# Microbial-ENzyme Decomposition (MEND) Model MANUAL

Gangsheng Wang (wang.gangsheng@gmail.com)
Melanie Mayes (mayesma@ornl.gov)
Junyi Liang (liangjunyi@cau.edu.cn)

Environmental Sciences Division Oak Ridge National Laboratory June 1<sup>st</sup>, 2019

#### References:

- **Wang G\***, Huang W, Mayes MA, Liu X, Zhang D, Zhang Q, Han T, Zhou G\* (2019) Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. *Soil Biology and Biochemistry*, **130**: 185-194. doi: 10.1016/j.soilbio.2018.12.017.
- **Wang G\***, Jagadamma S, Mayes MA, Schadt CW, Steinweg JM, Gu L, Post WM. (2015) Microbial dormancy improves development and experimental validation of ecosystem model. *The ISME Journal*. **9**: 226-237. doi:10.1038/ismej.2014.120.
- **Wang G\***, Post WM & Mayes MA (2013) Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. *Ecological Applications* **23**: 255-272. doi: 10.1890/12-0681.1.



Figure 1 Diagram of the Microbial-ENzyme Decomposition (MEND) model

R<sub>a</sub> and R<sub>h</sub> are autotrophic and heterotrophic respiration, respectively. POMo and POM<sub>H</sub> are particulate organic matter (POM) decomposed by oxidative (EPo) and hydrolytic enzymes (EP<sub>H</sub>), respectively. MOM is mineral-associated OM, which is decomposed by a mixed enzyme group EM. Dissolved OM (DOM) interacts with the active layer of MOM (QOM) through sorption and desorption. Litter enters POMo, POM<sub>H</sub>, and DOM. Microbes consist of active (MB<sub>A</sub>) and dormant microbes (MB<sub>D</sub>). DOM can be assimilated by MB<sub>A</sub>. N deposition enters NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> that can be immobilized by microbes and taken up by plant roots.

## Table of Contents

| 1  | Mo   | del Repositories                                   | 4  |
|----|------|----------------------------------------------------|----|
| 2  | Dire | ectories                                           | 4  |
| 3  |      | or Subroutine Calls                                |    |
|    | .1   | MEND & MENDcn                                      |    |
| _  | .2   | MEND_mult                                          |    |
| 4  | Sou  | rce Code Files & Major Functions & Subroutines     |    |
| 5  | Con  | trol & Output files                                | 7  |
| 6  |      | ived Rates: *_ <i>RATE</i> _hour.out               |    |
| 7  |      | ertainty Quantification (UQ): Inputs & Outputs     |    |
| 8  |      | %iScenario                                         |    |
| 9  |      | nario Design                                       |    |
| 10 |      | %iKenetics                                         |    |
| 11 |      | %iHR                                               |    |
| 12 |      | %iTmp Func                                         |    |
| 13 |      | L INI.dat: Model Initialization                    |    |
| 14 |      | ut Data                                            |    |
|    | •    | ND Parameters                                      |    |
| 15 |      |                                                    |    |
|    | 5.1  | MEND_Carbon_only Parameters                        |    |
|    | 5.2  | Additional parameters for Nitrogen dynamics        |    |
|    | 5.3  | MEND Parameters that may be pre-determined         |    |
| 16 |      | ponse Variables for Model Calibration/Optimization |    |
|    | 6.1  | MEND_namelist.nml                                  |    |
| _  | 6.2  | Add a new Calibration Variable                     |    |
| 17 |      | ameters for the Optimization Algorithm             |    |
| 18 |      | %VARopt_int                                        |    |
| 19 | CN   | Ratios in 3 Litter Pools                           | 18 |
| 20 | Con  | figuration/Compiling on OSX & Cygwin/Unix          | 19 |
| 2  | 0.1  | Dependency of source code                          | 19 |
| 2  | 0.2  | Install gcc/gfortran                               |    |
| 2  | 0.3  | NetBeans Configuration on OSX                      |    |
| 2  | 0.4  | Compiling on Cygwin/Unix                           | 22 |

## Model Repositories

| Model Version | Notes                                                              |
|---------------|--------------------------------------------------------------------|
| MEND          | Carbon-Nitrogen coupled version: <b>sINI%Carbon only = .FALSE.</b> |
|               | https://github.com/wanggangsheng/MENDdhs.git                       |
| MEND mult     | Multiple-Case Version of MEND: run multiple cases in one-run       |
| _             | https://github.com/wanggangsheng/MEND mult.git                     |

## Directories

| ID | Directory  | Notes                                        |  |
|----|------------|----------------------------------------------|--|
| 0  | model dir  | Control Files: MEND_namelist.nml             |  |
| 1  | src        | Source code                                  |  |
| 2  | Userio/inp | Input data                                   |  |
|    |            | MEND_mult: includes sub-folder for each case |  |
| 3  | Userio/out | Output data                                  |  |
|    |            | MEND_mult: includes sub-folder for each case |  |

### 3 Major Subroutine Calls

#### 3.1 MEND & MENDcn

| MENDIN |           |                |                                                                                                  |
|--------|-----------|----------------|--------------------------------------------------------------------------------------------------|
|        |           |                |                                                                                                  |
| SCE    | fMEND_OBJ | Par: sINI%LCI0 |                                                                                                  |
|        |           | Par: sINI%r0   |                                                                                                  |
|        |           | subMEND_INI    | subMEND_Files_Open<br>subMEND_CPOOL_UPDATE1<br>subMEND_NPOOL_UPDATE1                             |
|        |           |                | subMEND_CN_UPDATE0                                                                               |
|        |           | subMEND_RUN    | subMEND_PAR subMEND subMEND_output_rate subMEND_output sOUT_OPT_h sOUT_Day2Mon  Extract data for |
|        |           |                | comparison/calibration                                                                           |
|        | CE        | CE IMEND OBJ   | Par: sINI%r0 subMEND_INI                                                                         |

#### 3.2 MEND\_mult

| 0         | 1      | 2         | 3                | 4                   |
|-----------|--------|-----------|------------------|---------------------|
| MEND_main | MENDIN |           |                  |                     |
|           | SCEUA  | fMEND_OBJ | Par: sINI%LCI0   |                     |
|           |        |           | Par: sINI%r0     |                     |
|           |        |           | DO iCase=1,nCase |                     |
|           |        |           | MENDIN_CASE      |                     |
|           |        |           | subMEND_INI      |                     |
|           |        |           | subMEND_RUN      | subMEND_PAR         |
|           |        |           |                  | subMEND             |
|           |        |           |                  | subMEND_output_rate |
|           |        |           |                  | subMEND_output      |
|           |        | -         |                  | sOUT_OPT_h          |
|           |        | -         |                  | sOUT_Day2Mon        |
|           |        | -         | END DO           |                     |

