ロドリゲスの回転公式

宇佐見 公輔

2022年5月5日

3次元の回転変換をベクトルで記述する、ロドリゲスの回転公式を紹介します。なお、この内容は先日開催された第3回すうがく徒のつどいの「四元数と回転」で話した内容の一部です。その際の講演資料には画像がありませんでしたが、今回は画像を作成しました。

1 ロドリゲスの回転公式

以下、3次元ベクトル空間 \mathbb{R}^3 で考えます。ベクトル \vec{x} と \vec{y} の内積を $\langle \vec{x}|\vec{y}\rangle$ と、外積を $\vec{x}\times\vec{y}$ と書くことにします。

3 次元空間のなかで、原点を通る回転軸の周りに回転角 θ だけ回転するという変換は、次のように記述できます。

Theorem 1.1 (ロドリゲスの回転公式)

大きさ 1 のベクトル \vec{n} があるとします。点 X を \vec{n} の周りに角 θ だけ回転した点を X' とします。X の位置ベクトルを \vec{x} 、X' の位置ベクトルを \vec{x} とするとき、次が成り立ちます。

$$\vec{x'} = \cos\theta \vec{x} + (1 - \cos\theta) \langle \vec{n} | \vec{x} \rangle \vec{n} + \sin\theta (\vec{n} \times \vec{x})$$

 \vec{n} は回転軸に沿う単位ベクトルです。 \vec{n} の周りに角 θ だけ回転するという操作を図で示すと、次のようになります。

回転軸の周りの回転

ロドリゲスの回転公式は、回転後のベクトル $\vec{x'}$ を、 \vec{x} 、 \vec{n} 、 $\vec{n} \times \vec{x}$ の 3 つのベクトルの和の形で記

述しています。

2 ロドリゲスの回転公式の証明

以下、ロドリゲスの回転公式を証明します。

まず、 \vec{x} を \vec{n} と平行な方向 \vec{x}_{\parallel} と垂直な方向 \vec{x}_{\perp} に分解します。

$$\vec{x} = \vec{x}_{||} + \vec{x}_{\perp}$$

このとき、 $\vec{x}_{\parallel} = \langle \vec{n} | \vec{x} \rangle \vec{n}$ となります。

 $\vec{x'}$ も同様に分解します。

$$\vec{x'} = \vec{x'}_{\parallel} + \vec{x'}_{\perp}$$

このとき、点 X' は点 X を \vec{n} の周りに回転した点であることから、 \vec{x} と $\vec{x'}$ について、 \vec{n} と平行な方向の成分は等しくなります。つまり $\vec{x'}_{\parallel}=\vec{x}_{\parallel}$ です。

位置ベクトルの分解

よって、 $\vec{x'}_{\parallel}$ は \vec{x} と \vec{n} であらわせることが分かりました。次に、 $\vec{x'}_{\perp}$ を \vec{x} と \vec{n} であらわすことを考えます。

外積 $\vec{n} \times \vec{x}_{\perp}$ を考えます。外積の大きさは平行四辺形の面積でしたから、これは実は $\vec{n} \times \vec{x}$ と等しいです。

 \vec{n} と \vec{x}_{\perp} は直交していることから、次が成り立ちます。

$$|\vec{n} \times \vec{x}_{\perp}| = |\vec{n}| |\vec{x}_{\perp}| \sin \frac{\pi}{2} = |\vec{n}| |\vec{x}_{\perp}| = |\vec{x}_{\perp}|$$

よって、 \vec{x}_{\perp} 、 $\vec{x'}_{\perp}$ 、 $\vec{n} \times \vec{x}_{\perp}$ はすべて同じ大きさです。

 $\vec{x'}_{\perp}$ を \vec{x}_{\perp} 方向と \vec{n} × \vec{x}_{\perp} 方向に分解します。 \vec{x}_{\perp} と $\vec{x'}_{\perp}$ のなす角は θ なので、次のようになります。

$$\vec{x'}_{\perp} = \cos\theta \vec{x}_{\perp} + \sin\theta (\vec{n} \times \vec{x}_{\perp})$$

ベクトルの分解

これで、 $\vec{x'}_{\perp}$ を \vec{x} と \vec{n} であらわすことができました。したがって、次が成り立ちます。

$$\begin{split} \vec{x'} &= \vec{x'}_{\parallel} + \vec{x'}_{\perp} \\ &= \vec{x}_{\parallel} + \cos\theta \vec{x}_{\perp} + \sin\theta (\vec{n} \times \vec{x}_{\perp}) \\ &= \vec{x}_{\parallel} + \cos\theta (\vec{x} - \vec{x}_{\parallel}) + \sin\theta (\vec{n} \times \vec{x}) \\ &= \cos\theta \vec{x} + (1 - \cos\theta) \vec{x}_{\parallel} + \sin\theta (\vec{n} \times \vec{x}) \\ &= \cos\theta \vec{x} + (1 - \cos\theta) (\vec{n} | \vec{x} \rangle \vec{n} + \sin\theta (\vec{n} \times \vec{x}) \end{split}$$

以上でロドリゲスの回転公式が証明できました。