ASSIGNMENT-1

R.SATHISH

192324204

CSA-0612

Scenario: Optimizing Sales Commission Allocation

A company wants to dynamically adjust sales commissions to motivate its sales team while maintaining fairness. The algorithm considers individual performance, team performance, and external factors like product profit margins and customer satisfaction scores. The goal is to incentivize high performers and encourage teamwork.

Pseudocode

```
def dynamic commission(sales, team sales, profit margin, base commission, satisfaction score):
```

Adjust sales commission based on individual and team performance.

```
Args:
  sales (float): Individual sales amount.
  team_sales (float): Total team sales amount.
  profit_margin (float): Product profit margin as a percentage.
  base_commission (float): Base commission percentage.
  satisfaction_score (float): Customer satisfaction score (0 to 1).
Returns:
  float: Adjusted commission percentage.
# Weight factors
individual_factor = 1 + 0.2 * (sales / max(1, team_sales)) # Incentivize individual contribution
team_factor = 1 + 0.1 * (team_sales / max(1, 10000)) # Reward strong team performance
profit_factor = 1 + 0.15 * profit_margin # Higher margin increases commission
satisfaction_factor = 1 + 0.1 * satisfaction_score # Better customer satisfaction boosts commission
```

Calculate the adjusted commission percentage

adjusted_commission = base_commission * individual_factor * team_factor * profit_factor * satisfaction_factor

Ensure commission is within realistic bounds

adjusted_commission = min(50, max(5, adjusted_commission)) # Between 5% and 50% return adjusted_commission

Complexity Analysis

1. Time Complexity:

o **Factor Calculation**: O(1)O(1) for each factor.

Final Commission Calculation: O(1)O(1).
 Overall: O(1)O(1) for each salesperson.

2. Space Complexity:

No additional data structures are used beyond constants and inputs.
 Overall: O(1)O(1).

Test Cases with Fairness Metrics

Test Case	Sales Sales	Profit Margin	Base Commission	Satisfaction Score	Expected Output
High Individual Contribution	5000 10000	0.3	10	0.9	~16.65%
Balanced Team Performance	2000 10000	0.2	10	0.8	~13.2%
Low Team Contribution, High Profit	1000 10000	0.4	10	0.7	~12.6%
Poor Satisfaction, High Sales	8000 15000	0.3	10	0.5	~15.75%
Team-Oriented Contribution	2000 5000	0.25	10	1.0	~14.38%

Fairness Metrics

1. **Equity Ratio**: Ensure high performers receive proportional rewards relative to their contribution.

Equity Ratio=Individual CommissionTotal Team Commission\text{Equity Ratio} = \frac{\text{Individual Commission}}} \

Aim for a balanced ratio where top performers receive at least 20-30% more than average.

2. Performance Incentive Index:

Evaluate how changes in performance reflect in commission adjustments.

3. Satisfaction Balancing:

Track if employees with higher customer satisfaction consistently receive better commissions.

Simulation

1. Simulate monthly commission data for a sales team with diverse performance levels.

2. Measure:

- o **Motivation Impact**: Compare pre- and post-algorithm sales figures.
- Fairness Index: Check if contributors are rewarded proportionally.
- o **Revenue Impact**: Assess profitability of incentivized sales.