```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv('/content/Job_Placement_Data.csv')
df
```

	gender	ssc_percentage	ssc_board	hsc_percentage	hsc_board	hsc_subject	degree_percentage	undergrad_degree
0	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech
1	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech
2	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgml
3	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech
4	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgml
								•••
210	М	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgml
211	М	58.00	Others	60.00	Others	Science	72.00	Sci&Tech
212	М	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgml
213	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgml
214	M	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt

215 rows \times 13 columns


```
completed at 12:14 PM
                                          ✓ 0s
                                                                                                                   X
    gender
                            0
    ssc percentage
    ssc board
    hsc_percentage
    hsc board
    hsc_subject
    degree percentage
    undergrad degree
    work experience
    emp test percentage
    specialisation
    mba_percent
    status
    dtype: int64
print(df.columns)
    Index(['gender', 'ssc_percentage', 'ssc_board', 'hsc_percentage', 'hsc_board',
            'hsc subject', 'degree percentage', 'undergrad degree',
            'work experience', 'emp test percentage', 'specialisation',
            'mba percent', 'status'],
          dtype='object')
df.head()
```

	gender	ssc_percentage	ssc_board	hsc_percentage	hsc_board	hsc_subject	degree_percentage	undergrad_degree
0	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech
1	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech
2	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt
3	M	56.00	Central	52.00	Central	Science	52.00	Sci&Tech
4	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mamt

df.tail()

	gender	ssc_percentage	ssc_board	hsc_percentage	hsc_board	hsc_subject	degree_percentage	undergrad_degree
210	М	80.6	Others	82.0	Others	Commerce	77.6	Comm&Mgml
211	М	58.0	Others	60.0	Others	Science	72.0	Sci&Tech
212	М	67.0	Others	67.0	Others	Commerce	73.0	Comm&Mgmt
213	F	74.0	Others	66.0	Others	Commerce	58.0	Comm&Mgmt
214	М	62.0	Central	58.0	Others	Science	53.0	Comm&Mgmt

df.shape

(215, 13)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215 entries, 0 to 214
Data columns (total 13 columns):

Data	cotamins (totat 15	co culling / .	
#	Column	Non-Null Count	Dtype
0	gender	215 non-null	object
1	ssc_percentage	215 non-null	float64
_	_, ,	0.4 = 3.3	

2	ssc_board	215	non-null	object
3	hsc_percentage	215	non-null	float64
4	hsc_board	215	non-null	object
5	hsc_subject	215	non-null	object
6	degree_percentage	215	non-null	float64
7	undergrad_degree	215	non-null	object
8	work_experience	215	non-null	object
9	emp_test_percentage	215	non-null	float64
10	specialisation	215	non-null	object
11	mba_percent	215	non-null	float64
12	status	215	non-null	object
ttvne	es: float64(5) object	F (8)		_

dtypes: float64(5), object(8)
memory usage: 22.0+ KB

df.describe()

	ssc_percentage	hsc_percentage	degree_percentage	<pre>emp_test_percentage</pre>	mba_percent
count	215.000000	215.000000	215.000000	215.000000	215.000000
mean	67.303395	66.333163	66.370186	72.100558	62.278186
std	10.827205	10.897509	7.358743	13.275956	5.833385
min	40.890000	37.000000	50.000000	50.000000	51.210000
25%	60.600000	60.900000	61.000000	60.000000	57.945000
50%	67.000000	65.000000	66.000000	71.000000	62.000000
75 %	75.700000	73.000000	72.000000	83.500000	66.255000
max	89.400000	97.700000	91.000000	98.000000	77.890000

df.corr()

	ssc_percentage	hsc_percentage	degree_percentage	<pre>emp_test_percentage</pre>	mba_percent	
ssc percentage	1.000000	0.511472	0.538404	0.261993	0.388478	

hsc_percentage	0.511472	1.000000	0.434206	0.245113	0.354823
degree_percentage	0.538404	0.434206	1.000000	0.224470	0.402364
emp_test_percentage	0.261993	0.245113	0.224470	1.000000	0.218055
mba_percent	0.388478	0.354823	0.402364	0.218055	1.000000

import seaborn as sns
sns.heatmap(df.corr())

sns.pairplot(df,hue='status')

df['gender'].value_counts()

M 139 F 76

Name: gender, dtype: int64

sns.countplot(data=df,x='gender',hue='status')

job_placement.ipynb - Colaboratory

gender

sns.violinplot(x='ssc_percentage',y='ssc_board',hue='status',data=df)

<AxesSubplot:xlabel='ssc_percentage', ylabel='ssc_board'>

df['ssc_board'].value_counts()

