C++ for Image Processing:
https://www.youtube.com/watch? v=F_vIB3yjxaM&list=PLgnQpQtFTOGR50iIOtO36nK6aNPtVq98C
<u>C++</u>
C++ Guidelines :
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
<u>C++ Reference</u>
https://en.cppreference.com/w/
Eigen Library :
http://eigen.tuxfamily.org/index.php?title=Main_Page
Valgrind:
http://valgrind.org/docs/manual/quick-start.html
CSV File:
https://gist.github.com/roman-smirnov/a46f6096787987a96927e05352363cc7
CLI Arguments to avoid recompilation :
https://gist.github.com/roman-smirnov/7614a6fc971f006642735f93fda71372
Compiler Optimization :
https://gist.github.com/roman-smirnov/037d293709b38f5f1739292522eb8ae5
Github Gist :
Parameter Tweaking:
https://gist.github.com/roman-smirnov/21b43a7a9d17486ec8451aa079a800d1
<u>Lidar</u>
KD Tree Lecture :
https://www.youtube.com/watch?v=Xk1Jf_mE-EE
Lidar Lecture :

Sensor Fusion Links

 $\frac{https://www.youtube.com/watch?v=zUyaM0gLXk0\&list=PLwdnzlV3ogoVINM9FCeYImsI-bzm-D8Sn\&index=24$

IBEO Segmentation Paper:

http://n.ethz.ch/~cesarc/files/ITSC2018 jnitsch.pdf

Camera

Digital Image Processing:

https://www.youtube.com/watch?v=UhDlLtLT2U&list=PLuh62Q4Sv7BUf60vkjePfcOQc8sHxmnDX&index=1

BRISK Paper:

http://www.margaritachli.com/papers/ICCV2011paper.pdf

ORB Paper:

https://www.researchgate.net/publication/ 221111151 ORB an efficient alternative to SIFT or SURF

Radar

Radar Basics:

https://www.radartutorial.eu/html/sm03.en.html

Intro MIT course:

https://www.youtube.com/watch?v=Hw5IaS6-Fzw&list=PLUJAYadtuizA8RC2Qk8LfmiWA56HZsk9y

FFT Matlab:

https://www.gaussianwaves.com/2014/07/how-to-plot-fft-using-matlab-fft-of-basic-signals-sine-and-cosine-waves/

Radar Simulation: http://www.codar.com/images/about/1990LipaBarr FMCW.pdf

Kalman Filter

Bonn SLAM course

https://www.youtube.com/watch? v=U6vr3iNrwRA&list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&index=1

UKF Paper:

https://www.seas.harvard.edu/courses/cs281/papers/unscented.pdf

Autoware:

https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/blob/master/src/prediction/kalman_filter/design/kalman_filter-design.md