

Nastavni predmet:	Ugradbeni računalni sustavi	
Vježba: 02	Arduino – Sedam segmentni LED indikator 2	
Cilj vježbe:	Naučiti ispisivati brojeve i slova na 4 X 7 segmentni LED zaslon	

Upute

Sve zadatke spremi na USB, a u bilježnici za sve zadatke napiši:

- · postupak izrade programa
- objašnjenje korištenih naredbi
- dobivene rezultate po točkama
- odgovoriti u bilježnicu na postavljena pitanja vezana uz ovu vježbu
- Ukoliko u kòdu postoji greška, korigiraj i objasni!

4 X 7 segmentni LED displej

U praksi je vrlo često potrebno prikazati više od jedne znamenke, pa se koristi 4 X 7 segmentni LED zaslon. Uobičajeni raspored izvoda i unutarnja električna shema dani su u nastavku.

Kako bi se smanjio broj izvoda, 4 X 7 segmentni LED je multipleksiran, tj. za pojedinu znamenku treba uključiti zajedničku nožicu (katodu ili anodu) za tu znamenku.

Displej ima 8 nožica za 8 standardnih segmenata + 4 nožice za odabir pojedine znamenke. Znamenke se naizmjence uključuju i ispisuju se odgovarajući segmenti za tu znamenku.

Ako se znamenka za znamenkom ispisuju dovoljno velikom brzinom, ljudsko oko će prepoznati kao da sve 4 znamenke svijetle istovremeno.

Osim decimalne točke, ovi indikatori mogu imati i dvotočku pomoću kojih se može realizirati sat.

Znakovi koji se mogu prikazati pomoću 7 segmentnog LED displeja:

Zadatak 1. Spoji 4 X 7 segmentni LED displej prema priloženoj shemi. Napiši program tako da na njemu piše "PULA".

NAPOMENA: Između pinova D1 (12), D2 (8), D3 (9) i D4(6) LED displeja i odgovarajućih pinova Arduina treba spojiti otpornik oko 220 ohma.

Arduino	4x7 segment.
	LED display
Pin	Pin
2	11 (A)
3	7 (B)
4	4 (C)
5	2 (D)
6	1 (E)
7	10 (F)
8	5 (G)
9	3 (DP)
10	12 (D1)
11	8 (D2)
12	9 (D3)
13	6 (D4)

Grafička shema:

Kòd zadatka

```
int intDelay = 500; // vrijeme čekanja između ispisa dviju znamenki
void setup() {
     // put your setup code here, to run once:
     pinMode(2, OUTPUT);
                           // segment A
     pinMode(3, OUTPUT);
                           // segment B
     pinMode(4, OUTPUT);
                           // segment C
     pinMode(5, OUTPUT);
                           // segment D
     pinMode(6, OUTPUT);
                           // segment E
     pinMode(7, OUTPUT);
                           // segment F
     pinMode(8, OUTPUT);
                           // segment G
     pinMode(9, OUTPUT);
                           // decimalna točka
```

```
digitalWrite(9, 0);
                           // isključujemo decimalnu točku
     pinMode(10, OUTPUT);
                             // Pin za katodu prve znamenke D1
     pinMode(11, OUTPUT);
                             // Pin za katodu druge znamenke D2
     pinMode(12, OUTPUT);
                             // Pin za katodu treće znamenke D3
     pinMode(13, OUTPUT);
                             // Pin za katodu četvrte znamenke D4
}
void loop() {
     // piši 'P'
     digitalWrite(2, 1);
     digitalWrite(3, 1);
     digitalWrite(4, 0);
     digitalWrite(5, 0);
     digitalWrite(6, 1);
     digitalWrite(7, 1);
     digitalWrite(8, 1);
     digitalWrite(10, 0);
                             // Aktivna samo prva znamenka D1
     digitalWrite(11, 1);
     digitalWrite(12, 1);
     digitalWrite(13, 1);
     delay(intDelay);
     // piši 'U'
     digitalWrite(2, 0);
     digitalWrite(3, 1);
     digitalWrite(4, 1);
     digitalWrite(5, 1);
     digitalWrite(6, 1);
     digitalWrite(7, 1);
     digitalWrite(8, 0);
     digitalWrite(10, 1);
     digitalWrite(11, 0);
                             // Aktivna samo druga znamenka D2
     digitalWrite(12, 1);
     digitalWrite(13, 1);
     delay(intDelay);
     // piši 'L'
     digitalWrite(2, 0);
     digitalWrite(3, 0);
     digitalWrite(4, 0);
     digitalWrite(5, 1);
     digitalWrite(6, 1);
     digitalWrite(7, 1);
     digitalWrite(8, 0);
     digitalWrite(10, 1);
     digitalWrite(11, 1);
     digitalWrite(12, 0);
                             // Aktivna samo treća znamenka D3
```

```
digitalWrite(13, 1);
     delay(intDelay);
     // piši 'A'
     digitalWrite(2, 1);
     digitalWrite(3, 1);
     digitalWrite(4, 1);
     digitalWrite(5, 0);
     digitalWrite(6, 1);
     digitalWrite(7, 1);
     digitalWrite(8, 1);
     digitalWrite(10, 1);
     digitalWrite(11, 1);
     digitalWrite(12, 1);
     digitalWrite(13, 0);
                           // Aktivna samo četvrta znamenka D4
     delay(intDelay);
}
```

