Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 1 of 60

SAR TEST REPORT

Project No. : JB-Z0102

Client : Murata Manufacturing Co., Ltd.

Address : 10-1 Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555 Japan

Type of Equipment : Communication Module

Model No. : Type1DR (* installed in Digital Accessory 1DR001)

FCC-ID : VPYLB1DR

Regulation Applied : FCC 47 CFR 2.1093 (Class II Permissive Change)

SAR Limits

Exposure	Spatial Peak SAR (Head and Trunk)
Characteristics	averaged over any 1 g of tissue
General Public Exposure	1.6 W/kg

The Highest Reported SAR:

DE E	Equipme			
RF Exposure	DTS	DTS	Note(s)	
Conditions	Wi-Fi 2.4 GHz	Bluetooth Low Energy		
Body-Worn	1.040 W/kg	N/A		

Test Result : Complied

Sample Receipt : November 30, 2015 Testing : November 30, 2015 Reported : December 2, 2015

Reported by:

Approved Signatory:

Shinichi Suzuki Technical Manager

EMC/RF Test Laboratory Main Lab.

Design Technology Division

Sony EMCS Corporation

Teruki Kurihara Technical Manager

EMC/RF Test Laboratory Main Lab.

Lurihara

Design Technology Division Sony EMCS Corporation

Notice

- * These test results relate only to the items (combination equipment, test configuration, operation condition etc.) tested.
- * This report shall not be reproduced except in full, without written approval of the laboratory.
- * This report must not be used by the client to claim product endorsement by A2LA or any agency of the U.S. Government.
- * All test results are traceable to the national and/or international standards.
- * The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in Sony EMCS EMC/RF Test Laboratory.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 2 of 60

REVISION HISTORY

Project No.	Revision	Page	Description	Issued date
JB-Z0102	Original	-	-	December 2, 2015

TABLE OF CONTENTS

1.	General In	formation	4
	1.1. Descr	iption of Device Under Test (DUT)	4
	1.2. Anten	na Placement	4
	1.3. Simul	taneous Transmission Conditions	4
	1.4. Nomi	nal and Maximum Possible Power (Maximum Tune-up Tolerance Limit)	5
	1.5. RF Ex	xposure Conditions	5
	1.6. RF Ex	xposure Limits	5
	1.7. SAR 7	Test Exclusion	6
	1.8. Test S	Specification, Methods and Procedures	7
	1.9. Test F	Facilities and Accreditation	8
2.	Test Set-uj	ρ	9
	2.1. Test E	Equipment and Measurement Software Lists	9
	2.2. Measu	urement System Description	11
	2.3. Measu	urement System Main Components	12
	2.4. Tissue	e Simulating Liquids	15
	2.5. SAR N	Measurement	16
	2.6. Measu	urement Uncertainty	17
	2.7. Dielec	tric Parameter Measurement of Tissue Simulating Liquids	20
	2.8. System	m Check Measurement	22
3.	Conducted	Power Measurements	24
	3.1. Condu	ucted Power Measurement Results	24
	3.2. Comp	arison of Conducted Power with Original Radio Test Report	25
4.	SAR Meas	urements	26
	4.1. SAR N	Measurement Results	28
	4.2. SAR N	Measurement Variability	28
App	endix A.	Plots of SAR Measurement.	29
App	endix B.	Plots of System Check	31
App	endix C.	Calibration Certificate	33
App	endix D.	Photographs	54

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 4 of 60

1. General Information

1.1. Description of Device Under Test (DUT)

DUT and Host Platform Descriptions

	DUT	Host Platform *The DUT is installed in this host.
Type of Equipment	Communication Module	Digital Accessory
Model No.	Type1DR	1DR001
FCC-ID	VPYLB1DR	
Test Sample Condition	☐ Prototype	☐ Prototype
	☐ Pre-production	☐ Pre-production
	Mass-production	Mass-production
	* Not for sale: The sample is equivalent to	mass-production items.
	* No modification by the test lab.	
Serial No.	28	39
Rating	DC 3.2 V (VBAT)	Li-ion Battery
	DC 1.8 V (VDDXO)	DC 3.7 V/ 640 mAh
	DC 1.8 or 3.3 V (VIO)	
	* Supplied from the host.	Not user accessible.
Body-Worn Accessories	n/a	See Appendix D
(supplied with the device)		
Device Dimension (W x H x D)	7.7 mm x 7.9 mm x 1.1 mm	See Appendix D
Device Category	Portable	
Exposure Category	General population/ Uncontrolled environm	nent

Wireless Technologies

TTH CICOD TCCIIIO	VII CICSS Technologics							
Wireless	Frequency	Operating Mode						
Technologies	Bands	operating flow						
Wi-Fi	$2.4\mathrm{GHz}$	802.11b						
		802.11g						
		802.11n (HT20)						
Bluetooth	2.4 GHz	Version 4.1 (BLE)						
Note(s):								
* The DUT install	ed in this host does not							

Radio Specification

Type of Equipment	Portable Transceiver					
Antenna Type	Monopole antenna					
Antenna Gain	- 0.26 dBi					
Note(s):						
* The antenna is of same type a	nd lower gain from original approval; monopole antenna and + 0.91 dBi					

1.2. Antenna Placement

Antenna	Minimum Distance from Edges or Sides of Host Platform (mm)							
	Front	Back	Left	Right	Top	Bottom		
Wi-Fi/Bluetooth	2.00	12.343	14.85	11.50	39.85	4.00		

^{*} Please refer to Appendix D for more details.

1.3. Simultaneous Transmission Conditions

Wi-Fi $2.4\,\mathrm{GHz}$ cannot transmit simultaneously with Bluetooth.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 5 of 60

1.4. Nominal and Maximum Possible Power (Maximum Tune-up Tolerance Limit)

Wireless Technologies	24.1	Frequency Band (MHz)		CI 1	Data Rate	Full Power (Burst Averaged)			
	Mode	T	High-	Channel	/MCS	Nominal	Toler	ance	Max. Tune-up
		Lower	er			(dBm)	(d	B)	Limit (dBm)
	802.11b	2412	2462	All	All	17.0	+2.0	-2.0	19.0
				1	All	13.5	+2.0	-2.0	15.5
	802.11g	2412	2462	2 to 10	6 to 48 Mbps	17.0	+2.0	-2.0	19.0
					54 Mbps	16.0	+2.0	-2.0	18.0
Wi-Fi				11	All	13.5	+2.0	-2.0	15.5
				1	All	13.5	+2.0	-2.0	15.5
	000.11				MCS 0 to 2	17.0	+2.0	-2.0	19.0
	802.11n	2412	2462	2 to 10	MCS 3 to 6	16.0	+2.0	-2.0	18.0
	(HT20)				MCS 7	15.0	+2.0	-2.0	17.0
				11	All	13.5	+2.0	-2.0	15.5
Bluetooth	BLE	2402	2480	All	-	7.0	-2.8	+2.5	9.5

1.5. RF Exposure Conditions

Wireless Technologies	RF Exposure Conditions	User-to-Host Distance (mm)	Test Position	Host-to-Ant. Distance (mm)	SAR Required	Note(s)
Wi-Fi /Bluetooth	Body-Worn	0	Front	2.00	Yes	
			Back	12.343	Yes	
			Left	14.85	Yes	
			Right	11.50	Yes	
			Top	39.85	Yes	
			Bottom-Tilt	≈ 4.00	Yes	1

Note(s):

1.6. RF Exposure Limits

Human Exposure	General Population/ Uncontrolled Exposure	Occupational/ Controlled Exposure
Spatial Peak SAR (Head and Trunk) averaged over any 1 g of tissue	1.6 W/kg*	8 W/kg
Spatial Average SAR (Whole Body) averaged over the whole body	0.08 W/kg	0.4 W/kg
Spatial Peak SAR (Extremities: Hands/Wrists/Feet/Ankles) averaged over any 10 g of tissue	4 W/kg	20 W/kg

^{*} The limit(s) applied in this report.

