كد فرم : FR/FY/11

ويرايش : صفر

(فرم طرح سئوالات امتحانات پایان ترم) دانشکده ریاضی

گروه آموزشی : **ریاضی** امتحان درس : **معادلات دیفرانسیل (۹ گروه هماهنگ**) نیمسال (**اول**/دوم) ۹۲–۱۳۹۱ نام مدرس: نام و نام خانوادگی : شماره دانشجویی : شماره دانشجویی : تاریخ : ۱۳۹۱/۱۰/۱۷ وقت : ۱۳۵ دقیقه

توجه:

مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.

سوال ۱۵ معادله دیفرانسیل مرتبه دوم $yy'' - (y')^{\mathsf{r}} = y^{\mathsf{r}}y'$ را حل کنید.

سوال ۲- جواب عمومی معادله دیفرانسیل $y'' + \frac{1}{x}y' - \frac{1}{x^{\dagger}}y = \frac{1}{x^{\dagger}+x^{\dagger}}$ را بیابید.

سوال $^-$ معادله دیفرانسیل زیر را به کمک عملگر D حل کنید.

۱۵ نمره $y'' + fy' + Ay = x^f + fx + \sin^f x$

x = 0 سوال x = 0 نقطه x

موال ۲۰ $\begin{cases} D^{\mathsf{T}}x+Dy=e^{\mathsf{T}t}\\ (D-\mathsf{T})x+(D+\mathsf{T})y=\mathsf{T} \end{cases}$ نمره : سوال ۲۰ معادلات مقابل را حل کنید

سوال ۶ محاسبه کنید :

نمره $L^{-1}\{rac{e^{-rs}(s^r+1)}{(s^r+rs+a)(s+r)}\}$ (ب $L\{\int_{\cdot}^t e^x\cos x\,dx\}$ الف

: سوال ۷- معادله دیفرانسیل زیر را به کمک تبدیلات لاپلاس حل کنید $x''+7x'+x=7e^{-t}$; $x(\cdot)=7$

موفق باشيد

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۹ گروه هماهنگ) نیمسال اول ۹۲–۱۳۹۱

... y'' = u(du/dy) و y' = u و y'' = u(du/dy) و y' = u و y'' = u و

 $D^{\mathsf{T}} y + \mathsf{T} D y + \mathsf{T} D$

 $\lim_{x \to \infty} x^{\mathsf{T}} q(x) = \mathsf{T}$ و $\lim_{x \to \infty} p(x) = \mathsf{T}$ این معادله است. اما $\mathbf{r} = \mathbf{r}$ و $\lim_{x \to \infty} x^{\mathsf{T}} q(x) = \mathsf{T}$ و $\lim_{x \to \infty} p(x) = \mathsf{T}$ و $\lim_{x \to \infty} p(x)$

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۹ گروه هماهنگ) نیمسال اول ۹۲–۱۳۹۱

$$y_1'' = \sum_{n=1}^{\infty} (n+1)na_n x^{n-1}$$
 : جواب دوم آن به صورت $y_1 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ جواب دوم آن به صورت $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$ خواهد بود. $y_2 = cy_1 \ln x + \sum_{n=1}^{\infty} b_n x^n$

$$\rightarrow \sum_{n=1}^{\infty} (n+1)na_n x^n - \sum_{n=1}^{\infty} n(n-1)a_{n-1} x^n - \sum_{n=1}^{\infty} a_{n-1} x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n - (n^{\tau} - n + \tau)a_{n-1}]x^n = \sum_{n=1}^{\infty} [(n+1)na_n]x^n = \sum_{n=1}^{\infty} [$$

$$\rightarrow (n+1)na_n - (n^{\mathsf{T}} - n + \mathsf{T})a_{n-1} = \mathsf{T}, n = 1, \mathsf{T}, \mathsf{T}, \cdots \rightarrow a_n = \frac{n^{\mathsf{T}} - n + \mathsf{T}}{(n+1)n}a_{n-1}, n = 1, \mathsf{T}, \mathsf{T}, \cdots$$

$$\rightarrow a_1 = Ya_1$$
, $a_2 = a_1 = Ya_2$, $a_3 = \frac{\delta}{2}a_1 = \frac{\delta}{2}a_2$, $a_4 = \frac{\delta}{2}a_2 = \frac{\delta}{2}a_3$, $a_5 = \frac{\delta}{2}a_5 = \frac{\delta}{2}a_5$, $a_8 = \frac{\delta}{2}a_5 = \frac{\delta}{2}a_5$

$$\Rightarrow y_1 = a_1(x + 7x^7 + 7x^7 + \frac{\delta}{r}x^7 + \frac{4}{r}x^5 + \frac{15}{16}x^5 + \cdots)$$

$$(D+1)$$
 $\begin{cases} D^{\mathsf{T}}x + Dy = e^{\mathsf{T}t} \\ -D \end{cases}$ $\Rightarrow (D^{\mathsf{T}} + D)x = \mathsf{T}e^{\mathsf{T}t}$ $\Rightarrow (D^{\mathsf{T}} + D)x = \mathsf{T}e^{\mathsf{T}t}$

$$D^{r} + D = \cdot \rightarrow D_{y,r} = \pm iD_{y} = \cdot , D_{r} = \cdot \rightarrow x_{h} = a\sin t + b\cos t + c \quad , \quad D^{r} + D \neq \cdot \rightarrow x_{p} = \frac{\tau}{D^{r} + D} e^{rt} = \frac{\tau}{V \Delta} e^{rt}$$

$$\rightarrow x_{g} = a\sin t + b\cos t + c + \frac{\tau}{V \Delta} e^{rt}$$

$$-a\sin t - b\cos t + rac{9}{\Delta}e^{rt} + Dy = e^{rt} o y_g = b\sin t - a\cos t - rac{1}{1\Delta}e^{rt} + c'$$
 اگر این جوابها را در معادله دوم قرار دهیم داریم $c = c'$ پس جواب عمومی دستگاه معادلات عبارت است از $x_g = a\sin t + b\cos t + rac{7}{1\Delta}e^{rt} + c$, $y_g = b\sin t - a\cos t - rac{1}{1\Delta}e^{rt} + c$

$$L\{\int_{\cdot}^{t} e^{x} \cos x \, dx\} = \frac{1}{s} L\{e^{x} \cos x\} = \frac{1}{s} \times \frac{s-1}{(s-1)^{\gamma}+1} : \frac{1}{s} = \frac{1}{s} + \frac{1}{s} + \frac{1}{s} = \frac{1}{s} \times \frac{s-1}{(s-1)^{\gamma}+1} : \frac{1}{s} = \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} = \frac{1}{s} + \frac{1}{s$$

$$L\{x'' + 7x' + x\} = L\{7e^{-t}\} \rightarrow s^{7}L\{x\} - 7s + 7r + 7r + (sL\{x\} - 7r) + L\{x\} = \frac{7}{s+1}$$

$$(s^{7} + 7s + 1)L\{x\} = \frac{7}{s+1} + 7s + 7r \rightarrow L\{x\} = \frac{7}{(s+1)^{7}} + \frac{7r}{s+1} = L\{t^{7}e^{-t} + 7re^{-t}\} \rightarrow x(t) = (7r + t^{7})e^{-t}$$