Central 116 Others 99

Name: ssc_board, dtype: int64

sns.countplot(data=df,x='ssc_board',hue='status')

<AxesSubplot:xlabel='ssc_board', ylabel='count'>

80
70
80
Placed
Not Placed
Not Placed


```
sns.distplot(df['ssc_percentage'])
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated for warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='ssc percentage', ylabel='Density'>

df['hsc board'].value counts()

Others 131 Central 84

Name: hsc board, dtype: int64

```
sns.countplot(x='hsc_board',data=dt)
```


df['hsc_subject'].value_counts()

Commerce 113 Science 91 Arts 11

Name: hsc_subject, dtype: int64

sns.countplot(x='hsc_subject',data=df)

<AxesSubplot:xlabel='hsc subject', ylabel='count'>

plt.hist(df['hsc percentage'])

df['undergrad degree'].value counts()

Comm&Mgmt 145 Sci&Tech 59 Others 11

Name: undergrad_degree, dtype: int64

```
sns.countplot(x='undergrad degree',data=df,hue='status')
```


plt.hist(df['degree percentage'])

```
(array([10., 25., 26., 58., 35., 34., 16., 7., 3., 1.]),
array([50., 54.1, 58.2, 62.3, 66.4, 70.5, 74.6, 78.7, 82.8, 86.9, 91.]),
<BarContainer object of 10 artists>)
```


df['work_experience'].value_counts()

No 141 Yes 74

Name: work_experience, dtype: int64

sns.countplot(x='work experience',data=df,hue='status')

<AxesSubplot:xlabel='work experience', ylabel='count'>

plt.hist(df['emp test percentage'])

(array([12., 33., 33., 24., 19., 23., 17., 20., 15., 19.]), array([50., 54.8, 59.6, 64.4, 69.2, 74., 78.8, 83.6, 88.4, 93.2, 98.]), <BarContainer object of 10 artists>)

df['specialisation'].value counts()

Mkt&Fin 120 Mkt&HR 95

Name: specialisation, dtype: int64

sns.countplot(x='specialisation',data=df,hue='status')

<AxesSubplot:xlabel='specialisation', ylabel='count'>

plt.hist(df['mba_percent'])


```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['specialisation']=le.fit_transform(df['specialisation'])
df['undergrad_degree']=le.fit_transform(df['undergrad_degree'])
df['hsc_subject']=le.fit_transform(df['hsc_subject'])
df['hsc_board']=le.fit_transform(df['hsc_board'])
df['ssc_board']=le.fit_transform(df['ssc_board'])
df['gender']=le.fit_transform(df['gender'])
df['work_experience']=le.fit_transform(df['work_experience'])
```

df

	gender	ssc_percentage	ssc_board	hsc_percentage	hsc_board	hsc_subject	degree_percentage	undergrad_degree
0	1	67.00	1	91.00	1	1	58.00	2
1	1	79.33	0	78.33	1	2	77.48	2
2	1	65.00	0	68.00	0	0	64.00	C

3	1	56.00	0	52.00	0	2	52.00	2
4	1	85.80	0	73.60	0	1	73.30	С
								•••
210	1	80.60	1	82.00	1	1	77.60	С
211	1	58.00	1	60.00	1	2	72.00	2
212	1	67.00	1	67.00	1	1	73.00	С
213	0	74.00	1	66.00	1	1	58.00	С
214	1	62.00	0	58.00	1	2	53.00	С

215 rows × 13 columns

df.dtypes

gender	int64		
ssc_percentage	float64		
ssc_board	int64		
hsc_percentage	float64		
hsc_board	int64		
hsc_subject	int64		
degree_percentage	float64		
undergrad_degree	int64		
work_experience	int64		
emp_test_percentage	float64		
specialisation	int64		
mba percent	float64		
status	object		
dtype: object	-		

```
x= df.drop('status',axis=1)
y= df[['status']]
x
```

		gender	ssc_percentage	ssc_board	hsc_percentage	hsc_board	hsc_subject	degree_percentage	undergrad_degree
	0	1	67.00	1	91.00	1	1	58.00	2
	1	1	79.33	0	78.33	1	2	77.48	2
	2	1	65.00	0	68.00	0	0	64.00	C
	3	1	56.00	0	52.00	0	2	52.00	2
	4	1	85.80	0	73.60	0	1	73.30	C
2	210	1	80.60	1	82.00	1	1	77.60	C
2	211	1	58.00	1	60.00	1	2	72.00	2
2	212	1	67.00	1	67.00	1	1	73.00	C
2	213	0	74.00	1	66.00	1	1	58.00	C
2	214	1	62.00	0	58.00	1	2	53.00	C

215 rows × 12 columns


