Breaking the Trade-off between Performance and Reliability of Network Storage System

<u>Hiroki Ohtsuji^{1,2}</u> and Osamu Tatebe¹

¹University of Tsukuba/JST CREST

²JSPS Research Fellow

Background

- Requirements of exa-scale computing
 - High-performance and reliable storage systems
- Trade-off:
 - between <u>performance</u> and <u>reliability</u> of network storage system
- Optimization methods
 - Active-storage
 - Programmable network switch
- Adaptive strategy

Trade-off: performance and reliability

- Performance
 - I/O throughput (write)

Reliability

Data loss

P = (amount of original data / total amount of data with parity)

Performance degradation

(*2)

Total amount of traffic from a writer node is increased by parity block(s). (33% degradation of write performance)

Our proposed optimization strategies

- Methods to optimize data write (to storage nodes)
 - Active-storage
 - Utilize computing capabilities of storage nodes
 - Programmable network switch
 - Utilize programmable functions of network switch

Active-storage mechanism (*1)

 Storage nodes exchange data blocks with each other to generate parity blocks

Off-loads the parity generation processes to storage nodes

*1 Hiroki Ohtsuji and Osamu Tatebe, "Active-Storage Mechanism for Cluster-wide RAID System", International Conference on Data Science and Data Intensive Systems (IEEE DSDIS), pp.1-8, 2015 (to appear)

Programmable network switch (*2)

- Move the parity calculation process to network switch(s)
 - The writer sends data blocks to the programmable switch
 - The switch generates parity blocks
 - The amount of outbound traffic of the writer = the size of original data blocks
 - No traffic increase

^{*2} Hiroki Ohtsuji and Osamu Tatebe, "Network-based Data Processing Architecture for Reliable and High-performance Distributed Storage System", 4th workshop on Big Data Management in Clouds (BigDataCloud), pp.1-12, 2015

Evaluation Result (w/programmable switch)

Network BW 6,000MB/s

Adaptive strategy

- Hybrid architecture
 - Active-storage
 - Low scalability w/o additional network
 - Low-cost
 - Programmable network switch
 - Requires dedicated hardware
 - Good scalability

Conclusion and future work

- Conclusion
 - A hybrid architecture of optimized network storage system
 - Active-storage
 - Programmable network
 - Break the trade-off between performance and reliability
- Future work
 - Strategy to choose an optimal method

Acknowledgement

This works is supported by

- JST CREST "System Software for Post Petascale Data Intensive Science",
- JST CREST "Extreme Big Data (EBD) Next Generation Big Data Infrastructure Technologies Towards Yottabyte/Year"
- JSPS KAKENHI Grant-in-Aid for JSPS Fellows "Network-oriented storage system for next generation supercomputing systems" FY2014-2015