KOMPLETNI METRIČKI PROSTORI, NEPOKRETNA TAČKA

21. februar 2023.

└Kompletni metrički prostori

Kompletni metrički prostori

Definicija

Za niz $\{a_n\} \subset X$ kažemo da je **Košijev**¹ **niz** u metričkom prostoru (X,d) ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall m, n \in \mathbb{N})(n \geq n_0 \land m \geq n_0 \Rightarrow d(a_m, a_n) < \varepsilon),$$

odnosno u ekvivalentnom obliku

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(\forall p \in \mathbb{N})(n \geq n_0 \Rightarrow d(a_{n+p}, a_n) < \varepsilon).$$

¹Koši, L. A. (Louis Augustin Cauchy, 1789-1857) - francuski matematičar

Ako je niz $\{a_n\} \subset X$ konvergentan u metričkom prostoru (X, d), tada je $\{a_n\}$ Košijev niz u (X, d).

Dokaz. Ako je $a \in X$ granična vrednost niza $\{a_n\}$, tada za svako $\varepsilon \in \mathbb{R}^+$, postoji $n_0 \in \mathbb{N}$, tako da za svako $n \in \mathbb{N}$, za koje je $n \geq n_0$, sledi

$$d(a_n,a)<rac{\varepsilon}{2}.$$

Takođe za svaka dva prirodna broja $m, n \geq n_0$ važi

$$d(a_n, a_m) \leq d(a_n, a) + d(a, a_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

pa je niz $\{a_n\}$ Košijev.

Neka je $\{a_n\}$ Košijev niz u metričkom prostoru (X,d). Ako neki podniz $\{a_{n\nu}\}$ niza $\{a_n\}$ konvergira prema $a \in X$ u (X,d), tada i $niz \{a_n\}$ konvergira ka a u(X,d).

Dokaz. Neka je dato proizvoljno $\varepsilon > 0$. Tada po pretpostavci postoji takav $n_0 \in \mathbb{N}$ da iz $m, n > n_0$ sledi

$$d(a_m,a_n)<\frac{\varepsilon}{2}.$$

Kako je $a=\lim_{k\to\infty}a_{n_k}$, postoji $k\in\mathbb{N}$ da je $n_k\geq n_0$ i da je

$$d(a_{n_k},a)<\frac{\varepsilon}{2}.$$

Ako je, dakle, $n > n_0$, onda je

$$d(a_n, a) \leq d(a_n, a_{n_k}) + d(a_{n_k}, a) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

pa je teorema dokazana.

Svaki Košijev niz $\{a_n\}$ u metričkom prostoru (X,d) je ograničen u datom prostoru.

Dokaz. Za $\varepsilon=1$ postoji $n_0\in\mathbb{N}$ tako da za $n\geq n_0$ sledi $d(a_n,a_{n_0})<1$. Dakle, $\{a_n:n\geq n_0\}\subset L(a_{n_0},1)$.

- ullet Ako je $n_0=1$ svi članovi niza su u otvorenoj lopti $L(a_{n_0},1)$ pa je niz $\{a_n\}$ ograničen.
- ullet Za slučaj da je $n_0>1$ uzmimo da je

$$D = \max\{1, d(a_{n_0}, a_1), d(a_{n_0}, a_2), ..., d(a_{n_0}, a_{n_0-1})\}.$$

Tada je

$$d(a_n, a_m) \leq d(a_n, a_{n_0}) + d(a_{n_0}, a_m) < 2D,$$

odnosno niz $\{a_n\}$ je ograničen.

U svakom metričkom prostoru Košijev niz ne mora konvergirati. Na primer, posmatrajmo niz $\{a_n\}\subset\mathbb{R}\setminus\{1\}$ dat sa

$$a_n=\frac{n}{n+1}.$$

S obzirom da je $\lim_{n \to \infty} a_n = 1$, to je $\{a_n\}$ konvergentan niz u \mathbb{R} , pa je u \mathbb{R} i Košijev, odakle sledi da je Košijev i u $\mathbb{R} \setminus \{1\}$, ali konvergira ka $1 \notin \mathbb{R} \setminus \{1\}$.

Dakle, svaki Košijev niz prostora $\mathbb{R}\setminus\{1\}$ ne konvergira u tom prostoru.

Definicija

Metrički prostor (X, d) je **kompletan** ukoliko u njemu svaki Košijev niz konvergira.

