Angelo Rodrigo Ribeiro da Silva

Solus

Brasil

2018, v-0.0.1

Angelo Rodrigo Ribeiro da Silva

Solus

Arquivo de documentação para o software análisado como trabalho de conclusão de curso para o curso de Análise e Desenvolvimento de Sistemas no Instituto Federal de Educação, Ciência e Tecnologia de São Paulo localizado no câmpus Boituva

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO – IFSP

Curso de Análise e Desenvolvimento de Sistemas

Orientador: Dr. Marcelo Figueiredo Polido

Brasil 2018, v-0.0.1

Lista de ilustrações

Figura 1 – Diagrama de caso de uso .	1	3
--------------------------------------	---	---

Lista de tabelas

Tabela 1 –	Especificações do caso de uso capturar dados meteorológicos	14
Tabela 2 –	Especificações do caso de uso armazenar dados meteorológicos	14
Tabela 3 –	Especificações do caso de uso realizar consultas com filtros	14
Tabela 4 –	Especificações do caso de uso realizar análise estatística dos dados	14

Lista de abreviaturas e siglas

API Application Programming Interface (em português Interface de Programação de Aplicações).

HTTP HyperText Transfer Protocol (em português Protocolpo de transferência de hipertexto).

IFSP Instituto Federal de Educação, Ciência e Tecnologia de São Paulo

MYSQL É um sistema de gerenciamento de banco de dados que utiliza a linguagem SQL.

PHP Personal Home Page, uma linguagem de programação interpretada livre e voltada para a web.

RESTFUL API Full Representational State Transfer Application Programming Interface (em português é um serviço de API que segue a risca as definições da abstração REST).

SQL Structured Query Language (em português Linguagem de Consulta Estrutura).

Sumário

1	INTRODUÇÃO	9
Introdu	ção	9
1.1	Tema	9
1.2	Objetivo do Projeto	9
1.3	Delimitação do Problema	9
1.4	Justificativa da Escolha do Tema	9
1.5	Método de Trabalho	10
2	DESCRIÇÃO GERAL DO SISTEMA	11
Descriç	ão Geral do Sistema	11
2.1	Descrição do Problema	11
2.2	Principais Envolvidos e suas Características	11
2.2.1	Usuários do Sistema	11
2.2.2	Desenvolvedores do Sistema	12
2.2.3	Tecnologias Empregadas	12
2.3	Regras de Negócio	12
3	REQUISITOS DO SISTEMA	13
Requisi	tos do sistema	13
3.1	Requisitos funcionais	13
3.2	Requisitos não funcionais	13
3.2.1	Segurança	15
3.2.2	Disponibilidade	15
3.2.3	Performance	15
4	CONCLUSÃO	17
	REFERÊNCIAS	10

1 Introdução

Na sociedade contemporânea, diversas preocupações quanto a captação de energia surgiram. Uma dessas preocupações é cada vez mais, buscar fontes renováveis de energia.

Atualmente, a energia solar vem mostrando seus benefícios, sendo pelo custo, que é muito mais baixo do que pás eólicas e pela facilidade de instalação, que pode ser feita sem a necessidade de uma grande área reservada.

Devido ao avanço da captação de energia solar, diversos desafios surgiram ao se estudar a melhor forma de se trabalhar com a energia captada.

1.1 Tema

Construção de um software para a captação de dados, análise e previsão meteorológica utilizando microcontroladores.

1.2 Objetivo do Projeto

Conseguir a melhor obtenção e utilização de energia solar de painéis fotovoltaicos através de captação e análise prévia dos dados meteorológicos, dados esses que precisam ser disponibilizados da maneira mais fácil possível.

1.3 Delimitação do Problema

Não existe uma forma prática de realizar a análise dos dados antes da instalação de painéis solares, visto que, os dados captados por sensores, para que seja feita a análise, possui um fluxo muito alto de informações, assim, a necessidade de uma aplicação que faça a análise dessa quantidade massiva de dados, se faz evidente.