```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42)
x test
```

gender ssc_percentage ssc_board hsc_percentage hsc_board hsc_subject degree_percentage undergrad_degree

200	1	69.0	1	60.0	1	1	65.00	C
212	1	67.0	1	67.0	1	1	73.00	С
138	0	82.0	1	64.0	1	2	73.00	2
176	0	59.0	0	60.0	1	1	56.00	C
15	0	65.0	0	75.0	0	1	69.00	C
							•••	••
68	0	69.7	0	47.0	0	1	72.70	2
5	1	55.0	1	49.8	1	2	67.25	2
136	0	47.0	0	59.0	0	0	64.00	C
56	1	63.0	1	71.4	1	1	61.40	C
100	0	45.0	1	57.0	1	1	58.00	C

65 rows × 12 columns

from sklearn.preprocessing import StandardScaler
scalar=StandardScaler()
scalar.fit(x_train)
x_train=scalar.transform(x_train)
x_test=scalar.transform(x_test)

#KNN ALGORITHM

from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
cls1=KNeighborsClassifier()
parametrs={'n neighbors':[3,5,7,9,11,13,15,17,19,21],'weights':['uniform','distance']}

```
clf=GridSearchCV(cls1,parametrs,cv=10,scoring='accuracy') #cv=cross vallidation
clf.fit(x_train,y_train)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
```

```
return self. fit(X, v)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, v)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
  return self. fit(X, y)
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
```

19 of 29

return self. fit(X, y)

```
/usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X. v)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
print(clf.best params )
         {'n neighbors': 17, 'weights': 'distance'}
clf2=KNeighborsClassifier(n neighbors=21,weights='distance')
clf2.fit(x train,y train)
y pred1=clf2.predict(x test)
y pred1
         /usr/local/lib/python3.8/dist-packages/sklearn/neighbors/ classification.py:198: DataConversionWarning: A column-
             return self. fit(X, y)
         array(['Placed', 'Placed', 'Not Placed', 'Placed', 'Not Placed',
                       'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
                       'Placed', 'Placed', 'Not Placed', 'Placed', 'Placed',
                       'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Place
                        'Dlacad' 'Dlacad' 'Dlacad' 'Dlacad' 'Dlacad' 'Dlacad'
```

```
rtaceu , rtaceu , rtaceu , rtaceu , rtaceu ,
'Placed', 'Placed', 'Placed', 'Placed',
'Placed', 'Not Placed', 'Placed', 'Placed', 'Placed',
'Placed', 'Placed', 'Placed', 'Placed', 'Placed',
'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
'Placed', 'Placed', 'Placed', 'Not Placed'], dtype=object)
```

```
from sklearn.metrics import accuracy_score,classification_report,ConfusionMatrixDisplay,confusion_matrix
report=classification_report(y_test,y_pred1)
cunf_matl=confusion_matrix(y_test,y_pred1)
cml=ConfusionMatrixDisplay(cunf_mat1)
cml.plot()
score_knn=accuracy_score(y_test,y_pred1)
print('accuracy_score :',score_knn)
print('tecuracy_score :',score_knn)
print('tecuracy_score :',score_knn)
print('report)
```

accuracy_score : 0.7538461538461538

	precision	recall	f1-score	support
Not Placed Placed	0.86 0.74	0.29 0.98	0.43 0.84	21 44
accuracy macro avg weighted avg	0.80 0.78	0.63 0.75	0.75 0.64 0.71	65 65 65

print('accuracy score :',score naive bays)

print(report2)

```
#Naive bayes
from sklearn.naive bayes import GaussianNB
model2=GaussianNB()
model2.fit(x train,y train)
y pred2=model2.predict(x test)
y pred2
           /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:993: DataConversionWarning: A column-vector y v
                y = column or 1d(y, warn=True)
           array(['Placed', 'Placed', 'Not Placed', 'Placed', 'Not Placed', 'N
                              'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
                              'Not Placed', 'Not Placed', 'Placed', 'Not Placed', 'Placed',
                              'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
                              'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
                              'Placed', 'Placed', 'Not Placed', 'Not Placed', 'Placed',
                             'Placed', 'Placed', 'Placed', 'Placed', 'Placed',
                              'Placed', 'Placed', 'Not Placed', 'Placed', 'Placed',
                              'Placed', 'Not Placed', 'Placed', 'Placed', 'Placed',
                             'Placed', 'Not Placed', 'Placed', 'Placed', 'Placed',
                              'Placed', 'Placed', 'Not Placed', 'Not Placed', 'Placed',
                              'Not Placed'], dtype='<U10')
from sklearn.metrics import accuracy score, classification report, Confusion Matrix Display, confusion matrix
cunf mat2=confusion matrix(y test,y pred2)
cm2=ConfusionMatrixDisplay(cunf mat2)
cm2.plot()
report2=classification report(y test,y pred2)
score naive bays=accuracy score(y test,y pred2)
```

	precision	recall	f1-score	support
Not Placed Placed	0.76 0.83	0.62 0.91	0.68 0.87	21 44
accuracy macro avg weighted avg	0.80 0.81	0.76 0.82	0.82 0.78 0.81	65 65 65