Zadatak 2. Prethodni zadatak modificiraj tako da dodaš potenciometar na ulaz A0 Arduina pomoću kojeg ćeš regulirati brzinu ispisa slova. Brzinu ispisa treba regulirati u granicama 1 ms do 250 ms.

1. Koje modifikacije u kodu treba napraviti da se dobije čist i stabilan prikaz znamenki?

Zadatak 3. Modificiraj program iz prethodnog zadatka tako da na 4 X 7 segmentnom zaslonu ispisuješ očitanu A/D vrijednost potenciometra priključenog na A0 ulaz. Prati stanje znamenki na Serial monitoru.

Kòd zadatka

```
int a = 2;
int b = 3;
int c = 4;
int d = 5;
int e = 6;
int f = 7;
int g = 8;
int p = 9;
int d1 = 10;
int d2 = 11;
int d3 = 12;
int d4 = 13;
int nDelayMicroseconds = 200;
int data;
void setup()
{
     pinMode(A0, INPUT);
```

```
pinMode(d1, OUTPUT);
     pinMode(d2, OUTPUT);
     pinMode(d3, OUTPUT);
     pinMode(d4, OUTPUT);
     pinMode(a, OUTPUT); //DDRD.2
     pinMode(b, OUTPUT); //DDRD.3
     pinMode(c, OUTPUT); //DDRD.4
     pinMode(d, OUTPUT); //DDRD.5
     pinMode(e, OUTPUT); //DDRD.6
     pinMode(f, OUTPUT); //DDRD.7
     pinMode(g, OUTPUT);
     pinMode(p, OUTPUT);
     //DDRD = B11111110;
     //DDRB = B00111111;
     Serial.begin(9600);
}
void loop()
{
     int d1, d2, d3, d4;
     data = analogRead(A0);
     d1 = data / 1000 % 10;
                                // Znamenka tisućice
     d2 = data / 100 % 10;
                                // Znamenka stotice
     d3 = data / 10 % 10;
                                // Znamenka desetice
     d4 = data \% 10;
                                // Znamenka jedinice
     Serial.print(data);
     Serial.print("\t");
     Serial.print(d1);
     Serial.print("\t");
     Serial.print(d2);
     Serial.print("\t");
     Serial.print(d3);
     Serial.print("\t");
     Serial.print(d4);
     Serial.print("\n");
     for (int m = 0; m<80; m++) {
           clearLEDs();
                                  //Turn off all LED lights
           pickDigit(1);
                                  //Selection of a digital display
           pickNumber(d1);
                                  //Display digital d1
           delayMicroseconds(nDelayMicroseconds);
           clearLEDs();
                                  //Turn off all LED lights
                                  //Select the first two digital display
           pickDigit(2);
           pickNumber(d2);
                                  //Display digital d2
```

```
delayMicroseconds(nDelayMicroseconds);
           clearLEDs();
                                  //Turn off all LED lights
           pickDigit(3);
                                  //Select the first three digital display
           pickNumber(d3);
                                  //Display digital d3
           delayMicroseconds(nDelayMicroseconds);
           clearLEDs();
                                  //Turn off all LED lights
                                  //Select the first four digital display
           pickDigit(4);
           pickNumber(d4);
                                  //Display digital d4
           delayMicroseconds(nDelayMicroseconds);
     }
}
void pickDigit(int x) //Defined pickDigit (x), whose role is to open the
port dx
{
     digitalWrite(d1, HIGH);
     digitalWrite(d2, HIGH);
     digitalWrite(d3, HIGH);
     digitalWrite(d4, HIGH);
     switch (x)
     {
     case 1:
           digitalWrite(d1, LOW);
          break;
     case 2:
           digitalWrite(d2, LOW);
          break;
     case 3:
           digitalWrite(d3, LOW);
           break;
     default:
           digitalWrite(d4, LOW);
           break:
     }
}
void pickNumber(int x) //Defined pickNumber (x), whose role is to display
digital x
{
     switch (x)
     case 1:
           one();
           break:
     case 2:
           two();
           break;
     case 3:
           three();
           break:
```

```
case 4:
           four();
           break;
     case 5:
           five();
           break;
     case 6:
           six();
           break;
