Using neural networks to simulate brain damage: The Farah & McClelland model

Miriam Schulz

Course: Kognitive Neuropsychologie

Lecturer: Prof. Axel Mecklinger

2 February 2021

Outline

- 1. Introduction
- 2. Principles of connectionist modeling
- 3. A model of semantic memory impairment: Farah & McClelland (1991)
- 4. A (simplified) reimplementation of the Farah & McClelland model
- 5. Conclusion

Cognitive neuropsychology

→ study cognition by examining the performance of brain-damaged subjects (changed performance w.r.t. controls)

Cognitive neuropsychology

→ study cognition by examining the performance of brain-damaged subjects (changed performance w.r.t. controls)

Cognitive neuropsychology

→ study cognition by examining the performance of brain-damaged subjects (changed performance w.r.t. controls)

Connectionist modeling

→ study cognition by developing and testing "brain-like" computer models

Cognitive neuropsychology

→ study cognition by examining the performance of brain-damaged subjects (changed performance w.r.t. controls)

Connectionist modeling

→ study cognition by developing and testing "brain-like" computer models

This presentation

→ What do **connectionist models of cognitive processes** look like and how do they work?

This presentation

- → What do **connectionist models of cognitive processes** look like and how do they work?
- → Look at one model in particular: Farah & McClelland (1991),
 experiment 2

This presentation

- → What do **connectionist models of cognitive processes** look like and how do they work?
- → Look at one model in particular: Farah & McClelland (1991),
 experiment 2
- → Go through a (simplified) **reimplementation** of the model

• The McCulloch & Pitts (1943) neuron: simplest neural model

- The McCulloch & Pitts (1943) neuron: simplest neural model
- **Hebb's (1949) learning rule** ("neurons that fire together wire together")

- The McCulloch & Pitts (1943) neuron: simplest neural model
- **Hebb's (1949) learning rule** ("neurons that fire together wire together")
- Rosenblatt's (1957, 1962) **perceptron**

- The McCulloch & Pitts (1943) neuron: simplest neural model
- **Hebb's (1949) learning rule** ("neurons that fire together wire together")
- Rosenblatt's (1957, 1962) **perceptron**
- Minsky & Papert (1969): critique of perceptrons

- The McCulloch & Pitts (1943) neuron: simplest neural model
- **Hebb's (1949) learning rule** ("neurons that fire together wire together")
- Rosenblatt's (1957, 1962) **perceptron**
- Minsky & Papert (1969): critique of perceptrons
- 1980's + 1990's: boom in connectionist models

- The McCulloch & Pitts (1943) neuron: simplest neural model
- **Hebb's (1949) learning rule** ("neurons that fire together wire together")
- Rosenblatt's (1957, 1962) **perceptron**
- Minsky & Papert (1969): critique of perceptrons
- 1980's + 1990's: boom in connectionist models
- In the past decade: huge boom of neural networks/"deep learning" in artificial intelligence/machine learning: Google Translate, Alexa, autocorrect, text prediction, recommendation systems like Spotify, ...

$$\Sigma = 3*1 + 2.5*(-1)$$

= 3 - 2.5
= 0.5

$$f(x) = 1 \text{ if } x > 0$$

= 0 if x <= 0

$$\mathbf{f}(\mathbf{\Sigma}) = \mathbf{f}(\mathbf{0.5}) = \mathbf{1}$$

A (slightly) more complex network

• Computational modelling requires a theory to be **fully specified** (remove potential ambiguity, make everything explicit and consistent)

- Computational modelling requires a theory to be **fully specified** (remove potential ambiguity, make everything explicit and consistent)
- Break down the complexity of a model

- Computational modelling requires a theory to be **fully specified** (remove potential ambiguity, make everything explicit and consistent)
- Break down the complexity of a model
- Make **precise**, **quantitative** predictions ("testable")

- Computational modelling requires a theory to be **fully specified** (remove potential ambiguity, make everything explicit and consistent)
- Break down the complexity of a model
- Make **precise**, **quantitative** predictions ("testable")
- Not a replacement, but a complement to verbal theories or box-arrow diagrams;
 an additional test for the consistency and completeness of a theory

Level 1 (computational)	Input-output behavior
Level 2 (algorithmic)	Mind-as-symbol-manipulator hypothesis vs. "brain-like" connectionist models
Level 3 (implementational)	Neurons vs. transistors in computers

Some useful features of neural networks for cognitive modelling:

Some useful features of neural networks for cognitive modelling:

→ **Graceful degradation** (damaged input / damaged networks)

Some useful features of neural networks for cognitive modelling:

- → **Graceful degradation** (damaged input / damaged networks)
- → **Content addressability** (retrieve information from a partial specification)

Some useful features of neural networks for cognitive modelling:

- → **Graceful degradation** (damaged input / damaged networks)
- → Content addressability (retrieve information from a partial specification)
- **→ Generalization** to novel inputs

Some useful features of neural networks for cognitive modelling:

- → **Graceful degradation** (damaged input / damaged networks)
- → Content addressability (retrieve information from a partial specification)
- → **Generalization** to novel inputs

These properties "come for free"; networks not specifically trained for them.

