Alain Berlioz 2015-16

Discrete Mechanical Vibrations SM32

Sino-European Institute of Aviation Engineering December 2015

Professor: Alain BERLIOZ alain.berlioz@univ-tlse3.fr

Contents:

- ✓ <u>Single Degree of Freedom Systems</u>
- √ <u>Two Degree of Freedom Systems</u>
- √ N Degree of Freedom Systems

Discretization of continuous Systems

Alain Berlioz 2015-16

<u>Discretization of systems having an infinite</u> <u>number of degree of freedom.</u>

Contents:

Flexural Motion of a beam

Derivation of equation of motion

Frequencies and Mode Shapes

Application

Beam in bending

Orthogonality relations

Modal Masses and modal stiffness matrices

Approximate Method

Beam in bending

December 2015

Flexural Motion of a beam

Hypotheses are based on theory of strength of materials

The motion is defined by:

V	lateral deflection	m
Ψ	slope of neutral axis	rd
T	lateral shear force	N
M	flexural moment	mN

and mechanical or geometrical properties

Е	Young's modulus	N/m²
I	area moment of inertia of beam	
	cross-section about the neutral axis	m^4
ρ	density	kg/m³
S	area	m^2
L	length	m

and external force

D	lateral ev	tarnal force n	er unit length	N/m
D _{au}	lateral ex	demai jorce b	er unii ienain	13////

Derivation of equation of motion

The application of Newton's laws to the element depicted above in the lateral ydirection and about the z-direction gives

About y axis:

$$\rho S(x) dx \frac{\partial^{2} v(x,t)}{\partial t^{2}} = -T(x,t) + T(x,t) + \frac{\partial T(x,t)}{\partial x} dx + p_{ex} dx$$

$$\rho S(x) \frac{\partial^{2} v(x,t)}{\partial t^{2}} = \frac{\partial T(x,t)}{\partial x} + p_{ex}$$

Alain Berlioz 2015-16

Around z axis:

$$0 = -M(x,t) + M(x,t) + \frac{\partial M(x,t)}{\partial x} dx + T(x,t) dx + p_{ex} \frac{dx^2}{2}$$

From the theory of strength of materials, the relations among ${\bf T},\,{\bf M}$ are

$$0 = \frac{\partial M(x,t)}{\partial x} + T(x,t) \qquad \frac{\partial M(x,t)}{\partial x} = -T(x,t)$$

and

$$M(x,t) = EI(x) \frac{\partial^2 v(x,t)}{\partial x^2}$$

which simplify to:

$$\rho S(x) \frac{\partial^2 v(x,t)}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left(EI(x) \frac{\partial^2 v(x,t)}{\partial x^2} \right) = p_{ex}$$

$$\rho S \frac{\partial^2 V}{\partial t^2} + E I \frac{\partial^4 V}{\partial x^4} = 0$$

This approach, in which some second order effects are ignored is called the Bernoulli-Euler approach. So, the classical obtained partial differential equation of a beam in motion of bending is called the **Bernoulli-Euler beam equation**.

Frequencies and Mode Shapes

Homogeneous previous equations are considered. The free-vibration solutions to these equations will be obtained by the method of separation of variables.

$$v(x,t) = \phi(x) f(t)$$

and substitute into EOM

$$EI \frac{d^4 \phi(x)}{dx^4} f(t) + \rho S \phi(x) \frac{d^2 f(t)}{dt^2} = 0$$

After some manipulations, this gives

$$\frac{EI}{\rho S} \frac{1}{\phi(x)} \frac{d^4\phi(x)}{dx^4} = -\frac{1}{f(t)} \frac{d^2f(t)}{dt^2} = C^{te}$$

which can be separated into two ordinary differential equations of motion, one in space and one in time:

$$\frac{d^2f(t)}{dt^2} + C^{te} f(t) = 0$$
 time equation

$$\frac{d^4 \phi(x)}{dx^4} - C^{te} \frac{\rho S}{EI} \phi(x) = 0 \quad \text{space equation}$$

