ProgSet 2

CS 124: Data Structures and Algorithms

Due: Wednesday, March 27, 2024 Denny Cao and Ossimi Ziv

§1 Quantitative Results

§1.1 Analytical Crossover Calculation

The crossover point is the point at which strassen becomes faster than the naive algorithm. We can calculate the crossover point by setting the two algorithms equal to each other and solving for n.

The runtime of standard is

$$T(n) = n^2(2n - 1)$$

assuming that all arithmetic operations have a cost of 1 by Task 1. This is because, for each of the resulting n^2 numbers in the resulting matrix, there are a total of n multiplications and n-1 additions.

For strassen, we only run "one layer" of the algorithm, with the subproblems using standard in order to calculate the resulting matrix. There are two cases:

1. n is even. This means that the runtime of strassen is

$$T'(n) = 7T(n/2) + 18(n/2)^2$$

as there are 7 subproblems and 18 matrix additions $((n/2)^2$ elements in each) in the algorithm, since we can evenly split submatrices.

We can now set the two algorithms equal to each other and solve for n:

$$2n^{3} - n^{2} = 7(2(n/2)^{3} - (n/2)^{2}) + 18(n/2)^{2}$$

$$= \frac{7}{4}n^{3} - \frac{7}{4}n^{2} + \frac{18}{4}n^{2}$$

$$0 = -\frac{1}{4}n^{3} + \frac{15}{4}n^{2}$$

$$= -\frac{1}{4}n^{2}(n - 15)$$

$$n = 15$$

We can see that the crossover point is $n_0 = 15$.

2. n is odd. This means that the runtime of strassen is

$$T'(n) = 7T((n+1)/2) + 18((n+1)/2)^2$$

This is because the algorithm will pad the matrix by adding a column and row of zeros to the matrix, making the input size for subproblems (n+1)/2.

We can now set the two algorithms equal to each other and solve for n:

$$2n^{3} - n^{2} = 7(2((n+1)/2)^{3} - ((n+1)/2)^{2}) + 18((n+1)/2)^{2}$$

$$0 = \frac{7}{4}(n+1)^{3} + \frac{11}{4}(n+1)^{2} - 2n^{3} + n^{2}$$

$$= \frac{7}{4}(n^{3} + 3n^{2} + 3n + 1) + \frac{11}{4}(n^{2} + 2n + 1) - 2n^{3} + n^{2}$$

$$= -\frac{1}{4}n^{3} + 9n^{2} + \frac{43}{4}n + \frac{18}{4}$$

$$n = 37.17$$

Thus, the crossover point is around $n_0 = 37$.

We combine the two cases to get the crossover point for all n:

- For n < 15, standard is faster.
- For $15 \le n \le 37$, it is unclear which algorithm is faster.
- For n > 37, strassen is faster.

Thus, the theoretical crossover point is $n_0 = 37$.

§1.2 Empirical Crossover

We obtain the empirical crossover point by running the two algorithms on random matrices of size n with entires 0 and 1 and timing them. We then plot the results and find the point at which, for all n greater than the crossover point, **strassen** is faster. A subset of the results are shown below, taking the average of 5 runs for each matrix size between 1 and 50.

Matrix Size (n)	Average Time Strassen (ms)	Average Time Standard (ms)	Matrix Size (n)	Average Time Strassen (ms)	Average Time Standard (ms)
1	0.04005432	0.01764297	26	3.75418663	4.20546532
2	0.25367737	0.04434586	27	4.70714569	4.67915535
3	2.44951248	0.24557114	28	4.69846725	5.22465706
4	1.03759766	0.45967102	29	5.78403473	5.77650070
5	2.76184082	0.08940697	30	5.74755669	6.42280579
6	0.08349419	0.05903244	31	6.94327354	7.02953339
7	0.19207001	0.09231567	32	6.93907738	7.74512291
8	0.14777184	0.13208389	33	8.31937789	8.45537186
9	0.29582977	0.18420219	34	8.70699883	9.58261489
10	0.26364326	0.24600029	35	9.94524956	10.25118828
11	0.44384003	0.32444000	36	9.80730057	10.96653938
12	0.41499138	0.42495727	37	11.51275635	12.00428009
13	0.70180892	0.57215691	38	11.48490906	12.88061142
14	0.67152977	0.70323944	39	13.39626312	13.96603584
15	0.98776817	0.87027550	40	13.42787743	15.08932114
16	0.96721649	1.02620125	41	15.63568115	16.28928185
17	1.36899948	1.19962692	42	15.51976204	17.43607521
18	1.30710602	1.41773224	43	17.73638725	18.69397163
19	1.76682472	1.64866447	44	17.71345139	19.96340752
20	1.73182487	1.92041397	45	20.18704414	21.47617340
21	2.31013298	2.22172737	46	20.11113167	22.76115417
22	2.32915878	2.55317688	47	22.77207374	24.14793968
23	3.03268432	2.95033455	48	22.81498909	25.85563660
24	3.01985741	3.30181122	49	25.80103874	27.45056152
25	3.78847122	3.72204781	50	27.79173851	29.60662842

