Foundation of Cryptography, Spring 2014

Iftach Haitner

Problem set 2

March 26, 2014

Due— In class: April 8. Via Email: April 10

- Please submit the handout in class, or email me, in case you write in LATEX
- Write clearly and shortly using sub claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- In it ok to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")
- The notation we use appear in the introduction part of the first lecture (*Notation* section).

1. A function family is a *non-adaptive* PRF, if it is a PRF according to the definition given in class, but its security should only holds against *non-adaptive* distinguishers: distinguishers that choose all queries to the oracle *before* making the first query (alternatively, they make all there queries at once).

Assume OWF exists, prove there exists a non-adaptive PRF that is *not* an (adaptive) PRF.

- (a) Let X₁ and X₂ be jointly distributed random variables over domain U, and let D₁ and D₂ be their marginal distributions, respectively.
 Prove that SD(D₁, D₂) < Pr[X₁ ≠ X₂].
 - (b) For $k \in \mathbb{N}$, let P_k be the distribution (over $\{0,1\}^k$) induced by concatenating k unbiased independent coins, i.e., each coin is taking the value 1 with probability $\frac{1}{2}$ and 0 otherwise. Let Q_k be the distribution induced by concatenating k ε -biassed independent coins, i.e., each coin is taking the value 1 with probability $\frac{1}{2} + \varepsilon$ and 0 otherwise. We would like to bound the statistical distance between P_k and Q_k .
 - i. Describe a process S (i.e., an algorithm) that outputs a pair of values (x,y), and let (X,Y) be the random variable describing the output of S in a random execution. Prove that the marginal distribution of X is P_k , and that the marginal distribution of Y is Q_k .

Hint: consider the following method for sampling an ε -biassed coin: with probability 2ε output 1, and otherwise, output an unbiased coin.

- ii. Bound the probability that $X \neq Y$.
- iii. Use the first part of the question to bound $SD(P_k, Q_k)$.
- 3. Let $\mathcal{F} = \{\mathcal{F}_n = \{f : \{0,1\}^n \mapsto \{0,1\}^n\}\}_{n \in \mathbb{N}}$ be a PRF, and let $\mathcal{H} = \{\mathcal{H}_n = \{h : \{0,1\}^{2n} \mapsto \{0,1\}^n\}\}_{n \in \mathbb{N}}$ be an efficient pairwise-independent function family. We would like to prove that the function family ensemble $\mathcal{F} \circ \mathcal{H} = \{\mathcal{F}_n \circ \mathcal{H}_n = \{f \circ h : f \in \mathcal{F}_n, h \in \mathcal{H}_n\}\}_{n \in \mathbb{N}}$ is a PRF mapping strings of length 2n to string of length n.
 - (a) Prove that function family ensemble $\{G_n = \Pi_n \circ \mathcal{H}_n\}_{n \in \mathbb{N}}$ is computationally indistinguishable (actually also statistically) indistinguishable from $\{\Pi_{2n,n}\}_{n \in \mathbb{N}}$. Do the above using the following proof methodology. Fix an q-query, deterministic oracle-aided algorithm A, and $n \in \mathbb{N}$.
 - i. Describe a process S (i.e., an algorithm) that outputs a pair of values (x,y), and let (X,Y) be the random variable describing the output of S in a random execution. Show that X describes the view of A^g , for $g \leftarrow G_n$ (i.e., X lists the query/anmswer pairs in a an execution of A^g for a random $g \leftarrow G_n$). Similarly, show that Y describes the view of $A^{\pi_{2n}}$, for $\pi_{2n} \leftarrow \Pi_{2n,n}$.
 - ii. Bound the probability that $X \neq Y$. This is the hardest part of the question, and only doable if you have defined S above in a suitable way...

¹Namely, the family \mathcal{H}_n , for each $n \in \mathbb{N}$, is pairwise independent.

²The symbol \circ stands for function composition, e.g., $f \circ h(x) = f(h(x))$.

- Start with proving the claim assuming that A never makes a colliding query: $A^{g=\pi \circ h}$ never makes two distinct queries x, x' with h(x) = h(x').
- iii. Use question (2) to bound the advantage that A has is distinguishing G_n from $\Pi_{2n,n}$.
- iv. Prove that for $q \in \text{poly}$, no q-query algorithm (even a randomized one) distinguishes $\{G_n\}_{n \in \mathbb{N}}$ from $\{\Pi_{2n,n}\}_{n \in \mathbb{N}}$ with more than negligible advantage.
- (b) Use the above to prove that $\mathcal{F} \circ \mathcal{H}$ is a PRF.
- 4. The question is about the signature scheme described in Construction 32, of lecture 5 (page 34).

Does the construction remain secure when r is set to g(m) (rather than to $\pi(h(m))_{1,\dots,n}$), where g is part of the singing key, and chosen at random by Gen' from a family of pair-wise independent hash functions from $\{0,1\}^*$ to $\{0,1\}^n$?