Computer Architecture

Assoc. Prof. Nguyễn Trí Thành, PhD UNIVERSITY OF ENGINEERING AND TECHNOLOGY **FACULTY OF INFORMATION TECHNOLOGY** DEPARTMENT OF INFORMATION SYSTEMS

ntthanh@vnu.edu.vn

Fundamentals

Boolean Algebra

Digital Representation

- Digital is an abstraction of analog voltage
 - Voltage is a continuous, physical unit
 - Typically ranging from 0 to 5 volts on PCs
 - Digital logic abstracts it to 2 distinct levels
 - "1" or positive (typically 2.5 V or greater)
 - "0" or negative (typically less than 1 volt)
 - Eases design and manufacturing

Analog Voltage Waveform

Digital Voltage Waveform

Digital Processing

- Combine "1"s and "0"s in different ways
 - To generate more "1"s and "0"s
 - This is finally what a computer really does
- Need a well defined mechanism
 - Ease design & development of circuits
 - Boolean Algebra
 - Mathematical framework for processing "1"s & "0"s
 - Based on simple, scalable primitive operations
 - Easy to realize using basic hardware components
 - Scales to reason about complex operations
 - Leads to information processing
 - When combined with suitable interpretations

Axioms of Boolean Algebra

- Two Boolean constants: data range
 - "1" or "true"
 - "0" or "false"
- Boolean variables
 - An unknown Boolean value
 - Can be "1" or "0" (but not both at the same time)
 - Represented using symbols (or alphabets)
 - Examples: "X", "A", "B", "α", "β"
- 3 primary Operators
 - NOT (unary operator)
 - AND (Binary operator)
 - OR (Binary operator)

Truth Table

- Tabulates results of operators
 - Involves n variables
 - Consists of 2ⁿ rows
 - Each row has a unique combination of "1" and "0" for the n variables
 - Used to define result of primary operators
 - NOT, AND, & OR

NOT Operator

- NOT operator inverts the value of a variable
 - Given a Boolean variable A
 - NOT operation is represented as A
- NOT is described by the following truth table:

Α	Ā
0	1
1	0

AND Operator

- AND operator
 - Binary operator: Uses 2 operands
 - Result is a "1" only if both operands are "1"
 - AND operation is represented as AB or A•B
 - Where A and B are two Boolean variables
- AND is described by the following truth table:

A	В	A•B
0	0	0
0	1	0
1	0	0
1	1	1

OR Operator

- OR operator
 - Binary operator: Uses 2 operands
 - Result is a "1" if any one of the operand is a "1"
 - OR operation is represented as A+B
 - Where A and B are two Boolean variables
- OR is described by the following truth table:

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Exercises

- If A=1 and B=0, What is
 - A+B =
 - AB =
 - AA =
 - B+B =
 - Ā =

Boolean Expression

- Combination of operands & operators
 - Examples
 - A+A
 - (A+B)•1
 - (A•0)+(B•0)
 - A•1+B•1
 - What are the results of the above expressions if A=1, B=0
 - Operator precedence
 - Inner most parentheses
 - NOT
 - AND
 - OR

Boolean Equations & Truth Tables

Illustrate Truth Table for A+B̄•C

Α	В	С	ǕC	A+B•C
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Laws of Boolean Algebra

- Identity law (luật định danh)
 - A + 0 = A
 - A 1 = A
 - $\overline{A} = A$
- Zero and One laws (luật 0 và 1)
 - A + 1 = 1
 - $A \cdot 0 = 0$
- Inverse laws (luật nghịch đảo)
 - $A + \overline{A} = 1$
 - $A \cdot \overline{A} = 0$
- Idempotent law: AA=A A+A=A (luật lũy đẳng)

Laws of Boolean Algebra (Contd.)

- Given Boolean variables A, B, & C
 - Commutative laws (luật giao hoán)

Associative laws (luật kết hợp)

•
$$A + (B + C) = (A + B) + C$$

Distributive laws (luật phân phối)

•
$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

•
$$A+(B \cdot C) = (A+B) \cdot (A+C)$$

DeMorgan's laws

•
$$(A \cdot B) = A + B$$

Verification of Laws (1)

- Using Truth Tables
 - Identity Law
 - A + 0 = A

Α	A + 0
0	0
1	1

Verification of Laws (2)

- Distributive law
 - $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$

А	В	С	A•(B+C)	(A•B)+(A•C)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

More Boolean Operators

- Other commonly used Boolean Operators
 - Convenient when implementing logic operations using electronic components
 - NAND
 - (A•B)
 - NOR
 - (A+B)

English to Logic Conversion

- Straightforward strategy
 - Use common sense
 - Identify independent clauses
 - Look for "and" & "or" clauses in sentences
 - Identify primary inputs
 - Work logic out for each independent clause
 - Connect them back together
 - Optimize the final equation
 - We will not deal with optimizations in this course
 - Verify using Truth Table

Example 1

- Output is 1 only if the two primary inputs are zero
 - Let the primary inputs be A and B
 - Output is 1 in the following cases
 - A=0 & B=0 => A B
 - The above equation can be rewritten as:
 - (A+B)

Example 2

- Output is 1 only if the two primary inputs are different
 - Let the inputs be A and B
 - Output is 1 in the following cases
 - A=0, B=1 => A•B
 - A=1, B=0 => A•B
 - Combining the above two cases gives:
 - (•B)+(A•B̄)
 - This operation is called Exclusive-OR or XOR
 - It is frequently used
 - Represented as A + B

Truth Table for XOR

- XOR is a frequently used operation
 - It is important to remember its operation

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Digital Logic Circuits

Digital Representation

- Digital is an abstraction of analog voltage
 - Voltage is a continuous, physical unit
 - Typically ranging from 0 to 5 volts on PCs
 - Digital logic abstracts it to 2 distinct levels
 - "1" or positive (typically 2.5 V or greater)
 - "0" or negative (typically less than 1 volt)
 - Eases design and manufacturing

Analog Voltage Waveform

Digital Voltage Waveform

Basic transitor gates

- Interconnected set of Transistors called Circuits
 - Transistors are Electronic Switches
 - Turn "On" or "Off"
 - Depending on input voltages
 - Used to implement Boolean expressions

Question

- How the NOT gate is constructed?
 - Like NAND and NOR gate

Expression construction

Expression construction

Implication rule

- $A \rightarrow B = \bar{A} + B$
 - True table

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Practice

- Use transistors to design circuits for logical expressions
 - 4 input AND circuit
 - 4 input OR circuit
 - $(A+B) \rightarrow C$
 - $(A+B)(\bar{A}+C)$
 - $(\bar{A} + B)\bar{C}$
 - $(\bar{A} + B) \rightarrow (A + \bar{C})$
 - $AB \rightarrow BC$
 - A⊕B
 - Design tool link: https://easyeda.com/

Logic Gates

- Developing large circuits is complex
 - Drawing many transistors is cumbersome
 - Makes the circuit diagram unwieldy
 - Hard to illustrate and comprehend
- Solution: Logic Gates
 - Abstract notation for common logic circuits
 - Functionally similar to set of transistors
 - Simpler to develop and use

Basic Gates

- Corresponding to basic operations in Boolean Algebra
 - NOT Gate

AND Gate

OR Gate

Data always flows in a unidirectional manner from inputs to outputs of the logic gates!