- 'SIM\_obs.out' combines all '\*\_SIM\_obs.out' for all cases into 1 output file.
- After each MEND run, the total objective function (fMEND\_OBJ) for multiple cases is calculated by reading data in this file.
- MEND\_mult allows different calibration-variables used in various cases. e.g., case1 with 2 variables (CO2 & MBC), case2 with 2 variables (CO2 & DOC). Under this condition, the total OBJ (fMEND\_OBJ) will include 3 single objectives (CO2, MBC, & DOC).
- 'MEND\_namelist.nml' Cali\_OBJ\_Weight(·) defines OBJ weighting factors for these objectives combined from multiple cases; whereas the OBJ weighting factors for each case ('case.ini' Line 48-57) are NOT used for calibration/optimization.
- MEND\_mult runs much slower than MEND. Because MEND\_mult REPEATEDLY reads input
  data for each case (subroutine 'MENDIN\_CASE') during each model run. However, MEND
  only read input data ONCE for a single case.

## 4 Source Code Files & Major Functions & Subroutines

| ID | F90 file      | Notes                                            | Major Functions & Subroutines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|---------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | MEND_main     | Main program                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2  | MEND IN       | Control file                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3  | MOD MEND TYPE | Data structure for MEND                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4  | MOD_MEND      | MEND model; Depends on  MOD_MEND_TYPE  MOD_USRFS | <ul> <li>subMEND: MEND model</li> <li>subMEND_PAR: MEND parameters modified by temperature, moisture, etc.</li> <li>subMEND_RUN: run model continuously with multiple time-steps</li> <li>subMEND_INI: model initialization</li> <li>fMEND_OBJ: objective function for model evaluation &amp; optimization</li> <li>sINP_Read: read input, soil temp &amp; moisture</li> <li>sOUT_OPT_h: extract HOURLY outputs for response variables used for optimization</li> <li>sOUT_OPT: convert HOURLY data (sOUT_OPT_h) to DAILY or MONTHLY data</li> <li>subMEND_output: HOURLY outputs for all state variables &amp; fluxes</li> <li>sOUT_tscale: convert HOURLY outputs (subMEND_output) to DAILY, MONTHLY &amp; YEARLY outputs</li> <li>sOUT_ALL_tscale: convert HOURLY outputs (subMEND_output) to DAILY, MONTHLY &amp; YEARLY outputs, called by sOUT_tscale</li> </ul> |
| 5  | MOD_OPT_TYPE  | Data structure for model optimization            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6  | MOD_OPT       | Optimization algorithm                           | Depends on  MOD_OPT_TYPE  MOD_MEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7  | MOD_STRING    | String utility                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8  | MOD_USRFS     | User Functions and Subroutines                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## 5 Control & Output files

| ID                         | FILE                                                                       | Notes                                                                                                                                                                                                                                                                            |  |  |
|----------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                            | CONTROL                                                                    |                                                                                                                                                                                                                                                                                  |  |  |
|                            | FILE:                                                                      |                                                                                                                                                                                                                                                                                  |  |  |
| 1                          | MEND namelist.nml                                                          | (1) MEND CONTROL file, stored in the model root dir                                                                                                                                                                                                                              |  |  |
|                            |                                                                            | o iModel =                                                                                                                                                                                                                                                                       |  |  |
|                            |                                                                            | '0'-run MEND model with parameter sets 'Pinitial';                                                                                                                                                                                                                               |  |  |
|                            |                                                                            | '1'-model calibration/optimization                                                                                                                                                                                                                                               |  |  |
|                            |                                                                            | '2'- uncertainty quantification (UQ) using COFI method, output UQpar.out                                                                                                                                                                                                         |  |  |
|                            |                                                                            | '3'-generate data for Sobol Sensitivity analysis                                                                                                                                                                                                                                 |  |  |
|                            |                                                                            | '4'-UQ using MCMC                                                                                                                                                                                                                                                                |  |  |
|                            |                                                                            | '5'-UQ with COFI, output both UQpar.out & UQvar.out (see Table 7)                                                                                                                                                                                                                |  |  |
|                            |                                                                            | o sSite: site name                                                                                                                                                                                                                                                               |  |  |
|                            |                                                                            | (2) MEND_mult CONTROL file                                                                                                                                                                                                                                                       |  |  |
| 2                          | **.ini                                                                     | <ul> <li>Line 11-14: define multiple cases, case names are dir names in inp &amp; out</li> <li>CONTROL/INITIAL file for each case, in inp/casedir</li> </ul>                                                                                                                     |  |  |
|                            |                                                                            | CONTROL/INITIAL the for each case, in imp/casedir                                                                                                                                                                                                                                |  |  |
| 1                          | INITIAL FILE: SOIL INI.dat                                                 | Initialization of SOC mode atoms in Sacrain form?                                                                                                                                                                                                                                |  |  |
| 1                          | _                                                                          | Initialization of SOC pools, stored in 'userio/inp'                                                                                                                                                                                                                              |  |  |
|                            | <b>OUTPUT FILES:</b>                                                       | MEND_mult: Outputs of optimization for all-case are saved in                                                                                                                                                                                                                     |  |  |
|                            | de CD 6 1                                                                  | out; Outputs for each case are saved in the out/casedir                                                                                                                                                                                                                          |  |  |
| 1                          | *_SIM_obs.out                                                              | Outputs for SIM vs. OBS for those specific days with OBS.                                                                                                                                                                                                                        |  |  |
|                            |                                                                            | VAR: corresponds to VARid in 'MEND_namelist.nml'.                                                                                                                                                                                                                                |  |  |
|                            |                                                                            | Note: The 'best' parameter set among those 'best' from multiple opt-runs is shown at the last line of this file. You may copy this line to                                                                                                                                       |  |  |
|                            |                                                                            | 'MEND namelist.nml' for future run.                                                                                                                                                                                                                                              |  |  |
| 2                          | * SIM day.out                                                              | Continuous daily SIM results for those variables used for calibration                                                                                                                                                                                                            |  |  |
| 3                          | * SIM mon.out                                                              | Continuous monthly SIM results for those variables used for calibration                                                                                                                                                                                                          |  |  |
| 4                          | * VAR hour.out                                                             | All state variables: hourly                                                                                                                                                                                                                                                      |  |  |
| 5                          | * VAR day.out                                                              | All state variables: daily                                                                                                                                                                                                                                                       |  |  |
| 6                          | * VAR mon.out                                                              | All state variables: monthly                                                                                                                                                                                                                                                     |  |  |
| 7                          | * VAR year.out                                                             | All state variables: yearly                                                                                                                                                                                                                                                      |  |  |
| 8                          | *_FLX_hour.out                                                             | All fluxes: hourly                                                                                                                                                                                                                                                               |  |  |
| 9                          | * FLX_day.out                                                              | All fluxes:daily                                                                                                                                                                                                                                                                 |  |  |
| 10                         | *_FLX_mon.out                                                              | All fluxes: monthly                                                                                                                                                                                                                                                              |  |  |
| 11                         | * FLX year.out                                                             | All fluxes: yearly                                                                                                                                                                                                                                                               |  |  |
| 12                         | * ITW_hour.dat                                                             | External input (litter), T, SWC, SWP: hourly                                                                                                                                                                                                                                     |  |  |
| 13                         | * ITW day.dat                                                              | External input (litter), T, SWC, SWP: daily                                                                                                                                                                                                                                      |  |  |
| 14                         | * ITW_mon.dat                                                              | External input (litter), T, SWC, SWP: monthly                                                                                                                                                                                                                                    |  |  |
| 15                         | * RATE hour.out                                                            | Derived rates: hourly, e.g., active fraction                                                                                                                                                                                                                                     |  |  |
| 16<br>17                   | * RATE day.out                                                             | Derived rates: daily Derived rates: monthly                                                                                                                                                                                                                                      |  |  |
| 18                         | * RATE mon.out  * RATE year.out                                            | Derived rates: monthly  Derived rates: yearly                                                                                                                                                                                                                                    |  |  |
| 19                         | * PAR hour.out                                                             | Parameters modified by T, SWP, pH, etc: hourly                                                                                                                                                                                                                                   |  |  |
|                            |                                                                            |                                                                                                                                                                                                                                                                                  |  |  |
|                            |                                                                            |                                                                                                                                                                                                                                                                                  |  |  |
|                            |                                                                            |                                                                                                                                                                                                                                                                                  |  |  |
|                            |                                                                            |                                                                                                                                                                                                                                                                                  |  |  |
|                            |                                                                            |                                                                                                                                                                                                                                                                                  |  |  |
| 25                         | * OPT all.out                                                              | All parameter sets during optimization, used for UQ                                                                                                                                                                                                                              |  |  |
| 43                         | Of I all.out                                                               | An parameter sets during optimization, used for CO                                                                                                                                                                                                                               |  |  |
| 20<br>21<br>22<br>23<br>24 | * PAR day.out  * PAR mon.out  * PAR year.out  * OPT end.out  * OPT ini.out | Parameters modified by T, SWP, pH, etc: daily Parameters modified by T, SWP, pH, etc: monthly Parameters modified by T, SWP, pH, etc: yearly 'best' parameter sets from multiple independent optimizations Initial parameters for optimization, best parameter sets in each loop |  |  |