     case 7:
           seven();
           break;
     case 8:
           eight();
           break;
     case 9:
           nine();
           break;
     default:
           zero();
           break;
     }
}
void dispDec(int x) //Decimal point setting Open
{
     digitalWrite(p, HIGH);
}
void clearLEDs() //Clear screen
{
     digitalWrite(a, LOW);
     digitalWrite(b, LOW);
     digitalWrite(c, LOW);
     digitalWrite(d, LOW);
     digitalWrite(e, LOW);
     digitalWrite(f, LOW);
     digitalWrite(g, LOW);
     digitalWrite(p, LOW);
}
void zero() //Define those figures 0 cathode pin switch
{
     digitalWrite(a, HIGH);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, HIGH);
     digitalWrite(e, HIGH);
     digitalWrite(f, HIGH);
     digitalWrite(g, LOW);
}
```

```
void one() //Define those figures 1 cathode pin switch
     digitalWrite(a, LOW);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, LOW);
     digitalWrite(e, LOW);
     digitalWrite(f, LOW);
     digitalWrite(g, LOW);
}
void two() //Define those figures 2 cathode pin switch
     digitalWrite(a, HIGH);
     digitalWrite(b, HIGH);
     digitalWrite(c, LOW);
     digitalWrite(d, HIGH);
     digitalWrite(e, HIGH);
     digitalWrite(f, LOW);
     digitalWrite(g, HIGH);
}
void three() //Define those figures 3 cathode pin switch
     digitalWrite(a, HIGH);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, HIGH);
     digitalWrite(e, LOW);
     digitalWrite(f, LOW);
     digitalWrite(g, HIGH);
}
void four() //Define those figures 4 cathode pin switch
{
     digitalWrite(a, LOW);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, LOW);
     digitalWrite(e, LOW);
     digitalWrite(f, HIGH);
     digitalWrite(g, HIGH);
}
void five() //Define those figures 5 cathode pin switch
{
     digitalWrite(a, HIGH);
     digitalWrite(b, LOW);
     digitalWrite(c, HIGH);
     digitalWrite(d, HIGH);
     digitalWrite(e, LOW);
```

```
digitalWrite(f, HIGH);
     digitalWrite(g, HIGH);
}
void six() //Define those figures 6 cathode pin switch
     digitalWrite(a, HIGH);
     digitalWrite(b, LOW);
     digitalWrite(c, HIGH);
     digitalWrite(d, HIGH);
     digitalWrite(e, HIGH);
     digitalWrite(f, HIGH);
     digitalWrite(g, HIGH);
}
void seven() //Define those figures 7 cathode pin switch
     digitalWrite(a, HIGH);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, LOW);
     digitalWrite(e, LOW);
     digitalWrite(f, LOW);
     digitalWrite(g, LOW);
}
void eight() //Define those figures 8 cathode pin switch
{
     digitalWrite(a, HIGH);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, HIGH);
     digitalWrite(e, HIGH);
     digitalWrite(f, HIGH);
     digitalWrite(g, HIGH);
}
void nine() //Define those figures 9 cathode pin switch
{
     digitalWrite(a, HIGH);
     digitalWrite(b, HIGH);
     digitalWrite(c, HIGH);
     digitalWrite(d, HIGH);
     digitalWrite(e, LOW);
     digitalWrite(f, HIGH);
     digitalWrite(g, HIGH);
}
```

Zadatak 4. Modificiraj spoj iz prethodnog zadatka tako da dodaš dva tipkala. Modificiraj program tako da pritiskom na jednu tipku povećavaš broj prikazan na 4 X 7 segmentnom zaslonu, a pritiskom na drugu tipku smanjuješ broj na zaslonu. Inicijalno, na zaslonu treba napisati broj 500. Da li svakim pritiskom broj povećavaš samo za 1?

Zadatak 5. Modificiraj kod iz prethodnog zadatka tako da napraviš digitalni sat. Početno vrijeme podešavati pomoću dva tipkala. Pritiskom na jedno tipkalo povećavaš znamenku sati, a pritiskom na drugo povećavaš znamenku minuta. Za brojanje koristiti Timer1 koji treba pokrenuti prekidni potprogram svakih 1000 ms. Funkcioniranje Timer1 pogledati u prošlogodišnjoj vježbi: Timeri i njihov prekid. Izvadak koda u nastavku modificirati i primijeniti za rješavanje zadatka.

```
timerISR()
{
    seconds++;

    if(seconds == 60)
    {
        seconds = 0;
        minutes++;
    }
    if(minutes == 60)
    {
        minutes = 0;
        hours++;
    }
    if(hours > 23)
        hours = 0;
}
```