7

Frequencies and Mode Shapes

Time function

$$\frac{d^2f(t)}{dt^2} + C^{te} f(t) = 0$$

The separation constant has been set equal to $+\omega^2$ so that the solutions will be bounded in time. It follows that

$$\frac{d^2f(t)}{dt^2} + \omega^2 f(t) = 0$$

Time solution is:

$$f(t) = A \sin \omega t + B \cos \omega t$$

Alain Berlioz 2015-16

Frequencies and Mode Shapes

Space function

$$\frac{d^4\phi(x)}{dx^4} - \omega^2 \frac{rS}{EI} \phi(x) = 0$$

Solutions are sought in the form **e**^{rx} resulting in the characteristic equations:

$$r^4 - \omega^2 \frac{\rho S}{EI} = 0$$

Roots are

$$r = \beta$$
, $-\beta$, $j\beta$, $-j\beta$

with

Alain Berlioz 2015-16

$$\beta = \sqrt[4]{\frac{\rho S \omega^2}{EI}}$$

then, a typical solution is:

$$\varphi(x) = \cdots e^{+\beta x} + \cdots e^{-\beta x} + \cdots e^{+j\beta x} + \cdots e^{-j\beta x}$$

9

Frequencies and Mode Shapes

Trigonometric form is more suitable, so for each value of β , one has a solution of the form:

$$\phi(x) = C \sin \beta x + D \cos \beta x + E \sin \beta x + F \cot \beta x$$

The frequencies ω associated with each β are determined by application of the boundary conditions (*geometric* or *essential*). The most frequent boundary conditions for beams are:

Free (F): M = 0, T = 0

Clamped (C): $v = 0, \theta = 0$

Simply-supported (S): v = 0, M = 0

Then for each value of $\boldsymbol{\omega}$ one has a solution of the form

$$\begin{split} v(x,t) &= \sum_{n=1}^{\infty} \varphi_n(x) \, f_n(t) \\ &= \sum_{n=1}^{\infty} \left(A_n \sin \omega_n t + B_n \cos \omega_n t \right) \\ &\qquad \left(C_n \sin \beta_n x + D_n \cos \beta_n x + E_n \sin \beta_n x + F_n \sin \beta_n x \right) \end{split}$$

The constants C_n , D_n , E_n et F_n will be determined with boundary conditions. This classical procedure will lead to the frequencies of the beam. A_n and B_n are determined by initial conditions.

Beam in bending

In that case, (Clamped-Free) boundary conditions are:

x = 0

Lateral displacement

$$V(0,t)=0$$

$$0 + D + 0 + F = 0$$

rotation of section (dv/dx)

$$\theta(0,t)=0$$

$$C + 0 + E + 0 = 0$$

x = L

lateral shear force \rightarrow (d³v/dx³)**T(L,t) = 0**

$$-$$
 C cos β L + D sin β L + E ch β L + F sh β L = 0

flexural moment \rightarrow (d²v/dx²)

$$M(L,t) = 0$$

$$- C \sin \beta L - D \cos \beta L + E \sin \beta L + F \cosh \beta L = 0$$

If C, D, E and F are all zeroes, this is a non acceptable trivial solution. So, the determinant associated whith the matrix must be zero. After some manipulations,

$$1 + \cos \beta L \cosh \beta L = 0$$

Numerical solutions can be easily obtained:

βL	1.875	4.692	7.854	10.99	14.14
	3.516	22.03	61.69	120.9	199.8

Note:

$$\beta = \sqrt[4]{\frac{\rho S \omega^2}{EI}}$$

$$\beta = \sqrt[4]{\frac{\rho S \omega^2}{EI}} \qquad \qquad \omega = \frac{\beta^2}{L^2} \sqrt{\frac{EI}{\rho S}}$$

Alain Berlioz 2015-16

Alain Berlioz 2015-16

Using symmetries for boundary conditions, it remains 16 different cases. They are presented in the following table.

Note that only 6 equations are obtained for all the cases.

The lowest values of X_n^2 are given in the following table

$$\omega_n = \frac{X_n^2}{L^2} \sqrt{\frac{EI}{\rho S}}$$

	1					
B.C.		X ₁ ²	X_2^2	X_3^2	X_4^2	X ₅ ²
	cos βL = 0	2.467	22.21	61.68	120.9	199.9
	$1 + \cos \beta L \cosh \beta L = 0$	3.516	22.03	61.69	120.9	199.8
	th $\beta L + tg \beta L = 0$	5.593 0	30.22 5.593	74.63 30.22	138.8 74.63	222.7 138.8
	$\sin \beta L = 0$	9.869 0	39.47 9.869	88.82 39.47	157.9 88.82	246.7 157.9
	th $\beta L - tg \beta L = 0$	0 15.41	15.41 49.96	49.96 104.2	104.2 178.2	178.2 272.0
	$1 - \cos \beta L \cosh \beta L = 0$	22.37 0	61.67 22.37	120.9 61.67	199.8 120.9	298.5 199.8

