### SS3の個体群モデルと統計推測

### 東京海洋大学 北門 利英

kitakado@kaiyodai.ac.jp

https://sites.google.com/site/toshihidekitakado/



# SS3の位置づけ

|       | Production model | ASPM | VPA                | SCAA              | SS3                                                     |
|-------|------------------|------|--------------------|-------------------|---------------------------------------------------------|
| 資源量指数 | 要                | 要    | 要                  | 要                 | 要                                                       |
| 齢構成   | 非明示的             | Yes  | Yes                | Yes               | Yes                                                     |
| 再生産構造 | 非明示的             | Yes  | No                 | Yes(Stoch astic)  | Yes(Stoch astic)                                        |
| 年齢データ | 不使用              | 不使用  | 要(誤差を考<br>えない)     | 要(誤差考慮)           | 要(誤差考慮)                                                 |
| 体長データ | 不使用              | 不使用  | 年齢データ<br>の為slicing | 不使用               | 要(誤差考慮)                                                 |
| 標識データ | 不使用              | 不使用  | 不使用                | 不使用               | 利用可                                                     |
| 備考    |                  |      |                    | 統合型の一種            | <ul><li>複数集団</li><li>種々の時間的変化OK</li><li>生物データ</li></ul> |
|       |                  |      |                    | Integration (two) | Synthesis (two or more)                                 |

### SS30Quick overview

Age-structured pop dynamics



Typical observations





**Some outputs** 







### 内容

- SS3で仮定している個体群動態モデル
- SS3で想定している観測データ (例)
- SS3が行う統計推測



### キーとなる要素

### 主に Control file の前半部分の仕様に関連

#### 15.5 CONTROL FILE

```
#V3,23b
#C growth parameters are estimated
#C spawner-recruitment bias adjustment Not tuned For optimality
# data and control files: simple.dat // simple.ctl
# SS-V3.21d-safe; 06/09/2011; Stock Synthesis by Richard Methot (NOAA) u
1 # N Growth Patterns
1 # N Morphs Within GrowthPattern
# Cond 1 # Morph between/within stdev ratio (no read if N morphs=1)
# Cond 1 #vector Morphdist (-1 in first val gives normal approx)
# Cond 0 # N recruitment designs goes here if N GP*nseas*area>1
# Cond 0 # placeholder for recruitment interaction request
# Cond 1 1 1 # example recruitment design element for GP=1, seas=1, are
# Cond 0 # N movement definitions goes here if N areas > 1
# Cond 1.0 # first age that moves (real age at begin of season, not inte
# Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, sourc
0 # Nblock Patterns
# Cond 0 # blocks per pattern
# begin and end years of blocks
0.5 # fracfemale
0 # natM type: 0=1Parm; 1=N breakpoints; 2=Lorenzen; 3=agespecific; 4=ag
  # no additional input for selected M option; read IP per morph
1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=not impl
0 # Growth Age for L1
25 # Growth Age for L2 (999 to use as Linf)
0 # SD add to LAA (set to 0.1 for SS2 V1.x compatibility)
0 # CV Growth Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A);
1 # maturity option: 1=length logistic; 2=age logistic; 3=read age-
```

### キーとなる要素

#### 主に Control file の前半部分の仕様に関連

- 齢構成モデル
- 自然死亡
- 親魚~加入関係とその確率的変動
- 成熟率
- 選択性(サイズ,年齢)
- 成長と変動(体長組成)
- 体長体重関係
- 漁具能率
- . . .

### 基礎的な個体群動態モデル(単一集団)

- 雌雄区別 [γ] (あり、なし)
- 時間単位 [y] (年, 四半期, …)
- 年齢 [a=1,2,...,A]
- 漁業 [f]

$$N_{y+1,\gamma,a,} = \begin{cases} cR_{y+1,\gamma,0} & \text{if } a = 0 \\ N_{y,\gamma,a-1}e^{-Z_{y,t,\gamma,a}} & \text{if } 1 \le a \le A-1 \\ N_{y,\gamma,A-1}e^{-Z_{y,t,\gamma,A-1}} + N_{y,\gamma,A}e^{-Z_{y,t,\gamma,A}} & \text{if } a = A \end{cases}$$
 (A.1.20)

$$Z_{y,t,\gamma,a} = M_{\gamma,a} + \sum_{f} (S_{f,\gamma,a} F_{y,t,f})$$
 (A.1.21)

M: 年齢別, 性別でも可 (several options)

S: 漁業別・年齢別の選択性 (many options!)

