Semestrální zkouška ISS, 2. opravný termín, 1.2.2017, skupina D

Login: I	Příjmení a jméno:		Podp	ois:	
Příklad 1 Určete kruh na obrázku. ***Proposition of the structure of the		oty všech nenulov $W_1 = C_1 = C_2$	vých koeficientů Fou 1004 (ad) 50. Z jaz 50. et jaz	rierovy řady pro sig	ná
Příklad 2 Provádíme je nenulový od 0 s do 5 s g(t)		ervalu bude nem			(t)
x(t) = 7.	průběh modulu i arg	umentu spektrál	Iní funkce $X(j\omega)$ s	tejnosměrného sign	álı
Příklad 4 Je dán obdo Na které kruhové frekve $\omega = 0$ doprava ?	élníkový signál se spoji ω_a (v rad/s) bude	tým časem: $x(t)$ jeho spektrální	Tallico popi (o Ilaio	$\leq t \leq 1$.	00
$\omega_0 = 2\pi = 0$	T rad/s				

Příklad 5 Vysvětlete vztah mezi Fourierovou transformací a Laplaceovou transformací téhož signálu se spojitým časem x(t).

Viz A

 $n_{2,3} = \pm 4000j$, $p_{1,2} = -10 \pm 2000j$.

Nakreslete přibližně průběh modulové frekvenční charakteristiky $|H(j\omega)|$ pro kruhové frekvence

 $\omega \in [0, 5000] \text{ rad/s}.$

Příklad 7 Netopýr rezavý vysílá zvuk — periodický signál — na základní frekvenci $f_1 = 23$ kHz. Jedná se o složitý signál, je nutné zaznamenat nejen základní frekvenci, ale i další harmonické frekvence až do $4f_1$. Určete, jaká bude minimální vzorkovací frekvence pro navzorkování netopýřího zvuku.

Viz A

 $F_{s_{min}} = \dots$

Příklad 8 Kvantizér má k disposici 6 bitů, do něj vstupuje harmonický signál (cosinusovka), který plně využívá jeho dynamického rozsahu. Určete poměr signálu ke kvantizačnímu šumu (SNR) v deciBellech (dB) takového kvantizéru.

Viz A

SNR =

Příklad 9 Vypočtěte a do tabulky zapište běžnou lineární (ne kruhovou!) konvoluci dvou signálů s diskrétním časem.

n	0	1	2	3	4	5	6	7	8	9
$x_1[n]$	4	3	1	2	0	0	0	0	0	0
$x_2[n]$	1	1	0	1	0	0	0	0	0	0
$x_1[n] \star x_2[n]$	4	7	4	7		1	2			

Příklad 10 V tabulce je dán signál s diskrétním časem o délce N=4. Napište jeho předepsané kruhové posunutí.

n	0	1	2	3
x[n]	4	3	1	2
$R_4[n]x[\bmod_4(n-1)]$	2	4	.3	1

Příklad 11 Je dán diskrétní harmonický signál (diskrétní cosinusovka) s periodou N = 16:

 $\tilde{x}[n] = 8\cos(\frac{2\pi n}{16} - \frac{\pi}{4})$

Určete indexy a hodnoty všech jeho nenulových koeficientů diskrétní Fourierovy řady $\tilde{X}[k]$ v intervalu $k \in 0...N-1$. Stačí jejich zápis v exponenciálním tvaru, není nutné převádět na složkový.

Příklad 12 Diskrétní signál x[n] má délku N=8 vzorků. Jeho hodnoty jsou $x[0]=1, \quad x[1]=\sqrt{2}, \quad x[7]=-\sqrt{2},$ ostatní jsou nulové. Spočítejte zadaný koeficient diskrétní Fourierovy transformace (DFT).

 $X[3] = \dots$

Příklad 13 Diskrétní signál x[n] o délce N=16 má pouze jeden nenulový koeficient diskrétní Fourierovy transformace (DFT): X[3]=5. Napište vztah pro tento signál. Vzhledem k tomu, že X[16-3]=X[13]=0, nemělo by Vás překvapit, pokud bude signál komplexní.

Vit A

 $x[n] = \dots$

Příklad 14 Impulsní odezva číslicového filtru je zpožděný jednotkový impuls:

 $h[n] = \begin{cases} 1 & \text{pro } n = 10 \\ 0 & \text{jinde} \end{cases}$ Nakreslete průběh modulu jeho frekvenční charakteristiky $|H(e^{j\omega})|$ v obvyklém intervalu normovaných kruhových frekvencí $\omega \in 0 \dots \pi$ rad.

viz A

Příklad 15 Na obrázku je rozložení nulových bodů a pólů číslicového filtru. Nakreslete přibližně průběh modulu jeho frekvenční charakteristiky $|H(e^{j\omega})|$ v obvýklém intervalu normovaných kruhových frekvencí $\omega \in \mathbb{Q}$

D

Příklad 16 Dva číslicové filtry s impulsními odezvami (obě dány pro $n \in 0...3$):

 $h_1[n] = [1 \ 0.5 \ -0.5 \ 0.25]$

 $h_2[n] = \begin{bmatrix} 1 & -0.5 & 0.5 & 0.25 \end{bmatrix}$

jsou spojeny paralelně. Napište impulsní odezvu vzniklého systému.

viz A

 $h[n] = \dots$

Příklad 17 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7]$	8.7	7.6	15.3	15.9	3.7	9.7	8.9	12.9	14.1	15.0

Provedte souborový odhad funkce hustoty rozdělení pravděpodobnosti p(x,7) a nakreslete ji.

Viz A

Příklad 18 Náhodný signál s diskrétním časem má konstatní spektrální hustotu výkonu, je to tedy bílý šum. Nakreslete jeho korelační koeficienty R[k] pro $k \in -5 \dots 5$.

Viz A

Příklad 19 Určete střední výkon P náhodného signálu x[n], jehož funkce hustoty rozdělení pravděpodobnost p(g) má tvar obdélníka: $p(g) = \begin{cases} \frac{1}{12} & \text{pro } g \in -6 \dots 6 \\ 0 & \text{jinde} \end{cases}$

Pomůcka: pro náhodné signály se střední hodnotou nula platí, že střední výkon rovná se rozptylu: P = D.

Niz A

P =

Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci $\omega=0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi})=5$. Signál prochází číslicovým filtrem, který má na této frekvenci hodnotu frekvenční charakteristiky $H(e^{j0.2\pi})=\sqrt{5}e^{-j\frac{3\pi}{8}}$.

Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.

Viz A

 $G_y(e^{j0.2\pi}) = \dots$