Metrički prostor \mathbb{R} je kompletan.

Dokaz. Neka je $\{a_n\}$ Košijev niz u $\mathbb R$. Tada je on u metričkom prostoru $\mathbb R$ i ograničen, pa ćemo dokazati da on ima samo jednu tačku nagomilavanja, a odatle će slediti da je konvergentan.

Kako je $\{a_n\}$ ograničen niz, to prema Bolcano-Vajerštrasovoj teoremi sledi da niz $\{a_n\}$ ima bar jednu tačku nagomilavanja a.

Dokažimo da je a jedina tačka nagomilavanja. Pretpostavimo da je $b \neq a$ još jedna tačka nagomilavanja. Uzmimo da je

$$\varepsilon=\frac{1}{3}|b-a|.$$

Neka su

 $a_n, n \in \mathcal{N}'$ svi članovi niza za koje važi $a_n \in L(a, \varepsilon),$ $a_m, m \in \mathcal{N}''$ svi članovi niza za koje važi $a_m \in L(b, \varepsilon).$

S obzirom da su a i b tačke nagomilavanja, sledi da su N' i N'' beskonačni podskupovi skupa $\mathbb N$. Tada je

$$|a_n-a_m|>\varepsilon,$$

pa sledi da niz $\{a_n\}$ nije Košijev. Kontradikcija! Dakle, niz $\{a_n\}$ ima samo jednu tačku nagomilavanja a.

- Teorema važi i za metrički prostor \mathbb{R}^m , tj. za svako $m \in \mathbb{N}$ metrički prostor \mathbb{R}^m je kompletan.
- ullet Takođe i metrički prostor ${\mathbb C}$ je kompletan.

Primer

Niz $\{a_n\}$, gde je

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

divergira $u \mathbb{R}$.

Da bismo to dokazali, pokazaćemo da niz nije Košijev. Kako je

$$|a_{2n}-a_n|=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \frac{n}{2n}=\frac{1}{2},$$

to sledi da se $|a_{2n} - a_n|$ ne može ni za jedno n učiniti manje od $\frac{1}{2}$, odnosno dati niz nije Košijev, pa samim tim sledi da je niz $\{a_n\}$ divergentan.

Potprostor kompletnog prostora ne mora biti kompletan. Tako prostor $\mathbb Q$ racionalnih brojeva nije kompletan, jer za niz $\{a_n\}\subset \mathbb Q$,

$$a_n=(1+\frac{1}{n})^n$$

važi da

$$\lim_{n\to\infty}a_n=e\not\in\mathbb{Q}.$$

Prostor $\mathbb Q$ se može kompletirati, tj. proširiti do najmanjeg prostora koji je kompletan. Tako možemo doći do skupa $\mathbb R$ realnih brojeva.

Važi sledeća teorema

Tvrđenje

Zatvoren potprostor kompletnog metričkog prostora je kompletan.

Definicija

Ako je f preslikavanje skupa X u samog sebe, tada za tačku $x \in X$ kažemo da je **fiksna** (**nepokretna**) tačka za preslikavanje f ako je f(x) = x.

Definicija

Za preslikavanje $f: X \to Y$ metričkog prostora (X, d_1) u metrički prostor (Y, d_2) kažemo da vrši **kontrakciju** ako postoji realan broj $\lambda \in (0,1)$ tako da za svako $x_1, x_2 \in X$ važi

$$d_2(f(x_1), f(x_2)) \leq \lambda d_1(x_1, x_2).$$

Broj λ zovemo koeficijent kontrakcije, a preslikavanje f kontrakcija.

• Važi **teorema Banaha**² o fiksnoj tački:

Tvrđenje

Ako je (X,d) kompletan metrički prostor i $f:X\to X$ kontrakcija sa koeficijentom λ , tada postoji jedna i samo jedna fiksna tačka $a\in X$ preslikavanja f i važi da je

$$d(a,a_n) \leq \frac{\lambda^n}{1-\lambda}d(a_0,a_1),$$

gde je $a_0 \in X$ proizvoljna tačka, a $a_i = f(a_{i-1}), i \in \mathbb{N}$.