F: 漁業別の漁獲係数

#### Recruitment

BH 
$$R_y = \frac{4hR_0SB_y}{SB_0(1-h) + SB_y(5h-1)} e^{-0.5b_y\sigma_R^2 + \tilde{R}_y} \quad \tilde{R}_y \sim N(0; \sigma_R^2)$$



$$SB_y = \sum_{a=0}^{A} N_{y,\text{fem},a} f_a$$

h (steepness) 親子関係の強さを表すパラメータ (B0の20%の親魚重量で R0の100\*h%が加入)

Ricker

$$R_{y} = \left(\frac{R_{0}SB_{y}}{SB_{0}}\right)e^{h\left(1-SB_{y}/SB_{0}\right)}e^{-0.5b_{y}\sigma_{R}^{2}+\tilde{R}_{y}} \quad \tilde{R}_{y} \sim \tilde{N}\left(0;\sigma_{R}^{2}\right)$$

Hockey-stick

#### Recruitment

$$BH R_{y} = \frac{4hR_{0}SB_{y}}{SB_{0}(1-h) + SB_{y}(5h-1)} e^{-0.5b_{y}\sigma_{R}^{2} + \tilde{R}_{y}} \tilde{R}_{y} \sim N(0; \sigma_{R}^{2})$$

Rtilde (加入の確率的変動) by (バイアス補正項, data-poor (rich) period)





### Selectivity

● 種々の関数形







- 完全なノンパラメトリック (例えば年別にすべて独立)
- cubic spline (有限数の3次関数の組み合わせ)
- time-varying (選択性の時間的変化を考慮)



● Mean Growth: VB関数 (Richardなども可)

$$L_{y+1,\gamma,a} = L_{y,\gamma,a} + \left(L_{y,\gamma,a-k} - L_{\infty,\gamma}\right) \left(e^{-k_{\gamma}} - 1\right) \quad \text{for } a < A$$
(A.1.10)

Growth variation

$$\sigma_{\gamma,a} = \begin{cases} \tilde{L}_{\gamma,a} \left( CV_{1,\gamma} \right) & \text{for } a \leq a_3 \\ \tilde{L}_{\gamma,a} \left( CV_{1,\gamma} + \frac{\left( \tilde{L}_{\gamma,a} - L_{1,\gamma} \right)}{\left( L_{2,\gamma} - L_{1,\gamma} \right)} \left( CV_{2,\gamma} - CV_{1,\gamma} \right) \right) & \text{for } a_3 < a < a_4 \\ \tilde{L}_{\gamma,a} \left( CV_{2,\gamma} \right) & \text{for } a \geq a_4 \end{cases}$$

$$(A.1.13)$$

```
1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2;
0 #_Growth_Age_for_L1
25 #_Growth_Age_for_L2 (999 to use as Linf)
-10 45 21.6552 36 0 10 2 0 0 0 0 0 0 0 # L_at_Amin_Fem_GP_1
40 90 71.6492 70 0 10 4 0 0 0 0 0 0 0 # L_at_Amax_Fem_GP_1
0.05 0.25 0.147282 0.15 0 0.8 4 0 0 0 0 0 0 0 # VonBert_K_Fem_GP_1
0.05 0.25 0.1 0.1 -1 0.8 -3 0 0 0 0 0 0 0 # CV_young_Fem_GP_1
0.05 0.25 0.1 0.1 -1 0.8 -3 0 0 0 0 0 0 0 # CV_old_Fem_GP_1
```