Basic Gates

 Corresponding to basic operations in Boolean Algebra

Commonly used Gates

- Other commonly used gates
 - NAND

NOR

XOR

The circle (or bubble) indicates inversion or **NOT** operation. You may add this circle (or bubble) at the output or input of any gate!

Equations to Circuits

- Convert Boolean equations to Logic Circuits
 - Logic circuits drawn on paper are often also called Schematics
 - Straightforward process
 - Convert each operator to a Logic Gate
 - Suitably connect inputs and output
 - Pay attention to crossing lines versus connected lines

Label all inputs and outputs

Equations to Circuits

- Convert Boolean equations to Logic Circuits
 - Logic circuits drawn on paper are often also called Schematics
 - Straightforward process
 - Convert each operator to a Logic Gate
 - Suitably connect inputs and output
 - Pay attention to crossing lines versus connected lines

Equations to Circuits

- Convert Boolean equations to Logic Circuits
 - Logic circuits drawn on paper are often also called Schematics
 - Straightforward process
 - Convert each operator to a Logic Gate
 - Suitably connect inputs and output
 - Pay attention to crossing lines versus connected lines

Equations to Circuits

- Convert Boolean equations to Logic Circuits
 - Logic circuits drawn on paper are often also called Schematics
 - Straightforward process
 - Convert each operator to a Logic Gate
 - Suitably connect inputs and output
 - Pay attention to crossing lines versus connected lines

- A•B•C•D
 - (A•B)•(C•D)

Standard Version (With 2-input Gates)

Shortcut Version (*n*-Input Gates)

• A•B•C•D

(A•B)•(C•D)

Standard Version (With 2-input Gates)

Shortcut Version (*n*-Input Gates)

- A•B•C•D
 - (A•B)•(C•D)

There are a few aspects to consider when using the shortcut version:

- 1. All gates must be the same
- 2. Input to output transformation must be straightforward

Standard Version (With 2-input Gates)

Shortcut Version (*n*-Input Gates)

Practice

- Use AND, OR, NOT gates to design the circuit for logical expressions
- Use NAND, NOR, NOT gates to design the circuit for logical expressions
- Design Tool Logisim: https://sourceforge.net/projects/circuit/

- Output O is
 - A, if C=1
 - *B*, if C=0

- Output O is
 - A, if C=1
 - *B*, if C=0
- Solution
 - $O = (A \cdot C) + (B \cdot \overline{C})$

- Output O is
 - A, if C=1
 - B, if C=0
- Solution
 - $O = (A \cdot C) + (B \cdot \overline{C})$

General Selection Logic

- Develop a circuit to select1 of the given 5 inputs
 - Let the inputs be A, B, C, D, & E
 - Assign unique combinations of 1s and 0s to identify each Input
 - Given n inputs you need k
 bits such that 2^k>=n
 - In this case n=5 and therefore k=3
 - Let selection variables be
 s₁, s₂, and s₃

S ₁	S ₂	S_3	0
0	0	0	Α
0	0	1	В
0	1	0	С
0	1	1	D
1	0	0	Е

General Selection (Cont.)

- Boolean equation for the example:
 - $O=(A \cdot \overline{S}_1 \cdot \overline{S}_2 \cdot \overline{S}_3) + (B \cdot \overline{S}_1 \cdot \overline{S}_2 \cdot S_3) + (C \cdot \overline{S}_1 \cdot S_2 \cdot \overline{S}_3) + (D \cdot S_1 \cdot \overline{S}_2 \cdot S_3) + (E \cdot S_1 \cdot \overline{S}_2 \cdot \overline{S}_3)$

S ₁	S ₂	S_3	0
0	0	0	Α
0	0	1	В
0	1	0	O
0	1	1	D
1	0	0	Е

Draw the circuit?

Logic Circuit for Selector

Multiplexer (Mux)

- Select 1 given N circuits are called Multiplexers
 - Have N inputs
 - K selection lines
 - Such that 2^k >= N
 - Smallest k
 - 1 output line

De-Multiplexer (DeMux)

- Move 1 input bit to selected output line
 - 1 Input
 - N Output lines

De-Multiplexer Logic Circuit

• 1 X 4 De-Multiplexer

Decoder Logic Circuit

A sample decoder

Timing

- Gates take time to work
 - Outputs don't stabilize for some time
 - Stabilization time is usually in nanoseconds
- Gate delays compound in circuits
 - Final output is not ready until all gates are stable
 - Propagation delay
 - Time taken for changes at the input to propagate to output
 - Typically, the longest path from input to output
 - This is often called the "critical path" in a circuit

Timing Diagrams

- Illustrate change in inputs & outputs in a circuit with respect to time
 - In the form of a graph
 - Time on X-axis
 - Selected inputs / outputs on the Y-axis

Timing Diagram Example

Clocks

- Delays require careful timing
 - Otherwise results will be incorrect or garbled
 - Particularly when multiple inputs are to be processed
- I/O is synchronized using a Clock
 - Clock is a alternating sequence of 1 and 0
 - With a given periodicity or frequency
 - Frequency = 1/Period
 - Frequency is determined by the gate delays and circuit complexity

Clock Example

- Clocked I/O
 - Minimum clock period = 4ns
 - Maximum Frequency = 1/4ns = 250 MHz

Bus clock example

- A computer with
 - 64 bit data bus
 - A read/write operation on RAM takes 4 cycles
 - Bus clock is 800Mhz (1Mhz=10⁶Hz)
 - What is data transfer rate (in MBps)?
 - Number of transfer per second=800.10⁶/4=2.10⁸
 - One transfer has 8 bytes
 - Transfer rate=8.2. 10⁸ =5⁸.2¹² Bps≈1526MBps

Triggering

- Clocks transitions are used in different ways
 - Level triggering
 - When clock is in a given state
 - Edge triggering
 - Raising edge triggered
 - When the clock is in transition from 0 → 1
 - Falling edge triggered
 - When the clock is in transition from 1 → 0

