Bottom of Barrel Processing

Chapters 5, 6, & 8

Need For Heavy Ends Processing

Worldwide crude slate has become heavier

- Concentration of sulfur & other contaminants has been increasing
- Sulfur specifications becoming more stringent
 - Environmental protection
- Demand for No. 6 Fuel Oil declining
 - Environmental protection
- Cost of light crude relative to heavy crude is increasing
- Trends in the United States have become more complicated due to the flood of light, sweet, tight oil from shale in the United States

Gunaseelan & Buehler "Changing US crude imports are driving refinery upgrades" Oil & Gas Journal, Aug. 10, 2009

Processing Options

Physical separations

- Vacuum distillation
 - Volatility
- Solvent Deasphalting
 - Solubility

Lube Oil Processing

Requires specialized feedstocks

Chemical reactions (in order of increasing severity)

- Visbreaking
- Catalytic cracking
- Coking
 - Delayed coking
 - Fluidized bed coking
- Hydrocracking

U.S. Refinery Implementation

EIA, Jan. 1, 2017 database, published June 2017 http://www.eia.gov/petroleum/refinerycapacity/

Solvent Deasphalting

Purpose

- Remove asphalts from lube plant feeds
- Increase gas oil yield from crude
- Make commercial asphalts from asphaltic crude unit bottoms

Characteristics

- Physical recovery using light hydrocarbon solvent (C3, C4, C5)
 - Dissolve saturated components
 - Leave behind/precipitate asphaltenes
 - Resins split between phases

Products

- Deasphalted Oil (DAO)
- Resins
- Bottoms/pitch asphaltenes

Residue Upgrading Technology Options for Cost Effective Solutions, Steve Beeston, ARTC 2014, Singapore, March 5, 2014

http://www.fwc.com/getmedia/200f27cb-c130-439e-aa08-51adaca15dd0/Residue-upgrading-technology-options-for-cost-effective-solutions.pdf.aspx?ext=.pdf

Typical SDA Process

Foster Wheeler SDA process Hydrocarbon Processing's 2008 Refining Processes Handbook

Characteristics of Products

DAO resembles gas oil but is of drastically different boiling point range

Characteristics of Products

Average Molecular Weight

First 50% DAO molecules are suitable to hydrocrack

50-70+% DAO molecules are challenging to hydrocrack

DAO Yield

Residue Upgrading Technology Options for Cost Effective Solutions, Steve Beeston, ARTC 2014, Singapore, March 5, 2014

http://www.fwc.com/getmedia/200f27cb-c130-439e-aa08-51adaca15dd0/Residue-upgrading-technology-options-for-cost-effective-solutions.pdf.aspx?ext=.pdf

Integration of SDA into Refinery

		Base	With SDA
Atm Resid Feed	bpsd	50,000	50,000
	°API	15.1	15.1
	wt% S	4.02	4.02
	ppmw metals	69	69
Vac Resid	bpsd	20,000	20,000
	°API	5.6	5.6
	wt% S	5.55	5.55
	ppmw metals	160	160
SDA Bottoms	bpsd		5,400
	°API		-12.6
	wt% S		7.15
	ppmw metals		475
SDA DAO	bpsd		14,600
	°API		11.4
	wt% S		4.84
	ppmw metals		20
Gas Oil	bpsd	30,000	30,000
	°API	22.3	22.3
	wt% S	3.04	3.04
Feed to HDS	bpsd	30,000	44,600
	°API	22.3	18.5
	wt% S	3	3.66
	ppmw metals		7

		Base	With SDA	
Feed to FCC	bpsd	27,340	40,651	
	°API		24.0	
HDS Fuel Gas	Mscfd	4,200	6,310	
FCC Fuel Gas	Mscfd	4,430	6,582	
Total Fuel Gas	Mscfd	8,630	12,892	
HDS C3/C4	bpsd	190	289	
FCC C3/C4	bpsd	5,220	7,765	
Total C3/C4	bpsd	5,410	8,054	
HDS Naphtha	bpsd	260	388	
FCC Naphtha	bpsd	15,420	22,927	
Total Naphtha	bpsd	15,680	23,315	
	°API	54.5	54.5	
FCC Cycle Oil	bpsd	7,108	10,569	
	°API	25.5	25.5	
FCC Slurry	bpsd	1,367	2,033	
	°API	0.9	0.9	
HDS Distillate	bpsd	2,750	4,090	Fuel Gas-
	°API	32.5	32.5	
				Naphtha
			—н,—	——Cycle Oil——
	Atm Resid	Vacuum Distilation	Gas Oil	HDS → FCC
		Distilation	·	
			DAO	
				Slurry—
				Distillate
		Vac Bottoms		
			→ SDA	
			SDA Bottoms	
			L	