Ending year selectivity and growth for F2\_TWN\_LL



$$\begin{split} \varphi_{\gamma,a,l} &= \begin{cases} \Phi \bigg( \frac{L'_{\min} - \tilde{L}_{\gamma,a}}{\sigma_{\gamma,a}} \bigg) & \text{for } l = 1 \\ \Phi \bigg( \frac{L'_{l+1} - \tilde{L}_{\gamma,a}}{\sigma_{\gamma,a}} \bigg) - \Phi \bigg( \frac{L'_{l} - \tilde{L}_{\gamma,a}}{\sigma_{\gamma,a}} \bigg) & \text{for } 1 < l < A \end{cases} \\ & \left[ 1 - \Phi \bigg( \frac{L'_{\max} - \tilde{L}_{\gamma,a}}{\sigma_{\gamma,a}} \bigg) \right] & \text{for } l = A_{l} \end{split}$$

各年齢では正規分布に従う









### キーとなる要素

#### 主に Data file に関連

#### 15.6 DATA FILE

```
#V3.23b
#C data file for simple example
1971 # styr
2001 # endyr
1 # nseas
12 # months/season
1 # spawn seas
1 # Nfleet
2 # Nsurvevs
1 # N areas
FISHERY1%SURVEY1%SURVEY2
 0.5 0.5 0.5 # surveytiming in season
1 1 1 # area assignments for each fishery and survey
 1 # units of catch: 1=bio; 2=num
 0.01 # se of log(catch) only used for init eq catch and for Fmethod 2 and 3
2 # Ngenders
40 # Nages
 0 # init equil catch for each fishery
31 # N lines of catch to read
# catch biomass(mtons): columns are fisheries, year, season
 0 1971 1
 200 1972 1
 1000 1973 1
 1000 1974 1
```

### データ

#### 主に Data file に関連

- データの期間
- 年とシーズンの定義(年自体を四半期に読み替えてもよい)
- 想定する空間的エリアの数(ここでは単一と考える)

#### 観測データ

- 漁獲量(漁法,年,季節)
- 資源量指数
- 体長組成
- 年齢組成
- 標識放流データ(潜在的に移動率を推定可だが…)
- . . .

### 漁法別漁獲量

Fishery 1: Japanese longline(LL), including Korean and other countries Japan type longline (JPN\_LL, 1952-2010)

Fishery 2: Taiwanese longline, including Indonesian and other countries Taiwan type longline (TWN\_LL, 1954-2010)

Fishery 3: Taiwanese Drift gill net (Drift, 1982-2010)

Fishery 4: Purse Seine (PS, 1982-2010)

Fishery 5: Others (Others, 1950-2010)



# CPUEデータ



### 体長組成データ



## データ

#### Data by type and year





# 尤度およびベイズ推測復習



**RA** Fisher



T Bayes

### 尤度の考え方

尤度・・・得られた観測値とその確率分布を基にして パラメータの尤もらしさを測る相対的尺度

「得られた観測値」:

XXというデータが得られたという事実を尊重する

「その確率分布を基に」:

観測値の出現メカニズムを確率分布で表現する

「パラメータの尤もらしさ」:

得られた観測データの出やすさ(確率)で判断

「(相対的)尺度」:

確率の絶対値は関係なく、相対的な大きさを問う

### 尤度関数

$$L(p) = P(Y = 7) = {10 \choose y} p^{7} (1-p)^{10-7}$$

$$L(0.2) = {10 \choose 7} 0.2^7 (1 - 0.2)^{10-7} = 0.00079$$

$$L(0.5) = {10 \choose 7} 0.5^7 (1 - 0.5)^{10-7} = 0.11719$$

$$L(0.8) = {10 \choose 7} 0.8^7 (1 - 0.8)^{10-7} = 0.20133$$

### p=0.8の尤度が最も大きい





### 尤度関数

$$L(p) = P(Y = 7) = {10 \choose y} p^{7} (1-p)^{10-7}$$

パラメータの範囲  $0 \le p \le 1$  で連続的にプロットすると 右図の通り

パラメータの範囲全てを対象にすると p=0.7で尤度 関数の値が最大となる





### 尤度関数の最大化:2項分布の場合

N, yに特別な値を想定せず一般的に考えると

$$L(p) = P(Y = y) = {N \choose y} p^{y} (1-p)^{N-y}$$
 最大化

対数をとっても大小関係は変わらないので、対数をとると (すなわち、 $L(p) < L(q) \Leftrightarrow logL(p) < logL(q)$ )

$$\log L(p) = \log P(Y = y) = \log \left[ \binom{N}{y} p^{y} (1-p)^{N-y} \right]$$

$$= \log \binom{N}{y} + \log p^{y} + \log(1-p)^{N-y}$$

$$= \log \binom{N}{y} + y \log p + (N-y) \log(1-p)$$

### 尤度関数の最大化:2項分布の場合(続き)

 $\log L(p)$  を最大にするようなpを求めるためにpで偏微分すると

$$\frac{\partial}{\partial p} \log L(p) = 0 + y \frac{1}{p} + (N - y) \frac{-1}{1 - p}$$