(teorema daje i ocenu greške aproksimacije, kada se tačka a aproksimira članom a_n formiranog niza)

 $^{^2}$ Banah, Š. (Stefan Banach, 1892-1945) - poljski matematičar $_{\text{R}}$, $_{\text{R}}$, $_{\text{R}}$, $_{\text{R}}$

Napomena

Ako je (X, d) kompletan metrički prostor i za preslikavanje $f: X \to X$ važi

$$d(f(x_1), f(x_2)) < d(x_1, x_2), x_1 \neq x_2,$$

onda u opštem slučaju ne važi da za preslikavanje f postoji fiksna tačka.

Dokaz. Definišimo preslikavanje $f: \mathbb{R} \to \mathbb{R}$ sa $f(x) = \sqrt{1+x^2}$. Za $x \neq y$ važi da je

$$|f(x) - f(y)| = |\sqrt{1 + x^2} - \sqrt{1 + y^2}| = \frac{|x - y||x + y|}{\sqrt{1 + x^2} + \sqrt{1 + y^2}}$$

$$< |x - y| \frac{|x + y|}{|x| + |y|} \le |x - y| \frac{|x| + |y|}{|x| + |y|} = |x - y|,$$

tj. |f(x) - f(y)| < |x - y|, dok preslikavanje nema fiksnu tačku.

Napomena

Primetimo da je uslov kompletnosti prostora neophodan!

Zaista, u tu svrhu posmatrajmo prostor $X=\left[-\frac{1}{3},\frac{1}{3}\right]\setminus\{0\}$ i funkciju $f(x)=x^2$. Pokažimo da je f kontrakcija, da prostor X nije kompletan i da funkcija nema nepokretnu tačku u X.

$$d(f(x), f(y)) = |x^2 - y^2| = |x + y||x - y| \le \frac{2}{3}|x - y| = \frac{2}{3}d(x, y),$$

za sve $x, y \in X$. Jasno, zbog $f(x) = x^2 = x \Leftrightarrow x = 0 \lor x = 1$, funkcija f nema u X nepokretnu tačku.

Ako bi (X,d) bio kompletan prostor, na osnovu Banahove teoreme, sledilo bi da funkcija $f:X\to X$ ima nepokretnu tačku, što je kontradikcija.

Primer

Dokazati pomoću Banahove teoreme o fiksnoj tački da jednačina $x^3 - x - 1 = 0$ ima jedinstveno rešenje nad intervalom [1, 2].

Rešenje. Početna jednačina ekvivalentna je sa $x = \sqrt[3]{x+1}$.

Pokažimo da funkcija $f(x) = \sqrt[3]{x+1}$ ima nepokretnu tačku, odnosno da jednačina f(x) = x ima rešenje u intervalu [1,2].

Kako je f monotono rastuća funkcija, to za $x \in [1, 2]$

$$f(x) \in [f(1), f(2)] = [\sqrt[3]{2}, \sqrt[3]{3}] \subset [1, 2],$$

pa $f: [1,2] \to [1,2]$.

Skup [1,2] je zatvoren metrički potprostor kompletnog prostora $\mathbb{R},$ pa je i sam kompletan.

Pokažimo da je f kontrakcija. Neka su $x,y\in [1,2]$ proizvoljni elementi.

$$d(f(x), f(y)) = |f(x) - f(y)| = \left| \sqrt[3]{x+1} - \sqrt[3]{y+1} \right|$$

$$= \left| \left(\sqrt[3]{x+1} - \sqrt[3]{y+1} \right) \cdot \frac{\sqrt[3]{(x+1)^2} + \sqrt[3]{x+1} \sqrt[3]{y+1} + \sqrt[3]{(y+1)^2}}{\sqrt[3]{(x+1)^2} + \sqrt[3]{x+1} \sqrt[3]{y+1} + \sqrt[3]{(y+1)^2}} \right|$$

$$= \frac{|x-y|}{\sqrt[3]{(x+1)^2} + \sqrt[3]{x+1} \sqrt[3]{y+1} + \sqrt[3]{(y+1)^2}}$$

$$\leq \frac{|x-y|}{\sqrt[3]{(1+1)^2} + \sqrt[3]{1+1} \sqrt[3]{1+1} + \sqrt[3]{(1+1)^2}}$$

$$= \frac{1}{\sqrt[3]{4}} |x-y|$$

$$= \frac{1}{\sqrt[3]{4}} d(x,y)$$

Kako su ispunjeni uslovi Banahove teoreme, to postoji jedinstveno rešenje jednačine $x = \sqrt[3]{x+1}$ u intervalu [1,2]