^{1.} Due to the shape of the protruding portion of the bottom surface of the host platform, SAR was evaluated with the front corner of its bottom surface positioned in direct contact against the flat phantom, the "Bottom-Tilt" test position, instead of the "Bottom" test position. Please refer to Appendix D for more details.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 6 of 60

1.7. SAR Test Exclusion

SAR test exclusion is applied according to KDB 447498 D01.

The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- * f(GHz) is the RF channel transmit frequency in GHz
- st Power and distance are rounded to the nearest mW and mm before calculation
- * The result is rounded to one decimal place for comparison
- * When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Body-Worn SAR (1-g SAR) Test Exclusion as per KDB 447498 D01

_				Host-to-	User-to-	Min. Test	Ma	x. Possi	ble		SAR
Freq. Band	Freq.	Test	Host	Ant	Ant	Sep.		Power		Exclusion	Required
rreq. Danu	(MHz)	Position	Distance	Distance	Distance	Distance	(dBm)	(mW)	rounded	Threshold	(> 3.0)
			(mm)	(mm)	(mm)	(mm)	(abiii)	(III VV)	(mW)		(> 3.0)
	2450	Front	0	2.00	2.00	5	19.0	79.4	79	24.7	Yes
	2450	Back	0	12.343	12.343	12	19.0	79.4	79	10.3	Yes
Wi-Fi	2450	Left	0	14.85	14.85	15	19.0	79.4	79	8.2	Yes
2.4GHz	2450	Right	0	11.50	11.50	12	19.0	79.4	79	10.3	Yes
2.40112	2450	Top	0	39.85	39.85	40	19.0	79.4	79	3.1	Yes
	2450	Bottom -Tilt	0	4.00	4.00	5	19.0	79.4	79	24.7	Yes
	2450	Front	0	2.00	2.00	5	9.5	8.9	9	2.8	No
	2450	Back	0	12.343	12.343	12	9.5	8.9	9	1.2	No
	2450	Left	0	14.85	14.85	15	9.5	8.9	9	0.9	No
Bluetooth	2450	Right	0	11.50	11.50	12	9.5	8.9	9	1.2	No
	2450	Top	0	39.85	39.85	40	9.5	8.9	9	0.4	No
	2450	Bottom -Tilt	0	4.00	4.00	5	9.5	8.9	9	2.8	No

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 7 of 60

1.8. Test Specification, Methods and Procedures

Test Chasification

<u>rest</u>	<u>Бреспісанон</u>		
\boxtimes	FCC 47 CFR 2.1093		Radiofrequency radiation exposure evaluation: portable devices
Test :	<u>Methods</u>		
\boxtimes	IEEE Std 1528-2013		IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption
			Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
			Techniques
\boxtimes	$\mathrm{KDB}248227\mathrm{D}01$	v02r02	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
	$\mathrm{KDB}447498\mathrm{D}01$	v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
	$\mathrm{KDB}447498\mathrm{D}02$	v02r01	SAR Measurement Procedures for USB Dongle Transmitters
	$\mathrm{KDB}615223\mathrm{D}01$	v01r01	802.16e/WiMax SAR Measurement Guidance
	KDB 616217 D04	v01r02	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
	$\mathrm{KDB}643646\mathrm{D}01$	v01r03	SAR Test Reduction Considerations for Occupational PTT Radios
	KDB 648474 D03	v01r03	Evaluation and Approval Considerations for Handsets with Specific Wireless Charging
			Battery Covers
	$\mathrm{KDB}648474\mathrm{D}04$	v01r03	SAR Evaluation Considerations for Wireless Handsets
\boxtimes	$\mathrm{KDB}865664\mathrm{D}01$	v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz
	$\mathrm{KDB}941225\mathrm{D}01$	v03r01	3G SAR Measurement Procedures
	$\mathrm{KDB}941225\mathrm{D}05$	v02r04	SAR Evaluation Considerations for LTE Devices
	$\mathrm{KDB}941225\mathrm{D}06$	v02r01	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
	KDB 941225 D07	v01r02	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
Test	Procedures		
		ere perfo	rmed according to the procedures of Sony EMCS EMC/RF Test Laboratory,
		_	and NV3-16, available upon request.
			n the procedures
	<u> </u>		ne procedures
			1
	<u> </u>		

References

- [1] ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics 74(4): 494-522, 1998.
- [2] American National Standards Institute (ANSI), "Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1-1992.
- [3] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz," Safety Code 6 (2009).
- [4] European Council Recommendation 1999/519/EC of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz) (Official Journal L 199 of 30 July 1999).
- [5] R&TTECA Technical Guidance Note nr. 20 (TGN 20), SAR Testing and Assessment Guidance, Version 1.0, December 2014.
- [6] Schmid & Partner Engineering AG (SPEAG), DASY52 System Handbook, April 2014.
- [7] Schmid & Partner Engineering AG (SPEAG), Safety Data Sheet, Doc No 772-SLAAx0yy-J, June 14, 2013.
- [8] Schmid & Partner Engineering AG (SPEAG), Safety Data Sheet, Doc No 772-SLAAx1yy-I, October 18, 2013.
- [9] Schmid & Partner Engineering AG (SPEAG), Safety Data Sheet, Doc No 772-SLAAx6yy-H, September 26, 2013.
- [10] Schmid & Partner Engineering AG (SPEAG), Material Safety Data Sheet, Doc No 772-SLAAH502A-D, August 9, 2013.
- [11] Schmid & Partner Engineering AG (SPEAG), Material Safety Data Sheet, Doc No 772-SLAAx4yy-J, August 9, 2013.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 8 of 60

Test Facilities and Accreditation

Test Facilities

Test Facility Name : Sony EMCS EMC/ RF Test Laboratory Main Lab.