Note: Rigid body modes occured for GF, GG and FF

With the method of separation of variables, the EOM:

 $\rho S \frac{\partial^2 v}{\partial t^2} + \frac{\partial^2}{\partial x^2} (EI \frac{\partial^2 v}{\partial x^2}) = 0$

becomes:

$$\frac{d^2}{dx^2}(EI\frac{d^2\phi}{dx^2}) = \rho S\omega^2\phi$$

This is true for each of the solution pairs: ω_i , ϕ_i and ω_j , ϕ_j (frequencies and mode shapes)

$$\frac{d^2}{dx^2}(EI\frac{d^2\phi_i}{dx^2}) = \rho S\omega_i^2\phi_i$$

$$\frac{d^2}{dx^2}(EI\frac{d^2\phi_j}{dx^2}) = \rho S\omega_j^2\phi_j$$

15

Multiplying the first equation by ϕ_i

$$\phi_{j} \frac{d^{2}}{dx^{2}} (EI \frac{d^{2} \phi_{i}}{dx^{2}}) = \phi_{j} \rho S \omega_{i}^{2} \phi_{i}$$

and the second by ϕ_l it becomes:

$$\phi_{i} \frac{d^{2}}{dx^{2}} (EI \frac{d^{2} \phi_{j}}{dx^{2}}) = \phi_{i} \rho S \omega_{j}^{2} \phi_{j}$$

That must be verified for the whole beam:

$$\int\limits_{0}^{L}\varphi_{j}\frac{d^{2}}{dx^{2}}\Biggl(EI\frac{d^{2}\varphi_{i}}{dx^{2}}\Biggr)dx=\int\limits_{0}^{L}\varphi_{j}\rho S\;\omega_{i}^{2}\;\varphi_{i}dx$$

$$\int\limits_{0}^{L} \varphi_{i} \frac{d^{2}}{dx^{2}} \left(EI \frac{d^{2} \varphi_{j}}{dx^{2}} \right) dx = \int\limits_{0}^{L} \varphi_{i} \rho S \ \omega_{j}^{2} \ \varphi_{j} dx$$

Alain Berlioz 2015-16

Putting:

 $u = \phi_j$ and $v = \frac{d}{dx} (EI \frac{d^2 \phi_i}{dx^2})$

with

$$u' = \frac{d\phi_j}{dx}$$
 and $v' = \frac{d^2}{dx^2} (EI \frac{d^2\phi_i}{dx^2})$

$$\int_{0}^{L} (u \ v \)' \, dx \ = \int_{0}^{L} u' \ v \ dx \ + \int_{0}^{L} u \ v' \ dx$$

integrating by parts leads:

$$\int_{0}^{L} (u \ v \)' dx \iff \left[\phi_{j} \frac{d}{dx} (EI \frac{d^{2} \phi_{i}}{dx^{2}}) \right]_{0}^{L}$$

So, it becomes:

$$\left[\varphi_{j}\frac{d}{dx}(EI\frac{d^{2}\varphi_{i}}{dx^{2}})\right]_{0}^{L}=\int\limits_{0}^{L}\frac{d\varphi_{j}}{dx}\frac{d}{dx}\left(EI\frac{d^{2}\varphi_{i}}{dx^{2}}\right)dx+\int\limits_{0}^{L}\varphi_{j}\frac{d^{2}}{dx^{2}}\left(EI\frac{d^{2}\varphi_{i}}{dx^{2}}\right)dx$$

So, using the following boundaries at $\mathbf{x} = 0$ and $\mathbf{x} = \mathbf{L}$.

