Non-Linear Models

Homework Questions

Chapter 5

Class Work 1

- Assume there are 2 predictors $P = 2(x_1, x_2)$
- Assume a NN with 2 hidden layers M=2 (z_1 , z_2)
- ► Assume two outputs Y₁, Y₂ (K=2)
- ► Assume ALL weights of NN is initialized to 0.
- $\alpha 1 = (\alpha 01, \alpha 11, \alpha 21), \alpha 2 = (\alpha 02, \alpha 12, \alpha 22)$
- $\beta 1 = (\beta 01, \beta 11, \beta 22), \ \beta 2 = (\beta 02, \beta 12, \beta 22)$
 - ► Compute the prediction [Y₁, Y₂] of the forward propagation with same (3, 2, [1,0])

Class Work 2

- Assume there are 2 predictors P = 2 (x_1, x_2)
- ▶ Assume a NN with 2 hidden layers M=2 (z₁, z₂)
- ► Assume ONE output Y₁ (K=1)
- ► Assume ALL weights of NN is initialized to 0
- $\alpha 1 = (\alpha 01, \alpha 11, \alpha 21), \alpha 2 = (\alpha 02, \alpha 12, \alpha 22)$
- $\beta 1 = (\beta 01, \beta 11, \beta 22), \ \beta 2 = (\beta 02, \beta 12, \beta 22)$
 - ► Compute the prediction [Y₁, Y₂] of the forward propagation with same (3, 2, [1,0])

Classwork 3:

True class	Dot product	y_i	α_i	Product
SV 1 Class 2	-2.4	-1	1.00	2.40
SV 2 Class 1	5.1	1	0.34	1.72
SV 3 Class 1	1.2	1	0.66	0.79

Find the value of D(u) for the points

$$u = (-4, -2)$$

$$u = ((4,0)$$

And classify them.

Assume that margin points SV1, SV2, SV3 are SV1 (2,2), SV2 (-1,-2) and SV3 (-2, -1)