Address : Kisarazu Site 8-4 Shiomi Kisarazu-
shi, Chiba, 292-0834 Japan 4th Site Shielded Room 3

Shielded Room Used : X 4th Site Shielded Room 2

A2LAAccreditation

Certificate No. : 3203.01

Expiration : October 31, 2017 Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 9 of 60

2. Test Set-up

2.1. Test Equipment and Measurement Software Lists

Table 2-1 Test Equipment List

Table 2-1 Test Equipment List								
Used	Control No.	Equipment Description	Model No.	Serial No.	Manufacturer	Cal. Int.	Last Cal.	Note(s)
\boxtimes	W128	Robot	TX60 L	F14/5VR2B1/A/01	Staubli	N/A	N/A*1	
	W124	Robot	RX60B L	F04/5Z71A1/A/03	Staubli	N/A	N/A*1	
	WA02	E-Field Probe	EX3DV4	3921	SPEAG	1Y	15.05.29	
\boxtimes	WA18	E-Field Probe	EX3DV4	7301	SPEAG	1Y	15.06.19	
\boxtimes	W095	Data Acquisition Electronics	DAE4	482	SPEAG	1Y	15.08.25	
	W096	Data Acquisition Electronics	DAE4	610	SPEAG	1Y	15.01.14	
	W097	Data Acquisition Electronics	DAE4	328	SPEAG	1Y	15.05.22	
	W081	Twin SAM Phantom	Twin SAM	TP-1441	SPEAG	N/A	N/A*1	
	W082	Twin SAM Phantom	Twin SAM	TP-1325	SPEAG	N/A	N/A*1	
\boxtimes	W126	Twin SAM Phantom	Twin SAM	TP-1851	SPEAG	N/A	N/A*1	
	W127	Twin SAM Phantom	Twin SAM	TP-1852	SPEAG	N/A	N/A*1	
	W119	ELI Phantom	ELI V5.0	1259	SPEAG	N/A	N/A*1	
\boxtimes	WA26	System Validation Dipole	D2450V2	936	SPEAG	1Y	15.06.19	
	WA28	System Validation Dipole	D5GHzV2	1183	SPEAG	1Y	15.06.22	
\boxtimes	W121	Vector Reflectometer	DAKS_VNA R140	0111013	Copper Mountain Technologies	1Y	15.07.09	
\boxtimes	WA29	Dielectric Probe	DAKS-3.5	1034	SPEAG	1Y	15.07.09	
\boxtimes	M516	Signal Generator	SMR40	100548	Rohde&Schwarz	1Y	15.08.10	
\boxtimes	W122	Power Amp	CGA020M60 2-2633R	B40550	R&K	N/A	N/A*1	
\boxtimes	W104	Power Sensor	U2021XA	MY54040006	Agilent	1Y	14.12.08	
\boxtimes	W105	Power Sensor	U2021XA	MY54080005	Agilent	1Y	14.12.08	
\boxtimes	W120	Directional Coupler	4226-20	_	narda	N/A	N/A*1	
\boxtimes	W117	Attenuator	8493B 3 dB	MY39260857	Agilent	N/A	N/A*1	
\boxtimes	W118	Attenuator	AT-110 10 dB	932968	Hirose	1Y	15.09.24	
\boxtimes	WC17	RF Cable	SUCOFLEX 104	253269/4	HUBER+SUHN ER	N/A	N/A*1	
\boxtimes	WC18	RF Cable	SUCOFLEX 104PE	MY1592/4	HUBER+SUHN ER	N/A	N/A*1	
\boxtimes	WC19	RF Cable	SUCOFLEX 104	211789/4	HUBER+SUHN ER	N/A	N/A*1	
\boxtimes	WC20	RF Cable	SUCOFLEX 104	194851/4	HUBER+SUHN ER	N/A	N/A*1	
\boxtimes	WC21	RF Cable	SUCOFLEX 104	503095/6	HUBER+SUHN ER	N/A	N/A*1	
\boxtimes	WC22	RF Cable	SUCOFLEX 104	503094/6	HUBER+SUHN ER	N/A	N/A*1	
	M746	Thermometer	CTH-201	001	SANSYO	1Y	15.08.03	
\boxtimes	M748	Thermometer	CTH-201	003	SANSYO	1Y	15.08.03	
	W112	Water Thermometer	735-1	02736130	testo	1Y	15.07.08	
	W113	Water Thermometer	735-1	02788580	testo	1Y	15.07.08	
\boxtimes	W114	Water Thermometer	735-1	02788582	testo	1Y	15.08.10	
	W115	Water Thermometer	735-1	02788585	testo	1Y	15.08.10	
Note(s): *1 In-house verification is conducted periodically.								

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 10 of 60

Table 2-2 Measurement Software List

U	sed	Control No.	Software Description	Model No.	Ver.	Manufacturer
		SW-401	SAR measurement software	DASY52	52.8.8.1222	SPEAG
		SW-402	SAR post-processing software	SEMCAD X	14.6.10 (7331)	SPEAG
	X	SW-403	Dielectric measurement software	DAK	1.12.332.11	SPEAG
	\boxtimes	SW-404	SAR measurement software	DASY52	52.8.8.1222	SPEAG
	\boxtimes	SW-405	SAR post-processing software	SEMCAD X	14.6.10 (7331)	SPEAG
	SW-406 SAR measurement spreadsheet		-	1.00	Main Lab.	
	\boxtimes	SW-314 Power measurement software		N1918A	3.0.0.0	Agilent

2.2. Measurement System Description

The DASY5 system for performing compliance tests consists of the following items:

Figure 2-1 Measurement System Description

- A standard high precision 6-axis robot (Staubli TX/RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.

 The unit is battery powered with standard or rechargeable batteries.
 - The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE.
 - The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment.
 This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantoms (the Twin SAM and/or ELI phantoms) enabling the testing of handheld (left-hand and right-hand) and/or body-mounted usage.
- The device holders for handheld mobile phones and/or larger devices (e.g., laptops, cameras, etc.).
- Tissue simulating liquid (TSL) mixed according to the given recipes.
- System Validation Dipole Kits allowing to validate the proper functioning of the system.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 12 of 60

2.3. Measurement System Main Components

Robot (Positioner)

	Shielded Room 2	Shielded Room 3	
Manufacturer	Staubli SA		
Model No.	TX60L	RX60BL	
Number of Axis	6		
Reach at Wrist	920 mm 865 mm		
Repeatability	+/- 0.03 mm	+/- 0.033 mm	
Nominal Load Capacity	$2 \mathrm{kg}$	1.5 kg	
Maximum Load Capacity	$5 \mathrm{kg}$	2.5 kg	
Control Unit	CS8c	CS7m	
Weight	52.2 kg	$45 \mathrm{kg}$	

E-Field Probe

E Fleia Frobe		
Manufacturer	Schmid & Partner Engineering AG (SPEAG)	
Model No.	EX3DV4	
Construction	Symmetrical design with triangular core	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	$10\mathrm{MHz}\mathrm{to} > 6\mathrm{GHz}$	
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in TSL (rotation around probe axis)	
	± 0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	$10 \mu\text{W/g}$ to $> 100 \text{mW/g}$	
	Linearity: ± 0.2 dB (noise: typically $< 1 \mu W/g$)	
Dimensions	Overall length: 337 mm (Tip length: 20 mm)	
	Tip diameter: 2.5 mm (Body diameter: 12 mm)	
	Typical distance from probe tip to dipole centers: 1 mm	

Data Acquisition Electronics (DAE)

Data Acquisition Electronics (D	(AE)
Manufacturer	Schmid & Partner Engineering AG (SPEAG)
Model No.	DAE4
Construction	Signal amplifier, multiplexer, A/D converter, and control logic
	Serial optical link for communication with DASY4/5 embedded system
	(fully remote controlled)
	Two-step probe touch detector for mechanical surface detection
	and emergency robot stop
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)
Input Offset Voltage	< 5 μV (with auto zero)
Input Resistance	$200\mathrm{M}\Omega$
Input Bias Current	< 50 fA
Battery Power	> 10 hours of operation (with two 9.6 V NiMH accus)
Dimensions (L x W x H)	60 x 60 x 68 mm