Figure 1: Average runtimes of strassen and standard for matrix sizes n

We observe that, for n > 29, strassen is faster than standard. Thus, the empirical crossover point is $n_0 = 29$.

We also observe that, for n < 12, standard is faster than strassen, and for $12 \le n \le 29$, it is unclear which algorithm is faster.

§2 Discussion

§2.1 Results: Analytical v. Empirical

We observe that n_0 is lower than the theoretical value when tested empirically (29 < 37). This means that Strassen could handle matrices 8 sizes larger than predicted before it would be faster to swap over to the standard algorithm. This in turn implies one of two things; 1: Strassen was faster than we predicted, and better at handling the operations than we had calculated it to be, or 2: the standard algorithm was slower than we accounted for.

Because we assumed that addition and multiplication come at a cost of O(1) time it is nearly impossible that Strassen could be better than the mathematical estimate we gave it. Instead, what is likely is that our simplification of the standard algorithm and abbreviation of its operations to a constant time wasn't mirroring what happened in the system and how our computer processor handled those operations. Thus the standard algorithm, having to handle more operations than Strassen was slightly slower than we predicted, causing it to be more efficient to remain on Strassen for longer before crossing over. Hence the lower actual cross-over point.

Another reason why the

A final third potential reason for why the standard algorithm is slower than expected is the repeated indexing in the triple-for-loop. The culprit is the continuous calling for the indexes of the y array in this block of the code in the definition of the standard algorithm: Python stores its arrays in contiguous blocks of memory, so in a double array as we have here, arr[0,0] would be stored right next to arr[0,1] which in turn is right next to arr[0,2]. This makes accessing indexes in sequential order by the second index very convenient and friendly for the machine. (accessing the x array by increasing k. However, when indexing the y array, since the SECOND index y is being held constant by the outer for-loop while y (the first index) changes, we are not accessing memory sequentially and continuously as would be convenient, and instead jumping around rows of memory. Cache that would be appropriate

§2.2 Implementation

§2.2.1 Padding: Handling Odd Sized Matrices

An interesting difficulty we encountered was how to efficiently implement padding into the algorithm. The initially intuitive solution we had was to pre-process the matrix with padding up to the nearest power of 2, and then post-process the result by only returning up to the original size after strassen algorithm had finished running to remove the pads. However, we wanted (yet struggled) to find an implementation that incorporated all the padding into the single strassen function. The various calls of recursion made it difficult to keep track of when un-padding should be done, as defining it within the function would cause issues with recursive calls.

Our next idea was to incorporate the padding as part of the split function call. We add a row and column of 0s for padding if the input matrix x has an odd size, which will result in an even sized matrix, and then call split again to split the matrix evenly. We now prove that this is correct.

Claim 2.1 — The result of multiplying the padded matrices is the same as the result of multiplying the original matrices.