	$\phi(x)f(t)$	$\frac{d^2\phi(x)}{dx^2}f(t)$
Free	?	0
Supported	0	0
Clamped	0	?

hence

$$\left[\phi_{j}\frac{d}{dx}(EI\frac{d^{2}\phi_{i}}{dx^{2}})\right]_{0}^{L}=0$$

Finally:

$$0 = \int\limits_0^L \frac{d\varphi_j}{dx} \frac{d}{dx} \Biggl(EI \frac{d^2\varphi_i}{dx^2} \Biggr) dx + \int\limits_0^L \varphi_j \frac{d^2}{dx^2} \Biggl(EI \frac{d^2\varphi_i}{dx^2} \Biggr) dx$$

 $\int\limits_{0}^{L}\varphi_{j}\frac{d^{2}}{dx^{2}}\Biggl(EI\frac{d^{2}\varphi_{i}}{dx^{2}}\Biggr)dx=-\int\limits_{0}^{L}\frac{d\varphi_{j}}{dx}\frac{d}{dx}\Biggl(EI\frac{d^{2}\varphi_{i}}{dx^{2}}\Biggr)dx$

Alain Berlioz 2015-16

Alain Berlioz 2015-16

OL:

2nd integration by parts:

Putting:

$$u = \frac{d\varphi_j}{dx} \hspace{1cm} \text{and} \hspace{1cm} u' = \frac{d^2\varphi_j}{dx^2}$$

$$v = EI \frac{d^2 \phi_i}{dx^2} \hspace{1cm} \text{and} \hspace{1cm} v' = \frac{d}{dx} (EI \frac{d^2 \phi_i}{dx^2})$$

hence

$$\int_{0}^{L} (u \ v \)' dx \ \Leftrightarrow \left[\frac{d \phi_{j}}{dx} (EI \frac{d^{2} \phi_{i}}{dx^{2}}) \right]_{0}^{L}$$

So, using the following boundaries at x = 0 and x = L.

	$\frac{d\phi(x)}{dx}f(t)$	$\frac{d^2\phi(x)}{dx^2}f(t)$
Free	?	0
Supported	?	0
Clamped	0	?

Alain Berlioz 2015-16

19

Substituting, it becomes:

$$-\left[\frac{d\phi_{j}}{dx}(EI\frac{d^{2}\phi_{i}}{dx^{2}})\right]_{0}^{L}=0$$

and

$$0 = \int\limits_0^L \frac{d^2\varphi_j}{dx^2} \Biggl(EI \frac{d^2\varphi_i}{dx^2} \Biggr) dx + \int\limits_0^L \frac{d\varphi_j}{dx} \frac{d}{dx} \Biggl(EI \frac{d^2\varphi_i}{dx^2} \Biggr) dx$$

or:

$$\int\limits_0^L \frac{d^2\varphi_j}{dx^2}\Biggl(EI\frac{d^2\varphi_i}{dx^2}\Biggr)dx = -\int\limits_0^L \frac{d\varphi_j}{dx}\frac{d}{dx}\Biggl(EI\frac{d^2\varphi_i}{dx^2}\Biggr)dx$$

Finally, combining that result with first equation leads to:

$$\int\limits_0^L \frac{d^2\varphi_j}{dx^2}\Biggl(EI \frac{d^2\varphi_i}{dx^2} \Biggr) dx = \omega_i^2 \int\limits_0^L \rho S\varphi_i \varphi_j dx$$

$$\int\limits_0^L \frac{d^2\varphi_i}{dx^2}\Biggl(EI \frac{d^2\varphi_j}{dx^2}\Biggr) dx = \omega_j^2 \int\limits_0^L \rho S\varphi_i \varphi_j dx$$

$$0 = \left(\omega_i^2 - \omega_j^2\right) \int_0^L \rho S \phi_i \phi_j dx$$

As $\omega_i \neq \omega_i$

$$\int_{0}^{L} \rho S \, \phi_{i} \, \phi_{j} \, dx = 0$$

and

$$\int_0^L EI \frac{d^2 \phi_i}{dx^2} \frac{d^2 \phi_j}{dx^2} dx = 0$$

Previous equations are the **orthogonality conditions** for a continuous system deforming of a beam in flexion.

21

Modal Masses and modal stiffness matrices

As previously shown:

$$\omega_i^2 = \frac{\int_0^L EI \left(\frac{d^2 \phi_i}{dx^2}\right)^2 dx}{\int_0^L \rho S \phi_i^2 dx} = \frac{k_i}{m_i}$$

with:

$$m_i = \int_0^L \rho S \, \phi_i^2 \, dx$$

and

$$k_i = \int_0^L EI \left(\frac{d^2 \phi_i}{dx^2}\right)^2 dx$$

Alain Berlioz 2015-16

where $\mathbf{k_i}$ and $\mathbf{m_i}$ are the ith modal stiffness and modal mass of this continuous system(beam in flexion).

