Import Dataset

```
In [1]: import pandas as pd
In [2]: df = pd.read csv(r"C:\Users\PC1\Desktop\DS\DataSets\Admission Predict Ver1.1.csv") #reading file from device
In [3]: df #verifying read
Out[3]:
              Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit
           0
                     1
                              337
                                          118
                                                               4.5
                                                                     4.5
                                                                           9.65
                                                                                                    0.92
                                                                                      1
                     2
           1
                              324
                                          107
                                                                4.0
                                                                     4.5
                                                                           8.87
                                                                                      1
                                                                                                   0.76
            2
                     3
                              316
                                          104
                                                                3.0
                                                                     3.5
                                                                           8.00
                                                                                                   0.72
            3
                     4
                              322
                                          110
                                                                3.5
                                                                     2.5
                                                                           8.67
                                                                                                   0.80
                                                                     3.0
            4
                     5
                              314
                                          103
                                                                2.0
                                                                           8.21
                                                                                      0
                                                                                                    0.65
```

4.5

5.0

4.5

4.0

4.5

4.0

5.0

5.0

5.0

4.5

9.02

9.87

9.56

8.43

9.04

1

1

0.87

0.96

0.93

0.73

0.84

500 rows × 9 columns

496

497

498

499

500

495

496

497

498

499

332

337

330

312

327

```
In [4]: df.columns #showing name of all columns
```

108

117

120

103

113

Data Pre-processing

```
In [5]: from sklearn.preprocessing import Binarizer
In [6]: bi = Binarizer(threshold=0.80) # for changing values >0.8 to 1 & <0.8 to 0
        df['Chance of Admit '] = bi.fit transform(df[['Chance of Admit ']]) #transformation
In [8]: df #verifying changes
Out[8]:
              Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit
                              337
                                           118
                                                                4.5
                                                                      4.5
                                                                            9.65
                                                                                                     1.0
            0
                     1
                                                                                        1
                                                                4.0
                                                                      4.5
                                                                                                     0.0
                     2
                              324
                                           107
                                                                            8.87
            2
                     3
                              316
                                           104
                                                                3.0
                                                                      3.5
                                                                            8.00
                                                                                                     0.0
            3
                     4
                              322
                                                                3.5
                                                                      2.5
                                                                            8.67
                                                                                                     0.0
                                           110
                                                                2.0
                                                                      3.0
                                                                            8.21
            4
                     5
                              314
                                           103
                                                                                        0
                                                                                                     0.0
          495
                    496
                              332
                                           108
                                                                4.5
                                                                      4.0
                                                                            9.02
                                                                                        1
                                                                                                     1.0
                                                                            9.87
          496
                    497
                              337
                                           117
                                                             5
                                                                 5.0
                                                                      5.0
                                                                                                     1.0
                                                                4.5
                                                                      5.0
          497
                    498
                              330
                                           120
                                                                            9.56
                                                                                        1
                                                                                                     1.0
                    499
                              312
                                           103
                                                                4.0
                                                                      5.0
                                                                            8.43
                                                                                        0
                                                                                                     0.0
          498
                                                                4.5
                                                                     4.5
                                                                            9.04
                                                                                                     1.0
                              327
                                                                                        0
          499
                    500
                                           113
```

500 rows × 9 columns

```
In [9]: x = df.drop('Chance of Admit ', axis=1) #A DataFrame object has two axes: "axis 0" and "axis 1". "axis 0" represents re
y = df['Chance of Admit ']
```

In [10]: x

Out[10]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
0	1	337	118	4	4.5	4.5	9.65	1
1	2	324	107	4	4.0	4.5	8.87	1
2	3	316	104	3	3.0	3.5	8.00	1
3	4	322	110	3	3.5	2.5	8.67	1
4	5	314	103	2	2.0	3.0	8.21	0
495	496	332	108	5	4.5	4.0	9.02	1
496	497	337	117	5	5.0	5.0	9.87	1
497	498	330	120	5	4.5	5.0	9.56	1
498	499	312	103	4	4.0	5.0	8.43	0
499	500	327	113	4	4.5	4.5	9.04	0

500 rows × 8 columns

```
In [11]: y
Out[11]: 0
                1.0
                0.0
                0.0
                0.0
                0.0
                . . .
         495
                1.0
         496
                1.0
         497
                1.0
                0.0
         498
         499
                1.0
         Name: Chance of Admit , Length: 500, dtype: float64
In [12]: y.value_counts() #count in number format
Out[12]: 0.0
                358
                142
         1.0
         Name: Chance of Admit , dtype: int64
```

Data Split

```
In [13]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 0, test_size = 0.2)

In [14]: x_train.shape

Out[14]: (400, 8)

In [15]: y_train.shape

Out[15]: (400,)
```

```
In [16]: x_test.shape
Out[16]: (100, 8)
In [17]: y_test.shape
Out[17]: (100,)
```

Model Building

In [23]: result

Out[23]:

	actual	predicted
90	0.0	0.0
254	1.0	1.0
283	0.0	0.0
445	1.0	1.0
461	0.0	0.0
372	1.0	1.0
56	0.0	0.0
440	0.0	0.0
60	0.0	0.0
208	0.0	0.0

100 rows × 2 columns

Model Evaluation

In [24]: from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, classification_report

In [25]: ConfusionMatrixDisplay.from_predictions(y_test, y_pred)

Out[25]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x202dc3f7970>

In [26]: accuracy_score(y_test, y_pred)

Out[26]: 0.96

```
In [27]: print(classification_report(y_test, y_pred))
                      precision
                                   recall f1-score
                                                     support
                  0.0
                           0.99
                                     0.96
                                               0.97
                                                           78
                  1.0
                           0.88
                                     0.95
                                               0.91
                                                           22
                                               0.96
                                                          100
             accuracy
            macro avg
                           0.93
                                     0.96
                                               0.94
                                                          100
         weighted avg
                                     0.96
                                               0.96
                           0.96
                                                          100
```

Printing Decision Tree

```
In [28]: from sklearn.tree import plot_tree
```

In [29]: import matplotlib.pyplot as plt

```
In [30]: plt.figure(figsize=(22,9))
    plot_tree(classifier, fontsize = 9, filled=True, rounded=True);
```


In [31]: plt.figure(figsize=(28,12))
plot_tree(classifier, fontsize = 10, filled=True, rounded=True, feature_names=x.columns, class_names=['NA', 'AD']);