## 6 Derived Rates: \*\_RATE\_hour.out

| Col | Name            | Units                            | Notes                                          |
|-----|-----------------|----------------------------------|------------------------------------------------|
| 1   | Hour            |                                  | Hourly time-step                               |
| 2   | kPOC1           | h-1                              | Equivalent 1st-order decomposition rate;       |
|     |                 |                                  | k=VP1*EP1/(POC1 + KP1)                         |
| 3   | kPOC2           | h-1                              | Equivalent 1st-order decomposition rate;       |
|     |                 |                                  | k=VP2*EP2/(POC2+ KP2)                          |
| 4   | kMOC            | h-1                              | Equivalent 1st-order decomposition rate;       |
|     |                 |                                  | k=VM*EM/(MOC+ KM)                              |
| 5   | kDOC            | h-1                              | Equivalent 1st-order turnover rate;            |
|     |                 |                                  | k=[(Vg+Vmt)/Yg]*MBa/(DOC + KD)                 |
| 6   | kMBa            | h-1                              | Equivalent 1st-order turnover rate;            |
|     |                 |                                  | k = [(Vg + Vmt)*(1/Yg - 1)]*phi + rMORT +      |
|     |                 |                                  | pEP+ pEM) * Vmt                                |
| 7   | kMBa in         | h-1                              | Equivalent 1st-order microbial uptake rate,    |
|     | _               |                                  | k=[(Vg+Vmt)/Yg]*phi +                          |
|     |                 |                                  | Resuscitation/MBa                              |
| 8   | kMBd            | h-1                              | Output rate of dormant microbes,               |
|     |                 |                                  | k=(Resuscitation+Maintenance)/MBCd             |
| 9   | kMBd_in         | h-1                              | Input rate for dormant microbes,               |
|     | _               |                                  | k=Dormancy/MBCd                                |
| 10  | kMB             | h-1                              | Turnover rate of total MBC,                    |
|     |                 |                                  | k=(CO2_gm+ENZ_prod+Mortality)/MBC              |
| 11  | kMB_in          | h-1                              | Assimilation rate of total MBC,                |
|     | _               |                                  | k=uptake/MBC                                   |
| 12  | Phi             | _                                | DOC saturation level, = DOC/(DOC +             |
|     |                 |                                  | KD)                                            |
| 13  | Active_Fraction | _                                | Fraction of active microbes                    |
| 14  | CUE             | _                                | Apparent carbon use efficiency = [uptake -     |
|     |                 |                                  | CO2_gmo]/uptake                                |
| 15  | NUE             | _                                | Apparent nitrogen use efficiency = $[CN_{MB}]$ |
|     |                 |                                  | $-CN_{MB\_min}]/(CN_{MB\_max}-CN_{MB\_min})$   |
| 16  | Balance_Error   | mg C g <sup>-1</sup> soil or     | Error for balance check, RE=(TOCend -          |
|     | _               | mg C cm <sup>-3</sup> soil       | TOCbeg) - (TOCinp - TOCout)*dt                 |
| 17  | TOCbeg          | mg C g <sup>-1</sup> soil        | Total organic carbon at the beginning of       |
|     | S               | mg C cm <sup>-3</sup> soil       | the time-step                                  |
| 18  | TOCend          | Same as above                    | Total organic carbon at the end of the time-   |
|     |                 |                                  | step                                           |
| 19  | TOCinp          | Same as above                    | TOC input during the time-step                 |
| 20  | TOCout          | Same as above                    | TOC output during the time-step                |
| 21  | STP             | °C                               | Soil temperature                               |
| 22  | SWC             | cm <sup>3</sup> cm <sup>-3</sup> | Soil water content                             |
| 23  | SWP             | MPa                              | Soil water potential                           |
| 24  | pН              | _                                | Soil pH                                        |