Application:

Poutre de section constante sur deux appuis simple en flexion :

 $v_1 \downarrow v_2 \downarrow v_2 \downarrow v_2$

On connaît:

$$\phi_i(x) = C_i \sin \frac{i\pi x}{L}$$

$$\varphi_i(x) = C_i \, sin \, \frac{i\pi x}{L} \qquad \text{et} \quad \ \omega_i = \frac{(i\pi)^2}{L^2} \, \sqrt{\frac{EI}{\rho \, S}} \qquad \text{avec } i \neq 0$$

avec
$$i \neq 0$$
 positif

On vérifie bien que :

$$\begin{bmatrix} \phi_j E I \frac{d}{dx} \frac{d^2 \phi_i}{dx^2} \end{bmatrix}_0^L = - \begin{bmatrix} E I C_j C_i \left(\frac{i\pi}{L} \right)^3 \sin \frac{j\pi x}{L} \cos \frac{i\pi x}{L} \right]_0^L \\ = 0$$

$$\begin{split} \left[EI\frac{d\varphi_{j}}{dx}\frac{d^{2}\varphi_{i}}{dx^{2}}\right]_{0}^{L} &= -\Bigg[EIC_{j}C_{i}\bigg(\frac{\pi}{L}\bigg)^{3}i^{2}jcos\frac{j\pi x}{L}sin\frac{i\pi x}{L}\Bigg]_{0}^{L} \\ &= 0 \end{split}$$

Raideurs modales ($i = j \neq 0$)

$$\begin{split} k_i &= EI \int\limits_0^L (\frac{d^2\phi_i}{dx^2})^2 dx = EIC_i^2 \bigg(\frac{i\pi}{L}\bigg)^4 \int\limits_0^L sin^2 \frac{i\pi}{L} x dx \\ &= C_i^2 EI \bigg(\frac{i\pi}{L}\bigg)^4 \frac{L}{2} \end{split}$$

soit

$$k_i = C_i^2 \frac{\text{El}(i\pi)^4}{2L^3}$$

Masses modales $(i = j \neq 0)$

$$\begin{split} m_i &= \int\limits_0^L \rho S {\phi_i}^2 dx \\ &= \rho S C_i^2 \int\limits_0^L sin^2 \frac{i\pi}{L} x dx \end{split}$$

soit

$$m_i = C_i^2 \rho S \frac{L}{2}$$

Alain Berlioz 2015-16

Pulsation propre:

$$\begin{split} \omega_i^2 &= \frac{\int\limits_0^L EI(\frac{d^2\varphi_i}{dx^2})^2 dx}{\int\limits_0^L \rho S\varphi_i^2 dx} = \frac{k_i}{m_i} \\ &= \frac{C_i^2 \frac{EI(i\pi)^4}{2L^3}}{C_i^2 \frac{\rho SL}{2}} \\ &= \frac{i^4\pi^4}{L^4} \frac{EI}{\rho S} \end{split}$$

Vérification

$$\omega_{i} \ = \sqrt{\frac{k_{i}}{m_{i}}} = \frac{i^{2}\pi^{2}}{L^{2}} \sqrt{\frac{EI}{\rho S}}$$

Alain Berlioz 2015-16

La ième équation (découplée) s'écrit :

$$m_i\ddot{q}_i + k_iq_i = 0$$

avec

$$m_i = C_i^2 \rho S \frac{L}{2} \qquad \text{et} \qquad k_i = C_i^2 \frac{E I (i\pi)^4}{2 I^3}$$

Il est possible d'écrire (avec un choix judicieux des constantes) :

pour la 1ère équation,

$$\rho S \frac{L}{2} \ddot{q}_1 + \frac{EI(\pi)^4}{2L^3} q_1 = 0$$

pour la 2ème équation,

$$\rho S \frac{L}{2} f \ddot{q}_2 + \frac{EI(2\pi)^4}{2I^3} q_2 = 0$$

et sous forme matricielle pour n équations

$$\rho S \frac{L}{2} \begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & & 1 & \\ & & 1 & \\ 0 & & \ddots \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \\ \ddot{q}_3 \\ \vdots \end{bmatrix} + \frac{EI(\pi)^4}{2L^3} \begin{bmatrix} 1 & & & 0 \\ & 16 & & \\ & & 81 & \\ 0 & & \ddots \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ \vdots \end{bmatrix} = 0$$

Rappel:

$$\omega_i = \frac{(i\pi)^2}{L^2} \sqrt{\frac{EI}{\rho S}}$$
 pour $i = 1,2,...$