この微分係数がOとなるようなpを求めると,

$$\frac{\partial}{\partial p} \log L(p) = 0$$

$$0 + y \frac{1}{p} + (N - y) \frac{-1}{1 - p} = 0$$

$$\hat{p} = \frac{y}{N}$$

$$\hat{p}(Y) = \frac{Y}{N}$$
推定值

### 2項分布の対数尤度関数(サンプル数を増やすと?)



### 最尤推定量の分布の漸近的性質(2項分布のNを増加)



#### Fisher information

### An asymptotic property of ML estimator (1-dimensional)

$$\sqrt{n}(\hat{\theta} - \theta) \to N(0, I^{-1}(\theta))$$

$$\Rightarrow$$

$$\hat{\theta} - \theta \rightarrow N(0, I_n^{-1}(\theta))$$
 (in dist) where  $I_n(\theta) = -E[\frac{\partial^2}{\partial \theta^2}l(\theta)]$ 

The larger the curvature of log-likelihood function is (which means the functional form at the maximum value is sharper), the much information on the parameter the log-likelihood contains.

$$-\frac{\partial^{2}}{\partial \theta^{2}}l(\theta) \to -E\left[\frac{\partial^{2}}{\partial \theta^{2}}l(\theta)\right] = I_{n}(\theta) \ (in \ prob)$$
$$V[\hat{\theta} - \theta] = V[\hat{\theta}] \approx I_{n}^{-1}(\theta) \approx I_{n}^{-1}(\hat{\theta})$$

### 最尤推定量の特徴

### 利点:

- 単純かつ単一の原理により推定量を導出できる
- ●信頼区間,仮説検定,モデル選択など一貫した統計 推測が可能となる
- ●サンプル数が大きいとき、真のパラメータに収束することが保証されている(モデルが正しいとき)

### 注意点:

●必ずしも不偏であるとは限らない (例:正規分布の分散の推定量は過小評価)

### 最尤法のフレームワーク

- 1. データに対する統計モデリング(大前提)
- 2. パラメータの推定(最尤推定法)
- 3. 推定誤差や信頼区間(領域)の提示 (Fisher情報量,デルタ法,プロファイル尤度)
- 4. 検定(尤度比検定)
- 5. モデル診断 (逸脱度 deviance)
- 6. モデル選択 (AIC)

### 尤度比検定

### ある魚種の性比を調べるためn尾をサンプリングし、 オスの数を計測した

$$Y \sim Bin(n, p)$$

#### 観測値の例

$$n = 20$$

$$Y = 6$$

$$L(p) = \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}$$

$$l(p) = \log L(p)$$



### 尤度比検定

### 従来の知見: p=0.5 (性比一定)

**H0:** 
$$p=0.5$$
  $l(0.5) = log L(0.5) = -3.30$ 

**H1:** 
$$p \neq 0.5$$
  $l(\hat{p}) = \log L(\hat{p}) = -1.65$ 

$$\lambda(p) = -2\log \frac{L(p)}{L(\hat{p})}$$

**H0:** p=0.5 
$$\lambda(0.5) = 3.29$$

H1: p
$$\neq$$
0.5  $\lambda(\hat{p}) = 0$ 

# $L(p) = \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}$

$$l(p) = \log L(p)$$

#### -2 log-likelihood ratio for p



# 尤度比検定

### H0: p=p0 に対して有意水準0.05で検定

$$\lambda(p_0) = -2[l(p_0) - l(\hat{p})] \sim \chi^2(1)$$

$$Pr(\lambda(p_0) > \chi^2(0.05;1)) = 0.05$$



### したがって

$$\lambda(p_0) > \chi^2(0.05;1) = 3.8415$$

ならば帰無仮説を棄却



#### -2 log-likelihood ratio for p



### ベイズ推測

- パラメータに関して事前の知識がある場合にそれを推定に 活かす統計学のフレームワーク
- 事前の知識が間違っている,あるいは不適切な場合,もちろんその悪影響を受ける。ただし、標本数が大きくなるとその影響は薄められる。