## 7 Uncertainty Quantification (UQ): Inputs & Outputs

iModel = 2

| Category                 | File Name   | Notes                                                                                           |  |
|--------------------------|-------------|-------------------------------------------------------------------------------------------------|--|
| Input File               | UQpar.dat   | Copy '*_OPT_all.out', add "OBJ_critical= $J_{cr}$ " to 1 <sup>st</sup>                          |  |
|                          |             | line, where $J_{cr}$ denotes the critical OBJ for UQ:                                           |  |
|                          |             | $J_{cr} = J_{opt} \cdot \eta = J_{opt} \cdot \left(1 + \frac{p}{n-p} F_{\alpha, p, n-p}\right)$ |  |
|                          |             | $J_{opt}$ is the optimum (min) OBJ, $n$ is the number of                                        |  |
|                          |             | OBS, p is the number of PARs, and $F_{\alpha,p,n-p}$ is the                                     |  |
|                          |             | value of the F-distribution for $\alpha$ , $p$ , and $n-p$ .                                    |  |
| Output Files *_UQpar.out |             | Save parameters that result in fObj $\leq J_{cr}$                                               |  |
|                          | *_UQvar.out | Save variables on those observational time steps                                                |  |
|                          |             | predicted by the PARs in '*_UQpar.out'                                                          |  |

## 8 sINI%iScenario

Scenario design: data used to conduct scenario analysis beyond calibration period See 'MEND\_namelist.nml' siScenario

| iScenario | Notes                                                           |
|-----------|-----------------------------------------------------------------|
| 1         | Repeatedly use 1-yr mean hourly data derived from observed data |
| 2         | Repeatedly use multiple-year hourly (observed) data             |

## 9 Scenario Design

Parameters controlling the changes in Temperature, Water content & Litterfall Input; specifically, for the subtropical Dinghushan case study, may not be applied to other case studies

See 'MEND namelist.nml' Scenario design

| See WEND namenst.iiiii Seenano design                  |                                                                                                                                             |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                                              | Note                                                                                                                                        |  |  |  |
| STP_delta Gradually annual change in Temperature, °C/a |                                                                                                                                             |  |  |  |
| SWC_logis(3)                                           | $\theta(t)$ p                                                                                                                               |  |  |  |
|                                                        | $\frac{1}{\theta(t_0)} = \frac{1 - (1 - p) \cdot e^{-r(t - t_0)}}{1 - (1 - p) \cdot e^{-r(t - t_0)}}$                                       |  |  |  |
|                                                        | Soil Water Content (SWC, $\theta$ ) parameters in logistic equation; SWC                                                                    |  |  |  |
|                                                        | DECREASES with time                                                                                                                         |  |  |  |
|                                                        | (1) $p \in (0,1)$ : lower bound for the ratio of $\frac{\theta(t \to \infty)}{\theta(t_0)}$                                                 |  |  |  |
|                                                        | (2) $r > 0$ : steepness; $r = 0$ means no changes                                                                                           |  |  |  |
| (3) t <sub>0</sub> : reference year                    |                                                                                                                                             |  |  |  |
| $SIN_logis(4)$ $L(t)$ 1                                |                                                                                                                                             |  |  |  |
|                                                        | $\frac{1}{L_{max}} - \frac{1 + \exp\left[\beta_0 - \beta_1 \cdot (t - t_0)\right]}{1 + \exp\left[\beta_0 - \beta_1 \cdot (t - t_0)\right]}$ |  |  |  |
|                                                        | Litterfall input parameters in logistic equation; Litterfall                                                                                |  |  |  |
| INCREASES with time                                    |                                                                                                                                             |  |  |  |
|                                                        | (1) $\beta_0 > 0$ : intercept                                                                                                               |  |  |  |
|                                                        | (2) $\beta_1 > 0$ : steepness; $\beta_1 = 0$ means no changes                                                                               |  |  |  |
|                                                        | (3) t <sub>0</sub> : reference year                                                                                                         |  |  |  |
|                                                        | (4) fDOC_delta (NOT included in the logistic equation): gradually                                                                           |  |  |  |
|                                                        | annual change of DOC fraction in SOC input                                                                                                  |  |  |  |

#### 10 sINI%iKenetics

### **Decomposition Kinetics for POC/MOC**

See 'MEND namelist.nml' siKinetics (MEND mult: Line22-23)

| iKinetics | Mic-Enz | Kinetics                                                       | Equation                                        | Sample            |
|-----------|---------|----------------------------------------------------------------|-------------------------------------------------|-------------------|
|           |         |                                                                |                                                 | MEND_namelist.nml |
| 0         | Both    | <ul><li> Michaelis-Menten</li><li> MOM decomposition</li></ul> | $F_{dec} = \frac{V_M \cdot E \cdot S}{K_M + S}$ | MEND_Enz-Mic.ini  |
|           |         | <ul> <li>No MOM-QOM interaction</li> </ul>                     | $\Lambda_M + S$                                 |                   |
| 1         | No Enz  | First Order                                                    | $F_{dec} = k_{M} \cdot S$                       | MEND_No-Enz.ini   |
| 2         | Both    | Second Order                                                   | $F_{dec} = k_M \cdot E \cdot S$                 |                   |
| 10        | Mic-Enz | Michaelis-Menten                                               | $F_{dec} = \frac{V_M \cdot E \cdot S}{K_M + S}$ |                   |
|           |         | <ul> <li>QOM decomposition</li> </ul>                          | $F_{dec} = \frac{V_M - E - B}{V_C}$             |                   |
|           |         | MOM-QOM interaction                                            | $\Lambda_M + \Omega$                            |                   |
| 11        | None    | First Order                                                    | $F_{dec} = k_M \cdot S$                         | MEND_No-Enz-      |
|           |         |                                                                |                                                 | Mic.ini           |

### 11 sINI%iHR

Calculation Method for Growth & Maintenance Respiration from Active Microbes

| Cuituitui | discussion freehouses of Growth & frametonance respiration from freehoes                                                                    |                                                                     |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| iHR       | Method                                                                                                                                      | Notes                                                               |  |  |
| 0         | $HR_g = \max \left[ D, \left( \frac{1}{Y_G} - 1 \right) \frac{V_g \cdot BA \cdot D}{K_D + D} \right]$                                       | $HR_g$ or $HR_m$ is constrained by DOC                              |  |  |
|           | $HR_m = \max \left[ D, \left( \frac{1}{Y_G} - 1 \right) \frac{V_m \cdot BA \cdot D}{K_D + D} \right]$                                       |                                                                     |  |  |
| 1         | $HR_{gm} = \max \left[ D, \frac{1}{Y_G} \times \frac{\left(V_g + V_m\right) \cdot BA \cdot D}{K_D + D} \right] \times \left(1 - Y_g\right)$ | Total microbial uptake is constrained by DOC, $HR_g$ or $HR_m$ is a |  |  |
|           | $HR_g = HR_{gm} \times \frac{V_g}{V_g + V_m}, HR_m = HR_{gm} \times \frac{V_m}{V_g + V_m}$                                                  | fraction of total uptake                                            |  |  |