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 13 of 60

DASY5 Measurement Server

Manufacturer	Schmid & Partner Engineering AG (SPEAG)
Model No.	DASY5 Measurement Server
CPU	Intel ULV Celeron 400 MHz
Chip-Disk	128 MB
RAM	128 MB
Construction	16 Bit A/D converter for surface detection system
	Vacuum Fluorescent Display
I/O Interface	Robot Interface / Serial link to DAE (with watchdog supervision) / Door contact port /
	Emergency stop port (to connect the remote control) / Signal lamps port / Light beam port /
	Three Ethernet connection ports (for PC, Control Unit, and future applications) /
	Two USB 2.0 ports (for installation and advanced troubleshooting by SPEAG) /
	Two serial links (for future applications) / Expansion port (for future applications)
Dimensions (L x W x H)	440 x 241 x 89 mm

Phantoms (Twin SAM Phantom)

Manufacturer	Schmid & Partner Engineering AG (SPEAG)
Model No.	Twin SAM
Description	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.
Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	Approx. 25 liters
Wooden Support	SPEAG standard phantom table

Phantoms (ELI Phantom)

Phantoms (ELI Phantom)	
Manufacturer	Schmid & Partner Engineering AG (SPEAG)
Model No.	ELI V5.0
Description	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.
Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	Approx. 30 liters
Wooden Support	SPEAG standard phantom table

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 14 of 60

Device Holder (Mounting Device for Hand-Held Transmitters)

Manufacturer	Schmid & Partner Engineering AG (SPEAG)
Model No.	MD4HHTV5
Description	In combination with the Twin SAM or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).
Material	Polyoxymethylene (POM)

Device Holder (Mounting Device Adaptor for Ultra Wide Transmitters)

Manufacturer	Schmid & Partner Engineering AG (SPEAG)
Model No.	MDA4WTV5
Description	An upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140mm.
Material	Polyoxymethylene (POM)

Device Holder (Mounting Device Adaptor for Laptops)

Device Holder (Woodfitting Device Hadpoor for Edptops)		
Manufacturer	Schmid & Partner Engineering AG (SPEAG)	
Model No.	MDA4LAP	
Description	A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.); lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI Phantoms.	
Material	Polyoxymethylene (POM), PET-G, Foam	

System Validation Dipole Kits

Manufacturer	Schmid & Partner Engineering	AG (SPEAG)					
Model No.	D-Series	D-Series					
Construction	Symmetrical dipole with 1/4 balun						
	Enables measurement of feedpo	oint impedance with NWA					
	Matched for use near flat phant	oms filled with tissue simulating	solutions				
Frequency	750, 835, 900, 1450, 1750, 1900,	1950, 2450, 2600, 5100 to 5800 N	MHz				
Return Loss	> 20 dB at specified validation p	position					
Power Capability	> 100 W (f < 1 GHz); > 40 W (f >	· 1 GHz)					
Accessories	Distance holder, tripod adaptor,	tripod					
Dimensions	Product Dipole length Overall height						
	D2450V2 52.0 mm 290.0 mm						
	D5GHzV2	20.6 mm	300.0 mm				

2.4. Tissue Simulating Liquids

Recipes for tissue simulating liquids manufactured by SPEAG

Ingredients			Frequen	cy (MHz)		
(% by weight)	24	.50	1900 t	o 3800	3500 t	o 5800
Used						
Tissus Cimulatina	HSL	MSL	HBBL	MBBL	HBBL	MBBL
Tissue Simulating Liquids	2450	2450	1900-3800	1900-3800	3500-5800	3500-5800
Liquias	V2	V2	V3	V3	V5	V5
Tissue Type	Head	Body	Head	Body	Head	Body
H_2O	52 –	75 %	50-	73 %	50 - 65 %	60 – 80 %
Non-ionic			OF FO.0/			
detergents	-	_	25 - 50 %		_	_
NaCl	< 1.	0 %	0-	2 %	0 - 1.5 %	0 - 1.5 %
Preventol-D7	_		0.05 -	0.05 – 0.1 %		_
$C_8H_{18}O_3$	25 –	48 %	-	_	_	_
Mineral Oil	-	_		- 10-30 %		_
Emulsifiers	_		-	_	$8\!-\!25\%$	20 - 40 %

For the SAR measurement, the phantom must be filled with tissue simulating liquid to a depth of at least 15 cm.

Figure 2-2 Photos: Liquid Depth (at the center of the flat phantom)

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 16 of 60

2.5. SAR Measurement

Step 1: Power Reference Measurement

Before an area scan and after the zoom scan, single point SAR measurements are performed at defined locations to estimate the SAR measurement drift due to device output power variations.

Step 2: Area Scan

An area scan is performed according to the requirements in Table 2-3.

Step 3: Zoom Scan

A zoom scan is performed according to the requirements in Table 2-3.

Step 4: Power Drift Measurement

Before an area scan and after the zoom scan, single point SAR measurements are performed at defined locations to estimate the SAR measurement drift due to device output power variations.

Table 2-3 Area Scan and Zoom Scan Parameters

	Tal	ole 2-3 Area S	Scan and Zoom Scan Parameter	'S		
			DUT Transmit Free	quency being Tested		
			≤3 GHz	> 3 GHz		
Maximum distance fro (geometric center of pro-			5 ± 1 mm	$\frac{1}{2} \delta \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle surface normal at the	-	-	30° ± 1°	20° ± 1°		
			\leq 2 GHz: \leq 15 mm $3-4$ GHz: \leq 12 mm $2-3$ GHz: \leq 12 mm $4-6$ GHz: \leq 10 mm			
Maximum area scan s	patial resol	ution: $\Delta { m x}_{ m Area}$, $\Delta { m y}_{ m Area}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, t measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan s	spatial reso	lution: Δxzoom, Δyzoom	\leq 2 GHz: \leq 8 mm 2 $=$ 3 GHz: \leq 5 mm	$3-4$ GHz: ≤ 5 mm $4-6$ GHz: ≤ 4 mm		
Maximum zoom scan	uniform g	grid: Δz _{Zoom} (n)	≤ 5 mm	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm		
spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1st two points closest to phantom surface Δz _{Zoom} (n>1): between	≤ 4 mm	$\begin{array}{c} 3-4~\mathrm{GHz:} \leq 3~\mathrm{mm} \\ 4-5~\mathrm{GHz:} \leq 2.5~\mathrm{mm} \\ 5-6~\mathrm{GHz:} \leq 2~\mathrm{mm} \end{array}$		
		subsequent points	$\leq 1.5 \Delta z$	Z _{com} (n-1)		
Minimum zoom scan volume x, y, z			≥ 30 mm	$3-4~\mathrm{GHz}$: $\geq 28~\mathrm{mm}$ $4-5~\mathrm{GHz}$: $\geq 25~\mathrm{mm}$ $5-6~\mathrm{GHz}$: $\geq 22~\mathrm{mm}$		
Note: δ is the penetrati	ion depth o	f a plane-wave at norma	l incidence to the tissue medium.			