Latches

- Latches maintain state
 - Can be set to a specific value
 - Output of latches does not change even after Inputs change to 0!
- Fundamental units for storage
 - Building blocks for memory
- Latches always store data when the clock is at a fixed level
 - Hence they are also called as level triggered device

Set-Reset (SR) Latch

S	R	Q
0	0	No change
1	0	1
0	1	0
1	1	Unstable

Clocked S-R Latch

- Latch stores (or changes) value only when clock is high
 - Clock must be at logic level 1 to store data in the latch.
 - Data can be read at any time

D-Latch

- Advantages over S-R Latch
 - Single input to store 1 or 0
 - Avoid spurious input of S=1 and R=1
 - How about the case S=0 and R=0

D-Flip Flop

An edge triggered D-Latch is a D-Flip Flop

- Stores data only on raising edge
 - Changes at input at other times is ignored
 - Suitable clock frequency permits data to be stored only after inputs have settled
 - Data can be read at any time!

Abstract Representations

D-Latch (Positive Level Triggered)

D-Flip Flop (Rising Edge Triggered)

D-Latch (Negative Level Triggered)

D-Flip Flop (Falling Edge Triggered)

Asserted: Terminology

- Flip Flops use positive or negative logic
 - Same concept applies to other devices
 - In order to ease discussion the term "asserted" is used
 - Positive logic
 - A "1" triggers the working of the device
 - Negative logic
 - A "0" triggers the working of the device

Sequential Logic Circuits

- Involve one or more memory elements
 - Output depends on value in memory element
 - Typically based on earlier computations or history
 - Opposite of combinatory logic circuits
 - Also known as Combinatorial logic circuits
 - Circuits we have been dealing with so far
 - Does not include a memory element
 - Outputs depend purely on primary inputs

Typical Sequential Circuits

- Clocks control timings
 - Ensure values are not stored when they are transient
 - Have to wait for the signals to stabilize
 - State elements store values between computations

Circuit to read a Bit

 Given 4 Flip Flops, develop a logic circuit to select and read a given Flip Flop.

Circuit to write a Bit

 Given 4 Flip Flops, develop a logic circuit to select and change data in a given Flip Flop.

Word

- A fixed number of D-Flip Flops
 - Usually powers of 2 (2, 4, 8, 16, 32, 64)
 - Operate as a single unit
 - Store/Read n-bits at a time

Random Access Memory (RAM)

- RAM is the common form of main memory that is used to store data and programs in modern computers.
 - It is typically designed as a collection of flip flops as shown in the previous slide
 - However fabrication technology is different to reduce cost and improve transistor densities
 - Terminology:
 - Lines that carry input or output data are referred to as data lines or data bus
 - The select lines associated with the Mux and DeMux are called the address bus
 - The selection data is called address
 - In programming terminology it is called a pointer or a reference.

Random Access Memory (RAM)

- RAM is the common form of main memory that is used to store data and programs in modern computers.
 - It is typically designed as a collection of flip flops as shown in the previous slide
 - However fabrication technology is different to reduce cost and improve transistor densities
 - Terminology:
 - Lines that carry input or output data are referred to as data lines or data bus
 - The select lines associated with the Mux and DeMux are called the address bus
 - The selection data is called address
 - In programming terminology it is called a pointer or a reference.

Abstract Notation for Memory

Abstract Notation for Memory

Abstract Notation for Memory

Exercise

 Cấu hình một máy tính có đoạn viết: RAM 4GB, hỗ trợ tối đa 16GB. Giả sử kích thước của BUS dữ liệu là 64bit và kích thước slot là 64 bit. Tính số lượng dây lựa chọn của bus địa chỉ

Number Representation

Its all 1s and 0s!

- Computers operate using bits
 - Everything is ultimately a "1" or a "0"
- Mind Bender
 - If everything is a "1" or a "0" then how does the computer:
 - Show and edit video?
 - Compose and play music?
 - Display and modify pictures?
 - Learn and recognize speech?

Magic of Interpretation

- The key is interpretation
 - Different sequence of 1s and 0s are assumed to convey different meanings to different devices
 - Example: What does bits 1011 imply
 - Letter "A" on the keyboard
 - A number (11) to the CPU
 - Color red to the video card
 - Music note F# to the sound card
 - Sector number 11 to the hard disk drive

Standards

- Interpretations can be problematic
 - Different interpretations can lead to confusion
 - Problems with portability & interoperability
- Solution: Standards
 - Standard ways to represent data
 - Different data types need different standards
 - Integers have different representation versus floating point numbers
 - Numbers have different representation than characters and strings
 - Depending on needs
 - Efficiency of hardware implementation

Integer representation

- Several standards are available
 - Mirrors standard mathematical representation of numbers for most part
 - Subdivided into 2 main categories
 - Unsigned integer representation
 - Standard binary number representation
 - Signed integer representation
 - Sign-bit Magnitude representation
 - 1's Complement representation
 - 2's Complement representation

- Number representation are based on mathematical representation of decimal numbers
 - Uses 10 symbols (0 through 9) to represent 10 different values
 - Uses powers of 10 and a sequence of above symbols to represent larger values

10 ³	10 ²	10 ¹	10 ⁰
0	3	8	6

Think Time

Standard number conversions

Break 345 into Units, tens, & hundredths place 10 345 Remainder 34 10 A D 10

Combine the digits shown below into a number

Value=
$$(3*10^2)+(4*10^1)+$$

 $(5*10^0) = 300+40+5 =$
345

85

Binary number representation

- In Binary system there are only 2 symbols
 - "1" and "0"
 - Yields base-2 representation
 - This enables representation of 2 unique values
 - Namely $0_2 = 0_{10}$ and $1_2 = 1_{10}$ d
 - Notice the use of base values for numbers!
 - Analogous to the decimal system, larger numbers are represented using sequence of "1"s and "0s"
 - Each position indicates a specific power of 2

Example binary number: $\begin{bmatrix} 2^2 & 2^1 & 2^0 \\ 1 & 0 & 1 \end{bmatrix}$

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

5

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

2 5

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

- Performed through successive division by 2
 - Until quotient becomes 1
 - Writing remainders in reverse order
- Example convert 5₁₀ to binary

$$5_{10} = 101_2$$

Convert 12 to binary

12

Convert 12 to binary

2 | 12

2	12	
2	6	0
2	3	0

2	12	
2	6	0
2	3	0
	1	1

2	12	
2	6	0
2	3	0
	1	1

$$12_{10} = 1100_2$$

Fixed Size Representation

- Numbers are represented using a fixed number of bits
 - Typically a word is used
 - A word can be 8, 16, 32, or 64 bits depending on how a given machine is designed.
 - Representation mechanism
 - Convert decimal to binary
 - Pad binary with leading 0s to fit given word size