## 12 sINI%iTmp\_Func

**Temperature Response Function** 

| iTmp_Func | fT                        | Notes                    |
|-----------|---------------------------|--------------------------|
| 0         | fTArh: Arrhenius Equation | See function in MOD_MEND |
| 1         | fTQ10: Q10 method         | See function in MOD_MEND |

## 13 SOIL\_INI.dat: Model Initialization

nrow= 26

Depth: cm; SOC/POC/MOC/MBC: mgC/cm<sup>3</sup>

| ID | Property    | Value  | Notes                                                     |
|----|-------------|--------|-----------------------------------------------------------|
| 1  | Depth       | 10     | Soil depth (cm)                                           |
| 2  | Sand        | 0.259  | Sand fraction                                             |
| 3  | Clay        | 0.509  | Clay fraction                                             |
| 4  | CN_MB_mean  | 8      | Mean CN ratio of microbial biomass                        |
| 5  | CN_MB_min   | 2      | Min CN ratio of microbial biomass                         |
| 6  | CN_MB_max   | 14     | Max CN ratio of microbial biomass                         |
| 7  | CN_EP1      | 3      | CN ratio of oxidative enzymes                             |
| 8  | CN_EP2      | 3      | CN ratio of hydrolytic enzymes                            |
| 9  | CN_EM       | 3      | CN ratio of MOM enzymes                                   |
| 10 | fQOM        | 0.01   | Fraction of QOM in MOM                                    |
| 11 | SOC         | 21.14  | Actually NOT used for modeling                            |
| 12 | POC         | 5.67   | POC1 + POC2                                               |
| 13 | MOC         | 15.47  | Mineral-associated Organic Carbon                         |
| 14 | DOC         | 0.31   | Dissolved Organic Carbon                                  |
| 15 | MBC         | 0.53   | Default value = 2-5% SOC                                  |
| 16 | EP1         | 0.0011 | Default value = 0.005% SOC                                |
| 17 | EP2         | 0.0011 | Default value = 0.005% SOC                                |
| 18 | EM          | 0.0014 | Default value = 0.005% SOC                                |
| 19 | CN_SOM      | 13     | CN ratio of SOM                                           |
| 20 | CN_POM      | 26     | CN ratio of Particulate Organic Matter (POM)              |
| 21 | CN_MOM      | 10     | CN ratio of MOM                                           |
| 22 | CN_DOM      | 10     | CN ratio of DOM                                           |
| 23 | CN_MB       | 5.5    | CN ratio of microibal biomass                             |
| 24 | NH4         | 0.003  |                                                           |
| 25 | N03         | 0.01   |                                                           |
| 26 | rCN_LIG2LAB | 2      | See Table 19<br>rCN = CN Lignin/CN Labile in plant litter |

## **14 Input Data**

Note: all input data will be converted to hourly rate; see input data format in dir: userio/inp (MEND\_mult: see casedir in inp)

| Input Data       | Notes/Sample data                                                                                                                                                                                                           | Time scale                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Litter input     | 1) Continuous input, e.g., litter fall,  'MEND_namelist.nml'  Type-1 Input  Soil depth (cm) in SOIL_INI.dat  will be used to convert  mg C cm <sup>-2</sup> hour <sup>-1</sup> to  mg C cm <sup>-3</sup> hour <sup>-1</sup> | Monthly, daily, or hourly units:  mg C cm <sup>-2</sup> d <sup>-1</sup> or  mg C cm <sup>-2</sup> month <sup>-1</sup> or  mg C cm <sup>-2</sup> hour <sup>-1</sup> |
|                  | 2) Other constant input, e.g., only annual amount available,  'MEND_namelist.nml'  Type-2 Input                                                                                                                             | Convert annual amount to hourly rate                                                                                                                               |
|                  | 3) Other constant input during a specific period, e.g., dead roots, 'MEND_namelist.nml' Type-3 Input                                                                                                                        | Specify total amount & the period (beginning & ending dates)                                                                                                       |
| Soil temperature | 'MEND_namelist.nml'<br>preferred units: °C<br>STP.dat                                                                                                                                                                       | Hourly, daily, or monthly                                                                                                                                          |
| Soil moisture    | 'MEND_namelist.nml' preferred units: % will be converted to soil water potential (MPa) using the retention curve parameters given in soil retention curve See 'fSWC2SWP' in 'MOD_MEND.F90' SWC.dat                          | Hourly, daily, or monthly                                                                                                                                          |
| Mineral N input  | NH4dep.dat; NO3dep.dat                                                                                                                                                                                                      | Monthly                                                                                                                                                            |
| C:N ratios       | <ol> <li>Input C:N, see         'MEND_namelist.nml'</li> <li>SOM C:N, see SOIL_INI.dat</li> </ol>                                                                                                                           |                                                                                                                                                                    |

### **15 MEND Parameters**

('MEND\_namelist.nml' INITIAL PARAMETERS) (MEND\_mult: Line 28-57)