2.6. Measurement Uncertainty

☐ Table 2-4 DASY5 Uncertainty Budget for SAR Tests

	le 2-4 I ording to IEE			,	tor SAR T GHz range			
	Unc	ertainty of	f Xi	(Ci	Ciu	ı(Xi)	
Input quantity	Xi	Prob. Dist.	Div.	1g [-]	10g [-]	1g	10g	Vi Veff
Measurement System								
Probe Calibration (k=1)	±6.0%	N	1.00	1.00	1.00	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	1.73	0.70	0.70	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.7%	R	1.73	0.70	0.70	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	1.73	1.00	1.00	±0.6%	±0.6%	∞
Linearity	±4.7%	R	1.73	1.00	1.00	±2.7%	±2.7%	∞
System Detection Limits	±0.3%	R	1.73	1.00	1.00	±0.1%	±0.1%	∞
Modulation Response	±2.4%	R	1.73	1.00	1.00	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1.00	1.00	1.00	±0.3%	±0.3%	∞
Response Time	±0.8%	R	1.73	1.00	1.00	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	1.73	1.00	1.00	±1.5%	±1.5%	∞
RF Ambient Noise	±0.2%	R	1.73	1.00	1.00	±0.1%	±0.1%	∞
RF Ambient Reflections	±2.7%	R	1.73	1.00	1.00	±1.6%	±1.6%	∞
Probe Positioner	±0.4%	R	1.73	1.00	1.00	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	1.73	1.00	1.00	±1.7%	±1.7%	∞
Max. SAR Eval.	±2.0%	R	1.73	1.00	1.00	±1.2%	±1.2%	∞
Test Sample Related								
Device Positioning	±1.8%	N	1.00	1.00	1.00	±1.8%	±1.8%	14
Device Holder	±3.6%	N	1.00	1.00	1.00	±3.6%	±3.6%	5
Power Drift	±5.0%	R	1.73	1.00	1.00	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	1.73	1.00	1.00	±0.0%	±0.0%	∞
Phantom and Setup								
Phantom Uncertainty	±7.2%	R	1.73	1.00	1.00	±4.2%	±4.2%	∞
SAR Correction	±1.9%	R	1.73	1.00	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	1.73	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (mea.)	±2.5%	R	1.73	0.23	0.26	±0.3%	±0.4%	∞
Temp. Unc Conductivity	±3.4%	R	1.73	0.78	0.71	±1.5%	±1.4%	∞
Temp. Unc Permittivity	±0.4%	R	1.73	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±11.0%	±10.9%	422
Expanded Uncertainty (95% conf. in	terval)		k=2			±22.0%	±21.9%	

☐ Table 2-5 DASY5 Uncertainty Budget for SAR Tests

_		DASY5 U						
Ac	cording to IE							
	Unc	ertainty of	Xi	(Ci	Ciu	ı(Xi)	Vi
Input quantity	Xi	Prob. Dist.	Div.	1g [-]	10g [-]	1g	10g	Veff
Measurement System								
Probe Calibration (k=1)	±6.55%	N	1.00	1.00	1.00	±6.6%	±6.6%	∞
Axial Isotropy	±4.7%	R	1.73	0.70	0.70	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.7%	R	1.73	0.70	0.70	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	1.73	1.00	1.00	±1.2%	±1.2%	∞
Linearity	±4.7%	R	1.73	1.00	1.00	±2.7%	±2.7%	∞
System Detection Limits	±0.3%	R	1.73	1.00	1.00	±0.1%	±0.1%	∞
Modulation Response	±2.4%	R	1.73	1.00	1.00	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1.00	1.00	1.00	±0.3%	±0.3%	∞
Response Time	±0.8%	R	1.73	1.00	1.00	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	1.73	1.00	1.00	±1.5%	±1.5%	∞
RF Ambient Noise	±0.2%	R	1.73	1.00	1.00	±0.1%	±0.1%	∞
RF Ambient Reflections	±2.7%	R	1.73	1.00	1.00	±1.6%	±1.6%	∞
Probe Positioner	±0.8%	R	1.73	1.00	1.00	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	1.73	1.00	1.00	±3.9%	±3.9%	∞
Max. SAR Eval.	±4.0%	R	1.73	1.00	1.00	±2.3%	±2.3%	∞
Test Sample Related	•	-						
Device Positioning	±1.8%	N	1.00	1.00	1.00	±1.8%	±1.8%	14
Device Holder	±3.6%	N	1.00	1.00	1.00	±3.6%	±3.6%	5
Power Drift	±5.0%	R	1.73	1.00	1.00	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	1.73	1.00	1.00	±0.0%	±0.0%	∞
Phantom and Setup								
Phantom Uncertainty	±7.6%	R	1.73	1.00	1.00	±4.4%	±4.4%	∞
SAR Correction	±1.9%	R	1.73	1.00	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	1.73	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (mea.)	±2.5%	R	1.73	0.23	0.26	±0.3%	±0.4%	∞
Temp. Unc Conductivity	±3.4%	R	1.73	0.78	0.71	±1.5%	±1.4%	∞
Temp. Unc Permittivity	±0.4%	R	1.73	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty					±12.1%	±12.1%	626	
Expanded Uncertainty (95% conf. in	terval)		k=2			±24.2%	±24.1%	

☐ Table 2-6 DASY5 Uncertainty Budget for SAR System Check

∑ Table 2-					AR Syste			
Acc	cording to IEE	EE Std 152	8-2013 (0.3	3GHz to 60	GHz range	<u>e)</u>		
	Unc	ertainty of	f Xi	(Ci	Ciu	(Xi)	77.
Input quantity	Xi	Prob. Dist.	Div.	1g [-]	10g [-]	1g	10g	Vi Veff
Measurement System				•				•
Probe Calibration (k=1)	±6.55%	N	1.00	1.00	1.00	±6.6%	±6.6%	∞
Axial Isotropy	±4.7%	R	1.73	0.70	0.70	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.7%	R	1.73	0.70	0.70	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	1.73	1.00	1.00	±1.2%	±1.2%	∞
Linearity	±4.7%	R	1.73	1.00	1.00	±2.7%	±2.7%	∞
System Detection Limits	±0.3%	R	1.73	1.00	1.00	±0.1%	±0.1%	∞
Modulation Response	±0.0%	R	1.73	1.00	1.00	±0.0%	±0.0%	∞
Readout Electronics	±0.3%	N	1.00	1.00	1.00	±0.3%	±0.3%	∞
Response Time	±0.0%	R	1.73	1.00	1.00	±0.0%	±0.0%	∞
Integration Time	±0.0%	R	1.73	1.00	1.00	±0.0%	±0.0%	∞
RF Ambient Noise	±1.0%	R	1.73	1.00	1.00	±0.6%	±0.6%	∞
RF Ambient Reflections	±1.0%	R	1.73	1.00	1.00	±0.6%	±0.6%	∞
Probe Positioner	±0.8%	R	1.73	1.00	1.00	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	1.73	1.00	1.00	±3.9%	±3.9%	∞
Max. SAR Eval.	±4.0%	R	1.73	1.00	1.00	±2.3%	±2.3%	∞
Dipole Related	<u> </u>					-		'
Deviation of exp. Dipole	±5.5%	R	1.73	1.00	1.00	±3.2%	±3.2%	∞
Dipole Axis to Liquid Dist.	±2.0%	R	1.73	1.00	1.00	±1.2%	±1.2%	∞
Inoput Power & SAR Drift	±3.4%	R	1.73	1.00	1.00	±2.0%	±2.0%	∞
Phantom and Setup	,	,	,	•	,			•
Phantom Uncertainty	±7.6%	R	1.73	1.00	1.00	±4.4%	±4.4%	∞
SAR Correction	±1.9%	R	1.73	1.00	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	N	1.00	0.78	0.71	±2.0%	±1.8%	∞
Liquid Permittivity (mea.)	±2.5%	N	1.00	0.23	0.26	±0.6%	±0.7%	∞
Temp. Unc Conductivity	±3.4%	R	1.73	0.78	0.71	±1.5%	±1.4%	∞
Temp. Unc Permittivity	±0.4%	R	1.73	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±11.6%	±11.5%	
Expanded Uncertainty (95% conf. in	terval)		k=2			±23.1%	±23.0%	