1.4 Justificativa da Escolha do Tema

Existe um projeto de instalação de uma usina solar no IFSP, no campus localizado em Boituva, portanto, o tema do projeto foi escolhido, para que se possa, no futuro, trabalhar a energia captada por painéis solares da melhor forma possível.

1.5 Método de Trabalho

A metodologia de trabalho escolhida para este projeto, utiliza algumas convenções da metologia SCRUM, porém, pelo tamanho limitado da equipe, o projeto foi trabalhado sendo ditado pela metodologia KANBAN, para a implementação do projeto, foi decidido a utilização de painéis microcontroladores arduino, enviando requisições HTTP para uma api, construída em PHP e utilizando banco de dados SQL.

2 Descrição Geral do Sistema

O projeto visa, através da análise estatística de dados meteorológicos, auxiliar o estudo de viabilidade acerca da instalação de painéis fotovoltaicos.

Para isso, serão coletados dados através de sensores conectados a um microcontrolador arduino. Inicialmente, prevemos captar informações de umidade do ar, temperatura e incidência de radiação solar.

Dados esses, que serão enviados através de requisições HTTP para uma API, serão armazenadas em banco de dados e então, será feita uma análise estatística.

A interface do usuário final com a aplicação, será feita através de uma aplicação web, onde os dados analisados serão disponibilizados e o usuário fará consultas a essas informações.

2.1 Descrição do Problema

Durante o estudo de viabilidade sobre a instalação de painéis fotovoltaicos no IFSP, notou-se uma dificuldade na captura e análise dos dados para tomada de decisão, justificando assim, a necessidade da automatização desse processo, considerando também, a quantidade massiva de dados e as possíveis falhas de estimativa pelo cálculo humano.

Pelo alto de custo de instalação de painéis solares, uma decisão errada no estudo de viabilidade poderia causar um dano financeiro imensurável.

O sistema afeta principalmente, a configuração dos painéis como ângulo, posição, local, entre outras variaveis que podem afetar o desempenho energético.

2.2 Principais Envolvidos e suas Características

2.2.1 Usuários do Sistema

O sistema visa atender especialistas que precisam realizar tomadas de decisão.

Isso inclui também, clientes que, antes de realizar a instalação de painéis solares, precisam analisar se o investimento será compensado. E também, empresas de instalação de painéis solares, que gostariam de fazer uma análise de viabilidade mudando local, angulo e fazendo outras pesquisas acerca da instalação ou da manutenção de painéis fotovoltaicos.

2.2.2 Desenvolvedores do Sistema

Os envolvidos no desenvolvimento do projeto, são o orientador, Dr. Marcelo Polido, que ficará responsável pelos requisitos do sistema, ele irá coordenar o que será implementado e irá ditar as entregas incrementais. Também responsável por requisitos do projeto está o Professor Mario Pin, que será algo próximo de um Product Owner, ele será o primeiro cliente final da aplicação, irá utilizar o sistema para realizar análise de dados.

O planejamento e desenvolvimento do projeto, ficará por conta do aluno responsável pela defesa do mesmo, Angelo Silva.

O projeto é open source, ou seja, aberto para a comunidade no github, recebendo então, pequenas contribuições esporádicas de outros desenvolvedores ao longo do ciclo de vida do projeto.

2.2.3 Tecnologias Empregadas

A aplicação foi desenvolvida utilizando arduino para gerenciamento e captura dos dados utilizando requisições HTTP através das libraries do arduino. A conexão com a internet foi feita utilizando um arduino ethernet shield wifi, as informações são capturadas, é feita uma validação e formatação básica dos dados e então os mesmos são enviados para uma RESTFUL API construída com PHP.

A API do projeto foi desenvolvida utilizando microframework Lumen, utilizando banco de dados MYSQL e Percona server como SGBD, através de uma interface construída com framework front end bootstrap, javascript ES6 e sass, a interface foi construída seguindo conceitos de usabilidade.