### **15.1** MEND\_Carbon\_only Parameters

| ID | Parameter          | Description                                                                                                                                                                    | Apriori range  | Units                                                                |
|----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------|
| 1  | $LF_0$             | Initial fraction of $P_1$ , $LF_\theta = P_1/(P_1 + P_2)$                                                                                                                      | (0.1, 1.0)     | _                                                                    |
| 2  | $r_0$              | Initial active fraction of microbes, $r_0 = BA/(BA+BD)$                                                                                                                        | (0.01, 1)      | _                                                                    |
| 3  |                    |                                                                                                                                                                                |                |                                                                      |
| 4  |                    |                                                                                                                                                                                |                |                                                                      |
| 5  |                    |                                                                                                                                                                                |                |                                                                      |
| 6  | fINP               | Scaling factor for litter input rate                                                                                                                                           | (0.1, 1)       | _                                                                    |
| 7  | $V_{P1}$           | Maximum specific decomposition rate $(V)$ for $P_1$<br>$V$ for $P_2 \& M$ : $V_M = V_{P2} = V_{P1}$                                                                            | (0.1, 100)     | $\mathrm{mg}~\mathrm{C}~\mathrm{mg}^{-1}~\mathrm{C}~\mathrm{h}^{-1}$ |
| 8  | $K_{P1}$           | Half-saturation constant for $P_1$ decomposition                                                                                                                               | (10, 100)      | mg C g <sup>-1</sup> soil                                            |
| 9  | $f_{KM}$           | $K_{P2} = K_{P1}/f_{KM}, K_{M} = K_{P1} \times f_{KM}$                                                                                                                         | (2, 20)        | _                                                                    |
| 10 | $Q_{\mathrm{max}}$ | Maximum sorption capacity                                                                                                                                                      | (0.5, 5)       | mg C g <sup>-1</sup> soil                                            |
| 11 | $K_{ba}$           | Binding affinity                                                                                                                                                               | (1, 16)        | $(mg C g^{-1} soil)^{-1}$                                            |
| 12 | $K_{des}$          | Desorption rate, Sorption rate $K_{ads} = K_{des} \times K_{ba}$                                                                                                               | (0.0001, 0.01) | mg C g <sup>-1</sup> soil h <sup>-1</sup>                            |
| 13 | $r_E$              | Turnover rate of $EP_1$ , $EP_2$ , and $EM$                                                                                                                                    | (0.0001, 0.01) | $mg C mg^{-1} C h^{-1}$                                              |
| 14 | $p_{EP}$           | [ $V_{mt} \times p_{EP}$ ] is the production rate of $EP$ ( $EP_1 + EP_2$ ), $V_{mt}$ is the specific maintenance rate for active microbes                                     | (0.0001, 0.05) | _                                                                    |
| 15 | $fp_{EM}$          | $fp_{EM} = p_{EM}/p_{EP}$ , $[V_{mt} \times p_{EM}]$ is the EM production rate                                                                                                 | (0.1, 2.0)     | _                                                                    |
| 16 | $f_D$              | Fraction of decomposed $P_1$ and $P_2$ allocated to $D$                                                                                                                        | (0.05, 1)      | _                                                                    |
| 17 | $g_D$              | Fraction of dead BA allocated to D                                                                                                                                             | (0.01, 1)      | _                                                                    |
| 18 | $V_g$              | Maximum specific uptake rate of D for growth                                                                                                                                   | (0.001, 0.1)   | $mg \ C \ mg^{-1} \ C \ h^{-1}$                                      |
| 19 | alpha              | $=V_{mt}/(V_g+V_{mt})$                                                                                                                                                         | (0.01, 0.5)    | _                                                                    |
| 20 | $K_D$              | Half-saturation constant for microbial uptake of $D$                                                                                                                           | (0.0001, 0.5)  | mg C g <sup>-1</sup> soil                                            |
| 21 | $Y_g$              | True growth yield                                                                                                                                                              | (0.1, 0.64)    | _                                                                    |
| 22 | $Y_{g\_sl}$        | Slope for $Y_G$ dependence of temperature, see function 'fT CUE' in 'MOD MEND.F90'                                                                                             | (0.001,0.016)  | 1/°C                                                                 |
| 23 | $Q_{I0}$           | Q10 for T response function. See function 'fTQ10' in 'MOD_MEND.F90'                                                                                                            | (1.1, 5)       | _                                                                    |
| 24 | gamma              | Max microbial mortality rate = $V_{mt} \times gamma$                                                                                                                           | (0.01, 20)     | _                                                                    |
| 25 | beta               | Ratio of dormant maintenance rate to $V_{mt}$                                                                                                                                  | (0.0005, 0.05) | _                                                                    |
| 26 | $WP_{A2D}$         | Soil water potential (SWP) threshold for microbial dormancy; note that $WP_{A2D} \& WP_{D2A}$ are  SWP , since SWP <0. See functions 'fSWP_A2D' & 'fSWP_D2A' in 'MOD MEND.F90' | (0.2, 0.6)     | -MPa                                                                 |
| 27 | tau                | $WP_{D2A} = WP_{A2D} \times tau$ , $WP_{D2A}$ is the SWP threshold for microbial resuscitation                                                                                 | (0.1, 0.8)     | _                                                                    |
| 28 | $W_{dorm}$         | Exponential in SWP function for microbial dormancy or resuscitation,                                                                                                           | (0.5, 6)       | _                                                                    |

### 15.2 Additional parameters for Nitrogen dynamics

| ID | Parameter    | Description                                                | Apriori range | Units                     |
|----|--------------|------------------------------------------------------------|---------------|---------------------------|
| 29 | VNup_MB      | Mineral N uptake rate by MBA                               | (0.001, 0.05) | $mg N mg^{-1} N h^{-1}$   |
| 30 | KsNH4_MB     | half-saturation constant for NH <sub>4</sub> uptake by MBA | (0.001, 0.1)  | mg N g <sup>-1</sup> soil |
| 31 | KsNO3_MB     | half-saturation constant for NO <sub>3</sub> uptake by MBA | (0.001, 0.1)  | mg N g <sup>-1</sup> soil |
| 32 | $V_{ m nit}$ | Maximum nitrification rate                                 | (0.001, 0.1)  | $h^{-1}$                  |
| 33 | $V_{denit}$  | Maximum denitrification rate                               | (0.001, 0.1)  | $h^{-1}$                  |
| 34 | YgN          | Max nitrogen use efficiency                                | (0.5, 1.0)    | _                         |

Note1: 'MEND\_namelist.nml' Cali\_Calibrate (MEND\_mult: Line 31-57), Column 'Calibrate': '1' means the parameter will be calibrated, '0' mean no-calibration.

Note2: 'MEND\_namelist.nml' Pintital (MEND\_mult: Line 61), initial parameter values, will override the

values in Column 'Initial' at Line 78-104.