2.7. Dielectric Parameter Measurement of Tissue Simulating Liquids

The dielectric properties of the tissue simulating liquids used were verified within 24 hours before the SAR measurement.

(a) Dielectric Parameter Measurement System

(b) Photo: Dielectric Parameter Measurement

Figure 2-3 Dielectric Parameter Measurement Set-up

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 21 of 60

 *1 Target values are linearly interpolated between the values defined in KDB 865664 D01, when necessary.

4th Shielded Room 2

TSL	Freq. (MHz)	Param.	Target *1	Meas.	Dev. (%) *2	Date	Amb. Temp. (deg. C)	Rel. Hum. (%RH)	Liquid Temp. (deg. C)	Note(s)
	2410	$\epsilon_{ m r}$	52.75	52.18	-1.09					
	2410	σ (S/m)	1.90	1.96	3.31	3 6 6 3 2015/11/30			23.9	
MBBL	2440	$\epsilon_{ m r}$	52.71	52.06	-1.23		25.0	38.0		
1900-3800V3		σ (S/m)	1.94	1.99	2.56		25.0	38.0		
	2460	$\epsilon_{ m r}$	52.69	52.04	-1.23					
	2460	σ (S/m)	1.96	2.01	2.60					

^{*2} The deviation of measured values from target values must be within +/-5 %.

2.8. System Check Measurement

The system check was performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium.

(a) Set-up 1: System Validation Dipole Input Power Adjustment

(b) Set-up 2: System Check Measurement

Figure 2-4 System Check Measurement Set-up

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 23 of 60

Body TSL

(c) Photo: System Validation Dipole Placement

Figure 2-4 System Check Measurement Set-up (continued)

- *1 The normalized values (1 W) were calculated by normalizing the measured values to 1-W forward input power.
- *2 The target values (1 W) are defined in IEEE Std 1528 and/or the calibration certificate of system validation dipoles used.
- *3 The deviation of normalized values from target values must be within +/-10 %.

4th Shielded Room 2 (Body TSL)

System Validation Dipole	Freq. (MHz)	Param.	250 mW- Meas. (W/kg)	1 W- Norm. (W/kg) *1	1 W- Target (W/kg) *2	Dev. (%) *3	Date	Amb. Temp. (deg. C)	Rel. Hum. (%RH)	Liquid Temp. (deg. C)	Note(s)
D2450V2	2450	1-g SAR	13.00	52.00	52.40	-0.76	2015/11/30	25.0	38.0	23.9	
D2400V2	2400	10-g SAR	6.08	24.32	24.60	-1.14	2019/11/30	25.0	30.0	۷۵.9	

3. Conducted Power Measurements

Conducted output power measurements, performed on the same test sample by UL Japan, Inc. before the SAR testing, were quoted as per the customer's request. Please refer to the Test Report No. 10879313S, issued by UL Japan, Inc.

3.1. Conducted Power Measurement Results

Wi-Fi 2.4 GHz 802.11b

11111	2. 1 O11	Z 002.110								
Ch.	Freq. (MHz)	Power Setting	Data Rate (Mbps)	Max. Poss. Power (dBm)	Meas. Burst Averaged Power (dBm)	Within 2 dB of Max. Poss. Power	Meas. Frame Averaged Power (dBm)	SAR Tested	Note(s)	
Step 1: Worst Date Rate Check										
			1.0	n/a	15.91	n/a	15.85	-		
1	2412	Default	2.0	n/a	16.13	n/a	16.10	-	Worst D/R	
1	2412	Delault	5.5	n/a	16.11	n/a	16.04	-		
			11.0	n/a	16.10	n/a	16.02	-		
Step	2: Worst	Channel Che	eck							
1	2412		2.0	19.0	17.93	Yes	17.86	Yes		
6	2437	Tune-up	2.0	19.0	17.93	Yes	17.90	Yes		
11	2462	·	2.0	19.0	18.00	Yes	17.99	Yes	Worst Ch	

Wi-Fi 2.4 GHz 802.11g

1111		2 002.115							
Ch.	Freq. (MHz)	Power Setting	Data Rate (Mbps)	Max. Poss. Power (dBm)	Meas. Burst Averaged Power (dBm)	Within 2 dB of Max. Poss. Power	Meas. Frame Averaged Power (dBm)	SAR Tested	Note(s)
2	2417		6.0	19.0	17.66	Yes	17.57	No	Worst Ch
6	2437	Tune-up	6.0	19.0	17.59	Yes	17.51	No	
10	2457		6.0	19.0	17.70	Yes	17.55	No	

^{*} Channels 2, 6, and 10 are measured since channels 1, 11, 12, and 13 require reduced output power, according to KDB 248227 D01.

Wi-Fi 2.4 GHz 802.11n (HT20)

Ch.	Freq. (MHz)	Power Setting	MCS	Max. Poss. Power (dBm)	Meas. Burst Averaged Power (dBm)	Within 2 dB of Max. Poss. Power	Meas. Frame Averaged Power (dBm)	SAR Tested	Note(s)
2	2417		0	19.0	17.48	Yes	17.42	No	
6	2437	Tune-up	0	19.0	17.52	Yes	17.41	No	
10	2457		0	19.0	17.57	Yes	17.49	No	Worst Ch

^{*} Channels 2, 6, and 10 are measured since channels 1, 11, 12, and 13 require reduced output power, according to KDB 248227 D01.

^{*} SAR is not required for 802.11g/n HT20 channels when the highest reported SAR for DSSS (802.11b) is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg or 3 W/kg (1-g or 10-g respectively), according to KDB 248227 D01.

^{*} SAR is not required for 802.11g/n HT20 channels when the highest reported SAR for DSSS (802.11b) is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg or 3 W/kg (1-g or 10-g respectively), according to KDB 248227 D01.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 25 of 60

Bluetooth (BLE)

Ch.	Freq. (MHz)	Power Setting	Data Rate (Mbps)	Max. Poss. Power (dBm)	Meas. Burst Averaged Power (dBm)	Within 2 dB of Max. Poss. Power	Meas. Frame Averaged Power (dBm)	SAR Tested	Note(s)
L	2402		-	9.5	8.45	Yes	6.43	No	
M	2440	Tune-up	-	9.5	9.03	Yes	7.01	No	Worst Ch
Н	2480	·	-	9.5	8.80	Yes	6.77	No	

^{*} SAR is not required for Bluetooth when SAR test exclusion is applied according to KDB 447498 D01.

