Açıklanabilir Yapay Zeka

4. Hafta: Lokal düzeyde açıklayıcılar LIME yöntemi

Mustafa Cavus, Ph.D.

- Eskişehir Teknik Üniversitesi İstatistik Bölümü
- mustafacavus@eskisehir.edu.tr
- linktr.ee/mustafacavus

Giriş

- Break-Down ve SHAP gibi yöntemler çok sayıda değişken sayısına sahip modeller için uygun değildir.
- Ancak gerçek hayatta kullanılan modellerde yüzlerce hatta bincelerce açıklayıcı değişken içeren modeller kullanılmaktadır.
- Bu gibi durumlarda az sayıda değişken içeren açıklayıcılar iyi bir alternatiftir. Bunlardan en bilineni Yerel Yorumlanabilir Modelden Bağımsız Açıklamalar (LIME: Local Interpretable Model agnostic Explanations)

LIME Yöntemi

- Ribeiro vd. (2016) tarafından önerilmiştir.
- LIME yöntemi, yorumlanması daha kolay olan daha basit bir glass-box modeli ile bir blackbox modeline yerel olarak yakınsama fikrine dayanır.

LIME Yöntemi

- Renkli alanlar, karmaşık bir ikili sınıflandırma modeli için karar bölgelerine karşılık gelir.
- Siyah çarpı ilgilenilen gözlem değerini temsil eder.
- Noktalar, ilgilenilen örnek etrafındaki yapay verilere karşılık gelir.
- Kesikli çizgi, yapay verilere uyan basit bir doğrusal modeli temsil eder. Basit model, ilgilenilen gözlem değeri etrafındaki *black-box* modelinin yerel davranışını "açıklar".

© Mustafa Cavus, Ph.D. - Açıklanabilir Yapay Zeka - 4.Hafta - 28 Mart 2023

Örnek uygulama

- Titanic veri setinde yer alan bazı değişkenleri, ikili kategorik değişkene dönüştürerek daha basit bir veri yapısı elde edelim.
- Daha sonra ilgili gözlem değeri etrafında rasgele orman modeli ile yapay gözlemler üretelim.
- Ardından, gözlemler üzerinde K-LASSO modelini kullanarak yorumlanabilir yerel bir model elde edelim.

© Mustafa Cavus, Ph.D. - Açıklanabilir Yapay Zeka - 4.Hafta - 28 Mart 2023

Artı ve eksileri

- Modelden bağımsızdır.
- Yerel doğruluk (*local fidelity*) sağlar. Yani black-box modele yerel düzeyde uyumludur.
- Yüksek boyutlu (çok sayıda değişken içeren) modellere uygulanabilir.

- Açıklamanın doğruluğu yorumlanabilir modelin seçimine bağlıdır. Açıklayıcı bunu kontrol etmez.
- Yüksek boyutlu verilerde gözlemlerin yerel komşularını üretmek kolay olmayabilir.
 Komşu noktalardaki küçük değişiklikler açıklamaları etkileyebilir.

Kaynaklar

Explanatory Model Analysis (Biecek and Burzykowski, 2021) kitabından yararlanılmıştır. Kitabın ücretsiz online versiyonuna bağlantı üzerinden erişilebilir: https://ema.drwhy.ai/

Ders notlarına dersin GitHub sayfası üzerinden ulaşabilirsiniz.

Ders ile ilgili sorularınız için mustafacavus@eskisehir.edu.tr adresi üzerinden benimle iletişime geçebilirsiniz.

Mustafa Cavus, Ph.D.

Eskişehir Teknik Üniversitesi - İstatistik Bölümü

mustafacavus@eskisehir.edu.tr

linktr.ee/mustafacavus