### 15.3 MEND Parameters that may be pre-determined

| Parameter                                                                 | Regression Equation                                      | $\mathbb{R}^2$ | p-value |
|---------------------------------------------------------------------------|----------------------------------------------------------|----------------|---------|
| $K_{\rm Pl}$ (mg C g <sup>-1</sup> soil): half-saturation                 | $K_{\rm Pl} = 41.58 \times {\rm DOC} + 44.95$            | 0.97           | 0.01    |
| constant for POC decomposition                                            | $K_{\rm P1} = 0.62 \times (\% {\rm Sand}) + 45.56$       | 0.82           | 0.10    |
|                                                                           | $K_{\rm P1} = 1.07 \times {\rm POC} + 50.13$             | 0.64           | 0.20    |
| $K_{\rm M}$ (mg C g <sup>-1</sup> soil): half-saturation                  | $K_{\rm M} = 455.11 \times {\rm DOC} + 400.42$           | 0.98           | 0.01    |
| constant for MOC decomposition                                            | $K_{\rm M} = 4.13 \times {\rm MOC} + 425.75$             | 0.73           | 0.15    |
| $K_{\rm D}$ (mg C g <sup>-1</sup> soil): half-saturation                  | $K_{\rm D} = 0.33 \times {\rm MBC} + 0.21$               | 0.63           | 0.21    |
| constant for microbial uptake of                                          |                                                          |                |         |
| DOC                                                                       |                                                          |                |         |
| $Q_{\text{max}}$ (mg C g <sup>-1</sup> soil): maximum                     | $Q_{\text{max}} = 0.012 \times \text{MOC} + 3.43$        | 0.98           | 0.01    |
| sorption capacity                                                         | $Q_{\text{max}} = 0.011 \times \text{SOC} + 3.39$        | 0.91           | 0.04    |
| $K_{\text{ba}}([\text{mg C g}^{-1} \text{ soil}]^{-1})$ : binding         | $K_{\text{ba}} = -0.082 \times (\% \text{Sand}) + 11.23$ | 0.84           | 0.08    |
| affinity                                                                  |                                                          |                |         |
| $K_{\text{des}}$ (mg C g <sup>-1</sup> soil h <sup>-1</sup> ): desorption | $K_{\text{des}} = -0.0059 \times \text{DOC} + 0.0059$    | 0.95           | 0.02    |
| rate                                                                      |                                                          |                |         |
|                                                                           |                                                          |                |         |
| $V_{death} = V_{mt} \times gamma$ : microbial                             | [Hansen, 1990, DAISY]                                    |                |         |
| death rate                                                                | $0.001 - 0.01  \mathrm{d}^{-1}$                          |                |         |
|                                                                           | $4 \times 10^{-5} - 4 \times 10^{-4} \text{ h}^{-1}$     |                |         |

### Notes:

SOC: soil organic carbon; POC: particulate organic carbon; MOC: mineral-associated organic carbon; DOC: dissolved organic carbon; MBC: microbial organic carbon. Units:  $mg\ C\ g^{-1}$  soil.

%Sand: percentage of sand in soil.

### **16 Response Variables for Model Calibration/Optimization**

#### 16.1 MEND\_namelist.nml

Note: 'MEND\_namelist.nml' CALIBRATION DATA; see data format in dir: userio/inp

MEND mult: Line 45-57 in '\*.ini' in 'userio/inp/casedir'

|        | Column Name     | Notes                                                                   |
|--------|-----------------|-------------------------------------------------------------------------|
| Column |                 |                                                                         |
| 1      | VARid           | Variable ID                                                             |
| 2      | VAR             | Variable Name                                                           |
| 3      | Units           | Units                                                                   |
| 4      | Calibrate       | '1'-data available for calibration, '0'-unavailable                     |
| 5      | tstep           | Time-step: 0-hourly, 1-daily, 2-monthly,5-mean.                         |
|        |                 | Usually the observations are regarded as data                           |
|        |                 | measured during an hourly-scale, the simulation                         |
|        |                 | results will be averaged during 1 day (24-h) to                         |
|        |                 | compare with the observations                                           |
| 6      | Obs_file        | File with observation data if available                                 |
| 7      | Obs_file_column | Column id for the data, currently not used                              |
| 8      | OBJ             | Type of objective function (minimization):                              |
|        |                 | ■ NSEC: Nash-Sutcliffe Efficiency Coefficient (Coefficient              |
|        |                 | of Determination), see 'f1NSE' in 'MOD_USRFS.F90'                       |
|        |                 | <ul> <li>MARE: Mean Absolute Relative Error, see 'fMARE' in</li> </ul>  |
|        |                 | 'MOD_USRFS.F90'                                                         |
|        |                 | <ul> <li>CORR: correlation coefficient, see 'f1CORR'</li> </ul>         |
|        |                 | <ul> <li>CORI: CORR with log10-tranformed data, see 'f1CORR'</li> </ul> |
|        |                 | <ul> <li>MART: MARE with tolerance, see 'fMARE_tolerance'</li> </ul>    |
|        |                 | <ul> <li>NSEn: NSEC for normalized data, see 'f1NSE_norm'</li> </ul>    |
|        |                 | MARn: MARE for normalized data, see 'fMARE norm'                        |
|        |                 | AVGr:  ratio – AVGsim/AVGobs , see 'f1RAVG_ratio'                       |
| 9      | ODI Wajaht      |                                                                         |
| ) J    | OBJ_Weight      | Weighting factor for each OBJ, will be normalized in                    |
|        |                 | the code                                                                |

#### 16.2 Add a new Calibration Variable

- (1) MEND\_namelist.nml (see Section 16.1): add a new variable, e.g., CH4 flux
- (2) MOD\_MEND\_TYPE.F90
  INTEGER, PARAMETER:: const\_nVAR0 = 21 !# of variables for calibration
- (3) MEND.F90

SUBROUTINE sOUT\_OPT\_h(nVAR,nHour,iHour,dSIM,sPAR,sOUT,VARopt\_int)
Case (21) !! CH4 flux
dSIM(iHour,j) = sOUT%CFLUX%CH4

### 17 Parameters for the Optimization Algorithm

Note: 'MEND namelist.nml' SCE parameters, (MEND mult: Line 16-20)

only 3 parameter 'nrun', 'iniflg' and 'iprint' are required to edit

| Parameter | Notes                                                                     |
|-----------|---------------------------------------------------------------------------|
| nrun      | # of runs for optimization, these opt-runs are independent of each other. |
|           | There is a different random seed for each opt-run.                        |
|           | nrun <= 200                                                               |
| iniflg    | flag on whether to include the initial point (Line 108) in population     |
|           | = 0, not included                                                         |
|           | = 1, included                                                             |
| iprint    | Flag on whether to print all points generated during optimization         |
| _         | = 0, no printing                                                          |
|           | =1, print to *_OPT_all.out for COFI UQ analysis                           |

#### 18 sINI%VARopt\_int

sINI%VARopt int(sINI%nVARopt, 3)

| Column1: i          | Column2: n        | Column3: t: tstep   |
|---------------------|-------------------|---------------------|
| Index of calibrated | # of observations | 0(hourly)           |
| output VARiable     |                   | 1(daily)            |
|                     |                   | 2(monthly)          |
|                     |                   | 3(seasonal): to_do  |
|                     |                   | 4(yearly)           |
|                     |                   | 5(mean, excluding   |
|                     |                   | the first 10% data) |