Proof. Let A and B be odd matrices, and A' and B' be the padded matrices. We have that

$$A' = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \quad B' = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}$$

We can now multiply the matrices using **strassen**, as they are now even-sized and can be split:

$$A'B' = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} AB & 0 \\ 0 & 0 \end{bmatrix}$$

We can see that, after removing the padding, the result is the same as the result of multiplying the original matrices, and the proof is complete. \Box

§2.3 Optimizations

A small optimization we decided to add after preliminary testing was implementing the winograd form of the algorithm discussed in Remark 5 of Lecture 9, maintaining the asymptotic runtime but reducing the number of additions/subtractions from 18 to 15. Mathematically, this changes the constant number of operations performed, and hypothetically reduces the cross-over point from 37 to 34

$$2n^{3} - n^{2} = 7T(\frac{n}{2}) + 15(\frac{n}{2})^{2}$$
$$2n^{3} - n^{2} = 7(2(\frac{n}{2})^{3} - (\frac{n}{2})^{2}) + 15(\frac{n}{2})^{2}$$

Reducing the calculation gives $n_0 = 12$ for powers of two. Similarly, accounting for the padding on numbers not power of two with the updated number of operations, we have:

$$2n^3 - n^2 = 7(2(\frac{n+1}{2})^3 - (\frac{n+1}{2})^2) + 15(\frac{n+1}{2})^2$$

Which reduces to $n_0 \approx 34$, a minor reduction estimate.

With empirical testing, we obtain the following data, averaging times from 5 trials:

Matrix Size	Average Time Winograd	Average Time Standard
1	3.814697265625e-06	1.71661376953125e-06
2	2.6178359985351562e-05	3.862380981445312e-06
3	8.440017700195312e-05	9.107589721679688e-06
4	4.191398620605469e-05	1.873970031738281e-05
5	9.965896606445312e-05	3.342628479003906e-05
6	8.044242858886718e-05	5.621910095214844e-05
7	0.00016927719116210938	8.921623229980468e-05
8	0.00015482902526855468	0.00013575553894042968
9	0.0002984523773193359	0.0001971721649169922
10	0.00027599334716796873	0.00026311874389648435
11	0.00046706199645996094	0.00033812522888183595
12	0.000435638427734375	0.0004309177398681641
13	0.000666666030883789	0.0005465984344482422
14	0.0006531238555908203	0.0006655693054199219
15	0.0009731292724609375	0.0008263587951660156
16	0.0009289741516113281	0.0009956836700439453
17	0.0013453960418701172	0.0011841297149658204
18	0.00130157470703125	0.0014186859130859374
19	0.001779794692993164	0.001665019989013672
20	0.0017538070678710938	0.0019189834594726563
21	0.0023659229278564452	0.002222633361816406
22	0.002311897277832031	0.0025493621826171873
23	0.0029861927032470703	0.002897500991821289
24	0.002963542938232422	0.0033051013946533204
25	0.0037668704986572265	0.003717947006225586
26	0.003761768341064453	0.004164743423461914
27	0.004654836654663086	0.004653787612915039
28	0.004636573791503906	0.005214595794677734
29	0.005778264999389648	0.005764532089233399
30	0.005742979049682617	0.006369829177856445
31	0.006974220275878906	0.00701904296875
32	0.006930398941040039	0.007732200622558594
33	0.00825643539428711	0.008376169204711913
34	0.008147287368774413	0.00911092758178711
35	0.009667158126831055	0.009928178787231446
36	0.009735441207885743	0.010892295837402343
37	0.011501312255859375	0.011954784393310547
38	0.011496591567993163	0.012907838821411133
39	0.01336979866027832	0.013849735260009766
40	0.013233804702758789	0.014958429336547851
41	0.015453815460205078	0.016249704360961913
42	0.015420484542846679	0.017423534393310548
43	0.01782994270324707	0.018680667877197264
44	0.01777782440185547	0.020090293884277344
45	0.020171403884887695	0.021331262588500977
46	0.020185375213623048	0.022751760482788087
47	0.022836875915527344	0.024216747283935545
48	0.02294459342956543	0.026280975341796874
49	0.026479005813598633	0.02758617401123047
50	0.025884246826171874	0.029093170166015626

NEED DATA TO CHECK IF WINOGRAD IS ACTUALLY FASTER

§2.4 Matrix Choice

We chose to multiply all matrices between 1-50: powers of two and non-powers of two. The matrix choice considerably varies the number of operations that need to be conducted as for non-powers of two, padding and un-padding has to applied, adding extra cost and changing the size of the matrix that is operated on. Thus, to ensure that our n_0 value was sound across all variations of the operations and we'd get general results, we decided to not limit which types of matrices we tested

To ensure close to constant time arithmetic as possible, we chose to use random matrices with entries 0 and 1.