\Delta W = Xi.y$
 - Perbaiki bias menurut persamaan :
 - b(baru) = b(lama) + y

• Membedakan pola :

```
# 0 # # 0 0
0 # 0 # 0 0
# 0 # # # # #
(X) (L)
```

- Bagaimana JST mengenali pola berikut :
- ##o
- ##o
- ###

```
• # = 1, o = -1
```

•
$$X = 1$$
, $L = -1$

• Fungsi aktivasi:

•
$$y = 1$$
, jika y_in >= 0

• y = -1, jika y_in < 0

```
# o # o # o o t = -1
# o # d # # # # #
```

•

- Input pertama:
- 1 -1 1
- -1 1 -1
- 1 -1 1
- $\Delta W = x.t$, maka nilai ΔW untuk tiap input:
- 1 -1 1
- -1 1 -1
- 1 -1 1
- Bias = t = 1

- Input kedua:
- 1 -1 -1
- 1 -1 -1
- 1 1 1
- $\Delta W = x.t$, maka nilai ΔW untuk tiap input:
- -1 1 1
- -1 1 1
- -1 -1 -1

Bias = t = -1

• Bobot baru:

0 0 2

-2 2 0

0 -2 0

Bias = 0

- Aplikasikan bobot baru ke input 1 :
- (1.0)+(-1.0)+(1.2)+(-1.-2)+(1.2)+(-1.0)+(1.0)+(-1.-2)+(1.0) = 8
- Jadi y = 1, sesuai target (t=1)
- Aplikasikan bobot baru ke input 2 :
- (1.0)+(-1.0)+(-1.2)+(1.-2)+(-1.2)+(-1.0)+(1.0)+(1.-2)+(1.0) = -8
- Jadi y = -1, sesuai target (t=-1)
- Jadi JST sudah bisa mengenali pola

- Aplikasikan ke pola yang baru:
- 1 1 -1
- 1 1 -1
- 1 1 1
- Beri bobot yang baru : (1.0)+(-1.0)+(-1.2)+(1.-2)+(-1.2)+(-1.0)+(1.0)+(1.-2)+(1.0) = -8
- Jadi y = -1, dikenali sebagai L