Finding the best model for Breast Cancer Classification

By: Aarav Desai, Sanjay Subramaniam, Tanmay Grandhisiri, Runze Shao, Shahab Khorasanizadeh, Justin Estes

Dataset and Background Information

Breast Cancer Surveillance Consortium

Features explored:

Menopause

Age Group

Breast Density

Race

Hispanic

BMI

Diagnosis of invasive breast cancer

No of relatives

Previous breast procedure

Result of last mammogram

Surgical menopause

Hormone therapy

Age at first birth

Questions we set out to answer?

- We wanted to see if given a dataset of women patients, if we could find the best model in order to predict whether a person would have breast cancer depending on certain factors.
- With the results we get from our project we could then see which factors have the highest correlation with a positive breast cancer diagnosis.

Models

- Multiple Linear Regression
- Logistic Regression
- Support Vector Machines (SVM)

Computational Techniques

- Data Visualization: Matplotlib and Seaborn
- Data Analysis: Numpy and Pandas
- Machine Learning: Scikit-learn
- Regression Models: Statsmodel

Correlation Matrix (Heatmap)

Histogram showing Age Distribution

Frequency of Cancer and Non-Cancer patients for different races

Violin Plot (BMI vs Age)

Multiple Linear Regression

• R-squared: 0.785

Adj R-squared: 0.785

			LS Regressio ======	n Results				
Dep. Variable:		can	cer R-squa	R-squared (uncentered):			0.78	
Model:			DLS Adj. R	Adj. R-squared (uncentered):			0.78	
Method:		Least Squa	res F–stat	F-statistic:			5.104e+0	
Date:		ue, 18 Apr 2	023 Prob (Prob (F-statistic):			0.0	
Time:		16:10	:01 Log-Li	Log-Likelihood:			1.8787e+0	
No. Observations:		181	903 AIC:	AIC:			−3.757e+0	
Df Residuals:		181	B90 BIC:			-3	3.756e+0	
Df Model:			13					
Covariance	Type:	nonrob	ust					
		std err 0.000						
	0.0006				0.000			
	0.0005				0.000	0.001		
race	-0.0004	7.25e-05	-5.435	0.000	-0.001	-0.000		
Hispanic	-0.0001	5.6e-05	-2.097	0.036	-0.000	-7.67e-06		
bmi	0.0004	6.11e-05	6.446	0.000	0.000	0.001		
agefirst	0.0004	5.3e-05	6.863	0.000	0.000	0.000		
nrelbc	-0.0002	6.84e-05	-2.842	0.004	-0.000	-6.04e-05		
brstproc	-0.0002	7.29e-05	-3.411	0.001	-0.000	-0.000		
	3.813e-05		0.842	0.400	-5.06e-05	0.000		
surameno	0.0002	5.42e-05	2.820	0.005	4.66e-05	0.000		

Multiple linear regression is a regression model that estimates the relationship between a quantitative dependent variable and two or more independent variables using a straight line.

Logistic Regression

- Accuracy 99.25%
- Standard deviation 0.07%

Support Vector Machine (SVM)

- Precision 0.99
- Recall 1.00
- F1 Score 1.00
- Accuracy 99.27%

Answers to our question

- Cancer feature (0-1) and cancer invasive (highest correlation from heatmap)
 are mathematically correlated, given R-Square = 0.777
- All the features with "cancer" are mathematically correlated, by applying multiple regression, given R-Square = 0.785
- Based on the logistic regression, prediction accuracy is 99.25%.
- Based on the logistic regression, the misclassification rate is 0.72% (Machine error can cause slight difference Accuracy -> 100%-0.72% ≠ 99.25%)
- SVM is the best model with 99.27% accuracy

Difficulties or complications

- Long run time of the RBF kernel vs Linear kernel. Took too long to see output.
- Tried to use a multilayer perceptron, but there was too much data for the model to look at so we went with logistic regression instead.
- Linear model and regression gave the same results, so we removed the model
- In our data, we had a lot of values in important column that were not available (Ex: BMI = 9 -> Unknown)

References

"Data collection and sharing was supported by the National Cancer Institute-funded Breast Cancer Surveillance Consortium (HHSN261201100031C). You can learn more about the BCSC at: http://www.bcsc-research.org/."

Bevans, Rebecca. "Multiple Linear Regression: A Quick Guide (Examples)." Scribbr, 15 Nov. 2022, https://www.scribbr.com/statistics/multiple-linear-regression/.

Pramoditha, Rukshan. "K-Fold Cross-Validation Explained in Plain English." *Medium*, Towards Data Science, 20 Dec. 2020, https://towardsdatascience.com/k-fold-cross-validation-explained-in-plain-english-659e3 3c0bc0.