25 x satisfies the differential equation $\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = \cos 4t, t \ge 0$	
$\frac{1}{dt^2} + 8\frac{dt}{dt} + 10x = \cos 4t, t \ge 0$ a Find the general solution of the differential equation. b Find the particular solution of this differential equation for which, at $t = 0$, $x = \frac{1}{2}$	(8 marks)
and $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$.	(5 marks)
e Describe the behaviour of the function for large values of t.	(2 marks)
Auxilary Equation:	
110000	
$m^2 + 8m + 16 = 0$ ×	16 1 14
+	8 2 8
(m+4)(m+4)=0	7
m = -4	
1 solution > CF form:	
(A+Bt)ext	
(A+Bt)e-4E	

$$\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 8\frac{\mathrm{d}x}{\mathrm{d}t} + 16x = \cos 4t, \, t \ge 0$$

- a Find the general solution of the differential equation.
- **b** Find the particular solution of this differential equation for which, at t = 0, $x = \frac{1}{2}$
- e Describe the behaviour of the function for large values of t.
- (8 marks)

(5 marks)

(2 marks)

f(t) = (os 4t =)

PI forn:

Substituting

-16l Sin4t + Vou Cos Ft + 32l cos 4t - 32 M Sin4t + 1618in 4c - 16n Cos At = Cos 4t

$$\therefore L = \frac{1}{32}, \mu = 0$$

(E/P) 25 x satisfies the differential equation
$$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = \cos 4t, t \ge 0$$

a Find the general solution of the differential equation. **b** Find the particular solution of this differential equation for which, at t = 0, $x = \frac{1}{2}$

(5 marks)

e Describe the behaviour of the function for large values of t.

(2 marks)

sin 4t (A+Bx)e-4x

GS=PI+CF

GS:

$$x = (A + Bt)e^{-4t} + \frac{\sin 4t}{32}$$

$$t=0, x=\frac{1}{2}$$

P S:

$$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = \cos 4t, t \ge 0$$

- a Find the general solution of the differential equation.
- (8 marks)
- b Find the particular solution of this differential equation for which, at t = 0, x = ½ and dx/2 = 0.
- (5 marks)
- e Describe the behaviour of the function for large values of t.
- (2 marks)

$$\frac{dx}{dt} = 0 = Be^{-4t} - 4e^{-4t} \left(\frac{1}{2} + Bt\right) + \frac{\cos 4t}{8}$$

$$(t=0)$$

The ps at
$$t=0, x=\frac{1}{2}, \frac{dx}{dt}=0$$
 is:

$$x = (\frac{1}{2} + \frac{15t}{8})e^{-4t} + \frac{9in 4t}{37}$$

$$x = \frac{\left(\frac{1}{2} + 15t\right)}{8} + \frac{9 \text{ in } 4t}{37}$$

$$= \frac{4t}{2}$$

As t approaches infinity:

Approaches 0

Oscilates with period pi/2 around x=+/-(1/32)