Introduction to Machine Learning

Classification Basic Definitions

Learning goals

- Basic notation
- Hard labels vs. probabilities vs. scores
- Decision regions and boundaries
- Generative vs. discriminant approaches

NOTATION AND TARGET ENCODING

• In classification, we aim at predicting a discrete output

$$y \in \mathcal{Y} = \{C_1, ..., C_g\}$$

with $2 \le g < \infty$, given data \mathcal{D}

- For convenience, we often encode these classes differently
- Binary case, g = 2: Usually use $\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \{-1, +1\}$
- Multiclass case, $g \ge 3$: Could use $\mathcal{Y} = \{1, \dots, g\}$, but often use one-hot encoding o(y), i.e., g-length vector with $o_k(y) = \mathbb{I}(y = k) \in \{0, 1\}$:

ID	Features	Species		o(Spec
1		Setosa	one-hot encoding	(1, 0, 0)
2		Setosa		(1, 0, 0)
3		Versicolor		(0,1,0)
4		Virginica		(0, 0, 1)
5		Setosa		(1, 0, 0)

CLASSIFICATION MODELS

- While for regression the model $f: \mathcal{X} \to \mathbb{R}$ simply maps to the label space $\mathcal{Y} = \mathbb{R}$, classification is slightly more complicated.
- We sometimes like our models to output (hard) classes, sometimes probabilities, sometimes class scores. The latter 2 are vectors.
- The most basic / common form is the score-based classifier, this is why we defined models already as $f: \mathcal{X} \to \mathbb{R}^g$.
- To minimize confusion, we distinguish between all 3 in notation: $h(\mathbf{x})$ for hard labels, $\pi(\mathbf{x})$ for probabilities and $f(\mathbf{x})$ for scores
- Why all of that and not only hard labels? a) Scores / probabilities are more informative than hard class predictions; b) from an optimization perspective, it is much (!) easier to work with continuous values.

SCORING CLASSIFIERS

- ullet Construct g discriminant / scoring functions $f_1,...,f_g:\mathcal{X}
 ightarrow \mathbb{R}$
- Predicted class is usually the one with max score

$$h(\mathbf{x}) = \underset{k \in \{1, \dots, g\}}{\arg \max} f_k(\mathbf{x})$$

- For g=2, a single discriminant function $f(\mathbf{x})=f_1(\mathbf{x})-f_{-1}(\mathbf{x})$ is sufficient (here, it's natural to label classes with $\{-1,+1\}$ and we used slight abuse of notation for the subscripts), class labels are constructed by $h(\mathbf{x})=\mathrm{sgn}(f(\mathbf{x}))$
- $|f(\mathbf{x})|$ or $|f_k(\mathbf{x})|$ is loosely called "confidence"

PROBABILISTIC CLASSIFIERS

Construct g probability functions

$$\pi_1, ..., \pi_g : \mathcal{X} \to [0, 1], \sum_{k=1}^g \pi_k(\mathbf{x}) = 1$$

Predicted class is usually the one with max probability

$$h(\mathbf{x}) = \underset{k \in \{1,...,g\}}{\operatorname{arg \, max}} \, \pi_k(\mathbf{x})$$

• For g=2, single $\pi(\mathbf{x})$ is constructed, which models the predicted probability for the positive class (natural to encode $\mathcal{Y}=\{0,1\}$)

THRESHOLDING

- For imbalanced cases or class with costs, we might want to deviate from the standard conversion of scores to classes
- Introduce basic concept (for binary case) and add details later
- Convert scores or probabilities to class outputs by thresholding: $h(\mathbf{x}) := [\pi(\mathbf{x}) \ge c]$ or $h(\mathbf{x}) := [f(\mathbf{x}) \ge c]$ for some threshold c
- Standard thresholds: c = 0.5 for probabilities, c = 0 for scores

THRESHOLDING

- For imbalanced cases or class with costs, we might want to deviate from the standard conversion of scores to classes
- Introduce basic concept (for binary case) and add details later
- Convert scores or probabilities to class outputs by thresholding: $h(\mathbf{x}) := [\pi(\mathbf{x}) \ge c]$ or $h(\mathbf{x}) := [f(\mathbf{x}) \ge c]$ for some threshold c
- Standard thresholds: c = 0.5 for probabilities, c = 0 for scores

DECISION REGIONS

Set of points \mathbf{x} where class k is predicted:

$$\mathcal{X}_k = \{\mathbf{x} \in \mathcal{X} : h(\mathbf{x}) = k\}$$

DECISION BOUNDARIES

Points in space where classes with maximal score are tied and the corresponding hypersurfaces are called **decision boundaries**

$$\{\mathbf{x} \in \mathcal{X} : \exists i \neq j \text{ s.t. } f_i(\mathbf{x}) = f_j(\mathbf{x}) \land f_i(\mathbf{x}), f_j(\mathbf{x}) \geq f_k(\mathbf{x}) \ \forall k \neq i, j\}$$

In binary case we can simply use the threshold:

$$\{\mathbf{x}\in\mathcal{X}:f(\mathbf{x})=c\}$$

c = 0 for scores and c = 0.5 for probs is consistent with the above.

DECISION BOUNDARY EXAMPLES

GENERATIVE APPROACH

Models class-conditional $p(\mathbf{x}|y=k)$, and employs Bayes' theorem:

$$\pi_k(\mathbf{x}) \approx \mathbb{P}(y = k \mid \mathbf{x}) = \frac{\mathbb{P}(\mathbf{x}|y = k)\mathbb{P}(y = k)}{\mathbb{P}(\mathbf{x})} = \frac{p(\mathbf{x}|y = k)\pi_k}{\sum\limits_{j=1}^g p(\mathbf{x}|y = j)\pi_j}$$

Prior probs $\pi_k = \mathbb{P}(y = k)$ can easily be estimated from training data as relative frequencies of each class:

ID	Sex	Age	Class	Survived the Titanic	
1	male	49	2nd	no	
2	female	23	1st	yes —	2
3	male	32	3rd	no	$\hat{\pi} = \frac{2}{\pi}$
4	male	51	2nd	no	1 5
5	female	49	1st	yes	

GENERATIVE APPROACH

Decision boundary implicitly defined via the conditional distributions

Examples are Naive Bayes, LDA and QDA.

NB: LDA and QDA have 'discriminant' in their name, but are generative!

DISCRIMINANT APPROACH

Here we optimize the discriminant functions (or better: their parameters) directly, usually via ERM:

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathcal{R}_{emp}(f) = \operatorname*{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Examples are neural networks, logistic regression and SVMs