#### 19 CN Ratios in 3 Litter Pools

3 litter pools: Lignin, Cellulose, and Labile

Assume their fractions in Carbon mass = f Lig, f Cel, f Lab

$$f \text{ Lig} + f \text{ Cel} + f \text{ Lab} = 1$$

Assume CN Cel = 500

Assume CN Lig/CN Lab = rCN

Assume overall CN in litter pool = CN

N mass balance:
$$N = \frac{C}{CN} = \frac{C \cdot f_{Lig}}{CN_{Lab} \cdot rCN} + \frac{C \cdot f_{Cel}}{CN_{Cel}} + \frac{C \cdot f_{Lab}}{CN_{Lab}}$$
thus

$$CN_{Lab} = \begin{bmatrix} \frac{f_{Lig}}{rCN} + f_{Lab} \end{bmatrix} / \begin{bmatrix} \frac{1}{CN} - \frac{f_{Cel}}{CN_{Cel}} \end{bmatrix}$$

$$CN_{Lig} = CN_{Lab} \times rCN$$

#### 20 Configuration/Compiling on OSX & Cygwin/Unix

#### 20.1 Dependency of source code

```
Edit 'nbproject/Configurations.xml' to define dependency of source code for compilation,
   e.g.,
MOD MEND depends on 2 modules (MOD MEND TYPE & MOD USRFS);
MOD_OPT depends on 3 modules (MOD_OPT_TYPE, MOD_MEND, &
MOD USRFS).
See './Configurations.xml' for example:
   <item path="src/MEND IN.F90" ex="false" tool="2" flavor2="0">
    <fortranCompilerTool>
     <additionalDep>${OBJECTDIR}/src/MOD STRING.o
${OBJECTDIR}/src/MOD USRFS.o ${OBJECTDIR}/src/MOD MEND TYPE.o
${OBJECTDIR}/src/MOD MEND.o
${OBJECTDIR}/src/MOD OPT TYPE.o</additionalDep>
    </fortranCompilerTool>
   </item>
   <item path="src/MEND main.F90" ex="false" tool="2" flavor2="0">
    <fortranCompilerTool>
     <additionalDep>${OBJECTDIR}/src/MOD_USRFS.o
${OBJECTDIR}/src/MOD MEND TYPE.o ${OBJECTDIR}/src/MOD MEND.o
${OBJECTDIR}/src/MOD OPT TYPE.o
${OBJECTDIR}/src/MOD OPT.o</additionalDep>
    </fortranCompilerTool>
   </item>
   <item path="src/MOD MEND.F90" ex="false" tool="2" flavor2="0">
    <fortranCompilerTool>
     <additionalDep>${OBJECTDIR}/src/MOD_USRFS.o
${OBJECTDIR}/src/MOD MEND TYPE.o</additionalDep>
    </fortranCompilerTool>
   </item>
   <item path="src/MOD MEND TYPE.F90" ex="false" tool="2" flavor2="0">
   </item>
   <item path="src/MOD OPT.F90" ex="false" tool="2" flavor2="0">
    <fortranCompilerTool>
     <additionalDep>${OBJECTDIR}/src/MOD_USRFS.o
${OBJECTDIR}/src/MOD MEND.o
${OBJECTDIR}/src/MOD OPT TYPE.o</additionalDep>
    </fortranCompilerTool>
   </item>
   <item path="src/MOD OPT TYPE.F90" ex="false" tool="2" flavor2="0">
   </item>
   <item path="src/MOD STRING.F90" ex="false" tool="2" flavor2="0">
   <item path="src/MOD USRFS.F90" ex="false" tool="2" flavor2="0">
   </item>
```

#### 20.2 Install gcc/gfortran

- (1) OSX https://github.com/fxcoudert/gfortran-for-macOS/releases
- (2) Windows (install gcc/gfortran/make)
  Cygwin, <a href="https://www.cygwin.com/">https://www.cygwin.com/</a>

#### 20.3 NetBeans Configuration on OSX

- (3) Install NetBeans with JDK
- NetBeans 11.0 (April 30, 2019)

https://github.com/carljmosca/netbeans-macos-bundle/install.sh

- > C/C++ plugin for NetBeans 9.0
  - Tools > Plugins > Settings tab > click the Add button.
  - o On the **Update Center Customizer** screen:
    - o Enter some value in the **Name** field (e.g. "My plugins"),

    - o Click the **OK** button.
  - This should create a new entry in the Configuration of Update Centers list in the Settings tab.
  - Checking that new entry should instantly add plugins to the **Available Plugins** tab.
  - Click the **Available Plugins** tab, then click the **Category** column to sort the entries by category.
  - The **Name** of the entry at the top of the list should be **C/C++**. If so, you have successfully made the plugin available:

#### ➢ JDK 11

https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html

(4) gcc/gfortran Compiler configuration

(i) preference->Options->C/C++->Build Tools

If something is missing (e.g., gfortran), we need to install it first, then click the button "..." to locate the package.

If we want to debug the code, please install "gdb" first.



- (5) Project Properties->Build->Fortran Compiler->Tool Specify the absolute path for "gfortran" Additional Options:
  - -ffpe-trap=invalid,zero,overflow (check floating point exceptions)
  - -finit-local-zero (initialize local INTEGER, REAL, and COMPLEX variables to zero, LOGICAL variables to false, and CHARACTER variables to a string of null bytes)

/Users/wgs/Dropbox\_job/Model/MEND/nbproject/Makefile-Debug.mk:

# Fortran Compiler Flags

FFLAGS=-ffpe-trap=invalid,zero,overflow



- (6) We can compile a single FORTRAN file by right-clicking the file name and click "Compile File (F9)"
- (7) If a module is modified, e.g., a new variable is declared in the module, suggest to "Clean" the project then re-do "build": right-click project name->More Build Commands->Clean Project.
- (8) Run model in NetBeans: click icon
- (9) Solution to Error: Id: library not found for -ISystem Try: xcode-select --install

#### 20.4 Compiling on Cygwin/Unix

- (10)Copy the NetBeans-configured MEND folder to another system (Windows-Cygwin or Unix)
- (11)Edit file "/nbproject/Makefile-Debug.mk": replace "FC=/\*\*/gfortran" with the full path of "gfortran" on the new machine system
- (12)"cd" into the MEND model root-dir
- (13) make clean
- (14)The "mendcn.exe" file will be generated if there's no errors after n times
- (15)If the path for "mendorm.exe" is "/dist/Debug/.../mendorm.exe", type "./dist/Debug/.../mendcn.exe" to run model
- (16)Another option to run model: copy "/dist/Debug/.../mendorm.exe" to root-dir of MEND model, type "./mendcn.exe"