3.2. Comparison of Conducted Power with Original Radio Test Report

	Mode	Max. Conducted Averaged Power	Note(s)
Original (Radio)	802.11b	18.19 dBm	Radio Test Report No. 10622710S-C, issued by UL Japan, Inc.
Class II Permissive Change (SAR)	802.11b	18.00 dBm	Burst averaged power, measured by UL Japan, Inc.
Deviation		-0.19 dB	

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 26 of 60

4. SAR Measurements

According to KDB 865664 D01,

the maximum SAR values are determined by taking account of the following correction or scaling factors.

The maximum 1-g SAR and/or 10-g SAR values (reported SAR) are calculated by applying the Δ SAR positive correction for deviations of the tissue-equivalent liquid and the power scaling for the maximum duty factor and maximum possible power levels (maximum tune-up tolerance limit) to each measured 1-g SAR and/or 10-g SAR value:

Reported SAR (W/kg) = Measured SAR (W/kg) * ΔSAR positive correction factor

* Duty cycle scaling factor * Tune-up scaling factor

where;

 Δ SAR positive correction factor = $(100 - \Delta SAR^{*1}) / 100$

Duty cycle scaling factor = Max. possible duty cycle / Measured duty cycle used for the SAR measurement

Tune-up scaling factor = Max. possible power (mW) / Measured power used for the SAR measurement (mW)

```
*1 \Delta SAR (%) = c_c * \Delta \varepsilon_r + c_o * \Delta \sigma

<For 1-g SAR>

c_c = -7.854 * 10^4 f^3 + 9.402 * 10^3 f^2 - 2.742 * 10^2 f - 0.2026

c_o = 9.804 * 10^3 f^3 - 8.661 * 10^2 f^2 + 2.981 * 10^2 f + 0.7829

<For 10-g SAR>
```

```
\begin{split} c_c &= 3.456*10^3 \, f^3 - 3.531*10^{-2} \, f^2 + 7.675*10^2 \, f \cdot 0.1860 \\ c_o &= 4.479*10^3 \, f^3 - 1.586*10^2 \, f^2 - 0.1972 \, f + 0.7717 \end{split}
```

where;

 c_e coefficient representing the sensitivity of SAR to permittivity

 $\Delta\epsilon_{\rm r}$ percent change in permittivity

c_o coefficient representing the sensitivity of SAR to conductivity

Δσ percent change in conductivity

f frequency in GHz

A negative ΔSAR would translate to a lower measured SAR value than what would be measured

if using dielectric properties equal to the target values.

A positive ΔSAR would translate to a higher measured SAR value than what would be measured

if using dielectric properties equal to the target values.

SAR correction shall not be made when the Δ SAR has a positive sign to provide a conservative SAR value.

The SAR is only corrected when $\Delta\!S\!AR$ has a negative sign.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 27 of 60

SAR Test Reduction for Wi-Fi>

SAR test reduction for Wi-Fi is applied according to KDB 248227 D01.

The initial test position procedures

An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions.

- When the reported SAR of the initial test position is \leq 0.4 W/kg or 1 W/kg (1-g or 10-g respectively), further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) When the reported SAR of the initial test position is > 0.4 W/kg or 1 W/kg (1-g or 10-g respectively), SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or 2 W/kg (1-g or 10-g respectively) or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg or 2 W/kg (1-g or 10-g respectively), SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or 3 W/kg (1-g or 10-g respectively) or all required channels are tested.
 - a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

The 802.11b DSSS procedures

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure.

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg or 2 W/kg (1-g or 10-g respectively), no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg or 2 W/kg (1-g or 10-g respectively), SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg or 3 W/kg (1-g or 10-g respectively), SAR is required for the third channel; i.e., all channels require testing.

For 2.4 GHz 802.11g/n OFDM configurations

 ${\rm SAR}$ is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg or 3 W/kg (1-g or 10-g respectively).

The Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. SAR test reduction for subsequent highest output test channels is determined according to reported SAR of the initial test configuration.

1) When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 28 of 60

4.1. SAR Measurement Results

<Body-Worn SAR>

Wi-Fi 2.4 GHz

Date : 2015/11/30 Measured by : Y. Kabasawa Amb. Temp. : 24.0 deg. C Rel. hum. : 37.0 %RH

Mode	Ch.	Freq. (MHz)	Pos.	Dis.	Max. Poss. Power (dBm)	Meas. Power (dBm)	Max. Duty Cycle (%)	Meas. Duty Cycle (%)	Meas. 1-g SAR (W/kg)	Reported 1-g SAR (W/kg)	Liquid Temp. (deg. C)	Plot No.
Step 1: Wor	st Po	sition Cl	heck									
			Front		19.00	18.00	100.0	100.0	0.764	0.962	23.4	
			Back		19.00	18.00	100.0	100.0	0.356	0.448	23.4	
			Left		19.00	18.00	100.0	100.0	0.181	0.228	23.5	
801.11b	11	2462	Right	0	19.00	18.00	100.0	100.0	0.050	0.063	23.6	
			Top		19.00	18.00	100.0	100.0	0.048	0.061	23.4	
			Bottom -Tilt		19.00	18.00	100.0	100.0	0.704	0.886	23.3	
Step 2: Wor	st Ch	annel C	heck									
	1	2412	Front		19.00	17.93	100.0	100.0	0.813	1.040	23.3	1
	6	2437	Front		19.00	17.93	100.0	100.0	0.726	0.929	23.3	
802.11b	1	2412	Bottom -Tilt	0	19.00	17.93	100.0	100.0	0.783	1.002	23.4	
	6	2437	Bottom -Tilt		19.00	17.93	100.0	100.0	0.694	0.888	23.4	
Step 3: Var	iabilit	y Check										
802.11b	1	2412	Front	0	19.00	17.93	100.0	100.0	0.806	1.031	23.7	

^{*} The burst averaged power values are used for power scaling since the maximum tune-up tolerance limits are defined as burst averaged values.

4.2. SAR Measurement Variability

According to KDB 865664 D01, additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freq. Band (MHz)	RF Exposure Conditions	Position	Meas	hest . SAR /kg)	Repeat SAR	Repeated Meas. SAR (W/kg)	Ratio of Largest to Smallest SAR
Wi-Fi 2.4 GHz	Body-Worn	Front	1-g SAR	0.813	Yes	0.806	1.01

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 29 of 60

Appendix A. Plots of SAR Measurement

Please see the following page(s).