The double dissociation between living and non-living things

Table 1
Performance of Two Patients With Impaired Knowledge of Living Things on Various
Semantic Memory Tasks

Case	Living thing	Nonliving thing						
	Picture identification							
JBR	6%	90%						
JBR SBY	0%	75%						
		Spoken word definition						
JBR	8%	79%						
JBR SBY	0%	52%						

The double dissociation between living and non-living things

Table 2
Performance of Two Patients With Impaired Knowledge of
Nonliving Things on Various Semantic Memory Tasks

	Category		
Case	Animal	Flower	Object
	Spoken word-p	icture matchin	g
VER	86%	96%	63%
YOT	86%	86%	67%
	Picture-picti	ure matching	
YOT	100%	_	69%

The sensory-functional hypothesis

Visual and functional knowledge play different roles in the representation of living and non-living things:

- Living things like 'dog' are represented as more **visual** in semantic memory
- Non-living things like 'hammer' are represented as more functional in semantic memory

Experiment 1

Visual and functional knowledge play different roles in the representation of living and non-living things:

- On average 2.68 visual and only 0.35 functional descriptors used to describe <u>living</u> things
- Vs. **1.57 visual** and **1.11 functional** descriptors used to describe non-living things

Labels

24 name units

Input: 'Dog'

80 semantic units:

Input: 'Dog'

80 semantic units:

Input: 'Dog'

• 20 patterns: dog, cat, ...

- 20 patterns: dog, cat, ...
- Present each pattern twice: once for name-2-picture task, and once for picture-naming task \rightarrow 2x20 = 40 'trials'

- 20 patterns: dog, cat, ...
- Present each pattern twice: once for name-2-picture task, and once for picture-naming task \rightarrow 2x20 = 40 'trials'
- Adjust the weights after each trial → 'learning'!

- 20 patterns: dog, cat, ...
- Present each pattern twice: once for name-2-picture task, and once for picture-naming task \rightarrow 2x20 = 40 'trials'
- Adjust the weights after each trial \rightarrow 'learning'!
- Repeat all this 100x (= 100 'epochs' of training)

- 20 patterns: dog, cat, ...
- Present each pattern twice: once for name-2-picture task, and once for picture-naming task \rightarrow 2x20 = 40 'trials'
- Adjust the weights after each trial → 'learning'!
- Repeat all this 100x (= 100 'epochs' of training)
- The final, trained model has perfect accuracy in both tasks!

Lesioning the model (I): damage visual memory

Lesioning the model (II): damage funct. memory

Farah & McClelland lesioning results

Farah & McClelland lesioning results

https://github.com/miriamschulz/KNP_project

→ Complex behavior can be modeled with a relatively simple connectionist model

- → Complex behavior can be modeled with a relatively simple connectionist model
- → An even more simplified reimplementation of the model can still reproduce part of the data

- → Complex behavior can be modeled with a relatively simple connectionist model
- → An even more simplified reimplementation of the model can still reproduce part of the data
- → Some problems for connectionist modeling:

- → Complex behavior can be modeled with a relatively simple connectionist model
- → An even more simplified reimplementation of the model can still reproduce part of the data
- → Some problems for connectionist modeling:
 - ◆ Results dependent on the **statistical structure in the training data**

- → Complex behavior can be modeled with a relatively simple connectionist model
- → An even more simplified reimplementation of the model can still reproduce part of the data
- → Some problems for connectionist modeling:
 - ◆ Results dependent on the **statistical structure in the training data**
 - ♦ **Hyperparameters**: just twitch the hyperparameters until we get the desired results!

- → Complex behavior can be modeled with a relatively simple connectionist model
- → An even more simplified reimplementation of the model can still reproduce part of the data
- → Some problems for connectionist modeling:
 - Results dependent on the statistical structure in the training data
 - ♦ **Hyperparameters**: just twitch the hyperparameters until we get the desired results!
 - ♦ How **cognitively plausible** are such models really?

- → Complex behavior can be modeled with a relatively simple connectionist model
- → An even more simplified reimplementation of the model can still reproduce part of the data
- → Some problems for connectionist modeling:
 - ◆ Results dependent on the **statistical structure in the training data**
 - ♦ **Hyperparameters**: just twitch the hyperparameters until we get the desired results!
 - ♦ How **cognitively plausible** are such models really?
- → Implications: use such models as **proof-of-theory** and **complement** for neuropsychological theories?

- → **Symbolic** vs. **distributed** representations
 - Distributed representations can go a long way in modeling double dissociation data

- → **Symbolic** vs. **distributed** representations
 - Distributed representations can go a long way in modeling double dissociation data
 - ♦ No need for a separate semantic memory system for living vs. non-living things

- → **Symbolic** vs. **distributed** representations
 - Distributed representations can go a long way in modeling double dissociation data
 - ♦ No need for a separate semantic memory system for living vs. non-living things
 - ◆ But: recent evidence of specific cells in large deep neural networks that reply to very specific concepts! (see e.g. Bowers, 2017)

References

Bowers, J. S. (2017). Parallel distributed processing theory in the age of deep networks. *Trends in cognitive sciences*, *21*(12), 950-961.

Farah, M. J., & McClelland, J. L. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. *Journal of Experimental Psychology: General*, 120(4), 339–357.

Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Psychology Press. Chicago.

McCulloch, W.S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*(5), 115–133.

Minsky, M. L., & Papert, S. A. (1988). Perceptrons: expanded edition. Chicago.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological review*, *65*(6), 386-408. Chicago.

Questions & Discussion