### ベイズの定理

$$f(y|p)$$
  $\pi(p|y)$  事後分布

$$\pi(p \mid y) = \frac{f(y \mid p)\pi(p)}{\int f(y \mid p)\pi(p)dp}$$

パラメータに関する推測を 確率で評価する

# 2項分布の例

$$P(Y = y \mid p) = {N \choose y} p^{y} (1-p)^{N-y}$$

$$\pi(p) = \frac{1}{Be(\alpha, \beta)} p^{\alpha-1} (1-p)^{\beta-1},$$

where 
$$Be(\alpha, \beta) = \int_{0}^{1} p^{\alpha-1} (1-p)^{\beta-1} dp = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$



### 2項分布の例

$$P(Y = y \mid p) = {N \choose y} p^{y} (1-p)^{N-y}$$

$$\pi(p) = \frac{1}{Be(\alpha, \beta)} p^{\alpha-1} (1-p)^{\beta-1}, \quad \text{where} \quad Be(\alpha, \beta) = \int_{0}^{1} p^{\alpha-1} (1-p)^{\beta-1} dp = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

$$\pi (p)$$
事後分布
$$\pi (p|y) = \frac{f(y|p)\pi(p)}{\int f(y|p)\pi(p)dp}$$

$$\pi(p \mid y) = \frac{P(Y = y \mid p)\pi(p)}{P(Y = y)}$$

$$= \frac{1}{Be(y + \alpha, N - y + \beta)} p^{y + \alpha - 1} (1 - p)^{N - y + \beta - 1}$$









# 事後分布最大化 (posterior mode)

$$\pi(p|y) = \frac{f(y|p)\pi(p)}{\int f(y|p)\pi(p)dp} = \frac{f(y|p)\pi(p)}{f(y)} \Rightarrow \max$$

$$\log \pi(p \mid y) = \log f(y \mid p) + \log \pi(p) - \log f(y)$$

# 観測データと確率分布

### 観測データ ⇒ 確率分布 ⇒ 尤度

+制約+事前分布

- 漁獲量(漁法,年,季節)
- 資源量指数
- 体長組成
- 年齢組成

$$L = \sum_{i=1}^{I} \sum_{f=1}^{A_f} \omega_{i,f} L_{i,f} + \omega_R L_R + \sum_{\theta} \omega_{\theta} L_{\theta} + \sum_{P} \omega_{P} L_{P}$$
 (A.3.1)

観測値の対数 尤度と重みの積和 再生産の 事前分布と パラメータの 確率的変動 信念の強さ 時間的変動

パラメータの 時間的変動 (ランダム効果的)

# 漁法別漁獲量

#### 漁獲尾数の組成

$$\underline{p}_{y,f,\gamma} = (p_{y,f,\gamma,1}, \dots, p_{y,f,\gamma,A_l}), \quad p_{y,f,\gamma,l} = \frac{C_{y,f,\gamma,l}}{C_{y,f}}$$

$$\underline{\hat{p}}_{y,f,\gamma} = (\hat{p}_{y,f,\gamma,1}, \dots, \hat{p}_{y,f,\gamma,A_l}), \quad \hat{p}_{y,f,\gamma,l} = \frac{\hat{C}_{y,f,\gamma,l}}{\hat{C}_{y,f}}$$

$$(\underline{p}_{y,f,1}, \underline{p}_{y,f,2}) \sim Multi(C_{y,f}, (\underline{\hat{p}}_{y,f,1}, \underline{\hat{p}}_{y,f,2}))$$

$$\hat{C}_{y,f,\gamma,l} = \sum_{a=0}^{A} \hat{C}_{y,f,\gamma,a,l} = \sum_{a=0}^{A} \frac{F_{y,f} S_{y,f,\gamma,a} S_{y,f,\gamma,l}}{Z_{y,f,\gamma,a}} N_{y,\gamma,a,l} (1 - e^{-Z_{y,f,\gamma,a}})$$

$$L_{4,f} = \sum_{y=1}^{N_y} \sum_{\gamma=1}^{A_{\gamma}} \sum_{l=1}^{A_l} n_{1,y,f,\gamma} p_{1,y,f,\gamma,l} \ln(p_{1,y,f,\gamma,l}/\hat{p}_{1,y,f,\gamma,l})$$
(A.3.5)