• Represent 12₁₀ as a 8-bit binary number

Represent 39₁₀ as a 5-bit binary number

Example

- Represent 12₁₀ as a 8-bit binary number
 - Solution:
 - Convert 12₁₀ to binary which is 1100₂
 - Now 1100_2 as 8-bit number = 00001100_2
 - Padding 4 leading 0s to make it 8-bits wide
- Represent 39₁₀ as a 5-bit binary number
 - Solution:
 - Convert 39₁₀ to binary which is 100111₂
 - Cannot fit 6-bits into 5-bits position!
 - Drop left-most digits as necessary
 - Result = 00111₂

Binary to Decimal Conversion

- Multiply by powers of 2 and add
 - Powers of 2 increase from left to right!
- Example: Convert 110₂ to decimal

Binary to Decimal Conversion

- Multiply by powers of 2 and add
 - Powers of 2 increase from left to right!
- Example: Convert 110₂ to decimal

Decimal =
$$(1*2^2) + (1*2^1) + (0*2^0)$$

= 4 + 2 + 0 = 6

$$110_2 = 6_{10}$$

Binary to Decimal Conversion (Example 2)

Example: Convert 11010₂ to decimal

Binary to Decimal Conversion (Example 2)

- Example: Convert 11010₂ to decimal
 - Value = $(1*2^4)+(1*2^3)+(0*2^2)+(1*2^1)+(0*2^1)$ = 16 + 8 + 0 + 2 + 0 = 26
 - $11010_2 = 26_{10}$
- Tip for verification
 - Even valued binary numbers have 0 at the end
 - Odd valued binary numbers have 1 at the end

Decimal (Base-10)	Binary (Base-2)
0 ₁₀	02
1 ₁₀	1 ₂
2 ₁₀	10 ₂
3 ₁₀	11 ₂
4 ₁₀	100 ₂
5 ₁₀	101 ₂
6 ₁₀	110 ₂
7 ₁₀	111 ₂
8 ₁₀	10002
9 ₁₀	1001 ₂

Range of numbers

- Given a unsigned binary number with K positions
 - Minimum number = 0
 - Maximum number = 2^K-1
- Example if K = 8
 - With 8 bits, maximum number = 2^8 -1 = 255

Octal representation

- Octal representation is to the base-8
 - Uses symbols "0" through "7" to represent 8 different values
 - Uses sequence of symbols for larger numbers.
- Convenient for representation of larger numbers
 - Easy to convert between Octal & binary
 - Requires fewer display places on hardware devices

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

83

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

8	83	
8	10	3

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

8	83	
8	10	3
	1	2

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

8	83	
8	10	3
	1	2

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

- Performed through successive division by 8
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 8
 - Writing remainders in reverse order
- Example: Convert 83₁₀ to Octal

Octal to Decimal Conversion

- Example: Convert 567₈ to decimal
 - Value = $(5*8^2)+(6*8^1)+(7*8^0)$ = 320 + 48 + 7 = 375
 - 567₈ = 375₁₀

Octal to Binary Conversion

- Simply write 3-bit binary representation for each digit as if it was a decimal digit
 - 3-bits are needed to represent 8 different values (0 to
 7) for each digit in the octal representation
 - In a left to right manner
- Example: Convert 123₈ to binary
 - $1_8 = 001_2$
 - $2_8 = 010_2$
 - $3_8 = 011_2$
 - $\bullet 123_8 = 001010011_2$

Binary to Octal Conversion

- Organize bits in binary number in sets of 3
 - From right to left manner
 - Write decimal value for each set of 3 bits
 - Range of values will be from 0 to 7
- Example: Convert 10110000₂ to Octal
 - 10 110 000
 - 2 6 0
 - 260₈

Hexadecimal Representation

- Hexadecimal (or Hex) uses Base-16
 - Requires 16 symbols for values 0 to 15
 - Uses standard numerals for 0 to 9
 - Uses A through F for values 10 to 15

Dec	Hex	Dec	Hex	
0 ₁₀	0 ₁₀		8 ₁₆	
1 ₁₀	1 ₁₆	9 ₁₀	9 ₁₆	
2 ₁₀	0 2 ₁₆ 10 ₁₀		A ₁₆	
3 ₁₀	3 ₁₆	11 ₁₀	B ₁₆	
4 ₁₀	4 ₁₆	12 ₁₀	C ₁₆	
5 ₁₀	5 ₁₆	13 ₁₀	D ₁₆	
6 ₁₀	6 ₁₆ 14 ₁₀		E ₁₆	
7 ₁₀	7 ₁₆	15 ₁₀	F ₁₆	

Motivation for Hex

- Primarily for display purposes
 - Originally intended for 7-segment displays

- Still used in conventional computers for display of binary information
 - Such as memory addresses etc.

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

734

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

- Performed through successive division by 16
 - Similar in philosophy to other conversions
 - Until quotient becomes less than 16
 - Writing remainders in reverse order
- Example: Convert 734₁₀ to Hex

$$734_{10} = 2DE_{16}$$

Hex to Decimal Conversion

- Example: Convert A8F₁₆ to decimal
 - Value = $(A*16^2)+(8*16^1)+(F*16^0)$ = $(10*16^2)+(8*16^1)+(15*16^0)$ = 2560 + 128 + 15= 2703
 - $A8F_{16} = 2703_{10}$

Hexal to Binary Conversion

- Simply write 4-bit binary representation for each digit as if it was a decimal digit
 - 4-bits are needed to represent 16 different values (0 to F) for each digit in the hexal representation
 - In a left to right manner
- Example: Convert 1C3₁₆ to binary
 - $\mathbf{1}_{16} = 0001_2$
 - $C_{16} = 1100_2$
 - $\mathbf{3}_{16} = 0011_2$
 - $1C3_{16} = 000111000011_2$

Binary to Hexal Conversion

- Organize bits in binary number in sets of 4
 - From right to left manner
 - Write decimal value for each set of 4 bits
 - Range of values will be from 0 to F
- Example: Convert 100110000₂ to Hexal
 - 1 0011 0000
 - 1 3 0
 - 130₁₆