```
#SVM
from sklearn.svm import SVC
model3=SVC()
model3.fit(x_train,y_train)
y_pred3=model3.predict(x_test)
y_pred3
```

```
/usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:993: DataConversionWarning: A column-vector y v
y = column_or_ld(y, warn=True)
array(['Placed', 'Placed', 'Not Placed', 'Not Placed', 'Not Placed', 'Placed', 'Place
```

```
'Placed', 'Placed', 'Placed', 'Placed', 'Not Placed', 'Not Placed', 'Placed', 'Placed'
```

	precision	recall	f1-score	support	
Not Placed Placed	0.82 0.78	0.43 0.95	0.56 0.86	21 44	
accuracy macro avg weighted avg	0.80 0.79	0.69 0.78	0.78 0.71 0.76	65 65 65	


```
#Random Forest
from sklearn.ensemble import RandomForestClassifier
model4=RandomForestClassifier()
model4.fit(x train,y train)
y pred4=model4.predict(x test)
y pred4
    <ipython-input-66-e6c18c1b66b5>:4: DataConversionWarning: A column-vector y was passed when a 1d array was expect
      model4.fit(x train,y train)
    array(['Placed', 'Placed', 'Not Placed', 'Placed', 'Not Placed',
           'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
           'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed',
           'Not Placed', 'Placed', 'Placed', 'Placed', 'Not Placed',
           'Placed', 'Placed', 'Placed', 'Placed', 'Placed',
           'Placed', 'Placed', 'Placed', 'Placed', 'Placed',
           'Placed', 'Placed', 'Placed', 'Placed', 'Placed',
           'Placed', 'Not Placed', 'Placed', 'Placed', 'Placed',
           'Placed', 'Placed', 'Placed', 'Placed', 'Placed',
           'Not Placed', 'Not Placed', 'Placed', 'Placed', 'Placed',
           'Placed', 'Not Placed', 'Not Placed', 'Placed', 'Not Placed'],
         dtype=object)
```

from sklearn.metrics import accuracy_score,classification_report,confusion_matrix,ConfusionMatrixDisplay
score_randomforest=accuracy_score(y_test,y_pred4)
report4=classification_report(y_test,y_pred4)
cunf_mat4=confusion_matrix(y_test,y_pred4)
cm4=ConfusionMatrixDisplay(cunf_mat4)
cm4.plot()

	precision	recall	f1-score	support
Not Placed Placed	0.83 0.79	0.48 0.95	0.61 0.87	21 44
accuracy macro avg weighted avg	0.81 0.81	0.72 0.80	0.80 0.74 0.78	65 65 65


```
#Decision_Tree
from sklearn.tree import DecisionTreeClassifier
model5=DecisionTreeClassifier()
model5.fit(x_train,y_train)
y_pred5=model5.predict(x_test)
y_pred5
```

array(['Placed' 'Placed' 'Not Placed' 'Placed' 'Not Placed'

```
'Not Placed', 'Placed', 'Placed', 'Not Placed', 'Placed', 'Not Placed', 'Placed', 'Not Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Placed', 'Not Placed', 'Not Placed', 'Not Placed', 'Not Placed', 'Not Placed', 'Placed', 'Not Placed', 'Not Placed', 'Not Placed', 'Not Placed', 'Placed', 'Placed', 'Not Placed', 'Not
```

Accuracy_Score: 0.8307692307692308

	precision	recall	f1-score	support
Not Placed Placed	0.73 0.88	0.76 0.86	0.74 0.87	21 44
accuracy macro avg weighted avg	0.81 0.83	0.81 0.83	0.83 0.81 0.83	65 65 65

modelss=pd.DataFrame({'model':['KNeighbors','Naive_bayes','SVM','Random_Forest','Decesion_Tree'],'Accuracy_Score':[scored]

	model	Accuracy_Score	7
0	KNeighbors	0.753846	
1	Naive_bayes	0.815385	
2	SVM	0.784615	
3	Random_Forest	0.800000	
4	Decesion_Tree	0.830769	

sns.barplot(x='Accuracy_Score',y='model',data=modelss)

<AxesSubplot:xlabel='Accuracy Score', ylabel='model'>

Decision_Tree algorithm gives highest accuracy

Colab paid products - Cancel contracts here