GCH8108	Nom:
Homework 2 - Lattice Boltzmann Method	
Winter 2020	

This is the second evaluated homework. It will have to be handed in by February 19th. The report must be submitted in the form of a Powerpoint and you must hand-in your code. This code will be evaluated.

1 Écoulement de Poiseuille

Using the given template, write a software that uses the Lattice Boltzmann method (LBM) to solve a Poiseuille flow in a 2D channel.

Take into account the following considerations

- 1. Consider the flow in the X axis in a domain of width 1 starting from -0.5 and going to 0.5. Consider the flow oriented in the Y axis. Choose the size of the channel (in the e_y direction) as you see fit.
- 2. The term driving the Poiseuille flow can be either a pressure differential or a source term. In the present case, I suggest you use a source term (gravity) and periodic boundary conditions in the (e_y) direction.
- 3. Use the D2Q9 stencil.
- 4. Use second order boundary conditions of type halfway bounceback.
- 1. (Slide 1) Demonstrate (briefly) where the analytical solution to the Poiseuille flow comes from. This analytical solution is already programmed in the software.
- 2. (Slide 2) Show the transient evolution of the Poiseuille flow in an animation.
- 3. (Slide 3) Compare the analytical solution with the steady-state numerical solution.
- 4. (Slide 4) Show that your code recovers second order convergence.

Suggestions:

- The first step is how the time step is calculated from the value of $\bar{\tau}$, ρ_0 et μ . Then we can calculate the celerity ξ_i of the lattice. Then the weights of the lattice can be established. The weights are constant for a given lattice, they can therefore be hard-coded.
- Afterwards, we must establish the initial values of $f_i \forall [0,8]$, which are initially at equilibrium. This can be calculated from the initial density and weights if you assume that the initial velocity is zero.
- The LBM algorithm can be divided in a number of elements:
 - 1. The propagation step

- 2. The collision step
- 3. The imposition of the boundary conditions (bounce back and periodicity)
- 4. The calculation of the macroscopic properties (rho and \boldsymbol{u})
- 5. Continue to the next time steps