Problems

아래 링크된 데이터시트와 오른쪽 그래프를 참고하여 25℃ & TYP 조건에서 다음 빈칸(?)을 채우시오

Datasheet download : alldatasheet.com → RURG3020CC search

https://pdf1.alldatasheet.com/datasheet-pdf/view/54465/FAIRCHILD/RURG3020CC.html

Forward Voltage at	?
Resistance at	?
Parasitic Inductance	20[nH](Package)
Parallel Capacitance	0
Forward Current	?
Peak Reverse Current	?
Current Slope	100e6
Reverse Recovery Time	?

FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

I_F, FORWARD CURRENT (A)

30

$$R = \frac{\Delta V}{\Delta I} = \frac{0.95 - 0.81}{30 - 10} = 0.007$$

 $t_a * Current Slope$ = Peak Reverse Current= $20 * 10^{-9} * 100 * 10^6$

FIGURE 3. t_{rp}, t_a AND t_b CURVES vs FORWARD CURRENT

Forward Voltage at	0.95 [<i>V</i>]
Resistance at	0.007 Ω
Parasitic Inductance	20[nH](package)
Parallel Capacitance	0
Forward Current	30 [A]
Peak Reverse Current	2
Current Slope	$100*10^{6}$
Reverse Recovery Time	35[ns]

Problems

Question #1에서 작성된 표와 PSIM Simulation을 통해 Reverse Recovery Time (t_{rr}) 확인하기!

Question#2 PSIM Simulation

30[uSec] 부분에서의 t_{rr} 측정

ivieasure				
: X1 X2 Δ				
Tin	e 3.03230e-05	3.03343e-05	1.12600e-08 🖺	
I(D2) -1.97734e+00	-4.93506e-01	1.48384e+00	

 $0.25 * I_{rm} = 0.25 * -1.97734 = -0.494335[A]$

0.25x I_{rm} 과 I_{rm} 을 이으면 그래프는 다음과 같다.

Measure				
:	X1	X2	Δ	
Time	3.03030e-05	3.03382e-05	3.51639e-08 🖺	
I(D2)	2.33862e-03	-3.06551e-01	-3.08890e-01	

 t_{rr} 은 다음과 같이 35.16[ns]으로

35[ns]와 비슷한 값이 나온다는 것을 알 수 있다.

Problems

아래 링크된 데이터시트를 참고하여 다음 빈칸을 채우시오

Datasheet download : alldatasheet.com → IRF830 search

https://pdf1.alldatasheet.com/datasheet-pdf/view/17803/PHILIPS/IRF830.html

Vbreakdown(drain-source)_max.	?
On Resistance_TYP.	?
Threshold Voltage VGS(th)_TYP.	?
Transconductance_TYP.	?
Capacitance Cgs_TYP.	?
Capacitance Cgd_TYP.	?
Capacitance Cds_TYP.	?
Diode Forward Voltage_MAX.	?
Diode Resistance	1[mΩ]
Parasitic Inductance Ls	0
Internal Gate Resistance	5[Ω]

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.25 \text{ mA}$	500		-	V
$\Delta V_{(BR)DSS}$ / ΔT_j	Drain-source breakdown voltage temperature coefficient	$V_{DS} = V_{GS}$; $I_D = 0.25 \text{ mA}$	-	0.1	-	%/K
R _{DS(ON)}	Drain-source on resistance	$V_{GS} = 10 \text{ V}; I_D = 3 \text{ A}$	-	1.2	1.5	Ω
$V_{GS(TO)}$	Gate threshold voltage	$V_{DS} = V_{GS}$; $I_{D} = 0.25 \text{ mA}$	2.0	3.0	4.0	V
g _{fs}	Forward transconductance	$V_{DS} = 30 \text{ V}; I_{D} = 3 \text{ A}$	2	3.6	-	S
DSS	Drain-source leakage current	$V_{DS}^{SS} = 400 \text{ V}; V_{GS}^{SS} = 0 \text{ V}; T_i = 125 ^{\circ}\text{C}$	-	30	25 250	∝A ∝A
I _{GSS}	Gate-source leakage current	$V_{GS} = \pm 30 \text{ V}; V_{DS} = 0 \text{ V}$	-	10	200	nA
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Feedback capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	-	610 96 54	-	pF pF pF
V_{SD}	Diode forward voltage	$ I_S = 6 \text{ A}; V_{GS} = 0 \text{ V}$	I	-	-	1.2

$$C_{iss} = C_{gd} + C_{gs} = 610[pF]$$

$$C_{oss} = C_{ds} + C_{gd} = 96[pF]$$

$$C_{rss} = C_{gd} = 54[pF]$$

Vbreakdown(drain-source)_Max.	500		
On Resistance_TYP	$1.2[\Omega]$		
Threshold Voltage VGS(th)_TYP	3[V]		
Transconductance_TYP 3.6			
Capacitance Cgs_TYP.	556[<i>pF</i>]		
Capacitance Cgd_TYP.	54[<i>pF</i>]		
Capacitance Cds_TYP.	42[<i>pF</i>]		
Diode Forward Voltage_MAX.	1.2[V]		
Diode Resistance	1[mΩ]		
Parasitic Inductance Ls	0		
Internal Gate Resistance	$5[m\Omega]$		

Problems

Question #3에서 작성된 표와 PSIM Simulation을 통해

출력 전압(V_o), 출력 리플 전압(Δv_o), 인덕터 전류(I_L), 그리고 인덕터 리플 전류(Δi_L) 확인!