Table of Equivalent Values

Dec.	Binary	Octal	Hexal	Dec.	Binary	Octal	Hexal
0 ₁₀	02	0 ₈	0 ₁₆	8 ₁₀	10002	10 ₈	8 ₁₆
1 ₁₀	12	1 ₈	1 ₁₆	9 ₁₀	10012	11 ₈	9 ₁₆
2 ₁₀	102	2 ₈	2 ₁₆	10 ₁₀	10102	12 ₈	A ₁₆
3 ₁₀	112	3 ₈	3 ₁₆	11 ₁₀	10112	13 ₈	B ₁₆
4 ₁₀	1002	4 ₈	4 ₁₆	12 ₁₀	11002	14 ₈	C ₁₆
5 ₁₀	1012	5 ₈	5 ₁₆	13 ₁₀	11012	15 ₈	D ₁₆
6 ₁₀	1102	6 ₈	6 ₁₆	14 ₁₀	11102	16 ₈	E ₁₆
7 ₁₀	1112	7 ₈	7 ₁₆	15 ₁₀	1111 ₂	17 ₈	F ₁₆ ¹⁴³

Binary Addition

Computer Architecture

Review of Addition

- Addition of decimal numbers
 - Proceeds from lowest to highest powers
 - That is from left to right
 - Each digit is added
 - If result is below 10, the digit is written as is
 - If the result is above 9, it is broken into two parts
 - Sum: Digit which results from adding the numbers
 - Carry: Digit for use in the next higher power column.

1	1		
	7	8	+
	9	9	•
	7	7	

Logic Circuit to add 2 Bits: Half Adder

- Truth table for sum & carry bits are as follows.
- Given the truth table
 - Sum = A+B
 - $C_{out} = A \cdot B$

A	В	Sum	Cout
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Logic Circuit to add 2 Bits: Half Adder

- Truth table for sum & carry bits are as follows.
- Given the truth table
 - Sum = A+B
 - $C_{out} = A \cdot B$

A	В	Sum	Cout
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Binary Addition

- Proceeds in a similar fashion as conventional addition
 - Bits are added from right to left
 - Sum is 1 or 0
 - Carry is 1 or 0
 - Results from addition of bits is illustrated in the adjacent truth table.

161

Logic Circuit to add 3 bits: Full Adder

- Refer to truth table shown earlier
 - Sum = A⊕ B⊕C
 - Cout = (A•B) + (B•Cin) + (Cin•A)

Logic Circuit to add 3 bits: Full Adder

- Refer to truth table shown earlier
 - Sum = A⊕ B⊕C
 - Cout = (A•B) + (B•Cin) + (Cin•A)

Ripple Carry Adder

- Several full adders can be cascaded to add multiplebits!
 - Circuit reflects the way binary numbers are added
 - The following circuit adds 2 3-bit binary numbers namely A₂A₁A₀ and B₂B₁B₀ to yield result C₃C₂C₁C₀

Ripple Carry Adder

- Several full adders can be cascaded to add multiplebits!
 - Circuit reflects the way binary numbers are added
 - The following circuit adds 2 3-bit binary numbers namely A₂A₁A₀ and B₂B₁B₀ to yield result C₃C₂C₁C₀

Ripple Carry Adder

- To add 2 n-bit numbers you need n Full Adders
 - First carry to the circuit is 0
 - A half adder could be used here instead
 - Each carry-out (except the last) is fed to the carry-in of the next stage
 - Note that inputs are organized from lowest to highest power of 2
 - Circuit generates n+1 bits as result of addition
 - Last carry (highest power) is called an overflow bit
 - Because it does not fit in n-bits (which is typically what is expected to happen in these circuits).
 - If a carry is present in the n+1th bit it is called an overflow condition!
 - Microprocessors typically provide a mechanism to detect overflows!

Unsigned Representations

- Unsigned number representations
 - Binary (base-2)
 - Octal (base-8)
 - Hexadecimal (base-16)
 - Given n bits
 - Range: 0 to 2ⁿ-1 decimal numbers

Need for Signed Representations

- Unsigned representations cannot represent negative numbers
 - Such as: -2, -51 etc.
- However negative numbers are frequently used
 - Need a representation for positive & negative numbers – that is, signed numbers

Standard Signed Representations

- Signed numbers are represented using 3 different standards
 - Sign-bit Magnitude (SBM) representation
 - 1's Complement Representation
 - 2's Complement Representation
 - This is the representation that is used by computers today!

Strategy for Signed Representation

- General strategy is as follows:
 - All representations assume fixed size
 - 8, 16, 32, or 64 bits operated on as a single unit-word
 - Given n bits (unsigned range: 0 to 2ⁿ-1)
 - Break the range into two halves
 - One half represents positive numbers
 - 0 to 2ⁿ⁻¹-1 corresponds to positive numbers
 - Decimal value: 0 to 2ⁿ⁻¹-1
 - Another half represents negative numbers
 - 2ⁿ⁻¹ to 2ⁿ-1 corresponds to negative numbers
 - Decimal range: -2ⁿ⁻¹ to -1

Sign-Bit Magnitude (SBM) Representation

- Uses left-most bit called sign bit to indicate sign
 - Sign bit = 0 implies positive number
 - Sign bit = 1 implies negative number
- Example:

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
1	0	0	0	1	0	0	1

Sign-Bit Magnitude (SBM) Representation

- Uses left-most bit called sign bit to indicate sign
 - Sign bit = 0 implies positive number
 - Sign bit = 1 implies negative number
- Example:

Sign-Bit Magnitude (SBM) Representation

- Uses left-most bit called sign bit to indicate sign
 - Sign bit = 0 implies positive number
 - Sign bit = 1 implies negative number
- Example:

SBM Examples (1)

- Represent 10₁₀ using 8-bit SBM
 - Converting to binary: $10_{10} = 1010_2$
 - 8-bit SBM representation: 00001010₂
 - Sign bit is 0 to indicate positive value.
- Represent -15₁₀ using 8-bit SBM
 - Converting to binary: $15_{10} = 1111_2$
 - 8-bit SBM representation: 10001111₂
 - Sign bit is 1 to indicate negative value

SBM Examples (2)

- Convert 8-bit SBM 00000101₂ to Decimal
 - The sign bit (left most bit) is 0 indicating positive value
 - Converting 0000101₂ to decimal we get 5₁₀
 - 00000101_2 in SBM = 5_{10}
- Convert 8-bit SBM 10001101₂ to Decimal
 - The sign bit (left most bit) is 1 indicating negative value!
 - Converting 0001101₂ to decimal we get 13₁₀
 - Result: $10001101_2 = -13_{10}$

SBM problems

- There are a few drawbacks with SBM
 - There are 2 different representations for zero
 - +0 (00000000) and -0 (10000000)
 - Logic circuits for addition and subtraction of binary numbers are complicated as they have to handle sign bit separately.
- Addition of positive and negative 13
 - 00001101₂ (13₁₀)
 - 10001101₂ (-13₁₀)
 - 10011010 (Sum=-26₁₀)

