TD 4

Sommes de Riemann. Calculer les limites suivantes

- 1. $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{n}{k^2 + 3n^2}$
- 2. $\lim_{n\to\infty} \prod_{k=1}^n (1+\frac{k}{n})^{1/n}$
- 3. $\lim_{n\to\infty} \frac{1}{n\sqrt{n}} \sum_{k=1}^n E(\sqrt{k})$ où E(x) est la partie entière de x.

Notation de Landau

1. On considère les fonctions suivantes, définies au voisinage de 0 :

$$f(x) = x^2, g(x) = \frac{\sin(x^4)}{x}, h(x) = \frac{1}{\exp(1/x^2)}, i(x) = \frac{\ln(1+x)}{x^2}$$

Dire lesquelles sont un o(1), puis lesquelles sont un $o(x^2)$ (en 0).

- 2. Soient $k, k' \in \mathbb{N}$, montrer que
 - (a) $o(x^k) = x^k o(1)$
 - (b) $x^k o(x^{k'}) = o(x^{k+k'})$
 - (c) $o(x^k)o(x^{k'}) = o(x^{k+k'})$
 - (d) $o(x^k) \pm o(x^{k'}) = o(x^{\min(k,k')})$

Quelques applications

- 1. Étudier la limite lorsque $x \to +\infty$ de $\left(\cos\left(\frac{1}{x}\right)\right)^{x^2}$.
- 2. Étudier, en fonction de la valeur de α , la limite quand $x \to \infty$ de

$$f(x) = \left(x\sin(1/x)\right)^{x^{\alpha}}$$

et de la fonction $x^2 f(x)$.

Exercice 1

- 1. Donner le D.L. à l'ordre 3 en x=0 de la fonction $x\mapsto \sqrt{1+x}$. Même question pour $x\mapsto \ln(1-x)$.
- 2. En déduire le D.L. à l'ordre 3 en x=0 de la fonction

$$f(x) = x\sqrt{1+x} + \ln(1-x)$$

3. Déterminer la limite de $\frac{f(x)}{x^3}$ quand $x \to 0$.

Exercice 2

1. Donner le D.L. à l'ordre 5 en x=0 des fonctions $x\mapsto \cos x$ et $x\mapsto \ln(1+x^4)$.

2. Soit f définie par

$$f(x) = \frac{\cos x - 1 + x^2/2}{\ln(1 + x^4)}$$

Montrer que f admet une limite quand $x \to 0$ et la calculer.

3. Montrer que f ainsi prolongée par continuité en 0 est dérivable en 0 et calculer sa dérivée.

Exercice 3 Soit $f: x \mapsto e^x(\cos x + \sin x) - 1$

- 1. Calculer f', f'', f'''.
- 2. En utilisant la formule de Taylor-Lagrange montrer que

$$|f(x) - (2x + x^2)| \le |x^3|$$

pour tout $x \in [-\frac{\pi}{6}, \frac{\pi}{6}]$.

Calculs. Calculer les DL suivants :

- 1. $e^{\sin x}$ à l'ordre 2 en 0
- 2. $(1+x)^{\frac{1}{x}}$ à l'ordre 2 en 0
- 3. $\exp(\sin x \ln(\cos x))$ à l'ordre 2 en 0
- 4. $tan(ln(1+x^2))$ à l'ordre 2 en 0
- 5. $\ln(\cos^2 x \sin^2 x)$ à l'ordre 2 en 0
- 6. $\frac{1}{1+e^x}$ à l'ordre 3 en 2

Déterminer les limites suivantes lorsqu'elles existent :

- 1. $\lim_{x\to 0} \frac{\sqrt{1+\sin x}+e^{-x/2}-2}{x^3}$
- 2. $\lim_{x\to 0} \frac{e^{\sqrt{1+\sin x}}-e}{\tan x}$ 3. $\lim_{x\to 1} \frac{x^x-x}{1-x+\ln x}$
- 4. $\lim_{x\to\infty} \left(1+\frac{\alpha}{x}\right)x$ pour α réel.

Pour s'amuser. Trouver une fonction f telle que, quand $x \to \infty$, on a $f(x) = o(x^{\alpha})$ et $(\ln x)^{\alpha} = o(f(x))$ pour tout $\alpha > 0$.

2