Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market

Xinbo Geng

Texas A&M University gengxinbo@gmail.com

November 13, 2013

Overview

- Background
- Method
 - Stochastic Programming
- Model
 - Uncoordinated Operation (UO)
 - Joint Optimization (JO)
- Numerial Results
 - Input Data
 - Results
 - Operation Results
 - Economic Resluts
 - Interesting Results
- Conclusions and Reviews
 - Conclusions
 - Possible Problems

Renewables, Problems, Solution

- Increasing concern over the environmental impact
- Renewable energy sources become an important portion of generation mix.
- Renewables participate in electricity market competition.
- Wind Energy is the fast growing renewable energy.

Drawbacks of Wind

- uncontrollable
- uncertain
- fluctuated

Solution

the Joint Operation of wind power and pumped-storage units in electricity market.

Renewables in the Spot Market

For a wind producer in market:

- 24:0BF 10 forecast his production, build bids (for Day-ahead Market)
 - BF 10 submit hourly bids for the following day
 - D+1 (optional) submit balancing bids in real-time market
 - $\mathsf{D}{+}1$ optimize its operation/output
 - D+1 Penalty because of the output deviation from the bids

Stochastic Programming

Uncertainty

Day-ahead forecast error of wind power is huge (30% - 50%) Also uncertainty about market price.

Solution - Stochastic Programming

Stochastic Programming deals with the problems of making optimal decisions under uncertainty.

Two Stage Stochastic Programming

Uncoordinated Operation (UO)

Model of Wind Power

$$\max \sum_{s \in S} \rho_s \cdot \sum_{h \in H} [\pi_{s,h} \cdot g_{s,h}^W - \omega \cdot \pi_{s,h} \cdot |g_{s,h}^W - x_h^W|]$$
 (1)

Bid constraints, output constraints

The subscript s, h means in scenario s, in period h Constants

- *S*, *s* Set and index of scenarios
- H, h Set and index of hourly periods
 - ρ_s Probability of scenarios
 - ω Penalty factor over the market price energy imbalances
- $\pi_{s,h}$ Expected market price in scenario s period h

Variables

 \mathbf{x}_h^W Energy bid to the day-ahead market by the wind farm in period h

 $g_{s,h}^{W}$ Power output of the wind farm in scenario s in period h

< ロ > ← □ > ← ■ > ← ■ > → ● へ ● ● → へ へ ○

Uncoordinated Operation (UO)

Model of Pumped-Storage Plant

$$\max \sum_{s \in S} \rho_{s} \cdot \sum_{h \in H} [\pi_{s,h} \cdot (g_{s,h}^{p} - d_{s,h}^{p}) - c^{su} \cdot y_{s,h} - c^{sd} \cdot z_{s,h} - \omega \cdot \pi_{s,h} \cdot |g_{s,h}^{p} - d_{s,h}^{p} - x_{h}^{p}|]$$
(2)

The subscript s, h means in scenario s, in period h Constants

u, c^{sd} Start-up and shut-down costs of pumping units

Variables

 $g_{s,h}^{p}$ Discharge power output of pumped-storage plant

 x_h^p Energy bid to the DA market

Pumping power input of the pumped-storage plant

 $y_{s,h}, z_{s,h}$ (Integer)The number of units that are start-up and shut-down in the pumping mode

Joint Optimization (JO)

Model of Pumped-Storage Plant

$$\begin{split} \max \sum_{s \in S} & \rho_s \cdot \sum_{h \in H} [\pi_{s,h} \cdot (g^W_{s,h} + g^P_{s,h} - d^P_{s,h}) - c^{su} \cdot y_{s,h} - c^{sd} \cdot z_{s,h} \\ & - \omega \cdot \pi_{s,h} \cdot |g^W_{s,h} + g^P_{s,h} - d^P_{s,h} - x^{wp}_h|] \end{split}$$

Bidding constraints, operation constraints

The subscript s, h means in scenario s, in period h **Variables**

 $g_{s,h}^{\rho}$ Discharge power output of pumped-storage plant

 $g_{s,h}^W$ Power output of the wind farm $y_{s,h}, z_{s,h}$ (Integer)The number of units

 x_{L}^{WP} Joint bid to the DA market

 $d_{s,h}^p$ Pumping power input of the pumped-storage plant

> that are start-up and shut-down in the pumping mode

Xinbo Geng (TAMU)

Scenarios

Figure: Scenarios

Number of Price scenarios: 20

Number of Wind Production scenarios: 21

Total Scenarios: $21 \times 20 = 420$

Obtained Optimal Hourly Bid

Figure: Optained Hourly Bid

Obtained Operation Through the Day in the Lower Reservoir For Each Scenario in the Joint Optimization

Economic Results

Configuration		Mean value [Eur]
UO	Wind farm	16301
	Pumped-storage	193
	Sum	16494
JO		16912

Configuration	Penalties [Eur]
UO	1653
JO	1066

Figure : Penalties (UO vs JO)

Figure: Profits (UO vs JO)

- Joint Operation has more profits.
- Joint Operation has less penalties.

The influence of pumped-storage size

From CB1 to CB7: the capacity of pumped-storage plant increases.

- When the pumped-storage plant dimensions are small compared to the wind farm power, profits increase faster
- When the value of the pumping capacity approaches that of the wind farm, profits remain almost constant.

Conclusions and Future Work

- In this paper, the author demonstrated that a joint short-term operation of a wind farm and of an isolated pumped-storage plant can be obtained by solving the presented optimization model.
- Two-stage stochastic programming approach has proven to be an effective way to model the real decision making process that wind park operators face in a spot-market framework under uncertainty.
- the models presented in this paper could be useful for assisting in investment decisions about new pumped-storage facilities.

Future research: introduce in the optimization model some risk-aversion measures.

Possible Problems

- The scenarios (price and wind) are not convincing
 - Price Scenarios are based on "Modeling and forecasting electricity prices with input/output hidden Markov models," published on IEEE Trans. Power Syst., vol. 20, no. 1, pp. 112, Feb. 2005.
 - Not mention how to generate wind scenarios? The characterics of wind scenarios? Special scenarios?
- Some deep analysis?