Plot No. 1

Date: 2015/11/30

Test Laboratory: Sony EMCS EMC/RF Test Laboratory Main Lab. Shielded Room $2\,$

Wi-Fi 2.4 GHz (1ch)_Body-Worn_Front_0mm

DUT: Type1DR (installed in Digital Accessory 1DR001)

Communication System: UID 0, Wi-Fi_802.11b_2Mbps (0); Frequency: 2412 MHz

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.964 \text{ S/m}$; $\varepsilon_r = 52.169$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN7301; ConvF(7.43, 7.43, 7.43); Calibrated: 2015/06/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn482; Calibrated: 2015/08/25
- · Phantom: SAM (20deg probe tilt) with CRP v5.0 back; Type: QD000P40CD; Serial: TP-1851
- · DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Wi-Fi 2.4 GHz (1ch)_Body-Worn_Front_0mm/

Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.948 W/kg

Configuration/Wi-Fi 2.4 GHz (1ch)_Body-Worn_Front_0mm/

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.15 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.27 W/kg

 $\underline{SAR(1\ g)} = 0.813\ \underline{W/kg}.\ SAR(10\ g) = 0.309\ W/kg\ (SAR\ corrected\ for\ target\ medium)$

Maximum value of SAR (measured) = 1.36 W/kg

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 31 of 60

Appendix B. Plots of System Check

Please see the following page(s).

Date: 2015/11/30

Test Laboratory: Sony EMCS EMC/RF Test Laboratory Main Lab. Shielded Room $2\,$

Validation_D2450_MSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 936

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; σ = 1.997 S/m; ϵ_r = 52.073; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN7301; ConvF(7.43, 7.43, 7.43); Calibrated: 2015/06/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- · Electronics: DAE4 Sn482; Calibrated: 2015/08/25
- Phantom: SAM (20deg probe tilt) with CRP v5.0 back; Type: QD000P40CD; Serial: TP-1851
- · DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Performance Check at Frequencies above 2 GHz/Validation D2450 MSL/

Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 16.2 W/kg

System Performance Check at Frequencies above 2 GHz/Validation D2450 MSL/ $\,$

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.96 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.08 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 19.7 W/kg

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 33 of 60

Appendix C. Calibration Certificate

C.1. E-Field Probe EX3DV4 (Serial No. 7301 / Control No. WA18)

Please see the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Sony EMCS (Vitec)

Certificate No: EX3-7301_Jun15

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7301

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 19, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Claudio Leubler

Claudio Leubler

Approved by:

Katja Pokovic

Function

Laboratory Technician

Technical Manager

Issued: June 22, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7301_Jun15

Page 1 of 11

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 35 of 60

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 3 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- i) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7301_Jun15

Page 2 of 11

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 36 of 60

EX3DV4 = SN:7301 June 19, 2015

Probe EX3DV4

SN:7301

Manufactured: March 11, 2014 Calibrated: June 19, 2015

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Certificate No: EX3-7301_Jun15

Page 3 of 11

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 37 of 60

June 19, 2015 EX3DV4-- SN:7301

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7301

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.55	0.32	0.61	± 10.1 %
DCP (mV) ⁶	98.3	101.4	95.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊏] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	124.1	±3.5 %
		Y	0.0	0.0	1.0		124.0	
		Z	0.0	0.0	1.0		126.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-7301_Jun15

Page 4 of 11

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

8 Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 38 of 60

EX3DV4- SN:7301 June 19, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7301

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.29	10.29	10.29	0.31	1.10	± 12.0 %
835	41.5	0.90	9.90	9.90	9.90	0.27	1.22	± 12.0 %
900	41.5	0.97	9.66	9.66	9.66	0.26	1.27	± 12.0 %
1450	40.5	1.20	8.47	8.47	8.47	0.34	0.90	± 12.0 %
1750	40.1	1.37	8.35	8.35	8.35	0.38	0.81	± 12.0 %
1900	40.0	1.40	8.03	8.03	8.03	0.37	0.85	± 12.0 %
1950	40.0	1.40	7.85	7.85	7.85	0.33	0.85	± 12.0 %
2450	39.2	1.80	7.32	7.32	7.32	0.33	0.90	± 12.0 %
2600	39.0	1.96	7.19	7.19	7.19	0.42	0.84	± 12.0 %
3500	37.9	2.91	7.21	7.21	7.21	0.38	1.06	± 13.1 %
5200	36.0	4.66	5.47	5.47	5.47	0.30	1.80	± 13.1 %
5500	35.6	4.96	5.04	5.04	5.04	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.72	4.72	4.72	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the Const uncertainty for indicated target fissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 39 of 60

June 19, 2015 EX3DV4-SN:7301

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7301

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^c (mm)	Unct. (k=2)
750	55.5	0.96	9.72	9.72	9.72	0.32	1.13	± 12.0 %
835	55.2	0.97	9.69	9.69	9.69	0.31	1.14	± 12.0 %
900	55.0	1.05	9.52	9.52	9.52	0.35	1.05	± 12.0 %
1450	54.0	1.30	8.26	8.26	8.26	0.23	1.21	± 12.0 %
1750	53.4	1.49	8.12	8.12	8.12	0.35	0.88	± 12.0 %
1900	53.3	1.52	7.69	7.69	7.69	0.26	1.03	± 12.0 %
1950	53.3	1.52	8.01	8.01	8.01	0.39	0.83	± 12.0 %
2450	52.7	1.95	7.43	7.43	7.43	0.27	0.95	± 12.0 %
2600	52.5	2.16	7.28	7.28	7.28	0.22	0.99	± 12.0 %
3500	51.3	3.31	6.65	6.65	6.65	0.23	2.11	± 13.1 %
5200	49.0	5.30	4.85	4.85	4.85	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.41	4.41	4.41	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.51	4.51	4.51	0.45	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (c and a) can be released to ± 10% if liquid compensation formula is applied to

Certificate No: EX3-7301_Jun15

An requencies below 3 GHz, the variously of usave parameters (a and of can be relaxed of ± 10% in rights compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and of) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip

diameter from the boundary.

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 40 of 60

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-7301_Jun15

Page 7 of 11

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 41 of 60

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 42 of 60

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 44 of 60

EX3DV4- SN:7301

June 19, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7301

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	138.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	
Probe Overall Length	disabled
Probe Body Diameter	337 mm
Tip Length	10 mm
Tip Diameter	9 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7301_Jun15

Page 11 of 11

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 45 of 60

C.2. System Validation Dipole D2450V2 (Serial No. 936 / Control No. WA26)

Please see the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sony EMCS (Vitec)

Certificate No: D2450V2-936_Jun15

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:936

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

June 19, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Function
Lelf Klysner Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: June 22, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-936_Jun15

Page 1 of 8

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 47 of 60

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-936_Jun15

Page 2 of 8

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 48 of 60

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-936_Jun15

Page 3 of 8

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 49 of 60

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.1 Ω + 0.0 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω + 2.8 jΩ
Return Loss	- 29.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 13, 2014

Certificate No: D2450V2-936_Jun15

Page 4 of 8

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 50 of 60

DASY5 Validation Report for Head TSL

Date: 19.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:936

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.0 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.4 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Certificate No: D2450V2-936_Jun15

Page 5 of 8

Project No: JB-Z0102 Model No.: Type1DR FCC ID: VPYLB1DR Issued: December 2, 2015 Page 52 of 60

DASY5 Validation Report for Body TSL

Date: 19.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:936

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.44 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.25 W/kgMaximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Certificate No: D2450V2-936_Jun15

Page 7 of 8

