HOMEWORK 7

JACKSON VAN DYKE

Exercise 1 (Hatcher, §1.3, 12). Let a and b be the generators of π_1 ($S^1 \vee S^1$) corresponding to the two S^1 summands. Draw a picture of the covering space of $S^1 \vee S^1$ corresponding to the normal subgroup generated by a^2 , b^2 , and $(ab)^4$, and prove that this covering space is indeed the correct one.

Exercise 2 (Hatcher, §1.3, 15). Let $p: \tilde{X} \to X$ be a simply-connected covering space of X and let $A \subset X$ be a path-connected, locally path-connected subspace, with $\tilde{A} \subset \tilde{X}$ a path-component of $p^{-1}(A)$. Show that $p: \tilde{A} \to A$ is the covering space corresponding to the kernel of the map $\pi_1(A) \to \pi_1(X)$.

Exercise 3 (Hatcher, §1.3, 23). Show that if a group G acts freely and properly discontinuously on a Hausdorff space X, then the action is a covering space action. (Here 'properly discontinuously' means that each $x \in X$ has a neighborhood U such that $\{g \in G \mid U \cap g(U) \neq \emptyset\}$ is finite.) In particular, a free action of a finite group on a Hausdorff space is a covering space action.

Exercise 4 (Hatcher, $\S1.A$, 7). If F is a finitely generated free group and N is a nontrivial normal subgroup of infinite index, show, using covering spaces, that N is not finitely generated.

Exercise 5 (Hatcher, §1.A, 8). Show that a finitely generated group has only a finite number of subgroups of a given finite index. [First do the case of free groups, using covering spaces of graphs. The general case then follows since every group is a quotient group of a free group.]

Exercise 6. Show that the map $p_H: \tilde{X}/H \to X$ in the proof Theorem 4.18 is a covering projection.

Exercise 7. Prove (directly from the presentations) that the groups $\langle a, b \mid a^2b^2 = 1 \rangle$ and $\langle x, y \mid x^{-1}yx = y^{-1} \rangle$ are isomorphic.

Exercise 8. Let $n \geq 2$, and let $b_0 = (1,0,\ldots,0) \in S^n$. Let $\pi_n(X,x_0)$ be the set of homotopy classes (rel b_0) of maps $\alpha: (S^n,b_0) \to (X,x_0)$. (In fact $\pi_n(X,x_0)$ can be given the structure of an abelian group.) A map $f: (X,x_0) \to (Y,y_0)$ induces a function $f_*: \pi_n(X,x_0) \to \pi_n(Y,y_0)$ defined by $f_*([\alpha]) = [f\alpha]$. Show that if $p: (\tilde{X},\tilde{x}_0) \to (X,x_0)$ is a covering projection then $p_*: \pi_n(\tilde{X},\tilde{x}_0) \to \pi_n(X,x_0)$ is a bijection.

Date: October 17, 2019.

1