Week 3 Distributional Semantics Word Embeddings Word Sense Disambiguation

Nhung Nguyen slides courtesy of Phong Le

Recap

- Introduction to NLP and Text Mining
- Preprocessing:
 - Sentence segmentation and tokenization
 - POS tagging, parsing
- Information extraction:
 - relation extraction

Plan

- 1. Distributional Semantics
- 2. Word Embeddings
 - a. Count-based approach
 - b. Brief introduction to neural networks
 - c. Prediction-based approach
- 3. Word Sense Disambiguation
- 4. Lab Exercise 3 Overview
- Introduction to Coursework 1

Targets

- 1. Understand the concepts of lexical semantics, distributional semantics, word sense disambiguation, and their importance in NLP.
- 2. Understand the ideas and mechanisms of several word vector models based on term-document matrixes, term-term matrixes, and simple neural networks.
- 3. Be able to visualise word embeddings (for example debugging)

Materials

- Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). https://web.stanford.edu/~jurafsky/slp3/ (Chap 6, 7, 18)
- http://www.scholarpedia.org/article/Neural_net_language_models
- Bengio et al. A Neural Probabilistic Language Model. J. Machine Learning Research (2003) 3:1137-1155.
- Mikilov et al. Efficient Estimation of Word Representations in Vector Space.
 arXiv preprint arXiv:1301.3781

Distributional Semantics

How do we learn new words?

Do you like rau-muống?

 Look in a dictionary (or Google): [...] is a semi-aquatic, tropical plant grown as a vegetable for its tender shoots and it is not known where it originated.
 (Wikipedia)

How did I learn (when I was a small kid)?

My mom pointed to

Can we use any of the above methods to "teach" computers the meaning of a word?

- Looking into a dictionary: How to teach computers the meanings of semi-aquatic, tropical and the whole paragraph?
- Pointing to an object: How to teach computers to "understand" images?

Difficult problems!

Maybe you have seen

- Rau-muống is delicious sauteed with garlic.
- Rau-muống is superb over rice.
- ...rau-muống leaves with salty sauces...

and have seen

- ...spinach sauteed with garlic over rice...
- ...chard stems and leaves are delicious...
- ...collard greens and other salty leafy greens
- → rau-muống is a leafy green similar to these other leafy greens

- Which strategy is used? Similar contexts suggest similar meanings.
 - → Distributional hypothesis
- But
 - do we need to understand the meaning of contexts ("sauteed with garlic")?
 - o do we need to know the meanings of "spinach", "chard", "collard"?

Turns out there are some simple workaround (computational) solutions

Distributional hypothesis (history)

The meaning of a word is its use in the language

Ludwig Wittgenstein (1889- 1951)

- It doesn't matter *computer* is called a fool as long as the new name is used indifferently with the old one.
 - Output Properties of the computers of the computer of the computers of the computer of the comput
 - Output Description
 Output Descript

Distributional hypothesis (history, cont.)

If A and B have almost identical environments we say that they are synonyms.

Zellig Harris (1954)

We shall know a word by the company it keeps.

Firth (1957)

Distributional hypothesis (formalisation)

Given word w and all the contexts $C(w) = \{c_1, c_2, ...\}$ it appears within, then

meaning(w) =
$$f(c_1, c_2, ...)$$

where f is a function compressing some statistics of C(w) into a vector.

The ultimate goal: find f!

Co-occurrence vectors: word-word matrixes

- 1. Collect a lot of documents / sentences (from, e.g. Wikipedia)
 - a. the first *digital* computers were developed.
 - b. ... the system stores enough *digital* data ...
- 2. Apply basic pre-processing steps: lowercase, tokenisation, lemmatisation
- 3. Count how many times a word *u* appearing with a word *v* count(*digital*, *computer*) = 1670
- 4. The meaning of word \underline{u} is vector [count($\underline{u}, \underline{v}_1$), count($\underline{u}, \underline{v}_2$),...]

	aardvark	•••	computer	data	result	pie	sugar	
cherry	0	,	2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	
digital	0	•••	1670	1683	85	5	4	
information	0		3325	3982	378	5	13	

Pros

The meaning of a word is represented by a vector (named word vector), therefore

we can compute the similarities between word meanings

cos(digital,	information) =	.996
cos(cherry,	information) =	.017

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

Dimension 2: 'computer'

Pros (cont.)

The meaning of a word is represented by a vector (named word vector), therefore

- we can compute the similarities between word meanings
- we can visualise word meanings

Pros (cont.)

The meaning of a word is represented by a vector (named word vector), therefore

- we can compute the similarities between word meanings
- we can visualise word meanings
- we can directly use words as inputs to most machine learning algorithms

Cons

- Distributional semantics beyond words?
- Can distributional semantics capture all aspects of semantics?

Summary

- Distributional semantics is originated from distributional hypothesis
 - Tell me who your friends are, I'll tell you who you are
- A word is represented by a co-occurrence word vector
- Co-occurrence word vectors can be used to:
 - detect the similarity among words
 - visualise word meanings
 - o input to machine learning models
- But do they really capture all semantics aspects and beyond?