A Multi-Step Machine Learning Approach to Directional Gamma Ray Detection

Matthew Durbin, Ryan Sheatsley

Patrick McDaniel, Azaree Lintereur

FUTURE

VISION

KEN AND MARY ALICE LINDQUIST DEPARTMENT OF NUCLEAR ENGINEERING

Directional Detection

- Source direction determined by analyzing the distribution of counts across an array of detectors
 - Based on differences in solid angle and self occlusion
- Applications:
 - Urban Search
 - Public Events
 - Ports/Borders
- Bounds of this work:
 - Stationary source and detector array
 - Predicting the source angle on 2D Plane
 - Four 2x4x16 inch Nal detectors

Minimum Least Squares/Reference Table (LSRT)

- Technique in directional detection literature
- Comparison to a prepopulated database of different angles at the same radius

Assumption:

$$R = f(\theta)$$

R: Response

Θ: Source Angle

Minimum Least Squares/Reference Table (LSRT)

- Technique in directional detection literature
- Comparison to a prepopulated database of different angles at the same radius

Reality:
$$R = f(\theta, r, E, O, N, ...)$$

R: Response

Θ: Source Angle

r: Radial distance

E: Energy

O: Obstructions/Environment

N: Noise

Minimum Least Squares/Reference Table (LSRT)

Technique in directional detection literature

 Comparison to a prepopulated database of different angles at the same radius

Reality:

$$R = f(\theta, r, E, O, N, \dots)$$

R: Response

Θ: Source Angle

r: Radial distance

Can Machine Learning (ML) better capture this function?

E: Energy

O: Obstructions/Environment

N: Noise

- Previous work showed that a ML can outperform the LSRT on the tested datasets
 - Better capturing of radius¹

135°

225

180

- Better handling of obstructions²
- Energy has a notable effect on the response, and needs to be addressed

¹M. Durbin, et. al., "Development of a fully connected residual neural network for directional gamma ray detection." Int. Jrnl. Mod. Phys: Conf. Series., **50** (2020)

²M. Durbin, et. al., "Development of machine learning algorithms for directional gamma ray detection." Proc. INMM Annual Meeting (2019)

⁶⁰Co - 1.25 MeV

 137 Cs - 0.66 MeV

Multi-Step Approach

60 NUCLEAR ENGINEERING

Datasets

- 3 Datasets: 10,000 MCNP simulated trials of each ⁶⁰Co, ¹³⁷Cs, and ¹⁹²Ir at random locations 1-5 m away from the array center
- Correlated to two-minute counts of 100 μCi sources
- Gaussian energy broadening applied, and background spectra with Poisson sampled noise injected based on laboratory measurements
- All spectra background subtracted

Investigation of Energy Dependence

NUCLEAR ENGINEERING

Investigation of Energy Dependence

NUCLEAR ENGINEERING

Investigation of Energy Dependence

Training Dataset/Approach

60 NUCLEAR ENGINEERING

Investigation of Energy Dependence

Training Dataset/Approach

Metrics

predictions

Accuracy: Percentage of correct angular predictions
Average Angular
Error: On the average, how off were the

K-Fold Cross Validation: Mitigates the effects of a "lucky" shuffle/divide

Isotope Classification

Four class KNN classifier with 10 spectral bins as input features, summed across all detectors

360 class KNN classifier with the sum of each detector as an input feature

- 6

Results

Accuracy Training Dataset/Approach

Average Angular Error Training Dataset/Approach

Worse Results given as mean (*) and standard deviation (**) across the k-fold cross validation

- 0.5

0.4

- 0.3

0.2

- 0.1

Results

Average Angular Error Training Dataset/Approach

6.0

- 5.5

- 5.0

4.0

3.5

-10-

KNN outperforms LSRT across approaches

What happens when we test on an untrained Isotope?

7.5

7.0

6.5

6.0

- 5.5

- 5.0

With the same input features, the Isotope classifier predicted ⁶⁰Co

Test with Untrained Isotope – ²²Na

- A different or more optimized isotope classifier could lead to better results
 - With 3 input features, the classifier primarily predicted ¹³⁷Cs, leading to better angular predictions
- If expected isotopes are known for an application, it is beneficial to train on isotope specific datasets
- Training on energy regions instead of specific isotopes may give comparable results
- Other ML models could use energy as an input feature

Preliminary Measured Tests

Detector 1 Detector 2 Detector 3

100° 80° 120° 60° 40° Detector 0 140% Detector 1 Detector 2 0.3 Detector 3 60Co - 225

Trian on simulations, test on measurements

Preliminary Measured Tests - Results

Accuracy Training Dataset/Approach

Average Angular Error Training Dataset/Approach

Preliminary Measured Tests - Results

Overall-LSRT -

Similar Trends: KNN outperforms LSRT, Benefit of multi-step approach Room for Improvement: Simulation/experimental agreement

Conclusions

60 NUCLEAR ENGINEERING

- Energy effects angular response of detector array
- A multi-step approach which trains on isotope specific data offers improvements in angular predictions
- KNN outperforms LSRT method

Conclusions

- Energy effects angular response of detector array
- A multi-step approach which trains on isotope specific data offers improvements in angular predictions
- KNN outperforms LSRT method
- Benefit to train on isotope specific data when expected isotopes are known, but training on energy regions may yield comparable results

 $^{192}Ir - 0.32 MeV$

Future Works

• Investigate additional ML architectures, using energy as an input feature

• Investigating how well simulations and experimental data must agree to train ML models on

the former and test on the latter

-17-

Future Works

• Investigate additional ML architectures, using energy as an input feature

• Investigating how well simulations and experimental data must agree to train ML models on

-17-

the former and test on the latter

A Multi-Step Machine Learning Approach to Directional Gamma Ray Detection

Matthew Durbin, Ryan Sheatsley

Patrick McDaniel, Azaree Lintereur

FUTURE

VISION

KEN AND MARY ALICE LINDQUIST DEPARTMENT OF NUCLEAR ENGINEERING

Background: Rogue Sources

- There is a nuclear and homeland security related motivation to be able to locate rogue sources
 - ~3700 incidents of radioactive material out of regulatory control (1993-2019)
 - ~300 related to trafficking or malicious use
- Current methods to localize sources have room to improve
 - Largely based solely on elevated count rates
- Applications:
 - Urban Search
 - Public Events
 - Ports/Borders

IAEA Incident and Trafficking Database (IRDB)

https://www.iaea.org/resources/databases/itdb

-B 1-

- Machine learning: Executing a computational task with out explicit programing
- K-Nearest Neighbors: Prediction is made by taking on the majority class of a user specified number of nearest neighbors (k) in the input feature space
 - Robust, easy to implement, computationally inexpensive
 - Natural extension of a reference table: The LSRT is equivalent to a KNN with k=1 and the reference table
 as the training data
- Previous work showed that a ML can outperform the LSRT on the tested datasets
 - Better capturing of radius
 - Better handling of obstructions

M. Durbin, et. al., "Development of machine learning algorithms for directional gamma ray detection." Proc. INMM Annual Meeting (2019)

M. Durbin, et. al., "Development of a fully connected residual neural network for directional gamma ray detection." Int. Jrnl. Mod. Phys: Conf. Series., **50** (2020)