1's Complement Representation

- 1's Complement Representation
 - Fixed size representation
 - Most significant bit is reserved as sign-bit
 - Positive numbers are represented using standard binary notation
 - Negative numbers are represented by inverting all bits in the standard binary notation

Example of 1's Complement

- Represent 12₁₀ using 8-bit 1's Complement
 - Converting to binary: $12_{10} = 1100_2$
 - 8-bit 1's complement representation: 00001100₂
 - Sign bit is 0 to indicate positive value.
- Represent -13₁₀ using 8-bit 1's complement
 - Converting to binary: 13₁₀ = 1101₂
 - 8-bit representation: 00001101₂
 - Since original decimal number was negative each bit in 8-bit representation is inverted!
 - 1s Complement representation = 11110010
 - Note: Sign bit becomes 1 to indicate negative value

Example of 1's Complement

- Convert 1's complement 00001111₂ to decimal
 - Sign bit is 0 to indicating positive value.
 - Converting 000011111₂ to decimal we get 15₁₀
 - Final result: +15₁₀
- Convert 1's complement 11110101₂ to decimal
 - Sign bit is 1 indicating negative value.
 - First invert all the bits to get: 00001010₂
 - Convert above binary to decimal to get 10₁₀
 - Final result: -10₁₀

1's Complement

- Still has 2 different representations for 0
 - +0 (00000000) and -0 (111111111)
- However, A A operations can be easily represented
 - A A = A + (-A) = 111111111 (which is effectively 0 in 1's complement)
 - 00001101₂ (+13₁₀)
 - **1**1110010₂ (-13₁₀)
 - 11111111₂ (-0₂)

2's Complement

- Overcomes the limitations of SBM and 1's complement representation!
 - Fixed size representation
 - Enables subtraction of numbers via addition!
 - Also reserves a special sign bit (left most bit)
 - 0 (sign bit) indicates positive numbers
 - 1 (sign bit) indicates negative numbers
 - Conversion to and from 2's complement requires similar steps
 - Several of them are identical to 1's complement

Convert Decimal to 2's Complement

2's Complement Example

- Represent +20₁₀ using 8-bit 2's Complement
 - Since number is positive simply represent +20₁₀ as a 8-bit binary number!
 - \bullet +20₁₀ = 00010100₂
- Represent -18₁₀ using 8-bit 2's complement
 - Since number is negative we need to do 1's complement and add 1₂
 - Step 1: Convert 18_{10} to 8-bit binary = 00010010_2
 - Step 2: Invert bits = 11101101₂
 - Step 3: Add $1_2 = 111011110_2$
 - Final result: $-18_{10} = 111011110_2$ in 8-bit 2's complement

2's Complement to Decimal

Binary number in n-bit 2's complement

Value of Sign-bit (Left most bit) Sign Bit=1 Sign Bit=0 Invert all bits Binary to decimal (positive number) Add 1 Binary to decimal (Negative number)

Example

- Convert 8-bit 2's complement to decimal
 - Case 1: 00001010₂
 - Sign bit is 0 indicating positive number
 - Simply convert binary to decimal to get 10₁₀
 - Case 2: 11111010₂
 - Sign bit is 1 indicating negative number
 - Step 1: Invert all bits to get 00000101₂
 - Step 2: Add 1₂ to get 00000110₂
 - Convert binary to decimal to get -6₁₀
 - Note the negative sign on decimal number!

Subtraction using 2's Complement

Perform 5₁₀ – 3₁₀ using 4-bit 2's complement

$$5_{10} - 3_{10} = 5_{10} + (-3_{10})$$

$$5_{10} = 0101_2$$
 INV

$$-3_{10} = (0011_2 \rightarrow 1100_2 + 1_2) = 1101_2$$

$$5_{10} + (-3_{10}) = 0101_2 + 1101_2 = 0010_2$$

$$0010_2 = 2_{10}$$

- \bullet 00010010₂ (+18₁₀)
- 11101110₂ (-18₁₀)

Any problems?

- Zero
 - \bullet +0 = 0000 0000
 - -0 = 1111 1111 +1 = 1 0000 0000
- Addition of positive and negative number
 - $00010010_2(+18_{10})$
 - 111011110₂ (-18₁₀)
 - 100000000₂ (0)

Subtraction using 2's Complement

Perform 2₁₀ – 4₁₀ using 4-bit 2's complement

$$2_{10} - 4_{10} = 2_{10} + (-4_{10})$$

$$2_{10} = 0010_2$$

$$-4_{10} = (0100_2 \xrightarrow{\text{INV}} 1011_2 + 1_2) = 1100_2$$

$$2_{10} + (-4_{10}) = 0010_2 + 1100_2 = 1110_2$$

1110₂ is 2's complement result and because it is negative (sign bit is 1) it needs to be converted

$$1110_2 \xrightarrow{\text{INV}} 0001_2 + 1_2 = 0010_2 = -2_{10}$$

Number range (in 2's Complement)

- Given n bit variable
 - Total number:2ⁿ
 - Non negative range: $0 \rightarrow 2^{n-1} 1$ (total 2^{n-1})
 - Negative total: $2^n 2^{n-1} = 2^{n-1}(2-1) = 2^{n-1}$
 - Negative range: $-2^{n-1} \rightarrow -1$

- Circuit to subtract two 3-bit 2's complement numbers
 - Recollect that subtraction is performed via addition in 2's complement representation.
 - Addition is performed using Full Adder modules
 - Cascaded together in the form of Ripple Carry Adder
 - One of the numbers have to be converted to 2's complement representation
 - Invert all the bits
 - Add 1₂

Logic Circuit to add 3 bits: Full Adder

- Refer to truth table shown earlier
 - Sum = A⊕ B⊕C
 - Carry = $(A \cdot B) + (B \cdot C) + (C \cdot A)$

Logic Circuit to add 3 bits: Full Adder

- Refer to truth table shown earlier
 - Sum = A⊕ B⊕C
 - Carry = $(A \cdot B) + (B \cdot C) + (C \cdot A)$

Ripple Carry Adder

- Several full adder's can be cascaded to add multiple-bits!
 - Circuit reflects the way binary numbers are added
 - The following circuit adds 2 3-bit binary numbers namely A₂A₁A₀ and B₂B₁B₀ to yield result C₃C₂C₁C₀

Ripple Carry Adder

- Several full adder's can be cascaded to add multiple-bits!
 - Circuit reflects the way binary numbers are added
 - The following circuit adds 2 3-bit binary numbers namely A₂A₁A₀ and B₂B₁B₀ to yield result C₃C₂C₁C₀

