Homework 2

21-740 Introduction to Functional Analysis II

Name: Shashank Singh¹

Due: Wednesday, October 9, 2013

Problem 1

For any $m, n \in \mathbb{N}$ with m > n, the define the operator $A_{m,n} := A_m - A_n$. Using the fact that $A_{m,n} \ge 0$, it is easy to adapt the proof of the Cauchy-Schwarz Inequality to show, $\forall x, y \in X$,

$$(A_{m,n}x,y)^2 \le (A_{m,n}x,x)(A_{m,n}y,y). \tag{1}$$

Plugging $y = A_{m,n}x$ into this inequality gives

$$||(A_{m} - A_{n})x||^{4} = (A_{m,n}x, A_{m,n}y)^{2} \le (A_{m,n}x, x)(A_{m,n}^{2}x, A_{m,n}x)$$

$$\le (A_{m,n}x, x)||A_{m,n}||^{3}||x||^{2}$$

$$\le (A_{m,n}x, x)||I - A_{1}||^{3}||x||^{2}.$$
(2)

where the last line follows from $A_1 \leq A_n \leq A_m \leq I$. Since the sequence $\{(A_n x, x)\}_{n=1}^{\infty}$ is increasing and bounded by 1, it converges and is hence Cauchy. It follows from (2) that the sequence $\{A_n x\}_{n=1}^{\infty}$ is Cauchy. Since X is complete, we can define $L: X \to X$ by

$$Lx = \lim_{n \to \infty} A_n x.$$

Clearly, L is linear and self-adjoint, and $A_1, \leq L \leq I$. Thus, for any $x \in X$, $-\|A\| \leq (A_1x, x) \leq (Lx, x) \leq \|x\|^2$, and so, since $\|L\| = \sup\{(Lx, x) : x \in X, \|x\| = 1\}$, L is bounded.

I didn't use the hypothesis that $A_m A_n = A_n A_m$, but the proof seems correct to me.

¹sss1@andrew.cmu.edu

Problem 2

Note that, if A = 0, the operator B = 0 clearly has the desired properties. Thus, we assume $A \neq 0$. We first prove the result in the case $A \leq I$, and then generalize this.

Step 1 Assume $A \leq I$. Define $B_0 = 0$ and

$$B_{n+1} = B_n + \frac{1}{2}(A - B_n^2)$$
 for all $n \in \mathbb{N}$.

It is easily checked by induction that each B_n is as a linear combination of powers of A, and it follows that, $\forall n, m \in \mathbb{N}$, $B_n B_m = B_m B_n$ (since powers of A commute), $B_n^* = B_n$. If for some $n \in \mathbb{N}$, $0 \le B_n \le A$, $\forall x \in X$, then

$$B_{n+1} = B_n + \frac{1}{2}(A - B_n^2) \ge B_n$$

and, since $B_n \leq I$, so that $B_n^2 \leq B_n$,

$$2B_{n+1} = 2B_n - B_n^2 + A \le B_n + A \le 2A,$$

and hence $B_{n+1} \leq A$. By induction, then, $\forall n \in \mathbb{N}$, $0 \leq B_n \leq B_{n+1} \leq I$. It follows from Problem 1 that $\{B_n\}_{n=1}^{\infty}$ has a limit $B \in \mathcal{L}(X;X)$ (in the strong operator topology) with $B^* = B$. It is also clear from the construction of this limit in Problem 1 that $B \geq 0$ (since each $B_n \geq 0$), and that if CA = AC, so that each $CB_n = B_nC$, then CB = BC. Also, $\forall x \in X$,

$$Bx = \lim_{n \to \infty} B_{n+1}x = \lim_{n \to \infty} \left(B_n + \frac{1}{2} (A - B_n^2)x \right) = Bx + \frac{1}{2} (A - B^2)X,$$

and it follows that $Ax - B^2x = 0$, so that $B^2 = A$.

Step 2: $(A \not\leq I)$ Define $A_1 := \frac{A}{\|A\|}$. For all $x \in X$, applying Cauchy-Schwarz

$$0 \le \frac{1}{\|A\|}(Ax, x) = (A_1x, x) \le \|A_1\| \|x\|^2 = \|x\|^2 = (Ix, x),$$

and hence $0 \le A_1 \le I$. Also, $A_1^* = A_1$ Thus, as already shown, $\exists B_1 \in \mathcal{L}(X; X)$ such that $B_1^* = B_1$, $B_1 \ge 0$, $B_1^2 = A_1$. Moreover, if AC = CA, then clearly $A_1C = CA_1$, and so $B_1C = CB_1$.

It follows that the operator $B := \sqrt{\|A\|}B_1$ has the desired properties: $B^* = B$, $B \ge 0$, $B^2 = \sqrt{\|A\|}^2 B_1^2 = A$, and, if AC = CA then BC = AC.

Finally, we show that the positive operator B with $B^2 = A$ is unique. Suppose $B^2 = C^2 = A$. Define D := B - C and let $x \in X$, y := Dx. Then,

$$(By,y) + (Cy,y) = ((B+C)y,y) = ((B+C)(B-C)x,y) = ((A-A)x,y) = 0.$$

Since B and C are positive, it follows from (1) that By = Cy = 0. Thus,

$$||(B-C)x||^2 = ||Dx||^2 = (Dx, Dx) = (D^2x, x) = (Dy, x) = 0,$$

and hence, since x was chosen arbitrarily B = C.

Problem 4

If $\alpha = 0$, then, $\forall x \in X$, by Bessel's Inequality,

$$\sum_{n=1}^{\infty} |(x_n, x)|^2 \le ||x||^2,$$

and so $(x_n, x) \to 0$ as $n \to \infty$. Therefore, $x_n \to 0$ (weakly) as $n \to \infty$.