(Level 2 MOSFET은 on-off controlle를 사용할 수 없어 on-off controller(multi level)로 변경 후 I/O signal type을 control to model로 설정. gate resistance는 1[Ω]으로 설정)

MOSFET : O1		×
Parameters Color Simulati	in Madala	
rarameters Color Simulat	ion Models	
MOSFET (3-state) (Level 2)		Help
		Display
Name	Q1	
Model Level	Level 2	- I
Vbreakdown (drain-source)	500	
On Resistance	1.2	
Threshold Voltage VGS(th)	3	
Internal Gate Resistance	5	
Transconductance	3.6	
Capacitance Cgs	556p	
Capacitance Cgd	54p	
Capacitance Cds	43p	
Diode Forward Voltage	1.2	
Diode Resistance	1m	
Parasitic Inductance Ls	0	
Current Flag	1	
Voltage Flag	1	

Measure				
:	X1	X2	Δ	Average
Time	4.90716e-02		3.40000e-06 🖺	
V(RL)	4.81108e+00	4.81098e+00	-1.03093e-04	4.81103e+00

$$V_o = 4.811[V]$$

$$\Delta V_o = 5.15465 * 10^{-5} [V]$$

Measure					
:	X1	X2	Δ	Average	
Time			3.30000e-06 🖺		
I(L1)	5.20779e-01	4.41397e-01			
					.

$$I_L = 0.481088 [A]$$

$$\Delta I_L = 0.03969[A]$$

Problems

아래 링크된 데이터시트와 오른쪽 그래프를 참고하여 25℃ 조건에서 다음 빈칸(?)을 채우시오

Datasheet download : alldatasheet.com → IXXH110N65C4 search

https://pdf1.alldatasheet.com/datasheet-pdf/view/837725/IXYS/IXXH110N65C4.html

Vce_max.	?
Vec_max.	15[V]
Gate Threshold Voltage_MAX.	?
Transconductance_TYP.	?
Fall Time @ 25°C	?
Capacitance Cies_TYP.	?
Capacitance Coes_TYP.	?
Capacitance Cres_TYP.	?
Rce_on @ 25°C	?
Vce_threshold	?
Internal Gate Resistance	5[Ω]
Parasitic Inductance Ls	0

 $R_{ce}(on)$ 은 V_{ce} 와 I_c 그래프의 기울기를 나타냄

Fig. 1. Output Characteristics @ T_J = 25°C

 $R_{ce}(on)$ 은 V_{ce} 와 I_c 그래프의 기울기를 나타냄

$$R_{ce}(on) = \frac{V_{ce1} - V_{ce2}}{I_{ce1} - I_{ce2}} = \frac{2.75 - 2}{200 - 100} = 7.5[m\Omega]$$

Symbol	l Test Conditions		Maximum Ratings		
V _{CES}	T _J = 25°C to 175°C		650	V	
V _{CGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{\text{GE}} = 1\text{M}\Omega$		650	V	
V _{GES}	Continuous		±20	V	
V _{GEM}	Transient		±30	V	
BV _{CES}	$I_{c} = 250\mu A, V_{gE} = 0V$	650		V	
V _{GE(th)}	$I_{\rm C} = 4 {\rm mA}, V_{\rm CE} = V_{\rm GE}$	4.0		6.5 V	
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			25 μΑ	
	T _J = 150°C	3		2 mA	
GES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100 nA	
V _{CE(sat)}	I _c = 110A, V _{GF} = 15V, Note 1		1.98	2.35 V	
52(521)	T _J = 150°C	3	2.34	V	
g _{fs}	$I_{\rm C} = 60$ A, $V_{\rm CE} = 10$ V, Note 1	24	40	S	
C _{ies}) C _{oes} }			3690	pF	
C _{oes}	$V_{CE} = 25V$, $V_{GE} = 0V$, $f = 1MHz$		240	pF	
C _{res}			140	pF	

V _{CES}	=	650V
I _{C110}	=	110A
V _{CE(sat)}	≤	2.35V
t _{fi(typ)}	=	30ns

V _{ce_max}	650[<i>V</i>]
V _{ec_max}	15[<i>V</i>]
Gate Threshold Voltage_max	6.5[<i>V</i>]
Transconductance_TYP	$g_{fs} = 40[S]$
Fall Time	35[sec]
Capacitance C _{ies_TYP} .	3690[<i>pF</i>]
Capacitance C_{oes_TYP} .	240[<i>pF</i>]
Capacitance C_{res_TYP} .	140[<i>pF</i>]
R_{ce_on}	$7.5[m\Omega]$
$V_{ce_threshold}$	1.2[<i>V</i>]
Internal Gate Resistance	$5[\Omega]$
Parasitic Inductance Ls	0

Problems

Question #5에서 작성된 표와 아래 회로를 통해 PSIM Simulation 후 3-ph inverter의 선간전압 V_{ab}, V_{bc}, V_{ca} & 상전류 I_a, I_b, I_c 확인!

(Level 2 IGBT \rightarrow on-off controller(multi level) & control to model mode 사용. 이 때 gate voltage high 는 18[V], gate voltage low는 0[V], gate resistance는 $1[\Omega]$ 로 설정한다.)

BT : Q7		\times		
rameters Color Simulation Models				
GBT Model (Level 2)		Help		
	D	isplay		
Name	Q7			
Model Level	Level 2 ▼			
Maximum Vce	650			
Maximum Vec	15			
Gate Threshold Voltage	6.5			
Transconductance	40			
Fall Time	35n			
Capacitance Cies	3690p			
Capacitance Coes	240p			
Capacitance Cres	140p			
Rce_on	7.5m			
Vce_threshold	1.2			
Internal Gate Resistance	5			
Parasitic Inductance Ls	0			
Current Flag	0			
Voltage Flag	0			

