高级算法设计与分析 作业 1

- 1. 证明: $\left(\frac{n}{m}\right)^m \leq \left(\frac{n}{m}\right) \leq \left(\frac{ne}{m}\right)^m$, 其中 $0 < m \leq n$.
- 2. 一枚硬币掷出正面的概率为 p,掷出反面的概率为 1-p,求首次掷出正面所需次数 T 的期望和方差。
- 3. X_1, \ldots, X_n 是独立的 0-1 随机变量,有 $\Pr(X_i = 1) = p_i, \Pr(X_i = 0) = 1 p_i$ 。记 $X = X_1 + \cdots + X_n$, $\mathbb{E}(X) = p_1 + \cdots + p_n = \mu$,证明:当 $0 < \delta < 1$ 时,

$$\Pr(X \le (1 - \delta)\mu) \le \left[\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right]^{\mu} \le e^{\frac{-\delta^2 \mu}{2}}.$$

- 4. 分析 MAX-CUT 随机算法的方差。
- 5. 设计一个多项式时间随机算法求解二部图的红蓝匹配问题。

问题描述: 二部图 G 的边被染成了红和蓝两种颜色,判定 G 中是否存在一个完美匹配 M,使得 M 中恰有 k 条红边和 n-k 条蓝边。

输入: 二部图 $G(U \cup V, E)$, 其中顶点集 $U \cap V = \emptyset$, 且对任意 $(x, y) \in E$ 有 $x \in U, y \in V$; 边染色函数 $c: E \to \{\mathbf{red}, \mathbf{blue}\}$; 以及非负整数 k。

输出: Yes, 如果 G 中存在一个完美匹配 $M\subseteq E$,要求 $|\{e\in M: c(e)=\mathbf{red}\}|=k$;若不存在这样的 M,则输出 No。