Handbook of Petroleum Refining Processes Robert Meyers McGraw-Hill, Inc, 1986

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Visbreaking

Purpose

- Cut viscosity in ½ of feed (specs for heavy fuel oil)
- Reduces "cutter stock"
- Reduces heavy fuel oil amount

Characteristics

- Relatively mild thermal cracking operation
- Flexible on feedstock quality
- Typically high resin crude oils
- Low capital cost for process

Products

- ~20% feed cracked to light ends, naphtha, gas oil & distillate
- Products contain a lot of olefins
 - Olefinic C3s & C4s often recovered
 - Naphtha & distillate often hydrotreated because of olefins & sulfur
- Gas oil high in aromatics more appropriate for hydrocracking than cat cracking
- Large volumes of heavy fuel oil with high sulfur content
- Bottoms (visbreaker tar) sent directly to heavy fuel oil

Typical Coil Visbreaker

http://www.fwc.com/industries/pdf/Residue upgrading English 10th Sept.pdf?DIRNAME=%23dirName%23

Catalytic Cracking

Purpose

- Make gasoline & distillates (diesel/heating oil)
- Try to minimize heavy fuel oil

Characteristics

- Medium severity cracking process
- Gas oils are typical feedstocks
- Not normally used on whole atmospheric or vacuum resids
 - PNAs tend to condense, leading to coking
 - Catalysts sensitive to poisoning by sulfur & metals present in PNAs

Products

- Light gases
 - Olefins
- Light & Heavy Naphtha
- Light & Heavy Cycle Oils
- Slurry

Figure: http://www.osha.gov/dts/osta/otm/otm iv/otm iv 2.html

Hydrocracking

Purpose

Minimize heavy fuel oil

Characteristics

- Severe cracking process
 - Combines cracking & hydrogenation
- Coking better for resids
- High pressures & large amounts of hydrogen required

Products

- Produces high yields of liquids
 - Hydrogen suppresses coke formation
 - Liquids low in sulfur & olefins

Figure: Haldo Topsøe process flow 2011 Refining Processes Handbook Hydrocarbon Processing, 2011

Coking

Purpose

- Create light gases & distillates
- "Carbon rejection"

Characteristics

- Severe thermal cracking process
- Can process a wide variety of feedstocks – high High metals (nickel and vanadium), sulfur, resins & asphaltenes
- Side chains broken off from thermally stable PNA cores
 - PNAs contain majority of the heteroatoms (sulfur, nitrogen, metals)

Products

- Light gases, distillates (naphthas & gas oils) for catalytic upgrading
 - High in sulfur & olefins
- Coke
 - High in sulfur & metals

Summary

Summary

Reason for "Bottom of the Barrel" processing

 Attempt to get more liquid fuels from the portion of the crude oil that is heavier (of higher boiling point) than the diesel range

Processes

- Physical separations
 - Vacuum Column
 - Solvent Deasphalting (SDA)
- Chemical conversions
 - Visbreaking
 - Coking
 - Fluidized Catalytic Cracking (FCC)
 - Hydrocracking

Supplemental Slides

SDA Technology Providers

Provider	Features	
Foster Wheeler	Light hydrocarbon solvent with DAO/solvent separation at supercritical	
KBR	conditions	

Foster Wheeler

KBR ROSE©

Hydrocarbon Processing's 2008 Refining Processes Handbook

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Visbreaking Technology Providers

Provider	Features	
Foster Wheeler	Visbreaker heater & downstream coil	
Shell Global Solutions		

Foster Wheeler

Shell Global Solutions

Hydrocarbon Processing's 2008 Refining Processes Handbook

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