# 漁法別漁獲量

#### 総漁獲尾数

$$\log C_{y,f} \sim N(\log \hat{C}_{y,f}, \sigma_{y,f}^2)$$

$$L_{7,f} = \sum_{y=1}^{N_y} \frac{\left(\ln(C_{y,f}) - \ln(\hat{C}_{y,f} + x)\right)^2}{2\sigma_{y,f}^2}$$
 (A.3.8)

### 漁法別CPUE

$$\log I_{y,f} \sim N(\log Q_{y,f}, \tau_{y,f}^2)$$
 記号少し変更

$$L_{1,f} = N(\ln(\sigma)) + \sum_{y=1}^{N_y} \frac{\left(\ln(I_{y,f}) - \ln(Q_f B_{y,f})\right)^2}{2\sigma^2}$$
(A.3.2)

$$B_{y,t,f} = \sum_{\gamma=1}^{A_{\gamma}} \sum_{l=1}^{A_{l}} w_{\gamma,l} \sum_{a=0}^{A} C_{y,t,f,\gamma,a,l}$$
(A.2.2)

#### Recruitment deviation etc.

$$R_{y} = \frac{4hR_{0}SB_{y}}{SB_{0}(1-h) + SB_{y}(5h-1)}e^{-0.5b_{y}\sigma_{R}^{2} + \tilde{R}_{y}}$$

$$\tilde{R}_y \sim N(0, \sigma_R^2)$$

$$L_{R} = \frac{1}{2} \left[ \sum_{y=1}^{N_{y}} \frac{\tilde{R}_{y}^{2}}{\sigma_{R}^{2}} + b_{y} \ln \left(\sigma_{R}^{2}\right) \right] ?? \qquad (A.3.10)$$

$$= \frac{1}{2} \left[ \sum_{y=1}^{N_{y}} \frac{\tilde{R}_{y}^{2}}{\sigma_{R}^{2}} + b_{y} \ln \left(\sigma_{R}^{2}\right) \right] ??$$

$$L_{\theta} = 0.5 \left( \frac{\theta - \mu_{\theta}}{\sigma_{\theta}} \right)^{2}$$
 (A.3.11)

$$L_{p} = \frac{1}{2\sigma_{p}^{2}} \sum_{y=1}^{N_{y}} \tilde{P}_{y}^{2} \qquad (A.3.13)$$



# 尤度に対する重みと有効サンプルサイズ

|                | 分散項                | 仮定                         | 重み(λ) |
|----------------|--------------------|----------------------------|-------|
| CPUE           | $	au_{y,f}^2$      | CV (given)                 | yes   |
| 体長組成<br>(年齢組成) | $N_{y,f}$          | 有効標本数<br>(over-dispersion) | yes   |
| 再生産確率的変動(*)    | $\sigma_R^2$       | CV (given)                 | yes   |
| 事前分布           | $\sigma_{	heta}^2$ | CV (given)                 | yes   |
| パラメータ確率変動(*)   | $\sigma_P^2$       | CV (given)                 | yes   |

恣意的に変動の程度を決めることになる

(\*)の真面目な推測の場合,変数を積分して $\sigma_R^2$ , $\sigma_R^2$ の周辺尤度を定義し推定する。その際,分散の過小評価を避けるため部分尤度を利用)

# 診断

### CPUEと体長組成に対する重み

● 尤度プロファイル (log ROに対する)

### 選択性などの仮定の検証

● 体長や年齢を用いない解析との比較 (ASPM etc.)

# 仕様設定および推定の難しいパラメータ

- steepness
- 自然死亡係数
- パラメータの確率変動の分散
- 成長式周りの分散
- 有効サンプル数
- . . .