I believe that, if $|\alpha| \in (0,1)$, then $\{x_n\}_{n=1}^{\infty}$ need not converge weakly, but somehow, I wasn't able to produce a counterexample.

I managed to show that, if $\{x_n\}_{n=1}^{\infty}$ converges weakly to $x \in X$, then the sequence

$$\{y_n\}_{n=1}^{\infty} := \left\{\frac{1}{n}\sum_{k=1}^{n}\right\}_{n=1}^{\infty}$$

has a subsequence converging strongly to x, which might be helpful. In particular, as $n \to \infty$ $||y_n||^2 \to \alpha$, implying $||x||^2 = \alpha$, which I think might help produce a contradiction.

Problem 6

For any $\lambda \in \mathbb{R}$, define $B_{\lambda} \in \mathcal{L}(X;X)$ by

$$(B_{\lambda}x)_i = \left|\frac{1}{i} - \lambda\right| x_i, \quad \forall i \in \mathbb{N}, x \in l^2.$$

Then,

$$(B_{\lambda}^2 x)_i = \left(\frac{1}{i} - \lambda\right)^2 x_i = \left((A - \lambda I)^2 x\right)_i, \quad \forall i \in \mathbb{N}, x \in l^2,$$

and hence $B_{\lambda} = \sqrt{L(\lambda)^2} = |L(\lambda)|$. Noting that $B_{\lambda}x_i = L(\lambda)x_i$ if $i < 1/\lambda$ and $(B_{\lambda}x)_i = -(L(\lambda)x)_i$ otherwise, we then have

$$L(\lambda)^{+} = \frac{1}{2}(B_{\lambda} + L(\lambda)) = \begin{cases} \left(\frac{1}{i} - \lambda\right)x_{i} & \text{if } i < \frac{1}{\lambda} \\ 0 & \text{else} \end{cases}, \quad \forall i \in \mathbb{N}, \lambda \in \mathbb{R}, x \in l^{2},$$

It follows immediate that $\forall \lambda \in \mathbb{R}$,

$$\mathcal{N}(L(\lambda)^+) = \{x \in l^2 : x_1 = x_2 = \dots = x_{i-1} = 0\} = cl(\text{span}\{e_j : j \ge i\}),$$

where $i = \lceil 1/\lambda \rceil$ is the least integer with $i \geq 1/\lambda$.

Problem 8

Suppose, for sake of contradiction, that, for some $T \in \mathcal{C}(X;X)$, B := R+T is normal. We first show that $\sigma(R+T)$ is uncountable, and then show that $\sigma(B)$ must be countable, giving a contradiction.

Let $L = R^*$ denote the left-shift operator. If $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ and $x = (1, \lambda, \lambda^2, ...) \in l^2$, then $(L - \lambda I)x = 0$, and it follows that $\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subseteq \sigma_p(L)\}$. Since $(L - \lambda I) = (R - \bar{\lambda}I)^*$ is bijective if and only if $(R - \bar{\lambda}I)$ is bijective, $\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subseteq \sigma(R)$, and hence $\sigma(R)$ is uncountable. In particular, since R has no eigenvalues, $\sigma(R) \setminus \sigma_p(R)$ is uncountable, and so, by the result of Problem 7, $\sigma(R + T)$ is uncountable.

Lemma 1 If $T \in \mathbb{C}(X;X)$, then $\sigma(T)$ is countable.

Proof: For all $n \in \mathbb{N}$, define $\Lambda_n := \{\lambda \in \sigma(T) : |\lambda| \ge 1/n\}$. Then,

$$\sigma(T) = \bigcup_{n \in \mathbb{N}} \Lambda_n.$$

Since 0 is the only accumulation point of $\sigma(T)$, each Λ_n is finite, and hence $\sigma(T)$ is countable. \square Now note that

$$I = LR = R^*R = (B - T)^*(B - T) = B^*B - B^*T - T^*B + T^*T,$$

and hence

$$B^*B = I + B^*T + T^*B - T^*T.$$

Let $C := B^*T + T^*B - T^*T$, and note that, since any finite sum of compact operators or composition of compact and bounded operators is compact, C is compact. Also, $I + C - \lambda I = C - (1 + \lambda)I$, and so $\sigma(I + C) = \{\lambda - 1 : \lambda \in \sigma(C)\}$. By Lemma 1, then, $\sigma(B^*B) = \sigma(I + C)$ is countable. Since B is normal, it should follow that $\sigma(B)$ is countable, although I wasn't able to show this clearly.

Problem 11

The inclusion $\operatorname{bdry}(\sigma(A)) \subseteq \sigma_{ap}(A)$ holds.

Suppose $\lambda \in \text{bdry}(\sigma_p(A))$. By definition of the boundary, there is a sequence $\{\lambda_n\}_{n=1}^{\infty}$ with each $\lambda_n \in \mathbb{K} \setminus \sigma(A) = \rho(A)$. Since $\sigma(A)$ is closed, $\lambda \in \sigma(A)$. By (the contrapositive of) part (iii) of Proposition 5.6, $\forall i \in \mathbb{N}$,

$$\|(\lambda_n I - A)^{-1}\| \ge \frac{1}{|\lambda_n - \lambda|} \to \infty \text{ as } n \to \infty.$$

It follows that there is a sequence $\{y_n\}_{n=1}^{\infty}$ in Y such that each $y_n \to 0$ as $n \to \infty$ and each $x_n := (A - \lambda_n I)^{-1} y_n$ has $||x_n|| = 1$. Thus,

$$\lim_{n \to \infty} \|(\lambda I - A)x_n\| \to 0,$$

and hence $\lambda \in \sigma_{ap}(A)$.