2.3 Regras de Negócio

A maior parte das regras de negócio de sistema fica centralizada nos filtros, eles são quem valida os dados do sistema, definindo regras para a captura de dados. A regra de negócio de filtragem diz que os dados de umidade e temperatura não podem se diferenciar por 50% ou mais da média dos dados captados na ultima hora.

3 Requisitos do sistema

3.1 Requisitos funcionais

Os requisitos funcionais do sistema são definidos pelas características para que um MVP possa ser entregue. Os requisitos são descritos no diagrama de caso de uso abaixo.

Figura 1 – Diagrama de caso de uso

Os atores do sistema foram definidos com o o próprio sistema, que poderá realizar acesso a alguns casos de uso e o usuário final. Seguem abaixo as especificações dos casos de uso.

3.2 Requisitos não funcionais

Os requisitos não funcionais do sistema complementam os requisitos funcionais, como melhorias para as especificações.

Canturar dados metogralógicos		
Tabela I – Especificações do caso de uso capturar dados meter	orologicos	

Capturar dados meteorológicos		
Descrição	Captura os dados meteorológicos através de sensores conec-	
	tados ao microcontrolador arduino e os envia através de	
	requisição HTTP para a API	
Atores	Sistema	
Duá sandisãos	Credenciais de acesso a API	
Pré-condições	API em correto funcionamento	
Exceções e fluxos alternativos	Em caso de perca de conexão com internet ou a API, arma-	
	zena as informações temporariamente no Arduino	

Tabela 2 — Especificações do caso de uso armazenar dados meteorológicos

Armazenar dados meteorológicos		
Descrição	Após receber os dados captados pelo arduino, a api os valida	
	e então, os armazena em banco de dados	
Atores	Sistema	
D	Banco de dados em correto funcionamento	
Pré-condições	Recebimento de dados através das rotas da API	
Evenesias a fluvos alternativos	Em caso de dados inválidos, a API os descarta	
Exceções e fluxos alternativos	Em caso de perca de conexão com banco de dados, a API	
	os armazena em memória	

Tabela 3 – Especificações do caso de uso realizar consultas com filtros

Realizar consultas com filtros		
Descrição	Recebe do usuário os filtros para seleção das informações,	
	então, realiza uma análise estatística dos dados requeridos	
	e os exibe para o usuário utilizando gráficos.	
Atores	Usuário	
	Credenciais de acesso ao banco de dados para realizar as	
Pré-condições	consultas	
	Banco de dados em correto funcionamento	
	Filtros corretos passados pelo usuário	
Erraçãos o fluvos elternativos	Caso ele não encontre dados na seleção, exibe uma mensagem	
Exceções e fluxos alternativos	de não encontrado	
	Em caso de perca de conexão com banco de dados, exibe	
	uma tela de erro ao usuário	

Tabela 4 — Especificações do caso de uso realizar análise estatística dos dados

Realizar análise estatística dos dados		
Descrição	Realiza calculo estatístico de informações, retornando infor-	
	mações relevantes como média, moda e desvio padrão.	
Atores	Usuário	
Pré-condições	Credenciais de acesso ao banco de dados	
r re-condições	Banco de dados em correto funcionamento	
Exceções e fluxos alternativos	Caso não existam dados para serem analisados, joga uma	
Exceções e nuxos atternativos	exceção de argumentos inválidos	

3.2.1 Segurança

O projeto precisa trabalhar de forma segura, então, esse requisito pede para que a API possua autenticação das aplicações clientes e que também, a aplicação web possua autenticação, para o usuário visualizar as informações e realizar consultas, ele precisa estar autenticado.

3.2.2 Disponibilidade

Para garantir uma melhor análise e fidelidade dos dados, o sistema precisa funcionar durante 24 horas por dia e 7 dias por semana, para isso, redundâncias precisam ser trabalhadas.

3.2.3 Performance

Outro requisito não funcional do sistema é a performance, as informações precisam ser processadas de forma rápida, problemas como lentidão no processamento podem acabar acavalando a aplicação.

4 Conclusão

Conclusão

Referências