Add/Subtract Circuit

Circuit to Add or Subtract two 3-bit 2's complement number

Add/Subtract Circuit

Circuit to Add or Subtract two 3-bit 2's complement

Add/Subtract Circuit

Circuit to Add or Subtract two 3-bit 2's complement

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps

• Grade school shift-add method:

Multiplicand	ł	1	000
Multiplier	x	1	001
			<u>100</u> 0
		00	00
	0	00	0
	10	00	
Product	010	01	000

- m bits x n bits = m+n bit product
- Binary makes it easy:
 - multiplier bit 1 => copy multiplicand (1 x multiplicand)
 - multiplier bit 0 => place 0 (0 x multiplicand)

Shift-add Multiplier Version

Multiplication

• This is left for further reading

Real numbers

Real numbers

- Decimal real numbers
 - $13.234 = 1*10^{1} + 3*10^{0} + 2*10^{-1} + 3*10^{-2} + 4*10^{-3}$
- Binary real numbers
 - $101.111 = 1*2^2 + 1*2^0 + 1*2^{-1} + 1*2^{-2} + 1*2^{-3} = 5.875$
- Decimal to binary

- 100.1010111
- Just approximately
- 4.6796875

$$0.68*2=1.36$$
 1

$$0.36*2=0.72$$
 0

$$0.72*2=1.44$$

$$0.44*2=0.88$$
 0

$$0.88*2=1.76$$
 1

$$0.76*2=1.52$$
 1

$$0.52*2=1.04$$

208

- Representation
 - A number of bits is used to represent the integral part
 - The rest represents the fraction value
- The hardware is less costly
- The precision is not high
- Suitable for some special-purpose embedded processors

- Representation
 - A number of bits is used to represent the integral part
 - The rest represents the fraction value
- The hardware is less costly
- The precision is not high
- Suitable for some special-purpose embedded processors

- Representation
 - A number of bits is used to represent the integral part
 - The rest represents the fraction value
- The hardware is less costly
- The precision is not high
- Suitable for some special-purpose embedded processors

- Representation
 - A number of bits is used to represent the integral part
 - The rest represents the fraction value
- The hardware is less costly
- The precision is not high
- Suitable for some special-purpose embedded processors

- Signed real number
 - Follow the 2's Complement
- Example -5.875 in 8 bits (4-4)
 - 0101.1110
 - 10100001 (bit inversion)
 - 1010 0001
 - +0000 0001 (add 1)
 - = 1010 0010

- Signed real number
 - Follow the 2's Complement
- Example -5.875 in 8 bits (4-4)
 - 0101.1110
 - 10100001 (bit inversion)
 - 1010 0001
 - +0000 0001 (add 1)
 - = 1010 0010

- Exercise
- Given 16 bits (12-4) real number in 2's complement. Calculate the value of
 - 0101 0011 1110 0011
 - 1101 0010 1110 0011
 - 1000 0011 1110 0011
 - 1001 0011 1010 0011

- Exercise
- Given 16 bits (12-4) real number in 2's complement. Calculate the value of
 - 0101 0011 1110 0011
 - 1101 0010 1110 0011
 - 1000 0011 1110 0011
 - 1001 0011 1010 0011

Exercise

Represent 1.25 in 8 bit binary (4-4 bits for fraction)

 Represent -1.25 in 8 bit binary (4-4 bits for fraction)

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significant: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

- What number is represented by the singleprecision float
 - 11000000101000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Fxponent = $10000001_2 = 129$
- $x = (-1)^1 \times (1 + 01_2) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^2$ = -5.0

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 127 = –126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = –1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations of 0.0!

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - \bullet +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × –ve ⇒ –ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Floating-Point division

Same step as the multiplication

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

ALU & CPU

Introducing ALU

- ALU: Arithmetic & Logic Unit
 - Performs arithmetic operations
 - Addition
 - Subtraction
 - Performs logic operations
 - AND: A•B
 - OR: A+B
 - NOT: A
 - Desired operation/result is chosen based on a selection logic.

Exercise

Develop a circuit that accepts 3 inputs (say A, B, and C_{in}) and generates 2 outputs (say Out and C_{out}) depending on 3 control inputs S₁,S₂, and S₃ as shown in the truth table:

S ₀	S ₁	S ₂	Out	C _{out}
0	0	0	A•B	X
0	0	1	A+B	X
0	1	0	Α	X
0	1	1	B	X
1	0	0	A⊕B	AB+
			$\oplus C_{in}$	BC_{in}
				+
				AC_{in}

X = Don't care (can be 1 or 0)

Solution: 1-bit ALU

Solution: 1-bit ALU

n-bit ALU

- n-bit ALU
 - Repeat 1-bit ALU n times
 - All 1-bit ALUs get the same selection lines
 - Carry out (C_{out})from one stage is wired to carry-in of next state
 - Similar to how a ripple carry adder (or subtraction circuit) is wired
 - Performs operation on n-bits simultaneously

Example 4-bit ALU

ALU Notation

 An ALU is denoted using the following graphical notation.

Indicates number of bits on each line.
The size of each operand is typically the same and corresponds to the word size.

OP Code	Result
0 ₁₀	A•B
1 ₁₀	A+B
2 ₁₀	Ā
3 ₁₀	В
•••	

Thought Experiment

- Where do the inputs to the ALU come from?
 - The two operands
 - The operation the ALU needs to perform
- Similarly where do the outputs from the ALU go?
- Solution: Registers!
 - The fundamental storage units.

Registers Revisited

- Fixed number of D-Flip Flops to form a Word
 - Corresponding to size of ALU operands!
 - Operate as a single unit
 - Store/Read n-bits at a time

Given n Registers how to read data from a

specific register?

Given n Registers how to read data from a

specific register?

Given n Registers how to read data from a

specific register?

Given n Registers how to read da This is not a single

Mux but a set of 8 specific register? Mux's all having 00 Register 1 the same selection 8 logic! 01 Register 2 8 Register 3 8 8 Register 4 2 Register Select

• Given n Registers how to read da This is not a single Mux but a set of 8

- ALU needs 2 operands to work!
 - How to select 2 registers from a Register File?

ALU with Inputs

ALU with Inputs

- Solution: Put it into a register!
- OK, so do we do that?
 - That is, Given 1 input how to route it on n different paths?

- Solution: Put it into a register!
- OK, so do we do that?
 - That is, Given 1 input how to route it on n different paths?

- Solution: Put it into a register!
- OK, so do we do that?
 - That is, Given 1 input how to route it on n different

- Solution: Put it into a register!
- OK, so do we do that?
 - That is, Given 1 input how to route it on n different

- Solution: Put it into a register!
- OK, so do we do that?
 - That is, Given 1 input how to route it on n different

Data path

- The ALU and associated components constitute the Data Path
 - Includes Registers, Multiplexers and any other device associated with ALU operations
 - All operands are typically the same size
 - Register sizes match with size of operand
 - Size of operands are associated with CPU
 - 32-bit processor (ALU uses 32-bit operands)
 - 64-bit processor (ALU uses 64-bit operands)

Handling Constant Values

- Earlier data path did not permit initialization of registers with constant values
 - Limited constant values could be achieved using operations supported by ALU.
 - Even that was pretty convoluted!
- Solution: Add instruction to initialize register
 - With a constant value: C = A + 14
 - Typically, the constant value is embedded as a part of the instruction.
 - By reusing as many bits as possible for this task

Implementation Strategy

- Fix code for constant value initialization
 - Have to use a code that is not already used by ALU
 - In our case, let's set it to 1111 for our ALU
 - If initialization is detected, use constant bits in instruction to initialize a register.
 - Need 8-bits to hold constant value for 8-bit CPU
 - For this we can reuse register selection input bits to double up as constant bits in this instruction as we are not using registers for any operation.
 - Need 2-bits to select 1 of 4 destination registers

Handling Constants Mux2 8 Register **DeMux** 8 File В ⁰ Mux ¹ Mux1 8 (4) 8 Flags **ALU** 4 4 8 265 Operand1 Operand2 Operation **Destination**

Handling Constants

Handling Constants

Where do instructions come from

- The data path uses a set of bits that constitute an instruction
 - Where do these instruction bits come from?
- Solution: Memory
 - A large collection of words
 - Each word consists of 1 or more bytes (8-bits)
 - Similar in philosophy as a Register File
 - Manufactured using different technology
 - Makes it slower
 - But a whole lot cheaper!

Memory Organization Revisited

Memory Organization Revisited

Memory Organization Revisited

Memory-ALU Interconnection

- Typically memory is large in size
 - Gigabytes in size these days
 - Cannot be packed into the CPU
 - Cost prohibitive
 - Memory is manufactured separately
 - Interconnected with the CPU using Buses
 - Buses are long wires interconnecting devices
 - Particularly ALU Data Path & Memory
 - Buses for memory
 - Address Bus: Selection lines for Mux and De-Mux
 - Data Bus: Bits to be written into memory locations.

Abstract Notation for Memory

Abstract Notation for Memory

Abstract Notation for Memory

Using Memory

- Memory has 3 primary inputs
 - Address Bus carrying address of memory slot
 - Indicates which memory slot to read or write
 - Data Bus (The actual data bits to be stored or read)
 - Control signals (Read/Write & Enable)
 - How to wire these inputs & outputs to the ALU data path?
 - Design requirements
 - Need to store output from ALU
 - Need to load data from memory into ALU
 - Need to load instructions from memory into ALU

Using Memory

- Memory has 3 primary inputs
 - Address Bus carrying address of memory slot
 - Indicates which memory slot to read or write
 - Data Bus (The actual data bits to be stored or read)
 - Control signals (Read/Write & Enable)
 - How to wire these inputs & outputs to the ALU data path?

 We need go provide Addresses
 - Design requirements
 - Need to store output from ALU
 - Need to load data from memory into ALU
 - Need to load instructions from memory into ALU

to the Memory unit in order to

do these operations!

Tackling Addresses

- Address is used to select a memory slot
 - For fetching instructions
 - In an repetitive manner
 - Typically from consecutive locations
 - Think of it as an Array in Java!
 - Need to somehow generate the addresses
 - Typically done using some register in the ALU to store intermediate results
 - For reading/writing data at random addresses
 - Address depends on the instruction at hand
 - The instruction typically needs to identify the address to read or write.

Tackling Addresses

- Address is used to select a memory slot
 - For fetching instructions
 - In an repetitive manner
 - Typically from consecutive locations
 - Think of it as an Arra
 - Need to some
 Typically dor intermediate
 For reading/w
 // Assume each instruction is 16-bits long short memory[256]; for (int address = 0; (address < 256); address++) { instruction = memory[address]; process(instruction);
 - Address depet
 - The instruction typically needs to identify the address to read or write.

Address Generation Logic Circuit

- Issues to consider & solutions
 - Address needs to be generated by adding 1
 - Use a ripple carry adder to add
 - Addresses need to be stored before/after add
 - Use a register
 - Need alternate between address for instructions and address for storing/reading data
 - Use a multiplexer for choosing
 - Use a Clock to drive the selection lines of this multiplexer
 - Select address for instruction first (Clock = 0).
 - Select address for reading/writing data next (Clock = 1).

Catch!

- Our data path is not symmetric
 - Instructions are 16-bits wide
 - Data or Registers are 8-bits wide
 - How do we design a memory module that can
 - Provide 16-bits first
 - Provide 8-bits next
- It is going to take some work
 - Use the lowest denominator memory module
 - One than can provide 1 byte at a time
 - Assemble bytes together to make instructions

Working with Bytes... Instruction Byte 1 Byte 2 Byte 3 Address Bus Address Address Bus Address Bus Address Bus Address Bus Address Bus Address Bus Address Address Bus Address Address Address Bus Address Address Bus Address Bus Address Address

Data Bus

Least significant address bit changes between 0 and 1 for each consecutive address.

Memory

(8 x 256)

When the clock is low (S1=0) the De-Mux places the bytes read from Memory into Byte1 and Byte2 depending on S0 (so S0, the least significant bit from the address bus) which switches between 0 and 1 when clock is low to fetch two bytes from memory. When the clock is high (S1=1), the De-Mux ignores s0 and places the data read from memory into Byte 3.

Working with Bytes... Address B Instruction Data Chip Enable **RD** Byte 3 Byte 1 Byte 2 8 1X 00 01 Memory De-Mux (8 x 256) Data Bus **S1 S**0 Instruction Byte

Least significant address bit changes between

0 and 1 for each consecutive address.

When the clock is low (S1=0) the De-Mux places the bytes read from Memory into Byte1 and Byte2 depending on S0 (so S0, the least significant bit from the address bus) which switches between 0 and 1 when clock is low to fetch two bytes from memory.. When the clock is high (S1=1), the De-Mux ignores s0 and places the data read from memory into 284 Byte 3.

Select

/ Data

Quiz?

- Any questions?
- How the CPU can communicate with other devices, such as a keyboard and a modem?